MSO202A COMPLEX ANALYSIS Assignment 2

Exercise Problems:

1. Let z = x + iy and $f(z) = x^2 - y^2 - 2y + i(2x - 2xy)$. Write f(z) as a function of z and \overline{z} .

Proof: Using $x = \frac{z+\overline{z}}{2}, y = \frac{z-\overline{z}}{2i}$ we get $f(z) = \overline{z}^2 + 2iz$.

2. Verify Cauchy-Riemann equation for z^2 , z^3 .

Proof: For z^2 , $u = x^2 - y^2$, $v = 2xy \Rightarrow u_x = 2x$, $u_y = -2y$, $v_x = 2y$, $v_y = 2x$. Similarly for z^3 .

3. Using the relations $x = \frac{z + \overline{z}}{2}$, $y = \frac{z - \overline{z}}{2i}$ and the chain rule show that $\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial x} - i\frac{\partial}{\partial y})$; $\frac{\partial}{\partial \overline{z}} = \frac{1}{2}(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y})$.

Proof: Straight forward.

4. Let $z, w \in \mathbb{C}, |z|, |w| < 1$ and $\overline{z}w \neq 1$. Prove that $\frac{|w-z|}{|1-\overline{w}z|} < 1$. Further, show that the equality holds if either |z| = 1 or |w| = 1.

Proof: Suffices to show that $|w-z|^2 < |1-\overline{w}z|^2$, i.e. $w\overline{w}+z\overline{z}-w\overline{z}-z\overline{w} < 1-w\overline{z}-\overline{w}z+w\overline{w}z\overline{z}$. Since $(1-z\overline{z})(1-w\overline{w}) > 0$, the above is true.

In case of equality, we see that either $(1 - z\overline{z})$ or $(1 - w\overline{w})$ is zero. Hence, in this case either |z| = 1 or |w| = 1.

5. Determine all $z \in \mathbb{C}$ for which each of the following power series is convergent.

a) $\sum \frac{z^n}{n^2}$

b)
$$\sum \frac{z^n}{n!}$$

c)
$$\sum \frac{z^n}{2^n}$$

d)
$$\sum \frac{1}{2^n} \frac{1}{z^n}$$
.

Proof:

- (a) Here $\frac{a_{n+1}}{a_n} \to 1 \Rightarrow R = 1$. The series converges for |z| < 1 and diverges for |z| > 1. For |z| = 1, by Comparison test it follows that the series converges since $\frac{|z|^n}{n^2} = \frac{1}{n^2}$.
- (b) As $\frac{a_{n+1}}{a_n} \to 0 \Rightarrow R = \infty$ and so the series converges for all z.
- (c) As $\frac{a_{n+1}}{a_n} \to \frac{1}{2} \Rightarrow R = 2$. The series converges for |z| < 2 and diverges for |z| > 2. Also it diverges for |z| = 2 as the *n*-th term sequence does not converge to zero.
- (d) Let $w=\frac{1}{z}$, where $z\neq 0$ and apply previous solution to conclude that the series converges for |z|>1/2, and diverges for all other values.
- 6. Find all $z \in \mathbb{C}$ such that $|e^z| \leq 1$.

Proof: For z = x + iy, $|e^z| = e^x < 1 \Leftrightarrow x < 0$.

7. Show that the CR-equations in polar form are given by: $u_r = \frac{1}{r}v_\theta$ and $u_\theta = -rv_r$.

Proof: Expressing x, y in polar co-ordinates we have

$$x = r\cos\theta, \quad y = r\sin\theta.$$

So,

$$\frac{\partial}{\partial r}u = u_x \frac{\partial}{\partial r}x + u_y \frac{\partial}{\partial r}y = u_x \cos \theta + u_y \sin \theta;$$

$$\frac{\partial}{\partial r}v = v_x \frac{\partial}{\partial r}x + v_y \frac{\partial}{\partial r}y = v_x \cos \theta + v_y \sin \theta;$$

$$\frac{\partial}{\partial \theta}u = u_x \frac{\partial}{\partial \theta}x + u_y \frac{\partial}{\partial \theta}y = r(-u_x \sin \theta + u_y \cos \theta),$$

$$\frac{\partial}{\partial \theta}v = v_x \frac{\partial}{\partial \theta}x + v_y \frac{\partial}{\partial \theta}y = r(-v_x \sin \theta + v_y \cos \theta).$$

Now it is easy to see that the CR-equations hold if and only if $u_r = \frac{1}{r}v_\theta$ and $u_\theta = -rv_r$.

Problem for Tutorial:

- 1. Let $\mathbb{D}=\{z\in\mathbb{C}:|z|\leq 1\}.$ For a fixed w in $\mathbb{D},$ with |w|<1, define the mapping $F:z\mapsto \frac{w-z}{1-\overline{w}z}.$ Show that
 - (a) F is a map from \mathbb{D} to itself;
 - (b) F(0) = w and F(w) = 0;
 - (c) |F(z)| = 1 if |z| = 1;
 - (d) $F: \mathbb{D} \to \mathbb{D}$ is bijective.

Proof:

- (a) Since |w| < 1, $|w^{-1}| > 1$ while $|z| \le 1$ for all $z \in \mathbb{D}$, so $z\bar{w} \ne 1 \forall z \in \mathbb{D}$. Thus (a) follows by applying Ex. 4 above.
- (b) direct verification.
- (c) Since |w| < 1 it follows once again from Ex. 4 that |F(z)| = 1 only of |z| = 1.
- (d) Check that $F \circ F(z) = z$.
- 2. Let R be the radius of convergence of $\sum_n a_n z^n$. For a fixed $k \in \mathbb{N}$, find the radius of convergence of (a) $\sum a_n{}^k z^n$, (b) $\sum a_n z^{kn}$.

Proof: (a) $\frac{1}{\limsup \sqrt[n]{|a_n|^k}} = \left(\frac{1}{\limsup \sqrt[n]{|a_n|}}\right)^k = R^k$ (b) $\sum a_n(z^{\frac{1}{k}})^{kn}$ is convergent (resp. divergent) for |z| < R (resp. |z| > R); take $w = z^{1/k}$ then $\sum a_n w^{kn}$ converges (resp. diverges) whenever $|w| < R^{\frac{1}{k}}$ (resp. $|w| > R^{\frac{1}{k}}$)*.

3. (a) Show that f satisfies the CR-equations if and only if $\frac{\partial}{\partial \overline{z}} f = 0$. (Recall from Ex. 3 above that $\frac{\partial}{\partial \overline{z}} = \frac{1}{2} (\frac{\partial}{\partial x} + i \frac{\partial}{\partial y})$.) Moreover, if f is analytic then $f'(z) = \frac{\partial}{\partial z} f$.

Proof: (a) Let f = u + iv. We have $\frac{\partial}{\partial \overline{z}} f = \frac{1}{2} [(u_x + iv_x) + i(u_y + iv_y)]$. Thus, CR-equations hold iff $\frac{\partial}{\partial \overline{z}} f = 0$. Also, $f'(z) = u_x + iv_x$ while $\frac{\partial}{\partial z} f = \frac{1}{2} [(u_x + iv_x) - i(u_y + iv_y)]$. Applying CR-equations we get $f'(z) = \frac{\partial}{\partial z} f$.

4. Consider the following functions

(a)
$$f(x+iy) = \begin{cases} \frac{xy(x+iy)}{x^2+y^2} & \text{if } x+iy \neq 0\\ 0 & \text{if } x+iy = 0 \end{cases}$$

(b)
$$f(x+iy) = \sqrt{|xy|}$$

^{*}Note that $|x|^k \le |y|^k \iff |x| \le |y|$

Show that f satisfies the CR-equations but it is not differentiable at the origin.

Proof:

(a)
$$u(x,y) = \frac{x^2y}{x^2+y^2}$$
 and $v(x,y) = \frac{xy^2}{x^2+y^2}$. So
$$u_x(0,0) = \lim_{x \to 0} \frac{u(x,0) - u(0,0)}{x} = 0, \qquad u_y(0,0) = \lim_{y \to 0} \frac{u(0,y) - u(0,0)}{y} = 0;$$

$$v_x(0,0) = \lim_{x \to 0} \frac{v(x,0) - v(0,0)}{x} = 0, \qquad v_y(0,0) = \lim_{y \to 0} \frac{v(0,y) - v(0,0)}{y} = 0.$$

Thus the CR-equations are satisfied. However, along the x-axis, f takes the value 0. So, $\lim_{h\to 0} \frac{f(h+i0)-f(0)}{h}$ is 0, while

$$\lim_{h(1+i)\to 0}\frac{f(h+hi)-f(0)}{h+hi}=\lim_{h(1+i)\to 0}\frac{(h^3+ih^3)}{(h^2+h^2)(h+hi)}=\frac{1}{2}.$$

(b) $u_x(0,0) = 0 = u_y(0,0); v_x(0,0) = v_y(0,0), \text{ hence CR equations are satisfied. } \lim_{h+i.0\to 0} \frac{f(h)-f(0)}{h}$ is 0, while $\lim_{h(1+i)\to 0} \frac{f(h+hi)-f(0)}{h+hi} = \frac{1}{1+i}, \text{ hence } f \text{ is not differentiable.}$