

Tutorial: Techniques for building robots

Madison Hales

Robophysics: robots as a tool for understanding locomotion

AquaMILR+

Design of an untethered limbless robot for complex aquatic terrain navigation

Matthew Fernandez, Tianyu Wang, Galen Tunnicliffe, Donoven Dortilus, Peter Gunnarson, John O. Dabiri, Daniel I. Goldman

Your directive: the three-link swimmer

- 3 rigid links connected by 2 servo motors
- Simplest possible platform for studying swimming gaits
- Can be used to understand locomotion of microorganisms like C. elegans

How can we make a robot move?

Actuators!

How do we tell our motors to do what we want

them to?

A microcontroller!

About Arduinos: hardware

Reset button

Press this to restart program uploaded to board

Digital I/O pins

- Supply voltage when programmed to
- HIGH (5V) or LOW (0V), nothing in between
- Read voltage from a sensor (high or low)

USB Jack

- Program here
- Power board here (with laptop)

Power Jack

 Power board here (without laptop, after programming)

Pins!

Pin 13 is

an LED

Power and ground pins

- Supply power for attachments (such as a motor)
- Make sure all grounds are connected

Analog in pins

 Can read continuous voltage 0-5V from a sensor

About Arduinos: software

Arduino IDE

- Coded in ArduinoC (a simplified version of C/C++)
- Setup is typically where you initialize pins
- Loop is where you execute your main processes (like running a motor or collecting data from a sensor)
- Before running your program, go to 'Tools' in the toolbar above the terminal
 - designate your board as an 'Arduino Uno' under Board
 - Set your COM port under Port

Checkpoint #1: blinking an LED

- Important concepts
 - Initializing a pin
 - Writing to a pin
 - Time delays
- Pseudocode
 - Set up
 - Initialize LED pin 13 as an output
 - Loop
 - Blink on
 - Delay for blink duration
 - Blink off
 - Delay for off curation

Code Dictionary

- Initialize a digital pin as an output
 - pinMode(Pin, OUTPUT)
- Write a digital pin to 5 Volts
 - digitalWrite(Pin name, HIGH);
- Write a digital pin to 0 Volts
 - digitalWrite(Pin name, LOW);
- Delay program for a set length of time
 - delay(Length of time in milliseconds);

Types of motors

- DC Motor
 - Motor torque and speed are related to applied current and voltage
 - No position or speed control
 - 2 wires: power and ground
- Stepper Motor
 - Motor takes 'steps' through discrete positions (usually 1.8° per step)
 - Allows for open-loop position control
 - Requires a driver
 - 4 wires (or more)
- Servo Motor

The basics of servo motors

- Closed-loop position control
 - Signal wire sends a PWM signal
 - The duty cycle of the PWM corresponds to a certain location for the motor shaft
 - Motor uses internal potentiometer to rotate to desired position
- 3 wires: power (red), ground (grey/black), signal (yellow)
- Usually limited to 180 degrees of rotation

Duty Cycle = Pulse / Cycle * 100 Frequency = Cycles / Second

Checkpoint #2: rotate servo motor

- Important concepts
 - Including code libraries
 - Controlling a servo motor
- Pseudocode
 - Set up
 - Include servo library
 - Create servo object
 - Attach servo to a pin
 - Loop
 - Send servo to position 1
 - Delay
 - Send servo to position 2
 - Delay

Code Dictionary

- Create servo object
 - Servo_name;
- Attach servo to a pin
 - servo_name.attach (pin number);
- Send servo to a specified angle
 - myservo.write(angle 0-180 in degrees);