Lewis & Clark Math 215

Problem Set 14

Due: Monday, April 6th

Instructions: Answer each of the following questions and provide a justification for your answer. In addition to the points assigned below, you will receive 0-2 writing points for the entire problem set.

- 1. Let $f: A \to B$ and $g: B \to C$ be functions. Assume that f and g are both injective functions. Either prove that $g \circ f: A \to C$ is always injective, or provide a counter-example.
- 2. Let $f:A\to B$ and $g:B\to C$ be functions. Assume that f and g are both surjective functions. Either prove that $g\circ f:A\to C$ is always surjective, or provide a counter-example.
- 3. Let $f:A\to B$ and $g:B\to C$ be functions. Assume that f is a surjective function and g is an injective function.
 - (a) Either prove that $g \circ f : A \to C$ is always injective, or provide a counter-example.
 - (b) Either prove that $g \circ f : A \to C$ is always surjective, or provide a counter-example.
- 4. Create functions $f: A \to B$ and $g: B \to C$ such that g is **not** injective, but $g \circ f$ is injective.
- 5. Describe a bijection between the set of natural numbers N and the set of square numbers. Make sure you prove that you are actually describing a function (so for any given element you need to be able to describe where it is sent) and that you argue why it is injective and surjective.
- 6. Suppose that $|\mathbb{N}| = |A| = |B|$. Prove that $|\mathbb{N}| = |A \cup B|$.
- 7. Describe a bijection between the set of natural numbers \mathbb{N} and $\mathbb{N} \times \mathbb{N}$. Make sure you prove that you are actually describing a function (so for any given element you need to be able to describe where it is sent) and that you argue why it is injective and surjective.