

UNIVERSITÄT BERN

Convolutional Neural Networks

Paolo Favaro

Contents

- Motivation and classic pattern recognition, Convolutional Neural Networks
 - Convolutions (standard, unshared, tiled), pooling, structured outputs
- Based on Chapter 9 of Deep Learning by Goodfellow, Bengio, Courville
- Credits also to Yan LeCun "Learning Invariant Feature Hierarchies" presentation

• The task is to classify an image as one of several possible objects

• The classic pipeline

• The modern pipeline (2000s)

Deep learning

Trainable Feature Hierarchy

- Hierarchy builds increasing level of abstraction, where each level is trainable
- Hierarchy examples

Image: Pixel → edge → texton → motif → part → object

Text: Character → word → word group → clause → sentence → story

Learning Representations

How do we learn representations of the perceptual world?

How can a perceptual system build itself by looking at the world?

How much prior structure is necessary?

What Are Good Features?

- Discover & disentangle the independent explanatory factors
- The manifold hypothesis
 - Natural data lives in a low-dim (non-linear) manifold, because variables in natural data are mutually dependent

Feature Learning Scheme

- Embed features in a high dimensional space (data points become separable)
 - Pattern matching
 - Nonlinearity
- Pool regions that have similarities

Deep Learning Architecture

- Stack multiple stages of
 - Normalization: builds invariance to nuisance factors
 - Filtering: mapping to high-dim space
 - NonLinearity: separation of features
 - Pooling: aggregation by similarity

The Convolutional Network

C5: 200x23x23

Convolutional Networks (ConvNets)

- Deployed in many practical applications
 - Image/speech reco, Google's and Baidu's photo taggers
- Have won several competitions
 - ImageNet, Kaggle Facial Expression/Multimodal Learning, German Traffic Signs, etc
- Applicable to array data where nearby values are correlated
 - Images, sound, time-frequency representations, video, volumetric images, RGB-Depth images, etc

Object Recognition with ConvNets

 AlexNet (Krizhevsky, Sutskever, Hinton 2012) won the 2012 ImageNet LSVRC (1K categories, 1.3M labeled training samples)

Detection with a Sliding Window

Detection with a Sliding Window

Detection with a Sliding Window

Scene parsing on RGB-depth images

Commercial Applications with ConvNets

- Form Reading: AT&T 1994
- Check reading: AT&T 1996 (read 10-20% of all US checks in 2000) Handwriting recognition: Microsoft early 2000
- Face and person detection: NEC 2005
- Face and License Plate Detection: Google/StreetView 2009
- Gender and age recognition: NEC 2010 (vending machines)
- OCR in natural images: Google 2013 (StreetView house numbers) Photo tagging: Google 2013
- Image Search by Similarity: Baidu 2013
- Today: Lots of google services, etc

Convolutional Networks

- A specialized neural network for data arranged on a grid (e.g., audio signals, images)
- Allow neural networks to deal with high-dimensional data
- Key idea is to substitute fully connected layers with a convolution

Fully Connected Layers

matrix product

The Convolution Operation

The Correlation Operation

$$s[m,n] = (x \otimes w)[m,n] = \sum_{i,j} x[m+i,n+j]w[i,j]$$

$$\text{not symmetric as the convolution} \longrightarrow = \sum_{i,j} w[i-m,j-n]x[i,j]$$

$$= \sum_{i,j} w_-[m-i,n-j]x[i,j]$$

$$\text{related to the convolution} \longrightarrow = (x*w_-)[m,n]$$
 flipping

The Convolution Operation

Toeplitz Matrix

Toeplitz matrix

Motivation

- Convolutions leverage four ideas
 - 1. Sparse interaction
 - 2. Parameter sharing
 - 3. Equivariant representations
 - 4. It can equally handle inputs of different sizes*

^{*}pay attention to the boundary conditions!

Sparse Interaction

- In a fully connected layer every output can potentially depend on all inputs
- In a convolutional layer an output depends only on a small neighborhood of inputs (when the kernel is smaller than the input)
- The number of calculations is limited by the kernel size

Sparse Interaction

Sparse connections due to small convolution kernel

Dense connections

Sparse Interaction

Sparse connections due to small convolution kernel

Dense connections

Receptive Field

A receptive field is defined as all the units in a certain layer that affect a later unit

Parameter Sharing

- Each output depends on the same parameters (the kernel weights)
- Exceptions are the boundaries (here padding and boundary assumptions are important)
- Fewer parameters means less storage

Parameter Sharing

Convolution shares the same parameters across all spatial locations

Traditional matrix multiplication does not share any parameters

Example

Equivariant Representations

- An important property of the convolution is that it is shift-invariant (invariant to translation)
- In many signals this is the correct assumption: the same object might appear anywhere in the image and we should have the same (feature) response at any of these locations
- This concept is captured by equivariance

Equivariant Representations

- A function f is equivariant to a function g if f(g(x)) = g(f(x))
- If f is the convolution and g the translation, then f is equivariant to g
- The convolution is not equivariant to rotation and scaling

Pooling

- Typical layers of convolutional neural networks consist of three stages: 1) a convolutional layer, 2) a nonlinear activation function (e.g., ReLU) and 3) a **pooling** function
- 1) and 2) are also called a detector

Pooling

- Pooling performs a calculation on a sliding window
- Some pooling operations: the **max** within the window, the **average** of the window, the **L₂ norm** of the window, the **weighted average** of the window
- Pooling gives a local (to a window) invariance to translation

Max Pooling

Learning Invariances

Pooling applied across channels can learn invariances to transformations

Pooling

• Because pooling summarizes the responses over a neighborhood, it is sufficient to under sample the pooling output (e.g., by the size of the window)

Pooling

 In many tasks, this is useful to reduce the initial dimension of the input and eventually reach the desired output size

 With an adaptive neighborhood size it can produce the same output size regardless of the input size

Classification Architectures

Variants

- Input data is typically a 4D tensor: 2 dimensions for the spatial domain, 1 dimension for the channels (e.g., colors), and 1 dimension for the batch
- The convolution (correlation) applies to the spatial domain only

Stride

• We can also skip outputs by defining a stride s larger than 1

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j\times s+m,k\times s+n} K_{i,l,m,n}$$

Padding

- The output of a convolution is valid as long as the summation uses available values
- In a convolution the valid output size is equal to:
 the input size the size of the kernel + 1
- Unless we make boundary assumptions, a convolution will lead to a progressive shrinking of the input
- Padding is the assumption that outside the given domain the input takes some fixed values (e.g., zero)

Padding

with zero padding

Unshared Convolution

 Unshared convolutions use kernels whose weights change at every location, but only apply to a small neighborhood

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m,k+n} w_{i,j,k,l,m,n}$$

Unshared Convolution

Tiled Convolution

- A tradeoff between convolutions and locally connected layers
- The kernels repeat on a spatial lattice (locally they may be different)

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m,k+n} K_{i,l,m,n,j\%t,i\%t}$$

where % denotes the modulo operator

Tiled Convolution

Dilated Convolutions

 $(F \circledast_q k)[p] = \sum F[s]k[t]$

- They expand the kernel size by introducing zeros in between the non-zero components
- Also called Atrous Convolution

2-dilated convolution

Yu, F and Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015 Chen LC, et al. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014

Dilated Convolutions

standard convolution

2-dilated convolution

Deformable Convolutions

- Convolutions cannot adapt to geometric transformations of the input
- Deformable convolutions learn also a shift for each entry in the kernel

illustration from https://towardsdatascience.com/deformable-convolutions-demystified-2a77498699e8

...and much More!

• https://paperswithcode.com/methods/category/convolutions

Structured Outputs

- Convolutional networks can output a high-dimensional structured object (e.g., a tensor)
- For example, one could output a 3D tensor with the probability of a given set of classes at each pixel
- This could be used for segmentation or pixel-wise labeling

Data Types

- Input data can be in different formats
- 1D: Audio waveforms (single channel) and skeleton animation data/motion (multi-channel)
- 2D: Audio data preprocessed via Fourier (single channel), color image data (multi-channel)
- 3D: Volumetric data such as CT scans (single channel), color video data (multi-channel)

Data Types

- Convolutional networks allow dealing with images of different sizes
- Also, we might design networks whose output is size-varying (the loss function must be able to handle it) — e.g., per pixel labeling

Efficient Implementations

- Convolutions can be efficiently implemented via parallel computing (GPU)
- One fast implementation (when kernels are large) is via the FFT (the convolution is a dot product in Fourier space)
- Another fast implementation is when a d-dimensional kernel is separable (it can be written as the outer product of d 1D kernels)

Examples of Prominent CNN Architectures

- AlexNet
- VGG
- ResNet
- UNet
- (EfficientNet)
- 3D conv architectures
- Graph CNNs