Improving your neural network

Joe Yeh, M.D.

Factors to consider when trying to improve neural network

- Data quality
- Data partitioning
- Hyperparameter tuning
- Regularization
- Data augmentation

What is a good neural network model?

A model that has low bias and low variance.

Parameters vs Hyperparameters

- A machine learning model is the definition of a mathematical formula with a number of parameters that need to be learned from the data. That is the crux of machine learning: fitting a model to the data.
- Some parameters express "higher-level" properties of the model such as its complexity or how fast it should learn. They are called hyperparameters. Hyperparameters are usually fixed before the actual training process begins.

Hyperparameters

- Learning rate
- Learning rate decay rate
- Parameters of optimizers
- Number of hidden layers
- Number of hidden units
- Mini-batch size

Important rules in hyperparameter tuning

- It's very difficult to get an intuition on appropriate hyperparameters in advance, so the key is to explore hyperparameters space efficiently.
- Begin with a small subset of data if you have a very large dataset.
- Change hyperparameters one at a time.

Choosing appropriate learning rate

valid, learning_rate=0.00001, batch_size=128

Example: CIFAR-10 7-layer CNN Adam Optimizer

Choosing Minibatch Size

Example: CIFAR-10 7-layer CNN Adam Optimizer

GRAPHS

INACTIVE

SCALARS

Methods for Hyperparameter Tuning

- Grid search
 - Curse of dimensionality
- Random search
 - Lack of *α priori* knowledge
- Bayesian optimization
 - https://cloud.google.com/blog/big-data/2017/08/hyperparameter-tuning-incloud-machine-learning-engine-using-bayesian-optimization
 - http://papers.nips.cc/paper/4522-practical-bayesian-optimization

Data Augmentation

- Apply some form of transformation to the training data (but not label) to increase the size of effective training set.
- Regarding CNN for image recognition, it means:
 - Using image processing to manipulate input image to increase effective training set

