Macroeconomic Effects of Capital Tax Rate Changes

Saroj Bhattarai

Jae Won Lee

UT Austin

U of Virginia

Woong Yong Park

Choongryul Yang

Seoul National Univ.

UT Austin

UT Austin Student Seminar
April 2018

Motivation

- Macro effects of capital tax cuts a recent subject of discussion
 - $\circ~$ Recent U.S. tax reform lowers the corporate tax rate from 35% to 21%

Motivation

- Macro effects of capital tax cuts a recent subject of discussion
 - Recent U.S. tax reform lowers the corporate tax rate from 35% to 21%
- What are the long-run and the short-run effects on output, investment, consumption, and wages?
 - Is such a large tax cut "self-financing"?
 - o If not, does the source of financing matter for the long-run effects?
 - Does such a tax cut lead to gains for workers in terms of labor income?

Motivation

- Macro effects of capital tax cuts a recent subject of discussion
 - Recent U.S. tax reform lowers the corporate tax rate from 35% to 21%
- What are the long-run and the short-run effects on output, investment, consumption, and wages?
 - Is such a large tax cut "self-financing"?
 - o If not, does the source of financing matter for the long-run effects?
 - Ooes such a tax cut lead to gains for workers in terms of labor income?
- Are short-run effects different from long-run ones?
 - Does the monetary policy response matter for short-run effects?
 - Do adjustment frictions matter for short-run effects?
 - Ones the source of financing matter for short-run effects?

Model

- Analyze the effects of capital tax cuts analytically and numerically
 - o Long-run and short-run effects with different sources of financing
- Standard quantitative business cycle model with balanced growth
- Adjustment frictions in investment and prices
 - Realistic transition dynamics
 - A role for monetary aspects of the model
- Other frictions in extensions
 - Consumption habit formation
 - Variable capacity utilization

Preview of Results - Long-run Effects

Capital tax cuts have expansionary long-run effects

 \circ For a permanent reduction of the capital tax rate from 35% to 21%, output increases by 10.8%, investment by 34.7%, consumption by 6.7%, and wages by 8.7% if lump-sum transfers adjust

How the tax cuts are financed matters

- The expansionary effects are smaller if the government has to rely on distortionary labor/consumption taxes
 - An increase in the labor tax rate by 6 % points to keep debt to GDP at the same level as the initial level
 - Output increases by 6.1%, investment by 29%, and consumption by 2.2%
 - After-tax wages decline by 0.3% and hours also go down in the long-run

Preview of Results - Transition dynamics

- During the transition, the economy experiences a decline in consumption, output, hours, and wages, regardless of the source of financing
- How the tax cuts are financed matters for the extent of this decline
 - The contraction is more severe if capital tax cuts are financed by raising labor/consumption tax rates
- Monetary aspects of the model matter
 - o The contraction is more severe when prices are more rigid
 - The contraction is less severe when the central bank adjusts interest rates (i) more aggressively in stabilizing (fall of) inflation or (ii) more smoothly
 - When the central bank allows inflation to stabilize debt, the short-run increase in inflation helps reduce the extent of contraction

Related Literature

Capital tax changes

- Long-run effects: Trabandt and Uhlig (2011)
- o Tax reforms: Barro and Furman (2018)
- DSGE: Forni, Monteforte, and Sessa (2009), Sims and Wolff (2017)
- Empirical assessment: Romer and Romer (2010), Blanchard and Perrotti (2002), Mountford and Uhlig (2009), House and Shapiro (2008)

Normative analysis of the optimal capital tax rate

Chamley (1986) and Judd (1985)

Debt stabilization through inflation adjustment

o Normative: Sims (2001)

Positive: Leeper (1991), Sims (1994), Woodford (1994)

Model

Household

• Representative household problem is to

$$\max_{\left\{C_{t},H_{t},B_{t},I_{t},K_{t+1}\right\}} \quad E_{0}\left\{\sum_{t=0}^{\infty}\beta^{t}U\left(C_{t},H_{t}\right)\right\}$$

subject to

$$(1 + \tau_t^C) P_t C_t + P_t I_t + B_t =$$

$$(1 - \tau_t^H) W_t H_t + R_{t-1} B_{t-1} + (1 - \tau_t^K) R_t^K K_t + P_t \Phi_t + P_t S_t,$$

$$K_{t+1} = (1 - d) K_t + \left(1 - S\left(\frac{I_t}{I_{t-1}}\right)\right) I_t$$

Firms

ullet Competitive final goods firms produce aggregate output Y_t

$$Y_{t} = \left(\int_{0}^{1} Y_{t}\left(i\right)^{\frac{\theta-1}{\theta}} di\right)^{\frac{\theta}{\theta-1}}$$

where θ is the elasticity of substitution between intermediate goods

- Continuum of monopolistically competitive intermediate goods firms
- Intermediate goods firms rent capital and hire labor in competitive markets

Firms

• Intermediate good firms problem is to

$$\max_{\{P_{t}(i), Y_{t}(i), H_{t}(i), K_{t}(i)\}} E_{0} \left\{ \sum_{t=0}^{\infty} \beta^{t} \frac{\Lambda_{t}}{\Lambda_{0}} P_{t} \Phi_{t} \left(i \right) \right\}$$

subject to

$$Y_{t}(i) = \left(\frac{P_{t}(i)}{P_{t}}\right)^{-\theta} Y_{t},$$

$$Y_{t}(i) = F\left(K_{t}(i), A_{t}H_{t}(i)\right)$$

• Flow profit $\Phi_t(i)$ is given by

$$\Phi_{t}\left(i\right) = \frac{P_{t}\left(i\right)}{P_{t}}Y_{t}\left(i\right) - \frac{W_{t}}{P_{t}}H_{t}\left(i\right) - \frac{R_{t}^{K}}{P_{t}}K_{t}\left(i\right) - \Xi\left(\frac{P_{t}\left(i\right)}{P_{t-1}\left(i\right)}\right)Y_{t}$$

Monetary Policy

• Monetary policy given by an interest rate feedback rule

$$\frac{R_t}{\bar{R}} = \left[\frac{R_{t-1}}{\bar{R}}\right]^{\rho^R} \left[\left(\frac{\pi_t}{\bar{\pi}}\right)^{\phi}\right]^{\left(1-\rho^R\right)}$$

- When $\phi > 1$, the Taylor principle is satisfied
- \bullet When $\phi<1,$ inflation response will play a direct role in government debt stabilization along the transition

Government Budget Constraint

• The government flow budget constraint given by

$$\frac{B_t}{P_t Y_t} + \left(\tau_t^C \frac{C_t}{Y_t} + \tau_t^H \frac{W_t}{P_t Y_t} H_t + \tau_t^K \frac{R_t^K K_t}{P_t Y_t}\right) = R_{t-1} \frac{B_{t-1}}{P_{t-1} Y_{t-1}} \frac{1}{\pi_t} \frac{Y_{t-1}}{Y_t} + \frac{G_t}{Y_t} + \frac{S_t}{Y_t}$$

where G_t is government spending on the final good

Fiscal Policy - Long-run Effects

- \bullet A permanent change in the capital tax rate τ_t^K
 - $\circ~$ In the long-run, $\frac{G_t}{Y_t}$ and $\frac{B_t}{P_tY_t}$ the same as the initial steady-state
- The government budget constraint in the long-run

$$\left(1 - \frac{\overline{R}}{\overline{\pi}\overline{a}}\right) \frac{\overline{B}}{\overline{PY}} + \left(\overline{\tau}^C \frac{\overline{C}}{Y} + \overline{\tau}^H \frac{\overline{W}}{\overline{PY}} \overline{H} + \overline{\tau}^K \frac{\overline{R^K}}{\overline{P}} \frac{\overline{K}}{Y}\right) = \frac{\overline{G}}{Y} + \frac{\overline{S}}{Y}$$

- Three fiscal policy adjustment rules
 - (1) Lump-sum transfers $\overline{\frac{S}{T}}$ adjustment
 - (2) Labor tax rates $\bar{\tau}^H$ adjustment
 - (3) Consumption tax rates $\bar{\tau}^C$ adjustment

• For transition dynamics, the behavior of the monetary authority matters

For transition dynamics, the behavior of the monetary authority matters

- Four fiscal policy adjustment rules
 - (1) Lump-sum transfers $\frac{S_t}{Y_t}$ adjust to maintain $\frac{B_t}{P_t Y_t}$ constant
 - The monetary policy rule satisfies the Taylor principle, $\phi > 1$

For transition dynamics, the behavior of the monetary authority matters

- Four fiscal policy adjustment rules
 - (1) Lump-sum transfers $\frac{S_t}{Y_t}$ adjust to maintain $\frac{B_t}{P_t Y_t}$ constant
 - The monetary policy rule satisfies the Taylor principle, $\phi>1$
 - (2) Labor tax rates $\boldsymbol{\tau}_t^H$ adjust following the simple feedback rule

$$\tau_{t}^{H} - \bar{\tau}_{new}^{H} = \rho^{H} \left(\tau_{t-1}^{H} - \bar{\tau}_{new}^{H} \right) + \left(1 - \rho^{H} \right) \psi^{H} \left(\frac{B_{t-1}}{P_{t-1} Y_{t-1}} - \overline{\frac{B}{PY}} \right)$$

where $\psi^H \geq 1 - \beta$ is the feedback parameter on outstanding debt.

- The monetary policy rule satisfies the Taylor principle, $\phi>1$

- Four fiscal policy adjustment rules
 - (3) Labor tax rates τ_t^H adjust, but not sufficiently enough, as $0<\psi^H<1-\beta$
 - The monetary policy rule does **NOT** satisfy the Taylor principle, $\phi < 1$
 - Inflation plays a direct role in government debt stabilization

Four fiscal policy adjustment rules

- (3) Labor tax rates τ_t^H adjust, but not sufficiently enough, as $0<\psi^H<1-\beta$
 - The monetary policy rule does \mathbf{NOT} satisfy the Taylor principle, $\phi < 1$
 - Inflation plays a direct role in government debt stabilization
- (4) Consumption tax rates au_t^C adjust following the simple feedback rule

$$\tau_{t}^{C} - \bar{\tau}_{new}^{C} = \rho^{C} \left(\tau_{t-1}^{C} - \bar{\tau}_{new}^{C} \right) + \left(1 - \rho^{C} \right) \psi^{C} \left(\frac{B_{t-1}}{P_{t-1} Y_{t-1}} - \overline{\frac{B}{PY}} \right)$$

where $\psi^C \geq 1 - \beta$ is the feedback parameter on outstanding debt

 $-\,$ The monetary policy rule satisfies the Taylor principle, $\phi>1$

Definitions and Functional Forms

- The economy features a balanced growth path
 - \circ Real variables are denoted in small case letters (e.g. $w_t = rac{W_t}{P_t}$)
 - \circ We normalize variables growing along the balanced growth path by the level of technology (e.g. $\tilde{Y}_t = \frac{Y_t}{A_\star}$ and $\tilde{w}_t = \frac{w_t}{A_\star}$)
 - \circ Fiscal variables are normalized by output (e.g. $\tilde{b}_t = \frac{B_t}{P_t \, Y_t})$

Definitions and Functional Forms

- The economy features a balanced growth path
 - $\circ~$ Real variables are denoted in small case letters (e.g. $w_t = \frac{W_t}{P_t})$
 - \circ We normalize variables growing along the balanced growth path by the level of technology (e.g. $\tilde{Y}_t = \frac{Y_t}{A_t}$ and $\tilde{w}_t = \frac{w_t}{A_t}$)
 - $\circ\,$ Fiscal variables are normalized by output (e.g. $\tilde{b}_t = \frac{B_t}{P_t Y_t})$
- General functional forms for preferences and technology

$$U(C_{t}, H_{t}) \equiv \frac{C_{t}^{1-\eta} \left(1 - \bar{\omega} \frac{1-\eta}{1+\varphi} (H_{t})^{1+\varphi}\right)^{\eta} - 1}{1 - \eta},$$

$$F(K_{t}(i), A_{t}H_{t}(i)) \equiv \left(\lambda K_{t}(i)^{\frac{\varepsilon-1}{\varepsilon}} + (1 - \lambda) (A_{t}H_{t}(i))^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

Investment and price adjustment costs

$$\mathcal{S}\left(\frac{I_t}{I_{t-1}}\right) \equiv \frac{\xi}{2} \left(\frac{I_t}{I_{t-1}} - \bar{a}\right)^2, \ \ \Xi\left(\frac{P_t}{P_{t-1}}\right) \equiv \frac{\kappa}{2} \left(\frac{P_t}{P_{t-1}} - \bar{\pi}\right)^2$$

Calibration

	Value	Description	References		
Households					
β	0.9975	Time preference	Smets and Wouters (2007)		
η	1.0	Inverse of EIS	Smets and Wouters (2007)		
φ	1.0	Inverse of Frisch elasticity of labor supply	Trabandt and Uhlig (2011)		
$\bar{\omega}$	7.77	Labor supply disutility parameter (Steady-state hours: $ar{H}=0.25$)	Trabandt and Uhlig (2011)		
d	0.025	Capital depreciation	Smets and Wouters (2007)		
ξ	4.0	Investment adjustment cost	Smets and Wouters (2007)		
<u>Firms</u>					
ε	1.0	Cobb-Douglas production function	Smets and Wouters (2007)		
λ	0.30	Capital income share	Smets and Wouters (2007)		
κ	50	Quadratic price adjustment cost	Ireland (2000)		
θ	3.1818	Elasticity of substitution between goods	Steady-state Markup: 46%		
$\bar{\pi}$	1.0	Steady-state inflation rate			
\bar{a}	1.0054	Steady-state growth rate	Bhattarai, Lee, and Park (2016)		

Calibration

	Value	Description	References		
Government(Fiscal/Monetary Policy)					
$\overline{ ilde{b}}$	0.363	SS debt to GDP ratio	US Post-Volcker Data		
$ar{ ilde{G}}$	0.161	SS government spending to GDP ratio	US Post-Volcker Data		
$\bar{\tilde{T}}^C$	0.009	SS consumption tax revenue to GDP ratio	US Post-Volcker Data		
$\bar{\tilde{T}}^H$	0.128	SS labor tax revenue to GDP ratio	US Post-Volcker Data		
$\bar{\tilde{T}}^K$	0.072	SS capital tax revenue to GDP ratio	US Post-Volcker Data		
ϕ	1.5 0.5	Taylor rule Taylor rule with inflation adjustment	Bhattarai, Lee, and Park (2016)		
ψ^C	0.0 0.05	No tax rate response to debt Consumption tax rate response to debt			
ψ^H	0.0 0.05 0.002	No tax rate response to debt Labor tax rate response to debt with inflation adjustment			

Long-run Effects

Long-run Effects of Capital Tax Rate Cuts

Lump-sum Transfer Adjustment

Proposition 1

Let $ar{ au}_{new}^K = ar{ au}^K + \Delta\left(ar{ au}^K\right)$ where $\Delta\left(ar{ au}^K\right)$ is small. With lump-sum transfer adjustment and $\varepsilon = 1$,

$$\begin{split} \ln\left(\frac{\bar{\tau}_{new}^{K}}{\bar{\tau}^{K}}\right) &= \frac{\Delta\left(\bar{\tau}^{K}\right)}{1 - \bar{\tau}^{K}}, \ \ln\left(\frac{\bar{\tilde{w}}_{new}}{\bar{\tilde{w}}}\right) = -\frac{\lambda}{1 - \lambda} \frac{\Delta\left(\bar{\tau}^{K}\right)}{1 - \bar{\tau}^{K}}, \ \ln\left(\frac{\bar{\tilde{K}}_{new}}{\bar{\tilde{H}}_{new}}\right/\frac{\bar{\tilde{K}}}{\bar{\tilde{H}}}\right) = -\frac{1}{1 - \lambda} \frac{\Delta\left(\bar{\tau}^{K}\right)}{1 - \bar{\tau}^{K}}, \\ \ln\left(\frac{\bar{\tilde{H}}_{new}}{\bar{\tilde{H}}}\right) &= -\Omega\frac{\Delta\left(\bar{\tau}^{K}\right)}{1 + \varphi}, \ \ln\left(\frac{\bar{\tilde{K}}_{new}}{\bar{\tilde{k}}}\right) = \ln\left(\frac{\bar{\tilde{I}}_{new}}{\bar{\tilde{I}}}\right) = -\mathcal{M}_{K}\Delta\left(\bar{\tau}^{K}\right), \ \ln\left(\frac{\bar{\tilde{Y}}_{new}}{\bar{\tilde{Y}}}\right) = -\mathcal{M}_{Y}\Delta\left(\bar{\tau}^{K}\right) \end{split}$$

$$\ln \left(rac{ar{ ilde{C}}_{new}}{ar{ ilde{C}}}
ight) = -\mathcal{M}_C \Delta \left(ar{ au}^K
ight),$$

where $\Omega > 0$, and $\mathcal{M}_K, \mathcal{M}_Y > 0$. Also, $\mathcal{M}_C > 0$ with a mild restriction that \tilde{G} is not very high.

Lump-sum Transfer Adjustment

- The effects on factor prices and capital to labor ratio depend only on the production side parameters
- How hours respond is important for the level of aggregate quantities (output, consumption and investment)
 - o Preference parameters (EIS and Frisch) matter qualitatively
- Effectiveness of the tax reform depends on current tax rates
 - \circ When $\bar{\tau}^K,\bar{\tau}^H,$ and $\bar{\tau}^C$ are currently high, a given capital tax cut will have a stronger long-run effect

Labor Tax Rate Adjustment

Proposition 2

Let $ar{ au}_{new}^K=ar{ au}^K+\Delta\left(ar{ au}^K\right)$, arepsilon=1, and $\eta=1$. With labor tax rate adjustment,

1. New steady-state labor tax rate is given by $ar{ au}_{new}^H = ar{ au}^H + \Delta\left(ar{ au}^H\right)$ where

$$\Delta\left(\bar{\tau}^H\right) = -\frac{\lambda}{1-\lambda}\left(1+\bar{\tau}^C\left(\frac{\bar{a}-(1-d)}{\frac{\bar{a}}{\beta}-(1-d)}\right)\right)\Delta\left(\bar{\tau}^K\right).$$

Labor Tax Rate Adjustment

Proposition 2

Let $\bar{\tau}_{new}^K = \bar{\tau}^K + \Delta\left(\bar{\tau}^K\right)$, $\varepsilon = 1$, and $\eta = 1$. With labor tax rate adjustment,

1. New steady-state labor tax rate is given by $\bar{ au}_{new}^H = \bar{ au}^H + \Delta\left(\bar{ au}^H\right)$ where

$$\Delta\left(\bar{\tau}^{H}\right) = -\frac{\lambda}{1-\lambda}\left(1 + \bar{\tau}^{C}\left(\frac{\bar{a} - (1-d)}{\frac{\bar{a}}{\beta} - (1-d)}\right)\right)\Delta\left(\bar{\tau}^{K}\right).$$

2. For small $\Delta(\bar{\tau}^K)$,

$$\begin{split} & \ln \left(\frac{\bar{\tau}_{new}^K}{\bar{\tau}^K} \right) = \frac{\Delta \left(\bar{\tau}^K \right)}{1 - \bar{\tau}^K}, & \ln \left(\frac{\bar{\tilde{K}}_{new} / \bar{H}_{new}}{\bar{\tilde{K}} / \bar{H}} \right) = -\frac{1}{1 - \lambda} \frac{\Delta \left(\bar{\tau}^K \right)}{1 - \bar{\tau}^K}, & \ln \left(\frac{\bar{\tilde{w}}_{new}}{\bar{\tilde{w}}} \right) = -\frac{\lambda}{1 - \lambda} \frac{\Delta \left(\bar{\tau}^K \right)}{1 - \bar{\tau}^K}, \\ & \ln \left(\frac{\bar{H}_{new}}{\bar{H}} \right) = \mathcal{M}_H \Delta \bar{\tau}^K, & \ln \left(\frac{\left(1 - \bar{\tau}_{new}^H \right) \bar{\tilde{w}}_{new}}{(1 - \bar{\tau}^H) \bar{\tilde{w}}} \right) = \mathcal{M}_W \Delta \left(\bar{\tau}^K \right) \end{split}$$

where $\mathcal{M}_H>0$ with a mild restriction that \tilde{G} is not very high. Moreover, $\mathcal{M}_W>0$ if and only if $1+\bar{\tau}^C\frac{(\bar{a}-(1-d))}{\frac{\bar{a}}{\bar{B}}-(1-d)}>\frac{1-\bar{\tau}^H}{1-\bar{\tau}^K}$.

Labor Tax Rate Adjustment

- The required adjustment in the labor tax rate is basically given by the ratio of the capital to labor input in the production function
 - Since debt-to-GDP is constant, has to compensate the loss of capital tax revenue-to-GDP with gains in labor tax revenue-to-GDP
- Hours fall if government spending in the initial steady state is not too high
- The effects on after-tax wage rate depends on initial level of labor tax rate relative to the other tax rates
 - A further increase in labor tax rate (to finance a capital tax cut), when it is sufficiently high already, lowers after-tax wage rate

Consumption Tax Rate Adjustment

Proposition 3

Let $ar{ au}_{new}^K=ar{ au}^K+\Delta\left(ar{ au}^K\right)$, arepsilon=1, and $\eta=1$. With consumption tax rate adjustment,

1. New steady-state consumption tax rate is given by $\bar{\tau}_{new}^C = \bar{\tau}^C + \Delta\left(\bar{\tau}^C\right)$ where

$$\Delta\left(\bar{\tau}^{C}\right) = -\left(1 + \frac{\bar{a} - (1 - d)}{\frac{\bar{a}}{\beta} - (1 - d)}\bar{\tau}^{C}\right) \frac{\Theta_{C}\Delta\left(\bar{\tau}^{K}\right)}{1 + \left(\frac{\bar{a} - (1 - d)}{\frac{\bar{a}}{\beta} - (1 - d)}\right)\Theta_{C}\Delta\left(\bar{\tau}^{K}\right)}.$$

with $\Theta_C > 0$.

Consumption Tax Rate Adjustment

Proposition 3

Let $ar{ au}_{new}^K=ar{ au}^K+\Delta\left(ar{ au}^K
ight)$, arepsilon=1, and $\eta=1$. With consumption tax rate adjustment,

1. New steady-state consumption tax rate is given by $ar{ au}_{new}^C = ar{ au}^C + \Delta\left(ar{ au}^C\right)$ where

$$\Delta\left(\bar{\tau}^{\,C}\right) = -\left(1 + \frac{\bar{a} - (1-d)}{\frac{\bar{a}}{\beta} - (1-d)}\bar{\tau}^{\,C}\right) \frac{\Theta_{C}\Delta\left(\bar{\tau}^{\,K}\right)}{1 + \left(\frac{\bar{a} - (1-d)}{\frac{\bar{a}}{\beta} - (1-d)}\right)\Theta_{C}\Delta\left(\bar{\tau}^{\,K}\right)}.$$

with $\Theta_C > 0$.

2. For small $\Delta(\bar{\tau}^K)$,

$$\begin{split} \ln\left(\frac{\bar{\tau}_{new}^K}{\bar{\tau}^K}\right) &= \frac{\Delta\left(\bar{\tau}^K\right)}{1 - \bar{\tau}^K}, \ \ln\left(\frac{\bar{\tilde{K}}_{new}/\bar{H}_{new}}{\bar{\tilde{K}}/\bar{H}}\right) = -\frac{1}{1 - \lambda} \frac{\Delta\left(\bar{\tau}^K\right)}{1 - \bar{\tau}^K}, \\ \ln\left(\frac{\bar{\tilde{w}}_{new}}{\bar{\tilde{w}}}\right) &= -\frac{\lambda}{1 - \lambda} \frac{\Delta\left(\bar{\tau}^K\right)}{1 - \bar{\tau}^K}, \ \ln\left(\frac{\bar{H}_{new}}{\bar{H}}\right) = \mathcal{M}_H^{\tau^C} \Delta \bar{\tau}^K \end{split}$$

where $\mathcal{M}_{H}^{ au^{C}}>0$.

Consumption Tax Rate Adjustment

- Basic intuition is the same as the labor tax rate adjustment case
 - \circ The consumption tax base $(\frac{\bar{\tilde{C}}}{\tilde{\tilde{Y}}})$ decreases; the labor tax base $(\bar{\tilde{w}}\,\frac{\bar{H}}{\tilde{\tilde{Y}}}=\frac{(1-\lambda)(\theta-1)}{\theta})$ is the same
 - o Required tax revenue changes in both adjustment cases are the same

- $\qquad \text{On Intratemporal optimal condition for labor supply is } \frac{\left(1-\bar{\tau}^H\right)(1-\lambda)\left(\frac{\theta-1}{\theta}\right)}{\left(1+\tau^C\right)\left(\frac{\bar{C}}{\bar{Y}}\right)} = \bar{\omega}\bar{H}^{1+\varphi}$
- Hours fall regardless of the level of government spending

$$\frac{\partial}{\partial \bar{\tau}^K} \left\{ \left(1 + \bar{\tau}^C\right) \left(\frac{\bar{\tilde{C}}}{\bar{\tilde{Y}}}\right) \right\} = -\lambda \left(\frac{\theta - 1}{\theta}\right) \left(\frac{\bar{a}}{\frac{\bar{a}}{\beta} - (1 - d)} \left(\frac{1 - \beta}{\beta}\right)\right) < 0$$

Transfer v.s. Labor Tax Rate Adjustment

Proposition 4

Let $ar{ au}_{new}^K = ar{ au}^K + \Delta\left(ar{ au}^K\right)$, $ar{ au}_{new}^H = ar{ au}^H + \Delta\left(ar{ au}^H\right)$, $\varepsilon = 1$, and $\eta = 1$. Denote by $ar{X}_{new}^T$ and $ar{X}_{new}^L$ the new steady-state variables in transfer adjustment case and in labor tax rate adjustment case, respectively. For small changes in the capital tax rate $\Delta\left(ar{ au}^K\right)$, for $X \in \left\{\tilde{C}, \tilde{K}, \tilde{I}, \tilde{Y}, H\right\}$, we get

$$\ln\left(\frac{\bar{X}_{new}^T}{\bar{X}_{new}^L}\right) = -\mathcal{M}_L^T \Delta\left(\bar{\tau}^K\right) = \frac{1}{1+\varphi}\left(\frac{1}{1-\bar{\tau}^H}\right) \Delta\left(\bar{\tau}^H\right)$$

where $\mathcal{M}_L^T > 0$.

- $ar{ ilde{C}},ar{ ilde{K}},ar{ ilde{I}},ar{ ilde{Y}}$, and $ar{H}$ increase by more under lump-sum transfer adjustment
- The constant difference depends on the labor supply parameter and initial level of labor tax rate for a given change in the labor tax rate
 - o If labor supply is completely inelastic, $\varphi = \infty$, there is no difference
 - o Higher is the initial level of the labor tax rate, bigger is the difference

Transfer v.s. Consumption Tax Rate Adjustment

Proposition 5

Let $ar{ au}_{new}^K = ar{ au}^K + \Delta\left(ar{ au}^K\right)$, $ar{ au}_{new}^C = ar{ au}^C + \Delta\left(ar{ au}^C\right)$, $\varepsilon = 1$, and $\eta = 1$. Denote by $ar{X}_{new}^T$ and $ar{X}_{new}^C$ the new steady-state variables in transfer adjustment case and in consumption tax rate adjustment case, respectively. For small changes in the capital tax rate $\Delta\left(ar{ au}^K\right)$, for $X \in \left\{\tilde{C}, \tilde{K}, \tilde{I}, \tilde{Y}, H\right\}$, we get

$$\ln\left(\frac{\bar{X}_{new}^T}{\bar{X}_{new}^C}\right) = -\mathcal{M}_C^T \Delta\left(\bar{\tau}^K\right) = \frac{1}{1+\varphi}\left(\frac{1}{1+\bar{\tau}^C}\right) \Delta\left(\bar{\tau}^C\right)$$

where $\mathcal{M}_C^T > 0$.

- $\bar{\tilde{C}}, \bar{\tilde{K}}, \bar{\tilde{I}}, \bar{\tilde{Y}}$, and \bar{H} increase by more under lump-sum transfer adjustment
- The constant difference depends on the labor supply parameter and initial level of consumption tax rate for a given change in the consumption tax rate
 - $\circ~$ If labor supply is completely inelastic, $\varphi=\infty$, there is no difference
 - Higher is the initial level of the consumption tax rate, smaller is the difference

Labor v.s. Consumption Tax Rate Adjustment

Proposition 6

Let $ar{ au}_{new}^K = ar{ au}^K + \Delta\left(ar{ au}^K\right)$, $ar{ au}_{new}^H = ar{ au}^H + \Delta\left(ar{ au}^H\right)$, $ar{ au}_{new}^C = ar{ au}^C + \Delta\left(ar{ au}^C\right)$, $\varepsilon = 1$, and $\eta = 1$. Denote by $ar{X}_{new}^C$ and $ar{X}_{new}^L$ the new steady-state variables in consumption tax adjustment case and in labor tax adjustment case, respectively. For small changes in the capital tax rate $\Delta\left(ar{ au}^K\right)$, for $X \in \left\{\check{C}, \check{K}, \check{I}, \check{Y}, H\right\}$, we get

$$\ln \left(\frac{\bar{\boldsymbol{X}}_{new}^{C}}{\bar{\boldsymbol{X}}_{new}^{L}} \right) = -\mathcal{M}_{L}^{C} \Delta \left(\bar{\boldsymbol{\tau}}^{K} \right) = \frac{1}{1+\varphi} \left(\frac{\Delta \left(\bar{\boldsymbol{\tau}}^{H} \right)}{1-\bar{\boldsymbol{\tau}}^{H}} - \frac{\Delta \left(\bar{\boldsymbol{\tau}}^{C} \right)}{1+\bar{\boldsymbol{\tau}}^{C}} \right)$$

where $\mathcal{M}_L^C>0$ with a mild restriction that $\bar{\tilde{G}}$ is not very high.

- $\bar{\tilde{C}}, \bar{\tilde{K}}, \bar{\tilde{I}}, \bar{\tilde{Y}}$, and \bar{H} increase by more under consumption tax adjustment compared to labor tax adjustment
- The restriction on $\tilde{\tilde{G}}$ implies that $\left(1+\tilde{\tau}^{\,C}\right)\left(rac{\tilde{c}}{\tilde{Y}}\right)_{new}>\left(1-\tilde{\tau}^{H}\right)\left(1-\lambda\right)rac{\theta-1}{\theta}$

Transition Dynamics

Transition Dynamics

- Transition dynamics following a permanent capital tax cut, from 35% to 21%
 - It takes a long time (70 quarters) for convergence to a new steady-state
- Four different fiscal/monetary policy adjustments
 - o Transfers adjustment
 - Labor tax rate adjustment
 - Consumption tax rate adjustment
 - Labor tax rate and inflation adjustment
- No smoothing for now in fiscal and monetary policy rules

Numerical Comparison

Implications on Macro Variables

- A reduction in the capital tax rate leads to a decrease in the rental rate of capital
- It facilitates capital accumulation via more investment
- In the short-run, to finance this increase of investment, consumption declines
- Output also falls due to sticky prices, which renders output (partially) demand-determined and markups countercyclical
- The temporary fall in output leads to fall in hours
- Inflation depends on current and future real marginal costs
 - As wage dynamics matter more and wages drop in the short-run, the path of inflation roughly follows that of wages

Implications on Labor Income

- (After-tax) labor income decreases in the short-run because both hours and wages decrease
 - The long-run positive effects of capital tax cuts come at the expense of short-run decline of labor income
- The decrease in wages is driven by both supply and demand forces
 - The drop in consumption and the rise in marginal utility raise the supply of hours for a given wage rate
 - Labor demand declines as firms produce a smaller amount of output
 - Transfer adjustment leads to the biggest drop in wage because of the largest labor supply effects
- Transfers fall sharply and decrease below the new steady-state
 - Labor tax revenues fall, not just the capital tax revenue, forcing the government to decrease transfers

Implications of Fiscal Rules

- The drop in consumption and output is larger if labor or consumption tax adjusts
 - Increased labor/consumption tax rate decreases hours even further by discouraging workers from supplying labor
 - o Hours in equilibrium fall much more, below the lower new steady-state
 - This amplifies the short-run contraction in consumption and output
- The short-run effects in consumption tax rate adjustment case are in between the transfer adjustment and labor tax rate adjustment
- In labor tax rate and inflation adjustment case, there is a short-run burst of inflation to help stabilize debt
 - o This increase in inflation helps lower the short-run contractionary effects

Role of Monetary Components

- Monetary aspects of the model matter for transition dynamics
 - Degree of price stickiness
 - \circ Inflation feedback parameter (ϕ) and interest rate smoothing parameter $\left(\rho^{R}\right)$ in monetary policy rule
- Tax rate rule parameters matter for transition dynamics
 - $\circ~$ Debt feedback parameters $\left(\psi^{H},\psi^{C}\right)$ and tax rate smoothing parameters $\left(\rho^{H},\rho^{C}\right)$ in labor and consumption tax rate rules
 - o But, qualitatively results are quite robust

Degree of Price Stickiness - Transfer Adjustment

Inflation Feedback - Transfer Adjustment

Extensions

Extensions

- CES production function
- Levels of fiscal variables ("Laffer Curves")
- Transition dynamics to an anticipated shock
- Transition dynamics to 10-year cut in capital tax rate
- Sensitivity analysis
 - Interest rate smoothing
 - Effects of different fiscal rules (feedback parameters and smoothing)
 - Comparative statics on Frisch elasticity of labor supply and EIS
 - o Effects of introducing habit formation and variable capacity utilization
 - A high level of government spending in the initial steady-state experiment (consumption tax rate increase more distortionary)

```
    CES Production Function
    Level of Fiscal Variables
    Anticipated Shocks
    10-Year Capital Tax Cut
    Interest Rate Smoothing
    Fiscal Rules
    Frsich Elasticity
    EIS
    Consumption Habit Formation
    Variable Capital Utilization
    High Level of G
```

Conclusion

- A permanent reduction in the capital tax rate from 35% to 21% generates a long-run increase in output, consumption, and investment
 - When labor/consumption tax adjusts, the increases are lower
 - After-tax wages and labor income permanently decrease while income inequality is more pronounced when labor tax adjusts
- In the short-run, the economy experiences a decline in consumption, output, hours, wages, and labor income
 - The source of financing matters for the extent of the short-run contraction
 - It is more severe when labor/consumption tax rates adjust
 - Monetary aspects of the model matter
 - The short-run contraction is more severe when prices are more rigid
 - A less aggressive response to inflation leads to a more severe contraction and interest rate smoothing leads to a less severe contraction
 - When the central bank allows inflation to facilitate debt stabilization, the short-run increase in inflation helps reduce the extent of contraction

Conclusion

- Introducing some form of heterogeneity is a potentially important extension
 - New positive and normative insights might emerge by introducing capitalists and workers separately
 - Analysis of the short-run and the long-run suggests that the tax reform will have heterogeneous effects across generations
 - o A two-sector model with durable and non-durable consumption sectors

Interest Rate Smoothing - Transfer Adjustment

▶ Back

Lump-sum Transfer Adjustment - CES Pack

Levels of Fiscal Variables Pack

Transition Dynamics - Anticipated Shock

Transition Dynamics - Anticipated Shock Back

10-Year Cut in Capital Tax Rate

10-Year Cut in Capital Tax Rate Pack

Transfers Adjustment ---- Labor Tax Rate Adjustment ---- Labor Tax Rate and Inflation Adjustment

Labor Tax Rate Smoothing - Labor Tax Rate Adjustment

Debt Feedback Parameter - Labor Tax Rate Adjustment

Consumption Tax Rate Smoothing

Debt Feedback Parameter - Consumption Tax Rate Adjustment Back

Frisch Elasticity - Transfer Adjustment

Frisch Elasticity - Labor Tax Rate Adjustment Pack

Frisch Elasticity - Transfer Adjustment

Frisch Elasticity - Labor Tax Rate Adjustment Back

EIS - Transfer Adjustment

EIS - Labor Tax Rate Adjustment Back

EIS - Transfer Adjustment

EIS - Labor Tax Rate Adjustment Back

Consumption Habit - Transfer Adjustment

Consumption Habit - Labor Tax Rate Adjustment

▶ Back

Variable Capacity Utilization - Transfer Adjustment

Variable Capacity Utilization - Labor Tax Rate Adjustment Back

High Initial Level of Government Spending

 $(\bar{\tilde{G}} = 0.7)$

High Initial Level of Government Spending

 $(\tilde{G}=0.7)$ Pack

Transfers Adjustment ---- Labor Tax Rate Adjustment ---- Labor Tax Rate and Inflation Adjustment