

Amount of solar energy received on the earth's surface per unit area per unit time is defined a solar constant. Dimension of solar constant is

[JEE Main 2020]

- 1 ML² T⁻²
- 2 MLT-2
- 3 M²L⁰T⁻¹
- 4 ML⁰T⁻³/

$$S = \frac{E}{At} = \frac{m\chi^2 f^2}{\chi^2 f^2} = \frac{m f^3}{m^2}$$

Dimensional formula for thermal conductivity is (here K denotes the temperature)

[JEE Main 2020]

1 #
MLT-2K-2
MLT-3K-1
(3) MLT-3K
(4) MLT-2K

A quantity x is given by (IFv^2/WL^4) in terms of moment of inertia I, force F, velocity v, work W and length L. The dimensional formula for x is same as that of

- 1 Coefficient of viscosity
- 2 Force constant
- Energy density energy
- 4 Planck's constant

$$X = \frac{IFV^{2}}{WL^{4}}$$

$$= \frac{MIXX MFFX F^{2}}{M^{2}F^{2}} \times VL$$

$$= \frac{mF^{2}}{L} \cdot mL^{1+2}$$

The quantities $x = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$ $y = \frac{E}{B}$ and $z = \frac{1}{CR}$ defined where C – capacitance, R – resistance, I – length, E – electric field, B – magnetic field and ϵ_0 , μ_0 , – free space permittivity and permeability respectively. Then

Only x and y have the same dimension

- Only x and z have the same dimension
- x, y and z have the same dimension
- Only y and z have the same dimension

A quantity f is given by $f = \sqrt{\frac{hc^5}{G}}$ where c is speed of light G universal gravitational constant and h is the Planck's constant. Dimension of f is that of: [JEE Main 2020]

- 1 Momentum
- 2 Energy
- 3 Force
- 4 Pressure

$$f = \sqrt{\frac{hc^5}{6}} = \sqrt{\frac{m^2 + 2 \cdot 2 \cdot 1}{5}} + \frac{7 \cdot 2}{5}$$

= MLT = 2

The work done by a gas molecule in an isolated system is given by, $W = \alpha^2 \beta e^{\frac{-\beta x^2}{kT}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature, α and β are constants. Then the dimensions of β will be:

- [M⁰LT⁰]
- 2 [M²LT²]
- 3 [MLT-2]
- 4 [ML²T⁻²]

$$W = \alpha^2 \beta e^{-\frac{\beta x^2}{KT}}$$

$$\frac{\beta x^2 - 1}{KT}$$

Match List-I with List-II: Choose the correct answer from the options given below:

(A)	(A)-(III),	(B)-(IV)	(C)-(II)	നാ-ന
(-)	(A)-(III),	(D)-(IV),	(6)-(11),	(נו)-נען

	List-I E=0f	List-II
(A)	h (Planck's constant)	[M L T-1]
(B)	E (Kinetic energy)	[M L ² T ⁻¹]
(C)	V (electric potential) / III	[M L ² T ⁻²]
m	P (linear momentum) IV	[ML2I-1T-1]

If e is the electronic charged, c is the speed of light in free space and h is Planck's constant, the quantity $\frac{1}{4\pi\epsilon_0} \frac{|e|^2}{hc}$ has dimensions of: [JEE Main 2021]

- 1 [LC-1]
- 2 [M⁰L⁰T⁰]
- (3) [MLT⁰]
- 4 [MLT-1]

$$\frac{e^2}{4\pi\epsilon hc} = 77$$

$$\frac{Fx^2}{hc} = \frac{Fx^2}{E\lambda} = \frac{fx}{Fxxx}$$

$$\frac{F}{hc} = \frac{Fx^2}{E\lambda} = \frac{fx}{Fxxxx}$$

If a typical combustion engine the work done by a gas molecule is given by $W = \alpha^2 \beta e^{\frac{-Bx^2}{kT}}$, where x is the displacement, k is the Boltzmann constant and T is the temperature. If α and β are constants, dimensions of α will be:

- 1 [M⁰ LT⁰]
- $(2) [M^2 LT^{-2}] \qquad \omega = 2^2 \beta e^{-\beta N_{KT}^2}$
- 3 [MLT-2]
- 4 [MLT-1]

The dimension of mutual inductance is:

- 1 [ML² T⁻² A⁻¹]
- 2 [ML² T⁻³ A⁻¹]
- 3 [ML² T⁻² A⁻²]
- 4 [ML² T⁻³ A⁻²]

The SI unit of a physical quantity is pascal-second. The dimensional formula of this quantity will be [JEE Main 2022]

- [ML-1 T-1]
- 2 [ML⁻¹ T⁻²]
- 3 [ML² T⁻¹]
- (4) [M-1 L³ T⁰]

If *L*, *C* and *R* are the self inductance, capacitance and resistance respectively, which of the following does not have the dimension of time?

[JEE Main 2022]

- 1 RC
- $\frac{L}{R}$
- \sqrt{C}
- $\frac{2}{c}$

$$R = WL = WZ$$

$$R = \frac{1}{L} = \frac{1}{L}$$

In Vander Waals equation $\left[P + \frac{a}{V^2}\right] [V - b] = RT$; P is pressure, V is volume, R is universal gas constant and T is temperature. The ratio of constants $\frac{a}{b}$ is dimensionally equal to:

- $\frac{1}{V}$
- $\frac{V}{P}$
- 3 PV
- $\bigcirc 4$ PV^3

 $2 = \frac{a}{\sqrt{2}}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$

Dimension of $\frac{1}{\mu_0 \epsilon_0}$ should be equal to

- 1 L T-1
- 2 T² L⁻²
- 3 L² T⁻²
- 4 T L-1

Match List I with List II Choose the correct answer from the options given below:

- A-I, B-III, C-II, D-IV
- 2 A-IV, B-I, C-III, D-II
- 3 A-II, B-I, C-IV, D-III
- 4 A-II, B-IIV, C-I, D-IV

	List-I		List-II
(A)	Torque	I	M L-2 T-2
(B)	Stress = $F_A = ML^{1+2}$	II	M L ² T ⁻²
(C)	Pressure gradient	III	M L-1 T-1
(D)	Coefficient of viscosity	IV	M L-1 T-2

Match List I with List II
Choose the correct answer from the options given below:

- A-I, B-III, C-II, D-IV
- 2 A-IV, B-I, C-III, D-II
- 3 A-II B-I C-IV D-III
- A-II, B-III, C-I, D-IV

	List-I		List-II
(A)	Spring constant MT2	I	[T-1]
(B)	Angular speed	II	[MT-2]
(C)	Angular speed Angular momentum	III	[ML ²]
(D)	Moment of inertia	IV	[ML ² T ⁻¹]

In the equation $\left[X + \frac{a}{Y^2}\right] [Y - b] = RT, X$ is pressure, Y is volume, R is universal gas constant and T is temperature. The physical quantity equivalent to the ratio $\frac{a}{b}$ is:

[JEE Main 2023]

- 1 Pressure gradient
- 2 Energy
- 3 Impulse
- 4 Coefficient of viscosity

Match List I with List II Choose the correct answer from the options given below:

- 1 A-II, B-III, C-V, D-I
- 2 A-III, B-I, C-II, D-IV
- A-I, B-III, C-IV, D-II
- A-I, B-II, C-III, D-IV

	List-I		List-II
(A)	Young's Modulus (Y) (mi-172)	I	[M L ⁻¹ T ⁻¹]
(B)	Co-efficient of Viscosity (η)	II	[M L T-1]
(C)	Planck's constant (h) ml27	III	[M L-1 T-2]
(D)	Work function (ϕ) = $ml^2 \tau^2$, IV	[M L ² T ⁻²]

The equation of stationary wave is:

$$y = 2a \sin\left(\frac{nt}{\lambda}\right) \cos\left(\frac{nx}{\lambda}\right)$$

Which of the following is not correct:

- The dimensions of n/λ is [T]
- The dimensions of n is [LT-1]/
- The dimensions of x is [L]
- The dimensions of nt is [L]

A4(1)

What is the dimensional formula of ab^{-1} in the equation $\left(P + \frac{a}{V^2}\right)(V - b) = RT$, where letters have their usual meaning.

- $[M^{-1} L^5 T^3]$
- $[M^6 L^7 T^4]$
- 3 [ML² T⁻²]
- (4) [M⁰ L³ T⁻²]

If ε_0 is the permittivity of free space and E is the electric field, then $\varepsilon_0 E^2$ has the dimensions:

- $[M^{-1} L^{-3} T^4 A^2]$
- 2 [ML² T⁻²]
- 3 [M⁰ L⁻² TA]
- 4 [ML⁻¹ T⁻²]

The dimensional formula of latent heat is:

- 1 [ML² T⁻²]
- 2 [M⁰ L² T⁻²]
- 3 [MLT⁻²]
- 4 [ML² T⁻²]

The equation of state of a real gas is given by $\left(P + \frac{a}{V^2}\right)(V - b) = RT$, where P, V and T are pressure. Volume and temperature respectively and R is the universal gas constant. The dimensions of $\frac{a}{b^2}$ is similar to that of:

- 1) PV
- 2 P
- 3 RT
- \bigcirc R

A force is represented by $F = ax^2 + bt^{1/2}$. Where x = distance and t = time. The dimensions of b^2/a are:

- 1 [ML³T⁻³]
- 2 [MLT-2]
- 3 [ML⁻¹T⁻¹]
- 4 [ML²T⁻³]

 $F = an^2 = bt'^2$

2 = Strate

The position of a particle moving on *x*-axis is given by $x(t) = A \sin t + B \cos^2 t + Ct^2 + D$, where *t* is time. The dimension of $\frac{ABC}{D}$ is:

- 1 L² T⁻²
- 2 L²
- 3 L
- 4 L³ T⁻²

$$X = A \sin(t) + B \cos^2 t + Ct^2 + D$$

$$\chi = A = b = Ct^2 = D$$

The electric flux is $\phi = \alpha \sigma + \beta \lambda$ where λ and σ are linear and surface charge density, respectively. $\frac{\alpha}{\beta}$ represents [JEE Main 2025]

- 1 electric field
- 2 area
- 3 charge
- displacement

The expression given below shows the variation of velocity (v) with time (t), $v = At^2 + \frac{Bt}{C+t}$. The dimension of ABC is: [JEE Main 2025]

- [M⁰ L² T⁻²]
- $[M^0 L^1 T^{-2}]$
- [M⁰ L² T⁻³]

$$[M^0 L^1 T^{-3}] \qquad \bigvee = A^2 = B \times$$

$$\left(A = \frac{V}{t^2}\right)$$

$$C=t$$

Match List I with List II Choose the correct answer from the options given below:

- A-III B-IV C-I, D-II
- 2 A-II, B-III, C-IV, D-I
- 3 A-III, B-II, C-I, D-IV
- A-III, B-IV, C-II, D-I

	List-I E=KOT	List-II
(A)	Boltzmann constant	ML ² T ⁻¹
(B)	Coefficient of viscosity II	MLT-3K-1
(C)	Planck's constant (m27) III	ML ² T ⁻² K ⁻¹
(D)	Thermal conductivity IV	ML-1 T-1

The dimension of $\sqrt{\frac{\mu_0}{\epsilon_0}}$ is equal to that of:

 $(\mu_0 = \text{Vacuum permeability and } \in_0 = \text{Vacuum permittivity})$

- 1 Voltage
- Capacitance
- 3 Inductance
- 4 Resistance

Match List I with List II Choose the correct answer from the options given below:

- A-I, B-III, C-IV, D-II
- 3 A(IV) B-II, C-I, D-III
- A-II, B-III, C-IV, D-I

	List-I		List-II
(A)	Mass density 13	I	[ML ² T ⁻³]
(B)	Impulse	II	[MLT-1]
(C)	Power	Л II	$[ML^2T^0]$
(D)	Moment of inertia	W	[ML-3T0]

