MATH 381 Section 4.3

Prof. Olivia Dumitrescu

22 March 2024

Section 4.3 Primes and GCDs

Recall for any $n \in \mathbb{N}$, $1 \mid n, n \mid n$.

Definition Let p be an integer where $p \geq 2$. p is prime if its only positive factors are 1 and p. An integer greater than 1 is called composite if it's not prime. Note: 1 is neither prime nor composite.

Theorem 0.1 Fundamental Theorem of Arithmetic Every integer greater than 1 is either prime or uniquely a product of primes.

Theorem 0.2 If n is a composite integer, then it has a prime factor less than or equal to \sqrt{n} .

Proof n is composite

$$1 < a < n \\ n = a \cdot b \implies 1 < b < n$$

Claim is false if $a > \sqrt{n} \wedge b > \sqrt{n}$.

$$a\cdot b>\sqrt{n}\cdot\sqrt{n}=n\implies n>n$$

Therefore, claim is true by contradiction.

Example Find prime factorization of 7007.

Theorem 0.3 There are infinitely many primes.

Proof Assume by contradiction this is not the case and we have finitely many primes.

$$\{p_1, \dots, p_n\}$$

$$q := p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n + 1$$

- 1. has a unique prime factorization
- 2. or is a prime number

$$\exists 1 \le j \le n(p_j \mid q)$$
$$p_j \mid p_1 \cdot p_2 \cdot \dots \cdot p_n + 1 \implies p_j \mid 1$$

i.e. there is no prime number dividing q. Therefore q has to be prime $q > p_n$ so it is not on the list. Therefore, there are infinitely many primes by contradiction.

Theorem 0.4 The ratio of $\pi(x)$ (the number of primes, not exceeding x), and $\frac{x}{\ln x}$ approaches 1 when x gets larger and larger.

Proposition 0.5 Goldbach's conjecture

1742 Goldbach wrote to Euler: Every odd integer is a sum of 3 primes n>5 Euler simplified it: Every even integer is a sum of 2 primes. True for all positive numbers up to $4\cdot 10^{18}$

Definition Let a and b be some integers not both zero.

- 1. The largest d so that $d \mid a$ and $d \mid b$. The largest d so that $d \mid a$ and $d \mid b$ is the greatest common divisor of a and b. (We denote it gcd(a, b).)
- 2. The least common multiple of positive integers a and b is the smallest positive integer divisible by both a and b (lcm(a,b)).

1.

$$gcd(a, b) \mid a$$

 $gcd(a, b) \mid b$

Moreover, if d is any other common divisor for a and b:

$$\begin{array}{c} d \mid a \\ d \mid b \end{array} \Longrightarrow d \mid \gcd(a, b) \end{array}$$

2.

$$a \mid \operatorname{lcm}(a, b)$$

 $b \mid \gcd(a, b)$

Moreover, if k is any other common multiple for a and b:

$$\begin{array}{c} a \mid k \\ b \mid k \end{array} \Longrightarrow \ \operatorname{lcm}(a, b) \mid k \end{array}$$

Theorem 0.6 $a, b \in \mathbb{N}$

$$lcm(a, b) \cdot gcd(a, b) = a \cdot b$$

Example What is the gcd(24, 36)?

Definition

- 1. We say that a and b are relatively prime (or coprime) if their greatest common divisor is 1.
- 2. The integers a_1, \ldots, a_n are pairwise relatively prime if $gcd(a_i, a_j) = 1$ for any $1 \le i \le n$ and $1 \le j \le n$.

Example 1. 10, 17, and 21 are pairwise relatively prime

2. 10, 19, and 24 are not pairwise relatively prime because $gcd(10, 24) \neq 1$.

Proof for Theorem 0.6

Nautral numbers a and b enjoy a unique prime factorization.

$$\begin{split} a &= p_1^{a_1} p_2^{a_2} \dots p_n^{a_n} \\ b &= p_1^{b_1} p_2^{b_2} \dots p_n^{b_n} \\ p_i \text{ are prime numbers} \\ 0 &\leq a_i, b_i \in \mathbb{N} \\ \gcd(a,b) &= p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)} \\ \operatorname{lcm}(a,b) &= p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)} \end{split}$$

For any 2 numbers a, b

$$\min(a, b) + \max(a, b) = a + b$$

$$\gcd(a,b) \cdot \operatorname{lcm}(a,b)$$

$$\left(p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}\right) \left(p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \dots p_n^{\max(a_n,b_n)}\right)$$

$$p_1^{\min(a_1,b_1)+\max(a_1,b_1)} p_2^{\min(a_2,b_2)+\max(a_2,b_2)} \dots p_n^{\min(a_n,b_n+\max(a_n,b_n))}$$

$$p_1^{a_1+b_1} p_2^{a_2+b_2} \dots p_n^{a_n+b_n} = a \cdot b \quad \blacksquare$$

Lemma 0.7 Let $a = b \cdot q + r$ $a, b \in \mathbb{Z}$.

$$q, r \in \mathbb{Z}$$
 $0 \le r < b$
 $\gcd(a, b) = \gcd(b, r)$

Proof Let $d = \gcd(a, b)$, then $d \mid a$ and $d \mid b$.

1.

$$\begin{cases} a = b \cdot q + r \\ d \mid a & \Longrightarrow d \mid a - b \cdot q = r \\ d \mid b & \\ \therefore d \mid r & \\ \Longrightarrow \gcd(a, b) \mid b \land \gcd(a, b) \mid r & \\ \Longrightarrow \gcd(a, b) \mid \gcd(b, r) & \end{cases}$$

2. Take $k = \gcd(b, r)$

$$\begin{cases} k \mid b \\ k \mid r \end{cases} \implies k \mid b \cdot q + r = a$$

but $a = b \cdot q + r \implies k \mid a$. Therefore, $k \mid a$ and $k \mid b$ so $k \mid \gcd(a, b) \implies \gcd(b, r) \mid \gcd(a, b)$

- 1. Part $1 \implies \gcd(a, b) \mid \gcd(b, r)$
- 2. Part $2 \implies \gcd(b,r) \mid \gcd(a,b)$

There are three ways to compute gcd(a, b).

- 1. List factors
- 2. Find prime factorization
- 3. Euclidean Algorithm

Corollary 0.8 Euclidean Algorithm

Knowing gcd(a,b), you know lcm(a,b). Suppose we have $a,b \in \mathbb{Z}$ such that $a \geq b$. Apply division algorithm $\implies q_i \in \mathbb{Z}$.

$$\begin{array}{lll} r_0 = a & r_0 = r_1 \cdot q_2 + r_2 & 0 \leq r_2 < r_1 \\ r_1 = b & r_1 = r_2 \cdot q_2 + r_3 & 0 \leq r_3 < r_2 \\ & \vdots & \\ r_{n-2} = r_{n-1} \cdot q_{n-1} + r_n & \\ & r_{n-1} = r_n \cdot q_n & \end{array}$$

 $a, b \in \mathbb{N}$

$$gcd(a,b) = r_n$$

Proof Lemma 0.7 + Relations 3

$$\rightarrow \gcd(a, b) = \gcd(r_0, r_1)$$

$$= \gcd(r_1, r_2)$$

$$= \gcd(r_2, r_3)$$

$$= \gcd(r_n, 0) = r_n$$

Theorem 0.9 Bézout theorem

If $a, b \in \mathbb{Z}_+$, then there exist integers s and t so that $a \cdot s + b \cdot t = \gcd(a, b)$.

Corollary 0.10 If $a, b \in \mathbb{N}$ are coprime, then gcd(a, b) = 1.

 \implies s and t so that $\in \mathbb{Z}$

$$a \cdot s + b \cdot t = 1$$

Lemma 0.11 If $a, b, c \in \mathbb{Z}_+$ such that

$$\begin{cases} a \mid b \cdot c \\ \gcd(a, b) = 1 \end{cases}$$

Then $a \mid c$.

Proof By Bézout's theorem, $gcd(a, b) = 1 \implies \exists m, n \in \mathbb{Z}$ such that

$$am + bn = 1$$
$$amc + bnc = c$$

$$\begin{array}{ccc} a \mid amc \\ a \mid bc \end{array} \implies a \mid amc + bnc = c \quad \blacksquare$$

Corollary 0.12 p is prime and

$$p \mid a_1 a_2 \dots a_n \qquad a_i \in \mathbb{Z}$$

Then $\exists i = \overline{1,n} \text{ so that } p \mid a_i$

$$\begin{array}{ccc}
p \mid b \cdot c \\
p \nmid b \iff \gcd(p, b) = 1
\end{array} \quad then \quad p \mid c$$