EECS 16A Spring 2022

Designing Information Devices and Systems I Discussion 10A

1. Op-Amp Rules

Answer: Estimated Time: 10 min

Here is an equivalent circuit of an op-amp (where we are assuming that $V_{SS} = -V_{DD}$) for reference:

- (a) What are the currents flowing into the positive and negative terminals of the op-amp (i.e., what are I^+ and I^-)? Based on this answer, what are some of the advantages of using an op-amp in your circuit designs? **Answer:** The u^+ and u^- terminals have no closed circuit connection between them, and therefore no current can flow into or out of them. This is very good because we can connect an op-amp to any other circuit, and the op-amp will not disturb that circuit in any way because it does not load the circuit (it is an open circuit).
- (b) Suppose we add a resistor of value R_L between u_{out} and ground. What is the value of v_{out} ? Does your answer depend on R_L ? In other words, how does R_L affect Av_C ? What are the implications of this with respect to using op-amps in circuit design? **Answer:** Notice that u_{out} is connected directly to a controlled/dependent voltage source, and therefore v_{out} will always have to be equal to Av_C regardless of what R_L is connected to the op-amp. This is very advantageous because it means that the output of the op-amp can be connected to any other circuit (except a voltage source), and we will always get the desired/expected voltage out of the op-amp.

For the rest of the problem, consider the following op-amp circuit in negative feedback:

- (c) Assuming that this is an ideal op-amp, what is v_{out} ? **Answer:** Recall for an ideal op-amp in negative feedback, we know from the negative feedback rule that $u^+ = u^-$. In this case, $u^- = u_{\text{out}} = u^+$.
- (d) Draw the equivalent circuit for this op-amp and calculate v_{out} in terms of A, v_{in} , and R_L for the circuit in negative feedback. Does v_{out} depend on R_L ? What is v_{out} in the limit as $A \to \infty$? Answer:

Notice that the op-amp can be modeled as a voltage-controlled voltage source. Thus, we have the following equation:

$$v_{\text{out}} = A(v_{\text{C}})$$

$$v_{\text{out}} = A(v_{in} - v_{\text{out}})$$

$$v_{\text{out}} + Av_{\text{out}} = Av_{in}$$

$$v_{\text{out}} = v_{in} \frac{A}{1 + A}$$

Thus, as $A \to \infty$, $v_{\text{out}} \to v_{\text{in}}$. This is the same as what we get after applying the op-amp rule.

Notice that output voltage does not depend on R. Thus, this circuit acts like a voltage source that provides the same voltage read at u^+ without drawing any current from the terminal at u^+ . This is why the circuit is often referred to as a "unity gain buffer," "voltage follower," or just "buffer."

2. Modular Circuit Buffer

Let's try designing circuits that perform a set of mathematical operations using op-amps. While voltage dividers on their own cannot be combined without altering their behavior, op-amps can preserve their behavior when combined and thus are a perfect tool for modular circuit design. We would like to implement the block diagram shown below:

In other words, create a circuit with two outputs V_x and V_y , where $V_x = \frac{1}{2}V_{in}$ and $V_y = \frac{1}{3}V_x = \frac{1}{6}V_{in}$.

(a) Draw two voltage dividers, one for each operation (the 1/2 and 1/3 scalings). What relationships hold for the resistor values for the 1/2 divider, and for the resistor values for the 1/3 divider?

Answer: Recall our voltage divider consists of $V_{\rm in}$ connected to two resistors (R_1, R_2) in series with the output voltage between ground and the central node. This yields the formula

$$V_{\text{out}} = \left(\frac{R_2}{R_1 + R_2}\right) V_{\text{in}}.$$

For the 1/2 operation (V_x output) we recognize

$$\frac{1}{2} = \left(\frac{R_2}{R_1 + R_2}\right) \longrightarrow R_1 + R_2 = 2R_2 \longrightarrow R_1 = R_2 \equiv R_x.$$

For the 1/3 operation (V_v output) we recognize

$$\frac{1}{3} = \left(\frac{R_2}{R_1 + R_2}\right) \longrightarrow R_1 + R_2 = 3R_2 \longrightarrow \frac{R_1}{2} = R_2 \equiv R_y.$$

$$V_{\text{in}} \longrightarrow V_{\text{in}} \longrightarrow V_{\text{in}}$$

(b) If you combine the voltage dividers, made in part (a), as shown by the block diagram (output of the 1/2 voltage divider becomes the source for the 1/3 voltage divider circuit), do they behave as we hope (meaning $6V_{in} = 3V_x = V_y$)?

HINT: The following circuit and formula may be handy:

Answer: Combining the voltage divider circuits yield

To quickly access this combined system, we may identify V_x as the result of a new equivalent voltage divider (recognizing the R_y resistors in series and that series is in parallel with R_x). The load resistor becomes $R_{eq} = \frac{3R_xR_y}{R_x+3R_y}$. This yields

$$V_x = \left(\frac{R_{eq}}{R_x + R_{eq}}\right) V_{\text{in}} = \left(\frac{1}{2 + \frac{R_x}{3R_y}}\right) V_{\text{in}}$$
 $V_y = \frac{1}{3} V_x = \left(\frac{1}{6 + \frac{R_x}{R_y}}\right) V_{\text{in}}$

From this stage it is evident that combining our dividers changes their behavior (although they preserve behavior in the limit $R_v >> R_x$).

The new values for V_x, V_y are dependent on values from both dividers, which means they can't be treated independently! \Box .

(c) Perhaps we could use an op-amp (in negative-feedback) to achieve our desired behavior.

Modify the implementation you tried in part (b) using a negative feedback op-amp in order to achieve

the desired V_x , V_y relations $V_x = (1/2)V_{\text{in}}$ and $V_y = (1/3)V_x = (1/6)V_{\text{in}}$.

HINT: Place the op-amp in between the dividers such that the V_x node is an input into the op-amp, while the source of the 2nd divider is the output of the op-amp!

Answer: Use the op-amp as a voltage buffer.

This means we short the op-amp's negative input to its output, since the positive input must now match its output (by the golden rules).

Last Updated: 2022-04-07 23:58

Since no current flows into the positive op-amp input, we've successfully isolated the dividers so they can be used in a modular fashion! \Box

NOTE: The V_x, V_y outputs from this configuration would change with the addition of a load on either terminal. As a follow-up, think about ways to make each output agnostic to the loads attached!