

ACTIVIDAD:

🔐 Modelado de Regresión Lineal con Álgebra Matricial en Python

Objetivo: Implementar un sistema en Python que utilice matrices y vectores para resolver un problema de regresión lineal simple utilizando álgebra matricial.

Instrucciones:

1. Diseño e Implementación

Implementar en Python una solución de regresión lineal basada en álgebra matricial, aplicando el modelo:

$\beta = (X^T X)^{-1} X^T \gamma$

Donde:

- o X: Matriz de diseño (columna de unos + columna de características).
- o **γ**: Vector de valores observados (etiquetas).
- o β : Vector de parámetros ajustados.
- El sistema debe incluir:
 - o Generación de datos sintéticos (x, y) con ruido gaussiano.
 - o Creación de la matriz X e implementación del cálculo matricial paso a paso usando NumPy.
 - o Predicción de valores y graficación de resultados.
- Incluir en el sistema ejemplos de uso de:
 - o Vectores y Matrices: Operaciones como suma, transpuesta, producto punto y multiplicación.
 - o Inversa Matricial: Cálculo de $(X^TX)^{-1}$ utilizando np.linalg.inv.

2. Funciones Específicas

- generar_datos(n=100)
 - Crea dos arrays "x" e "y" que representen una relación lineal con ruido:
- x = np.random.rand(n, 1)
- y = 4 + 3 * x + np.random.randn(n, 1)
- ajustar_modelo(x, y)
 - Calcula el vector de parámetros β\boldsymbol{\beta} utilizando álgebra matricial:
- X = np.hstack([np.ones((n, 1)), x])
- beta = np.linalg.inv(X.T @ X) @ X.T @ y
- graficar_resultado(x, y, beta)
 - Grafica los datos originales y la recta ajustada.
- Se recomienda imprimir la forma (shape) de cada matriz y resultado intermedio para reforzar el aprendizaje conceptual.

- 3. Documentación y Comentarios
 - Cada función debe estar documentada con un docstring que describa sus entradas, salidas y propósito.
 - El archivo debe incluir comentarios explicativos del flujo del modelo y por qué cada operación es necesaria desde la perspectiva de Machine Learning.
 - Incluir un README breve explicando cómo el álgebra matricial resuelve la regresión lineal y por qué esta técnica es la base de muchos algoritmos en ML.
- 4. Tiempo Estimado para la Realización de la Actividad
 - Duración estimada: 2 a 3 horas

5. Formato de Ejecución

Formato de Trabajo: Trabajo en parejas

Anexo:

Parámetros Fijos y Generación de Datos

- 1. Semilla Aleatoria
 - o Todos los estudiantes deben utilizar np.random.seed(42) para garantizar la reproducibilidad de los resultados.
- 2. Número de Muestras
 - o Definir n = 100 puntos de datos.
- 3. Generación de la variable independiente x
 - Generar x como x = np.random.rand(n, 1)
 Esto produce valores entre 0 y 1 con forma (100, 1).
- 4. Función Real y Ruido
 - o Usar la siguiente relación para obtener y:

$$y = 4 + 3x + N(0,1)$$

