Section 1.2

Find the limits.

3.
$$\lim_{x \to 2} x(x-1)(x+1)$$

5.
$$\lim_{x \to 3} \frac{x^2 - 2x}{x + 1}$$

7.
$$\lim_{x \to 1^+} \frac{x^4 - 1}{x - 1}$$

9.
$$\lim_{x \to -1} \frac{x^2 + 6x + 5}{x^2 - 3x - 4}$$

4.
$$\lim_{x \to 3} x^3 - 3x^2 + 9x$$

6.
$$\lim_{x \to 0} \frac{6x - 9}{x^3 - 12x + 3}$$

8.
$$\lim_{t \to -2} \frac{t^3 + 8}{t + 2}$$

10.
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^2 + x - 6}$$

Section 1.3

9–32 Find the limits. ■

9.
$$\lim_{x \to +\infty} (1 + 2x - 3x^5)$$

11.
$$\lim_{x \to +\infty} \sqrt{x}$$

13.
$$\lim_{x \to +\infty} \frac{3x+1}{2x-5}$$

15.
$$\lim_{y \to -\infty} \frac{3}{y+4}$$

17.
$$\lim_{x \to -\infty} \frac{x-2}{x^2+2x+1}$$

19.
$$\lim_{x \to +\infty} \frac{7 - 6x^5}{x + 3}$$

21.
$$\lim_{t \to +\infty} \frac{6 - t^3}{7t^3 + 3}$$

10.
$$\lim_{x \to +\infty} (2x^3 - 100x + 5)$$

12.
$$\lim_{x \to -\infty} \sqrt{5-x}$$

14.
$$\lim_{x \to +\infty} \frac{5x^2 - 4x}{2x^2 + 3}$$

16.
$$\lim_{x \to +\infty} \frac{1}{x - 12}$$

18.
$$\lim_{x \to +\infty} \frac{5x^2 + 7}{3x^2 - x}$$

20.
$$\lim_{t \to -\infty} \frac{5 - 2t^3}{t^2 + 1}$$

22.
$$\lim_{x \to -\infty} \frac{x + 4x^3}{1 - x^2 + 7x^3}$$

Section 1.5

11–22 Find values of x, if any, at which f is not continuous.

11.
$$f(x) = 5x^4 - 3x + 7$$
 12. $f(x) = \sqrt[3]{x - 8}$

12.
$$f(x) = \sqrt[3]{x-8}$$

13.
$$f(x) = \frac{x+2}{x^2+4}$$

14.
$$f(x) = \frac{x+2}{x^2-4}$$

15.
$$f(x) = \frac{x}{2x^2 + x}$$

16.
$$f(x) = \frac{2x+1}{4x^2+4x+5}$$

17.
$$f(x) = \frac{3}{x} + \frac{x-1}{x^2-1}$$

18.
$$f(x) = \frac{5}{x} + \frac{2x}{x+4}$$

29–30 Find a value of the constant k, if possible, that will make the function continuous everywhere.

29. (a)
$$f(x) = \begin{cases} 7x - 2, & x \le 1 \\ kx^2, & x > 1 \end{cases}$$

(b)
$$f(x) = \begin{cases} kx^2, & x \le 2\\ 2x + k, & x > 2 \end{cases}$$

30. (a)
$$f(x) = \begin{cases} 9 - x^2, & x \ge -3 \\ k/x^2, & x < -3 \end{cases}$$

(b)
$$f(x) = \begin{cases} 9 - x^2, & x \ge 0 \\ k/x^2, & x < 0 \end{cases}$$
 (optional)

Section 1.6

13.
$$\lim_{\theta \to 0} \frac{\sin 3\theta}{\theta}$$

14.
$$\lim_{h \to 0} \frac{\sin h}{2h}$$

15.
$$\lim_{x \to 0} \frac{x^2 - 3\sin x}{x}$$

20.
$$\lim_{x \to 0} \frac{\sin 6x}{\sin 8x}$$

Chapter 2

Section 2.2

9–14 Use Definition 2.2.1 to find f'(x), and then find the tangent line to the graph of y = f(x) at x = a.

9.
$$f(x) = 2x^2$$
; $a = 1$

9.
$$f(x) = 2x^2$$
; $a = 1$ **10.** $f(x) = 1/x^2$; $a = -1$

11.
$$f(x) = x^3$$
; $a = 0$

11.
$$f(x) = x^3$$
; $a = 0$ **12.** $f(x) = 2x^3 + 1$; $a = -1$

Find the derivatives using the definition of derivative.

15.
$$y = \frac{1}{x}$$

15.
$$y = \frac{1}{x}$$
 16. $y = \frac{1}{x+1}$ **17.** $y = x^2 - x$

17.
$$y = x^2 - x$$