

Tarea 1 - Parte A

 $MoM = \{w \in \{0,1\}^* | \text{ existen MT } M_1 \text{ y } M_2 \text{ tal que } w = C(M_1)0000C(M_2) \text{ y:}$ $M_1 \text{ acepta a } C(M_2) \text{ o } M_2 \text{ acepta a } C(M_1)\}$

Mostrar que MoM es recursivamente enumerable.

Sea \hat{M} una Máquina de Turing tal que reciba un string $u \in \{0,1\}^*$ de la forma $u = C(M_1)0000C(M_2)$ como entrada, con M_1 y M_2 Máquinas de Turing.

 \hat{M} ejecuta mediante una Máquina de Turing universal a M_1 con input $C(M_2)$, y a M_2 con input $C(M_1)$ paralelamente.

Para ejecutar paralelamente ambos programas, se configura la cinta de manera que las posiciones impares posean en orden los elementos de la cinta para ejecutar M_1 , que en este caso sería $C(M_1)0000C(M_2)$, y en las posiciones pares los elementos de la cinta para ejecutar M_2 , que sería $C(M_2)0000C(M_1)$. Además, se definirían caracteres especiales para identificar la posición actual de los cabezales y poder cambiar entre ejecuciones efectivamente. Un ejemplo es usar el carácter "i" para denotar que un cabezal se encuentra sobre un carácter 1, "o" sobre un carácter 0, y "_-" sobre ϵ , identificando si este cabezal corresponde a M_1 o M_2 según la paridad de la casilla que se encuentre.

Definimos los estados finales de \hat{M} como la unión de los estados finales de M_1 y M_2 . De esta manera, para una entrada u, la máquina aceptará cuando cualquiera de las dos máquinas acepte, y $u \in L(\hat{M})$. Por otro lado, si ambas máquinas terminan su ejecución (paran) en un estado no final, o en otras palabras, rechazan el input, \hat{M} rechaza y $u \notin L(\hat{M})$. Si ninguna de las máquinas se detiene, \hat{M} tampoco se detendrá. Lo mismo pasa en el caso de que una de las dos máquinas rechace el input, y la otra no se detenga, y para ambos casos ocurre que $u \notin L(\hat{M})$.

Por lo tanto, tenemos que el lenguaje de \hat{M} es $L(\hat{M}) = MoM$, por lo tanto existe una Máquina de Turing que posea este lenguaje, y $MoM \in RE$.