Formelsammlung Experimentalphysik I

Juan Marius Mangold

WS 20/21, Frank

Standpunkt: 06.02.2021

-2 Umrechnungen

Zeichen	Faktor	Name
T	10^{12}	Tera
G	10^{9}	Giga
M	10^{6}	Mega
K	10^{3}	Kilo
H	10^{2}	Hekto
D	10	Deka
d	10^{-1}	dezi
c	10^{-2}	centi
\overline{m}	10^{-3}	milli
μ	10^{-6}	mikro
n	10^{-9}	nano
p	10^{-12}	piko

Atmosphärendruc	k [at]	1
Newton/Quadratmeter		101300
Pascal	[Pa]	101300
Hectopascal	[hPa]	1013
Kilopascal	[Kpa]	101.3
Millibar	[mbar]	1013
Bar	[bar]	1.013

-1 Konstanten

Gravitationskonstante: $G = 6.667 \cdot 10^{-11} \text{ [m}^3 \text{ kg}^{-1} \text{ s}^{-2} \text{]}$

Erdmasse: $M_E = 5.972 \cdot 10^{24} \text{ [kg]}$

Erdradius [Äquator]: $r_E = 6 378 \text{ [km]}$

Boltzmann-Konstante: $k_B = 1.380 649 \cdot^{-23} [\text{J K}^{-1}]$

Avogadro Zahl: $N_A = 6.022 \ 147 \ 76 \cdot 10^{23} \ [\text{mol}^{-1}]$

Universelle Gaskonstante: $R = k_B N_A = 8.314 \text{ 54 [J mol}^{-1}]$

Therm. Ausdehnungskoeff. $\gamma = \frac{1}{273.15^{\circ}}$ Celsius-Kelvin: $0^{\circ}\text{C} = 273.15\text{K}$

0 Fehlerrechnung

Mittelwert der Verteilung: $\overline{T} = \frac{1}{N} \sum_{i=1}^{N} T_i$

Standardabweichung:
$$\sigma_{N-1} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (T_i - \overline{T})^2}$$

Messunsicherheit:
$$\bar{\sigma} = \frac{\sigma_{N-1}}{\sqrt{N}} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (T_i - \overline{T})^2}$$

1 Mechanik

1.1 Kinematik des Massenpunktes

Momentangeschwindigkeit:
$$v := \frac{dx}{dt} = \dot{x} \quad [\text{ms}^{-1}]$$

Beschleunigung:
$$a := \frac{dv}{dt} = \dot{v} = \ddot{x} \quad [\text{ms}^{-2}]$$

Integration:
$$v(t) = \int_0^t a dt' = at + v_0$$

$$x(t) = \int_0^t v dt' = \frac{at^2}{2} + v_0 t + x_0$$

Schiefer Wurf

Bewegungsgleichung:
$$\vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + \frac{\vec{a}(t - t_0)^2}{2}$$

Wurfparabel:
$$z(t) = \frac{-gt^2}{2} + v_{z_0}t + z_0$$

$$z(x) = \frac{-g}{2} \left(\frac{x}{v_{x_0}}\right)^2 + v_{z_0} \left(\frac{x}{v_{x_0}}\right) + z_0$$

Wurfdauer:
$$T_D = \frac{2v_0 \sin \alpha}{q}$$

Wurfhöhe:
$$H = \frac{v_0^2 \sin^2 \alpha}{2g}$$

Wurfweite:
$$S_W = \frac{v_0^2 \sin 2\alpha}{q}$$

Scheitelpunkt:
$$S_S = \frac{v_0^2 \sin 2\alpha}{2g}$$

Gleichförmige Kreisbewegung

Bewegungsgleichung:
$$\vec{r}(t) = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

Einheitsvektor [Radius]:
$$\vec{e_r} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix}$$

Einheitsvektor [Winkel]:
$$\vec{e_{\varphi}} = \begin{pmatrix} -\sin\varphi \\ \cos\varphi \end{pmatrix}$$

Winkel:
$$\varphi = \omega t$$

Winkelgeschwindigkeit:
$$\omega = \frac{d\varphi}{dt}$$
 [s⁻¹]

Winkelbeschleunigung:
$$\alpha = \frac{d\omega}{dt} = \frac{d^2\varphi}{dt^2}$$
 [s⁻²]

Geschwindigkeit:
$$\vec{v}(\varphi) = R\omega \begin{pmatrix} -\sin \omega t \\ \cos \omega t \end{pmatrix}$$

$$v = Rw$$

Kreisbeschleunigung
$$\vec{a}(\varphi) = -R\omega^2 \begin{pmatrix} \cos \omega t \\ \sin \omega t \end{pmatrix}$$

$$a = R\omega^2$$

$$\vec{v} = \vec{\omega} \times \vec{r}$$

$$\vec{a} = \vec{\omega} \times \vec{v}$$

1.2 Allgemeine Krummlinige Bewegung

Geschwindigkeit: $\vec{v} = v\vec{e_i}$

Beschleunigung: $\vec{a} = \dot{\vec{v}} = \frac{d(v\vec{e_{\varphi}})}{dt} = \frac{dv}{dt}\vec{e_{\varphi}} + v\frac{d\vec{e_{\varphi}}}{dt}$

Lokaler Radius: $\delta = \frac{v}{\omega}$

Bogenlänge: $s(t) = \int_{t_0}^t \sqrt{\vec{v}(t)^2} dt$

Bewegte Bezugssysteme $[S \rightarrow S']$

Ort: $\vec{r}' = \vec{r} - \vec{u}t$

Geschwindigkeit: $\vec{v}' = \vec{v} - \vec{u}$

Beschleunigung $\vec{a}' = \vec{a}$

2 Newtonsche Dynamik

2.1 Kraft und Impuls

Impuls: $\vec{p} = m\vec{v}$ [kg m s⁻¹]

Kraft: $\vec{F} = \dot{\vec{p}} = \frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt}$ [kg m s⁻²] = [N]

Kraft [konstante Masse]: $\vec{F} = \dot{\vec{p}} = m \frac{d\vec{v}}{dt} = m\vec{a}$

Zentripetalkraft: $\vec{F}_z = \frac{mv^2}{R}\vec{e_r}$

Gravitationskraft: $\vec{F}_G = \frac{-Gm_1m_2}{r^2}\vec{e_r}$

Erdbeschleunigung: $g = \frac{GM_E}{(r_E + h)^2}$

Federkraft: F = -kx

Normalkraft: $\vec{F}_N = mg \cos \alpha \ \vec{e}_y$ Hangabtriebskraft: $\vec{F}_H = mg \sin \alpha \ \vec{e}_x$

Reibungskräfte: $F_R = \mu F_N$

Haftreibungskraft: $F_{Haft} = \mu_H F_N$ Gleitreibungskraft: $F_{Gleit} = \mu_G F_N$

2.2 Arbeit, Energie, Leistung

Arbeit:

[d = 1]
$$W = F\Delta x$$
 [kg m² s⁻²] = [N m] = [J]

$$[\mathrm{d}>1] \hspace{1cm} W=\vec{F}\Delta\vec{x}$$

$$\Delta W = \vec{F} \Delta \vec{r}$$

$$W_{AB} = \int_{\vec{r}_A}^{\vec{r}_B} \vec{F} d\vec{r}$$

Kinetische Energie:
$$E_{kin} = \frac{mv^2}{2}$$

Pot. Energie [Lage]:
$$E_{pot} = mgh$$

Pot. Energie [Verformung]:
$$E_{pot} = \frac{kx^2}{2}$$

Leistung:
$$P = \frac{dW}{dt} = \vec{F}\frac{d\vec{r}}{dt} = \vec{F}\vec{v} \quad [\text{N m s}^{-1}] = [\text{J s}^{-1}] = [\text{W}]$$

Potential:
$$\Delta E_p = -\vec{F}\Delta \vec{r} = -F_x \Delta x - F_y \Delta y - F_z \Delta z$$

$$\Delta E_p = \frac{\partial E_p}{\partial x} \Delta x + \frac{\partial E_p}{\partial y} \Delta y + \frac{\partial E_p}{\partial z} \Delta z$$

Kraft:
$$\vec{F} = -\vec{\nabla}E$$

Energieerhaltung [konservativ]:
$$\Delta E_{kin} = -\Delta E_{pot} = \int_A^B \vec{F} d\vec{r}$$

Gesamtenergie:
$$E_{ges} = E_{kin} + E_{pot}$$

Skalierung:
$$E_{pot}^n = m^n g h^n$$

3 Systeme von Massenpunkten

Gesamtmasse:
$$M = \sum_{i=1}^{n} m_i$$

Massengewichteter Ortsvektor:
$$\vec{r_s} = \frac{\sum m_i \vec{r_i}}{M}$$

$$\vec{r}_s = \frac{1}{M} \int_V \vec{r} dm = \frac{1}{M} \int_V \vec{r} \rho dV = \frac{1}{M} \int_V \vec{r} \rho(\vec{r}) dV$$

[System mit 2 Massen]:
$$\vec{r_s} = \frac{m_1\vec{r_1} + m_2\vec{r_2}}{m_1 + m_2} = \frac{m_1}{m_1 + m_2}\vec{r_1} + \frac{m_2}{m_1 + m_2}\vec{r_2}$$

Schwerpunktsgeschwindigkeit:
$$\vec{v}_s = \frac{d\vec{r}_s}{dt} = \frac{1}{M} \sum m_i \frac{d\vec{r}_i}{dt} = \frac{1}{M} \sum m_i \vec{v}_i = \frac{1}{M} \sum \vec{p}_i$$

Schwerpunktsbeschleunigung:
$$\vec{a}_s = \dot{\vec{v}}_s = \frac{1}{M} \sum m_i \ddot{\vec{r}} = \frac{1}{M} \sum m_i \vec{a}_i$$

Impuls:
$$\vec{p}_i = m_i \vec{v}_i$$

Schwerpunktsimpuls:
$$\vec{p_s} = \sum \vec{p_i} = \sum m_i \vec{v_i} = M \vec{v_s}$$

Kraft:
$$\dot{\vec{p}}_s = M\vec{a}_s = \sum_{i=1}^n \vec{F}_i$$

4 Stoßprozesse

Impulserhaltung:
$$p(t) = p(t + \Delta t)$$

$$m_1v_1 = m_2v_2$$

Raketengleichung:
$$p(t + \Delta t) = m(v + \Delta v) + \Delta m(v - v_B)$$

Kollinearer Stoß:
$$m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2$$

$$\frac{m_1 v_1^2}{2} + \frac{m_2 v_2^2}{2} = \frac{m_1 v_1^{2\prime}}{2} + \frac{m_2 v_2^{2\prime}}{2}$$

$$\to v_1' = \frac{v_1(m_1 - m_2) + 2m_2v_2}{m_1 + m_2}$$

$$\to v_2' = \frac{v_2(m_2 - m_1) + 2m_1v_1}{m_1 + m_2}$$

Bewegtes Schwerpunktssystem:
$$v_s = \frac{m_1v_1 + m_2v_2}{m_1 + m_2}$$

$$\to v_1^* = v_1 - v_s = \frac{m_2 v_1 - m_2 v_2}{m_1 + m_2}$$

$$\to v_2^* = v_2 - v_s = \frac{m_1 v_2 - m_1 v_1}{m_1 + m_2}$$

Impuls:
$$p_1^* = m_1 v_1^* = \left(\frac{m_1 m_2}{m_1 + m_2}\right) (v_1 - v_2)$$

$$p_2^* = \left(\frac{m_1 m_2}{m_1 + m_2}\right) (v_2 - v_1)$$

Impuls [Nach Stoß]:
$$p_1^{*'} = \frac{p_1^*(m_1 - m_2) + 2m_1p_2^*}{m_1 + m_2}$$

$$p_1^{*\prime} = -p_1^* = p_2^*$$

Kolinearer [inelastischer] Stoß:

Impulserhaltung:
$$m_1 v = (m_1 + m_2)v'$$

Fall:
$$m_1 = m_2$$

$$\rightarrow v' = \frac{v}{2}$$

Energieerhaltung [?]
$$E'_{kin} = \frac{2mv'^2}{2} = mv'^2 = \frac{mv^2}{4} \neq E_{kin}$$

5 Mechanik des starren Körpers

Starre Körper

S: Schwerpunktsystem I: Ursprungssystem

Ort: $\vec{r}_{spi} = \vec{r_i} - \vec{r}_{sp}$

Geschwindigkeit: $\vec{v}_{si} = \frac{d\vec{r}_{si}}{dt} = \vec{v}_i - \vec{v}_{sp}$

Kreisbewegung: $\vec{v}_i = \vec{v}_{sp} + \vec{\omega} \times \vec{r}_{spi}$

Volumen: $V = \lim_{\Delta v_i \to 0} \sum_i \Delta v_i = \int dV$

Masse: $M = \lim_{\Delta m_i \to 0} \sum_i \Delta m_i = \int dm = \int \rho(\vec{r}) dV$

Schwerpunkt: $\vec{r}_s = \frac{1}{M} \sum_i m_i \vec{r}_i = \frac{1}{M} \int \vec{r} \rho(\vec{r}) dV$

Auftriebskraft: $F_A = -\rho gV$

Drehmomente

Drehmoment $\vec{M} = \vec{r} \times \vec{F}$ [Nm]

[d=2] M=hF

Drehmoment [Gesamt]: $\vec{M}_{ges} = \sum_{i} \vec{M}_{i}$

Drehmoment $[\alpha_1 = \alpha_2]$ $\vec{M}_1 = r_1 m_1 g \sin \alpha_1 \vec{e}_z$

Hebelgesetz: $m_1 l_1 = m_2 l_2$

Rotation und Trägheitsmoment

Kinetische Energie: $E_{kin} = \sum_{i} \frac{m_i \vec{v}_i}{2} = \sum_{i} \frac{m_i \vec{v}_{sp}^2}{2} + \sum_{i} \frac{m_i \vec{v}_{spi}^2}{2}$

Translation [Schwerpunkt]: $[T] = \frac{m_i \vec{v}_{sp}^2}{2}$

Rotationsenergie $E_{rot} = \sum_{i} \frac{m_i \vec{v}_{spi}^2}{2} = \int dE_{kin} = \frac{1}{2} \int \omega^2 r_{\perp}^2 dm$

Rotationsenergie: $E_{rot} = \frac{\hat{I}\omega^2}{2}$

Trägheitsmoment Ausführlicher

Trägheitsmoment: $I = \theta = \int r_{\perp}^2 dm = \int (\vec{r}_{sp} + \vec{r}_{\perp})^2 dm$ [kgm²]

[Kugel]: $I = \frac{2mR^2}{5}$

[Vollzylinder]: $I = \frac{mR^2}{2}$

[Hohlzylinder]: $I = mR^2$

[Kegel]: $I = \frac{3}{10}mr^2$

[Stab]: $I = \frac{ml^2}{3}$

[Quader] $I_z = \frac{M}{12}(a^2 + b^2)$

$$I_x = \frac{M}{12}(b^2 + c^2)$$

$$I_y = \frac{M}{12}(a^2 + c^2)$$

$$I = \int \vec{r}_{sp}^2 dm + I_{sp} = mr^2 + I_{sp}$$

Steinerscher Satz:

Rotierende Körper

Geschwindigkeit

 $\vec{v}_i = \vec{\omega} \times \vec{r}_{\perp i}$

[Ebene]: $v_i = \omega r_{\perp i}$

Winkel:

 $\varphi = \frac{\alpha t^2}{2} + \omega_0 t + \varphi_0$

Winkelgeschwindigkeit: $\omega = \alpha t + \omega_0$

Winkelbeschleunigung: $\alpha = \dot{\omega}$

 $T_0^2 = \frac{4\pi}{\alpha} = \frac{4\pi I_0}{M}$ Periodendauer:

 $M_i = r_{\perp i} F_i = r_{\perp i}^2 m_i \frac{d\omega}{dt} = r_{\perp i}^2 m_i \alpha$ Drehmoment [d = 2]:

 $M_{tot} = \sum_{i} M_{i} = \frac{d\omega}{dt} \int r_{\perp}^{2} dm = I\alpha$ $\vec{M} = \hat{I}\vec{\alpha}$ Drehmoment [gesamt]:

[d > 2]:

 $L = I\omega = mr^2\omega = \frac{mr^2v}{r} = rp$ Drehimpuls [d = 2]:

 $\vec{L} = \vec{r} \times \vec{p}$ [d > 2]:

 $\vec{L} = \int d\vec{L} = \int (\vec{r} \times \vec{v}) dm = \vec{\omega} \int r^2 dm - \int \vec{r} (\vec{\omega} \cdot \vec{r}) dm$

 $\dot{\vec{L}} = \vec{M}$

Rotierendes Bezugssystem:

 $|\vec{F}_z| = m\omega^2 r = \frac{mv^2}{r}$ Zentrifugalkraft:

 $\vec{F_C} = -2m(\vec{\omega} \times \vec{v'})$ Corioliskraft:

 $\vec{v'} = \vec{v} - (\vec{\omega} \times \vec{r})$

Coriolis-1.png

6 Mechanik deformierbarer Körper

Deformation von Festkörper

Druck: $p = -\sigma$

Zugspannung: $\sigma = \frac{F_N}{A} = E \frac{\Delta L}{L}$ (oft mit Längenänderung aus Wärmelehre

Elongation: $\varepsilon = \frac{\Delta L}{L} = \frac{\sigma}{E}$

Scherspannung: $\tau = \frac{F_t}{A} = G\alpha$

Durchmesseränderung: $\frac{\Delta D}{D} = -\mu \frac{\Delta L}{L}$

Volumenänderung: $\frac{\Delta V}{V} = \frac{\sigma}{E}(1 - 2\mu) = -\kappa \Delta p = -\frac{\Delta F}{A}$

Kompressibilität: $\kappa = \frac{1}{K} = \frac{3}{E}(1 - 2\mu)$

Druckänderung: $\Delta p = -K \frac{\Delta V}{V}$

Ruhende Flüssigkeiten

Druck: $p = \frac{F}{A} \quad [Nm^2]$

Hydraulische Presse: $p_1 = \frac{F_1}{A_1}$

 $p_1 = p_2 = p$

Arbeit: $W_1 = F_1 a_1 = p A_1 a_1 = p V$

Kraft: $F_2 = \frac{A_2}{A_1} F_1$

Hydrostatischer Druck: $p = p_0 + \rho g h$

Gase

Barometrische Höhenformel: $p(h) = p_0 e^{-\frac{h}{h_0}}$ mit $h_0 = \frac{p_0}{\varphi_0 * q}$

Strömende Flüssigkeiten

Kontinuitätsgleichung [Fluss]: $\Phi = \frac{\Delta m}{\Delta t} = \frac{\rho A \Delta x}{\Delta t} = \rho A v = \text{const.}$

 $\Phi_1 = \Phi_2 \to A_1 v_1 = A_2 v_2$

Strömende Flüssigkeit: $F_p = -\frac{dp}{dx}\Delta V$

Gleichförmige Bewegung: $F_P = -F_{Visc}$

Viskosität: $\vec{a}_v = \mu \frac{1}{\varphi} \Delta \vec{v}$ mit $\Delta = \text{Laplace}$

Bernoulli Gleichung: $p + \frac{\rho v^2}{2} + \rho g h = \text{const.}$

Wärmelehre 7

Temperaturbegriff und Wärmeänderung

pV = nRTIdeales Gasgesetz: $p = \varphi RT$ oder auch:

mit n = Anzahl Teilchen in Mol, R = Gaskonstante

 $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$ Druck-Dichte-Temperatur

 $V(T) = V_0(1 + \gamma T) \text{ mit } \gamma = \frac{1}{273.15}$ Gesetz von Gay-Lussac:

 $\Delta L = \alpha L_0 \Delta T$ Längenausdehnung:

 $L = L_0(1 + \alpha \Delta T)$

 $\Delta V = \gamma V_0 \Delta T$ Volumenausdehnung: Isobar

 $V = V_0(1 + \gamma \Delta T)$

Kinetische Gastheorie

 $F_n = p_D A \ (p_D \equiv \text{Druck})$ Kraft:

$$\begin{split} F_n &= \dot{p}_I \; (p_I \equiv \text{Impuls}) \\ F_n &= \frac{dp}{dt} = \frac{\Delta p}{N} \frac{N}{\Delta t} = \frac{\text{Impulsänderung}}{\text{Stöße}} \; . \end{split}$$

 $F = mAN\overline{v_r^2}$

 $\overline{v_x^2} = \frac{1}{N} \int_{-\infty}^{\infty} v_x^2 n(v_x) dv$ Mittlere thermische Geschwindigkeit:

 $p = \frac{2}{3}\overline{E}_{kin}N$ Druck [Energie]:

 $p = Nk_BT$ Druck [Temperatur]:

 $\overline{E_{kin}} = \frac{3}{2}k_BT$ Energie: