CS 231A CA Session: Problem Set 4 Review

Kevin Chen May 13, 2016

PS4 Outline

- Problem 1: Viewpoint estimation
- Problem 2: Segmentation
 - Meanshift segmentation
 - Normalized cut

Problem 1: Viewpoint Estimation

Viewpoint estimation using Bag of Words

- Goal: Perform image classification
- Steps:
 - Build dictionary of codewords
 - Build features based on codewords
 - Train an SVM classifier on the features and labels

Viewpoint estimation using Bag of Words

- Goal: Perform image classification
- Steps:
 - Build dictionary of codewords
 - Build features based on codewords
 - Train an SVM classifier on the features and labels

Build dictionary of codewords

- Goal: compute "words" for our bag of words model
 - Will be useful for computing a feature vector for an image
- Basic idea: perform k-means on dense SIFT features
- Cluster centers form the "words" in the bag of words model
- Algorithm
 - Subsample images in train set
 - Compute dense SIFT features
 - Find cluster centers by running k-means

K-means clustering

- Fixed number of clusters (k)
- Algorithm
 - Given an initial set of k means
 - Repeat until convergence
 - Assign each point to a *i*th cluster if it is closest to the *i*th mean (euclidean distance)
 - Recompute means
- Use VLFeat

k-means clustering

Viewpoint estimation using Bag of Words

- Goal: Perform image classification
- Steps:
 - Build dictionary of codewords
 - Build features based on codewords
 - Train an SVM classifier on the features and labels

Build features based on codewords

- Goal: Extract a feature from each image
- Algorithm
 - Extract dense SIFT features for every image in train set
 - For each image, build pyramid of dxd sub-images
 - For each pyramid depth
 - For every dense SIFT feature, find nearest codeword according to EUCLIDEAN distance
 - Build histogram of codewords
 - Concatenate sub-image histograms to build the final feature vector for the image

Viewpoint estimation using Bag of Words

- Goal: Perform image classification
- Steps:
 - Build dictionary of codewords
 - Build features based on codewords
 - Train an SVM classifier on the features and labels

Problem 2: Segmentation

Segmentation

Meanshift

Meanshift segmentation

- Compute features for each pixel, e.g. (u, v, R, G, B)
- Keep track of visited pixels (initialize all to unvisited)
- Keep track of cluster centers (initially there are none)
- Repeat until all pixels have been visited
 - Pick a random, unvisited pixel and get its corresponding feature vector
 - Perform meanshift procedure to get cluster center
 - Make sure to update visited pixels
 - Update list of cluster centers
 - Check if the newly computed cluster center is sufficiently close to any previous cluster centers
 - If so, ignore newly computed cluster center (say it's part of a previous cluster)
 - If not, add new cluster to cluster list
- Assign pixels to nearest cluster (in feature space)

Meanshift procedure

- Repeat until convergence
 - Find all features within bandwidth distance from the current feature vector
 - Compute mean of these features
 - All features with bandwidth circle (at any iteration) should have their corresponding pixels marked as visited
 - Update "current feature vector" as the newly computed mean
- Return the final mean as a new cluster center

Normalized Cut

Motivation

- Graph can be constructed with nodes as pixels and edges between pixels
 - Weights are associated with each edge
- Typically want to partition graph into two parts
 - Find partition corresponding to minimum cut cost
- Often ends up choosing cuts that partition small sets of nodes
- Use norm cut instead
 - Norm cut cost is computed as a fraction of weights of edges connecting to the partition
- See paper for details

Basic ideas

- Vector x defines a partition
 - o $\mathbf{x}_i = 1$ if node *i* is in subset A
 - o $\mathbf{x}_i = -1$ if node *i* is in subset B
- We want to solve the following problem:

$$\min_{x} \operatorname{ncut}(x, W, D)$$

Solve for partition by trying to solve an equivalent problem

$$\min_{x} \operatorname{ncut}(x, W, D) = \min_{y} \frac{y^{T}(W - D)y}{y^{T}Dy}$$

subject to
$$y_i \in \{1, -b\}, \ y^T D1 = 0$$

- y is a reformulation of the partition indicator vector x
 - We can retrieve A, B from y

We ask you to implement...

- The computation of norm cut cost
- A recursive algorithm for partitioning the graph

We ask you to implement...

- The computation of norm cut cost
- A recursive algorithm for partitioning the graph

Computation of norm cut

- Given a partition value ϵ and vector \mathbf{v} , we can compute \mathbf{x}
 - o If $\mathbf{v}_i > \mathbf{\epsilon}$, then $\mathbf{x}_i = 1$
 - If $\mathbf{v}_{i} \leq \mathbf{\varepsilon}$, then $\mathbf{x}_{i} = -1$
- Use definitions to compute D, k, b, and y
- Cost can then be computed by

$$ncut = \frac{y^T (D - W)y}{y^T Dy}$$

Definitions

- Given a weight matrix W in which W(i, j) corresponds to edge weight between node i and node j
- Compute diagonal matrix **D** in which **D**(*i*, *i*) corresponds to sum of weights connecting to node *i*
- Vector x defines a partition
 - o $\mathbf{x}_i = 1$ if node *i* is in subset A
 - o $\mathbf{x}_i = -1$ if node *i* is in subset B
- Others
 - Define k to be sum of edge weights which connect to nodes in A
 - Define b to be ratio of edge weights in A to edge weights in B

We ask you to implement...

- The computation of norm cut cost
- A recursive algorithm for partitioning the graph

Recursive algorithm for partitioning the graph

- Compute D
- Approximately solve for y in the problem shown before

$$\min_{x} \operatorname{ncut}(x, W, D) = \min_{y} \frac{y^{T}(W - D)y}{y^{T}Dy}$$

subject to
$$y_i \in \{1, -b\}, \ y^T D 1 = 0$$

o To do this, solve generalized eigensystem $(D-W)y = \lambda Dy$

by finding the eigenvector \mathbf{v} associated with the second smallest eigenvalue of the generalized eigensystem

- This does not satisfy first constraint, so find best partition point using fminsearch on norm cut cost
- Once a partition point is found, we can get A and B
- Recurse on partitions A and B unless end recursion conditions are true

When ending recursion...

- Suppose we want to partition V into A and B
- End recursion conditions
 - Norm cust cost is above threshold
 - Proposed A partition is too small
 - Proposed B partition is too small
- If any of the above are true...
 - Return V as the segmentation

Questions?