

Here's the probability distribution of a random variable X:

х	1	2	3	4	5
P(X = x)	0.1	0.25	0.35	0.2	0.1

1. What's the value of
$$E(X)$$
?

$$E(X) = \sum xP(X=x)$$

$$= 1 \times 0.1 + 2 \times 0.25 + 3 \times 0.35 + 4 \times 0.2 + 5 \times 0.1$$

$$= 0.1 + 0.5 + 1.05 + 0.8 + 0.5$$

$$= 2.95$$

Multiply each value by the probability of it the

Go through each value \times and work out what $(x - \mu)^2$ is. Then multiply it by the what $(x - \mu)^2$ is. Then multiply it by the what $(x - \mu)^2$ is. Then multiply it by the probability of getting \times . Once you've done what $(x - \mu)^2$ is. Then multiply it by the what $(x - \mu)^2$ is and what $(x - \mu)^2$ is an inverse of $(x - \mu)^2$ is an inverse of $(x - \mu)^2$ is an inverse of $(x - \mu)^$