Retinal Vessel Segmentation in Fundoscopic Images with Generative Adversarial Networks

Sujit Rai, Sagarika Sharma

Problem Statement

• Generation of premise maps of retinal vessels from fundoscopic images

Retinal Image

Vessel Image

Dataset

Retinal Image

Vessel Image

- 20 Annotated Images
 - o 10 Train Set
 - 10 Test Set

Augmentation:

- Left-Right Flip
- Rotation
- Split (9:1)

Generative Adversarial Network

Adversarial Learning

http://www.slideshare.net/xavigiro/deep-learning-for-computervision-generative-models-and-adversarial-training-upc-2016

Baseline

Loss Function

$$G^* = \arg\min_{G} \left[\max_{D} \mathbb{E}_{x,y \sim p_{data}(x,y)} [\log D(x,y)] + \mathbb{E}_{x \sim p_{data}(x)} [\log (1 - D(x,G(x)))] \right]$$

$$L_{SEG}(G) = \mathbb{E}_{x,y \sim p_{data}(x,y)} - y \cdot \log G(x) - (1-y) \cdot \log(1 - G(x))$$

$$G^* = \arg\min_{G} \left[\max_{D} L_{GAN}(G, D) \right] + \lambda L_{SEG}(G)$$

Architecture

Discriminator

Image GAN

ı		
	sigmoid	
(N, 1)	Dense	
(N, 1, 1, 512)	GAP2D	
	ReLU	
	Batch norm	
	3x3, s1, c512, same	Conv5
	ReLU	
	Batch norm	
(N, 10, 10, 512)	3x3, s1, c512, same	
(N, 10, 10, 256)	Max pooling 2x2, s2	
	ReLU	
	Batch norm	
	3x3, s1, c256, same	Conv4
	ReLU	
	Batch norm	
(N, 20, 20, 256)	3x3, s1, c256, same	
(N, 20, 20, 128)	Max pooling 2x2, s2	
	ReLU	
	Batch norm	
	3x3, s1, c128, same	Conv3
	ReLU	
	Batch norm	
(N, 40, 40, 128)	3x3, s1, c128, same	
(N, 40, 40, 64)	Max pooling 2x2, s2	
	ReLU	
	Batch norm	
	3x3, s1, c64, same	Conv2
	ReLU	
	Batch norm	
(N, 80, 80, 64)	3x3, s2, c64, same	
(N, 160, 160, 32)	Max pooling 2x2, s2	
	ReLU	
	Batch norm	
	3x3, s1, c32, same	Conv1
	ReLU	
	Batch norm	
(N, 320, 320, 32)	3x3, s2, c32, same	
(N, 640, 640, 4)	H, W, 3+1	
		_

Types of Discriminator

PixelGAN PatchGAN ImageGAN

Weighted Segmentation Loss with CGAN

- Divide Images into Patches
- For every patch
 - Obtain Discriminator's output for the patch
 - b. Calculate Segmentation loss

Segmentation Loss = (1 - D(x))*SigmoidCrossEntropyLoss

Patch GAN-2 (80 x 80)

Theoretical Analysis

$$L^{o} = E_{x \sim p_{data}(x)}[log D(x)] \tag{1}$$

$$W = 1 - D(x) \tag{2}$$

$$L^{n} = E_{x \sim p_{data}(x)}[(1 - D(x)) * log D(x)]$$
(3)

$$L^{n} = E_{x \sim p_{data}(x)}[log D(x)] - E_{x \sim p_{data}(x)}[D(x)log D(x)]$$
(4)

$$L^n = L^o + Entropy (5)$$

$$L^n \ge L^o \tag{6}$$

Negative Sample CGAN

Real Image, Generated Output

Real Image, Real Output

Real Image, False Output

Negative Sample CGAN

$$G^* = \arg\min_{G} \left[\max_{D} \mathbb{E}_{x,y \sim p_{data}(x,y)} [\log D(x,y)] + \mathbb{E}_{x \sim p_{data}(x)} [\log (1 - D(x,G(x)))] \right]$$

$$+ \left[\arg\max_{D} E_{x,y' \sim p_{data}(x,y')} [\log D(x,y')] \right]$$

$$L_{SEG}(G) = \mathbb{E}_{x,y \sim p_{data}(x,y)} - y \cdot \log G(x) - (1 - y) \cdot \log (1 - G(x))$$

$$G^* = \arg\min_{G} \left[\max_{D} L_{GAN}(G,D) \right] + \lambda L_{SEG}(G)$$

CoConv

An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution

CoordConv Layer c+2Concatenate Channels Conv (or Deconv) i coordinate j coordinate

 $Ref: \underline{https://scholar.google.com/scholar?cluster} = 1725137104710452960 \\ \&hl=en \\ \&as \underline{sdt=0.5 \\ \&sciodt=0.5}$

Results

	Baseline	NSGAN	Sample Selection	COCONV
ITERATION	49500	41500	1500	38000
AUC_PR	0.806	0.757	0.901	0.791
AUC_ROC	0.912	0.931	0.967	0.945
DICE_COEFF	0.765	0.745	0.826	0.728
ACC	0.948	0.943	0.964	0.935
SENSITIVITY	0.764	0.76	0.77363	0.793
SPECIFICITY	0.971	0.965	0.987	0.952
SCORE	5.168	5.104	5.442	5.147
AUC_SUM	1.718	1.689	1.868	1.736
AVG_PT	62.679	49.4711	76.235	52.346

Samples (Baseline)

Samples(WSGAN)

Samples(CoConv)

