+ U_{CA}

UNIVERSIDAD CENTROAMERICANA, "JOSÉ SIMEÓN CAÑAS" DEPTO. CIENCIAS ENERGÉTICAS Y FLUÍDICAS FÍSICA II FORMULARIO PARA PARCIALES

Mecánica de fluidos	Oscilaciones	Ondas	Termodinámica	
$p_2 - p_1 = -\rho g(y_2 - y_1)$	$x(t) = A\cos(\omega t + \phi)$	$y = A\cos\left(kx \pm \omega t + \phi\right)$	$\Delta L = \alpha L_0 \Delta T$	$\left W\right = \left Q_{\mathrm{ent}}\right - \left Q_{\mathrm{sale}}\right $
$\frac{F_1}{A_1} = \frac{F_2}{A_2}$	$\omega^2 = \frac{k}{m}$	$v = \lambda f$	$Q = mc\Delta T$	$e = 1 - \frac{ Q_C }{ Q_H }$
$B = \rho_f V_f g$	$A = \sqrt{{x_0}^2 + \frac{{v_0}^2}{\omega^2}}$	$v = \sqrt{\frac{F}{\mu}}$	$H = kA \frac{T_H - T_C}{L}$	$K = \frac{ Q_C }{ W }$
$A_1 v_1 = A_2 v_2$	$\phi = \mp \cos^{-1} \left(\frac{x_0}{A} \right) \cot \pm v$	$P_{med} = \frac{1}{2} \sqrt{\mu F} \omega^2 A^2$	$H_{net} = Ae\sigma \left(T^4 - T_S^4 \right)$	$e_{camot} = 1 - \frac{T_C}{T_H}$
$p_1 - p_2 = \frac{1}{2}\rho(v_2^2 - v_1^2) + \rho g(y_2 - y_1)$	$E = \frac{1}{2}kA^2$	$\frac{I_1}{I_2} = \left(\frac{r_2}{r_1}\right)^2$	$\Delta U = Q - W$ $\Delta U = nC_V \Delta T$	$K_{camot} = \frac{T_C}{T_H - T_C}$
$\frac{dp}{dy} = -\rho g$	$\gamma = \frac{b}{2m}$	$y_{\text{max}} = 2A\cos\left[\frac{1}{2}(\phi_2 - \phi_1)\right]$	$W = \int_{i}^{f} p dV$	$\Delta S = \int_{i}^{f} \frac{dQ}{T}$
$rac{V_f}{V_{ob}} = rac{ ho_{ob}}{ ho_f}$	$x(t) = Ae^{-\gamma t}\cos(\omega' t + \phi)$	$I = \frac{1}{2} \sqrt{\rho B} \omega^2 A^2$	$W = \frac{1}{\gamma - 1} \left(p_i V_i - p_f V_f \right)$	$\Delta S = mc \ln \left(\frac{T_f}{T_i} \right)$
$p = p_0 + \rho g h$	$\omega' = \sqrt{{\omega_0}^2 - \gamma^2}$	$\beta = (10 \text{ dB}) \log \left(\frac{I}{I_0}\right)$	$W = nRT \ln \left(\frac{V_f}{V_i} \right)$	$TV^{\gamma-1}$ = constante
$Q = \frac{dV}{dt}$	$A_{p} = \frac{F_{0}/m}{\sqrt{(\omega_{0}^{2} - \omega_{F}^{2})^{2} + 4\gamma^{2}\omega_{F}^{2}}}$	$f_L = \frac{v + v_L}{v + v_S} f_s$	$Q = nC_V \Delta T$	$\Delta S_{sistema} + \Delta S_{entorno} \ge 0$

Autor: Raúl Núñez