

UNIVERSITY OF GHANA

(All rights reserved)

SCHOOL OF ENGINEERING SCIENCES

BSc. (Eng) MATERIALS SCIENCE AND ENGINEERING

SECOND SEMESTER EXAMINATIONS 2014/2015

MTEN 304 – COMPUTATIONAL MATERIALS SCIENCE (2 Credits)

TIME- 2 Hours

ANSWER ALL QUESTIONS

		-		
1.				
	a.	Differentiate between modelling and simulation.	[2 marks]	
	b.	Explain the role of applications, algorithm and architecture in Computat	ional	
		materials science.	[6 marks]	
	c.	Write the general expression for basis functions, defining all the terms p	resent.	
			[1 mark]	
	d.	Identify the following basis sets:		
		i. STO-4G		
		ii. STO-3G*		
		iii. 6-31+G(d)		
		iv. 3-21G		
			[4 marks]	
	e.	Briefly describe the following as related to computational modelling:		
		v. Ab initio model	[3 marks]	
		vi. Semi-empirical	[3 marks]	
		vii. Molecular Mechanics	[3 marks]	
		viii. Quantum Monte Carlo	[3 marks]	
2.				
	a.	. Mention three types of DFT calculations and explain them based on accuracy, time		
		and results.	[6 marks]	
	b.	With the aid of a flow-diagram, explain the process of geometry optimize	zation in	
		computational modelling.	[7 marks]	
	c.	Give three (3) examples each of systematic and statistical errors commo	n to	
		computer simulations.	[6 marks]	
	d.	Explain the following approximations used in computational simulation	s:	
		i. Born-Oppenheimer	[2 marks]	
		ii Hartree-Fock	[2 marke]	

iii. LCAO

[2 marks]

- 3.
- a. Explain periodic boundary conditions (PBC) as related to computational modelling.

 [2 marks]
- b. Give two (2) examples each of simulations where you should use PBC and where you should not. [4 marks]
- c. Write the general expression for potential energy (V(r)) as used in molecular dynamics. [4 marks]
- d. Mention two assumptions made in molecular mechanics simulations. [5 marks]
- e. Comment on the accuracy of the given methods and basis sets indicated in the table below given that the experimental values for Total energy (kcal/mol) and bond length (Å) are, 15.1 and 0.035 respectively. [10 marks]

METHOD/MODEL/BASIS SET	TOTAL ENERGY (kcal/mol)	BOND LENGTH (Å)
MOL. MECH/MM2/STO-4G	0.5	0.01
SEMI EMPIRICAL/AM1/ 6-31+G(d)	18.8	0.048
AB INITIO/HF/STO-3G	93.3	0.055

- 4.
- a. Sketch a graph of Energy potential against distance for the 12-6 Lennard-Jones potential and explain the concept. [12 marks]
- b. Mention three (3) limitations of the L-J potential.
- c. Differentiate between Hartree-Fock and Density Functional Theory. [5 marks]
- d. What is the difference between a plane wave basis and a Gaussian basis sets.

[5 marks]

[3 marks]