

Universidade Federal da Paraíba

Coordenação do Curso de Ciência de Dados e Inteligência Artificial

Validação

Prof. Gilberto Farias

Roteiro

Conceito de validação

Cross Validation

Validação X Regularização

Regularização

$$E_{out} = E_{in} + penalidade do overfit$$
regularização estima este valor

Validação

$$E_{out} = E_{in} + penalidade do over fit$$

validação estima este valor

Relembrando a estimativa de erro

E um ponto (x, y) fora da amostra, o erro é e(h(x), y)

Erro quadrático:
$$(h(x) - y)^2$$

Erro binário:
$$[h(x), y]$$

$$\mathbb{E}[e(h(x), y)] = E_{out}(h)$$

$$var[e(h(x), y)] = \sigma^2$$

De um ponto para o conjunto de validação

No conjunto validação
$$(x_1, y_1), \dots, (x_K, y_K)$$
, o erro é $E_{val} = \frac{1}{K} \sum_{k=1}^K e(h(x_k), y_k)$

$$\mathbb{E}[E_{val}(h)] = \frac{1}{K} \sum_{k=1}^{K} \mathbb{E}[e(h(x), y)] = E_{out}(h)$$

$$var[E_{val}(h)] = \frac{1}{K^2} \sum_{k=1}^{K} var[e(h(x), y)] = \frac{\sigma^2}{K}$$

$$E_{val} = E_{out} \pm O\left(\frac{1}{\sqrt{K}}\right)$$

K é tirado de N

Dado o conjunto $D = (x_1, y_1), \dots, (x_N, y_N)$

$$K$$
 pontos $ightarrow$ validaçã D_{val}

$$K \text{ pontos} \rightarrow \text{validação}$$
 $N - K \text{ pontos} \rightarrow \text{treino}$

$$D_{\text{train}}$$

$$O\left(\frac{1}{\sqrt{K}}\right)$$
: K pequeno $\rightarrow E_{val}(h)$ mal estimado

E o K grande?? $\rightarrow E_{train}(h)$ e $E_{val}(h)$ mal estimados

Tamanho dos dados, N-K

Regra de ouro :

$$K = \frac{N}{5}$$

$$\leftarrow K$$

Usando D_{val} para escolher o modelo

Sejam M modelos $H_1, ..., H_M$

Use D_{train} para aprender g_m^- de cada modelo

Avalie g_m^- usando D_{val} $(E_m = E_{val}(g_m^-))$

Escolha o modelo $m = m^*$ com o menor E_m

Fonte: notas de Yaser Abu Mostafa

O dilema do tamanho do K

A cadeia de raciocínio

$$E_{out}(g) \approx E_{out}(g^-) \approx E_{val}(g^-)$$
(pequeno K) (grande K)

Podemos ter o K pequeno e grande ao mesmo tempo??

Cross Validation

Divide a base D em $\frac{N}{K}$ pedaços

 $\frac{N}{K}$ sessões de treino com N-K pontos distintos

Valida cada sessão com os K pontos restantes e computada o E_{val} médio

10-fold cross validation : $K = \frac{N}{10}$