

Fundamentos de Lógica

Aulas 03

Cristiane Loesch

Brasília 2024

EXERCÍCIO 1:

(Adaptada - VUNESP) Sejam três bolas X, Y, Z nas cores azul, branca e vermelha, não necessariamente nesta ordem, e as afirmações:

X é vermelha

Y não é vermelha

Z não é azul

Sabendo que apenas uma das afirmações é verdadeira, as outras são falsas, é possível afirmar que as cores de X, Y e Z são respectivamente:

- A. vermelha, azul e branca
- B. vermelha, branca e azul,
- C. azul, vermelha e branca
- D. azul, branca e vermelha
- E. branca, vermelha e azul

Precedência entre os operadores

Para expressões com o mesmo conectivo, a precedência é da esquerda pra direita

FONTE: Predrosa, G. V.

EXERCÍCIO 2:

Sabendo que os valores lógicos das proposições P, Q e R são respectivamente V, F e F, determine o valor lógico de cada uma das expressões abaixo:

- a) $p \longleftrightarrow p \rightarrow q \lor p \rightarrow r$
- b) $p \rightarrow \neg q \longleftrightarrow p \lor r \land q$
- c) $(q \longleftrightarrow (r \lor q)) \longleftrightarrow (p \land (\neg (\neg q)))$

EXERCÍCIO 3:

Em quais situações a sentença abaixo é falsa?

Não é verdade que eu vou à praia e não irei viajar.

EXERCÍCIO 4:

Fazer a tabela verdade de:

- A. $(p \rightarrow q) \longleftrightarrow (\neg q \rightarrow \neg p)$
- B. $(p \lor \neg p) \rightarrow (q \land \neg q)$
- C. $(p \lor q) \rightarrow (p \land q)$
- D. $p \longleftrightarrow q \longleftrightarrow (p \rightarrow q) \land (q \rightarrow p)$

■ TAUTOLOGIA

- proposição composta sempre VERDADEIRA quaisquer que sejam os valores assumidos pelas proposições que a compõem
- Proposições conhecidas como Leis Lógicas

■ TAUTOLOGIA

- proposição composta sempre VERDADEIRA quaisquer que sejam os valores assumidos pelas proposições que a compõem
- Proposições conhecidas como Leis Lógicas

■ CONTRADIÇÃO

- Proposição composta sempre FALSA, qualquer que sejam os valoresverdade das proposições que a compõem
- Intrinsicamente falsa pela sua própria estrutura
- Negação de uma Tautologia (e vice versa)

■ TAUTOLOGIA

- proposição composta sempre VERDADEIRA quaisquer que sejam os valores assumidos pelas proposições que a compõem
- Proposições conhecidas como Leis Lógicas

■ CONTRADIÇÃO

- Proposição composta sempre FALSA, qualquer que sejam os valoresverdade das proposições que a compõem
- Intrinsicamente falsa pela sua própria estrutura
- Negação de uma Tautologia (e vice versa)

■ CONTINGÊNCIA

- Proposição composta NÃO É tautologia e NÃO É contradição.
- Proposição cuja última coluna de sua tabela-verdade contenha V e F, cada uma, pelo menos uma vez.

EXERCÍCIO 5:

Determine se a expressão abaixo é uma tautologia, contradição ou contingência:

Se o HD estiver com problema e o monitor estiver funcionando, então o HD estará com problema se e somente se o monitor estiver funcionando

- → ARGUMENTAÇÃO MATEMÁTICA
 - Substituição de uma proposição por outra com mesmo valor verdade

- → Proposições logicamente equivalentes
 - Proposição composta tem o mesmo valor verdade em todos os casos possíveis

$$p \Leftrightarrow q$$

• Uma proposição P é sempre logicamente equivalente, ou apenas equivalente, a uma proposição Q, se as tabelas-verdade das duas são idênticas

EXEMPLOS:

 $p \land p \Leftrightarrow p$ André é inocente e inocente \Leftrightarrow André é inocente

$$p \land p \Leftrightarrow p$$
 André é inocente e inocente \Leftrightarrow André é inocente $p \lor p \Leftrightarrow p$ Ana estudou ou estudou \Leftrightarrow Ana estudou

$$p \land p \Leftrightarrow p$$
 André é inocente e inocente \Leftrightarrow André é inocente $p \lor p \Leftrightarrow p$ Ana estudou ou estudou \Leftrightarrow Ana estudou $p \land q \Leftrightarrow q \land p$ O carro é bonito e caro \Leftrightarrow O carro é caro e bonito

$$p \land p \Leftrightarrow p$$
 André é inocente e inocente \Leftrightarrow André é inocente $p \lor p \Leftrightarrow p$ Ana estudou ou estudou \Leftrightarrow Ana estudou $p \land q \Leftrightarrow q \land p$ O carro é bonito e caro \Leftrightarrow O carro é caro e bonito $p \lor q \Leftrightarrow q \lor p$ A casa é grande ou azul \Leftrightarrow A casa é azul ou grande

$$p \land p \Leftrightarrow p$$
 André é inocente e inocente \Leftrightarrow André é inocente $p \lor p \Leftrightarrow p$ Ana estudou ou estudou \Leftrightarrow Ana estudou $p \land q \Leftrightarrow q \land p$ O carro é bonito e caro \Leftrightarrow O carro é caro e bonito $p \lor q \Leftrightarrow q \lor p$ A casa é grande ou azul \Leftrightarrow A casa é azul ou grande $p \longleftrightarrow q \Leftrightarrow q \longleftrightarrow p$ Gosto se e somente se é belo \Leftrightarrow É belo se e somente se gosto.

→ Negação de conjunções ou disjunções

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

→ Negação de conjunções ou disjunções

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$$

NEGAÇÃO DA DISJUNÇÃO

p	q	$\mathbf{p} \vee \mathbf{q}$	~(p v q)	~ p	~ q	~p ^~q
V	V	V	F	F	F	F
V	F	V	F	F	V	F
F	V	V	F	V	F	F
F	F	F	V	V	V	V

→ Negação de conjunções ou disjunções

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

NEGAÇÃO DA CONJUNÇÃO

p	q	p ^ q	~(p ^ q)	~p	~ q	~ p ∨ ~ q
V	V	V	F	F	F	F
V	F	F	V	F	V	V
F	V	F	V	V	F	V
F	F	F	V	V	V	V

→ Negação de conjunções ou disjunções

$$\neg (p \lor q) \Leftrightarrow \neg p \land \neg q \longrightarrow 1^a \text{ Lei de De Morgan}$$

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q \longrightarrow 2^a \text{ Lei de De Morgan}$$

 $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

EXEMPLOS:

Miguel tem um celular e um laptop

- p: Miguel tem um celular
- q: Miguel tem um laptop
- p^ q : Miguel tem um celular e um laptop.
- ~(p ^q):
- ~p v ~q:

, - - / -

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

 $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

EXEMPLOS:

Miguel tem um celular e um laptop

p: Miguel tem um celular

q: Miguel tem um laptop

p^ q : Miguel tem um celular e um laptop.

^a) · Não é verdade que Miquel tem um c

~p v ~q:

~(p ^q) : Não é verdade que Miguel tem um celular e um laptop

 $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

EXEMPLOS:

Miguel tem um celular e um laptop

p: Miguel tem um celular

q: Miguel tem um laptop

p^ q : Miguel tem um celular e um laptop.

~(p ^q) : Não é verdade que Miguel tem um celular e um laptop

~p v ~q: Miguel não tem um celular ou não tem um laptop

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

EXEMPLOS:

 $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

Sua Vez!

Rodrigo vai ao concerto ou Carlos vai ao concerto

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

 $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

EXEMPLOS:

Sua

Vez!

Rodrigo vai ao concerto ou Carlos vai ao concerto

p: Rodrigo vai ao concerto.

q: Carlos vai ao concerto.

p v q : Rodrigo vai ao concerto ou Carlos vai ao concerto.

 $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

 $\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$

EXEMPLOS:

Sua

Vez!

Rodrigo vai ao concerto ou Carlos vai ao concerto

p: Rodrigo vai ao concerto.

q: Carlos vai ao concerto.

p v q : Rodrigo vai ao concerto ou Carlos vai ao concerto.

~(p v q) : Não é verdade que Rodrigo vai ao concerto ou Carlos vai ao concerto

~p ^ ~q : Rodrigo não vai ao concerto e Carlos não vai ao concerto.

Equivalências Lógicas: Condicionais

A proposição condicional $p\!\!\to\!\!q$ possui três proposições chamadas associadas $\longrightarrow \begin{array}{c} q\!\!\to\!\!p \\ \neg p\!\!\to\!\!\neg q \\ \neg q\!\!\to\!\!\neg p \end{array}$

Equivalências Lógicas: Condicionais

A proposição condicional p o q possui três proposições chamadas associadas q o p q o q q o q

com:

p	q	$p \rightarrow q$	$q \rightarrow p$	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V

FONTE: Edgar de Alencar Filho

Equivalências Lógicas: Condicionais

p	q	$p \rightarrow q$	$q \rightarrow p$	$\sim p \rightarrow \sim q$	$\sim q \rightarrow \sim p$
V	V	V	V	V	V
V	F	F	V	V	F
F	V	V	F	F	V
F	F	V	V	V	V

Contra-positiva:

$$p \rightarrow q = \neg q \rightarrow \neg p$$

Outra opção:

$$p \rightarrow q \Leftrightarrow \neg p \lor q$$

EXERCÍCIO 6:

Utilize a tabela-verdade e determine se a expressão abaixo equivalência lógica:

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

Equivalências	Nome		
$p \wedge \mathbf{V} \equiv p$ $p \vee \mathbf{F} \equiv p$	Propriedades dos elementos neutros		
$p \lor \mathbf{V} \equiv \mathbf{V}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Propriedades de dominação		
$p \lor p \equiv p$ $p \land p \equiv p$	Propriedades idempotentes		
$\neg (\neg p) \equiv p$	Propriedade da dupla negação		
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Propriedades comutativas		
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Propriedades associativas		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Propriedades distributivas		

$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	Leis de De Morgan
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Propriedades de absorção
$ \begin{array}{l} p \lor \neg p \equiv \mathbf{V} \\ p \land \neg p \equiv \mathbf{F} \end{array} $	Propriedades de negação

Fonte: Kenneth Rosen

$$p \lor p \equiv p$$
 Propriedades idempotentes $p \land p \equiv p$

Exemplo:

Ana comprou um carro E comprou um carro < = > Ana comprou um carro

Ana comprou um carro OU comprou um carro < = > Ana comprou um carro

Fonte: Kenneth Rosen

$$\neg (\neg p) \equiv p$$
 Propriedade da dupla negação

Exemplo:

p: Ontem não estudei nada

~p: Não é verdade que ontem não estudei nada

~(~p): Não é verdade que Não é verdade que ontem não estudei nada

OU

Ontem não estudei nada

and the second s		_
$p \lor q \equiv q \lor p$	Propriedades comutativas	
$p \wedge q \equiv q \wedge p$		

Exemplo:

Comprei um sorvete E um chocolate <=> Comprei um chocolate e um sorvete

Comprei um sorvete OU um chocolate <=> Comprei um chocolate OU um sorvete

$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$
 Propriedades associativas
$$(p \land q) \land r \equiv p \land (q \land r)$$

Exemplo:

$$(3 + 5) + 2 = 10 \le 3 + (5 + 2) = 10$$

$$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$
 Propriedades distributivas $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$

Exemplo:

$$p \lor \neg p \equiv \mathbf{V}$$
 Propriedades de negação $p \land \neg p \equiv \mathbf{F}$

Exemplo:

$$2 + (-2) = 0$$

TABELA 7 Equivalências Lógicas que Envolvem Sentenças Condicionais.

$$p \to q \equiv \neg p \lor q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$p \land q \equiv \neg (p \to \neg q)$$

$$\neg (p \to q) \equiv p \land \neg q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

TABELA 8 Equivalências Lógicas que Envolvem Bicondicionais.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Comutativa	$(p \land q) \leftrightarrow (q \land p)$	$(p \lor q) \leftrightarrow (q \lor p)$
Associativa	$((p \land q) \land r) \leftrightarrow (p \land (q \land r))$	$((p \lor q) \lor r) \leftrightarrow (p \lor (q \lor r))$
Idempotente	$(p \land p) \leftrightarrow p$	$(p \lor p) \leftrightarrow p$
Propriedades de V	$(p \land V) \leftrightarrow p$	$(p \lor V) \leftrightarrow V$
Propriedades de F	(p ∧ F) ↔ F	(p ∨ F) ↔ p
Absorção	(p ∧ (p ∨ r)) ↔ p	$(p \lor (p \land r)) \leftrightarrow p$
Distributivas	$(p \land (q \lor r)) \leftrightarrow ((p \land q) \lor (p \land r))$	$(p \lor (q \land r)) \leftrightarrow ((p \lor q) \land (p \lor r))$
Distributivas	$(p \rightarrow (q \land r)) \leftrightarrow ((p \rightarrow q) \land (p \rightarrow r))$	$(p \rightarrow (q \lor r)) \leftrightarrow ((p \rightarrow q) \lor (p \rightarrow r))$
Leis de De Morgan	$\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$	$\sim (p \lor q) \leftrightarrow (\sim p \land \sim q)$
Def. implicação	$(p \rightarrow q) \leftrightarrow (\sim p \lor q)$	$(p \rightarrow q) \leftrightarrow \sim (p \land \sim q)$
Def. bicondicional	$(p \leftrightarrow q) \leftrightarrow ((p \rightarrow q) \land (q \rightarrow p))$	$(p \leftrightarrow q) \leftrightarrow ((^{\sim}p \lor q) \land (^{\sim}q \lor p))$
Negação	~ (~ p) ↔ p	
Contraposição	$(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$	
Exportação(⇒)	Importação (⇐)	$((p \land q) \rightarrow r) \leftrightarrow (p \rightarrow (q \rightarrow r))$
Troca de Premissas	$(p \rightarrow (q \rightarrow r)) \leftrightarrow (q \rightarrow (p \rightarrow r))$	

Fonte: http://wiki.foz.ifpr.edu.br/wiki/images/3/37/L%C3%B3gica-TADS-Matem%C3%A1tica-2019-24.pdf

→ Reflexiva

$$A \Leftrightarrow A$$

 \rightarrow Simétrica se $A \Leftrightarrow B$ então $B \Leftrightarrow A$

 \Rightarrow Transitiva se $A \Leftrightarrow B$ e $B \Leftrightarrow C$ então $A \Leftrightarrow C$

** Se A e B são ambas tautologias ou contradições então $A \Leftrightarrow B$

EXERCÍCIO 7:

Considere a seguinte frase:

"Se Ana estudou, então foi aprovada".

De acordo com a lógica proposicional, essa frase é equivalente a:

- a) Ana não estudou e foi aprovada.
- b) Ana não estudou e não foi aprovada.
- c) Ana estudou ou não foi aprovada.
- d) Ana estudou se, e somente se, foi aprovada.
- e) Ana não estudou ou foi aprovada.

EXERCÍCIO 8:

Considere a seguinte frase:

"Não é verdade que nossa energia elétrica é barata e oriunda de fontes renováveis".

De acordo com a lógica proposicional, essa frase é equivalente a:

EXERCÍCIO 8:

Considere a seguinte frase:

"Não é verdade que nossa energia elétrica é barata e oriunda de fontes renováveis".

De acordo com a lógica proposicional, essa frase é equivalente a:

"Nossa energia elétrica não é barata ou não é oriunda de fontes renováveis".

EXERCÍCIO 9:

Considere a proposição:

- "Se chove ou neva, então o chão fica molhado."
- Sendo assim, é possível afirmar que:
- A. Se o chão está molhado, então choveu ou nevou.
- B. Se o chão está molhado, então choveu e nevou
- C. Se o chão está seco, então choveu e nevou.
- D. Se o chão está seco, então não choveu ou não nevou.
- E. Se o chão está seco, então não choveu e não nevou.

EXERCÍCIO 10:

(ESAF/10): Sejam F e G duas proposições e ~F e ~G suas respectivas negações. Marque a opção lógica que equivale, logicamente, à proposição composta: F ↔ G

A.
$$F \rightarrow G \land \sim G \rightarrow F$$

B.
$$F \rightarrow G \land \sim F \rightarrow \sim G$$

C.
$$F \rightarrow G \land \sim F \rightarrow G$$

D.
$$F \rightarrow G \land \sim G \rightarrow \sim F$$

$$E. F \longleftrightarrow \sim G$$

EXERCÍCIO 11:

(IBADE 2019 – Auditor de Controle Interno): Afirmar que " Carlos não é triste ou Clara é autoritária" é, do ponto de vista lógico, equivalente a dizer :

- A. Se Carlos não é triste, então Clara é autoritária
- B. Se Clara é autoritária, então Carlos é triste.
- C. Se Carlos é triste, então Clara não é autoritária.
- D. Se Carlos é triste, então Clara é autoritária
- E. Se Carlos não é triste, então Clara não é autoritária.

EXERCÍCIO 12:

(CPCON UEPB - CDen Pref. Campina Grande 2020): Indique a alternativa que apresenta a proposição que é logicamente equivalente à proposição A \rightarrow (B \rightarrow C)

A. A
$$\Lambda$$
 (B \rightarrow C)

B.
$$(A \land B) \longleftrightarrow C$$

C.
$$(A \lor B) \rightarrow C$$

D.
$$(A \lor B) \longleftrightarrow C$$

E.
$$(A \land B) \rightarrow C$$

Construindo Novas Equivalências Lógicas

• Uma proposição composta pode ser substituida por uma outra que é logicamente equivalente a essa sem mudar o valor -verdade da proposição original

EXEMPLOS: Fazer a construção

a)
$$\neg (p \rightarrow q) \Leftrightarrow p \land \neg q$$

b)
$$\neg (p \lor (\neg p \land q)) \Leftrightarrow \neg p \land \neg q$$

Obs: Regras de equivalência permitem substituições em qualquer direção