$\Phi_{
m M}$ З $T_{
m E}$ Х Ж $_{
m M}$ К*

T5

I. Найдём уровни энергии и волновые функции связанных состояний (E < 0) частицы в поле

$$U(x) = -\frac{\hbar^2 \varkappa_0}{m} \left(\delta(x+a) + \delta(x-a) \right).$$

Гамильтониан системы и стационарное уравнение Шрёдингера:

$$H = -\frac{\hbar^2 \partial_x^2}{2m} + U(x), \qquad -\frac{\hbar^2 \partial_x^2}{2m} \psi(x) + U(x)\psi(x) = -|E|\psi(x),$$

далее считая E = -E, будем решать уравнение

$$\psi''(x) - \frac{2m}{\hbar^2}(U(x) + E)\psi(x) = 0.$$

В местах, где не происходит скачков производной подходит в качестве решения экспонента, так что будем искать решение в виде

$$\psi(x) = \begin{cases} Ae^{\varkappa(x+a)}, & x < -a \\ Be^{-\varkappa(x+a)} + Ce^{\varkappa(x-a)}, & |x| < a \\ De^{-\varkappa(x-a)}, & x > a. \end{cases}$$

где введено $\varkappa^2 = 2mE/\hbar^2$.

Можно было бы заметить, что потенциал симметричен, а значит можно искать решение уравнения Шредингера, как собственные функции оператора инверсии: четные и нечетные решения (A=D,B=C) и A=-D,B=-C, но мы пойдём другим путём, чтобы посмотреть, как из уравнений вылезет симметрия задачи.

Чтобы найти $\psi(x)$ запишем условия непрерывности и, интегрируя стационарное уравнение Шредингера, уравнение на скачок производной:

$$\psi(-a+\varepsilon) = \psi(-a-\varepsilon),$$

$$\psi(a+\varepsilon) = \psi(a-\varepsilon),$$

$$\psi'(-a+\varepsilon) - \psi'(-a-\varepsilon) = -2\varkappa_0\psi(-a)$$

$$\psi'(a+\varepsilon) - \psi'(a-\varepsilon) = -2\varkappa_0\psi(a)$$

$$\Rightarrow A-C - Be^{2a\varkappa} = 0$$

$$B-D+Ce^{2a\varkappa} = 0$$

$$-A+C-Be^{2a\varkappa} + 2A\varkappa_0/\varkappa = 0$$

$$B-D-Ce^{2a\varkappa} + 2d\varkappa_0/\varkappa = 0$$

Для удобства введем $X=e^{2a\varkappa}$, и выразив из первого уравнения A, из второго B, из третьего C подставим и получим уравнение вида

$$\frac{D\varkappa(\varkappa-\varkappa_0)}{(\varkappa-\varkappa_0)+\varkappa_0X^{-2}}=d\varkappa_0,\quad\Rightarrow\quad\varkappa^2-2\varkappa\varkappa0+\varkappa0^2-\frac{\varkappa0^2}{X^2}=0,\quad\Rightarrow\quad\left[\varkappa_\pm=(1\pm e^{-2A\varkappa})\varkappa_0\right],\tag{1}$$

что составляет условие совместности полученной СЛУ.

Забавный факт: составим матричку для СЛУ и найдём определитель

$$M = \begin{pmatrix} 1 & -X & -1 & 0 \\ 0 & 1 & X & -1 \\ \varkappa - 2\varkappa 0 & \varkappa X & -\varkappa & 0 \\ 0 & \varkappa & -\varkappa X & 2\varkappa 0 - \varkappa \end{pmatrix}, \qquad \det M = 4(X^2(\varkappa - \varkappa_0)^2 - \varkappa_0^2).$$

Решение уравнения $\det M = 0$ относительно \varkappa приводит к тем же корням, что и уравнение (1): $\varkappa = (1 \pm e^{-2A\varkappa})\varkappa_0$, таким образом СЛУ будет совместна, если вырождена.

Стоит заметить, что $\operatorname{rg} M(\varkappa_{\pm}) = 3$, тогда, решая уравнение относительно A, B, C, находим

$$\varkappa_{+}$$
: $A=D,\; B=C=rac{A}{1+e^{2aarkappa}},$ четное решение \varkappa_{-} : $A=-D,\; B=-C=-rac{A}{-1+e^{2aarkappa}},$ нечетное решение

Для наглядности можем их построить.

Стоит вспомнить, что уравнение (1) – трансцендентное уравнение, где $\varkappa = \varkappa(E)$, то есть уравнение на уровни энергии. Как мы показали, \varkappa_+ соответствует четному решению и \varkappa_- нечётному.

Рис. 1: Четное и нечётное решение к Т5

Рис. 2: Решение трансцендентного уравнения к Т5

T7

Рассмотрим движение в потенциальном поле

$$U(x) = -\frac{\hbar^2 \varkappa_0}{m} \sum_{n=-\infty}^{\infty} \delta(x - na).$$

Запишем стационарное уравнение Шрёдингера

$$\hat{H} = -\frac{\hbar^2}{2m}\partial_x^2 + U(x), \qquad \hat{H}\psi(x) = E\psi(x).$$

Подставляя, находим

$$\psi''(x) - \frac{2m}{\hbar^2} (U(x) - E) \psi(x) = 0, \quad \Rightarrow \quad \psi(x) = \begin{cases} \alpha_1 e^{ikx} + \beta_1 e^{-ikx}, & x \in [0, a]; \\ \alpha_2 e^{ik(x-a)} + \beta_2 e^{-ik(x-a)}, & x \in [a, 2a]; \end{cases}$$

где рассмотрели решение на двух областях: [0,a] и [a,2a], и ввели $k^2 = \frac{2m}{\hbar^2}E$.

Запишем условие на непрерывность $\psi(x)$ и скачок первой производной

$$\psi(a+\varepsilon) = \psi(a-\varepsilon), \\ \psi'(a+\varepsilon) - \psi'(a-\varepsilon) = -2\varkappa_0\psi(a),$$
 \Rightarrow
$$\begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = A \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}, \quad A = \begin{pmatrix} e^{ika} \left(1 - \frac{\varkappa_0}{ik}\right) & -e^{-ika} \frac{\varkappa_0}{ik} \\ e^{ika} \frac{\varkappa_0}{ik} & e^{-ika} \left(1 + \frac{\varkappa_0}{ik}\right) \end{pmatrix}$$

3десь, для удобства, ввели связь коэффициентов через матрицу A.

В силу периодичности потенциала, $[\hat{H}, \hat{T}_a] = 0$, и решение может быть найдено в виде функций Блоха 1

$$U(x+a) = U(x), \quad \Rightarrow \quad \psi(x+a) = e^{iKa}\psi(x).$$

Тогда, подставляя предполагаемое решение, находим

$$\begin{pmatrix} \alpha_2 \\ \beta_2 \end{pmatrix} = e^{iKa} \begin{pmatrix} \alpha_1 \\ \beta_1 \end{pmatrix}.$$

Получается, матрица A должна быть скалярна, чего можем добиться дополнительными условиеями на α и β :

$$\lambda^2 - (\operatorname{tr} A)\lambda + \det(A) = 0, \quad \operatorname{tr} A = e^{ika} \left(1 - \frac{\varkappa_0}{ik} \right) + e^{-ika} \left(1 + \frac{\varkappa_0}{ik} \right) \stackrel{\text{def}}{=} 2\rho, \quad \det A = 1.$$

Подставляя условие из $[\hat{H}, \hat{T}_a] = 0$, находим

$$\lambda_{1,2} = e^{\pm iKa} = \rho \pm i\sqrt{1 - \rho^2},$$

 $^{^{1}}$ Действительно, $\psi(x)=e^{Ka}F(x)$, где F(x+a)=F(x), тогда $\psi(x+a)=e^{iKa}\psi(x)$.

 Φ_{H} З T_{E} X Жи K^*

что, вроде, носит гордое имя дисперсионного соотношения. Подставляя 2 ρ находим выражение для K:

$$\cos(Ka) = \cos(ka) - \frac{\varkappa_0}{k}\sin(ka).$$

Так как $Ka \in \mathbb{R}$, то дисперсионное соотношение становится условием на допустимые значения энергии и, из уравнения и достаточно убедительного рисунка, можем сделать вывод о разрешенных зонах. Действительно, для того, чтобы зона была разрешенной необходимо, чтобы

$$|\cos(k[E]a) - \frac{\varkappa_0}{k[E]}\sin(k[E]a)| < 1, \tag{2}$$

на что чуть подробнее посмотрим в предельных случаях.

Построим $|\cos(k[E]a) - \frac{\varkappa_0}{k[E]}\sin(k[E]a)|$ для $\varkappa_0 a \ll 1$ (слабая связь) и $\varkappa_0 a \gg 1$ (сильная связь). Видно, что слабой связи соответствует почти непрерывный спектр $\cos(Ka) \approx \cos(ka)$ и $K \approx k + \frac{2\pi n}{a}$, а сильная связб приводит к почти дискретному спектру с $ka \approx \pi n$.

Рис. 3: Слабая и сильная связь в задаче Т7

По определению, эффективной массой частицы называется

$$m^* \stackrel{\text{def}}{=} \hbar^2 \left(\frac{d^2 E}{dK^2}\right)^{-1},$$

где $\hbar K$ – квазиимпульс.

Считая k малым, находим

$$\frac{1}{6}k^2\left(a^3\varkappa_0 - 3a^2\right) - a\varkappa_0 + 1 = \cos(aK), \quad \Rightarrow \quad E(K) = \frac{\hbar^2}{2m}k^2 = \frac{\hbar^2}{2m}\frac{6}{a^2}\frac{1 - \cos(Ka) - a\varkappa_0}{3 - \varkappa_0 a}.$$

Тогда эффективная масса система равна

$$E_{KK}'' = \frac{3\hbar^2 \cos(aK)}{m(3 - a\varkappa_0)}, \quad \Rightarrow \quad m^* = m \frac{1 - a\varkappa_0/3}{\cos(aK)},$$

которое $a\varkappa_0\ll 1$ и $aK\ll 1$ переходит в классический случай!

T8

Рассмотрим связанное сферически симметричное состояние частицы в сфрически симметричной потенциальной яме, вида

$$U(r) = \begin{cases} -U_0, & r < r_0, \\ 0, & r \geqslant r_0, \end{cases}$$

в частности случаи $\dim \in \{1, 2, 3\}$.

Как обычно, запищем стационарное уравнение Шрёдингера, в силу связного состояния (E < 0) переобозначим $E \to -E$:

$$\hat{H}\psi = \left(\frac{\hat{\mathbf{p}}^2}{2m} + U\right)\psi = -E\psi, \quad \Rightarrow \quad \triangle\psi - \frac{2m}{\hbar^2}(U+E)\psi = 0.$$

²Имеет смысл выразить $\rho = \cos(ak) - \frac{\varkappa_0}{k}\sin(ak)$.

 M_{M} K* Φ_{M} 3TEX

Раскрывая U(r), выделяем две области:

$$\begin{cases} \triangle \psi + k^2 \psi = 0, & r < r_0; \\ \triangle \psi - \varkappa^2 \psi = 0, & r > r_0; \end{cases} \qquad k^2 = \frac{2m}{\hbar^2} (U_0 - E), \qquad \varkappa^2 = \frac{2m}{\hbar^2} E.$$

Осталось раскрыть лапласиан, считая $\psi \equiv \psi(r)$ (сферически симметричное состояние)

$$\triangle|_{\text{dim}=1} = \partial_r^2, \quad \triangle|_{\text{dim}=2} = \frac{1}{r}\partial_r + \partial_r^2, \quad \triangle|_{\text{dim}=3} = \frac{2}{r}\partial_r + \partial_r^2.$$

Одномерный случай. Подробно разобран в T2, здесь ограничимся только указанием итоговой охапки диффуров и ответа:

$$\begin{cases} \psi'' + k^2 \psi = 0, & r < r_0; \\ \psi'' - \varkappa^2 \psi = 0, & r > r_0; \end{cases} \Rightarrow \psi^+(r) = \begin{cases} A\cos(kr), & r < r_0; \\ Be^{-\varkappa r}, & r > r_0; \end{cases} \qquad \psi^-(r) = \begin{cases} A\sin(kr), & r < r_0; \\ Be^{-\varkappa r}, & r > r_0; \end{cases}$$

где ψ^+ и ψ^- – четное и нечетное решение (в силу симметричности потенциала), а A и B известны из условий нормировки, непрерывности и гладкости.

Двухмерный случай. Дифференциальное уравнение на $\psi(r)$ примет вид

$$\begin{cases} \psi'' + \frac{1}{r}\psi' + k^2\psi = 0, \\ \psi'' + \frac{1}{r}\psi' - \varkappa^2\psi = 0. \end{cases}$$

В силу сферической симметрии задачи, решение может быть найден в виде функций Бесселя J_n и Y_n :

$$\psi(r) = \begin{cases} A_1 J_0(kr) + B_1 Y_0(kr), & r < r_0; \\ A_2 J_0(i\varkappa r) + B_2 Y_0(-i\varkappa r), & r > r_0. \end{cases}$$

В силу нормируемости ψ должно выполняться равенство $B_2 = A_2/i$.

Дальше вспоминаем, что $\psi(r\leqslant r_0)|_{r=r_0}=\psi(r\geqslant r_0)|_{r=r_0}$, также $\psi(r\leqslant r_0)'|_{r=r_0}=\psi(r\geqslant r_0)'|_{r=r_0}$, плюс $\int |\psi(r)|^2\,dr=1$, что даёт нам три уравнения, на три коэффициента. Однако ожидается дискретность спектра, так что необходимо дополнительное условие, чтобы прийти к уравнению на E.

Можно предположить, что волновой функции ненормально уходить в бесконечность (даже оставаясь L_2 интегрируемой), тогда $B_1 = 0$, и мы получаем дискретный спектр.

Трёхмерный случай. Попробуем найти решение в виде $\psi(r) = \mu(r)\nu(r)$, где $\mu(r) = \exp\left(-\int \frac{f(r)}{2} dr\right)$, иногда это помогает диффурах вида F'' + f(r)F' + F = 0:

$$\begin{cases} \psi'' + \frac{2}{r}\psi' + k^2\psi = 0, & r < r_0; \\ \psi'' + \frac{2}{r}\psi' - \varkappa^2\psi = 0, & r > r_0; \end{cases} \qquad \nu(r) = e^{-\ln r} = \frac{1}{r}, \qquad \Rightarrow \qquad \begin{cases} \nu'' + k^2\nu = 0, & r < r_0; \\ \nu'' - \varkappa^2\nu = 0, & r > r_0. \end{cases}$$

А такое уравнение на $\nu(r)$ уже решается, итого находим

$$\psi(r) = \begin{cases} \frac{A_1}{r} e^{-ikr} + \frac{B_1}{r} e^{ikr}, & r < r_0; \\ \frac{A_2}{r} e^{-\varkappa r} + \frac{B_2}{r} e^{\varkappa r}, & r > r_0. \end{cases}$$

Осталось наполнить это физическим смыслом: при $r > r_0$ требование нормировки приведет к $B_2 = 0$, при $r < r_0$ для наглядности перепишем в тригонометрических функциях:

$$\psi(r < r_0) = -\frac{iA_1 \sin(kr)}{r} + \frac{A_1 \cos(kr)}{r} + \frac{iB_1 \sin(kr)}{r} + \frac{B_1 \cos(kr)}{r}, \quad \Rightarrow \quad B_1 = -A_1,$$

из того же требования нормируемости функции.

Из непрерывности в $r = r_0$ находим:

$$\psi(r \leqslant r_0)|_{r=r_0} = \psi(r \geqslant r_0)|_{r=r_0}, \quad \Rightarrow \quad A_2 = -2iA_1 e^{r_0 \varkappa} \sin(kr_0).$$

Выразив все коэффициенты через A_1 , подставим их в условие глакзкости $\psi(r)$:

$$\psi(r \leqslant r_0)'|_{r=r_0} = \psi(r \geqslant r_0)'|_{r=r_0}, \quad \Rightarrow \quad k\cos(kr_0) + \varkappa\sin(kr_0) = 0, \quad \Rightarrow \quad \boxed{k[E] = -\varkappa[E] \cdot \operatorname{tg}(k[E]r_0)}$$

это трансцендентное уравнение на E имеет решения, соответсвенно выделяет дискретный спектр уровней энергии.

Осталось найти A_1 из условия нормировки, к сожалению через элементарные функции у меня это условие не выражается, возможно выше была вычислительная ошибка, но система \pm физична. Для начала посчитаем плотность вероятности

$$|\psi(r < r_0)|^2 = \frac{4A_1^2 \left(k \cos\left(k \left(r - r_0\right)\right) - \varkappa \sin\left(k \left(r - r_0\right)\right)\right){}^2}{r^2 \left(\varkappa^2 + k^2\right)}, \qquad |\psi(r > r_0)|^2 = \frac{4A_1^2 k^2 e^{2\varkappa (r_0 - r)}}{r^2 \left(\varkappa^2 + k^2\right)}.$$

тогда условие нормировки:

$$\int_0^{r_0} |\psi(r < r_0)|^2 dr + \int_{r_0}^{\infty} |\psi(r > r_0)|^2 dr = 1, \quad \Rightarrow \quad A_1^{-2} = 8e^{2\varkappa r_0} \operatorname{Ei}\left(-2r_0\varkappa\right) \sin(kr_0)^2 + 4k \operatorname{Si}\left(2kr_0\right),$$

 Φ_{H} З T_{E} X Жи K^*

где Si — интегральный синус, Ei — интегральная экспонента, таким образом нашли волновую функцию и уровни энергии:

$$\psi(r) = 2A_1 \begin{cases} \sin(kr)/r, & r < r_0; \\ \sin(kr_0) e^{\varkappa(r_0 - r)}/r, & r > r_0. \end{cases}$$

T9

Найдём уровни энергии трёхмерного изотропного гармонического осциллятора в ПДСК. Запишем уравнение Шрёдингера примет вид

$$\hat{H}\psi = E\psi$$

и перейдём к безразмерным величинам

$$\hat{\boldsymbol{Q}} = \frac{\hat{\boldsymbol{q}}}{q_0}, \quad \hat{\boldsymbol{P}} = \frac{\hat{\boldsymbol{p}}}{p_0} = -i\partial_{\boldsymbol{Q}}, \qquad p_0 = \sqrt{m\omega\hbar}, \quad q_0 = \sqrt{\frac{\hbar}{m\omega}}, \quad \Rightarrow \quad \hat{H}_Q = \frac{1}{2}\left(Q^2 + \hat{P}^2\right) = \hat{H}/(\hbar\omega).$$

Для благоприятного разделения переменных представим $\psi(x,y,z)=\psi_x(x)\psi_y(y)\psi_z(z),$ и $E=E_x+E_y+E_z$:

$$\frac{1}{2}\left(x^2+y^2+z^2-\left(\partial_x^2+\partial_y^2+\partial_z^2\right)\right)\psi_x\psi_y\psi_z=\frac{1}{\hbar\omega}(E_x+E_y+E_z)\psi_x\psi_y\psi_z.$$

Нетрудно получить

$$\left(x^2 - \frac{\psi_x''(x)}{\psi_x(x)} - \frac{2E_x}{\hbar\omega}\right)\psi_x\psi_y\psi_z + \dots \left(z^2 - \frac{\psi_z''(z)}{\psi_z(z)} - \frac{2E_z}{\hbar\omega}\right)\psi_x\psi_y\psi_z = 0,$$

таким образом переменные разделились и мы получили три независимых уравнения одномерных осцилляторов:

$$\begin{cases} \psi_x''(x) + \left(\frac{2E_x}{\hbar\omega} - x^2\right)\psi_x(x) = 0, \\ \psi_y''(y) + \left(\frac{2E_y}{\hbar\omega} - y^2\right)\psi_y(y) = 0, \quad \Rightarrow \quad E_i = \hbar\omega\left(\frac{1}{2} + n_i\right). \\ \psi_z''(z) + \left(\frac{2E_z}{\hbar\omega} - z^2\right)\psi_z(z) = 0. \end{cases}$$

Так приходим к выражению для энергии изотропного гармонического осциллятора через число квантов по каждой из осей:

$$E = E_x + E_y + E_z = \hbar\omega \left(\frac{3}{2} + n_x + n_y + n_z\right),$$

где явно видно вырождение уровней энергии, при $n_x + n_y + n_z = n$. Нетруно посчитать⁴, что

$$\#(n) = \operatorname{card} \{(n_x, n_y, n_z) \mid n_x + n_y + n_z = n\} = \frac{(n+1)(n+2)}{2},$$

что и является кратностью вырождения.

Заметим, что #(0) = 1, #(1) = 3, #(2) = 6, тогда

$$2 \cdot (\#(0)) = 2,$$
$$2 \cdot (\#(0) + \#(1)) = 8,$$
$$2 \cdot (\#(0) + \#(1) + \#(2)) = 20,$$

что намекает на некоторую связь с магическими числами (ЛЛЗ, §118: модель оболочек).

³Здесь и далее $Q = (x, y, z)^{\mathrm{T}}$ – обезразмеренные для удобства перменные.