Set Theory I

Ji, Yong-hyeon

March 9, 2025

Terminology.

- Set; Collection; Family.
- Tabular (or Roster) Form

$$A = \{0, 2, 4, 8\}$$
.

• Set-builder Form

 $A = \{x : x \text{ is even and } x < 10\}$.

Example.

- $\mathbb{N} = \{1, 2, \dots\}$
- $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$
- $\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z} \setminus \{0\}, \gcd(p, q) = 1 \right\}$
- $\mathbb{R} = \{x : x \text{ is a real number}\}$
- $\mathbb{C} = \left\{ a + bi : a, b \in \mathbb{R}, i^2 = -1 \right\}$

Exercise. Show that $\sqrt{2}$ is irrational.

Sol.

Subset and Set Equality

Definition. Let *A* and *B* are sets.

- Subset: $B \subseteq A \iff (x \in B \Rightarrow x \in A)$.
- Set Equality:

$$A = B \iff A \subseteq B \land B \subseteq A$$
$$\iff (x \in A \Rightarrow x \in B) \land (x \in B \Rightarrow x \in A).$$

Power Set

Definition. The **power set** of a set *X* is the set of all subsets of *X*.

$$\mathcal{P}(X) = 2^X := \{S : S \subseteq X\} .$$

Cartesian Product

Definition. Let *A* and *B* are sets. The **cartesian product** of *A* and *B* is the set

$$A \times B = \{(a,b) : a \in A \land b \in B\}.$$

Union, Intersection and Complement

Definition. Let *U* is a universal set, and let $A, B \subseteq U$.

• The **union** of *A* and *B* is the set

$$A \cup B := \{x \in U : x \in A \lor x \in B\}.$$

Note that $x \in A \cup B \iff x \in A \lor x \in B$.

• The **intersection** of *A* and *B* is the set

$$A \cap B := \{ x \in U : x \in A \land x \in B \}.$$

Note that $x \in A \cap B \iff x \in A \land x \in B$.

• The **complement** of *A* is the set

$$A^{C} := \left\{ x \in U : \neg(x \in A) \right\} = \left\{ x : x \notin A \right\}.$$

Note that $x \in A^C \iff x \notin A$.

Proposition 1. *Let* A, B, $C \subseteq U$.

- $(1)\ A\cap (B\cup C)=(A\cap B)\cup (A\cap C).$
- $(2) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$
- $(3) \ (A \cup B)^C = A^C \cap B^C.$
- $(4) \ (A \cap B)^C = A^C \cup B^C.$

Proof.

Exercise. Let *A* has *n* elements. Show that $\mathcal{P}(A)$ has 2^n elements.

Sol.

Function

Definition. Let *A* and *B* are sets. A **function** $f \subseteq A \times B$ **from** *A* **to** *B* is a relation on $A \times B$ satisfying as follows:

(i) Every element of *A* relates to some element of *B*.

$$\forall a \in A : \exists b \in B \text{ such that } (a, b) \in f.$$

(ii) Every element of *A* relates to no more than one element of its *B*.

$$\forall a \in A : \forall b_1, b_2 \in B : (a, b_1), (a, b_2) \in f \implies b_1 = b_2.$$

Remark. A relation $f \subseteq A \times B$ is a function if $\forall a \in A : \exists! b \in B : (a, b) \in f$.

- The **domain** of f is Dom(f) = A.
- The **codomain** of f is Cdm(f) = B.
- The image of A under f is the set

$$\operatorname{Img}(f) = f[A] := \left\{ b \in B : \exists a \in A \text{ s.t. } (a, b) \in f \right\}$$
$$= \left\{ b \in B : \exists a \in A \text{ s.t. } f(a) = b \right\}$$
$$= \left\{ b \in B : b = f(a) \text{ for at least one } a \in A \right\}.$$

Simply we can express it as $f[A] = \{f(a) \in B : a \in A\}$.

Figure 1: Image of A under f.

Note that $f[A] \subseteq B = Cdm(f)$ and that

$$b \in f[A] \iff b = f(a) \text{ for some } a \in A.$$

• The **preimage** of $B_1 \subseteq B$ under f is the set

$$f^{-1}[B_1] := \left\{ a \in A : \exists b \in B_1 \text{ s.t. } (a, b) \in f \right\}$$
$$= \left\{ a \in A : \exists ! b \in B_1 \text{ s.t. } b = f(a) \right\} \text{ by def. of a function}$$
$$= \left\{ a \in A : f(a) = b \text{ for exactly one } b \in B_1 \right\}.$$

"Exactly one" ensures a unique assignment for every element of A, while "at most one" allows no assignment. Simply we can express it as $f^{-1}[B_1] = \{a \in A : f(a) \in B_1\}$.

Figure 2: Preimage of $B_1 \subseteq B$ under f.

Note that $f^{-1}[B_1] \subseteq A = \text{Dom}(f)$ and that $a \in f^{-1}[B_1] \iff f(a) \in B_1$.

Proposition 2. Let $f: A \to B$ be a function from A to B, and let $A_1, A_2 \subseteq A$.

- (1) $f[A_1 \cup A_2] = f[A_1] \cup f[A_2]$.
- (2) $f[A_1 \cap A_2] \subseteq f[A_1] \cap f[A_2]$.

Proof.

Proposition 3. Let $f: A \to B$ be a function from A to B, and let $B_1, B_2 \subseteq B$.

(1)
$$f^{-1}[B_1 \cup B_2] = f^{-1}[B_1] \cup f^{-1}[B_2].$$

(2)
$$f^{-1}[B_1 \cap B_2] = f^{-1}[B_1] \cap f^{-1}[B_2].$$

(3)
$$f^{-1}[B_1^C] = (f^{-1}[B_1])^C$$
.

Proof.

Proposition 4. Let $f: A \to B$ be a function from A to B. Let $A_1 \subseteq A$ and $B_1 \subseteq B$.

- (1) $f[f^{-1}[B_1]] \subseteq B_1$.
- (2) $A_1 \subseteq f^{-1}[f[A_1]].$

Proof.

Example (Counterexample). Consider a function $f : A \rightarrow B$, where $A = \{1, 2\}$ and $B = \{a, b\}$.

(1) Let $B_1 = \{b\} \subseteq B$. Then $f^{-1}[B_1] = \emptyset$ and so

$$f[f^{-1}[B]] = f[\varnothing] = \varnothing \neq \{b\} = B_1.$$

(2) Let $A_1 = \{1\} \subseteq A$. Then $f[A_1] = f[\{1\}] = \{a\}$ and so

$$f^{-1}[f[A_1]] = f^{-1}[\{a\}] = \{1, 2\} \neq \{1\} = A_1.$$

Mathematics Seminar Set Theory

Injection and Surjection

Definition. Let $f : A \rightarrow B$ is a function from A to B.

• A function *f* is **an injection** or **injective** (or **one-to-one**) if and only if

$$\forall a_1, a_2 \in A : [f(a_1) = f(a_2) \implies a_1 = a_2].$$

That is, an **injection** is a mapping such that the output uniquely determines its input.

• A function *f* is a surjection or surjective (or onto) if and only if

$$\forall b \in B : [\exists a \in A \text{ such that } f(a) = b].$$

That is, a **surjection** is a mapping such that every element of B is related to by some element of A.

Remark. A function f is **bijective** if and only if f is both injective and surjective.

- *f* is a bijection (or bijective).
- *f* is one-to-one and onto (or a one-to-one correspondence).

Composition of Functions

Definition. Let $f_1: A \to B$ and $f_2: B \to C$ be functions such that $Cdm(f_1) = B = Dom(f_2)$. The **composition** $f_2 \circ f_1$ is defined as:

$$(f_2 \circ f_1)(a) \coloneqq f_2(f_1(a)).$$

for all $a \in A$.

Note (Diagram).

Figure 3: Diagram of $f_2 \circ f_1$.

Mathematics Seminar Set Theory

Note (Illustration).

Figure 4: Illustration of $f_2 \circ f_1$

Remark. The composition is associative. For any f, g, $h \in G$, $(f \circ g) \circ h = f \circ (g \circ h)$.

Figure 5: Associativity of Composition.

Theorem 5. Let A and B are sets. Let $f: A \rightarrow B$ be a function.

- (1) f is one-to-one if and only if there exists the function $g: B \to A$ such that $g \circ f = id_A$.
- (2) f is onto if and only if there exists the function $g: B \to A$ such that $f \circ g = id_B$.

Remark.

Proof. (1)

(2)

Note (Axiom of Choice). Let $\{X_i\}_{i\in I}$ be a family of non-empty sets.

"It is always possible to assert the existence of a choice function that selects one element from each member of the set."

Formally,

$$\forall \{X_i\}_{i\in I} : \left[\emptyset \notin \{X_i\}_{i\in I} \implies \exists \left(f : \{X_i\}_{i\in I} \to \bigcup_{i\in I} X_i\right) \text{ s.t. } \forall A \in \{X_i\}_{i\in I}, f[A] \in A\right].$$

For example, let $\{X_i\}_{i\in I} = \{A, B, C, \dots\}$ and $\bigcup_{i\in I} X_i = A \cup B \cup C \cup \dots$

