REMARKS

The Specification has been amended to show the relationship to cross-related applications.

The Abstract is amended in order to meet the guidelines set forth in MPEP § 608.01(b). A clean copy is enclosed at the end of this paper.

It is noted that this Application is a divisional application of U.S. Patent Application No. 10/442,277, which was subjected to a Restriction Requirement. Applicants elected with traverse original claim 10. Claim 10 was found to be allowable. Claims 1-9 were subsequently withdrawn from consideration. Thus, claim 10 is cancelled without prejudice.

Upon entry of the amendment, claims 1-9 will be active.

No new matter is believed to have been added. An action on the merits and allowance of the claims is requested.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND, MAIER & NEUSTADT, P.C.

Customer Number 22850

Tel: (703) 413-3000 Fax: (703) 413 -2220 (OSMMN 08/03) Norman F. Oblon Attorney of Record Registration No. 24,618

Daniel R. Evans, Ph.D. Registration No. 55,868

ABSTRACT OF THE DISCLOSURE

The present invention provides a process whereby fluorine atom-containing sulfonyl fluoride compound(s) useful as e.g. materials for ion-exchange membranes, can be produced efficiently and at low cost without structural limitations while solving the difficulties in production. Namely, the present invention provides a process which comprises reacting $XSO_2R^A-E^1$ (1) with R^B-E^2 (2) to form $XSO_2R^A-E-R^B$ (3), then reacting (3) with fluorine in a liquid phase to form $FSO_2R^{AF}-E^F-R^{BF}$ (4), and further, decomposing the compound to obtain $FSO_2R^{AF}-E^{F1}$ (5), wherein R^A is a bivalent organic group, E^1 is a monovalent reactive group, R^B is a monovalent organic group, E^2 is a monovalent reactive group which is reactive with E^1 , E is a bivalent connecting group formed by the reaction of E^1 with E^2 , R^{AF} is a bivalent organic group formed by the fluorination of R^A , etc., R^{BF} is the same group as R^B , etc., E^F is a bivalent connecting group formed by the fluorination of E^A , etc., E^{E^1} is a monovalent group formed by the decomposition of E^F , and E^A is a halogen atom.