Chapter 1: Introduction

What does "algorithm" mean?

Al-Khwarizmi (783 - 850)

What does "design & analysis of algorithms" mean?

- Correctness of algorithms.
- Does it terminate?
- Efficient (fast):
 - Estimate the running time.
 - Count the number of *steps*.
 - Is it optimal? Can we do better?
- Limits of efficiency (some problems cannot be solved efficiently).
- Pseudocode, no programming.

Insertion Sort

Input: An array A[1..n] of n numbers.

Output: An array containing the numbers of A in increasing order.

- 1: **for** j = 2 to n **do**
- 2: key = A[j]
- 3: i = j 1
- 4: **while** i > 0 and A[i] > key**do**
- 5: A[i+1] = A[i]
- 6: i = i 1
- 7: end while
- 8: A[i+1] = key
- 9: end for

- What is "the best" input for Insertion Sort?
- What it "the worst" input for Insertion Sort?
- How much time does it take to sort *n* numbers with Insertion Sort ?

Line	Instruction	Time (in ms.)	# of times
1	for $j = 2$ to n do	c_1	n
2	key = A[j]	<i>c</i> ₂	n-1
3	i = j - 1	<i>c</i> ₃	n-1
4	while $i > 0$ and $A[i] > key$ do	<i>C</i> ₄	$\sum_{j=2}^{n} t_j$
5	A[i+1] = A[i]	<i>c</i> ₅	$\sum\limits_{j=2}^{n}(t_{j}-1)$
6	i = i - 1	<i>c</i> ₆	$\sum_{j=2}^{n}(t_{j}-1)$
7	end while	0	$\sum\limits_{j=2}^{n}(t_{j}-1)$
8	A[i+1] = key	C ₇	n-1
9	end for	0	n-1

- In the best case, it takes an + b units of time to sort n numbers with Insertion Sort (for some constants a and b).
- In the worst case, it takes $cn^2 + dn + e$ units of time to sort n numbers with Insertion Sort (for some constants c, d and e).

Suppose that a computer can execute $10^9 = 1000\,000\,000$ operations per second.

Number of operations	n = 100	n = 1000000	
2	0.000.010.000	1000	
n^2	0,000010000 sec.	1000 sec.	
$\frac{1}{2}n^2 - \frac{1}{2}n$	0,000005000 sec.	500 sec.	
n	0,000 000 100 sec.	0,001 sec.	
$\log(n)$	0,000 000 007 sec.	0,000000000 sec.	
2 ⁿ	$4 imes10^{13}$ years	$3 imes 10^{301013}$ years	

- \bullet 4 imes 10¹³ years is larger than the age of the universe.
- What do you think of the constants a, b, c, ... ?

Definition (O-Notation)

Let

$$f: \mathbb{N} \longrightarrow \mathbb{R}^+,$$

 $g: \mathbb{N} \longrightarrow \mathbb{R}^+$

be two functions. We say that f is O of (or is big O of) g if there exist a constant $c \in \mathbb{R}^+$ and a number $k \in \mathbb{N}$ such that $f(n) \leq c g(n)$ for all $n \geq k$.

We write

$$f(n) = O(g(n))$$

or

$$f = O(g)$$
.

Insertion Sort takes $O(n^2)$ time in the worst case.

Definition (Ω -Notation)

Let

$$f: \mathbb{N} \longrightarrow \mathbb{R}^+,$$

 $g: \mathbb{N} \longrightarrow \mathbb{R}^+$

be two functions. We say that f is Ω of (or is big Ω of) g if there exist a constant $c \in \mathbb{R}^+$ and a number $k \in \mathbb{N}$ such that $f(n) \ge c g(n)$ for all $n \ge k$.

We write

$$f(n) = \Omega(g(n))$$

or

$$f = \Omega(g)$$
.

Insertion Sort takes $\Omega(n^2)$ time in the worst case.

Definition (Θ-Notation)

Let

$$f: \mathbb{N} \longrightarrow \mathbb{R}^+,$$

 $g: \mathbb{N} \longrightarrow \mathbb{R}^+$

be two functions. We say that f is Θ of (or is $big \Theta$ of) g if there exist two constants $c_1 \in \mathbb{R}^+$ and $c_2 \in \mathbb{R}^+$ and a number $k \in \mathbb{N}$ such that $c_1 g(n) \leq f(n) \leq c_2 g(n)$ for all $n \geq k$.

We write

$$f(n) = \Theta(g(n))$$

or

$$f = \Theta(g)$$
.

Insertion Sort takes $\Theta(n^2)$ time in the worst case.

An algorithm A takes O(T(n)) time, for a function T, if there exist

- a strictly positive constant c
- and an implementation of \mathcal{A} which takes at most c T(n) units of time to execute for any input of size n.

This is possible thanks to the *Principle of Invariance*.

Two different implementations of the same algorithm will not differ in efficiency by more than some multiplicative constant.

Barometer Instruction

A barometer instruction is one that is executed at least as often as any other instruction in the algorithm.

There is no harm if some instructions are executed up to a constant number of times more often than the barometer since their contribution is absorbed in the asymptotic notation $(O, \Omega \text{ and/or } \Theta)$.

The time of computation of the algorithm is then in the order of the number of executions of the barometer instruction.

Can you identify a barometer instruction in Insertion Sort?

To establish the relation between two functions, we can use the following theorem.

Theorem (Limit Criterion)

Let

$$f: \mathbb{N} \longrightarrow \mathbb{R}^+,$$

 $g: \mathbb{N} \longrightarrow \mathbb{R}^+$

be two functions. Let

$$L=\lim_{n\to\infty}\frac{f(n)}{g(n)}.$$

- If L = 0, then f = O(g) (and $f \neq \Theta(g)$).
- If $L = \infty$, then $f = \Omega(g)$ (and $f \neq \Theta(g)$).
- If $L \in \mathbb{R}^+$, then $f = \Theta(g)$ (and $g = \Theta(f)$).
- If the limit does not exist, then we cannot conclude.

