Arithmétique et suites, exercices supplémentaires

1. Arithmétique

Exercice 1 Trouver tous les entiers relatifs n tels que $n^2 + n + 7$ soit divisible par 13.

Exercice 2 Soient a et b deux entiers.

- 1) Démontrer que si a et b sont premiers entre eux, il en est de même des entiers a + b et ab.
- 2) On revient au cas général. Calculer pgcd(a + b, ppcm(a, b)).

Exercice 3 Montrer que pour tout entier $n \in \mathbb{N}^*$, n+1 et 2n+1 sont premiers entre eux. En déduire que $(n+1) \mid \binom{2n}{n}$.

Exercice 4

- 1) Soit $n \in \mathbb{Z}$ impair. Montrer que $n^2 \equiv 1$ [8].
- 2) Soit p un nombre premier, $p \neq 2$, $p \neq 3$. Montrer que $p^2 1$ est divisible par 24.

Exercice 5 ($\stackrel{\triangleright}{\triangleright}$) Soit p un nombre premier et $k \in \{1, \ldots, p-1\}$. Montrer que p divise $\binom{p}{k}$ et en déduire le petit théorème de Fermat.

2. Suites

Exercice 6 Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels tous différents de -1. Montrer que :

$$u_n \xrightarrow[n \to +\infty]{} 0 \qquad \Longleftrightarrow \qquad \frac{u_n}{1 + u_n} \xrightarrow[n \to +\infty]{} 0.$$

Exercice 7 Soit u et v deux suites réelles à valeurs dans [0,1], telles que uv converge vers 1. Que peut-on dire de u et de v?

Exercice 8 ()

- 1) Montrer que l'équation $e^x = x^n$ admet deux racines positives $u_n < v_n$, pour n assez grand.
- 2) Montrer que $v_n \xrightarrow[n \to +\infty]{} +\infty$.
- 3) Montrer que $(u_n)_{n\in\mathbb{N}}$ converge.
- 4) Trouver sa limite ℓ , montrer que $n(u_n \ell)$ tend vers 1.