CSCI 544: Applied Natural Language Processing

Seq2seq Generation & Neural Machine Translation

Xuezhe Ma (Max)

Course Organization

NLP Tasks

• Sequence-to-Sequence (Seq2seq) Generation

- Input: $X = \{x_1, x_2, ..., x_L\}, x_i \in \mathcal{X}$
- Output: $Y = \{y_1, y_2, ..., y_T\}, y_i \in \mathcal{Y}$
- Model: $p_{\theta}(Y|X)$

• Sequence-to-Sequence (Seq2seq) Generation

- Input: $X = \{x_1, x_2, ..., x_L\}, x_i \in \mathcal{X}$

- Output: $Y = \{y_1, y_2, ..., y_T\}, y_i \in \mathcal{Y}$

- Model: $p_{\theta}(Y|X)$

Input X	Output Y (Text)	<u>Task</u>
English	Japanese	Translation
Document	Short Description	Summarization
Utterance	Response	Response Generation
Image	Text	Image Captioning
Speech	Transcript	Speech Recognition

• Sequence-to-Sequence (Seq2seq) Generation

- Input: $X = \{x_1, x_2, ..., x_L\}, x_i \in \mathcal{X}$
- Output: $Y = \{y_1, y_2, ..., y_T\}, y_i \in \mathcal{Y}$
- Model: $p_{\theta}(Y|X)$ How?

Difference from Sequence Labeling

- The length of Y can be different from the length of X
- The space of ${\mathscr Y}$ is often much larger

Statistic Machine Translation

Statistical Machine Translation

- IBM Translation Models
 - Word-level alignment model
 - EM algorithm
- Phrase-based Translation Models
 - Phrase-based alignment model
- Heavy Engineering
 - Moses system
 - 360 pages manual

Statistical Machine Translation

- IBM Translation Models
 - Word-level alignment model
 - EM algorithm
- Phrase-based Translation Models
 - Phrase-based alignment model
- Heavy Engineering
 - Moses system
 - 360 pages manual

Word-Alignment Model in SMT

• Key Idea: two words are more likely to be aligned when they occur more frequently in translation pairs

我 不 知道	don't	know	
我 是 学生	am	a	student
我 爱 喝 茶	love	drinking	tea

Word-Alignment Model in SMT

- ullet e is an English sentence with l words
- f is a foreign sentence with m words
- An alignment $a = \{a_1, a_2, ..., a_m\}, a_j \in \{0, ..., l\}$
- Hence there are $(l+1)^m$ possible alignments

 $e = \mathsf{And}$ the program has been implemented

 $f={\sf Le}\ {\sf programme}\ {\sf a}\ {\sf ete}\ {\sf mis}\ {\sf en}\ {\sf application}$

Word-Alignment Model in SMT

• IBM Model 1:

$$p(a | e, m) = \frac{1}{(l+1)^m}$$

• IBM Model 2:

$$p(a \mid e, m) = q(a_j \mid j, l, m)$$

• IBM Model 3, 4, 5, 6...

Translation Model
$$p(f|e) = \sum_{a \in \mathcal{A}} p(a|e,m)p(f|a,e,m)$$

Statistical Machine Translation

- IBM Translation Models
 - Word-level alignment model
 - EM algorithm
- Phrase-based Translation Models
 - Phrase-based alignment model
- Heavy Engineering
 - Moses system
 - 360 pages manual

Neural Machine Translation

• Sequence-to-Sequence (Seq2seq) Generation

- Input: $X = \{x_1, x_2, ..., x_L\}, x_i \in \mathcal{X}$
- Output: $Y = \{y_1, y_2, ..., y_T\}, y_i \in \mathcal{Y}$
- Model: $p_{\theta}(Y|X)$ How?

• Difference from Sequence Labeling

- The length of Y can be different from the length of X
- The size of \mathcal{Y} is often much larger

Autoregressive Seq2seq Generation

Sequence labeling vs. Seq2seq Generation

Sequence labeling

$$p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_t|X)$$

Why not for seq2seq generation?

Autoregressive Seq2seq Generation

$$p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_t|X)$$
 Not a good choice!

l don't know

我 不 知道

l do not know

have no idea

Autoregressive Seq2seq Generation

Autoregressive Factorization:

$$p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_{t}|y_{< t}, X)$$
Next Token history

- Autoregressive factorization is just chain-rule (HMMs, MEMMs)
- Autoregressive factorization does NOT assume any independence
- With autoregressive factorization, we need to model each $p_{\theta}(y_t \mid y_{< t}, X)$

Encoder-Decoder Architecture

• Sequence labeling vs. Seq2seq Generation

Sequence labeling

$$p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_t|X)$$

Seq2seq Generation

$$p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_t|y_{< t}, X)$$

Encoder: encode a sentence into a sequence of vectors

Decoder: use another LSTM?

Encoder-Decoder Architecture

Two Components:

- Encoder: Convert input sequence into a sequence of vectors
- Decoder: Convert encoding into a sequence in the output space

Special Tokens in Seq2seq

- <BOS>: start of the target sentence
- <EOS>: end of the target sentence

Model Training:

$$p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_{t}|y_{< t}, X) \qquad t = 1$$

Model Training:

$$p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_{t}|y_{< t}, X) \qquad t = 2$$

Model Training:

$$p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_t|y_{< t}, X)$$

Maximum Likelihood Estimation

$$\max_{\theta} p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_t|y_{< t}, X)$$

- Back-propagate gradients through both decoder & encoder
- Need a really big training corpus
 - WMT Russian-English

36M sentence pairs

Russian: Машинный перевод - это круто!

English: Machine translation is cool!

- Exhaustive Search
 - Requires computing all possible sequences

$$\arg \max_{Y} p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_t|y_{< t}, X)$$

What is the complexity of doing this search, if $|\mathcal{Y}| = V$ and sequence length T?

- (a) O(VT)
- (b) $O(V^T)$
- (c) $O(T^V)$

Greedy Search

- Selects the best current word y_t

$$\arg \max_{Y} p_{\theta}(Y|X) = \prod_{t=1}^{T} p_{\theta}(y_{t}|y_{< t}, X)$$

$$\approx \underset{y_t}{\operatorname{arg}} \max p_{\theta}(y_t | y_{< t}, X), \forall t$$

Greedy decoding:

$$y_t^* = \arg\max_{y_t} p_{\theta}(y_t | y_{< t}, X), \forall t$$

Greedy decoding:

$$y_t^* = \underset{y_t}{\text{arg max}} p_{\theta}(y_t | y_{< t}, X), \forall t$$

Special Tokens in Seq2seq

- <BOS>: start of the target sentence
- <EOS>: end of the target sentence

A Middle Ground: Beam Search

- Key idea: at every step, keep track of the k most probable partial translations (hypotheses)
- Score of each hypothesis = log probability of sequence so far
- Not guaranteed to be optimal
- More efficient than exhaustive search

Beam size K=2

Beam size K=2

Beam size K=2

Backtrack

Beam size K=2

(slide credit: Abigail See)

How Seq2seq changed the MT Landscape

MT Progress

Issues with Vanilla Encoder-Decoder Architecture

 A single encoding vector needs to capture all the information about source sentence

Issues with Vanilla Encoder-Decoder Architecture

- A single encoding vector needs to capture all the information about source sentence
- Longer sequences can lead to vanishing gradients

• Key idea: At each time step, use all parts of source sentence

$$= \operatorname{attn}([c_1, c_2, ..., c_n], h_t)$$

$$= \operatorname{attn}([c_1, c_2, ..., c_n], h_t)$$

Softmax Function

$$e^t = [e_1^t, e_2^t, ..., e_n^t]$$

softmax(
$$e^t$$
) = $[\frac{\exp(e_1^t)}{\sum_{j=1}^n \exp(e_j^t)}, \frac{\exp(e_2^t)}{\sum_{j=1}^n \exp(e_j^t)}, \dots, \frac{\exp(e_n^t)}{\sum_{j=1}^n \exp(e_j^t)}]$

Types of Attention

ullet Dot-product attention (assumes equal dimensions for c and h)

$$sim(c_j, h_t) = c_j^T h_t$$

Multiplicative attention

 $sim(c_j, h_t) = c_j^T W h_t$, where W is learnable weight matrix

Additive attention

$$sim(c_j, h_t) = v^T tanh(W_c c_j + W_h h_t)$$

where W_c and W_h are learnable weight matrices and v is a learnable weight vector

Visualizing Attention

Highly correlated with alignment

Attention Improves Translation Performance

System	Ppl	BLEU
Winning WMT'14 system – phrase-based + large LM (Buck et al., 2014)		20.7
Existing NMT systems		
RNNsearch (Jean et al., 2015)		16.5
RNNsearch + unk replace (Jean et al., 2015)		19.0
RNNsearch + unk replace + large vocab + ensemble 8 models (Jean et al., 2015)		21.6
Our NMT systems		
Base	10.6	11.3
Base + reverse	9.9	12.6 (+1.3)
Base + reverse + dropout	8.1	14.0 (+1.4)
Base + reverse + dropout + global attention (location)	7.3	16.8 (+2.8)
Base + reverse + dropout + global attention (location) + feed input	6.4	18.1 (+ <i>1.3</i>)
Base + reverse + dropout + local-p attention (general) + feed input	5.9	19.0 (+0.9)
Base + reverse + dropout + local-p attention (general) + feed input + unk replace	3.9	20.9 (+1.9)
Ensemble 8 models + unk replace		23.0 (+2.1)

Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation

Table 10: Mean of side-by-side scores on production data

	PBMT	GNMT	Human	Relative
				Improvement
English \rightarrow Spanish	4.885	5.428	5.504	87%
English \rightarrow French	4.932	5.295	5.496	64%
English \rightarrow Chinese	4.035	4.594	4.987	58%
Spanish \rightarrow English	4.872	5.187	5.372	63%
French \rightarrow English	5.046	5.343	5.404	83%
Chinese \rightarrow English	3.694	4.263	4.636	60%

MT Progress

Reading Materials

Reading Materials

- Sequence to Sequence Learning with Neural Networks
- Neural Machine Translation by Jointly Learning to Align and Translate