铅酸电池放电时间预测

许博涵

2024年5月5日

申思远

1 问题一

首先我们使用 readmatrix() 读取 data.xlsx 文件中附件一的数据,并进行数据有效性处理。

1.1 问题分析

通过观察数据散点图,可以先假设模型,决定采用什么样的拟合函数,再使用 polyfit() 或 fittype() 函数进行图像拟合,进而求出放电函数曲线。通过筛选出从 U_m 开始按不超过 0.005V 的最大间隔的 231 个样本点,记录其对应的电压和已放电时间 T_r 利用上一步求出的拟合函数计算出估计放电时间 T_p ,通过公式

$$MRE = \frac{|T_p - T_r|}{T_r} \tag{1}$$

可以计算出相对误差,分别求出 231 个样本点的相对误差,再求出平均值即可得到平均相对误差。最后一问,直接将 9.8V 这个数据带入拟合函数即可。

1.2 模型假设

我们使用 MATLAB 软件,我们以时间为电压,绘制出已放电时间 T 与电压 U 的关系图像,如图 1 所示。

图 1: 电压与已放电时间的关系

由图一可知,不同电流强度随放电时间的变化趋势基本一致,初步假设采用 5 次多项式进行拟合。

1.3 符号说明

符号	含义
U_m	最低保护电压
T_r	样本时间
T_p	预测时间
T	己放电时间
U	电压
I	电流
MRE	平均相对误差

1.4 模型建立

但是我们注意到,在电流 I 时,刚开始放电初期电压不稳定,对于模型的建立和拟合都会造成影响,故我们在进行拟合时剔除了前 20% 的数据。根据图 1 决定采用了 5 次多项式进行拟合。

1.5 模型求解

我们使用 MATLAB 软件中的 polyfit() 函数直接进行拟合出 5 次多项式。结果如图 2 所示。

图 2: 各电流状态下的拟合图像

1.6 结果分析

我们首先计算出各个相邻点的差值,然后筛选出 231 个差值小于 0.005 的点,记录这些点的已放电时间 T_r 和电压值,再将电压值代入拟合函数求出 T_p 。接着利用公式 (1) 求出每个电流对应的平均相对误差 MRE 如下表 1:

电流	20A	30A	40A	50A	60A	70A	80A	90A	100A
MRE	0.022%	0.076%	0.122%	0.092%	0.146%	0.137%	0.073%	5.697%	13.799%

表 1: 各个电流状态下对应的 MRE

总体来说求出的平均相对误差 MRE 都较小,说明采用 5 次多项式拟合可行。

2 问题二

2.1 问题分析

可以判定,不同电流强度下的放电曲线之间正相关,即它们可以用相似的表达式表示;结合 $U(I,T)=a(T_{max}(I)-T)^b+9$ 可知,将表达式的系数看作是电流强度 I 的函数,我们建立电压与电流强度、时间的二元抛物线模型。

2.2 模型假设

电压与电流强度、时间的二元抛物线模型 $U(I,T) = a(I)(T_{max}(I) - T)^b(I) + 9$ 。

2.3 模型建立

我们使用 MATLAB 软件中的 polyfit() 函数直接进行拟合。对比寻找最优的 n 次多项式。

2.4 符号说明

符号	含义
a(I)	电流强度 I
b(I)	电流强度 I
Tmax(I)	电流强度 I

2.5 模型建立

利用附件 1, 我们查找出 9 种电流强度下的电池最大放电时间

2.6 模型求解

我们使用 MATLAB 软件中的 polyfit() 函数直接进行拟合。对比寻找最优的 n 次多项式。

电流	20A	30A	40A	50A	60A	70A	80A	90A	100A
T_{max}	3764	2454	1724	1308	1044	862	730	620	538

表 2: 9 种电流强度下的电池最大放电时间

电流	20A	30A	40A	50A	60A	70A	80A	90A	100A
a	0.024	0.312	0.037	0.049	0.052	0.048	0.048	0.049	0.049
b	0.514	0.505	0.504	0.481	0.484	0.505	0.515	0.521	0.530

表 3: 不同电流强度下的方程系数

