Share on Whatsapp

Note: If you find the sheet useful, you can also contribute an article or solution for any problem to be published on takeuforward.org! <u>Click here for more details</u>.

Day 1: Arrays

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Set Matrix Zeroes	Link 1	YT	Link 2
Pascal's Triangle	Link 1	<u>YT</u>	Link 2
Next Permutation	Link 1	YT	Link 2
Kadane's Algorithm	Link 1	YT	Link 2
Sort an array of 0's 1's 2's	Link 1	YT	Link 2
Stock buy and Sell	Link 1	YT	Link 2

Accolite Digital Amazon

Arcesium Bank of America

Barclays BFS Binary

Search Binary Search Tree

Commvault CPP DE Shaw DFS

DSA Self Paced

google HackerEarth infosys

inorder Java Juspay Kreeti

Technologies Morgan Stanley

Newfold Digital Oracle post order

pre-order queue recursion

Samsung SDE Core Sheet

SDE Sheet Searching

set-bits **sorting** sub-array

subarray Swiggy takeuforward

TCQ NINJA TCS TCS CODEVITA

TCS DIGITA; TCS Ninja TCS

NQT VMware XOR

Competitive Programming Now

Here You Find the courses which helps you top the interviews. Join GeeksforGeeks

GeeksforGeeks

Sign Up >

① X

Day 2: Arrays Part-II

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Rotate Matrix	Link 1	<u>YT</u>	Link 2
<u>Merge</u> <u>Overlapping</u> <u>Subintervals</u>	Link 1	YT	Link 2
Merge two sorted Arrays without extra space	Link 1	YT	Link 2
Find the duplicate in an array of N+1 integers.	Link 1	YT	Link 2
Repeat and Missing Number	Link 1	YT	Link 2
Inversion of Array (Pre-req: Merge Sort)	Link 1	YT	Link 2

Get 36 pads @ ₹597

₹299/-

Super soft, rash-free & toxin-free pads with a leak-proof 50% wider back than other pads.

Nua Woman

Open

Day 3: Arrays Part-III

/	Problem	Practice Link 1	Video Solution	Practice Link 2
/	Search in a 2d Matrix	<u>Link 1</u>	YT	Link 2
	<u>Pow(X,n)</u>	Link 1	YT	Link 2
	Majority Element (>N/2 times)	Link 1	YT	Link 2

	/			
	Majority Element (>N/3 times)	<u>Link 1</u>	YT	<u>Link 2</u>
/	Grid Unique Paths	Link 1	<u>YT</u>	Link 2
	Reverse Pairs (Leetcode)	Link 1	YT	Link 2

modification of total inv. count.

Day 4: Arrays Part-IV

X

Find both C++/Java codes of all problem in the articles in the first column.

		_		
/	Problem	Practice Link 1	Video Solution	Practice Link 2
	2-Sum-Problem	Link 1	YT	Link 2
₩ ✓	4-sum-Problem	Link 1	<u>YT</u>	Link 2
	Longest Consecutive Sequence	Link 1	ΥΙ	Link 2
₩ √	<u>Largest Subarray</u> <u>with 0 sum</u>	Link 1	YT	Link 2
A J	Count number of subarrays with given Xor K	Link 1	ΥT	Link 2
	Longest Substring without repeat	Link 1	YT	Link 2

Day 5: Linked List

V

Problem	Practice	Video	Practice
	Link 1	Solution	Link 2

Reverse a LinkedList	<u>Link 1</u>	YT	Link 2
Find the middle of LinkedList	<u>Link 1</u>	<u>YT</u>	<u>Link 2</u>
Merge two sorted Linked List (use method used in mergeSort)	Link 1	YT	Link 2
Remove N-th node from back of LinkedList	Link 1	YT	Link 2
Add two numbers as LinkedList	<u>Link 1</u>	YT	Link 2
Delete a given Node when a node is given.(0(1) solution)	Link 1	ΥT	Link 2

Day 6: Linked List Part-II

>

	Problem	Practice Link 1	Video Solution	Practice Link 2
	Find intersection point of Y LinkedList	Link 1	ΥŢ	Link 2
	Detect a cycle in Linked List	<u>Link 1</u>	YT	Link 2
,	Reverse a LinkedList in groups of size k.	Link 1	YT	Link 2

Check if a LinkedList is palindrome or not.	Link 1	YT	Link 2
Find the starting point of the Loop of LinkedList	Link 1	ΥT	Link 2
Flattening of a LinkedList	<u>Link 1</u>	YT	Link 2

Day 7: Linked List and Arrays

X

Find both C++/Java codes of all problem in the articles in the first column.

	Problem	Practice Link 1	Video Solution	Practice Link 2
	Rotate a LinkedList	Link 1	<u>YT</u>	Link 2
,	Clone a Linked List with random and next pointer	Link 1	ΥŢ	Link 2
	<u>3 sum</u>	Link 1	YT	Link 2
	<u>Trapping rainwater</u>	Link 1	YT	Link 2
	Remove Duplicate from Sorted array	<u>Link 1</u>	YT	Link 2
	Max consecutive ones	<u>Link 1</u>	YT	Link 2

Day 8: Greedy Algorithm

•

Problem	Practice	Video	Practice
Problem	Link 1	Solution	Link 2

N meetings in one room	Link 1	YT	Link 2
Minimum number of platforms required for a railway	Link 1	YT	Link 2
Job sequencing Problem	Link 1	YT	Link 2
Fractional Knapsack Problem	Link 1	YT	Link 2
Greedy algorithm to find minimum number of coins	Link 1	YT	Link 2
Activity Selection (it is the same as N meeting in one room)	Link 1	YT	Link 2

Day 9: Recursion

>

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do <u>this</u> playlist at first, so that you learn A-Z of recursion.

	Problem	Practice Link 1	Video Solution	Practice Link 2
	Subset Sums	Link 1	<u>YT</u>	Link 2
/	Subset-II	Link 1	<u>YT</u>	Link 2
$\sqrt{}$	Combination sum-1	Link 1	<u>YT</u>	Link 2
√	Combination sum-2	Link 1	YT	Link 2

Day 10: Recursion and Backtracking

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do <u>this</u> playlist at first, so that you learn A-Z of recursion.

Problem	Practice Link 1	Video Solution	Practice Link 2
Print all permutations of a string/array	Link 1	<u>YT</u>	<u>Link 2</u>
N queens Problem	Link 1	<u>YT</u>	Link 2
<u>Sudoku Solver</u>	Link 1	<u>YT</u>	Link 2
M coloring Problem	Link 1	<u>YT</u>	Link 2
Rat in a Maze	Link 1	YT	Link 2
/Word Break (print all ways)	Link 1	YT	Link 2

Day 11: Binary Search

Problem	Practice Link 1	Video Solution	Practice Link 2
The N-th root of an integer	<u>Link 1</u>	<u>YT</u>	Link 2

	Matrix Median	Link 1	YT	Link 2
	Find the element that appears once in a sorted array, and the rest element appears twice (Binary search)	Link 1	YI	<u>Link 2</u>
	Search element in a sorted and rotated array/ find pivot where it is rotated	<u>Link 1</u>	YT	Link 2
	Median of 2 sorted arrays	<u>Link 1</u>	YT	Link 2
* /	K-th element of two sorted arrays	<u>Link 1</u>	YT	Link 2
\/\/	Allocate Minimum Number of Pages	Link 1	YT	Link 2
	Aggressive Cows	Link 1	YT	Link 2

Day 12: Trie

V

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of Tries.

Problem	Practice Link 1	Video Solution	Practice Link 2
<u>Implement Trie</u> (<u>Prefix Tree)</u>	<u>Link 1</u>	<u>YT</u>	Link 2
<u>lmplement Trie – 2</u>			

	(Prefix Tree)	Link 1	YT	Link 2
	Longest String with All Prefixes	<u>Link 1</u>	YT	Link 2
	Number of Distinct Substrings in a String	Link 1	ΥT	Link 2
	Power Set (this is very important)	<u>Link 1</u>	YT	Link 2
	Maximum XOR of two numbers in an array	Link 1	ΥT	Link 2
/	/ Maximum XOR With an Element From Array	Link 1	ΥT	Link 2

Day 13: Stack and Queue

	Problem	Practice Link 1	Video Solution	Practice Link 2
,	Implement Stack Using Arrays	Link 1	YT	Link 2
	Implement Queue Using Arrays	Link 1	<u>YT</u>	Link 2
	Implement Stack using Queue (using single queue)	Link 1	<u>YT</u>	Link 2
	Implement Queue using Stack (0(1) amortized method)	Link 1	YT	Link 2

Check for balanced parentheses	Link 1	YT	Link 2
Next Greater Element	Link 1	YT	Link 2
Sort a Stack	Link 1	YT	Link 2

Day 14: Stack and Queue Part-II

×

	Problem	Practice Link 1	Video Solution	Practice Link 2
	Next Smaller Element	<u>Link 1</u>	YT	Link 2
	LRU cache (IMPORTANT)	<u>Link 1</u>	<u>YT</u>	Link 2
	LFU Cache	Link 1	YT	Link 2
	Largest rectangle in a histogram	<u>Link 1</u>	<u>YT1/YT2</u>	Link 2
	Sliding Window maximum	<u>Link 1</u>	YT	Link 2
	<u>Implement Min</u> <u>Stack</u>	Link 1	YT	Link 2
	Rotten Orange (Using BFS)	<u>Link 1</u>	YT	Link 2
	∕Stock Span Problem	<u>Link 1</u>	YT	Link 2
,	Find the maximum of minimums of every window size	<u>Link 1</u>	YT	Link 2
	The Celebrity			

Day 15: String

Find both C++/Java codes of all problem in the articles in the first column.

Problem	Practice Link 1	Video Solution	Practice Link 2
Reverse Words in a String	<u>Link 1</u>	YT	<u>Link 2</u>
Longest Palindrome in a string	Link 1	YT	Link 2
Roman Number to Integer and vice versa	<u>Link 1</u>	YT	Link 2
Implement ATOI/STRSTR	<u>Link 1</u>	YT	Link 2
Longest Common Prefix	<u>Link 1</u>	YT	Link 2
Rabin Karp	Link 1	YT	Link 2

Day 16: String Part-II

1	Problem
	Z-Function
	KMP algo / LPS(pi)
	array

Problem	Practice Link 1	Video Solution	Practice Link 2
Z-Function	Link 1	YT	Link 2
KMP algo / LPS(pi) array	Link 1	YT	Link 2
array			

XX	Minimum characters needed to be inserted in the beginning to make it palindromic	<u>Link 1</u>	YT	Link 2
	Check for Anagrams	<u>Link 1</u>	YT	Link 2
	Count and Say	Link 1	YT	Link 2
	Compare version numbers	Link 1	YT	Link 2

Day 17: Binary Tree

×

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Inorder Traversal	Link 1	YT1 / YT2	Link 2
Preorder Traversal	Link 1	YT1 / YT2	Link 2
Postorder Traversal	Link 1	<u>YT1</u> / <u>YT2</u>	Link 2
Morris Inorder <u>Traversal</u>	Link 1	YT	Link 2
Morris Preorder <u>Traversal</u>	Link 1	YT	Link 2
LeftView Of Binary Tree	Link 1	YT	Link 2

	I		
Bottom View of Binary Tree	Link 1	YT	Link 2
Top View of Binary Tree	Link 1	YT	Link 2
Preorder inorder postorder in a single traversal	Link 1	YT	Link 2
Vertical order traversal	Link 1	<u>YT</u>	Link 2
Root to node path in a Binary Tree	Link 1	YT	Link 2
Max width of a Binary Tree	Link 1	YT	Link 2

Day 18: Binary Tree part-II

X

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Level order Traversal / Level order traversal in spiral form	Link 1	YT	Link 2
Height of a Binary Tree	Link 1	YT	Link 2
Diameter of Binary Tree	Link 1	YT	Link 2
Check if the Binary			

,	tree is height-	Link 1	YT	Link 2
	balanced or not			
	LCA in Binary Tree	Link 1	YT	Link 2
۰	Check if two trees are identical or not	<u>Link 1</u>	YT	Link 2
	zig zag traversal of bin	arv		

tree CoinDCX, Wingify, DailyHunt and 100+ companies are hiring | Register Now for free

VA	Boundary Traversal of Binary Tree	Link 1	YT	Link 2

Day 19: Binary Tree part-III

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do this playlist at first, so that you learn A-Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Maximum path sum	Link 1	YT	Link 2
Construct Binary Tree from inorder and preorder	Link 1	YT	Link 2
Construct Binary Tree from Inorder and Postorder	Link 1	YT	Link 2
Symmetric Binary Tree	Link 1	YT	Link 2
Flatten Binary Tree to LinkedList	Link 1	YT	Link 2
Check if Binary Tree			

> O(1) spare & soln

is the mirror of itself or not	Link 1	YT	Link 2
Check for Children Sum Property	Link 1	YT	Link 2

Day 20: Binary Search Tree

×

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of Binary Trees.

	Problem	Practice Link 1	Video Solution	Practice Link 2
	Populate Next Right pointers of Tree	<u>Link 1</u>	YT	Link 2
	Search given Key in	<u>Link 1</u>	YT	Link 2
	Construct BST from given keys	<u>Link 1</u>	YT	Link 2
	Construct BST from preorder traversal	<u>Link 1</u>	YT	Link 2
	Check is a BT is BST or not	<u>Link 1</u>	YT	Link 2
_	Find LCA of two nodes in BST	<u>Link 1</u>	YT	Link 2
	Find the inorder predecessor of a given Key in BST.	Link 1	ΥT	Link 2

Day 21: Binary Search Tree Part-II

V

column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Floor in a BST	Link 1	<u>YT</u>	Link 2
Ceil in a BST	Link 1	<u>YT</u>	Link 2
Find K-th smallest element in BST	Link 1	YT	Link 2
Find K-th largest element in BST	Link 1	YT	Link 2
Find a pair with a given sum in BST	Link 1	YT	Link 2
BST iterator	Link 1	YT	Link 2
Size of the largest BST in a Binary Tree	Link 1	YT	Link 2
Serialize and deserialize Binary Tree	Link 1	YT	Link 2

Day 22: Binary Trees[Miscellaneous]

•

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of Binary Trees.

Problem	Practice Link 1	Video Solution	Practice Link 2
Binary Tree to			

Double Linked List	Link 1	YT	Link 2
Find median in a stream of running integers.	Link 1	YT	Link 2
K-th largest element in a stream.	Link 1	YT	Link 2
Distinct numbers in Window.	Link 1	YT	Link 2
K-th largest element in an unsorted array.	Link 1	YT	Link 2
Flood-fill Algorithm	Link 1	YT	Link 2

Day 23: Graph

X

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of Graphs.

	Problem	Practice Link 1	Video Solution	Practice Link 2
	Clone a graph (Not that easy as it looks)	Link 1	YT	Link 2
-	<u>DFS</u>	Link 1	<u>YT</u>	Link 2
	<u>BFS</u>	Link 1	<u>YT</u>	Link 2
	Detect A cycle in Undirected Graph using BFS	Link 1	ΥŢ	Link 2

Detect A cycle in Undirected Graph using DFS	Link 1	YT	Link 2
Detect A cycle in a Directed Graph using DFS	Link 1	YT	Link 2
Detect A cycle in a Directed Graph using BFS	Link 1	YT	Link 2
Topological Sort BFS	<u>Link 1</u>	YT	Link 2
Topological Sort DFS	Link 1	YT	Link 2
Number of islands(Do in Grid and Graph Both)	Link 1	YT	Link 2
Bipartite Check using BFS	<u>Link 1</u>	YT	Link 2
Bipartite Check using DFS	Link 1	YT	Link 2

Day 24: Graph Part-II

×

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of Graphs.

Problem	Practice Link 1	Video Solution	Practice Link 2
Strongly Connected Component(using	Link 1	<u>YT</u>	Link 2
<u>KosaRaju's algo)</u>			

<u>Dijkstra's</u> <u>Algorithm</u>	Link 1	YT	Link 2
Bellman-Ford Algo	Link 1	<u>YT</u>	Link 2
Floyd Warshall Algorithm	Link 1	YT	Link 2
MST using Prim's Algo	Link 1	YT	Link 2
MST using Kruskal's Algo	Link 1	YT	Link 2

Day 25: Dynamic Programming

X

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of DP.

	Problem	Practice Link 1	Video Solution	Practice Link 2
	Max Product Subarray	<u>Link 1</u>	YT	Link 2
/	Longest Increasing Subsequence	<u>Link 1</u>	YT	Link 2
	Longest Common Subsequence	<u>Link 1</u>	YT	Link 2
\	0-1 Knapsack	Link 1	YT	Link 2
	Edit Distance	Link 1	YT	Link 2
	Maximum sum increasing subsequence	Link 1	YT	Link 2
	Matrix Chain Multiplication	<u>Link 1</u>	YT	Link 2

Day 26: Dynamic Programming Part-II

Find both C++/Java codes of all problem in the articles in the first column.

I will recommend you to do $\underline{\text{this}}$ playlist at first, so that you learn A- Z of DP.

Problem	Practice Link 1	Video Solution	Practice Link 2
Maximum sum path in the matrix, (count paths and similar type do, also backtrack to find the maximum path)	Link 1	YT	Link 2
Coin change	Link 1	YT	Link 2
Subset Sum	Link 1	<u>YT</u>	<u>Link 2</u>
Rod Cutting	Link 1	YT	<u>Link 2</u>
Egg Dropping	Link 1	YT	Link 2
Word Break	Link 1	YT	Link 2
Palindrome Partitioning (MCM Variation)	Link 1	YT	Link 2
Maximum profit in Job scheduling	Link 1	YT	Link 2

Day 27: Operating System Revision (Refer <u>Sheet</u> for OS Questions)

1. Revise OS notes that you would have made during

your sem

2. If not made notes, spend 2 or 3 days and make notes from Knowledge Gate.

Day 28: DBMS Revision (Refer <u>Sheet</u> for DBMS Questions)

- Revise DBMS notes that you would have made during your sem
- 2. If not made notes, spend 2 or 3 days and make notes from Knowledge Gate.

Day 29: Computer Networks Revision (Refer Sheet for CN Questions)

- Revise CN notes that you would have made during your sem
- 2. If not made notes, spend 2 or 3 days and make notes from Knowledge Gate.

Day 30: Project Overview

Make a note of how will your represent your projects, and prepare all questions related to tech which you have used in your projects. Prepare a note which you can say for 3-10 minutes when he asks you that say something about the project.

Hurrah!! You are ready for your placement after a month of hard work without a cheat day.

— ~Striver

Share the sheet with your friends, created with love for takeUforward fam!

Share on Whatsapp

Here You Find the courses which helps you top the interviews. Join GeeksforGeeks

GeeksforGeeks

Sign Up >

(i) X

« Previous Post

Next Post »

Text Blaze : Save time on messages [Free forever]

Dynamic Programming: Frog Jump with k Distances (DP 4)

Load Comments

Copyright © 2022 takeuforward | All rights reserved