LA DÉRIVATION E02C

EXERCICE N°3 Preuve pour la dérivée du produit (pour la culture)

Préliminaires

Soit a, b, c et d quatre réels, démontrer que ab-cd = d(a-c)+a(b-d)

$$d(a-c)+a(b-d) = ad-cd+ab-ad = ab-cd$$

La preuve

Soit f et g deux fonctions définies sur un intervalle I de $\mathbb R$.

Soit $x \in I$ et soit $h \in \mathbb{R}$, tel que $x+h \in I$.

1) Pourquoi impose-t-on $x+h \in I$?

Les fonctions f et g sont définies sur I.

Si $x+h \notin I$ alors on ne peut pas calculer son image par f ou g.

2) En utilisant les préliminaires, montrer que :

$$\frac{fg(x+h)-fg(x)}{h} = g(x)\frac{f(x+h)-f(x)}{h} + f(x)\frac{g(x+h)-g(x)}{h}$$

$$\frac{fg(x+h) - fg(x)}{h} = \frac{\underbrace{f(x+h)\underbrace{g(x+h) - f(x)\underbrace{g(x)}_{g(x)}}^{b}}_{h} + \underbrace{f(x)\underbrace{[g(x+h) - g(x)]}_{h}}_{h}$$

$$= g(x)\underbrace{\frac{f(x+h) - f(x)}{h} + f(x)\underbrace{g(x+h) - g(x)}_{h}}_{h}$$

3) En déduire le nombre dérivé en x de la fonction $fg: x \mapsto fg(x) = f(x)g(x)$.

Pour tout $x \in I$, quand h tend vers zéro,

$$g(x)\frac{f(x+h)-f(x)}{h} + f(x)\frac{g(x+h)-g(x)}{h} \text{ tend vers } \left[g(x)f'(x)+f(x)g'(x)\right].$$