

Chpt.7 Statistical Inference: Parameter Estimation

第七章参数估计

上节回顾

准则	含义	矩估计	最大似然估计
无偏性			
有效性			
相合性			

$$\hat{\theta}_{\text{ME}} = 2\overline{X}$$

$$\hat{\theta}_{\text{MLE}} \\ \max_{1 \le i \le n} X_i$$

例4

设总体X~U[0,\theta], 其中 $\theta>0$ 为未知参数, (X_1,\cdots,X_n) $(n\geq 2)$ 是取自总体X的

样本,试证
$$\hat{\theta}_2 = \frac{n+1}{n} \max_{1 \le i \le n} X_i$$
 比 $\hat{\theta}_1 = 2\overline{X}$ 有效。

例4

设总体X~U[0, θ], 其中 θ > 0为未知参数, (X_1, \cdots, X_n) ($n \ge 2$)是取自总体X的样本,试证 $\hat{\theta}_2 = \frac{n+1}{n} \max_{1 \le i \le n} X_i$ 比 $\hat{\theta}_1 = 2\overline{X}$ 有效。

分析: 必须先确定 $\max_{1 \leq i \leq n} X_i$ 的分布,才能计算出 $E\hat{\theta}_2$, $D\hat{\theta}_2$,并由此验证 $E\hat{\theta}_2 = \theta$ 及 $D\hat{\theta}_2 < D\hat{\theta}_1$

证明: 先确定 $X_{(n)} = \max_{1 \le i \le n} X_i$ 的分布。总体X的分布函数为

$$F(x;\theta) = \begin{cases} \frac{x}{\theta}, & 0 \le x \le \theta \\ 0, & \text{其他} \end{cases}$$

当 $0 \le x \le \theta$ 时,由 $X_{(n)}$ 的分布函数 $F_{X_{(n)}}(x)$ 定义有

再计算E
$$X_{(n)}$$
, $DX_{(n)}$ 是有偏的! 是有偏的!
$$EX_{(n)} = \int_0^\theta x \cdot \frac{nx^{n-1}}{\theta^n} dx = \frac{n}{n+1}\theta, \qquad \mathbb{R}^{n+1}$$
 就无偏了,即 $E\hat{\theta}_2 = \frac{n+1}{n}$ $EX_{(n)} = \theta$
$$EX_{(n)}^2 = \int_0^\theta x^2 \cdot \frac{nx^{n-1}}{\theta^n} dx = \frac{n}{n+2}\theta^2,$$
 $DX_{(n)} = EX_{(n)}^2 - (EX_{(n)})^2 = \frac{n}{(n+1)^2(n+2)}\theta^2$ $D\hat{\theta}_2 = \left(\frac{n+1}{n}\right)^2 DX_{(n)} = \frac{\theta^2}{n(n+2)}$

$$\begin{split} \mathbf{E}\widehat{\boldsymbol{\theta}}_1 &= 2E\overline{X} = 2EX = 2 \cdot \frac{\theta}{2} = \theta \,, \\ \mathbf{D}\widehat{\boldsymbol{\theta}}_1 &= 4D\overline{X} = 4 \cdot \frac{DX}{n} = 4 \cdot \frac{\theta^2}{12n} = \frac{\theta^2}{3n} \,, \end{split}$$

显然E $\hat{\theta}_2 = E\hat{\theta}_1 = \theta$,且D $\hat{\theta}_2 = \frac{\theta^2}{n(n+2)} < \frac{\theta^2}{3n} = D\hat{\theta}_1$,因此 $\hat{\theta}_2$ 比 $\hat{\theta}_1$ 有效。

Remark: 在点估计中,经常对利用各种点估计方法得到的估计量进行比较,有时还进行改进,从而得到未知参数的较优估计。

例如:本题中, $\max_{1\leq i\leq n}X_i$ 与 $2\overline{X}$ 恰为 θ 的最大似然估计与矩估计,虽然 $\max_{1\leq i\leq n}X_i$ 是

有偏的,但改进后的估计 $\frac{n+1}{n}\max_{1\leq i\leq n}X_i$ 不仅是无偏的,并且比 $2\overline{X}$ 更有效。

••••••••••

设总体X的概率密度为中

$$f(x;\theta) = \begin{cases} \theta, & 0 < x < 1 \\ 1 - \theta, 1 \le x < 2, \\ 0, & \text{##} \end{cases}$$

其中 $0 < \theta < 1$ 为未知参数, (X_1, \dots, X_n) 是取自总体 X 的样本,试求 θ 的矩估计量与最大似然估计量。

作答

设总体X的概率密度为中

$$f(x;\theta) = \begin{cases} \theta, & 0 < x < 1\\ 1 - \theta, 1 \le x < 2, \\ 0, & \text{其他} \end{cases}$$

其中 0< θ < 1为未知参数,(X₁, …, Xn)是取自总体 X 的样本,试求 θ 的矩估计量与最大似然估计量。

解
$$EX = \int_0^1 x\theta dx + \int_1^2 x(1-\theta)dx = \frac{3}{2} - \theta, \ \theta = \frac{3}{2} - EX$$

$$\hat{\theta}_{ME} = \frac{3}{2} - \bar{X}_{\psi}$$

记 N 为样本中小于 1 的个数,似然函数为。

$$L(\theta) = \theta^{N} (1 - \theta)^{n - N}$$

$$LnL = Nln\theta + (n - N) ln(1 - \theta)$$

似然方程为中

$$\frac{dLn L}{d\theta} = \frac{N}{\theta} - \frac{n-N}{1-\theta} = 0$$

解得。

$$\widehat{\theta}_{MLE} = \frac{N}{n}$$

主观题 10分

设总体X的密度函数为

$$f(x; heta) = egin{cases} rac{1}{2 heta}, & 0 < x < heta \ rac{1}{2(1- heta)}, & heta \leqslant x < 1 \ 0, & ext{ times} \end{cases}$$

其中 $0<\theta<1$ 为未知参数, (X_1, \dots, X_n) 是取自总体X的样本

- (1)求 θ 的矩估计量 $\hat{\theta}_{ME}$;
- (2) 判断 $4\overline{X}^2$ 是否为 θ^2 的无偏估计量.

作答

设总体X的密度函数为

$$f(x; heta) = egin{cases} rac{1}{2 heta}, & 0 < x < heta \ rac{1}{2(1- heta)}, & heta \leqslant x < 1 \ 0, & ext{ times} \end{cases}$$

其中 $0<\theta<1$ 为未知参数, (X_1, \dots, X_n) 是取自总体X的样本

- (1) 求 θ 的矩估计量 $\hat{\theta}_{ME}$;
- (2) 判断 $4\overline{X}^2$ 是否为 θ^2 的无偏估计量.

解
$$(1)$$
 $EX = \int_0^\theta x \cdot \frac{1}{2\theta} dx + \int_\theta^1 x \cdot \frac{1}{2(1-\theta)} dx = \frac{2\theta+1}{4}$ $\theta = 2EX - \frac{1}{2}, \hat{\theta}_{ME} = 2\bar{X} - \frac{1}{2}$

(2)
$$EX^2 = \int_0^\theta x^2 \cdot \frac{1}{2\theta} dx + \int_\theta^1 x^2 \cdot \frac{1}{2(1-\theta)} dx = \frac{2\theta^2 + \theta + 1}{6}$$

$$DX = EX^{2} - (EX)^{2} = \frac{2\theta^{2} + \theta + 1}{6} - \left(\frac{2\theta + 1}{4}\right)^{2} = \frac{4\theta^{2} - 4\theta + 5}{48}$$

$$E\overline{X}^{2} = D\overline{X} + (E\overline{X})^{2} = \frac{DX}{n} + (E\overline{X})^{2} = \frac{4\theta^{2} - 4\theta + 5}{48n} + \frac{4\theta^{2} + 4\theta + 1}{16} \neq \frac{\theta^{2}}{4}$$

故, $4\overline{X}^2$ 不是 θ^2 的无偏估计量

7.3 区间估计

[1] 为何要引进参数的区间估计

根据具体样本观测值,点估计提供一个明确的数值.但这一数值距离真值有多大距离?或者说真值落入估计值附近小区间的可能性有多大?这些点估计都无法给出。

设X是总体, X_1 ,…, X_n 是一样本, θ 是待估计的参数。 区间估计的目的是找到两个统计量:

$$\hat{\theta}_1(X_1,\dots,X_n)$$
 $\hat{\theta}_2(X_1,\dots,X_n)$

使得随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 以一定可靠程度包含真值 θ

[2] 区间估计的概念

设
$$\hat{\theta}_1(X_1,\cdots,X_n)$$
 及 $\hat{\theta}_2(X_1,\cdots,X_n)$ 是由样本确定的两个统计量
$$\hat{\theta}_1<\hat{\theta}_2$$

如果对于给定的 α ($0<\alpha<1$),有

$$P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} \ge 1 - \alpha$$

则称随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 为参数 θ 的置信水平为 $1-\alpha$ 的置信区间,其中 $\hat{\theta}_1$ 叫做置信下限, $\hat{\theta}_2$ 叫做置信上限.

注1: $\hat{\theta}_1 < \hat{\theta}_2$ 是概率意义下成立

[2] 区间估计的概念

$$P\{\hat{\theta}_1 < \theta < \hat{\theta}_2\} \ge 1 - \alpha$$

说明:参数 θ 虽然未知,但是确定的值.

 $\hat{\theta}_{L}$, $\hat{\theta}_{U}$ 是统计量, 随机的, 依赖于样本.

置信区间 $(\hat{\theta}_L, \hat{\theta}_U)$ 是随机的,依赖于样本. 样本不同,算出的区间也不同.

对于有些样本观察值,区间覆盖 θ ,但对于另一些样本观察值,区间则不能覆盖 θ .

[2] 区间估计的概念

例1: 设总体 $X \sim N(\mu, 4), \mu$ 未知, $X_1, ..., X_d$ 是一样本. 则 $\overline{X} \sim N(\mu,1)$.

$$P(\bar{X}-2<\mu<\bar{X}+2)=P(|\bar{X}-\mu|<2)$$

= $2\Phi(2)-1=0.9544$

 $\Rightarrow (\overline{X} - 2, \overline{X} + 2)$ 是 μ 的置信水平为0.95的 置信区间.

对应得区间分别为

$$(1, 5)$$
 $(0, 4)$ $(-1, 3)$

对于一个具体的区间而言,或者包含真值或者不包含 真值, 无概率可言

pp. 15 南开大学 计算机学院

如何理解置信区间?

 $(\bar{X}-2,\bar{X}+2)$ 是 μ 的置信水平为0.95的置信区间中"置信水平为0.95"的意义是什么?.

反复抽样多次(各次样本容量都为n)。每个样本值确定一个区间 $(\hat{\theta}_1, \hat{\theta}_2)$,每个这样的区间或包含 θ 的真值,或不包含 θ 的真值。按照伯努利大数定律(频率趋向于概率),在这些区间中,包含真值 θ 的比例约为1- α .

如反复抽样10000次,当 α =0.05,即置信水平为95%时,10000个区间中包含 θ 真值的约为9500个;当 α =0.01,即置信水平为99%时,10000个区间中包含 θ 的真值的约为9900个.

[例2] 设总体 $X \sim N(\mu, \sigma^2), (X_1, X_2, \cdots, X_n)$ 是一个样本, σ^2 已知, μ 未知,求 μ 的置信水平为 1 一 α 的置信区间。

[例1] 设总体 $X \sim N(\mu, \sigma^2), (X_1, X_2, \dots, X_n)$ 是一个样本, σ^2 已知, μ 未知,求 μ 的置信水平为 1 一 α 的置信区间。

[解]: 我们知道 \overline{X} 是 μ 的无偏估计,且 $\frac{X-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$,按照标准正态分布 α 分位点的定义,待求常数 $Z\alpha_{/2}$ 满足

$$P\left\{\left|\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}\right| \le z_{\alpha/2}\right\} = 1 - \alpha$$

我们也可以用 $\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim T(n-1)$ 计算

$$P\left\{\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \le \mu \le \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right\} = 1 - \alpha$$

这样我们就得到μ的置信水平为 1 一α 的置信区间

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right) \qquad \left(\overline{X} - \frac{S}{\sqrt{n}} t_{\alpha/2}, \ \overline{X} + \frac{S}{\sqrt{n}} t_{\alpha/2}\right)$$

如果 α =0.05, σ =1, n=16,查表得 $z_{\frac{\alpha}{2}}=z_{0.025}=1.96$, $t_{\frac{\alpha}{2}}(15)=t_{0.025}(15)=2.13$ 。如果我们得到样本的一组观测值,计算得到 $\overline{x}=5.20$,则得到一个置信水平为0.95的的置信区间(4.71, 5.69); 若S=1.03,则得到另一个置信水平为0.95的置信区间(4.56,5.63)。

这两个置信区间哪个更好?

[2] 区间估计的步骤

设计统计量 $\hat{W} = W(X_i; \theta)$,W含有参数 θ ,但是随机变量 \hat{W} 的分布与 θ 无关,称 \hat{W} 为<mark>枢轴量</mark>(随机变量)

例如:
$$\widehat{W} = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$
, $\widehat{W} = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim T(n-1)$

对于置信水平 $1-\alpha$, 定义常数a和b, 使得概率 $P\{a < \widehat{W} < b\} = 1-\alpha$

由此求出随机变量 $\overline{\theta} \leftarrow \{\theta : W(X_n; \theta) = b\}$ 和 $\underline{\theta} \leftarrow \{\theta : W(X_n; \theta) = a\}$

那么 $(\underline{\theta}, \overline{\theta})$ 为一个置信水平为 $1-\alpha$ 的置信区间,且来自随机变量 \widehat{W}

$$\overline{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.96 \frac{\sigma}{\sqrt{n}} \qquad \overline{X} - 1.065 \frac{S}{\sqrt{n}} \le \mu \le \overline{X} + 1.065 \frac{S}{\sqrt{n}}$$

- 置信区间的长度(枢轴量的样本值估计)由枢轴量决定
- 不同枢轴量构造的同样置信水平的置信区间,区间长度越小越好

同一个枢轴量也可以构成多个置信区间

注意到 $\frac{X-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$,可以构造无穷多个置信水平为 $1-\alpha$ 的置信区间。

比如
$$\alpha$$
=0.05时,必有 $P\left\{-z_{0.04} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{0.01}\right\} = 0.95$,那么以下区间

是 μ 的置信水平为0.95的置信区间 $\left(\overline{X} - \frac{\sigma}{\sqrt{n}}z_{0.01}, \overline{X} + \frac{\sigma}{\sqrt{n}}z_{0.04}\right)_{2}$

两个置信水平相等的区间,显然区间长度越短的估计精度越高

上面两个置信水平都为0.95的置信区间的长度分别为

$$2 \times \frac{\sigma}{\sqrt{n}} z_{0.025} = 3.92 \times \frac{\sigma}{\sqrt{n}}$$

$$\frac{\sigma}{\sqrt{n}}(z_{0.04} + z_{0.01}) = 4.08 \times \frac{\sigma}{\sqrt{n}}$$

事实上由于
$$\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$
,其概率密度是对称的单峰函数,可以断定对称置信区间 $\left(\overline{X}-\frac{\sigma}{\sqrt{n}}z_{\alpha/2},\overline{X}+\frac{\sigma}{\sqrt{n}}z_{\alpha/2}\right)$ 长度最短。

例3 某地一旅游者的消费额 X 服从正态分布 $N(\mu,\sigma^2)$,且标准差 $\sigma=12$ 元,今要对该地旅游者的平均消费额 EX 加以估计,为了能以95%的置信度相信这种估计误差小于2元,问至少要调查多少人?

例3 某地一旅游者的消费额 X 服从正态分布 $N(\mu,\sigma^2)$,且标准差 $\sigma=12$ 元,今要对该地旅游者的平均消费额 EX 加以估计,为了能以95%的置信度相信这种估计误差小于2元,问至少要调查多少人?

解 由题意知: 消费额 $X \sim N(\mu, 12^2)$, 设要调查 n 人, 使得

$$P\left\{\left|\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\right| < 1.96\right\} = 0.95$$
 置信区间定义
$$P\left\{\left|\overline{X}-\mu\right| < 1.96 \times \frac{\sigma}{\sqrt{n}}\right\} = 0.95$$

而
$$|\bar{X} - \mu| < 2$$
 \longrightarrow $1.96 \times \frac{\sigma}{\sqrt{n}} < 2$ $|\bar{X} - \mu| < 2$ 为题意, 与置信区间无关

解得
$$n > \left(\frac{1.96 \times 12}{2}\right)^2 = 138.29$$

至少要调查139人

这道题借用置信区间的概念, 将95%置信度引入, 但后面计算与置信区间无关

总结-关于置信区间的几个重要知识点

- 1. 置信区间英文为Confidence Interval,与Bayes估计中的 Creditable Interval (可信区间)不同。
- 2. 置信区间的定义时,在估计的众多区间中,能有多少的区间能够覆盖一个固定的参数值 θ 。从严格数学意义上讲,不能告诉我们 θ 的变化范围。
- 3. 我们通常希望得到的, θ 的一定变化范围,是由可信区间得到的。
- 4. 上述问题的原因是在传统统计学(频率派)中 θ 是常数或标量(scalar)(而不是随机变量r.v.),没有一个变化的范围的定义。
- 5. 置信区间估计得到的区间小,意味着在一个很小的区间范围都能很大可能 覆盖 θ ,变相说明我们找的准,进而变相估计认知 θ
- 6. 置信区间的英文是信心区间,顾名思义是对找到的结果有多大的信心(贝努力分布)。
- 7. 只有把heta看做<mark>随机变量,</mark>才可以讨论heta的变化范围,也就是我们往往"真实想要"的区间

7.4 单个正态总体均值与方差的区间估计

7.5 两个正态总体均值差与方差比的区间估计

7.6 非正态总体参数的区间估计

7.4 单个正态总体均值与方差的区间估计

正态总体均值 μ 的区间估计

- (1) 正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\sigma = \sigma_0$, 求 μ 的区间估计
- (2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 σ , 求 μ 的区间估计

正态总体方差 σ^2 的区间估计

- (1) 正态总体 $X \sim N(\mu, \sigma^2)$,已知 $\mu = \mu_0$,求 σ^2 的区间估计
- (2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 μ , 求 σ^2 的区间估计

南开大学 计算机学院

正态总体均值μ的区间估计

(1) 设正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\sigma = \sigma_0$, 求 μ 区间估计

因为
$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$
,所以 $\overline{Y} = \frac{\overline{X} - \mu}{\sigma_0/\sqrt{n}} \sim N(0, 1)$,对于给定的 α ,

我们取区间 $\left(-z_{\alpha/2},z_{\alpha/2}\right)$,构造概率为 $1-\alpha$ 的事件

$$P\left\{\frac{\left|\overline{X} - \mu\right|}{\sigma_0/\sqrt{n}} \le z_{\alpha/2}\right\} = 1 - \alpha$$

 $Z_{\alpha/2}$ 是标准正态分布的 $\alpha/2$ 分位点,即

$$P\{Y \ge z_{\alpha/2}\} = \frac{\alpha}{2}$$

正态总体均值μ的区间估计

(1) 设正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\sigma = \sigma_0$, 求 μ 区间估计

把上述关于事件概率的描述转化为关于均值μ的概率描述:

$$P\left\{\overline{X} - \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2} \le \mu \le \overline{X} + \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2}\right\} = 1 - \alpha$$

由此,求得关于 μ 的置信水平为 $1-\alpha$ 的置信区间(用观测值):

$$\left(\frac{-}{x} - \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2}, \quad \frac{-}{x} + \frac{\sigma_0}{\sqrt{n}} z_{\alpha/2}\right)$$

(2) 设正态总体 $X \sim N(\mu, \sigma^2)$, 未知 σ , 求 μ 区间估计

因 σ 未知,在上面的估计中无法使用 σ^2 ,我们用 S^2 代替 σ^2 ,得随机变量

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$
 对比 $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$

对于给定的置信水平1- α ,我们取区间 $\left(-t_{\alpha/},t_{\alpha/}\right)$,满足

$$P\left\{\left|\frac{\overline{X} - \mu}{S/\sqrt{n}}\right| \le t_{\alpha/2}\right\} = 1 - \alpha$$

pp. 31 南开大学 计算机学院

(2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 σ , 求 μ 的区间估计

由此转化为关于μ的关系式

$$P\left(\overline{X} - \frac{S}{\sqrt{n}}t_{\alpha/2} \le \mu \le \overline{X} + \frac{S}{\sqrt{n}}t_{\alpha/2}\right) = 1 - \alpha$$

由此,求得 μ 的置信水平为 $1-\alpha$ 的置信区间(用观测值):

$$\left(\frac{-}{x} - \frac{s}{\sqrt{n}}t_{\alpha/2}, \quad \frac{-}{x} + \frac{s}{\sqrt{n}}t_{\alpha/2}\right)$$

pp. 32 南开大学 计算机学院

例3: 已知某种木材横纹抗压力的实验值服从正态分布,对**9**个试件作横纹抗压力实验得数据如下(单位: kg/cm²):

482,493,457,471,510,446,435,418,469

试对下面情况分别求出平均横纹抗压力的95%置信区间.

- (1) 已知 $\sigma = 25$
- (2) σ未知

分析:注意在σ已知与σ未知两种情形下,单个正态总体均值μ的置信区间是不同的,这是因为借助的枢轴量及其分布是不一样的。 在这道题中我们加以对比

解: (1) 由于 $\sigma = 25$ 已知,平均横纹抗压力 μ 的置信区间为

$$(\overline{X} - z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}})$$

利用样本值计算可得 $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = 464.56$

这里n=9, σ = 25,给定 α = 0.05,查附表 $z_{0.025}$ = 1.96,容易计算

 $\bar{x} \pm z_{\frac{\alpha}{2}} \cdot \frac{\sigma}{\sqrt{n}} = 464.56 \pm 16.33$,即置信区间为(448.23,480.89)

(2) 由于 σ 未知, μ 的置信区间为($\overline{X} - t_{\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}}$, $\overline{X} + t_{\frac{\alpha}{2}}(n-1) \cdot \frac{S}{\sqrt{n}}$) 利用样本值计算可得

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} (\sum_{i=1}^{n} x_{i}^{2} - n\bar{x}^{2}) = 830.63$$

S=28.82

这里 $\alpha = 0.05$,查附表 $t_{0.025}(8) = 2.306$,得 $\bar{x} \pm t_{\frac{\alpha}{2}}(n-1) \cdot \frac{s}{\sqrt{n}} = 464.56 \pm 100$

22.15,即置信区间为(442.41,486.71)

正态总体方差 σ^2 的区间估计

(1) 正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\mu = \mu_0$, 求 σ^2 的区间估计

利用随机变量
$$\frac{1}{\sigma^2}\sum_{i=1}^n (X_i - \mu)^2 \sim \chi^2(n)$$
 进行估计

由于此分布曲线不对称,故对于给定的置信水平 $1-\alpha$,很难找到最短的置信区间. 通常模仿前面的做法,取区间 $\left(\chi^2_{1-\alpha/2},\ \chi^2_{\alpha/2}\right)$ 使得:

$$P\left\{\chi_{1-\alpha/2}^{2} \leq \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \leq \chi_{\alpha/2}^{2}\right\} = 1 - \alpha$$

思考:这种取法是最优的吗?

正态总体方差σ²的区间估计

(1) 设正态总体 $X \sim N(\mu, \sigma^2)$, 已知 $\mu = \mu_0$, 求 σ^2 的区间估计

转化为关于 σ^2 的概率描述,

$$P\left\{\frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{\alpha/2}^{2}} \le \sigma^{2} \le \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\chi_{1-\alpha/2}^{2}}\right\} = 1 - \alpha$$

得置信水平为 $1-\alpha$ 的 σ^2 的置信区间(用观测值):

$$\left(\frac{\sum_{i=1}^{n} (x_i - \mu_0)^2}{\chi_{\alpha/2}^2}, \frac{\sum_{i=1}^{n} (x_i - \mu_0)^2}{\chi_{1-\alpha/2}^2}\right)$$

(2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 μ , 求 σ^2 的区间估计

由于
$$\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 + \mu$$
未知,用 \overline{X} 代替,得到

$$\chi^{2} = \frac{n-1}{\sigma^{2}} \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \xrightarrow{\mu \Rightarrow \overline{X}} \frac{n-1}{\sigma^{2}} S^{2} \sim \chi^{2} (n-1)$$

对给定的置信水平1- α ,我们取区间 $\left(\chi_{1-\alpha/2}^2, \chi_{\alpha/2}^2\right)$,使

$$P\left\{\chi_{1-\alpha/2}^{2} \leq \frac{n-1}{\sigma^{2}}S^{2} \leq \chi_{\alpha/2}^{2}\right\} = 1-\alpha$$

得置信水平为 $1-\alpha$ 的 σ 的置信区间(用观测值):

$$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}\right)$$

(2) 正态总体 $X \sim N(\mu, \sigma^2)$, 未知 μ , 求 σ^2 的区间估计

例4 从一批零件中,抽取9个零件,测得其直径(毫米)为 19.7, 20.1, 19.8, 19.9, 20.2, 20.0, 19.9, 20.2, 20.3 设零件直径 $X \sim N(\mu, \sigma^2)$, 且未知 μ 求这批零件直径的方差 σ^2 对应于置信水平0.95的置信区间.

解: 已知 α = 0.05, n = 9, s^2 = 0.411, 按自由度 k = 8 查表得,

$$\chi^2_{0.975} = 2.18, \quad \chi^2_{0.025} = 17.5$$

所求置信区间为:
$$\left(\frac{8 \times 0.411}{17.5}, \frac{8 \times 0.411}{2.18}\right)$$

即(0.188, 1.508).

习题1:

设总体 $X \sim N(\mu, 9)$, (X_1, \dots, X_n) 是取自总体X的样本欲使 μ 的 $1-\alpha$ 置信区间长度L不超过2,问在以下两种情况下两种情况下样本容量n至少应取多少? (1) $\alpha = 0.1$ (2) $\alpha = 0.01$

习题2:

随机从某毛纺厂生产的羊毛锭中抽测10个样品的含脂率%,得到样本均值 \bar{x} =7.7,样本方差 S^2 =0.64,假定含脂率服从正态分布。试分别在下面的置 信度下给出平均含脂率的置信区间。(1)1- α =90%; (2)1- α =95%;