CAI 2.0, Linear Algebra

Worksheet 4: Span, Subspaces, and Dimension

1. Identifying Spans

Let
$$v_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 4 \\ 0 \end{pmatrix}$, and $v_3 = \begin{pmatrix} 3 \\ 1 \\ 2 \end{pmatrix}$.

- (a) Determine whether v_2 is in the span of v_1 .
- (b) Determine whether v_3 is in the span of v_1 and v_2 .
- (c) Find a geometric description of span (v_1, v_2) in \mathbb{R}^3 .

2. Testing for Subspaces

For each of the following sets, determine whether it is a subspace of \mathbb{R}^3 . If it is not a subspace, explain which condition(s) fail.

1

(a)
$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 0\}$$

(b)
$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + 3z = 5\}$$

(c)
$$S_3 = \{(x, y, z) \in \mathbb{R}^3 : xy = 0\}$$

(d)
$$S_4 = \{(x, y, z) \in \mathbb{R}^3 : x = 2y\}$$

3. Finding Span and Dimension

Consider the following sets of vectors.

(a)
$$A = \{(1,0,1), (2,1,0), (3,1,1)\}$$

(b)
$$B = \{(1,2,3), (2,4,6), (0,0,0)\}$$

(c)
$$C = \{(1,1,0), (0,1,1), (1,0,1)\}$$

For each set:

- (a) Find the dimension of the span.
- (b) Identify a basis for the span.

4. Vectors in a Subspace

Let
$$W = \{(x, y, z) \in \mathbb{R}^3 : 2x - y + 3z = 0\}.$$

- (a) Show that W is a subspace of \mathbb{R}^3 .
- (b) Find the dimension of W.
- (c) Find a basis for W.
- (d) Determine whether the vector (3,6,0) is in W.

5. Orthogonal Subspaces

Let
$$v = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$$
.

- (a) Find a description of the set S of all vectors in \mathbb{R}^3 that are perpendicular to v.
- (b) Prove that S is a subspace of \mathbb{R}^3 .
- (c) Find the dimension of S.
- (d) Find a basis for S.

6. Dimensions of Spans

For each of the following collections of vectors, find the dimension of their span and identify a basis for the span.

- (a) $\{(1,2,1,0),(2,3,0,1),(3,5,1,1)\}$ in \mathbb{R}^4
- (b) $\{(1,0,1,0),(0,1,0,1),(1,1,1,1),(2,1,2,1)\}$ in \mathbb{R}^4
- (c) $\{(1,2,3),(4,5,6),(7,8,9)\}$ in \mathbb{R}^3