

Graph Search Algorithms

Tang Anke

Depth-first search (**DFS**) is an <u>algorithm</u> for traversing or searching <u>tree</u> or <u>graph</u> data structures. The algorithm starts at the <u>root node</u> (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before <u>backtracking</u>. A version of depth-first search was investigated in the 19th century by French mathematician <u>Charles Pierre Trémaux</u> as a strategy for <u>solving</u> mazes.


```
# Global or class scope variables
n = number of nodes in the graph
g = adjacency list representing graph
visited = [false, ..., false] # size n
function dfs(at):
  if visited[at]: return
  visited[at] = true
  neighbours = graph[at]
  for next in neighbours:
     dfs(next)
# Start DFS at node zero
start_node = 0
dfs(start_node)
```

Breadth-first search (BFS) is an <u>algorithm</u> for traversing or searching <u>tree</u> or <u>graph</u> data structures. It starts at the <u>tree root</u> (or some arbitrary node of a graph, sometimes referred to as a 'search key'), and explores all of the neighbor nodes at the present depth prior to moving on to the nodes at the next depth level.


```
# Global/class scope variables
n = number of nodes in the graph
g = adjacency list representing unweighted graph
# s = start node, e = end node, and 0 ≤ e,s < n
function bfs(s, e):

# Do a BFS starting at node s
prev = solve(s)

# Return reconstructed path from s → e
return reconstructPath(s, e, prev)</pre>
```

```
function solve(s):
 q = queue data structure with enqueue and dequeue
 q.enqueue(s)
 visited = [false, ..., false] # size n
 visited[s] = true
  prev = [null, ..., null] # size n
 while !q.isEmpty():
    node = q.dequeue()
    neighbours = g.get(node)
    for(next : neighbours):
      if !visited[next]:
        q.enqueue(next)
        visited[next] = true
        prev[next] = node
  return prev
```

```
function reconstructPath(s, e, prev):
 # Reconstruct path going backwards from e
  path = []
  for(at = e; at != null; at = prev[at]):
    path.add(at)
  path.reverse()
 # If s and e are connected return the path
  if path[0] == s:
    return path
  return []
```

Shortest Path Problem

Shortest Path Problem

In graph theory, a **component**, sometimes called a **connected component**, of an <u>undirected graph</u> is a <u>subgraph</u> in which any two <u>vertices</u> are <u>connected</u> to each other by <u>paths</u>, and which is connected to no additional vertices in the <u>supergraph</u>. For example, the graph shown in the illustration has three components. A vertex with no incident edges is itself a component. A graph that is itself connected has exactly one component, consisting of the whole graph.

A graph with 5 components.


```
# Global or class scope variables
n = number of nodes in the graph
g = adjacency list representing graph
count = 0
components = empty integer array # size n
visited = [false, ..., false] # size n
function findComponents():
  for (i = 0; i < n; i++):
    if !visited[i]:
      count++
      dfs(i)
  return (count, components)
function dfs(at):
  visited[at] = true
  components[at] = count
  for (next : g[at]):
    if !visited[next]:
      dfs(next)
```


In <u>computer science</u>, a **topological sort** or **topological ordering** of a <u>directed graph</u> is a <u>linear ordering</u> of its <u>vertices</u> such that for every directed edge *uv* from vertex *u* to vertex *v*, *u* comes before *v* in the ordering.

_ _ _ _ 4 8 5 6

In <u>computer science</u>, a **topological sort** or **topological ordering** of a <u>directed graph</u> is a <u>linear ordering</u> of its <u>vertices</u> such that for every directed edge *uv* from vertex *u* to vertex *v*, *u* comes before *v* in the ordering.

__374856

In <u>computer science</u>, a **topological sort** or **topological ordering** of a <u>directed graph</u> is a <u>linear ordering</u> of its <u>vertices</u> such that for every directed edge *uv* from vertex *u* to vertex *v*, *u* comes before *v* in the ordering.

374856

In <u>computer science</u>, a **topological sort** or **topological ordering** of a <u>directed graph</u> is a <u>linear ordering</u> of its <u>vertices</u> such that for every directed edge *uv* from vertex *u* to vertex *v*, *u* comes before *v* in the ordering.

2374856

Topological Sort

In <u>computer science</u>, a **topological sort** or **topological ordering** of a <u>directed graph</u> is a <u>linear ordering</u> of its <u>vertices</u> such that for every directed edge *uv* from vertex *u* to vertex *v*, *u* comes before *v* in the ordering.

12374856

Topological Sort

```
# Assumption: graph is stored as adjacency list
function topsort(graph):
  N = graph.numberOfNodes()
  V = [false,...,false] # Length N
  ordering = [0,...,0] # Length N
  i = N - 1 \# Index for ordering array
  for(at = 0; at < N; at++):
    if V[at] == false:
      visitedNodes = []
      dfs(at, V, visitedNodes, graph)
      for nodeId in visitedNodes:
        ordering[i] = nodeId
        i = i - 1
  return ordering
```

Topological Sort

```
# Execute Depth First Search (DFS)
function dfs(at, V, visitedNodes, graph):

V[at] = true

edges = graph.getEdgesOutFromNode(at)
for edge in edges:
   if V[edge.to] == false:
        dfs(edge.to, V, visitedNodes, graph)

visitedNodes.add(at)
```


from	null	null	null	null	null	null	null	null
distance	ω	∞	∞	œ	œ	8	ω	∞
vertex	1	2	3	4	5	6	7	8

from	1	null	null	null	null	null	null	null
distance	0	∞	œ	œ	œ	∞	œ	œ
vertex	1	2	3	4	5	6	7	8

from	1	1	null	null	null	null	null	null
distance	0	-8	8	8	8	8	8	8
vertex	1	2	3	4	5	6	7	8

from	1	1	1	null	null	null	null	null
distance	0	-8	-7	∞	œ	œ	œ	∞
vertex	1	2	3	4	5	6	7	8

from	1	1	1	null	null	null	1	null
distance	0	-8	-7	8	œ	8	3	∞
vertex	1	2	3	4	5	6	7	8

from	1	1	1	null	null	null	1	null
distance	0	-8	-7	8	œ	8	3	∞
vertex	1	2	3	4	5	6	7	8

from	1	1	1	2	null	null	1	null
distance	0	-8	-7	-2	œ	∞	3	∞
vertex	1	2	3	4	5	6	7	8

from	1	1	1	2	null	null	1	null
distance	0	-8	-7	-2	œ	8	3	∞
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	null	null	1	null
distance	0	-8	-7	-13	œ	œ	3	œ
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	null	1	null
distance	0	-8	-7	-13	-17	∞	3	ω
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	null	3	null
distance	0	-8	-7	-13	-17	œ	-15	œ
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	null	3	null
distance	0	-8	-7	-13	-17	œ	-15	∞
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	null	3	null
distance	0	-8	-7	-13	-17	œ	-15	œ
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	4	3	null
distance	0	-8	-7	-13	-17	-23	-15	∞
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	4	3	4
distance	0	-8	-7	-13	-17	-23	-15	-19
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	4	3	4
distance	0	-8	-7	-13	-17	-23	-15	- 19
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	4	3	4
distance	0	-8	-7	-13	-17	-23	-15	- 19
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	4	3	4
distance	0	-8	-7	-13	-17	-23	-15	- 19
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	4	3	4
distance	0	-8	-7	-13	-17	-23	-15	-19
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	4	3	4
distance	0	-8	-7	-13	-17	-23	-15	- 19
vertex	1	2	3	4	5	6	7	8

from	1	1	1	3	3	4	3	4
distance	0	-8	-7	-13	-17	-23	-15	-19
vertex	1	2	3	4	5	6	7	8

Negative cycles can manifest themselves in many ways...

Negative cycles can manifest themselves in many ways...

Iteration 2 complete, 7 more to go...

Let's fast-forward to the end...

-20

-5

-10

-20

We're finishe	d with	the S	SSSP	part.	Now	let's
detect tho	se nega	tive	cycle	es. If	we	can
relax an edge	then	there	's a	negati	ive o	cycle.

0	0
1	5
2	-20
3	-5
4	60
5	35
6	40
7	-10
8	-20
9	160

0	0
1	5
2	-20
3	-5
4	60
5	35
6	40
7	-10
8	-20
9	160

0	0
1	5
2	-20
3	-5
4	60
5	35
6	40
7	-10
8	-20
9	160

0	0
1	5
2	-20
3	-5
4	60
5	35
6	40
7	-10
8	-20
9	160

0	0
1	5
2	-20
3	-00
4	60
5	35
6	40
7	-10
8	-20
9	160

Unaffected node

0

5

-20

-00

-00

35

40

-10

-20

160

0	0
1	5
2	-∞
3	-00
4	-00
5	35
6	40
7	-10
8	-20
9	160

Unaffected

node

Directly in

negative cycle

Reachable by

0

5

-00

-00

-00

35

40

-10

-20

-00

0

2

3

4

5

6

8

9

Repeat this for another 8 iterations in order to ensure the cycles fully propagate. In this example, we happened to detect all cycles on the first iteration, but this was a coincidence.

Dijkstra algorithm Bellman-Ford Algorithm Floyd-Warshall algorithm

• • •

The basic DFS and BFS algorithm is the building block of some more complicated algorithms.

References

https://github.com/williamfiset/Algorithms/tr ee/master/src/main/java/com/williamfiset/alg orithms/graphtheory