Tutorial No.05 - Answers

The Present Value of the = Present Value of + Present Value of the coupons the redemption Value

- 1000
$$ra_{2n}$$
 + 381.50

= 1000 ra_{2n} + 381.50

= 1000 ra_{2n} + 381.50

X

Since the bond is a far bond priced at the same nominary rate, the price of the bond is 1000.

Therefore, the initial investment is 1,000.

Future amount of the =
$$PV(1+i)^n$$

investment = $1000(1+0.07)^{10}$
-\$1,967.15

1,967.15 = 1000 refayment of the + future amount of the face value of the bond reinvestment account

$$1,967.15 = 1000 + FV_1$$

 $FV_1 = 967.15$

Coupon Payment = 1000 x 0.08 =\$30

$$FV_{1} = R. S \overline{n}$$

$$FV_{1} = R. \left(\frac{(1+i)^{90}-1}{i} \right)$$

$$967.15 = 30 \left(\frac{(1+i)^{90}-1}{i} \right)$$

$$\frac{967.15}{30}i = (1+i)^{20}-1$$

sem - annual yield is 4. 7596%

The annual effective yield is (1.047596)2-1 = 0.097458

Pre

P - (Fr) and + cvn t=10

F = \$100 $118.9 = (100 \times 0.04) a_{\frac{1}{20}} + CV^{\frac{1}{20}} \qquad F = 100 $118.9 = 4\left[\frac{1}{(1+0.08)^{20}}\right] + C \times \frac{1}{(1+0.08)^{20}} \qquad 2^{\frac{(2)}{2}} = 6\%$ 118.9 = 59.51 + C $(1.03)^{20}$ 58.69 = C (1.03)20 C =\$106.0 The furchase frice of the bond i=51(5) $P(PV) - (1000 \times 0.04) \alpha_{\overline{20}} + 1000. V^{20}$ $= 40 \left(\frac{1 - \frac{1}{(1 + 0.03)^{20}}}{0.03} \right) + \frac{1000}{(1 + 0.03)^{20}}$ The investor will borrow 1/48.77 at 5% and repay in 10 years the amount pv(1+i)10 PV = \$1,148.77 = 1,148.77 (1+0.05)10 loan = \$1,871.28 and of war for a tiple Future value of all = R. 5 00 - 40 ((1+0.09)°-1 coulon Payments \$ 971.89 At the end of lo years, redemption value of + future value of = 1000 + 971.89 all coupon payments =\$1,971.89 the bond

After repayment of the loan, the investor will have a net gain of

Future Value of all =
$$(1000 \times 0.045) 9 \overline{30}$$

Coupon Payments = $45 \left(\frac{(1+0.035)^{20}}{0.035} \right) + 1800$
= $41,979.59$

At the end of to years, hand and the pass

redemption value of + future value of = 1,000 + 1,272.59 the bond all coupon payments = \$2,272.59

Original investment was \$ 925

His semiannual yield on the =
$$\left(\frac{9979.59}{925}\right)^{1/20}$$
= 0.046

The nominal yield convertible semiannually is 2x0.046 = 0.092 - 9.9%

Semiannual coupon payment =
$$1.100 \times 0.09$$

 $FV = $.1,100$
Since the par value of 100 is greater than the price of 1,021.5, this is a discount bond. So, $n = 20$ payments.

$$1021.5 = 92\left(\frac{1-v^{20}}{i}\right) + 1100v^{20}$$

$$\frac{1091.5}{i} = \frac{99}{i} \left(1 - \frac{1}{(1+i)^{20}}\right) + \frac{1100 \times 1}{(1+i)^{20}}$$

(8)

The minimal nominal annual yield to May is 4.919/

(2) 4% F=\$1,000, Y=0.09 i=0.095 n Redemption value Price (C) 938.09 1000 934.72 1000 991.44 1000 928.23 1000 相 1000 995.11 1000 999.05

h	Redemption value	Price
91	1,010	925.03
9.9	1,090	927.79
9.9	1,080	930.94
94	1,040	932.69
9.5	1,090	984.85
26	1,060	996.82
97	1,070	938.69
9.8	1,080	940.95
29	1,090	
90	1,100	941.71
Compounded	Semiannually.	\$ 922.05. So, the Price of 922.05 a Pay for a yield of at least 5%.
Kerpin of	$FV = PV(1+i)^n$ $V = 4.1(1+0.095)^5$ $= 4.64	6(2) 2 = 5 % 3 4 · 10

$$FV = PV(1+i)^n$$

$$FV = 4.1 (1+0.025)^5$$

$$= 84.64$$

(10)

Since the semiannual yield rate of 3% is less than the semiannual coupon rate of 4%, this is a premium bond since the bond is collable in 15 years, it is priced as if it will be redeemed in 15 years.

$$P = (Fr) \text{ am} + CV^{n}$$

$$1,792.25 = (0.04 \times) (1 - \frac{1}{(1+0.09)^{80}}) + \frac{X}{(1+0.09)^{90}}$$

$$1,792.25 = (0.04 \times) (1 - \frac{1}{(1+0.09)^{80}}) + \frac{X}{(1+0.09)^{90}}$$

$$1,722.25 = (0.04 \times) \times 19.6 + \frac{X}{(1.03)^{90}}$$

$$4.180.35 = (1.90) \times + \times$$

$$2.9 \times = 4.180.95$$

$$\times = 81,440.89$$

T- 4/. 1-7.4/, n-5 P - (1000 x 0.04) a = + 1000 V 9 = (40) [1 - 1 (1+0.087)5) + 1000 × 1 (1+0.087)5 1009 2000 Po. = \$ 1,013.47 t = 70 There are 188 days between the coupon Payment dates of May 31 and November 30. Price Plus accrued = Po (1+i)t interest = 1,018.47(1+0.087)= \$ 1,027.65 Accrued interest = t(Fr) $=\frac{70}{189} \times 40 = 15.9$ Price - Price Plus accrued - Accrued interest - 1,097.65 - 15.8 - \$ 1,012.35