Mathematical Induction

Murat Osmanoglu

• To prove P(n) is true for all positive integers n,

- To prove P(n) is true for all positive integers n,
 - verify that P(1) is true (Basic Step)

- To prove P(n) is true for all positive integers n,
 - verify that P(1) is true (Basic Step)
 - prove that the implication $P(k) \rightarrow P(k+1)$ for all $k \in \mathbb{Z}^+$ (Inductive Step)

- To prove P(n) is true for all positive integers n,
 - verify that P(1) is true (Basic Step)
 - prove that the implication $P(k) \rightarrow P(k+1)$ for all $k \in \mathbb{Z}^+$ (Inductive Step)

$$[P(1) \land \forall k P(k) \rightarrow P(k+1)] \rightarrow \forall n P(n)$$

- To prove P(n) is true for all positive integers n,
 - verify that P(1) is true (Basic Step)
 - prove that the implication $P(k) \rightarrow P(k+1)$ for all $k \in \mathbb{Z}^+$ (Inductive Step)

$$[P(1) \land \forall k P(k) \rightarrow P(k+1)] \rightarrow \forall n P(n)$$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

Basic Step P(1): $1^3 - 1 = 0$ is divisible by 3

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

Basic Step P(1): $1^3 - 1 = 0$ is divisible by 3

Inductive Step $P(k) \rightarrow P(k+1)$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

Basic Step $P(1): 1^3 - 1 = 0$ is divisible by 3

Inductive Step $P(k) \to P(k+1)$ assume that P(k) is true, i.e $k^3 - k$ is divisible by 3 $[k^3 - k = 3a, \exists a \in \mathbb{Z}]$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

Basic Step P(1): $1^3 - 1 = 0$ is divisible by 3

Inductive Step $P(k) \to P(k+1)$ assume that P(k) is true, i.e $k^3 - k$ is divisible by 3 $[k^3 - k = 3a, \exists a \in \mathbb{Z}] \to (k+1)^3 - (k+1)$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

Basic Step P(1): $1^3 - 1 = 0$ is divisible by 3

Inductive Step $P(k) \rightarrow P(k+1)$

assume that P(k) is true, i.e $k^3 - k$ is divisible by 3

$$[k^3 - k = 3a, \exists a \in \mathbb{Z}] \to (k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - k - 1$$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

Basic Step P(1): $1^3 - 1 = 0$ is divisible by 3

Inductive Step $P(k) \rightarrow P(k+1)$

assume that P(k) is true, i.e $k^3 - k$ is divisible by 3

$$[k^{3} - k = 3a, \exists a \in \mathbb{Z}] \to (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k + 1 - k - 1$$
$$\to (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k - k$$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

$$[k^{3} - k = 3a, \exists a \in \mathbb{Z}] \to (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k + 1 - k - 1$$
$$\to (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k - k$$
$$\to (k+1)^{3} - (k+1) = k^{3} - k + 3k^{2} + 3k$$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

$$[k^{3} - k = 3a, \exists a \in \mathbb{Z}] \to (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k + 1 - k - 1$$

$$\to (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k - k$$

$$\to (k+1)^{3} - (k+1) = k^{3} - k + 3k^{2} + 3k$$

$$\to (k+1)^{3} - (k+1) = k^{3} - k + 3(k^{2} + k)$$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

$$[k^{3} - k = 3a, \exists a \in \mathbb{Z}] \rightarrow (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k + 1 - k - 1$$

$$\rightarrow (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k - k$$

$$\rightarrow (k+1)^{3} - (k+1) = k^{3} - k + 3k^{2} + 3k$$

$$\rightarrow (k+1)^{3} - (k+1) = k^{3} - k + 3(k^{2} + k)$$

$$\rightarrow (k+1)^{3} - (k+1) = 3a + 3b, \exists a, b \in \mathbb{Z}$$

• Prove that $\forall x \in \mathbb{Z}^+$, $x^3 - x$ is divisible by 3

$$[k^{3} - k = 3a, \exists a \in \mathbb{Z}] \rightarrow (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k + 1 - k - 1$$

$$\rightarrow (k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k - k$$

$$\rightarrow (k+1)^{3} - (k+1) = k^{3} - k + 3k^{2} + 3k$$

$$\rightarrow (k+1)^{3} - (k+1) = k^{3} - k + 3(k^{2} + k)$$

$$\rightarrow (k+1)^{3} - (k+1) = 3a + 3b, \exists a, b \in \mathbb{Z}$$

$$\rightarrow (k+1)^{3} - (k+1) \text{ is divisible by 3}$$

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

Basic Step P(0): $7^2 + 8 = 57$ is divisible by 57

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

Basic Step $P(0): 7^2 + 8 = 57$ is divisible by 57 Inductive Step $P(k) \rightarrow P(k+1)$

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

<u>Proofs</u>

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

Basic Step P(0): $7^2 + 8 = 57$ is divisible by 57

Inductive Step $P(k) \rightarrow P(k+1)$ assume that P(k) is true, i.e $7^{k+2} + 8^{2k+1}$ is divisible by 57 $[7^{k+2} + 8^{2k+1} = 57a, \exists a \in \mathbb{Z}]$

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

$$[7^{k+2} + 8^{2k+1} = 57a, \exists a \in \mathbb{Z}] \to 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 64.8^{2k+1}$$

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

$$[7^{k+2} + 8^{2k+1} = 57a, \exists a \in \mathbb{Z}] \to 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 64.8^{2k+1} \\ \to 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 7.8^{2k+1} + 57.8^{2k+1}$$

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

$$[7^{k+2} + 8^{2k+1} = 57a, \exists a \in \mathbb{Z}] \to 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 64.8^{2k+1}$$
$$\to 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 7.8^{2k+1} + 57.8^{2k+1}$$
$$\to 7^{k+3} + 8^{2k+3} = 7(7^{k+2} + 8^{2k+1}) + 57.8^{2k+1}$$

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

```
Basic Step P(0): 7^2 + 8 = 57 is divisible by 57

Inductive Step P(k) \rightarrow P(k+1)

assume that P(k) is true, i.e 7^{k+2} + 8^{2k+1} is divisible by 57
```

$$[7^{k+2} + 8^{2k+1} = 57a, \exists a \in \mathbb{Z}] \to 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 64.8^{2k+1}$$

$$\to 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 7.8^{2k+1} + 57.8^{2k+1}$$

$$\to 7^{k+3} + 8^{2k+3} = 7(7^{k+2} + 8^{2k+1}) + 57.8^{2k+1}$$

$$\to 7^{k+3} + 8^{2k+3} = 57a + 57b, \exists a, b \in \mathbb{Z}$$

• Prove that $\forall n \in \mathbb{N}$, $7^{n+2} + 8^{2n+1}$ is divisible by 57

```
Basic Step P(0): 7^2 + 8 = 57 is divisible by 57

Inductive Step P(k) \rightarrow P(k+1)

assume that P(k) is true, i.e 7^{k+2} + 8^{2k+1} is divisible by 57
```

$$[7^{k+2} + 8^{2k+1} = 57a, \exists a \in \mathbb{Z}] \rightarrow 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 64.8^{2k+1} \\ \rightarrow 7^{k+3} + 8^{2k+3} = 7.7^{k+2} + 7.8^{2k+1} + 57.8^{2k+1} \\ \rightarrow 7^{k+3} + 8^{2k+3} = 7(7^{k+2} + 8^{2k+1}) + 57.8^{2k+1} \\ \rightarrow 7^{k+3} + 8^{2k+3} = 57a + 57b, \exists a, b \in \mathbb{Z} \\ \rightarrow 7^{k+3} + 8^{2k+3} \text{ is divisible by 57}$$

• Prove that if $\forall n \in \mathbb{Z}^+$, then $1+2+\ldots+n=n.(n+1)/2$ Basic Step P(1): 1=1.2/2

• Prove that if $\forall n \in \mathbb{Z}^+$, then $1 + 2 + \ldots + n = n \cdot (n+1)/2$

Basic Step P(1): 1 = 1.2/2

Inductive Step $P(k) \rightarrow P(k+1)$

```
Basic Step P(1): 1 = 1.2/2

Inductive Step P(k) \rightarrow P(k+1)

assume that P(k) is true, i.e 1 + 2 + ... + k = k.(k+1)/2
```

Basic Step P(1):
$$1 = 1.2/2$$

Inductive Step $P(k) \rightarrow P(k+1)$
assume that P(k) is true, i.e $1 + 2 + ... + k = k.(k+1)/2$
 $[1 + 2 + ... + k = k.(k+1)/2]$

Basic Step P(1):
$$1 = 1.2/2$$
Inductive Step $P(k) \to P(k+1)$
assume that P(k) is true, i.e $1 + 2 + ... + k = k \cdot (k+1)/2$

$$[1 + 2 + ... + k = k \cdot (k+1)/2] \to [1 + 2 + ... + (k+1) = k \cdot \frac{k+1}{2} + k + 1]$$

Basic Step P(1):
$$1 = 1.2/2$$

Inductive Step $P(k) \to P(k+1)$
assume that P(k) is true, i.e $1 + 2 + ... + k = k \cdot (k+1)/2$
 $[1 + 2 + ... + k = k \cdot (k+1)/2] \to [1 + 2 + ... + (k+1) = k \cdot \frac{k+1}{2} + k + 1]$
 $\to [1 + 2 + ... + (k+1) = \frac{k(k+1) + 2(k+1)}{2}]$

Basic Step P(1):
$$1 = 1.2/2$$

Inductive Step $P(k) \to P(k+1)$
assume that P(k) is true, i.e $1 + 2 + ... + k = k.(k+1)/2$
 $[1 + 2 + ... + k = k.(k+1)/2] \to [1 + 2 + ... + (k+1) = k.\frac{k+1}{2} + k + 1]$
 $\to [1 + 2 + ... + (k+1) = \frac{k(k+1) + 2(k+1)}{2}]$
 $\to [1 + 2 + ... + (k+1) = \frac{(k+1)(k+2)}{2}]$

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

$$1 + 3 = 4$$

$$1 + 3 + 5 = 9$$

•
$$1=1$$
 $1+3=4$ $1+3+5=9$ $1+3+5+9=16$

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

$$3^2$$

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

Basic Step $P(1): 1 = 1^2$

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

Basic Step $P(1): 1 = 1^2$

Inductive Step $P(k) \rightarrow P(k+1)$

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

Basic Step
$$P(1): 1 = 1^2$$

Inductive Step
$$P(k) \rightarrow P(k+1)$$

assume that P(k) is true, i.e $1 + 2 + ... + (2k - 1) = k^2$

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

assume that P(k) is true, i.e
$$1 + 2 + ... + (2k - 1) = k^2$$

$$[1+2+...+(2k-1)=k^2]$$

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

Basic Step $P(1): 1 = 1^2$

Inductive Step $P(k) \rightarrow P(k+1)$

assume that P(k) is true, i.e $1 + 2 + ... + (2k - 1) = k^2$

$$[1+2+...+(2k-1)=k^2] \rightarrow [1+2+...+(2k-1)+(2k+1)=k^2+2k+1]$$

Conjecture a formula for the sum of the first n positive odd integers, then prove your conjecture using mathematical induction

Basic Step
$$P(1): 1 = 1^2$$

Inductive Step $P(k) \rightarrow P(k+1)$

assume that P(k) is true, i.e $1 + 2 + ... + (2k - 1) = k^2$

$$[1+2+\ldots+(2k-1)=k^2] \to [1+2+\ldots+(2k-1)+(2k+1)=k^2+2k+1]$$
$$\to [1+2+\ldots+(2k-1)+(2k+1)=(k+1)^2]$$

• Prove that if $\forall n \in \mathbb{N}$, then $1+2+2^2+\ldots+2^n=2^{n+1}-1$ Basic Step P(1): $1=2^{0+1}-1$

• Prove that if $\forall n \in \mathbb{N}$, then $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$

Basic Step
$$P(1): 1 = 2^{0+1} - 1$$

Inductive Step $P(k) \rightarrow P(k+1)$

Basic Step P(1):
$$1 = 2^{0+1} - 1$$

Inductive Step $P(k) \rightarrow P(k+1)$
assume that P(k) is true, i.e $1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1$

Basic Step P(1):
$$1 = 2^{0+1} - 1$$

Inductive Step $P(k) \to P(k+1)$
assume that P(k) is true, i.e $1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1$
 $[1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1]$

Basic Step P(1):
$$1 = 2^{0+1} - 1$$

Inductive Step $P(k) \rightarrow P(k+1)$
assume that P(k) is true, i.e $1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1$
 $[1 + 2 + 2^2 + ... + 2^k = 2^{k+1} - 1] \rightarrow [1 + 2 + 2^2 + ... + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}]$

<u>Proofs</u>

Basic Step P(1):
$$1 = 2^{0+1} - 1$$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that P(k) is true, i.e $1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1$

$$[1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1] \rightarrow [1 + 2 + 2^2 + \dots + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}]$$

$$\rightarrow [1 + 2 + 2^2 + \dots + 2^{k+1} = 2 \cdot 2^{k+1} - 1]$$

<u>Proofs</u>

• Prove that if $\forall n \in \mathbb{N}$, then $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$

Basic Step P(1):
$$1 = 2^{0+1} - 1$$

Inductive Step $P(k) \rightarrow P(k+1)$
assume that P(k) is true, i.e $1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1$
 $[1 + 2 + 2^2 + \dots + 2^k = 2^{k+1} - 1] \rightarrow [1 + 2 + 2^2 + \dots + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}]$
 $\rightarrow [1 + 2 + 2^2 + \dots + 2^{k+1} = 2 \cdot 2^{k+1} - 1]$

 $\rightarrow [1 + 2 + 2^2 + \dots + 2^{k+1} = 2^{k+1+1} - 1]$

• Prove that for every integer $n \ge 4$, $2^n < n!$

Basic Step P(4): $2^4 = 16 < 4! = 24$

• Prove that for every integer $n \ge 4$, $2^n < n!$

Basic Step P(4): $2^4 = 16 < 4! = 24$

Inductive Step $P(k) \rightarrow P(k+1)$

```
Basic Step P(4): 2^4 = 16 < 4! = 24
Inductive Step P(k) \rightarrow P(k+1)
assume that P(k) is true, i.e 2^k < k!
```

```
Basic Step P(4): 2^4 = 16 < 4! = 24

Inductive Step P(k) \rightarrow P(k+1)

assume that P(k) is true, i.e 2^k < k!

[2^k < k!]
```

```
Basic Step P(4): 2^4 = 16 < 4! = 24

Inductive Step P(k) \to P(k+1)

assume that P(k) is true, i.e 2^k < k!

[2^k < k!] \to [2^{k+1} = 2, 2^k < 2, k!]
```

```
Basic Step P(4): 2^4 = 16 < 4! = 24
Inductive Step P(k) \to P(k+1)
assume that P(k) is true, i.e 2^k < k!
[2^k < k!] \to [2^{k+1} = 2.2^k < 2.k!] \to [2^{k+1} < 2.k!]
```

```
Basic Step P(4): 2^4 = 16 < 4! = 24
Inductive Step P(k) \to P(k+1)
assume that P(k) is true, i.e 2^k < k!
[2^k < k!] \to [2^{k+1} = 2.2^k < 2.k!] \to [2^{k+1} < 2.k! < (k+1).k!]
```

Basic Step P(4):
$$2^4 = 16 < 4! = 24$$
Inductive Step $P(k) \to P(k+1)$
assume that P(k) is true, i.e $2^k < k!$

$$[2^k < k!] \to [2^{k+1} = 2.2^k < 2.k!] \to [2^{k+1} < 2.k! < (k+1).k!]$$

$$\to [2^{k+1} < (k+1)!]$$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

• Prove that $H_1 + H_2 + ... + H_n = (n+1)H_n - n$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

• Prove that $H_1 + H_2 + ... + H_n = (n+1)H_n - n$ Basic Step P(1): $[H_1 \stackrel{?}{=} 2.H_1 - 1]$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

• Prove that $H_1 + H_2 + ... + H_n = (n+1)H_n - n$ Basic Step P(1): $[H_1 \stackrel{?}{=} 2.H_1 - 1] \rightarrow [1 = 2 - 1]$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

• Prove that $H_1 + H_2 + ... + H_n = (n+1)H_n - n$ Basic Step P(1): $[H_1 \stackrel{?}{=} 2.H_1 - 1] \rightarrow [1 = 2 - 1]$ Inductive Step $P(k) \rightarrow P(k+1)$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

$$[H_1 + \dots + H_k = (k+1)H_k - k]$$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

$$[H_1 + \dots + H_k = (k+1)H_k - k] \rightarrow [H_1 + \dots + H_k + H_{k+1} = (k+1)H_k - k + H_{k+1}]$$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

$$[H_1 + \dots + H_k = (k+1)H_k - k] \to [H_1 + \dots + H_k + H_{k+1} = (k+1)H_k - k + H_{k+1}]$$
$$\to \left[H_1 + \dots + H_{k+1} = (k+1)(H_k - \frac{1}{k+1} + \frac{1}{k+1}) - k + H_{k+1}\right]$$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

$$[H_1 + \dots + H_k = (k+1)H_k - k] \to [H_1 + \dots + H_k + H_{k+1} = (k+1)H_k - k + H_{k+1}]$$

$$\to \left[H_1 + \dots + H_{k+1} = (k+1)(H_k - \frac{1}{k+1} + \frac{1}{k+1}) - k + H_{k+1}\right]$$

$$\to \left[H_1 + \dots + H_{k+1} = (k+1)(H_{k+1} - \frac{1}{k+1}) - k + H_{k+1}\right]$$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

• Prove that $H_1+H_2+\ldots+H_n=(n+1)H_n-n$ Basic Step P(1): $[H_1\stackrel{?}{=} 2.H_1-1] \rightarrow [1=2-1]$ Inductive Step $P(k) \rightarrow P(k+1)$ assume that P(k) is true, i.e $H_1+\ldots+H_k=(k+1)H_k-k$

$$[H_1 + \dots + H_k = (k+1)H_k - k] \rightarrow [H_1 + \dots + H_k + H_{k+1} = (k+1)H_k - k + H_{k+1}]$$

$$\rightarrow [H_1 + \dots + H_{k+1} = (k+1)(H_k - \frac{1}{k+1} + \frac{1}{k+1}) - k + H_{k+1}]$$

$$\rightarrow [H_1 + \dots + H_{k+1} = (k+1)(H_{k+1} - \frac{1}{k+1}) - k + H_{k+1}]$$

$$\rightarrow [H_1 + \dots + H_{k+1} = (k+1)H_{k+1} - 1 - k + H_{k+1}]$$

$$H_j = 1 + \frac{1}{2} + \ldots + \frac{1}{j}$$

• Prove that $H_1+H_2+\ldots+H_n=(n+1)H_n-n$ Basic Step P(1): $[H_1\stackrel{?}{=} 2.H_1-1] \rightarrow [1=2-1]$ Inductive Step $P(k) \rightarrow P(k+1)$ assume that P(k) is true, i.e $H_1+\ldots+H_k=(k+1)H_k-k$

$$[H_{1} + \dots + H_{k} = (k+1)H_{k} - k] \rightarrow [H_{1} + \dots + H_{k} + H_{k+1} = (k+1)H_{k} - k + H_{k+1}]$$

$$\rightarrow [H_{1} + \dots + H_{k+1} = (k+1)(H_{k} - \frac{1}{k+1} + \frac{1}{k+1}) - k + H_{k+1}]$$

$$\rightarrow [H_{1} + \dots + H_{k+1} = (k+1)(H_{k+1} - \frac{1}{k+1}) - k + H_{k+1}]$$

$$\rightarrow [H_{1} + \dots + H_{k+1} = (k+1)H_{k+1} - 1 - k + H_{k+1}]$$

$$\rightarrow [H_{1} + \dots + H_{k+1} = (k+2)H_{k+1} - (k+1)]$$

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

assume that P(k) is true, i.e $k = a.3 + b.8, \exists a, b \in N$

if b > 0,

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$
 $k + 1 = a.3 + (b - 1).8 + 8 + 1$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$
 $k + 1 = a.3 + (b - 1).8 + 8 + 1$
 $k + 1 = (a + 3).3 + (b - 1).8$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$
 $k + 1 = a.3 + (b - 1).8 + 8 + 1$
 $k + 1 = (a + 3).3 + (b - 1).8$

if
$$b = 0$$
, $k + 1 = a.3 + 1$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$
 $k + 1 = a.3 + (b - 1).8 + 8 + 1$
 $k + 1 = (a + 3).3 + (b - 1).8$

if
$$b = 0$$
, $k + 1 = a.3 + 1$
 $k + 1 = (a - 5).3 + 15 + 1$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$
 $k + 1 = a.3 + (b - 1).8 + 8 + 1$
 $k + 1 = (a + 3).3 + (b - 1).8$

if
$$b = 0$$
, $k + 1 = a.3 + 1$
 $k + 1 = (a - 5).3 + 15 + 1$
 $k + 1 = (a - 5).3 + 2.8$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4): 14 = 2.3 + 1.8

Inductive Step $P(k) \rightarrow P(k+1)$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$
 $k + 1 = a.3 + (b - 1).8 + 8 + 1$
 $k + 1 = (a + 3).3 + (b - 1).8$

if
$$b = 0$$
, $k + 1 = a.3 + 1$
 $k + 1 = (a - 5).3 + 15 + 1$
 $k + 1 = (a - 5).3 + 2.8$

• For every integer $n \ge 14$, n can be written as a sum of 3's and 8's

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step
$$P(4): 14 = 2.3 + 1.8$$

Inductive Step $P(k) \rightarrow P(k+1)$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$
 $k + 1 = a.3 + (b - 1).8 + 8 + 1$
 $k + 1 = (a + 3)/3 + (b - 1).8$
if $b = 0$, $k + 1 = a.3 + 1$
 $k + 1 = (a - 5).3 + 15 + 1$
 $k + 1 = (a - 5).3 + 2.8$
 $P(k - 8)$

$$19 = 3 + 8 + 8 = 1.3 + 2.8$$

 $20 = 3 + 3 + 3 + 3 + 8 = 4.3 + 1.8$

Basic Step P(4):
$$14 = 2.3 + 1.8$$

Inductive Step $P(k) \rightarrow P(k+1)$
assume that P(k) is true, i.e $k = a.3 + b.8, \exists a, b \in N$

if
$$b > 0$$
, $k + 1 = a.3 + b.8 + 1$
 $k + 1 = a.3 + (b - 1).8 + 8 + 1$
 $k + 1 = (a + 3)/3 + (b - 1).8$
if $b = 0$, $k + 1 = a.3 + 1$
 $k + 1 = (a - 5).3 + 15 + 1$
 $k + 1 = (a - 5).3 + 2.8$

$$P(k - 8)$$

$$P(k - 8) \land P(k - 15)] \rightarrow P(k + 1)$$

- To prove P(n) is true for all positive integers n,
 - verify that P(1) is true (Basic Step)

- To prove P(n) is true for all positive integers n,
 - verify that P(1) is true (Basic Step)
 - prove that the implication

$$[P(1) \land P(2) \land \dots \land P(k)] \rightarrow P(k+1)$$

for all $k \in \mathbb{Z}^+$ (Inductive Step)

• Prove that for every integer $n \ge 2$, n can be written as the product of primes

• Prove that for every integer $n \ge 2$, n can be written as the product of primes

Basic Step P(2) is true, i.e. 2 can be written as the product of primes

• Prove that for every integer $n \ge 2$, n can be written as the product of primes

<u>Basic Step</u> P(2) is true, i.e. 2 can be written as the product of primes <u>Inductive Step</u> $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

• Prove that for every integer $n \ge 2$, n can be written as the product of primes

<u>Basic Step</u> P(2) is true, i.e. 2 can be written as the product of primes <u>Inductive Step</u> $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e i can be written as the product of primes, then

• Prove that for every integer $n \geq 2$, n can be written as the product of primes

<u>Basic Step</u> P(2) is true, i.e. 2 can be written as the product of primes <u>Inductive Step</u> $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e i can be written as the product of primes, then

if (k + 1) is prime, then P(k + 1) is true

• Prove that for every integer $n \geq 2$, n can be written as the product of primes

<u>Basic Step</u> P(2) is true, i.e. 2 can be written as the product of primes <u>Inductive Step</u> $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e i can be written as the product of primes, then

if (k + 1) is prime, then P(k + 1) is true

if (k+1) is composite, then k+1=a.b, where $2 \le a \le b < k+1$.

• Prove that for every integer $n \geq 2$, n can be written as the product of primes

<u>Basic Step</u> P(2) is true, i.e. 2 can be written as the product of primes <u>Inductive Step</u> $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e i can be written as the product of primes, then

if (k + 1) is prime, then P(k + 1) is true

if (k+1) is composite, then k+1=a.b, where $2 \le a \le b < k+1$. Since a,b < k+1, P(a) and P(b) are true from the assumption,

• Prove that for every integer $n \ge 2$, n can be written as the product of primes

<u>Basic Step</u> P(2) is true, i.e. 2 can be written as the product of primes <u>Inductive Step</u> $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e i can be written as the product of primes, then

if (k + 1) is prime, then P(k + 1) is true

if (k+1) is composite, then k+1=a. b, where $2 \le a \le b < k+1$. Since a, b < k+1, P(a) and P(b) are true from the assumption, i.e. a and b can be written as the product of primes.

• Prove that for every integer $n \geq 2$, n can be written as the product of primes

<u>Basic Step</u> P(2) is true, i.e. 2 can be written as the product of primes <u>Inductive Step</u> $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e i can be written as the product of primes, then

if (k + 1) is prime, then P(k + 1) is true

if (k+1) is composite, then k+1=a. b, where $2 \le a \le b < k+1$. Since a, b < k+1, P(a) and P(b) are true from the assumption, i.e. a and b can be written as the product of primes.

Thus, k + 1 = a. b can also be written as the product of primes.

· Consider a puzzle. How do we assemble a puzzle?

· Consider a puzzle. How do we assemble a puzzle?

· Consider a puzzle. How do we assemble a puzzle?

Consider a puzzle. How do we assemble a puzzle?

Show that no matter which move we make, n-1 noves required to assemble a
puzzle with n pieces.

Consider a puzzle. How do we assemble a puzzle?

Show that no matter which move we make, n-1 noves required to assemble a
puzzle with n pieces.

Basic Step P(1) is true, i.e. no move required for just 1 piece

Consider a puzzle. How do we assemble a puzzle?

<u>Basic Step</u> P(1) is true, i.e. no move required for just 1 piece <u>Inductive Step</u> $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

Consider a puzzle. How do we assemble a puzzle?

Show that no matter which move we make, n-1 noves required to assemble a
puzzle with n pieces.

Basic Step P(1) is true, i.e. no move required for just 1 piece

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e a puzzle with i pieces can be assembled with i-1 moves

Consider a puzzle. How do we assemble a puzzle?

Show that no matter which move we make, n-1 noves required to assemble a
puzzle with n pieces.

Basic Step P(1) is true, i.e. no move required for just 1 piece

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e a puzzle with i pieces can be assembled with i-1 moves

k+1 pieces

Consider a puzzle. How do we assemble a puzzle?

Show that no matter which move we make, n-1 noves required to assemble a
puzzle with n pieces.

Basic Step P(1) is true, i.e. no move required for just 1 piece

Inductive Step
$$[P(1) \land ... \land P(k)] \rightarrow P(k+1)$$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e a puzzle with i pieces can be assembled with i-1 moves

k+1 pieces

Consider a puzzle. How do we assemble a puzzle?

Show that no matter which move we make, n-1 noves required to assemble a
puzzle with n pieces.

Basic Step P(1) is true, i.e. no move required for just 1 piece

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e a puzzle with i pieces can be assembled with i-1 moves

Consider a puzzle. How do we assemble a puzzle?

Show that no matter which move we make, n-1 noves required to assemble a
puzzle with n pieces.

Basic Step P(1) is true, i.e. no move required for just 1 piece

Inductive Step
$$[P(1) \land ... \land P(k)] \rightarrow P(k+1)$$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e a puzzle with i pieces can be assembled with i-1 moves

Consider a puzzle. How do we assemble a puzzle?

Basic Step P(1) is true, i.e. no move required for just 1 piece

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e a puzzle with i pieces can be assembled with i-1 moves

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence: F(1) = 1, F(2) = 1, and F(n) = F(n-1) + F(n-2)

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence : F(1) = 1, F(2) = 1, and F(n) = F(n-1) + F(n-2)

Basic Step P(3): $F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence :
$$F(1) = 1$$
, $F(2) = 1$, and $F(n) = F(n-1) + F(n-2)$

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence : F(1) = 1, F(2) = 1, and F(n) = F(n-1) + F(n-2)

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence :
$$F(1) = 1$$
, $F(2) = 1$, and $F(n) = F(n-1) + F(n-2)$

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step
$$[P(1) \land ... \land P(k)] \rightarrow P(k+1)$$

for
$$P(k + 1)$$
: $F(k + 1) = F(k) + F(k - 1)$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence :
$$F(1) = 1$$
, $F(2) = 1$, and $F(n) = F(n-1) + F(n-2)$

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step
$$[P(1) \land ... \land P(k)] \rightarrow P(k+1)$$

for
$$P(k+1)$$
: $F(k+1) = F(k) + F(k-1) > \alpha^{i-2} + \alpha^{i-3}$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence :
$$F(1) = 1$$
, $F(2) = 1$, and $F(n) = F(n-1) + F(n-2)$

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

for
$$P(k+1)$$
: $F(k+1) = F(k) + F(k-1) > \alpha^{i-2} + \alpha^{i-3}$
= $\alpha \cdot \alpha^{i-3} + \alpha^{i-3}$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence :
$$F(1) = 1$$
, $F(2) = 1$, and $F(n) = F(n-1) + F(n-2)$

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

for
$$P(k+1)$$
: $F(k+1) = F(k) + F(k-1) > \alpha^{i-2} + \alpha^{i-3}$
= $\alpha \cdot \alpha^{i-3} + \alpha^{i-3}$
= $(\alpha + 1) \cdot \alpha^{i-3}$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence :
$$F(1) = 1$$
, $F(2) = 1$, and $F(n) = F(n-1) + F(n-2)$

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

for
$$P(k+1)$$
: $F(k+1) = F(k) + F(k-1) > \alpha^{i-2} + \alpha^{i-3}$
= $\alpha \cdot \alpha^{i-3} + \alpha^{i-3}$
= $(\alpha + 1) \cdot \alpha^{i-3}$

$$\alpha = \frac{1+\sqrt{5}}{2}$$
 is a solution of the equation $\alpha^2 - \alpha - 1 = 0$. Thus, $\alpha^2 = \alpha + 1$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence :
$$F(1) = 1$$
, $F(2) = 1$, and $F(n) = F(n-1) + F(n-2)$

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

for
$$P(k+1)$$
: $F(k+1) = F(k) + F(k-1) > \alpha^{i-2} + \alpha^{i-3}$
= $\alpha \cdot \alpha^{i-3} + \alpha^{i-3}$
= $(\alpha + 1) \cdot \alpha^{i-3} = \alpha^2 \cdot \alpha^{i-3}$

$$\alpha = \frac{1+\sqrt{5}}{2}$$
 is a solution of the equation $\alpha^2 - \alpha - 1 = 0$. Thus, $\alpha^2 = \alpha + 1$

• Prove that for every integer $n \ge 3$, $F(n) > \alpha^{n-2}$ where $\alpha = (1 + \sqrt{5})/2$

Fibonacci sequence:
$$F(1) = 1$$
, $F(2) = 1$, and $F(n) = F(n-1) + F(n-2)$

Basic Step P(3):
$$F(3) = 2 > \alpha^{3-2} = (1 + \sqrt{5})/2$$

Inductive Step $[P(1) \land ... \land P(k)] \rightarrow P(k+1)$

for
$$P(k+1)$$
: $F(k+1) = F(k) + F(k-1) > \alpha^{i-2} + \alpha^{i-3}$
= $\alpha \cdot \alpha^{i-3} + \alpha^{i-3}$
= $(\alpha + 1) \cdot \alpha^{i-3} = \alpha^2 \cdot \alpha^{i-3}$

$$F(k+1) > \alpha^{i-1}$$

$$\alpha = \frac{1+\sqrt{5}}{2}$$
 is a solution of the equation $\alpha^2 - \alpha - 1 = 0$. Thus, $\alpha^2 = \alpha + 1$

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,

Conjecture a formula for the sum of the squares of the first n terms in Fibonacci sequence, then prove your conjecture using mathematical induction

• $F(1)^2 = 1$, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$, $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$, $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$, $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$\sum_{j=1}^{n} F(j)^2 = F(n).F(n+1)$$
, where $n \ge 2$

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$\sum_{j=1}^{n} F(j)^2 = F(n).F(n+1)$$
, where $n \ge 2$
Basic Step P(2): $F(1)^2 + F(2)^2 = 2 = F(2).F(3)$

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$\sum_{j=1}^{n} F(j)^2 = F(n).F(n+1)$$
, where $n \ge 2$
Basic Step P(2): $F(1)^2 + F(2)^2 = 2 = F(2).F(3)$
Inductive Step $P(k) \to P(k+1)$

Conjecture a formula for the sum of the squares of the first n terms in Fibonacci sequence, then prove your conjecture using mathematical induction

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$\sum_{j=1}^{n} F(j)^2 = F(n).F(n+1)$$
, where $n \ge 2$
Basic Step P(2): $F(1)^2 + F(2)^2 = 2 = F(2).F(3)$
Inductive Step $P(k) \to P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e. $\sum_{j=1}^{i} F(j)^2 = F(i)$. F(i+1)

Conjecture a formula for the sum of the squares of the first n terms in Fibonacci sequence, then prove your conjecture using mathematical induction

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$\sum_{j=1}^{n} F(j)^2 = F(n).F(n+1)$$
, where $n \ge 2$
Basic Step P(2): $F(1)^2 + F(2)^2 = 2 = F(2).F(3)$
Inductive Step $P(k) \to P(k+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e. $\sum_{j=1}^{i} F(j)^2 = F(i)$. F(i+1) for $P(k+1): F(1)^2 + \dots + F(k)^2 + F(k+1)^2$

Conjecture a formula for the sum of the squares of the first n terms in Fibonacci sequence, then prove your conjecture using mathematical induction

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$\sum_{j=1}^n F(j)^2 = F(n).F(n+1)$$
, where $n \ge 2$
Basic Step P(2): $F(1)^2 + F(2)^2 = 2 = F(2).F(3)$
Inductive Step $P(k) \to P(k+1)$
assume that P(i) is true for all i such that $2 \le i \le k$, i.e. $\sum_{j=1}^i F(j)^2 = F(i).F(i+1)$

assume that P(i) is true for all i such that $2 \le i \le k$, i.e. $\sum_{j=1}^{i} F(j)^2 = F(i)$. F(i+1) for $P(k+1): F(1)^2 + \dots + F(k)^2 + F(k+1)^2 = F(k)$. $F(k+1) + F(k+1)^2$

Conjecture a formula for the sum of the squares of the first n terms in Fibonacci sequence, then prove your conjecture using mathematical induction

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$\sum_{j=1}^n F(j)^2 = F(n).F(n+1)$$
, where $n \ge 2$
Basic Step P(2): $F(1)^2 + F(2)^2 = 2 = F(2).F(3)$
Inductive Step $P(k) \to P(k+1)$
assume that P(i) is true for all i such that $2 \le i \le k$, i.e. $\sum_{j=1}^i F(j)^2 = F(i).F(i+1)$

for $P(k+1): F(1)^2 + \dots + F(k)^2 + F(k+1)^2 = F(k).F(k+1) + F(k+1)^2$ = F(k+1)(F(k) + F(k+1))

•
$$F(1)^2 = 1$$
, $F(1)^2 + F(2)^2 = 2$, $F(1)^2 + F(2)^2 + F(3)^2 = 6$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 = 15$,
 $F(1)^2 + F(2)^2 + F(3)^2 + F(4)^2 + F(5)^2 = 40$,
1.1 1.2 2.3 3.5 5.8

•
$$\sum_{j=1}^{n} F(j)^2 = F(n).F(n+1)$$
, where $n \ge 2$
Basic Step P(2): $F(1)^2 + F(2)^2 = 2 = F(2).F(3)$
Inductive Step $P(k) \rightarrow P(k+1)$
assume that P(i) is true for all i such that $2 \le i \le k$, i.e. $\sum_{j=1}^{i} F(j)^2 = F(i).F(i+1)$

for
$$P(k+1)$$
: $F(1)^2 + \dots + F(k)^2 + F(k+1)^2 = F(k) \cdot F(k+1) + F(k+1)^2$
= $F(k+1)(F(k) + F(k+1))$
= $F(k+1)F(k+2)$