Intro

Conte

Physica picture

Markov process

Monte Carlo

Outro

Jet evolution in a dense QCD medium

Linnéa Gräns Samuelsson

Internship at CEA Saclay Supervisors: Edmond Iancu and Gregory Soyez

June 30, 2017

Physic: picture

Markov process

Monte Carl simulation

_

the medium: a quark gluon plasma created in a heavy ion collision

 the jet: a collimated spray of particles generated via successive branchings of a parton with high energy produced in the collision

Structure of presentation:

- Context
- Physical picture
- Markov process
- Monte Carlo simulation

Intr

Context

Physic

Markov

Monte Carl simulation

Outr

Heavy ion collisions, quark gluon plasma and jets, what we observe:

Di-jet asymmetry. Missing energy found among soft hadrons propagating at large angles \Rightarrow different from in vacuum jet evolution.

Intr

Context

Physic

Markov

Monte Carlo

Outr

Heavy ion collisions, quark gluon plasma and jets, the stereotypical picture:

Implicit assumption: small energy fluctuations.

Intr

Context

Physica picture

Markov

Monte Carlo simulation

Outro

We need a model that answers:

- How can the lost energy end up at such large angles?
- How large are the energy fluctuations?

Outr

Physical picture

In a medium, scattering triggers emissions:

- Destroys quantum coherence
- Gives broadening of transverse momentum

Formation time: $\lambda_{\perp} < \Delta x_{\perp} \Rightarrow \frac{1}{k_{\perp}} < \frac{k_{\perp}}{\omega} \Delta t_f$.

Note: we have mostly gluon emissions so we consider only these.

Intro

Conte

Physical picture

Markov

Monte Carlo simulation

Outr

 $\Delta t_f \gg$ mean free path \gg Debye length \Rightarrow multiple scatterings lead to one emission and scattering centers are independent \Rightarrow random walk $\Rightarrow \langle k_\perp^2 \rangle \sim \hat{q} \Delta t$.

All together: $\Delta t_f \sim \sqrt{\frac{\omega}{\hat{q}}}$ and $\theta_f = \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}$ \Rightarrow we favour soft gluons at large angles!

Physical picture

Markov

Monte Carl

If now $\omega=$ energy of parent: $\Delta P(z,\omega,\Delta t)\sim \alpha_s\Delta t/[\Delta t_f(z\omega)]$

- For $z\omega\sim\omega_{br}$, $\Delta P(z,\omega)\sim\mathcal{O}(1)$ at $\Delta t=L$
- Next, $P(z, \omega_{br}) \sim \mathcal{O}(1)$ for $\Delta t < L$, even for $z \sim 1/2$

Intr

Conte

Physical picture

Markov

Monte Carl simulation

Outro

- A number of $\mathcal{O}(1)$ of primary gluons with $\omega \sim \omega_{br}$ emitted from leading particle.
- They then branch democratically, transporting away all energy.
- Hence both energy loss and its fluctuations on the scale ω_{br} .
- Time between branchings > formation time ⇒ branchings are independent ⇒ Markov process

Markov process

Branching rate from BDMPS-Z spectrum:

$$\frac{\mathrm{d}^2 P(z,\tau)}{\mathrm{d}z \mathrm{d}\tau} = \frac{K(z)}{2\sqrt{x}} \equiv K(x,z).$$

- $\tau =$ time scaled by the time needed for the leading particle to branch democratically.
- Splitting kernel: $K(z) = \frac{[1-z(1-z)]^{5/2}}{[z(1-z)]^{3/2}}.$ Simplified: $K(z) = \frac{1}{[z(1-z)]^{3/2}}.$

Get equation for the one point function $D(x,\tau) \equiv x n(x,\tau)$

$$\frac{\partial}{\partial t} \longrightarrow \boxed{D(t)} \qquad = \qquad \boxed{D(t)} \stackrel{\frac{x}{z}}{\underset{z}{\overset{}\smile}} x \qquad - \qquad \boxed{D(t)} \stackrel{x}{\underset{z}{\overset{}\smile}} zx$$

and similarly (but longer) for the two-point function

$$D^{(2)}(x, x'\tau) \equiv xx'n^{(2)}(x, x', \tau).$$

Intr

Conte

Physica

Markov process

Monte Carl simulation

Outr

Simple kernel:

- Energy fraction left in gluon cascade: $\int_0^1 \mathrm{d}x \, D(x,\tau) = e^{-\pi \tau^2} \Rightarrow \text{decreasing in time.}$
- ullet Formally: condensate at x=0. Physically: thermalization.
- At small τ , loss $\simeq \pi \omega_{br}$.
- $D^{(2)}(x, x'\tau)$ used to find fluctuations. To order τ^4 :

$$\sigma_{\epsilon}(au)\simeq \langle \epsilon(au)
angle/\sqrt{3}$$

Outr

Monte Carlo simulation

Result: full kernel ⇒ less efficient branching

Simple splitting kernel, numerical versus analytic:

- Good agreement overall
- Bias at small x (pileup)

Corrections from the full splitting kernel:

- Leading peak still present at $\tau=0.5$
- Less energy lost at $\tau = 1$

Recall:

Simple
$$K(z) = \frac{1}{[z(1-z)]^{3/2}}$$

Full $K(z) = \frac{[1-z(1-z)]^{5/2}}{[z(1-z)]^{3/2}}$

Jet evolution in a dense QCD medium

Linnéa Gräns Samuelsson

Intr

_

Physica

Markov

Monte Carlo simulation

0....

Monte Carlo simulation

Result: full kernel ⇒ less efficient branching

Intro

- .

Physica

Markov process

Monte Carlo simulation

Outr

Full kernel \Rightarrow shifted in τ but same qualitative picture.

0.6

0.8

τ

0.2

0.4

1.2

1.4

Intr

Conte

Physica

Markov

Monte Carlo

simulation

Outro

Summary:

- ullet Democratic branchings \Rightarrow energy found at large angles
- Prediction: large fluctuations in energy loss
- Possible to make Monte Carlo simulation
- Full kernel ⇒ less efficient branching
- Full and simple kernel have same behaviour qualitatively

THE END

Questions?