

Unit 9: Bernoulli and Poisson

<u>课程</u> > <u>processes</u>

> Lec. 21: The Bernoulli process > 14. Exercise: A variation on merging

14. Exercise: A variation on merging

Exercise: A variation on merging

2/2 points (graded)

We start with two independent Bernoulli processes, X_n and Y_n , with parameters p and q, respectively. We form a new process Z_n by recording an arrival in a given time slot if and only if **both** of the original processes record an arrival in that same time slot. Mathematically, $Z_n = X_n Y_n$.

The new process $oldsymbol{Z_n}$ is also Bernoulli with parameter

p*q

✓ Answer: p*q

(Enter an algebraic function of p and q using standard notation.)

Suppose that the two Bernoulli processes X_n and Y_n are dependent. We still assume, however, that the pairs (X_n, Y_n) are independent. E.g., (X_1, Y_1) is independent from (X_2, Y_2) , etc. Is the process Z_n guaranteed to be Bernoulli?

No ▼

✓ Answer: No

STANDARD NOTATION

Solution:

The merged process records an arrival if and only if both of the original processes record an arrival, which happens with probability pq.

In the second case, since the pairs (X_n,Y_n) are independent, the random variables Z_n are also independent. However, there is nothing in the statement that would ensure that the Z_n are identically distributed. Thus, Z_n is not guaranteed to be a Bernoulli process. For example, consider the special case of p=q and suppose that $Y_1=X_1$ but Y_n is independent of X_n for n>1. Then $\mathbf{P}(Z_1=1)=p$ while $\mathbf{P}(Z_n=1)=p^2$ for n>1, violating the time-homogeneity property of Bernoulli processes.

提交

你已经尝试了1次(总共可以尝试1次)

我理解的意思是X和Y如果以一个相同的共变系数不独立,那么Z是 Bernoulli。但是如果这个共变系数在变,那么Z的p也在变,所以不是一 个Bernoulli

Answers are displayed within the problem

讨论

主题: Unit 9 / Lec. 21 / 14. Exercise: A variation on merging

显示讨论

© 保留所有权利