Prova 1 de Modelagem Mat. em Finanças I (2011/1)

Professor Marco Cabral 30 de março de 2011

QUESTÃO 1: Suppose that $S_0 = 8$, u = 2, d = 1/2 and r = 1/4. Consider an option that pays off

$$V_3 = \left(50 - \sum_{0 \le n \le 3} S_n\right)^+.$$

- (a) Determine the risk-free probabilities \widetilde{p} and \widetilde{q} .
- (b) Determine V_3 (for each ω).
- (c) Determine V_2 (for each ω) (write the numerical expressions, do not need to give values).

QUESTÃO 2: Explain why:

- (a) If d = u, the stock prices are not really random and the model is uninteresting.
- (b) Prices of derivatives depend on the volatility of stock prices but not on their mean rates of growth.
- (c) The arbitrage pricing theory approach to the option-pricing problems is to replicate the option by trading in the stock and money markets.

QUESTÃO 3:

- (a) What prevents the persistency of arbitrage in a real market?
- (b) Show that in the binomial model after n periods there are n+1 possible stock prices.
- (c) What is the difference between the risk-neutral probabilities and the actual probabilities?

QUESTÃO 4: Suppose a stock is selling for 100. Suppose you know that for the following two months the stock will rise by 20% or fall by 10% on each month. Assume the risk-free rate is 1%. Consider an option that pays off

$$V_2 = \left(\max_{0 \le n \le 2} S_n\right) - \left(\min_{0 \le n \le 2} S_n\right).$$

- (a) Determine the risk-free probabilities \tilde{p} and \tilde{q} (write as fractions, do not need to compute the value).
 - (b) Determine V_2 (for each ω).
- (c) Determine V_1 (for each ω) (write the numerical expressions, do not need to give values).

Hint: $100(1.2)^2 = 144$, 100(1.2)(0,9) = 108, $100(0.9)^2 = 81$.

Prova 2 de Modelagem Mat. em Finanças I (2011/1)

Professor Marco Cabral 13 de abril de 2011

Suponha que P seja uma função que associa a cada subconjunto do QUESTÃO 1: conjunto finito Ω um número real. Assim $P(A) \in \mathbb{R}$ para cada $A \subset \Omega$. Suponha que esta função possui somente as seguintes propriedades:

- (i) $P(A) \geq 0$ para todo $A \subset \Omega$;
- (ii) $P(A \cup B) = P(A) \cup P(B)$ se A e B são disjuntos;
- (iii) $P(\Omega) = 1$.

Prove, utilizando explicitamente somente os axiomas acima em cada item, que:

- (a) $P(A^{\mathsf{L}}) = 1 P(A)$;
- (b) $P(C \cup D) \le P(C) + P(D)$;
- (c) $P(\emptyset) = 0$;
- (d) $P(A_1 \cup A_2 \cdots \cup A_n) = \sum_{i=1}^n P(A_i)$ se os A_i 's são disjuntos;
- (e) se $A \subset B$ então $P(A) \leq P(B)$.

QUESTAO 2: Let Z_n be a random variable that depends only on the n-th coin toss and X any random variable that depends only on tosses 3 and 6. Determine (if you can in terms of \mathbb{E} or using the random variable itself):

- (a) $\mathbb{E}_8[Z_5]$
- (b) $\mathbb{E}_1[Z_3]$
- (c) $\mathbb{E}_2[XZ_1]$
- (d) $\mathbb{E}_8[XZ_5]$ (e) $\mathbb{E}_5[XZ_1]$

Justify your answer stating which property you are using.

QUESTÃO 3:

Toss a coin repeatedly. Assume the probability of head on each toss is 1/2, as is the probability of tail. Let $X_j = 2$ if the jth toss results in a head and $X_j = 0$ if the the jth toss results in a tail. Consider the stochastic process M_1, M_2, \ldots defined by

$$M_n = \prod_{j=1}^n X_j,$$

that is, $M_1 = X_1$, $M_2 = X_1X_2$ (product of X_1 and X_2), $M_3 = X_1X_2X_3$,...

- (a) Compute $\mathbb{E}[X_i]$ for every $j \in \mathbb{N}$.
- (b) Compute $\mathbb{E}[M_2]$, $\mathbb{E}[M_3]$, $\mathbb{E}[M_j]$ for every $j \in \mathbb{N}$.
- (c) Compute $\mathbb{E}_{10}[X_{12}]$.
- (d) Compute $\mathbb{E}_{10}[X_8]$.
- (e) Show that M_n is a martingale.

QUESTÃO 4:

- (a) Let X be a random variable (with finite expectation), define $M_n = \mathbb{E}_n[X]$. Show that M_n is a martingale.
- (b) Explain in your own words the meaning of the conditional expectation $\mathbb{E}_n(X)$ of a given random variable X.

Prova 3 de Modelagem Mat. em Finanças I (2011/1)

Professor Marco Cabral 27 de abril de 2011

QUESTÃO 1: Suponha que F seja uma função que associa a cada subconjunto do conjunto finito Ω um número real. Assim $F(A) \in \mathbb{R}$ para cada $A \subset \Omega$. Suponha que esta função possui somente as seguintes propriedades:

- (i) $F(A) \geq 0$ para todo $A \subset \Omega$;
- (ii) $F(A \cup B) = F(A) \cup F(B)$ se $A \in B$ são disjuntos.

Prove, utilizando explicitamente somente os axiomas acima em cada item (note que não necessariamente $F(\Omega) = 1!$) que:

- (a) $F(C \cup D) = F(C) + F(D) F(C \cap D);$ (b) $F(\emptyset) = 0;$
- (c) se $A \subset B$ então $F(A) \leq F(B)$.

QUESTÃO 2: Let Z_n be a random variable that depends only on the n-th coin toss and X any random variable that depends only on tosses 4 and 7. Determine (if you can in terms of \mathbb{E} or using the random variable itself):

(a) $\mathbb{E}_4[XZ_5]$ (c) $\mathbb{E}_5[XZ_1]$ (e) $\mathbb{E}_3[XZ_8]$

Justify your answer stating which property you are using.

QUESTÃO 3:

Toss a coin repeatedly. Assume the probability of head on each toss is 1/2, as is the probability of tail. Let $X_j = 1$ if the jth toss results in a head and $X_j = -1$ if the the jth toss results in a tail. Consider the stochastic process M_1, M_2, \ldots defined by

$$M_n = \sum_{j=1}^n X_j.$$

Show that M_n is a martingale.

QUESTÃO 4: Suppose M_0, M_1, \ldots is a martingale, and let $\Delta_0, \Delta_1, \ldots$ be an adapted process. Define the discrete-time stochastic integral I_0, I_1, \ldots by setting $I_0 = 0$ and

$$I_n = \sum_{j=0}^{n-1} \Delta_j (M_{j+1} - M_j)$$

Show that I_0, I_1, \ldots is a martingale.

QUESTÃO 5: Let X be a random variable (with finite expectation), define $M_n = \mathbb{E}_n[X]$. Show that M_n is a martingale.

QUESTÃO 6: Explain in your own words: What is an adapted stochastic process?

QUESTÃO 7: Suppose X_n is a martingale. Define $Y_n = \max\{X_n, 0\}$. Show that Y_n is a sub-martingale.

Prova 4 de Modelagem Mat. em Finanças I (2011/1)

Professor Marco Cabral 11 de maio de 2011

QUESTÃO 1: Suppose (the usual setup) that $S_0 = 4$, u = 2, d = 1/2 and r = 1/4 (so $\tilde{p} = \tilde{q} = 1/2$ and 1/(1+r) = 4/5 = 0.8) in a two period model (S_0, S_1, S_2) . Consider an American option (can be exercised at any time) that pays off

$$g(S_n) = (4 - S_n)^+$$
.

Determine:

- (a) the price at time zero of this derivative.
- (b) the values of the stopping time τ for each outcome (HH, HT, TH, TT).

QUESTÃO 2: Determine if it is a stopping time or not the following random variables, W in a 2-period binomial model and Z in a 3-period binomial model. If it is not, modify it at the minimum number of points so that it is a stopping time (the answer is not unique!).

- (a) W(HH) = 2, W(HT) = 1, W(TH) = 1, W(TT) = 1.
- (b) Z(HHH) = 2, Z(HHT) = 3, $Z(HTH) = \infty$, Z(HTT) = 3, Z(THH) = 3, Z(THT) = 2, Z(TTH) = 1, Z(TTT) = 2.

QUESTÃO 3: Determine if it is a stopping time or not the following Explain the difference between an American and an European option. Which one is more valuable? Why?

QUESTÃO 4: Why an American option is a super-martingale under the risk-neutral measure?

QUESTÃO 5: What is an stopped (or frozen) process?

QUESTÃO 6: What is the optimal time to exercise an American option?

QUESTÃO 7: What is the intrinsic value for an American option?

Prova 5 de Modelagem Mat. em Finanças I (2011/1)

Professor Marco Cabral

1 de junho de 2011

Utilize a fórmula: $V_n = \max_{\tau \in \mathbb{S}_n} \widetilde{\mathbb{E}}_n \left[\mathbb{I}_{\{\tau \leq N\}} \frac{G_{\tau}}{(1+r)^{\tau-n}} \right].$

QUESTÃO 1: Prove que $V_N(\omega) = \max\{G_N(\omega), 0\}$ para todo $\omega \in \Omega$.

QUESTÃO 2: Mostre que $V_n \ge \max\{G_n, 0\}$ para todo n.

Dica: Tome $\tau_1(\omega) = n$ para todo ω e $\tau_2(\omega) = \infty$ para todo ω .

QUESTÃO 3: Justifique cada um dos passos abaixo (escreva (1) segue pois ..., (2) é verdade pois ...) supondo que $\tau^* \in \mathbb{S}_n$:

$$V_n \ge \widetilde{\mathbb{E}}_n \left[\mathbb{I}_{\{\tau^* \le N\}} \frac{G_{\tau^*}}{(1+r)^{\tau^*-n}} \right] \tag{1}$$

$$= \widetilde{\mathbb{E}}_n \left[\widetilde{\mathbb{E}}_{n+1} \left[\mathbb{I}_{\{\tau^* \le N\}} \frac{G_{\tau^*}}{(1+r)^{\tau^*-n}} \right] \right]$$
 (2)

$$= \widetilde{\mathbb{E}}_n \left[\frac{1}{1+r} \widetilde{\mathbb{E}}_{n+1} \left[\mathbb{I}_{\{\tau^* \le N\}} \frac{G_{\tau^*}}{(1+r)^{\tau^*-n-1}} \right] \right]$$
 (3)

$$=\widetilde{\mathbb{E}}_n\left[\frac{V_{n+1}}{1+r}\right]. \tag{4}$$

QUESTÃO 4: Prove, utilizando a questão anterior, que $\frac{V_n}{(1+r)^n}$ é um supermartingal.

QUESTÃO 5: Suponha que ao longo do caminho que passa por $\omega_1 \cdots \omega_n$ nós temos que $\tau \leq n$ e que p+q=1. Justifique cada um dos passos abaixo:

$$V_{n\wedge\tau}(\omega_1\cdots\omega_n) = V_{\tau}(\omega_1\cdots\omega_n) \tag{5}$$

$$= pV_{\tau}(\omega_1 \cdots \omega_n) + qV_{\tau}(\omega_1 \cdots \omega_n) \tag{6}$$

$$= pV_{(n+1)\wedge\tau}(\omega_1\cdots\omega_n H) + qV_{(n+1)\wedge\tau}(\omega_1\cdots\omega_n T). \tag{7}$$

QUESTÃO 6: Dizemos que f é convexa se $f(ax+(1-a)y) \le af(x)+(1-a)f(y)$ para todo $x,y \in \mathbb{R}$ e $a \in [0,1]$. Prove que se g é convexa e g(0)=0 então $g(\lambda s) \le \lambda g(s)$ para todo $s,\lambda \ge 0$.

QUESTÃO 7: Suponha que g é convexa, S_n é preço da ação, \widetilde{P} a medida neutra a risco (usual setup) que torna o preço descontado da ação um martingal. Usando questão anterior e o que voce sabe, justifique os passos abaixo:

$$\frac{1}{1+r}\widetilde{\mathbb{E}}_n[g(S_{n+1})] \ge \frac{1}{1+r}g(\widetilde{\mathbb{E}}_n[S_{n+1}]) \tag{8}$$

$$\geq g\left(\widetilde{\mathbb{E}}_n\left[\frac{1}{1+r}S_{n+1}\right]\right) \tag{9}$$

$$= g(S_n). (10)$$

QUESTÃO 8: Suponha que $\frac{W_n}{(1+r)^n}$ é um martingal com relação à medida \widetilde{P} e que W_0 é constante. Prove que $W_0 = \widetilde{\mathbb{E}} \left[\frac{W_N}{(1+r)^N} \right]$.

Prova 6 de Modelagem Mat. em Finanças I (2011/1)

Professor Marco Cabral 15 de junho de 2011

Nessa prova definimos $J_n = \max_{\tau \in \mathbb{S}_n} \widetilde{\mathbb{E}}_n \left[\mathbb{I}_{\{\tau \leq N\}} \frac{W_{\tau}}{(1+r)^{\tau-n}} \right].$

QUESTÃO 1: Mostre que $J_n \ge \max\{W_n, 0\}$ para todo n.

QUESTÃO 2: Justifique cada um dos passos abaixo (escreva (1) segue pois ..., (2) é verdade pois ...) supondo que $\tau^* \in \mathbb{S}_n$:

$$J_n \ge \widetilde{\mathbb{E}}_n \left[\mathbb{I}_{\{\tau^* \le N\}} \frac{W_{\tau^*}}{(1+r)^{\tau^* - n}} \right] \tag{1}$$

$$= \widetilde{\mathbb{E}}_n \left[\widetilde{\mathbb{E}}_{n+1} \left[\mathbb{I}_{\{\tau^* \le N\}} \frac{W_{\tau^*}}{(1+r)^{\tau^* - n}} \right] \right]$$
 (2)

$$= \widetilde{\mathbb{E}}_n \left[\frac{1}{1+r} \widetilde{\mathbb{E}}_{n+1} \left[\mathbb{I}_{\{\tau^* \le N\}} \frac{W_{\tau^*}}{(1+r)^{\tau^* - n - 1}} \right] \right]$$
 (3)

$$=\widetilde{\mathbb{E}}_n\left[\frac{J_{n+1}}{1+r}\right]. \tag{4}$$

QUESTÃO 3: Dizemos que f é convexa se $f(ax + (1-a)y) \le af(x) + (1-a)f(y)$ para todo $x, y \in \mathbb{R}$ e $a \in [0, 1]$. Prove que se g é convexa e g(0) = 0 então $g(\lambda s) \le \lambda g(s)$ para todo $s, \lambda \ge 0$.

QUESTÃO 4: Suponha que $\frac{Y_n}{(1+r)^n}$ é um martingal com relação à medida \widetilde{P} e que Y_0 é constante. Prove que $Y_0 = \widetilde{\mathbb{E}}\left[\frac{Y_N}{(1+r)^N}\right]$.

QUESTÃO 5: Let M_n be a symmetric random walk, and define its maximum-to-date process $Z_n = \max_{1 \le k \le n} M_k$. Use an argument based on reflected paths:

- (a) to determine a such that $\mathbb{P}\{Z_n \geq 15, M_n = 4\} = \mathbb{P}\{M_n = a\}$ for n an even positive integer;
 - (b) to prove that $\mathbb{P}\{\tau_1 \leq 5\} = \mathbb{P}\{M_5 = 1\} + 2\mathbb{P}\{M_5 \geq 3\}$.

Explain this argument carefully for (a) and (b).

QUESTÃO 6: Define $f(\sigma) = pe^{\sigma} + qe^{-\sigma}$ with p, q > 0, p + q = 1.

(a) Find $\sigma_0 > 0$ such that $f(\sigma_0) = 1$. Be careful to prove that your $\tau_0 > 0$

Hint: Let $x=e^{\sigma}$ and solve a quadradic equation. Only one solution is positive.

(b) Prove that $f(\sigma) > 1$ for all $\sigma > \sigma_0$.

Hint: Use calculus to show that f is increasing.

QUESTÃO 7: Let M_n be a symmetric random walk and $\tau = \min\{n; M_n = 3\}$. Prove that τ is a stopping time.