6.3 Ideals in A and S^{-1} A for a muliplicative set S in A

Notation If *I* is an ideal in *A* and *S* a multiplicative set in *A*, then $S^{-1}I \subseteq S^{-1}A$ is the subset of all fractions of the form i/s where $i \in I$ and $s \in S$.

It follows from the subgroup criterion that $S^{-1}I$ is an additive subgroup of $S^{-1}A$. It is even an ideal in $S^{-1}A$ as $(a/s)(i/t)=ai/st \in S^{-1}I$ for all $a/s \in S^{-1}A$ and $i/t \in S^{-1}I$.

We obtain conversely an ideal I of A from an ideal J of $S^{-1}A$ by letting I be the preimage $\phi^{-1}(J)$ under the ring homomorphism $\phi: A \to S^{-1}A$ where $\phi(a)=a/1$

<u>Definition</u> If I is an ideal in A and S a multiplicative set in A, then the *saturation* I^ of I with respect to S is the set of all $a \in A$ such that $as \in I$ for some $s \in S$.

Note that $I \subseteq I^{\wedge}$. It is easy to see that I^{\wedge} is an ideal and this will also follow from proposition 6.3(b) below. Reid considers also the set I^{\wedge} in his proposition 6.3(b), but does not refer to I^{\wedge} as the saturation of I.

<u>Proposition 6.3.</u> Let A be a ring, S be a multiplicative set in A and $\phi: A \rightarrow S^{-1}A$ be the evident ring homomorphism which sends a to a/1. Then

- (a) for any ideal J of $S^{-1}A$, then $S^{-1}I = J$ for $I = \phi^{-1}(J)$.
- (b) for any ideal I of A, then $\phi^{-1}(S^{-1}I) = I^{\wedge}$.

Proof (a) $J \subset S^{-1}I$. This is clear as $b/s \in J \Rightarrow b/1 = (s/1)(b/s) \in J \Rightarrow b \in I$.

 $S^{-1}I \subseteq J$. $S^{-1}I$ consists of fractions i/s with $s \in S$ and $\phi(i)=i/1 \in J$. Hence as i/s=(1/s)(i/1) with $1/s \in S^{-1}A$ we get that $i/s \in J$ as J is an ideal in $S^{-1}A$

(b) $\phi^{-1}(S^{-1}I) \subseteq I^{\wedge}$. If $a \in \phi^{-1}(S^{-1}I)$, then $\phi(a) = a/1 \in S^{-1}I$ such that a/1 = b/t in $S^{-1}A$ for some $b \in I$ and $t \in S$. But then $\exists u \in S$ with $uta = ub \in I$ such that $a \in I^{\wedge}$ as $ut \in S$.

 $I^{\wedge} \subseteq \phi^{-1}(S^{-1}I)$. Suppose $a \in I^{\wedge}$. Then we may find $s \in S$ with $sa \in I$. Therefore. $\phi(a) = a/1 = sa/s \in S^{-1}I$, which means that $a \in \phi^{-1}(S^{-1}I)$.

<u>Definition</u> An ideal I of A is said to be saturated if $I = I^{\wedge}$. (Reid says here instead that I satisfies (*).)

Example: If *I* is the inverse image $\phi^{-1}(J)$ of an ideal $J \subseteq S^{-1}A$ under ϕ , then *I* is saturated by proposition 6.3 as $J = S^{-1}\phi^{-1}(J)$ $\Rightarrow I = \phi^{-1}(J) = \phi^{-1}(S^{-1}\phi^{-1}(J)) = \phi^{-1}(S^{-1}I) = I^{\wedge}$

Corollary 6.3. (i) For an ideal I of A, I is saturated if and only if $I = \phi^{-1}(S^{-1}I)$

- (ii) There is a bijection between the set of saturated ideals I of A and the set of all ideals J of $S^{-1}A$ given by $J=S^{-1}I$ and $I=\varphi^{-1}(J)$.
- (iii) If I an ideal, then $I^{\wedge}=A \Leftrightarrow S^{-1}I=S^{-1}A \Leftrightarrow I \cap S \neq \emptyset$.

<u>Proof</u> (i) This is an immediate consequence of part (b) of the proposition.

(ii) We have seen from the example that $I = \phi^{-1}(J)$ is saturated and from (a) that $S^{-1}I = J$ for $I = \phi^{-1}(J)$.

Conversely, if *I* is saturated, then $I = \phi^{-1}(S^{-1}I)$ by (i).

(iii) If $I^{\wedge}=A$, then $1 \in I^{\wedge}$ such that $s1 \in I$ for some $s \in S^{-}$. Hence $I \cap S \neq \emptyset$. If $I \cap S \neq \emptyset$ then i=s for some $i \in I$ and $s \in S$ and hence $S^{-1}I = S^{-1}A$ as $i/s = 1/1 \in S^{-1}I$. Finally, if $S^{-1}I = S^{-1}A$, then $I^{\wedge}=A^{\wedge}=A$ by part (b) of proposition 6.3.

To compare prime ideals in A and $S^{-1}A$ we need the following lemma, where the first assertion is taken from Reid's corollary 6.3(iv) and the second assertion is his proposition 6.3(c).

<u>Lemma</u> If P is a prime ideal with $P \cap S = \emptyset$ then P is saturated and $S^{-1}P$ a prime ideal in $S^{-1}A$.

<u>Proof</u> To see that P is saturated suppose that $sa \in P$ for $s \in S$ and $a \in A$. Then $a \in P$ as $s \in P$ is false by the assumption. Hence $P = P^{\wedge}$.

To see that $S^{-1}P$ is a prime ideal, suppose (a/s)(b/t) = p/v for $a,b \in A$, $p \in P$ and $s,t,v \in S$. Then $\exists u \in S$ with uvab = ustp which means that $(uv)ab \in P$. Therefore, $ab \in P^{\wedge}$ as $uv \in S$ and $ab \in P$. But then $ab \in P$ as $P = P^{\wedge}$ an. $a \in P$ or $b \in P$ as $P = P^{\wedge}$ is a prime ideal. Hence $a/s \in S^{-1}P$ or $b/t \in S^{-1}P$, which proves that $S^{-1}P$ is a prime ideal in $S^{-1}A$.

Now recall that we have a natural map ϕ^* : Spec $B \to \operatorname{Spec} A$ associated to any ring homomorphism $\phi: A \to B$ which sends a prime ideal Q in B to the prime ideal $P = \phi^{-1}(Q)$ in A. We will consider the case where $B = S^{-1}A$ and $\phi: A \to S^{-1}A$ is the map which sends a to a/1.

The following result is the last assertion in corollary 6.3(iv) in Reid's book

Theorem ϕ^* : Spec $S^{-1}A \to \text{Spec } A$ is injective and its image is the subset $\{P \in \text{Spec } A : P \cap S = \emptyset\}$ of Spec A.

<u>Proof</u> Let $Q \in \operatorname{Spec} S^{-1}A$ and $P = \phi^{-1}(Q)$ its image in Spec A under ϕ^* . Then $Q = S^{-1}P$ by proposition 6.3(a) and $P \cap S = \emptyset$ by the second equivalence in corollary 6.3(iii). Hence ϕ^* is injective with image contained in $\{P \in \operatorname{Spec} A : P \cap S = \emptyset\}$.

To show that ϕ^* maps Spec $S^{-1}A$ onto $\{P \in \operatorname{Spec} A : P \cap S = \emptyset\}$, let P be a prime ideal in A with $P \cap S = \emptyset$. Then P is saturated and $Q = S^{-1}P$ a prime ideal in $S^{-1}A$ by the lemma. Therefore. $P = \phi^{-1}(Q)$ by proposition 6.3(b), which proves that any $P \in \operatorname{Spec} A$ with $P \cap S = \emptyset$ is in the image of ϕ^* .

Remark We have actually proved that any $P \in \operatorname{Spec} A$ with $P \cap S = \emptyset$ is equal to $\phi^{-1}(Q)$ for $Q = S^{-1}P \in \operatorname{Spec} S^{-1}A$.