

LAPORAN AKHIR PROGRAM KREATIFITAS MAHASISWA

SISTEM KOMUNIKASI DATA DALAM AIR DENGAN MEDIA SINAR INFRA MERAH TERMODULASI UNTUK APLIKASI PENGIRIMAN TEKS

BIDANG KEGIATAN PKM PENELITIAN

Diusulkan Oleh:

Firdha Rachmadhani 161331045/2016

Shelvia Ayu Putri 161331062/2016

Ines Sastre Umayya 171331018/2017

POLITEKNIK NEGERI BANDUNG

BANDUNG

2018

Pengesahan PKM Penelitian

1. Judul Kegiatan : Sistem Komunikasi Data dalam Air

dengan Media Sinar infra merah Termodulasi Untuk Aplikasi

Pengiriman Teks

2. Bidang Kegiatan : PKM-P

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Firdha Rachmadhani

b. NIM : 161331045 c. Jurusan : Teknik Elektro

d. Univ/Institut/Politeknik : Politeknik Negeri Bandung

e. Alamat Rumah : Komp. Graha Padalarang Indah, Jl.

Safir 1 no 2, kode pos

40553, Padalarang, Bandung Barat

f. No. Tel/ HP : +628112160130

g. Email : firdharachma35@gmail.com

4. Anggota Pelaksana kegiatan : 2 orang

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : DR. Eril Mozef, MS., DEA

b. NIDN : 0004046504

c. Alamat Rumah dan NO. Tel/HP : Jl.Mars Utara 1 No II Rt 02 Rw 02,

Margahayu Raya, Bandung 40286 /

08122269339

6. Biaya Kegiatan Total : Rp7.500.000,-

7. Jangka Waktu Pelaksanaan : 2 Bulan

Menyetujui, Bandung, 18 Desember 2018

Dosen Pendamping Ketua Pelaksana Kegiatan,

(DR. Eril Mozef, MS., DEA) (Firdha Rachmadhani)

NIDN. 0004046504 NIM. 161331045

Ketua UPPM, Mengetahui,

Ketua Jurusan

(Dr. Ir. Ediana Sutjiredjeki, M.Sc) (Malayusfi, BSEE., M.Eng.)

NIP. 1955022819840320001 NIP. 195401011984031001

DAFTAR ISI

LEMBAR PENGESAHAN i
DAFTAR ISIii
BAB I PENDAHULUAN1
1.1 Latar Belakang
1.2 Perumusan Masalah2
1.3 Batasan Masalah2
1.4 Luaran yang Diharapkan
1.5 Manfaat
BAB II TINJAUAN PUSTAKA3
2.1Tinjauan Pustaka
BAB III METODE PENELITIAN4
3.1 Tahapan Penelitian4
3.2 Luaran
3.3 Indikator Capaian yang Terukur Di Setiap Tahapan4
3.4. Teknik Pengumpulan Data dan Analisis Data5
3.4.1 Teknik Pengumpulan Data5
3.4.2 Analisis Data5
3.5 Setup pengukuran6
3.6 Penyimpulan hasil penelitian
BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS8
4.1 Pengujian Rambatan sinar inframerah
BAB V PENUTUP14
4.1 Kesimpulan
4.2 Saran
DAFTAR PUSTAKA17
LAMPIRAN18
Lampiran 1 Biodata Ketua, Anggota, dan Dosen Pembimbing
Lampiran 2 Justifikasi Anggaran Kegiatan
Lampiran 3 Susunan Organisasi Tim Kegiatan dan Pembagian Tugas22
Lampiran 4 Bukti pendukung kegiatan
Lampiran 5 Gambaran Teknologi yang Hendak Dikembangkan 26

BAB I PENDAHULUAN

1.1 Latar Belakang

Komunikasi di dalam air menjadi kebutuhan komunikasi modern yang mendunia. Seperti komunikasi antar kapal selam, satelit dengan kapal selam, kapal biasa dengan kapal selam (Vikrant,dkk.,2012,h.1). Komunikasi dalam air memiliki peran penting dalam pengaplikasian eksplorasi minyak dan gas, pengawasan pada lingkungan, navigasi, mengontrol polusi di laut (Camila, dkk., 2016, h.1). Selain itu dapat digunakan untuk mendeteksi dan peringatan awal bencana di dalam laut serta untuk kepentingan keamanan dan pertahanan nasional (Xi, dkk., 2015, h.1). Sistem komunikasi ini juga diminati oleh industri dan komunitas yang bergerak pada bidang ilmu pengetahuan, eksplorasi lepas pantai, dapat pula diaplikasikan untuk mengamati perubahan iklim, dan penelitian pada bidang oseanografi (Hemani dan George, 2016, h.1).

Ada beberapa media komunikasi di dalam air yaitu Radio Frekuensi (RF) dan cahaya. Radio frekuensi memiliki rentang frekuensi tinggi yaitu dalam MHz hingga Ghz (Goh, 2009, h.1). Namun radio frekuensi (gelombang radio) memiliki redaman yang sangat besar di dalam air (Anguita, 2009, h.1). Selanjutnya adalah cahaya infra merah. Dibandingkan dengan Radio Frekuensi (RF) transmisi infra merah tidak dikendalikan oleh peraturan komunikasi federal. Proyek ini juga dapat membangun privasi untuk mengirim dan menerima data (Mohamad, 2013, h.65). Namun jarak transmisinya pendek. Berdasarkan sumber yang telah kami dapatkan, jarak transmisi komunikasi di dalam air menggunakan media sinar infra merah adalah kurang lebih 3 meter (Menying, dkk., 2012, h.1).

Berdasarkan uraian paragraf sebelumnya, kami memutuskan untuk memilih media komunikasi cahaya atau sinar infra merah di dalam air. Adapun teknik modulasi yang kami pilih adalah ASK. ASK (Amplitudo Shift Keying) merupakan metode pemodulasian berbasis amplitudo yang merepresentasikan kode bit sebagai gelombang amplitudo tertentu. Metode yang dilakukan yaitu dengan menjaga suatu gelombang agar berada pada frekuensi yang konstan, tetapi memiliki amplitudo yang bervariasi guna mewakili data yang akan dikirimkan. Amplitudo tersebut harus terjaga minimal sampai dengan satu siklus gelombang terpenuhi, sehingga dapat diterjemahkan dengan benar oleh penerima (Mahmuzi, 2010, h.1). Berdasarkan sumber yang telah kami dapat, sistem komunikasi dengan media transmisi infra merah dengan teknik modulasi ASK, diterapkan pada frekuensi ±40 KHz dengan jarak transmisi dibawah 3m (Menying, dkk., 2012, h.1). Kami akan mensimulasikan baik software maupun hardware dalam penelitian yang berjudul "Sistem Komunikasi Data dalam Air dengan Media Sinar infra merah Termodulasi Untuk Aplikasi Pengiriman Teks" sesuai dengan teknik atau metode yang telah kami pilih.

1.2 Luaran yang Diharapkan

Target luaran yang diharapkan dalam program ini :

- a. Metode / teknik modulasi ASK untuk komunikasi dalam air
- b. Hasil simulasi software dan hardware
- c. Publikasi dalam prosiding seminar nasional

1.3 Manfaat

Pembuktian teori dan parameter yang diterapkan pada komunikasi data dalam air menggunakan media sinar infra merah dengan teknik modulasi ASK.

BAB II TINJAUAN PUSTAKA

2.1 Tinjauan Pustaka

Permasalahan pada komunikasi didalam air adalah *distance error, time error, speed error* (Menying, dkk., 2011, h.1). Hal ini disebabkan karena komunikasi di air dan di udara sangatlah berbeda. Komunikasi di dalam air sangatlah dipengaruhi oleh konsentrasi air, tekanan, suhu, kuantitas cahaya, angin, dan gelombang air (Camila, dkk., 2016, h.1).

Berdasarkan informasi tersebut kami akan melakukan simulasi *software* dan *hardware* untuk membuktikan metode yang akan diterapkan dalam komunikasi suara menggunakan media sinar infra merah. Adapun *hardware* yang akan digunakan berbentuk silinder yang panjangnya 2 hingga 3 meter yang berisi air. Di ujung – ujung *hardware* tersebut terdapat rangkaian pengirim dan penerima. Lalu uji coba akan dilakukan di ruangan laboratorium dengan mensimulasikan keadaan danau atau laut. Keadaan tersebut akan menjadi acuan untuk metode yang akan diterapkan pada pengirim dan penerima. Targetnya, pengirim dapat mengirim suara yang dapat diterima oleh penerima. Pada uji coba akan ditemukan gangguan cahaya sekeliling.

Sinar matahari memancarkan radiasi gelombang elektromagnetik (Randy, 2007, para.7). Pada komunikasi suara dengan media sinar infra merah, penerima menerima sinyal cahaya inframerah dari pengirim. Dari teori sebelumnya yang telah dibahas dapat disimpulkan, jika penerima bekerja dibawah sinar matahari yang juga memancarkan gelombang sinar infra merah (karena infra merah termasuk kedalam spektrum elektromagnetik), maka penerima tersebut juga menerima sinar inframerah dari cahaya matahari. Hal tersebut akan menyebabkan adanya kesalahan saat penerima bekerja untuk menerima sinyal inframerah. Karena penerima menerima banyak sumber cahaya, yaitu cahaya dari pengirim dan dari cahaya tampak (cahaya sekeliling). Dengan demikian, komunikasi antara pengirim dan penerima akan terganggu.

Untuk itu perlu dilakukan uji coba untuk mengetahui karakteristik rambatan sinar inframerah di dalam air pada 3 keadaan yang berbeda berdasarkan intensitas cahaya (pada satuan lux) yaitu 0 lux (gelap), \pm 100 lux (di dalam ruangan), \pm 10000 lux (dibawah sinar matahari). Untuk mengetahui intensitas cahaya lingkungan adalah dengan aplikasi luxmeter pada *smartphone*. Pada saat komunikasi terjadi antara pengirim dan penerima di ruangan gelap yaitu 0 lux (tidak ada cahaya dari luar ruangan masuk) penerima menerima sinar infra merah dengan optimal. Saat komunikasi pengirim dan penerima dilakukan pada \pm 100 lux (di dalam ruangan) dan \pm 10000 lux (dibawah sinar matahari) komunikasi tidak akan seoptimal seperti di ruangan gelap, karena terdapat cahaya tampak di lingkungan sekeliling yang menghambat kinerja penerima.

Selain itu yang perlu di uji bagaimana perambatan sinar infra merah di dalam air dengan beberapa macam jenis air. Karena semakin tinggi tingkat kekeruhan air dan konsentrasi air laut, semakin menghambat komunikasi antara pengirim dan penerima. Karena setiap jenis air memiliki sifat yang berbeda.

Solusi dari permasalahan sistem komunikasi data di dalam air dengan media sinar infra merah adalah dengan diberinya suatu rangkaian penguat. Rangkaian penguat tersebut di maksudkan untuk memberi daya maksimum kepada beban. Input dari sistem penguat berupa sinyal kecil yang kemudian dikuatkan oleh beberapa penguat tegangan dan akhirnya diumpankan ke penguat daya untuk memperoleh daya yang besar (Herman, 2008, h.99). Rangkaian penguat ini menjadi solusi terhadap gangguan cahaya tampak / cahaya sekeliling pada saat simulasi. Dengan demikian, komunikasi antara pengirim dan penerima di dalam air dapat dilakukan tanpa adanya gangguan dari cahaya tampak dan jarak transmisi akan lebih jauh dibandingkan tanpa menggunakan rangkaian penguat.

Berdasarkan referensi yang telah kami dapat sistem komunikasi cahaya dengan menggunakan sinar infra merah dapat dilakukan pada jarak transmisi \pm 3 meter (Menying, dkk., 2012, h.1).

BAB III METODE PENELITIAN

3.1 Tahapan Penelitian yang akan dilaksanakan:

a. Menguji karakteristik air yaitu air jernih, air garam dan air keruh terhadap cahaya infra merah. Berdasarkan informasi yang kami dapatkan, redaman air dapat dihitung dengan rumus:

$$\begin{split} I_z &= I_0 \ e^{-kz} \\ ln \ I_z &= ln \ I_0 - kz \end{split}$$

Keterangan: e = 2,7183

 I_z = Intensitas cahaya depth z

I_o = Intensitas cahaya di bawah permukaan laut atau

danau

- b. Mencari hubungan antara daya pancar cahaya (intensitas cahaya) infra merah dan jarak transmisi dalam air.
- c. Menginventarisir cahaya cahaya pengganggu dalam air.
- d. Menentukan teknik pengolahan cahaya yang tepat untuk mengatasi gangguan cahaya pengganggu dalam air tersebut, misalnya teknik modulasi dalam protokol.
- e. Membuat komunikasi data satu arah.
- f. Melakukan uji coba kinerja sistem.

Berikut teknik pengukuran yang diuji di dalam pipa akrilik diameter ± 7 cm dengan panjang 2 meter berisi air:

1. Pengukuran dengan parameter konstan

Gambar 3.2.1 Pengukuran dengan parameter konstan

Pada sisi led infra merah di pasang power supply 12 V. Sedangkan pada sisi fototransistor (sensor cahaya) di pasang Multimeter digital. Awalnya LED IR dan fototransistor di posisikan pada jarak 0 cm. Kemudian di jauhkan perlahan – lahan

hingga 200 cm. Pengambilan data dilakukan setiap 10 cm dan dicatat besar redaman air yang diukur dengan multimeter digital.

Gambar 3.2.2 Pengukuran dengan Parameter Dinamis

2. Pengukuran dengan Parameter Dinamis

Pada sisi led infra merah, di pasang signal generator. Sedangkan pada sisi fototransistor di pasang osiloskop/spektrum analyzer. Awalnya LED IR dan fototransistor di posisikan pada jarak 0 cm. Kemudian di jauhkan perlahan – lahan hingga 200 cm. Pengambilan data dilakukan setiap 10 cm dan dilihat bentuk gelombangnya di osiloskop. Bentuk gelombang tersebut merupakan gelombang sinar infra merah yang diterima oleh sensor cahaya (fototransistor) yang dikirim oleh LED IR.

Pengukuran dengan parameter konstan dan dinamis ini dilakukan pada air jernih, air garam dan air keruh, dengan intensitas cahaya (lux) yang berbeda yaitu 0 lux (gelap), \pm 100 lux (cahaya ruangan) dan \pm 10.000 lux (dibawah sinar matahari). Hasil dari pengukuran tersebut bertujuan untuk mendapatkan besar intensitas cahaya yang dikirim dan diterima terhadap jarak.

3.3 Indikator capaian yang terukur di setiap tahapan:

- a. Mendapatkan kurva redaman cahaya dalam air. Kurva yang diharapkan tidak berbentuk kurva linier melainkan kurva ekponensial
- b. Mendapatkan grafik hubungan antara daya pancar cahaya dan jarak transmisi dalam air

Gambar 3.3 Kurva intensitas cahaya terhadap jarak (Scott, 2019)

Gambar di atas merupakan grafik hubungan antara daya pancar cahaya (intensitas cahaya) terhadap jarak (cm). Grafik ini menjadi acuan untuk didapatkan hasil pengukuran dari hubungan daya pancar terhadap jarak. Grafik tersebut tidak bersifat linier melainkan eksponensial. Dari grafik tersebut dapat di analisis bahwa semakin jauh jarak transmisi, semakin kecil intensitas cahaya yang diterima.

- c. Mendapatkan daftar dari cahaya pengganggu dalam air
- d. Menggunakan teknik modulasi ASK pada komunikasi data dalam air.
- e. Pengiriman dan penerimaan informasi data berhasil dilakukan pada jarak 2 meter

3.4 Teknik Pengumpulan Data dan Analisis Data

3.4.1 Teknik pengumpulan data

Dalam hal ini terdapat du acara yaitu:

a. Analog

Mengumpulkan data kuat sinyal yang diterima di berbagai kondisi lingkungan air, lalu mengamati apa yang mempengaruhi kuat sinyal sinar infra merah yang dikirim.

b. Digital

Menerima data – data berbagai kode ASCII yang dikirimkan, lalu mengamati konsistensi huruf – huruf yang diterima

3.4.2 Analisis data

- Redaman cahaya dalam air dapat di analisis dari kurva yang telah di dapat.
- b. Dalam komunikasi data perlu diuji daya pancar cahaya dan jarak transmisi yang dapat dilihat hubungannya dari grafik.
- c. Cahaya cahaya penggangu perlu di teliti karena dapat menghambat komunikasi data.
- d. modulasi dan protokol yang tepat perlu diketahui untuk mengatasi gangguan cahaya.
- e. Pembuatan komunikasi data satu arah merupakan tahap awal untuk pembuatan komunikasi data dua arah yang kemudian perlu di dapat pemancar dan penerima yang memungkinkan dalam komunikasi data dua arah ini.
- f. Mendapatkan kemasan yang kedap air perlu diuji materialnya yang tepat dan tahan dalam kedalaman air tertentu serta mampu mengatasi gangguan gangguan dari luar yang mungkin terjadi.
- g. Untuk keberhasilan mengirim dan menerima teks pada jarak tertentu, perlu perlu dilakukan ujicoba kinerja sistem berdasarkan parameter parameter yang telah ditentukan.

3.5 Penyimpulan Hasil Penelitian

Keberhasilan penelitian ini dipengaruhi hal – hal berikut:

- a. Redaman cahaya di dalam air
- b. Daya pancar cahaya
- c. jarak transmisi data
- d. modulasi ASK
- e. Komunikasi data dapat dilakukan dalam air dengan jarak 2 meter

BAB IV HASIL YANG DICAPAI DAN POTENSI KHUSUS

Spesifikasi Led inframerah illuminator:

Tegangan = 12 Volt menggunakan baterai

Arus = 138 mA

Daya = 1,656 VA

4.1 Pengujian Rambatan sinar inframerah di udara, air jernih, air garam (laut), dan air keruh

Parameter:

- 1. Pengujian di cahaya ruang gelap (tanpa cahaya dengan intensitas cahaya 0 lux)
- 2. Pengujian di cahaya ruangan dengan intensitas cahaya 75 lux
- Pengujian dibawah sinar matahari dengan intensitas cahaya
 65000 lux

1. Cahaya ruang indoor = 0 lux

Tabel 4.1 *Hasil pengukuran hambatan cahaya ruang indoor* = 0 *lux (tabung ditutup kain hitam)*

Jarak	Udara	Air Jernih	Air Garam	Air Keruh
(cm)	$(K\Omega)$	$(K\Omega)$	(ΚΩ)	(ΚΩ)
0	0.065	0,255	0,3	3
10	0.164	0,42	0,6	75
20	0.254	0,53	0,7	124
30	0.358	0,71	0,75	10000
40	0.405	0,88	0,88	16000
50	0.500	1,08	1,09	22500
60	0.568	1,36	3,5	25600
70	0.665	2,07	4,1	35100
80	0.766	5,47	5,3	38700
90	0.814	6,97	6,6	39890

100	1.022	10,85	9,8	40900
110	1.059	37,5	30	∞
120	1.31	51,3	300	∞
130	1.419	54,4	420	∞
140	1.689	70,6	500	∞
150	3.6	84,9	600	∞
160	4.16	149,1	700	∞
170	4.18	258,4	900	∞
180	4.278	476	3600	∞
190	4.35	530	3900	∞
200	4.52	553	4400	∞

Analisis:

- 1.Cahaya infra merah dapat merambat di darat dengan baik yang ditunjukkan dengan nilai yang lebih kecil (tidak ada redaman di bandingkan dengan pengukuran yang dilakukan di dalam air).
- 2. Air memiliki redaman sehingga hambatan sensor cahaya yang di uji di dalam air lebih besar dibandingkan dengan pengujian di darat.

- 3. Dibandingkan dengan ketiga jenis air tersebut cahaya inframerah dapat merambat lebih baik di air jernih. air jernih lebih baik dalam merambatkan cahaya dibandingkan air garam dan air tanah. air tanah yang paling buruk merambatkan cahaya dibandingkan air garam dan air jernih. Semakin keruh air, maka semakin menghambat sensor cahaya dalam menerima sinar inframerah.
- 4. Terhambatnya kinerja fototransistor(sensor cahaya) memberi pengaruh pada besarnya hambatan terhadap jarak. Semakin jauh jaraknya, semakin besar hambatan fototransistor tersebut. Hal ini menunjukan fototransistor masih dapat menerima cahaya led inframerah illuminator dangan baik.
- 5. kurva yang didapat tidaklah linear dan eksponensial.

2. Cahaya ruang indoor = 75 lux

Tabel 4.1 *Hasil pengukuran hambatan cahaya ruang indoor = 75 lux*

Jarak	Udara	Air Jernih	Air Garam	Air Keruh
(cm)	$(K\Omega)$	$(K\Omega)$	(ΚΩ)	(ΚΩ)
0	1.008	1.20	1.42	1.92
10	1.518	1.37	1.57	3.48
20	0.977	1.48	1.67	5.69
30	0.918	1.26	1.48	5.92
40	0.897	1.3	1.48	5.54
50	0.898	1.34	1.48	5.22
60	0.923	1.37	1.49	5.48
70	0.935	1.24	1.50	5.36
80	0.962	1.25	1.49	5.37
90	0.926	1.18	1.49	5.26
100	0.945	1.25	1.57	5.32
110	0.949	1.56	1.77	6.58
120	0.932	1.74	1.91	6.22
130	0.927	1.63	1.85	5.71
140	0.942	1.62	1.83	5.41
150	0.936	1.58	1.79	5.30
160	0.980	1.54	1.77	5.00
170	0.964	1.64	1.77	5.88

180	0.972	1.76	1.76	5.53
190	0.961	1.43	1.63	4.58

Analisis:

Jika dibandingkan dengan intensitas cahaya 0 lux, hambatan fototransistor terhadap jarak tertentu hasilnya tidaklah stabil dan nilai hambatannya cenderung berdekatan. Artinya, fototransistor sudah tidak dapat lagi menerima sinar inframerah dari led ir illuminator. Hal ini di karenakan adanya cahaya penggangu (cahaya tampak/cahaya lingkungan selain cahaya infra merah). Fototransistor dalam hal ini tidak hanya menerima sinar inframerah, namun juga dipengaruhi oleh cahaya luar yang lebih besar intesitasnya dibandingkan cahaya inframerah.

3. Cahaya outdoor = 65.000 lux (Sinar Matahari langsung)

Tabel 4.1 $Hasil\ pengukuran\ hambatan\ cahaya\ outdoor = 65.000\ lux$

Jarak	Udara	Air Jernih	Air Garam	Air Keruh
(cm)	$(K\Omega)$	$(K\Omega)$	(ΚΩ)	(ΚΩ)
0	0.254	0.23	1.26	0.428
10	0.225	0.34	0.34	0.398
20	0.218	0.33	0.35	0.293
30	0.217	0.325	0.348	0.296
40	0.216	0.324	0.345	0.295

50	0.220	0.316	0.344	0.294
60	0.224	0.315	0.343	0.296
70	0.222	0.314	0.342	0.297
80	0.227	0.315	0.341	0.306
90	0.221	0.313	0.34	0.301
100	0.215	0.312	0.331	0.300
110	0.207	0.317	0.342	0.295
120	0.203	0.296	0.309	0.305
130	0.202	0.292	0.305	0.308
140	0.200	0.316	0.308	0.313
150	0.199	0.3	0.309	0.321
160	0.196	0.326	0.311	0.330
170	0.195	0.306	0.304	0.340
180	0.203	0.305	0.313	0.367
190	0.245	0.301	0.322	0.414
200	0.230	0.33	0.328	0.437

Analisis:

Jika dibandingkan dengan intensitas cahaya 75 lux, hambatan fototransistor terhadap jarak yang diperoleh hasilnya lebih kecil dan tidak stabil ,nilai

hambatannya cenderung berdekatan.hal ini menunjukan bahwa fototransistor sudah tidak dapat lagi menerima sinar inframerah dari led ir illuminator.Penyebabnya adalah adanya cahaya penggangu (cahaya tampak/cahaya lingkungan selain cahaya infra merah). Adapun dari hasil pengukuran, nilai hambatan yang diukur di udara maupun di dalam air jernih, air garam, dan air tanah, tidak memiliki perbedaan yang cukup besar.

4.2 Pengujian sinar inframerah di udara, air jernih, air garam(laut), dan air keruh dengan 3 kondisi yaitu 0 lux, 150 lux, dan 10.000 lux menggunakan USB Osiloskop

1) Air Garam

2) Air Jernih

3) Air Keruh

4) Darat

Tabel – Tabel untuk mengetahui intensitas cahaya berdasarkan hasil output sinyal yang diterima

0 lux

	Intensitas	Cahaya yang diterima s	aat 0 lux (u	ıdara)
Jarak (cm)	, ,	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)
0	1656	1794	0,138	247,572
10	1656	2512	0,138	346,656
20	1656	2873	0,138	396,474
30	1656	2979	0,138	411,102
40	1656	2311	0,138	318,918
50	1656	2259	0,138	311,742
60	1656	2264	0,138	312,432
70	1656	2488	0,138	343,344
80	1656	3220	0,138	444,36
90	1656	3555	0,138	490,59
100	1656	3250	0,138	448,5
110	1656	3203	0,138	442,014
120	1656	3438	0,138	474,444

130	1656	5238	0,138	722,844
140	1656	5595	0,138	772,11
150	1656	6550	0,138	903,9
160	1656	6605	0,138	911,49
170	1656	6728	0,138	928,464
180	1656	6018	0,138	830,484
190	1656	6302	0,138	869,676
200	1656	6475	0,138	893,55

	Intensitas	Cahaya yang di	jernih)	
Jarak (cm)	Cahaya yang dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)
0	1656	3529	0,138	487,002
10	1656	3524	0,138	486,312
20	1656	3527	0,138	486,726
30	1656	3527	0,138	486,726
40	1656	3529	0,138	487,002
50	1656	3530	0,138	487,14
60	1656	3530	0,138	487,14
70	1656	3529	0,138	487,002
80	1656	3554	0,138	490,452
90	1656	3571	0,138	492,798
100	1656	3580	0,138	494,04
110	1656	3527	0,138	486,726
120	1656	3529	0,138	487,002

130	1656	3746	0,138	516,948
140	1656	3534	0,138	487,692
150	1656	3530	0,138	487,14
160	1656	3530	0,138	487,14
170	1656	3530	0,138	487,14
180	1656	3539	0,138	488,382
190	1656	3554	0,138	490,452
200	1656	3561	0,138	491,418

	Intensitas	Cahaya yang di	terima saat 0 lux (air	keruh)
Jarak (cm)	Cahaya yang dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)
0	1656	4075	0,138	562,35
10	1656	4205	0,138	580,29
20	1656	4243	0,138	585,534
30	1656	4257	0,138	587,466
40	1656	4279	0,138	590,502
50	1656	4271	0,138	589,398
60	1656	4493	0,138	620,034
70	1656	4345	0,138	599,61
80	1656	4427	0,138	610,926
90	1656	4411	0,138	608,718
100	1656	4448	0,138	613,824
110	1656	4493	0,138	620,034
120	1656	4504	0,138	621,552
130	1656	4482	0,138	618,516
140	1656	4552	0,138	628,176
150	1656	4537	0,138	626,106
160	1656	4514	0,138	622,932
170	1656	4543	0,138	626,934
180	1656	4481	0,138	618,378
190	1656	4461	0,138	615,618

200 1656 4457 0,138 61

_					
	Intensitas	Cahaya yang diterima saat 0 lux (air garam)			
Jarak yang (cm) dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)		Intensitas Cahaya yang diterima (Watt atau VA)	
0	1656	2423		0,138	334,374
10	1656	3493		0,138	482,034
20	1656	3504		0,138	483,552
30	1656	3505		0,138	483,69
40	1656	3514		0,138	484,932
50	1656	3518		0,138	485,484
60	1656	3521		0,138	485,898
70	1656	3521		0,138	485,898
80	1656	3525		0,138	486,45
90	1656	3529		0,138	487,002
100	1656	3529		0,138	487,002
110	1656	3529		0,138	487,002
120	1656	3529		0,138	487,002
130	1656	3529		0,138	487,002
140	1656	3529		0,138	487,002
150	1656	3529		0,138	487,002
160	1656	3529		0,138	487,002
170	1656	3534		0,138	487,692
180	1656	3559		0,138	491,142
190	1656	3548		0,138	489,624
200	1656	3563		0,138	491,694

Grafik intensitas cahaya yang diterima terhadap jarak pada keadaan 0 lux

150 LUX

	Intensitas	Cahaya yang diterima saat 150 lux (udara)			
Jarak (cm)	Cahaya yang dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)	
0	1656	580,65	0,138	80,1297	
10	1656	494,49	0,138	68,23962	
20	1656	468,02	0,138	64,58676	
30	1656	284,36	0,138	39,24168	
40	1656	319,21	0,138	44,05098	

50	1656	315,18	0,138	43,49484
60	1656	272,61	0,138	37,62018
70	1656	196,07	0,138	27,05766
80	1656	232,85	0,138	32,1333
90	1656	182	0,138	25,116
100	1656	123	0,138	16,974
110	1656	124	0,138	17,112
120	1656	134	0,138	18,492
130	1656	144	0,138	19,872
140	1656	144	0,138	19,872
150	1656	123	0,138	16,974
160	1656	78	0,138	10,764
170	1656	62	0,138	8,556
180	1656	106	0,138	14,628
190	1656	13,07	0,138	1,80366
200	1656	13,07	0,138	1,80366

	Intensitas	Cahaya yang diterima saat 150 lux (air jernih)			
Jarak yang (cm) dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)		Intensitas Cahaya yang diterima (Watt atau VA)	
0	1656	4460		0,138	615,48
10	1656	2925		0,138	403,65
20	1656	4792		0,138	661,296
30	1656	5688		0,138	784,944
40	1656	6207		0,138	856,566
50	1656	6782		0,138	935,916
60	1656	6816		0,138	940,608
70	1656	6798		0,138	938,124
80	1656	6811		0,138	939,918

90	1656	6777	0,138	935,226
100	1656	6775	0,138	934,95
110	1656	6746	0,138	930,948
120	1656	6754	0,138	932,052
130	1656	6713	0,138	926,394
140	1656	6789	0,138	936,882
150	1656	6757	0,138	932,466
160	1656	6786	0,138	936,468
170	1656	6816	0,138	940,608
180	1656	6780	0,138	935,64
190	1656	6743	0,138	930,534
200	1656	6854	0,138	945,852

Intensitas		Cahaya yang diterima saat 150 lux (air keruh)			
Jarak yang (cm) dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)		
0	1656	2709	0,138	373,842	
10	1656	3350	0,138	462,3	
20	1656	2630	0,138	362,94	
30	1656	2639	0,138	364,182	
40	1656	2832	0,138	390,816	
50	1656	2712	0,138	374,256	
60	1656	2782	0,138	383,916	
70	1656	2864	0,138	395,232	
80	1656	2893	0,138	399,234	
90	1656	3470	0,138	478,86	
100	1656	4004	0,138	552,552	
110	1656	3959	0,138	546,342	
120	1656	4104	0,138	566,352	

130	1656	4120	0,138	568,56
140	1656	3987	0,138	550,206
150	1656	4051	0,138	559,038
160	1656	4406	0,138	608,028
170	1656	4391	0,138	605,958
180	1656	4414	0,138	609,132
190	1656	4110	0,138	567,18
200	1656	4143	0,138	571,734

	Intensitas	Cahaya yang diterima saat	150 lux (a	ir garam)
Jarak yang (cm) dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)	
0	1656	5635	0,138	777,63
10	1656	5672	0,138	782,736
20	1656	6023	0,138	831,174
30	1656	6012	0,138	829,656
40	1656	5964	0,138	823,032
50	1656	6010	0,138	829,38
60	1656	6006	0,138	828,828
70	1656	6012	0,138	829,656
80	1656	6030	0,138	832,14
90	1656	6034	0,138	832,692
100	1656	6043	0,138	833,934
110	1656	6037	0,138	833,106
120	1656	6057	0,138	835,866
130	1656	5966	0,138	823,308
140	1656	6036	0,138	832,968
150	1656	6026	0,138	831,588
160	1656	6046	0,138	834,348
170	1656	6000	0,138	828
180	1656	6016	0,138	830,208
190	1656	6002	0,138	828,276
200	1656	6079	0,138	838,902

10000 LUX

	Intensitas	Cahaya yang diterima saat 10000 lux (udara)			
Jarak (cm)	Cahaya yang dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)	
0	1656	1705	0,138	235,29	
10	1656	1527	0,138	210,726	
20	1656	1021	0,138	140,898	
30	1656	742	0,138	102,396	
40	1656	696	0,138	96,048	
50	1656	557	0,138	76,866	
60	1656	417	0,138	57,546	
70	1656	278	0,138	38,364	
80	1656	232	0,138	32,016	
90	1656	82	0,138	11,316	
100	1656	41	0,138	5,658	
110	1656	41	0,138	5,658	
120	1656	36	0,138	4,968	
130	1656	17	0,138	2,346	
140	1656	13	0,138	1,794	

150	1656	13	0,138	1,794
160	1656	13	0,138	1,794
170	1656	13	0,138	1,794
180	1656	13	0,138	1,794
190	1656	13	0,138	1,794
200	1656	10	0,138	1,38

	Intensitas	Cahaya yang diterima saat :	10000 lux (air jernih)
Jarak (cm)	Cahaya Jarak yang	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)
0	1656	1207	0,138	166,566
10	1656	1391	0,138	191,958
20	1656	1293	0,138	178,434
30	1656	1207	0,138	166,566
40	1656	1207	0,138	166,566
50	1656	1254	0,138	173,052
60	1656	650	0,138	89,7
70	1656	650	0,138	89,7
80	1656	557	0,138	76,866
90	1656	510	0,138	70,38
100	1656	1561	0,138	215,418
110	1656	5487	0,138	757,206
120	1656	5811	0,138	801,918
130	1656	2065	0,138	284,97
140	1656	2079	0,138	286,902
150	1656	2161	0,138	298,218
160	1656	2221	0,138	306,498
170	1656	2355	0,138	324,99
180	1656	2442	0,138	336,996
190	1656	2414	0,138	333,132
200	1656	3186	0,138	439,668

	Intensitas	Cahaya yang diterima	a saat 10000 lux (air garam)
Jarak (cm)	Cahaya ak yang	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)
0	1656	826	0,138	113,988
10	1656	819	0,138	113,022
20	1656	791	0,138	109,158
30	1656	809	0,138	111,642
40	1656	816	0,138	112,608
50	1656	809	0,138	111,642
60	1656	889	0,138	122,682
70	1656	761	0,138	105,018
80	1656	781	0,138	107,778
90	1656	739	0,138	101,982
100	1656	748	0,138	103,224
110	1656	719	0,138	99,222
120	1656	1114	0,138	153,732
130	1656	1114	0,138	153,732
140	1656	1254	0,138	173,052
150	1656	1023	0,138	141,174
160	1656	1171	0,138	161,598
170	1656	1226	0,138	169,188
180	1656	1199	0,138	165,462
190	1656	1367	0,138	188,646
200	1656	1366	0,138	188,508

Intensitas		Cahaya yang diterima saat 10000 lux (air keruh)			
Jarak (cm)	Cahaya yang dikirim (Watt atau VA)	Vpp (mili volt)	Arus (A)	Intensitas Cahaya yang diterima (Watt atau VA)	
0	1656	817	0,138	112,746	
10	1656	1994	0,138	275,172	
20	1656	2427	0,138	334,926	

30	1656	1846	0,138	254,748
40	1656	2407	0,138	332,166
50	1656	2271	0,138	313,398
60	1656	2136	0,138	294,768
70	1656	2444	0,138	337,272
80	1656	2136	0,138	294,768
90	1656	2364	0,138	326,232
100	1656	1854	0,138	255,852
110	1656	1524	0,138	210,312
120	1656	1541	0,138	212,658
130	1656	1463	0,138	201,894
140	1656	1424	0,138	196,512
150	1656	1526	0,138	210,588
160	1656	1593	0,138	219,834
170	1656	1644	0,138	226,872
180	1656	1730	0,138	238,74
190	1656	1812	0,138	250,056
200	1656	1948	0,138	268,824

4.3 Pengujian Rambatan sinar inframerah di udara, air jernih, air garam(laut), dan air keruh dengan menggunakan adaptor

1. Cahaya indoor = 0 lux

Jarak (cm)	Darat (kΩ)	Air Jernih (kΩ)	Air Garam ($k\Omega$)	Air Keruh (kΩ)
0	26.99	44	56	372
10	58.8	67	78	500
20	109.6	163	198	768
30	198.5	278	292	896
40	372	393	396	1090
50	453	491	547	1100
60	412	534	643	1241
70	520	573	1532	1445
80	573	659	1668	2198
90	601	665	1731	2573
100	620	678	1843	3704
110	697	694	1926	5731
120	712	783	2068	7546
130	733	798	2134	8144
140	785	824	2431	9172
150	810	868	2627	9546
160	823	896	3152	9832
170	846	932	3280	10134
180	862	949	4829	10553
190	880	1524	4913	10972
200	924	2618	5416	11271

2. Cahaya outdoor = 150 lux

Jarak (cm)	Darat (kΩ)	Air Jernih (kΩ)	Air Garam ($k\Omega$)	Air Keruh (kΩ)
0	400	700	1150	1500
10	600	820	1200	1830
20	625	840	1300	1900
30	700	870	1350	1950
40	714	930	1400	1990
50	785	980	1450	2000
60	800	1050	1460	2100
70	820	1160	1480	2300
80	833	1270	1500	2560
90	889	1330	1550	2700
100	900	1372	1600	2800
110	916	1410	1650	2830
120	936	1440	1700	2890
130	944	1490	1760	2940
140	951	1520	1800	2990
150	1000	1570	1900	3320
160	1100	1630	1980	4370
170	1471	1680	2500	5600

180	1601	1700	3000	6300
190	1800	2100	3250	7200
200	2300	3000	4100	9000

3. Cahaya outdoor = 10.000 lux (dengan sinar matahari langsung)

Jarak (cm)	Darat (kΩ)	Air Jernih (kΩ)	Air Garam (kΩ)	Air Keruh (kΩ)
0	240	580	780	170
10	280	640	870	180
20	760	760	960	500
30	970	840	1000	600
40	1200	790	1005	700
50	1380	857	1017	900
60	1420	871	1027	1200
70	1720	981	1045	1700
80	1990	1001	1057	2400
90	1802	1100	1066	3100
100	2001	1200	1069	20000
110	2100	1305	1072	22000
120	2175	1475	1075	25000
130	2190	1554	1080	27000

140	2202	1661	1081	800
150	2310	1781	1085	500
160	2425	1811	1072	490
170	2722	1971	1088	1000
180	2800	2057	1091	700
190	2857	2110	1099	730
200	2977	2575	2017	1000

BAB V PENUTUP

5.1 Kesimpulan

- 1. Inframerah dapat merambat dengan baik di udara di bandingkan di dalam air, karena air memiliki redaman.
- 2. Dibandingkan dengan ketiga jenis air tersebut cahaya inframerah dapat merambat lebih baik di air jernih. air jernih lebih baik dalam merambatkan cahaya dibandingkan air garam dan air keruh. air keruh yang paling buruk merambatkan cahaya dibandingkan air garam dan air jernih. Semakin keruh air, maka semakin menghambat sensor cahaya dalam menerima sinar inframerah. Hal ini dianalisis pada intensitas cahaya 0 lux.
- 3. Inframerah merupakan cahaya yang tidak tampak, sehingga fototransistor akan menerima cahaya lingkungan (cahaya pengganggu) yang lebih besar intesitasnya dibandingkan cahaya inframerah. Hal ini dibuktikan pada intesitas cahaya 75 lux (cahara ruangan) dan 65000 lux (dibawah sinar matahari langsung)
- 4. Fototransistor(sensor cahaya) dapat bekerja dengan baik saat intesitas cahaya ruangan 0 lux (saat gelap tak ada cahaya luar masuk).
- 5. Saat keadaan gelap (intensitas cahaya 0 lux), fototransistor fokus menerima cahaya inframerah. Dari hasil pengukuran membuktikan bahwa nilai hambatan fototransistor semakin tinggi jika jarak yang diberkan dalam menerima sinar inframerah semakin jauh. kurva yang didapat tidaklah linear dan eksponensial.
- 6. Hambatan fototransistor terhadap jarak yang diperoleh hasilnya tidaklah stabil dan perubahan nilai hambatan tidak signifikan jika dilakukan pengukurannya pada cahaya ruang (75 lux) dan dibawah sinar matahari (65000 lux). Hal ini menunjukan bahwa fototransistor tak dapat lagi menerima sinar infra merah dari led ir illuminator.

5.2 Saran

- 1. Perlu melakukan pengujian ulang pada kondisi intesitas cahaya dalam ruangan (75 lux). Karena hasil kurang valid.
- 2. Perlu membuat rangkaian penguat agar fototransistor tidak berpengaruh pada cahaya pengganggu dalam menerima sinar inframerah

DAFTAR PUSTAKA

- Anguita, Brizzolara, dan Parodi. 2009. "Building an Underwater Wireless Sensor Network based on Optical Communication: Research Challenges and Current Results". IEEE Xplore. Diakses pada 3 Januari 2019. http://www.ieeexplore.ieee.org/document/5210866
- Camila, dkk. 2016. "A survey of underwater wireless communication technologies". Journal of Communication and Information Systems, vol. 31, no.1, h. 4.
- Goh, J.H. 2009. "Underwater Wireless Communication System", Journal of Physics: Conference Series, vol.178, no.1, h.1. http://repository.uin-suska.ac.id/11327/1/2010_201012TE.pdf
- Kaushal, Hemani dan Kaddoum, Georges. 2016. "Underwater Optical Wireless Communication". Digital Object Identifier 10, vol.4, no.1109, h.1-2.
- Mahmuzi,Imam. 2010. Analisis dan Simulasi Berbagai Macam Teknik Modulasi *Amplitude Shift Keying* (Ask) pada Kanal Berderau. Tugas Akhir. Pekanbaru: Universitas Islam Negeri Sultan Syarif Kasim Riau. Diakses 1 Februari 2019.
- Marzuki, Andri. 2016. "Pulse Width Modulation (PWM)". Diakses 13 Januari 2019. http://andri_mz.staff.ipb.ac.id/pulse-width-modulation-pwm/
- Menying, dkk. 2011. "Simple Underwater wireless communication system sciverse science direct". Procedia Engineering, no.15, h.2460 2462.
- Nelson,Scott. 2019. "Infrared Heat Lamps vs. LED Light Theraphy Devices".

 Diakses 16 Januari 2019.

 https://cdn.shopify.com/s/files/1/1155/1380/files/chart-2 629b8f24-916d-4704-9e90-2993ed2c9d81.png?v=1529368198
- Russel, Randy. 2007. "*The Multispectral Sun*". Windows To The Universe. Diakses 3 Januari 2019.
 - https://www.windows2universe.org/sun/spectrum/multispectral_sun_overv_iew.html
- Surjono, Herman Dwi. 2008. *Elektronika Analog*. Jember: Cerdas ulet kreatif.
- Vikrant, Anjesh, dan Jha. 2012. "Comparison of Underwater Laser Communication Cystem with Underwater Acoustic Sensor Network". International Journal of Scientific & Engineering Research, vol.3, no.10, h.1 4.
- Zhang, XI., Cui, Jun-Hong., Das, Santanu, Gerla, Mario., Chitre, Mandar. 2015. "Underwater Wireless Communication and Network Theory and Application Part 1". IEEE Communication Magazine. November 2015, h.1.

LAMPIRAN-LAMPIRAN

Lampiran 1 Penggunaan dana

1. Peralatan Penunjang

	Komponen	ponen Justifikasi Volume		Harga	Harga Total
No.		Pemakaian	Volume	Satuan (Rp)	(Rp)
1	Pipa Akrilik d=6cm, p=2m	Pipa untuk mengukur hambatan IR LED	2 meter	207.500	415.000
2	Lem Kaca	Bahan untuk menyambungkan case	1 kaleng	20.000	20.000
4	Lem waterproof	Bahan untuk menempelkan case	1 buah	17.500	17.500
5	Multimeter	Mengukur tegangan dan arus	1 buah	100.000	100.000
6	PCB	Tempat penempatan rangkaian	3 buah	20.000	60.000
7	Waterproof case for IR LED	Tempat menyimpan alat anti air	5 buah	40.000	200.000
8	Isolasi	bahan perekat untuk case	7 buah	10.000	70.000
9	lakban	Bahan perekat untuk case	6 buah	12.500	75.000
10	Spidol permanent	Bahan untuk membuat jarak pada pipa akrilik	1 buah	7500	7500
11	Lem tembak	Alat untuk menempelkan case	1 buah	90.000	90.000
12	Solder	Alat untuk membuat case	1 buah	50.000	50.000

13	Isi lem tembak	Bahan untuk lem tembak	10 buah	5.000	50.000
14	Tutup pipa L	Untuk pipa agar dapat menampung air	2 buah	14.500	29.000
15	Streoform	membuat casing untuk arduino	3 buah	10.000	30.000
16	Penggaris	Bahan untuk menstabilkan phototransistor didalam air	2 buah	7.000	14.000
17	Double tip	Bahan untuk menempelkan case	2 buah	15.000	30.000
	Sub Total (Rp)				

2. Bahan Habis Pakai

No	Komponen	Justifikasi Pemakaian	Volume	Harga Satuan(Rp)	Harga Total (Rp)
1	Arduino MEGA	Pengolahan data	2 buah	300.000	600.000
2	Arduino Uno	Pengolahan data	2 buah	75.000	150.000
2	TSOP 1738 receiver	Untuk mengirim data	5 buah	7.500	37.500
3	IR LED CCTV	Untuk mengetahui hambatan dalam air	2 buah	150.000	300.000
4	LCD	Menampilkan komunikasi berupa teks	2 buah	65.000	130.000
7	Keypad 8 pin	Untuk menuliskan teks yang akan ditampilkan pada lcd	2 buah	40.000	80.000
8	Toolkit Elektronik	Untuk alat perancangan dan pembangunan komponen	1 buah	350.000	350.000
9	USB OSILOSK OP	Untuk menampilkan sinyal di laptop	1 buah	2.000.000	2.000.000
10	Protoboard	Untuk merangkai rangkaian	2 buah	35.000	70.000

11	Function generator	Untuk menampilkan gelombang sinyal	1 buah	200.000	200.000
12	Kabel bakar	Bahan untuk melindungi kabel agar tahan air	20 meter	1.000	20.000
13	Kabel Jumper	Bahan untuk membuat rangkaian	50 buah	1.000	50.000
14	Baterai 9V	Bahan untuk daya pada IR LED	3 buah	15.000	45.000
15	Baterai 12V	Bahan untuk daya pada IR LED	20 buah	13.500	270.000
16	Modul RX dan TX	Bahan untuk membuat rangkaian	4 buah	37.500	150.000
17	Adaptor	Bahan untuk daya pada IR LED	3 buah	195.000	195.000
18	Foto transistor	Untuk menerima cahaya pada IR LED	6 buah	25.000	150.000
19	Resistor	Bahan untuk membuat rangkaian	20 buah	100	2000
20	IR LED	Bahan untuk percobaan pada rangkaian	6 buah	3.500	21.000
21	IR 34 LED	Bahan untuk percobaan pada air	1 buah	45.000	45.000
22	Kabel- kabel	Bahan untuk menyambungkan IR LED	20 meter	1.000	20.000
Sub Total (Rp)					4.885.500

1. Perjalanan

No ·	Kompon en	Justifikasi Pemakaian	Volum e	Harga satuan	Harga (Rp)
1	Perjalanan ke toko- toko di Bandung	Survey, pencarian dan pembelian alat serta komponen	10 liter	9.000	90.000
2	Makan siang	Makan ketika sedang survey, pencarian dan pembelian alat serta komponen	4 kali	60.000 /orang	180.000
		270.000			

2. Lain-lain

No	Komponen	Justifikasi Pemakaian	Volume	Harga satuan	Harga (Rp)	
1	Penggandaa n dan jilid laporan	Penyusunan Proposal	4 eksemplar	20.000	80.000	
2	Materai 6000	Penyusunan Proposal	4 buah	7.500	30.000	
3	Print dan jilid laporan	Penyusunan laporan	5 eksemplar	40.000	200.000	
4	4 Seminar Workshop Melatih skill 3 orang 250.000			750.000		
	Subtotal (Rp)					

3. Harga Total

No	Pengeluaran	Harga (Rp)	
1	Peralatan Penunjang	1.258.000	
2	Bahan Habis Pakai	4.885.500	
3	Perjalanan	360.000	
4	Lain-Lain	1.060.000	
	Total (Keseluruhan)	7.563.500	

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Ines Sastre Ummaya (171331018)	D3 Teknik Telekomunikasi	Teknik Elektro	16 minggu	Membuat program untuk pengirim dan penerima
2	Firdha Rachmadani (1613310)	D3 Teknik Telekomunikasi	Teknik Elektro	16 minggu	Membuat rangkaian pengirim
3	Shelvia Ayu Putri S (161331062)	D3 Teknik Telekomunikasi	Teknik Elektro	16 minggu	Membuat rangkaian penerima

Lampiran 4 Bukti Pendukung Kegiatan

1. Foto penelitian dan pembuatan alat

2. Foto Nota

Lampiran 4. Blok Diagram dan Diagram Alir

4.1 Blok Diagram

Gambar 3. Blok diagram sisi pengirim dan penerima

Seluruh komponen memerlukan *power supply*, kecuali komponen pasif. *LCD* berfungsi untuk menampilkan teks yang akan dikirim oleh pengirim. *Keyboard* untuk mengetik teks. IR TX adalah media untuk mengirim data melalui kedipan cahaya inframerah. Sedangkan IR RX (TSOP) akan menerima data.

Saat IR RX (TSOP) masuk ke arah mikrokontroler menunjukan bahwa TSOP menerima data lalu mengirim data tersebut ke mikrokontroller. Lalu IR TX meneruskan data dari mikrokontroller ke led infra merah untuk selanjutnya dikedipkan oleh led infra merah. Secara keseluruhan proses yang terjadi dalam sistem ini adalah mengirim data oleh IR TX lalu data diterima oleh IR RX (TSOP). setelah itu, data di olah oleh mikrocontroller selanjutnya keluaran akan ditampilkan di LCD.

Gambar 4. Diagram blok secara keseluruhan

4.2 Diagram alir proses pengiriman teks

