goal: characterize controllability of stable LTI-DE using a Lyapunov test

ref: Hespanha Ch 12.3

o consider (LTI-DE)
$$\hat{x}/x^{+}=Ax+Bu$$
, $x\in\mathbb{R}^{n}$, $u\in\mathbb{R}^{k}$
 $t\underline{b}m:$ if (LTI-DE) is stable, then:
(LTI-DE) is controllable (=> there is a unique solution $W=W^{T}>0$ to Lyapunov equation: (CT) $AW+WA^{T}=-BB^{T}$
(DT) $AWA^{T}-W=-BB^{T}$
in this case, (CT) $W=\int_{0}^{\infty}A^{T}BB^{T}A^{T}^{T}d\tau$ = $\lim_{t\to\infty}W(0,t)$

pf: (sketch)

(\Leftarrow) assume $\exists ! W = WT > 0$ solution to Lyapunov equation and let $v \neq 0$ satisfy $A^Tv = \lambda v \Rightarrow v^*A = \lambda^*v^*$. Then $v^*(AW + WAT)v = -v^*BB^Tv = -\|B^Tv\|^2$

• but $v^*(AW+WA^T)v = v^*AWv + v^*WA^Tv$ $= x^*v^*Wv + x^*Wv$ $= x^*v^*Wv + x^*w^*v$ $= x^*v^*wv + x^*wv + x$

ocanclude 13TV 70, i.e. there is no eigenvector of AT in the null space of BT, so (LTI-DE) is controllable

(=>) assuming (LTI-DE) controllable (and stable) we know $\exists! W=wT>0$ to Lyapuna equation with Q=BBT>0 — some subtlety involved in hardling positive semi-definite Q, but it can be hardled