Obradba informacija

Međuispit - 19. travnja 2012.

- 1. (6 bodova) U ovom zadatku razmatramo osnovne pojmove vezane uz vremenski diskretne LTI sustave.
 - a) (1 bod) Definirajte impulsni odziv i prijenosnu funkciju vremenski diskretnog LTI sustava.
 - b) (1 bod) Kada je vremenski diskretan LTI sustav minimalno fazni?
 - c) (1 bod) Kada je vremenski diskretan LTI sustav maksimalno fazni?
 - d) (1 bod) Navedite definiciju BIBO stabilnosti.
 - e) (2 boda) Pokažite da iz definicije BIBO stabilnosti za BIBO stabilne LTI sustave slijedi da suma uzoraka impulsnog odziva vremenski diskretnog LTI sustava mora biti konačna.
- 2. (6 bodova) Razmatramo vremenski diskretan sustav čija prijenosna funkcija je

$$H(z) = \frac{6 - 7z^{-1} - 3z^{-2}}{9 + 6z^{-1} + 5z^{-2}}, \quad |z| > \frac{\sqrt{5}}{3}.$$

- a) (1 bod) Odredite polove i nule zadanog sustava.
- b) (2 boda) Odredite prijenosnu funkciju $H_{\rm mf}(z)$ odgovarajućeg minimalno-faznog sustava koji ima istu amplitudno-frekvencijsku karakteristiku kao i zadani sustav.
- c) (2 boda) Pronađite impulsni odziv $h_{\rm mf}[n]$ minimalno-faznog sustava iz prethodnog podzadatka.
- d) (1 bod) Izračunajte amplitudnu karakteristiku kaskade $H(z)H_{\rm mf}^{-1}(z)$, odnosno pokažite da vrijedi $\left|H(z)H_{\rm mf}^{-1}(z)\right|=1$ za $z=e^{j\omega}$.
- 3. (6 bodova) Neka je $x[n] = \{\underline{6}, 1, 0, 1\}$ signal konačnog trajanja od N=4 uzorka.
 - a) (2 boda) Odredite matricu DFT₄ transformacije. Zatim matričnim množenjem izračunajte DFT₄ transformaciju X[k] signala x[n].
 - b) (2 boda) Odredite matricu IDFT₄ transformacije. Neka je $Y[k] = X^2[k]$. Matričnim množenjem izračunajte IDFT₄ transformaciju y[n] spektra Y[k].
 - c) (1 bod) Koja je veza signala x[n] i y[n]?
 - d) (1 bod) Ako bi htjeli da vrijedi y[n] = x[n] * x[n] za $0 \le n < N$ u koliko točaka moramo računati DFT_N transformaciju X[k] signala x[n]? Objasnite!
- 4. (6 bodova) U ovom zadatku korištenjem teorema o projekciji dizajniramo FIR filtar tipa I četvrtog reda čija prijenosna funkcija u DTFT domeni je oblika $H(\omega) = e^{-2j\omega} \left(a[0] + a[1]\cos(\omega) + a[2]\cos(2\omega)\right)$. Željena amplitudna karakteristika je zadana slikom.
 - a) (2 boda) Napišite izraz za računanje koeficijenata filtra a[0]. Zatim izračunajte vrijednost tog koeficijenta.
 - b) (2 boda) Napišite izraz za računanje koeficijenata filtra a[m], 0 < m. Zatim izračunajte a[1] i a[2].
 - c) (1 bod) Skicirajte amplitudnu karakteristiku projektiranog filtra i usporedite je s zadanom karakteristikom.
 - d) (1 bod) Iz dobivenih koeficijenata a[0], a[1] i a[2] odredite impulsni odziv filtra.

- 5. (6 bodova) U ovom zadatku razmatramo DCT filtarski slog bez decimacije za DCT-II transformaciju signala u N=3 točke.
 - a) (1 bod) Odredite matricu C_3 zadane DCT-II transformacije.
 - b) (1 bod) Nađite inverznu matricu C_3^{-1} .
 - c) (2 boda) Odredite impulsne odzive i prijenosne funkcije svih filtara u analizirajućem dijelu DCT-II₃ sloga. Skicirajte analizirajući dio sloga.
 - d) (2 boda) Odredite impulsne odzive i prijenosne funkcije svih filtara u sitetizirajućem dijelu DCT-II₃ sloga. Skicirajte sitetizirajući dio sloga.