Capstone Project 2 - Advanced Data Science

Total Marks-60

Problem Statement: Build machine learning models for prediction (regression/classification).

Dataset: Dataset used in Capstone Project 1

Important!!! Use the cleaned data which you have obtained at the end of Exploratory Data Analysis in Capstone Project-1.

Part 1: [25 Marks]

- Analyse the dataset and identify the task to be performed whether it is regression or classification.
- Perform the steps below to build any 5 machine learning models to perform regression or classification tasks considering the dataset.
 - 1. Data Splitting Split the data into training and testing datasets.
 - 2. Build the model using training dataset
 - 3. Make predictions using the built model on test dataset.
 - 4. Evaluate model using appropriate evaluation metrics.
- Compare the accuracy of all 5 models and select the best one.
- Add Python comments to explain your code blocks.

Part 2: [30 Marks]

- Perform the following operations:
 - 1. Model building (any 5 ML models)
 - 2. Apply hyperparameter tuning using GridSearchCV for all the models.
 - 3. Create a dataframe to store the result of GridSearchCV for all the models which will includes model_name, best_score_ and best_params_

For example,

If regression task: (Any 5)

Model Name	Best Score	Best Parameters
Linear Regression		
Lasso Regression		
Ridge Regression		
SVR		
DecisionTreeRegressor		
KNeighborsRegressor		
RandomForestRegressor		

OR

If classification task:

Model Name	Best Score	Best Parameters
Logistic Regression		
SVC		
DecisionTreeClassifier		
KNeighboursClassifier		
RandomForestClassifier		

• Add Python comments to explain your code blocks.

Part 3: [5 Marks]

• Write conclusion to indicate your learning from part 1 and part 2 of the project.

Note –

- 1. The comments and conclusions/observations carry marks for each part.
- 2. Students should submit their work in the form of .ipynb code file to Ms. Samidha (samidhak@regenesys.net)
- 3. Please follow the filename format below: Name_of_student-Batch_name-Capstone_Project_2.ipynb.
- 4. Keep same naming convention as mentioned above for the subject of email.
- 5. The duration of the project work is set to one month. Last date of submission is 15 January 2024.