

Schletter, Inc.		35° Tilt w/o Seismic Design
HCV	Standard PVMini Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 35°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load, P _g =	= ;	30.00 psf	
ped Roof Snow Load, P _s =	=	14.43 psf	(ASCE 7-05, Eq. 7-2)
I _s =	=	1.00	
C _s =	=	0.64	
C _e =	=	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height ≤	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.2 (Pressure)	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	2 (Pressure)	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.4 -1.2 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.2 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
$T_a =$	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R (ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2) 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions	<u>Location</u>
M13	Тор	M3	Outer	N7	Outer
M16	Bottom	M7	Inner	N15	Inner
		M11	Outer	N23	Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions	Location
M1	Outer	M2	Outer	N8	Outer
M5	Inner	M6	Inner	N16	Inner
M9	Outer	M10	Outer	N24	Outer
Front Struts	Location	Bracing	<u>g</u>		
M4	Outer	M15	5		
M8	Inner	M16A	4		
M12	Outer				

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
L _b =	<u>54</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.52	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
$S_y =$	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
$l_y =$	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.458	k-ft
$M_z =$	0.044	k-ft
$M_{y \text{ allowable}} =$	1.256	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>42%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

$A = 0.38 \text{ in}^2$
g = 0.45 lbs/ft
$M_y = 0.002 \text{ k-ft}$
$P_n = 0.112 \text{ k}$
$M_{y \text{ allowable}} = 0.046 \text{ k-ft}$
$P_{n \text{ allowable}} = 11.813 \text{ k}$ Utilization = 5%

A cross brace kit is required every 37 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear
Tensile Load =	22.05	<u>1845.55</u> k
Compressive Load =	922.68	<u>1233.36</u> k
Lateral Load =	<u>1.74</u>	<u>1238.88</u> k
Moment (Weak Axis) =	0.00	0.00 k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 27932.1 in-lbs Resisting Force Required = 931.07 lbs A minimum 60in long x 22in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1551.78 lbs to resist overturning. Minimum Width = Weight Provided = 1993.75 lbs Sliding Force = 297.72 lbs Use a 60in long x 22in wide x 18in tall Friction = 0.4 Weight Required = 744.29 lbs ballast foundation to resist sliding. Resisting Weight = 1993.75 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 297.72 lbs Cohesion = 130 psf Use a 60in long x 22in wide x 18in tall 9.17 ft² Area = ballast foundation. Cohesion is OK. Resisting = 996.88 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

ASD LC		1.0D	+ 1.0S			1.0D+	- 1.0W		1	.0D + 0.75L +	0.75W + 0.75	iS		0.6D+	- 1.0W	
Width	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in	22 in	23 in	24 in	25 in
FA	326 lbs	326 lbs	326 lbs	326 lbs	335 lbs	335 lbs	335 lbs	335 lbs	463 lbs	463 lbs	463 lbs	463 lbs	28 lbs	28 lbs	28 lbs	28 lbs
F _B	213 lbs	213 lbs	213 lbs	213 lbs	552 lbs	552 lbs	552 lbs	552 lbs	551 lbs	551 lbs	551 lbs	551 lbs	-886 lbs	-886 lbs	-886 lbs	-886 lbs
F _V	35 lbs	35 lbs	35 lbs	35 lbs	538 lbs	538 lbs	538 lbs	538 lbs	426 lbs	426 lbs	426 lbs	426 lbs	-595 lbs	-595 lbs	-595 lbs	-595 lbs
P _{total}	2533 lbs	2623 lbs	2714 lbs	2805 lbs	2880 lbs	2971 lbs	3062 lbs	3152 lbs	3007 lbs	3098 lbs	3188 lbs	3279 lbs	338 lbs	392 lbs	447 lbs	501 lbs
M	279 lbs-ft	279 lbs-ft	279 lbs-ft	279 lbs-ft	450 lbs-ft	450 lbs-ft	450 lbs-ft	450 lbs-ft	520 lbs-ft	520 lbs-ft	520 lbs-ft	520 lbs-ft	724 lbs-ft	724 lbs-ft	724 lbs-ft	724 lbs-ft
е	0.11 ft	0.11 ft	0.10 ft	0.10 ft	0.16 ft	0.15 ft	0.15 ft	0.14 ft	0.17 ft	0.17 ft	0.16 ft	0.16 ft	2.14 ft	1.84 ft	1.62 ft	1.44 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft									
f _{min}	239.8 psf	238.8 psf	237.9 psf	237.1 psf	255.3 psf	253.6 psf	252.1 psf	250.7 psf	259.9 psf	258.1 psf	256.4 psf	254.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	312.8 psf	308.7 psf	304.9 psf	301.4 psf	373.2 psf	366.4 psf	360.2 psf	354.5 psf	396.2 psf	388.4 psf	381.3 psf	374.7 psf	341.8 psf	208.0 psf	169.1 psf	151.8 psf

Ballast Width

1994 lbs 2084 lbs 2175 lbs 2266 lbs

24 in

25 in

23 in

<u>22 in</u>

Maximum Bearing Pressure = 396 psf Allowable Bearing Pressure = 1500 psf

 $P_{ftg} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.83 \text{ ft}) =$

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 151.2 \text{ ft-lbs}$

Resisting Force Required = 164.93 lbs S.F. = 1.67 Weight Required = 274.88 lbs

Minimum Width = 22 in in Weight Provided = 1993.75 lbs

A minimum 60in long x 22in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0	.362D + 0.875	iΕ	
Width		22 in			22 in			22 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F _Y	58 lbs	139 lbs	55 lbs	167 lbs	452 lbs	164 lbs	17 lbs	41 lbs	16 lbs	
F _V	0 lbs	0 lbs	0 lbs	1 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	2527 lbs	2607 lbs	2523 lbs	2517 lbs	2802 lbs	2514 lbs	739 lbs	762 lbs	738 lbs	
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	2 lbs-ft	1 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.31 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	
f _{min}	275.5 sqft	284.4 sqft	275.2 sqft	273.8 sqft	305.4 sqft	274.0 sqft	80.6 sqft	83.2 sqft	80.5 sqft	
f _{max}	275.8 psf	284.5 psf	275.3 psf	275.4 psf	305.9 psf	274.4 psf	80.6 psf	83.2 psf 80.5 psf		

Maximum Bearing Pressure = 306 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 22in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 22in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

	Rear Strut	
0.710 k	Maximum Axial Load =	1.124 k
5.692 k	M8 Bolt Capacity =	5.692 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>12%</u>	Utilization =	<u>20%</u>
	Bracing	
0.757 k	Maximum Axial Load =	0.112 k
5.692 k	M10 Bolt Capacity =	8.894 k
7.952 k	Strut Bearing Capacity =	7.952 k
<u>13%</u>	Utilization =	<u>1%</u>
	5.692 k 7.952 k 12% 0.757 k 5.692 k 7.952 k	0.710 k

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 33.11 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.662 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.01 \text{ in} \\ \hline & N\!\!\!\!/\!\!\!/\!\!\!\!A} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_b = 54.00 \text{ in}$$

$$J = 0.255$$

$$140.613$$

$$\left(Bc - \frac{\theta_y}{\theta_b} Fcy\right)^{-1}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.5 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

 $\phi F_L = 1.17 \phi y F c y$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_b = 54.00 \text{ in}$$

$$J = 0.255$$

$$146.018$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

$$\phi F_I = 29.4$$

3.4.16

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.5 \text{ ksi}$$

$$1x = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

 $\phi F_L = 1.3 \phi y F c y$

77.3

0.511 in³

1.256 k-ft

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

Sx =

 $M_{max}St =$

S2 =

3.4.9

b/t =7.4

S1 = 12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula)

 $\phi F_L = \phi y F c y$

 $\phi F_L =$ 33.3 ksi

b/t =23.9 S1 = 12.21 S2 = 32.70 $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ 28.5 ksi

 $\phi F_L =$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

 $\phi F_L =$ 28.47 ksi A = 578.06 mm² 0.90 in² 25.51 kips $P_{max} =$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.22 \\ & 22.2924 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

S2 = 79.2

$$\phi F_L = \phi b[Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

 $\phi F_L = 29.6 \text{ ksi}$

3.4.15

N/A for Strong Direction

Weak Axis:

3.4.11

$$\begin{array}{lll} \mathsf{L_b} = & 33.78 \text{ in} \\ \mathsf{ry} = & 1.374 \\ \mathsf{Cb} = & 1.22 \\ & 24.5845 \\ & \\ S1 = & \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc} \\ \mathsf{S1} = & 1.37733 \\ & \\ S2 = & 1.2C_c \\ & \\ \mathsf{S2} = & 79.2 \\ & \\ \mathsf{\phiF_L} = & \\ \mathsf{\phib}[\mathsf{Bc\text{-}Dc^*Lb/(1.2^*ry^*\sqrt{(Cb))})} \\ & \\ \mathsf{\phiF_I} = & 29.6 \text{ ksi} \end{array}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 ksi$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16

N/A for Strong Direction

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\psi F_L = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$\psi = 37.77 \text{ mm}$$

$$Sx = 0.589 \text{ in}^3$$

$$M_{max}St = 1.453 \text{ k-ft}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y F c y$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L W k = 13.5 \text{ ksi}$$

$$\varphi F_L W k = 13.5 \text{ ksi}$$

$$\varphi F_L W k = 13.5 \text{ ksi}$$

$$\varphi F_L W k = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

$$X = 29 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.457 in³

0.513 k-ft

Compression

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^* \sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

3.4.9.1

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ pst = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = & Fut + (Fst - Fut)pst < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

3.4.10

Rb/t =

$$S1 = \left(\frac{b_b}{Dt}\right)$$

 $S1 = 6.87$
 $S2 = 131.3$
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 14.29 \text{ ksi}$
 $A = 576.21 \text{ mm}^2$
 0.89 in^2
 $P_{\text{max}} = 12.76 \text{ kips}$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$\left(Bc - \frac{\theta_y}{2} Fcy\right)^2$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$\left(Bc - \frac{\theta_{y}}{\theta_{b}} Fcy\right)^{\frac{1}{2}}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.2$$

7.75

33.3 ksi

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$
$$S2 = 46.7$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

3.4.16

b/t =

 $S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$

 $S2 = \frac{k_1 Bp}{1.6Dp}$ S2 = 46.7

 $\phi F_L = \phi y F c y$

 $\phi F_L =$

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

Cc =

$$mDbr$$
 $S2 = 77.3$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$
 $lx = 39958.2 \text{ mm}^4$

15

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.423 \text{ k-ft}$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 0.05$$

$$C_0 = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\varphi F_L = 1.3 \varphi y F_C y$$

$$\phi F_1 = 43.2 \text{ ksi}$$

$$\phi F_L W k = 31.2 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

0.096 in⁴

$$x = 15 \text{ mr}$$

 $Sy = 0.163 \text{ in}^3$

$$M_{max}Wk = 0.423 \text{ k-ft}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 0.77182$$

$$r = 0.437 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.83792$$

$$\phi cc = 0.83792$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 24.5226 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$OE = OV Ecy$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$
 $A = 323.87 \text{ mm}^2$
 0.50 in^2

$$P_{\text{max}} = 12.31 \text{ kips}$$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14 46.38 in

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$32 = 1.6Dp$$

 $S2 = 46.7$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$Rt = 1.17 \frac{\theta_y}{\theta_y} E_{CX}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

3.4.16.1

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.8 \text{ ksi}$$

$$1x = 39958.2 \text{ mm}^4$$

 0.096 in^4
 $y = 15 \text{ mm}$

$$Sx = 0.163 \text{ in}^3$$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$

 $J = 0.16$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 29.8$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$k_1Bp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} \, 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

 $m = 0.69$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$
$$S2 = 77.3$$

$$S2 = 77.$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 33.3 \text{ ksi}$$

$$ly = 39958.2 \text{ mm}^4$$

$$Sy = 0.163 \text{ in}^3$$

 $M_{max}Wk = 0.450 \text{ k-ft}$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$\pi \sqrt{109/7}$$

S2^{*} = 1.23671

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$

$$\phi F_L {= \phi y F c y}$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis: 3.4.14

$$L_b = 42.32 \text{ in}$$
 $J = 0.16$
 111.025

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^{\frac{1}{2}}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.0 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 30.0 \text{ ksi} \\ k &= & 39958.2 \text{ mm}^4 \\ & & 0.096 \text{ in}^4 \\ y &= & 15 \text{ mm} \\ Sx &= & 0.163 \text{ in}^3 \end{aligned}$$

0.406 k-ft

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= \quad 42.32 \text{ in} \\ \mathsf{J} &= \quad 0.16 \\ 111.025 \\ S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= \quad 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= \quad 1701.56 \\ \varphi \mathsf{F_L} &= \quad \varphi \mathsf{b}[\mathsf{Bc-1.6Dc}*\sqrt{(\mathsf{LbSc})/(\mathsf{Cb}*\sqrt{(\mathsf{lyJ})/2}))}] \\ \varphi \mathsf{F_L} &= \quad 30.0 \end{split}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 33.3 \text{ ksi}$$

$$\phi F_L Wk = 39958.2 \text{ mm}^4$$

$$0.096 \text{ in}^4$$

x =

Sy =

 $M_{max}Wk =$

15 mm

0.163 in³

0.450 k-ft

 $M_{max}St =$

SCHLETTER

Compression

3.4.7 $\lambda = 1.81475$ r = 0.437 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.83406$ $\varphi F_L = (\varphi cc Fcy)/(\lambda^2)$ $\varphi F_L = 8.86409$ ksi 3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi y F c y \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 8.86 \text{ ksi}$
 $\phi F_L = 323.87 \text{ mm}^2$
0.50 in²

4.45 kips

APPENDIX B

 $P_{max} =$

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	•			2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-40.249	-40.249	0	0
2	M16	Υ	-40.249	-40.249	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-63.577	-63.577	0	0
2	M16	V	-105.961	-105.961	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	127.153	127.153	0	0
2	M16	V	63.577	63.577	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	6.					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Company Designer Job Number Model Name : Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	264.656	2	296.106	2	0	10	0	15	0	1	0	1
2		min	-311	3	-444.953	3	133	3	0	3	0	1	0	1
3	N7	max	.025	3	268.929	1	027	10	0	15	0	1	0	1
4		min	136	2	10.965	15	663	1	001	1	0	1	0	1
5	N15	max	.157	3	709.754	1	.229	9	0	1	0	1	0	1
6		min	-1.342	2	24.092	15	716	3	001	3	0	1	0	1
7	N16	max	872.601	2	948.738	2	0	2	0	9	0	1	0	1
8		min	-952.981	3	-1419.653	3	-86.491	3	0	3	0	1	0	1
9	N23	max	.025	3	269.022	1	1.141	1	.002	1	0	1	0	1
10		min	136	2	11.083	15	.027	10	0	10	0	1	0	1
11	N24	max	264.656	2	298.719	2	87.238	3	0	1	0	1	0	1
12		min	-311.561	3	-443.968	3	0	10	0	3	0	1	0	1
13	Totals:	max	1400.299	2	2606.816	2	0	9						
14		min	-1575.335	3	-2129.695	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	v Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	199.82	2	.678	4	.152	1	0	10	0	15	0	1
2			min	-367.042	3	.16	15	055	3	0	1	0	1	0	1
3		2	max	199.955	2	.621	4	.152	1	0	10	0	15	0	15
4			min	-366.941	3	.146	15	055	3	0	1	0	1	0	4
5		3	max	200.09	2	.563	4	.152	1	0	10	0	15	0	15
6			min	-366.839	3	.133	15	055	3	0	1	0	3	0	4
7		4	max	200.225	2	.506	4	.152	1	0	10	0	15	0	15
8			min	-366.738	3	.119	15	055	3	0	1	0	3	0	4
9		5	max	200.36	2	.448	4	.152	1	0	10	0	9	0	15
10			min	-366.637	3	.105	15	055	3	0	1	0	3	0	4
11		6	max	200.495	2	.391	4	.152	1	0	10	0	9	0	15
12			min	-366.536	3	.092	15	055	3	0	1	0	3	0	4
13		7	max	200.63	2	.333	4	.152	1	0	10	0	1	0	15
14			min	-366.435	3	.078	15	055	3	0	1	0	3	0	4
15		8	max	200.764	2	.276	4	.152	1	0	10	0	1	0	15
16			min	-366.334	3	.065	15	055	3	0	1	0	3	0	4
17		9	max	200.899	2	.218	4	.152	1	0	10	0	1	0	15
18			min	-366.233	3	.051	15	055	3	0	1	0	3	0	4
19		10	max	201.034	2	.161	4	.152	1	0	10	0	1	0	15
20			min	-366.131	3	.037	12	055	3	0	1	0	3	0	4
21		11	max	201.169	2	.11	2	.152	1	0	10	0	1	0	15
22			min	-366.03	3	.015	12	055	3	0	1	0	3	0	4
23		12	max	201.304	2	.065	2	.152	1	0	10	0	1	0	15
24			min	-365.929	3	014	3	055	3	0	1	0	3	0	4
25		13	max	201.439	2	.021	2	.152	1	0	10	0	1	0	15
26			min	-365.828	3	047	3	055	3	0	1	0	3	0	4
27		14	max	201.574	2	016	15	.152	1	0	10	0	1	0	15
28			min	-365.727	3	081	3	055	3	0	1	0	3	0	4
29		15	max	201.708	2	03	15	.152	1	0	10	0	1	0	15
30			min	-365.626	3	126	4	055	3	0	1	0	3	0	4
31		16	max	201.843	2	043	15	.152	1	0	10	0	1	0	15
32			min	-365.524	3	184	4	055	3	0	1	0	3	0	4
33		17	max	201.978	2	057	15	.152	1	0	10	0	1	0	15
34			min	-365.423	3	241	4	055	3	0	1	0	3	0	4
35		18	max	202.113	2	07	15	.152	1	0	10	0	1	0	15
36			min	-365.322	3	299	4	055	3	0	1	0	3	0	4
37		19	max	202.248	2	084	15	.152	1	0	10	0	1	0	12

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft	1, LC ;	y-y Mome		z-z Mome	<u>LC</u>
38			min	-365.221	3	356	4	055	3	0	1	0	3	0	4
39	M3	1	max	226.511	2	1.736	4	007	10	0	15	0	1	0	4
40			min	-218.94	3	.408	15	185	1	0	1	0	10	0	12
41		2	max	226.441	2	1.559	4	007	10	0	15	0	1	0	2
42			min	-218.993	3	.367	15	185	1	0	1	0	10	0	3
43		3	max	226.371	2	1.383	4	007	10	0	15	0	1	0	2
44			min	-219.045	3	.325	15	185	1	0	1	0	10	0	3
45		4	max	226.301	2	1.207	4	007	10	0	15	0	1	0	15
46			min	-219.098	3	.284	15	185	1	0	1	0	10	0	4
47		5	max	226.231	2	1.03	4	007	10	0	15	0	1	0	15
48			min	-219.15	3	.242	15	185	1	0	1	0	10	0	4
49		6	max	226.161	2	.854	4	007	10	0	15	0	1	0	15
50			min	-219.203	3	.201	15	185	1	0	1	0	10	0	4
51		7	max	226.091	2	.677	4	007	10	0	15	0	1	0	15
52			min	-219.255	3	.159	15	185	1	0	1	0	10	0	4
53		8	max		2	.501	4	007	10	0	15	0	1	0	15
54			min	-219.308	3	.118	15	185	1	0	1	0	10	001	4
55		9	max		2	.325	4	007	10	0	15	0	1	0	15
56			min	-219.36	3	.076	15	185	1	0	1	0	10	001	4
57		10	max		2	.148	4	007	10	0	15	0	1	0	15
58			min	-219.413	3	.035	12	185	1	0	1	0	10	001	4
59		11		225.811	2	.005	2	007	10	0	15	0	1	0	15
60			min	-219.465	3	054	3	185	1	0	1	0	10	001	4
61		12	max		2	048	15	007	10	0	15	0	1	0	15
62			min	-219.518	3	204	4	185	1	0	1	0	10	001	4
63		13	max		2	089	15	007	10	0	15	0	1	0	15
64		10	min	-219.57	3	381	4	185	1	0	1	0	10	001	4
65		14	max		2	131	15	007	10	0	15	0	1	0	15
66		17			3	557	4	185	1	0	1	0	10	001	4
67		15	max		2	172	15	007	10	0	15	0	1	0	15
68		15	min	-219.675	3	734	4	185	1	0	1	0	10	0	4
69		16	max		2	214	15	007	10	0	15	0	1	0	15
70		10	min	-219.728	3	91	4	185	1	0	1	0	10	0	4
71		17	max		2	255	15	007	10	0	15	0	15	0	15
72		1 '	min	-219.78	3	-1.086	4	185	1	0	1	0	1	0	4
73		18	max		2	297	15	007	10	0	15	0	15	0	15
74		10	min	-219.833	3	-1.263	4	185	1	0	1	0	1	0	4
75		19	max		2	338	15	007	10	0	15	0	15	0	1
76		19	min	-219.885	3	-1.439	4	185	1	0	1	0	1	0	1
77	M4	1	max	267.764	1	0	1	028	10	0	1	0	3	0	1
78	IVI *	<u> </u>		10.614			1	694	1	0	1	0	2	0	1
79		2		267.829	1	0	1	028	10	0	1	0	15	0	1
80			min	10.633	15	0	1	694	1	0	1	0	1	0	1
		3			1		1	028	10		1		15		1
81 82		J	max min	10.653	15	0	1	028 694	1	0	1	0 0	1	0	1
83		4			1	0	1	028	10	0	1	0	15	0	1
84		4	max	10.672	15	0	1	028 694	1	0	1	0	1	0	1
			min				1						15		_
85		5	max		1	0	1	028	10	0	1	0	15	0	1
86		_	min	10.692	15	0		694	1	0	1	0		0	1
87		6	max		1	0	1	028	10	0	1	0	15	0	1
88		7	min	10.711	15	0	_	694	1	0		0	1	0	
89		7		268.152	1	0	1	028	10	0	1	0	15	0	1
90			min	10.731	15	0	1	694	1	0	1	0	1_	0	1
91		8	max		1	0	1	028	10	0	1	0	15	0	1
92			min	10.75	15	0	1	694	1	0	1	0	1_	0	1
93		9	max		1	0	1	028	10	0	1	0	15	0	1
94			min	10.77	15	0	1	694	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>. LC</u>
95		10	max	268.346	1	0	1	028	10	0	1_	0	15	0	1
96			min	10.789	15	0	1	694	1	0	1	0	1	0	1
97		11	max	268.411	1	0	1	028	10	0	1	0	15	0	1
98			min	10.809	15	0	1	694	1	0	1	0	1	0	1
99		12	max	268.476	1	0	1	028	10	0	1_	0	15	0	1
100			min	10.828	15	0	1	694	1	0	1	0	1	0	1
101		13	max	268.54	1	0	1	028	10	0	1	0	15	0	1
102			min	10.848	15	0	1	694	1	0	1	0	1	0	1
103		14	max	268.605	1	0	1	028	10	0	1	0	15	0	1
104			min	10.868	15	0	1	694	1	0	1	0	1	0	1
105		15	max	268.67	1	0	1	028	10	0	1	0	15	0	1
106			min	10.887	15	0	1	694	1	0	1	0	1	0	1
107		16	max	268.735	1	0	1	028	10	0	1	0	15	0	1
108			min	10.907	15	0	1	694	1	0	1	0	1	0	1
109		17	max	268.799	1	0	1	028	10	0	1	0	15	0	1
110			min	10.926	15	0	1	694	1	0	1	001	1	0	1
111		18	max	268.864	1	0	1	028	10	0	1	0	15	0	1
112			min	10.946	15	0	1	694	1	0	1	001	1	0	1
113		19	max	268.929	1	0	1	028	10	0	1	0	15	0	1
114			min	10.965	15	0	1	694	1	0	1	001	1	0	1
115	M6	1	max	631.703	2	.68	4	.03	9	0	3	0	3	0	1
116			min	-1123.608	3	.16	15	247	3	0	2	0	2	0	1
117		2	max		2	.622	4	.03	9	0	3	0	3	0	15
118			min	-1123.507	3	.146	15	247	3	0	2	0	2	0	4
119		3	max	631.973	2	.565	4	.03	9	0	3	0	3	0	15
120			min	-1123.406	3	.133	15	247	3	0	2	0	2	0	4
121		4	max		2	.507	4	.03	9	0	3	0	3	0	15
122			min	-1123.305	3	.119	15	247	3	0	2	0	2	0	4
123		5	max		2	.45	4	.03	9	0	3	0	3	0	15
124			min	-1123.204	3	.097	12	247	3	0	2	0	2	0	4
125		6	max		2	.4	2	.03	9	0	3	0	3	0	15
126			min	-1123.103	3	.075	12	247	3	0	2	0	2	0	4
127		7	max		2	.355	2	.03	9	0	3	0	9	0	15
128		<u> </u>	min	-1123.001	3	.052	12	247	3	0	2	0	2	0	4
129		8	max	632.647	2	.311	2	.03	9	0	3	0	9	0	12
130			min	-1122.9	3	.03	12	247	3	0	2	0	3	0	4
131		9	max		2	.266	2	.03	9	0	3	0	9	0	12
132		-	min	-1122.799	3	.003	3	247	3	0	2	0	3	0	4
133		10	max	632.917	2	.221	2	.03	9	0	3	0	9	0	12
134		10	min	-1122.698	3	03	3	247	3	0	2	0	3	0	2
135		11		633.052		.176	2	.03	9	0	3	0	9	0	12
136		11	min	-1122.597	3	064	3	247	3	0	2	0	3	0	2
137		12		633.187	2	.131	2	.03	9	0	3	0	9	0	12
138		12	min	-1122.496	3	098	3	247	3	0	2	0	3	0	2
139		13			2	.087	2	.03	9	0	3	0	9	0	12
140		13	min	-1122.395	3	131	3	247	3	0	2	0	3	0	2
141		11		633.456		.042	2	.03	9		3	0	9		12
		14		-1122.293	3	165				0	2			0	
142		4.5	min				3	247	3	0		0	3	0	2
143		15		633.591	2	003	2	.03	9	0	3	0	9	0	12
144		40	min	-1122.192	3	198	3	247	3	0	2	0	3	0	2
145		16		633.726	2	043	15	.03	9	0	3	0	9	0	12
146		47	min	-1122.091	3	232	3	247	3	0	2	0	3	0	2
147		17		633.861	2	057	15	.03	9	0	3	0	9	0	3
148		4.0		-1121.99	3	265	3	247	3	0	2	0	3	0	2
149		18	max		2	07	15	.03	9	0	3	0	9	0	3
150			min	-1121.889	3	299	3	247	3	0	2	0	3	0	2
151		<u> 19</u>	max	634.131	2	084	15	.03	9	0	3	0	9	0	3

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec	1	Axial[lb]		y Shear[lb]				Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_ LC_
152			min	-1121.788	3	355	4	247	3	0	2	0	3	0	2
153	M7	1		756.699	2	1.739	4	.047	3	0	1_	0	1_	0	2
154			min	-646.797	3	.409	15	011	1	0	3	0	3	0	3
155		2	max	756.629	2	1.563	4	.047	3	0	1	0	1	0	2
156			min	-646.85	3	.367	15	011	1	0	3	0	3	0	3
157		3	max	756.559	2	1.386	4	.047	3	0	1	0	1	0	2
158			min	-646.902	3	.326	15	011	1	0	3	0	3	0	3
159		4	max	756.489	2	1.21	4	.047	3	0	1	0	1	0	2
160			min	-646.955	3	.284	15	011	1	0	3	0	3	0	3
161		5	max	756.419	2	1.033	4	.047	3	0	1	0	1	0	15
162				-647.007	3	.243	15	011	1	0	3	0	3	0	3
163		6	max		2	.857	4	.047	3	0	1	0	1	0	15
164			min	-647.06	3	.201	15	011	1	0	3	0	3	0	4
165		7	max		2	.681	4	.047	3	0	1	0	1	0	15
166				-647.112	3	.16	15	011	1	0	3	0	3	0	4
167		8	max		2	.504	4	.047	3	0	1	0	1	0	15
168				-647.165	3	.118	15	011	1	0	3	0	3	001	4
169		9		756.139	2	.341	2	.047	3	0	1	0	1	0	15
170		9	min	-647.217	3	.057	12	011	1	0	3	0	3	001	4
		10			_						<u>ာ</u> 1	_	<u>ა</u> 1	001 0	
171		10			2	.204	2	.047	3	0	3	0			15
172		44	min	-647.27	3	024	3	011	1	0		0	3	001	4
173		11	max		2	.066	2	.047	3	0	1_	0	1_	0	15
174		40		-647.322	3	127	3	011	1	0	3	0	3	001	4
175		12	max	755.929	2	047	15	.047	3	0	1_	0	_1_	0	15
176		10		-647.375	3	23	3	011	1	0	3	0	3	001	4
177		13		755.859	2	089	15	.047	3	0	1_	0	_1_	0	15
178			_	-647.427	3_	378	4	011	1_	0	3	0	3_	001	4
179		14		755.789	2	13	15	.047	3	0	_1_	0	_1_	0	15
180			min	-647.48	3	554	4	011	1	0	3	0	3	001	4
181		15		755.719	2	172	15	.047	3	0	_1_	0	_1_	0	15
182				-647.532	3	73	4	011	1	0	3	0	3	0	4
183		16		755.649	2	213	15	.047	3	0	_1_	0	_1_	0	15
184			min	-647.585	3	907	4	011	1	0	3	0	3	0	4
185		17	max	755.579	2	255	15	.047	3	0	_1_	0	_1_	0	15
186			min	-647.637	3	-1.083	4	011	1	0	3	0	3	0	4
187		18	max	755.509	2	296	15	.047	3	0	1	0	1	0	15
188			min	-647.69	3	-1.259	4	011	1	0	3	0	3	0	4
189		19	max	755.439	2	338	15	.047	3	0	1	0	1	0	1
190			min	-647.742	3	-1.436	4	011	1	0	3	0	3	0	1
191	M8	1	max	708.589	1	0	1	.244	1	0	1	0	2	0	1
192			min	23.74	15	0	1	726	3	0	1	0	3	0	1
193		2		708.654	1	0	1	.244	1	0	1	0	1	0	1
194			min	23.76	15	0	1	726	3	0	1	0	3	0	1
195		3	max	708.719	1	0	1	.244	1	0	1	0	1	0	1
196			min	23.779	15	0	1	726	3	0	1	0	3	0	1
197		4	max		1	0	1	.244	1	0	1	0	1	0	1
198			min	23.799	15	0	1	726	3	0	1	0	3	0	1
199		5	max	708.848	1	0	1	.244	1	0	1	0	1	0	1
200			min	23.818	15	0	1	726	3	0	1	0	3	0	1
201		6		708.913	15 1	0	1	.244	1	0	1	0	<u>ა</u> 1	0	1
		U	max		15	0	1		3	0	1	0		0	1
202		7	min	23.838				726		_	•	_	3		_
203		7	max		1_	0	1	.244	1	0	1	0	1	0	1
204		_	min	23.857	<u>15</u>	0	1	726	3	0	1_	0	3	0	1
205		8	max	709.042	1_	0	1	.244	1	0	1_	0	1_	0	1
206			min	23.877	15	0	1	726	3	0	1_	0	3	0	1
207		9	max	709.107	_1_	0	1	.244	1	0	1_	0	1_	0	1
208			min	23.896	15	0	1	726	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
209		10	max	709.172	1	0	1	.244	1	0	1	0	1	0	1
210			min	23.916	15	0	1	726	3	0	1	0	3	0	1
211		11	max	709.237	1	0	1	.244	1	0	1	0	1_	0	1
212			min	23.935	15	0	1	726	3	0	1	0	3	0	1
213		12	max	709.301	1	0	1	.244	1	0	1	0	1	0	1
214		10	min	23.955	15	0	1	726	3	0	1	0	3	0	1
215		13	max	709.366	1	0	1	.244	1	0	1	0	1	0	1
216		4.	min	23.974	15	0	1	726	3	0	1	0	3	0	1
217		14	max	709.431	1	0	1	.244	1	0	1	0	1	0	1
218		4.5	min	23.994	15	0	1	726	3	0	1	0	3	0	1
219		15	max	709.495	1	0	1	.244	1	0	1	0	1	0	1
220		4.0	min	24.013	15	0	1	726	3	0	1	0	3	0	1
221		16	max	709.56	1	0	1	.244 726	3	0	1	0	3	0	1
222 223		17	min	24.033 709.625	1 <u>5</u> 1	0	1	.244	1	0	1	0	1	0	1
224		17	max min	24.052	15	0	1	726	3	0	1	001	3	0	1
225		18	max	709.69	1	0	1	.244	1	0	1	0	1	0	1
226		10	min	24.072	15	0	1	726	3	0	1	001	3	0	1
227		19	max	709.754	1	0	1	.244	1	0	1	0	1	0	1
228		13	min	24.092	15	0	1	726	3	0	1	001	3	0	1
229	M10	1	max	201.175	2	.678	4	.006	3	0	1	0	1	0	1
230	10110		min	-298.227	3	.16	15	116	1	0	3	0	3	0	1
231		2	max	201.31	2	.621	4	.006	3	0	1	0	1	0	15
232			min	-298.126	3	.146	15	116	1	0	3	0	3	0	4
233		3	max	201.445	2	.563	4	.006	3	0	1	0	1	0	15
234			min	-298.025	3	.133	15	116	1	0	3	0	3	0	4
235		4	max		2	.506	4	.006	3	0	1	0	1	0	15
236			min	-297.923	3	.119	15	116	1	0	3	0	3	0	4
237		5	max	201.714	2	.448	4	.006	3	0	1	0	1	0	15
238			min	-297.822	3	.105	15	116	1	0	3	0	3	0	4
239		6	max	201.849	2	.391	4	.006	3	0	1	0	1	0	15
240			min	-297.721	3	.092	15	116	1	0	3	0	3	0	4
241		7	max	201.984	2	.333	4	.006	3	0	1	0	1_	0	15
242			min	-297.62	3	.078	15	116	1	0	3	0	3	0	4
243		8	max	202.119	2	.276	4	.006	3	0	1	0	1	0	15
244			min	-297.519	3	.065	15	116	1	0	3	0	3	0	4
245		9	max	202.254	2	.218	4	.006	3	0	1	0	9	0	15
246		40	min	-297.418	3	.051	15	116	1	0	3	0	3	0	4
247		10	max	202.389	2	.161	4	.006	3	0	1	0	9	0	15
248		4.4	min	-297.317	3	.038	15	116	1	0	3	0	3	0	4
249		11	_	202.524		.11	2	.006	3	0	1	0	15	0	15
250		12	min	-297.215	3	.024	15	116	1	0	3	0	3	0	4
251		12			2	.065	2	.006	3	0	3	0	1 <u>5</u>	0	15
252		12			3	.002 .021	2	116 .006		0	1	0	15	0	15
253 254		13	max min	202.793 -297.013	3	031	3	116	3	0	3	0	3	0	1 <u>5</u>
255		11		202.928	2	031 016	15	.006	3	0	1	0	15	0	15
256		14	min		3	069	4	116	1	0	3	0	3	0	4
257		15				069	15	.006	3		1		15		15
258		10	max min	-296.811	3	03 126	4	116	1	0	3	0	3	0	4
259		16			2	126 043	15	.006	3	0	1	0	15	0	15
260		10	min	-296.71	3	184	4	116	1	0	3	0	3	0	4
261		17	max		2	057	15	.006	3	0	1	0	15	0	15
262					3	241	4	116	1	0	3	0	3	0	4
263		18	max		2	07	15	.006	3	0	1	0	15	0	15
264		10	min	-296.507	3	299	4	116	1	0	3	0	3	0	4
265		19		203.602	2	084	15	.006	3	0	1	0	15	0	15
			ux	_00.002	_				<u> </u>		<u> </u>				

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC		LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
266			min	-296.406	3	356	4	116	1	0	3	0	1	0	4
267	M11	1	max	226.032	2	1.736	4	.195	1	0	3	0	3	0	4
268			min	-219.747	3	.408	15	061	3	0	10	0	1	0	12
269		2	max	225.962	2	1.559	4	.195	1	0	3	0	3	0	2
270			min	-219.8	3	.367	15	061	3	0	10	0	1	0	3
271		3	max	225.892	2	1.383	4	.195	1	0	3	0	3	0	2
272			min	-219.852	3	.325	15	061	3	0	10	0	1	0	3
273		4	max	225.822	2	1.207	4	.195	1	0	3	0	3	0	15
274			min	-219.905	3	.284	15	061	3	0	10	0	1	0	4
275		5		225.752	2	1.03	4	.195	1	0	3	0	3	-	15
		- 5	max			.242			3		10	0	1	0	
276			min	-219.957	3		15	061		0			_	0	4
277		6	max		2	.854	4	.195	1	0	3	0	3	0	15
278			min	-220.01	3	.201	15	061	3	0	10	0	1	0	4
279		7	max	225.612	2	.677	4	.195	1	0	3	0	3	0	15
280			min	-220.062	3	.159	15	061	3	0	10	0	1	0	4
281		8	max	225.542	2	.501	4	.195	1	0	3	0	3	0	15
282			min	-220.115	3	.118	15	061	3	0	10	0	1	001	4
283		9	max	225.472	2	.325	4	.195	1	0	3	0	3	0	15
284			min	-220.167	3	.076	15	061	3	0	10	0	1	001	4
285		10	max	225.402	2	.148	4	.195	1	0	3	0	3	0	15
286			min	-220.22	3	.03	12	061	3	0	10	0	1	001	4
287		11	max	225.332	2	.005	2	.195	1	0	3	0	3	0	15
288		- ' '	min	-220.272	3	062	3	061	3	0	10	0	1	001	4
289		12	max	225.262	2	048	15	.195	1	0	3	0	3	0	15
290		12				204		061	3		10		1	_	
		40	min	-220.325	3		4			0		0		001	4
291		13	max	225.192	2	089	15	.195	1	0	3	0	3	0	15
292			min	-220.377	3	381	4	061	3	0	10	0	1	001	4
293		14	max	225.122	2	131	15	.195	1	0	3	0	3	0	15
294			min	-220.43	3	557	4	061	3	0	10	0	1	001	4
295		15	max	225.052	2	172	15	.195	1	0	3	0	3	0	15
296			min	-220.482	3	734	4	061	3	0	10	0	1	0	4
297		16	max	224.982	2	214	15	.195	1	0	3	0	3	0	15
298			min	-220.535	3	91	4	061	3	0	10	0	2	0	4
299		17	max	224.912	2	255	15	.195	1	0	3	0	3	0	15
300			min	-220.587	3	-1.086	4	061	3	0	10	0	10	0	4
301		18	max	224.842	2	297	15	.195	1	0	3	0	3	0	15
302			min	-220.64	3	-1.263	4	061	3	0	10	0	10	0	4
303		19	max		2	338	15	.195	1	0	3	0	3	0	1
304		10	min	-220.692	3	-1.439	4	061	3	0	10	0	10	0	1
305	M12	1	max	267.857	1	0	1	1.194	1	0	1	0	2	0	1
306	IVITZ			10.731	15	0	1	.028	10		1	0	3	0	1
307		2			1		1		1		1		1		1
			max	267.922 10.751		0	1	1.194	_	0	1	0	15	0	
308			min		15	0	•	.028	10	0	-	0		0	1
309		3	max	267.986	1	0	1	1.194	1	0	1	0	1	0	1
310			min	10.77	15	0	1	.028	10	0	1	0	15	0	1
311		4	max		1	0	1	1.194	1	0	1	0	1	0	1
312			min	10.79	15	0	1	.028	10	0	1	0	15	0	1
313		5	max		1	0	1	1.194	1	0	1	0	1	0	1
314			min	10.809	15	0	1	.028	10	0	1	0	10	0	1
315		6	max	268.181	1	0	1	1.194	1	0	1	0	1	0	1
316			min	10.829	15	0	1	.028	10	0	1	0	10	0	1
317		7	max		1	0	1	1.194	1	0	1	0	1	0	1
318			min	10.848	15	0	1	.028	10	0	1	0	10	0	1
319		8	max	268.31	1	0	1	1.194	1	0	1	0	1	0	1
320			min	10.868	15	0	1	.028	10	0	1	0	10	0	1
321		9					_								•
		9	max	268.375	1	0	1	1.194	1	0	1	0	1	0	1
322			min	10.887	15	0	1	.028	10	0	1	0	10	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
323		10	max	268.439	1	0	1	1.194	1	0	1	0	1	0	1
324			min	10.907	15	0	1	.028	10	0	1	0	10	0	1
325		11	max	268.504	1	0	1	1.194	1	0	1	.001	1	0	1
326			min	10.926	15	0	1	.028	10	0	1	0	10	0	1
327		12	max	268.569	1	0	1	1.194	1	0	1	.001	1	0	1
328			min	10.946	15	0	1	.028	10	0	1	0	10	0	1
329		13	max	268.634	1	0	1	1.194	1	0	1	.001	1	0	1
330			min	10.966	15	0	1	.028	10	0	1	0	10	0	1
331		14	max	268.698	1	0	1	1.194	1	0	1	.001	1	0	1
332			min	10.985	15	0	1	.028	10	0	1	0	10	0	1
333		15	max	268.763	1	0	1	1.194	1	0	1	.002	1	0	1
334			min	11.005	15	0	1	.028	10	0	1	0	10	0	1
335		16	max	268.828	1	0	1	1.194	1	0	1	.002	1	0	1
336			min	11.024	15	0	1	.028	10	0	1	0	10	0	1
337		17	max	268.892	1	0	1	1.194	1	0	1	.002	1	0	1
338			min	11.044	15	0	1	.028	10	0	1	0	10	0	1
339		18	max	268.957	1	0	1	1.194	1	0	1	.002	1	0	1
340			min	11.063	15	0	1	.028	10	0	1	0	10	0	1
341		19	max	269.022	1	0	1	1.194	1	0	1	.002	1	0	1
342			min	11.083	15	0	1	.028	10	0	1	0	10	0	1
343	M1	1	max	89.354	1	343.433	3	979	10	0	2	.05	1	0	2
344			min	4.121	15	-221.118	2	-25.625	1	0	3	.002	10	0	3
345		2	max	89.515	1	343.261	3	979	10	0	2	.045	1	.048	2
346			min	4.169	15	-221.347	2	-25.625	1	0	3	.002	10	075	3
347		3	max	117.249	3	4.593	9	973	10	0	10	.039	1	.096	2
348			min	-22.249	2	-29.847	2	-25.557	1	0	1	.001	10	148	3
349		4	max	117.369	3	4.403	9	973	10	0	10	.033	1	.102	2
350			min	-22.089	2	-30.075	2	-25.557	1	0	1	.001	10	146	3
351		5	max	117.489	3	4.212	9	973	10	0	10	.028	1	.109	2
352			min	-21.929	2	-30.304	2	-25.557	1	0	1	.001	10	144	3
353		6	max	117.609	3	4.021	9	973	10	0	10	.022	1	.115	2
354			min	-21.768	2	-30.533	2	-25.557	1	0	1	0	10	142	3
355		7	max	117.729	3	3.831	9	973	10	0	10	.017	1	.122	2
356			min	-21.608	2	-30.762	2	-25.557	1	0	1	0	10	14	3
357		8	max	117.849	3	3.64	9	973	10	0	10	.011	1	.129	2
358			min	-21.448	2	-30.99	2	-25.557	1	0	1	0	10	138	3
359		9	max	117.969	3	3.45	9	973	10	0	10	.006	1	.135	2
360			min	-21.288	2	-31.219	2	-25.557	1	0	1	0	10	136	3
361		10	max	118.089	3	3.259	9	973	10	0	10	.002	3	.142	2
362			min	-21.128	2	-31.448	2	-25.557	1	0	1	0	10	134	3
363		11	max	118.21	3	3.068	9	973	10	0	10	0	3	.149	2
364			min	-20.968	2	-31.677	2	-25.557	1	0	1	005	1	132	3
365		12	1		3	2.878	9	973	10	0	10	0	12	.156	2
366			min	-20.807	2	-31.905	2	-25.557	1	0	1	011	1	13	3
367		13	max	118.45	3	2.687	9	973	10	0	10	0	10	.163	2
368			min	-20.647	2	-32.134	2	-25.557	1	0	1	017	1	127	3
369		14	max		3	2.497	9	973	10	0	10	0	10	.17	2
370			min	-20.487	2	-32.363	2	-25.557	1	0	1	022	1	125	3
371		15	max		3	2.306	9	973	10	0	10	001	10	.177	2
372		10	min	-20.327	2	-32.592	2	-25.557	1	0	1	028	1	123	3
373		16	max		2	165.87	2	979	10	0	1	020 001	10	.182	2
374		10	min	1.823	15	-205.378	3	-25.715	1	0	3	033	1	119	3
375		17	max		2	165.641	2	979	10	0	1	002	10	.146	2
376		17	min	1.872	15	-205.55	3	-25.715	1	0	3	039	1	074	3
377		18	max	-4.168	15	337.76	2	-1.007	10	0	3	039 002	10	.074	2
378		10	min	- 89.514	1	-170.36	3	-26.448	1	0	2	002 045	1	037	3
379		10	max	- 69.514 -4.12	15	337.531	2	-1.007	10	0	3	002	10	037 0	2
3/8		l 19	шах	-4 .12	LIO	331.33 l		-1.007	ΙU	U	」 J	002	ΙIU	U	

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]		z Shear[lb]		_			LC	z-z Mome	LC
380			min	-89.353	1	-170.531	3	-26.448	1_	0	2	05	1_	0	3
381	<u>M5</u>	1	max	212.432	1_	1107.677	3	0	2	0	9	.011	3	0	3
382			min	2.442	12	-706.422	2	-78.266	3	0	3	0	10	0	2
383		2	max	212.592	1	1107.505	3	0	2	0	9	0	9	.153	2
384			min	2.522	12	-706.651	2	-78.266	3	0	3	006	3	24	3
385		3	max	344.496	3	4.63	9	8.628	3	0	3	0	9	.304	2
386			min	-85.313	2	-101.759	2	284	9	0	1	022	3	475	3
387		4	max	344.616	3	4.439	9	8.628	3	0	3	0	9	.326	2
388			min	-85.153	2	-101.988	2	284	9	0	1	021	3	467	3
389		5	max	344.736	3	4.248	9	8.628	3	0	3	0	9	.348	2
390			min	-84.992	2	-102.217	2	284	9	0	1	019	3	459	3
391		6	max	344.856	3	4.058	9	8.628	3	0	3	0	9	.37	2
392			min	-84.832	2	-102.446	2	284	9	0	1	017	3	451	3
393		7	max	344.976	3	3.867	9	8.628	3	0	3	0	9	.392	2
394		'	min	-84.672	2	-102.674	2	284	9	0	1	015	3	443	3
395		8	max	345.096	3	3.676	9	8.628	3	0	3	0	9	.415	2
396		0	min	-84.512	2	-102.903	2	284	9	0	1	013	3	435	3
		9									3	013 0	1		2
397		9	max	345.217	3	3.486	9	8.628	3	0		_		.437	
398		4.0	min	-84.352	2	-103.132	2	284	9	0	1	011	3	427	3
399		10	max	345.337	3	3.295	9	8.628	3	0	3	0	2	.459	2
400		4.4	min	-84.192	2	-103.36	2	284	9	0	1	009	3	419	3
401		11	max	345.457	3	3.105	9	8.628	3	0	3	0	2	.482	2
402			min	-84.031	2	-103.589	2	284	9	0	1	007	3	411	3
403		12	max	345.577	3	2.914	9	8.628	3	0	3	0	2	.504	2
404			min	-83.871	2	-103.818	2	284	9	0	1	006	3	403	3
405		13	max	345.697	3	2.723	9	8.628	3	0	3	0	2	.527	2
406			min	-83.711	2	-104.047	2	284	9	0	1	004	3	395	3
407		14	max	345.817	3	2.533	9	8.628	3	0	3	0	2	.549	2
408			min	-83.551	2	-104.275	2	284	9	0	1	002	3	387	3
409		15	max	345.937	3	2.342	9	8.628	3	0	3	0	3	.572	2
410			min	-83.391	2	-104.504	2	284	9	0	1	0	9	379	3
411		16	max	271.996	2	565.152	2	8.609	3	0	3	.001	3	.589	2
412			min	4.05	15	-610.919	3	283	1	0	2	0	9	365	3
413		17	max	272.156	2	564.923	2	8.609	3	0	3	.003	3	.466	2
414		11	min	4.098	15	-611.09	3	283	1	0	2	0	9	233	3
415		18	max	-5.912	12	1081.292	2	7.877	3	0	2	.005	3	.234	2
416		10	min	-212.593	1	-537.463	3	063	1	0	1	0	9	116	3
417		19	max	-5.832	12	1081.063	2	7.877	3	0	2	.007	3	0	3
418		19		-212.433	1	-537.635	3	063	1	0	1	.007	9	0	2
	MO	1	min		1							_			2
419	<u>M9</u>		max	89.15		343.345	3	83.641	3	0	3	002	10	0	
420			min	4.106	15			.979	10	0	2	05	1	0	3
421		2	max	89.31	1	343.173	3	83.641	3	0	3	001	12	.048	2
422		_	min	4.154	15	-221.347	2	.979	10	0	2	044	1	075	3
423		3		116.844	3	4.58	9	25.135	1	0	1	.015	3	.096	2
424			min	-21.751	2	-29.815	2	-2.421	3	0	12	038	1	148	3
425		4	max		3	4.39	9	25.135	1	0	1	.015	3	.102	2
426			min	-21.59	2	-30.044	2	-2.421	3	0	12	033	1	146	3
427		5	max		3	4.199	9	25.135	1	0	1	.014	3	.109	2
428			min	-21.43	2	-30.272	2	-2.421	3	0	12	027	1	144	3
429		6	max	117.205	3	4.008	9	25.135	1	0	1	.014	3	.115	2
430			min	-21.27	2	-30.501	2	-2.421	3	0	12	022	1	142	3
431		7	max		3	3.818	9	25.135	1	0	1	.013	3	.122	2
432			min	-21.11	2	-30.73	2	-2.421	3	0	12	016	1	14	3
433		8		117.445	3	3.627	9	25.135	1	0	1	.013	3	.128	2
434		Ĭ	min	-20.95	2	-30.959	2	-2.421	3	0	12	011	1	138	3
435		9	max		3	3.436	9	25.135	1	0	1	.012	3	.135	2
436			min	-20.79	2	-31.187	2	-2.421	3	0	12	005	1	136	3
700			11/11/1	20.10		01.107		Z.TZ I	U		14			. 100	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC		LC	Torque[k-ft]	LC			z-z Mome	LC
437		10	max	117.685	3	3.246	9	25.135	1	0	1	.012	3	.142	2
438			min	-20.629	2	-31.416	2	-2.421	3	0	12	0	1	134	3
439		11	max	117.805	3	3.055	9	25.135	1	00	1	.011	3	.149	2
440			min	-20.469	2	-31.645	2	-2.421	3	0	12	0	10	132	3
441		12	max	117.926	3	2.865	9	25.135	1	0	1	.011	1	.156	2
442			min	-20.309	2	-31.874	2	-2.421	3	0	12	0	10	13	3
443		13	max	118.046	3	2.674	9	25.135	1	0	1	.016	1	.163	2
444		4.4	min	-20.149	2	-32.102	2	-2.421	3	0	12	0	10	127	3
445		14	max	118.166	3	2.483	9	25.135	1	0	1	.022	1	.17	2
446		4.5	min	-19.989	2	-32.331	2	-2.421	3	0	12	0	10	125	3
447		15	max	118.286	3	2.293	9	25.135	1	0	1	.027	1	.177	2
448		4.0	min	-19.829	2	-32.56	2	-2.421	3	0	12	.001	10	123	3
449		16	max	86.812	2	165.48	2	25.3 -2.485	3	0	10	.033 .001	1	.182 119	2
450 451		17	min	1.905 86.973	1 <u>5</u>	-205.981 165.251	2	25.3	1	<u> </u>	10	.038	10	<u>119</u> .146	3
452		17	max min	1.953	15	-206.152	3	-2.485	3	0	3	.002	10	074	3
453		18	max	-4.154	15	337.76	2	26.515	1	0	2	.044	1	.074	2
454		10	min	-89.309	1	-170.349	3	-1.971	3	0	3	.002	10	037	3
455		19	max	-4.105	15	337.531	2	26.515	1	0	2	.05	1	0	2
456		10	min	-89.149	1	-170.52	3	-1.971	3	0	3	.002	10	0	3
457	M13	1	max	83.634	3	221.011	2	-4.106	15	0	2	.05	1	0	2
458	14110		min	.979	10	-343.392	3	-89.143	1	0	3	.002	10	0	3
459		2	max	83.634	3	157.265	2	-3.125	15	0	2	.015	3	.147	3
460		_	min	.979	10	-243.708	3	-67.425	1	0	3	002	10	095	2
461		3	max	83.634	3	93.52	2	-2.145	15	0	2	.01	3	.244	3
462			min	.979	10	-144.023	3	-45.706	1	0	3	018	1	157	2
463		4	max	83.634	3	29.774	2	914	10	0	2	.007	3	.291	3
464			min	.979	10	-44.338	3	-23.987	1	0	3	035	1	188	2
465		5	max	83.634	3	55.347	3	1.967	2	0	2	.004	3	.288	3
466			min	.979	10	-33.971	2	-5.266	3	0	3	042	1	187	2
467		6	max	83.634	3	155.032	3	19.45	1	0	2	.001	3	.235	3
468			min	.979	10	-97.717	2	-3.839	3	0	3	037	1	154	2
469		7	max	83.634	3	254.716	3	41.169	1	00	2	0	3	.133	3
470			min	.979	10	-161.463	2	-2.412	3	0	3	022	1	089	2
471		8	max	83.634	3	354.401	3	62.888	1	0	2	.006	2	.008	1
472			min	.979	10	-225.208	2	986	3	0	3	0	3	019	3
473		9	max	83.634	3	454.086	3	84.606	1	0	2	.041	1	.136	2
474		4.0	min	.979	10	-288.954	2	.441	3	0	3	001	3	221	3
475		10	max	83.634	3	553.771	3	106.325	1	0	2	.089	1	.296	2
476		4.4	min	.979	10	-352.699	2	1.454	12	0	3	011	3	<u>473</u>	3
477		11	max		1	288.954		.32	3	0	3	.04	1	.136	2
478		10	min	.979	10	-454.086 225.208	3	-84.402 1.747	3	0	3	011	3	221	3
479 480		12	max min	25.68 .979	10	-354.401	2	-62.683	1	0	2	.006 011	3	.008	3
481		13	max	25.68	1	161.463	2	3.174	3	<u> </u>	3	0	10	<u>019</u> .133	3
482		13	min	.979	10	-254.716	3	-40.964	1	0	2	022	1	089	2
483		1/	max	25.68	1	97.717	2	4.6	3	0	3	022	15	.235	3
484		14	min	.979	10	-155.032	3	-19.246	1	0	2	037	1	154	2
485		15	max	25.68	1	33.971	2	6.027	3	0	3	002	15	.288	3
486		10	min	.979	10	-55.347	3	-1.967	2	0	2	041	1	187	2
487		16	max	25.68	1	44.338	3	24.192	1	0	3	001	12	.291	3
488			min	.979	10	-29.774	2	.914	10	0	2	035	1	188	2
489		17	max	25.68	1	144.023	3	45.91	1	0	3	.002	3	.244	3
490		.,	min	.979	10	-93.52	2	2.16	15	0	2	017	1	157	2
491		18	max	25.68	1	243.708	3	67.629	1	0	3	.011	1	.147	3
492			min	.979	10	-157.265	2	3.14	15	0	2	002	10	095	2
493		19	max		1	343.393	3	89.348	1	0	3	.05	1	0	2
		<u> </u>			<u> </u>										

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]		y-y Mome	LC	z-z Mome	
494			min	.979	10	-221.011	2	4.121	15	0	2	.002	10	0	3
495	M16	1	max	1.975	3	337.671	2	-4.105	15	0	3	.05	1	0	2
496			min	-26.458	1_	-170.553	3	-89.156	1	0	2	.002	10	0	3
497		2	max	1.975	3	240.018	2	-3.125	15	0	3	.011	1	.073	3
498			min	-26.458	1	-121.729	3	-67.437	1	0	2	002	10	144	2
499		3	max	1.975	3	142.365	2	-2.145	15	0	3	0	3	.122	3
500			min	-26.458	1	-72.905	3	-45.719	1	0	2	017	1	24	2
501		4	max	1.975	3	44.712	2	935	10	0	3	002	15	.146	3
502			min	-26.458	1	-24.081	3	-24	1	0	2	035	1	287	2
503		5	max	1.975	3	24.743	3	1.929	2	0	3	002	15	.146	3
504			min	-26.458	1	-52.94	2	-3.527	3	0	2	041	1	285	2
505		6	max	1.975	3	73.567	3	19.437	1	0	3	002	15	.121	3
506			min	-26.458	1	-150.593	2	-2.101	3	0	2	037	1	234	2
507		7	max	1.975	3	122.391	3	41.156	1	0	3	0	10	.072	3
508			min	-26.458	1	-248.246	2	674	3	0	2	022	1	134	2
509		8	max	1.975	3	171.215	3	62.875	1	0	3	.006	2	.014	2
510			min	-26.458	1	-345.899	2	.638	12	0	2	007	3	001	3
511		9	max	1.975	3	220.039	3	84.593	1	0	3	.041	1	.212	2
512			min	-26.458	1	-443.551	2	1.59	12	0	2	006	3	099	3
513		10	max	-1.007	10	-7.773	15	106.312	1	0	15	.089	1	.458	2
514			min	-26.458	1	-541.204	2	-4.813	3	0	2	005	3	221	3
515		11	max	-1.007	10	443.551	2	-2.34	12	0	2	.04	1	.212	2
516			min	-26.394	1	-220.039	3	-84.389	1	0	3	0	3	099	3
517		12	max	-1.007	10	345.899	2	-1.389	12	0	2	.006	2	.014	2
518			min	-26.394	1	-171.215	3	-62.671	1	0	3	002	3	001	3
519		13	max	-1.007	10	248.246	2	438	12	0	2	0	10	.072	3
520		1	min	-26.394	1	-122.391	3	-40.952	1	0	3	022	1	134	2
521		14	max	-1.007	10	150.593	2	.894	3	0	2	001	12	.121	3
522			min	-26.394	1	-73.567	3	-19.233	1	0	3	037	1	234	2
523		15	max	-1.007	10	52.94	2	2.88	9	0	2	0	12	.146	3
524			min	-26.394	1	-24.743	3	-1.929	2	0	3	041	1	285	2
525		16	max	-1.007	10	24.081	3	24.204	1	0	2	0	3	.146	3
526			min	-26.394	1	-44.712	2	.935	10	0	3	035	1	287	2
527		17	max	-1.007	10	72.905	3	45.923	1	0	2	.002	3	.122	3
528			min	-26.394	1	-142.365	2	2.159	15	0	3	017	1	24	2
529		18	max	-1.007	10	121.729	3	67.642	1	0	2	.011	1	.073	3
530		1.0	min	-26.394	1	-240.018	2	3.139	15	0	3	002	10	144	2
531		19	max	-1.007	10	170.553	3	89.36	1	0	2	.05	1	0	2
532		10	min	-26.394	1	-337.671	2	4.12	15	0	3	.002	10	0	3
533	M15	1	max	0	1	.939	3	.113	3	0	1	0	1	0	1
534	11110			-110.32	3	0	1	0	1	0	3	0	3	0	1
535		2	max	0	1	.834	3	.113	3	0	1	0	1	0	1
536				-110.395	3	0	1	0	1	0	3	0	3	0	3
537		3	max	0	1	.73	3	.113	3	0	1	0	1	0	1
538				-110.471	3	0	1	0	1	0	3	0	3	0	3
539		4	max	0	1	.626	3	.113	3	0	1	0	1	0	1
540				-110.546	3	0	1	0	1	0	3	0	3	0	3
541		5	max	0	1	.522	3	.113	3	0	1	0	1	0	1
542				-110.622	3	0	1	0	1	0	3	0	3	0	3
543		6	max	0	1	.417	3	.113	3	0	1	0	1	0	1
544				-110.697	3	0	1	0	1	0	3	0	3	001	3
545		7	max	0		.313	3	.113	3	0	1	0	3	<u>001</u> 0	1
546				-110.773	3	.313	1	0	1	0	3	0	1	001	3
547		8	max	0	<u> </u>	.209	3	.113	3	0	1	0	3	<u>001</u> 0	1
548		0		-110.848	3	.209	1	.113	1	0	3	0	1	001	3
549		9	max	0	<u> </u>	.104	3	.113	3	0	1	0	3	<u>001</u> 0	1
550		3		-110.924	3	0	1	0	1	0	3	0	1	001	3
550			1111111	110.324	J	U		U		U	J	U		001	J

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	LC	y-y Mome		z-z Mome	LC
551		10	max	0	_1_	0	1	.113	3	0	1_	0	3	0	1
552			min	-110.999	3	0	1	0	1	0	3	0	1	001	3
553		11	max	0	_1_	0	1	.113	3	0	1	0	3	0	1
554			min	-111.075	3	104	3	0	1	0	3	0	1	001	3
555		12	max	0	1_	0	1	.113	3	0	1	0	3	0	1
556		40		-111.151	3	209	3	0	1	0	3	0	1	001	3
557		13	max	0	1	0	1	.113	3	0	1	0	3	0	1
558		4.4		-111.226	3	313	3	0	1	0	3	0	1	001	3
559		14	max	0	1	0	1	.113	3	0	1	0	3	0	1
560		4.5	min	-111.302	3	417	3	0	1	0	3	0	1	001	3
561		15	max	0	1	0	1	.113	3	0	1	0	3	0	1
562		4.0	min	-111.377	3	522	3	0	1	0	3	0	1	0	3
563		16	max	0	1	0	3	.113	3	0	1	0	3	0	1
564		17	min	-111.453	3	626		112		0	1	0		0	3
565		17	max	0 -111.528	<u>1</u> 3	73	3	.113 0	3	0	3	0	3	0	3
566 567		18		0	<u> </u>	0	1	.113	3	0	1	0	3	0	1
568		10	max	-111.604	3	834	3	.113	1	0	3	0	1	0	3
		19		_	<u>ა</u> 1	634 0	1	.113	3	0	1	0	3	0	1
569 570		19	max	-111.679	3	939	3	.113	1	0	3	0	1	0	1
571	M16A	1	min	0	2	1.606	4	.032	1	0	3	0	3	0	1
572	WITOA	l	max	-110.145	3	0	2	047	3	0	1	0	1	0	1
573		2	min	0	2	1.428	4	.032	1	0	3	0	3	0	2
574			max min	-110.07	3	0	2	047	3	0	1	0	1	0	4
		2			2	1.249			1		· ·	0		0	2
575 576		3	max	0 -109.994	3	0	2	.032 047	3	0	3	0	3	0	4
577		4	min		2	1.071		.032		_	3	0	3	0	_
578		4	max	0	3		2		3	0	1		<u> </u>	001	2
				-109.919		0		047	1	0	3	0		001 0	2
579		5	max	-109.843	2	.892	2	.032	3	0	1	0	3	_	
580 581		6	min	0	<u>3</u> 2	.714	4	047 .032	1	0	3	0	3	002 0	2
582		0	max	-109.768	3	0	2	047	3	0	1	0	1	002	4
583		7	min	0	2	.535	4	.032	1	0	3	0	3	002 0	2
584			max min	-109.692	3	.555	2	047	3	0	1	0	1	002	4
585		8		0	2	.357	4	.032	1	0	3	0	3	002 0	2
586		0	max min	-109.617	3	0	2	047	3	0	1	0	1	002	4
587		9	max	0	2	.178	4	.032	1	0	3	0	3	0	2
588		9		-109.541	3	0	2	047	3	0	1	0	1	002	4
589		10	max	0	2	0	1	.032	1	0	3	0	3	0	2
590		10	min	-109.466	3	0	1	047	3	0	1	0	1	002	4
591		11	max		2	0	2	.032	1	0	3	0	3	002 0	2
592		11	min	-109.39	3	178	4	047	3	0	1	0	1	002	4
593		12	max	0	2	0	2	.032	1	0	3	0	3	0	2
594		14		-109.315	3	357	4	047	3	0	1	0	1	002	4
595		13	max	.086	13	0	2	.032	1	0	3	0	11	0	2
596		13		-109.239	3	535	4	047	3	0	1	0	3	002	4
597		14	max	.19	13	0	2	.032	1	0	3	0	1	0	2
598		17		-109.164	3	714	4	047	3	0	1	0	3	002	4
599		15	max	.294	13	0	2	.032	1	0	3	0	1	0	2
600		13	min	-109.088	3	892	4	047	3	0	1	0	3	002	4
601		16	max	.398	13	0	2	.032	1	0	3	0	1	0	2
602		10		-109.013	3	-1.071	4	047	3	0	1	0	3	001	4
603		17	max	.502	13	0	2	.032	1	0	3	0	1	0	2
604		17		-108.937	3	-1.249	4	047	3	0	1	0	3	0	4
605		18	max	.606	13	0	2	.032	1	0	3	0	1	0	2
606		10		-108.861	3	-1.428	4	047	3	0	1	0	3	0	4
607		19	max	.714	4	0	2	.032	1	0	3	0	1	0	1
		נון	πιαλ	.7 14	+	U	<u> </u>	.032		U	J	U		U	<u></u>

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608	3		min	-108.786	3	-1.606	4	047	3	0	1	0	3	0	1

Envelope Member Section Deflections

	siope ivicini	. · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	on Dene		10									
	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r				(n) L/z Ratio	LC
1	M2	1	max	.002	2	.011	2	.004	1	-1.512e-5	10	NC	3	NC	2
2			min	004	3	011	3	002	3	-4.197e-4	1	3966.91	2	9501.99	1
3		2	max	.002	2	.01	2	.004	1	-1.439e-5		NC	3	NC	1
4			min	004	3	011	3	002	3	-4.008e-4	1	4339.717	2	NC	1
5		3	max	.002	2	.009	2	.004	1	-1.367e-5	10	NC	3	NC	1
6			min	003	3	01	3	002	3	-3.818e-4	1	4784.995	2	NC	1
7		4	max	.002	2	.008	2	.004	1	-1.294e-5	10	NC	1	NC	1
8		_	min	003	3	01	3	002	3	-3.629e-4	1	5320.51	2	NC	1
9		5		.002	2	.007	2	.003	1	-1.222e-5	10	NC	1	NC	1
		3	max		3		3					5970.015	2		4
10		_	min	003		009		002	3	-3.439e-4	1			NC NC	1
11		6	max	.002	2	.006	2	.003	1	-1.149e-5	<u>10</u>	NC CZCE ZO	1	NC NC	1
12		-	min	003	3	009	3	001	3	-3.25e-4	1_	6765.79	2	NC NC	1
13		7	max	.001	2	.005	2	.003	1	-1.077e-5	10	NC	1_	NC	1
14			min	003	3	008	3	001	3	-3.06e-4	1_	7752.526	2	NC	1
15		8	max	.001	2	.005	2	.002	1	-1.004e-5	10	NC	1	NC	1
16			min	002	3	008	3	0	3	-2.871e-4	1_	8993.48	2	NC	1
17		9	max	.001	2	.004	2	.002	1	-9.32e-6	<u>10</u>	NC	1_	NC	1
18			min	002	3	007	3	0	3	-2.682e-4	1_	NC	1	NC	1
19		10	max	.001	2	.003	2	.002	1	-8.595e-6	<u>10</u>	NC	<u>1</u>	NC	1
20			min	002	3	007	3	0	3	-2.492e-4	1_	NC	1	NC	1
21		11	max	0	2	.003	2	.001	1	-7.871e-6	10	NC	1	NC	1
22			min	002	3	006	3	0	3	-2.303e-4	1	NC	1	NC	1
23		12	max	0	2	.002	2	.001	1	-7.146e-6	10	NC	1	NC	1
24			min	001	3	005	3	0	3	-2.113e-4	1	NC	1	NC	1
25		13	max	0	2	.002	2	0	1	-6.421e-6	10	NC	1	NC	1
26			min	001	3	005	3	0	3	-1.924e-4	1	NC	1	NC	1
27		14	max	0	2	.001	2	0	1	-5.697e-6	10	NC	1	NC	1
28			min	001	3	004	3	0	3	-1.734e-4	1	NC	1	NC	1
29		15	max	0	2	0	2	0	1	-4.972e-6	10	NC	1	NC	1
30		10	min	0	3	003	3	0	3	-1.545e-4	1	NC	1	NC	1
31		16	max	0	2	0	2	0	1	-4.248e-6	10	NC	1	NC	1
32		10	min	0	3	002	3	0	3	-1.355e-4	1	NC	1	NC	1
33		17	max	0	2	<u>002</u> 0	2	0	1	-3.523e-6	10	NC	1	NC	1
34		17	min	0	3	002	3	0	3	-1.166e-4	1	NC NC	1	NC NC	1
		4.0						<u> </u>			•		•		
35		18	max	0	2	0	2	0	1	-2.798e-6	<u>10</u>	NC NC	1	NC NC	1
36		10	min	0	3	0	3	0	3	-9.764e-5	1	NC NC	1	NC NC	1
37		19	max	0	1	0	1	0	1	-2.074e-6	<u>10</u>	NC NC	1	NC NC	1
38	140	_	min	0	1	0	1	0	1	-7.869e-5	1_	NC NC	1_	NC NC	1
39	M3	1_	max	0	1	0	1	0	1	3.773e-5	1_	NC	1	NC	1
40		_	min	0	1	0	1	0	1	9.983e-7	10	NC	1_	NC	1
41		2	max	0	3	0	2	0	10		1_	NC	1	NC	1
42			min	0	2	0	3	0	1	1.491e-6	10	NC	1_	NC	1
43		3	max	0	3	0	2	0	12		_1_	NC	_1_	NC	1
44			min	0	2	002	3	0	1	1.984e-6	10	NC	1	NC	1
45		4	max	0	3	0	2	0	3	6.705e-5	1_	NC	_1_	NC	1
46			min	0	2	003	3	0	1	2.477e-6	10	NC	1	NC	1
47		5	max	0	3	0	2	0	3	7.683e-5	1	NC	1	NC	1
48			min	0	2	004	3	0	1	2.971e-6	10	NC	1	NC	1
49		6	max	0	3	0	2	0	3	8.66e-5	1	NC	1	NC	1
50			min	0	2	005	3	0	9	3.464e-6	10	NC	1	NC	1
51		7	max	0	3	0	2	0	3	9.638e-5	1	NC	1	NC	1
			,an							, 5.5555 5					

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC				LC	(n) L/z Ratio	LC
52			min	0	2	005	3	0	9	3.957e-6	10	NC	1	NC	1
53		8	max	0	3	.001	2	0	3	1.062e-4	1_	NC	1_	NC	1
54			min	0	2	006	3	0	9	4.45e-6	10	NC	1_	NC	1
55		9	max	.001	3	.001	2	0	3	1.159e-4	_1_	NC	1_	NC	1
<u>56</u>		4.0	min	001	2	007	3	0	9	4.943e-6	10	NC	1_	NC	1
57		10	max	.001	3	.002	2	0	3	1.257e-4	1	NC	1	NC	1
58		44	min	001	2	007	3	0	15	5.436e-6	<u>10</u>	NC NC	1_	NC	1
59		11	max	.001	3	.002	2	0	1	1.355e-4	1	NC NC	1_	NC NC	1
60		40	min	001	2	008	3	0	15	5.929e-6	10	NC NC	1_1	NC NC	1
61 62		12	max	.002	3	.003	3	<u>0</u> 	15	1.452e-4	1	NC NC	<u>1</u> 1	NC NC	1
63		13	min	002 .002		008	2	.001		6.422e-6	<u>10</u>	NC NC	1	NC NC	1
64		13	max	002	3	.004 008	3	0	15	1.55e-4 6.915e-6	<u>1</u> 10	NC NC	1	NC NC	1
65		14	min	.002	3	.004	2	.001	1	1.648e-4	1	NC NC	1	NC NC	1
66		14	max min	002	2	009	3	0	15	7.408e-6	10	NC NC	1	NC NC	1
67		15	max	.002	3	.005	2	.002	1	1.746e-4	1	NC	1	NC	1
68		10	min	002	2	009	3	0	15	7.901e-6		8585.319	2	NC	1
69		16	max	.002	3	.006	2	.002	1	1.843e-4	1	NC	1	NC	1
70		10	min	002	2	009	3	0	15		10	7283.96	2	NC	1
71		17	max	.002	3	.007	2	.002	1	1.941e-4	1	NC	1	NC	1
72		<u> </u>	min	002	2	009	3	0	15	8.887e-6		6275.662	2	NC	1
73		18	max	.002	3	.008	2	.003	1	2.039e-4	1	NC	1	NC	1
74			min	002	2	009	3	0	15	9.381e-6	10	5485.519	2	NC	1
75		19	max	.002	3	.009	2	.003	1	2.137e-4	1	NC	3	NC	1
76			min	003	2	009	3	0	15	9.874e-6	10	4860.799	2	NC	1
77	M4	1	max	.001	1	.012	2	0	15	-9.497e-6	12	NC	1	NC	2
78			min	0	15	011	3	002	1	-3.199e-4	1	NC	1	8636.158	1
79		2	max	.001	1	.012	2	0	15	-9.497e-6	12	NC	1	NC	2
80			min	0	15	01	3	002	1	-3.199e-4	1	NC	1	9421.093	1
81		3	max	.001	1	.011	2	0	15	-9.497e-6	12	NC	1_	NC	1
82			min	0	15	01	3	002	1	-3.199e-4	1_	NC	1_	NC	1
83		4	max	.001	1	.01	2	0	15		12	NC	_1_	NC	1
84		_	min	0	15	009	3	002	1	-3.199e-4	_1_	NC	_1_	NC	1
85		5	max	0	1	.01	2	0	15	-9.497e-6	12	NC	1_	NC	1
86			min	0	15	009	3	002	1_	-3.199e-4	1_	NC	1_	NC	1
87		6	max	0	1	.009	2	0	15	-9.497e-6	12	NC	1	NC	1
88		-	min	0	15	008	3	001	1_	-3.199e-4	1_	NC	1_	NC	1
89		7	max	0	1	.008	2	0	15		12	NC	1	NC	1
90			min	0	15	007	3	001	1_	-3.199e-4	1_	NC NC	1_	NC NC	1
91		8	max	<u> </u>	15	.008	3	0	15	-9.497e-6 -3.199e-4	12	NC NC	1	NC NC	1
			min			007	2	001		-3.199e-4 -9.497e-6		NC NC	1	NC NC	
93		9	max min	0	15	.007 006	3	0 0	1	-3.199e-4	1	NC NC	1	NC NC	1
95		10	max	0	1	.006	2	0		-9.497e-6	•	NC NC	1	NC NC	1
96		10	min	0	15	006	3	0	1	-3.199e-4	1	NC	1	NC	1
97		11	max	0	1	.006	2	0		-9.497e-6	•	NC	1	NC	1
98			min	0	15	005	3	0	1	-3.497e-0	1	NC	1	NC	1
99		12	max	0	1	.005	2	0	15			NC	1	NC	1
100		12	min	0	15	004	3	0	1	-3.199e-4	1	NC	1	NC	1
101		13	max	0	1	.004	2	0	15	-9.497e-6		NC	1	NC	1
102		10	min	0	15	004	3	0	1	-3.199e-4	1	NC	1	NC	1
103		14	max	0	1	.003	2	0		-9.497e-6	•	NC		NC	1
104			min	0	15	003	3	0	1	-3.199e-4	1	NC	1	NC	1
105		15	max	0	1	.003	2	0		-9.497e-6	•	NC	1	NC	1
106		T.,	min	0	15	002	3	0	1	-3.199e-4	1	NC	1	NC	1
107		16	max	0	1	.002	2	0	15		•	NC	1	NC	1
108			min	0	15	002	3	0	1	-3.199e-4	1	NC	1	NC	1
										J					

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
109		17	max	0	1	.001	2	0	15	-9.497e-6	12	NC	_1_	NC	1
110			min	0	15	001	3	0	1	-3.199e-4	1	NC	1	NC	1
111		18	max	0	1	0	2	0	15	-9.497e-6	12	NC	1	NC	1
112			min	0	15	0	3	0	1	-3.199e-4	1	NC	1	NC	1
113		19	max	0	1	0	1	0	1	-9.497e-6	12	NC	1	NC	1
114			min	0	1	0	1	0	1	-3.199e-4	1	NC	1	NC	1
115	M6	1	max	.007	2	.035	2	.001	9	5.175e-4	3	NC	3	NC	1
116			min	012	3	034	3	007	3	-2.006e-7	1	1208.196	2	6362.921	3
117		2	max	.006	2	.033	2	.001	9	5.006e-4	3	NC	3	NC	1
118			min	011	3	032	3	006	3	-2.183e-6	1	1294.286	2	6725.687	3
119		3	max	.006	2	.03	2	.001	9	4.836e-4	3	NC	3	NC	1
120		-	min	01	3	03	3	006	3	-4.165e-6	1	1393.123	2	7160.711	3
121		4		.006	2	.028	2	.001	9	4.667e-4	3	NC	3	NC	1
122		4	max		3	029			3	-6.147e-6		1507.253	2	7682.801	3
		_	min	01			3	006	Ŭ		1_				
123		5	max	.005	2	.026	2	.001	9	4.498e-4	3	NC 4000.00	3_	NC	1
124			min	009	3	027	3	005	3	-8.129e-6	1_	1639.96	2	8311.713	3
125		6	max	.005	2	.024	2	0	9	4.328e-4	3_	NC 4705.54	3	NC	1
126			min	008	3	025	3	005	3	-1.011e-5		1795.54	2	9074.133	3
127		7	max	.004	2	.021	2	0	9	4.159e-4	3	NC	3	NC	1
128			min	008	3	023	3	004	3	-1.209e-5	<u>1</u>	1979.723	2	NC	1
129		8	max	.004	2	.019	2	0	1	3.989e-4	3_	NC	3_	NC	1_
130			min	007	3	021	3	004	3	-1.407e-5	1_	2200.322	2	NC	1_
131		9	max	.004	2	.017	2	0	1	3.82e-4	3	NC	3	NC	1
132			min	007	3	019	3	003	3	-1.606e-5	1	2468.273	2	NC	1
133		10	max	.003	2	.015	2	0	1	3.651e-4	3	NC	3	NC	1
134			min	006	3	018	3	003	3	-1.804e-5	1	2799.363	2	NC	1
135		11	max	.003	2	.013	2	0	1	3.481e-4	3	NC	3	NC	1
136			min	005	3	016	3	003	3	-2.002e-5	1	3217.257	2	NC	1
137		12	max	.003	2	.011	2	0	1	3.312e-4	3	NC	3	NC	1
138			min	005	3	014	3	002	3	-2.2e-5	1	3759.115	2	NC	1
139		13	max	.002	2	.009	2	0	1	3.142e-4	3	NC	3	NC	1
140			min	004	3	012	3	002	3	-2.399e-5	1	4486.837	2	NC	1
141		14	max	.002	2	.008	2	0	1	2.973e-4	3	NC	1	NC	1
142		17	min	003	3	01	3	001	3	-2.597e-5	1	5511.778	2	NC	1
143		15	max	.001	2	.006	2	0	1	2.803e-4	3	NC	1	NC	1
144		13	min	003	3	008	3	001	3	-2.795e-5	1	7056.553	2	NC	1
145		16	max	.001	2	.004	2	0	1	2.634e-4	3	NC	1	NC	1
146		10	min	002	3	006	3	0	3	-2.993e-5	1	9640.444	2	NC	1
147		17		<u>002</u> 0	2	.003	2	0	1	2.465e-4	3	NC	1	NC	1
		17	max		3								1		4
148		10	min	<u>001</u>		004	3	0	3	-3.191e-5	1	NC NC	1	NC NC	1
149		10	max	0	2	.001	2	0	2	2.295e-4		NC NC		NC NC	4
150		40	min	0	3	002	3	0	3	-3.39e-5	1_	NC NC	1_	NC NC	1
151		19	max	0	1	0	1	0	1	2.126e-4	3	NC	1_	NC	1
152			min	0	1	0	1	0	1	-3.588e-5	_1_	NC	1_	NC	1
153	<u>M7</u>	1_	max	0	1	0	1	0	1	1.709e-5	1_	NC	1	NC	1
154			min	0	1	0	1	0	1	-1.012e-4		NC	1_	NC	1_
155		2	max	0	3	.001	2	0	3	1.512e-5	_1_	NC	1_	NC	1
156			min	0	2	002	3	0	1	-7.525e-5	3_	NC	1_	NC	1
157		3	max	0	3	.003	2	0	3	1.315e-5	_1_	NC	1_	NC	1
158			min	0	2	004	3	0	1	-4.927e-5	3	NC	1_	NC	1
159		4	max	.001	3	.004	2	.001	3	1.118e-5	1_	NC	_1_	NC	1
160			min	001	2	006	3	0	1	-2.328e-5	3	NC	1	NC	1
161		5	max	.002	3	.006	2	.002	3	9.211e-6	1	NC	1	NC	1
162			min	002	2	008	3	0	1	0	2	8256.579	2	NC	1
163		6	max	.002	3	.007	2	.002	3	2.869e-5	3	NC	1	NC	1
164			min	002	2	01	3	0	1	0	2	6607.426	2	NC	1
165		7	max	.002	3	.008	2	.002	3	5.468e-5	3	NC	1	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
166			min	003	2	012	3	0	1	-1.125e-7	13	5481.715	2	NC	1
167		8	max	.003	3	.01	2	.003	3	8.066e-5	3	NC	3	NC	1
168			min	003	2	014	3	0	1	-1.319e-6	9	4658.161	2	NC	1
169		9	max	.003	3	.011	2	.003	3	1.067e-4	3	NC	3	NC	1_
170			min	004	2	016	3	0	1	-3.211e-6	9	4026.425	2	NC	1
171		10	max	.004	3	.013	2	.003	3	1.326e-4	3	NC	3	NC	1
172			min	004	2	017	3	0	1	-5.103e-6	9	3525.295	2	NC	1
173		11	max	.004	3	.015	2	.003	3	1.586e-4	3	NC	3	NC	1
174			min	005	2	019	3	0	1	-6.994e-6	9	3117.986	2	NC	1
175		12	max	.004	3	.017	2	.003	3	1.846e-4	3	NC	3	NC	1
176			min	005	2	02	3	0	1	-8.886e-6	9	2780.947	2	NC	1
177		13	max	.005	3	.018	2	.003	3	2.106e-4	3	NC	3	NC	1
178			min	006	2	021	3	0	1	-1.078e-5	9	2498.297	2	NC	1
179		14	max	.005	3	.02	2	.003	3	2.366e-4	3	NC	3	NC	1
180			min	006	2	022	3	0	1	-1.267e-5	9	2258.852	2	NC	1
181		15	max	.006	3	.022	2	.003	3	2.626e-4	3	NC	3	NC	1
182			min	007	2	024	3	0	1	-1.456e-5	9	2054.445	2	NC	1
183		16	max	.006	3	.025	2	.003	3	2.886e-4	3	NC	3	NC	1
184			min	007	2	025	3	0	1	-1.645e-5	9	1878.93	2	NC	1
185		17	max	.007	3	.027	2	.003	3	3.145e-4	3	NC	3	NC	1
186			min	008	2	026	3	0	1	-1.834e-5	9	1727.569	2	NC	1
187		18	max	.007	3	.029	2	.003	3	3.405e-4	3	NC	3	NC	1
188			min	008	2	027	3	0	1	-2.024e-5	9	1596.64	2	NC	1
189		19	max	.007	3	.031	2	.003	3	3.665e-4	3	NC	3	NC	1
190			min	009	2	028	3	0	1	-2.213e-5	9	1483.171	2	NC	1
191	M8	1	max	.003	1	.041	2	0	1	-1.171e-7	10	NC	1	NC	1
192			min	0	15	034	3	002	3	-2.759e-4	3	NC	1	8419.798	3
193		2	max	.003	1	.038	2	0	1	-1.171e-7	10	NC	1	NC	1
194			min	0	15	032	3	002	3	-2.759e-4	3	NC	1	9180.306	3
195		3	max	.003	1	.036	2	0	1	-1.171e-7	10	NC	1	NC	1
196			min	0	15	03	3	002	3	-2.759e-4	3	NC	1	NC	1
197		4	max	.003	1	.034	2	0	1	-1.171e-7	10	NC	1	NC	1
198			min	0	15	028	3	002	3	-2.759e-4	3	NC	1	NC	1
199		5	max	.003	1	.032	2	0	1	-1.171e-7	10	NC	1	NC	1
200			min	0	15	026	3	002	3	-2.759e-4	3	NC	1	NC	1
201		6	max	.002	1	.029	2	0	1	-1.171e-7	10	NC	1	NC	1
202			min	0	15	024	3	001	3	-2.759e-4	3	NC	1	NC	1
203		7	max	.002	1	.027	2	0	1	-1.171e-7	10	NC	1	NC	1
204			min	0	15	023	3	001	3	-2.759e-4	3	NC	1	NC	1
205		8	max	.002	1	.025	2	0	1	-1.171e-7	10	NC	1	NC	1
206			min	0	15	021	3	001				NC	1	NC	1
207		9	max	.002	1	.023	2	0	1	-1.171e-7		NC	1	NC	1
208			min	0	15	019	3	0	3	-2.759e-4	3	NC	1	NC	1
209		10	max	.002	1	.02	2	0	1	-1.171e-7	10	NC	1	NC	1
210		T.	min	0	15	017	3	0	3	-2.759e-4	3	NC	1	NC	1
211		11	max	.002	1	.018	2	0	1	-1.171e-7	10	NC	1	NC	1
212			min	0	15	015	3	0	3	-2.759e-4	3	NC	1	NC	1
213		12	max	.001	1	.016	2	0	1	-1.171e-7	10	NC	1	NC	1
214		1-	min	0	15	013	3	0	3	-2.759e-4	3	NC	1	NC	1
215		13	max	.001	1	.014	2	0	1	-1.171e-7	10	NC	1	NC	1
216		10	min	0	15	011	3	0	3	-2.759e-4	3	NC	1	NC	1
217		14	max	0	1	.011	2	0	1	-1.171e-7	10	NC	1	NC	1
218		17	min	0	15	009	3	0	3	-2.759e-4	3	NC	1	NC	1
219		15	max	0	1	.009	2	0	1	-1.171e-7	10	NC	1	NC	1
220		13	min	0	15	008	3	0	3	-2.759e-4	3	NC	1	NC	1
221		16	max	0	1	.007	2	0	1	-2.759e-4 -1.171e-7	10	NC	1	NC	1
222		10	min	0	15	006	3	0	3	-1.17 1e-7 -2.759e-4	3	NC	1	NC	1
222			HIIII	U	IJ	000	J	U	J	72.7336-4	J	INC		INC	

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
223		17	max	0	1	.005	2	0	1	-1.171e-7	10	NC	1	NC	1
224			min	0	15	004	3	0	3	-2.759e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	-1.171e-7	10	NC	1	NC	1
226			min	0	15	002	3	0	3	-2.759e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-1.171e-7	10	NC	1	NC	1
228			min	0	1	0	1	0	1	-2.759e-4	3	NC	1	NC	1
229	M10	1	max	.002	2	.011	2	0	12	4.13e-4	1_	NC	3	NC	1
230			min	003	3	011	3	002	1	-5.898e-4	3	3970.55	2	NC	1
231		2	max	.002	2	.01	2	0	3	3.921e-4	1	NC	3	NC	1
232			min	003	3	011	3	002	1	-5.687e-4	3	4343.829	2	NC	1
233		3	max	.002	2	.009	2	00	3_	3.712e-4	_1_	NC	3_	NC	1
234			min	003	3	01	3	002	1	-5.475e-4	3	4789.698	2	NC	1
235		4	max	.002	2	.008	2	0	3	3.503e-4	1_	NC	1	NC	1
236			min	003	3	01	3	001	1	-5.264e-4	3	5325.957	2	NC	1
237		5	max	.002	2	.007	2	0	3	3.294e-4	_1_	NC	1	NC	1
238			min	002	3	009	3	001	1	-5.053e-4	3	5976.412	2	NC	1
239		6	max	.002	2	.006	2	0	3	3.085e-4	1_	NC 0770 440	1	NC	1
240		-	min	002	3	009	3	001	1	-4.842e-4	3	6773.413	2	NC	1
241		7	max	.001	2	.005	2	0	3	2.876e-4	1_	NC	1_	NC NC	1
242		0	min	002	3	008	3	<u>001</u>	1	-4.631e-4	3	7761.758	2	NC NC	1
243		8	max	.001	2	.005	2	0	3	2.667e-4	1	NC 0004.96	1	NC NC	1
244		9	min	002 .001	2	008	2	<u>001</u>	3	-4.42e-4 2.458e-4	<u>3</u> 1	9004.86 NC	<u>2</u> 1	NC NC	1
245		+ 9	max	002	3	.004 007	3	<u> </u>	1	-4.209e-4	3	NC NC	1	NC NC	1
247		10		.002	2	.003	2	0	3	2.249e-4	<u> </u>	NC NC	1	NC NC	1
248		10	max min	002	3	007	3	0	1	-3.997e-4	3	NC NC	1	NC NC	1
249		11	max	0	2	.003	2	0	3	2.04e-4	<u> </u>	NC	1	NC	1
250			min	001	3	006	3	0	1	-3.786e-4	3	NC	1	NC	1
251		12	max	0	2	.002	2	0	3	1.831e-4	1	NC	1	NC	1
252		12	min	001	3	005	3	0	1	-3.575e-4	3	NC	1	NC	1
253		13	max	0	2	.002	2	0	3	1.622e-4	1	NC	1	NC	1
254			min	001	3	005	3	0	1	-3.364e-4	3	NC	1	NC	1
255		14	max	0	2	.001	2	0	3	1.413e-4	1	NC	1	NC	1
256			min	0	3	004	3	0	1	-3.153e-4	3	NC	1	NC	1
257		15	max	0	2	0	2	0	3	1.204e-4	1	NC	1	NC	1
258			min	0	3	003	3	0	1	-2.942e-4	3	NC	1	NC	1
259		16	max	0	2	0	2	0	3	9.945e-5	1	NC	1	NC	1
260			min	0	3	003	3	0	1	-2.73e-4	3	NC	1	NC	1
261		17	max	0	2	0	2	0	3	7.855e-5	1	NC	1	NC	1
262			min	0	3	002	3	0	1	-2.519e-4	3	NC	1	NC	1
263		18	max	0	2	0	2	0	3	5.764e-5	1	NC	1	NC	1
264			min	0	3	0	3	0	1	-2.308e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	3.674e-5	1_	NC	1_	NC	1
266			min	0	1	0	1	0	1	-2.097e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	1.004e-4	3	NC	1_	NC	1
268			min	0	1	0	1	0	1	-1.785e-5	1_	NC	1_	NC	1
269		2	max	0	3	0	2	0	1	7.51e-5	3_	NC	_1_	NC	1
270			min	0	2	0	3	0	3	-3.146e-5	1_	NC	1_	NC	1
271		3	max	0	3	0	2	00	1	4.979e-5	3	NC	_1_	NC	1
272			min	0	2	002	3	0	3	-4.507e-5	1_	NC	1_	NC	1
273		4	max	0	3	0	2	0	2	2.449e-5	3	NC	1	NC	1
274			min	0	2	003	3	<u>001</u>	3	-5.868e-5	1_	NC	1_	NC	1
275		5	max	0	3	0	2	0	2	-8.094e-7	3	NC	1	NC	1
276			min	0	2	004	3	002	3	-7.229e-5	1_	NC	1_	NC	1
277		6_	max	0	3	0	2	0	10	-3.414e-6		NC	1	NC	1
278			min	0	2	005	3	002	3	-8.59e-5	1_	NC	1_	NC	1
279		7	max	0	3	0	2	0	10	-3.897e-6	10	NC	_1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		LC
280			min	0	2	005	3	002		1e-5	1	NC	1_	NC	1
281		8	max	0	3	.001	2	0	10 -4.3		<u>10</u>	NC	_1_	NC	1
282			min	0	2	006	3	002		31e-4	1_	NC	1_	NC	1
283		9	max	.001	3	.001	2	0			10	NC	1_	NC	1
284		10	min	001	2	007	3	003		67e-4	1_	NC	1_	NC	1
285		10	max	.001	3	.002	2	0			<u>10</u>	NC	1	NC NC	1
286		4.4	min	001	2	007	3	003)3e-4	1_	NC NC	1_	NC NC	1
287		11	max	.001	3	.002	2	0			<u>10</u>	NC NC	1_	NC	1
288		40	min	001	2	008	3	003		4e-4	1_	NC NC	1_	NC NC	1
289		12	max	.002	3	.003	3	003		2e-6 79e-4	<u>10</u>	NC NC	<u>1</u> 1	NC NC	1
290 291		13	min	002 .002	3	008	2	003 0			3	NC NC	1	NC NC	1
291		13	max	002	2	.004 008	3	003		95e-6 132e-4	<u>10</u>	NC NC	1	NC NC	1
293		14	max	.002	3	008 .004	2	<u>003</u> 0			<u> </u>	NC NC	1	NC NC	1
294		14	min	002	2	009	3	003		35e-4	3	NC NC	1	NC	1
295		15	max	.002	3	.005	2	<u>003</u> 0			10	NC	1	NC	1
296		10	min	002	2	009	3	003		88e-4	3	8598.11	2	NC	1
297		16	max	.002	3	.006	2	<u>.005</u>			10	NC	1	NC	1
298		10	min	002	2	009	3	003		11e-4	3	7293.815	2	NC	1
299		17	max	.002	3	.007	2	0			10	NC	1	NC	1
300			min	002	2	009	3	004		14e-4	3	6283.46	2	NC	1
301		18	max	.002	3	.008	2	0			10	NC	1	NC	1
302			min	002	2	009	3	004		7e-4	3	5491.844	2	NC	1
303		19	max	.003	3	.009	2	0			10	NC	3	NC	1
304			min	003	2	009	3	005		5e-4	3	4866.054	2	NC	1
305	M12	1	max	.001	1	.012	2	.004		3e-4	3	NC	1	NC	2
306			min	0	15	011	3	0	10 1.11	7e-5	10	NC	1	5066.673	1
307		2	max	.001	1	.012	2	.003		3e-4	3	NC	1	NC	2
308			min	0	15	01	3	0	10 1.11	7e-5	10	NC	1	5525.896	1
309		3	max	.001	1	.011	2	.003		3e-4	3	NC	1_	NC	2
310			min	0	15	01	3	0			10	NC	1_	6072.51	1
311		4	max	.001	1	.01	2	.003		3e-4	3	NC	1_	NC	2
312			min	0	15	009	3	0			10	NC	1_	6729.553	1
313		5	max	00	1	.01	2	.003		3e-4	3	NC	_1_	NC	2
314			min	0	15	009	3	0			10	NC	1_	7528.412	1
315		6	max	0	1	.009	2	.002		3e-4	3	NC	_1_	NC	2
316		_	min	0	15	008	3	0			10	NC	1_	8512.738	1
317		7	max	0	1	800.	2	.002		3e-4	3	NC	1_	NC	2
318			min	0	15	007	3	0			10	NC	1_	9744.714	1
319		8	max	0	1	.008	2	.002	1 3.98	3e-4	3	NC NC	1_	NC NC	1
320			min	0	15	007	3	0	10 1.11				1	NC NC	1
321		9	max	0	1	.007	2	.001		3e-4	3	NC NC	1	NC NC	1
322		10	min	0	15 1	006	2	0			<u>10</u>	NC NC	<u>1</u> 1	NC NC	1
323		10	max	0	15	.006	3	.001		3e-4 7e-5	3	NC NC	1	NC NC	1
324 325		11	min max	0	1	006 .006	2	<u> </u>		3e-4	<u>10</u> 3	NC NC	1	NC NC	1
326		11	min	0	15	005	3	0			10	NC	1	NC	1
327		12	max	0	1	.005	2	0		3e-4	3	NC	1	NC	1
328		12	min	0	15	004	3	0			10	NC	1	NC	1
329		13	max	0	1	.004	2	0		3e-4	3	NC NC	1	NC NC	1
330		13	min	0	15	004	3	0	10 1.11		10	NC NC	1	NC NC	1
331		14	max	0	1	.003	2	0		3e-4	3	NC	1	NC	1
332			min	0	15	003	3	0			10	NC NC	1	NC	1
333		15	max	0	1	.003	2	0		3e-4	3	NC	1	NC	1
334		10	min	0	15	002	3	0			10	NC	1	NC	1
335		16	max	0	1	.002	2	0		3e-4	3	NC	1	NC	1
336		<u>,</u>	min	0	15	002	3	0	10 1.11		10	NC	1	NC	1
000						1002			10 1111						

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
337		17	max	0	1	.001	2	0	1	3.983e-4	3	NC	_1_	NC	1
338			min	0	15	001	3	0	10	1.117e-5	10	NC	1_	NC	1
339		18	max	0	1	00	2	0	1	3.983e-4	3_	NC	_1_	NC	1
340			min	0	15	0	3	0	10	1.117e-5	10	NC	1_	NC	1
341		19	max	0	1	0	1	0	1	3.983e-4	3_	NC	_1_	NC	1
342	2.4		min	0	1	0	1	0	1	1.117e-5	10	NC	1_	NC	1
343	<u>M1</u>	1_	max	.01	3	.027	3	.004	3	7.115e-3	2	NC	1	NC NC	1
344			min	01	2	022	2	001	9	-1.059e-2	3	NC NC	1_	NC NC	1
345		2	max	.01	3	.016	3	.003	3	3.496e-3	2	NC FOCO 7C4	4	NC NC	1
346		2	min	01	2	013 .007	3	003 .002	3	-5.23e-3	3	5263.761 NC	2	NC NC	1
347		3	max	.01	3		2			2.875e-5	<u>3</u>	2699.676	4	NC NC	1
348		4	min	<u>01</u> .01	3	005 .003	2	004 .002	3	-2.395e-4 3.157e-5	3	NC	<u>2</u> 4	NC NC	1
350		4	max		2	002	3	005	1	-2.055e-4	1	1885.473	2	NC NC	1
351		5		<u>01</u> .01	3	.002	2	.005	3	3.438e-5	3	NC	4	NC NC	1
352		- 5	max	01	2	009	3	005	1	-1.715e-4	1	1476.875	3	NC	1
353		6	max	.009	3	.015	2	.001	3	3.72e-5	3	NC	4	NC	1
354			min	01	2	014	3	005	1	-1.375e-4	1	1254.426	3	NC	1
355		7	max	.009	3	.019	2	.001	3	4.002e-5	3	NC	4	NC	1
356			min	01	2	018	3	004	1	-1.035e-4	1	1124.366	3	NC	1
357		8	max	.009	3	.023	2	.001	3	4.283e-5	3	NC	4	NC	1
358			min	01	2	022	3	003	1	-6.945e-5	1	1044.755	2	NC	1
359		9	max	.009	3	.025	2	.001	3	4.565e-5	3	NC	4	NC	1
360			min	01	2	023	3	002	1	-3.664e-5	9	995.897	2	NC	1
361		10	max	.009	3	.026	2	.001	3	4.847e-5	3	NC	4	NC	1
362			min	01	2	024	3	001	9	-1.2e-5	9	976.036	2	NC	1
363		11	max	.009	3	.025	2	.001	3	5.128e-5	3	NC	4	NC	1
364			min	01	2	023	3	0	9	1.082e-6	15	983.16	2	NC	1
365		12	max	.009	3	.024	2	.001	3	6.662e-5	1	NC	4	NC	1
366			min	01	2	021	3	0	15	2.767e-6	15	1019.883	2	NC	1
367		13	max	.009	3	.021	2	.002	1	1.006e-4	_1_	NC	4	NC	1
368			min	01	2	018	3	0	15	4.451e-6	15	1094.894	2	NC	1
369		14	max	.009	3	.016	2	.003	1	1.347e-4	_1_	NC	4_	NC	1
370			min	01	2	014	3	0	15	6.136e-6		1228.135	2	NC	1
371		15	max	.009	3	.01	2	.003	1	1.687e-4	_1_	NC	4	NC	1
372			min	01	2	008	3	0	15	7.821e-6		1466.554	2	NC	1
373		16	max	.009	3	.002	2	.003	1_	1.921e-4	1	NC 10 T 0 000	4	NC	1
374			min	01	2	002	3	0	15	8.742e-6		1879.209	3	NC	1
375		17	max	.009	3	.006	3	.002	1	6.936e-5	3	NC 0707.450	4_	NC	1
376		40	min	01	2	008	2	0	15	-4.447e-5	9	2727.156	3	NC NC	1
377		18	max	.009	3	.014	3	.001		5.296e-3		NC	1	NC NC	1
378		10	min	01	2	019	2	0	15	-2.816e-3	3	5348.029	3	NC NC	1
379		19	max	.009	3	.023	3	0 0	1	1.068e-2	2	NC 5729.209	<u>1</u> 2	NC NC	1
380	M5	1	min	01	2	03	3	.004		-5.756e-3	3	NC	1	NC NC	1
381	CIVI		max min	.029 032	3	.085 072	2	002	9	7.89e-6 0	<u>3</u> 15	3719.883	3	NC NC	1
383		2	max	.029	3	.051	3	.005	3	1.496e-4	3	NC	4	NC	1
384			min	032	2	043	2	001	9	-2.336e-5	9	1638.029	2	NC	1
385		3	max	.029	3	.02	3	.007	3	2.885e-4	3	NC	5	NC	1
386			min	032	2	016	2	001	9	-4.642e-5	9	839.787	2	NC	1
387		4	max	.029	3	.008	2	.008	3	2.769e-4	3	NC	5	NC	1
388		1	min	032	2	006	3	001	9	-4.439e-5	9	586.184	2	NC	1
389		5	max	.029	3	.029	2	.008	3	2.653e-4	3	NC	5	NC	1
390			min	032	2	028	3	001	9	-4.237e-5	9	463.552	2	8981.809	_
391		6	max	.029	3	.047	2	.009	3	2.537e-4	3	NC	5	NC	1
392			min	032	2	045	3	001	9	-4.034e-5	9	393.661	2	8100.32	3
393		7	max	.029	3	.062	2	.009	3	2.422e-4	3	NC	5	NC	1
		<u> </u>	,							'	_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

1935		Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
1996	394			min	032	2	059	3	001	9	-3.832e-5	9	350.792	2	7690.745	
997			8													_
1988												_				3
1999			9													1
A00			40									_				
A01			10													
A02			11													
A03			+													
A04			12													
405			12								-2 820-5					
406			13													
407			13													
408			14									_				
409			17													
410			15													•
411																
Heat			16													
413																
414			17							3						1
415																1
416	415		18		.028	3	.045	3	.001	3	-9.913e-8	10		4	NC	1
Heat	416			min	032	2	061		0	1		1	1714.907	3	NC	1
M9	417		19	max	.028	3	.072	3	0	3	-3.711e-8	15	NC	3	NC	1
A20	418			min	031	2	098	2	0	1	-1.412e-6	3	1754.24	2	NC	1
421	419	M9	1	max	.01		.026	3	.003	3	1.06e-2	3		1_		1
Min				min	01		022		002			2		1_	NC	1
423			2		.01				.002							1
424 min 01 2 005 2 0 12 -9.623e-5 3 2697.852 3 NC 1 425 4 max .01 3 .003 2 .002 1 1.07e-4 1 NC 4 NC 1 426 min 01 2 002 3 001 3 -9.785e-5 3 1830.198 3 NC 1 427 5 max .01 3 .009 2 .003 1 7.724e-5 1 NC 4 NC 1 429 6 max .01 3 .015 2 .002 1 4.748e-5 1 NC 4 NC 1 430 min 01 2 .002 1 1.786e-5 2 NC 4 NC 1 432 min 01 2 .019 3 .004 3				min						9		2				
425 4 max .01 3 .003 2 .002 1 1.07e-4 1 NC 4 NC 1 426 min 01 2 002 3 001 3 -9.785e-5 3 1830.198 3 NC 1 427 5 max .01 3 .009 2 .003 1 7.724e-5 1 NC 4 NC 1 428 min 01 2 009 3 003 3 947e-5 3 1441.91 3 8851.373 3 429 6 max .01 3 .015 2 .002 1 4.748e-5 1 NC 4 NC 1 430 min 01 2 .015 3 003 3 -1.01e-4 3 1230.91 3 7683.685 3 431 7 max .01 3			3_													
Max Min Min																•
427 5 max .01 3 .009 2 .003 1 7.724e-5 1 NC 4 NC 1 428 min 01 2 009 3 003 3 -9.947e-5 3 1441.91 3 8851.373 3 429 6 max .01 3 .015 2 .002 1 4.748e-5 1 NC 4 NC 1 430 min 01 2 015 3 003 3 -1.011e-4 3 1230.91 3 7683.685 3 431 7 max .01 3 .019 2 .002 1 1.786e-5 2 NC 4 NC 1 432 min 01 2 019 3 004 3 -1.027e-4 3 110.6868 3 7005.281 3 433 8 max .009 3 <th< td=""><td></td><td></td><td>4_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			4_													
428 min 01 2 009 3 003 3 -9.947e-5 3 1441.91 3 8851.373 3 429 6 max .01 3 .015 2 .002 1 4.748e-5 1 NC 4 NC 1 430 min 01 2 015 3 003 3 -1.011e-4 3 1230.91 3 7683.685 3 431 7 max .01 3 .019 2 .002 1 1.786e-5 2 NC 4 NC 1 432 min 01 2 019 3 004 3 -1.027e-4 3 1106.868 3 7005.281 3 433 8 max .009 3 .023 2 0 1 8.458e-6 2 NC 4 NC 1 4344 min 01 2			-									_		_		-
429 6 max .01 3 .015 2 .002 1 4.748e-5 1 NC 4 NC 1 430 min 01 2 015 3 003 3 -1.011e-4 3 1230.91 3 7683.685 3 431 7 max .01 3 .019 2 .002 1 1.786e-5 2 NC 4 NC 1 432 min 01 2 019 3 004 3 -1.027e-4 3 1106.868 3 7005.281 3 433 8 max .009 3 .023 2 0 1 8.458e-6 2 NC 4 NC 1 434 min 01 2 022 3 005 3 -1.043e-4 3 1034.086 3 6624.259 3 435 9 max .009 3<			5													
430 min 01 2 015 3 003 3 -1.011e-4 3 1230.91 3 7683.685 3 431 7 max .01 3 .019 2 .002 1 1.786e-5 2 NC 4 NC 1 432 min 01 2 019 3 004 3 -1.027e-4 3 1106.868 3 7005.281 3 433 8 max .009 3 .023 2 0 1 8.458e-6 2 NC 4 NC 1 434 min 01 2 022 3 005 3 -1.043e-4 3 1034.086 3 6624.259 3 435 9 max .009 3 .025 2 0 2 -7.868e-7 10 NC 4 NC 1 436 min 01 2										_						
431 7 max .01 3 .019 2 .002 1 1.786e-5 2 NC 4 NC 1 432 min 01 2 019 3 004 3 -1.027e-4 3 1106.868 3 7005.281 3 433 8 max .009 3 .023 2 0 1 8.458e-6 2 NC 4 NC 1 434 min 01 2 022 3 005 3 -1.043e-4 3 1034.086 3 6624.259 3 435 9 max .009 3 .025 2 0 2 -7.868e-7 10 NC 4 NC 1 436 min 01 2 024 3 005 3 -1.05e-6 10 NC 4 NC 1 438 min 01 2 024			Ь													
432 min 01 2 019 3 004 3 -1.027e-4 3 1106.868 3 7005.281 3 433 8 max .009 3 .023 2 0 1 8.458e-6 2 NC 4 NC 1 434 min 01 2 022 3 005 3 -1.043e-4 3 1034.086 3 6624.259 3 435 9 max .009 3 .025 2 0 2 -7.868e-7 10 NC 4 NC 1 436 min 01 2 024 3 005 3 -1.059e-4 3 996.008 2 6453.647 3 437 10 max .009 3 .026 2 0 2 -1.96e-6 10 NC 4 NC 1 438 min 01 2			7													
433 8 max .009 3 .023 2 0 1 8.458e-6 2 NC 4 NC 1 434 min 01 2 022 3 005 3 -1.043e-4 3 1034.086 3 6624.259 3 435 9 max .009 3 .025 2 0 2 -7.868e-7 10 NC 4 NC 1 436 min 01 2 024 3 005 3 -1.059e-4 3 996.008 2 6453.647 3 437 10 max .009 3 .026 2 0 2 -1.96e-6 10 NC 4 NC 1 438 min 01 2 024 3 005 3 -1.076e-4 3 976.134 2 6455.995 3 439 11 max .009 3<																
434 min 01 2 022 3 005 3 -1.043e-4 3 1034.086 3 6624.259 3 435 9 max .009 3 .025 2 0 2 -7.868e-7 10 NC 4 NC 1 436 min 01 2 024 3 005 3 -1.059e-4 3 996.008 2 6453.647 3 437 10 max .009 3 .026 2 0 2 -1.96e-6 10 NC 4 NC 1 438 min 01 2 024 3 005 3 -1.076e-4 3 976.134 2 6455.995 3 439 11 max .009 3 .025 2 0 10 -3.134e-6 10 NC 4 NC 1 440 min 01 2 <td< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			0													
435 9 max .009 3 .025 2 0 2 -7.868e-7 10 NC 4 NC 1 436 min 01 2 024 3 005 3 -1.059e-4 3 996.008 2 6453.647 3 437 10 max .009 3 .026 2 0 2 -1.96e-6 10 NC 4 NC 1 438 min 01 2 024 3 005 3 -1.076e-4 3 976.134 2 6455.995 3 439 11 max .009 3 .025 2 0 10 -3.134e-6 10 NC 4 NC 1 440 min 01 2 023 3 005 3 -1.092e-4 3 983.242 2 6624.094 3 441 12 max .009 <th< td=""><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>			0													
436 min 01 2 024 3 005 3 -1.059e-4 3 996.008 2 6453.647 3 437 10 max .009 3 .026 2 0 2 -1.96e-6 10 NC 4 NC 1 438 min 01 2 024 3 005 3 -1.076e-4 3 976.134 2 6455.995 3 439 11 max .009 3 .025 2 0 10 -3.134e-6 10 NC 4 NC 1 440 min 01 2 023 3 005 3 -1.092e-4 3 983.242 2 6624.094 3 441 12 max .009 3 .024 2 0 10 -4.307e-6 10 NC 4 NC 1 442 min 01 2 <t< td=""><td></td><td></td><td>a</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			a													
437 10 max .009 3 .026 2 0 2 -1.96e-6 10 NC 4 NC 1 438 min 01 2 024 3 005 3 -1.076e-4 3 976.134 2 6455.995 3 439 11 max .009 3 .025 2 0 10 -3.134e-6 10 NC 4 NC 1 440 min 01 2 023 3 005 3 -1.092e-4 3 983.242 2 6624.094 3 441 12 max .009 3 .024 2 0 10 -4.307e-6 10 NC 4 NC 1 442 min 01 2 021 3 005 3 -1.311e-4 1 1019.941 2 6976.828 3 443 13 max .009 3 .02 2 0 10 -5.481e-6 10 NC 4 NC </td <td></td> <td></td> <td>-</td> <td></td> <td>_</td>			-													_
438 min 01 2 024 3 005 3 -1.076e-4 3 976.134 2 6455.995 3 439 11 max .009 3 .025 2 0 10 -3.134e-6 10 NC 4 NC 1 440 min 01 2 023 3 005 3 -1.092e-4 3 983.242 2 6624.094 3 441 12 max .009 3 .024 2 0 10 -4.307e-6 10 NC 4 NC 1 442 min 01 2 021 3 005 3 -1.311e-4 1 1019.941 2 6976.828 3 443 13 max .009 3 .02 2 0 10 -5.481e-6 10 NC 4 NC 1 444 min 01 2			10													1
439 11 max .009 3 .025 2 0 10 -3.134e-6 10 NC 4 NC 1 440 min 01 2 023 3 005 3 -1.092e-4 3 983.242 2 6624.094 3 441 12 max .009 3 .024 2 0 10 -4.307e-6 10 NC 4 NC 1 442 min 01 2 021 3 005 3 -1.311e-4 1 1019.941 2 6976.828 3 443 13 max .009 3 .02 2 0 10 -5.481e-6 10 NC 4 NC 1 444 min 01 2 018 3 005 3 -1.609e-4 1 1094.912 2 7565.997 3 445 14 max .009 3 .016 2 0 10 -6.655e-6 10 NC 4 N			10													3
440 min 01 2 023 3 005 3 -1.092e-4 3 983.242 2 6624.094 3 441 12 max .009 3 .024 2 0 10 -4.307e-6 10 NC 4 NC 1 442 min 01 2 021 3 005 3 -1.311e-4 1 1019.941 2 6976.828 3 443 13 max .009 3 .02 2 0 10 -5.481e-6 10 NC 4 NC 1 444 min 01 2 018 3 005 3 -1.609e-4 1 1094.912 2 7565.997 3 445 14 max .009 3 .016 2 0 10 -6.655e-6 10 NC 4 NC 1 446 min 01 2			11							_						
441 12 max .009 3 .024 2 0 10 -4.307e-6 10 NC 4 NC 1 442 min 01 2 021 3 005 3 -1.311e-4 1 1019.941 2 6976.828 3 443 13 max .009 3 .02 2 0 10 -5.481e-6 10 NC 4 NC 1 444 min 01 2 018 3 005 3 -1.609e-4 1 1094.912 2 7565.997 3 445 14 max .009 3 .016 2 0 10 -6.655e-6 10 NC 4 NC 1 446 min 01 2 014 3 004 1 -1.906e-4 1 1228.076 2 8499.582 3 447 15 max .009 3 .01 2 0 10 -7.828e-6 10 NC 4 N																
442 min 01 2 021 3 005 3 -1.311e-4 1 1019.941 2 6976.828 3 443 13 max .009 3 .02 2 0 10 -5.481e-6 10 NC 4 NC 1 444 min 01 2 018 3 005 3 -1.609e-4 1 1094.912 2 7565.997 3 445 14 max .009 3 .016 2 0 10 -6.655e-6 10 NC 4 NC 1 446 min 01 2 014 3 004 1 -1.906e-4 1 1228.076 2 8499.582 3 447 15 max .009 3 .01 2 0 10 -7.828e-6 10 NC 4 NC 1 448 min 01 2			12													
443 13 max .009 3 .02 2 0 10 -5.481e-6 10 NC 4 NC 1 444 min 01 2 018 3 005 3 -1.609e-4 1 1094.912 2 7565.997 3 445 14 max .009 3 .016 2 0 10 -6.655e-6 10 NC 4 NC 1 446 min 01 2 014 3 004 1 -1.906e-4 1 1228.076 2 8499.582 3 447 15 max .009 3 .01 2 0 10 -7.828e-6 10 NC 4 NC 1 448 min 01 2 008 3 005 1 -2.204e-4 1 1466.32 2 NC 1									-							_
444 min 01 2 018 3 005 3 -1.609e-4 1 1094.912 2 7565.997 3 445 14 max .009 3 .016 2 0 10 -6.655e-6 10 NC 4 NC 1 446 min 01 2 014 3 004 1 -1.906e-4 1 1228.076 2 8499.582 3 447 15 max .009 3 .01 2 0 10 -7.828e-6 10 NC 4 NC 1 448 min 01 2 008 3 005 1 -2.204e-4 1 1466.32 2 NC 1			13													
445 14 max .009 3 .016 2 0 10 -6.655e-6 10 NC 4 NC 1 446 min 01 2 014 3 004 1 -1.906e-4 1 1228.076 2 8499.582 3 447 15 max .009 3 .01 2 0 10 -7.828e-6 10 NC 4 NC 1 448 min 01 2 008 3 005 1 -2.204e-4 1 1466.32 2 NC 1																
446 min 01 2 014 3 004 1 -1.906e-4 1 1228.076 2 8499.582 3 447 15 max .009 3 .01 2 0 10 -7.828e-6 10 NC 4 NC 1 448 min 01 2 008 3 005 1 -2.204e-4 1 1466.32 2 NC 1			14													
447																_
448 min01 2008 3005 1 -2.204e-4 1 1466.32 2 NC 1			15							10						
																1
	449		16	max		3				10		10		4		1
450 min01 2002 3005 1 -2.428e-4 1 1866.325 3 NC 1									005	1		1	1866.325	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.009	3	.006	3	Ö	10 1.254e-4	3	NC	4	NC	1
452			min	01	2	008	2	004	1 -9.e-5	1	2709.097	3	NC	1
453		18	max	.009	3	.015	3	0	10 2.915e-3	3	NC	1	NC	1
454			min	01	2	019	2	003	1 -5.297e-3	2	5313.311	3	NC	1
455		19	max	.009	3	.023	3	0	3 5.753e-3	3	NC	_1_	NC	1
456			min	01	2	03	2	0	9 -1.068e-2	2	5745.943	2	NC	1
457	M13	1_	max	.002	9	.026	3	.01	3 3.953e-3	3	NC	_1_	NC	1
458			min	003	3	022	2	01	2 -3.383e-3	2	NC	1_	NC	1
459		2	max	.002	9	.088	3	.008	3 4.912e-3	3	NC	4	NC	1
460			min	003	3	064	2	007	2 -4.214e-3	2	1755.916	3	NC	1
461		3	max	.002	9	.139	3	.013	1 5.87e-3	3	NC	4	NC	2
462		_	min	003	3	<u>099</u>	2	006	10 -5.046e-3	2	956.48	3_	6018.319	1
463		4	max	.002	9	.174	3	.021	1 6.829e-3	3	NC	5	NC 4004.00	2
464		_	min	004	3	122	2	006	10 -5.878e-3	2	732.905	3	4264.96	1
465		5	max	.002	9	.188	3	.023	1 7.788e-3	3_	NC cco zoc	5_	NC 2004 404	2
466			min	004	3	133	2	008	10 -6.71e-3	2	668.706	3	3904.181	
467		6	max	.002	9	.182	3	.02 01	9 8.747e-3 10 -7.542e-3	<u>3</u>	NC	5	NC 4501.161	2
468		7	min	004	9	131	3		10 -7.542e-3 3 9.706e-3	3	694.308 NC	<u>3</u>	NC	2
469		-	max	.002	3	.16	2	.019			810.709	3	7213.187	9
470 471		8	min	004 .002	9	<u>118</u> .128	3	016 .023	2 -8.374e-3 3 1.066e-2	3	NC	4	NC	1
472		0	max	004	3	099	2	023	2 -9.205e-3	2	1061.333	3	8124.923	2
473		9	max	.002	9	.098	3	.026	3 1.162e-2	3	NC	4	NC	1
474		- 3	min	004	3	08	2	029	2 -1.004e-2	2	1500.824	3	5570.523	2
475		10	max	.002	9	.085	3	.029	3 1.258e-2	3	NC	4	NC	4
476		10	min	004	3	072	2	032	2 -1.087e-2	2	1857.748	3	4889.091	2
477		11	max	.002	9	.099	3	.032	3 1.163e-2	3	NC	4	NC	1
478			min	004	3	08	2	029	2 -1.004e-2	2	1500.822	3	4933.722	3
479		12	max	.001	9	.128	3	.032	3 1.067e-2	3	NC	4	NC	1
480		, <u> </u>	min	004	3	099	2	023	2 -9.206e-3	2	1061.331	3	4792.102	3
481		13	max	.001	9	.16	3	.031	3 9.713e-3	3	NC	5	NC	2
482			min	004	3	118	2	016	2 -8.374e-3	2	810.708	3	5002.481	3
483		14	max	.001	9	.182	3	.029	3 8.757e-3	3	NC	5	NC	2
484			min	004	3	131	2	01	10 -7.542e-3	2	694.307	3	4497.836	1
485		15	max	.001	9	.188	3	.025	3 7.801e-3	3	NC	5	NC	2
486			min	004	3	133	2	008	10 -6.71e-3	2	668.705	3	3908.807	1
487		16	max	.001	9	.174	3	.021	3 6.844e-3	3	NC	5	NC	2
488			min	004	3	122	2	006	10 -5.878e-3	2	732.904	3	4277.611	1
489		17	max	.001	9	.14	3	.017	3 5.888e-3	3	NC	4	NC	2
490			min	004	3	099	2	006	10 -5.046e-3	2	956.479	3	6049.869	1
491		18	max		9	.088	3	.013	3 4.932e-3		NC	4	NC	1
492			min	004	3	064	2	007	2 -4.215e-3	2	1755.914	3	NC	1
493		19	max	.001	9	.027	3	.01	3 3.976e-3	3	NC	1_	NC	1
494			min	004	3	022	2	01	2 -3.383e-3	2	NC	1_	NC	1
495	M16	1_	max	0	9	.023	3	.009	3 4.433e-3	2	NC	1_	NC	1
496			min	0	3	03	2	01	2 -3.36e-3	3	NC	1_	NC NC	1
497		2	max	0	9	.057	3	.013	3 5.53e-3	2	NC 4700 000	4	NC NC	1
498			min	0	3	093	2	007	2 -4.142e-3	3	1739.688	2	NC	1
499		3	max	0	9	.085	3	.017	3 6.627e-3	2	NC 045.500	4_	NC	2
500		1	min	0	3	<u>145</u>	2	<u>006</u>	10 -4.925e-3	3	945.526	2	6025.466	
501		4_	max	0	9	.105	3	.02	3 7.723e-3	2	NC 721 652	5	NC 4260 569	2
502		E	min	0	3	18	2	006	10 -5.708e-3	3	721.652	<u>2</u> 5	4269.568	
503		5	max	0	9	.115	3	.024	3 8.82e-3	2	NC 654.262	2	NC 2009 645	2
504 505		6	min	0	9	196 .115	3	008 .027	10 -6.491e-3 3 9.916e-3	3	NC		3908.645 NC	
506		6	max min	0	3	191	2	02 <i>1</i>	3 9.916e-3 10 -7.274e-3	3	672.427	<u>5</u> 2	4507.74	1
507		7	max	0	9	.106	3	.029	3 1.101e-2	2	NC	5	NC	2
JU1		1 1	ппал	U	J	.100	J	.023	U 1.101 6- 2		INO		LINO	

Model Name

Schletter, Inc. HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		
508			min	0	3	17	2	016	2	-8.057e-3	3	772.076	2	5566.766	3
509		8	max	0	1	.092	3	.029	3	1.211e-2	2	NC	4	NC	1
510			min	0	3	14	2	023	2	-8.839e-3	3	982.326	2	5351.417	3
511		9	max	0	1	.079	3	.029	3	1.321e-2	2	NC	4	NC	1
512			min	0	3	112	2	029	2	-9.622e-3	3	1328.208	2	5422.404	3
513		10	max	0	1	.072	3	.028	3	1.43e-2	2	NC	4	NC	4
514			min	0	3	098	2	031	2	-1.041e-2	3	1589.004	2	4929.359	2
515		11	max	0	1	.079	3	.026	3	1.321e-2	2	NC	4	NC	1
516			min	0	3	112	2	029	2	-9.62e-3	3	1328.208	2	5621.103	2
517		12	max	0	1	.092	3	.025	3	1.211e-2	2	NC	4	NC	1_
518			min	0	3	14	2	023	2	-8.834e-3	3	982.326	2	6928.035	3
519		13	max	0	1	.106	3	.023	3	1.101e-2	2	NC	5_	NC	2
520			min	0	3	17	2	016	2	-8.049e-3	3	772.076	2	7234.26	1
521		14	max	0	1	.115	3	.021	3	9.917e-3	2	NC	5	NC	2
522			min	0	3	191	2	01	10	-7.264e-3	3	672.427	2	4513.941	1
523		15	max	0	1	.115	3	.023	1	8.821e-3	2	NC	5_	NC	2
524			min	0	3	196	2	008	10	-6.479e-3	3	654.262	2	3920.461	1
525		16	max	0	1	.105	3	.02	1	7.724e-3	2	NC	5	NC	2
526			min	0	3	18	2	006	10	-5.693e-3	3	721.652	2	4289.966	
527		17	max	0	1	.085	3	.013	1	6.628e-3	2	NC	4	NC	2
528			min	0	3	145	2	006	10	-4.908e-3	3	945.526	2	6069.078	1
529		18	max	0	1	.057	3	.011	3	5.532e-3	2	NC	4_	NC	1_
530			min	0	3	093	2	007	2	-4.123e-3	3	1739.688	2	NC	1
531		19	max	0	1	.023	3	.009	3	4.435e-3	2	NC	_1_	NC	1
532			min	0	3	03	2	01	2	-3.338e-3	3	NC	1_	NC	1
533	M15	1	max	0	1	0	1	0	1	4.22e-4	3	NC	_1_	NC	1_
534			min	0	1	0	1	0	1	-5.21e-5	2	NC	1_	NC	1
535		2	max	0	3	0	15	0	1	8.578e-4	3	NC	<u>1</u>	NC	1_
536			min	0	2	004	4	0	3	-4.777e-4	2	NC	1_	NC	1
537		3	max	0	3	002	15	.003	1	1.294e-3	3	NC	1_	NC	1_
538			min	0	2	008	4	004	3	-9.033e-4	2	8289.65	4	9016.087	3
539		4	max	0	3	003	15	.006	2	1.729e-3	3	NC	5	NC	4
540			min	0	2	012	4	008	3	-1.329e-3	2	5687.184	4	5016.855	3
541		5	max	0	3	004	15	.01	2	2.165e-3	3	NC	5	NC	4
542			min	0	2	016	4	013	3	-1.755e-3	2	4437.767	4	3311.172	3
543		6	max	0	3	004	15	.015	2	2.601e-3	3_	NC	5_	NC	4
544			min	001	2	019	4	018	3	-2.18e-3	2	3734.85	4	2420.303	3
545		7	max	0	3	005	15	.019	2	3.037e-3	3	NC	15	NC	4
546			min	001	2	021	4	024	3	-2.606e-3	2	3312.138	4	1897.397	3
547		8	max	0	3	005	15	.024	2	3.473e-3	3	NC	15	NC	4
548			min	002	2	023	4	03	3	-3.031e-3	2	3058.448		1567.826	
549		9	max	0	3	006	15	.028	2	3.908e-3	3	NC	15	NC	4
550			min	002	2	024	4	035	3	-3.457e-3	2	2921.896	4	1351.799	
551		10	max	.001	3	006	15	.031	2	4.344e-3	3	NC	15	NC	4
552			min	002	2	024	4	039	3	-3.883e-3	2	2878.698	4	1209.125	
553		11	max	.001	3	006	15	.032	2	4.78e-3	3	NC	15	NC	4
554			min	002	2	024	4	041	3	-4.308e-3	2	2921.896	4	1118.677	3
555		12	max	.001	3	005	15	.033	2	5.216e-3	3	NC	15	NC	4
556			min	003	2	023	4	042	3	-4.734e-3	2	3058.448	4	1070	3
557		13	max	.001	3	005	15	.031	2	5.652e-3	3	NC	<u>15</u>	NC	4
558			min	003	2	021	4	04	3	-5.159e-3	2	3312.138	4	1060.149	3
559		14	max	.001	3	004	15	.028	2	6.088e-3	3	NC	5	NC	4
560			min	003	2	019	4	036	3	-5.585e-3	2	3734.85	4	1093.872	
561		15	max	.002	3	004	15	.022	1	6.523e-3	3	NC	5	NC	4
562			min	003	2	016	4	029	3	-6.011e-3	2	4437.767	4	1188.27	3
563		16	max	.002	3	002	2	.015	1	6.959e-3	3	NC	5	NC	4
564			min	003	2	013	4	019	3	-6.436e-3	2	5687.184	4	1389.641	3

Company Designer Job Number Model Name : Schletter, Inc. : HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.002	3	.001	2	.005	1	7.395e-3	3	NC	1	NC	4
566			min	004	2	009	4	005	3	-6.862e-3	2	8289.65	4	1843.133	3
567		18	max	.002	3	.005	2	.014	3	7.831e-3	3	NC	1	NC	4
568			min	004	2	005	4	015	2	-7.287e-3	2	NC	1	3282.873	3
569		19	max	.002	3	.009	2	.036	3	8.267e-3	3	NC	1	NC	1
570			min	004	2	001	9	034	2	-7.713e-3	2	NC	1	NC	1
571	M16A	1	max	0	10	.002	2	.011	3	2.336e-3	3	NC	1	NC	1
572			min	002	3	002	3	011	2	-2.321e-3	2	NC	1	NC	1
573		2	max	0	10	001	15	.003	3	2.25e-3	3	NC	1	NC	1
574			min	002	3	005	4	004	2	-2.217e-3	2	NC	1	9240.127	3
575		3	max	0	10	002	15	.004	1	2.164e-3	3	NC	1	NC	4
576			min	002	3	009	4	003	3	-2.114e-3	2	8289.65	4	5236.71	3
577		4	max	0	10	003	15	.007	1	2.078e-3	3	NC	5	NC	4
578			min	002	3	013	4	008	3	-2.01e-3	2	5687.184	4	3990.431	3
579		5	max	0	10	004	15	.009	1	1.992e-3	3	NC	5	NC	4
580			min	002	3	016	4	011	3	-1.906e-3	2	4437.767	4	3453.813	3
581		6	max	0	10	004	15	.011	1	1.906e-3	3	NC	5	NC	4
582			min	001	3	019	4	013	3	-1.802e-3	2	3734.85	4	3224.163	3
583		7	max	0	10	005	15	.011	1	1.82e-3	3	NC	15	NC	4
584			min	001	3	021	4	014	3	-1.699e-3	2	3312.138	4	3176.017	3
585		8	max	0	10	005	15	.011	1	1.734e-3	3	NC	15	NC	4
586			min	001	3	023	4	014	3	-1.595e-3	2	3058.448	4	3267.63	3
587		9	max	0	10	006	15	.011	1	1.648e-3	3	NC	15	NC	4
588			min	001	3	024	4	014	3	-1.491e-3	2	2921.896	4	3495.686	3
589		10	max	0	10	006	15	.01	1	1.562e-3	3	NC	15	NC	4
590			min	0	3	024	4	012	3	-1.388e-3	2	2878.698	4	3885.677	3
591		11	max	0	10	006	15	.008	1	1.476e-3	3	NC	15	NC	4
592			min	0	3	024	4	01	3	-1.284e-3	2	2921.896	4	4498.637	3
593		12	max	0	10	005	15	.007	1	1.39e-3	3	NC	15	NC	4
594			min	0	3	023	4	008	3	-1.18e-3	2	3058.448	4	5456.704	3
595		13	max	0	10	005	15	.005	1	1.304e-3	3	NC	15	NC	2
596			min	0	3	021	4	006	3	-1.076e-3	2	3312.138	4	7009.626	3
597		14	max	0	10	004	15	.004	1	1.218e-3	3	NC	5	NC	1
598			min	0	3	019	4	004	3	-9.727e-4	2	3734.85	4	9719.911	3
599		15	max	0	10	004	15	.002	1	1.132e-3	3	NC	5	NC	1
600			min	0	3	016	4	002	3	-8.689e-4	2	4437.767	4	NC	1
601		16	max	0	10	003	15	.001	9	1.046e-3	3	NC	5	NC	1
602			min	0	3	012	4	0	3	-7.652e-4	2	5687.184	4	NC	1
603		17	max	0	10	002	15	0	4	9.603e-4	3	NC	1_	NC	1
604			min	0	3	008	4	0	2	-6.615e-4	2	8289.65	4	NC	1
605		18	max	0	10	0	15	0	3	8.744e-4	3	NC	_1_	NC	1
606			min	0	3	004	4	0	2	-5.578e-4	2	NC	1_	NC	1
607		19	max	0	1	0	1	0	1	7.884e-4	3	NC	_1_	NC	1
608			min	0	1	0	1	0	1	-4.541e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

l _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4 /						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A $_{Vco}$) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$arPsi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.