0924 BERT 내용발표

1. BERT란

- Bidirectional Encoder Representations from Transformers
- Transformer 기반의 자연어 처리 모델
- 앞의 단어들만이 아닌 문장 안의 모든 단어를 양방향으로 고려함으로써 깊이 있는 문맥 이해가 가능함.
- 한 번의 훈련을 통해 여러 작업에 적용 및 미세 조정 가능(pre-training & fine-tuning)

2. BERT의 구조

- Transformer기반 모델로 인코더-디코더 구조이지만, BERT는 인코더만 사용해 양 방향 이해
- N개의 인코더 블록으로 구성
 - Self-Attention Layer : 문장 내 단어들의 연관도 계산
 - Feed-Forward Layer : 계산된 정보를 변환해 단어와 문장의 의미 더 복잡하게 표현

3. BERT의 훈련 방식

전처리(Preprocessing)
 토크나이저를 통한 단어 분리
 데이터에 따라 소문자화 또는 대문자 유지
 각 문장의 앞에는 [CLS]를, 뒤에는 [SEP]를 붙임

토큰 길이를 맞추려고 할 때는 [PAD] 추가

• 임베딩(Embedding)

◦ 토큰 임베딩(Token Embedding)

Word Piece 임베딩 방식 활용 → 띄어쓰기 이상의 성능

어휘 사전을 기준으로 단어 하위단어 분할 → 명확한 의미 전달, 흔치 않은 단어들에 대한 예측 향상(googling, texting)

각 단어 또는 하위어에 대해 문자 단위로 고유한 임베딩 벡터

。 세그먼트 임베딩(Segment Embedding)

두 문장을 구분하기 위한 임베딩벡터

첫번째 문장에는 0을, 두번째 문장에는 1을 더해준다.

위치 임베딩(Position Embedding)

Transformer가 사용하는 Self-Attention모델은 입력 위치 고려X sin,cos함수를 사용하여 토큰의 순서를 인코딩한 임베딩벡터

- 사전 훈련(Pre-training)
 - 대량의 데이터를 통해 미리 학습 → 일반적인 언어 모델 구축
- 미세 조정(Fine-tuning)
 - 사전 훈련을 통해 이미 언어이해 능력이 있어 특정 작업에 따라 추가 학습 진행
 - 소량의 데이터로도 효과적인 미세 조정 가능
 - 1. MLM(Masked Language Modeling)
 - 일부 단어 선택해 가린 후 [MASK]토큰으로 대체 후 예측
 - 앞뒤 문맥을 참고하여 예측하기 때문에 풍부한 의미 이해 가능
 - 문장 내 단어들의 상호작용 파악 가능 및 정확한 언어 표현 학습 가능

1. 15%의 토큰 랜덤하게 추출

2. 80%: MASK토큰으로 변경됨

10%: 무작위로 다른 토큰으로 변경됨

10%: 변경되지 않고 유지됨

2. NSP(Next Sentence Prediction)

- 문장의 순서 예측을 통한 흐름 이해
- 문장 간의 논리적 연결 학습으로 문서 분류 및 요약에서 높은 성능

sentence layer가 추가된 이유는 첫번째 문장과 두번째 문장을 구별하기 위해 사용되는 layer

4. BERT의 장단점

- 장점
 - 。 문맥을 양방향으로 이해해 풍부한 언어 표현을 학습함
 - 사전훈련과 미세조정을 통해 하나의 대형 언어 모델을 조절 가능함
 - 。 대규모 데이터 학습이 가능하고 한번에 여러 작업 처리 가능

• 단점

- 。 모델의 크기가 큰 만큼 시간과 비용 또한 큼
- 512토큰 이상의 긴 문서나 문장에 대해서는 추가 작업 필요하며 문맥 이해도가 떨어질 수 있고 중요한 문맥 정보가 손실될 수도 있음
- 외부 지식 및 특정 도메인에서는 낮은 성능
- 블랙박스 모델로, 이해가 어려우며 해석 가능성이 부족함

5. BERT의 활용예시

a. 단일 문장 분류

단일 문장 분류

• 입력된 문서에 대해 분류를 하는 유형

ex) 감성분석(긍부정)

import pandas as pd
import torch
from transformers import pipeline, BertTokenizer, BertF

1. 문서 요약을 위한 파이프라인 생성

'summarization' 모델을 이용하여 문서를 요약하는 파이프라인을 summarizer = pipeline('summarization')

2. 감정 분석을 위한 파이프라인 생성

'bert-base-uncased'를 파인튜닝한 감정 분석 모델을 이용(5가지 sentiment_model = BertForSequenceClassification.from_protokenizer = BertTokenizer.from_pretrained('nlptown/bert

3. 분석할 문서 입력 (긴 텍스트)

document = """

The immune system is a complex network of cells and prokeeps a record of every germ it has ever defeated so it the body again. Abnormalities of the immune system can disorders.

11 11 11

4. 문서 요약

긴 문서를 130자 이내로 요약, 샘플링 없이 단일한 요약 생성 summary = summarizer(document, max_length=130, min_leng print("문서 요약:", summary)

5. 요약된 문서에 대한 감정 분석

요약된 텍스트를 토큰화하여 감정 분석 모델에 입력 inputs = tokenizer(summary, return_tensors="pt") outputs = sentiment_model(**inputs)

6. 감정 분석 결과 해석

모델이 감정에 대한 확률을 반환하는데, 가장 높은 확률을 가진 클래 logits = outputs.logits predicted_class = torch.argmax(logits, dim=1)

7. 감정 분류 결과 출력

0에서 4까지의 점수를 부여하는 모델을 사용

1: 매우 부정적, 2: 부정적, 3: 중립적, 4: 긍정적, 5: 매우 긍? sentiment_labels = {0: "매우 부정적", 1: "부정적", 2: "중립? print("감정 분석 결과:", sentiment_labels[predicted_class.

ex) 스팸메일 분류

```
# 1. 스팸 메일과 정상 메일 예시 데이터 생성
data = {
    "email": [
       "Congratulations! You've won a $1,000 Walmart g
       "Hi, I hope you're doing well. Let's schedule a
       "Get paid to work from home! Limited time offer
       "Dear customer, your invoice is attached. Pleas
       "This is not a scam! You have a chance to win a
       "Don't forget our appointment tomorrow at 10 AM
       "Claim your free trial now! Act fast, this offe
       "Thank you for your purchase! Your order will b
   1,
    "label": [1, 0, 1, 0, 1, 0, 1, 0] # 1: 스팸, 0: 정상
}
# 데이터프레임 생성
df = pd.DataFrame(data)
# 2. 사전 학습된 BERT 모델과 토크나이저 로드
model_name = 'bert-base-uncased'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForSequenceClassification.from_pretrained(m
# 3. 각 이메일에 대해 스팸 분류 수행
results = []
for email in df['email']:
   # 이메일을 BERT 입력 형태로 변환
   inputs = tokenizer(email, return_tensors="pt", padd.
   # 모델에 입력하여 예측값 생성
   with torch.no_grad():
       outputs = model(**inputs)
   # 출력된 Logits에서 가장 높은 값을 가진 클래스를 선택
   logits = outputs.logits
```

```
predicted_class = torch.argmax(logits, dim=1)

# 예측 결과 저장
results.append(predicted_class.item())

# 4. 결과를 데이터프레임에 추가 후 출력
df['predicted_label'] = results
print(df)
```

b. 두 문장의 관계 분류 (자연어추론_NLI)

두 문장 관계 분류

- 문장 간의 논리적인 관계를 분류함
- 모순관계/함의관계/중립관계
- ex) 관계예측(연관유무)

```
import torch
from transformers import BertTokenizer, BertForSequence(
# 1. 사전 학습된 BERT 모델과 토크나이저 로드
## 'bert-base-uncased' 모델을 불러오고, 자연어 추론(NLI) 작업이
tokenizer = BertTokenizer.from_pretrained('textattack/bemodel = BertForSequenceClassification.from_pretrained('t
```

첫 번째 문장은 전제(premise), 두 번째 문장은 가설(hypothesis premise = "The weather is nice today." hypothesis = "It is sunny and pleasant outside."

3. 두 문장을 BERT 입력 형태로 변환 (BERT는 두 문장을 [SEP] 토 ## 두 문장을 토크나이저를 이용해 하나의 입력으로 변환 ## padding(길이 맞추기) truncation(길이 제한) inputs = tokenizer(premise, hypothesis, return_tensors="

4. 모델에 입력하여 문장 관계 예측 ## 두 문장 사이의 관계를 예측하는 logits 출력 (세 관계에 대한 점수 outputs = model(**inputs)

5. 출력된 Logits에서 가장 높은 값을 가진 클래스를 선택
logits는 3개의 값을 가지며, 각각 Entailment(참), Neutral(*
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1)

6. 관계 레이블 설정 (0: Contradiction, 1: Neutral, 2: Ent relationship_labels = {0: "Contradiction (거짓)", 1: "Neu

7. 예측된 관계 출력
print(f"두 문장 사이의 관계: {relationship_labels[predicted]

c. 문장 토큰 분류

문장 토큰 분류


```
from transformers import MarianMTModel, MarianTokenizer
# 1. 번역할 언어 모델과 토크나이저 로드
## 'Helsinki-NLP/opus-mt-en-ko'는 영어에서 한국어로 번역하는 모델
model name = 'Helsinki-NLP/opus-mt-en-ko'
tokenizer = MarianTokenizer.from pretrained(model name)
model = MarianMTModel.from_pretrained(model_name)
# 2. 번역할 영어 문장 입력
english_sentence = "The weather is nice today."
# 3. 입력 문장을 토크나이즈하여 텐서 형태로 변환
## 모델에 입력하기 위해 토큰화 및 인코딩
inputs = tokenizer(english sentence, return tensors="pt",
# 4. 모델에 입력하여 번역 생성
## 모델의 forward 메서드를 호출하여 번역 결과를 얻음
with torch.no_grad(): # 그래디언트 계산을 하지 않음
   translated_tokens = model.generate(**inputs)
# 5. 토큰을 디코딩하여 번역된 문장 생성
translated_sentence = tokenizer.decode(translated_tokens[0])
# 6. 번역 결과 출력
print("영어 문장:", english_sentence)
print("번역된 한국어 문장:", translated_sentence)
```

d. 기계 독해 정답 분류 (질의응답)

기계 독해 정답 분류

• 주어진 질문-본문을 보고 본문에서 일부를 추출해 대답함

ex) 질의응답

```
# 라이브러리 설치 및 모델 다운로드
import torch
from transformers import BertForQuestionAnswering, BertT
model = BertForQuestionAnswering.from pretrained('bert-l
tokenizer = BertTokenizer.from_pretrained('bert-large-ur
# 질문과 본문 입력
question = "What is the immune system?"
paragraph = "The immune system is a system of many biolo
#토큰화
question = '[CLS] ' + question + '[SEP]'
paragraph = paragraph + '[SEP]'
question_tokens = tokenizer.tokenize(question)
paragraph_tokens = tokenizer.tokenize(paragraph)
#토큰 결합
tokens = question_tokens + paragraph_tokens
input_ids = tokenizer.convert_tokens_to_ids(tokens)
#세그먼트 임베딩
segment_ids = [0] * len(question_tokens)
segment_ids += [1] * len(paragraph_tokens)
```

```
#텐서로 변환 후 입력
input_ids = torch.tensor([input_ids])
segment_ids = torch.tensor([segment_ids])
scores = model(input_ids, token_type_ids = segment_ids

#시작과 끝 인덱스
start_index = torch.argmax(scores.start_logits)
end_index = torch.argmax(scores.end_logits)

#답변 출력
print(' '.join(tokens[start_index:end_index+1]))
```