Problem Set 3

Daniel Halmrast

February 13, 2018

PROBLEM 1

Show that for $A \in \mathcal{B}(X,Y)$, $||A|| = ||A^*||$. Furthermore, if A is invertible, show that A^* is invertible with inverse $(A^*)^{-1} = (A^{-1})^*$.

Proof. We know that

$$||A^*|| = \sup_{\phi \in Y^*, ||\phi|| = 1} ||A^*\phi||$$
$$= \sup_{\phi \in Y^*, ||\phi|| = 1} \sup_{x \in X, ||x|| = 1} ||A^*\phi(x)||$$

Now, by the definition of the norm, we have that

$$\phi(Ax) \le \|\phi\| \|Ax\|$$

and so

$$\begin{split} \|A^*\| &= \sup_{\phi \in Y^*, \|\phi\| = 1} \sup_{x \in X, \|x\| = 1} \|A^*\phi(x)\| &\leq \sup_{\phi \in Y^*, \|\phi\| = 1} \sup_{x \in X, \|x\| = 1} \|\phi\| \|Ax\| \\ &= \sup_{x \in X, \|x\| = 1} \|Ax\| \\ &= \|A\| \end{split}$$

and so $||A^*|| \le ||A||$ as desired.

For the other inequality, we note that $||A|| = \sup_{x \in X, ||x|| = 1} ||Ax||$, and since $||Ax|| = \sup_{\phi \in Y^*, ||\phi|| = 1} |\phi(Ax)|$ (proved in HW2 by explicit construction of ϕ that attains the norm), we have that

$$||A|| = \sup_{x \in X, ||x|| = 1} \sup_{\phi \in Y^*, ||\phi|| = 1} |\phi(Ax)|$$

The definition of the norm $||x|| = ||x||_{X^{**}}$ shows that

$$x(A^*\phi) \le ||x|| ||A^*\phi||$$

Now, by a similar argument to the last inequality, we have

$$\begin{split} \|A\| &= \sup_{x \in X, \|x\| = 1} \sup_{\phi \in Y^*, \|\phi\| = 1} |\phi(Ax)| \\ &= \sup_{x \in X, \|x\| = 1} \sup_{\phi \in Y^*, \|\phi\| = 1} |x(A^*\phi)| \\ &\leq \sup_{x \in X, \|x\| = 1} \sup_{\phi \in Y^*, \|\phi\| = 1} \|x\| \|A^*\phi\| \\ &= \sup_{\phi \in Y^*, \|\phi\| = 1} \|A^*\phi\| \\ &= \|A^*\| \end{split}$$

and so $||A|| \le ||A^*||$. Combining both inequalities, we have that

$$||A|| = ||A^*||$$

as desired.

if A is invertible, it is easily shown that $(A^{-1})^*$ inverts A^* . That is, we wish to show that for all $\phi \in Y^*$, we have that

$$(A^{-1})^*A^*\phi = \phi$$

In particular, we wish to show that for all $y \in Y$,

$$(A^{-1})^*A^*\phi(y) = \phi(y)$$

This is clear, however, since

$$(A^{-1})^*A^*\phi(y) = A^*\phi(A^{-1}y)$$

= $\phi(AA^{-1}y)$
= $\phi(y)$

as desired.

PROBLEM 2

Prove the Fredholm Theorem.

Proof. Recall from the previous homework that for a subspace V of a Banach space X, we have that

$$\overline{V} = \cap_{\phi \text{s.t. } V \subset \ker \phi} \ker \phi$$

Letting V = imA, we see that

$$\overline{\operatorname{im} A} = \bigcap_{\phi \text{s.t. } \operatorname{im} A \subset \ker \phi} \ker \phi$$

Now, the right hand side is just the set of all $y \in Y$ for which $\phi(y) = 0$ for any ϕ such that $\phi(Ax) = 0$ for all x. That is, ϕ is such that $A^*\phi(x) = 0$ for all x, so $A^*\phi = 0$. That is, the right hand side is the set of all $y \in Y$ for which $\phi(y) = 0$ for all ϕ in ker A^* , as desired.

PROBLEM 3

Explain the difference between the weak-* convergence of a sequence (ϕ_j) in X^* and the weak convergence of (ϕ_j) in $Y = X^*$. State the relations between the strong, weak, and weak-* convergences on X^* .

Proof. If (ϕ_j) converges in weak-* to ϕ , this means that for all $x \in X$, $\phi_j(x) \to \phi(x)$. That is, ϕ_j converges pointwise to ϕ . Specifically, the weak-* topology is the weak topology with respect to $i_{can}X \subset X^{**}$.

On the other hand, if (ϕ_j) converges to ϕ weakly, then for all $x \in X^{**}$, $x(\phi_j) \to x(\phi)$. In particular, the weak topology is the weak topology with respect to X^{**} . That is to say, the weak topology utilizes the entirety of X^{**} to detect convergence, while the weak-* convergence only uses $i_{can}(X) \subset X^{**}$.

It should be clear, however, that strong convergence implies weak convergence, which implies weak-* convergence. To see this, let ϕ_j be such that $\|\phi_j - \phi\| \to 0$. Then, for any $x \in X^{**}$, since x is continuous with respect to the norm on X^* , we have that

$$x(\phi_i) \to x(0)$$

which is the condition for weak convergence. The fact that weak convergence implies weak-* convergence is clear, since $i_{can}(X) \subset X^{**}$, and so if for all $x \in X^{**}$, $x(\phi_j) \to x(\phi)$, then clearly for all $x \in X$, $\phi_j(x) \to \phi(x)$.

PROBLEM 4

Prove that the sequence of standard basis vectors $e_n \in \ell^p$, 1 converges weakly but not strongly.

Proof. We first show that (e_n) does not converge strongly. This is clear, since the sequence is not Cauchy, that is

$$||e_n - e_m||_p^p = \sum_{i=1}^{\infty} (|(e_n - e_m)_i|)^p$$
$$= 1^p + 1^p \neq 0$$

Thus, it does not converge in norm.

Now, we show that (e_n) converges weakly. To see this, let $x \in \ell^{p*} = \ell^q$. Then, we need to show that $|x(e_n)| \to 0$. This is clear, however, since

$$|x(e_n)| = \sum_{i=1}^{\infty} |x_i(e_n)_i| = |x_n|$$

and since $x \in \ell^q$, $|x_i| \to 0$ (since $\sum_{i=1}^{\infty} |x_i|^q < \infty$), it follows that

$$|x(e_n)| \to 0$$

as desired. \Box

Problem 5

Prove that $\frac{\epsilon}{\pi(x^2+\epsilon^2)}d\lambda^1(x) \to \delta_0$ in weak-* as measures in $C([-1,1])^*$. Prove that $\frac{1}{2\epsilon}\chi_{-\epsilon,\epsilon}(x)d\lambda^1(x) \to \delta_0$ in weak-* as measures in $C([-1,1])^*$.

Proof. First, we show that for all $f \in C([-1,1])$, $\int_{[-1,1]} f(x) \frac{\epsilon}{\pi(x^2 + \epsilon^2)} d\lambda^1(x)$ goes to f(0). To see this, we can estimate the integral away from zero as well as at zero by

$$\int_{[-1,1]} f(x) \frac{\epsilon}{\pi(x^2 + \epsilon^2)} d\lambda^1(x) = \int_{[-1,-\delta] \cup [\delta,1]} f(x) \frac{\epsilon}{\pi(x^2 + \epsilon^2)} dx + \int_{-\delta}^{\delta} f(x) \frac{\epsilon}{\pi(x^2 + \epsilon^2)} dx$$

Letting M be the bound on |f(x)| (since f is on a compact set, this is defined), we can bound the first integral above and below by

$$\int_{[-1,-\delta]\cup[\delta,1]} f(x) \frac{\epsilon}{\pi(x^2 + \epsilon^2)} dx \le M \frac{\epsilon}{\pi \delta^2} 2(1 - \delta)$$
$$\int_{[-1,-\delta]\cup[\delta,1]} f(x) \frac{\epsilon}{\pi(x^2 + \epsilon^2)} dx \ge -M \frac{\epsilon}{\pi \delta^2} 2(1 - \delta)$$

which goes to zero as delta gets small, and can safely be ignored so long as δ shrinks slower than ϵ .

For the second integral, we use the fact that $|f(x) - f(0)| < \epsilon'$ for $|x| < \delta'$ to estimate

$$\int_{-\delta}^{\delta} f(x) \frac{\epsilon}{\pi(x^2 + \epsilon^2)} dx \le \int_{-\delta}^{\delta} (f(0) + \epsilon') \frac{\epsilon}{\pi(x^2 + \epsilon^2)} dx$$

$$= 2(f(0) + \epsilon') \frac{1}{\pi} \tan^{-1}(\frac{\delta}{\epsilon}) \int_{-\delta}^{\delta} f(x) \frac{\epsilon}{\pi(x^2 + \epsilon^2)} dx \ge \int_{-\delta}^{\delta} (f(0) - \epsilon') \frac{\epsilon}{\pi(x^2 + \epsilon^2)} dx$$

$$= 2(f(0) - \epsilon') \frac{1}{\pi} \tan^{-1}(\frac{\delta}{\epsilon})$$

which are both equal to $(f(0) \pm \epsilon')$ so long as $\frac{\delta}{\epsilon}$ goes to infinity, or δ shrinks slower than ϵ .

So, fixing a sequence of δ for which the integral goes to $f(0) \pm \epsilon' \to 0$, and letting ϵ go to zero faster than δ , we see that the measure converges to the delta measure centered at zero, as desired.

Thus, since this holds for any $f \in C([-1,1])$, it follows (by Riesz representation for $C([-1,1])^*$ into Borel measures on [-1,1]) that the measure given converges in weak-* to the delta measure.

For the second statement, we wish to show that for all $f \in C([-1,1])$,

$$\int_{[-1,1]} f(x) \frac{1}{2\epsilon} \chi_{[-\epsilon,\epsilon]} dx = f(0)$$

This is easily done.

$$\int_{[-1,1]} f(x) \frac{1}{2\epsilon} \chi_{[-\epsilon,\epsilon]} dx = \frac{1}{2\epsilon} \int_{-\epsilon}^{\epsilon} f(x) dx$$

Now, we use continuity of f to get a sequence of δ_n for which $|x| < \delta_n$ implies $|f(x) - f(0)| < \frac{1}{n}$. Then, it follows that (by setting $\epsilon = \delta_n$)

$$\int_{[-1,1]} f(x) \frac{1}{2\delta_n} \chi_{[-\delta_n, \delta_n]} dx = \frac{1}{2\delta_n} \int_{-\delta_n}^{\delta_n} f(x) dx \le \frac{1}{2\delta_n} \int_{-\delta_n}^{\delta_n} (f(0) + \frac{1}{n}) dx$$
$$= f(0) + \frac{1}{n}$$

and similarly,

$$\int_{[-1,1]} f(x) \frac{1}{2\delta_n} \chi_{[-\delta_n, \delta_n]} dx \ge \frac{1}{2\delta_n} \int_{-\delta_n}^{\delta_n} (f(0) - \frac{1}{n}) dx$$

$$= f(0) - \frac{1}{n}$$

which goes to f(0) as n goes to infinity.

Problem 6

Prove that a finite dimensional vector space is reflexive. Find an expression for the matrix form of A^* given the matrix form of A.

Proof. To show that V is reflexive, we only need to show that the canonical injection i is surjective. However, since V and V^* have the same dimension, so does V^* and V^{**} , and so since i is injective into a space of the same dimension, i is surjective as well, as desired.

Now, we wish to find A^* as a matrix in the dual basis. We wish to show

$$\langle Ax, y \rangle = \langle x, A^{\dagger}y \rangle$$

for all $x \in V$ and $y \in W$ for $A: V \to W$ (anticipating that $A^* = A^{\dagger}$.) To do so, let's express A in local coordinates.

$$\langle Ax, y \rangle = A_{ij} x^{j} \overline{y^{i}}$$

$$= \overline{A_{ij}} y^{i} x^{j}$$

$$= x^{j} \overline{A_{ji}^{T}} y^{i}$$

$$= \langle x, \overline{A^{T}} y \rangle$$

and so $A^* = A^{\dagger}$, as desired.