## Bhabha scattering

Bhabha scattering is the interaction  $e^- + e^+ \rightarrow e^- + e^+$ .



In the center-of-mass frame we have the following momentum vectors where  $E = \sqrt{p^2 + m^2}$ .

$$p_{1} = \begin{pmatrix} E \\ 0 \\ 0 \\ p \end{pmatrix} \qquad p_{2} = \begin{pmatrix} E \\ 0 \\ 0 \\ -p \end{pmatrix} \qquad p_{3} = \begin{pmatrix} E \\ p\sin\theta\cos\phi \\ p\sin\theta\sin\phi \\ p\cos\theta \end{pmatrix} \qquad p_{4} = \begin{pmatrix} E \\ -p\sin\theta\cos\phi \\ -p\sin\theta\sin\phi \\ -p\cos\theta \end{pmatrix}$$
 outbound  $e^{-}$  outbound  $e^{-}$  outbound  $e^{-}$ 

Spinors for the inbound positron.

$$v_{11} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} p \\ 0 \\ E+m \\ 0 \end{pmatrix} \qquad v_{12} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} 0 \\ -p \\ 0 \\ E+m \end{pmatrix}$$
inbound  $e^+$ 
spin up
inbound  $e^+$ 
spin down

Spinors for the inbound electron.

$$u_{21} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} E+m\\0\\-p\\0 \end{pmatrix} \qquad u_{22} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} 0\\E+m\\0\\p \end{pmatrix}$$
inbound  $e^-$ 
spin up
inbound  $e^-$ 
spin down

Spinors for the outbound positron.

$$v_{31} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} p_{3z} \\ p_{3x} + ip_{3y} \\ E+m \\ 0 \end{pmatrix} \qquad v_{32} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} p_{3x} - ip_{3y} \\ -p_{3z} \\ 0 \\ E+m \end{pmatrix}$$
outbound  $e^+$ 
spin up
$$v_{32} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} p_{3x} - ip_{3y} \\ -p_{3z} \\ 0 \\ E+m \end{pmatrix}$$
outbound  $e^+$ 
spin down

Spinors for the outbound electron.

$$u_{41} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} E+m\\0\\p_{4z}\\p_{4x}+ip_{4y} \end{pmatrix} \qquad u_{42} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} 0\\E+m\\p_{4x}-ip_{4y}\\-p_{4z} \end{pmatrix}$$
outbound  $e^-$ 
spin up
$$u_{41} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} 0\\E+m\\p_{4x}-ip_{4y}\\-p_{4z} \end{pmatrix}$$
outbound  $e^-$ 
spin down

The probability amplitude  $\mathcal{M}_{abcd}$  for spin state abcd is

$$\mathcal{M}_{abcd} = \mathcal{M}_{1abcd} + \mathcal{M}_{2abcd}$$

where

$$\mathcal{M}_{1abcd} = \frac{e^2}{s} (\bar{v}_{1a} \gamma^{\mu} u_{2b}) (\bar{u}_{4d} \gamma_{\mu} v_{3c}), \quad \mathcal{M}_{2abcd} = -\frac{e^2}{t} (\bar{v}_{1a} \gamma^{\nu} v_{3c}) (\bar{u}_{4d} \gamma_{\nu} u_{2b})$$
annihilation
scattering

Symbol e is elementary charge and

$$s = (p_1 + p_2)^2$$
$$t = (p_1 - p_3)^2$$

The expected probability density  $\langle |\mathcal{M}|^2 \rangle$  is the average of spin states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{4} \sum_{a=1}^2 \sum_{b=1}^2 \sum_{c=1}^2 \sum_{d=1}^2 |\mathcal{M}_{abcd}|^2$$

Hence

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{4} \sum_{abcd} \left( \mathcal{M}_{1abcd} \mathcal{M}_{1abcd}^* + \mathcal{M}_{1abcd} \mathcal{M}_{2abcd}^* + \mathcal{M}_{2abcd} \mathcal{M}_{1abcd}^* + \mathcal{M}_{2abcd} \mathcal{M}_{2abcd}^* \right)$$

The Casimir trick uses matrix arithmetic to sum over spin states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4} \left( \frac{f_{11}}{s^2} - \frac{2f_{12}}{st} + \frac{f_{22}}{t^2} \right)$$

where

$$f_{11} = \operatorname{Tr}\left((\not p_1 - m)\gamma^{\mu}(\not p_2 + m)\gamma^{\nu}\right)\operatorname{Tr}\left((\not p_4 + m)\gamma_{\mu}(\not p_3 - m)\gamma_{\nu}\right)$$

$$f_{12} = \operatorname{Tr}\left((\not p_1 - m)\gamma^{\mu}(\not p_2 + m)\gamma^{\nu}(\not p_4 + m)\gamma_{\mu}(\not p_3 - m)\gamma_{\nu}\right)$$

$$f_{22} = \operatorname{Tr}\left((\not p_1 - m)\gamma^{\mu}(\not p_3 - m)\gamma^{\nu}\right)\operatorname{Tr}\left((\not p_4 + m)\gamma_{\mu}(\not p_2 + m)\gamma_{\nu}\right)$$

The following formulas are equivalent to the Casimir trick. (Recall that  $a \cdot b = a^{\mu} g_{\mu\nu} b^{\nu}$ )

$$f_{11} = 32(p_1 \cdot p_3)^2 + 32(p_1 \cdot p_4)^2 + 64m^2(p_1 \cdot p_2) + 64m^4$$

$$f_{12} = -32(p_1 \cdot p_4)^2 - 32m^2(p_1 \cdot p_2) + 32m^2(p_1 \cdot p_3) - 32m^2(p_1 \cdot p_4) - 32m^4$$

$$f_{22} = 32(p_1 \cdot p_2)^2 + 32(p_1 \cdot p_4)^2 - 64m^2(p_1 \cdot p_3) + 64m^4$$

In Mandelstam variables

$$f_{11} = 8u^2 + 8t^2 - 64um^2 - 64tm^2 + 192m^4$$
  

$$f_{12} = -8u^2 + 64um^2 - 96m^4$$
  

$$f_{22} = 8u^2 + 8s^2 - 64um^2 - 64sm^2 + 192m^4$$

For  $E\gg m$  a useful approximation is to set m=0 and obtain

$$f_{11} = 8u^2 + 8t^2$$
$$f_{12} = -8u^2$$
$$f_{22} = 8u^2 + 8s^2$$

For m = 0 the Mandelstam variables are

$$s = 4E^{2}$$
  

$$t = -2E^{2}(1 - \cos \theta)$$
  

$$u = -2E^{2}(1 + \cos \theta)$$

Hence

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4} \left( \frac{f_{11}}{s^2} - \frac{2f_{12}}{st} + \frac{f_{22}}{t^2} \right)$$

$$= 2e^4 \left( \frac{u^2 + t^2}{s^2} + \frac{2u^2}{st} + \frac{u^2 + s^2}{t^2} \right)$$

$$= e^4 \left( 1 + \cos^2 \theta - \frac{2(1 + \cos \theta)^2}{1 - \cos \theta} + \frac{2(1 + \cos \theta)^2 + 8}{(1 - \cos \theta)^2} \right)$$
scattering

The expected probability density can be written more compactly as

$$\langle |\mathcal{M}|^2 \rangle = e^4 \left( \frac{\cos^2 \theta + 3}{\cos \theta - 1} \right)^2$$

## Cross section

The differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{\langle |\mathcal{M}|^2 \rangle}{4(4\pi\varepsilon_0)^2 s}$$

where

$$s = (p_1 + p_2)^2 = 4E^2$$

For high energy experiments we have

$$\langle |\mathcal{M}|^2 \rangle = e^4 \left( \frac{\cos^2 \theta + 3}{\cos \theta - 1} \right)^2$$

Hence for high energy experiments

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{4(4\pi\varepsilon_0)^2 s} \left(\frac{\cos^2\theta + 3}{\cos\theta - 1}\right)^2$$

Noting that

$$e^2 = 4\pi\varepsilon_0 \alpha \hbar c$$

we have

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2(\hbar c)^2}{4s} \left(\frac{\cos^2\theta + 3}{\cos\theta - 1}\right)^2$$

Noting that

$$d\Omega = \sin\theta \, d\theta \, d\phi$$

we also have

$$d\sigma = \frac{\alpha^2 (\hbar c)^2}{4s} \left( \frac{\cos^2 \theta + 3}{\cos \theta - 1} \right)^2 \sin \theta \, d\theta \, d\phi$$

Let  $S(\theta_1, \theta_2)$  be the following integral of  $d\sigma$ .

$$S(\theta_1, \theta_2) = \int_0^{2\pi} \int_{\theta_1}^{\theta_2} d\sigma$$

The solution is

$$S(\theta_1, \theta_2) = \frac{\pi \alpha^2 (\hbar c)^2}{2s} [I(\theta_2) - I(\theta_1)]$$

where

$$I(\theta) = \frac{16}{\cos \theta - 1} - \frac{\cos^3 \theta}{3} - \cos^2 \theta - 9\cos \theta - 16\log(1 - \cos \theta)$$

The cumulative distribution function is

$$F(\theta) = \frac{S(a, \theta)}{S(a, \pi)} = \frac{I(\theta) - I(a)}{I(\pi) - I(a)}, \quad a \le \theta \le \pi$$

Angular support is reduced by an arbitrary angle a > 0 because I(0) is undefined.

The probability of observing scattering events in the interval  $\theta_1$  to  $\theta_2$  is

$$P(\theta_1 < \theta \le \theta_2) = F(\theta_2) - F(\theta_1)$$

The probability density function is

$$f(\theta) = \frac{dF(\theta)}{d\theta} = \frac{1}{I(\pi) - I(a)} \left(\frac{\cos^2 \theta + 3}{\cos \theta - 1}\right)^2 \sin \theta$$

## Data from SLAC SPEAR experiment

The following Bhabha scattering data is from SLAC-PUB-1501.

Column k is the bin number, column y is the number of scattering events, and

$$x_k = \cos \theta_k$$

The cumulative distribution function for this experiment is

$$F(\theta) = \frac{I(\theta) - I(\theta_1)}{I(\theta_{13}) - I(\theta_1)}$$

where

$$\theta_{13} = \arccos(-0.6), \quad \theta_1 = \arccos(0.6)$$

The scattering probability  $P_k$  is

$$P_k = F\left(\arccos(x_{k+1})\right) - F\left(\arccos(x_k)\right)$$

Multiply  $P_k$  by total scattering events to obtain predicted number of events  $\hat{y}_k$ .

$$\sum y_k = 15773, \quad \hat{y}_k = 15773 \, P_k$$

The following table shows the predicted scattering events  $\hat{y}$ .

| k  | $x_k$ | $x_{k+1}$ | y    | $\hat{y}$ |
|----|-------|-----------|------|-----------|
| 1  | 0.6   | 0.5       | 4432 | 4598      |
| 2  | 0.5   | 0.4       | 2841 | 2880      |
| 3  | 0.4   | 0.3       | 2045 | 1955      |
| 4  | 0.3   | 0.2       | 1420 | 1410      |
| 5  | 0.2   | 0.1       | 1136 | 1068      |
| 6  | 0.1   | 0.0       | 852  | 843       |
| 7  | 0.0   | -0.1      | 656  | 689       |
| 8  | -0.1  | -0.2      | 625  | 582       |
| 9  | -0.2  | -0.3      | 511  | 505       |
| 10 | -0.3  | -0.4      | 455  | 450       |
| 11 | -0.4  | -0.5      | 402  | 411       |
| 12 | -0.5  | -0.6      | 398  | 382       |

The coefficient of determination  $R^2$  measures how well predicted values fit the data.

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.997$$

The result indicates that  $F(\theta)$  explains 99.7% of the variance in the data.

## Data from DESY PETRA experiment

See www.hepdata.net/record/ins191231, Table 3, 14.0 GeV.

$$\begin{array}{cccc} x & y \\ -0.7300 & 0.10115 \\ -0.6495 & 0.12235 \\ -0.5495 & 0.11258 \\ -0.4494 & 0.09968 \\ -0.3493 & 0.14749 \\ -0.2491 & 0.14017 \\ -0.1490 & 0.18190 \\ -0.0488 & 0.22964 \\ 0.0514 & 0.25312 \\ 0.1516 & 0.30998 \\ 0.2520 & 0.40898 \\ 0.3524 & 0.62695 \\ 0.4529 & 0.91803 \\ 0.5537 & 1.51743 \\ 0.6548 & 2.56714 \\ 0.7323 & 4.30279 \end{array}$$

Data x and y have the following relationship with the cross section formula.

$$x = \cos \theta$$
,  $y = \frac{d\sigma}{d\Omega}$  in units of nanobarns

The cross section formula is

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s} \left( \frac{\cos^2 \theta + 3}{\cos \theta - 1} \right)^2 \times (\hbar c)^2$$

To compute predicted values  $\hat{y}$ , multiply by  $10^{37}$  to convert square meters to nanobarns.

$$\hat{y} = \frac{\alpha^2}{4s} \left( \frac{x^2 + 3}{x - 1} \right)^2 \times (\hbar c)^2 \times 10^{37}$$

The following table shows predicted values  $\hat{y}$  for  $s = (14.0 \,\text{GeV})^2$ .

The coefficient of determination  $R^2$  measures how well predicted values fit the data.

$$R^{2} = 1 - \frac{\sum (y - \hat{y})^{2}}{\sum (y - \bar{y})^{2}} = 0.995$$

The result indicates that the model  $d\sigma$  explains 99.5% of the variance in the data.