

<u>Home</u>

Gameboard

Physics

Mechanics Dynamics

Gravitational Potential and Kinetic Energy 1.7

# **Gravitational Potential and Kinetic Energy 1.7**



A worker at ground level throws a  $2.2\,\mathrm{kg}$  drinks bottle upwards to a thirsty colleague  $3.2\,\mathrm{m}$  above the ground. It just reaches him, but he fails to catch it, and it falls into an excavated trench  $1.6\,\mathrm{m}$  below ground level.

## Part A Initial speed of bottle

At what speed did the worker need to throw the bottle if she threw it from the waist,  $1.0\,\mathrm{m}$  above the ground?

### Part B Impact speed

How fast was it moving when it struck the base of the trench?

#### Gameboard:

**STEM SMART Physics 22 - Combining Energies** 



Home C

Gameboard

Physics

Mechanics

Dynamics

Gravitational Potential and Kinetic Energy 1.10

# Gravitational Potential and Kinetic Energy 1.10



How high would a ball bounce if it struck an efficiency  $\eta=0.75$  surface at  $13\,\mathrm{m\,s^{-1}}$ ?

Gameboard:

**STEM SMART Physics 22 - Combining Energies** 



Home Gameboard Physics Mechanics Dynamics Gravitational, Elastic and Kinetic Energy 2.1

# Gravitational, Elastic and Kinetic Energy 2.1





Figure 1: Objects suspended from a spring exchange stores of kinetic, elastic potential and kinetic energy as they move up and down.

#### Quantities:

x spring extension (m)

 $x_B$  equilibrium x (m)

v speed (m s<sup>-1</sup>)

m mass (kg)

 $E_{\mathsf{K}}$  kinetic energy (J)

 $E_{\mathsf{T}}$  total energy (J)

F spring tension (N)

 $\ell$  spring natural length (m)

y distance from equilibrium (m)

k spring constant (N m<sup>-1</sup>)

g gravitational field strength (N  $m kg^{-1}$ )

 $E_{\mathsf{GP}}$  gravitational potential energy (J)

 $E_{\mathsf{FP}}$  elastic potential energy (J)

W weight (N)

### **Equations:**

$$E_{\mathsf{K}}=rac{1}{2}mv^2$$
  $E_{\mathsf{GP}}=-mgx$   $E_{\mathsf{EP}}=rac{1}{2}kx^2$   $F=-kx$   $E_{\mathsf{T}}=E_{\mathsf{K}}+E_{\mathsf{GP}}+E_{\mathsf{EP}}$   $W=mg$   $y=x-x_{\mathsf{B}}$ 

In the absence of air resistance, use the equations above to derive expressions for

### Part A The total energy

Derive an expression for the total energy,  $E_{\mathsf{T}}$ , in terms of x and v.

The following symbols may be useful:  $E_B$ ,  $E_EP$ ,  $E_GP$ ,  $E_T$ , g, k, m, v, x,  $x_B$ , y

#### Part B The value of x where the forces balance

Derive an expression for the value of x where the forces balance (we will call this  $x_B$ ).

The following symbols may be useful: E\_B, E\_EP, E\_GP, E\_T, g, k, m, v, x, x\_B, y

## Part C $E_{\mathsf{GP}} + E_{\mathsf{EP}}$ at the point where the forces balance

Derive an expression for  $E_{\sf GP}+E_{\sf EP}$  at the point where the forces balance (we will call this  $E_{\sf B}$ ).

The following symbols may be useful:  $E_B$ ,  $E_EP$ ,  $E_GP$ ,  $E_T$ , g, k, m, v, x,  $x_B$ , y

### Part D The greatest value of x

Derive an expression for the greatest value of x if you hold the mass at x=0 and let go.

The following symbols may be useful: E\_B, E\_EP, E\_GP, E\_T, g, k, m, v, x, x\_B, y

Part E  $E_{\mathsf{GP}} + E_{\mathsf{EP}}$  in terms of  $y = x - x_{\mathsf{B}}$ 

Derive an expression for the value of  $E_{\sf GP}+E_{\sf EP}$  in terms of  $y=x-x_{\sf B}$ . You may find it simplifies the algebra if you give your answer in the form  $E_B+\ldots$ 

The following symbols may be useful:  $E_B$ ,  $E_EP$ ,  $E_GP$ , g, k, m, y

#### Gameboard:

**STEM SMART Physics 22 - Combining Energies** 



Home Gameboard Physics Mechanics Dynamics Gravitational, Elastic and Kinetic Energy 2.2

# Gravitational, Elastic and Kinetic Energy 2.2





Figure 1: Objects suspended from a spring exchange stores of kinetic, elastic potential and kinetic energy as they move up and down.

Using the diagram above, calculate the energies  $E_{\rm GP}$ ,  $E_{\rm EP}$ ,  $E_{\rm K}$  and  $E_{\rm T}$  for a  $2.5\,{\rm kg}$  mass when  $x=0.055\,{\rm m}$  and speed  $v=0.25\,{\rm m\,s^{-1}}$  if  $k=600\,{\rm N\,m^{-1}}$ .

## Part A Calculate $E_{\mathsf{GP}}$

Calculate the gravitational potential energy  $E_{\rm GP}$  for a  $2.5\,{
m kg}$  mass when  $x=0.055\,{
m m}$  and  $v=0.25\,{
m m\,s^{-1}}$  if  $k=600\,{
m N\,m^{-1}}$ .

### Part B Calculate $E_{\sf EP}$

Calculate the elastic potential energy  $E_{\rm EP}$  for a  $2.5\,{
m kg}$  mass when  $x=0.055\,{
m m}$  and  $v=0.25\,{
m m\,s^{-1}}$  if  $k=600\,{
m N\,m^{-1}}$ .

## Part C Calculate $E_{\mathsf{K}}$

Calculate the kinetic energy  $E_{\rm K}$  for a  $2.5\,{\rm kg}$  mass when  $x=0.055\,{\rm m}$  and  $v=0.25\,{\rm m\,s^{-1}}$  if  $k=600\,{\rm N\,m^{-1}}$ .

## Part D Calculate $E_{\mathsf{T}}$

Calculate the total energy  $E_{\rm T}$  for a  $2.5\,{
m kg}$  mass when  $x=0.055\,{
m m}$  and  $v=0.25\,{
m m\,s^{-1}}$  if  $k=600\,{
m N\,m^{-1}}$ .

#### Gameboard:

## **STEM SMART Physics 22 - Combining Energies**



<u>Home</u> <u>Gameboard</u> Physics Mechanics Dynamics Gravitational, Elastic and Kinetic Energy 2.3

# Gravitational, Elastic and Kinetic Energy 2.3





Figure 1: Objects suspended from a spring exchange stores of kinetic, elastic potential and kinetic energy as they move up and down.

Using the diagram above, calculate  $x_{\rm B}$  (the extension of the spring at the <u>equilibrium</u> point) for a  $100\,{\rm N}$  weight hanging from a  $k=5.0\,{\rm kN\,m^{-1}}$  spring.

Gameboard:

**STEM SMART Physics 22 - Combining Energies** 



<u>Home</u>

<u>Gameboard</u>

Physics

Mechanics

Dynamics

Gravitational, Elastic and Kinetic Energy 2.4

# Gravitational, Elastic and Kinetic Energy 2.4



(This question is about the system shown in the Example in the <u>notes page</u>, which is shown below.)

A  $60 \, \mathrm{kg}$  bungee jumper falls  $12 \, \mathrm{m}$  before their bungee is <u>taut</u>. The <u>spring constant</u>  $k = 200 \, \mathrm{N \, m^{-1}}$ .

### Part A The bungee has stretched $5.0\,\mathrm{m}$

Calculate the speed of bungee jumper when the bungee has stretched  $5.0\,\mathrm{m}$ .

## Part B The bungee becomes slack on the way up

Calculate the speed of bungee jumper when the bungee becomes <u>slack</u> on the way up.

#### Gameboard:

**STEM SMART Physics 22 - Combining Energies** 



<u>Home</u>

<u>Gameboard</u>

Physics

Mechanics (

Dynamics

Gravitational, Elastic and Kinetic Energy 2.7

# Gravitational, Elastic and Kinetic Energy 2.7



(This question is about the system shown in the Example in the notes page, which is shown below.)

A  $60 \, \mathrm{kg}$  bungee jumper falls  $12 \, \mathrm{m}$  before their bungee is <u>taut</u>. The <u>spring constant</u>  $k = 200 \, \mathrm{N \ m^{-1}}$ .

Calculate how far the bungee jumper falls before they first come to rest. You may assume that the *total* potential energy of the jumper relative to the <u>equilibrium</u> position is given by  $\frac{1}{2}ky^2$ .

Gameboard:

**STEM SMART Physics 22 - Combining Energies** 



<u>Home</u> <u>Gameboard</u> Physics Mechanics Dynamics Pop-up Toy

## Pop-up Toy



A pop-up toy consists of a head and sucker of combined mass m stuck to the top of a <u>light</u> spring of <u>natural length</u>  $l_0$  and <u>spring constant</u> k. The spring is compressed to length  $l_1$  when the pop-up is stuck to the ground.

To what height above the ground does the bottom of the unstretched spring jump to when it is <a href="mailto:smoothly">smoothly</a> released?

The following symbols may be useful: g, k, 1\_0, 1\_1,  $\mbox{m}$