Verfeinerung des relationalen Schemas

Ein schlechtes Schema

Filmliste

Titel	Regisseur	Kino	Telefonnummer	Zeit
The Hobbit	Jackson	Cinema City	441111	11:30
The Lord of the Rings3	Jackson	Cinema City	441111	14:30
Adventures of Tintin	Spielberg	Odeon	442222	11:00
The Lord of the Rings3	Jackson	Odeon	442222	14:00
War Horse	Spielberg	Odeon	442222	16:30

Was könnte Primarschlüssel sein?

Einfüge-Anomalie

Titel	Regisseur	Kino	Telefonnummer	Zeit
The Hobbit	Jackson	Cinema City	441111	11:30
The Lord of the Rings3	Jackson	Cinema City	441111	14:30
Adventures of Tintin	Spielberg	Odeon	442222	11:00
The Lord of the Rings3	Jackson	Odeon	442222	14:00
War Horse	Spielberg	Odeon	442222	16:30

Was ist das Problem mit dieser SQL-Anweisung?

```
INSERT INTO Filmliste(Titel, Regisseur)
VALUES (`I.T.`, `Moore`)
```

Lösch-Anomalie

Titel	Regisseur	Kino	Telefonnummer	Zeit
The Hobbit	Jackson	Cinema City	441111	11:30
The Lord of the Rings3	Jackson	Cinema City	441111	14:30
Adventures of Tintin	Spielberg	Odeon	442222	11:00
The Lord of the Rings3	Jackson	Odeon	442222	14:00
War Horse	Spielberg	Odeon	442222	16:30

Was ist das Problem mit dieser SQL-Anweisung?

```
DELETE FROM Filmliste
WHERE Regisseur = `Jackson`
```

Update-Anomalie

Titel	Regisseur	Kino	Telefonnummer	Zeit
The Hobbit	Jackson	Cinema City	441111	11:30
The Lord of the Rings3	Jackson	Cinema City	441111	14:30
Adventures of Tintin	Spielberg	Odeon	442222	11:00
The Lord of the Rings3	Jackson	Odeon	442222	14:00
War Horse	Spielberg	Odeon	442222	16:30

Was ist das Problem mit dieser SQL-Anweisung?

```
UPDATE Filmliste
SET Telefonnummer = 441133
WHERE Titel = `The Hobbit` and Kino = `Cinema City`
```

Probleme (Anomalien)

- Wegen schlechtes Schemadesign können folgende Probleme vorkommen:
 - **Einfüge-Anomalie:** Wir können kein neues Tupel einfügen, wenn das Kino und die Zeit für den Film nicht bekannt sind
 - Ursache: Vermischung zweier Entitätstypen
 - Wirkung: Es können nicht Daten nur einer neuen Entitätstypen angelegt werden
 - Lösch-Anomalie: Wenn wir alle Filme von Peter Jackson löschen, verlieren wir alle Informationen über das Kino "Cinema City"
 - Ursache: Vermischung zweier Entitätstypen
 - Wirkung: Beim Löschen der Informationen zu einer Entität können Informationen zu einer andere Entität ungewollt verloren gehen
 - **Update-Anomalie**: Die Änderung des Telefonnummers eines Kinos kann zu Inkonsistenzen führen
 - Ursache: Redundanz innerhalb der Relation
 - Wirkung: Eine Aktualisierung kann zu Inkonsistenzen führen, wenn die Änderung nicht in allen betroffenen Datensätze durchgeführt wird

Ziele des Datenbankentwurfs

- Vermeidung von Redundanzen und Anomalien:
 - Änderungen können bei Beachtung der Primär- und Fremdschlüssel keine Inkonsistenzen hervorrufen
 - Alle informationen lassen sich unter Wahrung der Primärschlüssel- und Fremdschlüsselbedingungen einfügen
 - Informationen können einzeln wieder gelöscht werden, ohne die Primärschlüsseloder Fremdschlüsselbedingungen zu verletzen
- Vermeidung von Informationsverlust
- Evtl. Einbeziehung von Effizienzüberlegungen
- Vorgehen: Prozess der Zerlegung eines gegebenen Datenbank-Schemas in ein äquivalentes Schema ohne Redundanz und Anomalien

(ein "schlechtes" Schema in mehrere "gute" Schemas zerlegen)

Zerlegung der Relation Filmliste

Filme

Titel	Regisseur
The Hobbit	Jackson
The Lord of the Rings3	Jackson
Adventures of Tintin	Spielberg
War Horse	Spielberg

Kinos

Kino	Telefonnummer
Cinema City	441111
Odeon	442222

Screens

Kino	Zeit	Titel
Cinema City	11:30	The Hobbit
Cinema City	14:30	The Lord of the Rings3
Odeon	11:00	Adventures of Tintin
Odeon	14:00	The Lord of the Rings3
Odeon	16:30	War Horse

Ziele des Datenbankentwurfs

• Fragestellung bei der Entwurfstheorie:

- Wie kann die Güte eines Datenbankschemas beurteilt werden? (ist das Schema gut oder nicht?)
- Wie sieht ein gutes konzeptuelles Schema der Datenbank aus? / Wie kann man ein schlechtes Schema in ein gutes Schema umwandeln?

• Erstellung "schöner" Relationenschemata:

- Normalisierung = Überführung in eine redundanzarme Standard-Form
- Die Theorie der funktionalen Abhängigkeiten
- Vorgehen: Prozess der Zerlegung eines gegebenen Datenbank-Schemas in ein äquivalentes Schema ohne Redundanz und Anomalien (ein "schlechtes" Schema in mehrere "gute" Schemas zerlegen)

Funktionale Abhängigkeiten

- Informelle Definition:
 - Ein Attribut oder eine Kombination von Attributen bestimmt die Werte eines anderen Attributs oder Attributkombination
- Notation: $A \rightarrow B$
- Sprechweisen:
 - A bestimmt B (funktional)
 - A identifiziert oder impliziert B
- Definition

Seien A und B Attributmengen der Relations R, t_1 , t_2 Tupeln der Ausprägung r(R) und $\pi_A(t_1)$ die Projektion des Tupels t_1 auf die Attributenmenge A.

B ist von A **funktional abhängig**, A \rightarrow B, wenn für alle möglichen Ausprägungen r(R) (alle Instanzen der Relation) zu jedem Wert in A genau ein Wert in B gehört

$$A \rightarrow B \Leftrightarrow (\forall t_1, t_2 \in r(RS): \pi_{A}(t_1) = \pi_{A}(t_2) \Rightarrow \pi_{B}(t_1) = \pi_{B}(t_2))$$

Funktionale Abhängigkeiten - Beispiel

Filmliste

Titel	Regisseur	Kino	Telefonnummer	Zeit
The Hobbit	Jackson	Cinema City	441111	11:30
The Lord of the Rings3	Jackson	Cinema City	441111	14:30
Adventures of Tintin	Spielberg	Odeon	442222	11:00
The Lord of the Rings3	Jackson	Odeon	442222	14:00
War Horse	Spielberg	Odeon	442222	16:30

- Welche funktionalen Abhängigkeiten könnt ihr identifizieren?
 - Titel → Regisseur
 - Kino → Telefonnummer
 - Vielleicht Kino, Zeit → Titel (wenn das Kino nur ein Saal hat)

Funktionale Abhängigkeiten

 Achtung. Funktionale Abhängigkeiten sind abhängig von der Semantik des Schemas, nicht von der aktuellen Ausprägung der Relation!

Ausprägung der Relation Filme

Titel	Regisseur	Komponist
Schindler's List	Spielberg	Williams
Saving Private Ryan	Spielberg	Williams
North by Northwest	Hitchcock	Herrmann
Angela's Ashes	Parker	Williams
Vertigo	Hitchcock	Herrmann

- Komponist → Regisseur?
- Regisseur → Komponist ?
- Obwohl diese funktionale Abhängigkeit auf diese Ausprägung gilt, können wir nicht sagen dass es für die ganze Relation gilt

Funktionale Abhängigkeiten

- Eine Abhängigkeit $A \rightarrow B$ ist **trivial**, wenn gilt $B \subseteq A$
- Eine funktionalle Abhängigkeit $X \to Y$ heißt **voll**, wenn es keine echte Teilmengen $Z \subset X$ gibt, s.d. gilt $Z \to Y$
 - Alle Attribute in X sind für die funktionale Abhängigkeit notwendig, es darf keines weggelassen werden
 - Die Determinate X ist also irreduzibel
- Gibt es eine solche Teilmenge, dann heißt X → Y partielle Abhängigkeit

Funktionale Abhängigkeiten - Beispiel

- Lieferant (<u>LiefName</u>, LiefAdr, <u>Ware</u>, Preis)
- Welche funktionalen Abhängigkeiten könnt ihr identifizieren?
 - LiefName → LiefAdr (ein Lieferantenname bestimmt eindeutig seine Adresse)
 - LiefName, Ware → Preis (der Schlüssel Name, Ware bestimmt eindeutig den Preis
 - LiefName, Ware → Ware (trivial)
 - LiefName, Ware → LiefAdr (partiell)
 - LiefName → LiefName (trivial)

Berechnung funktionalen Abhängigkeiten

- Aus einer Menge F von FDs sind weitere FDs herleitbar
 - Eine **Hülle (closure) F**⁺ von F ist die Menge aller funktionalen Abhängigkeiten, die aus den funktioanlen Abhängigkeiten in F ableitbar sind.
 - Es gibt Inferenzregelen, die Armstrong Axiome, zum Herleiten weiterer FDs
- Notation: F eine Menge von FDs, A,B,C \subseteq R
- Armstrong Axiome:
 - Reflexivität: Sei B \subseteq A. Dann gilt stets A \rightarrow B (Sonderfall A \rightarrow A)
 - Verstärkung: Falls A → B gilt, dann gilt auch A ∪ C → B ∪ C
 - Transitivität: Falls A \rightarrow B und B \rightarrow C, dann gilt auch A \rightarrow C

Berechnung funktionalen Abhängigkeiten

- Armstrong Axiome sind:
 - Korrekt: abgeleitete Regeln sind für alle Relationen des Schemas gültig
 - Vollständig: Alle gültigen FDs in der Hülle F⁺ sind mit Hilfe dieser Regeln ableitbar
- Erweiterung der Armstrong Axiome
 - Vereinigungsregel: Falls A \rightarrow B und A \rightarrow C gilt, dann gilt auch A \rightarrow B \cup C
 - Dekompositionsregel: Falls $A \to B \cup C$ gilt, dann gilt auch $A \to B$ und $A \to C$
 - Pseudotransitivität: Falls A \rightarrow B und B \cup C \rightarrow D gilt, dann gilt auch A \cup C \rightarrow D

Berechnung funktionalen Abhängigkeiten

- Beispiel
 - Sei R(A,B,C,D,E) und die folgenden FDs:
 - A → C
 - $B \rightarrow C$
 - $C \cup D \rightarrow E$
 - Zu zeigen: A U D → E
- Lösung
 - A \rightarrow C (gegeben)
 - Verstärkung: A ∪ D → C ∪ D
 - $C \cup D \rightarrow E$ (gegeben)
 - Transitivität: A ∪ D → E

Superschlüssel / Oberschlüssel

- Was machen wir mit FDs?
 - Man kann einen Schlüssel für R berechnen
- Superschlüssel
 - In der Relation R ist $A \subseteq R$ ein **Superschlüssel** falls gilt $A \rightarrow R$
 - D.h. A bestimmt alle anderen Attributwerte innerhalb der Relation R
- Achtung
 - Superschlüssel nicht notwendig minimal, R → R gilt immer

Superschlüssel vs. Kandidatenschlüssel

- Achtung
 - Mit Hilfe der vollen funktionalen Abhängigkeit können wir Kandidatenschlüssel von Superschlüssel abgrenzen
- Kandidatenschlüssel $K \subseteq R$:
 - $K \to R$ (Vollständigkeit), es gibt keinen $K' \subset K$ so dass $K' \to R$ (Minimalität)
- D.h. eine Attributenmenge K ist Kandidatenschlüssel falls gilt:
 - K ist Superschlüssel
 - Es gibt kein K' ⊂ K so dass K' Superschlüssel ist
- Ein Attribut heißt **prim** in R, wenn es in einem Schlüssel (Kandidatenschlüssel) von R enthalten ist.

Superschlüssel - Beispiel

- Filmliste (Titel, Regisseur, Kino, Telefonnummer, Zeit)
- FDs:
 - Kino, Zeit → Titel
 - Kino → Telefonnummer
 - Titel → Regisseur
- {Kino, Zeit} ist der einzige Schlüssel von Filmliste
- Kino und Zeit sind die einzige prime Attribute
- Jede Obermenge von {Kino, Zeit} in R ist ein Superschlüssel von Filmliste

Membership-Problem

- Fragestellung
 - Sei F eine Menge funktionaler Abhängigkeiten und A \rightarrow B gegeben
 - Gilt $A \rightarrow B \in F^+$?
- Lösung
 - Explizite Berechnung von F⁺ ist sehr aufwendig (kann exponentiel groß sein)
 - Effizienter: Berechnung der Hülle A+ der Attributmenge A bzgl. der Menge F:
 - A⁺ besteht aus allen Attributen, din von A functional bestimmt werden
 - Falls $B \subseteq A^+$ gilt, dann gilt auch $A \rightarrow B \in F^+$

Algorithmus Hülle(F,A)

 Anwendung: Überprüfung auf Eigenschaft als Schlüsselkandidat eines Attribtes A: Hülle (F, A) = R?

Hülle - Beispiel

- FDs für Relation R:
 - $A \rightarrow C$
 - $B \rightarrow C$
 - CD \rightarrow E (Abk. Von C U D \rightarrow E)
- Gilt: AD \rightarrow E? \Rightarrow zu berechnen: AD+

i	Erg	FD
0	AD	
1	ACD	$A \rightarrow C$
2	ACD	$B \rightarrow C$
3	ACDE	$CD \rightarrow E$
4	ACDE	$B \rightarrow C$

Zerlegung(Dekomposition) eines Relationsschema

- Um Anomalien zu beseitigen, wird das Schema RS einer Relation R in eine Vielzahl kleinerer Relationenschemata RS₁, ..., RS_n zerlegt, so dass:
 - $RS_i \subseteq RS$, $1 \le i \le n$
 - RS = $\bigcup_i RS_i$
- Die Relation R wird in den Relationen R₁, ..., R_n zerlegt, wobei
 - $R_i = \pi_{RS_i}(R)$

Zerlegung - Beispiel

- Filmliste (Titel, Regisseur, Kino, Telefonnummer, Zeit)
- Zerlegung:
 - (Kino, Zeit, Titel)
 - (Titel, Regisseur)
 - (Kino, Telefonnummer)

Korrektheitskriterien

Verlustlosigkeit

- Die Ausprägungen r(R) der Ursprungsrelation R müssen aus den Relationen $R_1,...,R_n$ wieder rekonstruierbar sein
- D.h., keine Informationen dürfen verloren gehen und keine zusätzliche Informationen dürfen auftauchen

Abhängigkeitserhaltung

• Die für R geltenden funktionalen Abhängigkeiten müssen auf die Relationen $R_1, ..., R_n$ übertragbar sein

Natürlicher Verbund (Natural Join)

 Das Kreuzprodukt wird gebildet, aus dem dann nur diejenigen Tupel selektiert werden, deren Attributwerte für gleichbenannte Attribute gleich sind

• Formell:

$$R \bowtie S = \prod_{A_1,...,A_r,R.B_1,...R.B_k,C_1,...,C_n} (\sigma_{R.B_1 = S.B_1 \land ... \land R.B_k = S.B_k} (R \times S))$$

R

В	С	Α
b	С	а
b	С	d
b	F	b
а	D	С

S

В	С	D
b	С	d
b	С	е
а	d	b

 $R \bowtie S$

В	С	A	D
b	С	а	d
b	С	а	е
b	С	d	d
b	С	d	е
а	d	С	b
	b b b	b c b c b c b	b c a b c d b c d

Verlustlose Zerlegung (Lossless-Join Decomposition)

- Sei die Zerlegung der Relation R in R₁, ..., R_n
- Es gilt immer: $r \subseteq \pi_{R_1}(r) \bowtie ... \bowtie \pi_{R_n}(r)$
- Die Zerlegung hat keinen Informationsverlust (lossless-join decomposition) wenn für jede gültige Ausprägung r in R gilt:

$$r = \pi_{R_1}(r) \bowtie ... \bowtie \pi_{R_n}(r)$$

• D.h. die in R erhaltene Information muss über den natürlichen Verbund der Relationen R₁,...,R_n rekonstruierbar sein

Verlustlose Zerlegung – Gegenbeispiel

 $R(A,B,C) \rightarrow R_1(A,C), R_2(B,C)$

r				$\mathbf{r_1}$			r_2			r ₁ ⋈	r ₂		
Α	В	С		Α	С		В	С	Verbund	Α	В	С	
a ₁	b ₁	С	Zerlegung	a_1	С		b ₁	С	(Join)	a ₁	b_1	С	
a ₁	b ₂	С		a_2	С		b ₂	С		a ₁	b ₂	С	
a ₂	b ₁	С				_				a ₂	b_1	С	
		'								a_2	b ₂	С	

• $r \subset r_1 \bowtie r_2 \Rightarrow \text{die Zerlegung ist } \mathbf{nicht \, verlust los}$

Kriterien für die Verlustlosigkeit

- Charakterisierung verlustloser Zerlegungen auf Basis von FD
- **Theorem.** Eine Zerlegung von R in R₁ und R₂ hat keinen Informationsverlust, falls einer der folgenden Bedingungen gilt:
 - $(R_1 \cap R_2 \rightarrow R_1) \in F_R^+$ oder
 - $(R_1 \cap R_2 \to R_2) \in F_R^+$, wobei F_R = Menge der FDs aus R.
- Mit anderen Worten: es gelte RS = $\alpha \cup \beta \cup \gamma$, RS₁= $\alpha \cup \beta$, RS₂ = $\alpha \cup \gamma$ mit paarweisen disjunkten Attributmengen. Dann muss:

$$\beta \in \alpha^+ \text{ oder } \gamma \in \alpha^+$$

• Corollary. Wenn für R $\alpha \to \beta$ gilt, dann ist die Zerlegung {R $-\beta,\alpha \cup \beta$ } eine verlustlose Zerlegung.

Verlustlose Zerlegung - Beispiel

- R(A,B,C)
- FDs: $F = \{A \rightarrow B\}$
- Die Zerlegung {AB, AC} ist verlustlos weil:
 - AB \cap AC= A und A \rightarrow AB
- Die Zerlegung {AB, BC} ist nicht verlustlos weil:
 - AB \cap BC = B und keiner der FDs B \rightarrow AB oder B \rightarrow BC gilt in R

Verlustlose Zerlegung – Transitivität

• **Theorem.** Wenn $\{R_1, R_2\}$ eine verlustlose Zerlegung von R und $\{R_{11}, R_{12}\}$ eine verlustlose Zerlegung von R_1 sind, dann ist $\{R_{11}, R_{12}, R_2\}$ eine verlustlose Zerlegung von R.

Erster Schritt der Zerlegung der Relation *Filmliste* basierend auf der FD : Titel \rightarrow Regisseur

Filmliste

Titel	Regisseur	Kino	Tel.	Zeit
The Hobbit	Jackson	Cinema City	441111	11:30
The Lord of the Rings 3	Jackson	Cinema City	441111	14:30
Adventures of Tintin	Spielberg	Odeon	442222	11:30
War Horse	Spielberg	Odeon	442222	14:00
The Lord of the Rings 3	Jackson	Odeon	442222	16:30

Filme

Titel	Regisseur
The Hobbit	Jackson
The Lord of the Rings 3	Jackson
Adventures of Tintin	Spielberg
War Horse	Spielberg

Screens

Kino	Tel.	Zeit	Titel
Cine. City	441111	11:30	The Hobbit
Cine. City	441111	14:30	The Lord of the Rings 3
Odeon	442222	11:30	Adventures of Tintin
Odeon	442222	14:00	War Horse
Odeon	442222	16:30	The Lord of the Rings 3

Zweiter Schritt der Zerlegung der Relation *Filmliste* basierend auf der FD : Kino → Telefonnummer (Tel.)

Kino-Screens

Filme	
Titel	Regisseur
The Hobbit	Jackson
The Lord of the Rings 3	Jackson

Adventures of Tintin

War Horse

Kino	Tel.	Zeit	Titel
Cine. City	441111	11:30	The Hobbit
Cine. City	441111	14:30	The Lord of the Rings 3
Odeon	442222	11:30	Adventures of Tintin
Odeon	442222	14:00	War Horse
Odeon	442222	16:30	The Lord of the Rings 3

Spielberg

Spielberg

Screens		
Kino	Zeit	Titel
Cine. City	11:30	The Hobbit
Cine. City	14:30	Saving Private Ryan
Odeon	11:30	Adventures of Tintin
Odeon	14:00	War Horse
Odeon	16:30	Saving Private Ryan

Abhängigkeitsbewahrung

- Idee: Alle FDs, die für die Relation R gelten, sollen *lokal* auf den Relationen R₁,..., R_n aus der Zerlegung überprüfbar sein.
- Die Projektion von F auf α (F_{α}) ist die Menge von FDs aus F⁺ die nur Attribute aus α enthalten:

$$F_{\alpha} = \{ \beta \rightarrow \gamma \in F^+ \mid \beta \gamma \subseteq \alpha \}$$

Abhängigkeitsbewahrung

• Berechnung von FD Projektionen :

```
Input: F, \alpha
Output: F_{\alpha}

Erg = \emptyset

For each \beta \subseteq \alpha do

T = \beta^+ (bzgl. F)

Erg = Erg \cup \{\beta \to T \cap \alpha\}

Return Erg
```

Hüllentreue Zerlegung

Definition.

Die Zerlegung der Relation R in Relationen $R_1,...,R_n$ wird als hüllentreue Zerlegung bezeichnet falls:

$$F_R^+ = (F_{R_1} \cup ... \cup F_{R_n})^+$$

• Intuitiv, müssen $F_{R_1} \cup \ldots \cup F_{R_n}$ und F_R äquivalent sein

Zerlegung Beispiel

- PlzVerzeichnis(Straße, Ort, BLand, PLZ)
- Bedingungen:
 - Orte werden durch Ort und BLand eindeutig charakterisiert
 - Innerhalb einer Straße ändert sich PLZ nicht
 - PLZ-Gebiete gehen nicht über Ortsgrenzen, Orte nicht über Bundeslandgrenzen
- FDs: {PLZ} → {Ort, BLand} und {Straße, Ort, BLand} → {PLZ}
- Die Zerlegung {PLZ, Straße} und {PLZ, Ort, BLand} ist:
 - Verlustlos (Corollary)
 - Nicht abhängigkeitserhaltend (die zweite FD ist lokal nicht überprüfbar)

Zerlegung einer Relation

- Zerlegung notwendig
 - Ist die Relation mit Blick auf FDs redundanzfrei?
 - Ja: Keine Zerlegung notwendig
 - Nein: Starte Zerlegungsprozedur
- Zerlegungsprozedur
 - Zerlegung der relation R in R₁ und R₂:
 - Ist dies informationsverlustfrei möglich?
 - Ja: OK
 - Nein: keine Zerlegung möglich!
 - Aufspaltung der zugehörigen FDs in FD1s und FD2s, die jeweils R₁ und R₂ zugeordnet werden könnten
 - Ist dies abhängigkeitserhaltend möglich?
 - Ja: OK
 - Nein: Ok, aber "unschön", da Überprüfung der FDs nur nach der Rekonstruktion von R möglich ist (Effizientverlust)