EE24BTECH11040 - Mandara Hosur

Question:

Point P(x,4) lies on the line segment joining the points A(-5,8) and B(4,-10). Find the ratio in which point **P** divides the line segment AB. Also, find the value of x.

Solution:

Given Points	Description
$\mathbf{P}(x,4)$	Point that cuts line segment <i>AB</i> internally
A (-5, 8)	One end of line segment AB
B (4, -10)	Other end of line segment AB

TABLE 0: Given Information

Formula	Description
$\mathbf{A} - \mathbf{B} = r(\mathbf{A} - \mathbf{P})$	r is some constant of proportionality
$\mathbf{P} = \frac{1}{1+k} \left(\mathbf{A} + k \mathbf{B} \right)$	Section formula

TABLE 0: Formulae Used

To find x:

$$\mathbf{A} - \mathbf{B} = r(\mathbf{A} - \mathbf{P})$$

$$\begin{pmatrix} -5 \\ 8 \end{pmatrix} - \begin{pmatrix} 4 \\ -10 \end{pmatrix} = r \begin{pmatrix} -5 \\ 8 \end{pmatrix} - \begin{pmatrix} x \\ 4 \end{pmatrix}$$

$$\implies \begin{pmatrix} -9 \\ 18 \end{pmatrix} = r \begin{pmatrix} -5 - x \\ 4 \end{pmatrix}$$

$$\implies 18 = 4r$$

$$\implies r = \frac{18}{4} = \frac{9}{2}$$

$$9 = r(5 + x)$$

$$\implies 9 = \frac{9}{2}(5 + x)$$

Also,

$$9 = r(3+x)$$

$$\implies 9 = \frac{9}{2}(5+x)$$
or, $x = -3$

To find k:

$$\mathbf{P} = \frac{1}{1+k} \left(\mathbf{A} + k \mathbf{B} \right)$$

Here, k denotes the ratio in which the line segment AB has been divided by \mathbf{P} .

$$\begin{pmatrix} -3\\4 \end{pmatrix} = \frac{1}{1+k} \left(\begin{pmatrix} -5\\8 \end{pmatrix} + k \begin{pmatrix} 4\\-10 \end{pmatrix} \right)$$

$$\implies \begin{pmatrix} -3\\4 \end{pmatrix} = \frac{1}{1+k} \begin{pmatrix} 4k-5\\8-10k \end{pmatrix}$$
or, $k = \frac{2}{7}$

Fig. 0.1: Plot of line segment AB along with point \mathbf{P}