Теоремы по матану, семестр 4

17 апреля 2018 г.

Содержание

1	Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия	5
2	Измеримость монотонной функции	6
3	Теорема Лебега о сходимости почти везде и сходимости по мере	6
4	Теорема Рисса о сходимости по мере и сходимости почти везде	8
5	Простейшие свойства интеграла Лебега 5.1 Для определения (5)	8 8 9
6	Счетная аддитивность интеграла (по множеству)	12
7	Теорема Леви	14
8	Линейность интеграла Лебега	15
9	Теорема об интегрировании плоложительных рядов	16
10	Теорема о произведении мер	16

11	Абсолютная непрерывность интеграла	18
	11.1 Следствие	18
12	Теорема Лебега о мажорированной сходимости для случая сходимости по мере.	19
13	Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.	21
14	Теорема Фату. Следствия.	22
	14.1 Следствие 1	
15	Теорема о вычислении интеграла по взвешенному образу	
	меры	23
	15.1 Лемма	23
	15.2 Следствие	
	15.3 Теорема	23
16	Критерий плотности	24
17	Лемма о единственности плотности	25
18	Лемма о множестве положительности	26
19	Теорема Радона—Никодима	27
20	Лемма об оценке мер образов кубов из окрестности точки дифференцируемости	28
21	Лемма «Вариации на тему регулярности меры Лебега»	29
22	Теорема о преобразовании меры при диффеоморфизме	31
23	Теорема о гладкой замене переменной в интеграле Лебега	31

24	Теорема (принцип Кавальери)	32
25	Теорема Тонелли	33
26	Формула для Бета-функции	35
27	Объем шара в \mathbb{R}^m	36
28	Теорема о вложении пространств L^p	36
29	Теорема о сходимости в L_p и по мере	37
30	Полнота L^p	38
31	Лемма Урысона	39
32	Плотность в L^p непрерывных финитных функций	39
33	Теорема о непрерывности сдвига	39
34	Теорема об интеграле с функцией распределения	39
35	Теорема о свойствах сходимости в гильбертовом про- странстве	39
36	Теорема о коэффициентах разложения по ортогональной системе	40
37	Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя	41
38	Теорема Рисса – Фишера о сумме ряда Фурье. Равенство Парсеваля	42
39	Теорема о характеристике базиса $39.1 \ 1 \Rightarrow 2 \dots \dots$	43 43 43 44
	ひみひ ひ 一/ ´サ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	+++

39.4 39.5 39.6	$4 \Rightarrow$	5.							•		•		•			•		•									44
Лема ского			ЫЧ	исл	Ю	Ш	И	K)	ф	ф	ИĽ	ЦИ	ен	TC	В	T	pı	ИΓ	ΟI	OF	M	ет	рı	И Ч	(e-	44

1 Характеризация измеримых функций с помощью ступенчатых (формулировка). Следствия

 (X, \mathbb{A}, μ) — пространство с мерой.

f — измеримая функция на $X, \ \forall x \ f(x) \geq 0$. Тогда \exists ступенчатые функции f_n , такие что:

- 1. $\forall x \ 0 \le f_n(x) \le f_{n+1}(x) \le f(x)$.
- 2. $f_n(x)$ поточечно сходится к f(x).

Следствие 1:

 $f:X \to \overline{\mathbb{R}}$ измеримая. Тогда \exists ступенчатая $f_n: \forall x: lim f_n(x) = f(x)$ и $|f_n(x)| \leq |f(x)|$.

Доказательство:

- 1. Рассмотрим $f = f^+ f^-.f^+ = max(f,0), f^- = max(-f,0)$. Срезки измеримы: $E(f^+ < a) = E(f < a) \cap E(0 < a)$, при этом f и $g \equiv 0$ измеримы $(f^-$ измерима аналогично).
- 2. Срезки измеримы и неотрицательны, тогда по теореме существуют ступенчатые функции $f_n^+ \to f^+, f_n^- \to f^-$. Тогда и $f_n^+ f_n^-$ это ступенчатая функция, при этом по свойству пределов: $f_n^+ f_n^- \to f^+ f^- = f$. Неравенство с модулем верно при правильных эпсилоннеравенствах.

Следствие 2:

f,g — измеримые функции. Тогда fg — измеримая функция. При этом считаем, что $0\cdot\infty=0$.

Доказательство:

1. Рассмотрим $f_n \to f: |f_n| \le |f|, g_n \to g: |g_n| \le |g|$ из первого следствия. Тогда $f_n g_n \to f g$ и f g измерима по теореме об измеримости пределов и супремумов (произведение ступенчатых функций – ступенчатая функция, значит, измеримая)

Следствие 3:

f,g — измеримые функции. Тогда f+g — измеримая функция. При этом считаем, что $\forall x$ не может быть, что $f(x)=\pm\infty, g(x)=\mp\infty$ Доказательство:

Доказывается как следствие 2.

2 Измеримость монотонной функции

Пусть $E \subset R^m$ — измеримое по Лебегу, $E' \subset E$, $\lambda_m(E \setminus E') = 0, f : E \to \mathbb{R}$. Пусть сужение $f : E' \to R$ непрерывно. Тогда f измерима на E. Доказательство:

- 1. $E(f < a) = E'(f < a) \cup e(f < a), e := E \setminus E', \lambda_m(e) = 0.$
- 2. E'(f < a) открыто в E', так как f непрерывна. Поэтому $E' = G \cap E' \Rightarrow$, где G открытое в E множество. Значит, E'(f < a) измеримо по Лебегу, так как оно является борелевским.
- 3. Но и e(f < a) измеримо, так $\lambda_m(e) = 0$, следовательно E(f < a) измеримо как объединение измеримых множеств

Следствие:

 $f:< a,b>
ightarrow \mathbb{R}$ монотонна. Тогда f измерима.

Доказательство:

Множество разрывов монотонной функции НБЧС множество, поэтому можно воспользоваться доказанной теоремой.

3 Теорема Лебега о сходимости почти везде и сходимости по мере

 (X,a,μ) - пространство с мерой, $\mu \cdot X < +\infty$ $f_n,f:X \to \overline{R}$ - п.в. конечны, измеримы $f_n \to f$ (поточечно, п.в.) Доказательство:

1. подменим значения f_n и f на некотором множестве меры 0 так, чтобы сходимость $f_n \to f$ была всюду. (Так можно сделать. Действительно, $f_n \to f$ на $X \setminus e$, $\mu e = 0$ f_n - конечно на $X \setminus e_n$, f - конечно на $X \setminus e_0$.

Тогда на $(X \setminus \bigcup_{n=0}^{+\infty} e_n)$ функции конечны и есть сходимость $f_n \to f$. По

свойствам меры $\mu \bigcup_{n=0}^{+\infty} e_n = 0$. Тогда определим на $\bigcup_{n=0}^{+\infty} e_n \ f_n = f = 0$. Это очевидно даст нам необходимую конечность и поточечную сходимость.)

2. (частный случай) $f_n \to f \equiv 0$. Тогда пусть $\forall x f_n(x)$ - монотонно (по n). $|f_n(x)|$ - убывает с ростом n и $X(|f_n| \ge \epsilon) \supset X(|f_{n+1}| \ge \epsilon)$. А также $\bigcap_{n=0}^{+\infty} X(|f_n| \ge \epsilon) = \emptyset$.

$$\begin{cases} \mu X < +\infty \\ \dots \supset E_n \supset E_{n+1} \supset \dots \end{cases}$$

 $\Rightarrow \mu E_n \to \mu \cup E_n$ - Th о непрерывности меры сверху.

$$\Rightarrow \mu X(|f_n \ge \epsilon|) \to \mu \emptyset = 0$$

3. (общий случай) $f_n \to f$. Рассмотрим $\phi_n(x) := \sup_{k \ge n} |f_k(x) - f(x)|$. Заметим свойства ϕ :

$$\begin{cases} \phi_n(x) \to 0\\ \phi_n \downarrow_n \end{cases}$$

 $X(|f_n-f|\geq \epsilon)\subset X(|\phi_n\geq \epsilon|)\Rightarrow$ по монотонности меры имеем $\mu X(|f_n-f|\geq \epsilon)\leq \mu X(\phi_n\geq \epsilon)\stackrel{part.case}{\longrightarrow} 0$, ч.т.д.

Теорема Рисса о сходимости по мере и 4 сходимости почти везде

 (X,a,μ) - пространство с мерой $f_n, f: X \to R$ - п.в. конечны, измеримы $f_n \stackrel{\mu}{\Rightarrow} f$.

Тогда $\exists n_k \uparrow : f_{n_k} \to f$ п.в.

Доказательство: $\forall k \ \mu X(|f_n - f| \ge \frac{1}{k}) \stackrel{n \to +\infty}{\longrightarrow} 0$

 $\overline{\text{Тогда }\exists n_k: \forall n\geq n_k \mu X(|f_n-f|\geq \frac{n_1}{k}) < \frac{1}{2k}}$ (можно считать $n_1< n_2< n_2$

Проверим $f_{n_k} \to f$ п.в. : $E_k := \bigcap j = k^{+\infty} X(|f_{n_j} - f| \ge \frac{1}{i})$ $E_1 \supset E_2 \supset E_3 \supset \dots$

 $E_0 := \bigcap k \in NE_k.$ $\mu E_k \ge \sum_{j=k}^{+\infty} \mu X(|f_{n_j} - f| \ge \frac{1}{j}) \ge \sum_{j=k}^{+\infty} \frac{1}{2^j} = \frac{1}{2^{(k-1)}}$ - конечно $\Rightarrow \mu E_k \to$ $\mu E_0 \Rightarrow \mu E_0 = 0 \text{ (T.K. } \mu E_k \rightarrow 0).$

Рассмотрим $X \not\in E_0$, т.е. если $X \not\in E_0$, то $\exists k : X \not\in E_k$, тогда $\forall j \geq$ $k|f_n(x)-f(x)|<rac{1}{j}$ при $n\geq n_j$, т.е. $f_{n_k} o f$, ч.т.д. <u>Следствие:</u> $f_n\Rightarrow f$ $|f_n| \leq g$ п.в. Док-во: Рассмотрим последовательность f_{n_k} где $f_{n_k} o f$ п.в. и вдоль нее применим Th о двух городовых.

$$\begin{cases} f_{n_k}(x) \to f(x) \forall x \in X \setminus e_1 \\ |f_n(x)| \le g(x) \forall x \in X \setminus e_2 \end{cases}$$

 $\Rightarrow |f| \leq g$ на $(X \setminus e_1) \setminus e_2$

Простейшие свойства интеграла Лебега 5

Для определения (5)

1. $\int f$ не зависит от представления f как ступенчатой функции, то есть если f реализуется как $f = \sum_{l} (\lambda_k \cdot \chi_{E_k})$ и как $f = \sum_{l} (\alpha_l \cdot \chi_{G_l})$, интегралы по этим функциям равны

Доказательство:

Выпишем общее разбиение для этих двух разбиений

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}) = \sum_{l} (\alpha_l \cdot \chi_{G_l}) = \sum_{i,j} (\lambda_i (= \alpha_j) \cdot \chi_{F_{i,j}})$$

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_i (\lambda_i \cdot \sum_j (\mu F_{i,j})) = \sum_i (\lambda_i \cdot \mu E_i) = \int f$$
 для первого разбиения

Аналогично для второго разбиения получаем

$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) = \sum_j (\alpha_i \cdot \sum_i (\mu F_{i,j})) = \sum_j (\lambda_j \cdot \mu G_i) = \int f$$
 для второго разбиения, что и требовалось доказать

2. f,g -измеримые ступенчатые функции, $f\leqslant g$, тогда $\int\limits_{\mathbb{X}}f\leqslant\int\limits_{\mathbb{X}}g$

Доказательство:

Пусть
$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k}), g = \sum_{l} (\alpha_l \cdot \chi_{G_l})$$

Аналогично доказательству предыдущей теоремы, строим общее ступенчатое разбиение

Пусть
$$F_{ij} = E_i \cap G_j$$

Тогда
$$\int f = \sum_{i,j} (\lambda_i \cdot \mu F_{i,j}) \leqslant \sum_j (\alpha_j \cdot \mu F_{i,j}) = \int g$$
, что и требовалось доказать

5.2 Для окончательного определения

1. Монотонность
$$f \leqslant g \Rightarrow \int_{\mathbb{X}} f \leqslant \int_{\mathbb{X}} g$$

Доказательство:

(a) $f,g\geqslant 0$, тогда доказательство тривиально (по свойствам супремума)

(b)
$$\int_{\mathbb{X}} f = \int_{\mathbb{X}} f^{+} - \int_{\mathbb{X}} f^{-}$$
$$\int_{\mathbb{X}} g = \int_{\mathbb{X}} g^{+} - \int_{\mathbb{X}} g^{-}$$

Из того, что
$$\int\limits_{\mathbb{X}} f^+ \leqslant \int\limits_{\mathbb{X}} g^+$$
, а $\int\limits_{\mathbb{X}} f^- \geqslant \int\limits_{\mathbb{X}} g^-$ следует, что $\int\limits_{\mathbb{X}} f \leqslant \int\limits_{\mathbb{X}} g$

2.
$$\int_{\mathbb{E}} 1 \cdot d\mu = \mu E$$
$$\int_{\mathbb{E}} 0 \cdot d\mu = 0$$

Очевидно из определения интеграла ступенчатой функции

- 3. $\mu E=0, f$ -измерима, тогда $\int_{\mathbb{E}} f=0,$ даже если $f=\infty$ на \mathbb{E} Доказательство:
 - (a) f-ступенчатая \Rightarrow ограниченная

$$f=\sum_{k=1}^n (\lambda_k\cdot\chi_{E_k})$$
, тогда $\int\limits_{\mathbb E} f=\sum\lambda_k\cdot\mu(E\cap E_k)$
Но $\mu(E\cap E_k)=0$ (так как $\mu E=0$), тогда $\int\limits_{\mathbb E} f=0$

- (b) f измеримая, $f\geqslant 0$. $\int\limits_{\mathbb{E}} f=\sup(\int\limits_{\mathbb{E}} g), \ \text{где}\ 0\leqslant g\leqslant f, \ g$ ступенчатая Тогда $\int\limits_{\mathbb{E}} f=\sup(0)=0$
- (c) f произвольная измеримая Тогда $\int\limits_{\mathbb{E}} f = \int\limits_{\mathbb{E}} f^+ \int\limits_{\mathbb{E}} f^- = 0 0 = 0$

4.(a)
$$\int_{\mathbb{E}} -f = -\int_{\mathbb{E}} f$$

(b)
$$\forall c \in \mathbb{R} : \int_{\mathbb{E}} (c \cdot f) = c \cdot \int_{\mathbb{E}} f$$

Доказательство:

(a)
$$(-f)^+=f^-$$

$$(-f)^-=f^+$$
 Тогда $\int_{\mathbb{E}} -f = \int_{\mathbb{E}} (-f)^+ - \int_{\mathbb{E}} (-f)^- = \int_{\mathbb{E}} f^- - \int_{\mathbb{E}} f^+ = -\int_{\mathbb{E}} f$

(b) Пусть c>0. Если c<0, то по предыдущему случаю можем рассматривать для -c<0. Если c=0, то по предыдущей теореме $\int\limits_{\mathbb{R}} (0\cdot f) = \int\limits_{\mathbb{R}} 0 = 0 = 0 \cdot \int\limits_{\mathbb{R}} f$

і. Пусть
$$f\geqslant 0$$

$$\int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}g), \ \mathrm{где}\ 0\leqslant g\leqslant c\cdot f, \ g\text{ - ступенчатая}$$
 Пусть $g=c\cdot \widetilde{g}, \ \mathrm{тогдa}\ \int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}(c\cdot \widetilde{g})), \ \mathrm{гдe}\ 0\leqslant c\cdot \widetilde{g}\leqslant c\cdot f,$ \widetilde{g} - ступенчатая
$$\mathrm{Tогдa}\ \int\limits_{\mathbb{E}}(c\cdot f)=\sup(\int\limits_{\mathbb{E}}(c\cdot \widetilde{g}))=\sup(c\cdot \int\limits_{\mathbb{E}}\widetilde{g})=c\cdot \sup(\int\limits_{\mathbb{E}}\widetilde{g})=c\cdot \int\limits_{\mathbb{E}}f$$

іі. Если f - произвольная: $\int (c \cdot f) = \int (c \cdot f)^+ - \int (c \cdot f)^- = \int c \cdot f^+ - \int c \cdot f^- = \int c \cdot$

5. Если существует
$$\int\limits_{\mathbb{E}} f d\mu$$
, то $|\int\limits_{\mathbb{E}} f| \leqslant \int\limits_{\mathbb{E}} |f|$

Доказательство:

$$-|f| \leqslant f \leqslant |f|$$
 $\int_{\mathbb{E}} -|f| \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} |f|$
 $-\int_{\mathbb{E}} |f| \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} |f|$
Тогда $|\int_{\mathbb{E}} f| \leqslant \int_{\mathbb{E}} |f|$

6. f - измеримая на $\mathbb{E},\,\mu\mathbb{E}<\infty$ $a\leqslant f\leqslant b,\,$ тогда $a\cdot\mu E\leqslant \int\limits_{\mathbb{E}}f\leqslant b\cdot\mu E$

Доказательство:

$$a \leqslant f \leqslant b \Rightarrow \int_{\mathbb{E}} a \leqslant \int_{\mathbb{E}} f \leqslant \int_{\mathbb{E}} b$$
$$a \cdot \int_{\mathbb{E}} 1 \leqslant \int_{\mathbb{E}} f \leqslant b \cdot \int_{\mathbb{E}} 1$$

$$a \cdot \mu \mathbb{E} \leqslant \int_{\mathbb{E}} f \leqslant b \cdot \mu \mathbb{E}$$

Следствие:

Если f - Измеримая и ограниченная на $\mathbb{E}, \mu \mathbb{E} < \infty$, тогда f - суммируемая на \mathbb{E}

7. f - суммируемая на $\mathbb{E} \Rightarrow f$ почти везде конечная на \mathbb{E} (то есть $f \in \alpha^0(\mathbb{E})$)

Доказательство:

(a) Пусть $f \geqslant 0$

Пусть $f = +\infty$ на A и пусть $\mu A > 0$

Тогда $\forall n \in \mathbb{N} : f \geqslant n \cdot \chi_A$

Тогда $\forall n \in \mathbb{N} : \int\limits_{\mathbb{E}} f \geqslant n \cdot \int\limits_{\mathbb{E}} \chi_A = n \cdot \mu A \Rightarrow \int\limits_{\mathbb{E}} f = +\infty$

(b) f любого знака

Распишем $f = f^+ - f^-$, по предыдущему пункту f^+, f^- конечны почти везде $\Rightarrow f$ тоже конечно почти везде

6 Счетная аддитивность интеграла (по множеству)

 (X,\mathbb{A},μ) — пространство с мерой, $A=\bigsqcup_{i=1}^\infty A_i$ — измеримы. $f:X o\overline{\mathbb{R}}$ — изм., $f\geqslant 0$

$$\underline{\text{Тогда:}}\int\limits_A^{\infty}f=\sum_{i=1}^{\infty}\int\limits_{A_i}^{\infty}f$$

Доказательство:

1. Для начала докажем это для ступенчатых функций. Пусть $f = \sum\limits_k (\lambda_k \cdot \chi_{E_k})$

$$\int_{A} f d\mu = \sum_{k} (\lambda_k \cdot \mu(E_k \cap A)) = \sum_{k} (\lambda_k \cdot (\sum_{i} \mu(E_k \cap A_i))) = \sum_{i} (\sum_{k} (\lambda_k \cdot \mu(E_k \cap A_i)) = \sum_{i} (\sum_{$$

- 2. Докажем, что $\int_A f \leqslant \sum_i \int_{A_i} f$
 - (a) Рассмотрим $0 \leqslant g \leqslant f$ ступенчатая. $\int\limits_A g = \sum\limits_i \int\limits_{A_i} g \leqslant \sum\limits_i \int\limits_{A_i} f$
 - (b) Переходя к *sup* получаем желаемое
- 3. Теперь докажем, что $\int\limits_A f \geqslant \sum\limits_i \int\limits_{A_i} f$
 - (a) $A = A_1 \sqcup A_2$
 - і. Рассмотрим g_1, g_2 ступенчатые такие, что $0 \leqslant g_i \leqslant f \cdot \chi_{A_i}$
 - іі. Рассмотрим их общее разбиение E_k : $g_i = \sum\limits_k (\lambda_k^i \cdot \chi_{E_k})$
 - ііі. g_1+g_2 ступенчатая и $0\leqslant g_1+g_2\leqslant f\cdot\chi_A$

iv.
$$\int_{A_1} g_1 + \int_{A_2} g_2 \stackrel{lemma}{=} \int_A (g_1 + g_2) \stackrel{iii}{\leqslant} \int_A f$$

- v. Поочерёдно переходя к sup по g_1 и g_2 получаем: $\int\limits_{A_1} f + \int\limits_{A_2} f \leqslant \int\limits_{A} f$
- (b) $\forall n \in \mathbb{N}$, что $A = \bigsqcup_{i=1}^n A_i$ будем последовательно отщеплять последнее множество по (a)

(c)
$$A = \bigsqcup_{i=1}^{\infty} A_i$$

i. Фиксрируем $n \in \mathbb{N}$

іі.
$$A = (\bigsqcup_{i=1}^n A_i) \sqcup B$$
, где $B = \bigsqcup_{i=n+1}^\infty A_i$

iii.
$$\int\limits_A f \geqslant \sum\limits_{i=1}^n \int\limits_{A_i} f + \int\limits_B f \geqslant \sum\limits_{i=1}^n \int\limits_{A_i} f$$

iv. Переходим к lim по n

Следсвие 1: $0\leqslant f\leqslant g$ - измеримы и $A\subset B$ - измеримы $\Rightarrow\int\limits_A f\leqslant\int\limits_B g$ $\int\limits_B g\geqslant\int\limits_B f=\int\limits_A f+\int\limits_{B\backslash A} f\geqslant\int\limits_A f$

Следствие 2: f - суммируема на $A\Rightarrow\int\limits_A f=\sum\limits_i\int\limits_{A_i} f$

Достаточно рассмотреть срезки f^+ и f^-

<u>Следствие 3:</u> $f\geqslant 0$ - изм. $\delta:\mathbb{A}\to\overline{\mathbb{R}}(A\longmapsto\int\limits_A fd\mu)\Rightarrow \delta$ - мера

7 Теорема Леви

 $(X, \mathbb{A}, \mu), \ f_n \geqslant 0$ - изм. $f_1(x) \leqslant ... \leqslant f_n(x) \leqslant f_{n+1}(x) \leqslant ...$ при почти всех x $f(x) = \lim_{n \to \infty} f_n(x)$ при почти всех x (считаем, что при остальных $x: f \equiv 0$)

Тогда:
$$\lim_{n\to\infty} \int_X f_n(x) d\mu = \int_X f(x) d\mu$$

Доказательство:

$$\overline{N.B.} \int_{X} f_n \leqslant \int_{X} f_{n+1} \Rightarrow \exists \lim$$

f - измерима как предел последовательности измеримых функций

 $1. \leqslant$

Очевидно $f_n\leqslant f$ при п.в $x\Rightarrow\int\limits_X f_n\leqslant\int\limits_X f$. Делаем предельный переход по n

- $2. \geqslant$
 - (a) Логичная редукция: $\lim_{n\to\infty}\int\limits_X f_n(x)\geqslant \int\limits_x g$, где $0\leqslant g\leqslant f$ ступенчатая
 - (b) Наглая редукция: $\forall c \in (0,1) : \lim \int_X f_n(x) \geqslant c \cdot \int_X g$

і.
$$E_n = \{x \mid f_n(x) \geqslant c \cdot g\}$$
. Очевидно $E_1 \subset ... \subset E_n \subset E_{n+1} \subset ...$

ii.
$$\bigcup_{n=1}^{\infty} E_n = X$$
 t.k. $c < 1$

iii.
$$\int_X f_n \geqslant \int_{E_n} f_n \geqslant \int_{E_n} g \Rightarrow \lim \int_X f_n \geqslant c \cdot \lim \int_{E_n} g = c \cdot \int_X g$$

iv. Последний знак равно обусловлен тем, что интеграл неотрицательной и измеримой функции по множеству - мера (см. следствие 3 предыдущей теоремы), и мы используем неперрывность меры снизу

8 Линейность интеграла Лебега

$$f,g\geqslant 0$$
, измеримые Тогда $\int\limits_{\mathbb{E}}(f+g)=\int\limits_{\mathbb{E}}f+\int\limits_{\mathbb{E}}g$ Доказательство:

1. Пусть f,g - ступенчатые, тогда у них имеется общее разбиение

$$f = \sum_{k} (\lambda_k \cdot \chi_{E_k})$$
$$g = \sum_{k} (\alpha_k \cdot \chi_{E_k})$$

$$\int\limits_{\mathbb{E}} (f+g) = \sum\limits_k (\lambda_k + \alpha_k) \cdot \mu E_k = \sum\limits_k \lambda_k \cdot \mu E_k + \sum\limits_k \alpha_k \cdot \mu E_k = \int\limits_{\mathbb{E}} f + \int\limits_{\mathbb{E}} g,$$
что и требовалось доказать

2. $f, g \ge 0$, измеримые

Тогда $\exists h_n : 0 \leqslant h_n \leqslant h_{n+1} \leqslant f, h_n$ ступенчатые

$$\exists \widetilde{h_n} : 0 \leqslant \widetilde{h_n} \leqslant \widetilde{h_{n+1}} \leqslant g, \ \widetilde{h_n}$$
 ступенчатые

$$\lim_{n \to +\infty} h_n = f$$

$$\lim_{n \to +\infty} \widetilde{h_n} = g$$

$$\int_{\mathbb{E}} (h_n + \widetilde{h_n}) = \int_{\mathbb{E}} h_n + \int_{\mathbb{E}} \widetilde{h_n}$$

$$\int_{\mathbb{E}} (h_n + \widetilde{h_n}) \to \int_{\mathbb{E}} (f + g)$$

$$\int_{\mathbb{E}} h_n \to \int_{\mathbb{E}} f$$

$$\int_{\mathbb{E}} \widetilde{h_n} \to \int_{\mathbb{E}} g$$
Тогда $\int_{\mathbb{E}} (f + g) = \int_{\mathbb{E}} f + \int_{\mathbb{E}} g$, что и требовалось доказать

3. Если f,g - любые измеримые, распишем обе через срезки и докажем для них

9 Теорема об интегрировании плоложительных рядов

$$u_n(x) \geq 0$$
 почти всюду на \mathbb{E} , тогда $\int\limits_{\mathbb{E}} (\sum\limits_{n=1}^{+\infty} u_n(x)) d\mu(x) = \sum\limits_{n=1}^{+\infty} \int\limits_{\mathbb{E}} u_n(x) d\mu(x)$ Доказательство:

$$\overline{S_N(x) = \sum_{n=1}^{N} u_n(x)}; S(x) = \sum_{n=1}^{+\infty} u_n(x)$$

1.
$$S_N$$
 - возрастает к S при почти всех х $\xrightarrow{\mathrm{T. \ Леви}} \int\limits_{\mathbb{E}} S_N \xrightarrow[N \to +\infty]{} \int\limits_{\mathbb{E}} S = \int\limits_{n=1}^{+\infty} u_n(x)$

2. С другой стороны
$$\int_{\mathbb{E}} S_N = \int_{\mathbb{E}} \sum_{n=1}^N u_n = \sum_{n=1}^N \int_{\mathbb{E}} u_n(x) d\mu \xrightarrow[N \to +\infty]{+\infty} \sum_{n=1}^{+\infty} \int_{\mathbb{E}} u_n(x) d\mu$$

3. Найденные пределы совпадают в силу единственности предела последовательности, что и требовалось доказать.

10 Теорема о произведении мер

$$< \mathbb{X}, \alpha, \mu >, < \mathbb{Y}, \beta, \nu >$$
 - пространства с мерой $\alpha \times \beta = \{A \times B \subset \mathbb{X} \times \mathbb{Y} : A \in \alpha, B \in \beta\}$

$$m_0(A \times B) = \mu A \cdot \nu B$$

Тогда:

- 1. m_0 мера на полукольце $\alpha \times \beta$
- $2.~\mu,~
 u$ σ -конечны $\Rightarrow m_0$ σ -конечна

Доказательство:

1. Неотрицательность m_0 очевидна. Необходимо доказать счетную аддитивность

Пусть
$$P = \coprod_{i=1}^{\infty} P_k$$
, где $P \in \alpha \times \beta$ $P = A \times B$; $P_k = A_k \times B_k$ Заметим, что:

- $\chi_P(x,y) = \sum \chi_{P_k}(x,y)$, в силу дизъюнктности P_k ((x, y) входит максимум в одно множество из всех P_k)
- $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y)$, так как $(x,y)\in A\times B\Leftrightarrow x\in A$ И $y\in B$

Воспользовавшись вышесказанным получим:

$$\chi_P(x,y) = \chi_{A\times B}(x,y) = \chi_A(x) \cdot \chi_B(y)$$

$$\chi_P(x,y) = \sum \chi_{P_k}(x,y) = \sum \chi_{A_k\times B_k}(x,y) = \sum \chi_{A_k}(x) \cdot \chi_B(y)$$

Имеем следующее равенство:

$$\chi_A(x) \cdot \chi_B(y) = \sum \chi_{A_k}(x) \cdot \chi_B(y)$$

Проинтегрируем его по мере μ по x, затем по мере ν по y, получим: $\mu A \cdot \nu B = \sum \mu A_k \cdot \nu B_k$, то есть $m_0(P) = \sum m_0(P_k)$, что и требовалось доказать.

2.
$$\mu$$
, ν - σ -конечны $\Rightarrow X=\bigcup_{k=1}^\infty A_k$, где $\mu A_k<+\infty;\ Y=\bigcup_{k=1}^\infty B_k$, где $\nu B_k<+\infty$

$$X \times Y = \bigcup_{i,j} (A_i \times B_j)$$
 $m_0(A_i \times B_j) = \mu A_i \cdot \nu B_j < +\infty$, так как $\mu A_i < +\infty$ и $\nu B_j < +\infty$ все $(A_i \times B_j) \in \alpha \times \beta$ по определению Что и требовалось доказать.

11 Абсолютная непрерывность интеграла

< X, $\alpha, \mu >$ - пространство с мерой $f: X \to \overline{\mathbb{R}}$ - суммируема

Тогда
$$\forall \epsilon > 0 \; \exists \delta > 0 : \; \forall E$$
 — измеримое $\mu E < \delta \; |\int\limits_E f d\mu| < \epsilon$

Доказательство:

$$\overline{X_n}:=X(|f|\geq n)$$
 $X_n\subset X_{n+1}\subset \dots$
 $\mu(\cap X_n)=0,$ т.к. f – суммируема

- 1. Мера : $(A \mapsto \int\limits_A |f|)$ непрерывна сверху, т.е. $\forall \ \epsilon \ \exists \ n_\epsilon \ \int\limits_{X_{n_\epsilon}} |f| < \epsilon/2$
- 2. Зафиксируем ϵ в доказываемом утверждении, возьмем $\delta:=\frac{\epsilon/2}{n_\epsilon}$

3.
$$\left| \int_{E} f d\mu \right| \leq \int_{E} |f| = \int_{E \cap X_{n_{\epsilon}}} |f| + \int_{E \cap X_{n_{\epsilon}}^{c}} |f| \stackrel{*}{\leq} \int_{X_{n_{\epsilon}}} |f| + n_{\epsilon} \cdot \mu(E \cap X_{n_{\epsilon}}^{c}) \stackrel{**}{<} \epsilon/2 + n_{\epsilon} \cdot \mu E < \epsilon/2 + n_{\epsilon} \cdot \frac{\epsilon/2}{n_{\epsilon}} < \epsilon$$

* - В первом слагаемом увеличили множество, во втором посмотрели на определние X_n , взяли дополнение, воспользовались 6-м простейшим свойством интеграла

** - Воспользовались непрерывностью сверху

11.1 Следствие

f - суммируема e_n - измеримые множества

$$\mu e_n \to 0 \Rightarrow \int_{e_n} f \to 0$$

12 Теорема Лебега о мажорированной сходимости для случая сходимости по мере.

 $< X, A, \mu > -$ пространство с мерой, f_n, f – измеримы, $f_n \stackrel{\mu}{\Rightarrow} f$ (сходится по мере), $\exists g : X \to \overline{\mathbb{R}}$ такая, что:

- \bullet $\forall n$, для «почти всех» $x |f_n(x)| \le g(x) (g$ называется мажорантой)
- *g* суммируемая

Тогда:

- f_n, f суммируемы
- $\bullet \int\limits_{\mathbb{X}} |f_n f| d\mu \to 0$
- ullet $\int\limits_{\mathbb{X}}f_n o\int\limits_{\mathbb{X}}f$ («уж тем более»)

Доказательство:

- 1. f_n суммируема, так как существует мажоранта g
- 2. f суммируема по теореме Рисса ($f_{nk} \to f$ почти везде, $|f_{nk}| \le g$, тогда $|f| \le g$ почти везде)
- 3. «уж тем более»:

$$\left| \int_{\mathbb{X}} f_n - \int_{\mathbb{X}} f \right| \le \int_{\mathbb{X}} |f_n - f|$$

Допустим, что $\int\limits_{\mathbb{X}}|f_n-f|d\mu\to 0$ уже доказано.

Тогда «уж тем более» очевидно.

4. Докажем основное утверждение:

Разберем два случая:

(а)
$$\mu \mathbb{X} < \infty$$
 Фиксируем $\epsilon \ge 0$ $X_n := X(|f_n - f| \ge \epsilon)$ $\mu X \to 0$ (так как $f_n \Rightarrow f$)
$$\int_{\mathbb{X}} |f_n - f| = \int_{X_n} |f_n - f| + \int_{X_n^c} |f_n - f| \le \int_{X_n} 2g + \int_{X_n^c} \epsilon < \epsilon + \epsilon \mu \mathbb{X}$$
 (прим. $\int_{X_n} 2g \to 0$ по след. к т. об абс. сходимости)

(b)
$$\mu X = \infty$$

Докажем «Антиабсолютную непрерывность» для g:

$$\forall \epsilon \; \exists A \subset \mathbb{X} \; | \; \mu A$$
 - конеч. $\int\limits_{X \backslash A} g < \epsilon$

доказательство:

$$\int_{\mathbb{X}} = \sup(\int_{\mathbb{X}} g_k \mid 0 \le g_k \le g) \ (g_k - \text{ступен.})$$

$$\exists g_n \int_{\mathbb{X}} g - \int_{\mathbb{X}} g_n < \epsilon$$

$$A := \sup g_n \ (\sup f := \text{замыкание} \ \{x \mid f(x) \ne 0 \ \})$$

$$A = \bigcup_{k \mid \alpha_k \ne 0} E_k$$

$$g = \sum_{kon} \alpha_k \mathscr{X}_{E_k} \ (X = \bigsqcup E_k)$$

$$f = \sum_{kon} \alpha_k \mathscr{X}_{E_k} \ (X = \bigsqcup E_k)$$

$$\int\limits_{\mathbb{X}}g_n=\sum lpha_k\mu E_k<+\infty\;(\mu A$$
 - конеч.)

$$\int_{\mathbb{X}\backslash\mathbb{A}} g = \int_{\mathbb{X}\backslash\mathbb{A}} g - g_n \le \int_{\mathbb{X}} g - g_n < \epsilon$$

Теперь докажем основное утверждение:

$$\int_{\mathbb{X}} |f_n - f| = \int_{\mathbb{A}} |f_n - f| + \int_{\mathbb{X} \setminus \mathbb{A}} |f_n - f| \le \int_{\mathbb{A}} |f_n - f| + 2\epsilon < 3\epsilon$$

$$\left(\int_{\mathbb{A}} |f_n - f| \to 0 \text{ по п. (a)}\right)$$

13 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде.

 $< X, A, \mu > -$ пространство с мерой, f_n, f – измеримы, $f_n \stackrel{\mu}{\Rightarrow} f$ почти везде, $\exists g \mid X \to \overline{\mathbb{R}}$ такая, что:

- \bullet $\forall n$, для «почти всех» $x \mid f_n(x) \mid \leq g(x) \ (g$ называется мажорантой)
- g суммируемая

Тогда:

- f_n, f суммируемы
- $\bullet \int\limits_{\mathbb{X}} |f_n f| d\mu \to 0$
- $\bullet \int_{\mathbb{X}} f_n \to \int_{\mathbb{X}} f$ («уж тем более»)

Доказательство:

- 1. «уж тем более» см. пред. теорему.
- 2. Докажем основное утверждение:

$$h_n(x) := \sup(|f_n - f|, |f_{n+1} - f|, \dots)$$

Заметим, что при фикс. x выпол. $0 \le h_n \le 2g$ почти везде

$$\lim_{n \to +\infty} h_n = \overline{\lim_{n \to +\infty}} |f_n - f| = 0$$
 почти везде

$$2g - h_n \uparrow$$
, $2g - h_n \rightarrow 2g$ почти везде

$$\int\limits_{\mathbb{R}} (2g - h_n) d\mu \to \int\limits_{\mathbb{R}} 2g$$
 (по т. Леви)

$$\int\limits_{\mathbb{X}} 2g - \int\limits_{\mathbb{X}} h \Rightarrow \int\limits_{\mathbb{X}} h_n \to 0$$

$$\int\limits_{\mathbb{X}} |f_n - f| \le \int\limits_{\mathbb{X}} h_n \to 0$$

14 Теорема Фату. Следствия.

$$<\mathbb{X},\mathbb{A},\mu>$$
 – пространство с мерой f_n,f – измеримы, $f_n\geq 0$ $f_n\stackrel{\mu}{\Rightarrow} f$ «почти везде», $\exists C>0\; \forall n\; \int\limits_{\mathbb{X}} f_n d\mu \leq C$

Тогда:

$$\bullet \int_{\mathbb{X}} f \le C$$

Доказательство:

$$g_n:=\inf(f_n,f_{n+1},\dots)$$
 $(g_n\leq g_{n+1}\leq\dots)$ $\lim g_n=\varliminf(f_n)=n$ очти вез $de=\lim f_n=f$ $(g_n\to f$ почти вез $de=\lim f_n=f$ $g_n\to f$ $g_n\to f$

14.1 Следствие 1

$$f_n, f \ge 0$$
 – измер. $f_n \stackrel{\mu}{\Rightarrow} f$ $\exists C \ \forall n \int_{\mathbb{X}} f_n \le C$ Тогда:

$$\bullet \int\limits_{\mathbb{X}} f \le C$$

Доказательство:

 $\exists f_{n_k} \to f$ почти везде

14.2 Следствие 2

 $f_n \ge 0$ – измер. Тогда:

$$\bullet \int_{\mathbb{X}} \underline{lim}(f_n) \ge \underline{lim}(\int_{\mathbb{X}} f_n)$$

Доказательство:

$$\exists n_k \mid \int\limits_{\mathbb{X}} f_{n_k} \underline{k} \to +\infty \underset{n \to +\infty}{\underline{\lim}} \int\limits_{\mathbb{X}} f_n$$
 Рассмотрим g_{n_k} такое, что $g_{n_k} \uparrow$ и $g_{n_k} \to \underline{\lim} f$ Применяем теорему Леви к нер-ву $\int\limits_{\mathbb{X}} g_{n_k} \leq \int\limits_{\mathbb{X}} f_{n_k}$ $\int\limits_{\mathbb{X}} \underline{\lim} f \leq \underline{\lim} \int\limits_{\mathbb{X}} f_n$

15 Теорема о вычислении интеграла по взвешенному образу меры

15.1 Лемма

Пусть у нас есть $\langle X, \mathbb{A}, \mu \rangle$ и $\langle Y, \mathbb{B}, _ \rangle$ и $\Phi : X \to Y$ Пусть $\Phi^{-1}(B) \subset \mathbb{A}$ (Кохась сказал, что это легко, и вроде это следует из предыдущих теорем)

Для $\forall E \subset B$ и $\nu(E) := \mu(\Phi^{-1}(E))$

Тогда:

$$\overline{
u}$$
 - мера на $B,\
u(E)=\int\limits_{\Phi^{-1}(E)}d
u$

Доказательство:

Докажем по определению меры:

$$\nu(\bigsqcup E_i) = \mu(\Phi^{-1}(\bigsqcup E_i)) = \mu(\bigsqcup \Phi^{-1}(E_i)) = \sum \mu \Phi^{-1}(E_i) = \sum \nu E_i$$

15.2 Следствие

Из этого следует что f - измерима относительно $B\Rightarrow f\odot\Phi$ — измерима относительно Γ

15.3 Теорема

Есть пространства $\langle X, \mathbb{A}, \mu \rangle$ и (Y, \mathbb{B}, ν) .

 $\Phi: X \to Y; w \ge 0$ — измеримо

u - взвешенный образ μ

Тогда:

 $\overline{\square}$ ля $\forall f \geq 0$ - измеримо на Y, $f \odot \Phi$ - измерима(относительно μ) $\int_Y f d\nu = \int_X f(\Phi(x)) * \omega(x) d\mu(x)$

Замечание: Тоже верно для f - сумм.

Доказательство:

- ullet $f\odot\Phi$ измерима(из леммы)
- Возьмем в качестве $f=\chi_E, E\in B$ $(f\odot\Phi)(x)=\chi_{\Phi^{-1}(E)}$ определение взвешенного образа меры $\nu(E)=\int\limits_{\Phi^{-1}(E)}\omega d\mu$ доказали первый пункт
- - f ступенчатая $\Rightarrow f = \sum \alpha_k * \chi_{E_k}$ - $\int_Y \sum \alpha_k * \chi_{E_k} d\mu = \sum \alpha_k \chi_{E_k} d\nu = /*firstcase*/ = \sum \alpha_k \int_X \chi_{E_k} (\Phi(x)) * \omega(x) dx = \int_X \sum \alpha_k \chi_{E_k} (\Phi(x)) * \omega(x) d\mu(x) = \int f \odot \Phi * \omega d\mu$

16 Критерий плотности

Есть пространство $< X, \mathbb{A}, \mu >$

u - еще одна мера

 $\omega \geq 0$ - измерима на X

Тогда:

 ω - плотность ν относительно $\mu \Longleftrightarrow Для$ любого $A \in \mathbb{A}: \mu A*inf(\omega) \le \nu(A) \le \mu A*sup_A(\omega)$

Доказательство:

- ullet \Rightarrow очевидно из стандартного свойства интеграла
- =
 - Достаточно доказать, что $\omega>0$ (когда $\omega=0$, отсюда следуется что интеграл =0 из оценок, что $\nu(E)=0$)

— Давайте брать такие
$$A\subset X(\omega>0),$$
 тогда $\nu A=\int\limits_{A}\omega(x)d\mu$

— Тогда для любого
$$A \in \mathbb{A}$$
 $A = A_1 \sqcup A_2$, где $A_1 \subset A(\omega > 0) \& A_2 \subset A(\omega = 0)$

— Получаем, что
$$\nu A=\nu A_1+\nu A_2=\int\limits_{A_1}\omega+0=\int\limits_{A_1}\omega+\int\limits_{A_2}\omega=\int\limits_A\omega$$

— Пусть
$$q \in (0,1)$$
 и $A_j := A(q^j \le \omega(x) < q^{j-1}), j \in Z$. Получается, что $A = \bigsqcup_{j \in Z} A_j$

— Рассмотрим
$$q^j \mu A_j <= \nu A_j <= q^{j-1} * \mu A_j$$
 и $\nu A_j = \int\limits_{A_j} \omega d\mu$

$$-q * \int_{A} \omega d\mu = q * \sum_{A_{j}} \int_{A_{j}} \leq \sum_{A_{j}} q^{j} * \mu A_{j} \leq \sum_{A_{j}} j * A_{j} = \nu(A) \leq 1/q * \sum_{A_{j}} q^{j} * \mu A_{j} \leq 1/q * \sum_{A_{j}} \int_{A_{j}} \omega = 1/q * \int_{A} \omega$$

$$-q * \int\limits_A \omega d\mu \le \nu(A) \le 1/q * \int\limits_A \omega d\mu$$

– Устремим q к 1 и мы победили

17 Лемма о единственности плотности

 $f,g \in L(x)$.

Пусть
$$\forall A$$
 - измерима и $\int_A f = \int_A g$.

Тогда:

f = g почти везде

Следствие:

Плостность ν относительно μ определена однозначно с точностью до μ почти везде.

Доказательство:

- ullet Вместо двух функций давайте рассмотрим одну h=f-g и $\forall \int\limits_A h=0.$ Пусть $A_+=X(h\geq 0)$ и $A_-=X(h<0)$
- $\bullet \int_{A_+} |h| = \int_{A_+} h = 0$

$$\int_{A_{-}} |h| = -\int_{A_{-}} h = 0$$

ullet Пусть $X=A_+\sqcup A_-$. Тогда $\int\limits_X |h|=\int\limits_{A_+} |h|+\int\limits_{A_-} |h|=0 \Rightarrow h=0$ почти везде.

18 Лемма о множестве положительности

Пусть пространство $< X, \mathbb{A} >$ и ϕ - заряд Тогда:

 $\forall A \in \mathbb{A} \exists B \subset A : \phi(B) \leq \phi(A)$, где B - множество положительности Доказательство:

- Пусть $(\phi(A) \ge 0) \&\& (B = \emptyset) \to \phi(A) \ge 0$
- Е множество ϵ положительности(MeП), если $\forall C \subset E$ измеримого $\phi(C) \geq -\epsilon$
- Утверждение: Пусть Е МеП. Тогда для любого измеримого $C \subset E$ выполнено $\phi(C) \geq \phi(A)$
 - 1. Если A $Me\Pi \Rightarrow C = A$
 - 2. Пусть A не МеП. Тогда существеут $c_1\subset A:\phi(C_1)<-\epsilon$ и $\phi(A)=\phi(A_1)+\phi(C)$ Тогда $A_1=A-C_1$ и $\phi(A_1)>\phi(A)$
 - 3. A_1 Ме $\Pi \Rightarrow$ хорошо
 - 4. Иначе повторяем тоже самое с C_2 и так далее пока не будет хорошо
 - 5. Процесс конечен так как все C_i дизьюнктны и $\phi(\bigsqcup C_i) \neq -\infty$.
- Построим В: C_1 множество 1 положительности. $C_2-1/2$. Тогда $B=\cap C_i$ МеП
- $\phi(B) = \lim_{i \to \infty} \phi(C_i) \ge \phi(A)$

19 Теорема Радона—Никодима

Пусть есть пространство (X, \mathbb{A}, μ)

u - мера из $\mathbb A$

Обе меры конечные и $\nu \prec \mu$.

Тогда:

 $\overline{\exists!f:X}->R^\infty$ (с точн до почти везде), которая является плотностью ν относительно μ и при этом $(f-\mu)$ суммируема

Доказательство:

- единственность из леммы
- ullet строим кандидата на роль f. $P = \{p(x) \geq 0, | \forall E : \int\limits_E p * d\mu \leq \nu(E) \}$
 - $1. P \neq \emptyset$ и $0 \in P$
 - 2. $p1, p2 \in P \Rightarrow h = max(p_1, p_2) \in P$ $\forall E \int_E h d\mu = \int_{E(p_1 \geq p_2)} h d\mu + \int_{E(p_1 < p_2)} h d\mu = \int_{E(p_1 \geq p_2)} p1 + \int_{E(p_1 < p_2)} p_2 \leq \nu(E(p_1 \geq p_w)) + \nu(E(p_1 < p_2)) = \nu E$ По индукции $max(p_1...p_n) \in P$
 - 3. $I = \sup\{\int_X p d\mu | p \in P\}$ \exists последовательсность $f_1 \leq f_2 \leq ... \in P : \int_Y f_n \to I$
 - 4. Рассмотрим $p_1, p_2 ... : \int_X p_n \to I$, а также $f_n = max(p_1 ... p_n) \in P$
 - 5. Из предыдущих двух получаем, что $f = \lim_{E} f_n$ и $\int_{E} = /*thLevi*$ $/ = \lim_{E} \int_{E} f_n \le \nu E$, а следовательно $\int_{X} f = \lim_{X} \int_{X}^{E} f_n = I \le \nu(X)$
 - 6. Отлично, проверим, что f плотность ν относительно μ .
 - Докажем, что это не так: $\exists E_0: \nu E_0 > \int\limits_{E_0} f d\mu$
 - $-\mu E_0>0$ (иначе интеграл равено нулю и мера равна нулю из абстрактной непрерывности)

- Тогда μE_0 конечна. Возьмем a>0 : $\nu E_0 \int\limits_{E_0} f d\mu > a * \mu E_0$
- Тут недостаточно термина мер, поэтому рассмотрим заряд $\phi(E)=\nu E-\int\limits_E f d\mu-a*\mu E$
- Пусть $\phi(E_0) > 0$. Возьмем МП $B \subset E_0 : \phi(B) \ge \phi(E_0) > 0$. Тогда $\nu(B) = \phi(B) + \int_B f * d\mu + a * \mu B \ge \phi(B) > 0$
- Проверим, что $f + a * \chi_B \in P$. Тогда по определению $\int_E (f + a * \chi_B) d\mu = \int_{E \setminus B} F * d\mu + \int_{E \cap B} f * d\mu + a * \mu(B \cap E) = / * E \leftrightarrow E \cap B * / = \int_{E \setminus B} f + \nu(E \cap b) \phi(E \cap B) \le / * def_class_P_and_f \in P * / \le \nu(E \setminus B) + \nu(E \cap B) \phi(E \cap B) = \nu E \phi(E \cap B) \le / * \phi \ge 0 * / \le \nu E$
- Проверим, что $\int_X f + a * \chi_B = I + a * \mu B > I$, что противоречит определению I

20 Лемма об оценке мер образов кубов из окрестности точки дифференцируемости

 $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$

 $a \in O, \Phi \in C^1(O)$

Возьмём $c > |\Phi'(a)| \neq 0$

тогда $\exists \delta>0$: \forall кубической ячейки $Q,Q\subset B(a,\delta), a\in Q$ выполняется $\lambda\Phi(Q)< c\cdot\lambda Q$

Доказательство

 $\Phi(Q)$ измеримо, так как образ измеримого множества при гладком отображении измерим

 $L := \Phi'(a), L$ обратимо, так как $|L| \neq 0$.

$$\Phi(x) = \Phi(a) + L(x-a) + o(x-a)$$

$$a + L^{-1}(\Phi(x) - \Phi(a) = x + o(x - a)$$

Можем писать о малое, так как растяжение произошло не более чем в $|L^{-1}|$ раз, а $|L| \neq 0$

Пусть
$$\Psi(x) := a + L^{-1}(\Phi(x) - \Phi(a))$$

$$\forall \epsilon > 0 \exists B(a,\delta),$$
 такой, что при $x \in B(a,\delta) |\Psi(x) - x| < \frac{\epsilon}{\sqrt{m}} |x-a|$ (так

как $\Psi(x)$ это почти x, только плюс o(a-x))

 $a\in Q\subset B(a,\delta)$, где Q - ку со стороной h

 $x\in Q,$ тогда $|a-x|<\sqrt{m}\cdot h$ (так как диагональ m-мерного куба со стороной h равна $\sqrt{m}\cdot h)$

Тогда $|\Psi(x) - x| < \epsilon h$

При $x, y \in Q, i \in \{1...m\}$

$$|\Psi(x)_i - \Psi(y)_i| \le |\Psi(x)_i - x_i| + |\Psi(y)_i - y_i| + |x_i - y_i| \le |\Psi(x) - x| + |\Psi(y) - y| + h < (1 + 2\epsilon)h$$

 $\Psi(Q) \subset$ кубу со стороной $(1+2\epsilon)h$

$$\lambda(\Psi(Q)) < (1 + 2\epsilon)^m \lambda Q$$

Ф выражается через Ψ через сдвиги и линейные преобразования. Тогда $\lambda(\Phi(Q))=|det L|\cdot \lambda \Psi(Q)\leqslant |det L|\cdot (1+2\epsilon)^m\cdot \lambda Q$

Возьмём ϵ так, чтобы $|det L| \cdot (1+2\epsilon)^m$ было меньше c. Тогда при таком ϵ

$$\lambda(\Phi(Q)) < c \cdot \lambda Q$$

21 Лемма «Вариации на тему регулярности меры Лебега»

 $f: O \subset \mathbb{R}^m \to \mathbb{R}^m$

 $A \subset O$, A - открыто.

 $A\subset Q$ (кубическая ячейка) $\subset \overline{Q}\subset O$, то есть граница A не лежит на границе O.

Тогда

$$\inf_{A\subset G\subset O, G-open\ set}(\lambda G\cdot \sup_G(f))=\lambda A\cdot \sup_A f$$

Доказательство

Докажем, что левая часть ≥ и ≤ правой

 \geqslant очевидно, так как правая часть - нижняя граница для всего, встречающегося под inf

Докажем ≤

1. $\lambda A = 0$. Тогда правая часть = 0.

$$A \subset \overline{Q} \Rightarrow \sup f < +\infty$$

$$\overline{Q}$$
 - компакт, $\alpha := dist(\overline{Q}, \partial O) > 0$

Для множества $G:A\subset G\subset \frac{\alpha}{2}$ —окрестности ячейки Q

Назовём Q_1 кубическую ячейку, которая больше Q и у которой каждая сторона отстоит на $\frac{\alpha}{2\sqrt{m}}$ от соответствующей стороны Q.

$$h = \frac{\alpha}{2\sqrt{m}}$$

$$A \subset G \subset Int(Q_1)$$

$$\sup_{G} f \leqslant \sup_{\overline{Q_1}} f < +\infty$$

При этом λG может быть выбрана сколь угодно близко к $\lambda A=0$ по регулярности меры Лебега.

2. $\lambda A > 0$, $\sup_A f < c$

Возьмём c_1 :

$$\sup_{A} f < c_1 < c$$

Выберем ϵ так чтобы

$$\epsilon \cdot c_1 < \lambda A \cdot (c - c_1)$$
 (*)

 G_{ϵ} - такое множество, что $A \subset G_{\epsilon}, G_{\epsilon}$ -открытое, $\lambda(G_{\epsilon} \setminus A) < \epsilon$

$$G_1 := f^{-1}((-\infty; c_1)) \cap G_{\epsilon}$$
 - открытое

$$\lambda(G_1 \setminus A) < \epsilon$$

$$\lambda G_1 \cdot \sup_{G_1} f \leqslant (\lambda A + \epsilon) \cdot c_1 < \lambda A \cdot c$$
 (из (*))

(так как $G \subset f^{-1}(-\infty; c_1)$, то есть f на G_1 не больше c_1)

$$\inf(\lambda G \cdot_G f) < \lambda A \cdot c$$

Переходя к inf по c, получаем что требовалось

22 Теорема о преобразовании меры при диффеоморфизме

 $\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m$ - Диффеоморфизм, $\forall A\in\mathbb{M}^m,A\subset O$ $\lambda(\Phi(A))=\int_A|\det\Phi'(x)|d\lambda(x)$

ТООО: Илья

23 Теорема о гладкой замене переменной в интеграле Лебега

 $\Phi:O\subset\mathbb{R}^m o\mathbb{R}^m$ - диффеоморфизм

 $O' = \Phi(O)$ - открытое

f задана на $O', f \geqslant 0$, Измерима по Лебегу, тогда

 $\int_{O'} f(y) \cdot d\lambda(y) = \int_{O} f(\Phi(x)) \cdot |\det \Phi'(x)| \cdot d\lambda(x)$

Доказательство:

Изи

 $u(A) = \lambda \Phi(A), \nu$ имеет плотность $J\Phi$ по отношению к λ Применить теорему об интеграле по взвешенному образу меры

24 Теорема (принцип Кавальери)

 (X,α,μ) и (Y,β,ν) - пространства с мерами, причем $\mu,\nu-\sigma$ -конечные и полные

 $m=\mu imes
u,\, C \in lpha imes eta$, тогда:

- 1. При п.в. $x C_x$ измеримо (ν -измеримо), т.е. $C_x \in \beta$
- 2. Функция $x \to \nu C_x$ измеримая (в широком смысле) на X

NB: ϕ — измерима в широком смысле, если она задана при п.в. x, и $\exists f: X \to R'$ - измеримая и $\phi = f$ п.в. При этом $\int_X \phi = \int_X f$ (по опр.)

3.
$$mC = \int_X \nu(C_x) \cdot d\mu(x)$$

<u>Доказательство:</u> Рассмотрим D — совокупность все множеств, для которых утв. теоремы верно.

 $ho = lpha \otimes eta - \pi/$ к изм. пр-ков.

- 1. $\rho \subset D$ $C = A \times B$. то есть $\forall x C_x = \emptyset i f x \notin A, Bi f x \in A$ $(\mu A < +\infty, \nu B < +\infty)$ $x \to \nu(C_x)$, функция $\nu(B) \cdot \Xi_A(x)$ изм. $\int_X \nu(C_x) d\mu = \nu B \int_X \Xi_A(x) d\mu(x) = \nu B \cdot \mu A = mC$
- 2. $E_i \in D, E_i dis \Rightarrow E := \sqcup E_i \in D$ при п.в. $x \ (E_i)_x$ измеримы при п.в. x все $(E_i)_x$ измеримы, $E_x = \sqcup (E_i)_x$ изм. $\nu E_x = \sum \nu (E_i)_x \ (\nu (E_i)_x \text{изм. Как функция от } x) \Rightarrow \text{функция } x \to \nu E_x$ измерима $\int_X \nu E_x d\mu(x) = \sum_i \int \nu(E_i)_x d\mu(x) = \sum_i m E_i = m E$
- 3. $E_i \in D$, $E_1 \sup E_2 \sup \ldots$; $mE_i < +\infty$. Тогда $E := \cap E_i \in D$ $\int_X \nu(E_i)_x d\mu = mE_i < +\infty(*)$

функция $x \to \nu(E_i)_x$ — суммируема \Rightarrow п.в. конечна. при всех x $(E_i)_x \downarrow E_x$, т.е. $(E_1)_x \sup(E_2)_x \sup\dots$ и $\cap (E_i)_x = E_x$ при п.в. x $\nu(E_i)_X$ — конечны (для таких x).

Тогда E_x — измерима и $\lim \nu(E_i)_x = \nu E_x$ по непр-ти меры ν сверху. (Th. Лебега) $|\nu(E_i)_x| \leq \nu(E_1)_x$ — сумм. \Rightarrow функция $x \to \nu E_x$ — изм. $\int_X \nu E_x d\mu = \lim \int_X \nu(E_i)_x d\mu = \lim m E_i = m E$ (нерп. сверху меры m). Этот предельный переход корректен как раз по теореме Лебега $(f_n \to f \text{ п.в. } g: |f_n| \leq g - \text{сумм. Тогда } \int f_n \to \int f$).

NB: мы доказали про пересечения и про объединения (пусть пересечения убывающие, а объединения — дизъюнктные, но это лечится). Поэтому $\cap_j(\cup_i A_{i,j}) \in D$, если $A_{i,j} \in \rho$ ($\rho \subset D$).

- 4. $mE = 0 \Rightarrow E \in D$ $\exists H \in D, H$ имеет вид $\cap (\cup A_{i,j})$, где все $A_{i,j} \in \rho$ $E \subset H, mH = 0$ из п.5 т. о продолжении (ЧТО?! поясните плез) $0 = mH = \int_X \nu H_x d\mu(x) \Rightarrow \nu H_x \ 0 \ (= 0$ при п.в. x). $E_x \subset H_x \Rightarrow E_x \nu$ -изм. (из полноты ν) и $\nu E_x = 0$ п.в. x $\int_X \nu E_x d\mu = 0 = mE$
- 5. C неизм, $mC < +\infty$. Тогда $C \in D$. $C = H \setminus e$, где me = 0, H вида $\cap (\cup A_{i,j})$. $C_x = H_x \setminus e_x$ изм. при п.в. x $\nu e_x = 0$ п.в.x (проверено в п.4) $\nu C_x = \nu H_x = \nu e_x$ изм. п.в.x $\int_X \nu C_x = \int_X \nu H_x \int_X \nu e_x = \int \nu H_x = mH = mC$.
- 6. C-m-изм. произвольное $X=\sqcup X_k, Y=\sqcup Y_n \; (\mu X_k-\text{кон},\; \nu Y_n-\text{кон.}).$ $C=\sqcup_{k,n}(\subset\cap(X_k\times Y_n))\in D\; (\text{по п.2})\; (\text{т.к.}\;\subset\cap(X_k\times Y_n)\in D\; \text{по п.5})$

25 Теорема Тонелли

< X, $\alpha,\mu>$, < Y, $\beta,\nu>$ - пространства с мерой μ,ν - σ -конечны, полные $m=\mu\times\nu$

 $f: \mathbb{X} \times \mathbb{Y} \to \overline{R}, \, f \geq 0, \, \mathrm{f}$ - измерима относительно m Тогда:

- 1. при *почти всех* $x \in X$ f_x измерима на \mathbb{Y} , где $f_x : \mathbb{Y} \to \overline{R}$, $f_x(y) = f(x,y)$ (симметричное утверждение верно для у)
- 2. Функция $x \mapsto \phi(x) = \int_{\mathbb{Y}} f_x d\nu = \int_{\mathbb{Y}} f(x,y) d\nu(y)$ измерима* на \mathbb{X} (симметричное утверждение верно для у)

$$3. \int\limits_{\mathbb{X} \times \mathbb{Y}} f(x,y) dm = \int\limits_{\mathbb{X}} \phi(x) d\mu = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{Y}} f(x,y) d\nu(y)) d\mu(x) = \int\limits_{\mathbb{Y}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x)) d\nu(y) d\mu(x) = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x)) d\mu(x) = \int\limits_{\mathbb{X}} (\int\limits_{\mathbb{X}} f(x,y) d\mu(x) d\mu(x)$$

Доказательство:

Докажем в 3 пункта, постепенно ослабляя ограничения на функцию f

- 1. Пусть $C \subset \mathbb{X} \times \mathbb{Y}$ измеримо относительно m, $f = \chi_C$
 - (a) $f_x(y) = \chi_{C_x}(y)$, где C_x сечение по х C_x измеримо при noumu вcex х, так как это одномерное сечение, таким образом f_x измеримо, при noumu вcex х.
 - (b) $\phi(x) = \int\limits_{\mathbb{Y}} f_x d\nu = \nu C_x$ по принципу Кавальери это измеримая* функция.

(c)
$$\int_{\mathbb{X}} \phi(x) d\mu = \int_{\mathbb{X}} \nu C_x d\mu \stackrel{\text{Кавальери}}{=} mc \stackrel{\text{опр.инт}}{=} \int_{\mathbb{X} \times \mathbb{Y}} \chi_C dm = \int_{\mathbb{X} \times \mathbb{Y}} f(x,y) dm$$

- 2. Пусть f ступенчатая, $f \ge 0$, $f = \sum_{\text{кон}} a_k \chi_{C_k}$
 - (a) $f_x = \sum a_k \chi_{(C_k)_x}$ измерима при почти всех х
 - (b) $\phi(x) = \sum a_k \nu(C_k)_x$ измерима* как конечная сумма измеримых

(c)
$$\int_{\mathbb{X}} \phi(x) = \int_{\mathbb{X}} \sum_{\text{KOH}} a_k \nu(C_k)_x d\mu = \sum_{\text{KOH}} \int_{\mathbb{X}} a_k \nu(C_k)_x d\mu = \sum_{\mathbb{X} \times \mathbb{Y}} f dm$$

3. Пусть f - измеримая, $f \ge 0$ $f = \lim_{n \to +\infty} g_n$, где $g_n \ge 0$ - ступенчатая, g_n - монотонно возрастает к f (из Теоремы об апроксимации измеримой функции ступенчатыми)

(a)
$$f_x = \lim_{n \to +\infty} (g_n)_x \Rightarrow f_x$$
 - измерима при *noчти всех* х.

(b)
$$\phi(x) = \int_{\mathbb{Y}} f_x d\nu \stackrel{\text{т.Леви}}{=} \lim \int_{\mathbb{Y}} (g_n)_x d\nu$$
 $\phi_n(x) := \int_{\mathbb{Y}} (g_n)_x d\nu$ - измерима по пункту 1
 $0 \le (g_n)_x$ - возрастает, тогда $\phi(x)$ - измерима, $\phi_n(x) \le \phi_{n+1}(x) \le \dots$ и $\phi_n(x) \to \phi(x)$

(c)
$$\int_{\mathbb{X}} \phi(x) d\mu \stackrel{\text{т.Леви}}{=} \lim_{n \to +\infty} \int \phi_n(x) d\mu \stackrel{\text{п.2}}{=} \lim_{n \to +\infty} \int_{\mathbb{X} \times \mathbb{Y}} g_n dm \stackrel{\text{т.Леви}}{=} \int f dm$$

26 Формула для Бета-функции

$$B(s,t) = \int\limits_0^1 x^{s-1}(1-x)^{t-1}, \ \text{где s и t} > 0 \text{ - Бета-функция}$$

$$\Gamma(s) = \int\limits_0^{+\infty} x^{s-1}e^{-x}dx, \ \text{где s} > 0, \ \text{тогда} \ B(s,t) = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$$

$$\underline{\underline{Hoka3ateльсtbo:}}$$

$$\Gamma(s)\Gamma(t) = \int\limits_0^{+\infty} x^{s-1}e^{-x}(\int\limits_0^{+\infty} y^{t-1}e^{-y}dy)dx = \begin{bmatrix} y \to u \\ y = u - x \end{bmatrix} = \int\limits_0^{+\infty} x^{s-1}(\int\limits_x^{+\infty} (u - x)^{t-1}e^{-u}du)dx = \\ = \int\limits_0^{+\infty} \dots = \text{меняем порядок интегрирования}$$

$$x \ge 0$$

$$u \ge x$$

$$= \int\limits_0^{+\infty} du \int\limits_0^u dx (x^{s-1}(u - x)^{t-1}e^{-u}) = \begin{bmatrix} x \to v = \\ x = uv \end{bmatrix} = \int\limits_0^{+\infty} e^{-u}(\int\limits_0^1 u^{s-1}v^{s-t}u^{t-1}(1 - v)^{t-1}udv)du = \\ = \int\limits_0^{+\infty} u^{s+t-1}e^{-u}(\int\limits_0^1 v^{s-1}(1 - v)^{t-1}dv)du = B(s,t)\Gamma(s+t), \ \text{чтд.}$$

27 Объем шара в \mathbb{R}^m

$$\begin{split} &B(0,R)\subset R^{m}\\ &\lambda_{m}(B(0,R))=\int\limits_{B(0,R)}1d\lambda_{m}=\int \mathscr{J}=\int\limits_{0}^{R}dr\int\limits_{0}^{\pi}d\phi_{1}...\int\limits_{0}^{\pi}d\phi_{m-2}\int\limits_{0}^{2\pi}d\phi_{m-1}r^{m-1}(sin\phi_{1})^{m}\\ &\int\limits_{0}^{\pi}(sin\phi_{k})^{m-2-(k+1)}=B(\frac{m-k}{2};\frac{1}{2})=\frac{\Gamma(\frac{m-k}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-k}{2}+\frac{1}{2})}\\ &\rightarrow=\frac{R^{m}}{m}\frac{\Gamma(\frac{m-1}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m}{2})}\frac{\Gamma(\frac{m-2}{2})\Gamma(\frac{1}{2})}{\Gamma(\frac{m-1}{2})}...\frac{\Gamma(1)\Gamma(\frac{1}{2})}{\Gamma(\frac{3}{2})}2\pi=\\ &=\frac{\pi R^{m}}{\frac{m}{2}}\frac{\Gamma(\frac{1}{2})^{m-2}}{\Gamma(\frac{m}{2})}=\frac{\pi^{\frac{m}{2}}}{\Gamma(\frac{m}{2}+1)}R^{m} \end{split}$$

28 Теорема о вложении пространств L^p

$$\mu E < +\infty \ 1 \le s < r \le +\infty$$
 Тогда:

- 1. $L_r(E,\mu) \subset \mathcal{L}_s(E,\mu)$
- 2. $\forall f$ измеримы $||f||_s \leq \mu E^{1/s-1/r}||f||_r$

Доказательство:

- 2 = > 1 (Это очевидно: достаточно рассмотреть неравенство из пункта 2. Из него следует, что $||f||_s < ||f||_r$. см. опред. L_p)
- Рассмотрим два случая:

$$1. \ r = +\infty \ (\text{очев.})$$

$$||f||_s \le (\int |f|^s * 1)^{1/s} \le ((esssup|f|)^s \int 1 d\mu)^{1/s} = ||f||_\infty * \mu E^{1/s}$$
 (последнее по опред. $esssup$)

 $2. r < +\infty$

$$(||f||_s)^s = \int |f|^s * 1d\mu \le (\int |f|^r)^{\frac{s}{r}} * (\int 1^{\frac{r}{r-s}})^{\frac{(r-s)}{r}} = (||f||_r)^s * \mu E^{1-\frac{s}{r}}$$

(существенный шаг: применить неравество Гельдера)

29 Теорема о сходимости в L_p и по мере

 $1 \leq p < +\infty$ $f_n \in L_p(\mathbb{X}, \mu)$ Тогда:

1. \bullet $f \in L_p$

 $ullet f_n o f$ в L_p

Тогда: $f_n \stackrel{\mu}{\Rightarrow} f$ (по мере)

2. • $f_n \stackrel{\mu}{\Rightarrow} f$ (либо если $f_n \to f$ почти везде)

• $|f_n| \le g$ почти при всех n , $g \in L_p$

Тогда: $f_n \to f$ в L_p

Доказательство:

1.

$$X_n(\epsilon) := X(|f_n \to f| > \epsilon)$$

$$\mu X_n(\epsilon) = \int\limits_{X_n} (\frac{f_n - f}{\epsilon})^p = \frac{1}{\epsilon^p} \int\limits_{X_n} |f_n - f|^p \leq \frac{1}{\epsilon^p} \int\limits_{X} |f_n - f|^p = \frac{1}{\epsilon^p} (||f_n - f||_p)^p \overset{n \to \infty}{\longrightarrow}$$

2. $f_n \stackrel{\mu}{\Rightarrow} f$ Тогда $\exists n_k \mid f_{n_k} \to f$ почти везде.

Тогда $|f| \leq g$ п. в.

$$|f_n-f|^p \leq (2g)^p$$
 – сумм. функции т. к. $g \in L_p$

$$||f_n - f||_p = \int_X |f_n - f|^p d\mu \stackrel{n \to \infty}{\to} 0$$
 (по теореме Лебега)

30 Полнота L^p

$$L_p(E,\mu)$$
 $1 \le p < \infty$ – полное

То есть любая фундаментальная последовательность сходиться по норме $||f||_p$.

$$\forall \epsilon > 0 \; \exists N \; \forall n, k \; ||f_n - f_k|| < \epsilon \Rightarrow \exists f \; | \; ||f_n - f|| \to 0$$

Доказательство:

1. Построим f.

Рассмотрим фундаментальную последовательность f_n .

$$\exists N_1$$
 при $n = n_1 \; k > N_1 \; ||f_{n_1} - f_k|| < \frac{1}{2}$

$$\exists N_2$$
 при $n=n_2$ $k>N_2,N_1$ $||f_{n_2}-f_k||<rac{1}{4}$

. . .

Тогда:
$$\sum_{k=1}^{\infty} ||f_{n_{k+1}} - f_{n_k}|| < 1$$

$$f = \lim_{k \to \infty} f_{n_k}$$

Докажем, это функция f корректно задана:

$$\bullet \ S_N(x) := \sum_{k=1}^N |f_{n_{k+1}} - f_{n_k}|$$

$$||S_N||_p \le \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}|| < 1$$

Тогда по Теореме Фату: $||S||_p \le 1$

Тогда $|S|^p$ – суммируема

Тогда S(x) конечна при п. в. x и ряд $\sum f_{n_{k+1}} - f_{n_k}$ абс. сход., а значит и просто сходиться при п. в. x

$$f := f_{n_1} + \sum_{k \to \infty} f_{n_{k+1}} - f_{n_k}$$
 т. е. $f = \pi$. в. $\lim_{k \to \infty} f_{n_k}$

2. Проверим, что $f_n \to f$ в L_p

Т. к.
$$f_n$$
 – фунд., то $\forall \epsilon > 0 \; \exists N \; \forall n, n_k > N \; ||f_n - f_{n_k}|| < \epsilon \Rightarrow ||f_n - f_{n_k}||^p = \int_E |f_n - f_{n_k}|^p d\mu < \epsilon^p$

Тогда по теореме Фату:
$$\int_E |f - f_n|^p \le \epsilon^p$$

Тогда
$$\forall \epsilon > 0 \; \exists N \; \forall n > N \; ||f - f_n||_p < \epsilon$$

Замечание: L_{∞} – полное (упражнение)

- 31 Лемма Урысона
- 32 Плотность в L^p непрерывных финитных функций
- 33 Теорема о непрерывности сдвига
- 34 Теорема об интеграле с функцией распределения

 (\mathbb{R}, B, X)

 $f:\mathbb{R}\to\mathbb{R}, f\geq 0$, изм. по Борелю, п.в. конечн.

 $h:X o \overline{\mathbb{R}}$ с функцией распределения H(t)

 μ_H – мера Бореля-Стилтьеса (мера Лебега-Стилтьеса на B)

Тогда
$$\int\limits_X f(h(x))d\mu(x) = \int\limits_{\mathbb{R}} f(t)d\mu_H(t)$$

Доказательство: Следует из теоремы о вычислении интеграла по взвешенному образу меры.

35 Теорема о свойствах сходимости в гильбертовом пространстве

- 1. $x_n \to x, y_n \to y \Rightarrow \langle x_n, y_n \rangle \to \langle x, y \rangle$
- 2. $\sum x_k$ сходится, тогда $\forall y : \sum \langle x_k, y \rangle = \langle \sum x_k, y \rangle$
- 3. $\sum x_k$ ортогональный ряд, тогда $\sum x_k$ $\operatorname{cx} \Leftrightarrow \sum |x_k|^2$ сходится, при этом $|\sum x_k|^2 = \sum |x_k|^2$

Доказательство

1.
$$|\langle x_k, y_k \rangle - \langle x, y \rangle| = |\langle x_k, y_k \rangle - \langle x_k, y \rangle + \langle x_k, y \rangle - \langle x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle| + |\langle x_k - x, y \rangle| \le |\langle x_k, y_k - y \rangle| + |\langle x_k - x, y \rangle$$

2.
$$S_n = \sum_{k=1}^n x_k$$

 $< \sum_{k=1}^n x_k, y > = \sum_{k=1}^n < x_k, y >$

Устремляя $n \times \infty$ получаем требуемое равенство

3. Обозначим
$$C_n := \sum_{k=1}^n |x_k|^2$$

$$|S_n|^2 = <\sum_{k=1}^n x_k, \sum_{j=1}^n x_j> =\sum_{k,j}^n < x_k, x_j> =\sum_{k=1}^n < x_k, x_k>$$
 (так как $k \neq j \Rightarrow < x_k, x_j> = 0$) $=\sum_{k=1}^n |x_k|^2 = C_n$

Аналогично, $|S_n - S_m|^2 = |C_n - C_m|$

Тогда C_n, S_n фунадментальны одновременно \Rightarrow сходятся одновременно при устремлении $n \ \kappa \ \infty$

36 Теорема о коэффициентах разложения по ортогональной системе

$$\{e_k\}$$
 — ортогональная система в $\mathbb{H},\ x\in\mathbb{H}, x=\sum_{k=1}^{+\infty}c_k\cdot e_k$ Тогда:

1.
$$\{e_k\}$$
 — Л.Н.З.

2.
$$c_k = \frac{\langle x, e_k \rangle}{||e_k||^2}$$

3. $c_k \cdot e_k$ — проекция x на прямую $\{te_k, t \in \mathbb{R}(\mathbb{C})\}$ Иными словами $x = c_k \cdot e_k + z$, где $z \perp e_k$

Доказательство:

1. Пусть $\sum\limits_{k=1}^N \alpha_k e_k = 0$. Умножим скалярно на $e_m \ (1\leqslant m\leqslant N)$

Получим: $\alpha_m ||e_m||^2 = 0 \Rightarrow \alpha_m = 0 \Rightarrow$ комб. тривиальная \Rightarrow Л.Н.З.

- $2. < x, e_m > = \sum_{k=1}^{+\infty} < c_k e_k, e_m > = c_m \cdot ||e_m||^2$ (верно в силу сходимости ряда)
- 3. $x = c_k \cdot e_k + z$? $z \perp e_k$ Докажем это: $< z, e_k > = < x c_k e_k, e_k > = c_k \cdot ||e_k||^2 c_k \cdot ||e_k||^2 = 0$

37 Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя

 $\{e_k\}$ — ортогональная система в $\mathbb{H}, \ x \in \mathbb{H}, n \in \mathbb{N}$ $S_n = \sum\limits_{k=1}^n c_k(x)e_k, \ \mathcal{L} = Lin(e_1,e_2,...) \subset \mathbb{H}$ Тогда:

- 1. S_n орт. проекция x на пр-во \mathcal{L} . Иными словами $x=S_n+z,\ z\bot\mathcal{L}$
- 2. S_n наилучшее приближение x в $\mathcal{L}(||x S_n|| = \min_{y \in \mathcal{L}} ||x y||)$
- $|3.||S_n|| \leq ||x||$

Доказательство:

1.(a)
$$z = x - S_n$$

(b)
$$z \perp \mathcal{L} \Leftrightarrow \forall k = 1, 2...n : z \perp e_k$$

(c)
$$\langle z, e_k \rangle = \langle x, e_k \rangle - \langle S_n, e_k \rangle = c_k ||e_k||^2 - c_k ||e_k||^2 = 0$$

2.
$$||x - y||^2 = ||S_n + z - y||^2 = ||(S_n - y) + z||^2 = ||S_n - y||^2 + ||z||^2 \ge ||z||^2 = ||x - S_n||^2$$

3.
$$||x||^2 = ||S_n||^2 + ||z||^2 \ge ||S_n||^2$$

Следствие: Неравенство Бесселя

$$\forall \{e_k\} - \text{O.C.} : \sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 \le ||x||^2$$

38 Теорема Рисса — Фишера о сумме ряда Фурье. Равенство Парсеваля

$$\{e_k\}$$
 – орт. сист. в $\mathbb{H}, x \in \mathbb{H}$

Тогда:

1. Ряд Фурье
$$\sum\limits_{k=1}^{+\infty}c_k(x)e_k$$
 сх-ся в $\mathbb H$

2.
$$x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow \forall k \ z \perp e_k$$

3.
$$x = \sum_{k=1}^{+\infty} c_k e_k \Leftrightarrow \sum_{k=1}^{+\infty} |c_k|^2 ||e_k||^2 = ||x||^2$$

Доказательство:

1. Ряд Фурье – ортогональный ряд его сходимость \Leftrightarrow сходимости $\sum_{k=1}^{+\infty}|c_k|^2\|e_k\|^2$ $\sum_{k=1}^{+\infty}|c_k|^2\|e_k\|^2\leq \|x\|^2$ по неравенству Бесселя

2.
$$\langle z, e_k \rangle = \langle x - \sum_i c_i e_i, e_k \rangle = \langle x, e_k \rangle - \sum_{i=1}^{+\infty} \langle c_i(x) e_i, e_k \rangle = 0$$

3. \Rightarrow - утв. 3 теоремы о св-вах сх-ти в гильбертовом пр-ве \Leftarrow Из п. 2 ряд ортог. $\|x\|^2 = \|\sum c_k e_k\|^2 + \|z\|^2 = \sum |c_k|^2 \|e_k\|^2 + \|z\|^2 = \|x\|^2 + \|z\|^2 \Rightarrow z = 0$

39 Теорема о характеристике базиса

 $\{e_k\}$ – орт. сист. в $\mathbb H$

Тогда эквивалентны следующие утверждения:

- 1. e_1 базис
- 2. $\forall x,y \in \mathbb{H} \ \langle x,y \rangle = \sum c_k(x) \overline{c_k(y)} \|e_k\|^2$ (обобщенное уравнение замкнутости)
- $3. \{e_k\}$ замкн.
- $4. \{e_k\}$ полн.
- 5. $Lin(e_1,e_2,\ldots)$ плотна в $\mathbb H$

Доказательство:

$39.1 \quad 1 \Rightarrow 2$

 $x=\sum c_k \underline{(x)e_k}$ – единственно (из геом. соображений: $c_k e_k$ – проекция) $\langle e_k,y\rangle=\overline{\langle y,e_k\rangle}=\overline{c_k(y)}\|e_k\|^2$ $\langle x,y\rangle=\sum c_k(x)\langle e_k,y\rangle=\sum c_k(x)\overline{c_k(y)}\|e_k\|^2$

$39.2 \quad 2 \Rightarrow 3$

$$y := x$$

 $||x||^2 = \sum |c_k(x)|^2 ||e_k||^2$ (см. п. 3 из опр.)

$39.3 \quad 3 \Rightarrow 4$

Пусть $\forall k$ $x_0 \perp e_k$ $c_k(x_0) = \frac{\langle x_0, e_k \rangle}{\|e_k\|^2} = 0$ $\|x_0\|^2 = \sum |c_k(x_0)|^2 \|e_k\|^2 = 0$ (см. п. 2 из опр.)

$39.4 \quad 4 \Rightarrow 1$

 $x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow$ (т. Рисса-Фишера (2)) $\forall k \ z \bot e_k \Rightarrow$ (из полноты) z = 0 (см. п. 1 из опр.)

$39.5 \quad 4 \Rightarrow 5$

Пусть $ClLin(e_1, e_2, ...) \neq \mathbb{H}, x \in \mathbb{H} \setminus ClLin(e_1, e_2, ...)$ из т. Рисса-Фишера (2): $x = \sum_{k=1}^{+\infty} c_k e_k + z \Rightarrow \forall k \ z \bot e_k \Rightarrow x = \sum_{k=1}^{+\infty} c_k e_k \Rightarrow x \in ClLin(e_1, e_2, ...)$ Противоречие.

$39.6 \quad 5 \Rightarrow 4$

 $\forall k \ x_0 \bot e_k \Rightarrow x_0 \bot Lin(e_1, e_2, \ldots) \Rightarrow x_0 \bot ClLin(e_1, e_2, \ldots) (= \mathbb{H}) \Rightarrow x_0 \bot x_0 \Rightarrow \|x_0\|^2 = 0 \Rightarrow x_0 = 0$

40 Лемма о вычислении коэффициентов тригонометрического ряда

Пусть $S_n \to f$ в $L_1(-\pi, \pi]$

Тогда:

$$\overline{a_k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) coskx \ dx \quad k = 0, 1, 2, \dots$$

$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx \, dx \quad k = 0, 1, 2, \dots$$
$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx \quad k = 0, 1, 2, \dots$$

Доказательство:

$$S_n = \frac{a_0}{2} + \sum_{j=1}^n a_j \cos jx + b_j \sin jx \ (-\ \text{это}\ T_n)$$
 При $n \ge k$:

1.
$$\int_{-\pi}^{\pi} S_n(x) \cos kx dx = \int_{-\pi}^{\pi} a_k \cos^2 kx dx = \pi a_k$$

2.
$$\left| \int_{-\pi}^{\pi} S_n(x) \cos kx dx - \int_{-\pi}^{\pi} f(x) \cos kx dx \right| \le \int_{-\pi}^{\pi} \pi |S_n(x) - f(X)| \cdot |\cos kx| \le \int_{-\pi}^{\pi} |S_n(x) - f(x)| \to 0$$

Из 1 и 2 следует равенство для a_k . Аналогично доказывается и для других.