

Eletrônica digital Aula 3 - Tabela Verdade

Wellington de Souza Silva wellingtons@id.uff.br

Aula 3 - Tabela Verdade

Recapitulando:

- Principais nomes da área
 - George Boole
 - Claude Shannon
- Noções básicas de álgebra
 - Álgebra Tradicional
 - Álgebra Booleana

- ☐ Introdução
- Operações básicas
- □ Tabela verdade
- Diagrama de Venn
- Operações derivadas

- ☐ Introdução
- Operações básicas
- Tabela verdade
- Diagrama de Venn
- Operações derivadas

Introdução

Recordando o exemplo da aula anterior...

Exemplo

Suponha que

x = paduano;

y = cursa automação industrial;

- ☐ Introdução
- Operações básicas
- Tabela verdade
- Diagrama de Venn
- Operações derivadas

Operações básicas

Usando tais símbolos, proposições poderiam ser reduzidas à forma de equações.

Operações básicas

Usando tais símbolos, proposições poderiam ser reduzidas à forma de equações.

E assim uma conclusão silogística para duas premissas seria obtida através de regras algébricas ordinárias que permitem alcançar-se a solução da equação.

Operações básicas

Conjunção:

$$\rightarrow$$
 x \lambda y = xy

Disjunção:

$$>$$
 $x \lor y = x + y - xy$

Negação:

$$\rightarrow$$
 \neg $x = 1 - x$

- ☐ Introdução
- Operações básicas
- □ Tabela verdade
- Diagrama de Venn
- Operações derivadas

Operadores básicos

Conjunção - operador E/AND

Equações:

$$lack 0 \wedge 1 = 0$$

$$1 \land 0 = 0$$

$$1 \land 1 = 1$$

Tabela Verdade:

X	Υ	$X \wedge Y$
0	0	0
0	1	0
1	0	0
1	1	1

Operadores básicos

Disjunção - operador OU/OR

Equações:

$$x \lor y = x + y - xy$$

•
$$0 \lor 0 = 0$$

$$lack 0 \lor 1 = 1$$

•
$$1 \lor 0 = 1$$

$$lack 1 \lor 1 = 1$$

Tabela Verdade:

X	Υ	$X \wedge Y$	$X \vee Y$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	1

Operadores básicos

Negação - operador NÃO/NOT

Equações:

$$lack 0 = 1$$

$$1 = 0$$

Tabela Verdade:

X	¬X
0	1
1	0

- ☐ Introdução
- Operações básicas
- Tabela verdade
- Diagrama de Venn
- Operações derivadas

Diagrama de Venn

Disjunção x ∨ y

Negação

 \neg χ

- ☐ Introdução
- Operações básicas
- Tabela verdade
- Diagrama de Venn
- Operações derivadas

Condicional:

$$> x \rightarrow y = \neg (x \land \neg y)$$

Disjunção exclusiva:

$$\Rightarrow$$
 $x \oplus y = (x \lor y) \land \neg (x \land y)$

Equivalência:

$$\rightarrow$$
 $x \equiv y = \neg (x \oplus y)$

Condicional

$$x \rightarrow y = \neg (x \land \neg y)$$

Tabela verdade

X	Y	$X \rightarrow Y$
0	0	1
0	1	0
1	0	1
1	1	1

Disjunção exclusiva

$$\Rightarrow$$
 $x \oplus y = (x \lor y) \land \neg (x \land y)$

Tabela verdade

X	Y	X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

Equivalência

$$\Rightarrow$$
 $x \equiv y = \neg (x \oplus y)$

Tabela verdade

X	Υ	$X \equiv Y$
0	0	1
0	1	0
1	0	0
1	1	1

Ferramenta auxiliar

Logic gates simulator

Circuit Scramble - Computer Logic Puzzles

Obrigado pela atenção!

Eletrônica digital Aula 3 - Tabela Verdade

Wellington de Souza Silva wellingtons@id.uff.br

