Dataset condensation with gradient matching (DCGM)

ICLR, 2021

source: https://arxiv.org/abs/2006.05929

작성자: 이미지처리팀 류채은

link: https://www.notion.so/Dataset-condensation-with-gradient-matching-DCGM-8decb16262814a7eb0f549fe87708858?pvs=4

Proposes a training set synthesis technique for data-efficient learning that learns to **condense a large dataset into a small set of informative synthetic samples** for training DNNs, and aims to **obtain high generalization performance of the trained model on the synthesized small set** that is on par with the network trained on the original large dataset. This goal is reached **by learning to produce similar gradients** of the two networks - one trained on the synthesized small data and the other trained
on the original large data.

Prerequisites

Dataset Condensation

: Aims to generate a small set of synthetic images that can match the performance of a network trained on a large image dataset.

(= 작은 합성 데이터를 만들어서 원본의 엄청 큰 데이터를 대체하자!)

Dataset Condensation

Overview

Learn a synthetic set such that a deep network trained both on it and the large set produces similar gradients w.r.t. its weights. The synthetic data can later be used to train a network from scratch in a small fraction of the original computational load.

(= 큰 데이터에 학습 시킨 모델의 기울기랑 만든 작은 데이터에 학습 시킨 모델의 <u>기울기 차이를 최소화하는</u> 방향으로 효율적인 작은 데이터 를 합성하자)

Methodology

1. Problem Definition

: DATASET CONDENSATION WITH CURRICULUM GRADIENT MATCHING

🔑 Notations

- ullet Original Large Data : $\mathcal{T} = \{(x_i,y_i)\}_{i=1}^{|\mathcal{T}|}$
- Synthesized Small Data: $S = \{(s_i, y_i)\}_{i=1}^{|S|}$
- Deep Neural Network ϕ with parameters heta
- ullet Random Initialization Distribution: P
- ullet ${
 m opt-alg:}$ a specific optimization procedure with a fixed number of steps ζ
- \mathcal{L} : Empirical Loss

🧠 Idea

Wish the parameters on synthesized small data θ^S to be close to not only the final parameters on the original large data θ^T but also to follow a similar path to θ^T throughout the optimization (= guided optimization)

(= 합성된 데이터에 모델의 parameters가 학습되는 방향이 원본에서 모델의 parameters가 학습되는 방향과 동일하길 바람!)

For T iterations,

$$\min_{S} E_{ heta_0 \sim P_{ heta_0}} [\sum_{t=0}^{T-1} D(heta_t^S, heta_t^{\mathcal{T}})]$$
 (1)

subject to
$$\theta_{t+1}^S(S) = \operatorname{opt} - \operatorname{alg}_{\theta}(\mathcal{L}^S(\theta_t^S), \zeta^S)$$
 and $\theta_{t+1}^{\mathcal{T}} = \operatorname{opt} - \operatorname{alg}_{\theta}(\mathcal{L}^{\mathcal{T}}(\theta_t^{\mathcal{T}}), \zeta^{\mathcal{T}})$ (2)

(1) \Rightarrow Minimize average difference D between DNN's parameters on synthesized small data θ_t^S and original data θ_t^T at each step t with parameters randomly initialized as θ_0 for T iterations

(2) \Rightarrow update parameters θ on each data (S,\mathcal{T}) by minimizing loss \mathcal{L} on the respective data with optimization procedure opt - alg with specified number of steps ζ

(= 작은 합성된 데이터 S 에 훈련한 모델의 parameters와 원본 큰 데이터 ${\mathcal T}$ 에 훈련한 모델의 parameters가 같게 되도록 작은 합성된 데이터 S를 만들어줘!)

opt - alg

: step gradient desent optimization

[update rule with learning rate η_{θ}]

$$\theta_{t+1} \leftarrow \theta_t - \eta_{\theta} \Delta_{\theta} \mathcal{L}(\theta_t)$$

Final Formulation with observation $D(\theta_t^S, \theta_t^{\mathcal{T}}) \simeq 0$ in preliminary experiments:

With θ as θ^S ,

$$\min_{S} E_{ heta_0 \sim P_{ heta_0}} [\sum_{t=0}^{T-1} D(\Delta_{ heta} \mathcal{L}^S(heta_t), \Delta_{ heta} \mathcal{L}^{\mathcal{T}}(heta_t))]$$

(3) \Rightarrow minimize the difference between gradients with respect to loss on synthesized small set S and original set $\mathcal T$

(= 작은 합성 데이터 S에 대한 기울기와 원본 큰 데이터 ${\mathcal T}$ 에 대한 기울기가 최소화되도록 작은 합성 데이터 S를 만들어줘!)

D: Gradient Matching Loss

= a sum of layerwise losses

with l as layer index, and L as the number of layers with weights,

$$D(\Delta_{ heta}\mathcal{L}^{S}, \Delta_{ heta}\mathcal{L}^{\mathcal{T}}) = \sum_{l=1}^{L} d(\Delta_{ heta^{(l)}}\mathcal{L}^{\mathcal{S}}, \Delta_{ heta^{(l)}}\mathcal{L}^{\mathcal{T}})$$

*out = number of output nodes for each layer

$$d(A,B) = \sum_{i=1}^{ ext{out}} (1 - rac{A_i \cdot B_i}{||A_i||||B_i||})$$

2. Algorithm

Algorithm 1: Dataset condensation with gradient matching

Input: Training set \mathcal{T}

Required: Randomly initialized set of synthetic samples S for C classes, probability distribution over randomly initialized weights P_{θ_0} , deep neural network ϕ_{θ} , number of outer-loop steps K, number of inner-loop steps T, number of steps for updating weights ς_{θ} and synthetic samples ς_{S} in each inner-loop step respectively, learning rates for updating weights η_{θ} and synthetic samples η_{S} .

```
2 for k = 0, \dots, K-1 do

3 Initialize \theta_0 \sim P_{\theta_0}
4 for t = 0, \dots, T-1 do

5 Sample a minibatch pair B_c^{\mathcal{T}} \sim \mathcal{T} and B_c^{\mathcal{S}} \sim \mathcal{S} \triangleright B_c^{\mathcal{T}} and B_c^{\mathcal{S}} are of the same class c.

7 Compute \mathcal{L}_c^{\mathcal{T}} = \frac{1}{|B_c^{\mathcal{T}}|} \sum_{(\boldsymbol{x},y) \in B_c^{\mathcal{T}}} \ell(\phi_{\theta_t}(\boldsymbol{x}),y) and \mathcal{L}_c^{\mathcal{S}} = \frac{1}{|B_c^{\mathcal{S}}|} \sum_{(\boldsymbol{s},y) \in B_c^{\mathcal{S}}} \ell(\phi_{\theta_t}(\boldsymbol{s}),y)

8 Update \mathcal{S}_c \leftarrow \text{opt-alg}_{\mathcal{S}}(D(\nabla_{\theta}\mathcal{L}_c^{\mathcal{S}}(\theta_t),\nabla_{\theta}\mathcal{L}_c^{\mathcal{T}}(\theta_t)),\varsigma_{\mathcal{S}},\eta_{\mathcal{S}})

9 Update \theta_{t+1} \leftarrow \text{opt-alg}_{\theta}(\mathcal{L}^{\mathcal{S}}(\theta_t),\varsigma_{\theta},\eta_{\theta}) \triangleright Use the whole \mathcal{S}
```

Output: S

* $K\simeq$ trials, $T\simeq$ epochs

Experiments & Results

	Img/Cls	Ratio %	Random	Coreset Herding	Selection K-Center	Forgetting	Ours	Whole Dataset
MNIST	1 10 50	0.017 0.17 0.83	64.9±3.5 95.1±0.9 97.9±0.2	89.2±1.6 93.7±0.3 94.9±0.2	89.3±1.5 84.4±1.7 97.4±0.3	35.5±5.6 68.1±3.3 88.2±1.2	91.7±0.5 97.4±0.2 98.8±0.2	99.6±0.0
FashionMNIST	1 10 50	0.017 0.17 0.83	51.4±3.8 73.8±0.7 82.5±0.7	67.0±1.9 71.1±0.7 71.9±0.8	66.9±1.8 54.7±1.5 68.3±0.8	42.0±5.5 53.9±2.0 55.0±1.1	70.5±0.6 82.3±0.4 83.6±0.4	93.5±0.1
SVHN	1 10 50	0.014 0.14 0.7	14.6±1.6 35.1±4.1 70.9±0.9	20.9±1.3 50.5±3.3 72.6±0.8	21.0±1.5 14.0±1.3 20.1±1.4	12.1±1.7 16.8±1.2 27.2±1.5	31.2±1.4 76.1±0.6 82.3±0.3	95.4±0.1
CIFAR10	1 10 50	0.02 0.2 1	14.4±2.0 26.0±1.2 43.4±1.0	21.5±1.2 31.6±0.7 40.4±0.6	21.5±1.3 14.7±0.9 27.0±1.4	13.5±1.2 23.3±1.0 23.3±1.1	28.3±0.5 44.9±0.5 53.9±0.5	84.8±0.1

Table 1: The performance comparison to coreset methods. This table shows the testing accuracies (%) of different methods on four datasets. ConvNet is used for training and testing. Img/Cls: image(s) per class, Ratio (%): the ratio of condensed images to whole training set.

Coreset 방법보다 잘하더라..

Vizualization

Figure 2: Visualization of condensed 1 image/class with ConvNet for MNIST, Fashion-MNIST, SVHN and CIFAR10.

Condensed dataset S