Optimizing Cryptographic Strength of Substitution Layers in Symmetric-Key Cryptographic Algorithms

Christopher A. Wood

May 9, 2012

Agenda

- 1 Cryptographic Security
- 2 Security Measurements
- 3 Optimization Problem Formulation
- 4 Optimization Solution
- 5 Final remarks

Elements of Cryptographic Security

Cryptographic algorithm security is measured by:

- Levels of confusion and diffusion
- Resilience to common cryptanalytic attacks

S(ubstitution)-box

A S-box is a common source for nonlinearity in symmetric-key cryptographic algorithms. It can be defined as follows:

- A function $f: \mathbb{F}_2^n \to \mathbb{F}_2^n$, where n is the number of bits needed to represent each element in the field.

Security Measurements

- Branch number
 - Measures the number of "active" S-box bits that are touched for every input x ∈
- Avalanche number
 - Measures the total number of bit changes for a single bit change in the input to the S-box
- Nonlinearity degree
 - Measures how much nonlinear "behavior" the S-box exhibits

Algorithm Design Goals

- High branch number
- Avalanche number of exactly n²2ⁿ⁻¹
- High degree of nonlinearity

Exhaustive search for 2-bit S-box

Branch number problem formulation

Branch Number - Minimize

$$B'_N(X) = -B_N(X) = -\min_{i,j \neq i} (\operatorname{wt}(i \oplus j) + \operatorname{wt}(X(i) \oplus X(j))),$$

subject to the constraints

$$0 \le X(i) \le 2^n - 1$$

where n is the number of bits needed to represent the design variables.

Avalanche number problem formulation

Avalanche Number - Minimize

$$A'_{N}(X) = -A_{N}(X) = -\sum_{i=0}^{n-1} \sum_{x \in \mathbb{F}_{2}^{n}} \operatorname{wt}(f(x) \oplus f(x \oplus 2^{i}))$$

subject to the constraints

$$0 \le X(i) \le 2^{n} - 1$$

$$\min_{i,j \ne i} (\operatorname{wt}(i \oplus j) + \operatorname{wt}(X(i) \oplus X(j))) - n2^{n-1} \le 0$$

where n is the number of bits needed to represent the design variables.

Nonlinearity degree problem formulation

Degree of Nonlinearity - Minimize

$$P_S(X) = \max_{0 \neq a,b} |\{x \in \mathbb{F}_2^n : S(x+a) - S(x) = b\}|,$$

subject to the constraints

$$0 \le X(i) \le 2^n - 1,$$

where n is the number of bits needed to represent the design variables.

Joint MINLP Problem - Minimize

$$f(X) = w_1 A'_N(X) + w_2 B'_N(X) + w_3 P_S(X),$$

subject to the constraints

$$0 \le X(i) \le 2^{n} - 1$$

$$\min_{i,j \ne i} (\operatorname{wt}(i \oplus j) + \operatorname{wt}(X(i) \oplus X(j))) - n2^{n-1} \le 0,$$

where *n* is the number of bits needed to represent the design variables and w_i , where $1 \le i \le 3$, are *not* design variables.

MINLP algorithms

- Traditional MINLP algorithms (e.g. Branch and Bound)
- Evolutionary algorithms (e.g. genetic algorithms)

Genetic algorithm configuration

Algorithm Option	Configuration Description
Population mutation function	Randomly scaled children generations
Generations	500
Tolerance Function limit	1×10^{-6} from last function value change
Stall generation limit	2 ^{nⁿ} identical function values
Initial population	S-box configuration $\langle 0, 1,, n \rangle$

Avalanche number for 4-bit S-box

Branch number for 4-bit S-box

Nonlinearity degree for 4-bit S-box

Multi-objective MINLP solution for 4-bit S-box

Solution Analysis

Measurement	Results
Branch number	BAD
Avalanche number	OKAY
Nonlinearity degree	GOOD

Conclusion

- Evolutionary optimization algorithms are the most appropriate for cryptographic applications
 - Effectively finds solutions for some discontinuous and instable functions
 - Not very effective at finding solution for multi-objective problems due to WHAT?
- TODO: what else?