

Übung 10 zur Vorlesung Analysis für Informatiker, WS 2018/2019

Abgabe bis Mittwoch, 19.12.2018, 12 Uhr

Hausaufgabe 3

Untersuchen Sie die folgenden Funktionen auf Differenzierbarkeit und berechnen Sie gegebenenfalls die Ableitung.

i)
$$f_1:(0,\infty)\longrightarrow \mathbb{R}, x\mapsto x^x$$
.

ii)
$$f_2: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \longrightarrow \mathbb{R}, \ x \mapsto \tan(x) := \frac{\sin(x)}{\cos(x)}$$

iii)
$$f_3: \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \mapsto |\sin(x)|$.

((4+4+8) Punkte)

Lösung

(a) Da x > 0 ist, ergibt sich:

$$f_1(x) = x^x = \exp(x \cdot \ln(x))$$

(1 **Punkt**). Als Komposition differenzierbarer Funktionen ist f_1 damit differenzierbar (1 **Punkt**) und die Ableitung lautet mit der Kettenregel und Produktregel (1 **Punkt**):

$$f_1'(x) = \exp(x \cdot \ln(x)) \cdot \left(x \cdot \frac{1}{x} + 1 \cdot \ln(x)\right) = x^x \cdot (1 + \ln(x))$$

(1 Punkt).

(b) Da der Kosinus auf $(-\frac{\pi}{2}, \frac{\pi}{2})$ ungleich Null ist, ist f_2 überall definiert. Als Quotient differenzierbarer Funktionen ist damit auch f_2 differenzierbar (**1 Punkt**). Die Quotientenregel (**1 Punkt**) liefert:

$$f_2'(x) = \frac{\cos(x) \cdot \cos(x) - (\sin(x) \cdot (-\sin(x)))}{\cos^2(x)} = \frac{\sin^2(x) + \cos^2(x)}{\cos^2(x)}$$

(1 **Punkt**) Unter Anwendung der Identität $\sin^2(x) + \cos^2(x) = 1$ ergibt sich: $f_2'(x) = \frac{1}{\cos^2(x)}$ (1 **Punkt**).

(c) Der Sinus verschwindet genau an den Stellen $n \cdot \pi$, $n \in \mathbb{Z}$ (1 **Punkt**). Sei zunächst x_0 kein \mathbb{Z} -Vielfaches von π . Dann gibt es aufgrund der Stetigkeit von $|\sin(x)|$ (Komposition stetiger Funktionen) eine Umgebung von x_0 mit $\sin(x) \neq 0$, also entweder $f_3(x) = \sin(x)$ für alle x in der Umgebung oder $f_3(x) = -\sin(x)$ für alle x in der Umgebung (1 **Punkt**). In beiden Fällen haben wir eine differenzierbare Funktion und somit ist f_3 in x_0 differenzierbar (1 **Punkt**).

Wir betrachten nun den Fall $x_0 = n \cdot \pi$. Wir betrachten den Differnzenquotienten

$$\frac{f_3(x) - f_3(x_0)}{x - x_0} = \frac{f_3(x)}{x - x_0}.$$

für $x > x_0$ und $x < x_0$. Es sei ohne Einschränkung $f_3(x) > 0$ in einer Umgebung von x_0 mit $x > x_0$ und $f_3(x) < 0$ in einer Umgebung von x_0 mit $x < x_0$. Im ersten Fall gilt mit $\sin'(x) = \cos(x)$ (1 **Punkt**):

$$\lim_{x \downarrow x_0} \frac{f_3(x)}{x - x_0} = \lim_{x \downarrow x_0} \frac{\sin(x)}{x - x_0} = \cos(x_0) = \cos(n \cdot \pi)$$

(1 Punkt) Im zweiten Fall erhaltern wir mit $(-\sin)'(x) = -\cos(x)$ (1 Punkt):

$$\lim_{x \uparrow x_0} \frac{f_3(x)}{x - x_0} = \lim_{x \uparrow x_0} \frac{-\sin(x)}{x - x_0} = \cos(x_0) = -\cos(n \cdot \pi)$$

(1 Punkt). Schließlich ist $\cos(n \cdot \pi) \neq 0$ für alle $n \in \mathbb{N}$ und damit ist f_3 nicht stetig in x_0 (1 Punkt).

Hausaufgabe 4

Sei $f : \mathbb{R} \to \mathbb{R}$ eine differenzierbare Funktion mit

$$f'(x) = 1 + \sin^2(f(x)).$$

Zeigen Sie, dass f eine differenzierbare Umkehrfunktion f^{-1} besitzt und berechnen Sie deren Ableitung. (4 Punkte)

Lösung

Nach Voraussetzung erfüllt die Ableitung $f'(x) \ge 1 > 0$ für alle $x \in \mathbb{R}$ (1 **Punkt**). Folglich ist die Funktion f streng monoton steigend und damit injektiv (1 **Punkt**). Die Funktion f ist nach den Voraussetzungen differenzierbar auf ganz \mathbb{R} und da $f'(x) \ne 0$ gilt für alle $x \in \mathbb{R}$, existiert somit die Umkehrfunktion (1 **Punkt**) und die Ableitung der Umkehrfunktion kann man durch die folgende Gleichung berechnen:

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{1 + \sin^2(f(f^{-1}(y)))} = \frac{1}{1 + \sin^2(y)}$$

(1 Punkt).