Fonctions à valeurs dans $\mathbb C$

Olivier Sellès, transcrit par Denis Merigoux

Table des matières

1	Opérations et vocabulaire de base			2	
	1.1	Opéra	tions	2	
		1.1.1	Opérations usuelles	2	
		1.1.2	Opérations spécifiques aux fonctions à valeurs dans $\mathbb R$	2	
		1.1.3	Opérations spécifiques aux fonctions à valeurs dans $\mathbb C$	3	
	1.2	Foncti	ons majorées, minorées, bornées	3	
		1.2.1	Définitions	3	
		1.2.2	Caractérisation des fonctions bornées	3	
		1.2.3	Fonctions à valeur dans $\mathbb C$	3	
			ulaire	4	
		1.3.1	Parité	4	
		1.3.2	Périodicité	4	
2	Cor	Continuité et dérivabilité des fonctions à valeurs dans $\mathbb C$			
	2.1	Théore	ème fondamental	4	
		2.1.1	Continuité	4	
		2.1.2	Dérivabilité	5	
	2.2 Théorèmes généraux		Théore	èmes généraux	5
		2.2.1	Opérations, continuité et dérivabilité	5	
		2.2.2	Composition, continuité et dérivabilité	5	
3	Intégrale de fonctions à valeur dans $\mathbb C$			6	
	3.1	Propri	étés de l'intégrale	7	
		3.1.1	$\mathbb{C}\text{-lin\'earit\'e}$	7	
		3.1.2	Relation de Chasles	7	
		3.1.3	Intégration d'une inégalité dans $\mathbb R$	7	
		3.1.4	Intégration par parties dans $\mathbb C$	8	
		3.1.5	Changement de variable	8	
	3.2	Inégali		8	
		3.2.1	Théorème	8	
		3.2.2	Petite histoire (ou démonstration)		

1 Opérations et vocabulaire de base

1.1 Opérations

1.1.1 Opérations usuelles

Dans la suite, on note $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Soit X un ensemble. On note $\mathcal{F}(X,\mathbb{K})$ l'ensemble des applications de X dans \mathbb{K} . Soient $f,g\in\mathcal{F}(X,\mathbb{K})$ et $\alpha\in\mathbb{K}$ On définit :

$$-f+g\in\mathcal{F}(X,\mathbb{K}) \text{ par}: \forall x\in X,$$

$$(f+q)(x) = f(x) + q(x)$$

$$-f\cdot g\in\mathcal{F}\left(X,\mathbb{K}\right) \text{ par }:\forall x\in X,$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$-\alpha f \in \mathcal{F}(X, \mathbb{K}) \text{ par}: \forall x \in X,$$

$$(\alpha f)(x) = \alpha f(x)$$

- Lorsque $\forall x \in X, f(x) \neq 0$, on note $\frac{1}{f}$ la fonction de X dans \mathbb{K} définie par : $\forall x \in X$,

$$\left(\frac{1}{f}\right)(x) = \frac{1}{f(x)}$$

1.1.2 Opérations spécifiques aux fonctions à valeurs dans $\mathbb R$

- On définit min
$$(f, g)$$
 par : $\forall x \in X$,

$$\min(f, g)(x) = \min(f(x), g(x))$$

– De la même manière, $\max(f, g)$ par : $\forall x \in X$,

$$\max(f, g)(x) = \max(f(x), g(x))$$

– On définit |f| par : $\forall x \in X$,

$$(|f|)(x) = |f(x)|$$

Minimum et maximum en fonction de f et g

(1)
$$\max(f,g) = \frac{1}{2}(f+g+|f-g|)$$

(2)
$$\min(f,g) = \frac{1}{2}(f+g-|f-g|)$$

Démonstration

(1) Soit $x \in \mathbb{R}$. Si g(x) > f(x) alors $\max(f, g)(x) = g(x)$. Or,

$$\frac{1}{2}(f(x) + g(x) + |f(x) - g(x)|) = \frac{1}{2}(f(x) + g(x) - f(x) + g(x))$$
$$= g(x)$$

(2) Soit $x \in \mathbb{R}$. Si g(x) < f(x) alors min (f, g)(x) = g(x). Or,

$$\frac{1}{2}(f(x) + g(x) - |f(x) - g(x)|) = \frac{1}{2}(f(x) + g(x) - f(x) + g(x))$$

$$= g(x)$$

1.1.3 Opérations spécifiques aux fonctions à valeurs dans $\mathbb C$

- On définit $\Re (f)$ par : $\forall x \in X$, $(\Re (f))(x) = \Re (f(x))$ - On définit $\Im (f)$ par : $\forall x \in X$, $(\Im (f))(x) = \Im (f(x))$ - On définit \overline{f} par : $\forall x \in X$, $(\overline{f})(x) = \overline{f(x)}$ - On définit |f| par : $\forall x \in X$, (|f|)(x) = |f(x)|

- On a donc:

$$|f|^2 = f\overline{f}$$

= $\Re e^2(f) + \Im e^2(f)$

- De plus, si $\Re (f)$, $\Re (f)$ ∈ $\mathcal{F}(X, \mathbb{K})$, alors

$$f = \Re e(f) + i\Im m(f)$$

1.2 Fonctions majorées, minorées, bornées

1.2.1 Définitions

Soit $f: X \longrightarrow \mathbb{R}$.

– f est majorée si $\exists M \in \mathbb{R}, \forall x \in X$, $f(x) \leqslant M$ – f est minorée si $\exists m \in \mathbb{R}, \forall x \in X$, $f(x) \geqslant m$ – f est bornée si f est à la fois minorée et majorée.

1.2.2 Caractérisation des fonctions bornées

f est bornée si et seulement si $\exists M \in \mathbb{R}, \forall x \in X, \quad |f\left(x\right)| \leqslant M$

Démonstration

- \Leftarrow Soit $M \in \mathbb{R}$ tel que $\forall x \in X$, $|f(x)| \leq M \Leftrightarrow -M \leq f(x) \leq M$ donc f est bornée.
- \Rightarrow Soit $M, m \in \mathbb{R}$ tel que $\forall x \in X, m \leqslant f(x) \leqslant M$. Soit $M_1 = \max(|m|, |M|)$. Alors $M \leqslant |M| \leqslant M_1$ et $m \geqslant -|m| \geqslant -M_1$, donc $\forall x \in \mathbb{R}$,

$$-M_1 \leqslant f(x) \leqslant M_1 \Leftrightarrow |f(x)| \leqslant M_1$$

1.2.3 Fonctions à valeur dans $\mathbb C$

Pour $f: X \longrightarrow \mathbb{C}$, on dit que f est bornée si $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, |f(x)| \leq M$, c'est-à-dire que f(x) appartient au disque de centre O et de rayon M.

- -f est bornée si et seulement si |f| est majorée.
- Soit $f \in \mathcal{F}(X,\mathbb{C})$. Alors f est bornée si et seulement si $\Re(f)$, $\Re(f) \in \mathcal{F}(X,\mathbb{C})$ sont bornées.

Démonstration

 \Rightarrow Soit $M \ge 0/\forall x \in \mathbb{R}$, $|f(x)| \le M$. Alors, $\forall x \in \mathbb{R}$,

$$|\Re e(f)(x)| = |\Re e(f(x))|$$

$$\leq |f(x)|$$

$$\leq M$$

De même, $|\Im m(f(x))| \leq M$.

 \Leftarrow Soient $M_1, M_2 \in \mathbb{R}_+ / \forall x \in \mathbb{R}$, $|\Re (f(x))| \leq M_1$ et $|\Im (f(x))| \leq M_2$. Alors $\forall x \in \mathbb{R}$,

$$|f(x)| = |\Re (f(x)) + i\Im (f(x))|$$

$$\leq |\Re (f(x))| + |i| |\Im (f(x))|$$

$$\leq M_1 + M_2$$

1.3 Vocabulaire

Soit $X \in \mathcal{P}(\mathbb{R})$ et $f \in \mathcal{F}(X, \mathbb{K})$.

1.3.1 Parité

On suppose que X est symétrique, c'est-à-dire que $\forall t \in X, -t \in X$. Alors :

-f est paire si $\forall t \in X$,

$$f\left(-t\right) = f\left(t\right)$$

-f est impaire si $\forall t \in X$,

$$f\left(-t\right) = -f\left(t\right)$$

1.3.2 Périodicité

Soit T > 0. f est T-périodique si :

- $\forall t \in X, t + T \in X$
- $\ \forall t \in X, \ f(t+T) = f(t).$

On note que f est périodique que si et seulement si $\exists T > 0$ tel que f est T-périodique. T s'appelle alors une période de f.

Remarque Soit $f: X \longrightarrow \mathbb{K}$ une application périodique, $T \in \mathbb{R}_+^*$ une période de f. Pour $x \in X$, $x + T \in X$ donc $x + 2T \in X$, etc. Donc $x + nT \in X$ avec $n \in \mathbb{N}$.

De plus, $\forall n \in \mathbb{N} \text{ et } \forall x \in X$,

$$f(x + nT) = f(x)$$

Si, de plus, $\forall x \in X, x - T \in X$ alors $\forall n \in \mathbb{N}, x - nT \in X$ et $\forall x \in X$,

$$f(x) = f((x+T) - T)$$
$$= f(x - T)$$

2 Continuité et dérivabilité des fonctions à valeurs dans \mathbb{C}

2.1 Théorème fondamental

2.1.1 Continuité

Soit I un intervalle de \mathbb{R} , $f:I\longrightarrow\mathbb{C}$. Alors f est continue sur I si et seulement si $\Re e(f)$ et $\Im m(f)$ sont continues sur I.

2.1.2 Dérivabilité

On dit que f est dérivable sur I si $\Re (f)$ et $\Im (f)$ sont dérivables sur I et par définition, $\forall x \in I$,

$$f'(x) = \Re e'(x) + i\Im m'(x)$$

On a de plus $\Re e'(f) = \Re e(f')$ et $\Im m'(f) = \Im m(f')$.

2.2 Théorèmes généraux

2.2.1 Opérations, continuité et dérivabilité

- Toute fonction polynômiale de $\mathbb R$ dans $\mathbb C$ est dérivable.
- Soient $f, g: I \longrightarrow \mathbb{C}$ et $\alpha \in \mathbb{C}$. On suppose f et g continues (respectivement dérivables). Alors :
 - $\circ \alpha f + g$ est continue (respectivement dérivable).
 - \circ $f \cdot g$ est continue (respectivement dérivable).
 - $\circ \frac{1}{f}$ (avec $f(x) \neq 0 \ \forall x \in I$) est continue (respectivement dérivable).
 - $\circ |f|$ est continue.
 - $\circ \overline{f}$ est continue (respectivement dérivable).
- Dans le cas où f et q sont dérivables, on a :
 - $\circ (\alpha f + g)' = \alpha f' + g'$
 - $\circ (f \cdot g)' = f'g + fg'$

$$\circ \left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$$

Démonstration (fg)' = f'g + fg' avec f et g dérivables.

Posons $u = \Re e(f)$, $v = \Im m(f)$, $a = \Re e(g)$ et $b = \Im m(g)$. Alors u, v, a et b sont des fonctions réelles dérivables par hypothèse donc

$$fg = (u+iv)(a+ib)$$
$$= ua - vb + i(ub + va)$$

Donc $\Re e(fg) = ua - vb$ et $\Im m(fg) = ub + va$. De plus, d'après les théorèmes généraux sur les fonctions réelles, ua - vb et ub + va sont dérivables et

$$(ua - vb)' = u'a + ua' - v'b - vb'$$
 et $(ub + va)' = u'b + ub' + v'a + va'$

Donc fg est dérivable et

$$(fg)' = ua' + u'a - vb' - v'b + i(u'b + ub' + v'a + va')$$

= $(u' + iv')(a + ib) + (u + iv)(a' + ib')$
= $f'a + fa'$

2.2.2 Composition, continuité et dérivabilité

Composition de deux fonctions

Soit $\varphi: I \longrightarrow J$ et $f: J \longrightarrow \mathbb{C}$ avec I, J deux intervalles de \mathbb{R} .

- (1) Si f est continue et φ est continue, alors $f \circ \varphi$ est continue.
- (2) Si f et φ sont dérivables, alors $f \circ \varphi$ est dérivable et

$$(f \circ \varphi)' = \varphi' \cdot f'(\varphi)$$

Démonstrations

(1) Posons $u = \Re e(f)$ et $v = \Im m(f)$. Alors pour $x \in I$, $(f \circ \varphi)(x) = u(\varphi(x)) + iv(\varphi(x))$ donc

$$\Re \left(f \circ \varphi \left(x \right) \right) = u \circ \varphi \left(x \right) \text{ et } \Im \left(f \circ \varphi \left(x \right) \right) = v \circ \varphi \left(x \right)$$

D'après les théorèmes généraux, u et v sont continues donc $u \circ \varphi$ et $v \circ \varphi$ sont continues donc $f \circ \varphi$ est continue.

(2) Posons $u = \Re e(f)$ et $v = \Im m(f)$. Alors pour $x \in I$, $(f \circ \varphi)(x) = u(\varphi(x)) + iv(\varphi(x))$ donc

$$\Re \left(f \circ \varphi(x)\right) = u \circ \varphi(x) \text{ et } \Im \left(f \circ \varphi(x)\right) = v \circ \varphi(x)$$

D'après les théorèmes généraux, u et v sont dérivables donc $u \circ \varphi$ et $v \circ \varphi$ sont dérivables et

$$(u \circ \varphi)' = \varphi' \cdot u'(\varphi)$$
 et $(v \circ \varphi)' = \varphi' \cdot v'(\varphi)$

Par conséquent, $f \circ \varphi$ est dérivable et

$$(f \circ \varphi)' = \varphi' \cdot u'(\varphi) + i\varphi' \cdot v'(\varphi)$$
$$= \varphi' \cdot (f' \circ \varphi)$$

Composition à gauche par exp Soit $f: I \longrightarrow \mathbb{C}$. Si f est continue, alors $\exp \circ f$ aussi et si f est dérivable, alors $\exp \circ f$ aussi et

$$(\exp \circ f)' = f' \cdot \exp \circ f$$

Démonstration de la dérivabilité On note $u = \Re e(f)$ et $v = \Im m(f)$. u et v sont dérivables de I dans \mathbb{R} par définition alors pour $t \in I$,

$$\exp \circ f(t) = \exp (f(t))$$

$$= \exp (u(t) + iv(t))$$

$$= e^{u(t)} (\cos v(t) + \sin v(t))$$

Donc

$$\Re e \left(\exp \circ f(t) \right) = e^{u(t)} \cos v(t)$$
 et $\Im m \left(\exp \circ f(t) \right) = e^{u(t)} \sin v(t)$

Les théorèmes généraux sur les fonctions réelles assurent que $g:t\longrightarrow \mathrm{e}^{u(t)}\cos v\left(t\right)$ est dérivable et pour tout $t\in I$,

$$g'\left(t\right) = u'\left(t\right)e^{u\left(t\right)}\cos v\left(t\right) - e^{u\left(t\right)}v'\left(t\right)\sin v\left(t\right)$$

De même, $h: t \longrightarrow e^{u(t)} \sin v(t)$ est dérivable et pour tout $t \in I$,

$$h'(t) = u'(t) e^{u(t)} \sin v(t) + e^{u(t)} v'(t) \cos v(t)$$

Donc $\exp \circ f$ est bien dérivable et pour tout $t \in I$,

$$(\exp \circ f)'(t) = g'(t) + ih'(t) = u'(t) e^{u(t)} \cos v(t) - e^{u(t)}v'(t) \sin v(t) + i \left[u'(t) e^{u(t)} \sin v(t) + e^{u(t)}v'(t) \cos v(t)\right] = e^{u(t)} \left[\left(u'(t) + iv'(t)\right) (\cos v(t) + i \sin v(t))\right] = f'(t) e^{u(t)}e^{iv(t)} = f'(t) \exp(f(t))$$

3 Intégrale de fonctions à valeur dans $\mathbb C$

Soit $f:[a,b]\longrightarrow \mathbb{C}$ avec $a,b\in\mathbb{R}$ et F une primitive de f sur [a,b]. Alors

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Démonstration Soit $u = \Re e(f)$, $v = \Im m(f)$, $U = \Re e(F)$ et $V = \Im m(F)$. Alors

$$f = u + iv$$

$$= F'$$

$$= U' + iV'$$

En identifiant parties réelles et imaginaires, U' = u et V' = v c'est-à-dire que U est une primitive de u et V un primitive de v. On a alors :

$$\int_{a}^{b} f(t) dt = \int_{a}^{b} u(t) dt + i \int_{a}^{b} v(t) dt$$
$$= U(b) - U(a) + i (V(b) - V(a))$$
$$= F(b) - F(a)$$

3.1 Propriétés de l'intégrale

3.1.1 \mathbb{C} -linéarité

Soient $f, g : [a, b] \longrightarrow \mathbb{C}$ continues et $\alpha \in \mathbb{C}$. Alors

$$\int_{a}^{b} (\alpha f + g) = \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

Démonstration Soit F une primitive de f et G une primitive de g. Alors $\alpha F + G$ est une primitive de $\alpha f + g$. Ainsi,

$$\int_{a}^{b} (\alpha f + g) = (\alpha F + G)(b) - (\alpha F + G)(a)$$

$$= \alpha (F(b) - F(a)) + G(b) - G(a)$$

$$= \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

3.1.2 Relation de Chasles

Soit $f: I \longrightarrow \mathbb{C}$ continue. Alors $\forall x, y, z \in I$,

$$\int_{x}^{z} f = \int_{x}^{y} f + \int_{y}^{z} f$$

Démonstration Soit F une primitive de f sur I. Alors

$$F(z) - F(x) = (F(z) - F(y)) + (F(y) - F(x))$$

3.1.3 Intégration d'une inégalité dans \mathbb{R}

Soient $f, g : [a, b] \longrightarrow \mathbb{R}$, continues avec a < b. Si $\forall t \in [a, b], f(t) \leq g(t)$, alors

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g$$

Démonstration Soit $\varphi : [a, b] \longrightarrow \mathbb{R}$ une fonction positive et continue, et Ψ une primitive de de φ . $\Psi' = \varphi > 0$ donc Ψ est croissante donc

$$\int_{a}^{b} \varphi = \Psi(b) - \Psi(b) > 0$$

Dans notre cas, prenons $\varphi = g - f$ qui est bien continue et positive. Ainsi,

$$\int_{a}^{b} (g - f) \ge 0 \quad \Leftrightarrow \quad \int_{a}^{b} g - \int_{a}^{g} f \ge 0$$

$$\Leftrightarrow \quad \int_{a}^{b} g \ge \int_{a}^{b} f$$

Remarque Prenons $f:[a,b] \longrightarrow \mathbb{R}$ continue. On a alors $f \leqslant |f|$ donc $\int_a^b f \leqslant \int_a^b |f|$, mais aussi $a-f \leqslant |f|$ donc $\int_a^b (-f) \leqslant \int_a^b |f|$. On déduit des deux résultats précédents que

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|$$

Ce résultat ayant un sens pour des fonctions à valeur dans C, démontrons-le.

3.1.4 Intégration par parties dans $\mathbb C$

Soient $f, g : [a, b] \longrightarrow \mathbb{C}$ de classe \mathcal{C}^1 . Alors :

$$\int_{a}^{b} f'g = [f(t) g(t)]_{a}^{b} - \int_{a}^{b} fg'$$

Démonstration On sait que fg est dérivable et que (fg)' = f'g + fg'. Alors f'g + fg' est continue sur [a, b] et fg en est une primitive donc :

$$\int_{a}^{b} (fg' + f'g) = (fg)(b) - (fg)(a) \Leftrightarrow \int_{a}^{b} fg' + \int_{a}^{b} fg' = [f(t)g(t)]_{a}^{b}$$

3.1.5 Changement de variable

Soit $\varphi: [\alpha, \beta] \longrightarrow I$ une fonction de classe \mathcal{C}^1 et $f: I \longrightarrow \mathbb{C}$ une fonction. Alors :

$$\int_{a}^{b} \varphi'(t) f(\varphi(t)) dt = \int_{\varphi(a)}^{\varphi(b)} f(u) du$$

3.2 Inégalité des modules

3.2.1 Théorème

Soit $f:[a,b] \longrightarrow \mathbb{C}$ continue avec a < b. Alors

$$\left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f|$$

a. Afin de ne pas choquer les amoureux du français, je ne transcrirai pas ici le mot de liaison couramment utilisé par notre cher M. Selles.

3.2.2 Petite histoire (ou démonstration)

Soit $u = \Re e(f)$ et $v = \Im m(f)$. Donc

$$\left| \int_{a}^{b} f \right| = \left| \int_{a}^{b} u + i \int_{a}^{b} v \right|$$
$$= \sqrt{\left(\int_{a}^{b} u \right)^{2} + \left(\int_{a}^{b} v \right)^{2}}$$

De plus , $\int_a^b |f| = \int_a^b \sqrt{u^2 + v^2}$. Il s'agit alors de comparer ces deux résultats. Or $\left| \int_a^b u \right| \leqslant \int_a^b |u| \leqslant \int_a^b |f|$, et de même $\left| \int_a^b v \right| \leqslant \int_a^b |f|$. On en déduit que

$$\left| \int_a^b f \right| \leqslant \sqrt{\left(\int_a^b |f| \right)^2 + \left(\int_a^b |f| \right)^2} = \sqrt{2} \int_a^b |f|$$

Première voie : linéarisation

Lemme Soit $z \in \mathbb{C}$, z = a + ib. Alors $\exists \alpha, \beta \in \mathbb{R}$ tels que $\alpha a + \beta b = |z|$ et $\alpha^2 + \beta^2 = 1$.

Démonstration

- Si z=0, alors a=0 et b=0 donc il suffit de prendre $\alpha=1$ et $\beta=0$.
- Si $z \neq 0$, alors prenons $\alpha = \frac{a}{|z|}$ et $\beta = \frac{b}{|z|}$. En effet

$$\alpha a + \beta b = \frac{a^2 + b^2}{|z|}$$
$$= |z|$$

et

$$\alpha^2 + \beta^2 = \frac{a^2 + b^2}{|z|^2}$$
$$= 1$$

Ici, $\int_a^b f = \int_a^b u + i \int_a^b v$. D'après le lemme $\exists \alpha, \beta \in \mathbb{R}$ avec $\alpha^2 + \beta^2 = 1$ tels que

$$\left| \int_{a}^{b} f \right| = \alpha \int_{a}^{b} u + \beta \int_{a}^{b} v$$
$$= \int_{a}^{b} (\alpha u(t) + \beta v(t)) dt$$

Or $a, \forall t \in [a, b],$

$$\alpha u\left(t\right)+\beta v\left(t\right) \hspace{0.2cm} \leqslant \hspace{0.2cm} \left|\alpha u\left(t\right)+\beta v\left(t\right)\right| \\ \leqslant \hspace{0.2cm} \underbrace{\sqrt{a^{2}+b^{2}}}_{1} \sqrt{u^{2}\left(t\right)+v^{2}\left(t\right)} \hspace{0.2cm} \text{d'après l'inégalité de Cauchy-Scwarz}$$

Ainsi, par positivité de l'intégrale d'une fonction réelle,

$$\left| \int_{a}^{b} f \right| = \int_{a}^{b} \left(\alpha u(t) + \beta v(t) \right) dt \leqslant \int_{a}^{b} \sqrt{u^{2}(t) + v^{2}(t)} dt = \int_{a}^{b} |f|$$

a. On rappelle ici l'inégalité de Cauchy-Schwarz dans \mathbb{R}^2 : Soient $a,b,c,d\in\mathbb{R}.$ Alors

$$|ac+bd|\leqslant \sqrt{a^2+b^2}\sqrt{c^2+d^2}$$

Deuxième voie : le lemme fantastique

Lemme fantastique Soit $z \in \mathbb{C}$ et $A \in \mathbb{R}_+$. Alors

$$|z| < A \Leftrightarrow \forall \omega \in \mathbb{C}, \Re (\omega z) \leq A |\omega|$$

Démonstration

 \Rightarrow Soit ω un complexe. Alors

$$\Re (z\omega) \leqslant |\Re (z\omega)|$$
$$\leqslant |z\omega|$$
$$\leqslant A|\omega|$$

$$\leftarrow - \text{Si } z = 0, \text{ on a bien } 0 = |0| \leq A.$$

$$- \text{Si } z \neq 0 \text{ avec } \omega = \overline{z}, \text{ on a}$$

$$\Re \left(z\overline{z} \right) \leqslant A \left| \overline{z} \right| = A \left| z \right| \quad \Leftrightarrow \quad \left| z \right|^2 \leqslant A \left| z \right|$$
$$\Leftrightarrow \quad \left| z \right| \leqslant A \quad \text{car } z \neq 0$$

Ici, on veut montrer que $Z=\int_a^b f$ est tel que $|Z|\leqslant A=\int_a^b |f|$. Soit $\omega\in\mathbb{C}$, vérifions que $\Re e\left(\omega z\right)\leqslant A\left|\omega\right|$. On a

$$\omega Z = \omega \int_{a}^{b} f$$
$$= \int_{a}^{b} \omega f(t) dt$$

Donc:

$$\Re \left(\omega Z\right) = \Re \left(\int_{a}^{b} \omega f(t) dt\right)$$
$$= \int_{a}^{b} \Re \left(\omega f(t)\right) dt$$

Posons $g(t) = \Re(\omega f(t))$, alors g est réelle. donc

$$|\Re (\omega Z)| = \left| \int_{a}^{b} g(t) \right|$$

$$\leq \int_{a}^{b} |g(t)|$$

Or, $\forall t \in [a, b]$,

$$|g(t)| = |\Re(\omega f(t))|$$

 $\leq |\omega f(t)| = |\omega| |f(t)|$

D'où le résultat suivant :

$$\int_{a}^{b} |g| \leqslant \int_{a}^{b} |\omega| |f(t)| dt$$

Or

$$\int_{a}^{b} |\omega| |f(t)| dt = |\omega| \int_{a}^{b} |f(t)| dt$$
$$= A\omega$$

On en déduit aisément ^a le résultat cherché.

a. Pas vous?

- Troisième voie Soit $Z = \int_a^b f$ Si Z = 0, on a bien $|Z| = 0 \leqslant \int_a^b |f|$ Supposons que $z \neq 0$. Alors $Z = re^{i\theta}$ avec r > 0 et $\theta \in \arg(Z)$. Ainsi :

$$|Z| = r$$

$$= Ze^{-i\theta}$$

$$= e^{-i\theta} \int_{a}^{b} f$$

$$= \int_{a}^{b} e^{-i\theta} f(t) dt$$

Posons $g(t) = e^{-i\theta} f(t)$, $h = \Re e(g)$ et $k = \Im m(g)$. Alors,

$$|Z| = \int_{a}^{b} g$$
$$= \int_{a}^{b} h + i \int_{a}^{b} k$$

Par identification des parties réelles et imaginaire (on rappelle que |Z| est un réel), on obtient $|Z| = \int_a^b h$ et $\int_a^b k = 0$. Or h est continue et réelle, et, pour tout $t \in [a, b]$,

$$h(t) = \Re(g(t)) \le |g(t)| = |e^{-i\theta}f(t)| = |f(t)|$$

En intégrant l'inégalité précédente, on obtient

$$\int_{a}^{b} h(t) dt \leq \int_{a}^{b} |f(t)| dt$$

On en déduit aisément a le résultat cherché.

a. Pas vous?