Redes de Computadores

Análise e Desenvolvimento de Sistemas 1º Semestre 2025

Parte 2

Camada Física

Prof. Alencar de Melo Júnior, Dr. Eng. alencar@iftm.edu.br

Camada Física

Objetivos

- Descrever a finalidade e as funções da Camada Física na rede.
- Apresentar critérios de comparação de meios físicos.
- ·Identificar as características básicas do cabeamento de cobre.
- Descrever o cabeamento UTP e suas principais categorias
- Descrever o cabeamento de fibra óptica e suas principais vantagens em relação a outros meios físicos.
- •Discutir as propriedades do meio físico *wireless* e as suas principais tecnologias.

Propósito da Camada Física

A conexão física

- •A Camada Física trata da geração de sinais e de sua propagação através do meio físico.
- •Antes que qualquer comunicação de rede possa ocorrer, é necessário estabelecer uma conexão física com uma rede local.
- •Essa conexão pode ser com ou sem fio, dependendo da configuração da rede. Isso geralmente se aplica se você está considerando um escritório corporativo ou uma casa, por exemplo.
- •As placas de interface de rede (NICs) conectam um dispositivo à rede.
- •Alguns dispositivos podem ter apenas uma NIC, enquanto outros podem ter várias NICs (com fio e/ou sem fio).
 - •Exemplo de dispositivo com várias NICs: roteador.

Propósito da Camada Física

A Camada Física

- •Transporta bits através da mídia de rede.
- •Ela aceita um quadro completo da camada de enlace de dados e o codifica como uma série de sinais que são transmitidos para o meio físico local.
- •Este é o último passo no processo de encapsulamento.
- •O próximo dispositivo no caminho para o destino recebe os bits e desencapsula o quadro e decide o que fazer com ele.

Características da Camada Física

- •Os padrões da camada física abordam três áreas funcionais:
 - Componentes Físicos
 - Codificação
 - Sinalização
- •Os componentes físicos são dispositivos de hardware eletrônicos, meios físicos e outros conectores que transmitem e transportam os sinais para representar os bits.
- •Os componentes de hardware, como NICs, interfaces e conectores, materiais de cabos e projetos de cabeamento são especificados nos padrões associados à camada física.

Protocolos de Camada Física

Características da Camada Física

Codificação

NRZ (Non-Return-to-Zero)

NRZ inverso (NRZI)

Manchester

(Clock com XOR nos bits)

Meios Físicos

Critérios para Avaliação de Meios de Transmissão

- Largura de banda (100 Mbps, 1 Gbps...);
- Atenuação do sinal (par trançado vai até 100 m sem repetidor);
- Imunidade à interferências;
- Potencial para conexão multiponto ou ponto a ponto;
- Confiabilidade;
- Disponibilidade de componentes;
- Custos: do meio, das interfaces e da mão de obra.

Características dos meios físicos em cobre

•O cabeamento de cobre **é o tipo mais comum** de cabeamento usado nas redes hoje em dia. É barato, fácil de instalar e tem baixa resistência ao fluxo de corrente elétrica.

Limitações:

- •Atenuação: quanto maiores as distâncias que sinais elétricos têm que percorrer, mais fracos ficam.
- •Interferências: o sinal elétrico é suscetível a interferência de duas fontes externas, que podem distorcer e corromper os dados, a Interferência Eletromagnética (EMI) e Interferência de Radiofrequência (RFI). O Crosstalk é um tipo de interferência eletromagnética interna ao cabo.

•Mitigação:

- •A adesão estrita aos limites de comprimento do cabo reduzirá a atenuação.
- •Alguns tipos de cabos de cobre atenuam EMI e RFI usando blindagem metálica e aterramento.
- •Alguns tipos de cabo de cobre atenuam o *crosstalk* torcendo pares de fios de modos diferentes.

Tipos de cabeamento de cobre

Unshielded Twisted-Pair (UTP) Cable

Shielded Twisted-Pair (STP) Cable

Coaxial Cable

Cabos coaxiais (10 Base 2 e 10 Base 5) estão obsoletos em LANs modernas, devido principalmente à velocidade limitada e manutenção complexa.

Propriedades de cabeamento UTP

O **UTP** possui quatro pares de fios de cobre com código de cores torcidos juntos e envoltos em uma bainha de plástico flexível. Nenhuma blindagem é usada. UTP depende das seguintes propriedades para limitar o *crosstalk*:

- •Cancelamento: cada fio em um par de fios usa polaridade oposta. Um fio é negativo, o outro é positivo. Eles são torcidos juntos e os campos magnéticos efetivamente cancelam uns aos outros.
- •Variação de torções em cada par: cada par é torcido uma quantidade diferente, o que ajuda a evitar *crosstalk* entre os fios no cabo.

Padrões e conectores de cabeamento UTP

As normas para UTP são estabelecidas pelo TIA/EIA. **TIA/EIA-568** padroniza elementos como:

- Tipos de cabo
- Comprimentos de cabo
- Conectores
- Terminação de cabo
- Métodos de ensaio

Os padrões elétricos para cabeamento de cobre são estabelecidos pelo IEEE, que classifica o cabo de acordo com seu desempenho. Por exemplo:

- Categoria 3
- Categorias 5 e 5e
- Categorias 6, 7 e 8

Category 5 and 5e Cable (UTP)

Category 6 Cable (UTP)

Cabos UTP direto e cruzado

Tipo do Cabo	Padrão	Aplicação
Ethernet Direto	Ambas as extremidades T568A ou T568B	Host para dispositivo de rede
Ethernet Cruzado	Uma extremidade é T568A, outra é T568B	Host para host, switch para switch, roteador para roteador

Cabos UTP em Redes Ethernet

Comparativo: Cabos UTP em Redes Ethernet

Categor	Ethernet Suportado	Frequênc ia	Velocidade Máxima	Aplicações
Cat 5e	100BASE-TX, 1000BASE-T	100 MHz	1 Gbps	Redes domésticas/escritórios
Cat 6	1000BASE-T, 10GBASE-T*	250 MHz	10 Gbps (55 m)	Redes corporativas
Cat 6a	10GBASE-T	500 MHz	10 Gbps (100 m)	Data centers, alta velocidade
Cat 7	10GBASE-T, 40GBASE-T*	600 MHz	10-40 Gbps	Infraestrutura crítica
Cat 8	25GBASE-T, 40GBASE-T	2 GHz	25/40 Gbps (30 m)	Data centers de alto desempenho

Notas:

- Cat 6: 10 Gbps até 55 m; Cat 6a: 10 Gbps até 100 m
- Cat 7/8: Blindagem individual (S/FTP)
- Retrocompatíveis (ex.: Cat 8 funciona em redes 1 Gbps)

Cabeamento de fibra ótica

Propriedades

- Não tão comum como UTP por causa dos custos envolvidos.
- •Ideal para muitos cenários de rede.
- •Transmite dados por distâncias maiores com largura de banda maior do que qualquer outra mídia de rede.
- •Menos suscetíveis à atenuação e completamente imunes ao EMI/RFI.
- Feito de fios flexíveis e extremamente finos de vidro ou plástico.
- •Usa um laser ou LED para codificar bits como pulsos de luz.
- •O cabo de fibra óptica atua como um guia de ondas para transmitir luz entre as duas extremidades com perda mínima de sinal.

Cabeamento de fibra ótica

Aplicações

O cabeamento de fibra óptica é usado principalmente em:

- **1.Redes corporativas:** usadas para cabeamento de *backbone* e dispositivos de infraestrutura de interconexão.
- **2.Fiber-to-the-Home (FTTH)**: usadas para fornecer serviços de banda larga sempre ativos para casas e pequenas empresas.
- **3.Redes de longo alcance:** utilizadas por provedores de serviços para conectar países e cidades.
- **4.Redes de cabos submarinos:** utilizadas para fornecer soluções confiáveis de alta velocidade e alta capacidade em ambientes submarinos adversos até distâncias transoceânicas.

Cabeamento de fibra ótica

Fibra versus cobre

Características	Cabeamento UTP	Cabeamento de fibra óptica
Largura de banda suportada	10 Mb/s - 10 Gb/s	10 Mb/s - 100 Gb/s
Distância	Relativamente curto (1 a 100 metros)	Relativamente longo (1 - 100.000 metros)
Imunidade a interferência eletromagnética e de frequências de rádio	Baixa	Alto (totalmente imune)
Imunidade a perigos elétricos	Baixa	Alto (totalmente imune)
Custos da mídia e dos conectores	Menor	Mais alta
Habilidades necessárias para a instalação	Menor	Mais alta
Precauções de segurança	Menor	Mais alta

Propriedades do meio físico sem fio

- As redes sem fio transmitem dados por meio de sinais eletromagnéticos, que codificam informações binárias (0s e 1s) utilizando frequências de rádio (ex.: Wi-Fi, Bluetooth) ou micro-ondas (ex.: 5G, enlaces ponto a ponto). Isso fornece a melhor opção de mobilidade.
- •Essas ondas se propagam pelo ar sem necessidade de um meio físico, como cabos, fornecendo alta mobilidade.
- Algumas das limitações do wireless:
 - •Área de cobertura: a cobertura efetiva pode ser significativamente afetada pelas características físicas do local de implantação.
 - •Interferência: o wireless é suscetível a interferência e pode ser interrompido por muitos dispositivos comuns que operam na mesma frequência.
 - Segurança: não requer acesso a uma parte física da mídia.
 - •WLANs típicas operam em *half-duplex*, o que significa que em um dado momento um dispositivo só pode transmitir ou receber (meio compartilhado).

Padrões Wireless

- Os padrões do IEEE e do setor de telecomunicações para comunicação de dados sem fio cobrem tanto a camada de Enlace quanto a Camada Física. As especificações da Camada Física incluem:
 - Métodos de codificação de dados para sinais de rádio;
 - Frequência e potência de transmissão;
 - Requisitos de recepção e decodificação de sinal;
 - Projeto e construção de antenas.

Padrões Sem Fio:

- •Wi-Fi (IEEE 802.11): tecnologia de LAN sem fio (WLAN).
- •Bluetooth (IEEE 802.15.1): voltado para comunicação pessoal de curto alcance (WPAN).
- •WiMAX (IEEE 802.16): voltado para fornecer acesso sem fio de banda larga (WMAN).
- •Zigbee (IEEE 802.15.4): voltado para omunicações com baixa taxa de dados e baixo consumo de energia, principalmente para aplicações de Internet das Coisas (IoT). Baterias podem durar anos.

- Principais dispositivos de uma WLAN:
 - Access Point Wireless (Ponto de Acesso ou AP): concentra os sinais sem fio dos usuários e se conecta, geralmente por meio de um cabo de cobre, a uma infraestrutura de rede de cobre existente, como a Ethernet.
 - Adaptadores Wireless (NIC): fornecem recursos de comunicação sem fio para hosts de rede.
- Existem vários padrões de WLAN. Ao adquirir equipamentos WLAN, garanta compatibilidade e interoperabilidade.
- Os administradores de rede devem desenvolver e aplicar políticas e processos de segurança rigorosos para proteger as WLANs contra acessos não autorizados.

WLAN

Exercícios

- 1. Qual é a finalidade principal da Camada Física no modelo OSI?
- 2. Quais são as funções básicas desempenhadas pela Camada Física?
- 3. Compare cabo UTP, fibra óptica e *wireless* em termos de: velocidade, alcance, suscetibilidade a interferências.
- 4. Em quais cenários o cabo de cobre é mais vantajoso que a fibra óptica?
- 5. O que significa UTP e qual sua diferença para cabos blindados (STP/FTP)?
- 6. Explique a diferença entre fibra monomodo e multimodo.
- 7. Em quais situações a fibra óptica é indispensável em redes?
- 8. Como o Wi-Fi e o Bluetooth diferem em termos de alcance, taxa de dados e aplicação?
- 9. Por que redes sem fio operam em half-duplex?
- 10. Se um cabo UTP sofre muita interferência em um ambiente industrial, qual alternativa você recomendaria e por quê?

Agradecimento

Slides adaptados a partir de material utilizado em disciplina ministrada em conjunto com o Prof. Dr. Júlio Pedroso no IFSP Câmpus Campinas.