H1: Numerical limitations 1.1 basic concepts	
absolute error	= approximate value - true value
relative error	= absolute error / true value > if an approximate value has a relative error of 10 ^{-p} then its decimal representation has p correct significant digits
1.1.2 precision and accuracy	
precision	= number of digits with which a number is expressed
accuracy	= number of correct significant digits in an approximation
1.1.3 truncation and rounding error	
truncation error	= difference between the true result and the result given by an algorithm > due to approximations
rounding error	= difference between the result produced by a given algorithm using exact arithmetic and the same algorithm rounded arithmetic
1.2 floating-point number systems	
floating-point number system	4 integers: $\frac{\text{symbol}}{\beta} \qquad \text{Base or radix}$ $p \qquad \text{Precision}$ $[L,U] \qquad \text{Exponent range}$ > the floating-point number thus has the form: $\pm \left(d_0 + \frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \dots + \frac{d_{p-1}}{\beta^{p-1}}\right) \beta^E \text{ where } d_i \text{ and } E \text{ are integers such that } 0 \leq d_i \leq \beta - 1 \text{ and } L \leq E \leq U.$
Normalized floating-point number syst.	= flp number syst. for which d ₀ = 1 > advantageous because: - each number has a unique representation - no digits are wasted by leading zero's > maximized precision - in a binary system, β=2, the leading bit is always 1 > doesn't need to be stored > 1 bit extra of precision
Single Precision IEEE (SP)	System β p L U IEEE SP 2 24 -126 127 > stored in 4 bytes = 32bits: -1 sign bit: 0 = + and 1 = - -8 bits for the exponent: [-126, 127] -23 bits for the mantissa Calculation of the exponent ex: 01011001 > take -127 and add 2^n for every 1 in the 8 bits: -127 + 1 + 8 + 16 + 64 = -38 Calculating the mantissa Formula: $\left(1 + \frac{d_1}{2} + \frac{d_2}{4} + \dots + \frac{d_{22}}{2^{23}}\right)$ in which d_1 = first bit,, d_{23} = 23th bit For example: 0 011111110 1000000000000000000000000

Double precision IEEE (DP)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	IEEE DP 2 53 -1022 1023
1.3 Properties of floating-point number systems	
Total numbers in a flpoint number syst.	The amount of numbers you can represent with a certain system is given by:
	$2(eta-1)eta^{p-1}(U-L+1)+1$
	• 2 choices of sign • $(\beta-1)$ choices for the leading digit of the mantissa $(=d_0)$ • β^{p-1} because there are β choices for each of the remaining $p-1$ digits of the mantissa • $(U-L+1)$ possible values for the exponent (+1 because the boundaries of [L, U] are being counted) • $+1$ because the number could be zero
underflow level	= smallest positive normalized number $>$ all bits in the mantissa and all but the last bit are 0, the number equals β^{L}
overflow level	= largest number: $eta^{U+1}(1-eta^{-p})$ (derivation: see git)
machine numbers	= real number that are exactly representable in a fl-p system
	> if a certain number is not representable its rounded to a nearby number > has a certain <i>rounding error</i>
machine precision	= the accuracy of a fl-p system
	> if a system rounds to its nearest: the machine precision equals $\epsilon_{ m mach}=rac{1}{2}eta^{1-p}$
inf	= infinity, the result of dividing zero's
NaN	= not a number, the result from an undefined operations, such as 0/0
1.5 good practices for computer arithmetic	
good practices:	 avoid subtracting two almost identical numbers avoid adding small and large numbers perform a sequence of additions ordered from smallest to largest number