Université Mohammed V Faculté des Sciences Département de Mathématiques Rabat.

Année 2019-2020 Filière SMI Module 18 Statistique & Probabilité

Série Probabilité

- $\underline{EX~1}$; Déterminer l'ensemble Ω pour les expériences suivantes :
 - a) Prélever une pièce fabriquée dans un lot et observer si elle est bonne ou défectueuse. b) Chronomètrer une opération manuelle en notant le temps requis pour la réaliser.
 - c) Vérifier le taux de comptage d'un sol à l'aide de la densité maximale en pourcentage.
- d) Vérifier l'affluence à une station de péage d'une autoroute en notant le nombre de voitures arrivant par EX 2 : Une enquête effectuée auprès de 400 étudiants portant sur la lecture de deux publications hebdoma-
- daires, "Le Journal" et "Al Ayam" a donné les résultats suivants : 165 lisent "Le Journal", 246 lisent "
- a) Si un de ces étudiants est choisi au hasard, Quelle est la probabilité qu'il lise l'un ou l'autre de ces deux Al Ayam " et 90 lisent les deux.
- hebdomadaires?
- c) Denner en notation ensembliste " Ne lire m Le Journal ni Al Ayam " et calculer la probabilité de cet
- $\overline{\text{EX 3}}$: On permute au hasard les 20 tomés d'une encyclopédie. Soit Ω l'ensemble de toutes les permutations.
- b) Calculer la probabilité que les tomes 1 et 2 se retrouvent côte à côte dans cet ordre. EX 4 : Un étudiant s'habille très vite le matin et prend au hasard un pantalon, un tee-shirt et une paire de chaussettes. Il y a ce jour-là dans l'armoire 5 pantalons dont 2 noirs, 6 tee-shirt dont 4 noirs, 8 paires de chaussettes, dont 5 paires noires
 - a) Combien y-a-t-il de façons de s'habiller?
 - b) Quelles sont les probabilités des événements suivants :
 - α) Il est tout en noir.
- $\underline{\text{EX 5}}$: Une urne contient quatre boules indiscernables au toucher, trois boules rouges portent les numéros 1, 1, 2 et une verte porte le numéro 2. On tire successivement deux boules de l'urne. On considère les événements,
 - A : événement " Les boules tirées sont de même couleurs "
 - B : événement " Le produit des nombres portés par les deux boules tirées est pair"
 - 1) On suppose que le tirage des deux boules se fait avec remise.
 - a) Déterminer le cardinal de Ω .
 - b) Calculer la probabilité des événements A et B.
- c) Sachant que les deux boules tirées sont de la même couleur, quelle est la probabilité pour qu'elles portent des nombres ayant un produit pair.
 - 2) Même question que 1) en supposant que le tirage des deux boules se fait sans remise.
- EX 6 : Une urne contient 5 boules blanches, 3 boules noires et 2 boules rouges. On tire simultanément trois boules. Calculer la probabilité d'obtenir :
 - α) une boule blanche et 2 boules noires.
- β) une boule blanche et une boule noire et une boule rouge. EX 7 : Dans un jeu de 52 cartes mélangées, une main est formée de 5 cartes au hasard.
 - a) Combien de main de 5 cartes peut-on former?.
 - b) Calculer la probabilité que la main contienne :
 - α) Exactement 3 cartes de la même couleur.

7) deux genres apparaissent exactement deux fois. EX 8 : Dans une usine les ouvriers forment trois groupes de relais. Le groupe G_1 travaille de 8^h à 16^h , le groupe G_2 travaille de 16^h à 24^h et le groupe G_3 travaille de 00^h à 8^h . Chaque jour il y a 1% des articles produit par G_1 , 2% des articles produit par G_3 et 5% des articles produit par G_3 qui sont défectueux. Supposons que tous les groupes produisent le même nombre d'articles. a) Déterminer la probabilité qu'un article pris au hasard soit produit par le groupe G_i .

b) Calculer la probabilité qu'un article pris au hasard soit défectueux.

c) Un article est défectueux. Calculer la probabilité qu'il soit produit par G_3 . EX 9 : Dans une population dont le tiers sont des tricheurs. on fait tirer une carte de jeu de 52 cartes à un individu et on admet que si cet individu est un tricheur, il est sûr de retourner un as.

a) Déterminer la probabilité qu'un individu choisi au hasard soit un tricheur.

b) Calculer la probabilité qu'un individu choisi au hasard retourne un as.

c) Calculer la probabilité que l'individu choisi soit un tricheur sachant qu'il a retourné un as-EX 10 : Pour détecter une certaine maladie, les médecins font faire un test au patient. Si ce dernier est malade, le test donne un résultat positif dans 99% des cas. Cependant, il arrive qu'un patient bien portant obtienne un résultat positif dans 2% des cas. Les résultats montrent qu'un patient sur mille souffre de cette maladie.

a) Déterminer la probabilité qu'un patient soit malade.

b) Calculer la probabilité pour qu'un patient, ayant obtenu un résultat de test positif soit malade.

EX 11 : Ali, Aicha et Jawad ont tous les trois la clé du local de leur club.

La probabilité, qu' Aicha arrive au local avant 19 heures est 0.6 et la probabilité que Jawad y arrive avant 19 heures est 0.85. Ali arrive à 19 heures. Il voit de loin que la lumière est allumée, il en déduit qu'au moins un de ses camarades est déja là.

a) Quelle est la probabilité qu'Aicha et Jawad soient là tous les deux?

b) Quelle est la probabilité que l'un des deux, soient là? (Pas tous les deux)

EX 12 : La boule d'un billard électrique arrivant en A peut emprunter six trajectoires. Une de ces trajectoires la mène à un emplacement B, deux la mènent à un emplacement C et les trois autres à un emplacement D. Si la boule arrive en B le joueur gagne 3 points, si elle arrive en C il gagne 1 points et si elle arrive en D il perd 1 points. Soit X la v.a gain ou perte du joueur au cours d'une partie et soit Y la v.a gain ou perte du joueur au cours de deux parties. Les six trajectoires sont équiprobables.

a) Déterminer la loi de probabilité de X.

b) Déterminer la fonction de répartition de X et tracer son graphe.

c) Déterminer la loi de probabilité de Y.

d) Calculer la probabilité de (X=1) sachant (Y=2).

 $\underline{\mathrm{EX}\ 13}$: Soient X et Y deux v.a telles que $Y=X^2$ et que la loi de X est donnée par le tableau :

x_i	-2	-1	0	1	
p_i	1/6	1/4	1/6	1/4	1/6

a) Déterminer la loi de Y.

b) Déterminer la loi conjointe de X et Y et la loi marginale de Y.

c) Les v.a X et Y sont-elles indépendantes?

EX 14: Une urne A contient quatre jetons numérotés 1, 2, 3 et 3; et une urne B contient cinq jetons numérotés 1, 1, 2, 2 et 3. On tire deux jetons, l'un de l'urne A et l'autre de l'urne B. On appelle X la v.a le nombre porté par le jeton tiré dans l'urne A et Y la v.a le nombre porté par le jeton tiré dans l'urne B. (les tirages sont équiprobables)

a) Donner la loi de probabilité du couple (X, Y) et de la v.a Z = X + Y.

b) Calculer la probabilité de (X = 3) sachant (Z = 4).

c) Les v.a X et Z sont-elles indépendantes?

EX.15; Calculer l'espérance mathématique, la variance et l'écart-type des v.a : X de l'exercice 12, Y de

l'exercice 13 et Z de l'exercice 14.

EX 16 : On pose 20 questions à un candidat. Pour chaque question, 6 réponses sont proposées dont une seule EX 16 : On pose 20 questions a un canada que des réponses proposées. On lui attribue 1 point par bonne est la bonne. Le candidat choisit au hasard une des réponses proposées. On lui attribue 1 point par bonne a) Déterminer la loi de probabilité de X et la probabilité d'obtenir 5 réponses justes.

réponse. Soit X la v.a le nombre de points obtenus.

c) Quelle est la probabilité que la réponse à la 5 eme question soit la première réponse juste? Ex 17: Soient X une v.a qui suit la loi binomiale de paramètre (6, 0.1) et Y la v.a définit par :

$$Y = \left\{ \begin{array}{ll} 0 & \text{si} & X \text{ est impaire} \\ 1 & \text{si} & X \text{ est paire} \end{array} \right.$$

 E_{X} 18 : On considère une entreprise de construction produisant des objets sur deux chaines de montage A et \overline{B} qui fonctionnent indépendamment l'une de l'autre. Pour une chaine donnée, les fabrications des pièces sont

On suppose que A produit 60% des objets et B produit 40% des objets. La probabilité qu'un objet construit indépendantes. par la chaine A soit défectueux est 0.1 alors que la probabilité pour qu'un objet construit par la chaine B soit

On choisit au hasard un objet à la sortie de l'entreprise. On constate que cet objet est défectueux. Calculer défectueux est 0.2.

On suppose de plus que le nombre d'objets produits en une heure par A est une variable aléatoire Y qui la probabilité de l'événement "l'objet provient de la chaine A". suit une loi de Poisson de paramètre $\lambda=20.$ On considère la variable aléatoire X représentant le nombre d'objets défectueux produits par la chaine A en une heure.

Rappeler la loi de Yainsi que la valeur de l'espérance et de la variance de Y . Soient k et n deux entiers naturels, déterminer la probabilité conditionnelle P(X=k/Y=n). (On

En déduire, en utilisant le système complet d'événements $(Y=i)_{i\in\mathbb{N}},$ que X suit une loi de Poisson de distinguera les cas $k \le n$ et k > n).

 $\underline{\underline{\mathrm{Ex}}}$ 19 : Dans un lot de "systèmes d'alarme" 8% sont défectueux. On choisit au hasard un échantillon de 100 systèmes pour les tester. Soit X le nombre de systèmes défectueux dans cet échantillon.

a) Déterminer la loi de probabilité de X. b) Calculer de deux façons la probabilité que 5 systèmes soient défectueux.

 $\underline{\text{Exercice 20}: Soit X une v.a réelle admettant la densité de probabilité } f(x) = \begin{cases} 0 & \text{si } x < -1 \\ x+1 & \text{si } -1 \leq x \leq 0 \\ -x+1 & \text{si } 0 \leq x \leq 1 \end{cases}$

a) Vérifier que f est une densité de probabilité.

b) Déterminer la fonction de répartition de X. Calculer E(X) et V(X).

Exercice 21 : Soit X une v.a de loi uniforme, $X \sim \mathcal{U}([0, 1])$.

a) Déterminer la fonction de répartition de la v.a $Y=4\,X+3$ et sa densité.

b) En déduire la loi de probabilité de Y et donner son espérance et sa variance.

Exercice 22 : Soit X une v.a de loi normale, $X \sim \mathcal{N}(0, 1)$, de fonction de répartition Φ_X .

a) Déterminer la fonction de répartition de la v.a Y=|X| en fonction de Φ_X .

Exercice 23 : La taille des habitants d'un village suit la loi normale de moyenne $m=167\,\mathrm{cm}$ et d'écart-type $\sigma=3\,cm.$ Qu'elle est le pourcentage des hommes qui ont une taille : c) Inférieure à 159.65 cm?

a) Inférieure à 170.69 cm?

b) Supérieure à 167 cm?

PLA PLA PLAN

d) Comprise entre 161.24 cm et 173.12 cm?

Exercise 24: Soit (X, Y) un vecteur aléatoire gaussien dans R² centré et de matrice de variance.

que la densité du vecteur aléatoire (X, Y) est : $\frac{1}{1-\rho^2} \exp \left[-\frac{1}{2(1-\rho^2)} \left(x^2 + y^2 - 2 \rho x y \right) \right]$

b) Soit (Z, Q) le vecteur alestoire défini par $Z = \frac{1}{\sqrt{2}}$ et $Q = \frac{\sqrt{2}}{\sqrt{2}}$.

1) Calculer E(Z), E(Q), V(Z), V(Q) et Cov(Z, Q). En déduire la matrice de variance-covariance de b) Soit (Z,Q) le vecteur aléatoire défini par $Z=\frac{(X+Y)}{\sqrt{2}}$ et $Q=\frac{(X-Y)}{\sqrt{2}}$

(Z,Q), Σ_1 .

2) Calculer la densité du vecteur aléatoire (Z,Q). Le vecteur aléatoire (Z,Q) est-il gaussien? justifier la (Z, Q), E1.

3) Les variables aléatoires Z et Q sont-elles indépendantes ?

4) En décluire les densités des variables aléatoires Z et Q ainsi que leurs lois.

Ex 25 : Dans une chasse, on sait qu'un quart des faisans a été élevé par l'homme puis remis en liberté (on fait

Après une partie de chasse, on constate que parmi trois faisans tues il y a un faisan d'élevage et deux porter à ces oiseaux une bague pour pouvoir les reconnaître).

On note S l'événement " être un faisan sauvage " et T l'événement "être tué "

ii) On sait de plus qu'il y'a au cours de la chasse un faisan tué sur six parmi les faisans d'élevage. faisans sauvages.

Quelle est la probabilité qu'un faisan se fasse tuer sachant qu'il est sauvage?

<u>Indication</u>: Vous pouvez exprimer la probabilité d'être tué en fonction de la probabilité demandée.

 $\underline{\text{Ex } 26}$: Dans un amphithéâtre de n étudiants, la probabilité qu'un étudiant sache son cours est p $(p \in]0, 1]$). La probabilité qu'un étudiant qui sait son cours sache faire l'exercice en contrôle continu est β ($\beta \in]0, 1]$). Un étudiant qui connaît son cours et qui réussit l'exercice aura une bonne note. On définit les événements suivants:

A:"l'étudiant sait son cours ".

On note X la variable aléatoire égale au nombre d'étudiants qui savent leur cours et Y la variable aléatoire égale au nombre d'étudiants qui ont une bonne note.

a) Calculer P(A) et $P(A \cap B)$.

b) Chercher la loi de X et en déduire E(X) et V(X).

c) Chercher la loi de Y et en déduire E(Y) et V(Y). <u>Ex 27</u>: Soit X une v.a à valeurs dans \mathbb{N}^* , telle que pour tout $k \in \mathbb{N}^*$, on a : $P(X = k) = \lambda \times 3^{1-k}$ Déterminer λ pour que $\{P(X=k)/k \in \mathbb{N}\}$ soit une loi de probabilité. Qu'elle est la loi de probabilité de X? Ex 28 : Soit X une v.a qui suit une loi de Poisson de paramètre $\lambda>0$. On définit la v.a Y par :

$$Y = \left\{ \begin{array}{lll} 0 & \text{si} & X = 2k & ; & k = 0, 1, 2, \dots \\ 1 & \text{si} & X = 2k + 1 & ; & k = 0, 1, 2, \dots \end{array} \right.$$

On admet les résultats suivants : $\sum_{k=0}^{+\infty} \frac{\lambda^{2k}}{(2k)!} = \frac{e^{\lambda} + e^{-\lambda}}{2} \text{ et } \sum_{k=0}^{+\infty} \frac{\lambda^{2k+1}}{(2k+1)!} = \frac{e^{\lambda} - e^{-\lambda}}{2}$ i) Calculer P(V = 1) at P(V = 0).

i) Calculer P(Y = 1) et P(Y = 0). En déduire que la v.a Y suit une loi discrète classique dont on déterminera le paramètre et calculer E(Y) et V(Y)

ii) Comparer les probabilités des deux évênements suivants :

A: "X est paire " et B: "X est impaire "