2020 Digital IC Design Homework 1: 4-bit binary adder-subtractor

2020 Dig	ıtal IC	Design Hon	<u>nework</u>	x 1: 4-bit binary ad	lder-subtractor	
NAME	崔濟	崔濟鵬				
Student ID	F740	F74056069				
Simulation Result						
Functional	Pass	Gate-level	Pass	Gate-level	25700 (ns)	
simulation	rass	simulation		simulation time		
# 505 data is correct # 506 data is correct # 507 data is correct # 508 data is correct # 509 data is correct # 510 data is correct # 511 data is correct # 512 data is correct #				b # ** Note: \$finish : D:/Code/git/DIGITAL-IC-DES1 # Time: 25700 ns Iteration: 0 Instance: /AS_tk		
Synthesis Result						
Total logic elements				8 / 68,416 (< 1 %)		
Total memory bit				0 / 1,152,000 (0 %)		
Embedded multiplier 9-bit element				0/300(0%)		
Flow Status Quartus II Version Revision Name Top-level Entity Name Family Device Timing Models Total logic elements Total combinational functions Dedicated logic registers Total pins Total wirtual pins Total memory bits Total PLLs Successful - Tue Apr 07 14:33:20 2020 10.0 Build 262 08/18/20 10 SP 1 SJ Full Version AS Cydone II EP2C70F896C8 Final Yes 8 / 68,416 (< 1 %) 8 / 68,416 (< 1 %) 9 / 68,416 (0 %) 14 / 622 (2 %) 14 / 622 (2 %) 17 / 152,000 (0 %) 18 / 300 (0 %) 18 / 300 (0 %) 19 / 300 (0 %) 10 / 4 (0 %)						
Description of your design						
用了三個 wire 來儲存 B xor sel, A xor B, C, 因為每個 FA 前都會將 B xor sel 後,當成						
FA的B輸入,故先用4個xor()來運算給4個FA的B,而在FA中會重複利用到A						
xor B 運算 S 跟 C,故一樣用 4 個 xor()來運算 FA 中的 A xor B,最終使用 assign 來算						

Scoring = (Total logic elements + total memory bit + 9*embedded multiplier 9-bit element) × (gate-level simulation time in \underline{ns})

4組S跟C,O為C[2] xor C[3]