In [1]:

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.metrics import f1_score, precision_score, recall_score, roc_auc_score, accuracy sco
re, roc_curve, confusion_matrix
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost.sklearn import XGBClassifier
import lightgbm as lgb
from sklearn.preprocessing import MinMaxScaler
import os
import pandas as pd
import lightgbm as 1gb
from sklearn. preprocessing import Imputer
import math
from sklearn.model_selection import learning_curve
from sklearn.model_selection import ShuffleSplit
%matplotlib inline
from sklearn.preprocessing import Imputer
from sklearn import preprocessing
import numpy as np
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\ensemble\weight_boosting.py:29: DeprecationWarning: numpy.core.umath_tests is an internal NumPy module and should not be imported. It will be removed in a future NumPy release. from numpy.core.umath_tests import inner1d

```
In [2]:
```

```
f = 'pocd.csv'
pocd = pd.read_csv(f, encoding = 'gb18030')
pocd.describe()
```

Out[2]:

	SEX	AGE	HEIGHT	WEIGHT	ВМІ	Α
count	1080.000000	1080.000000	1080.000000	1080.000000	1080.000000	1080.0000
mean	1.223148	63.756481	165.111422	59.136555	21.675307	2.031481
std	0.416550	11.262598	8.067546	10.546948	3.052788	0.390966
min	1.000000	25.000000	91.392661	-12.188420	13.671875	1.000000
25%	1.000000	57.000000	160.000000	52.000000	19.485789	2.000000
50%	1.000000	64.000000	166.000000	59.000000	21.484375	2.000000
75%	1.000000	72.000000	170.000000	65.000000	23.661439	2.000000
max	2.000000	92.000000	183.000000	95.000000	32.006920	3.000000

8 rows × 21 columns

4

In [3]:

```
X= pocd.iloc[:, 0:-1]
y = pocd.iloc[:, -1:]

X_train, X_test, y_train, y_test = train_test_split(X,
y, test_size=0.3, random_state=41, stratify=y)
print(X_train)
print(y_train)
```

958 229 275 791 559 889 383 981 104 888	SEX AGE 1 75 2 43 1 67 1 56 1 56 2 77 1 51 1 59 1 77 1 66	170. 0 151. 0 170. 0 166. 0 167. 0 153. 0 170. 0 163. 0 165. 0	WEIGHT 72.5 56.5 61.5 60.0 57.0 49.0 58.0 74.0 59.0 58.0	BMI 25. 086505 24. 779615 21. 280277 21. 773842 20. 438166 20. 932120 20. 069204 27. 852008 21. 671258 18. 724174	2 2 2 2 2 2 2 3	4 4. 159 3 1. 500 2 3. 759 1 3. 000 3 3. 000	9529 165. 000000 0000 194. 000000 9810 87. 000000 0000 123. 333333 0000 78. 235294 0000 105. 000000 0000 150. 000000 0000 234. 615385 0000 131. 578947
958 229 275 791 559 889 383 981 104 888	NLR 3. 125000 2. 600000 1. 750000 2. 476190 1. 470588 4. 333333 1. 722222 4. 538462 3. 526316 2. 333333		ATIVE. HE	EMOGLOBIN P 147 101 153 120 153 96 96 91 120 92	LATELET.	COUNT ALI 264 194 174 259 133 126 270 305 250 92	BUMIN \ 44. 2 40. 4 43. 3 42. 8 40. 2 39. 1 38. 4 33. 3 36. 8 38. 3
958 229 275 791 559 889 383 981 104 888	NEUTROPH	1L. COUNT 5. 0 2. 6 3. 5 5. 2 2. 5 5. 2 3. 1 5. 9 6. 7 3. 5	LYMPHOO	2. COUNT 1. 6 1. 0 2. 0 2. 1 1. 7 1. 2 1. 8 1. 3 1. 9 1. 5	MONOCYTE	0. COUNT WHO O. 6 0. 5 0. 5 0. 5 0. 5 0. 4 0. 2 0. 3 0. 2 0. 6	3C. COUNT \ 7. 35 6. 10 6. 20 7. 97 4. 80 6. 93 5. 60 7. 64 9. 10 5. 78
958 229 275 791 559 889 383 981 104 888	BORRMANN	. TYPES T	HE. PATHO	DLOGICAL. TYP	PES. GROUP 1 1 0 1 1 1 1 1 1		F. INVASION 2 2 1 2 2 2 2 2 2 2 2 2 2
[756 958 229 275 791 559	rows x 2 PERITONE	O columns AL.METAST					

```
383
                           0
981
                           0
104
                           0
888
[756 rows x 1 columns]
In \lceil 4 \rceil:
xy_train = pd.concat([X_train, y_train], axis=1)
xy_test = pd. concat([X_test, y_test], axis=1)
f_xy_train = os. path. splitext(f)[0] + '_train. csv'
f_{xy}_{test} = os. path. splitext(f)[0] + '_test. csv'
xy_train. to_csv(f_xy_train, index=False, encoding = 'gb18030')
xy test. to csv(f xy test, index=False, encoding = 'gb18030')
xy_train = pd. read_csv(f_xy_train, encoding = 'gb18030')
xy test = pd. read csv(f xy test, encoding = 'gb18030')
In [5]:
X_{train} = xy_{train.iloc}[:, 0:-1]
y_train = xy_train.iloc[:, -1:]
X_{\text{test}} = xy_{\text{test.iloc}}[:, 0:-1]
y_{test} = xy_{test.iloc[:, -1:]}
In [6]:
import numpy as np
X_train = np.array(X_train)
X \text{ test} = np. array(X \text{ test})
y_train = np.array(y_train)
ya, yb = y_train.shape
y_train = y_train.reshape(ya,)
y_{test} = np. array(y_{test})
ya, yb = y_test.shape
y_test = y_test.reshape(ya,)
In [7]:
from sklearn.preprocessing import MinMaxScaler
ss = MinMaxScaler()
xy_train = ss.fit_transform(xy_train, y_train)
xy_test = ss. transform(xy_test)
print(xy_train )
[[0.
              0.74626866 0.85663736 ... 1.
                                                                  0.
                                                      1.
                                                                             ]
 [1.
              0. 26865672 0. 64710736 ... 1.
                                                                  1.
                                                      1.
 [0.
              0.62686567 0.85663736 ... 0.
                                                                             ]
                                                      0.
                                                                  0.
              0.50746269 0.7794421 ... 1.
 [0.
                                                      1.
                                                                  0.
 [0.
              0.7761194 0.80149789 ... 1.
                                                      1.
                                                                  0.
 [0.
              0.6119403 0.92280473 ... 1.
                                                                  0.
                                                                             ]]
                                                      1.
In [8]:
xy_train. shape
```

Out[8]:

(756, 21)

```
In [9]:
```

lr_accuracy_score:0.906, lr_auc:0.741

In [10]:

```
tr = DecisionTreeClassifier(splitter='best', max_depth=2, min_samples_split=20, min_samples_leaf
=5, min_weight_fraction_leaf=0.1)
tr.fit(X_train, y_train)
tr_y_pre=tr.predict(X_train)
tr_y_proba=tr.predict_proba(X_train)
tr_score = tr.score(X_train, y_train)
tr_accuracy_score=accuracy_score(y_train, tr_y_pre)
tr_preci_score=precision_score(y_train, tr_y_pre)
tr_recall_score=recall_score(y_train, tr_y_pre)
tr_fl_score=fl_score(y_train, tr_y_pre)
tr_auc=roc_auc_score(y_train, tr_y_proba[:, 1])
print('tr_accuracy_score:%.3f, tr_auc:%.3f'
    %(tr_accuracy_score, tr_auc))
```

tr_accuracy_score:0.906, tr_auc:0.712

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.

'precision', 'predicted', average, warn_for)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no pred icted samples.

'precision', 'predicted', average, warn_for)

In [11]:

forest_accuracy_score:0.906, forest_auc:0.796

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.

'precision', 'predicted', average, warn_for)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no pred icted samples.

'precision', 'predicted', average, warn_for)

In [12]:

Gbdt_accuracy_score: 0.909, Gbdt_auc: 0.861

In [13]:

gbm_accuracy_score:0.909, gbm_auc:0.938

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: Dep recationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.

```
from sklearn.metrics import mean squared error
from sklearn.metrics import zero_one_loss, log_loss
c1f = 1r
y pred = clf.predict(X train)
y true = y train
mse = mean_squared_error(y_true, y_pred)
print ("LR MSE: %.3f" % mse)
def train_zero_one_loss(y_true, y_pred):
    print("zero_one_loss(fraction):", zero_one_loss(y_true, y_pred, normalize=True))
    print("zero one loss(num):", zero one loss(y true, y pred, normalize=False))
def train log loss(y true, y pred):
    print("log_loss<average>:", log_loss(y_true, y_pred, normalize=True))
    print("log_loss<total>:", log_loss(y_true, y_pred, normalize=False))
train zero one loss (y true, y pred)
train_log_loss(y_true, y_pred)
def train_confusion_matrix(y_true, y_pred):
    print('Confusion Matrix:\n', confusion_matrix(y_true, y_pred, labels=[0, 1]))
train confusion matrix(y true, y pred)
clf = tr
y pred = clf.predict(X train)
y_true = y_train
mse = mean squared error (y true, y pred)
print(" TR MSE: %.3f" % mse)
def train_zero_one_loss(y_true, y_pred):
    print("zero_one_loss(fraction):", zero_one_loss(y_true, y_pred, normalize=True))
    print("zero one loss (num):", zero one loss (y true, y pred, normalize=False))
def train_log_loss(y_true, y_pred):
    print("log_loss<average>:", log_loss(y_true, y_pred, normalize=True))
    print("log_loss<total>:", log_loss(y_true, y_pred, normalize=False))
train zero one loss(y true, y pred)
clf = forest
y_pred = clf.predict(X train)
y_true = y_train
mse = mean squared error (y true, y pred)
print(" forest MSE: %.3f" % mse)
clf =Gbdt
y_pred = clf.predict(X_train)
y_true = y_train
mse = mean_squared_error(y_true, y_pred)
print(" Gbdt MSE: %.3f" % mse)
c1f = gbm
y pred = clf.predict(X train)
y_true = y_train
mse = mean_squared_error(y_true, y_pred)
print(" gbm MSE: %.3f" % mse)
```

LR MSE: 0.094

zero_one_loss<fraction>: 0.09391534391534395

zero_one_loss<num>: 71

log_loss<average>: 3.243722121211758 log_loss<total>: 2452.253923636089

Confusion Matrix:

[[684 1] [70 1]] TR MSE: 0.094

zero_one_loss<fraction>: 0.09391534391534395

zero_one_loss<num>: 71 forest MSE: 0.094 Gbdt MSE: 0.091 gbm MSE: 0.091

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: Dep recationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.

In [16]:

```
lr fpr, lr tpr, lr threasholds=roc curve(y train, lr y proba[:, 1])
tr_fpr, tr_tpr, tr_threasholds=roc_curve(y_train, tr_y_proba[:, 1])
forest fpr, forest tpr, forest threasholds=roc curve(y train, forest y proba[:, 1])
Gbdt fpr, Gbdt tpr, Gbdt threasholds=roc curve(y train, Gbdt y proba[:, 1])
gbm fpr, gbm tpr, gbm threasholds=roc curve(y train, gbm y proba[:, 1])
plt.plot(lr fpr, lr tpr, c='r', lw=2, label=u'lr, AUC=%. 3f'% lr auc)
plt.plot(tr_fpr, tr_tpr, c='b', lw=2, label=u'tr, AUC=%.3f' % tr_auc)
plt.plot(forest_fpr, forest_tpr, c='g', lw=2, label=u'forest, AUC=%.3f' % forest_auc)
plt.plot(Gbdt fpr, Gbdt tpr, c='g', lw=2, label=u'Gbdt, AUC=%. 3f' % Gbdt auc)
plt.plot(gbm fpr, gbm tpr, c='y', lw=2, label=u'gbm, AUC=%. 3f' % gbm auc)
plt. plot((0, 1), (0, 1), c='#a0a0a0', lw=2, ls='--')
plt.xlim(-0.001, 1.001)
plt.ylim(-0.001, 1.001)
plt. xticks (np. arange (0, 1.1, 0.1))
plt. yticks (np. arange (0, 1.1, 0.1))
plt.xlabel('False Positive Rate', fontsize=16)
plt.ylabel('True Positive Rate', fontsize=16)
plt.grid(b=True, ls=':')
plt. legend(loc='lower right', fancybox=True, framealpha=0.8, fontsize=12)
plt.title(u'Train ROC', fontsize=18)
fig = plt.figure(figsize=(8, 15), dpi= 600)
plt. show()
```


<Figure size 4800x9000 with 0 Axes>

In [17]:

```
lr = LogisticRegression(penalty='12', tol=0.0001, C=1, intercept_scaling=1, max_iter=100)
lr.fit(X_train, y_train)
lr_y_proba=lr.predict_proba(X_test)
lr_y_pre=lr.predict(X_test)
```

```
In [18]:
```

```
lr_score = lr. score(X_test, y_test)
lr_accuracy_score=accuracy_score(y_test, lr_y_pre)
lr_preci_score=precision_score(y_test, lr_y_pre)
lr_recall_score=recall_score(y_test, lr_y_pre)
lr_fl_score=fl_score(y_test, lr_y_pre)
lr_auc=roc_auc_score(y_test, lr_y_proba[:, 1])
print('lr_accuracy_score:%.3f, lr_auc:%.3f'
%(lr_accuracy_score, lr_auc))
```

1r_accuracy_score:0.904, 1r_auc:0.680

In [19]:

```
tr = DecisionTreeClassifier(splitter='best', max_depth=2, min_samples_split=20, min_samples_leaf
=5, min_weight_fraction_leaf=0.1)
tr.fit(X_train, y_train)
tr_y_pre=tr.predict(X_test)
tr_y_proba=tr.predict_proba(X_test)
```

In [20]:

tr accuracy score: 0.907, tr auc: 0.657

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.

'precision', 'predicted', average, warn_for)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no pred icted samples.

'precision', 'predicted', average, warn for)

In [21]:

In [22]:

forest_accuracy_score:0.907, forest_auc:0.696

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.

'precision', 'predicted', average, warn_for)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no pred icted samples.

'precision', 'predicted', average, warn_for)

In [23]:

```
Gbdt=GradientBoostingClassifier(learning_rate=0.06, n_estimators=50, max_depth=2, random_state =41)
Gbdt.fit(X_train, y_train)
Gbdt_y_pre=Gbdt.predict(X_test)
Gbdt_y_proba=Gbdt.predict_proba(X_test)
```

In [24]:

```
Gbdt_accuracy_score=accuracy_score(y_test, Gbdt_y_pre)
Gbdt_preci_score=precision_score(y_test, Gbdt_y_pre)
Gbdt_recall_score=recall_score(y_test, Gbdt_y_pre)
Gbdt_fl_score=fl_score(y_test, Gbdt_y_pre)
Gbdt_auc=roc_auc_score(y_test, Gbdt_y_proba[:,1])
print('Gbdt_accuracy_score:%.3f, Gbdt_auc:%.3f'
%(Gbdt_accuracy_score, Gbdt_auc))
```

Gbdt_accuracy_score: 0.904, Gbdt_auc: 0.725

In [25]:

```
gbm=lgb.LGBMClassifier(learning_rate=0.1, n_estimators=30, max_depth=3)
gbm.fit(X_train, y_train)
gbm_y_pre=gbm.predict(X_test)
gbm_y_proba=gbm.predict_proba(X_test)
```

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: Dep recationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.

In [26]:

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.

'precision', 'predicted', average, warn_for)

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\metrics\classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.

'precision', 'predicted', average, warn_for)

gbm_accuracy_score:0.907, gbm_auc:0.745

In [27]:

```
c1f = 1r
y_pred = clf.predict(X_test)
y_true = y_test
mse = mean squared error(y true, y pred)
print(" LR MSE: %.3f" % mse)
clf = tr
y_pred = clf.predict(X_test)
y_true = y_test
mse = mean_squared_error(y_true, y_pred)
print(" TR MSE: %.3f" % mse)
clf = forest
y_pred = clf.predict(X_test)
y_true = y_test
mse = mean_squared_error(y_true, y_pred)
print(" forest MSE: %.3f" % mse)
clf =Gbdt
y_pred = clf.predict(X_test)
y_true = y_test
mse = mean_squared_error(y_true, y_pred)
print(" Gbdt MSE: %.3f" % mse)
clf = gbm
y_pred = clf.predict(X_test)
y_true = y_test
mse = mean_squared_error(y_true, y_pred)
print(" gbm MSE: %.3f" % mse)
```

LR MSE: 0.096 TR MSE: 0.093 forest MSE: 0.093 Gbdt MSE: 0.096 gbm MSE: 0.093

C:\ProgramData\Anaconda3\lib\site-packages\sklearn\preprocessing\label.py:151: Dep recationWarning: The truth value of an empty array is ambiguous. Returning False, but in future this will result in an error. Use `array.size > 0` to check that an array is not empty.