1 Grundprinzipien relativistischer Beschreibung

- Raum & Zeit als Grundstruktur, also Punktmenge mit geometrischen Strukturen sei gegeben
- Automorphismengruppe der Raumzeit (z.B. Galilei-Gruppe, Poincaré-Gruppe)
- Automorphismengruppe als <u>Symmetrie</u> dynamischer Gesetze, Bewegungsgleichungen für "Teilchen"
 & "Felder"
 - Teilchen: Abb. $\gamma: \mathbb{R} \to M$ (Raumzeit)
 - Felder: Abb. $F: M \rightarrow V$ (Vektorraum)

Aktion der Automorphismengruppe (der Raumzeit) auf dynamischen Größen "Teilchen" & "Felder"

Definition 1.1. Aktion Aktion einer Gruppe G auf Menge M ist ein Homomorphismus

$$\Phi: G \to \mathsf{Bij}(M) \tag{1}$$

$$g \mapsto \phi_g$$
 (2)

$$\phi_{g_1} \circ \phi_{g_2} = \phi_{g_1 \circ g_2} \tag{3}$$

$$\phi_{e_G} = \mathrm{id}_M \tag{4}$$

Allgemeine Form von Bewegungsgleichungen:

$$B\left[\Sigma;\gamma,F\right] = 0\tag{5}$$

Mit F einem Feld und γ der Bahnkurve in der Raumzeit der Teilchen. Gelöst wird nach (γ, F) bei gegebenem Σ (Hintergrundstrukturen). Sei T eine Aktion der Gruppe G auf den dynamischen Größen (γ, F)

$$g \mapsto T_q : (\gamma, F) \mapsto (T_q \gamma, T_q F)$$
 (6)

Dann heißt G Symmetriegruppe der Bewegungsgleichung (BWG) wenn

$$B\left[\Sigma; T_q \gamma, T_q F\right] = 0 \iff B\left[\Sigma; \gamma, F\right] = 0 \ \forall \ g \in G \tag{7}$$

d.h. die mit q transformierten dynamischen Größen erfüllen wieder dieselbe BWG.

Unterschied Symmetrie zu Kovarianz: Bei Symmetrie dürfen nur die dynamischen Größen transformiert werden, bei Kovarianz aber alle. Kovarianz:

$$B[T_a\Sigma; T_a\gamma, T_aF] = 0 \Leftrightarrow B[\Sigma; \gamma, F] = 0$$
(8)

Bei $T_g\Sigma$ werden auch die Hintergrundstrukturen transformiert. Kovarianz ist eine "relativ" triviale (leicht zu erfüllende) Forderung, im Gegensatz zu Symmetrie.

Beispiel 1.1. Diffusionsgleichung

$$\partial_t \phi = k \ \triangle \phi \tag{9}$$

Sei $n^{\mu}=(1,0,0,0)$, so dass $n^{\mu}\partial_{\mu}=\partial_{t}$

$$n^{\mu}\partial_{\mu}\phi = k\left(n^{\mu}n^{\nu} - \eta^{\mu\nu}\right)\partial_{\mu}\partial_{\nu}\phi\tag{10}$$

wobei $\eta_{\mu\nu}={\rm diag}\,(1,-1,-1,-1)$ und $\eta^{\mu\nu}={\rm diag}\,(1,-1,-1,-1)$ die Minkowski-Metrik sind. In B $[\Sigma;\gamma,F]$ kommen η , η aus den Strukturen, also Σ , ϕ ist ein Feld F. Würde man η mittransformieren, so wäre die Diffusionsgleichung Poincarékovariant. Aber natürlich ist die Poincaré-Gruppe <u>keine</u> Symmetrie-Gruppe dieser BWG. Achtung: Terminologie <u>nicht</u> eindeutig.

Ist G eine Gruppe und

$$\phi: G \to \mathsf{Bij}(M) \tag{11}$$

$$g \mapsto \phi_q$$
 (12)

ein Homomorphismus, dann heißt

$$(\phi, G, M) \tag{13}$$

(verallgemeinerte) Darstellung, oder auch "Wirkung" von G auf M.

- Die Darstellung heißt <u>treu</u> bzw. effektive (Wirkung) $\Leftrightarrow \phi$ injektiv (G wird durch ϕ in Bij (M) "eingebettet"). Damit wird also nur das neutrale Element auf das neutrale Element abgebildet. Die Wirkung jedes nicht neutralen Gruppenelements bewegt mindestens einen Punkt.
- Die Wirkung heißt <u>frei</u>, falls ϕ_g für $g \neq e_G$ keine Fixpunkte besitzt. Damit werden alle Punkte bewegt.
- Die Wlrkung heißt (einfach) transitiv, falls für $p, q \in M$ (genau) ein $g \in G$ existiert mit $\phi_q(p) = q$.

Sind G & H Gruppen. Auf der Menge $G \times H$ existieren mehrere Gruppenstrukturen

1. Direktes Produkt:

$$G \times H = \{(g, h) | g \in G, h \in H\}$$

$$\tag{14}$$

$$(g,h)(g',h') = (gg',hh')$$
 (15)

$$(e_g, e_h)$$
 neutrales Element (16)

2. Semidirekte Produkte:

$$G \rtimes_{\alpha} H \quad \alpha \in \text{hom}(H, \text{Aut}(G))$$
 (17)

wobei Aut (G) die Gruppe der Isomorphien auf G sind. Jeder Homomorphismus $\alpha \in \text{hom}(H, \text{Aut}(G))$ definiert eine Gruppenstruktur auf der Menge $G \times H$ wie folgt:

$$(g,h)(g',h') = (g\alpha_h(g'),hh')$$
(18)

Man rechnet leicht nach: (e_G, e_H) ist neutrales Element $(g, h)^{-1} = (\alpha_{h^{-1}}(g^{-1}), h^{-1})$. Außerdem gilt Assoziativität:

$$(g,h) [(g',h') (g'',h'')] = [(g,h) (g',h')] (g'',h'')$$
(19)

Diese Gruppe heißt das semi-direkte Produkt von G auf H bezüglich α . Bezeichnung $G \rtimes_{\alpha} H$ (Achtung Notation nicht einheitlich). Übungsaufgaben: Inverses Element und Assoziativität.

In der Physik wichtig sind semi-direkte Produkte mit G = V = Vektorraum (aufgefasst als abelsche Gruppe), $H \subset GL(V)$ (invertierbare lineare Abbildungen von V auf sich selbst) und $\alpha : H \hookrightarrow GL(V)$ (= stetige Automorphismen der Gruppe V). Dann ist das semidirekte Produkt einfach:

$$(v,h)(v',h') = (v+h(v'),hh')$$
(20)

$$(v,h)^{-1} = (-h^{-1}(v),h^{-1})$$
(21)

$$(0, e_H)$$
 neutrales Element (22)

Konkreter: $V = \mathbb{R}^n$ und $H \subset GL(n,\mathbb{R})$. Man kann $\mathbb{R}^n \rtimes H$, $H \subset GL(n,\mathbb{R})$ als Untergruppe von $GL(n+1,\mathbb{R})$ auffassen, d.h. se gibt eine Einbettung $j : \mathbb{R}^n \rtimes H \hookrightarrow GL(n+1,\mathbb{R})$

$$j: (v,h) \mapsto \left(\frac{1 \mid 0}{v \mid h}\right) \tag{23}$$

$$j(v,h) \cdot j(v',h') = \begin{pmatrix} 1 & 0 \\ v & h \end{pmatrix} \begin{pmatrix} 1 & 0 \\ v' & h' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ v + h(v') & h' \end{pmatrix} = j((v,h),(v',h'))$$
(24)

Lie-Gruppen als Mannigfaltigkeit (Mft)?

$$SO(3) \cong \mathbb{R}\mathbf{P}^3 \tag{25}$$

$$\mathfrak{su}(2) \cong \mathbb{S}^3$$
 (26)

$$\mathfrak{u}(1) \cong \mathbb{S}^1 \tag{27}$$

$$E^{3} = \mathbb{R}^{3} \rtimes SO(2) \cong \mathbb{R}^{3} \times \mathbb{R}\mathbf{P}^{3} \tag{28}$$

$$\mathbb{R}^4 \rtimes (SO(1,3))$$
 Lorentz-Gruppe (29)

2 Lie-Algebren und Lie-Gruppen

Im folgenden bezeichnet \mathbb{F} den Körper \mathbb{R} oder \mathbb{C} .

Definition 2.1. Eine Lie-Algebra über \mathbb{F} ist ein Vektorraum über \mathbb{F} mit einer Abbildung:

$$V \times V \to V$$
 (30)

$$(x,y) \mapsto [x,y] \tag{31}$$

genannt "Lie-Produkt" oder "Lie-Klammer", sodass $\forall x, y, z \in V$ und alle $a \in \mathbb{F}$ gilt:

- 1. [x, y] = -[y, x] (Antisymmetrie)
- 2. [x, y + az] = [x, y] + a[x, z] (Bilnearität)
- 3. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi-Identität)

Achtung: Es gibt keine Assoziativtät! $[x, [y, z]] \neq [[x, y], z]$

Beispiel 2.1.

$$V = \mathbb{R}^3 \quad [\vec{x}, \vec{y}] = \vec{x} \times \vec{y} \tag{32}$$

1) & 2) trivial, 3) folgt so:

$$\vec{x} \times (\vec{y} \times \vec{z}) + \vec{y} \times (\vec{z} \times \vec{x}) + \vec{z} \times (\vec{x} \times \vec{y})$$

$$= \vec{y} (\vec{x}\vec{z}) - \vec{z} (\vec{x}\vec{y}) + \vec{z} (\vec{x}\vec{y}) - \vec{x} (\vec{y}\vec{z}) + \vec{x} (\vec{z}\vec{y}) - \vec{y} (\vec{x}\vec{z})$$

$$= 0$$
(33)

Jede assoziative Algebra ist auch eine Lie-Algebra, z.B. Algebra der n \times n-Matrizen

$$[X,Y] = XY - YX \tag{34}$$

1) & 2) sind wieder klar. 3) folgt aus Assoziativität

Sei V ein Vektorraum und End(V) = Endomorphismen von <math>V eine assoziative Algebra unter \circ , d.h. für $\varphi, \varphi' \in End(V)$:

$$[\varphi, \varphi'] = \varphi \circ \varphi' - \varphi' \circ \varphi \tag{35}$$

Definition 2.2. Ist L Lie-Algebra, dann ist L' eine Lie-Unteralgebra \Leftrightarrow L' ist Untervektorraum und falls $[\cdot,\cdot]|_{L'}$ zu einer Lie-Algebra macht, $[L',L'] \subset L'$.

Eine Lie-Unteralgebra $L' \subset L$ heißt \underline{Ideal} , falls: $[x,y] \in L' \ \forall \ x \in L'$ und $\forall \ y \in L$ Man schreibt dann auch $[L',L] \subset L'$. Lie-Ideale sind für Lie-Algebren, was Normalteiler (invariante Untergruppen) für Gruppen sind. Ist $L' \subset L$ ideal, dann ist L/L' wieder Lie-Algebra.

$$[[x]_{L'}, [y]_{L'}] = [[x, y]]_{L'}$$
(36)

Definition 2.3. Seien $L = (V, [\cdot, \cdot])$ und $L' = (V', [\cdot, \cdot]')$ Lie-Algebren: Eine lineare Abb. $\varphi : V \to V'$ heißt Lie-Homomorphismus $\Leftrightarrow \varphi([x, y]) = [\varphi(x), \varphi(y)]' \ \forall x, y \in L$.

Wie üblich definiert ker $(\varphi) = \{x \in L | \varphi(x) = 0\}$ Der Kern eines Lie-Homomorphismus ist ein Ideal. Eine Lie-Algebra heißt Abelsch $\Leftrightarrow [x,y] = 0 \ \forall x,y \in L$.

L heißt <u>einfach</u> \Leftrightarrow {0} und L sind die einzigen Ideale, d.h. L hat keine nicht-trivialen Ideale. Oft fordert man zusätzlich, dass dim $(L) = \dim_{\mathbb{F}}(V) \ge 2$

L heißt halbeinfach, wenn dim $(L) \ge 2$ und $\{0\}$ das einzige abelsche Ideal ist.

Bemerkung 1. Halbeinfach spielt für die Darstellungstheorie und Anwendungen in der Physik eine große Rolle.

Sei dim
$$(L) = \dim_{\mathbb{F}} = n$$

$$\{e_a|a=1,\ldots,n\} \ Basis \tag{37}$$

Dann existieren $\frac{1}{2}n^2(n-1)$ Koeffizienten

$$C_{ab}^{c} = -C_{ba}^{c} \text{ mit } [e_a, e_b] = C_{ab}^{c} e_c$$
 (38)

Wegen $\sum_{(a,b,c)\in S_3} [e_a, [e_b, e_c]] = 0$

$$\Leftrightarrow C_{an}^{m}C_{bc}^{n} + C_{bn}^{m}C_{ca}^{n} + C_{cn}^{m}C_{ab}^{n} = 0$$
(39)

Also genügen die Koeffizienten C^c_{ab}s den Bedingungen

1.
$$C_{ab}^{c} = -C_{ba}^{c}$$

2.
$$C_{na}^{m}C_{bc}^{n}=0$$

Umgekehrt gilt: Ein Satz von Koeffizienten C^c_{ab} der 1) & 2) genügt definiert eine Lie-Algebra. Unter Basiswechsel

$$e_a \mapsto e'_a := A^b_a e_b \tag{40}$$

ist

$$\left[e'_{a}, e'_{b}\right] = C'^{c}_{ab}e'_{c} \tag{41}$$

$$C_{ab}^{c} \mapsto C_{ab}^{c} = (A^{-1})_{c}^{c} C_{mn}^{l} A_{a}^{m} A_{b}^{n}$$
 (42)

 $\left\{C^{c}_{ab}\right\}$ und $\left\{C'^{c}_{ab}\right\}$ definieren gleiche bzw. isomorphe Lie-Algebren.

Definition 2.4. Die direkte Summe zweier Lie-Algebren L' $(V', [\cdot, \cdot]')$, L" = $(V'', [\cdot, \cdot]'')$ ist gegeben durch:

$$L = (V, [\cdot, \cdot]) \quad mit \ V = V' \oplus V''$$
(43)

$$\begin{bmatrix} x' \oplus x'', y' \oplus y'' \end{bmatrix} = \begin{bmatrix} x', y' \end{bmatrix}' \oplus \begin{bmatrix} x'', y'' \end{bmatrix}$$

$$\forall x', y' \in V' \ x'', " \in V''$$

$$\tag{45}$$

$$\forall x', y' \in V' \ x'', '' \in V'' \tag{45}$$

Definition 2.5. Eine Derivation $\varphi \in \text{Der}(L)$ der Lie-Algebra $L = (V, [\cdot, \cdot])$ ist ein $\varphi \in \text{End}(V)$ mit:

$$\varphi([x,y]) = [\varphi(x),y] + [x,\varphi(y)] \tag{46}$$

 $Der(L) \subset End(V)$ ist eine Lie-Unteralgebra, denn für $\varphi, \varphi' \in Der(L)$:

$$\begin{aligned}
\left[\varphi,\varphi'\right]\left(\left[x,y\right]\right) &:= \left(\varphi\circ\varphi'-\varphi'\circ\varphi\right)\left[x,y\right] \\
&= \left[\varphi\circ\varphi'\left(x\right),y\right] + \left[\varphi'\left(x\right),\varphi\left(y\right)\right] + \left[\varphi\left(x\right),\varphi'\left(y\right)\right] + \left[x,\varphi\circ\varphi'\left(y\right)\right] \\
\left[\varphi'\circ\varphi\left(x\right),y\right] + \left[\varphi\left(x\right),\varphi'\left(y\right)\right] + \left[\varphi'\left(x\right),\varphi\left(y\right)\right] + \left[x,\varphi'\circ\varphi\left(y\right)\right] \\
&= \left[\left[\varphi,\varphi'\right]\left(x\right),y\right] + \left[x,\left[\varphi,\varphi'\right]\left(y\right)\right]
\end{aligned} \tag{47}$$

Es existiert ein natürlicher Gruppenhomomorphismus

$$ad: L \to Der(L) \tag{48}$$

$$x \mapsto \operatorname{ad}_{x} := [x, \cdot] \tag{49}$$

$$ad_{x}: y \mapsto ad_{x}(y) = [x, y] ad_{x} \in Der(L)$$
(50)

Beweis.

$$ad_{x}([y, z]) = [x, [y, z]]$$

$$= -[y, [z, x]] - [z, [x, y]]$$

$$= [[x, y], z] + [y, [x, z]]$$

$$= [ad_{x}(y), z] + [y, ad_{x}(z)]$$
(51)

ad : $L \rightarrow Der(L)$ ist Lie-Homomorphismus

$$ad_{[x,y]} = [ad_x, ad_y] = ad_x \circ ad_y - ad_y \circ ad_x$$
 (52)

Anwenden auf $z \in L$:

$$[[x, y], z] = -[[y, z], x] - [[z, x], y]$$

$$= [x [y, z]] - [y, [x, z]]$$

$$= ad_x \circ ad_y (z) - ad_y \circ ad_x (z)$$
(53)

Den so definierten Lie-Homomorphismus

$$L \to \operatorname{End}(L) \quad x \mapsto \operatorname{ad}_{x}$$
 (54)

auch die adjungierte Darstellung der Lie-Algebra (auf sich selbst).

Einen Lie-Homomorphismus

$$L \to \operatorname{End}(W) \tag{55}$$

auf W als \mathbb{F} -Vektorraum nennt man eine Darstellung von L auf W

Definition 2.6. Seien $L' = (V', [\cdot, \cdot]')$ und $L'' = (V'', [\cdot, \cdot]'')$ Lie-Algebren und

$$\sigma: L'' \to \mathsf{Der}\left(L'\right) \tag{56}$$

$$x'' \mapsto \sigma_{x''} \tag{57}$$

ein Lie-Homomorphismus. Dann ist:

$$L = (V, [\cdot, \cdot]) \tag{58}$$

$$L = L' \rtimes_{\sigma} L'' \tag{59}$$

die Semidirekte Summe von L' mit L" definiert durch:

$$V = V' \oplus V'' \tag{60}$$

und

$$\left[x' \oplus x'', y' \oplus y''\right] = \left(\left[x', y'\right]' + \sigma_{x''}\left(y'\right) - \sigma_{y''}\left(x'\right)\right) \oplus \left[x'', y''\right]'' \tag{61}$$

Antisymmetrie, Bilinearität und Jacobi-Identität in der Übung nachgerechnet.

Definition 2.7. Die Killing-Form einer Lie-Algebra $L = (V, [\cdot, \cdot])$ ist eine symmetrische Bilinearform

$$K: V \times V \to \mathbb{F} \tag{62}$$

definiert durch

$$K(x,y) = \operatorname{Spur}(\operatorname{ad}_{x} \circ \operatorname{ad}_{y}) \tag{63}$$

Bezüglich einer Basis $\{e_a|a=1,\ldots,n\}$ von L ist $[e_a,e_b]=C^c_{ab}$ und

$$\left(\operatorname{ad}_{e_a}\right)^c_{\ b} = C^c_{\ ab} \tag{64}$$

Damit

$$K_{ab} = K(e_a, e_b) = \operatorname{Spur}(\operatorname{ad}_x \circ \operatorname{ad}_y) = C_{am}^n C_{bn}^m$$
(65)

Proposition 2.1. $\forall x, y \in L$ *gilt:*

$$K([x, y], z) = K(x, [y, z]) \Leftrightarrow K([y, x], z) + K(x, [y, z]) = 0$$
 (66)

Beweis. Aus $ad_{[x,y]} = [ad_x, ad_y]$ folgt:

$$Spur (ad_{[x,y]} \circ ad_z)$$

$$= Spur (ad_x \circ ad_y \circ ad_z - ad_y \circ ad_x \circ ad_z)$$

$$= Spur (ad_x \circ ad_y \circ ad_z - ad_x \circ ad_z \circ ad_y)$$

$$= Spur (ad_x \circ ad_{[y,z]})$$
(67)

Der Nullraum von K ist definiert durch

$$N(L) := \{ x \in L | K(x, y) = 0 \ \forall \ y \in L \}$$
 (68)

Ist $x \in N(L)$, dann folgt aus

$$K([x, y], z) = K(x, [y, z]) = 0 \,\forall y, z$$
 (69)

N(L) ist ein Ideal. Das kann verallgemeinert werden zu:

Korollar 2.1. *Sei* $I \subset L$ *ein Ideal dann ist auch* I^{\perp} *ein Ideal:*

$$I^{\perp} = \{ x \in L | K(x, y) = 0 \ \forall y \in I \}$$
 (70)

Beweis.

$$K\left(\left[I^{\perp},L\right],I\right) = K\left(I^{\perp},\left[L,I\right]\right) = K\left(I^{\perp},I\right) = 0 \tag{71}$$

Damit folgt $[I^{\perp}, L] \subset I^{\perp}$

Proposition 2.2. *Ist* $I \subset L$ *ein Ideal, dann ist*

$$K_I = K|_I, \tag{72}$$

d.h. die Killingform von I ist gleich der Einschränkung der Killingform von L auf I

Beweis. Ist $\varphi \in \text{End}(V)$ mit $\text{Bild}(\varphi) \subset W \subset V$, dann gilt

$$Spur(\varphi) = Spur(\varphi|_{W})$$
(73)

Angewandt auf $\varphi = \operatorname{ad}_X \circ \operatorname{ad}_V \in \operatorname{End}(V)$ mit $x, y \in I$, dann ist $\operatorname{Bild}(\varphi) \subset I \subset L.s$

Satz 2.1 (Cartan). L ist genau dann halbeinfach, wenn K nicht ausgeartet ist, d.h. $N(L) = \{0\}$

Beweis. Ist $I \subset L$ ein abelsches Ideal $\neq \{0\}$ und $0 \neq x \in I$, $y \in L$, dann

$$K(x,y) = \operatorname{Spur}(\operatorname{ad}_{x} \circ \operatorname{ad}_{y}) = \operatorname{Spur}(\operatorname{ad}_{x}|_{I}, \operatorname{ad}_{y}|_{I}) = 0$$
(74)

Da $\operatorname{ad}_{x|_{I}}=0$ falls I abelsch (und Bild $\subset I$). Andere Richtung als Übung.

Zerlegung von halbeinfachen Lie-Algebren in die direkte Summe von einfachen Lie-Algebren. Sei L halbeinfache Lie-Algebra und $I \subset L$ Ideal

$$K([I^{\perp},I],L) = K(I^{\perp},[I,L]) = K(I^{\perp},I) = 0$$
 (75)

Dann $[I^{\perp}, I] = N(L) = \{0\}$ und damit $I^{\perp} \cap I = \{0\}$, also $L = I \oplus I^{\perp}$. Enthält I weitere Ideale kann die Zerlegung analog weiter geführt werden, bis keine weiteren Ideale mehr existieren:

$$L = \bigoplus_{i=1}^{n} I_i \tag{76}$$

Proposition 2.3. L halbeinfach, dann

$$[L, L] = \text{Span}\{[x, y]|x, y \in L\}$$
 (77)

Definition 2.8. Eine Lie-Algebra für die [L, L] = L gilt, heißt perfekt

Definition 2.9. Eine Lie-Algebra heißt <u>kompakt</u>, falls K negativ definit ist. Achtung: Das Wort "Kompakt" bezieht sich auf die zur Lie-Algebra zugehörigwn Lie-Gruppen. Elne Lie-Algebra als topologischer Raum ist natürlich nie kompakt.

Beispiel 2.2.
$$L = (\mathbb{R}^3, \times)$$
, $\vec{e}_a \times \vec{e}_b = \epsilon_{ab}{}^c \vec{e}_c$, $C^c{}_{ab} = \epsilon_{ab}{}^c$

$$K_{ab} = C^n{}_{am} C^m{}_{bn} = \epsilon_{am}{}^n \epsilon_{bn}{}^m = -2\delta_{ab}$$
(78)

2.1 Matrix Lie-Gruppen

"Matrix" heißt: Jede der betrachteten Gruppen besitzt eine treue endliche Darstellung (sog. "definierende Darstellung"). Achtung: Es existieren endlich dim. Lie-Gruppen die keine Matrixgruppen sind, z.B. alle Überlagerungsgruppen von $SL(2,\mathbb{R})$

Beispiel 2.3.

$$GL(\mathbb{F}^n) := \{ x \in End(\mathbb{F}^n) | det(x) \neq 0 \}$$
(79)

$$\mathsf{SL}\left(\mathbb{F}^{n}\right) := \left\{x \in \mathsf{GL}\left(\mathbb{F}^{n}\right) | \det\left(x\right) = 1\right\} \tag{80}$$

$$O(p, q_{-}) := \left\{ x \in \text{End}(\mathbb{F}^{n}) \middle| x E^{(p,q)} x^{T} = E^{(p,q)} \right\}$$
 (81)

$$SO(p, q_{-}) := \{x \in O(p, q_{-}) | det(x) = 1\}$$
 (82)

$$U(p, q_{-}) := \left\{ x \in GL(\mathbb{C}^{n}) \middle| x E^{(p,q)} X^{T} = E^{(p,q)} \right\}$$
(83)

$$SU(p, q_{-}) := \{x \in U(p, q_{-}) | \det(x) = 1\}$$
(84)

$$SO(1,3) = Lorentzgruppe \cup \{-1_4\}$$
(85)

wobei

$$E^{(p,q)} = \left(\frac{\mathbb{1}_p \mid 0}{0 \mid -\mathbb{1}_q}\right) \tag{86}$$

Ebenfalls Matrix-Gruppen sind solche, die aus semi-direkten Produkten mit \mathbb{F}^n entstehbar. Sei $G \subset \operatorname{End}(V)$ $(V \cong \mathbb{F}^n)$ eine Gruppe & $A : \mathbb{R} \supset (-\epsilon, \epsilon) \to G$ differenzierbare Kurve mit $A(0) = \operatorname{id}$. Wir definieren $\dot{A} := \frac{\operatorname{d}}{\operatorname{d} s} \Big|_{s=0} A(s) = \operatorname{Tangentialvektor}$ an der Gruppenidentität.

Satz 2.2. Die Menge der Tangentialvektoren an die Gruppenidentität bilden eine <u>reelle</u> Lie-Algebra, Lie (G).

Beweis. 1. Linearität: Ist $X = \dot{A}$ und $Y = \dot{B}$, definiere C(s) = A(s)B(s), dann $\dot{C} = \dot{A} + \dot{B} = X + Y$. Ebenso: Ist $X = \dot{A}$, definiere $B(s) = A(as)\dot{B} = aX \forall a \in \mathbb{R}$. Geschwindigkeit bei $e \in G$ bildet Vektorraum über \mathbb{R} .

2. Abgeschlossenheit unter Kommutatorbildung: Sei X = A & Y = B. Wir müssen zeigen, dass eine Kurve C(s) existiert mit C(0) = e und C = [X, Y] = XY - YX. Definiere also

$$C(s) = \begin{cases} A(\tau(s)) B(\tau(s)) A^{-1}(\tau(s)) B^{-1}(\tau(s)) & s \ge 0 \\ B(\tau(s)) A(\tau(s)) B^{-1}(\tau(s)) A^{-1}(\tau(s)) & s \le 0 \end{cases}$$
(87)

wobei $\tau(s) = \text{sign}(s) \sqrt{s}$ und invers $s(\tau) = \text{sign}(\tau) \tau^2$

Obwohl keine der Kurven $s \mapsto A(\tau(s))$ etc. selber differenzierbar ist (weil $\tau(s)$ nicht differenzierbar ist), ist dennoch die Kurve $s \mapsto C(s)$ bei s = 0 differenzierbar. Für $s \searrow 0$ (Rechtsableitung) gilt:

$$\dot{C}_{R} = \lim_{s \searrow 0} \left\{ \frac{C(s) - e}{s} \right\} = \lim_{s \searrow 0} \left\{ \frac{\left[A(\tau(s)), B(\tau(s)) \right] A^{-1}(\tau(s)) B^{-1}(\tau(s))}{s} \right\}$$

$$= \lim_{\tau \searrow 0} \left\{ \left[\frac{A(\tau) - e}{\tau}, \frac{B(\tau) - e}{\tau} \right] A^{-1}(\tau) B^{-1}(\tau) \right\}$$

$$= [X, Y]$$
(88)

 \dot{C}_L analog.

Da die Lie-Struktur durch die von End (V) induziert wird, gilt automatisch die Jacobi-Identität. Ist $D \in \text{hom}(G, GL(W))$ eine lineare Darstellung von G auf den Vektorraum W, dann induziert diese eindeutig eine Darstellung

$$D_* \in \text{hom}\left(\text{Lie}(G), \text{End}(W)\right)$$
 (89)

Das sieht man so: Sei A(s) Kurve in G mit A(0) = e und $\frac{d}{ds}|_{s=0} A(s) = X$. Dann ist $A'(s) = (D \circ A)(s) = D(A(s))$ eine Kurve in GL(W) mit $A'(0) = e|_{GL(W)}$. Wir sehen voraus, dass D differenzierbar ist.