Lys og bølger Transformation - Simple opgaver

Jacob Debel

Fysik C & B

Opgave 1

• Bestem ud fra figuren bølgelængde og amplitude for bølgen.

Opgave 2

Lyset fra en helium-neon-laser har en bølgelængde på 632.8 nm.

- En e-coli-bakterie er typisk 2 μm lang. Hvor mange bølgelængder af laserens lys svarer det til?
- Et atom har typisk en diameter på 200 pm. Hvor mange atomer kan der ligge ved siden af hinanden på 632.8 nm?

Opgave 3

- Beregn bølgelængden af lys med frekvensen $11.3 \cdot 10^{14}~\mathrm{Hz}.$

Opgave 4

En lysstråle sendes med indfaldsvinklen $i=32^\circ$ fra luft ind i et stykke rudeglas.

• Beregn brydningsvinklen b i glasset.

Opgave 5

En lysstråle sendes med en indfaldsvinkel på $74,9^{\circ}$ ned gennem en væskeoverflade. Brydningsvinklen er 45.3° .

• Beregn væskens brydningsindeks.

Opgave 6

Lys fra et udladningsrør med hydrogen sendes gennem et optisk gitter med 560 spalter pr. mm.

• Beregn afbøjningsvinklen ϕ_1 til den røde linje ($\lambda=656$ nm) i 1. orden.

Opgave 7

Gult lys fra en såkaldt natriumlampe sendes gennem et optisk gitter med 300 spalter pr. mm. Afbøjningsvinklen ϕ_5 til 5. orden måles til 58.6°.

• Bestem lysets bølgelængde.

Opgave 8

Ved et gittereksperiment sendes lys med bølgelængden 400 nm gennem et gitter. På en skærm 3.4 m fra gitteret måles afstanden mellem centralpletten og lyspletten i 1. orden til 136 mm.

• Beregn gitterkonstanten i det anvendte gitter.

Opgave 9

En lysstråle har en bølgelængde på 650 nm i vakuum.

- 1. Hvilken farve har lysstrålen?
- 2. Hvad er lysstrålens frekvens i vakuum?
- 3. Hvad er lysets hastighed i en væske, hvis brydningsindeks ved denne bølgelængde er 1.47?
- 4. Hvad er lysets bølgelængde i væsken?

Opgave 10

En lysstråle sendes fra luft hen mod en glasplade med et brydningsindeks på 1.66. Lysstrålens vinkel i forhold med glasoverfladen er 47.5°.

- 1. Beregn indfaldsvinklen.
- 2. Beregn brydningsvinklen.

Opgave 11

En lysstråle sendes fra luft ind i plexiglas, som vist på figuren. Brydningsindekset for plexiglas kan slås op til at have værdien 1.4914.

- 1. Indtegn indfaldsvinkel og brydningsvinkel på figuren.
- 2. Beregn brydningsvinklen.

Opgave 12

En He-Ne-laser (Helium-Neon-laser) udsender lys med bølgelængden 632.8 nm mod et gitter med ukendt gitterkonstant. Afbøjningsvinklen til 1. orden er 30°.

- 1. Bestem gitterkonstanten.
- 2. Hvor mange linjer pr. mm. har gitteret?

Opgave 13

En kviksølvslampe udsender bl.a. en kraftig blå spektrallinje med en bølgelængde på 435.8 nm. Dette blå lys sendes ind mod et gitter med 660 linjer pr. mm.

- 1. Hvad er den størst mulige afbøjningsorden?
- 2. Bestem alle de mulige afbøjningsvinkler.

Facitliste

Opgave 1: $\lambda = 8cm$, amplituden er 2 cm.

Opgave 2: 3 hele bølgelængder (3.16) - 3164 atomer ved siden af hinanden.

Opgave 3: $\lambda = 265nm$

Opgave 4: $b = 21^{\circ}$

Opgave 5: n = 1.36

Opgave 6: $\phi_1 = 21.6^{\circ}$

Opgave 7: $\lambda = 569 \, nm$

Opgave 8: $d = 0.010 \, mm$

Opgave 9: 1. Rød, **2.** $f = 4.62 \cdot 10^{14}$ Hz, **3.** $v = 2.04 \cdot 10^8 m/s$, **4.** $\lambda = 441.5 nm$.

Opgave 10: 1. $i = 42.5^{\circ}$, 2. $b = 24.02^{\circ}$

Opgave 11: 1. Tegning, **2.** $b = 35.5^{\circ}$

Opgave 12: 1. d = 1256.6 nm, 2.790 linjer pr. mm.

Opgave 13: 1. $n_{max}=3,$ **2.** $\phi_1=16.7^{\circ},$ $\phi_2=35.1^{\circ},$ $\phi_3=59.6^{\circ}$