Corrigés – première partie

Table des matières

1 R	éponses	2
1.1	Calcul numérique	2
1.2	Ensembles et intervalles	3
13	Calul littéral	7

- Exercices - première partie SECTION 1 —

Réponses

Calcul numérique

1.1.1 Division euclidienne

Corrigé 1

- a) $0,\overline{3}$
- b) $0,\overline{1}$
- c) $1,\overline{076923}$
- d) 0,1176470588235294

Corrigé 2

a)
$$\frac{1}{7} = 0,\overline{142857}; \frac{2}{7} = 0,\overline{285714}; \frac{3}{7} = 0,\overline{428571}; \frac{4}{7} = 0,\overline{571428}; \frac{5}{7} = 0,\overline{714285}; \frac{6}{7} = 0,\overline{857142}.$$

b) À remarquer.

c)
$$\frac{22}{23} = 0.9565217391304347826086$$

Corrigé 3

On note un nombre à cinq chiffres

$$a + b \cdot 10 + c \cdot 10^2 + d \cdot 10^3 + e \cdot 10^4$$
 où $a,b,c,d,e \in \mathbb{N}, e \neq 0$

Si le nombre a quatre chiffres, alors on prend e = 0 et $d \neq 0$.

- a) On a a = 4 et b = 2. Par ailleurs la somme a + b + c + d + e doit être divisible par 3 pour que le nombre soit un multiple de 3. On a 2 + 4 = 6 qui est déjà un multiple de 3. Le nombre recherché est donc 99924.
- b) Le nombre recherché est 1224.
- c) Le nombre recherché est 2046.
- d) Le nombre recherché est 9753.

Corrigé 4

- a) 1; 4; 9, on les appelle des carrés parfaits.
- b) Ce sont des nombres premiers. {2; 3; 5; 7; 11; 13; 17; ...}.

Corrigé 5

- a) 21,05
- b) $3.0\overline{6}$
- c) $4,\overline{2857140}$
- d) $5,\overline{63}$

1.1.2 Nombres rationnels

Corrigé 6

a)
$$\frac{35}{100} = \frac{7}{20}$$

b)
$$\frac{35}{99}$$

c)
$$\frac{349}{999}$$

d)
$$\frac{3}{10} + \frac{49}{990} = \frac{173}{495}$$

e)
$$\frac{3}{10} + \frac{5}{90} = \frac{32}{90} = \frac{16}{45}$$

g)
$$1 + \frac{2}{9} = \frac{11}{9}$$

h)
$$\frac{325}{100} = \frac{13}{4}$$

i)
$$\frac{15}{100} = \frac{3}{20}$$

i)
$$\frac{15}{100} = \frac{3}{20}$$
 j) $1 + \frac{4}{10000} = \frac{251}{250}$ k) $\frac{80}{99}$

que 0.09 = 0.01.

$$1) \quad \frac{16}{100} = \frac{4}{25}$$

n)
$$3 + \frac{141}{999} = \frac{1046}{333}$$

- a) $\frac{12}{10}$; $\frac{13}{10}$; $\frac{14}{10}$;
- b) $1,\overline{1} = \frac{10}{9}; \frac{11}{9}; \frac{12}{9};$ c) $\sqrt{2}; \sqrt{3}; \frac{\sqrt{5}}{2}.$

1.1.3 Racines

Corrigé 8

- a) $7\sqrt{3}$ b) $14\sqrt{2} 2\sqrt{5}$ c) -2 e) $5 7\sqrt{3}$ f) $16 + 8\sqrt{5}$ g) $20\sqrt{3}$

d) $5 - 2\sqrt{6}$

- h) 6

Corrigé 9

On utilise la multiplication par l'expression conjuguée et les propriétés des racines.

Corrigé 10

a)
$$\frac{4\sqrt{5} - 10\sqrt{2}}{3}$$
 b) $\frac{11}{3}$

b)
$$\frac{11}{3}$$

c)
$$-2\sqrt{3}$$

d)
$$-2\sqrt{15}$$

Corrigé 11

a)
$$\frac{5\sqrt{3}}{3}$$

a)
$$\frac{5\sqrt{3}}{3}$$
 b) $-\frac{203\sqrt{3}}{18}$ c) $\frac{41\sqrt{5}}{20}$

c)
$$\frac{41\sqrt{5}}{20}$$

d)
$$-\frac{3\sqrt{5}+\sqrt{7}}{2}$$
.

Corrigé 12

$$(3 + 2\sqrt{2})^2 = 17 + 12\sqrt{2}$$
, ainsi, $\sqrt{17 + 12\sqrt{2}} = 3 + 2\sqrt{2}$

1.2 **Ensembles et intervalles**

Ensembles de nombres

 $\frac{2}{7} \in \mathbb{Q} \, ; \, \sqrt{100} \in \mathbb{N} \, ; \, \sqrt{200} \in \mathbb{R} \, ; \, \pi+1 \in \mathbb{R} \, ; \, -\sqrt{1,21} \in \mathbb{Q} \, ; \, 3,14 \in \mathbb{Q} \cdot 10^5 \in \mathbb{N} \, ; \, -\frac{17}{2} \in \mathbb{Q}.$

Corrigé 14

	N	\mathbb{Z}	\mathbb{Q}	\mathbb{R}	aucun
$\frac{3}{2}$			X	X	
$\frac{3,14}{0,01}$	Х	Х	Х	Х	
$\sqrt{7}$				Х	
$\frac{2-\sqrt{8}}{\sqrt{2}-1}$		X	X	Х	
$\sqrt{9}$	Х	Χ	Х	Х	
π				Х	
$-\sqrt{100}$		Χ	Х	Х	

Corrigé 15

Corrigé 16

a) Vrai

- b) Faux, semi-ouvert à gauche
- c) Vrai

i) Vrai

d) Faux, ce n'est pas l'intervalle

g) Faux, 0 est dans l'intersection

e) Vrai h) Vrai f) Faux, il y appartient

Plusieurs possibilités, par exemple la suite suivante (à réduire) :

$$\left\{\frac{1}{3}+\frac{k}{20}\cdot\left(\frac{2}{3}-\frac{1}{3}\right)\mid k=1,\ldots,10\right\}$$

a)
$$\frac{3-7}{2} = \frac{-4}{2} = -2 \in \mathbb{Z}$$

c)
$$2.5: 3+1=\frac{25}{30}+1=\frac{5}{6}+1=\frac{11}{6}\in \mathbb{Q}$$

e)
$$(\sqrt{2}-1): 2=\frac{\sqrt{2}}{2}-\frac{1}{2}\in \mathbb{R}$$

g)
$$\sqrt{3 \cdot 27} = \sqrt{81} = 9 \in \mathbb{N}$$

i)
$$\sqrt{25} - \frac{3}{\sqrt{9}} = \sqrt{5 - \frac{3}{3}} = \sqrt{4} = 2 \in \mathbb{N}$$

k)
$$\frac{\sqrt{2}}{\sqrt{81} - \frac{16}{2}} = \frac{\sqrt{2}}{9 - 8} = \frac{\sqrt{2}}{1} = \sqrt{2} \in \mathbb{R}$$

b)
$$\frac{4}{4-1} = \frac{4}{3} \in \mathbb{Q}$$

d)
$$\frac{2^0}{1^2} = \frac{1}{1} = 1 \in \mathbb{N}$$

f)
$$\frac{3-\sqrt{9}}{\pi} = \frac{3-3}{\pi} = 0 \in \mathbb{N}$$

h)
$$\frac{\sqrt{3} - \sqrt{12}}{\sqrt{27}} = \frac{\sqrt{3} - 2\sqrt{3}}{3\sqrt{3}} = \frac{1 - 2}{3} = -\frac{1}{3} \in \mathbb{Q}$$

j)
$$\frac{14}{\sqrt{25} - \sqrt{144}} = \frac{14}{5 - 12} = \frac{14}{-7} = -2 \in \mathbb{Z}$$

I)
$$\frac{5-\sqrt{3}}{\sqrt{3}-5} = \frac{5-\sqrt{3}}{-(5-\sqrt{3})} = -1 \in \mathbb{Z}$$

1.2.2 Ensembles quelconques

Corrigé 18

$$\notin$$
 , \in , \subset , $\not\subset$

Corrigé 19

a)
$$A = \{-1; 1; 3; 5; 7; 9\}$$

c)
$$C = \{-1, 0\}$$

e)
$$E = \{-\sqrt{2}, \sqrt{2}\}$$

Corrigé 20

a)
$$A = \{x \in \mathbb{N}^* \mid 1 \le x \le 8\}$$

c)
$$C = \{3n + 1 \mid n \in \mathbb{N}, 0 \le n \le 6\}$$

e)
$$E = \{ \frac{n-1}{n+1} \mid n \in \mathbb{N}^* \}$$

Corrigé 21

b)
$$\left\{1; \frac{1}{2}; \frac{1}{3}; ...\right\}$$

c)
$$\left\{0; \frac{1}{6}; \frac{3}{20}; \frac{2}{15}\right\}$$

Corrigé 22

a) La taille des diagrammes n'est pas représentative b) de la « taille » des ensembles.

- b) B = $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}\}$
- d) $D = \emptyset$
- f) $F = \emptyset$

b) $B = \{n^2 \mid n \in \mathbb{N}^*, 1 \le n \le 13\}$

d) $D = \left\{ \frac{1}{n^2 + 1} \mid n \in \mathbb{N}^*, 1 \le n \le 5 \right\}$

f) $F = \{2^n \mid n \in \mathbb{N}, 0 \le n \le 10\}$

- I ∩ E = I, car l'ensemble des triangles équilatéraux est contenu dans l'ensemble de triangles isocèles.
- R \cap E = \emptyset , car il n'existe aucun triangle qui est équilatéral et rectangle (par le théorème de Pythagore, si $a \in \mathbb{R}_+^*$ est la longueur du côté du triangle, alors $a^2 + a^2 \neq a^2$).
- I \cap R est l'ensemble des triangles dont les deux cathètes mesure $a \in \mathbb{R}_+^*$ et l'hypoténuse mesure $a\sqrt{2}$ (par Pythagore).

Corrigé 23

Il y a plusieurs possibilité, en voici une

 $A = \{a; b; c; d; e\}$ $B = \{d; e; f\}$ $C = \{f; g; h; i\}$

- a) $\{2n+1 \mid n \in \mathbb{Z}\}$
- b) $\{2n \mid n \in \mathbb{N}\}$
- c) $\{n^2 \mid n \in \mathbb{N}^*\}$

Corrigé 25

Il y a plusieurs réponses possibles.

a) $A = \{1; 2\}$ et $B = \{0; 3; 4\}$

b) $A = \{0; 1; 2; 3; 4\}$ et $B = \{2; 3; 4\}$

c) $A = \{0; 2; 3; 4\}$ et $B = \{0; 1\}$

d) $A = \{0; 2; 3\}$ et $B = \{1; 4\}$

Corrigé 26

a)

- i) $A \cup B = \{-5, 2, 3, 4, 6, 8, 9, 10\}$
- ii) $A \cap B = \{3, 4, 8\}$

- iii) $B \setminus A = \{2; 10\}$
- iv) $A \setminus B = \{-5, 6, 9\}$

b) $C = \{1; 2; 3; 4\}, D = \{2; 3; 4; 5\}$

c)

- i) $E = \{2; 3; 4; 5\}, F = \{2; 4\}$
- ii) $E = \{2; 3; 4\}, F = \{2; 4; 5\}$

- iii) $E = \{2; 4; 5\}, F = \{2; 3; 4\}$
- iv) $E = \{2; 4\}, F = \{2; 3; 4; 5\}$

1.2.3 Intervalles réelles

Corrigé 27

- a)]−∞;2[
- b) $\left[\sqrt{2};+\infty\right[$
- c) $]-2;\pi]$
- d) [-2; 2]

Corrigé 28

+∞

- b) $[-0.5; +\infty[$ c) $\{x \in \mathbb{R} \mid x \le -2\}$
- d) $\{x \in \mathbb{R} \mid 1 < x < -0.5\}$

- a) $]-\infty; 2[\cup]2; +\infty[$ b) $]-\infty; 2[\cup]3; +\infty[$ c) $]-\infty; -1]\cup [6; +\infty[$ d) $]-\infty; -5[\cup[2; +\infty[$

- a) A = [-3; 5]
- b) B =]4; 5[

c) $C =]-\infty;1[$

- d) $D = [10; +\infty[$
- e) E = [-2; 2]
- f) $F =]-\infty; +\infty[$
- g) Un intervalle contient une infinité de nombre, donc pas possible.

Corrigé 31

- a) [-3; 2]
- b) $[3; +\infty[$ c) $]-\infty; -1[$
- d)]-2;4]
- e) $]-\frac{3}{2};-\frac{1}{2}]$ f) $]-\infty;1+\sqrt{2}]$ g) $]-\infty;+\infty[$
- h)]−∞; −2[∪ [4; +∞[

Corrigé 32

- a) $x \le -3$
- b) x > -2
- c) $0 \le x \le 2$
- d) -3 < x < 3

e)
$$-5 < x < -4$$

f) -2 < x < -1 ou $0 \le x$

g) x < 0 ou $1 \le x \le 3$

h) $x \le 4$ ou $x \ge 7$

Corrigé 33

- a) $]-\infty;2]$
- b)]3;+∞[
- c) [−1; +∞[
- d) [0; 2]

- e) [1; +∞[
- f) [2; 4[
- g) $]-\infty;-2] \cup [0;+\infty[$ h) [1; 3]

Corrigé 34

- a) $A \cup B =]-2; 4[$
- b) $A \cap B = [0; 3]$
- c) $A \setminus B =]-2; 0[$
- d) $B \setminus A = [3; 4]$

- e) $A \cup C =]-\infty; 3]$
- f) $A \cap C = [-2; 2]$

b)

- g) $A \setminus C = [2; 3]$
- h) $C \setminus A =]-\infty; -2]$

- i) $B \cup C =]-\infty; 4[$
- j) $B \cap C = [0; 2]$
- k) $B \setminus C = [2; 4[$

c)

1) $C \setminus B =]-\infty; 0[$

Corrigé 35

- i) $I \cap J =]-2;0[$
- i) $I \cap J =]-2; 2[$
- i) $I \cap J = [-1; 3[$

- ii) $I \cap K =]-3;3[$
- ii) $I \cap K =]-3;3[$

- iii) $I \setminus (J \cup K) = [3; 4]$
- ii) $I \cap K = [-3; 1[$ iii) $I \setminus (J \cup K) = [-4; -3[$
- iii) $I \setminus (J \cup K) = [-5; -3]$

- iv) $(I \setminus J) \cup (I \setminus K) =]-3; -2] \cup$ [0; 4]
- iv) $(I \setminus J) \cup (I \setminus K) = [-4; -2] \cup$ [1; 2[
- iv) $(I \setminus J) \cup (I \setminus K) = [-5; -1]$

Corrigé 36

- a) $A \cup B = [0; +\infty[$
- b) $A \cap B = [1; 5]$
- c) $A \setminus B = \emptyset$
- d) $B \setminus A = [0; 1[\cup]5; +\infty[$

- e) $A \cup C = [-3; 5]$ f) $A \cap C = [1; 3]$
- g) $A \setminus C = [3; 5]$ h) $C \setminus A = [-3; 1[$
- i) $B \cup C =]-3; +\infty[$ j) $B \cap C = [0; 3]$
- k) B \ C = $]3; +\infty[$ l) C \ B =]-3; 0[

Corrigé 37

Il y a une infinité de possibilités.

a)
$$-\frac{7}{5}$$
, $-\frac{10}{3} \in]-4$; $-3[$, $\frac{10}{3}$, $\frac{27}{99} \in]\frac{1}{4}$; $\frac{1}{3}[$, $\frac{5}{1000}$, $\frac{1}{9000} \in]10^{-4}$; $10^{-3}[$

b)
$$-2.5\sqrt{2}$$
, $\frac{2}{5\sqrt{2}}$, $\frac{\sqrt{2}}{1000}$.

Corrigé 38

- a) $I \cup K = [-3; 4[\cup]-5; 3] =]-5; 4[$
- b) $I \setminus K = [-3; 4[\setminus]-5; 3] = [3; 4[$
- c) $K \setminus I =]-5; 3] \setminus [-3; 4[=]-5; -3[$

Corrigé 39

On a
$$\sqrt{27} = 3\sqrt{3}$$
 et $\sqrt{75} = 5\sqrt{3}$.
 $\sqrt{27} + \frac{\sqrt{75} - \sqrt{27}}{2} = 3\sqrt{3} + \frac{2\sqrt{3}}{2}$
 $= 3\sqrt{3} + \sqrt{3}$
 $= 4\sqrt{3}$

On aurait pu le déduire directement depuis l'écriture simplifiée de $\sqrt{27}$ et $\sqrt{75}$.

1.3 Calul littéral

1.3.1 Traduire un énoncé

Corrigé 40

$$A = a(a + 4) - 3^2 = a^2 + 4a - 9$$

Corrigé 41

a)
$$n; n + 1; n + 2$$

b)
$$(2n+1)^2$$

c)
$$(n+1)^2 - n^2$$

e)
$$3n + 2$$

f)
$$4n - 1$$

a)
$$n; n+1; n+2$$
 b) $(2n+1)^2$ c) $(n+1)^2-n^2$ d) $7n$ e) $3n+2$ f) $4n-1$ g) $n^2; (n+1)^2; (n+2)^2$ h) $2n$

1.3.2 Isoler une variable

a)
$$x = 7 - 3y$$

b)
$$y = 4x - 9$$

c)
$$y = \frac{3}{2}x - \frac{5}{2}$$

d)
$$x = 5 - 2y$$

e)
$$x = 8 + 6y$$

f)
$$y = 10 - 2x$$

g)
$$y = 6x - 12$$

h)
$$x = \frac{5}{2}y - \frac{15}{2}$$

i)
$$y = -2x - 8$$

j)
$$y = \frac{2}{3}x - 10$$

j)
$$y = \frac{2}{3}x - 10$$
 k) $y = \frac{5}{2}x - \frac{35}{2}$

1)
$$y = 4x - 8$$

m)
$$y = -\frac{2}{3}x + 2$$

n)
$$y = \frac{5}{2}x$$

o)
$$y = -\frac{2}{3}x + \frac{4}{3}$$

a)
$$v = \frac{d}{t}$$
 $d = ?$ $t = ?$ b) $P = 2(a + b)$ $b = ?$ Isolons $d :$

$$b = ?$$

$$v = \frac{d}{t}$$

$$v = \frac{d}{t}$$
 t $v \cdot t = d$ d est isolé

P = 2(a + b) $\frac{P}{2} = a + b$ $\frac{P}{2} - a = b$: 2 -a $b \in S$ b est isolé

Isolons t:

$$v = \frac{d}{t}$$
 t $v \cdot t = d$ $t \cdot t$ $t = \frac{d}{v}$ $t \cdot t$ est isolé

c) $A = \frac{(B+b)}{2}h$ h = ? B = ? d) E = mgh h = ?

c)
$$A = \frac{(B + b)}{2}$$

Isolons h :

$$A = \frac{1}{2}h \qquad h = ? \qquad B = ? \qquad d) \quad E = mgh \qquad h = ?$$

$$A = \frac{(B+b)}{2}h \qquad \qquad \frac{E}{(B+b)} \qquad \frac{E}{mg} = h \qquad = h \text{ est isolé}$$

$$A \cdot \frac{2}{\frac{B+b}{B+b}} = h \qquad \qquad h \text{ est isolé}$$

Isolons B:

$$A = \frac{(B+b)}{2}h$$

$$\frac{A}{h} = \frac{(B+b)}{2}$$

$$\frac{2A}{h} = B + b$$

$$2B = B$$

e) $P = f \frac{m_1 m_2}{m_3}$ $m_1 = ?$ $m_3 = ?$ f) $\frac{n_1}{n_2} = \frac{z_1 z_4}{z_2 z_3}$ $z_1 = ?$ $n_2 = ?$ Isolons z_1 :

$$m_1 = ?$$

$$m_3 = ?$$

 m_1 est isolé

 z_1 est isolé

Isolons m_3 (on reprend la formule ou m_1 est isolé):

$$\frac{Pm_3}{fm_2} = m_1 \frac{m_3}{fm_2} = \frac{m_1}{P} m_3 = \frac{m_1}{P} \cdot fm_2 m_3 = \frac{fm_1m_2}{P}$$

Isolons n_2 :

$$\frac{1}{f} \frac{m_3}{fm_2} = m_1 \qquad m_1 \text{ est isol\'e} \qquad \text{Isolons } n_2 :$$

$$\text{solons } m_3 \text{ (on reprend la formule ou } m_1 \text{ est isol\'e}) : \qquad \frac{n_1}{n_2} = \frac{z_1 z_4}{z_2 z_3} \qquad n_2$$

$$\frac{Pm_3}{fm_2} = m_1 \qquad : P \qquad n_1 = \frac{z_1 z_4}{z_2 z_3} \cdot n_2 \qquad \frac{z_2 z_3}{z_1 z_4}$$

$$\frac{m_3}{fm_2} = \frac{m_1}{P} \qquad fm_2 \qquad n_1 = \frac{z_2 z_3}{z_1 z_4} = n_2 \qquad r\'eduire$$

$$m_3 = \frac{fm_1 m_2}{P} \qquad r\'eduire \qquad m_3 \text{ est isol\'e}$$

$$m_3 \text{ est isol\'e}$$

g)
$$a = \frac{Ah}{2} - b$$
 $h = \frac{2A}{a+b}$ h) $h = \frac{4V}{\pi d^2}$

$$h = \frac{2A}{a+b}$$

$$h) h = \frac{4V}{\pi d^2}$$

a)
$$h = \frac{6V}{B_1 + B_2 + 4M}$$
 $M = \frac{\frac{6V}{h} - B_1 - B_2}{4}$ b) $D = D_r \cdot (1 + A_r + B_r)$ $A_r = \frac{D}{D_r} - 1 - B_r$

b)
$$D = D_r \cdot (1 + A_r + B_r)$$
 $A_r = \frac{D}{D_r} - 1 - B_r$

c)
$$r = -\frac{2PR}{Q}$$

d)
$$R_i = \frac{kR_a}{G} - R_a$$

e)
$$F = \frac{A}{S_{\alpha}} - S_{\alpha}$$

f)
$$R = \frac{R_1 R_2}{R_1 + R_2}$$
 $R_1 = \frac{RR_2}{R_2 - R}$

1.3.3 L'algèbre comme outil de preuve

Corrigé 45

Un nombre pair a s'écrit a=2n pour $n\in\mathbb{N}$, un nombre impair b s'écrit b=2m+1 pour $m\in\mathbb{N}$. On a

$$a + b = 2n + 2m + 1 = 2(n + m) + 1 = 2k + 1$$
 avec $k = n + m$

et donc a + b est bien un nombre impair.

Corrigé 46

- a) jamais
- b) parfois
- c) toujours
- d) parfois

- e) jamais
- f) parfois
- g) toujours
- h) toujours

Corrigé 47

Soient a = 2m + 1 et b = 2n + 1 deux nombres impairs.

$$a + b = 2m + 1 + 2n + 1 = 2m + 2n + 2 = 2(m + n + 1)$$

qui est bien un nombre pair.

Corrigé 48

Pour {1; 2; 9; 28; 65; 126} (pourquoi?).

Corrigé 49

On vérifie en développant que oui.

Corrigé 50

- a) On développe les deux membres. On constate qu'ils sont égaux à $a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2$.
- b) à la calculatrice.

1.3.4 Développer et réduire

Corrigé 51

- a) somme, trois termes
- b) produit, quatre facteurs
- c) somme, deux termes

- d) produit, trois facteurs
- e) somme, deux termes
- f) produit, deux facteurs

- g) somme, deux termes
- h) somme, deux termes

Corrigé 52

- a) 63x + 56 b) $30a^3 72a^2$ c) 35y 55 d) 60x + 48 e) $-48x^2 32x + 24$ f) $-72x^5 63x^2y$ g) $-28a^7 + 42a^6$ h) $-35x^8 48$
- h) $-35x^8 45x^5 + 5x^4$

- a) 0 b) $-4x^2$ c) $2x^2 4x$ d) 4y e) -14y f) $-45y^2$ g) $-5y^2 + 9y$ h) 4y i) $-5y^2 45y$ j) -50y k) $-x^2$ l) $x^2 + x$ m) -1 n) $x^3 + x^2$ o) $2x^4$

- a) 6xy 9x + 10y 15
- c) $5y^2 24y + 27$
- e) $v^2 x^2$
- g) $-2x^3 3x^2 + 8x 3$
- i) $x^3 + 6x^2 + 12x + 8$
- k) $-x^4 + 16$

- b) $4x^2 + 4x 15$
- d) $x^3 2x + 1$
- f) $x^3 + 2x^2 x 2$
- h) $x^4 4x^3 + 3x^2 4x + 2$
- i) $-5x^3z^4 + z^6 + 15x^4z 3xz^3 + 2z^4 6xz$
- $1) \quad x^4 4x^3 + 6x^2 4x + 1$

Corrigé 55

- a) 15x + 25
- b) $4x^3 4x^2$
- c) 25y 45
- d) 3x + 3

- e) $-x^2 x + 1$
- f) -2x 2y
- g) $x^4 3x^2 4$
- h) $6x^4 9x^3 3x^2$

- i) $3x^2 + 2x 5$
- j) $3x^3y^2 + 3x^2y 3xy$ k) $4x^4 17x^2 + 4$
- 1) $3x^3y^2 + 12xy^4$

- m) $-2x^2 4x + 6$
- n) $3x^2 18x + 27$
- o) $-2x^2 + 5x 3$
- p) $4x^2 12x + 9$

Corrigé 56

- a) $x^2 + 2xy + y^2$
- b) $4x^4 8x^2 12$
- c) $x^2 y^2$
- d) $9x^2 + 6xy + y^2$

- e) $x^4 + 2x^2y^3 + y^6$
- f) $x^2 2x + 1$
- g) $1 x^2$
- h) $16x^2 24x + 9$

- i) $x^6 9v^2$
- i) $9z^2 12z + 4$
- k) $x^2 2x + 1$
- $1) x^2y^2 + 4xy^2 + 4y^2$

- m) $x^4 2x^2 + 1$
- n) $4x^2 + 8x + 4$
- o) $4a^2 + 12a + 9$
- p) $x^2y^2z^2 25$

- a) $9x^6 30x^3 + 25$
- r) $a^2 + 6ab + 9b^2$
- s) $x^4 2x^2 + 1$
- t) $16a^4b^2 25$

- u) $4x^2y^6 4xy^3 + 1$ v) $x^8 + 2x^4y + y^2$
- w) $1 a^2 x^8$
- x) $x^4 a^4$

Corrigé 57

- a) $15x^2 + 3x + 1$
- c) $36x^3 9x^2 64x + 15$
- e) $15x^2 23x + 5$

- b) $25x^2 + 25x 6$
- d) $9x^3 x^2 15x$
- f) $-12x^6 + 19x^5 4x^4 + x^2$

Corrigé 58

On utilise le terme constant (de degré 0) qui est différent pour toutes les expressions. Ainsi, il suffit de multiplier les termes de degré 0 de chaque expression pour retrouver les trois polynômes.

Corrigé 59

On développe.

 $(n^2 + n + 1)(n^2 - n + 1) = n^4 - n^3 + n^2 + n^3 - n^2 + n + n^2 - n + 1 = n^4 + n^2 + 1$ (*) Demander à l'enseignant si intéressé!

Corrigé 60

- a) $2x^3 + x^2 98x + 49$
- c) x + t 7s
- e) $-20x^3 + 6x^2 4x$

- b) $12x^2 + 4x 108x + 36$
- d) $10rs^2t^5 20r^2s^3t^2 + 15rs^5t^2$
- f) $\frac{19x-19}{}$

Corrigé 61

- a) $16x^8 4$
- c) $-32x^2 + 60x + 27$
- e) $x^8 9x^4 + 8$
- g) $14x^2 + 9x + 1$

- b) $\frac{1}{16}x^2 + x\sqrt{2} + 8$
- d) $x^8 256$
- f) $16a^8 + 8a^4 3$

1.3.5 Identités remarquables

- a) $x^2 3x + 2$
- b) $x^2 + 4x + 3$
- c) $x^2 16$
- d) $y^2 2y 48$

- e) $a^2 11a 12$
- f) $y^2 + 5y 36$
- g) $a^2 + 10a + 21$
- h) $x^2 13x + 30$

a)
$$r^4 + 14r^2 + 49$$

b)
$$s^4 - 6s^2 + 9$$

c)
$$9y^2z^2 + 54yz + 81$$

d)
$$s^2y^2 + 4sy - 5$$

e)
$$t^2z^2 - 81$$

f)
$$-9r^2x^2 + 16$$

g)
$$25r^4 - 80r^3s + 64r^2s^2$$

h)
$$81x^2 - 45x + 6$$

i)
$$r^4 - 64$$

j) $100r^2 + 20r + 1$

Corrigé 64

a)
$$100r^2x^2 + 130rx + 40$$
 b) $s^2t^2 - \frac{9}{4}s^2$

b)
$$s^2t^2 - \frac{9}{4}s^2$$

c)
$$25s^4y^2 - \frac{25}{4}s^4y + \frac{25}{64}s^4$$

d)
$$\frac{4}{9}s^2x^2 + \frac{1}{6}sx^2 + \frac{1}{64}x^2$$

j) $\frac{64}{49}t^6 + \frac{160}{7}st^3 + 100s^2$

e)
$$-\frac{9}{25}r^4z^2 + \frac{4}{25}z^2$$

d)
$$\frac{4}{9}s^2x^2 + \frac{1}{6}sx^2 + \frac{1}{64}x^2$$
 e) $-\frac{9}{25}r^4z^2 + \frac{4}{25}z^4$ f) $16r^2t^4 - 28r^2t^2 + \frac{49}{4}r^2$

g)
$$36r^2y^2 + 30ry + 6$$

g)
$$36r^2y^2 + 30ry + 6$$
 h) $\frac{16}{9}z^4 + \frac{40}{27}rz^3 + \frac{25}{81}r^2z^2$ i) $\frac{16}{49}t^2x^2 - \frac{4}{7}tx - 56$

i)
$$\frac{16}{49}t^2x^2 - \frac{4}{7}tx - 56$$

Corrigé 65

a)
$$\frac{9}{16}t^2 + \frac{3}{4}t - 42$$

c)
$$z^4 - \frac{2}{3}z^2 + \frac{1}{9}$$

e)
$$\frac{1}{9}r^4 + \frac{1}{2}r^2x^2 + \frac{9}{16}x^4$$

g)
$$t^2x^2 + \frac{12}{5}tx + \frac{36}{25}$$

i)
$$r^2y^2 - \frac{25}{36}$$

b)
$$t^4 - 14t^2 + 40$$

d)
$$r^2z^2 - \frac{1}{25}$$

f)
$$-\frac{49}{100}r^4 + \frac{25}{9}$$

h)
$$\frac{4}{9}t^2y^2 - \frac{20}{9}ty^2 + \frac{25}{9}y^2$$

j)
$$\frac{64}{25}y^2 + \frac{152}{5}y + 90$$

Corrigé 66

a)
$$-31$$

c)
$$98 + 12\sqrt{60}$$

c)
$$98 + 12\sqrt{66}$$
 d) $279 - 20\sqrt{11}$ e) $90 - 36\sqrt{6}$

e)
$$90 - 36\sqrt{6}$$

Corrigé 67

Par exemple, $23^2 = (20 + 3)^2 = 20^2 + 2 \cdot 20 \cdot 3 + 3^9 = 400 + 120 + 9 = 529$.

Corrigé 68

a)
$$a + b$$

c)
$$a^3 + 3a^2b + 3ab^2 + b^3$$

b)
$$a^2 + 2ab + b^2$$

d)
$$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

e)
$$a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$$

Corrigé 69

a) ab + ac ou a(b + c), d'où la distributivité simple.

b)

Écrire l'aire de deux manière à chaque fois pour prouver les identités.

a)
$$8a^3 + 12a^2b + 6ab^2 + b^3$$

c)
$$x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$$

d)
$$a^8 + 4a^6b^2 + 6a^4b^4 + 4a^2b^6 + b^8$$

b) $125a^3 - 75a^2b + 15ab^2 - b^3$

e)
$$8a^9 - 12a^6b^4 + 6a^3b^8 - b^{12}$$

f)
$$x^{10} + 5x^8y + 10x^6y^2 + 10x^4y^3 + 5x^2y^4 + y^5$$

g)
$$a^6 - 12a^5b + 60a^4b^2 - 160a^3b^3 + 240a^2b^4 - 192ab^5 + 64b^6$$

h)
$$\frac{1}{16}x^4 + \frac{1}{6}x^3y + \frac{1}{6}x^2y^2 + \frac{2}{27}xy^3 + \frac{1}{81}y^4$$
 i) $x^{3m} + 3x^{2m}y^n + 3x^my^{2n} + y^{3n}$

i)
$$x^{3m} + 3x^{2m}y^n + 3x^my^{2n} + y^{3n}$$

1.3.6 Factorisation

Corrigé 71

On factorise l'expression pour obtenir (par la mise en évidence)

$$4a^2 + 6a = 2a \cdot (2a + 3)$$

Ainsi, la longueur vaut 2a + 3.

Corrigé 72

a)
$$4x^2 + 12x + 9$$

b)
$$2(2x + 3y^2)$$

c)
$$(3b + 2)^2$$

d)
$$(x-1)(x+7)$$

e)
$$(3y - 1)^2$$

f)
$$8h^3 + 12h^2$$

g)
$$x^2 - 2x + 1$$

h)
$$(4a-5)(4a+5)$$

i)
$$16a^2 - 25$$

j)
$$(x-1)^2$$

k)
$$4h^2(2h+3)$$

1)
$$9y^2 - 6y + 1$$

m)
$$x^2 + 6x - 7$$

n)
$$9b^2 + 12b + 4$$
 o) $4x + 6y^2$

o)
$$4x + 6y^2$$

p)
$$(2x + 3)^2$$

Corrigé 73

a)
$$2x(y+1)^2$$

b)
$$5(3a-1)^2$$

c)
$$5x^2(x-2)(x+2)$$

d)
$$3y(x+2)(x+8)$$

e)
$$7a^2x(a-x)^2$$

f)
$$a(3a^2 + 4b^2)^2$$

g)
$$4xy(x-2y)^2$$

h)
$$2ax(ax - 1)^2$$

i)
$$3x(x-2)(x+4)$$

j)
$$ab^2(3c^2-2b)(3c^2+2b)$$
 k) $x^2(a-2bx)(a+2bx)$ l) $(a-2)(a+2)(x+2y)$

k)
$$x^2(a-2hx)(a+2hx)$$

$$(a-2)(a+2)(x+2y)$$

- a) Calculer. Elle devrait donner 0.
- c) 9

- b) $x^2 (x-3)(x+3)$
- d) La calculatrice se trompe à cause d'une erreur d'arrondi. Dans ce cas, la factorisation permet de calculer rapidement et correctement.