IntelliWeb

Intelligent web page classification

By:

FNU Vivek

Rithish Koneru

Aayushi Agrawal

Ravindersingh Rajpal

Group: P08

MOTIVATION

- Explosive growth on the Internet, with millions of web pages on every topic
- Important task is to collect relevant information from Web
- Typical search engines usually include invalid links and irrelevant web-pages through keyword inputs
- Need web-page classification for facilitating user searches
- Web-page classification is the primary requirement for search engines, which retrieve documents in response to the user query

BACKGROUND

- The Web provides dynamically changing environment, which makes it difficult to build a classification model that can fit to classify different web pages.
- Many experiments like text based classification, link based classification have been done to enhance the efficiency of classification.
- After literature review, various studies show that linear SVM performs better for web page classification.
- Naïve Bayes being a probabilistic model also works well for text classification.
- Sequence models in Deep Learning such as LSTMs have been known to perform well in text-based classification.

AGENDA

- Discussion about IntelliWeb Approach
- Classification Algorithms used:
 - Naïve Bayes with TF-IDF vectorization
 - Support Vector Machine with TF-IDF vectorization
 - GloVe based LSTM.
- Evaluation results after 5 fold cross validation
- Conclusion
- Limitations
- Future Work

WORKFLOW & DATASET (WebKb)

classes	Student	Faculty	Staff	Department	Course	Project	Other
# docs	1641	1124	137	182	930	504	3764

http://www.cs.cmu.edu/~webkb/

TECH STACK

Natural Language **ToolKit**

NAÏVE BAYES

- Naive Bayes Assumption
 - Conditional independence among the features
- Simple and Effective
 - Lower computation complexity for large number of features
- Uses probability of each attribute in each class
 - Frequency of words transformed to conditional probabilities
 - We use Multinomial Naive Bayes
- Two documents are said to be correlated if they belong to the same category specified by the conditional probabilities based on the frequency of word

SUPPORT VECTOR MACHINE

- Classify data using single or multiple hyperplanes.
- Less prone to overfitting.
- Can be trained in higher dimensions using "kernel trick".
- Computationally inexpensive compared to other classifiers.
- Input vector
 - Preprocessed data of web page content using NLTK.
 - TF-IDF Vectorization of preprocessed text.
- Performed Grid Search for SVM
 - Best parameters: C = 10 and kernel = 'linear'.
- Various modifications of features tested with the inclusion of title of the webpage and hyperlinks.

Source: https://scikit-learn.org

GloVe and LSTM

- Global word-word co-occurrence matrix
- Log-bilinear model with a weighted least-squares objective
 - Word vector such that dot product equals the logarithm of the words' probability of co-occurrence
- Embed 'glove.6B.100d.txt' in our corpus
- LSTM Long Short-term Memory
 - Special kind of Recurrent Neural Network, learn long term dependencies
 - Cell state regulated by structures called gates
 - Forget gate Sigmoid layer to throw away information
 - Input gate tanh layer to update cell state
 - Output gate tanh layer used to filter what to output

Source: https://nlp.stanford.edu/projects/glove/

The repeating module in an LSTM contains four interacting layers. 9

LSTM - Model Summary

Output Shape	Param #
(None, 100, 100)	10000
(None, 100, 128)	117248
(None, 100, 128)	0
(None, 128)	131584
(None, 128)	0
(None, 7)	903
(None, 7)	0
	(None, 100, 100) (None, 100, 128) (None, 100, 128) (None, 128) (None, 128) (None, 128)

Total params: 259,735

Trainable params: 249,735

Non-trainable params: 10,000

Parameters:

Glove:

- Embedding dim = 100
- Vocabulary size = 100
- Max length of document = 100

LSTM

- loss='categorical_crossentropy'
- optimizer='adam'
- batch size = 1000
- epochs = 50
- validation_split = 0.1
- metrics=[metrics.mae, metrics.categorical_accuracy]

RESULTS (F1-measure) - After 5 fold CV

CONCLUSIONS

- On average, F1-score for LSTM model is better for most of the entities.
- Accuracy is highest for LSTM (~95% on average).
- Not enough data to train the classifiers in case of 'staff' and 'department'.
- SVM always performs better than Naive Bayes. But LSTM is best.
- Pre-trained GloVe embeddings performs better than trainable Word Embeddings.
- SVM performs at par with LSTM as the dataset is not large enough for LSTM.

LIMITATIONS

- Dataset size small for training LSTM.
- Computational resource availability to train deeper neural network.
- Exploration of ensemble methods.

FUTURE WORK

- Establish relationship model between the entities
 - Use the relationship model for classification
- Hyper-parameter Optimization of LSTM
- Statistical tests for significance and effect size
- Train Deep Learning module on larger amount of data
- Exploration of other types of web page classification problem e.g. news websites

REFERENCES

- [1] Freitag, D.\ (1998) Information extraction from HTML: Application of a general machine learning approach. AAAI/IAAI}.
- [2] Furnkranz, J., Mitchell, T.\& Riloff, E. (1998) A case study in using linguistic phrases for text categorization on the WWW. { Working Notes of the AAAI/ICML}, { Workshop on Learning for Text Categorization}.
- [3] Shen, D., Chen, Z., Yang, Q., Zeng, H., Zhang, B., Lu, Y., Ma, W. (2004), Web-page classification through summarization. { *Proceedings of the 27th annual international ACM SIGIR 04 conference on Research and Development in Information Retrieval*}, New York, ACM Press, pp:242- 249.
- [4] McCallum, A.\ \& Nigam, K.\ (1998) A Comparison of Event Models for Naive Bayes Text Classification {AAAI Workshop},{ Workshop on Learning for Text Categorization}