- 1. Recap of FSM design steps
 - a. Turn a word description into a state diagram
 - b. Turn the state diagram into a transition table
 - c. Use transition table to make K-maps to simplify circuit
 - d. Implement simplified circuit
- 2. Our word problem
 - a. Want to create an edge detecting circuit
 - i. Edge position in a string of 0s and 1s where a 0 is adjacent to a 1
 - ii. Essentially, XOR of adjacent bits
 - b. Since this involves remembering the previous value, machine will have different states
- 3. State transition diagram
 - a. Convert word description
 - i. States based on patterns of inputs
 - ii. Transitions between states based on individual input values
 - b. For this problem
 - i. S_i is our start state
 - 1. Upon first starting the FSM, will always start out in this state
 - 2. Will try to stay consistent and call it *i* in future uses
 - ii. Every other state is labeled S_{xy} where x is the previous bit, y is the current bit
 - 1. Each state will have a unique label
 - 2. This helps to minimizes the number of states
 - 3. Not perfect, though
 - a. Will talk about method to further minimize number of states later
 - iii. Values inside each state are the output of the circuit
 - 1. 0 indicates no edge
 - 2. 1 indicates an edge was detected

- c. Mealy model differences
 - i. Mealy model state diagrams look slightly different
 - 1. Outputs are on the edges/transitions between states, rather than the states themselves
 - 2. Usually, the number before the slash indicates the input
 - 3. Number after the slash indicates the output
 - 4. Will come back to this later

4. State table

- a. Table that lists all transitions from each present state to the next state for different values of inputs
 - i. Output z is specified with respect to the present state
 - ii. *x* is the next input
- b. Setting up the table
 - i. Need a row for every single state
 - ii. Need columns for each possible combination of inputs
 - iii. Need a column for every output as well
- c. Filling in the table
 - i. Use state transition diagram as reference
 - ii. Given combination of present state and input x, what is the next state?
 - 1. Write name down
 - iii. Given present state, what is the output of the present state?
 - 1. Bubble for present state has the output
 - 2. Write that value down

State Table					
Present State	Next	State	Output		
	<i>x</i> = 0	x = 1	Z		
i	0	1	0		
0	00	01	0		
1	10	11	0		
00	00	01	0		
01	10	11	1		
10	00	01	1		
11	10	11	0		

- d. Choice of flip-flops
 - i. Here, will keep it simple and use DFFs
 - 1. Could use more complicated FFs, like J-K
 - 2. Using these typically means more logic in front of FFs
 - ii. Occasionally, different types of flip flops can result in simpler circuitry
 - 1. You can assume DFFs unless specified otherwise
 - 2. Don't need to worry about getting it perfect in this class
 - a. However, does need to be minimized with respect to DFFs

5. State transition table

- a. Will continue with the Moore model for this example
- b. Since we have 7 states, will need $\lceil \log_2 7 \rceil = 3$ DFFs to represent all possible states
 - i. A, B, and C will represent the present state of the corresponding flip-flops
 - 1. This is the *output* of the FFs
 - ii. A', B', and C' will represent the next state of the corresponding flip-flops
 - 1. This is the *input* into the FFs
 - iii. x is the current input into the FSM (already stated above)
 - iv. z is the current output out of the FSM (already stated above)
- c. Need to assign binary codes to each state
 - i. When FFs contain this value, you know you're currently in that state
 - ii. Initial state we start out in i must always be assigned to binary code of all 0s
 - 1. Flip flops are assumed to be 0 when we first start circuit
 - iii. Have assigned binary codes below simply by going down the list of possible codes
 - 1. Will talk about better way to do this later
- d. Setting up the table
 - i. Use state table as reference (or state transition diagram once you know what you're doing)
 - ii. Present State A, B, and C columns along with Input x column form input
 - 1. Concatenation of A, B, C, and x form 4-bit binary number
 - 2. Looks very similar to a truth table for a 4-input Boolean function
 - a. That's because we are making one for A', B', C', and z
- e. Filling in the table
 - i. Use state table and binary codes to fill in columns for A', B', C'
 - 1. For given present state and binary code, what is the binary code of the next state?
 - 2. Example: eighth row, state 00 (011) with input of 1
 - a. Next state is state 01 from state table
 - b. Binary code of state 01 is 100, so place that inside columns for A', B', and C'
 - ii. Output z is the same as in the state table

State Transition Table									
Procent State	Binary	Present State			Input	Next State			Output
Present State	Code	A	В	С	X	Α'	B'	C'	Z
i	000	0	0	0	0	0	0	1	0
i	000	0	0	0	1	0	1	0	0
0	001	0	0	1	0	0	1	1	0
0	001	0	0	1	1	1	0	0	0
1	010	0	1	0	0	1	0	1	0
1	010	0	1	0	1	1	1	0	0
00	011	0	1	1	0	0	1	1	0
00	011	0	1	1	1	1	0	0	0
01	100	1	0	0	0	1	0	1	1
01	100	1	0	0	1	1	1	0	1
10	101	1	0	1	0	0	1	1	1
10	101	1	0	1	1	1	0	0	1
11	110	1	1	0	0	1	0	1	0
11	110	1	1	0	1	1	1	0	0
	111	1	1	1	0	d	d	d	d
	111	1	1	1	1	d	d	d	d

- 6. Derivation of minimized next-state and output expressions
 - a. Use state transition table to create K-maps for FF input combinational circuits
 - i. Inputs are the concatenation of the current state variables A, B, C, and the input x
 - ii. Outputs of each K-map are the next state variables A', B', C' and the output z
 - 1. Need to create 4 different K-maps, one for each variable
 - iii. Fill in K-maps using appropriate column from state transition table
 - 1. Since state 111 wasn't assigned, combinations of that with x are don't cares

A'		AB					
		00	01	11	10		
Сх	00	0	1	(1)	1		
	01	0	1	1	1		
	11	1	1	d	1		
	10	0	0	d	0		

B'		AB				
		00	01	11	10	
Cx	00	0	0	0	0	
	01	1	1	1	1	
	11	0	0	d	0	
	10	1	1	а	[7]	
			•		•	

$$A' = B\bar{C} + A\bar{C} + Cx$$

$$B' = \bar{C}x + C\bar{x}$$

$$C' = \bar{x}$$

- b. Create K-map to determine the output combinational circuit
 - i. Remember, Moore models don't use the input to determine the current output
 - 1. Therefore, K-map for z only uses A, B, and C
 - 2. Could place x in as well but result will be identical
 - ii. Mealy model differences
 - 1. Mealy models use the current input to determine the current output
 - 2. Final K-map for output z would incorporate current flip-flop values as well as input x
 - 3. K-map below for Mealy model would have 4 inputs

$$z = A\bar{B}$$

- 7. Finishing steps
 - a. After K-maps done, implement these circuits
 - b. Mealy model differences
 - i. In general, Mealy model usually involves less circuitry
 - 1. In this case, it would
 - 2. Only need two DFFs to remember previous bit
 - 3. XOR those values with input to give final output
 - ii. Not always the case, though

