Cohomology of a combinatorial Möbius strip¹ David Michael Roberts

2019

¹ This document is released under a CC-By license: creativecommons.org/licenses/by/4.0/.

Consider the following Δ -set, M_{\bullet} :

it is instructive to check that this is indeed a Δ -set!

We will calculate the cohomology with coefficients \mathbb{Z} and with coefficients $\mathbb{Z}/2$.

Z coefficients

The complex $C^{\bullet}(M_{\bullet}, \mathbb{Z})$ of abelian groups associated to M_{\bullet} is

$$0 \to \mathbb{Z}^2 \xrightarrow{\delta_0} \mathbb{Z}^4 \xrightarrow{\delta_1} \mathbb{Z}^2 \to 0$$

where we need to describe the homomorphisms δ_0 and δ_1 . We can take as generating sets $\{v_1, v_2\}$, $\{e_1, e_2, e_3, e_4\}$ and $\{f_1, f_2\}$, respectively,² and write down the two matrices with respect to these generating sets, from considering the face maps $d_0, d_1 \colon M_1 \to M_0$:

$$(d_0,d_1)(e_i) = egin{cases} (v_2,v_1) & i=1 \ (v_1,v_2) & i=2 \ (v_2,v_1) & i=3 \ (v_2,v_2) & i=4 \end{cases}$$

and $d_0, d_1, d_2 : M_2 \to M_1$:

$$(d_0, d_1, d_2)(f_i) = \begin{cases} (e_4, e_3, e_1) & i = 1\\ (e_1, e_4, e_2) & i = 2 \end{cases}$$

 2 identifying these with the indicator function for that element, so that, for instance $v_{1}(v)=1$ if $v=v_{1}$ and zero othewise

We can then calculate the matrix D_0 representing δ_0 , with entries $\delta_0(v_i)(e_i) = v_i(d_0(e_i)) - v_i(d_1(e_i))$, namely

$$D_0 := \begin{pmatrix} \delta_0(v_1)(e_1) & \delta_0(v_2)(e_1) \\ \delta_0(v_1)(e_2) & \delta_0(v_2)(e_2) \\ \delta_0(v_1)(e_3) & \delta_0(v_2)(e_3) \\ \delta_0(v_1)(e_4) & \delta_0(v_2)(e_4) \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \\ -1 & 1 \\ 0 & 0 \end{pmatrix}$$

Similarly, the matrix D_1 with entries $\delta_1(e_i)(f_j) = e_i(d_0(f_j)) - e_i(d_2(f_j)) + e_i(d_2(f_j))$ represents δ_1 :

$$D_1 := \begin{pmatrix} \delta_1(e_1)(f_1) & \delta_1(e_2)(f_1) & \delta_1(e_3)(f_1) & \delta_1(e_4)(f_1) \\ \delta_1(e_1)(f_2) & \delta_1(e_2)(f_2) & \delta_1(e_3)(f_2) & \delta_1(e_4)(f_2) \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 0 & -1 \end{pmatrix}$$

One can check that D_1D_0 is the zero matrix. So now the integral cohomology groups of M_{\bullet} are as follows

1.
$$H^0(M_{\bullet}, \mathbb{Z}) = \ker D_0 = (v_1 + v_2)\mathbb{Z}$$
.

2.
$$H^1(M_{\bullet}, \mathbb{Z}) = \ker D_1 / \operatorname{im} D_0$$
. But

$$\ker D_1 = \{ae_1 + be_2 + ce_3 + de_4 \in \mathbb{Z}^4 \mid b = -a + d \text{ and } c = a + d\}$$
$$= \{a(e_1 - e_2 + e_3) + d(e_2 + e_3 + e_4) \mid a, d \in \mathbb{Z}\}$$

and

im
$$D_0 = \{a(e_1 - e_2 + e_3) \mid a \in \mathbb{Z}\},\$$

so that
$$H^1(M_{\bullet}, \mathbb{Z}) = (e_2 + e_3 + e_4)\mathbb{Z}$$

3.
$$H^2(M_{\bullet}, \mathbb{Z}) = \mathbb{Z}^{M_2} / \text{im } D_1 = \mathbb{Z}^2 / \mathbb{Z}^2 = 0.$$

4.
$$H^k(M_{\bullet}, \mathbb{Z}) = 0$$
 for all $k > 2$.

We can consider also the inclusion map of Δ -sets $i: C_{\bullet} \hookrightarrow M_{\bullet}$ where the sub- Δ -set C_{\bullet} is given by

There are induced maps on cohomology $H^k(M_{\bullet}, \mathbb{Z}) \to H^k(C_{\bullet}, \mathbb{Z})$ for k = 0, 1, 2. Let's calculate both $H^k(C_{\bullet}, \mathbb{Z})$ and these maps. Since C_{\bullet} is

really for all k, but these are clearly trivial for k > 2

a directed graph, hence 1-dimensional, we only need to calculate ${\cal H}^0$ and ${\cal H}^1$ of the complex

$$0 \to \mathbb{Z}^2 \xrightarrow{\delta_0} \mathbb{Z}^2 \to 0$$

or in other words, ker δ_0 and coker δ_0 . The face maps $d_0, d_1 \colon C_1 \to C_0$ are given by

$$(d_0, d_1)(e_i) = \begin{cases} (v_1, v_2) & i = 2\\ (v_2, v_1) & i = 3 \end{cases}$$

so δ_0 is represented by the matrix

$$D := \begin{pmatrix} \delta_0(v_1)(e_2) & \delta_0(v_2)(e_2) \\ \delta_0(v_1)(e_3) & \delta_0(v_2)(e_3) \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

with

1.
$$H^0(C_{\bullet}, \mathbb{Z}) = \ker D = (v_1 + v_2)\mathbb{Z}$$

2.
$$H^1(C_{\bullet}, \mathbb{Z}) = \mathbb{Z}^2 / \operatorname{im} D = \mathbb{Z}^2 / (-e_2 + e_3) \mathbb{Z} \simeq (e_2 + e_3) \mathbb{Z}$$

So now let's calculate the map of complexes that gives rise to the map on cohomology, namely

$$0 \longrightarrow \mathbb{Z}^{2} \longrightarrow \mathbb{Z}^{4} \longrightarrow \mathbb{Z}^{2} \longrightarrow 0$$

$$\downarrow i_{0}^{*} \downarrow \qquad \downarrow i_{1}^{*} \downarrow \qquad \downarrow$$

$$0 \longrightarrow \mathbb{Z}^{2} \longrightarrow \mathbb{Z}^{2} \longrightarrow 0 \longrightarrow 0$$

Since $i_0: C_0 = \{v_1, v_2\} \to \{v_1, v_2\} = M_0$ is the identity map, $i_0^*: \mathbb{Z}^2 \to \mathbb{Z}^2$ is the identity map, so that $\ker D_0 \to \ker D$ is also the identity map. This is to be expected, since both Δ -sets have one "connected component". However, the map induced by i_1^* could potentially be more interesting. The homomorphism i_1^* is a projection, represented by the matrix

$$I = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

We then consider the map $\ker D_1 \to \mathbb{Z}^2 = \mathbb{Z}^{C_1}$, namely

$$\ker D_1 \ni a(e_1 - e_2 + e_3) + d(e_2 + e_3 + e_4) \mapsto a(-e_2 + e_3) + d(e_2 + e_3) \in \mathbb{Z}^{C_1}$$

So then the induced map $H^1(M_{\bullet}, \mathbb{Z}) \to H^1(C_{\bullet}, \mathbb{Z})$ is also an isomorphism

$$(e_1 - e_2 + e_3)\mathbb{Z} \xrightarrow{\simeq} (e_2 + e_3)\mathbb{Z}$$

sending $(e_1 - e_2 + e_3) \mapsto (e_2 + e_3)$. Thus the map $C_{\bullet} \to M_{\bullet}$ induces an isomorphism $i^* \colon H^k(M_{\bullet}, \mathbb{Z}) \xrightarrow{\simeq} H^k(C_{\bullet}, \mathbb{Z})$ for all k, meaning cohomology with integer coefficients cannot tell these two combinatorial surfaces apart.

$\mathbb{Z}/2$ coefficients

Now I will calculate the cohomology of M_{\bullet} using coefficients in $\mathbb{Z}/2$. A lot of the hard work has been done, because the complex $C^{\bullet}(M_{\bullet},\mathbb{Z}/2)$ of $\mathbb{Z}/2$ -modules looks the same as the complex $C^{\bullet}(M_{\bullet},\mathbb{Z})$, but where we now look at the entries of the matrices D_0 and D_1 mod 2. Call these matrices D_0' and D_1' :

$$D_0' = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad D_1' = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$$

So now

1.
$$H^0(M_{\bullet}, \mathbb{Z}/2) = \ker D'_0 = \{av_1 + bv_2 \mid a, b \in \mathbb{Z}/2, a + b = 0\} = (v_1 + v_2)\mathbb{Z}/2$$

2.
$$H^1(M_{\bullet}, \mathbb{Z}/2) = \ker D'_1 / \operatorname{im} D'_0$$
, where

$$\ker D_1' = \{ae_1 + be_2 + ce_3 + de_4 \in (\mathbb{Z}/2)^4 \mid b = a + d \text{ and } c = a + d\}$$
$$= \{a(e_1 + e_2 + e_3) + d(e_2 + e_3 + e_4) \mid a, d \in \mathbb{Z}/2\}$$

and im
$$D'_0 = (e_1 + e_2 + e_3)\mathbb{Z}/2$$
, so

$$H^1(M_{\bullet}, \mathbb{Z}/2) = (e_2 + e_3 + e_4)\mathbb{Z}/2.$$

3.
$$H^2(M_{\bullet}, \mathbb{Z}/2) = (\mathbb{Z}/2)^{M_2} / \text{ im } D_1' = (\mathbb{Z}/2)^2 / (\mathbb{Z}/2)^2 = 0.$$

In this case, the cohomology $\mathbb{Z}/2$ -modules are the mod 2 reduction of the integer-coefficient cohomology groups, but this **not always the case!**