

Wael GRIBAA
Amine OMRI
Sabina REXHA
Abdou Akim GOUMBALA
Meryem GASSAB

M2B

SOMMAIRE

PRÉSENTATION

PRÉSENTATION

Prédir les étiquettes de localisation des organites protéiques pour chaque cellule de l'image

PROBLÉMATIQUE

Cette compétition est de nature weakly-labeled : sur la base des labels au niveau de l'image, l'objectif est de construire des modèles pour prédire les labels de chaque cellule individuelle dans l'image.

L'ensemble de test a une variabilité cellulaire plus élevée que l'ensemble d'entraînement et il est annoté pour chaque cellule.

En regardant ces données, il semble qu'il s'agisse d'un problème de classification multi-labels...

```
In [2]:
    df_train.head()
Out[2]:
```

ID	Label
5c27f04c-bb99-11e8-b2b9-ac1f6b6435d0	8 5 0
5fb643ee-bb99-11e8-b2b9-ac1f6b6435d0	14 0
60b57878-bb99-11e8-b2b9-ac1f6b6435d0	6 1
5c1a898e-bb99-11e8-b2b9-ac1f6b6435d0	16 10
5b931256-bb99-11e8-b2b9-ac1f6b6435d0	14 0
	5c27f04c-bb99-11e8-b2b9-ac1f6b6435d0 5fb643ee-bb99-11e8-b2b9-ac1f6b6435d0 60b57878-bb99-11e8-b2b9-ac1f6b6435d0 5c1a898e-bb99-11e8-b2b9-ac1f6b6435d0

En regardant le modèle de soumission, nous réalisons qu'il ne s'agit pas d'une classification multi-labels, mais plutôt d'une **segmentation d'instance**. Pour chaque image, il est demandé de :

- Segmenter chaque cellule individuelle contenue dans l'image en prédisant le masque de chaque cellule.
- D'identifier la classe de cette cellule.

Certaines cellules peuvent être associées à plusieurs classes.

DATA: LA DISTRIBUTION DES LABELS

DATA: LES EXEMPLES AVEC MULTI-LABELS

DATA: LES EXEMPLES AVEC DES LABELS INDIVIDUELS

SOLUTIONS

SOLUTION BASELINE

Nous extrayons les cellules individuelles à l'aide du segmentateur cellulaire HPA, les étiquetons avec le label de l'image et entraînons un classifieur sur ces données.

SOLUTION: PREMIÈRE APPROCHE

SOLUTION: PREMIÈRE APPROCHE: COCO LABELED FORMAT

```
'width': 2048.
'height': 2048,
'ann': {'bboxes': array([[ 572., 0., 788., 212.],
     [1016.,
          0., 1228., 136.],
     [1928., 56., 2048., 356.],
     [1624., 632., 1824., 876.],
     [ 632., 420., 968., 660.],
     [1200., 556., 1352., 832.],
     [ 300., 1044., 572., 1432.],
     [ 616., 952., 832., 1268.],
     [1044., 1076., 1316., 1336.],
     [1104., 1588., 1336., 1776.],
     [ 812., 1956., 1020., 2048.],
     [ 0., 1640., 132., 1832.],
     [1924., 1912., 2048., 2048.],
     [1456., 1988., 1680., 2048.].
     [ 0., 1992., 168., 2048.]], dtype=float32),
 'masks': [{'size': [2048, 2048],
  'counts': b'hRhS1h1Xn100000@P1@00000H`0H00000H`0H00000H<L00000H<L00000L8L0(</pre>
4D8000008\\0<0000088800000<X0<00000\ng^2'}.
 {'size': [2048, 2048],
  'counts': b'TP`o14lo100000L`0D0000008H0000004L0000008H0000004L0000000<D00000
0000D<000004\\0'000000loWc1'},
 {'size': [2048, 2048],
  'counts': b'lV`h3X1hn100000@T1\\000000Dd0H00000H`0H00000H`0H00000L<H00000D</pre>
```

{'filename': 'celd3a68-bb99-lle8-b2b9-aclf6b6435d0.jpg',

Pour chaque cellule, nous :

- créons un masque binaire (noir/blanc)
- codons le masque avec le codage RLE
- créons des BBoxes basées sur le RLE
- créons le format Json COCO labellisé.
- procédons au Feedforward du modèle masK-RCNN

- Prédire le masque des noyaux
- Prédire le masque de la cellule entière
- Soustraire les noyaux des cellules

2

Extraire chaque cellule comme image unique ou "crop"

- Calculer les bounding boxes à partir des masques
- Cropper puis binariser les masques
- Nettoyer la couche verte croppée et l'ajouter aux masques
- Redimensionner

Choix du type de masquage : intuitif

Extraire chaque cellule comme image unique ou "crop"

- Calculer les bounding boxes à partir des masques
- Cropper et binariser les masques
- Nettoyer la couche verte et l'ajouter aux masques
- Redimensionner

Hauteur

	Height	Width
count	248271.000000	248271.000000
mean	405.671178	410.887583
std	208.133892	210.459873
min	31.000000	29.000000
25%	256.000000	260.000000
50%	363.000000	367.000000
75%	512.000000	518.000000
max	2709.000000	2839.000000

_				
Com	par	а٦	SO	n
00111	pu.	ч.	-	•

But

Uniformiser en perdant le minimum d'informations

Feeder les crops à un réseau de convolution "classique"

- Expérimenter et inclure des intuitions
- Utiliser les données de test pour évaluer le modèle

CONSTRUCTION DU MODÈLE - PRÉPARATION DES DONNÉES

TensorFlow

• tf.Dataset : batch, prefetch et cache

CONSTRUCTION DU MODÈLE - PRÉPARATION DES DONNÉES

Disque système :

3.3 Mo/s

0 Ko/s

60 minutes par EPOCH au mieux

CONSTRUCTION DU MODÈLE - PRÉPARATION DES DONNÉES

3 minutes

mieux

par EPOCH au

- Défaut des tf.Dataset :
 - Pas de sample_weight
 - Pas de class_weight en multiclasse
- Solution: uniformiser la distribution des classes par crop

 Intuition 1 : Réseau classique

Kernel de taille ~
fixe, convolution
et max pooling
-> Overfit
"conv_basic3"

 Intuition 2 : Réseau de type convnet

Pairs de convolutions consécutives -> Modèle rigide "conv_basic"

- Intuition 3:
 Kernels de convolution larges
 - -> Bons résultats
 "mini_convnet2"
- Intuition 4:
 Plus de neurones
 Dense
 - -> Overfit
 "mini_convnet4"

Intuition 5: Batch 200
 normalization 175

-> Très bons résultats "batch_norm"

Intuition 5:BN après ReLU

-> Très bons
résultats
"batch_norm_after"

Intuition 6:

 Inverser l'
 évolution de la
 taille des
 convolutions

-> Meilleurs
résultats
"invert_conv"

Intuition 6:
 Inverser l'évolution de la taille des convolutions

-> Meilleurs
résultats
"invert_conv"

Intuition 7: Ajout de Dropout

> -> en cours Excellents résultats

- Intuition 6:
 Inverser l'évolution de la taille des convolutions
 - -> Meilleurs
 résultats
 "invert_conv"
- Intuition 7: Ajout de Dropout
 - -> en cours Excellents résultats

CONSTRUCTION DU MODÈLE - AUTRE ESSAI...

En cours...

```
Epoch 1/20
val loss: 2.6791 - val categorical accuracy: 0.1147
Epoch 2/20
val loss: 2.4587 - val categorical accuracy: 0.1638
Epoch 3/20
1885/1885 [==========] - 1014s 538ms/step - loss: 2.3348 - categorical accuracy: 0.2076 -
val loss: 2.2597 - val categorical accuracy: 0.2400
Epoch 4/20
1885/1885 [============= ] - 1045s 554ms/step - loss: 2.2327 - categorical accuracy: 0.2437 -
val loss: 2.2246 - val categorical accuracy: 0.2478
Epoch 5/20
val loss: 2.3913 - val categorical accuracy: 0.2021
Epoch 6/20
val loss: 2.2063 - val categorical accuracy: 0.2546
Epoch 7/20
val loss: 2.1813 - val categorical accuracy: 0.2747
Epoch 8/20
val loss: 2.1891 - val categorical accuracy: 0.2825
Epoch 9/20
814/1885 [=======>.....] - ETA: 11:07 - loss: 2.0374 - categorical accuracy: 0.3234
```

API

API : ARCHITECTURE

API : INTERFACE

Human Protein Atlas - Single Cell Classification

Hum

Veuillez sélectionner toute

Blue channel Green channel Red channel Yellow channel

ion

e rouge, image jaune.

Prédiction : Nucleoplasm Confiance : 12.13 %