

Course	Methods_Test 4_ Year12
Student name:	Teacher name:
Date: Weds 26 Au	gust
Task type:	Response
Time allowed for th	is task:45 mins
Number of question	ns:6
Materials required:	Calculator with CAS capability (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	46 marks
Task weighting:	10%
Formula sheet prov	ided: Yes

Note: All part questions worth more than 2 marks require working to obtain full marks.

Q1 (1, 1, 1 & 3 = 6 marks) Consider a continuous random variable X that is uniformly distributed as follows.

Determine the following:

P(X>3)

Solution			
(7-3)0.2 = 0.8			
Specific behaviours			

b) $P(X \ge 3)$

	Solution	
(7 - 3)0.2 = 0.8		
Same result as (a)		
	Specific behaviours	
✓ same result as (a)		

c) $P(1 < X \le 7)$

Solution		
4		
	Specific behaviours	
✓ states prob		

d) P(X > 3 | x < 6)

Solution		
$\frac{(6-3)0.2}{}=\frac{3}{}$		
$\frac{1}{(6-2)0.2} = \frac{1}{4}$		
	Specific behaviours	

- ✓ uses conditional formula/idea
- ✓ correct denominator
- ✓ correct prob

Q2 (3 marks)

Consider a continuous random variable X shown below.

Solve for the constant k exactly. (Show all working)

$$f(x) = \begin{cases} ke^{-3x} & 0 \le x \le 10 \\ 0 & elsewhere \end{cases}$$

$$f(x) = ke^{-3x}$$

Specific behaviours

- ✓ uses integral with correct limits
- ✓ solves backwards from a total area of one
- ✓ states exact value of k

Q3 (1, 4, 1 & 2 = 8 marks)

Consider a continuous random variable X shown below. (Not drawn to scale)

a) Determine the value of the constant K.

Solution	

$$\frac{1}{2}(6)K = 1$$

$$K = \frac{1}{3}$$
Specific behaviours

✓ states value

b) Determine P(1 < x < 4)

c) Determine E(X)

Solution

3 by inspection and the symmetry around x=3

Specific behaviours

✓ states value

d) Determine Standard deviation of X

 \checkmark states correct integral for 3 to 6 and approx. answer for stdev (full marks for answer only)

 $Q4 (2, 2, 2 \times 1 = 7 \text{ marks})$

$$f(x) = \begin{cases} \frac{3}{16}(x-3)^2 & 1 \le x \le 5\\ 0 & elsewhere \end{cases}$$

A continuous random variable, $\,^{X}\,$ has a pdf Determine:

a)
$$E(x)$$

Solution

b) Var(X)

c) Standard deviation

Solution

d) Var(3x - 1)

Q5 (2, 2, 2 & 3 = 9 marks)

The results for a class test, X can be modelled by a Normal Distribution given by $X \sim N(60,15^2)$. Determine:

a) The 78th percentile.

b)
$$P(55 \le X \le 72)$$

c) The cut-off for an A grade given that this grade is only given to the top 20%.

d) A second test is a Normal Distribution with a mean of 55. Given that the 58th percentile is 62, determine the standard deviation.

Q6 (3, 3, 3, 2 & 2 = 13 marks)

The time it takes to be served at a supermarket checkout, X seconds, can be modelled by a normal distribution as follows the following scheme. $X \sim N(103, 30^2)$ seconds. The assistant at the check out is paid according to the following scheme.

a) Fill in the probability line of the above table rounded to three decimal places.

Solution						
Time served	$0 \le X < 35$	$35 \le X < 60$	$60 \le X < 150$	$150 \le X < 200$	<i>X</i> ≥200	
In seconds						
Payment \$P	\$5	\$7	\$12	\$15	\$18	
Probability	0.0114	0.0642	0.8655	0.0580	0.0006	
To 4 decimal	Or				Or	
places	0.0117				0.0009	

Specific behaviours

- ✓ contains two correct probs
- ✓ contains five correct probs
- ✓ all probs rounded to 3 or 4 dp
 - b) Determine the expected payment E(P) showing full working.

Solution 5 ×0.0114 + 7 ×0.0642 + 12 ×0.8655 + 15 ×0.0580 + 18 ×0.0006 = 11.7767 Specific behaviours ✓ shows sum of products ✓ uses 5 products ✓ determines mean (accept different values of probs) (2 marks for answer only)

- c) Determine the variance of the payment Var(P) showing full working.
- Solution $(5 11.7767)^2 \times 0.0114 + (7 11.7767)^2 \times 0.0642 + (12 11.7767)^2 \times 0.8655 + (15 11.7767)^2 \times 0.0580 + (18 11.7767)^2 \times 0.0006 = 2.6582$ Specific behaviours

 ✓ uses mean from b in calc

- ✓ uses correct sum of terms
- ✓ determines variance (2 marks for answer only)
 - d) If the payments were all increased by 30% and a bonus of \$2 added to each category, determine the new mean and standard deviation.

e) Explain a limitation of the Normal distribution model and show a calculation to support this.

Solution		
Model allows negative times $P(-\infty \le x \le 0) = 0.0003$		
	Specific behaviours	
✓ mentions negative times		
✓ states a positive prob that time is	s less than zero	