	<pre>Importing Necessary Libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings(action='ignore')</pre>
[2]:	<pre>Data Ingestion train_df = pd.read_csv('dataset/aps_failure_training_set_processed_8bit.csv') train_labels = pd.read_csv('dataset/aps_failure_training_set.csv')['class'] test_df = pd.read_csv('dataset/aps_failure_test_set_processed_8bit.csv') test_labels = pd.read_csv('dataset/aps_failure_test_set.csv')['class'] Exploring the Data train_df['class'] = train_labels test_df['class'] = test_labels</pre>
rt[4]:	train_df.head() class aa_000 ab_000 ac_000 ad_000 ae_000 af_000 ag_000 ag_000 ag_001 ag_002 ee_002 ee_003 ee_004
n [6]: [1 neg -0.406250 -0.289062 -0.46875 -0.007812 -0.054688 -0.007812 -0.03125 -0.03125 -0.054688 -0.382812 -0.382812 -0.375000 -0.3 2 neg 0.046875 0.554688 -0.007812 -0.054688 -0.007812 -0.03125 -0.03125 -0.054688 0.046875 0.31250 -0.000000 -0.1 3 neg 0.000000 -0.289062 -0.46875 -0.007812 -0.054688 -0.007812 -0.03125 -0.03125 -0.054688 0.046875 0.31250 -0.000000 -0.03125 -0.054688 0.085938 0.062500 0.031250 0.0 4 neg -0.390625 -0.289062 -0.46875 -0.007812 -0.054688 -0.007812 -0.03125 -0.03125 -0.054688 -0.375000 -0.375000 -0.375000 -0.359375 -0.3 train_strain_
	count 60000.000000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 60000.00000 0.0054688 -0.011 70.0054688 -0.007812 -0.031250 -0.054688 -0.011 70.0054688 -0.007812 -0.0031250 -0.054688 -0.011 70.0054688 -0.007812 -0.007812 -0.0054688 -0.007812 -0.007812 -0.0054688 -0.0078
n [8]: nt[8]:	
[63]: [63]:	a_000 ab_000 ac_000 ad_000 ac_000 ac_0000 ac
[10]: [11]: [12]:	<pre>eg_000 0.025319 0.004143 0.017086 0.000069 0.204498 0.202610 0.002599 0.007825 0.030623 0.0558270.002936 -0.002632 -0.01 X = train_df.drop('class', axis=1) Y = train_df['class'] Splitting into Train & Test Data from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=0)</pre>
14]: [15]: [16]: [<pre>test_score_per_truck = test_score/X_test.shape[0] print("Best model on test set (Cost = \$ %0.2f):" % test_score) print("Best model cost per truck on test set (Cost = \$ %0.2f)" % test_score_per_truck) Best model on test set (Cost = \$ 0.99): Best model cost per truck on test set (Cost = \$ 0.00) y_pred_logreg = log_reg.predict(X_test)</pre>
	print(classification_report(y_test, y_pred_logreg)) precision recall f1-score support neg 0.99 1.00 1.00 17702 pos 0.82 0.60 0.69 298 accuracy 0.99 18000 macro avg 0.91 0.80 0.84 18000 weighted avg 0.99 0.99 0.99 18000 Decision Tree Classifier
8]: 9]: 9]:	<pre>dt = DecisionTreeClassifier() dt.fit(X_train, y_train) v DecisionTreeClassifier DecisionTreeClassifier() y_pred_dt = dt.predict(X_test) accuracy_score(y_test, y_pred_dt) 0.988777777777778</pre>
0]:	from sklearn.metrics import classification_report print(classification_report(y_test, y_pred_dt)) precision recall f1-score support neg 0.99 0.99 17702 pos 0.66 0.65 0.66 298 accuracy 0.99 18000 macro avg 0.83 0.82 0.83 18000 weighted avg 0.99 0.99 18000
1]: [2]: [<pre>Support Vector Classifier from sklearn.svm import SVC from sklearn.svm import LinearSVC,SVC from sklearn.pipeline import make_pipeline clf = SVC(C = 1.2, gamma = 0.9, kernel= 'rbf') clf = clf.fit(X_train,y_train) y_pred_svc = clf.predict(X_test) from sklearn.metrics import classification_report print(classification_report(y_test, y_pred_svc))</pre>
	print(classification_report(y_test, y_pred_svc)) precision recall f1-score support neg 0.98 1.00 0.99 17702 pos 1.00 0.04 0.07 298 accuracy 0.98 18000 macro avg 0.99 0.52 0.53 18000 weighted avg 0.98 0.98 0.98 18000
]:	accuracy_score(y_test, y_pred_svc) 0.98405555555556 Ensemble Methods from sklearn.tree import ExtraTreeClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import VotingClassifier
	rf.fit(X_train,y_train) * RandomForestClassifier
[29]: [29]:	<pre>print(classification_report(y_test, y_pred_rf)) precision recall f1-score support</pre>
[31]:	neg 0.99 1.00 1.00 17702 pos 0.93 0.58 0.71 298 accuracy 0.99 18000 macro avg 0.96 0.79 0.85 18000 weighted avg 0.99 0.99 0.99 18000 Bagging Classifier cls = BaggingClassifier(rf, random_state=0).fit(X_train, y_train) cls.score(X_test, y_test) 0.9914444444444445
2]: [3]: [3]:	0.991444444444445 from sklearn.metrics import classification_report print(classification_report(y_test, y_pred_clf)) precision recall f1-score support neg 0.99 1.00 1.00 17702
5]: [pos 0.93 0.52 0.67 298 accuracy 0.99 18000 macro avg 0.96 0.76 0.83 18000 weighted avg 0.99 0.99 0.99 18000 Extra Tree Classifier
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	<pre>Voting Classifier clf1 = ExtraTreeClassifier(random_state=0) clf2 = RandomForestClassifier() clf3 = DecisionTreeClassifier() clf4 = LogisticRegression() clf5 = SVC(C = 1.2, gamma = 0.9, kernel= 'rbf') eclf1 = VotingClassifier(estimators=[</pre>
9]: [<pre>print (eclf1.predict(X)) ['neg' 'neg' 'neg' 'neg' 'neg' 'neg'] Boosting Algorithms Adaboost Classifier from sklearn.ensemble import AdaBoostClassifier ada_model = AdaBoostClassifier()</pre>
 1]: 2]: [3]: [<pre>AdaBoostClassifier AdaBoostClassifier() y_pred_ada = ada_model.predict(X_test) accuracy_score(y_test,y_pred_ada) 0.990444444444445</pre>
1]:	from sklearn.metrics import classification_report print(classification_report(y_test, y_pred_ada)) precision recall f1-score support neg 0.99 1.00 1.00 17702 1.00 298 pos 0.76 0.61 0.68 298 accuracy macro avg 0.88 0.81 0.84 18000 weighted avg 0.99 0.99 0.99 0.99 18000
5]: [5]: [
5]: [5]: [7]: [<pre>from sklearn.ensemble import GradientBoostingClassifier GB_model = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0) GB_model.fit(X_train, y_train) GradientBoostingClassifier</pre>