CENG 384 - Signals and Systems for Computer Engineers Spring 2018-2019

Written Assignment 2

Bilici, Osman Emre e2171353@ceng.metu.edu.tr

Sehlaver, Sina e2099729@ceng.metu.edu.tr

March 21, 2019

- 1. (a) $y(t) = \int [x(t) 4y(t)] \longrightarrow y'(t) = x(t) 4y(t)$
 - (b) For the equation we found on part (a) we first derive the homogeneous solution;

$$y'(t) + 4y(t) = x(t) \longrightarrow y'(t) + 4y(t) = 0$$

The solution will be of form $y_h(t) = Ae^{st}$

Then find the characteristic polynomial $y'(t) + 4y(t) = 0 \longrightarrow s + 4 = 0$

We have one root which is s = -4 so our homogeneous solution is $y_h(t) = Ae^{-4t}$

Now, we need to solve particular solution. Let $y_p(t) = (Be^{-t} + Ce^{-2t})u(t)$

Then we substitute $y_p(t)$ with y(t) on the equation y'(t) + 4y(t) = x(t)

New equation
$$\Rightarrow -Be^{-t} - 2Ce^{-2t} + 4Be^{-t} + 4ce^{-2t} = e^{-t} + e^{-2t}$$

 $B = \frac{1}{3}$ and $C = \frac{1}{2}$

$$y_p(t) = \frac{1}{3}e^{-t} + \frac{1}{2}e^{-2t}$$

Since general solution is $y(t)=y_p(t)+y_h(t) \Rightarrow y(t)=\frac{1}{3}e^{-t}+\frac{1}{2}e^{-2t}+Ae^{-4t}$

System is initially at rest, therefore y(t) = 0 when t = 0.

$$y(t) = \frac{1}{3}e^0 + \frac{1}{2}e^0 + Ae^0 = 0$$

$$\Rightarrow A = -\frac{5}{6}$$

$$y(t) = \frac{1}{3}e^{-t} + \frac{1}{2}e^{-2t} - \frac{5}{6}e^{-4t}$$

2. (a) By using the definition of convolution, we transform both functions and then compute for each value.

(b)
$$\frac{dx(t)}{dt} = \delta(t) + \delta(t-1)$$

$$y[n] = \frac{dx(t)}{dt} * h[t] = (\delta(t) + \delta(t-1)) * h[t]$$

From the distributive property of convolution $(\delta(t) + \delta(t-1)) * h[t] = \delta(t) * h[t] + \delta(t-1) * h[t]$

Since the convolution of a function with the impulse function is itself and the convolution of a function with the shifted impulse function is the same function with the same shift, we can derive this equation.

$$y[n] = h[t] + h[t-1]$$

And then we substitute $h[t] = e^{-2t}\cos(t)u(t) \longrightarrow y[n] = e^{-2t}\cos(t)u(t) + e^{-2t+2}\cos(t-1)u(t-1)$

3. (a) We need to compute $y(t) = x(t) * h(t) = h(t) * x(t) = \int h(\tau)x(t-\tau)d\tau$

Since both h(t) and x(t) has the u(t) component, we can derive the fact that their value will be 0 for t < 0.

$$y(t) = \int_0^t e^{-3\tau} e^{\tau - t} d\tau$$

$$\int_0^t e^{-3\tau} e^{\tau - t} d\tau = \int_0^t e^{-2\tau} e^{-t} d\tau = e^{-t} \int_0^t e^{-2\tau} d\tau = e^{-t} (\frac{-e^{-2\tau}}{2} \mid_0^t)$$

$$y(t) = e^{-t}(\frac{-e^{-2t}-1}{2}) = \frac{-e^{-3t}-e^{-t}}{2}$$

Since y(t) have to be 0 for t < 0, we will multiply the derived equation with the unit step function u(t).

$$\Rightarrow y(t) = \frac{-e^{-3t} - e^{-t}}{2}u(t)$$

(b) Function $x(\tau)$ creates a 1x1 window for the convolution, so we will analyze this convolution in three parts; t < 1, $1 \le t \le 2$ and t > 2.

For t < 1 since $x(\tau)$ is always 0 and since $h(t - \tau)$ is 0 for $t < \tau$, we can conclude that the convolution is also 0.

For $1 \le t \le 2$ we will compute the convolution that is seen through the window that $x(\tau)$ creates.

u(t) is always 1 for $1 \le t \le 2$ so we can write the convolution as follows:

$$y(t) = \int_1^t e^t e^{-\tau} d\tau = e^t \int_1^t e^{-\tau} d\tau = e^t (-e^{-\tau} \mid_1^t) = e^t (-e^{-t} + e^{-t}) = -1 + e^{t-1}$$

For t > 2, $x(\tau)$ and $h(t - \tau)$ have some non-zero intersections only between the $1 \le t \le 2$ interval and since u(t) is always 1 for $1 \le t \le 2$ we can write the convolution as follows:

$$y(t) = \int_1^2 e^t e^{-\tau} d\tau = e^t \int_1^2 e^{-\tau} d\tau = e^t (-e^{-\tau} \mid_1^2) = e^t (-e^{-2} + e^{-1}) = -e^{t-2} + e^{t-1}$$

$$y(t) = \begin{cases} 0 & \text{for } t \text{ less than 1} \\ -1 + e^{t-1} & 1 \le t \le 2 \\ -e^{t-2} + e^{t-1} & \text{for } t \text{ greater than 2} \end{cases}$$

4. (a) To find the characteristic polynomials, we can write this quadratic equation:

$$r^2 - 15r + 26 = 0$$

$$r_1 = 2$$
 and $r_2 = 13$

So our general solution is $y[n] = k_1 2^n + k_2 13^n$

Because of the initial condition y[0] = 10, if we substitute n with 0 in our equation, we obtain $k_1 + k_2 = 10$.

When n = 1, our general solution will be $2k_1 + 13k_2 = 42$. So, if we solve these two equations together, we get $11k_2 = 22 \Rightarrow k_2 = 2$ and $k_1 = 8$.

Solution is $y[n] = 8.2^n + 2.13^n$

(b) As we did like part a), we find the characteristic polynomials.

$$r^2 - 3r + 1 = 0$$

Roots of this quadratic equation is $\frac{-b+\sqrt{b^2-4ac}}{2a}$ and $\frac{-b-\sqrt{b^2-4ac}}{2a}$.

$$r_1 = \frac{3+\sqrt{5}}{2}$$
 and $r_2 = \frac{3-\sqrt{5}}{2}$

Our solution is :

$$y(n) = k_1(\frac{3+\sqrt{5}}{2})^n + k_2(\frac{3-\sqrt{5}}{2})^n$$

When
$$n = 0$$
, $k_1 + k_2 = 1$

When
$$n = 1$$
, $k_1(\frac{3+\sqrt{5}}{2}) + k_2(\frac{3-\sqrt{5}}{2}) = 2 \Rightarrow k_1(3+\sqrt{5}) + k_2(3-\sqrt{5}) = 4$

$$\Rightarrow 3(k_1 + k_2) + \sqrt{5}(k_1 - k_2) = 4$$
. Since we know that $k_1 + k_2 = 1 \Rightarrow \sqrt{5}(k_1 - k_2) = 1$.

$$\Rightarrow k_1 - k_2 = \frac{\sqrt{5}}{5}$$

$$k_1 = \frac{\sqrt{5} + 5}{10} \text{ and } k_2 = \frac{-\sqrt{5} + 5}{10}$$

So our solution is
$$y[n] = (\frac{\sqrt{5}+5}{10})(\frac{3+\sqrt{5}}{2})^n + (\frac{-\sqrt{5}+5}{10})(\frac{3-\sqrt{5}}{2})^n$$

5. (a) For homogeneous solution we need to solve characteristic equation.

Characteristic equation of this equation is:

$$r^2 + 6r + 8 = 0$$

$$r_1 = -2, r_2 = -4$$

Our homogeneous solution is:

$$y_h(t) = Ae^{-2t} + Be^{-4t}$$

We set the equation to calculate impulse response

$$\frac{d^2y(t)}{dt^2} + 6\frac{dy(t)}{dt} + 8y(t) = 2\delta(t)$$

We integrate both sides of the equation from 0 to t;

$$y'(t) + 6y(t) + 8 \int_0^t y(\tau) d\tau = 2u(t)$$

$$y'(t) = 2u(t) - 8 \int_0^t y(\tau) d\tau - 6y(t)$$

We know that $y(0^+) = 0$, so we can deduce that $y'(0^+) = 2u(0^+) - 8\int_0^{0^+} y(\tau)d\tau - 6y(0^+) = 2$, since the integral part is also going to be 0.

Since we have initial resting conditions, we set

$$y(0^+) = A + B = 0$$

 $y'(0^+) = -2A - 4B = 2$

When we solve these two equations, we get A = 1 and B = -1

Hence, we get impulse response $h(t) = (e^{-2t} - e^{-4t})u(t)$

- (b) i) It is causal because the u(t) function ensures that any future information will be omitted, since it has zero value for t < 0 and we flip it in order to get $h(t \tau)$ the convolution will always exclude any τ which is greater than t ensuring causality.
 - ii) It is not memoryless because the u(t) component will require future information, since it has non-zero value for t > 0 which contradicts with being memoryless (only depending on the current value).
 - iii) It is stable because the $e^{-2t} e^{-4t}$ expression is a convergent function as t goes to infinity. Thus, we can consider its' integral being a constant. Since u(t) is also a constant, we can derive that for any bounded input x(t), our y(t) will also be bounded.
 - iv) It is invertible, and every LCCDE is invertible.