НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет Программной инженерии и компьютерной техники

Информатика

Лабораторная работа № 1 "Перевод чисел между различными системами счисления"

Выполнил студент Егорова Варвара Александровна Группа № Р3123

Преподаватель: Болдырева Елена Александровна

Оглавление

адание:	3
сновные этапы вычисления:	3
Пример 1:	4
Пример 2:	4
Пример 3:	4
Пример 4:	5
Пример 5:	5
Пример 6:	6
Пример 7:	6
Пример 8:	6
Пример 9:	7
Пример 10:	7
Пример 11:	7
Пример 12:	
Пример 13:	7
ывод:	
писок литературы:	_

Вариант: 28

Задание:

Перевести число "А", заданное в системе счисления "В", в систему счисления "С". Числа "А", "В" и "С" взять из таблицы 1.

Таблица 1

№	A	В	С
1	25285	10	15
2	C2A41	15	10
3	40674	9	11
4	10,25	10	2
5	7D,F5	16	2
6	41,25	8	2
7	0,000001	2	16
8	0,000011	2	10
9	6F,09	16	10
10	84	10	Фибоначчи
11	{^1}303{^2}	7C	10
12	10010100	Фибоначчи	10
13	101010.0000001	Бергмана	10

Всего нужно решить 13 примеров. Для примеров с 5-го по 7-й выполнить операцию перевода по сокращенному правилу (для систем с основанием 2 в системы с основанием 2^k). Для примеров с 4-го по 6-й и с 8-го по 9-й найти ответ с точностью до 5 знака после запятой. В примере 11 группа символов {^1} означает -1 в симметричной системе счисления.

Основные этапы вычисления:

Пример 1:

$$25285 / 15 = 1685$$
 (ост. 10)
 $1685 / 15 = 112$ (ост. 5)

$$112 / 15 = 7 (oct. 7)$$

$$7/15 = 0$$
 (oct. 7)

Получившиеся остатки записываем в обратном порядке («снизу вверх»), числа большие 9 соответствуют латинским буквам (А — 10, В — 11 и т. д.)

Ответ: 775А

Пример 2:

Для перевода в десятичную СС (систему счисления) нумеруем цифры числа справа налево, начиная с нуля, умножаем каждую цифру на 15 (основание исходной СС) в соответствующей степени и результаты складываем:

$$C2A41_{(15)} = 12 * 15 ^{4} + 2 * 15 ^{3} + 10 * 15 ^{2} + 4 * 15 ^{1} + 1 * 15 ^{0} =$$

$$= 607500 + 6750 + 2250 + 60 + 1 = 616561$$

Ответ: 616561

Пример 3:

Переведем данное число в десятеричную СС, а затем получившееся число в СС с основанием 11:

$$40674_{(9)}$$
 = 4 * 9 ⁴ + 0 * 9 ³ + 6 * 9 ² + 7 * 9 ¹ + 4 * 9 ⁰ =

$$= 26244 + 486 + 63 + 4 = 26797$$

26797 / 11 = 2436 (ост. 1)

$$2436 / 11 = 221$$
 (ост. 5)

$$221 / 11 = 20$$
(oct. 1)

$$20 / 11 = 1 (oct. 9)$$

$$1/11 = 0$$
 (oct. 1)

По аналогии с 1 примером: 19151

Ответ: 19151

Пример 4:

Переведем целую часть числа в двоичную СС:

$$10/2 = 5$$
 (oct. 0)

$$5/2 = 2$$
 (oct. 1)

$$2/2 = 1$$
 (oct. 0)

$$1/2 = 0$$
 (oct.1)

Получим 1010

Переведем дробную часть до 5 знаков:

$$0.25 * 2 = 0.5 (0)$$

$$0.5 * 2 = 1 (1)$$

$$0 * 2 = 0 (0)$$

. . .

Поскольку мы получили 0, дальше будут только нули, значит получим:

$$10,25 = 1010,01_{(2)}$$

Ответ: 1010,01

Пример 5:

Поскольку $16 = 2 ^4$, то мы можем заменить каждую цифру в числе ее значением в двоичной СС:

$$F = 1111$$
(16) (2)

$$5 = 101$$
 (16) (2)

Таким образом, оставив 5 знаков после запятой, получаем 1111101,11111

Ответ: 1111101,11111

Пример 6:

По аналогии с примером 5 (8 = $2 ^ 3$), заменяем все цифры в числе на их значения в двоичной СС:

$$4_{(8)} = 100_{(2)}$$

$$1_{(8)} = 1_{(2)}$$

$$2_{(8)} = 10_{(2)}$$

Ответ: 1001,10101

Пример 7:

Для перевода в 16-чную СС добавим незначащие нули как к целой, так и к дробной частям, чтобы разбить цифры на группы по 4 (т. к. $16 = 2 ^4$): 0.000001 = 0000,0000 0100

По аналогии с примерами 5 и 6:

$$0000,0000 \ 0100 = 0,04_{(16)}$$

Ответ: 0,04

Пример 8:

$$0,000011_{(2)} = 0 * 2^{-1} + 0 * 2^{-2} + 0 * 2^{-3} + 0 * 2^{-4} + 1 * 2^{-5} + 1 * 2^{-6} = 0,03125 + 0,015625 = 0,046875_{(10)}$$

Оставляя 5 знаков после запятой, получим 0,04687

Ответ: 0,04687

Пример 9:

$$6F,09 = 6 * 16^{1} + 15 * 16^{0} + 0 * 16^{-1} + 9 * 16^{-2} =$$

= $96 + 15 + 0,03515625 = 111,03515625 \approx 111,03515_{(10)}$

Ответ: 111,03515

Пример 10:

Выпишем последовательность Фибоначчи до последнего числа, меньшего 84:

$$84 = 55 * 1 + 34 * 0 + 21 * 1 + 13 * 0 + 8 * 1 + 5 * 0 + 3 * 0 + 2 * 0 + 1 * 0 =>$$

Ответ: 101010000

Пример 11:

$$\{^{1}\}303\{^{2}\}_{(7C)} = -1 * 7^{4} + 3 * 7^{3} + 0 * 7^{2} + 3 * 7^{1} - 2 * 7^{0} =$$

= -2401 + 1029 + 21 - 2 = -1353

Ответ: -1353

Пример 12:

$$10010100_{(\Phi)} = 1 * 34 + 0 * 21 + 0 * 13 + 1 * 8 + 0 * 5 + 1 * 3 + 0 * 2 + 0 * 1 = 34 + 8 + 3 = 45_{(10)}$$

Ответ: 45

Пример 13:

При переводе из СС Бергмана в десятичную каждую цифру умножаем на число Т в соответствующей разряду степени. Число $T = \frac{1 + \sqrt{5}}{2}$

Значит: $101010,00000001 = T ^5 + T ^3 + T + T ^(-7) = 17$

Ответ: 17

Вывод:

В результате проделанной работы я изучила перевод чисел из недесятичной СС в десятичную и наоборот путем умножения цифр на основание исходной СС в степени разряда и деления числа на основание необходимой СС с переписыванием остатков соответственно, перевод чисел из недесятичной СС в недесятичную с использованием промежуточного перевода в десятичную, перевод чисел из СС с основанием п в СС с основанием п ^ k, а так же СС Бергмана, Фибоначчи и несимметричные.

Список литературы:

- 1. Балакшин Е.А., Соснин П.В., Машина В.В. Информатика. СПб: Университет ИТМО, 2020.
- 2. Орлов С. А. Цилькер Б. Я. Организация ЭВМ и систем: Учебник для вузов, 2-е издание. СПб: Питер, 2011.