Mathematical Description

Equations:

$$x_1 = \begin{cases} 0 & t < 1 & or \quad 2 \le t < 5 \\ 1 & else \end{cases}, x_2 = \begin{cases} 0 & t < 3 \quad or \quad 4 \le t < 6 \\ 1 & else \end{cases},$$

$$x_{3} = \begin{cases} 3 & x_{1} > 0 & and & x_{2} \leq 0.01 & and & x_{4} < 2.5 \\ -3 & x_{1} \leq 0.001 & and & x_{2} > 0 & and & x_{4} > -2.5 \\ 0 & & else \end{cases}$$

$$\dot{x}_4 = 2 * x_3$$

Independent variable:

$$t, t \in [0,T], T = 10$$

To solve for: 4 variables:

$$x_1, x_2, x_3, x_4$$

Decomposition

Number of parts: 3

Par t	Input	Equations	Outpu t
1	-	$x_1 = \begin{cases} 0 & t < 1 & or 2 \le t < 5 \\ 1 & else \end{cases},$ $x_2 = \begin{cases} 0 & t < 3 & or 4 \le t < 6 \\ 1 & else \end{cases},$	<i>x</i> ₁ , <i>x</i> ₂
2	x_1, x_2, x_4	$x_{3} = \begin{cases} 3 & x_{1} > 0 & and & x_{2} \leq 0.01 & and & x_{4} < 2.5 \\ -3 & x_{1} \leq 0.001 & and & x_{2} > 0 & and & x_{4} > -2.5 \\ 0 & & else \end{cases}$	<i>x</i> ₃
3	x_3	$\dot{x}_4 = 2 * x_3$	x_4

Priority table

The parts with smaller priority should be calculated before the parts with higher priority because of the directed signal flow between the parts. Begin with priority 0.

Priority	Part
0	1
1	2, 3

The decomposition can be visualized by:

Expected Solution

Remarks

Quasi digitale Signale steuern eine Differentialgleichung (Anstieg). Kopplung Boolescher Ausdrücke mit analogem Verhalten. Ein Zyklus.

Former internal name of example was example C.

Source

Designed by Fraunhofer IIS EAS, C. Clauß.