GnssToolKit3 用户手册

杭州中科微电子有限公司

by 软件组 2018年5月16日

内容目录

1 软件简介	5
2 部署和运行	5
3 语言选择	
4帮助和提示	6
5 连接接收机	6
6 串口设置	7
6.1 打开串口菜单	7
6.2 串口名称设置	
6.3 波特率设置	7
6.4 串口状态指示	8
7 NMEA 导航电文	9
7.1 打开 NMEA 视图	9
7.2 视图选项	9
8卫星信号质量	11
8.1 打开载躁比视图	11
8.2 视图选项	12
9 卫星方位图	13
9.1 打开星位图	13
9.2 视图选项	13
10 定位点	15
10.1 打开定位点视图	15
10.2 视图选项	
11 基础导航信息	18
11.1 打开基础视图	18
11.2 数据说明	18
12 详细导航信息	19
12.1 打开数据视图	19
13 辅助定位	20
13.1 打开辅助定位视图	20
13.2 辅助数据下载参数设置	20
13.3 视图选项	21
13.4 进行辅助定位	21
14 测姿	
14.1 打开测姿视图	
15 配置接收机	
15.1 打开配置视图	
15.2 PCAS 消息配置	
15.2.1 波特率	

15.2.2 定位更新率	24
15.2.3 NMEA 语句	24
15.2.4 卫星系统	24
15.2.5 协议版本	25
15.2.6 重启	25
15.2.7 动态模型	25
15.2.8 待机	25
15.3 BACE 消息配置	25
15.3.1 UART	
15.3.2 消息	26
15.3.3 时间脉冲	26
15.4 自定义消息	26
15.5 发送文件	27
16 消息总览	28
16.1 打开消息视图	28
16.2 消息配置	28
17 十六进制电文	30
17.1 打开十六进制视图	30
17.2 视图选项	
18 调试	31
18.1 打开调试视图	31
18.2 视觉模式	
18.3 字体	32
18.4 配色	32
19 保存接收机导航电文	33
19.1 进入保存模式	33
19.2 保存文件的位置	33
20 回放接收机导航电文	34
20.1 回放导航电文文件	34
20.2 回放速度	34
20.3 暂停	35
20.4 回放进度控制	35
21 重启动性能测试	36
21.1 打开重启动测试视图	36
21.2 选择重启动模式	36
21.3 开始测试	36
21.4 测试流程	37
21.5 测试记录	37
21.6 导出测试记录	
21.7 测试选项设置	
21.8 测试误差	
22 生成 VMI 文件	20

22.1 打开从 NMEA 生成 KML 对话框	39
22.2 KML 选项	
22.3 生成 KML	
22.4 KML 中的定位点详细信息	

1 软件简介

GnssToolKit3为一款配合杭州中科微卫星定位接收机(以下简称为接收机)使用的软件.用于显示接收机的输出信息,配置接收机的内部状态,并对接收机的性能做一些简单的测试.

2 部署和运行

解压 GnssToolKit3.zip 到本地磁盘,即可部署本软件.

在 GnssToolKit3 文件夹中, 双击 GnssToolKit3.exe, 运行本软件.

3 语言选择

在"帮助"菜单中,选择"语言"菜单项,可以选择程序界面语言.

目前有中文和英文两种语言选项.

更换语言需要重新启动本软件.

4 帮助和提示

在"帮助"菜单中,选择"用户手册"项(F1快捷键),可以打开本手册.

在"帮助"菜单中,选择"协议文档"项(F2快捷键),可以打开中科微协议文档.

用户手册和协议文档在软件部署路径的 doc 目录下.

当鼠标移动到控制按键时,会在本软件底部状态栏的左部显示提示信息.

5 连接接收机

将运行本软件的计算机的串口和接收机的串口用串口线相连, 给接收机上电.

使用 USB 转串口线时, 如果遇到鼠标乱飞的情况, 请断开接收机电源, 使用本软件打开 USB 串口后, 再给接收机上电.

使用 PL2302 系列的 USB 转串口芯片时,可能会遇到串口通信有乱码的情况.

6 串口设置

6.1 打开串口菜单

点击主菜单上的"串口"菜单项.

该菜单用于配置串口

6.2 串口名称设置

选择"串口名称"菜单项,会列出当前系统中的所有串口号.

如果该串口号字体为灰色(如图中的 COM7), 表示该串口设备正忙(可能被其他进程占用), 无法被本程序使用.

点击与接收机相连接的串口号, 使本软件与接收机建立连接.

6.3 波特率设置

选择"波特率"菜单项,列出对接收机有效的波特率.

波特率默认为9600,用户需要根据接收机的实际情况选择相应的值.只有波特率一致时,本软件才能与接收机正常通信.

如果不确定接收机的波特率,可以打开"视图"菜单中的"NMEA"视图,然后逐个试验每个波特率,如果NMEA视图中有可读的导航电文显示,则表明当前的选择与接收机波特率一致.

6.4 串口状态指示

本软件底部的状态栏,有串口状态指示栏: ● COM13, 115200

图标指示串口连接状态.

其后的文本分别为串口号(COM13)和波特率(115200).

如果串口指示图标在闪烁, 表示串口中有数据通信发生.

7 NMEA 导航电文

7.1 打开 NMEA 视图

在"视图"菜单中,选择"NMEA"视图.

该视图显示接收机输出的 NMEA 语句.

7.2 视图选项

使用视图底部的控制按钮可以对视图进行设置

时间戳:图开启或者关闭显示接受到 NMEA 语句时的时间戳。

删除: 會清除所有的 NMEA 文本.

过滤器: ▼开启或关闭过滤器功能.

表达式文本框: 在过滤器开启的情况下, 可以填写表达式来筛选 NMEA 语句.

例如:

只显示 GGA 语句, 输入表达式: GGA

只显示 RMC, GSA 和 GSV 语句, 输入表达式: RMC|GSA|GSV

8 卫星信号质量

8.1 打开载躁比视图

在"视图"菜单中,选择"载噪比"视图.

该视图用柱状图的形式显示卫星的载噪比,每个柱状条代表一颗卫星.

柱状条上方的数字表示该卫星载噪比的值(dB).

柱状条高度跟载噪比值成正比.

柱状条颜色指示参与定位状态.

彩色表示该卫星参与了定位,灰色表示该卫星未参与定位.

其中彩色还可以细分为:

柱状条下方的数字代表该卫星的 PRN 号.

柱状条最下方的国旗 logo 指示该卫星的系统. ■GPS ■BDS ■GLONASS

8.2 视图选项

在载噪比视图中使用鼠标右键可以打开配置菜单:

抓取视图: 保存载噪比到系统粘贴板.

分栏模式: 使用分栏模式, 将上限分栏显示 GPS, BDS 和 GLONASS 的卫星.

配色: 经典配色模式下, 柱状条只有蓝色(参与定位)和灰色(不参与定位)两种颜色. 而多彩模式下, 则有前文中提到的彩色(参与定位+信号质量)和灰色(不参与定位)多种颜色.

卫星过滤: 选择是否显示某种系统的卫星.

9 卫星方位图

9.1 打开星位图

在"视图"菜单中,选择"星位图"视图.

该视图显示卫星在天空中的方位,每个圆代表一颗卫星.

G代表GPS卫星,B代表BDS卫星,R代表GLN卫星.

彩色表示该卫星参与定位,灰色表示该卫星为参与定位.

9.2 视图选项

在星位图中使用右键可以打开配置菜单:

抓取视图: 保存星位图图像到系统粘贴板.

卫星过滤: 选择是否显示该系统的卫星.

10 定位点

10.1 打开定位点视图

在"视图"菜单中,选择"定位点"视图.

该视图将接收机输出的每个定位点打印到平面座标上.

红色位置图标代表最近一次输出的定位点. 🤎

其余为历史定位点.

左上角显示定位点的数量.

右上角表示北方的指向

左下角显示中心点的纬度和精度值.

COUNT: 265

30.18638833° 120.15629133°

右下角为定位点图例:

10.2 视图选项

在该视图中使用右键可以打开配置菜单:

设置中心点: 设置视图中心点的经纬度(可以使用已有定位点的平均值作为中心点)

移除所有定位点: 删除所有的定位点信息.

抓取视图: 复制该视图图片到系统粘贴板.

显示/隐藏侧边栏: 打开或者关闭视图右侧显示导航信息和统计信息的小窗口.

显示图例: 是否显示图例.

追踪当前点: 选择是否将最近一次的定位点作为中心点.

定位点过滤: 选择是否显示某种定位质量的定位点.

11 基础导航信息

11.1 打开基础视图

在"视图"菜单中,选择"基础"视图.

该视图基础的定位信息.

11.2 数据说明

纬度单位为度.

经度单位为度.

海拔单位为米.

时间为 UTC 时间.

日期为 UTC 日期.

12 详细导航信息

12.1 打开数据视图

在"视图"菜单中,选择"数据"视图.

该视图列出详细的导航信息.

定位质量请参阅中科微接收机协议(F2 快捷键)中, NMEA 协议→NMEA 标准协议 →GGA 章节中, 关于定位质量标志的说明.

定位模式请参阅中科微接收机协议(F2 快捷键)中, NMEA 协议→NMEA 标准协议 →RMC 章节中, 关于定位模式标志的说明.

13 辅助定位

13.1 打开辅助定位视图

在"视图"菜单中,选择"辅助定位"视图.

该视图对接收机进行辅助定位. 辅助定位通过网络获取星历信息, 可以极大的改善接收机首次定位的性能.

13.2 辅助数据下载参数设置

服务器: 杭州中科微辅助定位服务器的地址和端口.

用户名和口令: 默认为试用账户, 如果需要申请正式账户, 可以跟杭州中科微的销售取得联系.

数据类型: 辅助数据的类型. 时间和位置辅助(Aid), 星历辅助(Eph), 全部辅助(Full)

卫星系统: 辅助数据的卫星系统. 目前只提供 GPS 和 BDS.

经纬度:接收机的粗略位置,误差范围半径为15Km.

13.3 视图选项

清除: 清除 LOG 文本框的内容.

重置: 还原辅助数据配置为默认值.

13.4 进行辅助定位

配置好参数后, 点击"辅助定位"按钮, 下载辅助数据, 并通过串口发送给接收机.

14 测姿

14.1 打开测姿视图

在"视图"菜单中,选择"测姿"视图.

该视图显示接收机输出的测姿状态.

测姿功能需要特定型号的接收机才能使用.

仪表盘中间的数字表示测姿的航向(单位: 度)

航向下方的文字表示测姿的状态,有:无效,固定解和浮点解三种.

15 配置接收机

15.1 打开配置视图

在"视图"菜单中,选择"配置"视图

该视图通过串口通信,对接收机的运行状态进行配置.

点击"发送"按钮,将界面上显示的配置,通过串口发送给接收机.

所有发送的配置是临时性的, 在接收机重启后, 就会失效.

如果要保留配置,需要在发送配置后,点击视图右下的"保存"按钮.

15.2 PCAS 消息配置

发送 NMEA 格式的命令, 对接收机进行配置.

15.2.1 波特率

配置接收机的运行波特率.

接收机有 4800, 9600, 19200, 38400, 57600, 115200 几种波特率可供选择.

选择好需要的波特率后,点击"发送"按钮,对接收机进行配置.

本程序经过短暂的等待后, 会将串口自动切换到新的波特率, 与接收机保持一致.

15.2.2 定位更新率

配置接收机的定位更新率.

接收机的定位频率有 1Hz, 2Hz, 5Hz 和 10Hz 几种可供选择.

选择好需要的定位更新率后,点击"发送"按钮,对接收机进行配置.

15.2.3 NMEA 语句

配置接收机的语句输出频率.

输出频率的合法输入为 0~9 的数字或者空白.

设置为0时,接收机关闭该语句.

设置为 n 时, 接收机开启该语句, 并且每 n 个定位频率输出一次该语句.

设置为空白时,接收机对该语句不做任何改变.

填好需要的输出频率后,点击"发送"按钮,对接收机进行配置.

15.2.4 卫星系统

配置接收机使用的卫星系统.

当点击树形图中的该项时, 会自动向接收机查询当前使用的卫星系统.

选择好卫星系统后,点击"发送"按钮,对接收机进行配置.

15.2.5 协议版本

配置接收机的 NMEA 协议版本

选择好协议版本后,点击"发送"按钮,对接收进行配置.

15.2.6 重启

以不同的模式重启接收机.

目前有冷启动, 热启动, 温启动和出厂启动几种模式.

出厂启动将还原接收机到出厂时的配置.

15.2.7 动态模型

配置接收机不同的动态模型.

15.2.8 待机

使接收机进入待机模式.

待机 n 秒后, 接收机启动.

15.3 BACE 消息配置

发送中科微二进制格式的命令, 对接收机进行配置

15.3.1 UART

对接收机当前使用串口进行配置.

当点击树形图中该项时, 会自动查询接收机的 UART 配置.

波特率有 4800, 9600, 19200, 38400, 57600, 115200 几种选项, 与上文中的波特率配置一致.

二进制输入: 配置是否接收中科微二进制消息.

二进制输出: 配置是否输出中科微二进制消息.

NMEA 输入: 配置是否接收 NMEA 格式消息

NMEA 输出: 配置是否输出 NMEA 格式消息.

15.3.2 消息

配置接收机的消息输出频率.

消息类别: 选择要配置的消息类别.

消息子ID: 选择要配置的消息ID.

输出频率: 0 为不输出, n 表示 nHz, 65535(0xff)表示只输出一次(查询一次).

15.3.3 时间脉冲

配置接收机的时间脉冲输出.

当点击树形图中该项时, 会自动查询接收机的时间脉冲配置.

关于时间脉冲的参数信息,请参照中科微接收机协议文档(快捷键 F2)中的:

CASIC 协议→CFG→CFG-TP 章节.

15.4 自定义消息

可以自定义消息, 发送给接收机.

T和 H: 切换 NMEA 格式和 BACE 格式. T模式下, 以普通文本处理输入. H模式下, 以16 进制格式处理输入, 比如: 00 12 AA BB 表示(0x00 0x12 0xAA 0xBB)

校验和: 选中后会自动给消息加上校验和. T模式下, 校验和为 NMEA 格式. H模式下, 校验和为中科微二进制格式.

中间的文本框为用户输入.

下方的文本框提供自定义消息的预览.

15.5 发送文件

选择一个文件,将其中的内容发送给接收机.

文件大小限制为 4KB.

16 消息总览

16.1 打开消息视图

在"视图"菜单中,选中"消息"视图.

该视图显示接收机输出的所有的消息.

左侧树形图中的项,如果是灰色,表示2秒内没有收到该消息.如果是黑色,表示2秒内收到了该消息.视图右上角显示上次收到该消息后的计时(单位:秒).

关于消息的具体意义, 请参阅中科微接收机协议文档(快捷键 F2).

16.2 消息配置

右键点击树形图中的项, 会弹出菜单:

开启 关闭 查询—次

开启: 打开该消息, 频率为 1Hz.

关闭: 关闭该消息.

查询一次: 仅让该消息输出一次.

双击树形图中的消息名称, 对该消息做查询一次的操作.

17 十六进制电文

17.1 打开十六进制视图

在"视图"菜单中,选择"十六进制"视图.

该视图显示十六进制消息.

17.2 视图选项

时间戳: 是否显示接收到该消息的时间戳.
显示模式: 切换详细模式和原始模式.
删除: 删除文本框中的内容.

列数: Payload 的列数, 超过列数做换行处理.

列数: 16 ▼

18 调试

18.1 打开调试视图

在"视图"菜单中,选择"调试"视图

该视图面向开发人员,对接收机进行高级的调试。

18.2 视觉模式

点击左下方的眼睛图标, 可以启用或关闭视觉模式

当启用视觉模式时

需要填写每组 NMEA 导航电文中最后一条电文的关键字符串(比如图中的 ZDA).

该视图缓存所有的导航电文, 当其含有关键字符串时, 便显示在视图中.

这样的处理方式使得 NMEA 导航电文有一种稳定的视觉效果, 便于开发人员长时间观测.

关闭视觉模式时

视图及时显示所有的导航电文,可以用于通信方面的分析.

T

18.3 字体

点击字体选择按钮:

可以根据喜好选择视图的字体.

18.4 配色

点击配色按钮:

切换明暗两种配色.

两种配色对比度柔和(Solarized), 尽量保护开发人员的视力.

19 保存接收机导航电文

19.1 进入保存模式

在"串口"菜单中,点击"保存"菜单项(快捷键Ctrl+S).

选择保存文件的路径后, 进入保存模式.

在保存模式下, 串口中的所有数据都会被保存, 暂停功能不会影响保存.

在程序状态栏右下, 显示保存状态:

保存图标闪烁表示有数据保存发生.

字符串为保存文件的名称.

19.2 保存文件的位置

选择"显示保存文件"菜单项会打开保存文件所在的目录.

20 回放接收机导航电文

20.1 回放导航电文文件

在"回放"菜单中,点击"开始"菜单.

选择要回放的文件后, 进入回放模式.

回放文件的长度不超过 4G 字节.

回放模式优先于串口模式, 当回放文件时, 串口中导航电文会被程序忽略.

回放模式不影响串口数据的保存.

在状态栏右下, 显示回放状态:

图标指示正在回放, 暂停或没有回放.

字符串为回放文件的名称.

20.2 回放速度

在"回放"菜单中,选择"回放速度"菜单项.

目前有 x0.25, x0.5, x1, x2, x4, x8, x16 和最大速度几种选项.

x1表示回放速度尽力控制在每秒一组导航电文.

最大速度表示不做任何延迟的回放导航电文.

20.3 暂停

在"回放"菜单中,点击"暂停"菜单项(快捷键:空格),进入暂停状态.

暂停状态下,不再读取回放文件中的导航电文,不再解析串口中的导航电文.

暂停状态不会影响串口数据的保存.

20.4 回放进度控制

在回放状态下,工具栏上会多出回放文件进度滑动条:

右侧的百分比数字表示当前回放进度的百分比.

左右拖动滑块可以改变当前的回放进度.

21 重启动性能测试

21.1 打开重启动测试视图

在"视图"菜单中,选择"重启测试"视图.

该视图对接收机进行重启动性能方面的测试.

21.2 选择重启动模式

在视图左上, 可以分别选择热启动, 冷启动和自定义启动.

21.3 开始测试

点击"测试"按钮,视图进入测试模式,对接收机进行重启动测试.

点击"停止"按钮,可以退出测试.

21.4 测试流程

首先向接收机发送重启动消息, 记录该时刻为重启动时刻.

等到接收机定位时, 记录该时刻为定位时刻, 并计算定位耗时.

接收机定位后,需要稳定运行一段时间(在最小和最大稳定时间之间随机出一个时间长度)后,再次进行重启动.

21.5 测试记录

重启动: 记录视图向接收机发送重启动消息的时间戳.

运行时间: 记录接收机运行的时间.

定位时间: 记录接收机再次定位的时间戳.

定位耗时: 记录接收机从启动到定位的耗时.

视图最下方打印本次测试循环的统计结果.

显示定位次数和测试次数, 以及两者的比值.

显示最小定位耗时, 平均定位耗时, 和最大定位耗时.

21.6 导出测试记录

点击视图右上方的拷贝按钮

将测试记录以 CSV 的格式拷贝到系统粘贴板中, 然后就可以粘贴到 excel 表格或其他文件中.

21.7 测试选项设置

点击视图右上角的选项按钮

打开测试选项窗口:

该窗口设置重启动测试的选项.

测试次数: 测试循环的最大次数.

最小稳定时间:接收机定位后到下次重启的最小时间.

最大稳定时间:接收机定位后到下次重启的最大时间.

自定义消息: 自定义启动模式下, 发送给接收机的消息.

当消息以\$开头时,自动在消息后添加<CR><LF>.

当消息不以\$开头时,自动用 NMEA 格式格式化消息(添加\$,校验和 < CR > < LF >).

21.8 测试误差

测试采用发送重启消息的时刻作为启动时刻, 所以测试结果比真实启动耗时要长 0~1 秒. 测试计时器的自身误差为 0.1 秒.

为了防止接收机的输出缓存影响测试流程, 启动耗时有1秒的保护时间, 也就是说最小的启动耗时为1秒.

22 生成 KML 文件

22.1 打开从 NMEA 生成 KML 对话框

在"工具"菜单中,选择"从NMEA生成KML"菜单项:

22.2 KML 选项

路径: 选择 NMEA 格式定位数据文件的路径.

颜色: 选择在 GoogleEarth 中的显示颜色.

标签: 填写在 GoogleEarth 中定位点的描述标签.

自动打开 KML 文件: 选择在生成 KML 后, 是否自动在 GoogleEarth 中打开.

包含卫星数据: 选择是否在 KML 文件中, 包含卫星数据. 包含卫星数据会大幅增加 KML 文件的大小.

22.3 生成 KML

点击"生成"按钮, 从路径指定的定位数据生成 KML 文件.

22.4 KML 中的定位点详细信息

在 GoogleEarth 中, 点击定位点可以查看详细信息:

中科微5N31:

Time	11:34:46.000	
Date	2015-08-27	
Latitude	39.93342167°N	
Longitude	116.30414000°E	
Altitude	61.3m	
HDOP	0.8	
Speed	19.99m/s	
Heading	0.14°	
SvInUse	16	
SvInView	19	
Quality	1(Autonomous)	
FixMode	A(Autonomous)	

如果选择在 KML 中包含卫星数据, 还会显示卫星数据:

Satellites:

PRN	CN0	Use	Elev	Azim
G02	46	Υ	45	127
G05	46	Υ	63	040
G06	20	Υ	09	127
G07	30	Υ	12	046
G13	48	Υ	68	164
G15	44	Υ	40	210
G20	45	Υ	49	286
G21	13	N	12	308
G26	26	N	00	000
G29	46	Υ	46	274
G30	42	Υ	21	077
R01	41	Υ	59	011
R02	37	Υ	44	268
R08	30	Υ	15	050
R10	29	Υ	14	055
R11	23	N	09	105
R17	38	Υ	58	307
R23	37	Υ	19	169
R24	38	Υ	64	204