1 If \mathscr{A} is a Banach algebra with identity and $a \in \mathscr{A}$ and is nilpotent (that is, $a^n = 0$ for some n), then $\sigma(a) = \{0\}$

Firstly, assume a is invertible. Then

$$a^{n} = 0$$
$$(a^{-1})^{n}a^{n} = (a^{-1})^{n}0$$
$$1 = 0$$

a contradiction, so $0 \in \sigma(a)$.

Next, $||(a+1)-1|| = ||a|| \le ||a^n||^{1/n} = 0 < 1$, so by Lemma 2.1, a+1 is invertible, so $a+1 \notin \sigma(a)$. TODO: extend argument to all values a+ somehow?