Student Information

Full Name : Ugur Duzel Id Number : 2171569

Answer 1

Table 1: Question 1.1

p	q	$\neg q$	$p \rightarrow q$	$\neg q \land (p \rightarrow q)$	$\neg p$	$(\neg q \land (p \to q)) \to \neg p$
T	F	Т	F	F	F	Т
F	Т	F	Т	F	Т	T
T	Τ	F	Τ	F	F	T
F	F	Т	Т	Т	Т	Т

Table 2: Question 1.2

p	q	r	$p \lor q$	$\neg p$	$\neg p \lor r$	$(p \lor q) \land (\neg p \lor r)$	$q \lor r$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$
T	Τ	Τ	T	F	T	T	Т	T
F	Т	Т	Т	Т	Т	Т	Т	T
T	F	Τ	T	F	Т	T	Т	T
F	F	Τ	F	Т	Т	F	Т	T
T	Т	F	Т	F	F	F	Т	T
F	Т	F	Т	Т	Т	Т	Т	T
T	F	F	Т	F	F	F	F	T
F	F	F	F	Т	Т	F	F	T

Answer 2

$$(p \to q) \lor (p \to r) \equiv (\neg p \lor q) \lor (p \to r) \qquad Using \ Table \ 7$$

$$\equiv (\neg p \lor q) \lor (\neg p \lor r) \qquad Using \ Table \ 7$$

$$\equiv (q \lor r) \lor (\neg p \lor \neg p) \qquad Commutative \ Laws$$

$$\equiv (q \lor r) \lor \neg p \qquad Idempotent \ Laws$$

$$\equiv \neg (q \lor r) \to \neg p \qquad Using \ Table \ 7$$

$$\equiv (\neg q \land \neg r) \to \neg p \qquad De \ Morgan's \ Laws$$

$$(1)$$

Answer 3

Question 3.1

- a) Every cat is friend with at least one dog.
- b) There exists at least one cat that is friend with all dogs.

Question 3.2

a)
$$\forall x \forall y \{ [Eats(x,y) \rightarrow Meal(y)] \rightarrow Customer(x) \}$$

b)
$$\neg \forall x \{ Chef(x) \rightarrow \forall y [Meal(y) \rightarrow Cooks(x, y)] \}$$

c)
$$\exists x \{Customer(x) \land \exists y [Chef(y) \land \forall z ((Cooks(y, z) \rightarrow Meal(z)) \rightarrow Eats(x, z))] \}$$

$$d) \quad \forall x \{Chef(x) \rightarrow \exists y [Knows(x,y) \land Chef(y) \land \forall z ((Cooks(y,z) \rightarrow Meal(z)) \rightarrow \neg Cooks(x,z))]\}$$

Answer 4

Table 3: Question 4

p	q	$\neg p$	$p \rightarrow q$	$\neg q$	
Т	Τ	F	Т	F	
Т	F	F	F	Т	
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	

Considering the last two lines of the Table 3, we can see that when $\neg p$ is true, as given in the premise, $\neg q$ can either be true or false. In conclusion, false implies anything. That's why given entailment cannot be a deduction rule in a sound deductive system.

Answer 5

	Table 4: Question 5)
1	$p \to q$	premise
2	$q \rightarrow r$	premise
3	$r \to p$	premise
4	q	assumption
5	r	\rightarrow e 2,4
6	p	\rightarrow e 3,5
7	$q \to p$	\rightarrow i 4 - 6
8	$p \iff q$	\iff i 1,7
9	p	assumption
10	q	\rightarrow e 1,9
11	r	\rightarrow e 2, 10
12	$p \to r$	→i 9 – 11
13	$p \iff r$	\iff i 3, 12
14	$(p \iff q) \land (p \iff r)$	$\wedge i \ 8, 13$

Answer 6

Table 5: Question 6				
1	$\forall x(Q(x) \to R(x))$	premise		
2	$\exists x (P(x) \to Q(x))$	premise		
3	$\forall x P(x)$	premise		
4	$P(c) \to Q(c)$	assumption		
5	$Q(c) \to R(c)$	∀e 1		
6	P(c)	∀e 3		
7	Q(c)	\rightarrow e 4,6		
8	R(c)	\rightarrow e 5,7		
9	$P(c) \wedge R(c)$	∧i 6,8		
10	$\exists x (P(x) \land R(x))$	∃i 9		
11	$\exists x (P(x) \land R(x))$	$\exists e \ 2, 4 - 10$		