# Finitary Languages Presentation for LATA 2011

## Krishnendu Chatterjee & Nathanaël Fijalkow

IST Austria (Institute of Science and Technology, Austria)

May 30th, 2011

- non-terminating (e.g web server);
- discrete time;
- non-deterministic.

- non-terminating;discrete time;
- non-deterministic.
- a finite alphabet  $\Sigma$  represent propositions; (e.g "available", "waiting", "critical error")
- runs are infinite words  $w = w_0 \cdot w_1 \dots w_n \dots \in \Sigma^{\omega}$ ;
- specification given as a language  $L \subseteq \Sigma^{\omega}$ .

















- $\omega$ -regular language: safety + liveness;
- liveness properties: "something good happens eventually".

## Classical liveness properties

#### A first example, Büchi:

a given set of propositions appears infinitely often; (e.g "job done")

## Classical liveness properties

#### A first example, Büchi:

a given set of propositions appears infinitely often;

## A second example, Streett (fairness):

- propositions are either requests  $R_i$  or grants  $G_i$ ;
- if  $R_i$  is requested infinitely often, then it is serviced  $(G_i)$  infinitely often.

## Classical liveness properties

#### A first example, Büchi:

a given set of propositions appears infinitely often;

## A second example, Streett (fairness):

- propositions are either requests  $R_i$  or grants  $G_i$ ;
- if  $R_i$  is requested infinitely often, then it is serviced  $(G_i)$  infinitely often.

(special case: parity)

#### Outline

1 Motivations

- 2 Characterizations
- 3 Expressions

## A drawback of classical $\omega$ -regular specifications



## A drawback of classical $\omega$ -regular specifications



Streett specification: for  $i \in \{1, 2\}$ , if  $R_i$  is requested infinitely often, then it is serviced infinitely often.

## A drawback of classical $\omega$ -regular specifications



Streett specification: for  $i \in \{1, 2\}$ , if  $R_i$  is requested infinitely often, then it is serviced infinitely often.

Satisfied, but the "service time" may grow unbounded!

Intuitively: there exists an unknown, fixed bound b such that good things happen within b transitions.

Intuitively: there exists an **unknown**, fixed bound b such that good things happen within b transitions.

**unknown**: retain independence from granularity.

Intuitively: there exists an unknown, fixed bound b such that good things happen within b transitions.

It can be expressed as a finitary operator on languages:

$$\mathrm{fin}(L) = \bigcup \{M \mid M \text{ closed and } \omega\text{-regular}, M \subseteq L\}$$

Intuitively: there exists an unknown, fixed bound *b* such that good things happen within *b* transitions.

It can be expressed as a finitary operator on languages:

$$fin(L) = \bigcup \{M \mid M \text{ closed and } \omega\text{-regular}, M \subseteq L\}$$

- closed: involves Cantor topology;
- $\omega$ -regular: involves  $\omega$ -regularity;
- restriction operator:  $fin(L) \subseteq L$ .









#### Outline

- 1 Motivations
- 2 Characterizations
- 3 Expressions

Let 
$$F \subseteq \Sigma$$
, 
$$\mathrm{B\ddot{u}chi}(F) = \{ w \mid \mathrm{Inf}(w) \cap F \neq \emptyset \}$$

Inf(w) is the set of propositions that appear infinitely often in w.

Let 
$$F \subseteq \Sigma$$
,

$$B\ddot{\mathbf{u}}\mathrm{chi}(F) = \{ w \mid \mathrm{Inf}(w) \cap F \neq \emptyset \}$$

$$\operatorname{next}_k(w, F) = \inf\{k' - k \mid k' \ge k, w_{k'} \in F\}$$

Let 
$$F \subseteq \Sigma$$
, 
$$\operatorname{B\"{u}chi}(F) = \{ w \mid \operatorname{Inf}(w) \cap F \neq \emptyset \}$$
 
$$\operatorname{next}_k(w,F) = \inf \{ k' - k \mid k' \geq k, w_{k'} \in F \}$$
 
$$w = v_0 \dots v_k \underbrace{v_{k+1} \dots v_{k'-1}}_{\notin F} \underbrace{v_{k'}}_{\in F}$$

waiting time from the  $k^{th}$  position.

Let 
$$F \subseteq \Sigma$$
,

$$B\ddot{u}chi(F) = \{w \mid Inf(w) \cap F \neq \emptyset\}$$

$$\operatorname{next}_k(w, F) = \inf\{k' - k \mid k' \ge k, w_{k'} \in F\}$$

Lemma

$$\operatorname{fin}(\operatorname{B\"{u}chi}(F)) = \{ w \mid \limsup_{k} \operatorname{next}_{k}(w, F) < \infty \}$$

# Topological classification in Borel hierarchy

#### Theorem

 $\operatorname{fin}(\operatorname{B\"uchi}(F)), \operatorname{fin}(\operatorname{Parity}(p)) \ and \ \operatorname{fin}(\operatorname{Streett}(R,G)) \ are \ \Sigma_2\text{-}complete.$ 

## Automata-theoretic expressive power

We consider automata over infinite words, whose acceptance conditions are finitary Büchi, finitary parity or finitary Streett.

## Automata-theoretic expressive power

We consider automata over infinite words, whose acceptance conditions are finitary Büchi, finitary parity or finitary Streett. A finitary Büchi automaton is  $\mathcal{A}=(Q,\Sigma,Q_0,\delta,\mathrm{finBüchi}(F))$ .

## Automata-theoretic expressive power

We consider automata over infinite words, whose acceptance conditions are finitary Büchi, finitary parity or finitary Streett. A finitary Büchi automaton is  $\mathcal{A} = (Q, \Sigma, Q_0, \delta, \operatorname{finBüchi}(F))$ .

$$\left\{\begin{array}{c} D \\ N \end{array}\right\} \cdot \left\{\begin{array}{c} \varepsilon \ (classical) \\ F (finitary) \end{array}\right\} \cdot \left\{\begin{array}{c} B \ (B \ddot{u} chi) \\ P \ (parity) \\ S \ (Streett) \end{array}\right\}$$



Figure: Expressive power classification

### Outline

1 Motivations

- 2 Characterizations
- 3 Expressions

## Regular and $\omega$ -regular expressions

Regular expressions defines regular languages over finite words:

$$L := \emptyset \mid \varepsilon \mid \sigma \mid \underbrace{L \cdot L}_{\text{concatenation}} \mid \underbrace{L^*}_{\text{star}} \mid \underbrace{L + L}_{\text{union}}; \quad \sigma \in \Sigma$$

 $\omega$ -regular languages are finite union of  $L_1 \cdot L_2^{\omega}$ , where  $L_1$  and  $L_2$  are regular languages over finite words.

# The bound operator *B* [BC06]

$$L^{\omega} = \{u_0 \cdot u_1 \cdot \ldots \cdot u_k \ldots \mid u_0, u_1, \ldots, u_k, \ldots \in L\}$$

## The bound operator *B* [BC06]

$$L^{\omega} = \{u_0 \cdot u_1 \cdot \ldots \cdot u_k \ldots \mid u_0, u_1, \ldots, u_k, \ldots \in L\}$$

Example:  $(a^* \cdot b)^\omega$  expresses "infinitely many b's".

## The bound operator *B* [BC06]

$$L^{\omega} = \{u_0 \cdot u_1 \cdot \ldots \cdot u_k \ldots \mid u_0, u_1, \ldots, u_k, \ldots \in L\}$$

Example:  $(a^* \cdot b)^{\omega}$  expresses "infinitely many b's".

Example:  $(a^B \cdot b)^{\omega}$  expresses "infinitely many b's with an upper bound on the length of a's blocks".

## Star-free $\omega B$ -regular expressions

*B*-regular languages are described by the grammar:

$$M := \emptyset \mid \varepsilon \mid \sigma \mid M \cdot M \mid M^* \mid M^B \mid M + M; \quad \sigma \in \Sigma$$

 $\omega B$ -regular languages are finite union of  $L \cdot M^{\omega}$ , where

- L is a regular language over finite words;
- *M* is a *B*-regular language over infinite words.

## Star-free $\omega B$ -regular expressions

*B*-regular languages are described by the grammar:

$$M := \emptyset \mid \varepsilon \mid \sigma \mid M \cdot M \mid M^* \mid M^B \mid M + M; \quad \sigma \in \Sigma$$

 $\omega B$ -regular languages are finite union of  $L \cdot M^{\omega}$ , where

- L is a regular language over finite words;
- *M* is a *B*-regular language over infinite words.

**Star-free**  $\omega B$ -regular languages are finite union of  $L \cdot M^{\omega}$ , where

- *L* is a regular language over finite words;
- *M* is a **star-free** *B*-regular language over infinite words.

<sup>&</sup>quot;no star operator under the  $\omega$ -operator".

# Equivalence

#### Theorem

NFB (non-deterministic finitary Büchi automata) has exactly the same expressive power as star-free  $\omega B$ -regular expressions.

First example:  $c^* \cdot (a^B \cdot b)^\omega$  is a star-free  $\omega B$ -regular expression,

First example:  $c^* \cdot (a^B \cdot b)^\omega$  is a star-free  $\omega B$ -regular expression, it expresses "a finite number of c's followed by an infinite word over alphabet  $\{a,b\}$ , with infinitely many b's and an upper bound on the length of a's blocks".

First example:  $c^* \cdot (a^B \cdot b)^\omega$  is a star-free  $\omega B$ -regular expression, it expresses "a finite number of c's followed by an infinite word over alphabet  $\{a,b\}$ , with infinitely many b's and an upper bound on the length of a's blocks".

Second example:  $(a^B \cdot b \cdot (a^* \cdot b)^*)^\omega$  is **not** a star-free  $\omega B$ -regular expression,

First example:  $c^* \cdot (a^B \cdot b)^\omega$  is a star-free  $\omega B$ -regular expression, it expresses "a finite number of c's followed by an infinite word over alphabet  $\{a,b\}$ , with infinitely many b's and an upper bound on the length of a's blocks".

Second example:  $(a^B \cdot b \cdot (a^* \cdot b)^*)^{\omega}$  is **not** a star-free  $\omega B$ -regular expression, it expresses "words of the form  $a^{n_0} \cdot b \cdot a^{n_1} \cdot b \dots$  such that  $\liminf_i n_i < \infty$ ".

#### Conclusion

- finitary objectives is a refinment for specification purposes;
- for  $\omega$ -regular languages, topological, logical and automata-theoretic studies are well-known;
- for finitary languages, all were missing; we established:
  - topological classification;
  - automata-theoretic characterization, comparison to  $\omega$ -regular languages, closure properties;
  - ullet characterization using by  $\omega B$ -regular expressions.

#### Conclusion

- finitary objectives is a refinment for specification purposes;
- for  $\omega$ -regular languages, topological, logical and automata-theoretic studies are well-known;
- for finitary languages, all were missing; we established:
  - topological classification;
  - automata-theoretic characterization, comparison to  $\omega$ -regular languages, closure properties;
  - ullet characterization using by  $\omega B$ -regular expressions.

#### Future work:

- games (work in progress);
- a finitary logic, Myhill-Nerode equivalence relations, ...

# Bibliography

R. Alur and T.A. Henzinger. Finitary fairness. In *LICS'94*, pages 52–61. IEEE, 1994.

Mikolaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In *LICS'06*, pages 285–296. IEEE, 2006.

### The end

Thank you for your attention!