Universidad Nacional Autónoma de Honduras Escuela de Matemática y Ciencias de la Computación Departamento de Matemática Aplicada

Proyecto

Parcial: parcial III

Curso: MM-423 Álgebra Lineal Numérica – Profesor: Henry David Ocampo Meraz Fecha de entrega: 22 de agosto, 2023

1. Considere el problema de valor en la frontera

$$\begin{cases}
-D\left[\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2}\right] = f(x, y) & en \quad \Omega = [a, b] \times [c, d] \\
U(x, y) = g(x, y) & en \quad \partial\Omega
\end{cases}$$
(1)

- 2. Resolver el problema (1), desarrollando el método de diferencias finitas (de segundo orden), en el lenguaje de programación C++. Cada uno de los parámetros necesarios en el problema (1) se deben definir en la función principal main(). Considere implementar las siguientes funciones:
 - (a) Función que retorna la discretización del dominio Ω .
 - (b) Función que retorna la matriz de coeficientes (utilizar espacio de memoria de manera dinámica). Debe desarrollar otra función que guarde dicha matriz en formato CSR.
 - (c) Función que retorna el vector de términos independientes (utilizar espacio de memoria de manera dinámica).
 - (d) Resolver el sistema de ecuaciones lineales, que resulta al implementar el método de diferencias finitas, con los métodos directos:
 - Método de eliminación de Gauss.
 - Método con factorización LU.
 - Método con factorización de Cholesky.
 - Método con factorización de QR (Gram Schmidt).

Para cada método, registrar registrar el tiempo de ejecución en una tabla con el siguiente formato:

Método		¿Resolvió el
	Ejecución	sistema?
Método de eliminación de Gauss	val	val
Método con factorización LU	val	val
Método con factorización de Cholesky	val	val
Método con factorización de QR	val	val

(e) Resolver el sistema de ecuaciones lineales, que resulta al implementar el método de diferencias finitas, con los métodos iterativos:

- Método de Jacobi.
- Método Guss-Seidel.
- Método del Gradiente Conjugado.

Para cada método, registrar registrar el tiempo de ejecución y número de iteraciones, en una tabla con el siguiente formato:

Método	Tiempo de Ejecución	Iteraciones	¿Resolvió el sistema?
Método de eliminación de Gauss	val	val	val
Método con factorización LU	val	val	val
Método con factorización de Cholesky	val	val	val
Método con factorización de QR	val	val	val

- (f) Visualizar la solución sistema de ecuaciones lineales (valor asociado a cada punto de la discretización). Pueden utiliza cualquier herramienta (C++, matlab, python, etc.) para desarrollar la gráfica
- 3. Crear reporte (con formato IEEE doble columna) que incluya:
 - (a) Título de la investigación
 - (b) Datos del autor
 - (c) Resumen
 - (d) Introducción
 - (e) Metodología (descripción del problema, método para resolver el problema, descripción de los experimentos y resultados)
 - (f) Conclusiones
 - (g) Anexos, en caso de ser necesario (tablas, imágenes, etc.)
 - (h) Referencias