Задание за проект "Campus Network System Design"

1) Конкретна цел на проекта:

Проектът "Campus Network System Design" представлява примерна университетска мрежова инфраструктура, която поставя силен акцент върху постигането на най-високо ниво на производителност, резервиране, мащабируемост и достъпност.

Поради това, задачата на проекта включва създаването на цялостен мрежов дизайн и изпълнението му. Освен изброените неща, от съществено значение е да се гарантира сигурността на данните и защитата от външни заплахи. За тази цел, могат да се внедрят механизми за криптиране на данни, защитни стени и други средства за сигурност. Освен това, изграждането на резервни копия и системи за възстановяване на данни може да осигури непрекъсната достъпност и надеждност на мрежата при евентуални инциденти или аварии.

2) Реализация на проекта:

Инструментът за проектиране и внедряване на мрежовото решение е симулаторът Cisco Packet Tracer.

2.1) Branch Campus Network:

Характеристики:

Главна мрежа: 192.168.16.0/23

VLAN 11 - Branch Science - 192.168.16.0/25

VLAN 21 - Branch Engineering - 192.168.16.128/25

VLAN 31 - Branch Business - 192.168.17.0/25

Blackhole - 999

IP address на крайни устройства - посредством DHCP

Point-To-Point Network - B-MLSW1 и Branch-FWL - 192.168.17.128/30

Point-To-Point Network - B-MLSW2 и Branch-FWL - 192.168.17.132/30

Цяла адресация на отдела:

Подмрежа	Нужно място	Заделено място	Мрежови адрес	Маска	Присвояем диапазон
					192.168.16.1 -
VLAN 10	100	126	192.168.16.0	/25	192.168.16.126
					192.168.16.129 -
VLAN 20	100	126	192.168.16.128	/25	192.168.16.254
					192.168.17.1 -
VLAN 30	100	126	192.168.17.0	/25	192.168.17.126
					192.168.17.129 -
WAN1	2	2	192.168.17.128	/30	192.168.17.130
					192.168.17.133 -
WAN2	2	2	192.168.17.132	/30	192.168.17.134

Отделът е оборудван с безжична точка за достъп (WAP), която предоставя WiFi достъп до служители, корпоративни потребители, външни и гости и др. Внедрен е протоколът за контрол на агрегирането на връзки (LACP), подобрявайки ефективността на агрегирането на връзки. Конфигуриран е Spanning Tree Protocol (STP) PortFast и BPDUguard, за да се ускорят преходите на портовете от блокиращи към препращащи състояния. Разбира се, включени са и основни настройки на устройствата, изразяващи се в имена на хостове и пароли за конзоли, пароли за привилегирован достъп, банерни съобщения, криптиране на пароли и др. Устройствата във всички виртуални мрежи могат да комуникират помежду си чрез конфигуриране на съответния многослоен комутатор за inter-VLAN маршрутизиране. Присвоен е ІР адрес на многослойните комутатори, за да се активират функциите и за маршрутизиране. На двата многослойни комутатора е внедрен протокол с висока наличност, HSRP, за да се постигне резервираност, балансиране на трафика и възможности за преодоляване при срив. Използван е динамичен протокол за маршрутизиране Open Shortest Path First (OSPF) за рекламиране на маршрути на защитната стена и многослойните комутатори. Конфигуриран е и SSH (Secure Shell) за отдалечен достъп към устройствата. Не на последно място, на защитната стена (ASA - Adaptive Security Appliance) са конфигурирани статични маршрути по подразбиране, основни настройки, нива на защита, зони и политики за дефиниране на контрол на достъпа и използване на ресурсите в мрежата.

2.2) ISP Network:

Характеристики:

IP адресация - статична:

Point-To-Point Network - Branch-FWL и Branch-ISP - 105.105.50.0/30

Point-To-Point Network - Branch-ISP и Internet - 40.40.40.0/30

Point-To-Point Network - Internet и Branch-Main - 50.50.50.0/30

Point-To-Point Network - Branch-Main и Main-FWL - 205.205.50.0/30

Между всички устройства тук е използван е динамичен протокол за маршрутизиране Open Shortest Path First (OSPF) за рекламиране на маршрути на защитната стена, маршрутизаторите и многослойните комутатори. Маршрутизатор Internet има ролята на ASBR и рекламира пътя по подразбиране на останалите мрежови устройства. Внедрена и функционалност за Site-to-Site VPN, която позволява криптирана комуникация между двете защитни стени (различните сгради и отделения на кампуса).

2.3) Main Campus Network:

Характеристики:

Главна мрежа: 10.0.0.0/21

VLAN 10 - Science - 10.0.0.0/24

VLAN 20 - IT - 10.0.1.0/24

VLAN 30 - Engineering - 10.0.2.0/24

VLAN 40 - Business - 192.168.17.0/25 Blackhole - 99 IP address на крайни устройства - посредством DHCP Point-To-Point Network - Main-MLSW1 и Main-FWL - 10.0.4.0/30 Point-To-Point Network - Main-MLSW2 и Main-FWL - 10.0.4.4/30

Цяла адресация на отдела:

Подмрежа	Нужно място	Заделено място	Мрежови адрес	Маска	Присвояем диапазон
VLAN 10	200	254	10.0.0.0	/24	10.0.0.1 - 10.0.0.254
VLAN 20	200	254	10.0.1.0	/24	10.0.1.1 - 10.0.1.254
VLAN 30	200	254	10.0.2.0	/24	10.0.2.1 - 10.0.2.254
VLAN40 WAN1	200	254 2	10.0.3.0 10.0.4.0	/24	10.0.3.1 - 10.0.3.254 10.0.4.1 - 10.0.4.2
WAN2	2	2	10.0.4.4	/30	10.0.4.5 - 10.0.4.6

Отделът е оборудван с безжична точка за достъп (WAP), която предоставя WiFi достъп до служители и потребители. Внедрен е протокол за контрол на агрегирането на връзки (LACP), подобрявайки ефективността на агрегирането на връзки. Конфигуриран e Spanning Tree Protocol (STP) PortFast и BPDUguard, за да се ускорят преходите на портовете от блокиращи към препращащи състояния. Включени са и основни настройки на устройствата, като например имена на хостове и пароли за конзолната линия, пароли за привилегирован достъп, банерни съобщения, криптиране на пароли и др. Устройствата във всички виртуални мрежи могат да комуникират помежду си чрез конфигуриране на съответния многослоен комутатор за inter-VLAN маршрутизиране. Присвоен е IP адрес на многослойните комутатори, за да се активират функциите и за маршрутизиране. На двата многослойни комутатора е внедрен протоколът с висока наличност HSRP, за да се постигне резервираност, балансиране на трафика и възможности за преодоляване при срив. Използван е динамичен протокол за маршрутизиране Open Shortest Path First (OSPF) за рекламиране на маршрути на защитната стена и многослойните комутатори. Конфигуриран е и SSH (Secure Shell) за отдалечен достъп към устройствата. На защитната стена (ASA - Adaptive Security Appliance) са конфигурирани статични маршрути по подразбиране, основни настройки, нива на защита, зони и политики за дефиниране на контрол на достъпа и използване на ресурсите в мрежата.

2.3) Data Center:

Характеристики:

IP адреси на крайни устройства (сървъри) - статично въведени:

DHCP Main - 10.0.8.2/28

DHCP Branch - 10.0.8.3/28

DNS - 10.0.8.4/28

WEB - 10.0.8.5/28

MAIL - 10.0.8.6/28

FTP - 10.0.8.7/28

Последната част от проекта обхваща център за данни с различни услуги като уеб хостинг, електронна поща, DHCP, FTP и DNS сървъри.

3) Цяла топология на проекта:

Разработено от: Боян Жечев, 11Г

Михаел Иванов, 11Г

Константин Хаджийски, 11Г