Statistika 1 - semestrální projekt

- 1. Uvažujme náhodný výběr $X_1, \ldots, X_n \sim Exp(\lambda)$, kde $\lambda > 0$ je neznámý parametr.
 - (a) Pro test hypotézy $H_0: \lambda = \lambda_0$ proti $H_1: \lambda > \lambda_0$ na hladině významnosti α zkonstruujte stejnoměrně nejsilnější test, tj. test takový, že pro každé $\lambda > \lambda_0$ je tento test nejsilnějším testem na hladině významnosti α .
 - (b) Pro hodnoty $\lambda_0=0.2$ a $\alpha=0.05$ určete minimální počty pozorování n takové, aby síla testu dosáhla hodnoty alespoň 0,9 pro skutečné hodnoty parametru $\lambda=1,2\cdot\lambda_0$ a $\lambda=1,1\cdot\lambda_0$.
- 2. V souboru penguins.csvjsou uložena měření fyzických charakteristik tří druhů tučňáků.
 - (a) Určete 95% intervalové odhady střední hodnoty hmotnosti samců a samic druhu s nejvyšší hmotností.
 - (b) U kterých druhů se liší průměrná délka křídel samců a samic?
 - (c) Mají samci jednotlivých druhů stejnou průměrnou hmotnost? Pokud ne, který druh se hmotností samců odlišuje od ostatních?

Pro všechny odhady a testy nejprve proveď te explorační analýzu pomocí vhodného typu grafu. Pro testování hypotéz použijte hladinu významnosti $\alpha=0,05$. Pokud správné provedení testů nebo odhadů vyžaduje splnění určitých předpokladů, pokuste se je ověřit.

3. Kvůli monitorování velikostí populací tučňáků na antarktických ostrovech bylo na jednom z ostrovů, kde žije uzavřená populace tučňáků, odchyceno a označeno 3000 jedinců. Po krátké době, během které se označení jedinci stihli dostatečně promísit s ostatními neoznačenými tučňáky, bylo znovu odchyceno a zkontrolováno 4000 jedinců. 91 z nich bylo označených z předchozího odchytu. Určete přibližný 90% intervalový odhad velikosti populace tučňáků na ostrově.