ECE 10, Winter 2021, Homework #5, Due March 5, 2021

Problem 1: Refer to Figure 1 for this problem. Assume that $R_1 = 5 \text{ k}\Omega$, $R_2 = 16 \Omega$, L = 400 nH, C = 4 nF, and $V_0 = 10 \text{ Volts}$. This is a continuation of Problem #6 from Homework #3 where you derived the differential equation in terms of i(t), and calculated the values of i(t), its first derivative, and its second derivative at time t = 0+. You are allowed to get all necessary information from the posted solutions to Problem #6 from Homework #3.

Figure 1.

a. Solve the differential equation and obtain an expression for i(t) for all time $t \ge 0$.

b. Derive an expression for the voltage $v_C(t)$ for all time $t \ge 0$.

(10 + 5 = 15 points)

Solution:

Problem 2: Consider the circuit shown in Figure 2. Assume that C = 0.25F, L = 1H, R = 1 Ohm, $V_B = 1V$, $v_C(0-) = 2V$, and $i_L(0-) = 1A$. Find expressions for $v_C(t)$ and $i_L(t)$ for time $t \ge 0$.

(20 points) Solution:

Figure 2

Problem 3: (Problem 6.15 from textbook) Assume that $V_B = 100V$, $C = 10\mu F$, R = 100hms, and L = 1H in Figure 3. In the network, the switch is closed, and a steady state is reached. Subsequently, at time t = 0, the switch is opened. Find an expression for the current in the inductor, $i_2(t)$ for time $t \ge 0$.

(10 points) Solution:

Figure 3

Problem 4: Compute the phasors, if they exist, corresponding to the following signals.

- a. $x(t) = -2\sin(50\pi t 135^{\circ})$
- b. $x(t) = 5\sin(340\pi t + 135^{\circ}) 12\cos(340\pi t 60^{\circ})$
- c. $x(t) = 4\sin(400\pi t 135^\circ) + 3\cos(4000\pi t 60^\circ)$
- (2 + 2 + 2 = 6 points)

Solution:

Problem 5: Compute the sinusoidal signals corresponding to the following phasors. a. $\underline{X} = 4 - j3 - 12/j$, $\omega = 7$ krad/s b. $\underline{X} = 8e^{-j5\pi/6}$, $\omega = 10$ rad/s (2 + 2 = 4 points)

Solution:

Problem 6: Refer to the circuit schematic shown in Figure 4. Assume that L=2nH, C=5pF, and R=50 Ohms.

- (a) Find the equivalent impedance, Z, looking into 1-1' when f = 2 GHz.
- (b) Suppose a current source, $i_B(t) = 2\cos(4\pi \times 10^9 t)$ Amperes, is applied between 1 and 1' nominally flowing into 1 and out of 1'. Using phasor analysis, calculate the phasors, \underline{V}_C , \underline{V}_X , \underline{I}_R , and \underline{I}_L , that correspond to $v_C(t)$, $v_R(t)$, $i_R(t)$, and $i_L(t)$, respectively.

Figure 4.

- (c) Draw a phasor diagram for this circuit, i.e., sketch the phasors \underline{V}_C , \underline{V}_X , \underline{I}_R , and \underline{I}_L , on a complex plane
- (d) Derive expressions for the steady state time-domain signals, $v_C(t)$, $v_R(t)$, $i_R(t)$, and $i_L(t)$.

(10 + 15 + 4 + 6 = 35 points) Solution: