Relatório de atividade

Grade de Bragg - Estudo

Grade de Bragg Estudo de propriedades

A grade de bragg possui como propriedade determinística a capacidade de refletir parte da potência injetante em função de variáveis como:

- Comprimento da fibra
- Período de grade
- Altura/Intensidade de grade
- Índice efetivo base

Grade de Bragg Estudo de propriedades

Parte das variáveis citadas podem ser diretamente definidas por parâmetros simplificados:

- kappa (parte AC do acoplamento entre os modos transmitido e refletido)
- sigma (parte DC do acoplamento entre os modos transmitido e refletido)
- L (Comprimento da fibra)
- Lambda de design (Característica da fibra lisa)

Grade de Bragg Análise das propriedades do kL

O fator kL possui diversas influências na banda de rejeição da grade de Bragg

$$r_{bandedge} = rac{(\kappa L)^2}{1+(\kappa L)^2}$$

$$\lambda_{bandedge} = \lambda_{max} \pm \lambda_{D} rac{\kappa L}{\pi N}$$

Grade de Bragg Análise das propriedades do kL

N - Número de grades

Grade de Bragg Análise das propriedades gerais

Base values: L = 250.00um , λ_D = 1558nm , $v\delta neff$ = 0.0030 , σ = 1.00

Grade de Bragg Análise das propriedades gerais

Pode-se notar que variando cada um dos parâmetros citados alterase, em parte, diferentemente as propriedades da banda de rejeição.

Em particular, o sigma e o kappa são suficientes para definir essas alterações na banda, pois ambos se relacionam com as demais variáveis através de:

$$\sigma = rac{2\pi}{\lambda_D} \overline{\delta} n_{eff}
onumber \ \kappa = rac{\pi}{\lambda_D} v \overline{\delta} n_{eff}
onumber \
onumber \$$

Grade de Bragg Conclusão

Utilizando-se o método de análise "*scattering data*", gerou-se resultados satisfatórios no INTERCONNECT.