# Package 'temStaR'

| September 27, 2020                                                                                                            |                                      |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| <b>Title</b> Tempered Stable Distribution                                                                                     |                                      |
| Version 0.814                                                                                                                 |                                      |
| Author Aaron Y.S. Kim [aut, cre], Stoyan Stoyanov [aut, cre], Minseob Kim [ctb]                                               |                                      |
| Maintainer Aaron Y.S. Kim <aaron.kim@stonybrook.edu></aaron.kim@stonybrook.edu>                                               |                                      |
| <b>Description</b> This package provides useful tools to use the multivariate normal tempered stable distribution and process | .=                                   |
| License `use_mit_license()`                                                                                                   |                                      |
| Encoding UTF-8                                                                                                                |                                      |
| LazyData true                                                                                                                 |                                      |
| Roxygen list(markdown = TRUE)                                                                                                 |                                      |
| RoxygenNote 7.1.1                                                                                                             |                                      |
| Imports functional, nloptr, pracma, spatstat, Matrix, mvtnorm  Suggests functional,                                           |                                      |
| nloptr, pracma, spatstat, Matrix, mvtnorm                                                                                     |                                      |
| R topics documented:                                                                                                          |                                      |
| changeCovMtx2Rho chf_NTS . chf_stdNTS . copulaStdNTS . cvarGauss . cvarmarginalmnts . cvarnts . dBeta                         | 2<br>3<br>4<br>5<br>5<br>5<br>6<br>7 |

2 changeCovMtx2Rho

|       | mctVaRnts         | 23 |
|-------|-------------------|----|
|       | moments_NTS       | 23 |
|       | moments_stdNTS    | 24 |
|       | pmarginalmnts     | 25 |
|       | pmnts             | 25 |
|       | pnts              | 26 |
|       | portfolioCVaRmnts | 27 |
|       | portfolioVaRmnts  | 28 |
|       | qmarginalmnts     | 29 |
|       |                   |    |
|       | qnts              | 29 |
|       | rmnts             | 30 |
|       | rnts              | 31 |
|       | setPortfolioParam | 32 |
| Inday |                   | 34 |
| Index |                   | 3  |

Description

Change coverance matrix to Rho matrix.

# Usage

changeCovMtx2Rho(CovMts, alpha, theta, betaVec)

chf\_NTS 3

chf\_NTS

chf\_NTS

# Description

chf\_NTS calculates Ch.F of the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . If a time parameter value is given, it calculates Ch.F of the NTS profess  $\phi(u) = E[\exp(iu(X(t+s) - X(s)))] =$  $\exp(t \log(E[\exp(iuX(1))]))$ , where X is the NTS process generated by the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ .

# Usage

```
chf_NTS(u, param)
```

# **Arguments**

An array of u ntsparam

A vector of the NTS parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . For NTS process case it is a

vector of parameters  $(\alpha, \theta, \beta, \gamma, \mu, t)$ .

#### Value

Characteristic function of the NTS distribution

```
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_NTS(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_NTS(u, ntsparam)</pre>
```

4 chf\_stdNTS

chf\_stdNTS

chf\_stdNTS

# Description

chf\_stdNTS calculates Ch.F of the standard NTS distribution with parameters  $(\alpha, \theta, \beta)$ . If a time parameter value is given, it calculates Ch.F of the standard NTS profess  $\phi(u) = E[\exp(iu(X(t+s)-X(s)))] = \exp(t\log(E[\exp(iuX(1))]))$ , where X is the standard NTS process generated by the standard NTS distribution with parameters  $(\alpha, \theta, \beta)$ .

# Usage

```
chf_stdNTS(u, param)
```

### **Arguments**

u An array of u

ntsparam

A vector of the standard NTS parameters  $(\alpha, \theta, \beta)$ . For the standard NTS process case it is a vector of parameters  $(\alpha, \theta, \beta, t)$ .

#### Value

Characteristic function of the standard NTS distribution

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)

#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)
u <- seq(from = -2*pi, to = 2*pi, length.out = 101)
phi <- chf_stdNTS(u, ntsparam)</pre>
```

copulaStdNTS 5

copulaStdNTS

copulaStdNTS

# **Description**

copulaStdNTS calculates the stdNTS copula values

# Usage

```
copulaStdNTS(u, st, subTS = NULL)
```

#### References

Y. S. Kim, D. Volkmann (2013), Normal Tempered Stable Copula, Applied Mathematics Letters, 26(7), 676-680 https://www.sciencedirect.com/science/article/pii/S0893965913000384

cvarGauss

cvarGauss

# **Description**

Calculate the CVaR for the normal distributed market model. Developer's version.

### Usage

```
cvarGauss(eta, mu = 0, sigma = 1)
```

cvarmarginalmnts

cvarmarginal mnts

# Description

cvarmarginalmnts calculates the CVaR of the n-th element of the multivariate NTS distributed random variable.

#### Usage

```
cvarmarginalmnts(eta, n, st)
```

# Arguments

eta

the significant level for CVaR. Real value between 0 and 1.

st

Structure of parameters for the n-dimensional NTS distribution.

6 cvarnts

cvarnts

cvarnts

# **Description**

cvarnts calculates Conditional Value at Risk (CVaR, or expected shortfall ES) of the NTS market model with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . If only three parameters are given, it calculates CVaR of the standard NTS distribution with parameter  $(\alpha, \theta, \beta)$ 

# Usage

```
cvarnts(eps, ntsparam)
```

### Arguments

eps the significant level for CVaR. Real value between 0 and 1.

ntsparam A vector of the NTS parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . A vector of the standard NTS

parameters  $(\alpha, \theta, \beta)$ .

#### Value

CVaR of the NTS distribution.

#### References

- Y. S. Kim, S. T. Rachev, M. L. Bianchi, and F. J. Fabozzi (2010), Computing VaR and AVaR in infinitely divisible distributions, Probability and Mathematical Statistics, 30 (2), 223-245.
- S. T. Rachev, Y. S. Kim, M. L. Bianchi, and F. J. Fabozzi (2011), Financial Models with Levy Processes and Volatility Clustering, John Wiley & Sons

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05)
q <- cvarnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05)
q \leftarrow cvarnts(u, ntsparam)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
```

dBeta 7

```
gamma <- 0.3 mu <- 0.1 #scaling annual parameters to one day dt <- 1/250 #one day ntsparam <- c(alpha, theta, beta, gamma, mu, dt) u <- c(0.01,0.05) q <- cvarnts(u, ntsparam)
```

dBeta

dBeta

# Description

The first derivative of the beta. Developer's version.

# Usage

```
dBeta(n, w, betaArray, covMtx)
```

dcopulaStdNTS

dcopulaStdNTS

# Description

dcopulaStdNTS calculates density of the stdNTS copula.

# Usage

```
dcopulaStdNTS(u, st, subTS = NULL)
```

# References

Y. S. Kim, D. Volkmann (2013), Normal Tempered Stable Copula, Applied Mathematics Letters, 26(7), 676-680 https://www.sciencedirect.com/science/article/pii/S0893965913000384

dCVaR\_numint

dCVaR\_numint

# Description

The first derivative of CVaR for the beta parameter of the stdNTS. Developer's version.

# Usage

```
dCVaR_numint(eta, alpha, theta, beta, N = 200, rho = 0.1)
```

8 dmnts

dinvCdf\_stdNTS

dinvCdf\_stdNTS

# **Description**

The first derivative of inverse CDF for the beta parameter of the stdNTS. Developer's version.

# Usage

```
dinvCdf_stdNTS(eta, alpha, theta, beta)
```

 ${\tt dmarginal mnts}$ 

dmarginalmnts

# Description

dmarginalmnts calculates the marginal density of the n-th element of the multivariate NTS distributed random variable.

# Usage

```
dmarginalmnts(x, n, st)
```

# **Arguments**

st

Structure of parameters for the n-dimensional NTS distribution.

dmnts

dmnts

# **Description**

```
dmnts calculates the density of the multivariate NTS distribution: f(x_1, \cdots, x_n) = \frac{d^n}{dx_1 \cdots dx_n} P(x_n < R_1, \cdots, x_n < R_n). The multivariate NTS random vector R = (R_1, \cdots, R_n) is defined R = \mu + diag(\sigma)X,
```

where

X follows  $stdNTS_n(\alpha, \theta, \beta, \Sigma)$ 

# Usage

```
dmnts(x, st, subTS = NULL)
```

dmnts 9

#### **Arguments**

```
x array of the (x_1,\cdots,x_n) st Structure of parameters for the n-dimensional NTS distribution. st$ndim: dimension st$mu: \mu mean vector (column vector) of the input data. st$sigma: \sigma standard deviation vector (column vector) of the input data. st$alpha: \alpha of the std NTS distribution (X). st$theta: \theta of the std NTS distribution (X). st$beta: \beta vector (column vector) of the std NTS distribution (X). st$Rho: \rho matrix of the std NTS distribution (X). numof sample
```

#### Value

Simulated NTS random vectors

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(mvtnorm)
strPMNTS <- list(ndim = 2,</pre>
              mu = c(0.5, -1.5),
              sigma = c(2, 3),
              alpha = 0.1,
              theta = 3,
              beta = c(0.1, -0.3),
              Rho = matrix( data = c(1.0, 0.75, 0.75, 1.0),
                            nrow = 2, ncol = 2)
dmnts(c(0.6, -1.0), st = strPMNTS)
strPMNTS <- list(ndim = 2,</pre>
                 mu = c(0, 0, 0),
                 sigma = c(1, 1, 1),
                 alpha = 0.1,
                 theta = 3,
                 beta = c(0.1, -0.3, 0),
                 Rho = matrix(
                     data = c(1.0, 0.75, 0.1, 0.75, 1.0, 0.2, 0.1, 0.2, 1.0),
                     nrow = 3, ncol = 3)
pmnts(c(0,0,0), st = strPMNTS)
dmnts(c(0,0,0), st = strPMNTS)
```

10 dnts

dnts dnts

# **Description**

dnts calculates pdf of the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . If only three parameters are given, it calculates pdf of the standard NTS distribution with parameter  $(\alpha, \theta, \beta)$  If a time parameter value is given, it calculates pdf of the NTS profess f(x)dx = d(P((X(t+s) - X(s)) < x)), where X is the NTS process generated by the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ .

# Usage

```
dnts(xdata, ntsparam)
```

# **Arguments**

xdata An array of x

ntsparam A vector of the NTS parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . For the NTS process case it is a

vector of parameters  $(\alpha, \theta, \beta, \gamma, \mu, t)$ . A vector of the standard NTS parameters

 $(\alpha, \theta, \beta)$ .

#### Value

Density of NTS distribution

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
x \leftarrow seq(from = -6, to = 6, length.out = 101)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
\verb|ntsparam| <- c(alpha, theta, beta, gamma, mu)|\\
x < - seq(from = -2, to = 2, by = 0.01)
d <- dnts(x, ntsparam)</pre>
plot(x,d,type = 'l')
#Annual based parameters
alpha <- 1.2
```

fitmnts 11

```
theta <- 1 beta <- -0.2 gamma <- 0.3 mu <- 0.1 #scaling annual parameters to one day dt <- 1/250 #one day ntsparam <- c(alpha, theta, beta, gamma, mu, dt) x <- seq(from = -0.02, to = 0.02, length.out = 101) d <- dots(x, ntsparam) plot(x,d,type = '1')
```

fitmnts

fitmnts

#### **Description**

```
fitmnts fit parameters of the n-dimensional NTS distribution.
```

```
r=\mu+diag(\sigma)X where X \mbox{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

#### Usage

```
\code{res <- fitmnts(returndata, n)}
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta))}
\code{res <- fitmnts(returndata, n, stdflag = TRUE ) }
\code{res <- fitmnts(returndata, n, alphaNtheta = c(alpha, theta), stdflag = TRUE)}</pre>
```

# **Arguments**

returndata Raw data to fit the parameters. The data must be given as a matrix form. Each

column of the matrix contains a sequence of asset returns. The number of row

of the matrix is the number of assets.

Dimension of the data. That is the number of assets.

alphaNtheta If  $\alpha$  and  $\theta$  are given, then put those numbers in this parameter. The func-

tion fixes those parameters and fits other remaining parameters. If you set alphaNtheta = NULL, then the function fits all parameters including  $\alpha$  and

 $\theta$ .

stdflag If you want only standard NTS parameter fit, set this value be TRUE.

#### Value

Structure of parameters for the n-dimensional NTS distribution.

resmu:  $\mu$  mean vector (column vector) of the input data.

 ${\tt res\$sigma}$  :  $\sigma$  standard deviation vector (column vector) of the input data.

res\$alpha :  $\alpha$  of the std NTS distribution (X).

res $theta: \theta$  of the std NTS distribution (X).

res\$beta :  $\beta$  vector (column vector) of the std NTS distribution (X).

res\$Rho :  $\rho$  matrix of the std NTS distribution (X), which is correlation matrix of epsilon.

res\$CovMtx : Covariance matrix of return data <math>r.

12 fitnts

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

### **Examples**

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
getSymbols("^GSPC", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(GSPC$GSPC.Adjusted)</pre>
getSymbols("^DJI", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(DJI$DJI.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata, n=2 )</pre>
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
res <- fitmnts( returndata = returndata,</pre>
                 n = 2
                 alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
```

fitnts

fitnts

# **Description**

fitnts fit parameters  $(\alpha, \theta, \beta, \gamma, \mu)$  of the NTS distribution. This function using the curvefit method between the empirical cdf and the NTS cdf.

### Usage

```
\code{fitnts(rawdat)}
\code{fitnts(rawdat), ksdensityflag = 1}
```

fitnts 13

```
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu))}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), ksdensityflag = 1}
\code{fitnts(rawdat, initialparam = c(alpha, theta, beta, gamma, mu)), maxeval = 100, ksdensityflag
```

### **Arguments**

rawdat Raw data to fit the parameters.

A vector of initial NTS parameters. This function uses the nloptr package. If it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN, that is default. The function cffitnts() may be helpful to find the initial parameters.

Maximum evaluation number for nloptr. The iteration stops on this many function evaluations.

ksdensityflag

This function fit the parameters using the curvefit method between the empirical cdf and the NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = 0, then the

empirical cdf is calculated by the empirical cdf.

#### Value

Estimated parameters

### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2010-1-1", to = "2020-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)
ret <- diff(log(pr))
ntsparam <- fitnts(ret)

Femp = ecdf(ret)
x = seq(from=min(ret), to = max(ret), length.out = 100)
cemp = Femp(x)
ncdf = pnts(x, c(ntsparam))
plot(x,ncdf,type = 'l', col = "red")
points(x,cemp, type = 'l', col = "blue")
a = density(ret)
p = dnts(x,ntsparam)
plot(x,p,type = 'l', col = "red")
lines(a,type = 'l', col = "blue")</pre>
```

14 fitstdnts

|--|--|

### **Description**

fitstdnts fit parameters  $(\alpha, \theta, \beta)$  of the standard NTS distribution. This function using the curvefit method between the empirical cdf and the standard NTS cdf.

# Usage

```
\code{fitstdnts(rawdat)}
\code{fitstdnts(rawdat), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta))}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), ksdensityflag = 1}
\code{fitstdnts(rawdat, initialparam = c(alpha, theta, beta)), maxeval = 100, ksdensityflag = 1}
```

### **Arguments**

rawdat Raw data to fit the parameters.

initial param A vector of initial standard NTS parameters. This function uses the nloptr

package. If it has a good initial parameter then estimation performs better. If users do not know a good initial parameters, then just set it as initialparam=NaN,

that is default.

maxeval Maximum evaluation number for nloptr. The iteration stops on this many func-

tion evaluations.

ksdensityflag This function fit the parameters using the curvefit method between the empirical

cdf and the standard NTS cdf. If ksdensityflag = 1 (default), then the empirical cdf is calculated by the kernel density estimation. If ksdensityflag = 0,

then the empirical cdf is calculated by the empirical cdf.

# Value

Estimated parameters

### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library("quantmod")
getSymbols("^GSPC", src="yahoo", from = "2010-1-1", to = "2020-12-31")
pr <- as.numeric(GSPC$GSPC.Adjusted)
ret <- diff(log(pr))
stdret <- (ret-mean(ret))/sd(ret)
stdntsparam <- fitstdnts(stdret)

Femp = ecdf(stdret)
x = seq(from=min(stdret), to = max(stdret), length.out = 100)
cemp = Femp(x)</pre>
```

gensamplepathnts 15

```
ncdf = pnts(x, c(stdntsparam))
plot(x,ncdf,type = 'l', col = "red")
lines(x,cemp, type = 'l', col = "blue")
a = density(stdret)
p = dnts(x,stdntsparam)
plot(x,p,type = 'l', col = "red", ylim = c(0, max(a$y, p)))
lines(a,type = 'l', col = "blue")
```

gensamplepathnts

gensamplepathnts

### **Description**

gensamplepathnts generate sample paths of the NTS process with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . If only three parameters are given, it generate sample paths of the standard NTS process with parameters  $(\alpha, \theta, \beta)$ .

#### Usage

```
gensamplepathnts(npath, ntimestep, ntsparam, dt)
```

#### **Arguments**

npath Number of sample paths  $\begin{array}{ll} \text{number of sample paths} \\ \text{ntimestep} \\ \text{ntsparam} & \text{A vector of the NTS parameters } (\alpha, \theta, \beta, \gamma, \mu). \text{ A vector of the standard NTS } \\ \text{parameters } (\alpha, \theta, \beta). \\ \text{dt} & \text{the time length of one time step by the year fraction. "dt=1" means 1-year.} \\ \end{array}$ 

#### Value

Structure of the sample path. Matrix of sample path. Column index is time.

```
#standard NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
npath <- 5
ntimestep <- 250
dt <- 1/250
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt)</pre>
matplot(colnames(simulation), t(simulation), type = 'l')
#NTS process sample path
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
```

16 getPortNTSParam

```
ntsparam <- c(alpha, theta, beta, gamma, mu) 
npath <- 5 
ntimestep <- 250 
dt <- 1/250 
simulation <- gensamplepathnts(npath, ntimestep, ntsparam, dt) 
matplot(colnames(simulation), t(simulation), type = 'l')
```

getGammaVec

getGammaVec

#### **Description**

beta to gamma in StdNTS

# Usage

```
getGammaVec(alpha, theta, betaVec)
```

getPortNTSParam

getPortNTSParam

# Description

Portfolio return with capital allocation weight is  $R_p = \langle w, r \rangle$ , which is a weighted sum of of elements in the N-dimensional NTS random vector.  $R_p$  becomes an 1-dimensional NTS random variable. getPortNTSParam find the parameters of  $R_p$ .

# Usage

```
\code{res <- setPortfolioParam(strPMNTS,w)}
\code{res <- setPortfolioParam(strPMNTS,w, FALSE)}</pre>
```

# **Arguments**

strPMNTS Structure of

Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

strPMNTS\$mu :  $\mu$  mean vector (column vector) of the input data.

 ${\tt strPMNTS\$sigma}: \sigma$  standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha :  $\alpha$  of the std NTS distribution (X). strPMNTS\$theta :  $\theta$  of the std NTS distribution (X).

strPMNTS\$beta :  $\beta$  vector (column vector) of the std NTS distribution (X).

res\$Rho :  $\rho$  matrix (Correlation) of the std NTS distribution (X).

res\$Sigma : Covariance  $\Sigma$  matrix of return data r.

Capital allocation weight vector.

W

getPortNTSParam 17

stdform

If  $\operatorname{\mathsf{stdform}}$  is FALSE, then the return parameter has the following representation

 $R_p = \langle w, r \rangle = \mu + diag(\sigma)X,$ 

where

X follows  $stdNTS_1(\alpha, \theta, \beta, 1)$ .

If stdform is TRUE, then the return parameter has the following representation

 $R_p = \langle w, r \rangle$  follows  $stdNTS_1(\alpha, \theta, \beta, \gamma, \mu)$ 

#### Value

The weighted sum follows 1-dimensional NTS.

$$R_p = \langle w, r \rangle = \mu + diag(\sigma)X,$$

where

X follows  $stdNTS_1(\alpha, \theta, \beta, 1)$ .

Hence we obtain

res\$mu :  $\mu$  mean of  $R_p$ .

res\$sigma :  $\sigma$  standard deviation of  $R_p$ .

 $\label{eq:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha} res$theta: $\theta$ of $X$.$   $\label{eq:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:alpha:$ 

# References

Proposition 2.1 of Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

18 ipnts

importantSamplining importantSamplining

# **Description**

importantSamplining do the important sampling for the TS Subordinator.

# Usage

```
importantSamplining(alpha, theta)
```

ipnts

ipnts

# **Description**

ipnts calculates inverse cdf of the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . If only three parameters are given, it calculates inverse cdf of the standard NTS distribution with parameter  $(\alpha, \theta, \beta)$ 

# Usage

```
ipnts(u, ntsparam, maxmin = c(-10, 10), du = 0.01)
```

#### **Arguments**

u Real value between 0 and 1  $\text{A vector of the NTS parameters } (\alpha, \theta, \beta, \gamma, \mu). \text{ A vector of the standard NTS parameters } (\alpha, \theta, \beta).$ 

### Value

Inverse cdf of the NTS distribution. It is the same as qnts function.

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
u <- seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)
plot(u,q,type = 'l')
alpha <- 1.2
theta <- 1</pre>
```

mctCVaRmnts 19

```
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow seq(from = 0.01, to = 0.99, length.out = 99)
q <- ipnts(u, ntsparam)</pre>
plot(x,q,type = 'l')
```

mctCVaRmnts

mctCVaRmnts

# **Description**

Calculate the marginal contribution to CVaR for the multivariate NTS market model: the random vector  $\boldsymbol{r}$  is

```
r = \mu + diag(\sigma)X where X \text{ follows } stdNTS_N(\alpha,\theta,\beta,\Sigma)
```

# Usage

```
\code{mctCVaRmnts(eta, n, w, st)}
```

### **Arguments**

| eta | Significant level of CVaR.                                                             |
|-----|----------------------------------------------------------------------------------------|
| n   | The targer stock to calculate the mctCVaR                                              |
| W   | The capital allocation rate vector for the current portfolio                           |
| st  | Structure of parameters for the N-dimensional NTS distribution.                        |
|     | st\$ndim: Dimension of the model. Here st\$ndim=N.                                     |
|     | $st$ mu : $\mu$ mean vector (column vector) of the input data.                         |
|     | ${\tt st\$sigma}: \sigma$ standard deviation vector (column vector) of the input data. |
|     | st\$alpha : $\alpha$ of the std NTS distribution (X).                                  |
|     | st\$theta: $\theta$ of the std NTS distribution (X).                                   |
|     | st\$beta : $\beta$ vector (column vector) of the std NTS distribution (X).             |

20 mctCVaRnts

st\$Rho :  $\rho$  matrix of the std NTS distribution (X), which is correlation matrix of epsilon.

stCovMtx: Covariance matrix of return data r.

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

# **Examples**

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)),diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,</pre>
                n = 2.
                alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
w \leftarrow c(0.3, 0.7)
eta <- 0.01
mctVaRmnts(eta, 1, w, st) #MCT-VaR for IBM
mctVaRmnts(eta, 2, w, st) #MCT-VaR for INTL
mctCVaRmnts(eta, 1, w, st) #MCT-CVaR for IBM
mctCVaRmnts(eta, 2, w, st) #MCT-CVaR for INTL
```

 $\verb|mctCVaRnts|$ 

mctCVaRnts

# Description

Calculate the marginal contribution to CVaR for the multivariate NTS market model. Developer's version.

mctStdDev 21

### Usage

```
mctCVaRnts(
  eta,
  n,
  w,
  covMtx,
  alpha,
  theta,
  betaArray,
  muArray,
  CVaR = NULL,
  dCVaR = NULL
)
```

 ${\tt mctStdDev}$ 

mctStdDev

# **Description**

Morginal contribution to Risk for Standard Deviation.

# Usage

```
mctStdDev(n, w, covMtx)
```

# Arguments

n The targer stock to calculate the mctCVaR

w The capital allocation rate vector for the current portfolio

CovMtx Covariance matrix of return data.

mctVaRmnts mctVaRmnts

# **Description**

Calculate the marginal contribution to VaR for the multivariate NTS market model: the random vector  $\boldsymbol{r}$  is

```
r = \mu + diag(\sigma)X where X \text{ follows } stdNTS_N(\alpha,\theta,\beta,\Sigma)
```

# Usage

```
\code{mctVaRmnts(eta, n, w, st)}
```

22 mctVaRmnts

#### **Arguments**

| eta | Significant level of CVaR.                                                                       |
|-----|--------------------------------------------------------------------------------------------------|
| n   | The targer stock to calculate the mctCVaR                                                        |
| W   | The capital allocation rate vector for the current portfolio                                     |
| st  | Structure of parameters for the N-dimensional NTS distribution.                                  |
|     | st\$ndim: Dimension of the model. Here st\$ndim=N.                                               |
|     | $st\mbox{mu}: \mu$ mean vector (column vector) of the input data.                                |
|     | ${\tt st\$sigma}: \sigma$ standard deviation vector (column vector) of the input data.           |
|     | st\$alpha : $\alpha$ of the std NTS distribution (X).                                            |
|     | st\$theta : $\theta$ of the std NTS distribution (X).                                            |
|     | st\$beta : $\beta$ vector (column vector) of the std NTS distribution (X).                       |
|     | st\$Rho : $\rho$ matrix of the std NTS distribution (X), which is correlation matrix of epsilon. |
|     | st $CovMtx$ : Covariance matrix of return data $r$ .                                             |
|     |                                                                                                  |

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

```
library(functional)
library(nloptr)
library(pracma)
library(spatstat)
library(Matrix)
library(quantmod)
library(mvtnorm)
#Fix alpha and theta.
#Estimate alpha dna theta from DJIA and use those parameter for IBM, INTL parameter fit.
getSymbols("^DJI", src="yahoo", from = "2020-8-25", to = "2020-08-31")
prDJ <- as.numeric(DJI$DJI.Adjusted)</pre>
ret <- diff(log(prDJ))</pre>
ntsparam <- fitnts(ret)</pre>
getSymbols("IBM", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr1 <- as.numeric(IBM$IBM.Adjusted)</pre>
getSymbols("INTL", src="yahoo", from = "2016-1-1", to = "2020-08-31")
pr2 <- as.numeric(INTL$INTL.Adjusted)</pre>
returndata <- matrix(data = c(diff(log(pr1)), diff(log(pr2))),</pre>
                      ncol = 2, nrow = (length(pr1)-1))
st <- fitmnts( returndata = returndata,</pre>
                n = 2,
                alphaNtheta = c(ntsparam["alpha"], ntsparam["theta"]) )
w \leftarrow c(0.3, 0.7)
eta <- 0.01
mctVaRmnts(eta, 1, w, st) #MCT-VaR for IBM
mctVaRmnts(eta, 2, w, st) #MCT-VaR for INTL
mctCVaRmnts(eta, 1, w, st) #MCT-CVaR for IBM
```

mctVaRnts 23

```
mctCVaRmnts(eta, 2, w, st) #MCT-CVaR for INTL
```

mctVaRnts

mctVaRnts

### **Description**

Calculate the marginal contribution to VaR for the multivariate NTS market model. Developer's version.

# Usage

```
mctVaRnts(
   eta,
   n,
   w,
   covMtx,
   alpha,
   theta,
   betaArray,
   muArray,
   icdf = NULL,
   dicdf = NULL
)
```

moments\_NTS

moments\_NTS

### **Description**

moments\_NTS calculates mean, variance, skewness, and excess kurtosis of the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ .

# Usage

```
moments_NTS(param)
```

# **Arguments**

param

A vector of the NTS parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ .

# Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. The mean is always the same as the parameter  $\mu$ .

# References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

24 moments\_stdNTS

# **Examples**

```
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)
moments_NTS(param = ntsparam)</pre>
```

moments\_stdNTS

moments\_stdNTS

# Description

moments\_stdNTS calculates mean, variance, skewness, and excess kurtosis of the standard NTS distribution with parameters  $(\alpha, \theta, \beta)$ .

# Usage

```
moments_stdNTS(param)
```

# **Arguments**

param

A vector of the standard NTS parameters  $(\alpha, \theta, \beta)$ .

### Value

First 4 moments (Mean, Variance, Skewness, Excess Kurtosis) of NTS distribution. Of course, the mean and variance are always 0 and 1, respectively.

### References

Kim, Y.S, K-H Roh, R. Douady (2020) Tempered Stable Processes with Time Varying Exponential Tails https://arxiv.org/pdf/2006.07669.pdf

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)
moments_stdNTS(param = ntsparam)</pre>
```

pmarginalmnts 25

pmarginalmnts

pmarginalmnts

# Description

pmarginalmnts calculates the marginal cdf of the n-th element of the multivariate NTS distributed random variable.

### Usage

```
pmarginalmnts(x, n, st)
```

# **Arguments**

st

Structure of parameters for the n-dimensional NTS distribution.

pmnts

pmnts

# **Description**

```
pmnts calculates the cdf values of the multivariate NTS distribution: F(x_1,\cdots,x_n)=P(x_n< R_1,\cdots,x_n< R_n). The multivariate NTS random vector R=(R_1,\cdots,R_n) is defined R=\mu+diag(\sigma)X, where X follows stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

# Usage

```
pmnts(x, st, subTS = NULL)
```

### **Arguments**

x array of the  $(x_1, \dots, x_n)$ 

st Structure of parameters for the n-dimensional NTS distribution.

 $\verb|st$ndim: dimension|\\$ 

 ${\tt st} = \mu$  mean vector (column vector) of the input data.

st $sigma: \sigma$  standard deviation vector (column vector) of the input data.

st\$alpha :  $\alpha$  of the std NTS distribution (X).

st\$theta :  $\theta$  of the std NTS distribution (X).

st\$beta :  $\beta$  vector (column vector) of the std NTS distribution (X).

st\$Rho :  $\rho$  matrix of the std NTS distribution (X).

numofsample number of samples.

#### Value

Simulated NTS random vectors

26 pnts

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

# **Examples**

```
library(mvtnorm)
strPMNTS <- list(ndim = 2,</pre>
              mu = c(0.5, -1.5),
              sigma = c(2, 3),
              alpha = 0.1,
              theta = 3,
              beta = c(0.1, -0.3),
              Rho = matrix( data = c(1.0, 0.75, 0.75, 1.0),
                            nrow = 2, ncol = 2)
pmnts(c(0.6, -1.0), st = strPMNTS)
strPMNTS <- list(ndim = 2,</pre>
                 mu = c(0, 0, 0),
                 sigma = c(1, 1, 1),
                 alpha = 0.1,
                 theta = 3,
                 beta = c(0.1, -0.3, 0),
                 Rho = matrix(
                     data = c(1.0, 0.75, 0.1, 0.75, 1.0, 0.2, 0.1, 0.2, 1.0),
                     nrow = 3, ncol = 3)
pmnts(c(0,0,0), st = strPMNTS)
dmnts(c(0,0,0), st = strPMNTS)
```

pnts

pnts

# Description

pnts calculates cdf of the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . If only three parameters are given, it calculates cdf of the standard NTS distribution with parameter  $(\alpha, \theta, \beta)$  If a time parameter value is given, it calculates cdf of the profess F(x) = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ .

#### Usage

```
pnts(xdata, ntsparam, dz = 2^-8, m = 2^12)
```

#### **Arguments**

xdata

An array of x

ntsparam

A vector of the NTS parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . For the NTS process case it is a vector of parameters  $(\alpha, \theta, \beta, \gamma, \mu, t)$ . A vector of the standard NTS parameters  $(\alpha, \theta, \beta)$ .

portfolioCVaRmnts 27

#### Value

Cumulative probability of the NTS distribution

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

# **Examples**

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
x \leftarrow seq(from = -6, to = 6, length.out = 101)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
x <- seq(from = -2, to = 2, by = 0.01)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
\#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
x <- seq(from = -0.02, to = 0.02, length.out = 101)
p <- pnts(x, ntsparam)</pre>
plot(x,p,type = 'l')
```

portfolioCVaRmnts

portfolioCVaRmnts

# **Description**

Calculate portfolio conditional value at risk (expected shortfall) on the NTS market model

# Usage

```
portfolioCVaRmnts(strPMNTS, w, eta)
```

28 portfolioVaRmnts

### **Arguments**

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

strPMNTS\$mu :  $\mu$  mean vector (column vector) of the input data.

strPMNTSsigma :  $\sigma$  standard deviation vector (column vector) of the input

data.

strPMNTS\$alpha :  $\alpha$  of the std NTS distribution (X). strPMNTS\$theta :  $\theta$  of the std NTS distribution (X).

strPMNTS\$beta :  $\beta$  vector (column vector) of the std NTS distribution (X).

res\$Rho :  $\rho$  matrix (Correlation) of the std NTS distribution (X).

resSigma: Covariance  $\Sigma$  matrix of return data r.

w Capital allocation weight vector.

eta significanlt level

#### Value

portfolio value at risk on the NTS market model

portfolioVaRmnts portfolioVaRmnts

# **Description**

Calculate portfolio value at risk on the NTS market model

# Usage

```
portfolioVaRmnts(strPMNTS, w, eta)
```

# **Arguments**

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $trPMNTSmu: \mu$  mean vector (column vector) of the input data.

strPMNTS $sigma: \sigma$  standard deviation vector (column vector) of the input

data.

 $\mbox{strPMNTS\$alpha}: \alpha \mbox{ of the std NTS distribution (X)}. \\ \mbox{strPMNTS\$theta}: \theta \mbox{ of the std NTS distribution (X)}. \\$ 

strPMNTS\$beta :  $\beta$  vector (column vector) of the std NTS distribution (X).

res\$Rho :  $\rho$  matrix (Correlation) of the std NTS distribution (X).

resSigma: Covariance  $\Sigma$  matrix of return data r.

w Capital allocation weight vector.

eta significanlt level

### Value

portfolio value at risk on the NTS market model

qmarginalmnts 29

qmarginalmnts

qmarginalmnts

# **Description**

qmarginalmnts calculates the quantile value of the n-th element of the multivariate NTS distributed random variable.

# Usage

```
qmarginalmnts(u, n, st)
```

# **Arguments**

st

Structure of parameters for the n-dimensional NTS distribution.

qnts

qnts

# **Description**

qnts calculates quantile of the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . If only three parameters are given, it calculates quantile of the standard NTS distribution with parameter  $(\alpha, \theta, \beta)$  If a time parameter value is given, it calculates quantile of NTS profess. That is it finds x such that u = P((X(t+s) - X(s)) < x), where X is the NTS process generated by the NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ .

#### Usage

```
qnts(u, ntsparam)
```

# **Arguments**

u vector of probabilities.

ntsparam

A vector of the NTS parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . For the NTS process case it is a vector of parameters  $(\alpha, \theta, \beta, \gamma, \mu, t)$ . A vector of standard NTS parameters  $(\alpha, \theta, \beta)$ .

# Value

The quantile function of the NTS distribution

30 rmnts

#### **Examples**

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
u \leftarrow c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)
q <- qnts(u, ntsparam)</pre>
```

rmnts

rmnts

# **Description**

```
rmnts generates random vector following the n dimensional NTS distribution.
```

```
r = \mu + diag(\sigma)X, where X \text{ follows } stdNTS_n(\alpha,\theta,\beta,\Sigma)
```

# Usage

```
rmnts(strPMNTS, numofsample, rW = NaN, rTau = NaN)
```

# **Arguments**

strPMNTS Structure of parameters for the n-dimensional NTS distribution.

strPMNTS\$ndim: dimension

 $strPMNTS$mu: \mu mean vector (column vector) of the input data.$ 

strPMNTS\$sigma :  $\sigma$  standard deviation vector (column vector) of the input

strPMNTS\$alpha :  $\alpha$  of the std NTS distribution (X).

rnts 31

```
\mbox{strPMNTS\$theta}: \theta \mbox{ of the std NTS distribution } (X). \\ \mbox{strPMNTS\$beta}: \beta \mbox{ vector (column vector) of the std NTS distribution } (X). \\ \mbox{strPMNTS\$Rho}: \rho \mbox{ matrix of the std NTS distribution } (X). \\ \mbox{numofsample} \mbox{ number of samples}.
```

### Value

Simulated NTS random vectors

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

# **Examples**

rnts

rnts

# **Description**

rnts generates random numbers following NTS distribution with parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . If only three parameters are given, it generates random numbers of standard NTS distribution with parameter  $(\alpha, \theta, \beta)$  If a time parameter value is given, it generates random numbers of increments of NTS profess for time interval t.

# Usage

```
rnts(n, ntsparam)
```

# **Arguments**

n number of random numbers to be generated. A vector of NTS parameters  $(\alpha, \theta, \beta, \gamma, \mu)$ . For NTS process case it is a vector of parameters  $(\alpha, \theta, \beta, \gamma, \mu, t)$ . A vector of standard NTS parameters  $(\alpha, \theta, \beta)$ .

# Value

NTS random numbers

32 setPortfolioParam

#### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

# **Examples**

```
alpha <- 1.2
theta <- 1
beta <- -0.2
ntsparam <- c(alpha, theta, beta)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
ntsparam <- c(alpha, theta, beta, gamma, mu)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
#Annual based parameters
alpha <- 1.2
theta <- 1
beta <- -0.2
gamma <- 0.3
mu <- 0.1
#scaling annual parameters to one day
dt <- 1/250 #one day
ntsparam <- c(alpha, theta, beta, gamma, mu, dt)</pre>
r <- rnts(100, ntsparam) #generate 100 NTS random numbers
plot(r)
```

setPortfolioParam

setPortfolioParam

# **Description**

Please use getPortNTSParam instead of setPortfolioParam.

Portfolio return with capital allocation weight is  $R_p = \langle w, r \rangle$ , which is a weighted sum of of elements in the N-dimensional NTS random vector.  $R_p$  becomes an 1-dimensional NTS random variable. setPortfolioParam find the parameters of  $R_p$ .

# Usage

```
\code{res <- setPortfolioParam(strPMNTS,w)}</pre>
```

setPortfolioParam 33

#### **Arguments**

```
Structure of parameters for the n-dimensional NTS distribution.  \begin{split} & \mathsf{strPMNTS\$ndim}: \mathsf{dimension} \\ & \mathsf{strPMNTS\$mu}: \mu \; \mathsf{mean} \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{input} \; \mathsf{data}. \\ & \mathsf{strPMNTS\$sigma}: \; \sigma \; \mathsf{standard} \; \mathsf{deviation} \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{input} \; \mathsf{data}. \\ & \mathsf{strPMNTS\$slpha}: \; \alpha \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (\mathsf{X}). \\ & \mathsf{strPMNTS\$theta}: \; \theta \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (\mathsf{X}). \\ & \mathsf{strPMNTS\$heta}: \; \beta \; \mathsf{vector} \; (\mathsf{column} \; \mathsf{vector}) \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (\mathsf{X}). \\ & \mathsf{strPMNTS\$Rho}: \; \Sigma \; \mathsf{matrix} \; \mathsf{of} \; \mathsf{the} \; \mathsf{std} \; \mathsf{NTS} \; \mathsf{distribution} \; (\mathsf{X}). \\ & \mathsf{w} \; \qquad \mathsf{Capital} \; \mathsf{allocation} \; \mathsf{weight} \; \mathsf{vector}. \\ \end{split}
```

#### Value

```
The weighted sum follows 1-dimensional NTS.
```

```
R_p=< w, r>=\mu+diag(\sigma)X, where X follows stdNTS_1(\alpha,\theta,\beta,1). Hence we obtain res$mu: \mu mean of R_p. res$sigma: \sigma standard deviation of R_p. res$alpha: \alpha of X. res$theta: \theta of X.
```

### References

Kim, Y. S. (2020) Portfolio Optimization on the Dispersion Risk and the Asymmetric Tail Risk https://arxiv.org/pdf/2007.13972.pdf

# **Index**

rmnts, 30

```
changeCovMtx2Rho, 2
                                                   rnts, 31
chf_NTS, 3
                                                   setPortfolioParam, 32
chf\_stdNTS, 4
copulaStdNTS, 5
cvarGauss, 5
cvarmarginalmnts, 5
cvarnts, 6
dBeta, 7
dcopulaStdNTS, 7
dCVaR_numint, 7
dinvCdf_stdNTS, 8
{\tt dmarginalmnts}, {\color{red} 8}
dmnts, 8
dnts, 10
fitmnts, 11
fitnts, 12
fitstdnts, 14
{\tt gensample pathnts}, 15
getGammaVec, 16
getPortNTSParam, 16
importantSamplining, 18
ipnts, 18
mctCVaRmnts, 19
mctCVaRnts, 20
mctStdDev, 21
mctVaRmnts, 21
mctVaRnts, 23
moments_NTS, 23
moments_stdNTS, 24
pmarginalmnts, 25
pmnts, 25
pnts, 26
portfolioCVaRmnts, 27
portfolioVaRmnts, 28
qmarginalmnts, 29
qnts, 29
```