16. Januar 2017 Winter Term

Home Work (12)

Task 1: Orbital Angular Momentum

(3 Points)

a) The z-component of the orbital angular momentum operator is in Cartesian coordinates given by

$$L_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right) .$$

Find the form of L_z in spherical coordinates.

b) Show that the eigenfunction of L_z reads

$$\psi_m(\phi) = c e^{im\phi}$$
.

Task 2: Angular momentum operator

(3 Points)

For the operators $\hat{\mathbf{j}}^2 = \hat{j}_x^2 + \hat{j}_y^2 + \hat{j}_z^2$ and \hat{j}_z , we have

$$\hat{\mathbf{j}}^2 \left| jm \right\rangle = \lambda_j \left| jm \right\rangle \,, \quad \hat{j}_z \left| jm \right\rangle = m \left| jm \right\rangle$$

with $\hat{j}_z = -i \left[\hat{j}_x, \hat{j}_y \right]$. The ladder operators are defined by

$$\hat{j}_{+} = \hat{j}_{x} + i\hat{j}_{y}, \quad \hat{j}_{-} = \hat{j}_{x} - i\hat{j}_{y}.$$

with

$$\hat{j}_{+} |jm_{\text{max}}\rangle = 0$$
, $\hat{j}_{-} |jm_{\text{min}}\rangle = 0$.

- a) Use these operators to show that $m_{\text{max}} = -m_{\text{min}}$.
- **b)** Assume $m_{\text{max}} = j$ to show that $\lambda_j = j(j+1)$.

Task 3: Ladder Operators

(2 Points)

Let $\mathbf{j}=(j_x,j_y,j_z)$ be an angular momentum operator with the associated ladder operators $j_{\pm}=j_x\pm ij_y$

- a) Compute the commutators $[j_+, j_-], [j_z, j_{\pm}]$ and $[j^2, j_{\pm}]$
- b) In the lecture it was shown, that

$$j_{\pm} |j,m\rangle = c_{\pm} |j,m \pm 1\rangle$$

Derive the expression for the coefficient c_{\pm} .

Task 4: Angular Momentum Coupling

(2 Points)

- a) Let j_1 and j_2 be angular momentum operators. Show that $J = j_1 + j_2$ is also an angular momentum operator.
- **b)** Proof that $[J^2, j_{1,2}^2] = [J_z, j_{1,2}^2] = 0$

Task 5: Vector Model of the Angular Momentum

(2 Points)

Let j be an angular momentum operator and $|j,m\rangle$ an eigenvector of j^2 and j_z . Show, without using an explicit representation of j, that

- $\bullet \ \langle j, m \, | \, j_x \, | \, j, m \rangle = 0$
- $\bullet \langle j, m \,|\, j_y \,|\, j, m \rangle = 0$