

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/018588

International filing date: 30 September 2005 (30.09.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2004-288518
Filing date: 30 September 2004 (30.09.2004)

Date of receipt at the International Bureau: 20 October 2005 (20.10.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

JP2005-3053875 W00

PCT/JP2005/018588

30.9.2005

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2004年 9月30日
Date of Application:

出願番号 特願2004-288518
Application Number:

パリ条約による外国への出願に用いる優先権の主張の基礎となる出願の国コードと出願番号
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出願人 ソニー株式会社
Applicant(s):

2005年 6月22日

特許庁長官
Commissioner,
Japan Patent Office

小川

洋

出証番号 出証特2005-3053875

【書類名】 特許願
【整理番号】 0490504001
【提出日】 平成16年 9月30日
【あて先】 特許庁長官 小川 洋 殿
【国際特許分類】 G02B 5/02
【発明者】
 【住所又は居所】 東京都品川区北品川 6 丁目 7 番 35 号 ソニー株式会社内
 【氏名】 有馬 光雄
【発明者】
 【住所又は居所】 東京都品川区北品川 6 丁目 7 番 35 号 ソニー株式会社内
 【氏名】 清水 純
【発明者】
 【住所又は居所】 東京都品川区北品川 6 丁目 7 番 35 号 ソニー株式会社内
 【氏名】 小田桐 広和
【特許出願人】
 【識別番号】 000002185
 【氏名又は名称】 ソニー株式会社
【代理人】
 【識別番号】 100082762
 【弁理士】
 【氏名又は名称】 杉浦 正知
 【電話番号】 03-3980-0339
【選任した代理人】
 【識別番号】 100123973
 【弁理士】
 【氏名又は名称】 杉浦 拓真
【選任した代理人】
 【識別番号】 100120640
 【弁理士】
 【氏名又は名称】 森 幸一
【手数料の表示】
 【予納台帳番号】 043812
 【納付金額】 16,000円
【提出物件の目録】
 【物件名】 特許請求の範囲 1
 【物件名】 明細書 1
 【物件名】 図面 1
 【物件名】 要約書 1
 【包括委任状番号】 0404550

【書類名】特許請求の範囲

【請求項1】

照明光の入射側に一つの有限な焦点距離が存在し、且つ断面形状が左右対称な非球面のトロイダルレンズ体が上記非球面の母線と垂直方向に多数連続して配列された光透過シートであって、

透明シートの法線方向に平行にZ軸をとり、上記トロイダルレンズ体の列方向にX軸を取ったとき、上記断面形状が、以下の式を満たすように形成されることを特徴とする光透過シート。

$$Z = X^2 / (R + \sqrt{(R^2 - (1+K)X^2)}) + AX^4 + BX^5 + CX^6 + \dots$$

(Rは先端頂点の曲率半径である。A、B、C…は非球面係数である。)

【請求項2】

請求項1において、

$$0 < R < 20,$$

$$-15 < K < -1,$$

$0 < A, B, C \dots < 10^{-3}$ であることを特徴とする光透過シート。

【書類名】明細書

【発明の名称】光透過シート

【技術分野】

【0001】

この発明は、光透過シートに関する。

【背景技術】

【0002】

近年、液晶テレビ、ノートPC(Personal Computer)等に、カラー液晶パネルを利用したディスプレイが使用されている。カラー液晶パネルを利用したディスプレイは、主に、液晶光源となるバックライトに対して、拡散板、プリズムシート、輝度向上フィルム、偏光板、視野角補償フィルム、偏光板、ARフィルム、防汚フィルムがこの順で積層された構成とされている。

【0003】

このような液晶パネルディスプレイにおいては、表示輝度や視野角特性を向上させることが、液晶パネルディスプレイの商品価値を高める上で重要な課題となっている。また、特に重要な課題として、バックライト側の光学的利得性と広い配光特性を改良することが強く望まれている。

【0004】

バックライト側の光学的利得性の改良を実現する手段としては、図1に示す、プリズム列を照明光の射出側に連続的に形成した、従来のプリズムシートを配置させる方法が実用化されている。

【0005】

図2は、従来のプリズムシートの断面形状を表している。従来のプリズムシートにおいては、入射した光線は、入射角によって、直接プリズム斜面を透過する第1次透過光成分T1、一のプリズム斜面で反射した後に他のプリズム斜面で再度反射して入射側に戻される戻り光成分R、そして、一のプリズム斜面で反射した後他のプリズム斜面を透過してプリズムシート前面に射出する第2次透過光成分T2に分類することができる。

【0006】

第1次透過光成分T1は、正面方向に射出する光を含む有効活用される光束成分である。戻り光成分Rは、面光源としての発光面の拡散シートに入射して、拡散反射されて、発光面の輝度を増加させるのに有効な光束成分である。第2次透過光成分T2は、液晶パネルの有効視野角外の広角側に射出する光束成分であり、輝度の向上に無効な光束成分である。

【0007】

このように、従来のプリズムシートにおいては、入射光が屈折透過することにより正面方向に集光され、正面輝度を増加するように指向特性が改善される。また、反射光が面光源としての発光面とみなされる拡散シートで拡散散乱され、発光面の輝度を増加させる結果、正面輝度が増加する。

【0008】

図3は、図2に示すプリズムシートの配光特性を表す分布図である。なお、この分布図は、コンピュータシミュレーションで描いたものである。以下に述べる分布図も同様にして描かれている。図3から、プリズムシートより射出した光がどのような角度で広がっているのかを確認することができる。図3の分布図は、中心を0°とし、中心から第1の円が10°、第2の円が20°・・・と順に大きな角度を示し、最外周円が90°を示す。中心の上方および下方の70°付近に第2次透過光成分T2が現れているのがわかる。

【0009】

また、例えば、特許文献1においては、照明装置の輝度を向上するシートが記載されている。このシートは、透明で可撓性のある基体と、弦幅と、断面ピッチ幅と、曲率半径とを特徴とし、弦幅は、断面ピッチ幅の約20%~40%に等しく、曲率半径は、断面ピッチ幅の約20%~50%に等しい、鈍いまたは丸いピークを備えたプリズムの配列群を含

む第1の主要面と、複数の光散乱性突起物を特徴とする第2の主要面とを具備し、第1の主要面が実質的に平坦な形態を有する状態下で測定されたときに、このシートの疊り度値は、約20%～60%の間にあって、透過率は94%以下である。

【0010】

【特許文献1】特表2001-524225号公報

【発明の開示】

【発明が解決しようとする課題】

【0011】

上述したように、従来のプリズムシートにおいて、入射した光線は、入射角によって第1次透過光成分T1、第2次透過光成分T2、戻り光成分Rに分類することができる。

【0012】

従来のプリズムシートにおいては、図2に示すように、軸外の仮想光源から出射した光束の一部は、プリズムシートの一の斜面で全反射して隣接プリズム斜面に再入射し、シート内部を進行し、戻り光成分Rとして再利用される。また、多重反射の後に、第一次透過光成分T1や光源側への戻り光成分Rとして有効活用される。

【0013】

しかしながら、軸外の仮想光源から出射した光束が、プリズムシートの一の斜面で全反射し他の斜面で屈折した光束の一部分は、液晶パネルの有効視野角外の広角側に射出する第2次透過光成分T2である。第2次透過光成分T2は、上述したように、輝度の向上に無効な光束成分である。

【0014】

また、後段に配置される偏光分離シートなどの角度依存特性によっては、入射の指向性により、偏光分離特性の極端な劣化を招くことがあり、液晶パネル側への有効な輝度向上を損ねる。

【0015】

したがって、この発明の目的は、正面方向に最も高い輝度を示し、後段の偏光分離シートの偏光分離特性を有効に發揮させるような所定の視野角内の方角において、高い輝度分布を有し、かつ、第2次透過光成分T2の発生を抑制した、効率よく光を利用して輝度を増加させることができる、光透過シートを提供することにある。

【課題を解決するための手段】

【0016】

上述した課題を解決するために、この発明の態様は、

照明光の入射側に一つの有限な焦点距離が存在し、且つ断面形状が左右対称な非球面のトロイダルレンズ体が非球面の母線と垂直方向に多数連続して配列された光透過シートであって、

透明シートの法線方向に平行にZ軸をとり、トロイダルレンズ体の列方向にX軸を取ったとき、断面形状が、以下の式を満たすように形成されることを特徴とする光透過シートである。

$$Z = X^2 / (R + \sqrt{(R^2 - (1+K) X^2)}) + A X^4 + B X^5 + C X^6 + \dots$$

(Rは先端頂点の曲率半径である。A、B、C・・・は非球面係数である。)

【発明の効果】

【0017】

この発明によれば、照明光の入射側に一つの有限な焦点距離の存在し、断面形状が左右対称な非球面のトロイダルレンズ体が透明シートの母線と垂直方向に多数連続して配列されることにより、指向性を改良し、正面輝度を向上させて、後段の偏光分離シートによる特性向上に寄与することができ、消費電力の低減と共に液晶パネルの表示輝度を向上することができる。

【0018】

また、広角に射出する第2次透過光束成分T2を低減することにより、正面輝度を向上させて、後段の偏光分離シートによる特性向上に寄与することができ、消費電力の低減と

共に液晶パネルの表示輝度を向上することができる。

【0019】

また、液晶パネル自体への照明光束の入射角度を法線方向に制御することが可能となり、広角側における色分離（色のにじみ）を制御することができる。

【発明を実施するための最良の形態】

【0020】

以下、この発明の実施の形態について図面を参照して説明する。この発明による光透過シートは、照明光の入射側に一つの有限な焦点距離が存在し、且つ透明シートの法線方向に平行にZ軸を、放物面の母線に平行にY軸を、形成単位の列方向にX軸をとったとき、断面形状が $Z = X^2 / (R + \sqrt{(R^2 - (1+K)X^2)}) + AX^4 + BX^5 + CX^6 + \dots$ （以下、式（1）と適宜称する）で表される非球面のトロイダルレンズ体が多数連続的して配列された光透過シートである。

【0021】

図4は、この発明による第1の実施形態である光透過シートのXZ断面形状を一部拡大して表した図である。この光透過シートは、照明光の入射側に一つの有限な焦点距離が存在し、且つ断面形状が左右対称な非球面のトロイダルレンズ体が多数連続して配列された光透過シートである。非球面な断面形状は、式（1）を満たした、 $Z = X^2 / (3 + \sqrt{9 + X^2}) + 10^{-5}X^4$ で表される。

【0022】

頂点直下の仮想光起点Oから双曲面のAB面の方向に入射する光束をΩとすると、入射光束Ωのすべては前方へ屈折透過する。

【0023】

図4に示す光透過シートにおいては、断面形状が非球面であるトロイダルレンズ体が多数連続的に配列されているので、光透過シートの前方へ屈折透過させることができ、従来のプリズムシートより正面方位の輝度向上に寄与する。

【0024】

また、図4に示す、非球面同士の接合面直下の仮想光起点Pから出射してAB面に入射する光束Ψは、大部分がAB面で全反射し、AC面で屈折または全反射して戻り光成分Rとなるので、第2次透過光成分T2としてのサイドロープ光の発生に寄与する確率を減少できるとともに正面方位の輝度向上に寄与できる。

【0025】

さらに、また、AC間側の頂点A近傍の面においても、第1の全反射面（AB面）からの反射光束に対して法線角度がZ軸に対して浅い角度を形成するので、全反射して戻り光Rとなる効果を生み出す。

【0026】

さらに、また、AC面に入射する光束Ψの一部は、曲面形状とすることによる屈折効果によって、前方へ配光される。

【0027】

さらに、また、頂点付近の曲面においても、AB面からの反射光束は、従来のプリズム形状よりも屈折透過効果が高く、全反射効果まで奏する。

【0028】

図5は、図4に示す光透過シートの配光特性を表した分布図である。図5に示すように、図4の光透過シートは、図3に示す従来のプリズムシートの配光特性と同様のものであるが、従来のプリズムシートと比較して、第2次透過光成分T2が低減されている。

【0029】

このように、この発明においては、上述した垂直成分方向からの全面的な前方への屈折透過効果と、側面方向からの入射光束に対する屈折能力と全反射能力とを改良することにより、第1次透過光を増加させて配光分布を前方方向に維持したまま正面輝度を高めることができる。また、第2次透過光成分T2を抑制して戻り光成分Rへの寄与を増加させて光を有効に利用することができるので、光の利得特性を高めることができる。

【0030】

図6は、この発明による第2の実施形態である光透過シートのXZ断面形状を一部拡大して表した図である。この光透過シートは、照明光の入射側に一つの有限な焦点距離が存在し、且つ断面形状が左右対称な非球面のトロイダルレンズ体が連続的に配列されている。この非球面は、式(1)を満たす、 $Z = X^2 / (5 + \sqrt{(25 + 9X^2)}) + 5 \times 10^{-5} X^4$ で表される。

【0031】

図6が示すように断面形状は、図4の光透過シートの断面形状と比較すると、曲率の大きな曲面となり光束Ωの屈折透過光の広がりは変化を受けるが、前方へ配光する。また、AB面とAC面との全反射効果が増加するので第2次透過光成分T2を低減することができる。AC面の透過方向は、法線方向の変化が大きくなり、入射光束の入射角が浅くなるので、屈折効果は低下するが、前方への配光を損ねていない。

【0032】

図7は、図6に示す光透過シートの配光特性を表した分布図である。図7に示すように、図6の光透過シートの配光特性は、図3に示す従来のプリズムシートによる配光特性と類似しているが、従来のプリズムシートと比較して、第2次透過光成分T2が低減されている。

【0033】

図8は、この発明による第3の実施形態である光透過シートのXZ断面形状を一部拡大して表した図である。この光透過シートは照明光の入射側に一つの有限な焦点距離が存在し、断面形状が左右対称な非球面のトロイダルレンズ体を連続的に配列している。この非球面形状は、式(1)を満たした、 $Z = X^2 / (1 + \sqrt{(1 + X^2)}) + 10^{-5} X^4$ で表される。

【0034】

図8に示すように、仮想光起点Oから出射する光束Ωの一部はA近傍の面では全反射して、戻り光成分Rとして、正面輝度を補助的に向上することができる。また、仮想光起点Pから出射する光束Ψに対する全反射と屈折能力により戻り光成分Rとして利用できる効率を高めて第2次透過光束成分T2の発生を緩和する。

【0035】

図9は、図8に示す光透過シートの配光特性を表した分布図である。図8に示す光透過シートの配光特性は、図9に示すように、図3に示す従来のプリズムシートによる配光特性と同様のものであるが、従来のプリズムシートと比較して、第2次透過光成分T2が低減されている。

【0036】

図10は、この発明による第4の実施形態である光透過シートのXZ断面形状を一部拡大して表した図である。この光透過シートは、照明光の入射側に一つの有限な焦点距離が存在する、断面形状が非球面なトロイダルレンズ体が連続的に配列している。この非球面は、式(1)を満たした、 $Z = X^2 / (1 + \sqrt{(1 + X^2)}) + 10^{-5} X^4 + 2 \times 10^{-5} X^6$ で表される。

【0037】

図10に示すように、仮想光起点Oから出射する光束Ωの一部はA近傍の面では全反射して、戻り光成分Rとして、正面輝度を補助的に向上することができる。また、仮想光起点Pから出射する光束Ψに対する全反射と屈折能力により、戻り光成分Rを利用する効率を高めて第2次透過光束成分T2の発生を緩和できる。

【0038】

図11は、図10に示す光透過シートの配光特性を表した分布図である。図10に示すように、従来のプリズムシートによる配光特性に類似しているが、従来のプリズムシートと比較して、第2次透過光成分T2が低減されている。

【0039】

上述した実施形態より、この発明においては、式(1)において、 $0 < R < 20$ 、 -1

$5 < K < -1$ 、 $0 < A, B, C \dots < 10^{-3}$ であることが好ましい。

【0040】

この発明による光透過シートは、例えば、以下に述べる方法により製造することができる。

【0041】

図12は、光透過シートの製造装置の一例を示した模式図である。基材フィルム1を表面に所望の形状が施された金型ロール7に巻き付けて、加圧ロール2と剥離ロール5でニップする。樹脂ディスペンサー4からは、金型ロール7に紫外線硬化型樹脂3を滴下して、樹脂だまりを形成させて、基材フィルム1に圧着させる。

【0042】

紫外線硬化型樹脂3には、アクリル系樹脂、ポリエステル樹脂、ポリ塩化ビニル、ポリウレタン、シリコン樹脂等を例示することができる。

【0043】

そして、各ロールを回転させて、金型ロール6の下方から紫外線を照射して基材フィルム1に圧着された紫外線硬化樹脂3を硬化させるとともに、基材フィルム1に接合させる。硬化後、回転している剥離ロール5で巻き取ることにより金型ロール7から基材フィルム1を剥がして、光透過シートを得ることができる。

【0044】

また、例えば、図13に示すように、所望の形状を施した平板金型9を基材フィルム1の上方、鏡面プレート11をフィルム10の下方に配して、チャンバー内を真空引きした後、加熱冷却プレート8で挟み込む。フィルム10の材料としては、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、ゼオノア(商標)等を例示することができる。

【0045】

そして、一定時間経過後、図示しない内部に備える冷却管によって、加熱冷却プレート8を冷却し、室温程度に達したら加熱冷却プレート8を開いて、光透過シートを得ることができる。

【0046】

その他、転写ロール表面の凹凸形状を転写して光透過シートを製造する方法としては、例えば、熱プレス加工によって製造するようにしてもよい。

【0047】

この発明は、上述したこの発明の実施形態に限定されるものでは無く、導光板の上部に配置して同様の正面輝度の向上効果を得ることができ、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。

【0048】

また、例えば、液晶を利用するディスプレイ内で、バックライトとなる導光板からの出射側面に配置しても、又液晶パネルの入射側前部に配置しても同様の作用を有する。

【図面の簡単な説明】

【0049】

【図1】従来のプリズムシートの模式図である。

【図2】プリズムシートの一部拡大断面図である。

【図3】プリズムシートの光分布図である。

【図4】この発明による光透過シートの第1の例の一部拡大断面図である。

【図5】この発明による光透過シートの第1の例による光分布図である。

【図6】この発明による光透過シートの第2の例の一部拡大断面図である。

【図7】この発明による光透過シートの第2の例による光分布図である。

【図8】この発明による光透過シートの第3の例の一部拡大断面図である。

【図9】この発明による光透過シートの第3の例による光分布図である。

【図10】この発明による光透過シートの第4の例の一部拡大断面図である。

【図11】この発明による光透過シートの第4の例による光分布図である。

【図12】光透過シートの製造装置の一例の模式図である。

【図13】光透過シートの製造装置の他の例の模式図である。

【符号の説明】

【0050】

- 1 … 基材フィルム
- 3 … UV樹脂
- 6 … UVランプ
- 7 … 金型ロール
- 10 … フィルム

【書類名】 図面
【図 1】

【図 2】

【図3】

【図4】

【図 5】

【図 6】

【図 7】

【図 8】

【図 9】

【図 10】

【図11】

【図12】

【図13】

【書類名】要約書

【要約】

【課題】 正面方向に最も高い輝度を示し、後段の偏光分離シートの偏光分離特性を有効に発揮させるような所定の視野角内の方に向において、高い輝度分布を有し、かつ、第2次透過光成分T₂の発生を抑制した、効率よく光を利用して輝度を増加させることができ、光透過シートを提供する。

【解決手段】 光透過シートは、照明光の入射側に一つの有限な焦点距離が存在し、且つ断面形状が左右対称な非球面のトロイダルレンズ体が多数連続して配列された光透過シートである。非球面な断面形状は、 $Z = X^2 / (R + \sqrt{(R^2 - (1+K)X^2)}) + AX^4 + BX^5 + CX^6 + \dots$ を満たした、 $Z = X^2 / (3 + \sqrt{(9 + X^2)}) + 10^{-5}X^4$ で表される。

【選択図】

図4

特願 2004-288518

出願人履歴情報

識別番号

[000002185]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都品川区北品川6丁目7番35号

氏 名

ソニー株式会社