Análisis de algoritmmos Tarea 1

Karla Adriana Esquivel Guzmán Luis Pablo Mayo Vega

30 de agosto de 2017 Facultad de Ciencias UNAM

Ejercicios

1.

2.

(a) n^2

Sabemos que la computadora con la que contamos realiza 10^{10} operaciones por segundo y que el algoritmo toma tiempo n^2 . Entonces, para una entrada de tamaño $\sqrt{10^{10}}$, el algoritmo se ejecutaría en exactamente 1 segundo.

Como una hora tiene 3600 segundos, buscamos una entrada n que tome $10^{10} \times 3600$ operaciones.

$$x = 10^{10} \times 3600 = 36 \times 10^{12}$$

$$a = \sqrt{10^{10}} = 100,000$$

$$b = \sqrt{3600} = 60$$

$$n = a \times b = 6,000,000$$

$$n^2 = 36 \times 10^{12} = x$$

n = 6,000,000

(b) n^{3}

Siguiendo el mismo método que en (a), la entrada de tamaño $\sqrt[3]{10^{10}}$ le tomaría 1 segundo

para ejecutarse y el factor de tiempo también estaría determinado por $\sqrt[3]{3600}$

$$x = 36 \times 10^{12}$$

$$a = \sqrt[3]{10^{10}} \approx 2154v$$

$$b = \sqrt{3600} \approx 15$$

$$n = a \times b \approx 32310$$

$$n^3 \approx 34 \times 10^{12}$$

Como aún hay una diferencia notable entre la n^3 con esta entrada y el número total de operaciones posibles en una hora, podemos aproximarla más con un algoritmo como el siguiente.

```
def aproxima_n(i, x):
    t = 3600^(1/3)
    b = (i*t)^3
    while x > b:
        b = (i*t)^3
    if b > x:
        return (i-1)*t
    i+=1
```

donde $i=\sqrt[3]{10^{10}}$, $\,x=36\times 10^{12}$ y obtenemos como resultado n=33019

(c) $100n^2$

De manera análoga a (a) pero le dividimos la constante 100

$$x = 36 \times 10^{12}$$

$$a = \frac{\sqrt{10^{10}}}{10} = 10,000$$

$$b = \sqrt{3600} = 60$$

$$n = a \times b = 600,000$$

$$100n^2 = 36 \times 10^{12} = x$$

(d) nlogn

$$x = 36 \times 10^{12}$$

$$nlog n = x \implies log n = \frac{x}{n}$$

$$\implies 2^{\frac{x}{n}} = n$$

n es casi tan grande como x \dots

(e) 2^n Aplicando leyes de exponentes y logaritmos:

$$x = 36 \times 10^{12} = 2^{n}$$

$$\implies \log(10^{10} \times 3600) = n$$

$$n = 45$$

$$\therefore n = 45$$

(f) 2^{2^n} Considerando que $log(36\times 10^{12})=45$ debemos encontrar una n tal que $2^n\leq 45$

$$x = 36 \times 10^{12}$$
$$\log(45) \approx 5 \implies 2^{2^5} \approx x$$
$$\therefore n = 5$$

- **3.**
- 4.
- **5.**
- 6.