Some new approaches to volition

Patrick Haggard Institute of Cognitive Neuroscience University College London

and
Institute of Philosophy
School of Advanced Study
University of London

Internallygenerated

Externallytriggered

'free will' ← reflex

"freedom from immediacy" (Shadlen)

Smart action ← Stereotypy

Readiness Potential (Kornhuber and Deecke 1966)

Methodological difficulties

(e.g., Libet, 1985, BBS target article)

- No experimental control of input
- Measurement approach is poor

Instruction is strange:
 'make a voluntary action when you feel like it'

"But that's not what we mean by volition"

Volition: Key features	Neuroanatomical constraint
Leads to movement	Strong connections <u>to</u> motor areas
Reasons-responsive	Strong connections from reward areas
Outcome-directed	Strong connections to networks for planning, and monitoring
No obvious trigger stimulus (non-reflexive)	Weak connections from sensory areas Connections from memory areas??
Innovative/ spontaneous	Relative <u>independence from</u> subcortical "habitual" circuits
Characteristic subjective experience?	Neural basis remains controversial

No single feature is necessary, but a subset may be jointly sufficient for an action to be 'voluntary'

Roadmap

1. What brain events precede volitional action?

2. Are these events *uniquely* associated with the conscious intention to move?

Roadmap

1. What brain events precede volitional action?

2. Are these events *uniquely* associated with the conscious intention to move?

Is RP just averaged noise?

Leaky stochastic accumulator model

$$\delta x_i = (I - kx_i)\Delta t + \xi i \sqrt{\Delta t_i}$$

Perceptual decision-making task

www.shadlenlab.columbia.edu

Press right or left key as soon as coherent dot motion begins

Long, variable WAIT: for dot motion onset

Stimulus-driven response

Stimulus-driven response

\$\$\$\$\$\$\$

"Volitional" actions... Press right or left key as soon as coherent motion begins

WAIT: for dot motion onset

Or, press both keys to 'skip' to next trial

Skip" response:

Stimulus-driven response

Stimulus-driven response

Small reward

"Skip" response: Embedded volition

"Skip" response: Embedded volition

Control block: Instructed skip response

Fixation cross changes colour during the trial

No assumptions about RP onset time: baseline-corrected at time of action

No assumptions about RP onset time: baseline-corrected at time of action

Individual-trial RPs

- Convergence on fixed precursor of voluntary action
- Putative internal volitional signal?

Noise control model: Khalighinejad et al, in prep.

Expt 2. Deliberation for volitional action

Less habitual, more deliberately chosen

Expt 3. Varying the value of volitional action

Expt 3. Varying the value of volitional actions

Behavioural results

Expt 3. Varying the value of volitional actions

Expt 3. Varying the value of volitional actions

 Higher skip value produces earlier onset of EEG convergence (stronger preparation?)

One-sample, one-tailed t-test, correction for 8 comparisons Cluster-based permutation test: significance for high value skips

Interim conclusions

- New operational definition of volition and RP
 - Internally-generated and reasons-responsive

Neural precursor:
 Consistent convergence of brain activity before volitional action

Roadmap

1. What brain events precede volitional action?

2. Are these events *uniquely* associated with the conscious intention to move?

- RPs are based on biased sampling because we only show the brain activity time-locked to the action
- Are there "unconsummated" RPs happening all the time?
- In which case RPs cannot be a sufficient cause...

- Repetitive serial visual presentation
- Press the key when you feel like it (self-paced)
- "But if you see an orange letter and you were about to move, then move immediately, otherwise don't respond" cf Matsuhashi and Hallett, 2008

Action-locked analysis

- Some orange letters prompted early action, truncating the RP
- This interrupted a volitional premotor process partway through

Locked to (orange) probe letter

- Distinct and reportable experience of intention prior to spontaneous intention
- Dual thresholds for conscious intention: latent threshold & spontaneous threshold
- RP like signals are largely absent in the absence of an (at least latent) intention RP-like signals are specifically associated with experience of being about to move
- Latent awareness is associated with RP

Conclusions

- Consistent neural precursors of volitional action
- Are these precursors specific to volition?
 Maybe
- Conscious volition is not only retrospectively confabulated post hoc, but may involve realtime readout of neural precursors
- The will may not be free, but there is a bona fide neurocognitive process of volition, with some associated phenomenology

Precursors of voluntary action

Nima Khalighinejad Aaron Schurger Leor Zmigrod Andreas Desantis + Alex Dorgham, Emma Cawley, Elisa Brann http://biorxiv.org/content/early/2017/03/24/120105

Latent awareness

Elisabeth Pares

Haggard P (2017). Sense of agency in the human brain. Nature Reviews Neuroscience

Thank you