تشخیص محل و نوع شکستگی مهره ی ناحیه ی کمر ستون فقرات بر اثر فشردگی در تصاویر سی تی توسط الگوریتم های یادگیری ماشین

حميد يوسفى

فوق ليسانس هوش مصنوعي

دانشکده ی مهندسی برق، رایانه و فن آوری اطلاعات

دانشگاه آزاد اسلامی قزوین

استاد راهنما: دكتر اميد سجودي

فهرست مطالب

- مقدمه و تعریف مساله
- انگیزه و اهمیت تحقیق
 - اهداف تحقيق
- فرضیات، چالش های تحقیق
 - مفاهيم اوليه
- پیشینه ی کارهای انجام شده
 - روش پیشنهادی
 - نتایج و آزمایشات
 - نتیجه گیری
 - پیشنهادات

مقدمه

طرح مساله

- درد قسمت کمر به عنوان دومین دلیل مراجعه به پزشک پس از سردرد میباشد و تقریبا ۸۰ تا ۹۰ درصد افراد حداقل یک بار در طول زندگیشان با آن مواجه بوده اند.
 - بیماری های مربوط به دیسک و مهره
- شکستگی هایی که همراه فشرده شدن و کاهش قسمت بدنه ی مهره میباشد را شکستگی بر اثر فشردگی مهره ی Vertebral Compression Fracture مینامند .
 - در اثر پوکی استخوان یا خوش خیم
 - در اثر سرطان با بدخیم

طرح مساله

• شيوع اين بيماري

- افراد بالای ۵۰ سال
- افرادی که دچار کمبود کلسیم شدید میباشند.
 - زنانی که زایمان های متعدد داشته اند.

• علایم ظاهری بیماری

- همراه با درد شدید بوده و بیمار امکان حرکت ندارد.
- بدون هیچگونه دردی و به طور اتفاقی یا با آزمایش
 تراکم استخوانی آشکار شود.

عدم تشخیص و درمان به موقع

- شکستگی مهره
- − اشكالات حركتى بلند مدت
- آسیب به بخشهای حساس دیگر ستون فقرات

ضرورت و اهمیت

- هزینه های درمانی بالا و مرگی و میر ناشی از شکستگی های مهره
 - ' نیاز به تجربه برای تشخیص بیماری توسط رادیولوژی ست
 - امکان خطای انسانی در تشخیص بیماری
- شکستگی های استخوانی در سالمندان با زمین خوردن های نه چندان شدید
- ضرورت رسیدگی به این بیماری توسط سیستم بهداشت و درمان به دلیل افزایش امید به زندگی و پیر شدن سن افراد در جامعه
 - تاثیر تشخیص محل بیماری در نوع آسیب های احتمالی به سایر بافت ها

Medical Imaging

تعاریف اولیه و پیشینه تحقیق

ساختار ستون فقرات

دسته بندی مهره های ستون فقرات

- ۷ مهره ی ناحیه گردن
- ۱۲ مهره ی ناحیه سینه
- ۵ مهره ی ناحیه کمر
 - مهره های خاجی
 - بخش ها ی ستون فقرات

بخش قدامی یا جلویی

- بدنه ی مهره
- دیسک های بین مهره ای
 - بخش خلفی یا پشتی
- سوراخ مهره ای کانال نخاعی(طناب نخاعی)
 - نخاع
 - قوس مهره ای (لامینا)
 - زایده ی مفصلی
 - زایده ی عرضی
 - رباط (لیگامان)

ادامه...

دیسک بین مهره ای

رباط میان مهره ای

تصاویر پزشکی

- سی تی اسکن
 - ام ار ای
- T1 Weighted –
- T2 Weighted –
- اشعه ی ایکس DXA

نمای تصاویر پزشکی

• ساژیتال (در این تحقیق استفاده شده است)

شکستگی مهره

انواع شکستگی مهره

- بر اثر فشردگی (Compression)
 - انفجاری (Burst)
- پیچش ناگهانی برعکس (Flexion Distinction)
- زایده جانبی ستون فقرات (Transverse Process)
 - دررفتگی مهره (Fracture Dislocation)

انواع شکستگی بر اثر فشرد آ

۰ نوع بیماری

- بد خیم در اثر سرطان
- خوش خیم در اثر پوکی استخوان

- قسمت جلوی بدنه ی مهره Wedge
- قسمت میانی بدنه ی مهره Biconcave
 - قسمت پشت بدنه ی مهره Crush

بررسى الگوريتم هاى انجام شده

- دسته بندی
- تشخیص بیماری
- نوع خوش خیم ابدخیم
 - ویژگیهای استفاده شده
 - آنالیز شکل
- موفومتری و اندازه گیری
- زمینه و سطح خاکستری
 - ترکیبی

- داده ها
- سی تی
 - ام ار
 - اتوماسيون
- خودکار
- نیمه خودکار

پیشینه ی تحقیق

نقاط ضعف	نقاط قوت	ویژگ <i>ی</i>	حساسيت	نمونه	رویکردها
 ۸۰ درصد نمونه سالم تشخیص بیماری Wedge حساسیت ٪۸۳ 	 تشخیص درستی ٪۹۶ قطعه بندی خودکار محاسبه ارتفاع بدنه مهره خودکار 	ویژگیهای اندازه گیری	٪۶۶ و ۸۳,۳٪	770	قوش و العمری (۲۰۱۱)
 ۸۰ درصد نمونه سالم تشخیص بیماری Wedge 	 میزان حساسیت ٪۸۷ ویژگیهای سراسری واریانس مهره ها 	ویژگیهای اندازه گیری	۸٧,١٪	770	الهلو و العمری (۲۰۱۲)
 قطعه بندی دستی تشخیص مرز بدنه مهره دستی تعداد نمونه نامناسب 	 استفاده از ترکیب چند دسته بندی کننده برای تشخیص بیماری استفاده از نمای آکزیال برای استخراح ویژگی 	ویژگیهای اندازه گیری، طولی، سن و جنسیت	9.% ₉ 78%	۲۵۰	وانگ و همکاران (۲۰۱۶)
 استخراج ویژگی دستی تعداد نمونه نامناسب 	 استفاده از ویژگیهای شکل استفاده از نمای آکزیال 	ویژگیهای آنالیز شکل	مشخص نشده	1.7	پرییرا و همکاران (۲۰۱۵)
 قطعه بندی و تعیین ارتفاع مهره دستی جدا بودن فرایند شخیص و نوع خوش خیم.بدخیم 	 ۸۶ درصد تشخیص تعیین وزن هر ویژگی در تشخیص بیماری و نوع خوش خیم.بدخیم 	ویژگیهای زمینه و سطح خاکستری و آنالیز شکل	۸۱٪	1-8	پرییرا و همکاران (۲۰۱۶)
• ميزان حساسيت نامناسب	 ۹۲ درصد تشخیص ویژگیهای شناخت جمعیتی 	ویژگیهای طیفی و فراکتال	مشخص نشده	۲۳۵	مارکز و همکاران (۲۰۱۵)
 تمام فرایند ها دستی بوده است جدا بودن فرایند شخیص و نوع خوش خیم.بدخیم 	• ۹۲ درصد تشخیص	ویژگیهای آماری و طول و عرض مهره	YY,A ⁷ .	1+۲	متنز و مارکز و همکاران(۲۰۱۶) 15

روش پیشنهادی

چارچوب روش پیشنهادی

روش پیشنهادی (ادامه...)

انتخاب مناسبترین اسلایس

• اسلایسی که در آن لیگامان، لامینا و نخاع در پشت ناحیه ی مهره قابل نمایش باشد و مهره های L1 و L5 بیشترین فاصله را با آنها داشته باشند.

قطعه بندي

- مدل كانتوور شكل فعال
- پروژه ی شخصی سازی شده ی ITK (Insight Segmentation and Registration Toolkit) الد کامپایلر سی++
 - تصویر قطعه بندی شده ی مهره های ناحیه کمر در ۱۲۲ در سه زاویه ی نمایشی

جداسازی مهره های به هم چسبیده

• جداسازی شی هایی که در یک پیکسل با هم مشترک هستند.

• با استفاده از توابع مورفولوژی Erode و Dilate

تشخیص بدنه ی مهره،برچسب گذاری و تعیین نقاط روی مرز بدنه ی مهره

- مدل كانتوور شكل فعال
- ۲۸۰ تکرار در تشخیص مهره ها
 - تشخیص مرز بدنه ی مهره
 - جداسازی مهره ها
 - برچسب گذاری مهره ها
- تعیین ۶ نقطه روی مرز بدنه ی مهره

تعیین نقاط روی مرز بدنه ی مهره

- چهار نقطه ی گوشه های بدنه ی مهره
- Ha Hm Hp

• بهبود مکان نقطه های میانی با مرز بدنه ی مهره

$$- Hp = ||P1-P2||$$

$$-Hm = ||M1-M2||$$

- ویژگی های موفومتری
 - ویژگیهای هیستوگرام
 - ویژگیهای زمینه
- شدت نور Contrast
- همبستگی Correlation
- همگنی Homogeneity
 - انرژی Energy
- graycoprops(glcm,{'contrast','homogeneity','energy','correlation'}) -

$$\sum_{i,j} p(i,j)^2$$

 $\sum \left|i-j\right|^2 p(i,j)$

ویژگیهای مورفومتری

• ارتفاع بخش جلوی بدنه ی مهره (HeightAnterior)

• ارتفاع بخش میانی بدنه ی مهره (HeightMiddle)

• ارتفاع بخش پشت بدنه ی مهره (HeightPosterior)

شرح ویژگی	نام ویژگی
ارتفاع قسمت جلوى مهره	На
ارتفاع قسمت پشت مهره	Нр
ارتفاع قسمت مياني مهره	Hm
نسبت ارتفاع جلو به پشت مهره	На/Нр
نسبت ارتفاع قسمت میانی به پشت مهره	Hm/Hp
نسبت ارتفاع قسمت پشت مهره به مهره ی بالایی	Hp/Hp(-1)
نسبت ارتفاع قسمت پشت مهره به مهره ی پایینی	Hp/Hp(+1)
نسبت ارتفاع قسمت جلوی مهره به مهره ی بالایی	Ha/Ha(-1)
نسبت ارتفاع قسمت جلوی مهره به مهره ی پایینی	Ha/Ha(+1)

پردازش روی مقادیر ویژگیها

- نرمالسازی
- کاهش واریانس با میانگین گیری

$$\sum_{i=1}^{n} \max(f(n)) \ n = 25$$

$$\sum_{i=1}^{n} f(n)/\max(value)$$

- Missing data
- میانگین مقادیر ویژگی در نمونه های دیگر
- ویژگی (+1) Hp/Hp و (+1) برای L5

$$\frac{1}{n}\sum_{i=1}^{n} feature(missed)_i \ n=4$$

دو دسته طبقه بندی کننده

طبقه بندی کننده •

دو دسته طبقه بندی کننده

طبقه بندی کننده •

- رویکرد One versus All
- نگاشت فضای غیر خطی به خطی

آزمایشات و نتایج

نتایج و آزمایشات

- دسته بندی کننده ماشین بردار پشتیبان SVM
- دسته بندی کننده ی با نظارت K نزدیکترین همسایه KNN
 - روش ارزیابی
 - Random Sub Sampling (Train = 70% Test = 30%) -
 - K Fold (5 and 10) -
 - پارامتر ارزیابی
 - درصد تشخیص درستی: Accuracy
 - $TPR = \frac{TP}{P}$: Sensitivity حساسیت
 - $TNR = \frac{TN}{N}$: Specificity ویژگی –
 - FNR = 1 TPR نرخ خطا تشخیص سالم برای مهره بیمار -
 - ماتریس Confusion

تشخیص بیماری شکستگی فشردگی

• بر مبنای ویژگی های هیستوگرام با روش Random Sub Sampling

Specificity	Sensitivity	Accuracy	دسته بند ی کننده
٣۴,٨۴٪	۶۹,۰۳٪	۵۶,۹۷٪	KNN=٣
۲۹,۴۴ [٪]	٧۶,٠٣٪	۵۹,۳۵٪	KNN=۵
۲۸,۱۲٪	٧٧,۵١٪	۶۰,۲۱٪	KNN=Y
77,77%	٧٨,٣١٪	۵۸,۶٧٪	KNN=9

تشخیص بیماری شکستگی فشردگی (ادامه...)

• بر مبنای ویژگیهای زمینه با روش ارزیابی Random Sub Sampling

Specificity	Sensitivity	Accuracy	دسته بند ی کننده
44.01%	<i>۶۶,</i> ۰ ۹%	۵۷,۹۵٪	KNN=٣
٣٨,٠٠٪	۶۷,۱۵٪	۵۶,۲۲٪	KNN=۵
٣٣,٠٪	٧٠,٩٢٪	۵۲,۵٪	KNN=Y
78,08%	٧۵,۶٧٪	۵٧,٠٨٪	KNN=9

تشخیص بیماری شکستگی فشردگی (ادامه...)

• بر مبنای ویژگیهای موفومتری با روش ارزیابی Random Sub Sampling

FNR	Specificity	Sensitivity	Accuracy	دسته بندی کننده
%14.44	۸٠,۶٩٪	%AQ.QV	%A4.Y4	KNN=٣
14.74	۸۵,۰۹٪	٧٢.۵٨٪	%AQ.TT	KNN=۵
%17. <u>0</u> Y	۸۷,۱۴٪	%AY. ۴ ٣	%18.14	KNN=Y
1.18.80	%A9.61	۸۳,۳۵٪	%10.08	KNN=9
%17.94	۸٧,٧٩٪	۸٧,٠۶٪	۸۴,۱۰%	ماشین بردار پشتیبان (linear)
10.97	۸١,٩٠٪	۸۴,۰۳٪	۸٣,٢٩٪	ماشین بردار پشتیبان (rbf)
1.18	11,84%	۸۴,۰۰٪	۸٣,٠٨٪	ماشین بردار پشتیبان (polynomial)
719.98	۸٧,٩١٪	۸٠,۶٧٪	۸۲,۹۱٪	ماشین بردار پشتیبان (quadratic)

تشخیص بیماری شکستگی فشردگی (ادامه...)

• بر مبنای ویژگیهای موفومتری با روش ارزیابی K=10 Fold Cross Validation

FNR	Specificity	Sensitivity	Accuracy	دسته بندی کننده
% r •	91,70%	٨٠٪	۸٧,۵٪	KNN=٣
%y.۵	۸۳,۸۵٪	۵.۲۹٪	۸۸,۳٪	KNN=۵
%Y.90	۸۱,۸۵٪	۸۹۲.۰۵	٨۶,۶٪	KNN=Y
%\·	۸۵٪	9.%	16,6%	KNN=9
%.	٧۵٪	1 %	۸۳,۳٪	ماشین بردار پشتیبان (linear)
% NY.Q	۸۵٪	۸۲,۵٪	14,15%	ماشین بردار پشتیبان (rbf)
% r •	۸۳,۷۵٪	٨٠٪	۸۲,۵٪	ماشین بردار پشتیبان (polynomial)
%Y.۵	%AT.VQ	97,0%	%.NF.F	ماشین بردار پشتیبان (quadratic)

ماتریس Confusion

KNN=3 K 10 Fold Cross Validation •

تشخیص رادیولوژی ست		
Normal	VCF	سيستم خودكار
٣٢	Υ	Normal
٨	٧٣	VCF

KNN=5 K 10 Fold Cross Validation •

تشخیص رادیولوژی ست		
Normal	VCF	سيستم خودكار
74	٨	Normal
۶	٧٢	VCF

تشخیص نوع شکستگی فشردگی مهره

• تشخیص محل وجود ناهنجاری با رویکرد ارزیابی Random Sub Sampling

Accuracy	دسته بند ی کننده
٣٣.٠٨٪	KNN=٣
%A•.٣9	KNN=۵
% \ \	KNN=Y
%.69	KNN=9
۸۴,9۲٪	ماشین بردار پشتیبان (linear)
۸۵,۳۱٪	ماشین بردار پشتیبان (rbf)
۸۴,۰۵%	ماشین بردار پشتیبان (polynomial)
14,51%	ماشین بردار پشتیبان (quadratic)

تشخیص نوع شکستگی فشردگی مهره

• تشخیص محل وجود ناهنجاری با رویکرد ارزیابیK=5 Fold Cross Validation

Accuracy	دسته بند ی کننده
% . .	KNN=٣
۳۸۰.۸۳	KNN=۵
%AT.Q	KNN=Y
% \ \%.\	KNN=9
7P.61.	ماشین بردار پشتیبان (linear)
%,8.7	ماشین بردار پشتیبان (rbf)
%AQ.+Y	ماشین بردار پشتیبان (polynomial)
%A٣.•٣	ماشین بردار پشتیبان (quadratic)

ماتریس Confusion

SVM with K 5 Fold Cross Validation •

تشخیص رادیولوژی ست			سيستم خودكار	
Crush	Biconcave	Wedge	Normal	
*	۵	۴	٣٩	Normal
١	•	١٣	•	Wedge
٢	۴.	٢	١	Biconcave
٨	•	١	•	Crush

ماتریس Confusion

KNN=9 with K 5 Fold Cross Validation •

تشخیص رادیولوژی ست			سيستم خودكار	
Crush	Biconcave	Wedge	Normal	
۴	١	٢	۴.	Normal
١	٠	١٣	•	Wedge
٢	٣٩	۴	۵	Biconcave
٨	•	١	•	Crush

نتیجه گیری

عملکرد نهایی روش پیشنهادی

Specificity	Sensitivity	Accuracy	رویکرد ارزیابی	دسته بندی
				كننده
۸۳,۸۵٪	۹۲,۵٪	۸۸,۳٪	K Fold 10	KNN=5
۸٧,١۴٪	۸۷,۴۳٪	18,14%	Random Sub Sampling	KNN=7

Accuracy	رویکرد ارزیاب <i>ی</i>	دسته بندی کننده
۸۸,۳٪	K Fold 5	ماشین بردار پشتیبان (quadratic)
۸۶,۱۴٪	Random Sub Sampling	ماشین بردار پشتیبان (rbf)

- عملکرد بهتر KNN به نسبت SVM خطی و غیر خطی
 - استفاده از ویژگیهای مورفومتری
 - بهبود پارامتر حساسیت در تشخیص بیماری
 - عدم توانایی تشخیص توسط ویژگیهای هیستوگرام و زمینه

عملکرد نهایی روش پیشنهادی (ادامه)

• تشخیص بیماری

Accuracy	Sensitivity	روشها
٨٩٪	۸۱٪	لوکاس فریتو و همکاران
94,55%	۴۶,۶٪ و ۱۳,۳٪	قوش و همکارانش
۹۳,۲۰٪	۸٧,١٪	ال هلو العمري
-	9.% ₉ 88%	وانگ
۸۸,۳٪	۹۲,۵٪	روش پیشنهادی ما

عملکرد نهایی روش پیشنهادی (ادامه)

• پیاده سازی روش های پیشنهادی روی دیتاست xVertSeg

Accuracy	Sensitivity	روشها
۶۸,۹٪	٧٨,٠٢٪	لوکاس فریتو و همکاران
۸۲,۲۱٪	۸۴,۰۸	قوش و همکارانش
۸۴,٣٩٪	٨٠%	ال هلو العمري
۸۸,۳٪	۹۲,۵٪	روش پیشنهادی ما

عملکرد نهایی روش پیشنهادی (ادامه)

نیاز به بهبود

• انتخاب ویژگی برای تشخیص Crush

نقاط قوت

- تشخیص خودکار نقاط مرز بدنه ی مهره
 - جداسازی مهره های به هم چسبیده
- ویژگیهای یکسان تشخیص بیماری و محل آن
 - میزان حساسیت مناسب

پیشنهادات و کارهای آتی

بلند مدت

- ساخت CAD سیستم
- تشخیص خوش خیم و بد خیم بودن بیماری
 - بررسی فشار وارد شده به بخش پشت
 - تشخیص بیماری Spondylolisthesis
 - تشخیص بیماری اسکولیوس

کوتاه مدت

- استخراج ویژگی برای تشخیص Crush
- پیاده سازی بر روی دیتاست تصاویر ام ار جمع آوری شده از بیمارستان امام خمینی
- استفاده ی همزمان از تصاویر نمای ساژیتال و آکزیال
- شدت کاهش ارتفاع برای سیمان زنی بدنه ی مهره

با سپاس از توجه شما