PROBLEMS DISCUSSION SESSION

February 01, 2022

Section 2. Subgroups.

Orviz: Google form at 6 pm "Today".

2. Cyclic group generated by [1]

Deadline 11:59 pm

5 kg duration

$$\left\langle \left(\begin{array}{c} 1 & 1 \\ -1 & 0 \end{array} \right) \right\rangle = \left\langle \left(\begin{array}{c} q_1 & q^2 \\ q_2 & q^3 \end{array} \right), \dots \right\rangle$$

2.
$$a, b \in G$$
 with $|a|=S$ and $a^3b=ba^3$.

Prove that $ab=ba$.

(b)
$$H = \{1, -1\} \subset (1R - \{0\}, \cdot)$$

Is $H = \{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R - \{0\}, \cdot)$

Solution of $\{1, -1\} \subset (1R$

Notations (Artin Textbook).

$$Z^{+} := (Z,+), \quad |R^{+} := (R,+), \quad C^{+} = (C,+)$$

$$|R^{\times} := (R-\{0\}, 0), \quad C^{\times} = (C-\{0\}, 0)$$

$$(c)$$
 $(N,+) \subset (Z,+)$

$$(d) \qquad (1R_{>0}, \cdot) \subset (1R-\{0\}, \cdot)$$

$$H = \left\{ \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \middle| a \neq 0, a \in \mathbb{R} \right\} \subseteq GL_2(\mathbb{R})$$

$$II$$

$$G$$

$$II$$

$$G$$

$$II$$

$$G$$

4.
$$\phi \neq H \subseteq G^{K}$$
 Group, H is a subgroup of G non-empty set if fm all $x,y \in H$, $xy^{-1} \in H$.

5.
$$U_n = \left\{ z \in \mathcal{L} \text{ s.t. } z^n = 1 \right\}.$$

Is
$$V_n$$
 a cyclic group subgroup of $(C-\{0\}, 0)$ of order n ?

8.6. Klein 4-group is the smallest group which is not cyclic.

Multiplication Table.

Let $G = \{ g_1, g_2, \dots, g_n \}$ be a finite group with $g_1 = e$.

(identity element)

The multiplication table of group table of G is the nxn matrix whose (i,j)th entry is the group element 9,9,.

	√	9, = 0	92	93	9,5.	9n	
Also Icnow	9,=0	e	9, *92	9, 29			
Cayley's Table	92		92*92	92 * 93		92*9n	
~1850	93		93 * 92	93*93		93 * 9n	
Remork.	90		•				
G is Abelian	g_n		9 _n *9 ₂			9n*9n	
Symmetric.		$\int_{g_i^* * g_j^*} = g_j^* * g_i^* $					

$$|G| = 1$$
 $e = e$

1.e. $G = \{e\}$

$$|G| = 2$$
, assume $G = \{e, q\}$

$$|G| = 2$$
, assume $G = \{e, q\}$

$$|G| = 2$$

$$|G| = 2$$

$$|G| = 2$$

$$|G| = 2$$

$$|G| = 4$$

$$|G$$

Note that $a * a = a^2$ but G has only two elements $\{1, a\}$. Then the possibilities are $a^2 = a$ $\Rightarrow a = 1$ [Use concellation low]

But $a \neq 1$ in $G = \{1, a\}$

4 92 + 9, then 92 must be 1.

G = { 1, 9, 5} 2 E { 1, 2, b} $\begin{vmatrix} 1 & 4 & 6 \\ 4 & a^2 & 4b \\ 5 & 5a & 5^2 \end{vmatrix}$ $\begin{cases} q^2 \in G \\ qb \in G \\ ba \in G \end{cases}$ Note that $|a^2 \neq a \text{ and } b^2 \neq b$. Is ab = 9? If Yes, then b = 1, but $b \neq 1$ Is bq = b? If Yes, then q = 1, but $q \neq 1$. $ab \in \{1, 9, 5\}, hence \qquad ab = 1.$ Similarly, ba $\neq a$ $ba \neq ba \neq b$. $\Rightarrow ba = 1$ 1 | 1 | a | b | $a^2 \in \{1, q, b\}$ a | a | $a^2 = b$ | $a^2 = a$ | $a^2 = a$

Suppose
$$q^2 = 1$$

$$\Rightarrow$$
 $a^2b = 6$

$$\Rightarrow$$
 $q. / = 6$

$$= 1 \qquad \boxed{q = 6} \qquad \text{but} \qquad q \neq 6.$$

$$a^{2} \in \{1, a, b\}$$
, Hence $a^{2} = b$

Hence
$$q^2 = b$$

a2+1 , a2+a

 $a^{2} \in \left\{ 1, a, b \right\}$ $a^{2} = b$

$$b \qquad b^2 \in \{1, 9, 5\}$$

$$=$$
) $6^2 = 9$

Quaternion Group H.

$$H = \left\{ \pm 1, \pm i, \pm j, \pm k \right\}$$

where
$$1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

$$i' = \begin{bmatrix} i' & 0 \\ 0 & -i \end{bmatrix}$$

$$K = \begin{bmatrix} 0 & i' \\ 1 & 0 \end{bmatrix}$$

$$H = \langle i, j \text{ such that } i = 1, i = j^2, ji = i^3. \rangle$$

This H is a subgroup of GL₂ (4).

Klein four group V.

$$V = \left\{ \begin{array}{c} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

with
$$a^2 = e$$

$$b^2 = e$$

$$c^2 = e$$

$$\langle e, a \rangle$$

$$\langle a \rangle \neq \vee$$

$$\langle b \rangle \neq \vee$$

$$\langle c \rangle \neq \vee$$

Smallest group which is not cyclic.

Question. What are non-trivial proper subgroups of the

V = {e, a, b, c}

Subgroups of subgroups

{e, a} {e, b} {e, c}

Three proper subgroups

each of order 2.

Question. Is klein four group abelian? $(x \times y = y \times x \text{ for all } x_i y \in V)$

Exercise. Multiplication Table for group of order 4 and 5.

Multiplication table for S6.

Re-visit to symmetric group.

Let A be a non-empty set.

Define $S_A = \{f: A \rightarrow A \text{ such that } f \text{ is a bijection}\}$

Lemma. (5_{A,0}) is a Group.

Binory operation as composition of functions.

 $\begin{array}{ccc} \circ: & S_A \times S_A & \longrightarrow & S_A \\ & & (f,g) & \longmapsto & f \circ g \in S_A \end{array}$

Definition. (5A,0) is called "Symmetric Group" or "fermutation Group" on the set A.

Special (ose: $A = \{1, \dots, n\}$, we denote this by 5n.

Cycle. A cycle is a storing of integers which represents the elements of 5n which cyclically permutes these integers and fixes all other integers.

Exomple.

Notation: () for cycle, $\frac{213}{5} \in S_3$ $\frac{2}{3} + \frac{2}{3} + \frac{2}{3}$ $\frac{2}{3} + \frac{2}{3} +$

Consider a cycle (a, o2 ... ag) in 5n. a, ~ a2 ~ a3 ~ · · · ~ a4-1~ a4 Convention. Greek words o, z etc. are often used in litrature for elements in Sn. σ ∈ Sn, then $\sigma = \underbrace{\left(\begin{smallmatrix} q_1 & a_2 & \cdots & a_{\ell_1} \end{smallmatrix} \right) \left(\begin{smallmatrix} q_{\ell_1+1} & \cdots & q_{\ell_2} \end{smallmatrix} \right) \cdots \left(\begin{smallmatrix} a_{\ell_{k-1}+1} & \cdots & q_{\ell_k} \end{smallmatrix} \right)}_{}$ Cycle decomposition of permutation o a, ~> 92~>··~> 9/1 (a, +2~>·~>) 0/2 ···

$$\sigma = (12)(3) \in S_3$$

$$1 \longrightarrow 2 \longrightarrow 3$$

$$1 \longrightarrow 3 \longrightarrow 3$$

Note.

1. The length of a cycle is the number of integers which appear in it. In particular, a cycle of length m is colled an m-cycle.

$$\sigma = (1357)(2468)(9,10) \in S_{10}$$

4-(rcle 4-crcle 2 crcle

2. Two cycles are disjoint if they have no members in common.

3 of them come as a reflection, one for each rotation

(12)(3) \sim 213

(13)(2) \sim 321

Writing clements of S3

$$\sigma = \left(\begin{array}{cc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right)$$

$$f_2: 123 \longrightarrow 132$$

$$f_3:123 \rightarrow 213$$

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array}\right)$$

$$\left(\begin{array}{cccc}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

Verify

(12)
$$\circ$$
 (13) \neq (13) \circ (12).

In general,
$$5n$$
 $(n>3)$ is a non-abelian group-

Multiplication Table for 53

	()	(12)	(23)	(13)	(123)	(132)
()	()	(12)	(23)	(13)	(123)	(132)
(12)	(12)			a de	tails	
(23)	(23)		May	cout de		
(13)	(13)					
(123)	(123)					
(132)	(132)					

7.
$$6057$$

$$(9) (a72+572,+) is a subgroup of (72,+)$$
80
$$(6) (9,5+79) = 472+572$$

$$0 \text{ over } 22$$

- 8. Drow a multiplication table for the quoternion group H. Exercise.
- 9. H is a subgroup of 6 generated by $t\omega D$ clements a,b of a group G.

 Prove that if ab=ba, then H is an abelian group.

Solution.
$$H \text{ is Abelian means for any } h_1, h_2 \in H$$

$$We \text{ need to show } h_1, h_2 = h_2 h_1$$

Here 191 is not given.

Let
$$h \in H$$
, then
$$\begin{pmatrix}
a \\
b
\end{pmatrix}$$

h could be any of the following form

Let
$$h = a b a b a b c ... a b c n$$

where x,,.., × n are +ve integers (31,... On are the integers

Similarly KEH, then

hek= keh where 7,,., 2n and 5,,., 8n are
nositive integers.

Claim. hk = Kh.

$$h = a b$$
 and $K = a b$

then

$$h \cdot K = \underbrace{a \cdot ... \, a}_{4, \text{ times}} \underbrace{b \cdot ... \, b}_{4, \text{ times}} \underbrace{b \cdot ... \, b}_{4, \text{ times}} \underbrace{b \cdot ... \, b}_{5, \text{ times}}$$

and rewrite it as.

Again re-write the expression as

This approach works in general, and conclude

that
$$h \cdot k = k \cdot h \quad \forall \quad h, k \in H$$