Explanation of Algorithm

- DFS numbers of all vertices initialized to 0.
 - It serves as vertices marked "unvisited"
 - Assigning DFS number to a vertes implies it is marked "visited"
- ▶ It then selects an arbitrary vertex v = x, builds a DFST, and computes LOW[v] in one single pass.
- An edge leading to a new vertex is a tree edge.
- ► The tree edge is pushed on to the stack before making the recursive call.

R. K. Ghosh Graphs

Explanation of Algorithm

- On return from call LOW[v] is computed.
- ▶ If *v* is an articulation point then its DFS number must be greater than or equal to LOW point of the child.
- At this point, all the edges up to and including v,w are output as a biconnected component.
- ► If w is a old vertex (DFS number is nonzero) then it is a back edge.
- ▶ Only back edge to a proper ancestor of the parent $(w \neq u)$ would lower the LOW point.

Lemma (Correctness of LOW point computation)

When Search(w) procedure completes, the edges in the stack above (v, w) are the edges in the same biconnected components as (v, w).

- ➤ To prove it, we use induction on the number of biconnected components, *b*.
- ▶ If there is just one biconnected components, i.e., b = 1, it is trivial.
 - In this case, there is no articulation point.
 - So all the edges of G will be on the stack.

R. K. Ghosh Graphs

- ▶ Induction hypothesis: assume this to be true for all graphs having b biconnected components.
- ▶ Let G have b+1 biconnected components.
- ▶ Consider the first Bicon(w, v) call that ends with LOW[w] ≥ dfn[v] for a tree edge (v, w).
- No edge has been removed yet from the STACK.
- ▶ Since LOW[w] \geq dfn[v], all the set of edges above (v, w) are incident on the descendants of w and first block B_1 has been detected.
- So the edges on the STACK above (v, w) are exactly the edges in the same biconnected component as (v, w).

- Now after removing edges of B_1 , the algorithm works on induced graph $G' = G B_1$, in exactly the same way as it had worked on graph G.
- ▶ But G' has b biconnected components.
- ▶ By induction, algorithm should correctly obtain all b biconnected components of G'.

Notion of Connectedness in Directed Graphs

- ▶ For every pair of vertices *u*, *v* there exists a path.
- But path here means directed path.
- ▶ Connectivity in directed graph implies both $u \leadsto v$ and $v \leadsto u$.
- ▶ In general, it is possible that path $u \leadsto v$ may exist but $v \not\leadsto u$.
- Or even u and v are not reachable from each other.
- There is also a notion of weak connectivity: it possible to reach any vertex from any other vertex by traversing edges in some direction (ignoring direction).
- It essentially means every vertex has either indegree or outdegree of at least 1.

Strong Connected Components (SCC)

Definition (SCC)

Let G=(V,E) be directed graph. G is strongly connected iff for every pair of vertices v,w, there is a directed path from v to w and also a directed path from w to v.

- SCC is an equivalence relation.
- ▶ If u, v are in same SCC then uRv and vRu where R: there exists a directed path.
- ▶ If uRv and vRw then obviously, uRw.
- Collapsing each SCC to a vertex we get a condensation graph which is a DAG.

- There are four SCCs.
- One SCC has just one vertex.
- ▶ Consider $u, v \in SC_2$.
- ► There exists pair of paths:

$$u \to w \to x \to v$$
 and $v \to w \to u$.

R. K. Ghosh

- ▶ Compute Finish time f[u] for $u \in V$.
- ▶ Reverse each edge of G to obtain G^T .
- ▶ Call DFS on G^T but apply it decreasing order of finish time f[u] as computed in first DFS.
- ightharpoonup Output the vertices of each tree in DFS forest of G^T as a separate SCC.

Original Graph ${\cal G}$

Transformed Graph G^T (by reversing edge directions).

- ► Start vertices in decreasing order of finish time: f, a, b, and k.
- DFS from from these vertices discover SCCs:
 - $f: \{f, g, h\}$
 - **-** *a*: {*a*}
 - b: $\{b, c, d, e\}$
 - k: $\{i, j, k\}$

- ▶ Let d[v]: DFS discovery time, and
- ▶ Let f[v]: DFS finish time.
- \blacktriangleright Let S be subset of V.

$$d[S] = \min_{u \in S} d[u], \text{ and } f[S] = \max_{u \in S} f[u]$$

Lemma

Let S_1 and S_2 be two distinct SCCs. If \exists an edge $(u,v) \in E$, where $u \in S_1$ and $v \in S_2$ then $f[S_1] > f[S_2]$

Proof.

- ▶ Case 1 ($d[S_1] < d[S_2]$): Let x be first vertex in S_1 to be discovered.
- At this time none of the vertices in S_1 and S_2 have been marked "visited"
- ▶ For any vertex $w \in S_2$, \exists a path from x to w.
- ▶ So, all vertices in S_2 are descendants of x
- ▶ Therefore, $f[x] = f[S_2] < f[S_1]$

Proof continues.

- ▶ Case 2 ($d[S_1] > d[S_2]$): Let y be the first vertex discovered in S_2 .
- ▶ All vertices in S_2 are descendant of y.
- ▶ Therefore, by definition $f[y] = f[S_2]$.
- Since, S_1 and S_2 are distinct SCC there cannot be path from any vertex of S_2 to a vertex of S_1 .
- ▶ So all vertices in S_1 are "unvisited" when DFS of S_2 is complete.
- ▶ Therefore, $f[S_2] < f[S_1]$.

A corollary of the above lemma is on G^T where the inequalities are reversed is as follows:

Lemma (Corollary I)

Let S_1 and S_2 be two distinct SCCs. If \exists an edge $(u, v) \in E^T$ where $u \in S_1$ and $v \in S_2$ then $f[S_2] < f[S_1]$.

Proof.

- ▶ Since every edge is reversed in E^T , it implies $(v, u) \in E$.
- ▶ Therefore, $f[S_1] > f[S_2]$ from the previous lemma.

Another corollary that follows from the above result is:

Lemma (Corollary II)

If $f[S_2] > f[S_1]$, then there cannot be any edge (u, v), where $u \in S_2$ to $v \in S_1$ in G^T .

▶ Use of decreasing finish time in exploring G^T is the intuition behind the algorithm's correctness.

- ightharpoonup Consider a pair of vertices v and w.
- ▶ Let finish time of w is smaller than v: f[w] < f[v].
- Now we consider three cases:
 - Case 1: w → v (v is not reachable from w) then v and w are in different SCCs, and correctness of algorithm is not affected.
 - Case 2: $w \leadsto v$ (v is reachable from w) and w is not in DFS subtree of v in G^T .
 - Case 3: w is in DFS subtree of v.
- ► Therefore, we consider last two cases in more details.

Consider case 2:

- Since d[w] < d[v] in DFS of G, w cannot be an ancestor of v.
- Furthermore, there cannot be of a cross link on w

 v path, because the finish time of a cross link's source vertex is greater than the finish time of its end vertex.
- So, case 2 is not possible, leaving case 3 as the only one possibility.

- Consider case 3:
 - When DFS enters a vertex v in G^T , all the vertices in SCCs with lower finish times remain unvisited.
 - And if there is a path $w \rightsquigarrow v$, it only means $w \in T_v$.
- So, proof is complete by noticing that for every two distinct components S_1 and S_2 , if $f[S_1] > f[S_2]$ there cannot be an edge from S_1 to S_2 in G^T .
- ► The above fact follows directly from the Corollary II proved earlier.

Graphs

ightharpoonup This implies w and v both belong to same SCC.

Summary of Graph Algorithms

- Graph terminology and representation were introduced.
- BFS, and DFS search were explained.
- We learnt about a number of applications of DFS, particularly in computing:
 - Connected components, biconnected components of a undirected graphs, and
 - Strong connected components of directed graph and topological sorting of a DAG

Summary of Graph Algorithms

- With reference to weighted graphs we talked about the problems of determining shortest paths, namely,
 - Dijkstra and Bellman-Ford algorithms using edge relaxation operation.
 - Prim and Kruskal's algorithms for finding MSTs.
- We also looked at almost linear time UNION and FIND operations on disjoint sets in the context of Kruskal's algorithm.
- However, a detailed analysis of UNION-FIND algorithms was not discussed recognizing involved mathematical complications.

R. K. Ghosh Graphs