

Spatial Frequencies and Degrees of Freedom in Near-Field Communications

Emil Björnson

Professor of Wireless Communication

Fellow of IEEE, Digital Futures, and Wallenberg Academy

KTH Royal Institute of Technology, Stockholm, Sweden

Joint work with

Nikolaos Kolomvakis Özlem Tuğfe Demir Alva Kosasih

Wireless Signals and Spatial Frequencies

A Basic User Setup

Uniform linear array with *N* antennas, spacing $\Delta = \lambda/2$

Antenna n located at $(0, i_n \Delta, 0)$

Near-field approximation for antenna n:

$$(d - d_n)$$

$$= d - \sqrt{d^2 + (i_n \lambda/2)^2 - di_n \lambda \cos(\theta)}$$

$$\approx i_n \frac{\lambda}{2} \cos(\theta) - \left(\frac{\lambda}{2}\right)^2 \frac{i_n^2 (1 - \cos^2(\theta))}{2d}$$

Far-field approximation for antenna *n*:

$$(d - d_n) \approx i_n \frac{\lambda}{2} \cos(\theta)$$

Far-field array response vector:

$$\mathbf{a}(\Theta) = \left[e^{j\pi i_1\Theta}, \dots, e^{j\pi i_N\Theta}\right]^T, \\ \Theta = \cos(\theta)$$

Investigating the Spatial Frequency Content of h

Compute the Discrete Fourier transform: $h_{SF} = F \cdot h$

$$F = [a(\Theta_0), a(\Theta_1), ..., a(\Theta_{N-1})]^H \in \mathbb{C}^{N \times N} \text{ with } \Theta_n = n/N$$

Example: N = 16

Impinging signal with $\theta = \frac{2\pi}{2}$

Spatial frequency:

$$\frac{\Theta}{\lambda} = \frac{\cos(\theta)}{\lambda} = -\frac{4}{8\lambda}$$

Interpretation of the Spatial DFT

Express channel as linear combination of far-field array response vectors $\mathbf{h} = \mathbf{F}^H \mathbf{h}_{SF}$ ($\Theta_n = n/N$):

$$\mathbf{F}^H = [\mathbf{a}(\Theta_0), \mathbf{a}(\Theta_1), ..., \mathbf{a}(\Theta_{N-1})]$$

- Equally spaced $\Theta = \cos(\theta)$
- Equally spaced spatial frequencies Θ/λ

Same number of vectors as antennas

These vectors are orthogonal:

$$\frac{|\boldsymbol{a}^{M}(\Theta_{n})\boldsymbol{a}(\Theta_{m})|}{N} = \begin{cases} 1, & n = m \\ 0, & n \neq m \end{cases}$$

Spatial Frequency Content for a Near-Field

Compute the Discrete Fourier transform: $\mathbf{F} \cdot \mathbf{h} = h_c \cdot \mathbf{F} \cdot \mathbf{b}(\theta, d)$

$$F = [a(\Theta_0), a(\Theta_1), ..., a(\Theta_{N-1})]^H \in \mathbb{C}^{N \times N}$$
 with $\Theta_n = n/N$

Example: N = 16

Impinging signal with $\theta = \frac{2\pi}{3}$, $d = 5\lambda$

Spherical wave consists of many spatial frequencies

Spatial Bandwidth vs. Propagation Distance

 $d = 506 \, \text{m}$

Example: N=225, $\theta=\frac{\pi}{3}$, varying distance d, 15 GHz

N spatial frequencies

Varying numbers of effective spatial frequencies

Number of Effective Spatial Frequencies vs. Distance or Angle

Example: N = 225 antennas, 15 GHz

Varying distance, $\theta = \pi/2$

Varying angle, d = 4.5 m

Impact on Multi-User Communications

Downlink, N = 64 antennas, K users, 15 GHz

Channels $h_1, ..., h_K$ should ideally be orthogonal Regularized zero-forcing cancels remaining interference

Are There any Near-field Benefits?

Downlink, N = 64 antennas, N = K users

Observations

Same degrees-of-freedom

Larger chance that random channels are well separable

General Modeling of Near-Field Channels

Different channel representations:

$$\begin{aligned} \boldsymbol{h} &= \boldsymbol{F}^H \cdot \boldsymbol{h}_{\mathrm{SF}} = [\boldsymbol{a}(\Theta_0), \boldsymbol{a}(\Theta_1), ..., \boldsymbol{a}(\Theta_{N-1})] \cdot \boldsymbol{h}_{\mathrm{SF}} \\ &= \int_0^\infty \int_0^\pi g(\theta, d) \, \boldsymbol{b}(\theta, d) \, \partial \theta \, \partial d \end{aligned} \\ \text{DFT coefficients} \qquad \begin{aligned} \boldsymbol{b}(\theta, d) &= \left[e^{j\frac{2\pi}{\lambda}(d-d_1)}, ..., e^{-j\frac{2\pi}{\lambda}(d-d_N)} \right]^T \\ \text{Expansion using near-field} \\ \text{Coefficients} \qquad \end{aligned}$$

Fading channel model (Non-line-of-sight)
$$h \sim CN(0, R)$$

$$\mathbf{R} = \beta \int_0^\infty \int_0^\pi f(\theta, d) \mathbf{b}(\theta, d) \mathbf{b}^H(\theta, d) \, \partial\theta \, \partial d$$

4

Rank of the Spatial Correlation Matrix

Scatters located in $\theta \in [\theta_1, \theta_2]$ and $d \in [d_1, d_2]$

Observations

Full rank if scattering clusters in all directions

If limited angular range:
Higher rank with
near-field scatterers

Rank = Spatial degrees of freedom used by the channel

Summary

Spatial Proposeds and Segue at Persons

Spatial Proposeds and Segue at Persons

Segue at the committee of th

- N antennas: N-dimensional channels
- Any channel = linear combination of $a(\Theta_n)$ for n equally spaced spatial frequencies (DFT)
 - Same in near-field and far-field

youtube.com/wirelessfuture

- We can serve equally many users in near- and far-field
 - · Ideal case: Far-field at angles Θ_n
 - Bigger chance for random users to be compatible
- Any channel = integral of near-field array response