1 Между населёнными пунктами A, B, C, D, E, F, Z построены дороги с односторонним движением. В таблице указана протяжённость каждой дороги. Отсутствие числа в таблице означает, что прямой дороги между пунктами нет. Например, из A в B есть дорога длиной 4 км, а из B в A дороги нет.

	Α	В	С	D	E	F	Z
Α		4	6				30
В			3				
С				11			27
D					4	7	10
Е						4	8
F					5		2
7	29						

———Сколько существует таких маршрутов из A в Z, которые проходят через 6 и

более населенных пунктов? Пункты А и Z при подсчете учитывать. Два раза проходить через один пункт нельзя.

2 (В.Н. Шубинкин) Логическая функция F задаётся выражением ($x \equiv y$) \rightarrow ($z \equiv w$). Ниже приведён частично заполненный фрагмент таблицы истинности этой функции, содержащий неповторяющиеся строки. Сколькими способами можно поставить в соответствие переменные w, x, y, z столбцам таблицы истинности функции F, опираясь на информацию из данного фрагмента?

?	?	?	?	F
0	0	0	1	0
1	1	1	0	0

 $^{
m I}$ Пример. Функция F задана выражением х $^{
m V}$ у $^{
m V}$ z, а фрагмент таблицы

истинности имеет вид:

?	?	?	F
0	1	1	1

В этом случае переменные можно расставить любым способом, значит,

ответом будет число 6.

3 (М. Ишимов) В файле 3-101.xls приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Таблица «Магазин» содержит информацию о местонахождении магазинов. На рисунке приведена схема указанной базы данных.

Производитель Используя информацию из приведённой базы данных, определите наибольшее количество проданных упаковок из всех видов шоколада в магазинах Промышленного района, за период с 2 по 10 августа включительно. В ответе запишите только число.

- **4** (А.Н. Носкин) Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В, Г использовали соответственно кодовые слова 011, 010, 001, 0001. Укажите возможное кодовое слово для буквы Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.
- 5 Автомат обрабатывает натуральное число N по следующему алгоритму:
- 1) Строится двоичная запись числа N.
- 2) Запись «переворачивается», то есть читается справа налево. Если при этом появляются ведущие нули, они отбрасываются.
- 3) Полученное число переводится в десятичную систему счисления и выводится на экран. Какое наименьшее число, превышающее 500, после обработки автоматом даёт результат 19?
- 6 (А. Богданов) Исполнитель Черепаха действует на плоскости с декартовой системой координат. В начальный

момент Черепаха находится в начале координат, её голова направлена вдоль положительного направления оси ординат, хвост опущен. При опущенном хвосте Черепаха оставляет на поле след в виде линии. В каждый конкретный момент известно положение исполнителя и направление его движения. У исполнителя существует две команды: Вперёд п (где n — целое число), вызывающая передвижение Черепахи на n единиц в том направлении, куда указывает её голова, и Направо m (где m — целое число), вызывающая изменение направления движения на m градусов по часовой стрелке. Запись

```
Повтори k [Команда1 Команда2 ... КомандаS]
```

означает, что последовательность из S команд повторится k раз. Черепахе был дан для исполнения следующий алгоритм:

```
Повтори 13 [ Направо 135 Вперед 5 ]
```

Найдите количество точек фигуры, образованных пересечением отрезков, без учета концов самих отрезков.

- 7 Изображение размером 4x7 дюйма отсканировано с разрешением 300 ppi и использованием 2²⁴ цветов. Заголовок файла занимает 6 Кбайт. Определите, сколько Кбайт памяти необходимо выделить для хранения файла. В ответе введите целое число.
- **8** Вася составляет слова из букв слова АТТЕСТАТ. Код должен состоять из 8 букв, и каждая буква в нём должна встречаться столько же раз, сколько в заданном слове. Кроме того, в коде должны стоять рядом две гласные или две согласные буквы. Сколько различных слов может составить Вася?
- **9** (С. Якунин) В файле электронной таблицы <u>9-187.xls</u> в каждой строке записаны пять латинских букв. Определите количество строк таблицы, содержащих ровно 2 одинаковые буквы.
- **10** С помощью текстового редактора определите, сколько раз, не считая сносок, встречается предлог «со» (со строчной буквы) в тексте романа А.С. Пушкина «Капитанская дочка» (файл <u>10-34.docx</u>). В ответе укажите только число.
- 11 Сотрудникам компании выдают электронную карту, на которой записаны их личный код, номер подразделения (целое число от 1 до 120) и дополнительная информация. Личный код содержит 11 символов и может включать латинские буквы (заглавные и строчные буквы различаются) и десятичные цифры. Для хранения кода используется посимвольное кодирование, все символы кодируются одинаковым минимально возможным количеством битов, для записи кода отводится минимально возможное целое число байтов. Номер подразделения кодируется отдельно и занимает минимально возможное целое число байтов. Известно, что на карте хранится всего 28 байтов данных. Сколько байтов занимает дополнительная информация?
- **12** Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
    заменить (v, w)
    нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (222)
заменить (22, 7)
заменить (77, 2)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой ниже программы к строке, состоящей из 103 цифр 2?

13 На рисунке представлена схема дорог, связывающих города А, Б, В, Г, Д, Е, Ж, З, И, К, Л, М, Н. По каждой дороге можно двигаться только в одном направлении, указанном стрелкой. Сколько существует различных

путей из пункта А в пункт Н, проходящих через пункт Е?

14 (М.В. Кузнецова) Значение арифметического выражения: $9^5 + 3^7 - 14$ записали в системе счисления с основанием 3. Какая из цифр реже всего встречается в этой записи? В ответе укажите, сколько таких цифр в записи.

15 Обозначим через ДЕЛ(n, m) утверждение «натуральное число n делится без остатка на натуральное число m». Для какого наибольшего натурального числа A формула

ДЕЛ
$$(x, 18) \rightarrow (\neg ДЕЛ(x, A) \rightarrow \neg ДЕЛ(x, 12))$$

тождественно истинна (то есть принимает значение 1 при любом натуральном значении переменной х)?

16 Алгоритм вычисления значения функции F(n), где n – целое неотрицательное число, задан следующими соотношениями:

```
F(0) = 1

F(n) = 1 + F(n - 1), если n > 0 и n нечётное

F(n) = F(n / 2) в остальных случаях
```

Определите количество значений n на отрезке [1, 500 000 000], для которых F(n) = 4.

17 (А. Кабанов) В файле <u>17-4.txt</u> содержится последовательность целых чисел. Элементы последовательности могут принимать целые значения от 0 до 10 000 включительно. Рассматривается множество элементов последовательности, которые удовлетворяют следующим условиям:

- запись в двоичной системе заканчивается на 1001;
- запись в пятеричной системе заканчивается на 11.

Найдите максимальное из таких чисел и их сумму. Гарантируется, что искомая сумма не превосходит 10^7 .

18 (Е. Джобс) Квадрат разлинован на N×N клеток (2 < N < 20). Исполнитель Робот может перемещаться по клеткам, выполняя за одно перемещение одну из двух команд: вправо или вверх. По команде вправо Робот перемещается в соседнюю правую клетку, по команде вверх — в соседнюю верхнюю. При попытке выхода за границу квадрата Робот разрушается, при столкновении со стеной робот разрушается. Также робот перемещается вдоль стен, то есть может переместиться только в ту клетку, в которой есть стена. Перед каждым запуском Робота в каждой клетке квадрата записано число от 10 до 99. Посетив клетку Робот прибавляет к своему счету записанное в ней значение. Определите максимальное и минимальное значение счета, который может набрать Робот, пройдя из левой нижней клетки в правую верхнюю. Исходные данные для Робота записаны в файле 18-116.xls в виде прямоугольной таблицы, каждая ячейка которой соответствует клетке квадрата. В ответе укажите сначала максимальный, затем минимальный результат, который может быть получен исполнителем.

19, 20, 21 Два игрока, Петя и Ваня, играют в следующую игру. Перед игроками лежит две кучи камней. Игроки ходят по очереди, первый ход делает Петя. За один ход игрок может **добавить** в любую кучу **один камень** или **добавить** добавить в любую кучу **столько камней, сколько их в данный момент в другой куче**. Игра завершается в тот момент, когда общее количество камней в двух кучах становится не менее 79. Победителем считается игрок, сделавший последний ход. В начальный момент в первой куче было 9 камней, а во второй - S камней, $1 \le S \le 69$.

Ответьте на следующие вопросы:

Вопрос 1. Известно, что Ваня выиграл своим первым ходом после неудачного первого хода Пети. Назовите минимальное значение S, при котором это возможно.

Вопрос 2. Найдите минимальное и максимальное значение S, при котором у Пети есть выигрышная стратегия, причём одновременно выполняются два условия:

- Петя не может выиграть за один ход;
- Петя может выиграть своим вторым ходом независимо от того, как будет ходить Ваня.

Найденные значения запишите в ответе в порядке возрастания.

Вопрос 3. Найдите значение S, при котором одновременно выполняются два условия:

- у Вани есть выигрышная стратегия, позволяющая ему выиграть первым или вторым ходом при любой игре Пети:
- у Вани нет стратегии, которая позволит ему гарантированно выиграть первым ходом.
- 22 (А. Кабанов) В файле 22-35.xls содержится информация о совокупности N вычислительных процессов, которые могут выполняться параллельно или последовательно. Будем говорить, что процесс В зависит от процесса А, если для выполнения процесса В необходимы результаты выполнения процесса А. Информация о процессах представлена в файле в виде таблицы. В первом столбце таблицы указан идентификатор процесса (ID), во втором столбце таблицы время его выполнения в миллисекундах, в третьем столбце перечислены с разделителем «;» ID процессов, от которых зависит данный процесс. Если процесс является независимым, то в таблице указано значение 0. При составлении таблицы была потеряна информация о том, после какого процесса начался процесс ID = 16. Однако известно, что вся совокупности процессов завершилась за минимальное время 138 мс. Определите ID процесса, после которого начался процесс с ID = 16. В ответе укажите только число.

Типовой пример организации данных в файле:

ID процесса В	Время выполнения процесса В (мс)	ID процесса(ов) А
1	4	0
2	3	0
3	1	1; 2
4	7	?

В данном случае независимые процессы 1 и 2 могут выполняться

параллельно, при этом процесс 1 завершится через 4 мс, а процесс 2 – через 3 мс с момента старта. Процесс 3 может начаться только после завершения обоих процессов 1 и 2, то есть, через 4 мс после старта. Он длится 1 мс и закончится через 4+1=5 мс после старта. Выполнение процесса 4 может начаться только после завершения процесса, ID которого **потеряно**. Его продолжительность равно 7 мс. Если бы минимальное время завершения всех процессов была равно 12 мс, то процесс 4 начинался бы **после процесса 3** (12-7=5мс).

- 23 У исполнителя Калькулятор три команды, которым присвоены номера:
- 1. прибавь 1
- 2. умножь на 2
- 3. умножь на 3

Сколько есть программ, которые число 1 преобразуют в число 14?

- **24** (Д. Статный) Текстовый файл $\underline{24\text{-}235.txt}$ состоит не более чем из 10^6 символов и содержит только буквы XYZWOP. Определите самый часто встречающийся символ в комбинации X*P, который стоит на месте звездочки. В ответе укажите количество раз, сколько он встретился в данной комбинации.
- **25** Напишите программу, которая ищет среди целых чисел, принадлежащих числовому отрезку [2484292; 2484370], простые числа. Выведите все найденные простые числа в порядке возрастания, слева от каждого числа выведите его номер по порядку.
- 26 (М. Шагитов) Для экрана размером 10000х10000 пикселей используется цветовая модель RGB. Графический адаптер считывает пиксели экрана и записывает в файл данные всех пикселей, кроме тех, для которых установлен белый цвет. Для каждого пикселя записывается номер строки, номер позиции в строке и цвет в виде шестнадцатеричного кода (например, #FFFFFF белый цвет). Найдите все пиксели с кодом #00FF00, слева и справа от которых записаны по три подряд идущих пикселя с кодом #0000FF. Определите общее количество подходящих пикселей, а также номер строки, в которой есть наибольшее количество таких пикселей. Гарантируется, что на экране есть хотя бы один подходящий пиксель.

Входные данные представлены в файле $\underline{26\text{-}87\text{.txt}}$ следующим образом. В первой строке входного файла записано натуральное число N — общее количество записей ($1 \le N \le 100~000$). В каждой из следующих N строк находятся два натуральных числа, не превышающих 10000, и шестнадцатеричный код, разделённые пробелом: номер строки, номер позиции в строке уникального пикселя и цвет пикселя.

Запишите в ответе два числа: общее количество подходящих пикселей на экране и наибольший номер строки, с максимальным количеством подходящих пикселей.

Пример входного файла::

```
1 1 #00FF00

1 3 #00FF00

2 1 #0000FF

2 2 #0000FF

2 3 #0000FF

2 4 #00FF00

2 5 #0000FF

2 6 #0000FF

2 7 #0000FF

3 3 #00FF00

3 5 #00FF00
```

В данном случае есть один подходящий пиксель (строка 2, позиция 4) с кодом цвета #00FF00, окруженный с двух сторон тройками пикселей с кодом #0000FF. Ответ: 1 2.

27 Имеется набор данных, состоящий из троек положительных целых чисел. Необходимо выбрать из каждой тройки два числа так, чтобы сумма всех выбранных чисел не делилась на 5 и при этом была максимально возможной. Гарантируется, что искомую сумму получить можно. Программа должна напечатать одно число – максимально возможную сумму, соответствующую условиям задачи.

Входные данные. Даны два входных файла (файл A и файл B), каждый из которых содержит в первой строке количество троек N ($1 \le N \le 100000$). Каждая из следующих N строк содержит три натуральных числа, не превышающих $10\ 000$.

Пример входного файла:

Для указанных входных данных значением искомой суммы должно быть число 89. В ответе укажите два числа: сначала искомое значение для файла A, затем для файла B.