Metodi Computazionali della Fisica

Radici di funzione

Motivazioni

La soluzione di molti problemi fisici può essere in parte ricondotta alla risoluzione di equazioni del tipo

$$f(x,y,z,...) = 0$$

$$f(x,y,z,...) = g(s,q,...)$$

cioè alla ricerca di zeri di funzione.

Radice di una funzione

<u>Def</u>

r si dice radice della funzione f se

$$f(r)=0.$$

Esempio:

La funzione $f(x) = x^2 - 2x - 3$ ha due radici reali in r = -1 e r = 3. f(-1) = 1 + 2 - 3 = 0, f(3) = 9 - 6 - 3 = 0

Note le sue radici, *f* può essere scritta in forma fattorizzata :

$$f(x) = x^2 - 2x - 3 = (x + 1)(x - 3)$$

Forma fattorizzata delle funzioni

La forma fattorizzata non si limita ai polinomi

Consideriamo la funzione:

$$f(x) = x \sin x - \sin x$$
.

Avendo una radice in x = 1 si potrà scrivere:

$$f(x) = (x - 1) \sin x$$

Analogamente, la funzione:

$$f(x) = \sin \pi x$$
 di radici $x=0,1,2,3,...$

si scriverà

$$f(x) = x (x - 1) (x - 2) \dots$$

Applicazione: Radici di potenze

Problema da risolvere: Trovare x, tale che

$$x^p = c$$
, $\Rightarrow x^p - c = 0$

In particolare, per p=2, si ha

$$x^2 - 2 = 0$$

ed il calcolo dello zero equivale al calcolo del numero irrazionale

Algoritmi ricerca radici

- Tecniche "chiuse" o di confinamento
 - Bisezione

.

- Tecniche "aperte"
 - Metodo di Newton
 - Metodo delle secanti

Confinamento (bracketing)

Def:

Si dice che una radice r della funzione f(x) è *confinata* (**bracketed**) nell'intervallo [a,b] se f(a) e f(b) hanno segno opposto.

N.B. Se la funzione è continua almeno una radice deve trovarsi all'interno dell'intervallo (teorema del valore intermedio).

Se la funzione è discontinua, ma limitata, invece di una radice ci può essere una discontinuità finita che attraversa lo zero.

Bracketing della radice

Già nel caso di un sistema di due equazioni, il metodo di bracketing di una radice non è possibile.

Esempio: il sistema

$$y(x) = 0,$$

$$z(x) = 0$$

definisce una curva del tipo;

e non è possibile delimitare una regione $[x_1,x_2]$ in cui poter dire che esiste una radice del problema.

Si basa sul fatto che la funzione cambia segno ogni volta che passa da una radice.

- Sia [a,b] tale che f(a).f(b) < 0
- Una volta delimitata una radice da un intervallo [a,b] di lunghezza e_0 =b-a, si valuta la f nel punto medio

$$c = \frac{a+b}{2}$$

e si sceglie uno dei due intervalli [a,c] o [c,b] a seconda del segno di f(c) rapportato ai segni di f(a) e f(b)

• Si ripete il punto precedente nel nuovo intervallo di lunghezza

$$\varepsilon_1 = \frac{\varepsilon_0}{2}$$

- 1) c=(a+b)/2;
- 2) Se $f(c)*f(a)<0 \rightarrow [a,c]$ nuovo intervallo da considerare altrimenti → [c,b] nuovo intervallo

E' garantito convergere ad una radice se ne esiste una all'interno dell'intervallo di partenza [a,b]

Algoritmo:

```
/* Bisection method */
 #include <cmath>
                                                 bisection.cpp
 #include <iostream>
 #define MAX ITER 40
 double fof(double x); _____ Dichiarazione della funzione
 int main(){
  using namespace std;
  double a,b,mid, f_a,f_b,f_mid;
                                        <u>Dichiarazioni</u> delle variabili
  double error_bound,tolerance;
  int iter;
  cout << "inserire l'intervallo (a,b) " << endl;
                                                Input da schermo: estremi a e b di partenza
  cin >> a >> b;
  mid = 0.5 * (b+a);
  f_a = fof(a);
f_b = fof(b);
                    Calcolo di f(a) e f(b)
  if (f a * f b > 0.0) { cout << "Attenzione: l'intervallo scelto puo' non contenere una radice --
 Riprova";exit(1);}
 f mid = fof(mid);
 iter = 0; tolerance = .0001;
 error bound = .5 * (b - a);
 cout << "i a b mid f_of_a f_of_b f_mid err_bound" << endl;
 cout << iter << "" << a << "" << mid << "" << f a << "" << f mid << "" <<
error bound);
    12/10/2009
                                                                                            13
```

```
while ((error_bound > tolerance) && (iter < MAX_ITER))
          if (f_a * f_mid < 0.0) {
                     b = mid;
                     f_b = f_nid;
                     mid = .5 * (a+mid)
          else {
                     a = mid;
                     f_a = f_mid;
                                                                     Corpo del while
                     mid = .5 * (b+mid);
          f_{mid} = fof(mid);
          error_bound = .5 * (b - a);
          iter++;
          cout << iter << "" << b << "" << mid << "" << f_a << "" << f_b << "" <<
f_mid << "" << error_bound);
 cout << "La radice e' x = "<< mid << " la funzione = "<< f_mid << " iterazioni = "<< iter<< "
error bound = "<< error bound << endl;
} // Fine main
```

q++ -o bisection bisection.cpp ./bisection enter the range: a, b 1. 5. i a b mid f of a f of b f mid err bound 0 1 5 3 -4 20 4 2 1132-44-11 2 2 3 2.5 -1 4 1.25 0.5 3 2 2.5 2.25 -1 1.25 0.0625 0.25 4 2 2.25 2.125 -1 0.0625 -0.484375 0.125 5 2.125 2.25 2.1875 -0.484375 0.0625 -0.214844 0.0625 6 2.1875 2.25 2.21875 -0.214844 0.0625 -0.0771484 0.03125 7 2.21875 2.25 2.23438 -0.0771484 0.0625 -0.00756836 0.015625 8 2.23438 2.25 2.24219 -0.00756836 0.0625 0.0274048 0.0078125 9 2.23438 2.24219 2.23828 -0.00756836 0.0274048 0.00990295 0.00390625 10 2.23438 2.23828 2.23633 -0.00756836 0.00990295 0.00116348 0.00195312 11 2.23438 2.23633 2.23535 -0.00756836 0.00116348 -0.00320339 0.000976562 12 2.23535 2.23633 2.23584 -0.00320339 0.00116348 -0.00102019 0.000488281 13 2.23584 2.23633 2.23608 -0.00102019 0.00116348 7.15852e-05 0.000244141 14 2.23584 2.23608 2.23596 -0.00102019 7.15852e-05 -0.000474319 0.00012207 15 2.23596 2.23608 2.23602 -0.000474319 7.15852e-05 -0.000201371 6.10352e-05

Solution is x = 2.23602 function = -0.000201371 iterations = 15 error bound = 6.10352e-05

Convergenza del Metodo di bisezione

Dopo ogni iterazione l'intervallo contenente la radice diminuisce di un fattore 2. Se dopo n iterazioni la radice si trova in un intervallo di grandezza ε_n , all'iterazione successiva sarà confinata in un intervallo di grandezza $\varepsilon_{n+1} = \varepsilon_n/2$ (convergenza lineare)

Se con ε_0 indichiamo la grandezza dell'intervallo di partenza e con ε la tolleranza finale (precisione con cui si vuole localizzare la radice).

Poichè dopo n iterazioni:

$$\varepsilon_n = \frac{\varepsilon_0}{2^n}$$

$$n = \log_2 \frac{\varepsilon_0}{\varepsilon}$$

Convergenza metodo di bisezione

- Il metodo di bisezione converge linearmente alla radice.
- Se si ha bisogno di una precisione di 0.0001 e l'intervallo iniziale è (b-a)=1, allora:

```
2^{-n} < 0.0001 \Rightarrow 14 iterazioni
```

- Metodo semplice da implementare su computer.
- Converge sempre.

Problema

E se ci sono più radici in [a,b]?

Il metodo ne sceglie una

Problema: Convergenza assicurata ma lenta!

Le funzioni possono essere semplici, ma a volte si ha bisogno di valutarle tante volte.

Oppure la funzione può essere molto complicata da valutare e/o espressa in forma inplicita (soluzione numerica di altri problemi)

Esempio:

Supponiamo di essere interessati a quale sia la configurazione (posizione, orientazione, direzione del flusso, etc.) delle correnti d'aria che rendono la temperatura in una certa posizione dell'aula pari a 23°.

E' una funzione questa?

Bisezione: Convergenza lenta

- Il calcolo di questa funzione può richiedere la soluzione di un'equazione del trasporto di calore accoppiata con l'equazione di Navier-Stokes→ ore su un supercomputer !!!
- E' necessario a volte che la convergenza sia la più rapida possibile per evitare troppe valutazioni della funzione. In questo caso una convergenza lineare potrebbe non bastare.

Metodi di confinamento

- Sono metodi robusti
- Convergono più lentamente di quelli aperti
- Si usano per trovare le radici in maniera approssimata
- La precisione si migliora con altri metodi
- Si basa sull'identificazione di due punti iniziali a,b tali che:
 - f(a) f(b) < 0
- E' garantita la loro convergenza.
- Non funzionano per sistemi di equazioni.

Metodi non confinanti

Metodo di Newton-Raphson

Consideriamo un punto x_0 .

Se approssiamo f(x) con la tangente in x_0 , allora si può cercare la radice della retta approssimante:

$$l(x) = f'(x_0)(x - x_0) + f(x_0)$$

Netwon-Raphson

Ciò porta alla seguente equazione:

$$l(x) = 0$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

In generale, detto x_i l'approssimazione della radice r all'ordine i, la stima all'ordine i+1 sarà :

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newton-Raphson

Graficamente equivale a seguire il vettore tangente sino alla sua intersezione con l'asse x:

Routine di Newton-Raphson in linguaggio C++

```
newton_simple.cpp
#include <iostream>
#include <cmath>
double newton(double x 0, double tol, int max iters, int& iters p, int& converged p);
double f(double x); \leftarrow funzione
double f_prime(double x); derivata prima della funzione
int main() {
  using namespace std;
 double x 0;
              /* Punto iniziale */ double x;
                                               /* Radice approssimata */
              /* Errore massimo */
 double tol:
 int max iters; /* Numero massimo di iterazioni */
 int iters; /* Numero di iterazioni */ int converged;
 cout << "Inserire x 0, tol, e numero massimo di iterazioni" << endl;
 cin >> x \ 0 >> tol >> max iters;
x = newton(x_0, tol, max_iters, iters, converged); \leftarrow chiamata della routine Newton che fornisce
                                                          Il valore approssimato x della radice
 if (converged) {
  cout << "Newton algorithm converged after" << iters << "steps." << endl;
  cout << "Radice approssimata" << x << endl;
  cout << "f(x) = "<< f(x) << endl;
                                                     Check della convergenza e output su schermo
  } else {
  cout << "Newton algorithm didn't converge after " << iters << " steps" << endl;
  cout << "Stima finale "<< x << endl;
  cout << "f(x) = "<< f(x) << endl;
 return 0:
} // main
```

Routine di Newton-Raphson in linguaggio C++

```
double newton(double x_0, double tol, int max_iters, int& iters_p, int& converged_p) {
  double x = x = 0;
 double x_prev;
 int iter = 0;
 do {
   iter++;
   x_prev = x;
                                                                      Algoritmo iterativo di Newton
   x = x_prev - f(x_prev)/f_prime(x_prev);
  } while (fabs(x - x prev) > tol && iter < max iters);
 if (fabs(x - x_prev) <= tol)
   converged_p = 1;
                                               Check della convergenza dell'algoritmo
 else
  converged_p = 0;
 iters_p = iter;
 return x:
} // newton algorithm
double f(double x) {
                                           Funzione
 return x*x-5;
} // f
double f_prime(double x) {
                                                 Derivata prima della funzione
 return 2*x; //the derivative
} // f_prime
```

g++ -o newton_simple newton_simple.cpp
./newton_simple

Enter x_0, tol, and max_iters
1. 0.0001 100
Newton algorithm converged after 5 steps.
The approximate solution is 2.23607 f(x) = 8.42561e-13

RISULTATO ESATTO: x = sqrt(5.0) = 2.236067977

Problema con il metodo di Newton-Raphson

Se il punto iniziale x_0 è lontano dalla radice r è possibile che il metodo non converga.

30

Occorre che il punto di partenza x₀ sia abbastanza vicino alla radice, oppure, che la funzione si comporti abbastanza linearmente in quella zona.

Applicazioni della routine in C++: 1) ricerca di una radice quadrata

Consideriamo le *radici* dell'equazione:

$$f(x) = x^2 - a$$

o, in generale dell'equazione:

$$\sqrt[p]{a} \implies x^p - a = 0, \quad p \in R$$

p=2: ricerca di una radice quadrata

- Esempio: $\sqrt{2}$ = 1.4142135623730950488016887242097
- Sia $x_0 = 1$ ed applichiamo il metodo di

Newton:

$$f'(x) = 2x$$

$$x_{i+1} = x_i - \frac{x_i^2 - 2}{2x_i} = \frac{1}{2} \left(x_i + \frac{2}{x_i} \right)$$

$$x_0 = 1$$

$$x_1 = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2} = 1.5000000000$$

$$x_2 = \frac{1}{2} \left(\frac{3}{2} + \frac{4}{3} \right) = \frac{17}{12} \approx 1.4166666667$$

Ricerca di una radice quadrata

- Esempio: $\sqrt{2}$ = 1.4142135623730950488016887242097
- Notare la rapida convergenza

```
x_3 = \frac{1}{2} \left( \frac{17}{12} + \frac{24}{17} \right) = \frac{577}{408} \approx 1.41 / 4215686
x_4 = 1.4142135623746
x_5 = 1.4142135623730950488016896
x_6 = 1.4142135623730950488016887242097
```

2) Zeri del polinomio

$$f(x) = x^3 - 2x^2 + x - 3$$
, $x_0 = 4$

n	X _n	F(x _n)
0	4	33
1	3	9
2	2.4375	2.03686523475
3	2.21303271631511	0.256363385061418
4	2.17555493872149	0.00646336148881306
5	2.17456010066645	4.47906804996122e-06
6	2.17455941029331	2.15717547991101e-12

Convergenza del metodo

Sia *e_n* l'errore all'n-esima iterazione cioè:

Espandendo secondo Taylor nell'intorno della radice :

$$e_n = \overline{x} - x_n \quad \text{or} \quad \overline{x} = x_n + e_n$$

$$0 \equiv f(\overline{x}) = f(x_n + e_n)$$

$$f(x_n + e_n) = f(x_n) + e_n f'(x_n) + \frac{1}{2} e_n^2 f''(\xi_n), \text{ for some } \xi_n \in (\overline{x}, x_n)$$

$$\therefore f(x_n) + e_n f'(x_n) = -\frac{1}{2} e_n^2 f''(\xi_n)$$

$$e_{n+1} = \overline{x} - x_{n+1} = \overline{x} - x_n + \frac{f(x_n)}{f'(x_n)} = e_n + \frac{f(x_n)}{f'(x_n)}$$

$$= \frac{e_n f'(x_n) + f(x_n)}{f'(x_n)}$$

$$\therefore e_{n+1} = -\frac{1}{2} \left(\frac{f''(\xi_n)}{f'(x_n)} \right) e_n^2$$

Convergenza quadratica !!!!

Se
$$|e_n| \le 10^{-k} \Rightarrow |e_{n+1}| \le 10^{-2k}$$

Metodo di Newton

- Metodo aperto che richiede solo un'ipotesi iniziale sulla radice
- Non è necessario che la radice sia confinata in un intervallo (generalizzabile a sistemi di equazioni)
- Richiede la valutazione della derivata prima ad ogni iterazione.
- Poichè, se x₀ è troppo lontana da r il metodo non converge, in tutte le implementazioni pratiche del metodo si pone un numero **massimo** d'iterazioni.
- L'uso più comune del *metodo di Newton* assume che il punto inziale x_0 sia abbastanza vicino alla radice e si fanno al più 3 iterazioni per una migliore precisione.
- x_0 può essere trovato con metodi di bracketing come la *bisezione*.

E se non conosciamo esplicitamente la derivata di f(x) in x_i ?

la si approssima con la retta tra x_i e x_{i-1} :

- Mentre converge alla radice, la linea secante convergerà alla tangente della funzione nella radice.
- Si può quindi usare la linea secante come stima della derivata e vedere dove interseca l'asse x.

Lo si può anche ottenere dalla definizione di derivata:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$f'(x_k) \approx \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Usando l'approssimazione discreta della derivata (metodo delle differenze finite) il metodo di Newton fornisce:

$$x_{k+1} = x_k - \left(\frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})}\right) f(x_k)$$

che è appunto il metodo della secante.

Convergenza del metodo della secante

Usando l'espansione in serie di Taylor, è possibile mostrare che:

$$e_{k+1} = \overline{x} - x_{k+1}$$

$$= -\frac{1}{2} \left(\frac{f''(\xi_k)}{f''(\xi_k)} \right) e_k e_{k-1} \approx c \cdot e_k e_{k-1}$$
Espressione dell'errore.

Espressione recorsiva

Esplicitandola si ottiene:
$$|e_{k+1}| \le C |e_k|^{\alpha}$$
 Dove $\alpha = 1.618$...

golden ratio

Si parla di convergenza super-lineare

Problema fisico: moto di un proiettile in presenza di <u>attrito</u>

Classico problema di cinematica (in 2D) del lancio di una massa in presenza di gravità e di attrito; il problema è concettualmente semplice ma noioso da risolvere manualmente...

Esercizio 1: moto di un proiettile

• modificare il programma precedente in modo che sia possibile tener conto dell'attrito (viscoso) dell'aria, con un'equazione del moto:

$$m\vec{a} = m\vec{g} - m\gamma\vec{v} \implies$$

$$\Rightarrow \begin{cases} x(t) - x_0 = \frac{v_{0x}}{\gamma} \left(1 - e^{-\gamma t} \right) \\ y(t) - y_0 = \left(v_{0y} + \frac{g}{\gamma} \right) \frac{1}{\gamma} \left(1 - e^{-\gamma t} \right) - \frac{g}{\gamma} t \end{cases}$$

dove γ (in unità di 1/s) indica il coefficiente di attrito;

• stimare la **gittata** del proiettile R (la coordinata x per cui y=0) e le coordinate x,y ed il tempo corrispondenti al punto **più alto** della traiettoria, usando uno degli algoritmi descritti per il calcolo delle radici di funzioni.

Esercizio 1: moto di un proiettile

Determinare l'influenza dell'**attrito**, considerando i casi: $\gamma=0.1$ e $\gamma=0.3$ s⁻¹; in particolare, <u>rispetto al moto in</u> **assenza** di attrito (realizzare **grafici** illustrativi):

- il punto **più alto** viene raggiunto in un **tempo inferiore** o **superiore**?
- il punto più alto è più basso o più alto ?
- per quale valore dell'angolo la gittata è maggiore ?
- la traiettoria è ancora **simmetrica** rispetto al punto più alto ?

Esercizio 1: moto di un proiettile

N.B. storicamente i primi computer (ad es. *ENIAC*, sviluppato dal 1939 al 1946, per l'esercito americano) vennero utilizzati proprio per calcoli balistici!

