Computergrafik & Animation: Teilleistung 1

Hatem Htira (1978226)

Katharina Lochmüller 1775944() Carina Walker (1966493)

4. Dezember 2019

1 A1

s. Abgabe

2 A2

s. Abgabe

3 A3

3.1 Erstellung von Transformationsmatritzen

3.1.1 Erstellen Sie jeweils eine Transformationsmatrix, um folgende Transformationen vorzunehmen

• Verschiebung um 6 in X- und -4 in Z-Richtung

$$T = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Skalierung um den Faktor 3 in Y- und Z-Dimension

$$S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 $\bullet\,$ Rotation um 40° um die Y-Achse

$$R_y = \begin{bmatrix} \cos 40^\circ & 0 & \sin 40^\circ & 0 \\ 0 & 1 & 0 & 0 \\ -\sin 40 & 0 & \cos 40 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ mit } \cos 40^\circ \approx 0.766 \text{ und } \sin 40^\circ \approx 0.643$$

 $\bullet\,$ Verschiebung um 2 in X- und Z-Richtung, anschließend Rotation von 45° um Y-Achse

1

$$T = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_y = \begin{bmatrix} \cos 45^\circ & 0 & \sin 45^\circ & 0 \\ 0 & 1 & 0 & 0 \\ -\sin 45^\circ & 0 & \cos 45^\circ & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow (R_y \cdot T) = \begin{bmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 2\sqrt{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{\sqrt{2}}{2} & \sqrt{2} \\ -\frac{\sqrt{2}}{2} & 0 & 0 & 1 - \sqrt{2} \end{bmatrix}$$

 \bullet Rotation von 60° um x-Achse, anschließend Rotation von 125° um z-Achse

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos 60^{\circ} & -\sin 60^{\circ} & 0 \\ 0 & \sin 60^{\circ} & \cos 60^{\circ} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} R_{z} = \begin{bmatrix} \cos 125^{\circ} & -\sin 125^{\circ} & 0 & 0 \\ \sin 125^{\circ} & \cos 125^{\circ} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow (R_{z} \cdot R_{x}) = \begin{bmatrix} \cos 125^{\circ} & -\sin 125^{\circ} & \sqrt{3} \sin 125^{\circ} & 0 \\ \sin 125^{\circ} & \frac{\cos 125^{\circ}}{2} & \frac{\sqrt{3} \sin 125^{\circ}}{2} & 0 \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow (R_z \cdot R_x) = \begin{bmatrix} \cos 125^\circ & \frac{-\sin 125^\circ}{2} & \frac{\sqrt{3}\sin 125^\circ}{2} & 0\\ \sin 125^\circ & \frac{\cos 125^\circ}{2} & \frac{-\sqrt{3}\cos 125^\circ}{2} & 0\\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

3.1.2 Was unterscheidet lineare von strukturverändernden Transformationen? Geben Sie zwei Beispiele für strukturverändernde Transformationen an.

Für zwei Vektorräume U,V über einem Körper $\mathbb K$ erfüllt die lineare Transformation die Eigenschaften der Additivät und Homogenität. Hierdurch ist es möglich Vektoren aus dem Vektorraum U in den Vektorraum V abzubilden, ohne dass sich die Form der Objekte, die von den Vektoren beschrieben werden, ändert.

Strukturverändernde Transformationen verstoßen gegen die Eigenschaften der Additivität bzw. Homogenität, d.h. beim Abbildungen eines Vektors $u \in U$ in den Vektorraum V ändert sich auch dessen Struktur, z.B. kann ein Objekt, das durch einen abgebildetne Vektor beschrieben wird, seine Form verändern (etwa bei Verjünung oder Verdrehung).

Geben Sie zwei unterschiedliche Beschreibungsformen für Ebenen an und erläutern Sie kurz, wie diese ineinander überführt werden können.

Eine mögliche Beschreibungsform ist die Koordinatenform ax + by + cz = d, welche sich durch Umformung z.B. in die Normalenform $\vec{n} \cdot (\vec{p} - \vec{a})$ bringen lässt.

Es sei eine Ebene beschrieben durch den Normalenvektor $\vec{n} = \begin{bmatrix} a & b & c \end{bmatrix}^T$, den Aufpunkt $\vec{a} = \begin{bmatrix} x & y & z \end{bmatrix}^T$ und einen beliebigen Punkt auf der Ebene $\vec{p} = \begin{bmatrix} x_0 & y_0 & z_0 \end{bmatrix}^T$

$$\vec{n} \cdot (\vec{p} - \vec{a}) = 0$$

$$\iff \vec{n} \cdot \vec{p} = \vec{n} \cdot \vec{a}$$

$$\iff ax + by + cz = ax_0 + by_0 + cz_0$$

$$\iff ax + by + cz = d$$

$$mit \ d = \vec{n} \cdot \vec{a}$$
(1)

Transformation einer Kugel 3.2

3.2.1

• Translations
matrix
$$T = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Skalierungsmatrix
$$S = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow$$
da Wechsel der Koordinatensysteme: $(S\cdot T)^{-1}=T^{-1}\cdot S^{-1}$

$$\Rightarrow \text{da Wechsel der Koordinatensysteme: } (S \cdot T)^{-1} = T^{-1} \cdot S^{-1}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & \frac{1}{4} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Der Mittelpunkt der Kugel sei beschrieben durch den Vektor
$$\vec{p_m} = \begin{bmatrix} x_m & y_m & z_m & 1 \end{bmatrix}^T$$
, dann ist der Mittelpunkt der Kugel im Weltkoordinatensystem: $(S \cdot T)^{-1} \cdot \vec{p_m} = \begin{bmatrix} x+2 \\ y-5 \\ \frac{z}{4} \\ 1 \end{bmatrix}$

$$= \begin{bmatrix} x+2 & y-5 & \frac{z}{4} \end{bmatrix}^T$$
 Da der Ursprung = Mittelpunkt, ergibt sich also: $p_m = \begin{bmatrix} 2 & -5 & 0 \end{bmatrix}^T$ als Mittelpunkt der Kugel im Weltkoordinatensystem.

3.2.2

• Blickrichtung
$$n = \overrightarrow{CM_w} = \begin{bmatrix} 2 & -5 & 0 \end{bmatrix}^t - \begin{bmatrix} 10 & -15 & 10 \end{bmatrix}^t = \begin{bmatrix} -8 & 10 & -10 \end{bmatrix}^T$$