Indexed Sets

December 12, 2023

This chapter contains a discussion of indexed sets, the set-theoretical counterpart to indexed categories. In particular, here we explore:

- 1. Indexed sets, i.e. functors $K_{\sf disc} \to {\sf Sets}$ with K a set;
- 2. The limits and colimits in the category of K-indexed sets;
- 3. Constructions with indexed sets like dependent sums, dependent products, and internal Homs.

Contents

1	Indexed Sets		
	1.1	Foundations	2
	1.2	Morphisms of Indexed Sets	2
	1.3	The Category of Sets Indexed by a Fixed Set	3
		The Category of Indexed Sets	
2	Lin	nits of Indexed Sets	5
_		Products of Indexed Sets	
		Pullbacks of Indexed Sets.	
	2.3	Equalisers of Indexed Sets	5
3	Col	imits of Indexed Sets	6
U		Coproducts of Indexed Sets	
		Pushouts of Indexed Sets.	
		Coequalisers of Indexed Sets	

4	Constructions With Indexed Sets		
	4.1	Change of Indexing	7
	4.2	Dependent Sums	8
	4.3	Dependent Products	9
	4.4	Internal Homs	10
	4.5	Adjointness of Indexed Sets	10
\mathbf{A}	Oth	ner Chapters	11

1 Indexed Sets

1.1 Foundations

Let K be a set.

Definition 1.1.1.1. A K-indexed set is a functor $X: K_{\mathsf{disc}} \to \mathsf{Sets}$.

Remark 1.1.1.2. By Categories, ??, a K-indexed set consists of a K-indexed collection

$$X^{\dagger} \colon K \to \mathrm{Obj}(\mathsf{Sets}),$$

of sets, assigning a set $X_x^{\dagger} \stackrel{\text{def}}{=} X_x$ to each element x of K.

1.2 Morphisms of Indexed Sets

Let $X \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 1.2.1.1. A morphism of K-indexed sets from X to Y^1 is a natural transformation

$$f \colon X \Longrightarrow Y, \quad K_{\mathsf{disc}} \overset{X}{\underbrace{f \downarrow}} \mathsf{Sets}$$

from X to Y.

Remark 1.2.1.2. In detail, a morphism of K-indexed sets consists of a K-indexed collection

$$\{f_x\colon X_x\to Y_x\}_{x\in K}$$

of maps of sets.

¹Further Terminology: Also called a K-indexed map of sets from X to Y.

1.3 The Category of Sets Indexed by a Fixed Set

Let K be a set.

Definition 1.3.1.1. The **category of** K**-indexed sets** is the category $\mathsf{ISets}(K)$ defined by

$$\mathsf{ISets}(K) \stackrel{\text{def}}{=} \mathsf{Fun}(K_{\mathsf{disc}}, \mathsf{Sets}).$$

Remark 1.3.1.2. In detail, the category of K-indexed sets is the category $\mathsf{ISets}(K)$ where

- Objects. The objects of $\mathsf{ISets}(K)$ are K-indexed sets as in Definition 1.1.1.1;
- Morphisms. The morphisms of ISets(K) are morphisms of K-indexed sets as in Definition 1.2.1.1;
- Identities. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, the unit map

$$\mathbb{M}_X^{\mathsf{ISets}(K)} \colon \mathrm{pt} \to \mathrm{Hom}_{\mathsf{ISets}(K)}(X,X)$$

of $\mathsf{ISets}(K)$ at X is defined by

$$\mathrm{id}_X^{\mathsf{ISets}(K)} \stackrel{\mathrm{def}}{=} \{ \mathrm{id}_{X_x} \}_{x \in K};$$

• Composition. For each $X, Y, Z \in \text{Obj}(\mathsf{ISets}(K))$, the composition map

$$\circ_{X,Y,Z}^{\mathsf{ISets}(K)} \colon \mathrm{Hom}_{\mathsf{ISets}(K)}(Y,Z) \times \mathrm{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \mathrm{Hom}_{\mathsf{ISets}(K)}(X,Z)$$

of $\mathsf{ISets}(K)$ at (X,Y,Z) is defined by

$$\{g_x\}_{x\in K}\circ_{X,Y,Z}^{\operatorname{lSets}(K)}\{f_x\}_{x\in K}\stackrel{\text{\tiny def}}{=}\{g_x\circ f_x\}_{x\in K}.$$

1.4 The Category of Indexed Sets

Definition 1.4.1.1. The category of indexed sets is the category ISets defined as the Grothendieck construction of the functor ISets: Sets^{op} \rightarrow Cats of Proposition 4.1.1.4:

ISets
$$\stackrel{\mathrm{def}}{=} \int^{\mathsf{Sets}} \mathsf{ISets}.$$

Remark 1.4.1.2. In detail, the category of indexed sets is the category ISets where

- Objects. The objects of ISets are pairs (K, X) consisting of
 - The Indexing Set. A set K;
 - The Indexed Set. A K-indexed set $X: K_{\mathsf{disc}} \to \mathsf{Sets};$
- Morphisms. A morphism of ISets from (K,X) to (K',Y) is a pair (ϕ,f) consisting of
 - The Reindexing Map. A map of sets $\phi: K \to K'$;
 - The Morphism of Indexed Sets. A morphism of K-indexed sets $f: X \to \phi_*(Y)$ as in the diagram

$$f \colon X \to \phi_*(Y), \qquad \begin{matrix} K_{\mathsf{disc}} & \xrightarrow{\phi} K'_{\mathsf{disc}} \\ X & \swarrow_Y \end{matrix}$$
 Sets;

• Identities. For each $(K, X) \in \text{Obj}(\mathsf{ISets})$, the unit map

$$\mathbb{F}^{\mathsf{ISets}}_{(K,X)} \colon \mathrm{pt} \to \mathsf{ISets}((K,X),(K,X))$$

of ISets at (K, X) is defined by

$$id_{(K,X)}^{\mathsf{ISets}} \stackrel{\text{def}}{=} (id_K, id_X).$$

• Composition. For each $\mathbf{X}=(K,X),\ \mathbf{Y}=(K',Y),\ \mathbf{Z}=(K'',Z)\in \mathrm{Obj}(\mathsf{ISets}),$ the composition map

$$\circ_{\mathbf{X},\mathbf{Y},\mathbf{Z}}^{\mathsf{ISets}}\colon\mathsf{ISets}(\mathbf{Y},\mathbf{Z})\times\mathsf{ISets}(\mathbf{X},\mathbf{Y})\to\mathsf{ISets}(\mathbf{X},\mathbf{Z})$$

of ISets at $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ is defined by

$$(\psi, g) \circ (\phi, f) \stackrel{\text{def}}{=} (\psi \circ \phi, (g \circ id_{\phi}) \circ f),$$

as in the diagram

for each $(\phi, f) \in \mathsf{ISets}(\mathbf{X}, \mathbf{Y})$ and each $(\psi, g) \in \mathsf{ISets}(\mathbf{Y}, \mathbf{Z})$.

2 Limits of Indexed Sets

2.1 Products of K-Indexed Sets

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y: K_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 2.1.1.1. The **product of** X **and** Y is the K-indexed set $X \times Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ defined by

$$(X \times Y)_k \stackrel{\text{def}}{=} X_k \times Y_k$$

for each $k \in K$.

Proof. That this agrees with the categorical product in $\mathsf{ISets}(K)$ follows from Limits and Colimits, ?? of ??.

2.2 Pullbacks of K-Indexed Sets

Let $X, Y, Z: K_{\mathsf{disc}} \to \mathsf{Sets}$ be K-indexed sets and let $f: X \to Z$ and $g: Y \to Z$ be morphisms of K-indexed sets.

Definition 2.2.1.1. The **pullback of** X **and** Y **over** Z is the K-indexed set $X \times_Z Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ defined by

$$(X \times_Z Y)_k \stackrel{\text{def}}{=} X_k \times_{Z_k} Y_k$$

for each $k \in K$.

Proof. That this agrees with the categorical pullback in $\mathsf{ISets}(K)$ follows from Limits and Colimits, ?? of ??.

2.3 Equalisers of K-Indexed Sets

Let $X, Y: K_{\mathsf{disc}} \to \mathsf{Sets}$ be K-indexed sets and let $f, g: X \rightrightarrows Y$ be morphisms of K-indexed sets.

Definition 2.3.1.1. The equaliser of f and g is the K-indexed set $\text{Eq}(f,g) \colon K_{\text{disc}} \to \text{Sets}$ defined by

$$(\mathrm{Eq}(f,g))_k \stackrel{\mathrm{def}}{=} \mathrm{Eq}(f_k,g_k)$$

for each $k \in K$.

Proof. That this agrees with the categorical equaliser in $\mathsf{ISets}(K)$ follows from Limits and Colimits, ?? of ??.

2.4 Products in ISets

Let $X \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y \colon K'_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 2.4.1.1. The **product of** X **and** Y is the $(K \times K')$ -indexed set

$$X \times Y \colon (K \times K')_{\mathsf{disc}} \to \mathsf{Sets}$$

defined by

$$(X \times Y)_{(k,k')} \stackrel{\text{def}}{=} X_k \times Y_{k'}$$

for each $(k, k') \in K \times K'$.

Proof. We claim that this agrees with the categorical product in ISets. \Box

2.5 Pullbacks in ISets

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ be a K-indexed set, let $Y: K'_{\mathsf{disc}} \to \mathsf{Sets}$ be a K'-indexed set, let $Z: K''_{\mathsf{disc}} \to \mathsf{Sets}$ be a K''-indexed set, and let $(\phi, f): X \to Z$ and $(\psi, g): Y \to Z$ be morphisms of indexed sets (as in Remark 1.4.1.2).

Definition 2.5.1.1. The pullback of X and Y over Z is the $(K \times_{K''} K)$ -indexed set

$$X \times_Z Y \colon (K \times_{K''} K)_{\mathsf{disc}} \to \mathsf{Sets}$$

defined by

$$(X \times_Z Y)_{(k,k')} \stackrel{\text{def}}{=} X_k \times_{Z_{\phi(k)}} Y_{k'}$$
$$\stackrel{\text{def}}{=} X_k \times_{Z_{\psi(k)}} Y_{k'}$$

for each $(k, k') \in K \times_{K''} K'$.

Proof. We claim that this agrees with the categorical pullback in ISets. \Box

2.6 Equalisers in |Sets

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ be a K-indexed set, let $Y: K'_{\mathsf{disc}} \to \mathsf{Sets}$ be a K'-indexed set, and let $(\phi, f), (\psi, g): X \to Y$ be morphisms of indexed sets (as in Remark 1.4.1.2).

Definition 2.6.1.1. The **equaliser of** (ϕ, f) **and** (ψ, g) is the Eq (ϕ, ψ) -indexed set Eq(f, g): Eq $(\phi, \psi) \rightarrow$ Sets defined by

$$(\mathrm{Eq}(f,g))_k \stackrel{\mathrm{def}}{=} \mathrm{Eq}(f_k,g_k)$$

for each $k \in \text{Eq}(\phi, \psi)$.

Proof. We claim that this agrees with the categorical equaliser in ISets. \Box

3 Colimits of Indexed Sets

3.1 Coproducts of K-Indexed Sets

Let $X: K_{\mathsf{disc}} \to \mathsf{Sets}$ and $Y: K_{\mathsf{disc}} \to \mathsf{Sets}$ be indexed sets.

Definition 3.1.1.1. The **coproduct** of X and Y is the K-k-indexed set $X \coprod Y \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ defined by

$$(X \coprod Y)_k \stackrel{\text{def}}{=} X_k \coprod Y_k$$

for each $k \in K$.

Proof. That this agrees with the categorical coproduct in $\mathsf{ISets}(K)$ follows from Limits and Colimits, ?? of ??.

3.2 Pushouts of K-Indexed Sets

Let $X, Y, Z \colon K_{\mathsf{disc}} \to \mathsf{Sets}$ be K-indexed sets and let $f \colon Z \to X$ and $g \colon Z \to Y$ be morphisms of K-indexed sets.

Definition 3.2.1.1. The **pushout** of X and Y is the K-indexed set $X \coprod_Z Y : K_{\mathsf{disc}} \to \mathsf{Sets}$ defined by

$$(X \coprod_Z Y)_k \stackrel{\text{def}}{=} X_k \coprod_{Z_k} Y_k$$

for each $k \in K$.

Proof. That this agrees with the categorical pushout in $\mathsf{ISets}(K)$ follows from Limits and Colimits, ?? of ??.

3.3 Coequalisers of K-Indexed Sets

Let $X, Y: K_{\mathsf{disc}} \to \mathsf{Sets}$ be K-indexed sets and let $f, g: X \rightrightarrows Y$ be morphisms of K-indexed sets.

Definition 3.3.1.1. The **coequaliser** of X and Y is the K-indexed set $CoEq(f,g) \colon K_{disc} \to Sets$ defined by

$$(\operatorname{CoEq}(f,g))_k \stackrel{\text{def}}{=} \operatorname{CoEq}(f_k,g_k)$$

for each $k \in K$.

Proof. That this agrees with the categorical coequaliser in $\mathsf{ISets}(K)$ follows from Limits and Colimits, ?? of ??.

4 Constructions With Indexed Sets

4.1 Change of Indexing

Let $\phi \colon K \to K'$ be a function and let X be a K'-indexed set.

Definition 4.1.1.1. The **change of indexing of** X **to** K is the K-indexed set $\phi^*(X)$ defined by

 $\phi^*(X) \stackrel{\text{def}}{=} X \circ \phi_{\text{disc}}.$

Remark 4.1.1.2. In detail, the change of indexing of X to K is the K-indexed set $\phi^*(X)$ defined by

$$\phi^*(X)_x \stackrel{\mathrm{def}}{=} X_{\phi(x)}$$

for each $x \in K$.

Proposition 4.1.1.3. The assignment $X \mapsto \phi^*(X)$ defines a functor

$$\phi^* : \mathsf{ISets}(K') \to \mathsf{ISets}(K),$$

where

• Action on Objects. For each $X \in \mathrm{Obj}(\mathsf{ISets}(K')),$ we have

$$[\phi^*](X) \stackrel{\mathrm{def}}{=} \phi^*(X);$$

• Action on Morphisms. For each $X, Y \in \mathrm{Obj}(\mathsf{ISets}(K'))$, the action on Hom-sets

$$\phi_{X,Y}^* \colon \mathrm{Hom}_{\mathsf{ISets}(K')}(X,Y) \to \mathrm{Hom}_{\mathsf{ISets}(K)}(\phi^*(X),\phi^*(Y))$$

of ϕ^* at (X,Y) is the map sending a morphism of K'-indexed sets

$$f = \{f_x \colon X_x \to Y_x\}_{x \in K'}$$

from X to Y to the morphism of K-indexed sets defined by

$$\phi^*(f) \stackrel{\text{def}}{=} \left\{ f_{\phi(x)} \colon X_{\phi(x)} \to Y_{\phi(x)} \right\}_{x \in K}.$$

Proof. Omitted.

Proposition 4.1.1.4. The assignment $K \mapsto \mathsf{ISets}(K)$ defines a functor

$$\mathsf{ISets} \colon \mathsf{Sets}^\mathsf{op} \to \mathsf{Cats},$$

where

• Action on Objects. For each $K \in \text{Obj}(\mathsf{Sets})$, we have

$$[\mathsf{ISets}](K) \stackrel{\text{def}}{=} \mathsf{ISets}(K);$$

• Action on Morphisms. For each $K, K' \in \mathrm{Obj}(\mathsf{Sets}),$ the action on Hom-sets

$$\mathsf{ISets}_{K,K'} \colon \mathsf{Sets}^\mathsf{op}(K,K') o \mathsf{Fun}(\mathsf{ISets}(K),\mathsf{ISets}(K'))$$

of ISets at (K, K') is the map defined by

$$\mathsf{ISets}_{K,K'}(\phi) \stackrel{\mathrm{def}}{=} \phi^*$$

for each $\phi \in \mathsf{Sets}^{\mathsf{op}}(K, K')$.

Proof. Omitted.

4.2 Dependent Sums

Let $\phi \colon K \to K'$ be a function and let X be a K-indexed set.

Definition 4.2.1.1. The **dependent sum of** X is the K'-indexed set $\Sigma_{\phi}(X)^2$ defined by

$$\Sigma_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Lan}_{\phi}(X),$$

and hence given by

$$\Sigma_{\phi}(X)_x \cong \coprod_{y \in \phi^{-1}(x)} X_y$$

for each $x \in K'$.

Proposition 4.2.1.2. The assignment $X \mapsto \Sigma_{\phi}(X)$ defines a functor

$$\Sigma_{\phi} \colon \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\Sigma_{\phi}](X) \stackrel{\text{def}}{=} \Sigma_{\phi}(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K))$, the action on

² Further Notation: Also written $\phi_*(X)$.

Hom-sets

$$\Sigma_{\phi|X,Y} \colon \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K')}(\Sigma_{\phi}(X),\Sigma_{\phi}(Y))$$

of Σ_{ϕ} at (X,Y) is the map sending a morphism of K-indexed sets

$$f: X \to Y$$

to the morphism of K'-indexed sets defined by

$$\Sigma_{\phi}(f) \stackrel{\text{def}}{=} \operatorname{Lan}_{\phi}(f);$$
$$\cong \coprod_{y \in \phi^{-1}(X)} f_{y}.$$

Proof. Omitted.

4.3 Dependent Products

Let $\phi \colon K \to K'$ be a function and let X be a K-indexed set.

Definition 4.3.1.1. The **dependent product of** X is the K'-indexed set $\Pi_{\phi}(X)^3$ defined by

$$\Pi_{\phi}(X) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(X),$$

and hence given by

$$\Pi_{\phi}(X)_x \cong \prod_{y \in \phi^{-1}(x)} X_y$$

for each $x \in K'$.

Proposition 4.3.1.2. The assignment $X \mapsto \Pi_{\phi}(X)$ defines a functor

$$\Pi_{\phi} \colon \mathsf{ISets}(K) \to \mathsf{ISets}(K'),$$

where

• Action on Objects. For each $X \in \text{Obj}(\mathsf{ISets}(K))$, we have

$$[\Pi_{\phi}](X) \stackrel{\mathrm{def}}{=} \Pi_{\phi}(X);$$

• Action on Morphisms. For each $X, Y \in \text{Obj}(\mathsf{ISets}(K))$, the action on

³ Further Notation: Also written $\phi_1(X)$.

4.4 Internal Homs

Hom-sets

$$\Pi_{\phi|X,Y} \colon \operatorname{Hom}_{\mathsf{ISets}(K)}(X,Y) \to \operatorname{Hom}_{\mathsf{ISets}(K')}(\Pi_{\phi}(X),\Pi_{\phi}(Y))$$

of Π_{ϕ} at (X,Y) is the map sending a morphism of K-indexed sets

11

$$f: X \to Y$$

to the morphism of K'-indexed sets defined by

$$\Pi_{\phi}(f) \stackrel{\text{def}}{=} \operatorname{Ran}_{\phi}(f);$$

$$\cong \prod_{y \in \phi^{-1}(x)} f_{y}.$$

Proof. Omitted.

4.4 Internal Homs

Let K be a set and let X and Y be K-indexed sets.

Definition 4.4.1.1. The internal Hom of indexed sets from X to Y is the indexed set $\mathbf{Hom}_{\mathsf{lSets}(K)}(X,Y)$ defined by

$$\mathbf{Hom}_{\mathsf{ISets}(K)}(X,Y) \stackrel{\scriptscriptstyle \mathrm{def}}{=} \mathsf{Sets}(X_x,Y_x)$$

for each $x \in K$.

4.5 Adjointness of Indexed Sets

Let $\phi \colon K \to K'$ be a map of sets.

Proposition 4.5.1.1. We have a triple adjunction

$$(\Sigma_\phi \dashv \phi^* \dashv \Pi_\phi) \colon \quad \mathsf{ISets}(K) \underbrace{\qquad \qquad }_{\prod_\phi} \mathsf{ISets}(K').$$

Proof. This follows from Kan Extensions, ?? of ??.

Appendices

A Other Chapters

Set Theory

- 1. Sets
- 2. Constructions With Sets
- 3. Pointed Sets
- 4. Tensor Products of Pointed Sets
- 5. Indexed and Fibred Sets
- 6. Relations
- 7. Spans
- 8. Posets

Category Theory

- 9. Categories
- 10. Constructions With Categories
- 11. Kan Extensions

Bicategories

- 12. Bicategories
- 13. Internal Adjunctions

Internal Category Theory

14. Internal Categories

Cyclic Stuff

15. The Cycle Category

Cubical Stuff

16. The Cube Category

Globular Stuff

17. The Globe Category

Cellular Stuff

18. The Cell Category

Monoids

- 19. Monoids
- 20. Constructions With Monoids

Monoids With Zero

- 21. Monoids With Zero
- 22. Constructions With Monoids With Zero

Groups

- 23. Groups
- 24. Constructions With Groups

Hyper Algebra

- 25. Hypermonoids
- 26. Hypergroups
- 27. Hypersemirings and Hyperrings
- 28. Quantales

Near-Rings

- 29. Near-Semirings
- 30. Near-Rings

Real Analysis

- 31. Real Analysis in One Variable
- 32. Real Analysis in Several Variables

Measure Theory

- 33. Measurable Spaces
- 34. Measures and Integration

Probability Theory

34. Probability Theory

Stochastic Analysis

- 35. Stochastic Processes, Martingales, and Brownian Motion
- 36. Itô Calculus

37. Stochastic Differential Equations

Differential Geometry

38. Topological and Smooth Manifolds

Schemes

39. Schemes