Тема 1. Фазовые портреты.

Для геометрической иллюстрации решений как линейных, так и нелинейных систем, часто строят *фазовый портрем* модели в фазовом пространстве ее уравнений

$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}), \quad \mathbf{x}(0) = \mathbf{x}_0$$

Решение уравнения первого порядка порождает следующие виды траекторий:

- а) одноточечная траектория (положение равновесия);
- б) интервал (концы интервала положения равновесия);
- в) *полупрямая* (один конец положение равновесия, другой точки $\pm \infty$).

Условимся, что при f(x) > 0 фазовая точка пробегает прямую слева направо, а при f(x) < 0 – справа налево). Примерами траекторий являются:

- $x = x^2$ puc. 1a;
- $x = x^3$ puc. 16;
- $x' = \frac{1}{2}(x^2 1)$ puc. 1B;
- $x' = \sin(\pi x)$ puc. 1r.

Рис. 1 Фазовые портреты в одномерном случае.

Теперь обратимся к системам второго порядка на примере линейных уравнений с матрицей 2x2, имеющей различные собственные значения:

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x} \,. \tag{1}$$

Нулевая точка $\mathbf{x} = \mathbf{0}$ очевидно является точкой равновесия. Пусть λ_k, \mathbf{u}_k – собственные значения и собственные векторы матрицы \mathbf{A} , а \mathbf{U} – матрица со столбцами из собственных векторов \mathbf{u}_k :

 $\mathbf{A}\mathbf{u}_k = \lambda_k \mathbf{u}_k$, $\mathbf{U} = (\mathbf{u}_1, \mathbf{u}_2)$, $\mathbf{A}\mathbf{U} = \mathbf{U}\boldsymbol{\Lambda}$, $\boldsymbol{\Lambda} = \mathbf{U}^{-1}\mathbf{A}\mathbf{U} = diag(\lambda_1, \lambda_2)$ (2) Тогда, выполнив в (1) замену переменных $\mathbf{x} = \mathbf{U}\mathbf{y}$, получаем систему уравнений с диагональной матрицей

$$\frac{d\mathbf{y}}{dt} = \mathbf{\Lambda}\mathbf{y}, \quad \mathbf{\Lambda} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, \quad \frac{dy_1}{dt} = \lambda_1 y_1, \quad \frac{dy_2}{dt} = \lambda_2 y_2, \quad (3)$$

решение которой записывается в виде

$$y_1(t) = C_1 e^{\lambda_1 t}, \qquad y_2(t) = C_2 e^{\lambda_2 t}.$$
 (4)

Рассмотрим различные сочетания значений λ_1 и λ_2 .

Вариант 1. Собственные значения вещественные одного знака.

Пусть первоначально $\lambda_1 < 0$ и $\lambda_2 < 0$, например $\lambda_1 = -1$ и $\lambda_2 = -2$. Тогда, если $C_1 \neq 0$ и $C_2 \neq 0$, то $y_1(t) = C_1 e^{-t}$, $y_2(t) = C_2 e^{-2t}$ и $y_2(t) = C_3 y_1^2(t)$, где $C_3 = \frac{C_2}{C_1^2}$. В зависимости от знака C_2 имеем две ветви параболы, отраженные на рис 2а. Для $C_1 = 0$ или $C_2 = 0$ получаем траектории на оси абсцисс или ординат. Такое положение равновесия получило название устойчивый узел.

Если $\lambda_1 > 0$ и $\lambda_2 > 0$, например $\lambda_1 = 1$ и $\lambda_2 = 2$, то аналогичные преобразования порождают рис 2б, отличающийся от рис 2а лишь направлением стрелок. Такое положение равновесия получило название **неустойчивый узел**.

Рис. 2а Устойчивый узел

Рис. 2б Неустойчивый узел

Вариант 2. Собственные значения вещественные различного знака.

Пусть $\lambda_1 > 0$ и $\lambda_2 < 0$, например $\lambda_1 = 1$ и $\lambda_2 = -1$. Тогда, если $C_1 \neq 0$ и

$$C_2 \neq 0$$
, то $y_1(t) = C_1 e^t$, $y_2(t) = C_2 e^{-t}$ $y_2(t) = \frac{C_3}{y_1(t)}$, где $C_3 = C_1 \cdot C_2$. В

зависимости от знаков C_1 и C_2 имеем четыре гиперболы, отраженные на рис 3. Для $C_1=0$ или $C_2=0$ получаем траектории на оси абсцисс или ординат. Такое положение равновесия получило название cedno.

Рис. 3. Равновесие типа «седло»

Вариант 3. Собственные значения составляют комплексно-сопряженную пару.

Пусть $\lambda_{1,2} = \alpha \pm i \omega$ и чтобы избежать операций с комплексными числами в (4), выполним в (1) хорошо известную замену переменных, позволяющую записать решение в виде $y_1(t) = C_1 e^{\alpha t} \cos\left(\omega t\right), \ y_2(t) = C_2 e^{\alpha t} \sin\left(\omega t\right).$ Для простоты ограничимся иллюстрацией $C_1 = C_2 = 1$. Тогда $y_1^2 + y_2^2 = e^{2\alpha t}$. Для $\alpha < 0$ получаем траекторию, отвечающую рис. 4а с типом равновесия устойчивый фокус, а для $\alpha > 0$ — рис. 4б с типом равновесия неустойчивый фокус.

Рис. 4а. Устойчивый фокус

Рис. 4б. Неустойчивый фокус

Нелинейная система в малой окрестности равновесной точки может быть сколь угодно точно аппроксимирована линейной, поэтому характер поведения ее решений в малом также отвечает рис. 2, 3, 4.