MCS - LDS Sam Robbins

First order Logic - Logical Equivalence

1 Logical Equivalence

Two formulae ϕ and ψ are logically equivalent of they are true for the same set of models, in which case we write $\phi \equiv \psi$

All logical equivalences from propositional logic give rise to equivalences in first-order logic: for example, as

 $p \Rightarrow q \equiv \neg p \lor q$ for any propositional variables p and q

We must have that

$$\phi \Rightarrow \psi \equiv \neg \phi \lor \psi$$
, for any first-order formulae ϕ and ψ

Note, however, that care must be taken as to exactly what an interpretation is when we "plug in" formulae as in the previous example: if

- ϕ is over the signature consisting of the binary relation symbol E and the constant symbol C
- ψ is over the signature consisting of the binary relation symbol E and the ternary relation symbol M

Then an interpretation for $\neg \phi \lor \psi$ is over the signature consisting of the symbols E, C and M

2 Some tricks

2.1 Renaming variables

Consider some first-order formula of the form $\forall x \phi(x)$ where y does not appear in $\phi(x)$ If we replace every occurrence of the variable x in ϕ with the variable y, we claim that $\forall x \phi(x) \equiv \forall y \phi(y)$:

- Let I be some interpretation for $\forall x \phi(x)$ in which $\forall x \phi(x)$ is true
- For every value u in the domain of I, we have that $(I, x = u) \models \phi(x)$
- So, for every value u in the domain of I, we have that $(I, y = u) \models \phi(y)$
- Hence, I is an interpretation in which $\forall y \phi(y)$ is true. Similarly, if I is an interpretation in which $\forall y \phi(y)$ is true then I is an interpretation in which $\forall x \phi(x)$ is true

In general, and by the same reasoning, if we ever have some formula ϕ in which there is a quantification, $\forall x$, say, then we can replace

- Every occurrence of x in the scope of this quantification with the variable y
- The quantification $\forall x$ by $\forall y$

So long as y does not appear in ϕ , without changing the semantics

Of course, the same can be said of $\exists x \phi(x)$ and, more generally, any formula containing a quantification $\exists x$

But, consider the formula $\exists x E(x, y)$

If we simply replace x with y and $\exists x$ with $\exists y$ then we get $\exists y E(y, y)$ which is semantically very different from $\exists x E(x, y)$

2.2 Substitution

Consider the formula ϕ in which there is contained a sub formula ψ

Suppose further that ψ has free variables $x_1, x_2, ..., x_k$

If ψ is logically equivalent to a formula $\chi(x_1, x_2, ..., x_k)$ then we can replace ψ in ϕ with the formula χ and not change the semantics

MCS - LDS Sam Robbins

3 Some common equivalences

More interesting re the interactions between the quantifiers \forall and \exists and the logical connectives \neg , \lor and \land Consider the formula $\neg \forall x \phi$, where $\phi(x)$ is a first-order formula with free variable x Let I be some interpretation fr $\neg \forall x \phi$. We have that:

• $I \models \neg \forall x \phi$

Iff it is not the case that $I \models \forall x \phi$

If it is not the case that for every value u in the domain of I, we have that $\phi(u)$ holds in I

Iff there exists some value u in the domain of I such that $\neg \phi(u)$ holds in I

Iff
$$I \models \exists x \neg \phi$$

 $(\phi(u))$ is shorthand for saying that x is to be interpreted as u).

So for evert first-order formula $\phi(x)$

$$\neg \forall x \phi \equiv \exists x \neg \phi$$

Consider the formula $\neg \exists x \phi$, where $\phi(x)$ is a first-order formula with free variable x Let I be some interpretation for $\neg \exists x \phi$. We have that:

• $I \models \neg \exists x \phi$

Iff it is not the case that $I \models \exists x \phi$

Iff it is not the case that there exists some value u in the domain of I such that $\phi(u)$ holds in I

Iff for every value u in the domain of I, we have that $\neg \phi(u)$ holds in I

Iff
$$I \models \forall x \neg \phi$$

So, for every first order formula $\phi(x)$:

$$\neg \exists x \phi \equiv \forall x \neg \phi$$

General rule: negations can be "pushed through" universal quantifiers if we change the universal quantifier to an existential quantifier

Another general rule: negations can be "pushed through" existential quantifiers if we change the existential quantifier to a universal quantifier

3.1 Example

Consider the formula $\neg \exists x \forall y (\neg E(x, y) \lor M(y, y, z, x))$. We have

$$\neg \exists x \forall y (\neg E(x, y) \lor M(y, y, z, x))$$

$$\equiv \forall x \neg \forall y (\neg E(x, y) \lor M(y, y, z, x))$$

$$\equiv \forall x \exists y \neg (\neg E(x,y) \vee M(y,y,z,x))$$

4 More complicated equivalences

Consider the formula $\forall x \phi \land \exists y \psi$ where $\phi(x)$ and $\psi(y)$ are first order formulae with free variables x and y, respectively. By renaming bound variables (if necessary), we may assume that x does not appear in ψ and y does not appear in ϕ Let I be some interpretation for $\forall x \phi \land \exists y \psi$

We have $I \models \forall x \phi \land \exists y \psi \text{ iff } I \models \forall x \phi \text{ and } I \models \exists y \psi$:

- $I \models \forall x \phi$ iff no matter which value from the domain of I we give to the variable x, we have that $\phi(x)$ holds in I
- $I \models \exists y \psi$ iff there exists some value from the domain of I for the variables y such that $\psi(y)$ holds in I

Thus: $I \models \forall x \phi \land \exists y \psi$ iff:

No matter which value we give to x, we have that $\phi(x)$ holds in I, and there exists some value for y such that $\psi(y)$ holds in I

Consider $\forall x \exists y (\phi \land \psi)$

Suppose that $I \models \forall x \exists y (\phi \land \psi)$

Choose any *u* for *x*. There exists a v for y such that $\phi(u) \wedge \psi(v)$ holds.

So, $I \models \forall x \phi \land \exists y \psi$

Hence, $\forall x \phi \land \exists y \psi \equiv \forall x \exists y (\phi \land \psi)$.

Indeed, by the same token, $I \models \forall x \phi \land \exists y \psi \text{ iff } I \models \exists y \forall x (\phi \land \psi).$

General rule: Quantifications can be "pulled out" from inside logical connectives and the order of quantifiers doesn't matter, so long as the names of the quantified variables are not used elsewhere

MCS - LDS Sam Robbins

5 Some more complicated equivalences

5.1 Example 1

If we assume that

- x does not appear in ψ and χ
- y does not appear in ϕ and χ
- z does not appear in ϕ and ψ

Applying this general rule yields:

$$(\forall x \phi \land \exists y \psi) \lor \forall z \chi \equiv \forall x \exists y (\phi \land \psi) \lor \forall Z \chi$$
$$\equiv \forall x \exists y \forall z ((\phi \land \psi) \lor \chi)$$

5.2 Example 2

Consider the formula $(\forall x\phi \lor \forall x\psi) \land \exists x\chi$

We can rename two of the bound occurrences of x to get

$$(\forall x \phi(x) \lor \forall y \psi(y)) \land \exists z \chi(z)$$

(assuming y and z do not appear in ϕ and χ , respectively). Now we get the equivalent formulae

 $(\forall x \phi(x) \lor \forall y \psi(y)) \land \exists \chi(z)$ $\equiv \forall x \forall y (\phi(x) \lor \psi(y)) \land \exists \chi \chi(z)$

 $\equiv \forall x \forall y \exists z (\phi(x) \lor \psi(y) \land \chi(z))$

6 Be careful when applying general rules

Great care has to be taken when manipulating quantifiers:

- The order of the quantification matters
- Consider other occurrences of a quantified variable outside the scope

6.1 Example

Consider the first-order sentence $\forall x \exists y E(x, y)$

Let I be the interpretation with domain $\{1, 2, 3, 4\}$ where $E = \{(1, 2), (2, 3), (3, 4), (4, 1)\}$

Clearly, $I \models \forall x \exists y E(x, y)$ but $I \not\models \exists x \forall y E(x, y)$

Consider the first order sentence $\forall x \exists y E(x, y) \land \forall z \neg E(z, z)$

Whilst $I \models \forall x \exists y E(x, y) \land \forall z \neg E(z, z)$

 $I = \forall z \forall x \exists y (E(x, y) \land \neg E(z, z))$

 $I = \forall x \forall z \exists y (E(x, y) \land \neg E(z, z))$

It is not the case that $I = \forall z \exists y \forall x (E(x, y) \land \neg E(z, z))$

7 More on bound occurrences

Consider the first order formula $\forall x \exists y E(x, y) \land \exists x U(x)$

It does not make sense to pull the quantifiers out, as we could get $\forall x \exists y \exists x (E(x, y) \land U(x))$

Actually, semantically this second sentence is logically equivalent to

$$\exists y \exists x (E(x, y) \land U(x))$$

(as existentially quantified x "overwrites" the universally quantified x) which is certainly not equivalent to the sentence we started with. To see this, consider the interpretation where the domain is $\{1,2\}$, $E = \{(1,2)\}$ and $U = \{1\}$ We need to ensure that the two original bound occurrences of x have "nothing to do with each other". In order to ensure this, we need to rename one of them:

$$\forall x \exists y E(x, y) \land \exists x U(x) \equiv \forall x \exists y E(x, y) \land \exists z U(z)$$
$$\equiv \forall x \exists y \exists z (E(x, y) \land U(z))$$