

1 x 320 Dot Palette LCD Controller/Driver

1. INTRODUCTION

The ST7045 is a palette driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 320 segment and 1 common driver circuits. This chip is connected directly to a microprocessor, accepts 4-line/3-line serial peripheral interface (SPI) and 8080 parallel interface, display data can stores in an on-chip display data RAM of 1 x 320 x 3bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, It also can produce LEDR, LEDG, LEDB control signals to generator RGB LED backlight system if necessary.

2. FEATURES

Single-chip LCD Controller & Driver

Driver Output Circuits

320 segment outputs / 1 common

On-chip Display Data Ram

Capacity: 1X320x3=960bits

Microprocessor Interface

- 8/4-bit bi-directional parallel interface with 8080-series
- 3-line SPI (9-bits) , 4-line(8bits) serial peripheral interface

On-chip Low Power Analog Circuit

- Generation of LCD supply voltage (externally V0IN voltage supply is possible)
- Generation of intermediate LCD bias voltages

- Oscillator requires no external components
- Voltage converter (x2~x6)
- Voltage regulator
- Voltage follower

With External /RST (reset) pin

Logic Supply Voltage Range

- VDDI (VDD, VDD1)-VSS: 2.8V~3.3V
- VDDA (VDD2, VDD3)-VSS: 2.8V~3.3V

LCD Driving Voltage Range (VOP=V0-VSS)

- 3 V to 18V

With LED Control (LEDR, LEDG, LEDB) pins

Support Master/Slave Mode

Temperature Range : -30 ~85℃

Package Type :COG

ST7045

8080 8bit ,8080 4bit parallel interface 4-Line , 3-Line serial interface

ST

Sitronix Technology Corp. reserves the right to change the contents in this document without prior notice.

3. ST7045 Pad Arrangement (COG)

	I			
Part Number	ST7045			
Chip Size	10056 x 706			
Bump Height	15			
Thickness	300			
Bump Size				
PAD No.	Size			
1~22 , 124~445	17 x 112.5			
23~34	63 x 57			
35~43 , 46~123	68 x 52			
44 , 45	25.5 x 52			
Bump Space				
1~22 , 124~445	16			
23~34 , 35~123	17			
22-23 , 123-124	20.5			

Unit:um

4. Pad Center Coordinates

NO.	NAME	X	Υ
1	SEG304	-4933.5	-237.75
2	SEG305	-4900.5	-237.75
3	SEG306	-4867.5	-237.75
4	SEG307	-4834.5	-237.75
5	SEG308	-4801.5	-237.75
6	SEG309	-4768.5	-237.75
7	SEG310	-4735.5	-237.75
8	SEG311	-4702.5	-237.75
9	SEG312	-4669.5	-237.75
10	SEG313	-4636.5	-237.75
11	SEG314	-4603.5	-237.75
12	SEG315	-4570.5	-237.75
13	SEG316	-4537.5	-237.75
14	SEG317	-4504.5	-237.75
15	SEG318	-4471.5	-237.75
16	SEG319	-4438.5	-237.75
17	Dummy	-4405.5	-237.75
18	Dummy	-4372.5	-237.75
19	COM0	-4339.5	-237.75
20	COM0	-4306.5	-237.75
21	COM0	-4273.5	-237.75
22	COM0	-4240.5	-237.75
23	T11	-4180	-265.5
24	T10	-4100	-265.5
25	Т9	-4020	-265.5
26	T8	-3940	-265.5
27	T7	-3860	-265.5
28	T6	-3780	-265.5
29	T0	-3700	-265.5
30	T5	-3620	-265.5
31	T4	-3540	-265.5
32	Т3	-3460	-265.5
33	T2	-3380	-265.5
34	T1	-3300	-265.5
35	SYNC	-3217.5	-268
36	LEDR	-3132.5	-268
37	LEDG	-3047.5	-268
38	LEDB	-2962.5	-268
39	IF2	-2877.5	-268
40	IF1	-2792.5	-268
41	CL	-2707.5	-268
42	MS	-2622.5	-268
43	DON	-2537.5	-268
44	VSS	-2473.75	-268
45	VDD	-2431.25	-268

NO.	NAME	Х	Υ
46	/RST	-2367.5	-268
47	/CS	-2282.5	-268
48	WR	-2197.5	-268
49	/RD	-2112.5	-268
50	A0	-2027.5	-268
51	D0	-1942.5	-268
52	D1	-1857.5	-268
53	D2	-1772.5	-268
54	D3	-1687.5	-268
55	D4	-1602.5	-268
56	D5	-1517.5	-268
57	D6	-1432.5	-268
58	D7	-1347.5	-268
59	VDD	-1262.5	-268
60	VDD	-1177.5	-268
61	VDD	-1092.5	-268
62	VDD	-1007.5	-268
63	VDD1	-922.5	-268
64	VDD1	-837.5	-268
65	VDD2	-752.5	-268
66	VDD2	-667.5	-268
67	VDD2	-582.5	-268
68	VDD2	-497.5	-268
69	VDD3	-412.5	-268
70	VDD3	-327.5	-268
71	VSS	-242.5	-268
72	VSS	-157.5	-268
73	VSS	-72.5	-268
74	VSS	12.5	-268
75	VSS1	97.5	-268
76	VSS1	182.5	-268
77	VSS3	267.5	-268
78	VSS3	352.5	-268
79	VSS2	437.5	-268
80	VSS2	522.5	-268
81	VSS2	607.5	-268
82	VSS2	692.5	-268
83	Vref	777.5	-268
84	V1	862.5	-268
85	V1	947.5	-268
86	V2	1032.5	-268
87	V2	1117.5	-268
88	V3	1202.5	-268
89	V3	1287.5	-268
90	V4	1372.5	-268

317043			
NO.	NAME	Χ	Υ
91	V4	1457.5	-268
92	V0OUT	1542.5	-268
93	V0OUT	1627.5	-268
94	VOIN	1712.5	-268
95	VOIN	1797.5	-268
96	VOIN	1882.5	-268
97	V0IN	1967.5	-268
98	CAP5P	2052.5	-268
99	CAP5P	2137.5	-268
100	CAP1N	2222.5	-268
101	CAP1N	2307.5	-268
102	CAP3P	2392.5	-268
103	CAP3P	2477.5	-268
104	CAP1N	2562.5	-268
105	CAP1N	2647.5	-268
106	CAP1P	2732.5	-268
107	CAP1P	2817.5	-268
108	CAP2P	2902.5	-268
109	CAP2P	2987.5	-268
110	CAP2N	3072.5	-268
111	CAP2N	3157.5	-268
112	CAP4P	3242.5	-268
113	CAP4P	3327.5	-268
114	CAP2N	3412.5	-268
115	CAP2N	3497.5	-268
116	Dummy	3582.5	-268
117	Dummy	3667.5	-268
118	VLCDOUT	3752.5	-268
119	VLCDOUT	3837.5	-268
120	VLCDIN	3922.5	-268
121	VLCDIN	4007.5	-268
122	VLCDIN	4092.5	-268
123	VLCDIN	4177.5	-268
124	COM0	4240.5	-237.75
125	COM0	4273.5	-237.75
126	COM0	4306.5	-237.75
127	COM0	4339.5	-237.75
128	Dummy	4372.5	-237.75
129	Dummy	4405.5	-237.75
130	SEG0	4438.5	-237.75
131	SEG1	4471.5	-237.75
132	SEG2	4504.5	-237.75
133	SEG3	4537.5	-237.75
134	SEG4	4570.5	-237.75
135	SEG5	4603.5	-237.75
136	SEG6	4636.5	-237.75
137	SEG7	4669.5	-237.75
138	SEG8	4702.5	-237.75
100	52.00	7102.0	201.10

NO.	NAME	Х	Υ
139	SEG9	4735.5	-237.75
140	SEG10	4768.5	-237.75
141	SEG11	4801.5	-237.75
142	SEG12	4834.5	-237.75
143	SEG13	4867.5	-237.75
144	SEG14	4900.5	-237.75
145	SEG15	4933.5	-237.75
146	SEG16	4933.5	237.75
147	SEG17	4900.5	237.75
148	SEG18	4867.5	237.75
149	SEG19	4834.5	237.75
150	SEG20	4801.5	237.75
151	SEG21	4768.5	237.75
152	SEG22	4735.5	237.75
153	SEG23	4702.5	237.75
154	SEG24	4669.5	237.75
155	SEG25	4636.5	237.75
156	SEG26	4603.5	237.75
157	SEG27	4570.5	237.75
158	SEG28	4537.5	237.75
159	SEG29	4504.5	237.75
160	SEG30	4471.5	237.75
161	SEG31	4438.5	237.75
162	SEG32	4405.5	237.75
163	SEG33	4372.5	237.75
164	SEG34	4339.5	237.75
165	SEG35	4306.5	237.75
166	SEG36	4273.5	237.75
167	SEG37	4240.5	237.75
168	SEG38	4207.5	237.75
169	SEG39	4174.5	237.75
170	SEG40	4141.5	237.75
171	SEG41	4108.5	237.75
172	SEG42	4075.5	237.75
173	SEG43	4042.5	237.75
174	SEG44	4009.5	237.75
175	SEG45	3976.5	237.75
176	SEG46	3943.5	237.75
177	SEG47	3910.5	237.75
178	SEG48	3877.5	237.75
179	SEG49	3844.5	237.75
180	SEG50	3811.5	237.75
181	SEG51	3778.5	237.75
182	SEG52	3745.5	237.75
183	SEG53	3712.5	237.75
184	SEG54	3679.5	237.75
185	SEG55	3646.5	237.75
186	SEG56	3613.5	237.75

317043			
NO.	NAME	Х	Υ
187	SEG57	3580.5	237.75
188	SEG58	3547.5	237.75
189	SEG59	3514.5	237.75
190	SEG60	3481.5	237.75
191	SEG61	3448.5	237.75
192	SEG62	3415.5	237.75
193	SEG63	3382.5	237.75
194	SEG64	3349.5	237.75
195	SEG65	3316.5	237.75
196	SEG66	3283.5	237.75
197	SEG67	3250.5	237.75
198	SEG68	3217.5	237.75
199	SEG69	3184.5	237.75
200	SEG70	3151.5	237.75
201	SEG71	3118.5	237.75
202	SEG72	3085.5	237.75
203	SEG73	3052.5	237.75
204	SEG74	3019.5	237.75
205	SEG75	2986.5	237.75
206	SEG76	2953.5	237.75
207	SEG77	2920.5	237.75
208	SEG78	2887.5	237.75
209	SEG79	2854.5	237.75
210	SEG80	2821.5	237.75
211	SEG81	2788.5	237.75
212	SEG82	2755.5	237.75
213	SEG83	2722.5	237.75
214	SEG84	2689.5	237.75
215	SEG85	2656.5	237.75
216	SEG86	2623.5	237.75
217	SEG87	2590.5	237.75
218	SEG88	2557.5	237.75
219	SEG89	2524.5	237.75
220	SEG90	2491.5	237.75
221	SEG91	2458.5	237.75
222	SEG92	2425.5	237.75
223	SEG93	2392.5	237.75
224	SEG94	2359.5	237.75
225	SEG95	2326.5	237.75
226	SEG96	2293.5	237.75
227	SEG97	2260.5	237.75
228	SEG98	2227.5	237.75
229	SEG99	2194.5	237.75
230	SEG100	2161.5	237.75
231	SEG101	2128.5	237.75
232	SEG101	2095.5	237.75
232	SEG102	2093.5	237.75
234	SEG103	2002.5	237.75
204	JLG 104	2023.3	201.10

NO.	NAME	Х	Υ
235	SEG105	1996.5	237.75
236	SEG106	1963.5	237.75
237	SEG107	1930.5	237.75
238	SEG108	1897.5	237.75
239	SEG109	1864.5	237.75
240	SEG110	1831.5	237.75
241	SEG111	1798.5	237.75
242	SEG112	1765.5	237.75
243	SEG113	1732.5	237.75
244	SEG114	1699.5	237.75
245	SEG115	1666.5	237.75
246	SEG116	1633.5	237.75
247	SEG117	1600.5	237.75
248	SEG118	1567.5	237.75
249	SEG119	1534.5	237.75
250	SEG120	1501.5	237.75
251	SEG121	1468.5	237.75
252	SEG122	1435.5	237.75
253	SEG123	1402.5	237.75
254	SEG124	1369.5	237.75
255	SEG125	1336.5	237.75
256	SEG126	1303.5	237.75
257	SEG127	1270.5	237.75
258	SEG128	1237.5	237.75
259	SEG129	1204.5	237.75
260	SEG130	1171.5	237.75
261	SEG131	1138.5	237.75
262	SEG132	1105.5	237.75
263	SEG133	1072.5	237.75
264	SEG134	1039.5	237.75
265	SEG135	1006.5	237.75
266	SEG136	973.5	237.75
267	SEG137	940.5	237.75
268	SEG138	907.5	237.75
269	SEG139	874.5	237.75
270	SEG140	841.5	237.75
271	SEG141	808.5	237.75
272	SEG142	775.5	237.75
273	SEG143	742.5	237.75
274	SEG144	709.5	237.75
275	SEG145	676.5	237.75
276	SEG146	643.5	237.75
277	SEG147	610.5	237.75
278	SEG148	577.5	237.75
279	SEG149	544.5	237.75
280	SEG150	511.5	237.75
281	SEG151	478.5	237.75
282	SEG152	445.5	237.75

01707	<u> </u>		
NO.	NAME	Χ	Υ
283	SEG153	412.5	237.75
284	SEG154	379.5	237.75
285	SEG155	346.5	237.75
286	SEG156	313.5	237.75
287	SEG157	280.5	237.75
288	SEG158	247.5	237.75
289	SEG159	214.5	237.75
290	Dummy	181.5	237.75
291	Dummy	148.5	237.75
292	Dummy	115.5	237.75
293	Dummy	82.5	237.75
294	COM0	49.5	237.75
295	COM0	16.5	237.75
296	COM0	-16.5	237.75
297	COM0	-49.5	237.75
298	Dummy	-82.5	237.75
299	Dummy	-115.5	237.75
300	Dummy	-148.5	237.75
301	Dummy	-181.5	237.75
302	SEG160	-214.5	237.75
303	SEG161	-247.5	237.75
304	SEG162	-280.5	237.75
305	SEG163	-313.5	237.75
306	SEG164	-346.5	237.75
307	SEG165	-379.5	237.75
308	SEG166	-412.5	237.75
309	SEG167	-445.5	237.75
310	SEG168	-478.5	237.75
311	SEG169	-511.5	237.75
312	SEG170	-544.5	237.75
313	SEG171	-577.5	237.75
314	SEG172	-610.5	237.75
315	SEG173	-643.5	237.75
316	SEG174	-676.5	237.75
317	SEG175	-709.5	237.75
318	SEG176	-742.5	237.75
319	SEG177	-775.5	237.75
320	SEG178	-808.5	237.75
321	SEG179	-841.5	237.75
322	SEG180	-874.5	237.75
323	SEG181	-907.5	237.75
324	SEG182	-940.5	237.75
325	SEG183	-940.5	237.75
326	SEG184	-1006.5	237.75
327	SEG185	-1006.5	237.75
328	SEG186	-1039.5	237.75
	1		
329	SEG187	-1105.5	237.75
330	SEG188	-1138.5	237.75

NO.	NAME	Х	Υ
331	SEG189	-1171.5	237.75
332	SEG190	-1204.5	237.75
333	SEG191	-1237.5	237.75
334	SEG192	-1270.5	237.75
335	SEG193	-1303.5	237.75
336	SEG194	-1336.5	237.75
337	SEG195	-1369.5	237.75
338	SEG196	-1402.5	237.75
339	SEG197	-1435.5	237.75
340	SEG198	-1468.5	237.75
341	SEG199	-1501.5	237.75
342	SEG200	-1534.5	237.75
343	SEG201	-1567.5	237.75
344	SEG202	-1600.5	237.75
345	SEG203	-1633.5	237.75
346	SEG204	-1666.5	237.75
347	SEG205	-1699.5	237.75
348	SEG206	-1732.5	237.75
349	SEG207	-1765.5	237.75
350	SEG208	-1798.5	237.75
351	SEG209	-1831.5	237.75
352	SEG210	-1864.5	237.75
353	SEG211	-1897.5	237.75
354	SEG212	-1930.5	237.75
355	SEG213	-1963.5	237.75
356	SEG214	-1996.5	237.75
357	SEG215	-2029.5	237.75
358	SEG216	-2062.5	237.75
359	SEG217	-2095.5	237.75
360	SEG218	-2128.5	237.75
361	SEG219	-2161.5	237.75
362	SEG220	-2194.5	237.75
363	SEG221	-2227.5	237.75
364	SEG222	-2260.5	237.75
365	SEG223	-2293.5	237.75
366	SEG224	-2326.5	237.75
367	SEG225	-2359.5	237.75
368	SEG226	-2392.5	237.75
369	SEG227	-2425.5	237.75
370	SEG228	-2458.5	237.75
371	SEG229	-2491.5	237.75
372	SEG230	-2524.5	237.75
373	SEG231	-2557.5	237.75
374	SEG232	-2590.5	237.75
375	SEG233	-2623.5	237.75
376	SEG234	-2656.5	237.75
377	SEG235	-2689.5	237.75
378	SEG236	-2722.5	237.75

31704			
NO.	NAME	X	Y
379	SEG237	-2755.5	237.75
380	SEG238	-2788.5	237.75
381	SEG239	-2821.5	237.75
382	SEG240	-2854.5	237.75
383	SEG241	-2887.5	237.75
384	SEG242	-2920.5	237.75
385	SEG243	-2953.5	237.75
386	SEG244	-2986.5	237.75
387	SEG245	-3019.5	237.75
388	SEG246	-3052.5	237.75
389	SEG247	-3085.5	237.75
390	SEG248	-3118.5	237.75
391	SEG249	-3151.5	237.75
392	SEG250	-3184.5	237.75
393	SEG251	-3217.5	237.75
394	SEG252	-3250.5	237.75
395	SEG253	-3283.5	237.75
396	SEG254	-3316.5	237.75
397	SEG255	-3349.5	237.75
398	SEG256	-3382.5	237.75
399	SEG257	-3415.5	237.75
400	SEG258	-3448.5	237.75
401	SEG259	-3481.5	237.75
402	SEG260	-3514.5	237.75
403	SEG261	-3547.5	237.75
404	SEG262	-3580.5	237.75
405	SEG263	-3613.5	237.75
406	SEG264	-3646.5	237.75
407	SEG265	-3679.5	237.75
408	SEG266	-3712.5	237.75
409	SEG267	-3745.5	237.75
410	SEG268	-3778.5	237.75
411	SEG269	-3811.5	237.75
412	SEG270	-3844.5	237.75
413	SEG271	-3877.5	237.75
414	SEG272	-3910.5	237.75
415	SEG273	-3943.5	237.75
416	SEG274	-3976.5	237.75
417	SEG275	-4009.5	237.75
418	SEG276	-4042.5	237.75
419	SEG277	-4075.5	237.75
420	SEG278	-4108.5	237.75
421	SEG279	-4141.5	237.75
422	SEG280	-4174.5	237.75
423	SEG281	-4207.5	237.75
424	SEG282	-4240.5	237.75
425	SEG283	-4273.5	237.75
426	SEG284	-4306.5	237.75

NO.	NAME	Х	Υ
427	SEG285	-4339.5	237.75
428	SEG286	-4372.5	237.75
429	SEG287	-4405.5	237.75
430	SEG288	-4438.5	237.75
431	SEG289	-4471.5	237.75
432	SEG290	-4504.5	237.75
433	SEG291	-4537.5	237.75
434	SEG292	-4570.5	237.75
435	SEG293	-4603.5	237.75
436	SEG294	-4636.5	237.75
437	SEG295	-4669.5	237.75
438	SEG296	-4702.5	237.75
439	SEG297	-4735.5	237.75
440	SEG298	-4768.5	237.75
441	SEG299	-4801.5	237.75
442	SEG300	-4834.5	237.75
443	SEG301	-4867.5	237.75
444	SEG302	-4900.5	237.75
445	SEG303	-4933.5	237.75

5. BLOCK DIAGRAM

6. PIN DESCRIPTION

Pin Name	I/O			Description	on			
LCD driver outputs		•						
		LCD segment	driver outputs.					
		_		ignal control the	output voltage of	segment driver.		
				Segment drover		7		
		Display data	Display data M (Internal)		Reverse display	,		
05004 050040	_	Н	Н	V0	VSS			
SEG0 to SEG319	0	Н	L	VSS	V0			
		L	Н	VSS	V0			
		L	L	V0	VSS			
		Sleep i	n mode	VSS	VSS			
						_		
		LCD column dr	river outputs.					
				nd M signal contro	ol the output volta	age of common driver		
				Common drover		Ĭ		
		Display data	M (Internal)		Reverse display	,		
		Н	Н		SS			
COM0	0	Н	L	,	V0			
		L	Н	,	V0			
		L	L	V	'SS			
		Sleep i	n mode	V	'SS			
LEDR/LEDG/LEDB	0	RGB LED puls						
		When not used	l, this pin shou	ld be left open.				
MICROPROCESSOR	RINTERFAC	CE						
		Chip select input	t pins.					
/CS	I	Data and instruction input/output is enabled only when /CS is " L ".						
		When chip selec	When chip select is non-active, D0~D7 are high impedance.					
/RST	- 1	Reset input pin.						
/101	•			n is being execut	е.			
		Parallel or serial	data input sele	i e				
		IF2	IF1		erface type			
IF[2:1]	- 1	Н	Н	*	8-bit parallel			
[2.1]	-	Н	L		4-bit parallel			
		L	Н		B-bit serial)			
		L L	<u> </u>	3SPI (9	9-bit serial)			
		Register select in						
		In 8080 or 4SPI						
۸٥ ا	1	A0= "H": D0 to D7 are data input. A0= "L": D0 to D7 are instruction input.						
A0	•			on input.				
A0		In 3SPI serial interface:						
A0					A0 pad should connect to VDD.			
A0		A0 pad should c	onnect to VDD		and only in no	llal interferes		
		A0 pad should c	onnect to VDD ecution control	pin. (This pin is ι		· ·		
A0 /WR	ı	A0 pad should c Read / Write exe Write enable clo	onnect to VDD ecution control ck input pin. D	pin. (This pin is u	ed at the rising e	llel interface) dge of the /WR signal		
	ı	A0 pad should control Read / Write execution Write enable clowwhen in serial in	onnect to VDD ecution control ck input pin. De eterface, conne	pin. (This pin is u 0 to D7 are latched ct this pin to VDI	ed at the rising ed	dge of the /WR signal		
	I I	A0 pad should concentrate A0 pad should concentrate A0 Pad	onnect to VDD ecution control ck input pin. Do nterface, conne ecution control	pin. (This pin is u	ed at the rising ed D. Ised only in para	dge of the /WR signal		

	T							
D0 to D7	I/O	In 8080 parallel interface: 80-8bit: D0 to D7 connect to the standard 8bit MPU bus. 80-4bit: D0 to D3 connect to the standard 4bit MPU bus. D4 to D7 should connect to VDD. In 3SPI or 4SPI serial interface: D0 pad will be used for SI (data) function. D1 pad will be used for SCK (clock) function. D2 to D7 should connect to VDD.						
Power Supply Pins								
VDD	Supply	Power supply for digital circuit.						
VDD1	Supply	Power supply for digital circuit.						
VDD2	Supply	Power supply for analog circuit.						
VDD3	Supply	Power supply for analog circuit.						
VSS	Supply	Ground level of digital circuit.						
VSS1	Supply	Ground level of digital circuit.						
VSS2	Supply	Ground level of analog circuit.						
VSS3	Supply	Ground level of analog circuit.						
	_	If the internal voltage generator is used, the VLCDIN & VLCDOUT must be connected						
VLCDOUT	Supply	together. If an external supply is used, this pin must be left open.						
		An external LCD supply voltage can be supplied using the VLCDIN pad. In this case,						
VLCDIN	Supply	VLCDOUT has to be left open, and the internal voltage generator has to be						
		programmed to zero.						
VOIN		LCD driver supply voltages						
V0OUT		V0in & V0out should be connected together.						
V1		Voltages should have the following relationship;						
V2	I/O	V0 (V0IN) ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS.						
V3		When the internal power circuit is active, these voltages are generated as following						
V4		table according to the state of LCD bias.						
LCD Power Supply	Pins							
CAP1N	0	DC/DC voltage converter. Connect capacitors between this terminal and the CAP1P, CAP3P, CAP5P terminal.						
CAP2N	0	DC/DC voltage converter. Connect capacitors between this terminal and the CAP2P, CAP4P, CAP6P terminal.						
CAP1P	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.						
CAP2P	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.						
CAP3P	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.						
CAP4P	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.						
CAP5P	0	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.						
Vref	0	Reference voltage, let this pin open.						
•								

System Control								
MS	I	Master/Slave mode pin Master mode connect MS to VDD. Slave mode connect MS to VSS.						
CL	I/O	When using Master/Slave mode. All of CL should be connected If not this pin should open.						
SYNC	I/O	When using Master/Slave mode . All of SYNC should be connected If not this pin should open						
DON	I/O	When using Master/Slave mode . All of DON should be connected If not this pin should open						
Test Pin								
T0~T11		T0~T11 are test pins. T0 pin must connect to VSS. (Refer application note) And do not use T1~T11 pins. Let T1~T11 pins open.						
Dummy	-	Dummy pins and let them open						

.

ST7045 I/O PIN ITO Resistance Limitation:

PIN Name	ITO Resister
T0~T11,Dummy	No Limitation
Vref	Floating
VDD, VDD1~VDD3, VSS, VSS1~VSS3, V0IN , V0OUT, VLCDIN, VLCDOUT V1 , V2 , V3 , V4, CAP1P~CAP5P	<100Ω
/CS, A0, /RD, /WR, CLS,CL, IF[2:1], D0D7,LEDR,LEDG,LEDB,CL,SYNC,MS DON	<1ΚΩ
/RST	<10ΚΩ

7. FUNCTIONS DESCRIPTION MICROPROCESSOR INTERFACE

Chip Select Input

There is a /CS pin for chip selection. The ST7045 can communicate with an MPU when /CS is "L". When /CS is "H", the internal shift register and the counters are reset.

Selecting Parallel / Serial interface

ST7045 has four types of interface with an MPU, which are two serial and two parallel interfaces. This parallel or serial interface is determined by IF pins.

I/F N	lode	· I/F Description		Pin Assignment								
IF2	IF1	1/F Description	/CS	A0	E_RD	RW_WR	Used Data Bus	D1	D0			
Н	Н	80 serial 8-bit parallel	/CS	A0	/RD	/WR	D7~D2	D1	D0			
Н	L	80 serial 4-bit parallel	/CS	A0	/RD	/WR	D3~D2	D1	D0			
L	Н	4SPI mode (8-bit)	/CS	A0				SCK	SI			
L	L	3SPI mode (9-bit)	/CS					SCK	SI			

Parallel / Serial Interface Mode

8080 Parallel interface

The ST7045 identifies the type of the data bus signals according to the combination of A0, $\mbox{/RD}$ and $\mbox{/WR}$ signals, as show as follow:

	8080-ser	ies	Description
Α0	/RD	/WR	Description
Н	\downarrow	Н	Display data read out
L	Н	↑	Instruction write
Н	Н	1	Display data write

Figure 2

8080 Parallel 4bit interface

The 8080 parallel 4bit interface uses D0~D3 to enter command and data and send two nibbles to make up one byte. The first nibble is high nibble and second nibble is low nibble.

Figure 3

3SPI (9-bit) and 4SPI (8-bit) interface

The 3SPI (9-bit) serial interface uses three pins /CS, SI and SCK to enter commands and data. Meanwhile, the 4SPI (8-bit) serial interface uses four pins /CS, SI, SCK, and A0 for the same purpose. Data read is not available in the serial interface.

(1) 3SPI (9-bit) serial interface

When entering data (parameters): SI= HIGH at the rising edge of the 1st SCK.

Figure 4

When entering command: SI= LOW at the rising edge of the 1st SCK.

Figure 5

(2) 4SPI (8-bit) serial interface

When entering data (parameters): A0= HIGH at the rising edge of the 8th SCK.

Figure 6

When entering command: A0= LOW at the rising edge of the 8th SCK

Figure 7

DISPLAY DATA RAM (DDRAM)

The ST7045 contains at 1x320x3 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. There is a direct correspondence between X-address and column output number. It is 1-row by 320-column addressable array. Each pixel can be selected when the row and column addresses are specified. Data is written through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.

Column Address Circuit

Column address circuit has a 9-bit preset counter that provides column address to the Display Data RAM (DDRAM). The Display Data RAM (DDRAM) column address is specified by the column address set command. The specified column address is incremented (+1) with each display data write command. This allows the MPU display data to be accessed continuously.

ADDRESSING

The display RAM has a matrix of 1x320x3 (RGB) bits. The address pointer addresses the columns. The address ranges are: $X \rightarrow 0$ to 319 (100111111), Y(0 (0). Addresses outside these ranges are not allowed. The X address increases horizontally after each byte. After the end of X address (X = 319) X return to 0 and Y return to the begin address.

Data Format

Display Data RAM

It is 320 X 1 X 3 bits capacity RAM prepared for storing dot data. Refer to the following memory map for the RAM Configuration.

Figure 9

RAM Write

(SEG13) (SEG12) (SEG11) (SEG10)

Write_command(0x2A); // Column address set

Write_data(0x05); // set start address at 5 (SEG10 and SEG11)

Write_data(0x9F); // set end address at 159

Write_command(0x2C); // Memory write

Write_data(0x53); // 3H = Red, 5H = GreenWrite_data(0x76); // 6H = Blue, 7H = Black

	Color Set	
Data	Co	lor
000	White	
001	Yellow	
010	Pink	
011	Red	
100	Cyan	
101	Green	
110	Blue	
111	Black	

Note: In this case. The LCD is normal white

8. RESET CIRCUIT

Setting /RST to"L" or Reset instruction can initialize internal function. When /RST becomes "L", following procedure is occurred.

- -- Oscillator circuit is stopped
- -- The LCD power supply circuit is stopped
- -- Display OFF
- -- Display all point OFF
- -- Segment/Common output go to the VSS level

Display normal Row address: 0 Column address: 0

Power control [OSC BST FOL V0 VREF] = All OFF

9. INSTRUCTION TABLE

COMMAND					СО	DE					DECODIDATION	
COMMAND	HEX	A0	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION	
NOP	00	0	0	0	0	0	0	0	0	0	No Operation	
Software reset	01	0	0	0	0	0	0	0	0	1	Software reset	
Sleep in	10	0	0	0	0	1	0	0	0	0	Sleep in mode	
Sleep out	11	0	0	0	0	1	0	0	0	1	Sleep out mode	
Inverse display off	20	0	0	0	1	0	0	0	0	0	Display Inversion off	
Inverse display on	21	0	0	0	1	0	0	0	0	1	Display Inversion on	
Exit all point on	22	0	0	0	1	0	0	0	1	0	Exit all point on	
Enter all point on	23	0	0	0	1	0	0	0	1	1	Enter all point on	
Display off	28	0	0	0	1	0	1	0	0	0	Display off	
Display on	29	0	0	0	1	0	1	0	0	1	Display on	
	2A	0	0	0	1	0	1	0	1	0	Column address set	
Column address set	ı	1	CS7	CS6	CS5	CS4	CS3	CS2	CS1	CS0	Column start address	
	ı	1	CE7	CE6	CE5	CE4	CE3	CE2	CE1	CE0	Column end address	
Memory write	2C	0	0	0	1	0	1	1	0	0	Write data to memory	
Memory read	2E	0	0	0	1	0	1	1	1	0	Read data from memory	
I ED Mada	B1	0	1	0	1	1	0	0	0	1	LED Mode	
LED Mode	-	1	0	0	0	0	0	0	LEDP	0	LLD MOUE	
Гиото Биолиотом	B2	0	1	0	1	1	0	0	1	0	Frame Francisco	
Frame Frequency	-	1	0	0	0	1	FR3	FR2	FR1	FR0	Frame Frequency	
	B4	0	1	0	1	1	0	1	0	0		
CEC way afarm and	-	1	SRR3	SRR2	SRR1	SRR0	SRF3	SRF2	SRF1	SRF0	SEG waveform set	
SEG waveform set	-	1	SGR3	SGR2	SGR1	SGR0	SGF3	SGF2	SGF1	SGF0		
	-	1	SBR3	SBR2	SBR1	SBR0	SBF3	SBF2	SBF1	SBF0		
	B6	0	1	0	1	1	0	1	1	0		
	-	1	LRS7	LRS6	LRS5	LRS4	LRS3	LRS2	LRS1	LRS0		
	-	1	LGS7	LGS6	LGS5	LGS4	LGS3	LGS2	LGS1	LGS0		
LED waveform set	-	1	LBS7	LBS6	LBS5	LBS4	LBS3	LBS2	LBS1	LBS0	LED waveform set	
	-	1	LRW7	LRW6	LRW5	LRW4	LRW3	LRW2	LRW1	LRW0		
	-	1	LGW7	LGW6	LGW5	LGW4	LGW3	LGW2	LGW1	LGW0		
	-	1	LBW7	LBW6	LBW5	LBW4	LBW3	LBW2	LBW1	LBW0		
LOD	B7	0	1	0	1	1	0	1	1	1	LCD scan set	
LCD scan set	-	1	0	MX	0	0	MS	0	0	0	Master/Slave enable	
Enter Read modify	B8	0	1	0	1	1	1	0	0	0	Enter Read modify	
Exit Read modify	В9	0	1	0	1	1	1	0	0	1	Exit Read modify	
-	C0	0	1	1	0	0	0	0	0	0	Marian	
Vop set	-	1	Vop7	Vop6	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	Vop set	
	-	1	0	0	0	0	0	0	0	Vop8	Range 3V to 18V	
Danier Carrier	D2	0	1	1	0	1	0	0	1	0	Danier Cambrid	
Power Control	-	1	0	0	0	OSC	BST	FOL	V0	VREF	Power Control	
DOD LED control	D4	0	1	1	0	1	0	1	0	0	DOD LED control	
RGB LED control	-	1	0	0	0	0	BK	LEDR	LEDG	LEDB	RGB LED control	

INSTRUCTION DESCRIPTION

NOP(00H)

Non-operation command

Α0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	0	0	0	0	0	No Operation

Software reset(01H)

When this command is written, it causes a software reset. It resets the commands and parameters to their default. This command doesn't change DDRAM content.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	0	0	0	0	1	Software reset

Sleep in(10H)

This command causes the LCD module to enter the minimum power consumption mode.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	0	0	0	0	Sleep in mode

Sleep out(11H)

This command turns off sleep in mode.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	0	1	0	0	0	1	Sleep out mode

Inverse display off(20H)

This command is used to leave inverse display mode. This command will not change any status or memory data.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	1	0	0	0	0	0	Inverse display off (Normal display)

Inverse display on(21H)

This command is used to enter inverse display mode. This command will not change any status or memory data.

11110 00	minana	10 4004	to onto	111110100	o alopia	, 111040.	11110 00	minana	will not onlinge any status of informery at
A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	1	0	0	0	0	1	Inverse display on

Exit all points on(22H)

This command is used to exit all display points on mode . This command will not change any status or memory data.

	Α0	D7	D6	D5	D4	D3	D2	D1	D0	Description
Ī	0	0	0	1	0	0	0	1	0	Exit all point on

Enter all points on(23H)

This command is used to enter all display points on mode. This command will not change any status or memory data.

Ī	A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
I	0	0	0	1	0	0	0	1	1	Enter all point on

Display off(28H)

This command is used to enter into display off mode.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	1	0	1	0	0	0	Display off

Display on(29H)

This command is used to enter into display on mode.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	1	0	1	0	0	1	Display on

Column address set(2AH)

This command defines column start address and end address data will be written.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	1	0	1	0	1	0	Column address set
1	CS7	CS6	CS5	CS4	CS3	CS2	CS1	CS0	Column start address
1	CE7	CE6	CE5	CE4	CE3	CE2	CE1	CE0	Column end address

Memory write(2CH)

This command is executed before write data to memory.

Α0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	1	0	1	1	0	0	Write data to memory

Memory read(2EH)

This command is executed before read data from memory.

Α0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	0	0	1	0	1	1	1	0	Read data from memory

This command is only support 8080-8 bit or 8080-4bit

LED Mode (B1H)

This command is used to set LED mode

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	1	0	1	1	0	0	0	1	LED mode set
1	0	0	0	0	0	0	LEDP	0	LED mode selection

LEDP:

when set "0", the LEDR, LEDG, LEDB signals will be Low active.

set "1", the LEDR,LEDG,LEDB signals will be High active. (Default)

Frame frequency (B2H)

This command is used to set frame frequency.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	1	0	1	1	0	0	1	0	Frame frequency set
1	0	0	0	1	FR3	FR2	FR1	FR0	Frame frequency registers set

	FR[[3:0]		Frame frequency		FR[3:0]		Frame frequency
0	0	0	0	50HZ	1	0	0	0	105HZ
0	0	0	1	60HZ	1	0	0	1	110HZ
0	0	1	0	70HZ (Default)	1	0	1	0	115HZ
0	0	1	1	75HZ	1	0	1	1	120HZ
0	1	0	0	80HZ	1	1	0	0	130HZ
0	1	0	1	85HZ	1	1	0	1	140HZ
0	1	1	0	90HZ	1	1	1	0	150HZ
0	1	1	1	100HZ	1	1	1	1	200HZ

SEG waveform set (B4H)

This command is used to set SEG waveform.

Α0	D7	D6	D5	D4	D3	D2	D1	D0	Descrip	tion	
0	1	0	1	1	0	1	0	0	SEG waveform set	Range	Default
1	SRR3	SRR2	SRR1	SRR0	SRF3	SRF2	SRF1	SRF0	set Red's SEG waveform	0x00~0x0F	0x22
1	SGR3	SGR2	SGR1	SGR0	SGF3	SGF2	SGF1	SGF0	set Green's SEG waveform	0x00~0x0F	0x22
1	SBR3	SBR2	SBR1	SBR0	SBF3	SBF2	SBF1	SBF0	set Blue's SEG waveform	0x00~0x0F	0x22

LED waveform set (B6H),

This command is used to set LED waveform.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Descrip	tion	
0	1	0	1	1	0	1	1	0	LED waveform set	Range	Default
1	LRS7	LRS6	LRS5	LRS4	LRS3	LRS2	LRS1	LRS0	set LEDR start	0x00~0x3F	0x02
1	LGS7	LGS6	LGS5	LGS4	LGS3	LGS2	LGS1	LGS0	set LEDG start	0x00~0x3F	0x02
1	LBS7	LBS6	LBS5	LBS4	LBS3	LBS2	LBS1	LBS0	set LEDB start	0x00~0x3F	0x02
1	LRW7	LRW6	LRW5	LRW4	LRW3	LRW2	LRW1	LRW0	set LEDR width	0x02~0x3F	0x3F
1	LGW7	LGW6	LGW5	LGW4	LGW3	LGW2	LGW1	LGW0	set LEDG width	0x02~0x3F	0x3F
1	LBW7	LBW6	LBW5	LBW4	LBW3	LBW2	LBW1	LBW0	set LEDB width	0x02~0x3F	0x3F

Figure 10

LCD scan set (B7H)

This command is used to set LCD scan .

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	1	0	1	1	0	1	1	1	LCD scan set ,Master/Slave
1	MY	MX	0	0	MS	BGR	0	1 0	LCD direction selection Master/Slave enable

MY:

when set "0", COM0 to COM3 (Default)

set "1", COM3 to COM0

MX:

when set "0", SEG0 to SEG319 (Default)

set "1", SEG319 to SEG0

MS:

when set "0", Master/Slave disable (Default)

set "1", Master/Slave enable

BGR:

when set "0", LED signal will be sequential LEDR \rightarrow LEDG \rightarrow LEDB (Default)

"1" LED signal will sequential LEDB \rightarrow LEDG \rightarrow LEDR

Enter read modify (B8H)

This command is used to enter read modify mode.

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	1	0	1	1	1	0	0	0	Enter read modify mode

Normally, the counter of address will increase (+1) after execute memory read (0x2E) sequence. But when enter read modify mode, the counter will stop counting.

Exit read modify (B9H)

This command is used to exit read modify mode,

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	1	0	1	1	1	0	0	1	Exit read modify mode

Vop set (C0H)

This command is used to set the optimum LCD supply voltage V0..

A0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	1	1	0	0	0	0	0	0	Vop set
1	Vop7	Vop6	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	Cat the registers of Van
1	-	-	-	-	-	-	-	Vop8	Set the registers of Vop

The Vop value is programmed via the Vop[8:0] registers

The default value in this register is 7DH (8V)

 $V0 = a + (Vop[8:0]) \times b$

SYMBOL	Value	Unit
а	3	V
b	0.04	V

Ex: Vop[8:0] = 111 1110 (7DH)

 $V0 = 3 + 125 \times 0.04$

= 8V

Power control (D2)

This command is used to set power register.

Α0	D7	D6	D5	D4	D3	D2	D1	D0	Description
0	1	1	0	1	0	0	1	0	Dower Control
1	0	0	0	OSC	BST	FOL	V0	VREF	Power Control

Power register	Set '0'	Set '1'
OSC	OSC on	OSC off (Default)
BST	Booster on	Booster off (Default)
FOL	Follower on	Follower off (Default)
V0	V0 regulator on	V0 regulator off (Default)
VREF	Vref regulator on	Vref regulator off (Default)

RGB LED control (D4)

This command is used to control RGB LED individually.

	Α0	D7	D6	D5	D4	D3	D2	D1	D0	Description
	0	1	1	0	1	0	1	0	0	Comtrol DCD LED
ĺ	1	0	0	0	0	BK	LEDR	LEDG	LEDB	Control RGB LED

BK:

when set "0", RGB LED control mode off (Default)

set "1", RGB LED control mode turn on

BK	LEDR	LEDG	LEDB	Descr	ription
0	Х	Х	Х	RGB LED cor	ntrol mode off
1	0	0	0	Backli	ght off
1	0	0	1	Blue	
1	0	1	0	Green	
1	0	1	1	Cyan	
1	1	0	0	Red	
1	1	0	1	Pink	
1	1	1	0	Yellow	
1	1	1	1	White	

Command Description

Referential instruction setup flow for power on:

Referential instruction setup flow for power down:

Initial code example (Single chip mode)

wrins(0x11); // sleep out wrins(0xD2); // set power control wrdata(0x00); // all power on wrins(0xC0); // set Vop // set Vop 5V wrdata(0x32); wrdata(0x00); wrins(0xB2); // set frame frequency wrdata(0x12); // set frame 70Hz // set SEG waveform wrins(0xB4); wrdata(0x00); // SRR = 0, SRF = 0 wrdata(0x00); // SGR = 0, SGF = 0 wrdata(0x00); // SBR = 0, SBF = 0 wrins(0xB6); // set LED waveform wrdata(0x0A); // LEDR start 10 wrdata(0x0A); // LEDG start 10 wrdata(0x0A); // LEDB start 10 wrdata(0x3C); // LEDR width 60 wrdata(0x3C); // LEDG width 60 wrdata(0x3C); // LEDB width 60 wrins(0x29); // Display on

Initial code example (Master/Slave mode)

```
Set initial code for slave
wrins_slave(0x11);
                      // sleep out
wrins_slave(0xB7);
                      // LCD Scan set
wrdata_slave(0x08);
                      // Master/Slave Enable
wrins_slave(0xD2);
                      // set power control
wrdata_slave(0x18);
                      // power all off
wrins slave(0xB4);
                      // set SEG waveform
wrdata slave(0x00);
                      // SRR = 0, SRF = 0
wrdata_slave(0x00);
                      // SGR = 0, SGF = 0
wrdata_slave(0x00);
                      // SBR = 0, SBF = 0
Set initial code for master
wrins_master(0x11);
                        // sleep out
wrins_master(0xB7);
                        // LCD Scan set
wrdata_master(0x08);
                        // Master/Slave Enable
wrins master(0xD2):
                        // set power control
wrdata_master(0x00);
                        // all power on
wrins_master(0xC0);
                        // set Vop
wrdata master(0x32);
                        // set Vop 5V
wrdata_master(0x00);
wrins_master(0xB2);
                        // set frame frequency
wrdata master(0x12);
                        // set frame 70Hz
wrins master(0xB4);
                        // set SEG waveform
wrdata master(0x00);
                        // SRR = 0, SRF = 0
wrdata_master(0x00);
                        // SGR = 0, SGF = 0
wrdata_master(0x00);
                        // SBR = 0, SBF = 0
wrins_master(0xB6);
                        // set LED waveform
wrdata_master(0x0A);
                        // LEDR start 10
wrdata_master(0x0A);
                        // LEDG start 10
wrdata_master(0x0A);
                        // LEDB start 10
wrdata_master(0x3C);
                        // LEDR width 60
wrdata_master(0x3C);
                        // LEDG width 60
wrdata_master(0x3C);
                        // LEDB width 60
```

// Display on

wrins_master(0x29);

10. Voltage Converter Circuit

Figure 11

The External Power Circuits

(1)When the Voltage Follower circuit alone is used

(2)When the V0 voltage regulator internal resistor is used

(3)When the V0 bulit-in power is not used

Figure 12

11. ABSOLUTE MAXIMUM VALUES

In accordance with the Absolute Maximum Rating System; see notes 1 and 2.

(VSS=0V)

Parameter	Symbol	Conditions	Unit
Power Supply Voltage 1	VDDI (VDD, VDD1)	-0.3 ~ +3.6	V
Power Supply Voltage 2	VDDA (VDD2, VDD3)	-0.3 ~ +3.6	V
Power Supply Voltage 3	V0IN - VSS	-0.3 ~ +18.0	V
Power Supply Voltage 4	V1, V2, V3, V4	0.3 to V0IN	V
Input Voltage	VIN	-0.3 ~ VDDI+0.5	V
Output Voltage	VO	-0.3 ~ VDDI+0.5	V
Operating Temperature	TOPR	−30 ~ +85	C
Storage Temperature	TSTR	− 40 ~ + 125	C

Notes

- 1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
- 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless otherwise noted.
- 3. Insure that the voltage levels of V1, V2, V3, and V4 are always such that :

$$V0 \; \geq \; V1 \; \geq \; V2 \; \geq \; V3 \; \geq \; V4 \; \geq \; VSS$$

12. HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices.

13. DC CHARACTERISTICS

(VSS=0V, Ta = 25℃)

	Item	Cymbol	Cons	dition		Rating		Units	Applicable
	nem	Symbol	Cond	aition	Min.	Тур.	Max.	Units	Pin
Operatin	ig Voltage 1	VDDI (VDD, VDD1)	(Relative	to VSS)	2.5	ı	3.5	V	vss
Operatin	ng Voltage 2	VDDA (VDD2, VDD3)	(Relative	to VSS)	2.5	-	3.5	V	VSS
High-lev	el Input Voltage	VIH	-	-	0.7 x VDDI	-	VDDI	V	
Low-leve	el Input Voltage	VIL	-		VSS	-	0.3 x VDDI	٧	
High-level Output Voltage		VOH	-		0.8 x VDDI	-	VDDI	V	
Low-level Output Voltage		VOL	-		VSS	-	0.2 x VDDI	V	
Input leakage current		ILI	VIN=VDDI or VSS		-1.0	-	1.0	μ A	
Liquid C	rystal Driver ON	RON	Ta = 25℃ ΔV=10% VLCDIN =		-	0.6	0.9	ΚΩ	COMn
Resistan	nce	NOIV	(Relative To 8.0 V VSS)		-	1	1.5		SEGn
Frame fr	equency	FR			63	70	77	Hz	
Supply Step-up output voltage Circuit		VOOUT	(Relative	To VSS)	-	-	18	V	VOOUT
Power Voltage regulator Circle Operating Voltage		Voin	(Relative	To VSS)	-	-	18	V	VOIN

DC Current Consumption:

During Display, with the Internal Power Supply ON, current consumed of total ICs

Test pattern	Symbol	Condition		Rating	Units	Notes	
rest pattern Symbol		Condition	Min.	Min. Typ. Max.		Units	Notes
Diapley Bettern		VDDI=VDDA=3.0V					
Display Pattern	ISS	ISS Booster X6		250	500	μ A	
SNOW		V0 - VSS = 8V Ta = 25℃					
		VDDI=VDDA=3.0V					
Sleep In Mode	ISS	Booster X6	_	2	10	μ A	
		V0 – VSS = 8V Ta = 25℃					

(Note: Bare die)

Notes to the DC characteristics

- 1. The maximum possible V0 voltage that may be generated is dependent on voltage, temperature and (display) load.
- 2. Internal clock is applied.
- 3. Sleep in mode. During sleep in all static currents are switched off.
- 4. When Vop external voltage applied to V0IN pin; V0IN is not connected with V0OUT.
- 5. The current consumption is DC characteristic of ST7045.

14. TIMING CHARACTERISTICS

Parallel Interface Characteristics (8080-series MCU)

Figure 13 8080 Parallel Interface Timing Chart

(VSS=0V, VDDI=2.5~3.5V, VDDA=3.0V, Ta = 25°C)

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Address setup time		tAW8		0	_	
Address setup time	A0	tAS8		200	_	
Address hold time		tAH8		180	_	
System cycle time		tCYC8		400	_	
/WR L pulse width (WRITE)	WR	tCCLW		220	_	20
/WR H pulse width (WRITE)		tCCHW		180	_	ns
/RD L pulse width (READ)	RD	tCCLR		220	_	
/RD H pulse width (READ)	, KD	tCCHR		180	_	
WRITE Data setup time	D(7.01	tDS8		100	_	
WRITE Data hold time	D[7:0]	tDH8		100	_	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

^{*2} All timing is specified using 20% and 80% of VDDI as the standard.

Serial Interface Characteristics (3-Line Interface)

Figure 14 3SPI Serial Interface Timing Chart

(VSS=0V, VDDI=2.5~3.5V, VDDA=3.0V, Ta = 25°C)

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		100	_	
SCK "H" pulse width	SCK	tSHW		50	_	
SCK "L" pulse width		tSLW		50	_	
Data setup time	SDA	tSDS		30	_	ns
Data hold time	SDA	tSDH		20	_	
CS-SCK time	CC	tCSS		30	_	
CS-SCK time	CS	tCSH		60		

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

^{*2} All timing is specified using 20% and 80% of VDDI as the standard.

Serial Interface Characteristics (4-Line Interface)

Figure 15 4SPI Serial Interface Timing Chart

(VSS=0V, VDDI=2.5~3.5V, VDDA=3.0V, Ta = 25℃)

Item	Signal	Symbol	Condition	Min.	Max.	Unit
Serial clock period		tSCYC		100	_	
SCK "H" pulse width	SCK	tSHW		50	_	
SCK "L" pulse width		tSLW		50	_	
Address setup time	A0	tSAS		30	_	
Address hold time		tSAH		20	_	Ns
Data setup time	00.4	tSDS		30	_	
Data hold time	SDA	tSDH		20	_	
CS-SCK time	CS	tCSS		30	_	
CS-SCK time	03	tCSH		60	_	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

^{*2} All timing is specified using 20% and 80% of VDDI as the standard.

RESET TIMING

Figure 16 Reset Timing Chart

(VSS=0V, VDDI=2.5~3.5V, VDDA=3.0V, Ta = 25°C)

Item	Symbol	Condition	Min.	Max.	Unit
Reset time	tR		_	2	116
Reset "L" pulse width	tRW		2		us

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

^{*2} All timing is specified using 20% and 80% of VDDI as the standard.

15.1 APPLICATION NOTE

ST7045

Resolution 1COM x 320SEG

Internal analog circuit Interface: 8080-8bit

Internal OSC Booster X5 Capacitor : CVdd,CV0 = 1uF

Cout,C1 ~ C4 = 1uF ~2.2uF(depend on LCD loading)

Resolution 1COM x 320SEG

Internal analog circuit Interface : 3 Line SPI

Internal OSC Booster X5 Capacitor : CVdd,CV0 = 1uF

Cout, $C1 \sim C4 = 1$ uF ~ 2.2 uF(depend on LCD loading)

Resolution 1COM x 320SEG

Internal analog circuit Interface : 4 Line SPI

Internal OSC Booster X5 Capacitor : CVdd,CV0 = 1uF

Cout, $C1 \sim C4 = 1$ uF ~ 2.2 uF(depend on LCD loading)

Resolution 1COM x 320SEG

Internal analog circuit Interface : 8080-4bit

Internal OSC Booster X5 Capacitor :

CVdd,CV0 = 1uF Cout,C1 ~ C4 = 1uF ~2.2uF(depend on LCD loading)

ST7045 LED Circuit Application

ST7045 provides three digital signals(LEDR,LEDG,LEDB) to drive LED power switch, in this example ,Using N-Channel MOSFET with appropriate resistor is recommended. The resistance(R1~R3) is determined by VLED,ILED,VDS and illumination of LED. Set same value with LRW,LGW,LBW (the width of LED waveform) before determine resistor.

Component Table

Item	Symbol	Part NO.	SPEC	
MOSFET	Q1~Q3	Fairchild N. Channel V.		
MOSFET	Q1~Q3	N-Channel VDS = 0		
RGB LED		Nichia	VF_R = 2.2V	
	LED		VF_G = 3.2V	
		NSSM025AT VF_B = 3.2V	VF_B = 3.2V	
Resistor	R1~R3			

R = (VLED - VF - VDS) / ILED

Example:

$$R1 = (5V - 2.2V - 0.1V) / 20mA = 135\Omega$$

$$R2$$
 = ($5V-3.2V-0.1V)$ / $20mA$ = 85Ω

$$R3 = (5V - 3.2V - 0.1V) / 20mA = 85\Omega$$

♦ For ESD protection of the LCM, here are some recommendations:

1. RST (Reset pin): Please increase the resistance of this pin. Here is an example:

2. ESD Protection Ring: "Shielding Ground" is the first protection of ESD. By connecting the "Blue" (ITO) ring to the FPC, the protection ring is finished.

♦ VDD, VDD1, VDD2, VDD3, VSS, VSS1, VSS2 & VSS3:

To avoid the noise in different power system affect other power system, please separate different power source on ITO layout (VDD and VDD1 can be short together to get better performance).

To reduce the ITO resistance, the power source should have enough trace width (includes ITO width and FPC trace width). So the separated ITO traces should be connected together by FPC.

=> The recommended solution is shown below.

	ST7045 Specification Revision History					
Version	Date	Description				
0.1	2008/9/3	Preliminary Version				
0.2	2008/12/16	Specification update for IC Ver.B				
		1.Application Note modify (CAP6P → Dummy)				
		2.Add the range of waveform register				
0.3	2009/3/17	3.Modify Pad19,Pad20,Pad21,Pad125,Pad126,Pad127,Pad295,				
0.3	2009/3/17	Pad296,Pad297 (Dummy → COM0)				
		4.Modify COM and SEG output level only at V0 or VSS				
		5.Remove the capacitors on V1,V2,V3,V4				
0.4	2009/5/15 1.Add Master/Slave Mode					
		Add command (B7H) BGR enable				
	00404404	Modify application note Cap 1uf~2.2uf				
		Modify feature VDDI/VDDA 2.8V~3.3V				
0.5		Modify DC characteristic VDDI/VDDA 2.5V~3.5V				
0.5	2010/4/24	Modify Frame Frequency tolerance +/- 10%				
		Add External Power circuit				
		Add LED circuit application				
		Add figure3 8080 4bit interface				
		Remove Preliminary				
1.0	2011/2/16	Update DC Characteristics				
		Update Timing Characteristic				