## 1 EFNMR2 (1.5h)

#### 1.1 Relaxation measurements with paramagnetic ions

#### **Paramters**

Shimming values x = 10.11 mA; y = 20.88 mA; z = 20.07 mATuning the probe Kapazität: 13.8 nF; Polarisationsstrom: 6A;

Receiver gain: 2; transmit gain (B1): 2.5

Setting B1 to lamor frequency 1837 Hz

duration 90 and 180 pulse 90 Grad: 1.35 ms; 180 Grad: 2.7ms

Benutze Probe:

CuSO4 doped water  $(3000\mu M)$  of CUSO4

| Durchführung |                                                                         |
|--------------|-------------------------------------------------------------------------|
| 1.1          | Pulse and Collect (EFNMR menu):                                         |
|              | water sample (FID und Spektrum) Polarisationszeit 4s                    |
| 1.2          | Pulse and Collect (EFNMR menu):                                         |
|              | water sample (FID und Spektrum) kürzere polarisationszeit (500ms)       |
| 2.1          | Pulse and Collect (EFNMR menu):                                         |
|              | doped water sample (FID und Spektrum) Polaraisationszeit 4s             |
| 2.2          | Pulse and Collect (EFNMR menu):                                         |
|              | doped water sample (FID und Spektrum) kürzere polarisationszeit (500ms) |
| 3.1          | T2 Messung: 250 $\mu$ M in 500ml Wasser                                 |
| 3.2          | T1 Messung (Polarisationsfeld): 250 $\mu$ M in 500ml Wasser             |
| 3.3          | T1 Messung (Erdfeld): 250 $\mu$ M in 500ml Wasser                       |
| 4.1          | T2 Messung: 550 $\mu$ M in 500ml Wasser                                 |
| 4.2          | T1 Messung (Polarisationsfeld): 550 $\mu$ M in 500ml Wasser             |
| 4.3          | T1 Messung (Erdfeld): 550 $\mu$ M in 500ml Wasser                       |
| 5.1          | T2 Messung: 1000 $\mu$ M in 500ml Wasser                                |
| 5.2          | T1 Messung (Polarisationsfeld): 1000 $\mu$ M in 500ml Wasser            |
| 5.3          | T1 Messung (Erdfeld): 1000 $\mu$ M in 500ml Wasser                      |
| 6.1          | T2 Messung: 2000 $\mu$ M in 500ml Wasser                                |
| 6.2          | T1 Messung (Polarisationsfeld): 2000 $\mu$ M in 500ml Wasser            |
| 6.3          | T1 Messung (Erdfeld): 2000 $\mu$ M in 500ml Wasser                      |
| 7.1          | T2 Messung: 4000 $\mu$ M in 500ml Wasser                                |

T1 Messung (Polarisationsfeld): 4000  $\mu$  M in 500ml Wasser

 $90~\mathrm{Grad}{:}~1.35~\mathrm{ms}{;}~180~\mathrm{Grad}{:}~2.7\mathrm{ms}$ 

T1 Messung (Erdfeld): 4000  $\mu$  M in 500ml Wasser

## 1.2 1D Magnetic Resonance Imaging (0.75h)

#### **Paramters**

duration 90 and 180 pulse

7.2

7.3

| Shimming values               | x = 10.11  mA; y = 20.88  mA; z = 20.07  mA   |
|-------------------------------|-----------------------------------------------|
| Tuning the probe              | Kapazität: 13.8 nF; Polarisationsstrom: 6A;   |
|                               | Receiver gain: 2; transmit gain (B1): 2.5     |
|                               | Polaraisationszeit: 4s; Repetition time: 15s; |
|                               | Number of scans: 1                            |
| Setting B1 to lamor frequency | 1837 Hz                                       |

## Durchführung

| 8.1 | Setzte Parameter in "Common Parameters"                                         |
|-----|---------------------------------------------------------------------------------|
|     | auf unsere Werte                                                                |
| 9.1 | GradEchoImaging: Wähle "1D" in Image parameters;                                |
|     | Wähle "X"-Achse; FOV Matrix size startwert 32; FOV: 200mm                       |
| 9.2 | Wähle Anfangswerte für water tube: phase gradient duration = $270 \text{ ms}$ , |
|     | band width 64 Hz, number of scans = 4; G = 7.5 $\frac{\mu T}{m}$                |
|     | echo time calculated: 0.54s with acquisition delay 0.02s                        |
| 9.3 | GradEchoImaging: Wähle "1D" in Image parameters;                                |
|     | Wähle "Y"-Achse; FOV Matrix size startwert 32; FOV: 200mm                       |
| 9.4 | Wähle Anfangswerte für water tube: phase gradient duration = $270 \text{ ms}$ , |
|     | band width 64 Hz, number of scans = 4; G = 7.5 $\frac{\mu T}{m}$                |
|     | echo time calculated: 0.54s with acquisition delay 0.02s                        |
| 9.5 | Falls mehrere Phantome vorhanden, dann wiederhole Schritt $9.1$ - $9.4$         |
|     |                                                                                 |

## 1.3 J-Kopplung (1h)

#### **Paramters**

| Shimming values                | x = 10.11  mA; y = 20.88  mA; z = 20.07  mA   |
|--------------------------------|-----------------------------------------------|
| Tuning the probe               | Kapazität: 13.8 nF; Polarisationsstrom: 6A;   |
|                                | Receiver gain: 2; transmit gain (B1): 2.5     |
|                                | Polaraisationszeit: 4s; Repetition time: 15s; |
|                                | Number of scans: 1                            |
| Cotting D1 to lamon fraguences | 1097 Ца                                       |

Setting B1 to lamor frequency 1837 Hz

duration 90 and 180 pulse  $\,$  90 Grad: 1.35 ms; 180 Grad: 2.7ms

#### Werte

| 1732.24 | Lamorfrequenz für Fluor (Hz)                                               |
|---------|----------------------------------------------------------------------------|
| 1841.40 | Lamorfrequenz für Wasserstoff (Hz)                                         |
| 20.2    | Kapazität getuned für Fluor (theoretisch) (nF)                             |
| 15.6    | Kapazität getuned für Fluor (empirisch)(Kapazität Wasserstoff 13.8nF) (nF) |
| 13.8    | Kapazität getuned für Wasserstoff (empirisch) (nF)                         |
| 17.9    | Kapazität getuned für Wasserstoff (theoretisch) (nF)                       |
| 1786.82 | Mittelwert Frequenzen                                                      |
| 19.05   | Kapazität Mittelwert (theoretisch)                                         |
| 14.7    | Kapazität Mittelwert (empirisch)                                           |

# Durchführung 10.1 Tunen System auf Wasserstoffwerte (Kapazittät und Frequenz) 10.2 Run Pulse and collect experiment 11.1 Tunen System auf Fluorwerte (Kapazittät und Frequenz)

11.2 Run Pulse and collect experiment

12.1 Tunen Werte auf Mittelwerte von H und F

12.2 Run Pulse and collect experiment

12.3 Tune auf gute Werte der Frequenzen und run pulse and collect

## 1.4 2D Messung (1.5h)

#### Durchführung

| _    |                                                                          |
|------|--------------------------------------------------------------------------|
| 13.1 | Measure T1 for only tap water                                            |
| 13.2 | Measure T2 for only tap water                                            |
| 13.3 | Measure T1 for only doped water                                          |
| 13.4 | Measure T2 for only doped water                                          |
| 14.1 | T1: Open "GradientEchoImaging": 2D mode; "YZ" Orientation;               |
|      | FOV: 120mm; matrix: 32*16 (zero-filled to 64*64);                        |
|      | B1 frequency: 1837 Hz, phase gradient duration: 50ms; echo time: 200ms;  |
|      | bandwidth: 64Hz; number of scans: 4 with filtering;                      |
| 14.2 | (TR: $50\%$ ! Ca. 4s) polarisation time gleich wie kleinste gemessene T1 |
| 14.3 | (TR: 50%!) polarisation time Mittelwert aus T1´s                         |
| 14.4 | (TR: $50\%$ ! Ca 8 s) polarisation time gleich wie größte gemessene T1   |
| 14.5 | (TR: $50\%$ !) polarisation time doppelt so lange wie größte T1          |
| 15.1 | T2: Open "GradientEchoImaging": 2D mode; "YZ" Orientation;               |
|      | FOV: 120mm; matrix: 32*16 (zero-filled to 64*64);                        |
|      | B1 frequency: 1837 Hz, phase gradient duration: 50ms; echo time: 200ms;  |
|      | bandwidth: 64Hz; number of scans: 4 with filtering;                      |
|      | polarizing duration aus Schritt 14.5                                     |
| 15.2 | kürzest mögliche echo time (ca. 200ms)                                   |
| 15.3 | echo time (ca. 250 ms)                                                   |
| 15.4 | echo time (ca. 300ms)                                                    |
| 15.5 | echo time (ca. 450ms)                                                    |
|      |                                                                          |

#### 1.5 PGSE (0.75h)

#### Durchführung

16.1 Open PGSE dialog

16.2 Paramter einstellen wie auf Abb. 4.1 + pulse width

step size 5 ms und Number of steps 10 siehe Abb. 4.2



Abbildung 1.1: 1



**Abbildung 1.2:** 2