COMP24111 lecture 2

Rugby players, Ballet dancers, and the

Nearest Neighbour Classifier

A Problem to Solve with Machine Learning

Distinguish rugby players from ballet dancers.

You are provided with a few examples. Fallowfield rugby club (16). Rusholme ballet troupe (10).

Task

Generate a program which will correctly classify ANY player/dancer in the world.

Hint

We shouldn't "fine-tune" our system too much so it only works on the local clubs.

Taking measurements....

We have to process the people with a computer, so it needs to be in a computer-readable form.

What are the distinguishing characteristics?

- 1. Height
- 2. Weight
- 3. Shoe size
- 4. Sex

Terminology

id	height	weight	shoe size	sex	Ballet?
1	70	64	3	1	1
2	23	86	5	0	1
3	56	49	5	1	0
4	50	88	3	0	0
5	12	50	1	0	1
6	56	66	2	1	0
N	56	1	5	0	0

The Supervised Learning Pipeline

The Nearest Neighbour Rule

Person	Weight	Height
1 2	63kg 55kg	190cm 185cm
3 4 5	75kg 50kg	202cm 180cm
5 16	57kg 85kg	174cm 150cm
17 18	93kg 75kg	145cm 130cm
19 20	99kg 100kg	163cm 171cm

"TRAINING" DATA

"TESTING" DATA

Who's this guy?
- player or dancer?

height = 180cm weight = 78kg

The Nearest Neighbour Rule

Weight	Height
63kg 55kg 75kg	190cm 185cm 202cm
57kg 	180cm 174cm
93kg 75kg	150cm 145cm 130cm
99kg 100kg 	163cm 171cm
	63kg 55kg 75kg 50kg 57kg 85kg 93kg 75kg 99kg

"TRAINING" DATA

height = 180cm weight = 78kg

- 1. Find nearest neighbour
- 2. Assign the same class

Supervised Learning Pipeline for Nearest Neighbour

The K-Nearest Neighbour Classifier

Testing point x

For each training datapoint x'

measure distance(x,x')

End

Sort distances

Select K nearest

Assign most common class

Person	Weight	Height
1 2 3 4	63kg 55kg 75kg 50kg	190cm 185cm 202cm 180cm
5	57kg	174cm
16 17	85kg 93kg	150cm 145cm
18 19	75kg 99kg	130cm 163cm
20	100kg 	171cm

"TRAINING" DATA

Quick reminder: Pythagoras' theorem

measure distance(x,x')

$$a^{2} + b^{2} = c^{2}$$
So.... $c = \sqrt{a^{2} + b^{2}}$

a.k.a. "Euclidean" distance

The K-Nearest Neighbour Classifier

Testing point x

For each training datapoint x'

measure distance(x,x')

End

Sort distances

Select K nearest

Assign most common class

Person	Weight	Height
1	63kg	190cm
2	55kg	185cm
3	75kg	202cm
4	50kg	180cm
5	57kg	174cm
16	85kg	150cm
17	93kg	145cm
18	75kg	130cm
19	99kg	163cm
20	100kg	171cm

"TRAINING" DATA

Seems sensible.

But what are the disadvantages?

The K-Nearest Neighbour Classifier

Person	Weight	Height
1 2 3 4	63kg 55kg 75kg	190cm 185cm 202cm
5 16	50kg 57kg 85kg	180cm 174cm 150cm
17 18 19	93kg 75kg 99kg	145cm 130cm 163cm
20	100kg 	171cm

"TRAINING" DATA

Here I chose k=3.

What would happen if I chose k=5?

What would happen if I chose k=26?

The K-Nearest Neighbour Classifier

Person	Weight	Height
1	63kg	190cm
2	55kg	185cm
3	75kg	202cm
4	50kg	180cm
5	57kg	174cm
16	85kg	150cm
17	93kg	145cm
18	75kg	130cm
19	99kg	163cm
20	100kg	171cm
•••		

"TRAINING" DATA

Any point on the left of this "boundary" is closer to the red circles.

Any point on the right of this "boundary" is closer to the blue crosses.

This is called the "decision boundary".

Where's the decision boundary?

Not always a simple straight line!

Where's the decision boundary?

Not always contiguous!

The most important concept in Machine Learning

The most important concept in Machine Learning

Looks good so far...

The most important concept in Machine Learning

Looks good so far...

Oh no! Mistakes! What happened?

The most important concept in Machine Learning

Looks good so far...

Oh no! Mistakes! What happened?

We didn't have all the data.

We can never assume that we do.

This is called "OVER-FITTING" to the small dataset.

So, we have our first "machine learning" algorithm...?

The K-Nearest Neighbour Classifier

Testing point x

For each training datapoint x'

measure distance(x,x')

End

Sort distances

Select K nearest

Assign most common class

Make your own notes on its advantages / disadvantages.

I will ask for volunteers next time we meet.....

Pretty dumb! Where's the learning!

Now, how is this problem like handwriting recognition?

Let's say the measurements are pixel values.

Three dimensions...

(190, 85, 202) pixel 1¹⁵⁰

255

A three-pixel image

This 3-pixel image is represented by a **SINGLE** point in a 3-D space.

150

pixel 3

Distance between images

pixel 2

A three-pixel image

Another 3-pixel image

Straight line distance between them?

4-dimensional space? 5-d? 6-d?

A three-pixel image

A four-pixel image.

A five-pixel image

A four-pixel image.

(190, 85, 202, 10)

A different four-pixel image.

(190, 85, 202, 10) Same 4-dimensional vector!

Assuming we read pixels in a systematic manner, we can now represent any image as a <u>single point in a high dimensional space</u>.

16 x 16 pixel image. How many dimensions?

We can measure distance in 256 dimensional space.

distance
$$(x, x') = \sqrt{\sum_{i=1}^{i=256} (x_i - x'_i)^2}$$

Which is the **nearest neighbour** to our '3'?

AT&T Research Labs

The USPS postcode reader – $\underline{\text{learnt}}$ from examples.

FAST recognition

NOISE resistant, can **generalise** to future unseen patterns

Your lab exercise

Final lab session before reading week. (see website for details)

i.e. you have 4 weeks.

Biggest mistake by students in last year's class?

...starting 2 weeks from now!

