Лабораторная работа №8

Модель конкуренции двух фирм. Вариант 39

Абдуллина Ляйсан Раисовна, НПИбд-01-21

Содержание

Цель работы	4
Задачи	
Теоретическое введение	6
Условие варианта 39	7
Случай 1	7
Случай 2	8
Выполнение лабораторной работы	9
Julia	9
	11
Анализ и сравнение результатов	13
Выводы	14
Список литературы	15

Список иллюстраций

1	График конкуренции двух фирм для второго случая	11
2	График конкуренции двух фирм для первого случая	12
3	График конкуренции двух фирм для второго случая	12

Цель работы

Решить задачу о модели конкуренции двух фирм..

Задачи

- 1. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 1.
- 2. Постройте графики изменения оборотных средств фирмы 1 и фирмы 2 без учета постоянных издержек и с веденной нормировкой для случая 2

Теоретическое введение

Для построения модели конкуренции хотя бы двух фирм необходимо рассмотреть модель одной фирмы. Вначале рассмотрим модель фирмы, производящей продукт долговременного пользования, когда цена его определяется балансом спроса и предложения. Примем, что этот продукт занимает определенную нишу рынка и конкуренты в ней отсутствуют. Обозначим: - N — число потребителей производимого продукта. - S — доходы потребителей данного продукта. Считаем, что доходы всех потребителей одинаковы. Это предположение справедливо, если речь идет об одной рыночной нише, т.е. производимый продукт ориентирован на определенный слой населения. - М — оборотные средства предприятия - τ — длительность производственного цикла - р — рыночная цена товара - \tilde{p} — себестоимость продукта, то есть переменные издержки на производство единицы продукции. - δ — доля оборотных средств, идущая на покрытие переменных издержек. - κ — постоянные издержки, которые не зависят от количества выпускаемой продукции. - Q(S/p) — функция спроса, зависящая от отношения дохода S κ цене κ . Она равна количеству продукта, потребляемого одним потребителем в единицу времени. Функцию спроса товаров долговременного использования часто представляют в простейшей форме:

$$Q = q - k(p/S) = q(1 - p/p_c)$$

где q — максимальная потребность одного человека в продукте в единицу времени. Эта функция падает с ростом цены и при $p=p_c$ сг (критическая стоимость продукта) потребители отказываются от приобретения товара Величина p_c сг = S_q /k. Параметр k — мера эластичности функции спроса по цене. Таким образом, функция спроса в форме является пороговой и обладает свойствами насыщения

Условие варианта 39

Для обоих случаев рассмотрим задачу со следующими начальными условиями и параметрами:

$$\begin{split} M_0^1 &= 3.3\,M_0^2 = 2.3\\ p_{cr} &= 22\,N = 33\,q = 1\\ \tau_1 &= 22\,\tau_2 = 11\\ \tilde{p}_1 &= 6.6\,\tilde{p}_2 = 11.1 \end{split}$$

Случай 1

Рассмотрим две фирмы, производящие взаимозаменяемые товары одинакового качества и находящиеся в одной рыночной нише. Считаем, что в рамках нашей модели конкурентная борьба ведётся только рыночными методами. То есть, конкуренты могут влиять на противника путем изменения параметров своего производства: себестоимость, время цикла, но не могут прямо вмешиваться в ситуацию на рынке («назначать» цену или влиять на потребителей каким-либо иным способом.) Будем считать, что постоянные издержки пренебрежимо малы, и в модели учитывать не будем. В этом случае динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - \frac{b}{c_1} M_1 M_2 - \frac{a1}{c1} M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - \frac{b}{c_1}M_1M_2 - \frac{a_2}{c_1}M_2^2$$

где

$$\begin{split} a_1 &= \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 N q} \\ a_2 &= \frac{p_{cr}}{\tau_2^2 \tilde{p}_2^2 N q} \\ b &= \frac{p_{cr}}{\tau_1^2 \tilde{p}_1^2 \tau_2^2 \tilde{p}_2^2 N q} \\ c_1 &= \frac{p_{cr} - \tilde{p}_1}{\tau_1 \tilde{p}_1} \\ c_2 &= \frac{p_{cr} - \tilde{p}_2}{\tau_2 \tilde{p}_2} \end{split}$$

Случай 2

Рассмотрим модель, когда, помимо экономического фактора влияния (изменение себестоимости, производственного цикла, использование кредита и т.п.), используются еще и социально-психологические факторы — формирование общественного предпочтения одного товара другому, не зависимо от их качества и цены. В этом случае взаимодействие двух фирм будет зависеть друг от друга, соответственно коэффициент перед $M_1 \ M_2$ будет отличаться. Пусть в рамках рассматриваемой модели динамика изменения объемов продаж фирмы 1 и фирмы 2 описывается следующей системой уравнений:

$$\frac{dM_1}{d\Theta} = M_1 - (\frac{b}{c_1} + 0.0002)M_1M_2 - \frac{a1}{c1}M_1^2$$

$$\frac{dM_2}{d\Theta} = \frac{c_2}{c_1}M_2 - (\frac{b}{c_1} + 0,00093)M_1M_2 - \frac{a_2}{c_1}M_2^2$$

Выполнение лабораторной работы

Julia

```
Код для первого случая: using Plots using DifferentialEquations kr = 22\ t1 = 22\ p1 = 6.6\ t2 = 11\ p2 = 11.1\ N = 33\ q = 1 a1 = kr/(t1*t1*p1*p1*N*q)\ a2 = kr/(t2*t2*p2*p2*N*q)\ b = kr/(t1*t1*t2*t2*t2*p1*p1*p2*p2*N*q)\ c1 = (kr-p1)/(t1*p1)\ c2 = (kr-p2)/(t2*p2) function ode_fn(du, u, p, t) M1, M2 = u du[1] = u[1] - (b/c1)u[1]u[2] - (a1/c1)u[1]u[1]\ du[2] = (c2/c1)u[2] - (b/c1)u[1]*u[2] - (a2/c1)u[2]u[2]\ end v0 = [3.3, 2.3]\ tspan = (0.0, 30)\ prob = ODEProblem(ode_fn, v0, tspan)\ sol = solve(prob, dtmax = 0.05)\ M1 = [u[1]\ for\ u\ in\ sol.u]\ M2 = [u[2]\ for\ u\ in\ sol.u]\ T = [t\ for\ t\ in\ sol.t] plt = plot(dpi = 600, legend = true) plot!(plt, T, M1, label = "Оборотные средства фирмы 1", color = :green) plot!(plt, T, M2, label = "Оборотные средства фирмы 2", color = :red) savefig(plt, "lab08_1.png")
```


Получим следующий график (Рис.1):

Код для второго случая:

using Plots using DifferentialEquations

$$kr = 22 t1 = 22 p1 = 6.6 t2 = 11 p2 = 11.1 N = 33 q = 1$$

$$t2 * p1 * p1 * p2 * p2 * N * q)$$
 $c1 = (kr - p1)/(t1 * p1)$ $c2 = (kr - p2)/(t2 * p2)$

function ode_fn(du, u, p, t) M1, M2 = u du[1] = u[1] - (b/c1)u[1]u[2] - (a1/c1)u[1]u[1] du[2]

=
$$(c2/c1)u/2$$
] - $(b/c1 + 0.00093)u[1]u/2$] - $(a2/c1)u[2]*u[2]$ end

v0 = [3.3, 2.3] tspan = (0.0, 30) prob = ODEProblem(ode_fn, v0, tspan) sol = solve(prob,

 $dtmax = 0.05) \ M1 = [u[1] \ for \ u \ in \ sol.u] \ M2 = [u[2] \ for \ u \ in \ sol.u] \ T = [t \ for \ t \ in \ sol.t]$

plt = plot(dpi = 600, legend = true) plot!(plt, T, M1, label = "СПФ Оборотные средства фирмы 1", color = :green) plot!(plt, T, M2, label = "СПФ Оборотные средства фирмы 2", color = :red)

savefig(plt, "lab08_2.png")

Получим следующий график (Рис.2):

Рис. 1: График конкуренции двух фирм для второго случая

OpenModelica

Код для первого случая:

model lab 08_1 Real kr = 22; Real t1 = 22; Real p1 = 6.6; Real t2 = 11; Real p2 = 11.1; Real N = 33; Real q = 1;

Real a1 = kr / (t1 * t1 * p1 * p1 * N * q); Real a2 = kr / (t2 * t2 * p2 * p2 * N * q); Real b = kr / (t1 * t1 * t2 * t2 * p1 * p1 * p2 * p2 * N * q); Real c1 = (kr - p1) / (t1 * p1); Real c2 = (kr - p2) / (t2 * p2);

Real M1; Real M2; initial equation M1 = 3.3; M2 = 2.3; equation der(M1) = M1 - b / c1 * M1 * M2 - a1 / c1 * M1 * M1; <math>der(M2) = c2 / c1 * M2 - b / c1 * M1 * M2 - a2 / c1 * M2 * M2; end lab08 1;

Получим следующий график (Рис.3):

Рис. 2: График конкуренции двух фирм для первого случая

Код для второго случая:

model lab 08_2 Real kr = 22; Real t1 = 22; Real p1 = 6.6; Real t2 = 11; Real p2 = 11.1; Real N = 33; Real q = 1;

 $Real\ a1 = kr \ / \ (t1\ *\ t1\ *\ p1\ *\ p1\ *\ p1\ *\ p1\ *\ p1); Real\ a2 = kr \ / \ (t2\ *\ t2\ *\ p2\ *\ p2\ *\ N\ *\ q); Real\ a2 = kr \ / \ (t2\ *\ t2\ *\ p2\ *\ N\ *\ q); Real\ a2 = kr \ / \ (t1\ *\ t1\ *\ t2\ *\ t2\ *\ p1\ *\ p1\ *\ p2\ *\ p2\ *\ N\ *\ q); Real\ a2 = (kr\ -\ p1) \ / \ (t1\ *\ p1); Real\ a2 = (kr\ -\ p2) \ / \ (t2\ *\ p2);$

Real M1; Real M2; initial equation M1 = 3.3; M2 = 2.3; equation der(M1) = M1 - b / c1 * M1 * M2 - a1 / c1 * M1 * M1; <math>der(M2) = c2 / c1 * M2 - (b / c1 + 0.00093) * M1 * M2 - a2 / c1 * M2 * M2;

end lab08 2;

Получим следующий график (Рис.4):

Рис. 3: График конкуренции двух фирм для второго случая

Анализ и сравнение результатов

В ходе выполнения лабораторной работы были построены графики при заданных начальных условиях на языках Julia и с помощью ПО Open Modelica. Результаты графиков совпадают (не учитывая разности в масштабах).

Выводы

Мы решили задачу о модели конкуренции двух фирм и выполнили все поставление перед нами задачи.

Список литературы

- 1. Документация по Julia: https://docs.julialang.org/en/v1/
- 2. Документация по OpenModelica: https://openmodelica.org/
- 3. Решение дифференциальных уравнений: https://www.wolframalpha.com/