GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA		
Física Ondulatoria		

CICLO Cuarto Semestre	CLAVE DE LA ASIGNATURA 0041	TOTAL DE HORAS
		00

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Otorgar al participante el conocimiento, la habilidad y la aptitud para conocer, comprender y resolver problemas relacionados con el fenómeno ondulatorio.

TEMAS Y SUBTEMAS

1. Movimiento Ondulatorio

- 1.1 La matemática del movimiento ondulatorio.
- 1.2 Ondas unidimensionales y armónicas.
- 1.3 Fase y velocidad de fase.
- 1.4 Ondas planas y ecuación de onda.
- 1.5 Ondas esféricas y cilíndricas.
- 1.6 Ondas sonoras.
- 1.7 Potencia e intensidad de las ondas sonoras.
- 1.8 Efecto Doppler.
- 1.9 Ondas electromagnéticas: el vector de Poynting.
- 1.10 Irradiancia.

2. Propagación de la luz

- 2.1 Leyes de reflexión y refracción.
- 2.2 Principio de Fermat.
- 2.3 Ecuaciones de Fresnel.
- 2.4 Reflectancia y transmitancia.
- 2.5 Reflexión total interna.
- 2.6 Propiedades ópticas de los metales.
- 2.7 Breve tratamiento de Stokes.

3. Superposición de ondas

- 3.1 Suma de ondas de la misma frecuencia.
- 3.2 Suma de favores.
- 3.3 Ondas estacionarias.
- 3.4 Suma de ondas de diferente frecuencia.
- 3.5 Conceptos del efecto Doppler a frecuencias ópticas.
- 3.6 Velocidad de grupo.
- 3.7 Ondas periódicas no armónicas: Series de Fourier.
- 3.8 Ondas no periódicas: Transformadas de Fourier.
- 3.9 Pulsos, paquetes de onda y anchos de banda.

4. Polarización

- 4.1 Polarización lineal, circular y elíptica.
- 4.2 Luz no polarizada.
- 4.3 Polarizadores y ley de Malus.
- 4.4 Dicroísmo y birrefringencia.
- 4.5 Polarización por birrefringencia.
- 4.6 Polarización por esparcimiento.
- 4.7 Polarización por reflexión.

- 4.8 Retardadores y compensadores.
- 4.9 Polarizadores circulares y actividad óptica.

5. Interferencia

- 5.1 Consideraciones generales.
- 5.2 Interferómetros de división de frente de onda: El Experimento de Young.
- 5.3 Interferómetros de división de amplitud.
- 5.4 Interferencia en películas delgadas.
- 5.5 Diferentes interferómetros.

6. Difracción

- 6.1 Condiciones preliminares para difracción.
- 6.2 Conceptos generales entre difracción de Fraunhofer y Fresnel.
- 6.3 La difracción de Fraunhofer: La rendija única, la doble rendija.
- 6.4 Difracción en abertura rectangular.
- 6.5 Difracción en abertura circular.
- 6.6 Rejillas de difracción.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio con un constante uso de aparatos y equipos de cómputo en los aspectos teóricos y prácticos, fuerte trabajo extraclase de los alumnos con los aparatos y el equipo de cómputo, generando solución a problemas sobre los temas del curso. Las sesiones se desarrollaran utilizando medios de apoyo didáctico como son los retroproyectores, las videocaseteras, los programas de cómputo educativo, etc.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales y un examen final. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; además se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías. Esto tendrá una equivalencia del 100% en la calificación final.

BIBLIOGRAFÍA

Libros Básicos:

- 1. Optics, E. Hecht, Addison-Wesley, 2002.
- 2. Physics, Vol. I and II, R. Resnick, D. Halliday, K. S. Krane, Wiley, 2001.
- 3. Física para Ciencia e Ingenierías, Vol. I y II, Cengage Learning Editores, 2006.
- 4. Introduction to Modern Optics, G. R. Fowles, Courier Dover Publications, 1989.

Libros de Consulta:

- 1. Principles of Optics, M. Born, E. Wolf, Cambridge University Press, 1999.
- 2. Optics, M. H. Freeman, C. C. Hull, W. N. Charman, Elsevier Health Sciences, 2003.
- 3. Introduction to Optics, F. L. Pedrotti, Pearson Prentice Hall, 2006.

PERFIL PROFESIONAL DEL DOCENTE

Maestría o Doctorado en Física, Óptica, Optoelectrónica o Ciencia de Materiales Ópticos.

