INF 112: Programação II

Aula 05

→ Introdução à análise de complexidade — parte 2 Conceitos de complexidade assintótica (notação *O*)

Fábio R. Cerqueira, UFV, DPI, frcerqueira @gmail.com

Taxa de crescimento

Como já visto, a análise de eficiência de um algoritmo se concentra na taxa de crescimento do número de vezes que a operação básica é realizada. Para comparar e ordenar taxas de crescimento, usamos três notações:

- O(g(n)): classe de funções que têm crescimento tão ou menos rápido que g(n)
- \bullet $\Theta(g(n))$: classe de funções que têm crescimento à mesma taxa de g(n)
- $ightharpoonup \Omega(g(n))$: classe de funções que têm crescimento tão ou mais rápido que g(n)
 - → Concentrar-nos-emos na notação *O*.

Taxa de crescimento assintótica

Informalmente, O(g(n)) é o conjunto de todas as funções com taxa de crescimento igual ou menor a g(n) (na verdade, igual ou menor a um múltiplo positivo de g(n)).

Portanto, as seguintes proposições são todas verdadeiras:

- $\rightarrow n \in O(n^2)$
- $\rightarrow n \in \mathcal{O}(n^3)$
- $\rightarrow 100n + 5 \in O(n^2)$
- → $100n + 5 \in O(n^4)$

Taxa de crescimento assintótica

Por outro lado:

- $\rightarrow n^3 \not\in O(n^2)$
- $\rightarrow 0.00001n^3 \notin O(n^2)$
- $\rightarrow n^4 + n + 1 \not\in O(n)$

Notação O

III.

<u>Definição</u>: Considera-se que uma função t(n) está em O(g(n)), denotando-se por $t(n) \in O(g(n))$, se t(n) tiver como limite superior algum múltiplo positivo de g(n) para todo n grande. Em notação matemática, se existe alguma constante c e algum inteiro não-negativo n_0 tal que :

$$t(n) \le cg(n)$$
 para todo $n \ge n_0$.

Notação O

- Exemplo: vamos provar formalmente que $100n + 5 \in O(n^2)$: $100n + 5 \le 100n + n$ (para todo $n \ge 5$) = $101n \le 101n^2$.
 - \rightarrow Portanto, podemos tomar 101 e 5 como valores para as constantes c e n_0 , respectivamente, de modo que:

$$100n + 5 \le 101n^2, n \ge 5.$$

→ Note que existem infinitos pares c e n_0 . Mas basta mostrar um par possível e já está provado. Poderíamos encontrar outro par assim:

 $100n + 5 \le 100n^2 + 5 \le 100n^2 + 5n^2$ (para todo $n \ge 1$) = $105n^2$

 \rightarrow Portanto, podemos tomar 105 e 1 como valores para as constantes c e n_0 , respectivamente, de modo que:

Algumas propriedades da taxa de crescimento assintótica

$$ightharpoonup$$
 Se $t(n) \in O(g(n))$ e $g(n) \in O(h(n))$, então $t(n) \in O(h(n))$

⇒ Se
$$t_1(n) \in O(g_1(n))$$
 e $t_2(n) \in O(g_2(n))$, então:

$$t_1(n) + t_2(n) \in O(\max\{g_1(n), g_2(n)\})$$

Algumas propriedades da taxa de crescimento assintótica

- No que a terceira propriedade mostrada influi na análise de um algoritmo que contém várias partes a serem executadas (ex.: várias funções)?
 - Implica que a eficiência geral do algoritmo será determinada pela parte que apresentar a maior taxa de crescimento, isto é, a parte menos eficiente:

$$t_{1}(n) \in O(g_{1}(n))$$

$$t_{2}(n) \in O(g_{2}(n)) \implies t_{1}(n) + t_{2}(n) + \dots + t_{i}(n) \in O(\max\{g_{1}(n), g_{2}(n), \dots, g_{i}(n)\})$$
...
$$t_{i}(n) \in O(g_{i}(n))$$

Taxa de crescimento de algumas funções importantes

- Toda função logarítmica $\log_a n$ pertence à mesma classe $O(\log n)$ não importando a base do logaritmo (a > 1).
- Todos os polinômios de grau k pertencem à mesma classe: $a_k n^k + a_{k-1} n^{k-1} + ... + a_0 \in O(n^k)$.

- Tunções exponenciais a^n têm taxas de crescimento diferentes para diferentes valores de a.
- As taxas de crescimento a seguir podem ser ordenadas assim: $\log n < n^{\alpha} \ (\alpha > 0) < a^n < n! < n^n$.

Classes bem conhecidas de eficiência assintótica

H		
Λ	Λ	

1	constante	
$\log n$	logarítmico	
n	linear	
$n \log n$	n-log-n	
n^2	quadrático	
n^3	cúbico	
2 ⁿ	exponential	
n!	fatorial	

Note que se t(n) = c, onde c é alguma constante nãonegativa, então, por definição, $t(n) \in O(1)$.

Exercícios

- 1) Use a notação O para indicar, formalmente, a classe de eficiência a que pertence o algoritmo de busca (SequentialSearch) dado na aula passada:

 - a) No pior caso; b) No melhor caso
- c) No caso médio
- 2) Responda se as proposições abaixo são falsas ou verdadeiras. Quando forem verdadeiras, prove sua resposta formalmente.
 - a) $n(n+1)/2 \in O(n^3)$ b) $n(n+1)/2 \in O(n^2)$ c) $n(n+1)/2 \in O(n)$

Exercícios

- 3) Dado um problema, suponha que dois algoritmos que o resolvam tenham o número de operações básicas realizadas, no pior caso, dado por $5n^3 + 2n^2 + 3$ e $10n^3 + 4n^2 + 9$, respectivamente. Pergunta-se:
 - → Pode-se afirmar que ambos, para o pior caso, têm a mesma complexidade assintótica?
 - → O fato das constantes de seus termos serem diferentes quer dizer o quê?

