Bevezetés a számításelméletbe 1.

Jegyzet mérnök-informatikus hallgatók részére

Készítette: Kriván Bálint dr. Wiener Gábor és dr. Simonyi Gábor előadásai alapján

2009. szeptember - 2010. január 5.

Tartalomjegyzék

1.	Line	áris algebra
	1.1	Koordináta geometria
		1.1.1 Egyenes egyenlete
		1.1.2 Sík egyenlete
	1.2	Vektortér v. lineáris tér
		1.2.1 Altér
		1.2.2 Lineáris kombináció
		1.2.3 Generátum (generált altér)
	1.3	Lineáris egyenletrendszerek
		1.3.1 Összefoglalás
	1.4	Determináns
		1.4.1 Tulajdonságok
		1.4.2 További azonosságok
	1.5	Mátrixok
		1.5.1 Mire jó a determináns?
		1.5.2 Mátrix-műveletek
		1.5.3 Inverz mátrix
		1.5.4 Rang
	1.6	Lineáris leképezések
		1.6.1 Példák
		1.6.2 Tulajdonságok
		1.6.3 Lineáris leképezések szorzata
		1.6.4 Képtér és magtér
		1.6.5 Sajátvektor, sajátérték
	1.7	Komplex számok
		1.7.1 Műveletek
		1.7.2 Konjugált
		1.7.3 Trigonometrikus alak
		1.7.4 Szorzás, hatványozás, gyökvonás trigonometrikus alakban
2.	Kon	binatorika - elemi leszámlálások 3
	2.1	Ismétlés nélküli
		2.1.1 Permutáció
		2.1.2 Variáció
		2.1.3 Kombináció
	2.2	Ismétléses
		2.2.1 Permutáció
		2.2.2 Variáció
		2.2.3 Kombináció
	2.3	Binomiális együtthatók

3.	Halmazok							
	3.1	Halmazok számossága	37					
		3.1.1 Kis kitérő	37					
		3.1.2 Megszámlálhatóan végtelen halmazok	38					
		3.1.3 Kontínuum számosságú halmazok	39					
		3.1.4 Hatványhalmaz	40					
4.	Gráf	fok	43					
4.1 Gráf-fogalmak, definíciók		Gráf-fogalmak, definíciók	43					
	4.2	Fák és alaptulajdonságai	45					
	4.3 Síkba rajzolható gráfok		48					
	4.4	Síkgráfok duálitása	50					

1. fejezet

Lineáris algebra

1.1. Koordináta geometria

1.1.1. Egyenes egyenlete

Az e minden E(x; y; z) pontjára, és csak is ezekre a pontokra teljesül, hogy ($t \in \mathbb{R}$):

$$\begin{array}{rcl}
x & = & x_0 + ta \\
y & = & y_0 + tb \\
z & = & z_0 + tc
\end{array}$$

Ahol a, b, illetve c az egyenes $\mathbf{v}(a;b;c)$ irányvektorának koordinátái. Ezeket t-re rendezve, kapjuk, hogy:

$$t = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$
 $a, b, c \neq 0$

1.1.2. Sík egyenlete

Lemma: $\overrightarrow{OP} \perp \overrightarrow{OQ} \Leftrightarrow \overrightarrow{OP} \cdot \overrightarrow{OQ} = 0$ P(x;y;z) rajta van az **n** normálvektorú síkon \Leftrightarrow $\overrightarrow{P_0P} \perp n$. Tehát a fenti lemma alapján:

$$(x - x_0)a + (y - y_0)b + (z - z_0)c = 0$$

$$\boxed{ax + by + cz = ax_0 + by_0 + cz_0} = \text{konst.}$$

1.2. Vektortér v. lineáris tér

Definíció 1.1 Vektorok egy V halmaza a vektorokon értelmezett összeadás és valós számmal való szorzás műveletére $\mathbb R$ feletti **vektorteret** alkot, ha teljesülnek a következők:

Példák:

- 1. Valós 1-;2-;3-dimenziós vektorok R feletti vektorteret alkot a szokásos műveletekkel.
- 2. Rendezett valós szám *k*-asok

$$(x_1; \ldots; x_k) + (y_1; \ldots; y_k) := (x_1 + y_1; \ldots; x_k + y_k)$$

$$\forall \lambda \in \mathbb{R} : \lambda(x_1; \ldots; x_k) := (\lambda x_1; \ldots; \lambda x_k)$$

3. \leq k-ad fokú valós együtthatójú polinomok (polinom összeadásra és valóssal való szorzásra)

$$a_k x^k + a_{k-1} x^{k-1} + \ldots + a_1 x + a_0$$

Tulajdonságok:

o
$$\mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 + \mathbf{u}_4 \rightarrow$$
 nem kell zárójelezni

$$\circ \ \textbf{u}_3 + \textbf{u}_2 + \textbf{u}_4 + \textbf{u}_1 \rightarrow \text{sorrend nem számít}$$

$$\circ \ \textbf{u}_1 + \textbf{u}_2 = \textbf{u}_3 \Leftrightarrow \textbf{u}_3 - \textbf{u}_2 = \textbf{u}_1 \rightarrow \text{van kivon\'as}$$

$$\circ \ \lambda \mathbf{u}_1 = \mathbf{u}_2 \stackrel{\lambda \neq 0}{\Longrightarrow} \mathbf{u}_1 = \frac{\mathbf{u}_2}{\lambda}$$

Néhány egyszerű következménye az axiómáknak:

1.
$$0 \cdot \mathbf{v} = \mathbf{0}$$

$$0 \cdot \mathbf{v} = (0+0)\mathbf{v} = 0 \cdot \mathbf{v} + 0 \cdot \mathbf{v} \quad / -0 \cdot \mathbf{v}$$
$$\mathbf{0} = 0 \cdot \mathbf{v}$$

2.
$$\lambda$$
0 = **0**

$$\lambda \mathbf{0} = \lambda (\mathbf{0} + \mathbf{0}) = \lambda \mathbf{0} + \lambda \mathbf{0} \quad / -\lambda \cdot \mathbf{0}$$

$$\mathbf{0} = \lambda \mathbf{0}$$

3.
$$(-1)\mathbf{v} = (-\mathbf{v})$$

$$(1+(-1))\mathbf{v} = \mathbf{v} + (-1)\mathbf{v}$$

$$(1+(-1))\mathbf{v} = 0\mathbf{v} = \mathbf{0}$$

$$\mathbf{0} = \mathbf{v} + (-1)\mathbf{v} \xrightarrow{(\ddot{o}4)} (-1)\mathbf{v} = (-\mathbf{v})$$

4.
$$\lambda \mathbf{v} = \mathbf{0} \Leftrightarrow \lambda = 0 \text{ vagy } \mathbf{v} = \mathbf{0}$$

 $\Leftarrow \checkmark \text{ lásd (1) ill. (2).}$
 $\Rightarrow \text{ ha } \lambda \neq 0, \text{ akkor:}$

$$\frac{1}{\lambda}(\lambda \mathbf{v}) = \frac{1}{\lambda}\mathbf{0}$$

$$\left(\frac{1}{\lambda}\lambda\right)\mathbf{v} = \mathbf{0} \quad \Rightarrow \quad \mathbf{v} = \mathbf{0}$$

Tehát, vagy $\lambda = 0$ vagy $\mathbf{v} = \mathbf{0}$. \checkmark

1.2.1. Altér

Definíció 1.2 $(V, +, \cdot)$ vektortér, $U \subseteq V$. U altér, ha maga is vektortér ugyanazon műveletekkel.

Például: $S:\{(x,y,0)|x,y\in\mathbb{R}\}$. Altere-e a $V:\{(x,y,z)|x,y,z\in\mathbb{R}\}$ -nek? Ellenőrizzük az axiómákat... \checkmark

Észrevehetjük, hogy ö1, ö2, illetve s1-s4-et nem kell ellenőrizni, hiszen egy részhalmazra mindenképpen teljesülnek.

Tétel 1.1 $U \subseteq V, U \neq \emptyset$:

$$U$$
 altér \Leftrightarrow ha U zárt az összeadásra és szorzásra

Bizonyítás 1.1

⇒ \checkmark (Definíció szerint) \Leftarrow ö0, s0 \checkmark , ö1, ö2, s1-s4 \checkmark ö3: $0 \cdot \mathbf{u} \in U$ (hiszen zárt) ⇒ $\mathbf{0} \in U \checkmark$ ö4: $(-1)\mathbf{u} \in U$ (hiszen zárt) ⇒ $(-\mathbf{u}) \in U \checkmark$

Triviális alterek:

- 1. önmaga (hiszen minden halmaz önmagának részhalmaza
- 2. {**0**}

Alterek a síkban

- triviális alterek (sík összes pontjához tartozó helyvektor, illetve csak az origóhoz tartozó helyvektor)
- origón átmenő egyenesekhez tartozó pontok helyvektorai (ellenőrzés a fenti tétel használatával: összeadásnál és szorzásnál is benne maradunk az egyenesben)

Ha az egyenesen lévőkhöz hozzá veszünk egy rajta kívül lévő ponthoz tartozó helyvektort, akkor így a sík összes pontjához tartozó helyvektort megkaphatjuk (lásd lineáris kombináció)

1.2.2. Lineáris kombináció

$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V, \quad \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$$

$$\rightarrow \boxed{\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n}$$

1.2.3. Generátum (generált altér)

$$\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = \{\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \dots + \lambda_n \mathbf{v}_n \mid \lambda_i \in \mathbb{R} \}$$

Például:

$$\langle (1,0,0),(0,1,0)\rangle = \{\lambda_1(1,0,0) + \lambda_2(0,1,0) | \lambda_1,\lambda_2 \in \mathbb{R}\} = (\lambda_1,\lambda_2,0)$$

Tétel 1.2 ∀ generátum altér.

Bizonyítás 1.2 Hiszen zárt a szorzásra és az összeadásra.

Ha $\mathbf{u} \not\parallel \mathbf{v} \rightarrow \langle \mathbf{u}, \mathbf{v} \rangle = \mathbb{R}^2$.

Definíció 1.3 *Generátorrendszer* $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V)$

$$\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \rangle = V$$

Vagyis, ha egy V vektortér egy vektorrendszerének generált altere megegyezik V-vel, akkor őket generátorrendszernek hívjuk.

Definíció 1.4 $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in V$ együtt függetlenek¹. (Két féle definíció:)

- 1. $\exists \mathbf{v}_i$, ami a többiek lineáris kombinációjaként előáll.
- 2. Ha $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n = \mathbf{0} \Rightarrow$ $\Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$ (triviális lin. kombináció)

Bizonyítsuk be, hogy a két definíció ekvivalens.

(1)
$$\Rightarrow$$
 (2) Indirekt, Tfh: $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n = \mathbf{0}$ és $\lambda_1 \neq 0$

$$\lambda_1 \mathbf{v}_1 = -\lambda_2 \mathbf{v}_2 - \ldots - \lambda_n \mathbf{v}_n \quad / : \lambda_1$$

Hiszen (1) alapján egyik sem áll elő a többi lin. kombinációjaként.

(2)
$$\Rightarrow$$
 (1) Indirekt, Tfh: $\mathbf{v}_1 = \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n$

$$\mathbf{0} = -\mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n \quad$$

Hiszen \mathbf{v}_1 együtthatója nem 0, így ez nem triviális lin. kombináció (pedig (2) pont ezt mondja).

Definíció 1.5 Bázis: független generátorrendszer.

Például: $\langle (1,0,0), (0,1,0), (0,0,1) \rangle$

Definíció 1.6 *Dimenzió*: A vektortér tetszőleges bázisának elemszáma.

Tétel 1.3 Egy $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ vektorrendszer V-ben *bázis*t alkot $\Leftrightarrow \forall \mathbf{v} \in V : \exists \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}$, hogy

$$\mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n$$

felírás egyértelmű.

¹Tehát ez nem egy vektorra értendő tulajdonság, hanem vektorok egy halmazára

Bizonvítás 1.3

 \Rightarrow

$$\mathbf{v} = \mu_1 \mathbf{v}_1 + \mu_2 \mathbf{v}_2 + \ldots + \mu_n \mathbf{v}_n$$

A kettőt egymásból kivonva:

$$\mathbf{0} = (\lambda_1 - \mu_1)\mathbf{v}_1 + (\lambda_2 - \mu_2)\mathbf{v}_2 + \ldots + (\lambda_n - \mu_n)\mathbf{v}_n$$

Mivel $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ független (hiszen bázis), ezért ez csak a triviális lineáris kombinácó lehet, tehát $\lambda_i = \mu_i \ (i = 1, 2, \dots, n)$. \checkmark

 \Leftarrow

Mivel $\mathbf{v} \in V$ előáll $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ lineáris kombinációjaként, ezért $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ generátorrendszer, de tegyük fel, hogy nem független. Tehát van olyan \mathbf{v}_i (legyen ez az egyszerűség kedvéért \mathbf{v}_1), ami előáll a többi lineáris kombinációjaként:

$$\mathbf{v}_1 = \kappa_2 \mathbf{v}_2 + \kappa_3 \mathbf{v}_3 + \ldots + \kappa_n \mathbf{v}_n$$

De ez ellentmondás, hiszen $\mathbf{v}_1 = 1\mathbf{v}_1$, ami az előzőtől különböző felírás, de feltettük, hogy minden V-beli vektor egyértelműen felírható a \mathbf{v}_i ($i=1,\ldots,n$) vektorokkal. Tehát $\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n\}$ független generátorrendszer, vagyis bázis. \checkmark

Definíció 1.7

$$\mathbf{v} = \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2 + \ldots + \lambda_n \mathbf{b}_n$$
 $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n\}, \ \mathbf{v} \in V$ (\mathcal{B} bázis V -ben)

A $\mathbf{k} = (\lambda_1, \lambda_2, \dots, \lambda_n)$ vektor a **v**-nek a \mathcal{B} bázisban vett **koordináta-vektora**. *Megjegyzés*: A fenti tétel alapján adott bázisban felírt koordináta-vektor egyértelmű.

Tétel 1.4 Kicserélési tétel

$$F = \mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_n$$
 független V -ben $G = \mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_k$ generátor rendszer V -ben

Állítás: $\forall i$ -hez $\exists j$, hogy

$$\mathbf{f}_1,\mathbf{f}_2,\ldots,\mathbf{f}_{i-1},\mathbf{f}_{i+1},\ldots,\mathbf{f}_n,\mathbf{g}_j$$

független legyen (magyarul, bármelyik f-et lecserélve egy bizonyos g-vel független rendszer marad V-ben).

Bizonyítás 1.4

Indirekt, tfh: \mathbf{f}_1 nem cserélhető le semelyik \mathbf{g}_j -re, azaz a cserélésnél nem marad független:

$$\left. egin{array}{l} \mathbf{g}_1, \mathbf{f}_2, \dots, \mathbf{f}_n \\ \mathbf{g}_2, \mathbf{f}_2, \dots, \mathbf{f}_n \\ \vdots \\ \mathbf{g}_k, \mathbf{f}_2, \dots, \mathbf{f}_n \end{array}
ight.
ight.$$
 nem függetlenek

Azaz felhasználva a függetlenség (2) definícióját:

$$\lambda_1 \mathbf{g}_i + \lambda_2 \mathbf{f}_2 + \ldots + \lambda_n \mathbf{f}_n = \mathbf{0}$$
 úgy, hogy nem triviális komb.

Tehát van olyan λ ami $\neq 0$. Azt is tudjuk, hogy $\lambda_1 \neq 0$, hiszen ha $\lambda_1 = 0$, akkor a többi λ közül kéne valamelyiknek nem nullának lenni, ahhoz hogy ne legyenek függetlenek, viszont akkor $\mathbf{f}_2, \mathbf{f}_3, \ldots, \mathbf{f}_n$ nem lenne független, ami ellent mond az állításnak (ha F független

rendszer V-ben akkor ennek részhalmaza is az). Tehát:

$$\lambda_1 \mathbf{g}_j = -\lambda_2 \mathbf{f}_2 - \dots - \lambda_n \mathbf{f}_n \quad / : \lambda_1 \quad (\lambda_1 \neq 0)$$
$$\mathbf{g}_j = -\frac{\lambda_2}{\lambda_1} \mathbf{f}_2 - \dots - \frac{\lambda_n}{\lambda_1} \mathbf{f}_n$$
$$\mathbf{g}_j \in \langle \mathbf{f}_2, \dots, \mathbf{f}_n \rangle$$

Tehát a számszorosaik is benne vannak, azaz ezek lineáris kombinációja is:

$$\lambda_1 \mathbf{g}_1 + \lambda_2 \mathbf{g}_2 + \ldots + \lambda_k \mathbf{g}_k \in \langle \mathbf{f}_2, \ldots, \mathbf{f}_n \rangle$$

$$V = \langle \mathbf{g}_1, \mathbf{g}_2, \ldots, \mathbf{g}_k \rangle \subseteq \langle \mathbf{f}_2, \ldots, \mathbf{f}_n \rangle$$
hiszen G generátorrendszer

Ez viszont azt jelenti, hogy $\langle \mathbf{f}_2, \dots, \mathbf{f}_n \rangle$ a V összes vektorát generálja, így \mathbf{f}_1 -t is. Ez viszont ellentmondásra vezet, hiszen F független a feltétel szerint.

Következmény: Ha F független rendszer és G generátorrendszer V-ben, akkor $|F| \leq |G|$. Hiszen minden \mathbf{f} helyére írhatunk egy \mathbf{g} -t és így is független marad (tehát nincs két egyforma).

Tétel 1.5 Bármely két azonos vektortérhez tartozó bázisnak ugyanannyi eleme van. (Tehát a dimenzió jól definiált)

Bizonyítás 1.5

Ehhez felhasználjuk a fenti **kicseréléses tétel** következményét: B_1 és B_2 bázisok V-ben \Rightarrow

$$|B_1| \le |B_2| \ |B_2| \le |B_1|$$
 $\} |B_1| = |B_2| \checkmark$

Megjegyzés: Nem elfelejteni a bázis definícióját (**független generátor**rendszer), tehát a fenti következmény használatakor egyszer B_1 -et tekintjük független rendszernek és B_2 -őt generátorrendszernek, másodszor pedig fordítva.

1.3. Lineáris egyenletrendszerek

Általánosan egy egyenletrendszer így néz ki:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_3$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{k1}x_1 + a_{k2}x_2 + a_{k3}x_3 + \dots + a_{kn}x_n = b_k$$

Ezt a következő képpen írhatjuk fel egyszerűbben:

Megnevezések: A vonalig hívjuk együtthatók mátrixának, az egészet pedig kibővített mátrixnak.

Elemi ekvivalens átalakítások: (Milyen lépések megengedettek?)

- 1. Egy egyenletet lehet $\lambda \neq 0$ -val szorozni
- 2. Egy egyenlethez hozzá lehet adni a másik μ -szörösét
- 3. Két egyenlet sorrendjét meg lehet változtatni
- 4. A kibővített mátrix "csupa 0" sora törölhető

Algoritmus:

1. A bal felső (a_{11}) elem $\neq 0$?

 $IGAZ \rightarrow osztjuk$ az első sort ezzel az elemmel.

HAMIS $\rightarrow \exists$ sor amivel cserélhető úgy, hogy ekkor a bal felső elem $\neq 0$?

IGAZ → cseréljük

HAMIS → jobbra lépünk és ez lesz a vizsgálandó elem

- 2. Az első sor a_{21} -szeresét kivonjuk a 2-ből, a_{31} -szeresét kivonjuk a 3-ból, ...
- 3. Ha az algoritmussal elértük a jobb szélét vagy az alját az együtthatók mátrixának akkor végeztünk.
 - Ha találunk olyan sort, ahol csupa nulla van, azt elhagyhatjuk.
 - Ha találunk olyan sort, ahol csak az utolsó (a vonal mögötti) nem nulla, akkor ezt *tilos sor*nak nevezzük. Ekkor **nincs** megoldása az egyenletrendszernek!

Nézzünk meg konkrét példákat:

Innen szépen visszakövethetjük, hogy mik a megoldások. Az átlóban bekeretezett egyeseket **vezéregyesek**nek hívjuk. Az utoljára megkapott mátrixot **lépcsős alak**nak (LA) nevezzük. Amennyiben nem akarjuk kézzel visszakövetni, hogy akkor most ténylegesen mik a megoldások, mechanikusan tovább csinálhatjuk, ugyanazt amit eddig, csak visszafelé (felfelé).

Ezzel készen vagyunk, leolvashatjuk, hogy x = 3, y = 2 és z = -1.

Redukált lépcsős alakra hozzuk:
$$\begin{bmatrix} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Látható, hogy a második oszlopban nincs vezér egyes, ez azt jelenti, hogy van **szabad paraméter** (nyílván, ha több ilyen oszlop van, akkor több szabad paraméterrel operálunk): $x = 4 - 2p_1$, $y = p_1$ és z = 0. Tehát végtelen sok megoldás van.

Minden ismeretlent ki lehet fejezni a jobb oldali számmal és a szabad paraméterek segítségével.

1.3.1. Összefoglalás

Ha RLA-ra hoztuk, akkor:

- 1. \exists megoldás \iff ∄ tilos sor.
- 2. Minden sorban pontosan 1 vezéregyes van (az előtte lévők nullák). Ha ∀ oszlopban van vezéregyes, akkor a megoldás **egyértelmű**.
- 3. Ha **nem** minden oszlopban van vezéregyes, akkor **nem** egyértelmű a megoldás \rightarrow végtelen sok megoldás van.

A közhiedelemmel ellentétben csak a következő állítás igaz a hasonló jellegű állítások közül (ami az ismeretlenek és az egyenletek számát kapcsolja össze):

Állítás: Ha több ismeretlen van, mint egyenlet, akkor nincs egyértelmű megoldás.

Tehát mikor van egy $n \times n$ -es lineáris egyenletrendszernek (n db egyenlet, n db ismeretlen) megoldása?

- ha a nem keletkezik csupa 0 sor
- illetve, ha nem lesz tilos sor

Hogy lehet megállapítani?

Tehát, ha $ad - bc \neq 0$, akkor \exists egyértelmű megoldás, különben nem! Erre példa: (a, b) és (c, d) vektorok által kifeszített paralelogramma területe |ad - bc|.

13

1.4. Determináns

Minek van determinánsa?

• $n \times n$ -es M mátrixnak értéke: det M.

Definíció 1.8 Legyen $A = \{1, 2, ..., n\}$, ekkor az $f : A \rightarrow A$ bijektív függvényt *permutáció*nak hívjuk. Azaz minden 1, 2, ..., n számhoz kölcsönösen egyértelműen egy 1, 2, ..., n számot rendelünk.

Példa: 1,2,3,4,5 egy tetszőleges permutációja: 5,3,1,2,4 σ legyen egy hozzárendelési függvény, mely megmutatja, hogy az adott pozíción melyik szám áll:

- $\sigma(1) = 5$
- $\sigma(2) = 3$
- $\sigma(3) = 1$
- $\sigma(4) = 2$
- $\sigma(5) = 4$

Definíció 1.9 *Inverziószám*: egy tetszőleges permutációhoz tartozó szám, mely azt fejezi ki, hogy az összes lehetséges számpárt vizsgálva, mennyi pár áll inverzióban (fordított sorrend; csökkenő).

Példa: (5), (3), (1), (2), (4). Tehát az inverziószám ez esetben 6.

- legkisebb inverziószám: 0 (ha, az elemek sorrendben (növekvő) vannak)
- legnagyobb inverziószám: $\frac{n(n-1)}{2}$ (ha, teljesen megfordult a sorrendje az eredeti permutációhoz képest)
- páros permutáció: a permutáció inverziószáma páros
- páratlan permutáció: a permutáció inverziószáma páratlan

Definíció 1.10 "Bástyaelhelyezés": Ha egy $n \times n$ -es "sakktáblára" úgy helyezünk le n bástyát, hogy semelyik kettő sem ütik egymást, akkor azt bástyaelhelyezésnek hívjuk (minden sorban és oszlopban csak egy bástya van).

Ha jól meggondoljuk a *bástyaelhelyezés*ekhez *permutáció*kat tudunk rendelni; legyen az adott permutáció σ , ekkor az i. bástyát az i. sor, $\sigma(i)$. oszlopába rakjuk (Ez a hozzárendelés visszafelé is megfogalmazható, tehát kölcsönösen egyértelmű megfeleltetés van a bástyaelhelyezés és a permutáció között). Ennek megfelelően egy permutáció *inverziószám*át megfeleltethetjük annak, hogy az adott bástyaelhelyezésben hány olyan bástyapár van, ami ÉK-DNY elhelyezkedésű, hiszen ekkor van az, hogy a permutációban egy magasabb szám előrébb áll egy kisebb számnál (inverzióban vannak).

Definíció 1.11 *Determináns*: $I(\sigma) := a \sigma$ permutáció inverziószáma.

$$\det A := \sum_{\sigma} (-1)^{I(\sigma)} \cdot a_{1,\sigma(1)} \cdot a_{2,\sigma(2)} \cdot \ldots \cdot a_{n,\sigma(n)}$$

Tulajdonképpen vesszük az összes *bástyaelhelyezést* (jelen esetben egy $n \times n$ -es mátrixon helyezgetjük a bástyákat), és összeszorozzuk azokat a számokat, ahova raktunk bástyát, majd attól függően, hogy az adott permutáció páros vagy páratlan (másképp megfogalmazva: páros vagy páratlan ÉK-DNY elhelyezkedésű bástyapár van), annak függvényében pozitív vagy negatív előjellel vesszük, végül összeadjuk ezeket a szorzatokat.

Példa 1: det
$$A = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ?$$

- 1. Permutációk felírása, illetve ezek inverziószáma: $\begin{array}{c} 1\ 2 \rightarrow 0 \\ 2\ 1 \rightarrow 1 \end{array}$
- 2. Tehát definíció alapján: $\det A = (-1)^0 \cdot a \cdot d + (-1)^1 \cdot b \cdot c = ad bc$

$$P\'{e}lda \ 2: \det B = \det \left| \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right| = ?$$

1. Permutációk felírása, illetve ezek inverziószáma:

$$\begin{array}{c|cccc} 1 & 2 & 3 & \to & 0 \\ 1 & 3 & 2 & \to & 1 \\ 2 & 1 & 3 & \to & 1 \\ \end{array} \qquad \begin{array}{c|cccc} 2 & 3 & 1 & \to & 2 \\ 3 & 1 & 2 & \to & 2 \\ 3 & 2 & 1 & \to & 3 \\ \end{array}$$

2. Tehát definíció alapján: $\det B = (-1)^0 \cdot 1 \cdot 5 \cdot 9 + (-1)^1 \cdot 1 \cdot 6 \cdot 8 + (-1)^1 \cdot 2 \cdot 4 \cdot 9 + \dots$

Megjegyzés: Későbbiekben nem a definíciót fogjuk használni a determináns kiszámítására, mert hosszadalmas.

1.4.1. Tulajdonságok

1. Ha a főátló alatt (felső háromszög mátrix) v. fölött (alsó háromszög mátrix) minden elem 0, akkor a determináns a főátlóban lévő elemek szorzata.

Bizonyítás: Egyetlen permutáció (az 1, 2, 3, ..., n) van, ahol nincs a szorzatban 0. Tehát az összeg csak ebből az egy szorzatból – a főátlóban lévő elemek szorzatából – áll.

(2.) Ha egy sorban vagy oszlopban minden elem 0, akkor a determináns 0.

Bizonyítás: Minden sorból és minden oszlopból pontosan 1 elem szerepel mindegyik szorzatban, tehát ha egy oszlop v. sor csupa 0, akkor minden szorzatban lesz 0; ezek összege is 0 lesz.

(3.) Ha egy sorban v. oszlopban minden elemet megszorzunk egy λ -val, akkor a determináns a λ -szorosára változik.

 $\overline{(4.)}$

$$\begin{vmatrix} a_{11} + a'_{11} & a_{12} + a'_{12} & \dots & a_{1n} + a'_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a'_{11} & a'_{12} & \dots & a'_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Bizonyítás: Definíció alapján könnyedén bizonyítható.

(5.) Ha két sor v. két oszlop azonos, akkor a determináns 0.

Bizonyítás: Legyen az i. és a j. sor azonos. Vegyük az S permutációt, amire $\sigma(i)=k$, illetve $\sigma(j)=l$, illetve az S' permutációt, amire $\sigma(i)=l$, illetve $\sigma(j)=k$, az összes többi azonos. Ha jól meggondoljuk, akkor ezekhez tartozó szorzatok abszolútértékben egyenlőek, hiszen a szorás kommutatív. De mi a helyzet az előjelükkel?

	1	2	 i	 j	 п
S			 k	 1	
S'			 1	 k	

Ahhoz, hogy S-ből S'-t kapjunk, először el kell mozgatnunk k-t az i. pozícióról az j-be, mégpedig úgy, hogy mindig a mellette levővel kicseréljük. Egy szomszédos csere 1-el változtatja meg az inverziószámot, hiszen csak az egymáshoz való viszonyuk változik. Tehát, ha k-t j. pozícióba visszük, akkor j-i csere szükséges. Ekkor az l a j-1. pozícióban lesz, hiszen a végén k helyet cserélt vele. Tehát, hogy őt elmozgassuk az i. pozícióba j-i-1 lépés szükséges. Tehát összesen, hogy S-ből S'-t kapjunk 2(j-i) – 1 cserét hajtottunk végre, azaz páros inverziószámból páratlant, páratlanból párosat csinál, vagyis S-hez és S'-höz tartozó szorzat előjele ellentétes. Az összes lehetséges permutációt hasonlóan párosíthatjuk, tehát a determináns 0.

(6.) Ha egy oszlophoz v. sorhoz egy másik oszlop v. sor λ szorosát hozzáadjuk, akkor a determináns nem változik.

Bizonyítás: Az előző, illetve a 4-es tulajdonságot felhasználva következik:

$$\begin{vmatrix} a_{11} + \lambda a_{21} & a_{12} + \lambda a_{22} & \dots & a_{1n} + \lambda a_{2n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \lambda \begin{vmatrix} a_{21} & a_{22} & \dots & a_{2n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Megjegyzés: A fenti példa azt mutatja, ha az első sorhoz a második sor λ -szorosát adjuk, természetesen tetszőleges két sorra, ugyanígy működik a dolog.

(7.) Ha kicserélünk két sort v. oszlopot, akkor a determináns a -1-szeresére változik.

Bizonyítás: Tekintsük az i. és a j. sort. Adjuk hozzá az i-hez a j. sort, majd ezt vonjuk ki a *j*-ből. Végül adjuk hozzá ezt az *i*-hez. Ekkor az *i*-ben lesz az eredetileg *j*. sor, a j-ben pedig az eredeti i sor -1-szerese. Eddig a determináns nem változott, de ahhoz, hogy tényleg a két sort felcseréljük a *j*-et meg kell szorozni −1-el. Tehát a determináns valóban a −1-szeresére változik:

$$\begin{vmatrix} \dots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \dots & \dots & \dots \end{vmatrix} = \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \dots & \dots & \dots \end{vmatrix} = \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \dots & \dots & \dots & \dots \end{vmatrix} = \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \dots & \vdots \end{vmatrix} = \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \dots & \vdots \end{vmatrix} = \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \dots & \vdots \end{vmatrix} = - \begin{vmatrix} \dots & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \dots & \vdots \end{vmatrix} = - \begin{vmatrix} \dots & \dots & \dots & \dots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \end{vmatrix} = - \begin{vmatrix} \dots & \dots & \dots & \dots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \end{vmatrix} = - \begin{vmatrix} \dots & \dots & \dots & \dots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \dots & \vdots \end{vmatrix} = - \begin{vmatrix} \dots & \dots & \dots & \dots \\ \vdots & \vdots & \dots & \vdots \\ \vdots & \dots & \dots & \dots \\$$

$$= \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_{i1} + a_{j1} & a_{i2} + a_{j2} & \dots & a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{i1} & -a_{i2} & \dots & -a_{in} \\ \dots & \dots & \dots & \dots \end{vmatrix} = \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{i1} & -a_{i2} & \dots & -a_{in} \\ \dots & \dots & \dots & \dots \end{vmatrix} = - \begin{vmatrix} \dots & \dots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \dots & \dots & \dots & \dots \end{vmatrix}$$

1.4.2. További azonosságok

Az A egy $n \times n$ -es mátrix, $\lambda \in \mathbb{R}$:

$$\det(\lambda \cdot A) = \lambda^n \cdot \det A$$

Tétel 1.6 Determinánsok szorzás-tétele

$$\det(A \cdot B) = \det A \cdot \det B$$

Megjegyzés: Nyílván, ha *A* és *B* négyzetes mátrix, illetve ha értelmezhető a szorzatuk.

1.5. Mátrixok

Tehát tudjuk, hogy a Gauss-elimináció lépései, hogyan hatnak a determinánsra. Ha sikerül LA-ra hozni a mátrixot, akkor annak a determinánsa a főátlók szorzata (1 v. 0), de nem felejtjük el, hogy időközben a determináns értéke megváltozott.

De miért is jó, hogy tudjuk, hogyan kell kiszámolni egy determinánst?

1.5.1. Mire jó a determináns?

Segítségével meg tudjuk határozni, hogy egy $n \times n$ -es egyenletrendszernek, mikor van megoldása.

Tétel 1.7
$$\exists ! mo \Leftrightarrow \det A \neq 0$$

Bizonyítás 1.7 Akkor és csak akkor létezik egyértelmű megoldás, ha a lépcsős alakban minden oszlopban van vezéregyes:

Amikor előáll a lépcsős alak (Gauss-elmináció lépései), akkor a determináns értéke változik, de a *nulla mivolta nem*!

Tehát, ha a lépcsős alakban minden oszlopban van 1-es tehát a lépcsős alakra hozott mátrix determinánsa $1 \neq 0$, azaz det $A \neq 0$ \checkmark .

 \bigoplus A lépcsős alakra hozás után megtudjuk, hogy det $A \neq 0$. Tehát a főátlóban nem volt 0, azaz minden oszlopban van vezéregyes. \checkmark

Definíció 1.12 *Transzponált*: Az $A(k \times n)$ -es mátrix transzponáltja A^T , ami egy $n \times k$ -s mátrix, amit úgy kapunk, hogy minden oszlopból a megfelelő sorrendben sort csinálunk:

Ha $n \times n$ -es mátrixunk van, akkor ez egy egyszerű főátlóra való tükrözéssel megvalósítható.

Tétel 1.8

$$\det A = \det A^T \qquad A(n \times n)$$

1.5. MÁTRIXOK

Bizonyítás 1.8

Definíció 1.13 *Előjeles aldetermináns*: $A_{ij}(n-1\times n-1)$, ha $A(n\times n)$. Ez az $a_{i,j}$ -hez tartozó előjeles aldetermináns, melyet úgy kapunk, hogy az A-ból elhagyjuk az i. sort és a j. oszlopot, vesszük ennek a mátrixnak a determinánsát, majd megszorozzuk $(-1)^{i+j}$ -nel.

Tétel 1.9 Kifejtési-tétel

Ha vesszük a mátrix egy sorát vagy oszlopát, akkor az itt álló elemeket megszorozva a hozzájuk tartozó előjeles aldeterminánssal, majd ezeket összegezve, megkapjuk a mátrix determinánsát:

$$\det A = \sum_{j=1}^{n} a_{i,j} \cdot \underbrace{(-1)^{i+j} A_{ij}}_{\text{előjeles aldet.}}$$
 (ez az *i*. sor szerinti kifejtés)

Bizonyítás 1.9 Bizonyítani csak egy sor kifejtését fogjuk, hiszen ha transzponáljuk, akkor az oszlopok helyett továbbra is sorokkal dolgozhatunk tovább, viszont a fenti tétel alapján $\det A = \det A^T$.

Ha megvizsgáljuk a fenti szummát, akkor észrevehetjük, hogy ha az előjeleket nem nézzük, csak magukat a szorzatokat, akkor ezek megegyeznek a determináns definíciójában lévő szorzatokkal, hiszen mind a két felírásban tulajdonképpen vesszük az összes lehetséges bástyaelhelyezést - permutációt. Kérdés, hogy az előjelekkel mi a helyzet? Vizsgáljunk meg egy-egy szorzatot mindkét összegből (amik bástyaelhelyezésben azonosak); tfh, hogy a kifejtés során az *i*. sor *j*. oszlopában tartunk, ekkor a szorzat a következő:

$$a_{i,j}\cdot (-1)^{i+j}A_{ij}$$

A determináns definíciója alapján pedig:

$$(-1)^{I(\sigma)} \cdot a_{1,\sigma 1} \cdot \ldots \cdot a_{i,j} \cdot \ldots \cdot a_{n,\sigma n}$$

Azt előzőekben tárgyaltuk, hogy abszolútértékben a két szorzat megegyezik, kérdés, hogy $(-1)^{I(\sigma)} \stackrel{?}{=} (-1)^{i+j}$.

Tegyük fel, hogy $a_{i,j}$ -től DNY-ra k bástya van. Mivel $a_{i,j}$ a j. oszlopban van, ezért előtte j-1 bástya van, tehát $a_{i,j}$ -től ÉNY-ra j-1-k darab. Továbbá mivel $a_{i,j}$ az i. sorban van, ezért felette i-1 bástya van, tehát tőle ÉK-re i-1-(j-1-k)=i-j+k darab bástya van. Ha jól megnézzük, akkor egy ilyen permutációban $a_{i,j}$ -re helyezett bástya k+i-j+k darab bástyával van ÉK-DNY elhelyezkedésben. Ez k választásától függetlenül akkor páratlan, ha i-j páratlan, ami pontosan akkor páratlan, ha i+j páratlan. Ezzel beláttuk, hogy az adott permutáció inverziószámának páratlansága megegyezik i+j páratlanságával, tehát:

$$(-1)^{I(\sigma)} = (-1)^{i+j} \qquad \Box$$

Definíció 1.14 $n \times n$ -es egységmátrix: minden elem nulla, kivéve a főátló, ahol csupa 1-es van:

$$\begin{pmatrix} \mathbf{1} & 0 & \dots & 0 & 0 \\ 0 & \mathbf{1} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \dots & 0 & \mathbf{1} & 0 \\ 0 & 0 & \dots & 0 & \mathbf{1} \end{pmatrix}$$

Jele: I_n , E_n , E.

1.5.2. Mátrix-műveletek

Összeadás, kivonás

Két azonos alakú mátrixot összeadhatunk, kivonhatjuk egymásból: megfelelő elemeket összeadjuk/kivonjuk.

$$A + B = B + A$$
 $(A + B) + C = A + (B + C)$

λ -val való szorzás

Minden elemet megszorzunk λ -val.

Szorzás

Két mátrixot csak akkor szorozhatunk össze egymással, ha az első! mátrix oszlopainak száma megegyezik a második! mátrix sorainak számával. Nem mindegy a sorrend: a szorzás mátrixok között **nem kommutatív**.

$$A(k \times n) \cdot B(n \times l) = C(k \times l)$$

 $[A \cdot B]_{ij} = C_{ij} := (A \ i. \text{ sorvektora}) \cdot (B \ j. \text{ oszlopvektora}) =$
 $= (a_{i1}, a_{i2}, \dots, a_{in}) \cdot (b_{1j}, b_{2j}, \dots, b_{nj}) = \sum_{m=1}^{n} a_{im} \cdot b_{mj}$

1.5. MÁTRIXOK 19

Példa:

$$\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 5 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \quad \begin{pmatrix} 17 & 22 \\ 21 & 26 \end{pmatrix}$$

Szorzás tulajdonságai:

• $0 \cdot A = 0$

• $I_n \cdot A = A \cdot I_n = A$

 $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ • $A \cdot (B + C) = AB + AC$ $(A + B) \cdot C = AC + BC$ ha ezek a műveletek elvégezhetőek

Szorozzunk meg balról egy oszlopvektort, nézzük meg mit kapunk:

$$\begin{pmatrix} 2 & 4 & 7 \\ 1 & 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 + 4x_2 + 7x_3 \\ 1x_1 + 3x_2 + 5x_3 \end{pmatrix}$$

Ha jól megnézzük egy "egyenletrendszer kezdeményt" látunk. Tehát pl. a következő egyenletrendszert:

$$\begin{cases} 2x_1 + 4x_2 + 7x_3 = 5 \\ 1x_1 + 3x_2 + 5x_3 = 8 \end{cases} \text{ vagy röviden: } A|b = \begin{vmatrix} 2 & 4 & 7 & 5 \\ 1 & 3 & 5 & 8 \end{vmatrix}$$

Felírhatjuk így is:

$$\begin{pmatrix} 2 & 4 & 7 \\ 1 & 3 & 5 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 5 \\ 8 \end{pmatrix}$$

Vagyis tulajdonképpen:

$$A \cdot \mathbf{x} = \mathbf{b}$$

Kicsit kalandozzunk el:

Legyen $A(n \times n)$. Tegyük fel, hogy létezik "inverze" (A^{-1}) . Elvárjuk, hogy $A^{-1} \cdot A =$ $A \cdot A^{-1} = I$. Nézzük csak meg mégegyszer a fenti egyenletet:

$$A \cdot \mathbf{x} = \mathbf{b}$$
 $/ \cdot A^{-1}$ balról
$$A^{-1} \cdot (A \cdot \mathbf{x}) = A^{-1} \cdot \mathbf{b}$$
$$\underbrace{(A^{-1} \cdot A)}_{I} \cdot \mathbf{x} = A^{-1} \cdot \mathbf{b}$$
$$\mathbf{x} = A^{-1} \cdot \mathbf{b}$$

Tehát, ha meg tudnánk határozni egy mátrix inverzét, akkor az egyenletrendszerek megoldását egy szimpla mátrix szorzással ki tudnánk számolni.

1.5.3. Inverz mátrix

Nem minden mátrixnak van, pl:

- nullmátrix
- egy olyan *A* mátrixnak, melyhez $\exists B \neq 0$, hogy AB = 0.

Definíció 1.15 *Balinverz*: B mátrix az A mátrix balinverze, ha $B \cdot A = E$.

Definíció 1.16 *Jobbinverz*: J mátrix az A mátrix jobbinverze, ha $A \cdot J = E$.

Tétel 1.10 Ha *A*-nak *B* a balinverze és *J* a jobbinverze, akkor B = J.

Bizonyítás 1.10

$$B(AJ) = BI = B$$

 $(BA)J = IJ = J$ mivel $B(AJ) = (BA)J \implies B = J$

Ha $\mathbf{B} = \mathbf{J}$, akkor mindkettő egyértelmű, tehát **létezik inverze**. Már csak az a kérdés, hogy milyen mátrixnak van inverze?

Tétel 1.11 Azoknak a mátrixoknak van jobbinverze, melyek determinánsa $\neq 0$. Tehát:

$$\det A \neq 0 \quad \Leftrightarrow \quad A\text{-nak } \exists \text{ jobbinverze}$$

Bizonyítás 1.11

 \Rightarrow

Tulajdonképpen az
$$A \cdot \mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, $A \cdot \mathbf{y} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ és $A \cdot \mathbf{z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ egyenletrendszert kell

megoldani. És az előzőekben tanultak alapján, ha det $A \neq 0 \Rightarrow \exists$ egyértelmű megoldás $\Rightarrow \exists$ jobbinverz.

Magát a tényleges megoldást, *Gauss-elimináció*val viszonylag könnyen kiszámíthatjuk. Vezessük végig a fenti konkrét példát. Ahhoz, hogy megkapjuk az **x**-et, a következőt kell redukált lépcsős alakra hozni:

1.5. MÁTRIXOK 21

Hasonlóan kell eljárni az **y**-al és **z**-vel is, azzal a különbséggel, hogy a vonaltól jobbra más áll. Vegyük észre, hogy a lépések során a bal oldal ugyanúgy változik, mind a 3 esetben, ezért az eliminációt "egyszerre" csinálhatjuk:

Ha a fentiben elvégezzük a Gauss-elimináció lépéseit akkor a jobb oldalt fogjuk "megkapni" a mátrix jobbinverzét. Tehát:

Tehát az *A* mátrix jobbinverze:

$$\begin{pmatrix} \frac{-5}{2} & \frac{5}{2} & \frac{-1}{2} \\ \frac{19}{4} & \frac{-11}{4} & \frac{1}{4} \\ -2 & 1 & 0 \end{pmatrix}$$

 \Leftarrow Indirekt; Tfh: det A = 0.

Ha a determináns 0, akkor a Gauss-elimináció közben lesz bal oldalon egy 0 sor. Ahhoz, hogy ne legyen ez a sor tilos sor, a vonaltól jobbra is csupa nullának kell lennie:

Ez viszont azt jelenti, hogy a jobbinverz determinánsa 0. Az viszont nem lehet hiszen mint tanultuk a Gauss-elimináció közben a determináns nulla mivolta nem változhat. Mivel kezdetben egységmátrix volt jobboldalt, aminek a determinánsa $1 \neq 0$, így ellenmondásba ütköztünk.

Megjegyzés: ← másképp:

Lemma 1.1 *A* és *B* $n \times n$ -es mátrixok:

$$(A \cdot B)^T = B^T \cdot A^T$$

Bizonyítás 1.1

$$(A \cdot B)^T = B^T \cdot A^T$$

$$[AB]_{j,i} = \left[B^T \cdot A^T\right]_{i,j}$$

Tehát baloldalt az A mátrix j. sorának és a B mátrix i. oszlopának, jobb oldalt pedig a B^T mátrix i. sorának és az A^T mátrix j. oszlopának a skaláris szorzata. Mivel a transzponálás "megcseréli" a sorokat és az oszlopokat (a főátlóra tükrözünk) ezért a két oldal valóban egyenlő (a vektorok skaláris szorzata kommutatív).

Tétel 1.12 Minden $n \times n$ -es A mátrixnak, aminek van jobbinverze, annak van balinverze is.

Bizonyítás 1.12

$$\det A \neq 0 \quad \Rightarrow \quad \det A^T \neq 0 \quad \Rightarrow \quad A^T$$
-nek van jobbinverze (J_t)

$$A^T \cdot J_t = E$$

$$(A^T \cdot J_t)^T = E^T = E$$

$$J_t^T \cdot A^{T^T} = E$$

$$J_t^T \cdot A = E$$

Tehát J_t^T az A mátrix balinverze (tehát egy mátrix balinverze a mátrix transzponáltjának jobbinverzének transzponáltja).

Következmény:

Tétel 1.13 A-nak létezik inverze \Leftrightarrow det $A \neq 0$.

Tétel 1.14

$$(AB)^{-1} = B^{-1} \cdot A^{-1}$$

Bizonyítás 1.14

$$(AB) \cdot (AB)^{-1} = E$$
 $/ \cdot A^{-1}$ balról
$$(A^{-1} \cdot A) \cdot B \cdot (AB)^{-1} = A^{-1}$$
 $/ \cdot B^{-1}$ balról
$$(B^{-1} \cdot B) \cdot (AB)^{-1} = B^{-1} \cdot A^{-1}$$
 $(AB)^{-1} = B^{-1} \cdot A^{-1}$

1.5. MÁTRIXOK 23

1.5.4. Rang

Definíció 1.17 *Sorrang* s(A): A lineárisan független sorok számának maximuma.

Definíció 1.18 *Oszloprang* o(A): A lineárisan független oszlopok számának maximuma.

Definíció 1.19 *Determinánsrang* d(A): Legnagyobb olyan k hogy A egy $k \times k$ -as aldeterminánsa (kiválasztunk tetszőleges k sort és k oszlopot és a sorok és oszlopok metszéspontjában tekintjük az elemeket) nem nulla.

Tétel 1.15

$$s(A) = d(A) \implies s(A) = d(A) = o(A) \quad \forall A$$

Bizonyítás 1.15 $d(A) = d(A^T)$, hiszen minden aldeterminánsnak megvan a párja (egyenlőek), tehát ha az egyik $\neq 0$, akkor a másik se. Ebből:

$$\underbrace{o(A) = s(A^T)}_{\text{o.} \to \text{sor}} = d(A^T) = d(A)$$

Tétel 1.16

$$\forall A: \quad d(A) = s(A)$$

Bizonyítás 1.16 Legyenek a sorvektorok: $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ (\mathbb{R}^n -beli vektorok). A sorvektorok által generált altér dimenziója a sorrang (a definíció egy értelmezése):

$$\dim \langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \rangle = s(A) := s$$

Rendezzük úgy a vektorokat, hogy az első s vektor független legyen, ekkor:

$$\langle \underline{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_s} \rangle = \langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \rangle$$
 tehát ez bázis

Hiszen, tegyük fel, hogy ez nem igaz, akkor $\mathbf{v}_{s+1}, \dots, \mathbf{v}_k$ között van olyan vektor, ami nem áll elő az első s vektor lineáris kombinációjaként, tehát ezt hozzá véve szintén független rendszert kapunk, ami ellentmondás (s dimenziójú térben nem lehet s+1 elemű független rendszer).

Ha belátjuk, hogy

$$\dim\langle \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \rangle = d(A)$$

akkor kész vagyunk.

A Gauss-elimináció nem változtatja meg a sorvektorok által generált altér dimenzióját, hiszen a megváltozott sorok ugyanazt az alteret fogják generálni ⇒ nem változik a dimenzió.

Vajon a determináns rang változik-e? Az világos, hogy a Gauss-elimináció műveletei közül a sorcsere és egy sor $\lambda \neq 0$ -val való szorzás nem változtat a determináns nullaságán, tehát a determináns rang nem változik. De mi a helyzet egy sorhoz egy másik sor λ -szorosának hozzáadásával? Tegyük fel, hogy ekkor tudunk növelni a determinánsrangon (ha nőhet, akkor csökkenhet is - tehát változhat, így elég csak azt belátnunk, hogy nem nőhet), tehát találunk egy $k \times k$ -asnál nagyobb nem 0 aldeterminánst. Az egyszerűség kedvéért tegyük

fel, hogy az 1. sor érintett a kiválasztott aldeterminánsban, a második nem, de ennek a λ szorosát adjuk az elsőhöz:

A jobb oldali két aldetermináns biztosan nulla, hiszen az eredeti mátrixban nem találtunk $k \times k$ -asnál nagyobb nem nulla aldeterminánst (a Gauss-elminináció előtt a mátrix rangja k), így viszont a 2. sor λ -szorosának hozzáadása után se találunk $k \times k$ -asnál nagyobb nem 0 aldeterminánst, tehát nem lehet növelni a determinánsrangon!

Vagyis, ha Gauss-elimináljuk a mátrixot és kapunk egy A' mátrixot, melyben legyen az első l sor, amiben van vezéregyes, a maradék pedig csupa nulla sor. Ekkor ebben az A' mátrixban van egy $l \times l$ -es nem nulla aldetermináns (egységmátrix), ennél nagyobb viszont nincs, tehát d(A') = l. Viszont ez az l darab sorvektor független rendszer is, hiszen nem állnak elő egymás lineáris kombinációjaként, tehát: d(A') = l = s(A'). Viszont, ahogy az előbbiekben láttuk a Gauss-elimináció nem változtatja meg sem a determinánsrangot sem a sorrangot, tehát: d(A) = s(A).

Tehát az eddigi tételekből következik, hogy $\forall A$ mátrixra $d(A) = s(A) = o(A) = \mathbf{r}(\mathbf{A})$. Ezt hívjuk **rang**nak.

Mire használhatjuk?

Ha egy adott vektorrendszer által generált altér dimenzióját megkaphatjuk úgy, hogy a vektorokat mátrixba rendezzük, majd meghatározzuk ennek a rangját (amit Gauss-eliminációva könnyen kiszámolhatunk). Példa:

$$\dim\langle (1,2,3), (4,5,6), (7,8,9), (10,11,12) \rangle = 2$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & -12 \\ 0 & -9 & -18 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 sorrangja 2, azaz a mátrix rangja 2

Illetve egy hasznos tétel:

$$\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix} \quad \begin{pmatrix} \lambda_1 + 3\lambda_2 \\ 2\lambda_1 + 5\lambda_2 \end{pmatrix} = \lambda_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$

Tehát tulajdonképpen, ha $A \cdot \mathbf{x} = \mathbf{b}$ mátrixegyenletünk van, akkor \mathbf{b} az A oszlopainak egy lineáris kombinációját adja.

Tétel 1.17

$$A \cdot \mathbf{x} = \mathbf{b} \text{ megoldhat}$$
 \Leftrightarrow $r(A|b) = r(A)$

Bizonyítás 1.17

 $\Rightarrow \exists \mathbf{x}$, tehát $\exists A$ oszlopainak olyan lineáris kombinációja, ami \mathbf{b} -t adja, tehát ha r(A) = r, akkor r(A|b) = r hiszen hozzávéve az oszlopvektorokhoz a \mathbf{b} -t nem nő a dimenzió.

 $\Leftarrow r(A|b) = r(A) = r$. Vegyük az A oszlopvektorait; ezekhez hozzávéve b-t nem nő a vektorok által generált tér dimenziója, tehát b előáll az oszlopvektorok lineáris kombinációjaként (mivel r az A mátrix oszloprangja, ezért csak azt az r vektort választjuk ki, akik bázist alkotnak):

$$\mathbf{b} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_r \mathbf{v}_r$$

Tehát ha x-et úgy választjuk, hogy i. sorba írunk λ_i -t, ha az A mátrixban az i. oszlopban van bázist alkotó vektor, többi helyre 0-át, akkor x kielégíti a kérdéses mátrixegyenletet.

1.6. Lineáris leképezések

Definíció 1.20 $A: V_1 \rightarrow V_2$ **lineáris leképezés**, ha:

- 1. $\forall \mathbf{u}, \mathbf{v} \in V_1$ -re: $\mathcal{A}(\mathbf{u} + \mathbf{v}) = \mathcal{A}(\mathbf{u}) + \mathcal{A}(\mathbf{v})$
- 2. $\forall \lambda \in \mathbb{R}$, $\mathbf{u} \in V_1$ -re: $\mathcal{A}(\lambda \mathbf{u}) = \lambda \mathcal{A}(\mathbf{u})$

1.6.1. Példák

(1) $V_1 = V_2 = \mathbb{R}^2$. Legyen \mathcal{A} , olyan, hogy az adott vektort az x tengelyre vetítjük, tehát $\mathcal{A}((\mathbf{x},\mathbf{y})) = (\mathbf{x},0)$. Lineáris leképezés-e?

$$\mathcal{A}((\mathbf{x}, \mathbf{y}) + (\mathbf{u}, \mathbf{v})) = \mathcal{A}((\mathbf{x} + \mathbf{u}, \mathbf{y} + \mathbf{v})) = (\mathbf{x} + \mathbf{u}, 0) \\ \mathcal{A}((\mathbf{x}, \mathbf{y})) + \mathcal{A}((\mathbf{u}, \mathbf{v})) = (\mathbf{x}, 0) + (\mathbf{u}, 0) = (\mathbf{x} + \mathbf{u}, 0) \end{cases}$$

$$\mathcal{A}(\lambda(\mathbf{x}, \mathbf{y})) = \mathcal{A}((\lambda \mathbf{x}, \lambda \mathbf{y})) = (\lambda \mathbf{x}, 0) \\ \lambda \mathcal{A}((\mathbf{x}, \mathbf{y})) = \lambda(\mathbf{x}, 0) = (\lambda \mathbf{x}, 0) \end{cases}$$

(2) $V_1 = V_2 = \mathbb{R}^2$. Az adott vektornak a képe legyen az \mathbf{y} tengelyre vett tükörképe, tehát $(\mathbf{x}, \mathbf{y}) \to (-\mathbf{x}, \mathbf{y})$. Lineáris leképezés-e?

$$\begin{split} \mathcal{A}((\mathbf{x},\mathbf{y}) + (\mathbf{u},\mathbf{v})) &= \mathcal{A}((\mathbf{x} + \mathbf{u},\mathbf{y} + \mathbf{v})) = (-(\mathbf{x} + \mathbf{u}),\mathbf{y} + \mathbf{v}) \\ \mathcal{A}((\mathbf{x},\mathbf{y})) + \mathcal{A}((\mathbf{u},\mathbf{v})) &= (-\mathbf{x},\mathbf{y}) + (-\mathbf{u},\mathbf{v}) = (-(\mathbf{x} + \mathbf{u}),\mathbf{y} + \mathbf{v}) \end{split} \right\} \checkmark \\ \mathcal{A}(\lambda(\mathbf{x},\mathbf{y})) &= \mathcal{A}((\lambda\mathbf{x},\lambda\mathbf{y})) = (-\lambda\mathbf{x},\lambda\mathbf{y}) \\ \lambda \mathcal{A}((\mathbf{x},\mathbf{y})) &= \lambda(-\mathbf{x},\mathbf{y}) = (-\lambda\mathbf{x},\lambda\mathbf{y}) \end{split}$$

1.6.2. Tulajdonságok

1.

$$\mathcal{A}(\mathbf{0}) = \mathbf{0}$$

$$\mathcal{A}(\mathbf{0} + \mathbf{0}) = \mathcal{A}(\mathbf{0}) + \mathcal{A}(\mathbf{0}) \qquad / - \mathcal{A}(\mathbf{0})$$

$$0 = \mathcal{A}(\mathbf{0}) \quad \checkmark$$

2.

$$\mathcal{A}(\mathbf{u}_1 + \mathbf{u}_2 + \ldots + \mathbf{u}_k) = \mathcal{A}(\mathbf{u}_1) + \mathcal{A}(\mathbf{u}_2) + \ldots + \mathcal{A}(\mathbf{u}_k)$$

Először $\mathbf{u}_1 + (\mathbf{u}_2 + \ldots + \mathbf{u}_k)$ -ra alkalmazzuk a definíciót, majd $\mathbf{u}_2 + (\mathbf{u}_3 + \ldots + \mathbf{u}_k)$ -ra és így tovább.

3.

$$\mathcal{A}(\lambda_1\mathbf{u}_1 + \lambda_2\mathbf{u}_2 + \ldots + \lambda_k\mathbf{u}_k) = \lambda_1\mathcal{A}(\mathbf{u}_1) + \lambda_2\mathcal{A}(\mathbf{u}_2) + \ldots + \lambda_k\mathcal{A}(\mathbf{u}_k)$$

Először alkalmazzuk a fenti tulajdonságot, majd a definíciót.

Vegyük a következőt: $\mathcal{A}(\mathbf{u}) = \mathbf{u} + \mathbf{x}$. Erről könnyen beláthatjuk, hogy nem lineáris leképezés, hiszen nem telejesül a fenti (1)-es tulajdonság, miszerint: $\mathcal{A}(\mathbf{0}) = \mathbf{0}$, hiszen mi esetünkben ez $\mathbf{0} + \mathbf{x}$.

Felhasználva a lineáris leképezés definícióját, ha egy V_1 vektortér vektorait szeretnénk V_2 -be transzformálni $\mathcal{A}:V_1\to V_2$ segítségével, akkor elég, ha tudjuk, hogy a V_1 egy bázisának vektoraival mi történik. Hiszen:

$$\underbrace{\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_n}_{\text{bázis }V_1\text{-ben}} \in V_1 \quad : \quad \exists \lambda_1,\lambda_2,\ldots,\lambda_n \quad : \quad \underbrace{\mathbf{v}=\lambda_1\mathbf{b}_1+\lambda_2\mathbf{b}_2+\ldots+\lambda_n\mathbf{b}_n}_{\text{egyértelmű felírás}}$$

És tudjuk, hogy:

$$\mathcal{A}(\mathbf{v}) = \lambda_1 \mathcal{A}(\mathbf{b}_1) + \lambda_2 \mathcal{A}(\mathbf{b}_2) + \ldots + \lambda_n \mathcal{A}(\mathbf{b}_n)$$

Definíció 1.21 $\mathcal{A}: V_1 \to V_2$ lineáris leképezés. $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ bázis V_1 -ben, $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_k\}$ bázis V_2 -ben.

$$[\mathcal{A}]_{\mathcal{B},\mathcal{C}} = [[\mathcal{A}(\mathbf{b}_1)]_{\mathcal{C}}[\mathcal{A}(\mathbf{b}_2)]_{\mathcal{C}} \dots [\mathcal{A}(\mathbf{b}_n)]_{\mathcal{C}}]$$

Tehát veszünk 1-1 bázist a két vektortérben, ekkor az \mathcal{A} leképzés mátrixa a fenti mátrix: vesszük a kiinduló vektortér egy bázisát (\mathcal{B}), a vektoroknak ($\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_n$) vesszük a képét, majd ezeknek a koordináta-vektorát a \mathcal{C} bázisban. Ezek a koordináta-vektorok alkotják az \mathcal{A} leképzés mátrixának oszlopait.

Nézzünk erre egy példát: $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}^2$. A leképezés legyen olyan, hogy a síkbeli vektorokat az x tengely egyenesére vetítjük. Mivel ugyanabba a vektortérbe (síkvektorok) képezünk le, ezért közös bázist vegyünk fel: $\mathcal{B} = \{(1,0), (0,1)\}$.

$${\mathcal A}$$
 mátrixa a standard bázison $= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Hiszen (1,0)-nak a képe (1,0), ennek önmagában vett koordináta-vektora $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$, (0,1)-nek (0,0), ennek pedig $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ a koordináta-vektora.

Szeretnénk ezt a "leképezés mátrixot" másra is használni, például egy vektornak a képének a meghatározásához:

Tétel 1.18 $A: V_1 \to V_2$

$$[\mathcal{A}(\mathbf{v})]_{\mathcal{C}} = [\mathcal{A}]_{\mathcal{B},\mathcal{C}} \cdot [\mathbf{v}]_{\mathcal{B}} \qquad \mathcal{B}, \mathbf{v} \in V_1, \mathcal{C} \in V_2$$

Bizonyítás 1.18 $[\mathbf{v}]_{\mathcal{B}} = (\lambda_1, \lambda_2, \dots, \lambda_n)$

$$[\mathcal{A}]_{\mathcal{B},\mathcal{C}} \cdot [\mathbf{v}]_{\mathcal{B}} = \left(\begin{bmatrix} [\mathcal{A}(\mathbf{b}_{1})]_{\mathcal{C}} & [\mathcal{A}(\mathbf{b}_{2})]_{\mathcal{C}} \\ [\mathcal{A}(\mathbf{b}_{2})]_{\mathcal{C}} & [\mathcal{A}(\mathbf{b}_{n})]_{\mathcal{C}} \\ \end{bmatrix} \cdot \left(\sum_{i=1}^{n} \lambda_{i} \cdot [\mathcal{A}(\mathbf{b}_{i})]_{\mathcal{C}} \right) \left(\sum_{i=1}^{n} \lambda_{i} \cdot [\mathcal{A}(\mathbf{b}_{i})]_{\mathcal{C}} \right)$$

$$\left(\sum_{i=1}^{n} \lambda_{i} \cdot [\mathcal{A}(\mathbf{b}_{i})]_{\mathcal{C}} \right) = \left(\sum_{i=1}^{n} [\lambda_{i} \mathcal{A}(\mathbf{b}_{i})]_{\mathcal{C}} \right) = \left(\sum_{i=1}^{n} [\mathcal{A}(\lambda_{i} \cdot \mathbf{b}_{i})]_{\mathcal{C}} \right) = \left[\sum_{i=1}^{n} \mathcal{A}(\lambda_{i} \cdot \mathbf{b}_{i}) \right]_{\mathcal{C}} = \left[\mathcal{A}(\mathbf{v}) \right]_{\mathcal{C}}$$

1.6.3. Lineáris leképezések szorzata

 $\mathcal{A}:V_1 \to V_2$, $\mathcal{B}:V_2 \to V_3$. Ha $\mathbf{v} \in V_1$, akkor $\mathcal{A}(\mathbf{v}) \in V_2$, illetve $\mathcal{B}(\mathcal{A}(\mathbf{v})) \in V_3$.

Definíció 1.22 Lineáris leképezések szorzata: $(\mathcal{BA}): V_1 \to V_3$.

$$(\mathcal{B}\mathcal{A})(\mathbf{v}) := \mathcal{B}(\mathcal{A}(\mathbf{v}))$$

Tétel 1.19 Legyen \mathcal{A} és \mathcal{B} lineráris leképezés. Ekkor $(\mathcal{B}\mathcal{A})$ is lineáris leképezés.

Bizonyítás 1.19 Ellenőrizzük, hogy lineráis leképezés:

①
$$(\mathcal{B}\mathcal{A})(\mathbf{u} + \mathbf{v}) = \mathcal{B}(\mathcal{A}(\mathbf{u}) + \mathcal{A}(\mathbf{v})) = \mathcal{B}(\mathcal{A}(\mathbf{u})) + \mathcal{B}(\mathcal{A}(\mathbf{v})) = (\mathcal{B}\mathcal{A})(\mathbf{u}) + (\mathcal{B}\mathcal{A})(\mathbf{v})$$
 ② $(\mathcal{B}\mathcal{A})(\lambda\mathbf{u}) = \mathcal{B}(\mathcal{A}(\lambda\mathbf{u})) = \mathcal{B}(\lambda\mathcal{A}(\mathbf{u})) = \lambda \cdot \mathcal{B}(\mathcal{A}(\mathbf{u})) = \lambda \cdot (\mathcal{B}\mathcal{A})(\mathbf{u})$ □

Tétel 1.20 $\mathcal{A}: V_1 \to V_2, \mathcal{B}: V_2 \to V_3.$ $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\}$ legyen V_1 -ben, $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_k\}$ legyen V_2 -ben és $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_l\}$ legyen V_3 -ban bázis.

$$[\mathcal{B}\mathcal{A}]_{\mathcal{C},\mathcal{E}} = [\mathcal{B}]_{\mathcal{D},\mathcal{E}} \cdot [\mathcal{A}]_{\mathcal{C},\mathcal{D}}$$

Bizonyítás 1.20

 $[\mathcal{B}]_{\mathcal{D},\mathcal{E}}$ egy $l \times k$ -as mátrix hiszen l sora van, mivel \mathcal{E} dimenziója l, és k oszlopa, hiszen \mathcal{D} dimenziója k. $[\mathcal{A}]_{\mathcal{C},\mathcal{D}}$ egy $k \times n$ -as mátrix hiszen k sora van, mivel \mathcal{D} dimenziója k, és n oszlopa, hiszen \mathcal{C} dimenziója n. Hasonlóan kapjuk, hogy $[\mathcal{B}\mathcal{A}]_{\mathcal{C},\mathcal{E}}$ egy $l \times n$ -es mátrix, és $[\mathcal{B}]_{\mathcal{D},\mathcal{E}} \cdot [\mathcal{A}]_{\mathcal{C},\mathcal{D}}$ szorzat létezik és $l \times n$ -es mátrix, tehát az egyenlet két oldala két azonos méretű mátrix. Kérdés, hogy az elemek egyeznek-e?

Tehát a szorzat:
$$[\mathcal{B}]_{\mathcal{D},\mathcal{E}} \cdot [\mathcal{A}]_{\mathcal{C},\mathcal{D}} = [\mathcal{B}]_{\mathcal{D},\mathcal{E}} \cdot \left[[\mathcal{A}(\mathbf{c}_1)]_{\mathcal{D}} [\mathcal{A}(\mathbf{c}_2)]_{\mathcal{D}} \dots [\mathcal{A}(\mathbf{c}_n)]_{\mathcal{D}} \right]$$

Vizsgáljuk meg a szorzat első oszlopát: $[\mathcal{B}]_{\mathcal{D},\mathcal{E}} \cdot [\mathcal{A}(\mathbf{c}_1)]_{\mathcal{D}}$. Ha jól megnézzük, akkor a már tanultak alapján ez az $\mathcal{A}(\mathbf{c}_1)$ vektor transzformálása \mathcal{B} -vel a \mathcal{D} bázisból az \mathcal{E} bázisba. Tehát:

$$[\mathcal{B}]_{\mathcal{D},\mathcal{E}} \cdot [\mathcal{A}(\mathbf{c}_1)]_{\mathcal{D}} = [\mathcal{B}(\mathcal{A}(\mathbf{c}_1))]_{\mathcal{E}} = [\mathcal{B}\mathcal{A}(\mathbf{c}_1))]_{\mathcal{E}}$$

Ami viszont megegyezik $[\mathcal{BA}]_{\mathcal{C},\mathcal{E}}$ első oszlopával, hiszen annak első oszlopba a \mathbf{c}_1 vektor \mathcal{BA} -val transzformált vektor \mathcal{E} -beli koordináta-vektora.

Tehát az egyenlet jobb oldalán lévő mátrix első oszlopba megegyezik az egyenlet bal oldalán álló mátrix első oszlopával, ugyanígy az összes többi n-1 oszlopot is megvizsgálhatjuk. \square

Nézzünk meg egy példát: $\mathcal{A}, \mathcal{B} : \mathbb{R}^2 \to \mathbb{R}^2$. Bázisnak mindig a \mathcal{C} standard bázist válasszuk. \mathcal{A} leképezés az x, \mathcal{B} leképezés pedig az y tengelyre való tükrözés legyen.

$$[\mathcal{A}]_{\mathcal{C},\mathcal{C}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad [\mathcal{B}]_{\mathcal{C},\mathcal{C}} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Fenti tétel alapján:

$$[\mathcal{B}\mathcal{A}]_{\mathcal{C},\mathcal{C}} = [\mathcal{B}]_{\mathcal{C},\mathcal{C}} \cdot [\mathcal{A}]_{\mathcal{C},\mathcal{C}} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

És valóban ezt várnánk, hiszen két derészkögű tengelyre való tükrözés egy centrális tükrözés. Tehát $(\mathcal{BA})(x,y)=(-x,-y)$.

1.6.4. Képtér és magtér

Legyen $\mathcal{A}:V_1\to V_2$ lineáris leképezés.

Definíció 1.23 \mathcal{A} képtere

$$Im(\mathcal{A}) = \{\mathcal{A}(\mathbf{v}) \mid \mathbf{v} \in V_1\} \subseteq V_2$$

Definíció 1.24 \mathcal{A} magtere

$$Ker(\mathcal{A}) = \{ \mathbf{v} \in V_1 \, | \, \mathcal{A}(\mathbf{v}) = \mathbf{0} \} \subseteq V_1$$

Tétel 1.21 Im \mathcal{A} altér V_2 -ben

Bizonyítás 1.21 Ahhoz, hogy használhassuk az 1.1 tételt (altér-e?) két dologról fontos megemlékezni: Im $\mathcal{A} \subseteq V_2$ és, hogy Im $\mathcal{A} \neq \emptyset$ (hiszen nullvektor képe nullvektor). Tehát csak azt kell belátnunk, hogy zárt az összeadásra és szorzásra:

$$\mathbf{x},\mathbf{y}\in\operatorname{Im}\mathcal{A}$$
kéne, hogy $\mathbf{x}+\mathbf{y}\in\operatorname{Im}\mathcal{A}$ és $\lambda\mathbf{x}\in\operatorname{Im}\mathcal{A}$

$$x, y \in \operatorname{Im} A \iff \exists \mathbf{u} \in V_1 : A(\mathbf{u}) = \mathbf{x} \text{ és } \exists \mathbf{v} \in V_1 : A(\mathbf{v}) = \mathbf{v}$$

$$\mathbf{x} + \mathbf{y} = \mathcal{A}(\mathbf{u}) + \mathcal{A}(\mathbf{v}) = \mathcal{A}(\underbrace{\mathbf{u} + \mathbf{v}}_{\in V_1}) \in \operatorname{Im} \mathcal{A} \quad \checkmark$$
$$\lambda \mathbf{x} = \lambda \mathcal{A}(\mathbf{u}) = \mathcal{A}(\underbrace{\lambda \mathbf{u}}_{\in V_1}) \in \operatorname{Im} \mathcal{A} \quad \checkmark$$

Tétel 1.22 Ker \mathcal{A} altér V_1 -ben

Bizonyítás 1.22 Hasonlóan az előzőhöz, ahhoz, hogy használhassuk az 1.1 tételt (altér-e?) két dologról fontos megemlékezni: Ker $\mathcal{A} \subseteq V_1$ és, hogy Ker $\mathcal{A} \neq \emptyset$ (hiszen nullvektor tuti benne van). Tehát csak azt kell belátnunk, hogy zárt az összeadásra és szorzásra:

$$\mathbf{u}, \mathbf{v} \in \operatorname{Ker} \mathcal{A}$$
 kéne, hogy $\mathbf{u} + \mathbf{v} \in \operatorname{Ker} \mathcal{A}$ és $\lambda \mathbf{u} \in \operatorname{Ker} \mathcal{A}$
$$\mathbf{u}, \mathbf{v} \in \operatorname{Ker} \mathcal{A} \iff \mathcal{A}(\mathbf{u}) = \mathbf{0} \text{ és } \mathcal{A}(\mathbf{v}) = \mathbf{0}$$

$$\mathcal{A}(\mathbf{u} + \mathbf{v}) = \mathcal{A}(\mathbf{u}) + \mathcal{A}(\mathbf{v}) = \mathbf{0} \quad \checkmark$$

$$\mathcal{A}(\lambda \mathbf{u}) = \lambda \mathcal{A}(\mathbf{u}) = \mathbf{0} \quad \checkmark$$

Tétel 1.23 Dimenzió-tétel $\mathcal{A}: V_1 \rightarrow V_2$

$$\dim(\operatorname{Ker} A) + \dim(\operatorname{Im} A) = \dim V_1$$

Bizonyítás 1.23 Legyen $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ bázis Ker \mathcal{A} -ban, egészítsük ki úgy, hogy a vektorok bázist alkossanak V_1 -ben (Legyen dim $V_1 = n$):

$$b_1, b_2, \ldots, b_k, c_1, c_2, \ldots, c_{n-k}$$

Igaz az állítás, ha sikerül belátnunk, hogy $\mathcal{A}(\mathbf{c}_1), \mathcal{A}(\mathbf{c}_2), \dots, \mathcal{A}(\mathbf{c}_{n-k})$ bázist alkotnak Im \mathcal{A} -ban:

Először belátjuk, hogy $\mathcal{A}(\mathbf{c}_1), \mathcal{A}(\mathbf{c}_2), \ldots, \mathcal{A}(\mathbf{c}_{n-k})$ generálják Im \mathcal{A} -t. $\mathbf{x} \in \text{Im } \mathcal{A} \Rightarrow \exists \mathbf{v} : \mathcal{A}(\mathbf{v}) = \mathbf{x}$.

$$\mathbf{v} = \lambda_1 \mathbf{b}_1 + \lambda_2 \mathbf{b}_2 + \dots + \lambda_k \mathbf{b}_k + \mu_1 \mathbf{c}_1 + \mu_2 \mathbf{c}_2 + \dots + \mu_{n-k} \mathbf{c}_{n-k}$$

$$\mathbf{x} = \mathcal{A}(\mathbf{v}) = \underbrace{\mathcal{A}(\lambda_1 \mathbf{b}_1) + \mathcal{A}(\lambda_2 \mathbf{b}_2) + \dots + \mathcal{A}(\lambda_k \mathbf{b}_k)}_{=\mathbf{0}} + \mathcal{A}(\mu_1 \mathbf{c}_1) + \dots + \mathcal{A}(\mu_{n-k} \mathbf{c}_{n-k})$$

$$\mathbf{x} = \mu_1 \mathcal{A}(\mathbf{c}_1) + \mu_2 \mathcal{A}(\mathbf{c}_2) + \mu_{n-k} \mathcal{A}(\mathbf{c}_{n-k})$$

Felírtunk egy tetszőleges $\mathbf{x} \in \text{Im } \mathcal{A}$ -t $\mathcal{A}(\mathbf{c}_1), \mathcal{A}(\mathbf{c}_2), \dots, \mathcal{A}(\mathbf{c}_{n-k})$ lineáris kombinációjaként, tehát:

$$\langle \mathcal{A}(\mathbf{c}_1), \mathcal{A}(\mathbf{c}_2), \dots, \mathcal{A}(\mathbf{c}_{n-k}) \rangle = \operatorname{Im} \mathcal{A} \quad \checkmark$$

Már csak az a kérdés, hogy $A(\mathbf{c}_1)$, $A(\mathbf{c}_2)$, . . . , $A(\mathbf{c}_{n-k})$ lineárisan függetlenek-e? Ezt indirekt bizonyítjuk, tfh:

$$\lambda_1 \mathcal{A}(\mathbf{c}_1) + \lambda_2 \mathcal{A}(\mathbf{c}_2) + \ldots + \lambda_{n-k} \mathcal{A}(\mathbf{c}_{n-k}) = \mathbf{0}$$
 úgy, hogy nem $\forall \lambda_i = 0$
$$\mathcal{A}(\underbrace{\lambda_1 \mathbf{c}_1 + \lambda_2 \mathbf{c}_2 + \ldots + \lambda_{n-k} \mathbf{c}_{n-k}}_{\in \operatorname{Ker} \mathcal{A}}) = \mathbf{0}$$

Tehát felírható $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$ bázisban. Tehát:

$$\lambda_1 \mathbf{c}_1 + \lambda_2 \mathbf{c}_2 + \ldots + \lambda_{n-k} \mathbf{c}_{n-k} = \mu_1 \mathbf{b}_1 + \mu_2 \mathbf{b}_2 + \ldots + \mu_k \mathbf{b}_k$$
$$\lambda_1 \mathbf{c}_1 + \lambda_2 \mathbf{c}_2 + \ldots + \lambda_{n-k} \mathbf{c}_{n-k} - \mu_1 \mathbf{b}_1 - \mu_2 \mathbf{b}_2 - \ldots - \mu_k \mathbf{b}_k = \mathbf{0}$$

A feltétel alapján $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_k, \mathbf{c}_1, \mathbf{c}_2, \ldots, \mathbf{c}_{n-k}$ bázis, tehát a fenti a bázis elemeiből egy nem triviális lineáris kombináció, amire $\mathbf{0}$ -át kapunk \Rightarrow bázis elemei nem függetlenek \rightarrow ellentmondás, tehát $\mathcal{A}(\mathbf{c}_1), \mathcal{A}(\mathbf{c}_2), \ldots, \mathcal{A}(\mathbf{c}_{n-k})$ lineárisan függetlenek. Ezzel beláttuk az eredeti állítást is, hiszen $\mathcal{A}(\mathbf{c}_1), \mathcal{A}(\mathbf{c}_2), \ldots, \mathcal{A}(\mathbf{c}_{n-k})$ bázist alkotnak Im \mathcal{A} -ban.

1.6.5. Sajátvektor, sajátérték

Legyen $A: V \to V$, $\mathbf{v} \in V$, $\lambda \in \mathbb{R}$.

Definíció 1.25 v sajátvektor, ha $\mathbf{v} \neq \mathbf{0}$ és $\exists \lambda$, hogy $\mathcal{A}(\mathbf{v}) = \lambda \cdot \mathbf{v}$

Definíció 1.26 λ sajátérték, ha $\exists \mathbf{v} \neq \mathbf{0}$, hogy $\mathcal{A}(\mathbf{v}) = \lambda \cdot \mathbf{v}$.

Megjegyzés: Nem csak leképezéseknek, hanem *négyzetes mátrixoknak is van sajátvektora*, *sajátértéke*: Ha A egy $n \times n$ -es mátrix, akkor annak $\mathbf{x} \neq \mathbf{0}$ sajátvektora (n sorból álló oszlopvektor), λ sajátértékkel, ha $A \cdot \mathbf{x} = \lambda \mathbf{x}$. A további tételek ugyanúgy igazak mindkettőre, ezért az egyszerűség kedvéért, csak a leképezések mátrixával foglalkozunk.

Tétel 1.24 Az azonos sajátértékhez tartozó sajátvektorok és a **0** alteret alkotnak (ezt **sajátal-tér**nek hívjuk)

Bizonyítás 1.24 Nem üres √. Zárt-e az összeadásra, szorzásra?

$$\mathbf{u}$$
, \mathbf{v} sajátvektor λ sajátértékre $\Rightarrow \mathcal{A}(\mathbf{u}) = \lambda \mathbf{u}$, $\mathcal{A}(\mathbf{v}) = \lambda \mathbf{v}$

$$\mathcal{A}(\mathbf{u} + \mathbf{v}) = \lambda \mathbf{u} + \lambda \mathbf{v} = \lambda (\mathbf{u} + \mathbf{v}) \quad \checkmark$$
$$\mathcal{A}(\mu \mathbf{u}) = \mu \lambda \mathbf{u} = \lambda (\mu \mathbf{u}) \quad \checkmark$$

Hogy találjuk meg $A:V\to V$ sajátértékeit? Legyen $\mathcal B$ bázis V-ben. $\mathbf v\in V$. Tudjuk, hogy, ha $A=[\mathcal A]_{\mathcal B,\mathcal B}$, akkor:

$$[\mathcal{A}(\mathbf{v})]_{\mathcal{B}} = A \cdot [\mathbf{v}]_{\mathcal{B}}$$

Szeretnénk, ha v sajátvektor lenne, tehát:

$$\mathcal{A}(\mathbf{v}) = \lambda \mathbf{v}$$

Vegyük mindkét vektornak *B*-beli koordináta-vektorát:

$$[\mathcal{A}(\mathbf{v})]_{\mathcal{B}} = [\lambda \mathbf{v}]_{\mathcal{B}} = \lambda \cdot [\mathbf{v}]_{\mathcal{B}}$$

De tudjuk, hogy $[A(\mathbf{v})]_{\mathcal{B}} = A \cdot [\mathbf{v}]_{\mathcal{B}}$, tehát:

$$A \cdot [\mathbf{v}]_{\mathcal{B}} = \lambda \cdot [\mathbf{v}]_{\mathcal{B}} = \lambda \cdot I \cdot [\mathbf{v}]_{\mathcal{B}} = (\lambda I) \cdot [\mathbf{v}]_{\mathcal{B}}$$
$$(A - \lambda I) \cdot [\mathbf{v}]_{\mathcal{B}} = \mathbf{0}$$

Szeretnénk, ha lenne olyan \mathbf{v} , hogy $[\mathbf{v}]_{\mathcal{B}}$ nem csupa nulla (hiszen $\mathbf{v} \neq \mathbf{0}$), tehát a fenti egyenletnek legyen több megoldása, azaz $\det(A - \lambda I) = 0$. Tehát:

Tétel 1.25

$$\lambda$$
 sajátérték \Leftrightarrow $\det(A - \lambda I) = 0$

Megjegyzés: A fenti egyenlet egy n-edfokú polinomhoz vezet (λ a változó), amit **karakterisztikus polinomnak** nevezünk. Ha meghatározunk egy sajátértéket, akkor a sajátvektorok meghatározásához a $A - \lambda I \mid 0$ egyenletrendszert (itt λ már egy konkrét szám) kell megoldani.

Például: az x tengelyre való vetítésnél $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

$$\det(A - \lambda I) = \det\begin{pmatrix} 1 - \lambda & 0 \\ 0 & -\lambda \end{pmatrix} = (1 - \lambda) \cdot (-\lambda) = 0$$

Ennek a polinomnak a gyökeit kell meghatározni: $\lambda_1=0, \lambda_2=1$. Sajátvektorok meghatározása:

$$\lambda = 0 \qquad \Rightarrow \qquad \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \Rightarrow \quad \mathbf{v} = (0, y)$$

$$\lambda = 1 \qquad \Rightarrow \qquad \begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 0 \end{array} \Rightarrow \quad \mathbf{v} = (x, 0)$$

1.7. Komplex számok

A valós számokat számegyenesen, a komplex számokat síkon tudjuk ábrázolni.

$$a+b\cdot i\in\mathbb{C}$$
 $a,b\in\mathbb{R}$

a-t **valós rész**nek, a b-t **képzetes rész**nek hívjuk. Definíció alapján $i^2 = -1$. A fenti alakot **algebrai alak**nak, vagy **kanonikus alak**nak nevezzük.

1.7.1. Műveletek

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi) \cdot (c+di) = ac + bd \cdot i^{2} + (bc+ad)i = (ac-bd) + (bc+ad)i$$

$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \frac{(a+bi)(c-di)}{c^{2}+d^{2}} = \frac{ac+bd}{c^{2}+d^{2}} + \frac{bc-ad}{c^{2}+d^{2}} \cdot i$$

1.7.2. Konjugált

Definíció 1.27 Ha $z = a + bi \in \mathbb{C}$, akkor $\overline{z} = a - bi$. \overline{z} a z komplex szám **konjugált**ja. Jó tudni a következő azonosságokat:

$$\overline{z+w} = \overline{z} + \overline{w}$$

$$\overline{z-w} = \overline{z} - \overline{w}$$

$$\overline{z \cdot w} = \overline{z} \cdot \overline{w}$$

$$\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$$

1.7.3. Trigonometrikus alak

z=a+bi. Ekkor $|z|=\sqrt{a^2+b^2}=r$ (a vektor hossza - minden komplex számot a síkon egy helyvektorral jellemezhetünk). Illetve:

$$a = \cos \alpha \cdot r$$
$$b = \sin \alpha \cdot r$$

A fentiek felhasználásával felírhatjuk a trigonometrikus alakot:

$$z = r(\cos\alpha + i \cdot \sin\alpha)$$

1.7.4. Szorzás, hatványozás, gyökvonás trigonometrikus alakban

Nagy előnye a trigonometrikus alakban, hogy könnyű kiszámolni két komplex szám szorzatát, illetve valós kitevőjű hatványát és gyökét. Ha $z=r(\cos\alpha+i\cdot\sin\alpha)$ és $w=s(\cos\beta+i\cdot\sin\beta)$:

$$z \cdot w = r(\cos \alpha + i \cdot \sin \alpha) \cdot s(\cos \beta + i \cdot \sin \beta) =$$

$$= rs \left[\underbrace{(\cos \alpha \cos \beta - \sin \alpha \sin \beta)}_{\cos(\alpha + \beta)} + \underbrace{(\cos \alpha \sin \beta + \sin \alpha \cos \beta)}_{\sin(\alpha + \beta)} \cdot i \right] =$$

$$= \left[rs(\cos(\alpha + \beta) + i \cdot \sin(\alpha + \beta)) \right]$$

Hatványozás a szorzás alapján:

$$z^n = r^n(\cos(n \cdot \alpha) + i \cdot \sin(n \cdot \alpha))$$

Gyökvonás, már kicsit bonyolultabb: $\sqrt[n]{z} = x \Leftrightarrow x^n = z$

$$x = t(\cos \gamma + i \cdot \sin \gamma)$$

$$x^{n} = t^{n}(\cos(n \cdot \gamma) + i \cdot \sin(n \cdot \gamma)) = r(\cos \alpha + i \cdot \sin \alpha)$$

Tehát:

$$t^n = r \implies t = \sqrt[n]{r}$$
 $\alpha - n \cdot \gamma = 2\pi \cdot k' \quad k' \in \mathbb{Z}$
 $\gamma = \frac{\alpha + 2\pi \cdot k}{n} \implies n \text{ darab gy\"ok!}$

Vagyis:

$$\sqrt[n]{z} = \sqrt[n]{r} \left[\cos \left(\frac{\alpha}{n} + \frac{k \cdot 2\pi}{n} \right) + i \cdot \sin \left(\frac{\alpha}{n} + \frac{k \cdot 2\pi}{n} \right) \right] \quad (k = 0, 1, \dots, n - 1)$$

Egységgyökök

$$\sqrt[n]{1} = \cos\left(\frac{k \cdot 2\pi}{n}\right) + i \cdot \sin\left(\frac{k \cdot 2\pi}{n}\right) \quad (k = 0, 1, \dots, n-1)$$

2. fejezet

Kombinatorika - elemi leszámlálások

2.1. Ismétlés nélküli

2.1.1. Permutáció

n darab vizsgát pontosan egyszer szeretnénk letenni. Hány féle sorrendben tehetjük meg?

$$n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1 = \boxed{n!}$$

2.1.2. Variáció

n darab vizsgából $k \le n$ darabot teszünk le. Hány féle sorrendben tehetjük meg?

$$\underbrace{n \cdot (n-1) \cdot \dots (n-k+1)}_{k \text{ darab}} = \underbrace{\frac{n!}{(n-k)!}}$$

2.1.3. Kombináció

n darab vizsgából $k \le n$ darabot teszünk le, de a sorrend nem számít. Hány féle képpen választhatunk ki k vizsgát?

$$\frac{n!}{(n-k)! \cdot k!} = \boxed{\binom{n}{k}}$$

Megjegyzés: a *k*! azért kerül be, mert először megszámoljuk úgy, hogy a sorrend számít, de mindenféle kiválasztás *k*!-sor szerepel, csak mindig más sorrendben (lásd permutáció).

2.2. Ismétléses

Maradva a vizsgás analógiánál: Tegyük fel, hogy n vizsgánk van, de ezek közül $n_1, n_2, \dots n_k$ egyforma, ezeket nem különböztetjük meg, tehát mondjuk 3 db BSz, 1 db Mikmak, 2 db Anal és 1 db Prog (Tehát $n = 7, n_1 = 3, n_2 = 1, n_3 = 2$ és $n_4 = 1$).

2.2.1. Permutáció

Hány féle képpen tehetjük sorba az n vizsgát, amiből $n_1, n_2, \dots n_k$ egyforma – tehát nem különböztetjük meg:

$$\frac{n!}{n_1! \cdot n_2! \cdot \dots n_k!}$$

Megjegyzés: Először sorbarakjuk, mintha mindegyik különböző lenne (lásd permutáció), majd megszámoljuk, hogy mit hányszor számoltunk (leosztunk az azonos típusú elemek permutációjával)

A fenti példát kiszámolva: $\frac{7!}{3! \cdot 2!}$

2.2.2. Variáció

n viszga $k \le n$ darab vizsgát teszünk le, de egy vizsgát többször is lehetetünk:

$$\underbrace{n \cdot n \cdot \dots \cdot n}_{k \text{ darab vizsga}} = n^k$$

2.2.3. Kombináció

n vizsgából *k*-t válaszunk ki, úgy, hogy a sorrend nem számít de akárhányszor bármelyiket kiválaszthatjuk:

$$\boxed{\frac{(n+k-1)!}{(n-1)! \cdot k!} = \binom{n+k-1}{k}}$$

Megjegyzés: A logika a következő: Vegyünk fel k darab bogyót és n-1 elválasztót. Minden egyes esetet megtudunk feleltetni az előző elemek egy-egy permutációjával, hiszen az első vizsgából annyit választunk, amennyi bogyó van az első elválasztó előtt, ..., az utolsó vizsgából annyit választunk, amennyi az utolsó elválasztó után van. Ezek permutációja: (n-1+k)! viszont a bogyók és az elválasztók nem számítanak különbözőnek, hiszen a sorrend nem számít (márpedig a permutáció miatt így vettük) ezért leosztunk (n-1)!-al és k!-al.

2.3. Binomiális együtthatók

Hasznos azonosságok, melyeket akár a képletből, akár a Pascal-háromszög alapján bebizonyíthatunk:

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

$$n = 0$$
: 1

 $n = 1$: 1 1

 $n = 2$: 1 2 1

 $n = 3$: 1 3 3 1

 $n = 4$: 1 4 6 4 1

...

Pascal-háromszög

Tétel 2.1 Binomiális-tétel

$$(a+b)^{n} = \binom{n}{0}a^{n} + \binom{n}{1}a^{n-1} \cdot b + \binom{n}{2}a^{n-2} \cdot b^{2} + \dots + \binom{n}{n-1}a \cdot b^{n-1} + \binom{n}{n}b^{n}$$

Ha a = b = 1, akkor:

$$2^{n} = (1+1)^{n} = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n-1} + \binom{n}{n} = \sum_{i=0}^{n} \binom{n}{i}$$

Illetve, ha a = 1, b = -1, akkor:

$$0 = (1-1)^n = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots = \sum_{i=0}^n \binom{n}{i} \cdot (-1)^i$$

3. fejezet

Halmazok

Megjegyzés: Sokat merítettem a http://cs.bme.hu/~sali/halmaz.pdf jegyzetből.

3.1. Halmazok számossága

Definíció 3.1 f bijekció (kölcsönösen egyértelmű hozzárendelés), ha $a \in A \neq b \in B$, akkor $f(a) \neq f(b)$ és $c \in B : \exists a \in A$, hogy f(a) = c

Definíció 3.2 A és B azonos számosságú (|A| = |B|), ha \exists bijekció a két halmaz között.

Definíció 3.3 $|A| \leq |B|$, ha $\exists f: A \to B$, ami injektív, tehát $\forall a, b \in A$ -ra, ha $a \neq b$, akkor $f(a) \neq f(b)$.

Megjegyzés: Úgy is meglehet a fentit fogalmazni, hogy $|A| \leq |B|$, ha $\exists B_1 \subseteq B$, amire $|A| = |B_1|$.

Definíció 3.4 Egy halmaz *véges* számosságú, ha $\exists k$ véges szám, hogy A és $\{1, 2, ..., k\}$ azonos számosságúak, ilyenkor: |A| = k.

Tétel 3.1

$$|A| = |B| \Leftrightarrow |A| \leqslant |B| \text{ és } |B| \leqslant |A|$$

Bizonyítás 3.1

 \Rightarrow \checkmark

← Cantor-Bernstein tétel. ✓

Definíció 3.5 |A| < |B| ha $|A| \le |B|$ és $|A| \ne |B|$.

3.1.1. Kis kitérő

1 emeletes mókás szálloda

Amennyiben 1 szintű a szállodánk és véges sok ($k \in \mathbb{N}$) szoba van, akkor ha megtelik, akkor nem tudunk több szobát kiadni. De ha végtelen sok szobánk van, akkor vajon be tudunk-e költöztetni egy újabb embert, ha már végtelen sok szobában vannak? Ha minden ember egy szobával arréb költözik, akkor az első szobába be tudjuk költöztetni az új embert. Ha egyszerre $k \in \mathbb{N}$ ember jön, akkor hasonló logikával, mindenkit megkérünk, hogy k szobával költözzön arrébb, így a felszabaduló k szobába be tudjuk költöztetni őket.

Ha végtelen sok ember jön, akkor mi a helyzet? Nagyon egyszerű: megkérünk mindenkit, hogy a 2k. szobába költözzön át (ahol k annak a szobának a sorszáma, ahol éppen lakik), így végtelen sok hely felszabadul, viszont a bentlakóknak továbbra is marad szobájuk.

Több emeletes szálloda

Itt sincs különösebb nehézség, pusztán egy adott szisztéma alapján meg kell számoznunk a bentlakókat, és ezután őket egy megadott szabály szerint át lehet költöztetni, hogy új lakókat tudjunk elszállásolni.

Tehát láthatjuk, hogy $\mathbb{N} = \{1, 2, 3, \ldots\}$ és $\{2, 3, 4, \ldots\}$ azonos számosságú, hiszen annyi történt, hogy mindegyik elemhez 1-et hozzáadtunk. Hasonlóan \mathbb{N} és $\{2, 4, 6, \ldots\}$ is az, hiszen mindegyik elemet megszoroztuk 2-vel.

3.1.2. Megszámlálhatóan végtelen halmazok

Definíció 3.6 Egy halmaz *megszámlálhatóan végtelen* (röviden: megszámlálható), ha a természetes számok $\mathbb{N} = \{1, 2, \ldots\}$ halmazával egyenlő számosságú. Tehát elemei sorbarendezetőek, hiszen ez éppen egy kölcsönös megfeleletetés a halmaz és \mathbb{N} elemei között. $Megjegyzés: |\mathbb{N}| = \aleph_0$ (alef-null)

Tétel 3.2 Egy *A* megszámlálható és tőle diszjunkt *B* véges halmaz uniója is megszámlálható.

Bizonyítás 3.2 Mivel $A = \{a_1, a_2, ...\}$ és $B = \{b_1, ..., b_k\}$ sorbarendezhető, ezért $A \cup B$ a következőképp rendezhető sorba:

$$A \cup B = \{b_1, \ldots, b_k, a_1, a_2, \ldots\}$$

Tehát $A \cup B$ i. eleme b_i , ha $i \leq k$, illetve a_{i-k} , ha i > k.

Tétel 3.3 Véges sok (k) A_i diszjunkt megszámlálható halmazok uniója is megszámlálható.

Bizonyítás 3.3

$$A_1 = \{a_{11}, a_{12}, a_{13}, \ldots\}$$

$$A_2 = \{a_{21}, a_{22}, a_{23}, \ldots\}$$

$$\vdots$$

$$A_k = \{a_{k1}, a_{k2}, a_{k3}, \ldots\}$$

Ekkor sorbarendezhetjük ezen elemeket például így:

$$\bigcup_{i=1}^{k} A_i = \{a_{11}, a_{21}, \dots, a_{k1}, a_{12}, a_{22}, \dots, a_{k2}, \dots\}$$

Vagyis először vesszük a halmazok első elemeit sorrendben, utána a második elemeit és így tovább...

Tétel 3.4 Megszámlálhatóan sok A_i diszjunkt megszámlálható halmazok uniója is megszámlálható.

Bizonyítás 3.4

$$A_1 = \{a_{11}, a_{12}, a_{13}, \ldots\}$$

 $A_2 = \{a_{21}, a_{22}, a_{23}, \ldots\}$
:

Ekkor ha ezeket felrajzoljuk, akkor egy képzeletbeli kígyóvonal mentén, sorrendbe rendezhetjük az elemeket:

Tehát:

$$\bigcup_{i=1}^{\infty} A_i = \{a_{11}, a_{12}, a_{21}, a_{31}, a_{22}, a_{13}, a_{14}, a_{23} \dots \}$$

Tétel 3.5 A racionális számok Q halmaza megszámlálható.

Bizonyítás 3.5 Bontsuk fel a Q halmazt megszámlálhatóan sok megszámlálható, diszjunkt halmazra. Ha ez sikerült, akkor a fenti tétel alapján ezek uniója is megszámlálható, tehát kész vagyunk.

$$A_{1} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}$$

$$A_{2} = \left\{\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}, -\frac{3}{2}, \frac{5}{2}, -\frac{5}{2}, \ldots\right\}$$

$$A_{3} = \left\{\frac{1}{3}, -\frac{1}{3}, \frac{2}{3}, -\frac{2}{3}, \frac{4}{3}, -\frac{4}{3}, \ldots\right\}$$
:

Tehát A_1 tartalmazza az összes egész számot, A_2 az összes tovább nem egyszerűsíthető 2 nevezőjű racionális számot és így tovább... Ezek mindegyike megszámlálható (fel tudjuk sorolni az elemeket), tehát uniójuk is megszámlálható.

3.1.3. Kontínuum számosságú halmazok

Felmerülhet, hogy vajon $|\mathbb{N}| \stackrel{?}{=} |\mathbb{R}|$? Ez nem igaz:

Tétel 3.6 A (0,1) intervallumba tartozó valós számok halmaza megszámlálhatónál nagyobb számosságú.

Bizonyítás 3.6 Indirekt bizonyítjuk; tfh: $|\mathbb{N}| = |(0,1)|$. Írjuk fel az összes (0,1) intervallumba eső valós számokat végtelen tizedestört alakban (ez így önmagában nem lenne egyértelmű, hiszen $0,001000\ldots = 0,000999\ldots$, ezért az utóbbi felírást zárjuk ki), majd rendezzük sorba (indirekt feltételünk alapján ezt megtehetjük):

1.
$$0, (a_{11})a_{12}a_{13}...$$

2. $0, a_{21}(a_{22})a_{23}...$
3. $0, a_{31}a_{32}(a_{33})...$
 \vdots
 $i. 0, a_{i1}a_{i2}a_{i3}...$

Vegyük a következő $w=0, w_1w_2w_3...$ számot, melynek jegyeit a következőképp kapjuk: $w_i:=2$, ha $a_{ii}\neq 2$ és $w_i:=1$, ha $a_{ii}=2$. Ez a szám biztosan mindegyik fentebb felsorolt számtól legalább a tizedesvesszőtől mért i. jegyben különbözik. Tehát őt biztosan nem soroltuk fel, viszont kétségkívül $w\in (0,1)$, tehát ellentmondásra jutottunk.

Fenti tételből következik, hogy $\mathbb R$ szintén nem megszámlálható, hiszen (0,1) ennek egy részhalmaza. Ezt a számosságot **kontínuum** számosságnak nevezzük.

Tétel 3.7 Egy A véges vagy megszámlálhatóan végtelen halmaz és egy tőle diszjunkt, kontínuum számosságú B halmaz uniója is kontínuum számosságú, vagyis $|A \cup B| = |B|$

Bizonyítás 3.7 Legyen B_1 a B-nek egy megszámlálhatóan végtelen részhalmaza, $B_2 := B \setminus B_1$. Ekkor a 3.3. tétel alapján tudjuk, hogy $|A \cup B_1| = |B_1|$, vagyis létezik f függvény, ami $A \cup B_1$ elemeit kölcsönösen egyértelműen B_1 -re képezi, ekkor:

$$g(x) = \begin{cases} f(x), \text{ ha } x \in A \cup B_1 \\ x, \text{ ha } x \in B_2 \end{cases}$$

függvény $A \cup B$ elemeit kölcsönösen egyértelműen B-re képezi.

Tétel 3.8 Egy (a, b) nyílt intervallumba eső valós számok halmaza kontínuum számosságú. (b > a)

Bizonyítás 3.8 Adjunk meg egy kölcsönösen egyértelmű függvényt ami az (a,b)-t \mathbb{R} -be képezi. Először az (a,b) intervallumot képezzük az $x\mapsto \frac{\pi(x-a)}{b-a}-\frac{\pi}{2}$ kölcsönösen egyértelmű függvénnyel a $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ intervallumra, majd az $x\mapsto \arctan x$ függvénnyel az \mathbb{R} -be.

3.1.4. Hatványhalmaz

Definíció 3.7 Egy H halmaz hatványhalmaza H összes lehetséges részhalmazának halmaza. $|P(H)| = 2^{|H|}$ (hiszen egy elem vagy benne van, vagy nincs egy részhalmazban). P*élda*: $H = \{1,2,3\}, P(H) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$.

$$|H| < |P(H)| \quad \forall H$$
-ra

Bizonyítás 3.9 2 dolgot kell belátnunk: 1.) $|H| \leq |P(H)|$ 2.) $|H| \neq |P(H)|$. Az első elég egyszerűen belátható, hiszen keresünk egy $f: H \to P(H)$ injektív függvényt: $f(x) = \{x\}$.

A másodikat indirekt bizonyítjuk; tfh: |H| = |P(H)|, tehát $\exists g : H \to P(H)$ bijektív függvény. $G := \{h \in H \mid h \notin g(h)\}$. Nyílván $G \in P(H)$, illetve mivel g bijektív, ezért $\exists j \in H$, hogy g(j) = G. Ekkor viszont G definíciója alapján: $j \in G \Leftrightarrow j \notin g(j) = G$, ami ellentmondás.

Megjegyzés: Fenti tételből az is következik, hogy nincs "legnagyobb" számosság, hiszen bármely számosságú halmaznál a hatványhalmaza nála nagyobb számosságú.

Tétel 3.10 Megszámlálható halmaz hatványhalmaza kontínuum számosságú.

Bizonyítás 3.10 Elég belátnunk, hogy $|(0,1)| = |P(\mathbb{N})|$. Írjuk fel a [0,1) számokat végtelen kettedestört alakban (itt nem probléma, hogy $\frac{1}{4} = 0,01000... = 0,011111...$). Tehát minden [0,1) közti számhoz hozzárendeltünk 1 vagy 2 végtelen kettedestört alakot. Mivel [0,1) számossága kontínuum, így ezen sorozatok halmaza is kontínuum számosságú. Gondoljuk meg, hogy ezen sorozatok kölcsönösen egyértelmű hozzárendelést biztosítanak $P(\mathbb{N})$ elemei között, hiszen egy adott sorozat $(0,a_1a_2a_3...)$ egyértelműen meghatározza \mathbb{N} halmaz egy X_a részhalmazát, hiszen $i \in X_a \Leftrightarrow a_i = 1$, illetve minden részhalmaz előáll ilyen sorozatként. Viszont |[0,1)| = |(0,1)|.

Kontínuum-hipotézis: Nincs olyan halmaz, aminek számossága nagyobb, mint $|\mathbb{Z}|$, de kisebb, mint $|\mathbb{R}|$. (Ezt se cáfolni, se bizonyítani nem lehet)

4. fejezet

Gráfok

4.1. Gráf-fogalmak, definíciók

Definíció 4.1 A G = (V, E) pár egyszerű gráf, ha $V \neq \emptyset$, és $E := \{\{u, v\} : u, v \in V, u \neq v\}$ elemei V bizonyos kételemű részhalmazai. Például, az alábbi gráf: $G = (V, E); V = \{1, 2, 3, 4\}, E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{1, 4\}, \{2, 4\}\}$ a következőképpen rajzolható fel diagram segítségével:

Megjegyzés: A gráfban lehetnek hurok (két végpont megegyezik), irányított és párhuzamos (két pont között több él) élek, ezt nem tudjuk a fenti definícióval megadni. Módosítani kéne az *E* halmazt multihalmazra, illetve megkéne engedni, hogy a két végpont azonos lehessen, továbbá az irányításhoz jelölni kéne, hogy az él melyik csúcsból indul és hova érkezik. Nem törekedünk absztrakt formalizmusra.

Definíció 4.2 Egy csúcs **foka** a csúcsra állított élek száma (hurok él esetében 2x számoljuk). v csúcs fokszáma. d(v).

$$\sum_{v \in V} d(v) = 2|E|$$
 hiszen minden élnek 2 végpontja van

Definíció 4.3 G = (V, E)-nek G' = (V', E') **részgráf**ja, ha $V' \subseteq V$, illetve $E' \subseteq E$ és az E' beli élek végpontja benne vannak V'-ben. (Ilyet úgy kaphatunk, ha csúcsok törlése mellett éleket is törlünk)

Definíció 4.4 G = (V, E)-nek G' = (V', E') **feszített részgráf**ja, ha $V' \subseteq V$, illetve E'-ben az összes olyan G beli él be van húzva, aminek végpontja benne van V'-ben. (Ilyet úgy kaphatunk, hogy letörlünk csúcsokat a gráfból)

Definíció 4.5 Izomorfia: 2 gráf mikor tekinthető gráfelméleti szempontból ugyanannak?

G = (V, E) és G' = (V', E') izomorf, ha \exists köztük izomorfizmus: $f : V \to V'$, azaz:

- f kölcsönösen egyértelműen
- $(x,y) \in E \Leftrightarrow (f(x),f(y)) \in E'$
- (x,y) k-szoros él G-ben $\Leftrightarrow (f(x), f(y))$ k-szoros él G'-ben

Megjegyzés: A nem izomorfiát általában könnyebb ellenőrizni: összevetjük a tulajdonságokat és ha valamelyik nem egyezik, akkor nem izomorf (pl.: csúcsok száma, élek száma, fokszám sorozatok, stb.)

Definíció 4.6 Teljes gráf: Az összes lehetséges élt behúzzuk, úgy, hogy még egyszerű maradjon. Jelölése: K_n , ahol n a csúcsok száma. Élek száma: $\binom{n}{2}$ (hány féle képpen tudunk 2 csúcsot kiválasztani?) Például a K_5 egy diagramja:

Definíció 4.7 Komplementer gráf: A G egyszerű gráf komplementere: $\overline{G} := (V, \binom{V}{2} \setminus E)$. Tehát a csúcshalmaz azonos, az élhalmaz pedig azon élek a teljesgráf élhalmazából, amik nincsenek E-ben.

Definíció 4.8 Üres gráf: Csak csúcsokból áll, minden csúcsa izolált (fokszáma 0) pont.

Definíció 4.9 Élsorozat (séta): $(v_1, e_1, v_2, e_2, v_3, \dots, v_n)$ sorozat, amire $e_i \in E$ és $e_i = v_i v_{i+1}$. Speciális élsorozatok:

- út: bármely csúcs max. csak egyszer fordul elő
- $z \acute{a} r t$: ha $v_0 \equiv v_n$
- $k\ddot{o}r$: olyan zárt élsorozat, ahol $v_0 \equiv v_n$ -et leszámítva nincs ismétlődés.

Definíció 4.10 Összefüggő gráf: Bármely két csúcsa között létezik élsorozat.

Definíció 4.11 A gráf **komponensei** tartalmazásra nézve maximális összefüggő feszített részgráfjai. Azok a csúcsok tartoznak egy komponensbe, amik elérhetőek egymásból.

Tétel 4.1 *G* összefüggő gráf, *C* egy köre, akkor *C*-ből bármely élt elhagyva *G* összefüggő marad.

Bizonyítás 4.1

- ha az élsorozatot nem használtuk, akkor √
- ha használtuk, akkor az őt körré kiegészítő élsorozatot használjuk helyette.

4.2. Fák és alaptulajdonságai

Definíció 4.12 Erdőnek hívjuk a körmentes gráfot, **fá**nak pedig az összefüggő körmentes gráfot. (Tehát az erdő fák uniója)

Definíció 4.13 *F* **feszítőfa** olyan fa részgráfja *G*-nek, ami minden *G*-beli csúcsot tartalmaz.

Tétel 4.2 G-nek létezik feszítőfája $\Leftrightarrow G$ összefüggő

Bizonyítás 4.2

- ⇒ Mivel a feszítőfa összefüggő (hiszen fa) 'ezért az eredeti gráf is az. ✓
- ← ha körmentes, akkor az definíció alapján feszítőfa (összefüggő, körmentes), ha nem, akkor addig hagyunk el a körökből éleket, amíg van kör.

Tétel 4.3 Egy n csúcsú körmentes gráf összefüggő \Leftrightarrow ha éleinek száma n-1.

Bizonyítás 4.3

 \Rightarrow Építsük fel a gráfot n pontú üresgráfból. Kezdetben nincsen él, tehát n komponensből áll. Ahhoz, hogy ne legyen kör, egy új él behúzásakor csak két különböző kompnensbeli csúcsot köthetünk össze. Ha behúzunk egy élt, akkor az élek száma 1-el nő, a komponensek száma 1-el csökken, mivel végül a komponensek száma 1-re csökkent (összefüggő a gráfunk), ezért n-1 élt húztunk be.

 \Leftarrow Ha n-1 élt húztunk be, akkor n-(n-1)=1 komponensből fog állni a gráfunk, tehát összefüggő.

Tétel 4.4 *n*-pontú (n-1)-élű, összefüggő gráf \Rightarrow körmentes.

Bizonyítás 4.4 Hasonlóan az előző bizonyításnál, itt is üresgráfból induljunk ki. Ahhoz, hogy n-1 él behúzása után a gráfunk összefüggő marad, szükségszerűen csak két addigi komponens közé húzhattunk be élt, így végig körmentes marad a gráf.

Az előző két tételből következik, hogy ha az alábbi tulajdonságokból 2-vel bír egy gráf, akkor a harmadikkal is így **fá**ról beszélünk:

- n-1 darab él
- összefüggő
- körmentes

Tétel 4.5 Minden fának (ami legalább 2 csúcsú) legalább 2 elsőfokú csúcs van (*levél*).

Bizonyítás 4.5 Vegyük a maximális hosszúságú utat. Ennek 2 végpontja biztosan 1 fokszámú, hiszen ha az egyik nem lenne az, akkor létezne az imént kiválasztott útnál hosszabb út.

Mielőtt rátérnénk a **Cayley-tétel**re, nézzük meg, hogy mi az a *Prüfer-kód*, szükségünk lesz rá.

Definíció 4.14 Prüfer-kód: Vegyük az n csúcsú fagráfunkat. Letöröljük a legkisebb sorszámú levelet, majd felírjuk a szomszédját. Ezt addig folytatjuk, amíg az utolsó előtti csúcsot is letöröltük, ennek is leírtuk a szomszédját: a legnagyobb sorszámú csúcsot. Tehát egy n csúcsú fagráfból kapunk egy n-1 hosszú Prüfer-kódot. Mivel az utolsó jegy minden esetben n (legnagyobb sorszám), ezért szokás csak az első n-2 számot a Prüfer-kódnak tekinteni, mi is így cselekszünk.

Az ábrán látható fagráf Prüfer-kódja a következő: 333767.

Visszakódolásra is nézzünk egy példát: 43323. Ebből építsük fel a gráfot: Mivel n-2 hosszú a kód, ezért tudjuk, hogy 7 csúcsú gráfunk van, írjuk be őket egy táblázatba, de a táblázat végére rakjuk oda a legnagyobb sorszámú csúcsot is:

4	3	3	2	3	7

A táblázat alsó sorába írjuk azokat az elemeket, amiket akkor töröltünk le, amikor a felette lévő csúcsot leírtuk. Legyen a felső sor elemei $a_1, a_2, \ldots, a_{n-2}, n$, az alsó sor elemei (amiket keresünk): $b_1, b_2, \ldots b_{n-2}, b_{n-1}$. b_1 -et letöröltük, leírtuk a_1 -et. Adott b_i csúcs az a csúcs, amit most törlünk le, ő biztosan nem lehet egyenlő a következőkkel: $b_1, b_2, \ldots, b_{i-1}$, hiszen őket már letöröltük, illetve $a_i, a_{i+1}, \ldots, a_{n-2}, n$ -el, hiszen őket még le fogjuk írni, tehát nem töröltük még le. Így a megmaradt számokból keressük a legkisebbet és ez lesz b_i . Ez alapján a kitöltés:

4	3	3	2	3	7
1	4	5	6	2	3

Vegyük észre, hogy ilyenkor az alsó sor és a felső sor utolsó eleme tartalmazza mind az n csúcsot. Egymás alatt lévő csúcsok között élek mennek, hiszen amikor egy csúcsot törlünk, akkor a szomszédját írjuk le. Tehát az élpárok: (4,1),(3,4),(3,5),(2,6),(3,2),(7,3). Érdemes azt is meggondolni, hogy a Prüfer-kód alapján tudjuk, hogy melyik csúcsnak mennyi a fokszáma, hiszen a leveleket sose írtuk le, a 2 fokszámúakat egyszer, és így tovább. Tehát ha egy szám d-szer szerepel, akkor annak fokszáma d+1. Praktikus okokból az élpárokon visszafelé haladva építjük fel a gráfot:

Tétel 4.6 Minden fához kölcsönösen egyértelműen hozzárendelhetünk egy *Prüfer-kód*ot.

Bizonyítás 4.6 Tehát azt kell belátni, hogy (1) különböző fákhoz különböző Prüfer-kódok tartoznak, illetve (2) minden Prüfer-kódhoz (tetszőleges n-2 hosszúságú $1,2,\ldots,n$ számokat tartalmazó sorozatohoz) létezik olyan fa, aminek ez a Prüfer-kódja.

(1)-es bizonyítása: A fenti példa kifejtése alapján következik, hogy adott Prüfer-kód sorozatot egyértelműen meg tudunk feleltetni egy fagráffal, ezalapján viszont különböző fákhoz, különböző kód tartozik.

(2)-es bizonyítása: Használjuk a fent már taglalt jelölésrendszert, tehát a táblázatunk így néz ki:

l	a_1	a_2	a ₃	 a_i	a_{i+1}	 a_{n-2}	n
ĺ	b_1	b_2	b_3	 b_i	b_{i+1}	 b_{n-2}	b_{n-1}

Már említettük, de továbbra is fontos, hogy a $b_1, b_2, \ldots, b_{n-2}, b_{n-1}, n$ szám n darab különböző szám (1-1 csúcs sorszám).

 T_{n-1} legyen az (n, b_{n-1}) élből és a két csúcsból álló gráf.

 T_{n-2} legyen T_{n-1} -hez hozzávéve a b_{n-2} csúcsot és a hozzá tartozó élt (b_{n-2}, a_{n-2}) .

:

 T_i legyen a $b_i, b_{i+1}, \ldots, b_{n-2}, b_{n-1}, n$ csúcsokból és a megfelelő élekből álló gráf.

Állítások:

- a) $\forall i$ -re T_i fa $\Rightarrow T_1$ is fa, tehát a Prüfer-kódból visszakódolt gráfunk fa.
- b) $\forall i$ -re b_i elsőfokú T_i -ben.
- c) $\forall i$ -re b_i a legkisebb indexű levél T_i -ben.

Ha a fentieket belátjuk, akkor bizonyítottuk (2)-őt, hiszen ezen állítások együttese biztosítja, hogy a visszakódolt gráfunk fa, aminek a kódja valóban az éppen vizsgált Prüfer-kód. a)-t és b)-t egyszerre bizonyítjuk, teljes indukcióval:

 T_{n-1} -re igaz az állítás, hiszen 2 csúcsunk van, köztük egy él; ez fa, és mindkét csúcs elsőfokú. Tegyük fel, hogy T_{i+1} -re igaz az állítás, bizonyítsuk be, hogy ekkor T_i -re is: Tehát adott egy fa, amihez hozzáveszünk 2 csúcsot és a köztük futó élt. Amit szeretnénk: az egyik csúcs már szerepeljen a gráfban, de a másik ne: ekkor elérjük, hogy összefüggő gráfot kapunk, de körmenteset, vagyis továbbra is fa marad. Ez viszont igaz, hiszen az él, amit hozzáveszünk a gráfhoz: (a_i, b_i) . Vizsgáljuk meg a két csúcsot:

- b_i nem egyezik semelyik másik b_j -vel, illetve n-el, viszont $a_i, a_{i+1}, \ldots, a_{n-2}$ -vel se, hiszen így választottuk. Ezzel szemben a T_{i+1} gráfban csak $a_{i+1}, a_{i+2}, \ldots, a_{n-2}$, illetve $b_{i+1}, b_{i+2}, \ldots, b_{n-1}, n$ sorszámú csúcsok szerepelnek, tehát b_i biztosan nem szerepel T_{i+1} -ben. (későbbiekben láthatjuk, hogy $a_{i+1}, a_{i+2}, \ldots, a_{n-2}$ mindegyike megegyezik $b_{i+2}, \ldots, b_{n-1}, n$ valamelyikével)
- a_i viszont szerepel T_{i+1} -ben, hiszen a_i megegyezik $b_{i+1}, b_{i+2}, \ldots, b_{n-1}, n$ valamelyikével, hiszen a Prüfer-kód generálásakor azért írtuk le a_i -t, mert töröltük egy szomszédját, őt magát még nem (vagyis nem szerepelhet b_1, b_2, \ldots, b_i között).

A fentiek alapján az is nyilvánvaló, hogy mivel b_i nem szerepelt T_{i+1} -ben, ezért T_i -ben elsőfokú lesz. Márcsak c)-t kell belátni:

Tegyük fel, hogy létezik b_i -nél kisebb indexű elem T_i -ben. Nem őt írtuk a Prüfer-kódba b_i helyére, tehát a kérdéses csúcs vagy:

- szerepel $b_1, b_2, \ldots, b_{i-1}$ -ben, ez azt jelenti, hogy T_i -ben a csúcs foka 0, vagy
- $a_i, a_{i+1}, \dots, a_{n-2}, n$ -ben szerepel, ekkor T_i -ben legalább másodfokú.

Tehát nem lehet b_i -től különböző kisebb indexű csúcs, aminek a elsőfokú.

Tétel 4.7 Cayley-tétel

Rögzített $\{1,2,3,\ldots,n\}$ csúcshalmazon megadható fák száma: n^{n-2} .

Bizonyítás 4.7 Az előző tétel alapján, minden fához kölcsönösen egyértelműen hozzárendelhetünk egy *Prüfer-kód*ot. Mivel a Prüfer-kód n csúcsú fagráf esetén n-2 jegyből áll és mindegyik n féle szám lehet, ezért összesen n^{n-2} féle *Prüfer-kód* lehetséges (ismétléses variáció). Tehát adott $\{1,2,3,\ldots,n\}$ csúcshalmazon n^{n-2} fát adhatunk meg.

4.3. Síkba rajzolható gráfok

Definíció 4.15 Egy diagram a gráfnak egy **síkbeli lerajzolása**, ha az élek nem keresztezik egymást.

Definíció 4.16 Egy gráf akkor **síkba rajzolható**, ha létezik *síkbeli lerajzolása*.

Az első diagram egy síkba rajzolható gráf, a második ennek egy síkba rajzolt diagramja:

Tétel 4.8 G síkba rajzolható $\Leftrightarrow G$ gömbre rajzolható

Bizonyítás 4.8 Sztereografikus projekcióval.

Helyezzük el úgy a gömböt, hogy a sík a déli sarkon érintse. Ekkor az északi sarkból (egyenes) vetítéssel a sík pontjai bijektíven megfelelnek az északisark-mentes gömbfelszín pontjainak. Ez alapján mindkét irány bizonyított, lényeg, hogy úgy válasszuk az északi sarkot (a gömböt úgy gördítsük a síkon kicsit arréb), hogy azon ne legyen gráf-csúcs. Ha a gömbön nem metszették egymást az élek, akkor a síkon se fogják (a bijekció miatt).

Definíció 4.17 Egy *síkba rajzolt gráf* esetén a sík 2 pontja egy **tartomány**ban van, ha a 2 pont között van olyan törött vonal, ami nem metsz gráfélt. Az ábrán ☆-al jelöltük a tartományokat:

Tétel 4.9 Euler-tétel

G összefüggő, síkba rajzolt gráf:

$$n + t = e + 2$$

Azaz a csúcsok és a tartományok száma megegyezik az élek száma +2-vel.

Bizonyítás 4.9

1. \nexists kör \Rightarrow fa, tehát e = n - 1, t = 1:

$$n + 1 = e + 2$$
 \checkmark

2. ∃ kör: a körökből hagyjunk el 1-1 élet: ekkor a tartományok és élek száma 1-el csökken. A végén fa lesz, ekkor igaz az állítás, de mivel mindkét oldalból egyenlően vettünk el egyesével 1-et, ezért eredetileg is igaz volt.

Megjegyzés: Ha G nem feltétlen összefüggő, akkor: n+t=e+k+1, ha k-val jelöljük a komponensek számát, hiszen ha összefüggő, akkor rendben van (k=1), ha nem, akkor 2 komponensből 1 él behúzásával tudunk 1 komponenst csinálni, úgy, hogy ne növeljük

a tartományok számát, tehát k komponens esetén k-1 él behúzásával összefüggő gráfot kapunk, erre igaz, hogy:

$$n+t=e'+2$$

De e' = e + k - 1, hiszen k - 1 éllel növeltük az élek számát.

Tétel 4.10 Egyszerű, síkba rajzolható legalább 3-csúcsú egyszerű gráf esetén:

$$e \leq 3n - 6$$

Bizonyítás 4.10 Az állítást elég összefüggő gráfokra bizonyítani; vegyünk egy egyszerű síkba rajzolt összefüggő gráfot. Mivel a gráf egyszerű, minden tartományát legalább 3 él határolja, ugyanakkor egy él legfeljebb két tartományt határolhat. Összegezzük minden tartományra az őket határoló élek számát. Az előbbiek miatt ez az érték legalább 3t, legfeljebb 2e, tehát: $3t \le 2e$. Ebből $t \le \frac{2e}{3}$, felhasználva Euler-tételét (összefüggő, síkba rajzolt gráf):

$$n + t = e + 2$$

$$n + \frac{2e}{3} \ge e + 2 \qquad / \cdot 3$$

$$3n + 2e \ge 3e + 6$$

$$3n - 6 \ge e$$

Megjegyzés: Ha a gráf nem összefüggő, akkor igaz, hogy n+t=e+k+1, emiatt az is igaz, hogy $n+t\geqslant e+2$ ($k\geqslant 1$). Ebből kiindulva ugyanúgy a bizonyítandó állításhoz jutunk. \square

Következmény: K_5 nem síkbarajzolható, hiszen tfh az, ekkor igaznak kéne lennie, hogy $e \le 3n - 6$, viszont e = 10, n = 5, így ez ellentmondás.

Következmény: $K_{3,3}$ sem síkbarajzolható, hiszen tfh az. Mivel nem tartalmaz 3 hosszú kört, ezért egy tartományt legalább 4 él fog közre:

$$4t \leqslant 2e \qquad \Rightarrow \qquad t \leqslant \frac{e}{2}$$

Felhasználva Euler-tételét:

$$n + \frac{e}{2} \geqslant e + 2$$
$$2n - 4 \geqslant e$$

De jelen esetben n=6, e=9, így ez nem igaz, tehát ellentmondásra jutottunk.

Megjegyzés: A $K_{3,3}$ gráfot szokás "3 ház, 3 kút" problémának hívni. Bármely házból bármelyik kút és fordítva 1 hosszú úton elérhető, de bármelyik két ház, ill. két kút között nincs 1 hosszú út. Emiatt van az, hogy nincsen benne 3 hosszú kör, hiszen ha lenne, akkor a kérdéses 3 csúcs közül kettő azonos típusú (ház/kút) lenne, de ekkor ellent mondanánk annak a feltételnek, hogy két azonos típusú csúcs között nincs 1 hosszú út.

Állítás: Nyílvánvaló, hogy a síkba rajzolhatóságot nem befolyásolja, ha egy élt egy 2 hosszú úttal helyettesítünk, vagy ha egy másodfokú csúcsra illeszkedő éleket egybeolvasztjuk, és a csúcsot elhagyjuk. Példák:

Definíció 4.18 *G* és *G'* **topologikusan izomorf**, ha véges sok fenti művelettel (él felosztása, v. másodfokú csúcs eltörlése) egymással izomorf gráfokba vihetőek.

Tétel 4.11 Kuratowski-tétel

G síkbarajzolható \Leftrightarrow nem létezik $K_{3,3}$ -al és K_5 -tel topologikusan izomorf részgráfja

Bizonyítás 4.11 \Rightarrow Már láttuk, hogy $K_{3,3}$ és K_5 nem síkbarajzolható, így, ha G síkbarajzolható, akkor biztos nem tartalmaz $K_{3,3}$ -al és K_5 -tel topologikusan izomorf részgráfot. \Leftarrow Ezt az irányt nem bizonyítjuk.

Tétel 4.12 Fáry-Wagner-tétel

G egyszerű, síkbarajzolható gráf \Rightarrow van olyan síkbeli lerajzolása, ahol minden él egy egyenes szakasz

4.4. Síkgráfok duálitása

Definíció 4.19 Egy gráf (G) duálisa az a gráf (G*), aminek csúcsainak az eredeti gráf tartományait feleltetjük meg és két csúcsa között akkor van él, ha az eredeti gráfban a megfelelő két tartomány közös egy élben. Példa:

A duális nem egyértelmű, ugyanazon gráf különböző síkbarajzolásának különböző duálisai lehetnek. Példa (egyik duálisban van, a másikban nincs 4 fokszámú csúcs):

Definíció 4.20 G = (V, E) és G' = (V', E') **gyengén izomorfak**, ha $\exists f : E \to E'$ bijekció, ami körtartó (kört alkotó élek képe kört alkot, nem kört alkotó élek képe nem alkot kört). Példa két gyengén izomorf gráf:

Tétel 4.13 Whitney-tétele

G síkbarajzolható, H gyengén izomorf G-vel, ekkor:

- 1. H is síkbarajzolható
- 2. G^* és H^* is gyengén izomorf
- 3. *G*** gyengén izomorf *G*-vel