07	motor 3 obleg anoto with the vorume covorionce motorix and capetral gettins (all is data in 1)
	matorix and capetred gettins (gll is data in 1)
	05 fillings
	voriance-covoriume Matrix (C) Return (M)
	10 4 0 5 1
	4 2 6
	0 6 10
- 1	a statistical I get need what with a second of
	Find 2 oppoint postpolios. Also and tout
	hopping 2.8.1. retain with nin imlem hox
	Find 2 officent proffers. Also constant hospolio giving 2.8%. return with ninimum six will this profferio be officient?
	Takin x-0, B21 we had to sthe Z Fit vj =1
	resulting in the following of stem of linear
	lyestions
	$\frac{10\sqrt{01} + 4\sqrt{27} = 1}{4\sqrt{01} + 12\sqrt{27} + 6\sqrt{27} = 1}$
	$\frac{4\sqrt{0+12\sqrt{2+10\sqrt{3}}}}{6\sqrt{0+10\sqrt{3}}}$
	The solution U(1) = (1/10, 0, 1/10)
	He how take I'll Bio to she Estigues Mili-1232-
	100 co + 120 co + 60 co = 6
	40 (21 + 12 0 21 + 6 03 = 6
	(NG) + [DNG) = 1
	Scanned with CamScanner

Scanned with CamScanner

Page		
Thus by the 2-fund theosem the signesite proffolio		
is given be. Theorem the regresite profolio		
$N = \sum_{i} N^{(i)} + (1-\sum_{i} N^{(2)})$		
= 1.048 [Y2 /0/1/2) T + (-0.048) [Y2 46 -1/3] T		
(-0.048) [47 46 /3]		
[1 -0.04 27/50]		
(-1/25)		-
	-	
W = [1 - 1/25 27/50]		H
	\vdash	H
 This is not the most efficient postfolio.	_	H
	•	
	7	
	-	
	-	
	5	,
		-
	1	-
	H	
	+	
	+	
	H	-
	+	
	-	
		-
		-