Project 3

Dimosthenis Angelis(s212893), Dimitrios Bokos(S213233), Panagiotis Grigoriadis(s203269), Nikolaos Karavasilis(s213685)

BASIC SEGMENTATION **MODEL(UNET)**

Trainset split: train (80%) - validation (20%)

Metrics: BCE loss & Pixel accuracy

of epochs: 20

Train: Loss: 0.614 Accuracy: 0.877

Validation: Loss: 0.628 Accuracy: 0.861

Test: Loss: 0.669 Accuracy: 0.935

Remarks:

- 1. Difficulty identifying unique shapes,
- 2. Noise in the output segmentations,
- 3. Underestimate small segmentations,
- 4. Not very well-defined boundaries.

MAKING A BETTER MODEL

Data Augmentations

- Random Horizontal Flip
- *Random Rotation* [-45°, 45°]
- Random Crop(on squared images)
- Random Vertical Flip
- Different loss functions
 - Dice loss

$$DSC = rac{2|X \cap Y|}{|X| + |Y|}$$

• Binary Cross Entropy loss

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

Different optimizers: ADAM & SGD

- **SGD** results in more steady and gradual accuracy rise
- ADAM shows accuracy fluctuations
- Best model (Optimizer/Loss combination): SGD & BCE w. no augmentation -Accuracy: 0.872

BIAS FROM TRAINING DATA

Basic segmentation model

 Base model overestimates the masks. Since the model has been trained with both well-defined and coarse annotations, makes sense for it to present an overestimated prediction

Train with Style 1

 Training with style 1 also resembles well the lesions but creates somewhat bigger predictions and identifies more objects than it should in certain cases

Train with Style 0

Loss: 0.665 Accuracy: 0.934

- Style 0 closely resembles the annotated lesions apart from certain cases where it fails to identify the segmentation.
- Train and test set have the same annotation style, easier to train

Train with Style 2

Loss: 0. 690 Accuracy: 0.898

 The model overestimates the segmentantions. This is anticipated, since it is trained with style2 annotations and is not able to capture the edges.

WEAK ANNOTATIONS FOR SEGMENTATION

Validation metrics

Accuracy	IoU	Dice	Sensitivity	Specificity	BCE
0.920	0.551	0.786	0.789	0.211	0.657

- From Resnet 152 to VGG19 for clearer saliency map & better segmentation overall
- 2. Threshold value: **0.507** after tuning
- 3. SmoothGrad used to capture the saliency maps, with best noise level equal to 20%.

Original image

