Divide and Conquer: Integer Multiplication

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 8

• How do we multiply two integers x, y?

- How do we multiply two integers x, y?
- Form partial products multiply each digit of y separately by x

```
12
x 13
---
36
12
---
156
```

- How do we multiply two integers x, y?
- Form partial products multiply each digit of y separately by x
- Add up all the partial products

1	2
x 1	3
	-
3	6
12	
	-
15	6

- How do we multiply two integers x, y?
- Form partial products multiply each digit of y separately by x
- Add up all the partial products
- Works the same in any base e.g., binary

12 x 13	1100 x 1101
36	1100
12	0000
	1100
156	1100
	10011100

- How do we multiply two integers x, y?
- Form partial products multiply each digit of y separately by x
- Add up all the partial products
- Works the same in any base e.g., binary
- To multiply two *n*-bit numbers
 - n partial products
 - Adding each partial product to cumulative sum is O(n)
 - Overall $O(n^2)$

12	1100
x 13	x 1101
36	1100
12	0000
	1100
156	1100
	10011100

- How do we multiply two integers x, y?
- Form partial products multiply each digit of y separately by x
- Add up all the partial products
- Works the same in any base e.g., binary
- To multiply two *n*-bit numbers
 - n partial products
 - Adding each partial product to cumulative sum is O(n)
 - Overall $O(n^2)$
- Can we improve on this?
 - Each partial product seems "necessary"

12	1100
x 13	x 1101
36	1100
12	0000
	1100
156	1100
	10011100

■ Split the *n* bits into two groups of n/2

	x_1	<i>x</i> ₀
X	$b_{n-1}b_{n-2}\cdots b_{\frac{n}{2}}$	$b_{\frac{n}{2}-1}b_{\frac{n}{2}-2}\cdots b_0$
	<i>y</i> ₁	<i>y</i> o
у	$b'_{n-1}b'_{n-2}\cdots b'_{\frac{n}{2}}$	$b'_{\frac{n}{2}-1}b'_{\frac{n}{2}-2}\cdots b'_{0}$

12 x 13	1100 x 1101
36	1100
12	0000
	1100
156	1100

10011100

■ Split the *n* bits into two groups of n/2

	x_1	<i>x</i> ₀
X	$b_{n-1}b_{n-2}\cdots b_{\frac{n}{2}}$	$b_{\frac{n}{2}-1}b_{\frac{n}{2}-2}\cdots b_0$
	<i>y</i> ₁	<i>y</i> 0
у	$b'_{n-1}b'_{n-2}\cdots b'_{\frac{n}{2}}$	$b'_{\frac{n}{2}-1}b'_{\frac{n}{2}-2}\cdots b'_{0}$

Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$

12	1100
x 13	x 1101
36	1100
12	0000
	1100
156	1100
	10011100

■ Split the *n* bits into two groups of n/2

- Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$
- Regroup as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

12	110	
x 13	x 110	1
		_
36	110	0
12	0000	
	1100	
156	1100	
	1001110	- О

■ Split the *n* bits into two groups of n/2

×	$b_{n-1}b_{n-2}\cdots b_{\frac{n}{2}}$	$b_{\frac{n}{2}-1}b_{\frac{n}{2}-2}\cdots b_0$
у	y_1 $b'_{n-1}b'_{n-2}\cdots b'_{\frac{n}{2}}$	$b'_{\frac{n}{2}-1}b'_{\frac{n}{2}-2}\cdots b'_{0}$

- Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$
- Regroup as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$
- Four n/2-bit multiplications

12 x 13	1100 x 1101
36	1100
12	0000
	1100
156	1100
	10011100

■ Split the *n* bits into two groups of n/2

- Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$
- Regroup as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$
- Four n/2-bit multiplications

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n$

Combining the partial products requires adding O(n) bit numbers

■ Split the *n* bits into two groups of n/2

- Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$
- Regroup as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$
- Four n/2-bit multiplications

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n$

- Combining the partial products requires adding O(n) bit numbers
- T(n) = 4T(n/2) + n

■ Split the *n* bits into two groups of n/2

- Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$
- Regroup as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$
- Four n/2-bit multiplications

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n$

- Combining the partial products requires adding O(n) bit numbers
- T(n) = 4T(n/2) + n = 4(4T(n/4) + n/2) + n $= 4^2T(n/2^2) + (2+1)n$

■ Split the *n* bits into two groups of n/2

- Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$
- Regroup as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$
- Four n/2-bit multiplications

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n$

Combining the partial products requires adding O(n) bit numbers

$$T(n) = 4T(n/2) + n$$

$$= 4(4T(n/4) + n/2) + n$$

$$= 4^{2}T(n/2^{2}) + (2+1)n$$

$$= 4^{2}(4T(n/2^{3}) + n/2^{2}) + (2^{1} + 2^{0})n$$

$$= 4^{3}T(n/2^{3}) + (2^{2} + 2^{1} + 2^{0})n$$

■ Split the *n* bits into two groups of n/2

- Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$
- Regroup as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$
- Four n/2-bit multiplications

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n$

Combining the partial products requires adding O(n) bit numbers

$$T(n) = 4T(n/2) + n$$

$$= 4(4T(n/4) + n/2) + n$$

$$= 4^{2}T(n/2^{2}) + (2+1)n$$

$$= 4^{2}(4T(n/2^{3}) + n/2^{2})$$

$$+ (2^{1} + 2^{0})n$$

$$= 4^{3}T(n/2^{3}) + (2^{2} + 2^{1} + 2^{0})n$$

$$= \cdots$$

$$= 4^{\log n}T(n/2^{\log n})$$

$$+ (2^{\log n-1} + \cdots + 2^{1} + 2^{0})n$$

■ Split the *n* bits into two groups of n/2

 $b'_{n-1}b'_{n-2}\cdots b'_{\frac{n}{2}} b'_{\frac{n}{2}-1}b'_{\frac{n}{2}-2}\cdots b'_{0}$

- Rewrite xy as $(x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$
- Regroup as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$
- Four n/2-bit multiplications

$$T(1) = 1$$
, $T(n) = 4T(n/2) + n$

• Combining the partial products requires adding O(n) bit numbers

$$T(n) = 4T(n/2) + n$$

$$= 4(4T(n/4) + n/2) + n$$

$$= 4^{2}T(n/2^{2}) + (2+1)n$$

$$= 4^{2}(4T(n/2^{3}) + n/2^{2})$$

$$+ (2^{1} + 2^{0})n$$

$$= 4^{3}T(n/2^{3}) + (2^{2} + 2^{1} + 2^{0})n$$

$$= \cdots$$

$$= 4^{\log n}T(n/2^{\log n})$$

$$+ (2^{\log n-1} + \cdots + 2^{1} + 2^{0})n$$

$$= O(n^{2})$$

$$x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$$

$$T(n) = 4T(n/2) + n \text{ is } O(n^2)$$

$$x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$$

- $T(n) = 4T(n/2) + n \text{ is } O(n^2)$
- Divide and conquer has not helped!

$$x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$$

- $T(n) = 4T(n/2) + n \text{ is } O(n^2)$
- Divide and conquer has not helped!
- $(x_1 x_0)(y_1 y_0) =$ $x_1y_1 - x_1y_0 - x_0y_1 + x_0y_0$
 - O(n/2) bit multiplication

$$x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$$

- $T(n) = 4T(n/2) + n \text{ is } O(n^2)$
- Divide and conquer has not helped!
- $(x_1 x_0)(y_1 y_0) =$ $x_1y_1 - x_1y_0 - x_0y_1 + x_0y_0$
 - O(n/2) bit multiplication
- Compute x_1y_1 , x_0y_0
 - O(n/2) bit multiplications

$$x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$$

- $T(n) = 4T(n/2) + n \text{ is } O(n^2)$
- Divide and conquer has not helped!
- $(x_1 x_0)(y_1 y_0) =$ $x_1y_1 - x_1y_0 - x_0y_1 + x_0y_0$
 - O(n/2) bit multiplication
- Compute x_1y_1 , x_0y_0
 - O(n/2) bit multiplications
- $(x_1y_1 + x_0y_0) (x_1 x_0)(y_1 y_0)$ leaves $x_1y_0 + x_0y_1$
 - \blacksquare 3 O(n/2) bit multiplications

Rewrite xy as $x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0$

$$T(n) = 4T(n/2) + n \text{ is } O(n^2)$$

- Divide and conquer has not helped!
- $(x_1 x_0)(y_1 y_0) =$ $x_1y_1 - x_1y_0 - x_0y_1 + x_0y_0$
 - O(n/2) bit multiplication
- Compute x_1y_1 , x_0y_0
 - O(n/2) bit multiplications
- $(x_1y_1 + x_0y_0) (x_1 x_0)(y_1 y_0)$ leaves $x_1y_0 + x_0y_1$
 - **3** O(n/2) bit multiplications

The Algorithm

```
Fast-Multiply (x, y, n)
   if n=1
     return x \cdot y
   else
     m = n/2
     (x_1, x_0) = (x/2^m, x \mod 2^m)
                                      Bit shifting
     (v_1, v_0) = (v/2^m, v \mod 2^m) Bit shifting
     (a,b) = (x_1 - x_0, v_1 - v_0)
     p = \text{Fast-Multiply}(x_1, v_1, m)
     q = \text{Fast-Multiply}(x_0, y_0, m)
```

r = Fast-Multiply(a, b, m)

return $p \cdot 2^{n} + (p + q - r) \cdot 2^{n/2} + q$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

$$T(n) = 3T(n/2) + n$$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n) = 3T(n/2) + n$$

= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= \cdots
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} + \cdots + (3/2)^1 + 1)n$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= \cdots
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n - 1} + \cdots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n - 1} - 1)/((3/2) - 1)]n$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

$$a^{\log n} = n^{\log a}$$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= ...
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} + \dots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n-1} - 1)/((3/2) - 1)]n$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= 0
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n - 1} + \dots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n - 1} - 1)/((3/2) - 1)]n$

$$a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= \cdots
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} + \cdots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n-1} - 1)/((3/2) - 1)]n$

$$= a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

$$n \cdot (3/2)^{\log n}$$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= \cdots
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n - 1} + \cdots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n - 1} - 1)/((3/2) - 1)]n$

$$= a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

$$n \cdot (3/2)^{\log n} = n \cdot n^{\log(3/2)}$$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= \cdots
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n - 1} + \cdots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n - 1} - 1)/((3/2) - 1)]n$

$$a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

■
$$n \cdot (3/2)^{\log n} = n \cdot n^{\log(3/2)}$$

= $n \cdot n^{\log 3 - \log 2}$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= ...
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} + \dots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n-1} - 1)/((3/2) - 1)]n$

$$= a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

■
$$n \cdot (3/2)^{\log n} = n \cdot n^{\log(3/2)}$$

= $n \cdot n^{\log 3 - \log 2}$
= $n^1 \cdot n^{\log 3 - 1}$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= ...
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} + \dots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n-1} - 1)/((3/2) - 1)]n$

$$a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

■
$$n \cdot (3/2)^{\log n} = n \cdot n^{\log(3/2)}$$

= $n \cdot n^{\log 3 - \log 2}$
= $n^1 \cdot n^{\log 3 - 1}$
= $n^{1 + \log 3 - 1}$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= ...
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} + \dots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n-1} - 1)/((3/2) - 1)]n$

$$= a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

■
$$n \cdot (3/2)^{\log n} = n \cdot n^{\log(3/2)}$$

= $n \cdot n^{\log 3 - \log 2}$
= $n^1 \cdot n^{\log 3 - 1}$
= $n^{1 + \log 3 - 1}$
= $n^{\log 3}$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= ...
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} + \cdots + (3/2)^1 + 1)n$
= $3^{\log n}$
+ $[((3/2)^{\log n-1} - 1)/((3/2) - 1)]n$

$$a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

■
$$n \cdot (3/2)^{\log n} = n \cdot n^{\log(3/2)}$$

= $n \cdot n^{\log 3 - \log 2}$
= $n^1 \cdot n^{\log 3 - 1}$
= $n^{1 + \log 3 - 1}$
= $n^{\log 3}$

$$\log 3 \approx 1.59$$

$$T(1) = 1$$
, $T(n) = 3T(n/2) + n$

■
$$T(n)$$
 = $3T(n/2) + n$
= $3(3T(n/4) + n/2) + n$
= $3^2T(n/2^2) + (3/2 + 1)n$
= $3^2(3T(n/2^3) + n/2^2)$
+ $((3/2)^1 + 1)n$
= $3^3T(n/2^3)$
+ $((3/2)^2 + (3/2)^1 + 1)n$
= ...
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} + \dots + (3/2)^1 + 1)n$
= $3^{\log n}T(n/2^{\log_2 n})$
+ $((3/2)^{\log n-1} - 1)/((3/2) - 1)]n$

$$a^{\log n} = n^{\log a}$$

$$3^{\log n} = n^{\log 3}$$

■
$$n \cdot (3/2)^{\log n} = n \cdot n^{\log(3/2)}$$

= $n \cdot n^{\log 3 - \log 2}$
= $n^1 \cdot n^{\log 3 - 1}$
= $n^{1 + \log 3 - 1}$
= $n^{\log 3}$

- $\log 3 \approx 1.59$
- Divide and conquer reduces the complexity of integer multiplication from $O(n^2)$ to $O(n^{1.59})$

■ In the 1950's, Andrei Kolmogorov, one of the giants of 20th century mathematics, publicly conjectured that multiplication could not be done in subquadratic time

- In the 1950's, Andrei Kolmogorov, one of the giants of 20th century mathematics, publicly conjectured that multiplication could not be done in subquadratic time
- Kolmogorov mentioned this conjecture at a seminar in Moscow University in 1960

- In the 1950's, Andrei Kolmogorov, one of the giants of 20th century mathematics, publicly conjectured that multiplication could not be done in subquadratic time
- Kolmogorov mentioned this conjecture at a seminar in Moscow University in 1960
- Anatolii Karatsuba, a 23 year old student, came back 2 weeks later to Kolmogorov with this divide and conquer algorithm!

- In the 1950's, Andrei Kolmogorov, one of the giants of 20th century mathematics, publicly conjectured that multiplication could not be done in subquadratic time
- Kolmogorov mentioned this conjecture at a seminar in Moscow University in 1960
- Anatolii Karatsuba, a 23 year old student, came back 2 weeks later to Kolmogorov with this divide and conquer algorithm!
- Karatsuba's original proposal was slightly different
 - Instead of $r = (x_1 x_0)(y_1 y_0)$, he used $r = (x_1 + x_0)(y_1 + y_0)$
 - Then, $x_0y_1 + x_1y_0 = r (x_1y_1 + x_0y_0)$
 - Difficulty is that $x_1 + x_0$, $y_1 + y_0$ could have n + 1 bits, complicates the analysis

- In the 1950's, Andrei Kolmogorov, one of the giants of 20th century mathematics, publicly conjectured that multiplication could not be done in subquadratic time
- Kolmogorov mentioned this conjecture at a seminar in Moscow University in 1960
- Anatolii Karatsuba, a 23 year old student, came back 2 weeks later to Kolmogorov with this divide and conquer algorithm!
- Karatsuba's original proposal was slightly different
 - Instead of $r = (x_1 x_0)(y_1 y_0)$, he used $r = (x_1 + x_0)(y_1 + y_0)$
 - Then, $x_0y_1 + x_1y_0 = r (x_1y_1 + x_0y_0)$
 - Difficulty is that $x_1 + x_0$, $y_1 + y_0$ could have n + 1 bits, complicates the analysis
- Using $r = (x_1 x_0)(y_1 y_0)$ to simplify the analysis is due to Donald Knuth

- In the 1950's, Andrei Kolmogorov, one of the giants of 20th century mathematics, publicly conjectured that multiplication could not be done in subquadratic time
- Kolmogorov mentioned this conjecture at a seminar in Moscow University in 1960
- Anatolii Karatsuba, a 23 year old student, came back 2 weeks later to Kolmogorov with this divide and conquer algorithm!
- Karatsuba's original proposal was slightly different
 - Instead of $r = (x_1 x_0)(y_1 y_0)$, he used $r = (x_1 + x_0)(y_1 + y_0)$
 - Then, $x_0y_1 + x_1y_0 = r (x_1y_1 + x_0y_0)$
 - Difficulty is that $x_1 + x_0$, $y_1 + y_0$ could have n + 1 bits, complicates the analysis
- Using $r = (x_1 x_0)(y_1 y_0)$ to simplify the analysis is due to Donald Knuth
- Karatsuba's algorithm can be used in any base, not just for binary multiplicaion