

## Aprendizagem 2022/23

#### Homework I - Group 021

## I. Pen-and-paper

1)

| nucl    |   |     |     |                | ned |   |   |   |
|---------|---|-----|-----|----------------|-----|---|---|---|
| 1) 3    |   | P   | N   | 3              |     | P | N | 1 |
| Predict | P | 5+3 | 2+2 | 11<br>Predicte | P   | 8 | 4 |   |
|         | N | 3   | 5   |                | N   | 3 | 5 | 1 |

2)



$$F_1 = \frac{2 \operatorname{Pac}(5 \text{ sun})}{\operatorname{Pac} + 5 \text{ sun}} = \frac{2 \cdot \frac{5}{2} \cdot \frac{5}{11}}{\frac{5}{2} + \frac{5}{11}}$$

$$= \frac{5}{9}$$

CM:



$$S_{EM} = \frac{TP}{TP+FN} \qquad P_{TMC} = \frac{TP}{TP+FP}$$

$$= \frac{5}{5+6}$$

$$= \frac{5}{5+2} = \frac{5}{7}$$

3)

- 3) Two reasons that can justify why the left path was not gurther decomposed are:
  - To avoid overfitting, because exploring the left path would make the model adapted to the training date;
  - The left path could be an unecessary branch which would show down the tree's performance.



### Aprendizagem 2022/23

#### Homework I - Group 021

4)

4) 
$$IG(Y_{out}|Y_{i}) = I(Y_{out}) - E(Y_{out}|Y_{i})$$

$$Y_{out}|_{5+3+(8-5)}|_{5+(3-5)+(5-3)}|_{5+(3-5)+(5-3)}|_{5+3+(8-5)}|_{5+(3-5)+(5-3)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3+(8-5)}|_{5+3$$

## II. Programming and critical analysis

1) The code for this question is in the Appendix of this document.

Resulting Graph:





#### Aprendizagem 2022/23

#### Homework I - Group 021

2) The training accuracy is persistently 1 because there are no depth limits on the decision tree. This makes the tree very well trained to the training data (overfitted) and therefore predict the training data flawlessly.

#### III. APPENDIX

Code used in question 1) of **II. Programming and critical analysis**:

Loads the Parkinson Disease's Data:

```
import pandas as pd
import numpy as np
from scipy.io.arff import loadarff

data = loadarff('pd_speech.arff')
df = pd.DataFrame(data[0])
df = df.dropna()
df['class'] = df['class'].str.decode('utf-8')

X=df.drop('class', axis=1)
y = df['class']
```

Calculates the Training/Testing Accuracies:

```
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import mutual_info_classif
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn.feature_selection import chi2, SelectKBest

# Splits the data with the fixed seed
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7, stratify=y, random_state=1)

selected_features = [5, 10, 40, 100, 250, 700]
train_accuracies = []
test_accuracies = []
def classifier_func(X, y):
    return mutual_info_classif(X, y, random_state=1)
```



# Aprendizagem 2022/23 **Homework I – Group 021**

```
# Iterates over each feature
for feature in selected_features:
    # Calculates the mutual information between the features and the target,
    # and normalizes it to be a % of the maximum value
    mutual_info = SelectKBest(classifier_func, k=feature)
    mutual_info.fit(X_train, y_train)
    X_train_selected = mutual_info.transform(X_train)
    X_test_selected = mutual_info.transform(X_test)

# Create the decision tree, train it and predict
    clf = DecisionTreeClassifier(random_state=1)
    clf.fit(X_train_selected, y_train)

y_train_predict = clf.predict(X_train_selected)

# Compute accuracy
    train_accuracy = accuracy_score(y_train, y_train_predict)
    test_accuracy = accuracy_score(y_test, y_test_predict)
    train_accuracies.append(train_accuracy)
    test_accuracies.append(test_accuracy)
```

#### Plots the accuracies in a graph:

```
import matplotlib.pyplot as plt

plt.plot(selected_features, train_accuracies, label="Training accuracy")

plt.plot(selected_features, test_accuracies, label="Testing accuracy")

plt.plot(selected_features, train_accuracies, 'o')

plt.plot(selected_features, test_accuracies, 'o')

plt.plot(selected_features, test_accuracies, 'o')

plt.xlabel("Number of selected features (Nr)")

plt.ylabel("Accuracy (Nr)")

plt.legend()

plt.show()
```