Lista 3 - MAT0317/MAT5741 Topologia 2023

Instruções para a entrega:

- Dois dos exercícios 34, 41 e 42 devem ser entregues em grupos de 3 a 5 pessoas até o dia 22 de maio.
- A entrega deve ser feita pelo edisciplinas.
- Basta que uma pessoa do grupo publique as soluções. O documento publicado deve conter o nome e o número usp dos componentes do grupo.

Exercício 31. Verifique os detalhes da demonstração do Teorema 6.28 das notas de aula.

Exercício 32. Sejam X um conjunto e $\mathcal{F} \neq \emptyset$ uma família de funções $f: X \to Y_f$, onde Y_f é um espaço topológico Hausdorff para cada $f \in \mathcal{F}$. Suponha que \mathcal{F} separa pontos em X, isto é, para quaisquer $x, y \in X$ tais que $x \neq y$ existe $f \in \mathcal{F}$ tal que $f(x) \neq f(y)$. Mostre que X é Hausdorff com a topologia inicial induzida por \mathcal{F} .

Nota (não faz parte do exercício): Suponha que X é um espaço vetorial sobre \mathbb{K} (= \mathbb{R} ou \mathbb{C}) munido com uma topologia que torna as operações + : $X \times X \to X$ e · : $\mathbb{K} \times X \to X$ contínuas com respeito às usuais topologias produto de $X \times X$ e $\mathbb{K} \times X$. Suponha, adicionalmente, que $\{x\} \subseteq X$ é fechado em $\langle X, \tau \rangle$ para todo $x \in X$. Dizemos que X é um **espaço vetorial topológico**. É possível mostrar que, nesse caso, $\langle X, \tau \rangle$ é Hausdorff (isso será provavelmente um exercício futuro).

O dual de X é o espaço vetorial X^* de todos os funcionais lineares $f: X \to \mathbb{K}$ contínuos. Suponha que X^* separa pontos em X (isso ocorre, em particular, sempre que X for localmente convexo, isto é, sempre que a origem de X possuir uma base local composta por conjuntos convexos). A topologia inicial τ_w que X^* induz em X é dita a **topologia fraca** de X. Pelo exercício acima, X é Hausdorff com tal topologia. Mais ainda, é possível mostrar que $\langle X, \tau_w \rangle$ é um espaço vetorial topológico localmente convexo cujo dual também é X^* . Observe que $\tau_w \subseteq \tau$ (por quê?).

Exercício 33. Sejam X um espaço topológico, $x \in X$ e $S = \{x_{\sigma} : \sigma \in \Sigma\}$ uma rede em X.

- a. Prove que se x é um limite de S, então x é um limite de toda subrede de S.
- b. Prove que x é um ponto de acumulação de S e, e somente se, $x \in \bigcap_{\sigma_0 \in \Sigma} \overline{\{x_\sigma : \sigma \ge \sigma_0\}}$.

Exercício 34. Seja X um espaço topológico de $A \subseteq X$. Prove que $x \in \overline{A}$ se, e somente se, existe uma rede cuja imagem está em A que converge para x. Conclua que A é fechado se, e somente se, contém todos os limites de redes que possuem a imagem em A.

Exercício 35. Dizemos que um filtro \mathcal{U} é um *ultrafiltro* se \mathcal{U} for um filtro maximal, isto é, se para todo filtro \mathcal{F} ,

$$\mathcal{U}\subseteq\mathcal{F}\Rightarrow\mathcal{U}=\mathcal{F}.$$

a. Mostre que um filtro $\mathcal U$ é um ultrafiltro se, e somente se, para todo $A\subseteq X,\ A\in\mathcal U$ ou $X\setminus A\in\mathcal U.$

Sugestão: Use, sem provar, que toda família $\mathcal{F} \subseteq \mathcal{P}(X)$ com a propriedade da intersecção finita (PIF) pode ser estendida a um ultrafitro.

b. Sejam X um espaço toplógico, $x \in X$ e \mathcal{U} um ultrafiltro sobre X. Mostre que $\mathcal{U} \to x$ se, e somente se, x é um ponto de acumulação de \mathcal{U} . Ou seja, para ultrafiltros, as definições de ponto de acumulação e convergência coincidem.

Exercício 36. Sejam τ_1 e τ_2 topologias sobre um conjunto X tais que $\tau_1 \subseteq \tau_2$. Prove ou dê um contraexemplo: se (X, τ_1) é regular, então (X, τ_2) é regular.

Exercício 37. Mostre que um espaço topológico X é regular se, e somente se, todo ponto admite um sistema fundamental de vizinhanças fechadas.

Exercício 38. Sejam X_1, \ldots, X_n espaços topológicos e $A_j \subseteq X_j, j = 1, \ldots, n$, subconjuntos não vazios. Prove ou dê um contraexemplo:

- a. $\operatorname{Int}(A_1 \times \cdots \times A_n) = \operatorname{Int}(A_1) \times \cdots \times \operatorname{Int}(A_n)$.
- b. $\overline{A_1 \times \cdots \times A_n} = \overline{A_1} \times \cdots \times \overline{A_n}$.
- c. $A_1 \times \cdots \times A_n$ é aberto em $X_1 \times \cdots \times X_n$ se, e somente se, A_j é aberto em X_j para todo $j = 1, \ldots, n$.
- d. $A_1 \times \cdots \times A_n$ é fechado em $X_1 \times \cdots \times X_n$ se, e somente se, A_j é fechado em X_j para todo $j = 1, \ldots, n$.
- e. $A_1 \times \cdots \times A_n$ é denso em $X_1 \times \cdots \times X_n$ se, e somente se, A_j é denso em X_j para todo $j = 1, \ldots, n$.
- f. $\Omega \subseteq X_1 \times \cdots \times X_n$ é aberto em $X_1 \times \cdots \times X_n$ se, e somente se, existem $U_j \subseteq X_j$, $j = 1, \ldots, n$, abertos tais que $\Omega = U_1 \times \cdots \times U_n$.
- g. $\Omega \subseteq X_1 \times \cdots \times X_n$ é fechado em $X_1 \times \cdots \times X_n$ se, e somente se, existem $F_j \subseteq X_j, j = 1, \dots, n$, fechados tais que $\Omega = F_1 \times \cdots \times F_n$.

Exercício 39. Considere $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ com sua topologia usual. Sejam X_1, \dots, X_n espaços topológicos e $f: X_j \to \mathbb{K}, j = 1, \dots, n$ funções contínuas. Mostre que a função

$$(x_1,\ldots,x_n)\in X_1\times\cdots\times X_n\longmapsto \sum_{j=1}^n f_j(x_j)\in\mathbb{K}$$

é contínua.

Exercício 40. Sejam X_1, \ldots, X_n espaços topológicos e, para cada $j=1,\ldots n, \, S_j=\{x_{j\sigma}:\sigma\in\Sigma\}$ uma rede em X_j . Prove que a rede $\{(x_{1\sigma},\ldots,x_{n\sigma}):\sigma\in\Sigma\}$ converge para (x_1,\ldots,x_n) em $X_1\times\cdots\times X_n$ se, e somente se, S_j converge para x_j em X_j para todo $j=1,\ldots,n$.

Exercício 41. Sejam X e Y espaços topológicos e $f:X\to Y$ uma função contínua. O gráfico de f é o conjunto

$$Gr(f) := \{(x, f(x)) \in X \times Y : x \in X\}.$$

Considere em Gr(f) a topologia de subespaço que tal conjunto herda de $X \times Y$.

a. Prove que X é homeomorfo a Gr(f).

b. Prove que, se Y é Hausdorff, então $\mathrm{Gr}(f)$ é um subconjunto fechado de $X\times Y$.

Exercício 42. Seja X um espaço topológico e considere $\Delta := \{(x, x) \in X \times X : x \in X\}$, a diagonal de $X \times X$. Mostre que:

- a. X é Hausdorff se, e somente se, Δ é um subconjunto fechado de $X \times X$.
- b. X é T_1 se, e somente se, Δ pode ser escrito como intersecção de uma família de abertos de $X \times X$.
- c. Δ é aberto se, e somente se, X é um espaço discreto.