Data preprocessing, model complexity.

Victor Kitov

v.v.kitov@yandex.ru

Table of Contents

- Model complexity
- 2 Data preprocessing

Data preprocessing, model complexity. - Victor Kitov Model complexity

Hyperparameters selection

- Using CV we can select hyperparameters of the model¹
- Each model has hyperparameter, corresponding to model complexity.
- Model complexity ability to reproduce training set.
- Examples:
 - regression: # of features d, e.g. $x, x^2, ...x^d$
 - K-NN: number of neighbors K

¹can we use CV loss in this case as estimation for future losses?

Data preprocessing, model complexity. - Victor Kitov Model complexity

Underfitted and overfitted models²

Too simple (underfitted) model

Model that oversimplifies true relationship $\mathcal{X} \to \mathcal{Y}$.

Too complex (overfitted) model

Model that is too tuned on particular peculiarities (noise) of the training set instead of the true relationship $\mathcal{X} \to \mathcal{Y}$.

²In fact most models overfit, meaning that empirical risk<expected risk. Underfitted models just have lower difference than overfitted ones.

Examples of overfitted / underfitted models

- ____ true relationship
 - estimated relationship with polynimes of order M
 - objects of the training sample

Loss vs. model complexity

Comments:

- expected loss on test set is always higher than on train set.
- left to A: model too simple, underfitting, high bias
- right to A: model too complex, overfitting, high variance

Loss vs. train set size

Comments:

- expected loss on test set is always higher than on train set.
- right to B there is no need to further increase training set size
 - useful to limit training set size when model fitting is time consuming

Table of Contents

- Model complexity
- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Data transformation
 - Feature type transformations

What we need to do

- Data preprocessing:
 - deal with missing data
 - clean incorrect data
 - data subsampling
 - data scaling
 - data type transformation

Data preprocessing, model complexity. - Victor Kitov
Data preprocessing
Missing data

- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Data transformation
 - Feature type transformations

Missing data

What we can do with missing features:

- remove all objects, having at least one missing feature
 - easiest way, but lose information
- fill missing features using most likely value
 - mean, median for numeric features
 - averaged neighbours for continuous time-series
 - mode for categorical feature
- predict missing features using known features
 - regression task for numeric features
 - classification task for categorical feature
- use models, which ignore missing features
 - such as decision trees

Comments on imputation

- imputing missing features with estimates induces imputation bias
 - to get rid of this bias: for feature d add binary feature, indicating whether this feature was known or was imputed.
- imputation implies that feature absence and feature value are independent
 - may not be the case
 - in surveys people prefer not to tell their salary when it is big.
 - if they are dependent additional expert info should be used for feature reconstruction

Incorrect data

We can detect incorrect data using:

- consistency check across different databases
 - e.g. surname of the same person is spelled differently in different records
- domain knowledge
 - e.g. human height cannot be 4 meters
- statistical methods: remove outliers

Data preprocessing, model complexity. - Victor Kitov
Data preprocessing

Missing data

Outlier removal, having extreme values

• 1D outlier removal:

³which of these measures are robust to outliers and why?

⁴which of these measures are robust to outliers and why?

Outlier removal, having extreme values

- 1D outlier removal:
 - outliers are outside [center α scatter, center $+ \alpha$ scatter], $\alpha > 0$
 - center³: mean, median
 - scatter⁴: standard deviation, 95% quantile 5% quantile, median $\{|x-\text{median}\,\{x\}\}$
- Outliers can be not errors, but interesting regimes:
 - manual inspection of outliers needed
 - examples:
 - medical data: rare disease
 - network data: hacker attack
 - card transaction data: fraud

³which of these measures are robust to outliers and why?

⁴which of these measures are robust to outliers and why?

Data preprocessing, model complexity. - Victor Kitov
Data preprocessing
Data reduction

- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Data transformation
 - Feature type transformations

Objects reduction

Data reduction

If N is too large, then

- additional disk/memory/CPU data transfer requirements
- slow-down of optimization in ML methods

Objects reduction:

- random uniform
 - purely random subsampling
 - random with stratification
 - stratification by output (or feature) value to preserve output (or object types) distribution
- random non-uniform
 - sample new objects more (in dynamic context)
 - sample rare classes/objects more (underrepresented data)
 - sample harder objects more (mistakes)

Feature reduction

Feature selection vs. feature extraction:

- Feature selection:
 - unsupervised (e.g. variance<threshold)
 - filter (e.g. by correlation with output)
 - wrapper (e.g. compare performance with/without feature)
 - embedded inside ML model

Data reduction

Brute-force feature selection may lead to information loss

- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Data transformation
 - Feature type transformations

Normalization of features

- Feature scaling may affect ML model, e.g. K-NN.
- Need equal features impact make their scatter common.
- Make some features more important increase their scatter.
- Typical scaling operators:

Name	Transformation	Properties of result		
Standardization	$u' = \frac{x_j - mean(u)}{std(u)}$	mean=0, std=1		
Min-max normalization	$u' = \frac{u - \min(u)}{\max(u) - \min(u)}$	\in [0,1], 0->0 for sparse data		
Average normalization	$u' = \frac{u - mean(u)}{max(u) - min(u)}$	zero mean, range=1		

• All operators aren't robust to outliers. Propose robust variants.

Non-linear feature transformations

Feature with skewed distribution with large rare values:

$$u' = \log(1 + u), \qquad u' = u^p, \ 0 \le p < 1$$

• For uniformly distributed output $(F(\cdot)\text{-c.d.f. of }u)$

$$u' = F(u)$$

• For normally distributed output $(\Phi^{-1}(\cdot)$ -inverse function to c.d.f. of $\mathcal{N}(0,1))^5$.

$$u' = \Phi^{-1}(F(u))$$

- Object normalization $x' \to x/\|x\|$, $x \in \mathbb{R}^D$.
 - when feature ratios are more important than absolute values.
 - example:
 - x counts of words within document
 - x' frequencies of words within document
 - documents of different length become comparable!

⁵Prove that. See sklearn preprocessing Quantile Transformer.

Transformation of output⁶

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |\widehat{y}_n - y_n|, \qquad R^2 = 1 - \frac{(1/N) \sum_{n=1}^{N} |\widehat{y}_n - y_n|}{(1/N) \sum_{n=1}^{N} |\operatorname{mean}(y_n) - y_n|}$$

⁶See scikit-learn demo.

Transformation of output⁷

$$y' = \Phi^{-1}(F(y)), \quad F(\cdot)$$
- c.d.f. of y , $\Phi^{-1}(\cdot)$ -inverse function to c.d.f. of $\mathcal{N}(0,1)$.

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |\widehat{y}_n - y_n|, \qquad R^2 = 1 - \frac{(1/N) \sum_{n=1}^{N} |\widehat{y}_n - y_n|}{(1/N) \sum_{n=1}^{N} |\operatorname{mean}(y_n) - y_n|}$$

⁷See scikit-learn demo.

- 2 Data preprocessing
 - Missing data
 - Data reduction
 - Data transformation
 - Feature type transformations

Possible features types

- Numeric
 - salary
 - flat size
- Categorical
 - occupation (programmer, manager, engineer, etc.)
 - city (Moscow, Kaluga, etc.)
- Binary (may be considered both numeric and categorical)
 - sex
 - employment indicator
 - marital status

Numeric->categorical (discretization)

- Split feature domain into intervals $[b_1, b_2], [b_2, b_3], ...[b_K, b_{K+1}]$
- $u \to u' \in \mathbb{R}^K$

$$u' = (\mathbb{I}[u \in [b_1, b_2]], \, \mathbb{I}[u \in [b_2, b_3]], ... \mathbb{I}[u \in [b_K, b_{K+1}]])$$

- Loose some information.
- Makes model pay attention to special groups (e.g. by age students, working, pensioners).
- Intervals selection:
 - equal length of each interval
 - equal density of points in each interval

Categorical->numeric

• One hot encoding - encode categorical feature $u \in \{c_1, c_2, ... c_K\}$ with $u' \in \mathbb{R}^K$

$$u' = (\mathbb{I}[u = c_1], \, \mathbb{I}[u = c_2], \, ... \, \mathbb{I}[u = c_K])$$

Orig	inal data:	ata: One-hot encoding format:						
id	Color		id	White	Red	Black	Purple	Gold
1	White		1	1	0	0	0	0
2	Red		2	0	1	0	0	0
3	Black		3	0	0	1	0	0
4	Purple		4	0	0	0	1	0
5	Gold		5	0	0	0	0	1

• Original u is then replaced by u', total number of features increases by K-1.

Categorical->numeric

Mean value encoding - replace discrete feature f with aggregated another feature g.

- Continious g:
 - replace f with average(g|f)
- Discrete $g \in \{1, 2, ... C\}$:
 - replace f with C binary features p(g = 1|f), p(g = 2|f), ... p(g = C|f)

g may be taken as output y.

- intuitive method but overfits
 - e.g. consider *f*=client id, unique for each object.
- to prevent overfitting calculate aggregation statistics on separate training set.

Time series / spatial -> numeric

- Time series->numeric:
 - use discrete wavelet transform (DWT).
- Spatial data->numeric:
 - use discrete wavelet transform (DWT).

Haar wavelet transform

- Suppose we have time series f(t), t = 1, 2, ... T.
 - e.g. temperature measurements from sensor every second
- How can we get compact description of f(t)?
- Consider the following set of basis functions $\phi_k(t)$ (Haar wavelets):
- They are orthogonal $\langle \phi_i, \phi_j \rangle = \sum_t \phi_i(t) \phi_j(t) = 0 \quad \forall i \neq j.$
- Represent $f_t = \sum_{k=1}^K a_k \phi_k(t)$, so $f_t \to (a_1, a_2, ..., a_K)$.

Finding wavelet coefficients

Finding wavelet coefficients:

- Set first coefficient to $\frac{1}{T}\sum_t f(t)$
- 2 repeat until given resolution achieved:
 - next wavelet coefficient = 0.5*(difference between average value of time series value on 1st halve and 2nd halves)
 - e recursively apply this approach to 1st and send half of time series

Dimensionality reduction with wavelets

$$f_t = \sum_{k=1}^{K} a_k \phi(t) = \sum_{k=1}^{K} a_k \|\phi_k(t)\| \frac{\phi_k(t)}{\|\phi_k(t)\|}$$

- $\frac{\phi_k(t)}{\|\phi_k(t)\|}$ are orthonormal, so comparable.
- Leave only coefficients, having $a_k \|\phi_k(t)\| > threshold$.
- When have P time series simultaneously, we can
 - leave coefficients for $\phi_k(t)$ that are on average important for all time series
 - or leave coefficients for each time series independently, set other to 0, get sparse matrix.
 - then we can get economical representation of this matrix with SVD decomposition.

Feature type transformations

Wavelets for spatial data

Top levels of the wavelet decomposition for spatial data

Other transformations

- Discrete sequence->numeric:
 - **1** for each t replace f_t with one-hot encoded $\tilde{f}_t \in \mathbb{R}^K$
 - ② for each k = 1, 2, ...K: apply wavelet transform to each binary time series \tilde{f}_t^k
 - 3 append wavelet coefficients into single vector representation.
- Any type->set of numeric points $y_1, ... y_N, y_i \in \mathbb{R}^K$:
 - solve multidimensional scaling problem:

$$\sum_{i,j:\,i>j} (\rho(x_i,x_j) - ||y_i - y_j||)^2 \to \min_{y_1,\dots,y_N}$$

Other transformations

- Time series->discrete sequence:
 - Consider time series f_t , t-time.
 - ② Divide time into windows of equal size, $f_t \rightarrow$ averaged value on each window
 - Discretize averaged values using equiwidth or equiwidth discretization.
- Any type->graph:
 - each object is represented by a node
 - connection between x_i, x_j exists <=> x_i, x_j are sufficiently close:

$$\rho(x_i, x_j) < threshold$$

 x_i, x_j are belong to K nearest neighbours of each other.

weight of connection:

$$w_{ij} = e^{-\gamma \rho(x_i, x_j)^2}$$

Why we may need graphs

Distance along the graph may be useful.

Feature type transformations

Summary

- Each model has complexity parameter tune it!
- Data preprocessing is important and includes the following steps:
 - deal with missing data
 - clean incorrect data
 - data subsampling
 - data scaling
 - data type transformation
 - one-hot and aggregation encodings are most important.