Efficient Novel Privacy Preserving POS Protocol

Rashad Aliyev Khalil Abdellah Lemtaffah

Agenda

- Proof of Work?
- PoW problems
- Proof of Stake?
- Paper overview
- Analysis + Algorand PoC
- Overview of the Scheme
- Conclusion

Proof of Work?

The need of <u>more</u> miners

=

<u>more</u> power consumption

We needed a solution for this!!!

https://bitcointalk.org/index.php?topic=27787.0

Proof of Stake?

Proof of Stake

Proof of Stake uses way <u>less</u> energy by distributing the verification process over the decentralized network.

If you try to game the system, you risk losing your crypto funds since you stake them.

Proof of Stake

Efficient Novel Privacy Preserving PoS Protocol

Proof-of-concept with Algorand

Kamilla Stevenson*
Norwegian University of Science and Technology
Trondheim, Norway
kamillastevenson@gmail.com

Mayank Raikwar*
Norwegian University of Science and Technology
Trondheim, Norway
mayank.raikwar@ntnu.no

Oda Skoglund*
Norwegian University of Science and Technology
Trondheim, Norway
odaskoglund7@gmail.com

Danilo Gligoroski Norwegian University of Science and Technology Trondheim, Norway danilog@ntnu.no

Figure 1: A Simplified Illustration of Selection in PoS

- The identity of the selected PoS stakeholder is revealed to all participants → This leads to a privacy issue
- Deducting the stake of a participant by frequency analysis.
- The need of privacy in PoS to be equally competitive to PoW

Newer variations were introduced:

- PPoS (Privacy Preserving) → Zero Knowledge Proof
- Ouroboros Crypsinous →PPoS distributed ledger

But! Those variations were proven that they are still insufficient to protect the stakeholder's identity privacy.

- <u>Baldimtsi</u> proposed separating the identity and the stake from the validation phase (privacy achieved).
- Trapdoor permutation functionality was used in this research

But! This proposal suffers from high communication complexity and large proof size.

The researchers of our paper improved the scheme of <u>Baldimtsi</u> to be more real world practical.

Preliminaries:

Non-Interactive Zero Knowledge Proof (NIZK)

NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Verify).

- NIZK.Setup(1^λ) → crs: Produces a common reference string crs.
- $NIZK.Prove(crs, stmt, w) \rightarrow \pi$: Generates a proof π .
- *NIZK.Verify*(*crs*, *stmt*, π) \rightarrow 0/1: Verifies the proof π . Outputs 1 if the proof verifies, else 0.

Fully Homomorphic Encryption (FHE)

FHE = (FHE.Setup, FHE.KeyGen, FHE.Enc, FHE.Dec, FHE.Eval).

- $FHE.Setup(1^{\lambda}) \rightarrow params$: Outputs global parameters.
- FHE.KeyGen(params) → (pk, sk): Outputs a public-private key-pair.
- FHE.Enc(params, pk, μ) $\rightarrow c$: Given a message $\mu \in R_{\mathcal{M}}$, outputs a ciphertext c.
- FHE.Dec(params, sk, c) → μ*: Given a ciphertext c, outputs a message μ* ∈ R_M.
- FHE.Eval(pk, f, c₁, ..., c_l) → c_f: Given the inputs as public key pk, a function f: R^l_M → R_M which is an arithmetic circuit over R_M, and a set of l ciphertexts c₁, ..., c_l, outputs a ciphertext c_f.

Algorand is based on choosing committee members using a sortition protocol.

A member can be a potential:

- Block leader
- Verifier

The scheme is based on Byzantine protocol, where the members pass the information through a gossip protocol. Still, only on single stake setting...

Figure 2: A Simplified Illustration of Consensus in Algorand

To fix the identity leaks, Baldimtsi presented a flexible anonymous selection functionality using Zero Knowledge Proofs. Like the following scheme:

Figure 3: A Simplified Illustration of Baldimtsi et al.'s scheme with Algorand in Multi-stake setting

Overview of the Scheme

Overview of the Scheme

Figure 4: A Simplified Illustration of our scheme with Algorand in Multi-stake setting

Outline of Protocol

- (1) Participant P_i , calls ComitteeVote() with inputs tag and value.
- (2) CommitteeVote() calls Sortition().
- (3) Sortition() calls EligibilityCheck().
- (4) EligibilityCheck() receives the trapdoor permutation, \vec{V}_{tag} , from ProcessRO(), computes its inverse, v_i , and calls Eligible().
- (5) Eligible() calculates the voting power, j_i , and returns it to the protocol EligibilityCheck().
- (6) EligibilityCheck() receives j_i and returns $(j_i, v_i, \vec{V}_{tag})$ to the Sortition().
- (7) Sortition() receives $(j_i, v_i, \vec{V}_{tag})$, and applies homomorphic encryption to j_i yielding j'_i , and further composes the message, $msg_i = (H(ctx.last_block), value, j'_i)$.
- (8) Sortition() calls CreateProof(), with inputs msg_i , tag, v_i , \vec{V}_{tag} and j_i .
- (9) CreateProof() creates a zero-knowledge proof, π_i , on msg_i and tag, and returns π_i to Sortition()

- (10) *Sortition*() receives π_i and returns (π_i, msg_i) to *CommitteeVote*().
- (11) CommitteeVote() gossips the message, $m_i = (tag, \pi_i, msg_i)$.
- (12) Upon receiving the gossiped message m_i , participant P_h calls the CountVotes(), for tag.
- (13) CountVotes() calls ProcessMsg(), for m_i .
- (14) ProcessMsg() acquires tag, π_i , and msg_i from m_i .
- (15) ProcessMsg() calls Verify(), on (tag, π_i, msg_i) .
- (16) Verify() checks that π_i is a valid proof for msg_i and tag and returns 1.
- (17) ProcessMsg(), upon receiving 1, sets votes' equal to j'_i and returns (votes', value).
- (18) *CountVotes*() receives (*votes'*, *value*) and adds the *votes'* to the *counts'*[*value*] using homomorphic addition.
- (19) CountVotes() checks if counts'[value] is larger than the threshold using homomorphic greater-than comparison, and if it is, returns value.

Protocol EligibilityCheck(*tag*)

- 1: Call ProcessRO(tag) and receive \vec{V}_{tag}
- 2: Compute $v_i = f_{TRP.sk_i}^{-1}(\vec{V}_{tag}[i])$
- 3: Call $Eligible(v_i, stake_i, tag)$ and receive j_i
- 4: Output j_i, v_i, \vec{V}_{tag}

Protocol Eligible $\{v_i, stake_i, tag\}$

- 1: $p \leftarrow \frac{\tau}{totalStake}$
- $2: j_i \leftarrow 0$
- 3: while $2^{\frac{\upsilon_i}{len(\upsilon_i)}} \notin \left[\sum_{k=0}^{j_i} B(k; w, p), \sum_{k=0}^{j_i+1} B(k; w, p)\right]$
- 4: $\operatorname{do} j_i \leftarrow j_i + 1$;
- 5: Output ji

```
Protocol CreateProof(msg_i, tag, v_i, V_{tag}, j_i, params)
  1: Compute C_i^v = F(PRF.sk_i, v_i || tag)
 2: Let rt_{\vec{V}_{tag}} be the root of MTree(\vec{V}_{tag})
 3: Let path_{\vec{V}_{tag}[i]} be the path to \vec{V}_{tag}[i] in MTree(\vec{V}_{tag})
  4: Let rt_{pk} be the root of MTree(pk)
  5: Let path_{pk_i} be the path to pk_i in MTree(pk)
  6: Let rt_{cm} be the root of MTree(cm)
  7: Let path_{cm} be the path to cm_i in MTree(cm)
  8: Compute \sigma_i = SIG.Sign(SIG.sk_i, msg_i||tag)
 9: Let \mathbf{x} = (rt_{\vec{V}_{tag}}, rt_{pk}, rt_{cm}, tag, msg_i, C_i^v, \vec{V}_{tag}, params)
 10: Let \mathbf{w} = (i, \mathbf{j_i}, stake_i, PRF.sk_i, v_i, \sigma_i, pk_i, path_{pk_i},
     path_{\vec{V}_{t,a}[i]}, path_{cm}, cm_i)
11: Compute \pi_{NIZK} := NIZK.Prove(crs, x, w)
 12: Set \pi_i := (rt_{\vec{V}_{tag}}, rt_{pk}, rt_{cm}, C_i^v, \pi_{NIZK})
 13: Output \pi_i
```

Protocol Verify($msg, tag, \pi, params$)

- 1: Call ProcessRO(tag) and receive \vec{V}_{tag}
- 2: Parse $\pi = (rt_{\vec{V}_{tag}}, rt_{pk}, rt_{cm}, C, \pi_{NIZK})$
- 3: Set $x = (rt_{\vec{V}_{tag}}, rt_{pk}, rt_{cm}, tag, msg, C, \vec{V}_{tag}, params)$
- 4: Check that $NIZK.Verify(crs, x, \pi_{NIZK}) = ?1$
- 5: If yes, output 1; else output 0

```
1: procedure SORTITION(value, tag, params)
2: \langle j_i, v_i, \vec{V}_{tag} \rangle \leftarrow EligibilityCheck(tag)
3: \pi_i \leftarrow null
4: j_i' \leftarrow 0
5: if j_i > 0 then
6: j_i' = FHE.Enc(params, FHE.pk, j_i)
7: msg_i = (H(ctx.last\_block), value, j_i')
8: \pi_i \leftarrow CreateProof(msg_i, tag, v_i, \vec{V}_{tag}, j_i, params)
9: return \langle \pi_i, msg_i \rangle
10: end procedure
```

```
1: procedure CountVotes(ctx, tag, T, \tau, \lambda)
        start \leftarrow Time()
 2:
        counts' \leftarrow \{\}
 3:
        msgs \leftarrow incomingMsgs[tag].iterator()
        while TRUE do
 5:
              m \leftarrow msgs.next()
 6:
             if m = \perp then
 7:
                   if Time() > start + \lambda then return TIMEOUT
 8:
             else
 9:
                   \langle votes', value \rangle \leftarrow ProcessMsg(ctx, m)
10:
                   if votes' = 0 then continue;
11:
                   counts'[value] =
12:
   FHE.ADD(FHE.pka, f, counts'[value], votes')
                   x' \leftarrow counts'[value]
13:
                   y' \leftarrow FHE.Enc(params, T \cdot \tau + 1)
14:
                   b \leftarrow FHE.GreaterThan(x', y')
15:
                   if b return value
16:
17: end procedure
```

Conclusion

Evaluation of the Scheme

- Aim is to achieve full privacy concerning stake and identity. Baldimtsi et al.'s scheme provides privacy of identity and homomorphic encryption provides privacy of stake.
- Better complexity in terms of computation and communication. O(sn) complexity compared to Baldimtsi et al.'s scheme with O(snj).

Conclusion

By removing the need for multiple unlinkable proofs in the multi-stake setting through the use of homomorphic encryption, the scheme performs better than Baldimtsi et al.'s scheme in multi-stake instantiation of Algorand.