

Home Gameboard

Maths

Differentiation: Implicit 3ii

Differentiation: Implicit 3ii

Part A Derivative

For the curve $2x^2 + xy + y^2 = 14$, find $\frac{dy}{dx}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), ln(), log(), x, y

Part B Stationary Points

How many points are there on the curve $2x^2 + xy + y^2 = 14$ at which the tangents are parallel to the x -axis?

Part C Coordinates 1

The following symbols may be useful: x

Give the *y*-coordinate of the same point.

The following symbols may be useful: y

Part D Coordinates 2

(continued from Part C)

Find the coordinates of the points at which the tangents to the curve $2x^2 + xy + y^2 = 14$ are parallel to the *x*-axis.

Give the *x*-coordinate of the point with the lowest (most negative) *x*-value.

The following symbols may be useful: x

Give the *y*-coordinate of the same point.

The following symbols may be useful: y

<u>Gameboard</u>

Maths

Differentiation: Implicit 5i

Differentiation: Implicit 5i

Part A Derivative

Given that $y \sin 2x + \frac{1}{x} + y^2 = 5$, find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), cos(), cosec(), cot(), sec(), sin(), tan(), x, y

Part B Gradient

Find the gradient of the curve $4x^2 + 2xy + y^2 = 12$ at the point (1,2).

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

<u>Gameboard</u>

Maths

Differentiation: Implicit 3i

Differentiation: Implicit 3i

The equation of a curve is $xy^2 = 2x + 3y$.

Part A Implicit Differentiation

Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of x and y.

The following symbols may be useful: Derivative(y, x), x, y

Part B Tangents

Give the number of tangents to this curve which are parallel to the y-axis.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

<u>Gameboard</u> <u>Home</u>

Functions

Graph Sketching

Sketching a Parametric Curve

Sketching a Parametric Curve

Maths

A curve has parametric equations $x=1-\cos t$, $y=\sin t\sin 2t$, for $0\leq t\leq \pi$.

Coordinates Part A

At how many different points does the curve meet the x-axis?

Enter the highest of the x-coordinates of the points where the curve meets the x-axis.

The following symbols may be useful: x

Part B Derivative

Find an expression for $\frac{dy}{dx}$ in terms of t.

The following symbols may be useful: Derivative(y, x), arccose(), arccose(), arccose(), arccose(), arcsin(), arcsin(), arccose()cos(), cosec(), cot(), sec(), sin(), t, tan(), x, y

Part C Stationary points 1

Hence find, in an exact form, the coordinates of the stationary points.

Enter the exact x-coordinate of the stationary point with the lower x-coordinate.

The following symbols may be useful: x

Enter the exact y-coordinate of the stationary point with the lower x-coordinate.

The following symbols may be useful: y

Part D Stationary points 2

Hence find, in an exact form, the coordinates of the stationary points.

Enter the exact x-coordinate of the stationary point with the higher x-coordinate.

The following symbols may be useful: x

Enter the exact y-coordinate of the stationary point with the higher x-coordinate.

The following symbols may be useful: y

Part E Cartesian Equation

Find the cartesian equation of the curve. Give your answer in the form y=f(x), where f(x) is a polynomial.

The following symbols may be useful: x, y

Part F Sketch

Sketch the curve.

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.

<u>Gameboard</u>

Maths

Parametric Equations 2i

Parametric Equations 2i

A curve has parametric equations

$$x=rac{1}{t+1}, y=t-1.$$

The line y=3x intersects the curve at two points.

Part A Value of t

Show that the value of t at one of these points is -2 and find the value of t at the other point.

The following symbols may be useful: t

Part B Normal

Find the equation of the normal to the curve at the point for which t=-2, giving your answer in the form y=f(x).

The following symbols may be useful: x, y

Find the value of t at the point where this normal meets the curve again.
The following symbols may be useful: t
Part D Cartesian Equation
Find a cartesian equation of the curve, giving your answer in the form $y=f(x).$
The following symbols may be useful: x, y
Used with permission from UCLES A-level Maths papers, 2003-2017.
Gameboard: STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration
All materials on this site are licensed under the Creative Commons license , unless stated otherwise.

 ${\bf Part \ C} \qquad {\bf Value \ of} \ t$

<u>Home</u> <u>Gameboard</u> Maths Parametric Equations 3i

Parametric Equations 3i

The parametric equations of a curve are

$$x=2 heta+\sin2 heta,y=4\sin heta$$

and part of its graph is shown in Figure 1.

Figure 1: A sketch of the curve.

Part A Value of θ

Find the value of θ at A.

The following symbols may be useful: pi, theta

Find the value of θ at B.

The following symbols may be useful: pi, theta

Part B Derivative

Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$ in terms of θ .

The following symbols may be useful: Derivative(y, x), arccose(), arccose(),

Part C Coordinates

Find the *x*-coordinate.

The following symbols may be useful: pi, x

Find the y coordinate.

The following symbols may be useful: pi, y

Part D Nature of Origin

Point O is at the origin. State the nature of point O, justifying your answer by reference to suitable values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

Easier question?

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

Home Gameboard Maths Calculus Integration Parametric Integration 1

Parametric Integration 1

The curve ${\cal C}$ has parametric equations

$$x=2t^2-3 \qquad y=t(4-t^2)$$

The curve crosses the x-axis at the points A and B and the region R is enclosed by the loop of the curve, as shown in **Figure 1**.

Figure 1: A graph of the curve C.

Find the x-coordinate of the point A.

Find the x -coordinate of the point B .
Part C Area of R
The region R is enclosed by the loop of the curve, as shown in Figure 1 . Find the exact value of the area of R .

Gameboard:

Created for isaacphysics.org by Matthew Rihan

 $\operatorname{Point} B$

Part B

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

Home Gameboard Maths Partial Fractions 1i

Partial Fractions 1i

Part A Partial Fractions

Express
$$\frac{2+x^2}{(1+2x)(1-x)^2}$$
 in the form $\frac{A}{1+2x}+\frac{B}{1-x}+\frac{C}{(1-x)^2}$.

The following symbols may be useful: x

Part B Integration

Hence find
$$\int_0^{rac{1}{4}} rac{2+x^2}{(1+2x)(1-x)^2} \mathrm{d}x$$
 in exact form.

The following symbols may be useful: , ln(), log()

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Double Maths 28 - Implicit & Parametric Equations & Integration

Gameboard

Maths

Functions

General Functions

Integration With Partial Fractions 2

Integration With Partial Fractions 2

Write the function
$$\dfrac{2z^2-z-3}{(z+2)(z^2-2z-1)}$$
 in the form $\dfrac{A}{z+2}+\dfrac{B+Cz}{z^2-2z-1}$. Hence find $\int_1^2\dfrac{2z^2-z-3}{(z+2)(z^2-2z-1)}\,\mathrm{d}z.$

Part A Find A

Find the constant A

Part B Find B

Find the constant B.

Part C Find C

Find the constant C.

Part D Integrate

Hence find
$$\displaystyle \int_1^2 rac{2z^2-z-3}{(z+2)(z^2-2z-1)} \; \mathrm{d}z.$$

The following symbols may be useful: cos(), cosec(), cosech(), cosh(), coth(), log(), sec(), sech(), sin(), tanh(), tanh(), z

Created for isaacphysics.org by Julia Riley