IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

- 1 (canceled)
- 1 2. (currently amended) The method of claim 10 wherein the modulator modulation is performed by a phase modulator driven by a sinusoidal RF voltage.
- 3. (currently amended) The method of claim 10 wherein the medulator
 modulation is performed by a phase modulator driven by a train of square pulses.
- 4. (currently amended) The method of claim 10 wherein the <u>input</u> optical signal is <u>launehed-into-the modulator provided</u> having a polarization oriented at a predetermined angle such that the polarization of successive optical bits of the output transmitted APol-DPSK signal are substantially orthogonal.
- (currently amended) The method of claim 10 wherein the modulator
 modulation is performed by a Mach-Zehnder modulator including a polarization rotation
 device in at least one arm.
- 1 6. (original) The method of claim 5 wherein the polarization rotation device 2 is a half-wave plate.
- 1 7. (currently amended) The method of claim 5 wherein at least one arm of the Mach-Zehnder modulator is driven by a sinusoidal RF voltage.

1

2

7

10

1

2

- 8. (currently amended) The method of claim 5 wherein at least one arm of the Mach-Zehnder modulator is driven by a train of square pulses running at half the bit 3 rate.
- 1 9. (currently amended) A method of APol-PSK transmission comprising the 2 steps of:

3 providing a coherently polarized optical source signal to the arms of a Mach-Zehnder modulator having a polarization rotation device in at least one arm and configured to provide simultaneous polarization alternation and optical data encoding by 6 phase shift keying:

encoding the optical source signal by phase shift keying to generate a phase encoded signal, wherein said phase shift keying is performed by using an electronic data signal to drive a driving the Mach-Zehnder modulator having a polarization rotation device in at least one arm with an electronic data signal; and

alternating the polarization of every other bit simultaneous with the step of 11 12 encoding the optical source signal to produce an APol-PSK signal, wherein said 13 alternating is performed by the Mach-Zehnder modulator to provide simultaneous polarization alternation and optical data encoding by phase shift keying between two 15 optical bits separated by an even number of bit periods to generate an APol-PSK signal: wherein input signals to both arms of the Mach-Zehnder modulator have polarizations 17 that are the same.

- 10. (currently amended) A method for APol-DPSK transmission comprising: precoding an electronic data signal;
- 3 modulating the output of an optical source using the an input optical signal according to a precoded electronic data signal and by differential phase shift keying between two optical bits separated by an even number of bit periods to generate an 5 6 encoded optical signal;
- 7 alternating the polarization of the encoded optical signal using a modulator such that successive optical bits have substantially orthogonal polarizations to generate an APol-DPSK signal; and

Page 4 of 18 10 demodulating the APol-DPSK signal using an even bit delay line interferometer. 1 11. (canceled) 1 12. (currently amended) A method of APol-DPSK transmission comprising: 2 precoding an electronic data signal; 3 using the modulating an optical signal according to a precoded electronic data signal to drive a Mach-Zehnder modulator including a polarization rotation device in at least one arm to provide simultaneous polarization alternation and optical data encoding by differential phase shift keying between two optical bits separated by an even number of bit periods and performing polarization alternating such that successive optical bits have substantially orthogonal polarizations to generate an APol-DPSK signal: wherein said modulating and said polarization alternating are performed 9 10 simultaneously by a Mach-Zehnder modulator including a polarization rotation device in 11 at least one arm, and 12 wherein input signals to both arms of the Mach-Zehnder modulator have polarizations that are the same. 1 13. (original) The method of claim 12 wherein the polarization rotation device is a half-wave plate. 1 14. (original) The method of claim 12 further comprising demodulating the APol-DPSK signal using an even bit delay line interferometer. 1 15. (canceled) 1 16. (canceled) 1 17. (canceled)

18.

(canceled)

1

- 1 19. (currently amended) The transmitter of claim [[25]] 26 wherein at least 2 one arm of the Mach-Zehnder modulator is driven by a sinusoidal RF voltage.
- 1 20. (currently amended) The transmitter of claim [[25]] 26 wherein at least 2 one arm of the Mach-Zehnder modulator is driven by a train of square pulses running at 3 half the bit rate.
- 1 21. (currently amended) The transmitter of claim [[25]] 26 wherein the Mach2 Zehnder modulator comprises two complementary output ports, and wherein the
 3 transmitter further comprises a polarization beam combiner for combining outputs from
 4 the two output ports of the Mach-Zehnder modulator.
- 22. (currently amended) The transmitter of claim 21 wherein at least one arm
 of the <u>Mach-Zehnder</u> modulator is driven by a sinusoidal RF voltage.
- 1 23. (currently amended) The transmitter of claim 21 wherein at least one arm 2 of the Mach-Zehnder modulator is driven by a train of square pulses running at half the 3 bit rate.

1 24. (canceled)

- 25. (currently amended) An optical transmitter for APol-PSK transmission
 comprising:
- 3 an optical source:
- a Mach-Zehnder (MZ) modulator device optically coupled to the laser optical
 source having a polarization rotation device in one arm; and
- drive circuitry coupled to the MZ modulator device to drive [[a]] the MZ modulator to simultaneously provide polarization alternation and optical data encoding of an optical signal using phase shift keying to generate an APol-PSK signal-between two optical-bits separated by an even number of bit periods:

Serial No. 10/815,033 Page 6 of 18

- wherein input signals to both arms of the Mach-Zehnder modulator have ll polarizations that are the same.
- 1 26. (currently amended) An optical transmitter for APol-DPSK transmission comprising:
- 3 an optical source;
- 4 a precoder;
- 5 a Mach-Zehnder (MZ) modulator device optically coupled to the laser optical
- 6 source having a half-wave plate in one arm; wherein input signals to both arms of the
- 7 Mach-Zehnder modulator have polarizations that are the same; and
- 8 drive circuitry coupled to the MZ modulator device to drive [[a]] the MZ
- 9 modulator using a precoded data signal from the precoder to simultaneously provide
- 10 polarization alternation and optical data encoding of an optical signal using differential
- 11 phase shift keying between two optical bits separated by an even number of hit periods to
- 12 generate an APol-DPSK signal.
 - 27. (canceled)

1

- 1 28. (currently amended) An optical transmission system for APol-PSK
- 2 transmission comprising:
- 3 an optical source,
- 4 a modulator means having a polarization rotation device to provide simultaneous
- 5 polarization alternation and optical data encoding by phase shift keying between two
- 6 optical bits separated by an even number of bit periods to generate an APol-PSK signal.
- 29. (currently amended) An optical transmission system for APol-DPSK
- 2 transmission comprising:
- 3 an optical source;
- 4 a precoder device for precoding an electronic data signal;
- 5 an optical phase-shift-keying data modulator optically coupled to the laser optical
- 6 source and driven by a precoded electronic data signal from the precoder device to

Serial No. 10/815,033 Page 7 of 18

- 7 produce an optical DPSK signal wherein electronic data to be transmitted is optically
- 8 encoded by the data modulator as differential phase shift keying between two optical bits
- 9 separated by an even number of bit periods;
- a polarization alternator optically coupled to the data modulator to provide
- 11 polarization alternation of the output of the data modulator to produce an APol-DPSK
- 12 signal; and
- 13 a demodulator comprising an even bit delay line interferometer.
- 1 30-32. (canceled)