# Raport - Ćwiczenie nr 4

Grzegorz Janysek

27 maja 2022

#### 1

Zapoznano się z płytką UC-1 do badania układów scalonych TTL.

## $\mathbf{2}$

Zamontowano układ scalony 7400 w gnieździe płytki UC-1 a następnie zbadano tablicę logiczną dla zawartych w nim bramek logicznych NAND. Powyższe kroki powtórzono dla układu 7402 (NOR). Ze względu na brak dostępności układ 7486 (XOR) nie został zbadany.

| $U_A[V]$ | stan logiczny A | $U_B[V]$ | stan logiczny B | $U_Y[V]$ | stan logiczny Y |
|----------|-----------------|----------|-----------------|----------|-----------------|
| 0        | 0               | 0        | 0               | 3.96     | 1               |
| 0        | 0               | 5.01     | 1               | 3.96     | 1               |
| 5.01     | 1               | 0        | 0               | 3.96     | 1               |
| 5.01     | 1               | 5.01     | 1               | 83m      | 0               |

Tablica 1: Wyniki badania bramki NAND w układzie 7400 (UCY7400), pomiary odpowiadają informacją zawartym w nocie katalogowej.

| $U_A[V]$ | stan logiczny A | $U_B[V]$ | stan logiczny B | $U_Y[V]$ | stan logiczny Y |
|----------|-----------------|----------|-----------------|----------|-----------------|
| 0        | 0               | 0        | 0               | 3.96     | 1               |
| 0        | 0               | 5.01     | 1               | 162m     | 0               |
| 5.01     | 1               | 0        | 0               | 163m     | 0               |
| 5.01     | 1               | 5.01     | 1               | 161m     | 0               |

Tablica 2: Wyniki badania bramki NOR w układzie 7402 (74LS02), pomiary odpowiadają informacją zawartym w nocie katalogowej.

#### 3

Używając bramek logicznych NAND (7400), NOR (7402) zbudowano układ realizujący iloczyn logiczny, sumę logiczną oraz funkcję negacji. Sprawdzono poprawność tablicy logicznej zbudowanych układów.



Rysunek 1: Schemat układu zbudowanego z bramek NAND realizującego iloczyn logiczny.



Rysunek 2: Schemat układu zbudowanego z bramek NAND realizującego sumę logiczną.



Rysunek 3: Schemat układu zbudowanego z bramek NOR realizującego sumę logiczną.



Rysunek 4: Schemat układu zbudowanego z bramek NOR realizującego iloczyn logiczny.

#### 4

Wyznaczono średni czas propagacji impulsu przez bramkę mierząc okres drgań generatora zbudowanego z trzech bramek NAND. Do budowy generatora najpierw wykorzystano układ 7400, a następnie układ 74S00. Uzyskane pomiary pomnożono przez  $\frac{1}{2*3}$ , co dało czasy propagacji dla 74O0 i 74S00 wynoszące odpowiednio 10.38ns oraz 3.5ns. Czasy te zawierają się w zakresie dopuszczalnych wartości określonych w notach katalogowych układów.



Rysunek 5: Schemat układu generatora.



Rysunek 6: Pomiar okresu drgań generatora zbudowanego przy pomocy układu 7400.



Rysunek 7: Pomiar okresu drgań generatora zbudowanego przy pomocy układu 74S00.

5

Zbudowano funkcję logiczną dla segmentu C wskaźnika 7-segmentowego z wykorzystaniem bramek NAND, przy założeniu wyświetlania liczb w systemie ósemkowym. Segment C jest nie aktywny tylko w przypadku wyświetlania liczby  $2_8=010_2$ . Oznaczając kolejne bity (od najstarszego) A, B i C, a następnie przekształcając do postaci iloczynowej z użyciem praw de Morgana otrzymujemy:

$$Y = A + \overline{B} + C \tag{1}$$

$$Y = \overline{\overline{A} \cdot \overline{C}} + \overline{B} \tag{2}$$

$$Y = \overline{\overline{A} \cdot B \cdot \overline{C}} \tag{3}$$



Rysunek 8: Oznaczenie segmentów wskaźnika 7-segmentowego. Kropka (DP) nie jest rozpatrywana.



Rysunek 9: Schemat układu zbudowanego z bramek NAND realizującego zadaną funkcję logiczną.

## 6

Z bramek NAND w układzie scalonym 7400 zmontowano przerzutnik asynchroniczny RS. Sprawdzono tabelę przejść przerzutnika i porównano z teoretyczną. Zmontowany układ działał zgodnie z oczekiwaniami.



Rysunek 10: Schemat przerzutnika asynchronicznego RS zbudowanego z bramek NAND.