SSD1675

Product Preview

160 Source x 296 Gate Red/Black/White **Active Matrix EPD Display Driver with Controller**

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.

Version	Change Items	Effective Date
0.10	1 st Release	04-May-16

 SSD1675
 Rev 0.10
 P 2/46
 Solomon Systech

CONTENTS

1	GEN	NERAL DESCRIPTION	5
2	FFΔ	TURES	
3	ODI	DERING INFORMATION	
4		OCK DIAGRAM	
5	PIN	DESCRIPTION	7
6	FUN	NCTIONAL BLOCK DESCRIPTION	10
	6.1	MCU Interface	10
	6.2	MCU Interface selection	
	6.3	MCU SERIAL INTERFACE (4-WIRE SPI)	
	6.4	MCU SERIAL PERIPHERAL INTERFACE (3-WIRE SPI)	11
	6.5	MCU I2C INTERFACE	12
	6.6	I2C-BUS WRITE DATA	12
	6.7	Write mode for I2C	13
	6.8	RAM	14
	6.9	OSCILLATOR	15
	6.10	BOOSTER & REGULATOR	15
	6.11	VCOM SENSING	15
	6.12	GATE WAVEFORM, PROGRAMMABLE SOURCE AND VCOM WAVEFORM	
	6.13	Waveform Setting	
	6.14	OTP	
	6.15	THE OTP INFORMATION	
	6.16	THE OTP CONTENT AND ADDRESS MAPPING	
	6.17	TEMPERATURE SEARCHING MECHANISM	
	6.18	EXTERNAL TEMPERATURE SENSOR I2C SINGLE MASTER INTERFACE	
	6.19	CASCADE MODE	20
	6.20	VCI DETECTION	
	6.21	HV READY DETECTION	
7	COI	MMAND TABLE	21
8	COL	MMAND DESCRIPTION	34
	8.1	DRIVER OUTPUT CONTROL (01H)	34
	8.2	GATE SCAN START POSITION (0FH)	36
	8.3	DATA ENTRY MODE SETTING (11H)	37
	8.4	SET RAM X - ADDRESS START / END POSITION (44H)	38
	8.5	SET RAM Y - ADDRESS START / END POSITION (45H)	38
	8.6	SET RAM ADDRESS COUNTER (4EH-4FH)	38
9	TYP	PICAL OPERATING SEQUENCE	
	9.1	NORMAL DISPLAY	39
	9.2	VCOM OTP Program	
	9.3	WS OTP PROGRAM	
1() A	BSOLUTE MAXIMUM RATING	42
1:	1 E	LECTRICAL CHARACTERISTICS	42
12	2 A	C CHARACTERISTICS	44
	12.1	OSCILLATOR FREQUENCY	
	12.1	SERIAL PERIPHERAL INTERFACE	
	12.2	I2C Interface Timing Characteristic	
	12.3	120 INTENIACE THVIING CHANACTERISTIC	43

TABLES	_
TABLE 3-1 : ORDERING INFORMATION	6
TABLE 5-1 : MCU INTERFACE SELECTION	
TABLE 6-1: INTERFACE PINS ASSIGNMENT UNDER DIFFERENT MCU INTERFACE	
TABLE 6-2 : CONTROL PINS STATUS OF 4-WIRE SPI	10
TABLE 6-3 : CONTROL PINS STATUS OF 3-WIRE SPI	
TABLE 6-4: LUT MAPPING TO RAM CONTENT FOR MONO BLACK WHITE AND MONO RED	
TABLE 6-5: RAM ADDRESS MAP ACCORDING TO ABOVE CONDITION	14
TABLE 6-6: VS [NX-LUTN] VALUE MAPPING TABLE	16
TABLE 7-1: COMMAND TABLE	21
TABLE 10-1 : MAXIMUM RATINGS	
Table 11-1: DC Characteristics	
Table 11-2: Regulators Characteristics	
Table 12-1: Oscillator Frequency	
Table 12-2: Serial Peripheral Interface Timing Characteristics	44
Table 12-3: I ² C Interface timing characteristics	45
FIGURES	
FIGURE 4-1 : SSD1675 BLOCK DIAGRAM	6
Figure 6-1 : Write procedure in 4-wire SPI mode	10
FIGURE 6-2 : READ PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI	
FIGURE 6-4: I ² C-BUS DATA FORMAT	12
FIGURE 6-5: DEFINITION OF THE START AND STOP CONDITION.	
FIGURE 6-6: DEFINITION OF THE ACKNOWLEDGEMENT CONDITION	
FIGURE 6-7: DEFINITION OF THE ACKNOWLEDGEMENT CONDITION	
FIGURE 6-8: GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTR	
I IGURE 0-0 . GATE WAVEFORM AND I ROGRAMIMABLE GOURCE AND VOOM WAVEFORM ILLUSTR	
FIGURE 6-9 : VS[NX-LUT] AND TP[N] MAPPING IN LUT	
FIGURE 6-10: THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND	17
TEMPERATURE RANGE	18
FIGURE 6-11: WAVEFORM SETTING AND TEMPERATURE RANGE # MAPPING	
FIGURE 6-12 : EXAMPLE TEMPERATURE RANGE	
FIGURE 8-1: OUTPUT PIN ASSIGNMENT ON DIFFERENT SCAN MODE SETTING.	
FIGURE 8-2: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING.	
FIGURE 8-3: EXAMPLE OF SET DISPLAY START LINE WITH NO REMAPPING.	
FIGURE 12-1: SPI TIMING DIAGRAM	
	,

SSD1675 | Rev 0.10 | P 4/46 | **Solomon Systech**

1 General Description

The SSD1675 is an Active Matrix EPD Display Driver with Controller which can support Red/Black/White.

It consists of 160 source outputs, 296 gate outputs, 1 VCOM and 1 VBD for border that can support a maximum display resolution 160x296. In addition, the SSD1675 has a cascade mode that can support higher display resolution.

The SSD1675 embeds booster, regulators and oscillator. Data/Commands are sent from general MCU through the hardware selectable Serial peripheral or I2C interface.

2 Features

- Design for dot matrix type active matrix EPD display
- Support Red/Black/White mono color
- Resolution: 160 source outputs; 296 gate outputs; 1 VCOM; 1VBD for border
- Power supply:
 - VCI: 2.2 to 3.7VVDDIO: Connect to VCI
 - VDD: 1.8V, regulate from VCI supply
- · On chip display RAM
 - Mono B/W: 160x296 bits
 - Mono Red: 160x296 bits
- On-chip booster and regulator for generating VCOM, Gate and Source driving voltage
- Gate driving output voltage:
 - 2 levels output (VGH, VGL)
 - Max 42Vp-p
 - VGH: 10V to 21V; VGL: -VGH
 - Voltage adjustment step: 500mV
- Source / VBD driving output voltage:
 - 4 levels output (VSH1, VSS, VSL, and VSH2)
 - VSH1/VSH2: 2.4V to 18V (Voltage step: 100mV for 2.4V to 8.8V, 200mV for 8.8V to 18V.)
 - VSL: -9V to -18V (Voltage step: 500mV)
- VCOM output voltage

DCVCOM	ACVCOM
-3V to -0.2V in 100mV resolution	3 levels output
	VSH1+DCVCOM
7	> DCVCOM
	> VSL+DCVCOM

- Built in VCOM sensing
- On-chip oscillator
- Programmable output waveform for different types of EPD display:
 - 28 phases (4 phases/group, 7 groups with repeat function)
 - 1 to 256 times for repeat count
 - Max. 255 frame/phase
 - On-chip OTP can store LUT (max. 25 sets), including (LUT, gate/source voltage, frame rate and Temperature Range), VCOM value and waveform version ID
 - Low voltage detect for supply voltage
 - High voltage ready detect for driving voltage
 - Read OTP function
 - Auto write RAM command for regular pattern
 - I2C Single Master Interface to read external temperature sensor reading.
 - Cascade mode to support higher display resolution.
 - MCU interface: Serial peripheral and I2C interface available
 - Maximum SPI write speed 20MHz
 - Available in COG package

SSD1675 | Rev 0.10 | P 5/46 | Solomon Systech

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	Package Form	Remark
SSD1675Z	Gold Bump Die	Bump Face Up On Waffle pack Die thickness: 300um Bump height: 12um

Figure 4-1: SSD1675 Block Diagram

SSD1675 | Rev 0.10 | P 6/46 | **Solomon Systech**

5 PIN DESCRIPTION

Key: I = Input, O =Output, IO = Bi-directional (input/output), P = Power pin, C = Capacitor Pin NC = Not Connected, Pull L =connect to V_{SS}, Pull H = connect to V_{DDIO}

				to Vss, Pull H = connect to VDDIO	Т
Pin name	Туре	Connect to	Function	Description	When not in use
Input pow	er	•			II.
VCI	Р	Power Supply	Power Supply	Power input pin for the chip.	-
VCIA	Р	Power Supply	Power Supply	Power input pin for the chip. - Connect to VCI in the application circuit.	-
VDDIO	Р			Power input pin for the Interface. - Connect to VCI in the application circuit.	-
VDD	P	•	Regulator output	Core logic power pin VDD can be regulated internally from VCI. - For the single chip application, a capacitor should be connected between VDD and VSS under all circumstances. - For the cascade mode application, a capacitor should be connected between VDD and VSS in the master chip under all circumstances. For the slave chip, the capacitor is not necessary as VDD will be supplied from the cascade master chip externally.	-
EXTVDD	l		Regulator bypass	This pin is VDD regulator bypass pin. For the single chip application, EXTVDD should be connected to VSS in the application circuit. For the cascade mode application, EXTVDD of the master chip should be connected to VSS while EXTVDD of the slave chip should be connected to VDDIO in the application circuit.	-
VSS	Р	VSS	GND	Ground (Digital).	-
VSSA	Р	VSS	GND	Ground (Analog) - Connect to VSS in the application circuit.	-
VSSBG	Р	VSS	GND	Ground (Reference) pin. - Connect to VSS in the application circuit.	-
VSSGS	Р	VSS	GND	Ground (Output) pin. - Connect to VSS in the application circuit.	-
VPP	Р	Power Supply	OTP power	Power Supply for OTP Programming.	Open
Digital I/O	•				•
SCL		MPU	Data Bus	Serial clock pin for interface: Refer to Session 6.1 - MCU Interface.	-
SDA	I/O		Data Bus	Serial data pin for interface: Refer to Session 6.1 - MCU Interface.	
CS#		MPU	Logic Control	This pin is the chip select input connecting to the MCU. Refer to Session 6.1 - MCU Interface.	VDDIO or VSS
D/C#		MPU	Logic Control	This pin is Data/Command control pin connecting to the MCU. Refer to Session 6.1- MCU Interface.	VDDIO or VSS

SSD1675 | Rev 0.10 | P 7/46 | **Solomon Systech**

Pin name	Туре	Connect to	Function	Description	When not in use
RES#	I	MPU	System Reset	This pin is reset signal input. Active Low.	-
BUSY	0	MPU	Device Busy Signal	This pin is Busy state output pin When Busy is High, the operation of the chip should not be interrupted, and command should not be sent. For example., The chip would put Busy pin High when - Outputting display waveform; or - Programming with OTP - Communicating with digital temperature sensor In the cascade mode, the BUSY pin of the slave chip should be left open.	Open
M/S#	I	VDDIO/VSS	Cascade Mode Selection	 This pin is Master and Slave selection pin. For the single chip application, the M/S# pin should be connected to VDDIO. In the cascade mode: For Master Chip, the M/S# pin should be connected to VDDIO. For Slave Chip, the M/S# pin should be connected to VSS. The oscillator, booster and regulator circuits of the slave chip will be disabled. The corresponding pins including CL, VDD, VDDIO, VGH, VGL, VSH1, VSH2, VSL and VCOM must be connected to the master chip. 	-
CL	I/O	NC	Clock signal	This is the clock signal pin. - For the single chip application, the CL pin should be left open. - In the cascade mode, the CL pin of the slave chip should be connected to the CL pin of the master chip.	Open
BS [2:1]		VDDIO/VSS	MCU Interface Mode Selection	These pins are for selecting different bus interface. Table 5-1: MCU interface selection BS2 BS1 MCU Interface NC / L 4-wire serial peripheral interface (SPI) L NC / H 3-wire serial peripheral interface (SPI) L - 9 bits SPI H L I2C Interface	-
TSDA	I/O	Temperature sensor SDA	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave.	Open
TSCL	o ~ C	Temperature sensor SCL	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave.	Open

 SSD1675
 Rev 0.10
 P 8/46
 Solomon Systech

Pin name	Туре	Connect to	Function	Description	When not in use
Analog Pi	ì	1			
GDR	О	POWER MOSFET Driver Control	VGH, VGL Generation	on	
RESE	I	Booster Control Input		Current sense input pin for the control Loop.	-
VGH	С	Stabilizing capacitor		Positive Gate driving voltage. Connect a stabilizing capacitor between VGH and VSS in the application circuit.	-
VGL	С	Stabilizing capacitor		This pin is Negative Gate driving voltage. Connect a stabilizing capacitor between VGL and VSS in the application circuit.	-
VSH1	С	Stabilizing capacitor	VSH1, VSH2, VSL Generation	This pin is Positive Source driving voltage, VSH1 Connect a stabilizing capacitor between VSH1 and VSS in the application circuit.	-
VSH2	С	Stabilizing capacitor		This pin is Positive Source driving voltage, VSH2 Connect a stabilizing capacitor between VSH2 and VSS in the application circuit.	
VSL	С	Stabilizing capacitor		This pin is Negative Source driving voltage. Connect a stabilizing capacitor between VSL and VSS in the application circuit.	-
VCOM	С	Panel/ Stabilizing capacitor	VCOM Generation	These pins are VCOM driving voltage Connect a stabilizing capacitor between VCOM and VSS in the application circuit.	-
Panel Driv	ing				
S [159:0]	0	Panel	Source driving signal	Source output pin.	Open
G [295:0]	0	Panel	Gate driving signal	Gate output pin.	Open
VBD	Ο	Panel	Border driving signal	Border output pin.	Open
Others					
NC	NC	NC	Not Connected	Keep open. Don't connect with other NC pins.	Open
TPA, TPB, TPC, TPD, TPF, FB		NC	Reserved for Testing	Reserved pins Keep open Don't connect to other NC pins and test pins including TPA, TPB, TPC, TPD, TPE, TPF and FB.	Open
TIN	I	NC	Reserved for Testing	Reserved pins Keep open.	Open
TPE	0	NC			Open

SSD1675 | Rev 0.10 | P 9/46 | Solomon Systech

6 Functional Block Description

6.1 MCU Interface

6.1.1 MCU Interface selection

The SSD1675 can support 3-wire/4-wire serial peripheral and I2C interface. In the SSD1675, the MCU interface is pin selectable by BS [2:1] shown in Table 6-1.

Note

- (1) L is connected to Vss
- (2) H is connected to V_{DDIO}

Table 6-1: Interface pins assignment under different MCU interface

	Pin Name						
MCU Interface	BS2	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	Not Connect / Connect to VSS	Connect to VSS	Required	Required	Required	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Not Connect / Connect to VSS	Connect to VDDIO	Required	Required	Connect to VSS	SCL	SDA
I2C Interface	Connect to VDDIO	Connect to VSS	Required	Connect to VSS	SA0	SCL	SDA

6.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	↑	Command bit	L	L
Write data	1	Data bit	Н	L

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal
- (3) SDA(Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

SSD1675 Rev 0.10 P 10/46 **Solomon Systech**

Figure 6-2: Read procedure in 4-wire SPI mode

6.1.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Table 6-3: Control pins status of 3-wire SPI

Function	SCLK pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	1	Data bit	Tie LOW	L

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI

SSD1675 | Rev 0.10 | P 11/46 | Solomon Systech

6.1.4 MCU I2C Interface

The I²C communication interface consists of slave address bit SA0, I²C-bus data signal SDA and I²C-bus clock signal SCL. Both the data and clock signals must be connected to pull-up resistors. RES# is used for the initialization of device.

a) Slave address bit (SA0)

SSD1675 has to recognize the slave address before transmitting or receiving any information by the I²C-bus. The device will respond to the slave address following by the slave address bit ("SA0" bit) and the read/write select bit ("R/W#" bit) with the following byte format,

_	_		_		_		
B ₇	B ₆	B ₅	B ₄	B ₃	I B₂	B₁	I B₀
·		·	·	Ţ.	_	· ·	
0	1	1	1	1	0	SA0	R/W#

"SA0" bit provides an extension bit for the slave address. Either "0111100" or "0111101", can be selected as the slave address of SSD1675. D/C# pin acts as SA0 for slave address selection.

"R/W#" bit is used to determine the operation mode of the I^2C -bus interface. R/W#=1, it is in read mode. R/W#=0, it is in write mode.

b) I²C-bus data signal (SDA)

SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA.

It should be noticed that the ITO track resistance and the pulled-up resistance at "SDA" pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in "SDA".

c) I²C-bus clock signal (SCL)

The transmission of information in the I²C-bus is following a clock signal, SCL. Each transmission of data bit is taken place during a single clock period of SCL.

6.1.4.1 I2C-bus Write data

The I²C-bus interface gives access to write data and command into the device. Please refer to **Error! Reference source not found.** for the write mode of I²C-bus in chronological order.

Figure 6-4: I²C-bus data format

SSD1675 Rev 0.10 P 12/46 **Solomon Systech**

6.1.4.2 Write mode for I2C

- The master device initiates the data communication by a start condition. The definition of the start condition is shown in Figure 6-5. The start condition is established by pulling the SDA from HIGH to LOW while the SCL stays HIGH.
- 2) The slave address is following the start condition for recognition use. For the SSD1675, the slave address is either "b0111100" or "b0111101" by changing the SA0 to LOW or HIGH (D/C pin acts as SA0).
- 3) The write mode is established by setting the R/W# bit to logic "0".
- 4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the R/W# bit. Please refer to the Figure 6-6 for the graphical representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the HIGH period of the acknowledgement related clock pulse.
- 5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and D/C# bits following by six "0" 's.
 - a. If the Co bit is set as logic "0", the transmission of the following information will contain data bytes only.
 - b. The D/C# bit determines the next data byte is acted as a command or a data. If the D/C# bit is set to logic "0", it defines the following data byte as a command. If the D/C# bit is set to logic "1", it defines the following data byte as a data.
- 6) Acknowledge bit will be generated after receiving each control byte or data byte.
- 7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in Figure 6-5. The stop condition is established by pulling the "SDA in" from LOW to HIGH while the "SCL" stays HIGH.

Figure 6-5: Definition of the Start and Stop Condition

Figure 6-6: Definition of the acknowledgement condition

SSD1675 | Rev 0.10 | P 13/46 | Solomon Systech

Please be noted that the transmission of the data bit has some limitations.

- 1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the "HIGH" period of the clock pulse. Please refer to the Figure 6-7 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is LOW.
- 2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.

Figure 6-7: Definition of the data transfer condition

6.2 RAM

The On chip display RAM is holding the image data.

1 set of RAM is built for Mono B/W. The RAM size is 160x296 bits.

1 set of RAM is built for Mono Red. The RAM size is 160x296 bits.

Table 6-4: LUT mapping to RAM content for Mono Black White and Mono Red

R	B/W	LUT
0	0	LUT 0
0	1	LUT 1
1	0	LUT 2
1	1	LUT 3

In order to write the image data into the display RAM, it is necessary to define the Data Entry Mode Setting (Command 0x11h), the Driver Output Control (Command 0x01h) and the Gate Scan Start Position (Command 0x0Fh). The following is an example to show how to set these commands. And, Table 6-5 is the corresponding RAM address mapping of these command settings.

Command "Data Entry Mode Setting" R11h is set to:

Address Counter update in X direction	AM=0
X: Increment	ID[1:0] =11
Y: Increment	

Command "Driver Output Control" R01h is set to:

296 Mux	MUX = 127h
Select G0 as 1 st gate	GD = 0
Left and Right gate Interlaced	SM = 0
Scan From G0 to G295	TB = 0

Command "Gate Scan Start Position" R0Fh is set to:

Set the Start Position of Gate = G0 SCN=0

Then the data byte sequence: DB0, DB1, DB2 ... DB18 ... DB19, DB20 ... DB5919

Table 6-5: RAM address map according to above condition

		S0	S <u>1</u>	S2	S3	S4	S5	S6	S7			S152	S153	S154	S155	S156	S157	S158	S159
		00h							13h										
G0	00h	DB0 [7]	DB0 [6]	DB0 [5]	DB0 [4]	DB0 [3]	DB0 [2]	DB0 [1]	DB0 [0]			DB19 [7]	DB19 [6]	DB19 [5]	DB19 [4]	DB19 [3]	DB19 [2]	DB19 [1]	DB19 [0]
G1	01h	DB20 [7]	DB20 [6]	DB20 [5]	DB20 [4]	DB20 [3]	DB20 [2]	DB20 [1]	DB20 [0]			DB39 [7]	DB39 [6]	DB39 [5]	DB39 [4]	DB39 [3]	DB39 [2]	DB39 [1]	DB39 [0]
			á			:													
										\bigvee	\rightarrow								
			j			:					\longmapsto								
G294	126h	DB5880 [7]	DB5880 [6]	DB5880 [5]	DB5880 [4]	DB5880 [3]	DB5880 [2]	DB5880 [1]	DB5880 [0]			DB5899 [7]	DB5899 [6]	DB5899 [5]	DB5899 [4]	DB5899 [3]	DB5899 [2]	DB5899 [1]	DB5899 [0]
G295	127h	DB5900 [7]	DB5900 [6]	DB5900 [5]	DB5900 [4]	DB5900 [3]	DB5900 [2]	DB5900 [1]	DB5900 [0]			DB5919 [7]	DB5919 [6]	DB5919 [5]	DB5919 [4]	DB5919 [3]	DB5919 [2]	DB5919 [1]	DB5919 [0]

ADDR

SSD1675 Rev 0.10 P 14/46 **Solomon Systech**

Source X-ADDR

6.3 Oscillator

The oscillator module generates the clock reference for waveform timing and analog operations.

6.4 Booster & Regulator

A voltage generation system is included in the driver. It provides all necessary driving voltages required for an AMEPD panel including VGH, VGL, VSH1, VSH2, VSL and VCOM. External application circuit is needed to make the on-chip booster & regulator circuit work properly.

6.5 VCOM Sensing

This functional block provides the scheme to select the optimal VCOM DC level. The sensed value can be programmed into OTP.

The flow of VCOM sensing:

- Active Gate is scanning during the VCOM sense Period.
- Source are VSS.
- VCOM pin used for sensing.
- During Sensing period, BUSY is high.
- After Sensing, Active Gate return to non-select stage.

SSD1675 | Rev 0.10 | P 15/46 | Solomon Systech

6.6 Gate waveform, Programmable Source and VCOM waveform

- There are 7 groups, each group contains 4 phases, totally 28 phases for programmable Source waveform with different phase length.
- The phase length of LUT0~LUT4 is defined as TP[nX]
 - > The range of TP[nX] is from 0 to 255.
 - > n represents the Group number from 0 to 6; X represents the sub-group number from A to D.
 - ightharpoonup TP[nX] = 0 indicates phase skipped.
- The repeat count of group is defined as RP[n], which is used for the count of repeating TP[nA], TP[nB], TP[nC] and TP[nD];
 - > The range of RP[n] is from 0 to 255.
 - > n represents the Group number from 0 to 6:
 - RP[n] = 0 indicates run time =1,
- Source/VCOM Voltage Level: VS [nX-LUT] is constant in each phase.
- VS [nX-LUTn] indicates the voltage in phase n for transition LUT.
 - > 00 VSS
 - 01 VSH1
 - > 10 − VSL
 - ➤ 11 VSH2

Table 6-6: VS [nX-LUTn] value mapping table

LUT0	В	00 - VSS, 01 - VSH1, 10 - VSL, 11-VSH2
LUT1	W	00 - VSS, 01 - VSH1, 10 - VSL, 11-VSH2
LUT2	R	00 - VSS, 01 - VSH1, 10 - VSL, 11-VSH2
LUT3	R	Assign as the same as LUT2
LUT4	VCOM	00 -DCVCOM, 01 - VSH1+DCVCOM, 10 - VSL+ DCVCOM

• VS [nX-LUT], TP[nX], RP[n], VSH, VSL are stored in waveform lookup table register [LUT].

Figure 6-8: Gate waveform and Programmable Source and VCOM waveform illustration

 SSD1675
 Rev 0.10
 P 16/46
 Solomon Systech

6.7 Waveform Setting

WAVEFORM SETTING (WS) contains 70bytes, which define the display driving waveform settings. They are arranged in following format figure shown

bilowing format figure shown											
	D7 D6	D5	D4	D3	D2	D1	D0				
0	VS[0A-L0]		B-L0]		C-L0]	VS[0	D-L0]				
1	VS[1A-L0]	VS[1	B-L0]	VS[1	C-L0]	VS[1D-L0]					
2	VS[2A-L0]	VS[2	B-L0]	VS[2	C-L0]	VS[2D-L0]					
3	VS[3A-L0]	4	B-L0]		C-L0]		D-L0]				
4	VS[4A-L0]	4	B-L0]		C-L0]		D-L0]				
5	VS[5A-L0]		B-L0]		C-L0]		D-L0]				
6	VS[6A-L0]		B-L0]		C-L0]		D-L0]				
7	VS[0A-L1]	VS[0	B-L1]	VS[0	C-L1]	VS[0	D-L1]				
31	VS[3A-L4]	VS[3	B-L4]		C-L4]	VS[3	D-L4]				
32	VS[4A-L4]		B-L4]		C-L4]		D-L4]				
33	VS[5A-L4]	_	B-L4]		C-L4]		D-L4]				
34	VS[6A-L4]	VS[6	B-L4]	VS[6	C-L4]	VS[6	D-L4]				
35			TP	[0A]							
36			TP	[0B]							
37			TP	[0C]							
38			ΙP	[0D]							
39				P[0]							
40			TP	[1A]							
41			T P	[1B]							
42			TP	[1C]							
43			TP	[1D]							
44			RF	P[1]							
			<i>.</i>								
			7 .								
65			TP	[6A]							
66			TP	[6B]							
67			TP	[6C]							
68			TP	[6D]							
69			RF	P[6]							
70			V	ЭH							
71			VS	H1							
72			VS	H2							
73			V	SL							
74			Fran	me 1							
75			Frai	me 2							
_					· ·						

Figure 6-9: VS[nX-LUT] and TP[n] mapping in LUT

WS can be accessed by MCU interface or loaded from OTP.

5 registers are involved to set WS from MCU interface

- WS byte 0~69, the content of VS [n-XY], TP [n#], RP[n], are the parameter belonging to Register 0x32
- WS byte 70, the content of gate level, is the parameter belonging to Register 0x03.
- WS byte 71~73, the content of source level, is the parameter belonging to Register 0x04.
- WS byte 74, the content of dummy line, is the parameter belonging to Register 0x3A.
- WS byte 75, the content of gate line width, is the parameter belonging to Register 0x3B.

SSD1675 | Rev 0.10 | P 17/46 | **Solomon Systech**

6.8 OTP

6.8.1 The OTP information

The OTP is the non-volatile memory and stored the information of:

- 25 set of WAVEFORM SETTING (WS).
- 25 set of TEMPERATURE RANGE (TR). which consist of
 - o Low limit (TEMP [m-L]) and High limit (TEMP [m-H]) for each set of WS#.
- VCOM value
- Waveform version ID

Remark:

- WS [m] means the waveform setting of temperature set m, the configuration are same as the definition in LUT.
 The corresponding low temperature range of WS[m] defined as TEMP [m-L] and high range defined as TEMP [m-H]
- Load WS [m] from OTP for LUT if Temp [m-L] < Temperature Register <= Temp [m-H]

6.8.2 The OTP content and address mapping

The mapping table of OTP for waveform setting and temperature range is shown in Figure 6-10:

	D7 D6 D5 D4 D3 D2 D1 D0	
0		
	WS 0	
75		
76		
	WS 1	
151		
152		
	WS 2	
227		
228	A. Y	
	WS 3	
303		
1748		
	WS 23	
1823		
1824	/	
	WS 24	
1899		
1900	temp_L[7:0]	
1901	temp_H[3:0] temp_L[11:8]	TR0
1902	temp_H[3:0] temp_L[11:8] temp_H[11:4]	TR0
1902 1903	temp_H[3:0] temp_L[11:8] temp_H[11:4]	TR0
1902 1903 1904	temp_H[3:0] temp_L[11:8]	TR0
1902 1903 1904 1905	temp_H[3:0] temp_L[11:8] temp_H[11:4]	TR0
1902 1903 1904 1905 1906	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1	TR0
1902 1903 1904 1905 1906 1907	temp_H[3:0] temp_L[11:8] temp_H[11:4]	TR0
1902 1903 1904 1905 1906 1907 1908	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1	TRO
1902 1903 1904 1905 1906 1907 1908 1909	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2	TR0
1902 1903 1904 1905 1906 1907 1908 1909 1910	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1	TR0
1902 1903 1904 1905 1906 1907 1908 1909 1910	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3 TR4	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3 TR4	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3 TR4	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3 TR4	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1969 1970 1971	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3 TR4 TR23	TRO
1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914	temp_H[3:0] temp_L[11:8] temp_H[11:4] TR1 TR2 TR3 TR4	TRO

Figure 6-10: The Waveform setting mapping in OTP for waveform setting and temperature range

SSD1675 | Rev 0.10 | P 18/46 | **Solomon Systech**

6.9 Temperature Searching Mechanism

Legend:

WS#	Waveform Setting no. #
TR#	Temperature Range no. #
LUT	560 bit register storing the waveform setting (volatile)
Temperature register	12bit Register storing reading from temperature sensor (volatile)
OTP	A non-volatile storing 25 sets of waveform setting and 25 set of temperature range
WS_sel_ address	an address pointer indicating the selected WS#

OTP (non-volatile)	
WS0	TR0
WS1	TR1
WS2	TR2
WS3	TR3
WS23	TR23
WS24	TR24

Figure 6-11: Waveform Setting and Temperature Range # mapping

IC implementation requirement

- Compare temperature register from TR0 to TR24, in sequence. The last match will be recorded
 - i.e. If the temperature register fall in both TR3 and TR5. WS5 will be selected
- 2 There is no restriction on the sequence of TR0, TR2.... TR24

Example Temperature Range assignment

Waveform setting		Lower Limit [Hex]	Upper Limit[Hex]
WS0	-128 DegC < Temperature <= 5 DegC	800	050
WS1	5 DegC < Temperature <= 10DegC	050	0A0
WS2	10 DegC < Temperature <= 15DegC	0A0	0F0
WS3	15 DegC < Temperature <= 20DegC	0F0	140
WS4	20 DegC < Temperature <= 25DegC	140	190
WS5	25 DegC < Temperature <= 30DegC	190	1E0
WS6	30 DegC < Temperature <= 35DegC	1E0	230
WS7	35 DegC < Temperature <= 127.9DegC	230	7FF
Others		000	000

Figure 6-12 : Example Temperature Range

User application

- 1 If temperature is 5 DegC, WS0 is selected
- 2 If temperature is 23 DegC, WS4 is selected
- 3 If temperature > 35 DegC, WS7 is selected

SSD1675 | Rev 0.10 | P 19/46 | **Solomon Systech**

6.10 External Temperature Sensor I2C Single Master Interface

The chip provides two I/O lines [TSDA and TSCL] for connecting digital temperature sensor for temperature reading sensing.

TSDA will treat as SDA line and TSCL will treat as SCL line. They are required connecting with external pull-up resistor.

- 1. If the Temperature value MSByte bit D11 = 0, then the temperature is positive and value (DegC) = + (Temperature value) / 16
- 2. If the Temperature value MSByte bit D11 = 1, then

the temperature is negative and value (DegC) = - (2's complement of Temperature value) / 16

omporataro io mogativo am	a value (Bege) (Be comp	iomonic or Tomporace	ard value), r
12-bit binary	Hexadecimal	Decimal	Value
(2's complement)	Value	Value	[DegC]
0111 1111 0000	7F0	2032	127
0111 1110 1110	7EE	2030	126.875
0111 1110 0010	7E2	2018	126.125
0111 1101 0000	7D0	2000	125
0001 1001 0000	190	400	25
0000 0000 0010	002	2	0.125
0000 0000 0000	000	0	0
1111 1111 1110	FFE	-2	-0.125
1110 0111 0000	E70	-400	-25
1100 1001 0010	C92	-878	-54.875
1100 1001 0000	C90	-880	-55

6.11 Cascade Mode

The SSD1675 has a cascade mode that can cascade 2 chips to achieve the display resolution up to 160 (sources) x 296 (gates). The pin M/S# is used to configure the chip. When M/S# is connected to VDDIO, the chip is configured as a master chip. When M/S# is connected to VSS, the chip is configured as a slave chip.

When the chip is configured as a master chip, it will be the same as a single chip application, ie, all circuit blocks will be worked as usual. When the chip is configured as a slave chip, its oscillator and booster & regulator circuit will be disabled. The oscillator clock and all booster voltages will be come from the master chip. Therefore, the corresponding pins including CL, VDD, VGH, VGL, VSH1, VSH2, VSL, VGL and VCOM must be connected to the master chip.

6.12 VCI Detection

The VCI detection function is used to detect the VCI level when it is lower than Vlow, threshold voltage set by register.

In the SSD1675, there is a command to execute the VCI detection function. When the VCI detection command is issued, the VCI detection will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of VCI, which 0 is normal, 1 is VCI<Vlow.

6.13 HV Ready Detection

The HV Ready detection function is used to detect whether the analog block is ready.

In the SSD16, there is a command to execute the HV Ready detection function. When the HV Ready detection command is issued, the HV Ready will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of HV Ready, which 0 is normal, 1 indicate HV is not ready.

SSD1675 | Rev 0.10 | P 20/46 | **Solomon Systech**

7 COMMAND TABLE

Table 7-1: Command Table

Com	Command Table															
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on 🔨			
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti	ng	7		
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	·	A[8:0]= 12				
0	1		0	0	0	0	0	0	0	A ₈		MUX Gate	e lines se	tting as (A	.[8:0] + 1).	
							_					DIO.OI O	00 IDODI			
0	1		0	0	0	0	0	B ₂	B ₁	Bo		MUX Gate lines setting as (A[8:0] + 1). B[2:0] = 000 [POR]. Gate scanning sequence and direction B[2]: GD Selects the 1st output Gate GD=0 [POR], G0 is the 1st gate output channel, gate output sequence is G0,G1, G2, G3, GD=1, G1 is the 1st gate output channel, gate output sequence is G1, G0, G3, G2, B[1]: SM Change scanning order of gate driver. SM=0 [POR], G0, G1, G2, G3295 (left and right gate interlaced) SM=1, G0, G2, G4G294, G1, G3,G295 B[0]: TB TB = 0 [POR], scan from G0 to G295 TB = 1, scan from G295 to G0.				
	l															
0	0	03	0	0	0	0 A ₄	0 A ₃	0 A ₂	1 A ₁	1 A ₀	Gate Driving voltage Control		9h [POR] ng from 1			
												A[4:0]	VGH	A[4:0]	VGH	
												03h	10	0Fh	16	
									7			04h	10.5	10h	16.5	
								7				05h	11	11h	17	
												06h	11.5	12h	17.5	
							X					07h	12	13h	18	
												08h	12.5	14h	18.5	
								/				09h	13	15h	19	
						2	7					0Ah	13.5	16h	19.5	
						V)					0Bh	14	17h	20	
					7							0Ch	14.5	18h	20.5	
												0Dh	15	19h	21	
						,						0Eh	15.5	Other	NA	
				7- (y										

 SSD1675
 Rev 0.10
 P 21/46
 Solomon Systech

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage	Set Source driving voltage
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C_6	C ₅	C ₄	C ₃	C_2	C ₁	C ₀		

A[7]/B[7] = 1,

VSH1/VSH2 voltage setting from 2.4V

to 8.8V

10 0.0 V			
A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
8Eh	2.4	AFh	5.7
8Fh	2.5	B0h	5.8
90h	2.6	B1h	5.9
91h	2.7	B2h	6
92h	2.8	B3h	6.1
93h	2.9	B4h	6.2
94h	3	B5h	6.3
95h	3.1	B6h	6.4
96h	3.2	B7h	6.5
97h	3.3	B8h	6.6
98h	3.4	B9h	6.7
99h	3.5	BAh	6.8
9Ah	3.6	BBh	6.9
9Bh	3.7	BCh	7
9Ch	3.8	BDh	7.1
9Dh	3.9	BEh	7.2
9Eh	4	BFh	7.3
9Fh	4.1	C0h	7.4
A0h	4.2	C1h	7.5
A1h	4.3	C2h	7.6
A2h	4.4	C3h	7.7
A3h	4.5	C4h	7.8
A4h	4.6	C5h	7.9
A5h	4.7	C6h	8
A6h	4.8	C7h	8.1
A7h	4.9	C8h	8.2
A8h	5	C9h	8.3
A9h	5.1	CAh	8.4
AAh	5.2	CBh	8.5
ABh	5.3	CCh	8.6
ACh	5.4	CDh	8.7
ADh	5.5	CEh	8.8
AEh	5.6	Other	NA

A[7]/B[7] = 0,

VSH1/VSH2 voltage setting from 9V to 18V

10 10 1			
A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
23h	9	3Ch	14
24h	9.2	3Dh	14.2
25h	9.4	3Eh	14.4
26h	9.6	3Fh	14.6
27h	9.8	40h	14.8
28h	10	41h	15
29h	10.2	42h	15.2
2Ah	10.4	43h	15.4
2Bh	10.6	44h	15.6
2Ch	10.8	45h	15.8
2Dh	11	46h	16
2Eh	11.2	47h	16.2
2Fh	11.4	48h	16.4
30h	11.6	49h	16.6
31h	11.8	4Ah	16.8
32h	12	4Bh	17
33h	12.2	4Ch	17.2
34h	12.4	4Dh	17.4
35h	12.6	4Eh	17.6
36h	12.8	4Fh	17.8
37h	13	50h	18
38h	13.2	Other	NA
39h	13.4		
3Ah	13.6		
3Bh	13.8		
		7	

C[7] = 0,

VSL setting from -9V to -18V

C[7:0]	VSL
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
3Ch	-17.5
3Eh	-18
Other	NA

SSD1675 Rev 0.10 P 22/46 **Solomon Systech**

Com	man	d Tak	ole										A
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	0C	0	0	0	0	1	1	0		Booster Soft start	-	vith Phase 1, Phase 2 and Phase 3
0	1	00	1	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control		ent and duration setting.
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B₁	B ₀		A[7:0] -> Soft sta	rt setting for Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	Co		= 8Bh B[7:0] -> Soft sta	[POR] rt setting for Phase2
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		= 9Ch	[POR]
U	'		U	O	D 5	D 4	D ₃	D2	D1	D ₀		C[7:0] -> Soft sta = 96h [rt setting for Phase3
												= 961 [D[7:0] -> Duration = 0Fh [n setting
												Bit Descript A[6:0] / B[6:	ion of each byte:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
											£>>	Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000 ~ 0011	NA
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
									1) 5		1011	8.4
												1100	9.8
												1101	11.5
									5.			1110	13.8
									7			1111	16.5
							01	75				D[5:4]: dur D[3:2]: dur	ation setting of phase ration setting of phase 3 ration setting of phase 2 ration setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
						Y						00	10ms
												01	20ms
												10	30ms
						/						11	40ms

 SSD1675
 Rev 0.10
 P 23/46
 Solomon Systech

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	0F	0	0	0	0	1	1	1	1	Gate scan start position	Set the scanning start position of the gate
0	1		A ₇	A ₆	A ₅	A ₄	A_3	A_2	A ₁	A_0		driver. The valid range is from 0 to 295. A[8:0] = 000h [POR]
0	1		0	0	0	0	0	0	0	A ₈		A[0.0] = 00011[FOR]
												When TB=0:
												SCN [8:0] = A[8:0]
												When TB=1: SCN [8:0] = 295 A[8:0]
										I	I	70
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	0	A ₀		A[0]: Description 0 Normal Mode [POR]
												1 Enter Deep Sleep Mode
												After this command initiated, the chip will
												enter Deep Sleep Mode, BUSY pad will
												keep output high.
												Remark: To Exit Deep Sleep mode, User required
												to send HWRESET to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode	Define data entry sequence
0	1	11	0	0	0	0	0	A ₂	A ₁	A ₀	setting	Define data entry sequence A[2:0] = 011 [POR]
0	'		U	U	U	U	U	A 2	A 1	Au		
												A [1:0] = ID[1:0]
												Address automatic increment / decrement setting
											7	The setting of incrementing or
												decrementing of the address counter can
												be made independently in each upper and lower bit of the address.
												00 –Y decrement, X decrement,
												01 -Y decrement, X increment,
									X)		10 –Y increment, X decrement, 11 –Y increment, X increment [POR]
												Transferrent, American [FOK]
												A[2] = AM
									7			Set the direction in which the address
												counter is updated automatically after data are written to the RAM.
							Z					AM= 0, the address counter is updated in
						4	7					the X direction. [POR]
								,				AM = 1, the address counter is updated in the Y direction.
						0						uie i diiection.
						Y				<u> </u>		
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to
				-								their S/W Reset default values except
				X		"						R10h-Deep Sleep Mode
												During operation, BUSY pad will output
												high.
												Note: RAM are unaffected by this
												command.

SSD1675 Rev 0.10 P 24/46 **Solomon Systech**

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
				l	l							
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection
0	1	15	0	0	0	0	0	A ₂	A ₁	Ao	VCI Detection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level A[2:0] VCI level A[2:0] VCI level 011 2.2V 101 2.4V 111 2.6V 100 2.3V 110 2.5V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the
												Status Bit Read (Command 0x2F).
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.
0	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]
0	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)	
0	0	1B	0	0	0	1	1	0	1	4	Temperature Sensor	Read from temperature register.
1	1	טו	A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from temperature register)	incad from temperature register.
1	1		A_3	A_2	A ₁	A_0	0	0	0	0	, , , ,	

Com	man	d Tal	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A_0	Control (Write	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀	Command to External temperature sensor)	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	C ₀	lemperature sensor)	B[7:0] = 00h [POR], C[7:0] = 00h [POR],
												A[7:6] A[7:6] A[7:6] A[7:6] Select no of byte to be sent 00 Address + pointer 01 Address + pointer + 1st parameter 10 Address + pointer + 1st parameter + 2nd pointer 11 Address A[5:0] - Pointer Setting B[7:0] - 1 st parameter C[7:0] - 2 nd parameter The command required CLKEN=1. Refer to Register 0x22 for detail. After this command initiated, Write Command to external temperature sensor starts. BUSY pad will output high during operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h. BUSY pad will output high during operation. User should not interrupt this operation to avoid corruption of panel images.
							_				<u></u>	
0	0	21	0	0	1	0	0	0	0		Display Update	RAM content option for Display Update A[7:0] = 00h [POR]
0	1		A ₇	A ₆	A5	A4	A3	A ₂	Aı	Ao	Control 1	A[7:4] Red RAM option 0000

 SSD1675
 Rev 0.10
 P 26/46
 Solomon Systech

Com			ole										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option	on:
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Control 2	Enable the stage for Master Act A[7:0]= FFh (POR)	ivation
												A[7.0]= FFII (FOK)	Parameter
													(in Hex)
												Enable Clock Signal, Then Enable ANALOG	
												Then DISPLAY Then Disable ANALOG	C7
												Then Disable OSC	
												Enable Clock Signal, Then Load LUT	90
												Enable Clock Signal, Then Load Temperature value from	
												I2C Single Master Interface	В0
												Then Load LUT Enable ANALOG	
												Then DISPLAY	47
												Then Disable ANALOG Then Disable OSC	
											4	To Enable Clock Signal (CLKEN=1)	80
												To Enable Clock Signal,	
											Y	then Enable ANALOG (CLKEN=1, ANALOGEN=1)	C0
											47)	To DISPLAY	04
												To Disable ANALOG, then Disable Clock Signal	03
												(CLKEN=0, ANALOGEN=0)	
												To Disable Clock Signal (CLKEN=0)	01
													,
0	0	24	0	0	1	0	0	1	0	0	Write RAM (BW)	After this command, data entries	
												written into the BW RAM until ar command is written. Address po	
												advance accordingly	MITCIS WIII
									×) 7		For Write pixel: Content of Write RAM(BW) = 1	
												For Black pixel:	
												Content of Write RAM(BW) = 0)
	,					,			7	ı	T	1	
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED)	After this command, data entries written into the RED RAM until a	
							Y					command is written. Address po	
												advance accordingly.	JII KOTO WIII
								,					
						7						For Red pixel:	_
												Content of Write RAM(RED) = For non-Red pixel [Black or Whi	
						7						Content of Write RAM(RED) =	
		ļ	ļ	-								·	
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read of	
												MCU bus will fetch data from RA [According to parameter of Regi	
												select reading RAM(BW) / RAM	
				7								until another command is writter	n. Address
												pointers will advance according	у.
				-									

 SSD1675
 Rev 0.10
 P 27/46
 Solomon Systech

Com	man	d Tal	ole												
R/W#			D7	D6	D5	D4	D3	D2	D1	D0	Command	Descript	ion		
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VC for duration VCOM von The sensure register The common ANALOG Refer to I	OM sensing on defined alue. Sed VCOM seed vcom	in 29h be voltage is red CLK 22 for de	EN=1 and etail.
	1	1		ı	1	1					T				
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration		time betwee		
0	1		A_7	A ₆	A_5	A_4	A_3	A_2	A ₁	A_0		sensing r	mode and re	eading a	cquirea.
												A[6]=0, R $A[3:0]=0$	lormal Mod Reserve 09h, duratio ense duratio	on = 10s.	
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program	VCOM reg	istar into	OTP
												The com	mand requi Register 0x	red CLK 22 for de	EN=1. etail.
	1	1		1	1	1					7	1			
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register			r from M	CU interface
0	1		A_7	A ₆	A ₅	A_4	A ₃	A_2	A ₁	A_0		A[7:0] = 0 A[7:0]	OOh [POR] VCOM	A[7:0]	VCOM
											*	08h	-0.2	44h	-1.7
									(0Bh	-0.3	48h	-1.8
									X			10h	-0.4	4Bh	-1.9
												14h	-0.5	50h	-2
												17h	-0.6	54h	-2.1
												1Bh	-0.7	58h	-2.2
												20h	-0.8	5Bh	-2.3
												24h	-0.9	5Fh	-2.4
							X	7				28h	-1	64h	-2.5
						4		,				2Ch	-1.1	68h	-2.6
												2Fh	-1.2	6Ch	-2.7
						7	,					34h	-1.3	6Fh	-2.8
												37h	-1.4 -1.5	73h	-2.9 -3
						7						3Ch 40h	-1.5 -1.6	78h Other	NA
												4011	-1.0	Outer	INA

 SSD1675
 Rev 0.10
 P 28/46
 Solomon Systech

Com	man	d Tak	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read	Read Register stored in OTP:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		1. A[7:0]: VCOM OTP Selection (R37,
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		Byte A)
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C_2	C ₁	C ₀		2. B[7:0]: VCOM Register (R2C) 3. C[7:0]~F[7:0]: Reserved
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		4. G[7:0]~H[7:0]: Module ID / Waveform
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		Version (R37, Byte F and Byte G) [2
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		bytes]
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		
-	'		1 1/	1 16	1 15	1 14	1 13	1 12	1 17	1 10		
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x21]
1	1		0	0	0	A ₄	0	0	A ₁	A ₀		A[5]: HV Ready Detection flag [POR=1]
•						, (4		Ŭ	, ,	, 10		0: Ready
												1: Not Ready
												A[4]: VCI Detection flag [POR=0] 0: Normal
												1: VCI lower than the Detect level
												A[3]: [POR=0]
												A[2]: Busy flag [POR=0]
												0: Normal
												1: BUSY A[1:0]: Chip ID [POR=01]
												Remark:
												A[5] and A[4] status are not valid after
												RESET, they need to be initiated by
												command 0x14 and command 0x15
												respectively.
0	0	30	0	0	1	1	0	0	0	0.1	Program WS OTP	Program OTP of Waveform Setting
0	U	30	U	U	'	'	U	U	0	0	Program WS OTP	The contents should be written into RAM
												before sending this command.
)	The command required CLKEN=1.
									X			Refer to Register 0x22 for detail. BUSY pad will output high during
												operation.
												'
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting
												The second secon
												The command required CLKEN=1.
								J'				Refer to Register 0x22 for detail.
								/				BUSY pad will output high during
												operation.
						7)'_					
0	0	32	0	0	1	1.	0	0	1		Write LUT register	Write LUT register from MCU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A_2	A ₁	A_0		[70 bytes], which contains the content of VS [nX-LUT], TP #[nX], RP#[n]).
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B_2	B ₁	B ₀		Refer to Session 6.7 Waveform Setting
0	1		:			:	:	:	:	:		
0	1											
					7							

 SSD1675
 Rev 0.10
 P 29/46
 Solomon Systech

	man			D 0		F.		-	-	D	0		Description
	D/C#	L	D7	D6	D5	D4	D3	D2	D1	D0	Command		Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP s	election	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1.
													Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	37	0	0	1	1	0	1	1	1	Write OTP sele	ction	Write the OTP Selection:
0	1		A ₇	0	0	0	0	0	0	0			A[7]=1 spare VCOM OTP selection
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀			B[7:0]~E[7:0] reserved
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀			F[7:0]~G[7:0] module ID /waveform version.
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	-		version.
_							+	1		1	_		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀			
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀	=		\vee
0	1		G ₇	G_6	G_5	G ₄	G ₃	G ₂	G₁	G_0			/
		0.4	0	0	_			0	4	0	Oat diseases line	n ordered	Cot moved on of domestic line and significant
0	0	3A	0	0	1	1	1	0	1		Set dummy line	perioa	Set number of dummy line period A[6:0] = 30h [POR]
0	1		0	A_6	A ₅	A_4	A ₃	A_2	A ₁	A_0			[A[0:0] = 3011 [FOR]
												7	A[6:0]: Number of dummy line period in
											() \		term of TGate
													A - 21-1-1
											1 7		Available setting 0 to 127.
		20	0	0				0	4	4	Cat Cata line wi	-141-	Cat Cata line width (TCata)
0	0	3B	0	0	1	1	1	0	1		Set Gate line wi	atn	Set Gate line width (TGate) A[3:0] = 1010 [POR]
0	1		0	0	0	0	A ₃	A_2	A ₁	A_0			
													Remark: Default value will give 50Hz
											7		Frame frequency under 48 dummy line
						<u> </u>	لــِــا						pulse setting.
					_	The r	efere	nce p	oaran	neter	of register 0x3A	and 0x3	BB for 296 MUX
								Fr	ame ir	iput [H	lz] 0x3B	0x3/	Α
									1	5	0x0E	0x7E	
									2	0	0x0E	0x14	
									2	5	0x0D	0x2A	\
									3		0x0C	0x52	
							K	7		0	0x0B	0x47	
								Y _	6	0	0x0A 0x09	0x30 0x25	
								/	7		0x08	0x20	
							7		8		0x08	0x01	
						7)		9	0	0x07	0x0C	
					7				10	00	0x06	0x25	
										10	0x06	0x07	
						_				20	0x05	0x18	
				×		7				30 40	0x04	0x35 0x10	
										50	0x04 0x04	0x10	
								-		20	0.00	000	

 SSD1675
 Rev 0.10
 P 30/46
 Solomon Systech

0x03

0x03

0x02

0x02

0x02

0x20

0x0D

0x33

0x20

0x10

160

170

180

190

200

Com	man	d Tak	ole									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform	Select border waveform for VBD
0	1	-	A ₇	A ₆	A ₅	A ₄	0	0	A ₁	A ₀	Control	A[7:0] = C0h [POR], set VBD as HIZ.
	'		Λ,	Λο	Λ5	7.4	U	U	/ (1	7.0		
												A [7:6] :Select VBD option
												A[7:6] Select VBD as
												00 GS Transition,
												Defined in A[1:0]
												01 Fix Level, Defined in A[5:4]
												10 VCOM
												11[POR] HiZ
												III OIL
												A [5:4] Fix Level Setting for VBD
												A[5:4] VBD level
												00[POR] VSS
												01 VSH1
												10 VSL
												11 VSH2
												A M.O. CO Transition author for VDD
												A [1:0] GS Transition setting for VBD A[1:0] VBD Transition
											4	00[POR] LUT0
												01 LUT1
											7	10 LUT2
												11 LUT3
										l		
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option
0	1		0	0	0	0	0	0	0	A ₀		A[0]= 0 [POR]
	-											0 : Read RAM corresponding to 24h
												1 : Read RAM corresponding to 26h
		44					_		_		ON DAM V Illin	On a sife the automateur description of the
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the
0	1		0	0	A_5	A_4	A_3	A ₂	A ₁	A ₀	Start / End position	window address in the X direction by an address unit for RAM
0	1		0	0	B_5	B_4	B ₃	B_2	B ₁	B ₀		address drift for to the
												A[5:0]: XSA[5:0], XStart, POR = 00h
												B[5:0]: XEA[5:0], XEnd, POR = 13h
	_	_	_									
									7			
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the
0	1		A ₇	A ₆	A ₅	A ₄	Аŝ	A ₂	A ₁	A ₀	Start / End position	window address in the Y direction by an
0	1		0	0	0	0	0	0	0	A ₈	1	address unit for RAM
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	⁷ B ₂	B ₁	B ₀	1	A[8:0]: YSA[8:0], YStart, POR = 000h
0	1		0	0	0	0	0	0	0	B ₈	1	B[8:0]: YEA[8:0], YEnd, POR = 127h
U	ı		U	U	U	9	y	U	U	D 8		5[0.0]. 12/1[0.0], 12/10, 1 OK = 12/11

SSD1675 Rev 0.10 P 31/46 **Solomon Systech**

Com	man	d Tal	ole												
R/W#			D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM			M for Red	ular Pattern
0	1	70	A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	for Regular Pattern	A[7:0] = 0			diai i attorri
												A[6:4]: St	1st step v ep Hieght, ter RAM ir	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
															on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	160
												010	32	110	NA
												011	64	111	NA
											(A)	BUSY pactor operation	d will outp	ut high du	ring
	0	47	0		_	_	_	4	1	1	A.via Mirita DAM DAM	A t a \ \ \ / w ! t	- D/M/ D/M	M for Dog	der Dettern
0	0 1	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	1 A ₀	Auto Write B/W RAM for Regular Pattern	A[7:0] = 0		vi for Regi	ular Pattern
										4	?	A[6:4]: St	1st step v ep Hieght, ter RAM ir	POR= 00	
												A[6:4]	Height	A[6:4]	Height
									X			000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
							1. o) on according
								,				A[2:0]	Width	A[2:0]	Width
												000	8	100	128
						7	Y					001	16	101	160
												010	32	110	NA
						Y						011	64	111	NA
				CX.		,						During op high.	eration, B	USY pad	will output

SSD1675 Rev 0.10 P 32/46 **Solomon Systech**

		d Tak Hex 4E	D7 0 0	D6	D5	D4	D3	D2	D1		Command	Description
0 0 0	1	4E			0	0	1	1			i .	
0 0 0			0	^				''	1	0	Set RAM X address	Make initial settings for the RAM X
0	0		-	0	A_5	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].
0	0											A[5.0]. 0011 [FOK].
0		4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y
	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in the address counter (AC)
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 000h [POR].
Λ		1								1		
	1	74	0	1	1	1	0	1	0		Set Analog Block Control	A[7:0]: 54h
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Control	
0	1	7E	0	1	1	1	1	1	1	0	Set Digital Block	A[7:0]: 3Bh
0	1	/ _	A7	A6	A5	A4	A3	A2	A1	A0	Control	[A[A], 3BH
U	'		, , ,	710	710	717	710	7 12	711	710		
0	1	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it
•	-		Ū	-	-	-	•	•	-			does not have any effect on the display
												module.
												However it can be used to terminate Frame Memory Write or Read
												Commands.
			う									

8 COMMAND DESCRIPTION

8.1 Driver Output Control (01h)

This triple byte command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	MUX7	MUX6	MUX5	MUX4	MUX3	MUX2	MUX1	MUX0
PC)R	0	0	1	1	1	1	1	1
W	1								MUX8
PC)R								.1
W	1						GD	SM	TB
PC)R						0	0	0

MUX[8:0]: Specify number of lines for the driver: MUX[8:0] + 1. Multiplex ratio (MUX ratio) from 16 MUX to 296MUX.

GD: Selects the 1st output Gate

This bit is made to match the GATE layout connection on the panel. It defines the first scanning line.

SM: Change scanning order of gate driver.

When SM is set to 0, left and right interlaced is performed.

When SM is set to 1, no splitting odd / even of the GATE signal is performed,

Output pin assignment sequence is shown as below (for 296 MUX ratio):

	SM=0	SM=0	SM=1	SM=1
Driver	GD=0	GD=1	GD=0	GD=1
G0	ROW0	ROW1	ROW0	ROW148
G1	ROW1	ROW0	ROW148	ROW0
G2	ROW2	ROW3	ROW1	ROW149
G3	ROW3	ROW2	ROW149	ROW1
:	:	:	:	:
G146	ROW146	ROW147	ROW73	ROW222
G147	ROW147	ROW146	ROW222	ROW73
G148	ROW148	ROW149	ROW74	ROW223
G149	ROW149	ROW148	ROW223	ROW74
:		:	:	:
G292	ROW292	ROW293	ROW146	ROW294
G293	ROW293	ROW292	ROW294	ROW146
G294	ROW294	ROW295	ROW147	ROW295
G295	ROW295	ROW294	ROW295	ROW147

See "Scan Mode Setting" on next page.

TB: Change scanning direction of gate driver.

This bit defines the scanning direction of the gate for flexible layout of signals in module either from up to down (TB = 0) or from bottom to up (TB = 1).

SSD1675 | Rev 0.10 | P 34/46 | **Solomon Systech**

Figure 8-1: Output pin assignment on different Scan Mode Setting

SSD1675 | Rev 0.10 | P 35/46 | **Solomon Systech**

8.2 Gate Scan Start Position (0Fh)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	SCN7	SCN6	SCN5	SCN4	SCN3	SCN2	SCN1	SCN0
P	OR	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	SCN8
P	OR .	0	0	0	0	0	0	0	0

This command is to set Gate Start Position for determining the starting gate of display RAM by selecting a value from 0 to 295. Figure 8-2 shows an example using this command of this command when MUX ratio= 295 and MUX ratio= 148 "ROW" means the graphic display data RAM row.

Figure 8-2: Example of Set Display Start Line with no Remapping

	MUX ratio (01h) = 127h	MUX ratio (01h) = 093h	MUX ratio (01h) = 095h
GATE Pin	Gate Start Position (0Fh)	Gate Start Position (0Fh)	Gate Start Position (0Fh)
	= 000h	= 000h	= 04Ah
G0	ROW0	ROW0	-
G1	ROW1	ROW1	-
G2	ROW2	ROW2	-
G3	ROW3	ROW3	-
:	:	: /	:
:	:	:	:
G72	:		-
G73	:		-
G74	:	:	ROW74
G75	:	. : '	ROW75
:	:	\ \rangle \r	:
:	:		:
G146	ROW146	ROW146	:
G147	ROW147	ROW147	:
G148	ROW148	-	:
G149	ROW149	-	:
:	:	:	:
	:	:	:
G220	:	;	:
G221	:	:	:
G222	:	:	ROW222
G223	:	· ·	ROW223
	:	:	:
:	:	:	:
G292	ROW292	-	-
G293	ROW293	-	-
G294	ROW294	-	-
G295	ROW295	-	-
Display			
Example			
	77		
	SOLOMON		SOLOMON
			SOLUMBUN
	SYSTECH		
	7.2.1		

Figure 8-3: Example of Set Display Start Line with no Remapping

SSD1675 Rev 0.10 P 36/46 **Solomon Systech**

8.3 Data Entry Mode Setting (11h)

This command has multiple configurations and each bit setting is described as follows:

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1						AM	ID1	ID0
PC)R	0	0	0	0	0	0	1	1

ID[1:0]: The address counter is automatically incremented by 1, after data is written to the RAM when ID[1:0] = "01". The address counter is automatically decremented by 1, after data is written to the RAM when ID[1:0] = "00". The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. The direction of the address when data is written to the RAM is set by AM bits.

AM: Set the direction in which the address counter is updated automatically after data are written to the RAM. When AM = "0", the address counter is updated in the X direction. When AM = "1", the address counter is updated in the Y direction. When window addresses are selected, data are written to the RAM area specified by the window addresses in the manner specified with ID[1:0] and AM bits.

The pixel sequence is defined by the ID [0],

SSD1675 | Rev 0.10 | P 37/46 | Solomon Systech

8.4 Set RAM X - Address Start / End Position (44h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1				XSA4	XSA3	XSA2	XSA1	XSA0
PC	POR		0	0	0	0	0	0	0
W	1				XEA4	XEA3	XEA2	XEA1	XEA0
PC)R	0	0	0	1	0	0	1	1

These addresses must be set before the RAM write.

It allows on XEA [4:0] ≤ XSA [4:0]. The settings follow the condition on 00h ≤ XSA [4:0], XEA [4:0] ≤ 13h. The

It allows on XEA [4:0] \leq XSA [4:0]. The settings follow the condition on 00h \leq XSA [4:0], XEA [4:0] \leq 13h. The windows is followed by the control setting of Data Entry Setting (R11h)

8.5 Set RAM Y - Address Start / End Position (45h)

R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
W	1	YSA7	YSA6	YSA5	YSA4	YSA3	YSA2	YSA1	YSA0
PC	R	0	0	0	0	0	0	0	0
W	1	0	0	0	0	0	0	0	YSA8
PC	R	0	0	0	0	0	0	0	0
W	1	YEA7	YEA6	YEA5	YEA4	YEA3	YEA2	YEA1	YEA0
PC	R	0	0	1	0	0	1	1	1
W	1	0	0	0	0	9	0	0	YEA8
PC	R	0	0	0	0	0	0	0	1

YSA[8:0]/YEA[8:0]: Specify the start/end positions of the window address in the Y direction by an address unit. Data is written to the RAM within the area determined by the addresses specified by YSA [8:0] and YEA [8:0]. These addresses must be set before the RAM write.

It allows YEA [8:0] \leq YSA [8:0]. The settings follow the condition on 00h \leq YSA [8:0], YEA [8:0] \leq 127h. The windows is followed by the control setting of Data Entry Setting (R11h)

8.6 Set RAM Address Counter (4Eh-4Fh)

Reg#	R/W	DC	IB7	IB6	IB5	IB4	IB3	IB2	IB1	IB0
4Eh	w	1	Z)		XAD4	XAD3	XAD2	XAD1	XAD0
	PC)R	0	0	0	0	0	0	0	0
	W	1	YAD7	YAD6	YAD5	YAD4	YAD3	YAD2	YAD1	YAD0
	PC)R	0	0	0	0	0	0	0	0
4Fh	W	1								YAD8
	PC)R	5							0

XAD[4:0]: Make initial settings for the RAM X address in the address counter (AC).

YAD[8:0]: Make initial settings for the RAM Y address in the address counter (AC).

After RAM data is written, the address counter is automatically updated according to the settings with AM, ID bits and setting for a new RAM address is not required in the address counter. Therefore, data is written consecutively without setting an address. The address counter is not automatically updated when data is read out from the RAM. RAM address setting cannot be made during the standby mode. The address setting should be made within the area designated with window addresses which is controlled by the Data Entry Setting (R11h) {AM, ID[1:0]}; RAM Address XStart / XEnd Position (R44h) and RAM Address Ystart / Yend Position (R45h). Otherwise undesirable image will be displayed on the Panel.

SSD1675 | Rev 0.10 | P 38/46 | **Solomon Systech**

9 Typical Operating Sequence

9.1 Normal Display

Sequence	Action by	Command	Action Description	Remark
1	User	-	Power on (VCI supply);	
2	User	-	HW Reset	
	IC		After HW reset, the IC will be ready for command input	
	User	C 12	Command: SW Reset	
	IC		After SW reset, the IC will have	
			Registers load with POR value	
			VCOM register loaded with OTP value	BUSY = H
	Lloor		IC enter idle mode Wait until BUSY = L	
3	User		Send initial code to driver including setting of	
3	User	- C 74	Command: Set Analog Block Control	
		D 54	Command: Set Arialog block Control	
		C 7E	Command: Set Digital Block Control	
		D 3B		
	User	C 01	Command: Driver Output Control	
			(MUX, Source gate scanning direction)	
	User	C 3A	Command: Set dummy line period	
	User	C 3B	Command: Set Gate line width	
	User	C 3C	Command: Border waveform control	
4		-	Data operations for Black White	
	User	C 11	Command: Data Entry mode setting	
	User	C 44	Command: RAM X address start /end position	
	User	C 45	Command: RAM Y address start /end position	
	User	C 4E	Command: RAM X address counter	
	User	C 4F	Command: RAM Y address counter	
	User	C 24	Command: write BW RAM	
			Ram Content for Display	
5		-	Data operations for RED	
	User	C 11	Command: Data Entry mode setting	
	User	C 44	Command: RAM X address start /end position	
	User	C 45	Command: RAM Y address start /end position	
	User	C 4E	Command: RAM X address counter	
	User	C 4F	Command: RAM Y address counter	
	User	C 26	Command: write RED RAM	
		2	Ram Content for Display	
6	User	C 22	Command: Display Update Control 2	
	User	C 20	Command: Master Activation	
	IC		Booster and regulators turn on	
	IC		Load LUT register with corresponding waveform setting stored in OTP)	BUSY = H
	IC	- 6	Send output waveform according RAM content and LUT.	
	IC A		Booster and Regulators turn off	1
	IC	/	Back to idle mode	1
	User	7	Wait until BUSY = L	
7	User	-	IC power off	

SSD1675 Rev 0.10 P 39/46 **Solomon Systech**

9.2 VCOM OTP Program

Sequence	Action by		Action Description	Remark
1	User	- Command	Power on (VCI and VPP supply)	Keillaik
2	User	_	HW Reset	
_	User	C 12	Command: SW Reset	BUSY = H
	User	C 12	Wait until BUSY = L	D031 = 11
3	User	C 74	Command: Set Analog Block Control	
3	USEI	D 54	Command: Set Analog block Control	
	User	C 7E	Command: Set Digital Block Control	
		D 3B	3	
	User	C 22	Command: Master Activation	
		D 80	(assigned by R22h) (Enable clock signal)	BUSY = H
		C 20	W ii di BHOV I	
4	User	- C 37	Wait until BUSY = L	OTD calcation
4	User	C 37	Proceed OTP sequence. Command: OTP selection Control	OTP selection register
			(default or spare)	register
5	User	C 36	Command: Program OTP selection	BUSY = H
	User	-	Wait until BUSY = L	
	User	-	Power OFF (VPP supply)	
6		-	Send initial code to driver including setting of (or leave as POR)	
	User	C 01	Command: Driver Output Control	
			(MUX, Source gate scanning direction)	
	User	C 03	Command: Gate Driving voltage Control	
	User	C 04	Command: Source Driving voltage Control	VCOM sensing
	User	C 3A	Command: Set dummy line period	should have
	User	C 3B	Command: Set Gate line width	same setting
	User	C 32	Command: Write LUT register	during
			VCOM sense required full set of LUT for operation, USER required	application
			writing LUT in register 32h	
		-	LUT parameter	
	User	C 22	Command: Master Activation	DI IOV
		D 40 C 20	(assigned by R22h) [Enable Analog blocks]	BUSY = H
	User	-	Wait until BUSY = L	
7	User	C 29	Command: VCOM Sense Duration for 10 seconds	
		D 49		
8	User	C 28	Command: VCOM sense	
	IC	-	VCOM pin in sensing mode	
	IC	-	All Source cell have VSS output	
			All Gate scanning continuously	BUSY = H
	IC	- ^	According to R29h	
	IC	-	Detect VCOM voltage and store in register	_
	IC	-	All Gate Stop Scanning.	_
	User	-	Wait until BUSY = L	
9	User	C 22	Command: Master Activation	
	000.	D 02	(assigned by R22h) [Disable Analog blocks]	BUSY = H
		C 20		
	User		Wait until BUSY = L	
	User		Power On (VPP supply)	
10	User	C 2A	Command: Program VCOM OTP	BUSY = H
	User	7	Wait until BUSY = L	
11	User	C 22	Command: Display Update Control 2 and	BUSY U
		D 01 C 20	Master Activation (Disable clock signal)	BUSY = H
	User	-	Wait until BUSY = L	
12	User	-	IC power off (VCI and VPP Supply)	
	-	I		1

SSD1675 Rev 0.10 P 40/46 **Solomon Systech**

9.3 WS OTP Program

	VS OIP Prog			
Sequer	nce Action by	Command	Action Description	Remark
1	User	-	Power on (VCI supply)	
2	User	-	Power on (VPP supply)	
3	User	-	HW Reset	
	User	C 12	Command: SW Reset	BUSY = H
	User	-	Wait until BUSY = L	
4	User	C 74 D 54	Command: Set Analog Block Control	
	User	C 7E D 3B	Command: Set Digital Block Control	
	User	C 22 D 80 C 20	Command: Master Activation (assigned by R22h) (Enable clock signal)	BUSY = H
	User	-	Wait BUSY = L	
5	User	C 11 D 03	Command: Data Entry mode setting Set Address automatic increment setting = X increment and Y increment Set Address counter update in X direction	
6	User	C 44 D 00 D 13	Command: RAM X address start /end position Set RAM X address start /end from S0 to S159	
7	User	C 45 D 00 D 00 D 27 D 01	Command: RAM Y address start /end position Set RAM Y address start /end from G0 to G295	
8	User	C 4E D 00	Command: RAM X address counter Set RAM X address counter as 0	
9	User	C 4F D 00 D 00	Command: RAM Y address counter Set RAM Y address counter as 0	
12	User	C 24	Write corresponding data into RAM	
			Following specific format Write into RAM Full LUT	
13	User	C 4E D 00 C 4F D 00 D 00	Command: RAM address start /end position (Initial Ram address counter)	
14	User	C 30	Command: Program WS OTP Waveform Setting OTP programming	BUSY = H
	User	-	Wait BUSY = L	
15	User	C 22 D 01 C 20	Command: Master Activation (assigned by R22h) [Disable clock signal]	BUSY = H
	User	-	Wait BUSY = L	
16	User		Power off VPP and VCI	

 SSD1675
 Rev 0.10
 P 41/46
 Solomon Systech

10 Absolute Maximum Rating

Table 10-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
Vcı	Logic supply voltage	-0.5 to +4.0	V
VIN	Logic Input voltage	-0.5 to V _{DDIO} +0.5	V
Vouт	Logic Output voltage	-0.5 to V _{DDIO} +0.5	V
Topr	Operation temperature range	-40 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{CI} be constrained to the range $V_{SS} < V_{CI}$. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DDIO}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

11 Electrical Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T_{OPR}=25°C.

Table 11-1: DC Characteristics

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Vcı	VCI operation voltage	VCI		2.2	3.0	3.7	V
V_{DD}	VDD operation voltage	VDD		1.7	1.8	1.9	V
Vсом_dc	VCOM_DC output voltage	VCOM		-3.0		-0.2	V
dV _{COM_DC}	VCOM_DC output voltage deviation	VCOM	7	-200		200	mV
Vсом_ас	VCOM_AC output voltage	VCOM		V _{SL} + V _{COM_DC}	Vсом_dc	V _{SH1} + V _{COM_DC}	V
V _{GATE}	Gate output voltage	G0~G295		-21		+21	V
V _{GATE(p-p)}	Gate output peak to peak voltage	G0~G295				42	V
V _{SH1}	Positive Source output voltage	VSH1		+2.4	+15	+18	V
dV _{SH1}	VSH1 output voltage	VSH1	From 2.4V to 8.8V	-100		100	mV
	deviation		From 8.8V to 18V	-200		200	mV
V _{SH2}	Positive Source output voltage	VSH2		+2.4	+5	+18	V
dV _{SH2}	VSH2 output voltage	VSH2	From 2.4V to 8.8V	-100		100	mV
	deviation	ĺ	From 8.8V to 18V	-200		200	mV
V _{SL}	Negative Source output voltage	VSL		-18	-15	-9	V
dV _{SL}	VSL output voltage deviation	VSL		-200		200	mV
V _{IH}	High level input voltage	SDA, SCL, CS#, D/C#, RES#,		O.8VDDIO			V
VIL	Low level input voltage	BS[2:1], M/S#, EXTVDD, CL				0.2V _{DDIO}	V
Vон	High level output voltage	SDA, BUSY, CL	IOH = -100uA	0.9V _{DDIO}			V
Vol	Low level output voltage]	IOL = 100uA			0.1V _{DDIO}	V
V_{PP}	OTP Program voltage	VPP		7.25	7.5	7.75	V

SSD1675 | Rev 0.10 | P 42/46 | Solomon Systech

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Idslp_VCI	Deep Sleep mode current	VCI	VCI=3.7V		1		uA
			DC/DC OFF				
			No clock				
			No output load		,		
			No MCU interface			,	
			access				
			Ram data retain only		,		
			and cannot access the RAM.		2		
Islp_VCI	Sleep mode current	VCI	VCI=3.7V		20		uA
			DC/DC OFF		,		
			No clock				
			No output load				
			MCU interface				
			access				
			Ram data retain				
lopr_VCI	Operating Mode current	VCI	VCI=3.0V		1000		uA
V _G H	Operating Mode	VGH	Enable Clock and	20.5	21	21.5	V
	Output Voltage		Analog by Master Activation Command				
V _{SH1}		VSH1	VGH=21V	14.8	15	15.2	V
			VGH=21V VGL=-VGH				
V _{SH2}		VSH2	VSH1=15V	4.9	5	5.1	V
			VSH1=15V VSH2=5V				
V _{SL}		VSL	VSL=-15V	-15.2	-15	-14.8	V
			VCOM = -2V				
V _{COM}		VCOM	No waveform	-2.2	-2	-1.8	V
			transitions.				
			No loading.				
			No RAM read/write				
			No OTP read /write				

Table 11-2: Regulators Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
IVGH	VGH current	VGH = 21V	VGH			200	uA
IVGL	VGL current	VGL = -VGH	VGL			300	uA
IVSH	VSH1 current	VSH1 = +15V	VSH1			800	uA
IVSH1	VSH2 current	VSH2 = +5V	VSH2			800	uA
IVSL	VSL current	VSL = -15V	VSL			800	uA
IVCOM	VCOM current	VCOM = -2V	VCOM			100	uA

SSD1675 | Rev 0.10 | P 43/46 | **Solomon Systech**

12 AC Characteristics

12.1 Oscillator frequency

The following specifications apply for: VSS=0V, VDD=1.8V, T_{OPR}=25°C.

Table 12-1: Oscillator Frequency

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
Fosc	Internal Oscillator frequency	VCI=2.2 to 3.7V	CL	0.95	1	1.05	MHz

12.2 Serial Peripheral Interface

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, Topk = 25°C, CL=20pF

Table 12-2 : Serial Peripheral Interface Timing Characteristics

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	20			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	20			ns
tcsнigh	Time CS# has to remain high between two transfers	100			ns
tsclhigh	Part of the clock period where SCL has to remain high	25			ns
tscllow	Part of the clock period where SCL has to remain low	25			ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
t _{SIHLD}	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Read Mode)			2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	100			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tcsнigh	Time CS# has to remain high between two transfers	250			ns
tsclhigh	Part of the clock period where SCL has to remain high	180			ns
tscllow	Part of the clock period where SCL has to remain low	180			ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tsohld	Time SO (SDA Read Mode) will remain stable after the rising edge of SCL		70		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 12-1: SPI timing diagram

Figure 12-2: Serial peripheral interface characteristics

SSD1675 | Rev 0.10 | P 44/46 | **Solomon Systech**

12.3 I2C Interface Timing Characteristic

The following specifications apply for: V_{DDIO} - V_{SS} = 2.2V to 3.7V, T_{OPR} = 25°C, C_L=20pF

Table 12-3: I²C Interface timing characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	2.5	-	- 🖊	us
tsstart	Start condition Setup Time (Only relevant for a repeated Start condition)	0.8	-	-	us
thstart	Start condition Hold Time	0.6	-	-	us
tsD	Data Setup Time	400	-	-	ns
t _{HD}	Data Hold Time	300	-		ns
tsstop	Stop condition Setup Time	0.8	-	-	us
t _R	Rise Time for data and clock pin	-	F	300	ns
t _F	Fall Time for data and clock pin	-	-	300	ns
tidle	Idle Time before a new transmission can start	1.3	-	-	us

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 12-3: I²C interface timing diagram

SSD1675 | Rev 0.10 | P 45/46 | **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry Standard SJ/T 11363-2006 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子信息产品中有毒有害物质的限量要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

SSD1675 | Rev 0.10 | P 46/46 | **Solomon Systech**