Pituitary gland

Prof. Niranga Devanarayana Department of Physiology

Pituitary gland

- 3 lobes
- 1. Anterior lobe

2. Intermediate lobe - Rudimentary in humans

3. Posterior lobe

Anterior pituitary

- Derive from Rathke's pouch
- Consists of cords of cells with fenestrated sinusoidal capillaries
- 2 main cell types in staining
 - Chromophils acidophils and basophils
 - Chromophobes

Notochord Rathle' , Mandibular archLung diverticulum Stomach Liver . Opening into yolk-sac Allantois Postallantoic part of hind-gut Wolffian duct

Rathke's pouch

Objectives

- List the hormones secreted from the anterior pituitary and describe their functions
- Describe the synthesis and secretion, transport, feedback regulation and disorders caused by deficiency and excess of the following hormones
 - Growth hormone
 - Prolactin

Hormones of the anterior pituitary

Hormones produced by the anterior pituitary

- 1. Growth hormone
- Prolactin
- 3. Adrenocorticotrophic hormone (ACTH)
- 4. Thyroid stimulating hormone (TSH)
- 5. Follicle stimulating hormone (FSH)
- 6. Leutinizing hormone (LH)

Secretion of anterior pituitary hormones

- Acidophilic cells
 - Somatotrope growth hormone
 - Lactotrope prolactin
- Basophilic cells
 - Corticotrope ACTH
 - Thyrotrope TSH
 - Gonadotrope FSH, LH

Regulation of the pituitary gland

Synthesis & release of pituitary hormones

Growth Hormone

- Secreted by somatotropes in anterior pituitary
- An anabolic hormone
- Main functions
 - growth
 - metabolism (glucose, protein and lipids)
- Secreted in spikes (irregular throughout the day)
- Short half life

Home work - How can you measure GH level?

Actions of GH

- Effects of GH is mediated directly and indirectly by somatomedins
 - E.g. Insulin like growth factor I (IGF-I)
- Somatomedin is produced by liver (& other tissues)
- Polypeptide Structure closely related to insulin

IGF - I

- Increases skeletal and cartilage growth
- Concentrations high during childhood, peaks at puberty and then reduce with age

IGF - II

- Action not depend on growth hormone
- Stimulate growth of the fetus

Actions of GH

- Main function is to maintain the growth in children
 - Accelerate chondrogenesis
 - Widen epiphyseal plates
 - Lay down more bone matrix at the ends of long bones
 - Increases stature in childhood
 - Also increases soft tissue growth

Metabolic effects of Growth hormone

Carbohydrate

- Reduce glucose uptake in tissues "anti insulin effect" ? reduce insulin binding its receptor (diabetogenic)
 - Increase glucose output by the liver

Lipid

Lipolysis causing increased plasma FFA (ketogenic)

Protein

- Increase aminoacid uptake and protein synthesis
 - Reduce catabolism of protein → +ve nitrogen balance

Metabolic effects cont...

Electrolytes

- ↓ Na⁺ and K⁺ excretion
- − ↑ Ca²⁺ absorption in GIT
- +ve prosperous balance

Regulation of secretion

Factors increasing GH secretion

- Reduced substrates for energy (low glucose, FFA during fasting)
- Increase in plasma amino acids (e.g. after high protein meal)
- Stress
- Exercise
- Going to sleep
- Oestrogen and androgens
- Ghrelin

Factors reducing growth hormone secretion

- Increased glucose, FFA (e.g. after meal)
- Old age
- Somatostatin
- somatomedin
- Pregnancy progesterone
- REM sleep

Increased GH secretion

Childhood - Gigantism

- Before fusion of epiphyses, excess GH causes increased height
- Metabolic effects

Adult life - Acromegaly

- After epiphyses have fused, no increase of height
- Bones of head, face, hands and feet increase in size
- Also visceral & soft tissue growth
- Metabolic effects also occur

Gigantism

Acromegaly

Acromegaly

Reduced GH secretion

Childhood – dwarfism (proportionate short stature with normal intelligence)

Also caused by

- low GHRH, IGF 1
- receptor insensitivity for GH or IGF-1
- other causes of short stature: genetic factors, thyroid or other endocrine diseases, psychosocial factors

Dwarfism

Growth

- Interaction between hormones, genetic factors, nutrition (and adequate psychosocial stimulation)
- Growth hormone is <u>not</u> the only factor which affect growth
- linear growth (increase in length)
 happens at the epiphyses in childhood
- when epiphyses fuse, no further linear growth possible

Hormonal requirements for growth

Hormone	Growth effect
Growth hormone	Physical
Thyroid hormones	Physical, mental & sexual
Sex hormones*	Sexual, Physical
Insulin	Physical
Corticosteroids	Physical

^{*} Oestrogen causes the fusion of epiphysis →terminate linear growth after puberty

Prolactin

- Secreted by anterior pituitary lactotropes
- Main function
 - Breast development during pregnancy
 - Milk production after pregnancy

- Prolactin levels are usually low in non pregnant females & males (dopamine effect)
- Dopamin antagonists stimulate prolactin secretion
 - · Given to pregnant mothers with poor lactation

Prolactin- continued

- Levels rise during pregnancy but 'no' milk produced in breast [inhibition by oestrogen and progesterone]
- Prolactin secretion stimulated by suckling

Prolactin inhibit actions of gonadotrophins High levels causes

- An-ovulatory cycles, amenorrhea and infertility in females
- Hypogonadism and impotence in males
- Galactorrhoea

Regulation of Prolactin Secretion

Adrenocorticotrophic Hormone (ACTH)

- Peptide hormone secreted by corticotropes in anterior pituitary
- Secreted as pro-opiomelanocortin (POMC)
- POMC produces
 - Adrenocorticotrophic hormone (ACTH)
 - β and γ Lipotropin
 - β Endorphin

Pulsatile secretion- maximal 0400-1000 hours

Stimulated by pulsatile CRH from hypothalamus

Functions of ACTH

- Stimulates the adrenal cortex (zona fasciculata and zona reticularis) to produce glucocorticoids and sex hormones
- Stimulate growth of adrenal cortex

Skin melanocytes: causes pigmentation
 (ACTH has amino acid residues 1–13 of MSH)

Regulation of ACTH secretion

Thyroid stimulating hormone (TSH)

- Glycoprotein (alpha subunit similar to LH, FSH and hCG)
- Secreted by anterior pituitary thyrotropes

TRH stimulates TSH release

Diseases of the pituitary gland

- Commonest causes are benign tumours called adenomas
- These cause
 - Hyperpituitarism
 – excess secretion of a hormone
 - Hypopituitarism
 insufficient hormone secreted
 - Compression of surrounding structures
 - * caused by macroadenomas

Hypopituitarism

- Occurs
 - Tumours of anterior pituitary
 - Compression
 - Pituitary infarction (e.g. following post-partum haemorrahge Sheehan syndrome)

- Reduces some or all anterior pituitary hormone production
- Posterior pituitary hormones unaffected

Pituitary insufficiency

- ↓ ACTH
 - adrenal gland hypotrophy
 - ↓ glucocorticoids and sex hormones
 - stress induced increase in aldosterone secretion in absent
 - skin colour become pale
- ↓ GH
 - short stature
 - loss of body protein
 - ↑ body fat

- ↓ TSH hypothyroidism
- ↓ FSH/LH
 - gonads atrophy
 - sexual cycle stops
 - 2^{ry} sexual characteristics disappear
- ↓ cortisol and GH Fasting hypoglycamia
- ↓ cortisol, thyroid H and GH transient polyurea

Hyperpituitarism

- Excessive secretion of anterior pituitary hormones
- May be associated with deficiency of other hormones
- Commonest are prolactinomas
- Also ACTH excess (Cushings syndrome), excess growth hormone (Acromegaly)