A Generic Solver for Unconstrained Control Problems with Integral Functional Objectives

Shih-Hao Tseng, (pronounced as "She-How Zen")

July 1, 2020

Department of Computing and Mathematical Sciences, California Institute of Technology

• Given an objective \mathcal{J} , we aim to find controllers $u_m: \mathbb{R} \to \mathbb{R}$ to minimize

$$\min \mathcal{J}[U] = \int L_m(u_m(y_m), y_m) \ dy_m + \mathcal{R}_m[U_{-m}]$$

where $U = \{u_0(y_0), u_1(y_1), \dots, u_{M-1}(y_{M-1})\}$ is the set of controllers.

• Given an objective \mathcal{J} , we aim to find controllers $u_m : \mathbb{R} \to \mathbb{R}$ to minimize

$$\min \mathcal{J}[U] = \int L_m(u_m(y_m), y_m) dy_m + \mathcal{R}_m[U_{-m}]$$

where $U = \{u_0(y_0), u_1(y_1), \dots, u_{M-1}(y_{M-1})\}$ is the set of controllers.

• Given an objective \mathcal{J} , we aim to find controllers $u_m: \mathbb{R} \to \mathbb{R}$ to minimize

$$\min \mathcal{J}[U] = \int L_m(u_m(y_m), y_m) \ dy_m + \underline{\mathcal{R}_m[U_{-m}]}$$

where $U = \{u_0(y_0), u_1(y_1), \dots, u_{M-1}(y_{M-1})\}$ is the set of controllers.

• Given an objective \mathcal{J} , we aim to find controllers $u_m: \mathbb{R} \to \mathbb{R}$ to minimize

$$\min \mathcal{J}[U] = \int L_m(u_m(y_m), y_m) \ dy_m + \mathcal{R}_m[U_{-m}]$$

where $U = \{u_0(y_0), u_1(y_1), \dots, u_{M-1}(y_{M-1})\}$ is the set of controllers.

 Several control problems can be written in this form, including the Witsenhausen's counterexample.

ĺ

A Generic Algorithm to Approach UCP

- Finding the optimal controllers U to min $\mathcal{J}[U]$ is usually done on a case-by-case basis.
 - \Rightarrow Can we have a generic algorithm to obtain the optimal controller numerically?

A Generic Algorithm to Approach UCP

- Finding the optimal controllers U to $\min \ \mathcal{J}[U]$ is usually done on a case-by-case basis.
 - \Rightarrow Can we have a generic algorithm to obtain the optimal controller numerically?
- Could we use the generic algorithm without learning it in depth?
 - \Rightarrow A generic solver.

A Generic Algorithm to Approach UCP

- Finding the optimal controllers U to $\min \mathcal{J}[U]$ is usually done on a case-by-case basis.
 - \Rightarrow Can we have a generic algorithm to obtain the optimal controller numerically?
- Could we use the generic algorithm without learning it in depth?
 - \Rightarrow A generic solver.
- Faster computation
 - \Rightarrow GPU-accelerated parallel computation.

Local Search and Candidate Sets

Figure 1: Candidate sets, marked by shaded areas.

Convergence Time

Examples and Conclusion

Figure 2: Zero-delay source-channel coding.

Figure 3: 2-dimensional Witsenhausen's counterexample.