Evaluating Student Writing

Deep Learning - CS 7150 Spring 2022 Course Project - Group 9

Presented By:

- Apoorva Surendra Malemath
- Sravya Burugu

Outline

- Introduction
- Understanding the Data
- Exploratory Data Analysis
- Methodology
 - **✓** Longformer
 - √ BigBird
- Results
- Conclusion and Future Scope

Introduction

- Named Entity Recognition
- We aim to identify elements in student writing i.e. we segment text and classify argumentative and rhetorical elements.
- We analyze argumentative writing elements from students grade 6-12.
- The scope of the project is to make it easier for students to receive feedback on their writing and increase opportunities to improve writing outcomes.
- The project will allow any educational organization to better help young writers develop.
- The problem statement is hosted by Georgia State University on Kaggle.

Understanding the Data

- The dataset contains argumentative essays written by U.S students in grades 6-12.
- The essays are annotated by expert raters for elements commonly found in argumentative writing.
- Each text segment can be classified in either of the 7 classes i.e.
 - 1. Lead
- 4. Counterclaim
- 2. Position
- 5. Rebuttal

3. Claim

- 6. Evidence
- 7. Concluding

Understanding the Data

- The dataset consists of 15594 files i.e. each file has the contents of one essay.
- Supporting information i.e. the annotation for all the essays in the training set comprises of the following attributes.

id	ID code for essay response		
discourseId	ID code for discourse element		
discourseStart	character position where discourse element begins in the essay response		
discourseEnd	character position where discourse element ends in the essay response		
discourseText	text of discourse element		
discourseType	classification of discourse element		
discourseTypeNum	enumerated class label of discourse element		
predictionString	the word indices of the training sample, as required for predictions		

Exploratory Data Analysis

Distribution of the disclosureType

Exploratory Data Analysis

Distribution of the disclosureTypeNum

Pre-Processing

Modeling and Evaluation Pipleline

Train Test Split: We have a total of 15594 essays, and we use 80% i.e. 12475 essays of the data as our train data, 10% as the validation and 10% i.e. 3119 essays as the test data.

Post pre-processing:

- Tokenize the data
- Apply the data collection technique from the transformer using DataCollatorForTokenClassification.
- Data collectors form a batch by using a list of dataset elements as input.
- DataCollatorForTokenClassification dynamically pads the inputs and labels.
- We then apply the AutoModelForTokenClassification pre-trained model.

Longformer:

- BERT-like model started from the RoBERTa and pretrained for long documents.
- It supports sequences of length up to 4096.
- Longformer uses a combination of a sliding window (local) attention and global attention.
- It is a transformer-based architecture that reformulates the self-attention computation to reduce the model complexity.
- Longformer Self Attention: It applies self attention in both local and global context. And it takes individual values for query, key, and value for both local and global attention.
- Longformer Tokenizer: It is derived from RoBERTa tokenizer and uses byte-level Byte-Pair encoding.
- Longformer Model for token classification: It is a linear layer on top of the hidden-states output, which is used for Named-Entity-Recognition task. It uses word embeddings, position embeddings and token type embeddings.

BigBird:

- BigBird computes attention along the diagonal, sides and a few random places of the matrix.
- BigBird runs on sparse attention mechanism enables it to process sequences of length up to 8x more than what was possible with BERT.
- Attention mechanism is applied token by token, unlike BERT where the attention mechanism is applied to the entire input just once.
- BigBird Model makes use of word embeddings, position embeddings and token type embeddings.

- Dropping outliers
- Tested with different tokenizers BERT, RoBERTa, RoBERTa-Large
- The below mentioned hyper parameters are used for both the models.

Maximum Length	1024
Stride	128
Minimum number of Tokens	6
Batch Size	4
Learning Rate	5e-5
Weight Decay	0.01
Gradient Accumulation Steps	8
Warm Up Ratio	0.1
Number of Epochs	5

Results

Evaluation Metrics for Longformer

Epoch	Training Loss	Validation Loss	Precision	Recall	F1-Score	Accuracy
0	0.9516	0.6140	0.1719	0.3052	0.2199	0.8040
1	0.5780	0.5584	0.1889	0.3324	0.2409	0.8144
2	0.4916	0.5522	0.2276	0.3580	0.2783	0.8193
3	0.4248	0.5814	0.2292	0.3766	0.2850	0.8118
4	0.3707	0.5962	0.2297	0.3736	0.2844	0.8132

F1-Scores for each class on Test Data

Claim	0.5571
Concluding Statement	0.8041
Counterclaim	0.4946
Evidence	0.6915
Lead	0.7817
Position	0.6558
Rebuttal	0.3990

Results

Evaluation Metrics for BigBird

Epoch	Training Loss	Validation Loss	Precision	Recall	F1-Score	Accuracy
0	1.0197	0.6547	0.2275	0.3626	0.2796	0.7904
1	0.5944	0.5830	0.2968	0.4009	0.3411	0.8126
2	0.4969	0.5840	0.2778	0.4238	0.3356	0.8110
3	0.4164	0.5955	0.2831	0.4349	0.3430	0.8113
4	0.3574	0.6215	0.2827	0.4383	0.3437	0.8078

F1-Scores for each class on Test Data

Claim	0.5276
Concluding Statement	0.7075
Counterclaim	0.4695
Evidence	0.6525
Lead	0.7941
Position	0.6394
Rebuttal	0.3701

Conclusion and Future Works

• Conclusion: We observed that RoBerta tokenizer performed the best. Looking at the evaluation metrics we observe that both LongFormer and BigBird have similar performance on the data.

• Future Works:

- UI for better user experience.
- Improve the metrics by using combination of LongFormer and BigBird.
- Build a ML pipeline using MLOps.

Thank you

Open to Questions