5

10

15

20

25

30

ABSTRACT

3-FURANYL ANALOGS OF TOXOFLAVINE AS KINASE INHIBITORS

The present invention concerns the compounds of formula

$$\mathbb{R}^1$$
 \mathbb{N}^6
 \mathbb{N}^4
 \mathbb{N}^2
 \mathbb{N}^1
 \mathbb{N}^2
 \mathbb{N}^3
 \mathbb{N}^2
 \mathbb{N}^3
 \mathbb

the N-oxide forms, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein m represents an integer being 0 or 1; n represents an integer being 0, 1 or 2; R¹ represents C₁₋₄alkyl, C₁₋₄alkyl substituted with pyridinyl, phenyl, piperidinyl or piperidinyl substituted with C₁₋₄alkyloxycarbonyl; R² represents hydrogen or C₁₋₄alkyl; R³ represents hydrogen or C₁₋₄alkyl; or R² and R³ taken together with the carbon atom to which they are attached form cyclopentyl or piperidinyl wherein said cyclopentyl or piperidinyl each independently may optionally be substituted with one, or where possible, two or three substituents each independently selected from C₁₋₄alkyloxycarbonyl, phenylcarbonyl or -C(=NH)-NH₂; R⁴ represents halo or C₁₋₄alkyloxy; R5 represents Het², C₁₋₄alkyl substituted with one or where possible more substituents being selected from hydroxy, halo, Het³ or NR⁶R⁷, or C₁₋₄alkyloxy substituted with one or where possible more substituents being selected from Het⁴ or -C(=O)-Het⁴; R⁶ and R⁷ are each independently selected from hydrogen, C₁₋₄alkyl, Het⁵ or C₁₋₄alkyl substituted with one or where possible more substituents being selected from hydroxy or Het⁵; Het² represents piperazinyl; Het³ represents a heterocycle selected from morpholinyl, pyrrolidinyl, piperidinyl, or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from C₁₋₄alkyl preferably methyl, aminosulfonyl, mono- or di(C₁₋₄alkyl)aminosulfonyl, hydroxy C_{1-4} alkyloxy C_{1-4} alkyl, C_{1-4} alkyloxy C_{1-4} alkyl or C_{1-4} alkyloxy; Het⁴ represents a heterocycle selected from morpholinyl or piperazinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three C₁₋₄alkyl substituents, preferably methyl; Het⁵ represents a heterocycle selected from pyridinyl, pyrrolidinyl or piperidinyl wherein said monocyclic heterocycles each independently may optionally be substituted with one, or where possible two or three substituents each independently selected from aminosulfonyl, C₁₋₄alkyloxycarbonyl or mono- or di(C₁₋₄alkyl)aminosulfonyl.