Heaps

Categories of Data Structures

Linear Ordered

Non-linear Ordered

Not Ordered

Lists

Trees

Sets

Stacks

Graphs

Tables/Maps

Queues

Recap

- Splay Trees
 - Performance
- Red Black Trees
 - Properties
 - Use Cases

Non-linear Ordered

Trees

Agenda

- Priority Queues
 - Motivation
 - Ways of Implementation
- Heaps
 - Properties
 - Implementation
 - Insertion
 - Deletion
 - Heap Sort

Queues

- Queue supported FIFO principle
- Here, "first-in" basis was the priority
- What if we want to generalize this feature of priority?

Enter Priority Queue!

- All elements inserted have some priority
- Elements with highest or lowest priority is removed first

Priority Queue

 A priority queue is a generalization of a queue where each element is assigned a priority and elements come out in order by priority

Priority Queue (Central Idea)

- Keep track of highest or lowest priority in a fast way
- Abstract Data Type
 - Insertion (p) Adds a new element with priority p
 - ExtractMin() or ExtractMax() Extracts the element with min or max priority

Insert (17)

ExtractMin()

How can we design this data structure so that Insert and Extract() operations are fast?

How can we design this data structure so that Insert and Extract() operations are fast?

Approach 1: Unsorted Array

5 7 2 44

Insert (p)

ExtractMin()

How can we design this data structure so that Insert and Extract() operations are fast?

Approach 1: Unsorted Array

Insert (p)

Add p at the end of the array: O(1)

ExtractMin()

Find the min in the array and then shift: O(n)

How can we design this data structure so that Insert and Extract() operations are fast?

Approach 2: Sorted Array

2 5 7 44

Insert (p)

ExtractMin()

How can we design this data structure so that Insert and Extract() operations are fast?

Approach 2: Sorted Array

Insert (p)

Find a position for p in $O(\log n)$ using Binary Search, then shift elements: O(n)

ExtractMin()

Find the min in the array at first place: O(1)

How can we design this data structure so that Insert and Extract() operations are fast?

Approach 3: Sorted List

Insert (p)

ExtractMin()

How can we design this data structure so that Insert and Extract() operations are fast?

Approach 3: Sorted List

Insert (p)

Find a position for p in O(n) using Linear Search, then add in O(1): O(n)

ExtractMin()

Find the min in the list at first place: O(1)

How can we design this data structure so that Insert and Extract() operations are fast?

	Insert	ExtractMin
Unsorted Array/List	0(1)	0(n)
Sorted Array/List	0(n)	0(1)

How can we design this data structure so that Insert and Extract() operations are fast?

	Insert	ExtractMin
Unsorted Array/List	0(1)	0(n)
Sorted Array List	0(n)	0(1)
Binary Heap	O(log n)	O(log n)

Use Cases

- Huffman Trees
- Dijkstra's Shortest Path Algorithm
- Prim's Algorithm for calculating Minimum Spanning Tree
- Scheduling Job
- K largest elements
- Heap Sort
- Many more ...

Heaps

Binary Heap

- Complete Binary Tree
- Each Node is less than its children for a min-heap and Each Node is greater than its children for a max-heap
- Root is the smallest for a min-heap and largest element for a max-heap
- Only the root can be removed (ExtractMin or ExtractMax)

Binary Heap

Heap Representation


```
class HeapNode
{
    int value;
    HeapNode* left;
    HeapNode* right;
}
left and right are min-heaps
```

Binary Heap

Heap Representation

int Heap[];

```
For a node at position p,

L. child position: 2p + 1
R. child position: 2p + 2
```

A node at position c can find its parent at floor((c-1)/2)

```
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13

    8
    18
    29
    20
    28
    39
    66
    37
    26
    76
    32
    74
    89
```

Heap Insertion

Algorithm for Inserting in a Heap

- Insert the new item in the next position at the bottom of the heap.
- 2. while new item is not at the root and new item is smaller than its parent
- Swap the new item with its parent, moving the new item up the heap.

Heap Insertion

- Insert the new element at the end of the array and set child to arr.size() - 1
- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

child = 13

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

```
child = 13
parent = 6
```

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

child = 13
parent = 6

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

child = 13
parent = 6

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

```
child = 13 | 6
parent = 6 | 2
```

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

```
2. Set parent to (child - 1)/ 2
```

3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

```
child = 13 | 6
parent = 6 | 2
```

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

```
child = 13 | 6
parent = 6 | 2
```

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

```
child = 13 | 6 | 2
parent = 6 | 2 | 0
```

insert 11

	1												
8	18	11	20	28	39	29	37	26	76	32	74	89	66

Heap Insertion


```
    Insert the new element at the end of the array and set
child to arr.size() - 1
```

- 2. Set parent to (child 1)/ 2
- 3. while (parent >= 0 and arr[parent] > arr[child])
 Swap arr[parent] and arr[child]
 Set child equal to parent
 Set parent equal to (child-1)/2

```
child = 13 | 6 | 2
parent = 6 | 2 | 0
```

insert 11

Heap Insertion


```
    Insert the new element at the end of the array and set child to arr.size() - 1
    Set parent to (child - 1)/ 2
    while (parent >= 0 and arr[parent] > arr[child])
        Swap arr[parent] and arr[child]
        Set child equal to parent
        Set parent equal to (child-1)/2
```

```
child = 13 | 6 | 2
parent = 6 | 2 | 0
```

O(log n) time to insert!

Heap Deletion (ExtractMin)

Heap Deletion (ExtractMin)

O(log n) time to ExtractMin!

Heap Deletion (ExtractMin)

Algorithm for Removal from a Heap

- Remove the item in the root node by replacing it with the last item in the heap (LIH).
- while item LIH has children and item LIH is larger than either of its children
- Swap item LIH with its smaller child, moving LIH down the heap.

Heap Deletion (ExtractMin)

```
//arr[] contains heap
//currentSize contains number of items in heap
//Remove the minimum item.
void extractMin( )
      arr[0] = arr[--currentSize];
      heapifyDown(0);
void heapifyDown(int index)
    1. if index is a leaf -> stop
    2. Find the smallest child of node at index
    3. Swap node at index with smallest child index
    4. heapifyDown(smallest_child_index)
```


Heap Sort

- Algorithm:
 - Insert n items into heap
 - Remove n items from heap and place in array
- Performance: 0 (n log n)

Heap Sort

- Algorithm:
 - Insert n items into heap O(nlogn) + extra space
 - Remove n items from heap and place in array O(nlogn)
- Performance: 0 (n log n)

Heap Building

• Building heap inplace:

Heap Sort

- Algorithm:
 - Insert n items into heap O(nlogn) + extra space
 - Remove n items from heap and place in array O(nlogn)
- Performance: 0 (n log n)

- Building heap inplace in O(n):
 for(i = size/2; i >= 0; i--)
 heapifyDown(i)
- Since node is close to leaf, heapifyDown is faster
- 1 unit of time for second last level (n/2 nodes), log n for level 0 (1 node)
- T(BuildHeap) = n/2.0 + n/4.1 + n/8.2 ... = n. SumofSeries(i/2^(i+1)) = 2n

Resources

- Heap Visualization: https://www.cs.usfca.edu/~galles/visualization/Heap.html
- Proof: https://stackoverflow.com/questions/9755721/how-can-building-a-heap-be-on-time-complexity

Mentimeter

Menti.com 6266 4037

K Largest Elements

Find the largest K items in a stream of N items

- Billions of Transactions in Stock Market
- Weather points of data
- Fraud Detection in Credit Cards

Our interest: Some Largest values/Smallest Values

Constraint:

K Largest Elements – Idea O

Find the K largest items in an Unsorted List: Sort the array and print arr[n-k ... n]

K Largest Elements – Idea O

Find the K largest items in an Unsorted List: Sort the array and print arr[n-k ... n]

Complexity: O(N log N)

K Largest Elements

Find the largest K items in a stream of N items

- Billions of Transactions in Stock Market
- Weather points of data
- Fraud Detection in Credit Cards

Our interest: Some Largest values/Smallest Values

Constraint: Can we do better than the Sort technique?

Find the Kth largest item in an Unsorted List (Max Heap)

Find the Kth largest item in an Unsorted List (Max Heap)

```
int kthlargest(vector<int>& nums, int k)

//build a max heap
priority_queue<int> pq(nums.begin(), nums.end());

//Remove top k-1 elements
for (int i = k - 1; i > 0; i--)
pq.pop();
return pq.top();

?
```

Complexity:

, Space:

Find the Kth largest item in an Unsorted List (Max Heap)

```
int kthlargest(vector<int>& nums, int k)

//build a max heap
priority_queue<int> pq(nums.begin(), nums.end());

//Remove top k-1 elements
for (int i = k - 1; i > 0; i--)
pq.pop();
return pq.top();

?
```

Complexity: O(N + K log N) using Max Heaps, Space: O(N)

Find the Kth largest item in an Unsorted List (Max Heap)

```
int kthlargest(vector<int>& nums, int k)

//build a max heap
priority_queue<int> pq(nums.begin(), nums.end());

//Remove top k-1 elements
for (int i = k - 1; i > 0; i--)
pq.pop();
return pq.top();

?
```

Complexity: O(N + K log N) using Max Heaps, Space: O(N)

Too much Time and Space!

K Largest Elements

Find the largest K items in a stream of N items

- Billions of Transactions in Stock Market
- Weather points of data
- Fraud Detection in Credit Cards

Our interest: Some Largest values/Smallest Values

Constraint: Can't store N items

K Largest Elements – Idea 2

Find the largest K items in a stream of N items

- Billions of Transactions in Stock Market
- Weather points of data
- Fraud Detection in Credit Cards

Our interest: Some Largest values/Smallest Values

Constraint: Can't store N items

Idea: Use a Min Priority Queue

- 1. Push items into a Minimum Priority Queue
- 2. Delete an element when the queue's size is greater than K

K Largest Elements – Idea 2

Idea: Use a Min Priority Queue

- 1. Push items into a Minimum Priority Queue
- 2. Delete an element when the queue's size is greater than K

Find the Kth largest item in an Unsorted List (Min Heap)

Complexity:

, Space:

Find the Kth largest item in an Unsorted List (Min Heap)

Complexity: O(N log K) using Min Heaps, Space: O(K)

Find the Median of Running Integers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

5

Max Heap: Lowers

Min Heap: Highers

If both the heaps are empty add, 5 to lowers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

11 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

22 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

0 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

2 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

54 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

8 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

8 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers. Min Heap: Highers - HeapifyUp.

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

9 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers.

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

9 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers. Min Heap: Highers - HeapifyUp.

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

9 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers. Rebalancing. Move root of larger heap to smaller heap.

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

9 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers. Heapify up in lowers and Heapify down in higher.

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

9 is compared with root of lowers. If it is less than the root, add to lowers. Otherwise add to highers. Heapify up in lowers and Heapify down in higher.

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of higher Constraint: Min and Max Heap Properties + Size of Min Heap and Max Heap differ by at most 1

Adding an Element

Rebalancing

Returning Median

Max Heap: Lowers

Min Heap: Highers

Median: Average of two roots if heaps are of equal size; Otherwise, the root of larger heap

Median = 8.5

Find the Median of Running Integers

Idea: Use a Max Heap to keep a track of lower numbers and a Min Heap to keep track of highers

```
Max heap, Lowers stores elements to the left of median
Min heap, highers stores elements to the right of median
1. Adding an Element, e:
      if Lowers.size = 0 or e < Lowers.root:</pre>
            Lowers.add(e)
      else
            highers.add(e)
2. Rebalancing:
     Find biggerHeap and smallerHeap from highers and lowers
      if (biggerHeap.size - smallerHeap.size) = 2:
            smallerHeap.add(biggerHeap.extractMin())
3. Returning Median:
      if size of both heaps are equal:
            return (lowers.max + highers.min)/2
      else
            return the root of bigger heap (Lowers.max or higher.min)
```

Resources

Running Medians Video: https://www.youtube.com/watch?v=VmogG01IjYc

Questions