Автор: Смирнов Алексей Владимирович ИСУ: 409578 Группа: R3242

# Лабораторная работа $\ensuremath{\mathbb{N}}_2$ Преобразование $\Phi$ урье

# Содержание

| 1) | Зада | ние 1. | Вещественное                | 1 |
|----|------|--------|-----------------------------|---|
|    | 1.1) | Прямо  | ругольная функция           | 1 |
|    |      | 1.1.1) | Графики                     | 1 |
|    |      | 1.1.2) | Преобразование Фурье        | 1 |
|    |      | 1.1.3) | Равенство Парсеваля         | 2 |
|    |      | 1.1.4) | Выводы                      | 3 |
|    | 1.2) | Треуг  | ольная функция              | 3 |
|    |      | 1.2.1) | Графики                     | 3 |
|    |      | 1.2.2) | Преобразование Фурье        | 4 |
|    |      | 1.2.3) | Равенство Парсеваля         | j |
|    |      | 1.2.4) | Выводы                      | j |
|    | 1.3) | Карди  | инальный синус :            | j |
|    |      | 1.3.1) | Графики                     | Ĵ |
|    |      | 1.3.2) | Преобразование Фурье        | Ĵ |
|    |      | 1.3.3) | Равенство Парсеваля         | Ĵ |
|    |      | 1.3.4) | Выводы                      | 7 |
|    | 1.4) | Функі  | ция Гаусса                  | 7 |
|    |      | 1.4.1) | Графики                     | 7 |
|    |      | 1.4.2) | Преобразование Фурье        | 7 |
|    |      | 1.4.3) | Равенство Парсеваля         | 3 |
|    |      | 1.4.4) | Выводы                      | 3 |
|    | 1.5) | Двуст  | ороннее затухание 8         | 3 |
|    |      | 1.5.1) | Графики 9                   | 9 |
|    |      | 1.5.2) | Преобразование Фурье        | 9 |
|    |      | 1.5.3) | Равенство Парсеваля         | J |
|    |      | ,      | Выводы                      |   |
| 2) | Зада | ние 2. | Комплексное                 | 1 |
|    |      | ,      | Графики                     |   |
|    |      | 2.0.2) | Преобразование Фурье        | 1 |
|    |      | 2.0.3) | Выводы                      | 2 |
| 3) | Зада | ние 3. | Музыкальное                 | 2 |
|    | 3.1) | Обраб  | ботка файла                 | 2 |
|    | 3.2) | Дискр  | ретное преобразование Фурье | 3 |
|    |      | 3.2.1) | Выводы                      | 4 |
| 4) | Прил | тожені | ие                          | j |

# 1) Задание 1. Вещественное

## 1.1) Прямоугольная функция

Возьмем прямоугольную функцию:

$$f(t) = \begin{cases} a, & |t| \le b \\ 0, & |t| > b \end{cases}$$

и следующие 3 пары параметров а и b:

$$\begin{cases} a = 3 \\ b = 3 \end{cases} \begin{cases} a = 6 \\ b = 3 \end{cases} \begin{cases} a = 3 \\ b = 6 \end{cases}$$

## 1.1.1) Графики

Построим графики функции для каждой пары параметров.



Рис. 1. Графики прямоугольной функции

## 1.1.2) Преобразование Фурье

Выполним для каждой дискретное унитарное преобразование Фурье для угловой частоты  $\omega$ , которое имеет следюущий вид:

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

и построим графики полученных Фурье-образов.

#### 1.1.2.1) Аналитический вывод

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} \, \mathrm{d}t = \frac{1}{\sqrt{2\pi}} \int_{-b}^{b} ae^{-i\omega t} \, \mathrm{d}t = \frac{a}{\sqrt{2\pi}} \int_{-b}^{b} e^{-i\omega t} \, \mathrm{d}t =$$

$$= \frac{a}{\sqrt{2\pi}} \int_{-b}^{b} e^{-i\omega t} \frac{1}{-i\omega} \, \mathrm{d}(-i\omega t) =$$

$$= \frac{a}{\sqrt{2\pi}} \times \frac{1}{-i\omega} e^{-i\omega t} \Big|_{t=-b}^{t=b} = \frac{a}{\sqrt{2\pi}} \times \frac{e^{-i\omega b} - e^{i\omega b}}{-i\omega} =$$

$$= \frac{a}{\sqrt{2\pi}} \times \frac{\cos \omega b - i \sin \omega b - \cos \omega b - i \sin \omega b}{-i\omega} =$$

$$= \frac{a}{\sqrt{2\pi}} \times \frac{i2 \sin \omega b}{\sqrt{i\omega}} = \frac{2a}{\sqrt{2\pi}} \frac{\sin \omega b}{\omega} = \frac{2ab}{\sqrt{2\pi}} \operatorname{sinc} \omega b =$$

$$= \frac{\sqrt{2}ab}{\sqrt{\pi}} \operatorname{sinc} \omega b$$

#### 1.1.2.2) Численное решение



Рис. 2. Графики Фурье-образа прямоугольной функции

## 1.1.3) Равенство Парсеваля

Равенство Парсеваля для выбранного преобразования Фурье имеет следующий вид:

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw$$

Проверим его выполнение для каждой пары параметров:

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$
 
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 8.581 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 8.590$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 15.754 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 17.189$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 34.326 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 34.361$$

Видим, что равенство Парсеваля выполняется с хорошей точностью.

#### 1.1.4) Выводы

Фурье-образ имеет вид кардинального синуса

Для прямоугольной функции параметр a влияет на амплитуду Фурьеобраза и самой функции, а параметр b влияет на ширину функции и ширину спектра Фурьеобраза.

## 1.2) Треугольная функция

Возьмем треугольную функцию:

$$f(t) = \begin{cases} a - |at/b|, & |t| \le b \\ 0, & |t| > b \end{cases}$$

и точно такие же параметры a и b.

## **1.2.1**) Графики

Построим графики функции для каждой пары параметров.



Рис. 3. Графики треугольной функции

#### 1.2.2) Преобразование Фурье

#### 1.2.2.1) Аналитический вывод

$$\hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$

$$\int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt = \int_{-b}^{0} \left(a + \frac{a}{b}t\right) e^{-i\omega t} dt + \int_{0}^{b} \left(a - \frac{a}{b}t\right) e^{-i\omega t} dt = \bigoplus$$

$$\int_{-b}^{0} \left(a + \frac{a}{b}t\right) e^{-i\omega t} dt = \begin{vmatrix} u = a + \frac{a}{b}t & du = \frac{a}{b} dt \\ dv = e^{-i\omega t} dt & v = \frac{e^{-i\omega t}}{-i\omega} \end{vmatrix} =$$

$$= \left(a + \frac{a}{b}t\right) \left(\frac{e^{-i\omega t}}{-i\omega}\right) \Big|_{t=-b}^{t=0} - \int_{-b}^{0} \left(\frac{e^{-i\omega t}}{-i\omega}\right) \frac{a}{b} dt =$$

$$= \frac{ai}{\omega} - \frac{ai}{-i\omega^{2}b} e^{-i\omega t} \Big|_{t=-b}^{t=0} = \frac{ai}{\omega} + \frac{a}{b\omega^{2}} (1 - e^{i\omega b})$$

$$\int_{0}^{b} \left(a - \frac{a}{b}t\right) e^{-i\omega t} dt = \begin{vmatrix} u = a - \frac{a}{b}t & du = -\frac{a}{b} dt \\ dv = e^{-i\omega t} dt & v = \frac{e^{-i\omega t}}{-i\omega} \end{vmatrix} =$$

$$= \left(a - \frac{a}{b}t\right) \left(\frac{e^{-i\omega t}}{-i\omega}\right) \Big|_{t=0}^{t=b} - \int_{0}^{b} \left(\frac{e^{-i\omega t}}{-i\omega}\right) \left(-\frac{a}{b}\right) dt =$$

$$= -\frac{ai}{\omega} + \frac{ai}{\omega b} \times \frac{1}{-i\omega} e^{-i\omega t} \Big|_{t=0}^{t=b} = -\frac{ai}{\omega} - \frac{a}{b\omega^{2}} (e^{i\omega b} - 1)$$

$$\bigoplus = \frac{ai'}{\omega} - \frac{ai'}{\omega} + \frac{a}{b\omega^{2}} - \frac{ae^{i\omega b}}{b\omega^{2}} + \frac{a}{b\omega^{2}} - \frac{ae^{-i\omega b}}{b\omega^{2}} =$$

$$= \frac{2a}{b\omega^{2}} (1 - [e^{i\omega b} + e^{-i\omega b}]) = \frac{2a}{b\omega^{2}} (1 - 2\cos\omega b)$$

$$\hat{f}(\omega) = \frac{2}{\sqrt{2\pi}} \frac{2a}{b\omega^{2}} (1 - 2\cos\omega b)$$

## 1.2.2.2) Численное решение

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.



Рис. 4. Графики Фурье-образа треугольной функции

#### 1.2.3) Равенство Парсеваля

Проверим его выполнение для каждой пары параметров:

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 2.865 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 2.865$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 5.730 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 5.730$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 11.459 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 11.459$$

Видим, что равенство Парсеваля выполняется.

## 1.2.4) Выводы

Полученная функция-образ не имеет какого-то особого названия.

Параметр a влияет на функции и амплитуду Фурье-образа, а параметр b влияет на ширину функции и ширину спектра Фурье-образа.

## 1.3) Кардинальный синус

Возьмем кардинальный синус:

$$f(t) = a\operatorname{sinc}(bt)$$

и точно такие же параметры a и b.

#### 1.3.1) Графики

Построим графики функции для каждой пары параметров.



Рис. 5. Графики кардинального синуса

#### 1.3.2) Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.



Рис. 6. Графики Фурье-образа кардинального синуса

#### 1.3.3) Равенство Парсеваля

Выполняется для каждой пары параметров:

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$
 
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 0.476 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 0.477$$
 
$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 0.238 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 0.239$$

$$\int a = 6$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 1.903 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 1.907$$

#### 1.3.4) Выводы

Фурье-образ кардинального синуса имеет вид прямоугольной функции. Параметр a влияет на амплитуду функции и Фурье-образа, а параметр b влияет на ширину функции и ширину спектра Фурье-образа, также обратно пропорционален амплитуде Фурье-образа.

## 1.4) Функция Гаусса.

Возьмем функцию Гаусса:

$$f(t) = ae^{-bt^2}$$

и точно такие же параметры a и b.

## 1.4.1) Графики

Построим графики функции для каждой пары параметров.



Рис. 7. Графики функции Гаусса

## 1.4.2) Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.



Рис. 8. Графики Фурье-образа функции Гаусса

#### 1.4.3) Равенство Парсеваля

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 1.036 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 1.036$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 0.733 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 0.733$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 4.146 \approx \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 4.146$$

Равенство Парсеваля выполняется с хорошей точностью.

## 1.4.4) Выводы

Фурье-образ функции Гаусса имеет вид функции Гаусса, но он не совпадает со своей функцией.

Параметр a влияет на амплитуду функции и Фурье-образа; параметр b влияет на ширину функции и ширину спектра Фурье-образа, чем больше b, тем уже функция и шире спектр и ниже его амплитуда.

## 1.5) Двустороннее затухание

Возьмем функцию двустороннего затухания:

$$f(t) = ae^{-b |t|}$$

#### 1.5.1) Графики

Построим графики функции для каждой пары параметров.



Рис. 9. Графики функции двустороннего затухания

#### 1.5.2) Преобразование Фурье

#### 1.5.2.1) Аналитический вывод

$$\begin{split} \hat{f}(\omega) &= \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{\infty} a e^{b|t|} e^{-i\omega t} \, \mathrm{d}t \\ \int_{-\infty}^{\infty} a e^{b|t|} e^{-i\omega t} \, \mathrm{d}t &= \int_{-\infty}^{0} a e^{bt} e^{-i\omega t} \, \mathrm{d}t + \int_{0}^{\infty} a e^{-bt} e^{-i\omega t} \, \mathrm{d}t = \bigoplus_{-\infty}^{0} a e^{bt} e^{-i\omega t} \, \mathrm{d}t = \bigoplus_{-\infty}^{0} e^{(b-i\omega)t} \, \mathrm{d}t = \frac{a e^{b-i\omega t}}{b-i\omega} = \frac{a}{b-i\omega} \\ \int_{0}^{\infty} a e^{-bt} e^{-i\omega t} \, \mathrm{d}t &= a \int_{0}^{\infty} e^{(-b-i\omega)t} \, \mathrm{d}t = \frac{a e^{(-b-i\omega)t}}{-b-i\omega} = \frac{a}{b+i\omega} \\ \bigoplus_{-\infty}^{\infty} a e^{-bt} e^{-i\omega t} \, \mathrm{d}t &= a \int_{0}^{\infty} e^{(-b-i\omega)t} \, \mathrm{d}t = \frac{a e^{(-b-i\omega)t}}{-b-i\omega} = \frac{a}{b+i\omega} \\ \bigoplus_{-\infty}^{\infty} a e^{-bt} e^{-i\omega t} \, \mathrm{d}t &= a \int_{0}^{\infty} e^{(-b-i\omega)t} \, \mathrm{d}t = \frac{a e^{(-b-i\omega)t}}{-b-i\omega} = \frac{a}{b+i\omega} \\ \bigoplus_{-\infty}^{\infty} a e^{-bt} e^{-i\omega t} \, \mathrm{d}t &= a \int_{0}^{\infty} e^{(-b-i\omega)t} \, \mathrm{d}t = \frac{a e^{(-b-i\omega)t}}{-b-i\omega} = \frac{a}{b+i\omega} \end{split}$$

## 1.5.2.2) Численное решение

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов.



Рис. 10. Графики Фурье-образа функции двустороннего затухания

#### 1.5.3) Равенство Парсеваля

Выполняется для каждой пары параметров:

$$\begin{cases} a = 3 \\ b = 3 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 0.477 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 0.477$$

$$\begin{cases} a = 3 \\ b = 6 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 0.238 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 0.238$$

$$\begin{cases} a = 6 \\ b = 3 \end{cases}$$

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(t)|^2 dt = 1.909 = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |\hat{f}(w)|^2 dw = 1.909$$

## 1.5.4) Выводы

Фурье-образ функции двустороннего затухания похож на график самой функции, но со сглаженным пиком.

Параметр a влияет на амплитуду функции и Фурье-образа; параметр b влияет на ширину функции и ширину спектра Фурье-образа: чем больше b, тем уже функция и шире спектр и ниже его амплитуда.

# 2) Задание 2. Комплексное

Для этого задания возьмем функцию кардинального синуса и 3 разных значения сдвига c:

$$g(t) = 3\operatorname{sinc}(3(t-c))$$

где 
$$c = -7, 3, 10$$
.

#### 2.0.1) Графики

Построим график функции g для каждого значения c.



## 2.0.2) Преобразование Фурье

Выполним для каждой дискретное преобразование Фурье и построим графики полученных Фурье-образов. Изобразим на графиках вещественную, мнимую части и модуль.



Рис. 12. Графики Фурье-образа функции д

#### 2.0.3) Выводы

По Рис. 12 видно, что сдвиг функции во времени не приводит к изменению модуля Фурье-образа, но изменяет частоту и фазу колебаний вещественной и мнимой частей.

Частота колебаний зависит от модуля параметра c, а фаза зависит также от его знака.

## 3) Задание 3. Музыкальное

Для выполнения этого задания выбрали среди предложенных записей аккорд номер 12.

## 3.1) Обработка файла

Для обработки файла воспользовались библиотекой librosa для Python. Получили его характеристики:

- длительность: 4.6 секунды
- частота дискретизации: 22050 Гц
- амплитуду в каждый дискретный момент времени



Рис. 13. График волны аккорда

## 3.2) Дискретное преобразование Фурье

Чтобы выполнить дискретное преобразование Фурье по частоте  $\nu$  для предложенных аудиоданных нужно определить длину окна и шаг окна. Обозначим частоту дискретизации как d, а количество измерений как N. Тогда длина окна равна d/2, а шаг окна равен d/N.

Для исходной частоты дискретизации численно выполнить преобразование не вышло, поэтому уменьшили частоту дискретизации в 5 раз: при попытке вычислить на локальном компьютере преобразование Фурье для исходной частоты процесс зависал, потрбляя всю доступную оперативную память и завершался ошибкой. (Рис. 15)

Для частоты дискретизации d=4410 нашли Фурье-образ исходного сигнала:



На графике Фурье-образа видим 3 ярко выраженных пика, что говорит о наличии 3 основных частот в исходном сигнале. Этим пикам соответствуют частоты 312, 390 и 465  $\Gamma$ ц.

<sup>&</sup>lt;sup>1</sup>https://newt.phys.unsw.edu.au/jw/graphics/notes.GIF

По таблице, сопоставляющей частоту музыкальной ноте $^1$  найдем, что это за ноты. Частоты соответствуют нотам  $D\sharp 4, G4, A\sharp 4.$ 

Узнаем имя этого аккорда. Не обладая какими-либо музыкальными навыками, я решил попросить о помощи знакомого, который занимается музыкой. Предположили, что это аккорд Cm7 (до минор 7) и записали его, чтобы сравнить с аккордом из задания (См. Приложение).

На слух аккорды звучат похоже, но не одинаково. Это может быть обусловлено различными инструментами, на которых они исполнялись.

#### 3.2.1) Выводы

Применили дискретное преобразование Фурье для анализа аудиоданных и столкнулись с вычислительными ограничениями, связанными с большим объемом данных и высокой частотой дискретизации.

Убедились, что преобразование Фурье позволяет находить основные частоты в аудиоданных и определять музыкальные ноты, соответствующие этим частотам.

# 4) Приложение

1. Репозиторий с исходными кодами программ, графиками и аудиофайлами: https://github.com/hanqnero/typst/tree/main/FrequencyMethods/L2



Рис. 15. Потребление оперативной памяти при вычислении преобразования для частоты  $22050~\Gamma$ ц