

RZN2L RS485 操作手册-----基于 Etherkit 开发板

简介

本应用笔记介绍了基于 RZ/N2 Etherkit 开发板的定时器 RS485 的操作。分别介绍 IDE IAR 和 E2studio 软件下的操作。

开发工具

• IDE: IAR EW for Arm 9.50.2 E2studio 2024-01.1

FSP: RZ/N2 FSP V2.0

• 仿真器: Jlink V12

实验材料

- Etherkit 开发板
- Jlink 仿真器,需支持瑞萨 R52 内核
- RS485 通信需要两个板子

实验部分

1.	硬件 设 置及 软 件安装	. 2
2	IAR 环 境工程介 绍	-
2	F2studio 环境工程介绍	c

1 .硬件设置及软件安装

本节 EtherKit 开发板硬件设置。

1.1 开发板设置:

● 供电:可选 USB 供电或适配器供电

● Boot 模式设置:推荐 xSPI0 x1 boot mode

Jlink v12

1.2 硬件原理图:

板载资源 RS485 接口,连接到 N2L 芯片的 SCI5;

本节完

2 .IAR 环境工程介绍

本节介绍 IAR 环境下 RS485 工程介绍。

2.2 8. 打开生成的代码 仿真器由 ljet 切换为 Jlink 编写用户代码:一个工程两套代码,由 send_board 定义编译哪套代码。 File Edit View Project J-Link Tools Window Help 🚽 < Q > ⇆ 🗠 < 📮 > @ 👂 📗 🐞 🚈 🔘 🕨 📜 🔠 Workspace 🕶 🗜 🗴 hal_entry.c 🗶 r_uart_api.h hal_data.c startup_core.c bsp_delay.c bsp_delay.h main.c bsp_delay_core.c r_sci_uart.c hal entry() Debug 61 🗐 { Files ø /* TODO: add your own code here */ /* Open the transfer instance with initial configuration. */ fsp_err_t err = R_SCI_UART_Open(&g_uart5_ctrl, &g_uart5_cfg); 62 63 64 □ RS485 - Debug I ■ Flex Software 65 -⊞ 🚅 Build Configuration __asm volatile ("cpsie i"); __asm volatile ("isb"); for (uint32_t i = 0; i < 20; i++) 66 -⊞ 🚅 Components 67 - Generated Data ■ bsp_clock_cfg.h 69 白 70 71 72 🕀 🗟 common_data.c g_src[i] = (uint8_t) ('A' + (i % 26)); — 🗟 common_data.h while(1) —⊞ 🗟 hal_data.c In hal data.h -⊞ 🛭 main.c err = R_SCI_UART_Write(&g_uart5_ctrl, g_src, 10); -⊞ 🗟 pin_data.c 76 77 78 日 79 g_transfer_complete =0; while (!g_transfer_complete) —⊞ 🖸 vector_data.c – 🗟 vector_data.h 🗇 🚅 Program Entry 80 81 -⊞ 📵 hal_entry.c R_BSP_SoftwareDelay (1000, BSP_DELAY_UNITS_MILLISECONDS); 🗎 buildinfo.ipcf 82 83 err = R_SCI_UART_Read(&g_uart5_ctrl, g_dest, 10); └─⊞ 📹 Output g_receive_complete =0; 84 while (!g_receive_complete) 接收数据板子代码 85 中 86 87 R_BSP_SoftwareDelay (800, BSP_DELAY_UNITS_MILLISECONDS); 88 RS485 #define send_board 1 编译工程,下载代码到发送数据用的板子。板子自由运行,连续发送 数据。 #define send board 0 编译工程,用于接收数据板子仿真运行。 Rebuild All---编译工程 无报错 uild Messages Total number of errors: 0 Total number of warnings: 0 Resolving dependencies... Build succeeded

本节完

3 .E2studio 环境工程介绍

本节介绍使用 E2studio 环境创建 IIC 工程。

本节完