Lab. Programmazione (CdL Informatica) & Informatica (CdL Matematica) a a 2022-23

Monica Nesi

Università degli Studi dell'Aquila

11 Ottobre 2022

Algoritmi e diagrammi di flusso: strutture dati bidimensionali

Finora abbiamo considerato problemi di ricerca e verifica di proprietà all'interno di una sequenza *lineare* o *monodimensionale* di elementi.

In molti ambiti si ha a che fare con dati strutturati in più dimensioni, e.g. matrici, tabelle, etc.

Quindi è necessario definire e manipolare strutture dati piú complesse, applicando su di esse ricerche e verifiche simili a quelle già viste per il caso monodimensionale.

In questo corso tratteremo solo *strutture dati bidimensionali*, ma il ragionamento può essere esteso in modo simile al caso generale *multidimensionale*.

Sequenze di sequenze: operazioni elementari

Supponiamo che, oltre alle operazioni elementari necessarie per operare su sequenze lineari, la macchina astratta fornisca le operazioni elementari per manipolare sequenze di sequenze, e.g.

- selezione della prima sequenza,
- selezione della sequenza successiva a quella in esame,
- test di fine sequenza di sequenze, etc.
- senza dare molti dettagli al riguardo.

Non appena passeremo al linguaggio di programmazione in cui codificare i nostri algoritmi, avremo a disposizione costrutti precisi per implementare le operazioni elementari necessarie.

Sequenze di sequenze: assunzioni

Data una sequenza S di sequenze di elementi $s_1 s_2 \ldots s_n$, abbiamo le seguenti assunzioni:

- S è finita, i.e. costituita da un numero finito di sequenze lineari s_i;
- ogni sequenza lineare s_i (riferita anche come riga per la similarità con le matrici) in S è finita, non vuota e terminata da un opportuno marcatore di fine sequenza;
- esiste un marcatore di fine sequenza di sequenze, denotato {};
- ► S è non vuota, i.e. esiste almeno una sequenza in S prima del marcatore {}.

Nel seguito estendiamo alle sequenze di sequenze i problemi e gli algoritmi considerati per le sequenze lineari.

Contare le occorrenze di un elemento

Esercizio I. Dati un intero x ed una sequenza di sequenze di interi S, calcolare il numero delle occorrenze di x in S.

Input: $x \in \mathbb{Z}$, $S = s_1 s_2 \ldots s_n \{\} \text{ con } s_i = x_1 x_2 \ldots x_{n_i} \text{ 0 ed } x_i \in \mathbb{Z} \text{ per ogni } i = 1, \ldots, n_i$

Output: numero di occorrenze di x in S

Come nel caso di una sequenza lineare, occorre scorrere tutta la sequenza S e registrare il numero di occorrenze di x in un contatore.

Un algoritmo consiste nel ripetere le seguenti operazioni fino a quando non viene raggiunto il marcatore di fine sequenza {}:

- selezionare una riga (a partire dalla prima riga di S),
- scorrerla tutta alla ricerca di elementi uguali ad x,
- passare alla riga successiva.

Contare le occorrenze di un elemento (cont.)

Il diagramma di flusso risultante contiene due blocchi di iterazione, uno *annidato* dentro l'altro.

Il ciclo esterno itera le operazioni sulle righe di S, mentre il ciclo interno itera la ricerca sugli elementi della sequenza s_i selezionata (vedere diagramma Es. I, dove seq denota la sequenza s_i).

In modo simile possono essere dati gli algoritmi ed i relativi diagrammi di flusso per i problemi in cui sia richiesto di calcolare:

- quanti elementi di una sequenza di sequenze S soddisfano una data proprietà,
- la somma o il prodotto o la concatenazione degli elementi di S,
- l'elemento massimo o minimo in S, etc.

Verificare l'occorrenza di un elemento

Esercizio II. Dati un intero x ed una sequenza di sequenze di interi S, restituire true se x occorre in S, altrimenti restituire false.

Input: $x \in \mathbb{Z}$, $S = s_1 s_2 \ldots s_n \{\} \text{ con } s_i = x_1 x_2 \ldots x_{n_i} \text{ 0 ed}$

 $x_i \in \mathbb{Z}$ per ogni $i = 1, \ldots, n_i$

Output: true se x occorre in S, false altrimenti

Il diagramma dato per lo stesso problema nel caso di una sequenza lineare (Es. 8) viene esteso con i blocchi necessari per la scansione di una struttura bidimensionale (vedere diagramma Es. II).

N.B. Non appena viene trovata la prima occorrenza di x in una qualche riga di S, si termina restituendo true (il confronto trovato = false compare nella condizione booleana di entrambi i cicli).

Si restituisce false se sono state esaminate tutte le sequenze in S senza aver trovato x.

Verificare l'occorrenza di un elemento in ogni riga

Esercizio III. Dati un intero x ed una sequenza di sequenze di interi S, restituire true se x occorre in ogni sequenza s_i di S, altrimenti restituire false.

Input: $x \in \mathbb{Z}$, $S = s_1 \ s_2 \ \dots \ s_n \ \{\}$ con $s_i = x_1 \ x_2 \ \dots \ x_{n_i} \ 0$ ed $x_i \in \mathbb{Z}$ per ogni $i = 1, \dots, n_i$ Output: true se x occorre in s_i per ogni $i = 1, \dots, n$, false altrimenti

Nell'esercizio precedente la proprietà da verificare può essere vista come una proprietà globale rispetto ad S (è sufficiente verificare che x compaia in una qualche sequenza di S).

Qui invece si richiede che questa proprietà sia verificata localmente per ogni sequenza di S.

Verificare l'occorrenza di un elemento in ogni riga (cont.)

Si consideri il diagramma di flusso per l'Es. III.

Affinché sia restituito true occorre esaminare tutte le sequenze di S e verificare che ogni s_i soddisfi la proprietà in questione, ovvero avere almeno un'occorrenza di x (locazione booleana ok).

N.B. Non appena viene trovata tale occorrenza all'interno di una sequenza, si può smettere di scorrere la sequenza in esame e passare a considerare quella successiva.

L'algoritmo invece termina restituendo false non appena si trova una sequenza s_i che non ha alcuna occorrenza di x al suo interno, in quanto la condizione "per ogni sequenza" non può essere soddisfatta.

Verificare l'occorrenza di un elemento in ogni riga (cont.)

L'algoritmo proposto utilizza due locazioni di tipo booleano:

- ok che, se vale *true*, significa che tutte le sequenze già esaminate soddisfano la proprietà richiesta;
- trovato che, se vale true, indica che è stata trovata un'occorrenza di x nella sequenza in esame.

N.B. Il valore di trovato deve essere rimesso a *false* prima della scansione di ogni sequenza s_i fatta nel blocco di iterazione interno.

All'uscita da tale blocco occorre distinguere per quale motivo il ciclo interno è terminato:

- se trovato vale true, s_i soddisfa la proprietà e quindi si può passare a considerare la sequenza successiva,
- altrimenti si ha che s_i è stata visitata fino alla fine senza trovare alcuna x, per cui ok viene messo a *false* in modo da uscire subito dal blocco di iterazione esterno e terminare l'intero algoritmo.

Verificare l'occorrenza di un elemento in ogni riga (cont.)

Esempio: verificare il risultato restituito dall'esecuzione dell'algoritmo dato con x=3 e la sequenza di sequenze S

```
1 4 3 3 0
5 -3 3 0
3 -1 5 3 7 0
```

e successivamente con la stessa sequenza S ed x = 5.

Verificare almeno k elementi in ogni riga

Esercizio IV. Dati una sequenza di sequenze di interi S ed un intero k > 0, restituire true se in ogni sequenza s_i di S esistono almeno k elementi che soddisfano una data proprietà P, altrimenti restituire false.

Input: $S = s_1 \ s_2 \ \dots \ s_n \ \{\}, \ k > 0 \ \text{con} \ s_i = x_1 \ x_2 \ \dots \ x_{n_i} \ 0 \ \text{ed}$ $x_i \in \mathbb{Z}$ per ogni $i = 1, \dots, n_i$ Output: $true \ \text{se} \ ogni \ s_i \ (i = 1, \dots, n)$ ha $almeno \ k$ elementi che soddisfano P, false altrimenti

Anche in questo caso occorre verificare localmente una proprietà, ovvero ogni sequenza s_i di S deve soddisfare la condizione che s_i abbia almeno k elementi per i quali sia vera una data proprietà P.

Verificare almeno k elementi in ogni riga (cont.)

Si consideri il diagramma di flusso per l'Es. IV.

Ad esempio, dati $P(n) =_{def} pari(n)$, k = 2 e la sequenza di sequenze S

```
3 4 -2 6 0
7 -10 8 0
4 5 21 -8 10 0
{}
```

l'algoritmo restituisce true, poiché ogni riga di S ha almeno 2 numeri pari.

Esercizi

Dare un algoritmo ed il relativo diagramma di flusso per i seguenti problemi.

- 1. Dati due numeri $m, n \in \mathbb{N}$ tali che m < n, stampare tutti i numeri pari compresi tra m ed n, ovvero tutti quei numeri x tali che x è pari e $m \le x \le n$.
- 2. Dato $n \in \mathbb{N}$, calcolare il fattoriale di n, definito come segue:

$$0! = 1$$

$$n! = n \times (n-1) \times \ldots \times 2 \times 1 \text{ per } n \ge 1.$$

3. Dato $n \in \mathbb{N}$, calcolare l'n-esimo numero di Fibonacci, definito come segue:

$$fib(0) = 1$$

 $fib(1) = 1$
 $fib(n) = fib(n-1) + fib(n-2)$ per $n > 2$.