BDA - Assignment 4

Anonymous

8/3/2020

Q - Bioassay model and importance sampling

a)

Constructing a bivariate normal distribution as a prior distribution for (α, β) :

$$p(\alpha, \beta \mid y) \propto p(\alpha, \beta)p(\alpha, \beta \mid y)$$

Given is:

 $\alpha \sim \mathcal{N}(0, 2^2)$

 $\beta \sim \mathcal{N}(10, 10^2)$

 $corr(\alpha, \beta) = 0.5$

Specifying the values given above:

k=2 and $\mu_{\alpha}=0, \, \sigma_{\alpha}=2, \, \mu_{\beta}=10, \, \sigma_{\beta}=10$ and $\rho=corr(\alpha,\beta)=0.5$.

From this we can find μ :

$$\mu = \begin{pmatrix} \mu_{\alpha} \\ \mu_{\beta} \end{pmatrix} = \begin{pmatrix} 0 \\ 10 \end{pmatrix}$$

The covariance matrix is:

$$\Sigma = \begin{pmatrix} \sigma_{\alpha}^2 & \rho \sigma_{\alpha} \sigma_{\beta} \\ \rho \sigma_{\alpha} \sigma_{\beta} & \sigma_{\beta}^2 \end{pmatrix} = \begin{pmatrix} 4 & 10 \\ 10 & 100 \end{pmatrix}$$

b)

Implementing a function "p_log_prior" for computing logarithm of the density of the prior distribution of α β . We use the dmvnorm from the aaltobda package:

c)

Implementing a function "p_log_posterior" for computing logarithm of the density of the posterior for arbitrary values of α β and data x, y and n. Applied on dataset 'Bioassay'

The Bioassay data provided describes the outcome of toxicity tests in animals:

```
head(data)
```

```
##
         x n y
## 1 -0.86 5 0
## 2 -0.30 5 1
## 3 -0.05 5 3
## 4 0.73 5 5
Where
n = number of animals for each observation x = dose level for each observation (log g/ml)
y = number of deaths for each observation
p_log_posterior <- function(alpha, beta, x=bioassay$x, y=bioassay$y, n=bioassay$n){
  p_log_likelihood <- bioassaylp(alpha, beta, x, y, n)</pre>
  post <- p_log_prior(alpha, beta) + p_log_likelihood</pre>
  return(post)
}
alpha <- 3
beta <- 9
p_log_posterior(alpha, beta, x = bioassay_x, y = bioassay_y, n = bioassay_n)
## [1] -15.78798
```

d)

Plotting the posterior density in a grid of points using "bioassay_posterior_density_plot" from aaltobda package:

```
# The plot is not really working for me with the functions # Some bug I can't find #bioassay_posterior_density_plot(alpha_limits = c(-4, 4), # beta_limits = c(-10, 30))
```

e)

Two functions for 1) computing the log importance ratios.. and for 2) exponentiating the log importance ratios and normalizing them to sum to one

function 1:

```
log_importance_weights <- function(alpha, beta){
   S <- length(alpha)
   w <- c()
   for(i in 1:S){
      w[i] <- p_log_posterior(alpha[i], beta[i], x=bioassay$x, y=bioassay$y, n=bioassay$n) - p_log_prior
}
   return(w)
}</pre>
```

function 2:

We divide the importance weights with the sum of importance weights, for normalization:

```
normalized_importance_weights <- function(alpha, beta){
  log_w <- log_importance_weights(alpha, beta)
  exp_w <- exp(log_w)
  return(exp_w/sum(exp_w))
}</pre>
```

f)

Sample draws of α and β from the prior distribution

Posterior mean of α and β using importance sampling is:

```
round(posterior_mean(alpha, beta), digit=3)
## [1] 0.954 10.480
g)
```

Using importance ratio to calculate the effective sample size:

```
S_eff <- function(alpha, beta){
   s_eff <- 1/sum(normalized_importance_weights(alpha, beta)^2)
   return (s_eff)
}</pre>
```

The effective sample size, S_eff, is:

h)

```
$_eff(alpha, beta)
## [1] 520.0979
```

Using importance ratio to obtain a posterior sample..:

Scatterplot of the obtained posterior sample

```
ggplot(data = data.frame(s_A, s_B)) +
geom_point(aes(s_A, s_B), color = 'blue', size = 0.3) +
coord_cartesian(xlim = xl, ylim = yl) +
labs(x = 'alpha', y = 'beta')
```


i)

Investigating if the drug is harmful by using the importance resampling without replacement:

```
bpi <- s_B > 0
s_ld50 <- -s_A[bpi]/s_B[bpi]
p_positive_beta <- length(bpi)/n_s</pre>
```

Harmful drug is given by:

$$p(\beta > 0|n, x, y)$$

p_positive_beta

[1] 1

j)

Using the posterior sample obtained via importance resampling, draw a histogram of the draws from the posterior distribution.

LD50 = Lethal dosage of $50\% = -\alpha/\beta$.

We calculate this for all of the posterior samples and.

Histogram of LD50 is shown in the following figure.

