

STUSB4500 NVM registers Description and generic access

Related products

- STUSB4500
 Standalone USB PD sink controller with short-to-VBUS protections
- STEVAL-ISC005V1
 Evaluation board for the STUSB4500 USB Power Delivery controller
- STREF-SCS001V1

 Fast and easy migration from DC barrel to Type-C

Scope

- Summary of STUSB4500 NVM operation
- NVM organization
- · I2C access description for NVM Read and Write
- "C" code example
- · Full NVM Mapping
- Practical example with STSW-STUSB002 GUI software import and export

Content

1	NVM	Principle	2
	1.1	IC Startup	
	1.2	NVM Organization	
	1.3	NVM map full list	
2		IVM Access	
_	2.1	NVM registers	
	2.1.1	•	
	2.1.2	•	
	2.2	NVM READ procedure	
	2.2.1	·	
	2.2.2		
	2.3	NVM WRITE procedure	
	2.3.1	·	
	2.3.2		
3	_	ode example	
	3.1	I2C API functions	
	3.2	Header & definition	
	3.1	nvm_flash	
	3.2	EnterReadMode	
	3.3	ReadSector	
	3.4	EnterWriteMode	
	3.5	WriteSector	18
	3.6	ExitTestMode	
4	NVM	Мар	19
	4.1	NVM Map customization through STSW-STUSB002 GUI	19
	4.1.1	STSW-STUSB002 GUI file format	19
	4.1.2	STUSB4500 NVM default content (GUI file format)	19
	4.1.1	NVM file interface with STSW-STUSB002 GUI	20
	4.2	NVM Map Detailed Content	2
5	Exan	nple	29
	5.1	Using an Aardvark for I2C & GUI	29
	5.1.1	Check default configuration	29
	5.1.2	Read STUSB4500 NVM map	30
	5.1.3	Extracting the NVM content	31
	5.1.4	Change parameters with STSW-STUSB002 GUI	31
	5.1.5	Check modified parameters	33
	5.1.6	Insert NVM content into Aardvark Batch file	34
	5.1.7	Re-Read STUSB4500 NVM map	37
	5.1.8	Check new configuration	38

1 NVM Principle

1.1 IC Startup

The STUSB4500 is a USB power delivery controller that addresses sink devices.

It is a full autonomous and auto-run device that implements a proprietary algorithm to allow the negotiation of a power delivery contract with a source without MCU support. PDO profiles and other parameters are configured in an integrated non-volatile memory (NVM).

When the device starts, NVM content is loaded into registers, and parameters are used by the algorithms and state machines.

Device behaviour can be customised by changing some values in NVM. A specific procedure based on I2C accesses allows the read, erase and write of NVM.

Parameters are described in STUSB4500 datasheet, and NVM mapping is described in this document.

Thus, to avoid side effects, it is strongly recommended to use ST provided tools such as <u>STSW-STUSB002</u> GUI software to modify the parameters.

1.2 NVM Organization

Memory is organized into 5 banks of 64bits

Each bank can be addressed individually.

For any operation, the whole content of the bank (all the 64bits) will be affected.

Memory map: Addresses

_													
	Bank		Address										
	0	0xC0	0xC1	0xC2	0xC3	0xC4	0xC5	0xC6	0xC7				
	1	0xC8	0xC9	0xCA	0xCB	0xCC	0xCD	0xCE	0xCF				
	2	0xD0	0xD1	0xD2	0xD3	0xD4	0xD5	0xD6	0xD7				
	3	0xD8	0xD9	0xDA	0xDB	0xDC	0xDD	0xDE	0xDF				
	4	0xE0	0xE1	0xE2	0xE3	0xE4	0xE5	0xE6	0xE7				

Memory map : Data

Bank	Data									
0	Data_C0	Data_C1	Data_C2	Data_C3	Data_C4	Data_C5	Data_C6	Data_C7		
1	Data_C8	Data_C9	Data_CA	Data_CB	Data_CC	Data_CD	Data_CE	Data_CF		
2	Data_D0	Data_D1	Data_D2	Data_D3	Data_D4	Data_D5	Data_D6	Data_D7		
3	Data_D8	Data_D9	Data_DA	Data_DB	Data_DC	Data_DD	Data_DE	Data_DF		
4	Data_E0	Data_E1	Data_E2	Data_E3	Data_E4	Data_E5	Data_E6	Data_E7		

Memory map : Default Values

Bank		Data										
0	0x00	0x00	0xB0	0xAA	0x00	0x45	0x00	0x00				
1	0x10	0x40	0x9C	0x1C	0xFF	0x01	0x3C	0xDF				
2	0x02	0x40	0x0F	0x00	0x32	0x00	0xFC	0xF1				
3	0x00	0x19	0x56	0xAF	0xF5	0x35	0x5F	0x00				
4	0x00	0x4B	0x90	0x21	0x43	0x00	0x40	0xFB				

1.3 NVM map full list

Bank 0

Addr	Content
0xC0	RESERVED : VENDOR_ID_LOW = 0x00
0xC1	RESERVED : VENDOR_ID_HIGH = 0x00
0xC2	RESERVED : PRODUCT_ID_LOW = 0xB0
0xC3	RESERVED : PRODUCT_ID_HIGH = 0xAA
0xC4	RESERVED : BCD_DEVICE_ID_LOW = 0x00
0xC5	RESERVED : BCD_DEVICE_ID_LOW = 0x45
0xC6	RESERVED : PORT_ROLE_CTRL = 0x00
0xC7	RESERVED : DEVICE_POWER_ROLE_CTRL = 0x00

Bank 1

Addr	Content									
0xC8	RESERVED: 0b00 GPIO_CF			CFG[1:0] RESERVED : 0x0						
0xC9	0	1	VBUS_ DCHG_ MASK		RESERVED: 0b00000					
0xCA		SCHARGE_T	IME_TO_0V[3:0] VBUS_DISCH_TIME_TO_PDO[3:0]						
0xCB				RESERVE	RESERVED: 0x1C					
0xCC				RESERVI	ED:0xFF					
0xCD				RESERV	ED: 0x01					
0xCE	RESERVED: 0x3C									
0xCF				RESERVE	ED: 0xDF					

Bank 2

Addr	Content
0xD0	RESERVED: 0x02
0xD1	RESERVED: 0x40
0xD2	RESERVED: 0x0F
0xD3	RESERVED: 0x00
0xD4	RESERVED: 0x32
0xD5	RESERVED: 0x00
0xD6	RESERVED: 0xFC
0xD7	RESERVED: 0xF1

Bank 3

Addr	Content											
0xD8	RESERVED: 0x00											
0xD9	RESERV	ED : 0x19										
0xDA	LUT_SNK_PDO1_I[3:0]	SNK_ UNCONS_ POWER	DPM_SNK_ PDO_NUMB[1:0]	USB_ COMM_ CAPABLE								
0xDB	SNK_HL1[3:0]	SNK_LL1[3:0]										
0xDC	SNK_LL2[3:0]		LUT_SNK_PDO2_I[3:0]									
0xDD	LUT_SNK_PDO3_I[3:0]	SNK_HL2[3:0]										
0xDE	SNK_HL3[3:0] SNK_LL3[3:0]											
0xDF	RESERVED : SNK_PI	DO_FILL_0xDF	= 0x00									

Bank 4

Addr		Content								
0xE0	SNK_ FLEX1	PDO_ _V[1:0]			RESERVED: 0b000000					
0xE1				SNK_PDO_F	LEX1_V[9:2]					
0xE2				SNK_PDO_F	LEX2_V[7:0]					
0xE3			SNK_PDO_	_FLEX_I[5:0]		SNK_PDO_ FLEX2_V[9:8]				
0xE4	0		R_OK_ [1:0]	0	SNK_PDO_	FLEX_I[9:6]				
0xE5				RESERVED :	SPARE = 0x00					
0xE6	RE	SERVED : 0b0)10	REQ_ SRC_ CURRENT	RESERVED: 0x0					
0xE7			RESERV	ED : ALERT_S	FATUS_1_MASK = 0xFB					

I2C NVM Access

NVM access is done through STUSB4500 I2C read and write commands to specific registers.

2.1 NVM registers

2.1.1 Control registers:

Registers list

Addr	Content
0x95	FTP_KEY
0x96	FTP_CTRL_0
0x97	FTP_CTRL_1

FTP_KEY

Bit	7	6	5	4	3	2	1	0
Content				FTP_	_KEY			
Address:	0v95							

Address:

Default: 0x00

Description: FTP_KEY register

FTP_KEY: Customer FTP access Key [7:0]

FTP CTRL 0

111_0111E_0											
Bit	7	6	5	4	3	2	1	0			
Content	FTP_ CUST_ PWR	FTP_ CUST_ RST_N	RESER VED	FTP_ CUST_ REQ	RESER VED	F	TP_CUST_SE	СТ			

Address: 0x96

Default: 0x40

FTP_CTRL_0 register Description:

[7]	FTP_CUST_PWR: Not used
[6]	FTP_CUST_RST_N: NVM macro-cell reset in customer mode (Active Low)
	0: Active reset
	1: No reset
[5]	RESERVED = 0
[4]	FTP_CUST_REQ: Access request to NVM in customer mode
[3]	RESERVED = 0
[2:1]	FTP_CUST_SECT:
	000: Sector 0 accessed
	001: Sector 1 accessed
	010: Sector 2 accessed
	011: Sector 3 accessed
	100: Sector 4 accessed
	others: Not allowed in customer mode (In this case sector 0 accessed)

FTP_CTRL_1

Bit	7	6	5	4	3	2	1	0	
Content			FTP_CUST_S	SER		FT	P_CUST_OPC	ODE	
Address:	0x97								
Default: 0x0	00								
Description:	FTP_C	TRL_1 regis	ter						
[7:3]	[7:3] FTP_CUST_SER: NVM sector input in customer mode 00000: (NO_SECTOR) No sector selected xxxx1: Sector 0 selected xxx1x: Sector 1 selected xx1xx: Sector 2 selected x1xxx: Sector 3 selected 1xxxx: Sector 4 selected								
[2:0]	000: Read m 001: Shift In 010: Shift In 011: Shift Ou	emory array Data on Prog Data on Secto It Data on Pro It Data on sec	VM operation in ram Load Regi or Erase Regis ogram Load Re otor Erase Regi	ter gister	de				

2.1.2 Data registers:

110: Program word into EEPROM111: Soft Program array

NVM Data Read / Write registers

Addr	Content
0x53	NVM data : LSB
0x54	NVM data
0x55	NVM data
0x56	NVM data
0x57	NVM data
0x58	NVM data
0x59	NVM data
0x5A	NVM data : MSB

2.2 NVM READ procedure

2.2.1 Procedure

The following operations shall be done for NVM read:

2.2.1.1 NVM Accessibility

Before any operation, the customer access key must be written in the FTP_KEY register. This write gives the access to the FTP_CTRL_0 and FTP_CTRL_1 registers.

- Unlock NVM by writing password in FTP_KEY register :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x47

2.2.1.2 NVM Power-up / Reset Sequence

After STUSB4500 start-up sequence, the NVM is powered off.

Before any customer operation, the NVM must be powered on and reset pulse must be applied by the following sequence:

- Put NVM internal controller and NVM in operational conditions: write FTP_CUST_RST_N at '1' in FTP_CTRL_0 register:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40

- Reset NVM internal controller and NVM: write FTP_CUST_RST_N at '0' in FTP_CTRL_0 register:
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x00
- A temporization upper than 2 us must be observed before the following write.
- Put NVM internal controller and NVM in operational conditions: write FTP_CUST_RST_N at '1' in FTP_CTRL_0 register:
 - \circ I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x40

2.2.1.3 NVM Customer Sector0 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL_1 register:
 - \circ I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x00
- Load Opcode: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b000 in register FTP_CTRL_0:
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution: 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - (Less Significant Byte)

```
Data_C0 : I2C Read : dev_addr = 0x28, reg_addr = 0x53
```

- Data C1: I2C Read: dev_addr = 0x28, reg_addr = 0x54
- \circ Data_C2 : I2C Read : dev_addr = 0x28, reg_addr = 0x55
- Data_C3: I2C Read: dev_addr = 0x28, reg_addr = 0x56
- Data_C4 : I2C Read : dev_addr = 0x28, reg_addr = 0x57
- \circ Data_C5 : I2C Read : dev_addr = 0x28, reg_addr = 0x58
- Data_C6: I2C Read: dev_addr = 0x28, reg_addr = 0x59
- (Most Significant Byte)
 - Data_C7: I2C Read: dev_addr = 0x28, reg_addr = 0x5A

2.2.1.4 NVM Customer Sector1 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL_1 register :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b001 in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x51
- Wait for command execution : 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - (Less Significant Byte)
 - Data_C8: I2C Read: dev_addr = 0x28, reg_addr = 0x53
 - $\qquad \quad \text{Data_C9: I2C Read: dev_addr = 0x28, reg_addr = 0x54}$
 - Data_CA: I2C Read: dev_addr = 0x28, reg_addr = 0x55
 - Data_CB : I2C Read : dev_addr = 0x28, reg_addr = 0x56
 - Data_CC : I2C Read : dev_addr = 0x28, reg_addr = 0x57
 - $\hspace{0.5cm} \circ \hspace{0.5cm} \text{Data_CD}: \text{I2C Read}: \text{dev_addr} = 0\text{x}28, \, \text{reg_addr} = 0\text{x}58 \\$
 - Data_CE : I2C Read : dev_addr = 0x28, reg_addr = 0x59
 - o (Most Significant Byte)
 - Data_CF: I2C Read: dev_addr = 0x28, reg_addr = 0x5A

2.2.1.5 NVM Customer Sector2 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL_1 register :
 - \circ I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode : set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b010 in register FTP_CTRL_0 :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x52
- Wait for command execution : 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - (Less Significant Byte)
 - Data_D0 : I2C Read : dev_addr = 0x28, reg_addr = 0x53
 - Data D1: I2C Read: dev addr = 0x28, reg addr = 0x54
 - $\hspace{0.5cm} \circ \hspace{0.5cm} \mathsf{Data_D2} : \mathsf{I2C} \; \mathsf{Read} : \mathsf{dev_addr} = \mathsf{0x28}, \, \mathsf{reg_addr} = \mathsf{0x55}$
 - Data_D3: I2C Read: dev_addr = 0x28, reg_addr = 0x56
 Data_D4: I2C Read: dev_addr = 0x28, reg_addr = 0x57
 - o Data D5: I2C Read: dev addr = 0x28, reg_addr = 0x58
 - Data_D6: I2C Read: dev_addr = 0x28, reg_addr = 0x59
 - (Most Significant Byte)
 - Data_D7: I2C Read: dev_addr = 0x28, reg_addr = 0x5A

2.2.1.6 NVM Customer Sector3 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL_1 register :
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b011 in register FTP_CTRL_0:
- I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x53
- Wait for command execution: 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - o (Less Significant Byte)
 - Data_D8: I2C Read: dev_addr = 0x28, reg_addr = 0x53
 - Data_D9: I2C Read: dev_addr = 0x28, reg_addr = 0x54
 - Data_DA: I2C Read: dev_addr = 0x28, reg_addr = 0x55
 - o Data DB: I2C Read: dev addr = 0x28, reg addr = 0x56
 - Data_DC : I2C Read : dev_addr = 0x28, reg_addr = 0x57
 - Data_DD: I2C Read: dev_addr = 0x28, reg_addr = 0x58
 - o Data_DE: I2C Read: dev_addr = 0x28, reg_addr = 0x59
 - (Most Significant Byte)
 - Data_DF: I2C Read: dev_addr = 0x28, reg_addr = 0x5A

2.2.1.7 NVM Customer Sector4 Read

- Set Read Sector Opcode (0b000) in FTP_CTRL 1 register:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x00
- Load Opcode: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = 0b100 in register FTP_CTRL_0:
 - o I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x54
- Wait for command execution : 1ms
- Read NVM Data (8 bytes) at starting address 0x53
 - (Less Significant Byte)
 - Data_E0: I2C Read: dev_addr = 0x28, reg_addr = 0x53
 - Data_E1: I2C Read: dev_addr = 0x28, reg_addr = 0x54
 - Data_E2: I2C Read: dev_addr = 0x28, reg_addr = 0x55
 - Data_E3: I2C Read: dev_addr = 0x28, reg_addr = 0x56
 - o Data_E4: I2C Read: dev_addr = 0x28, reg_addr = 0x57
 - Data_E5: I2C Read: dev_addr = 0x28, reg_addr = 0x58
 - o Data_E6: I2C Read: dev_addr = 0x28, reg_addr = 0x59
 - (Most Significant Byte)
 - Data_E7: I2C Read: dev_addr = 0x28, reg_addr = 0x5A

2.2.1.8 Exit Test mode

- Clear FTP CTRL registers
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40, 0x00
- Clear FTP KEY register
 - I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x00

2.2.2 Pseudo Code example for full memory read

```
I2C Write : dev_addr = 0x28, req_addr = 0x95, data = 0x47
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x40
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x00
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x40
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x00
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution : 1ms
[Data_C0..Data_C7] : 8 Bytes I2C Read : dev_addr = 0x28, reg_addr = 0x53
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x51
Wait for command execution : 1ms
[Data_C8..Data_CF] : 8 Bytes I2C Read : dev_addr = 0x28, reg_addr = 0x53
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x52
Wait for command execution : 1ms
[Data_D0..Data_D7] : 8 Bytes I2C Read : dev_addr = 0x28, reg_addr = 0x53
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x53
```



```
Wait for command execution: 1ms
[Data_D8..Data_DF]: 8 Bytes I2C Read: dev_addr = 0x28, reg_addr = 0x53
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x54
Wait for command execution: 1ms
[Data_E0..Data_E7]: 8 Bytes I2C Read: dev_addr = 0x28, reg_addr = 0x53
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40, 0x00
I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x00
```

2.3 NVM WRITE procedure

2.3.1 Procedure

The following operations shall be done for NVM write:

2.3.1.1 NVM Accessibility

Before any operation, the customer access key must be written in the FTP_KEY register. This write gives the access to the FTP_CTRL_0 and FTP_CTRL_1 registers.

- Unlock NVM by writing password in FTP KEY register
 - I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x47

2.3.1.2 NVM Power-up Sequence

After STUSB4500 start-up sequence, the NVM is powered off.

Before any customer operation, the NVM must be powered on and reset pulse must be applied by the following sequence:

- Load 0x00 to data register
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x53, data = 0x00
- Put NVM internal controller and NVM in operational conditions: write FTP_CUST_PWR and FTP_CUST_RST_N at '1' in FTP_CTRL_0 register:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40
- Reset NVM internal controller and NVM : write FTP_CUST_RST_N at '0' in FTP_CTRL_0 register :
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x00
- A temporization upper than 2 us must be observed before the following write.
- Put NVM internal controller and NVM in operational conditions: write FTP_CUST_RST_N at '1' in FTP_CTRL_0 register:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40

2.3.1.3 NVM Customer Full Erase

- Set "Shift In Data on Sector Erase Register" Opcode for all sectors : FTP_CUST_SER = 0b11111 and FTP_CUST_OPCODE = 0b010 in register FTP_CTRL_1
 - o I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0xFA
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution : 1ms
- Set "Soft Program array": FTP_CUST_OPCODE = 0b111
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x07
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for EP (Memory Erase time): 5ms
- Set "Erase memory array" Opcode: FTP_CUST_OPCODE = 0b101
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x05
- Load Opcode: set FTP CUST REQ = '1' in register FTP CTRL 0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for EP (Memory Erase time): 5ms

2.3.1.4 NVM Customer Sector0 Write

- Load NVM Data Sector 0 (8 bytes) at starting address 0x53
 - I2C Write: dev_addr = 0x28, reg_addr = 0x53,
 - data = Data C0, Data C1, Data C2, Data C3, Data C4, Data C5, Data C6, Data C7
- Set "Shift In Data on Program Load Register" Opcode: FTP_CUST_OPCODE = 0b001
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode : set FTP_CUST_REQ = '1' in register FTP_CTRL_0 :

- o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution: 1ms
- Set "Program word into EEPROM" Opcode: FTP CUST OPCODE = 0b110
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '000' in register FTP_CTRL_0:
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for PP (Word Program time): 2ms

2.3.1.5 NVM Customer Sector1 Write

- Load NVM Data Sector 1 (8 bytes) at starting address 0x53
 - I2C Write: dev_addr = 0x28, reg_addr = 0x53,
 - data = Data_C8, Data_C9, Data_CA, Data_CB, Data_CC, Data_CD, Data_CE, Data_CF
- Set "Shift In Data on Program Load Register" Opcode: FTP_CUST_OPCODE = 0b001
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode: set FTP CUST REQ = '1' in register FTP CTRL 0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution: 1ms
- Set "Program word into EEPROM" Opcode: FTP_CUST_OPCODE = 0b110
 - I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '001' in register FTP_CTRL 0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x51
- Wait for PP (Word Program time): 2ms

2.3.1.6 NVM Customer Sector2 Write

- Load NVM Data Sector 2 (8 bytes) at starting address 0x53
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x53,
 - data = Data_D0, Data_D1, Data_D2, Data_D3, Data_D4, Data_D5, Data_D6, Data_D7
- Set "Shift In Data on Program Load Register" Opcode: FTP_CUST_OPCODE = 0b001
 - o I2C Write: dev addr = 0x28, reg addr = 0x97, data = 0x01
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
- Wait for command execution : 1ms
- Set "Program word into EEPROM" Opcode: FTP_CUST_OPCODE = 0b110
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '010' in register FTP_CTRL_0:
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x52
- Wait for PP (Word Program time) : 2ms

2.3.1.7 NVM Customer Sector3 Write

- Load NVM Data Sector 3 (8 bytes) at starting address 0x53
 - \circ I2C Write : dev_addr = 0x28, reg_addr = 0x53,
 - data = Data D8, Data D9, Data DA, Data DB, Data DC, Data DD, Data DE, Data DF
- Set "Shift In Data on Program Load Register" Opcode: FTP CUST OPCODE = 0b001
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - \circ I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x50
- Wait for command execution : 1ms
- Set "Program word into EEPROM" Opcode: FTP_CUST_OPCODE = 0b110
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '011' in register FTP_CTRL_0:
 - o I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x53
- Wait for PP (Word Program time): 2ms

2.3.1.8 NVM Customer Sector4 Write

Load NVM Data Sector 4 (8 bytes) at starting address 0x53

- I2C Write: dev_addr = 0x28, reg_addr = 0x53, data = Data_E0, Data_E1, Data_E2, Data_E3, Data_E4, Data_E5, Data_E6, Data_E7
- Set "Shift In Data on Program Load Register" Opcode: FTP_CUST_OPCODE = 0b001
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
- Load Opcode: set FTP_CUST_REQ = '1' in register FTP_CTRL_0:
 - \circ I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x50
- Wait for command execution : 1ms
- Set "Program word into EEPROM" Opcode: FTP_CUST_OPCODE = 0b110
 - o I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
- Load Opcode with sector value: set FTP_CUST_REQ = '1' and FTP_CUST_SECT = '100' in register FTP_CTRL_0:
 - \circ I2C Write: dev addr = 0x28, reg addr = 0x96, data = 0x54
- Wait for PP (Word Program time): 2ms

2.3.1.9 Exit Test mode

- Clear FTP CTRL registers
 - I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x40, 0x00
- Clear FTP_KEY register
 - I2C Write: dev_addr = 0x28, reg_addr = 0x95, data = 0x00

2.3.2 Pseudo Code example for full memory Write

```
I2C Write : dev_addr = 0x28, reg_addr = 0x95, data = 0x47
I2C Write : dev_addr = 0x28, reg_addr = 0x53, data = 0x00
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x40
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x00
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x40
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0xFA
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x07
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for EP (Memory Erase time) : 5ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x05
I2C Write: dev_addr = 0x28, req_addr = 0x96, data = 0x50
Wait for EP (Memory Erase time) : 5ms
I2C Write : dev_addr = 0x28, reg_addr = 0x53, data = [Data_C0..Data_C7]
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x01
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x06
I2C Write: dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for PP (Word Program time) : 2ms
I2C Write : dev_addr = 0x28, reg_addr = 0x53, data = [Data_C8..Data_CF]
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x01
I2C Write : dev_addr = 0x28, req_addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x06
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x51
Wait for PP (Word Program time) : 2ms
I2C Write : dev_addr = 0x28, reg_addr = 0x53, data = [Data_D0..Data_D7]
Wait for command execution : 1ms
I2C Write: dev_addr = 0x28, reg_addr = 0x97, data = 0x01
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x06
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x52
```



```
Wait for PP (Word Program time) : 2ms
I2C Write : dev_addr = 0x28, reg_addr = 0x53, data = [Data_D8..Data_DF]
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x01
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x06
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x53
Wait for PP (Word Program time) : 2ms
I2C Write : dev_addr = 0x28, reg_addr = 0x53, data = [Data_E0..Data_E7]
Wait for command execution : 1ms
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x01
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x50
Wait for command execution : 1\,\mathrm{ms}
I2C Write : dev_addr = 0x28, reg_addr = 0x97, data = 0x06
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x54
Wait for PP (Word Program time) : 2ms
I2C Write : dev_addr = 0x28, reg_addr = 0x96, data = 0x40, 0x00
I2C Write : dev_addr = 0x28, reg_addr = 0x95, data = 0x00
```


3 "C" code example

3.1 I2C API functions

```
HAL_StatusTypeDef I2C_Read_USB_PD(uint8_t Port, uint16_t Address ,uint8_t *DataR ,uint16_t Length);
/* I2C Read for STUSB4500
   Device address : DevADDR defined by STUSB4500 IC, ADDRO and ADDR1 pins
        (default : 0x28 in 7 bits format)
        uint16_t Address : Register address RegADDR
        uint8_t *DataR : data pointer
        uint16_t Length : number of data to read */

HAL_StatusTypeDef I2C_Write_USB_PD(uint8_t Port, uint16_t Address ,uint8_t *DataW ,uint16_t Length);
/* I2C Write for STUSB4500
   Device address : DevADDR defined by STUSB4500 IC, ADDRO and ADDR1 pins
        (default : 0x28 in 7 bits format)
        uint16_t Address : Register address RegADDR
        uint8_t *DataW : data pointer
        uint16_t Length : number of data to write */
```

3.2 Header & definition

```
/*NVM Flasher Registers Definition */
#define FTP_CUST_PASSWORD_REG 0x95
#define FTP_CUST_PASSWORD
                                0x47
#define FTP CTRL 0
                                0x96
#define FTP_CUST_PWR
                                0x80
#define FTP_CUST_RST_N
                                0x40
#define FTP_CUST_REQ
                                0x10
#define FTP_CUST_SECT
                                0x07
#define FTP_CTRL_1
                                0x97
#define FTP_CUST_SER
#define FTP_CUST_OPCODE
                                0x07
#define RW_BUFFER
                                0x53
/*"000" then No Operation
"001" then Read
"010" and FTP_ADR[2:0]="000" then Shift-In Write Bit Data (0x20-0x28). (to be done before
Programming)
"010" and FTP_ADR[2:0]="001" then Shift-In Erase Sector Data (0x20). (to be done before Erasing)
"011" and \mbox{FTP\_ADR}[2:0] = \mbox{"000"} then Shift-Out Read Bit Data (0x20-0x28). (to be done after Reading)
"011" and FTP_ADR[2:0]="001" then Shift-Out Erase Sector Data (0x20). (to be done after Erasing)
"100" then Verify (to be done after Programming)
"101" then Erase
"110" then Program
"111" then Soft Programming (to be done after Erasing) */
#define READ
                           0x00
#define WRITE_PL
                            0x01
#define WRITE_SER
                           0x02
#define READ_PL
                            0x03
#define READ_SER
#define ERASE_SECTOR
                            0x05
#define PROG SECTOR
                            0x06
#define SOFT_PROG_SECTOR
                            0x07
#define SECTOR_0
                            0x01
#define SECTOR_1
                            0x02
#define SECTOR_2
                            0x04
#define SECTOR_3
                           0x08
#define SECTOR_4
                           0x10
```


3.1 nvm_flash

```
uint8_t nvm_flash(uint8_t Port)
   if (CUST_EnterWriteMode(0, SECTOR_0 | SECTOR_1 | SECTOR_2 | SECTOR_3 | SECTOR_4 ) != 0 ) return 1;
   if (CUST_WriteSector(0,0,Sector0) != 0 ) return 1;
   if (CUST_WriteSector(0,1,Sector1) != 0 ) return 1;
   if (CUST_WriteSector(0,2,Sector2) != 0 ) return 1;
   if (CUST_WriteSector(0,3,Sector3) != 0 ) return 1;
   if (CUST_WriteSector(0,4,Sector4) != 0 ) return 1;
   if (CUST_ExitTestMode(0) != 0 ) return 1;
   return 0;
 3.2 EnterReadMode
uint8_t CUST_EnterReadMode(uint8_t Port)
   unsigned char Buffer[10];
   /* Set Password*/
   Buffer[0]=FTP_CUST_PASSWORD;
   if ( I2C_Write_USB_PD(Port,FTP_CUST_PASSWORD_REG,Buffer,1) != HAL_OK ) return 1;
   /* Set RST_N bit */
   Buffer[0] = FTP_CUST_RST_N ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
   /* Reset NVM */
   Buffer [0]=0;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
    /* Set RST_N bit */
   Buffer[0] = FTP_CUST_RST_N ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
   return 0 ;
3.3 ReadSector
uint8_t CUST_ReadSector(uint8_t Port, char SectorNum, unsigned char *SectorData)
   unsigned char Buffer[10];
   /* Set Read Sectors Opcode */
   Buffer[0] = (READ & FTP_CUST_OPCODE);
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_1,Buffer,1) != HAL_OK ) return 1;
    /* Load Read Sectors Opcode */
   Buffer[0] = (SectorNum & FTP_CUST_SECT) | FTP_CUST_RST_N | FTP_CUST_REQ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
    /* Wait for execution */
   do
        if ( I2C_Read_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
   while(Buffer[0] & FTP_CUST_REQ);
    /* Sectors Data are available in RW-BUFFER @ 0x53 */
   I2C_Read_USB_PD (Port, RW_BUFFER, &SectorData[0], 8);
}
```


3.4 EnterWriteMode

```
uint8_t CUST_EnterWriteMode(uint8_t Port,unsigned char ErasedSector)
   unsigned char Buffer[10];
    /* Set Password*/
   Buffer[0]=FTP_CUST_PASSWORD;
   if ( I2C_Write_USB_PD(Port,FTP_CUST_PASSWORD_REG,Buffer,1) != HAL_OK ) return 1;
    /* this register must be NULL for Partial Erase feature */
   Buffer[0] = 0;
   if ( I2C_Write_USB_PD(Port,RW_BUFFER,Buffer,1) != HAL_OK ) return 1;
    /* Set RST_N bit */
   Buffer[0] = FTP_CUST_RST_N ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
    /* Reset NVM */
   Buffer[0]=0;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0, Buffer, 1) != HAL_OK ) return 1;
    /* Set RST_N bit */
   Buffer[0] = FTP_CUST_RST_N;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
   /* Load 0xF1 to FTP_CUST_SER to erase all sectors of FTP and Set Write SER Opcode */
   Buffer[0]=((ErasedSector << 3) & FTP_CUST_SER) | (WRITE_SER & FTP_CUST_OPCODE);</pre>
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_1,Buffer,1) != HAL_OK ) return 1;
    /* Load Write SER Opcode */
   Buffer[0] = FTP_CUST_RST_N | FTP_CUST_REQ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
    /* Wait for execution */do
        if ( I2C_Read_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
   while(Buffer[0] & FTP_CUST_REQ);
    /* Set Soft Prog Opcode */
   Buffer[0] = SOFT_PROG_SECTOR & FTP_CUST_OPCODE;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_1,Buffer,1) != HAL_OK ) return 1;
    /* Load Soft Prog Opcode */
   Buffer[0] = FTP_CUST_RST_N | FTP_CUST_REQ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
    /* Wait for execution */
   do
        if ( I2C_Read_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
   while(Buffer[0] & FTP_CUST_REQ);
    /* Set Erase Sectors Opcode */
   Buffer[0] = ERASE_SECTOR & FTP_CUST_OPCODE ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_1,Buffer,1) != HAL_OK ) return 1;
    /* Load Erase Sectors Opcode */
   Buffer[0] = FTP_CUST_RST_N | FTP_CUST_REQ ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
    /* Wait for execution */
   do
    {
        if ( I2C_Read_USB_PD(Port,FT_CTRL_0,Buffer,1) != HAL_OK ) return 1;
```



```
while(Buffer[0] & FTP_CUST_REQ);
   return 0;
3.5 WriteSector
uint8_t CUST_WriteSector(uint8_t Port, char SectorNum, unsigned char *SectorData)
   unsigned char Buffer[10];
    /* Write Sectors Data in RW-BUFFER @ 0x53 */
   I2C_Write_USB_PD(Port, RW_BUFFER, SectorData, 8);
   /*Set Write to PL Opcode*/
   Buffer[0] = (WRITE_PL & FTP_CUST_OPCODE);
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_1,Buffer,1) != HAL_OK ) return 1;
    /* Load Write to PL Sectors Opcode */
   Buffer[0] = FTP_CUST_RST_N | FTP_CUST_REQ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
    /* Wait for execution */
   do
        if ( I2C_Read_USB_PD(Port,FTP_CTRL_0, Buffer, 1) != HAL_OK ) return 1;
   while(Buffer[0] & FTP_CUST_REQ) ;
    /*Set Prog Sectors Opcode*/
   Buffer[0] = (PROG_SECTOR & FTP_CUST_OPCODE);
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_1,Buffer,1) != HAL_OK ) return 1;
    /* Load Prog Sectors Opcode */
   Buffer[0] = (SectorNum & FTP_CUST_SECT) | FTP_CUST_RST_N | FTP_CUST_REQ;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
    /* Wait for execution */
   do
        if ( I2C_Read_USB_PD(Port,FTP_CTRL_0,Buffer,1) != HAL_OK ) return 1;
   while(Buffer[0] & FTP_CUST_REQ) ;
   return 0;
3.6 ExitTestMode
uint8_t CUST_ExitTestMode(uint8_t Port)
   unsigned char Buffer[10];
   /* clear registers */
   Buffer[0] = FTP_CUST_RST_N; Buffer[1] = 0x00;
   if ( I2C_Write_USB_PD(Port,FTP_CTRL_0,Buffer,2) != HAL_OK ) return 1;
    /* Clear Password */
   Buffer [0] = 0 \times 00;
   if ( I2C_Write_USB_PD(Port,FTP_CUST_PASSWORD_REG,Buffer,1) != HAL_OK ) return 1;
   return 0 ;
```


4 NVM Map

4.1 NVM Map customization through STSW-STUSB002 GUI

Thanks to <u>STSW-STUSB002</u> GUI software, parameters can be modified to configure STUSB4500 without studying the full map.

GUI can read and write STUSB4500 device through NUCLEO-F072RB interface board for evaluation, configuration validation and quick prototyping.

GUI can also interpret and generate text format files of NVM map.

4.1.1 STSW-STUSB002 GUI file format

```
0xC0: →Data_C0 →Data_C1 →Data_C2 →Data_C3 →Data_C4 →Data_C5 →Data_C6 →Data_C7 → CR US 0xC8: →Data_C8 →Data_C9 →Data_CA →Data_CB →Data_CC →Data_CD →Data_CE →Data_CF → CR US 0xD0: →Data_C0 →Data_C1 →Data_C2 →Data_C3 →Data_C4 →Data_C5 →Data_C6 →Data_C7 → CR US 0xD8: →Data_C8 →Data_C9 →Data_CA →Data_CB →Data_CC →Data_CD →Data_CE →Data_CF → CR US 0xE0: →Data_E0 →Data_E1 →Data_E2 →Data_E3 →Data_E4 →Data_E5 →Data_E6 →Data_E7 → CR US CR US
```

Symbols note:

- → : ASCII code 0x09 TAB (horizontal tab)
- CR: ASCII code 0x0D CR (carriage return)
- LF: ASCII code 0x0A LF (NL line feed, new line)

4.1.2 STUSB4500 NVM default content (GUI file format)

0xC0:	0x00	0x00	0xB0	0xAA	$0 \times 0 0$	0x45	0x0	0x00
0xC8:	0x10	0x40	0x9C	0x1C	0xFF	0x01	0x3C	0xDF
0xD0:	0x02	0x40	0x0F	0x00	0x32	0x00	0xFC	0xF1
0xD8:	0x00	0x19	0x56	0xAF	0xF5	0x35	0x5F	0x00
0xE0:	0x00	0x4B	0x90	0x21	0x43	0x00	0x40	0xFB

4.1.1 NVM file interface with STSW-STUSB002 GUI

NVM mapping, read from I2C command and in the right file format, can be loaded into STSW-STUSB002 GUI with the "Load NVM config file \dots " button.

Load NVM config file ...

Then the parameters can be displayed and modified in the other tabs ("SNK Parameters", "TypeC")

The "NVM MAP" tab reflects the modified parameters, and then the configuration can be exported with the "Save NVM config to file ..." button.

Save NVM config to file ...

The exported file contains the NVM Map that can bed flashed with I2C commands previously described.

4.2 NVM Map Detailed Content

VENDOR ID LOW

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED: 0x00			
Address:	0xC0							

Default: 0x00

Description: VENDOR_ID_LOW

[7:0] RESERVED : $VENDOR_ID_LOW = 0x00$

VENDOR_ID_HIGH

Bit	7	6	5	4	3	2	1	0
Content				RESERV				

Address: 0xC1

Default: 0x00

Description: VENDOR_ID_HIGH

RESERVED : VENDOR_ID_HIGH = 0x00 [7:0]

PRODUCT ID LOW

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED : 0xB0			
Addross:	0,400							

Address: 0xC2

Default: 0xB0

Description: PRODUCT_ID_LOW

RESERVED : PRODUCT_ID_LOW = 0xB0 [7:0]

PRODUCT_ID_ HIGH

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED : 0xAA			
Address:	0xC3							

Default: 0xAA

Description: PRODUCT_ID_HIGH

[7:0] RESERVED: PRODUCT ID HIGH = 0xAA

BCD_DEVICE_ID_LOW

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED: 0x00			
Address:	0xC4							

Default: 0x00

BCD_DEVICE_ID_LOW Description:

RESERVED : BCD_DEVICE_ID_LOW = 0x00

BCD_DEVICE_ID_HIGH

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED : 0x45			
Address:	0xC5							

Default: 0x45

Description: BCD_DEVICE_ID_HIGH

RESERVED : BCD_DEVICE_ID_LOW = 0x45 [7:0]

PORT_ROLE_CTRL

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED : 0x00			

Address: 0xC6

Default: 0x00

Description: PORT_ROLE_CTRL

[7:0] RESERVED : PORT_ROLE_CTRL = 0x00

DEVICE_POWER_ROLE_CTRL

Bit	7	6	5	4	3	2	1	0		
Content		RESERVED: 0x00								
Address:	0xC7	0xC7								
Default: 0x0	0									
Description:	: DEVICE_POWER_ROLE_CTRL									
[7:0]	RESERVED : DEVICE_POWER_ROLE_CTRL = 0x00									

GPIO_CTRL

Bit	7	6	5	4	3	2	1	0
Content	0	0	GPIO_0	CFG[1:0]	0	0	0	0
Address:	0xC8							

Default: 0x10

Description: GPIO_CTRL

[7:6]	RESERVED: 0b00
[5:4]	GPIO_CFG[1:0]
[3:0]	RESERVED: 0x0

ANALOG_CTRL

Bit	7	6	5	4	3	2	1	0
Content	0	1	VBUS_ DCHG_ MASK	0	0	0	0	0

Address: 0xC9

Default: 0x40

[3:0]

Description: ANALOG_CTRL

VBUS_DISCH_TIME_TO_PDO[3:0]

[7]	RESERVED: 0b0
[6]	RESERVED: 0b1
[5]	VBUS_DCHG_MASK
[4:0]	RESERVED: 0b00000

DISCHARGE_TIME_CTRL

Bit	7	6	5	4	3	2	1	0			
Content		DISCHARGE_T	IME_TO_0V[3:	3:0] VBUS_DISCH_TIME_TO_PDO[3:0]							
Address:	: 0xCA										
Default: 0x9	9C										
Description:	Description: DISCHARGE_TIME_CTRL										
[7:4]	4] DISCHARGE TIME TO 0V[3:0]										

[7:0]

[7:0]

RESERVED_0xCB

Bit	7	6	5	4	3	2	1	0		
Content		•	•	RESERVI	ED: 0x1C	•	•	•		
Address:	0xCB	0xCB								
Default: 0x1	С									

Description: RESERVED

[7:0] RESERVED: 0x1C

RESERVED: 0x01

RESERVED: 0x3C

RESERVED_0xCC

Bit	7	6	5	4	3	2	1	0	
Content	RESERVED: 0xF0								
Address:	0xCC								
Default: 0xF	0								
Description: RESERVED									
[7:0]	RESERVED	: 0xFF			•		•		

RESERVED_0xCD

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED: 0x01			
Address:	0xCD							
Default: 0x0)1							
Description:	RESER	VED						

RESERVED_0xCE

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED: 0x00			
Address:	0xCE							
Default: 0x00								
Description:	RESER\	√ED						

RESERVED 0xCF

HESERVED_OXOI											
Bit	7	6	5	4	3	2	1	0			
Content		RESERVED: 0xDF									
Address:	0xCF										
Default: 0xE)F										
Description:	Description: RESERVED										
[7:0]	RESERVED	: 0xDF									

RESERVED_0xD0

Bit	1	6	5	4	3	2	1	U			
Content	RESERVED: 0x02										
Address:	0xD0	0xD0									
Default: 0x0	Default: 0x02										
Description: RESERVED											
[7:0]	RESERVED	: 0x02									

RESERVED_0xD1

Bit	7	6	5	4	3	2	1	0	
Content				RESERV	ED: 0x40				
Address:	0xD1	0xD1							
Default: 0x4	10								

Description: RESERVED

[7:0] RESERVED: 0x40

RESERVED_0xD2

Bit	7	6	5	4	3	2	1	0
Content	RESERVED: 0x0F							
Address:	0xD2							
Default: 0x0	Default: 0x0F							
Description:	RESER	VED						
[7:0]	RESERVED	: 0x0F						

RESERVED_0xD3

Bit	7	6	5	4	3	2	1	0	
Content	RESERVED: 0x00								
Address:	0xD3	0xD3							
Default: 0x0	00								
Description:	RESERVED								
[7:0]	RESERVED: 0x00								

RESERVED_0xD4

Bit	7	6	5	4	3	2	1	0		
Content		RESERVED: 0x32								
Address:	0xD4									
Default: 0x3	: 0x32									
Description:	RESER	RVED								
[7:0]	RESERVED: 0x32									

RESERVED_0xD5

Bit	7	6	5	4	3	2	1	0	
Content	RESERVED: 0x00								
Address:	0xD5	0xD5							
Default: 0x0	x00								
Description:	RESERVED								
[7:0]	RESERVED: 0x00								

RESERVED_0xD6

Bit	7	6	5	4	3	2	1	0		
Content		RESERVED: 0xFC								
Address:	0xD6									
Default: 0xF	·C									
Description:	RESER	VED								
[7:0]	RESERVED	: 0xFC								

RESERVED_0xD7

Bit	7	6	5	4	3	2	1	0	
Content	RESERVED: 0xF1								
Address:	0xD7								
Default: 0xF	1								
Description:	RESER	VED							
[7:0]	RESERVED	: 0xF1							

RESERVED_0xD8

Bit	7	6	5	4	3	2	1	0
Content				RESERV	ED: 0x00			
Address:	0xD8							
Default: 0x0	00							
Description:	RESER	VED						
[7:0]	RESERVED	: 0x00						

RESERVED_0xD9

Bit	7	6	5	4	3	2	1	0		
Content		RESERVED: 0x19								
Address:	0xD9									
Default: 0x	c19									
Description	: RESER	RESERVED								
[7:0]	RESERVED: 0x19									

SNK_PDO_FILL_0xDA

Bit	7	6	5	4	3	2	1	0
Content		LUT_SNK_	PDO1_I[3:0]	SNK_ UNCONS_ POWER	DPM_ PDO_NU	SNK_ JMB[1:0]	USB_ COMM_ CAPABLE	
Address:	0xDA							
Default: 0x5	56							
Description:	SNK_P	DO_FILL, par	t 1 of 11					
[7:4]	LUT_SNK_P	DO1_I[3:0]						
[3]	SNK_UNCONS_POWER							
[2:1]	DPM_SNK_F	PDO_NUMB[1:0)]					
[0]	USB_COMM_CAPABLE							

SNK_PDO_FILL_0xDB

Bit	7	6	5	4	3	2	1	0		
Content		SNK_HL1[3:0] SNK_LL1[3:0]								
Address:	0xDB	0xDB								
Default: 0xA	\F									
Description:	SNK_P	DO_FILL , par	t 2 of 11							
[7:4]	SNK_HL1[3:0	0]								
[3:0]	SNK_LL1[3:0	SNK_LL1[3:0]								

SNK_PDO_FILL_0xDC

Bit	7	6	5	4	3	2	1	0	
Content		SNK_L	L2[3:0]			LUT_SNK_	PDO2_I[3:0]		
Address:	0xDC								
Default: 0xF	5								
Description:	SNK_P	DO_FILL, par	t 3 of 11						
[7:4]	SNK_LL2[3:0)]							
[3:0]	LUT_SNK_P	DO2_I[3:0]						·	

SNK PDO FILL 0xDD

	ONIX_I DO_I IEE_OXDD										
Bit	7	6	5	4	3	2	1	0			
Content		LUT_SNK_	PDO3_I[3:0]		SNK_HL2[3:0]						
Address:	0xDD										
Default: 0x3	5										
Description:	SNK_P	DO_FILL, par	t 4 of 11								
[7:4]	LUT_SNK_P	DO3_I[3:0]									
[3:0]	SNK_HL2[3:0	0]									

SNK_PDO_FILL_0xDE

Bit	7	6	5	4	3	2	1	0			
Content		SNK_HL3[3:0] SNK_LL3[3:0]									
Address:	0xDE	0xDE									
Default: 0x5	5F										
Description:	SNK_P	DO_FILL, par	t 5 of 11								
[7:4]	SNK_HL3[3:0	SNK_HL3[3:0]									
[3:0]	SNK_LL3[3:0]										

SNK_PDO_FILL_0xDF

Bit	7	6	5	4	3	2	1	0			
Content	RESERVED: 0x00										
Address:	0xDF	0xDF									
Default: 0x0	efault: 0x00										
Description:	on: SNK_PDO_FILL, part 6 of 11										
[7:0]	RESERVED	RESERVED : SNK_PDO_FILL_0xDF = 0x00									

SNK_PDO_FILL_0xE0

	OHI I BO TIEL OXEG										
Bit	7	6	5 4 3 2 1 0								
Content	SNK_ FLEX1	PDO_ _V[1:0]			RESERVED	: 0b000000					
Address: 0xE0											
Default: 0x00											
Description:	Description: SNK PDO FILL part 7 of 11										

[7:6]	SNK_PDO_FLEX1_V[1:0]
[5:0]	RESERVED: 0b000000

[7:0]

SNK_PDO_FLEX1_V[9:2]

SNK_PDO_FILL_0xE1

Bit	7	6	5	4	3	2	1	0			
Content		SNK_PDO_FLEX1_V[9:2]									
Address:	0xE1	0xE1									
Default: 0x4	ŀВ										
Description:	SNK P	SNK_PDO_FILL, part 8 of 11									

SNK_PDO_FILL_0xE2

01111_0X21									
Bit	7 6 5 4 3 2 1 0								
Content		SNK_PDO_FLEX2_V[7:0]							
Address:	0xE2								
Default: 0x9	Default: 0x90								
Description:	Description: SNK_PDO_FILL, part 9 of 11								
[7:0]	SNK_PDO_F	LEX2_V[7:0]							

SNK_PDO_FILL_0xE3

Bit	7	6	5	4	3	2	1	0			
Content	SNK_PDO_FLEX_I[5:0]										
Address:	0xE3										
Default: 0x2	21										
Description:	Description: SNK_PDO_FILL, part 10 of 11										
[7:2] SNK_PDO_FLEX_I[5:0]											
[1:0]	SNK PDO FLEX2 V[9:8]										

SNK_PDO_FILL_0xE4

	-	·	_		· ·	_		, i				
Content	0		R_OK_ G[1:0]	0	SNK_PDO_FLEX_I[9:6]							
Address:	Address: 0xE4											
Default: 0x4	fault: 0x43											
Description: SNK_PDO_FILL, part 11 of 11												
[7]	RESERVED	: 0b0										
[6:5]	POWER_OK	POWER_OK_CFG[1:0]										
[4]	RESERVED	ESERVED: 0b0										
[3:0]	SNK PDO F	LEX [[9:6]	•		•			•				

SPARE

Bit	7	6	5	4	3	2	1	0			
Content		RESERVED: 0x00									
Address:	0xE5										
Default: 0x0	Default: 0x00										
Description:	Description: SPARE										
[7:0]	RESERVED : SPARE = 0x00										

VBUS_CTRL

				_				
Bit	7	6	5	4	3	2	1	0
Content	RE	ESERVED : 0b0	010	REQ_ SRC_ CURRENT		RESER\	/ED : 0x0	

Address: 0xE6

Default: 0x40

Description: VBUS_CTRL

[7:5]	RESERVED: 0b010
[4]	REQ_SRC_CURRENT
[3:0]	RESERVED: 0x0

ALERT_STATUS_1_MASK

I	Bit	7	6	5	4	3	2	1	0
Ī	Content				RESERVE	ED : 0xFB			

Address: 0xE7

Default: 0xFB

Description: ALERT_STATUS_1_MASK

[7:0] RESERVED : ALERT_STATUS_1_MASK = 0xFB

5 Example

5.1 Using an Aardvark for I2C & GUI

In this example, the following procedure will be described:

- · Check default configuration
- Read STUSB4500 NVM map using Aardvark tool & Batch file
- Extract the NVM content
- Change parameters with STSW-STUSB002 GUI
 - Load NVM configuration
 - o Modify parameters
 - o Save NVM configuration
- Check modified parameters
- Insert NVM content into Aardvark Batch file
- Write STUSB4500 NVM
- Re-Read STUSB4500 NVM map
- Check new configuration

5.1.1 Check default configuration

Connect a TypeC / Power delivery SRC to STUSB4500 and check SNK profiles. For example, with STUSB4710A Evaluation board (STEVAL-ISC004V1) and associated Software

STUSB4710A_-_STUSB4500_capas_Default

5.1.2 Read STUSB4500 NVM map

```
Read batch
 5121
<aardvark>
    <configure i2c="1"/>
    <i2c_bitrate khz="400"/>
    <i2c_write addr="0x28" radix="16"> 95 47 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 40 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 00 </i2c_write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 96 40 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 97 00 </i2c_write>
<i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 53 </i2c_write>
    <i2c_read addr="0x28" count="8"/>
    <i2c_write addr="0x28" radix="16"> 96 51 </i2c_write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 53 </i2c_write>
    <i2c read addr="0x28" count="8"/>
    <i2c_write addr="0x28" radix="16"> 96 52 </i2c_write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 53 </i2c_write>
    <i2c_read addr="0x28" count="8"/>
    <i2c_write addr="0x28" radix="16"> 96 53 </i2c_write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 53 </i2c_write>
    <i2c_read addr="0x28" count="8"/>
    <i2c_write addr="0x28" radix="16"> 96 54 </i2c_write>
    <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 53 </i2c_write>
    <i2c_read addr="0x28" count="8"/>
    <i2c_write addr="0x28" radix="16"> 96 40 00 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 95 00 </i2c_write>
</aardvark>
         Default Read results
 5.1.2.1
Export Time: 2019-05-07 16:18:01
Port 0
Adapter HW_Version: 3.00 FW_Version: 3.51
"Time", "Module", "Read/Write", "Master/Slave", "Features", "Bitrate", "Address", "Length", "Data"
"2019-05-07 16:17:59.644","","","","","","","","","Configure: I2C=1 SPI=1 GPIO=0"
"2019-05-07 16:17:59.644","","","","","","","","Power Control Disabled"
"2019-05-07 16:17:59.644","I2C","","","","","","","","I2C Pullups Disabled"
"2019-05-07 16:17:59.648","I2C","","","","","","","","I2C Bitrate Set to: 400"
"2019-05-07 16:17:59.651","I2C","W","M","---","400","0x28","2","95 47"
"2019-05-07 16:17:59.653","I2C","W","M","---","400","0x28","2","96 40"
"2019-05-07 16:17:59.655","I2C","W","M","---","400","0x28","2","96 00"
"2019-05-07 16:17:59.657","I2C","W","M","---","400","0x28","2","96 40"
"2019-05-07 16:17:59.661","I2C","W","M","---","400","0x28","2","97 00"
"2019-05-07 16:17:59.664","I2C","W","M","---","400","0x28","2","96 50"
"2019-05-07 16:17:59.674","I2C","W","M","---","400","0x28","1","53"
"2019-05-07 16:17:59.684","I2C","R","M","---","400","0x28","8","00 00 B0 AA 00 45 00 00"
"2019-05-07 16:17:59.688","I2C","W","M","---","400","0x28","2","96 51"
"2019-05-07 16:17:59.706", "I2C", "W", "M", "---", "400", "0x28", "1", "53"
"2019-05-07 16:17:59.710","I2C","R","M","---","400","0x28","8","10 40 9C 1C FF 01 3C DF"
"2019-05-07 16:17:59.713","I2C","W","M","---","400","0x28","2","96 52"
"2019-05-07 16:17:59.726","I2C","W","M","---","400","0x28","1","53"
"2019-05-07 16:17:59.730","I2C","R","M","---","400","0x28","8","02 40 0F 00 32 00 FC F1"
"2019-05-07 16:17:59.734","I2C","W","M","---","400","0x28","2","96 53"
"2019-05-07 16:17:59.752", "I2C", "W", "M", "---", "400", "0x28", "1", "53"
"2019-05-07 16:17:59.756","I2C","R","M","---","400","0x28","8","00 19 56 AF F5 35 5F 00"
"2019-05-07 16:17:59.760","I2C","W","M","---","400","0x28","2","96 54"
```



```
"2019-05-07 16:17:59.769","I2C","W","M","---","400","0x28","1","53"

"2019-05-07 16:17:59.776","I2C","R","M","---","400","0x28","8","00 4B 90 21 43 00 40 FB"

"2019-05-07 16:17:59.779","I2C","W","M","---","400","0x28","3","96 40 00"

"2019-05-07 16:17:59.782","I2C","W","M","---","400","0x28","2","95 00"
```

5.1.3 Extracting the NVM content

5.1.3.1 Read results

```
"2019-05-07 16:17:59.684","I2C","R","M","---","400","0x28","8","00 00 B0 AA 00 45 00 00"
"2019-05-07 16:17:59.710","I2C","R","M","---","400","0x28","8","10 40 9C 1C FF 01 3C DF"
"2019-05-07 16:17:59.730","I2C","R","M","---","400","0x28","8","02 40 0F 00 32 00 FC F1"
"2019-05-07 16:17:59.756","I2C","R","M","---","400","0x28","8","00 19 56 AF F5 35 5F 00"
"2019-05-07 16:17:59.776","I2C","R","M","---","400","0x28","8","00 4B 90 21 43 00 40 FB"
```

5.1.3.2 Extract data

```
00 00 B0 AA 00 45 00 00
10 40 9C 1C FF 01 3C DF
02 40 0F 00 32 00 FC F1
00 19 56 AF F5 35 5F 00
00 4B 90 21 43 00 40 FB
```

5.1.3.2.1 Convert to GUI File format

0xC0:	0x00	0x00	0xB0	0xAA	0x00	0x45	0x00	0x00
0xC8:	0x10	0x40	0x9C	0x1C	0xFF	0x01	0x3C	0xDF
0xD0:	0x02	0x40	0x0F	0x00	0x32	0x00	0xFC	0xF1
0xD8:	0x00	0x19	0x56	0xAF	0xF5	0x35	0x5F	0x00
0xE0:	0x00	0x4B	0x90	0x21	0x43	0x00	0x40	0xFB

Save this configuration to a file, for example STUSB4500_Default.txt

5.1.4 Change parameters with STSW-STUSB002 GUI

5.1.4.1 Load NVM configuration

STSW-STUSB002_-_STUSB4500_NVM_Map_Load_After_Aardvark_Read

STSW-STUSB002_-_STUSB4500_SNK_Load_After_Aardvark_Read

5.1.4.2 *Modify parameters*

In this example, we set PDO2 to 9V/3A and PDO3 to 15V/3A

STSW-STUSB002_-_STUSB4500_SNK_Modification

STSW-STUSB002_-_STUSB4500_NVM_Map_Modification

5.1.4.3 Save NVM configuration

With the "Save NVM config to file ..." button, export the modified NVM configuration to a file, for example $STUSB4500_5V-1A5_9V-3A_15V-3A.txt$

0xC0:	0x00	0x00	0xB0	0xAA	0x00	0x45	0x00	0x00
0xC8:	0x10	0x40	0x9C	0x1C	0xF0	0x01	0x00	0xDF
0xD0:	0x02	0x40	0x0F	0x00	0x32	0x00	0xFC	0xF1
0xD8:	0x00	0x19	0x56	0xAF	0xFB	0xB5	0x5F	0x00
0xE0:	0x00	0x2D	0x2C	0x21	0x43	0x00	0x40	0xFB

5.1.5 Check modified parameters

STUSB4500_Default.txt 0xC0: 0x00 0x00 0xB0 0xAA 0x00 0x45 0x00 0x000xC8: 0x10 0x40 0x9C 0x1C 0xFF 0x01 0x3C 0xDF 0xD0: 0x02 0x40 0x0F 0x00 0x32 0x00 0xFC 0xD8: 0x00 0x19 0x56 0xAF 0xF5 0x35 0x5F 0xF1 0x00 0xE0: 0x00 0x4B 0x90 0x21 0x43 0x00 0x40 0xFB STUSB4500_5V-1A5_9V-3A_15V-3A.txt 0xC0: 0x00 0x00 0xB0 0xAA 0x00 0x45 0x00 0x000xC8: 0x10 0x40 0x9C 0x1C 0xF0 0x01 0x00 0xDF 0xD0: 0x02 0x40 0x0F 0x00 0x32 0x00 0xFC 0xF1 0xD8: 0x00 0x19 0x56 0xAF 0xFB 0xB5 0x5F 0x00 0xE0: 0x00 0x2D 0x2C 0x21 0x43 0x00 0x40 0xFB

Différences:

- Address 0xCC
 - STUSB4500 Default: 0xFF
 - o STUSB4500_5V-1A5_9V-3A_15V-3A: 0xF0
 - Not taken into account : GUI side effect
- Address 0xCE
 - o STUSB4500_Default: 0x3C
 - o STUSB4500_5V-1A5_9V-3A_15V-3A: 0x00
 - Not taken into account : GUI side effect
- Address 0xDC 0xDD
 - o STUSB4500 Default: 0xF5 0x35
 - o STUSB4500_5V-1A5_9V-3A_15V-3A:0xFB 0xB5
 - This corresponds to PDO currents modification
 - STUSB4500 Default : LUT_SNK_PDO2_I = 0b0101 =
 - STUSB4500 Default : LUT SNK PDO3 I = 0b0011 =
 - STUSB4500_5V-1A5_9V-3A_15V-3A : LUT_SNK_PDO2_I = 0b1011 =
 - STUSB4500_5V-1A5_9V-3A_15V-3A : LUT_SNK_PDO3_I = 0b1011 =
- Address 0xE0 to 0xE4
 - o STUSB4500_Default: 0x00 0x4B 0x90 0x21 0x43
 - o STUSB4500_5V-1A5_9V-3A_15V-3A: 0x00 0x2D 0x2C 0x21 0x43
 - This corresponds to PDO voltages modification
 - STUSB4500 Default :
 - SNK PDO FLEX1 V[1:0] = 0b00
 - SNK_PDO_FLEX1_V[9:2] = 0x4B = 0b01001011
 - SNK_PDO_FLEX1_V = 0b0100101100 = 300 = 15V
 - STUSB4500 Default :
 - SNK_PDO_FLEX2_V[7:0] =0x90 = 0b10010000
 - SNK_PDO_FLEX2_V[9:8] = 0b01
 - SNK_PDO_FLEX2_V = 0b0110010000 = 400 = 20V
 - STUSB4500_5V-1A5_9V-3A_15V-3A :
 - SNK_PDO_FLEX1_V[1:0] = 0b00
 - SNK_PDO_FLEX1_V[9:2] = 0x2D = 0b00101101
 - SNK_PDO_FLEX1_V = 0b0010110100 = 180 = 9V
 - STUSB4500_5V-1A5_9V-3A_15V-3A:
 - SNK_PDO_FLEX2_V[7:0] =0x2C = 0b00101100
 - SNK_PDO_FLEX2_V[9:8] = 0b01
 - SNK_PDO_FLEX2_V = 0b0100101100 = 300 = 15V

5.1.6 Insert NVM content into Aardvark Batch file

5.1.6.1 Extract data

00 00 B0 AA 00 45 00 00

10 40 9C 1C F0 01 00 DF

02 40 0F 00 32 00 FC F1

00 19 56 AF FB B5 5F 00

00 2D 2C 21 43 00 40 FB


```
5.1.6.1 Write batch
<aardvark>
   <configure i2c="1"/>
   <i2c_bitrate khz="400"/>
   <i2c_write addr="0x28" radix="16"> 95 47 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 53 00 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 40 </i2c_write>
   <i2c write addr="0x28" radix="16"> 96 00 </i2c write>
   <sleep ms="1"/>
   <i2c_write addr="0x28" radix="16"> 96 40 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 97 FA </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="1"/>
   <i2c_write addr="0x28" radix="16"> 97 07 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="5"/>
    <i2c_write addr="0x28" radix="16"> 97 05 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="5"/>
   <i2c_write addr="0x28" radix="16"> 53 00 00 B0 AA 00 45 00 00 </i2c_write>
   <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 97 01 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="1"/>
   <i2c_write addr="0x28" radix="16"> 97 06 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="2"/>
    <i2c_write addr="0x28" radix="16"> 53 10 40 9C 1C F0 01 00 DF </i2c_write>
   <sleep ms="1"/>
   <i2c_write addr="0x28" radix="16"> 97 01 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 97 06 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 51 </i2c_write>
   <sleep ms="2"/>
   <i2c_write addr="0x28" radix="16"> 53 02 40 0F 00 32 00 FC F1 </i2c_write>
   <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 97 01 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="1"/>
   <i2c_write addr="0x28" radix="16"> 97 06 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 52 </i2c_write>
   <sleep ms="2"/>
    <i2c_write addr="0x28" radix="16"> 53 00 19 56 AF FB B5 5F 00 </i2c_write>
   <sleep ms="1"/>
   <i2c_write addr="0x28" radix="16"> 97 01 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="1"/>
    <i2c_write addr="0x28" radix="16"> 97 06 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 53 </i2c_write>
   <sleep ms="2"/>
   <i2c_write addr="0x28" radix="16"> 53 00 2D 2C 21 43 00 40 FB </i2c_write>
   <sleep ms="1"/>
   <i2c_write addr="0x28" radix="16"> 97 01 </i2c_write>
    <i2c_write addr="0x28" radix="16"> 96 50 </i2c_write>
   <sleep ms="1"/>
   <i2c_write addr="0x28" radix="16"> 97 06 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 96 54 </i2c_write>
   <sleep ms="2"/>
    <i2c_write addr="0x28" radix="16"> 96 40 00 </i2c_write>
   <i2c_write addr="0x28" radix="16"> 95 47 </i2c_write>
</aardvark>
```


5.1.6.1 Write results

Export Time: 2019-05-07 17:03:06
Port 0
Adapter HW_Version: 3.00 FW_Version: 3.51

"Time", "Module", "Read/Write", "Master/Slave", "Features", "Bitrate", "Address", "Length", "Data"
"2019-05-07 17:03:04.957", "", "", "", "", "", "", "Configure: I2C=1 SPI=1 GPIO=0"

"2019-05-07 17:03:04.957","","","","","","","","","Configure: I2C=1 SPI=1 GPIO=0" "2019-05-07 17:03:04.957","","","","","","","","Power Control Disabled" "2019-05-07 17:03:04.959", "I2C", "", "", "", "", "", "I2C Pullups Disabled" "2019-05-07 17:03:04.963","I2C","","","","","","","","I2C Bitrate Set to: 400" "2019-05-07 17:03:04.966","I2C","W","M","---","400","0x28","2","95 47" "2019-05-07 17:03:04.967","I2C","W","M","---","400","0x28","2","53 00" "2019-05-07 17:03:04.970","I2C","W","M","---","400","0x28","2","96 40" "2019-05-07 17:03:04.973","I2C","W","M","---","400","0x28","2","96 00" "2019-05-07 17:03:04.994","I2C","W","M","---","400","0x28","2","96 40" "2019-05-07 17:03:05.000","I2C","W","M","---","400","0x28","2","97 FA" "2019-05-07 17:03:05.002","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.020","I2C","W","M","---","400","0x28","2","97 07" "2019-05-07 17:03:05.029","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.055","I2C","W","M","---","400","0x28","2","97 05" "2019-05-07 17:03:05.059","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.068","I2C","W","M","---","400","0x28","9","53 00 00 B0 AA 00 45 00 00" "2019-05-07 17:03:05.082","I2C","W","M","---","400","0x28","2","97 01" "2019-05-07 17:03:05.085","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.098","I2C","W","M","---","400","0x28","2","97 06" "2019-05-07 17:03:05.105","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.117","I2C","W","M","---","400","0x28","9","53 10 40 9C 1C F0 01 00 DF" "2019-05-07 17:03:05.131","I2C","W","M","---","400","0x28","2","97 01" "2019-05-07 17:03:05.135","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.145","I2C","W","M","---","400","0x28","2","97 06" "2019-05-07 17:03:05.150","I2C","W","M","---","400","0x28","2","96 51" "2019-05-07 17:03:05.161","I2C","W","M","---","400","0x28","9","53 02 40 0F 00 32 00 FC F1" "2019-05-07 17:03:05.176","I2C","W","M","---","400","0x28","2","97 01" "2019-05-07 17:03:05.180","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.194","I2C","W","M","---","400","0x28","2","97 06" "2019-05-07 17:03:05.198","I2C","W","M","---","400","0x28","2","96 52" "2019-05-07 17:03:05.207","I2C","W","M","---","400","0x28","9","53 00 19 56 AF FB B5 5F 00" "2019-05-07 17:03:05.223","I2C","W","M","---","400","0x28","2","97 01" "2019-05-07 17:03:05.230","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.240","I2C","W","M","---","400","0x28","2","97 06" "2019-05-07 17:03:05.246","I2C","W","M","---","400","0x28","2","96 53" "2019-05-07 17:03:05.253","I2C","W","M","---","400","0x28","9","53 00 2D 2C 21 43 00 40 FB" "2019-05-07 17:03:05.273","I2C","W","M","---","400","0x28","2","97 01" "2019-05-07 17:03:05.278","I2C","W","M","---","400","0x28","2","96 50" "2019-05-07 17:03:05.286","I2C","W","M","---","400","0x28","2","97 06" "2019-05-07 17:03:05.290","I2C","W","M","---","400","0x28","2","96 54" "2019-05-07 17:03:05.305","I2C","W","M","---","400","0x28","3","96 40 00" "2019-05-07 17:03:05.311","I2C","W","M","---","400","0x28","2","95 47"

Page 36/39

5.1.7 Re-Read STUSB4500 NVM map

Run the same read batch as first step.

```
5.1.7.1
           Read results
Export Time: 2019-05-09 11:43:42
Port 0
Adapter HW_Version: 3.00 FW_Version: 3.51
"Time", "Module", "Read/Write", "Master/Slave", "Features", "Bitrate", "Address", "Length", "Data"
"2019-05-09 11:43:40.588","","","","","","","","Configure: I2C=1 SPI=1 GPIO=0"
"2019-05-09 11:43:40.588","","","","","","","","","Power Control Disabled"
"2019-05-09 11:43:40.591","I2C","","","","","","","","I2C Pullups Disabled"
"2019-05-09 11:43:40.595","I2C","","","","","","","","I2C Bitrate Set to: 400"
"2019-05-09 11:43:40.598","I2C","W","M","---","400","0x28","2","95 47"
"2019-05-09 11:43:40.599","I2C","W","M","---","400","0x28","2","96 40"
"2019-05-09 11:43:40.601","I2C","W","M","---","400","0x28","2","96 00"
"2019-05-09 11:43:40.621","I2C","W","M","---","400","0x28","2","96 40"
"2019-05-09 11:43:40.624","I2C","W","M","---","400","0x28","2","97 00"
"2019-05-09 11:43:40.625","I2C","W","M","---","400","0x28","2","96 50"
"2019-05-09 11:43:40.634","I2C","W","M","---","400","0x28","1","53"
"2019-05-09 11:43:40.644","I2C","R","M","---","400","0x28","8","00 00 B0 AA 00 45 00 00"
"2019-05-09 11:43:40.648","I2C","W","M","---","400","0x28","2","96 51"
"2019-05-09 11:43:40.671", "I2C", "W", "M", "---", "400", "0x28", "1", "53"
"2019-05-09 11:43:40.674","I2C","R","M","---","400","0x28","8","10 40 9C 1C F0 01 00 DF"
"2019-05-09 11:43:40.677","I2C","W","M","---","400","0x28","2","96 52"
"2019-05-09 11:43:40.694","I2C","W","M","---","400","0x28","1","53"
"2019-05-09 11:43:40.700","I2C","R","M","---","400","0x28","8","02 40 0F 00 32 00 FC F1"
"2019-05-09 11:43:40.703","I2C","W","M","---","400","0x28","2","96 53"
"2019-05-09 11:43:40.714","I2C","W","M","---","400","0x28","1","53"
"2019-05-09 11:43:40.720","I2C","R","M","---","400","0x28","8","00 19 56 AF FB B5 5F 00"
"2019-05-09 11:43:40.723","I2C","W","M","---","400","0x28","2","96 54"
"2019-05-09 11:43:40.746","I2C","W","M","---","400","0x28","1","53"
"2019-05-09 11:43:40.750","I2C","R","M","---","400","0x28","8","00 2D 2C 21 43 00 40 FB"
"2019-05-09 11:43:40.753","I2C","W","M","---","400","0x28","3","96 40 00"
"2019-05-09 11:43:40.756","I2C","W","M","---","400","0x28","2","95 00"
 5.1.7.1 Read results comparison
"2019-05-07 16:17:59.684","I2C","R","M","---","400","0x28","8","00 00 B0 AA 00 45 00 00"
"2019-05-07 16:17:59.710","I2C","R","M","---","400","0x28","8","10 40 9C 1C FF 01 3C DF"
"2019-05-07 16:17:59.730","I2C","R","M","---","400","0x28","8","02 40 0F 00 32 00 FC F1"
"2019-05-07 16:17:59.756","I2C","R","M","---","400","0x28","8","00 19 56 AF F5 35 5F 00"
"2019-05-07 16:17:59.776","I2C","R","M","---","400","0x28","8","00 4B 90 21 43 00 40 FB"
"2019-05-09 11:43:40.644","I2C","R","M","---","400","0x28","8","00 00 B0 AA 00 45 00 00"
"2019-05-09 11:43:40.674","I2C","R","M","---","400","0x28","8","10 40 9C 1C F0 01 00 DF"
"2019-05-09 11:43:40.700","I2C","R","M","---","400","0x28","8","02 40 0F 00 32 00 FC F1"
"2019-05-09 11:43:40.720","I2C","R","M","---","400","0x28","8","00 19 56 AF FB B5 5F 00"
"2019-05-09 11:43:40.750", "I2C", "R", "M", "---", "400", "0x28", "8", "00 2D 2C 21 43 00 40 FB"
```


5.1.8 Check new configuration

STUSB4710A_-_STUSB4500_capas_After_Write

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any

warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product

or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved