Problem Solving Agents & Problem Formulation AIMA 2.3, 3.1-2

Outline for today's lecture

- . Defining Task Environments
- Environment types
- · Formulating Search Problems

CIS 521 - 2015

Environment types: Definitions I

- Fully observable (vs. partially observable): An agent's sensors give it access to the complete state of the environment at each point in time.
- Deterministic (vs. stochastic): The next state of the environment is completely determined by the current state and the action executed by the agent.
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic.
- Episodic (vs. sequential): The agent's experience is divided into atomic "episodes" during which the agent perceives and then performs a single action, and the choice of action in each episode depends only on the episode itself.

CIS 521 - 2015

Environment types: Definitions II

- Static (vs. dynamic): The environment is unchanged while an agent is deliberating.
 - The environment is semidynamic if the environment itself does not change with the passage of time but the agent's performance score does.
- Discrete (vs. continuous): A limited number of distinct, clearly defined percepts and actions.
- Single agent (vs. multiagent): An agent operating by itself in an environment.

(See examples in AIMA, however I don't agree with some of the judgments)

CIS 521 - 2015

Environment Restrictions for Now

- · We will assume environment is
 - Static
 - · Fully Observable
 - Deterministic
 - · Discrete

CIS 521 - 2015

The rational agent designer's goal

- Goal of Al practitioner who designs rational agents: given a PEAS task environment,
 - Construct agent function f that maximizes (the expected value of) the performance measure,
 - 2. Design an agent program that implements f on a particular architecture

CIS 521 - 2015

Outline for today's lecture

- Defining Task Environments
- · Environment types
- Formulating Search Problems (AIMA, 3.1-3.2)

CIS 521 - 2015

Holiday in Romania II

- . On holiday in Romania; currently in Arad
 - · Flight leaves tomorrow from Bucharest
- Formulate goal
- Be in Bucharest
- Formulate search problem
 - · States: various cities
 - · Actions: drive between cities
 - · Performance measure: minimize distance
- Find solution
 - Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest,

CIS 521 - 2015

More formally, a problem is defined by:

- 1. A set of states S
- 2. An initial state s_i∈S
- 3. A set of actions A
 - \(\nabla s, Actions(s) = \text{the set of actions that can be executed in } s, \)
 that are applicable in \(s.\)
- 4. Transition Model: $\forall s \forall a \in Actions(s)$, Result(s, a) $\rightarrow s_r$
 - $-s_r$ is called a successor of s
- $-\{s_i\}$ \cup Successors (s_i) * = state space
- 5. Goal test Goal(s)
 - Can be implicit, e.g. checkmate(x)
- s is a goal state if Goal(s) is true
- 6. Path cost (additive)
 - —e.g. sum of distances, number of actions executed, ...
 - -c(x,a,y) is the step cost, assumed ≥ 0
 - (where action a goes from state x to state y)

CIS 521 - 2015

Solution

A *solution* is a sequence of actions from the *initial state* to a *goal state*.

Optimal Solution:

A solution is *optimal* if no solution has a lower path cost.

CIS 521 - 2015

Hard subtask: Selecting a state space

- Real world is absurdly complex
 - State space must be abstracted for problem solving
- (abstract) State = set (equivalence class) of real world states
- (abstract) Action = complex combination of real world actions

 e.g. Arad -> Zerind represents a complex set of possible routes
 - e.g. Arad → Zerind represents a complex set of possible routes, detours, rest stops, etc
- The abstraction is valid if the path between two states is reflected in the real world
- (abstract) Solution = set of abstract paths that are solutions in the abstract space
- Each abstract action should be "easier" than the real problem

EIS 521 - 1013 to AI

Formulating a Search Problem

Decide:

- . Which properties matter & how to represent
 - Initial State, Goal State, Possible Intermediate States
- . Which actions are possible & how to represent
 - Operator Set: Actions and Transition Model
- . Which action is next
 - · Path Cost Function

CIS 521 - 2015

Formulation: Missionaries & Cannibals

- How to formalize:
 - Initial state: all M, all C, and boat on one bank
 - · Actions: ??
 - Transition Model??
 - Goal test: True if all M, all C, and boat on other bank
 - Cost: ?

Remember:

- · Representation:
 - · States: Which properties matter & how to represent
 - Actions &Transition Model: Which actions are possible & how to represent
 - Path Cost: Deciding which action is next

CIS 521 - 2015

States:	(CL, ML, B	L, BL)		
Initial	331	Goal	000	
Actions:				
Travel Across		Travel Back		
-101		101		
-201		201		
-011		011		
-021		021		
-111		111		