概率论与数理统计(二)

(课程代码 02197 2019年4月)

第一部分 选择题

- 一、单项选择题: 本大题共 10 小题, 每小题 2 分, 共 20 分。在每小题列出的备选项中只 有一项是最符合题目要求的, 请将其选出。
- 1. $\Re P(B) = 0.6$, $P(A|\overline{B}) = 0.5$, $\Re P(A-B) =$
 - A. 0.1 , B. 0.2
- C. 0.3
- D. 0.4
- 2. 设A,B为任意事件,且相互独立,则 $P(A \cup B) =$
- A. P(A)P(B)

B. 1-P(A)P(B)

- C. P(A) + P(B)
- D. $1-P(\overline{A})P(\overline{B})$
- 3. 甲袋中有3个红球1个白球, 乙袋中有1个红球2个白球, 从两袋中分别取出一个球, 则两个球颜色相同的概率是

- A. $\frac{1}{6}$ B. $\frac{1}{4}$ C. $\frac{1}{3}$ D. $\frac{5}{12}$
- 4. 设随机变量 X 的分布律为 $\frac{X \mid 0 \mid 1 \mid 2}{P \mid c \mid \frac{1}{4} \mid 2c}$, 则 $P\{X > 0\} =$
 - A. $\frac{1}{4}$ B. $\frac{1}{2}$ C. $\frac{3}{4}$ D. 1

第1页(共4页)

- 5. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} cx, & 0 \le x \le 2, \\ 0, & \text{其他,} \end{cases}$ 则 $P\{X \le 1\} = \{x \in \mathbb{R} \mid x \in \mathbb{R} \}$
- A. $\frac{1}{4}$ B. $\frac{1}{2}$ C. $\frac{2}{3}$ D. $\frac{3}{4}$

- 6. 设随机变量 $X \sim N(1,2)$,则 E(2X-1) =
- B. 2
- C. 3
- D. 4

7. 设二维随机变量(X,Y)的分布律为

则 $P\{X+Y=1\}=$

- A. 0.1
- B. 0.4

- 8. 设随机变量 X 与 Y 相互独立,且 D(X) = 4, D(Y) = 2 ,则 D(3X 2Y) =
- B. 16
- C. 28
- 9. 设 x_1, x_2, x_3 是来自总体 X 的样本,若 $E(X) = \mu$ (未知), $\hat{\mu} = \frac{1}{2}x_1 \alpha x_2 + 3\alpha x_3$ 是 μ 的 无偏估计,则常数a=
 - A. $\frac{1}{6}$ B. $\frac{1}{4}$ C. $\frac{1}{3}$ D. $\frac{1}{2}$

- 10. 设 x_1,x_2,\dots,x_n (n>1) 为来自正态总体 $N(\mu,\sigma^2)$ 的样本,其中 μ,σ^2 均未知, \bar{x} 和 s^2 分 别是样本均值和样本方差,对于检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,则显著性水平为 α 的检验拒绝域为
 - A. $\left\{\left|\overline{x}-\mu_0\right|>\frac{s}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right\}$ B. $\left\{\left|\overline{x}-\mu_0\right|>\frac{\sigma}{\sqrt{n}}u_{\frac{\alpha}{2}}\right\}$
- - C. $\left\{ \left| \overline{x} \mu_0 \right| \le \frac{s}{\sqrt{n}} t_{\frac{\sigma}{2}}(n-1) \right\}$ D. $\left\{ \left| \overline{x} \mu_0 \right| \le \frac{\sigma}{\sqrt{n}} u_{\frac{\sigma}{2}} \right\}$

第二部分 非选择题

– .	值空题。	本大颗共	15 小颗。	每小题 2 分,	# 30 分。
_ \	州工版 。	4 / KD / T	12 7 (6)	7 1 10 2 711	75 JU JJ 0

- 11. 设 A, B, C 是随机事件,则 " A, B, C 至少有一个发生"可以表示为_____
- 12. $\forall P(A) = 0.3$, P(B) = 0.6, P(A|B) = 0.4, $\square P(B|A) =$ _____.
- 13. 袋中有3个黄球和2个白球,今有2人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率为_____
- 14. 已知随机变量 X 服从参数为 λ 的泊松分布,且 $P\{X=1\}=P\{X=2\}$,则 $\lambda=$ ______
- 15. 设随机变量 X 服从参数为1的指数分布,则 $P\{X \ge 1\} =$ ______
- #16. 设随机变量 X,Y 相互独立,且 $P\{X \le 2\} = \frac{1}{2}$, $P\{Y \le 1\} = \frac{3}{7}$,则 $P\{X \le 2, Y \le 1\} = \frac{3}{7}$
- 17. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} 1, & 0 \le x \le 1, & 0 \le y \le 1, \\ 0, & \text{其他,} \end{cases}$ 则 $P\{X+Y>1\} =$ ______.
- 18. 设随机变量 X 服从区间[1,3]上的均匀分布,Y 服从参数为 2 的指数分布,X,Y 相互独立, f(x,y) 是 (X,Y) 的概率密度,则 f(2,1) = ______.
- 20. 设 $X \sim B(100, 0.2)$, $Y = \frac{X 20}{4}$,由中心极限定理知Y近似服从的分布是_____
- 21. 已知总体 X 的方差 D(X) = 6 , x_1, x_2, x_3 为来自总体 X 的样本, \overline{x} 是样本均值,则 $D(\overline{x}) = ______$.
- 22. 设总体 X 服从参数是 λ 的指数分布, x_1, x_2, \cdots, x_n 为来自 X 的样本, \overline{x} 为样本均值,则 $E(\overline{x}) = \underline{\hspace{1cm}}$
- 23. 设 x_1, x_2, \dots, x_{16} 为来自正态总体 N(0,1) 的样本,则 $x_1^2 + x_2^2 + \dots + x_{16}^2$ 服从的分布是
- 24. 设 x_1, x_2, \dots, x_n 为来自总体X 的样本, \overline{x} 为样本均值,若X 服从 $[0, 4\theta]$ 上的均匀分布, $\theta > 0$,则未知参数 θ 的矩估计 $\hat{\theta} = ______$
- 25. 设 x_1, x_2, \cdots, x_{25} 为来自正态总体 $N(\mu, 5^2)$ 的样本, \bar{x} 为样本均值,欲检验假设 $H_0: \mu = 0$, $H_1: \mu \neq 0$,则应采用的检验统计量的表达式为_______

第3页(共4页)

- 三、计算题: 本大题共2小题,每小题8分,共16分。
- 26. 两台车床加工同一种零件,第一台出现次品的概率是0.03,第二台出现次品的概率是0.06,加工出来的零件混放在一起,第一台加工的零件数是第二台加工的零件数的两倍。
 - 求: (1) 从中任取一个零件是次品的概率:
 - (2) 若取得的零件是次品,它是由第一台加工的概率.
- 27. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} ax^2 + bx, & 0 \le x \le 1, \\ 0, & \text{其他,} \end{cases}$ 且 $E(X) = \frac{1}{2}$.
 - 求: (1) 常数 a,b; (2) D(X).
- 四、综合题: 本大题共 2 小题, 每小题 12 分, 共 24 分。
- 28. 设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} ax^2 y, & 0 \le x \le 1, 0 \le y \le 1, \\ 0, &$$
其他,

求: (1) 系数a; (2) $P\{X \ge Y\}$; (3) E(XY).

29. 设二维随机变量(X, Y)的分布律为

求: (1) (X,Y)关于 X,Y 的边缘分布律; (2) $P\{Y-X \ge 0\}$;

(3) D(X), D(Y); (4) Cov(X, Y).

- 五、应用题: 10分。
- 30. 某厂生产的一种金属丝,其折断力X(单位: kg)服从正态分布 $N(\mu, \sigma^2)$,以往的平均折断力 $\mu=570$,今更换原材料生产一批金属丝,并从中抽出 9 个样品检测折断力,算得样本均值 $\overline{x}=576.6$,样本标准差s=7.2. 试问更换原材料后,金属丝的平均折断力是否有显著变化?(附: $\alpha=0.05, u_{0.025}=1.96, t_{0.025}(8)=2.306$)

概率论与数理统计(二)试题参考答案

(课程代码 02197 2019年4月)

- 一、单项选择题:本大题共20分。
 - 1. B

- 2. D 3. D 4. C 5. A 7. C 8. D 9. B 10. A
- 6. A

- 二、填 空题: 本大题共30分。
 - 11. $A \cup B \cup C$ 12. 0.8 13. $\frac{3}{5}$
- 14. 2

- 15. e^{-1} 16. $\frac{3}{14}$ 17. $\frac{1}{2}$ 18. e^{-2}

- 19. 12 20. *N*(0,1) 21. 2
- 22. $\frac{1}{\lambda}$
- 23. $\chi^2(16)$ 24. $\frac{\overline{x}}{2}$ 25. \overline{x}

三、计算题: 本大题共 16分。

26. **解** (1) 设事件 A_i 表示"取出的零件由第 i 台车床加工" (i = 1,2),

事件 B 表示"取出的零件是次品",

由题意可知 $P(A_1) = \frac{2}{3}$, $P(A_2) = \frac{1}{3}$,

 $P(B \mid A_1) = 0.03$, $P(B \mid A_2) = 0.06$,

由全概率公式得

 $P(B) = P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) = 0.04$;

(2) 由贝叶斯公式得

$$P(A_1 \mid B) = \frac{P(A_1)P(B \mid A_1)}{P(B)} = 0.5.$$

第1页(共2页)

27. **A** (1)
$$ext{if } \int_{-\infty}^{+\infty} f(x) dx = 1$$
, $ext{if } \int_{0}^{1} (ax^{2} + bx) dx = 1$, $ext{if } \frac{a}{3} + \frac{b}{2} = 1$, $ext{if } E(X) = \frac{1}{2}$, $ext{if } \int_{0}^{1} x(ax^{2} + bx) dx = \frac{1}{2}$, $ext{if } \frac{a}{4} + \frac{b}{3} = \frac{1}{2}$, $ext{if } a = -6$, $b = 6$;

(2)
$$E(X^2) = \int_0^1 x^2 (-6x^2 + 6x) dx = \frac{3}{10}$$
,
 $D(X) = E(X^2) - [E(X)]^2 = \frac{3}{10} - \left(\frac{1}{2}\right)^2 = \frac{1}{20}$.

四、综合题: 本大题共2小题, 每小题12分, 共24分。

28. **A** (1)
$$\[\text{iff} \]_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, dx dy = \int_{0}^{1} dx \int_{0}^{1} ax^{2}y \, dy = \frac{a}{6} = 1 \]$$
, $\[\text{iff} \] a = 6 \]$;

(2)
$$P\{X \ge Y\} = \int_0^1 dx \int_0^x 6x^2 y dy = \int_0^1 3x^4 dx = \frac{3}{5}$$
;

(3)
$$E(XY) = \int_0^1 dx \int_0^1 xy 6x^2 y dy = \int_0^1 6x^3 (\frac{y^3}{3}) \Big|_0^1 dx = \frac{1}{2}$$

29.
$$\mathbb{R}$$
 (1) $\frac{X \mid 0 \mid 1}{P \mid 0.6 \mid 0.4}$, $\frac{Y \mid -2 \mid 0 \mid 2}{P \mid 0.5 \mid 0.5 \mid 0.4}$;

(2)
$$P{Y-X \ge 0} = 0.6$$
;

(3)
$$E(X) = 0.4$$
, $E(X^2) = 0.4$, $D(X) = E(X^2) - [E(X)]^2 = 0.24$,
 $E(Y) = 0.2$, $E(Y^2) = 2.8$, $D(Y) = E(Y^2) - [E(Y)]^2 = 2.76$;

(4)
$$E(XY) = -0.2$$
, $Cov(X, Y) = E(XY) - E(X)E(Y) = -0.28$.

五、应用题: 10分。

30. 解 折断力
$$X \sim N(\mu, \sigma^2)$$
,检验假设 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,

取检验统计量
$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$
, 当 $|t| > t_{\frac{\alpha}{2}}(n-1)$ 时,拒绝 H_0 .

由题意可知 $\bar{x} = 576.6$, s = 7.2, n = 9, $\mu_0 = 570$,

$$\alpha = 0.05$$
, $t_{0.025}(8) = 2.306$, 计算可得 $t = 2.75$,

由于 $|t| > t_{0.025}(8)$, 故拒绝 H_0 ,

即认为更换原材料后,金属丝的平均折断力有显著变化.