

Multi-fair capacitated students-topics grouping problem

Tai Le Quy^{1*}, Gunnar Friege², Eirini Ntoutsi³

¹ L3S Research Center – Leibniz University Hannover, Germany

Osaka, 27/05/2023

² Faculty of Mathematics and Physics – Leibniz University Hannover, Germany

³ Research Institute CODE – Bundeswehr University Munich, Germany

Topics

Motivation (1/2)

Students

Motivation (2/2)

Problem definition (1/2)

 $X = \{x_1, ..., x_n\}$: *n* students, $T = \{t_1, ..., t_m\}$: a set of *m* topics

 h = 3 preferences

 wish1
 wish2
 wish3

 x1
 t1
 t3
 t2

 x2
 t3
 t1
 t4

 x3
 t2
 t3
 t1

 x4
 t4
 t2
 t3

 x5
 t1
 t4
 t3

a) Matrix wishes_{n×h}

Students choose *h* topics as their wishes

			111	7 topics	
Ø		t_1	t_2	t_3	t_4
= 5 students	\mathbf{x}_1	3	1	1.5	0
	\mathbf{x}_2	1.5	0	3	1
	X 3	1	3	1.5	0
	X 4	0	1.5	1	3
u	X 5	3	0	1	1.5

m = 4 tonics

b) Matrix $V_{n \times m}$

V: level of interest in the topic

5

m = 4 topics $t_1 \quad t_2 \quad t_3 \quad t_4$ $x_1 \quad 4 \quad 1 \quad 3 \quad 0$ $x_2 \quad 3 \quad 0 \quad 5 \quad 3$ $x_3 \quad 2 \quad 2 \quad 4 \quad 0$ $x_4 \quad 0 \quad 3 \quad 2 \quad 1$ $x_5 \quad 1 \quad 0 \quad 1 \quad 2$

students

c) Matrix $W_{n \times m}$

W: time-weight matrix based on registration time

m = 4 topics

	t_1	t_2	t_3	t_4
\mathbf{X}_1	2.0	0.67	1.1	0
\mathbf{X}_2	1.25	0	2.0	1.08
X 3	0.83	1.67	1.3	1.0
X4	0	1.5	0.73	1.25
X 5	1.25	0	0.53	1.0

d) Matrix welfare $n \times m$

 $welfare_{ij} = \alpha v_{ij} + \beta w_{ij}$

• Protected attribute, e.g., gender, $\psi(x_i) = \{p, \bar{p}\}$, i.e. $\{\text{female}, \text{male}\}$

Problem definition (2/2)

■ The goal is to divide all students into k groups $\emptyset = \{G_1, ..., G_k\}$, $k \le m$, which maximizes the objective function:

$$L(X,\mathcal{G}) = \prod_{r=1}^{k} (1 + \sum_{i=1}^{n} welfare_{ij_r} * y_{ij_r})$$

L(X, g) is the Nash social welfare function*

- The group assignment is fair, i.e., maximizing the objective function (students' satisfaction)
- $balance(G_r)$ is maximized: fairness constraint w.r.t protected attribute
- $C^l \leq |G_r| \leq C^u$: capacity constraint

where:
$$J = \{j_1, ..., j_k\} = \{j \mid x_i \in G_r, welfare_{ij} > 0\}, r = 1..k$$

$$y_{ij_r} = \begin{cases} 1 & \text{if } x_i \text{ is assigned to topic } t_{j_r} \\ 0 & \text{if not} \end{cases}$$

$$balance(G_r) = \min \left(\frac{\{x \in G_r | \psi(x) = p\}}{\{x \in G_r | \psi(x) = \bar{p}\}}, \frac{\{x \in G_r | \psi(x) = \bar{p}\}}{\{x \in G_r | \psi(x) = p\}} \right)$$

Multi-fair capacitated (MFC) grouping problem

^{*} Fluschnik et al., Fair knapsack. In AAAI, 2019

Proposed methods

- Greedy heuristic approach
 Student's preferences
 - Assign students to the most preferred topic among their preferences
- Knapsack-based approach Group's cardinality
 - Search the most suitable students for each topic by a maximal knapsack problem
- MFC knapsack approach
 MFC constraints
 - Search the most suitable students for each topic by a new MFC knapsack satisfying constraints of the MFC problem

Greedy heuristic approach

- 2-step approach
 - Assign students to groups
 - Assign students to their most preferred topic
 - If many students choose the same topic, we assign the student with the highest welfare value to the topic
 - Group adjustment
 - To satisfy constraints (fairness w.r.t. protected attribute, cardinality).
 - If there are ungrouped students, we will try to assign them to existing groups

Knapsack-based approach (1/2)

- Select suitable students for a group by a maximal knapsack problem
 - For each topic $t_{j_r} \in T$, r is the index of k selected topic $J = \{j_1, j_2, ..., j_k\}$, select a subset of students (G_r):

$$\text{maximize} \sum_{i=1} welfare_{ij_r} * y_{ij_r}$$

subject to
$$\begin{cases} \sum_{i=1}^{n} capacity_i * y_{ij_r} \leq C^u \text{ or } \\ \sum_{i=1}^{n} capacity_i * y_{ij_r} \leq C^l \end{cases}$$

where $y_{ij_r} = 1$ if x_i is assigned to topic t_{j_r} , otherwise $y_{ij_r} = 0$

value ~ welfare, weight ~ capacity

Source: https://en.wikipedia.org/wiki/Knapsack_problem

Knapsack-based approach (2/2)

- 2-step approach
 - Assign students to groups
 - Select suitable candidates among unassigned students by the result of a vanilla maximal knapsack problem
 - Use dynamic programming to solve the knapsack problem
 - Group adjustment
 - Apply the same procedure as in the greedy heuristic approach

MFC knapsack approach (1/3)

- MFC knapsack algorithm
 - Search the group of suitable student w.r.t. MFC constraints: select a subset G_r:

MFC knapsack approach (2/3)

- 2-step approach
 - Assign students to groups
 - Select suitable candidates among unassigned students by the result of a group fairness MFC knapsack problem
 - Use dynamic programming to solve the MFC knapsack problem (inspired by knapsack problem with group fairness constraints of Patel et al. (2021)*
 - Group adjustment
 - Apply the same procedure as in the greedy heuristic approach

^{*} Patel, D., Khan, A., & Louis, A. (2021). Group fairness for knapsack problems. In *Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS* (Vol. 2, pp. 989-997).

MFC knapsack approach (3/3)

Algorithm 4: MFC knapsack algorithm

Input: $S = \{x_1, x_2, \dots, x_z\}$: a set of unassigned students; C^l, C^u : capacities; $welfare_{n \times m}$: a welfare matrix; θ : balance score

Output: An optimal total welfare value

$$1 \ avg = \frac{\sum_{i=1}^{n} welfare_{ij_r}}{(C^l + C^u)/2} ;$$

- 2 Let $A(p, s, w), \forall p \in \{0, 1\}$, be the total welfare of the first s students in the set S with capacity w on group p;
- **3** Initialize $\mathcal{A}(p,0,w) \leftarrow 0$; $\mathcal{A}(p,s,0) \leftarrow 0$;
- 4 $\mathcal{A}(p,s,w) \leftarrow max\{\mathcal{A}(p,s-1,w),\mathcal{A}(p,s-1,w-1) + \sum_{i=1}^{s} welfare_{ij_r}\}$;
- 5 Let $\mathcal{B}(p, w)$ be the total welfare of group p with capacity w;

$$\mathbf{6} \ p_0^l \leftarrow \left\lceil \frac{C^l}{\frac{1+\theta}{\theta}} \right\rceil; p_0^u \leftarrow \left\lceil \frac{C^u}{\frac{1+\theta}{\theta}} \right\rceil; S_0 \leftarrow \{x \in \mathcal{S} | \varphi(x) = 0\}; S_1 \leftarrow \{x \in \mathcal{S} | \varphi(x) = 1\};$$

- 7 $\mathcal{B}(0,w) \leftarrow max\{\mathcal{A}(0,|S_0|,w)|p_0^t \leq w \leq p_0^u\}$;
- 8 $\mathcal{B}(1,w) \leftarrow \max\{\mathcal{B}(0,w') + \mathcal{A}(1,|S_1|,w-w')|C^l p_0^l \le w w' \le C^u p_0^u, p_0^l \le w' \le p_0^u, \text{ and } \frac{w'}{w-w'} \ge \theta\}$;
- 9 return $argmax\{\mathcal{B}(1,w)|min\{\mathcal{B}(1,w)-avg\}\};$

The total welfare of the first s students in the set \mathcal{S} with capacity w on group $p \in \{0,1\}$

The total welfare with capacity ww.r.t. the protected attribute

Evaluation

Dataset

- Real data science dataset: Students have to register 3 desired topics out of 16 topics
- Student performance: generate student's preferences (semi-synthetic dataset)

Dataset	#instances	#attributes	Protected attribute	Balance score
Real data science	24	23	Gender (F: 8, M: 16)	0.5
Student-Mathematics	395	33	Gender (F: 208, M: 187)	0.899
Student-Portuguese	649	33	Gender (F: 383; M: 266)	0.695

Measures

- Nash social welfare
- Balance

Satisfaction level:
$$Satisfaction = \frac{\mid \{i | wishes_{ip} = k, i \in groups_k, p \in [h]\} \mid}{n}$$

Baseline

The CPLEX integer programming model

Experimental results (1/3)

- The MFC knapsack method is better:
 - In terms of the Nash social welfare and satisfaction level
 - When a group has at least 4 people
- CPLEX fails to assign students while maintaining only a constant number of groups

(a) Satisfaction level of students' preferences (higher is better)

(d) Number of groups

Performance of methods on the real data science dataset

Experimental results (2/3)

(b) Balance score w.r.t. Gender (higher is better)

(c) Nash social welfare (higher is better)

(d) Number of groups

Performance of methods on Student performance – Mathematics dataset

Experimental results (3/3)

In all datasets, the knapsack-based model shows the best performance with α = 1.0 and β = 1.0

(a) Satisfaction level of students' preferences (higher is better)

(b) Balance score w.r.t. Gender (higher is better)

(c) Nash social welfare (higher is better)

(d) Number of groups

Real data science: Impact of α , β parameters on the knapsack-based model

Conclusion

- We introduced the MFC grouping problem:
 - Ensures fairness in multiple aspects: i) student satisfaction and ii) protected attribute
 - Maintains groups' cardinality within the given bounds.
- We proposed three methods:
 - The greedy heuristic approach
 - The knapsack-based approach
 - The MFC knapsack approach
- The experiments show that our methods are effective regarding student satisfaction and fairness w.r.t. the protected attribute while maintaining cardinality within the given bounds.

Thank you for your attention!

The work is supported by LernMINT - The Lower Saxony doctoral program (Ministry for Science and Culture, Lower Saxony, funding period 2019-2024)

https://lernmint.org/

tailequy

tai@l3s.de

tailequy.github.io

