Лабораторная работа №1.2

Исследование эффекта Комптона

Моргачев Глеб 577

С помощью сцинтиляционного спектографа исследуется энергетический спектр γ -квантов. Определяется энергии рассенных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частицы, на которой происходит комптоновское рассеяние.

Теория

Эффект Комптона - увеличение длины рассеянного излучения по сравнению с падающим.

Будем считать, что γ -излучение - представляет собой поток квантов у которых:

$$E = \hbar\omega \tag{1}$$

$$p = \frac{\hbar\omega}{c} \tag{2}$$

При этом эффект Комптона интерпретируется как результат упругого соударения двух частиц: γ -кванта и свободного электрона. Пусть электрон до соудрание покоился, его энергия

$$E_{el} = mc^2 (3)$$

 γ -квант имел начальную энергию

$$E_k = \hbar \omega_0 \tag{4}$$

$$p_k = \frac{\hbar\omega}{c} \tag{5}$$

Тогда после соударения:

$$E_{el} = \gamma mc^2 \tag{6}$$

$$p_{el} = \gamma mv \tag{7}$$

Здесь $\gamma = \left(1 - \left(\frac{v}{c}\right)^2\right)^{\frac{1}{2}}$. γ -квант рассеялся на угол θ к первоначальному направлению движения. ϕ - угол, под которым полетел электрон после соударения.

Тогда ЗСИ и ЗСЭ:

$$mc^2 + \hbar\omega_0 = \gamma mc^2 + \hbar\omega_1 \tag{8}$$

$$\frac{\hbar\omega_0}{c} = \gamma mv \cos(\phi) + \frac{\hbar\omega_1}{c}\cos(\theta) \tag{9}$$

$$\gamma m v \sin(\phi) = \frac{\hbar \omega}{c} \sin \theta \tag{10}$$

Отсюда:

$$\Delta \lambda = \frac{h}{mc} (1 - \cos(\theta)) = \Lambda_k (1 - \cos(\theta)) \tag{11}$$

Здесь Λ_k - Комптоновская длинна волны электрона. Последнее равенстно можно переписать в виде:

$$\frac{1}{\epsilon(\theta)} - \frac{1}{\epsilon_0} = 1 - \cos(\theta) \tag{12}$$

Здесь $\epsilon_0 = E_0/(mc^2)$ - энергия γ -кванта, падающего на рассеиватель.

Измерения

В ходе эксперимента различным уровням энергии будут соответствовать различные каналы N, соответствующие вершинам фотопиков. Таким образом:

$$\frac{1}{N(\theta)} - \frac{1}{N_0} = A(1 - \cos(\theta)) \tag{13}$$

Table 1: Результаты измерений

	deg	N	X	Y	$\sigma(X)$	$\sigma(Y)$
0	0.0	901	0.0000	0.001110	0.0000	0.000006
1	5.0	945	0.0038	0.001058	0.0008	0.000006
2	10.0	904	0.0151	0.001106	0.0015	0.000006
3	20.0	840	0.0603	0.001190	0.0030	0.000007
4	30.0	797	0.1339	0.001255	0.0043	0.000008
5	40.0	729	0.2339	0.001372	0.0056	0.000009
6	50.0	639	0.3572	0.001565	0.0066	0.000012
7	60.0	562	0.5000	0.001779	0.0075	0.000016
8	70.0	474	0.6579	0.002110	0.0082	0.000022
9	80.0	435	0.8263	0.002299	0.0085	0.000026
10	90.0	401	1.0000	0.002494	0.0087	0.000031
11	-5.0	906	0.0038	0.001104	0.0007	0.000006
12	5.0	959	0.0038	0.001043	0.0007	0.000005

Оценим погрешности:

$$\frac{\sigma N}{N} = 0.01 \tag{14}$$

$$\sigma \theta = 0.5 \deg \tag{15}$$

$$\sigma\theta = 0.5 \deg \tag{15}$$

$$\sigma X = |\sin(\theta)|\sigma\theta \tag{16}$$

$$\sigma X = |\sin(\theta)|\sigma\theta \tag{16}$$

$$\sigma Y = \left|\frac{\sigma N}{N(\theta)^2}\right| \tag{17}$$

Результаты

Параметры получившейся наилучшей прямой (использованный метод апроксимации - OLS (ordinary least square)):

$$Y = AX + B \tag{18}$$

$$A = 0.0015 \pm 3 * 10^{-5} \tag{19}$$

$$B = 0.0011 \pm 1 * 10^{-5} \tag{20}$$

Также, нужно учесть погрещность определения угла и максимума, посколько статистическая погрешность мала по сравнению с упомянутой погрешностью определения максумомов, то оценим:

$$\sigma(N_{best}) \le 9 \tag{21}$$

Отсюда,

$$N_{best}(0) = 931 \pm 9 \tag{22}$$

$$N_{best}(90) = 395 \pm 9 \tag{23}$$

$$mc^2 = E_\gamma * \frac{N_{best}(90)}{N_{best}(0) - N_{best}(90)}$$
 (24)

$$E_{\gamma} = 661.7 \pm keV \tag{25}$$

(26)

Получим:

$$mc^2 = 487 \pm 35 keV$$
 (27)

Вывод

Приведённый способ, позволяет определить энергию покоя электрона с хорошей точностью. Табличное значение энергии покоя:

$$E_t = 508.5 keV \tag{28}$$

С учётом погрешности, полученное нами значение энергии покоя электрона совпадает с табличным.