2/2

2/2

2/2

2/2

-1/2

0/2

2/2

2/2

2/2

2/2

THLR Contrôle (35 questions), Septembre 2016

Nom et prénom, lisibles :	Identifiant (de haut en bas):				
PONTHIEU Pierre-Adrien					
	■0 □1 □2 □3 □4 □5 □6 □7 □8 □9				
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0.					
Q.2 Que vaut $L \cup L$?					
□ {ε} 📓 L					
Q.3 Pour $L_1 = \{a, b\}^*, L_2 = \{a\}^* \{b\}^*$:	_				
$\square L_1 \not\supseteq L_2 \qquad \square L_1 \subseteq L_2$	$L_1 \supseteq L_2 \qquad \qquad \square L_1 = L_2$				
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{a, b\}$?					
Q.5 Que vaut Fact({ab, c}) (l'ensemble des facteurs	s):				
	\emptyset \boxtimes $\{ab,a,b,c,\varepsilon\}$ \square $\{a,b,c\}$				
Q.6 Que vaut $\overline{\{a\}^*}$, avec $\Sigma = \{a, b\}$.					
	\boxtimes $\{a,b\}^*\{b\}\{a,b\}^*$ \square $\{\varepsilon\} \cup \{a\}\{a\}\{a\}^*$ $\{b\}\{a\}^* \cup \{b\}^*$				
Q.7 Pour toute expression rationnelle e , on a $\varepsilon e \equiv e \varepsilon \equiv e$.					
☐ faux	vrai				
Q.8 Pour toutes expressions rationnelles e, f , on a	$a(e+f)^* \equiv e^*(e+f)^*.$				
☐ faux	vrai vrai				
Q.9 Pour $e = (ab)^*, f = a^*b^*$:					
$\Box L(e) \subseteq L(f) \qquad \qquad \blacksquare L(e) \not\subseteq L(f)$	$\Box L(e) \supseteq L(f) \qquad \Box L(e) = L(f)$				
Q.10 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq \Sigma^*$, on a $L_1^* = L_2^* \implies L_1 = L_2$.					
□ vrai a faux					
0.11 I 'expression Perl'([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :				

Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b\}$ dont

la *n*-ième lettre avant la fin est un a (i.e., $(a + b)^*a(a + b)^{n-1}$):

2/2	$ \square 2^n \qquad \square \frac{n(n+1)}{2} \qquad \square \Pi \text{ n'existe pas.} \qquad \square n+1 $					
	Q.20 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a + b + c + d)^* a(a + b + c + d)^{n-1}$):					
2/2	\square 4^n \square 2^n \square $\frac{n(n+1)(n+2)(n+3)}{4}$ \square					
	Q.21 Déterminiser cet automate.					
2/2	$\Box \longrightarrow b \qquad b$					
	Q.22 & Quelle(s) opération(s) préserve(nt) la rationnalité?					
1.2/2	☑ Différence symétrique ☑ Union ☑ Complémentaire ☑ Différence ☑ Intersection ☐ Aucune de ces réponses n'est correcte.					
	Q.23 Soit <i>Rec</i> l'ensemble des langages reconnaissables par DFA, et <i>Rat</i> l'ensemble des langages définissables par expressions rationnelles.					
2/2	\square Rec \supseteq Rat \square Rec \subseteq Rat \square Rec $\not\supseteq$ Rat \square Rec \supseteq Rat					
	Q.24 & Quelle(s) opération(s) préserve(nt) la rationnalité?					
0/2	Suff Sous − mot Transpose Fact Pref Aucune de ces réponses n'est correcte.					
	Q.25 On peut tester si un automate nondéterministe reconnaît un langage non vide.					
0/2	☐ rarement ☐ jamais ☐ souvent ☒ oui, toujours					
	Q.26 On peut tester si un automate déterministe reconnaît un langage non vide.					
2/2	 □ Cette question n'a pas de sens □ Non ■ Oui □ Seulement si le langage n'est pas rationnel 					
	Q.27 En soumettant à un automate un nombre fini de mots de notre choix et en observant ses réponses, mais sans en regarder la structure (test boîte noire), on peut savoir s'il					
2/2	 □ a des transitions spontanées □ accepte le mot vide □ est déterministe □ accepte un langage infini 					
	Q.28 Combien d'états a l'automate minimal qui accepte le langage {a, ab, abc}?					
2/2	□ 6 □ 7 📓 4 □ Il n'existe pas.					

 \square 6 \square 7 \blacksquare 4 \square Il n'existe pas.

2/2

2/2

2/2

2/2

2/2

Q.32

Q.29	Il est possible de déterr	niner si une expressio	n rationnelle et un	automate corresponde	nt au même
langage					

Q.30 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?

Q.31 Considérons \mathcal{P} l'ensemble des *palindromes* (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.

□ Il existe un ε-NFA qui reconnaisse \mathcal{P} □ Il existe un NFA qui reconnaisse \mathcal{P} □ Il existe un DFA qui reconnaisse \mathcal{P} □ Il existe un DFA qui reconnaisse \mathcal{P}

Q.33 & Quels états peuvent être fusionnés sans changer le langage reconnu.

Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0? $(ab^* + a + b^*)a(a + b)^*$ $(ab^* + a + b^*)a(a + b)^*$ $(ab^* + (a + b)^*)a(a + b)^*$ $(ab^* + (a + b)^*)(a + b)^+$ $(ab^* + a + b^*)(a(a + b)^*)$

Q.35 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de \xrightarrow{a}

Q.36 Sur $\{a,b\}$, quel est le complémentaire de \xrightarrow{b}

Fin de l'épreuve.

+243/6/53+