ESC 201T : Introduction to Electronics

Lecture32: Digital Circuits-2

B. Mazhari Dept. of EE, IIT Kanpur

Numbers Every number system is associated with a base or radix

A positional notation is commonly used to express numbers

$$(a_5 a_4 a_3 a_2 a_1 a_0)_r = a_5 r^5 + a_4 r^4 + a_3 r^3 + a_2 r^2 + a_1 r^1 + a_0 r^0$$

The decimal system has a base of 10 and uses symbols (0,1,2,3,4,5,6,7,8,9) to represent numbers

$$(2009)_{10} = 2 \times 10^3 + 0 \times 10^2 + 0 \times 10^1 + 9 \times 10^0$$

$$(123.24)_{10} = 1 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0} + 2 \times 10^{-1} + 4 \times 10^{-2}$$

An octal number system has a base 8 and uses symbols (0,1,2,3,4,5,6,7)

$$(2007)_8 = 2 \times 8^3 + 0 \times 8^2 + 0 \times 8^1 + 7 \times 8^0$$

What decimal number does it represent?

$$(2007)_8 = 2 \times 512 + 0 \times 64 + 0 \times 8^1 + 7 \times 8^0 = 1033$$

A hexadecimal system has a base of 16

Number	Symbol
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	Α
11	В
12	С
13	D
14	E
15	F

$$(2BC9)_{10} = 2 \times 16^3 + B \times 16^2 + C \times 16^1 + 9 \times 16^0$$

How do we convert it into decimal number?

$$(2BC9)_{10} = 2 \times 4096 + 11 \times 256 + 12 \times 16^{1} + 9 \times 16^{0} = 11209$$

A Binary system has a base 2 and uses only two symbols 0, 1 to represent all the

numbers

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

Which decimal number does this correspond to?

$$(1101)_2 = 1 \times 8 + 1 \times 4 + 0 \times 2^1 + 1 \times 2^0 = 13$$

20	1
21	2
2 ²	4
2 ³	8
24	16
2 ⁵	32
2 ⁶	64
2 ⁷	128
2 ⁸	256
2 ⁹	512
2 ¹⁰	1024(K)
2 ²⁰	1048576(M)

2-1	2-2	2-3	2-4	2 -5	2 ⁻⁶
0.5	0.25	0.125	0.0625	0.03125	0.015625

Developing Fluency with Binary Numbers

$$1100001 = ?$$
 $64+32+1=97$

$$0.101 = ?$$
 $0.5+0.125=0.625$

Converting decimal to binary number

Convert 45 to binary number

$$(45)_{10} = b_n b_{n-1} \dots b_0$$

$$45 = b_n 2^n + b_{n-1} 2^{n-1} \dots b_1 2^1 + b_0$$

Divide both sides by 2

$$\frac{45}{2} = 22.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots b_1 2^0 + b_0 \times 0.5$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots + b_1 2^0 + b_0 \times 0.5$$

$$\Rightarrow b_0 = 1$$

$$22 + 0.5 = b_n 2^{n-1} + b_{n-1} 2^{n-2} + \dots + b_1 2^0 + b_0 \times 0.5$$
 $\Rightarrow b_0 = 1$

$$22 = b_n 2^{n-1} + b_{n-1} 2^{n-2} \dots b_2 2^1 + b_1 2^0$$

Divide both sides by 2

$$\frac{22}{2} = 11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots b_2 2^0 + b_1 \times 0.5 \implies b_1 = 0$$

$$11 = b_n 2^{n-2} + b_{n-1} 2^{n-3} \dots + b_3 2^1 + b_2 2^0$$

$$5.5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} + b_3 2^0 + 0.5b_2$$
 $\Rightarrow b_2 = 1$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots b_4 2^1 + b_3 2^0$$

$$5 = b_n 2^{n-3} + b_{n-1} 2^{n-4} \dots b_4 2^1 + b_3 2^0$$

$$2.5 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots b_4 2^0 + 0.5b_3 \implies b_3 = 1$$

$$2 = b_n 2^{n-4} + b_{n-1} 2^{n-5} \dots b_5 2^1 + b_4 2^0$$

$$1 = b_n 2^{n-5} + b_{n-1} 2^{n-6} \dots b_5 2^0 + 0.5b_4 \implies b_4 = 0$$

$$\Rightarrow b_5 = 1$$

$$(45)_{10} = b_5 b_4 b_3 b_2 b_1 b_0 = 101101$$

Converting decimal to binary number

Method of successive division by 2

45	remainder	_
22	1	
11	0	
5	1	
2	1 4	15 = 101101
1	0	
0	1	

Convert (153)₁₀ to octal number system

$$(153)_{10} = (b_n b_{n-1} \dots b_0)_8$$

$$(153)_{10} = b_n 8^n + b_{n-1} 8^{n-1} \dots b_1 8^1 + b_0$$

Divide both sides by 8

$$\frac{153}{8} = 19.125 = b_n 8^{n-1} + b_{n-1} 8^{n-2} \dots b_1 8^0 + \frac{b_0}{8} \implies \frac{b_0}{8} = 0.125 \implies b_0 = 1$$

Converting decimal to binary number

Convert $(0.35)_{10}$ to binary number

$$(0.35)_{10} = 0.b_{-1}b_{-2}b_{-3}.....b_{-n}$$

$$0.35 = 0 + b_{-1}2^{-1} + b_{-2}2^{-2} + \dots b_{-n}2^{-n}$$

How do we find the b₋₁ b₋₂ ...coefficients?

Multiply both sides by 2

$$0.7 = b_{-1} + b_{-2} 2^{-1} + \dots b_{-n} 2^{-n+1}$$
 $\Rightarrow b_{-1} = 0$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

$$0.7 = b_{-2}2^{-1} + b_{-3}2^{-2} + \dots b_{-n}2^{-n+1}$$

Multiply both sides by 2

$$1.4 = b_{-2} + b_{-3}2^{-1} + \dots b_{-n}2^{-n+2}$$

Note that $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dots \le 1$

$$\Rightarrow b_{-2} = 1$$

$$0.4 = b_{-3}2^{-1} + b_{-4}2^{-2} \dots b_{-n}2^{-n+2}$$

$$0.8 = b_{-3} + b_{-4} 2^{-1} \dots b_{-n} 2^{-n+3}$$
 $\Rightarrow b_{-3} = 0$

$$\Rightarrow b_{-3} = 0$$

Converting decimal to binary number

0. 25 x2 0. 5		0.	125
x2			
0. 5			
v2	*	0.	5 x2
$0.125 = (.001)_2$ 1. 0	0.125 = (.00	1.	0

$$0.8125 = ?$$

$$0.8125 = ?$$

$$1. 625$$

$$1. 25$$

$$0.8125 = (.1101)2
$$0. 5$$

$$1. 0$$$$

Binary numbers

Most significant bit or MSB

10	11	\sim	n	11	1	•
IU	11	υţ	JU	1 1	ı	

decimal	2bit	3bit	4bit	5bit
0	00	000	0000	00000
1	01	001	0001	00001
2	10	010	0010	00010
3	11	011	0011	00011
4		100	0100	00100
5		101	0101	00101
6		110	0110	00110
7		111	0111	00111
8			1000	01000
9			1001	01001
10			1010	01010
11			1011	01011
12			1100	01100
13			1101	01101
14			1110	01110
15			1111	01111

Least significant bit or LSB

This is a 10 bit number

Binary digit = bit

N-bit binary number can represent numbers from 0 to 2^N -1

Converting Binary to Hex and Hex to Binary

$$(b_7b_6b_5b_4b_3b_2b_1b_0)_b = (h_1, h_0)_{Hex}$$

$$b_7 2^7 + b_6 2^6 + b_5 2^5 + b_4 2^4 + b_3 2^3 + b_2 2^2 b_1 2^1 + b_0 = h_1 16^1 + h_0$$

$$(b_7 2^3 + b_6 2^2 + b_5 2^1 + b_4) 2^4 + (b_3 2^3 + b_2 2^2 b_1 2^1 + b_0) = h_1 16^1 + h_0$$

$$h_1 \qquad h_0$$

$$(10110011)_b = (1011)(0011) = (B3)_{Hex}$$

$$(110011)_b = (11)(0011) = (33)_{Hex}$$

$$(EC)_{Hex} = (1110)(1100) = (11101100)_b$$

Number	Symbol
0(0000)	0
1(0001)	1
2(0010)	2
3(0011)	3
4(0100)	4
5(0101)	5
6(0110)	6
7(0111)	7
8(1000)	8
9(1001)	9
10(1010)	А
11(1011)	В
12(1100)	С
13(1101)	D
14(1110)	Е
15(1111)	F

Binary Addition/Subtraction

Complement of a number

9's complement of n-digit number x is 10^n -1 -x

10's complement of n-digit number x is 10^n -x

$$10^2 - 1 - 85$$

$$99 - 85 = 14$$

9's complement of
$$123 = 999 - 123 = 876$$

10's complement of 123 = 9's complement of 123+1=877

Complement of a binary number

1's complement of n-bit number x is 2^n -1 -x

2's complement of n-bit number x is 2^n -x

1's complement of 1011?

$$2^4 - 1 - 1011$$

$$1111 - 1011 = 0100$$

1's complement is simply obtained by flipping a bit (changing 1 to 0 and 0 to 1)

0110010

2's complement of 1010 = 1's complement of 1010+1 = 0110

2's complement of 110010 =

Leave all least significant 0's as they are, leave first 1 unchanged and then flip all subsequent bits

001110

 $1011 \to 0101$

 $101101100 \rightarrow 010010100$

Subtraction using 10's complement

This way of subtraction would make sense only if subtracting a number x_2 from 10^N is much simpler than directly subtracting it directly from x_1

Subtraction using 10's complement

This way of subtraction would make sense only if subtracting a number x_2 from 10^N is much simpler than directly subtracting it directly from x_1

Advantages of using 2's complement

Can we carry out $Y = X_1 - X_2$ using such an adder?

Note that carry will be there only if $x_1 - x_2$ is positive as 2^N is N+1 bits (1 followed by N zeros)

Advantages of using 2's complement

Note that carry will be there only if $x_1 - x_2$ is positive as 2^N is N+1 bits (1 followed by N zeros)

A zero carry implies a negative number whose magnitude $(x_2 - x_1)$ can be found as follows:

$$S = x_1 + 2^N - x_2$$

2's complement of
$$S = 2^N - (x_1 + 2^N - x_2) = x_2 - x_1$$

Example

Example

It makes sense to use adder as a subtractor as well provided additional circuit required for carrying out 2's complement is simple

Representing positive and negative binary numbers

One extra bit is required to carry sign information. Sign bit = 0 represents positive number and Sign bit = 1 represents negative number

decimal	Signed Magnitude
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111

decimal	Signed 1's complement
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1111
-1	1110
-2	1101
-3	1100
-4	1011
-5	1010
-6	1001
-7	1000

decimal	Signed 2's complement
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001

If we represent numbers in 2's complement form carrying out subtraction is same as addition

decimal Signed 2's complement 0 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 -1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010 -7 1001		
1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 -1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010	decimal	
2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 -1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010	0	0000
3 0011 4 0100 5 0101 6 0110 7 0111 -1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010	1	0001
4 0100 5 0101 6 0110 7 0111 -1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010	2	0010
5 0101 6 0110 7 0111 -1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010	3	0011
6 0110 7 0111 -1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010	4	0100
7 0111 -1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010	5	0101
-1 1111 -2 1110 -3 1101 -4 1100 -5 1011 -6 1010	6	0110
-2 1110 -3 1101 -4 1100 -5 1011 -6 1010	7	0111
-3 1101 -4 1100 -5 1011 -6 1010	-1	1111
-4 1100 -5 1011 -6 1010	-2	1110
-5 1011 -6 1010	-3	1101
-6 1010	-4	1100
	-5	1011
-7 1001	-6	1010
	-7	1001

Example

's complement is 0011 = 3

's complement is 0111 = 7

Boolean Algebra

Algebra on Binary numbers

A variable x can take two values {0,1}

Basic operations:

AND:
$$y = x_1 \cdot x_2$$

Y is 1 if and only if both x_1 and x_2 are 1, otherwise zero

	X ₁	X_2	У
Truth Table	0	0	0
	0	1	0
	1	0	0
	1	1	1

Basic operations:

OR:
$$y = x_1 + x_2$$

Y is 1 if either x_1 and x_2 is 1. Or y= 0 if and only if both variables are zero

NOT:
$$y = \overline{x}$$

Boolean Algebra

Basic Postulates

P1:
$$x + 0 = x$$

P2:
$$x + y = y + x$$

P3:
$$x.(y+z) = x.y+x.z$$

P4:
$$x + \bar{x} = 1$$

P1:
$$x \cdot 1 = x$$

P2:
$$x \cdot y = y \cdot x$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x \cdot \bar{x} = 0$$

Basic Theorems

T1:
$$x + x = x$$

T2:
$$x + 1 = 1$$

T3:
$$(\overline{x}) = x$$

T4:
$$x + (y+z) = (x+y)+z$$

T5
$$(x+y) = x \cdot y$$
 (DeMorgan's theorem)

T6:
$$x+x.y = x$$

T1:
$$x \cdot x = x$$

T2:
$$x \cdot 0 = 0$$

T4:
$$x \cdot (y.z) = (x.y).z$$

T5
$$\overline{(x.y)} = x + y \text{ (DeMorgan's theorem)}$$

T6:
$$x.(x+y) = x$$

Proving theorems

P1:
$$x + 0 = x$$

P1:
$$x . 1 = x$$

P2:
$$x + y = y + x$$
 P2: $x \cdot y = y \cdot x$

P2:
$$x \cdot y = y \cdot x$$

P3:
$$x.(y+z) = x.y+x.z$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x + \bar{x} = 1$$

P4:
$$x \cdot x = 0$$

Prove T1:
$$x + x = x$$

 $x + x = (x+x). 1 (P1)$

Prove T1:
$$x \cdot x = x$$

 $x \cdot x = x \cdot x + 0$ (P1)

$$= (x+x). (x+x) (P4)$$

$$= x.x + x.x - (P4)$$

$$= x + x.\overline{x} \quad (P3)$$

$$= x \cdot (x + x^{-})$$
 (P3)

$$= x + 0 \quad (P4)$$

$$= x . 1 (P4)$$

$$= x (P1)$$

$$= x (P1)$$

Proving theorems

P1:
$$x + 0 = x$$

P2:
$$x + y = y + x$$

P3:
$$x.(y+z) = x.y+x.z$$

P4:
$$x + \bar{x} = 1$$

P1:
$$x . 1 = x$$

P2:
$$x \cdot y = y \cdot x$$

P3:
$$x+y.z = (x+y).(x+z)$$

P4:
$$x \cdot \bar{x} = 0$$

Prove :
$$x + 1 = 1$$

$$x + 1 = x + (x + \overline{x})$$

$$=(x+x)+\overline{x}$$

$$= x + \overline{x}$$

$$= 1$$

$$x + x . y = x$$

$$= x . 1 + x. y$$

$$= x. (1+ y)$$

$$= x \cdot 1$$

$$=_{\mathbf{X}}$$

$$x + \overline{x} \cdot y = x + y$$

$$= (x + \bar{x}). (x + y)$$

$$= 1. (x+y)$$

$$= x + y$$

DeMorgan's theorem

$$\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}$$
.

$$\overline{(x_1. x_2. x_3....)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$

Simplification of Boolean expressions

$$\overline{(x_1 + x_2 + x_3 +)} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \cdot \overline{(x_1 \cdot x_2 + \overline{x_2} \cdot x_3)} = ?$$

$$\overline{(x_1 + x_2 + x_3 +)} = (\overline{x_1} + \overline{x_2} + \overline{x_3} +)$$

$$=(x_1 + \overline{x_2}) \cdot (x_2 + \overline{x_3})$$

$$= x_1. x_2 + x_1. \overline{x_3} + \overline{x_2}. \overline{x_3}$$

Function of Boolean variables

$$\begin{array}{c|ccc}
x_1 & x_2 & y \\
0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}$$

Y = 1 when x_1 is 0 and x_2 is 1

$$y = \overline{x_1} \cdot x_2$$

Boolean expression

Obtaining Boolean expressions from truth Table

$$y = \overline{x_1} \cdot \overline{x_2} + x_1 \cdot x_2$$

Obtaining Boolean expressions from truth Table

$$\begin{array}{c|cccc} x_1 & x_2 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$$

$$y = \overline{x_1} \cdot x_2 + x_1 \cdot \overline{x_2}$$

Instead of writing expressions as sum of terms that make y equal to 1, we can also write expressions using terms that make y equal to 0

$$y = x_1 + x_2$$

$$\mathbf{x}_1 + \mathbf{x}_2$$

$$y = (x_1 + x_2) \cdot (\overline{x_1} + \overline{x_2})$$

$$\overline{x_1} + \overline{x_2}$$

Obtaining Boolean expressions from truth Table

Product of Sum (POS) form