Redarea luminii in imagini

Prof. univ. dr. ing. Florica Moldoveanu

Proprietatile luminii(1)

➤ Lumina este energie electromagnetică (spectrul vizibil) →

> Atunci când cade pe suprafața unui obiect, ea poate fi: absorbită, reflectată sau transmisă

Sistemul vizual uman percepe: lumina provenita direct de la o sursa si lumina reflectata sau transmisa de obiectele din mediu.

- ➤ Lumina care conține toate lungimile de undă din spectrul vizibil în proporții aproximativ egale se numește **acromatică**.
- ➤ Lumina in care predomina anumite lungimi de undă se numește **cromatică.**

Proprietatile luminii(2)

- Culoarea unui obiect, perceputa de ochiul uman, depinde atât de distribuția lungimilor de undă în lumina care cade pe obiect cât și de caracteristicile fizice ale suprafetei obiectului: reflecta/absoarbe anumite lungimi de unda.
- Energia electromagnetică nu are culoare!
- Culoarea este rezultatul unui proces psiho-fiziologic.
- Definiția psiho-fiziologică a unei culori cuprinde: nuanta, luminozitatea (stralucirea), saturatia
 - —**Nuanța:** roşu, galben, verde, etc. -determinată de lungimea de undă dominantă a distribuției spectrale a luminii.
 - -Luminozitatea sau strălucirea reprezintă intensitatea luminii.
 - -Luminozitatea: caracteristică a unui obiect emițător de lumină
 - -Strălucirea: caracterizează un obiect neemițător, care reflectă lumina.

Proprietatile luminii(3)

- Saturația sau puritatea o măsură a amestecului de alb într-o culoare pură;
 - permite să se facă distincție între roşu şi roz, între albastru şi bleu, etc.
 - O culoare pură are saturația 100%.
 - Lumina acromatică are saturația 0%.

– Cea mai cunoscută dintre teoriile privind formarea culorilor în sistemul ochi-creier este aceea conform căreia în retina ochiului uman există trei tipuri de conuri, fiecare tip fiind sensibil la una dintre culorile roşu, verde şi albastru.

Proprietatile luminii(4)

• Culorile percepute de ochi sunt amestecuri de culori pure.

Curba de luminozitate
Suma celor 3 curbe de senzitivitate

Raspunsul ochiului la cele 3 culori primare

Senzitivitatea maximă corespunde luminii cu lungimea de undă în jur de 550 nm, percepută ca galben-verde.

- •Culorile <u>roşu (Red)</u>, <u>verde(Green)</u> <u>şi albastru (Blue)</u> se numesc culori primare.
 - Prin amestecul lor în proporții egale se obține alb.
- •Două culori care prin amestec produc lumină albă se numesc complementare.
 - •Culorile complementare culorilor primare sunt : cian (Cyan), magenta (Magenta), galben (Yellow).

Proprietatile luminii(5)

 Amestecând două culori primare in proportii egale se obține culoarea complementară celei de a treia:

- De exemplu, albastru+verde=cian, roşu+verde=galben, roşu+albastru= magenta.
- Culorile **roşu, verde şi albastru** se numesc şi **"primitive aditive"** deoarece ele permit formarea de nuanțe prin **adunarea** lor în diferite proporții.
- Acest mod de definire a culorilor corespunde echipamentelor emiţătoare de lumină (dispozitive de vizualizare cu ecran).

Proprietatile luminii(6)

- Culorile cian, magenta, galben se numesc "primitive extractive".
- Se obtin prin **extragerea** culorilor primare din lumina alba:

- Se folosesc pentru a defini culorile reflectate de un document imprimat: pigmenții existenți în
 cernelurile tipografice absorb culorile complementare acelora ale pigmenților.
 - Ex: pigmentul de culoare magenta absoarbe din lumina incidentă componentele corespunzătoare luminii verde, iar cel de culoare galben, componentele corespunzătoare luminii albastre.
 - > O suprafață care conține pigmenți magenta și galben va reflecta (sau transmite) lumină roșie.
- C, M, Y permit specificarea de nuanțe prin extragerea lor în diferite proporții din alb. Scăzându-le în proporții egale din alb se obțin diferite nuanțe de gri.

Modele de culoare(1)

• Orientate către echipamente

- se bazează pe culorile primare folosite de echipamente pentru redarea culorilor:
- RGB, CMY şi YIQ.

Orientate către utilizator

- se bazează pe proprietățile psiho-fiziologice ale culorilor :
- HSV şi HLS.

Modele de culoare(2)

- Un <u>model de culoare</u> specifică un sistem de coordonate 3D şi un subspațiu al culorilor în sistemul de coordonate respectiv.
- Fiecare culoare se reprezintă printr-un punct în subspațiul culorilor.

Modelul RGB (Red, Green, Blue)

Rosu: 1,0,0

Verde: 0,1,0

Albastru: 0,0,1

Alb: 1,1,1; Negru: 0,0,0

Cian: 0, 1, 1 - culoarea complementara culorii Rosu!

Modele de culoare(3)

Modelul CMY (Cyan, Magenta, Yellow)

Cian: 1,0,0

Magenta: 0, 1, 0

Galben: 0,0,1

Alb: 0,0,0

Negru: 1,1,1

Rosu: 0, 1, 1 - Complementara culorii Cian!

Coversia RGB ←→ CMY

$$[CMY] = [111] - [RGB]$$

$$[R G B] = [1 1 1] - [C M Y]$$

Modele de culoare(4)

Modelul HSV (Hue, Saturation, Value)

- Model de culoare orientat catre utilizator
- Artiştii specifică culorile prin tente, nuanțe și tonuri

$$0 \le V \le 1$$
, $0 \le S \le 1$, $0 \le H \le 360$

V=1 – baza hexaconului

S=0 - pe axa hexaconului

H=0 - culoarea Rosu

Culorile complementare – la 180 grade pe baza hexaconului

Hexaconul din figura reprezinta subspatiul culorilor in modelul HSV

Modele de culoare(5)

Modelul HLS (Hue, Lightness, Saturation)

Modelul HLS

Culorile primare cu saturație maximă și complementarele lor sunt reprezentate prin S=1, L=0.5.

Modele de culoare(6)

Interpolarea în spațiul culorilor

- Rezultatul interpolării între două culori depinde de modelul de culoare în care sunt specificate.
- Fie două culori specificate în modelul RGB, C1=(1,0,0) şi C2=(0,1,0). Le interpolăm cu ponderi egale în modelele RGB şi HSV:
- Interpolare in modelul RGB:

```
C=t*C2 + (1-t)*C1 unde t=0.5, se obține
C=(0.5, 0.5, 0), care convertită în HSV ne dă (60, 1, 0.5)
```

Interpolare in modelul HSV:

```
C1 se reprezintă în HSV prin (0, 1, 1) iar
C2 prin (120, 1, 1)
C= 0.5*(0,1,1) + 0.5*(120,1,1) = (60, 1, 1)
```

Modele empirice pentru calculul reflexiei luminii(1)

- Caracteristicile luminii reflectate de suprafaţa unui obiect depind de :
 - lungimile de undă conținute în lumina incidentă,
 - direcția şi geometria sursei luminoase,
 - orientarea suprafeței
 - proprietățile materialului din care este construită suprafața.
- Expresia care modelează intensitatea luminii reflectate într-un punct al unei suprafețe este definită
 pentru o suprafață necolorată şi o lumină incidentă monocromatică, deci caracterizată printr-o
 anumită lungime de undă, λ.
- In cazul general, **lumina reflectată nu este monocromatică**, de aceea pentru calculul său expresia ar trebui să fie evaluată continuu pe întregul domeniu al spectrului de modelat.
- In practică, expresia se evaluează separat pentru cele trei culori de baza, R, G, B.

Modele empirice pentru calculul reflexiei luminii(2)

Aproximarea reflexiei difuze intr-un punct al unei suprafete 3D

- Lumina reflectată difuz de o suprafață este dispersată regulat în toate direcțiile.
- Legea lui Lambert defineşte reflexia luminii provenite de la o sursă punctiformă, de către un difuzor perfect:

$$Id=Isursa * kd * cos(i)$$
 $0 <= i <= \pi/2$

Isursa – este intensitatea luminii incidente (provenita de la sursa de lumina) kd– este coeficientul de difuzie a luminii incidente, dependent de materialul suprafetei

0<=kd<=1.

• Dacă i este mai mare ca $\pi/2$, suprafața nu primește lumină de la sursă (sursa de lumină se află în spatele suprafetei).

Modele empirice pentru calculul reflexiei luminii(3)

Lumina ambianta

- Modeleaza lumina provenind de la celelelte obiecte ale scenei 3D: sursa de lumina distribuita uniform in spatiu

```
Id = Ia * ka + Isursa * kd* cos(i) 0 <= i <= \pi/2 unde Ia- \text{ este } \underline{\text{intensitatea luminii ambiante}} \text{ iar} (0 <= ka <= 1) \text{ este coeficientul de difuzie a luminii ambiante, dependent de materialul suprafetei.}
```

Sursa directionala: sursa aflata la distanta foarte mare (infinit) de suprafata

- Vectorul L este acelasi in orice punct al suprafetei
- Pentru 2 suprafete paralele, cu aceleasi proprietati de material, rezulta aceeasi Id → daca proiectiile lor se suprapun, nu se vor distinge in imagine.

Modele empirice pentru calculul reflexiei luminii(4)

Modelarea distantei de la sursa de lumina la suprafata

Intensitatea luminii descreşte proporțional cu inversul pătratului distanței de la sursa de lumină la obiect

```
Id = Ia* ka + fat * Isursa* kd* cos(i)
```

fat = 1/d² este o funcție de atenuare a luminii provenita de la o sursa d este distanța de la sursă la punctul de pe suprafață considerat.

- Corecția nu satisface cazurile în care sursa este foarte îndepărtată: atenuare prea mare
- Dacă sursa este la distanță foarte mică de scenă, intensitățile obținute pentru două suprafețe cu același unghi i, între L și N, vor fi mult diferite.

Se foloseste:

```
fat = min(1/(c1 + c2*d + c3*d^2), 1)
```

c1, c2 și c3 sunt trei constante care se asociază sursei de lumină.

- Constanta c1 se alege astfel încât numitorul să nu devină prea mic atunci când sursa este foarte apropiată.
- Valoarea funcției este limitată la 1 pentru a se asigura atenuarea.

Modele empirice pentru calculul reflexiei luminii(5)

- Lumina incidenta poate contine mai multe lungimi de unda: → reflectate in mod diferit de o suprafata
- Suprafata poate fi colorata → absorbtia, transmisia, reflexia depind de culoarea suprafetei.
- Expresia luminii reflectate se evalueaza separat pentru cele 3 componente ale luminii incidente, R,G,B:

```
Id\lambda = Ia\lambda *ka\lambda + fat*Isursa\lambda *kd\lambda *cos(i)
```

λ: lungimea de unda

Se calculeaza IdR, IdG, IdB. Ex:

```
IdR = IaR * kaR + fat*IsursaR*kdR*cos(i)
```

kaR, kdR – coeficientii de difuzie a componentei Rosu din lumina ambianta si lumina incidenta

• In OpenGL, ka (kaR, kaG, kaB) si kd sunt numite: culoarea ambianta si culoarea difuza a materialului.

Stiind că

$$cos(i)=L\cdot N / (|L|\cdot|N|) = Lu\cdot Nu$$

rezulta:
$$l\lambda = la\lambda^*ka\lambda + fat^*lsursa\lambda^*kd\lambda^* (Lu \cdot Nu)$$

Pentru a include si cazul in care i> $\pi/2$ (lumina de la sursa nu ajunge in punctul considerat):

$$I\lambda = Ia\lambda * ka\lambda + fat*Isursa\lambda * kd\lambda * max((Lu \cdot Nu), 0)$$

Modele empirice pentru calculul reflexiei luminii(6)

Reflexia speculară

Un reflector perfect, de exemplu o oglindă, reflectă lumina numai într-o singură direcție, R,
 care este simetrică cu L față de normala la suprafață → numai un observator situat exact pe direcția respectivă va percepe raza reflectată:

- Pentru materialele imperfect reflectante cantitatea de lumină care ajunge la observator depinde de distribuția spațială a luminii reflectate specular:
 - la suprafețele netede (ex. metale) distribuția este dreaptă și focalizată;
 - la suprafețele cu rugozități (ex. hartia) ea este dispersată.
 - se aproximeaza prin cos(α)ⁿ (modelul Bui-Tuong Phong) unde n este exponentul de reflexie speculară al materialului.

Modele empirice pentru calculul reflexiei luminii(7)

Modelul Phong pentru aproximarea reflexiei speculare intr-un punct al unei suprafete 3D

 $w(i, \lambda)$ este funcția de reflectanță, i- unghiul de incidență iar λ -lungimea de undă a luminii incidente In practica, $w(i, \lambda)$ este înlocuită cu o constantă determinată experimental, numită **coeficientul de reflexie speculară al materialului.**

$$cos(\alpha)=R\cdot V/(|R|\cdot |V|)=Ru\cdot Vu$$

Rezulta:

Pentru a include si cazul in care $\alpha = 90$:

Modelul de iluminare locala(1)

Reflexia speculara nu poate avea loc daca in punctul considerat nu se primeste lumina de la

Modelul de iluminare locala:

$$I\lambda = Ia\lambda*ka\lambda + fat*Isursa\lambda [kd\lambda*max((Lu · Nu),0) + Ium*ks\lambda*max((Ru · Vu)n,0)]$$

Dacă scena 3D este luminată de m surse de lumină:

$$I\lambda = Ia\lambda^*ka\lambda + \sum_{i=1}^{\infty} fat_i^* [kd\lambda^*max((Lu_i \cdot Nu),0) + Ium_i^*ks\lambda^*max((Ru_i \cdot Vu)^n,0)]$$

$$1 < i < m$$

Modelul de iluminare locala(2)

Calculul directiei luminii speculare

- Vectorul R este simetricul vectorului L față de N.
- Proiecția lui Lu pe N este: Nu · cos(i)

$$R = Nu \cdot cos(i) + S$$
,

$$Nu \cdot cos(i) = Lu + S \rightarrow S = Nu \cdot cos(i) - Lu$$

Rezulta:

$$R = 2Nu \cdot cos(i) - Lu = 2Nu \cdot (Lu \cdot Nu) - Lu$$

Modelul de iluminare locala(3)

O altă formulare a modelului Phong se bazează pe vectorul median, notat cu H în figura. El face unghiuri egale cu L şi cu V.

Dacă suprafața ar fi orientată astfel încât normala sa să aibă direcția lui H, atunci observatorul ar percepe lumina speculară maximă (deoarece ar fi pe direcția razei reflectate specular).

L H R

Termenul care exprimă reflexia speculară este în acest caz:

 $Is\lambda = Isursa\lambda^*fat^*ks\lambda^*(Nu \cdot Hu)^n$, unde Hu=(Lu+Vu) / |(Lu+Vu)|

Atunci când sursa de lumină şi observatorul sunt la infinit, utilizarea termenului Nu · Hu este avantajoasă deoarece Hu este constant (acelasi in toate punctele unei suprafate).

Modelul de iluminare locala in OpenGL si Direct3D(1)

Modelul de iluminare de baza

Culoarea unui obiect intr-un punct al unei suprafete

= culoarea_emisa + culoarea_ambianta + culoarea_difuza + culoarea_speculara

Culoarea emisa:

- lumina emisa de suprafata
- independenta de sursele de lumina
- aceeasi in orice punct al suprafetei
- nu lumineaza obiectele din jur
- culoarea_emisa = Ke, constanta

Culoarea ambianta

- nu depinde de surse
- culoarea_ambianta = Ka*globalAmbient (Culoarea luminii ambiante: GL_AMBIENT)

Modelul de iluminare locala in OpenGL si Direct3D(2)

Culoarea difuza

```
culoarea_difuza = kd*lightColor*max(((Lu · Nu),0)
```

lightColor – culoarea luminii de la sursa

Culoarea speculara

```
cularea_speculara = ks*lightColor*facing*max((Nu · Hu)<sup>n</sup> ,0)]

facing = 1 daca Lu · Nu >0

= 0 altfel
```

- Ka, kd, ks sunt constante (proprietati de material) care pot fi alese de programator:
 GL_AMBIENT, GL_DIFFUSE, GL_SPECULAR fiecare are 3-4 componente, deoarece ecuatia care modeleaza lumina reflectata se evalueaza separat pentru fiecare componenta a culoarii (RGB sau RGBA).
- Lumina incidenta este omnidirectionala: aceeasi intensitate in toate directiile.

Modelul de iluminare locala in OpenGL si Direct3D(3)

Modelul de iluminare extins adauga:

- atenuarea luminii incidente cu distanta
- efecte de spot

Atenuarea luminii incidente

```
factor_atenuare = 1/(kc + kl*d + kq*d^2)
```

coeficientii de atenuare: kc - atenuare constanta

kl - atenuare liniara

kd – atenuare patratica

Kc, kl, kd pot fi specificate de programator ca proprietati asociate sursei de lumina (GL_CONSTANT_ATTENUATION, GL_LINEAR_ATTENUATION, GL_QUADRATIC_ATTENUATION)

Culoarea unui obiect intr-un punct al unei suprafete

```
= culoarea emisa + culoarea ambianta +
```

factor_atenuare*(culoarea_difuza + culoarea_speculara)

Modelul de iluminare locala in OpenGL si Direct3D(4)

Efectul de spot

Conul de imprastiere a luminii se calculeaza folosind:

- -Pozitia spotului
- -Directia spotului
- -Imprastierea luminii spotului (θspot)

Un punct P al unei suprafete primeste lumina de la spot daca u< θspot:

$$cos(u) >= cos(\theta spot)$$

sau

$$Vu \cdot Du > cos(\theta spot)$$

Calculul culorii fragmentelor la redarea suprafetelor 3D (Shading models) (1)

Suprafața se presupune a fi compusă din fațete poligonale. Ea poate fi reprezentarea exactă a unui corp poliedral sau reprezentarea aproximativă a unei suprafețe curbe.

Modelul LAMBERT(1) (Iluminare constanta sau plata)

• Pentru fiecare poligon(fațetă) se calculează o singură intensitate, folosind expresia care modeleaza intensitatea intr-un punct, de regula considerand numai componenta difuza:

Id
$$\lambda = Ia \lambda *ka\lambda + fat*Isursa \lambda * [kd\lambda * max((Nu \cdot Lu),0) + facing*max((Nu \cdot Hu)^n,0)]$$

Nu este vectorul unitate normal la poligon Lu este versorul direcției sursei de lumină,

Calculul culorii fragmentelor la redarea suprafetelor 3D (2)

Modelul LAMBERT(2)

Modelul se bazează pe următoarele presupuneri:

- sursa de lumină este la infinit (produsul scalar (Nu · Lu) este atunci constant pe întreaga suprafață a poligonului);
- observatorul este la infinit ((Nu · Hu) este constant pe suprafața poligonului);
- poligonul face parte din suprafața de vizualizat şi nu este o aproximare a unui petic de suprafață curbă.
- Dacă primele două cerințe nu sunt satisfăcute, se poate adopta o convenție de calcul al vectorilor L şi V pentru un întreg poligon. De exemplu, cei doi vectori pot fi calculați în centrul poligonului.

Calculul culorii fragmentelor la redarea suprafetelor 3D (3)

Modelul LAMBERT (3)

- Dacă ultima cerință nu este îndeplinită, intensitățile calculate pentru fațete adiacente cu orientare diferită vor fi diferite, evidențiindu-se aproximarea suprafeței curbe prin rețeaua de fațete poligonale.
- Percepția diferenței de intensitate dintre fațetele adiacente este accentuată de efectul de bandă Mach (descoperit de Mach în 1865), cauzat de inhibiția laterală a receptorilor din ochi: cu cât un receptor primeşte mai multă lumină cu atât mai mult receptorul va inhiba răspunsul receptorilor adiacenți lui.
- Efectul de bandă Mach măreşte percepția schimbării de intensitate pe laturile fațetelor adiacente.

Calculul culorii fragmentelor la redarea suprafetelor 3D (4)

Modelul GOURAUD(1)

- Se calculează o culoare în fiecare vârf al suprafeței de vizualizat pe baza unui model de iluminare local.
- Culorile fragmentelor interioare suprafeței sunt obținute prin interpolarea liniară a culorilor din vârfuri, pe parcursul rasterizarii fiecarei fatete a retelei poligonale.

1. Culoarea intr-un varf se calculeaza folosind normala in varf:

- calculata din ecuatia analitica a suprafetei care a fost descompusa in retea poligonala si atasata fiecarui varf in programul de aplicatie, sau
- aproximata ca medie aritmetica a normalelor la fatetele adiacente in varf

2. La rasterizarea unei fatete a retelei, se calculeaza culoarea fiecarui fragment rezultat astfel:

- prin interpolarea liniara a culorilor varfurilor, pentru fragmentele de pe laturi
- prin interpolare liniara intre culorile capetelor fiecarui segment interior, pentru fragmentele interioare fatetei

Calculul culorii fragmentelor la redarea suprafetelor 3D (5)

Modelul GOURAUD(2)

Interpolarea liniara

$$y = y1 + t (y2 - y1) \rightarrow tP = (yS - y1)/(y2 - y1)$$

$$IP = I1 + tP (I2 - I1) = I1 + (I2 - I1) (yS - y1) / (y2 - y1)$$

$$IQ = I1 + (I4 - I1) (yS - y1) / (y4 - y1)$$

$$x = xP + t(xQ - xP) \rightarrow tM = (xM - xP)/(xQ - xP)$$

$$IM = IQ + tM (IQ - IP) = IQ + (IQ - IP) (xM - xP) / (xQ - xP)$$

Calculul incremental al culorilor:

$$IP' = I1 + (I2 - I1) (yS+1 - y1) / (y2 - y1) = IP + (I2 - I1) / (y2 - y1)$$

 $IP' = IP + C_{1-2}$, $C_{1-2} - o$ constanta a laturii 1-2

analog,

$$IQ' = IQ + C_{1-4}$$

$$M'(xM + 1, ys)$$

$$IM' = IQ + (IQ - IP) (xM + 1 - xP) \rightarrow IM' = IM + CP-Q$$
, $CP-Q - o$ constanta a segmentului P-Q

Calculul culorii fragmentelor la redarea suprafetelor 3D (6)

Modelul GOURAUD (3) – aprecieri

- Se integreaza foarte usor in algoritmii de rasterizare
- Calcule simple pentru culoarea unui fragment (calcul incremental) → rapid
- Se lucreaza numai cu componenta difuza a luminii reflectate
- Nu permite calculul luminii reflectate specular pentru fragmentele interioare unei fatete (culorile fragmentelor interioare nu pot fi mai mari decat cele din varfuri)
- Nu elimina complet efectul de banda Mach:
 - Asigura continuitatea numerica a valorilor intensitatilor la traversarea laturilor poligoanelor adiacente (culorile pe latura de adiacenta a 2 poligoane sunt aceleasi)
 - Nu tine cont de tangentele la fetele adiacente pe o latura (culorile de pe laturi se calculeaza folosind numai culorile din varfuri)
 - Efectul de banda Mach poate fi observat in vecinatatea siluetei suprafetei si a zonelor de curbura mare

Calculul culorii fragmentelor la redarea suprafetelor 3D (7)

Modelul PHONG(1)

In acest model:

- Se calculeaza o normala in fiecare varf al suprafetei, la fel ca in modelul Gouraud
- Pentru fiecare fragment rezultat din rasterizarea (fatetelor) suprafetei se calculează o normala prin interpolare liniara intre normalele varfurilor
- Culoarea pentru fiecare fragment interior suprafetei se obtine pe baza normalei interpolate, folosind un model de iluminare local

La rasterizarea unei fatete a retelei poligonale se calculeaza o normala pentru fiecare fragment astfel:

- prin interpolarea liniara a normalelor varfurilor, pentru fragmentele de pe laturi (la fel ca in modelul Gouraud, pentru culori);
- prin interpolare liniara intre normalele capetelor fiecarui segment interior, pentru fragmentele interioare fatetei (la fel ca in modelul Gouraud, pentru culori)

Calculul culorii fragmentelor la redarea suprafetelor 3D (8)

Modelul PHONG (2)

 Componentele Nx, Ny, Nz ale normalei unui fragment se pot obține printr-un calcul incremental (analog cu cel folosit pentru calculul culorilor in modelul Gouraud) dar, pentru folosirea în calculul culorii, normala trebuie să fie normalizată:

$$Nu = N/|Nu|$$
, unde $|N| = (Nx^2 + Ny^2 + Nz^2)^{0.5}$

- → Calcule mai complexe la nivel de fragment decat in modelul Gouraud
- Permite redarea reflexiei speculare in orice fragment al suprafetei
- Reduce mult efectul de banda Mach
- Modelul Gouraud este implementat pe placa grafica si poate fi selectat din OpenGL apeland: glShadeModel(GL_SMOOTH)
- ➤ Modelul Phong poate fi implementat intr-un program "fragment shader" scris de programator.