LECTURE ON INTERSECTION THEORY (XVII)

ZHANG

ABSTRACT. This is a private note taken from the course 'Topics in Algebraic Geometry'. The note taker is responsible for any inaccuracies.

Instructor: Qizheng YIN [BICMR, Peking University]

Time: Tue 10:10–12:00, 2017–05–23

Place: Room 302, No.4 Science Building, Peking University

Contents

1. Notations and results	1
2. Geometric motive	2
2.1. Transition category SmCorr	2
2.2. Geometric motive	2
3. Problems and embeddings	3
3.1. Motivic complexes	3
3.2. Nisnevid topology	3
3.3. Embeddings and properties	3
3.4. Consequence on $DM_{\rm gm}$	4
References	5

1. Notations and results

In this lecture, we focus on the following problem:

Problem 1.1 (Grothendieck's dream). Category of mixed motives

 MM : abelian category of mixed motive over $\Bbbk = \mathbb{C}$

U

 $\ensuremath{M_{\mathrm{num}}}$: the full subcategory consisting of semi-simple objects together with the mixed motive functor:

$$h: \mathsf{Var} \to \mathsf{MM} \ \mathrm{mapping} \ X \mapsto h(X)$$

It's solved by the work of Voeviosky, which say

Theorem 1.2 (Voeviosky). Construct a candidate of (the triangled category of mixed motive)

$$DM := D(MM)$$

together with the mixed motive functor

$$\mathcal{M}: \mathsf{Var} \to D\mathsf{M} \ mapping \ X \mapsto \mathcal{M}(X)$$

Hereafter, we fix the following notations:

(1) Var: category of all varieties.

²⁰¹⁰ Mathematics Subject Classification. 42B35; 46E30; 47B38; 30H25.

Key words and phrases. Conjecture, Mixed Motive.

The author is supported by ERC Advanced Grant 226257.

2 ZHANG

- (2) Sm: category of all smooth varieties.
- (3) SmProj: category of all smooth projective varieties.

2. Geometric motive

2.1. Transition category SmCorr.

Definition 2.1 (Finite Correspondence). For any $X, Y \in Var$, let

$$\operatorname{Corr}^{\operatorname{finite}}(X,Y) \subset Z(X \times Y)$$

be generated by $V \subset X \times Y$ finite over X and dominate a component of X.

Using finite correspondence, one can

Definition 2.2. Define the following categories and functors:

- (1) the category SmCorr consisting of
 - (a) Object: Sm.
 - (b) Morphism: $\text{Hom}(X, Y) := \text{Corr}^{\text{finite}}(X, Y)$.
- (2) the triangled category $\mathbb{H}^b(\mathsf{SmCorr})$: the homotopy category of the bounded complexes in SmCorr .
- (3) the functors between

$$\wp: \mathsf{Sm} o \mathsf{SmCorr}$$
 $X \mapsto X$ $f: X o Y \mapsto \Gamma_f \in \mathrm{Corr}^{\mathrm{finite}}(X,Y)$

2.2. **Geometric motive.** At first, we construct the category of effective geometric motives, denoted by

$$D\mathsf{M}^{\mathrm{eff}}_{\mathrm{gm}}$$

Such construction is divided into two steps (category and functor):

- (1) (Verdier) Localize $\mathbb{H}^b(\mathsf{SmCorr})$ with respect to
 - (a) (\mathbb{A}^1 -homotopy) any \mathbb{A}^1 -projection $p_X: X \times \mathbb{A}^1 \to X$.
 - (b) (Mager-Vietoris sequence) any sequence of the form

$$U\cap V\to U\oplus V=U\sqcup V\to X$$

for any $X \in \mathsf{Sm}$ and $U, V \subset X$ open subsets with $X = U \cup V$. to obtain the desired category $D\mathsf{M}^{\mathrm{eff}}_{\mathrm{sm}}$.

(2) Take pseudo-abelian hull via adding projectors.

$$\mathcal{M}: \mathsf{Sm} \xrightarrow{\wp} \mathsf{SmCorr} \xrightarrow{\deg = 0} \mathbb{H}^b(\mathsf{SmCorr}) \xrightarrow{\operatorname{Localization}} D\mathsf{M}^{\operatorname{eff}}_{\operatorname{gm}}$$

by mapping

$$X \mapsto [X] =: \mathcal{M}(X)$$
$$f: X \to Y \mapsto [\Gamma_f]$$

to obtain the desired functor $\mathcal{M}:\mathsf{Sm}\to D\mathsf{M}^{\mathrm{eff}}_{\mathrm{gm}}$.

Definition 2.3 (Tate object). The *Tate object* of DM_{gm}^{eff} is given by

$$\mathbb{Z}(1) := [\mathbb{P}^1 \to pt] \in D\mathsf{M}^{\mathrm{eff}}_{\mathrm{gm}}$$

¹Recall: a homotopy equivalence is of the form

Definition 2.4 (Geometric motive). The category of geometric motive DM_{gm} is obtained by formally inverting $\mathbb{Z}(1)$ in DM_{gm}^{eff} , i.e.,

$$DM_{gm} := DM_{gm}^{eff}[\mathbb{Z}(1)^{-1}]$$

3. Problems and embeddings

In last section we construct the category DM_{gm} , however we find that

Problem 3.1. There is no enough structure in $DM_{\rm gm}$.

Idea. Embed $D\mathsf{M}^{\mathrm{eff}}_{\mathrm{gm}}$ into a larger triangled category of motivic complexes.

3.1. Motivic complexes. Recall presheaves with transfers:

$$F:\mathsf{SmCorr}^{\mathrm{op}} o \mathsf{Ab}$$

Definition 3.2. F is called homotopy invariant if

$$F(X) \cong F(X \times \mathbb{A}^1)$$

for any $X \in \mathsf{Sm}$.

3.2. **Nisnevid topology.** Nisnevid topology is a kind of Grothendieck topology lies between Zariski topology and étale topology.

Definition 3.3 (Nisnevid covering). A family of étale morphisms $\{p_i : U_i \to X\}$ is called a *Nisnevid covering* of X if for any (scheme theoretically) $x \in X$, there exists U_i and $u \in U_i$ such that

$$p_i(u) = x$$
 and $k(x) \xrightarrow{\sim} k(u)$ an isomorphism

Thus Nisnevid coverings form a Grothendieck topology, hence

- (1) Nis^{tr}: the category of Nisnevid sheaves with transfers (NS+PWT).
- (2) $D^{-}(Nis^{tr})$: the bounded above category of Nisnevid sheaves with transfers.

Definition 3.4 (Category of effective motivic complexes). The category of effective motivic complexes $D\mathsf{M}^{-,\mathrm{eff}} \subset D^-(\mathsf{Nis}^{\mathrm{tr}})$ is the full subcategory of complexes with homotopy invariant cohomology sheaves.

3.3. **Embeddings and properties.** For our purpose, we introduce the so-called Suslin Complex.

Definition 3.5. For any presheaf $F: \mathsf{Sm}^{\mathrm{op}} \to \mathsf{Ab}$, we can define the associated Suslin complex as

$$C_*(F): \cdots \to C_{n+1}(F) \to \underbrace{C_n(F)}_{\text{presheaf}} \to C_{n-1}(F) \to \cdots \to C_0(F)$$

Here for any $U \in Sm$, we have $C_n(F)(U) := F(U \times \Delta^n)$ where

$$\Delta^n := \operatorname{Spec} \mathbb{k}[t_0, \dots, t_n] / \sum_{i=0}^n t_i - 1$$

Fact 3.6. If $F \in \mathsf{Nis}^{\mathrm{tr}}$, then $C_*(F)$ has homotopy invariant cohomology and hence

$$C_*: \mathsf{Nis}^{\mathrm{tr}} o D\mathsf{M}^{-,\mathrm{eff}}$$

For any $X \in \mathsf{Var}$, we define the presheaf with transfers $\mathbb{Z}^{\mathrm{tr}}(X)$ as

$$\mathbb{Z}^{\mathrm{tr}}(X)(U) := \mathrm{Corr}^{\mathrm{finite}}(U, X)$$

for any $U \in Sm$. Here we view any variety as a presheaf on smooth varieties.

Fact 3.7. $\mathbb{Z}^{\operatorname{tr}}(X) \in \operatorname{Nis}^{\operatorname{tr}}$.

4 ZHANG

Remark 3.8. In particular, we obtain

$$\mathbb{Z}^{\mathrm{tr}}: \mathbb{H}^b(\mathsf{SmCorr}) \to D^-(\mathsf{Nis}^{\mathrm{tr}})$$

and also define

$$C_*(X) := C_*(\mathbb{Z}^{\operatorname{tr}}(X)) \in D\mathsf{M}^{-,\operatorname{eff}}$$

Theorem 3.9 (Voevosky). With the notations as above, we have

(1) (localization) the functor C_* extends to

$$RC_*: D^-(\mathsf{Nis}^{\mathrm{tr}}) \to D\mathsf{M}^{-,\mathrm{eff}}$$

In fact, RC* is identified with the localization with respect to

$$\mathbb{Z}^{\mathrm{tr}}(X \times \mathbb{A}^1) \to \mathbb{Z}^{\mathrm{tr}}(X) \quad \forall X \in \mathsf{Sm}$$

(2) (embedding) there is a commutative diagram

$$\mathbb{H}^{b}(\mathsf{SmCorr}) \xrightarrow{\mathbb{Z}^{\mathrm{tr}}} D^{-}(\mathsf{Nis}^{\mathrm{tr}})$$

$$\downarrow^{RC_{*}}$$

$$D\mathsf{M}^{\mathrm{eff}}_{\mathrm{gm}} \xrightarrow{full\ embedding} D\mathsf{M}^{-,\mathrm{eff}}$$

where both vertical arrows are localizations, i.e., for any $X \in \mathsf{Sm}$

$$i(\mathcal{M}(X)) = RC_*(\mathbb{Z}^{\mathrm{tr}}(X)) = C_*(X)$$

Remark 3.10. The category $D\mathsf{M}^{-,\mathrm{eff}}$ has more structure, for example, it's with homotopy T-structure and \otimes -structure.

- 3.4. Consequence on DM_{gm} . Here we list some consequence on DM_{gm} via the embedding constructed in Theorem 3.9.
 - (1) (a) Homotopy invariant: $\mathcal{M}(X \times \mathbb{A}^1) = \mathcal{M}(X)$.
 - (b) MV sequence: $\mathcal{M}(U \cap V) \to \mathcal{M}(U) \oplus \mathcal{M}(V) \to \mathcal{M}(X) \xrightarrow{+1} \cdots$
 - (c) Kunneth formula: $\mathcal{M}(X \times Y) = \mathcal{M}(X) \otimes \mathcal{M}(Y)$.
 - (d) Gysin sequence: $Z \subset X$ closed with $Z \in \mathsf{Sm}$ of codim c, then

$$\mathcal{M}(X \setminus Z) \to \mathcal{M}(X) \to \mathcal{M}(Z)(c)[2c] \xrightarrow{+1} \cdots$$

- (e) Blow-up, Proj-bundle, etc.
- (2) Motive for all varieties: for any $X \in \mathsf{Var}$, we have

$$C_*(X) \in D\mathsf{M}^{-,\mathrm{eff}}$$

 $\in i(D\mathsf{M}^{\mathrm{eff}}_{\mathrm{gm}})$

and hence get

$$\mathcal{M}: \mathsf{Var} \to D\mathsf{M}^{\mathrm{eff}}_{\mathrm{gm}} \text{ mapping } X \mapsto \mathcal{M}(X)$$

(3) Motives with compact support: for any $X \in \mathsf{Var}$, we construct

$$\mathcal{M}^c(X) \in D\mathsf{M}^{\mathrm{eff}}_{\mathrm{gm}}$$

such that if X proper, then $\mathcal{M}^c(X) = \mathcal{M}(X)$. Indeed, can construct via

$$\mathbb{Z}^{\mathrm{tr},c}(X) \in \mathsf{Nis}^{\mathrm{tr}}$$

defined by

$$\mathbb{Z}^{\mathrm{tr},c}(X)(U) := \mathrm{Corr}^{\mathrm{quasi-finite}}(U,X)$$

for any $Z \subset X$ closed. Then use Gysin sequence

$$\mathcal{M}^c(Z) \to \mathcal{M}^c(X) \to \mathcal{M}^c(X \setminus Z) \xrightarrow{+1} \cdots$$

(4) Dual action:

$$D: D\mathsf{M}^{\mathrm{op}}_{\mathrm{gm}} \to D\mathsf{M}_{\mathrm{gm}}$$

such that

$$\operatorname{Hom}(\mathcal{M}(X), \mathcal{M}(Y)) = \operatorname{Hom}(\mathcal{M}(X) \otimes D(\mathcal{M}(Y)), \mathbb{Z})$$

In particular, if $X \in \mathsf{Sm}$ of dimension d, then

$$D(\mathcal{M}(X)) = \mathcal{M}^{c}(X) \underbrace{(-d)}_{\text{twist}} \underbrace{[-2d]}_{\text{shift}}$$

(5) (a) Connection with Chow groups: for any $X \in \mathsf{Var}$, we have

$$\operatorname{Hom}(\mathbb{Z}(i)[j], \mathcal{M}^{c}(X)) = \operatorname{CH}_{i}(X, j-2i)$$

where $CH_i(X, j-2i)$ is the Bloch higher Chow group. If j=2i, then it's nothing but $CH_i(X)$.

(b) Motivic cohomology:

$$H_M^j(X,\mathbb{Z}(i)) = \operatorname{Hom}(\mathcal{M}(X),\mathbb{Z}(i)[j])$$

In particular, if $X \in Sm$, then

$$H_M^{2i}(X,\mathbb{Z}(i)) = \mathrm{CH}^i(X)$$

(6) Embedding:

$$\underbrace{\mathcal{M}_{\mathrm{rat}}^{\mathrm{op}}}_{\mathbb{Z}\text{-coeff}} \hookrightarrow D\mathsf{M}_{\mathrm{gm}}$$

Proof. For any $X, Y \in \mathsf{SmProj}$, then (Hom are all computed in $D\mathsf{M}_{\mathrm{gm}}$)

$$\operatorname{Hom}(\mathcal{M}(X), \mathcal{M}(Y)) = \operatorname{Hom}(\mathcal{M}(X) \otimes D(\mathcal{M}(Y)), \mathbb{Z})$$

$$= \operatorname{Hom}(\mathcal{M}(X) \otimes \mathcal{M}^{c}(Y)(-d_{Y})[-2d_{Y}], \mathbb{Z})$$

$$= \operatorname{Hom}(\mathcal{M}(X) \otimes \mathcal{M}^{c}(Y), \mathbb{Z}(d_{Y})[2d_{Y}])$$

$$= \operatorname{Hom}(\mathcal{M}(X) \otimes \mathcal{M}(Y), \mathbb{Z}(d_{Y})[2d_{Y}])$$

$$= \operatorname{CH}^{d_{Y}}(X \times Y)$$

$$= \operatorname{CH}^{d_{Y}}(Y \times X)$$

$$= \operatorname{Corr}^{0}(Y, X)$$

References

Institute of Mathematica, Academy of Mathematics and System Sciences, Chinese Academy of Science, Beljing 100190, China

 $E ext{-}mail\ address: {\tt zhangxucheng15@mails.ucas.cn}$