

DATABASE CONCEPTS & ER MODEL

Instructor:

Learning Goals

By the end of this lecture students Vunderstand an overview of the basic RDBMS Concepts should be able to:

Understand an insight into the architecture and components of a Database System.

Describe how entities, attributes and relationships are used to model data;

Converting ER Model to relational schema

	e Kind of Date						
fable LIN	EITEMS_F	ELTAB			1		
INEITEMN	O PONO	STOCKNO	QUANTITY	DISCOUNT			
Number NUMBER	Number NUMBER	Number NUMBER	Number NUMBER	Number — NUMBER —	ł		
ĸ	PK, FK	FK					
/	elerences	Felerences		Ту	pe		
Table Pt	JECHASE	ORDER REI	TAB				
PONO	CUSTNO	ORDERDATE	SHIPDATE	TOSTREET	TOCITY	TOSTATE	TOZIP
Number NUMBER	Number NUMBER	Date DATE	Date DATE	Text VARCHAR2(2)	Text VARCHAR20	200) Text CHAR(2)	Number VARCHAR2(20)
PK	FK						
	rences						
Table Ct							
		_RELTAB					
custno	CUSTNAME	_	CITY	STATE	ZIP	PHONE1	
CUSTNO Number NUMBER		STREET	Text	Text	Number	PHONE1 Number VARICHAR2(20)	
Number	CUSTNAME	STREET	Text	Text	Number	Number	
Number NUMBER PK	CUSTNAME	STREET Text VARCHAR(200	Text	Text	Number	Number	
Number NUMBER PK	CUSTNAME Text CUSTNAME	STREET Text VARCHAR(200	Text	Text	Number	Number	
Number NUMBER PK	CUSTNAME Text CUSTNAME	STREET Text VARCHAR(200 TAB TAXHATE Number	Text	Text	Number	Number	

Table of contents

- **♦ SQL Overview SQL Overview**
- The Relational Database
- RDBMS Concepts
- ER Model

Section 1

SQL OVERVIEW

What is SQL?

- Which is a computer language for:
 - ✓ storing,
 - ✓ manipulating and
 - ✓ retrieving data stored in relational database.
- SQL is the standard language for Relation Database System, like MySQL, MS Access, Oracle, Sybase, Informix, Postgres and SQL Server use SQL as standard database language.
- SQL is an ANSI (American National Standards Institute) standard.

SQL Process

SQL Commands

SQL consists of three components:

- Data Definition Language (DDL)
- Data Manipulation Language (DML) and
- Data Control Language (DCL)

Section 2

THE RELATIONAL DATABASE

Relational Database Concepts (1/3)

- "A DBMS that manages data as collection of tables in which all data relationships are represented by common values in related tables."
- "A DBMS that follows all the twelve rules of CODD is called RDBMS"

Relational Database Concepts (2/3)

Table				Field
	CD_ID	Title	Artist	Genre
	1	The Wall	Pink Floyd	Rock
Record	2	Blue Train	John Coltrane	Jazz
	3	Requiem	W.A. Mozart	Classical

Relational Database Concepts (3/3)

Schema (1/2)

- The name of a relation and the set of attributes for a relation is called a schema.
 - Example: the schema for previous slide is

Supplier (SCode, SName, Quantity, City)

- Relation schema = name(attributes) + other structure info., e.g., keys, other constraints.
- ② Order of attributes is arbitrary, but in practice we need to assume the (standard) order given in the relation schema.
- Relational database schema = collection of relation schemas.

Schema (2/2)

Schema versus Instance

Student (studno, name, address)

Course (courseno, lecturer)

Student (123, Bloggs, Woolton) (321, Jones, Owens)

sid	Name	Login	age	GPA
53666	Jones	Jones@ca	18	3.4
53444	smith	Smith@ecs	18	3.2
53777	Blake	Blake@aa	19	3.8

- → Cardinality = 3, arity = 5, all rows distinct
- → Do all values in each column of a relation instance have to be distinct?

What is RDBMS?

RDBMS stands for:

Relational Database Management System

- RDBMS is the basis for SQL, and for all modern database systems like:
 - ✓ MS SQL Server,
 - ✓ IBM DB2,
 - ✓ Oracle,
 - ✓ MySQL,
 - ✓ and Microsoft Access.
- A Relational database management system (RDBMS) is a database management system (DBMS) that is based on the relational model as introduced by E. F. Codd.

DBMS vs. RDBMS

DBMS	RDBMS
The concepts of relationships is	It is based on the concept
missing in a DBMS. If it exits it is very less.	Of relationships
Speed of operation is very slow	Speed of operation is very Fast
Hardware and Software requirements are minimum	Hardware and Software requirements are High
Platform used is normally DOS	Platform used can be any DOS, UNIX,VAX,VMS, etc
Uses concept of a file	Uses concept of table
DBMS normally use 3GL	RDBMS normally use a 4GL
Examples are dBase, FOXBASE, etc	Examples are ORACLE, INGRESS, SQL Server 2000 etc

Section 3

ER MODEL

Design Process

Basic E-R Notation

ER Model Overview

Cardinality of Relationships (1/2)

One – to – one:

One – to – many:

Cardinality of Relationships (2/2)

Many – to – many:

In which:

Binary relationships

Rule 1 - Convert entity type with simple attributes

CUSTOMER entity type with simple attributes

Rule 2 - Convert Multivalue attribute

Multivalued attribute becomes a separate relation with foreign key

1-to-many relationship between original entity and new relation

Rule 3 - Convert Unary relationship one to one

EMPLOYEE entity with Manages relationship

EMPLOYEE relation with recursive foreign key

Rule 4 – Convert binary relationship one to one

Rule 5 – Convert Unary relationship one to many

EMPLOYEE entity with Manages relationship

EMPLOYEE relation with recursive foreign key

Rule 6 – Convert Binary relationship one to many

Again, no null value in the foreign key...this is because of the mandatory minimum cardinality

Rule 7 – Convert Unary relationship many to many

Bill-of-materials relationships (M:N)

ITEM and COMPONENT relations

Rule 8 – Convert Binary relationship many to many

Another - Convert Ternary relationship

Another- Convert Ternary relationship (2)

Summary

- ✓ SQL Overview
 - SQL, SQL Process, SQL Command
- ✓ The Relational Database
 - Table, Field, Record, Schema
- ✓ RDBMS Concepts
 - RDBMS, RDBMS vs DBMS
- ✓ ER Model
 - Design Process, Notation, Converting ER Model to relational schema

Thank you

