СПРАВОЧНЫЕ МАТЕРИАЛЫ ПО ЗАДАНИЯМ 17

СУММА УГЛОВ ЧЕТЫРЕХУГОЛЬНИКА 360°

СУММА УГЛОВ МНОГОУГОЛЬНИКА

У пятиугольника 540° У шестиугольника 720° У n —угольника $180^\circ \cdot (n-2)$

 $S_{\text{маленького треугольника}}$

подобных треугольниках В подобных треугольниках отношение периметров, биссектрис, медиан, высот и серединных перпендикуляров равно коэффициенту подобия

ОТНОШЕНИЕ ЭЛЕМЕНТОВ В

РАВНОБЕДРЕННЫЙ ТРЕУГОЛЬНИК

РОМБ

ПАРАЛЛЕЛОГРАММ

ПРОИЗВОЛЬНЫЙ ЧЕТЫРЁХУГОЛЬНИК

МНОГОУГОЛЬНИК

РАВНОСТОРОННИЙ ШЕСТИУГОЛЬНИК

T	ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ	
1	$\sin^2\alpha + \cos^2\alpha = 1$	
2	$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$	
3	$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$	
4	$tg \alpha \cdot ctg \alpha = 1$	

	ТРИГОНОМЕТРИЯ					
ı	СИНУС	КОСИНУС	Ī			
	противолежащий катет	соs α = прилежащий катет	Ι.			
	$\sin \alpha = \frac{1}{1}$ гипотенуза	гипотенуза	ľ			
			r			

_		_		
	ТАНГЕНС		КОТАНГЕНС	
1	противолежащий катет		ctg α =прилежащий катет	
•	tg α =прилежащий катет	ľ	противолежащий катет	
2	$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$	2	$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$	

ФОРМУЛЫ ДВОЙНОГО УГЛА				
1	$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$			
2	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$			
	$\cos 2\alpha = 2\cos^2\alpha - 1$			
4	$\cos 2\alpha = 1 - 2\sin^2\alpha$			

ФОРМУЛЫ СУММЫ И РАЗНОСТИ
$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$
$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$
$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$
$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$

ФОРМУЛЫ ПРИВЕДЕНИЯ 1 ШАГ

Если в скобочке нечётное количество $\frac{\pi}{2}$, то функция меняется на кофункцию

Если в скобочке сколько-то π , то функция остаётся прежней пример:

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$tg(\pi + \alpha) = tg\alpha$$

2 ШАГ

Определяем знак по указанной в скобочках четверти (смотреть на изначальную функцию, а не на изменившуюся)

ПРИМЕР:

$$\sin\left(\frac{3\pi}{2} + \alpha\right)$$

Это IV четверть, в ней синус имеет знак минус, поэтому

$$\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$$

Вписанный угол равен половине дуги, на которую он опирается

Центральный угол равен градусной мере дуги, на которую он опирается

СВОЙСТВО ВПИСАННОГО

Касательная к окружности перпендикулярна радиусу, проведённому в точку касания

СВОЙСТВО ОТРЕЗКОВ КАСАТЕЛЬНЫХ

Отрезки касательных к окружности, проведённые из одной точки, равны, и составляют равные углы с прямой, проходящей через эту точку и центр окружности

a + c = b + d

