Tabela de Inputs:

Variáveis	Símbolo	Unidade
Tensão de escoamento de flexão	$\sigma_{ ext{esc}}$	МРа
Tensão de escoamento de cisalhamento	$ au_{esc}$	МРа
Fator de segurança	FS	(Sem unidade)
Envergadura	I	mm
Densidade	ρ	g/mm³
Espessura	esp	mm
Esforço Cortante	V _{máx}	N
Momento máximo	M _{máx}	N*mm

Lista de Símbolos:

Variável	Símbolo	Unidade
Tensão de flexão admissível	$\sigma_{\sf adm}$	MPa
Tensão de cisalhamento admissível	$ au_{\sf adm}$	MPa
Tensão de flexão calculada	σ_{f}	MPa
Tensão de cisalhamento calculada	$ au_{cis}$	MPa
Diâmetro interno	D _{int}	mm
Diâmetro externo	D _{ext}	mm
Raio interno	R _{int}	mm
Raio externo	R _{ext}	mm
Base	b	mm
Altura	h	mm
Momento de inércia em y	l _y	mm^4
Momento polar de inércia	1	mm^4
Área circular	A	mm²
Volume	V	mm³

Volume vazio	V_{vazio}	mm³
Espessura da fibra	€	mm
Módulo de Elasticidade (Young)	young	GPa

Para a programação:

- Precisa do dimensionamento de longarinas para no mínimo 4 configurações diferentes (quanto mais melhor);
- Deve permitir input de quantos materiais for necessário, juntamente com suas tensões de escoamento e densidade;
- Deve devolver como output as 5 configurações mais leves, com suas respectivas dimensões e massa;
- As tensões calculadas não podem maiores suas respectivas tensões admissíveis;
- Não será necessário fazer cálculo de deflexão, mas esperamos poder incluir futuramente no projeto.
- Para criar as inúmeras configurações vocês podem:
 - o Combinar os diferentes materiais com as diferentes seções.
 - Se encontrarem alguma biblioteca, bibliografia e etc, podem adicionar novos materiais.
 - Permitir adição de novos modelos de seção com equações de inércia, tensão de cisalhamento e tensão de flexão.
- Deve estar devidamente comentado para futuras alterações.

Cálculos:

Tensão admissível:

$$\sigma_{adm} = \frac{\sigma_{esc}}{FS}$$

$$\tau_{adm} = \frac{\tau_{esc}}{FS}$$

Seção circular / tubo:

$$\begin{split} R_{int} &= R_{ext} - 1 \\ D_{ext} &= 2 \cdot R_{ext} \\ D_{int} &= 2 \cdot R_{int} \\ A &= \pi \cdot (R_{ext}^2 - R_{int}^2) \\ I_y &= \frac{\pi \cdot (R_{ext}^4 - R_{int}^4)}{64} \\ \sigma_f &= \frac{M_{m\acute{a}x} \cdot R_{ext}}{I_y} \end{split}$$

$$\tau_{cis} = (\frac{4 \cdot V_{max}}{3 \cdot A}) \cdot (\frac{R_{ext}^{2} + R_{ext} \cdot R_{int} \cdot R_{int}^{2}}{R_{ext}^{2} + R_{int}^{2}})$$

Seção retangular / caixão:

$$A = b * h - ((b - (2 \cdot exp)) * (h - (2 \cdot exp))$$

$$I_{y} = \frac{b^{*}h^{3}}{12} - \frac{(b - (2 \cdot exp))^{*}(h - (2 \cdot exp))^{3}}{12}$$

$$\sigma_{f} = \frac{M_{m\acute{a}x} \cdot (h/2)}{I_{y}}$$

Seção retangular:

$$A = b * h$$

$$I_{y} = \frac{b*h^{3}}{12}$$

$$\sigma_{f} = \frac{M_{máx} \cdot (h/2)}{I_{y}}$$

$$\tau_{cis} = 1,5V/A$$

Massa:

$$V = l * A$$

$$m = V * \rho$$

Outputs:

Massa	g
Deflexão	mm
Diâmetro interno	mm
Diâmetro externo	mm
b	mm
h	mm