テンソル積のノルム 平井さん講義まとめ

基礎工学研究科システム創成専攻 学籍番号 29C17095 百合川尚学

2018年4月30日

目次

0.1	notation	1
0.2	テンソル籍	1

0.1 notation

 E, E_i, F を体 \mathbb{K} 上の線形空間とするとき, $\operatorname{Hom}(E, F)$ で E から F への \mathbb{K} -線型写像の全体を表し,特に $F = \mathbb{K}$ のとき $E^{\#}$ と書く.また $\operatorname{Hom}^{(n)}(E_1 \times \cdots \times E_n, F)$ で $E_1 \times \cdots \times E_n$ から F への \mathbb{K} -n 重線型写像の全体を表す.

0.2 テンソル積

 $n \ge 2$ とする. 体 \mathbb{K} 上の線形空間の族 $(E_i)_{i=1}^n$ に対してテンソル積を定めたい.

$$\Lambda\Bigl(\bigoplus_{i=1}^n E_i\Bigr) = \left\{\,b: \bigoplus_{i=1}^n E_i \longrightarrow \mathbb{K} \,\,; \quad 有限個の \,\, e \in \bigoplus_{i=1}^n E_i \,\, を除いて \,\, b(e) = 0. \,\,\right\}$$

により \mathbb{K} -線形空間 $\Lambda\left(\bigoplus_{i=1}^n E_i\right)$ を定める.また $e=(e_1,\cdots,e_n)\in\bigoplus_{i=1}^n E_i$ に対する定義関数を

$$\mathbb{1}_{e_1,\cdots,e_n}(x) = \begin{cases} 1, & x = e, \\ 0, & x \neq e \end{cases}$$

で表す. $\Lambda\!\!\left(igoplus_{i=1}^n E_i\right)$ の線型部分空間を

$$\Lambda_0\left(\bigoplus_{i=1}^n E_i\right)
:= \operatorname{Span}\left[\left\{\begin{array}{c} \mathbb{1}_{e_1,\cdots,e_i+e_i',\cdots,e_n} - \mathbb{1}_{e_1,\cdots,e_i,\cdots,e_n} - \mathbb{1}e_1,\cdots,e_i',\cdots,e_n, \\ \mathbb{1}_{e_1,\cdots,\lambda e_i,\cdots,e_n} - \lambda \mathbb{1}_{e_1,\cdots,e_i,\cdots,e_n} \end{array}; \quad e_i,e_i' \in E_i, \lambda \in \mathbb{K}, 1 \le i \le n \right\}\right]$$

により定め, $b \in \Lambda\left(\bigoplus_{i=1}^n E_i\right)$ の $\Lambda_0\left(\bigoplus_{i=1}^n E_i\right)$ に関する同値類を [b] と書く. そして

$$E_1 \otimes \cdots \otimes E_n = \bigotimes_{i=1}^n E_i := \Lambda \left(\bigoplus_{i=1}^n E_i \right) / \Lambda_0 \left(\bigoplus_{i=1}^n E_i \right)$$

で定める商空間を $(E_i)_{i=1}^n$ のテンソル積と定義する.また $(e_1,\cdots,e_n)\in \bigoplus_{i=1}^n E_i$ に対し

$$e_1 \otimes \cdots \otimes e_n := [\mathbb{1}_{e_1,\cdots,e_n}]$$

により定める \otimes : $\bigoplus_{i=1}^n E_i \longrightarrow \bigotimes_{i=1}^n E_i$ をテンソル積の標準写像と呼ぶ.

定理 0.2.1 (標準写像の多重線型性). $(E_i)_{i=1}^n$ を \mathbb{K} -線形空間の族とするとき,

$$\otimes: \bigoplus_{i=1}^n E_i \ni (e_1, \cdots, e_n) \longmapsto e_1 \otimes \cdots \otimes e_n \in \bigotimes_{i=1}^n E_i$$

はn 重線型写像である. また次が成り立つ:

$$\bigotimes_{i=1}^{n} E_{i} = \operatorname{Span}\left[\left\{e_{1} \otimes \cdots \otimes e_{n} ; (e_{1}, \cdots, e_{n}) \in \bigoplus_{i=1}^{n} E_{i}\right\}\right]. \tag{1}$$

証明. 任意の $1 \le i \le n$, $e_1 \in E_1, \dots, e_n \in E_n$, $e_i, e_i' \in E_i$, $\lambda \in \mathbb{K}$ に対して

$$\begin{split} e_1 \otimes \cdots \otimes (e_i + e_i') \otimes \cdots \otimes e_n &= \left[1\!\!1_{e_1, \cdots, e_i + e_i', \cdots, e_n} \right] \\ &= \left[1\!\!1_{e_1, \cdots, e_i, \cdots, e_n} + 1\!\!1_{e_1, \cdots, e_i', \cdots, e_n} \right] \\ &= \left[1\!\!1_{e_1, \cdots, e_i, \cdots, e_n} \right] + \left[1\!\!1_{e_1, \cdots, e_i', \cdots, e_n} \right] \\ &= e_1 \otimes \cdots \otimes e_i \otimes \cdots \otimes e_n + e_1 \otimes \cdots \otimes e_i' \otimes \cdots \otimes e_n, \\ e_1 \otimes \cdots \otimes (\lambda e_i) \otimes \cdots \otimes e_n &= \left[1\!\!1_{e_1, \cdots, \lambda e_i, \cdots, e_n} \right] \\ &= \left[\lambda 1\!\!1_{e_1, \cdots, e_i, \cdots, e_n} \right] \\ &= \lambda \left[1\!\!1_{e_1, \cdots, e_i, \cdots, e_n} \right] \\ &= \lambda (e_1 \otimes \cdots \otimes e_i \otimes \cdots \otimes e_n) \end{split}$$

が成立するから \otimes は多重線型である.また任意に $u = [b] \in E \otimes F$ を取れば

$$b = \sum_{i=1}^{m} k_{j} \mathbb{1}_{e_{i}^{j}, \dots, e_{n}^{j}}, \quad (k_{j} = b(e_{i}^{j}, \dots, e_{n}^{j}), \ j = 1, \dots, m)$$

と表せるから,

$$u = \left[\sum_{i=1}^{m} k_{j} \mathbb{1}_{e_{i}^{j}, \dots, e_{n}^{j}} \right] = \left[\sum_{i=1}^{m} \mathbb{1}_{k_{j} e_{i}^{j}, \dots, e_{n}^{j}} \right] = \sum_{i=1}^{m} (k_{j} e_{1}^{j}) \otimes \dots \otimes e_{n}^{j}$$

が従い(1)を得る.

定理 0.2.2 (普遍性). $(E_i)_{i=1}^n$ を \mathbb{K} -線形空間の族とする. このとき任意の \mathbb{K} -線型空間 V に対して, $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, V\right)$ ならば $T \circ \otimes \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ が満たされ,これで定める次の対応 Φ は線型同型である:

また \mathbb{K} -線型空間 U_0 と多重線型写像 $\iota: \bigoplus_{i=1}^n E_i \longrightarrow U_0$ が、任意の \mathbb{K} -線型空間 V に対し

- $(\otimes)_1$ U_0 は ι の像で生成される.
- $(\otimes)_2$ 任意の $\delta \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ に対して或る $\tau \in \operatorname{Hom}\left(U_0, V\right)$ が $\delta = \tau \circ \iota$ を満たす.

を満たすなら、(2) において $V=U_0$ とするとき $T=\Phi^{-1}(\iota)$ は線形同型である.

証明.

第一段 $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, V\right)$ の線型性と \otimes の多重線型性より $T \circ \otimes$ は多重線型である.

第二段 $\Phi(T_1) = \Phi(T_2)$ ならば $T_1 \geq T_2$ は $\left\{ e_1 \otimes \cdots \otimes e_n ; (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i \right\}$ の上で一致する. (1) より $T_1 = T_2$ が成立し Φ の単射性が従う.

第三段 次の二段で Φ の全射性を示す。まず、 $\varphi \in \operatorname{Hom}\left(\Lambda(\bigoplus_{i=1}^n E_i), V\right)$ に対し

$$g: \bigoplus_{i=1}^n E_i \ni (e_1, \cdots, e_n) \longmapsto \varphi(\mathbb{1}_{e_1, \cdots, e_n}) \in V$$

を対応させる次の写像が全単射であることを示す:

$$F: \operatorname{Hom}\left(\Lambda(\bigoplus_{i=1}^{n} E_{i}), V\right) \longrightarrow \operatorname{Map}\left(\bigoplus_{i=1}^{n} E_{i}, V\right)$$

$$\varphi \longmapsto g$$

 $F(\varphi_1) = F(\varphi_2)$ のとき、任意の $e \in \bigoplus_{i=1}^n E_i$ に対して $\varphi_1(\mathbb{1}_{e_1,\cdots,e_n}) = \varphi_2(\mathbb{1}_{e_1,\cdots,e_n})$ が成り立ち、

$$\Lambda\left(\bigoplus_{i=1}^{n} E_{i}\right) = \operatorname{Span}\left[\left\{ \mathbb{1}_{e_{1},\cdots,e_{n}} ; (e_{1},\cdots,e_{n}) \in \bigoplus_{i=1}^{n} E_{i} \right\}\right]$$

であるから $\varphi_1=\varphi_2$ が従い F の単射性を得る. また $g\in \operatorname{Map}\left(\bigoplus_{i=1}^n E_i,V\right)$ に対して

$$\varphi(a) := \sum_{\substack{e \in \bigoplus_{i=1}^n E_i \\ a(e) \neq 0}} a(e)g(e), \quad (a \in \Lambda(\bigoplus_{i=1}^n E_i))$$

により φ を定めれば、 $\varphi \in \operatorname{Hom}\left(\Lambda(\bigoplus_{i=1}^n E_i), V\right)$ が満たされFの全射性が従う. 第四段 任意に $b \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ を取り $h \coloneqq F^{-1}(b)$ とおけば、hの線型性より

$$b(e_{1}, \dots, e_{i} + e'_{i}, \dots, e_{n}) - b(e_{1}, \dots, e_{i}, \dots, e_{n}) - b(e_{1}, \dots, e'_{i}, \dots, e_{n})$$

$$= h(\mathbb{1}_{e_{1}, \dots, e_{i} + e'_{i}, \dots, e_{n}} - \mathbb{1}_{e_{1}, \dots, e_{i}, \dots, e_{n}} - \mathbb{1}_{e_{1}, \dots, e'_{i}, \dots, e_{n}}),$$

$$b(e_{1}, \dots, \lambda e_{i}, \dots, e_{n}) - \lambda b(e_{1}, \dots, e_{i}, \dots, e_{n})$$

$$= h(\mathbb{1}_{e_{1}, \dots, \lambda e_{i}, \dots, e_{n}} - \lambda \mathbb{1}_{e_{1}, \dots, e_{i}, \dots, e_{n}})$$

が成り立ち、bの双線型性により h は $\Lambda_0(\bigoplus_{i=1}^n E_i)$ 上で 0 である. 従って

$$T([b]) := h(b), \quad (b \in \Lambda(\bigoplus_{i=1}^n E_i))$$

で定める T は well-defined であり, $T \in \operatorname{Hom}\left(\bigoplus_{i=1}^n E_i, V\right)$ かつ

$$b(e_1, \cdots, e_n) = h(\mathbb{1}_{e_1, \cdots, e_n}) = (T \circ \otimes)(e_1, \cdots, e_n), \quad (\forall (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i)$$

が満たされ Φ の全射性が得られる.

第五段 $(\otimes)_1, (\otimes)_2$ の下で $\operatorname{Hom}\left(U_0, \bigotimes_{i=1}^n E_i\right) \ni \tau \longmapsto \tau \circ \iota \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, \bigotimes_{i=1}^n E_i\right)$ は全単射 であるから, $\tau \circ \iota = \otimes$ を満たす $\tau \in \operatorname{Hom}\left(U_0, \bigotimes_{i=1}^n E_i\right)$ がただ一つ存在する.同様にして $\iota = T \circ \otimes$ を満たす $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, U_0\right)$ がただ一つ存在し,併せれば

$$\otimes = \tau \circ \iota = (\tau \circ T) \circ \otimes, \quad \iota = T \circ \otimes = (T \circ \tau) \circ \iota$$

が成り立つ. $T \mapsto T \circ \otimes$, $\tau \mapsto \tau \circ \iota$ が一対一であるから $\tau \circ T$, $T \circ \tau$ はそれぞれ恒等写像 に一致し, $T^{-1} = \tau$ が従う. すなわち T は $\bigotimes_{i=1}^n E_i$ から U_0 への線型同型である.

定義 0.2.3 (線型写像のテンソル積). $(E_i)_{i=1}^n$ と $(F_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とする. $f_i: E_i \longrightarrow F_i$ $(i=1,\cdots,n)$ が線型写像であるとして,

$$b: \bigoplus_{i=1}^n E_i \ni (e_1, \cdots, e_n) \longmapsto f_1(e_1) \otimes \cdots \otimes f_n(e_n) \in \bigotimes_{i=1}^n F_i$$

により定めるbはn 重線型であり、定理0.2.2より $b=g\circ\otimes$ を満たす $g:\bigotimes_{i=1}^n E_i \longrightarrow \bigotimes_{i=1}^n F_i$ がただ一つ存在する。g を $f_1 \otimes \cdots \otimes f_n$ と表記して線型写像のテンソル積と定義する。いま、

$$f_1 \otimes \cdots \otimes f_n(e_1 \otimes \cdots \otimes e_n) = f_1(e_1) \otimes \cdots \otimes f_n(e_n), \quad (\forall (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i)$$

が成り立つ.

定理 0.2.4 (写像のテンソル積の多重線型性). $(E_i)_{i=1}^n$ と $(F_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とする. 線型写像 $f_i: E_i \longrightarrow F_i$ $(i=1,\cdots,n)$ に対し定めるテンソル積 $f_1 \otimes \cdots \otimes f_n$ は n 重線型である.