



# SYSTÈMES D'EXPLOITATION INTRODUCTION AUX SYSTÈMES D'EXPLOITATION

≈ 3A - Cursus Ingénieurs <u>m</u> CentraleSupelec

**2023/2024** 



#### **PLAN**

- Architecture des ordinateurs
- Qu'est-ce qu'un système d'exploitation
- Rôles du système d'exploitation
- Structure d'un Système d'exploitation
- Synthèse

Retour au plan - Retour à l'accueil

#### **PLAN**

- > Architecture des ordinateurs
- Qu'est-ce qu'un système d'exploitation
- Rôles du système d'exploitation
- Structure d'un Système d'exploitation
- Synthèse

Retour au plan - Retour à l'accueil

## L'INFORMATIQUE

- L'informatique est la science du traitement automatique de l'information.
- Le traitement automatique de l'information s'effectue avec des programmes informatiques exécutés par des machines
  - les programmes (software) décrivent le traitement à réaliser,
  - les machines (hardware) exécutent les programmes.



#### LA NOTION D'ORDINATEUR







- L'ordinateur désigne un équipement informatique permettant de traiter des informations en exécutant des instructions.
  - On lui donne des instructions (programme/logiciel)
  - On lui donne des données (information)

#### **ENIAC - 1946**

- Construit de 1943 à 1946 par John Mauchley et John Eckert à l'université de Pennsylvanie
- Premier ordinateur entièrement électronique (utilise des tubes à vide).
- Programmé pour résoudre tous les problèmes calculatoires.



#### **HP 3000 - 1972**

- Le mini-ordinateur a été une innovation des années 1970.
- L'intégration de circuits intégrés à grande échelle conduisit au développement des micro-processeurs.



#### **APPLE II - 1977**

- Un des premiers ordinateurs personnels à micro-processeur fabriqué à grande échelle
- Conçu par Steve Wozniak, commercialisé le 10 juin 1977 par Apple



#### LES ORDINATEURS D'AUJOURD'HUI

- System on a Chip (SOC) : un système complet embarqué dans une puce (circuit intégré).
- Un circuit intégré peut comprendre :
  - un ou plusieurs microprocesseurs
  - de la mémoire
  - des périphériques d'interface
  - ou tout autre composant











#### L'ARCHITECTURE DE VON NEUMANN

- L'architecture de von Neumann : un modèle pour un ordinateur avec une mémoire unique pour conserver
  - les instructions
  - et les données



## VON NEUMANN / L'ORDINATEUR MODERNE







**ENIAC** 

source: la thèse d'Alexandre Brunet



Ordinateur personnel

## STRUCTURE GÉNÉRALE D'UN ORDINATEUR





## L'ARCHITECTURE D'UN MICROPROCESSEUR

- Le microprocesseur (CPU) exécute les instructions machines placées en mémoire centrale.
- Le CPU est constitué de quatre parties
  - 1. l'unité arithmétique et logique (UAL),
  - 2. les registres,
  - 3. l'unité de commande,
  - 4. le bus de communication interne.



# LE FONCTIONNEMENT DE L'ORDINATEUR

Comment fonctionne un ordinateur?



Tout cela n'est que des fils électriques ... ... qu'on allume et qu'on éteint.

#### **PLAN**

- Architecture des ordinateurs
- Qu'est-ce qu'un système d'exploitation
- Rôles du système d'exploitation
- Structure d'un Système d'exploitation
- Synthèse

Retour au plan - Retour à l'accueil

#### **AUTREFOIS: ENIAC**

- Premier ordinateur entièrement électronique :
  - 18 000 tubes à vide
  - 1500 relais
  - 20 registres de 10 chiffres décimaux
  - programmé à l'aide de 6 000 commutateurs



- La programmation se faisait directement en langage machine
- Un seul programme à la fois pouvait s'exécuté.
- L'absence d'un OS obligeait le programmeur à charger manuellement le programme

#### **AUTREFOIS: IBM RAMAC 305**



- Premier ordinateur à disque dur (l'IBM 350) commercialisé en septembre 1956 par IBM.
- Composé des éléments suivants : unité de traitement, imprimante, console, alimentation, disque dur, mémoire 5Mo.
- L'unité de traitement est basée sur un tambour magnétique sur lequel est stocké le programme.
- Un opérateur programme à l'aide de cartes perforées et inscrit les données sur le tambour.

### **AUTOMATISER LES TÂCHES**





- Comment automatiser les tâches des opérateurs et des programmeurs ?
- Écrire un programme informatique qui:
  - décide qui fait quoi et à quel moment
  - fait le lien entre les applications et le matériel

## DÉFINITION

"Un système d'exploitation est un ensemble de programmes réalisant l'interface entre le matériel et les utilisateurs."

- gère la partie matérielle
- sert de socle pour les applications







- Les systèmes batch sont basés sur deux programmes :
  - 1. le chargeur : charger les programmes dans la mémoire centrale depuis les cartes perforées ou le dérouleur de bandes.
  - 2. le moniteur d'enchaînement de traitements : permettre l'enchaînement des travaux soumis à la place de l'opérateur.
- Les systèmes batch automatisent les tâches de préparation des travaux et exploitent efficacement le processeur.



Utiliser plusieurs composants en parallèle, ce qui nécessite:

- Gestion de la priorité (quel processus peut accéder à la ressource)
  - ordonnancement
- Mémoire partagée (gérer des informations de plusieurs processus)
  - adressage et mémoire

**Exemple**: MULTICS



#### Plusieurs processus actifs alternant sur le processeur

- Gestion des interruptions
- Cycle de vie du processus
- Synchronisation de processus et programmation concurrente

**Exemple:** UNICS ou UNIX



- Gestion des délais: contrainte de temps de réponse
  - les processus doivent répondre vite
- Apparition des micro-ordinateurs
  - $CP/M \rightarrow IBM PC (MSDOS)$
- Apparition des interfaces graphiques
  - Xerox → Apple Macintosh 1984, Windows 95, Linux 1991



- Les ordinateurs communiquent pour échanger des données!
  - Arpanet (1967) conçu par la DARPA
  - E-mail (1972) avec Ray Tomlinsonn
  - TCP/IP(1972)
  - Clients-Serveur années 80 → NFS Network File System (Sun, 1984)
  - Arpanet ouvert fin 80 → Web début 90 (CERN, Tim Berners-Lee)



- Les ordinateurs de poche existent depuis les années 80
  - 1986 : sortie des PDA → PalmOS
  - 2007 : sortie des smartphones → android OS
  - 2007 : sortie de l'iPhone  $\rightarrow$  iOS

#### **PLAN**

- Architecture des ordinateurs
- Qu'est-ce qu'un système d'exploitation
- Rôles du système d'exploitation
- Structure d'un Système d'exploitation
- Synthèse

Retour au plan - Retour à l'accueil

#### RÔLES DU SYSTÈME D'EXPLOITATION

- 1. L'interface noyau-matériel prend en charge la gestion et le partage des ressources de la machine.
- 2. L'interface noyau-utilisateur construit une machine virtuelle plus facile d'emploi et plus conviviale.
- 3. Le noyau assure plusieurs grandes fonctionnalités.



### INTERFACE NOYAU-MATÉRIEL

- **Gérer l'accès et le partage** des ressources matérielles (arbitrage).
  - processeur
  - mémoire centrale
  - périphériques
  - ...
- Cet arbitrage doit assurer:
  - l'équité d'accès aux ressources
  - la protection de l'accès aux ressource
  - la cohérence des états des ressources



## **INTERRUPTION - IRQ**

- L'OS s'interface avec la couche matérielle, par le biais du mécanisme des interruptions (Interrupt ReQuest ou IRQ).
  - rendre connaissance des événements survenant sur le matérielle
- L'IRQ est un signal (code) permettant à un dispositif externe d'interrompre le processeur pour lancer un traitement particulier.
  - À chaque code correspond une routine de traitement de l'OS.
  - Les adresses des routines sont dans une table placée en mémoire (la table des vecteurs d'interruptions).
  - Les routines d'interruptions sont chargées en mémoire au moment du chargement de l'OS et exécutées en mode superviseur.

## PRISE EN COMPTE D'UNE IRQ

- Enregistrer → pile de l'OS
  - l'adresse d'instruction interrompue
  - l'état du processeur (registres)
- Passer en mode superviseur
- Charger la routine correspondant à l'interruption
- Contrôleur d'interruption
  - prioriser les interruptions



#### INTERFACE NOYAU-UTILISATEUR

- Présenter une interface entre le hardware et les applications.
  - une interface simplifiée et unifiée.
- Présenter au-dessus de la machine physique, une machine virtuelle plus simple et plus conviviale.
- Créer l'illusion de vrais ressources physiques (processeur, mémoire, périphérique ...).



## LES APPELS SYSTÈMES

- Fournir une interface d'accès aux ressources matérielles.
  - par le biais de fonctions prédéfinies (appels/routines systèmes).
  - les points d'entrées aux fonctionnalités de l'OS.



#### EXEMPLES D'APPELS SYSTÈMES

#### • Contrôle de processus

- sys\_fork : créer un processus
- sys\_wait: attendre la terminaison d'un processus
- sys\_exit: terminer l'exécution d'un processus
- sys\_kill: Envoyer un signal à un processus

#### Gestion des fichiers

- sys\_open/sys\_close: ouvrir/fermer un fichier
- sys\_read/sys\_write: lire/écrire des données dans un fichier
- sys\_mkdir/sys\_rmdir: créer/supprimer un répertoire

## L'APPEL SYSTÈME fork()



#### **EXEMPLE SOUS UNIX**

- L'instruction os.chdir(path) permet de changer le répertoire courant d'un programme Python en cours d'exécution.
- La commande cd path permet de changer le répertoire courant depuis l'interpréteur de commandes (Shell).
- Les deux exécutent la routine système sys\_chdir.

#### MODES D'EXÉCUTIONS

- Un programme utilisateur s'exécute dans un mode utilisateur :
  - Un Jeu d'instructions restreint pour protéger la machine.
    - o ex. manipulation des IRQs interdite.
- L'OS s'exécute dans un mode privilégié (mode superviseur):
  - aucune restriction de droits n'existe.



#### **COMMUTATIONS DE CONTEXTE**

- A l'appel d'une fonction du noyau, il y a passage au mode superviseur (commutation de contexte).
- A la fin de l'exécution de la fonction du noyau, le programme repasse au mode utilisateur.
  - commutation de contexte avec restauration du contexte utilisateur.
  - reprise de l'exécution du programme utilisateur



# LES CAUSES DE COMMUTATIONS DE CONTEXTE

- 1. appelle d'une fonction système.
- 2. exécute une opération illicite (trappe ou exception).
- 3. prise en compte d'une interruption matérielle.



**Trappes et appels systèmes** sont parfois qualifiés **d'interruptions logicielles** par opposition aux interruptions matérielles.

## INTERPRÉTEUR DE COMMANDE (SHELL)

- Langage de commandes :

   l'interface de niveau utilisateur
   avec le système d'exploitation.
- Interpréteur de commandes : exécuter des commandes de l'utilisateur en appellant la routine système appropriée.



## INTERPRÉTEUR DE COMMANDE (SHELL)

- Chaque système d'exploitation a son propre langage de commandes :
  - MSDOS/Unix : console + clavier
  - Mac/Windows: souris + clavier
  - iOS/Android : boutons + écran tactile

```
C:\>unformat /?

Récupère un disque détruit par la commande FORMAT

ou par la commande RECOVER.

UNFORMAT lecteur: [/J]

UNFORMAT lecteur: [/J]

UNFORMAT lecteur: [/U] [/L] [/TEST] [/P]

UNFORMAT /PARTN [/L]

lecteur: Lecteur à récupérer.

/J Vérifie que les fichiers MIRROR correspondent à l'information

système sur le disque.

/U Restaure sans utiliser les fichiers MIRROR.

/L Affiche les noms de tous les fichiers et répertoires trouvés,

ou, en conjonction avec /PARTN, affiche la table des partitions.

/TEST Affiche les infos mais n'écrit pas les modifications sur disque.

/P Envoie les messages sur l'imprimante connectée au port LPT1.

/PARTN Restaure la table des partitions du disque.

MIRROR, UNDELETE et UNFORMAT Copyright (C) 1987-1993 Central Point Software,
Inc.

C:\>_
```



#### NOYAU D'UN SYSTÈME D'EXPLOITATION

- Gestion des entrées/sorties (I/O)
  - contrôleurs, pilotes, ...
- Gestion des processus
  - ordonnancement, synchronisation, ...
- Gestion mémoire
  - allocation, gestion des espaces, ...
- Gestion du stockage secondaire
  - système de fichiers, ...
- Gestion de la sécurité



#### **PLAN**

- Architecture des ordinateurs
- Qu'est-ce qu'un système d'exploitation
- Rôles du système d'exploitation
- > Structure d'un Système d'exploitation
- Synthèse

Retour au plan - Retour à l'accueil

## ORGANISATION GÉNÉRALE DE L'OS

- Interruptions : évènements produits par le matériel.
- Exceptions : événements générés par le processeur.
- Pilotes (drivers): applications contrôlant les périphériques.
- Noyau (kernel): application rendant des services généraux.
- Appels Systèmes : demandes de services.



#### STRUCTURE DES OS

- Comment organiser les différentes fonctions d'un OS ?
  - Qu'est-ce qui est dans le noyau (en mode Superviseur) ?
  - Comment interagissent les différents composants ?

## NOYAUX MONOLITHIQUES

- L'ensemble des fonctions/pilotes sont regroupés dans un seul bloc.
- Ex. anciennes versions de Linux ou certains vieux Unix.



source: https://fr.wikipedia.org

## NOYAUX MONOLITHIQUES MODULAIRES

- Seules les parties fondamentales de l'OS sont regroupées dans un bloc unique.
- Les autres fonctions (ex. les pilotes) sont regroupées dans des modules séparés.
- Ex. Linux ou Solaris.



## SYSTÈMES À MICRO-NOYAUX

- Minimiser les fonctionnalités dépendantes du noyau en plaçant des services l'extérieur.
- Éloigner les services « à risque » des parties critiques de l'OS regroupées dans le noyau.
- Ex. Mach de Mac OS X.



## SYSTÈMES À NOYAUX HYBRIDES

- Reprendre des concepts des noyaux monolithiques et des micro-noyaux pour combiner les avantages des deux.
- Ex. XNU de Mac OS X.



source: https://fr.wikipedia.org

#### EN RÉSUMÉ ...

- Les OS monolithiques sont rapides mais délicats à maintenir.
- Les OS monolithiques modulaires ne sont pas faciles à concevoir (dépendances multiples).
- Les OS à micro-noyaux pur sont trop lents.

#### • Les tendances :

- OS à noyaux hybrides.
- un micro-noyau étendus en fonctionnalités par d'autres composants.

#### **CHARGEMENT D'UN OS**

- L'OS est le premier programme exécuté lors de la mise en marche de l'ordinateur, après l'amorçage (boot).
- Le boot (boostrap) désigne les étapes successives du démarrage.

#### LES ÉTAPES DU BOOT

#### 1. le POST test - Power On Self Test

- après un start ou un reset, le processeur charge les premières instructions à partir de la ROM du BIOS situées à l'adresse FFFF0.
- des instructions de branchement vers un programme du BIOS qui initialise et teste les fonctions vitales du hardware

#### 2. le chargement du MBR - Master Boot Record

- si le **POST** réussit, il consultera la RAM CMOS pour identifier le **disque système** dont le premier secteur est appelé MBR.
- le code du MBR teste la table de partition pour charger la partition contenant le secteur d'amorçage avec l'IPL Initial Program Load.

#### **PLAN**

- Architecture des ordinateurs
- Qu'est-ce qu'un système d'exploitation
- Rôles du système d'exploitation
- Structure d'un Système d'exploitation
- Synthèse

Retour au plan - Retour à l'accueil

#### **SYNTHÈSE**

- Un système d'exploitation est un ensemble de programmes réalisant l'interface entre le matériel et les utilisateurs.
- Les deux objectifs principaux de cette interface sont :
  - 1. construire au-dessus du matériel d'une machine virtuelle plus facile d'emploi et plus conviviale (accessible par des appels système);
  - 2. prendre en charge de la gestion de plus en plus complexe des ressources et le partage de celles-ci (gestion basée sur les **interruptions**).
- Les fonctionnalités du système d'exploitation sont accessibles par le biais des commandes ou des appels système.

## **SYNTHÈSE**

- Le mode superviseur est le mode d'exécution du noyau du système d'exploitation.
- Le passage du mode utilisateur vers le mode superviseur peut être provoqué par un appel système, une trappe, ou par une IRQ.
- Il s'accompagne d'une commutation de contexte qui consiste à :
  - sauvegarder le contexte utilisateur
  - changer le mode d'exécution
  - restituer le contexte utilisateur

## **MERCI**

Retour à l'accueil - Retour au plan