Columbia MA Math Camp

Convexity

Vinayak Iyer August 2018

Table of Contents

 ${\sf Convexity} \ {\sf and} \ {\sf Quasiconvexity}$

Convex sets

Definition 1.1

Let $S \subseteq \mathbb{R}^n$. We say S is convex if for all $x, y \in S$ and $\lambda \in [0, 1]$:

$$\lambda x + (1 - \lambda)y \in S$$

Is the set S=[0,1] convex? What about S=[0,1)? What about $S=[0,1)\cup[2,3]$? $S=\{1,2,3,\dots\}$?

Notes:

- In other words, the convex combination of 2 vectors in a set belongs to the same set.
- The intersection of convex sets is convex
- The union of convex sets need not be convex

3

Convex Sets (cont..)

For finitely many vectors x_1, x_2, \ldots, x_n , a **convex combination** is a vector $\sum_{i=1}^n \lambda_i x_i$ for scalars $\lambda_1, \lambda_2, \ldots, \lambda_n \in \mathbb{R}_+$ such that $\sum_{i=1}^n \lambda_i = 1$

Proposition 1.1

Suppose $S \subseteq \mathbb{R}^n$. The set S is convex iff any convex combination of $x_1, x_2, \ldots, x_n \in S$ is also in S.

Proof:

(←) is trivial based on the definition of convex sets.

(\Longrightarrow) If n=1, the statement is trivial.

If n = 2, the statement is true by the definition of convexity.

Suppose it is true for n=k. This implies that for any set of k vectors x_1, x_2, \ldots, x_k , $\sum_{i=1}^k \lambda_i x_i \in S$ for all $\lambda_i \geq 0$ such that $\sum \lambda_i = 1$.

Proof continued...

Now consider n=k+1 . We need to show that $\sum_{i=1}^{k+1} \lambda_i x_i \in S$.

We can rewrite this as:

$$\begin{split} \sum_{i=1}^{k+1} \lambda_i x_i &= \sum_{i=1}^k \lambda_i x_i + \lambda_{k+1} x_{k+1} \\ &= \left(\sum_{i=1}^k \lambda_i\right) \left(\sum_{i=1}^k \frac{\lambda_i}{\sum_{i=1}^k \lambda_i} x_i\right) + \lambda_{k+1} x_{k+1} \\ &= \left(\sum_{i=1}^k \lambda_i\right) \bar{x} + \lambda_{k+1} x_{k+1} \quad \text{(since it is true for } n = k \text{ i.e. } \sum_{i=1}^k \frac{\lambda_i}{\sum_{i=1}^k \lambda_i} x_i \in S \text{)} \\ &\in S \quad \text{(Since it is true for } n = 2 \text{)} \end{split}$$

5

Convex and Concave Functions

Definition 1.2

A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for any $x_1, x_2 \in \mathbb{R}^n$ and any $\lambda \in (0, 1)$:

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

- If the inequality is strict, f is **strictly convex**
- If the inequality is reversed, f is **concave**

Another characterization: A function f is convex if and only if :

$$\{(x,y)\in\mathbb{R}^n\times\mathbb{R}|y\geq f(x)\}$$

is convex

Convex Functions: Properties

Convex functions have a whole host of nice properties - people write books on convex analysis. Some include:

- If f and g are convex (concave), f + g is convex (concave)
- If f is convex (concave) and g is convex (concave) and increasing, then $f \circ g$ is convex (concave)

Some properties are a little surprising at first glance :

- Convex functions are continuous
- Convex functions are differentiable almost everywhere

Characterization for Differentiable Functions

Definition 1.3

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then

• f is convex iff for all $x_1, x_2 \in \mathbb{R}^n$:

$$f(x_2) \geq f(x_1) + f'(x_1)(x_2 - x_1)$$

• f is strictly convex iff for all $x_1 \neq x_2$:

$$f(x_2) > f(x_1) + f'(x_1)(x_2 - x_1)$$

Convex functions sit above their tangent lines. The analogous result holds for concave functions (just flip the inequality)

Characterization for Twice Differentiable Functions

Definition 1.4

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function. Then

- f is convex (concave) iff its Hessian is positive (negative) semi-definite for all x
- If the Hessian is positive (negative) definite for all x, then f is strictly convex (concave)

(Proof intuition): Use a second-order Taylor series expansion

$$f(x) \approx f(a) + f'(a)(x-a) + \frac{1}{2}(x-a)^T H(a)(x-a)$$

If H(a) is positive definite, f will sit above its tangent approximation.

Quasiconcavity

- In micro, we think of preferences that are represented by a utility function: x is preferred to y if $u(x) \ge u(y)$
- This is an *ordinal notion*: if $f(\cdot)$ is an **increasing** function, then f(u(x)) > f(u(y)), so $f \circ g$ represents the same preferences
- However, convexity is not an ordinal notion. Let $u(x) = x^2$ and $f(x) = \log x$. Then u is convex and f an increasing transformation, but $f(u(x)) = 2 \log x$ is concave, not convex
- We will develop a notion of quasiconcavity (quasiconvexity) that will be preserved by increasing transformations

Quasiconcave functions

Definition 1.5

Let $f: \mathbb{R}^n \to \mathbb{R}$. We say f is quasiconvex if the lower level set

$$S_{\alpha} \equiv \{x | f(x) \le \alpha\}$$

is convex for every value α . If the upper level sets

$$U_{\alpha} \equiv \{x | f(x) \ge \alpha\}$$

is convex for every α , then f is quasiconcave

Quasiconcave functions - Alternate Characterization

Definition 1.6

A function $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex iff for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$,

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}$$

If the inequality is strict for $x \neq y$ and $\lambda \in (0,1)$, f is strictly quasiconvex

For quasiconcavity, we have $f(\lambda x + (1 - \lambda)y) \ge \min\{f(x), f(y)\}$

Quasiconcave funtions: Properties

• Convexity \Longrightarrow Quasiconvexity : Suppose f is convex. Then for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$:

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

$$\leq \max\{f(x), f(y)\}$$

so f is **quasiconvex**. (Similar argument for Quasiconcavity)

Increasing transformation of quasiconvex function is quasiconvex :

Suppose $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex and $g: \mathbb{R} \to \mathbb{R}$ is an increasing function. Then for all $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$:

$$\begin{split} g(f(\lambda x + (1 - \lambda)y)) & \leq & g(\max\{f(x), f(y)\}) \\ & = & \max\{g(f(x)), g(f(y))\} \end{split}$$

So $g \circ f$ is **quasiconvex**. Similarly, an increasing transformation of a quasiconcave function is quasiconcave.

Quasiconcave functions (cont.)

Proposition 1.2

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^1 function. Then f is quasiconcave iff $f(y) \ge f(x) \Rightarrow f'(x)(y-x) \ge 0$.

Proof.

(⇒) Suppose f is quasiconcave. Let $x, y \in \mathbb{R}^n$ such that $f(y) \ge f(x)$, and $\lambda \in (0,1)$.

$$f((1-\lambda)x + \lambda y) \ge f(x)$$

Rearranging gives

$$\frac{f(x+\lambda(y-x))-f(x)}{\lambda}\geq 0$$

Taking $\lambda \to 0$ gives $f'_{y-x}(x) \ge 0$. So $f'(x)(y-x) \ge 0$.

Quasiconcave functions: Uniqueness of Maximizer

Proposition 1.3

A strictly quasiconcave function can have at most one global maximum.

Proof: Suppose there are 2 maximizers x and y. If $x \neq y$ are both maximizers, then f(x) = f(y).

However, $f(\lambda x + (1 - \lambda)y) > f(x) = f(y)$ by the definition of strict quasiconcavity which contradicts that x and y are maximizers.