4. Предел числовой последовательности. Теорема Вейерштрасса. Число е

1. Предел числовой последовательности

1.1. Интуитивное представление

Число a называется **пределом последовательности** $\{x_n\}$, если с ростом номера n члены x_n неограниченно приближаются к a. **Обозначение:** $\lim_{n \to \infty} x_n = a$ или $x_n \to a$.

1.2. Строгое определение (ε-Ν-формализм)

Число $a \in \mathbb{R}$ называется пределом последовательности $\{x_n\}$, если:

$$orall arepsilon > 0 \; \exists N(arepsilon) \in \mathbb{N} : orall n \geq N(arepsilon) \Rightarrow |x_n - a| < arepsilon.$$

2. Единственность предела

Теорема: Если последовательность имеет предел, то он единственный.

Доказательство (от противного):

- 1. Предположим, $\lim x_n=a$ и $\lim x_n=b$, где $a \neq b$. Пусть $arepsilon = rac{|a-b|}{3}>0$.
- 2. По определению:
 - ullet $\exists N_1: orall n \geq N_1 \Rightarrow |x_n-a| < arepsilon$
 - ullet $\exists N_2: orall n \geq N_2 \Rightarrow |x_n-b| < arepsilon$
- 3. Возьмём $n \geq \max(N_1, N_2)$. Тогда:

$$|a-b| \leq |a-x_n| + |x_n-b| < arepsilon + arepsilon = rac{2}{3}|a-b| < |a-b|$$

Противоречие. Значит, a = b.

3. Бесконечно малые последовательности

3.1. Определение

Последовательность $\{\alpha_n\}$ называется **бесконечно малой**, если $\lim_{n \to \infty} \alpha_n = 0$.

3.2. Свойства с доказательствами

1. Сумма конечного числа бесконечно малых — бесконечно малая.

Доказательство:

Пусть $\{\alpha_n^{(1)}\}, \{\alpha_n^{(2)}\}, \dots, \{\alpha_n^{(k)}\}$ — бесконечно малые.

Зафиксируем arepsilon>0. Для каждого $i=1,\ldots,k$ найдём N_i такой, что $orall n\geq N_i\Rightarrow |lpha_n^{(i)}|<rac{arepsilon}{k}.$

Возьмём $N=\max(N_1,\ldots,N_k)$. Тогда для $n\geq N$:

$$|lpha_n^{(1)}+\cdots+lpha_n^{(k)}|\leq |lpha_n^{(1)}|+\cdots+|lpha_n^{(k)}|<rac{arepsilon}{arkappa}+\cdots+rac{arepsilon}{arkappa}=arepsilon.$$

2. Произведение бесконечно малой на ограниченную последовательность — бесконечно малая.

Доказательство:

Пусть $\{\alpha_n\}$ — б.м., $\{b_n\}$ — ограничена ($|b_n| \leq M$).

Зафиксируем arepsilon>0. Для $lpha_n$ найдём N такой, что $orall n\geq N\Rightarrow |lpha_n|<rac{arepsilon}{M}.$

Тогда для $n \geq N$:

$$|lpha_n b_n| = |lpha_n| \cdot |b_n| < rac{arepsilon}{M} \cdot M = arepsilon.$$

3. Произведение двух бесконечно малых — бесконечно малая.

Доказательство:

Пусть $\{\alpha_n\}, \{\beta_n\}$ — б.м.

Зафиксируем arepsilon>0. Найдём N_1 такой, что $orall n\geq N_1\Rightarrow |lpha_n|<\sqrt{arepsilon}.$

Найдём N_2 такой, что $orall n \geq N_2 \Rightarrow |eta_n| < \sqrt{arepsilon}.$

Тогда для $n \geq \max(N_1, N_2)$:

$$|\alpha_n \beta_n| < \sqrt{\varepsilon} \cdot \sqrt{\varepsilon} = \varepsilon.$$

4. Арифметические операции с пределами

Теорема: Если $\lim x_n = a$, $\lim y_n = b$, то:

- $1. \lim (x_n + y_n) = a + b$
- $2.\lim(x_n\cdot y_n)=a\cdot b$
- 3. Если $b \neq 0$, то $\lim rac{x_n}{y_n} = rac{a}{b}$

Доказательство для суммы:

Зафиксируем arepsilon>0. Найдём $N_1: orall n\geq N_1\Rightarrow |x_n-a|<rac{arepsilon}{2}$

Найдём $N_2: orall n \geq N_2 \Rightarrow |y_n - b| < rac{arepsilon}{2}$

Для $n \geq \max(N_1, N_2)$:

$$|(x_n+y_n)-(a+b)|\leq |x_n-a|+|y_n-b|<\varepsilon$$

5. Пределы и неравенства

5.1. Теорема о сохранении нестрогого неравенства

Теорема: Если $x_n \leq y_n$ для всех $n \geq N_0$ и пределы существуют, то $\lim x_n \leq \lim y_n$.

Доказательство (от противного):

Пусть $\lim x_n = a$, $\lim y_n = b$. Предположим, что a > b.

Возьмём $arepsilon = rac{a-b}{2} > 0.$ Тогда:

- ullet $\exists N_1: orall n \geq N_1 \Rightarrow x_n > a arepsilon = rac{a+b}{2}$
- ullet $\exists N_2: orall n \geq N_2 \Rightarrow y_n < b + arepsilon = rac{a+b}{2}$

Для $n \geq \max(N_0, N_1, N_2)$ получаем:

$$x_n>rac{a+b}{2}>y_n$$

что противоречит условию $x_n \leq y_n$.

5.2. Обратное утверждение неверно

Контрпример: $x_n = \frac{1}{n}$, $y_n = 0$.

$$\lim x_n = 0 \leq 0 = \lim y_n$$
, но $x_n > y_n$ для всех n .

5.3. Теорема о двух милиционерах

Если
$$x_n \leq y_n \leq z_n$$
 и $\lim x_n = \lim z_n = a$, то $\lim y_n = a$.

Доказательство:

Зафиксируем $\varepsilon > 0$. Найдём N такой, что для $n \geq N$:

$$a-arepsilon < x_n \le y_n \le z_n < a+arepsilon$$

Следовательно, $|y_n - a| < \varepsilon$.

6. Теорема Вейерштрасса о пределе монотонной последовательности

Теорема: Всякая монотонная ограниченная последовательность имеет предел. При этом:

- ullet Если последовательность возрастает и ограничена сверху, то её предел равен точной верхней грани: $\lim x_n = \sup\{x_n\}$
- Если последовательность убывает и ограничена снизу, то её предел равен точной нижней грани: $\lim x_n = \inf\{x_n\}$

Доказательство (для возрастающей ограниченной сверху):

Пусть $a = \sup\{x_n\}$. Покажем, что $\lim x_n = a$.

- 1. Так как a верхняя грань, то $x_n \le a$ для всех n.
- 2. Так как a точная верхняя грань, то для любого $\varepsilon > 0$ существует номер N такой, что $x_N > a \varepsilon$ (иначе $a \varepsilon$ была бы верхней гранью, что меньше a).
- 3. Из монотонного возрастания следует, что для всех $n \geq N$ выполняется $x_n \geq x_N > a \varepsilon$.
- 4. Таким образом, для всех $n \ge N$ имеем:

$$a - \varepsilon < x_n \le a < a + \varepsilon$$

то есть $|x_n-a|<arepsilon.$

Следовательно, по определению предела $\lim x_n = a = \sup\{x_n\}.$

Доказательство (для убывающей ограниченной снизу) проводится аналогично с заменой sup на inf.

7. Число e

7.1. Определение

$$e=\lim_{n o\infty}\left(1+rac{1}{n}
ight)^n$$

7.2. Существование предела

Рассмотрим последовательность $x_n = \left(1 + \frac{1}{n}\right)^n$. Можно доказать, что:

- 1. Последовательность возрастает (используя неравенство Бернулли)
- 2. Последовательность ограничена сверху (например, $x_n < 3$)

Так как последовательность монотонно возрастает и ограничена сверху, по теореме Вейерштрасса она имеет предел, который обозначается через e.

8. Бесконечно большие последовательности

8.1. Определение

Последовательность $\{x_n\}$ называется **бесконечно большой**, если:

$$orall E > 0 \; \exists N(E) : orall n \geq N \Rightarrow |x_n| > E$$

8.2. Связь с бесконечно малыми

Если $x_n o \infty$, то $\frac{1}{x_n} o 0$. Обратное верно, если x_n не обращается в ноль.

9. Вопросы для самопроверки

- 1. Докажите, что произведение бесконечно малой на ограниченную последовательность есть бесконечно малая.
- 2. Приведите пример, когда $x_n < y_n$, но $\lim x_n = \lim y_n$.
- 3. Докажите, что если $x_n o a$ и $x_n \ge 0$, то $a \ge 0$.
- 4. Верно ли, что из $\lim x_n > \lim y_n$ следует $x_n > y_n$ для всех достаточно больших n?
- 5. Докажите теорему о двух милиционерах.

- 6. Объясните, почему последовательность $\left(1+\frac{1}{n}\right)^n$ возрастает.
- 7. Сформулируйте и докажите теорему Вейерштрасса для убывающей ограниченной снизу последовательности.

Конспект 6: Топология числовой прямой. Компактность. Лемма Гейне-Бореля

