Федеральное государственное автономное образовательное учреждение
высшего образования «Московский физико-технический институт
(национальный исследовательский университет)»

Отчёт по лабораторной работе 5.4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Выполнили студенты: Сериков Василий Романович Сериков Алексей Романович группа: Б03-102

Аннотация

Цель работы:

С помощью магнитного спектрометра исследовать энергетический спектр β - частиц при распаде ядер $^{137}\mathrm{Cs}$ и определить их максимальную энергию.

Теоретическое введение:

Бета-распадом называется самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. Бета-активные ядра встречаются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая самыми тяжелыми ядрами. Период полураспада β - активных ядер изменяется от ничтожных долей секунды до 10^{18} лет. Выделяющаяся при единичном акте β - распада энергия варьируется от 18 кэВ до 13,4 МэВ.

В данной работе мы будем иметь дело с электронным распадом

$${}_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu} \tag{1}$$

при котором кроме электрона испускается антинейтрино. Освобождающаяся при β -распаде энергия делится между электроном, антинейтрино и дочерним ядром, однако доля энергии, передаваемой ядру, исчезающе мала по сравнению с энергией, уносимой электроном и антинейтрино. Практически можно считать, что эти две частицы делят между собой всю освобождающуюся энергию. Поэтому электроны могут иметь любое значение энергии от нулевой до некоторой максимальной, которая равна энергии, освобождающейся при β -распаде, являющейся важной физической величиной.

Вероятность dw того, что при распаде электрон вылетит с импульсом в интервале d^3p , а антинейтрино с импульсом в интервале d^3k , пропорциональна произведению этих дифференциалов. Но мы должны еще учесть закон сохранения энергии, согласно которому импульсы p и k электрона и антинейтрино связаны соотношением

$$E_e - E - ck = 0, (2)$$

где E_e - максимальная энергия электрона, кинетическая энергия электрона E связана с его импульсом обычным релятивистским соотношением

$$E = c\sqrt{p^2 + m^2c^2} - mc^2, (3)$$

а через ck обозначена энергия антинейтрино с импульсом k. Условие можно учесть введением в выражение для dw δ - функции

$$\delta(E_e - E - ck). \tag{4}$$

Таким образом, вероятность dw может быть записана в виде

$$dw = D\delta(E_e - E - ck)d^3pd^3k = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}}, \tag{5}$$

где D — некоторый коэффициент пропорциональности, $d\Omega_e$, $d\Omega_{\tilde{\nu}}$ — элементы телесных углов направлений вылета электрона и нейтрино. Вероятность dw непосредственно связана с β -спектром, поскольку для большого числа N_0 распадов число dN распадов с вылетом электрона и антинейтрино с импульсом соответственно от p до p+dp и от k до k+dк определяется соотношением

$$dN = N_0 dw (6)$$

Коэффициент D в формуле (5) можно считать для рассматриваемых нами так называемых разрешенных фермиевских типов распадов с хорошей точностью константой (разрешенными называются такие переходы, при которых не изменяются ни момент, ни четность состояния ядра). В этом случае величину dw из (6) можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино.

После умножения на полное число распадов N проинтегрированное выражение приобретает смысл числа электронов dN, вылетающих из ядра с импульсом, абсолютная величина которого лежит между p иp+dp:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$
 (7)

Чтобы получить распределение электронов по энергиям, надо в (7) перейти от dp к dE:

$$dE = \frac{c^2 p}{E + mc^2} dp,\tag{8}$$

после чего выражающая форму β — спектра величина N(E)=dN/dE приобретает вид

$$\frac{dN}{dE} = N_0 B c p (E + mc^2) (E_e - E)^2 = N_0 B \sqrt{E(E + 2mc^2)} (E_e - E)^2 (E + mc^2)$$
(9)

где $B = (16\pi^2/c^4)D$. В нерелятивистском приближении, которое и имеет место с нашем случае, выражение (9) упрощается, и мы имеем

$$\frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2. \tag{10}$$

Рис. 1: Форма спектра β -частиц при разрешенных переходах

Выражение (10) приводит к спектру, имеющему вид широкого колокола (рис 1). Кривая плавно отходит от нуля и столь же плавно, по параболе, касается оси абсцисс в области максимальной энергии электронов E_e .

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант (энергия которого равна разности

энергий начального и конечного уровней), либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Конверсия чаще всего происходит на оболочках K или L. На спектре, представленном на рис.1, видна монохроматическая линия, вызванная электронами конверсии. Ширина этой линии в нашем случае является чисто аппаратурной, по ней можно оценить разрешающую силу спектрометра.

1 Экспериментальная установка

Для определения энергии β -частиц в работе используется магнитный спектрометр, схема которого показана на рисунке 2 слева. Электроны испускаются радиоактивным источником и попадают в магнитное поле катушки, ось которой параллельна OZ. Траектории электронов сходятся в одной точке — фокусе, где и установлен сцинтилляционный счетчик, сигналы которого усиливаются фотоумножителем и регистрируются пересчетным прибором. Фокусное расстояние f магнитной линзы связано с током в катушке I и импульсом p_e регистрируемых частиц следующим образом:

$$\frac{1}{f} \propto \frac{I^2}{p_e^2}$$

При неизменной геометрии установки, увеличивая и уменьшая силу тока, можно фокусировать электроны разных импульсов, причем

$$p_e = kI, (11)$$

где k — коэффициент пропорциональности, являющийся параметром установки.

Рис. 2: слева — схема β -спектрометра; справа — блок-схема установки для изучения спектра

В β -спектрометре установлены диафрагмы для ограничения углов вылета частиц из источника и свинцовый фильтр для защиты от прямого попадания γ -лучей.

Число частиц N, регистрируемых на установке, равно: $N \approx W \cdot \Delta p_e$, где Δp_e - разрешающая способность спектрометра. Дифференцируя выражение для форуса магнитной линзы, получим: $\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e$, то есть $\Delta p_e \propto p_e$. Таким образом, для количества частиц справедлива формула:

$$N = CW(p_e)p_e \tag{12}$$

Здесь C - некоторая константа.

Ход работы:

1. Перед проведением измерения β -спектра, проведем измерения фона. Полученные результаты занесем в таблицу 1.

Ŋō	1	2	3	4	5
$N_{ m \phioH}$	1,068	1,134	1,085	1,102	0,908
$dN_{\text{фон}}$	0,086	0,097	0,087	0,074	0,055

Таблица 1: Число срабатываний счетчика в секунду при измерении фона t = 100 сек

Посчитаем среднее значение $\overline{n_{\text{фон}}}$ числа срабатываний счетчика

$$\overline{N_{ ext{фон}}} = rac{1}{5} \sum_{i=1}^{5} n_i = 1,05 \pm 0,07$$

2. Проведем серию измерений β -спектра, изменяя ток магнитной линзы в интервале 0A-5A. Прокалибруем спектрометр с учетом, что величина произведения импульса конверсионного электрона на скорость света равна 1013,5 кэВ. Полученные данные занесем в таблицу 2.

		I	I		
$N_{ar{o}}$	I, A	N- $N_{ m \phioh}$	р, кэВ/с	Т, кэВ	$\sqrt{(N(p) - \overline{N_{\text{фон}}})/p^{3/2} \cdot 10^6}$
1	0,2	0,977	51,9	2,6	0
2	0,4	0,889	98,8	9,5	0
3	0,6	0.900	148,2	21,1	0
4	0,8	1,488	197,6	36,9	179,9
5	1,0	1,711	247,0	56,6	165,1
6	1,2	2,288	296,5	79,8	176,4
7	1,4	3,143	345,9	106,0	186,3
8	1,6	3,699	395,3	135,0	175,1
9	1,8	4,075	444,7	166,4	159,7
10	2,0	4,161	494,1	199,8	150,4
11	2,1	4,261	518,8	217,2	142,5
12	2,2	4,711	543,5	235,0	142,2
13	2,3	4,311	568,3	253,2	126,0
14	2,4	4,023	592,9	271,7	106,8
15	2,6	3,574	642,3	309,8	88,1
16	2,8	3,074	691,7	349,0	71,0
17	3,0	2,624	743,6	391,3	57,3
18	3,2	1,762	790,5	430,3	35,8
19	3,4	1,474	840,0	472,2	27,1
20	3,5	1,287	864,7	493,4	20,2
21	3,6	1,100	889,4	514,7	11,4
22	3,7	1,737	914,1	536,2	29,5
23	3,8	3,474	938,8	557,8	52,6
24	3,9	4,511	963,5	579,6	60,3

25	4,0	5,460	988,2	601,5	66,7
26	4,05	5,420	1000,5	612,5	70,9
27	4,1	6,235	1012,9	623,5	62,4
28	4,15	5,198	1025,2	634,5	60,0
29	4,2	5,023	1037,6	645,6	49,6
30	4,3	3,961	1062,3	667,8	27,3
31	4,4	1,962	1087,0	690,1	0
32	4,5	0,850	1111,7	712,5	0
33	4,6	0,625	1136,4	735,0	0
34	4,8	0,475	1185,8	780,2	0
35	5,0	0,275	1235,2	825,7	0

Таблица 2: Данные с ЭВМ по результатам измерения количества частиц, импульса, энергии и коэффициентов Ферми-Кюри при различных значениях тока накала. Расчет р, Т, коэффициентов Ферми-Кюри проводился с учетом фона.

3. По полученным данным построим графики зависимости N(p), N(I) и график Ферми-Кюри.

Рис. 3: График зависимости N(I)

Рис. 4: График зависимости N(p)

Рис. 5: График зависимости $\sqrt{(N(p)-\overline{N_{\rm фон}})}/p^{3/2}\cdot 10^6)(T)$

4. По графику Ферми-Кюри определим максимальную энергию β -спектра. Для этого проведем прямую по линейной части графика и определим точку пересечения прямой с осью абсцисс.

Обсуждение результатов и выводы:

В ходе данной работы мы с помощью магнитного спектрометра исследовали энергетический спектр β -частиц при распаде ядер ^{137}Cs и определили их максимальную энергию: $E_{max}=566\pm90$ кэВ, что в пределах погрешности совпадает с табличным значением $E_{max}=634$ кэВ. Вклад в погрешность дает погрешность измерения числа частиц. Для увеличения точности необходимо проводить подсчет большее время.