

planetmath.org

Math for the people, by the people.

2-C*-category

Canonical name 2Ccategory

Date of creation 2013-03-22 18:26:42 Last modified on 2013-03-22 18:26:42

Owner bci1 (20947) Last modified by bci1 (20947)

Numerical id 37

Author bci1 (20947) Entry type Definition Classification msc 18A25 Classification msc 18D05

Synonym C^*_2

Related topic CAlgebra3

Related topic CategoryOfCAlgebras

Related topic AlternativeDefinitionOfSmallCategory

Related topic 2Category

Related topic GroupoidAndGroupRepresentationsRelatedToQuantumSymmetries

Related topic IndexOfCategoryTheory

Defines identity map for a 2-category

Defines commutative monoid

Defines $End(\rho)$

Definition 0.1. A $2 - C^*$ -category, C^*_2 , is defined as a (small) 2-category for which the following conditions hold:

- 1. for each pair of 1-arrows (ρ, σ) the space $Hom(\rho, \sigma)$ is a complex Banach space.
- 2. there is an anti-linear involution '*' acting on 2-arrows, that is,

$$*: Hom(\rho, \sigma) \to Hom(\rho, \sigma),$$

 $(S \mapsto S^*$) with ρ and σ being 2-arrows;

3. the Banach norm is sub-multiplicative (that is,

$$||T \circ S|| \le ||S|| \, ||T|| \,,$$

when the composition is defined, and satisfies the C^* -condition:

$$||S^* \circ S|| = ||S^2||;$$

4. for any 2-arrow $S \in Hom(\rho, \sigma)$, $S^* \circ S$ is a positive element in $Hom(\rho, \rho)$, that is often denoted as $End(\rho)$.

Remark 0.1. With the above notations, the set of 2-arrows $End(\iota A)$ is a commutative monoid, with the identity map $\iota: \mathcal{C}^*{}_2{}^0 \to \mathcal{C}^*{}_2{}^1$ assigning to each object $A \in \mathcal{C}^*{}_2{}^0$ a 1-arrow ιA such that:

$$s(\iota A) = t(\iota A) = A.$$