

Test Report

FCC ID: 2AGWQ-TT713ULTRA

Date of issue: Mar. 23, 2018

Report Number: MTi180122E065

Sample Description: TABLET

Model(s): TT-713Ultra,TT-715,TT-706,TT-779,MID-700,MID-706,

MID-713, MID-706K, MID-901, MID-913

Applicant: Shenzhen Samtech Co., Ltd.

Address: F1-3,No.3 building,DingfengFubilun Industrial Park

Shubianken Road, Songgang, Baoan, Shenzhen, China

Date of Test: Jan. 18, 2018 to Mar. 23, 2018

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

Table of Contents

1 (General information	3
2 5	Summary of Test Result	4
3 (General description	5
3.1	Feature of equipment under test (EUT)	5
3.2	Test frequency channel	5
3.3	EUT operation mode	6
3.4	Test conditions	6
3.5	Testing site	7
3.6	Ancillary equipment list	7
3.7	Measurement uncertainty	7
4 L	List of test equipment	8
5 7	Test Result	9
5.1	Maximum output power and peak to average ratio	9
5.2	Peak to average power ratio(PAPR)	14
5.3	Occupied bandwidth	16
5.4	Conducted spurious emissions	19
5.5	Band edge	24
5.6	Radiated spurious emission	29
5.6 5.7	·	

Report No.: MTi180122E065

1 General information

Applicant's name:	Shenzhen Samtech Co., Ltd.	
Address:	F1-3,No.3 building,DingfengFubilun Industrial Park Shubianken Road, Songgang, Baoan, Shenzhen, China.	
Manufacture's Name:	Shenzhen Samtech Co., Ltd.	
Address:	F1-3,No.3 building,DingfengFubilun Industrial Park Shubianken Road, Songgang,Baoan, Shenzhen, China.	
Product name:	TABLET	
Model name:	TT-713 Ultra	
Serial Model	TT-715,TT-706,TT-779,MID-700,MID-706,MID-713, MID-706K, MID-901,MID-913	
Trademark:	SAMTECH, TIGERS	
Standards: FCC Part 22 Subpart H FCC Part 24 Subpart E		
Test Procedure:	FCC Part 2 ANSI TIA-603-D: 2010 KDB 971168 D01 v02r02	

This device described above has been tested by Shenzhen Microtest Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:

Demi Mu Mar. 23, 2018

Reviewed by: Blue. Zherg

Blue Zheng Mar. 23, 2018

Approved by:

Smith Chen Mar. 23, 2018

2 Summary of Test Result

Item	FCC Part No.	Description of Test	Result
1	2.1046, 22.913(a); 24.232(c)	Maximum output power	Pass
2	2.1046, 22.913(a); 24.232(c)	Peak to average power radio(PAPR)	Pass
3	2.1046, 22.913(a); 24.232(c)	Transmitter Radiated Power (EIRP/ERP)	Pass
4	2.1049; 22.917(b); 24.238(b)	Occupied Bandwidth	Pass
5	2.1051; 22.917(a); 24.238(a)	Conducted spurious emissions	Pass
6	2.1051; 22.917(b); 24.238(b)	Spurious emissions at band edge	Pass
7	2.1053; 22.917(a); 24.238(a)	Radiated spurious emissions	Pass
8	2.1055; 22.355; 24.235	Frequency Stability	Pass

3 General description

3.1 Feature of equipment under test (EUT)

Product name:	TABLET	
Model name:	TT-713 Ultra	
Operating frequency range:	GSM 850: TX: 824.2 MHz – 848.8 MHz; RX: 869.2 MHz – 893.8 MHz GSM 1900: TX: 1850.2 MHz – 1909.8 MHz; RX: 1930.2 MHz – 1989.8 MHz WCDMA/HSDPA/HSUPA Band 2: TX: 1850 - 1910 MHz RX:1930 - 1990 MHz WCDMA/HSDPA/HSUPA Band 5: TX: 824 - 849 MHz RX:869 - 894 MHz	
Modulation type:	GMSK for GSM/GPRS WCDMA for QPSK HSDPA/HSUPA for QPSK and 16QAM	
Power Class	GSM/GPRS 850: 4 GSM/GPRS 1900: 1 WCDMA/HSDPA/HSUPA Band 2: 3 WCDMA/HSDPA/HSUPA Band 4: 3 WCDMA/HSDPA/HSUPA Band 5: 3	
GPRS Class	Multi-Class12 Only 4 timeslots are used for GPRS	
Power supply:	DC 5V from AC Adapter 230V/50Hz	
Battery:	DC3.7V 2800mAh	
Adapter information:	Model:ST-00502001 Input:100-240V AC50/60Hz 03A Output: DC 5V 2A	
Antenna type	PIFA Antenna (2dBi)	
Hardware Version	V1.1	
Software Version	V6.0	

3.2 Test frequency channel

Frequency Band	Frequency	Channel	Frequency(MHz)
	Low	128	824.2
GSM 850	Middle	190	836.6
	High	251	848.8
GSM 1900	Low	512	1850.2
	Middle	661	1880
	High	810	1909.8
UMTS Band II	Low	9262	1852.4
OWITS Ballu II	Middle	9400	1880

W& / & 1 1 ± / & 1					
	High	9538	1907.6		
	Low	4132	826.4		
UMTS Band V	Middle	4183	836.6		
	High	4233	846.6		

3.3 EUT operation mode

During testing, RF test program provided by the manufacture to control the Tx operation followed the test requirement. The EUT is configured to transmit continuously (duty cycle > 98 %) at the maximum power control level.

3.4 Test conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 20°C~30°C - Humidity: 30%~70%

- Atmospheric pressure: 98kPa~101kPa

3.5 Testing site

Test Site	Shenzhen Microtest Co., Ltd.	
Test Site Location	No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China	
FCC Registration No.:	448573	

3.6 Ancillary equipment list

Equipment	Model	S/N	Manufacturer	Certificate type
/	/	/	/	/

3.7 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	± 5 %

4 List of test equipment

Equipment No.	Equipment Name	Manufactur er	Model	Serial No.	Calibration date	Due date
MTI-E001	Spectrum Analyzer	Agilent	E4407B	MY41441082	2017/09/18	2018/09/17
MTI-E002	CMU 200 universal radio communication tester	Rohde&schw arz	CMU 200	114587	2017/09/18	2018/09/17
MTI-E004	EMI Test Receiver	Rohde&schw arz	ESPI	1000314	2017/09/18	2018/09/17
MTI-E006	Broadband antenna	schwarabeck	VULB916 3	872	2017/09/18	2018/09/17
MTI-E007	Horn antenna	schwarabeck	BBHA912 0D	1201	2017/09/18	2018/09/17
MTI-E014	amplifier	America	8447D	3113A06150	2017/09/18	2018/09/17
MTI-E015	Conduction Immunity Signal Generator	Schloder	CDG6000	126A1343/20 15	2017/09/18	2018/09/17
MTI-E016	Coupled decoupling network	Schloder	CDA M2/M3	A2210332/20 15	2017/09/18	2018/09/17
MTI-E032	Comprehensive test instrument	Rohde&schw arz	CMW500	124192	2017/04/13	2018/09/12
MTI-E034	amplifier	Agilent	8449B	3008A02400	2017/08/22	2018/08/21
MTI-E040	Spectrum analyzer	Agilent	N9020A	MY49100060	2017/03/04	2018/09/04
MTI-E041	Signal generator	Agilent	N5182A	MY49060455	2017/02/22	2018/09/22
MTI-E042	Analog signal generator	Agilent	E4421B	GB40051240	2017/02/22	2018/09/22
MTI-E043	Power probe	Dare Instruments	RPR3006 W	16I00054SN O16	2017/02/28	2018/09/28
MTI-E047	10dB attenuator	Mini-Circuits	UNAT-10+	15542	2017/05/23	2018/09/23
MTI-E049	spectrum analyzer	Rohde&schw arz	FSP-38	100019	2017/09/18	2018/09/17
MTI-E050	PSG Signal generator	Agilent	E8257D	MY46520873	2017/04/24	2018/09/23
MTI-E051	Active Loop Antenna 9kHz - 30MHz	Schwarzbeek	FMZB 1519 B	00044	2017//2/26	2018/09/25
MTI-E052	18-40GHz amplifier	Chengdu step Micro Technology	ZLNA-18- 40G-21	1608001	2017/09/18	2018/09/17
MTI-E053	15-40G Antenna	Schwarzbeek	BBHA917 0	BBHA91705 82	2017/09/18	2018/09/17

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

5 Test Result

- 5.1 Maximum output power and peak to average ratio
- 5.1.1 Limit

For FCC 22.913: The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

For FCC 24.234: Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications. In measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13dB.

5.1.2 Test method

For Conducted output power:

- 1.Use a universal radio communication tester, the output power of EUT was measured at the antenna terminal. The path loss was calibrated and entered as an offset into the test equipment.
- 2. The EUT was configured to transmit on maximum power by the radio communication tester.
- 3. Measured the peak and average powers.

For EIRP & ERP:

- 1.In many cases, the RF output power limits for licensed digital transmission devices is specified in terms of effective radiated power (ERP) or equivalent isotropic radiated power (EIRP). Typically, ERP is specified when the operating frequency is less than or equal to 1 GHz and EIRP is specified when the operating frequency is greater than 1 GHz. Both are determined by adding the transmit antenna gain to the conducted RF output power with the primary difference between the two being that when determining the ERP, the transmit antenna gain is referenced to a dipole antenna (i.e., dBd) whereas when determining the EIRP, the transmit antenna gain is referenced to an isotropic antenna (dBi).
- 2.The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

where:

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as P_{Meas} , typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

dBd (ERP)=dBi (EIRP) -2.15 dB

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

5.1.3 Test Result

For Conducted output power:

Output Power for GSM850

Mode	Frequency(MHz)	Maximum Burst average Power
	824.2	32.32
GSM850	836.6	32.26
	848.8	32.19
CDDC0E0	824.2	32.27
GPRS850	836.6	32.25
(1 Slot)	848.8	32.16
GPRS850	824.2	31.30
(2 Slot)	836.6	31.17
	848.8	31.15
CDDC050	824.2	29.22
GPRS850 (3 Slot)	836.6	29.19
	848.8	29.12
GPRS850	824.2	28.28
(4 Slot)	836.6	28.21
(4 5101)	848.8	28.11

Output Power for PCS1900

Mode	Frequency(MHz)	Maximum conducted Power
	1850.2	29.16
GSM1900	1880	29.22
	1909.8	29.12
GPRS1900	1850.2	29.12
(1 Slot)	1880	29.13
(1 3101)	1909.8	29.07
GPRS1900	1850.2	28.11
(2 Slot)	1880	28.14
(2 3.31)	1909.8	28.06
GPRS1900	1850.2	26.03
(3 Slot)	1880	26.05
(3 8101)	1909.8	26.01
ODDC4000	1850.2	25.11
GPRS1900 (4 Slot)	1880	25.17
(4 3101)	1909.8	25.06

Output Power for UMTS BAND II

Mode	Frequency(MHz)	Maximum Average Output Powe
WODMA 4000	1852.4	22.23
WCDMA 1900	1880	22.66
RMC	1907.6	22.52
WODMA 4000	1852.4	22.21
WCDMA 1900	1880	22.12
AMR	1907.6	22.43
LICEDA	1852.4	22.15
HSDPA	1880	22.17
Subtest 1	1907.6	22.05
LICEDA	1852.4	22.11
HSDPA	1880	22.15
Subtest 2	1907.6	21.97
LICEDA	1852.4	22.08
HSDPA	1880	22.14
Subtest 3	1907.6	21.91
110004	1852.4	22.05
HSDPA	1880	22.12
Subtest 4	1907.6	21.87
LICLIDA	1852.4	22.09
HSUPA	1880	22.11
Subtest 1	1907.6	22.06
LICLIDA	1852.4	22.07
HSUPA	1880	22.02
Subtest 2	1907.6	22.05
LICLIDA	1852.4	22.07
HSUPA	1880	21.98
Subtest 3	1907.6	22.03
LICLIDA	1852.4	22.05
HSUPA	1880	21.90
Subtest 4	1907.6	21.93
LICLIDA	1852.4	21.96
HSUPA	1880	21.82
Subtest 5	1907.6	21.97

Output Power for UMTS BAND V

Mode	Frequency(MHz)	Maximum Average Output Power
WCDMA 850	826.4	22.06
RMC	836.6	22.35
KIVIC	846.6	22.34
WCDMA 850	826.4	22.02
AMR	836.6	22.27
AIVIN	846.6	22.27
HSDPA	826.4	22.02
Subtest 1	836.6	22.1
Sublest I	846.6	22.18
HSDPA	826.4	22.14
Subtest 2	836.6	22.09
Sublest 2	846.6	22.10
HSDPA	826.4	22.08
Subtest 3	836.6	22.04
Sublest 3	846.6	22.04
HSDPA	826.4	21.99
Subtest 4	836.6	21.96
Sublest 4	846.6	22.04
HSUPA	826.4	22.09
Subtest 1	836.6	22.06
	846.6	22.19
HSUPA	826.4	22.08
Subtest 2	836.6	22.01
Sublest 2	846.6	22.19
HSUPA	826.4	22.08
Subtest 3	836.6	21.99
Sublest 3	846.6	22.16
HSUPA	826.4	21.99
Subtest 4	836.6	21.93
Sublest 4	846.6	22.16
HSUPA	826.4	21.94
Subtest 5	836.6	21.85
Sublest 5	846.6	22.20

For ERP:

Note: EIRP = Conducted power + antenna gain

Mode	Frequency(MHz)	Maximum conducted Power(dBm)	Antenna gain (dBd)	ERP(dBm)	Limit(dBm)	Margin(dBm)	Result
GSM850	836.6	32.26	2	32.11	38.45	-6.34	Pass
GPRS850	836.6	32.25	2	32.10	38.45	-6.35	Pass
	826.4	22.06	2	21.91	38.45	-16.54	Pass
WCDMA 850	836.6	22.35	2	22.20	38.45	-16.25	Pass
RMC -	846.6	22.34	2	22.19	38.45	-16.26	Pass

For EIRP:

Mode Mode	Frequency(MHz)	Maximum conducted Power(dBm)	Antenna gain (dBi)	EIRP(dBm)	Limit(dBm)	Margin(dBm)	Result
GSM1900	1880	29.22	2	31.22	33	-1.78	Pass
GPRS1900	1800	29.13	2	31.13	33	-1.87	Pass
MACDMA	1852.4	22.23	2	24.23	33	-8.77	Pass
WCDMA 1900 RMC	1880	22.66	2	24.66	33	-8.34	Pass
RMC -	1907.6	22.52	2	24.52	33	-8.48	Pass

5.2 Peak to average power ratio(PAPR)

5.2.1 Limit

Measurement of the ERP of Cellular base transmitters and repeaters must be made using an average power measurement technique. The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB.

5.2.2 Test method

According to KDB 971168 D01 v02r02 section 5.7.2, using the alternate procedure to measurement PAPR, the test procedure as below:

- (1) Setting the SA as below and measurement the total peak power
 - a) Set the RBW ≥ OBW.
 - b) Set VBW ≥ 3 × RBW.
 - c) Set span ≥ 2 × RBW .
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Ensure that the number of measurement points ≥ span/RBW.
 - g) Trace mode = max hold.
 - h) Allow trace to fully stabilize.
 - i) Use the peak marker function to determine the peak amplitude level.
- (2) Record the total peak power as P_{Pk}
- (3) Setting the SA as below and measurement the total average power.
 - a) Set span to at least 1.5 times the OBW.
 - b) Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
 - c) Set VBW ≥ 3 × RBW.
 - d) Set number of points in sweep ≥ 2 × span / RBW.
 - e) Sweep time = auto-couple.
 - f) Detector = RMS (power averaging).
 - g) If the EUT can be configured to transmit continuously (i.e., burst duty cycle ≥ 98%), then set the trigger to free run.
 - h) If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98 %), then use a sweep trigger with the level set to enable triggering only on full power bursts and configure the EUT to transmit at full power for the entire duration of each sweep. Ensure that the sweep time is less than or equal to the transmission burst duration.
 - i) Trace average at least 100 traces in power averaging (i.e., RMS) mode.
 - j) Compute the power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with the band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- (4) Record the total peak power as P_{Avg.}
- (5) Determine the PAPR from:

PAPR (dB) = P_{Pk} (dBm) - P_{Avg} (dBm).

5.2.3 Test Result

Note: $PAPR(dB) = P_{Pk}(dBm) - P_{Avg}(dBm)$

Mode	Channel	P _{Pk} (dBm)	P _{Avg} (dBm)	PAPR (dB)	Limit (dBm)	Result
GSM850	190	32.28	32.26	0.02	13	Pass
GSM1900	661	29.23	29.22	0.01	13	Pass
WCDMA Band 5	9400	24.84	22.66	2.18	13	Pass
WCDMA Band 2	4183	24.36	22.35	2.01	13	Pass

5.3 Occupied bandwidth

5.3.1 Test method

- 1. The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- 2. The resolution bandwidth of the Spectrum Analyzer is set to at least 1% of the occupied bandwidth.
- 3. The low, middle and the high channels are selected to perform tests respectively.
- 4. Set the frequency range of the Spectrum Analyzer suitably to capture the waveform; search peak; make a line whose value is 26dB lower than the peak; mark two points which the line intersected the waveform at; finally record the delta of the two points as the occupied bandwidth and the plot.
- 5. Set the Spectrum Analyzer Occupied bandwidth function to measure the 99% occupied bandwidth.

5.3.2 Test result

Channel	Channel Frequency (MHz)	26dB emission bandwidth (MHz)	99% occupied bandwidth (MHz)					
		GSM 850						
128	824.2	0.328	0.248					
190	836.6	0.320	0.245					
251	848.8	0.319	0.245					
	GSM 1900							
512	1850.2	0.314	0.247					
661	1880	0.320	0.245					
810	1909.8	0.314	0.244					
		UMTS Band V						
4132	826.4	4.689	4.143					
4183	836.4	4.697	4.150					
4233	846.6	4.678	4.146					
	UMTS Band II							
9262	1852.4	4.708	4.156					
9400	1880.0	4.748	4.167					
9538	1907.6	4.717	4.157					

STATUS Align Now, All requ

GSM 850 - 824.2MHz GSM 850 - 836.6MHz 04:10:45 PM Jan 22, 20 Radio Std: None Center Freq: 824.20 Trig: Free Run Center Fre 824.200000 MH Center Fre CF Ste 100.000 kF CF Step 100.000 kH; Span 1 MHz ep 12.4 ms #VBW 30 kHz #VBW 30 kHz Total Power 38.8 dBm Occupied Bandwidth Total Power 40.0 dBm Freq Offse Freq Offs 245.25 kHz 247.81 kHz OBW Power Transmit Freq Error -419 Hz OBW Powe 99.00 % Transmit Freq Error -387 Hz 99.00 % x dB Bandwidth 323.8 kHz x dB -26.00 dB x dB Bandwidth 319.8 kHz x dB -26.00 dB GSM 850 - 848.8MHz GSM 1900 - 1850.2MHz VBW 30.000 kHz enter Freq 1.850200000 GHz Center Freq: 848 Trig: Free Run #Atten: 40 dB Res BW 10.000 kHz Video BV 30.000 kH: Center Fre CF Step 100.000 PI Filter Type Gaussian Center 848.8 MHz #Res BW 10 kHz enter 1.85 GHz Res BW 10 kHz Span 1 MHz eep 12.4 ms #VBW 30 kHz #VBW 30 kHz Occupied Bandwidth Total Power 42.0 dBm Occupied Bandwidth Total Power 32.0 dBm Freq Offse 244.50 kHz 246.84 kHz OBW Power Transmit Freq Error -336 Hz OBW Powe 99.00 % Transmit Freq Error -666 Hz 99.00 % x dB x dB Bandwidth 318.9 kHz x dB -26.00 dB x dB Bandwidth 314.2 kHz -26.00 dB GSM 1900 - 1880MHz GSM 1900 - 1909.8MHz ef Value 40.00 dBm /BW 30.000 kHz Center Freq: 1. Res B\ 10.000 kH Ref Valu Video BW 30.000 kH Scale/D Filter Type Center 1.88 GHz Res BW 10 kHz Span 1 MHz eep 12.4 ms Total Power 36.2 dBm Occupied Bandwidth Total Power 37.7 dBm 245.21 kHz 244.38 kHz OBW Power OBW Power Transmit Freq Error -156 Hz 99.00 % Transmit Freq Error -651 Hz 99.00 % More 1 of 2 x dB Bandwidth 320.1 kHz x dB -26.00 dB x dB Bandwidth 313.7 kHz x dB -26.00 dB

5.4 Conducted spurious emissions

5.4.1 Limits

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10log (P) dB

5.4.2 Test method

- 1, The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- 2, Spectrum Setting:

Frequency bellow 1 GHz: RBW=100 kHz, VBW=300 kHz.

Frequency above 1 GHz: RBW=1 MHz, VBW=3 MHz.

- 3, The low, middle and high channels of each band and mode's spurious emissions for 30 MHz to 10th Harmonic were measured by Spectrum analyzer.
- 5.4.3 Test result

- Page 20 of 36 -Report No.: MTi180122E065

GSM 1900

UMTS Band V

UMTS Band II

5.5 Band edge

5.5.1 Limits

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10log (P) dB, for all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm

5.5.2 Test method

- 1. The EUT was directly connected to the spectrum analyzer and Base station via power splitter as show in the block diagram above.
- 2. Spectrum Setting:

For GSM system:

RBW=3 kHz VBW=10 kHz

Span 1 MHz

Detector: Peak Mode

For WCDMA:

RBW=100 kHz VBW=300 kHz Span 5 MHz

Detector: Peak Mode

3. The band edges of low and high channels for the highest RF powers were measured.

5.5.3 Test result

5.6 Radiated spurious emission

5.6.1 Limit

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10log (P) dB

5.6.2 Test method

- 1. The test system setup as show in the block diagram above.
- 2. The EUT was placed on an non-conductive rotating platform in an anechoic chamber. The radiated spurious emissions from 30MHz to 10th harmonious of fundamental frequency were measured at 3 m with a test antenna and a spectrum analyzer with RBW=1 MHz, VBW=1 MHz, peak detector settings.
- 3. During the measurement, the EUT was enforced in maximum power and linked with a base station. All the spurious emissions at 3m were measured by rotation of the turntable and the test antenna raised and lowered over a range from 1 to 4 meters in both horizontally and vertically polarized orientations.
- 4. When found the maximum level of emissions from the EUT. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB=10 log(TX power in Watts/0.001)-the absolute level Spurious attenuation limit in dB=43+10 log(power out in Watts).

5.6.3 Test Result

GSM850_ Low Channel Absolute Cable Antenna Frequency SG Level Diatance Limit Margin Polarization Level Loss Gain (dB) (dB) (dBm) (dBm) (MHz) (dBm) (dB) 1648.4 -42.35.98 3 9.11 -39.17 -13 -26.17 Н 2472.6 -47.28 3 -13 6.84 9.56 -44.56 -31.56 Н 1648.4 -37.95 5.98 3 9.11 -34.82 -13 -21.82 ٧ 6.84 2472.6 -42.71 3 9.56 -39.99 -13 -26.99 ٧ **GSM850** Middle Channel Antenna Absolute Cable SG Level Diatance Limit Polarization Frequency Margin Level Loss Gain (MHz) (dB) (dB) (dBm) (dBm) (dBm) (dB) 1673.2 -39.79 5.98 3 9.11 -36.66 -13 -23.66 Н 6.84 2509.8 -43 3 9.56 -40.28 -13 -27.28 Н 1673.2 3 -32.33 ٧ -35.46 5.98 9.11 -13 -19.33 2509.8 -38.29 6.84 3 9.56 -35.57 -13 -22.57 ٧ GSM850_ High Channel Cable Antenna Absolute SG Level Diatance Limit Margin Polarization Frequency Loss Gain Level (dB) (dB) (MHz) (dBm) (dBm) (dBm) (dB) 1697.6 -46.21 5.98 3 9.11 -43.08 -13 -30.08 Η 2546.4 -50.46 6.84 3 9.56 -47.74 -13 -34.74 Н 1697.6 -41.92 5.98 3 -38.79 -13 -25.79 ٧ 9.11 ٧ 2546.4 6.84 3 9.56 -43.43 -13 -30.43 -46.15

GSM1900 Low Channel Absolute Cable Antenna SG Level Diatance Limit Margin Polarization Frequency Loss Gain Level (MHz) (dBm) (dB) (dB) (dBm) (dBm) (dB) 3700.4 -43.5 5.26 9.88 -38.88 -13 -25.88 Н 3 3 -42.25 Н 5550.6 -47.5 6.11 11.36 -13 -29.25 3 V 3700.4 -45.76 5.26 9.88 -41.14 -13 -28.14 3 -44.47 -13 ٧ 5550.6 -49.726.11 11.36 -31.47**GSM1900** Middle Channel Cable Antenna Absolute SG Level Diatance Limit Polarization Frequency Margin Loss Gain Level (dBm) (MHz) (dBm) (dB) (dB) (dBm) (dB) 3760 -40.4 5.32 3 10.03 -35.69 -13 -22.69 Н -45.19 3 Н 5640 6.19 11.41 -39.97-13 -26.97 3760 -43.71 5.32 3 10.03 -39 -13 -26 ٧ ٧ 5640 -47.88 6.19 3 11.41 -42.66 -13 -29.66 GSM1900_ High Channel Cable Antenna Absolute Frequency SG Level Diatance Limit Margin Polarization Gain Level Loss (MHz) (dBm) (dB) (dB) (dBm) (dBm) (dB) -47.42 3819.6 5.36 3 9.62 -43.16 -13 -30.16 Н 5729.4 6.24 3 -46.97 -13 Н -52.1911.46 -33.97-32.88 ٧ 3819.6 -50.14 3 9.62 -45.88 -13 5.36 V 5729.4 -55.47 6.24 3 -50.25 -13 -37.25 11.46

	WCDMA Band II _ Low Channel								
Frequency	SG Level	Cable Loss	Diatance	Antenna Gain	Absolute Level	Limit	Margin	Polarization	
(MHz)	(dBm)	(dB)	/	(dB)	(dBm)	(dBm)	(dB)	/	
3704.8	-45.78	5.26	3	9.88	-41.16	-13	-28.16	Н	
5557.2	-49.59	6.11	3	11.36	-44.34	-13	-31.34	Н	
3704.8	-50.47	5.26	3	9.88	-45.85	-13	-32.85	V	
5557.2	-56.47	6.11	3	11.36	-51.22	-13	-38.22	V	
	WCDMA Band II _ Middle Channel								
Frequency	SG Level	Cable Loss	Diatance	Antenna Gain	Absolute Level	Limit	Margin	Polarization	
(MHz)	(dBm)	(dB)	/	(dB)	(dBm)	(dBm)	(dB)	/	
3760	-39.77	5.32	3	10.03	-35.06	-13	-22.06	Н	
5640	-48.61	6.19	3	11.41	-43.39	-13	-30.39	Н	
3760	-46.98	5.32	3	10.03	-42.27	-13	-29.27	V	
5640	-55.03	6.19	3	11.41	-49.81	-13	-36.81	V	
	WCDMA Band II _ High Channel								
Frequency	SG Level	Cable Loss	Diatance	Antenna Gain	Absolute Level	Limit	Margin	Polarization	
(MHz)	(dBm)	(dB)	/	(dB)	(dBm)	(dBm)	(dB)	/	
3815.2	-49.59	5.36	3	9.62	-45.33	-13	-32.33	Н	

- Page 32 of 36 -

Report No.: MTi180122E065

凤洲科	亚洲	•	•	•	•	•	•	-
5722.8	-54.86	6.24	3	11.46	-49.64	-13	-36.64	Н
3815.2	-54.37	5.36	3	9.62	-50.11	-13	-37.11	V
5722.8	-58.25	6.24	3	11.46	-53.03	-13	-40.03	V

	WCDMA Band V Low Channel								
Frequency	SG Level	Cable Loss	Diatance	Antenna Gain	Absolute Level	Limit	Margin	Polarization	
(MHz)	(dBm)	(dB)	/	(dB)	(dBm)	(dBm)	(dB)	/	
1652.8	-46.9	3.86	3	8.56	-42.2	-13	-29.2	Н	
2479.2	-48.45	4.29	3	6.98	-45.76	-13	-32.76	Н	
1652.8	-42.88	3.86	3	8.56	-38.18	-13	-25.18	V	
2479.2	-43.01	4.29	3	6.98	-40.32	-13	-27.32	V	
		V	VCDMA Ba	and V_ Mid	ddle Chann	nel			
Frequency	SG Level	Cable Loss	Diatance	Antenna Gain	Absolute Level	Limit	Margin	Polarization	
(MHz)	(dBm)	(dB)		(dB)	(dBm)	(dBm)	(dB)		
1672.8	-44.57	3.9	3	8.58	-39.89	-13	-26.89	Н	
2509.2	-45.82	4.32	3	6.8	-43.34	-13	-30.34	Н	
1672.8	-39.23	3.9	3	8.58	-34.55	-13	-21.55	V	
2509.2	-43.16	4.32	3	6.8	-40.68	-13	-27.68	V	
			WCDMA B	and V_ H	igh Channe	el			
Frequency	SG Level	Cable Loss	Diatance	Antenna Gain	Absolute Level	Limit	Margin	Polarization	
(MHz)	(dBm)	(dB)	/	(dB)	(dBm)	(dBm)	(dB)	/	
1693.2	-48.18	3.91	3	9.06	-43.03	-13	-30.03	Н	
2539.8	-48.84	4.32	3	6.65	-46.51	-13	-33.51	Н	
1693.2	-44.42	3.91	3	9.06	-39.27	-13	-26.27	V	
2539.8	-45.46	4.32	3	6.65	-43.13	-13	-30.13	V	

5.7 Frequency stability

5.7.1 **Limit**

For FCC part 22.355: the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances 2.5ppm for mobile ≤ 3W condition.

For FCC part 24.235: The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

5.7.2 Test method

Test Procedures for Temperature Variation:

- 1, The EUT was set up in the thermal chamber and connected with the base station.
- 2, With power off, the temperature was decreased to -30° C and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 3, With power off, the temperature was raised in 10℃ set up to 50℃ and the EUT was stabilized for three hours. Power was applied and the maximum change in frequency was recorded within one minute.
- 4, measure the carrier frequency error.

Test Procedures for Voltage Variation:

- 1, The EUT was placed in a temperature chamber at 25±5°C and connected with the base station.
- 2, Reduce the primary supply voltage to the battery operating end point.
- 3, measure the carrier frequency error.

5.7.3 Test Result

Band	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
	3.5	25	0.0299
GSM 850	3.7	19	0.0227
	4.2	34	0.0406

Band	Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
	-30	33	0.0394
	-20	29	0.0347
	-10	24	0.0287
	0	34	0.0406
GSM 850	10	31	0.0371
	20	49	0.0586
	30	41	0.0490
	40	29	0.0347
	50	35	0.0418

Band	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
	3.5	36	0.0191
GSM 1900	3.7	30	0.0160
	4.2	27	0.0144

Band	Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
GSM 1900	-30	28	0.0149
	-20	27	0.0144
	-10	35	0.0186
	0	36	0.0191
	10	30	0.0160
	20	26	0.0138
	30	41	0.0218
	40	38	0.0202
	50	39	0.0207

Band	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
UMTS Band 2	3.5	26	0.0138
	3.7	42	0.0223
	4.2	39	0.0207

Band	Temperature (℃)	Frequency Error (Hz)	Frequency Error (ppm)
UMTS Band 2	-30	37	0.0197
	-20	15	0.0080
	-10	34	0.0181
	0	29	0.0154
	10	30	0.0160
	20	36	0.0191
	30	22	0.0117
	40	28	0.0149
	50	21	0.0112

Band	Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
UMTS Band 5	3.5	30	0.0359
	3.7	36	0.0430
	4.2	26	0.0311

Band	Temperature (°C)	Frequency Error (Hz)	Frequency Error (ppm)
UMTS Band 5	-30	33	0.0395
	-20	31	0.0371
	-10	25	0.0299
	0	36	0.0430
	10	24	0.0287
	20	18	0.0215
	30	26	0.0311
	40	32	0.0383
	50	34	0.0407

Note:

1. Normal Voltage = 3.7V; Battery End Point (BEP) = 3.5V; Maximum Voltage =4.2V

5.8 EUT test photo

----END OF REPORT----