Mass and Balance Calculation for Aircraft - Isaac Physics Training Aeroplane IP120

Fuel requirement

Duration of flight (hr)	Safety margin (hr)	Total time (hr)		Fuel volume (L)*		Fuel mass (kg)
	+ 0.75 =	, ,	× 25 L/hr =	,	× 0.70 kg/L =	ν Ο,

^{*} Maximum fuel 140L

Mass and Balance

	Mass (kg)		Position (m)		Moment of mass (kg m)	Centre of mass (m)	
Empty aircraft	610	×	2.10	=		$=\frac{Total\ moment\ of\ mass}{}$	
Pilot		×	2.20	=		Total mass	
Front row passengers		×	2.20	=		=m	
Rear row passengers		×	3.00	=		Check that	
Baggage		×	3.20	=		Total mass < 950 kg	
Fuel*		×	2.40	=		Centre of mass between	
Total	+				+	2.13m and 2.40m	

^{*}Use fuel mass calculated in the table at the top.

⁺Add up the numbers in the column to calculate the total.