

DEPARTAMENTO DE FÍSICA E MATEMÁTICA EXAME DE ANÁLISE MATEMÁTICA II

 $0\,8\,/\,0\,7\,/\,2\,0\,1\,3\ \, \gg\ \, D\,u\,r\,a\,\varsigma\,\tilde{a}\,o\,;\,2\,h\,3\,0\,+\,3\,0\,m$

Nota: A resolução completa dos exercícios inclui a justificação do raciocínio utilizado.

Exame da Época de Recurso

- 1. Considere a equação não linear $x 1 \sin x = 0 \Leftrightarrow f(x) = 0$
- [1.5] (a) A equação tem uma única raiz real no intervalo [1,2]? Justifique.
- [2.5] (b) Mostre que $x_0 = 2$ é uma aproximação inicial favorável à aplicação do método de Newton-Raphson ou das tangentes. Aplique o método uma vez e obtenha uma aproximação da raiz real x_r da equação.
 - 2. A figura 1 representa um bacalhau "fiel amigo". As linhas que contornam a figura são:
 - Arcos de circunferência de raio 1/2;
 - Parábolas de eixo vertical com vértice de abcissa 2;
 - Segmentos de reta.

Exame de Recurso .: AM2

- [1.0] (a) Determine, usando Interpolação Polinomial, as equações da parábola e do segmento de reta que se intersectam no ponto de coordenadas (0, -1)
- [1.0] (b) Aplicando a regra de Simpson simples, calcule o valor do integral $I=\int_0^4\int_0^{2-\frac14(x-2)^2}1dydx$. Interprete o resultado obtido.

Figura 1

[1.0] (c) Qual das funções seguintes traduz corretamente a regra de Simpson? Justifique.

- **3.** Considere o problema de valor inicial $y' = ty^2$, y(-1) = 2, $t \in [-1,1]$
- [0.5] (a) Mostre que $y(t)=\frac{2}{2-t^2}$ é a solução exata do problema.
- [1.5] (b) Complete a tabela seguinte e interprete os resultados obtidos.

			Aproximações			Erros		
		$y(t_i)$	y_i	y_i	y_i	$ y(t_i) - y_i $	$ y(t_i) - y_i $	$ y(t_i) - y_i $
i	t_{i}	exacta	Euler	RK2	RK4	Euler	RK2	RK4
0	-1			2				0
1					0,6667		1	
2	1			0				1,0019

4. Considere as funções $f(x,y)=x^2+y^2$, g(x,y)=9-f(x,y) se $x^2+y^2\leq 9$, $h(x,y)=-\frac{2}{\sqrt{5}}\sqrt{f(x,y)}$ e j dada sob a forma do algoritmo seguinte:

Se
$$5 < x^2 + y^2 \le 9$$

Então $z := -\sqrt{g(x,y)}$

Senão Se $x^2 + y^2 \le 5$

Então $z := h(x,y)$

- [1.0] (a) Determine o domínio da função j e represente-o geometricamente. O domínio é aberto? Justifique.
- [1.5] (b) Trace um esboço da superfície definida por z = j(x, y).
- [1.5] (c) Das alíneas seguintes resolva apenas <u>uma</u>

Qual o valor lógico das seguintes afirmações? Justifique a sua resposta.

- (i) O vetor [0, y, 9] define vectorialmente a equação da recta tangente à curva de intersecção da superfície z = g(x, y) com o plano x = 0 no ponto P(0, 0, 9).
- (ii) A função j é contínua nos pontos do $cord\~ao$ de soldadura definido por $C = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 5\}$.
- [1.5] (d) Das alíneas seguintes resolva apenas <u>uma</u>
 - (i) Determine a derivada direccional da função g em P(-1,-1) segundo a direção e sentido do vetor $\vec{u} = \frac{\sqrt{2}}{2}\mathbf{i} + \frac{\sqrt{2}}{2}\mathbf{j}$. Em que direcção e sentido a função cresce mais rapidamente? Justifique.

(ii) Mostre que, se
$$z = -\frac{\sqrt{5}}{2}h(x,y) \wedge x = \rho\cos\theta \wedge y = \rho\sin\theta$$
 então $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{\partial x}{\partial \rho} + \frac{\partial y}{\partial \rho}$ para $\rho > 0$.

(iii) Qual das rotinas seguintes, implementadas em Maple, traduz correctamente a avaliação se uma função é harmónica, isto é, se satisfaz a equação de Laplace?

A função f é harmónica? Justifique.

Exame de Recurso .: AM2

```
Harmonica_v1 := proc(f)
   if diff(diff(f, x),x)-diff(diff(f, y),y) = 0
    then printf("A função é harmónica\n")
   else printf("A função não é harmónica\n")
   end if
end proc

Harmonica_v2 := proc(f)
   if diff(f, x, x)+diff(f, y, y) = 0
    then printf("A função é harmónica\n")
   else printf("A função não é harmónica\n")
   end if
end proc;
```

- **5.** A figura 2 representa uma bolota do Vale Côa de densidade $\rho(x,y,z)=2$ formada por duas partes:
- Paraboloide de altura h=9 e largura máxima de raio r=3
- Calote esférica de raio r=3 seccionada por um cone de raio $r=\sqrt{5}$ e altura h=2 .

Figura 2

[2.0] (a) Associando os conjuntos seguintes a dois sistemas de coordenadas 3D, mostre que o sólido é definido por $S = S_1 \cup S_2$, onde:

$$\begin{split} S_1 &= \left\{ (\rho, \theta, z) : 0 \leq \rho \leq 3 \wedge 0 \leq \theta \leq 2\pi \wedge 0 \leq z \leq 9 - \rho^2 \right\} \\ S_2 &= \left\{ (r, \theta, \varphi) : 0 \leq r \leq 3 \wedge 0 \leq \theta \leq 2\pi \wedge \frac{\pi}{2} \leq \varphi \leq \pi - \arctan(\frac{\sqrt{5}}{2}) \right\} \end{split}$$

- [2.5] (b) Calcule o volume e a massa do sólido.
- [1.0] (c) Das alíneas seguintes resolva apenas <u>uma</u>
 - (i) Prove, usando coordenadas cilíndricas, que o volume de um cone de raio r e altura h é igual a $\frac{1}{3}\pi r^2 h$.
 - (ii) Mostre que em coordenadas cartesianas o sólido é definido por $S=S_1 \cup S_2$, onde:

$$\begin{split} S_1 &= \left\{ (x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \leq 9 \wedge 0 \leq z \leq 9 - x^2 - y^2 \right\} \\ S_1 &= \left\{ (x,y,z) \in \mathbb{R}^3 : \left(5 < x^2 + y^2 \leq 9 \wedge -\sqrt{9 - x^2 - y^2} \leq z \leq 0 \right) \vee \left(x^2 + y^2 \leq 5 \wedge -\frac{2}{\sqrt{5}} \sqrt{x^2 + y^2} \leq z \leq 0 \right) \right\} \end{split}$$

(iii) Complete a rotina seguinte e apresente uma 2ª versão, em Maple ou Matlab, com critérios de validação dos parâmetros de entrada.

```
Polares2Cartesianas := proc(rho, theta)
    local x, y;
    x := --?--;
    y := --?--;
    return [x, y];
end proc;
```

Nome Completo:
Número:
Nome/login utilizado no LVM:
Curso
Licenciatura em Eng. Informática
Licenciatura em Eng. Informática - Pós-laboral
Licenciatura em Informática - Curso Europeu
Trabalhador-Estudante
Sim
Não
Frequência às aulas de AM2
Regime diurno
Regime Pós-laboral
Atividades de aprendizagem e avaliação
Não
Sim
At01_Matlab - ACrescimento + Prog.Geométrica
At02_Matlab - Método da Secante e Método da Falsa Posição
At03_Matlab - Integração Numérica (Presencial)
At04_Matlab - Métodos de Euler e de Runge-Kutta com GUI
At05_TP_Maple - Cálculo Diferencial e Integral em IR^n
Participação nos fóruns (pelo menos 3 vezes)
Acompanhou registos sobre AM2 e outros em facebook/armeniocorreia
Sim
Não