Quiz

Parts 1 and 2: Describe two interpretations of the matrix-vector product $A\mathbf{v}$, one involving rows and one involving columns.

Part 3: Describe an interpretation of the matrix-matrix product AB, one involving either rows or columns.

Parts 4 and 5: What are the two spaces associated with a matrix M, and what do they have to do with the function defined by the rule $\mathbf{x} \mapsto M\mathbf{x}$?

Matrix-vector equation for sensor node

```
Define D = {'radio', 'sensor', 'memory', 'CPU'}.
```

Goal: Compute a D-vector **u** that, for each hardware component, gives the current drawn by that component.

Four test periods:

- ightharpoonup total milliampere-seconds in these test periods $\mathbf{b} = [140, 170, 60, 170]$
- ▶ for each test period, vector specifying how long each hardware device was operating:
 - ▶ duration₁ = Vec(D, 'radio':.1, 'CPU':.3)
 - ▶ duration₂ = Vec(D, 'sensor':.2, 'CPU':.4)
 - ▶ duration₃ = Vec(D, 'memory':.3, 'CPU':.1)
 - duration₄ = Vec(D, 'memory':.5, 'CPU':.4)

To get \mathbf{u} , solve $A * \mathbf{x} = \mathbf{b}$ where $A = \begin{bmatrix} \frac{\mathbf{duration}_1}{\mathbf{duration}_2} \\ \frac{\mathbf{duration}_3}{\mathbf{duration}_4} \end{bmatrix}$

The solver module, and floating-point arithmetic

For arithmetic over $\ensuremath{\mathbb{R}},$ Python uses floats, so round-off errors occur:

```
>>> 10.0**16 + 1 == 10.0**16
True
```

Consequently algorithms such as that used in solve (A, b) do not find exactly correct solutions. To see if solution \mathbf{u} obtained is a reasonable solution to $A * \mathbf{x} = \mathbf{b}$, see if the vector $\mathbf{b} - A * \mathbf{u}$ has entries that are close to zero:

```
>>> A = listlist2mat([[1,3],[5,7]])
>>> u = solve(A, b)
```

Vec($\{0, 1\}, \{0: -4.440892098500626e-16, 1: -8.881784197001252e-16\}$)
The vector $\mathbf{b} - A * \mathbf{u}$ is called the *residual*. Easy way to test if entries of the residual are close to

The vector $\mathbf{b} - A * \mathbf{u}$ is called the *residual*. Easy way to test if entries of the residual are close t zero: compute the dot-product of the residual with itself: >>> res = $\mathbf{b} - \mathbf{A} * \mathbf{u}$

>>> res * res 9.860761315262648e-31

>>> b - A*u

Checking the output from solve (A, b) For some matrix-vector equations $A * \mathbf{x} = \mathbf{b}$, there is no solution.

In this case, the vector returned by solve (A, b) gives rise to a largeish residual:

```
>>> A = listlist2mat([[1,2],[4,5],[-6,1]])
>>> b = list2vec([1.1.1])
```

>>> u = solve(A, b)>>> res = b - A*u

>>> res * res 0.24287856071964012

Some matrix-vector equations are ill-conditioned, which can prevent an algorithm using floats from getting even approximate solutions, even when solutions exists:

>>> A = listlist2mat([[1e20,1],[1,0]])

>>> b = list2vec([1,1])We will not study conditioning in >>> u = solve(A, b)this course. >>> b - A*11

Vec({0, 1},{0: 0.0, 1: 1.0})

Triangular matrix

Recall: We considered *triangular* linear systems, e.g.

$$\begin{bmatrix} 1, & 0.5, & -2, & 4 &] \cdot \mathbf{x} & = & -8 \\ [0, & 3, & 3, & 2 &] \cdot \mathbf{x} & = & 3 \\ [0, & 0, & 1, & 5 &] \cdot \mathbf{x} & = & -4 \\ [0, & 0, & 0, & 2 &] \cdot \mathbf{x} & = & 6 \\ [0, & 0, & 0, & 2 &] \cdot \mathbf{x} & = & 6$$

$$\begin{bmatrix} 1 & 0.5 & -2 & 4 \\ 0 & 3 & 3 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 2 \end{bmatrix} * \mathbf{x} = [-8, 3, -4, 6]$$
The matrix is a triangular matrix

We can rewrite this linear system as a matrix-vector equation:

$$\left[\begin{array}{cccc} 1 & 0.5 & -2 & 4 \\ 0 & 3 & 3 & 2 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 2 \end{array}\right] * \mathbf{x} = [-8, 3, -4, 6]$$

The matrix is a *triangular* matrix.

Definition: An $n \times n$ upper triangular matrix A is a matrix with the property that $A_{ii} = 0$ for i > j. Note that the entries forming the upper triangle can be be zero or nonzero.

We can use backward substitution to solve such a matrix-vector equation.

Triangular matrices will play an important role later.

Algebraic properties of matrix-vector multiplication

Proposition: Let A be an $R \times C$ matrix.

▶ For any C-vector \mathbf{v} and any scalar α ,

$$A*(\alpha \mathbf{v}) = \alpha (A*\mathbf{v})$$

► For any *C*-vectors **u** and **v**,

$$A*(\mathbf{u}+\mathbf{v})=A*\mathbf{u}+A*\mathbf{v}$$

Algebraic properties of matrix-vector multiplication

To prove

we need to show corresponding entries are equal:

entry *i* of $A*(\alpha \mathbf{v}) = \text{entry } i \text{ of } \alpha(A*\mathbf{v})$

Proof: Write
$$A = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$$
.

By dot-product def. of matrix-vector mult,

entry
$$i$$
 of $A * (\alpha \mathbf{v}) = \mathbf{a}_i \cdot \alpha \mathbf{v}$

$$= \alpha (\mathbf{a}_i \cdot \mathbf{v})$$

by homogeneity of dot-product

$$(\mathbf{A} * \mathbf{v}) = \alpha \text{ (entry } i \text{ of } \mathbf{A} * \mathbf{v})$$

= $\alpha (\mathbf{a}_i \cdot \mathbf{v})$

By definition of scalar-vector multiply,
entry
$$i$$
 of $\alpha(A * \mathbf{v}) = \alpha$ (entry i of $A * \mathbf{v}$)

by dot-product definition of matrix-vector

QED

$$\begin{bmatrix} \mathbf{a}_m \end{bmatrix}$$

multiply

ntry *i* of
$$\alpha (A * \mathbf{v})$$

$$\alpha (A * \mathbf{v})$$

$$A*(\alpha \mathbf{v}) = \alpha (A*\mathbf{v})$$

$$_{\rm st}$$
 ($_{\rm O}$ $_{\rm M}$) $=$ $_{\rm O}$ ($_{\rm A}$ $_{\rm st}$

Algebraic properties of matrix-vector multiplication

To prove

$$A*(\mathbf{u}+\mathbf{v})=A*\mathbf{u}+A*\mathbf{v}$$

we need to show corresponding entries are equal:

Need to show

entry
$$i$$
 of $A*(\mathbf{u}+\mathbf{v}) = \text{entry } i$ of $A*\mathbf{u}+A*\mathbf{v}$

SO

OFD

Proof:

Write
$$A = \begin{bmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_m} \end{bmatrix}$$
.

By dot-product def. of matrix-vector mult,

entry i of $A*(\mathbf{u}+\mathbf{v}) = \mathbf{a}_i \cdot (\mathbf{u}+\mathbf{v})$ $= \mathbf{a}_i \cdot \mathbf{u} + \mathbf{a}_i \cdot \mathbf{v}$

by distributive property of dot-product

entry i of $A * \mathbf{u} + A * \mathbf{v} = \mathbf{a}_i \cdot \mathbf{u} + \mathbf{a}_i \cdot \mathbf{v}$

entry i of $A * \mathbf{u} = \mathbf{a}_i \cdot \mathbf{u}$

entry i of $A * \mathbf{v} = \mathbf{a}_i \cdot \mathbf{v}$

By dot-product def. of matrix-vector mult,

Matrix-matrix multiplication and function composition

Corresponding to an $R \times C$ matrix A over a field \mathbb{F} , there is a function

$$f: \mathbb{F}^C \longrightarrow \mathbb{F}^R$$

namely the function defined by $f(\mathbf{y}) = A * \mathbf{y}$

Matrix-matrix multiplication and function composition

Matrices A and $B \Rightarrow$ functions $f(\mathbf{y}) = A * \mathbf{y}$ and $g(\mathbf{x}) = B * \mathbf{x}$ and $h(\mathbf{x}) = (AB) * \mathbf{x}$

Matrix-Multiplication Lemma $f \circ g = h$

product $AB = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$

imple:
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \quad \underset{f}{\longleftarrow} \left(\begin{bmatrix} x_1 \end{bmatrix} \right) \quad \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix}$$

imple:
$$\begin{bmatrix} 1 & 1 \end{bmatrix} \xrightarrow{f} \left(\begin{bmatrix} x_1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \Rightarrow f \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_2 \end{bmatrix}$$

$$=\left[egin{array}{cc} 1 & 1 \ 0 & 1 \end{array}
ight]\left[egin{array}{c} x_1 \ x_2 \end{array}
ight] = \left[egin{array}{cc} \end{array}
ight]$$

corresponds to function $h\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 + x_2 \\ x_1 + x_2 \end{bmatrix}$

 $f \circ g \left(\left| \begin{array}{c} x_1 \\ x_2 \end{array} \right| \right) = f \left(\left| \begin{array}{c} x_1 \\ x_1 + x_2 \end{array} \right| \right) = \left| \begin{array}{c} 2x_1 + x_2 \\ x_1 + x_2 \end{array} \right| \text{ so } f \circ g = h$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\left[\begin{array}{c} X_2 \end{array}\right] = \left[\begin{array}{c} X_2 \end{array}\right]$$

$$\begin{bmatrix} x_2 \end{bmatrix}^- \begin{bmatrix} x_1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \Rightarrow g \begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 + x_2 \end{bmatrix}$$

Matrix-matrix multiplication and function composition

Matrices A and $B \Rightarrow$ functions $f(\mathbf{y}) = A * \mathbf{y}$ and $g(\mathbf{x}) = B * \mathbf{x}$ and $h(\mathbf{x}) = (AB) * \mathbf{x}$

Matrix-Multiplication Lemma: $f \circ g = h$

Proof: Let columns of B be $\mathbf{b}_1, \dots, \mathbf{b}_n$. By the matrix-vector definition of matrix-matrix

 $= (AB) * \mathbf{x}$

 $= h(\mathbf{x})$

multiplication, column
$$j$$
 of AB is $A * (column j of B).$

For any *n*-vector
$$\mathbf{x} = [x_1, \dots, x_n]$$
,

 $g(\mathbf{x}) = B * \mathbf{x}$ by definition of g

$$=x_1\mathbf{b}_1+\cdots+x_n\mathbf{b}_n$$

Therefore

$$+\cdots \times_n \mathbf{b}_n)$$

 $f(g(\mathbf{x})) = f(x_1\mathbf{b}_1 + \cdots + x_n\mathbf{b}_n)$

$$= r(x_1\mathbf{b}_1 + \cdots x_n\mathbf{b}_n)$$

$$= x_1(f(\mathbf{b}_1)) + \cdots + x_n(f(\mathbf{b}_n))$$

$$= x_1(A * \mathbf{b}_1) + \cdots + x_n(A * \mathbf{b}_n)$$

by definition of
$$f$$

by definition of
$$f$$

by linear-combinations def.

$$= x_1(\text{column 1 of } AB) + \cdots + x_n(\text{column } n \text{ of } AB)$$
 by matrix-vector def.

by definition of h

Associativity of matrix-matrix multiplication

Matrices A and $B \Rightarrow$ functions $f(\mathbf{y}) = A * \mathbf{y}$ and $g(\mathbf{x}) = B * \mathbf{x}$ and $h(\mathbf{x}) = (AB) * \mathbf{x}$

Matrix-Multiplication Lemma:
$$f \circ g = h$$

Matrix-matrix multiplication corresponds to function composition.

Corollary: Matrix-matrix multiplication is associative:

$$(AB)C = A(BC)$$

Proof: Function composition is associative. QED

Example:

$$\left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right] \left(\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right] \left[\begin{array}{cc} -1 & 3 \\ 1 & 2 \end{array}\right]\right) = \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right] \left[\begin{array}{cc} 0 & 5 \\ 1 & 2 \end{array}\right] = \left[\begin{array}{cc} 0 & 5 \\ 1 & 7 \end{array}\right]$$

$$\left(\left[\begin{array}{cc}1&0\\1&1\end{array}\right]\left[\begin{array}{cc}1&1\\0&1\end{array}\right]\right)\left[\begin{array}{cc}-1&3\\1&2\end{array}\right]=\left[\begin{array}{cc}1&1\\1&2\end{array}\right]\left[\begin{array}{cc}-1&3\\1&2\end{array}\right]=\left[\begin{array}{cc}0&5\\1&7\end{array}\right]$$

Matrices and their functions

Now we study the relationship between a matrix M and the function $\mathbf{x} \mapsto M * \mathbf{x}$

- **Easy:** Going from a matrix M to the function $\mathbf{x} \mapsto M * \mathbf{x}$
- ▶ A little harder: Going from the function $\mathbf{x} \mapsto M * \mathbf{x}$ to the matrix M.

In studying this relationship, we come up with the fundamental notion of a *linear transformation*.

From matrix to function

Starting with a M, define the function $f(\mathbf{x}) = M * x$.

Domain and co-domain?

If M is an $R \times C$ matrix over \mathbb{F} then

ightharpoonup domain of f is \mathbb{F}^C

 \triangleright co-domain of f is \mathbb{F}^R

Example: Let M be the matrix $\begin{array}{c|cccc} & \# & @ & ? \\ \hline a & 1 & 2 & 3 \\ b & 10 & 20 & 30 \end{array}$ and define $f(\mathbf{x}) = M * \mathbf{x}$

▶ Domain of f is $\mathbb{R}^{\{\#,\emptyset,?\}}$.

► Co-domain of f is $\mathbb{R}^{\{a,b\}}$

▶ Domain of f is \mathbb{R}^3

ightharpoonup Co-domain of f is \mathbb{R}^2

Example: Define $f(\mathbf{x}) = \begin{bmatrix} 1 & 2 & 3 \\ 10 & 20 & 30 \end{bmatrix} * \mathbf{x}$.

 $f \text{ maps} \frac{\# @ ?}{2 2 2 2} \text{ to} \frac{\text{a} \text{ b}}{0 0}$

f maps [2, 2, -2] to [0, 0]

From function to matrix

We have a function $f: \mathbb{F}^A \longrightarrow \mathbb{F}^B$

We want to compute matrix M such that $f(\mathbf{x}) = M * \mathbf{x}$.

- ▶ Since the domain is \mathbb{F}^A , we know that the input **x** is an *A*-vector.
- ▶ For the product $M * \mathbf{x}$ to be legal, we need the column-label set of M to be A.
- ▶ Since the co-domain is \mathbb{F}^B , we know that the output $f(\mathbf{x}) = M * \mathbf{x}$ is B-vector.
- ▶ To achieve that, we need row-label set of *M* to be *B*.

Now we know that M must be a $B \times A$ matrix....

... but what about its entries?

From function to matrix

• We have a function $f: \mathbb{F}^n \longrightarrow \mathbb{F}^m$

How to go from the function f to the entries of M?

• We think there is an $m \times n$ matrix M such that $f(\mathbf{x}) = M * \mathbf{x}$

We think there is an $m \times n$ matrix m such that $r(\mathbf{x}) = m \cdot \mathbf{x}$

- Write mystery matrix in terms of its columns: $M = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$
 - Use standard generators $\mathbf{e}_1 = [1,0,\dots,0,0],\dots,\mathbf{e}_n = [0,\dots,0,1]$

with *linear-combinations* definition of matrix-vector multiplication:
$$f(\mathbf{e}_1) = \left[\begin{array}{c|c} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{array}\right] * [1,0,\ldots,0,0] = \mathbf{v}_1$$

$$f(\mathbf{e}_n) = \left[\begin{array}{c|c} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{array}\right] * [0, 0, \dots, 0, 1] = \mathbf{v}_n$$

From function to matrix: horizontal scaling

Define s([x, y]) =stretching by two in horizontal direction

- We know s([1,0]) = [2,0] because we are stretching by two in horizontal direction
- We know s([0,1]) = [0,1] because no change in vertical direction.

Therefore
$$M = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

From function to matrix: horizontal scaling

Define s([x, y]) = stretching by two in horizontal directionAssume s([x, y]) = M * [x, y] for some matrix M.

- We know s([1,0]) = [2,0] because we are stretching by two in horizontal direction
- We know s([0,1]) = [0,1] because no change in vertical direction.

Therefore $M = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

From function to matrix: horizontal scaling

Define s([x, y]) =stretching by two in horizontal direction

Assume s([x, y]) = M * [x, y] for some matrix M.

- We know s([1,0]) = [2,0] because we are stretching by two in horizontal direction
- We know s([0,1]) = [0,1] because no change in vertical direction.

Therefore $M = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$

From function to matrix: rotation by 90 degrees

Define r([x, y]) = rotation by 90 degrees

- We know rotating [1,0] should give [0,1] so r([1,0]) = [0,1]
- ▶ We know rotating [0,1] should give [-1,0] so r([0,1]) = [-1,0]

Therefore
$$M = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

From function to matrix: rotation by 90 degrees

(1,0)

Define r([x, y]) = rotation by 90 degrees

- ▶ We know rotating [1,0] should give [0,1] so r([1,0]) = [0,1]
- ▶ We know rotating [0,1] should give [-1,0] so r([0,1]) = [-1,0]

Therefore
$$M = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$r_{\Theta}([1,0]) = [0,1]$$

From function to matrix: rotation by θ degrees

Define $r([x, y]) = \text{rotation by } \theta$.

- We know $r([1,0]) = [\cos \theta, \sin \theta]$ so column 1 is $[\cos \theta, \sin \theta]$
- ▶ We know $r([0,1]) = [-\sin\theta, \cos\theta]$ so column 2 is $[-\sin\theta, \cos\theta]$ Therefore $M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

From function to matrix: rotation by θ degrees

Define $r([x, y]) = \text{rotation by } \theta$.

- We know $r([1,0]) = [\cos \theta, \sin \theta]$ so column 1 is $[\cos \theta, \sin \theta]$
- ▶ We know $r([0,1]) = [-\sin\theta, \cos\theta]$ so column 2 is $[-\sin\theta, \cos\theta]$

From function to matrix: rotation by θ degrees

Define $r([x, y]) = \text{rotation by } \theta$.

Assume r([x, y]) = M * [x, y] for some matrix M.

- We know $r([1,0]) = [\cos \theta, \sin \theta]$ so column 1 is $[\cos \theta, \sin \theta]$
- ▶ We know $r([0,1]) = [-\sin\theta, \cos\theta]$ so column 2 is $[-\sin\theta, \cos\theta]$ Therefore $M = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

For clockwise rotation by 90 degrees, plug in $\theta = -90$ degrees...

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$

From function to matrix: translation

- t([x,y]) = translation by [1,2]. Assume t([x,y]) = M * [x,y] for some matrix M.
 - We know t([1,0]) = [2,2] so column 1 is [2,2].
 - ▶ We know t([0,1]) = [1,3] so column 2 is [1,3].

From function to matrix: translation

t([x,y]) = translation by [1,2]. Assume t([x,y]) = M * [x,y] for some matrix M.

- We know t([1,0]) = [2,2] so column 1 is [2,2].
- We know t([0,1]) = [1,3] so column 2 is [1,3].

Therefore $M = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$

From function to matrix: translation

- t([x,y]) = translation by [1,2]. Assume t([x,y]) = M * [x,y] for some matrix M.
 - We know t([1,0]) = [2,2] so column 1 is [2,2].
 - We know t([0,1]) = [1,3] so column 2 is [1,3].

From function to matrix: identity function

Consider the function $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ defined by $f(\mathbf{x}) = \mathbf{x}$ This is the identity function on \mathbb{R}^4 .

Assume $f(\mathbf{x}) = M * \mathbf{x}$ for some matrix M.

Plug in the standard generators
$$\mathbf{e}_1 = [1, 0, 0, 0], \mathbf{e}_2 = [0, 1, 0, 0], \mathbf{e}_3 = [0, 0, 1, 0], \mathbf{e}_4 = [0, 0, 0, 1]$$
 $\mathbf{e}_1 = \mathbf{e}_1$ so first column is \mathbf{e}_1

$$f(\mathbf{e}_2) = \mathbf{e}_2 \text{ so second column is } \mathbf{e}_2$$

•
$$f(\mathbf{e}_3) = \mathbf{e}_3$$
 so third column is \mathbf{e}_3

•
$$f(\mathbf{e}_4) = \mathbf{e}_4$$
 so fourth column is \mathbf{e}_4

So
$$M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Identity function $f(\mathbf{x})$ corresponds to identity matrix 1

Diagonal matrices

Let d_1, \ldots, d_n be real numbers. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be the function such that $f([x_1, \ldots, x_n]) = [d_1x_1, \ldots, d_nx_n]$. The matrix corresponding to this function is

$$\begin{bmatrix} d_1 & & & \\ & \cdot & \cdot & \\ & & d_n \end{bmatrix}$$
 matrix because the only entries allowed to be nonzero form .

Such a matrix is called a *diagonal* matrix because the only entries allowed to be nonzero form a diagonal.

Definition: For a domain
$$D$$
, a $D \times D$ matrix M is a diagonal matrix if $M[r, c] = 0$ for every pair $r, c \in D$ such that $r \neq c$.

Special case:
$$d_1 = \cdots = d_n = 1$$
. In this case, $f(\mathbf{x}) = \mathbf{x}$ (identity function)

The matrix $\begin{bmatrix} 1 & & \\ & \ddots & \\ & & 1 \end{bmatrix}$ is an identity matrix.

Which functions can be expressed as matrix-vector products?

In each example, we assumed the function could be expressed as a matrix-vector product.

How can we verify that assumption?

We'll state two algebraic properties.

- ▶ If a function can be expressed as a matrix-vector product $\mathbf{x} \mapsto M * \mathbf{x}$, it has these properties.
- ▶ If the function from \mathbb{F}^C to \mathbb{F}^R has these properties, it can be expressed as a matrix-vector product.

Which functions can be expressed as matrix-vector products?

Let ${\mathcal V}$ and ${\mathcal W}$ be vector spaces over a field ${\mathbb F}.$

Suppose a function $f:\mathcal{V}\longrightarrow\mathcal{W}$ satisfies two properties:

Property L1: For every vector
$$\mathbf{v}$$
 in \mathcal{V} and every scalar α in \mathbb{F} ,
$$f(\alpha \mathbf{v}) = \alpha f(\mathbf{v})$$

Property L2: For every two vectors \mathbf{u} and \mathbf{v} in \mathcal{V} ,

$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$

We then call f a linear transformation.

Proposition: Let M be an $R \times C$ matrix, and suppose $f : \mathbb{F}^C \mapsto \mathbb{F}^R$ is defined by $f(\mathbf{x}) = M * \mathbf{x}$. Then f is a linear transformation.

Proof: Certainly \mathbb{F}^C and \mathbb{F}^R are vector spaces.

We showed that $M*(\alpha \mathbf{v}) = \alpha M*\mathbf{v}$. This proves that f satisfies Property L1.

We showed that $M * (\mathbf{u} + \mathbf{v}) = M * \mathbf{u} + M * \mathbf{v}$. This proves that f satisfies Property L2. QED