Universidade Federal do Pará

Campus Universitário de Castanhal

Faculdade de Computação

Comunicações Digitais

Aula 4 – Parte 1

Professor: Diogo Acatauassú

Na aula de hoje

- Analysis and Transmission of Signals
- Fourier Integral
- Transforms of Some Useful Functions
- Properties of the Fourier Transform

- Spectral representation of **periodic signals** = **Fourier series**.
- Spectral representation of **aperiodic signals** = **Fourier integral**
- The Fourier series is used to represent a **periodic function** by a **discrete sum** of complex exponentials.
- The Fourier transform is then used to represent a general, **non-periodic function** by a continuous superposition **or integral of complex exponentials.**
- The Fourier transform can be viewed as **the limit of the Fourier series of a function with the period approaches to infinity**, so the limits of integration change from one period to $(-\infty, +\infty)$.

$$G(f) = \mathcal{F}[g(t)]$$

$$g(t) \iff G(f)$$

• g(t) - Inverse Fourier transform of G(f)
$$g(t) = \mathcal{F}^{-1}[G(f)]$$

$$g(t) = \mathcal{F}^{-1}[G(f)]$$

$$G(f) = \int_{-\infty}^{\infty} g(t)e^{-j\omega t} dt$$

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{j\omega t} df$$

• For real g(t), G(f) must be complex.

• f versus ω:

• We use two equivalent notations of angular frequency ω and frequency f in representing signals in the frequency domain.

Conjugate Symmetry Property:

• If g(t) is a real function of t, then G(f) and G(-f) are complex conjugates.

$$G(-f) = G^*(f)$$

$$|G(-f)| = |G(f)|$$

$$\theta_g(-f) = -\theta_g(f)$$

• For real g(t), the amplitude spectrum |G(f)| is an even function and the phase spectrum $\theta(f)$ is an odd function.

• Even function:

$$f(x) = f(-x)$$

$$f(x) - f(-x) = 0.$$

• Odd function:

$$-f(x) = f(-x)$$

$$f(x) + f(-x) = 0.$$

• Example: Find the Fourier transform of $e^{-at}u(t)$:

• Example: Find the Fourier transform of $e^{-at}u(t)$:

$$G(f) = \int_{-\infty}^{\infty} e^{-at} u(t) e^{-j2\pi ft} dt = \int_{0}^{\infty} e^{-(a+j2\pi f)t} dt = \left. \frac{-1}{a+j2\pi f} e^{-(a+j2\pi f)t} \right|_{0}^{\infty}$$

But $|e^{-j2\pi ft}| = 1$. Therefore, as $t \to \infty$, $e^{-(a+j2\pi f)t} = e^{-at}e^{-j2\pi ft} = 0$ if a > 0. Therefore,

$$G(f) = \frac{1}{a + j\omega} \qquad a > 0$$

$$e^{\pm j\omega_0 t} = \cos \omega_0 t \pm j \sin \omega_0 t$$

$$egin{aligned} e^{ix} &= \cos x + i \sin x \ \implies & \left| e^{ix}
ight| = \left| \cos x + i \sin x
ight| \ &= \sqrt{\left(\operatorname{Re}(\cos x + i \sin x)
ight)^2 + \left(\operatorname{Im}(\cos x + i \sin x)
ight)^2} \ &= \sqrt{\cos^2 x + \sin^2 x} \ &= 1 \end{aligned}$$

- Example: Find the Fourier transform of $e^{-at}u(t)$:
- Expressing $\alpha + j\omega$ in polar form: $\sqrt{a^2 + \omega^2} e^{j \tan^{-1}(\frac{\omega}{a})}$

$$G(f) = \frac{1}{\sqrt{a^2 + (2\pi f)^2}} e^{-j \tan^{-1}(\frac{2\pi f}{a})}$$

• Therefore:

$$|G(f)| = \frac{1}{\sqrt{a^2 + (2\pi f)^2}}$$
 and $\theta_g(f) = -\tan^{-1}\left(\frac{2\pi f}{a}\right)$

• Linearity:

$$g_1(t) \iff G_1(f)$$
 and $g_2(t) \iff G_2(f)$

$$a_1g_1(t) + a_2g_2(t) \iff a_1G_1(f) + a_2G_2(f)$$

• Linear combinations of signals in the time domain correspond to linear combinations of their Fourier transforms in the frequency domain:

$$\sum_{k} a_{k} g_{k}(t) \iff \sum_{k} a_{k} G_{k}(f)$$

- Transforms of some useful functions:
- Unit rectangular function:

$$\Pi(x) = \begin{cases} 1 & |x| \le \frac{1}{2} \\ 0.5 & |x| = \frac{1}{2} \\ 0 & |x| > \frac{1}{2} \end{cases}$$

- Transforms of some useful functions:
- sinc(x) function:

$$\mathrm{sinc}\,(x) = \frac{\sin x}{x}$$

• sinc(x) is the product of an oscillating signal $\sin(x)$ (of period 2π) and a monotonically decreasing function 1/x.

• Example: Find the Fourier transform of $g(t) = \Pi(t/\tau)$:

$$G(f) = \int_{-\infty}^{\infty} \Pi\left(\frac{t}{\tau}\right) e^{-j2\pi f t} dt$$

• $\Pi(t/\tau) = 1$ for $|t| < \tau/2$ and $\Pi(t/\tau) = 0$ for $|t| > \tau/2$.

$$G(f) = \int_{-\tau/2}^{\tau/2} e^{-j2\pi ft} dt$$

• Example: Find the Fourier transform of $g(t) = \Pi(t/\tau)$:

$$G(f) = \int_{-\tau/2}^{\tau/2} e^{-j2\pi f t} dt = -\frac{1}{j2\pi f} (e^{-j\pi f \tau} - e^{j\pi f \tau}) = \frac{2\sin(\pi f \tau)}{2\pi f}$$
$$= \tau \frac{\sin(\pi f \tau)}{(\pi f \tau)} = \tau \text{ sinc } (\pi f \tau)$$
$$\sin(\theta) = \frac{1}{2i} \left(e^{+i\theta} - e^{-i\theta} \right)$$

• Therefore:

$$\Pi\left(\frac{t}{\tau}\right) \Longleftrightarrow \tau \operatorname{sinc}\left(\frac{\omega\tau}{2}\right) = \tau \operatorname{sinc}\left(\pi f \tau\right)$$

• $\operatorname{sinc}(x) = 0$ when $x = +- n\pi$

- Example: Find the Fourier transform of the impulse function $\delta(t)$:
- Sampling property of the impulse function.

$$\mathcal{F}[\delta(t)] = \int_{-\infty}^{\infty} \delta(t)e^{-j2\pi ft} dt = e^{-j2\pi f \cdot 0} = 1$$

• Example: Find the Inverse Fourier transform of $\delta(f)$:

$$1 \iff \delta(f)$$

- g(t) = 1 is a dc signal that has a single frequency component at f=0.
- \bullet If an impulse at f=0 is a spectrum of a dc signal, what does an impulse at $f=f_0$ represent?

- Example: Find the Inverse Fourier transform of $\delta(f-f_0)$:
- Sampling property of the impulse function.

$$\mathcal{F}^{-1}[\delta(f - f_0)] = \int_{-\infty}^{\infty} \delta(f - f_0)e^{j2\pi ft} df = e^{j2\pi f_0 t}$$

• Therefore:

$$e^{j2\pi f_0 t} \iff \delta(f - f_0)$$

• The spectrum of an everlasting exponential $e^{j2\pi f_0t}$ is a single impuls at $f = f_0$.

$$e^{-j2\pi f_0 t} \Longleftrightarrow \delta(f + f_0)$$

• Example: Find the Inverse Fourier transform of the everlasting sinusoid $cos(2\pi f_0 t)$

• Euler Formula:
$$\cos 2\pi f_0 t = \frac{1}{2} (e^{j2\pi f_0 t} + e^{-j2\pi f_0 t})$$

• So, from the last example:

$$\cos 2\pi f_0 t \Longleftrightarrow \frac{1}{2} [\delta(f + f_0) + \delta(f - f_0)]$$

• The spectrum of $\cos(2\pi f_0 t)$ consists of two impulses at f_0 and $-f_0$ in the f-domain, or, two impulses at $\pm \omega_0 = \pm 2\pi f_0$ in the ω -domain.

- Example: Find the Inverse Fourier transform of the everlasting sinusoid $cos(2\pi f_0 t)$
- An everlasting sinusoid $\cos(2\pi f_0 t)$ can be synthesized by two everla exponentials, $e^{j\omega_0 t}$ and $e^{-j\omega_0 t}$.
- Therefore, the Fourier spectrum consists of only two components of ω_0 and $-\omega_0$.

Fourier Transform Pairs

_	g(t)	G(f)	
1	$e^{-at}u(t)$	$\frac{1}{a+j2\pi f}$	<i>a</i> > 0
2	$e^{at}u(-t)$	$\frac{1}{a-j2\pi f}$	a > 0
3	$e^{-a t }$	$\frac{2a}{a^2 + (2\pi f)^2}$	a > 0
4	$te^{-at}u(t)$	$\frac{1}{(a+i2\pi f)^2}$	a > 0
5	$t^n e^{-at}u(t)$	$\frac{(a+j2\pi f)^2}{n!}$ $\frac{(a+j2\pi f)^{n+1}}{(a+j2\pi f)^{n+1}}$	a > 0
6	$\delta(t)$	1	
7	1	$\delta(f)$	
8	$e^{j2\pi f_0t}$	$\delta(f-f_0)$	
9	$\cos 2\pi f_0 t$	$0.5 \left[\delta(f + f_0) + \delta(f - f_0)\right]$	
10	$\sin 2\pi f_0 t$	$j0.5 [\delta(f + f_0) - \delta(f - f_0)]$	
11	u(t)	$\frac{1}{2}\delta(f) + \frac{1}{j2\pi f}$	
12	sgn t	$\frac{2}{j2\pi f}$	
13	$\cos 2\pi f_0 t \ u(t)$	$\frac{1}{4} [\delta(f - f_0) + \delta(f + f_0)] + \frac{j2\pi f}{(2\pi f_0)^2 - (2\pi f)^2}$	
14	$\sin 2\pi f_0 t u(t)$	$\frac{2}{j2\pi f}$ $\frac{1}{4}[\delta(f - f_0) + \delta(f + f_0)] + \frac{j2\pi f}{(2\pi f_0)^2 - (2\pi f)^2}$ $\frac{1}{4j}[\delta(f - f_0) - \delta(f + f_0)] + \frac{2\pi f_0}{(2\pi f_0)^2 - (2\pi f)^2}$	
15	$e^{-at}\sin 2\pi f_0 t u(t)$	$\frac{2\pi f_0}{(a+j2\pi f)^2 + 4\pi^2 f_0^2}$	a > 0
16	$e^{-\alpha t}\cos 2\pi f_0tu(t)$	$\frac{2\pi f_0}{(a+j2\pi f)^2 + 4\pi^2 f_0^2}$ $\frac{a+j2\pi f}{(a+j2\pi f)^2 + 4\pi^2 f_0^2}$	a > 0
17	$\Pi\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc} (\pi f \tau)$	
18	$2B\operatorname{sinc}(2\pi Bt)$	$\Pi\left(\frac{f}{2B}\right)$	
19	$\Delta\left(\frac{t}{\tau}\right)$	$\frac{\tau}{2} \operatorname{sinc}^2 \left(\frac{\pi f \tau}{2} \right)$	
20	$B \operatorname{sinc}^2(\pi B t)$	$\Delta\left(\frac{f}{2R}\right)$	
21	$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$f_0 \sum_{n=-\infty}^{\infty} \delta(f - nf_0)$	$f_0 = \frac{1}{T}$
22	$e^{-t^2/2\sigma^2}$	$\sigma \sqrt{2\pi} e^{-2(\sigma \pi f)^2}$	

• Time-Frequency Duality:

• "A photograph can be obtained from its negative, and by using an identical procedure, the negative can be obtained from the photograph."

• Duality Property:

$$g(t) \iff G(f)$$

$$G(t) \iff g(-f)$$

- If the Fourier transform of g(t) is G(f) then the Fourier transform of G(t), with f replaced by t, is the g(-f) which is the original time domain signal with t replaced by -f.
- Example: Apply de duality property for $g(t) = \Pi(t/\tau)$

• Duality Property:

• Example: Apply the duality property for $g(t) = \Pi(t/\tau)$

$$\Pi\left(\frac{t}{\tau}\right) \Longleftrightarrow \tau \operatorname{sinc}(\pi f \tau)$$

$$\Pi\left(\frac{t}{\alpha}\right) \Longleftrightarrow \underbrace{\alpha \operatorname{sinc}(\pi f \alpha)}_{G(f)}$$

• G(t) is the same as G(f) with f replaced by t, and g(-f) is the same as g(t) with t replaced by -f.

$$\underbrace{\alpha \operatorname{sinc}(\pi \alpha t)}_{G(t)} \Longleftrightarrow \underbrace{\Pi\left(-\frac{f}{\alpha}\right)}_{g(-f)} = \Pi\left(\frac{f}{\alpha}\right)$$

• Duality Property:

• $\Pi(-t) = \Pi(t)$ since $\Pi(t)$ is an even function. Substituting $\tau = 2\pi\alpha$:

$$\tau \operatorname{sinc}\left(\frac{\alpha t}{2}\right) \Longleftrightarrow 2\pi \ \Pi\left(\frac{2\pi f}{\tau}\right)$$

- Time-Scaling Property:
- If: $g(t) \iff G(f)$
- For any real constant a: $g(at) \iff \frac{1}{|a|}G\left(\frac{f}{a}\right)$
- The function g(at) represents the function g(t) compressed in time by a factor a(|a|>1).
- The function G(f/a) represents the function G(f) expanded in frequency by the same factor a.
- For a < 0: $g(at) \iff \frac{-1}{a}G\left(\frac{f}{a}\right)$
- Time compression of a signal results in its spectral expansion, and time expansion of the signal results in its spectral compression.

• Time-Scaling Property:

- Compression in time by a factor a means that the signal is varying more rapidly by the same factor.
- To synthesize such a signal, the frequencies of its sinusoidal components must be increased by the factor a, implying that its frequency spectrum is expanded by the factor a.

• Similarly, a signal expanded in time varies more slowly; hence, the frequencies of its components are lowered, implying that its frequency spectrum is compressed.

• Time-Scaling Property:

- Time-Scaling Property:
- Reciprocity of signal duration and its bandwidth:
- The time-scaling property implies that if g(t) is wider, its spectrum is narrower, and vice versa.

- Doubling the signal duration halves its bandwidth, and vice versa.
- The bandwidth of a signal is inversely proportional to the signal duration or width (in seconds).

• Time-Shifting Property:

• If:
$$g(t) \iff G(f)$$

• Then:

$$g(t-t_0) \Longleftrightarrow G(f)e^{-j2\pi ft_0}$$

• *Proof:* By definition:

$$\mathcal{F}[g(t-t_0)] = \int_{-\infty}^{\infty} g(t-t_0)e^{-j2\pi ft} dt$$

•Letting t- t_0 =x:

$$\mathcal{F}[g(t-t_0)] = \int_{-\infty}^{\infty} g(x)e^{-j2\pi f(x+t_0)} dx$$
$$= e^{-j2\pi ft_0} \int_{-\infty}^{\infty} g(x)e^{-j2\pi fx} dx = G(f)e^{-j2\pi ft_0}$$

- \bullet Delaying a signal by t_0 seconds does not change its amplitude spectrum.
- The phase spectrum, however, is changed by $-2\pi ft_0$ (linear function of f).
- Physical explanation for linear phase.

- Frequency-Shifting Property:
- If: $g(t) \iff G(f)$
- then: $g(t)e^{j2\pi f_0t} \iff G(f-f_0)$
- The modulation property.
- Proof:

$$\mathcal{F}[g(t)e^{j2\pi f_0t}] = \int_{-\infty}^{\infty} g(t)e^{j2\pi f_0t}e^{-j2\pi ft}\,dt = \int_{-\infty}^{\infty} g(t)e^{-j(2\pi f - 2\pi f_0)t}\,dt = G(f - f_0)$$

• Multiplication of a signal by a factor $e^{j2\pi f_0t}$ shifts the spectrum

- Frequency-Shifting Property:
- There is a duality between the time-shifting and the frequency-shiftir properties.
- Changing f_0 to f_0 : $g(t)e^{-j2\pi f_0 t} \iff G(f + f_0)$
- Because $e^{j2\pi f_0 t}$ is not a real function that can be generated, frequen in practice is achieved by multiplying g(t) by a sinusoid:

$$g(t)\cos 2\pi f_0 t = \frac{1}{2} \left[g(t)e^{j2\pi f_0 t} + g(t)e^{-j2\pi f_0 t} \right]$$

• Then: $g(t)\cos 2\pi f_0t \Longleftrightarrow \frac{1}{2}\left[G(f-f_0)+G(f+f_0)\right]$

- Frequency-Shifting Property:
- The multiplication of a signal g(t) by a sinusoid of frequency f_0 shifts the spectrum G(f) by $\pm f_0$.
- Multiplication of a sinusoid $cos(2\pi f_0 t)$ by g(t) amounts to modulating the sinusoid amplitude.
- This type of modulation is known as amplitude modulation.
- The sinusoid $\cos(2\pi f_0 t)$ is called the **carrier**.
- The signal g(t) is the **modulating signal.**
- The signal $g(t)\cos(2\pi f_0 t)$ is the **modulated signal**.

- Frequency-Shifting Property:
- To sketch a signal $g(t)\cos(2\pi f_0 t)$, we observe that:

$$g(t)\cos 2\pi f_0 t = \begin{cases} g(t) & \text{when } \cos 2\pi f_0 t = 1\\ -g(t) & \text{when } \cos 2\pi f_0 t = -1 \end{cases}$$

- $g(t)\cos(2\pi f_0 t)$ touches g(t) when the sinusoid $\cos(2\pi f_0 t)$ is at its positive peaks and touches -g(t) when $\cos(2\pi f_0 t)$ is at its negative peaks.
- g(t) and -g(t) act as **envelopes** for the signal g(t)cos($2\pi f_0 t$).
- The signal -g(t) is a mirror image of g(t) about the horizontal axis.

- Frequency-Shifting Property:
- Modulation is a common application that shifts signal spectra.
- If several message signals (ex: radio signals), each occupying the same frequency band, are transmitted simultaneously over a common transmission medium, they will all interfere.
- This problem is solved by using modulation, whereby each radio station is assigned a distinct carrier frequency.
- Each station transmits a modulated signal, thus shifting the signal spectrum to its allocated band, which is not occupied by any other station.
- A radio receiver can demodulate the signal. **Demodulation** consists of another spectral shift required to restore the signal to its original band.

- Convolution Theorem:
- The convolution of two functions g(t) and w(t) is defined as:

$$g(t) * w(t) = \int_{-\infty}^{\infty} g(\tau)w(t - \tau) d\tau$$

• If:

$$g_1(t) \iff G_1(f)$$
 $g_2(t) \iff G_2(f)$

- Then:
- Time convolution: $g_1(t) * g_2(t) \iff G_1(f)G_2(f)$
- Frequency convolution: $g_1(t)g_2(t) \iff G_1(f) * G_2(f)$

Properties of Fourier Transform Operations

Operation	g(t)	G(f)
Superposition	$g_1(t) + g_2(t)$	$G_1(f) + G_2(f)$
Scalar multiplication	kg(t)	kG(f)
Duality	G(t)	g(-f)
Time scaling	g(at)	$\frac{1}{ a }G\left(\frac{f}{a}\right)$
Time shifting	$g(t-t_0)$	$G(f)e^{-j2\pi ft_0}$
Frequency shifting	$g(t)e^{j2\pi f_0t}$	$G(f-f_0)$
Time convolution	$g_1(t) \ast g_2(t)$	$G_1(f)G_2(f)$
Frequency convolution	$g_1(t)g_2(t)$	$G_1(f)*G_2(f)$
Time differentiation	$\frac{d^n g(t)}{dt^n}$	$(j2\pi^r f)^n G(f)$
Time integration		$\frac{G(f)}{j2\pi f} + \frac{1}{2}G(0)\delta(f)$

