Liste de Números Complexos

Resumo

- $\mathbb{R} \longrightarrow \mathbf{Reta} \; \mathrm{Real}$
- ullet $\mathbb{C}\longrightarrow \mathbf{Plano}$ Complexo (também chamado de Plano de Argand-Gauss)
- $\mathbb{C} = \{z = a + bi \mid a, b \in \mathbb{R}, \text{ onde } i^2 = -1\}$
- A representação de um complexo como um ponto no plano recebe o nome de afixo
- Multiplicar por *i* corresponde a rotacionar um complexo exatamente 90° no sentido anti-horário, mantendo o tamanho original do vetor. Para rotacionar por ângulos diferentes, bem como para mudar o módulo, multiplicaremos por números complexos específicos, dependendo de cada resultado que se queira obter.
- Para converter de graus para radianos (ou vice-versa), faça a seguinte regra de três:

$$\frac{\theta}{\alpha^{\circ}} = \frac{\pi}{180^{\circ}}$$
, com θ em radianos

- Forma algébrica (ou retangular)
 - Parte Real e Parte Imaginária: a = Re(z) e b = Im(z) representam as coordenadas do complexo no plano $\longrightarrow z = (a, b)$
 - Igualdade: $z_1 = z_2 \longleftrightarrow a + bi = c + di \longrightarrow a = c \in b = d$
 - Soma: $z_1 + z_2 = (a+bi) + (c+di) = (a+c) + (b+d)i \in \mathbb{C}$
 - Multiplicação: $z_1 \cdot z_2 = (a+bi) \cdot (c+di) = (ac-bd) + (bc+ad)i \in \mathbb{C}$
 - Conjugado: $z = a + bi \longrightarrow \overline{z} = a bi$
 - Divisão: $\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}$
- Forma trigonométrica (ou polar)
 - Módulo: |z| é o tamanho do vetor que liga a origem até o afixo, no plano complexo
 - Argumento: $arg(z) = \theta$; ângulo entre a parte positiva do eixo dos reais, seguindo em sentido anti-horário, até o vetor que representa o número complexo
 - Notação: $z = |z| cis(\theta) = (|z|; arg(z))$
 - Soma: não faça somas nessa forma, porque é muito complicado e trabalhoso

1

- Multiplicação: $z_1 \cdot z_2 = |z_1| \cdot |z_2| \cdot cis(\theta_1 + \theta_2)$
- Conjugado: $z = |z| \cdot cis(\theta) \longrightarrow \overline{z} = |z| \cdot cis(-\theta)$
- Divisão: $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \cdot cis(\theta_1 \theta_2)$
- \bullet Conversão: algébrica \longleftrightarrow trigonométrica
 - Algébrica → trigonométrica

$$|z| = \sqrt{a^2 + b^2}$$
 e $arg(z) = arctan(\frac{b}{a})$

-Trigonométrica \longrightarrow algébrica

$$a = |z| \cdot cos(\theta)$$
 e $b = |z| \cdot sin(\theta)$

• Fórmulas de De Moivre

- As fórmulas de De Moivre falam de potenciação e radiciação com $n \in \mathbb{Z}$. Portanto, a menos que você fique confortável calculando coisas do tipo $z^n = (a+bi)^n$, expandindo o Binômio de Newton, ou coisas do tipo $\sqrt[n]{z} = \sqrt[n]{a+bi}$, sugiro que use sempre a forma trigonométrica para calculá-las.
- $-n \in \mathbb{Z}$
- Potenciação: $z^n = |z|^n \cdot cis(n \cdot \theta)$
- Radiciação: $\sqrt[n]{z} = \sqrt[n]{|z|} \cdot cis(\frac{\theta + 2k\pi}{n})$

EXERCÍCIOS

- 1. Segundo o matemático Leopold Kronecker (1823-1891), Deus fez os números inteiros, o resto é trabalho do homem. Os conjuntos numéricos são, como afirma o matemático, uma das grandes invenções humanas. Assim, em relação aos elementos desses conjuntos, é correto afirmar que:
 - (a) o produto de dois números irracionais é sempre um número irracional.
 - (b) a soma de dois números irracionais é sempre um número irracional.
 - (c) entre os números reais 3 e 4, existe apenas um número irracional.
 - (d) entre dois números racionais distintos existe pelo menos um número racional.
 - (e) a diferença entre dois números inteiros negativos é sempre um número inteiro negativo.
- 2. Seja y um número real compreendido entre $\frac{1}{4}$ e $\frac{1}{2}$. Qualquer que seja o valor de y, ele pertencerá ao conjunto
 - (a) $\{x \in \mathbb{Z} \mid x \le 1\}$
 - (b) $\{x \in \mathbb{R} \mid \frac{1}{4} < x < \frac{1}{2}\}$
 - (c) $\{x \in \mathbb{Q} \mid -1 < x \le 2\}$
 - (d) $\{x \in \mathbb{I} \mid x < \frac{1}{2}\}$
 - (e) $\{x \in \mathbb{N} \mid x \ge \frac{1}{2}\}$
- 3. Classifique em verdadeiro ou falso os itens a seguir:
 - (a) $\mathbb{R} \subset \mathbb{C}$
 - (b) $\mathbb{C} \subset \mathbb{R}$
 - (c) $\mathbb{N} \subset \mathbb{C}$
 - (d) $\mathbb{Q} \cup \mathbb{I} \subset \mathbb{C}$
 - (e) $\mathbb{Q} \cup \mathbb{I} \subset \mathbb{R}$
 - (f) $\mathbb{Q} \cup \mathbb{I} \supset \mathbb{R}$
- 4. Marque a(s) proposição (ões) VERDADEIRA(S), em relação aos conjuntos numéricos N, Z, Q, R e C
 - (a) A soma de três números ímpares consecutivos é 159. O maior dos três é 55.
 - (b) Se $x \in y$ são números racionais, então $x + y \in x \cdot y$ também são racionais.
 - (c) Dado um número complexo qualquer x=a+bi, existe sempre um número complexo y tal que $x\cdot y$ é real.
 - (d) Se x é um número negativo, então \sqrt{x} não existe.
 - (e) A forma trigonométrica do número complexo $3\sqrt{3} + 3i$ é o número $6 \cdot cis(\frac{\pi}{6})$

- 5. Identifique as partes real e imaginária dos números a seguir
 - (a) $z = \frac{1}{3} + i$
 - (b) z = -3 27i
 - (c) z = 2019
 - (d) z = -i
- 6. **Desafio 1:** O que significa afirmar sobre os conjuntos $\mathbb{A} \in \mathbb{B}$ que $\mathbb{A} \subset \mathbb{B} \in \mathbb{B} \subset \mathbb{A}$?

Forma algébrica (ou retangular)

- 7. Represente geometricamente os complexos:
 - (a) z = 1 + i
 - (b) z = -2i
 - (c) z = 4i
 - (d) z = -5
 - (e) z = 4 i
 - (f) z = 3 + 2i
- 8. Sejam os complexos v = (-2, x) e w = (y, -3).
 - (a) Escreva v e w na forma algébrica convencional.
 - (b) Determine x e y reais tais que v + w = -4 + 2i
- 9. Determine $p \in \mathbb{R}$ de modo que $z = (1-p) + (p^2-1) \cdot i$ seja um número real não nulo.
- 10. Calcule o valor real de x tal que: $(x^2 9) + (x + 3)i = 0$
- 11. Mostre que, para todo $z \in \mathbb{C}, \overline{\overline{z}} = z$.
- 12. Determine a fórma algébrica dos seguintes quocientes:
 - (a) $\frac{6-2i}{4+2i}$
 - (b) $\frac{5i}{3-4i}$
 - (c) $\frac{4+i}{4-i}$
 - (d) $\frac{6}{5i}$
 - (e) $\frac{2i}{1-i}$
 - (f) $\frac{12-i}{7+8i}$
- 13. Determine os números reais m e n para que as igualdades sejam verdadeiras:
 - (a) m + (n-1)i = -4 + 3i
 - (b) (n-2, m+5) = (3, -2)
 - (c) (m-3) + (n-2)i = 5i
 - (d) (m-n+1) + (2m+n-4)i = 0

- 14. Sendo i a unidade imaginária pergunta-se: quantos números reais a existem para os quais $(a+i)^4$ é um número real?
- 15. Utilize o conjugado \overline{z} para obter a expressão para z^{-1} , com $z \neq 0$.
- 16. Mostre algebricamente a validade das propriedades a seguir:
 - (a) $z \cdot \overline{z} = |z|^2$
 - (b) $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
 - (c) $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$, em que $z_2 \neq 0$
- 17. **Desafio 2:** Você se lembra de que o produto notável (x+y)(x-y) representa uma fatoração possível para $x^2 y^2$? Com base nisso e nos conhecimentos que obteve, exiba uma possível fatoração para $x^2 + y^2$.
- 18. **Desafio 3:** Dado um número complexo z = x + iy, o seu conjugado é o número $\overline{z} = x iy$.
 - (a) Resolva as equações: $z \cdot \overline{z} = 4$ e $z^2 = \overline{z}^2$
 - (b) Ache os pontos de intersecção dos lugares geométricos que representam as soluções dessas equações.

Forma trigonométrica (ou polar)

- 19. Determine o módulo e argumento principal dos números complexos dados:
 - (a) $z_1 = 4 + 4i$
 - (b) $z_2 = -5i$
 - (c) $z_3 = -\sqrt{3} + i$
 - (d) $z_4 = -\frac{1}{3} \frac{1}{3}i$
- 20. Determine a fórmula polar dos complexos x e y que satisfazem o sistema

$$\begin{cases} 2xi + y = -3 + i \\ x + yi = -1 \end{cases}$$

- 21. Escreva os seguintes complexos na forma trigonométrica:
 - (a) $z = -\frac{5\sqrt{3}}{2} + \frac{5}{2}i$
 - (b) z = 2i
 - (c) $z = \frac{1}{2} + \frac{\sqrt{3}}{2}i$
 - (d) $z = (1-i)^2$
- 22. Sabendo que $z_1 = 4 \cdot (cos120^\circ + i \cdot sin120^\circ)$ e que $z_1 \cdot z_2 = 2 \cdot (cos270^\circ + i \cdot sin270^\circ)$, determine:

4

- (a) a forma polar de z_2
- (b) a forma algébrica de z_2
- 23. São dados os números complexos:

$$z_1 = 6 \cdot (\cos 240^\circ + i \cdot \sin 240^\circ)$$

$$z_2 = 2\sqrt{3} \cdot (\cos 30^\circ + i \cdot \sin 30^\circ)$$

$$z_3 = 6 \cdot (\cos 150^\circ + i \cdot \sin 150^\circ).$$

Determine a forma trigonométrica de:

- (a) $z_1 \cdot z_2$
- (b) $z_1 \cdot z_2 \cdot z_3$
- (c) $\frac{z_1}{z_3}$ (d) $\frac{z_2}{z_3}$
- 24. A figura apresenta, no plano complexo, um hexágono regular inscrito em uma circunferência cujo raio mede 4. Determine o argumento principal dos complexos z_1, z_2, z_3, z_4, z_5 e z_6 , cujas respectivas imagens são os vértices A,B,C,D,E e F

25. Na figura, P1, P2 e P3 são os afixos dos números complexos z_1, z_2 e z_3 , respectivamente. Determine a forma polar de z_1, z_2 e de z_3

26. O polígono ABCDE da figura é um pentágono regular inscrito no círculo unitário de centro na origem. Determine as coordenadas polares do vértice A.

27. Determine o lugar geométrico do conjunto de afixos de números complexos que possuem o mesmo módulo. Justifique sua resposta.

- 28. Conhecendo um número complexo na sua forma polar, como posso escrever a forma polar do seu inverso multiplicativo z^{-1} ? E do seu conjugado \overline{z} ?
- 29. **Desafio 4:** Dado $z=7\cdot(\cos(\frac{\pi}{4})+i\cdot\sin(\frac{\pi}{4}))$, descubra os valores de $n\in\mathbb{N}$ para que:
 - (a) z^n seja um número imaginário puro
 - (b) z^n seja um número real

Dica: Represente z no plano complexo.

- 30. **Desafio 5:** Determine as coordenadas do ponto P', obtido ao se rotacionar o ponto $P(4\sqrt{2}, 4\sqrt{2})$ em torno da origem, em um ângulo de 225° , no sentido:
 - (a) anti-horário
 - (b) horário
- 31. **Desafio 6:** No plano complexo, considere a curva β descrita pelos pontos

 $z = (1 + \cos\theta \cdot (\cos(\theta) + i\sin(\theta)))$, para $\theta \in [-\pi, \pi]$ e julgue os seguintes itens.

- (a) $|z| \le 2$
- (b) Se z é um número real e $z \in \beta$, então z = 0
- (c) Se $z \in \beta$, então o conjugado de z também pertence a β

Potenciação e radiciação de complexos (ou fórmulas de De Moivre)

- 32. Dado $z = 4 \cdot (\cos 15^{\circ} + i \cdot \sin 15^{\circ})$, calcule z^{10} .
- 33. Encontre a forma trigonomética de $z = i^{21} \cdot i^{22} \cdot i^{23} \dots i^{29}$.
- 34. Dado $z = 2 \cdot (\cos 30^{\circ} + i \cdot \sin 30^{\circ})$, obtenha a forma retangular de
 - (a) z^{3}
 - (b) z^6
 - (c) z^{10}
- 35. Sabendo que $z = -1 + \sqrt{3}i$, calcule z^6 , z^{16} e z^{101} e expresse os resultados nas forma polar e algébrica.
- 36. Dado $z = \sqrt{3} i$, obtenha z^6 :
 - (a) sem o uso da fórmula de De Moivre
 - (b) por meio da fórmula de De Moivre
- 37. Calcule:
 - (a) $(-\sqrt{6} i\sqrt{2})^{13}$
 - (b) $(\frac{1}{5} + \frac{1}{5}i)^{101}$
 - (c) $(-4+4i\sqrt{3})^{-6}$
- 38. Determine as raízes quadradas dos números complexos seguintes:
 - (a) *i*
 - (b) -3
 - (c) $-\frac{1}{4}$

- 39. Calcular:
 - (a) $\sqrt[3]{-2 + 2i\sqrt{3}}$
 - (b) $\sqrt[4]{-5-5i}$
 - (c) $\sqrt{4\sqrt{3}-4i}$
- 40. Interprete, geometricamente, o que representam as duas fórmulas de De Moivre.
- 41. Dado o complexo z = 4i, determine:
 - (a) as raízes quadradas de z e as representações no plano de Argand-Gauss.
 - (b) a distância entre essas duas raízes.
- 42. Sabendo que o ponto A(-1,0) é a imagem de uma das raízes sextas de um número complexo z (isto é, $\sqrt[6]{z}$), determine:
 - (a) z
 - (b) as formas algébrica e polar de cada uma das raízes sextas de z.
- 43. Um matemático, observando um vitral com o desenho de um polígono inscrito em um círculo, verificou que os vértices desse polígono poderiam ser representados pelas raízes cúbicas complexas do número 8. Qual é a área do polígono observado pelo matemático?
- 44. **Desafio 7:** Tendo i como a unidade imaginária, sabemos que $i^2 = -1$. Sendo assim
 - (a) Calcule os valores de i^3 , i^4 , i^5 e i^6 .
 - (b) Calcule o valor de i^{2019} .
 - (c) Encontre uma expressão que relacione um caso genérico de $i^n \mid n \in \mathbb{N}$. Reflita sobre o significado da expressão e tente explicá-lo.
- 45. **Desafio 8:** Tendo i como a unidade imaginária, sabemos, por definição, que $i^2 = -1$. Todavia, é comum algumas pessoas apresentarem uma definição da unidade imaginária como sendo $i = \sqrt{-1}$.
 - (a) Escreva o valor de i na forma polar e calcule o valor de i^2 .
 - (b) Escreva -1 na forma polar e calcule $\sqrt{-1}$.
 - (c) Qual das duas definições parece ser a mais apropriada? Justifique sua resposta.
- 46. **Desafio 9:** Uma forma alternativa de escrever os números complexos é usando uma terceira representação: a chamada *forma exponencial*. Ela consiste em usar a identidade de Euler (a qual eu não demonstrarei):

$$|z| \cdot (\cos(\theta) + i \cdot \sin(\theta)) = |z| \cdot e^{\theta \cdot i},$$

onde θ é o argumento principal e |z| é o módulo do complexo, já conhecidos nosso.

Como exemplo, podemos escrever $i=e^{90^{\circ}\cdot i}$, já que seu módulo é 1 e seu argumento é 90° .

É mais comum, no entanto, escrevermos os argumentos em radianos. Quando isso acontece, podemos escrever, já que $90^\circ = \frac{\pi}{2}$,

$$i = e^{90^{\circ} \cdot i} = e^{\frac{\pi}{2} \cdot i}.$$

A forma mais conhecida é escrevermos

$$e^{\pi \cdot i} = -1$$
,

tendo em vista que |-1|=1 e que o seu argumento vale π (= 180°). Se você parar pra pensar, a equação é meio maluca... Mistura π , número de euler, unidade imaginária... uma bagunça, não? Mas talvez essa seja sua beleza, afinal.

- (a) Teste se você entendeu esse conceito. Passe para a forma exponencial (com os argumentos em radianos) os números
 - i. -i
 - ii. 2i
 - iii. 3
 - iv. $7 \cdot cis(45^{\circ})$
 - v. 4 + 4i
- (b) Mostre que as propriedades de multiplicação e divisão de complexos na forma polar, bem como a potenciação e radiciação, funcionam para esta forma também. Ao usar a forma exponencial, seu uso parece mais simples ou mais complicado que da forma trigonométrica?
- (c) Calcule o valor de i^i . Esse número é puramente real, puramente imaginário ou ele tem ambas as partes? Se necessário, use $e^{-\frac{\pi}{2}} = 4,81$. Dica: pode ser útil relembrar que $\ln(x^n) = n \cdot \ln(x)$.
- 47. Desafio 10: Como introdução ao próximo assunto, segue o desafio.
 - (a) Calcule as raízes da função $f: \mathbb{C} \longrightarrow \mathbb{C} | f(x) = x^2 5x + 6$. Essas raízes possuem alguma semelhança? Se sim, qual?
 - (b) Calcule as raízes da função $g: \mathbb{C} \longrightarrow \mathbb{C} \mid g(x) = x^2 + 1$. Essas raízes possuem alguma semelhança? Se sim, qual?
 - (c) Calcule as raízes da função $z:\mathbb{C}\longrightarrow\mathbb{C}\,|\,z(x)=x^2+3x+12$. Essas raízes possuem alguma semelhança? Se sim, qual?
 - (d) Compare as semelhanças e as diferenças que você encontrou nos três exemplos acima. Reflita um pouco e responda: foi mera coincidência? Ou será que existe algo mais interessantes por trás...?
 - (e) O que significa, geometricamente, uma função de variáveis complexas?