

GAATICGGAG GAATTATICA AAACATAAAC ACAATAAACA ATITGAGTAG TIGCCGCACA	60
CACACACACA CACAGCCCGT GGATTATTAC ACTAAAAGCG ACACTCAATC CAAAAAATCA	120
GCAACAAAAA CATCAATAAA C ATG CAT TGG ATT AAA TGT TTA TTA ACA GCA Met His Trp Ile Lys Cys Leu Leu Thr Ala 1 5 10	171
TTC ATT TGC TTC ACA GTC ATC GTG CAG GTT CAC AGT TCC GGC AGC TTT Phe Ile Cys Phe Thr Val Ile Val Gln Val His Ser Ser Gly Ser Phe 15 20 25	219
GAG TTG CGC CTG AAG TAC TTC AGC AAC GAT CAC GGG CGG GAC AAC GAG Glu Leu Arg Leu Lys Tyr Phe Ser Asn Asp His Gly Arg Asp Asn Glu 30 35 40	267
GGT CGC TGC TGC AGC GGG GAG TCG GAC GGA GCG ACG GGC AAG TGC CTG Gly Arg Cys Cys Ser Gly Glu Ser Asp Gly Ala Thr Gly Lys Cys Leu 45 50 55	315
GGC AGC TGC AAG ACG CGG TTT CGC GTC TGC CTA AAG CAC TAC CAG GCC Gly Ser Cys Lys Thr Arg Phe Arg Val Cys Leu Lys His Tyr Gln Ala 60 65 70	363
ACC ATC GAC ACC ACC TCC CAG TGC ACC TAC GGG GAC GTG ATC ACG CCC Thr Ile Asp Thr Thr Ser Gln Cys Thr Tyr Gly Asp Val Ile Thr Pro 75 80 85 90	411
ATT CTC GGC GAG AAC TCG GTC AAT CTG ACC GAC GCC CAG CGC TTC CAG Ile Leu Gly Glu Asn Ser Val Asn Leu Thr Asp Ala Gln Arg Phe Gln 95 100 105	459
AAC AAG GGC TTC ACG AAT CCC ATC CAG TTC CCC TTC TCG TTC TCA TGG Asn Lys Gly Phe Thr Asn Pro Ile Gln Phe Pro Phe Ser Phe Ser Trp 110 115 120	507

		Phe	CTG Leu						555
	Asn		ACC Thr						603
			GTG Val 160						651
			CTG Leu						699
			GGC Gly						747
_			ACT Thr						795
			GAT Asp						843
			TGC Cys 240						891
			TTG Leu		Glu				939

FIG.1B

		ACC Thr 270	Cys							987
		TTG Leu						Thr		1035
Arg		AAG Lys								1083
		AAA Lys								1131
		TCC Ser				•				1179
		GAT Asp 350								1227
		TGG Trp								1275
		CCC Pro								1323
		AAG Lys								1371

FIG.1C

	CCC Pro		Asp								1419
	AAC Asn										1467
	TTT Phe 445				_	_		_	_	-	1515
	CAG Gln										1563
	TGC Cys										1611
	GAC Asp										1659
	CTC Leu										1707
	GAT Asp 525										1755
	GGC Gly										1803

FIG.1D

	CC AAT la Asn								1851
_	TG ACC al Thr								1899
	AT GGT sp Gly								1947
	CG ATG la Met 605	Pro							1995
Met Ly	AG CGC ys Arg 20								2043
	AG CAG ys Gln								2091
	GG GTG ly Val								2139
	GC AAC er Asn								2187
	AC ACC sn Thr 685								2235

FIG.1E

GCA GCG GCG GCG GCG GCA GCA GCG GCG GAC GAG TGT CTC ATG TAC GGC Ala Ala Ala Ala Ala Ala Ala Ala Asp Glu Cys Leu Met Tyr Gly 700 705 710	2283
GGA TAT GTG GCC TCG GTG GCG GAT AAC AAC AAT GCC AAC TCA GAC TTT Gly Tyr Val Ala Ser Val Ala Asp Asn Asn Asn Ala Asn Ser Asp Phe 725 720 730	2331
TGT GTG GCT CCG CTA CAA AGA GCC AAG TCG CAA AAG CAA CTC AAC ACC Cys Val Ala Pro Leu Gln Arg Ala Lys Ser Gln Lys Gln Leu Asn Thr 735 740 745	2379
GAT CCC ACG CTC ATG CAC CGC GGT TCG CCG GCA GGC AGC TCA GCC AAG Asp Pro Thr Leu Met His Arg Gly Ser Pro Ala Gly Ser Ser Ala Lys 750 755 760	2427
GGA GCG TCT GGC GGA GGA CCG GGA GCG GCG GAG GGC AAG AGG ATC TCT Gly Ala Ser Gly Gly Gly Pro Gly Ala Ala Glu Gly Lys Arg Ile Ser 765 770 775	2475
GTT TTA GGC GAG GGT TCC TAC TGT AGC CAG CGT TGG CCC TCG TTG GCG Val Leu Gly Glu Gly Ser Tyr Cys Ser Gln Arg Trp Pro Ser Leu Ala 780 785 790	2523
GCG GCG GGA GTG GCC GGA GCC TGT TCA TCC CAG CTA ATG GCT GCA GCT Ala Ala Gly Val Ala Gly Ala Cys Ser Ser Gln Leu Met Ala Ala Ala 795 800 805 810	2571
TCG GCA GCG GGC AGC GGA GCG GGG ACG GCG CAA CAG CAG	2619
GTC TGC GGC ACT CCG CAT ATG TAACTCCAAA AATCCGGAAG GGCTCCTGGT Val Cys Gly Thr Pro His Met	2670
830 AAATCCGGAG AAATCCGCAT GGAGGAGCTG ACAGCACATA CACAAAGAAA AGACTGGGTT GGGTTCAAAA TGTGAGAGAG ACGCCAAAAT GTTGTTGTTG ATTGAAGCAG TTTAGTCGTC ACGAAAAATG AAAAATCTGT AACAGGCATA ACTCGTAAAC TCCCTAAAAA ATTTGTATAG TAATTAGCAA AGCTGTGACC CAGCCGTTTC GATCCCGAAT TC	2730 2790 2850 2892

FIG.1F

	TM WITH	GGREGAT)
1.pMtNMg	SP EGF N cdc10 PA opo	40	21	
2.△Sph	1 32	0	nt	
3.△Cla	7 31	0	nt	
4.△EGF(7–17)	7 17	0	nt	
5.△EGF(9–26)	9 26 H	0	nt	
6.△EGF(17-30)	17 31	22	nt	
7.△EGF(7-9)	7 9	20	14	
8.△EGF(9-17)	9 17	0	0	
9.△EGF(17-26)	17 26	10	8	
10.△EGF(26-30)	26 31	5	7	
11.△EGF(9-30)	9 31 H	0	nt	
12.△EGF(7-26)	7 26	0	nt	
13.△ Clo+EGF(9-17)	7 9 17 31	35	20	
14.△ Cla+EGF(17–26)	7 17 26 31	0	nt	
15.SPLIT		42	nt	
16.△ Clo+EGF(9-13)	7 9 13 31	47	25	

APPROVED O.G. FIG.

BY GLASS SUBCLASS
DRAFTSMAN

FIG.2A

CLASS SUBCLASS

8

APPROVED O.G. FIG.

G

FIG. 5

AFFROVED O.G. FIG.

BY CLASS SUBOLASS
DRAFTSMAN

NDVDECSLIGANPCEHIGGRCTNTLGSFQCNCPQGYAGPRCEII DVNECLSNPCQNDSTICLDQ1GEFQCI1CMPGYEGLYCE DROSOPHLLA XENDPUS

FIG.4

CLASS SUBCLASS APPROVED O.G. FIG. 줎

DRAFTSHAN

- CGAGTCGAGCGCCGTGCTTCGAGCGGTGATGAGCCCCTTTTCTGTCAACGCTAAAGATC CAATCCAGAGTGAATCCGAAACAAACTCCATCTAGATCGCCAACCAGCATCACGCTCGCA 241
- TCGTCGTTGGAGTCAACAATAGAATCAGCAGACAGCCTGGGAATGTCCAAGAAGACGCC SerSerLeuGluSerThrIleGluSerAlaAspSerLeuGlyMetSerLysLysThrAla 481
- CGCGATTGTCGATCATTAAAGTCTGCCTGCAACTTAATTGCTTTAATTTTAATACTGTTA ArgAspCysArgSerLeuLysSerAlaCysAsnLeuTleAlaLeuTleLeuIleLeuLeu 601
- AACAGCCATCTACTCAACGGCTATTGCTGCGGCATGCCAGCGGAACTTAGGGCCACCAAG Asn SerHisLeuLeuAsnGlyTyrCysCysGlyMetProAlaGluLeuArgAlaThrLys 721
- hr|GluGlnGlyAlaSerIleSerThrGlyCysSerPheGlyAsn|AlaThrLysIle 841
- ACG111CG11GGACGAAG1CG111ACGC1GATAC1GCAGGCG11GGA1A1G1ACAACACA ThrPheArgIrpThrLysSerPheThrLeuIleLeuGlnAlaLeuAspMetTyrAsnThr 961
- | TCGCCGGAGTGGAAGACGCTGGACCACATCGGGCGGAACGCGGGATCACCTACCGTGTC SerProGluTrpLysThr/LeuAspHisIleGlyArgAsnAlaArgIleThrTyrArgVal
- GACGATCAGTTCGGTCAQTACGCCTGCGGCTCCGAGGGTCAGAAGCTCTGCCTGAATGGC AspAspGinPheGiyH; \$\frac{1}{3}\text{yrAiglySerGiuGiyGinLysLeuCysLeuAsnGiy}

FIG.5A

MetPheArgLysHisPheArgArgLysProAlaThrSer AACGCCCCCAGAATGTACAAAATGTTTAGGAAACATTTTCGGCGAAAACCAGCTACGTCG CCAAACAAAACCAAACAAAACGAAGGCAAAGTGGAGAAAATGATACAGCATCCAGAGTAC CCAAAATCTGCATACATGGGCTAATTAAGGCTGCCCAGCGAATTTACATTTGTGTGGTGC

23 GTCCATAAGATATCCGCAGCTGGTAACTTCGAGCTGGAAATATTAGAAATCTCAAATACC ValHisLysIleSerAlaAlaGlyAsnPheGluLeuGluIleLeuGluIleSerAsnThr

ACGATAGGCTGCTCGCCATGCACGACGGCATTCCGGCTGTGCCTGAÄGGAGTACCAGACC Thr]leGlyCysSerProCysThrThrAlaPheArgLeuCysLeuLysGluTyrGlnThr CTGGGTGGCTCCAGGTTTGTGCTCAGCGATCCGGGTGTGGGAGCCATTGTGCTGCCCTTT LeuGlyGlySerSerPheValLeuSerAspProGlyValGlyAlaIleValLeuProPhe

SerTyrProAspAlaGluArgLeuIleGluGluThrSerTyrSerGlyValIleLeuPro TCCTATCCAGATGCGGAGAGGTTAATTGAGGAAACATCATACTCGGGCGTGATACTGCCG

253 CGGGTGCAATGCGCCGTTACCTACTACAACACGACCTGCACGACCTTdTGCCGTCCGCGG ArgValGlnCysAlaValThrTyrTyrAsnThrThrCysThrThrPhqCysArgProArg

293 [rpGlnGlyValAsnCysGluGluAla] leCysLysAlaGlyCysAspProValHisGly TGGCAGGGCGTCAACTGCGAGGGCCATATGCAAGGCGGGCTGCGACCCCGTCCACGGC

FIC 5R

FIG.6

1 GAATTCCGCT GGGAGAATGG TCTGAGCTAC CTGCCCGTCC TGCTGGGGCA TCAATGGCAA
61 GTGGGGAAAG CCACACTGGG CAAACGGGCC AGGCCATTTC TGGAATGTGG TACATGGTGG
121 GCAGGGGGCC CGCAACAGCT GGAGGGCAGG TGGACTGAGG CTGGGGATCC CCCGCTGGTT
181 GGGCAATACT GCCTTTACCC ATGAGCTGGA AAGTCACAAT GGGGGGCAAG GGCTCCCGAG
241 GGTGGTTATG TGCTTCCTTC AGGTGGC

FIG.8A

GAATTCCTTC CATTATACGT GACTITICTG AAACTGTAGC CACCCTAGTG TCTCTAACTC CCTCTGGAGT TTGTCAGCTT TGGTCTTTTC AAAGAGCAGG CTCTCTTCAA GCTCCTTAAT 61 121 GCGGGCATGC TCCAGTTTGG TCTGCGTCTC AAGATCACCT TTGGTAATTG ATTCTTCTTC AACCCGGAAC TGAAGGCTGG CTCTCACCCT CTAGGCAGAG CAGGAATTCC GAGGTGGATG 181 TGTTAGATGT GAATGTCCGT GGCCCAGATG GCTGCACCCC ATTGATGTTG GCTTCTCTCC 241 GAGGAGGCAG CTCAGATTTG AGTGATGAAG ATGAAGATGC AGAGGACTGT TCTGCTAACA 301 TCATCACAGA CTTGGTCTAC CAGGGTGCCA GCCTCCAGAC CAGACAGACC GGACTGGTGA 361 GATGGCCCTG CACCTTGCAG CCCGCTACTC ACGGGCTGAT GCTGCCAAGC GTCTCCTGGA 421 TGCAGGTGCA GATGCCAATG CCCAGGACAA CATGGGCCGC TGTCCACTCC ATGCTGCAGT 481 GGCACGTGAT GCCAAGGTGT ATTCAGATCT GTTA 541

FIG.8B

1 TCCAGATTCT GATTCGCAAC CGAGTAACTG ATCTAGATGC CAGGATGAAT GATGGTACTA
61 CACCCCTGAT CCTGGCTGCC CGCCTGGCTG TGGAGGGAAT GGTGGCAGAA CTGATCAACT
121 GCCAAGCGGA TGTGAATGCA GTGGATGACC ATGGAAAATC TGCTCTTCAC TGGGCAGCTG
181 CTGTCAATAA TGTGGAGGCA ACTCTTTTGT TGTTGAAAAA TGGGGCCAAC CGAGACATGC
241 AGGACAACAA GGAAGAGACA CCTCTGTTTC TTGCTGCCCG GGAGGAGCTA TAAGC

GAATTCCATT CAGGAGGAAA GGGTGGGGAG AGAAGCAGGC ACCCACTTTC CCGTGGCTGG
ACTCGTTCCC AGGTGGCTCC ACCGGCAGCT GTGACCGCCG CAGGTGGGGG CGGAGTGCCA
TTCAGAAAAT TCCAGAAAAG CCCTACCCCA ACTCGGACGG CAACGTCACA CCCGTGGGTA
GCAACTGGCA CACAAACAGC CAGCGTGTCT GGGGCACGGG GGGATGGCAC CCCCTGCAGG
CAGAGCTG

FIG.9A

1 CTAAAGGGAA CAAAAGCNGG AGCTCCACCG CGGGCGGCNC NGCTCTAGAA CTAGTGGANN
61 NCCCGGGCTG CAGGAATTCC GGCGGACTGG GCTCGGGCTC AGAGCGGCGC TGTGGAAGAG
121 ATTCTAGACC GGGAGAACAA GCGAATGGCT GACAGCTGGC CTCCAAAGTC ACCAGGCTCA
181 AATCGCTCGC CCTGGACATC GAGGGATGCA GAGGATCAGA ACCGGTACCT GGATGGCATG
241 ACTCGGATTT ACAAGCATGA CCAGCCTGCT TACAGGGAGC GTGANNTTTT CACATGCAGT
301 CGACAGACAC GAGCTCTATG CAT

FIG.9B

G TCC CTC AAC TTC AAT GAC

130
140
130
140
140
130
140
2 TGC TGG AAG TAC TTC AGT

C W K Y F S> AAC AAC N N> TTC GAC GAC D> CAG TGC 90 TTC 1 * CIC * AAC 80 * TCC CTC / cig. 180 4 660 \$CC CAG O 30 × 30 C TCA S 1GC C 70 *
GGC GGT GAC 1
G G D
120
*
120
*
CAG TCT CTG C
O S L # CAC U 170 * TGC AAC C N * GTC V 20 * * * AAC AAG C N K * 850 10 * * 5 3 GAC GCG GGC P D A G L bu * * * CAC TGT GAC AGC O H C D S GAG CCC TGG A GCG , TGC CAG 150 * * GAC GGC D G

FIG. 10A

	1						
240	GAC D>		J S S	*	GTA		000 V
*	TAC	*	ည္ပ် ဗ		CAT	\$80 *	; ATG
	CTG	O *	CAG	330	GAG	(*)	CIG
*	CCC	280	GAC	ŧ.	SCG A	* c	GTG V
(4	AAC	*	TGC C		TGT	0 *	GTG V
*	700 0		CAC	¥	CTG GAC L D	370	GTG
0 *	CAG O		ე ე	(*)	CTG	*	GTG
220	ည္သမ	*	GAC	- k	999		CIG
*	GAA		AGC	0 *	GAC	360	ACG
	GCG	09:	ITC	310	TGG W	*	ည္
210	CGT	(4	CAC ITC H F		GAG		A GC
*	SAS O	*	GAC		1 ၁	350	GCG A
	၂၀ ၁၁	0 *	AAG	300	GAG	(-)	CTG
00 *	r GAC D	250	7GC C	*	GCG A	*	AGG R
	TT	*	TAC		AGC S	0 *	GAG
*	၁၅၅		CAG	290	AAC	340	CCC P

F16.108

30	AGC S>	480	* 68 \$		S &	ŧ	CIG U
430	CTC		, ეე ა *	-	AAG		CIG
*	GAG		CAC	0 *	ပ္ပင္က	570	900 A
	0 8 8	170	* Å 4	52(CIG	*	GAC
420	CIG	7	GAC	*	GAG		CCT
*	TTC		CGT *		GAG	09:	GCC GCA
	CAC	0	* AAG	510	GAG	U)	GCC
110	C TTC	46	TTC AAG	*	CGC R	*	TGG ¥
4	TCC		GTC V		ပ္ပ်ပ္ပ	0 *	ပ္ပေ
*	AGC S		GTG V	\$30 *	TAC	550	GAG
0 *	AAC	450	AAC N	0,	TAC	*	900 A
400	က္လ		* ACC	*	CCC		9 8
*	CIG		CA H	o *	TIC	540	CGT R
	CAG O	440	(7)	490	AIC	*	AAG K
390	GAG	V	GTG V	بد	ATG		AIC AAG I K
-k	000 100		* 00 K		CAG O	530	000 P
*							

FIG. 10C

610 620 * * * * GGC AGC GAG GGT GGG CGG GTC TAC CAG AGT GCC ACC GAC GTG GCC GCA TTC CTG GC CAG GTG AAG GCC TCG CTG
G Q V K A S L

FIG. 100

770 * 7 GGC AGC CTC A G S L

FIG. 10E

	GAG E>	*	CTC CTC		AAG KY	0 *	SAS Y
*	ပ္ပပ္		GCC A	00 *	ACC		GAC CAG
0 *	CIC	.050	. GGT		GAG ACC E T		GAC
100	CCC CT(*	GAC	*	CIG		CIG
*	GAG		TCA	0 *	GAC	1140	GAC
	000 8	040	HAC GCT	103	GAG	*	CCT
890	000 800 800 800 800 800 800 800 800 800	1(AAC	*	GAC		CTG
*	AAG	*	AAG K		999	130	GIG GTT V V
	AAG K	* *	CCC CTG P L	1080	GAG TGG E W		
) 80 *	AAG K	10.	CCC	*	GAG	*	ည ရ
	AG S	*	AAG K		AAT	0 *	GAG E
*	SCC A		GGC CTC	100	90	113	EAG E
970	TCT GAG	1020	ပ္ပ	1(GAC AAC D N	*	E .
	TCT	*	F >	*	GAC		S S S
*	AAA GTG K V		TCC G	O *	ATG GAC M D	1110	TTC CGG
	AAA	1010	GAC	1060	ATG	*	AAG K

FIG.10F

1200 573 55 3 * 55 7 ACA GAC CAC CGG CAG TGG ACT CAG CAG CAC CTG GAT GCC GCT GAC T D H R Q W T Q Q H L D A A D ATG ATC GCC TCC TGC AGC GGG GGC GGC CTG GAG ACG GGC AAC AGC
M I A S C S G G G L E T G N S 1340 1190 1320 1310 1160 CGC ATG 3

F16.106

1440 CAG GGC Q GS TTG CAC * 55.7 1390 CCG GAA GAG GAC GCG GCC GTC ATC TCC GAC TTC ATC TAC (E E E D A P A V I S D F I Y GCC AGC GCA GAC ATC CAG GAC AAC ATG GGC CGC ACC A S A D A N I Q D N M G R T CGC ACG GGC GAG ACC GCC R T G E T A 1530 1430 1380 1520 1420 1370 GCC AGC CTG CAC AAC CAG ACA GAC (
A S L H N Q T D 1510 1410 1500 1400 1350 1490

FIG. 10H

GGC AAG ACG ACG 1680 GCC GTG GAG GGC ATG CTG GAG GAC
A V E G M L E D> CAG ATC CTG A' 1580 1610 1620 * * * * * CTG GAT GCC CGC ATG CAT GAT GGC L D A R M H D G GAC CTG D L 1770 1720 1670 GIC TIC 1760 GTG TCT GCC GAC GCA CAA GGT
V S A D A Q G TGG GCC GCC G 1640 1650 *

CTG ATC CTG GCT GCC CGC CTG 1560 * * * * * CGG ACA GAC R N R A T D 1740 CAT GCG GCT G H A A V 1590 5

ပ္ပ

GAT (

GTG (

GTG AAC AAT C

CTG CAC 1

CAC GAC ATC H D I> ACC GCC T A> GTG CTC CTG AAG AAC GGG GCT AAC AAA GAT ATG CAG AAC AGG GAG
V L L K N G A N K D M Q N N R E> 1960 GAC CGC CTG CCG CGC GAC ATC GCA CAG GAG CGC ATG CAT

D R L P R D I A Q E R M H 1860 1810 1950 1850 1800 1940 1890 1830

FIG. 10J

FIG. 10K

	දි 0	* T & X	HCC HCC	2350 \$ GGG ATG G MD
*	ည္ပမ	GAG	00 × 00 A	233 666 6
o *	AAG K	2250 * CTG	2300 * CTG CCC	* CC 4
220	GGC AAG G K	* TCC		CTG
	GAT	GAC	er.	2340 * : CAC H
	CAG		2290 * CCG CCJ	AAC X
190	TCC S	2240 * CCC GTG	, * OH S	CH J
- 5	AAG	• 55 v		00 × 00 a
	AAG	e	2280 • 976 V	23.
08.	AGG	2230 ATG CT	GAC D	* DUS
21	CGG AGG	* ပ္ပံ ဗ	N TT N	01 CCG P
*	S A	TCC S	2270 * CTG	2320. * TCT CC S P
0 *	GAC CTC AAG	2220 * AGC	22 TAC	* 56.0
2170	CHC	10 2220 * * * CTG CTG GAC AGC L L D S	* 99 9	સું વ
*	GAC	CTG	2260 * CCC CAT	2310 * TTC
:	AAG	2210 * CTG	2260 * CCC C	* CCG

FIG. 10L

2400	* 000 V	99	* G1C	TCC
``	* AAG	ACT *	ACC	540 * GGG G
•	GCC	ው መ	2490 * : AGC	2540 * GGC GG
2390	* 90 4	2440 * TTT G	ACC T	* GTG V
23	GTG	* 90 ×	ეტ	ACT
	AAC N	CTG	<u>L</u>	2530 TTC ACT F T
0	* CTG L	2430 * : cGG	2480 * GCC TC: A S	* * AAT
2380	CAC H	00 b	* GTG >	CIG
	* 00 0)	70 * CCT	2520 * GCC
	ATC	20 * GGG	2470 x CTG CC	, , , ,
2370	, GGC ATC G I	2420 * GGT GG	CAC H	8 50
(4	* CTG	cTG	S C	2510 3C AGC 3 S
	CAC	0 * 0 80 &	2460 * CTC	25 AGC S
2360	* 03 FI	2410 * GCG GCG A A	* CGT &	25 * TCC AGC S S
53	₹ □	* GAG ATG E M	CCT	0 0 0 0 0
	* 00 a	GAG	2450 * CCA P	2500 CTG G

FIG. 10M

CCG Py ACC AGT TTG AAT GGT CAA TGC GAG TGG CTG TCC CGG CTG CAG AGC GGC
T S L N G Q C E W L S R L Q S G> 2590 GCT GCC AGC GCC CTG TCC CAG ATG ATG AGC
A A S A L S Q M M S 2730 2680 2580 2720 2670 2570 2710 2560 CH CAC AGT AGC C 2700 2550 CIG (CCC 2690

FIG. 10N

BY CLASS SUBCLASS

DRAFTSMAN

CAC CTC 2880 CTG CAG CCG CCA CCA CCA L 5 S ACC CAG CAG GCA CAA AAC TTA CAG ATG CAG CAG CAG AAC CTG
T Q Q V Q P Q N L Q M Q Q Q N L> CAC CTG GTG CAG H L V Q> CAG 2780 GGA GAG CCG AGC CAG GCA GAC GTG 2970 2870 2820 2960 2810 2950 AGT (AGC TTC CTG Ы 2940 CAG GGC C 2790 9 2740 2930 G

	UΛ		υΛ	0 *	₽ /	\
	AGC S>	0 *	AC	3120	CCT	u
	AG GAG Z	3070	GIG ACC	·	TCG	2
	O	*	$O_{\mathbf{A}}$	•	TCC)
	* 000 a		CCA CO	110	TAC	4
	crg L	3060	GTC <	3110	AGC	o
	* * * * CG CAC ACT ATT CI	*	L	*		
	ACT T		TCG C	0 *	CAG	K
	CAC)50 *	TCC S	3100	TCG	7
3000	GTG >	3050	C P	*	CCC	ų
(*)	\$ GCG *	*	O		ည္တင္	4
	CHG	Q *	ACG TCG T S	3090	ACG	4
2990	* AGC S	3040	ACG	*	CTG	7
2980 29	AGC S	ŧ.	CCC P		TTC	ч
	CCC AGC		CIG	3080	CAG	יכ
	CIG GGC (3030	CCC GCC CTG P A L	30	SCA GCC CAG ITC	¢
	CIG	*	OCC P	*	ig a	Ç

FIG. 10P

3170

F16.100

G GAG GTG GAT GTG TTA GAT GTG AAT GTC CGT GGC CCA GAT GGC TGC Glu Val Asp Val Leu Asp Val Asn Val Arg Gly Pro Asp Gly Cys 1 5 10 15									46					
					Ala				Gly				AGT Ser	94
												Thr	GAC Asp	142
					GCC Ala						Arg			190
					CTT Leu									238
					GCA Ala 85									286
					CAT His									334
					CGC Arg									382
					CCC Pro									430

FIG.11A

	CAA GCG GAT Gln Ala Asp 155	
	TGG GCA GCT Trp Ala Ala 170	
	AAT GGG GCC Asn Gly Ala 185	Met
	TTT CTT GCT Phe Leu Ala	
Ala Ala Lys	GAC CAT TTT Asp His Phe	
*	CGG GAT GTG Arg Asp Val 235	
	GAT GAA TAC Asp Glu Tyr 250	
	GCT CTC TCA Ala Leu Ser 265	
	AAG CAC ACC Lyn His Thr	

FIG.11B

AAG TCT AGA CGG CCC AGT GCC AAG AGT ACC ATG CCT ACT AGC CTC CCT Lys Ser Arg Arg Pro Ser Ala Lys Ser Thr Met Pro Thr Ser Leu Pro AAC CTT GCC AAG GAG GCA AAG GAT GCC AAG GGT AGT AGG AGG AAG AAG Asn Leu Ala Lys Glu Ala Lys Asp Ala Lys Gly Ser Arg Arg Lys Lys TCT CTG AGT GAG AAG GTC CAA CTG TCT GAG AGT TCA GTA ACT TTA TCC Ser Leu Ser Glu Lys Val Gln Leu Ser Glu Ser Ser Val Thr Leu Ser CCT GTT GAT TCC CTA GAA TCT CCT CAC ACG TAT GTT TCC GAC ACC ACA Pro Val Asp Ser Leu Glu Ser Pro His Thr Tyr Val Ser Asp Thr Thr TCC TCT CCA ATG ATT ACA TCC CCT GGG ATC TTA CAG GCC TCA CCC AAC Ser Ser Pro Met Ile Thr Ser Pro Gly Ile Leu Gln Ala Ser Pro Asn CCT ATG TTG GCC ACT GCC GCC CCT CCT GCC CCA GTC CAT GCC CAG CAT Pro Met Leu Ala Thr Ala Ala Pro Pro Ala Pro Val His Ala Gln His GCA CTA TCT TTT TCT AAC CTT CAT GAA ATG CAG CCT TTG GCA CAT GGG Ala Leu Ser Phe Ser Asn Leu His Glu Met Gln Pro Leu Ala His Gly GCC AGC ACT GTG CTT CCC TCA GTG AGC CAG TTG CTA TCC CAC CAC CAC Ala Ser Thr Val Leu Pro Ser Val Ser Gln Leu Leu Ser His His His ATT GTG TCT CCA GGC AGT GGC AGT GCT GGA AGC TTG AGT AGG CTC CAT Ile Val Ser Pro Gly Ser Gly Ser Ala Gly Ser Leu Ser Arg Leu His CCA GTC CCA GTC CCA GCA GAT TGG ATG AAC CGC ATG GAG GTG AAT GAG Pro Val Pro Val Pro Ala Asp Trp Met Asn Arg Met Glu Val Asn Glu

FIG. 11C

	CAG Gln									GGC G l y	1390
	CAT His 465	Pro								CAC His	1438
	ACC Thr							Val		 CTC Leu 495	1486
	CCT Pro									CAG Gln	1534
	ACC Thr										1582
_	CCA Pro										1630
	CCC Pro 545										1678
	CCT Pro	_	_								1726
CAC His						Ala					1774
GGT Gly		Leu			Pro						1822

FIG.11D

CCT GAC CAG TGG TCA AGT TCA TCA CCC CAC TCT GCT TCT GAC TGG TCA 1870 Pro Asp Gln Trp Ser Ser Ser Ser Pro His Ser Ala Ser Asp Trp Ser 610 615 620 GAT GTG ACC ACC AGC CCT ACC CCT GGG GGT GCT GGA GGA GGT CAG CGG 1918 Asp Val Thr Thr Ser Pro Thr Pro Gly Gly Ala Gly Gly Gly Gln Arg 625 630 GGA CCT GGG ACA CAC ATG TCT GAG CCA CCA CAC AAC AAC ATG CAG GTT 1966 Gly Pro Gly Thr His Met Ser Glu Pro Pro His Asn Asn Met Gln Val 640 645 650 TAT GCG TGAGAGAGTC CACCTCCAGT GTAGAGACAT AACTGACTTT TGTAAATGCT 2022 Tyr Ala GCTGAGGAAC AAATGAAGGT CATCCGGGAG AGAAATGAAG AAATCTCTGG AGCCAGCTTC 5085 TAGAGGTAGG AAAGAGAAGA TGTTCTTATT CAGATAATGC AAGAGAAGCA ATTCGTCAGT 2142 TTCACTGGGT ATCTGCAAGG CTTATTGATT ATTCTAATCT AATAAGACAA GTTTGTGGAA 2202 ATGCAAGATG AATACAAGCC ITGGGTCCAT GTTTACTCTC TTCTATTTGG AGAATAAGAT 2955 GGATGCTTAT TGAAGCCCAG ACATTCTTGC AGCTTGGACT GCATTTTAAG CCCTGCAGGC 5355 TTCTGCCATA TCCATGAGAA GATTCTACAC TAGCGTCCTG TTGGGAATTA TGCCCTGGAA 5385 TICTGCCTGA ATTGACCTAC GCATCTCCTC CTCCTTGGAC ATTCTTTTGT CTTCATTTGG 2442 TGCTTTTGGT TTTGCACCTC TCCGTGATTG TAGCCCTACC AGCATGTTAT AGGGCAAGAC 2502 CTITGTGCTT TTGATCATTC TGGCCCATGA AAGCAACTTT GGTCTCCTTT CCCCTCCTGT 2562 CTTCCCGGTA TCCCTTGGAG TCTCACAAGG TTTACTTTGG TATGGTTCTC AGCACAAACC 2622 TTTCAAGTAT GTTGTTTCTT TGGAAAATGG ACATACTGTA TTGTGTTCTC CTGCATATAT 2682 CATTCCTGGA GAGAGAAGGG GAGAAGAATA CTTTTCTTCA ACAAATTTTG GGGGCAGGAG 2742 ATCCCTTCAA GAGGCTGCAC CTTAATITIT CTTGTCTGTG TGCAGGTCTT CATATAAACT 5805

TTACCAGGAA GAAGGGTGTG AGTTTGTTGT TTTTCTGTGT ATGGGCCTGG TCAGTGTAAA 5865 GTTTTATCCT TGATAGTCTA GTTACTATGA CCCTCCCCAC TTTTTTAAAA CCAGAAAAAG 5955 GTTTGGAATG TTGGAATGAC CAAGAGACAA GTTAACTCGT GCAAGAGCCA GTTACCCACC 2982 CACAGGTCCC CCTACTTCCT GCCAAGCATT CCATTGACTG CCTGTATGGA ACACATTTGT 3042 CCCAGATCTG AGCATTCTAG GCCTGTTTCA CTCACTCACC CAGCATATGA AACTAGTCTT 3102 3162 AACTGTTGAG CCTTTCCTTT CATATCCACA GAAGACACTG TCTCAAATGT TGTACCCTTG CCATTTAGGA CTGAACTITC CTTAGCCCAA GGGACCCAGT GACAGTTGTC TTCCGTTTGT 3555 CAGATGATCA GTCTCTACTG ATTATCTTGC TGCTTAAAGG CCTGCTCACC AATCTTTCTT 3585 TCACACCGTG TGGTCCGTGT TACTGGTATA CCCAGTATGT TCTCACTGAA GACATGGACT 3342 TTATATGTTC AAGTGCAGGA ATTGGAAAGT TGGACTTGTT TTCTATGATC CAAAACAGCC 3402 CTATAAGAAG GTTGGAAAAG GAGGAACTAT ATAGCAGCCT TTGCTATTTT CTGCTACCAT 3462 TTCTTTCCT CTGAAGCGGC CATGACATTC CCTTTGGCAA CTAACGTAGA AACTCAACAG 3522

FIG.11F

AACATTITCC ITTCCTAGAG TCACCTTTTA GATGATAATG GACAACTATA GACTTGCTCA 3582 TTGTTCAGAC TGATTGCCCC TCACCTGAAT CCACTCTCTG TATTCATGCT CTTGGCAATT 3642 TCTTTGACTT TCTTTTAAGG GCAGAAGCAT TTTAGTTAAT TGTAGATAAA GAATAGTTTT 3702 CTTCCTCTTC TCCTTGGGCC AGTTAATAAT TGGTCCATGG CTACACTGCA ACTTCCGTCC 3762 AGTGCTGTGA TGCCCATGAC ACCTGCAAAA TAAGTTCTGC CTGGGCATTT TGTAGATATT 3855 AACAGGTGAA TTCCCGACTC TTTTGGTTTG AATGACAGTT CTCATTCCTT CTATGGCTGC 3885 AAGTATGCAT CAGTGCTTCC CACTTACCTG ATTTGTCTGT CGGTGGCCCC ATATGGAAAC 3942 CCTGCGTGTC TGTTGGCATA ATAGTTTACA AATGGTTTTT TCAGTCCTAT CCAAATTTAT 4002 TGAACCAACA AAAATAATTA CTTCTGCCCT GAGATAAGCA GATTAAGTTT GTTCATTCTC 4062 TGCTTTATTC TCTCCATGTG GCAACATTCT GTCAGCCTCT TTCATAGTGT GCAAACATTT 4122 TATCATTCTA AATGGTGACT CTCTGCCCTT GGACCCATTT ATTATTCACA GATGGGGAGA 4182 ACCTATCTGC ATGGACCCTC ACCATCCTCT GTGCAGCACA CACAGTGCAG GGAGCCAGTG 4242 GCGATGGCGA TGACTTTCTT CCCCTG 4268

FIG.12A

		· ··.			
	COC10-6				
APPROVED O.G. FIG. BY CLASS SUBCLASS DRAFTSMAN CDC10-1 CDC10 REGION CDC10-2	TAN-1 1860 TPPQGE-EVDADCMDVNVRGPDGCTPLMLASLRGGSSDLS-DEDEDAEDSSANIITDLVYGGASLQAQTDRTGEMALHLAARYSRADAAKRLLEASA rot NOTCH 1857 TPPQGEVDADCMDVNVRGPDGFTPLMIASCSGGLETGNS-EEEEDAPA-VISDFIYQGASLHNQTDRTGETALHLAARYSRSDAAKRLLEASA XENOPUS NOTCH 1855 TPPQGEVDADCMDVNVRGPDGFTPLMIASCSGGLETGNS-EEEEDAPA-VISDFIYQGASLHNQTDRTGETALHLAARYARADAAKRLLESSA DROSOPH NOTCH 1863 CDC10-3 CDC10-4 CDC10-5 CDC10-5 CDC10-5 CDC10-5 CDC10-5 CDC10-5 CDC10-7 CDC10-8 CDC1	hn5k 1952 DANIQDNMGRTPLHAAVAADAGGVF01LIRNRYTDLDARMNDGTTPLILAARLAVEGMVAELINCGADVNAVDDHGKSALHWAAAVNNVEATLLLLKNGANRDMQD TAN-1 1952 DANIQDNMGRTPLHAAVSADAGGVF01LIRNRATDLDARMHDGTTPLILAARLAVEGMLEDLINSHADVNAVDDLGKSALHWAAAVNNVDAAVVLLKNGANKDMQN rot NOTCH 1950 DANIQDNMGRTPLHAAVAADAGGVF01LIRNRATDLDARMHDGTTPLILAARLAVEGMVEELINAHADVNAVDEFGKSALHWAAAVNNVDAAVLLKNSANKDMQN XENOPUS NOTCH 1950 DANVQDNMGRTPLHAAVAADAMGVF01LIRNRATNLNARMHDGTTPLILAARLAVEGMVEELINAHADVNAVDEFGKSALHWAAAVNNVDAAVLLKNSANKDMQN DANCQDNTGRTPLHAAVAADAMGVF01LIRNRATNLNARMHDGTTPLILAARLAIEGMVEDLITADADRNAADDNSGKTALHWAAAVNNTEAVNILLMHHANRDAQD	<u> </u>	DROSOPH NOTCH 2082 DKDETPLFLAAREGSYEACKALLDNFANREITDHMDRLPRDVASERLHHDIVRLLDE-HVPRSPQMLSMTPQAMIGSPPPGQQQPQLITQPTVISAGNGGNNGNGN INCOME STATE OF STATE	HANSK 2154 GGKKVRKPSSKGLACGSKEAKDLKA-RRKKSQDGKGCLLDSSGMLSPHGYLSDVASPPL 2144 GGKKARKPSTKGLACSSKEAKDLKA-RRKKSQDGKGCLLDSSSMLSPYDSLESPHGYLSDVASPPL 2149 GGKKARKPSTKGLACSS

2218	SNLHEMQPLAHGASTVLPSVSQLLSHHHIVSPGSGSAGSLSRLHPVPVPADWMNRMEVNETQYNEMFGMVLAPAEG-THPGI 2250 A-KPEMAALGGGGRLAFETGPPRLSHLPVASGTSTVLGSSSGGALNFTVGGSTSLNGQCEVLSRLQSGMVPNQYNPLRGSVAPGPLSTQAPSLQHG-MVGPLHSSL 2242 A-KPEMAALAGGSRLAFEPPPRLSHLPVASSASTVLSTNGTGAMNFTVGAPASLNGQCEVLPRLQNGMVPSQYNPLRPGVTPGTLSTQAAGLQHGMM-SPIHSSL 2247 T-KQEMAAGSNRMAFDAMVPRLTHL-NASSPNTIMSNGSMHFTVGGAPTMNSQCDVLARLQNGWVQNQYDPIRNGIQQGN-AQQAQBALQHGLMTS-LHNGL 2390 GGLCGMGGLSGAGNGNSHEQGLSPPYS-NQSPPHSVQSSLALSPHAYLGSPSPAKSRPSLPTSPTHIQAMRHATQQXQFGGSNLNSLLGGANGGGVVGGGGGGGGV	APOSRPPECK
2218 - 2209 - 2214 - 2285 Pt	2250 A 2242 A 2242 A 2247 T-22390 G	2354 AF 2344 S1 2343 PF 2495 VC
)1CH	
hNSk TAN-1 rat NDTCH XENDPUS NDTCH DROSQPH NDTCH	hNSk TAN-1 rat NDTCH XENGPUS NOTCH DROSQPH NDTCH	hNSk TAN-1 rat NOTCH XENDPUS NOTCH DROSOPH NOTCH

PEST-CONTAINING REGION

S---IOSSMSG-SSPSTNMLSPSSQHNQQAFYQYL|TPSSQHS-----GGHTPQHLVQTL-D-SYPTPSPESPGHVSSSSPRSN-SDVSEGVQSPAA SSNN I HSVMPQ-DTQ I FAASL PSNL TQSMTTAQFL|TPPSQHSY-SS-PMDNTPSHQLQVP-DHPFL TPSPESPDQWSSSSPHSNMSDWSEGI SSPPT SSLPVHTILPQ-ESQALPTSLPSSMVPPMTTTGFL|TPPSQHSY-SSSPVDNTPSHQLQVP-EHPFLTPSPESPDQWSSSSRHSNISDWSEGISSPPT SSLAVHTILPQ-ESPALPTSLPSSLVPPVTAAQFL|TPPSQHSY-SS-PVENTPSHQLQVP-EHPFLTPSPESPDQWSSSSPHSNVSDWSEGVSSPP1

> 2423 2416 2599

> > XENDPUS NOTCH DROSOPH NOTCH

rat NDTCH

2448

TAN-1

SVAFPTAMMPQQDGQVAQT1LPAYHPFPASVGKYHİPPSQHSYASSNAAERTPSHSGHLQGEHPYLTPSPESPDQVSSSSPHSA-SDVSDVTTSPTP

FIG. 12C

Potential signal cleavage site 7 -ALRPAL LWALLALWLC CA-----apa ha hum N TAN-1 -PL LAPLLCLALL PA------Laa RG: Xen N RIGLAVLLCS LP----VLT QG-MQSQRSRRRS RAPNTWICFW INKMHAVASL PASLPLLLLT LAFANLPNIV RGTDTALVAA Dros N MLGKATCRCA SGFTGEDCQY STSHPCFVSR PCLNGGTCHM LSRDT-YECT CQVGFTGKEC hum N GVADYACSCA LGFSGPLCLT PLDNAC-LTN PCRNGGTCDL LT-LTEYKCR CPPGWSGKSC Tan-1 NAIDFICHCP VGFTDKVCLT PVDNAC-VNN PCRNGGTCEL LNSVTEYKCR CPPGWTGDSC Xen N GRPGISCKCP LGFDESLCEI AVPNAC-DHV TCLNGGTCQL KT-LEEYTCA CANGYTGERC Dros N NLPGSYOCOC POGFTGOYCD SLYVPCAPSP CVNGGTCROT GDFTFECNCL PGFEGSTCER hum N TAN-1 NEVGSYRCVC RATHTGPNCE RPYVPCSPSP CQNGGTCRPT GDVTHECACL PGFTGQNCEE NEFGSYRCTC QNRFTGRNCD EPYVPCNPSP CLNGGTCRQT DDTSYDCTCL PGFSGQNCEE Xen N NTHGSYQCMC PTGYTGKDCD TKYNPCSPSP CQNAGICRSN G-LSYECKCP KGFEGKNCEQ Dros N

EGF-like Repeats QCRDGYEPCV NEGMCVTYHN GTGYCKCPEG FLGEYCQHRD PCE-KNRCQN GGTC--VAQA 83 RCSQPGETCL NGGKCEA-AN GTEACVCGGA FVGPRCQDPN PCL-STPCKN AGTCHVVDRR 80 RCTOTAEMOL NGGROEMTPG GTGVOLOGNL YFGEROOFPN POTIKNOOMN FGTCEPVLOG 90 SCTSVG---CQ NGGTCVTQLN GKTYCACDSH YVGDYCEHRN PCN-SMRCQN GGTCQVTFRN 117 QWTDACLSHP CANGSTCTTV —ANQFSCKC LTGFTGQKCE TDVNEC-DIP GHCQHGGTCL 199 QOADPCASNP CANGGQCLPF ---EASYICHC PPSFHGPTCR QDVNECGQKP RLCRHGGTCH 196 QQADPCASNP CANGGKCLPF —EIQYICKC PPGFHGATCK QDINEC-S-Q NPCKNGGQCI 195 FTKNI CASSP CRNGATCTAL AGSSSFTCSC PPGFTGDTCS YD1EEC-Q-S NPCKYGG1CV 233 318 NIDDCPNHRC QNGGVCVDGV NTYNCRCPPQ WTGQFCTEDV DECLLQPNA- CQNGGTCANR NIDDCPGNNC KNGGACVDGV NTYNCPCPPE WTGQYCTEDV DECQLMPNA- CQNGGTCHNT 315 314 NIDDCPSNNC RNGGTCVDGV NTYNCQCPPD WTGQYCTEDV DECQLMPNA- CQNGGTCHNT NYDDCLGHLC QNGGTCIDGI SDYTCRCPPN FTGRFCQDDV DECAQRDHPV CQNGATCTNT 352

APPROVED O.G. P.I.S.

hum N

TAN-1 Xen N

hum N

TAN-1

Xen N

hum N

TAN-1

Xen N

Dros N

NGGYGCVCVN GWSGDDCSEN IDDCAFASCT PGSTCIDRVA SFSCMCPEGK AGLLCHLDDA HGGYNCVCVN GWTGEDCSEN IDDCASAACF HGATCHDRVA SFYCECPHGR TGLLCHLNDA YGGYNCVCVN GWTGEDCSEN IDDCANAACH SGATCHDRVA SFYCECPHGR TGLLCHLDNA HGSYSCICVN GWAGLDCSNN TDDCKQAACF YGATCIDGVG SFYCQCTKGK TGLLCHLDDA Dros N AFHCECLKGY AGPRCEMDIN ECHSDPCQND ATCLDKIGGF TCLCMPGFKG VHCELEINEC SFECOCLOGY TGPRCEIDVN ECVSNPCQND ATCLDQIGEF QCMCMPGYEG VHCEVNTDEC SFQCNCPQGY AGPRCEIDVN ECLSNPCQND STCLDQIGEF QCICMPGYEG LYCETNIDEC Dros N SYRCNCSQGF TGPRCETNIN ECESHPCQNE GSCLDDPGTF RCVCMPGFTG TQCEIDIDEC ATGFTGVLCE ENIDNCDPDP CHHGQCQDGI DSYTCICNPG YMGAICSDQI DECYSSPCLN TEGYTGTHCE VDIDECDPDP CHYGSCKDGV ATFTCLCRPG YTGHHCETNI NECSSOPCRL TEGFTGRHCE QDINECIPOP CHYGTCKDGI ATFTCLCRPG YTGRLCDNDI NECLSKPCLN

PPGYTGTSCE ININDCDSNP CHRGKCIDDV NSFKCLCDPG YTGY1CQKQ1 NECESNPCQF

CISNPCHKGA LCDTNPLNGQ YICTCPQGYK GADCTEDVDE CAMANSNPCE HAGKCVNTDG 438 CISNPCNEGS NCDTNPVNGK AICTCPSGYT GPACSQDVDE CSLG-ANPCE HAGKCINTLG 434 CISNPCNEGS NCDTNPVNGK AICTCPPGYT GPACNNDVDE CSLG-ANPCE HGGRCTNTLG 433 CTSNPCHADA ICDTSPINGS YACSCATGYK GVDCSEDIDE CDQG—SPCE HNGICVNTPG 470 QSNPCVNNGQ CVDKVNRFQC LCPPGFTGPV CQIDIDDCSS TPCLNGAKCI DHPNGYECQC 558 ASSPCLHNGR CLDKINEFOC ECPTGFTGHL CQYDVDECAS TPCKNGAKCL DGPNTYTCVC 554 ASNPCLHNGK CIDKINEFRC DCPTGFSGNL CQHDFDECTS TPCKNGAKCL DGPNSYTCQC 553 OSNPCLNDGT CHDKINGFKC SCALGFTGAR CQINIDDCQS QPCRNRGICH DSIAGYSCEC 590 DGRCIDLVNG YOCNCOPGTS GYNCEINFDD CASNPCIHG- ICMDGINRYS CVCSPGFTGQ 677 RGTCQDPDNA YLCFCLKGTT GPNCEINLDD CASSPCDSG- TCLDKIDGYE CACEPGYTGS 673 GGOCTDRENG YICTCPKGTT GVNCETKIDD CASNLCDNG- KCIDKIDGYE CTCEPGYTGK 672 DGHCODRVGS YYCOCQAGTS GKNCEVNVNE CHSNPCNNGA TCIDGINSYK CQCVPGFTGQ 710

```
RCNIDIDECA SNPCRKGATC INGVNGFRCI CPEGPHHPSC YSQVNECLSN PCI-HGNCTG
hum N
TAN-1
         MCNSNIDECA GNPCHNGGTC EDGINGFTCR CPEGYHDPTC LSEVNECNSN PCV-HGACRD
Xen N
         LCNININECD SNPCRNGGTC KDQINGFTCV CPDGYHDHMC LSEVNECNSN PCI-HGACHD
         HCEKNVDECI SSPCANNGVC IDQVNGYKCE CPRGFYDAHC LSDVDECASN PCVNEGRCED
Dros N
         DECASNPCLN OGTCFDDISG YTCHCVLPYT GKNCQTVLAP CSPNPCENAA VCKESPNFES
hum N
         NECASNPCLN KGTCIDDVAG YKCNCLLPYT GATCEVVLAP CAPSPCRNGG ECRQSEDYES
TAN-1
         NECSSNPCLN HGTCIDDVAG YKCNCMLPYT GAICEAVLAP CAGSPCKNGG RCKESEDFET
Xen N
         DDCVTNPCGN GGTCIDKVNG YKCVCKVPFT GRDCESKMDP CASNRCKNEA KCTPSSNFLD
Dros N
         CLANPCONGG SCMDGVNTFS CLCLPGFTGD KCQTDNMECL SEPCKNGGTC SDYVNSYTCK
hum N
         CRPNPCHNGG SCTDGINTAF CDCLPGFRGT FCEEDINECA SDPCRNGANC TDCVDSYTCT
TAN-1
         CQPNPCHNGG SCSDGINMFF CNCPAGFRGP KCEEDINECA SNPCKNGANC TDCVNSYTCT
Xen N
         CASFPCONGG TCLDGIGDYS CLCVDGFDGK HCETDINECL SQPCONGATC SQYVNSYTCT
Dros N
```

```
GLSGYKCLCD AGWYGINCEV DKNECLSNPC QNGGTCDNLV NGYRCTCKKG FKGYNCQVNI
                                                                    796
SLNGYKCDCD PGWSGTNCDI NNNECESNPC VNGGTCKDMT SGIVCTCREG FSGPNCQTNI
                                                                    792
                                                                    791
GYNGYKODCE AGWSGSNCDI NNNECESNPC MNGGTCKDMT GAYICTCKAG FSGPNCQTNI
GINEFICHCP PGYTGKRCEL DIDECSSNPC QHGGTCYDKL NAFSCQCMPG YTGQKCETNI
                                                                    830
YTCLCA-PGW QGQRCTIDID EC-ISKPCMN HGLCHNTQGS YMCECPPGFS GMDCEEDIDD
                                                                    914
FSCVCPTAGA KGQTCEVDIN EC-VLSPCRH GASCQNTHGG YRCHCQAGYS GRNCETDIDD
                                                                    911
FSCECP-PGW OGOTCEIDMN EC-VNRPCRN GATCONTNGS YKCNCKPGYT GRNCEMDIDD
                                                                    909
FSCTCK-LGY TGRYCDEDID ECSLSSPCRN GASCLNVPGS YRCLCTKGYE GRDCAINTDD
                                                                    949
COAGFDGVHC ENNINECTES SCFNGGTCVD GINSFSCLCP VGFTGSFCLH EINECSSHPC 1034
                                                                   1031
CPAGFSGIHC ENNTPDCTES SCFNGGTCVD GINSFTCLCP PGFTGSYCQH VVNECDSRPC
COPGESGIHC ESNTPDCTES SCENGGTCID GINTETCQCP PGETGSYCQH DINECDSKPC
                                                                   1029
CPLGFSGINC QTNDEDCTES SCLNGGSCID GINGYNCSCL AGYSGANCQY KLNKCDSNPC 1069
```

```
BY CLASS SUBCLASS
```

```
LNEGTCVDGL GTYRCSCPLG YTGKNCQTLV NLCSRSPCKN KGTCVQKKAE SQCLCPSGWA
hum N
         LLGGTCODGR GLHRCTCPQG YTGPNCQNLV HWCDSSPCKN GGKCWQTHTQ YRCECPSGWT
TAN-1
Xen N
         LNGGTCQDSY GTYKCTCPQG YTGLNCQNLV RWCDSSPCKN GGKCWQTNNF YRCECKSGWT
Dros N
         LNGATCHEQN NEYTCHCPSG FTGKQCSEYV DWCGQSPCEN GATCSQMKHQ FSCKCSAGWT
         SNPCQHGATC SDFIGGYRCE CVPGYQGVNC EYEVDECQNQ PCQNGGTCID LVNHFKCSCP
hum N
TAN-1
         PSPCQNGATC TDYLGGYSCK CVAGYHGVNC SEEIDECLSH PCQNGGTCLD LPNTYKCSCP
         PNPCONGATC TDYLGGYSCE CVAGYHGVNC SEEINECLSH PCONGGTCID LINTYKCSCP
Xen N
         SQPCQNGGTC RDLIGAYECQ CRQGFQGQNC ELNIDDCAPN PCQNGGTCHD RVMNFSCSCP
Dros N
hum N
         CLSNPCSSEG SLDCIQLTND YLCVCRSAFT GRHCETFVDV CPQMPCLNGG TCAVASNMPD
TAN-1
         CLSNPCDARG TONCVORVND FHCECRAGHT GRRCESVING CKGKPCKNGG TCAVASNTAR
Xen N
         CLSNPCDSRG TQNCIQLVND YRCECRQGFT GRRCESVVDG CKGMPCRNGG TCAVASNTER
         CLSNPCSNAG TLDCVQLVNN YHCNCRPGHM GRHCEHKVDF CAQSPCQNGG NCN]----RQS
Dros N
```

```
GAYCDVPNVS CDIAASRRGV LVEHLCQHSG VCINAGNTHY COCPLGYTGS YCEEQLDECA
                                                                    1154
GLYCDVPSVS CEVAAOROGV DVARLCOHGG LCVDAGNTHH CRCOAGYTGS YCEDLVDECS
                                                                    1151
GVYCDVPSVS CEVAAKQQGV DIVHLCRNSG MCVDTGNTHF CRCQAGYTGS YCEEQVDECS
                                                                    1149
GKLCDVQTIS CQDAADRKGL SLRQLC-NNG TCKDYGNSHV CYCSQGYAGS YCQKEIDECQ
                                                                    1188
PCTRGLLCEE NIDDCAR----GPHCLN GGQCMDRIGG YSCRCLPGFA GERCEGDINE
                                                                    1267
RGTQGVHCEI NVDDCNPPVD PVSRSPKCFN NGTCVDQVGG YSCTCPPGFV GERCEGDVNE
                                                                    1271
RGTQGVHCEI NVDDCTPFYD SFTLEPKCFN NGKCIDRVGG YNCICPPGFV GERCEGDVNE
                                                                    1269
PGTMGIICEI NKDDCKP---- -
                        ---GACHN NGSCIDRVGG FECVCQPGFV GARCEGDINE
                                                                    1300
GFICRCPPGF SGARCQS--- SCGQVKCRKG EQCVHTAS-- GPRCFCPSP- --RDCES--
                                                                    1376
GFICKCPAGF EGATCENDAR TCGSLRCLNG GTCISGPR-- SPTCLCLGPF TGPECQFPAS
                                                                    1389
GFICKCPPGF DGATCEYDSR TCSNLRCQNG GTCISVLT— SSKCVCSEGY TGATCQYPVI
                                                                    1387
GHHCICNNGF YGKNCELSGQ DCDSNPCRVG -NCVVADEGF GYRCECPRGT LGEHCEIDTL
                                                                    1415
```

FIG. 13D

```
ASPROVED O.G. FAG.
BY GLASS BUBCLASS
DRAFTEMAN
```

```
hum N
         -GC-ASSPCQ HGGSCHPQRQ PPYYSCQCAP PFSGSRCEL|- -YTAPP-
TAN-1
         SPCLGGNPCY NQGTCEPTSE SPFYRCLCPA KFNGLLCHIL DYSFGG-
                                                             -GAGRD I PPP
Xen N
         SPC-ASHPCY NGGTCQFFAE EPFFQCFCPK NFNGLFCHIL DYEFPG-
                                                            - -GLGKNITPP
Dros N
        DEC-SPNPCA QGAACEDLLG D-YECLCPS KWKGKRCDIY DANYPGWNGG SGSGNDRYAA
        NN-QCDELCN TVECLFDNFE CQGNSKTCK- -YDKYCADHF KDNHCNQGCN SEECGWDGLD
hum N
TAN-1
        SDCHCDSQCN SAGCLFDGFD CQRAEGQCNP LYDQYCKDHF SDGHCDQGCN SAECEWDGLD
Xen N
        NDGKCDSQCN NTGCLYDGFD CQKVEVQCNP LYDQYCKDHF QDGHCDQGCN NAECEWDGLD
        KNGKCNEECN NAACHYDGHD CERKLKSCDS LFDAYCQKHY GDGFCDYGCN NAECSWDGLD
Dros N
hum N
        YYGEKSAAMK KQ---R---
                                       - -----MTRRSL PGEQ------E QEVAGSKVFL
TAN-1
        YYGREEELRK HPIKRAAEGW AAPDALLGQV KASLLPGGSE GGRRRRELDP MDVRGSIVYL
Xen N
        YYGNEEELKK HHIKRSTDYW SDAPSAI------FSTMKESIL LGRHRRELDE MEVRGSIVYL
Dros N
```

LNR (Notch/Lin-12 Repeats)

							-
ĺ	ATCL	SQYCADKARD	GVCDEACNSH	ACQWDGGDCS	LTMENPWANC	SSPLPCWDYI	1476
I	LIEEACE	LPECQEDAGN	KVCSLQCNNH	ACGWDGGDCS	LNFNDPWKNC	TQSLQCWKYF	1501
I	DNDDICE	NEQCSELADN	KVCNANCNNH	ACGWDGGDCS	LNFNDPWKNC	TQSLQCWKYF	1498
l	DLEQQRAMCD	KRGCTEKQGN	GICDSDCNTY	ACNFDGNDCS	LGI-NPWANC	TAN-EXWNKF	1531
l							
I	l l	AEGTLVIVVL					1591
	i	AAGTL-VVVV	-		_		1619
<u>ر</u>		AEGTLVLVVL					1615
I	CENKTQSPVL	AEGAMSVVML	MNVEAFREIQ	A-QFLRNMSH	MLRTTVRLKK	DALGHDIIIN	1650
I						•	
						TM	
١		SDHCFKNTDA					1680
I	EIDNRQCVQA	SSQCFQSATD	VAAFLGALAS	LGSL-NIPYK	IEAVQSETVE	PPPPAQ-LHF	1737
I		SSQCFNSATD					1730
(_ E I DNRKCTEC	FTHAVEAAEF	LAATAAKHQL	RNDFQ-IHSV	RGIKNPGDED	NGEPPANVKY	1745

FIG.13E

APPONED O G. P.C. BY CLASS SUBCLASS

```
hum N
         LLAVAVVIIL FIILLGVIMA KRKRK---HGS LWLPEGFTLR RDASNHKRRE PVGQDAVGLK
TAN-1
         MYVAAAAFVL LFFVGCGVLL SRKRRRQHGQ LWFPEGFKV- SEASKKKRRE ELGEDSVGLK
Xen N
         MLSMLVIPLL IIFVFMMVIV NKKRRREHDS FGSPTALFQK NPA-KRNGET PW-EDSVGLK
Dros N
         VITGIILVII ALAFFGMVL- STQRKRAHGV TWFPEGFRAP AAVMSRRRRD PHGQEMRNLN
                                                    CDC-10/Ankyrin Repeats
hum N
         PIDRRPWTQQ HLEAADIRRT PSLALTPPQA EQEVDVLDVN VRGPDGCTPL MLASLRGGSS
TAN-1
         QTDHRQWTQQ HLDAADL-RM SAMAPTPPQG EVDADCMDVN VRGPDGFTPL MIASCSGGGL
Xen N
         KTDPRQWTRQ HLDAADL-RI SSMAPTPPQG EIEADCMDVN VRGPDGFTPL MIASCSGGGL
Dros N
         EADQRVWSQA HLDVVDV-R- AIM--TPP-A HQDGGKHDVD ARGPCGLTPL MIAAVRGGGL
         ANAQDNMGRC PLHAAVAADA QGVFQILIRN RVTDLDARMN DGTTPLILAA RLAVEGMVAE
hum N
TAN-1
         ANIQDNMGRT PLHAAVSADA QGVFQILIRN RATDLDARMH DGTTPLILAA RLAVEGMLED
Xen N
         ANVQDNMGRT PLHAAVAADA QGVFQILIRN RATDLDARMF DGTTPLILAA RLAVEGMVEE
Dros N
         ANCQDNTGRT PLHAAVAADA MGVFQILLRN RATNLNARMH DGTTPLILAA RLAIEGMVED
```

```
NLSVQVSEAN LIGTGTSEHW VDDE-
                                      -----G PQPKKVKAED EALLSE-EDD
                                                                      1782
PLK-NASDGA LMDDNQNE-W GDED-
                                    ----- LETKKFRFEE PVVLPD-LDD
----- LENKRFRFEE QVILPELVDD
                                                                      1837
PIK-NMTDGS FMDDNQNE-W GDEET-
                                                                      1831
KQVAMQSQCV GQPGAH---W SDDESDMPLP KRQRSDPVSG VGLGNNGGYA SDHTMVSEYE
                                                                      1861
DLSDEDEDAE DSSANIITDL VYQGASLQAQ TDRTGEMALH LAARYSRADA AKRLLDAGAD
                                                                      1902
ETGNSEEE-E DAPA-VISDF IYQGASLHNQ TDRTGETALH LAARYSRSDA AKRLLEASAD
                                                                      1954
ETGNSEEE-E DASANMISDF IGOGAQLHNQ TDRTGETALH LAARYARADA AKRLLESSAD
                                                                      1949
DTGEDIENNE DSTAQVISDL LAQGAELNAT MDKTGETSLH LAARFARADA AKRLLDAGAD
                                                                      1976
LINCQADVNA VDDHGKSALH WAAAVNNVEA TLLLLKNGAN RDMQDNKEET PLFLAAREGS
                                                                      2022
LINSHADVNA VDDLGKSALH WAAAVNNVDA AVVLLKNGAN KDMQNNREET PLFLAAREGS
                                                                      2074
LINAHADVNA VDEFGKSALH WAAAVNNVDA AAVLLKNSAN KDMONNKEET SLFLAAREGS
                                                                      2069
LITADADINA ADNSGKTALH WAAAVNNTEA VNILLMHHAN RDAQDDKDET PLFLAAREGS
                                                                      2096
```

FIG.13F

```
YEAAKILLDH FANRDITDHM DRLPRDVARD RMHHDIVRLL DEYNVTPSPP --GTVL--TS
hum N
         YETAKVLLDH FANRDITDHM DRLPRDIAQE RMHHDIVRLL DEYNLVRSPQ LHGAPLGGTP
TAN-1
         YETAKVLLDH YANRDITDHM DRLPRDIAQE RMHHDIVHLL DEYNLVKSPT LHNGPLGAT-
Xen N
         YEACKALLON FANREITOHM DRLPRDVASE RLHHDIVRLL DE-HVPRSPQ MLSMTPQAMI
Dros N
                                  CK II
                                           cdc2
                                                      cdc2
         GSRRKKSLSE KVQLSE—SS VTLSPVDSLE SPHTYVSDTT SSPM
hum N
TAN-1
         A-RRKKSQDG KGCLLD-SS GMLSPVDSLE SPHGYLSDVA SPPL
         A-RRKKSQDG KTTLLDSGSS GVLSPVDSLE STHCYLSDVS SPPL
Xen N
         GS-PDNGLDA TGSLRRKASS KKTSAASKKA ANLNGLNPGQ LTGGVSGVPG VPPTNSAAQA
Dros N
         BNTS
                                           ITSPGILQAS PNPML—ATA APPAPVHAQH
hum N
                                          LPSPF
                                                 -QQS PSVPLNHLPG MPDTHLGIGH
TAN-1
                                         - MTSPFI-
                                                 -QQS PSMPLNHLTS MPESQLGMNH
Xen N
Dros N
         YEDCIKNAQS MQSLQGNGLD MIKLDNYAYS MCSPF--QQE LLNGQGLGMN GNGQRNGVGP
         CK II
```

```
----ICGP NRSFLSLKHT PMGKKSRRPS AKSTMPTSLP NLAKEAKDAK
ALSPV-
                                                                   2178
               ---LCSP NGYLGSLKPG VQGKKVRKPS SKGLACGS--- ----KEAKDLK
        ------ICSP NGYMGNMKPS VQSKKARKPS IKGNGC---- KEAKELK
                                                                   2170
GSPPPGQQQP QLITQPTVIS AGNGGNNGNG NASGKQSNQT AKQKAA----- KKAKLIE
                                                                   2208
                                                                    2169
                                                                    2219
                                                                    2213
AAAAAAAVAA MSHELEGSPV GVGMGGNLPS PYDTSSMYSN AMAAPLANGN PNTGAKQPPS
                                                                    2327
                              ---- -PLAHGASTV LPSVSQLLSH HHIVSPGS---
                                                                    2235
ALSFSNLHEM Q-
LNVAA-KPEM AALGGGGRLA FETGPPRLSH LPVASGTSTV LGSSSGGALN FTVGGSTSLN
                                                                    2306
INMAT-KQEM AA-GSNRMA FDAMVPRLTH L-NASSPNTI MS---NGSMH FTVGGAPTMN
                                                                    2294
GVLPGGLCGM GGLSGAGNGN SHEQGLSPPY SNQSPPHSVQ SSLALSPHAY LGSPSPAKSR 2445
```

FIG.13G

```
ASPROVED O.CS. FIG.
BY CLASS SUBGLASS
ORAFTEMAN
```

```
GSAGSLSRLH PVPVPADW-- MNRMEVNETQ YNEMFGMVLA PAEG-THPGI APQSRPPEGK
hum N
TAN-1
         COCEWLSRLQ SGMVPNQYNP LRGSVAPGPL STQAPSLQHG -MVGPLHSSL AASALSQMMS
         SQCDWLARLQ NGMVQNQYDP IRNGIQQGN- AQQAQALQHG LMTS-LHNGL PATTLSQMMT
Xen N
         PSLPTSPTHI QAMRHATQQK QFGGSNLNSL LGGANGGGVV GGGGGGGGV GQGPQNSPVS
Dros N
         APQPQSTCPP AVAGPLPTMY QIP----EM ARL-PSVAFP TAMMPQQDGQ VAQTILPAYH
hum N
TAN-1
         PPOPHLGVSS AASGHLGRSF LSGEPSQADV OPLGPSSLAV HTILPQ-ESP ALPTSLPSSL
         MQQQHHN-SS TTSTHINSPF CSSDISQTDL QQM-SSNNI HSVMPQ-DTQ IFAASLPSNL
Xen N
         QQQLGGLEFG SAGLDLNG-F CGSPDSFHSG QMNPPS---- I QSSMSG-SSP STNMLSPSSQ
Dros N
         SDWSDVTTSP TPGGAGGGQR GPGTHMSEPPHNN MQVYA
hum N
TAN-1
         SDWSEGVSSP PT
                          -SMQ SQIARIPEAFK
Xen N
         SDWSEGISSP PT
                          ---SMQ PQRTHIPEAFK
Dros N
         SDWSEGVQSP AANNLYISGG HQANKGSEAIYI
```

```
-HITTPRE PLPP-IV-TF QLIPKGSIAQ PAG-
                                                                     2320
           -YQGLPSTRL ATQPHLVQTQ QVQPQNLQMQ QQNLQPANIQ QQQSLQPPPP
                                                                     2414
           -YQAMPNTRL ANQPHLMQAQ QMQQQQN---- --
                                                            -LQLHQS
                                                                     2384
LGIISPTGSD MGIMLAPPQS SKNSAIMQTI SPQQQQQQQQ QQQQQHQQQQ QQQQQQQQQQQQQ
                                                                     2565
           PEST -containing Region
PFPASVGKYP TPPSQHSYAS SNAAERTPSH SGHLQGEHPY LTPSPESPDQ WSSSSPHSA-
                                                                     2433
VPPVTAAQFL TPPSQHSY-S S-PVENTPSH QLQVP-EGPF LTPSPESPDQ WSSSSPHSNV
                                                                     2530
TQSMTTAQFL TPPSQHSY-S S-PMDNTPSH QLQVP-DHPF LTPSPESPDQ WSSSSPHSNM
                                                                     2497
HNQQAFYQYL TPSSQHS--- ---GGHTPQH LVQTL-D-SY PTPSPESPGH WSSSSPRSN-
                                                                     2671
```

ASPROVED O.G. FIG.

BY GLASS GUBOLASS
ORAFTSHAN

FIG. 14

APRIO 0.6. FIG.	CLASS (SUBOLIASS)	
APPROVED) (i)	ORAFTERIAN

FIG. 15B

ASPROVED O.G. FIG.
BY CLASS SUBCLASS
ORAFTSMAN

FIG. 15A

FIG. 16A

FIG.16B

AFPROVED OLG FIG.

BY CLASS SUBCLASS
ORATSMAN

10	20	30	40	50	60	70 •	80	90
CCAATTCCCC	CCGCCCTGCG P A L R	CCCCCCTCTG P A L		TGCTGGCGCT L L A L	CTGGCTGTGC W L C	TGCGCGGCCC C A A	CCGCGCATGC P A H A	ATTGCAGTGT L Q C>
100	110	120	130	140		160		
CCACATCCCT R D G	ATGAACCCTG Y E P C		GGAATGTGTG G M C	TTACCTACCA V T Y H		GGATACTGCA G Y C	AATGTCCAGA K C P E	AGGCTTCTTG G F L>
190	200	210			240	250	260	270
	GTCAACATCG C Q H R		GAGAAGAACC E K N	GCTGCCAGAA R C Q N	TGGTGGGACT G G T	TGTGTGGCCC C V A	AGGCCATGCT Q A M L	GCCGAAAGCC G K A>
÷280	290	300	310	320	330	340	350	360
ACGTGCCGAT	GTGCCTCAGG	¢ GTTTACAGGA	GAGGACTGCC	AGTACTCAAC	ATCTCATCCA	ICCTTICICT	CTCGACCCTG	CCTGAATGGC
T C R	C A S G	FIG	E D C	Q Y S T	SHP	CFV	S R P C	L N G>
370	380	390	400	410	420	430		450
GGCACATGCC G T C		CCGGGATACC R D T	TATGAGTGCA Y E C				GCCAATGGAC C Q W T	GGATGCCTGC D A C>
460	470	480	490	500	510	520	530	540
CIGICICATC	* CCTGTGCAAA	TCGAAGTACC	* IGTACCACTG	* TCCCCAACCA	GTICICCICC	* AAATGCCTCA	CAGGCTTCAC	AGGGCAGAAA
LSH	P C A N	GST	CTT	V A N Q		KCL	IGFI	G Q K>
550	560				600	610	620	630
		GTGTGACATT	CCAGGACACT	GCCAGCATGG	TGGCACCTGC	CTCAACCTGC	CTGGTTCCTA P G S Y	
. 640							710	
TGCCCTCAGG		CCAGTACTGT	GACAGCCTGT	ATGTGCCCTG		CCTTGTGTCA	ATGGAGGCAC N G G T	
730	740	750	760	`770	780	790	800	810
ACTGGTGACT	† TCACTITIGA	GTGCAACTGC	* CTTCCAGGTT	* TTGAAGGGAG	CACCTGTGAG	* AGGAATATTG	ATGACTGCCC D D C P	TAACCACAGG

FIG.17A

ASPROVED O.G. FR.S.
BY OLASS SUBOLASS
ORATTSMAN

820 830	840 850			
TGTCAGAATG GAGGGGTTTG	TGTGGATGGG GTCAACACTT	ACAACTGCCG CTGTCCCC	CA CAATGGACAC	G GACAGTICTG CACAGAGGAT G Q F C T E D>
910 920		950 9	•) 980 990
	* *	*	* •	
	CCCCAATGCC TGTCAAAATG PNACQN			ATGCCTGTGT ATGTGTCAAC Y G C V C V N>
1000 1010	1020 1030	1040 10		1070 1080
		GTGCCTTCGC CTCCTGTA	CT CCAGGCTCCA	CCTGCATCGA CCGTGTGGCC
1090 1100	1110 1120	1130 11	40 1150) 1160 1170
* *	* ACACCCCAAA CCACCTOTO			* * ATCCTTGCCA CAAGGGGGCA
	E G K A G L			
1180 1190		1220 12		
	AAATGGGCAA TATATTIGCA	CCTGCCCACA AGGCTACA		GCACAGAAGA TGTGGATGAA
LCDTNPL	NGQYIC	TCPQGY	K G A D	C T E D V D E>
1270 1280	,	1310 13 *	20 1330	
TGTGCCATGG CCAATAGCAA	TCCTTGTGAG CATGCAGGAA	AATGTGTGAA CACCGATG	GC GCCTTCCACT	GTGAGTGTCT GAAGGGTTAT
C A M A N S N	PCEHAG	K C V N T D	C A F H	CECLKGY>
1360 1370	1380 1390		10 1420	1430 1440
	GGACATCAAT GAGTGCCATT	CAGACCCCTG CCAGAATG		TGCATAAGAT TGGAGGCTTC
	DINECH	·		
1450 1460				1520 1530
	TTTCAAAGGT GTGCATTGTG F K G V H C			CTTGTGTGAA CAATGGGCAG P C V N N G Q>
1540 1550			30 1600	1610 1620
	TTTCCAGTGC CTGTGTCCTC F Q C L C P	CTGGTTTCAC TGGGCCAG		

FIG.17B

ASPROVED (C.G. F1C)
BY OLASS SUBOLNSS
OBAFTSMAN

1630	1640 1650	1660	1670	1680	1690	1700 1710
	GGGC AAAGTGTATO	GATCACCCGA D H P	ATGCCTATGA N G Y E			CTGGTGT GTTGTGTGAG T G V L C E>
1720 *	1730 1740	1750	1760	1770	1780	1790 1800
	GTGA CCCCGATCCT C D P D P		GTCAGTGTCA G Q C Q			CCATCTG CAATCCCGGG C I C N P G>
*	1820 1830		*	1860	1870	1880 1890
TACATGGGCG CCATCT Y M G A I	C S D Q I	D E C	ACAGCAGCCC Y S S P	C L N D		TIGACCT GGTCAATGGC I D L V N G>
*	1910 1920			1950	1960	1970 1980
	AGUL AGGLAUGTCA Q P G T S	G V N	C E I N	F D D C		CTTGTAT CCATGGAATC P C I H G I>
1990 *	2000 2010	2020	2030	2040 •	2050	2060 2070
	N R Y S C	GTCTGCTCAC V C S	CAGGATTCAC P G F T	AGGGCAGAGA TG G Q R C		TIGATGA GTGTGCCTCC 1 D E C A S>
*	2090 2100		*	2130	2140	2150 2160
	GIGC AACAIGIAIC G A T C I	N G V	N G F R	CIGIAIAIGC CC		ATCACCC CAGCTGCTAC H H P S C Y>
•	2180 2190		•	2220	2230	2240 2250
S Q V N E						CICTOTIC TICATICCACCC C L C D A G>
ee*	2270 2280				2320	2330 2340
W V G I N						· · · · · · · · · · · · · · · · · · ·
	2360 2370				2410 *	2420 2430
TACAGGTGTA CTTGCA Y R C T C I						CATGCCT GAACCAAGGA P C L N Q G>

FIG.17C

APRIO 0.5 FIS	CLASS SUBCLASS	
) OPPROVED	à	DRAFTSMAN

2440	2450	2460	2470	2480		2500	2510	2520
ACCTGCTTTG T C F	ATGACATAAG D D I S			TGCTGCCATA V L P Y		AATTGTCAGA N C Q	CAGTATTGGC T V L A	
2530	2540	2550	2560	2570	2580	2590	2600	2610
	GTGAGAATGC C E N A		AAAGAGTCAC K E S	-			CTCCTGGCTG A P G W	· ·
2620	2630	2640	2650			2680	2690	2700
	TTGACATTGA I D I D	CGAGTGTATC E C I		GCATGAACCA C M N H			AGGGCAGCTA Q G S Y	
2710	2720	2730	2740	2750		2770	2780	2790
TGTCCACCAG C P P	GCTTCAGTGG G F S G	-	GAGGAGGACA		CCTTGCCAAT	CCTTGCCAGA	ATGGAGGTTC N G G S	-
2800	2810	2820	2830	2840		2860	2870	2880
GGAGTGAATA G V N	CTITICTCCTG T F S C		CCGGGTTTCA		GTGCCAGACA	GACATGAATG	AGTGTCTGAG E C L S	·
2890	2900	2910	2920	2930	2940	2950	2960	2970
AAGAATGGAG K N G		TGACTACGTC D Y V	AACAGTTACA		-	TTTGATGGAG F D G	TCCATTGTGA V H C E	•
2980	2990	3000	3010	3020	3030	3040	3050	3060
							TGTGCCCTGT L C P V	
3070	3080	3090	3100	3110	3120	3130	3140	3150
							ATGGCCTGGG D G L G	
3160	3170	3180 *				3220	3230	
	CCCTGGGCTA P L G Y	CACTGGGAAA	AACTGTCAGA			CCCTCTCCAT	GTAAAAACAA C K N K	AGGTACTTGT

FIG.17D

3250	3260 3270	3280	3290	3300	3310	3320 3330
GTTCAGAAAA AAGCA V Q K K A				TGCCTATTGT GA	· ·	TGTCTCTTG TGACATAGCA V S C D I A>
3340	3350 3360	3370	3380	3390	3400	3410 3420
GCCTCCAGGA GAGG A S R R G			ACTCAGGTGT H S G V		CTGGCAACA CO A G N T	GCATTACTG TCAGTGCCCC H Y C Q C P>
3430	3440 3450				3490	3500 3510
	GAGCTA CTGTGAGGAG S Y C E E		-			AACATGCAG TGACTTCATT T C S D F I>
3520	3530 3540				3580	3590 3600
	CGAGTG TGTCCCAGGC E C V P G		•			GAATCAGCC CTGCCAGAAT NQPCQN>
3610	3620 3630				3670	3680 3690
GGAGGCACCT GTAT	TGACCT TGTGAACCAT D L V N H		CTTGCCCACC S C P P	AGGCACTCGG GC		TGAAGAGAA CATTGATGAC E E N I D D>
3700	3710 3720	3730	3740	3750	3760	3770 3780
TGTGCCCGGG GTCCC			TGGATAGGAT M D R I		STIGICGCT GC SCRC	CTIGCCIGG CTITGCIGGG L P G F A G>
3790	3800 3810	3820	3830	3840	3850	3860 3870
	AGACAT CAACGAGTGC D I N E C					ACAGCTCAC CAATGACTAC Q L T N D Y>
3880				3930		3950 3960
		CGGCACTGTG	AAACCTTCGT	CCATGTGTGT CC	CCCAGATGC CC	CTGCCTGAA TGGAGGGACT
3970	3980 3990	4000				4040 4050
	TAACAT GCCTGATGGT N M P D G			GGGATTTTCC GG	GGCAAGGT GC	CCAGAGCAG CTGTGGACAA Q S S C G Q>

FIG.17E

GTGAAATGTA GGAAGGGGA GCAGTGTGTG CACACCGCCT CTGGACCCCG CTGCTTCTGC CCCAGTCCCC GGGACTGCGA GTCAGGCTGT V K C R K G E QCV H T A S G P R C F C P S P R D C E GCCAGTAGCC CCTGCCAGCA CGGGGGCAGC TGCCACCCTC AGCGCCAGCC TCCTTATTAC TCCTGCCAGT GTGCCCCACC ATTCTCGGGT SPROVED O.C. P.C. ASS PCQHGGS CHP QRQP PYY SCQ CAPP ភ SRCELYT APPSTPPATC PLPCWDY

AGCCGCTGTG AACTCTACAC GCCACCCCCC AGCACCCCTC CTGCCACCTG TCTGAGCCAG TATTGTGCCG ACAAAGCTCG GGATGGCGTC LSOYCA DKAR TGTGATGAGG CCTGCAACAG CCATGCCTGC CAGTGGGATG GGGGTGACTG TTCTCTCACC ATGGAGAACC CCTGGGCCAA CTGCTCCTCC C D E A C N S H A C Q W D G G D C S L T M E N P W A N CCACTICCCT GCTGGGATTA TATCAACAAC CAGTGTGATG AGCTGTGCAA CACGGTCGAG TGCCTGTTTG ACAACTTTGA ATGCCAGGGG INN Q C D E L C N T V E C L F D N F E AACAGCAAGA CATGCAAGTA TGACAAATAC TGTGCAGACC ACTTCAAAGA CAACCACTGT AACCAGGGGT GCAACAGTGA GGAGTGTGGT N S K T C K Y D K Y C A D H F K D N H C N Q G C N S E TGGGATGGGC TGGACTGTGC TGCTGACCAA CCTGAGAACC TGGCAGAAGG TACCCTGGTT ATTGTGGTAT TGATGCCACC TGAACAACTG W D G L D C A A D Q P E N L A E G T L V I V V L M P P CTCCAGGATG CTCGCAGCTT CTTGCGGGCA CTGGGTACCC TGCTCCACAC CAACCTGCGC ATTAAGCGGG ACTCCCAGGG GGAACTCATG L Q D A R S F L R A L G T L L H T N L R I K R D S Q G CTGTACCCCT ATTATGGTGA GAAGTCAGCT GCTATGAAGA AACAGAGGAT GACACGCAGA TCCCTTCCTG GTGAACAAGA ACAGGAGGTG V Y P Y Y G E K S A A M K K Q R M T R R S L P G E Q E Q E V>

FIG. 17F

4870 4880	4890 4900	0 4910 4920	4930	4940 4950
GCTGGCTCTA AAGTCTTTCT	GGAAATTGAC AACCGCCAGT	* * * T GTGTTCAAGA CTCAGACCAC T	* TGCTTCAAGA ACAC	CGATGC AGCAGCAGCT
AGSKVFL	E I D N R Q	C V Q D S D H	C F K N 1	TDAAA>
4960 4970	4980 4990	0 5000 5010	5020	5030 5040
* *	* ACACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	*	# GAATCCCTGA CTCC	*
L L A S H A I				PERTQL>
5050 5060	5070 5080	0 5090 5100	5110	5120 5130
CICIAICICC LIGCIGLIGC	# # IGHIGICATC ATTCIGHTIA	*	* ATGGCAAAAC GAAA	* * * * * * * * * * * * * * * * * * *
LYLLAVA		I I L L G V I	M A K R K	
5140 5150	5160 5170	0 5180 5190	5200	5210 5220
CICICCCICC CICAACCIII	CACTCTTCCC CCACATCCAA	*	* CCACTCCCAC ACCA	* * * * * * * * * * * * * * * * * * *
LWL PEGF) A V G L K>
5230 5240	5250 5260	0 5270 5280	5290	5300 5310
* *	* * * * * * * * * * * * * * * * * * *	*	# CTCCATCATC AACC	* * * * * * * * * * * * * * * * * * *
N L S V Q V S				G P Q P K K>
5320 5330	5340 5350	0 5360 5370	5380	5390 5400
* * * GTAAAGGCTG AAGATGAGGC	* * * CTTACTCTCA GAAGAAGATG	* * * * G ACCCCATIGA TCGACGCCCA 1	* TGGACACAGC AGCA	ACCTTGA AGCTGCAGAC
V K A E D E A			WTQQH	
5410 5420	5430 5440	5450 5460	5470	5480 5490
* * ATCCGTAGGA CACCATCGCT	* * GGCTCTCACC CCTCCTCAGG	* * * * * * * * * * * * * * * * * * *	* TTAGATGTGA ATGT	* * * * * * * * * * * * * * * * * * *
		A E Q E V D V		
5500 5510	5520 5530	5540 5550	5560	5570 5580
* * ICCACCCCAT TCATCTTCCC		*	* ADDA DANDTADAAD	•
C T P L M L A		S D L S D E D		· · · · · · · · · · · · · · · · · · ·
5590 5600		5630 5640	5650	5660 5670
* * ATCACAGACT TGGTCTACCA	* * GGGTGCCAGC CTCCAGGCCC	* * * C AGACAGACCG GACTGGTGAG A	* ATGGCCCTGC ACCT	* * * * * * * * * * * * * * * * * * *
				A A R Y S>

FIG.17G

CCCCCTGATG CTGCCAAGCG TCTCCTGGAT GCAGGTGCAG ATGCCAATGC CCAGGACAAC ATGGGCCGCT GTCCACTCCA TGCTGCAGTG RAD AAKR LLD AGA DANA QDN MGR CPLH GCAGCTGATG CCCAAGGTGT CTTCCAGATT CTGATTCGCA ACCGAGTAAC TGATCTAGAT GCCAGGATGA ATGATGGTAC TACACCCCTG A A D A Q G V F Q I L I R N R V T D L D A R M N D G T ATCCTGCCTG CCCGCCTGGC TGTGGAGGGA ATGGTGGCAG AACTGATCAA CTGCCAAGCG GATGTGAATG CAGTGGATGA CCATGGAAAA I L A A R L A V E G M V A E L I N C Q A D V N A V D D TCTGCTCTTC ACTGGGCAGC TGCTGTCAAT AATGTGGAGG CAACTCTTTT GTTGTTGAAA AATGGGGCCA ACCGAGACAT GCAGGACAAC SALHWAA AVNNVEATLL LLKNGANRDM AAGGAAGAG CACCTCTGTT TCTTGCTGCC CGGGAGGGGA GCTATGAAGC AGCCAAGATC CTGTTAGACC ATTTTGCCAA TCGAGACATC KEETPLF LAAREG SYEAAKI LLD HFAN ACAGACCATA TGGATCGTCT TCCCCGGGAT GTGGCTCGGG ATCGCATGCA CCATGACATT GTGCGCCTTC TGGATGAATA CAATGTGACC T D H M D R L P R D V A R D R M H H D I V R L L D E Y CCAAGCCCTC CAGGCACCGT GTTGACTTCT GCTCTCTCAC CTGTCATCTG TGGGCCCAAC AGATCTTTCC TCAGCCTGAA GCACACCCCA PSP PG TV LISALSPVIC G P N R S F L S L K ATGGGCAAGA AGTCTAGACG GCCCAGTGCC AAGAGTACCA TGCCTACTAG CCTCCCTAAC CTTGCCAAGG AGGCAAAGGA TGCCAAGGGT M G K K S R R P S A K S T M P T S L P N L A K E A K D AGTAGGAGGA AGAAGTCTCT GAGTGAGAAG GTCCAACTGT CTGAGAGTTC AGTAACTTTA TCCCCTGTTG ATTCCCTAGA ATCTCCTCAC S R R K K S L S E K V Q L S E S S V T L S P V D S L E S P H>

FIG.17H

APPROVED C.C. FIG. BY CLASS SUBCLASS

ACCTATCTTT CCGACACCAC ATCCTCTCCA ATGATTACAT CCCCTGGGAT CTTACAGGCC TCACCCAACC CTATGTTGGC CACTGCCGCC TYV SDTT SSP MIT SPG I LQASPN PM LATAA CCTCCTGCCC CAGTCCATGC CCAGCATGCA CTATCTTTT CTAACCTTCA TGAAATGCAG CCTTTGGCAC ATGGGGCCAG CACTGTGCTT PPAPVHAQHALSF SNLH EMQ PLAHGAS CCCTCAGTGA GCCAGTTGCT ATCCCACCAC CACATTGTGT CTCCAGGCAG TGGCAGTGCT GGAAGCTTGA GTAGGCTCCA TCCAGTCCCA PSV SQLL SHH HIV SPG SG SAGSL SRLH PV P> GTCCCAGCAG ATTGGATGAA CCGCATGGAG GTGAATGAGA CCCAGTACAA TGAGATGTTT GGTATGGTCC TGGCTCCAGC TGAGGGCACC V P A D W M N R M E V N E T Q Y N E M F G M V L A P A E G T> CATCCTGGCA TAGCTCCCCA GAGCAGGCCA CCTGAAGGGA AGCACATAAC CACCCCTGG GAGCCCTTGC CCCCCATTGT GACTTTCCAG HPG IAPO SRPPEG KHIT TPR EPL PPIV TF 0> CTCATCCCTA AAGGCAGTAT TGCCCAACCA GCGGGGCTC CCCAGCCTCA GTCCACCTGC CCTCCAGCTG TTGCGGGCCC CCTGCCCACC LIPKGSI AQPAGA PQPQ STC PPA VAGP LPT> ATGTACCAGA TICCAGAAAT GCCCCGTTTG CCCAGTGTGG CTTTCCCCAC TGCCATGATG CCCCAGCAGG ACGGGCAGGT AGCTCAGACC MYQIPEM ARL PSV AFPT AMM PQQ DGQV AQT> ATTCTCCCAG CCTATCATCC TITCCCAGCC TCTGTGGGCA AGTACCCCAC ACCCCCTTCA CAGCACAGTT ATGCTTCCTC AAATGCTGCT I L P A Y H P F P A S V G K Y P T P P S O H S Y A S S GAGCGAACAC CCAGTCACAG TGGTCACCTC CAGGGTGAGC ATCCCTACCT GACACCATCC CCAGAGTCTC CTGACCAGTG GTCAAGTTCA ERT PSHS GHL QGE HPYL TPS PES PDQW SSS>

FIG. 171

7300	7310	7320	7330	7340	7350	7360	7370	7380
	CTGCTTCTGA S A S D	CTGGTCAGAT W S D	GTGACCACCA V T T	GCCCTACCCC S P T P	TGGGGGTGCT G G A		AGCGGGGACC Q R G P	TGGGACACAC G T H>
	7400 * CACCACACAA P P H N			*		*		7470 • CTAAATGCTG
7480 * CTGAGGAACA	7490 * AATGAAGGTC	7500 * ATCCGGGAGA	*	*	*		7550 * AAGAGAAGAT	7560 * GITCITATIC
7570 * AGATAATGCA	7580 * AGAGAAGCAA	7590 * TICGTCAGTT	*	*		*	7640 * ATAAGACAAG	•
7660 • TGCAAGATGA	7670 * ATACAAGCCT	7680 * TGGGTCCATG	•	*			7730 * GAAGCCCAGA	7740 * CATTCTTGCA
7750 * GCTTGGACTG	7760 * CATTTTAAGC	7770 * CCTGCAGGCT	*	*				7830 * GCCCTGGAAT
7840 * TCTGCCTGAA	7850 *	7860 * CATCTCCTCC	•		•			7920 * CCGTGATTGT
7930 * AGCCCTACCA	-	7950 * GGGCAAGACC				*	8000 * GTCTCCTTTC	8010 * CCCTCCTGTC
•				*			8090 *	
				•	•	•	8180 * CAAATTTIGG	
•	•	•					8270 * AAGGGTGTGA	*

FIG.17J

8290	8300	8310	8320		8340	8350	8360	
TTTCTGTGTA	TCCCCCTCCT	CAGTGTAAAG	TTTTATCCTT	GATAGTCTAG	TTACTATGAC	CCTCCCCACT	TTTTTAAAAC	CAGAAAAAGG
8380	8390	8400		8420			8450	8460
TTTCCAATCT	TGGAATGACC							
8470	8480						8540	
CATTGACTGC	CTGTATGGAA	CACATTIGIC					*AGCATATGAA	
8560	8570						8630	8640
ACTGTTGAGC	CITICCITIC			CTCAAATGTT			TGAACTTTCC	TTAGCCCAAG
8650	8660	8670	8680	8690	8700	8710	8720	8730
GGACCCAGTG	ACAGTTGTCT	TCCGTTTGTC	AGATGATCAG	TCTCTACTGA	TTATCTTGCT	GCTTAAAGGC	CTGCTCACCA	ATCTTTCTTT
8740	8750						8810	
CACACCGTGT	GGTCCGTGTT						* AGTGCAGGAA	
8830	8840						8900	
GGACTIGTT	TCTATGATCC	AAAACAGCCC					TGCTATTTIC	
8920	8930	8940				8980	8990	9000
ICITITICCIC	TGAAGCGGCC	ATGACATTCC	CTTTGGCAAC		* ACTCAACAGA		TICCTAGAGT	CACCTTTTAG
9010	9020					9070	9080	9090
ATGATAATGG	ACAACTATAG			GATTGCCCCT		CACTCTCTGT	ATTCATGCTC	TTCGCAATTT
9100	9110					9160	9170	9180
CTTTGACTTT	CTTTTAAGGG	CAGAAGCATT				TICCTCTICT	CCTTGGGCCA	GTTAATAATT
9190	9200	9210						
GGTCCATGGC	TACACTGCAA							

FIG.17K

9280	9290	9300	9310	9320	9330	9340	9350	9360	
				*	*		*	*	
ACAGGTGAAT	TCCCGACTCT	TTTGGTTTGA	ATGACAGTIC	ICATICCTIC	TATGGCTGCA	AGTATGCATC	AGTGCTTCCC	ACTIACCIGA	
9370	9380	9390	9400	9410	9420	9430	9440	9450	
		•			•		* •		
TTIGICIGIC	GGTGGCCCCA	TATGGAAACC	CTGCGTGTCT	GTTGGCATAA	TAGTTTACAA	ATGGTTTTTT	CAGTCCTATC	CAAATTTATT	
				,					
9460	9470	9480	9490	9500	9510	9520	9530	9540	
								*	
GAACCAACAA	AAATAATTAC	TTCTGCCCTG	AGATAAGCAG	ATTAACTTTG	TICATICICT	GCTTTATTCT	CTCCATGTGG	CAACATTCTG	
0,1,00,1,0,1	,	***************************************							
9550	9560	9570	9580	9590	9600	9610	9620	9630	
3330	3300	10.0	1	t	4			•	
TCAGCCTCTT	TOATACTOTO	CAAACATTTT	ATCATTCTAA	ATCCTCACTC	TCTGCCCTTG	CACCCATTTA	TTATTCACAC	ATGGGGAGAA	
ICAGCCICII	ICATACICIO	CAMACATTTT	MICHICIAN	AIUUIUACIC	1010000110	UNUUUNIIIN	TIMITUNUNU	nioooonon	
9640	9650	9660	9670	9680	9690	9700	9710	9720	
3040	3030	3000	3070	3000	3030	3700	3710	3720	
*	T00400104	*	TOCACCACAC	*	CACCCACTCC	TATOOOTATO	CACTITOTIC	CCCTCCCAAT	
CCIAICIGCA	IGGACCUICA	CCATCCTCTG	IULAULALAL	ALAG I GLAGG	UAUCUAU IUU	WAIDOWAI	GACTITOTIC	CCCTGGGAAT	
TCC								•	
FIO 471									

FIG.17L