

3ª Fase

- Parte 1 CNN;
- Parte 2 Grid Search;
- Parte 3 CNN + Bee.

Parte 1 - CNN

Construção da Rede Neuronal

```
# mobilenetv2 é um modelo (deep learning) do tipo CNN que é pré-treinado, ou seja,
# já foi treinada para classificar imagens, sendo esta capaz de classificar
# 1000 categorias das mesmas
mobilenetv2 layer = mobilenetv2.MobileNetV2(include top = False, input shape = (IMAGE WIDTH, IMAGE HEIGHT,IMAGE CHA
                       weights = 'imagenet')
# O modelo mobilenetv2 já está pré-treinado, logo, não queremos que estas camadas que ele tras
# sejam treinadas novamente pelo tensorflow
mobilenetv2 layer.trainable = False
model = Sequential()
model.add(keras.Input(shape=(IMAGE WIDTH, IMAGE HEIGHT, IMAGE CHANNELS)))
# Cria uma camada para aplicar o preprocessamento na imagem, para ter as caracteristicas pretendidas
def mobilenetv2 preprocessing(img):
  return mobilenetv2.preprocess input(img)
model.add(Lambda(mobilenetv2 preprocessing))
#model.add(tf.keras.layers.BatchNormalization()) | Demora mt tempo a treinar com esta camada +/- 15 por epoch
# Camadas pre treinadas
model.add(mobilenetv2 layer)
model.add(tf.keras.layers.GlobalAveragePooling2D())
model.add(Flatten(name="featuresCamadaFlatten"))
model.add(tf.keras.layers.Dropout(0.3))
model.add(Dense(len(categories), activation='softmax'))
model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['categorical accuracy'])
model.summary()
feature extractor = keras.Model(
    inputs=model.inputs,
    outputs=model.get layer(name="featuresCamadaFlatten").output,
x = tf.ones((1, 224, 224, 3))
features = feature extractor(x)
print("Número de Features da Camada featuresCamadaFlatten:")
print(features)
```

Divisão em Treino, Validação e Teste

Num Imagens de Treino = 12412 Num Imagens de Validação = 1551 Num Imagens de Teste = 1552

Softmax

Data Augmentation - Teste

GlobalAveragePooling2D

```
Epoch 1/20
0.3179 - val categorical accuracy: 0.9115
Epoch 2/20
0.2730 - val categorical accuracy: 0.9219
Epoch 3/20
0.2535 - val categorical accuracy: 0.9219
Epoch 4/20
0.2452 - val categorical accuracy: 0.9277
Epoch 5/20
0.2477 - val categorical accuracy: 0.9290
Epoch 6/20
0.2529 - val categorical accuracy: 0.9277
Epoch 7/20
0.2194 - val categorical accuracy: 0.9362
Epoch 8/20
0.2238 - val categorical accuracy: 0.9336
Epoch 9/20
ights from the end of the best epoch: 7.
0.2227 - val categorical accuracy: 0.9323
Epoch 9: early stopping
```

Softmax

Data Augmentation - Teste

GlobalAveragePooling2D

Eficácia de teste = 93.69 %

Softmax

Data Augmentation - Teste

GlobalAveragePooling2D

```
Epoch 1/20
0.2689 - val categorical accuracy: 0.9076
Epoch 2/20
0.2049 - val categorical accuracy: 0.9349
Epoch 3/20
0.1789 - val categorical accuracy: 0.9466
Epoch 4/20
0.1821 - val categorical accuracy: 0.9434
Epoch 5/20
ights from the end of the best epoch: 3.
0.1680 - val categorical accuracy: 0.9388
Epoch 5: early stopping
```


Eficácia de teste = 94.33 %

Flatten - Teste

```
model.add(Flatten(name="featuresCamadaFlatten"))
#model.add(tf.keras.layers.GlobalAveragePooling2D(name="featuresCamadaGlobal"))
model.add(Dense(len(categories), activation='softmax'))
      0.975
      0.950
      0.925
                                                     Eficácia de Treino
      0.900
                                                     Eficácia de Validação
                   Eficácia de teste = 93.69 %
```

GlobalAveragePooling2D + Relu Flatten + Relu

Eficácia de teste = 5.8 %

Eficácia de teste = 6.51 %

GlobalAveragePooling2D + Flatten + Dropout + Softmax

Eficácia de teste = 94.85 %

Previsões

	precision	recall	fl-score	support
battery	0.98	0.93	0.95	85
biological	0.94	0.98	0.96	104
cardboard	0.93	0.98	0.96	87
clothes	0.99	0.98	0.99	539
glass	0.93	0.91	0.92	200
metal	0.87	0.84	0.85	69
paper	0.95	0.93	0.94	114
plastic	0.87	0.87	0.87	99
shoes	0.93	0.97	0.95	191
trash	0.92	0.94	0.93	64
			0.05	1550
accuracy			0.95	1552
macro avg	0.93	0.93	0.93	1552
weighted avg	0.95	0.95	0.95	1552

Parte 2 - Grid Search

Manual Search

Escolhe-se os hiperparametros com base no nosso julgamento, na nossa experiência. Depois treinamos o modelo, avaliamos a sua *accuracy* e repetimos o processo. Paramos, quando o valor da *accuracy* nos é satisfatório.

Random Search

É onde as diversas combinações de hiperparametros são feitas de forma aleatória e são usadas para encontrar a melhor solução.

Bayesian Optimization

É uma estratégia de projeto sequencial para funções do tipo "black-box" (é um dispositivo, sistema, ou objeto que produz informações úteis sem revelar nenhuma informação sobre o seu funcionamento interno. Ou seja, as explicações para as suas conclusões permanecem opacas ou "negras", o que é muito frequente nesta área de Inteligência computacional), a qual reduz também o número de iterações de pesquisa ao escolher os valores de entrada tendo em mente os valores anteriores.

Evolutionary Algorithm

Cria uma população de N modelos de *machine learning* com alguns hiperparametros predefinidos. Depois gera alguns descendentes com hiperparametros semelhantes aos dos melhores modelos para obter novamente uma população de N modelos. Assim, no final do processo, apenas alguns modelos é que vão sobreviver fazendo combinações e variações de parâmetros que são semelhantes à evolução biológica. Este algoritmo simula o processo de seleção natural, o que significa que as espécies que se podem adaptar às mudanças no seu ambiente, podem sobreviver, reproduzir-se e passar para a próxima geração.

Grid Search

É o método tradicional de otimização de hiperparametros e funciona como uma grelha de hiperparametros e dados de treino e teste em que constrói um modelo para cada combinação de hiperparametros especificados e avalia cada modelo.