Lista 2 - Topologia 2021

- Ćw. 1 Znajdź podprzestrzeń X przestrzeni euklidesowej \mathbb{R} zawierającą zbiór A = [0, 1) taką, że A jest w X otwarty, ale nie jest domknięty.
- Ćw. 2 Pokaż, że podprzesteń $X=\{\frac{1}{n}:n\in\{1,2,\ldots\}\}$ przestrzeni euklidesowej $\mathbb R$ jest dyskretna (tzn. każdy podzbiór jest otwarty). A $Y=\{\frac{1}{n}+\frac{1}{m}:n,m\in\{1,2,\ldots\}\}$?
- Ćw. 3 Niech Y będzie poprzestrzenią przestrzeni X i niech $A \subseteq Y$. Czy:
- a) jeśli A jest otwarty w Y, to A otwarty w X?
- b) jeśli A jest otwarty w X, to A otwarty w Y?
- c) jeśli A jest gesty w Y i Y jest gesty w X, to A jest gesty w X?
- Ćw. 4 W zbiorze $X = \mathbb{R} \cup \{g\}$, gdzie g jest gruszką, topologię definiujemy następująco:
 - bazowymi otoczeniami liczb rzeczywistych są ich singletony,
 - otoczeniami gruszki są zbiory postaci $\{g\} \cup A$, gdzie $A \subseteq \mathbb{R}$ i $\mathbb{R} \setminus A$ jest skończony.
- a) Znajdź Int(0,1), $\overline{\mathbb{N}}$, Bd $(\mathbb{Q} \cup \{g\})$.
- **b**) Pokaż, że 0 nie jest granicą ciągu $x_n = \frac{1}{n}$.
- c) Czy ciąg $x_n = \frac{1}{n}$ jest zbieżny? A ciąg $y_n = (-1)^n + \frac{1}{n}$?
- d) Opisz jak wyglądają ciągi zbieżne w tej przestrzeni.
- e) Pokaż, że X jest przestrzenią Hausdorffa.
- **Zad. 5** Pokaż, że w przestrzeni Hausdorffa punkty są domknięte, a ciągi zbieżne mają tylko jedną granicę.
- Zad. 6 Czy podprzestrzeń przestrzeni Hausdorffa jest przestrzenią Hausdorffa?
- **Zad.** 7 Ustalmy X i topologię \mathcal{T} na X. Pokaż, że $\mathcal{B} \subseteq \mathcal{T}$ jest bazą topologii \mathcal{T} wtedy i tylko wtedy, gdy dla każdego $x \in X$ i dla każdego otoczenia $U \ni x$ istnieje $B \in \mathcal{B}$ taki, że $x \in B \subseteq U$.
- **Zad. 8** Powiemy, że (X, \mathcal{T}) jest przestrzenią metryzowalnq, jeżeli istnieje metryka na X, której kule generują topologię \mathcal{T} . Udowodnij, że jeśli X jest przestrzenią metryzowalną i w X istnieje przeliczalny zbiór gęsty A, to X ma bazę przeliczalną. (Wskazówka. Przyjmij oznaczenia: niech d oznacza metrykę generującą topologię na X; niech $A = \{a_1, a_2, \ldots\}$.)
- **Zad. 9** Posługując się stwierdzeniem udowodnionym w powyższym zadaniu pokaż, że strzałka nie jest metryzowalna. (Wskazówka: najtrudniej pokazać, że strzałka nie ma bazy przeliczalnej. Żeby to zobaczyć rozważ otoczenia x postaci [x, x+1) i użyj charakteryzacji bazy z zad. 7).

Zadanie nadobowiązkowe.

Zad. 10 Czy kostka Cantora jest podprzestrzenią metryczną kostki Hilberta? Czy jest jej podprzestrzenią topologiczną (i co to w ogóle znaczy)?