

GfG Offline Programs Trending Now Data Structures Algorithms Foundational Courses Data Science Practice Problem Python Machine Learn

Algorithms Foundational Courses Data Science Practice Problem Python Machine Learn

Algorithms Foundational Courses Data Science Practice Problem Python Machine Learn

Link

LMNs- Algorithms

Read

Discuss

Courses

LMNs- Algorithms

Analyze an algorithm

1) Worst Case Analysis (|sually Done): In the worst case analysis, we calculate upper bound on running time of an algorithm by considering worst case (a situation were algorithm takes maximum time)

inputs.

2) Average Case Analysi (Sometimes done): In average case analysis, we take all possible inputs and calculate computing time for all of the

3) Best Case Analysis (B gus): In the best case analysis, we calculate lower bound on running time of an algorithm.

Asymptotic Notations

• O Notation: The the inotation bounds a functions from above and below, so it defines exact asymptotic behavior.

$$\Theta((g(n)) = \{f(n): \text{ there exist positive constants c1, c2 and n0 such that}$$

 $0 <= c1*g(n) <= f(n) <= c2*g(n) \text{ for all } n >= n0\}$

• Big O Notation: The Big O notation defines an upper bound of an algorithm, it bounds a function only from above.

$$O(g(n)) = \{ f(n): \text{ there exist positive constants c and n0 such that}$$

 $0 <= f(n) <= cg(n) \text{ for all } n >= n0 \}$

• Ω Notation: Just as Big O notation provides an asymptotic upper bound on a function, Ω notation provides an asymptotic lower bound.

$$\Omega$$
 (g(n)) = {f(n): there exist positive constants c and n0 such that $0 <= cg(n) <= f(n)$ for all $n >= n0$ }.

Solving recurrences

- **Substitution Method**: We make a guess for the solution and then we use mathematical induction to prove the guess is correct or incorrect.
- Recurrence Tree Method: We draw a recurrence tree and calculate the time taken by every level of tree. Finally, we sum the work done at all levels.
- Master theorem Method: Only for following type of recurrences or for recurrences that can be transformed to following type.

$$T(n) = aT(n/b) + f(n)$$
 where $a >= 1$ and $b > 1$

Algorithm	Worst <u>Case</u>	Average Case	Best Case	Min. no. of swaps	Max. no. of swaps
Bubble	$\Theta(n^2)$	$\Theta(n^2)$	Θ(n)	0	$\Theta(n^2)$
Selection	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$	0	Θ(n)
Insertion	$\Theta(n^2)$	$\Theta(n^2)$	Θ(n)	0	$\Theta(n^2)$
Quick	$\Theta(n^2)$	Θ(nlgn)	Θ(nlgn)	0	$\Theta(n^2)$
<u>Merge</u>	Θ(nlgn)	Θ(nlgn)	Θ(nlgn)	Is not in-place sorting	Is not in-place sorting
<u>Heap</u>	Θ(nlgn)	Θ(nlgn)	Θ(nlgn)	O(nlgn)	Θ(nlgn)

Searching

Algorithm	Worst Case	Average Case	Best Case
Linear Search	Θ(n)	Θ(n)	Θ(1)
Binary Search	O (logn)	O (logn)	O (1)

Trees

Trees: Unlike Arrays, Linked Lists, Stack and queues, which are linear data structures, trees are hierarchical data structures. Depth First Traversals: (a) Inorder (b) Preorder (c) Postorder Important Tree Properties and Formulas

Binary Search Tree

Binary Search Tree, is a node-based binary tree data structure which has the following properties:

- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- The left and right subtree each must also be a binary search tree. There must be no duplicate nodes.
- 1. Insertion
- 2. Deletion

AVL Tree

AVL tree is a self-balancing Binary Search Tree (BST) where the difference between heights of left and right subtrees cannot be more than one for all nodes.

- 1. Insertion
- 2. Deletion

B-Tree

B-Tree is a self-balancing search tree. In most of the other self-balancing search trees (like AVL and Red Black Trees), it is assumed that everything is in main memory. To understand use of B-Trees, we must think of huge amount of data that cannot fit in main memory. When the number of keys is high, the data is read from disk in the form of blocks. Disk access time is very high compared to main memory access time. The main idea of using B-Trees is to reduce the number of disk accesses.

Properties of B-Tree

- 1. B-Tree Insertion
- 2. B-Tree Deletion

Graph

Graph is a data structure that consists of following two components:

- 1. A finite set of vertices also called as nodes.
- **2.** A finite set of ordered pair of the form (u, v) called as edge. The pair is ordered because (u, v) is not same as (v, u) in case of directed graph(digraph). The pair of form (u, v) indicates that there is an edge from vertex u to vertex v. The edges may contain weight/value/cost. Following two are the most commonly used representations of graph.
 - 1. **Adjacency Matrix**: Adjacency Matrix is a 2D array of size V x V where V is the number of vertices in a graph.
 - 2. Adjacency List: An array of linked lists is used. Size of the array is equal to number of vertices.

Graph Algorithms

Algorithm	Time Complexity
Breadth First Traversal for a Graph	O(V+E) for adjacency list representation and $O(V*V)$ for adjacency matrix representation.
Depth First Traversal for a Graph	O(V+E) for adjacency list representation and O(V * V) for adjacency matrix representation.
Dijkstra's shortest path algorithm	Adjacency matrix- O(V^2). Adjacency list- O(E log V)
Topological Sorting: Shortest Path in Directed Acyclic Graph	O(V+E)

Some Interesting Graph Questions

Minimum Spanning Tree

Minimum Spanning Tree (MST) problem: Given connected graph G with positive edge weights, find a min weight set of edges that connects all of the vertices. MST is fundamental problem with diverse applic Skip to content

- 1. Network design—telephone, electrical, hydraulic, TV cable, computer, road
- 2. Approximation algorithms for NP-hard problems traveling salesperson problem, Steiner tree
- 3. Cluster analysis- k clustering problem can be viewed as finding an MST and deleting the k-1 most expensive edges.

Example: Prim's Minimum Spanning Tree Algorithm, Kruskal's Minimum Spanning Tree Algorithm

Divide and Conquer

- 1. *Divide:*Break the given problem into subproblems of same type.
- 2. *Conquer:* Recursively solve these subproblems
- 3. *Combine:* Appropriately combine the answers

Following are some standard algorithms that are Divide and Conquer algorithms.

- 1) Binary Search is a searching algorithm. In each step, the algorithm compares the input element x with the value of the middle element in array. If the values match, return the index of middle. Otherwise, if x is less than the middle element, then the algorithm recurs for left side of middle element, else recurs for right side of middle element.
- 2) Quicksort is a sorting algorithm. The algorithm picks a pivot element, rearranges the array elements in such a way that all elements smaller than the picked pivot element move to left side of pivot, and all greater elements move to right side. Finally, the algorithm recursively sorts the subarrays on left and right of pivot element.
- 3) Merge Sort is also a sorting algorithm. The algorithm divides the array in two halves, recursively sorts them and finally merges the two sorted halves.
- 4) Closest Pair of Points The problem is to find the closest pair of points in a set of points in x-y plane. The problem can be solved in $O(n^2)$ time by calculating distances of every pair of points and comparing the distances to find the minimum. The Divide and Conquer algorithm solves the problem in O(nLogn) time.

Greedy Approach

Greedy is an algorithmic paradigm that builds up a solution piece by piece, always choosing the next piece that offers the most obvious and immediate benefit. Greedy algorithms are used for optimization problems. An optimization problem can be solved using Greedy if the problem has the following property: *At every step, we can make a choice that looks best at the moment, and we get the optimal solution of the complete problem.* Following are some standard algorithms that are Greedy algorithms.

- 1) Kruskal's Minimum Spanning Tree (MST): In Kruskal's algorithm, we create a MST by picking edges one by one. The Greedy Choice is to pick the smallest weight edge that doesn't cause a cycle in the MST constructed so far.
- 2) Prim's Minimum Spanning Tree: In Prim's algorithm also, we create a MST by picking edges one by one. We maintain two sets: set of the vertices already included in MST and the set of the vertices not yet included. The Greedy Choice is to pick the smallest weight edge that connects the two sets.
- 3) Dijkstra's Shortest Path: The Dijkstra's algorithm is very similar to Prim's algorithm. The shortest path tree is built up, edge by edge. We maintain two sets: set of the vertices already included in the tree and the set of the vertices not yet included. The Greedy Choice is to pick the edge that connects the two sets and is on the smallest weight path from source to the set that contains not yet included vertices.
- **4) Huffman Coding:** Huffman Coding is a loss-less compression technique. It assigns variable length bit codes to different characters. The Greedy Choice is to assign least bit length code to the most frequent character.

Dynamic Programming

Dynamic Programming is an algorithmic paradigm that solves a given complex problem by breaking it into subproblems and stores the results of subproblems to avoid computing the same results again. **Properties:**

1. **Overlapping Subproblems:** Dynamic Programming is mainly used when solutions of same subproblems are needed again and again. In dynamic programming, computed solutions to subproblems are stored in a table so that these don't have to be recomputed.

Uses: Fibonacci Numbers

2. **Optimal Substructure**: A given problems has Optimal Substructure Property if optimal solution of the given problem can be obtained by using optimal solutions of its subproblems.

Uses: Longest Increasing Subsequence, Shortest Path Two App Skip to content

- 1. Memoization (Top Down)
- 2. Tabulation (Bottom Up)

Examples: Floyd Warshall Algorithm, Bellman-Ford Algorithm for Shortest Paths

BackTracking

Backtracking is an algorithmic paradigm that tries different solutions until finds a solution that "works". Backtracking works in an incremental way to attack problems. Typically, we start from an empty solution vector and one by one add items . Meaning of item varies from problem to problem. Example: Hamiltonian Cycle

Last Updated: 27 Sep, 2022

Similar Reads

LMNs-C/C++	LMNs-Data Structure		
Bitwise Algorithms Intermediate	Bitwise Algorithms Basic		
Mathematical Algorithms Number Digits	Mathematical Algorithms Divisibility and Large Numbers		
Mathematical Algorithms Prime Factorization and Divisors	Quizes on Algorithms		
Skip to content			

Mathematical Algorithms | Prime numbers and Primality Tests

Mathematical Algorithms | GCD & LCM

A-143, 9th Floor, Sovereign Corporate Tower, Sector-136, Noida, Uttar Pradesh -201305

Company	Explore	Languages	DSA	Data	HTML & CSS
About Us Legal Careers In Media Contact Us Advertise with us GFG Corporate Solution	Job-A-Thon Hiring Challenge Hack-A-Thon GfG Weekly Contest Offline Classes (Delhi/NCR) DSA in JAVA/C++	Python Java C++ PHP GoLang SQL R Language Android Tutorial	Data Structures Algorithms DSA for Beginners Basic DSA Problems DSA Roadmap Top 100 DSA Interview Problems	Science & ML Data Science With Python Data Science For Beginner Machine Learning Tutorial ML Maths	HTML CSS Bootstrap Tailwind CSS SASS LESS Web Design
	Skip to conter	IL			

LMNs- Algorithms - GeeksforGeeks

Placement	Master System	DSA Roadmap	Data
Training	Design	by Sandeep	Visualisation
Program	Master CP	Jain	Tutorial
Apply for Mentor	GeeksforGeeks Videos	All Cheat Sheets	Pandas Tutorial
	v.accc		NumPy Tutorial
			NLP Tutorial
			Deep Learning Tutorial

Python	Computer	DevOps	Competitive	System	JavaScript
Python	Science	Git	Programming	Design	TypeScript
Programming	GATE CS Notes	AWS	Top DS or Algo	What is System	ReactJS
Examples	Operating	Docker	for CP	Design	NextJS
Django Tutorial	Systems	Kubernetes	Top 50 Tree	Monolithic and	AngularJS
Python	Computer	Azure	Top 50 Graph	Distributed SD	NodeJS
Projects	Network	GCP	Top 50 Array	High Level	Express.js
Python Tkinter	Database		Top 50 String	Design or HLD	
Web Scraping	Management	DevOps	Top 50 DP	Low Level	Lodash
OpenCV	System	Roadmap	•	Design or LLD	Web Browser
Python	Software		Top 15 Websites for	Crack System	
Tutorial	Engineering		CP	Design Round	
Python	Digital Logic		Ci	System Design	
Interview	Design			Interview	
Question	Skip to content	t		Questions	

Engineering	Grokking
Maths	Modern
	System Design

NCERT	School	Commerce Accountancy	Management	UPSC Study	SSC/
Solutions	Subjects		& Finance	Material	BANKING
Class 12 Class 11 Class 10 Class 9 Class 8 Complete Study Material	Mathematics Physics Chemistry Biology Social Science English Grammar	Business Studies Indian Economics Macroeconomics Microeconimics Statistics for Economics	Management HR Managament Income Tax Finance Economics	Polity Notes Geography Notes History Notes Science and Technology Notes Economy Notes Ethics Notes Previous Year Papers	SSC CGL Syllabus SBI PO Syllabus SBI Clerk Syllabus IBPS PO Syllabus IBPS Clerk Syllabus SSC CGL Practice Papers

				Papers	Practice Papers
Colleges	Companies	Preparation	Exams	More	Write &
Indian Colleges	IT Companies	Corner	JEE Mains	Tutorials	Earn
Admission & Campus Experiences	Software Development Companies	Company Wise Preparation Preparation for SDE	JEE Advanced GATE CS NEET UGC NET	Software Development Software Testing	Write an Article Improve an Article
	Skip to conter	nt			

Product

SAP

SEO

Linux

Excel

Management

Pick Topics to

Share your Experiences

Internships

Write

	=	
Тор	Artificial	Experienced
Engineering	Intelligence(AI)	Interviews
Colleges	Companies	Internship
Top BCA	CyberSecurity	Interviews
Colleges	Companies	Competitive
Тор МВА	Service Based	Programming
Colleges	Companies	Aptitude
Тор	Product Based	Preparation
Architecture	Companies	Puzzles
College	PSUs for CS	
Choose	Engineers	
College For		
Graduation		

@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved