Teoría de la Medida e Integración 2022

Lista 03

19.marzo.2022

1. Sea $X=\mathbb{R}$. ¿Para cuáles σ -álgebras son las siguientes funciones de medida?

$$(i) \ \mu(A) = \begin{cases} 0, & A = \varnothing; \\ 1, & A \neq \varnothing. \end{cases} \qquad (ii) \ \mu(A) = \begin{cases} 0, & A \text{ es finito}; \\ 1, & A^c \text{ es finito}. \end{cases}$$

- 2. (a) Encuentre un ejemplo para mostrar que la condición de finitud en las Propiedad de continuidad superior ((vii) en las propiedades de medida) es esencial: $B_n \searrow B$, $\mu(B_1) < \infty \implies \mu(B) = \inf_{n \to \infty} \mu(B_n) = \lim_{n \to \infty} \mu(B_n)$.
 - (b) Hallar una medida μ en $(\mathbb{R}; \mathcal{B}(\mathbb{R}))$ es sea σ -finita, pero que asigne a cada intervalo [a,b), con b-a>2, una masa finita.
- 3. (a) Sea (X, \mathcal{A}, μ) un espacio de medida, y sea $F \in \mathcal{A}$. Muestre que la función $\mu_F : \mathcal{A} \to \mathbb{R}$ dada por $\mu_F(A) = \mu(A \cap F)$ define una medida. μ_F es llamada la *medida* μ *relativa* a F.
 - (b) Sea $(\Omega, \mathcal{A}, \mathbb{P})$ un espacio de probabilidad, y sea $A_{nn\in\mathbb{N}}$ una secuencia de conjuntos tales que $\mathbb{P}(A_n)=1$, para todo $n\in\mathbb{N}$. Pruebe que $\mathbb{P}\Big(\bigcap_n A_n\Big)=1$.
- 4. Sea (X, \mathcal{A}, μ) un espacio de medida finita, y sean $\{A_n\}_{n\in\mathbb{N}}, \{B_n\}_{n\in\mathbb{N}}\subset\mathcal{A}$ secuencias tales que $B_n\subseteq A_n$, para todo $n\in\mathbb{N}$. Mostrar que

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)-\mu\Big(\bigcup_{n\in\mathbb{N}}B_n\Big)\leq \sum_{n\in\mathbb{N}}\mu(A_n-B_n).$$

- 5. Sea λ la medida de Lebesgue 1-dimensional.
 - i) Probar que para todo $x \in \mathbb{R}$, x es un conjunto de Borel, con $\lambda x = 0$.
 - ii) Mostrar, de dos formas distintas, que $\mathbb Q$ es un conjunto de Borel, y que $\lambda(\mathbb Q)=0$. Primero usando (i), y luego considerando los conjuntos $C(\varepsilon)=\bigcup_n[q_n-\varepsilon 2^{-n},q_n+\varepsilon 2^{-n})$, donde $\{q_n\}_n$ es una enumeración de $\mathbb Q$, y haciendo $\varepsilon\to 0$
 - iii) Usar el hecho que $[0,1]=\bigcup_{x\in\mathbb{Q}}\{x\}$ para mostrar que una unión no-enumerable de conjuntos de medida nula no es necesariamente de medida nula.
- 6. Considere el espacio mesurable $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Determine todos los conjuntos de medida nula en la medida $\delta_a + \delta_b$, con $a, b \in \mathbb{R}$.
- 7. **Medidas Invariantes.** Sea $(X, \mathcal{A}\mu)$ un espacio de medida finita, donde $\mathcal{A} = \sigma(\mathcal{G})$ para algún conjunto generador \cap -estable \mathcal{G} . Asuma que $T: X \to X$ es un mapa tal que $T^{-1}(A) \in \mathcal{A}$, para todo $A \in \mathcal{A}$. Pruebe que

$$\mu(G) = \mu\big(T^{-1}(G)\big), \ \forall \ G \in \mathcal{G} \ \implies \ \mu(A) = \mu\big(T^{-1}(A)\big), \ \forall \ A \in \mathcal{A}.$$

(Una medida μ con esta propiedad se dice es *invariante* con respecto del mapa T).

8. La Medida de Stieltjes. Sea μ una medida en $(\mathbb{R};\mathcal{B}(\mathbb{R}))$ tal que $\mu[-n,n)<\infty$, para todo $n\in\mathbb{N}$. Muestre que la función

$$F_{\mu}(x) = \begin{cases} \mu[0, x), & x > 0; \\ 0 & x = 0; \\ -\mu[x, 0), & x < 0. \end{cases}$$

es una función monótona continua por la izquierda $F_{\mu}:\mathbb{R} \to \mathbb{R}.$

(Recordemos que las funciones monótonas crecientes y continuas por la izquierda se llaman funciones de Stieltjes).

i) Sea $F:\mathbb{R} \to \mathbb{R}$ una función de Stieltjes. Mostrar que

$$\nu_F([a,b)) = F(b) - F(a), \quad a, b \in \mathbb{R}, \ a < b,$$

posee una única extensión a una medida sobre $\mathcal{B}(\mathbb{R})$.

- ii) Concluya que para toda medida μ en $(\mathbb{R},\mathcal{B}(\mathbb{R}))$, con $\mu[-r,r)<\infty$, r>0, existe una función de Stieltjes $F=F_{\mu}$, tal que $\nu=\mu_F$.
- iii) ¿Cuál es la función de Stieltjes F que corresponde a la medida de Lebesgue 1-dimensional λ ?
- iv) ¿Cuál es la función de Stieltjes F que corresponde a la medida de Dirac δ_0 ?
- v) Mostrar que F_{μ} es continua en $x \in \mathbb{R}$ si, y sólo si, $\mu\{x\} = 0$.