

Summary

Penrose's discovery of the singularity theorem showed that black holes are a robust consequence of the theory of general relativity, forming naturally in very overdense regions.

During the more than half a century that has passed since this conceptual breakthrough, technological advances have enabled probing closer and closer to the black hole event horizon. The observations by LIGO, rewarded the Nobel Prize in 2017, and the exquisite observations by Genzel and Ghez sharing this year's prize, as well as the remarkable picture of the centre of M87 taken by the Event Horizon Telescope, are all compatible with the existence of supermassive black holes.

The extent to which the structure of a black hole surrounded by an event horizon actually match the predictions of general relativity is still an open question. Nature may still have surprises in store.

References

Abuter, R., et al., Gravity Collaboration, 2018, "Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole", *Astronomy and Astrophysics*, vol. 615. doi: 10.1051/0004-6361/201833718.

Babcock, H. W., 1953, "The possibility of compensating astronomical seeing", *Publications of the Astronomical Society of the Pacific*, vol. 65, no. 386. p. 229. doi: 10.1086/126606.

Bekenstein, J., 1972, "Black holes and the second law", *Nuovo Cimento Letters*, vol. 4. pp. 99–104.

Blandford, R. D. and Znajek, R. L., 1977, "Electromagnetic extraction of energy from Kerr black holes", *Monthly Notices of the Royal Astronomical Society*, vol. 179. pp. 433–456. doi: 10.1093/mnras/179.3.433.

Bower, G. C., Goss, W. M., Falcke, H., Backer, D. C., and Lithwick, Y., 2006, "The intrinsic size of Sagittarius A* from 0.35 to 6 cm", *The Astrophysical Journal*, vol. 648, no. 2. pp. L127–L130. doi: 10.1086/508019.

Doeleman, S. S., Weintroub, J., Rogers, A. E. E., Plambeck, R., Freund, R. R., Tilanus, R. P. J., Friberg, P., et al., 2008, "Event-horizon-scale structure in the supermassive black hole candidate at the Galactic centre", *Nature*, vol. 455, no. 7209. pp. 78–80. doi: 10.1038/nature07245.

Eckart, A. and Genzel, R., 1996, "Observations of stellar proper motions near the Galactic Centre", *Nature*, vol. 383, no. 6599. pp. 415–417. doi: 10.1038/383415a0.

Eckart, A. and Genzel, R., 1997, "Stellar proper motions in the central 0.1 PC of the Galaxy", *Monthly Notices of the Royal Astronomical Society*, vol. 284, no. 3. pp. 576–598. doi: 10.1093/mnras/284.3.576.

Einstein, A., 1939, "On a stationary system with spherical symmetry consisting of many gravitating masses", *Annals of Mathematics*, vol. 40, No. 4. pp. 922-936.

Finkelstein, D., 1958, "Past-future asymmetry of the gravitational field of a point particle", *Physical Review*, vol. 110, no. 4. pp. 965–967. doi: 10.1103/PhysRev.110.965.

Ford, H. C., Harms, R. J., Tsvetanov, Z. I., Hartig, G. F., Dressel, L. L., Kriss, G. A., Bohlin, R. C., et al., 1994, "Narrowband HST Images of M87: Evidence for a Disk of Ionized Gas around a Massive Black Hole", *The Astrophysical Journal*, vol. 435. p. L27. doi: 10.1086/187586.