Creation of a Convolutional Neural Network using PyTorch: Image Classification

Convolutional Neural Network (CNN)

CNN is a deep learning algorithm used for image classification, detection, and segmentation.

1. Feature Extraction/Learning:

• Detecting all the feature like ear, eyes.

I. Convolution:

- Kernal can be used to extract the feature
- A kernel is a small matrix (e.g., 3×3 , 5×5) that slides across an image, performing element-wise multiplication and summing up the results to produce a single output value.

II. ReLu activation function:

- ReLu activation function takes your feature value: Relu = max(0, x)
- If the value is negative, it will replace it with 0. If it is more than zero it will be keep it same
- It makes the model to non-linear
- It also speed up the training
- III. Polling layer: It is used to reduce the size of an image, i.e., it reduce the dimensions
 - The max polling:
 - Average polling

• Window of 2 by is taken

4 By 4 is reduced to 2 by 2

2 by 2 filter with stride = 2

4 By 4 is reduced to 2 by 2

1)	1
0.33	0.33
0.33	0.33
0	0

2 by 2 filter with stride = 1

- Average polling is same as max polling, we take the average in place of maximum
- Benefits of polling:
 - Reduce dimension and computation
 - Reduce overfitting because there are less parameter
 - > Overfitting or high variance occurs when the accuracy of your training dataset is greater than your testing accuracy.

• CNN can not handle rotation and scale by itself

- Due to this, training dataset should have rotated and scaled sample
- If it does not have than pick some of the sample from training data set and rotate and scale them using Data Augmentation or Spatial Transformer Networks (STN)