

클러스터링 Clustering

nte nts

Unit 01	군집화(Clustering)
Unit 02	계층적 군집화
Unit 03	K-Means
Unit 04	모델 평가
Unit 05	DBSCAN

Machine Learning Algorithms (sample)

Unsupervised Supervised Clustering & Dimensionality Regression Reduction Linear Polynomial SVD **Decision Trees** PCA Random Forests K-means Association Analysis Classification Apriori KNN FP-Growth Trees Hidden Markov Model Logistic Regression Naive-Bayes SVM

지도학습(Supervised Learning)

- 분류: 소속집단의 정보를 이미 알고 있는 상태에서, 비슷한 집단으로 묶는 방법 즉, Label이 있는 Data를 나누는 방법으로, Supervised Learning의 일종

비지도학습(Unsupervised Learning)

- 군집화: 소속집단의 정보가 없고, 모르는 상태에서 비슷한 집단으로 묶는 방법 즉, **Label이 없는 Data를 군집단위로 나누는 것**으로, Unsupervised Learning 의 일종

Classification

군집 분석

- 각 개체의 유사성을 측정하여 높은 대상 집단을 분류하고, 군집에 속한 개체들의 유사성과 서로 다른 군집에 속한 개체 간의 상이성을 규명하는 통계분석방법
- 주어진 데이터셋 내에 존재하는 몇 개의 군집을 찾아내는 비지도 기법
- 생물학, 행동과학, 마케팅 및 의학분야에서 다양하게 사용됨

군집분석 방법

1. Hierarchical agglomerative clustering(계층적 군집화):

모든 데이터가 하나의 군집으로 병합될 때까지 군집들을 자연적인 계층 구조로 정렬하는 것 ex) single linkage, complete linkage, average linkage, controid, Ward의 방법 등

2. Partitioning clustering(비계층적 군집화):

구하고자 하는 군집의 수를 정한 상태에서 설정된 군집의 중심에 가장 가까운 개체를 하나씩 포함해 가는 방식

ex) k-means, PAM(partitioning around medoids)

군집분석 단계

- 1. 알맞은 속성 선택 데이터를 군집화하는데 중요하다고 판단되는 속성들을 선택
- 2. 데이터 표준화 분석에 사용되는 변수들의 범위에 차이가 있는 경우 가장 큰 범위를 갖는 변수가 결과에 가장 큰 영향을 미치게 됨
- 3. 이상치 선별 많은 군집분석 방법은 이상치에 민감하기 때문에 군집 분석 결과가 왜곡됨
- 4. 군집 알고리즘 선택
- 5. 군집의 개수 결정

주로 사용되는 거리의 정의

미 유클리드 거리 (Euclidean): $d(\mathsf{x},\mathsf{y}) = \left(\sum_{i=1}^p (x_i - y_i)^2\right)^{1/2}$

② 맨하탄 거리 (Manhattan): $d(x,y) = \sum_{i=1}^{p} |x_i - y_i|$

③ 표준화 거리 (Standardized): $d(x,y) = (\sum_{i=1}^{p} (x_i - y_i)^2/s_i^2)^{1/2}$

④ 민콥스키 거리 (Minkowski): $d(\mathsf{x},\mathsf{y}) = (\sum_{i=1}^p (x_i - y_i)^m)^{1/m}$

https://ratsgo.github.io/machine%20learning/2017/04/17/KNN/: 거리 참고 자료

군집-군집 or 군집-개체 간 거리 측정 방법

- 1. 최단 연결법
- 2. 최장 연결법
- 3. 평균 연결법
- 4. 중심 연결법

■ 최단 연결법 (Single Linkage Method)

 $d_{(UV)W} = \min(d_{UW}, d_{VW})$

■ 최단 연결법 (Single Linkage Method)

데이터	(x1,x2)	
A B C D	(1,5) (2,4) (4,6) (4,3) (5,3)	Dist(EllOIEI)

유클리드 제곱거리	Α	В	С	D	Е	
Α	0					
В	2	0				
С	10	8	0			
D	13	5	9	0		
Е	20	10	10		0	

(D, E)

Unit 02 계층적 군집화(Hierarchical agglomerative clustering)

■ 최단 연결법 (Single Linkage Method)

데이터	(x1,x2)		유클리드 제곱거리	A	В
Α	(1,5)	_	Α	0	
B C	(2,4) (4,6)	Dist(EllOIEl)	В	2	0
D	(4,3)		С	10	8
E	(5,3)		(D,E)	13	5

■ 최단 연결법 (Single Linkage Method)

덴드로그램의 높이 = 관측치 간의 거리

2 최장 연결법 (Complete Linkage Method)

■ 최장 연결법 (Complete Linkage Method)

데이터	(x1,x2)	
Α	(1,5)	
В	(2,4)	
С	(4,6)	Dist(EllOIEI)
D	(4,3)	
Е	(5,3)	

유클리드 제곱거리	А	В	С	D	Е
Α	0				
В	2	0			
С	10	8	0		
D	13	5	9	0	
Е	20	10	10		0

② 최장 연결법 (Complete Linkage Method)

데이터	(x1,x2)		유클리드 제곱거리	A	В	С	(D, E)
Α	(1,5)	_	Α	0			
B C	(2,4) (4,6)	Dist(EllOIEI)	В	(2)	0		
D	(4,3)		С	10	8	0	
Е	(5,3)		(D,E)	20	10	10	0

② 최장 연결법 (Complete Linkage Method)

유클리드 제곱거리	(A,B)	С	(D,E)
(A,B)	0		
С	10	0	
(D,E)	20	10	0

③ 평균 연결법 (Average Linkage Method)

$$d_{(UV)W} = \frac{\sum_{x_i \in (U,V)} \sum_{x_j \in W} d(x_i, x_j)}{n_{(UV)} n_W}$$

④ 중심 연결법 (Centroid Linkage Method)

$$d(G_1, G_2) = \|\overline{x_1} - \overline{x_2}\|$$

④ 중심 연결법 (Centroid Linkage Method)

데이터	(x1,x2)		유클리드 제곱거리	Α	В	С	D	Е
			Α	0				
A B	(1,5) (2,4)	Dist(EllOIEI)	В	2	0			
С	(4,6)		С	10	8	0		
D E	(4,3) (5,3)		D	13	5	9	0	
_	(3, 3)		Е	20	10	10	1	0

참고자료: https://m.blog.naver.com/wjddudwo209/220046493579

④ 중심 연결법 (Centroid Linkage Method)

데이터	(x1,x2)		유클리드 제곱거리	A	В	С	(D,E)
Α	(1,5)	_	Α	0			
B C	(2,4) (4,6)	Dist(EllOIEI)	В	2	0		
D	(4,3)	(4.5, 3)	С	10	8	0	
E	(5,3)	(T.J, J)	(D,E)	16.25	7.25	9.25	0

참고자료: https://m.blog.naver.com/wjddudwo209/220046493579

	Α	В	С	D
Α		20	7	2
В			10	25
С				3
D				

2 -{			
\bigwedge	\bigcap	(B)	$\left(\right)$
$\langle \mathbf{A} \rangle$		D	

	Α	В	С	D
А		20	7	2
В			10	25
С				3
D				

	AD	В	С	
AD		20	(m)	
В			10	
С				

	AD CB		
AD CB			

요약

- 1. 단일 데이터 간 거리를 정의하고
 - 맨하탄 거리, 유클리드 거리 등
- 2. 군집-군집 or 군집-개체 간 거리를 정의하고
 - 최단 연결법, 평균 연결법, 최장 연결법 등
- 3. 돌리자!

K-Means(비계층적 군집화)

- 1. 데이터 내 객체 중 임의로 K개의 군집 중심점(Centroid) 설정
- 2. 모든 객체에 대해 각 군집 중심점까지의 거리 계산
- 3. 모든 객체를 가장 가까운 군집 중심점이 속한 군집으로 할당
- 4. 각 군집의 중심점 재설정
- 5. 군집의 중심점이 변경되지 않을 때까지 1~4 반복

(또는 적당한 범위 내로 수렴하거나 적당한 반복회수에 도달할 때까지 반복)

K-Means의 주요 변수

- 1. 초기 군집 중심점(Centroid) 설정
- 2. 군집의 개수(K)

초기 centroid 설정

- 1. **무작위 분할** : \sqrt{n} , n = 데이터의 수
- 2. Forgy 알고리즘: Chooses k objects at random and uses them as the initial centroids.

초기 centroid 설정

- 1. **무작위 분할** : \sqrt{n} , n = 데이터의 수
- 2. Forgy 알고리즘 ← 간단하고 좋은 성능

군집 개수의 선택

- 1. 경험적 방법 : \sqrt{n} , n = 데이터의 수
- 2. Elbow Point 기법(통계적 기법)

K-Means의 한계점

■ 문제점1:서로다른**크기**의군집을잘찾아내지못함

K-Means의 한계점

■ 문제점 2:서로다른 밀도의 군집을 잘찾아내지 못함

K-Means의 한계점

■ 문제점3:**구형이 아닌 형태**의 군집을 판별하기 어려움

모델 평가

- Inter-cluster distance 클러스터 간의 거리를 최대로

- Intra-cluster distance 각 클러스터 내 데이터의 거리는 작게

클러스터링 평가 척도

내부 평가

- 군집화한 그 자체를 놓고 평가하는 방식
- Dunn Index
- 2. <mark>실루엣(Silhouette)</mark>
- 3. Davies Bouldin Index

외부 평가

- 군집화에 사용되지 않은 데이터로 평가하는 방식
- 1. Rand Measure
- 2. F Measure
- 3. Jaccard Index

참고자료: http://gentlej90.tistory.com/64?category=682471

내부 평가

1. Dunn Index

군집과 군집 사이의 거리가 클수록, 군집 내 객체 간 거리가 작을수록 = DI가 큰 모델 좋은 모델

내부 평가

2. 실루엣(Silhouette)

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

$$s(i) = egin{cases} 1 - a(i)/b(i), & ext{if } a(i) < b(i) \ 0, & ext{if } a(i) = b(i) \ b(i)/a(i) - 1, & ext{if } a(i) > b(i) \end{cases}$$

a(i): 객체 i로부터 같은 군집 내 모든 다른 객체들 사이 평균 거리 (클러스터내 데이터 응집도를 나타내는 값)

b(i): 객체 i로부터 다른 군집 내 객체들 사이의 평균 거리 중 최소값 (클러스터간 분리도를 나타내는 값)

S(i)가 1에 가까울 수록 좋은 모델

Unit 05 | DBSCAN

DBSCAN- 밀도 기반 클러스터링

: 점 P에서부터 거리 e(epsilon)내에 점이 m(minPts)개 있으면 하나의 군집으로 인식

노이즈 데이터(noise point)

Unit 05 | DBSCAN

코어 데이터(core point)

경계 데이터(border point)

최종 결과

Unit 05 | DBSCAN

<특징>

- K- means와 같이 클러스터의 수를 정하지 않아도 됨
- 비선형 경계의 군집을 구하는 것도 가능 (밀도에 따라 클러스터를 서로 연결하기 때문)
- 노이즈 데이터를 따로 분류하여 노이즈 데이터들이 군집에 영향을 주지 않음

Q&A

들어주셔서 감사합니다.