

AI Beautifier

Group 6 孫承瑞 李欣螢 莊宥瑋 葉家蓁

TABLE OF CONTENTS

 $\mathbf{1}$ Introduction

(2) Related Work

2 Dataset / Platform

(4) Baseline

(5) Main Approach

(6) Evaluation Metric

(7) Results & Analysis

Introduction

Problem Overview

When taking photos, we seldom get flawless pictures.

Therefore, We want to erase the undesirable elements in the background and remove the flares.

Related work

- By Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky
- A type of convolutional neural network used to enhance a given image with no prior training data except for the image itself
- Implement for inpainting

Flare7K

- By Yuekun Dai, Chongyi Li, Shangchen Zhou, Ruicheng Feng, Chen Change Loy
- Datasets of 7k flare patterns and 24k background images that add diversity when training models
- Implement for removing flare

Dataset

• Flare7k

- Introduced by S-Lab, Nanyang Technological University.
- 5,000 scattering flare images and 2,000 reflective flare images.
- 25 types of scattering flare and 10 types of reflective flare.

• Flickr24k

- Sampled from "Single Image Reflection Removal with Perceptual Losses, Zhang et al., CVPR 2018"
- 23,949 background images.
- Filtered out most of flare-corrupted or overexposed images.

• Encoder-decoder architecture with skip connections

Figure 1: The architecture used in the experiments. We use "hourglass" (also known as "decoder-encoder") architecture. We sometimes add skip connections (yellow arrows). $n_u[i]$, $n_d[i]$, $n_s[i]$ correspond to the number of filters at depth i for the upsampling, downsampling and skip-connections respectively. The values $k_u[i]$, $k_d[i]$, $k_s[i]$ correspond to the respective kernel sizes.

We can formulate image restoration problems as:

$$x^* = \operatorname*{argmin}_{x} E(x; x_0) + R(x),$$

- x₀: Input image
- x: Output image
- R(x): Regularizer(Prior), the authors use the implicit prior(local minimizer) here:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} E(f_{\theta}(z); x_0), \qquad x^* = f_{\theta^*}(z).$$

z: a fixed randomly-initialized 3D tensor

For inpainting problems,

$$E(x; x_0) = \|(x - x_0) \odot m\|^2,$$

• $m(mask) = \{0, 1\}$

This formula makes the model restore
the mask parts (m=0) from the normal
parts (m=1), and makes the latter
remain the same as possible.

The default architecture:

```
z \in \mathbb{R}^{32 \times W \times H} \sim U(0, \frac{1}{10}) \quad \text{noise} n_u = n_d = [128, \ 128, \ 128, \ 128, \ 128] k_u = k_d = [3, \ 3, \ 3, \ 3] n_s = [4, \ 4, \ 4, \ 4, \ 4] k_s = [1, \ 1, \ 1, \ 1, \ 1] Skip connections \sigma_p = \frac{1}{30} \quad \text{noise std} \text{num\_iter} = \frac{2000}{6000} \quad 6000 \text{LR} = 0.01 \text{upsampling} = \text{bilinear}
```

Baseline - Flare7K

Flare data Collection

Paired test data

Training

Collection

Evaluation

Scattering flare & reflecting flare

Synthetic test data & real test data

Uformer / U-Net

PSNR / SSIM / LPIPS

Main Approach

Combination

To beautify our photos, we want the functions to be merged so that they can **become a complete application**.

Automatic Mask Generation

Instead of uploading mask images by ourselves, we provide other **two methods to generate the masks much easier**.

Inpainting Setup Comparison

Due to different areas needed to be erased from a photo, we want to **choose the best settings** in each situation.

Combination

Upload your photo

In square size, png/jpg/gif image formats

Deflare / Inpainting

Beautify the photo as you like

Get a 512*512 png photo

Without any undesired thing

All the functions can be done in one Google colab!

000

Automatic Mask Generation

Upload mask images (Original)

You may need to use a graphic software and spend lots of time, which is inconvenient.

<u>Draw</u> on the photo directly (New!)

Now, we can manually draw on the photo to select any area you don't like!

Text-to-mask automatically (New!)

Moreover, we can just type in the description of any object in the photo to generate the mask!

Draw on the photo directly

Text-to-mask automatically

CLIPSeg

- By Timo Lüddecke, Alexander S. Ecker
- Image segmentation
- OpenAl's pre-trained CLIP model
- Transformer-based decoder

Text-to-mask automatically

Examples

Example - Import Picture

Example - Deflaration

Before

After

Example - Deflaration

Before

After

Example - Automatic text-to-mask

Example - Automatic text-to-mask

Example - Masked

Example - Inpainting

Before

After

Example - Inpainting

Example - Evaluation

PSNR	21.55556456	
SSIM	0.815952666	7
LPIP	0.180437713	

PSNR	31.14807182
SSIM	0.937167919
LPIP	0.082193925

A brief analysis of examples

Example 1

- Performs better at deflaration: The type of flare is included in the training dataset.
- Performs worse at inpainting: The tree to be removed is interfered by a street light and a traffic sign.

Example2

- Performs better at inpainting: The text to be removed has a relatively clean background and is not interfered or covered by other elements.
- Performs worse at deflaration: The "light" at background is not so typical "flare".

Default

```
NET_TYPE = 'skip_depth6'

pad = 'reflection' # '
OPT_OVER = 'net'
OPTIMIZER = 'adam'# 'LE

INPUT = 'noise'
input_depth = 32
LR = 0.01
num_iter = 6000
param_noise = False
show_every = 50
figsize = 3
reg_noise_std = 0.03
```

PSNR: 28.518995097589375

SSIM: 0.894469163747439

LPIPS: 0.15108217298984528

Run time: 27m17s

Attempt.1 - Reduce iteration

```
NET_TYPE = 'skip_depth6'

pad = 'reflection' # ':
OPT_OVER = 'net'
OPTIMIZER = 'adam'

INPUT = 'noise'
input_depth = 32
LR = 0.01
num_iter = 3000
param_noise = False
show_every = 50
figsize = 3
reg_noise_std = 0.03
```

PSNR: 31.148071829230748

• SSIM: 0.9371679197165727

LPIPS: 0.08219392597675323

Run time: 12m8s

Attempt.2 - A different type of net

```
NET_TYPE = 'skip_depth2'
pad = 'reflection' #
OPT_OVER = 'net'
OPTIMIZER = 'adam'
INPUT = 'noise'
input_depth = 32
LR = 0.01
num iter = 3000
param noise = False
show_every = 50
figsize = 3
reg_noise_std = 0.03
```

PSNR: 32.12606406514374

SSIM: 0.9522127244977979

LPIPS: 0.05374791473150253

Run time: 12m10s

Attempt.3 - A different optimizer

```
NET_TYPE = 'skip_dept

pad = 'reflection' #
OPT_OVER = 'net'
OPTIMIZER = 'LBFGS'#

INPUT = 'noise'
input_depth = 32
LR = 0.01
num_iter = 3000
param_noise = False
show_every = 50
```

 $reg_noise_std = 0.03$

figsize = 3

PSNR: 23.302184233762134

SSIM: 0.7450587802517482

LPIPS: 0.28466418385505676

• Run time: 12m48s

Attempt.4 - A larger learning rate

```
NET TYPE = 'skip dept
pad = 'reflection' #
OPT_OVER = 'net'
OPTIMIZER = 'adam'#
INPUT = 'noise'
input_depth = 32
LR = 0.1
num iter = 3000
param noise = False
show_every = 50
figsize = 3
reg_noise_std = 0.03
```

PSNR: 26.336750547476633

• SSIM: 0.8412026345982307

LPIPS: 0.1923815906047821

• Run time: 12m10s

Attempt.5 - A smaller learning rate

```
NET_TYPE = 'skip_depth6'

pad = 'reflection' # '
OPT_OVER = 'net'
OPTIMIZER = 'adam'# 'LB

INPUT = 'noise'
input_depth = 32
LR = 0.005
num_iter = 3000
param_noise = False
show_every = 50
figsize = 3
reg_noise_std = 0.03
```

PSNR: 30.654185370546074

• SSIM: 0.931728361647156

LPIPS: 0.09139405190944672 200 -

Run time: 12m12s

Evaluation Metric

• Performance (quantitative comparison)

.5	Default	Reduce iteration	Different Optimizer	Different net type	Larger LR	Smaller LR
PSNR	28.51899	31.14807	23.30218	32.12607	26.33675	30.65419
SSIM	0.894469	0.93717	0.745059	0.95221	0.84120	0.93172
LPIP	0.151082	0.08219	0.284664	0.05375	0.19238	0.09139

Evaluation Metric

Performance (qualitative comparison)

Different Optimizer

Different type of net

Analysis & Limitation

Analysis

According to the evaluation matrices, we obtain two conclusions. Firstly, reducing iteration from **6,000** to **3,000** can improve not only **run time** but also the **overall performance**. Also, comparing to the 3,000 iteration version, implementing a **different type of net** performs better without extending the run time.

Limitation

- The size of output image is fixed to 512*512,
 which limits the resolution and might lead to an
 underestimation of performance. In other
 words, evaluation outputs might be closer to
 ideal with a bigger and more clear output
 image.
- The training process takes tiiiiimme. If willing to reduce training time, a better model would have to be studied and implemented.

Links & References

Our GitHub Repo

- https://github.com/Rebeccasun31/AI_Beautifier
- https://colab.research.google.com/drive/1Ppy05Gk
 RldBtVnA4CPnw_FD-MMAg-ZbL?usp=sharing

References

- https://github.com/DmitryUlyanov/ deep-image-prior
- https://github.com/ykdai/Flare7K
- https://github.com/timoil/clipseg

Contribution

孫承瑞 110550034 40% 莊宥瑋 110550111 20%

李欣螢 110550033 20%

葉家蓁 110550158 20%