Ще докажем по-важните свойства на дисперсията.

D1. $DX \ge 0$.

Доказателство: Тъй като случайната величина $(X - EX)^2 \ge 0$ то и математическото и очакване е неотрицателно, т.е. $DX = E(X - EX)^2 \ge 0$.

 $\mathbf{D2}$. $\mathbf{D}c = 0$, т.е. разсейването на константите е 0.

Доказателство:

$$Dc = E(c - Ec)^2 = E(c - c)^2 = E0 = 0.$$

D3. $D(cX) = c^2 DX$.

Доказателство:

$$D(cX) = E(cX - E(cX))^2 = E(cX - cEX)^2 =$$

= $E[c^2(X - EX)^2] = c^2E(X - EX)^2 = c^2DX$

D4. Нека $X \perp \!\!\! \perp Y$, тогава D(X + Y) = DX + DY.

Доказателство: Ще използваме своиство ЕЗ на математическото очакване.

$$D(X + Y) = E[X + Y - E(X + Y)]^{2} = E[(X - EX) + (Y - EY)]^{2} =$$

$$= E(X - EX)^{2} + E(Y - EY)^{2} + 2E[(X - EX)(Y - EY)] =$$

$$= DX + DY + 2E[(X - EX)(Y - EY)]$$

За да завършим доказателството е достатъчно да покажем, че последното събираемо е нула. Случайните величиниX и Y са независими и съгласно $\mathbf{E4}$ $\mathrm{E}(XY)=\mathrm{E}X$ $\mathrm{E}Y.$ Тогава:

$$E[(X - EX)(Y - EY)] = E(XY - YEX - XEY + EXEY) =$$

$$= E(XY) - EYEX - EXEY + E(EXEY) = E(XY) - EYEX = 0.$$

3.4 Пораждащи функции

Определение 3.5 Нека X е случайна величина, чиито стойности са цели положителни числа. Пораждаща функция $(n. \phi.)$ на X наричаме:

$$g_X(s) = \sum_{k=0}^{\infty} P(X = k) s^k = E(s^X), \quad |s| \le 1.$$
 (3.4.5)

Пораждаща функция на X е просто полином, в който пред k-тата степен на s стои вероятността $\mathrm{P}(X=k)$. Ако случайната величина взима само краен брой стойности, то сумата е крайна и пораждащата функция е дефинирана за всяко s. Ако стойностите на сл.в. X са изброим брой, то е сигурно, че $g_X(1)=1$, тъй като сумата от вероятностите е равна на единица. От тук следва, че поне за $|s|\leq 1$ пораждащата функция със сигурност е сходяща, т.е. съществува. Това е достатъчно за нашите цели, така че понататък няма да разглеждаме въпроса за сходимостта на реда, чрез който се дефинират пораждащите функции.

Пример 3.6 Ще пресметнем в.п.ф. на сл.в. от пример 1, т.е. сл.в. X означава броя на точките, паднали се при хвърлянето на зар с разпределение:

Тогава

$$g_X(s) = \frac{1}{6}s + \frac{1}{6}s^2 + \dots + \frac{1}{6}s^6 = \frac{s}{6}(1+s+\dots+s^5) = \frac{s(1-s^6)}{6(1-s)}.$$

Пораждащите функции улесняват пресмятането на вероятности, свързани с дискретните сл.в., както и на техните характеристиките. Ще изведем, някои по-често използвани свойства на пораждащите функции.

За пресмятане на математическото очакване чрез пораждаща функция се използва следната формула:

g1) $EX = g'_X(1)$.

Доказателство: Ще диференцираме (3.4.5), след което ще положим s=1.

$$g'_X(1) = \sum_{k=1}^{\infty} P(X = k) k s^{k-1} \bigg|_{s=1} = \sum_{k=1}^{\infty} k P(X = k) = EX.$$

Дисперсията на сл.в. също може да бъде пресметната чрез п.ф.:

g2) DX = $g_X''(1) + g_X'(1) - (g_X'(1))^2$.

Доказателство: Ще пресметнем втората производна на $g_X(s)$:

$$g_X''(1) = \sum_{k=1}^{\infty} P(X=k) k(k-1) s^{k-2} \bigg|_{s=1} = \sum_{k=1}^{\infty} k(k-1) P(X=k) = EX(X-1).$$

В последното равенство използвахме формула (3.2.3). Сега като използваме

$$g_X''(1) = E(X(X-1)) = EX^2 - EX,$$

следва:

$$EX^2 = g_X''(1) + EX = g_X''(1) + g_X'(1).$$

Пораждащите функциии могат да бъдат използвани за намирането на разпределението на суми от сл.в.

g3) Нека X и Y са независими случайни величини, тогава $g_{X+Y}(s) = g_X(s)g_Y(s)$.

Доказателство: Ще образуваме произведението $g_X(s)g_Y(s)$ и ще пресметнем коефициента пред s^k :

$$g_X(s)g_Y(s) = \sum_{i=0}^{\infty} P(X=i)s^i \sum_{j=0}^{\infty} P(Y=j)s^j =$$

$$= P(X=0)P(Y=0)s^0 + [P(X=0)P(Y=1) + P(X=1)P(Y=0)]s^1 + \dots$$

$$\dots + \sum_{i=0}^{k} P(X=i)P(Y=k-i)s^{k} + \dots$$

Ще запишем това равенство в затворен вид

$$g_X(s)g_Y(s) = \sum_{k=0}^{\infty} \left(\sum_{i=0}^k P(X=i)P(Y=k-i)\right) s^k.$$
 (3.4.6)

Tъй като X и Y са независими сл.в., то

$$P(X = i)P(Y = k - i) = P(X = i, Y = k - i) = P(X = i, X + Y = k).$$

Ще използваме формулата за пълната вероятност, за да оценим вътрешната сума в (3.4.6):

$$\sum_{i=0}^{k} P(X=i)P(Y=k-i) = \sum_{i=0}^{k} P(X=i, X+Y=k) = P(X+Y=k).$$

Замествайки този резултат в (3.4.6) получаваме търсената пораждаща функция на случайната величина X+Y:

$$g_X(s)g_Y(s) = \sum_{k=0}^{\infty} P(X+Y=k) s^k = g_{X+Y}(s).$$

По индукция този резултат се обобщава за повече от две независими случайни величини:

$$g_{X_1+X_2+...X_n}(s) = g_{X_1}(s) g_{X_2}(s) ... g_{X_n}(s).$$
 (3.4.7)

Пример 3.7 Хвърлят се 10 зара. Да се намери вероятността сумата от падналите се точки да бъде точно 19. Директното пресмятане на тази задача е твърде трудоемко. Това би означавало да се пресметнат всички начини числото 19 да се представи като сума на 10 цели числа в диапазона от 1 до 6. Затова ще използваме възможностите на апарата на пораждащите функции.

 $C X_i$, $i = 1 \dots 10$ ще означим точките паднали се върху i-тия зар. B предишния пример изведохме пораждащата функция на тези случайни величини, а именно

$$g_{X_i}(s) = \frac{s(1-s^6)}{6(1-s)}.$$

Нека Y е сумата от падналите се точки, т.е. $Y = X_1 + X_2 + \ldots + X_{10}$. Точките паднали се върху един зар по никакъв начин не влияят върху точките паднали се върху друг. Следователно, случайните величини X_i са независими. Тогава, съгласно равенство (3.4.7) пораждащата функция на Y е произведение от пораждащите функции на X_i , $i=1\ldots 10$:

$$g_Y(s) = \prod_{i=1}^{10} g_{X_i}(s) = \prod_{i=1}^{10} \left(\frac{s(1-s^6)}{6(1-s)} \right) = \frac{s^{10}(1-s^6)^{10}}{6^{10}(1-s)^{10}}.$$

Съгласно дефиницията на пораждащата функция търсената вероятност ще бъде коефициента пред 19-тата степен на s в тази функция.

За да пресметнем коефициента на s^{19} ще развием тази функция по степените на s. Ще използваме формулата за бином на Нютон

$$(1-a)^n = \sum_{k=0}^n \binom{n}{k} (-a)^k$$

за да преобразуваме числителя. За знаменателя ще използваме формулата за отрицателен бином:

$$(1-a)^{-n} = \sum_{l=0}^{\infty} {n+l-1 \choose l} a^l = \sum_{l=0}^{\infty} {n+l-1 \choose n-1} a^l.$$

По този начин за пораждащата функция на Y получаваме:

$$g_Y(s) = \frac{s^{10}}{6^{10}} \left[\sum_{k=0}^{10} {10 \choose k} (s^6)^k \right] \sum_{l=0}^{\infty} {9+l \choose l} s^l =$$

$$g_Y(s) = \frac{s^{10}}{6^{10}} \left[1 - {10 \choose 1} s^6 + {10 \choose 2} s^{12} + \dots \right] \sum_{l=0}^{\infty} {9+l \choose l} s^l =$$

Пред сумите стои s^{10} , следователно от произведението на двете суми трябва да получим s^9 . Това може да стане само по два начина. Да вземем единица от първата сума и да я умножим с s^9 от втората сума. Или да вземем s^6 от първата и s^3 от втората сума. Останалите събираеми в първата сума са със степен равна или по-голяма от 12, тъй че няма как да се използват.

Окончателно, за търсената вероятност получаваме

$$P(Y = 19) = coeff_{s^{19}} \{g_Y(s)\} = \frac{1}{6^{10}} \left[\binom{18}{9} - \binom{10}{1} \binom{12}{3} \right].$$

3.5 По-важни дискретни разпределения

В този раздел ще разгледаме свойствата на някои от най-често срещаните дискретни случайни величини.

3.5.1 Разпределение на Бернули - $X \in Be(p)$

Това разпределение е кръстено на името на швейцарския математик Якоб Бернули. "Опит на Бернули" наричаме опит, при който има само две възможности, наречени "успех" с вероятност p или "неуспех" с вероятност q=1-p. Стандартният пример е хвърляне на една монета. Съответно, случайната величина с разпределение на Бернули може да взима само две стойности - "1" при успех и "0" при неуспех, т.е. разпределението и има вида:

$$\begin{array}{c|cc} X & 0 & 1 \\ P & q & p \end{array}$$

Елементарно се пресмятат EX = p и DX = pq.