Metody Obliczeniowe

Aproksymacja

1. Aproksymacja – Metoda Najmniejszych Kwadratów.

Z racji, iż bazujemy na metodach obliczeniowych jak i najłatwiejszej metodzie w implementacji zostanie omówiony drugi przykład z prezentacji laboratoryjnej, który to będzie wymagany na wejściówce. Metoda jest trywialna.

Dane do zadania:

Tabela 1.

i	0	1	2	3
x_i	1	2	4	5
y_i	3	4	6	7

Pierwszym etapem jest skonstruowanie tabeli dla przypadku aproksymacji funkcją liniową, czyli dla m=1.

To.	bela	9
тa	pera	Ζ.

x^0	x^1	x^2	$y(x^0y)$	$xy(x^1y)$
1	1	1	3	3
1	2	4	4	8
1	4	16	6	24
1	5	25	7	35

Kolumna pierwsza x^0 :

Wyznaczona za pomocą podnoszenia współczynników w wierszu drugim (x_i) z tabeli 1 do potęgi zerowej.

i	0	1	2	3
x_i	1	2	4	5
y_i	3	4	6	7

Zaznaczone wartości podnosimy do potęgi zerowej i umieszczamy w kolumnie I tabeli 2.

$$1^0 = 1.2^0 = 1.4^0 = 1.5^0 = 1$$

Kolumna druga x^1 :

Wyznaczona za pomocą podnoszenia współczynników w wierszu drugim (x_i) z tabeli 1 do potęgi pierwszej.

i	0	1	2	3
x_i	1	2	4	5
y_i	3	4	6	7

Zaznaczone wartości podnosimy do potęgi pierwszej i umieszczamy w kolumnie II tabeli 2.

$$1^1 = 1, 2^1 = 2, 4^1 = 4, 5^1 = 5$$

Kolumna trzecia x^2 :

Wyznaczona za pomocą podnoszenia współczynników w wierszu drugim (x_i) z tabeli 1 do potęgi drugiej.

i	0	1	2	3
x_i	1	2	4	5
y_i	3	4	6	7

Zaznaczone wartości podnosimy do **potęgi** drugiej i umieszczamy w kolumnie III tabeli 2.

$$1^2 = 1, 2^2 = 4, 4^2 = 16, 5^2 = 25$$

Kolumna czwarta x^0y :

Wyznaczona za pomocą iloczynu kolejnych współczynników pochodzących z wiersza drugiego (x_i) z tabeli 1 podniesionych do potegi zerowej oraz współczynników z wiersza trzeciego (y_i) z tabeli 1.

i	0	1	2	3
x_i	1	2	4	5
y_i	3	4	6	7

Wartości z wiersza **pomarańczowego** podnosimy do **potęgi zerowej** i mnożymy przez wartości z **wiersza niebieskiego**.

$$1^{0} * 3 = 3, 2^{0} * 4 = 4, 4^{0} * 6 = 6, 5^{0} * 7 = 7$$

Kolumna piata x^1y :

Wyznaczona poprzez iloczyn kolejnych wartości z kolumny II z tabeli 2 oraz kolejnych wartości z kolumny IV z tabeli 2.

<i>x</i> ⁰	<i>x</i> ¹	x^2	$y(x^0y)$	$xy(x^1y)$
1	1	1	3	3
1	2	4	4	8
1	4	16	6	24
1	5	25	7	35

Wartości z kolumny **pomarańczowej** mnożymy przez wartości z kolumny **niebieskiej**. Wyniki zapisujemy do kolumny wynikowej – **żółtej**.

Co uzyskujemy?

Ogólny wygląd tabeli:

x ⁰	<i>x</i> ¹	x^2	$y(x^0y)$	$xy(x^1y)$
1	1	1	3	3
1	2	4	4	8
1	4	16	6	24
1	5	25	7	35

W ostatnim wierszu (niebieskie tło) wpisujemy dane zgodnie ze wzorami:

$$S_k = \sum_{i=0}^{i=n} (x_i)^k, k = 0, 1, ..., 2m$$

$$T_k = \sum_{i=0}^{i=n} (x_i)^k * y_i, k = 0, 1, ..., m$$

Na podstawie powyższych wzorów można wywnioskować, iż S_k będzie dotyczyło kolumn I,II oraz III (ponieważ bazujemy tam tylko na wartościach x-owych). Zaś T_k będzie dotyczyło pozostałych kolumn, czyli IV oraz V (ponieważ w kolumnach tych przechowywane są wyniki iloczynu wartości x-owych przez wartości y-owe). Obliczamy:

$$S_0 = 1 + 1 + 1 + 1 = 4$$

 $S_1 = 1 + 2 + 4 + 5 = 12$
 $S_2 = 1 + 4 + 16 + 25 = 46$
 $T_0 = 3 + 4 + 6 + 7 = 20$
 $T_1 = 3 + 8 + 24 + 35 = 70$

Czyli wykonujemy sumę wszystkich elementów danej kolumny.

Po obliczeniu uzyskujemy:

x^0	<i>x</i> ¹	x^2	$y(x^0y)$	$xy(x^1y)$
1	1	1	3	3
1	2	4	4	8
1	4	16	6	24
1	5	25	7	35
$S_0 = 4$	$S_1 = 12$	$S_2 = 46$	$T_0=20$	$T_1 = 70$

Jest to ogólny, prawidłowy wygląd tabeli, z którego możemy przejść do obliczania kroku drugiego i zarazem ostatniego.

Drugim etapem jest zbudowanie układu równań. Dla aproksymacji funkcją liniową wygląd ogólny to:

$$\begin{cases} S_0 * a_0 + S_1 * a_1 = T_0 \\ S_1 * a_0 + S_2 * a_1 = T_1 \end{cases}$$

 a_0 oraz a_1 to kolejno współczynniki funkcji liniowej aproksymującej. a_0 – wyraz wolny, a_1 – współczynnik kierunkowy (stojący przed x).

Podstawiając dane uzyskamy następujący układ równań:

$$\begin{cases} 4a_0 + 12a_1 = 20 \\ 12a_0 + 46a_1 = 70 \end{cases}$$

Metodą przeciwnych współczynników uzyskujemy:

$$\begin{cases}
4a_0 + 12a_1 = 20/* (-3) \\
12a_0 + 46a_1 = 70
\end{cases}$$

$$\begin{cases}
-12a_0 - 36a_1 = -60 \\
12a_0 + 46a_1 = 70
\end{cases}$$

Dodajemy stronami:

$$-12a_0 - 36a_1 + 12a_0 + 46a_1 = -60 + 70$$

 $10a_1 = 10$
 $a_1 = 1$

Podstawiając $\boldsymbol{a_1} = \mathbf{1}$ do jednego z równań z układu uzyskamy:

$$4a_0 + 12 * 1 = 20$$

 $4a_0 = 20 - 12$
 $4a_0 = 8$
 $a_0 = 2$

Po wyliczeniu współczynników funkcji liniowej zapisujemy wynik końcowy, czyli postać funkcji liniowej:

$$Q_1(x) = 1 * x + 2$$

 $Q_1(x) = x + 2$

Odpowiedź końcowa:

$$Q_1(x) = x + 2$$