May 9th, 2019 COMP 5712 Notes

1 May 9th, 2019

1.1 MAX-2SAT

For each variable x_i , introduce a baraible y_i which is either +1 or -1. Also introduce an extra variable y_0 , whihe is also either +1 or -1.

Intuition

Variable x_i is true of $y_i = y_0$ and x_1 is false if $y_i \neq y_0$. Consider the following clauses:

$$v(x_i) \to \frac{1}{2} (1 + y_i y_0).$$

As such, we can write the objective function as:

$$\max \frac{1}{2} \sum_{i} + \frac{1}{2} (1 + y_i y_0).$$

However, we need to consider the negation. Note that if it is we have a \overline{x}_j clause, then we we would have:

$$v(\overline{x}_j) \to \frac{1}{2} (1 - y_i y_0).$$

As such, we have:

$$\max \sum v(\text{clause}_i).$$

Since the objective function contains the product, then we can change this into a vector program, since it can correspond to the dot product of two vectors. This is why we introduce y_0 .

Checking Validity

$$v(x_i \lor x_j) = 1 - v(\overline{x}_i)v(\overline{x}_j) = 1 - \frac{1}{2}(1 - y_i y_0) \frac{1}{2}(1 - y_j y_0)$$
$$= 1 - \frac{1}{4} \left[1 - y_i y_0 - y_j y_0 + y_i y_j y_0^2 \right].$$

Note that $y_0^2 = 1$:

$$\frac{3}{4} + \frac{1}{4}y_iy_0 + \frac{1}{4}y_jy_0 - \frac{1}{4}y_iy_j$$

$$= \frac{(1+y_iy_0) + (1+y_jy_0) + (1-y_iy_j)}{4} = \frac{1}{4}(1.$$

Which is of the dot product. TODO: compute $v(\overline{x}_i \vee x_j)$ and other combinations As such, the objective function is of form:

$$\max \sum_{0 \le i \le j \le n} \left[a_{ij} (1 + y_i y_j) + b_{ij} (1 - y_i y_j) \right],$$

with some coefficient a_{ij} , b_{ij} . Note that i < j because of y_0

Constraints

Since $x_i \in \{0, 1\}$, we have

$$y_i^2 = +1$$
, for $0 \le i \le n$.

Note that the MAX-2SAT is the special case of this problem.

1.2 Vector Program for MAX-2SAT

Relax to get vector program:

$$\max \sum_{0 \le i \le j \le n} a_{ij} (1 + v_i \cdot v_j) + b_{ij} (1 - v_i \cdot v_j).$$

Subject to:

$$v_i \cdot v_i = 1$$
$$v_i \in \mathbb{R}^{n+1}.$$

Assume we have solved this exactly, and now we will round it. We will now round it. First lets make some modifications:

$$W = \max 2 \sum_{0 \le i < j \le n} a_{ij} \frac{1 + y_i y_j}{2} + b_{ij} \frac{1 - y_i y_j}{2}.$$

$$E(W) = 2\sum a_{ij}\Pr(y_i = y_j) + b_{ij}\Pr(y_i \neq y_j).$$

This is the expected number of clauses satisfied by our algorithm. Comparing this to our vector program, we have:

$$\max 2 \sum_{0 \le i \le j \le n} a_{ij} \frac{1 + v_i \cdot v_j}{2} + b_{ij} \frac{1 - v_i \cdot v_j}{2}.$$

Note that we want our randomized rounding to have the following properties:

- If two vectors v_i and v_j are pointing in the same direction, $Pr(y_i = y_j)$ should be close to 1.
- If two vectors are in opposite direction, then $Pr(y_i \neq y_j)$ is close to 1.

This is similar to the max-cut analysis, in which we take a random hyper plane to separate. Last time we analyzed that:

$$\Pr(y_i \neq y_j) = \frac{\theta}{\pi}.$$

1.3 Approximation Factor

For this, we have to show:

$$\frac{\Pr(y_i = y)j}{\frac{(1+v_i \cdot v_j)}{2}} \ge 0.878 \text{ and } \frac{\Pr(y_i \ne y)j}{\frac{(1v_i \cdot v_j)}{2}} \ge 0.878.$$

Which will give us an approximation factor of 0.878. As we know, we have:

$$\frac{1 - v_i \cdot v_j}{2} = \frac{1 - \cos(\theta_{ij})}{2} = \dots$$

Next, we have:

$$\Pr(y_i = y_j) = 1 - \frac{\theta_{ij}}{2}.$$

Comparing with $\frac{1+\cos(\theta_{ij})}{2}$. What we know is that:

$$\frac{\frac{\theta}{\pi}}{\frac{1-\cos(\theta)}{2}} \ge 0.878.$$

Which is true for any θ . Replacing θ by $\pi - \theta$, we get the desired inequality.

Remark 1.1 — This is very similar to the max-cut, but the difference is we have to introduce a new variable y_0 .

Remark 1.2 — When we used integer programming for the max-cut, we got nothing, but for MAX-SAT, we can get good results too, getting an approx ratio of 0.75.

1.4 MAX-2SAT But with Integer Linear Programming

For each boolean variable x_i , introduce a 0/1 variable y_i . For clause j, introduce 0/1 variable $z_j = 1$ if clause is true. If our clauses are:

$$(x_1 \vee \overline{x}_2 \vee x_3)$$

$$\overline{x}_1 \vee x_2 \vee \overline{x}_3$$
.

Our ILP would be is:

$$\max_{i} z_{j}$$

Subject to:

$$z_1 = \le y_1 + (1 - y_2) + y_3 z_2 \le (1 - y_1) + y_2 + (1 - y_3)$$
$$z_j \in \{0, 1\}$$
$$y_i \in \{0, 1\}.$$

Relaxing would give us would be is:

$$\max_{j} z_{j}$$

Subject to:

$$z_1 = \le y_1 + (1 - y_2) + y_3 z_2 \le (1 - y_1) + y_2 + (1 - y_3)$$
$$0 \le z_j \le 1$$
$$0 \le y_i \le 1.$$

Randomized Rounding: Each variable x_i is set to true independently with probability y_i (after solving relaxed LP). Otherwise set to false. Consider a clause with k literals, $x_1 \vee x_2 \vee \ldots v_k$ (no negation but analysis would hold still) We have:

$$\Pr(\text{Clause is satisfied}) = 1 - (1 - y_1)(1 - y_2) \dots (1 - y_k).$$

We know that: $y_1 + y_2 + \ldots + y_j \ge z_j$. In the worse case, we have :

$$\Pr(\text{Clause is satisfied}) \ge 1 - \left(1 - \frac{z_j}{k}\right)^k \ge 1 - \left(1 - \frac{1}{k}\right)^k z_j.$$

For high k this approaches an approximation factor of $1 - \frac{1}{e}$. For MAX-2SAT, this is $\frac{3}{4}$.

Final Coverage

- \bullet steiner forest
- multiway cut
- $\bullet \;$ semi-definite programming
- well-characterized problems