How to:

Binomial theorem

Binomial Theorem in Genetics

- Calculate the chance of obtaining a certain assortment of phenotypes in a group of offspring
- Can only be applied when there are only two possible phenotypes
- You must know the genotypes of the parents so you can calculate the probability of their
- offspring having a particular phenotype, via a Punnett square

Binomial Theorem equation

$$\frac{n!}{x!(n-x)!}p^xq^{(n-x)}$$

Where: n = number of events (e.g. total number of offspring)

x = number of phenotype 1

n - x = number of phenotype 2

p = probability of phenotype 1 occurring by chance

q = probability of phenotype 2 occurring by chance

! = factorial - multiply that number by all the whole numbers lower than it

Applying the binomial theorem

$$\frac{n!}{x!(n-x)!}p^xq^{(n-x)}$$

Always match the probability with the correct number of phenotypes associated with it.

- You breed an individual with genotype hh with an individual that has genotype Hh. They have 6 offspring. What is the probability that 4 offspring will have the dominant phenotype **Hairy** and 2 will have the recessive phenotype **Bald**?
- First draw a punnet square of the possible offspring **genotypes** arising from those individuals:

	h	h
н	Hh	Hh
h	hh	hh

Use the punnet square to calculate the probability of each phenotype occurring:

	h	h
Н	Hh	Hh
h	hh	hh

Hairy =
$$\frac{2}{4}$$
 = 0.5

Bald =
$$^2/_4$$
 = 0.5

Studies have proved that..

Bald people have no hair

Use the probability of each phenotype occurring and apply to the binomial theorem:

$$\frac{n!}{x!(n-x)!} p^x q^{(n-x)}$$
 q = Hairy = 0.5

You breed an individual with genotype hh with an individual that has genotype Hh. They have 6 offspring. What is the probability that 4 offspring will have the dominant phenotype Hairy and 2 will have the recessive phenotype Bald?

- You breed an individual with genotype hh with an individual that has genotype hh. They have 6 offspring. What is the probability that 1 offspring will have the dominant phenotype **Hairy** and 5 will have the recessive phenotype **Bald**?
- First draw a punnet square of the possible offspring **genotypes** arising from those individuals:

	h	h
h	hh	hh
h	hh	hh

Use the punnet square to calculate the probability of each phenotype occurring:

	h	h
h	hh	hh
h	hh	hh

Hairy =
$$^{0}/_{4}$$
 = 0

Bald =
$$\frac{4}{4}$$
 = 1

Use the probability of each phenotype occurring and apply to the binomial theorem:

$$\frac{n!}{x!(n-x)!} p^x q^{(n-x)}$$

$$q = \text{Hairy} = 0$$

$$p = \text{Bald} = 1$$

You breed an individual with genotype hh with an individual that has genotype Hh. They have 6 offspring. What is the probability that 1 offspring will have the dominant phenotype Hairy and 5 will have the recessive phenotype Bald?

$$\frac{6!}{5!(6-5)!} \, 1^6 \, 0^{(6-5)} \, \boxed{ } \left(\frac{(6 \times 5 \times 4 \times 3 \times 2 \times 1)}{(5 \times 4 \times 3 \times 2 \times 1)(1)} \right) (1^5)(0^1) = 0$$

The chance of having all bald offspring is 100%

- You breed an individual with genotype Hh with an individual that has genotype Hh. They have 6 offspring. What is the probability that 6 offspring will have the dominant phenotype Hairy and 0 will have the recessive phenotype Bald?
- First draw a punnet square of the possible offspring **genotypes** arising from those individuals:

	Н	h
н	НН	Hh
h	Hh	hh

Use the punnet square to calculate the probability of each phenotype occurring:

	Н	h
н	НН	Hh
h	Hh	hh

Hairy =
$$\frac{3}{4}$$
 = 0.75

Bald =
$$\frac{1}{4}$$
 = 0.25

Use the probability of each **phenotype** occurring and apply to the binomial theorem:

$$\frac{n!}{x!(n-x)!} p^{x} q^{(n-x)}$$
 q = Hairy = 0.75
p = Bald = 0.25

■ You breed an individual with genotype hh with an individual that has genotype Hh. They have 6 offspring. What is the probability that 6 offspring will have the dominant phenotype Hairy and 0 will have the recessive phenotype Bald?

Example 3 – Is that maths correct?

$$\frac{6!}{0!(6-0)!}$$
 0.25⁰ 0.75⁽⁶⁻⁰⁾

WITHOUT CALCULATOR:

$$\left(\frac{\frac{(6\times5\times4\times3\times2\times1)}{(0)(6\times5\times4\times3\times2\times1)}}{(0)(6\times5\times4\times3\times2\times1)}\right)(0.25^{0})(0.75^{6}) = ERROR$$

- With Calculator:
 - 0! = 1
 - $0.25^0 = 1$

$$\frac{6!}{0!(6-0)!} \cdot 0.25^{0} \cdot 0.75^{(6-0)} = 0.178 = 17.8\%$$

- Mathematical reasoning: 0! & x⁰ = 1
- YouTube video explanations (mathematical tricks):
 - Why 0! = 1 < https://www.youtube.com/watch?v=Mfk L4Nx2ZI&t >
 - Why x to the power of 0 = 1 < https://www.youtube.com/watch?v=EwIMSnMiJvc&t= >