Wärme- und Stoffübertragung I

Herleitung der Energieerhaltungsgleichung

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Video Übersicht

Stationäre Energieerhaltungsgleichung ohne Quellen

- Stationäre 1-D Wärmeleitung ohne Quellen
- Stationäre 2-D Wärmeleitung ohne Quellen

Stationäre Energieerhaltungsgleichung mit Quellen

Stationäre 2-D Wärmeleitung mit Quellen

Instationäre Energieerhaltungsgleichung

Instationäre 2-D Wärmeleitung mit Quellen

Instationäre 3-D Energieerhaltungsgleichung mit Quellen

3-D Erhaltungsgleichung ohne Advektion

Lernziele

Energiebilanzen

- Aufstellen von Energiebilanzen für unterschiedliche Fälle
- Entwicklung einer Differenzialgleichung aus der Energiebilanz unter Verwendung der Taylorreihenentwicklung
- Aufstellen notwendiger Randbedingungen
- Lösen der Differenzialgleichung für einfache Fälle

Beispiele aus unserem Alltag

Stationär

Wärme wird durch den Topfboden geleitet. Sowohl die Temperaturdifferenz als auch der Wärmestrom sind zeitlich konstant.

Instationär

Die Wärmemenge/Temperatur eines Objektes verändert sich über die Zeit. Beispiel: Der Kaffee kühlt ab.

Quellen und Senken

Wärmeenergie innerhalb eines Körpers wird generiert oder absorbiert durch die Umwandlung von anderen Energiearten in Wärme.

Wiederholung Fourier-Gesetz: Stationäre 1-D Wärmeleitung in einer ebenen Wand ohne Quelle

Fourier Gesetz

$$\dot{q}^{"} = -\lambda \frac{\partial T}{\partial x}$$

Wärmestrom durch die Wand

$$\dot{Q} = \dot{q}^{"} \cdot A = -\lambda \cdot A \cdot \frac{T_2 - T_1}{\delta} \text{ [W]}$$

DGL Herleitung: Stationäre 1-D Wärmeleitung ohne Quellen

Stationär: thermische Energie verändert sich nicht über die Zeit!

Energiebilanz das Element dx

$$0 = \dot{Q}_{x,ein} - \dot{Q}_{x,aus}$$

Definition von $\dot{Q}_{\rm X,aus}$ mittels Taylorreihenentwicklung

$$\dot{Q}_{x,aus} = \dot{Q}_{x,ein} + \frac{\partial Q_{x,ein}}{\partial x} dx$$

DGL Herleitung: Stationäre 1-D Wärmeleitung ohne Quellen

Stationär: Thermische Energie verändert sich nicht über die Zeit!

Energiebilanz das Element dx

$$0 = \dot{Q}_{x,ein} - \dot{Q}_{x,aus}$$

Definition von $\dot{Q}_{\rm X,aus}$ mittels Taylorreihenentwicklung

$$\dot{Q}_{x,aus} = \dot{Q}_{x,ein} + \frac{\partial Q_{x,ein}}{\partial x} dx$$

Mathematischer Einschub: Taylorreihenentwicklung

Approx. einer Funktion f(x) an der Stelle $x = x_0$ mit Taylorreihenentwicklung

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

DGL Herleitung: Stationäre 1-D Wärmeleitung ohne Quellen

Stationär: thermische Energie verändert sich nicht über die Zeit!

Energiebilanz um ein infinitesimales Element

$$0 = \dot{Q}_{x,ein} - \dot{Q}_{x,aus}$$

Taylorreihenentwicklung

$$\dot{Q}_{\mathrm{x,aus}} = \dot{Q}_{\mathrm{x,ein}} + \frac{\partial \dot{Q}_{\mathrm{x,ein}}}{\partial x} dx$$

Taylor-Reihe in EB eingesetzt

$$\dot{Q}_{x,\text{ein}} = \dot{Q}_{x,\text{ein}} + \frac{\partial \dot{Q}_{x,\text{ein}}}{\partial x} dx$$

Fourier-Gesetz einsetzen

$$\dot{Q} = \dot{q}^{''} \cdot A = -\lambda \cdot A \cdot \frac{\partial T}{\partial x}$$

Resultierende DGL

$$0 = \frac{\partial \dot{Q}_{x,ein}}{\partial x} = -\lambda \cdot A \cdot \frac{\partial^2 T}{\partial x^2}$$

Temperaturprofil stationäre 1-D Wärmeleitung ohne Quellen

DGL 2. Ordnung → 2 RB notwendig

$$0 = \frac{\partial \dot{\mathbf{Q}}_{\mathbf{x}, \mathbf{ein}}}{\partial x} = \boxed{-\lambda \cdot A \cdot \frac{\partial^2 T}{\partial x^2}}$$

Randbedingungen

$$x = 0$$
 , $T = T_1$

$$x = L$$
 , $T = T_2$

2-fache Integration liefert Temperaturverlauf

$$T = T_1 + \frac{T_2 - T_1}{L}x$$

Wärmestrom

$$\dot{Q}_{x} = -\lambda A \frac{\partial T}{\partial x} = -\lambda A \frac{\partial (T_{1} + \frac{T_{2} - T_{1}}{L}x)}{\partial x} = -\lambda A \frac{T_{2} - T_{1}}{L} \quad [W]$$

Stationäre 2-D Wärmeleitung ohne Quellen

Energiebilanz

$$0 = (\dot{Q}_{\text{x,ein}} - \dot{Q}_{\text{x,aus}}) + (\dot{Q}_{\text{y,ein}} - \dot{Q}_{\text{y,aus}})$$
$$0 = (\dot{q}_{\text{x,ein}}^{"} - \dot{q}_{\text{x,aus}}^{"}) \cdot dy \cdot 1 + (\dot{q}_{\text{y,ein}}^{"} - \dot{q}_{\text{y,aus}}^{"}) \cdot dx \cdot 1$$

$\dot{q}_{\mathrm{x,aus}}''$ und $\dot{q}_{\mathrm{y,aus}}''$ mit Taylorreihenentwicklung

$$\dot{q}_{\mathrm{x,aus}}^{"} = \dot{q}_{\mathrm{x,ein}}^{"} + \frac{\partial \dot{q}_{\mathrm{x,ein}}^{"}}{\partial x} dx + \dots$$
$$\dot{q}_{\mathrm{y,aus}}^{"} = \dot{q}_{\mathrm{y,ein}}^{"} + \frac{\partial \dot{q}_{\mathrm{y,ein}}^{"}}{\partial y} dy + \dots$$

Einsetzen in die Energiebilanz

$$0 = -\frac{\partial \dot{q}_{x,ein}^{"}}{\partial x} + -\frac{\partial \dot{q}_{y,ein}^{"}}{\partial y}$$

mit Fourier-Gesetz

$$0 = \lambda \frac{\partial^2 T}{\partial x^2} + \lambda \frac{\partial^2 T}{\partial y^2}$$

Laplace-Gleichung

$$0 = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Einschub zur Erklärung 1

Die Gleichungen von Folie 9 und Folie 11 weisen ein unterschiedliches Vorzeichen auf ⇒ liegt hier ein Fehler vor?

In Folie 9 wurde die Bilanz umgestellt

von: $0 = \dot{Q}_{x,ein} - \dot{Q}_{x,aus}$

auf: $\dot{Q}_{x,ein} = \dot{Q}_{x,aus}$

da links die "O" steht => Division durch

-1 ändert nichts

Resultierende DGL

$$\frac{\partial \dot{Q}_{x,ein}}{\partial x} = 0 = -\lambda \cdot A \cdot \frac{\partial^2 T}{\partial x^2} = \lambda \cdot A \cdot \frac{\partial^2 T}{\partial x^2}$$

Einschub zur Erklärung 2

Die Gleichungen von Folie 9 und Folie 11 weisen ein unterschiedliches Vorzeichen auf ⇒ liegt hier ein Fehler vor?

In Folie 11 wurde die Bilanz nicht umgestellt

also:
$$0 = (\dot{Q}_{x,ein} - \dot{Q}_{x,aus}) + (\dot{Q}_{y,ein} - \dot{Q}_{y,aus})$$

⇒ die "0" bleibt also stets links dabei

hier bleibt alles vorzeichenrichtig erhalten

Resultierende DGL

Stationäre 2-D Wärmeleitung mit Quellen

Energiebilanz

$$0 = (\dot{Q}_{x,ein} - \dot{Q}_{x,aus}) + (\dot{Q}_{y,ein} - \dot{Q}_{y,aus}) + \dot{\Phi}''' \cdot V$$
$$0 = (\dot{q}''_{x,ein} - \dot{q}''_{x,aus}) \cdot dy \cdot 1 + (\dot{q}''_{y,ein} - \dot{q}''_{y,aus}) \cdot dx \cdot 1 + \dot{\Phi}''' \cdot dx \cdot dy \cdot 1$$

mit

- Taylorreihenentwicklung
- Fourier-Gesetz

Poisson-Gleichung

$$\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}^{""} = 0$$

$$\dot{\Phi}^{\prime\prime\prime} \left[\frac{W}{m^3} \right]$$

 $\dot{\Phi}'''\left\lceil \frac{W}{m^3} \right\rceil$: volumetrischer Quellterm, kann positiv (Quelle) oder negativ (Senke) sein

Definition der inneren Energie für die instationäre Wärmeleitung

Änderung der inneren Energie des Systems

$$U = m \cdot c_v \cdot T$$

$$U = \rho \cdot c_v \cdot T \cdot dx \cdot dy \cdot \underbrace{dz}_{1}$$

U [J] : Innere Energie

 $ho \left[rac{
m kg}{
m m^3}
ight]$: Dichte

 $c_v\left[rac{\mathrm{J}}{\mathrm{kgK}}
ight]$: spez. Wärmekapazität bei konst. Volumen

Einheiten - Check!

$$\dot{Q} = \underbrace{\dot{q}''}_{\left[\frac{W}{m^2}\right]} \cdot \underbrace{dx \cdot dy}_{\left[m^2\right]} \quad \left[W\right] \qquad \Rightarrow \left[\frac{\partial U}{\partial t} \quad \left[\frac{J}{s} = W\right]\right]$$

Die innere Energie U muss sich über die Zeit verändern, damit die Einheiten übereinstimmen!

Energiebilanz für instationäre 2-D Wärmeleitung mit Quellen

Definition der inneren Energie

Betrachtete Änderung der inneren Energie nur durch Temperaturänderungen! (c_v und ρ sind konstant)

Änderung innerhalb des Kontrollvolumens:

$$\frac{\partial U}{\partial t} = \rho \cdot c_v \cdot dx \cdot dy \cdot 1 \cdot \frac{\partial T}{\partial t}$$

Energiebilanz

$$\frac{\partial U}{\partial t} = (\dot{Q}_{x,ein} - \dot{Q}_{x,aus}) + (\dot{Q}_{y,ein} - \dot{Q}_{y,aus}) + \dot{\Phi}''' \cdot V$$

Die Änderung der Wärmeströme und der Quellterm stehen auf der rechten Seite der EB (Ursache)

Die zeitliche Änderung der inneren Energie steht auf der linken Seite der EB (Wirkung)

Energiebilanz für instationäre 2-D Wärmeleitung mit Quellen

Definition der inneren Energie

Betrachtete Anderung der inneren Energie nur durch Temperaturänderungen! (c_v und ρ sind konstant)

Änderung innerhalb des Kontrollvolumens:
$$\frac{\partial U}{\partial t} = \rho \cdot c_v \cdot dx \cdot dy \cdot 1 \cdot \frac{\partial T}{\partial t}$$

Energiebilanz

$$\frac{\partial U}{\partial t} = (\dot{Q}_{x,ein} - \dot{Q}_{x,aus}) + (\dot{Q}_{y,ein} - \dot{Q}_{y,aus}) + \dot{\Phi}^{"'} \cdot V$$

Definition aller Terme liefert DGL

$$\frac{\partial U}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}^{""}$$

$$\rho \cdot c_v \cdot \frac{\partial T}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}^{""}$$

$$\Rightarrow \frac{\partial T}{\partial t} = \frac{1}{\rho \cdot c_v} \left[\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}^{""} \right]$$

Endgültige 3-D Energieerhaltungsgleichung mit Quellen

Energiebilanz

$$\frac{\partial U}{\partial t} = (\dot{Q}_{x,\text{ein}} - \dot{Q}_{x,\text{aus}}) + (\dot{Q}_{y,\text{ein}} - \dot{Q}_{y,\text{aus}}) + (\dot{Q}_{z,\text{ein}} - \dot{Q}_{z,\text{aus}}) + \dot{\Phi}''' \cdot V$$

Resultierender 3-D Temperaturverlauf

$$\frac{\partial U}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{\Phi}^{""}$$

$$\rho \cdot c_v \cdot \frac{\partial T}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{\Phi}'''$$

$$\Rightarrow \frac{\partial T}{\partial t} = \frac{1}{\rho \cdot c_v} \left[\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{\Phi}''' \right]$$

Übersicht der Differenzialgleichungen aller Fälle

1-D Stationär ohne Quellen

$$0 = -\lambda \cdot A \frac{\partial^2 T}{\partial x^2}$$

2-D Stationär ohne Quellen (Laplace)

$$0 = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

2-D Stationär mit Quellen (Poisson)

$$0 = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}^{""}$$

2-D instationär mit Quellen

$$\Rightarrow \frac{\partial T}{\partial t} = \frac{1}{\rho \cdot c_v} \left[\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \dot{\Phi}^{""} \right]$$

3-D instationär mit Quellen (allg. DGL)

$$\Rightarrow \frac{\partial T}{\partial t} = \frac{1}{\rho \cdot c_v} \left[\lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{\Phi}''' \right]$$

Verständnisfragen

Welcher Temperaturverlauf stellt sich im stationären Zustand für eine homogene, eindimensionale, ebene Wand ohne Wärmequellen ein?

Unter welchen Voraussetzungen wird die Poisson-Gleichung zur Laplace-Gleichung (Wärmeleitung)?

Beispiele aus unserem Alltag

Stationär (Wärme wird durch den Topfboden geleitet)

Instationär (Kaffee kühlt ab)

Quelle

(elektrischer Strom wird in Wärme umgewandelt)

