Cyclic Groups

Theorem

$$\langle a \rangle = \{a^n \mid n \in Z\} \text{ is a group.}$$

Proof

Associativity

Assume
$$x, y, z \in \langle a \rangle$$

 $\exists r, s, t \in \mathbb{Z}, x = a^r, y = a^2, z = a^t$
 $(xy)z = (a^ra^s)a^t = a^{r+s}a^t = a^{r+s+t}$
 $x(yz) = a^r(a^sa^t) = a^ra^{s+t} = a^{r+s+t}$
 $\therefore \langle a \rangle$ is associative.

Identity

$$a^{0} \in \langle a \rangle$$

Assume $a^{n} \in \langle a \rangle$
 $a^{0}a^{n} = a^{0+n} = a^{n}$
 $a^{n}a^{0} = a^{n+0} = a^{n}$
 $\therefore a^{0} = e \in \langle a \rangle$

Inverses

Assume
$$a^n \in \langle a \rangle$$

$$a^{-n} \in \langle a \rangle$$

$$a^{-n}a^n = a^{-n+n} = a^0 = e$$

$$a^na^{-n} = a^{n+(-n)} = a^0 = e$$

 $\therefore \langle a \rangle$ is a group.

Definition

To say that a group G is *cyclic* means $\exists a \in G, \langle a \rangle = G$. The element a is said to *generate* G and a is called a *generator* for G. G is said to be *generated* by a.

Theorem

$$\left\langle a^{-1}\right\rangle = \left\langle a\right\rangle$$

Proof

$$\implies \mathsf{Assume} \; (a^{-1})^n \in \langle a^{-1} \rangle$$

$$(a^{-1})^n = a^{-n} \in \langle a \rangle$$

$$\therefore \langle a^{-1} \rangle \subseteq \langle a^n \rangle$$

$$\iff \text{Assume } a^n \in \langle a \rangle$$

$$a^n = (a^{-1})^{-n} \in \langle a^{-1} \rangle$$

$$\therefore \langle a^n \rangle \subseteq \langle a^{-1} \rangle$$

$$\therefore \langle a^{-1} \rangle = \langle a \rangle$$

Example

$$Z_4 = \{0, 1, 2, 3\}$$

$$1 + 3 = 3 + 1 = 0$$

$$-1 = 3 \text{ and } -3 = 1$$

$$\langle 1 \rangle = \{1, 2, 3, 0\} = \mathbb{Z}_4$$

$$\langle 3 \rangle = \{3, 2, 1, 0\} = \mathbb{Z}_4$$

$$\langle 1 \rangle = \langle 3 \rangle = \mathbb{Z}_4$$

Theorem

Let G be a group:

$$G \operatorname{cyclic} \implies G \operatorname{abelian}$$

Proof

Assume G is cyclic $\exists a \in G, \langle a \rangle = G$ Assume $x, y \in G$ $\exists n, m \in G, x = a^n \text{ and } y = a^m$ $xy = a^n a^m = a^{n+m} = a^{m+n} = a^m a^n = yx$ $\therefore G$ is abelian.

Note that the inverse is not true: consider K_4 :

It is abelian; however, it has no generator and is thus not cyclic.

Theorem

Let G and G' be groups and $\phi:G\to G'$ be an isomorphism:

$$\forall a \in G, \forall n \in \mathbb{Z}, \phi(a^n) = \phi(a)^n$$

Proof

Assume $a \in G$ Assume $n \in \mathbb{Z}$

Case 1: n > 0

Proof by induction on n

Base:
$$n=1$$

$$\phi(a^1) = \phi(a) = \phi(a)^1$$

Assume $\phi(a^n) = \phi(a)^n$

Consider $\phi(a^{n+1})$

$$\phi(a^{n+1}) = \phi(a^n a) = \phi(a^n)\phi(a) = \phi(a)^n \phi(a) = \phi(a)^{n+1}$$

Case 2: n = 0

$$\phi(a^0) = \phi(e) = e' = \phi(a)^0$$

Case 3: n < 0

Let
$$m = -n$$

$$\phi(a^n) = \phi(a^{-m}) = \phi[(a^m)^{-1}] = \phi(a^m)^{-1} = [\phi(a)^m]^{-1} = \phi(a)^{-m} = \phi(a)^{-(-n)} = \phi(a)^n$$

Theorem

Let G and G' be groups and $\phi:G\to G'$ be an isomorphism:

- 1). G cyclic \implies G' cyclic
- 2). ϕ maps generators in G to generators in G^\prime

Proof

Assume G is cyclic

$$\exists a \in G, \langle a \rangle = G$$

Assume $b' \in G'$

 ϕ is onto

$$\exists b \in G, \phi(b) = b'$$

$$\exists\,n\in\mathbb{Z},b=a^n$$

$$b' = \phi(b) = \phi(a^n) = \phi(a)^n$$

 $\therefore \phi(a)$ is a generator for G' and G' is cyclic.

Definition

Let G be a group. An *automorphism* of G is an isomorphism between G and itself: $\phi: G \to G$.

To determine the number of possible automorphisms for a cyclic group, determine the number of generators.

Theorem

Let $\langle a \rangle = G$ and |G| = n:

- G finite $\implies n \in \mathbb{Z}^+$ is the smallest positive number such that $a^n = e$.
- G infinite $\implies n = \aleph_0$

Proof

Assume G is finite

$$a \in G, \text{ so } n > 0$$

$$n \in \mathbb{Z}^+$$

$$\exists \, m \in \mathbb{Z}^+, a^m = e$$
 Let $m \in \mathbb{Z}^+$ be the smallest positive number such that $a^m = e$ Let $G' = \{a^k \mid 0 \leq k < m\}$ ABC: G' contains duplicates
$$\exists \, h, k \in \mathbb{Z}^+, 0 \leq h < k < m \text{ and } a^h = a^k$$

$$a^{k-h} = e$$
 But $1 \leq h - k < m$ CONTRADICTION! (on the minimality of m) So G' contains m distinct elements, and all $a^k, k \geq m$ are duplicates
$$\therefore |G| = m = n$$

Assume G is infinite

$$\forall n \in \mathbb{Z}^+, a^n \neq e$$

ABC: $\exists h, k \in \mathbb{Z}^+, 1 \leq h < k \text{ and } a^k = a^k$
 $a^{k-h} = e$

CONTRADITION!

So $\forall n \in \mathbb{Z}^+, a^n$ is distinct

So G is countably infinite

 $\therefore |G| = \aleph_0$

Theorem

Let G be a cyclic group and |G| = n:

- G finite $\Longrightarrow G \simeq \mathbb{Z}_n$
- G infinite $\Longrightarrow G \simeq \mathbb{Z}$

Proof

Assume G is finite

$$n \in \mathbb{Z}+$$
 Let a be a generator for G
$$G=\{a^k \mid k \in \mathbb{Z}^+ \cup \{0\} \text{ and } 0 \leq k < n\}$$
 All of the $a^k \in G$ are distinct

Let
$$\phi:G\to\mathbb{Z}_n$$
 such that $\phi(a^k)=k$ Clearly, ϕ is bijective Assume $a^k\in G$ Per the division algorithm, $k=qn+r$ where $q,r\in\mathbb{Z}$ and $0\le r< n$ $a^k=a^{qn+r}=(a^n)^qa^r=e^qa^r=a^r$ $k\equiv r\pmod n$ Assume $a^h,a^k\in G$ $\phi(a^ha^k)=\phi(a^{h+nk})=h+_nk=\phi(a^h)+_n\phi(a^k)$ So ϕ is bijective and a homomorphism, and thus an isomorphism $\therefore G\simeq \mathbb{Z}_n$

Assume G is infinite

$$n \in \aleph_0$$
 Let $G = \{a^k \mid k \in \mathbb{Z}^+ \cup \{0\}\}$ All of the $a^k \in G$ are distinct Let $\phi: G \to \mathbb{Z}$ such that $\phi(a^k) = k$ Clearly, ϕ is bijective Assume $a^h, a^k \in G$
$$\phi(a^h a^k) = \phi(a^{h+k}) = h + k = \phi(a^h) + \phi(a^k)$$
 So ϕ is bijective and a homomorphism, and thus an isomorphism $\therefore G \simeq \mathbb{Z}$

Thus, all finite cyclic groups are isomorphic to each other (via \mathbb{Z}_n) and all infinite cyclic groups are isomorphic to each other (via \mathbb{Z}).

Furthermore, all structural proofs on cyclic groups can be performed more easily in terms of \mathbb{Z}_n or \mathbb{Z} .