

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет

имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.04 ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ. (ИУ7)**

ОТЧЕТ

Название:	Синхронные ооноступ	<u>енчатые триггеры со</u>	статическим и
динамическим	управлением записью		
Дисциплина:	Архитектура ЭВМ		
Студент	иу7-43Б		А. Н. Паламарчук
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподават	ель		А. Ю. Попов
		(Подпись, дата)	(И.О. Фамилия)

1. Исследовать работу асинхронного RS-триггера с инверсными входами (см. рис. 3) в статическом режиме.

Задание:

- 1. собрать схему RS-триггера на ЛЭ И-НЕ;
- 2. к выходам Q и ¬ Q триггера подключить световые индикаторы;
- 3. задавая через переключатели необходимые сигналы на входах ¬S и ¬R триггера, составить таблицу переходов.

Решение:

\overline{S}	\overline{R}	Q_n	Q_{n+1}	Режим
0	0	0	-	Запрещенное
0	0	1	-	состояние
0	1	0	1	Установить 1
0	1	1	1	
1	0	0	0	Установить 0
1	0	1	0	
1	1	0	0	Хранение
1	1	1	1	
S				

устанавливает триггер в состояние единицы, а R триггер в состояние нуля.

Одновременное включение S, R триггер — запрещенное состояние.

2. Исследовать работу синхронного RS-триггера в статическом режиме.

Задание:

- 1. собрать схему RS-триггера на ЛЭ И-НЕ;
- 2. к выходам Q и ¬Q триггера подключить световые индикаторы;
- 3. задавая через переключатели необходимые сигналы на входах S, R и C, протестировать и составить таблицу переходов триггера. В таблице

теста каждому набору S, R и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 переход в режим хранения.

Решение:

Синхронный RS-триггер имеет два входа управления (R и S) и один вход синхронизации C. При C = 0 синхронный RS-триггер сохраняет предыдущее значение. При C = 1 — работает как асинхронный RS-триггер.

Вход С позволяет внести контроль над сигналом, входящим в триггер.

С	\overline{S}	\overline{R}	Q_n	Q_{n+1}	Режим
1	1	1	0	-	Запрещенное
1	1	1	1	-	состояние
1	1	0	0	1	Установить 1
1	1	0	1	1	
1	0	1	0	0	Установить 0
1	0	1	1	0	
0	-	-	0	0	Хранение
0	-	-	1	1	
1	0	0	0	0	
1	0	0	1	1	

3. Исследовать работу синхронного D-триггера в статическом режиме.

Задание:

1. собрать схему D-триггера на ЛЭ И-НЕ; в приложении Multisim можно использовать макросхему D-триггера;

- 2. к выходам Q и ¬Q триггера подключить световые индикаторы;
- 3. задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста каждому набору D и Q будет соответствовать 3 строки: сначала задать C=0 (момент времени t_n), затем при C=1 (момент времени t_{n+1}) определяется Q_{n+1} и снова при C=0 происходит переход в режим хранения.

Решение:

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

С	D	Q_n	Q_{n+1}	Режим
1	1	0	1	Установить 1
1	1	1	1	
1	0	0	0	Установить 0
1	0	1	0	
0	-	0	0	Хранение
0	-	1	1	

4. Исследовать схему синхронного D-триггера с динамическим управлением записью в статическом режиме

Задание:

- 1. к выходам Q и ¬Q триггера подключить световые индикаторы;
- 2. задавая через переключатели необходимые сигналы на входах D и C, протестировать и составить таблицу переходов триггера. В таблице теста следует отметить реакцию триггера на изменения сигнала D при

C=0 и при C=1, а также способность триггера принимать сигнал D только по перепаду 0/1 сигнала C.

Решение:

Сигнал D в данном случае меняется только тогда, когда сигнал C меняется. (Прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на \mathcal{C} -входе из 0 в I или из I в 0, т.е. особенностью синхронных триггеров с динамическим управлением является перепад синхросигнала)

С	D	Q_n	Q_{n+1}	Режим
0->1	1	0	1	Установить 1
0->1	1	1	1	
0->1	0	0	0	Установить 0
0->1	0	1	0	
0	0	0	0	Хранение
0	0	1	1	
0	1	0	0	
0	1	1	1	

5. Исследовать схему синхронного DV-триггера с динамическим управлением записью в динамическом режиме. Задание:

- построить схему синхронного DV-триггера на основе синхронного D-триггера и мультиплексора MS 2-1 (выход MS 2-1 соединить с D-входом триггера, вход 0 MS 2-1 соединить с выходом Q триггера. Тогда вход 1 MS 2-1 будет D-входом, адресный вход A MS 2-1 входом V синхронного DV-триггера), вход C D-триггера входом C DV триггера;
- 2. подать сигнал генератора на вход счетчика и на С-вход DV-триггера;
- 3. подать на входы D и V триггера сигналы с выходов 2-го и 3-го разрядов счетчика;
- 4. снять временные диаграммы синхронного DV-триггера;

Решение:

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

$$Q_t = DV + VQ_{t-1} = DVC + (V+C)Q_{t-1}$$

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. $Q_t = Q_{t-1}$. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

6. Исследовать работу DV-триггера, включенного по схеме TVтриггера

Задание:

- 1. на вход D подать сигнал $\neg Q$, на вход C подать сигналы генератора, а на вход V с выхода 3-го разряда счетчика;
- 2. снять временные диаграммы Т-триггера; объяснить работу синхронного Т-триггера по временным диаграммам.

Решение:

Асинхронный Т - триггер переходит в противоположное состояние каждый раз при подаче на T-вход единичного сигнала. T-триггер реализует счет по модулю 2: $Q_{n+1} = T \oplus Q_n$.

Синхронный Т - триггер имеет вход C и вход T. Синхронный T-триггер переключается в противоположное состояние сигналом C, если на счетном входе T действует единичный сигнал.

Ответы на контрольные вопросы

- 1. Что называется триггером? Триггер является запоминающим элементом с двумя устойчивыми состояниями, которые кодируются цифрами 0 и 1.
- 2. Какова структурная схема триггера? Структурную схему триггера можно представить в виде запоминающей ячейки (ЗЯ) и схемы управления (СУ).
- 3. По каким основным признакам классифицируют триггеры?
 - 1) По способу организации логических связей, т.е. по виду логического уравнения, характеризующего состояние входов и выходов триггера в момент времени tn до его срабатывания и в момент tn+1 после его срабатывания, различают триггеры:
 - о с раздельной установкой состояний "0" и "1" (RS-триггеры);
 - о со счетным входом (Т-триггеры);
 - о универсальные с раздельной установкой состояний "0" и "1" (JK-триггеры);
 - с приемом информации по одному входу (D триггеры); *
 универсальные с управляемым приемом информации по одному входу (DV триггеры);
 - о комбинированные (например, RST-, JKRS, DRS триггеры) и т.д.
 - 2) По способу запаси информации различают триггеры:
 - асинхронные (не синхронизируемые);
 - о синхронные (синхронизируемые), или тактируемые.
 - 3) По способу синхронизации различают триггеры: синхронные со статическим управлением записью; синхронные с динамическим управлением записью.

- 4) По способу передачи информации с входов на выход различают триггеры о одноступенчатым и двухступенчатым запоминанием информации.
- 4. Каково функциональное назначение входов триггеров?S-вход вход для раздельной установки триггера в состояние "1" (Set установка)

R-вход – вход для раздельной установки триггера в состояние "0" (Reset – сброс, очистка)

J-вход – вход для установки состояния "1" в универсальном JK-триггере (Jerk – внезапное включение)

К-вход – вход для установки состояния "0" в универсальном JК-триггере (Kill – внезапное отключение)

D-вход –информационный вход для установки триггера в состояния "1" или "0" (Data – данные, Delay – задержка)

V-вход – подготовительный управляющий вход для разрешения приема информации (Valve –клапан, вентиль)

С-вход - исполнительный управляющий (командный) вход для осуществления приема информации, вход синхронизации (Clock – источник синхросигналов)

- 5. Что такое асинхронный и синхронный триггеры? Асинхронный RS -триггер это простейший триггер, который используется как запоминающая ячейка. Синхронный RS-триггер имеет два информационных входа R и S и вход синхронизации C.
- 6. Что такое таблица переходов? Таблица переходов отражает зависимость выходного сигнала триггера в момент времени tn+1 от входных сигналов и от состояния триггера в предыдущий момент времени tn.
- 7. Как работает асинхронный RS-триггер?
 При S=0 и R = I триггер устанавливается в состояние "0", а при S = 1 и R = 0 в состояние "1"). Если = 0 и R = 0, то в триггере сохраняется предыдущее внутреннее состояние). При S=R=1 состояние триггера является неопределенным (после снятия входных сигналов S и R). Такая комбинация входных сигналов S=R=1 является недопустимой

(запрещенной). Для нормальной работы триггера необходимо выполнение запрещающего условия SR= 0.

8. Как работает синхронный RS -триггер? Какова его таблица переходов? Как и все синхронные триггеры, синхронный RS - триггер при C = 0 сохраняет предыдущее внутреннее состояние, т.е. Qn+1 = Qn . Сигналы по входам S и R переключают синхронный RS-триггер только с поступлением импульса на вход синхронизации C. При C=1 синхронный триггер переключается как асинхронный (табл.2). Одновременная подача сигналов C=S=R= 1 запрещена. При S=R=0 триггер не изменяет своего состояния.

С	S	R	Q_{t-1}	Qt	Пояснение
0	A	\forall	Q_{t-1}	Qt	Хранение
1	0	0	0	0	Хранение
1	0	0	1	1	
1	0	1	0	0	Установка
1	0	1	1	0	0
1	1	0	0	1	Установка
1	1	0	1	1	1
1	1	1	0	Χ	Запрещенная
1	1	1	1	Χ	операция

9. Что такое D-триггер?

Синхронный D -триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т.е. выходные сигналы представляют собой задержанные входные сигналы. Поэтому D - триггер — элемент задержки (хранения) входных сигналов на один такт.

10. Объясните работу синхронного D-триггера.

Схему синхронного D -триггера можно получить из схемы синхронного RS — триггера, подавая сигнал D на вход S, а сигнал \overline{D} , т.е. с выхода инвертора сигнала D, на вход R. В результате на входах RS-триггера возможны только наборы сигналов SR =01 при D=0 или SR =10 при D=1, что соответствует записи в триггер логического 0 или 1. Путем логических преобразований инвертор можно исключить и получить схему синхронного D —триггера. Синхронный D-триггер имеет один

информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.

11. Что такое DV –триггер?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации.

12. Объясните работу DV-триггера.

При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn . При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние, т.е. Qn+1=Qn .

13. Что такое Т-триггер? Какова его таблица переходов?

Т-триггер имеет один информационный вход Т, называемый счетным входом. Асинхронный Т-триггер переходит в противоположное состояние каждый раз при подаче на Т-вход единичного сигнала. Таким образом Ттриггер реализует счет по модулю 2: $Qt = Tt - 1 \oplus Qt - 1$. Синхронный Ттриггер имеет вход С и вход Т. Синхронный Т-триггер переключается в противоположное состояние сигналом С, если на счетном входе Т действует сигнал логической 1

14. Объясните работу схемы синхронного RS-триггера со статическим управлением.

При С=0 триггеры переходят в режим хранения, запоминая последнее состояние

15. Какова характерная особенность переключения синхронных триггеров с динамическим управлением записью?

Характерной особенностью синхронных триггеров с динамическим управлением записью является то, что прием информационных сигналов и передача на выход принятой информации выполняются в момент изменения синхросигнала на С -входе из "0" в "I" или из "I" в "0", т.е. перепадом синхросигнала.

16. Как работает схема синхронного D -триггера с динамическим управлением записью на основе трех RS -триггеров?

Триггер имеет асинхронные входы Sa и Ra начальной установки в состояния 1 и 0. Если схему D -триггера дополнить входом V, то получим структуру DV-триггера. Временные диаграммы D -триггера соответствуют временным диаграммам DV- триггера при V= 1

- 17. Составьте временные диаграммы работы синхронного D-триггера с динамическим управлением записью.
- 18. Какова структура и принцип действия синхронного DV-триггера с динамическим управлением записью?

Синхронный DV-триггер имеет один информационный вход D и один подготовительный разрешающий вход V для разрешения приема информации. Qt = DV + VQt - 1 = DVC + (V + C)Qt - 1 При C=0 DV-триггер, как и синхронные триггеры всех типов, сохраняет предыдущее внутреннее состояние, т.е. Qt = Qt - 1. При C=1 и при наличии сигнала V=1 разрешения приема информации DV-триггер принимает информационный сигнал, действующий на входе D, т.е. работает как асинхронный DV-триггер. При C=1 и V=0 DV-триггер сохраняет предыдущее внутреннее состояние.

- 19. Составьте временные диаграммы синхронного DV-триггера.
- 20. Объясните режимы работы D-триггера.

Синхронный D-триггер имеет один информационный вход D, состояние которого с каждым синхронизирующим импульсом передается на

выход, т. е. выходные сигналы представляют собой задержанные входные сигналы.