Patent claims

- 1. A process for producing an Si_3N_4 -coated SiO_2 shaped body from an SiO_2 green body, wherein a precursor which is suitable for forming an Si_3N_4 sintered layer is applied to a surface of the amorphous, open-pore SiO_2 green body, and then the precursor is converted in situ into an Si_3N_4 sintered layer under a laser beam.
- 2. The process as claimed in claim 1, wherein the laser beam is the beam from a ${\rm CO}_2$ laser.
- 3. The process as claimed in claim 1 or 2, wherein the SiO_2 shaped body is a solar crucible, and the precursor is applied on one side, to the inner-side surface of the SiO_2 green body.
- 4. The process as claimed in one of claims 1 to 3, wherein the precursor which is suitable for forming an $\mathrm{Si}_3\mathrm{N}_4$ sintered layer is selected from the group consisting of $\mathrm{Si}_3\mathrm{N}_4$ powder, silicon powder, silicon oxide/carbon mixtures and polysilazanes.
- 5. The process as claimed in claim 4, wherein the precursor is an $\mathrm{Si}_3\mathrm{N}_4$ powder.
- 6. The process as claimed in claim 5, wherein the $\rm Si_3N_4$ powder has a grain size of between 100 nm and 100 μm , preferably between 100 nm and 50 μm and particularly preferably between 100 nm and 10 μm .
- 7. The process as claimed in claim 5 or 6, wherein the $\rm Si_3N_4$ powder is applied in the form of an $\rm Si_3N_4$ powder dispersion by spraying the surface of the $\rm SiO_2$ green body, and is then

dried.

- 8. The process as claimed in claim 7, wherein the dispersion comprises a dispersant selected from the group consisting of alcohols, acetone and water.
- 9. The process as claimed in one or more of claims 6 to 8, wherein the $\rm Si_3N_4$ powder layer which is present on the surface has a layer thickness of from 1 to 1000 μm , preferably from 1 to 500 μm .
- 10. The process as claimed in one or more of claims 1 to 9, wherein the SiO_2 green body, after the precursor has been applied, is irradiated by a laser beam with a focal spot diameter of at least 2 cm.
- 11. The process as claimed in one or more of claims 1 to 10, wherein the laser beam has a radiation power density of from 50 W to 500 W per square centimeter, particularly preferably from 100 to 200 and very particularly preferably from 130 to 180 W/cm².
- 12. The process as claimed in one or more of claims 1 to 11, wherein the formation of the Si_3N_4 sintered layer takes place at a temperature of between 1000°C and 1600°C, particularly preferably between 1100°C and 1200°C.
- 13. The process as claimed in one or more of claims 1 to 12, wherein the irradiation is carried out uniformly and continuously.