DFA= $(Q, \Sigma, \delta, q_0, F)$

Q skończony zbiór stanów

 Σ skończony alfabet wejściowy

 δ funkcja przejścia postaci $Q\times\Sigma\to Q$

 q_0 stan początkowy

 $F \subseteq Q$ zbiór stanów akceptujących

Minimalizacja DFA

1. forall p końcowy, q niekońcowy, oznacz (p,q)

2. forall $(p,q) \in (F \times F) \cup (Q \setminus F \times Q \setminus F), p \neq q$ if $\exists_{a \in \Sigma} (\delta(p,a), \delta(p,a))$ jest oznaczona, oznacz (p,q) (rekurencyjnie).

3. nieoznaczone scalamy.

PDA $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

Q skończony zbiór stanów

 Σ alfabet wejściowy

 Γ alfabet stosowy

 $q_0 \in Q$ stan początkowy

 $Z_0 \in \Gamma$ symbol początkowy na stosie

 $F \subset Q$ zbiór stanów akcepyujących (jeśli $F = \emptyset$ to akceptujemy przez pusty stos)

 δ funkcja przejścia postaci $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \to 2^{Q \times \Gamma}$

 ${\bf LOP}~$ Zał., że L regularny. Wtedy istnieje stała n, że jeśli $z\in L$ oraz $|z|\geqslant n,$ to można podzielić z na z=uvwtakie, że:

1. $|v| \geqslant 1$

 $2. |uv| \leq n$

3. $\forall_{i \in \mathbb{N}} z' = uv^i w \in L$

LOP bezk. Zał., że L bezkontekstowy. Wtedy istnieje stała n, że jeśli $z \in L$ oraz $|z| \ge$, to można podzielić z na z = uvwxy, takie, że:

 $1. |vx| \geqslant 1$

2. $|vwx| \leq n$

3. $\forall_{i \in \mathbb{N}} z' = uv^i w x^i y \in L$

Lemat Ogdena Niech L język bezkontekstowy. Wtedy istnieje stała n taka, że jeśli $z \in L$ oraz |z| > n i oznaczymy w z n lub więcej pozycji jako wyróżnione, to można podzielić z na z = uvwxy takie, że:

1. v i x zawierają łącznie co najmniej jedną wyróżnioną pozycję

2. \boldsymbol{vwx} zawiera co najwyżej \boldsymbol{n} wyróżnionych pozycji

 $3. \ \forall i \in \mathbb{N}z' = uv^i w x^i y \in L$

Podział $\alpha=uvw$, $|uv|\leqslant n$ oraz $|v|\geqslant 1$. Wybieramy i dla którego $|uv^iw|\notin L$ a powinien. Klasa języków regularnych jest domknięta na operację sumy, dopełnienia, przecięcia, złożenia i domknięcia Kleene'ego. Gramatyka bezkontekstowa G=(N,T,P,S)

N - skończony zbiór zmiennych(nieterminale)

T - skończony zbiór zmiennych końcowych(termina, alfabet)

P - skończony zbi
ór produkcji postaci $A \to \alpha$ gdzie $A \in N$
i $\alpha \in (N \cup T)^*$

 \in N - symbol początkowy

Postać normalna Chomsky'ego postaci:

 $A \to BC$ albo $A \to a$ Konstrukcje:

1. If po prawej terminal a to zastępujemy go C_a i dopisujemy $C_a \to a$

2. If prawa strona dłuższa niz 1 to zastępujemy $A \to B_1 \dots B_n$ przez $A \to B_1 D_1, D_1 \to B_2 D_2, \dots, D_{n-2} \to B_{n-1} Bn$

FIRST(X) - dla symboli

1. X-terminal, to FIRST(X)=X

2. $X \rightarrow \varepsilon$ to do FIRST(X) dodajemy ε

3. X - nieterminal i $X \to Y_1Y_2...Y_k$ to dodajemy a do FIRST(X) jeśli istnieje i takie, że $a \in FIRST(Y_i)$ oraz $\varepsilon \in FIRST(Y_j)$ dla każdego j < i. $\varepsilon \in FIRST(X)$ jeśli należy do wszystkich $FIRST(Y_i)$.

4. $FIRST(X\alpha) = FIRST(X)$ gdy $\varepsilon \notin FIRST(X)$

5. $FIRST(X\alpha) = FIRST(X) \cup FIRST(\alpha)$ gdy $\varepsilon \in FIRST(X)$

${ m FOLLOW}({\bf A})$ - dla nieterminali

1. Dla początkowego S do FOLLOW(S) dodajemy \$

2. Jeśli mamy produkcję $A \to \alpha B \beta$ to do FOLLOW(B) dodajemy wszystkie symbole z $FIRST(\beta)$ poza ε

3. Jeśli $A \to \alpha B\beta$ lub $A \to \alpha B$, gdzie $\varepsilon \in FIRST(\beta)$ to do FOLLOW(B) dodajemy wszystkie symbole z FOLLOW(A)

 $\mathbf{LL}(\mathbf{1}) - A \rightarrow \alpha$

1. for each $a \in T$ if $a \in FIRST(\alpha)$ to wpisz $A \to \alpha$ do M[A,a]

2. if $\varepsilon \in FIRST(\alpha)$ to dla każdego $b \in FOLLOW(A)$ wpisz $A \to \alpha$ do M[A, b]

3. nie ma w tabeli ε !

\mathbf{SLR}

1. zbiory sytuacji

2. tabelka + redukcje (zaznaczyć ew. konflikty)

3. redukcja do FOLLOW(A) (if redukcja była z $A \to \beta$)

LR(1)

1. zbiory sytuacji z PODGLADEM

2. podgląd początkowy \$

3. podgląd przy domknięciu: mamy $[A \to \alpha \cdot B\beta, a] \in I$ dla każdej produkcji z $B \to \gamma$ dodaj $[B \to \gamma, FIRST(Ba)]$

4. tabelka + redukcje (zaznaczyć ew. konflikty)

\mathbf{LALR}

1. zbiory sytuacji z PODGLADEM (SLR, ale z podglądem z LR(1))

LEADING(A)-pierwsze term. z A

1. $a \in LEADING(A)$ jeśli mamy produkcję $A \to Ba\beta$ lub $A \to a\beta$

2. if exists prod. $A \to B\alpha$ i $a \in LEADING(B)$ to $a \in LEADING(A)$

3. foreach nieterminali liczymy 1 i powtarzamy 2 aż nic się nie zmienia

TRAILING(A)-ostatnie term. z A

1. $a \in TRAILING(A)$ jeśli mamy produkcję $A \to \beta aB$ lub $A \to \beta a$

2. if exists prod. $A \to \alpha B$ i $a \in TRAILING(B)$ to $a \in TRAILING(A)$

3. foreach nieterminali liczymy 1 i powtarzamy 2 aż nic się nie zmienia

Tab. priorytetów $\doteq <>$

 $TT \ T \doteq T$

 $TNT \ T \doteq T$

TN for each $a \in LEADING(N)$ do $T \lessdot a$ (wiersz)

NT for each $a \in TRAILING(N)$ do a > T (kolumna)

\$ zawsze gorszy

Zbiory sytuacji

1. Wzbogacenie $S' \to S$

2. Ponumerować produkcje (do redukcji!!!).

 $E \to \varepsilon \ E \to .$

3. dla kropek, na końcu w tabeli numer z produkcji

Rekurencja

1. $A \to A\alpha | B$

2. $A \rightarrow \beta A'$

3. $A' \to \alpha A' | \varepsilon$

Faktoryzacja

1. $A \to \alpha \beta_1 | \dots | \alpha \beta_k$

2. $A \to \alpha A'$

3. $A' \rightarrow \beta_1 | \dots | \beta_k$

język	lem	slowo	notes
$\omega = xxy \land x \neq \varepsilon$	LOP	ab^nab^n	i = 0
$\omega = xyyz \land y \neq \varepsilon$	reg	$len \geqslant 4$	dobrać krótsze
$\omega \omega^R \wedge \omega _a \equiv \omega _b \equiv 0 \pmod{13}$	LOP	$a^{13n}b^{13n}b^{13n}a^{13n}$	ozn.
$\omega: \omega _a \equiv \omega _b (mod3)$	reg	mini	
$\omega = xyy^R \land y \neq \varepsilon$	reg	2 obok	
$\omega: palindrom \wedge \omega _a = \omega _c$	LOP	$a^n c^n c^n a^n$	
$\omega = xcycz \land xy i yz \in \{a, b\}^*$ palindromy	Ogd	$a^mbca^mcba^m$	śr. ozn.
$ \omega _a = \omega _b$	bezk.		
$ \omega _a = \omega _b = \omega _c$	LOP	$a^nb^nc^n$	
$\omega: \omega _a \neq \omega _b \neq \omega _c$	Ogd	$a^{m+m!}b^ma^{m+m!}$	ozn b.
$\omega: \omega _a = \omega _b = \omega _c$	LOP	$a^nb^nc^n$	i=0
$\omega: \omega _a = \omega _c > \omega _b$	LOP	$a^{n+1}b^nc^{n+1}$	
ωωω	LOP	$0^n 1^n 0^n 1^n 0^n 1^n$	i=0
$\omega \omega^R \omega$	LOP	$0^{n}1^{n}1^{n}0^{n}0^{n}1^{n}$	i=0
$a^n c^k b^n : n \neq k$	Ogd	$a^{n!+n}c^nb^{n!+n}$	