Activité 3.2 - Spectre d'émission

Objectifs:

- ▶ Comprendre la notion de spectre d'émission.
- Analyser le spectre d'émission d'une lampe.

Contexte : Il existe différentes sources lumineuse, comme le Soleil, les lampadaires, les néons, les écrans de téléphones, etc.

→ Comment caractériser la lumière émise par une source?

Comp.	Items	D	\mathbf{C}	В	A
VAL	Comparer des spectres avec des valeurs de références.				

Document 1 - Spectre d'émission

La lumière est une onde électromagnétique, qui peut avoir plusieurs longueurs d'ondes. Nos yeux captent certaines longueurs d'ondes et y associent une couleur : c'est le domaine visible.

La donnée de toutes les longueurs d'ondes présentes dans une source lumineuse s'appelle le **spectre d'émission**. Le spectre dans le domaine visible est représenté de la manière suivante :

1 - Les spectre d'émissions continus

Document 2 - Spectre continu

Un spectre d'émission continu présente une suite de raies colorées. Un spectre continu prend la forme d'une bande colorée unique.

Document 3 - Lampe à incandescence

Une lampe à incandescence est composé d'un petit filament chauffé par le passage d'un courant électrique. En augmentant la tension d'alimentation d'une lampe à incandescence, on augmente la température du filament.

	1	-	(Įu	.el	les	S (lif	fé	ere	en	.ce	es	r	er	na	ar	·q	u	ez.	7-7	7O	u	S	q	ua	ar	ıd	ll	a	la	an	ŋ	е	е	st	: 8	al.	in	ne	n	té	е	e	n	6	e	t	er	1 .	12	? \	Ι΄.	?			
 			 				٠.									•								•						•															•								•		 		
			 													•								•						•										•															 	. •	

mineuse, on peut donc déterminer les éléments chimiques qui composent la source.

600

650

700

Photo obtenue avec un spectroscope pointé vers une lampe « néon ».

3 - En comparant les spectres données dans le document 5, indiquer si les lampes éclairant la
classe contiennent de l'hydrogène, du néon ou du mercure.