# Visualizing Multilevel Models

Andy Grogan-Kaylor

11 Apr 2023 11:08:35

## Introduction

An evolving set of notes on visualizing results from multilevel models.

When this document is presented in *slide show format*, some slides may be long, and you may need to *scroll down* to see the full slide. In slide show format use the left and right arrow keys to navigate through the slides. b will make the text bigger. s will make the text smaller.

The examples below use the simulated\_multilevel\_data.dta file from *Multilevel Thinking*. Here is a direct link to download the data.

## **Organizing Questions**

Try to think about some of the advantages and disadvantages of different approaches to visualizing multilevel models. In multilevel models, we don't want to just *control for* variation, but to start to *explore* the variation. Put concretely:

- Some approaches use dots. Some approaches use lines. Some approaches use dots and lines.
- Some approaches use the raw unadjusted data. Other approaches use adjusted or model predicted data.
- Some approaches attempt to show the Level 2 specific regression lines; some approaches only show an average regression line.
- What approaches might work well with *large numbers* of Level 2 units? What approaches might work well with *smaller numbers* of Level 2 units?

What approach(es) do you prefer?

## Setup

I am not terrifically fond of Stata's default s2color graph scheme. Therefore I make use of the michigan graph scheme available at: https://agrogan1.github.io/Stata/michigan-graph-scheme/

. set scheme michigan

Stata's s1color scheme would also would be an option as would be Asjad Naqvi's incredible schemepack: https://github.com/asjadnaqvi/stata-schemepack

#### Get Data

- . use "https://github.com/agrogan1/multilevel-thinking/raw/main/simulate-and-analyze-multi
- > level-data/simulated\_multilevel\_data.dta", clear

# Scatterplots (twoway scatter y x)

- . twoway scatter outcome warmth
- . graph export myscatter.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatter.png saved as PNG format



Figure 1: Scatterplot

# Simple Linear Fit (twoway lfit y x)

- . twoway lfit outcome warmth
- . graph export mylinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylinear.png saved as PNG format.

# Linear Fit With Confidence Interval (twoway lfitci y x)

- . twoway lfitci outcome warmth
- . graph export mylfitci.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mylfitci.png saved as PNG format

# Combine Scatterplot and Linear Fit (twoway (scatter y x) (lfit y x))

- . twoway (scatter outcome warmth) (lfit outcome warmth)
- . graph export myscatterlinear.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myscatterlinear.png saved as PNG format



Figure 2: Linear Fit



Figure 3: Linear Fit With Confidence Interval



Figure 4: Scatterplot and Linear Fit

## Spaghetti Plots (spagplot y x, id(group))

```
. spagplot outcome warmth, id(country)

. graph export myspaghetti.png, width(1500) replace
file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myspaghetti.png saved as
```

# Small Multiples (twoway y x, by(group))

Small Multiples, showing a separate graph for each group in the data, are an increasingly popular data visualization technique. Below, I build a small multiples graph using the by option in Stata.

I use the aspect option to adjust the aspect ratio of the graph for better visual presentation. I also use the mcolor(%30) option to create some transparency in the dots of the scatterplot, which helps the presentation of these small multiples. The mcolor(%30) option could be useful in the other graphs in this tutorial as well.

```
. twoway (scatter outcome warmth, mcolor(%30)) (lfit outcome warmth), by(country) aspect(1
> )
. graph export mysmallmultiples.png, width(1500) replace
file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mysmallmultiples.png saved
    as PNG format
```

## Taking A Random Sample

PNG format

At times, we may have too many Level 2 units to effectively display them on a spaghetti plot, or using small multiples. If this is the case, we may need to randomly sample Level 2 units. This can be difficult to accomplish as our standard sample command operates on each row, or on Level 1 units.

We can accomplish random sampling at Level 2, with a little bit of code.

```
. set seed 3846 // random seed for reproducibility
```



Figure 5: Spaghetti Plot



Figure 6: Small Multiples

- . gen randomid = runiform() // generate a random id variable
- . \* by country (i.e. by Level 2 unit) replace the randomid
- . \* with the first randomid for that country (Level 2 unit)
- \* so that every person in that country has the same random id
- . bysort country: replace randomid = randomid[1]
  (2,970 real changes made)
- . summarize randomid  $\ensuremath{//}$  descriptive statistics for random id

| Variable | 0bs   | Mean     | Std. dev. | Min      | Max      |
|----------|-------|----------|-----------|----------|----------|
| randomid | 3,000 | .6174022 | .2374704  | .0733026 | .9657055 |

- . twoway (scatter outcome warmth, mcolor(%30)) /// scatterplot
- > (lfit outcome warmth) /// linear fit
- > if randomid < .5, /// only use a subset of randomid's
- > by(country) aspect(1) // by country
- . graph export mysmallmultiples2.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mysmallmultiples2.png saved as PNG format



Figure 7: Small Multiples With A Random Sample Of Countries

# Multivariate (Predicted) Relationships

A sometimes unacknowledged point is that graphs—unless we take steps to correct this—reflect unadjusted, or bivariate associations. We may sometimes wish to develop a graphs that reflect the adjusted or predicted estimates from our models.

In multilevel models, *prediction* is a complex question. The procedures below outline graphs that incorporate predictions using the variables, but do not include predictions that incorporate the random effects. (This will be added!)

## Using Predicted Values (predict)

#### **Estimate The Model**

. mixed outcome warmth physical\_punishment i.group  $\mid\mid$  country: // estimate MLM Performing EM optimization ...

Performing gradient-based optimization: Iteration 0: log likelihood = -9668.0859 Iteration 1: log likelihood = -9668.0859

Computing standard errors ...

Mixed-effects ML regression

Group variable: country

Number of obs = 3,000

Number of groups = 30

Obs per group:

min = 100

avg = 100.0

max = 100

| outcome                                  | Coefficient | Std. err. | z      | P> z  | [95% conf. | interval] |
|------------------------------------------|-------------|-----------|--------|-------|------------|-----------|
| warmth physical_punishment 2.group _cons | .961837     | .0581809  | 16.53  | 0.000 | .8478046   | 1.075869  |
|                                          | 8457672     | .0798128  | -10.60 | 0.000 | -1.002197  | 6893369   |
|                                          | 1.084409    | .2200548  | 4.93   | 0.000 | .6531099   | 1.515709  |
|                                          | 51.64797    | .4645466  | 111.18 | 0.000 | 50.73748   | 52.55847  |

| Random-effects parameters    | Estimate | Std. err. | [95% conf. interval] |          |
|------------------------------|----------|-----------|----------------------|----------|
| country: Identity var(_cons) | 3.403    | .9717558  | 1.944438             | 5.955659 |
| var(Residual)                | 36.01911 | .9346952  | 34.23295             | 37.89847 |

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

#### Generate Predicted Values

. predict outcome\_hat // predict yhat
(option xb assumed)

### Graph With twoway Syntax

- . twoway (scatter outcome\_hat warmth) (lfit outcome\_hat warmth)
- . graph export mypredictedvalues.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mypredictedvalues.png saved as PNG format
- . twoway (lfit outcome\_hat warmth)
- . graph export mypredictedvalues2.png, width(1500) replace
- file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mypredictedvalues2.png saved as PNG format





# Spaghetti Plot With Predicted Values

- . spagplot outcome\_hat warmth, id(country)
- . graph export myspaghetti2.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/myspaghetti2.png saved as PNG format



Figure 8: Spaghetti Plot With Predicted Values

## margins and marginsplot

#### Estimate The Model

| . mixed outcome warmt | h physical_pu                    | nishment i.                          | group  | country  | : // esti | imate 1 | MLM       |
|-----------------------|----------------------------------|--------------------------------------|--------|----------|-----------|---------|-----------|
| Performing EM optimiz |                                  |                                      | 0 1    | •        |           |         |           |
| Performing gradient-b | oased optimiza<br>ikelihood = -9 | 668.0859                             |        |          |           |         |           |
| Computing standard er | rors                             |                                      |        |          |           |         |           |
| Mixed-effects ML regr | ression                          |                                      | Numbe  | r of obs | =         | 3,      | 000       |
| Group variable: count |                                  | Number of groups = 30 Obs per group: |        |          |           | 30      |           |
|                       |                                  |                                      | •      | 0 1      | min =     |         | 100       |
|                       |                                  |                                      |        |          | avg =     | 10      | 0.0       |
|                       |                                  |                                      |        |          | max =     |         | 100       |
|                       |                                  |                                      | Wald   | chi2(3)  | =         | 401     | .00       |
| Log likelihood = -966 | 88.0859                          |                                      | Prob : | > chi2   | =         | 0.0     | 000       |
| outcome               | Coefficient                      | Std. err.                            | z      | P> z     | [95%      | conf.   | interval] |
| warmth                | .961837                          | .0581809                             | 16.53  | 0.000    | .8478     | 3046    | 1.075869  |
| physical_punishment   | 8457672                          | .0798128                             | -10.60 | 0.000    | -1.002    | 2197    | 6893369   |
| 2.group               | 1.084409                         | .2200548                             | 4.93   | 0.000    | .6531     | 1099    | 1.515709  |
| _cons                 | 51.64797                         | .4645466                             | 111.18 | 0.000    | 50.73     | 3748    | 52.55847  |
|                       |                                  |                                      |        |          |           |         |           |

| Random-effects parameters | Estimate | Std. err. | [95% conf. interval] |
|---------------------------|----------|-----------|----------------------|
| country: Identity         |          |           |                      |

| var(_cons)    | 3.403    | .9717558 | 1.944438 | 5.955659 |
|---------------|----------|----------|----------|----------|
| var(Residual) | 36.01911 | .9346952 | 34.23295 | 37.89847 |

LR test vs. linear model: chibar2(01) = 200.29

Prob >= chibar2 = 0.0000

## Generate Predicted Values At Specified Values With margins

|           | I<br>Margin | Delta-method<br>std. err. | z      | P> z  | [95% conf. | interval] |
|-----------|-------------|---------------------------|--------|-------|------------|-----------|
| _at#group |             |                           |        |       |            |           |
| 1 1       | 50.4999     | .3983539                  | 126.77 | 0.000 | 49.71914   | 51.28066  |
| 1 2       | 51.58431    | .3994365                  | 129.14 | 0.000 | 50.80143   | 52.36719  |
| 2 1       | 51.46174    | .3809288                  | 135.10 | 0.000 | 50.71513   | 52.20834  |
| 2 2       | 52.54615    | .38173                    | 137.65 | 0.000 | 51.79797   | 53.29432  |
| 3 1       | 52.42357    | .371884                   | 140.97 | 0.000 | 51.6947    | 53.15245  |
| 3 2       | 53.50798    | .3723656                  | 143.70 | 0.000 | 52.77816   | 54.23781  |
| 4 1       | 53.38541    | .3718315                  | 143.57 | 0.000 | 52.65664   | 54.11419  |
| 4 2       | 54.46982    | .3719738                  | 146.43 | 0.000 | 53.74077   | 55.19888  |
| 5 1       | 54.34725    | .3807751                  | 142.73 | 0.000 | 53.60094   | 55.09355  |
| 5 2       | 55.43166    | .3805823                  | 145.65 | 0.000 | 54.68573   | 56.17759  |
| 6 1       | 55.30909    | .398109                   | 138.93 | 0.000 | 54.52881   | 56.08937  |
| 6 2       | 56.3935     | .397607                   | 141.83 | 0.000 | 55.6142    | 57.17279  |
| 7 1       | 56.27092    | .4228024                  | 133.09 | 0.000 | 55.44225   | 57.0996   |
| 7 2       | 57.35533    | .4220306                  | 135.90 | 0.000 | 56.52817   | 58.1825   |

#### Graph With marginsplot

```
. marginsplot // plot of predicted values
Variables that uniquely identify margins: warmth group
```

. graph export mymarginsplot.png, width(1500) replace file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mymarginsplot.png saved as PNG format

## Show More of the Variation

As another possibility, we may wish to show more of the variation, by showing the variation in the *independent* variable and the *dependent* variable along with a *scatterplot* and *linear fit*. This is commonly known as a rug plot, and requires a little bit of manual programming in Stata.

#### Manually Generate The Densities To Plot Them Below

- . kdensity warmth, generate(warmth\_x warmth\_d) // manually generate outcome densities
- . kdensity outcome, generate(outcome\_y outcome\_d) // manually generate outcome densities

## Rescale The Densities So They Plot Well

You may have to experiment with the scaling and moving factors.



Figure 9: Predicted Values From margins and marginsplot

```
. replace warmth_d = 100 * warmth_d // rescale the density so it plots well
(50 real changes made)
. replace outcome_d = -10 * outcome_d - .5 // rescale AND FLIP AND MOVE the density so it
> plots well
(50 real changes made)
. label variable outcome_y "density: beneficial outcome" // relabel y variable
```

## Graph All of Quantities Together

```
. twoway (scatter outcome warmth, mcolor(%10)) /// scatterplot w some transparency
> (lfit outcome warmth) /// linear fit
> (scatter warmth_d warmth_x) /// scatter plot of x density
> (scatter outcome_y outcome_d), /// scatterplot of y density (note flipped order)
> title("Outcome by Warmth") /// title
> ytitle("beneficial outcome") /// manual ytitle
> xtitle("parental warmth") /// manual xtitle
> legend(position(6) rows(2)) /// legend at bottom; 2 rows
> xlabel(0 1 2 3 4 5 6 7) /// manual x labels
> name(mynewscatter, replace)

. graph export mynewscatter.png, width(1500) replace
file /Users/agrogan/Desktop/GitHub/multilevel/visualizing-MLM/mynewscatter.png saved as
    PNG format
```

# Spaghetti Plot With Rug Plot

## Curvilinear and Linear Fits

## Random Effects



Figure 10: Scatterplot and Linear Fit With Marginal Rug Plots