Analysis and Design of Algorithms Homework 4

Arturo Fornés Arvayo A01227071

April 16, 2017

1. Red-Black Tree

Red-Black Tree code included in *rbtree.cpp*. An insertion in this data structure takes O(lgn).

This graph demonstrates the time it takes to execute n insertions in a Red-Black Tree, which follows a curve similar to O(lgn).

2. Disjoint Set

(a) Weighted Union by Rank Representation. Code included in $ds_weighted.cpp$. Makeset operation takes O(1), Find-Set takes O(1) and Union takes $O(min\{\mid A\mid,\mid B\mid\})$.

This graph represents the time taken to execute a mix of n Union and Find-Set operations. Roughly approximating the complexity O(m+nlgn) where m are Union and Find-Set Operations and n is the number of singletons at the beginning.

(b) Union by Rank + Path Compression Representation. Code included in $ds_path_compression.cpp$. With this representation, Union is said to take roughly O(1).

This graph represents the time taken to execute a mix of n Union and Find-Set operations. Roughly approximating the complexity O(m+nlgn) where m are Union and Find-Set Operations and n is the number of singletons at the beginning. Differently to the past graph, this one's Time-axis reaches a smaller value and better approximates O(m+nlgn).

3. Kruskal

Kruskal implementation code included in kruskal.cpp. The complexity of the Kruskal algorithm is $O(E \lg V)$.

This graph represents Kruskal on a randomly generated complete graph of E edges. This approximates $O(E \lg V)$.

4. Dijkstra

Dijkstra implementation code included in dijkstra.cpp. The complexity of Dijkstra's algorithm is $O(E+V \lg V)$.

This graph represents Dijkstra's algorith on a randomly generated graph of n vertices. The general curve of the graph approximates the complexity described of $O(E+V \lg V)$.