ET720 - Sistemas de Energia Elétrica I

Henrique Koji Miyamoto

1 Introdução aos sistemas de energia elétrica

2 Cálculo de fluxo de carga

Os componentes de um sistema de potência são apresentados na Tabela 1.

Tabela 1: Componentes de um sistema de potência.

Componente	Função	Representação
Geração	fonte de suprimento de energia elétrica	fonte de tensão CA
Carga	consomem energia	resistência e reatância em derivação
Transmissão	condutores que levam energia da geração às cargas	resistência e reatância em série

Figura 1: Sistema de potência.

Requisitos para operação em regime de um sistema trifásico:

- A potência de geração deve suprir o consumo das cargas e de perdas (ativa e reativa).
- Os módulos de tensão nas barras deve permanecer em torno do nominal (1 pu).
- Os geradores devem operar dentro dos limites de potência ativa e reativa. Linhas de transmissão e transformadores devem operar sem sobrecargas.

É desejável que as fases estejam em equilíbrio, i.e., $\|\hat{I}_a\| \approx \|\hat{I}_b\| \approx \|\hat{I}_c\|$ e $\|\hat{V}_a\| \approx \|\hat{V}_b\| \approx \|\hat{V}_c\|$, defasados de 120°. Isso ocorre principalmente em sistemas de alta e ultra-alta tensão na transmissão. Nesse caso, pode-se usar a representação monofásica e o diagrama unifilar. Mas, em redes de distribuição, pode ser necessário usar representação trifásica.

Revisão. Convenções para representações monofásica e unifilar.

- 1. Circuito monofásico:
 - Geradores e cargas em Y (ou equivalente).
 - Usam-se tensões de fase e correntes de linha.
 - Bancos transformadores são representados por Y-Y (ou equivalente).
- 2. Diagrama unifilar:

- Indicam-se tensões de linha e potências trifásicas¹.
- Correntes de linha e impedâncias Y (ou equivalente).

Figura 2: Representações unifilar e monofásico equivalente de um sistema de potência.

Revisão. Sistema P.U. (por unidade):

$$S_{base} = S_{3\phi} = 3V_f I_f, \quad V_{base} = V_l, \quad I_{base} = \frac{S_{base}}{\sqrt{3}V_{base}}, \quad Z_{base} = \frac{V_{base}^2}{S_{base}}$$

2.1 Formulação básica

O problema de *fluxo de carga* consiste em obter as condições de operação de uma rede elétrica em função de sua topologia e dos níveis de demanda e geração de potências. Faremos análise apenas estática, desconsiderando transitórios². Dessa maneira, a rede é representada por um conjunto de equações (e inequações) algébricas.

O sistema de energia é representado por circuitos equivalentes. Há dois tipos de componentes (Tabela 2). A geração e a distribuição são modeladas como injeções de potência no barramento. A linha de transmissão é modelada por um circuito RL em série.

Tabela 2: Componentes da rede elétrica.

Geradores (G) Cargas (L) Reatores shunt (RSh) Capacitores shunt (CSh)	Ligados entre um nó qualquer a o nó terra
Linhas de transmissão (LT) Transformadores (TR)	Ligados entre dois nós quaisquer

As equações do sistema são obtidas aplicando o princípio da conservação de energia em cada nó e a lei de Ohm nos componentes. A resolução do problema típico de sistemas de energia requer o uso de um procedimento algorítmico, pois ele se torna rapidamente difícil para redes maiores³.

Barras Os nós do sistema são representados por barras, caracterizadas por duas grandezas complexas: tensão $(E_k = V_k \angle \theta_k)$ e potência $(S_k = P_k + jQ_k)^4$. Podemos classificar as barras com relação às variáveis que são conhecidas/desconhecidas em cada uma delas (Tabela 3).

Tabela 3: Tipos de barras.

Tipo	Dados	Incógnitas	Características
PQ	P_k, Q_k	V_k, θ_k	Barras de carga
PV	P_k, V_k	Q_k, θ_k	Barras de geração
$\nabla\theta$ (referência ou $slack$)	V_k, θ_k	P_k, Q_k	Barras de geração

As barras de geração do tipo PV incluem condensadores síncronos. A barra de referência tem dupla função: (i) fornecer a referência angular do sistema e (ii) fechar o balanço de potência, levando em conta as perdas de transmissão não conhecidas no início do problema (por isso, costuma-se escolhê-la como uma unidade geradora de grande capacidade).

Cargas As cargas são modeladas como injeções de potências nas barras⁵. A convenção de sinais será a seguinte:

- $P_k > 0$ potência entrando geração

 $^{^1}$ Não obstante, nos cálculos, utilizam-se $tens\~oes$ de fase e potências monofásicas.

 $^{^2 \}text{Consideramos que a variação temporal \'e suficientemente lenta para que possamos desconsiderar o efeito transit\'orio.}$

³Algumas ideias para resolvê-lo são: resolução analítica e por tentativa e erro.

⁴A potência líquida representa a diferença entre geração e consumo: $S_k = S_k^G - S_k^C$.

⁵Trataremos apenas de potências constantes

Figura 3: Representação de injeção de potência na barra k.

Linhas de transmissão Modelamos as linhas de transmissão com o modelo π , em que r é a resistência série, x é a reatância série e b é o carregamento total *charging* (o dobro da admitância *shunt*).

Figura 4: Modelo π para linhas de transmissão.

2.2 Formulação nodal

Considere a rede da Figura 2.2, em que foi aplicada a definição de potências e correntes líquidas e o modelo π equivalente para linhas de transmissão.

Figura 5: Exemplo de rede elétrica.

Aplicando a lei das correntes de Kirchhoff em todos os nós, obtemos, em notação matricial:

$$I = YE$$

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} y_{12} + y_{13} + jb_{12}^{sh} + jb_{13}^{sh} & -y_{12} & -y_{13} \\ -y_{12} & y_{12} + y_{23} + jb_{12}^{sh} + jb_{23}^{sh} & -y_{23} \\ -y_{13} & -y_{23} & y_{13} + y_{23} + jb_{13}^{sh} + jb_{23} \end{bmatrix} \begin{bmatrix} E_1 \\ E_2 \\ E_3 \end{bmatrix}$$

onde $I_{n\times 1}$ é o vetor de injeções nodais de corrente, $E_{n\times 1}$ é o vetor de tensões nodais, $Y_{n\times n}$ é a matriz de admitância nodal e n é o número de barras na rede.

A matriz $Y_{n\times n}$ é formada da seguinte forma:

- Elementos fora da diagonal principal: $Y_{km} = -y_{km}$
- Elementos da diagonal principal: $Y_{kk} = \sum_{m \in \Omega_k} (y_{km} + jb_{km}^{sh})^6$

A matriz de admitância pode ser separada em matriz condutância e matriz susceptância:

$$Y = \Re\{Y\} + j\Im\{Y\} = G + jB$$

A corrente em cada barra pode ser calculada como

$$I_k = \sum_{m \in K} Y_{km} E_m = Y_{kk} E_k + \sum_{m \in \Omega_k} Y_{km} E_m^7$$

 $^{^6\}Omega_k$ é o conjunto das barras conectadas diretamente à barrak.

 $^{^{7}}K$ é o conjunto formado pela barra k e suas vizinhas.

Para deduzir as equações de potência, substituímos a equaçõe para I_k acima em $S_k = E_k I_k^*$, obtendo:

$$P_k = V_k \sum_{m \in K} V_m (G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km})$$

$$Q_k = V_k \sum_{m \in K} V_m (G_{km} \sin \theta_{km} - B_{km} \cos \theta_{km})$$

$$Q_k = V_k \sum_{m \in K} V_m (G_{km} \sin \theta_{km} - B_{km} \cos \theta_{km})$$

onde $\theta_{km} := \theta_k - \theta_m = \arg(E_k) - \arg(E_m)$ e $Y_{km} = G_{km} + jB_{km}$.

Comentário sobre a resolubilidade do problema Para as barras PQ e PV, é possível escrever as equações de P_k e, para as barras PQ, é possível escrever as equações de Q_k . Portanto, temos $N_{PQ} + N_{PV}$ equações de P_k e N_{PQ} equações de Q_k , totalizando $2N_{PQ}+N_{PV}$ equações.

As incógnitas são V_k e θ_k nas barras PQ e θ_k nas barras PV. No total, temos $2N_{PQ}+N_{PV}$ incógnitas, que é o mesmo número de equações. Portanto o sistema é possível e determinado.

Uma vez determinado o valor das incógnitas, pode-se calcular P_k , Q_k na barra de referência e Q_k nas barras PV.

Ideia da resolução A ideia da resolução é:

- 1. De alguma maneira, determinar os fasores de tensão.
- 2. A partir deles, calcular as potências P_k nas barras PQ e PV e Q_k nas barras PQ.
- 3. Comparar tais valores calculados (P_k^{calc}, Q_k^{calc}) com os especificados pelo problema (P_k^{esp}, Q_k^{esp}) .

Para fazer a comparação, calculam-se $\Delta P_k, \Delta Q_k$, os erros de potência, resíduos de potência ou mismatches de potência.

$$\Delta P_k = P_k^{esp} - P_k^{calc}$$

$$\Delta Q_k = Q_k^{esp} - Q_k^{calc}$$

Idealmente, o problema está solucionado quando esses erros se anulam. Na prática, vamos aceitar uma solução que tenha ambos os erros abaixo de certa tolerância ϵ .

Método de Newton É o método usado para a resolução do problema de fluxo de carga. Apresentamos o algoritmo para o caso multidimensional, em que o objetivo é encontrar a solução para g(x) = 0, onde $g(x) = [g_1(x) \dots g_n(x)]^T$ é o vetor de mismatches e $x = [x_1 \dots x_n]^T$ é o vetor de incógnitas.

Algoritmo 1: Algoritmo do método de Newton para caso multidimensional.

```
Entrada: Ponto inicial x_0 e sistema de equações g(x) = 0
    Saída: Solução x
 1 início
         Inicializar o contador de iterações v \leftarrow 0 e fazer x^{(0)} \leftarrow x_0.
 2
         Calcular o valor de q(x^{(v)}).
 3
         Testar a convergência:
 4
         se |g_i(x^{(v)})| \le \epsilon, \forall i = 1, 2, ..., n então | x \leftarrow x^{(v)} é a solução procurada com tolerância \pm \epsilon.
 5
 6
 7
              return x
 8
         Calcular a matriz jacobiana J(x^{(v)}) = \left[\frac{\partial}{\partial x_j} g_i\right].
 9
         Calcular novo ponto \Delta x^{(v)} \leftarrow J^{-1}g(x^{(v)}), \ x^{(v+1)} \leftarrow x^{(v)} + \Delta x^{(v)}
10
         Incrementar contador v \leftarrow v + 1 e voltar para linha 3.
11
12 fim
```

É comum inicializar o vetor de incógnitas como flat start, i.e., módulos de tensão unitários $(V_i = 1)$ e ângulos nulos $(\theta_i = 0).$

No problema de fluxo de carga:

$$x = \begin{bmatrix} \theta \\ V \end{bmatrix}, \quad g(x) = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} P^{esp} - P^{calc} \\ Q^{esp} - Q^{calc} \end{bmatrix}, \quad J(x) = \begin{bmatrix} \frac{\partial}{\partial \theta} \Delta P & \frac{\partial}{\partial V} \Delta P \\ \frac{\partial}{\partial \theta} \Delta Q & \frac{\partial}{\partial V} \Delta Q \end{bmatrix}$$

Vantagens e desvantagens do método de Newton:

- É mais confiável (converge em casos que outros métodos divergem).
- O número de iterações necessárias para convergência independe da dimensão.
- Requer mais espaço de armazenamento (matriz jacobiana).
- O tempo computacional por iteração é maior (inversão e multiplicação com matriz jacobiana).
- Tem convergência rápida (quadrática).
- Não é sensível à escolha da barra de referência, mas o é à escolha do ponto inicial.

Cálculo da matriz jacobiana Como o cálculo dos *mismatches* envolve um termo constante (especificado), podemos simplificar a matriz jacobiana. Por exemplo:

$$\Delta P = P^{esp} - P^{calc}(V, \theta) \Rightarrow \frac{\partial}{\partial \theta} \Delta P = -\frac{\partial}{\partial \theta} P^{calc}$$

É comum representar a matriz jacobiana em termos de submatrizes:

$$J(x) = -\begin{bmatrix} H & N \\ M & L \end{bmatrix}, \text{ onde } H = \frac{\partial P}{\partial \theta}, \ N = \frac{\partial P}{\partial V}, \ M = \frac{\partial Q}{\partial \theta}, \ L = \frac{\partial Q}{\partial V}$$

Assim:

$$g(x) = -J(x)\Delta x \ \Rightarrow \boxed{ \begin{bmatrix} P^{esp} - P^{calc} \\ Q^{esp} - Q^{calc} \end{bmatrix} = \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} H & N \\ M & L \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix}}$$

As componentes das submatrizes são:

$$H \begin{cases} H_{km} = \frac{\partial P_k}{\partial \theta_m} = V_k V_m (G_{km} \sin \theta_{km} - B_{km} \cos \theta_{km}) \\ H_{kk} = \frac{\partial P_k}{\partial \theta_k} = -B_{kk} V_k^2 - Q_k \end{cases}$$

$$N \begin{cases} N_{km} = \frac{\partial P_k}{\partial V_m} = V_k (G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km}) \\ N_{kk} = \frac{\partial P_k}{\partial V_k} = V_k^{-1} (P_k + G_{kk} V_k^2) \end{cases}$$

$$M \begin{cases} M_{km} = \frac{\partial Q_k}{\partial \theta_m} = -V_k V_m (G_{km} \cos \theta_{km} + B_{km} \sin \theta_{km}) \\ M_{kk} = \frac{\partial Q_k}{\partial \theta_k} = -G_{kk} V_k^2 + P_k \end{cases}$$

$$L \begin{cases} L_{km} = \frac{\partial Q_k}{\partial V_m} = V_k (G_{km} \sin \theta_{km} - B_{km} \cos \theta_{km}) \\ L_{kk} = \frac{\partial Q_k}{\partial V_k} = V_k^{-1} (Q_k - B_{kk} V_k^2) \end{cases}$$

Perdas O fluxo de potência na linha que liga a barra k a m é dado por

$$S_{km}^* = E_k^* I_{km}, \quad I_{km} = y_{km} (E_k - E_m) + j b_{km}^{sh} E_k$$

As perdas de potência na linha km são

$$S_{perdas} = S_{km} + S_{mk}$$

$$P_{perdas} = P_{km} + P_{mk} = g_{km}(V_k^2 + V_m^2 - 2V_k V_m \cos \theta_{km})$$
$$= g_{km}|E_k - E_m|^2$$

$$Q_{perdas} = Q_{km} + Q_{mk} = -b_{km}^{sh}(V_k^2 + V_m^2) - 2b_{km}(V_k^2 + V_m^2 - 2V_k V_m \cos \theta_{km})$$
$$= -b_{km}^{sh}(V_k^2 + V_m^2) - b_{km}|E_k - E_m|^2$$

```
Algoritmo 2: Algoritmo do método de Newton para o problema de fluxo de potência.
```

```
Entrada: Ponto inicial (\theta_k^0 V_k^0), sistema de equações P_k, Q_k e parâmetros das linhas Y
      Saída: Solução (\theta_k V_k)
 1 início
             Inicializar o contador de iterações v \leftarrow 0 e fazer \theta_k^{(v)} \leftarrow \theta_k^0 e V_k^{(v)} \leftarrow V_k^0
 2
              Calcular P_k(\theta_k^{(v)}, V_k^{(v)}) e Q_k(\theta_k^{(v)}, V_k^{(v)}) e os mismatches \Delta P_k^{(v)} e \Delta Q_k^{(v)}.
 3
              Testar a convergência:
 4
             se \max\{|\Delta P_k^{(v)}|\} \leq \epsilon \ e \ \max\{|\Delta Q_k^{(v)}|\} \leq \epsilonentão
 5
                     (\theta_k V_k) \leftarrow (\theta_k^{(v)} V_k^{(v)})é a solução procurada com tolerância \pm \epsilon.
 6
                     Calcular P_k e Q_k na barra de referência e Q_k nas barras PV.
 7
              _{\text{fim}}
 8
              \begin{aligned} & \text{Calcular a matriz jacobiana } J(\theta^{(v)}, V^{(v)}) = \begin{bmatrix} H(\theta^{(v)}, V^{(v)}) & N(\theta^{(v)}, V^{(v)}) \\ M(\theta^{(v)}, V^{(v)}) & L(\theta^{(v)}, V^{(v)}) \end{bmatrix} \\ & \text{Calcular novos valores } \left\{ \begin{array}{l} \theta^{(v+1)} = \theta^{(v)} + \Delta \theta^{(v)} \\ V^{(v+1)} = V^{(v)} + \Delta V^{(v)} \end{array} \right., \text{ onde } \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} = \begin{bmatrix} H & N \\ M & L \end{bmatrix}^{-1} \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} \end{aligned} 
 9
10
              Incrementar contador v \leftarrow v + 1 e voltar para linha 3
12 fim
```

3 Fontes primárias de energia elétrica

- Geração termoelétrica
 - Turbina a vapor
 - Turbina a gàs
 - Máquina de combustão interna a pistão
 - Reator nuclear
- Geração hidroelétrica
- Geração eólica
- Geração fotovoltaica

4 Métodos desacoplados

Os métodos desacoplados são simplificações do método geral de Newton para solução do problema de fluxo de carga.

4.1 Método desacoplado geral

Considera-se que algumas sensibilidades são predominantes:

$$\frac{\partial P}{\partial \theta} \in \frac{\partial Q}{\partial V} \gg \frac{\partial Q}{\partial \theta} \in \frac{\partial P}{\partial V}$$

Isso se verifica para redes de transmissão de extra e ultra alta tensão (acima de 230kV), mas em geral não ocorre em redes de distribuição (níveis de tensão são mais baixos).

Devido à consideração feita, as submatrizes $N = \frac{\partial P}{\partial V}$ e $M = \frac{\partial Q}{\partial \theta}$ são descartadas, resultando em:

$$\boxed{ \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} H & 0 \\ 0 & L \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} \Rightarrow \left\{ \begin{array}{c} \Delta P = H \Delta \theta \\ \Delta Q = L \Delta V \end{array} \right. }$$

Como os mismathces de potência ativa e reativa têm equações independentes, é possível aplicar um esquema de solução alternada, que apresenta melhor convergência.

1. Meia-iteração ativa: atualizar os ângulos das tensões a partir dos mismathces de potência ativa.

$$\Delta P(V^{v}, \theta^{v}) = H(V^{v}, \theta^{v}) \Delta \theta^{v}$$
$$\theta^{v+1} = \theta^{v} + \Delta \theta^{v}$$

2. Meia-iteração reativa: atualizar as magnitudes das tensões a partir dos mismatches de potência reativa.

$$\Delta Q(V^v, \theta^{v+1}) = L(V^v, \theta^{v+1}) \Delta V^v$$
$$V^{v+1} = V^v + \Delta V^v$$

A cada meia-iteração, para calcular os mismatches de potência ativa ou reativa, são utilizados os valores mais atualizados de V e θ . Isso parcialmente compensa as aproximações feitas na matriz jacobiana ($M \approx N \approx 0$).

Importante! Cada subproblema pode ter velocidade de convergência diferente, mas é necessário, a cada iteração completa, fazer as duas meia-iterações (mesmo que um subproblema já tenha convergido).

Figura 6: Algoritmo do método desacoplado.

Uma versão diferente Esta versão pode apresentar convergência mais rápida para alguns sistemas. Consiste em "normalizar" o problema com relação às tensões V_i .

Considere a matriz diagonal contendo as tensões

$$V = \begin{bmatrix} V_1 & & \\ & \ddots & \\ & & V_n \end{bmatrix}$$

As submatrizes H e L podem escritas como

$$\begin{array}{ccc} H = VH' \\ L = VL' \end{array} \Rightarrow \begin{array}{c} H' = V^{-1}H \\ L' = V^{-1}L \end{array}$$

Assim, as equações do método de Newton ficam:

$$\Delta P/V = H'\Delta\theta$$
$$\Delta Q/V = L'\Delta V$$

onde as notações $\Delta P/V$ e $\Delta Q/V$ indicam que cada mismatch de potência deve ser dividido pela respectiva tensão na barra (ex.: $\Delta P_1/V_1$)

Nesse caso, os elementos de H' e L' ficam:

$$H' \begin{cases} H'_{km} = V_m (G_{km} \sin \theta_{km} - B_{km} \cos \theta_{km}) \\ H'_{kk} = -B_{kk} V_k - Q_k / V_k \end{cases}$$
$$L' \begin{cases} L'_{km} = (G_{km} \sin \theta_{km} - B_{km} \cos \theta_{km}) \\ L'_{kk} = Q_k / V_k^2 - B_{kk} \end{cases}$$

4.2 Método desacoplado rápido

Esse método é uma simplificação do método anterior, considerando as seguintes aproximações:

- $\cos \theta_{km} \approx 1$ ($\theta_{km} \ll 1$): válido para sistemas em geral, especialmente EAT (extra-alta tensão) e UAT (ultra-alta tensão).
- $B_{km} \gg G_{km} \sin \theta_{km}$ ($\theta_{km} \ll 1$): válido para sistemas em geral, especialmente EAT e UAT.
- $B_{kk}V_k^2 \gg Q_k$: reatâncias shunt são, em geral, muito maiores que reatâncias série.
- $V_k \approx 1$: valores em P.U.

Usando essas aproximações, os termos da matriz jacobiana ficam:

$$\begin{array}{lll} H'_{kk} = -B_{kk} & L'_{kk} = -B_{kk} \\ H'_{km} = -B_{km} & \text{e} & L'_{km} = -B_{km} \\ H'_{mk} = -B_{mk} & L'_{mk} = -B_{mk} \end{array}$$

Definimos as matrizes B' = H' e B'' = L'. As equações ficam então:

$$V^{-1} \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} B' & 0 \\ 0 & B'' \end{bmatrix} \begin{bmatrix} \Delta \theta \\ \Delta V \end{bmatrix} \Rightarrow \left\{ \begin{array}{l} \Delta P/V = B' \Delta \theta \\ \Delta Q/V = B'' \Delta V \end{array} \right.$$

A vantagem desse método é que as matrizes B' e B'' são constantes, pois dependem somente dos parâmetros da rede. Essas matrizes são obtidas a partir da matriz $B = \Im\{Y\}$, com as seguintes características:

- Linhas e colunas associados à barra slack não aparecem em B', pois não conhecemos P na barra slack.
- Linhas e colunas associados às barras PV e slack não aparecem em B'', pois não conhecemos Q nessas barras.

 $\mathbf{Versão}\ \mathbf{XB}\$ Podemos fazer mais uma simplificação, escrevendo os elementos das matrizes B' como

Observação: O método desacoplado rápido também faz iterações alternadas (meia-iteração ativa e reativa)

5 Fluxo de carga trifásico

5.1 Introdução

Características de sistemas de distribuição:

- Requerem modelagem trifásica do fluxo de carga.
- Têm estrutura radial ou quase radial (poucas malhas ou *loops*).
- A operação é desbalanceada, multifásica, com equipamentos aterrados ou não.
- Presença de geração distribuída e novas tecnologias, como veículos elétricos.
- O número de barras e ramos é extremamente grande.

Para analisar esses sistemas, os métodos tradicionais de fluxo de carga podem não ser adequados, notadamente o método desacoplado rápido. Ele é adequado para linhas com relação X/R elevada (típico de redes de transmissão), mas na distribuição, como os cabos são finos, a resistência é maior e a reatância, menor (X/R) pequeno).

Existem diferentes técnicas desenvolvidas para calcular fluxo de carga em redes de distribuição:

- Modificações do método de Newton (e suas variações).
- Varredura direta e reversa (back-forward sweep).
- Modificação das variáveis de estado: AMB (baseado em matriz de admitâncias) e BCB (baseado em correntes dos ramos).

5.2 Modelagem da rede

A modelagem trifásica permite considerar desbalanços nas cargas e desequilíbrios na rede. Os desbalanços nas cargas são típicos de sistemas de média e baixa tensão e se devem à impossibilidade de distribuir as cargas uniformemente entre as fases; à aleatoriedade do consumo; e à presença de cargas monofásicas e bifásicas. Os desequilíbrios na rede se devem à não transposição das fases das linhas e ao compartilhamento das faixas de servidão por diversas linhas. Esses desequilíbrios podem ser contabilizados pelos acoplamentos mútuos entre as fases dos elementos da rede.

Em uma rede com n_b barras, há $6n_b$ variáveis de estado, já que em cada barra há três módulos e três ângulos para as tensões (um para cada fase): $(V_k^a, \theta_k^a), (V_k^b, \theta_k^b), (V_k^c, \theta_k^c)$.

Capacitores e indutores Capacitores e reatores shunt são tratados como impedâncias constante com ligação estrela⁸.

• Bancos de capacitores *shunt* são representados por matrizes de admitância primitivas diagonais Y_{sh}^{9} e contribuem somente para a matriz de admitâncias nodais próprias (apenas diagonal de Y).

$$[Y_{sh}] = diag(1/jX_c, 1/jX_c, 1/jX_c)$$

• Bancos de capacitores ou indutores são elementos séries representados também por matrizes de admitância primitivas diagonais Y_{sh}^{10} :

$$[Y_s] = \text{diag}(1/jX_c, 1/jX_c, 1/jX_c)$$

Essas matrizes contribuem para as matrizes de admitância nodais próprias e mútuas das barras a que estão ligadas da seguinte forma:

$$[Y] = \begin{bmatrix} Y_s & -Y_s \\ -Y_s & Y_s \end{bmatrix}$$

Linhas de transmissão As linhas de transmissão são modeladas como linhas curtas, nas quais só se consideram efeitos eletromagnéticos, representada por matrizes de impedâncias Z_s .

Figura 7: Matriz de admitância Z_s para linhas curtas.

A matriz de impedâncias primitivas Z_s se relaciona com tensões e correntes de linha por:

$$\begin{bmatrix} E^{a}_{ik} \\ E^{b}_{ik} \\ E^{c}_{ik} \\ E^{c}_{ik} \end{bmatrix} = \begin{bmatrix} Z^{aa}_{ik} & Z^{ab}_{ik} & Z^{ac}_{ik} \\ Z^{ba}_{ik} & Z^{bb}_{ik} & Z^{bc}_{ik} \\ Z^{aa}_{ca} & Z^{cb}_{ik} & Z^{cc}_{ik} \\ Z^{ab}_{ca} & Z^{cb}_{ik} & Z^{cc}_{ik} \\ Z^{cb}_{ik} & Z^{cc}_{ik} \end{bmatrix} \begin{bmatrix} I^{a}_{ik} \\ I^{b}_{ik} \\ I^{c}_{ik} \\ I^{c}_{ik} \end{bmatrix} \Rightarrow [E^{abc}_{ik}] = [Z_{s}][I^{abc}_{ik}]$$

A matriz de admitâncias pode ser obtida como $Y_s = Z_s^{-1}$. Assim, temos a relação

$$\begin{bmatrix} I_i^{abc} \\ I_k^{abc} \end{bmatrix} = \begin{bmatrix} Z_s^{-1} & -Z_s^{-1} \\ -Z_s^{-1} & Z_s^{-1} \end{bmatrix} \begin{bmatrix} E_i^{abc} \\ E_k^{abc} \end{bmatrix}$$

Linhas médias e longas consideram efeitos eletromagnéticos e eletrostáticos. Essas linhas são representadas por um modelo π para cada fase.

Para esse modelo:

$$\begin{bmatrix} I_i^{abc} \\ I_k^{abc} \end{bmatrix} = \begin{bmatrix} Z_s^{-1} + Y_{sh}/2 & -Z_s^{-1} \\ -Z_s^{-1} & Z_s^{-1} + Y_{sh}/2 \end{bmatrix} \begin{bmatrix} E_i^{abc} \\ E_k^{abc} \end{bmatrix}$$

Transformadores Os diversos tipos de conexão entre transformadores podem ser representados pela associação de matrizes $Y_{pp}, Y_{ss}, Y_{sp}, Y_{ps}$, que contêm as admitâncias próprias e mútuas do primário e secundário do transformador. Como o acoplamento é simétrico, temos $Y_{sp} = Y_{ps}^T$

$$\begin{bmatrix} x_0 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & x_n \end{bmatrix}$$

 $^{^8{\}rm Ligações}$ em triângulo devem ser substituídas pela estrela equivalente.

 $^{^9\}mathrm{A}$ notação diag $(x_0,...,x_n)$ denota a matriz diagonal de dimensão $n\times n.$

¹⁰Tanto nesse caso como no anterior, não se consideram os acoplamentos entre fases.

Figura 8: Matriz de admitância Z_s para linhas médias e longas.

Pr	ımarıo	Secundário	Y_{pp}	Y_{ss}	$Y_{ps} \in Y_{sp}$
	Y-g	Y-g	Y_I	Y_I	$-Y_I$
	Y-g	Y	Y_{II}	Y_{II}	$-Y_{II}$
	Y-g	D	Y_I	Y_{II}	Y_{III}
	Y	Y	Y_{II}	Y_{II}	$-Y_{II}$
	Y	D	Y_{II}	Y_{II}	Y_{III}
	D	D	Y_{II}	Y_{II}	Y_{II}

$$Y_I = \left| \begin{array}{ccc} y_t & 0 & 0 \\ 0 & y_t & 0 \\ 0 & 0 & y_t \end{array} \right|, \qquad Y_{II} = 1/3 \left| \begin{array}{ccc} 2y_t & -y_t & -y_t \\ -y_t & 2y_t & -y_t \\ -y_t & -y_t & 2y_t \end{array} \right|, \qquad Y_{III} = 1/\sqrt{3} \left| \begin{array}{ccc} -y_t & y_t & 0 \\ 0 & -y_t & y_t \\ y_t & 0 & -y_t \end{array} \right|$$

▶ O termo y_t é a admitância de dispersão do transformador.

Figura 9: Submatrizes para representação de transformadores.

Referência angular No caso de redes de distribuição, a referência angular é alocada na subestação de energia e é necessário referenciar as três fases, defasadas de 120°. Por exemplo: $\theta^a = 0$, $\theta^b = -120^\circ$, $\theta^c = 120^\circ$.

Uma forma mais precisa de especificar a referência angular no caso trifásico é admitir a presença de um gerador equivalente da rede de transmissão conectado à subestação.

Figura 10: Referência angular para rede de distribuição trifásica.

Matriz de admitância do sistema A matriz de admitância do sistema é formada a partir de duas regras simples:

- A matriz de admitância própria (elementos da diagonal principal) é formada pela soma das matrizes de admitância próprias dos elementos conectados à barra.
- A matriz de admitância mútua (elementos fora da diagonal principal) é o negativo das matrizes de admitâncias mútuas do elemento que conecta as barras.

Exemplo:

Figura 11: Exemplo de matriz de admitância do sistema.

Linhas bifásicas e monofásicas É comum encontrar linhas monofásicas e bifásicas, além de trifásicas. Uma possível solução para sua modelagem é tratar tais trechos como trifásicos, usando matrizes impedância e admitância trifásicas. Para isso, anulam-se os termos da matriz que não são relevantes.

$$Y_{23}^{abc} = \begin{pmatrix} y_{12}^{aa} & y_{12}^{ab} & 0 \\ y_{12}^{ba} & y_{12}^{bb} & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad e \qquad \qquad Y_{23}^{abc} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & y_{23}^{cc} \end{pmatrix}$$

Figura 12: Exemplo de matrizes para linhas monofásica e bifásica.

▶ Portanto, a matriz de admitância da rede, considerando apenas matrizes 3x3, é dada, para a o caso da linha bifásica, por:

$$\blacktriangleright \begin{pmatrix} \mathbf{I}_{1}^{\text{abc}} \\ \mathbf{I}_{2}^{\text{abc}} \\ \mathbf{I}_{3}^{\text{abc}} \end{pmatrix} = \begin{pmatrix} Y_{12}^{abc} + Ysh_{12}^{abc} & -Y_{12}^{abc} & 0 \\ -Y_{12}^{abc} & Y_{12}^{abc} + Ysh_{13}^{abc} + Ysh_{23}^{abc} & -Y_{23}^{abc} \\ 0 & -Y_{23}^{abc} & Y_{23}^{abc} + Ysh_{23}^{abc} \end{pmatrix} \begin{pmatrix} \mathbf{E}_{1}^{\text{abc}} \\ \mathbf{E}_{2}^{\text{abc}} \\ \mathbf{E}_{3}^{\text{abc}} \end{pmatrix}$$

▶ E para o caso da linha monofásica:

$$\blacktriangleright \begin{pmatrix} I_{1}^{abc} \\ I_{2}^{abc} \\ I_{3}^{abc} \end{pmatrix} = \begin{pmatrix} Y_{12}^{abc} + Y_{S}h_{12}^{abc} & -Y_{12}^{abc} & 0 \\ -Y_{12}^{abc} & Y_{12}^{abc} + Y_{S}h_{1}^{abc} + Y_{23}^{abc} + Y_{S}h_{23}^{abc} & -Y_{23}^{abc} \\ 0 & -Y_{23}^{abc} & Y_{23}^{abc} + Y_{S}h_{23}^{abc} \end{pmatrix} \begin{pmatrix} E_{1}^{abc} \\ E_{2}^{abc} \\ E_{3}^{abc} \end{pmatrix}$$

Figura 13: Matriz de admitância da rede para linhas monofásica e bifásica.

5.3 Métodos de solução

5.3.1 Método desacoplado rápido com rotação dos eixos

Consiste em rotacionar temporariamente o sistema de referência complexo, de modo que as novas impedâncias tenham relação X/R favorável para aplicação do método desacoplado rápido (valores maiores).

• Rotação de impedâncias¹¹:

$$Z' = Ze^{j\phi}$$
 ou $\begin{bmatrix} R' \\ X' \end{bmatrix} = \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} R \\ X \end{bmatrix}$

• Rotação das potências:

$$S' = \frac{V^2}{Z'^*} = \frac{V^2}{(Ze^{j\phi})^*} = \frac{V^2}{Z^*e^{-j\phi}} = Se^{j\phi}$$

Proposta para obtenção de valores ótimos do ângulo de rotação ϕ^{12} :

$$\phi = \frac{1}{NR} \sum_{\ell=1}^{NR} \phi_{\ell},$$

onde: ϕ é o ângulo de rotação ótimo, NR é o número de ramos da rede, ℓ é o ramo que conecta as barras k e m e $\phi_{\ell} = 90^{\rm o} - \arctan(x_{km}/r_{km})$.

5.4 Varredura direta e reversa

Considere a rede com 4 barras e 3 ramos a seguir na Figura 14. Eis o algorismo de resolução (Algoritmo 3). Nesse exemplo, temos, para os passos 4 e 5, respectivamente:

$$I_{24}=I_4,\ I_{23}=I_3,\ I_{12}=I_2+I_{23}+I_{24}$$

$$V_2=V_1-Z_{12}I_{12},\ V_3=V_2-Z_{23}I_{23},\ V_4=V_2-Z_{24}I_{24}$$

Esse método é específico para redes radiais, mas há modificações propostas para redes fracamente malhadas e para inclusão de reguladores de tensão, geração distribuída etc. O esquema de numeração das barras e ramos é fundamental para a eficiência do método (Figura 15).

Na Tabela 4, são apresentados os principais pontos de comparação entre o método de Newton e o método de varredura.

¹¹Para a segunda forma, Z = R + jX ($\mathbb{C} = \mathbb{R}^2$).

¹²GOMES, Ricardo B., Resolução do problema de fluxo de carga para redes de distribuição utilizando o método desacoplado rápido com rotação automática de eixos. Dissertação de Mestrado, FEEC/Unicamp, 2006.

Figura 14: Exemplo de rede para solução por varredura.

Algoritmo 3: Algoritmo do método de varredura direta e reversa para rede da Figura 14.

1 início

- **2** | Arbitrar tensões nodais E_k , k=2,3,4 (a tensão da subestação é conhecida, p. ex. $E_k=1\angle 0^{\circ}$ pu).
- 3 Calcular correntes nodais $I_k = \left(\frac{S_k}{E_k}^* + Y_k^{sh} E_k, \ k = 2, 3, 4\right)$, em que Y_k^{sh} é admitância shunt.
- 4 $Back\ sweep$: partindo dos ramos terminais em direção à subestação, calcular as correntes nos ramos que conectam os nós k e m:

$$I_{km} = I_m + \sum_{j \in F_m} I_{mj}$$

onde F_m é o conjunto das barras alimentadas pela barra m.

Forward sweep: atualizar as tensões nodais começando da subestação em direção às barras terminais:

$$V_m = V_k - Z_{km} I_{km}$$

para a barra m, em que a barra k é a outra barra terminal do ramo km, que alimenta m.

- $\mathbf{se} \max_k \Delta V_k \leq \epsilon \mathbf{ent} \mathbf{\tilde{ao}}$
- 7 | Solução obtida.
- 8 | fim
- 9 Voltar para o passo 3.

10 fim

5

6

Figura 15: Exemplo de numeração para solução por varredura.

Tabela 4: Comparação dos métodos de Newton e varredura direta-reversa.

	Newton	Varredura
Complexidade de implementação	Alta	Baixa
Convergência	Quadrática	Independe do ponto inicial
Convergencia	Independe do número de barras PV	Depende do número de barras PV
Flexibilidade	Alta	Baixa
Necessidade de memória	Alta	Baixa
Esforo computacional	Alto	Baixo

Referências

[1] MONTICELLI, Alcir e GARCIA, Ariovaldo. *Introdução a sistemas de energia elétrica*. 2ª ed. Campinas, SP: Editora da Unicamp, 2011.