Càlcul Diferencial en Diverses Variables - 2012-2013 Examen parcial resolt

- (1) (a) Considereu el conjunt $A = \{(x, y) \in \mathbb{R}^2 : y 1 \le x^2 \le y + 1\}.$
 - (i) Representeu-lo gràficament.
 - (ii) Proveu que A és tancat. És compacte?
 - (iii) Proveu que l'origen de coordenades és un punt interior a A.
 - (iv) Trobeu un punt de la frontera de A.
 - (b) Demostreu que si K és un compacte de \mathbb{R}^n i $f:K\to\mathbb{R}^m$ és contínua, llavors f(K) és compacte en \mathbb{R}^m .

Solució:

(a.i) Observeu que $A = \{(x,y) \in \mathbb{R}^2 : x^2 - 1 \le y \le x^2 + 1\}$, i per tant A és el conjunt de punts del pla que estan entre les paràboles $y = x^2 - 1$ i $y = x^2 + 1$. Les paràboles $y = x^2 - 1$ i $y = x^2 + 1$ s'obtenen aplicant les translacions de vectors directors (0,-1) i (0,1), respectivament, a la paràbola $y = x^2$ (que apareix dibuixada a continuació amb línia discontínua). Per tant, el conjunt A és la regió ombrejada de la figura següent:

(a.ii) A és un conjunt tancat de \mathbb{R}^2 perquè és l'antiimatge d'un subconjunt tancat de \mathbb{R} per una funció contínua $f: \mathbb{R}^2 \to \mathbb{R}$. En efecte,

$$A = \{(x, y) \in \mathbb{R}^2 : -1 \le x^2 - y \le 1\} = f^{-1}([-1, 1]),$$

1

on $f: \mathbb{R}^2 \to \mathbb{R}$ és la funció definida per $f(x,y) = x^2 - y$, que és contínua perquè és una funció polinòmica. Observeu que l'interval [-1,1] és un subconjunt tancat de \mathbb{R} ja que coincideix amb la bola tancada de \mathbb{R} que té centre 0 i radi 1.

A no és compacte perquè no és acotat ja que, per a cada r > 0, el punt $(x_r, y_r) = (r, r^2)$ pertany a A (perquè és de la paràbola $y = x^2$!) i $||(x_r, y_r)|| = \sqrt{r^2 + r^4} > r$.

(a.iii) Observeu que $(0,0) \in B = \{(x,y) \in \mathbb{R}^2 : y-1 < x^2 < y+1\} \subset A$. A més a més, B és un conjunt obert de \mathbb{R}^2 ja que B és l'antiimatge d'un subconjunt obert de \mathbb{R} per la funció contínua $f : \mathbb{R}^2 \to \mathbb{R}$ considerada a l'apartat anterior. En efecte,

$$B = \{(x, y) \in \mathbb{R}^2 : -1 < x^2 - y < 1\} = f^{-1}((-1, 1)),$$

i l'interval (-1,1) és un subconjunt obert de \mathbb{R} ja que coincideix amb la bola oberta de \mathbb{R} que té centre 0 i radi 1.

Així doncs, com que $(0,0) \in B$ i B és un conjunt obert inclòs en A, deduïm que (0,0) és un punt interior a A.

- (a.iv) (0,1) és un punt de la frontera de A ja que:
 - $(0,1) \in \overline{A}$, perquè $(0,1) \in A$ i $A \subset \overline{A}$.
 - $(0,1) \in \overline{\mathbb{R}^2 \setminus A}$, perquè (0,1) és el límit d'una successió de punts de $\mathbb{R}^2 \setminus A$. En efecte,

$$(0,1) = \lim_{n \to \infty} (x_n, y_n), \quad \text{on } (x_n, y_n) = (0, 1 + \frac{1}{n}).$$

Observeu que $(x_n, y_n) \in \mathbb{R}^2 \setminus A$ ja que $y_n - 1 = \frac{1}{n} > 0 = x_n^2$.

(b) Sigui $K \subset \mathbb{R}^n$ compacte i $f: K \to \mathbb{R}^m$ una funció contínua. Volem provar que f(K) és compacte, és a dir, tota successió $\{y^{(j)}\}_j$ de punts de f(K) admet una successió parcial $\{y^{(j)}\}_i$ que convergeix cap a un punt $y \in f(K)$. Sigui doncs $\{y^{(j)}\}_j$ una successió de punts de f(K). Aleshores $y^{(j)} = f(x^{(j)})$, on $x^{(j)} \in K$, ja que $y^{(j)} \in f(K)$. Per tant, $\{x^{(j)}\}_j$ és una successió de punts de K i la compacitat de K implica que $\{x^{(j)}\}_j$ té una successió parcial $\{x^{(j)}\}_i$ que convergeix cap un punt $x \in K$. Utilitzant la continuïtat de f en x deduïm que $\{f(x^{(j)})\}_i$ convergeix cap a f(x). En conseqüència, $\{y^{(j)}\}_i = \{f(x^{(j)})\}_i$ és una successió parcial de $\{y^{(j)}\}_i$ que convergeix cap a $y = f(x) \in f(K)$, i hem acabat.

(2) (a) Per a $m \in \mathbb{N}$, estudieu la continuïtat en \mathbb{R}^2 de la funció

$$f_m(x,y) = \begin{cases} \frac{xy^m}{x^2 + y^6}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

(b) Estudieu la continuïtat en (0,0) de la funció

$$g(x,y) = \begin{cases} \frac{xy^4}{x-y}, & \text{si } x-y \neq 0, \\ 0, & \text{si } x-y = 0. \end{cases}$$

Solució:

(a) Primer observeu que f_m és contínua en cada punt $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, ja que f_m restringida a l'obert $\mathbb{R}^2 \setminus \{(0,0)\}$ és una funció contínua. En efecte, aquesta restricció és contínua perquè és el quocient de dues funcions contínues en $\mathbb{R}^2 \setminus \{(0,0)\}$ i la del denominador no s'anul.la en cap punt de $\mathbb{R}^2 \setminus \{(0,0)\}$: $f_m(x,y) = \frac{p_m(x,y)}{q(x,y)}$, per a tot $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, on $p_m(x,y) = xy^m$ i $q(x,y) = x^2 + y^6$ són funcions contínues en \mathbb{R}^2 (ja que són funcions polinòmiques) i q(x,y) > 0, per a cada $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.

Anem doncs a estudiar la continuïtat de f_m en (0,0). Observeu que

$$|f_m(x,y)| = \frac{|x||y|^m}{x^2 + y^6} = \frac{(x^2)^{\frac{1}{2}}(y^6)^{\frac{m}{6}}}{x^2 + y^6} \le (x^2 + y^6)^{\frac{1}{2} + \frac{m}{6} - 1} = (x^2 + y^6)^{\frac{m}{6} - \frac{1}{2}},$$

per a cada $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, i $\lim_{(x,y)\to(0,0)} (x^2+y^6)^{\frac{m}{6}-\frac{1}{2}} = 0$, si $\frac{m}{6}-\frac{1}{2}>0$, és a dir, si $m>\frac{6}{2}=3$. En conseqüència, quan m>3 es compleix que

(1)
$$\lim_{(x,y)\to(0,0)} f_m(x,y) = 0 = f_m(0,0),$$

és a dir, f_m és contínua en (0,0).

D'altra banda,

(2)
$$\lim_{y \to 0^+} f_m(y^3, y) = \lim_{y \to 0^+} \frac{y^{3+m}}{2y^6} = \lim_{y \to 0^+} \frac{y^{m-3}}{2} = \begin{cases} \frac{1}{2}, & \text{si } m = 3, \\ +\infty, & \text{si } m < 3, \end{cases}$$

i deduïm que f_m no és contínua en (0,0) quan $m \leq 3$. En efecte, si f_m fos contínua en (0,0) s'ha de complir (1) i per tant el límit de f_m en (0,0) segons el subconjunt $E = \{(y^3, y) : y > 0\}$ hauria de ser igual a $f_m(0,0) = 0$, i hem vist en (2) que no és així quan $m \leq 3$.

(Observeu que podem considerar el límit de f_m en (0,0) segons el subconjunt E perquè (0,0) és un punt d'acumulació de E: $(0,0) = \lim_{n\to\infty} (x_n,y_n)$, on $(x_n,y_n) = (\frac{1}{n^3},\frac{1}{n}) \in E = E \setminus \{(0,0)\}$.)

Resumint:

- Totes les funcions f_m són contínues en cada punt $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$
- f_m és contínua en (0,0) si i només si m>3.
- (b) Considereu el conjunt $E = \{(x, y) \in \mathbb{R}^2 : g(x, y) = 1\}$. Aleshores

$$E = \{(x, y) \in \mathbb{R}^2 : xy^4 = x - y \neq 0\} = \{(x, y) \in (\mathbb{R} \setminus \{0\})^2 : y = x(1 - y^4)\},$$

i per tant $E = \{(\frac{y}{1-y^4}, y) : y \in \mathbb{R} \setminus \{\pm, 1, 0\} \}$. En conseqüència, (0, 0) és un punt d'acumulació de E ja que $(0, 0) = \lim_{n \to \infty} (x_n, y_n)$, on $(x_n, y_n) = (\frac{1/(2n)}{1 - (1/(2n))^4}, \frac{1}{2n}) \in E = E \setminus \{(0, 0)\}$. Óbviament

el límit de g en (0,0) segons el subconjunt E és igual a $1 \neq 0 = g(0,0)$, i deduïm que g no és contínua en (0,0). (Si g fos contínua en (0,0), el límit de g en (0,0) seria igual a g(0,0)=0, i en particular el límit de g en (0,0) segons el subconjunt E també hauria de ser igual a g(0,0)=0.)

- (3) (a) Per a funcions $f: \mathbb{R}^n \to \mathbb{R}$, definiu el concepte de funció diferenciable en un punt. Proveu que si f és diferenciable en un punt $a \in \mathbb{R}^n$, llavors f és contínua en a. És cert el recíproc?
 - (b) Estudieu la diferenciabilitat de la funció

$$f(x,y) = \begin{cases} \frac{y^5}{(x^2 + y^2)^2}, & \text{si } (x,y) \neq (0,0), \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Solució:

(a) Concepte de funció diferenciable en un punt per a funcions $f: \mathbb{R}^n \to \mathbb{R}$: Sigui $f: \mathbb{R}^n \to \mathbb{R}$ una funció i $a \in \mathbb{R}^n$. Diem que f és diferenciable en a quan existeix una aplicació lineal $L: \mathbb{R}^n \to \mathbb{R}$ tal que

$$\lim_{x \to a} \frac{f(x) - f(a) - L(x - a)}{\|x - a\|} = 0.$$

Aquesta aplicació lineal L que, si existeix és única, es diu diferencial de f en a i es denota per df_a o bé per Df(a).

Si $f: \mathbb{R}^n \to \mathbb{R}$ és diferenciable en un punt $a \in \mathbb{R}^n$ llavors f és contínua en a, i el recíproc d'aquesta implicació és fals:

Suposem que f és diferenciable en a. Volem demostrar que f és contínua en a, és a dir,

$$\lim_{x \to a} f(x) = f(a) \text{ o, equivalentment, } \lim_{x \to a} (f(x) - f(a)) = 0.$$

En efecte, si $x \in \mathbb{R}^n \setminus \{a\}$ llavors f(x) - f(a) = g(x) ||x - a|| + Df(a)(x - a), on

$$g(x) = \frac{f(x) - f(a) - Df(a)(x - a)}{\|x - a\|}.$$

Però $\lim_{x\to a}g(x)=0$ (perquè f és diferenciable en a), $\lim_{x\to a}\|x-a\|=0$ i

$$\lim_{x \to a} Df(a)(x - a) = \lim_{y \to 0} Df(a)(y) = Df(a)(0) = 0$$

(perquè $Df(a): \mathbb{R}^n \to \mathbb{R}$ és lineal i per tant contínua en a i compleix que Df(a)(0) = 0). En conseqüència,

$$\lim_{x \to a} (f(x) - f(a)) = \left(\lim_{x \to a} g(x) \right) \left(\lim_{x \to a} ||x - a|| \right) + \lim_{x \to a} Df(a)(x - a) = 0.$$

Per provar que el recíproc de la implicació anterior és fals només cal donar un exemple d'una funció $f_a: \mathbb{R}^n \to \mathbb{R}$ contínua en $a \in \mathbb{R}^n$ però que no sigui diferenciable en a: La funció $f_a: \mathbb{R}^n \to \mathbb{R}$ definida per $f(x) = \|x - a\|$ és óbviament contínua en a però no és diferenciable en a perquè no existeix cap derivada parcial $\frac{\partial f_a}{\partial x_j}(a), j = 1, \ldots, n$, ja que no existeix el límit

$$\lim_{t \to 0} \frac{f_a(a + te_j) - f_a(a)}{t} = \lim_{t \to 0} \frac{|t|}{t} \text{ (pel fet següent: } \lim_{t \to 0^-} \frac{|t|}{t} = -1 \neq 1 = \lim_{t \to 0^+} \frac{|t|}{t}.\text{)}$$

(b) Primer observeu que f és diferenciable en cada punt $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ perquè f restringida a l'obert $\mathbb{R}^2 \setminus \{(0,0)\}$ és el quocient de dues funcions diferenciables en $\mathbb{R}^2 \setminus \{(0,0)\}$ i la del denominador no s'anul.la en cap punt de $\mathbb{R}^2 \setminus \{(0,0)\}$: $f(x,y) = \frac{p(x,y)}{q(x,y)}$, per a tot $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, on $p(x,y) = y^5$ i $q(x,y) = (x^2 + y^2)^2$ són funcions diferenciables en \mathbb{R}^2 (ja que són funcions polinòmiques) i q(x,y) > 0, per a cada $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$.

Anem doncs a estudiar la diferenciabilitat de f en (0,0). Primer observeu que

$$\frac{\partial f}{\partial x}(0,0) = \frac{d}{dx}f(x,0)\Big|_{x=0} = 0, \quad \text{ja que } f(x,0) = 0, \text{ per a tot } x \in \mathbb{R}, \text{ i}$$

$$\frac{\partial f}{\partial y}(0,0) = \frac{d}{dy}f(0,y)\Big|_{y=0} = 1, \quad \text{ja que } f(0,y) = y, \text{ per a tot } y \in \mathbb{R}.$$

Així doncs, f és diferenciable en (0,0) si i només si $\lim_{(x,y)\to(0,0)}g(x,y)=0$, on

$$g(x,y) = \frac{f(x,y) - y}{\|(x,y)\|} = \frac{y^5 - y(x^2 + y^2)^2}{\|(x,y)\|^5}.$$

Ara $g(y,y) = -\frac{3y^5}{2^5|y|^5}$, i per tant el límit $\lim_{y\to 0} g(y,y)$ no existeix ja que

$$\lim_{y \to 0^{-}} g(y, y) = \frac{3}{2^{5}} \neq -\frac{3}{2^{5}} = \lim_{y \to 0^{+}} g(y, y).$$

En conseqüència, el límit $\lim_{(x,y)\to(0,0)}g(x,y)$ tampoc existeix i deduïm que f no és diferenciable en (0,0).

En conclusió, f només és diferenciable en els punts $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}.$