Einführung in Matlab Übung 2

Aufgabe 1: Die Folge x_1, x_2, x_3, \ldots sei definiert durch $x_1 := 1$ und

$$x_k := 1 + \frac{1}{x_{k-1}}$$
 für $k \ge 2$

Dann entspricht x_k dem Wert des Kettenbruchs

$$1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}}$$

und nähert sich für größer werdende k immer mehr der goldenen Schnittzahl $x := \frac{1+\sqrt{5}}{2}$ an (d.h. $x_k \approx x$ und x ist positive Lösung der Gleichung $x = 1 + \frac{1}{x}$).

- (a) Schreiben Sie zunächst eine Funktion x=kettenbruch_test(n), welche die ersten n Folgenglieder x_1, x_2, \ldots, x_n mit Hilfe einer for-Schleife berechnet und zusammen als Array x zurückgibt. Plotten Sie dann die ersten n=10 Folgenglieder (als Kreise) zusammen mit dem konstanten Wert $\frac{1+\sqrt{5}}{2}$ in ein Bild (analog zum Beispiel babylonisches Wurzelziehen der Vorlesung).
- (b) Schreiben Sie nun die Funktion x=kettenbruch(n) so, dass nur das letzte Folgenglied x_n zurückgegeben wird (und kein Array berechnet wird).
- (c) Schreiben Sie die Funktion aus (b) als rekursive Funktion x=kettenbruch_rekursiv(n).
- (d) Schreiben Sie nun die Funktion [x,iter]=kettenbruch_while(epsilon) so, dass statt einer vorgegebenen Anzahl an Iterationen nur solange iteriert wird, bis eine gewünschte Genauigkeit erreicht wird, z.B.

$$|x-1-\frac{1}{x}|<\epsilon$$

und die Anzahl der benötigten Iterationen iter mit zurückgegeben wird.

Aufgabe 2: Die Binomialkoeffizienten $\binom{n}{k} := \frac{n!}{k! \cdot (n-k)!}$ erfüllen für $k \leq n \in \mathbb{N}$ die Rekursion

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$

mit

$$\binom{n}{0} = \binom{n}{n} = 1$$
 und $\binom{n}{1} = \binom{n}{n-1} = n$

Schreiben Sie zur Berechnung dazu eine rekursive Funktion b=binomial(n,k). Testen Sie mit relativ kleinen n, da die Zahlen schnell wachsen. Vergleichen können Sie mit dem entsprechenden Matlab-Befehl nchoosek.

1

Aufgabe 3: In der Vorlesung haben wir den Selection Sort-Algorithmus rekursiv programmiert.

- (a) Schreiben Sie den Selection Sort-Algorithmus ohne rekursiven Aufruf, stattdessen mit einer geeigneten for-Schleife, und vergleichen Sie die Laufzeiten der beiden Versionen mit tic, toc. (Im allgemeinen kann man nicht definitiv sagen, ob eine rekursive oder nicht-rekursive Version schneller ist.)
- (b) Die entsprechende Matlab-Funktion zum Sortieren [xs,indices]=sort(x) gibt zusätzlich noch den zur Sortierung passenden Index-Vektor indices zurück, so dass x(indices)=xs gilt.

Erweitern Sie daher ihren Selection Sort-Algorithmus so, dass er das gleiche macht.