Homework 1

Physics 116: Quantum Mechanics — Spring 2020

Exercise (Townsend 1.3, 5 pts). In Problem 3.2 we will see that the state of a spin- $\frac{1}{2}$ particle that is spin up along the axis whose direction is specified by the unit vector in spherical coordinates

$$\boldsymbol{n} = \sin\theta\cos\phi\,\boldsymbol{i} + \sin\theta\sin\phi\,\boldsymbol{j} + \cos\theta\,\boldsymbol{k}$$

with θ and ϕ being the familiar spherical coordinates shown in Fig. 1.11, is given by

$$|+m{n}
angle = \cosrac{ heta}{2}\,|+m{z}
angle + e^{i\phi}\sinrac{ heta}{2}\,|-m{z}
angle.$$

- (a) Verify that the state $|+n\rangle$ reduces to the states $|+x\rangle$ and $|+y\rangle$ given in the chapter for the appropriate choice of the angles θ and ϕ .
- (b) Suppose that a measurement of S_z is carried out on a particle in the state $|+n\rangle$. What is the probability that the measurement yields (i) $\hbar/2$? (ii) $-\hbar/2$?

Homework 1

Physics 116: Quantum Mechanics — Spring 2020

Exercise (Townsend 1.6+, 5 pts). Show that the state

$$|-n\rangle = \sin \frac{\theta}{2} \left| +z \right\rangle - e^{i\phi} \cos \frac{\theta}{2} \left| -z \right\rangle$$

- (a) really does correspond to $|+n\rangle$ with n pointing in the opposite direction;
- (b) is normalized such that $\langle -n|-n|=1$;
- (c) is orthogonal to $|+n\rangle$.
- (d) Show that as 3-vectors, $(-n) \cdot n = -1$.

Note that (d) is consistent with having the quantum states be orthogonal: $\langle -n|+n|=0$. The vector \boldsymbol{n} lives in physical 3D space whereas $|\boldsymbol{n}\rangle$ lives in a 2D abstract "Hilbert" space. The states $|\boldsymbol{n}\rangle$ and $|-\boldsymbol{n}\rangle$ are orthogonal because they give two different, definite, and mutually exclusive results when their spin is measured along the \boldsymbol{n} direction.

Hint for part (a): How should you change the polar angle to get a vector pointing in the opposite direction?