Ensuring (Statistical) Privacy

Daniel Alabi

Ph.D. student in the Theory of Computation group

@ Harvard SEAS (School of Engineering and Applied Sciences)

Advised by Salil Vadhan

Code for this talk: https://github.com/alabid/pre-college-2019

See full course materials here: http://people.seas.harvard.edu/~salil/cs208/ [some slides taken from here]

My website: http://alabidan.me

Table of Contents

- Motivations
 - Reidentification via Linkage Attacks
 - Reconstruction and Inference Attacks
- Definitions
 - K-anonymity
 - Differential Privacy
- Mechanisms
 - Laplace Mechanism
- Code Demonstrations
 - Python Code

The Problem

We have a dataset with sensitive information, such as:

- 1. Health records (e.g. reveals which disease a patient has)
- 2. Census data (e.g. reveals income range)
- 3. Social network activity (e.g. which pages you like)

How can we allow:

- 1. Allow the use of the data?
- 2. Protect the privacy of the data subjects?
- 3. Achieve both (1) and (2)?

Encrypt the Data:

Name	Sex	Blood	 HIV?
James	0	В	 N
Peter	M	0	 Υ
Paul	M	А	 N
Eve	F	В	 Υ

Encrypt the Data:

Name	Sex	Blood	 HIV?	Name
James	0	В	 N	10101
Peter	M	0	 Υ	11010
			 	•••
Paul	М	Α	 N	10100
Eve	F	В	 Υ	11000

Name	Sex	Blood	 HIV?
10101	01010	01000	 00001
11010	01101	10111	 10111
10100	10000	11101	 01111
11000	10001	11110	 10001

Encrypt the Data: Are we happy with this solution? Why or why not?

Name	Sex	Blood		HIV?	Name	Sex	Blood	 HIV?
James	0	В		N	10101	01010	01000	 00001
Peter	M	0		Υ	11010	01101	10111	 10111
Paul	M	Α		N	10100	10000	11101	 01111
Eve	F	В	•••	Υ	11000	10001	11110	 10001

"Anonymize the Data": Are we happy with this solution? Why or why not?

Name	Sex	Blood	 HIV?	Name	Sex	Blood	 HIV?
James	0	В	 N	XXXXX	0	В	 N
Peter	M	0	 Υ	XXXXX	М	0	 Υ
			 				 •••
Paul	M	А	 N	XXXXX	М	А	 N
Eve	F	В	 Y	XXXXX	F	В	 Y

"Anonymize the Data": Not sufficient because of linkage attacks!

87% of US population have unique date of birth, gender, and postal code!

[Golle and Partridge 09]

"Anonymize the Data": Reidentification via Linkage

Can uniquely identify > 60% of the U.S. population [Sweeny '00, Golle '06, Sweeney '97]

Name	Sex	Blood	 HIV?
XXXXX	0	В	 N
XXXXX	M	0	 Υ
XXXXX	M	А	 N
XXXXX	F	В	 Υ

Medical Data

Voter List

- Motivations
 - Reidentification via Linkage Attacks
 - Reconstruction and Inference Attacks

Reconstruction attack: If we have dataset $x \in \{0, 1\}^n$ and person i has sensitive bit x_i and attacker/adversary gets $q_S(x) = \sum_{i \in S} x_i$ for any $S \subseteq [n]$.

- Motivations
 - Reidentification via Linkage Attacks
 - Reconstruction and Inference Attacks

Reconstruction attack: If we have dataset $x \in \{0, 1\}^n$ and person i has sensitive bit x_i and attacker/adversary gets $q_S(x) = \sum_{i \in S} x_i$ for any $S \subseteq [n]$.

[Dinur-Nissim '03]: With high probability, adversary can reconstruct 0.99 fraction of the dataset $x \in \{0,1\}^n$ if noise added to each query is less than $o(\sqrt{n})$ and #queries is n.

- Motivations
 - Reidentification via Linkage Attacks
 - Reconstruction and Inference Attacks

Reconstruction attack: If we have dataset $x \in \{0,1\}^n$ and person i has sensitive bit x_i and attacker/adversary gets $q_S(x) = \sum_{i \in S} x_i$ for any $S \subseteq [n]$. [Dinur-Nissim '03]: With high probability, adversary can reconstruct 0.99 fraction of the dataset $x \in \{0,1\}^n$ if noise added to each query is less than $o(\sqrt{n})$ and #queries is n.

Inference attack: Attacker gets n^2 answers and needs to know if someone is in dataset or not.

Message

Releasing too many statistics with too much accuracy can lead to a reconstruction of the entire dataset or inference attacks

- Encryption doesn't work
- Anonymization doesn't work
- Even adding insufficient noise to an attacker's query is not good enough

- Encryption doesn't work
- Anonymization doesn't work
- Even adding insufficient noise to an attacker's query is not good enough Possible Responses:
- Privacy is an illusion!

- Encryption doesn't work
- Anonymization doesn't work
- Even adding insufficient noise to an attacker's query is not good enough Possible Responses:
- Privacy is an illusion!
- In the long run, it's better to use data for research! Ignore privacy!

- Encryption doesn't work
- Anonymization doesn't work
- Even adding insufficient noise to an attacker's query is not good enough Possible Responses:
- Privacy is an illusion!
- In the long run, it's better to use data for research! Ignore privacy!
- Never release statistics about any dataset!

- Encryption doesn't work
- Anonymization doesn't work
- Even adding insufficient noise to an attacker's query is not good enough Possible Responses:
- Privacy is an illusion!
- In the long run, it's better to use data for research! Ignore privacy!
- Never release statistics about any dataset!
- Is there a way to add enough noise to queries and still allow for usefulness?

Main Message of this Talk

Yes, there is a way to add enough noise to queries and still allow for usefulness?

[Sweeney '02]: A mechanism satisfies k-anonymity if for every dataset, the output of the mechanism has the property that every distinct row occurs at least k times.

[Sweeney '02]: A mechanism satisfies k-anonymity if for every dataset, the output of the mechanism has the property that every distinct row occurs at least k times.

Intuition: Privacy ensured if I can't isolate you!

[Sweeney '02]: A mechanism satisfies k-anonymity if for every dataset, the output of the mechanism has the property that every distinct row occurs at least k times.

3-anonymous dataset:

Zip code	Age	Nationality
021**	< 30	*
021**	< 30	*
021**	< 30	*
021**	> 40	*
021**	> 40	*
021**	> 40	*
021**	3*	*
021**	3*	*
021**	3*	*

It's a nice approach but doesn't:

- Compose well (e.g. if you have two k-anonymous datasets)
- Utility not as quantifiable as other approaches

Zip code	Age	Nationality
021**	< 30	*
021**	< 30	*
021**	< 30	*
021**	> 40	*
021**	> 40	*
021**	> 40	*
021**	3*	*
021**	3*	*
021**	3*	*

Table of Contents

- Motivations
 - Reidentification via Linkage Attacks
 - Reconstruction and Inference Attacks
- Definitions
 - K-anonymity
 - Differential Privacy
- Mechanisms
 - Laplace Mechanism
- Code Demonstrations
 - Python Code

- Utility
- Privacy
- Definition

- <u>Utility</u>: enable "statistical analysis" on datasets
 - Can release (noisy) statistics such as means, sums, medians, etc.
 - Predictions from trained machine learning models

- Utility: enable "statistical analysis" on datasets
 - Can release (noisy) statistics such as means, sums, medians, etc.
 - Predictions from trained machine learning models
- Privacy: protect each individual in dataset against all possible attack strategies
 - Now and in the future!
 - Even with use of auxiliary information or datasets!
 - Group privacy also allowed!

- Utility: enable "statistical analysis" on datasets
 - Can release (noisy) statistics such as means, sums, medians, etc.
 - Predictions from trained machine learning models
- Privacy: protect each individual in dataset against all possible attack strategies
 - Now and in the future!
 - Even with use of auxiliary information or datasets!
 - Group privacy also allowed!
- <u>Definition</u>: pure and approximate

<u>Definition</u>: pure and approximate

[Dwork-McSherry-Nissim-Smith '06]

Other references:

Motivated from and based off of work in

[Dinur-Nissim '03, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05]

<u>Definition</u>: pure and approximate

[Dwork-McSherry-Nissim-Smith '06]

Intuition: for a statistic, the effect of each individual (whether in the dataset or not) should be close to nothing.

<u>Definition</u>: pure and approximate

[Dwork-McSherry-Nissim-Smith '06]

Intuition: for a statistic, the effect of each individual (whether in the dataset or not) should be close to nothing.

Worst-case notion: protects against all possible adversaries and any kind of individual.

<u>Definition</u>: pure and approximate

[Dwork-McSherry-Nissim-Smith '06]

For any algorithm \mathcal{A} , it satisfies ϵ differential privacy if For all datasets D, D' differing in exactly one row all queries q Distribution of $\mathcal{A}(D,q)$ is at most ϵ away from $\mathcal{A}(D',q)$

The smaller ϵ is, the more privacy is ensured!

<u>Definition</u>: pure and approximate

[Dwork-McSherry-Nissim-Smith '06]

For any algorithm \mathcal{A} , it satisfies ϵ differential privacy if For all datasets D, D' differing in exactly one row all queries qDistribution of $\mathcal{A}(D,q)$ is at most ϵ away from $\mathcal{A}(D',q)$

For all sets T, $\Pr[\mathcal{A}(D,q) \in T] \leq (1+\epsilon) \Pr[\mathcal{A}(D',q) \in T]$

<u>Definition</u>: pure and approximate

[Dwork-McSherry-Nissim-Smith '06]

For any algorithm \mathcal{A} , it satisfies ϵ differential privacy if For all datasets D, D' differing in exactly one row all queries q Distribution of $\mathcal{A}(D,q)$ is at most ϵ away from $\mathcal{A}(D',q)$

The probability is only over the randomness of the algorithm ${\mathcal A}$

Table of Contents

- Motivations
 - Reidentification via Linkage Attacks
 - Reconstruction and Inference Attacks
- Definitions
 - K-anonymity
 - Differential Privacy
- Mechanisms
 - Laplace Mechanism
- Code Demonstrations
 - Python Code

Mechanisms for Differential Privacy

Examples:

- Laplace Mechanism [we'll discuss and implement this one!]
- 2. Gaussian Mechanism
- 3. Exponential Mechanism
- 4. Geometric Mechanism

• • • •

Laplace Mechanism

Lap(s) is the Laplace Distribution with scale s. Some properties:

- Has mean 0
- Has standard deviation $\sqrt{2} \cdot s$
- It's a "double-exponential" distribution

Laplace Mechanism for Sum and Average

1.
$$\mathcal{A}(x) = \sum_{i=1}^{\infty} x_i + \operatorname{Lap}(\frac{1}{\epsilon})$$

where $x_i \in [0, 1]$ for all $i \in [n]$.

Laplace Mechanism for Sum and Average

1.
$$\mathcal{A}(x) = \sum_{i=1}^{\infty} x_i + \operatorname{Lap}(\frac{1}{\epsilon})$$

where $x_i \in [0, 1]$ for all $i \in [n]$.

2.
$$\mathcal{A}(x) = \frac{1}{n} \cdot \sum_{i=1} x_i + \operatorname{Lap}(\frac{1}{n \cdot \epsilon})$$

where $x_i \in [0, 1]$ for all $i \in [n]$.

Code Demonstration

https://github.com/alabid/pre_college_2019

Conclusion

- Differential Privacy is a mathematically rigorous definition of individual data privacy.
- YOU can code it up. See GitHub page clone it and play with the code there!

https://github.com/alabid/pre_college_2019

• It's being used by the U.S. Census Bureau (for the 2020 Decennial Census), Google, Apple.