Lecture 22: Hydraulic motors, transmission lines

- Hydraulic motors
- Hydraulic transmission lines
- (Electrical transmission lines)

Book: 4.1-4.6, (1.6)

- Info: Ocean Talk «The Polar Regions»
 - 28.03.2019 18:00-20:00, EL1
 - https://www.facebook.com/events/263677944559897/

Systems using hydraulics to produce motion

Excavators

- Robots, cranes, etc.
- To control motion of these systems, we need models of the hydraulic actuators

For information about seals etc.: Skf.com

Hydraulic cylinder

Hydraulic system

©2000 How Stuff Works

Anna Konda – The fire fighting snake robot

Moody chart

Circular pipe

- Re = Inertia lorus = DV Viscous lorus = DV
- Darcy-Weisbach factor with Reynolds number and relative roughness

Figure 7.13 Moody diagram. (From L. F. Moody, Trans. ASME, Vol. 66, 1944.)

Bulk modulus

$$\beta = -V \frac{dP}{dV} = P \frac{dP}{dP} \left[\frac{N}{W} \right]_{P}$$

Motor models

Mass bulance:

$$w_{in} = \rho q_{in}$$

$$w_{out} = \rho q_{out}$$

$$V, p$$

$$| \dot{\varphi} = \frac{\rho}{\beta} \dot{\rho}$$

Hydraulic cylinder

Figure 4.9: Symmetric hydraulic cylinder

Figure 4.10: Single-rod hydraulic piston

Rotational hydraulic motor I

Figure 4.7: Rotational hydraulic motor of the single vane type with limited travel.

Rotational hydraulic motor II

Figure 4.7: Rotational hydraulic motor of the single vane type with limited travel

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} + \sqrt{1} = q_1 - (om p_1 - Cin(p_1 - p_2))$$

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} + \sqrt{2} = -q_2 - (om p_2 - Cin(p_2 - p_1))$$

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} + \sqrt{2} = -\sqrt{2} = Dn \quad Wn$$

$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} = -\sqrt{2} = Dn \quad Wn$$
Momentum equation
$$\frac{\partial}{\partial x} \frac{\partial}{\partial x} = -\sqrt{2} = T_1 - T_2$$
The first of the points o

Rotational hydraulic motor III

Valves

- Device that regulates flow
- Many different types of valves exist
 - Globe valve, ball valve, butterfly valve, ...

End view of the disc within the butterfly valve at different stages of rotation

End view of the ball within the ball valve at different stages of rotation

Valve models

(book 4.2)

Flow through a restriction is generally turbulent

• Solution: Regularize by assuming laminar flow for small Δp

$$q = C_l \Delta p$$

Book: Make transition smooth

Pump Spool Valve Pull Hydraulic Cylinder and Piston ©2000 How Stuff Works

q_1 q_2 q_a q_b q_d q_d

Four-way valve

Figure 4.1: Four-way valve

 q_s

Modeling of four-way valve

Define load pressure

$$p_L = p_1 - p_2$$

Define load flow

$$q_L = \frac{q_1 + q_2}{2}$$

Figure 4.1: Four-way valve

Symmetric load assumption (motor)

$$q_1 = q_2$$

Symmetric valve and symmetric load

$$q_L = C_d b x_v \sqrt{\frac{1}{\rho} \left(p_s - \operatorname{sign}(x_v) p_L \right)}$$

Characteristic of four-way valve

$$q_L = C_d b x_v \sqrt{\frac{1}{\rho} \left(p_s - \text{sign}(x_v) p_L \right)}$$

Figure 4.3: Valve characteristic

Linearized model:

$$|p_L| \le \frac{2}{3}p_s: \quad q_L = K_q x_v - K_c p_L$$

Gain uncertainty:

$$0.58K_{q0} \le K_q \le 1.29K_{q0}$$

Transfer function valve+motor

$$\theta_m(s) = \frac{\frac{K_q}{D_m} x_v(s) - \frac{K_{ce}}{D_m^2} \left(1 + \frac{s}{\omega_t}\right) T_L(s)}{s \left(1 + 2\zeta_h \frac{s}{\omega_h} + \frac{s^2}{\omega_h^2}\right)}$$

Transfer function spool to shaft

Electrical transmission lines

Telegrapher's equation (Wave equation)

Lossless:

Lossy:

• Model (Ch. 1.6):

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$
$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

Laplace:

$$\frac{\partial u(x,s)}{\partial x} = -X(s)i(x,s)$$
$$\frac{\partial i(x,s)}{\partial x} = -Y(s)u(x,s)$$

Series impedance:

$$X(s) = R + Ls$$

Parallel admittance:

$$Y(s) = G + Cs$$

Characteristic impedance:

$$Z_c(s) = \sqrt{\frac{X(s)}{Y(s)}}$$

Same equations for electrical and fluid/hydraulic transmission lines

Electrical transmission lines:

$$\frac{\partial u(x,t)}{\partial x} = -Ri(x,t) - L\frac{\partial i(x,t)}{\partial t}$$

$$\frac{\partial i(x,t)}{\partial x} = -Gu(x,t) - C\frac{\partial u(x,t)}{\partial t}$$

Fluid transmission lines:

$$\frac{\partial p(x,t)}{\partial t} = -\frac{\beta}{A} \frac{\partial q(x,t)}{\partial x}$$
$$\frac{\partial q(x,t)}{\partial t} = -\frac{A}{\rho} \frac{\partial p(x,t)}{\partial x} - \frac{F[q(x,t)]}{\rho}$$

- Current and flow "same" variables, as is voltage and pressure
- In both cases, we can define line impedance, characteristic impedance, propagation operator, etc.
- Solution to equations have same structure/form: waves propagating back and forth

Solution: Waves

• Solution:

$$u_{out}(s) = e^{-\Gamma(s)} u_{in}(s)$$

- Propagation operator $\Gamma(s) = L\sqrt{X(s)Y(s)}$
 - Attenuation factor $\alpha=Re[\Gamma(j\omega)]$: How much is wave reduced
 - Phase factor: $\beta = Im[\Gamma(j\omega)]$: How long does it take
- Lossless (R = G = 0): $\Gamma(s) = Ts$
 - Attenuation factor: 0
 - Phase factor: Pure time-delay

When should we care?

Solution lossless case: Time delay

$$e^{-Ts}$$

 Rule-of-thumb from control theory: We can ignore time-delay for frequencies much less than 1/T

$$\omega \le \frac{1}{T} \implies 2\pi \frac{c}{\lambda} \le \frac{c}{L} \implies L \le \frac{\lambda}{2\pi}$$

- Rule-of-thumb for transmission lines: When L is larger than one tenth of wavelength, treat as transmission line
- Power lines, f = 50Hz: $\lambda = 6000$ km
- Personal computers, f = 10 GHz: $\lambda = 1.5 \text{cm}$

Impedance matching

 Suppose we have an imaginary joint at P in a very long transmission line.

The wave goes through the joint without reflection because there is actually no joint (just imagined).

• Now, let us terminate a resistance of value Z_c at the same position of this imaginary joint. The wave will go through without reflection too.

This is called a **matched load**.

http://cktse.eie.polyu.edu.hk/eie403/Transmissionline.pdf

Lecture 23: Process modeling & balance laws

- Process modeling, structure and methodolgy
- Balance laws
 - Closure relations

Book: 10.4, 11.1-11.4

Process equations

- Balance laws
 - Mass
 - Momentum
 - Energy
 - **–** ..

- Constitutive equations
 - For (generalized) flows
 - Thermodynamic equations of state (e.g. ideal gas law)
 - Phenomenological relationships (e.g. between friction force and flow in a pipe)
 - ...

- Constraints
 - Geometric relationships
 - Equilibrium conditions
 - ..

Also called «closure relations» as they «close» the balance laws (such that #equations = #variables)

Example – structure of process models

Example: Tank

- Mass balance: $\frac{dm}{dt} = (q_i q_0)\rho$
- Constitutive equation: $q_0 = C\sqrt{p-p_0}$ (2) $p = p_0 + \rho g h$ (3)
- Constraints: $m = \stackrel{10}{V} \rho$ (4) V = Ah (5)
- How many variables?
- Need to define parameter and inputs
 - Parameters: C, g, A, ρ
 - Inputs: q_i, p_0

Structural index:

	q_0	p	V	h
(2)	\bigotimes	X		
(3)		\otimes		Х
(4)			X	
(5)				\otimes

- regular str. index

Example: Bubble reactor I

Model reactor as quasi-homogenous

- Assumptions:
 - Ideally mixed
 - Inflows are pure substances
 - Substance A and C are in liquid phase, substance B is gaseous
 - The total surface area of the bubbles depends on the inflow B

•
$$S_R = S_R(N_{B,in})$$

 The reaction rate can be calculated based on the concentration of A and the pressure in the reactor

•
$$R_0 = R_0(c_{A,liq}, p)$$

- Densities ρ_A and ρ_C and mole masses M_A and M_C are constant and known
- The gas phase can be described by the ideal gas law

•
$$p V_{gas} = n_B R_m T$$

The volume of the reactor is constant and known

 $\uparrow N_{B,out}$

Bubble reactor - Balances

(1)
$$\frac{dn}{dt} = N_{Ain} + N_{Bin} - N_{Biout} - N_{P}$$

$$+ S_{R} (R_{A} + R_{B} + R_{C})$$

(2)
$$\frac{dN_A}{dt} = N_{Arim} - \frac{M}{X_A} N_P + S_R R_A$$

Bubble reactor – closure relations I

$$(5) \quad R_A = -R_0^{13}$$

$$(6) \quad Rs = -Ro$$

(7)
$$R_c = R_o$$

(8) $R_o = R_o (C_{A_1 C_1 q_1} p)$

$$(9) \quad \chi_{A} = \frac{n_{A}}{n_{A} + n_{C}}$$

(13)
$$PV_{gas} = n_{G}Rm T^{23}$$

(44) $V^{25} = V_{gas} + V_{eig}$

(44)
$$V^{23} = V_{900} + V_{eig}$$

(10)
$$N = N_A + N_B + N_C$$

(11) $(A/C)^2 = \frac{M_A}{V_{0}} + \frac{1}{P_A} + \frac{1}{P_C}$
(12) $V_{eq} = N_A M_A - \frac{1}{P_A} + N_C M_C \frac{1}{P_C}$

Bubble reactor - DoF

Equation: #14 } DOF #11
Variables: #25

• Variables: $[n; N_{A,in}; N_{B,in}; N_{B,out}; N_P; S_R; R_A; R_B; R_C; n_A; x_A; n_B; R_0; c_{A,liq}; p; n_C; V_{liq}; M_A; \rho_A; M_C; \rho_C; V_{gas}; R_m; T; V]$

Bubble reactor – structural index

	S_R	R_A	R_B	R_c	R_0	n_C	x_A	$c_{A,liq}$	p	V_{gas}	V_{liq}
(4)	\otimes										
(5)		\bigotimes			X						
(6))	\bigotimes		X						
(7)				\otimes	X						
(8)				•	\bigotimes			X	X		
(9)						X	X				
(10)						\bigotimes					
(11)								8			X
(12)						X					\bigotimes
(13)									\bigotimes	X	
(14)										\otimes	×

-> structural index : regular

Bubble reactor – energy balance

Bubble reactor – closure relations II

- · Assumptions: Adiabat reactor
 - Specific enthalpies of inputs are model inputs
 - Spedific enthalpies of pure substances A, B, C are given by $h_i = h_i(T, p)$

$$N_{B,out}$$
 N_{P}
 N_{P}
 N_{P}
 $N_{B,in}$

(17)
$$\frac{\partial U^{26}}{\partial t} = N_{A_1} in h_{A_1} in + N_{B_1} in h_{B_1} in$$

$$- N_{B_1} in h_{B_1} in h_{B_1} in$$

$$- N_{B_1} in h_{B_1} - N_{P_1} h_{P_1}$$
(16)
$$h_{B_1} = h_{B_1} (T_1 P)$$
(17)
$$h_{P_1} = X_A h_A + X_C h_C$$
(20)
$$X_C = \frac{N_C}{N_C + N_A}$$
(18)
$$h_{A_1} = h_{A_1} (T_1 P)$$
(21)
$$U = H - PV$$
(22)
$$H = N_A h_A + N_B h_B + N_C h_C$$

Bubble reactor – structural index II

• Variables: $[n; N_{A,in}; N_{B,in}; N_{B,out}; N_P; S_R; R_A; R_B; R_C; n_A; x_A; n_B; R_0; c_{A,liq}; p; n_C; V_{liq}; M_A; \rho_A; M_C; \rho_C; V_{gas}; R_m; T; V U; h_{A,in}; h_{B,in}; h_B; h_P; h_A; x_C; h_C; H]$

H34 variables - H22 equentions: #12DoF Inputs: [NAin; Noin; Noint; Np; NAin; hoin] Parameter [V, PA, Pc, MA, Mc, Rm]

10010	7(0-000	<u> </u>	A 1 [\(\) 1 \(\) 1 \(\) 1 \(\) 1 \(\) 1			15				
	h_B	h_P	x_{C}	h_C	h_A	T	Н	n_C	p	x_A
(16)	×					\otimes			X	
(17)		8	X	×	X					\times
(18)					(X)	×			×	
(19)				(X)		X			X	
(20)			8					X		
(21)							\bigotimes		X	
(22)				Y	<u> </u>		~	~		٠.