An Inference Acceleration Approach for Boosting DNN Cold Start in Cloud-Edge Computing

Hao Tian¹, Haolong Xiang², Tingtong Zhu¹, Siyuan Wu¹, Cheng Chen¹, Zheng Li¹, Mingxu Jiang¹, Wanchun Dou¹

Background

DNN Inference in Cloud-Edge Computing

Background

DNN Inference in Cloud-Edge Computing

Motivation

An Example of Incurred Cold Start for DNN Inference

Motivation

2. Model Initialization & Loading

Download Initialize

model j_2 \checkmark \bigcirc Pre-loaded model

An Example of Incurred Cold Start for DNN Inference

Motivation

- **■** Time-varying request partterns
- **Inter-servers resource contention**
- **■** Unapropriate initilization settings

How to plan dependencies for edge servers to accelerate DNN inference?

Problem Formulation

$$\mathcal{P}1: \quad \min_{\{\alpha,\beta,\zeta,\xi,\mu\}} \frac{1}{T} \sum_{t=1}^{T} t^{all}(t)$$

$$\mathbf{s.t.} \quad \alpha_n^m \geq 0, \forall n \in \mathcal{N}, \forall m \in \mathcal{M},$$

$$\sum_{m \in \mathcal{M}} \alpha_n^m \leq 1, \forall n \in \mathcal{N},$$

$$\beta_n^j \geq 0, \forall n \in \mathcal{N}, \forall j \in \mathcal{J},$$

$$\sum_{j \in \mathcal{J}} \beta_n^j \leq 1, \forall n \in \mathcal{N},$$

$$\zeta_n^n, \xi_j^n, \mu_j^n \in \{0,1\}, \forall p \in \mathcal{P}, \forall j \in \mathcal{J}, \forall n \in \mathcal{N}.$$

- The objective is to *minimize the time-average end-to-end inference time*
- Constrainted by:
 - resource limit
 - dependencies planning

Problem Formulation

$$\mathcal{P}1: \min_{\{\alpha,\beta,\zeta,\xi,\mu\}} \frac{1}{T} \sum_{t=1}^{T} t^{all}(t)$$
s.t.
$$\alpha_{n}^{m} \geq 0, \forall n \in \mathcal{N}, \forall m \in \mathcal{M},$$

$$\sum_{m \in \mathcal{M}} \alpha_{n}^{m} \leq 1, \forall n \in \mathcal{N},$$

$$\beta_{n}^{j} \geq 0, \forall n \in \mathcal{N}, \forall j \in \mathcal{J},$$

$$\sum_{j \in \mathcal{J}} \beta_{n}^{j} \leq 1, \forall n \in \mathcal{N},$$

$$\zeta_{n}^{n}, \xi_{i}^{n}, \mu_{i}^{n} \in \{0,1\}, \forall p \in \mathcal{P}, \forall j \in \mathcal{J}, \forall n \in \mathcal{N}.$$

Hao, et al.

The framework of **INAA**

Design #1: Problem Transformation and Optimal Allocation

Solved by KKT

Conditions

By theorem of congestion game:

$$\Gamma = \langle M, \{\zeta_n, \zeta_n, \mu_n\}_{n \in \mathbb{N}}, \{t^{all}\}_{n \in \mathbb{N}} \rangle$$

The key goal is to find pure-strategy Nash equilibrium (NE)

Design #2: Game Theory-based Inference Acceleration

Design #2: Game Theory-based Inference Acceleration

```
Algorithm 1: Distributed resource allocation and inference acceleration
 in time slot t \in \mathcal{T}
 1 Initialize randomized decisions of dependencies planning in edge servers;
 2 repeat
       for n \in \mathcal{N} in parallel do
           Calculate the sum of total time under decision (s_n(t), s_{-n}(t)) with
 4
           optimal resource allocation \alpha_n^* and \beta_n^*;
           Compute minimal total time with s'_n(t) and report it for contend;
                                                     Find optimal decision iteratively
       for n \in \mathcal{N} in parallel do
           if n wins the competition with highest improvement then
               Update the decision with s_n^*(t) and \mathbf{s}(t) \leftarrow \{s_n^*(t), s_{-n}'(t)\};
           end
10
       end
11
12 until no edge server updates its decision;
13 Return \mathbf{s}^*(t).
```

```
Algorithm 1: Distributed resource allocation and inference acceleration
 in time slot t \in \mathcal{T}
 1 Initialize randomized decisions of dependencies planning in edge servers;
 2 repeat
       for n \in \mathcal{N} in parallel do
           Calculate the sum of total time under decision (s_n(t), s_{-n}(t)) with
 4
           optimal resource allocation \alpha_n^* and \beta_n^*;
           Compute minimal total time with s'_n(t) and report it for contend;
       end
       for n \in \mathcal{N} in parallel do
           if n wins the competition with highest improvement then
               Update the decision with s_n^*(t) and \mathbf{s}(t) \leftarrow \{s_n^*(t), s_{-n}'(t)\};
           end
10
11
                                                     Competition among edge servers
12 until no edge server updates its decision;
13 Return \mathbf{s}^*(t).
```

```
Algorithm 1: Distributed resource allocation and inference acceleration
 in time slot t \in \mathcal{T}
 1 Initialize randomized decisions of dependencies planning in edge servers;
 2 repeat
       for n \in \mathcal{N} in parallel do
           Calculate the sum of total time under decision (s_n(t), s_{-n}(t)) with
 4
           optimal resource allocation \alpha_n^* and \beta_n^*;
           Compute minimal total time with s'_n(t) and report it for contend;
       end
       for n \in \mathcal{N} in parallel do
           if n wins the competition with highest improvement then
               Update the decision with s_n^*(t) and \mathbf{s}(t) \leftarrow \{s_n^*(t), s_{-n}'(t)\};
           end
10
       end
12 until no edge server updates its decision;
13 Return \mathbf{s}^*(t).
```

Under finite improvement property (FIP)

- Datasets
 - **EUA**[1]
 - GPU trace from Alibaba cluster^[2]
- DNN Models^[3]
 - AlexNet
 - NiN
 - ResNet32
 - VGG16
- Baselines
 - **HP**[4]
 - LWC^[5]

request arrivals

- [1] He, Q., et al.: A game-theoretical approach for user allocation in edge computing environment. IEEE Trans. Parallel Distrib. Syst. 31(3), 515–529 (2019)
- [2] Weng, Q., et al.: MLaaS in the wild: workload analysis and scheduling in large_x0002_scale heterogeneous GPU clusters. In: 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22) (2022)
- [3] Mohammed, T., Joe-Wong, C., Babbar, R., Di Francesco, M.: Distributed inference acceleration with adaptive DNN partitioning and offloading. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 854–863. IEEE (2020)
- [4] Shahrad, M., et al.: Serverless in the wild: characterizing and optimizing the server_x0002_less workload at a large cloud provider. In: 2020 USENIX Annual Technical Con_x0002_ference (USENIX ATC 20), pp. 205–218 (2020)
- [5] Sethi, B., Addya, S.K., Ghosh, S.K.: LCS: alleviating total cold start latency in serverless applications with LRU warm container approach. In: Proceedings of the 24th International Conference on Distributed Computing and Networking, pp. 197–206 (2023)

■ INAA achieves lower E2E time when the request arrival is at the peak

Hao, et al. INAA@ADMA24 17 /21

■ INAA gains the lower startup time by the growing number of devices

Hao, et al. INAA@ADMA24 18 /21

■ Up to 58.9% improvement in E2E time under increasing memory size

	Total time (ms)	Startup time (ms)	Cold starts (#)
HP	2414.42	861.96	26969.0
LWC	2056.40	507.71	15744.0
INAA	1319.09	251.14	7868.0

Hao, et al. INAA@ADMA24 19/21

Conclusion

- Our proposed INAA is to jointly improve the startup time and resource utilization
- The original denepdency planning problem is decomposed into subproblems, solved by convex optimization technique
- INAA achieves minimal execution cost with less cold starts under the distributed decision-making

Hao, et al. INAA@ADMA24 20 /21

Thank You!