HOMEWORK-4

1. I first created a scatter plot to display the relationship between independent variable x and dependent variable y. After fitting the trend line into the scatterplot, almost no correlation was found between x and y. This implies that variance of x did not sufficiently explain the variance of y.

NEW FILE.

DATASET NAME DataSet1 WINDOW=FRONT.

GET DATA

/TYPE=XLS

/FILE='C:\Users\rrane1\Desktop\sample.xls'

/SHEET=name 'sample'

/CELLRANGE=full

/READNAMES=on

/ASSUMEDSTRWIDTH=32767.

EXECUTE.

DATASET NAME DataSet3 WINDOW=FRONT.

* Chart Builder.

GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=x y MISSING=LISTWISE REPORTMISSING=NO /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: x=col(source(s), name("x"))
DATA: y=col(source(s), name("y"))
GUIDE: axis(dim(1), label("x"))
GUIDE: axis(dim(2), label("y"))
ELEMENT: point(position(x*y))

END GPL.

2. I again created a scatter plot to display the relationship between independent variable z and dependent variable y. A strong positive correlation was found was found between x and y. After fitting the trend line into the scatter plot, we can say that 34.5% of the variance in y can be explained by variance in z.

```
* Chart Builder.
```

GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=z y MISSING=LISTWISE REPORTMISSING=NO /GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: z=col(source(s), name("z"))
DATA: y=col(source(s), name("y"))
GUIDE: axis(dim(1), label("z"))
GUIDE: axis(dim(2), label("y"))
ELEMENT: point(position(z*y))

END GPL.

3. According to the Correlations table, we can figure out that there is a significant correlation between z and y (0.587), whereas there is a very less correlation between x and y (0.039).

DATASET ACTIVATE DataSet3.
DATASET CLOSE DataSet1.
CORRELATIONS
/VARIABLES=x z y
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

Correlations

	Corr	Clations		
		X	Z	у
X	Pearson Correlation	1	.063	.039
	Sig. (2-tailed)		.160	.383
	N	500	500	500
Z	Pearson Correlation	.063	1	.587**
	Sig. (2-tailed)	.160		.000

	N	500	500	500
y	Pearson Correlation	.039	.587**	1
	Sig. (2-tailed)	.383	.000	
	N	500	500	500

^{**.} Correlation is significant at the 0.01 level (2-tailed).

4. Next, I carried out the Multiple Linear Regression with x and z as the independent variables(predictors) and y as the dependent variable (response variable). Together, x and z accounted for 34.5% of the variance of y. However, taken individually z also accounted for 34.5 % variance of y.

The Multiple Linear Regression Equation for this model is as follows:

$$y = 3.076 + 0.032x + 3.342z + E$$

This implies that for each unit increase in x, the estimated average amount of y is increased by 0.032 units, holding z constant.

This implies that for each unit increase in $x \setminus z$, the estimated average amount of y is increased by 3.342 units, holding x constant.

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT y
/METHOD=ENTER x z.

Regression

Variables Entered/Removeda

	Variables	Variables	
Model	Entered	Removed	Method
1	z, x ^b		Enter

a. Dependent Variable: y

b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.587ª	.345	.342	6.903845902 157768

a. Predictors: (Constant), z, x

$ANOVA^{a} \\$

Μ	lodel	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	12473.455	2	6236.728	130.850	.000 ^b
	Residual	23688.555	497	47.663		
	Total	36162.010	499			

a. Dependent Variable: y

b. Predictors: (Constant), z, x

Coefficients^a

_						
		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	3.076	.776		3.962	.000
	X	.032	.549	.002	.058	.954
	Z	3.342	.207	.587	16.141	.000

a. Dependent Variable: y

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT y

/METHOD=ENTER x z

/SAVE PRED.

Regression

Variables Entered/Removed^a

	Variables	Variables	
Model	Entered	Removed	Method
1	z, x ^b		Enter

a. Dependent Variable: y

b. All requested variables entered.

Model Summary^b

			Adjusted R	Std. Error of
Model	R	R Square	Square	the Estimate
1	507 a	.345	.342	6.903845902
	.587ª	.343	.342	157768

a. Predictors: (Constant), z, x

b. Dependent Variable: y

ANOVA^a

		Sum of		Mean			
Mo	del	Squares	df	Square	F	Sig.	
1	Regression	12473.455	2	6236.728	130.850	.000 ^b	
	Residual	23688.555	497	47.663			
	Total	36162.010	499				

a. Dependent Variable: y

b. Predictors: (Constant), z, x

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	3.076	.776		3.962	.000
	X	.032	.549	.002	.058	.954
	Z	3.342	.207	.587	16.141	.000

a. Dependent Variable: y

Residuals Statistics^a

				Std.	
	Minimum	Maximum	Mean	Deviation	N
Predicted Value	3.133826255	19.74876213	11.03555140	4.999690379	500
	79834	073731	993509	536319	300
Residual	- 14.04137134	40.25891494 7509766	.0000000000	6.889996648 688157	500
	5520020	7307700	00005	000137	
Std. Predicted	-1.580	1.743	.000	1.000	500
Value	1.500	1.713	.000	1.000	500
Std. Residual	-2.034	5.831	.000	.998	500

a. Dependent Variable: y

5. Next, I calculated the Unstandardized Predicted Value based on the unstandardized coefficients (for both x and z) found in the previous section. I then found the correlation between the unstandardized predicted value (of both x and z) and the dependent variable y. I again found that the correlation between the dependent and the independent variables was 0.587.

CORRELATIONS
/VARIABLES=y PRE_1
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

Correlations

Correlations				
		Unstandardiz		
		ed Predicted		
	y	Value		

У	Pearson Correlation	1	.587**
	Sig. (2-tailed)		.000
	N	500	500
Unstandardized	Pearson	.587**	1
Predicted Value	Correlation	.307	1
	Sig. (2-tailed)	.000	
	N	500	500

^{**.} Correlation is significant at the 0.01 level (2-tailed).

6. I then derived the scatter plot between the unstandardized predicted values and dependent variable. This time again I found that 34.5 % of the variance of y was explained by the variance of unstandardized predicted values.

```
* Chart Builder.
```

GGRAPH

/GRAPHDATASET NAME="graphdataset" VARIABLES=PRE_1 y MISSING=LISTWISE

REPORTMISSING=NO

/GRAPHSPEC SOURCE=INLINE.

BEGIN GPL

SOURCE: s=userSource(id("graphdataset"))

DATA: PRE_1=col(source(s)_name("PRE_1"))

DATA: PRE_1=col(source(s), name("PRE_1"))

DATA: y=col(source(s), name("y"))

GUIDE: axis(dim(1), label("Unstandardized Predicted Value"))

GUIDE: axis(dim(2), label("y"))

ELEMENT: point(position(PRE_1*y))

END GPL.

Descriptives

		Statistic	Std. Error
у	Mean	11.035551409	.38070712551
		93508	8191
	95% Confidence Interval Lower Bound	10.287564931	
	for Mean	07124	
	Upper Bound	11.783537888	
		79892	
	5% Trimmed Mean	10.131482781	
		42971	
	Median	8.7575373367	
		6500	
	Variance	72.469	
	Std. Deviation	8.5128701217	
		72210	
	Minimum	.80379353202	
		6	

Maximum	56.401666828	
	441	
Range	55.597873296	
	415	
Interquartile Range	10.081229470	
	144	
Skewness	1.746	.109
Kurtosis	4.161	.218

EXAMINE VARIABLES=y
/PLOT BOXPLOT STEMLEAF HISTOGRAM NPPLOT
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

7. Next, I assessed the normality of the distribution of the dependent variable y.

Skewness = 1.746, which is greater than 1. This implies that the data for y is not normally distributed.

Significance level for both the Kolmogorov and Shapiro Wilk Test is less than 0.05 (0.000). This means that the data is not normally distributed.

The data also did not fit around the normal Q-Q plot line, indicating that the data was not normalized.

The Histogram also clearly depicts that the data is skewed.

Case Processing Summary

	Cases						
	Valid		Missing		Total		
	N	Percent	N	Percent	N	Percent	
у	500	100.0%	0	0.0%	500	100.0%	

Tests of Normality

Ī		Kolmogorov-Smirnov ^a		Shapiro-Wilk			
		Statistic	df	Sig.	Statistic	df	Sig.
I	y	.117	500	.000	.852	500	.000

a. Lilliefors Significance Correction

8. So, I transformed the dependent variable y by using log y. This enabled me to get normalized data for y.

Skewness was -0.3 (which lies between the range of -0.1 and 0.1). This implies that the data followed a normal distribution.

The Histogram also shows that most of the data is centered around the mean and is normally distributed. The Q-Q plot indicates a good fit between the data points and the line, indicating that the data is now transformed to follow a normal distribution.

Transformation was carried out so that the data could more closely meet the assumptions of a statistical inference procedure and to improve the interpretability of graphs.

GET DATA
/TYPE=XLS
/FILE='C:\Users\rrane1\Desktop\sample.xls'
/SHEET=name 'sample'
/CELLRANGE=full
/READNAMES=on
/ASSUMEDSTRWIDTH=32767.

Explore

Case Processing Summary

		Cases						
	Valid		Missing		Total			
	N	Percent	N	Percent	N	Percent		
y_log	500	100.0%	0	0.0%	500	100.0%		

Descriptives

	DCS	Tipuves		
			Statistic	Std. Error
y_log	Mean		.9206	.01523
	95% Confidence Interval for Mean	Lower Bound	.8906	
		Upper Bound	.9505	
	5% Trimmed Mean		.9272	
	Median		.9424	
	Variance		.116	
	Std. Deviation		.34057	
	Minimum		09	
	Maximum		1.75	
	Range		1.85	
	Interquartile Range		.48	
	Skewness		311	.109
	Kurtosis		091	.218

Tests of Normality

	Kolm	Kolmogorov-Smirnov ^a			Shapiro-Wilk		
	Statistic	df	Sig.	Statistic	df	Sig.	
y_log	.041	500	.045	.991	500	.005	

a. Lilliefors Significance Correction

In order to make the variable better fit the assumptions underlying regression, we need to transform it.

Analyzing the histogram, we can conclude that the data is now normally distributed after the log transformation of y.

After transformation, the distribution is significantly closer to the normal probability distribution. It's a bit skewed to one side, but it's a big improvement.

