

Universidade Estadual de Feira de Santana Departamento de Tecnologia Curso de Engenharia de Computação

Disciplina: MI - SISTEMAS DIGITAIS

Professor: Thiago Cerqueira de Jesus

Solução - Problema 3: -Breakout

Lucas Gabriel da Silva Lima Reis Vanderleicio Carvalho Leite Junior Wagner Alexandre Ferreira Junior Washington Luis Ferreira de Oliveira Junior

Roteiro

- Requisitos do sistema
- Recursos utilizados
- Desenvolvimento
- Testes e Resultados
- Considerações Finais
- Referências

Requisitos do sistema

- Implementar uma versão do jogo Breakout;
- A movimentação do jogador deve ser capturada através do acelerômetro do kit DE1-SoC;
- Para controlar o jogo (iniciar, pausar, continuar) são usados os botões;
- O sistema deve utilizar a interface VGA para a visualização do jogo no monitor CRT;
- O programa deve ser escrito em Linguagem C.

Recursos utilizados

Desenvolvimento - Visão Geral

Fluxograma 1 - Fluxograma geral da solução

Desenvolvimento - Drivers

- A distribuição Linux que está na placa (DE1-SoC-UP Linux) provê alguns drivers para que os periféricos possam ser acessados;
- Os que foram utilizados na solução:
 - KEY (Para controlar os botões);
 - video (Para enviar a imagem a ser exibida no monitor);
 - accel (Para ler informações do acelerômetro);

Kernel module	Description
KEY	Used to access the pushbutton KEY port
SW	Used to access the slide switch SW port
LEDR	Used to access the red light LEDR port
HEX	Used to access the seven-segment HEX display port
video	Used to access the VGA video-out port
audio	Used to access the digital audio port
accel	Used to access the 3-D accelerometer port

Figura 1 - Lista de módulos já embutidos na distribuição

Figure 1. Block diagram of the DE1-SoC Computer.

Figure 1. Block diagram of the DE1-SoC Computer.

Acelerômetro

Figure 1. The ADXL345's I2C connection to the Cyclone V SoC chip on DE-Series boards.

VGA

- Buffer de Pixel
 - Endereçamento dos pixels (Endereço base buffer pixel + deslocamento (x, y))
- Buffer de Caracteres
- Buffer Duplo
 - Buffer de pixel exibido
 - Backbuffer

Considerações Finais

- Os objetivos de produção e aprendizado foram alcançados;
- O produto final cumpre com os requisitos solicitados;

Referência

FPGA Academy. **Using Linux* on DE-series Boards.** https://fpgacademy.org/courses.html

Terasic Inc. **DE1-SoC_User_manual_v.1.2.2**.

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=930&PartNo=4>