Sum of Lucas Numbers

Show that the sum over the first n Lucas numbers is given by

$$\sum_{i=1}^{n} L_i = L_{n+2} - 3.$$

Solution

The relation $L_n = L_{n+2} - L_{n+1}$ is used to form a list:

$$\begin{array}{lll} L_n & = L_{n+2} - L_{n+1} \\ L_n & = L_{n+1} - L_n \\ & \cdot \\ L_n & = L_n - L_{n-1} \\ & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ L_2 & = L_4 - L_3 \\ L_1 & = L_3 - L_2 \end{array}$$

By adding the right side and substituting $L_2 = 3$, we obtain $\sum_{i=1}^{n} L_i = L_{n+2} - 3$.