TD 14: Groupes, Anneaux, Corps

► Lois de composition interne

Exercice 14.1 Soit (E, \leq) un ensemble totalement ordonné. Alors pour tout $(x, y) \in E^2$, $\max(x, y)$ est bien défini. On définit ainsi une loi de composition interne, notée max sur E.

PD

- 1. Montrer que la loi max est associative et commutative.
- 2. Donner une condition nécessaire et suffisante pour que (E, max) possède un élément neutre.
- 3. Lorsque cette condition est vérifiée, quels sont les éléments inversibles de E ?

Exercice 14.2 Éléments réguliers

AD

Soit *E* un ensemble muni d'une loi de composition interne \star , associative, et possédant un élément neutre *e*. Un élément $x \in E$ est dit régulier à gauche si $\forall (y, z) \in E^2$, $x * y = x * z \Rightarrow y = z$ et régulier à droite si $\forall (y, z) \in E^2$, $y * x = z * x \Rightarrow y = z$.

- 1. Quels sont les éléments réguliers (à droite ou à gauche) de (\mathbf{Z}, \times) ?
- 2. Soit A un ensemble. Montrer que dans $(\mathcal{F}(A, A), \circ)$, un élément f est régulier à droite si et seulement si f est surjective. Donner une condition nécessaire et suffisante pour que f soit régulier à gauche.

▶ Groupes

Exercice 14.3 On définit une loi de composition interne \star sur **R** par : $\forall (x,y) \in \mathbf{R}^2$, $x \star y = \sqrt[3]{x^3 + y^3}$. Montrer que (\mathbf{R}, \star) est un groupe abélien.

EXERCICE 14.4 Centre d'un groupe

PD

Soit G un groupe. On appelle centre de G l'ensemble $\mathcal{Z}(G) = \{x \in G, \forall y \in G, xy = yx\}$ des éléments commutant avec tous les éléments de G. Montrer que $\mathcal{Z}(G)$ est un sous-groupe de G. À quelle condition a-t-on $\mathcal{Z}(G) = G$?

PD

Exercice 14.5 Divers sous-groupes

Dans chacun des cas suivants, déterminer si H est ou non un sous-groupe de G.

1. $G = (\mathbf{C}^*, \times), \quad H = \bigcup_{n \in \mathbf{N}^*} \mathbf{U}_n$

tous les coefficients sont dans Z.

- 2. $G = \mathcal{M}_n(\mathbf{C})$, H l'ensemble des matrices triangulaires supérieures de G.
- 4. $G = GL_n(\mathbf{R})$, H l'ensemble des matrices triangulaires supérieures dont les coefficients diagonaux valent 1.
- 3. $G = GL_2(\mathbf{R})$, H l'ensemble des éléments de G dont
- 5. $G = \mathfrak{S}_n$, $H = \{ \sigma \in \mathfrak{S}_n \mid \sigma(1) = 2 \}$

Exercice 14.6 Donner les tables de multiplication de U_4 et $U_2 \times U_2$. Prouver alors que ces deux groupes ne sont pas isomorphes (c'est-à-dire qu'il n'existe pas d'isomorphisme entre ces groupes), bien que de même cardinal.

AD

EXERCICE 14.7 Soit G un groupe non réduit à un élément tel que pour tout $g \in G$, $g^2 = e$.

- 1. Montrer que tout élément est égal à son propre inverse. En déduire que G est abélien.
- 2. Montrer que G possède au moins un sous-groupe de cardinal 2.
- 3. On suppose que G contient au moins trois éléments. Soit H un sous-groupe fini de G, différent de $\{e\}$ ou de G, et soit $g \in G \setminus H$. On pose alors $gH = \{gh, h \in H\}$.
 - (a) Montrer que $H \cup gH$ est un sous-groupe de cardinal 2|H|.
 - (b) Montrer que si G est fini, alors son cardinal est une puissance de 2.

Exercice 14.8 Un cas particulier du théorème de Lagrange

Soit G un groupe commutatif fini, de cardinal n.

AD

- 1. Soit $g \in G$. Montrer que $x \mapsto gx$ est une bijection de G sur lui-même.
- 2. Soit $g \in G$. En calculant de deux manières le produit $\prod_{x \in G} (gx)$, montrer que $g^n = 1_G$.
- 3. Déterminer tous les sous-groupes finis de (C^*, \times) .

Exercice 14.9 Opérations sur les sous-groupes

Soit G un groupe, H et K deux sous-groupes de G. On note $HK = \{h \cdot k, (h, k) \in H \times K\}$

- 1. Montrer que $H \cap K$ est un sous-groupe de G.
- 2. Montrer que $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.
- 3. Si G est abélien, montrer que HK est un sous-groupe de G.

4. (\star) Prouver que *HK* est un sous-groupe de *G* si et seulement si *HK* = *KH*.

EXERCICE 14.10 Soit G un groupe. On définit une relation binaire sur G par $x \sim y \Leftrightarrow \exists g \in G, x = g^{-1}yg$.

- 1. Montrer que \sim est une relation d'équivalence sur G.
- 2. Déterminer le cardinal de la classe d'équivalence de 1_G .
- 3. Si G est abélien, prouver que les classes d'équivalence sont des singletons.
- 4. Montrer que si $x \sim y$ et s'il existe $n \in \mathbb{N}$ tel que $x^n = 1_G$, alors $y^n = 1_G$.

Exercice 14.11 Dans cet exercice, on note G l'ensemble des similitudes directes du plan, qu'on assimile à l'ensemble des fonctions $f: \mathbb{C} \to \mathbb{C}$ telles qu'il existe $(a, b) \in \mathbb{C}^* \times \mathbb{C}$ tels que $\forall z \in \mathbb{C}$, f(z) = az + b.

AD

AD

AD

AD

- 1. Montrer que (G, \circ) est un groupe, et qu'il n'est pas abélien.
- 2. Soit $z_0 \in \mathbb{C}$. On pose $G_{z_0} = \{g \in G \mid g(z_0) = z_0\}$. Montrer que G_{z_0} est un sous-groupe de G, isomorphe à \mathbb{C}^* . Est-il abélien ?

EXERCICE 14.12 Soit G un groupe, et soit $x \in G$. On dit que x est d'ordre fini s'il existe $n \in \mathbb{N}^*$ tel que $x^n = e_G$.

- 1. Montrer que si G est abélien, et que x et y sont d'ordre fini, alors xy est encore d'ordre fini.
- 2. Le résultat de la question précédente reste-t-il vrai si G n'est plus abélien ?

Exercice 14.13 Conjugaison dans un groupe

Soit G un groupe. Pour $a \in G$, on pose $\tau_a : \begin{vmatrix} G & \longrightarrow & G \\ g & \longmapsto & aga^{-1} \end{vmatrix}$.

- 1. Montrer que τ_a est un morphisme bijectif de G dans lui-même (on parle alors d'automorphisme).
- 2. On pose $\mathscr{C}(G) = \{\tau_a, a \in G\}$. Montrer qu'il s'agit d'un sous-groupe de $(\mathfrak{S}(G), \circ)$.
- 3. Montrer que l'application $\varphi: G \to \mathfrak{S}(G)$ qui à $a \in G$ associe τ_a est un morphisme de groupes. Quel est son noyau ?

EXERCICE 14.14 Soit $f: G_1 \to G_2$ un morphisme de groupes.

- 1. Prouver que pour tout sous-groupe H_1 de G_1 , $f(H_1)$ est un sous-groupe de G_2 .
- 2. Prouver que pour tout sous-groupe H_2 de G_2 , $f^{-1}(H_2)$ est un sous-groupe de G_1 . En déduire que Ker f est un sous-groupe de G_1 .

EXERCICE 14.15 Déterminer tous les morphismes de groupe de (Z, +) dans (Z, +). De (Q, +) dans (Z, +).

Exercice 14.16 Soit (G, *) un groupe, et soit A une partie non vide finie de G, stable par *. Prouver que A est un sous-groupe de G.

AD

D

PD

► Anneaux, corps

EXERCICE 14.17 Montrer que $\mathbb{Z}[\sqrt{2}] = \{x + y\sqrt{2}, (x, y) \in \mathbb{Z}^2\}$ est un anneau.

Prouver que $\mathbf{Q}(\sqrt{2}) = \{x + y\sqrt{2}, (x, y) \in \mathbf{Q}^2\}$ est un corps.

EXERCICE 14.18 Soit $\mathbb D$ l'ensemble des nombres décimaux. Montrer que $(\mathbb D, +, \times)$ est un anneau. Est-ce un corps?

PD

PD

EXERCICE 14.19 Produit direct d'anneaux

Soient $(A, +_A, \times_A)$ et $(B, +_B, \times_B)$ deux anneaux. On munit $A \times B$ de deux lois de composition \oplus et \otimes définies par :

$$(a,b) \oplus (a',b') = (a +_A a', b +_B b') \text{ et } (a,b) \otimes (a',b') = (a \times_A a', b \times_B b').$$

Montrer que $(A \times B, \oplus, \otimes)$ est un anneau, commutatif si A et B le sont. Cet anneau est-il intègre?

Exercice 14.20 Parmi les ensembles suivants, lesquels sont des sous-anneaux de RN, l'anneau des suites réelles ?

- 2. l'ensemble des suites croissantes

1. l'ensemble des suites de limite nulle

- 3. l'ensemble des suites convergentes
- 4. l'ensemble des suites divergentes

- 5. l'ensemble des suites bornées
- 6. l'ensemble des suites (u_n) telles que $\lim_{n \to +\infty} u_n = +\infty$
- 7. l'ensemble des suites stationnaires
- 8. l'ensemble des suites nulles à partir d'un certain rang

Exercice 14.21 Soit $(A, +, \times)$ un anneau commutatif. Pour $a \in A$, on appelle racine carrée de a tout élément dont le carré vaut a.

- 1. Prouver que si A est intègre, alors tout élément de A admet au plus deux racines carrées.
- 2. En revanche, prouver que dans $(\mathcal{F}(\mathbf{R},\mathbf{R}),+,\times)$, la fonction constante $x\mapsto 1$ possède une infinité de racines carrées.

EXERCICE 14.22 Soit A un anneau commutatif et E un ensemble non vide. À quelle condition $\mathcal{F}(E,A)$ est-il intègre?

PD

AD

Exercice 14.23 Montrer qu'un anneau commutatif intègre fini est un corps.

Exercice 14.24 Idéaux premiers (D'après oral ENS)

Soit A un anneau commutatif non nul. On appelle idéal de A tout sous-groupe I de (A, +) tel que $\forall (a, x) \in A \times I, ax \in I$.

- 1. Montrer que pour tout $x \in A$, $xA = \{ax, a \in A\}$ est un idéal de A.
- 2. Un idéal I est dit maximal si tout idéal de A, différent de A, et qui contient I est égal à I lui-même. Et un idéal I différent de A est dit premier si $\forall (a,b) \in A^2$, $ab \in I \Rightarrow a \in I$ ou $b \in I$.
 - (a) Montrer qu'un idéal I est maximal si et seulement si pour tout $x \in A \setminus I$, I + xA = A (où I + aA est l'ensemble des éléments qui s'écrivent comme somme d'un élément de I et d'un élément de aA).
 - (b) Prouver qu'un idéal maximal est premier.
- 3. Montrer que A est un corps si et seulement si tout idéal de A est premier.