Informe Consultoria

Luis Hernández y Juan Carvajal

Análisis Descriptivo

Correlaciones entre las variables

Análisis descriptivos de variables individuales

Análisis descriptivo de variables en conjunto con la respuesta

Análisis de Supervivencia

Para las curvas de supervivencia utilizaremos el estimador de Kaplan-Meier.

Estimador de Kaplan-Meier.

estado_vital_5anos	tiempo_supervivencia_dias
1	1271
0	4237
0	4323
0	4286
0	4293
1	1677

Curva de Supervivencia

Curva de Supervivencia por Ciudad

Call:
survdiff(formula = Surv(tiempo_supervivencia_dias, estado_vital_5anos) ~
 ciudad, data = bd, rho = 0)

	N	Observed	Expected	$(0-E)^2/E$	$(0-E)^2/V$
ciudad=0	140	16	31.5	7.62	13.86
ciudad=1	100	31	20.0	6.07	8.50
ciudad=2	90	23	18.5	1.08	1.47

Chisq= 14.8 on 2 degrees of freedom, p= 6e-04

Modelo de Riesgos Proporcionales de Cox

En las situaciones experimentales en las que deseamos estudiar la supervivencia de un conjunto de sujetos en función de un conjunto $X=(X_1,\ldots,X_p)$ de variables predictoras, es decir, variables que pueden afectar o caracterizar su supervivencia, es necesario establecer modelos estadísticos capaces de analizar dichas relaciones. La construcción de este tipo de modelos que depende del tiempo y de las predictoras se hace a través del análisis de la función hazard asociada h(t;X).

El modelo más habitual en esta situación es el **modelo hazard proporcional** que separa en dos componentes la función hazard, una correspondiente al tiempo de supervivencia y otra a

las variables predictoras. La finalidad de este modelo es para identificar factores que influyen en la supervivencia.

A manera de ejemplo se ajustara un modelo con algunas variables, las variables a cosiderar al modelo final, y se tranda en cuenta tambien el criterio de Akaike.

Call:

```
coxph(formula = Surv(tiempo_supervivencia_dias, estado_vital_5anos ==
    1) ~ ciudad + edad_cat + estrato_cat + educacion_cat + afiliacion,
    data = bd)
```

n= 330, number of events= 70

```
coef exp(coef) se(coef)
                                               z Pr(>|z|)
ciudad1
                1.0247
                          2.7862
                                   0.3470
                                           2.953 0.003147 **
ciudad2
                          3.3347
                                   0.3567
                                           3.377 0.000733 ***
                1.2044
edad_cat1
               -0.2012
                          0.8177
                                   0.3809 -0.528 0.597242
edad_cat2
               -0.3109
                          0.7328
                                   0.4132 -0.753 0.451714
edad_cat3
               -0.1475
                          0.8629
                                   0.4144 -0.356 0.721891
                          2.3746
                                   0.7397 1.169 0.242356
estrato_cat1
                0.8648
estrato_cat2
                1.3519
                          3.8648
                                   0.7696 1.757 0.078980 .
educacion_cat1
                                   0.3092 0.481 0.630482
                0.1487
                          1.1603
educacion cat2
               0.5548
                          1.7415
                                   0.4227
                                          1.313 0.189335
afiliacion1
                0.4964
                          1.6428
                                   0.2795 1.776 0.075733 .
```

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

```
exp(coef) exp(-coef) lower .95 upper .95
ciudad1
                  2.7862
                              0.3589
                                         1.4114
                                                     5.500
ciudad2
                  3.3347
                              0.2999
                                         1.6575
                                                     6.709
edad_cat1
                  0.8177
                              1.2229
                                         0.3876
                                                     1.725
edad_cat2
                  0.7328
                              1.3647
                                         0.3261
                                                     1.647
edad_cat3
                  0.8629
                              1.1589
                                         0.3830
                                                    1.944
estrato_cat1
                  2.3746
                              0.4211
                                         0.5571
                                                    10.121
estrato_cat2
                                                    17.466
                  3.8648
                              0.2587
                                         0.8551
educacion_cat1
                  1.1603
                              0.8618
                                         0.6330
                                                     2.127
educacion_cat2
                                                     3.987
                   1.7415
                              0.5742
                                         0.7606
afiliacion1
                   1.6428
                              0.6087
                                         0.9499
                                                     2.841
```

```
Concordance= 0.678 (se = 0.031)

Likelihood ratio test= 27.26 on 10 df, p=0.002

Wald test = 24.51 on 10 df, p=0.006

Score (logrank) test = 26.51 on 10 df, p=0.003
```