AAAI 2023 Optimization with Constraint Learning Lab Part III: Solution Quality

Orit Davidovich¹

¹IBM Research Lab, Haifa

AAAI 2023

Overview

- Decision Optimization
- Solution Quality
- O Pol and PoCS
- 4 Use Case

Mathematical Decision Optimization (DO)

Mathematical Decision-Optimization (DO) Model $M(\mathbf{w})$ (*):

$$\begin{aligned} \textbf{x}^*(\textbf{w}) \in \text{arg min}_{\textbf{x} \in \mathbb{R}^n, \textbf{y} \in \mathbb{R}^m} & f(\textbf{x}, \textbf{y}, \textbf{w}) \\ \text{s.t.} & \textbf{g}(\textbf{x}, \textbf{y}, \textbf{w}) \leq \textbf{0} \\ & \textbf{y} = \textbf{h}(\textbf{x}, \textbf{w}) \\ & \textbf{x} \in \Omega(\textbf{w}) \end{aligned}$$

 $\mathbf{w} \in \mathbb{R}^k$ – fixed uncontrollable. $\Omega(\mathbf{w})$ – polytope (possibly unbounded).

(*) Maragno*, D., Wiberg*, H., Bertsimas, D., Birbil, S. I., Hertog, D. d., and Fajemisin, A. (2021). *Mixed-Integer Optimization with Constraint Learning*.

Mathematical Decision Optimization (DO)

Learned DO Model $\widehat{M}(\mathbf{w})$:

$$\begin{array}{ccc} \widehat{\mathbf{x}}^*(\mathbf{w}) \in \arg\min_{\mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^m} & \widehat{\mathbf{f}}(\mathbf{x}, \mathbf{y}, \mathbf{w}) & \longleftarrow \text{learn} \\ \text{s.t.} & \mathbf{g}(\mathbf{x}, \mathbf{y}, \mathbf{w}) \leq \mathbf{0} \\ & \mathbf{y} = \widehat{\mathbf{h}}(\mathbf{x}, \mathbf{w}) \\ & \mathbf{x} \in \Omega(\mathbf{w}) \end{array} \\ \leftarrow \text{learn}$$

 $\mathbf{w} \in \mathbb{R}^k$ – fixed uncontrollable. $\Omega(\mathbf{w})$ – polytope (possibly unbounded).

- UN World Food Programme (INFORMS Edelman Award 2021): <u>Food palatibility</u> prediction in food basket cost minimization.
- Louisville Metropolitan Sewer District and Tetra Tech (INFORMS Edelman Award 2019 Finalist): Rainfall prediction in wastewater storage maximization.

3/9

Solution Quality

What We Want:

$$\begin{split} \widehat{x}^* &= \widehat{x}^*(w), \quad \widehat{y}^* = h(\widehat{x}^*, w) \\ x^* &= x^*(w), \quad y^* = h(x^*, w) \end{split}$$

(a) close to optimum

$$f(\widehat{\mathbf{x}}^*, \widehat{\mathbf{y}}^*, \mathbf{w}) - f(\mathbf{x}^*, \mathbf{y}^*, \mathbf{w}) \leq \epsilon$$

(b) feasible

$$g(\widehat{x}^*,\widehat{y}^*,w) \leq 0$$

Solution Quality

What We Can:

known policy:
$$\mathbf{x}_0 = \mathbf{x}_0(\mathbf{w}), \mathbf{y}_0 = \mathbf{h}(\mathbf{x}_0, \mathbf{w})$$

(a) improve upon policy

$$\Pr[f(\mathbf{x}_0, \mathbf{y}_0, \mathbf{w}) - f(\widehat{\mathbf{x}}^*, \widehat{\mathbf{h}}(\widehat{\mathbf{x}}^*, \mathbf{w}), \mathbf{w}) \ge \epsilon] \ge (1 - \delta_1)$$

(b) likely feasible

$$\Pr[\mathbf{g}(\widehat{\mathbf{x}}^*, \widehat{\mathbf{h}}(\widehat{\mathbf{x}}^*, \mathbf{w}), \mathbf{w}) \leq \mathbf{0}] \geq (1 - \delta_2)$$

Davidovich (IBM)

Solution Quality

What We Can:

known policy:
$$\mathbf{x}_0 = \mathbf{x}_0(\mathbf{w}), \mathbf{y}_0 = \mathbf{h}(\mathbf{x}_0, \mathbf{w})$$

(a) improve upon policy: Probability of Improvement (Pol)

$$\Pr[f(\mathbf{x}_0, \mathbf{y}_0, \mathbf{w}) - f(\widehat{\mathbf{x}}^*, \widehat{\mathbf{h}}(\widehat{\mathbf{x}}^*, \mathbf{w}), \mathbf{w}) \ge \epsilon] \ge (1 - \delta_1)$$

(b) likely feasible: Probability of Constraint Satisfaction (PoCS)

$$\mathsf{Pr}[\mathbf{g}(\widehat{\mathbf{x}}^*,\widehat{\mathbf{h}}(\widehat{\mathbf{x}}^*,\mathbf{w}),\mathbf{w}) \leq \mathbf{0}] \geq (1-\delta_2)$$

Davidovich (IBM)

Pol and PoCS

Gaussian Process: *f* as a "random variable".

$$f|D \sim GP$$

 \implies Value @ point $(\mathbf{x}, \mathbf{y}, \mathbf{w})$

$$f(\mathbf{x}, \mathbf{y}, \mathbf{w}) \sim \mathcal{N}(\mu_{GP}(\mathbf{x}, \mathbf{y}, \mathbf{w}), \sigma_{GP}^2(\mathbf{x}, \mathbf{y}, \mathbf{w}))$$

 \implies Value @ 2 points $(\mathbf{x}', \mathbf{y}', \mathbf{w}'), (\mathbf{x}'', \mathbf{y}'', \mathbf{w}'')$

$$(f(\mathbf{x}',\mathbf{y}',\mathbf{w}'),f(\mathbf{x}'',\mathbf{y}'',\mathbf{w}''))\sim \mathcal{N}(\mu_{GP},\mathbf{\Sigma}_{GP})$$

⇒ Pol and PoCS estimation

Davidovich (IBM)

Use Case

World Food Program (WFP) food basket optimization problem.(*)

```
Model WFP (**):
```

```
optimal basket \widehat{\mathbf{x}}^* \in \arg\min_{\mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R}} \mathbf{c}^T \mathbf{x} minimize cost s.t. V \mathbf{x} \geq \mathbf{r} nutritional reqs y \geq t palatibility constraint y = \widehat{h}(\mathbf{x}) learned palatibility \mathbf{x} \in \Omega non-negativity
```

n = 25 - number of foods in basket.

 $V_{i,j}$ - value of nutrient i in food j; \mathbf{r}_i - nutrient i requirement.

(*) Peters et al. (2021). The Nutritious Supply Chain: Optimizing Humanitarian Food Assistance.

(**) Maragno, Wiberg (2021). OptiCL: Mixed-integer Optimization with Constraint Learning.

◆ロト ◆問ト ◆恵ト ◆恵ト ・恵 ・ 夕久(*)

7/9

Davidovich (IBM) Part III: Solution Quality AAAI 2023

Use Case

Comparing Learned DO Models

Model ($t=0.5$)	Objective	Platibility	PoCS
OptiCL baseline	3212.5	0.01	0
OptiCL w/ Trust Region	3431	0.55	0.99

Use Case

Objective values (Obj), ground truth palatability scores (GT), and PoCS of solutions $\hat{\mathbf{x}}^*$ for palatability thresholds t=0.6,0.7,0.75.

t	OptiCL x*		OptiCL + TR $\hat{\mathbf{x}}^*$			
	Obj	GT	PoCS	Obj	GT	PoCS
0.6	3227	0.03	0.0	3446	0.55	0.11
0.7 (I)	3380	0.61	0.0	3531	0.67	0.25
0.7 (II)	3398	0.64	0.0	3542	0.7	0.99
0.75	3492	0.71	0.37	3678	0.65	0.0

	Accuracy	FP	FN
$PoCS \ge 0.8$	93.9%	0.36%	5.71%
$PoCS \ge 0.5$	94.2%	2.62%	3.21%