Matriz de cambio de base

Sea \mathbb{V} un espacio vectorial real con bases $B=\{v_1,\cdots,v_n\}$ y B'. La matriz de cambio de base M_B^B verifica:

- $M_B^{B'} = ([v_1]^{B'} [v_2]^{B'} \cdots [v_n]^{B'})$
- $M_B^{B'} \cdot [v]^B = [v]^{B'}$ para todo $v \in \mathbb{V}$.
- $\blacksquare \ M_B^{B'}$ es inversible y $[M_B^{B'}]^{-1} = M_{B'}^B$
- 1. Dadas $B = \{1 + 2x x^2; 1 x; 2 x + 2x^2\}$ y $B' = \{1 + x; 1 x; x^2\}$ bases de $\mathbb{R}_2[x]$
 - a) Hallar la matriz de cambio de base $M_B^{B^\prime}.$
 - b) Sabiendo que $[p]^B = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, calcular $[p]^{B'}$.
- 1. La matriz de cambio de base $M_B^{B'}$ se calcula

$$M_B^{B'} = ([1 + 2x - x^2]^{B'} [1 - x]^{B'} [2 - x + 2x^2]^{B'})$$

.

Calculemos las coordenadas que necesitamos:

$$[1 + 2x - x^2]^{B'} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \Leftrightarrow 1 + 2x - x^2 = \alpha(1+x) + \beta(1-x) + \gamma x^2$$

Resolviendo el sistema: $\begin{cases} \alpha+\beta=1\\ \alpha-\beta=2\\ \gamma=-1 \end{cases} \text{ obtenemos } \alpha=\frac{3}{2}, \ \beta=-\frac{1}{2}, \ \gamma=-1.$

Luego
$$[1 + 2x - x^2]^{B'} = \begin{pmatrix} \frac{3}{2} \\ -\frac{1}{2} \\ -1 \end{pmatrix}$$

•
$$[1-x]^{B'} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \Leftrightarrow 1-x = \alpha(1+x) + \beta(1-x) + \gamma x^2$$

Es inmediato que $\alpha = 0, \beta = 1, \gamma = 0$

Luego
$$[1-x]^{B'} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

•
$$[2-x+2x^2]^{B'}=\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \Leftrightarrow 2-x+2x^2=\alpha(1+x)+\beta(1-x)+\gamma x^2$$

Resolviendo el sistema: $\begin{cases} \alpha+\beta=2\\ \alpha-\beta=-1 \text{ obtenemos } \alpha=\frac{1}{2},\,\beta=\frac{3}{2},\,\gamma=2.\\ \gamma=2 \end{cases}$

Luego
$$[1 + 2x - x^2]^{B'} = \begin{pmatrix} \frac{1}{2} \\ \frac{3}{2} \\ 2 \end{pmatrix}$$

Entonces

$$M_B^{B'} = \begin{pmatrix} \frac{3}{2} & 0 & \frac{1}{2} \\ -\frac{1}{2} & 1 & \frac{3}{2} \\ -1 & 0 & 2 \end{pmatrix}$$

a) Para calcular $[p]^{B'}$ sabiendo que $[p]^B = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, podemos usar que $M_B^{B'} \cdot [p]^B = [p]^{B'}$. En este caso:

$$[p]^{B'} = M_B^{B'} \cdot [p]^B = \begin{pmatrix} \frac{3}{2} & 0 & \frac{1}{2} \\ -\frac{1}{2} & 1 & \frac{3}{2} \\ -1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

- 2. Si $M_E^B = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 0 & 3 & 2 \end{pmatrix}$, siendo E la base canónica de \mathbb{R}^3 .
 - a) Hallar la base B.
 - b) Sea $B' = \{(1,1,1), (1,1,0), (-1,0,0)\}$ otra base de \mathbb{R}^3 . Hallar los vectores $v \in \mathbb{R}^3$ que tienen las mismas coordenadas en las bases $B \ y \ B'$.
- 1. Para hallar la base B presentaremos dos maneras:
 - \bullet Forma 1: Sabemos que $M_B^{B'} = [M_{B'}^B]^{-1},$ entonces

$$M_B^E = \left(\begin{array}{ccc} 1 & 5 & -4 \\ 0 & 2 & -1 \\ 0 & -3 & 2 \end{array}\right)$$

(Omitimos los cálculos pero ustedes pueden verificarlo)

Por otro lado, si $B = \{v_1, v_2, v_3\}$, la matriz de cambio de base de B a E es:

$$M_B^E = \begin{pmatrix} [v_1]^E & [v_2]^E & [v_3]^E \end{pmatrix}$$

Como $[v]^E = v$ para todo vector $v \in \mathbb{R}^3$, comparando ambas expresiones, obtenemos que

$$B = \{(1,0,0)^t, (5,2,-3)^t, (-4,-1,2)^t\}.$$

• Forma 2: Llamemos $B = \{v_1, v_2, v_3\}$ a la base que queremos hallar. Sabemos que

$$M_E^B = \left(\begin{array}{cc} [(1,0,0)]^B & [(0,1,0)]^B & [(0,0,1)]^B \end{array} \right)$$

Tenemos:
$$[(1,0,0)]^B = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, entonces $(1,0,0)^t = v_1$.

$$[(0,1,0)]^B = \begin{pmatrix} 2\\2\\3 \end{pmatrix}$$
, entonces $(0,1,0)^t = 2v_1 + 2v_2 + 3v_3$ y de acá obtenemos que

$$2v_2 + 3v_3 = (-2, 1, 0)^t$$

 $[(0,0,1)]^B=\left(egin{array}{c} 3\\1\\2 \end{array}
ight)$, entonces $(0,0,1)^t=3v_1+v_2+2v_3$ y de acá obtenemos que

$$v_2 + 2v_3 = (-3, 0, 1)^t$$

Operando se obtiene $v_2 = (5, 2, -3)^t$ y $v_3 = (-4, -1, 2)^t$. Luego,

$$B = \{(1,0,0)^t, (5,2,-3)^t, (-4,-1,2)^t\}.$$

a) Buscamos los vectores $v \in \mathbb{R}^3$ tales que $[v]^B = [v]^{B'} = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$. Esto es, los vectores $v \in \mathbb{R}^3$ tales que

$$v = \alpha(1,0,0)^t + \beta(5,2,-3)^t + \gamma(-4,-1,2)^t = \alpha(1,1,1)^t + \beta(1,1,0)^t + \gamma(-1,0,0)^t$$

Igualando coordenada a coordenada tenemos que:

$$\begin{cases} \alpha + 5\beta - 4\gamma &= \alpha + \beta - \gamma \\ 2\beta - \gamma &= \alpha + \beta \\ -3\beta + 2\gamma &= \alpha \end{cases}$$

Reagrupando tenemos el sistema

$$\begin{cases} 4\beta - 3\gamma = 0 \\ -\alpha + \beta - \gamma = 0 \\ -\alpha - 3\beta + 2\gamma = 0 \end{cases}$$

La solución del sistema es $\alpha = -\frac{1}{4}\gamma, \, \beta = \frac{3}{4}\gamma, \, \gamma \in \mathbb{R}.$

Luego los vectores buscados son de la forma:

$$v = -\frac{1}{4}\gamma(1,1,1)^t + \frac{3}{4}\gamma(1,1,0)^t + \gamma(-1,0,0)^t = \gamma\left(-\frac{1}{2},\frac{1}{2},-\frac{1}{4}\right)^t,$$

con $\gamma \in \mathbb{R}$.