1. Préliminaires

2. Familles d'ensembles

Exercice 2.1

Trouver un exemple d'ensemble X et de classe monotone \mathcal{M} sur X tels que $\emptyset \in \mathcal{M}, X \in \mathcal{M}$ mais \mathcal{M} n'est pas une tribu.

Solution : $X = \{0, 1\}, \mathcal{M} = \{\emptyset, \{0\}, \{0, 1\}\}$

Exercice 2.2

Trouver un exemple d'ensemble X et deux tribus A_1, A_2 sur X tels que $A_1 \cup A_2$ n'est pas une tribu.

Solution: $X = \{0, 1, 2\}, A_1 = \{\emptyset, \{0\}, \{1, 2\}, X\}, A_2 = \{\emptyset, \{1\}, \{0, 2\}, X\}$

Exercice 2.3

Soit $A_1 \subset A_2 \subset \dots$ des tribus sur $X \cup_i A_i$ est-elle une tribu?

Solution: Non. $X = \mathbb{N}$, $\mathcal{A}_n = \sigma(\{\{0\}, \dots, \{n\}\})$. Par l'absurde, comme $\forall n, \{2n\} \in \cup_i \mathcal{A}_i$, on a $2\mathbb{N} \in \cup_i \mathcal{A}_i$, donc $2\mathbb{N} \in \mathcal{A}_k$ pour un certain k. En considérant \mathcal{B}_k l'ensemble des parties de \mathbb{N} de la forme B ou $B \cup \{k+1, k+2, \dots\}$ avec $B \subset \{0, \dots k\}$, on construit une tribu qui contient $\{\{0\}, \dots, \{k\}\}$, donc $\mathcal{A}_k \subset \mathcal{B}_k$. Contradiction avec $2\mathbb{N} \in \mathcal{A}_k$.

Exercice 2.4

Soit $\mathcal{M}_1 \subset \mathcal{M}_2 \subset \dots$ des classes monotones sur X et $\mathcal{M} = \bigcup_n \mathcal{M}_n$. Soit $(A_i)_i$ une suite croissante d'éléments de \mathcal{M} . A-t-on $\bigcup_n A_n \in \mathcal{M}$?

Solution : Non. $X = \mathbb{N}$, $\mathcal{M}_i = \{\{1\}, \{1, 2\}, \dots, \{1, 2, \dots, i\}\}\$ et $A_i = \{1, 2, \dots, i\}$

Exercice 2.5

Image réciproque d'une tribu est une tribu.

Exercice 2.6

Soit \mathcal{A} une tribu sur X telle que si $A \in \mathcal{A} \setminus \{\emptyset\}$, il existe $B, C \in \mathcal{A}$ non vides avec $B \cap C = \emptyset$ et $B \cup C = A$. Montrer que \mathcal{A} n'est pas dénombrable.

Solution : On construit une suite (C_n) d'éléments de \mathcal{A} deux à deux disjoints : par hypothèse, $X = B_1 \cup C_1$, $B_1 = B_2 \cup C_2$, $B_2 = B_3 \cup C_3$, ... On considère ensuite l'application $\mathcal{P}(\mathbb{N}) \to \mathcal{A}$, $J \mapsto \bigcup_{j \in J} C_j$. Elle est injective et $\mathcal{P}(\mathbb{N}) \sim \mathbb{R}$, donc \mathcal{A} n'est pas dénombrable.

Anecdotique.

Exercice 2.8

 (\bigstar) Montrer qu'une tribu $\mathcal A$ sur X est soit finie, soit non-dénombrable.

Solution : Sur X on introduit la relation d'équivalence R définie par

$$xRy \iff (\forall A \in \mathcal{A}, x \in A \iff y \in A)$$

Soit $x \in X$, on note \dot{x} la classe d'équivalence de x. Montrons que $\dot{x} = \bigcap_{A \in \mathcal{A}, x \in A} A$.

 \subset Soit $y \in \dot{x}$. Soit $A \in \mathcal{A}$ tel que $x \in A$. Comme $xRy, y \in A$, et ok.

Soit $y \in \bigcap_{A \in \mathcal{A}, x \in A} A$. Soit $A \in \mathcal{A}$. Si $x \in A$, comme $\bigcap_{A \in \mathcal{A}, x \in A} A \subset A$, on a $y \in A$. Si $y \in A$, en supposant par l'absurde que $x \notin A$, on a $x \in A^c$, $A^c \in \mathcal{A}$ et $y \notin A^c$, ce qui est absurde. Donc $x \in A$. Conclusion : $x \in A \iff y \in A$, ie xRy, d'où $y \in \dot{x}$.

Supposons \mathcal{A} dénombrable.

Notons Γ l'ensemble des classes d'équivalence. Chaque $\gamma \in \Gamma$ est dans \mathcal{A} . En effet, avec $x \in \gamma$, on a $\gamma = \bigcap_{A \in \mathcal{A}, x \in A} A$ qui est une intersection dénombrable d'éléments de \mathcal{A} .

On définit

$$\begin{array}{cccc} \varphi: & \mathcal{P}(\Gamma) & \longrightarrow & \mathcal{A} \\ & \mathcal{C} & \longmapsto & \bigcup_{\gamma \in \mathcal{C}} \gamma \end{array}$$

 $\mathcal A$ étant dénombrable, $\Gamma\subset\mathcal A$ l'est aussi, et l'union précédente est dénombrable. Montrons que φ est bijective :

- $\underline{\text{inj}}$: Soient $\mathcal{C} \neq \mathcal{C}'$ des éléments de $\mathcal{P}(\Gamma)$. Sans perte de généralité on dispose de $\gamma \in \mathcal{C} \setminus \mathcal{C}'$. Considérons $x \in \gamma$. Alors $x \in \varphi(\mathcal{C})$. Comme les classes sont disjointes, $\forall \gamma' \in \mathcal{C}', x \notin \gamma'$ donc $x \notin \varphi(\mathcal{C}')$. Donc $\varphi(\mathcal{C}) \neq \varphi(\mathcal{C}')$
- <u>surj</u> : On démontre sans mal que, pour $A \in \mathcal{A}$, $A = \bigcup_{x \in A} \dot{x}$

On distingue deux cas:

- Γ est fini. Alors $\mathcal{A} \sim \mathcal{P}(\Gamma)$ est fini.
- \bullet Γ est au moins infini dénombrable. $\mathcal A$ a au moins le cardinal de $\mathbb R$ donc non dénombrable.

<u>Note</u> : comme dans l'exercice 2.6 on fabrique une famille infinie d'éléments disjoints de la tribu et on fait exploser la tribu avec les unions de ces éléments.

Exercice 2.9

Indicatrices de lim inf et lim sup.

(Kortchemski) Soit (E, \mathcal{A}) un espace mesurable, \mathcal{C} une famille de parties de E et $B \in \sigma(\mathcal{C})$. Montrer qu'il existe une famille dénombrable $\mathcal{D} \subset \mathcal{C}$ telle que $B \in \sigma(\mathcal{D})$

Solution : Posons $\mathcal{A} = \{B \in \mathcal{P}(E) | \exists \mathcal{D} \subset \mathcal{C}, D \text{ dénombrable et } B \in \sigma(\mathcal{D})\}$ Il suffit de prouver que \mathcal{A} est une tribu sur E contenant \mathcal{C} . On a alors $\sigma(\mathcal{C}) \subset \mathcal{A}$ et OK.

- $E \in \mathcal{A}$: il suffit de poser $\mathcal{D} = \{B\} \subset \mathcal{C}$ où B est un élément de \mathcal{C} . On a bien \mathcal{D} dénombrable et $E \in \sigma(\mathcal{D})$.
- $A \in \mathcal{A} \implies A^c \in \mathcal{A}$: trivial.
- Soit $(A_i) \in (\mathcal{A})^{\mathbb{N}}$. Pour chaque i on dispose de $\mathcal{D}_i \subset \mathcal{C}$ dénombrable tel que $A_i \in \mathcal{D}_i$. Comme $\forall i, A_i \in \bigcup_{n \in \mathcal{D}} \mathcal{D}_n \subset \sigma(\bigcup_{n \in \mathcal{D}} \mathcal{D}_n)$, la stabilité par unions des tribus

donne $\bigcup_{n} A_n \in \sigma(\bigcup_{n} \mathcal{D}_n)$. On a bien $\bigcup_{n} \mathcal{D}_n \subset \mathcal{C}$ et $\bigcup_{n} \mathcal{D}_n$ dénombrable. Donc $\bigcup_{n} A_n \in \mathcal{A}$.

• $\mathcal{C} \subset \mathcal{A}$: pour $B \in \mathcal{C}$, il suffit de poser $\mathcal{D} = \{B\}$.

Exercice 2.11

Théorème $\pi - \lambda$

Soit X un ensemble.

 $\mathcal{C} \subset \mathcal{P}(X)$ est appelé $\underline{\pi}$ -système si \mathcal{C} est stable par intersection finie. $\mathcal{M} \subset \mathcal{P}(X)$ est appelé $\overline{\lambda}$ -système si

- X ∈ M
- \mathcal{M} stable par différence : pour $A, B \in \mathcal{M}, A \subset B \implies B \setminus A \in \mathcal{M}$
- \mathcal{M} est stable par réunion croissante.

Montrer que si \mathcal{C} est un π -système, $\sigma(\mathcal{C}) = \lambda(\mathcal{C})$ où $\lambda(\mathcal{C})$ est le λ -système minimal contenant \mathcal{C} .

Solution : On note
$$\mathcal{D} = \bigcap$$
 \mathcal{M} .

 $\mathcal{M}{\subset}\mathcal{P}(X){,}\mathcal{M}$ $\lambda\text{-système contenant }\mathcal{C}$

Une intersection quelconque de λ -systèmes étant un λ -système, \mathcal{D} est un λ -système.

Montrons $\sigma(\mathcal{C}) = \mathcal{D}$.

- \subset Il suffit de prouver que \mathcal{D} est une tribu qui contient \mathcal{C} .
- $\overline{\bullet \ \mathcal{C}} \subset \mathcal{D}$ OK.
- $X \in \mathcal{D}$ car \mathcal{D} λ -système.
- Soit $A \in \mathcal{D}$. Montrons que $A^c \in \mathcal{D}$.

Soit \mathcal{A} un λ -système contenant \mathcal{C} . Comme $A \in \mathcal{A}$ et $X \in \mathcal{A}$, $X \setminus A = A^c \in \mathcal{A}$. D'où $A^c \in \mathcal{D}$.

• Soit (A_i) une suite d'éléments de \mathcal{D} . Montrons que $\cup_i A_i \in \mathcal{D}$. Comme \mathcal{D} est stable par union croissante et passage au complémentaire, il suffit de prouver

que \mathcal{D} est stable par intersection finie.

Pour $A \in \mathcal{D}$ on définit $\mathcal{E}_A = \{B \in \mathcal{D} | A \cap B \in \mathcal{D}\}.$ Soit $A \in \mathcal{C}$.

- \heartsuit Comme \mathcal{C} est un π -système et $\mathcal{C} \subset \mathcal{D}$, on a $\mathcal{C} \subset \mathcal{E}_A$.
- \heartsuit On a $X \in \mathcal{D}$ et $X \cap A = A \in \mathcal{D}$ donc $X \in \mathcal{E}_A$.
- \heartsuit Pour $B \subset C$ éléments de \mathcal{E}_A , $A \cap (C \setminus B) = (A \cap C) \setminus (A \cap B) \in \mathcal{D}$.
- \heartsuit Pour B_i une suite croissante d'éléments de \mathcal{E}_A , on a $A \cap (\cup_i B_i) = \cup_i (A \cap B_i)$.

Or $\forall i, A \cap B_i \in \mathcal{D}$ et les $A \cap B_i$ sont croissants, donc $A \cap (\cup_i B_i) \in \mathcal{D}$.

Conclusion : Si $A \in \mathcal{C}$, \mathcal{E}_A est un λ -système contenant \mathcal{C} , donc $\mathcal{D} \subset \mathcal{E}_A$

Soit $A \in \mathcal{D}$. Pour $C \in \mathcal{C}$, comme $\mathcal{D} \subset \mathcal{E}_C$, on a $A \in \mathcal{E}_C$, donc $C \in \mathcal{E}_A$. D'où $\mathcal{C} \subset \mathcal{E}_A$. Comme précédemment, on montre que \mathcal{E}_A est un λ -système. Par minimalité de \mathcal{D} , on a $\mathcal{D} \subset \mathcal{E}_A$.

Ceci étant vrai pour tout $A \in \mathcal{D}$, on en déduit que \mathcal{D} est stable par intersection finie

Finalement, \mathcal{D} est une tribu contenant \mathcal{C} , donc $\sigma(\mathcal{C}) \subset \mathcal{D}$.

 \supset Une tribu étant un λ -système, on a $\sigma(\mathcal{C}) \subset \mathcal{D}$.

3. Mesures

Exercice 3.1

Soit (X, \mathcal{A}) un espace mesurable et $\mu : \mathcal{A} \to \mathbb{R}^+$ finiment additive, telle que $\mu(\emptyset) = 0$ et $\mu(B) < \infty$ pour un $B \neq \emptyset$. On suppose que pour toute suite croissante $(A_i) \in \mathcal{A}$, $\mu(\cup_i A_i) = \lim_i \mu(A_i)$. Montrer que μ est une mesure.

Solution : Soit $(A_i) \in \mathcal{A}$ disjoints. La suite $B_n := \left(\bigcup_{i=1}^n A_i\right)_n$ est croissante et

$$\mu(\cup_n A_n) = \mu(\cup_n B_n) = \lim_n \mu(B_n) = \lim_n \sum_{i=1}^n \mu(A_i) = \sum_{i=1}^\infty \mu(A_i)$$

Exercice 3.2

Soit (X, \mathcal{A}) un espace mesurable et $\mu : \mathcal{A} \to \mathbb{R}^+$ finiment additive, telle que $\mu(\emptyset) = 0$ et $\mu(X) < \infty$. On suppose que pour toute suite $(A_n) \in \mathcal{A}$ qui décroît vers \emptyset on a $\lim_i \mu(A_i) = 0$. Montrer que μ est une mesure.

Solution : Soit (A_i) une suite d'éléments disjoints de \mathcal{A} . Par additivité finie on a $\mu(\cup_i A_i) = \mu(\cup_{i=1}^n A_i) + \mu(\cup_{i=n+1}^\infty A_i) = \sum_{i=1}^n \mu(A_i) + \mu(\cup_{i=n+1}^\infty A_i)$. Or la suite des $(\bigcup_{i=n+1}^\infty A_i)$ tend en décroissant vers \emptyset . Donc $\lim_n \mu(\cup_{i=n+1}^\infty A_i) = 0$. Donc $\mu(\cup_i A_i) = \sum_{i=1}^\infty \mu(A_i)$.

Exercice 3.3

Soit X un ensemble non-dénombrable et \mathcal{A} la tribu des ensembles $A \in \mathcal{P}(X)$ tels que A ou A^c est dénombrable. On définit $\mu(A)=0$ si A dénombrable et $\mu(A)=1$ sinon. Montrer que μ est une mesure.

Solution : $\emptyset \subset \mathbb{N}$ donc dénombrable, et $\mu(\emptyset) = 0$.

Soit (A_i) une suite d'éléments disjoints de \mathcal{A} . Si tous les A_i sont dénombrables, il en est de même de $\cup_i A_i$ et $\mu(\cup_i A_i) = 0 = \sum_i \mu(A_i)$.

Sinon, il existe exactement un A_i qui n'est pas dénombrable : si A et B disjoints sont non-dénombrables, $A \subset B^c$ donc A dénombrable, ce qui est absurde. Donc $\mu(\cup_i A_i) = 1 = \sum_i \mu(A_i)$.

Exercice 3.4

Soit (X, \mathcal{A}, μ) un espace mesuré et $A, B \in \mathcal{A}$. Montrer que $\mu(A) + \mu(B) = \mu(A \cap B) + \mu(A \cup B)$.

Solution : On a par additivité $\mu(A \cup B) = \mu(A \setminus A \cap B) + \mu(B)$ et en ajoutant $\mu(A \cap B)$ des deux côtés on obtient $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.

Combinaison linéaire positive de mesures est une mesure

Exercice 3.6

Mesure trace

Exercice 3.7

(★) Une variante du théorème de Vitali-Hahn-Saks

Soit μ_1, μ_2, \ldots , une suite de mesures sur (X, \mathcal{A}) telles que $\forall A \in \mathcal{A}, \mu_n(A)$ converge en croissant vers une valeur qu'on note $\mu(A)$. μ est-elle une mesure? Qu'en est-il si $\forall A \in \mathcal{A}, \mu_n(A)$ converge en décroissant avec $\mu_1(X) < \infty$?

Solution: Oui dans les deux cas. Dans les deux cas,

- μ est finiment additive : si A et B éléments disjoints de A, $\mu(A \cup B) = \lim_{n \to \infty} \mu_n(A \cup B) = \lim_{n \to \infty} (\mu_n(A) + \mu_n(B)) = \mu(A) + \mu(B)$
- μ est croissante : si $A \subset B$ sont des éléments de A, comme $B = A \sqcup B \setminus A$, $\mu(B) = \lim_n \mu_n(B) = \lim_n \mu_n(A \sqcup B \setminus A) = \lim_n (\mu_n(A) + \mu_n(B \setminus A)) = \mu(A) + \mu(B \setminus A) \geq \mu(A)$.

Soit (A_i) une suite d'éléments disjoints de \mathcal{A} .

Dans le cas croissant, on a pour $n \in \mathbb{N}$, $\sum_{i=1}^{n} \mu(A_i) = \mu(\bigcup_{i=1}^{n} A_i) \leq \mu(\bigcup_{i=1}^{\infty} A_i)$. Donc $\sum_{i=1}^{\infty} \mu(A_i) \leq \mu(\bigcup_{i=1}^{\infty} A_i)$.

Dans l'autre direction, pour tout $\epsilon > 0$, on dispose de $N \in \mathbb{N}$ tel que

$$n \ge N \implies \mu_n(\cup_{i=1}^{\infty} A_i) \ge \mu(\cup_{i=1}^{\infty} A_i) - \epsilon \implies \sum_{i=1}^{\infty} \mu_n(A_i) \ge \mu(\cup_{i=1}^{\infty} A_i) - \epsilon$$

Par croissance des μ_i on a $\sum_{i=1}^{\infty} \mu(A_i) \ge \sum_{i=1}^{\infty} \mu_n(A_i) \ge \mu(\bigcup_{i=1}^{\infty} A_i) - \epsilon$. Donc pour tout $\epsilon > 0$, $\sum_{i=1}^{\infty} \mu(A_i) \ge \mu(\bigcup_{i=1}^{\infty} A_i) - \epsilon$, d'où l'inégalité voulue.

Dans le cas décroissant, on a encore $\sum_{i=1}^{\infty} \mu(A_i) \leq \mu(\bigcup_{i=1}^{\infty} A_i)$. Pour $n, N \in \mathbb{N}$, on a

$$\mu(\cup_{i=1}^{\infty} A_i) \le \mu_n(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu_n(A_i)$$

$$= \sum_{i=1}^{N} \mu_n(A_i) + \sum_{i=N+1}^{\infty} \mu_n(A_i)$$

$$\le \sum_{i=1}^{N} \mu_n(A_i) + \sum_{i=N+1}^{\infty} \mu_1(A_i)$$

En passant à la limite sur n dans l'inégalité on obtient

$$\mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{N} \mu(A_i) + \sum_{i=N+1}^{\infty} \mu_1(A_i)$$

Comme
$$\sum_{i=1}^{\infty} \mu_1(A_i) = \mu_1(\bigcup_{i=1}^{\infty} A_i) < \infty$$
, $\lim_{N \to \infty} \sum_{i=N+1}^{\infty} \mu_1(A_i) = 0$

En passant à la limite sur N, on obtient

$$\mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i)$$

Exercice 3.8

Soit (X, \mathcal{A}, μ) un espace mesuré, \mathcal{N} l'ensemble des négligeables pour μ et $\mathcal{B} = \sigma(\mathcal{A} \cup \mathcal{N})$. Montrer que $\mathcal{B} = \{A \cup N | A \in \mathcal{A}, N \in \mathcal{N}\}$. Pour $B = A \cup N$, on définit $\overline{\mu}(B) = \mu(A)$. Montrer que $\overline{\mu}$ est bien définie, que c'est une mesure sur \mathcal{B} , que $(X, \mathcal{B}, \overline{\mu})$ est complet, que c'est la complétion minimale de (X, \mathcal{A}, μ) et que $\overline{\mu}$ est l'unique prolongement de μ à \mathcal{B} .

Solution : Posons $C = \{A \cup N | A \in A, N \in \mathcal{N}\}$. Montrons B = C.

 \subset Il suffit de prouver que \mathcal{C} est une tribu contenant $\mathcal{A} \cup \mathcal{N}$.

- $\bullet \mathcal{A} \cup \mathcal{N} \subset C$ OK.
- $\bullet \ X = X \cup \emptyset \in C.$
- Soit $B \in \mathcal{C}$, $B = A \cup N$ avec $N \subset C$ où $A, C \in \mathcal{A}$, $N \in \mathcal{N}$ et $\mu(C) = 0$. On a $B^c = A^c \cap N^c = A^c \cap ((C \setminus N) \cup C^c) = \underbrace{(A^c \cap C^c)}_{\in \mathcal{A}} \cup \underbrace{(A^c \cap (C \setminus N))}_{\subset C}$ • Pour $B_i \in \mathcal{C}^{\mathbb{N}}$, $B_i = A_i \cup N_i$ avec $N_i \subset C_i$ et $\mu(C_i) = 0$,
- Pour $B_i \in \mathcal{C}^{\mathbb{N}}$, $B_i = A_i \cup N_i$ avec $N_i \subset C_i$ et $\mu(C_i) = 0$, $\cup_i B_i = (\cup_i A_i) \cup (\cup_i N_i)$ avec $\cup_i N_i \subset \cup_i C_i$ et $\mu(\cup_i C_i) \leq \sum_i \mu(C_i) = 0$. $\supset \mathcal{C}$ contient \mathcal{A} et \mathcal{N} donc $\forall A \in \mathcal{A}, N \in \mathcal{N}, A \cup N \in \mathcal{C}$.

Soit $B\in\mathcal{B},\ B=A\cup N=A'\cup N'$ où $A,A'\in\mathcal{A},\ N,N'\in\mathcal{N}.$ Montrons que $\mu(A)=\mu(A').$

On dispose de $C, C' \in \mathcal{A}$ de mesure nulle avec $N \subset C$ et $N' \subset C'$. Comme $A \subset A \cup N = A' \cup N' \subset A' \cup C'$ et $\mu(A' \cup C') \leq \mu(A') + \mu(C') = \mu(A')$, on a $\mu(A) \leq \mu(A')$. Par symétrie, $\mu(A') \leq \mu(A)$. Donc $\overline{\mu}$ est bien définie.

On vérifie sans peine que $\overline{\mu}$ est une mesure sur \mathcal{B} .

Montrons que $(X, \mathcal{B}, \overline{\mu})$ est complet. Soit D un négligeable de $(X, \mathcal{B}, \overline{\mu})$. On dispose de $A, C \in \mathcal{A}$ et $N \in \mathcal{N}$ tel que $D \subset A \cup N$, $N \subset C$ et $\mu(A) = \mu(C) = 0$. Alors $D \subset A \cup C$ qui est dans \mathcal{A} et de mesure nulle. Donc $D \in \mathcal{N}$. D'où $D \in \mathcal{B}$.

Montrons que $(X, \mathcal{B}, \overline{\mu})$ est la complétion minimale de (X, \mathcal{A}, μ) . Clairement

 $\mathcal{A} \subset \mathcal{B}$ et $\overline{\mu}$ prolonge μ . Si $(X, \mathcal{B}', \overline{\mu}')$ est une complétion de (X, \mathcal{A}, μ) , \mathcal{B}' est une tribu qui contient \mathcal{A} et \mathcal{N} , donc $\mathcal{B} = \sigma(\mathcal{A} \cup \mathcal{N}) \subset \mathcal{B}'$.

Montrons que $\overline{\mu}$ est l'unique prolongement de μ à \mathcal{B} . Soit ν une mesure sur (X,\mathcal{B}) qui coincide avec μ sur \mathcal{A} . Soit $B \in \mathcal{B}$, $B = A \cup N$ avec $N \subset C$. On a $\nu(A \cup N) = \nu(A) + \nu(N \setminus A)$ et $\nu(N \setminus A) \leq \nu(C) = 0$, donc

$$\nu(B) = \nu(A) = \mu(A) = \overline{\mu}(A) = \overline{\mu}(B)$$

Exercice 3.9

Sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ on considère deux mesures m et n telles que $\forall a, b \in \mathbb{R}, a < b \implies m((a, b)) = n((a, b))$. Montrer que m = n.

Solution : C'est une conséquence immédiate du lemme d'égalité des mesures démontré dans l'exercice 3.11.

Exercice 3.10

Soit (X, \mathcal{A}) mesurable et $\mathcal{C} \subset \mathcal{A}$. Soient m et n deux mesures σ -finies sur (X, \mathcal{A}) qui coincident sur \mathcal{C} . Les mesures coincident-elles sur $\sigma(\mathcal{C})$? Qu'en est-il si m et n sont finies?

Solution: Non dans les deux cas. $X = \{1, 2\}$, $C = \{\{1\}\}$ et m, n définies sur $\sigma(C)$ par $m(\{1\}) = m(\{2\}) = n(\{1\}) = 1$ and $n(\{2\}) = 2$

Lemme d'égalité des mesures

Soit (X, \mathcal{A}) espace mesurable, \mathcal{C} un π -système, μ et ν deux mesures qui coincident sur \mathcal{C} et telles que $\mu(X) = \nu(X)$.

On suppose qu'il existe $(E_i) \in \mathcal{C}$ tel que $X = \bigcup_i E_i$ et $\forall i, \mu(E_i) < \infty$. Montrer que $\mu = \nu$ sur $\sigma(C)$.

Solution : On suppose dans un premier temps que $\underline{\mu}$ est finie. Soit $\mathcal{B}=\{A\in\mathcal{A}|\mu(A)=\nu(A)\}$. Il s'agit de montrer que \mathcal{B} est un λ -système. On aura alors $\sigma(\mathcal{C})\subset\mathcal{B}$ d'après le théorème π - λ .

- $X \in \mathcal{B}$ par hypothèse.
- Soit $A, B \in \mathcal{B}$ avec $A \subset B$. Comme μ est finie, on peut écrire $\mu(A \setminus B) = \mu(A) \mu(B) = \nu(A) \nu(B) = \nu(A \setminus B)$.
- Soit $(A_i) \in \mathcal{B}$ une suite croissante. On a $\mu(\cup_i A_i) = \lim_i \mu(A_i) = \lim_i \nu(A_i) = \nu(\cup_i A_i)$.

Dans le cas général, on peut supposer sans perte de généralité que les E_i sont croissants.

On a pour $A \in \sigma(\mathcal{C})$, $\mu(A) = \mu(\cup_i (A \cap E_i)) = \lim_i \mu(A \cap E_i)$.

Par ailleurs, pour $i \in \mathbb{N}$, $\mu_i : A \mapsto \mu(A \cap E_i)$ est une mesure finie qui coincide avec $\nu_i : A \mapsto \nu(A \cap E_i)$ sur \mathcal{C} (car $E_i \in \mathcal{C}$). D'après le point précédent, μ_i et ν_i coincident sur $\sigma(\mathcal{C})$.

Donc $\mu(A) = \lim_i \mu(A \cap E_i) = \lim_i \mu_i(A) = \lim_i \nu_i(A) = \nu(A)$.

4. Construction de mesures

Exercice 4.1

Soit μ une mesure sur $\mathcal{B}(\mathbb{R})$ finie sur tout compact de \mathbb{R} . On définit $\alpha(x) = \mu((0,x])$ si $x \geq 0$ et $\alpha(x) = -\mu((x,0])$ si x < 0. Montrer que μ est la mesure de Lebesgue-Stieltjes correspondant à α .

Solution : Soit ν la mesure de L-S associée à α .

- Par disjonction de cas et en utilisant le fait que la mesure de L-S coincide avec l sur les (a,b], on montre que μ et ν coincident sur les (a,b] (qui forment un π -système).
- De plus, comme $\mathbb{R} = \bigcup_n (-n, n]$, on a $\nu(\mathbb{R}) \leq \sum_i (\alpha(i) \alpha(-i)) = \sum_i \mu((-i, i]) \leq \mu(\mathbb{R})$.
- Soit $A_i = (a_i, b_i]$ tel que $\cup_i A_i = \mathbb{R}$. On montre par disjonction de cas que $\alpha(b_i) \alpha(a_i) = \mu((a_i, b_i])$. D'où $\sum_i (\alpha(b_i) \alpha(a_i)) = \sum_i \mu((a_i, b_i]) \geq \mu(\cup_i (a_i, b_i]) = \mu(\mathbb{R})$. En passant à l'inf, on a $\nu(\mathbb{R}) \geq \mu(\mathbb{R})$. Donc $\nu(\mathbb{R}) = \mu(\mathbb{R})$
- D'autre part, $\mathbb{R} = \bigcup_n (-n, n]$ avec $\mu((-n, n]) < \infty$.

Toutes les conditions sont réunies pour utiliser le lemme d'égalité des mesures : on a $\mu = \nu$ sur $\mathcal{B}(\mathbb{R})$.

Exercice 4.2

Soit m la mesure de Lebesgue et A un Lebesgue mesurable tel que $m(A) < \infty$. Soit $\epsilon > 0$. Montrer qu'il existe F fermé et G ouvert tels que $F \subset A \subset G$ et $m(G \setminus F) < \epsilon$.

Solution : On dispose de $A_i = (a_i, b_i]$ tels que $A \subset \cup_i A_i$ et $\sum_i (b_i - a_i) \leq m(A) + \epsilon/2$. Posons $b_i' = b_i + \epsilon 2^{-i-1}$. $G := \cup_i (a_i, b_i')$ est un ouvert qui contient A et $m(G) \leq \sum_i (b_i' - a_i) = \epsilon/2 + \sum_i (b_i - a_i) \leq m(A) + \epsilon$. Comme $m(A) < \infty$, $m(G \setminus A) = m(G) - m(A) \leq \epsilon$.

Comme $m(A) < \infty$, à défaut d'être borné, A est approchable à ϵ près par un borné. En effet, $m(A) = m(\cup_n (A \cap [-n,n])) = \lim_n m(A \cap [-n,n])$. On dispose donc de N tel que $m(A \cap [-N,N]) \ge m(A) - \epsilon/2$ (\star) Posons $A' = A \cap [-N,N]$. Comme $[-N,N] \setminus A'$ est de mesure finie,

d'après le point précédent, il existe G' ouvert tel que $[-N,N] \setminus A' \subset G'$ et $m(G' \setminus ([-N,N] \setminus A')) \leq \epsilon/2$.

Montrons que le fermé $[-N, N] \setminus G'$ convient.

On vérifie sans peine $[-N, N] \setminus G' \subset A'$. D'autre part,

$$m(A' \setminus ([-N, N] \setminus G')) = m(A' \cap ([-N, N]^c \cup G'))$$
$$= m(A' \cap G')$$

et

$$\epsilon/2 \ge m(G' \setminus ([-N, N] \setminus A')) = m((G' \cap [-N, N]^c) \cup (G' \cap A'))$$

> $m(G' \cap A')$

Donc $m(A'\setminus ([-N,N]\setminus G'))\leq \epsilon/2$. En posant $F=[-N,N]\setminus G'$ on a donc $m(A')-m(F)\leq \epsilon/2$ $(\star\star)$

En combinant (\star) et $(\star\star)$, on a

$$m(A \setminus F) = m(A) - m(F) \le (m(A') - m(F)) + \epsilon/2 \le \epsilon$$

Finalement, on a $F \subset A \subset G$ et $m(G \setminus F) = m(G \setminus A) + m(A \setminus F) \leq 2\epsilon$

Extension du résultat précédent sans l'hypothèse $\mathbf{m}(\mathbf{A}) < \infty$ Soit m la mesure de Lebesgue et A un Lebesgue mesurable. Soit $\epsilon > 0$. Montrer qu'il existe F fermé et G ouvert tels que $F \subset A \subset G$ et $m(G \setminus F) < \epsilon$.

Solution : Posons $A_n = A \cap [-n, n]$. Chaque A_n étant de mesure finie, on dispose, d'après ce qui précède de G_n ouvert tel que $A_n \subset G_n$ et $m(G_n \setminus A_n) \le \epsilon/2^n$. Posons $G = \bigcup_n G_n$. Comme $A = \bigcup_n A_n$, $m(G \setminus A) = m(\bigcup_n G_n \setminus (\bigcup_k A_k))$ $= m(\bigcup_n (G_n \cap \cap_k A_k^c))$

$$\leq m(\cup_n (G_n \cap A_n^c))$$

$$\leq \sum_n m(G_n \setminus A_n)$$

$$\leq \epsilon$$

G est donc un ouvert qui convient.

Comme A^c est Lebesgue-mesurable, il existe d'après ce qui précède un ouvert O tel que $A^c \subset O$ et $m(O \setminus A^c) \leq \epsilon$. Alors $O^c \subset A$ et $m(A \setminus O^c) = m(A \cap O) = m(O \setminus A^c) < \epsilon$.

En posant $F = O^c$, on a $F \subset A \subset G$ et $m(G \setminus F) \leq 2\epsilon$

Note : Dans le cas où $m(A) < \infty$, la preuve précédente montre qu'on peut choisir F fermé et borné, donc compact.

Soit (X, A, μ) un espace mesuré. On définit, pour $A \subset X$,

$$\mu^*(A) = \inf\{\mu(B) | A \subset B, B \in \mathcal{A}\}\$$

Montrer que μ^* est une mesure extérieure. Montrer que \mathcal{A} est inclus dans les μ^* -mesurables et que μ^* coincide avec μ sur \mathcal{A} .

Solution : $\bullet \emptyset \subset \emptyset \in \mathcal{A} \text{ donc } \mu^*(\emptyset) \leq \mu(\emptyset) = 0$

- Soit A, B avec $A \subset B$. Considérons $C \in \mathcal{A}$ tel que $B \subset C$. Alors $A \subset C$, donc $\mu^*(A) \leq \mu(C)$. En passant à l'inf on obtient $\mu^*(A) \leq \mu^*(B)$.
- Soit $\epsilon > 0$ et $(A_i) \subset X$. Pour chaque i, on dispose de $B_i \in \mathcal{A}$ tel que $A_i \subset B_i$ et $\mu(B_i) \leq \mu^*(A_i) + \epsilon/2^i$. Alors $\cup_i A_i \subset \cup_i B_i \in \mathcal{A}$, donc

$$\mu^*(\cup_i A_i) \le \mu(\cup_i B_i) \le \sum_i \mu(B_i) \le \sum_i \mu^*(A_i) + \epsilon$$

Ceci étant vrai pour tout ϵ , on a le résultat.

Soit $A \in \mathcal{A}$. Montrons que A est μ^* -mesurable. Soit $E \subset X$. Il suffit de montrer $\mu^*(A \cap E) + \mu^*(A^c \cap E) \leq \mu^*(E)$.

Pour $\epsilon > 0$, on dispose de $B \in \mathcal{A}$ tel que $E \subset B$ et $\mu^*(E) + \epsilon \geq \mu(B)$

$$= \mu(\underbrace{B \cap A}_{\supset E \cap A}) + \mu(\underbrace{B \cap A^c}_{\supset E \cap A^c})$$

$$\geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

Ceci étant vrai pour tout ϵ , on a l'inégalité recherchée.

Soit $A \in \mathcal{A}$. Montrons $\mu^*(A) = \mu(A)$. Comme $A \subset A \in \mathcal{A}$, on a $\mu^*(A) \leq \mu(A)$. Par croissance de la mesure μ et passage à l'inf, on a l'inégalité inverse.

Exercice 4.4

Soit m la mesure de L-S associée à la fonction croissante continue à droite α . Montrer que pour tout $x \in \mathbb{R}$, $m(\{x\}) = \alpha(x) - \alpha(x-)$.

Solution: On a
$$m(\{x\}) = m(\cap_n(x - \frac{1}{n}, x])$$

$$= \lim_n m((x - \frac{1}{n}, x]) \quad \text{car } m((x - 1, x])) = \alpha(x) - \alpha(x - 1) < \infty$$

$$= \lim_n \left(\alpha(x) - \alpha(x - \frac{1}{n})\right) \quad \text{car } m \text{ coincide avec } l \text{ sur les (a,b]}$$

$$= \alpha(x) - \alpha(x - 1)$$

Soit m la mesure de Lebesgue, $c \in \mathbb{R}$ et A un Lebesgue-mesurable. Montrer que m(A+c)=m(A) et m(cA)=|c|m(A).

Solution : La démonstration ne pose pas de problème. Penser à étudier l'effet de $x\mapsto \frac{x}{c}$ sur $(a_i,b_i]$ selon le signe de c.

Complément

Soit μ^* la prémesure de Lebesgue.

- (1) Soit $A \subset \mathbb{R}$ quelconque et $x \in \mathbb{R}$. Alors $\mu^*(A+x) = \mu^*(A)$.
- (2) Soit A Lebesgue-mesurable et $x \in \mathbb{R}$. Alors A + x est Lebesgue-mesurable.
- (1) Soit $A_i = (a_i, b_i]$ tel que $A \subset \cup_i A_i$. Alors $A + x \subset \cup_i (a_i + x, b_i + x]$, donc $\mu^*(A + x) \leq \sum_i (b_i a_i)$. En passant à l'inf, $\mu^*(A + x) \leq \mu^*(A)$. De même $\mu^*(A) \leq \mu^*(A + x)$.
- (2) Soit $E \subset X$. Montrons que $\mu^*((A+x) \cap E) + \mu^*((A+x)^c \cap E) \leq \mu^*(E)$. D'après (1), $\mu^*((A+x) \cap E) = \mu^*(((A+x) \cap E) x) = \mu^*(A \cap (E-x))$ On montre facilement en raisonnant par l'absurde dans les deux sens que $(A+x)^c x = A^c$.

Donc
$$\mu^*((A+x)^c \cap E) - x) = \mu^*(A^c \cap (E-x)).$$

D'où $\mu^*((A+x) \cap E) + \mu^*((A+x)^c \cap E) = \mu^*(A \cap (E-x)) + \mu^*(A^c \cap (E-x))$
 $= \mu^*(E-x)$ car A mesurable
 $= \mu^*(E)$

Exercice 4.6

Premier lemme de Borel-Cantelli

Soit m la mesure de Lebesgue. Soit A_n des Lebesgue-mesurables inclus dans [0,1] et $B=\limsup A_n=\bigcap_n \cup_{k\geq n} A_k$.

- (1) Montrer que B est Lebesgue-mesurable.
- (2) Si $m(A_n) > \delta > 0$ pour tout n, montrer que $m(B) \ge \delta$.
- (3) Si $\sum_n m(A_n) < \infty$, montrer que m(B) = 0.
- (4) (Réciproque) Donner un exemple de A_n tels que m(B)=0 mais $\sum_n m(A_n)=\infty$.

Solution : (1) B est intersection dénombrable de Lebesgue-mesurables.

- (2) On note que $(\bigcup_{k\geq n} A_k)_n$ décroit et $\bigcup_{k\geq 1} A_k \subset [0,1]$ donc de mesure finie. Donc $m(B) = m(\bigcap_n (\bigcup_{k\geq n} A_k)) = \lim_n m(\bigcup_{k\geq n} A_k) \geq \delta$.
- (3) $m(B) = m(\bigcap_n (\bigcup_{k \ge n} A_k)) = \lim_n m(\bigcup_{k \ge n} A_k) \le \lim_n \sum_{k \ge n} m(A_k) = 0.$
- $(4) A_n = [0, \frac{1}{n}]$

Soit $0<\epsilon<1$ et m la mesure de Lebesgue. Exhiber un mesurable $E\subset [0,1]$ dont l'adhérence est [0,1] et de mesure ϵ .

Solution : Montrons que
$$E = [0, \epsilon] \cup ([0, 1] \cap \mathbb{Q})$$
 convient.
On a $m(E) = m([0, \epsilon]) + m([0, 1] \cap \mathbb{Q}) - m([0, \epsilon] \cap [0, 1] \cap \mathbb{Q})$
$$= m([0, \epsilon])$$
$$= \epsilon$$

 $\underline{\text{Note}}$: On prend un intervalle de longueur ϵ et on ajoute des poussières denses de mesure nulle.

Exercice 4.8

Si X est un métrique, \mathcal{B} la tribu des boréliens et μ une mesure sur (X,\mathcal{B}) , on définit le support de μ comme étant le plus petit fermé F tel que $\mu(F^c)=0$. Montrer que si F est un fermé de [0,1], il existe une mesure finie sur [0,1] dont le support est F.

Solution : On distingue deux cas :

- F est fini, $F = \{a_1, \dots, a_n\}$. On définit $\mu = \sum_{i=1}^n \delta_{a_i}$. On a bien $\mu(F^c) = 0$, et si $\mu(G^c) = 0$, alors pour tout i, $\delta_{a_i}(G^c) = 0$, donc $a_i \in G$ pour tout i et $F \subset G$.
- F est infini. F étant séparable, on dispose de $(a_i) \in F^{\mathbb{N}}$ une suite dense dans F. On définit

$$\mu = \sum_{i=1}^{\infty} \frac{\delta_{a_i}}{2^i}$$

 μ est finie, $\mu(F^c)=0$ et si G est un fermé tel que $\mu(G^c)=0$, alors $\{a_i|i\geq 1\}\subset G$ et en passant à l'adhérence on a $F\subset G$.

Exercice 4.9

15

Soit $0 < \epsilon < 1$, m la mesure de Lebesgue et A un Lebesgue-mesurable. On suppose que pour tout intervalle I, on a $m(A \cap I) \leq (1 - \epsilon)m(I)$. Montrer que m(A) = 0.

Solution : On suppose dans un premier temps $\underline{m(A)} < \underline{\infty}$. Soit $\epsilon' > 0$. D'après 4.2, on dispose d'un ouvert G tel que $A \subset G$ et $m(G \setminus A) \le \epsilon'$. On écrit $G = \bigcup_i (a_i, b_i)$. Alors $m(A) = m(\bigcup_i (A \cap (a_i, b_i))$

$$\leq \sum_{i} m(A \cap (a_{i}, b_{i}))$$

$$\leq (1 - \epsilon)m(G)$$

$$\leq (1 - \epsilon)(m(A) + \epsilon')$$

 $\leq (1-\epsilon)(m(A)+\epsilon')$ En faisant $\epsilon'\to 0,$ on a $m(A)\leq (1-\epsilon)m(A),$ donc m(A)=0.

Dans le cas général, on note que pour J un intervalle borné et I un intervalle quelconque, $m(A\cap J\cap I)\leq (1-\epsilon)m(J\cap I)\leq (1-\epsilon)m(I)$. Le mesurable $A\cap J$ vérifie donc les conditions précédentes, d'où $m(A\cap J)=0$. Finalement, $m(A)=m(\cup_n(A\cap (-n,n))\leq \sum_n m(A\cap (-n,n))=\sum_n 0=0$

Note : • La contraposée est intéressante : si A est un Lebesgue-mesurable tel que m(A)>0, alors pour tout $0<\delta<1$, il existe un intervalle I "de haute densité dans A", au sens où $\delta<\frac{m(A\cap I)}{m(I)}\leq 1$.

 \bullet La preuve précédente montre qu'on peut en plus supposer I ouvert des deux côtés et borné.

Théorème de Steinhaus

Soit m la mesure de Lebesgue et A un Lebesgue-mesurable tel que m(A)>0. On note $A-A=\{a-b,(a,b)\in A^2\}.$

Alors 0 appartient à l'intérieur de A - A.

Solution : Comme $0 < m(A) = \lim_n m(A \cap (-n, n))$, on dispose de N tel que $m(A \cap (-N, N)) > 0$. Posons $B = A \cap (-N, N)$. Si on prouve que 0 est intérieur à B - B, l'inclusion $B - B \subset A - A$ permet de conclure que 0 est intérieur à A. Dans la suite, on pourra donc supposer sans perte de généralité que $m(A) < \infty$.

Supposons par l'absurde que 0 n'est pas dans l'intérieur de A-A. Alors on dispose de $(x_n) \in (A-A)^{\mathbb{N}}$ telle que $x_n \to 0$.

Comme m(A)>0, d'après 4.10, on dispose, pour $0<\epsilon<1$, d'un intervalle ouvert borné I tel que $m(I\cap A)>(1-\epsilon)m(I)$.

On note également que $A + x_n \subset A^c$ et

$$\begin{split} m(I\cap(A+x_n)) &= m((I-x_n)\cap A) \quad \text{invariance par translation} \\ &\geq m(I\cap(I-x_n)\cap A) \\ &= m(I\cap A) - m((I\setminus(I-x_n))\cap A) \\ &\geq m(I\cap A) - m(I\setminus(I-x_n)) \\ &\geq (1-\epsilon)m(I) - m(I\setminus(I-x_n)) \end{split}$$

Pour n suffisamment grand, $m(I\setminus (I-x_n))=|x_n|$. Soit N tel que $|x_N|\leq m(I)\epsilon$. Comme A et $A+x_N$ sont disjoints, on obtient en sommant $m(I)>(2-3\epsilon)m(I)$. Ceci est absurde dès que $\epsilon<\frac{1}{3}$.

Soit m la mesure de Lebesgue. Construire un borélien A tel que $0 < m(A \cap I) < m(I)$ pour tout intervalle ouvert I non réduit à un point.

Solution : Démontrons d'abord le lemme suivant :

Soit I un intervalle de \mathbb{R} non réduit à un point. Alors pour tout $0 < \delta < m(I)$, I contient un fermé d'intérieur vide de mesure δ .

On s'inspire de la construction de l'ensemble de Cantor.

Etant donné un segment J et $0 < \alpha < 1$, on dit qu'on enlève le α -milieu de Jlorsqu'on considère $J \setminus (m - \frac{\alpha \ell(J)}{2}, m + \frac{\alpha \ell(J)}{2})$ où m dénote le milieu de J. (en clair on enlève le segment centré sur le milieu et de longueur α fois celle de J)

Soit $0 < \delta < m(I)$.

Soit $0 < \epsilon < \frac{m(I)}{\delta} - 1$, de sorte que $\delta(1 + \epsilon) < m(I)$. En partant d'un segment $K_0 \subset I$ de mesure $\delta(1+\epsilon)$, et d'une suite $(\alpha_i)_{i>1}$ de réels de (0,1), on obtient un compact K_1 en enlevant le α_1 -milieu de K_0 , puis K_2 en enlevant les α_2 -milieux des deux segments composant K_1 et ainsi de suite. Soit $K = \cap_n K_n$. On remarque que $m(K_n) = (1 - \alpha_n)m(K_{n-1})$, donc $m(K_n) = m(K_0) \prod_{k=1}^n (1 - \alpha_k)$. (K_n) étant décroissante,

$$m(K) = \lim_{n} (m(K_0) \prod_{k=1}^{n} (1 - \alpha_k)) = \delta(1 + \epsilon) \lim_{n} (\prod_{k=1}^{n} (1 - \alpha_k))$$

Considérons une suite $(a_n)_{n\geq 1}$ de réels > 0 telle que $\sum_{n=1}^{\infty} a_n = -\ln\left(\frac{1}{1+\epsilon}\right)$. Posons $\alpha_n = 1 - \exp(-a_n)$. Alors $\sum_{n \geq 1} \ln(1 - \alpha_n)$ converge vers $\frac{1}{1 + \epsilon}$. Avec cette suite (α_n) ,

$$m(K) = \delta(1+\epsilon) \cdot \frac{1}{\epsilon} = \delta$$

 $m(K)=\delta(1+\epsilon)\cdot\frac{1}{1+\epsilon}=\delta$ K est clairement fermé borné. On montre facilement par récurrence que K_n est union disjointe de 2^n segments de même longueur. La longueur de chaque segment de K_n est donc majorée par $\frac{m(K_0)}{2^n}$. Ceci prouve en particulier que Kest d'intérieur vide.

Soit $(I_i)_{i\geq 1}$ une énumération des intervalles ouverts à extrémités rationnelles. Le lemme précédent permet de construire $M_1, N_1, M_2, N_2, \ldots$ des fermés, d'intérieur vide, de mesure > 0 et deux à deux disjoints tels que $M_k, N_k \subset I_k$. Montrons que $M := \bigcup_k M_k$ est un borélien qui convient.

Soit I un intervalle de \mathbb{R} non réduit à un point. On dispose de k tel que $I_k \subset I$. $0 < m(M_k) = m(M_k \cap I_k) \le m(M \cap I_k)$

$$\leq m(M \cap I)$$

 $< m(M \cap I) + M(N_k)$
 $= m((M \cap I) \cup N_k)$ car disjoints
 $\leq m(I)$ car inclus dans I

Conclusion : $0 < m(M \cap I) < m(I)$.

Soit $N \subset [0,1]$ l'ensemble non-mesurable de Vitali. Montrer que si $A \subset N$ est un Lebesgue-mesurable, alors m(A) = 0

Solution : Rappelons que N contient pour chaque classe d'équivalence un unique représentant. Les éléments de A sont donc des représentants de classes d'équivalence disjointes. Par conséquent, les A+q sont disjoints lorsque $q\in\mathbb{Q}$. D'autre part, on a encore $\cup_{q\in\mathbb{Q}\cap[-1,1]}(A+q)\subset[-1,2]$. Les A+q étant disjoints et mesurables (cf 4.5) et l' invariance par translation de la mesure extérieure de Lebesgue (cf 4.5) impliquent $3\geq \sum_{q\in\mathbb{Q}\cap[-1,1]}m(A+q)=m(A)\cdot\sum_{q\in\mathbb{Q}\cap[-1,1]}1$, donc m(A)=0.

Exercice 4.14

Soit m la mesure de Lebesgue. Montrer que si A est un Lebesgue-mesurable de mesure >0, il existe une partie de A qui n'est pas mesurable.

Solution : Comme $m(A) = \lim_n m(A \cap [-n,n])$, on dispose de N tel que $m(A \cap [-N,N]) > 0$. Soit $A' = A \cap [-N,N]$. Sur A' on considère la relation d'équivalence $xRy \iff x-y \in \mathbb{Q}$. Soit B un ensemble qui contient, pour chaque classe γ un unique élément de γ . Supposons B mesurable. On remarque que $A' \subset \bigcup_{q \in \mathbb{Q} \cap [-2N,2N]} (B+q)$. Les B+q étant mesurables et disjoints, on obtient $0 < m(A') \le \sum_{q \in \mathbb{Q} \cap [-2N,2N]} m(B+q) = \sum_{q \in \mathbb{Q} \cap [-2N,2N]} m(B)$, donc m(B) > 0.

D'autre part, $\bigcup_{q\in\mathbb{Q}\cap[-2N,2N]}(B+q)\subset[-3N,3N]$, donc $\sum_{q\in\mathbb{Q}\cap[-2N,2N]}m(B)\leq 6N$, d'où m(B)=0. Absurde.

Soit X un ensemble, \mathcal{A} une algèbre sur X et ℓ une prémesure telle que $\ell(X) < \infty$. soit μ^* la mesure extérieure associée à (\mathcal{A}, ℓ) . Montrer qu'une partie A est mesurable si et seulement si $\mu^*(A) + \mu^*(A^c) = \ell(X)$

Solution:

 \Rightarrow Définition de μ^* -mesurable et concordance de μ^* avec ℓ (propriété spécifique aux algèbres).

 $\Leftarrow \text{ Soit } A \text{ tel que } \mu^*(A) + \mu^*(A^c) = \ell(X).$

Soit $E \subset X$. On suppose dans un premier temps E μ^* -mesurable. Il suffit de montrer que $\mu^*(A \cap E) + \mu^*(A^c \cap E) \leq \mu^*(E)$.

Comme E est mesurable, $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$

$$\mu^*(A^c) = \mu^*(A^c \cap E) + \mu^*(A^c \cap E^c)$$

et en sommant $\ell(X) = \mu^*(A) + \mu^*(A^c) = \mu^*(A \cap E) + \mu^*(A^c \cap E) + \mu^*(A \cap E^c) + \mu^*(A^c \cap E^c)$ $\geq \mu^*(E) + \mu^*(E^c)$ σ -sous-additivité de μ^* $\geq \mu^*(X)$ σ -sous-additivité de μ^* $= \ell(X)$ μ^* et ℓ coincident sur \mathcal{A}

Les inégalités sont donc des égalités, donc $\mu^*(A \cap E) + \mu^*(A^c \cap E) = \mu^*(E)$.

Revenons au cas général : soit $E \subset X$. Soit $\epsilon > 0$. On dispose de (B_i) une suite d'éléments de \mathcal{A} telle que $E \subset \cup_i B_i$ et $\sum_i \ell(B_i) \leq \mu^*(E) + \epsilon$. Les B_i étant dans \mathcal{A} , ils sont μ^* -mesurables (résultat prouvé dans le cours et spécifique aux algèbres), donc $\cup_i B_i$ est μ^* -mesurable, avec

$$\mu^*(\cup_i B_i) \le \sum_i \mu^*(B_i) = \sum_i \ell(B_i) \le \mu^*(E) + \epsilon$$

On a

$$\mu^*(A \cap E) + \mu^*(A^c \cap E) \le \mu^*(A \cap (\cup_i B_i)) + \mu^*(A^c \cap (\cup_i B_i))$$

$$= \mu^*(\cup_i B_i) \quad \text{car } \cup_i B_i \text{ mesurable}$$

$$\le \mu^*(E) + \epsilon$$

Ceci est vrai pour tout ϵ et on a l'inégalité recherchée.

- (1) Donner un exemple de mesure extérieure finie sur X qui n'est pas continue par union croissante et intersection décroissante.
- (2) Soit (X, \mathcal{A}, μ) un espace mesuré avec μ finie. Soit μ^* la mesure extérieure définie en 4.3. Montrer que μ^* est continue par union croissante.

Solution : (1) Sur $X=\mathbb{R}$, on définit $\mu^*(A)=0$ si A est dénombrable, $\mu^*(A)=1$ si A et A^c ne sont pas dénombrables et $\mu^*(A)=2$ si A n'est pas dénombrable et A^c est dénombrable.

On considère la suite croissante $A_n = [-n, n]$ et la suite décroissante $B_n = (n, \infty)$.

(2) Soit A_n une suite croissante. Montrons que $\mu^*(\cup_k A_k) = \lim_n \mu^*(A_n)$.

 \supseteq Pour tout $n, A_n \subset \cup_k A_k$, donc $\mu^*(A_n) \leq \mu^*(\cup_k A_k)$ et $\lim_n \mu^*(A_n) \leq \mu^*(\cup_k A_k)$.

 \subseteq Pour tout n, on dispose de $B_n \in \mathcal{A}$ tel que $A_n \subset B_n$ et $\mu^*(A_n) + \epsilon/2^n \ge \mu(B_n)$. Considérons $C_n = \bigcap_{i=n}^{\infty} B_i$. La croissance des A_i et la définition de B_i impliquent $A_n \subset C_n \subset B_n$, avec d'autre part (C_n) croissante et dans \mathcal{A} . L'exercice 4.3 montre que μ^* et μ coincident sur \mathcal{A} . D'où

$$\mu^*(A_n) \le \mu^*(C_n) = \mu(C_n) \le \mu(B_n) \le \mu^*(A_n) + \epsilon/2^n$$

Donc $(\mu(C_n))$ converge vers la même limite que $\mu^*(A_n)$. D'autre part $\cup_n A_n \subset \cup_n C_n$ et la continuité croissante de μ donne

$$\mu^*(\cup_n A_n) \le \mu^*(\cup_n C_n) = \lim_n \mu(C_n) = \lim_n \mu^*(A_n)$$

Exercice 4.17

Soit A un Lebesgue-mesurable et $B = \bigcup_{x \in A} [x-1, x+1]$. Montrer que B est un Lebesgue-mesurable.

Solution: Il suffit de remarquer

$$B = (\bigcup_{x \in A} (x - 1, x + 1)) \cup (\bigcup_{x \in A} \{x - 1\}) \cup (\bigcup_{x \in A} \{x + 1\})$$
$$= \underbrace{(\bigcup_{x \in A} (x - 1, x + 1))}_{\text{ouvert de } \mathbb{R}} \cup A - 1 \cup A + 1$$

B est l'union de trois Lebesgue-mesurables, donc Lebesgue-mesurable.

Soit m la mesure de Lebesgue et A un Lebesgue-mesurable de mesure nulle. Montrer qu'il existe $c \in \mathbb{R}$ tel que $A \cap (c + \mathbb{Q}) = \emptyset$.

Solution : On a $m(A - \mathbb{Q}) = 0$. En effet,

$$m(A - \mathbb{Q}) = m(\bigcup_{q \in \mathbb{Q}} (A - q)) \le \sum_{q \in \mathbb{Q}} m(A - q) = \sum_{q \in \mathbb{Q}} m(A) = 0$$

Alors n'importe quel $c \notin A - \mathbb{Q}$ convient.

Exercice 4.19

Soit m la mesure de Lebesgue et μ une mesure sur la tribu de Lebesgue. On suppose que μ est invariante par translation et qu'il existe B un Lebesgue-mesurable d'intérieur non vide tel que $\mu(B) < \infty$. Alors μ est proportionnelle à m.

Solution : • Comme μ est une mesure, $\mu\left(\left(0,1\right]\right)=n\cdot\mu\left(\left(0,\frac{1}{n}\right]\right)$ pour tout $n\geq 1.$ Donc $\mu\left(\left(0,\frac{1}{n}\right]\right)=\frac{\mu\left(\left(0,1\right]\right)}{n}.$

• Soient $a = \frac{p}{q}$ et $b = \frac{p'}{q'}$ des rationnels avec q, q' > 0 et a < b. Alors

$$\mu((a, b]) = \mu((0, b - a])$$

$$= \mu\left(\left(0, \frac{p'q - pq'}{qq'}\right]\right)$$

$$= (p'q - pq')\mu\left(\left(0, \frac{1}{qq'}\right]\right)$$

$$= (p'q - pq')\frac{\mu((0, 1])}{qq'}$$

$$= (b - a)\mu((0, 1])$$

• Soit $a \in \mathbb{R}$. Comme $\{a\} = \bigcap_n \left(a - \frac{1}{n}, a\right]$, on peut trouver N tel que une translation de $\left(a - \frac{1}{N}, a\right]$ est dans l'intérieur de B, ce qui donne $\mu\left(\left(a - \frac{1}{N}, a\right]\right) < \infty$, donc

$$\mu\left(\left\{a\right\}\right) = \lim_{n} \mu\left(\left(a - \frac{1}{n}, a\right]\right) = \lim_{n} \mu\left(\left(0, \frac{1}{n}\right]\right) = \mu\left(\left(0, 1\right]\right) \cdot 0 = 0$$

• Soient $a,b\in\mathbb{R}$. Soit $a_n\in\mathbb{Q}^{\mathbb{N}}$ une suite croissante telle que $a_n\to a$ et b_n

décroissante telle que $b_n \to b$. Alors

$$\mu((a,b]) = \mu((a,b))$$

$$= \mu(\cup_n(a_n,b_n))$$

$$= \lim_n \mu((a_n,b_n))$$

$$= \lim_n \mu((a_n,b_n])$$

$$= (b_n - a_n)\mu((0,1])$$

$$= (b - a)\mu((0,1])$$

- μ et $\mu((0,1])m$ coincident sur un π -système, par continuité croissante $\mu(\mathbb{R}) = \mu((0,1])m(\mathbb{R})$ et m est σ -finie. Donc μ et $\mu((0,1])m$ coincident sur la tribu engendrée par les (a,b], donc sur la tribu des boréliens.
- Soit A un Lebesgue-mesurable, $A=B\cup C$ où B est borélien et C un m-négligeable, de sorte que m(A)=m(B). Il existe D un borélien tel que $C\subset D$ et m(D)=0, donc $\mu(D)=0$. Alors

$$\mu(B) \le \mu(B \cup C) = \mu(A) \le \mu(B \cup D) \le \mu(B) + \mu(D) = \mu(B)$$

D'où $\mu(A) = \mu(B) = \mu((0,1])m(B) = \mu((0,1])m(A)$. $\mu((0,1])m$ et μ coincident sur la tribu de Lebesgue.

5. Fonctions mesurables

Exercice 5.1

Soit (X, \mathcal{A}) mesurable et $f: X \to \mathbb{R}$. On suppose que pour tout rationnel $f^{-1}((r, \infty)) \in \mathcal{A}$. Montrer que f est mesurable

Solution : Soit $\mathcal{C} = \{(r, \infty); r \in \mathbb{Q}\}$. Alors $f^{-1}(\mathcal{C}) \subset \mathcal{A}$, donc $\sigma(f^{-1}(\mathcal{C})) \subset \mathcal{A}$, d'où $f^{-1}(\sigma(\mathcal{C})) \subset \mathcal{A}$ ie $f^{-1}(\mathcal{B}(\mathbb{R})) \subset \mathcal{A}$. f est donc mesurable.

Exercice 5.2

Soit $f:(0,1)\to\mathbb{R}$ telle que pour tout $x\in(0,1)$, il existe $r_x>0$ et une fonction g_x Borel-mesurable telles que f et g_x coincident sur $(x-r_x,x+r_x)\cap(0,1)$. Montrer que f est Borel-mesurable.

Solution : Pour tout x, quitte à considérer un r_x plus petit on peut supposer $(x-r_x,x+r_x)\subset (0,1)$. Soit $a\in\mathbb{R}$. On note que

$$f^{-1}((a,\infty)) = \bigcup_{x \in (0,1)} (g_x^{-1}((a,\infty)) \cap (x - r_x, x + r_x))$$

Comme \mathbb{R} est séparable, il est à base dénombrable, donc fortement Lindelöf. De tout recouvrement ouvert on peut extraire un sous-recouvrement dénombrable : il existe $x_n \in (0,1), r_n > 0$ et g_n Borel-mesurable tel que

$$f^{-1}((a,\infty)) = \bigcup_{n>1} (g_n^{-1}((a,\infty)) \cap (x_n - r_n, x_n + r_n))$$

Donc f est Borel-mesurable.

Exercice 5.3

Soit f mesurable avec f > 0. Montrer que $\frac{1}{f}$ est mesurable.

Solution : Pour $a \in \mathbb{R}$, si $a \leq 0$, $(\frac{1}{f})^{-1}((a, \infty)) = X \in \mathcal{A}$. Si a > 0, $(\frac{1}{f})^{-1}((a, \infty)) = f^{-1}((-\infty, \frac{1}{a})) \in \mathcal{A}$ Donc $\frac{1}{f}$ mesurable.

Exercice 5.4

Soit f_n une suite de fonctions Borel-mesurables. Montrer que l'ensemble $A=\{x\mid \lim_n f_n(x) \text{ existe}\}$ est Borel-mesurable.

Solution : Dans le cas où on considère des limites finies,

$$A = \cap_{n \ge 1} \cup_{N \ge 1} \cap_{p \ge N} \cap_{q \ge N} \{x, |f_q(x) - f_p(x)| \le \frac{1}{n}\}$$

Dans le cas où la limite considérée est ∞ :

$$A = \cap_{n \ge 1} \cup_{N \ge 1} \cap_{p \ge N} \{x, f_p(x) \ge n\}$$

Dans tous les cas, on reste dans A.

Soit $f: \mathbb{R} \to \mathbb{R}$ Lebesgue-mesurable. Montrer qu'il existe g Borelmesurable tel que f = g presque partout.

Solution : Montrons le résultat pour les fonctions Lebesgue-mesurables de \mathbb{R} dans \mathbb{R}^+ . Pour $n \in \mathbb{N}$ et $k \in \mathbb{N}$, on pose $E_{n,k} = f^{-1}\left(\left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]\right)$.

On note que pour $n \in \mathbb{N}$, $\bigcup_k E_{n,k} = \mathbb{R}$ et on peut écrire pour chaque k, $E_{n,k} = B_{n,k} \cup N_{n,k}$ avec $B_{n,k}$ borélien (plus précisément un F_{δ}) et $N_{n,k}$ Lebesguenégligeable, l'union étant disjointe.

On définit alors $g_n(x) = \begin{cases} \frac{k}{2^n} & \text{si } x \in B_{n,k} \\ 0 & \text{si } x \in N_{n,k} \end{cases}$ Montrons que g_n est Borel-mesurable. Soit $a \in \mathbb{R}$.

Alors $\{x \in \mathbb{R}, g_n(x) > a\} = \bigcup_{k \in \mathbb{N}} \{x \in E_{n,k}, g_n(x) > a\}$

$$= \cup_{k \in \mathbb{N}} \left(\left\{ x \in B_{n,k}, g_n(x) > a \right\} \cup \left\{ x \in N_{n,k}, g_n(x) > a \right\} \right)$$

$$= \cup_{k \in \mathbb{N}} \underbrace{\left\{ \underbrace{x \in B_{n,k}, \frac{k}{2^n} > a}_{= \begin{cases} B_{n,k} & \text{si } \frac{k}{2^n} > a \\ \emptyset & \text{sinon} \end{cases}} \quad \cup \quad \underbrace{\left\{ \underbrace{x \in N_{n,k}, 0 > a}_{= \begin{cases} N_{n,k} & \text{si } 0 > a \\ \emptyset & \text{sinon} \end{cases}} \right\}$$

Ainsi, si a < 0, comme g_n est à valeurs ≥ 0 , $\{x \in \mathbb{R}, g_n(x) > a\} = \mathbb{R}$ Si $a \geq 0$,

$$\{x \in \mathbb{R}, g_n(x) > a\} = \bigcup_{k \in \mathbb{N}} \begin{cases} B_{n,k} & \text{si } \frac{k}{2^n} > a \\ \emptyset & \text{sinon} \end{cases}$$

qui est bien borélien. Donc g_n est Borel-mesurable.

Posons $N = \bigcup N_{n,k}$. N est de mesure nulle, et sur N^c , $g_n \xrightarrow{CVS} f$.

La fonction $\limsup g_n$ est Borel-mesurable et coincide avec f sur N^c , donc presque partout.

<u>Note</u>: Pour des fonctions $f: \mathbb{R} \to \overline{\mathbb{R}}$, en posant $E_{n,-1} = f^{-1}(\infty)$, et

$$g_n(x) = \begin{cases} \frac{k}{2^n} & \text{si } x \in B_{n,k} \\ 0 & \text{si } x \in N_{n,k} \cup f^{-1}(\infty) \end{cases}$$
 on a le résultat comme précédemment.

Soit $f: \mathbb{R} \to \mathbb{R}$ Lebesgue-mesurable. On écrit $f = f^+ - f^-$ avec f^+ et f^- Lebesgue-mesurables et positives. On dispose alors de g^+ et g^- Borel-mesurables telles que $f^+ = g^+$ et $f^- = g^-$ presque-sûrement, donc $f = g^+ - g^-$ presquesûrement.

Exercice 5.6

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable. Montrer que f et f' sont Borel-mesurables.

Solution : f étant dérivable, elle est continue, donc Borel-mesurable. On remarque que la suite de fonctions Borel-mesurables $g_n: x \to n\left(f\left(x+\frac{1}{n}\right)-f(x)\right)$ converge simplement vers f'. Donc f' est Borel-mesurable.

Exercice 5.8	
Exercice 5.9	
Exercice 5.10	
Exercice 5.11	

6. Intégrale des fonctions mesurables positives

Exercice 6.1

Soit $f:(X,\mathcal{A},\mu)\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}}))$ mesurable positive. Montrer que $\int fd\mu=0$ si et seulement si f est nulle presque partout.

Solution : \Longrightarrow Soit $E = f^{-1}(\{0\}) \in \mathcal{A}$. On note que $E^c = \bigcup_n f^{-1}(\left[\frac{1}{n}, \infty\right])$. Si par l'absurde $\mu(E^c) > 0$, alors il existe p tel que $A_p = f^{-1}(\left[\frac{1}{p}, \infty\right])$ est de mesure > 0. Comme $f \ge f\chi_{A_p} \ge \frac{1}{p}\chi_{A_p}$, on a

$$\int f d\mu \ge \frac{\mu(A_p)}{p} > 0$$

Absurde.

 \sqsubseteq On suppose f nulle presque partout, ie $\mu(E^c) = 0$. Soit φ simple ≥ 0 telle que $\varphi \leq f$. Alors φ est nulle presque partout.

On écrit φ sous forme canonique $\varphi = \sum_{i=1}^n a_i \chi_{A_i}$. Si a_i est $\neq 0$, on a pour $x \in E$, $\chi_{A_i}(x) = 0$, donc $x \in A_i^c$, d'où $E \subset A_i^c$, $A_i \subset E^c$ et $\mu(A_i) = 0$.

$$\int \varphi d\mu = \int \left(\sum_{\substack{i=1\\a_i \neq 0}}^n a_i \chi_{A_i}\right) d\mu = \sum_{i=1}^n 0 = 0$$

Donc $\int f d\mu = 0$.

Exercice 6.2

Soit (X, \mathcal{A}, μ) un espace mesuré avec $\mu(X) < \infty$. Soient $f_n : (X, \mathcal{A}, \mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mesurables positives qui convergent uniformément vers f. Montrer que f est mesurable et $\int f d\mu = \lim_n \int f_n d\mu$.

Solution : f est limite simple de mesurables, donc mesurable. Soit $\epsilon > 0$. Soit N tel que pour tout $n \ge N$ et $x \in X$, $|f_n(x) - f(x)| \le \frac{\epsilon}{\mu(E)}$. Donc $f(x) \le f_n(x) + \frac{\epsilon}{\mu(E)}$, en intégrant $\int f d\mu \le \int f_n d\mu + \epsilon$ et en passant à la limite $\int f d\mu \le \lim_n \int f_n d\mu + \epsilon$. Ceci étant vrai pour tout ϵ , $\int f d\mu \le \lim_n \int f_n d\mu$. On fait de même avec $f_n(x) \le f(x) + \frac{\epsilon}{\mu(E)}$.

Soit $f:(X,\mathcal{A},\mu)\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}}))$ mesurable positive telle que $\int fd\mu<\infty$. Montrer que f est finie presque partout.

Solution : Soit $E = f^{-1}(\{\infty\})$. On a $E = \bigcap_n f^{-1}([n,\infty]) = \bigcap_n \{f \ge n\}$. De l'inégalité $n\chi_{\{f\geq n\}} \leq f$ on tire

$$\frac{1}{n} \int f d\mu \ge \mu(\{f \ge n\}) \ge \mu(E)$$

En passant à la limite, $\mu(E) = 0$.

Exercice 6.4

Soit $f:(X,\mathcal{A},\mu)\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}}))$ mesurable positive telle que $\int fd\mu<\infty$. Montrer que $\{f > 0\}$ est σ -fini.

Solution : $\{f > 0\} = \bigcup_n \{f \ge \frac{1}{n}\}$ et $\frac{1}{n}\chi_{\{f \ge \frac{1}{n}\}} \le f$, donc

$$\mu(\{f\geq \frac{1}{n}\})\leq n\int fd\mu<\infty$$

Exercice 6.5

Soit $f:(X,\mathcal{A},\mu)\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}}))$ mesurable positive telle que $\int fd\mu<\infty$. Montrer que pour tout $\epsilon > 0$, il existe $E \in \mathcal{A}$ tel que $\mu(E) < \infty$ et $\int f d\mu \leq \int_E f d\mu + \epsilon.$

Solution : Pour $\epsilon > 0$, on dispose de φ simple positive telle $0 \le \varphi \le f$ et $\int \varphi d\mu \geq \int f d\mu - \epsilon$. En écrivant φ sous sa forme canonique $\sum_{i=1}^n a_i \chi_{A_i}$ et en supposant sans perte de généralité que $a_1\chi_{A_1}=0\cdot\chi_{\{\varphi=0\}}$, on pose $A=\cup_{i=2}^nA_i$. Comme $\int \varphi d\mu = \sum_{i=2}^n a_i \mu(A_i) < \infty$ et que les $(a_i)_{i\geq 2}$ sont > 0, on a $\mu(A_i) < \infty$ pour $i \geq 2$, et donc $\mu(A) < \infty$.

Sur $A^c = A_1$, φ est nulle, donc $\int \varphi d\mu = \int_A \varphi d\mu$. D'où

$$\int_A f \ge \int_A \varphi d\mu = \int \varphi d\mu \ge \int f d\mu - \epsilon$$

Exercice 6.6

Soit $f_n:(X,\mathcal{A},\mu)\to(\overline{\mathbb{R}},\mathcal{B}(\overline{\mathbb{R}}))$ mesurables positives qui convergent simplement vers f, avec $\int f d\mu = \lim_n \int f_n d\mu < \infty$. Pour tout $E \in \mathcal{A}$, montrer que $\int_E f d\mu = \lim_n \int_E f_n d\mu$.

Solution : Soit $E \in \mathcal{A}$. La suite des $(f_n \chi_E)$ converge simplement vers $f \chi_E$, et le lemme de Fatou donne $\int_E f d\mu = \int (\liminf f_n \chi_E) d\mu \le \liminf (\int_E f_n)$. Montrons que $\limsup \left(\int_E f_n\right) \le \int_E f d\mu$ et on aura terminé. L'inégalité précédente appliquée à E^c donne

$$\int_{E^c} f d\mu \le \liminf \left(\int_{E^c} f_n d\mu \right)$$

Comme $\int f d\mu = \lim_n \int f_n d\mu < \infty$, les $(\int f_n d\mu)$ sont bornées et il en est de même des $\left(\int_E f_n d\mu\right)$. Donc $\int_{E^c} f_n d\mu = \int f_n d\mu - \int_E f_n d\mu$ et

$$\lim\inf\left(\int_{E^c}f_nd\mu\right)=\lim\inf\left(\int f_nd\mu-\int_E f_nd\mu\right)$$

Démontrons le lemme suivant :

Soient $(a_n), (b_n)$ des suites de réels avec (b_n) majorée. Alors $\lim\inf(a_n + b_n) \le \lim\inf a_n + \lim\sup b_n$

Pour $n \ge 1$, et $k \ge n$, $\inf_{k \ge n} (a_k + b_k) \le a_k + b_k \le a_k + \sup_{k \ge n} b_k$ Comme (b_n) est majorée, $\sup_{k>n} b_k$ est un réel, donc

$$\inf_{k \ge n} (a_k + b_k) - \sup_{k \ge n} b_k \le a_k$$

Donc $\inf_{k\geq n}(a_k+b_k)-\sup_{k\geq n}b_k\leq \inf_{k\geq n}a_k$ et on a l'inégalité voulue.

Dans notre cas, toutes les quantités sont bornées, donc

$$\int_{E^c} f d\mu \le \liminf \left(\int_{E^c} f_n d\mu \right) \le \limsup \left(\int f_n d\mu \right) + \liminf \left(-\int_E f_n d\mu \right)$$
$$= \int f d\mu - \limsup \left(\int_E f_n d\mu \right)$$

D'où

$$\limsup \left(\int_{E} f_n d\mu \right) \le \int_{E} f d\mu$$

Conclusion:

$$\lim \sup \left(\int_{E} f_{n} d\mu \right) = \lim \inf \left(\int_{E} f_{n} d\mu \right) = \int_{E} f d\mu$$

Soit (X, \mathcal{A}) mesurable, D une partie dénombrable de X, ν la mesure de comptage sur D et $f:(X, \mathcal{A}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mesurable positive. Montrer que $\int f d\nu = \sum_{t \in D} f(t)$

Solution : Pour $A \in \mathcal{A}$ et $f = \chi_A$, on a $\int f d\nu = \nu(A) = \sum_{t \in D} 1_A(t)$. Pour $f = \sum_{i=1}^p a_i \chi_{A_i}$ simple positive, on a par linéarité

$$\int f d\nu = \sum_{i=1}^{p} a_i \int \chi_{A_i} d\nu$$

$$= \sum_{i=1}^{p} a_i \sum_{t \in D} \chi_{A_i}(t)$$

$$= \sum_{t \in D} \sum_{i=1}^{p} a_i \chi_{A_i}(t)$$

$$= \sum_{t \in D} f(t)$$

Soit f mesurable positive. On dispose de φ_n une suite de fonction étagées positives qui converge en croissant vers f. Alors

$$\int f d\nu = \lim_{n} \int \varphi_{n} d\nu$$

$$= \lim_{n} \sum_{k=1}^{\infty} \varphi_{n}(t_{k}) \quad \text{où } D = \{t_{i}, i \neq 1\}$$

Il reste à montrer que $\lim_{n} \sum_{k=1}^{\infty} \varphi_n(t_k) = \sum_{k=1}^{\infty} f(t_k)$.

$$\leq$$
 Soit $N \geq 1$ et $n \geq 1$, $\sum_{k=1}^{N} \varphi_n(t_k) \leq \sum_{k=1}^{N} f(t_k) \leq \sum_{k=1}^{\infty} f(t_k)$. Ceci étant vrai

pour tout N, on a $\sum_{k=1}^{\infty} \varphi_n(t_k) \leq \sum_{k=1}^{\infty} f(t_k)$. Ceci étant vrai pour tout n, on a le résultat

Soit
$$M \ge 1$$
 et $N \ge 1$. On a $\sum_{k=1}^{M} \varphi_N(t_k) \le \sum_{k=1}^{\infty} \varphi_N(t_k) \le \lim_{n} \sum_{k=1}^{\infty} \varphi_n(t_k)$.

Avec
$$N \to \infty$$
, $\sum_{k=1}^{M} f(t_k) \le \lim_{n} \sum_{k=1}^{\infty} \varphi_n(t_k)$. Avec $M \to \infty$, $\sum_{k=1}^{\infty} f(t_k) \le \lim_{n} \sum_{k=1}^{\infty} \varphi_n(t_k)$.

7. Intégration des fonctions intégrables

Exercice 7.1

Soit $f \in L(X, \mathcal{A}, \mu)$ et a > 0. Montrer que $\{|f| \ge a\}$ est de mesure finie. Montrer que $\{f \ne 0\}$ est σ -fini.

Solution : De l'inégalité entre fonctions mesurables positives $a\chi_{\{|f|\geq a\}}\leq |f|$ on tire $a\mu(\{|f|\geq a\})\leq \int |f|d\mu<\infty$. D'autre part, $\{f\neq 0\}=\{|f|\neq 0\}=\cup_n\{|f|\geq \frac{1}{n}\}$, donc $\{f\neq 0\}$ est σ -fini.

Exercice 7.2

Soit $f:(X, \mathcal{A}, \mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mesurable et nulle presque-partout. Montrer que $f \in L(X, \mathcal{A}, \mu)$ et $\int f d\mu = 0$.

Solution : f étant nulle presque-partout, |f| l'est aussi, et les résultats du chapitre précédent donnent $\int |f| d\mu = 0$, donc $f \in L(X, \mathcal{A}, \mu)$. De plus, $0 \le f^+ \le |f|$ et $0 \le f^- \le |f|$, donc $\int f^+ d\mu = \int f^- d\mu = 0$, donc $\int f d\mu = 0$.

Exercice 7.3

Soit $f \in L(X, \mathcal{A}, \mu)$ et $g : (X, \mathcal{A}, \mu) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ mesurable tel que f = g presque-partout. Montrer que $g \in L(X, \mathcal{A}, \mu)$ et $\int g d\mu = \int f d\mu$.

Solution : Posons $E = \{f = g\} \subset \{|f| = |g|\}$. Alors

$$\int |g|d\mu = \int_{E} |g|d\mu + \underbrace{\int_{E^{c}} |g|d\mu}_{=0 \text{ car } \mu(E^{c})=0}$$

$$= \int_{E} |f|d\mu$$

$$= \int_{E} |f|d\mu + \int_{E^{c}} |f|d\mu$$

$$= \int |f|d\mu$$

$$= \int |f|d\mu$$

Donc $g \in L(X, \mathcal{A}, \mu)$. D'autre part, f - g est nulle presque partout, donc $\int f - g d\mu = 0$ (exercice précédent), d'où (tout est intégrable)

$$\int f d\mu = \int g d\mu$$

On considère l'espace mesurable $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$ muni la mesure de comptage μ . Montrer que f est dans $L(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ si et seulement si $\sum_n f(n)$ est absolument convergente. Montrer que dans ce cas $\int f d\mu = \sum_{n=1}^{\infty} f(n)$.

Solution : Dans le cadre des fonctions mesurables positives, $\int |f| d\mu = \sum_{n=1}^{\infty} |f(n)|$, ce qui prouve l'équivalence recherchée.

D'autre part
$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu$$
$$= \sum_{n=1}^{\infty} f^+(n) - \sum_{n=1}^{\infty} f^-(n)$$
$$= \sum_{n=1}^{\infty} \left(f^+(n) - f^-(n) \right)$$
$$= \sum_{n=1}^{\infty} f(n)$$

Exercice 7.5

Soit (f_n) une suite de $L(X, \mathcal{A}, \mu)$ qui converge uniformément vers une fonction f, avec $\mu(X) < \infty$. Montrer que $\int f d\mu = \lim_n \int f_n d\mu$

Solution : Soit $\epsilon > 0$. On dispose de $N \geq 1$ tel que

$$n \ge N \implies \forall x, |f(x)| \le \frac{\epsilon}{\mu(X)} + |f_n(x)|$$

Donc $\int |f| d\mu \le \epsilon + \int |f_N| d\mu < \infty$ et f est intégrable.

En écrivant

$$f_n(x) - \frac{\epsilon}{\mu(X)} \le f(x) \le f_n(x) + \frac{\epsilon}{\mu(X)}$$

on obtient

$$\left| \int f d\mu - \int f_n d\mu \right| \le \epsilon$$

Donc $\int f_n d\mu$ converge vers $\int f d\mu$.

Exercice 7.6

Soit (f_n) une suite de $L(X, \mathcal{A}, \mu)$ telle que $\sum_{n=1}^{\infty} \int |f_n| d\mu < \infty$. Montrer que la série $\sum_n f_n(x)$ converge presque-partout vers une fonction f de $L(X, \mathcal{A}, \mu)$.

Solution : Comme $\int \sum_n |f_n(x)| d\mu(x) = \sum_n \int |f_n(x)| d\mu(x) < \infty$, la fonction $x \to \sum_n |f_n(x)|$ est finie presque-partout, donc la fonction $x \to \sum_n f_n(x)$ est définie presque-partout.

Posons $g_n: x \mapsto \sum_{k=1}^n f_k(x)$. Les g_n convergent presque-partout vers $\limsup g_n$ qui est mesurable.

Pour tout $n, |g_n| \leq \sum_{k=1}^{\infty} |f_k(x)|$, avec $\int \sum_{k=1}^{\infty} |f_k(x)| d\mu(x) < \infty$. Le théorème de convergence dominée donne $\limsup g_n \in L(X, \mathcal{A}, \mu)$ et

$$\int g_n d\mu = \sum_{k=1}^n \int f_k d\mu \to \int \limsup g_n d\mu$$

<u>Note</u>: Presque-partout on a $\limsup g_n(x) = \sum_{n=1}^{\infty} f_n(x)$.

Exercice 7.7

Soit (f_n) une suite de $L(X, \mathcal{A}, \mu)$ qui converge simplement vers une fonction f. Montrer que si $\lim_n \int |f - f_n| d\mu = 0$, alors $\int |f_n| d\mu \to 0$ $\int |f| d\mu$.

Solution : L'inégalité $|f| \leq |f - f_n| + |f_n|$ implique que $f \in L(X, \mathcal{A}, \mu)$. $\left| \int |f| d\mu - \int |f_n| d\mu \right| = \left| \int |f| - |f_n| d\mu \right| \quad \text{car } f \text{ et } f_n \text{ intégrables}$ $\leq \int ||f| - |f_n|| d\mu$ $\leq \int |f - f_n| d\mu$

Exercice 7.8

Lien entre intégrale de Lebesgue et intégrale de Riemann

(1) On considère $([a, b], \mathcal{B}([a, b]))$ muni de sa mesure de Lebesgue λ et une fonction $f:[a,b]\to\mathbb{R}$ continue.

Montrer que $f \in L([a,b],\mathcal{B}([a,b]),\lambda)$ et $\int f d\lambda = \int_a^b f(x) dx$. (2) On considère $([0,\infty),\mathcal{B}([0,\infty)))$ muni de sa mesure de Lebesgue λ et une fonction $f:[0,\infty)\to\mathbb{R}$ continue et positive. Montrer que $\int f d\lambda = \int_0^\infty f(x) dx.$

Solution : (1) Soit ϕ positive en escalier et $a=a_0<\ldots< a_n=b$ une subdivision adaptée de sorte que $\phi=\sum_{i=0}^{n-1}\phi(a_i)\chi_{[a_i,a_{i+1})}$. Alors

$$\int \phi d\lambda = \sum_{i=0}^{n-1} \phi(a_i)(a_{i+1} - a_i) = \int_a^b \phi(x)dx$$

Si ϕ est en escalier et de signe quelconque, on écrit $\phi = \phi^+ - \phi^-$ avec ϕ^+, ϕ^- positives et en escalier. Les intégrales de ces fonctions sont clairement finies, donc $\phi \in L([a,b],\mathcal{B}([a,b]),\lambda)$ et

$$\int \phi d\lambda = \int \phi^+ d\lambda - \int \phi^- d\lambda = \int_a^b \phi^+(x) dx - \int_a^b \phi^-(x) dx = \int_a^b \phi(x) dx$$

Considérons $f:[a,b]\to\mathbb{R}$ continue. f est mesurable et limite uniforme d'une suite de fonctions en escalier ϕ_n . Comme $\lambda([a,b])<\infty$,

$$\int f d\lambda = \lim_{n} \int \phi_{n} d\lambda = \lim_{n} \int_{a}^{b} \phi_{n}(x) dx = \int_{a}^{b} f(x) dx$$

(2)