Detecting Private Objects in Photos Using YOLO

❖ Install Darknet with GPU

 Made use of Palmetto to run YOLO: Created an interactive job with 2 core CPU and a K20 GPU.

- The cuda module is loaded in palmetto:

- Following steps are then taken to install darknet successfully
 - 1. The github repository is first cloned:

```
[khebbar@login001 ~]$ git clone https://github.com/pjreddie/darknet.git
Cloning into 'darknet'...
remote: Enumerating objects: 5901, done.
remote: Total 5901 (delta 0), reused 0 (delta 0), pack-reused 5901
Receiving objects: 100% (5901/5901), 6.14 MiB | 0 bytes/s, done.
Resolving deltas: 100% (3944/3944), done.
```

2. We then cd into darknet directory and alter the Makefile to make use of the gpu as follows:

```
khebbar@login001:~/darknet
GPU=1
CUDNN=0
OPENCV=0
OPENMP=0
DEBUG=0
ARCH= -gencode arch=compute 30,code=sm 30
       -gencode arch=compute 35,code=sm 35
      -gencode arch=compute_50,code=[sm_50,compute_50] \
-gencode arch=compute_52,code=[sm_52,compute_52]
VPATH=./src/:./examples
SLIB=libdarknet.so
ALIB=libdarknet.a
EXEC=darknet
OBJDIR=./obj/
CC=qcc
CPP=g++
```

3. We then make to install darknet:

```
🔞 🖃 📵 khebbar@login001:~/darknet
[khebbar@login001 darknet]S make
gcc -Iinclude/ -Isrc/ -DGPU -I/usr/local/cuda/include/ -Wall -Wno-unused-result
-Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -DGPU -c ./src/gemm.c -o obj/ge
gcc -Iinclude/ -Isrc/ -DGPU -I/usr/local/cuda/include/ -Wall -Wno-unused-result
-Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -DGPU -c ./src/utils.c -o obj/u
tils.o
gcc -Iinclude/ -Isrc/ -DGPU -I/usr/local/cuda/include/ -Wall -Wno-unused-result
-Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -DGPU -c ./src/cuda.c -o obj/cu
da.o
gcc -Iinclude/ -Isrc/ -DGPU -I/usr/local/cuda/include/ -Wall -Wno-unused-result
-Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -DGPU -c ./src/deconvolutional
layer.c -o obj/deconvolutional layer.o
gcc -Iinclude/ -Isrc/ -DGPU -I/usr/local/cuda/include/ -Wall -Wno-unused-result
-Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -DGPU -c ./src/convolutional la
yer.c -o obj/convolutional layer.o
gcc -Iinclude/ -Isrc/ -DGPŪ -I/usr/local/cuda/include/ -Wall -Wno-unused-result
-Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -DGPU -c ./src/list.c -o obj/li
st.o
gcc -Iinclude/ -Isrc/ -DGPU -I/usr/local/cuda/include/ -Wall -Wno-unused-result
-Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -DGPU -c ./src/image.c -o obj/i
gcc -Iinclude/ -Isrc/ -DGPU -I/usr/local/cuda/include/ -Wall -Wno-unused-result
-Wno-unknown-pragmas -Wfatal-errors -fPIC -Ofast -DGPU -c ./src/activations.c -o
```

- The COCO dataset is then downloaded:

The public and private data was downloaded from:
 https://drive.google.com/open?id=1gZTtZMSNXsOumbrx4wF13bPc7fqwtBCq

> PUBLIC DATA:

- The following bash script was executed on the public dataset to loop through each image, and redirect the output to a file called public output.out:

```
#!/bin/bash
for filename in public/*
do
   ./darknet detect cfg/yolov3.cfg yolov3.weights $filename | awk '{print $1}' |
sed '1d' |sed 's/\://' >> public_output.out
done
```

- The output of the above script is as follows:

```
hot
carrot
chair
backpack
chair
bus
person
person
person
person
person
person
person
person
person
chair
chair
cup
cup
bottle
person
person
person
person
person
```

- The following shell script was written to count the number of occurrences of each object and redirect to public_count.txt file and list the top 10 objects in the public dataset and redirect the output of that to public_top10.txt file.

```
#!/bin/bash
cat public_output.out | xargs -n1 | sort | uniq -c | sort -nr > public_count.txt
head -10 public_count.txt > public_top10.txt
~
~
~
~
~
```

- The output of the above shell script is as follows:
- 1. Public_count.txt:

```
97 person
 9 bottle
6 chair
5 knife
4 train
4 giraffe
4 cup
4 car
 4 book
 3 oven
 3 cake
2 diningtable
2 cat
2 bus
1 vase
 1 umbrella
 1 tymonitor
1 truck
 1 tie
1 keyboard
1 hot
1 handbag
1 carrot
 1 broccoli
 1 boat
1 bicycle
1 bed
 1 backpack
 1 apple
```

2. Public_top10.txt:

97	person
9	bottle
6	chair
5	knife
4	train
4	giraffe
4	cup
4	car
4	book
3	oven

OBJECT	COUNT
Person	97
Bottle	9
Chair	6
Knife	5
Train	4
Giraffe	4
Cup	4
Car	4
Book	4
Oven	3

> PRIVATE DATA:

- The following bash script was executed on the private dataset to loop through each image, and redirect the output to a file called private output.out:

```
#!/bin/bash
for filename in private/*
do
   ./darknet detect cfg/yolov3.cfg yolov3.weights $filename | awk '{print $1}' | sed 'id' |sed 's/\://' >> private_output.out
done
~
~
~
~
~
~
~
~
~
```

- The output of the above script is as follows:

```
person
person
person
person
cell
person
cup
person
dog
cell
person
person
dog
person
dog
diningtable
```

- The following shell script was written to count the number of occurrences of each object and redirect to private_count.txt file and list the top 10 objects in the private dataset and redirect the output of that to private_top10.txt file.

- The output of the above shell script is as follows:
- 1. Private_count.txt:

```
145 person
 17 cup
 10 dog
 9 chair
 7 wine
  5 diningtable
  5 cell
 4 cat
 4 bottle
 4 book
  3 sports
  3 knife
  2 tvmonitor
  2 tie
  2 handbag
  2 fork
  2 car
  2 bicycle
  1 vase
  1 suitcase
  1 sofa
  1 sink
  1 sandwich
  1 remote
  1 refrigerator
  1 microwave
  1 horse
  1 carrot
  1 bench
  1 bed
 1 backpack
```

- Private_top10.txt:

1 <mark>45</mark>	person
	cup
10	dog
9	chair
7	wine
5	diningtable
5	cell
4	cat
4	bottle
4	book

OBJECT	COUNT
Person	145
Cup	17
Dog	10
Chair	9
Wine	7
Dining table	5
Cell	5
Cat	4
Bottle	4
Book	4

- Observation about Top 10 public and private objects:
- Higher count of people in Private dataset
- Pets such as dogs and cats are made private
- Cup, wine, chair, dining table considered as indoor parts of a house are all considered as private
- Wine considered to be an alcoholic substance and hence might be classified as a private image