General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

Report DRD MA-183TF

SHUTTLE S-BAND HIGH GAIN SWITCHED BEAM BREADBOARD ANTENNAS

J. J. Mullaney Rockwell International Strategic Defense & Electro-Optical Systems Division 3370 Miraloma Ave. Anaheim, CA 92803

18 January 1985 Final Report Contract NAS9-17006

(NASA-CR-171852) SHUTTLE S-EANE HIGH GAIN SWITCHED FEAM BRENCEOLLE ANTENNAS Final Report (Rockwell International Corp.) 124 p HC A06/MF A01 CSCL 090 N85-19327

Unclas G3/33 14374

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Lyndon B. Johnson Space Center Houston, Texas 77058

UNCLASSIFIED

ECHBITY OF ASSIEICATION OF THIS BAGE

SECO	HITT CLASSIF	ICATION OF THIS P	PAGE						
				REPOR	T DOCUM	ENTATION PAG	SE .		
1a REPORT S		ASSIFIED				1b. RESTRICTIVE MA	ARKINGS N/A		
2a SECURITY		ATION AUTHOR	RITY			3. DISTRIBUTION/AV	AILABILITY OF REPO	ORT	
2b DECLASS	IFICATION/D	OOWNGRADING	SCHEDULE	-		1	UNLIMIT	ED	
4 PERFORMI	NG ORGANI	ZATION REPOR	T NUMBER(S)			5 MONITORING ORG	GANIZATION REPOR	T NUMBER(S)	
	C85-	149/101					DRD MA-18	STF	
		G ORGANIZATI	ON		E SYMBOL)	7a. NAME OF MONIT	ORING ORGANIZATI	ON	
	II, SD &			145			A-Johnson Spa	ce Center	
6c ADDRESS	(City, State a	and ZIP Code)				7b. ADDRESS (City. S	State and ZIP Code)		
Anaheir	m, CA 92	2803				Ho	uston, Texas 7	7058	
DA NAME OF I		PONSORING			E SYMBOL licable)	9 PROCUREMENT I	NAS9-17006	FICATION NUMBER	
8c ADDRESS	(City, State a	and ZIP Code)				10. SOURCE OF FUN			
	, 2, , , , , , , , , , , , , , , , ,	2. 3000/				PROGRAM	PROJECT	TASK	WORK UNIT
						ELEMENT NO	NO.	NO	NO.
11 TiTLE (Inch	ude Security	Classification)	Shuttle S-	Band Hi	gh Gain	1			
Switche 12 PERSONAL		Breadboard	Antennas	, Final R	eport (U)				
J. J.	Mullane	y (Rockwel							
13a TYPE OF	REPORT		136 TIME CO	YERED 1/	85	14 DATE OF REPORT	T (Yr., Mo., Day)	15 PAGE CO	UNT
16 SUPPLEM		TATION	THOM	0		1905, 571	OANT 18		
ŀ									
17	COSATI	CODES	18	SUBJECT	TERMS (Contin	nue on reverse if necessa	ary and identify by bloc	ck number)	
FIELD	GROUP	SUP (GR.			Itage Standing W	lave Ratio; Gair	n Pattern;	
				Axial Ra	atio Patteri	n			
This S-Bai Fabr (DRI Test	contract nd Five-E ication a D MA-17 results in	Element, Eignd assembly 9T).	red Final R ght-Beam (y section in	leport de Breadboa ncludes in	scribes fina ard Antenn nformation	al fabrication, ass as developed for a since the last co ssembly testing.	the Space Shur entractual statu	ttle Program. s report	
20 DISTRIBUT	TION/AVAILA	BILITY OF ABS	TRACT			21. ABSTRACT SECU			
UNCLASSIFIE	D/UNL!MITE	D 🖽 SAM	E AS RF1	DTK	C USERS []		UNCLASSIFIE	:D	
	RESPONSI	BLE INDIVIDUAL				22b TELEPHONE NU (Include Area Coc (714) 632	de)	22c OFFICE SYM	BOL
						17.17/002			

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE

CONTENTS

		Page
1.	Introduction and Description	1
2.	Final Fabrication and Assembly	2
3.	Test Results	5
	3.1 Component Testing	5 5
4.	Component Test Data Summary Sheets	7
5.	Radiation Pattern Data Summary Sheets	17
6.	Offsite Test Installation Report	21
7.	Return Loss Plots	28
8.	Gain Patterns	41
9.	Axial Ratio Patterns	77

PRECEDING PAGE BLANK NOT FILMED

1. INTRODUCTION AND DESCRIPTION

This is the final report for contract NAS9-17006, Shuttle High Gain Breadboard Antennas.

The two Shuttle High Gain Breadboard Antennas will demonstrate the performance of the proposed system, which consists of four of the five-element, eight-beam antennas designed to have improved performance over the existing two-element, two-beam antennas.

Each eight-beam antenna uses five closely spaced radiating elements in a cross formation, which are phase switchable to direct the beam. Power division is accomplished by an integrated stripline coupler assembly and phase tuning is acomplished through the use of precision RF cable lengths. Beam switching is done with three coaxial transfer switches.

The radiating elements are broad-banded crossed dipoles that are fed to provide righthand circular polarization.

The feed network and array geometry used for the eight beam antenna are as shown in the figure below.

2. FINAL FABRICATION AND ASSEMBLY

The upper flange was modified by the placement of additional layers of quartz disks over the radiating elements. This modification was successful in improving the performance.

The RF coaxial switches were originally received from the Novak Corporation in the beginning of August. They were found to have intermittent performance and were returned to the vendor for adjustments. Upon return from the vendor, one of the switches still exhibited intermittency, and the set was determined to be unacceptable for use. Transco Corporation's Engineering Group agreed to supply the program with three switches built from spare parts. These were delivered on October 19, 1984.

RF cable fabrication and phase trimming proved to be very time-consulting due to numerous iterations between proper phase length and mechanical fit

After the final assembly integration, final bench tests were made and pattern testing was begun.

PRECEDING PAGE BLANK NOT FIEMED

3. TEST RESULTS

3.1 COMPONENT TESTING (REFERENCE ATTACHED DATA SUMMARY SHEETS)

3.1.1 Individual Components

Most of the individual components are common to both the upper and lower antennas. The only exceptions are the five cables which feed the elements and the input cables. The common components are exchanged between the upper and lower flanges and housings.

Two of the three coaxial switches had measured losses within the expected range. However, the third switch measured approximately twice as lossy as normal but was used anyway due to lack of time for the procurement of another switch.

All of the RF cables except for cable "e" (to the center element) measured well below their budgeted loss value. Cable "e" for both the upper and lower antennas measured only slightly more lossy than was predicted.

The stripline power divider network insertion loss measured approximately 0.5 dB better than was predicted through all RF paths. Its input VSWR and returned power to the load ports were low.

3.1.2 Feed Subassembly

The feed subassembly consists of the power divider, the coaxial switches, and the RF cabling. This combination of components measured approximately 0.5 dB more lossy in some cases than was predicted. However, the input VSWR was good. Phase measurements, which were recorded at 2150 MHz only, demonstrated that phasing was held within 7° of design values.

3.1.3 Radiating Subassembly

The radiating subassembly consists of the radiating elements with element couplers, combined with the antenna flange/radome. Input VSWR into both upper and lower units was low. Power at the load ports was reduced by the placement of additional layers of quartz over the apertures. Some values still spiked slightly higher than the target value.

3.2 FINAL ASSEMBLY TESTING

3.2.1 Final Bench Testing

Input VSWR of the complete assembly was generally lower than the budgeted value. Only in beam position 5 on the upper and lower antennas did the VSWR rise higher than the budgeted value. Power at the load ports of the power divider and radiating elements was measured at the complete assembly level. Values for some beam positions exceeded the budgeted values but the general trend was data close to those values.

PRECEDING PAGE BLANK NOT FIEMED

3.2.2 Radiation Patterns

Proper scan angles for each beam on both the upper and lower antennas were obtained by exciting only one row of elements in the array at a time. Patterns from a given plane were then obtainable with the opposing plane at boresight. The peak gain angles derived in this fashion were then used in testing the full five-element array.

The lower antenna was fully evaluated for gain and axial ratio. Gain measurements for 2041.9 and 2106.4 MHz are slightly less accurate than the other radiation data since the scan angles used at these frequencies were obtained at 2150 MHz. Scan angles typically varied less than 4° from frequency to frequency. However, gain measurements at 2217.5 and 2287.5 MHz, as well as all of the axial ratio measurements were measured using scan angles obtained at the appropriate frequencies.

At 2041.9 MHz, the pitch plane peak gain averaged 6.7 dB; 4.0 dB bearnwidth averaged 132.0°; axial ratio at \pm 55° averaged 4.8 dB. Roll plane peak gain averaged 6.8 dB; bearnwidth averaged 93.5°; axial ratio at \pm 50° averaged 5.2 dB.

At 2106.4 MHz, the pitch plane peak gain averaged 6.5 dB; beamwidth averaged 141.5°; axial ratio at \pm 55° averaged 5.0 dB. Roll plane peak gain averaged 7.5 dB; beamwidth averaged 119.2°; axial ratio at \pm 50° averaged 5.7 dB.

At 2217.5 MHz, the pitch plane peak gain averaged 7.4 dB; beamwidth averaged 123.5°; axial ratio at \pm 55° averaged 6.2 dB. Roll plane peak gain averaged 7.2 dB; beamwidth averaged 95.8°; axial ratio at \pm 50° averaged 5.2 dB.

At 2287.5 MHz, the pitch plane peak gain averaged 7.4 dB; beamwidth averaged 125.0°; axial ratio at \pm 55° averaged 5.7 dB. Roll plane peak gain averaged 7.3 dB; beamwidth averaged 94°; axial ratio at \pm 50° averaged 3.7 dB.

and the state of t

4. COMPONENT TEST DATA SUMMARY SHEETS

DATA SHEET 1

COMPONE (REF. SCHEMA		TEST*	AN	EPT- NCE TERIA	·	2041.	9 MHz			2106.4	MHz			2::17.	5 MHz			2287.	5 MHz	
					PO	S. 1	POS	S. 2	PO	S. 1	PO	S. 2	PO	S. 1	PO	S. 2	PO	S. 1	PO	S. 2
RF SWITCH	1				J1-J3	J4-J5	J1-J5	J4-J3	J1-J3	J4-J5	J1-J5	J4-J3	J1-J3	J4-J5	J1-J5	J4-J3	J1-J3	J4 - J5	J1-J5	J4 - J3
NO. 1	1	F.T.	> .1	15 dB	12	12	11	10	15	12	13	10	16	13	14	13	15	13	14	14
NO. 2	?				11	10	-,11	12	13	12	13	13	15	14	14	15	15	13	14	14
NO. 3	3				-,17	29	20	-,19	-,17	29	19	19	19	32	20	20	19	32	21	21
INPUT CAE	BLE	F.T.	> 1	5 dB			11			1,1	1			٠,٠	14			,.	14	
INTERCON	NECT		UP.	LOW.																
CABLE	a.	F.T.	≥21	>21		٠.(9			٠.(8			-,1	10			٠.	10	
	b.		.21	.21		٠,٥	06			٠.٥)6			٠,(9			٠.(09	
	C.		.20	.20		٠,٠	8			(8			٠.(98			٠,٠	09	
	d.		.21	.21		-,1	11			1	2			1	12			٠,٠	13	
	e.		.46	.46		- :	37			4	3			٠.١	51			•,•	47	
	f.		.34	.35		2	28			2	29			:	30			٠.:	30	
	g.		.34	.34		2	24			2	23			- 1	29			:	27	
	h.		.21	.21		٠.	11			-,1	0			٠.(06			٠.(08	
	i,		.19	.19		0)3			٠.0)4			٠.()1			٠.٥	03	
	j.		.27	.27		٠.٠	18			1	7			٠,٠	17			•.	19	
	k,		.27	.27		٠,٠	12			-,1	1			٠,٠	12			٠.	15	
PWR. DIVII																				
PORT	Α	F.T.	> .9	.0 dB		- 8	3.4			. 8	3.4			- 8	3.6			. 1	3.6	_
	В		>9	.0		. 8	3.4			. 8	3.3			. 8	3.4			- 1	3.4	
	С		> .9	.0		- 8	3.5			- 8	3.4			. 8	3.4			- 1	3.5	
	D		> .9	.0		. 8	3.7			- 8	3.8			- 8	3.8			. 1	8.8	
	E		> 4	.0		. ;	3.8			. ;	3.7			. :	3.6			2.5	3.6	
INPUT		R.L.	> 14	.0 dB		23	3.5			24	0.0			20).1			1	7.7	
COUPLER	NO. 1	P/L	< -14	1.0 dB		-26	6.8			-30	0.0			-42	2.5			-34	4.0	
	NO. 2		< ⋅16	5.4		.27	7.8			-26	6.6			-23	3.8			-2	1.8	
	NO. 3		< -19	9.5		-27	2.1			-22	2.3			-22	2.8			-2:	2.9	
	NO. 4		< ⋅19	9.5		-27	7.9			-28	3.3			.29	9.3			-29	9.2	

*TEST CODES

F. T. = FORWARD TRANSMISSION, INCLUDING LOSSES

R. L. = RETURN LOSS

P/L = POWER AT LOAD PORTS (ISOLATION)

ALL MEAS. ARE RELATIVE TO INPUT

LOWER ANTENNA CABLE PHASE MEASUREMENTS DATA SHEET 2

NOTE: All cable phase measurements relative to cable J (element C). @ 2150 MHz.

	CABLE F (E	ELEMENT A)	
BEAM	EXPERIMENTAL	DESIGN	ERROR
1	lag 142.8	iag 140.0	Fing by 2.8
2	lag 52.1	lag 50.0	F long by 2.1
3	lead 34.3	lead 40.0	F long by 5.7
4	lead 124.5	lead 130.0	F long by 5.5
5	lag 7.1	lag 8.0	F short by 0.9
6	lead 83.6	lead 82.0	F short by 1 6
7	lead 170.0	lead 172.0	F long by 2.0
8	lead 260.2	lead 262.0	F long by 1.8
•	CABLE G (E	LEMENT B)	1
BEAM	EXPERIMENTAL	DESIGN	ERROR
1	lead 48.2	lead 50.0	G long by 1.8
2	lead 135.4	lead 140.0	G long by 4.6
3	lead 224.5	lead 230.0	G long by 5.5
4	lead 313.0	lead 320.0	G long by 7.0
5	lag 83.3	lag 82.0	G long by 1.3
6	lead 3.7	lead 8.0	G long by 4.3
7	lead 92.6	lead 98.0	G long by 5.4
8	lead 181.4	lead 188.0	G long by 6.6
	CABLE K (E	ELEMENT D)	
BEAM	EXPERIMENTAL	DESIGN	ERROR
1	lag 274.6	lag 270.0	K long by 4.6
2	lag 89.8	lag 90.0	K short by 0.2
3	lead 88.9	lead 90.0	K long by 1.1
4	lead 270.0	lead 270.0	-
5	lag 273.9	lag 270.0	K long by 3.9
6	lag 92.8	lag 90.0	K long by 2.8
7	lead 88.2	lead 90.0	K long by 1.8
8	lead 269.3	lead 270.0	K long by 1.7

																	۵	DATA SHEET 3	HEET														
SUBASSEMBLY (REF		ACCEPTANCE	ž			Ž	2041.9 MHz	_						2108	2106.4 MM						N	2217.5 MBHz	ž						2	2287.5 MH2	7		
SCHEMATIC	TEST.	\rightarrow	占	~	-	1	•	•	-	•	! -	~	•	٠		•	,	•	1	~			•			ğ-		-	•	6	•	•	•
PORT NO	7	80 7 9- ≺	9.3	9.3	9.3	9.3	6	9.2	9.2	9.3	9 3	9.3	9.3	6.3	2 6	9.2	6 2	9.2	*6	*6	9 4	*	93	93	93 93	_	9.5	9 9 8	5 9.5	9	9	6	6
NO 2		16	9.5		6	16	8 5	9.2	9.2	9.2	1 6	1.6		- 6	9.2	9.2	6.5	9.5	4	93	93	93	9 4 9	9 4 6	9.4	-	6	9.5	5 9.5	96	96	96	9
NO 3		001-	:	9 5	10.5	66	:	9.5	10.5	9.9	10.3	9.2	103	9.7	10 3	9.3	• 01	6	10.2	11	6	9 6 6	10.2	9.11	-	9.8	10.5	9.8	3 100	0 10.5	86	13	6.5
4 ON		-100	66	10.5	9.6	110	66	10.4	9.8	01.	9 6	10.3	93	10.0	96	103	6 3	101	10,1 1,01	-	97 9	9 9	101		9.7 10.0		100 110	6.6	9 10.2	2 10.0	0.11	10.0	0
NO 5		Y	;	;	;	:	;	4.3	4.3	:	4.3	43	+ 3	4.3	•	5	•		:	:	:	5	:	:	2		:	;	:	:	3	:	:
)																			1													
INPUT	ď	120 dB	16.4 16.8	16.8	16.7	16.3	6 91	173	173	16.7	20 7	216	20 6	21.4	210	162 163 169 173 173 167 207 216 206 214 210 223 212 220 166 162 163 165 165 164 166 154 166 154 166 157 161 154 162 156 160	1216	1 0 22	9.9	5.2 16	13. 16	92	5 16.	2 16	4 16	15	4 16	15.7	16.	15.4	16.2	15.6	16.0
RADIATING SUBASSEMBLY																																	
ELEN COUPLER A	ŭ	14 0 dB					18.2								52							1 4	;			_				:			
							20 3								6 9			+				, z	15.0			+				17.6			
υ							35.								22.5							ž	15.3			\vdash				16.0			
٥							23.0								189							17.4				-				18.3			
							23.2								19.2							ã	8 91			-				16.0			
METER																										-							
COUPLER A	i.	× -14 0 dB					-15.5		ĺ					1	20 4							-179	6			-				-119			
•						1	-1.8							1	-145							-25.2	2			-				-16.3			
U							-180							í	-22.1							-197	_			_				-147			
O							- 16 8							1.	-18.7							-16.4				_				-135			
¥							-160							1	-189						ĺ	-16.3	_			-				-13.8			
FST CODES										1								1								1	ı	l	l	ı	l	ı	١

TEST CODES

. FORWARD TRANSMISSION, INCLUDING LOSSES

PETURN LOSS
POWER AT LOAD PORTS HSOLATION
ALL MEASURES ARE RELATIVE TO INPUT 1 2 2

				_			_	_			 _	_			$\overline{}$
			•	12.			13.8	21.6	33.4	20.9	8.85	20.2	18.6	18.9	18.9
١			,	16.3			14.9	19.6	45.5	13.3	26.5	25.9	34.6	4.5	16.1
١			•	19.6			17.5	17.7	28.2	14.6	28.0	28.2	28.9	34.7	16.0
١	2287 S MHz		•	23.6			14.9	19.5	212	19.8	29.6	21.5	19.9	16.2	19.4
	2287		•	28.2			19.4	:8.7	19.2	22.7	16.4	28.7	16.1	23.5	16.9
			-	14.5			30.8	15.5	19.6	14.0	18.0	75.4	26.9	38.6	16.9
			~	13.6			16.3	21.6	19.8	15.5	17.4	26.9	35.2	872	11.7
		ğ	-	23.5			15.2	21.2	19.8	1.15	15.6	28.5	18.0	18.3	16.4
			•	0.6			28.3	18.9	2	16.6	24.7	2.3	21.3	20.8	25.4
			•	13.6			21.6	14.5	25.0	2.5	62.6	11.1	28.6	25.9	15.5
			•	?			18.3	16.0	30.6	35.0	31.5	25.2	34.5	20.0	16.3
	2217 S MH:		•	9.0			18	25.0	38.	15.4	2	22.2	23.9	181	25.5
	712		•	110			16.8	1.22	0.7:	15.3	18.0	19.9	18.3	26.2	21.5
			•	17.1			15.7	17.1	17.2	27.3	20.3	24.0	212	24.3	18.8
			~	13.0			21.2	13.5	17.0	28.3	18.6	26.2	25.3	17.3	19.2
		ğ	-	10.5			213	18.	16.9	44.9 14.9	17.2	20.9	19.2	8 02	22.3
			•	15.7			18.2	14.5	18.5		20.5	24.7	25.1	212	20.7
			•	16.2			197	16.0	19.2	18.	213	000	73.4	20.2	14.5
1	_		•	22.0			17.9	12.8	23.4	16.7	9.61	21.3	22.9	21.0	15.0
DATA SHEET	2108.4 MH		•	15.6			16.9	120	2.4	37.6	8	30.6	23.2	24.3	20.3
DAT	F.		•	1 92			18.2	11.8	15.7	20.5	23.6	15.2	19.1	20.0	8
			•	13.9			20.6	12.6	16.0	21.6	22.4	17.1	20.6	717	20.4
			~	110			23.4	8	15.8	73.7	23.5	18.3	88	2	20.7
		ğ	-	16.2			8	9	15.2	21.7	20.9	16.0	18.0	24.6	20.3
			•	10.2			31.2	*	7	15.9	8	34.9	32.4	00	17.4
			•	17.2			25.1	18.7	15.0	18.7	17.9	20.6	21.2	0.61	15.0
			•	17.5			20.8		19.8	19.8	17.0	8	8.02	212	1.9
	2041.9 MHz		•	8			23.3	8 02	8	3	8 5	;	111	8	17.3
	2		•	12.6			21.4	21.9	9	121	23.6	3	222	6.	17.0
			-	172			18.8	3	15.6	16.	8	4.9	28.7	20.8	18.8
			~	12.8 14.1			24.6	16.9	15.5	16.4	25.4	16.3	18.2	23.0	9 8
		ğ	-	12.8			26.7	13.5	5	1.0	523	15.	17.7	23 0	16.2
		ACCEPTANCE	CRITERIA	9 5 6 ¢			4 -14.0 dB	× -16 ×	3.61 - 3	2 61- 2	6 - 23 1 dB	c -23 3	4 - 23 6	c -23.6	****
			TEST.	a.L			7/4				7/4				
	FINAL	INEF	SCHEMATICI	IMPUT	PWR DIVIDER	NETWORK	COUPLER NO 1	.0.2	NO 3	NO.4	COUPLER A	m	U	۵	£
				-						_	 				_

TEST CODES

FORWARD TRANSMISSION, INCLUDING LOSSES
 RETURN LOSS
 FOWER AT LOAD PORTS IISOLATION!
ALL MEASURES ARE RELATIVE TO INPUT.

SPACE SHUTTLE S-BAND HIGH GAIN BREADBOARD ANTENNAS

UPPER _____ LOWER _____

DA	TA	SH	EE	T 1

					_			DA	A SH	EETT			_				_			_
COMPONE (REF. SCHEMA		TEST*	AN	EPT- ICE ERIA		2041.	9 MHz			2106.4	MHz			2217.	5 MHz			2287.	5 MHz	
					PO	S. 1	PO	S. 2	PO	5.1	PO	S. 2	PO	S. 1	PO	S. 2	PO	S. 1	PO	S. 2
RF SWITCH	4				J1-J3	J4-J5	J1-J5	J4 - J3	J1 - J3	J4-J5	J1-J5	J4 - J3	J1-J3	J4-J5	J1-J5	J4 · J3	J1-J3	J4-J5	J1 - J5	J4 - J
NO. 1	1	F.T.	>1	5 dB	12	5.12	11	10	15	12	.13	10	∘.16	13	14	13	15	-,13	- 14	14
NO. 2	2				-,11	.10	11	12	13	12	13	-,13	15	14	14	15	15	13	14	14
NO. 3	3				17	·.29	.20	19	17	29	- 19	- 19	19	32	- 20	20	19	32	21	21
INPUT CAE	BLE	F.T.	> 1	5 dB		٠. (9			()8			٠.(08			٠.(09	
INTERCON	NECT		UP	LOW																
CABLE	a.	F.T.	>.21	> .21		(9			٠.(08			+1	10			٠.	10	
	b.		.21	.21		-,(06			٠,٥)6			(9			٠.(09	
	C.		.20	.20		٠.(80			-,(8			. (98			٠.(09	
	d.		.21	.21		4,	11			1	2			٠,٠	12			٠.	13	
	e.		.46	.46			40			-,4	13			*,*	42			.,	47	
	1.		.34	.35		*.	20			•.5	19			٠,:	28			-,:	32	
	9.		.34	,34			21				20				23				24	
	h.		.21	.21			11				10				06			_	98	
	L.		.19	.19			03)4			٠.(03	
	1.		.27	.27		٠.	17				7				19			_	20	-
	k.		.27	.27	_		13			-,1	2			6.	12				11_	
PWR DIVI																				
PCRT	Α	F.T.	> 9	0 dB		- (3.4	_	Γ	. 8	3.4			- 1	3.6			- 1	8.6	
	В		> 9	.0		- 1	8.4			. 1	3.3			. (3.4				B.4	
	С		> .9	.0		- 1	2.5			. 1	3.4			. 1	3.4		_	. 1	B.5	
	D		> .9	0		- 1	8.7			- 8	8.8			. 1	8.8				8.8	
	E		> 4	.0	[3.8			. :	3.7				3.6				3.6	
INPUT		R.L.	> 14	0 dB		2	3.5			24	1.0			20	0.1			1	1.7	
COUPLER	NO. 1	P/L	< 14	0 dB		-20	5.8			-30	0.0			4	2.5			-34	4.0	
	NO. 2		< 16	.4		-2	7.8			-26	6.6			-23	3 8			-2	6.1	
	NO.3		< ⋅19	5		-2	2.1			-22	2.3			-23	2.8			-2	2.9	
	NO 4		< 19	5		-2	7.9			- 28	3.3			-29	9.3			-2	9.2	

TEST CODES

F. T. . FORWARD TRANSMISSION, INCLUDING LOSSES

R.L - RETURN LOSS

P/L - POWER AT LOAD PORTS (ISOLATION)

ALL ME'S ARE RELATIVE TO INPUT

UPPER ANTENNA CABLE PHASE MEASUREMENTS DATA SHEET 2

NOTE: All cable phase measurements relative to cable J (element C). @ 2150 MHz.

	CABLE F (ELEMENT A)	
EEAM	EXPERIMENTAL	DESIGN	ERROR
1	lag 119.0	lag 122.0	F short by 2.8
2	lag 31.6	lag 32.0	F short by 0.4
3	lead 61.7	lead 58.0	F short by 3.7
4	lead 146.1	lead 148.0	F long by 1.9
5	lead 13.7	lead 10.0	F short by 3.7
6	lead 100.8	lead 100.0	F short by 0.8
7	lead 195.3	lead 190.0	F short by 5.3
8	lead 279.9	lead 280.0	F long by 0.1
	CABLE G (ELEMENT B)	
BEAM	EXPERIMENTAL	DESIGN	ERROR
1	lead 33.0	lead 32.0	G short by 1.0
2	lead 120.5	lead 122.0	G long by 1.5
3	lead 213.4	lead 212.0	G short by 1.4
4	lead 298.6	lead 302.0	G long by 3.4
5	lag 98.2	lag 100.0	G short by 1.8
6	lag 10.9	lag 10.0	G long by 0.9
7	lead 82.1	lead 80.3	G short by 2.1
8	lead 166.8	lead 170.0	G long by 3.2
•	CABLE K (E	LEMENT D)	
BEAM	EXPERIMENTAL	DESIGN	ERROR
1	lag 266.5	lag 270.0	K short by 3.5
2	lag 93.6	lag 90.0	K long by 3.6
3	lead 92.3	lead 90.0	K short by 2.3
4	lead 265.4	lead 270.0	K long by 4.6
5	lag 266.1	lag 270.0	K short by 3.9
6	lag 93.0	lag 90.0	K long by 3.0
7	lead 92.4	lead 90.0	K short by 2.4
8	lead 264.2	lead 270.0	K long by 5.8

SPACE SHUTTLE SBAND BREADBOARD ANTENNAS UPPER V LOWER

DATA SHEET 3

						8	2041.9 MHZ	_						2106.7 MHs	ž	1		-			~	2217.5 MHz	ī			-			22	2287 S MHZ			1
SUBASSEMBLY			Š								808							2	8							2							
SCHEMATIC	TEST.	CRITERIA	-	~	•	•	wo	•	,	•	-	~							_	~			•	,	•	_	~	-	•	•	•	•	
PORT NO 1	FT	90 2 €- €	2.2	1.6	60	-6	06	6.8	6.8	6.8	9.3	9.5	9.5	9.5	1 6	0.6	1.6	3.1	9.3	63	9.3	9.3	9 1 6	6	16 16	1 9.4	1.6	1 8 4	₹8	9.2	9.2	8.5	8.5
NO 2		76-6	0.6	1.6	9.0	9.0	-6	9.	6.	9.1	0.6	9.5	0.6	0.6	5	1.6	- 6	16	-	9 3	6	6 06	9.2	9.2	92 92	2 9.1	1 9.2	2 9.1	6	9.3	9.2	9.2	8 3
NO 3		o -10 0	110	9.2	10.4	9.7	110	9.5	10.4	6 7	10.4	9.5	10.4	96	10.4	9.2	10.	96	101	4.6	11.3	9.6	101	9.4 11.3	3 9.6	€ 10.4	4 9.5	5 11.2	8.8	10.4	9.6	1.1	8.8
4 ON		> -10 0	9.7	10.2	9.6	10 6	9.7	10.2	9	107	9.6	10.2	9.5	101	9.6	103	9.2	101	9.9	10.7	9.6	9.7	9.9		95 97		10.7	9.6	10.0	8.8	10.8	8.	10.0
8 ON		4. 4. 5	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.2	•	;	-	•	-	•	4.1 4.1		4.2	2 4.2	4.2	4.2	4.2	4.2	4.2
																		-	-		-	-	-		-	-		-					
INPUT	ď	> 12.0 dB	17.7	210	6	17.	4 17 , 173	500	186	17.9	80 20	24 :	24 2 21 4 21 4 20 0	21.4	00	210 2	20.6	22 2 18 1	81 2	22.2 30	20.5	20.5	18.4 22.4		20.7	15	16.	15.7 16.0 14.9 16.8 16.9 17.1 15.9 18.0	16.8	20.00	17.1	15.9	18.0
RADIATING SUBASSEMBLY		// The control of the																															
ELEM COUPLER A	E.	> 14.0 dB					183								16.8			-				<u> </u>	15.2			-				16.7			
80							19.5								16.3			-				=	15.4			_				17.5	_		
v							25.9								50.5			-				=	16.3							18.4	_		
۵				ĺ			218								17.8							-	16.7			-				18.0			
w							213								19.4							-	17.5							17.8	_		
COUPLER A	۵,۱	c -14 0 d8					1.61							17	-223							- 16.8	8.8							-11.8	_		
6							144							Ī	-19.2							-19.9	6.			_				-13.5	_		
o							-167							T	-22.6							-21.3	13							-15.3	_		
٥							14.9							Î	-18.9							-23.6	9.6							-15.8	_		
w							-161							Ť	-21.7							- 20.3	3.3							-14.3	_		
																		1		1						1				1	١	١	١

*TEST CODES

FT. * FORWARD TRANSMISSION, INCLUDING LOSSES R.L. * RETURN LOSS PIL * POWER AT LOAD PORTS IISOLATION ALL MEASURES ARE RELATIVE TO INPUT

SPACE SHUTTLE & BAND HIGH GAIN BREADBOARD ANTENNAS UPPER V... LOWER

DATA SHEET 4

NO 3 C	2106.4 MHz 2217.5 MHz	2287 5 MHz
ACCEPTANCE A	POS.	ğ
 -95d8 136 172 350 177 108 768 216 129 712 140 -140d8 -257 -289 -231 346 -277 -253 -303 -240 -253 -1353 -154 -155 -200 -184 -135 -134 -209 -192 -53 -233 -196 -153 -149 -165 -162 -164 -165 -144 -161 -158 -153 -149 -165 -162 -164 -165 -144 -161 -158 -154 -179 -173 -195 -210 -186 -171 -128 -150 -172 -231 -289 -323 -234 -177 -179 -169 -192 -201 -240 -231 -240 -190 -190 -190 -213 -258 -219 -165 -195 -236 -194 -277 -208 -172 -191 -246 -175 -168 -207 -277 	7 8 1 2 3 4 6 6 7 8 1 2 3 4 6 6	7 8 1 2 3 4 6 6 7 8
 <-140 a8 <-153 -389 -321 346 -277 -253 -303 -240 -253 -353 <-164 <-195 <-195 <-195 <-195 <-195 <-195 <-195 <-195 <-195 <-196 <-195 <-197 <-197 <-233 a8 <-233 -367 -369 -365 -367 -377 -379 -169 -192 -301 -240 <-233 -367 -380 -323 -324 -377 -375 -362 -380 -375 -368 -319 -165 -195 <-236 <-236 <-236 <-237 -308 -377 -308 -372 -391 -346 -175 -168 -307 -277 -277 -378 	8 216 129 212 140 182 208 200 216 159 208 100 157 154 100 94 168	14.9 10.3 26.0 16.8 16.7 18.0 16.0 20.0 18.2 22.0
 <-140 a8 <-257 -289 -221 346 -277 -253 -303 -240 -253 -353 <-164 <-195 <-195 <-195 <-233 a8 <-236 <-236 <-236 <-236 <-236 <-236 <-236 <-237 -308 -322 -327 -391 -326 -175 -168 -175 -168 -195 -195 <-236 <-236 <-236 <-236 <-237 -308 -372 -191 -324 -175 -176 -168 -175 -168 -195 -195 		
 < -140 08 -257 -289 -721 -346 -277 -253 -303 -240 -253 -1353 -136 < -164 -153 -149 -165 -162 -164 -165 -143 -144 -151 -158 < -195 -133 -149 -165 -162 -164 -165 -143 -144 -151 -158 < -233 08 -221 -228 -323 -234 -177 -179 -169 -192 -301 -240 < -233 08 -231 -288 -323 -234 -177 -179 -169 -192 -301 -240 < -236 -167 -186 -240 -190 -313 -258 -319 -165 -195 < -236 -194 -277 -308 -172 -191 -246 -175 -168 -307 -277 -777 		
 <-164 -125 -193 -173 -195 -173 -186 -173 -173 -184 -173 -169 -192 -201 -240 -190 -193 -193 -165 -195 -195 -196 -196 -196 -196 -197 -177 -176 -186 -196 -196 -197 -197 -197 -197 	-303 -240 -353 -353 -350 -335 -301 -214 -274 -261 -253 -277 -182 -302 -301 -302	258 -35.8 -14.5 -15.9 -19.0 -17.6 -16.8 -19.9 -16.2 -14.6
 < -195 -195 -195 -195 -195 -195 -195 -196 -171 -173 -195 -170 -186 -171 -173 -173 -195 -197 -197 -201 -231 -234 -177 -189 -190 -196 -196 -196 -196 -196 -197 -196 -196 -196 -196 -197 -198 -196 -197 -198 -198 -196 -196 -196 -196 -197 -198 -197 -197 -197 -197 -198 -190 -196 -196 -197 -198 -196 -198 -198 -197 -198 -197 -198 -190 -198 -190 -198 -190 -190<	192 - 53 - 733 -196 -176 -226 -324 -182 -168 -299 -164 -314 -359 -187 -162 -282	362 -192 -20.6 -154 -14.1 -23.5 -19.0 -14.8 -13.6 -22.2
 < -19.5 -13.3 -17.3 -19.5 -21.0 -18.6 -17.1 -17.9 -16.9 -19.2 -20.1 -20.1 -20.3 -20.4 -17.7 -16.9 -19.2 -20.1 -24.0 -10.0 -10.9 -10.2 -20.1 -24.0 -19.0 -19.8 -19.5 -19.5 -19.5 -19.5 -19.5 -19.5 -19.7 -27.7 -27.7 -27.7 -19.1 -27.7 -27.7 -27.7 -27.7 -27.7 -19.5 -16.8 -27.7 -27.7 -27.7 -17.5 -16.8 -27.7 -27.7 	143 -144 -151 -158 -167 -160 -189 -200 -176 -171 -227 -237 -248 -244 -281 -275	-28.1 -29.5 -26.2 -23.6 -26.3 -24.8 -23.4 -22.9 -23.9 -24.7
 < -23.3 d8 -23.1 -28.8 -32.3 -23.4 -17.7 -17.9 -10.9 -19.2 -20.1 -24.0 < -23.3 -18.7 -18.4 -17.1 -16.8 -28.3 -35.7 -26.2 -38.0 -19.3 -19.5 < -23.6 -19.0 -19.0 -19.0 -31.3 -25.8 -21.9 -16.5 -19.5 < -23.6 -19.4 -27.7 -20.8 -47.2 -19.1 -24.6 -17.5 -16.8 -20.7 -27.7 	171-128 -150 -172 -118 -123 -118 -117 -175 -158 -189 -140 -169 -224 -26.1	17.3 -13.9 -16.8 -22.4 -23.0 -14.7 -20.2 -18.0 -6.5 -19.9 -22.6
 < -23 3 d8 -22 1 -29 8 -32 3 -23 4 -17.7 -17.9 -10.9 -19.2 -201 -24.0 < -23 3 -18 7 -18 4 -17 1 -16 8 -28 3 -35.7 -36.2 -38.0 -47.8 -49.3 < -23 6 -16 7 -18 6 -24.0 -19.0 -19.0 -21.3 -25.8 -21.9 -16.5 -19.5 < -23 6 -19 4 -27.7 -30.8 -47.2 -19.1 -24.6 -17.5 -16.8 -30.7 -27.7 		
-187 -184 -171 -168 -783 -757 -762 -780 -478 -193 -167 -186 -740 -190 -213 -258 -219 -165 -195 -194 -277 -208 -472 -191 -746 -175 -168 -507 -277 -	-18.9 -19.2 -20.1	5 -272 -161 -18.0 -19.3 -17.0 -40.4 -23.6 -23.4 -34.3
-167 -186 -240 -190 -190 -213 -258 -219 -165 -195 -195 -195 -195 -195 -195 -195 -19	-26.2 -28.0 -7.8	0 -20.0 -40.9 -24.2 -23.4 -34.6 -18.8 -22.6 -21.6 -18.1
194 -277 -208 -472 -191 -246 -175 -168 -207 -277	-25.8 -219 -165 -195 -217 -192 -198 -223 -255 -230 -185 -240 -246 -182 -220 -313	-30.5 -20.9 -17.0 -28.5 -29.1 -16.4 19.2 -27.4 -45.1 -18.6
	17 6 -16 8 -20 7	0 -184 -184 -301 -317 -201 -177 -33.6 -29.5 -17.9
< -184 -153 -205 -202 -159 -158 -181 -189 -157 -181 -222 -	18.9 -15.7 -18.1	4 -23.2 -17.0 -20.4 -19.4 -17.2 -18.8 -20.3 -20.3 -18.3

TEST CODES

FT. *FORWARD TRANSMISSION, INCLUDING LOSSES
R.L. *RETURN LOSS
P/L. *POWER AT LOAD PORTS ISOLATION
ALL MEASURES ARE RELATIVE TO INPUT.

SPACE SHUTTLE S-BAND HIGH GAIN ANTENNA

5. RADIATION PATTERN DATA SUMMARY SHEETS

LOWER	PITCH PLANE 2041.	9 MHz	BEAMW:	IDTH
BEAM	A.R. AT ± 50°	GAIN dBci	4.0 dBci	3.5 dBci
1 2 3 4	4.0 5.2 5.4 6.2	4.5 7.1 7.3 5.4	138°	142°
5 6 7 8	6.2 4.3 2.8 2.9	6.3 8.2 8.6 6.3	126°	132°

OWER P	TTCH PLANE 2106	BEAMWIDTH		
BEAH	A.R. AT ± 50°	GAIN dBci	4.0 dBci	3.5 dBci
1 2 3 4	4.6 6.0 4.5 6.8	2.9 6.6 7.6 5.6	142°	148°
5 6 7 8	6.5 4.4* 3.2 2.0	5.0 8.3 9.3 6.8	141°	147°

^{*} At 50°

LOWER ROLL PLANE 2041.9 MHz			BEAMWIDTH	
BEAM	A.R. AT ± 50°	GAIN dBci	4.0 dBci	3.5 dBci
1 5	4.7 9.4	5.4 7.6	116°	124°
2 6	3.2 4.4	8.2 8.2	120°	126°
3 7	3.0 2.4	7.9 7.7	112°	117°
4 8	10.4 4.0	4.7 4.4	26°	45°

LOWER ROLL PLANE 2106.4 MHz			BEAMW	IDTH
BEAM	A.R. AT ± 50°	GAIN dBci	4.0 dBci	3.5 dBci
1 5	3.0 14.1	6.3 8.2	123°	128°
2 6	2.8	8.6 8.4	119°	123°
3 7	2.6 3.8	8.2 9.0	119°	123°
4 8	11.4 3.2	5.5 5.9	116°	123°

LOWER PITCH PLANE 2217.5 MHz			BEAMWIDTH	
BEAM	A.R. AT ± 50°	GAIN dBci	4.0 dBci	3.5 dBci
1 2 3 4	5.5 6.2 6.0 8.7	4.4 8.1 8.5 5.8	123°	136°
5 6 7 8	8.6 4.1 2.1 1.9	6.6 9.4 9.6 6.8	12 4°	129°

LOWER	PITCH PLANE 2287.	BEAMW	IDTH	
BEAM	A.R. AT ± 50°	JAIN dBci	4.0 dBci	3.5 dBci
1 2 3 4	4.0 4.4 5.7 3.2	4.7 7.6 6.8 5.2	129°	135°
5 6 7 8	8.8 4.2 2.6 1.7	7.6 9.6 9.5 7.9	121°	127°

LOWER ROLL PLANE 2217.5 MHz			BEAMWIDTH		
BEAM	A.R. AT ± 50°	GAIN dBc1	4.0 dBci	3.5 dBc1	
1 5	5.9 10.0	3.8 6.1	49°	56°	
2 6	3.4 5.9	8.1 9.4	114°	118°	
3 7	2.7 3.2	8.4 9.8	113°	118°	
4 8	8.2 2.0	6.2 5.6	107°	111°	

LOWER ROLL PLANE 2287.5 MHz			BEAMW	IDTH
BEAH	A.R. AT ± 50°	GAIN dBci	4.0 dBci	3.5 dBci
1 5	3.3 8.2	4.7 6.2	56°	62°
2 6	1.7 3.0	8.7 9.8	109°	113°
3 7	1.7 3.0	8.8 9.4	106°	111°
4 8	6.8 2.1	5.3 5.5	105°	112°

6. OFFSITE TEST INSTALLATION REPORT

The upper and lower antennas are mounted into their respective mock-ups in the same fashion as the presently used two beam antennas.

The scan angles determined at Rockwell - Anaheim are listed in the following pages. They can be used to approximately locate beam peaks. Variations from these angles will occur due to mock-up and range differences.

EIGHT BEAM ANTENNA SCAN ANGLES

UPPER ANTENNA

2041.9 MHz

BEAMS		SCAN ANGLE
0	1 and 5 2 and 6 3 and 7 4 and 3	54.5° down 19.0° down 17.0° up 55.5° up
 P I T C	1 thru 4 5 thru 8	39.5° down 33.5° up

2106.4 Mitz

	BEAMS	SCAN ANGLE
0	1 and 5 2 and 6 3 and 7 4 and 8	55.5° down 18.5° down 17.0° up 57.0° up
P I T C	1 thru 4 5 thru 8	38.0° down 32.0° up

EIGHT BEAM ANTENNA SCAN ANGLES (UPPER ANTENNA) (Continued)

2217.5 MHz

BEAMS	SCAN ANGLE
R 1 and 5 0 2 and 6 L 3 and 7 L 4 and 8	53.5° down 14.5° down 21.5° up 53.5° up
P 1 thru 4 I 5 thru 8 T C H	32.5° down 27.0° up

2287.5 MHz

BEAMS	SCAN ANGLE
R 1 and 5 0 2 and 6 L 3 and 7 L 4 and 8	54.0° down 15.0° down 13.0° up 53.5° up
P 1 thru 4 I 5 thru 8 T C H	32.5° down 27.5° up

EIGHT BEAM ANTENNA SCAN ANGLES

LOWER ANTENNA

2041.9 MHz

Γ		BEAMS	SCAN ANGLE
		1 and 5 2 and 6 3 and 7 4 and 8	53.0° down 21.5° down 17.5° up 53.0° up
,	P I T C	1 thru 4 5 thru 8	38.5° down 19.5° up

2106.4 illiz

	BEAHS	SCAN ANGLE
O L	1 and 5 2 and 6 3 and 7 4 and 8	57.0° down 19.0° down 18.0° up 54.0° up
P		40.0° down 20.5° up

EIGHT BEAM ANTENNA SCAN ANGLES (LOWER ANTENNA) (Continued)

2217.5 MHz

BEAMS	SCAN ANGLE
R 1 and 5 O 2 and 6 L 3 and 7 L 4 and 8	52.5° down 17.5° down 13.5° up 48.5° up
P 1 thru 4 I 5 thru 8 T C	46.0° down 14.5° up

2287.5 MHz

	BEAMS	SCAN ANGLE
0 L	1 and 5 2 and 6 3 and 7 4 and 8	53.5° down 11.5° down 11.0° up 52.5° up
	1 thru 4 5 thru 8	43.0° down 13.0° up

7. RETURN LOSS PLOTS

RETURN LOSS - BEAM 1

.

RETURN LOSS - BEAM 8

8. GAIN PATTERNS

LOWER ANTENNA 40 **82 80**

2041.9 MHz BEAMS 1 THRU 4 (PI ELEVATION: 45.3º I MEASURED USING SCAN ANGLES FROM 2150 MHz

2041.9 MHz
BEAMS 5 THRU 8 (PITCH)
ELEVATION: 5.0° UP
MEASURED USING
SCAN ANGLES
FROM 2150 MHz
LOWER ANTENNA

2041.9 MHz BEAMS 1 AND 6 (ROLL) ELEVATION: 46.4º DOY

2041.9 MHz
BEAMS 2 AND 6 (ROLL)
ELEVATION: 13.5° DOWN
MEASURED USING
SCAN ANGLES
FROM 2150 MHz

LOWER ANTENNA

2041.9 MHz BEAMS 3 AND 7 (ROLL) ELEVATION: 12.5º UP MEASURED USING SCAN ANGLES FROM 2150 MHz **LOWER ANTENNA** 90 80 100 RELATIVE POWER (db) # \$ 20 0 E 20 0 20 100 80 60 BEAM 3

47

o dBci o d

2041.9 MHz
BEAMS 4 AND 8 (ROLL)
ELEVATION: 52.0° UP
MEASURED USING
SCAN ANGLES
FROM 2150 MHz
LOWER ANTENNA

2108.4 MHz RADIATING ELEMENTS: A.E-B ROLL PLANE ELEVATION: 0° LOWER ANTENNA

2106.4 MHz
BEAMS 3 AND 7 (ROLL)
ELEVATION: 12.6° UP
MEASURED IJSING
SCAN ANGLES
FROM 2150 MHz
LOWER ANTENNA

8 99 40 20 0 20 20 E 20 40 09 80

2106.4 MHz BEAMS 4 AND 8 (ROLL) ELEVATION: 52.0º UP

MEASURED USING SCAN ANGLES FROM 2150 MHz

LOWER ANTENNA

4 dBci ≡

O dBci ye

2217.5 MHz
BEAMS 4 AND 8 (ROLL)
ELEVATION: 48.5º UP
LOWER ANTENNA

80 100 **BEAMS 1 AND 5** 09 BEAMS 2 AND 6 40 20 ANGLE 0 BEAMS 3 AND 7 20 6 LOWER ANTENNA 2287.5 MHz RADIATING ELEMENTS: C-E-D PITCH PLANE ELEVATION: 0° 40 **BEAMS 4 AND 8** 09 100 4 dBci 0 dBci on

(#)

(d)

9. AXIAL RATIO PATTERNS

16

2041.9 MHz
BEAMS 2 AND 4 (PITCH)
ELEVATION: 38.5° DOWN
LOWER ANTERNA

2041.9 MHz
BEAMS 5 AND 7 (PITCH)
ELEVATION: 19.5° UP
LOWER ANTENNA

2041.9 MHz BEANS 1 AND 5 (ROLL) ELEVATION: 53.0° DOWN LOWER ANTENNA

2041.9 MHz BEAMS 2 AND 6 (ROLL) ELEVATION: 21.5° DOWN LOWER ANTENNA

2041.9 MHz BEAMS 3 AND 7 (ROLL) ELEVATION: 17.5º UP LOWER ANTENNA

2041.9 MHz
BEAMS 4 AND 8 (ROLL)
ELEVATION: 53.0° UP
LOWER ANTENNA

2106.4 MHz
BEAMS 2 AND 4 (PITCH)
ELEVATION: 40.0° DOWN
LOWER ANTENNA

2105.4 MHz
BEAMS 6 AND 8 (PITCH)
ELEVATION: 20.5º UP
LOWER ANTENNA

2106.4 MHz BEAMS 4 AND 8 (RGLL) ELEVATION: 54.0° UP LOWER ANTENNA

2217.5 MHz
BEAMS 1 AND 3 (PITCH)
ELEVATION: 46.0° DCWN
LOWER ANTENNA

(-2

2217.5 MHz BEAMS 6 AND 8 (PITCH) ELEVATION: 14.5º UP **LOWER ANTENNA** 80 9

2217.5 MH₂
BEAMS 1 AND 5 (ROLL)
ELEVATION: 52.5° DOWN
LOWER ANTENNA

1. 1. M. J. 11.

2217.5 MHz BEAMS 3 AND 7 (ROLL) ELEVATION: 13.5° UP LOWER ANTENNA

2217.5 MHz BEAMS 4 AND 8 (ROLL) ELEVATION: 48.5° UP LOWER ANTENNA

2287.5 MHz
BEAMS 2 AND 4 (PITCH)
ELEVATION: 43.0° DOWN
LOWER ANTENNA

2287.5 MHz BEAMS 5 AND 7 (PITCH) ELEVATION: 13.0º UP

2041.9 MHz
RADIATING ELEMENTS: A-E-B
ROLL PLANE
ELEVATION: 0°
UPPER ANTENNA

2041.9 MHz RADIATING ELEMENTS: C-E-D PITCH PLANE ELEVATION: 0°

2106.4 MHT RADIATING ELEMENTS: A-E-B ROLL PLANE ELEVATION: 0° UPPER ANTENNA

2106.4 MHz
RADIATING ELEMENTS: C-E-D
PITCH PLANE
ELEVATION: 0°

2217.5 MHz
RADIATING ELEMENTS: ^ E.B
ROLL PLANE
ELEVATION: (°
UPPER ANTENNA

2217.5 MHz
RADIATING ELEMENTS: C-E-D
PITCH PLANE
ELEVATION: 0°
UPPER ANTENNA

2287.5 MHz RADIATING ELEMENTS: A-E-B ROLL PLANE ELEVATION: 0⁰ UPPER ANTENNA

2287.5 MHz RADIATING ELEMENTS: C-E-D PITCH PLANE ELEVATION: 0° UPPER ANTENNA

