

Evaluating the performance of classification models

- · Popular criteria
 - Accuracy (misclassification) rate: % of correct classifications
 - Confusion matrix
 - · Lift curve/ROC curve
- · Other evaluation criteria
 - · Speed and scalability
 - Interpretability
 - Robustness

2

Accuracy (Misclassification) rate

- Accuracy rate = $\frac{\text{Number of correct classifications}}{\text{Number of instances in dataset}}$; = $\frac{(9320 + 205)/10000}{95.25\%}$
- $Misclassification\ rate = 1 Accuracy\ Rate = (128 + 347)/10000 = 4.75\%$

		True default status		t status
		No	Yes	Total
Predicted	No	9320	128	9448
$default\ status$	Yes	347	205	552
	Total	9667	333	10000

Confusion Matrix

- A confusion matrix records the source of error:
 - · Type I error: False positives
 - · Type II error: False negatives

Predicted class Negative Positive True positive False Actual negative True False Negative positive negative

· Suppose 950 mails are sent out

· What is the accuracy rate?

Predicted class

Actual class

class

	Respond	Do not respond
Respond	250	40
Do not Respond	10	650

Confusion Matrix - Evaluation

• Below shows the performance of two classifiers. Which one is better based on accuracy?

Model 1 - Predicted class

Α	C	tι	ıa	ı
C	la	S	s	

	Respond	Do not respond
Respond	5	5
Do not Respond	40	950

- Accuracy = (5+950)/1000 = 95.5% Misclassification rate =
- Model 2 Predicted class

Actual class

	model 2 Tredicted Glace		
	Respond	Do not respond	
Respond	10	0	
Do not Respond	90	900	

- Accuracy= 91%?Misclassification rate = 9%?

The credit card default

		True Default Status		
		No	Yes	Total
Predicted	No	9644	252	9896
$Default\ Status$	Yes	23	81	104
	Total	9667	333	10000

- What is Type I error rate? 23 What is Type II error rate? 252
- As a credit card company, which type of error would it like to avoid more? Type II error is more important.
- Sensitivity: the proportion of all positives that are correctly identified as positives - True positive rate - 81/333 =
- **Specificity**: the proportion of all negatives that are correctly identified as negatives True negative rate 9644/9667 =

The credit card default

		True default status		tstatus
		No	Yes	Total
Predicted	No	9,432	138	9,570
$default\ status$	Yes	235	195	430
	Total	9,667	333	10,000

- We adjust the threshold probability from 0.5 to 0.2
- Sensitivity increases
- It comes at a cost of decreasing specificity and slightly increasing error rate
- There is a trade-off between sensitivity and specificity

9

ROC curve

- ROC curve depicts the trade-off between **Sensitivity** vs **Specificity**
- It displays two types of errors for all possible thresholds
- · False positive rate: 1 specificity
- The overall performance is given by the area under the curve: the larger the better
- An ideal ROC curve will hug the top left corner

