

1

The RSA Cryptosystem

BASICS

Apr-2

The RSA Cryptosystem

RSA in a nutshell

- Rivest-Shamir-Adleman, 1978
 - Rivest, R.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM 21 (2): 120–126, February 1978.
- The most widely used asymmetric crypto-system
- Patented until 2000 in US
- Many applications
 - Encryption of small pieces (e.g., key transport)
 - Digital Signatures
- Underlying one-way function: integer factorization problem

Apr-23

The RSA Cryptosystem

3

3

RSA one-way function

- One-way function y = f(x)
 - -y = f(x) is easy
 - $x = f^{-1}(y)$ is hard
- RSA one-way function
 - Multiplication is easy
 - Factoring is hard

Apr-23

The RSA Cryptosystem

4

Mathematical setting

- RSA encryption and decryption is done in the integer ring $\mathbb{Z}_n = \{0, 1, ..., n\text{-}1\}$
 - PT and CT are elements in \mathbb{Z}_n
 - Modular computation plays a central role

Apr-23

5

5

Key Generation

- 1. Choose two large, distinct primes p, q
- 2. Compute modulus $n = p \times q$
- 3. Compute Euler's Phi function $\phi(n) = (p-1) \times (q-1)$
- 4. Randomly select the public (encryption) exponent e, $1 < e < \phi(n)$, s.t. $gcd(e, \phi(n)) = 1$
- 5. Compute the unique private (decryption) exponent d, $1 < d < \phi$, such that $e \cdot d \equiv 1 \pmod{\phi}$
- 6. Private key = (d, n), Public key = (e, n)

Apr-23

The RSA Cryptosystem

6

RSA Key Generation

- Comments
 - Primes p and q are 100÷200 decimal digits
 - Nowadays, p and q are 1024 bit
 - Condition $gcd(e, \Phi(n)) = 1$ guarantees that d exists and is unique
 - At the end of key generation, p and q must be deleted
 - Two parts of the algorithm are nontrivial:
 - Step 1
 - Steps 4-5 (step 5 is crucial for RSA correctness)

Apr-23

The RSA Cryptosystem

RSA Encryption and Decryption Algorithm RESTABLIES

- Encryption algorithm: to generate the ciphertext y from the plaintext $x \in [0, n-1]$
 - Obtain receiver's authentic public key (n, e)
 - Compute $y = x^e \mod n$
- Decryption algorithm: to obtain the plaintext x from the ciphertext $y \in [0, n-1]$
 - Compute $x = y^d \mod n$

The RSA Cryptosystem

Example with artificially small numbers

Key generation

Let p = 47 e q = 71
 n = p × q = 3337
 φ= (p-1) × (q-1)= 46 × 70 = 3220

Let e = 79
 ed = 1 mod φ
 79 × d = 1 mod 3220

d = 1019

Apr-23

Encryption

Let m = 9666683

Divide m into blocks $m_i < n$ $m_1 = 966$; $m_2 = 668$; $m_3 = 3$

Compute

 $c_1 = 966^{79} \mod 3337 = 2276$ $c_2 = 668^{79} \mod 3337 = 2423$ $c_3 = 3^{79} \mod 3337 = 158$ $c = c_1c_2c_3 = 2276 2423 158$

Decryption

 m_1 = 2276¹⁰¹⁹ mod 3337 = 966 m_2 = 2423¹⁰¹⁹ mod 3337 = 668 m_3 = 158¹⁰¹⁹ mod 3337 = 3

m = 9666683

The RSA Cryptosystem

yptosystem

9

The RSA Cryptosystem

PROOF OF RSA

Apr-23

The RSA Cryptosystem

10

RSA consistency: proof

- We need to prove that decryption is the inverse operation of encryption, D_{privK}(E_{pubK}(x)) = x
- Step 1
 - $d \cdot e = 1 \mod \Phi(n)$
 - By definition of mod operator $d \cdot e = 1 + t \cdot \Phi(n)$ for some integer t
 - Insert this expression in the decryption: $y^d \equiv x^{ed} \equiv x^{1+t\cdot\Phi(n)} \equiv x\cdot x^{t\cdot\Phi(n)} \equiv x\cdot (x^{\Phi(n)})^t \mod n$
- Step 2: prove that $x \equiv x \cdot (x^{\Phi(n)})^t \mod n$
 - Recall
 - Euler's Theorem: if gcd(x, n) = 1 then $1 \equiv x^{\Phi(n)} \mod n$
 - Minor generalization $1 \equiv 1^t \equiv (x^{\Phi(n)})^t \mod n$

Apr-23

The RSA Cryptosystem

11

11

RSA consistency: proof

- Step 2
 - case 1: gcd(x, n) = 1
 - Euler's theorem holds $\rightarrow x \cdot (x^{\Phi(n)})^t \equiv x \cdot 1 \equiv x \mod n$ Q.E.D.
 - case 2: $gcd(x, n) \neq 1$
 - Since p and q are primes (and x < n) then either x = r·p or x = s·q with r
 - Assume $x = r \cdot p$ then $gcd(x, q) = 1 \Rightarrow$ Euler's Theorem holds in this form $1 \equiv (x^{\Phi(n)})^t \mod q$
 - Proof: $(x^{\Phi(n)})^t \equiv (x^{(p-1)(q-1)})^t \equiv ((x^{\Phi(q)})^t)^{p-1} \equiv 1^{(p-1)} \equiv 1 \mod q$
 - $(x^{\Phi(n)})^t = 1 + u \cdot q$, for some integer u
 - $x \cdot (x^{\Phi(n)})^t = x + x \cdot u \cdot q = x + (r \cdot p) \cdot u \cdot q = x + r \cdot u \cdot (q \cdot p) = x + r \cdot u \cdot n$
 - $x \cdot (x^{\Phi(n)})^t \equiv x \mod n$ Q.E.D.

Apr-23

The RSA Cryptosystem

12

RSA encryption and decryption

13

- Comments
 - RSA proof is based on Euler's theorem
 - The proof becomes simpler by using the Chinese Remainder Theorem

Apr-23 The RSA Cryptosystem

13

The RSA Cryptosystem

PERFORMANCE

Apr-23

The RSA Cryptosystem

14

RSA

- RSA algorithms for key generation, encryption and decryption are "easy"
- They involve the following operations
 - Discrete exponentiation
 - Generation of large primes
 - Solving diophantine equations

Apr-23

The RSA Cryptosystem

15

15

Computation of e and d (refined)

- Select $e \in (1, \varphi(n))$
- Apply EEA with input parameters n and e and obtain the relationship
 - $-\gcd(\Phi(n), e) = s \cdot \varphi(n) + t \cdot e$ (Diophantine equation)
 - If gcd(e, φ(n)) = 1 then
 - Parameter e is a valid public key
 - Unknown t = $e^{-1} \mod \Phi(n)$, i.e., t = d mod $\Phi(n)$
 - If $gcd(e, \Phi(n)) \neq 1$ then
 - Select another value for e and repeat the process
 - Efficiency
 - Number of steps is close to the number of digit of the input parameter (≈ logarithmic)

Apr-23

The RSA Cryptosystem

16

Finding large primes

Algorithm

repeat

 $p \leftarrow RNG(x);$ // secure random generator until isPrime(p); // primality test

- Comment
 - RNG must be secure, i.e., unpredictable
- Problems
 - How many random numbers we must test before we have a prime?
 - How fast can we check whether a random integer is prime?
 - It turns out that both steps are reasonably fast

Apr-23 The RSA Cryptosystem

17

How common are primes?

- Let Pi(x) be the number of prime less than x
- Prime Numbers Theorem
 - For a very large x, Pi(x) tends to x/ln(x)
 - Furthermore, primes are distributed approximately uniformly over [2, x]
- Probability to find a prime in [0, x] ≈ 2/(ln x)
 - As we test only odd numbers

$$P = (x/\ln x)/(x/2) = 2/\ln x$$

- Expected number of trials to find a prime in [0, x] is $(\ln x)/2$

Apr-23 The RSA Cryptosystem 15

Primality tests

- Primality tests are computationally much easier than factorization
- Practical primality tests are probabilistic
 - At the question: "is p* prime?" they answer
 - p* is composed which is always a true statement
 - p* is prime, which is only true with a high probability
- Primality test
 - Fermat test
 - Miller-Rabin test

Apr-23

The RSA Cryptosystem

19

19

Modular ops - complexity

- Bit complexity of basic operations in \mathbb{Z}_n
 - Let n be on k bits $(n < 2^k)$
 - Let a and b be two integers in \mathbb{Z}_n (on k-bits)
 - Addition a + b can be done in time O(k)
 - Subtraction a b can be done in time O(k)
 - Multiplication a × b can be done in O(k²)
 - Division b × a⁻¹ can be done in time O(k²)
 - Inverse a-1 can be done in O(k)
 - Modular exponentiation can be done in O(k3)

Apr-23

The RSA Cryptosystem

20

Fast exponentiation

- How many multiplications to compute 2²⁰?
- Grade-school Algorithm requires
 - 2 x 2 x 2 x ... x 2 => 19 multiplications
- Square-and-Multiply Algorithm
 - $((2 \times (2^2)^2)^2)^2 \Rightarrow 1$ multiplications + 4 squares => 5 multiplications

Apr-23

The RSA Cryptosystem

21

21

Fast exponentiation

- RSA computes modular exponentiation
 - $-a^x \mod n$, where n is on k bits (i.e., $n \le 2^k$)
- Grade-school Algorithm
 - requires (x 1) modular multiplications
 - If x is as large as n, which is exponentially large in k, the Gradeschool Algorithm is inefficient
- Square-and-multiply Algorithm
 - requires up to 2k multiplications (2×log₂ x)
 - Overall, can be done in O(k³)

Apr-23

The RSA Cryptosystem

22

Fast exponentiation

- Square and multiply
 - Exponentiation by repeated squaring and multiplication
 - The exponentiation ax mod n requires at most
 - log₂(x) multiplications and
 - log₂(x) squares
 - Proof
 - See next slide

Apr-23

The RSA Cryptosystem

23

Fast exponentiation

23

 $a^{x_{k-1}2^{k-1}}a^{x_{k-2}2^{k-2}}\cdots a^{x_22^2}a^{x_12}a^{x_0} \mod n \equiv$

 $\left(\left(a^{x_{k-1}}\right)^2 a^{x_{k-2}}\right)^2 \cdots a^{x_2}\right)^2 a^{x_1}\right)^2 a^{x_0} \mod n$

ALGORITHM $c \leftarrow 1$ for (i = k-1; i >= 0; i --) { $c \leftarrow c^2 \mod n$; **if** $(x_i == 1)$ $c \leftarrow c \times a \mod n$;

COMMENT

- always k square operations
- at most k multiplications
- equal to the number of 1 in the binary representation of x
- Modulo reduction is performed at each round in order to keep the intermediate results small.

Apr-23 The RSA Cryptosystem

24

Fast exponentiation – exercise

- Compute $r = a^{20}$
 - $-x = 20 = 10100_2$
 - Step 0
 - $r_0 = a^1$
 - Step 1
 - $r_1 = (a^1)^2 = a^2 = a^{[10]}_2$
 - Step 2
 - $r_2 = (r_1)^2 = a^4 = a^{[100]}$
 - $r_2 = r_2 \cdot a = x^5 = a^{[101]}_2$

- Step 3
 - r3 = $(r_2)^2$ = a^{10} = $a^{[1010]}_2$
- Step 4
 - $r_4 = (r_3)^2 = a^{20} = a^{[10100]}_2$

Apr-23

The RSA Cryptosystem

25

25

Fast exponentiation

- Let k = 1024
- #MUL in the Grade-School Algorithm
 - #MUL = 2¹⁰²⁴ multiplications
- #Ops in the Square-and-Multiply Algorithm
 - #SQ = k
 - #MUL = #(1's in the binary representation)
 - On average #MUL = 0.5K
 - #Ops = 1.5k = 1536 multiplications
 - Each multiplication is on 1024 bits

Apr-23

The RSA Cryptosystem

26

RSA fast encryption with short public exponent

- RSA ops with public exponent e can be speeded-up
 - Encryption
 - Digital signature verification
- The public key e can be chosen to be a very small value
 - e = 3 #MUL + #SQ = 2 - e = 17 #MUL + #SQ = 5 $- e = 2^{16}+1$ #MUL + #SQ = 17
 - RSA is still secure

Apr-23 The RSA Cryptosystem

:

27

RSA decryption

- Assume a 2048-bit modulus and a 32-bit CPU
- · Decryption computing overhead
 - On average #MUL+#SQ = $1.5 \times 2048 = 3072$ long multiplications each of which involves 2018-bit operands
 - Single long-number multiplication
 - Each operand requires 2048/32 = 64 registers
 - Each long-number multiplication requires 64² = 4096 integer multiplications
 - Modulo reduction requires 64² = 4096 integer multiplications
 - In total 4096 + 4096 = 8192 integer multiplications for a single long multiplication
 - In total, 3072 \times 8192 = 25.165.824 integer multiplications

pr-23 The RSA Cryptosystem 2

RSA decryption

- '70s-'80s: only hardware implementation
- Today, an RSA decryption takes ≈100 µs on highspeed hw
- End '80s, software implementation becomes possible
- Today, 2048-bit RSA takes ≈10 ms on a 2 GHz CPU
 - Throughput = 2048 × 100 = 204.800 bit/s
 - $-\approx$ 3 orders of magnitude slower than symmetric encryption

Apr-23 The RSA Cryptosystem

29

29

RSA Fast decryption

- There is no easy way to accelerate RSA when the private exponent d is involved
 - sizeof(d) = sizeof(n) to discourage brute force attack
 - It can be shown that sizeof(d) ≥ 0.3 sizeof(n)
- One possible approach is based on the Chinese Remainder Theorem (CRT)
 - We do not prove the theorem
 - We just apply it

The RSA Cryptosystem

30

Fast RSA decryption by CRT

- Problem
 - Compute $y \equiv x^d \pmod{n}$ efficiently
- The method
 - 1. Transformation of the problem in the CRT domain
 - 1. Compute $x_p \equiv x \pmod{p}$
 - 2. Compute $x_q \equiv x \pmod{q}$
 - 2. Exponentiation in the CRT domain
 - 1. $y_p \equiv x_p^{d_p} \mod p$, where $d_p \equiv d \mod (p-1)$
 - 2. $y_q \equiv x_q^{d_q} \mod q$, where $d_q \equiv d \mod (q 1)$

Apr-23

The RSA Cryptosystem

31

31

Fast RSA decryption by CRT

- The method (cont.ed)
 - 3. Inverse transformation in the problem domain
 - 1. $y \equiv [q \cdot c_p]y_p + [p \cdot c_q]y_q \mod n$ where
 - $-c_p \equiv q^{-1} \mod p$ and
 - $-c_q \equiv p^{-1} \bmod q$

Apr-23

The RSA Cryptosystem

32

Fast RSA decryption by CRT

- Comments
 - With reference to step 2, as sizeof(p) = sizeof(q), d_p , d_q , y_p , y_q have about half the bit length of n
 - This leads to a speedup = 4
 - With reference to step 3, expressions in square brackets can be precomputed
 - Then, the reverse transformation requires two modular multiplications and one modular addition

Apr-23

The RSA Cryptosystem

33

33

Fast RSA decryption by CRT

- Complexity of CRT-based RSA decryption
 - Step 1 and step 3 are negligible
 - Step 2
 - Let n length is t bits, then all quantities in step 2 are on t/2 bits
 - · By applying the Square-and-multiply algorithm
 - #OPS = #SQ+#MUL = 2 × (1.5 t/2) = 1.5 t
 - The #OPS is the same as without CRT, however, each operation involve t/2-bit operands instead of t-bit operand, so its time is (t/2)²
 - As multiplication complexity is quadratic, the total speed up is a factor of 4
- The method is subject to fault-injection attack

Apr-23

The RSA Cryptosystem

34

The RSA Cryptosystem

RSA IN PRACTICE

Apr-23

The RSA Cryptosystem

35

35

RSA in practice

- Schoolbook/plain RSA is insecure
 - RSA is deterministic
 - A given pt is always mapped into a specific ct
 - PT values 0 and 1 produce CT equal to 0 and 1
 - Small exponent and small pt might be subject to attacks
 - RSA is malleable
- Padding is a solution to all these problems
 - Never use plain RSA

Apr-23

The RSA Cryptosystem

36

RSA malleability

- Malleability
 - A crypto scheme is said to be malleable if the attacker is capable of transforming the ciphertext into another ciphertext which leads to a known transformation of the plaintext
 - The attacker does not decrypt the ciphertext, but (s)he is able to manipulate the plaintext in a predictable manner

Apr-23 The RSA Cryptosystem

37

RSA Malleability

37

- The sender
 - Transmits $y = x^e \mod n$
- The adversary
 - Intercepts y
 - Chooses s s.t. gcd(s, n) = 1
 - Computes and forwards $y' = s^e \cdot y \mod n$
- · The receiver
 - Decrypts y', $x' = y'^d = (s^e \cdot y)^d = s^{ed} \cdot y^d = s \cdot x \mod n$
 - The attacker manages to multiply the ct x by a factor s

Apr-23

The RSA Cryptosystem

30

RSA Padding

- Padding intuition
 - It embeds a random structure into the plaintext before encryption
- Padding in RSA
 - Optimal Asymmetric Encryption Padding (OAEP)
 - Specified and standardized in PKCS#1 (Public Key Cryptography Standard #1)

Apr-23 The RSA Cryptosystem

ryptosystem

39

RSA malleability

39

- More in general, RSA malleability descends from the homomorphic property
 - Let x_1 and x_2 two plaintext messages
 - Let y_1 and y_2 their respective encryptions
 - Then, $y \equiv (x_1 \cdot x_2)^e \equiv x_1^e x_2^e \equiv y_1 \cdot y_2 \mod n$
 - That is, the CT of the product is the product of the CTs

Apr-23 The RSA Cryptosystem 40

Adaptive chosen-ciphertext attack

- The problem
 - Assume that Bob decrypts any ciphertext except a given ciphertext y
 - The attacker wants to determine the plaintext corresponding to y

Apr-23

The RSA Cryptosystem

41

41

Adaptive chosen-ciphertext attack

- The attack
 - The adversary selects an integer s, s.t. gcd(s, n) = 1, and sends Bob the quantity $y' \equiv s^e$. y mod n
 - Upon receiving y', as y' ≠ y, Bob decrypts y', producing
 x' ≡ s · x mod n, and returns x' to the adversary
 - The adversary determines x, by computing $x \equiv x' \cdot s^{-1} \mod n$
- Countermeasure
 - The attack can be contrasted by using padding
 - Bob returns x' iff it has a structure coherent with padding

Apr-23

The RSA Cryptosystem

42

43

Small message attack

- Let x be a cleartext message, (e, n) a public key, and y = x^e mod n a ciphertext message with with x, y ∈ [0, n-1]
- Let x be «small» i.e. $x^e < n$. Then, $y = x^e$ and thus $x = \sqrt[e]{y}$ which is a "normal" e-th root operation that is "easy".

The RSA Cryptosystem

Apr-23

44

45

Cinese Remainder Theorem

- CHINESE REMAINDER THEOREM. If the integers n_1 , n_2 , . . . , n_k are pairwise relatively prime, then the system of simultaneous congruences
 - $-x \equiv a_1 \pmod{n_1}$
 - $-x \equiv a_2 \pmod{n_2}$
 - _
 - $-x \equiv a_k \pmod{n_k}$

has a unique solution modulo $n = n_1 n_2 \cdots n_k$.

Apr-23 The RSA Cryptosystem 4

Cinese Remainder Theorem

 GAUSS'S ALGORITHM. The solution x to the simultaneous congruences in the Chinese remainder theorem may be computed as

$$x = \sum_{i=1}^k a_i N_i M_i \bmod n$$
 where $N_i = n/n_i \bmod n_i$ and $M_i = N_i^{-1} \bmod n$

These computations can be performed in O((lg n)²) bit operations.

Apr-23

The RSA Cryptosystem

47

47

Low Exponent Attack

If n_i are pairwise coprime, use CRT to compute
 z = x³ mod n₁n₂n₃ that solves

$$\begin{cases} z \equiv y_1 \mod n_1 \\ z \equiv y_2 \mod n_2 \\ z \equiv y_3 \mod n_3 \end{cases}$$

- According to RSA encryption definition $x < n_i$ then $x^3 < n_1 n_2 n_3$ and thus $z = x^3 \rightarrow x$ is the integer cube root of z, $x = \sqrt[3]{z}$
 - This is not a modular root → it is "easy"

Apr-23

The RSA Cryptosystem

48

Low Exponent Attack

- COUNTERMEASURES
- Salting
 - A different salt for each receiver: x | | salt_i
- Use large exponent
 - E.g., $e = 2^{16}+1$

Apr-23

The RSA Cryptosystem

49

49

Selecting primes p and q – hints

- Primes p and q should be selected so that factoring $n = p \cdot q$ is computationally infeasible, therefore
- p and q should be sufficiently large and about the same bit length (to avoid the elliptic curve factoring algorithm)
- p q should be not too small
- (p-1)/2 and (q-1)/2 should be relatively prime

Apr-23

The RSA Cryptosystem

50

The RSA Cryptosystem

RSA SECURITY

Apr-23

The RSA Cryptosystem

51

Attacks

51

- Protocol attacks
- Mathematical attacks
- Side-channel attacks

Apr-23

The RSA Cryptosystem

52

Protocol attacks

- Based on malleability of RSA
- · Avoidable by padding

Apr-23

The RSA Cryptosystem

53

53

Mathematical attacks

- The RSA Problem (RSAP)
 - Recovering plaintext x from ciphertext y, given the public key (n, e)
- RSA VS FACTORING
 - If p and q are known, RSAP can be easily solved
 - − RSAP \leq_{p} FACTORING
 - FACTORING is at least as difficult as RSAP or, equivalently, RSAP is not harder than FACTORING
 - It is widely believed that RSAP and Factoring are computationally equivalent, although no proof of this is known.

Apr-23

The RSA Cryptosystem

54

Mathematical Attacks

- THM (FACT 1) Computing the decryption exponent d from the public key (n, e) is computationally equivalent to factoring n
 - Proof
 - If factorization of n is known, then it is possible to compute the private key d efficiently
 - (It can be proven that) if d known, then it is possible to factor n efficiently

Apr-23 The RSA Cryptosystem

55

Mathematical Attacks

- RSAP vs e-th root
 - A possible way to decrypt $y = x^e \mod n$ is to compute the modular e-th root of y, i.e., $x = \sqrt[e]{y} \mod n$
- THM (FACT 2) Computing the e-th root is a computationally easy problem iff n is prime
- THM (FACT 3) If n is composite the problem of computing the e-th root is equivalent to factoring

Apr-23

The RSA Cryptosystem

56

Mathematical Attacks

- THM Knowing φ is computationally equivalent to factoring
 - PROOF.
 - Given p and q, s.t. n =pq
 - Computing ϕ is immediate.
 - Given φ
 - From $\phi = (p-1)(q-1) = n (p+q) + 1$, determine x1 = (p+q).
 - From $(p-q)^2 = (p+q)^2 4n = x_1^2 4n$, determine $x^2 = (p-q)$.
 - Finally, p = (x1 + x2)/2 and q = (x1 x2)/2.

Apr-23 The RSA Cryptosystem

57

Mathematical Attacks

57

- Exhaustive Private Key Search
 - This attack must be more difficult than factoring n
 - The bit length of private exponent d must be the same as the bit length of n
 - sizeof(p) ≈ sizeof(q)
 - sizeof(d) >> sizeof(p) AND sizeof(d) >> sizeof(q)

Apr-23 The RSA Cryptosystem 5

Factoring

- · Primality testing vs. factoring
 - FACT 5 To decide whether an integer is composite or prime seems to be, in general, much easier than the factoring problem

Apr-23 The RSA Cryptosystem

59

Factoring

59

- · Factoring algorithms
 - Special purpose algorithms
 - Tailored to perform better when the integer n being factored is of special form
 - Running time depends on certain properties of factors of n
 - Examples
 - $-\,$ Trial division, Pollard's rho alg., Pollard's p $-\,$ 1 alg., elliptic curve alg., and special number sieve
 - General purpose algorithms
 - Running time depends on n
 - Examples
 - Quadratic sieve and general number field sieve

r-23 The RSA Cryptosystem

Factoring

- Factoring algorithms
 - No algorithm can factor all integers in polynomial time
 - Neither the existence nor non-existence of such algorithms has been proven, but it is generally suspected that they do not exist
 - Peter Shor discovered a quantum algorithm that is polynomial (1994)
 - There are sub-exponential algorithms
 - For computers, the best algorithm is General Number Field Sieve (GNFS)

Apr-23 The RSA Cryptosystem

61

Factoring

61

- · Length of the modulus
 - RSA sparked much interest in the old problem of integer factorization
 - Factoring methods improved considerably during '80s and '90s
 - Advisable modulus length
 - · Until recently, 1024-bit was a default
 - Nowadays factorization within 10-15 years or even earlier
 - · Modulus in the range 2048-4096 bit for long term security

Apr-23 The RSA Cryptosystem 62

