Shivansh Verma

Bengaluru, Karnataka | P: 8800573508 | shiv.v10899@gmail.com | LinkedIn:

https://www.linkedin.com/in/shivansh-verma05/ | Github: https://github.com/shivanshv9911

Portfolio: https://shivanshv9911.github.io/shivansh-verma-portfolio/

PROFESSIONAL SUMMARY

Bioinformatics Data Analyst with 2+ years of experience building scalable NGS analysis pipelines and dashboards to support experimental biology teams. Proficient in Python, Snakemake, DESeq2, Google Cloud, and data visualization tools. Known for automating time-intensive workflows and integrating qPCR, RNA-seq, HybELISA, and Caspase-Glo assay data to generate actionable biological insights. Adept at collaborating with global teams to accelerate research timelines in drug discovery.

EDUCATION

Indraprastha Institute of Information Technology Delhi (IIITD)

New Delhi,

M.Tech - Computational Biology

Aug 2021-Aug 2023

CGPA: 9.0/10

Thesis Title: Analysis of Gene Expression and Structural Variations in Common Genes Across Populations: Implications for Cardiovascular Disease and Reverse Cholesterol Pathway

Noida Institute of Engineering and Technology (NIET)

Greater Noida, UP Jul 2017 - Jul 2021

B.Tech - Biotechnology

CGPA: 8.9/10

PROFESSIONAL WORK EXPERIENCE

Creyon Bio, India (Startup)

Data Analyst / Research Associate – Data Analysis

Bengaluru, Karnataka Aug 2023 – Present

- Designed and implemented automated workflows for internal assays (qPCR, HybELISA, RNA-seq, Nanopore) using Python, Snakemake, and Streamlit, accelerating analytics and decision-making.
- Built modular, end-to-end pipelines for DGE analysis, Nanopore data Analysis including QC, and assay processing, integrated into a Snakemake framework with cloud storage on Google Cloud.
- Developed a Streamlit dashboard for qPCR and HybELISA assay, reducing manual reporting time by 10 hours per
- Cleaned, categorized, and stored raw datasets, removing outliers and ensuring high-quality analysis inputs for ML
- Consolidated unstructured in vivo data from 20+ sources and cleaned, categorized, and stored raw datasets, which established structured formats with embedded QC metrics, accelerating development and machine learning deployment.
- Documented dashboard/report specifications, contributing to system scalability and reproducibility.
- Collaborated with cross-functional R&D teams (India/US) on experimental design, data integration strategies, and platform development.
- Worked closely with biologists and data scientists to interpret experimental results and iterate on assay design in real time.

PROJECT WORK

1. Comprehensive Analysis of RNA Sequencing, Connectivity Mapping, and Molecular Docking for Cardiovascular **Disease Therapeutics**

Guide: Dr. Arjun Ray (Associate Professor, IIITD)

- Analyzed RNA-seq data to identify differentially expressed genes and pathways.
- Applied Connectivity Mapping to discover small molecules capable of reversing disease signatures.
- Validated drug candidates through molecular docking simulations.

- Tools: AutoDock, AutoDock Vina, DESeq2
- **Key Metric:** Identified top 10 candidate molecules with strong binding affinities.

2. Automated Web Scraping for Protein Dataset Development for Machine Learning Models

Guide: Dr. Arjun Ray (Associate Professor, IIITD)

- Built a BeautifulSoup-based web scraper to extract structured protein metadata from the RCSB database.
- Created a curated dataset ready for machine learning model training and evaluation.
- Tools: Python (BeautifulSoup)
- Key Metric: Extracted and cleaned 5,000+ protein entries.

3. Differential Gene Expression and Pathway Enrichment Analysis in the Reverse Cholesterol Pathway

Guide: Dr. Arjun Ray (Associate Professor, IIITD)

- Developed Bash scripts and Python workflows for bulk RNA-seq preprocessing and differential expression analysis.
- Conducted gene set enrichment analysis focusing on cholesterol metabolism pathways.
- Tools: Bash, Python (Seaborn, Matplotlib), DESeq2
- Key Metric: Identified 200+ differentially expressed genes associated with cholesterol metabolism.

4. Classification of Protein Interaction Patterns Using Machine Learning

Guide: Prof. GPS Raghava (Head & Professor, IIITD)

- Developed machine learning models to classify interacting vs. non-interacting protein patterns.
- Deployed the trained model into an interactive web application using Streamlit.
- Tools: Python (Scikit-learn, Streamlit)
- Key Metric: Achieved 85% classification accuracy on test datasets.

ADDITIONAL

Technical Skills:

- Programming & Data Analysis: Python, R, SQL, Pandas, NumPy, Jupyter Notebooks
- Bioinformatics Tools & Pipelines: Snakemake, Nextflow, DESeq2 (Python), FastQC, MultiQC, NanoPlot, STAR, HISAT2, featureCounts
- Cloud & Infrastructure: Google Cloud Platform (BigQuery), Docker, Git, Linux, Bash
- Data Visualization & Dashboarding: Looker, Streamlit, Seaborn, Matplotlib, Excel (Advanced)

Awards: 3rd Prize – Startup Conclave (IMS Ghaziabad, 2018); Department Topper Award (2020); TCS NQT Qualified (2020); GATE-2021 (Biotech).

Languages: Fluent in English and Hindi; Beginner in German

Certifications & Training: GCP Data Engineering (Coursera), Docker & Kubernetes (Udemy), Data Science with Python (IBM)

CONFERENCES: Attended illumina Genomic Summit, Bengaluru (30th August 2024)

ACTIVITIES

TEACHING ASSISTANT

Delhi

Worked as Teaching Assistant in IIITD.

STUDENT WELFARE

Committee Member

Greater Noida, UP

- Editorial member of Department of Biotechnology(NIET).
- Dean student welfare Coordinator of the Department of Biotechnology(NIET).
- Organized and advertised 5+ yearly departmental events with 50+ participants from all years in the department.
- Managed the launch of a new departmental magazine to improve flow of information and organization of events.