2

Docket No.: 219002028402

In the Claims

1. (Currently Amended): A method to inhibit p38α activity, which method comprises contacting said p38α with a compound of the formula:

$$Z_{|}^{6}$$

$$Z_{|}^{7}$$

$$Z_{|}^{8}$$

$$Z_{|}^{8}$$

$$Z_{|}^{8}$$

$$Z_{|}^{8}$$

$$Z_{|}^{3}$$

$$R^{3}$$

$$(1)$$

or the pharmaceutically acceptable salts thereof

wherein R³ comprises a substituted or unsubstituted aromatic moiety, wherein said aromatic moiety is a monocyclic or fused bicyclic moiety containing 5-12 ring member atoms, optionally comprising one or more heteroatoms selected from O, S and N;

wherein Z^3 is N, Z^5 is CH, and Z^6 and Z^7 are CR^2 and each remaining Z is CR^2 or N, wherein no more than two Z positions in ring A are N, and wherein two adjacent Z positions in ring A cannot be N;

Z^8 is CH or N;

each R² is either

(i) independently selected from the group consisting of H, alkyl, alkenyl, alkynyl, acyl, wherein each of alkyl, alkenyl, alkynyl and acyl may optionally contain 1-2 O, S or N, aryl, and arylalkyl, each of said aryl and arylalkyl optionally containing 1 or more O, S or N and wherein in each of the foregoing other than H may be unsubstituted or substituted with 1-3 substituents selected independently from the group consisting of alkyl, alkenyl, alkynyl, aryl, alkylaryl, aroyl, N-aryl, NH-alkylaryl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C), and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C), or

Docket No.: 219002028402

Application No.: 09/972,582 3

(ii) independently selected from the group consisting of halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, NRSOR, NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, NRSOR, NRSO₂R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C);

wherein L is R¹N(CH₂)_n wherein R¹ is H, alkyl (1-6C) or arylalkyl optionally substituted on the aryl moiety with 1-3 substituents independently selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C); a divalent moiety that provides a distance of 2.8Å between ring B and Ar';

n is 0 or 1; and

(a) Ar' is phenyl, substituted with at least one group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C), or pyridyl, indolyl, or pyrimidyl, each optionally substituted with at least one group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl optionally substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or

(b) Ar' is phenyl, pyridyl, indolyl, or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, and CF₃, wherein each R is independently H or lower alkyl (1-4C); or

(c) Ar' is phenyl substituted with a group selected from the group consisting of optionally substituted NR₂, SR, -NROCR, RCO, -CONR₂, SO₂NR₂, CN, and CF₃, wherein each R is independently H or lower alkyl (1-4C); or pyridyl substituted with a group selected from the group

Application No.: 09/972,582 4 Docket No.: 219002028402

consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or indolyl or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl optionally substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); or

(d) Ar' is phenyl, pyridyl, indolyl, or pyrimidyl, each optionally substituted with a group selected from the group consisting of optionally substituted alkyl (1-6C), halo, OR, NR₂, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C); and

R³ is phenyl substituted with 1-3 substituents which substituents are selected from the group consisting of alkyl (1-6C), halo, OR, SR, -OOCR, -NROCR, RCO, -COOR, -CONR₂, -SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or lower alkyl (1-4C).

Ar' is a cyclic hydrocarbyl aliphatic, cyclic hydrocarbyl aliphatic containing one or more heteroatoms or a monocyclic or polycyclic aromatic moiety any of the foregoing optionally substituted with 1-3 substituents, wherein two of said substituents may form a 5-7 member cyclic optionally heterocyclic aliphatic ring and wherein Ar' and any said substituents thereon forming a cyclic aliphatic ring, may optionally contain one or more ring atoms selected from O, S and N, wherein said compound inhibits p38a activity.

2-7. (canceled)

8. (previously presented): The method of claim 1 wherein any substituents on the aromatic or heteroaromatic moiety of R³ are independently selected from the group consisting of halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR,

5

Docket No.: 219002028402

-NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C) and alkyl (1-6C).

9. (original): The method of claim 1 wherein said substituents on substituted Ar' are independently selected from the group consisting of optionally substituted alkyl, alkenyl, alkynyl, aryl, alkylaryl, aroyl, N-aryl, NH-alkylaryl, NH-aroyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C),

and wherein any aryl or aroyl groups on said substituents may be further substituted by alkyl, alkenyl, alkynyl, halo, OR, NR₂, SR, -SOR, -SO₂R, -OCOR, -NRCOR, -NRCONR₂, -NRCOOR, -NRSOR, -NRSO₂R, -OCONR₂, RCO, -COOR, -SO₃R, -CONR₂, SO₂NR₂, CN, CF₃, and NO₂, wherein each R is independently H or alkyl (1-4C).

10. (previously presented): The method of claim 9 wherein Ar' is phenyl, 2-, 3-, or 4-pyridyl, 2- or 4-pyrimidyl, indolyl, isoquinolyl, quinolyl, benzimidazolyl, benzotriazolyl, benzotriazolyl, benzotriazolyl, thienyl, furyl, pyrrolyl, thiazolyl, oxazolyl, or imidazolyl, all of which may optionally be substituted.

11-12. (canceled)

13. (previously amended): The method of claim 1 wherein said optional substituents on R² are independently selected from the group consisting of R⁴, halo, OR⁴, NR⁴₂, SR⁴, -OOCR⁴, -NROCR⁴, -COOR⁴, R⁴CO, -CONR⁴₂, -SO₂NR⁴₂, CN, CF₃, and NO₂, wherein each R⁴ is independently H, or optionally substituted alkyl (1-6C), or optionally substituted arylalkyl (7-12C) and wherein two R⁴ or two substituents on said alkyl or arylalkyl taken together may form a fused aliphatic ring of 5-7 members.

14-15. (canceled)

Application No.: 09/972,582 6 Docket No.: 219002028402

16. (currently amended): The method of claim 1 wherein the compound of formula (1) is selected from group consisting of

(a) the compounds listed in Table 2 below, wherein Z^5 are CH; Z^3 is N; R^1 in compound No. 11 is 2-propyl; R^1 in compound No. 12 is 4-methoxyphenyl, and R^1 in compound No. 41 is 4-methoxybenzyl; and wherein L, Ar' and R^3 are as shown in Table 2:

	Table 2						
Compound No.	L	Ar'	R ³				
1	NH	4-pyridyl	2-chlorophenyl				
2	NH	4-pyridyl	2,6-dichlorophenyl				
3	NH	4-pyridyl	2-methylphenyl				
4	NH	4-pyridyl	2-bromophenyl				
5	NH	4-pyridyl	2-fluorophenyl				
6	NH	4-pyridyl	2,6-difluorophenyl				
7	NH	4-pyridyl	phenyl				
8	NH	4-pyridyl	4-fluorophenyl				
9	NH	4-pyridyl	4-methoxyphenyl				
10	NH	4-pyridyl	3-fluorophenyl				
11	NR ¹	4-pyridyl	phenyl				
12	NR ¹	4-pyridyl	phenyl				
13	NHCH ₂	4-pyridyl	phenyl				
14	NHCH ₂	4-pyridyl	4-chlorophenyl				
15	NH	3-pyridyl	phenyl				
16	NHCH ₂	2-pyridyl	phenyl				
17	NHCH ₂	3-pyridyl	phenyl				
18	NHCH ₂	2-pyridyl	phenyl				
19	NHCH ₂ CH ₂	2-pyridyl	phenyl				
20	NH	6-pyrimidinyl	phenyl				
21	NH	2-pyrimidinyl	phenyl				
22	NH	Phenyl	phenyl				
23	NHCH ₂	Phenyl	3-chlorophenyl				
24	NH	3-hydroxyphenyl	phenyl				
25	. NH	2-hydroxyphenyl	phenyl				
26	NH	4-hydroxyphenyl	phenyl				
27	NH	4-indolyl	phenyl				
28	NH	5-indolyl	phenyl				
29	NH	4-methoxyphenyl	phenyl				

Docket No.: 219002028402

Application No.: 09/972,582

7

Table 2							
Compound							
No.	L	Ar'	R ³				
30	NH	3-methoxyphenyl	phenyl				
31	NH	2-methoxyphenyl	phenyl				
32	NH	4-(2-hydroxyethyl)phenyl	phenyl				
33	NH	3-cyanophenyl	phenyl				
34	NHCH ₂	2,5-difluorophenyl	phenyl				
35	NH	4-(2-butyl)phenyl	phenyl				
36	NHCH ₂	4-dimethylaminophenyl	phenyl				
38	NH	2-pyridyl	phenyl				
39	NHCH ₂	3-pyridyl	phenyl				
40	NH	4-pyrimidyl	phenyl				
41	NR ¹	4-pyridyl	phenyl				
42	NH	p-aminomethylphenyl	phenyl				
43	NHCH ₂	4-aminophenyl	phenyl				
44	NH	4-pyridyl	3-chlorophenyl				
, 45	NH	Phenyl	4-pyridyl				
46	NH	→ NH	phenyl				
48	NH	2-benzylamino-3-pyridyl	phenyl				
49	NH	2-benzylamino-4-pyridyl	phenyl				
50	NH	3-benzyloxyphenyl	phenyl				
51	NH	4-pyridyl	3-aminophenyl				
52	NH	4-pyridyl	4-pyridyl				
53	NH	4-pyridyl	2-naphthyl				
54		4-pyridyl	phenyl				
55		Phenyl	phenyl				
56		2 pyridyl	phenyl				
61	NH	4-pyridyl	2-trifluoromethyl phenyl				
62	NH	4-aminophenyl	phenyl				
64	NH	3-methoxyphenyl	2-fluorophenyl				
65	NH	4-methoxyphenyl	2-fluorophenyl				
66	NH	4-pyrimidinyl	2-fluorophenyl				

8

Docket No.: 219002028402

Table 2						
Compound No.	L	Ar'	R ³			
67	NH	3-amino-4-pyridyl	phenyl			
68	NH	4-pyridyl	2-benzylaminophenyl			
69	NH	2-benzylaminophenyl	phenyl			
70	NH	2-benzylaminophenyl	4-cyanophenyl			
71	NH	3'-cyano-2- benzylaminophenyl	phenyl			

(b) the compounds listed in Table 3, below, wherein L is NH; Z^3 is N; Z^6 and Z^7 are CH and Z^5 , Z^8 , Ar and R^3 are as shown in Table 3:

Table 3						
Compound No.	Z ⁵	Z ⁸	Ar'	R ³		
72	CH	N	4-pyridyl	2-fluorophenyl		
73	CH	N	4-pyridyl	2-chlorophenyl		
74	CH	N	4-pyridyl	phenyl		
75	N	N	4-pyridyl	phenyl		
76	N	CH	4-pyridyl	phenyl		

and

(c) the quinazoline derivatives listed in Table 4 below, wherein L is NH; Ar' is 4-pyridyl; Z^3 , [[Z^5 ,]] and Z^8 are N; Z^5 is CH, Z^6 or Z^7 are CR² as shown and each is otherwise N and wherein R³ and R² are as shown in Table 4:

Docket No.: 219002028402

Application No.: 09/972,582

85

86

87

9

Table 4 Compound \mathbb{R}^3 \mathbb{R}^2 No. 77 2-chlorophenyl 6,7-dimethoxy 78 2-fluorophenyl 6-nitro 2-fluorophenyl 6-amino 79 2-fluorophenyl 7-amino 80 6-(3-methoxybenzylamino) 81 2-fluorophenyl 6-(4-methoxybenzylamino) 82 2-fluorophenyl 6-(2-isobutylamino) 83 2-fluorophenyl 2-fluorophenyl 6-(4-methylmercaptobenzylamino) 84

6-(4-methoxybenzoyl amino)

7-(3-methoxybenzylamino)

17. (previously presented): The method of claim 1 wherein the compound of formula (1) is selected from the group consisting of the following compounds:

7-amino

2-fluorophenyl

4-fluorophenyl

4-fluorophenyl

10

11

12

13

14

15

$$H_{2}$$
 H_{2} H_{3} H_{3

16

17

18

19

20

21

22

23

24

25

26

$$H_2N$$
 H_2N
 H_2N
 H_2N
 H_2N
 H_2N
 H_3C

27

28

29

30

31

32

Docket No.: 219002028402

18-23. (canceled)

- 24. (previously presented): The method of claim 1 wherein the compound of formula 1 is selected from the group consisting of
 - 2-phenyl-4-(4-pyridylamino)-quinazoline;
 - 2-(2-bromophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2-chlorophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2-methylphenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(4-fluorophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(3-methoxyanilyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2,6-dichlorophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2,6-dibromophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2,6-difluorophenyl)-4-(4-pyridylamino)-quinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-6, 7-dimethoxyquinazoline;
 - 2-(4-fluorophenyl)-4-(4-pyridylamino)-6, 7-dimethoxyquinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-nitroquinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino -6-aminoquinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-7-aminoquinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(3-methoxybenzylamino)-quinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(4-methoxybenzylamino)-quinazoline;
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(2-isobutylamino)-quinazoline; and
 - 2-(2-fluorophenyl)-4-(4-pyridylamino)-6-(4-methylmercaptobenzylamino)-quinazoline.
 - 25-33. (canceled)
- 34. (previously presented): A method to inhibit p38α activity, which method comprises contacting said p38α with a compound selected from the group consisting of

33

34

Docket No.: 219002028402

, and