

CONECTORES LÓGICOS.

CONECTIVOS LOGICOS

CONJUNCION

La tabla de verdad es:

р	q	$p \wedge q$
V	V	V
V	F	F
F	V	F
F	F	F

DISYUNCION

La tabla de verdad es:

р	q	$p \lor q$
V	V	V
V	F	V
F	V	V
F	F	F

NEGACION

La tabla de verdad es:

р	~p
V	F
F	V

CONDICIONAL O IMPLICACION

Su tabla de verdad es:

р	Q	$p \rightarrow q$
V	V	V
V	F	F
F	V	V
F	F	V

BICONDICIONAL O DOBLE IMPLICACION

Su tabla de verdad es:

р	Q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

Conclusión:

NOMBRE	SÍMBOLO	NOTACÍÓN	LECTURA	
CONJUNCIÓN	٨	$p \wedge q$	руq	
DISYUNCIÓN	V	$p \lor q$	роq	
IMPLICACIÓN	_	$p \Rightarrow q$	p implica q	
CONDICIONAL	\Rightarrow	$P \rightarrow Q$	Si p entonces q	
DOBLE IMPLICACIÓN			p si y sólo si q	
EQUIVALENCIA	\Leftrightarrow	$p \Leftrightarrow q$	p si y solo si q p es equivalente a q	
BICONDICIONAL				
NEGACIÓN	_	$\neg \overline{p}$	No p; es falso que p	

La siguiente tabla muestra los valores de verdad de las proposiciones compuestas para cada uno de los diferentes conectivos.

р	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$	$\neg p$	$\neg q$
V	V	V	V	V	V	F	F
٧	F	F	V	F	F	F	V
F	V	F	V	V	F	V	F
F	F	F	F	V	V	V	V

TAUTOLOGÍA:

Si y solo si su valor de verdad es siempre V, para toda interpretación posible. Esto significa que el resultado de la tabla arroja solo V en su columna final.

CONTRADICCIÓN:

Si la tabla de verdad arroja solamente F.

CONTINGENCIA:

Si y solo si su valor de verdad es falso para al menos una interpretación y V para al menos otra.

La cual se divide en:

Consistencia: Cuando la tabla de verdad arroja mayor cantidad de valores verdaderos que falsos.

Inconsistencia: Cuando la tabla de verdad arroja mayor cantidad de valores falsos que verdaderos.