CS 435: Introduction to Cryptography

Spring 2020

Homework 3

Professor Somesh Jha

Due: March 11

1. Let G and F be PRGs. Prove that $F \circ G$ (where \circ is function composition) is also a PRG.

2. Let G and F be PRGs. Is (F,G) a PRG? Note that (F,G)(s) is (F(s),G(s)). Please justify your answer.

3. Exercise 3.6

Let G be a pseudorandon generator with expansion factor $\ell(n) > 2n$. In each of the following cases, say whether G' is necessarily a pseudorandom generator. If yes, give a proof; if not, show a counterexample.

- (a) Define $G'(s) \stackrel{\text{def}}{=} G(s_1 \cdots s_{\lfloor n/2 \rfloor})$, where $s = s_1 \cdots s_n$.
- (b) Define $G'(s) \stackrel{\text{def}}{=} G(0^{|s|} ||s|)$.
- (c) Define $G'(s) \stackrel{\text{def}}{=} G(s) \parallel G(s+1)$.

(Note that given a real number x, the floor function $\lfloor x \rfloor$ gives the largest integer less than or equal to x.)

4. Exercise 3.13

Consider the following keyed function F: For security parameter n, the key is an $n \times n$ boolean matrix A and an n-bit boolean vector b. Define $F_{A,b} = \{0,1\}^n \to \{0,1\}^n$ by $F_{A,b}(x) \stackrel{\text{def}}{=} Ax + b$, where all operations are done modulo 2. Show that F is not a pseudorandom function.