

Bio-Assay Derived Fingerprints: Performance Comparison in AutoML Pipelines

Ryan Greenhalgh | CTO and Co-Founder

Early Discovery: What to Make Next?

- Early programs <100 datapoints per assay
- Need to prioritise next compounds
- Can we build models to help?

Learnable model

New ideas

MolE: a foundation model for molecular graphs using disentangled attention

Received: 11 March 2024

Accepted: 18 October 2024

Accepted: 18 October 2024

How to learn on fingerprints

Model	Pros	Cons	<100 datapoints	100–10k	>10k
Gaussian Process	Uncertainty- aware, good w/ low data	Slow, tricky to scale	+++	+++	!
Trees / SVM / kNN	Fast, robust	No uncertainty, less expressive	++	+++	!
Deep Learning	Best w/ big data	Overfits on small datasets	xx	!	+++

Green et al., Current Methods for Drug Property Prediction in the Real World, arXiv:2309.17161 (2023)

C=CC(=O)N1CCCc2...

fast, proven, interpretable

RDKit / Mordred / MACCS

forked from rdkit/rdkit

Mol2vec/ChemBERTa

Leveraging a CBOW/transformer trained on large datasets i.e. PubChem dataset (77M compounds).

ChemBERTa: Large-Scale Self-Supervised Pretraining for Molecular Property Prediction

Seyone Chithrananda University of Toronto seyone.chithrananda@utoronto.ca

Gabriel Grand Reverie Labs gabe@reverielabs.com

Bharath Ramsundar DeepChem bharath.ramsundar@gmail.com

ARTICLE | December 22, 2017

Mol2vec: Unsupervised Machine Learning Approach with Chemical Intuition

Sabrina Jaeger (D), Simone Fulle* (D), and Samo Turk* (D)

CheMeleon

Similar to ChemBERTa, but applied to physical fingerprints and implemented with GNNs.

CheMeleon pretrained encoder

learned molecular representation for downstream tasks

low

nigh

Traditional fingerprints rely on physicochemical properties, structural chemistry, or information-theoretic descriptors of the molecule

Does training on assay outcomes (ADMET, potency, selectivity) make learned fingerprints more predictive for real-world drug discovery?

Combining heterogeneous data

Molecule	assay-unit- source	assay-unit- source	HLM-hr-labA	HLM-hr-labB	P1-pic50- orgA	P2-pic50- orgB
C=CC(=O		7				12
C(=O				8	180	
C=CC(=O	1.2					
CCN			143			

Private programs

100s anonymized user-provided data.

Private programs

100s anonymized user-provided data.

- Use ADME and potency data to boost performance on programs.
- Across many programs, the best features depend on the specific context, there isn't a single one that works best for all.
- ADME-based fingerprints are often selected.
- Classical physics-based methods can perform just as well.

Reach out: ryan@deepmirror.ai

Thank you:

Daniel Crusius + rest of team

Thank you

...and more

Guillaume Godin & Jackson Burns