

Entwicklung eines Indoor-Assistenzsystems für Multicopter

mit Hilfe von Monocularer Tiefenbild Rekonstruktion

Studienarbeit

Studiengang Angewandte Informatik

Duale Hochschule Baden-Württemberg Karlsruhe

von Christoph Meise, Max Lenk

Datum der Abgabe: 15.05.2017 Bearbeitungszeitraum: 2 Semester

Matrikelnummern und Kurse: 4050853, placeholder, TINF14B2

Betreuer: Markus Strand

Copyright Vermerk:

All rights reserved. Copyright.

Ehrenwörtliche Erklärung

"Ich erkläre ehrenwörtlich:

- dass ich meine Projektarbeit mit dem Thema
 Entwicklung eines Indoor-Assistenzsystems für Multicopter
 ohne fremde Hilfe angefertigt und selbstständig verfasst habe;
- 2. dass ich die Übernahme wörtlicher Zitate aus der Literatur sowie die Verwendung der Gedanken anderer Autoren an den entsprechenden Stellen innerhalb der Arbeit gekennzeichnet habe;
- 3. dass ich meine Projektarbeit bei keiner anderen Prüfung vorgelegt habe.

Ich bin mir bewusst, dass eine falsche Erklärung rechtliche Folgen haben wird."

Walldorf, der 16.09.2016

CHRISTOPH MEISE, MAX LENK

Restriction notice

This report contains confidential information of

SAP SE

Dietmar-Hopp-Allee 16

69190 Walldorf, Germany

It may be used for examination purposes as a performance record of the department of Applied Computer Science at the Cooperative State University Karlsruhe. The content has to be treated confidentially.

Duplication and publication of this report - as a whole or in extracts - is not allowed.

Sperrvermerk

Der Inhalt dieser Arbeit darf weder als Ganzes noch in Auszügen Personen außerhalb des Prüfungsprozesses und des Evaluationsverfahrens zugänglich gemacht werden, sofern keine anders lautende Genehmigung der Ausbildungsstätte vorliegt.

Abstrakt

Inhaltsverzeichnis

Ehrenwörtliche Erklärung																
Abbildungsverzeichnis																
1	Einle	eitung	1													
	1.1	Motivation	1													
	1.2	Aufbau	1													
2	Grui	Grundlagen														
	2.1	AR.Drone 2.0	2													
	2.2	ROS	2													
	2.3	Simulation	2													
	2.4	Fuzzylogik	2													
3	Soft	Software Architektur														
	3.1	Anforderungen	3													
		3.1.1 Überblick	3													
	3.2	Implementation	3													
		3.2.1 REMODE	4													
4	Eval	luation	5													
	4.1	Ergebnis	5													

	urverzeich																	
4.2	Ausblick									 							,	5

Abbildungsverzeichnis

1 Einleitung

- Zeitalter der Drohnen bla bla
- Drohnen schon ab 30€ bis zu mehreren tausend Euro nicht nur Spielzeug, reale Anwendungsgebiete -> Erkundung in Katastrophen / Kriegsregionen -> Feuerwehr Branderkundung und Menschensuche -> Lieferung von Paketen etc. etc.
- Schritt von fliegen zu fliegen lassen in Robotik Kernproblem sich in Umgebung autonom zurechtzufinden Problematik von Gewicht -> keine schweren high end Geräte möglich meist Tiefenbildkameras; Bilder werden dann ausgewertet Möglichkeit der Schwarmintelligenz

1.1 Motivation

- vorhandene Drohne semiautonom fliegen lassen -> Assistenzsystem für Nutzer => Drohne erkennt Wände / Türen und hilft beim lenken - Problematik der Hardware => nur Kamera nach unten und vorne vorhanden - da jeweils nur eine Normale"Kamera kein Tiefenbild vorhanden -> nutzen des Projekts REMODE"von Davide Scaramuzza um aus einzelbildern Tiefenbilder zu generieren

1.2 Aufbau

2 Grundlagen

2.1 AR.Drone 2.0

- ferngesteuerter Quadrocopter des französischem Herstellers Parrot SA
 - ist steuerbar mit mobiler App auf Android/iOS Apps verbinden sich via Wi-Fi
- neuere Version AR. Drone 2.0 vorliegen -> hat 2 Kameras, 92° Blickwinkel, 720p Auflösung und 30 fps nach vorne -> QVGA 60 fps Kamera nach unten
- mit einer Vielzahl von Sensoren ausgestattet => dreiachsiges Gyroskop, Magnetometer und Beschleunigungssensor, Ultraschallsensor und Luftdrucksensor
- **2.2 ROS**
- 2.3 Simulation
- 2.4 Fuzzylogik

3 Software Architektur

- 3.1 Anforderungen
- 3.1.1 Überblick
- 3.2 Implementation

3.2.1 REMODE

- 4 Evaluation
- 4.1 Ergebnis
- 4.2 Ausblick

Literaturverzeichnis