ADC:

Analog to Digital Converter and Sensor Interfacing

DAC:

Digital to Analog Converter

Introduction

- A wide range of plug-in data acquisition and control boards currently on the market are now available, used as multi-purpose plug-in data acquisition boards. Examples of these plug-in boards are:
- - Analog input (A/D) boards
 - Analog output (D/A) boards
 - Digital I/O boards
 - Counter/timer I/O boards

3/17/2025

A/D boards (ADC)

- Analog input (A/D) boards convert analog voltages from external signal sources into a digital format, which can be interpreted by the host computer.
- The functional diagram of a typical A/D board is shown in figure below and comprises the following main components:
 - Input channel sample and hold circuits (for simultaneous sampling)
 - Input multiplexer
 - Input signal amplifier
 - Sample and hold circuit
 - A/D converter (ADC)
 - FIFO buffer
 - Timing system
 - Expansion bus interface

A/D boards

3/17/2025

A/D boards (ADC)

A/D converters

- Analog-to-digital converters (A/D converters, ADCs) measure an analog input voltage and convert this into a digital output format.
- The main types of A/D converters used are:
 - Successive approximation A/D converter
 - Flash A/D converters
 - Integrating A/D converters

ADC Devices

- ADCs are among the most widely used devices for data acquisition and sensor interfacing.
- Digital computers use binary (discrete) values,
 - but in the physical world everything is analog (continuous).
 - Temperature, pressure (wind or liquid), humidity, and velocity...
- A physical quantity is converted to electrical (voltage, current) signals using a device called a transducer.
- Transducers used to generate electrical outputs are also referred to as sensors.
- Sensors for temperature, velocity, pressure, light, and many others produce an output that is voltage (or current).
- ADC translates the analog signals to digital numbers.
 - ADC takes the magnitude of the voltage and converts it to a binary value representing the magnitude.

ADC Characteristics: Resolution

- ADC has n-bit resolution,
 - where n can be 8, 10, 12, 16, or even 24 bits.
- Higher-resolution ADCs provide a smaller step size, where step size is the smallest change that can be discerned by an ADC.
- Some widely used resolutions for ADCs are shown in the Table.
- Although the resolution of an ADC chip is fixed in its Design
 - we can control the step size with the help of what is called Vref.

ADC Characteristics: Vref

- Vref is an input to the ADC used for the reference voltage.
- Vref along with the resolution of the ADC chip, determine the step size.
- For an 8-bit ADC, the step size is Vref / 256.
- For example, if the analog input range needs to be 0 to 4 volts,
 - Vref is connected to 4 volts.
 - That gives 4 V / 256 = 15.62 mV for the step size of an 8-bit ADC.
- In another case, if we need a step size of 10 mV for an 8-bit ADC,
 - then Vref = 2.56 V, because 2.56 V / 256 = 10 mV.

V _{ref} (V)	Vin Range (V)	Step Size (mV)	
5.00	0 to 5	5 / 256 = 19.53	
4.00	0 to 4	4 / 256 = 15.62	
3.00	0 to 3	3 / 256 = 11.71	
2.56	0 to 2.56	2.56 / 256 = 10	
2.00	0 to 2	2 / 256 = 7.81	
1.28	0 to 1.28	1.28 / 256 = 5	
1.00	0 to 1	1 / 256 = 3.90	
Note: In an 8-bit ADC, step size is V _{ref} /256			

n-bit	Number of steps	Step size	
8	256	5V /256 = 19.53 mV	
10	1024	5V /1024 = 4.88 mV	
12	4096	5V /4096 = 1.2 mV	
16	65,536	5V /65,536 = 0.076 mV	
Note: V _{ref} = 5V			

ADC Characteristics: Conversion time

- Conversion time is major factor in selecting an ADC, in addition to resolution.
- Conversion time is defined as:
 - the time it takes the ADC to convert the analog input to a digital number.
- The conversion time is dictated by:
 - the clock source connected to the ADC
 - the method used for data conversion
 - technology used in the fabrication of the ADC.
- Start conversion and end-of-conversion signals
 - For the conversion to be controlled by the CPU, there are needs for:
 - start conversion (SC) and
 - end-of-conversion (EOC) signals.
 - When SC is activated, the ADC starts converting the analog input value of Vin to a digital number.
 - The amount of time it takes to convert varies depending on the conversion method.
 - When the data conversion is complete, the end-of-conversion (EOC) signal notifies the CPU that the converted data is ready to be picked up.

ADC Characteristics: Digital data output

- In an 8-bit ADC we have an 8-bit digital data output of D0-D7
- To calculate the output voltage, we use the following formula:
 - DOUT = VIN / StepSize
 - where Dout = digital data output (in decimal), Vin = analog input voltage,
 - step size (resolution) is the smallest change, which is Vref/256 for an 8-bit ADC.
- Ex: simple 2-bit ADC. In the circuit,
 - the voltage betweenVref(+) and Vref(-) is divided into 4.
 - As a result, the step size is(Vref(+) Vref(-)) / 4.

ADC Characteristics: Digital data output

- Ex2: given 8-bit ADC and Vref = 2.56 V.
 - Calculate the D0-D7 output if the analog input is:
 - (a)1.7 V, and (b) 2.1 V.

Solution:

- step size is 2.56/256 = 10 mV, we have the following.
- (a) DOUT = 1.7V/10 mV = 170 in decimal,
- which gives us 10101010 in binary for D7-D0.
- (b) DOUT = 2.1V/10 mV = 210 in decimal,
- which gives us 11010010 in binary for D7-D0

Parallel versus serial ADC

- ADC chips are either parallel or serial.
- In parallel ADC,
 - binary data is sent out with 8 or more pins.
- in serial ADC
 - we have only one pin for data out.

- The D0-D7 data pins of the 8-bit ADC provide an 8-bit parallel data path between the ADC chip and the CPU.
- Since space is a critical issue,
 - serial devices such as the serial ADC are becoming widely used.
- ADC0848 is an example of a parallel ADC with 8 pins for data output
- MAX1112 is an example of a serial ADC with a single pin for Dout.
- Analog Input Channels:
 - Typically, ADC chips has 2, 4, 8, or even 16 channels on a single chip.

Successive Approximation ADC

- Successive Approximation is a widely used method of converting an analog input to digital output.
- Allows high sampling rates and high resolution
- It has three main components:
 - (a) successive approximation register (SAR),
 - (b) comparator
 - (c) control unit.

Successive Approximation ADC

The functional diagram of an n-bit successive approximation A/D converter is shown in Figure.

Generally speaking, an n-bit SAR ADC will require N comparison

periods.

A/D boards (ADC)

Flash A/D converters

- Fastest available ADC, operating as speeds up to few GHz.
- Used where extremely high speeds of conversion are required with lower resolution, for example, 8-bits.
- Figure shows the functional diagram of an *n*-bit flash A/D converter.
- Requires 2ⁿ-1 parallel comparators.
- Found in high speed applications such as digital oscilloscopes, DSP and real-time.

A/D boards (ADC)

Integrating ADC

Integrating analog-to-digital converters (ADCs) provide high resolution analog-to-digital conversions, with good noise rejection. These ADCs are ideal for digitizing low bandwidth signals, and are used in applications such as digital multi-meters and panel meters.

Basic integrator of a single-slope integrating ADC

Sampling rate and the Nyquist theorem

Sampling rate and the Nyquist theorem

 How fast should the A/D board sample the data to be able to represent and reconstruct the input signal accurately.

Nyquist's theorem

Nyquist's sampling theorem states that:

"An analog band-limited signal that has no spectral components at or above a frequency of f Hz can be uniquely represented by samples of its values spaced at uniform intervals that are no more than ½*f seconds apart or sampled at a frequency of no less than 2*f Hz."

• The max. sampling period, T=1/(2*f), is known as the Nyquist interval, while the min. sampling frequency, 2*f, is known as the Nyquist sampling frequency, or rate.

Digital-to-Analog (DAC) converter

D/A boards (DAC)

- Convert digital signals from a host computer into an analog format for use by external devices such as actuators in controlling or stimulating a system or process.
- Digital to analog converters (D/A converters or DACs) accept an n-bit parallel digital code as input and provide an analog current or voltage as output.
- The primary output value is a current, however, this is easily converted to a voltage using an operational amplifier.

Digital-to-Analog (DAC) converter

- The digital-to-analog converter (DAC) is a device widely used to convert digital signals to analog signals.
- Two methods of making a DAC:
 - binary weighted and R/2R ladder.
- The vast majority of integrated circuit DACs, including the DAC0808, use the R/2R method
 - It can achieve a much higher degree of precision.
- The first criterion for selecting a DAC is:
 - its resolution, which is a function of the number of bits of the digital input.
 - The common ones are 8, 10, and 12 bits.
- The number of digital input bits decides the resolution of the DAC
 - since the number of analog output levels is equal to 2ⁿ, where n is the number of digital input bits.
 - Therefore, the 8-bit DAC such as the DAC0808 provides 256 discrete voltage (or current) levels of output.

D/A boards (DAC)

- Binary Weighted Resistor D/A converters
- This method creates an output current, I_T , which is the summation of the weighted currents from each of the parallel transistor sources; the current contributed by each transistor set by the resistances R, 2R, 4R, 8R, etc.
- The output is $V_0 = -I_T R/2$ the output voltage is directly proportional to the voltage reference according to the equation $V_0 = V_{REF} (B_0 2^{-1} + B_1 2^{-2} ... + B_{n-1} 2^{n-1})$

D/A boards (DAC)

R-2R ladder D/A converters

- A D/A converter which uses resistors of only two values, R and 2R.
- The DAC produces an output current $I_{\rm T}$ proportional to the input code and the voltage reference source.
- The output is given by:

$$V_0 = -V_R 2^{-n} \sum_{i=0}^{n-1} a_i 2^i; where \ a_i \in \{0, 1\}$$

• The output voltage at node n-1 is:

$$V_{n-1} = V_R/3$$

- The main advantages, are
 - easy matching of resistances (*R* or 2*R*),
 - constant and low resistance can be used, thus ensuring high-speed.

D/A boards (DAC)

Parameters of D/A converters

- Resolution
 - Output for 1bit change
 - The greater the number of input bits the smoother the output voltage
- Output range
 - Current
 - Voltage
- Input data code
 - binary, binary offset, two's complement, BCD, arbitrary, etc

DAC connection to the MCU

