National University of Computer and Emerging Sciences, Lahore Campus

Course: Natural Language Processing Program: BS(Computer Science)

Duration: 60 Minutes
Paper Date: 26-Feb-18
Section: ALL

Exam: Sessional 1 Solution

Course Code: CS 535 Semester: Spring 2018

Total Marks: 20 Weight 13% Page(s): 4

Q1) You are given the following corpus: [5 + 5 = 10 Marks]

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

a) Calculate the probability of following test sentence using trigram language model with linear interpolation. Include <s> and </s> in your counts just like any other token.

 λ_1 = trigram weight, λ_2 = bigram weight, λ_3 = unigram weight,

$$\lambda_1 = 0.5, \ \lambda_2 = 0.3, \ \lambda_3 = 0.2$$

<s> I like green eggs </s>

P (like |
$$\langle s \rangle I$$
) = (0.5) (0) + 0.3(0) + 0.2 (1/25) = 1/125

 $P(green \mid I \mid like) = 77/250$

P(eggs | like green) = 101 / 125 P(</s> | green eggs) = 4/ 125

P (<s> I like green eggs </s>) = (1/125) (77/250) (101 / 125) (4 / 125) = 6.37 * 10⁻⁷

b) Calculate the probability of P(Sam \mid am) using Kneser Ney smoothing from the corpus given above. d = discounting factor = 0.5

 $P(Sam \mid am) = (2 - 0.5) / 3 + 1/3(2/14) = 0.55$

Q3) a) Let S = { a , b, c } the sample space. Suppose you are given following bigram probabilities $P(b \mid a) = 0.125$, $P(a \mid c) = 0.25$, $P(c \mid c) = 0.25$, $P(a \mid a) = 0.25$, $P(c \mid b) = 0.125$, $P(a \mid$

Can you compute $P(b \mid c)$ from the information given. If yes what is $P(b \mid c)$? [2 + 3 = 5 Marks]

Yes, P (b | c) =
$$1 - (0.25 + 0.25 + 0.1 + 0.1) = 1 - 0.7 = 0.3$$

b) What is perplexity of bigram distribution from part (a) if computed against following data

<s> b c a <\s>

= $\frac{1}{4}$ (log (0.1) + log (0.125) + log (0.25) + log (0.1)) = -2.91 Perplexity = 2^{-1} = $2^{2.91}$ = 7.52

Name:	Reg #:	Section
· · · · · · · ·		

Q4) Detect most probable real word spelling error from following sentence. Use Noisy Channel Model with bigram probabilities as given in Table 1. Probabilities of 1 character spelling mistakes are also given in Table 2. Assume all words with 1 edit distance from the words in test sentence are given in Table 1. α = Probability of word being correct = 0.95. **Show all calculations** [5 Marks]

<s> Three off the </s>

	Three	off	the	there	tree	of	then		<s></s>
Three	0.0001	0.0002	0.003	0.003	0.003	0.21	0.003	0.003	0.003
off	0.003	0.003	0.0003	0.003	0.003	0.003	0.003	0.003	0.003
the	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.01	0.01
there	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
tree	0.003	0.003	0.003	0.003	0.004	0.003	0.003	0.001	0.003
of	0.003	0.003	0.22	0.003	0.003	0.003	0.003	0.003	0.003
then	0.003	0.003	0.003	0.003	0.075	0.003	0.003	0.003	0.003
<s></s>	0.004	0.003	0.003	0.01	0.003	0.003	0.003	0.003	0.003
	0.003	0.003	0.003	0.003	0.04	0.003	0.003	0.003	0.003

Table 1: Bigram Probabilities. P(of | Three) = 0.21

x w	P(x w)
re er	0.03
Th T	0.02
ff f	0.05
e ew	0.05

Table 2: x is spell error and w is correct

Solution:

P (
$$<$$
s $>$ Tree off the $<$ /s $>) = 5.4 * 10-13$

P (
$$<$$
s $>$ Three off the $<$ /s $>$) = 2.7 * 10⁻² P ($<$ s $>$ Three of the $<$ /s $>$) = 9.24 * 10⁻⁸

The probability of "Three of the" is highest so spelling error is "off" instead of "of"

Name:	Reg #:	Section: