Università di Pisa

Corso di Scienza e Ingegneria dei Materiali -12 crediti

Corso di laurea in Ingegneria Chimica – Appello d'esame – 15-06-2018

Informazioni: questo è un esame senza consultazione di libri, appunti o altro materiale relativo al programma del corso. I calcolatori **sono** permessi ad esclusione di quelli preprogrammati a risolvere esercizi. Non è assolutamente consentito l'uso di telefoni cellulari, computer palmari ecc., né scambiare suggerimenti o opinioni con i propri colleghi. Per i calcoli e la brutta copia sono distribuiti dal docente appositi fogli da riconsegnare alla fine della prova: non utilizzare fogli di altra provenienza. Ai trasgressori sarà immediatamente *ritirato e annullato* il compito in qualunque momento della prova. Il tempo a disposizione per la prova è di 3 ore. È consentito uscire per andare in bagno solo a partire dalla seconda ora della prova.

Verrà valutato un punteggio parziale per risposte numericamente errate ma supportate da un ragionamento corretto. Il punteggio assegnato alle domande ed esercizi è riportato in cima al testo. Per l'ammissione occorre ottenere un punteggio pari o superiore a 18, così distribuito: almeno 12 punti nella parte numerica (esercizi) ed almeno 6 in quella teorica (quesiti a risposta aperta e chiusa).

Allieva/o:

e-mail:

PUNTEGGIO	UNO	DUE	TRE	QUATTRO	TOTALE
Esercizi	/5,5	/5,5	/6	/4	/21
Domande a Risposta aperta	/3	/3	/3	/3	/12
Voto finale					/33

Esercizi:

Esercizio Nº1

Per il seguente diagramma di fase Allumino Nichel:

- a) scrivere le regioni bifasiche nel diagramma;
- b) determinare le coordinate di composizione e temperatura delle reazioni invarianti, specificandone le equazioni di reazione;
- c) Per 6 kg di tale lega, di composizione 30% in peso di Nichel, è possibile avere, all'equilibrio, Al e Al₃Ni con masse rispettivamente di 2.5kg e 3,5kg? Se ciò è possibile a quale temperatura? Se, invece, non è possibile giustificare la risposta.

Esercizio N°2

Dati i seguenti sali binari:

- TiO_2 (α = 2,41, r_{Ti}^{2+} =60,5pm, r_{O2}^{-} =140pm, n=8);
- NaCl (α = 1.75, r_{Na}^+ =102pm, r_{Cl}^- =181pm, n=8).

Calcolare l'energia potenziale del reticolo cristallino e commentare i risultati ottenuti.

Esercizio N°3

Vengono forniti i seguenti dati di fatica per una lega:

Stress Amplitude [MPa (ksi)]	Cycles to Failure	
470 (68.0)	10 ⁴	
440 (63.4)	3×10^{4}	
390 (56.2)	10^{5}	
350 (51.0)	3×10^{5}	
310 (45.3)	10^{6}	
290 (42.2)	3×10^{6}	
290 (42.2)	10^{7}	
290 (42.2)	10^{8}	

- a) Utilizzando questi dati disegnare la curva S-N
- b) Ipotizzando che come sforzo a rottura si possa utilizzare quello massimo di trazione pari a 250 MPa e usando un numero di cicli a fatica di 7*10^6; determinare la lunghezza finale di una cricca di una lastra di tale lega avente una lunghezza iniziale a_0 =0,6 mm (m=1, Y=1.5, A=2·10^-12m).
- c) Determinare, infine, la tenacità a frattura a deformazione piana della lastra (K_{IC})

Esercizio N°4

Il tempo di rilassamento per un elastomero a 25°C è di 40 giorni e si riduce a 27 giorni se la temperatura viene portata a 45°C.

Calcolare l'energia di attivazione per il processo di rilassamento, utilizzando R=1,987 cal/mol K.

Domande a risposta aperta:

Domanda N°1

Descrivere i principali meccanismi di diffusione che avvengono nei materiali metallici.

Domanda N°2

Nei materiali compositi, come l'orientazione delle fibre influenza lo stato di sforzo/deformazione e le principali proprietà meccaniche del composito risultante?

Domanda N°3

Analizzare i diversi tipi di microstrutture che si ottengono raffreddando in modo molto veloce un acciaio di composizione eutettoidica dal campo austenitico (diagramma TTT).

Domanda N°4

Cos'è la sinterizzazione? Cosa avviene alle particelle ceramiche durante tale processo? Quali sono i parametri di processo che possono influenzare le caratteristiche del prodotto finale.