Modular Arithmetic Background

1 Introduction

To begin the background information, we start by defining modular congruence. We say that two numbers a and b are congruent modulo n, or that their equivalence classes are equal, if their difference is divisible by n:

$$a \equiv b \pmod{n} \iff n|a-b.$$

Recall that a|b means that there is some integer c so that ac = b. Modular congruence is an equivalence relation. This means it is:Reflexive: Every element of \mathbb{Z}_n is equivalent to itself.

- *Proof.* Let $a \in \mathbb{Z}_n$. Then observe that 0 = 0n = (a a)n. So n|a a and $a \equiv a \pmod{p}$.
- Symmetric: If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.

Proof. Suppose $a \equiv b \pmod{n}$. Then there exists some $k \in \mathbb{Z}$ so that nk = a - b. Then n(-k) = b - a. So n|b - a and $b \equiv a \pmod{n}$.

• Transitive: If $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$.

Proof. Suppose $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$. Then we must have some $k, l \in \mathbb{Z}$ so that kn = a - b and ln = b - c. Adding the second equality from the first, we get:

$$kn - ln = a - b + b - c$$

$$n(k - l) = a - c.$$

And so we see that $a \equiv c \pmod{n}$.