Projection Models and Homogeneous Coordinates

Projection Models

Refresher Course Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Topics

Projection Models

Motivation Projection Geometries

Summary

Take Home Messages Further Readings

For 3-D imaging by means of X-ray projections we require detailed knowledge about projection rays.

For 3-D imaging by means of X-ray projections we require detailed knowledge about projection rays.

Thus the questions that we have to consider in detail are:

How can we characterize the projection rays mathematically?

For 3-D imaging by means of X-ray projections we require detailed knowledge about projection rays.

- How can we characterize the projection rays mathematically?
- How can we characterize different projection geometries?

For 3-D imaging by means of X-ray projections we require detailed knowledge about projection rays.

- How can we characterize the projection rays mathematically?
- How can we characterize different projection geometries?
- What is the mechanical setup for the calibration of projection parameters?

For 3-D imaging by means of X-ray projections we require detailed knowledge about projection rays.

- How can we characterize the projection rays mathematically?
- How can we characterize different projection geometries?
- What is the mechanical setup for the calibration of projection parameters?
- How can we estimate the camera parameters?

For 3-D imaging by means of X-ray projections we require detailed knowledge about projection rays.

- How can we characterize the projection rays mathematically?
- How can we characterize different projection geometries?
- What is the mechanical setup for the calibration of projection parameters?
- How can we estimate the camera parameters?
- How can we compute the path of X-rays?

For 3-D imaging by means of X-ray projections we require detailed knowledge about projection rays.

- How can we characterize the projection rays mathematically?
- How can we characterize different projection geometries?
- What is the mechanical setup for the calibration of projection parameters?
- How can we estimate the camera parameters?
- How can we compute the path of X-rays?
- How reliable are the estimates?

Projections

X-ray projection geometry is best modeled by a perspective projection.

 \longrightarrow All X-ray beams intersect at the focal point of the X-ray tube.

Figure 1: Conventional Röntgen scheme using photographic paper (Fölsing 1995, [2])

Projections

Figure 2: Projection from 3-D to 2-D

Projection Geometries

In the following discussion we assume that the image plane is in a fixed position in 3-D space:

- The 2-D image plane is embedded parallel to the (x,y)-plane of the 3-D coordinate system.
- The distance of the image plane to the origin of the 3-D coordinate system is denoted by f, that is the image plane's z-coordinate is constant (z = f).

Figure 3: Illustration of the perspective projection (Dürer 1525, [1])

In computer vision and graphics several projection models are used:

- 1. orthographic projection,
- 2. weak perspective projection,
- 3. para-perspective projection,
- 4. perspective projection.

1. **Orthographic projection:** The projected point results from the cancelation of the *z* components:

$$\left(\begin{array}{c} x \\ y \\ z \end{array}\right) \mapsto \left(\begin{array}{c} x \\ y \end{array}\right).$$

Obviously, this is a linear mapping and can be written in homogeneous coordinates:

$$\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right).$$

2. Weak perspective projection is a scaled orthographic projection, i. e., the coordinates (x, y) are scaled by a scaling factor k:

$$\left(\begin{array}{c} x\\y\\z\end{array}\right)\mapsto \left(\begin{array}{c} k\cdot x\\k\cdot y\end{array}\right).$$

This is again a linear mapping and can be written in homogeneous coordinates:

$$\left(\begin{array}{c} k \cdot x \\ k \cdot y \end{array}\right) = \left(\begin{array}{ccc} k & 0 & 0 \\ 0 & k & 0 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right).$$

 Perspective projection: The projected point is the intersection of the line connecting point and optical center (focal point) with the image plane.

This **nonlinear mapping** of points is given by:

$$\left(\begin{array}{c} x \\ y \\ z \end{array}\right) \mapsto \left(\begin{array}{c} f \cdot x/z \\ f \cdot y/z \end{array}\right)$$

where *f* is the distance of the image plane to the origin.

Observation: The projection model of X-ray systems can be approximated by perspective projection.

4. Para-perspective projection:

- (i) If multiple points are projected, an auxiliary plane through the points' centroid and parallel to the image plane is defined.
- (ii) Then a parallel projection is applied to map all points onto this auxiliary plane, where the projection direction is parallel to the vector that defines the centroid.
- (iii) The points on the auxiliary plane are mapped by perspective projection into the image plane, i.e., we perform a scaled orthographic projection.

Note: The para-perspective projection is an affine mapping.

Illustration of the Different Projection Models

Figure 4: Projection models in computer vision and graphics: orthographic (1), perspective (2), weak perspective (3), para-perspective (4)

Illustration of the Different Projection Models

In summary we find:

- the projection models (1) and (3) can be expressed in terms of a linear mapping in 3-D,
- projection model (4) is defined by an affine mapping, and
- the perspective projection (2) is non-linear.

Too bad: The perspective projection model is the model we are required to deal with.

Figure 4: Projection models in computer vision and graphics: orthographic (1), perspective (2), weak perspective (3), para-perspective (4)

Topics

Projection Models

Motivation

Projection Geometries

Summary

Take Home Messages Further Readings

Take Home Messages

- 3-D X-ray imaging requires profound knowledge of appropriate projection models.
- We have learned about four different projection models:
 - orthographic projection,
 - · weak perspective projection,
 - · para-perspective projection,
 - perspective projection.

Further Readings

For further details on geometric aspects of imaging see:

- Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. 2nd ed. Cambridge: Cambridge University Press, 2004. DOI: 10.1017/CB09780511811685
- Olivier Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Nov. 1993

References:

Albrecht Fölsing. Wilhelm Conrad Röntgen: Aufbruch ins Innere der Materie. München Wien: Carl Hanser Verlag, 1995.