ECE M16 Homework 2

Lawrence Liu

July 28, 2022

Problem 1

(a)

It will toggle, if the latch is reset, ie Q=0 and $\bar{Q}=1$. Then the output will be Q=1 and $\bar{Q}=0$ following the clock pulse

(b)

if C=0 it will latch, but with C=1 there will be following transition table

J	K	Q current	Q next			
0	0	0	0			
0	0	1	1			
0	1	0	0			
0	1	1	0			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	0			

Therefore this is like a SR latch however it will toggle at J = K = 1, unlike the SR latch.

(c)

$$Q^{n+1} = J^n.\overline{Q^n} + \overline{K^n}.Q^n$$

(d)

The transition table of the D latch is:

$\mid C \mid$	$\mid D \mid$	Q next
0	X	Q
1	0	0
1	1	1

Which is the same as the transition table of the JK latch with $J=\bar{K}=D.$

С	J=D	$K = \bar{D}$	Q next
0	X	X	Q
1	0	1	0
1	1	0	1

Problem 3

(a)

The kmaps for assignment 1 are:

For y_1 and y_0 respectively, therefore the corresponding circuit is:

Likewise for assignment 2, the kmaps are:

and

For y_1 and y_0 respectively, therefore the corresponding circuit is:

(b)

Therefore assignment 1 is more economical since it uses less gates.

Problem 4

Because we can use D flip flops to delay a signal, we have the following circuit

With the following timing diagram

Signal Name	Signal Value	1945.0 s	1950.0 s	1955.0 s 1960.0 s	1965.0 s	1970.0 s	1975.0 s 1980.0 s 1:
CLK	-	$\int 1 \setminus 0 \setminus 1 \setminus 0$	1 0 1 0 1 0	$\int 1 \setminus 0 \setminus 1 \setminus 0 \setminus 1 \setminus 0$	$\int 1 \cdot 0 \cdot 1 \cdot 0 \cdot 1 \cdot 0 \cdot 1 \cdot 0$	0 1 0 1 0	1 0 1 0 1 0 1 0 1
D DIN	1	1	0	1	0 1	0	1 0
D DOUT	0		1 0	1 0	[-	0	1 0

Problem 5

Once again we can use D flip flops to delay the signal, therefore using a mux we have the following circuit

With the following timing diagram

Problem 6

Let the remainder at step n be r_n , if the input bit is 0 we get that the remainder at step n+1 is

$$r_{n+1} = (2r_n)\%6$$

and if the input bit is 1 we get that the remainder at step n+1 is

$$r_{n+1} = (2r_n + 1)\%6$$

. Therefore we have the following circuit

With the following timing diagram

Signal Name	Signal Value	γμs	540.0 μs	560.0 μs	580.0 μs	600.	0 μs 620.0 μs
□ CLK	1	1 0 1	0 1 0	1 0 1	0 1 0 1	0 1 0	$\int 1 \cdot 0 \cdot 1 \cdot 0 \cdot 1 \cdot 0$
D- DIN	1	1	0	1	0	1 0	1
DOUT	0	0		1 0			1 0