Einführung in die Algebra

Blatt 9

Jendrik Stelzner

18. Dezember 2013

Aufgabe 9.1.

Die Multiplikation $\mathbb{Z} \times \mathbb{Q} \to \mathbb{Q}$ von \mathbb{Q} als \mathbb{Z} -Modul ist offenbar die Einschränkung der Multiplikation $\mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}$ des Körpers \mathbb{Q} . Die Torsionsfreiheit von \mathbb{Q} als \mathbb{Z} -Modul folgt daher direkt aus der Nullteilerfreiheit von \mathbb{Q} als Köper.

 $\mathbb Q$ ist als $\mathbb Z$ -Modul nicht endlich erzeugt, denn für $\frac{r_1}{s_1},\dots,\frac{r_n}{s_n}\in\mathbb Q$ ist

$$\mathbb{Z}\frac{r_1}{s_1} + \ldots + \mathbb{Z}\frac{r_n}{s_n} \subseteq \mathbb{Z}\frac{1}{s_1} + \ldots + \mathbb{Z}\frac{1}{s_n}$$
$$\subseteq \mathbb{Z}\frac{1}{s_1 \cdots s_n} + \ldots + \mathbb{Z}\frac{1}{s_1 \cdots s_n} = \mathbb{Z}\frac{1}{s_1 \cdots s_n} \subsetneq \mathbb{Q}.$$

 $\mathbb Q$ ist als $\mathbb Z$ -Modul nicht frei: Für $\frac{p}{q},\frac{r}{s}\in\mathbb Q$ besitzt

$$rq\frac{p}{q} = pr = ps\frac{r}{s}$$

zwei verschiedene Linearkombinationen. Daher ist jede Familie von mindestens zwei rationalen Zahlen linear abhängig. Insbesondere also jedes Erzeugendensystem von $\mathbb Q$ als $\mathbb Z$ -Modul, da ein solches unendlich ist.

Aufgabe 9.2.

(i)

Es handelt sich bei \sim um eine Äquivalenzrelation auf $M \times S$: Für alle $(m,s) \in M \times S$ ist $1 \cdot sm = 1 \cdot sm$ mit $1 \in S$ und deshalb $(m,s) \sim (m,s)$. Also ist \sim reflexiv. Ist $(m,s) \sim (m',s')$ für $(m,s), (m',s') \in M \times S$, so gibt es ein $t \in S$ mit ts'm = tsm'. Da damit auch tsm' = ts'm ist $(m',s') \sim (m,s)$. Also ist \sim symmetrisch. Ist $(m,s) \sim (m',s') \sim (m'',s'')$, so gibt es $t,\tilde{t} \in S$ mit

$$ts'm = tsm'$$
 und $\tilde{t}s'm'' = \tilde{t}s''m'$.

DaSunter der Multiplikation abgeschlossen ist, ist auch $t\tilde{t}s'\in S.$ Da wegen der Kommutativität von R

$$t\tilde{t}s'\cdot s''m=\tilde{t}s''\cdot ts'm=\tilde{t}s''\cdot tsm'=ts\cdot \tilde{t}s''m'=ts\cdot \tilde{t}s'm''=t\tilde{t}s'\cdot sm''$$

ist $(m,s) \sim (m'',s'')$. Daher ist \sim transitiv. Dies zeigt, dass \sim eine Äquivalenzrelation ist.

Die Addition ist wohldefiniert: Für $\frac{m'}{s'}$, $\frac{m''}{s''} \in M[S^{-1}]$ mit $\frac{m'}{s'} = \frac{m''}{s''}$ gibt es ein $t \in S$ mit ts''m' = ts'm''. Wegen der Kommutativität von R ist für alle $(m,s) \in M \times S$

$$t \, ss''(s'm + sm') = tss's''m + ts^2s''m'$$

= $tss's''m + ts^2s'm'' = t \, ss'(s''m + sm'')$,

und deshalb $\frac{s'm+sm'}{ss'}=\frac{s''m+sm''}{ss''}$. Da der Ausdruck $\frac{sm'+s'm}{ss'}$ wegen der Kommutativität von R symmetrisch in (m,s) und (m',s') ist, folgt damit die Wohldefiniertheit der Addition.

Auch die Multiplikation ist wohldefiniert: Für $\frac{r}{s}, \frac{\tilde{r}}{\tilde{s}} \in R[S^{-1}]$ mit $\frac{r}{s} = \frac{\tilde{r}}{\tilde{s}}$ gibt es ein $t \in S$ mit $tr\tilde{s} = t\tilde{r}s$, weshalb wegen der Kommutativität von R für alle $(m',s') \in M \times S$

$$t \tilde{s}s'rm' = t ss'\tilde{r}m'$$

also $\frac{rm'}{ss'}=\frac{\tilde{r}m'}{\tilde{s}s'}$. Für $\frac{m'}{s'},\frac{m''}{s''}\in M[S^{-1}]$ mit $\frac{m'}{s'}=\frac{m''}{s''}$ gibt es ein $t\in S$ mit ts''m'=ts'm'', we shalb wegen der Kommutativität von R für alle $(r,s)\in R\times S$

$$tss''rm' = tss'rm''$$
.

also $\frac{rm'}{ss'}=\frac{rm''}{ss''}$. Dies zeigt die Wohldefiniertheit der Multiplikation. $M[S^{-1}]$ bildet bezüglich der Addition ein abelsche Gruppe: Die Addition ist assoziativ, da für alle $\frac{m}{s},\frac{m'}{s'},\frac{m''}{s''}\in M[S^{-1}]$

$$\begin{split} \frac{m}{s} + \left(\frac{m'}{s'} + \frac{m''}{s''}\right) &= \frac{m}{s} + \frac{s''m' + s'm''}{s's''} = \frac{s's''m + ss''m' + ss'm''}{ss's''} \\ &= \frac{s'm + sm'}{ss'} + \frac{m''}{s''} = \left(\frac{m}{s} + \frac{m'}{s'}\right) + \frac{m''}{s''}, \end{split}$$

und kommutativ, da für alle $\frac{m}{s}, \frac{m'}{s'} \in M[S^{-1}]$

$$\frac{m}{s} + \frac{m'}{s'} = \frac{s'm + sm'}{ss'} = \frac{sm' + s'm}{s's} = \frac{m'}{s'} + \frac{m}{s}.$$

Das Element $\frac{0}{1} \in M[S^{-1}]$ ist bezüglich der Addition neutral, da für alle $\frac{m}{s} \in M[S^{-1}]$

$$\frac{m}{s} + \frac{0}{1} = \frac{1 \cdot m + s \cdot 0}{s \cdot 1} = \frac{m}{s}.$$

Dabei bemerken wir direkt, dass $\frac{0}{1}=\frac{0}{s}$ für alle $s\in S$. Jedes Element $\frac{m}{s}\in M[S^{-1}]$ hat $\frac{-m}{s}\in M[S^{-1}]$ als additiv inverses Element, da

$$\frac{m}{s} + \frac{-m}{s} = \frac{sm - sm}{s^2} = \frac{0}{s^2} = \frac{0}{1}$$

Dies zeigt, dass $M[S^{-1}]$ bezüglich der Addition eine abelsche Gruppe bildet. Zusammen mit der definierten Multiplikation wird die abelsche Gruppe $M[S^{-1}]$ zu einem $R[S^{-1}]$ -Modul: Es seien $\frac{r}{s}, \frac{\tilde{r}}{\tilde{s}} \in R[S^{-1}]$ und $\frac{m'}{s'}, \frac{m''}{s''} \in M[S^{-1}]$ beliebig aber fest. Es ist

$$1_{R[S^{-1}]} \frac{m'}{s'} = \frac{1_R}{1_R} \frac{m'}{s'} = \frac{1_R m'}{1_R s'} = \frac{m'}{s'}.$$

Wir bemerken, dass für alle $\hat{s} \in S$ die Kürzungsregel

$$\frac{\hat{s}m'}{\hat{s}s'} = \frac{\hat{s}}{\hat{s}} \frac{m'}{s'} = 1_{R[S^{-1}]} \frac{m'}{s'} = \frac{m'}{s'}$$

gilt. Es ist daher

$$\begin{split} \frac{r}{s} \left(\frac{m'}{s'} + \frac{m''}{s''} \right) &= \frac{r}{s} \frac{s''m' + s'm''}{s's''} = \frac{rs''m' + rs'm''}{ss's''} \\ &= \frac{rss''m' + rss'm''}{s^2s's''} = \frac{rm'}{ss'} + \frac{rm''}{ss''} = \frac{r}{s} \frac{m'}{s'} + \frac{r}{s} \frac{m''}{s''}. \end{split}$$

Auch ist deshalb

$$\left(\frac{r}{s} + \frac{\tilde{r}}{\tilde{s}}\right) \frac{m'}{s'} = \frac{r\tilde{s} + \tilde{r}s}{s\tilde{s}} \frac{m'}{s'} = \frac{r\tilde{s}m' + \tilde{r}sm'}{s\tilde{s}s'} \\
= \frac{r\tilde{s}s'm' + \tilde{r}ss'm'}{s\tilde{s}(s')^2} = \frac{rm'}{ss'} + \frac{\tilde{r}m'}{\tilde{s}s'} = \frac{r}{s} \frac{m'}{s'} + \frac{\tilde{r}}{\tilde{s}} \frac{m'}{s'}.$$

Da auch

$$\frac{r}{s}\left(\frac{\tilde{r}}{\tilde{s}}\frac{m'}{s'}\right) = \frac{r}{s}\frac{\tilde{r}m'}{\tilde{s}s'} = \frac{r\tilde{r}m'}{s\tilde{s}s'} = \frac{r\tilde{r}}{s\tilde{s}}\frac{m'}{s'} = \left(\frac{r}{s}\frac{\tilde{r}}{\tilde{s}}\right)\frac{m'}{s'},$$

ist $M[S^{-1}]$ bezüglich der definierten Multiplikation ein $R[S^{-1}]$ -Modul.

(ii)

Da für jedes $s\in S$ die Abbildung $n\mapsto sn$ in N bijektiv ist, gibt es für alle $n'\in N$ und $s\in S$ ein eindeutiges $n\in N$ mit sn=n', für das wir im Folgenden $\frac{n'}{s}$ schreiben werden. Für alle $n\in N$ und $s\in S$ ist also nach Definition ist $s\frac{n}{s}=n$.

Behauptung 1. Es gelten die folgenden Rechenregeln:

- (i) Für alle $n, n' \in N$ und $s, s' \in S$ ist $\frac{n}{s} = \frac{n'}{s'}$ genau dann wenn s'n = sn'.
- (ii) Für alle $n, n' \in N$ und $s \in S$ ist $\frac{n+n'}{s} = \frac{n}{s} + \frac{n'}{s}$.
- (iii) Für alle $n, n' \in N$ und $s, s' \in S$ ist $\frac{n}{s} + \frac{n'}{s'} = \frac{s'n + sn'}{ss'}$.
- (iv) Für alle $n \in N$, $s \in S$, und $r \in R$ ist $r \frac{n}{s} = \frac{rn}{s}$.

Beweis. (i)

Ist
$$\frac{n}{s} = \frac{n'}{s'}$$
, so ist

$$s'n = s's\frac{n}{s} = s's\frac{n'}{s'} = ss'\frac{n'}{s'} = sn'.$$

Gilt andererseits sn' = s'n, so ist

$$s's\frac{n}{s} = s'n = sn' = ss'\frac{n'}{s'} = s's\frac{n'}{s'},$$

wegen der Injektivität der Multiplikation mit $s's \in S$ also $\frac{n}{s} = \frac{n'}{s'}.$

(ii)

Es ist

$$s\left(\frac{n}{s} + \frac{n'}{s}\right) = s\frac{n}{s} + s\frac{n'}{s} = n + n',$$

also $\frac{n+n'}{s} = \frac{n}{s} + \frac{n'}{s}$.

(iii)

Es ist

$$ss'\left(\frac{n}{s} + \frac{n'}{s'}\right) = s's\frac{n}{s} + ss'\frac{n'}{s'} = s'n + sn',$$

also $\frac{s'n+sn'}{ss'} = \frac{n}{s} + \frac{n'}{s'}$.

(iv)

Es ist

$$sr\frac{n}{s} = rs\frac{n}{s} = rn,$$

also $r \frac{n}{s} = \frac{rn}{s}$.

Wir gehen davon aus, dass diese Rechenregeln dem Leser nicht allzu überraschend erscheinen, sodass wir sie im Weiteren ohne Erinnerung an diese Behauptung nutzen

Gibt es eine entsprechende Abbildung ψ , so ist für alle $\frac{m}{1} \in M[S^{-1}]$

$$\psi\left(\frac{m}{1}\right) = \psi(\varphi(m)) = \varphi'(m),$$

und damit auch für alle $\frac{m}{s} \in M[S^{-1}]$

$$s\,\psi\left(\frac{m}{s}\right) = \psi\left(s\,\frac{m}{s}\right) = \psi\left(\frac{sm}{s}\right) = \psi\left(\frac{m}{1}\right) = \varphi'(m),$$

also $\psi\left(\frac{m}{s}\right)=\frac{\varphi'(m)}{s}$. ψ ist also eindeutig. Sei nun ψ durch $\psi\left(\frac{m}{s}\right)=\frac{\varphi'(m)}{s}$ definert. ψ ist wohldefiniert: Für $\frac{m}{s},\frac{m'}{s'}\in M[S^{-1}]$ mit $\frac{m}{s}=\frac{m'}{s'}$ gibt es ein $t\in S$ mit ts'm=tsm'. Es ist daher

$$ts'\varphi'(m) = \varphi'(ts'm) = \varphi(tsm') = ts\varphi'(m'),$$

also $s'\varphi'(m)=s\varphi'(m')$ und deshalb $\frac{\varphi'(m)}{s}=\frac{\varphi'(m')}{s'}.$ Es gilt zu zeigen, dass ψ ein R-Modulhomomorphismus ist. Dies ergibt sich durch einfaches Nachrechnen: Für alle $\frac{m}{s},\frac{m'}{s'}\in M[S^{-1}]$ ist

$$\psi\left(\frac{m}{s} + \frac{m'}{s'}\right) = \psi\left(\frac{s'm + sm'}{ss'}\right) = \frac{\varphi'(s'm + sm')}{ss'}$$
$$= \frac{s'\varphi'(m) + s\varphi'(m')}{ss'} = \frac{\varphi'(m)}{s} + \frac{\varphi'(m')}{s'} = \psi\left(\frac{m}{s}\right) + \psi\left(\frac{m'}{s'}\right),$$

und für alle $r \in R$ und $\frac{m}{s} \in M[S^{-1}]$ ist

$$\psi\left(r\,\frac{m}{s}\right) = \psi\left(\frac{rm}{s}\right) = \frac{\varphi'(rm)}{s} = \frac{r\varphi'(m)}{s} = r\,\frac{\varphi'(m)}{s} = r\,\psi\left(\frac{m}{s}\right).$$

(iii)

Es sei $\varphi_M:M\to M[S^{-1}], m\mapsto \frac{m}{1}$, sowie φ_N und φ_P analog definiert. Zusammen mit der exakten Sequenz

$$M \xrightarrow{f} N \xrightarrow{g} P$$

ergibt sich damit das folgende Diagram, in welcher die obere Zeile exakt ist.

Wir bemerken, dass für alle $s \in S$ die Abbildung

$$\tau_s: M[S^{-1}] \to M[S^{-1}], \frac{m'}{s'} \mapsto s \frac{m'}{s'} = \frac{sm'}{s'}$$

auf dem R-Modul $M[S^{-1}]$ bijektiv ist, denn für die Abbildung

$$\tau_{1/s}: M[S^{-1}] \to M[S^{-1}], \frac{m'}{s'} \mapsto \frac{1}{s} \frac{m'}{s'} = \frac{m'}{ss'}$$

ist $\tau_s\tau_{1/s}=\tau_{1/s}\tau_s=\mathrm{id}_{M[S^{-1}]}.$ Für $N[S^{-1}]$ und $P[S^{-1}]$ zeigt man auf gleiche Weise die analogen Aussagen.

Damit ergibt sich aus dem vorherigen Aufgabenteil, dass es für den R-Modulhomomorphismus $(\varphi_N f): M \to N[S^{-1}]$ einen eindeutigen R-Modulhomomorphismus $\bar{f}: M[S^{-1}] \to N[S^{-1}]$ mit $\bar{f}\varphi_M = \varphi_N f$ gibt. Analog gibt es einen eindeutigen R-Modulhomomorphismus $\bar{g}: N[S^{-1}] \to P[S^{-1}]$ mit $\bar{g}\varphi_N = \varphi_P g$. Das bedeutet, dass diese beiden Homomorphismen die beiden eindeutigen sind, für die das folgende Diagram von R-Modulhomomorphismen kommutiert:

$$M \xrightarrow{f} N \xrightarrow{g} P$$

$$\downarrow \varphi_{M} \qquad \qquad \downarrow \varphi_{P} \qquad \qquad \downarrow \varphi_{P} \qquad \qquad \downarrow M[S^{-1}] \xrightarrow{\exists ! \bar{g}} P[S^{-1}]$$

Aus dem letzten Aufgabenteil ergibt sich auch direkt, dass

$$\begin{split} \bar{f}\left(\frac{m}{s}\right) &= \frac{f(m)}{s} \text{ für alle } \frac{m}{s} \in M[S^{-1}] \text{ und} \\ \bar{g}\left(\frac{n}{s}\right) &= \frac{g(n)}{s} \text{ für alle } \frac{n}{s} \in N[S^{-1}]. \end{split}$$

(Man beachte, dass $\varphi'=\varphi_N f$ und für das Element $n=\frac{n'}{s'}\in N[S^{-1}]$ und $s\in S$ die Notation $\frac{n}{s}$ aus dem vorherigen Aufgabenteil das Element $\frac{n'}{ss'}$ beschreibt. Analoges gilt für \bar{g} und $M[S^{-1}]$.)

Die R-Modulhomomorphismen \bar{f} und \bar{g} sind auch $R[S^{-1}]$ -Modulhomomorphismen, denn für alle $\frac{r}{s} \in R[S^{-1}]$ und $\frac{m'}{s'} \in M[S^{-1}]$ ist

$$\bar{f}\left(\frac{r}{s}\frac{m'}{s'}\right) = \bar{f}\left(\frac{rm'}{ss'}\right) = \frac{f(rm')}{ss'} = \frac{rf(m')}{ss'} = \frac{r}{s}\frac{f(m')}{s'} = \frac{r}{s}\bar{f}\left(\frac{m'}{s'}\right),$$

und für \bar{g} läuft der Beweis analog.

Aus der Exaktheit der R-Modulhomomorphismen

$$M \xrightarrow{f} N \xrightarrow{g} P$$

folgt die Exaktheit der $R[S^{-1}]$ -Modulhomomorphismen

$$M[S^{-1}] \xrightarrow{\bar{f}} N[S^{-1}] \xrightarrow{\bar{g}} P[S^{-1}].$$

Da gf=0ist für alle $\frac{m}{s}\in M[S^{-1}]$

$$(\bar{g}\bar{f})\left(\frac{m}{s}\right) = \bar{g}\left(\frac{f(m)}{s}\right) = \frac{(gf)(m)}{s} = \frac{0}{s} = \frac{0}{1},$$

also Im $\bar{f}\subseteq \operatorname{Ker} \bar{g}.$ Für alle $\frac{n}{s}\in N[S^{-1}]$ ist

$$\bar{g}\left(\frac{n}{s}\right) = \frac{0}{1} \Leftrightarrow \frac{g(n)}{s} = \frac{0}{1} \Leftrightarrow \exists \, t \in S : tg(n) = 0.$$

Dabei ist für alle $t \in S$

$$tq(n) = 0 \Leftrightarrow q(tn) = 0 \Leftrightarrow tn \in \text{Ker } q = \text{Im } f \Leftrightarrow \exists m \in M : f(m) = tn.$$

Also gibt es für $\frac{n}{s} \in \operatorname{Ker} \bar{g}$ ein $t \in S$ und $m \in M$ mit f(m) = tn, weshalb

$$\bar{f}\left(\frac{m}{ts}\right) = \frac{f(m)}{ts} = \frac{tn}{ts} = \frac{n}{s}$$

und daher Ker $\bar{g} \subseteq \operatorname{Im} \bar{f}$.

Aufgabe 9.3.

Für die kurze exakte Sequenz

$$0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} P \longrightarrow 0$$

ist f injektiv, also $M\cong \operatorname{Im} f\subseteq N$, und g surjektiv, also $P\cong N/\ker g=N/\operatorname{Im} f$. Da die Länge eines Moduls invariant unter Isomorphie ist, genügt es daher zu zeigen, dass für einen Modul N und einen Untermodul $M\subseteq N$

$$l_A(N) = l_A(M) + l_A(N/M).$$

Es bezeichne $\pi:N\to N/M$ die kanonische Projektion. Offenbar induziert π ein Bijektion zwischen den Untermodulen von N, die M beinhalten, und den Untermodulen von N/M. Daher ergibt sich aus jeder Kette

$$0 = M_0 \subseteq M_1 \subseteq \ldots \subseteq M_r = M$$

von M der Länge r und Kette

$$0 = P_0 \subseteq P_1 \subseteq \ldots \subseteq P_s = N/M$$

von N/M der Länge s eine Kette

$$0 = M_0 \subseteq \ldots \subseteq M_r = \pi^{-1}(P_0) \subseteq \ldots \subseteq \pi^{-1}(P_r) = N$$

von N der Länge r+s. Daher ist

$$l_A(N) \ge l_A(M) + l_A(N/M).$$

Andererseits ergibt sich aus einer Kette

$$0 = N_0 \subsetneq N_1 \subsetneq \ldots \subsetneq N_t = N$$

von N der Länge t eine Kette

$$0 = M \cap N_0 \subseteq M \cap N_1 \subseteq \ldots \subseteq M \cap N_t = M$$

von M und eine Kette

$$0 = \pi(N_0) \subset \pi(N_1) \subset \ldots \subset \pi(N_t) = N/M$$

von N/M. Da $\ker \pi = M$ und $N_i \subsetneq N_{i+1}$ für alle $i=0,\ldots,t-1$ ist $M\cap N_i \subsetneq M\cap N_{i+1}$ oder $\pi(N_i) \subsetneq \pi(N_{i+1})$ für alle $i=0,\ldots,t-1$. Deshalb ist

$$l_A(N) < l_A(M) + l_A(N/M)$$
.

Aufgabe 9.4.

Wir zeigen zunächst, dass eine Familie $m_1,\ldots,m_n\in M$ genau dann linear unabhängig bezüglich R sind, wenn $\frac{m_1}{1},\ldots,\frac{m_n}{1}\in M[S^{-1}]$ linear unabhängig bezüglich $R[S^{-1}]$ ist.

Seien $m_1,\dots,m_n\in M$ linear unabhängig. Für $\frac{r_1}{s_1},\dots,\frac{r_n}{s_n}\in R[S^{-1}]$ mit

$$\frac{r_1}{s_1} \frac{m_1}{1} + \ldots + \frac{r_n}{s_n} \frac{m_n}{1} = \frac{0}{1}$$

ist

$$\frac{r_1s_2\cdots s_nm_1+s_1r_2s_3\cdots s_nm_2+\ldots+s_1\cdots s_{n-1}r_nm_n}{s_1\cdots s_n}=\frac{0}{1}.$$

Also gibt es ein $t \in S$ mit

$$0 = t(r_1 s_2 \cdots s_n m_1 + \ldots + s_1 \cdots s_{n-1} r_n m_n)$$

= $tr_1 s_2 \cdots s_n m_1 + \ldots + ts_1 \cdots s_{n-1} r_n m_n$.

Wegen der linearen Unabhängigkeit von m_1, \ldots, m_n bedeutet dies, dass

$$tr_1s_2\cdots s_n,\ldots,ts_1\cdots s_{n-1}r_n=0.$$

Da R nullteilerfrei ist, und $t, s_1, \ldots, s_n \neq 0$ (da $0 \notin S$) folgt, dass

$$r_1 = \ldots = r_n = 0$$
, also $\frac{r_1}{s_1} = \ldots = \frac{r_n}{s_n} = 0$.

Das zeigt, dass $\frac{m_1}{1},\ldots,\frac{m_n}{1}$ linear unabhängig sind. Seien $\frac{m_1}{1},\ldots,\frac{m_n}{1}\in M[S^{-1}]$ linear unabhängig. Für $r_1,\ldots,r_n\in R$ mit

$$r_1 m_1 + \ldots + r_n m_n = 0$$

ist

$$\frac{r_1}{1}\frac{m_1}{1} + \ldots + \frac{r_n}{1}\frac{m_n}{1} = \frac{r_1m_1 + \ldots + r_nm_n}{1} = \frac{0}{1}.$$

Wegen der linearen Unabhänigkeit von $\frac{m_1}{1}, \ldots, \frac{m_n}{1}$ ist

$$\frac{r_1}{1}=\ldots=\frac{r_n}{1}=\frac{0}{1}.$$

Dass daher $r_1=\ldots=r_n=0$ und damit m_1,\ldots,m_n linear unabhängig sind, folgt daraus, dass die Abbildung $M\to M[S^{-1}], m\mapsto \frac{m}{1}$ injektiv ist: Für $m\in M$ mit $\frac{m}{1}=\frac{0}{1}$ gibt es ein $t\in S$ mit tm=0. Da R nullteilerfrei ist, und $t\neq 0$, ist m=0. Daraus, dass sich aus jeder linear unabhängigen Familie $m_1,\ldots,m_n\in M$ eine linear unabhängige Familie $\frac{m_1}{1},\ldots,\frac{m_n}{1}\in M[S^{-1}]$ ergibt, folgt, dass $\operatorname{rg} M\leq \operatorname{rg} M[S^{-1}]$. Zum Beweis der Ungleichung $\operatorname{rg} M[S^{-1}]\leq \operatorname{rg} M$ bemerken wir, dass für jede linear unabhängige Familie $\frac{m_1}{s_1},\ldots,\frac{m_n}{s_n}\in M[S^{-1}]$ auch die Familie $\frac{m_1}{1},\ldots,\frac{m_n}{1}\in M[S^{-1}]$ linear unabhängig ist, und damit auch die Familie $m_1,\ldots,m_n\in M$: Für $\frac{r_1'}{s_1'},\ldots,\frac{r_n'}{s_n'}\in R[S^{-1}]$ mit

$$0 = \frac{r_1'}{s_1'} \frac{m_1}{1} + \ldots + \frac{r_n'}{s_n'} \frac{m_n}{1} = \frac{r_1' s_1}{s_1'} \frac{m_1}{s_1} + \ldots + \frac{r_n' s_n}{s_n'} \frac{m_n}{s_n},$$

muss wegen der linearen Unabhängigkeit von $\frac{m_1}{s_1},\ldots,\frac{m_n}{s_n}$

$$0 = \frac{r_i' s_i}{s_i'} = \frac{s_i}{1} \frac{r_i'}{s_i'}$$
 für alle $i = 1, \dots, n$.

Da $\frac{s_1}{1}, \ldots, \frac{s_n}{1} \in (R[S^{-1}])^*$ ist schon

$$\frac{r_1'}{s_1'} = \ldots = \frac{r_n'}{s_n'} = 0.$$

Aufgabe 9.5.

(i)

Für einen R-Modul M bezeichne $T(M)\subseteq M$ den Torsionsuntermodul von M. Für $i\in I$ schreiben wir $T_i:=T(M_i)$. Es ist $\bigoplus_{i\in I}T_i\subseteq \bigoplus_{i\in I}M_i$ und

$$T\left(\bigoplus_{i\in I} M_i\right) = \bigoplus_{i\in I} T(M_i) = \bigoplus_{i\in I} T_i.$$

Für $(m_i)_{i\in I}\in T\left(\bigoplus_{i\in I}M_i\right)$ gibt ein $r\in R\smallsetminus\{0\}$ mit $r(m_i)_{i\in I}=(rm_i)_{i\in I}=0$, also $rm_i=0$ für alle $i\in I$. Daher ist $m_i\in T_i$ für alle $i\in I$. Da $m_i=0$ für fast alle $i\in I$ ist $(m_i)_{i\in I}\in\bigoplus_{i\in I}T_i$.

Für $(m_i)_{i\in I}\in\bigoplus T_i$ ist $m_i=0$ für fast alle $i\in I$. Es seien $i_1,\ldots,i_n\in I$ genau die Indizes mit $m_{i_j}\neq 0$. Da $m_{i_j}\in T_{i_j}$ für alle $j=1,\ldots,n$ gibt es für alle $j=1,\ldots,n$ ein $r_j\in R\smallsetminus\{0\}$ mit $r_jm_{i_j}=0$. Da R kommutativ ist, ist daher $(r_1\cdots r_n)m_i=0$ für alle $i\in I$, also

$$(r_1 \cdots r_n)(m_i)_{i \in I} = ((r_1 \cdots r_n)m_i)_{i \in I} = 0.$$

Da R nullteilerfrei ist und $r_j \neq 0$ für alle $j=1,\ldots,n$ ist $r_1\cdots r_n \neq 0$. Daher ist $(m_i)_{i\in I}\in T(\bigoplus_{i\in I}M_i)$.

(ii)

Es bezeichne $P \subsetneq \mathbb{N}$ die Menge aller Primzahlen. Für alle $p \in P$ ist $\mathbb{Z}/p\mathbb{Z}$ eine abelsche Gruppe, die wir als \mathbb{Z} -Modul auffassen. Jedes $x \in \mathbb{Z}/p\mathbb{Z}$ mit $x \neq 0$ hat Ordnung p, weshalb $n \cdot x = 0 \Leftrightarrow p \mid n$ für alle $n \in \mathbb{Z}$. Da jedes $\mathbb{Z}/p\mathbb{Z}$ ein Torsionsmodul ist, ist

$$\prod_{p\in P} T(\mathbb{Z}/p\mathbb{Z}) = \prod_{p\in P} \mathbb{Z}/p\mathbb{Z}.$$

Dies ist als \mathbb{Z} -Modul kein Torsionsmodul: Für $(1_{\mathbb{Z}/p\mathbb{Z}})_{p\in P}\in\prod_{p\in P}\mathbb{Z}/p\mathbb{Z}$ und $n\in\mathbb{Z}$ mit

$$0 = n \cdot (1_{\mathbb{Z}/p\mathbb{Z}})_{p \in P} = (n \cdot 1_{\mathbb{Z}/p\mathbb{Z}})_{p \in P}$$

muss $p \mid n$ für alle $p \in P$, also n = 0. Deshalb ist $\prod_{p \in P} T(\mathbb{Z}/p\mathbb{Z})$ nicht isomorph zum Torsionsmodul $T(\prod_{p \in P} \mathbb{Z}/p\mathbb{Z})$.