Mean Field Approximation for Interaction Models

Sebastian Allmeier

December 2, 2021

Overview

- Introduction
 - General Setting & Introductory Example
 - Motivation
 - The Mean Field Idea
- Meterogeneous Interaction Model
 - Framework
 - Accuracy Results
 - Mean Field Refinements
- Implementations
 - Numerical Toolbox
- 4 Conclusion

Table of Contents

- Introduction
 - General Setting & Introductory Example
 - Motivation
 - The Mean Field Idea
- 2 Heterogeneous Interaction Model
 - Framework
 - Accuracy Results
 - Mean Field Refinements
- Implementations
 - Numerical Toolbox
- 4 Conclusion

General Setting

- population n interacting objects which have (countably many) states $\mathcal S$
- object interactions are stochastic
- naturally described by $\mathbf{S}^{(n)}(t) = (S_1(t), \dots, S_n(t)) \in \mathcal{S}^n$ (continuous time process)
- $S_k(t) \sim$ state of object k at time t

Many modeling possibilities

load balancing, epidemic modeling, caching, communication protocols, SSD garbage collection, malware propagation, ...

Example: Power-of-2-choice model (JSQ(2))

How to allocate jobs in large server farms?

Figure: Power-of-2-choice - introduced by Mitzenmacher in 2001

a simple, effective distribution scheme can be studied by using the mean field approximation

Example: Power-of-2-choice model (JSQ(2))

 $S_i(t) \sim$ number of jobs in queue

- ullet arrival rate $n\lambda$ $(\lambda$ per server, <1)
- dispatcher univ. and independently sam
- job added to shorter queue (equality broken at random)
- ullet server service rate $\mu=1$

Motivation

Mean Field Approximation

Goal: want to analyze transient and steady state behavior of the system **Problems:**

- ullet exponentially growing state space \mathcal{S}^n
- predictions by simulation can be inefficient / inaccurate

Mean Field Approximation can help.

Examples

load balancing, epidemic modeling, caching, communication protocols, SSD garbage collection, malware propagation, ...

Mean Field Idea

How to obtain the mean field limit?

Alternative system representations

$$\begin{split} S^{(n)}(t) & \text{ with } S_k^{(n)}(t) \in \mathcal{S}, \ k = \{1...n\} \\ X^{(n)}(t) & \text{ with } X_{k,s}^{(n)}(t) = \mathbf{1}_{\{S_k^{(n)}(t) = s\}}, \ k = \{1...n\}, i \in \mathbb{N} \\ Z^{(n)}(t) & \text{ with } Z_s^{(n)}(t) = \frac{1}{n} \sum_{k=1}^n X_{k,s}^{(n)}(t) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{S_k^{(n)}(t) = s\}}, \ i \in \mathbb{N} \end{split}$$

all are continuous time Markov chains for Z we use homogeneity (similar statistical behavior of objects) to simplify

How to obtain the mean field limit?

Alternative system representations

$$\begin{split} S^{(n)}(t) & \text{ with } S_k^{(n)}(t) \in \mathcal{S}, \ k = \{1...n\} \\ X^{(n)}(t) & \text{ with } X_{k,s}^{(n)}(t) = \mathbf{1}_{\{S_k^{(n)}(t) = s\}}, \ k = \{1...n\}, i \in \mathbb{N} \\ Z^{(n)}(t) & \text{ with } Z_s^{(n)}(t) = \frac{1}{n} \sum_{k=1}^n X_{k,s}^{(n)}(t) = \frac{1}{n} \sum_{k=1}^n \mathbf{1}_{\{S_k^{(n)}(t) = s\}}, \ i \in \mathbb{N} \end{split}$$

all are continuous time Markov chains for Z we use homogeneity (similar statistical behavior of objects) to simplify

$$\rightarrow Z(t) = (0.2, 0.4, 0.2, 0.2, 0, ...)$$

- arrival rate $n\lambda$ (λ per server, < 1)
- dispatcher univ. and independently samples two servers
- job added to shorter queue (equality broken at random)
- ullet server service rate $\mu=1$

Transitions

Arrivals:
$$Z \to Z + \frac{1}{n}e_i - \frac{1}{n}e_{i-1}$$
 at rate $n\lambda((\sum_{j \ge i-1} Z_j)^2 - (\sum_{j \ge i} Z_i)^2)$

Removals:
$$Z \to Z + \frac{1}{n} e_{i-1} - \frac{1}{n} e_i$$
 at rate $n\mu Z_i$

How to obtain the mean field limit?

Drift

For a given state x the drift is (informally) given by

$$\sum_y \left(x \right)^y \times p(x o y) =: \underbrace{f(x)}_y$$

drift of the system

More formally, we look at $f(\mathbf{z}) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{E} \left[\mathbf{Z}(t+dt) - \mathbf{Z}(t) \mid \mathbf{Z}(t) = \mathbf{z} \right].$

How to obtain the mean field limit?

Drift of the the JSQ(2) model:

$$f_i(\mathbf{z}) = \mu z_{i+1} + \lambda \left(\left(\sum_{j \ge i-1} z_j \right)^2 - \left(\sum_{j \ge i} z_i \right)^2 \right)$$
$$- \mu z_i - \lambda \left(\left(\sum_{j \ge i} z_j \right)^2 - \left(\sum_{j \ge i+1} z_i \right)^2 \right), \ i \ge 1$$
$$f_0(\mathbf{z}) = \mu z_1 - \lambda \left(\left(\sum_{j \ge 0} z_j \right)^2 - \left(\sum_{j \ge 1} z_i \right)^2 \right)$$

Mean Field Approximation

Solution to the initial value problem (IVP):

$$\dot{\mathbf{z}}(t) = f(\mathbf{z}), \ \mathbf{z}(0) = \mathbf{Z}(0)$$

Accuracy homogeneous case / known results

- $\sup_{s < t} ||Z^{(n)}(s) Z(s)|| \xrightarrow{n \to \infty} 0$ in probability ¹
- $\mathbb{E}\left[\left\|Z^{(n)}(s) z(s)\right\|\right] = O(\frac{1}{\sqrt{n}})$
- $\mathbb{E}\left[Z^{(n)}(s)\right] z(s) = O(\frac{1}{n})$

- same reasoning can be broadly applied
- results generalize to populations of n identical / homogeneous objects (use occupancy measure to describe system)

Table of Contents

- Introduction
 - General Setting & Introductory Example
 - Motivation
 - The Mean Field Idea
- Meterogeneous Interaction Model
 - Framework
 - Accuracy Results
 - Mean Field Refinements
- Implementations
 - Numerical Toolbox
- 4 Conclusion

Heterogeneous interaction model

What can we say if objects are heterogeneous?*

* i.e. servers have different speeds, people are more susceptible / recover faster, cache objects have varying popularity

Classical Approach

- consider a finite and fixed number of classes C
- within each class $c \in C$ objects have identical behavior
- ullet use mean field approach by letting the numbers of objects n_c of each class tend to infinity

Classical Approach

- consider a finite and fixed number of classes C
- within each class $c \in C$ objects have identical behavior
- ullet use mean field approach by letting the numbers of objects n_c of each class tend to infinity

What if all objects have differing behavior (true heterogeneity)?

The Heterogeneous Framework

- n interacting objects which have (finitely many) states $\mathcal S$
- object interactions are stochastic
- described by $S^{(n)}(t)=(S_1(t),\ldots,S_n(t))\in\mathcal{S}^n$ (continuous time process)
- $S_k(t) \sim$ state of object k at time t
- ullet can still use $X_{(k,s)}(t)=\mathbf{1}_{\{S_k(t)=s\}}$ to represent the system
- $Z(t) = (\frac{1}{n} \sum_{k} X_{k,s}(t))_s$ does not capture state of single objects

Heterogeneous Power-of-2-choice (JSQ(2)) model

Figure: Power-of-2-choice model with differing server rates.

Transitions

$$\mathbf{X}\mapsto \mathbf{X}-e_{(k,i)}+e_{(k,i-1)}$$
 at rate $\mu_k X_{(k,i)}$ (unilateral)

$$\mathbf{X} \mapsto \mathbf{X} + e_{(k,i+1)} - e_{(k,i)}$$
 at rate $\lambda X_{(k,i)} (\sum_k \sum_{j \geq i} \frac{X_{(k,j)}}{n} + \sum_k \sum_{j \geq i+1} \frac{X_{(k,j)}}{n})$ (pairwise)

Definition of the Mean Field

The drift is

$$f(\mathbf{X}(t)) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{E} \left[\mathbf{X}(t + dt) - \mathbf{X}(t) \mid \mathbf{X}(t) = \mathbf{x} \right]$$

- f can be expressed in unilateral and pairwise transition terms
- entries of f are polynomials

Definition of the Mean Field

The drift is

$$f(\mathbf{X}(t)) = \lim_{dt \to 0} \frac{1}{dt} \mathbb{E} \left[\mathbf{X}(t+dt) - \mathbf{X}(t) \mid \mathbf{X}(t) = \mathbf{x} \right]$$

- f can be expressed in unilateral and pairwise transition terms
- entries of f are polynomials
- mean field approximation is solution to the IVP:

$$\frac{d}{dt}\mathbf{x}(t) = f(\mathbf{x}(t)); \quad \mathbf{x}(0) = \mathbf{X}(0)$$

Results

Assumptions

Existence of uniform bound \bar{r} independent of system size n for transition rates (unilateral, pairwise, ...).

By definition, the drift is a polynomial of degree d and the mean field lies in some compact set $\subset [0,1]^{n\times S} \to \text{drift}$ is Lipschitz

Results

Assumptions

Existence of uniform bound \bar{r} independent of system size n for transition rates (unilateral, pairwise, ...).

By definition, the drift is a polynomial of degree d and the mean field lies in some compact set $\subset [0,1]^{n\times S} \to \text{drift}$ is Lipschitz

Accuracy

For the mean field approximation $\mathbf{x}(t)$ we have

$$\mathbb{P}(S_k(t) = s) = \mathbb{E}[X_{(k,s)}(t)] = X_{(k,s)}(t) + O(1/n)$$

Figure: Average queue size; sample mean vs. mean field approximation vs. refined mean field approximation.

Idea of the Proof

- want to study $\mathbb{E}\left[X_{(k,s)}(t)\right] x_{(k,s)}(t)$ by relating the generators of the stochastic system and ODE
- define $\psi(\tau) = \mathbb{E}\left[\mathbf{x}(\mathbf{X}(\tau), t \tau)\right]$ with $\mathbf{x}(\mathbf{X}(\tau), t \tau)$ the mean field approximation starting in $\mathbf{X}(\tau)$
- rewrite $\mathbb{E}[\mathbf{X}(t) \mathbf{x}(\mathbf{X}(0), t)] = \psi(t) \psi(0)$
- justify $\psi(t)-\psi(0)=\int_0^t \frac{d}{ds}\psi(s)ds$ and bound $\frac{d}{ds}\psi(s)$

Refinement

Possible to define a **refinement term** v(t) following the ideas of [Gast, Van Houdt] [Gast et al.] to **increase accuracy**. We call $\mathbf{x}(t) + \mathbf{v}(t)$ the refined mean field.

Increased Accuracy

$$\mathbb{P}(S_k(t) = s) = \mathbb{E}[X_{(k,s)}(t)] = x_{(k,s)}(t) + v_{(k,s)}(t) + O(1/n^2)$$

Proof Idea

- follows similar idea as for mean field
- use equality $\mathbb{E}[\mathbf{X}(t) \mathbf{x}(\mathbf{X}(0), t)] = \psi(t) \psi(0) = \int_0^t \frac{d}{ds} \psi(s) ds$
- look at $\mathbb{E}[\mathbf{X}(t) \mathbf{x}(\mathbf{X}(0), t)] \mathbf{v}(\mathbf{X}(0), t) = \int_0^t \frac{d}{ds} \psi(s) \frac{d}{ds} v(s) ds$

Figure: Average queue size; sample mean vs. mean field approximation vs. refined mean field approximation.

Table of Contents

- Introduction
 - General Setting & Introductory Example
 - Motivation
 - The Mean Field Idea
- 2 Heterogeneous Interaction Model
 - Framework
 - Accuracy Results
 - Mean Field Refinements
- Implementations
 - Numerical Toolbox
- 4 Conclusion

Numerical Toolbox ²

rmf_tool – A library to Compute (Refined) Mean Field Approximation(s)

Model Implementation

```
In [2]: import rmf_tool.src.rmf_tool as rmf

# This code creates an object that represents a "density dependent population process"
ddpp = rmf.ODPP()

# Set parameters
mu, _lambda, K = 1.0, 0.9, 9

In [4]: # Add transitions using mathematical formulation:
for i in range(K):
    if i >= 1
        id object transition(e(1), eval('lambda x: _lambda*(x[{}]*x[{}]) - x[{}]*x[{}])',format(i-1,i-1,i,i) )) # arrivals
    if i > K - I and i > 0:
        ddpp.add_transition(-e(i), eval('lambda x: mu*(x[{}]) - x[{}]*)',format(i,i+1))) # removals
```

Supports Density Dependent Population Processes & heterogeneous Framework

²https://github.com/ngast/rmf_tool

Numerical Toolbox ³

Allows to easily obtain (for transient and steady state): mean field, refined mean field approximation, simulations

³https://github.com/ngast/rmf_tool

Table of Contents

- Introduction
 - General Setting & Introductory Example
 - Motivation
 - The Mean Field Idea
- 2 Heterogeneous Interaction Model
 - Framework
 - Accuracy Results
 - Mean Field Refinements
- 3 Implementations
 - Numerical Toolbox
- 4 Conclusion

Conclusion

- mean field method is broadly applicable to population models
- historically used for homogeneous and partially heterogeneous systems
- can be applied to fully heterogeneous (population) interaction models

Conclusion

- mean field method is broadly applicable to population models
- historically used for homogeneous and partially heterogeneous systems
- can be applied to fully heterogeneous (population) interaction models

Thank you!

A Caching Example

Requests for object k arrive according to a Poisson process with intensity λ_k

Comparison of homogeneous and heterogeneous approximations

$$\begin{split} \dot{v}_{(k_1,s_1)}(t) &= \sum_{u \in \mathcal{I}} \frac{\partial f_{(k_1,s_1)}}{\partial x_u}(\mathbf{x}(t)) v_u(t) + \frac{1}{2} \sum_{u,l \in \mathcal{I}} \frac{\partial^2 f_{(k_1,s_1)}}{\partial x_l \partial x_u}(\mathbf{x}(t)) w_{u,l}(t), \\ \dot{w}_{(k_1,s_1),(k_2,s_2)}(t) &= \sum_{u \in \mathcal{I}} w_{u,(k_2,s_2)}(t) \frac{\partial f_{(k_1,s_1)}}{\partial x_u}(\mathbf{x}(t)) \\ &+ \sum_{u \in \mathcal{I}} w_{u,(k_1,s_1)}(t) \frac{\partial f_{(k_2,s_2)}}{\partial x_u}(\mathbf{x}(t)) + Q_{(k_1,s_1),(k_2,s_2)}(\mathbf{x}(t)), \\ Q_{(k,s),(k_1,s_1)}(\mathbf{x}) &= \lim_{dt \to 0} \frac{1}{dt} \mathbb{E} \left[(\mathbf{X}(t+dt) - \mathbf{X}(t))_{(k,s),(k_1,s_1)}^{\otimes 2} \mid \mathbf{X}(t) = \mathbf{x} \right] \end{split}$$

References

Nicolas Gast and Benny Van Houdt 2017

A Refined Mean Field Approximation. Proceedings of the ACM on Measurement and Analysis of Computing Systems 1, 2

Nicolas Gast, Luca Bortolussi, and Mirco Tribastone 2019

Size Expansions of Mean Field Approximation: Transient and Steady-State Analysis. Performance Evaluation 129 (Feb. 2019)

Sebastian Allmeier and Nicolas Gast 2021

Mean Field and Refined Mean Field Approximations for Heterogeneous Systems: It Works! arXiv preprint arXiv:2111.01594

Sebastian Allmeier and Nicolas Gast 2021

rmf_tool – a library to compute (refined) mean field approximation(s). SIGMETRICS Perform. Eval. Rev. (Workshop).