

Lecture 9. Constraint-Based Clustering

- Why Constraint-Based Clustering?
- Categories of Constraints
- Constraint-Based Clustering: Handling Hard Constraints
- Constraint-Based Clustering: Handling Soft Constraints
- Constraint-Based Clustering: Constraints on Distance Measures
- ☐ User-Guided Clustering: Taking User's *Hints* as Constraints
- Summary

Why Constraint-Based Cluster Analysis?

- Constraint-based clustering: Clustering with user-specified constraints
 - □ Semi-supervised clustering: Often in the form of "cannot link" and "must link"
 - Constraint-based clustering can be much broader, e.g., distance constraints, user-guidance, user-specified # of clusters, granularity of clusters, etc.
- Constraint-based clustering is highly desirable to guide clustering
 - Users know their applications the best
 - Less parameters but more user-desired constraints
- Application examples
 - Clustering students: for awards or for parties?
 - Allocating delivery centers? Need to consider obstacles (highways, rivers, lakes and mountains), available roads, traffic, etc.

Categorization of Constraints

- □ Constraints **on instances**: Specify how a pair or a set of instances should be grouped
 - in the cluster analysis
 - Must-link vs. cannot-link constraints
 - \square must-link(x, y): Objects x and y should be grouped into one cluster
 - Constraints can be defined using variables
 - \square Ex. cannot-link(x, y) if dist(x, y) > d
- Constraints on clusters: Specify a requirement of the clusters
 - \square Ex. Specify the minimum number of objects in a cluster, the maximum diameter of a cluster, the shape of a cluster (e.g., a convex), # of clusters (e.g., k)
- Constraints on distance measures
 - Specify a requirement that the distance calculation must respect
 - Ex. Driving on roads, observing obstacles (e.g., rivers, lakes)
- □ Issues: Hard vs. soft constraints; conflicting or redundant constraints

Constraint-Based Clustering: Handling Hard Constraints

- ☐ Handling hard constraints: **Strictly respect the constraints in cluster assignments**
- □ Example: The **COP-***k***-***means* algorithm
 - Generate super-instances for must-link constraints
 - Compute the transitive closure of the must-link constraints
 - □ To represent such a subset, replace all those objects in the subset by the mean
 - The super-instance also carries a weight, which is the number of objects it represents
 - □ Conduct modified *k-means* clustering to respect cannot-link constraints
 - Modify the center-assignment process in k-means to a nearest feasible center assignment
 - An object is assigned to the nearest center so that the assignment respects all cannot-link constraints

Constraint-Based Clustering: Handling Soft Constraints

- ☐ Treated as an **optimization problem**
 - When a clustering violates a soft constraint,
 a penalty is imposed on the clustering
- Overall objective
 - Optimizing the clustering quality and minimizing the constraint violation penalty

Handling Soft Constraints: An Example Algorithm

- □ CVQE (Constrained Vector Quantization Error) algorithm
 - Conduct k-means clustering while enforcing constraint violation penalties
- Objective function

- Penalty of a must-link violation
 - □ If objects x and y must-be-linked but they are assigned to two different centers, c_1 and c_2 , $dist(c_1, c_2)$ is added to the objective function as the penalty
- Penalty of a cannot-link violation
 - □ If objects x and y cannot-be-linked but they are assigned to a common center c, dist(c, c'), between c and c' is added to the objective function as the penalty, where c' is the closest cluster to c that can accommodate x or y

Constraints on Distance Measures: Efficient Processing

- □ Spatial clustering in the presence of obstacles (Tung, et al., ICDE'01)
- ☐ It is preferable to use *K-medoids*
 - K-means may locate the service center in the middle of a lake

- ☐ It is costly to compute such constrained clustering
 - Re-compute distance between a point with new centroids
- □ Need to compute the visibility graph and shortest paths
 - Triangulation and micro-clustering
- ☐ Two kinds of join indices (shortest-paths) worth pre-computation
 - □ VV index: Indices for any pair of obstacle vertices
 - MV index: Indices for any pair of micro-cluster and obstacle indices

An Example: Clustering With Obstacle Objects

□ Compare clustering results: Without the obstacle constraints vs. with the constraints

Enforcing the obstacle constraint

User-Guided Clustering: A Special Kind of Constraints

- □ X. Yin, J. Han, P. S. Yu, "Cross-Relational Clustering with User's Guidance", KDD'05
- ☐ The goal or purpose of a clustering task should be specified by users
- Example: Clustering students by research area
- "Students" are linked with many other relations in a database

- ☐ It is not easy for a user to provide a good training set or a set of clear constraints
- ☐ It is much easier for a user to specify an attribute as a *hint*, such as the *area* (or *field*) of a student's research group for user-guided clustering

User-Guided Clustering Is Different from Classification

- ☐ User-specified *feature* (in the form of *attribute*) is used as a hint, not class labels
 - The attribute may contain too many or too few distinct values
 - E.g., a user may want to cluster students into 20 clusters instead of 3
 - Additional features need to be included in cluster analysis across multiple relations

User-Guided Clustering Is Different from Semi-Supervised Clustering

- □ **Semi-supervised clustering**: User provides a training set consisting of *similar* (*must-link*) and *dissimilar* (*cannot link*) pairs of objects
- □ **User-guided clustering**: User specifies an attribute as a hint, and more relevant features are found for clustering
- Why not semi-supervised clustering?
 - Much information (in multiple relations) is needed to judge whether two tuples are similar
 - □ A user may not be able to specify a set of good constraints but it is easy to provide hints

Heuristic Search for Pertinent Features

- Overall procedure
 - Start from the user-specified feature
 - Search in neighborhood of existing pertinent features
 - Expand search range gradually
- ☐ Tuple ID propagation is used to create multi-relational features
 - □ IDs of target tuples can be propagated along any join path, from which we can find tuples joinable with each target tuple

CrossClus: User-Guided Clustering Cross Multiple Relations

- Use a heuristic method to search for pertinent features
 - Start from user-specified feature and gradually expand search range
- ☐ Use *tuple ID propagation* to create feature values
 - □ Features can be easily created during the expansion of search range by propagating IDs
- □ Explore three clustering algorithms: *k-means*, *k-medoids*, and hierarchical clustering

Finding Features Across Multiple Relations

- ☐ Measure *similarity between features* by how they group objects into clusters
- □ A multi-relational feature is defined by:
 - \square A join path, e.g., Student \rightarrow Register \rightarrow OpenCourse \rightarrow Course
 - An attribute, e.g., Course.area
 - ☐ (For numerical feature) an aggregation operator, e.g., sum or average
- \square Categorical feature $f = [Student \rightarrow Register \rightarrow OpenCourse \rightarrow Course, Course.area]$

areas of courses of each student

Tuple	Areas of courses			
	DB	AI	TH	
<i>t</i> ₁	5	5	0	
<i>t</i> ₂	0	3	7	
<i>t</i> ₃	1	5	4	
t_4	5	0	5	
<i>t</i> ₅	3	3	4	

values of feature f

Tuple	Feature f		
	DB	AI	TH
<i>t</i> ₁	0.5	0.5	0
<i>t</i> ₂	0	0.3	0.7
<i>t</i> ₃	0.1	0.5	0.4
<i>t</i> ₄	0.5	0	0.5
<i>t</i> ₅	0.3	0.3	0.4

Searching for Pertinent Features

□ Different features convey different aspects of information

- □ Features conveying same aspect of information usually cluster tuples in more similar ways
 - Research group areas vs. conferences of publications
- ☐ Given user-specified feature, find pertinent features by computing feature similarity

Clustering with Multi-Relational Features

 \square Given a set of L pertinent features $f_1, ..., f_L$, similarity between two tuples

$$\operatorname{sim}(t_1, t_2) = \sum_{i=1}^{L} \operatorname{sim}_{f_i}(t_1, t_2) \cdot f_i.weight$$

- Weight of a feature is determined in feature search by its similarity with other pertinent features
- □ Experimented on multiple clustering methods, including
 - □ CLARANS, *K*-means, and agglomerative hierarchical clustering
- □ Compared with a subspace clustering algorithm, PROCLUS, and an ILP clustering algorithm, RDBC [Kirsten and Wrobel'00]
 - □ The performance shows that user-guided clustering, CrossClus, leads to better clustering accuracy—validated using given labels on real datasets (ground truth)

Summary: Constraint-Based Clustering

- Why Constraint-Based Clustering?
- Categories of Constraints
- Constraint-Based Clustering: Handling Hard Constraints
- Constraint-Based Clustering: Handling Soft Constraints
- □ Constraint-Based Clustering: Constraints on Distance Measures
- ☐ User-Guided Clustering: Taking User's "Hints" as Constraints
- Summary

Recommended Readings

- A. K. H. Tung, J. Hou, and J. Han. Spatial Clustering in the Presence of Obstacles. ICDE'01
- A. K. H. Tung, J. Han, L. V. S. Lakshmanan, and R. T. Ng. Constraint-Based Clustering in Large Databases. ICDT'01
- I. Davidson and S. S. Ravi. Clustering with Constraints: Feasibility Issues and the K-Means Algorithm. SDM'05
- X. Yin, J. Han, and P. S. Yu. Cross-Relational Clustering with User's Guidance. KDD'05
- □ I. Davidson, K. L. Wagstaff, and S. Basu. Measuring Constraint-Set Utility for Partitional Clustering Algorithms. PKDD'06
- J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011
- A. Agovic and A. Banerjee, Semi-Supervised Clustering, in (Chapter 20) C. Aggarwal and C. K. Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press, 2014
- □ C. Aggarwal. Data Mining: The Textbook. Springer, 2015