14.661 Recitation 2: DD, SC

Andrea Manera

September 23, 2021

Potential Outcome: the What and How of Causality

- X_i : treatment actually administered to a unit i.
 - $X_i = 1$ administered, $\forall i \in \mathsf{T}$, treatment;
 - $X_i = 0$, $\forall i \in C$, control.
- Y_{ii} the outcomes of some unit i, after receiving treatment j
- $T_i = (Y_i | X_i = 1) (Y_i | X_i = 0)$: treatment effect for unit i
- Two objects of interest:

$$ATT \equiv E_{i \in T} \left[Y_{i1} - Y_{i0} \right]$$

$$ATE \equiv E_{i \in pop} [Y_{i1} - Y_{i0}]$$

= $Pr \{i \in C\} E_{i \in C} [Y_{i1} - Y_{i0}] + Pr \{i \in T\} E_{i \in T} [Y_{i1} - Y_{i0}]$

- ATT: causal effect of intervention on treated units
- ATE: causal effect of intervention if scaled up to both treatment and control

Selection Bias

Almost all papers estimate the ATT as:

$$A\hat{T}T = E_{i \in T} [Y_{i1}] - E_{i \in C} [Y_{i0}]$$

$$= E_{i \in T} [Y_{i1}] \pm E_{i \in T} [Y_{i0}] - E_{i \in C} [Y_{i0}]$$

$$= ATT + E_{i \in T} [Y_{i0}] - E_{i \in C} [Y_{i0}]$$

- The rightmost term is selection bias, difference between treatment and control in the absence of treatment (counterfactual!)
- $E_{i \in T}[Y_{i0}] E_{i \in C}[Y_{i0}]$ is treatment and control balance in the counterfactual world where T are not treated
- Literally almost every empirical issue is about selection bias!
- Caveat: Even if $A\hat{T}T = ATT$, it might be that $ATE \neq ATT$, since the latter requires:

$$E_{i \in T}[Y_{i1}] - E_{i \in C}[Y_{i1}]!$$

Example: Parallel Trends

In Rubin's Notation diff-in-diff has:

$$A\hat{T}T = E_{i \in T} [\Delta Y_{i1}] - E_{i \in C} [\Delta Y_{i0}]$$

= $ATT + E_{i \in T} [\Delta Y_{i0}] - E_{i \in C} [\Delta Y_{i0}]$

Selection bias is now called "Parallel Trends"

Many States, Treated Variably

• Card (1992) makes the *federal min* into a DD experiment using an equation like

$$y_{ist} = \gamma_s + \lambda_t + \delta(fa_s \cdot d_t) + \varepsilon_{ist}, \tag{1}$$

where fa_s is *fraction affected* in each state (pre-increase proportion of teen labor force earning < 3.80\$) and d_t is a dummy for observations in 1990, after increase.

- Card (1992) used two periods, before and after and 51 states
- ullet Double-Diff: γ_s differences across states, λ_t across periods
- Two periods: levels w/fixed (state) effects = first differences:

$$\Delta \bar{y}_s = \lambda^* + \delta f a_s + \Delta \bar{\varepsilon}_s, \qquad (2)$$

where $\Delta \bar{y}_s$ is the change in teen employment in state s and $\Delta \bar{\varepsilon}_s$ is the differenced error

"Event Studies": Design and Diagnostics

$$\mathbf{y}_{st} = \gamma_s + \lambda_t + \sum_{\tau = -T_{\mathsf{pre}}, \tau \neq 1}^{T_{\mathsf{post}}} \delta_{\tau} \mathsf{d}_{s,t,\tau} + \mathsf{X}_{st}' \beta + \varepsilon_{st},$$

 $\mathsf{d}_{s,t,\tau} \equiv 1 \left\{ s \text{ received treatment } \tau \text{ periods ago} \right\}$

- If τ is negative, δ_{τ} gives the *pre-trend*, or *anticipatory effects*. If significant, trouble for parallel trends!
- Usually omit $\tau = -1$, normalize by period just before treatment.
- Beware: if treatment period is not the same for all treated units, δ_{τ} , $\tau < 0$ are spurious
- Use Sun and Abraham (2020): Interaction-weighted estimator!
- Unit/covariate time trends (3 periods min)
- Randomization/exact p-values

Nice Graphs!

Figure 3: Main Results: effect of large EPL drop on innovators and product/process innovation

Interaction-Weighted

Randomization

T-stat est.: -4.225. Rand. p-value: 0.016. Coeff. est.: -0.251. Rand. Avg.: -0.0014.

Figure 5: Process on product ratio: Permutation tests

Synthetic Control (Abadie et al., JEL 2021)

Abadie et al. (2003, 2010):

- Control group is called "donor pool"
- Covariates are called "predictors"
- Synthetic controls use a weighted average of comparison units to match lagged predictors:
 - Idea: if you are similar on observables you are also on unobservables
 - Not necessarily, but often, matches also pre-treatment outcomes

Notation In Abadie Case

- The data consist of observations on regions i at time t for $i=1,\ldots,J+1$, and $t=1,\ldots,T$, where $1 \leq T_0 < T$ is the intervention date
- $\alpha_{it} = Y_{it}^I Y_{it}^N$ is the effect of the intervention for unit i at time $t > T_0$. The first unit is treated and the aim is to estimate $(\alpha_{1T_0+1}, \ldots, \alpha_{1T})$. For $t > T_0$,

$$\alpha_{1t} = Y_{1t}^I - Y_{1t}^N = Y_{1t} - Y_{1t}^N.$$

 Y_{1t}^N is observed in post-intervention periods. Counterfactual Y_{1t}^N :

$$Y_{1t}^N = \sum_{j=2}^{J+1} w_j Y_{jt}^N,$$

 Weighted average of untreated units, effectively a vastly more general DD!

Choice of SC

The *Synthetic Control* is defined as the vector of weights \boldsymbol{W} . How to choose it?

Abadie, Diamond, and Hainmuller (2010):

- Choose a set of covariates ("predictors" for the dep. variable), $h \in \mathcal{H}$.
- Choose a set of importance weights v_h
- Synthetic control solves:

$$\boldsymbol{W}(\boldsymbol{V}) = \arg\min_{\boldsymbol{w} \geq 0} \left(\sum_{h \in \mathcal{H}} v_h \left[X_{1,h} - \sum_{j=2}^{J+1} w_j X_{j,h} \right]^2 \right)^{\frac{1}{2}}$$

• But how to choose v_h ?

Choosing weights

• Choose V such that:

$$oldsymbol{V} = rg \min_{oldsymbol{v}} \mathsf{MSPE}(oldsymbol{v}) \equiv \sum_{t < \mathcal{T}_0} \left(Y_{1t} - \sum_{j=2}^{J+1} w_j(oldsymbol{v}) Y_{jt}
ight)^2$$

- Minimizes the mean square prediction error (MSPE) of outcome in the pre-period.
- A more sophisticated way is using out-of-sample validation (see JEL and Abadie et al, 2015).
- Final result:
 - Synthetic control is a set of nonnegative weights, which you can report in a table
 - Also regression creates weights for each observation, but nobody sees them! (Cunningham, 2021)
 - Estimator bias decreases with length of pre-period.

All Data

Matching Table

Table 1: Cigarette Sales Predictor Means

	California		Average of
Variables	Real	Synthetic	38 control states
Ln(GDP per capita)	10.08	9.86	9.86
Percent aged 15-24	17.40	17.40	17.29
Retail price	89.42	89.41	87.27
Beer consumption per capita	24.28	24.20	23.75
Cigarette sales per capita 1988	90.10	91.62	114.20
Cigarette sales per capita 1980	120.20	120.43	136.58
Cigarette sales per capita 1975	127.10	126.99	132.81

Note: All variables except lagged cigarette sales are averaged for the 1980-1988 period (beer consumption is averaged 1984-1988). Cigarette sales are measured in packs.

Matching Weights (?)

Table 2: State Weights in the Synthetic California

State	Weight	State	Weight
Alabama	0	Montana	0.199
Alaska	-	Nebraska	0
Arizona	-	Nevada	0.234
Arkansas	0	New Hampshire	0
Colorado	0.164	New Jersey	-
Connecticut	0.069	New Mexico	0
Delaware	0	New York	-
District of Columbia	-	North Carolina	0
Florida	-	North Dakota	0
Georgia	0	Ohio	0
Hawaii	-	Oklahoma	0
Idaho	0	Oregon	_
Illinois	0	Pennsylvania	0
Indiana	0	Rhode Island	0
Iowa	0	South Carolina	0
Kansas	0	South Dakota	0
Kentucky	0	Tennessee	0
Louisiana	0	Texas	0
Maine	0	Utah	0.334
Maryland	-	Vermont	0
Massachusetts	-	Virginia	0
Michigan	-	Washington	_
Minnesota	0	West Virginia	0
Mississippi	0	Wisconsin	0
Missouri	0	Wyoming	0

Result

What About Inference? Randomize!

- Empirical CDF of *real* treatment post-outcome relative to *random* treatment ("*exact p-value*")
- Abadie et al. (2010) compute a synthetic control W_j for each unit in the sample
- Then compute:

$$\mathsf{RMSPE}_{j,t_1,t_2} = \left(\frac{1}{t_2 - t_1 + 1} \sum_{t \in [t_1,t_2]} \left(Y_{1t} - \sum_{j=2}^{J+1} w_j(\boldsymbol{v}) Y_{jt}\right)^2\right)^{\frac{1}{2}}.$$

• Compute the ratio of RMSPE post versus pre:

$$r_j = \frac{\mathsf{RMSPE}_{j,T_0+1,T}}{\mathsf{RMSPE}_{i,1,T_0}}$$

• Show the *permutation distribution* of r_j or compute the p-value as the empirical inverse CDF of r_i

Show all Placebo Gaps, $Y_{j,t} - \hat{Y}_{j,t}^N$

Last Words on Mariel? Peri and Yasenov (2018)

Peri and Yasenov v. Borjas

Panel C: Log Hourly Wages in Miami May-ORG CPS, Borjas (2017) Sample

1.90
1.75
1.60
1.45
1.30
Pre Post
1.30
Pre Post

Ours

---- Trend

Borjas

Peri and Yasenov vs. Josh and Krueger

Panel C: 15th Percentile Log Hourly Wages

Panel B: Mean Log Weekly Wages

Panel D: 15th Percentile Log Weekly Wages

— Miami ——— Synthetic Miami