## Problem Statement

Develop a fashion recommendation system that can suggest similar items based on a query image.

**Goal:** Assist small fashion businesses with personalized recommendation features.

**Given:** A query image by the user.

**Objective:** Learn a model that recommends compatible outfits.

**Constraints:** Limited labeled data, No textual or semantic metadata used, computational power for training models.

## <u>Approach/Technology Used:</u>

- Siamese Neural Network with color histogram fusion
- CNN from scratch (I/P: (3,128,128) #Layers: 3)
- Cosine similarity for similar item generation

Motivation: Bridging the gap in fashion e-commerce by offering ML-driven stylistic recommendations.

<u>Application</u>: Fashion retail platforms, boutique businesses, styling assistants, face detection.

# Dataset Description

**Dataset:** Repolyvore Dataset

**Train:** Repolyvore Fashion Dataset (dress, shoes, pants) [25k images]

Test: Query folder[10 images]

**Data Type:** Images (.jpg), RGB images

<u>Description:</u> The dataset includes various curated outfits which includes serveral items which look compatible together.

### <u>Machine Specification:</u>

- CPU: AMD Ryzen 5 5600H
- RAM: 16 GB
- GPU: NVIDIA RTX 3050 (used for training)
- Programming Language: Python (PyTorch-CUDA, TorchVision)
- Platform: Jupyter Notebook
- 1. archive/images/<compatible-set-id>/<class-id>.jpg
- 2. Re-Polyvore/<class-name>/<compatible-set-id>\_<class-id>.jpg

| •           | bag      | 12-04-2025 06:49 PM | File folder |
|-------------|----------|---------------------|-------------|
| •           | bracelet | 12-04-2025 06:53 PM | File folder |
| •           | brooch   | 12-04-2025 06:54 PM | File folder |
| •           | dress    | 12-04-2025 07:01 PM | File folder |
| •           | earrings | 12-04-2025 07:06 PM | File folder |
| •           | eyewear  | 12-04-2025 07:12 PM | File folder |
| •           | gloves   | 12-04-2025 07:12 PM | File folder |
| •           | hairwear | 12-04-2025 07:13 PM | File folder |
| •           | hats     | 12-04-2025 07:15 PM | File folder |
| •           | jumpsuit | 12-04-2025 07:15 PM | File folder |
| •           | legwear  | 12-04-2025 07:16 PM | File folder |
| •           | necklace | 12-04-2025 07:20 PM | File folder |
| •           | neckwear | 12-04-2025 07:21 PM | File folder |
| •           | outwear  | 12-04-2025 07:31 PM | File folder |
| •           | pants    | 12-04-2025 07:38 PM | File folder |
| - 27        | 20.47    | 4/12/2025 4.50 AM   | File felder |
|             | 3947     | 4/13/2025 4:58 AM   | File folder |
|             | 5320     | 4/13/2025 5:04 AM   | File folder |
| 460         |          | 4/13/2025 5:06 AM   | File folder |
| 200         | 05891    | 4/13/2025 3:48 AM   | File folder |
| 207         | 78412    | 4/13/2025 4:02 AM   | File folder |
| 207         | 79880    | 4/13/2025 4:02 AM   | File folder |
| 233         | 33598    | 4/13/2025 4:48 AM   | File folder |
| <u> </u>    | 97101    | 4/13/2025 4:51 AM   | File folder |
| 282         | 25739    | 4/13/2025 4:51 AM   | File folder |
| 283         | 30199    | 4/13/2025 4:51 AM   | File folder |
| <b>2</b> 94 | 41774    | 4/13/2025 4:52 AM   | File folder |
| 343         | 38235    | 4/13/2025 4:55 AM   | File folder |
| 374         | 49908    | 4/13/2025 4:58 AM   | File folder |
| <b>38</b> ′ | 12619    | 4/13/2025 4:58 AM   | File folder |
| 403         | 35878    | 4/13/2025 5:01 AM   | File folder |
|             |          |                     |             |

## Neural Network Architecture



Score

Model:
Custom
CNN with

siamese

framework



Conv2d(3,32)+BN+ReLU → MaxPool2d(2) →

Conv2d(32,64)+BN+ReLU → MaxPool2d(2) →

Conv2d(64.128)+BN+ReLU → AdaptiveAvaPool2d(1.1

Sister Siamese Network

Training Process:

1. Siamese sister network (for feature extraction)

Histogram

- [Input: 3 channels of 128x128 Pair of like and unlike images],
- [Output: Vector embedding of lenght 128]
- 2. Metric Network (for similarity training and score)
  - Hadmard Product of feature embeddings of images and histogram
  - Concatenated feature embeddings of images and histogram

Loss function: Binary Cross Entropy  $L = -[y \cdot \log(\hat{y}) + (1-y) \cdot \log(1-\hat{y})]$ 

Optimiser: Adam Opt.

(Learn Rate= 1e-3)

Batch size: 32

Epochs: 10

Merging layer: Hadamard

product and concatenation

# Result- Qualitative- Similarity Search

|                                | Image 1 | Image 2 | Image 3 | Image 4 | Image 5 |
|--------------------------------|---------|---------|---------|---------|---------|
| Naive<br>CNN                   | 1.jpq   | 1.jpg   | dress   | 1,jog   |         |
| Siamese<br>&<br>Color<br>Hist. |         | 3.jpg   | 1)pg    |         |         |

## Query Image



## Quantitative Results

## Loss Comparison





## Quantitative Results

## Cosine Similarity Comparison





## References

Polyvore Dataset: https://www.kaggle.com/datasets/dnepozitek/maryland-polyvore-images/

Citation of Paper: LEARNING FASHION COMPATIBILITY ACROSS APPAREL CATEGORIES FOR OUTFIT RECOMMENDATION Luisa F. Polan'ıa, Satyajit Gupte: [ 2019 IEEE International Conference on Image Processing (ICIP)]

## Articles on Siamese Networks:

https://medium.com/@rinkinag24/a-comprehensive-guide-to-siamese-neural-networks-3358658co513

https://builtin.com/machine-learning/siamese-network

Siamese Networks for Face Detection - https://youtu.be/IXgr63eRU5U?si=-3DI1iocaaN3LyrB



# Thank you