【报告】赛题 A 的数据分析报告问题二——2010YYDS, 彭扬

1.分析目标确认

联合查看对比分析附件 1 与附件 4,通过归因分析等方法得到各维度信息量与目标值(成交周期)的变化关系。

2. 查看数据 data_merge为最后处理过的数据文件,可用于建模

2.1 数据类型

将附件 1 与附件 4 组合排列,并给定标题行,转换为 EXCEL 的 xlsx 格式 (相比于问题一,新增了 5 列特征)。

特征名称	数据类型	特征名称	数据类型
车辆 id	int64	燃油类型	int64
展销时间	datetime64[ns]	新车价	float64
品牌 id	int64	匿名特征1	int64
车系 id	int64	匿名特征 2	int64
车型 id	int64	匿名特征3	int64
里程	float64	匿名特征 5	int64
车辆颜色	int64	匿名特征 6	int64
车辆所在城市 id	int64	匿名特征8	int64
国标码	int64	匿名特征9	int64
过户次数	int64	匿名特征 10	int64
载客人数	int64	匿名特征 14	int64
注册日期	datetime64[ns]	交易价格	float64
上牌日期	datetime64[ns]	上架时间	object
国别	int64	上架价格	float64
厂商类型	int64	价格调整	object
年款	int64	下架时间	object
排量	float64	成交时间	object
变速箱	int64		

2.2 特征重构

将附件 4 的内容与附件 1 拼接。并对"价格调整"栏进行维度重构,提取出 5 维新的特征,如下: "是否调价""调价次数""调价频率(次/天)""最终调价时间""最终调价"。如下图 1:

是否调 价	调价 次数	调价 频率	最终调价 时间	最终 调价	成交时 间	成交时间 New	成交 周期
False	0	0.0	2021-06- 25	7.38	2021- 07-23	2021-07- 23	28
False	0	0.0	2021-06- 29	4.38	2021- 06-30	2021-06- 30	1
False	0	0.0	2021-06- 30	5.9	2021- 07-19	2021-07- 19	19

图 1 计算所得新增特征维度表示意图

此外,考虑到二手车交易收到价格的影响较大,所以对比新车价等因素,最终对"初始降价"(二手车第一次定价与新车价的差值)、"最终降价"(二手车交易价格与新车价的差值)、"最终降价比"等。

2.3 缺失值占比

附件 4 中的缺失值占比如下:

特征名称	数据类型
车辆 id	0.00%
上架时间	0.00%
上架价格	0.00%
价格调整	0.00%
下架时间	0.00%
成交时间	20.00%

题目中提到"附件 4"门店交易训练数据"包括 6 个字段,如下表所示,其中所 有 carid 等相关信息包含在附件 1"估价训练数据"中。", 下架时间(成交车辆下架时间和成交时间相同)。

序号	Features	Description		
1	carid	车辆 id		
2	pushDate	上架时间		
3	pushPrice	上架价格		
4	updatePriceTimeJson	{价格调整时间:调整后价格}		
5	pullDate	下架时间(成交车辆下架时间和成交时间相同)		
6	withdrawDate	成交时间		

图 2 题 A 中问题二给定的信息

因此,<u>建议可以根据拼接的数表来对车辆的成交时间进行缺失值的填补,并以此计算</u> 出"成交周期"

2.4 重复值检验

经过查验,该数据不含有重复值(最终所得清洗数据,可见: data merge.xlsx)

2010410S

3.数据分析

3.1 时间分布 (给定成交速度)

对时间分布进行描述性统计,可得下表:

特征名称	展销时间	注册日期	上牌日期	上架时间	成交时间 New	成交周期
count	9993	9993	9993	10000	10000	10000
mean	41:11.7	29:54.1	14:11.6	14:21.1	2020/12/14 1:01	22.1992
min	2020/1/1 0:00	2004/9/1 0:00	2005/5/18 0:00	2020/1/1 0:00	2020/1/7 0:00	0
25%	2020/7/28 0:00	2012/11/1 0:00	2013/2/21 0:00	2020/7/23 0:00	2020/8/18 0:00	6
50%	2020/11/21 0:00	2015/7/1 0:00	2015/11/23 0:00	2020/11/14 0:00	2020/12/6 12:00	13
75%	2021/4/13 0:00	2017/9/1 0:00	2017/12/14 0:00	2021/4/9 0:00	2021/4/23 0:00	28
max	2021/7/31 0:00	2021/4/1 0:00	2021/6/15 0:00	2021/7/31 0:00	2021/12/6 0:00	277
mode						1

对成交周期总体分布进行查看,如下图:

将成交周期,对数据按照"周"进行分箱操作,可得"成交速度"字段:

图 3 成交速度的交易额分布量

可以发现,一周内(1<x<=7)内车辆的成交量最大。

- 1: 1天
- 2:1周
- 3:2周
- 4: 1月
- 5:1季度
- 6: 1年

ALL YAND

3.2 相关性分析

对所有特征进行相关性分析可以得到下表,对相关性系数较大的特征进行进一步的分析。

特征名称	相关系数	特征名称	相关系数
成交周期	1	最终降价	0.059323911
成交速度	0.980349538	新车价	0.052457721
调价次数	0.300546697	车系 id	0.051894532
是否调价	0.280551791	里程	0.042839727
初始降价比	0.199944821	国别	0.037832715
调价频率	0.19917991	匿名特征 5	0.037463127
最终降价比	0.18322691	变速箱	0.027262854
上架价格	0.163675884	匿名特征3	0.020543588
交易价格	0.153693636	载客人数	0.019474376
最终调价	0.153693636	品牌 id	0.018615293
过户次数	0.144847351	匿名特征 14	0.017409408
车辆所在城市 id	0.124689677	车辆颜色	0.016838842
上牌日期	0.101191014	车辆 id	0.016780908
注册日期	0.096513808	匿名特征 6	0.014172403
国标码	0.092519186	排量	0.013975654
车辆级别	0.091841812	匿名特征 2	0.013762206
年款	0.085424535	匿名特征1	0.012901308
展销时间	0.07758872	车型 id	0.010081574
初始降价	0.073243575	匿名特征 10	0.009689279
厂商类型	0.071484836	燃油类型	0.006866573
匿名特征 8	0.066543931	匿名特征 9	0.001363688

3.3 调价次数、是否调价

(1) 是否调价

从下图看,未进行调价的车辆交易周期明显比经过调价的车辆交易周期小。

(2) 调价次数

如下所示,交易车辆中未调价的车辆交易额最大,且平均交易周期最小,调价次数最 多的车辆,其交易周期最大,随着调价次数的增大,车辆的平均交易周期增大。

这说明,车辆的初始定价对车辆的成交周期的影响较大,降价次数对成交周期有影响。

6 7 8 12

3.4 初始降价比、最终降价比

(1) 初始降价比(与新车价相比)

(2) 最终降价比(与新车价相比)

可以发现,降价比对成交速度有一定影响,降价比较大时,二手车的成交速度周期较小。。

20104105,

3.5 上架价格、交易价格

从上图中可以发现,在前两个月内,上架价格越高,其成交速度越大。

从图中可以发现,在前1个月内完成交易的二手车辆,其平均交易价格较低,且随着成交速度的增长,其平均交易价格也在增长

20104105

3.6 过户次数、上牌日期、城市位置

