### **DLP Lab2 Report**

#### 1.Introduction:

在這次的 lab 中,需要訓練 Butterfly & Months 的分類類神經網路模型。在作業中,需要完成 data preprocess 和 data loader 的設計,接著實作出 VGG19 和 Resnet50 的 architecture,並且從頭訓練模型的權重。

### 2.Implement Details:

## A. The details of your model (VGG19, ResNet50)

#### A-1 VGG19:

| ConvNet Configuration               |           |           |           |           |           |  |  |  |  |
|-------------------------------------|-----------|-----------|-----------|-----------|-----------|--|--|--|--|
| A                                   | A-LRN     | В         | С         | D         | Е         |  |  |  |  |
| 11 weight                           | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight |  |  |  |  |
| layers                              | layers    | layers    | layers    | layers    | layers    |  |  |  |  |
| input ( $224 \times 224$ RGB image) |           |           |           |           |           |  |  |  |  |
| conv3-64                            | conv3-64  | conv3-64  | conv3-64  | conv3-64  | conv3-64  |  |  |  |  |
|                                     | LRN       | conv3-64  | conv3-64  | conv3-64  | conv3-64  |  |  |  |  |
| maxpool                             |           |           |           |           |           |  |  |  |  |
| conv3-128                           | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 |  |  |  |  |
|                                     |           | conv3-128 | conv3-128 | conv3-128 | conv3-128 |  |  |  |  |
| maxpool                             |           |           |           |           |           |  |  |  |  |
| conv3-256                           | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |  |  |  |  |
| conv3-256                           | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 |  |  |  |  |
|                                     |           |           | conv1-256 | conv3-256 | conv3-256 |  |  |  |  |
|                                     |           |           |           |           | conv3-256 |  |  |  |  |
| maxpool                             |           |           |           |           |           |  |  |  |  |
| conv3-512                           | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |  |
| conv3-512                           | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |  |
|                                     |           |           | conv1-512 | conv3-512 | conv3-512 |  |  |  |  |
|                                     |           |           |           |           | conv3-512 |  |  |  |  |
|                                     |           |           | pool      |           |           |  |  |  |  |
| conv3-512                           | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |  |
| conv3-512                           | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 |  |  |  |  |
|                                     |           |           | conv1-512 | conv3-512 | conv3-512 |  |  |  |  |
|                                     |           |           |           |           | conv3-512 |  |  |  |  |
|                                     |           |           | pool      |           |           |  |  |  |  |
| FC-4096                             |           |           |           |           |           |  |  |  |  |
| FC-4096                             |           |           |           |           |           |  |  |  |  |
| FC-1000                             |           |           |           |           |           |  |  |  |  |
| soft-max                            |           |           |           |           |           |  |  |  |  |

VGG19 是由 16 convolution layer + 3 fully connected layer 所組成,因此,只要照著上圖的 E 依序由上做下來即可,而在經過每一個 convolution layer 和 FC layer 時,會使用 Relu 作為 activate function。

# Weight initialization:

For random initialisation (where applicable), we sampled the weights from a normal distribution with the zero mean and  $10^{-2}$  variance. The biases were initialised with zero. It is worth noting that after the paper submission we found that it is possible to initialise the weights without pre-training by using the random initialisation procedure of Glorot & Bengio (2010).

VGG 的作者認為網路權重的 initialization 相當重要,因此,在上圖中,作者也對

weight 有一系列的設置,但其在最後也指出,Glorot & Bengio 提出的方式更有效。因此在原始的 model 無法訓練起來的狀況下,我選擇了手動設定 weight distribution 的方式,看看 model 是否能夠達到 baseline。

```
for m in self.modules():

if isinstance(m, (nn.Conv2d, nn.Linear)):

nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='relu')
```

#### Normalization:

在 VGG 的 paper 中,作者在 VGG11 使用了 Local Response Normalization(LRN)的 技巧進行 normalization,不過作者發現 LRN 並不能改善 model 的表現,因此,在較深層的網路(B-E)並未使用 normalization 的技巧,而在 Weight Initialization 後無法超過 baseline 後,我嘗試添加了 Batch Normalization。

### A-2 ResNet50



這次 lab 中,需要實作的是 Resnet50,而在 50 layer 以上的 Resnet architecture 中需要實作 Bottleneck。

| layer name | output size | 18-layer                                                                           | 34-layer                                                                         | 50-layer                                                                                        | 101-layer                                                                                           | 152-layer                                                                                        |  |  |
|------------|-------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| conv1      | 112×112     | 7×7, 64, stride 2                                                                  |                                                                                  |                                                                                                 |                                                                                                     |                                                                                                  |  |  |
| conv2_x    | 56×56       | 3×3 max pool, stride 2                                                             |                                                                                  |                                                                                                 |                                                                                                     |                                                                                                  |  |  |
|            |             | $\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times2$       | $\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$        | \[ \begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \times 3    | \[ \begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \times 3        | $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$     |  |  |
| conv3_x    |             | $\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$ |                                                                                  | [ 1×1, 512 ]                                                                                    | 1×1, 512                                                                                            | $\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$   |  |  |
| conv4_x    | 14×14       | $\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$     | $\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times6$ | \[ \begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \times 6 | \[ \begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array} \] \times 23 | $\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$ |  |  |
| conv5_x    |             | $\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$     |                                                                                  | [ 11 512 ]                                                                                      | [ 1×1, 512 ]                                                                                        | \[ \begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3  |  |  |
|            | 1×1         | average pool, 1000-d fc, softmax                                                   |                                                                                  |                                                                                                 |                                                                                                     |                                                                                                  |  |  |
| FLO        | OPs         | 1.8×10 <sup>9</sup>                                                                | $3.6 \times 10^{9}$                                                              | $3.8 \times 10^{9}$                                                                             | 7.6×10 <sup>9</sup>                                                                                 | 11.3×10 <sup>9</sup>                                                                             |  |  |

在 Resnet 的架構中,可以發現 conv2\_x、conv3\_x、conv4\_x、conv5\_x 是使用類似的相同邏輯去設計,因此我在 Model 的設計上使用了兩個 class,class Bottleneck 主要處理這種類似的構造,而 class Resnet50\_net 則將整個完整的架構串在一起。

#### **Class Bottleneck**

```
class Bottleneck(nn.Module):
   expansion = 4
   def __init__(self, input_channels, output_channels, stride=1):
       super(Bottleneck, self).__init__()
           input_channels, output_channels, kernel_size=1, stride=1, bias=False)
       self.bn_1 = nn.BatchNorm2d(output_channels)
       self.conv_2 = nn.Conv2d(output_channels, output_channels,
                              kernel_size=3, padding=1, stride=stride, bias=False)
       self.bn_2 = nn.BatchNorm2d(output_channels)
       self.conv_3 = nn.Conv2d(
           output_channels, output_channels*self.expansion, kernel_size=1, stride=1, bias=False)
       self.bn_3 = nn.BatchNorm2d(output_channels*self.expansion)
       self.relu = nn.ReLU(inplace=True)
       self.downsample = None
       if stride != 1 or input_channels != output_channels*self.expansion:
           self.downsample = nn.Sequential(nn.Conv2d(
               input_channels, output_channels*self.expansion, kernel_size=1, stride=stride, bias=False),
               nn.BatchNorm2d(output_channels*self.expansion),
```

```
def forward(self, x):
    identity = x.clone()

x = self.conv_1(x)
x = self.bn_1(x)
x = self.relu(x)

x = self.conv_2(x)
x = self.bn_2(x)
x = self.relu(x)

x = self.relu(x)

x = self.conv_3(x)
x = self.conv_3(x)
x = self.downsample is not None:
    identity = self.downsample(identity)

x += identity
x = self.relu(x)

x += self.relu(x)

x += identity
x += self.relu(x)
```

其中比較重要的部分是 Line 25-30 行的部分,因為在 bottleneck block 進行 forward 時,需要將 bottleneck 的 output 和 input 相加,因此,需要注意 input shape 和 output shape 是否相等的問題,才需要 25-30 對不相等的情形做處理。

### B. The details of your Dataloader

```
class BufferflyMothLoader(data.Dataset):

def __getitem__(self, index):

path = os.path.join(self.root, self.img_name[index])

image = Image.open(path).convert('RGB')

label = self.label[index]

if self.inference == False:

# print("Training time")

img = train_transform(image)

else:

# print("inference time")

img = test_transform(image)

return img, label
```

在這次的作業中,助教提供的 code 已經包含了 BufferflyMonthLoader,因此,僅需要實作\_\_getitem\_\_的 function 即可,Line84-85 是讀取圖片的部分,而 line86 則是取得該圖片的 label。而在 Line87-92 行,則是利用 transforms.Compose()將我的 data preprocessing 串起來,形成一個 data preprocessing pipeline,至於分成 train\_transform 和 test\_transform 的原因,我則留到 3-A 進行說明。

```
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=16, shuffle=False)
test_loader = DataLoader(test_data, batch_size=16, shuffle=False)
```

完成好 dataset loading 後,接著需需要使用 torch.utils.data.DataLoader,將 dataset 分成一組組的 batch 進行訓練和評估,而在 train loader 的部分,使用 shuffle 會將整個 dataset 進行打亂,根據過往的例子,這能有助於提升 model 的穩健性,不過在這次的 lab 中,助教提供的 train.csv 的順序本身即為亂數排列,因此,在 train loader 有無使用 shuffle,我認為沒有太大的影響。

### 3. Data Preprocessing

#### A. How you preprocessed your data:

## **Train phase**

```
train_transform = transforms.Compose([
    transforms.Resize([224, 224]),
    transforms.RandomHorizontalFlip(),
    transforms.RandomRotation(degrees=30),
    transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
    | std=[0.229, 0.224, 0.225]),
```

#### **Test phase**

在 train phase 中,首先我會對 Image 進行 resize 到(224\*224),這是因為 VGG19 中包含了 fully connected layer,而 FC layer 的 input channels 會因為 input size 有所改變,因此,必須使用 Resize 的方式統一 dataset 的 input size,而 Resne50 的部分,因為其會多加一層 avg pool,因此,FC layer 的 input channels 不會受到 input size 的影響。接著,則是使用一些影像處理的方式,像是水平翻轉、隨機旋轉以及顏色抖動,這種方式有助於增強 model 的穩健性,接著使用 transforms.ToTensor(這一步能夠將 pixel value 轉到[0,1]之間並且使 image shape 從[H, W, C] 轉置成 [C, H, W]),最後再使用 normalization 的手段,其中 mean = [0.485, 0.456, 0.406]和 std = [0.229, 0.224, 0.225],這個數值是 ImageNet 統計出來的數值,因為考量到自己的 dataset 需要重新計算,我便直接採取這個參數了。

### 4.Experimental results:

### A. The highest testing accuracy

```
---VGG19---
VGG19 | train accuracy: 97.141% | valid accuracy: 87.600% | test accuracy: 90.400%
---Resnet50---
Resnet50 | train accuracy: 99.722% | valid accuracy: 94.600% | test accuracy: 94.600%
```

### **B.** Comparison figures



從 4-A 的圖上可以發現,無論是在 train data 還是 test data 上 Resnet50 的表現皆比 VGG19 好上一截,而從 4-B 的 Comparison figures 中除了可以發現和 4-A 相同的結論:Resnet50 的表現更好,此外在 20 個 epochs 以前時,可以發現 valid accuracy 比 train accuracy 好,我想這是因為 train data 在訓練時會經過 random rotation、color jitter 等預處理方式,因此在 accuracy 上會有些許的損失。

#### 5.Discussion:

在這次的 lab 中,我實作了 VGG19 和 Resnet50 的 model 架構,VGG19 就是基本的深層網路,因此,在實作起來相對的輕鬆,不過我在訓練 VGG19 時,發現怎麼樣調整 training hyper parameter 都發現訓練不起來,因此也使用了各種方式去嘗試,像是更改 data preprocess、weight initialization、learning rate schedule、Clip the gradient norm,不過都沒有明顯的差距,直到最後使用了Batch Normalization 的方式,model 終於能有效的訓練。而 Resnet50 則是在實作上遇到比較大的麻煩,一開始沒有注意到 downsample 的問題,導致一直出現 shape 相關的 error,但訓練上則沒遇到太大的阻礙,在相同的設定下,Resnet50 輕鬆地打敗了 VGG19 的表現。

#### 6.Reference:

- 1.https://arxiv.org/abs/1409.1556
- 2.https://arxiv.org/abs/1512.03385
- 3.https://proceedings.mlr.press/v9/glorot10a.html
- 4.https://zhuanlan.zhihu.com/p/53712833