Основни структури за управление на изчислителния процес

Задача 1.

Да се напише програма, която намира сумата на реда:

$$S = x + \frac{x}{1+2} + \frac{x}{1+2+3} + \cdots$$

с точност 0.0001.

Задача 2.

Ако е дадено произволно положително число a да се пресметне корен от него по метода на Нютон с последователни приближения:

$$x_1 = a,$$

$$x_{k+1} = \frac{x_k + \frac{a}{x_k}}{2},$$

докато $|x_{k+1} - x_k|$ стане по-малко от определено число ε .

Задача 3.

По дадено цяло неорицателно число a да се намерят всички цели числа k и m такива, че

$$k^2 + m^2 = a$$

Задача 4.

Всяко число, което се дели само на 2, 3 и 5 се нарича число на *Хеминг*. Да се намерят първите 200 числа на Хеминг.

Задача 5.

Числата a и b се наричат сдвоени прости числа, ако са прости и ако a+2=b. Да се намерят първите 50 двойки сдвоени прости числа.

Задача 6.

Да се провери дали всяко от първите 2000 четни числа може да се представи като сума на две прости числа.

Задача 7.

Две цели числа a и b се наричат приятелски, ако a е равно на сумата на делителите на b и обратно. Да се намерят всички двойки приятелски числа по-малки от 5000.

Задача 8.

Да се напише програма, която намира и отпечатва всички числа в даден интервал, които имат сума от цифрите си число x, x да се прочита от клавиатурата и да се приемат само коректни стойности за него.

Задача 9.

Да се напише програма, която отпечатва числовата пирамида от първите n числа:

23

456

..

....

Ако някой ред не се запълни, да се добавят звездички.

Залача 10.

Да се напише програма, която по дадени две цели числа a и b проверява, дали произведението от цифрите на a е равно на сумата от цифрите на b.

Залача 11.

Да се намерят всички прости числа между m и n, ако 0 < m < n < 5000.

Задача 12.

Да се напише програма, която намира и отпечатва всички прости числа, които завършват на 7 и са в даден интервал.

Задача 13.

Едно просто число е *Мерсеново*, ако се представя във вида $2^p - 1$, където p е просто. Да се намерят всички мерсенови прости числа между 1 и 65535.

Задача 14.

Да се напише програма, която намира първите 200 прости числа, които започват с 3.

Задача 15.

Да се напише програма, която намира първите 200 прости числа, за които сборът от съставящите ги цифри е четно (нечетно) число.

Задача 16.

Да се напише програма, която отпечатва всички прости делители на дадено число и тяхната сума.

Задача 17.

Да се напише програма, която намира и отпечатва първите 20 цели положителни числа, сумата от делителите на които се дели на 3.

Задача 18.

Да се напише програма, която отпечатва първите 50 цели числа, които съдържат само цифрите 1, 5, 6, 8.

Задача 19.

Да се напише програма, която намира простите числа в даден интервал, които имат сума от цифрите си просто число и не съдържат цифрата 5.

Задача 20.

Да се преобразува число записано в k-ична бройна система в число записано в p-ична. (1 < k, p < 17).

Залача 21.

Да се напише програма, която по две въведени дати намира разстоянието в дни между тях. Датите са дадени във вида *dd-mm-уууу*.

Задача 22.

Да се напише програма, която прибавя към даден момент (уууу-mm-dd-hh-mm-ss) даден брой секунди.

Задача 23.

По дадено естествено число n да се намери такова число k > 0, че последните n цифри на 2^k да се само единици и двойки. Hanpumep: за n = 2 имаме k = 9 ($2^9 = 512$)

Задача 24.

Да се намери най-малкото естествено число n, което започва с 1 и е такова, че ако единицата се премести в края, числото се увеличава три пъти.

Задача 25.

Да се намерят всички цели числа от 1 до m, които при премахване на k-тата цифра се намаляват цяло число пъти.

Залача 26.

За дадено число n да се провери дали съществуват прости числа p и q, такива че n = p + q.

Задача 27.

За дадено цяло k да се намерят всички k-цифрени числа, които са точни квадрати и се записват само с четни цифри.

Задача 28.

За дадено цяло число n да се намерят всички n-цифрени числа, произведението на които с 1, 2, 3, 4, 5 и 6 се записва със същите цифри, но в друг ред.

Например за n = 6 такова число е 142857:

2*142857=285714; 3*142857=428571; 4*142857=571428; 5*142857=714285; 6*142857=857142.

Задача 29.

За дадено n да се намерят всички n-цифрени числа, равни на сумата на факториелите на цифрите си.

Задача 30.

Да се намерят всички естествени числа по-малки от зададено число, които при задраскване на цифра се намаляват 9 пъти и при това новополученото число продължава да се дели на 9.

Hanpumep в 405 задраскваме 0 и получаваме 45, при това 405 = 9.45

Задача 31.

Да се намерят всички естествени числа по-малки от дадено число, които са 4 или 9 пъти по-малки от своето обратно число. Например 8712 е 4 пъти по-малко от 2178.

Задача 32.

За дадено число n>1 да се намерят всички n-цифрени числа, които са равни на сумата от n-тите степени на цифрите си. $Hanpumep\ 153=1^3+5^3+3^3$.

Съставни типове данни. Масив. Символен низ. Указатели и псевдоними

Задача 33.

Да се напише програма, която извежда броя на нулите, единиците и двойките в даден масив от цели числа.

Залача 34.

Да се провери има ли в редица два последователни елемента 0.

Задача 35.

Да се напише програма, която проверява дали редицата от цели числа $a_0, a_1, ..., a_{n-1}, n \in [1; 100]$ се състои от различни елементи.

Задача 36.

Да се напише програма, която при въвеждане на п цели числа съобщава максималното р, такова че измежду п-те цели числа има р еднакви.

Задача 37.

Дадени са две редици от цели числа. Да се напише програма, която проверява колко пъти първата редица се съдържа във втората.

Задача 38.

Две числови редици си приличат, ако съвпадат множествата от числата, които ги съставят. Да се напише програма, която проверява дали числовите редици a0, a1, ..., an-1 и $b0, b1, ..., bn-1, n \in [1; 100]$ си приличат.

Задача 39.

Да се определи дали в дадена редица има k числа, които са степен на n, въведено от потребителя естествено число.

Задача 40.

Да се напише програма, която по даден масив извежда всички числа от масива, чиито стойности са кратни на индексите им.

Задача 41.

Да се напише програма, която въвежда n числа и след това ги извежда:

- в обратен ред;
- първо тези на четни позиции, а после тези на нечетни;
- в произволен ред (random shuffle).

Задача 42.

Да се напише програма, която от даден масив получава нов, съдържащ всички елементи на първия, подредени в намаляващ (нарастващ) ред и без повторения.

Задача 43.

Да се преобразува масива a_0 , a_1 , ..., a_n по следния начин:

- ако $a_m < m$, a_m се повдига на квадрат;
- ако $a_m = m$, взима се a_m със знак минус;
- ако $a_m > m$, a_m се заменя с $a_m 1$.

Задача 44.

Всяка редица от равни числа в едномерен масив се нарича площадка. Да се напише програма, която намира началото и дължината на най-дългата площадка в даден, сортиран във възходящ ред, едномерен масив. Например, в редицата 1, 1, 1, 2, 2, 3, 3, 3, 4, 5 началото на най-дългата площадка е 5, дължината й е 4.

Задача 45.

Да се напише програма, която намира скаларното произведение два вектора.

Задача 46.

За два дадени вектора да се определи дали са линейно зависими.

Задача 47.

Да се напише програма, която въвежда n числа и след това проверява дали те са:

- монотонно намаляваща (нарастваща) редица;
- редица от вида: $a_0 > a_1 < a_2 > \dots$

Задача 48.

Да се напише програма, която изтрива от дадена редица от цели числа a_0 , ..., a_{n-1} , $n \in [1;100]$ всички елементи, които са по-малки и от двата си съседа.

Задача 49.

Дадена е квадратна целочислена матрица от n-ти ред ($n \in [1; 10]$). Да се дефинира функция, която намира сумата на нечетните елементи под главния диагонал (без него). Как се променя обхождането, ако трябва да се разгледат елементите над главния диагонал, както и елементите под и над вторичния?

Задача 50.

Дадена е целочислена матрица с размерност $n \times m$ ($n, m \in [1; 10]$). Да се напише програма, която изтрива k-тия ред на матрицата, $k \in [1; n]$.

Залача 51.

Да се напише програма, която изтрива k-тия стълб на матрицата, $k \in [1; m]$.

Задача 52.

Дадена е целочислена матрица с размерност $n \times m$ ($n, m \in [1; 10]$). Да се напише програма, която извежда на екрана всички **редове**, за които броят на различните елементи е по-малък от дадено число. Елементите на редовете да се изведат на екрана в нарастващ ред.

Задача 53.

Дадена е целочислена матрица с размерност $n \times m$ ($n, m \in [1; 10]$). Да се напише програма, която проверява дали съществува елемент, който е равен на сумата от съседите си. Всеки елемент има до 8 съсела.

Задача 54.

Дадена е целочислена матрица с размерност $n \times m$ ($n,m \in [1;10]$). Да се напише програма, която проверява дали съществуват два реда, които са пермутация един на друг (съставени са от еднакви елементи, незадължително в еднакъв ред).

Задача 55.

Дадена е целочислена матрица с размерност $n \times m$ ($n, m \in [1; 10]$). Да се напише програма, която:

- проверява дали матрицата е симетрична спрямо главния диагонал (в случая матрицата да се разглежда като квадратна, с размерност $n \times n$);
- намира и извежда транспонираната матрица;
- събира матрицата с друга матрица с размерност $n \times m$ ($n, m \in [1; 10]$);
- умножава матрицата с друга матрица с размерност $m \times p$ ($m, p \in [1; 10]$).

Задача 56.

Да се напише програма, която по даден двумерен масив намира минималния елемент измежду максималните елементи за всеки стълб.

Задача 57. Елемент на матрица е седлова точка, ако е минимален за реда си и максимален за стълба си. Да се преброят седловите точки в дадена матрица и да се изведат на екрана.

Задача 58. Да се провери дали дадена квадратна матрица е магически квадрат.

Задача 59. *

Дадена е система линейни уравнения от n-ти ред. Да се напише програма, която я решава.

Залача 60.

Да се напише функция char* letters (char* str), която връща низ получен от str, като от него са премахнати всички символи, които не се латински букви.

Задача 61.

Да се напише функция

int parse (const char* date, int* DD, int* MM, int* YYYY, int mode), която по зададена дата, като низ поставя в DD, MM и YYYY съответния ден месец и година, ако подадената дата е коректна и връща 1, иначе връща 0 и нули за ден, месец и година. Променливата mode определя как се подава датата:

- 1 dd mm yyyy;
- 2 mm-dd-yy;
- 3 yy-mm-dd.

Задача 62. *

Даден е масив 10x10 с елементи малки латински букви. Да се напише функцията int exist (const char* p),

която проверява дали думата p се намира в масива по хоризонтал, вертикал или диагонал. Може да се среща от ляво надясно, от дясно на ляво, от горе на долу, от долу на горе, както и по двата диагонала (ляво и дясно наклонени)

Ако под дума разбираме последователност гласна-съгласна-гласна-... или съгласна-гласна-гласна, която винаги завършва на гласна да се намери броя на всички думи в матрицата, четени по описания начин.

Задача 63.

Да се напише функция char *upperCase (char*), която по зададен низ връща същия низ, като всички малки латински букви са преобразувани в главни.

Залача 64.

Да се напише функция char *lowerCase (char*), която по зададен низ връща същия низ, като всички главни латински букви са преобразувани в малки.

Задача 65.

Да се напише функция char* removeDigits (char*), която получава като параметър низ и връща същия низ, но с премахнати цифри.

Задача 66.

Да се напише функция char* reverse (char*), която получава като параметър низ и връща същия низ, но в обратен ред.

Залача 67.

Да се напише функция char* reverseWordsOnly(char*), която получава като параметър низ и връща същия низ, но в който отделните думи (и само те!) са обърнати.

Залача 68.

Да се напише функция int isPalindrom(const char*), която получава като параметър низ и връща 1 или 0 в зависимост дали низа е палиндром (чете се еднакво в двете посоки).

Задача 69.

Да се напише функция

char* replaceFirst(char* pch, const char* findWhat, const char* replaceWith), която връща резултат указател към низа сочен от *pch*, в който първото срещане на низа *findWhat* е заменено с низа *replaceWith*.

Задача 70.

Да се напише функция

char* replaceLast(char* pch, const char* findWhat, const char* replaceWith), която връща резултат указател към низа сочен от *pch*, в който последното срещане на низа *findWhat* е заменено с низа *replaceWith*.

Задача 71.

Да се напише функция

char* replaceAll(char* pch, const char* findWhat, const char* replaceWith), която връща резултат указател към низа сочен от *pch*, в който всяко срещане на низа *findWhat* е заменено с низа *replaceWith*.

Задача 72.

Да се напише функция char* deleteFirst(char* pch, const char* findWhat), която връща резултат указател към низа сочен от *pch*, в който първото срещане на низа *findWhat* е изтрито.

Задача 73.

Да се напише функция char* deleteLast (char* pch, const char* findWhat), която връща резултат указател към низа сочен от *pch*, в който последното срещане на низа *findWhat* е изтрито.

Задача 74.

Да се напише функция char* deleteAll (char* pch, const char* findWhat), която връща резултат указател към низа сочен от **pch**, в който всяко срещане на низа **findWhat** е изтрито.

Задача 75.

Да се напише функция char* common (char* s1, char* s2), която връща общата част на s1 и s2.

Задача 76.

Да се напише функция int count(const char* where, const char* what), която връща колко пъти what се среща в where.

Задача 77.

Да се напише функция int countChar (const char* s1, const char* s2), която връща броя на еднаквите символи в s1 и s2.

Задача 78.

Да се напише функция char* encode (char* source, char* alpha), (където е alpha поредица от 26 знака), която заменя в source всяка малка латинска буква със символ от alpha, съответно: 'a' с alpha[0], 'b' с alpha[1], ..., 'y' с alpha[24], 'z' с alpha[25]. Останалите не се променят.

Задача 79. *

Нарастваща подредица на масив наричаме последователност от елементи с нарастващи индекси, елементите на която също нарастват. За даден масив a_0, a_1, \dots, a_n да се определи дължината на найдългата нарастваща подредица.

Задача 80.

Дадени са три сортирани масива $a_0, a_1, ..., a_n, b_0, b_1, ..., b_m$ и $c_0, c_1, ..., c_l$. Да се определи броят на равенствата $a_i = b_i = c_k$, където i, j и k са валидни индекси.

Запача 81

Дадени са три сортирани масива. Да се състави четвърти масив, който е обединение на дадените и също е сортиран.

Задача 82.

Даден е масив от три вида елементи : 1, 2 и 3. Да се сортира.

Задача 83.

Дадени са два масива $a_0, a_1, ..., a_n$ и $b_0, b_1, ..., b_m$, които отговарят на условията: А е сортиран, а за всеки елемент на В е в сила: $b_0 = a_0, b_k = b_{k-1} + a_k$. Да се слеят в сортиран масив.

Задача 84.

Даден е двумерен масив от числа a_{ij} , Сортиран по редове и стълбове. Да се определи дали дадено число е в масива и ако е, да се изведат индексите му.

Залача 85.

Да се сортира даден двумерен масив, така че всеки стълб и всеки ред да е намаляваща редица.

Задача 86.

Да се състави програма, която чете редица от 2k+1 числа и открива (k+1)-вото по големина.

Задача 87. Да се определи дали има нулеви диагонали и какъв е техния брой в матрица *т*х*т*.

Задача 88.

Да се напише програма, която чете текст от думи и печата броя на еднобуквените, двубуквените и т.н. думи.

Задача 89.

Да се напише функция, която по дадено число връща съответния му низ 123 → "123". Да се разпознават цели числа със знак, както и числа с плаваща точка.

Задача 90.

Да се напише функция, която по даден низ, съдържащ записа на число, връща съответното число. Да се разпознават цели числа със знак, както и числа с плаваща точка, записани в различни формати.

Задача 91.

Да се напише програма, която заменя всяка последователност от еднакви символи в текст само с един такъв символ.

Задача 92.

Да се напише програма, която премахва всяка последователност от еднакви символи в текст.