Bayesian statistics

Hồi Quy Tuyến Tính t test & ANOVA

Khương Quỳnh Long Hà Nội, 08/2019

https://gitlab.com/LongKhuong/adhere-bayesian-statistics

Nội dung

- - Bayes prefix
 - Các bước xây dựng hồi quy tuyến tính
 - Chẩn đoán chuỗi MCMC
 - Kiểm định giả thuyết
 - Bayes T test và Bayes ANOVA

"bayes" prefix

```
bayes [, bayesopts]: command [, estopts]

Bayes prefix và bayes options

Tương tự MLE
```

Bayes options:

- Block về Prior (giới thiệu trong bài sau)
- Block về chuỗi MCMC (giới thiệu trong bài sau)
- Block vè initialization
- Block về reporting
- o nchains(#): song song nhiều chuỗi MCMC (Stata ≥ 16)
- 0 ...

Block vè initialization

- Mặc định Stata sử dụng MLE "dẫn đường" cho điểm bắt đầu chuỗi MCMC
- "initsummary" khai báo thông tin giá trị bắt đầu
- "nomleintitial" ngăn sử dụng MLE làm điểm bắt đầu
- **)**

Block về reporting

- "clevel (#)": tùy chỉnh Credible Interval, mặc định 95%
- "hpd": dùng Highest Probability Density Interval thay cho Credible Interval

Một số option khác

- "saving(filename[, replace])": luu trữ kết quả mô phỏng vào file "filename.dta"
- ► "showreffects[(reref)]": trong multilevel → hiển thị các random effects
- "melabel": hiển thị nhãn kết quả trong multilevel giống như phuong pháp MLE
- **...**

Các bước xây dựng hồi quy tuyến tính Bayes

- Câu hỏi nghiên cứu, biến số...
- Xác định Prior trước khi phân tích
- (Sử dụng sensitivity analysis để đánh giá Prior)
- Tính toán mô hình ban đầu
- Chẩn đoán chuỗi MCMC
- Kiểm tra các giá trị như ESS, DIC...
- Khai thác thông tin từ pp hậu nghiệm
- Kiểm định giả thuyết và kết luận

Data

Body Fat data

- Dữ liệu từ nghiên cứu của Roger W. Johnson và Carleton College https://ww2.amstat.org/publications/jse/v4n1/dataset s.johnson.html
- Mục tiêu nghiên cứu là xây dựng mô hình hồi quy tuyến tính tiên lượng % mỡ cơ thể (biến bodyfat) từ các chỉ số nhân trắc

des

obs:	251						
vars:	15			3 Oct 2018 15:56			
size:	26,857						
	storage	display	value				
variable name	type	format	label	variable label			
id	int	%10.0g		id			
bodyfat	double	%10.0g		%			
age	byte	%10.0g		yrs			
weight	double	%10.0g		lbs (1 pound = 0,45359237 kg)			
height	double	%10.0g		inches (1 inch =2.54 cm)			
neck	double	%10.0g		Neck circumference (cm)			
chest	double	%10.0g		Chest circumference (cm)			
abdomen	double	%10.0g		Abdomen circumference (cm)			
hip	double	%10.0g		Hip circumference (cm)			
thigh	double	%10.0g		Thigh circumference (cm)			
knee	double	%10.0g		Knee circumference (cm)			
ankle	double	%10.0g		Ankle circumference (cm)			
biceps	double	%10.0g		Extended biceps circumference (cm)			
forearm	double	%10.0g		Forearm circumference (cm)			
wrist	double	%10.0g		Wrist circumference (cm)			

Sorted by:

Xây dựng hồi quy tuyến tính bayes nhằm xác định mối liên quan giữa % mỡ cơ thể (bodyfat) và cân nặng (weight) (pound)

bodyfat = a + b*weight + e

Phân phối của Bodyfat

Xác định Prior trước khi phân tích

- ▶ (Đề cập trong bài sau)
- ▶ Trong ví dụ này Sử dụng Prior mặc định trong stata
- Prior của intercept
- Prior của weight ~ N(0, 10000)
- Prior của sigma² ~ IG(0.01, 0.01) } Phương sai của Bodyfat

bodyfat = a + b*weight + e

▶ Hồi quy tuyến tính bằng OLS

reg bodyfat weight

Xây dựng mô hình bayesian bằng prefix "bayes"

bayes: reg bodyfat weight

- ▶ Stata dùng mặc định chuỗi MCMC gồm:
- o 12500 iterations, burn-in 2500 iterations
- Thinning = 1

```
Model summary
Likelihood:
  bodyfat ~ regress(xb bodyfat,{sigma2})
                                          Prior cho intercept và weight
Priors:
 {bodyfat:weight _cons} ~ normal(0,10000)
                                                                          (1)
                                             Prior cho sigma<sup>2</sup>
                {sigma2} ~ igamma(.01,.01)
(1) Parameters are elements of the linear form xb bodyfat.
Bayesian linear regression
                                                MCMC iterations
                                                                       12,500
Random-walk Metropolis-Hastings sampling
                                                                        2,500
                                                Burn-in
                                                MCMC sample size =
                                                                       10,000
                                                Number of obs
                                                                          251
          Thông số chuỗi MCMC
                                                Acceptance rate =
                                                                        .3335
                                                Efficiency: min =
                                                                         .1092
                                                                         .1432
                                                             avg =
Log marginal likelihood = -830.68517
                                                                         .2096
                                                             max =
```


Note: Default priors are used for model parameters.

▶ Cần chẩn đoán MCMC (MCMC diagnostics) trước khi diễn giải kết quả!

bayesgraph

- bayesgraph cung cấp các biểu đồ tóm tắt kết quả và chẩn đoán chuỗi MCMC
- histogram (pp hậu định cho tham số mô hình)
- o trace
- o ac (autocorrelation)
- kdensity (pp hậu định cho tham số + chia nửa trước, nửa sau của chuỗi MCMC)
- cusum (đánh giá xu hướng chuỗi MCMC)
- R hat (Gelman-Rubin): Khi chạy song song nhiều chuỗi MCMC (Stata ≥ 16)

Chẩn đoán chuỗi MCMC

- MCMC chứa nội dung của toàn bộ mô hình và phải đại diện cho pp hậu nghiệm
- Sử dụng trace plot (chủ yếu)
- ▶ Mục đích:
- Chuỗi MCMC có ổn định hay không?
- Chuỗi MCMC có bị "mắc kẹt" tại điểm nào không?
- Xu hưỡng chuỗi MCMC?

Trace plot

```
# vẽ trace plot cho tham số weight
bayesgraph trace {bodyfat: weight}
# ve trace plot cho tham số intercept
bayesgraph trace {bodyfat: _cons}
# vẽ trace plot cho cả 2 tham số trong 1 hình
bayesgraph trace {bodyfat: _cons} {bodyfat: weight}, byparm
#Vẽ tất cả các tham số
bayesgraph trace _all, byparm
```

Trace plots cho các tham số của mô hình

Một số ví dụ

Auto correlation plot

```
# ve autocorrelation plot cho tham số weight
bayesgraph ac {bodyfat: weight}
# ve autocorrelation plot cho tham số intercept
bayesgraph ac {bodyfat: _cons}
# ve autocorrelation plot cho cả 2 tham số trong 1 hình
bayesgraph ac {bodyfat: _cons} {bodyfat: weight}, byparm
#Vẽ tất cả các tham số
bayesgraph ac _all, byparm
```

Autocorrelations cho các tham số của mô hình

Graphs by parameter

Một số ví dụ

Cumulative sums plot

```
# vẽ cusum plot cho tham số weight
bayesgraph cusum {bodyfat: weight}
# vẽ cusum plot cho tham số intercept
bayesgraph cusum {bodyfat: _cons}
# vẽ cusum plot cho cả 2 tham số trong 1 hình
bayesgraph cusum {bodyfat: _cons} {bodyfat: weight}, byparm
#Vẽ tất cả các tham số
bayesgraph cusum _all, byparm
```

Cusum plots cho các tham số của mô hình

Một số ví dụ

Vẽ phân phối hậu định

```
# vẽ pp hậu định cho tham số weight
bayesgraph hist {bodyfat: weight}
# vẽ pp hậu định cho tham số intercept
bayesgraph hist {bodyfat: _cons}
# vẽ pp hậu định cho cả 2 tham số trong 1 hình
bayesgraph hist {bodyfat: _cons} {bodyfat: weight}, byparm
#Vẽ tất cả các tham số
bayesgraph hist _all, byparm norm
```

Vẽ phân phối hậu định

Vẽ 4 loại biểu đồ trong cùng 1 hình

bayesgraph diagnostics {bodyfat: weight}

Kiểm tra effect sample size

bayesstats ess

Sample size*efficiency

Diễn giải kết quả

bayesstats summary

Posterior summ	mary statist	MCMC sample size = 10,00				
	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	tailed Interval]
bodyfat weight _cons	.1609436 -9.876793	.0130591 2.355601	.000392 .071298	.1611812 -9.944696	.1344475 -14.54835	.1869115 -5.160426
sigma2	37.6969	3.434352	.075021	37.53565	31.47561	44.78007

Cân nặng càng cao tỉ lệ mỡ càng lớn, posterior median of coefficient = 0.16 (95% credible interval = 0.13 – 0.19)

Kiểm định giả thuyết

- ▶ Bộ 3: CompVal, ROPE và Bayes Factor
- CompVal: kiểm tra pp hậu nghiệm với ngưỡng 0
- ROPE: [giả sử] trên thực hành lâm sàng, % mỡ thay đổi theo mỗi pound trọng lượng cơ thể trong khoảng 0 - 0.1 là không có ý nghĩa.
- Bayes factor: tỷ trọng chứng cứ cho giả thuyết H₁: Coef
 > 0.1 vs. H₂: Coef < 0.1 hoặc H₁: Coef > 0.15 vs. H₂:
 Coef < 0.15....
- Bayesian cho phép kiểm tra nhiều giả thuyết mà không gặp phải vấn đề kiểm định nhiều giả thuyết như Frequentist

CompVal

bayestest interval ({bodyfat: weight}, lower(0)) ///

({bodyfat: weight}, lower(0.1)) /// ({bodyfat: weight}, lower(0.15))

- ▶ 100% mật độ xác suất pp hậu nghiệm của hệ số phương trình nằm trên ngưỡng 0 và 0.1
- ▶ 78.4% nằm trên ngưỡng 0.15

ROPE

bayestest interval {bodyfat: weight}, lower(0) upper(0.1)

100% mật độ xác suất pp hậu nghiệm của hệ số phương trình nằm ngoài (nằm ở vùng cao hơn) khoảng ROPE (0 - 0.1)

Bayes Factor

▶ Giả thuyết 1: H₁: Coef > 0.1 vs. H₂: Coef < 0.1</p>

BF[H_1 : H_2] = 100 / 0 = +Inf \rightarrow bằng chứng rất mạnh (gần như chắc chắn) nghiêng về giả thuyết H_1

▶ Giả thuyết 2: H₁: Coef > 0.15 vs. H₂: Coef < 0.15

BF[H₁:H₂] = $78.4 / 21.6 = 3.6 \Rightarrow$ bằng chứng yếu nghiêng về H₁

Tóm tắt

- Xây dựng mô hình bằng "bayes" prefix
- Chẩn đoán chuỗi MCMC (trace plot, autocorrelation, cusum và kdensity oplot) bằng "bayesgraph" prefix
- Kiểm tra các giá trị ESS, DIC...bằng "bayesstats" prefix
- Khai thác thông tin từ pp hậu nghiệm (ước lượng điểm, ước lượng khoảng)
- Kiểm định giả thuyết (CompVal, ROPE và BF) bằng "bayestest" prefix

Bayes t test và Bayes ANOVA

T test và ANOVA

- ► T test và ANOVA cũng là một mô hình hồi quy tuyến tính, mô tả biến phụ thuộc theo biến phân nhóm (2 cho t test và >2 cho ANOVA)
- ▶ Câu hỏi ?
- Tỷ lệ mỡ cơ thể khác biệt như thế nào giữa 2 nhóm
 tuổi và ≥ 50 tuổi
- Tỷ lệ mỡ cơ thể khác biệt như thế nào giữa 3 nhóm
 <30 tuổi, 30 <50 tuổi và ≥ 50 tuổi

t test # tạo nhóm tuổi

gen age_group1 = age >=50

ttest bodyfat, by(age_group1)

reg bodyfat age_group1

		th equal var					Source	SS	df	MS	Number of obs F(1, 249)
Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	Model	438.202937	1	438.202937	Prob > F
0	168	17.95893	.5841245	7.571119	16.80571	19.11215	Residual	14477.3088	249	58.1418023	•
combined	251	18.88765	.4875422	7.733805	19.07875	22.45619 ————————————————————————————————————	Total	14915.5117	250	59.6620469	Adj R-squared Root MSE
diff		-2.808541	1.023028	1172.22	-4.823432	7936504			5.1.5		
diff = n	mean(a) -	mean(1)			+	= -2.7453	bodyfat	Coef.	Std. Err.	t F	P> t [95% Co
o: diff = 0		mean(1)		degrees	of freedom		age_group1 _cons	2.808541	1.023028 .5882875		0.006 .793656 0.000 16.8002
Ha: diff	F < A		Ha: diff !∍	0	Ha: d	liff > b	_00.13	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70.00	

Hệ số phương trình chính là sự khác biệt của nhóm 1 so với nhóm 0 (intercept)

7.54

0.0065

0.0294

0.0255

7.6251

4.823432 19.11758

[95% Conf. Interval]

.7936504

16,80027

Bayes t test

bayes: reg bodyfat age_group1
bayesgraph diagnostics {bodyfat: age_group1}

bayesstats ess #ESS = 909.85, efficiency = 0.0910

Chưa "đủ" hội tụ !!

bayes, mcmcsize(15000) burnin(5000) thinning(5): reg bodyfat age_group1

.8183

15000 * 5 + 5000 = 80000 iterations

bayesgraph diagnostics {bodyfat: age_group1}

bayesstats ess

Log marginal likelihood = -881.10404

#ESS = 7944.8, efficiency = 0.53

bayesstats summary

```
    bayesstats summary

Posterior summary statistics
                                                    MCMC sample size =
                                                                           15,000
                                                                Equal-tailed
                            Std. Dev.
                                          MCSE
                                                    Median [95% Cred. Interval]
                    Mean
bodyfat
  age group1
                2.804369
                            1.035819
                                       .011621
                                                  2.803168
                                                             .7660664
                                                                         4.824244
                17.95994
                            .5975077
                                       .006765
                                                  17.95501
                                                             16.80603
                                                                         19.11968
       cons
      sigma2
                58.54031
                            5.280121
                                       .047658
                                                  58.29911
                                                             49.05023
                                                                         69.73186
```

Trung bình sự khác biệt về % mỡ cơ thể của nhóm trên 50 tuổi so với nhóm dưới 50 tuổi là 2.8, 95%Credible interval = 0.77 – 4.82

Kiểm định giả thuyết

- ▶ [Giả sử] trong thực hành lâm sàng, sự khác biệt % mỡ cơ thể từ 0 0.5 % là không có ý nghĩa
- \circ ROPE = [0 0.5]
- H1: sự khác biệt giữa 2 nhóm > 0.5
- H2: sự khác biệt giữa 2 nhóm < 0.5
- BF [H₁:H₂]

- 0.35% pp hậu định nằm
 dưới ROPE
- ▶ 1.09% nằm trong ROPE
- ▶ 98.56% nằm trên ROPE
- ▶ BF = 98.56/1.44 = 68.44
- →Bằng chứng mạnh cho thấy TB % bodyfat nhóm trên 50 tuổi cao hơn trên 0.5% so với nhóm dưới 50 tuổi (BF)

Nhóm trên 50 tuổi có TB % bodyfat cao hơn nhóm dưới 50 tuổi có ý nghĩa trên thực hành lâm sàng (ROPE)

bayestest interval {bodyfat: age_group1}, lower(0) upper(0.5)

ANOVA

tạo nhóm tuổi 2

recode age (min/29.99 = 1) (30/49.99 = 2) (50/max = 3), gen(age_group2)

group	n
< 30	36
30 - 50	132
≥ 50	83

Frequentist ANOVA

oneway bodyfat age_group2, tab

. oneway boo	dyfat age_group	p2, tab			
RECODE of	Su	ummary of %			
age (yrs)	Mean	Std. Dev.	Freq.		
1	14.422222	6.9497014	36		
2	18.923485	7.4696317	132		
3	20.76747	7.7338046	83		
Total	18.887649	7.7241211	251		
	Ana	alysis of Va	riance		
Source	SS	df	MS	F	Prob > F
Between group	os 1011.3 :	1013 2	505.655063	9.02	0.0002
Within group	1 3904.	2016 248	56.065329		
Total	14915.	5117 250	59.6620469		
Bartlett's te	est for equal v	variances:	chi2(2) = 0	.5433 Pro	b>chi2 = 0.762

qui anova bodyfat age_group2 pwcompare age_group2 , mcompare(tukey) effects

reg bodyfat i. age_group2

Pairwise comparisons of marginal linear predictions						
Margins	: asbalanced					
	Number of Comparisons					
age_group2	3					
	post-hoc	của AN	OVA 1	theo T	ukey	
	Contrast	Std. Err.		key P> t	Tuk [95% Conf.	ey Interval]
age_group2 2 vs 1 3 vs 1 3 vs 2	4.501263 6.345248 1.843985	1.407873 1.494274 1.048915	3.20 4.25 1.76	0.004 0.000 0.186	1.181676 2.821939 6292238	7.820849 9.868557 4.317194

	. reg bodyfat	i.age_group2						
	Source	SS	df	MS	Numbe	Number of obs		251
ŀ					F(2,	248)	=	9.02
	Model	1011.31013	2	505.655063	Prob	> F	=	0.0002
	Residual	13904.2016	248	56.065329	R-sqi	uared	=	0.0678
					- Adj F	R-squared	d =	0.0603
	Total	14915.5117	250	59.6620469	Root	MSE	=	7.4877
	bodyfat	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
	age group2							
	2	4.501263	1.407873	3.20	0.002	1.728	349	7.274176
	3	6.345248	1.494274	4.25	0.000	3.4021	161	9.288334
	-		· - · ·			_,,		
	_cons	14.42222	1.247946	11.56	0.000	11.96	543	16.88015

Sử dụng hồi quy tuyến tính theo frequentist không so sánh trực tiếp được nhóm 2 với 3

Bayes ANOVA

bayes, mcmcsize(15000) burnin(5000) thinning(5): reg bodyfat i.age_group2

	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	_
bodyfat age_group2						
2	4.502771 6.32463	1.403737 1.484915	.019137 .019321	4.493358 6.322721	1.753398 3.439987	7.266821 9.260628
_cons	14.43133	1.241195	.015841	14.43495	11.9848	16.85628
sigma2	56.47605	5.102202	.046836	56.14959	47.3546	67.13833

Không có nhóm 3 (>50 tuổi) vs. nhóm 2 (30-50 tuổi) ??

Note: Default priors are used for model parameters.

Trong bayesian, chuỗi MCMC chứa đựng toàn bộ thông tin của mô hình, và mỗi tham số có riêng 1 chuỗi. Chuỗi 3 chứa thông tin nhóm >50 vs < 30, chuỗi 2 chứa thông tin nhóm 30-50 vs < 30

→ Lấy thông tin nhóm 3 so với nhóm 2 (>50 vs 30-50) bằng cách lấy chuỗi 3 – chuỗi 2 !!!

Trace plot

bayesgraph trace {bodyfat: 2.age_group2} {bodyfat: 3.age_group2}

(age3_2: {bodyfat: 3.age_group2} - {bodyfat: 2.age_group2}), byparm

tinh effect sample size

bayesstats ess {bodyfat: 2.age_group2}

{bodyfat: 3.age_group2} (age3_2:

{bodyfat: 3.age_group2} - {bodyfat:

2.age_group2})

	ESS	Corr. time	Efficiency
bodyfat age_group2			
2	5380.48	2.79	0.3587
3	5906.71	2.54	0.3938
age3_2	6062.48	2.47	0.4042

bayesstats summary {bodyfat: 2.age_group2} {bodyfat: 3.age_group2}

(age3_2: {bodyfat: 3.age_group2} - {bodyfat: 2.age_group2})

```
Posterior summary statistics
                                                    MCMC sample size =
                                                                           15,000
      age3 2 : {bodyfat:3.age_group2} - {bodyfat:2.age_group2}
                                                                Equal-tailed
                    Mean
                            Std. Dev.
                                          MCSE
                                                    Median
                                                            [95% Cred. Interval]
bodyfat
  age group2
                4.502771
                            1.403737
                                        .019137
                                                  4.493358
                                                             1.753398
                                                                         7.266821
                 6.32463
                            1.484915
                                        .019321
                                                  6.322721
                                                             3.439987
                                                                         9.260628
                                        .01341
      age3 2
                1.821859
                             1.04413
                                                  1.826822
                                                            -.2584381
                                                                         3.870804
```

Trung bình sự khác biệt về % mỡ cơ thể của nhóm:

- 30-50 vs. < 30 tuổi: 4.5 (95% credible interval = 1.75 7.27)
- > 50 vs. < 30 tuổi: 6.3 (95% CI = 3.44 − 9.26)
 </p>
- \circ > 50 vs. 30-50 tuổi: 1.8 (95% CI = -0.26 3.87)

Kiểm định giả thuyết

bayestest interval {bodyfat: 2.age_group2}, lower(-0.5) upper(0.5)

Kiểm định giả thuyết (2)

bayestest interval {bodyfat: 3.age_group2}, lower(-0.5) upper(0.5)

Kiểm định giả thuyết (3)

bayestest interval (age3_2: {bodyfat: 3.age_group2} - {bodyfat: 2.age_group2}),

lower(-0.5) upper(0.5)

$$BF_1[>0.5 : < 0.5] = 90.24/9.76 = 9.25$$
 \rightarrow bằng chứng yếu ủng hộ $H(>0.5)$

bayestest interval (age3_2:

{bodyfat: 3.age_group2} -

{bodyfat: 2.age_group2}), lower(0)

95.99 %

 $BF_1[>0:<0] = 95.99/4.01 = 23.94$ \rightarrow bằng chứng mạnh ủng hộ H(>0)

Tóm tắt

- ▶ Bayes t test và ANOVA có thể thực hiện thông qua hồi quy tuyến tính Bayes
- ▶ Tăng cỡ mẫu MCMC khi MCMC chưa hội tụ
- ▶ Thông tin chứa trong chuỗi MCMC có thể được sử dụng như một biến số thực sự (cộng, trừ, nhân, chia, chuyển dạng ...)

Thank you!