Doble Grado en Ingeniería Informática y Matemáticas

Cálculo I – Evaluación 6

- 1. a) Sea $f:[c,d]\to\mathbb{R}$ continua y definamos $Z=\{x\in[c,d]:f(x)=0\}$. Supuesto que $Z\neq\emptyset$, prueba que Z tiene máximo y mínimo.
 - b) Sea $f:[a,b] \to \mathbb{R}$ una función continua tal que f(a) < 0, f(b) < 0 y f(c) > 0 para algún $c \in]a,b[$. Prueba que hay dos números u,v verificando que a < u < v < b, f(u) = f(v) = 0 y f(x) > 0 para todo $x \in]u,v[$.
- 2. Sea $f: \mathbb{R} \to \mathbb{R}$ continua y creciente. Prueba que para todo conjunto $A \subset \mathbb{R}$ no vacío y mayorado se verifica que $\sup(f(A)) = f(\sup(A))$.
 - Debes hacer este ejercicio de dos formas: una usando sucesiones y otra sin usar sucesiones (usando *épsilons* y *deltas*).
- 3. Sea $f:[a,b]\to\mathbb{R}$ continua. Prueba que la función $g:[a,b]\to\mathbb{R}$ dada para todo $x\in[a,b]$ por $g(x)=\max f([a,x])$, es continua.
 - Sugerencia. Prueba que g([a,b])=[f(a),M] donde $M=\max f([a,b])$. En mi libro $\it C\'alculo$ diferencial e integral para funciones de una variable puedes encontrar alguna ayuda adicional.