FOUNDATIONS OF OPTIMIZATION: IE6001 Simplex Algorithm

Napat Rujeerapaiboon Semester I, AY2022/2023

Simplex Tableaux

Consider a basic representation of the form

where $r = c_N - N^T B^{-T} c_B$ is the reduced cost vector.

To simplify notation we represent (*) as a tableau

where *I* is the $m \times m$ identity matrix.

Basic representation (4) from Example 1 ($I = \{1, 2, 5\}$).

Explicit formulation:

Basic representation (4) from Example 1 ($I = \{1, 2, 5\}$).

Removing variables and mathematical operators:

Basic representation (4) from Example 1 ($I = \{1, 2, 5\}$).

Appending zeroes:

Basic representation (4) from Example 1 ($I = \{1, 2, 5\}$).

Introducing labels:

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	RHS
<i>x</i> ₀	1	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	0	-8
<i>X</i> ₂	0	0	1	$-\frac{1}{5}$	<u>2</u> 5	0	5
<i>X</i> 5	0	0	0	$-\frac{3}{5}$	<u>1</u> 5	1	1
<i>X</i> ₁	0	1	0	<u>3</u> 5	$-\frac{1}{5}$	0	3

Rows are indexed by the respective basic variables.

Properties of the Simplex Tableau

- x_0 appears only in objective row and has coefficient 1;
- each basic variable appears in only one other row and has coefficient 1;
- only one basic variable can occur in each row;
- the RHS of the objective row is the objective value of the current BS
- the RHS's of the other rows are the values of the basic variables at the current BS;
- the coefficients of the nonbasic variables in the objective row are the negative reduced costs.

Note: The current BS is feasible iff the RHS's are nonnegative in all rows (except objective row).

Notational Conventions

Tableau for an admissible index set *I* (with $p \in I$, $q \notin I$):

BV	<i>x</i> ₀	<i>X</i> ₁		x_p		Xq	 Xn	RHS
<i>X</i> ₀	1	$eta_{ extsf{1}}$		$\beta_{m p}$		$\beta_{m{q}}$	 β_{n}	β_0
:	:	÷		:		÷	: У рп	:
x_p	0	y_{p1}	• • •	y_{pp}	• • •	y_{pq}	 y_{pn}	<i>Y</i> _p 0
:	:	:		÷		÷	÷	:

- $y_{ii} = 1 \ \forall i \in I \ \text{and} \ y_{i'i} = 0 \ \forall i \in I, \ i' \in I \setminus \{i\}$
- $\beta_i = -r_i \ \forall i \notin I$, $i \neq 0$ (negative reduced cost)
- $\beta_i = 0 \ \forall i \in I$

Sequences of BFSs

Simplex Algorithm: if BFS x is not optimal, then there is some neighbouring BFS x' with better objective value.

Consider the sequence of BFS's when solving Example 1. We found the following sequence of index sets I_t of BV's:

Neighbouring BFS's

 I_{t+1} is obtained from I_t by removing one element and replacing it by a new element:

$$|I_t \backslash I_{t+1}| = |I_{t+1} \backslash I_t| = 1.$$

Definition: Two index sets I and I' with B(I) and B(I') non-singular, are said to be neighbours if

$$|I \backslash I'| = |I' \backslash I| = 1.$$

Pivoting

Given a basic representation, suppose a basic variable is to be made nonbasic and a nonbasic variable is to be made basic. What is the new basic representation?

Given: * Two neighbouring index sets *I* and *I'*

* Basic representation for I with tableau (y_{ij}, β_j)

Sought: * Basic representation for I' with tableau (y'_{ij}, β'_j)

The basic representation for l' is constructed via pivoting.

Pivoting (cont)

Suppose that $I' = (I \setminus \{p\}) \cup \{q\}$, i.e.,

- the basic variable x_p becomes nonbasic;
- the nonbasic variable x_q becomes basic.

We say that

- x_p leaves the basis;
- x_a enters the basis.

Pivoting (cont)

To swap x_p and x_q we

1. divide row p by the pivot element y_{pq} :

$$y'_{qj} = \frac{y_{pj}}{y_{pq}} \quad \forall j = 0, \dots, n \tag{1}$$

2. subtract the $\frac{y_{iq}}{y_{pq}}$ -fold multiple of row p from row $i \in I \setminus \{p\}$:

$$y'_{ij} = y_{ij} - \frac{y_{iq}}{y_{pq}} y_{pj} \quad \forall j = 0, \dots, n$$
 (2)

3. subtract the $\frac{\beta q}{V_{DQ}}$ -fold multiple of row *p* from objective row:

$$\beta'_{j} = \beta_{j} - \frac{\beta_{q}}{V_{pq}} y_{pj} \quad \forall j = 0, \dots, n$$
 (3)

Pivoting (Remarks)

- The formulas (1)–(3) are termed pivot equations.
- The pivot equations ensure that:
 - the qth column of the new tableau contains only 0's except for its qth entry, which is 1;
 - the other basic columns remain unchanged.
- Row p is relabelled as row q after pivoting.
- Pivoting is possible iff $y_{pq} \neq 0$.

Basic representation for $I = \{1, 2, 3\}$:

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	RHS
<i>x</i> ₀	1	0	0	0	1	2	1	1
<i>X</i> ₁	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	0	1	0	2	-3	1	1 5 3
<i>X</i> ₃	0	0	0	1	-1	2	-1	-1

Find the neighbouring basic representation for $I' = \{4, 2, 3\}$.

Exchange: x_1 becomes nonbasic, x_4 becomes basic.

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	RHS
<i>x</i> ₀	1	0	0	0	1	2	1	1
<i>X</i> ₁	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	0	1	0	2	-3	1	3
_ <i>X</i> 3	0	0	0	1	-1	2	-1	1 5 3 –1

Pivot Element: $y_{14} = 1$

Exchange: x_1 becomes nonbasic, x_4 becomes basic.

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	RHS
-X ₀	1	0	0	0	1	2	1	1
<i>X</i> ₁	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	0	1	0	2	-3	1	3
<i>X</i> ₃	0	0	0	1	-1	2	-1	-1
-X ₀								
<i>X</i> ₄ <i>X</i> ₂	0	1	0	0	1	1	-1	5
<i>X</i> ₃								

Equation (1) \Rightarrow row for x_1 remains unchanged, but now relabelled with x_4 .

Exchange: x_1 becomes nonbasic, x_4 becomes basic.

BV	<i>x</i> ₀	<i>X</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	RHS
<i>x</i> ₀	1	0	0	0	1	2	1	1
<i>X</i> ₁	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	0	1	0	2	-3	1	3
<i>X</i> 3	0	0	0	1	-1	2	-1	-1
<i>x</i> ₀								
<i>X</i> ₄	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	-2	1	0	0	-5	3	_ 7
<i>X</i> 3								

Equation (2) \Rightarrow subtract row for x_1 twice from row for x_2 , no relabelling necessary.

Exchange: x_1 becomes nonbasic, x_4 becomes basic.

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	RHS
<i>x</i> ₀	1	0	0	0	1	2	1	1
<i>X</i> ₁	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	0	1	0	2	-3	1	3
<i>X</i> ₃	0	0	0	1	-1	2	-1	-1
<i>x</i> ₀								
X_4	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	-2	1	0	0	-5	3	_ 7
_X ₃	0	1	0	1	0	3	-2	4

Equation (2) \Rightarrow add row for x_1 to row for x_3 , no relabelling necessary.

Exchange: x_1 becomes nonbasic, x_4 becomes basic.

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	RHS
<i>x</i> ₀	1	0	0	0	1	2	1	1
<i>X</i> ₁	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	0	1	0	2	-3	1	3
<i>X</i> 3	0	0	0	1	-1	2	-1	-1
<i>x</i> ₀	1	-1	0	0	0	1	2	-4
<i>X</i> ₄	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	-2	1	0	0	-5	3	-7
<i>X</i> 3	0	1	0	1	0	3	-2	4

Equation (3) \Rightarrow subtract row for x_1 from objective row, no relabelling necessary.

Exchange: x_1 becomes nonbasic, x_4 becomes basic.

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>x</i> ₆	RHS
<i>x</i> ₀	1	0	0	0	1	2	1	1
<i>X</i> ₁	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	0	1	0	2	-3	1	3
<i>X</i> ₃	0	0	0	1	-1	2	-1	-1
<i>x</i> ₀	1	-1	0	0	0	1	2	-4
X_4	0	1	0	0	1	1	-1	5
<i>X</i> ₂	0	-2	1	0	0	-5	3	_ 7
<i>X</i> ₃	0	1	0	1	0	3	-2	4

Pivot equations ensure that the other basic columns and the objective column remain unchanged!

Pivot Selection

Consider the BS for $I = \{1, 2, 4\}$ in Example 1.

We can pivot on:

- $(x_p, x_q) = (x_4, x_5)$ $\Rightarrow l' = \{1, 2, 5\}$
- $(x_p, x_q) = (x_4, x_3)$ $\Rightarrow l' = \{1, 2, 3\}$
- $(x_p, x_q) = (x_2, x_3)$ $\Rightarrow l' = \{1, 4, 3\}$
- $(x_p, x_q) = (x_2, x_5)$ $\Rightarrow l' = \{1, 5, 4\}$

Pivot Selection (cont)

When choosing a pivot, we impose the following rules:

- 1. Non-Inferiority: The new BS must have a better objective value than the current BS, i.e., $\beta'_0 \leq \beta_0$.
- 2. Feasibility: The new BS must be feasible, i.e., $y'_{i0} \ge 0$ for all $i \in l'$.
 - Rule 1 is used to choose the nonbasic variable x_q, q ∉ I, which enters the basis.
 - Rule 2 is used to choose the basic variable x_p, p ∈ I, which leaves the basis.

Choosing x_q

The objective row of the simplex tableau is equivalent to:

$$x_0 + \sum_{i=1}^n \beta_i x_i = \beta_0 \iff x_0 = \beta_0 - \sum_{i \notin I} \beta_i x_i$$

By definition, we have

- $\beta_i = 0$ for all $i \in I$ (basic variables);
- $\beta_i = -r_i$ for all $i \notin I$ (nonbasic variables).

Choosing x_a (cont)

Two cases:

• if $\beta_i \leq 0 \ \forall i \notin I$, then the current BFS is optimal.

$$x_0 = \beta_0 - \sum_{i \notin I} \beta_i x_i \ge \beta_0 \quad \forall x_i \ge 0$$

- ⇒ No other FS achieves a lower objective value.
- if $\exists q \notin I$ with $\beta_q > 0$, then increasing the nonbasic variable x_q decreases the current objective value.
 - \Rightarrow Any nonbasic x_q with $\beta_q > 0$ can enter the basis.

Note: Decreasing nonbasic variables is not allowed.

Choosing x_p

- Increase some nonbasic x_q with $\beta_q > 0$ while fixing all other nonbasic variables at zero, i.e., $x_i = 0 \ \forall i \notin I \cup \{q\}$.
- The rows for the basic variables x_i, i ∈ I, in the simplex tableau then imply

$$x_i + \sum_{j \notin I} y_{ij} x_j = y_{i0}$$
 and $x_i = y_{i0} - y_{iq} x_q$ $\forall i \in I$.

• Aim: increase x_q as much as possible while ensuring that all basic variables x_i , $i \in I$, remain nonnegative.

Choosing x_p (cont)

• We must choose the value of $x_q > 0$ such that

$$x_i = y_{i0} - y_{iq}x_q \ge 0 \quad \forall i \in I. \tag{*}$$

Otherwise, some basic variable(s) become infeasible.

• Each $i \in I$ gives a constraint on x_q :

$$x_i = y_{i0} - y_{iq}x_q \ge 0 \iff \begin{cases} x_q \le \overline{x}_{iq} \triangleq \frac{y_{i0}}{y_{iq}} & \text{if } y_{iq} > 0, \\ x_q \le \overline{x}_{iq} \triangleq \infty & \text{if } y_{iq} \le 0. \end{cases}$$

⇒ The feasibility requirement (*) is equivalent to

$$x_q \le \min_{i \in I} \overline{X}_{iq}. \tag{**}$$

Choosing x_p (cont)

Two cases:

- Suppose $\min_{i \in I} \overline{X}_{iq} = \infty \ (\forall i \in I: \ \textit{y}_{iq} \leq 0)$, then
 - x_a can grow indefinitely.
 - As β_q > 0, the objective value x₀ = β₀ − β_qx_q can drop indefinitely. ⇒ The LP is unbounded below.
- Suppose $\min_{i \in I} \overline{X}_{iq} < \infty \ (\exists i \in I: \ y_{iq} > 0)$, then
 - The best solution is obtained by making x_q as large as possible, i.e., we set $x_q = \min_{i \in I} \overline{x}_{iq}$.
 - $\exists p \in \arg\min_{i \in I} \overline{X}_{iq} \Rightarrow X_q = \overline{X}_{pq} = \frac{Y_{p0}}{Y_{pq}}$
 - Thus, $x_p = y_{p0} y_{pq}x_q = 0$ becomes nonbasic!

Pivot Selection (Summary)

- If $\beta_i \leq 0$ for all $i \notin I$, then the current BFS is optimal.
 - \Rightarrow We are done! Otherwise...
- Any x_q with $q \notin I$ and $\beta_q > 0$ can enter the basis.
 - \Rightarrow Choose a suitable x_q ...
- If $y_{iq} \leq 0$ for all $i \in I$, then the LP is unbounded.
 - \Rightarrow We are done! Otherwise...
- Any x_p with $p \in \arg\min_{i \in I} \overline{x}_{iq}$ can leave the basis.
 - \Rightarrow Choose a suitable x_p ...

Recall:
$$\overline{x}_{iq} \triangleq \begin{cases} \frac{y_{i0}}{y_{iq}} & \text{if } y_{iq} > 0, \\ \infty & \text{if } y_{iq} \leq 0. \end{cases}$$

Pivoting Conventions

• If there are several $q \notin I$ with $\beta_q > 0$, then choose q with

$$\beta_{q} = \max_{j \notin I} \left\{ \beta_{j} \right\}. \tag{*}$$

Such a q produces the maximum decrease in x_0 per unit of increase in x_a .

- If several q ∉ I satisfy (*), choose the one with the smallest index.
- If there are several $p \in \arg\min_{i \in I} \overline{X}_{iq}$, choose the one with the smallest index.

Simplex Algorithm (Minimisation)

- Step 0: Find initial BFS and its basic representation.
- Step 1: If $\beta_i \leq 0$ for all $i \notin I$: STOP — the current BFS is optimal.
- Step 2: If $\exists j \notin I$ with $\beta_j > 0$ and $y_{ij} \le 0$ for all $i \in I$: STOP no finite minimum exists.
- Step3: Choose x_q with $\beta_q > 0$ Entry criterion — x_q enters the basis.
- Step 4: Choose $p \in \arg\min_{i \in I} \overline{X}_{iq}$ Exit criterion — x_p leaves the basis.
- Step 5: Pivot on y_{pq} and go to STEP 1.

$$x_0 = -4x_1 - 2x_2 + x_3$$

Subject to:

$$x_1 + x_2 + x_3 \le 4$$

 $x_1 - x_2 - 2x_3 \le 3$
 $3x_1 + 2x_2 + x_3 \le 12$
 $x_1, x_2, x_3 \ge 0$.

Adding slack variables x_4, x_5, x_6 we get:

minimize:

$$x_0 = -4x_1 - 2x_2 + x_3$$

Subject to:

$$x_1, x_2, x_3, x_4, x_5, x_6 \geq 0.$$

We have thus an initial BFS for $I = \{4, 5, 6\}$.

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	RHS
-X ₀	1	4	2	-1				0
<i>X</i> ₄		1	1	1	1			4
<i>X</i> ₅		1	-1	-2		1		3
<i>x</i> ₆		3	2	1			1	12
-X ₀	1		6	7		-4		-12
<i>X</i> ₄			2	3	1	-1		1
<i>X</i> ₁		1	-1	-2		1		3
<i>x</i> ₆			5	7		-3	1	3

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	RHS
<i>x</i> ₀	1		6	7		-4		-12
<i>X</i> ₀ <i>X</i> ₄			2	3	1	-1		1
<i>X</i> ₁		1	-1	-2		1		3
<i>x</i> ₆			5	7		-3	1	3
<i>X</i> ₀ <i>X</i> ₃	1		<u>4</u> 3		$-\frac{7}{3}$	$-\frac{5}{3}$		$-\frac{43}{3}$
<i>X</i> ₃			4 32 31	1	1	$-\frac{1}{3}$		
<i>X</i> ₁		1	<u>1</u> 3		3 2 3_	$\frac{1}{3}_{2}$		1 31 32 32
<i>x</i> ₆			1/3		$-\frac{7}{3}$	$-\frac{2}{3}$	1	$\frac{2}{3}$

BV	<i>x</i> ₀	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>X</i> ₄	<i>X</i> 5	<i>x</i> ₆	RHS
<i>x</i> ₀	1		$\frac{4}{3}$		$-\frac{7}{3}$	$-\frac{5}{3}$		$-\frac{43}{3}$
<i>x</i> ₀ <i>x</i> ₃			<u>32 3</u>	1	<u>1</u> 3	$-\frac{1}{3}$		1 3
<i>x</i> ₁		1	<u>1</u> 3		- 32 3_	$\frac{1}{3}$		-\ <u>\ 31</u> 32 3
<i>x</i> ₆			1 3		$-\frac{7}{3}$	$-\frac{2}{3}$	1	
<i>X</i> ₀ <i>X</i> ₂	1			-2	-3	-1		-15
			1	<u>3</u>	<u>1</u> 2	$-\frac{1}{2}$		$\frac{1}{2}$
<i>X</i> ₁		1		$-\frac{1}{2}$	<u>1</u> 2_	$\frac{1}{2}$		2 7 2 1 2
_ <i>x</i> ₆				$-\frac{1}{2}$	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$-\frac{1}{2}$	1	$\frac{1}{2}$

Solution: $x_1 = \frac{7}{2}$, $x_2 = \frac{1}{2}$, and $x_3 = 0$.

Degenerate BS's

simplex algorithm terminate in the finite time

Feasible set of Example 1:

Degenerate BS's (cont)

Consider now a variant of Example 1:

Degenerate BS's (cont)

The highlighted BS corresponds to the index sets $I = \{1, 2, 3\}, I = \{1, 2, 4\}$ and $I = \{1, 2, 5\}.$

Degenerate BFS's: Definition

Definition: A BS is called degenerate if more than n - m of its components are zero.

 \Rightarrow A degenerate BS has at least one zero-valued basic variable (next to the n-m zero-valued nonbasic variables).

 \Rightarrow For a degenerate BS with index set *I* there exists at least one $i \in I$ with $y_{i0} = 0$.

Definition: A BS is called non-degenerate if all of its basic variables are different from zero.

Finite Termination

Theorem: If all BS's are non-degenerate, then the simplex algorithm must terminate after a finite number of steps with

- either an optimal solution
- or a proof that the problem is unbounded.

Finite Termination (Proof)

- At each step we have $y_{i0} > 0 \ \forall i \in I$ (non-degeneracy).
- Unless optimality or unboundedness is detected in STEP 1 or 2, we find $\beta_0'=\beta_0-\frac{\beta_q}{\gamma_{pa}}y_{p0}<\beta_0$.
- Thus, the sequence of objective values obtained by the algorithm is strictly decreasing.

$$\beta_0 > \beta_0' > \beta_0'' > \cdots$$

No basic solution will ever be repeated!

• There are $\leq \binom{n}{m}$ basic solutions. Thus, the process cannot continue indefinitely and must terminate at STEP 1 or 2 after a finite number of iterations.