Potencial degrau; Barreira de Potencial; Oscilador Harmônico

Aula 12

Prof. Márcio Sampaio Gomes Filho

Observação

- * Esses slides são um complemento à aula ministrada em sala;
- Explicações/desenvolvimentos serão feitas no quadro.

Informação

Página do curso: https://marciosampaio.github.io/ fisica-quantica-2025.1.html Potenciais simples não confinantes: potencial degrau

Degrau de Potencial

$$V(x) = \begin{cases} 0, & x < 0 \\ V_0 & x > 0 \end{cases}$$

- Caso 1) $E < V_0$ (sala de aula);
- Caso 2) $E > V_0$ (dever de casa).

Solução geral:

$$\psi(x) = \begin{cases} \psi_1(x) = A e^{ik_1 x} + B e^{-ik_1 x} & x < 0\\ \psi_2(x) = C e^{-k_2 x} & x > 0 \end{cases}$$
(1)

$$k_1^2 = \frac{2mE}{\hbar^2}$$

*
$$k_1^2 = \frac{2mE}{\hbar^2}$$
;
* $k_2^2 = \frac{2m(V_0 - E)}{\hbar^2}$.

Em x = 0: impomos a condição de continuidade para a função de onda e sua derivada:

$$\begin{cases} \psi_1(x=0) = \psi_2(x=0) \\ \frac{d\psi_1(x)}{dx} \Big|_{x=0} = \frac{d\psi_2(x)}{dx} \Big|_{x=0} \end{cases}$$
 (2)

Solução da parte espacial fica:

$$\psi(x) = \begin{cases} \frac{C}{2} \left(1 + i \frac{k_2}{k_1} \right) e^{ik_1 x} + \frac{C}{2} \left(1 - i \frac{k_2}{k_1} \right) e^{-ik_1 x} & x \le 0\\ C e^{-k_2 x} & x \ge 0 \end{cases}$$

• Solução completa: $\Psi(x,t) = e^{-i\omega t}\psi(x)$

$$\Psi(x,t) = \begin{cases} \frac{C}{2} \left(1 + i \frac{k_2}{k_1} \right) e^{i(k_1 x - \omega t)} + \frac{C}{2} \left(1 - i \frac{k_2}{k_1} \right) e^{-i(k_1 x + \omega t)} & x \le 0 \\ C e^{-k_2 x - i \omega t} & x \ge 0 \end{cases}$$

Comentários.

Coeficiente de reflexão:

$$R = \frac{v_r |\psi_r|^2}{v_i |\psi_i|^2}$$
$$= \frac{B^* B}{A^* A}$$
$$= 1.$$

Coeficiente de transmissão:

$$T = \frac{v_t |\psi_t|^2}{v_i |\psi_i|^2}$$
$$= 0.$$

• Sempre se verifica que T = 1 - R.

Aula 12

Caso 2) $E > V_0$

Exercício:

- a) Discuta as diferenças entre o caso clássico e o caso quântico quando $E>V_0$.
- b) Encontre as soluções da equação de Schrodinger independente do tempo.
- c) Esboce o gráfico da função de onda.
- d) Encontre os coeficientes de reflexão (R) e de transmissão (T).
- O coeficiente de reflexão R não é nulo para $E > V_0$.

Caso 2) $E > V_0$

Aula 12

Faça uma simulação: Potencial Degrau

https://phet.colorado.edu/sims/cheerpj/ quantum-tunneling/latest/quantum-tunneling.html? simulation=quantum-tunneling Barreira de potencial quadrada

Barreira de potencial quadrada

$$V(x) = \begin{cases} V_0, & 0 < x < a \\ 0, & x < 0 \text{ ou } x > a \end{cases}$$

- ❖ Caso 1) $E < V_0$;
- ❖ Caso 2) $E > V_0$.

Exercício: Feixe de partículas, todas movendo-se da esquerda para a direita com energia $E < V_0$, encontram-se com uma barreira de potencial de largura a:

- Encontre as soluções gerais para a equação de Schrodinger independente do tempo.
- Discuta quais são as funções de onda que representam o estado de um sistema físico.
- Discuta como podem ser determinadas as constantes do problema.
- Esboce o gráfico da função de onda.

A função de onda e suas derivadas (inclinações) são contínuas em x = 0 e x = a, de modo que as funções senoidal e exponencial se unem sem que haja descontinuidades.

Tunelamento quântico

Mesmo quando a partícula tem energia menor que a barreira, sua função de onda não se anula completamente dentro da barreira — ela apenas diminui exponencialmente. Isso significa que há uma probabilidade de a partícula "tunelar" através da barreira e aparecer do outro lado. Esse fenômeno é conhecido como tunelamento ou efeito túnel.

Tunelamento quântico

Coeficiente de transmissão:

$$T = \frac{v_t |\psi_t|^2}{v_i |\psi_i|^2}$$

$$= \frac{|F|^2}{|A|^2}$$

$$= \left[1 + \frac{\operatorname{senh}^2(\alpha a)}{4\frac{E}{V_0} \left(1 - \frac{E}{V_0}\right)}\right]^{-1}$$

Esta probabilidade depende da espessura a da barreira e da energia E da partícula (puramente cinética), em relação à altura V_0 da barreira.

Tunelamento quântico

◆ Para αa ≫ 0, o coeficiente de transmissão pode ser aproximando por:

$$T \approx 16 \frac{E}{V_0} \left(1 - \frac{E}{V_0} \right) e^{-2\alpha a}$$
 (3)

Esta probabilidade depende da espessura a da barreira e da energia E da partícula (puramente cinética), em relação à altura V_0 da barreira.

Faça uma simulação: Barreira de potencial

https://phet.colorado.edu/sims/cheerpj/ quantum-tunneling/latest/quantum-tunneling.html? simulation=quantum-tunneling

Quantum tunnel effect and tunneling microscope

Vídeo 1: https://www.youtube.com/watch?v=K64Tv2mK5h4

❖ Vídeo 2:

https://www.youtube.com/watch?v=oSCX78-8-q0

Oscilador Harmônico

Oscilador Harmônico

•
$$V(x) = \frac{1}{2}Kx^2 = \frac{1}{2}m\omega^2x^2$$

- ❖ K: constante de força
- ω: frequência angular de oscilação

Oscilador Harmônico

- ❖ Partícula deslocada da posição de equilíbrio, ela começa a oscilar entre dois pontos, x = −A e x = +A, conhecidos como pontos de retorno clássicos.
- Nesses pontos a energia cinética da partícula é nula, e sua energia é igual à energia potencial.

Comentário

Uma função de energia potencial que descreve a interação entre dois átomos em uma molécula diatômica. A distância r é a separação entre os centros dos dois átomos, e a posição de equilíbrio ocorre quando $r=r_0$. A energia potencial para dissociar a molécula é igual a U_{∞} .

Quando r for quase igual a r_0 , a curva será aproximadamente uma parábola (como mostrado pela curva vermelha), e o sistema se comporta aproximadamente como um movimento harmônico simples.

A equação de Schrodinger independente do tempo para o oscilador harmônico é

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x) \tag{4}$$

ou seja,

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + \frac{1}{2}m\omega^2 x^2\psi(x) = E\psi(x)$$
 (5)

Oscilador Harmônico Quântico

Os valores permitidos de E no caso do oscilador harmônico simples devem ser calculados resolvendo a equação de Schrodinger. O resultado é o seguinte:

$$E = \left(n + \frac{1}{2}\right)\hbar\omega$$

❖
$$n = 0, 1, 2, \cdots$$

Assim, a energia do estado fundamental é $\frac{1}{2}\hbar\omega$ e o espaçamento dos níveis de energia é constante; a distância entre níveis vizinhos é $\hbar\omega$.

Funções de onda do oscilador harmônico simples

As soluções permitidas da equação de Schrodinger, têm a seguinte forma:

$$\psi_n(x) = C_n H_n(x) e^{-\frac{m\omega x^2}{2\hbar}}$$
 (6)

onde, as C_n são constantes de normalização, e as $H_n(x)$ são polinômios de Hermite de ordem n.

ightharpoonup Para n=0:

$$\psi_0(x) = A_0 e^{-\frac{m\omega x^2}{2\hbar}} \tag{7}$$

ightharpoonup Para n=1:

$$\psi_1(x) = A_1 \sqrt{\frac{m\omega}{\hbar}} x e^{-\frac{m\omega x^2}{2\hbar}}$$
 (8)

ightharpoonup Para n=2:

$$\psi_2(x) = A_2 \left(1 + \frac{2m\omega x^2}{\hbar} \right) e^{-\frac{m\omega x^2}{2\hbar}} \tag{9}$$

O número total de máximos e mínimos para cada função é finito e igual a n+1, sendo um a mais do que o número quântico n.

- As linhas azuis representam a distribuição de probabilidade clássica.
- Cada função de onda penetra um pouco nas regiões classicamente proibidas.

Quanto maior o valor de *n*, mais a distribuição de probabilidade da mecânica quântica (verde) se aproxima da distribuição de probabilidade newtoniana (azul).

Regras de seleção

As propriedades dos polinômios de Hermite, levam critérios que determinam quais transições entre estados quânticos são permitidas quando um sistema interage com radiação eletromagnética, como aluz.

- 1. Regra de Seleção para o Número Quântico: Apenas transições nas quais o número quântico muda por uma unidade $\Delta n = \pm 1 \text{ são permitidas.} \text{ Isso significa que um fóton pode ser absorvido ou emitido somente se o estado quântico do oscilador muda de <math>n$ para n+1 ou n-1.
- Conservação de Energia: A energia do fóton absorvido ou emitido deve corresponder exatamente à diferença de energia entre os estados inicial e final do oscilador.

Regras de seleção

