

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS Facultad de Ingeniería Electrónica y Eléctrica

SEMESTRE: 2023-I

CURSO: Algebra y Geometría Analítica

TEMA: Potencia, raíces, forma exponencial y logaritmo de un número complejo.

GUÍA DE PRÁCTICA Nº 6

1. Determine los valores z de las siguientes ecuaciones

a)
$$z^3 = 8 - 8i$$

a)
$$z^3 = 8 - 8i$$
 b) $z^5 = 1 + i\sqrt{3}$ c) $z^4 = 1 + i$

c)
$$z^4 = 1 + i$$

$$d) (z+2i)^4 = -8i + 81i\sqrt{3}$$

2. Determine las siguientes raíces

$$a) (-i)^{1/7}$$

b)
$$(\sqrt{3}+i)^{1/4}$$

c)
$$(3-3i)^{1/5}$$

$$\begin{array}{ll} a) \; (-i)^{1/7} & b) \; (\sqrt{3} + i)^{1/4} \\ c) \; (3 - 3i)^{1/5} & d) \; (-1 - i\sqrt{3})^{1/6} \end{array}$$

3. Calcular z^{-3} ; z^{-14} ; z^{-83} si z es:

a)
$$z = 2 - 2i$$
 b) $z = -9 + 9i$ c) $z = -1 - i$

c)
$$z = -1 - z$$

4. Calcular
$$z = \sqrt[6]{1 - \sqrt{3i}}$$

- 5. (a) Demuestre que la suma de las raíces n-ésimas de la unidad es cero.
 - (b) Demuestre que el producto de las raíces n-enésimas de la unidad es 1 ó -1.
- 6. Haciendo uso de la fórmula de De Moivre prueba que:

a)
$$sen(3\alpha) = 3sen(\alpha) - 4sen^3(\alpha)$$

a)
$$sen(3\alpha) = 3sen(\alpha) - 4sen^3(\alpha)$$
 b) $cos(4\alpha) = 8cos^4(\alpha) - 8cos^2(\alpha) + 1$

c)
$$sen(5\alpha) = 5sen(\alpha) - 20sen^3(\alpha) + 16sen^5(\alpha)$$

- 7. Sean $n \in \mathbb{N}$ y $w = \cos\left(\frac{2\pi}{n}\right) + i sen\left(\frac{2\pi}{n}\right)$ dado un número entero m y multiplo de
 - n. Calcular la suma $1 + w^m + w^{2m} + \cdots + w^{(n-1)m}$.

8. Si
$$z = \frac{(1-i)^{10}(-i+\sqrt{3})^{12}}{(i\sqrt{3}+1)^8}$$
, calcular a) $z^3 + \frac{1}{z^3}$ b) $Arg(z)$ c) $||z||$

$$c)$$
 $||z|$

9. En cada ejercicio, calcular las potencias indicadas:

a)
$$(1-i)^5$$
 b) $(\sqrt{3}-i)^6$ c) $(2+2i)^{-4}$ d) $\frac{i^7-i^{-7}}{2i}$

c)
$$(2+2i)^{-4}$$

$$d) \frac{i^7 - i^{-7}}{2i}$$

$$e) (-1 + \sqrt{3}i)^7$$
 $f) (1+i)^{-8}$

$$f) (1+i)^{-8}$$

10. Simplifique

$$a) \left(\frac{1 + itag(\alpha)}{1 - itag(\alpha)}\right)$$

a)
$$\left(\frac{1+itag(\alpha)}{1-itag(\alpha)}\right)^n$$
 b) $\left(\frac{1+sen(\theta)+icos(\theta)}{1+sen(\theta)-icos(\theta)}\right)^n$

- 11. Si n es un entero positivo, demostrar que: $(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1}cos(\frac{n\pi}{4})$
- 12. Si $z + \frac{1}{z} = 2\cos(\alpha)$ demostrar $z^n + \frac{1}{z^n} = 2\cos(n\alpha)$
- 13. Resolver las siguientes ecuaciones:

a)
$$x^3 - 8 = 0$$

c)
$$x^6 - 1 = 0$$

a)
$$x^3 - 8 = 0$$
 b) $x^4 + i = 0$ c) $x^6 - 1 = 0$ d) $x^3 - 2i + 2 = 0$

$$e) x^5 - 27i = 0$$

14. Expresar cada uno de los siguientes números complejos en la forma exponencial:

$$a) - i \quad b) \ 1 - i$$

d)
$$\sqrt{3}$$

$$e) 2 - 2$$

a)
$$-i$$
 b) $1-i$ c) $3i$ d) $\sqrt{3}-3i$ e) $2-2i$ f) $-4-4\sqrt{3}i$

15. Expresar cada uno de los siguientes números complejos en la forma binomial:

a)
$$e^{\left(\frac{\pi}{3}\right)i}$$
 b) $3e^{\left(\frac{\pi}{2}\right)i}$ c) $-2e^{-\pi i}$ d) $i - e^{2\pi i}$ e) $e^{\left(\frac{\pi}{4}\right)i} + e^{-\left(\frac{\pi}{4}\right)i}$

$$c) - 2e^{-\pi i}$$

$$d) i - e^{2\pi i}$$

e)
$$e^{(\frac{\pi}{4})i} + e^{-(\frac{\pi}{4})i}$$

$$f) \frac{1 + e^{\left(\frac{\pi}{2}i\right)}}{1 - e^{\left(\frac{\pi}{2}i\right)}}$$

16. Calcular:

Calcular:
a)
$$Log(-i)$$
 b) $Log(1+i)$ c) $Log(1+\sqrt{3}i)$ d) i^{-i} e) $(-i)^i$
f) 1^{-i} g) e^{e^i}

c)
$$Log(1+\sqrt{3}i)$$

$$d) i^{-i} e) (-i)$$

$$f) 1^{-}$$

$$g) e^{e}$$

- 17. Halle los números $z \in \mathbb{C}$ tal que $\ln z = 1 + \frac{\pi}{3}i$.
- 18. Si w es una raíz cúbica compleja de la unidad, probar que $(1+w^2)^4=w$.
- 19. Hallar todas la raíces de la ecuación $z^8 + z^4 + 1 = 0$.
- 20. Demostrar que:

(a)
$$\cos \theta = \frac{1}{2} (e^{i\theta} + e^{-i\theta})$$

(b)
$$\sin \theta = \frac{1}{2i} (e^{i\theta} - e^{-i\theta})$$