5COSC002W DATABASE SYSTEMS Lecture 01

CONCEPTUAL DATABASE DESIGN Entity-Relationship modelling

UNIVERSITY OF WESTMINSTER#

Lecture 01 – Outline

- DB, DBMS, DB Applications & DB System
- Conceptual, logical & physical design
- Conceptual design & ER modelling
- Components of an ER Model
 - Entities
 Multiplicities
 - Relationships
 Attributes
- Diagrammatic techniques, UML notations
- Complex relationships

Database System

TECHNOLOGICAL DB, DBMS, DB Applications & DB System NNOVATION WEST AND LOTTER TO SHARM THE PROPERTY OF THE

Database (DB)

- Shared collection of logically related data (& description)
- Designed to meet information needs of an organization.
- Database Management Systems (DBMS) Software
 - enables users to define, create maintain the DB
 - provides controlled access to this DB.
 - e.g. Oracle, MS SQL Server, MySQL, SQLite, MongoDB, etc.
- Database Application.
 - Computer program that interacts with DB by issuing a request (typically SQL statement) to the DBMS.
 - e.g. online retailing system, booking system, stock management system, electronic medical record, etc.
- DATABASE SYSTEM = DB + DBMS + DB APPLICATIONS

Database Design: Data Modelling

3 Phases of Database Design

1. Conceptual database design.

 Construct a model of the data used in a firm, independent of all physical considerations.

2. Logical database design.

Construct a model of the data used in a firm:

- based on specific data organisation (e.g. relational schema)
- independent of DBMS & other physical considerations.

3. Physical database design & implementation.

- Produce description of the DB implementation for DBMS
- Create base relations, file organizations and indexes
- Create any integrity constraints and security measures.

Database Design Methodology – Step 1

CONCEPTUAL DESIGN

Produce a Conceptual Data Model

(model of the data used in a firm, independent of physical considerations)

- Step 1.1 Identify entities
- Step 1.2 Identify relationships
- Step 1.3 Identify and associate attributes with entity or relationships
- Step 1.4 Determine attribute domains
- Step 1.5 Determine candidate, primary, and alternate key attributes
- Step 1.6 Consider use of enhanced modelling concepts
- Step 1.7 Check model for redundancy
- Step 1.8 Validate conceptual model against user transactions
- Step 1.9 Review conceptual data model with user

Entity-Relationship Modelling

- Both for conceptual and logical modelling
- Top-down approach to ensure understanding of
 - the nature of the data
 - how it is used by enterprise.
- Outcome: series of data models which are
 - non technical and unambiguous.
 - understandable to both user and IT technologist.
 - Not tied to any technology or business methodology
 - Flexible enough to be used and understood in practically any environment where information is modelled.

Essential concepts of ER modelling

- Entity
- Relationship
- Attribute

Entity

Entity

- Building block of ER modelling
- Group of items with same properties, identified having an independent existence in the organisation.

Branch

Staff

Entity occurrence

- Uniquely identifiable instance of an entity.
- E.g. Branch Baker St Branch; Oxford Circus Branch, etc.
- E.g. Staff Joe Bloggs; Kate Green; Raj Pinder, etc.

Entities: Physical vs. Conceptual

Physical existence

Staff Part

Property Supplier

Customer Product

Conceptual existence

Viewing Sale

Inspection Work experience

Entities: Strong vs. weak

- Strong Entity
 - Entity that is not existence-dependent on some other entity.
- Weak Entity
 - Entity that is existence-dependent on some other entity.

Relationships

Relationship

- Set of meaningful associations among entities.
- It is given a meaningful name (a verb)
- It is given a reading direction but it is not an arrow!
- The direction helps understand the meaning and can be inverted with a different verb

Degree of a relationship

- Degree of a Relationship
 - Number of participating entities in relationship.

– Relationship of degree :

- two is binary: most common
- three is ternary
- four is quaternary.
- n is n-ary.

Multiplicity

 Main type of constraint on relationships is called *multiplicity*.

– Multiplicity:

- Number (or range) of possible occurrences of an entity type that may relate to a single occurrence of an associated entity through a particular relationship.
- For ONE occurrence of an entity, determine MIN and MAX numbers of occurrences of other entity participating in the relationship.
- Represents policies (called business rules) established by user or company.

Example of multiplicity (1)

Conceptual Entity Relationship Diagram (ERD)

This is a ONE-TO-MANY relationship!!

Work out the Min and the Max!

- One member of staff may be working in no branch.
- One member of staff can only work in up to one branch.
- One branch can have no staff working at it.
- One branch can have many staff working at it.

ER Diagram

Example of multiplicity (2)

Semantic net

ER Diagram

Example of multiplicity (3)

Semantic net

ER Diagram

Example of multiplicity (4)

Semantic net

Summary of multiplicity constraints

Alternative ways to represent multiplicity constraints	Meaning
01 11 (or just 1) 0* (or just *) 1* 510 0, 3, 6–8	Zero or one entity occurrence Exactly one entity occurrences Zero or many entity occurrences One or many entity occurrences Minimum of 5 up to a maximum of 10 entity occurrences Zero or three or six, seven, or eight entity occurrences

Multiplicity = cardinality + participation

 Multiplicity is made up of two types of restrictions on relationships:
 CARDINALITY and PARTICIPATION.

Cardinality

 Describes maximum number of possible relationship occurrences for an entity participating in a given relationship.

Participation

 Determines whether all or only some entity occurrences participate in a relationship.

Example of cardinality & participation

Attributes

Attribute

Property of an entity or a relationship.

Attribute Domain

Set of allowable values for one or more attributes.

Simple Attribute

Attribute composed of a single component with an independent existence.

Composite Attribute

Attribute composed of multiple components, each with an independent existence.

Different types of attributes

Single-valued Attribute

 Attribute that holds a single value for each occurrence of an entity.

Multi-valued Attribute

 Attribute that holds multiple values for each occurrence of an entity.

Derived Attribute

 Attribute that represents a value that is derivable from value of a related attribute, or set of attributes, not necessarily in the same entity.

Keys

Candidate Key

Minimal set of attributes that uniquely identifies each occurrence of an entity.

Primary Key

 Candidate key selected to uniquely identify each occurrence of an entity.

Compound Key

- A candidate key that consists of two or more attributes.
- Each attribute that makes up the compound key is a simple key in its own right.

Composite Key

- A candidate key that consists of two or more attributes.
- At least one attribute that makes up the composite key is not a simple key in its own right.

Example of entities and attributes

Degree of a relationship

- Degree of a Relationship
 - Number of participating entities in relationship.
- Relationship of degree :
 - two is binary: most common
 - three is ternary
 - four is quaternary
 - n is n-ary.

Binary and Ternary Relationships

Binary Relationship

Ternary Relationship

Quaternary Relationships

Quaternary Relationship

Multiplicities for n-ary relationships

Number (or range) of possible occurrences of an entity in an n-ary relationship when other (n-1) values are fixed.

ER Diagram

Semantic net

University of Westminster © 2012;

Pearson Education © 2009

Recursive relationships

- Recursive Relationship
 - Relationship where same entity participates more than once in different roles.
- Relationships may be given role names to indicate purpose that each participating entity plays in a relationship.

Entities associated through 2 distinct relationships

Occurrences of an entity associated to occurrences of the other entities through more than one relationship

Attributes on relationships

- Attributes on relationship
 - In situation where location of attributes not immediately obvious
 - May indicate that relationship conceals unidentified entity

DreamHome Conceptual ERD (branch view)

DreamHome Conceptual ERD (staff view)

DreamHome Conceptual ERD (staff view with PKs)

