SSF examples

Background info

Maps and time series of location data. Grey points show randomly generated "available" points for each step.

Step selection analysis

Distribution of modification and mobility values for used vs. available points


```
## Call:
## coxph(formula = Surv(rep(1, 4699L), case_) ~ sg_norm * ghm +
##
       strata(step_id_), data = data, method = "exact")
##
     n=4376, number of events= 276
##
##
      (323 observations deleted due to missingness)
##
##
                     coef
                           exp(coef)
                                       se(coef)
                                                     z Pr(>|z|)
                                      1.223e+05 4.920 8.64e-07 ***
                6.017e+05
                                 Inf
## sg_norm
                1.628e+00
                           5.092e+00
                                      6.449e-01 2.524
## ghm
                                                         0.0116 *
## sg_norm:ghm -1.301e+06 0.000e+00 3.165e+05 -4.110 3.95e-05 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
               exp(coef) exp(-coef) lower .95 upper .95
##
                             0.0000
                     Inf
                                          Inf
                                                    Inf
## sg_norm
## ghm
                   5.092
                             0.1964
                                        1.438
                                                   18.02
                   0.000
                                        0.000
                                                   0.00
## sg_norm:ghm
                                Inf
## Concordance= 0.561 (se = 0.017)
## Likelihood ratio test= 38.61 on 3 df,
                                            p = 2e - 08
## Wald test
                        = 27.44 on 3 df,
                                            p=5e-06
## Score (logrank) test = 4.51 on 3 df,
                                           p=0.2
```