### 0.0.1. Consideraciones de diseño

Se diseño una fuente de tensión regulada con limitación de corriente enfocados en alcanzar la menor disipación de potencia posible y utilizando la mínima cantidad de componentes necesaria para su funcionamiento. Los requerimientos de la misma son los siguientes:

## Corriente de salida:

$$I = [0mA, 200mA] \tag{1}$$

## Tensión de salida:

$$V_o = 5 \pm 3\% \tag{2}$$

Otro punto de interés es el de minimizar la cantidad de componentes utilizados. Por lo tanto se decidió utilizar una protección del tipo lineal en vez de foldback.

A continuación se explicara brevemente el primer diseño propuesto para luego dar lugar a una explicación más detallada sobre un versión optimizada de la fuente.

## 0.0.2. Primer diseño propuesto

El primer diseño que se propuso fue el siguiente:



Figura 1: Fuente de tensión regulada con limitación de corriente

La tensión de referencia le permite al amplificador de error saber cuando debe compensar su salida ante variaciones en la tensión de salida. En este caso se decidió que la tensión de referencia fuese de  $V_{ref} = 4V$  dado que era posible utilizar una combinación de valores comerciales de resistencias tal que:

$$V_{ref} = V_o \cdot \frac{R_B}{R_A + R_B} \tag{3}$$

Dado que

$$V_{ref} \approx 5 \cdot 0.7966 \tag{4}$$

$$Vref = 4 \pm 0.5\% \tag{5}$$

Para diseñar el Pre-Regulador se tuvo en cuenta la ganancia de corriente del transistor de paso Q1.



Figura 2: Curva de la ganancia de corriente  $\beta$ .  $V_{ce} = 2.52$ 

Cuando la carga sea mínima el transistor de paso experimentara el mayor flujo de corriente. En este caso ese valor es de unos  $205 \, mA$  aproximadamente. Remitiéndonos al gráfico vemos que la ganancia de corriente se ubica por encima de 80. Por lo tanto podemos obtener la siguiente expresión para el calculo de  $R_2$ . Debemos tener en cuenta que esto ocurre cuando el transistor Q2 se encuentra en corte.

$$R_2 = \frac{V_{gen} - R_g \cdot I_{o_{max}} - (V_o - V_{be_{Q3}} - V_{be_{Q1}})}{I_o} \cdot \beta$$
 (6)

$$R_2 = \frac{10 - 10\Omega \cdot 205mA - (5V - 0.580 - 0.7)}{200mA} \cdot 80$$

$$R_2 = 668\Omega$$
(7)

$$R_2 = 668\Omega \tag{8}$$

El valor de resistencia obtenido es un valor  $\mathbf{no}$  comercial. Podríamos ir por el valor más próximo, 680  $\Omega$  pero este valor no cumple con las especificaciones. Por lo tanto optamos por el valor comercial menor más próximo  $560~\Omega$ 

#### 0.0.3. Circuito de Protección

La resistencia de protección se calculo teniendo en cuenta que la corriente de emisor del transistor de paso incluía la corriente necesaria para la polarización del diodo Zener.

$$R_p = \frac{V_{be_{Q3}}}{I_{emisor}} \tag{9}$$

El **elemento de referencia** en este caso se escogió como la combinación de la tensión de Zener y  $V_{beo_{NN}}$ 

$$V_{ref} = V_{zener} + V_{be_{ON}} \tag{10}$$

Para poder obtener la recta de carga podemos optar por usar la directiva de spice .step param o bien podemos simular una carga variable mediante el uso de una fuente de corriente. El ultimo método nos ofrece una mayor velocidad de simulación y gráficos de mayor calidad.



Figura 3: Característica de Salida Diseño 1

Este gráfico nos indica que el circuito ofrece una buena regulación de tensión dentro del rango de corriente requerido. Sin embargo notamos algo inesperado, a partir de los 200mA no tenemos una caída abrupta de la tensión sino más bien una caída suave hacia 0. Estudiaremos esto en más detalle en la próxima sección.

## 0.1. Segunda iteración de diseño

Utilizar la menor cantidad de componentes ofrece varios beneficios como por ejemplo, menos efectos de las tolerancias, mayor aprovechamiento del espacio y mayor sencillez de diseño. A continuación presentamos el diseño resultante:



Figura 4

En esta oportunidad se realizaron 2 cambios importantes. En primer lugar se decidio cambiar el diodo Zener utilizado, en esta ocasión  $V_z = 4.3V$  para que junto con la tensión  $V_{be}$ . Ahora el nuevo voltaje de referencia es:

$$V_{ref} = V_{be_{ON}} + V_{zener} \tag{11}$$

$$V_{ref} = 5V \tag{12}$$

Este nuevo resultado implica que ya no es necesario utilizar un realimentador del tipo divisor resistivo ¡Podemos usar un cable! Eso implica el ahorro de 2 resistencias y el consumo de potencia (aunque pequeño) que

No obstante, es posible hacerle una mejora más y mucho más importante en términos de consumo. Las siguientes observaciones nos abrirán camino hacia esta nueva mejora.

Comenzamos por estudiar la resistencia de polarización  $R_{pz}$  que deberíamos colocar para el correcto funcionamiento del diodo.

 $R_{pz} = \frac{5\Omega - 4.3\Omega}{5mA} \tag{13}$ 

$$R_{pz} = 140\Omega \tag{14}$$

El valor comercial más cercano en el cual aun se cumplen con las especificaciones es de  $120\Omega$ . Pero ¿Es posible evitar colocarla? La respuesta es afirmativa. Es sabido que la resistencia  $R_{pz}$  sirve para asegurarse que el diodo Zener permanezca polarizado (mantenga una tensión de referencia constante) hasta que la protección se active. Al simular la respuesta de la tensión de salida con la  $R_{pz}$  incluido nos damos cuenta que se excede de las especificaciones



Figura 5: Característica de salida utilizando resistencia de polarización  $R_{pz}=120\Omega$ 

y eso es debido a que el Zener hace mantener una respuesta constante al permanecer polarizado. A partir de los 209mA ya no estamos dentro del rango especificado (5V  $\pm$  3%). Entonces si quitamos la  $R_{pz}$ , lo que pasará es que el diodo Zener dejará de estar polarizado al mismo tiempo que el amplificador de error entra en corte poco antes de que la protección actúe decaiga más la tensión de salida (debido a que el Zener se empieza a despolarizar desde antes).



Figura 6: En verde la curva caracteristica de salida. En azul la tensión sobre el diodo Zener. En rojo la corriente sobre el diodo Zener

Y así se concluye que el circuito cumple las especificaciones teniéndo al diodo Zener polarizado a través de la corriente de colector del transistor que amplifica el error. El circuito cumple las especificaciones hasta los 202mA En este caso obtenemos una característica de salida similar a la anteriormente obtenida.



Figura 7

### 0.1.1. Corriente constante vs Limitación de Corriente

La incógnita restante que queda por resolver es ¿Por qué no obtenemos una respuesta abrupta a los 200 mA? Es decir algo de esta forma:



Figure 18. Operating Locus of a CV/CC Power Supply

Figura 8: Característica de salida de una fuente de tensión constante con control de corriente máxima

En la figura ?? se aprecia como la tensión es regulada hasta llegar a un cierto limite de corriente. A partir de ese punto, la fuente comienza a actuar como una fuente de corriente constante.

Cuando en realidad obtenemos:



Figure 19. Current Limiting Characteristic

Figura 9: Modelo de regulador de tensión con limitador de corriente



Figura 10: Característica de Salida simulada

Las imagenes fueron obtenidas DC Power Supply Handbook by Agilent Technologies

La respuesta subyace en que el circuito planteado, tanto en la etapa 1 como en la 2 del diseño, son circuitos que ofrecen limitación de la corriente máxima y no corriente constante una vez alcanzada la corriente en la que ya no se garantiza regulación de tensión. Para conseguir tal comportamiento es necesario contar con 2 circuitos realimentados

independientes. El primero de ellos sera el regulador de tensión y el segundo un regulador de corriente que deberá empezar a actuar cuando la carga utilizada exija más corriente de la permitida. En esa instancia la fuente comenzara a regular corriente. Se sabe, debido a la teoría de la realimentación negativa que para poder conseguir un buen circuito realimentado, la ganancia del amplificador debe ser varios ordenes de magnitud más grande que la ganancia del realimentador.



Figura 11: Diagrama en bloques de un sistema con realimentación negativa

Por lo tanto podemos concluir que en el presente diseño el lazo de realimentación que mantiene estable la corriente no tiene una gran ganancia de lazo y por ende no controla de manera muy precisa la corriente de salida.

## 0.1.2. Inmunidad al ruido de linea

Se sometió a la fuente a una prueba para verificar su estabilidad mediante a pequeños cambios en su tensión de entrada.



Figura 12: Señal de 10V DC + sinusoide de 50Hz  $0.5V_p$ 

# 0.1.3. Rendimiento y potencia

Se relevaron los datos de máxima disipación de potencia a partir de las hojas de datos de los fabricantes.

| Componente   | Maxima disipación de potencia |  |
|--------------|-------------------------------|--|
| BC547        | 0.625W                        |  |
| TIP31C       | 2W                            |  |
| BZX84C4V3    | 0.35W                         |  |
| Resistencias | 0.25W                         |  |

Tabla 1: Disipación máxima por componente

Y los rendimientos

$$\eta_{100mA} = 0.473$$

$$\eta_{200mA} = 0.487$$

$$H = 8 \cdot \frac{0.473 \cdot 0.487}{2 \cdot 0.625W + 2W + 0.35W + 2 \cdot 0.25W}$$
 (15)

$$H = 44.9\%$$
 (16)