Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Baruah

Research Scholar Department of Mathematics Gauhati University

14-08-2020

Online Seminar of Assamese Mathematicians

Some aspects of Γ_2 graph over some of the finite commutative rings

...... D.......

• In 1988, I. Beck first introduced the concept of zero divisor graph, where he was mainly interested in colorings. He conjectured that, $\chi(R) = \omega(R)$.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Baruah

- In 1988, I. Beck first introduced the concept of zero divisor graph, where he was mainly interested in colorings. He conjectured that, $\chi(R) = \omega(R)$.
- In 1993, D. D. Anderson and M. Naseer came up with a counter example.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barual

- In 1988, I. Beck first introduced the concept of zero divisor graph, where he was mainly interested in colorings. He conjectured that, $\chi(R) = \omega(R)$.
- In 1993, D. D. Anderson and M. Naseer came up with a counter example.
- In 1999, D.F. Anderson and P. Livingston modified this definition, which is now considered as the standard definition of *zero divisor graph*.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

- In 1988, I. Beck first introduced the concept of zero divisor graph, where he was mainly interested in colorings. He conjectured that, $\chi(R) = \omega(R)$.
- In 1993, D. D. Anderson and M. Naseer came up with a counter example.
- In 1999, D.F. Anderson and P. Livingston modified this definition, which is now considered as the standard definition of zero divisor graph. They denoted this graph as $\Gamma(R)$ whose vertices are the nonzero zero-divisors of a commutative ring R, and in which two vertices a and b are connected by an edge if and only if ab=0.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

- In 1988, I. Beck first introduced the concept of zero divisor graph, where he was mainly interested in colorings. He conjectured that, $\chi(R) = \omega(R)$.
- In 1993, D. D. Anderson and M. Naseer came up with a counter example.
- In 1999, D.F. Anderson and P. Livingston modified this definition, which is now considered as the standard definition of zero divisor graph. They denoted this graph as $\Gamma(R)$ whose vertices are the nonzero zero-divisors of a commutative ring R, and in which two vertices a and b are connected by an edge if and only if ab=0.

Consider the ring $\mathbb{Z}_3 \times \mathbb{Z}_3$ Here the non-zero zero divisors are (0,1),(1,0),(0,2),(2,0)

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

• In 2008, D.F.Anderson and A. Badawi, constructed a new type of graph called the *Total graph* of a commutative ring where the addition operation involving the zero divisors has been used.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Baru

• In 2008, D.F.Anderson and A. Badawi, constructed a new type of graph called the *Total graph* of a commutative ring where the addition operation involving the zero divisors has been used. They took all the elements of the ring R as the vertices of the graph, and for two distinct $x, y \in R$, x and y are adjacent if and only if x + y is a zero divisor.

Some aspects of Γ_2 graph over some of the finite commutative rings

Definition

A subring S of a ring R is an ideal of R if $a \in S$, $r \in R \implies ra \in S$ and $ar \in S$.

Some aspects of Γ_2 graph over some of the finite commutative

Definition

A subring S of a ring R is an ideal of R if $a \in S, r \in R \implies ra \in S$ and $ar \in S$.

Definition

For a ring R, an ideal $M \neq R$ is maximal in R if for any ideal U of R satisfying $M \subset U \subset R$, either U = M or U = R.

Some aspects of Γ_2 graph over some of the finite commutative rings

Definition

A subring S of a ring R is an ideal of R if $a \in S, r \in R \implies ra \in S$ and $ar \in S$.

Definition

For a ring R, an ideal $M \neq R$ is maximal in R if for any ideal U of R satisfying $M \subset U \subset R$, either U = M or U = R.

Definition

Let R be a ring and $a \in R$. The smallest ideal of a ring R containing a is said to be the *principal ideal* generated by a, denoted as $a \in A$.

Some aspects of Γ_2 graph over some of the finite commutative

Anurag Baruah

• If < n > be the principal ideal generated by n in $\mathbb{Z}[i]$, and let \mathbb{Z}_n be the ring of integers modulo n. Then $\mathbb{Z}[i]/< n >$ is isomorphic to $\mathbb{Z}_n[i] = \{\bar{a}+i\bar{b}: \bar{a}, \bar{b}\in\mathbb{Z}_n\}$, which implies that $\mathbb{Z}_n[i]$ is a principal ideal ring. This ring is called the ring of Gaussian integers modulo n.

Some aspects of Γ_2 graph over some of the finite commutative

Anurag Barual

• If < n > be the principal ideal generated by n in $\mathbb{Z}[i]$, and let \mathbb{Z}_n be the ring of integers modulo n. Then $\mathbb{Z}[i]/< n >$ is isomorphic to $\mathbb{Z}_n[i] = \{\bar{a}+i\bar{b}: \bar{a}, \bar{b}\in\mathbb{Z}_n\}$, which implies that $\mathbb{Z}_n[i]$ is a principal ideal ring. This ring is called the ring of Gaussian integers modulo n.

Definition

A *local ring* is a ring R that contains a single maximal ideal.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

• If < n > be the principal ideal generated by n in $\mathbb{Z}[i]$, and let \mathbb{Z}_n be the ring of integers modulo n. Then $\mathbb{Z}[i]/< n >$ is isomorphic to $\mathbb{Z}_n[i] = \{\bar{a} + i\bar{b} : \bar{a}, \bar{b} \in \mathbb{Z}_n\}$, which implies that $\mathbb{Z}_n[i]$ is a principal ideal ring. This ring is called the ring of Gaussian integers modulo n.

Definition

A *local ring* is a ring R that contains a single maximal ideal.

Theorem

If $m = t^k$ for some prime t and positive integer k, then $\mathbb{Z}_m[i]$ is a local ring if and only if t = 2 or $t \equiv 3 \pmod{4}$.

Some aspects of Γ_2 graph over some of the finite commutative rings

Theorem

 $\bar{a}+i\bar{b}$ is an unit in $\mathbb{Z}_n[i]$ if and only if a^2+b^2 is an unit in \mathbb{Z}_n .

Theorem

If $n = \prod_{j=1}^s a_j^{k_j}$ is the prime power decomposition of the positive integer n, then $\mathbb{Z}_n[i]$ is the direct product of the rings $\mathbb{Z}_{a_i^{k_j}}[i]$.

These results can be found in 'The maximal regular ideal of some commutative rings' by E.A.Osba et al., Comment.Math.Univ.Carolin. $47,1\ (2006)1-10$.

Some aspects of Γ_2 graph over some of the finite commutative

nurag Barual

Definition

A graph G is said to be *connected* if any two distinct vertices of G are joined by a path. A graph G is said to be *disconnected* if G is not connected. A *maximal connected subgraph* of G is called a connected component of G.

Example:

Figure 2.

Figure 3.

Some aspects of Γ_2 graph over some of the finite commutative rings

. . .

Definition

The diameter of a graph G is $diam(G) = sup\{d(x, y) || x \text{ and } y \text{ are vertices of } G\}$.

Definition

The *girth* of G, denoted by gr(G), is the length of a shortest cycle in G.

Definition

The chromatic number $\chi(G)$ is the minimum k such that G can be colored using k different colors such that no two adjacent vertices have the same color.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Baruah

Figure 4. G

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Baruah

Definition

For any vertex v in a graph, nbd(v) be the set of vertices adjacent to v.

Definition

A graph is called a *complete graph* if every two distinct vertices are adjacent.

 K_n : complete graph on n vertices.

Definition

If the vertex set of a graph G can be splitted into two parts A and B so that each edge of G joins a vertex of A to a vertex of B, then G is called a *bipartite graph*. If each vertex in A is joined to each vertex in B by an edge, then G is *complete bipartite*.

 $K_{m,n}$: complete bipartite graph with having m and n number of vertices in the two disjoint sets.

Some aspects of Γ_2 graph over some of the finite commutative

nurag Baruah

Definition

A graph is planar if it can be drawn in the plane so that its edges intersect only at their ends.

Theorem

A graph is planar if and only if it contains no subgraph homeomorphic to K_5 or $K_{3,3}$.

Some aspects of Γ_2 graph over some of the finite commutative rings

nurag Barual

Definition

A graph is planar if it can be drawn in the plane so that its edges intersect only at their ends.

Theorem

A graph is planar if and only if it contains no subgraph homeomorphic to K_5 or $K_{3,3}$.

Definition

An eulerian graph is a graph containing an eulerian cycle.

Theorem

A connected graph is eulerian if and only if the degree of each vertex is even.

Notations

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Baru

- p will denote prime integers such that $p \equiv 1 \pmod{4}$.
- q will denote prime integers such that $q \equiv 3 \pmod{4}$.
- $Reg(\Gamma_2(R))$: the (induced) subgraph of $\Gamma_2(R)$ with vertices Reg(R) i.e. the units of the ring R.
- $Z(\Gamma_2(R))$: the (induced) subgraph of $\Gamma_2(R)$ with vertices Z(R) i.e. the zero divisors of the ring R.

Γ₂ graph

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barual

Let R be a ring then Γ_2 is an undirected graph (V,E) in which $V=R\setminus\{0\}$ and for any $a,b\in V$, $ab\in E$ if and only if $a\neq b$ and either a.b=0 or b.a=0 or a+b is a zero-divisor (including 0).

Figure 5. $\Gamma_2(\mathbf{Z_6})$

Here, we will maily focus on the rings \mathbb{Z}_n and $\mathbb{Z}_n[i]$.

Some aspects of Γ_2 graph over some of the finite commutative rings

nurae Raruah

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is never complete for n > 3.

Some aspects of Γ_2 graph over some of the finite commutative rings

nurag Baruah

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is never complete for n > 3.

For n > 3, at least two units 1 and -1. So, 1 is not adjacent to -2.

Some aspects of Γ_2 graph over some of the finite commutative rings

nurag Barua

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is never complete for n > 3.

For n > 3, at least two units 1 and -1. So, 1 is not adjacent to -2.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is connected if and only if either $n \leq 3$ or the prime-power factorization of n has more than one prime factor and in the latter case diam($\Gamma_2(\mathbb{Z}_n) = 2$.

Some aspects of Γ_2 graph over some of the finite commutative rings

Inurag Baruah

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is never complete for n > 3.

For n > 3, at least two units 1 and -1. So, 1 is not adjacent to -2.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is connected if and only if either $n \leq 3$ or the prime-power factorization of n has more than one prime factor and in the latter case diam($\Gamma_2(\mathbb{Z}_n) = 2$.

If n has only one prime factor say t. Zero divisors are precisely the multiples of t. Hence sum of a zero divisor and an unit can not be a zero divisor.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is never complete for n > 3.

For n > 3, at least two units 1 and -1. So, 1 is not adjacent to -2.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is connected if and only if either $n \leq 3$ or the prime-power factorization of n has more than one prime factor and in the latter case diam($\Gamma_2(\mathbb{Z}_n) = 2$.

If n has only one prime factor say t. Zero divisors are precisely the multiples of t. Hence sum of a zero divisor and an unit can not be a zero divisor.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is disjoint union of (n-1)/2 copies of K_2 when n is an odd prime.

Some aspects of Γ_2 graph over some of the finite commutative

nurag Baruah

Theorem

 $\Gamma_2(\mathbb{Z}_{2^r})$,where $r\in\mathbb{N}$, has two components consisting of zero-divisors and units of \mathbb{Z}_{2^r} respectively. The first is a $K_{2^{r-1}-1}$ and the other is a $K_{2^{r-1}}$.

Some aspects of Γ_2 graph over some of the finite commutative rings

Inurag Barual

Theorem

 $\Gamma_2(\mathbb{Z}_{2^r})$,where $r\in\mathbb{N}$, has two components consisting of zero-divisors and units of \mathbb{Z}_{2^r} respectively. The first is a $K_{2^{r-1}-1}$ and the other is a $K_{2^{r-1}}$.

Theorem

Let $n = t^r$, where t is an odd prime and $r \in \mathbb{N}$. Then $\Gamma_2(\mathbb{Z}_n)$ has (t+1)/2 components, one $K_{t^{r-1}-1}$ consisting of the zero-divisors, and (t-1)/2 copies of $K_{t^{r-1},t^{r-1}}$ for the units.

Anurag Baruah

Corollary

$$gr(\Gamma_2(\mathbb{Z}_n))) = \begin{cases} 4, & \text{if } n = 9 \\ \infty, & \text{if } n = 2, 3, 4 \text{ or } n \text{ is a prime} \\ 3, & \text{otherwise} \end{cases}$$

Corollary

$$\chi(\Gamma_2(\mathbb{Z}_{2^r})) = 2^{r-1}.$$

$$\chi(\Gamma_2(\mathbb{Z}_{t^r})) = t^{r-1} - 1.$$

Some aspects of Γ_2 graph over some of the finite commutative

nurag Baruah

Theorem

For n>4, $\Gamma_2(\mathbb{Z}_n)$ has no vertex of degree 0. A vertex can have maximum degree if and only if the prime power factorization of n has more than one prime and there is an idempotent x such that 2x=0.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barual

Theorem

For n > 4, $\Gamma_2(\mathbb{Z}_n)$ has no vertex of degree 0. A vertex can have maximum degree if and only if the prime power factorization of n has more than one prime and there is an idempotent x such that 2x=0.

Theorem

For an unit u in \mathbb{Z}_n , $deg(u) = (n - \phi(n) - 1)$ or $(n - \phi(n))$ according as n is even or odd.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

Theorem

For n > 4, $\Gamma_2(\mathbb{Z}_n)$ has no vertex of degree 0. A vertex can have maximum degree if and only if the prime power factorization of n has more than one prime and there is an idempotent x such that 2x=0.

Theorem

For an unit u in \mathbb{Z}_n , $deg(u) = (n - \phi(n) - 1)$ or $(n - \phi(n))$ according as n is even or odd.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is not Eulerian for any positive integer n.

Some aspects of Γ_2 graph over some of the finite commutative rings

Inurag Barual

Theorem

For n > 4, $\Gamma_2(\mathbb{Z}_n)$ has no vertex of degree 0. A vertex can have maximum degree if and only if the prime power factorization of n has more than one prime and there is an idempotent x such that 2x=0.

Theorem

For an unit u in \mathbb{Z}_n , $deg(u) = (n - \phi(n) - 1)$ or $(n - \phi(n))$ according as n is even or odd.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is not Eulerian for any positive integer n.

Degree of the vertex 1 is always odd.

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

Theorem

For n > 4, $\Gamma_2(\mathbb{Z}_n)$ has no vertex of degree 0. A vertex can have maximum degree if and only if the prime power factorization of n has more than one prime and there is an idempotent x such that 2x=0.

Theorem

For an unit u in \mathbb{Z}_n , $deg(u) = (n - \phi(n) - 1)$ or $(n - \phi(n))$ according as n is even or odd.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is not Eulerian for any positive integer n.

Degree of the vertex 1 is always odd.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is planar if and only if n=4,6,8 or n is a prime.

Γ_2 graph over \mathbb{Z}_n : other properties

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

Theorem

For n > 4, $\Gamma_2(\mathbb{Z}_n)$ has no vertex of degree 0. A vertex can have maximum degree if and only if the prime power factorization of n has more than one prime and there is an idempotent x such that 2x=0.

Theorem

For an unit u in \mathbb{Z}_n , $deg(u) = (n - \phi(n) - 1)$ or $(n - \phi(n))$ according as n is even or odd.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is not Eulerian for any positive integer n.

Degree of the vertex 1 is always odd.

Theorem

 $\Gamma_2(\mathbb{Z}_n)$ is planar if and only if n=4,6,8 or n is a prime.

Γ_2 graph over $\mathbb{Z}_{2^n}[i]$: connectedness

Some aspects of Γ_2 graph over some of the finite commutative

Inurag Baruah

Theorem

 $\Gamma_2(\mathbb{Z}_{2^n}[i])$ is not connected. $\Gamma_2(\mathbb{Z}_{2^n}[i])$ has exactly two components consisting of the zero divisors and units of $\mathbb{Z}_{2^n}[i]$ respectively. First is $K_{2^{2n-1}-1}$, second is $K_{2^{2n-1}}$.

Figure 7. $\Gamma_2(\mathbf{Z}_4[i])$

Γ_2 graph over $\mathbb{Z}_{2^n}[i]$: other properties

Some aspects of Γ_2 graph over some of the finite commutative rings

inurag Barual

Corollary

From the previous theorem these results follow directly:

- **1** As $\Gamma_2(\mathbb{Z}_{2^n}[i])$ is disconnected, so $diam(\Gamma_2(\mathbb{Z}_{2^n}[i])) = \infty$.
- **2** $diam(Z(\Gamma_2(\mathbb{Z}_{2^n}[i]))) = 1.$
- $3 diam(Reg(\Gamma_2(\mathbb{Z}_{2^n}[i]))) = 1.$

Corollary

The chromatic number and girth for the graph $\Gamma_2(\mathbb{Z}_{2^n}[i])$ are as follows:

- 1 $\chi(\Gamma_2(\mathbb{Z}_{2^n}[i]) = 2^{2n-1}$.
- **2** $gr(\Gamma_2(\mathbb{Z}_{2^n}[i]) = 3, n \ge 2.$

Γ_2 graph over $\mathbb{Z}_{q^n}[i]$: connectedness

Some aspects of Γ_2 graph over some of the finite commutative rings

nurag Baruah

Theorem

 $\Gamma_2(\mathbb{Z}_q[i])$ is always disconnected having $(q^2-1)/2$ components, each being equal to K_2 .

Γ_2 graph over $\mathbb{Z}_{q^n}[i]$: connectedness

Some aspects of Γ_2 graph over some of the finite commutative rings

nurag Baruah

Theorem

 $\Gamma_2(\mathbb{Z}_q[i])$ is always disconnected having $(q^2-1)/2$ components, each being equal to K_2 .

There are no non zero zero divisors. Only additive inverses will be adjacent to each other.

Γ_2 graph over $\mathbb{Z}_{q^n}[i]$: connectedness

Some aspects of Γ_2 graph over some of the finite commutative rings

nurag Barual

Theorem

 $\Gamma_2(\mathbb{Z}_q[i])$ is always disconnected having $(q^2-1)/2$ components, each being equal to K_2 .

There are no non zero zero divisors. Only additive inverses will be adjacent to each other.

Theorem

 $\Gamma_2(\mathbb{Z}_{q^n}[i])$, $n\geq 2$ is never connected. Zero divisors and units are not connected. The component of the graph $\Gamma_2(\mathbb{Z}_{q^n}[i])$; having the zero divisors as the vertices is complete and it is $K_{q^{2n-2}-1}$. The set of units form $(q^2-1)/2$ number of complete bipartite graphs each $K_{q^{2n-2},q^{2n-2}}$.

Γ_2 graph over $\mathbb{Z}_{q^n}[i]$: other properties

Some aspects of Γ_2 graph over some of the finite commutative rings

inurag Barual

Corollary

- **1** As $\Gamma_2(\mathbb{Z}_{q^n}[i])$ is disconnected, so $diam(\Gamma_2(\mathbb{Z}_{q^n}[i])) = \infty$.
- $\exists \ diam(Reg(\Gamma_2(\mathbb{Z}_{q^n}[i]))) = \infty.$

Corollary

The chromatic number and girth for the graph $\Gamma_2(\mathbb{Z}_{q^n}[i])$ are as follows:

- $\chi(\Gamma_2(\mathbb{Z}_{q^n}[i]) = q^{2n-2} 1.$
- $gr(\Gamma_2(\mathbb{Z}_{q^n}[i]) = 3, \ n \geq 2.$

Γ_2 graph over $\mathbb{Z}_{p^n}[i]$: connectedness

Some aspects of \$\Gamma_2\$ graph over some of the finite commutative rings

Anurag Baruah

Γ_2 graph over $\mathbb{Z}_{p^n}[i]$: connectedness

Some aspects of Γ_2 graph over some of the finite commutative

Anurag Baruah

Theorem

For every unit u, \exists a pair $x, y \in Z(\mathbb{Z}_{p^n}[i])$ such that, u = x + y. In $\mathbb{Z}_p[i]$, this pair $x, y \in Z(\mathbb{Z}_p[i])$ is unique.

Γ_2 graph over $\mathbb{Z}_{p^n}[i]$: connectedness

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Baruah

Theorem

For every unit u, \exists a pair $x, y \in Z(\mathbb{Z}_{p^n}[i])$ such that, u = x + y. In $\mathbb{Z}_p[i]$, this pair $x, y \in Z(\mathbb{Z}_p[i])$ is unique.

Theorem

 $\Gamma_2(\mathbb{Z}_p[i])$ is connected. The induced subgraph generated by the zero divisors is complete i.e. K_{2p-2} .

Γ_2 graph over $\mathbb{Z}_{p^n}[i]$: connectedness

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Baruah

Theorem

For every unit u, \exists a pair $x, y \in Z(\mathbb{Z}_{p^n}[i])$ such that, u = x + y. In $\mathbb{Z}_p[i]$, this pair $x, y \in Z(\mathbb{Z}_p[i])$ is unique.

Theorem

 $\Gamma_2(\mathbb{Z}_p[i])$ is connected. The induced subgraph generated by the zero divisors is complete i.e. K_{2p-2} .

Theorem

In $\Gamma_2(\mathbb{Z}_{p^n}[i])$, for an unit t, $nbd(u) = [-x+ < a-ib>] \cup [-y+ < a+ib>]$, where $x \in < a+ib> \setminus W$ and $y \in < a-ib> \setminus W$ such that x+y=u, where $p=a^2+b^2$.

Γ_2 graph over $\mathbb{Z}_{p^n}[i]$: connectedness

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barual

Theorem

For every unit u, \exists a pair $x, y \in Z(\mathbb{Z}_{p^n}[i])$ such that, u = x + y. In $\mathbb{Z}_p[i]$, this pair $x, y \in Z(\mathbb{Z}_p[i])$ is unique.

Theorem

 $\Gamma_2(\mathbb{Z}_p[i])$ is connected. The induced subgraph generated by the zero divisors is complete i.e. K_{2p-2} .

Theorem

In $\Gamma_2(\mathbb{Z}_{p^n}[i])$, for an unit t, $nbd(u) = [-x+ < a-ib>] \cup [-y+ < a+ib>]$, where $x \in < a+ib> \setminus W$ and $y \in < a-ib> \setminus W$ such that x+y=u, where $p=a^2+b^2$.

Theorem

 $Z(\Gamma_2(\mathbb{Z}_{p^n}[i]))$ is p^{2n-2} - connected. $\Gamma_2(\mathbb{Z}_{p^n}[i]))$ is connected.

Γ_2 graph over $\mathbb{Z}_{p^n}[i]$: other properties

Some aspects of Γ_2 graph over some of the finite commutative rings

\nurag Baruah

Corollary

$$\chi(\Gamma_2(\mathbb{Z}_p[i])) = 2p - 2.$$

Γ_2 graph over $\mathbb{Z}_n[i]$: general case

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

Theorem

 $\Gamma_2(\mathbb{Z}_n[i])$ is always connected if and only if $n=p^r$ or the prime power factorization of n has more than one prime factor.

Theorem

 $\Gamma_2(\mathbb{Z}_n[i])$ is planar if and only if n=2 or n is a prime $q \equiv 3 \pmod{4}$.

Theorem

 $\Gamma_2(\mathbb{Z}_n[i])$ is not eulerian for any n.

References

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

- D.F. Anderson and P.S. Livingston; *The Zero-Divisor Graph of a Commutative Ring*, Journal of Algebra 217, 434-447(1999).
- E.A. Osba, S. Al-Addasi, N.A. Jaradeh; *Zero Divisor Graph for the Ring of Gaussian Integers Modulo n*, Communications in Algebra, 36:10,3865-3877, DOI: 10.1080/00927870802160859.
- T. Gaohua, S. Huadong, Y. Zhong; *Unit group structure of* $\mathbb{Z}_n[i]$, Journal of Guangxi Normal University: Natural Science Edition, Vol.28, No.2, 2010.
- R. Sen Gupta; The Graph $\Gamma_2(R)$ over a ring R, International Journal of Pure and Applied Mathematics, Volume 86, No.6, 2013,893-904.
- James T. Cross, *The Euler phi-function in the Gaussian integers*. American Mathematical Monthly. 90. 10.2307/2322785,1983.

References

Some aspects of Γ_2 graph over some of the finite commutative rings

Anurag Barua

D. Anderson and Ayman Badawi, *The total graph of a commutative ring*, Journal of Algebra. 320. 2706-2719. 10.1016/j.jalgebra.2008.06.028.

Some aspects of \$\Gamma_2\$ graph over some of the finite commutative rings

Inurag Baruah

THANK YOU