Quick guide to running python code for computing relic abundance for the Quintuplet

June 13, 2024

- 1. Requirements: python3, scipy, numpy, mpmath, matplotlib.
- 2. To compute the abundance for a fixed mass (say 13 TeV) execute the following

python boltzmann_eqs_solve.py 13.e3

The output is as follows:

mdm time(s)	Omega_eff	$Omega_eff(gs_const)$	Omega_network	Omega_network	(with	$I{\rightarrow}J)$
13000.0	0.129 55336618876	941000226553 67.53104209899902	0.12404274053778493	0.110320	0093042	01815

The average execution time is about 60 seconds to compute all the four cases above.

3. To perform a scan over the masses (default $m_{\chi} \in [2, 15]$ TeV)

python mass_scan.py

The output table is saved in file **mx_omega_huelthen_network.dat**, in the same column order as above.

4. Plot results with

python plot_omega.py

5. To extract the yield curve for a fixed mass (say 13 TeV)

python yield_compare.py 13.e3

0.1 Basic structure of the code:

- 1. Main file **boltzmann_eqs_solve.py**: imports degrees of freedom from folder **dof**. Thermally averaged cross section tables imported from folder **bsf_sigmas**. Summary in table 1
- 2. Folder **dof**: degrees of freedom as a function of T, including the derivative term.
- 3. Folder **bsf_sigmas**: All thermally averaged cross sections are computed here.

Function name	purpose	some details
dydzbseff dydzbseffgsc	Effective dY/dz Effective dY/dz	t=x=z, yi = Y_{χ} (const. gs)
dydz9	Eqs. for dY/dz	with DM and 9 bound states $t=x=z, \ yi[0]=Y_\chi,$ $yi[1]-yi[9]=$ all bound states dydx0 for DM, and dydxi[0]-dydx eqs for bound states
dydz9ibs	Eqs. for dY/dz	same as above + inter bound-state transitions
$solve_ivp$	Solves the above differential eqs.	Method='Radau' (an implicit method y0ia = initial values, teval = integration range , $z=3$ –

Table 1: Summary of the main code boltzmann_eqs_solve.py