СОДЕРЖАНИЕ

Содержание

9.	Teo	Теория меры	
	9.1	Система множеств	2
	9.2	Объем и мера	7
	9.3	Продолжение меры	11
	9.4	Мера Лебега	16
	9.5	Измеримые функции	21
	9.6	Последовательность функций	26
10.Интеграл Лебега			29
	10.1	Определение интеграла	29
	10.2	Суммируемые функции	33

9. Теория меры 2

9. Теория меры

9.1 Система множеств

Обозначение:

Дизъюнктные множества:

1.
$$A \sqcup B := A \cup B$$
 и $A \cap B = \emptyset$

2.
$$\bigsqcup_{k=1}^{n} A_k := \bigcup_{k=1}^{n} A_k$$
 и $A_i \cap A_j = \emptyset$

Определение 9.1.1. $\{E_{\alpha}\}_{\alpha\in I}$ – разбиение множества E, если $E=\bigsqcup_{\alpha\in I}E_{\alpha}$

Напоминание:

$$X \setminus \bigcup_{\alpha \in I} E_{\alpha} = \bigcap_{\alpha \in I} (X \setminus E_{\alpha})$$
 и $X \setminus \bigcup_{\alpha \in I} E_{\alpha} = \bigcap_{\alpha \in I} (X \setminus E_{\alpha})$

Определение 9.1.2. A – система подмножеств X:

 δ_0 . Если $A, B \in \mathcal{A}$, то $A \cap B \in \mathcal{A}$.

 σ_0 . Если $A, B \in \mathcal{A}$, то $A \cup B \in \mathcal{A}$.

$$\delta$$
. Если $A_1, A_2, \ldots \in \mathcal{A}$, то $\bigcap_{n=1}^{\infty} A_n \in \mathcal{A}$.

$$\sigma$$
. Если $A_1, A_2, \ldots \in \mathcal{A}$, то $\bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

Замечание. Из δ следует δ_0 и из σ следует σ_0 (так как δ и σ подразумевают более сильные ограничения на структуру).

Определение 9.1.3. Система множества *симметрична*, если $A \in \mathcal{A} \Rightarrow X \setminus A \in \mathcal{A}$.

Определение 9.1.4. Система множества \mathcal{A} – *алгебра*, если она симметрична, $\emptyset \in \mathcal{A}$, есть свойства δ_0 и σ_0 .

Определение 9.1.5. Система множества $\mathcal{A} - \sigma$ -алгебра, если она симметрична, $\emptyset \in \mathcal{A}$, есть свойства δ и σ .

Утверждение 9.1.1. Если $\mathcal A$ симметричная система, то $\sigma_0 \Leftrightarrow \delta_0$ и $\sigma \Leftrightarrow \delta$.

Доказательство.
$$X \setminus (\underbrace{(X \setminus A) \cup (X \setminus B)}_{X \setminus (A \cap B)}) = A \cap B$$
 и $X \setminus (\underbrace{(X \setminus A) \cap (X \setminus B)}_{X \setminus (A \cup B)}) = A \cup B$

3амечание. Если $\mathcal{A}-\sigma$ -алгебра, то $\mathcal{A}-$ алгебра.

9.1 Система множеств 3

Свойства алгебры множеств:

- 1. $\varnothing, X \in \mathcal{A}$.
- 2. Если $A,B\in\mathcal{A},$ то $\underbrace{A\setminus B}_{A\cap(X\setminus B)}\in\mathcal{A}.$
- 3. Если $A_1,A_2,...,A_n\in\mathcal{A},$ то $\bigcup\limits_{k=1}^nA_k$ и $\bigcap\limits_{k=1}^nA_k\in\mathcal{A}$ (по индукции).

Пример.

1. $X=\mathbb{R}^2,\,\mathcal{A}=\{$ все огранич. мн-ва и их дополнения $\}$

(пустое есть, для любого множества есть дополнение, пересечение двух ограниченных ограниченно, пересечение ограниченного с каким-то ограничено и пересечение дополнений – это дополнение объединений, а объединение ограниченых ограничено)

 \mathcal{A} – алгебра, но не σ -алгебра.

- 2. $2^{X} \sigma$ -алгебра
- 3. $Y \subset X$, A алгебра (σ -алгебра) подмножеств X, тогда:

$$\mathcal{B}:=\{A\cap Y\mid A\in\mathcal{A}\}$$
 – алгебра (σ -алгебра) – индуцированная алгебра

Доказательство. $Y \setminus (A \cap Y) = Y \cap (X \setminus A)$

Проверили, что взяли какую-то алгберу и пересекли с конкретным множеством, то структура сохранится.

4. Пусть \mathcal{A}_{α} – алгебры (σ -алгебры). Тогда $\bigcap_{\alpha \in I} \mathcal{A}_{\alpha}$ – алгебра (σ -алгебра).

Доказательство. Пустое лежало везде, поэтому оно осталось в пересечении. Само пересечение, очевидно, тоже есть.

Если
$$A, B \in \bigcap_{\alpha \in I} A_{\alpha}$$
, то $A, B \in \mathcal{A}_{\alpha} \ \forall \alpha \in I \Rightarrow A \cup B \in \mathcal{A}_{\alpha} \ \forall \alpha \in I \Rightarrow \bigcap_{\alpha \in I} A_{\alpha}$

5. Пусть есть $A, B \subset X$.

Вопрос: из чего состоит наименьшая алебра, содержащая А и В?

Omsem:
$$\varnothing, X, A, B, A \cap B, A \cup B, X \setminus A, X \setminus B, X \setminus (A \cap B), X \setminus (A \cup B), A \setminus B, B \setminus B,$$

 $A \triangle B, X \setminus (A \triangle B), X \setminus (A \setminus B), X \setminus (B \setminus A)$

9.1 Система множеств 4

Теорема 9.1.1. Пусть \mathcal{E} – система подмножеств X. Тогда существует наименьшая по включению σ -алгебра \mathcal{A} , содержащая \mathcal{E} .

 \mathcal{A} оказательство. $2^X - \sigma$ -алгебра, содержащая \mathcal{E} .

Пусть \mathcal{A}_{α} – всевозможные σ -алгебры, содержащие \mathcal{E} .

$$\mathcal{B} := \bigcap_{\alpha \in I} \mathcal{A}_{\alpha} - \sigma$$
-алгебра, $\mathcal{B} \supset \mathcal{E}$ и $\mathcal{A}_{\alpha} \supset \mathcal{E} \ \forall \alpha$.

Доказали сущестование.

Определение 9.1.6. Такая σ -алгебра – *борелевская оболочка* \mathcal{E} . Обозначается как $\mathcal{B}(\mathcal{E})$.

Определение 9.1.7. Пусть $X = \mathbb{R}^m$, \mathcal{E} – всевозможные открытые множества. *Борелевская \sigma-алгебра* $\mathcal{B}^m := \mathcal{B}(\mathcal{E})$.

3амечание. $\mathcal{B}^m \neq 2^{\mathbb{R}^m}$ (имеют разные мощности: \mathcal{B}^m – континуум, $2^{\mathbb{R}^m}$ – больше континуума)

Определение 9.1.8. \mathcal{R} – кольцо подмножеств X, если $A,B\in\mathcal{R}\Rightarrow A\cap B,A\cup B,A\setminus B\in\mathcal{R}$

Замечание. Если \mathcal{R} – кольцо и $X \in \mathcal{R}$, то \mathcal{R} – алгебра.

Определение 9.1.9. P – *полукольцо подмножеств* X, если:

- 1. $\emptyset \in \mathcal{P}$
- 2. $A, B \in \mathcal{P} \Rightarrow A \cap B \in \mathcal{P}$
- 3. $A, B \in \mathcal{P} \Rightarrow$ существуют $Q_1, Q_2, ..., Q_n \in \mathcal{P}$ т.ч. $A \setminus B = \bigsqcup_{k=1}^n Q_k$

Пример. $X=\mathbb{R},\,\mathcal{P}:=\{(a,b]\mid a,b\in\mathbb{R}\}$ – полукольцо

Лемма 9.1.1.
$$\bigcup A_k = \bigsqcup (A_k \setminus \bigcup_{j=1}^{k-1} A_j)$$

Доказательство. Проверяем «Э»: $B_k:=A_k\setminus\bigcup_{j=1}^{k-1}A_j\subset A_k\Rightarrow\bigcup A_k\supset\bigcup B_k$ Проверяем, что B_k дизьюнктны: $B_n\subset A_n\setminus\underbrace{A_k}_{\supset B_k}$ при $n>k\Rightarrow B_n\cup B_k=\varnothing$

Проверяем «С»: берем
$$x \in \bigcup A_k$$
, $n := \min\{j \mid x \in A_j\} \Rightarrow x \in B_n = \underbrace{A_n}_{x \in A_j} \setminus \bigcup_{j=1}^{n-1} A_j \Rightarrow x \in \bigcup B_k$.

9.1 Система множеств 5

Теорема 9.1.2. Свойства полукольца:

Пусть $P, P_1, P_2, ... \in \mathcal{P}$, где \mathcal{P} – полукольцо. Тогда:

1.
$$P \setminus \bigcup_{k=1}^{n} P_k = \coprod_{j=1}^{m} Q_j$$
 для некоторых $Q_j \in \mathcal{P}$.

2.
$$\bigcup_{k=1}^n P_k = \coprod_{k=1}^n \coprod_{j=1}^{m_k} Q_{kj}$$
 для некоторых $Q_{kj} \in \mathcal{P}$, т.ч. $Q_{kj} \subset P_k$.

3. Во 2 пункте можно вместо n написать ∞ .

Доказательство.

1. Индукция по n. База – определение. Переход $n-1 \to n$

$$P \setminus \bigcup_{k=1}^n P_k = (\underbrace{P \setminus \bigcup_{k=1}^{n-1} P_k}_{\text{инд.пр.} = \bigsqcup_{j=1}^m Q_j}) \setminus P_n = \bigsqcup_{j=1}^m Q_j \setminus P_n = \bigsqcup_{j=1}^m \bigsqcup_{i=1}^{m_j} Q_{ji}$$

$$2. \bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{n} (P_k \setminus \bigcup_{j=1}^{k-1} P_j) \stackrel{\text{no } 1}{=} \bigsqcup_{k=1}^{n} \bigsqcup_{j=1}^{m_k} Q_{kj} \Rightarrow Q_{kj} \subset P_k$$

Теорема 9.1.3. Декартово произведение полуколец

Пусть \mathcal{P} – полукольцо подмножеств мн-ва X, \mathcal{Q} – полукольцо подмножеств мн-ва Y. Тогда конструкция $\mathcal{P} \times \mathcal{Q} := \{P \times Q \mid P \in \mathcal{P}, Q \in \mathcal{Q}\}$ – полукольцо подмножеств $X \times Y$.

Доказательство. Пусть $P_1 \times Q_1$ и $P_2 \times Q_2 \in \mathcal{P} \times \mathcal{Q} \Rightarrow (P_1 \times Q_1) \cap (P_2 \times Q_2) = (P_1 \cap P_2) \times (Q_1 \cap Q_2) \in \mathcal{P}$ $(P_1 \times Q_1) \setminus (P_2 \times Q_2) = (P_1 \setminus P_2) \times (Q_1 \cap P_2) \times (Q_1 \cap P_2) \times (Q_1 \setminus Q_2) \in \mathcal{P}$ диз. об. эл-в \mathcal{Q}

Замечание. Полукольцо – это структура, которая сохраняется при взятии декартового произведения (в отличие от алгебры и σ -алгебры).

Определение 9.1.10. Открытый парамлеленипед $(a,b), a,b \in \mathbb{R}^m$

$$(a,b) := (a_1,b_1) \times (a_2,b_2) \times ... \times (a_m,b_m)$$

Определение 9.1.11. Замкнутый параллелепипед $[a,b], a,b \in \mathbb{R}^m$ $[a,b] := [a_1,b_1] \times [a_2,b_2] \times ... \times [a_m,b_m]$

9.1 Система множеств 6

Определение 9.1.12. Ячейка $(a, b], a, b \in \mathbb{R}^m$

$$(a,b] := (a_1,b_1] \times (a_2,b_2] \times ... \times (a_m,b_m]$$

$$G = (G_1, G_2)$$

$$Q = (G_1, G_2)$$

Замечание. $(a,b) \subset (a,b] \subset [a,b]$

Утверждение 9.1.2. Непустая ячейка – пересечение убывающей последовательности открытых параллелепипедов и объединение возрастающих последовательностей замкнутых параллелепипедов.

Доказательство. $(a, b] = (a_1, b_1] \times (a_2, b_2] \times ... \times (a_m, b_m]$

Рассмотрим открытые параллеленинеды $P_n := (a_1, b_1 + \frac{1}{n}) \times (a_2, b_2 + \frac{1}{n}) \times ... \times (a_m, b_m + \frac{1}{n})$

$$P_{n+1} \subset P_n, P_n \supset (a,b]$$
 и $\bigcap_{n=1}^{\infty} P_n = (a,b]$

 $P_{n+1}\subset P_n,\ P_n\supset (a,b]$ и $\bigcap_{n=1}^\infty P_n=(a,b]$ Рассмотрим закрытые параллелепипеды $A_n:=[a_1-\frac{1}{n},b_1]\times [a_2-\frac{1}{n},b_2]\times ..\times [a_m-\frac{1}{n},b_m]$

$$A_{n+1} \supset A_n \subset (a, b], \bigcup A_n = (a, b]$$

Обозначение:

- 1. \mathcal{P}^m семейство ячеек в \mathbb{R}^m (в т.ч. и пустое множество).
- 2. $\mathcal{P}^m_{\mathbb{Q}}$ семейство ячеек в \mathbb{R}^m , у которых все координаты вершин рациональны.

Теорема 9.1.4. Всякое непустое открытое множество $G \subset \mathbb{R}^m$ представляется в виде дизтонктного объединения счетного числа ячеек, замыкания которых $\subset G$. Более того, можно считать, что координаты всех вершин всех ячеек рациональны.

Доказательство. $x \in G \stackrel{G \text{ откр.}}{\Rightarrow} x \in \overline{B}_r(x) \subset G$

Найдется ячейка R_x , т.ч. $x \in R_x$, координаты R_x рациональны и $\operatorname{Cl} R_x \subset G$ (Cl содержится в $\overline{\operatorname{B}}_r(x)$, которое содержится в G).

Выкинем все повторы и получим счетное число ячеек, объединение которых (не дизъюнктное) равно G. По свойству полукольца можно это объединение сделать дизъюнктным.

Замечание. Явный алгоритм.

Нарезаем на сетку. Те ячейки, которые попали – берем, иначе – половинем и снова смотрим, какие из ячеек попали, а какие нет.

Следствие.
$$\mathcal{B}(\mathcal{P}_{\mathbb{Q}}^m)\stackrel{1)\subset}{=}\mathcal{B}(\mathcal{P}^m)\stackrel{2)\subset}{=}\mathcal{B}^m\stackrel{3)\subset}{=}$$

Доказательство.

1)
$$\mathcal{P}^m \supset \mathcal{P}^m_{\mathbb{Q}} \Rightarrow \mathcal{B}(\mathcal{P}^m) \supset \mathcal{P}^m_{\mathbb{Q}} \overset{\sigma\text{-a,ire6pa}}{\Rightarrow} \mathcal{B}(\mathcal{P}^m) \supset \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$$

2)
$$\mathcal{P}^m \subset \mathcal{B}^m \Rightarrow \mathcal{B}(\mathcal{P}^m) \subset \mathcal{B}^m$$

Ячейка — счетное пересечение открытых параллелепипедов, т.е. открытых множеств. Они лежат в \mathcal{B}^m , но \mathcal{B}^m — σ -алгебра \Rightarrow там есть и счетное пересечение.

3) G – открытое множество $\Rightarrow G \in \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$, т.к. по теореме G – счетное объединение элементов из $\mathcal{P}^m_{\mathbb{Q}} \Rightarrow \mathcal{B}^m \subset \mathcal{B}(\mathcal{P}^m_{\mathbb{Q}})$

9.2 Объем и мера

Определение 9.2.1. Пусть \mathcal{P} – полукольцо подмножеств $X,\ \mu:\mathcal{P}\to [0,+\infty].$

Тогда μ – объем, если:

1.
$$\mu\varnothing=0$$

2. Если
$$A_1,...,A_n\in\mathcal{P},$$
 то $\mu(\bigsqcup_{k=1}^nA_k)=\sum_{k=1}^n\mu A_k$

Определение 9.2.2. Пусть \mathcal{P} – полукольцо подмножеств $X, \, \mu : \mathcal{P} \to [0, +\infty].$ μ – mepa, если:

1.
$$\mu\varnothing=0$$

2. Если
$$A_1,A_2,...\in\mathcal{P},$$
 то $\mu(\bigsqcup_{k=1}^\infty A_k)=\sum_{k=1}^\infty \mu A_k$

Замечание. Если μ – мера, то μ – объем.

Упраженение. Если мера $\mu \neq +\infty$, то $\mu\varnothing = 0$ из п. 2.

Пример. Объемы:

- 1. Длина ячейки в \mathbb{R} .
- 2. Пусть gнеубывающая функция : $\mathbb{R} \to \mathbb{R}, \, \nu_g(a,b] := g(b) g(a), \, (a,b] \subset \mathbb{R}$

8

3. Классический объем ячейки в \mathbb{R}^m (докажем позже)

$$\lambda_m(a,b] = (b_m - a_m)...(b_2 - a_2)(b_1 - a_1)$$

4.
$$x_0 \in X$$
, $a > 0$, $\mu A = \begin{cases} a, & \text{если } x_0 \in A \\ 0, & \text{иначе} \end{cases}$

5. A – огранич. подмн-ва $\mathbb R$ и их дополнения.

Если
$$A\in\mathcal{A},$$
 то $\mu A=\left\{ egin{array}{ll} 0, & ext{если }A- ext{огр. мн-во} \\ 1, & ext{иначе} \end{array} \right.$

Это объем, но не мера.

Теорема 9.2.1. Пусть μ – объем на полукольце \mathcal{P} . Тогда:

1. Если
$$P'\subset P\ (P,P'\in\mathcal{P}),\ mo\ \mu P'\leq \mu P.$$
 (монотонность объема)

2. Если
$$\bigsqcup_{k=1}^{n} P_k \subset P$$
, то $\sum_{k=1}^{n} \mu P_k \leq \mu P$. (усиленная монотонность)

2'. Если
$$\bigsqcup_{k=1}^{\infty} P_k \subset P$$
, то $\sum_{k=1}^{\infty} \mu P_k \leq \mu P$.

3. Если
$$P \subset \bigcup_{k=1}^n P_k$$
, то $\mu P \leq \sum_{k=1}^n \mu P_k$ (полуаддитивность)

Доказательство.

2.
$$P \setminus \bigsqcup_{k=1}^{n} P_{k} = \bigsqcup_{j=1}^{m} Q_{j}$$
, где $Q_{j} \in \mathcal{P} \Rightarrow P = \bigsqcup_{k=1}^{n} P_{k} \sqcup \bigsqcup_{j=1}^{m} Q_{j} \Rightarrow \mu P = \sum_{k=1}^{n} \mu P_{k} + \sum_{j=1}^{m} \mu Q_{j} \geq \sum_{k=1}^{n} \mu P_{k}$

2'.
$$\bigsqcup_{k=1}^{n} P_k \subset \bigsqcup_{k=1}^{\infty} P_k \subset P \Rightarrow \mu P \geq \sum_{k=1}^{n} \mu P_k \rightarrow \sum_{k=1}^{\infty} \mu P_k$$

3.
$$P'_k := P_k \cap P \in \mathcal{P} \Rightarrow P = \bigcup_{k=1}^n P'_k \Rightarrow P = \bigcup_{k=1}^n \bigcup_{j=1}^{m_k} Q_{kj}, \ Q_{kj} \in \mathcal{P}, \ Q_{kj} \subset P'_k \subset P_k$$

$$\bigsqcup_{j=1}^{m_k} Q_{kj} \subset P_k \stackrel{2)}{\Rightarrow} \sum_{j=1}^{m_k} \mu Q_{kj} \le \mu P_k$$

$$\mu P = \sum_{k=1}^{n} \sum_{j=1}^{m_k} \mu Q_{kj} \le \sum_{k=1}^{n} \mu P_k$$

Замечание.

1. Если \mathcal{P} – кольцо, $A,B\in\mathcal{P},\ A\subset B$ и $\mu A<+\infty,$ то $\mu(B\setminus A)=\mu B-\mu A.$

$$B = \underset{\in \mathcal{P}}{A} \sqcup (B \setminus A)$$

2. Объем с полукольца можно продолжить на кольцо, состоящее из всевозможных дизъюнктных объединений.

Теорема 9.2.2. Пусть \mathcal{P} – полукольцо подмножеств X, μ – объем на \mathcal{P} , \mathcal{Q} – полукольцо подмножеств Y, ν – объем на \mathcal{Q} .

$$\lambda: \mathcal{P} \times \mathcal{Q} \to [0, +\infty].$$

$$\lambda(\mathcal{P} \times \mathcal{Q}) = \mu \mathcal{P} \cdot \nu \mathcal{Q}$$
 (считаем, что $0 \cdot +\infty = +\infty \cdot 0 = 0$).

Tогда λ – объем.

Доказательство. Если
$$P = \bigsqcup_{k=1}^{n} P_k$$
 и $Q = \bigsqcup_{j=1}^{m} Q_j$, то $P \times Q = \bigsqcup_{k=1}^{n} \bigsqcup_{j=1}^{m} P_k \times Q_j$ $\lambda(P \times Q) = \mu P \cdot \nu Q = \sum_{k=1}^{n} \mu P_k \cdot \sum_{j=1}^{m} \nu Q_j = \sum_{k=1}^{n} \sum_{j=1}^{m} \underbrace{\mu P_k \nu O_j}_{=\lambda(P_k \times Q_j)}$

Противный случай:
$$P \times Q = \bigsqcup_{k=1}^{n} P_k \times Q_k$$

Следствие. λ_m – объем.

Доказательство. λ_1 – объем, λ_m – декартово произведение λ_1 .

Пример. Меры.

- 1. Классический объём λ_m (потом докажем)
- 2. $g:\mathbb{R} \to \mathbb{R}$ неубывающая, непрерывная справа во всех точках

$$\nu_q(a,b] := g(b) - g(a)$$

Упраженение. Доказать, что непрерывность справа — необходимое условие для того, чтобы ν_g была мерой.

3.
$$x_0 \in X, \ a > 0, \ \mu A = \left\{ \begin{array}{ll} a, & \text{если } x_0 \in A \\ 0, & \text{иначе} \end{array} \right.$$

- 4. Считающая мера $\mu A =$ количество элементов в множестве A.
- 5. $T=\{t_1,t_2,...\}\subset X,\,\{w_1,w_2,...\}$ неотрицательные числа, $\mu A:=\sum_{i:t_i\in A}w_i$

Доказательство. Нужно проверить, что если $A = \bigsqcup_{j=1}^{\infty} A_j$, то $\mu A = \sum_{j=1}^{\infty} \mu A_j$.

$$\mu A_j = \sum\limits_{k=1}^\infty a_{jk},\, \mu A = \sum a_{jk}$$
 в каком-то порядке $\stackrel{?}{=} \sum\limits_{j=1}^\infty \sum\limits_{k=1}^\infty a_{jk}$

$$\geq: \sum_{j=1}^{n} \sum_{k=1}^{\infty} a_{jk} = \sum_{k=1}^{\infty} \sum_{j=1}^{n} a_{jk} \leq \mu A$$

$$\stackrel{n \to \infty}{\to} \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk}$$

 \leq : Рассмотрим частичную сумму для $\sum^{\to \mu A} a_{jk}.$ $Y:=\max j,$ $K:=\max k.$

$$\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{jk} \ge \sum_{j=1}^{Y} \sum_{k=1}^{\infty} a_{jk} \ge \sum_{j=1}^{Y} \sum_{k=1}^{K} a_{jk}$$

Теорема 9.2.3. Пусть $\mu : \mathcal{P} \to [0, +\infty]$ – объем на полукольце.

Тогда μ – мера \Leftrightarrow (счетная полуаддитивность) Если $P, P_n \in \mathcal{P}, P \subset \bigcup_{n=1}^{\infty} P_n$, то $\mu P \leq \sum_{n=1}^{\infty} \mu P_n$.

Доказательство.

$$\Leftarrow$$
. Если $P = \coprod_{n=1}^{\infty} P_n$

- (a) счетная полуаддитивность $\Rightarrow \mu P \leq \sum_{n=1}^{\infty} \mu P_n$
- (b) усиленная монотонность $\Rightarrow \mu P \geq \sum_{n=1}^{\infty} \mu P_n$

$$\Rightarrow$$
. $P'_n:=P\cap P_n\in\mathcal{P}\Rightarrow P=igcup_{n=1}^\infty P'_n\Rightarrow P=igcup_{n=1}^\infty igcup_{n=1}^{m_k}Q_{nk}$, где $Q_{nk}\in\mathcal{P},\ Q_{nk}\subset P'_n\subset P_n$ $\mu P=\sum\limits_{k=1}^\infty \sum\limits_{k=1}^{m_k}\mu Q_{nk}\leq \sum\limits_{n=1}^\infty \mu P_n$ $igcup_{k=1}^\infty Q_{nk}\subset P_n\stackrel{\mathrm{ycuj.\ Mohot.}}{\Rightarrow}\sum\limits_{k=1}^{m_k}\mu Q_{nk}\leq \mu P_n$

Следствие. Если μ – мера, заданная на σ -алгебре, то счетное объединение множеств нулевой меры – множество нулевой меры.

Доказательство.
$$\mu_n=0,\ A=\bigsqcup_{n=1}^\infty A_n\stackrel{\text{счет. полуад.}}{\Rightarrow} \mu A_n\leq \sum_{n=1}^\infty \mu A_n=0 \Rightarrow \mu A=0$$

Теорема 9.2.4. Пусть μ – объем, заданный на σ -алгебре \mathcal{A} .

Тогда μ – мера \Leftrightarrow (непрерывность снизу) Если $A_1 \subset A_2 \subset, A_n \in \mathcal{A}$, то $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim \mu A_n$.

Доказательство.

$$\Rightarrow$$
. $B_k:=A_k\setminus A_{k-1}$ (считаем, что $A_0=\varnothing$)
$$A:=\bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n \ (B_n\subset A_n)$$

 \subset : если $x\in A$, то возьмем m – наименьший индекс, для которого $x\in A_m\Rightarrow x\in B_m.$

(счет. ад.)
$$\mu A = \sum_{n=1}^{\infty} \mu B_n = \sum_{n=1}^{\infty} (\mu A_n - \mu A_{n-1})$$

Если все
$$\mu A_n$$
 конечны, то
$$\sum_{k=1}^n \mu B_k = \sum_{k=1}^n (\mu A_k - \mu A_{k-1}) = \mu A_n \Rightarrow \mu A_n \to \mu A$$
 $\to \sum_{k=1}^\infty \mu B_k = \mu A$

Если $\mu A_n = +\infty$ при больших n, то $\mu A = +\infty$ и все очевидно.

$$\Leftarrow$$
. Пусть $A = \bigsqcup_{n=1}^{\infty} C_n, \ A_n := \bigsqcup_{k=1}^n C_k, \ A_1 \subset A_2 \subset \dots$ и $\bigcup_{n=1}^{\infty} A_n = A$ непр. снизу
$$\Rightarrow \mu A_n \qquad \to \mu A \Rightarrow \mu A = \sum_{k=1}^{\infty} \mu C_k$$

$$= \mu(\bigsqcup_{k=1}^n C_k) = \sum_{k=1}^n \mu C_k$$

Теорема 9.2.5. Пусть μ – объем, заданный на σ -алгебре \mathcal{A} и $\mu X < +\infty$, тогда следующие условия равносильны:

- 1. $\mu Mepa$.
- 2. μ непрерывно сверху, m.e. если $A_1 \supset A_2 \supset \dots \cup \bigcup_{n=1}^{\infty} A_n =: A, mo \ \mu A_n \to \mu A.$
- 3. μ непрерывна сверху на пустом множестве, т.е. если $A_1 \supset A_2 \supset ...$ $u \bigcap_{n=1}^{\infty} A_n = \varnothing$, то $\mu A_n \to 0$. Доказательство.

 $2. \Rightarrow 3.$ Очевидно.

$$1. \Rightarrow 2. \ B_n := A_1 \setminus A_n, \ B_1 \subset B_2 \subset B_3 \subset \dots$$

$$\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} (A_1 \setminus A_n) = A_1 \setminus \bigcap_{n=1}^{\infty} A_n = A_1 \setminus A \Rightarrow \mu B_n$$

$$= \mu(A_1 \setminus A_n) = \mu A_1 - \mu A$$

3.
$$\Rightarrow$$
 1. Пусть $A = \bigsqcup_{n=1}^{\infty} C_n$, $A_n := \bigsqcup_{k=n+1}^{\infty} C_k$, $A_1 \supset A_2 \supset \dots$

$$\bigcap_{n=1}^{\infty} A_n = \varnothing, A = A_n \sqcup \bigsqcup_{k=1}^n C_k \stackrel{\mu \text{ - объем}}{\Rightarrow} \mu A = \mu A_n + \sum_{k=1}^n \mu C_k \Rightarrow \mu A = \sum_{k=1}^{\infty} \mu C_k$$

$$\to \sum_{k=1}^{\infty} \mu C_k$$

Следствие. Если $A_1\supset A_2\supset ...$ и $\mu A_n<+\infty$ для некоторого n, то $\mu A_k\to \mu(\bigcap_{n=1}^\infty A_n).$

Замечание. Конечность меры существенна.

$$A_n = [n, +\infty), \ \mu A_n = +\infty, \ \bigcap_{n=1}^{\infty} A_n = \varnothing.$$

9.3 Продолжение меры

Определение 9.3.1. $\nu: 2^X \to [0, +\infty)$ – $\mathit{cyбмерa}, \, \mathit{если}$:

- 1. $\nu\varnothing=0$
- 2. $A \subset B \Rightarrow \nu A \leq \nu B$ (монотонность)
- 3. $\nu(\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \nu A_n$ (счетная полуаддитивность)

Определение 9.3.2. $\mu:\mathcal{A}\to[0,+\infty)$ – полная мера, если $A\subset B\in\mathcal{A}$ и $\mu B=0,$ то $A\in\mathcal{A}.$

Замечание. Если μ – полная мера, $A \subset B$ и $\mu B = 0$, то $\mu A = 0$.

Определение 9.3.3. Пусть ν – субмера. Множество E назовем измеримым относительно ν , если $\forall A \subset X, \ \nu A = \nu(A \cap E) + \nu(A \setminus E).$

Замечание.

1. Достаточно писать « \leq », т.к. счетная полуаддитивность \Rightarrow

$$\nu(A \cap E) + \nu(A \setminus E) \ge \nu((A \cap E) \cup (A \setminus E)).$$

2. Если
$$E_1, E_2, ..., E_n$$
 – ν -измеримые, то $\nu \underbrace{(A \cap \bigsqcup_{k=1}^n E_k)}_{n} = \sum_{k=1}^n \nu(A \cap E_k)$

$$\nu B = \nu (B \cap E_1) + \nu (B \setminus E_1)$$

$$= \bigsqcup_{k=2}^{n} (A \cap E_k)$$

Теорема 9.3.1. *Теорема Каратеодори*

Пусть ν – субмера. Тогда ν -измеримые множества образуют σ -алгебру и сужение ν на эту σ -алгебру – полная мера.

Доказательство. \mathcal{A} – семейство ν -измеримых множеств E

1. Если
$$\nu E = 0$$
, то $E \in \mathcal{A}$.

$$u A \stackrel{\text{полуад.}}{\leq}
u (A \cap E) + \nu (A \setminus E) \stackrel{\subset E}{\leq}
u E + \nu A = \nu A$$

 $2. \mathcal{A}$ – симметрично.

Пусть
$$E \in \mathcal{A} \Rightarrow \nu A = \nu (\underset{=A \setminus (X \setminus E)}{A \cap E}) + \nu (\underset{=A \cap (X \setminus E)}{A \setminus E}) = \nu (A \setminus (X \setminus E)) + \nu (A \cap (X \setminus E)) \Rightarrow X \setminus E \in \mathcal{A}$$

3. Если E и $F \in \mathcal{A}$, то $E \cap F \in \mathcal{A}$

$$\nu A = \nu(A \cap E) + \nu(A \setminus E) = \nu(A \cap E) + \nu((A \setminus E) \cap F) + \nu((A \setminus E) \setminus F) \overset{e=A \setminus (E \cup F)}{\geq} \overset{\text{полуад.}}{\geq} \nu(A \cap (E \cup F)) + \nu(A \setminus (E \cup F))$$

4. A – алгебра.

5. Если
$$E_n \in \mathcal{A}$$
, то $\bigsqcup_{n=1}^{=:E} E_n \in \mathcal{A}$.

$$\nu A = \nu(A \cap \bigsqcup_{k=1}^{n} E_k) + \nu(A \setminus \bigsqcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} \nu(A \cap E_k) + \nu(A \setminus E_k) \ge \sum_{k=1}^{n} \nu(A \cap E_k) + \nu(A \setminus E) \rightarrow \sum_{k=1}^{\infty} \nu(A \cap E_k) + \nu(A \setminus E) \stackrel{\text{chet. Holyags.}}{\ge} \nu(A \cap E) + \nu(A \setminus E)$$

6. Если $E_n \in \mathcal{A}$, то $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$.

Переделаем в дизъюнктное объединение.

7. $\mathcal{A} - \sigma$ -алгебра.

Из 4 и 5.

8. ν – объем.

$$\nu(\bigsqcup_{k=1}^{n} (A \cap E_k)) = \sum_{k=1}^{n} \nu(A \cap E_k)$$

Если A – любое и $E_k \in \mathcal{A}$, берем A = X и получаем определение объема.

9. Объем + счетная полуаддитивность \Rightarrow мера.

Определение 9.3.4. Пусть μ – мера на полукольце \mathcal{P} . Внешней мерой, порожденной μ , назовем $\mu^*A:=\inf\{\sum_{k=1}^\infty \mu A_k \mid A_k \in \mathcal{P} \text{ и } A \subset \bigcup_{k=1}^\infty A_k\}.$

Если такого покрытия не существует, то $\mu^* A = +\infty$.

Замечание.

1. Можем рассматривать только дизъюнктные множества:

$$\bigcup_{k=1}^{\infty} A_k = \bigsqcup_{n=1}^{\infty} \bigsqcup_{k=1}^{m_k} B_k, \, B_k \in \mathcal{P} \text{ и } \bigsqcup_{k=1}^{m_k} B_k \subset A_k \overset{\text{усил. монот.}}{\Rightarrow} \mu A_k \geq \sum_{k=1}^{m_k} \mu B_k$$

2. Если μ задана на σ -алгебре \mathcal{A} , то:

$$\mu^*A := \inf\{\mu B \mid A \subset B \text{ и } B \in \mathcal{A}\}$$

Теорема 9.3.2. μ^* – субмера, совпадающая с μ на \mathcal{P} .

Доказательство.

- 1. Пусть $A \in \mathcal{P}$. Тогда можно взять такие покрытия: $A_1 = A, \ A_2 = A_3 = ... = \varnothing \Rightarrow \mu^* A \leq \mu A$ Счетная полуаддитивность \Rightarrow если $A \subset \bigcup_{n=1}^{\infty} A_n$, то $\mu A \leq \sum_{n=1}^{\infty} \mu A_n \Rightarrow \mu A \leq \mu^* A$ т.е. $\mu^* = \mu$ на \mathcal{P}
- 2. μ^* субмера

Монотонность:

Если есть
$$A\subset B$$
 и покрытие $B\subset \bigcup\limits_{n=1}^{\infty}B_n,$ то $A\subset \bigcup\limits_{n=1}^{\infty}B_n\Rightarrow \mu^*A$ $= \mu^*B$

Счетная полуаддитивность μ^* :

$$\mu^*$$
: μ^* ($\bigcup_{n=1}^{\infty} B_n$) $\leq \sum_{n=1}^{\infty} \mu^* B_n$

Если справа есть $+\infty$, то очевидно, считаем, что там все конечно:

$$\mu^*B = \inf\{\sum_{k=1}^{\infty} \mu P_k \mid P_k \in \mathcal{P} \text{ и } B_n \subset \bigcup_{k=1}^{\infty} P_k\}$$

Выберем такие множества C_{nk} , что $\bigcup_{k=1}^{\infty} C_{nk} \supset B_n$ и $\sum_{k=1}^{\infty} \mu C_{nk} \le \mu^* B_n + \frac{\varepsilon}{2^n}$

$$\bigcup_{n=1}^{\infty} B_n \subset \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} C_{nk} \Rightarrow \mu^*(\bigcup_{n=1}^{\infty} B_n) \leq \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \mu C_{nk} \leq \sum_{n=1}^{\infty} (\mu^* B_n + \frac{\varepsilon}{2^n}) = \sum_{n=1}^{\infty} \mu^* B_n + \varepsilon$$
 и устремим ε к нулю.

Определение 9.3.5. Стандартное продолжение меры μ_0 с полукольца \mathcal{P} .

Берем μ_0^* – ее внешняя мера и μ – сужение μ_0^* на μ_0^* -измеримые множества. Получается полная мера, заданная на σ -алгебре.

Теорема 9.3.3. Это действительно продолжение, то есть множества из \mathcal{P} будут μ -измеримыми.

Доказательство. Надо доказать, что если $E \in \mathcal{P}$, то $\forall A \subset X \ \mu_0^* A \ge \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$

1. Если
$$A \in \mathcal{P}$$
, то $A \setminus E = \bigsqcup_{k=1}^{n} Q_k$, где $Q_k \in \mathcal{P}$. Тогда т.к. $A = (A \cap E) \sqcup \bigsqcup_{k=1}^{n} Q_k$:
$$\mu_0^* A = \mu_0 A \stackrel{\text{адд.}}{=} \mu_0 (A \cap E) + \sum_{k=1}^{n} \mu_0 Q_k = \mu_0^* (A \cap E) + \sum_{k=1}^{n} \mu_0^* Q_k \stackrel{\text{полуадд.}}{\geq} \mu_0^* (A \cap E) + \mu_0^* (\bigsqcup_{k=1}^{n} Q_k) = \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$$

2. Если $A \notin \mathcal{P}$. Когда $\mu_0^* A = +\infty$ все очевидно, поэтому будем считать, что $\mu_0^* A < +\infty$.

$$\mu^*A := \inf\{\sum_{k=1}^\infty \mu_0 P_k \mid P_k \in \mathcal{P}_n$$
 и $A \subset \bigcup_{k=1}^\infty P_k\}$

Берем конкретное покрытие $A \subset \bigcup_{k=1}^{\infty} P_k$, для которого $\sum_{k=1}^{\infty} \mu_0 P_k < \mu_0^* A + \varepsilon$

$$\mu_0 P_k = \mu_0^* P_k \ge (P_k \cap E) + \mu_0^* (P_k \setminus E)$$

$$\varepsilon + \mu_0^* A \ge \sum_{k=1}^{\infty} \mu_0 P_k \ge \sum_{k=1}^{\infty} \mu_0^* (P_k \cap E) + \sum_{k=1}^{\infty} \mu_0^* (P_k \setminus E) \ge \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$$

$$\ge \mu_0^* (A \cap E) + \mu_0^* (A \setminus E)$$

$$\bigcup_{k=1}^{\infty} (P_k \cap E) \supset A \cap E, \ \bigcup_{k=1}^{\infty} (P_k \setminus E) \supset A \setminus E$$

Замечание.

1. Дальше и старая мера, и новая обозначается μ .

$$\mu A := \inf \{ \sum_{k=1}^{\infty} \mu A_k \mid A_k \in \mathcal{P} \text{ и } A \subset \bigcup_{k=1}^{\infty} A_k \}.$$

2. Применение стандартного продолжения к стандартному продолжению не дает ничего нового.

Упражение. Доказать это. Указание: μ_0 – стандартная мера, μ – стандартное продолжение μ_0^* . Доказать, что μ_0 и μ_0^* совпадают.

3. Можно ли продолжить на более широкую σ -алгебру, чем дает стандартное продолжение?

Часто да, но возникает неоднозначность.

Oпределение 9.3.6. σ – конечная мера, если $X=\bigcup_{n=1}^{\infty}P_n$, где $P_n\in\mathcal{P}$ и $\mu P_n<+\infty$ (можно считать, что P_n дизъюнктны).

4. Можно ли по-другому продолжить на σ -алгебру μ -измеримых множеств?

Если $\mu - \sigma$ -конечная мера, то нельзя.

5. Пусть ν – полная мера на σ -алгебре $\mathcal{A} \subset \mathcal{P}$ и на $\mathcal{P} \ \mu = \nu$. Верно ли, что \mathcal{A} содержит все μ измеримые множества?

Если σ – конечная мера, то да.

Теорема 9.3.4. Пусть \mathcal{P} – полукольцо, μ – стандартное продолжение с \mathcal{P} , μ^* – соответствующая внешняя мера. Если $\mu^*A<+\infty$, то существует $B_{nk}\in\mathcal{P},$ т.ч. $C_n:=\bigcup_{k=1}^\infty B_{nk}$ и $C:=\bigcap_{n=1}^\infty C_n,$ $C\supset A$ и $\mu C = \mu^* A$.

Доказательство. $\mu^*A:=\inf\{\sum_{k=1}^\infty \mu P_k\mid P_k\in\mathcal{P}\text{ и }A\subset\bigcup_{k=1}^\infty P_k\}.$ Берем такое покрытие $\bigcup_{k=1}^{=C_n}B_{nk}\supset A,\, B_{nk}\in\mathcal{P}\text{ и }\sum_{k=1}^\infty \mu B_{nk}<\mu^*A+\frac{1}{n}$

$$\mu C_n \leq \sum_{k=1}^{\infty} \mu B_{nk} < \mu^* A + \frac{1}{n}, \ C \subset C_n \Rightarrow \mu C \leq \mu C_n < \mu^* A + \frac{1}{n} \Rightarrow \mu C \leq \mu^* A \text{ if } C \supset A \Rightarrow$$

$$\Rightarrow \mu^* C \geq \mu^* A$$

$$= \mu C$$

Следствие. Пусть \mathcal{P} – полукольцо, μ – стандартное продолжение с \mathcal{P} . Если A – μ -измеримо и $\mu A < +\infty$, mo $A = B \sqcup e$, $\epsilon \partial e B \in \mathcal{B}(\mathcal{P})$ $u \mu e = 0$.

Доказательство. Берем C из теоремы, $C \in \mathcal{B}(\mathcal{P}), \, \mu C = \mu A$ и $C \supset A$.

 $C \setminus A =: e_1, \mu e_1 = 0$. Берем множество из теоремы для e_1 , назовем его e_2 .

$$e_2 \supset e_1, \ e_2 \in \mathcal{B}(\mathcal{P})$$
 и $\mu e_1 = \mu e_2 = 0 \Rightarrow B := C \setminus e_2 \in \mathcal{B}(\mathcal{P})$
 $e = A \setminus B \subset C \setminus B \subset e_2, \ \mu e_2 = 0 \Rightarrow \mu e = 0$

Теорема 9.3.5. Единственность продолжения

Пусть \mathcal{P} – полукольцо, μ – стандартное продолжение на σ -алгебру, ν – другая мера на \mathcal{A} , т.ч. $\mu E = \nu E$ при $E \in \mathcal{P}$. Если $\mu - \sigma$ -конечная мера, то $\mu A = \nu A$ при $A \in \mathcal{A}$.

Доказательство. Пусть $A \subset \bigcup_{k=1}^{\infty} P_k$, где $P_k \in \mathcal{P}$

$$u A \leq \sum_{k=1}^{\infty} \nu P_k = \sum_{k=1}^{\infty} \mu P_k$$
. Напишем inf в правой части: $\nu A \leq \mu A$.

Если $P \in \mathcal{P}$, то $\mu P = \nu P = \nu \binom{P \cap A}{P \cap A} + \nu \binom{P \setminus A}{P \setminus A} \leq \mu (P \cap A) + \mu (P \setminus A) = \mu P$

Когла $\mu P \leq +\infty$ неравенства обращаются в равенство $\Rightarrow \mu (P \cap A) = \nu (P \cap A)$

Когда $\mu P < +\infty$ неравенства обращаются в равенство $\Rightarrow \mu(P \cap A) = \nu(P \cap A)$

$$\mu$$
 – σ -конечная $\Rightarrow X = \bigsqcup_{n=1}^{\infty} P_n, \ \mu P_n < +\infty \Rightarrow \mu(P_n \cap A) = \nu(P_n \cap A) \Rightarrow \nu A = \sum_{n=1}^{\infty} \nu(P_n \cap A) = \sum_{n$

$$\sum_{n=1}^{\infty} \mu(P_n \cap A) = \mu A$$

$$A = \bigsqcup_{n=1}^{\infty} (A \cap P_n)$$

9.4 Мера Лебеra 16

9.4 Мера Лебега

Теорема 9.4.1. Классический объем λ_m на полукольце ячеек \mathcal{P}^m – σ -конечная мера.

Доказательство. То, что мера σ -конечная, очевидно – все пространство можно разрезать на счетное количество единичиных ячеек – получили счетное объединение ячеек меры 1.

Надо доказать счетную полуаддитивность λ_m , т.е. если $(a,b]\subset\bigcup_{n=1}^\infty(a_n,b_n], a,b,a_n,b_n\in\mathbb{R}^m$, то $\lambda_m(a,b]\leq$

$$\sum_{n=1}^{\infty} \lambda_m(a_n, b_n]$$

Зафиксируем $\varepsilon>0$. Возьмем $[a',b']\subset (a,b]$ и $\lambda_m(a',b']>\lambda_m(a,b]-\varepsilon$.

Возьмем
$$[a',b'] \subset (a,b]$$
 и $\lambda_m(a',b'] > \lambda_m(a,b] - \varepsilon$. TODO

Тогда
$$[a',b]\subset (a,b]\subset \bigcup_{n=1}^\infty (a_n,b_n]\subset \bigcup_{n=1}^\infty (a_n,b_n')$$

Определение 9.4.1. Мера Лебега – стандартное продолжение классического объема с полукольца \mathcal{P}^m . σ -алгебра, на которую продолжили, – *лебеговская* σ -алгебра и обозначается \mathcal{L}^m .

Замечание.
$$\lambda_m A = \inf\{\sum_{n=1}^\infty \lambda_m P_n \mid P_n \in \mathcal{P}^m \text{ и } A \subset \bigcup_{n=1}^\infty P_n\}.$$

Можно брать и ячейки из $\mathcal{P}^m_{\mathbb{Q}}$ (продолжения совпадут).

Свойства меры Лебега:

1. Открытые множества измеримы, мера непустого открытого множества > 0.

 \mathcal{A} оказательство. $\mathcal{L}^m \supset \mathcal{B}(\mathcal{P}^m) = \mathcal{B}^m$ содержит все открытые множества.

Если
$$G$$
 – открытое и $\neq \varnothing$, то возьмем $a \in G \Rightarrow \exists \overline{\overline{B}}_{gue
uka \subset G}(a) \subset G$

$$\lambda G \ge \lambda$$
(ячейка) > 0

2. Замкнутые множества измеримы, мера одноточечного множества = 0.

$$\lambda$$
(точка) $\leq \lambda$ (ячейка) $= \varepsilon^m$

3. Мера ограниченного измеримого множества конечна.

Доказательство. ограниченное множество ⊂ шар ⊂ ячейка

4. Всякое измеримое множество – не более чем счетное дизъюнктное объединение множеств конечной меры.

Доказательство.
$$\mathbb{R}^m = \bigsqcup_{n=1}^{\infty} P_n$$
, где $\lambda P_n = 1 \Rightarrow E = \bigsqcup_{n=1}^{\infty} (E \cap P_n)$ и $\lambda(E \cap P_n) \leq \lambda P_n = 1$

9.4 Мера Лебега 17

5. Если $E \subset \mathbb{R}^m$, т.ч. $\forall \varepsilon > 0$ найдутся измеримые множества A_{ε} и B_{ε} , т.ч. $A_{\varepsilon} \subset E \subset B_{\varepsilon}$ и $\lambda(B_{\varepsilon} \setminus A_{\varepsilon}) < \varepsilon$, то E – измеримо.

Доказательство.
$$A:=\bigcup\limits_{n=1}^{\infty}A_{\frac{1}{n}}$$
 и $B:=\bigcap\limits_{n=1}^{\infty}B_{\frac{1}{n}}\Rightarrow A\subset E\subset B$ и $B\setminus A\subset B_{\frac{1}{n}}\setminus A_{\frac{1}{n}}$
$$\lambda(B\setminus A)\leq \lambda(B_{\frac{1}{n}}\setminus A_{\frac{1}{n}})<\frac{1}{n}\Rightarrow \lambda(B\setminus A)=0$$

$$E\setminus A\subset B\setminus A\stackrel{\text{полнота}}{\Rightarrow}\lambda(E\setminus A)=0$$
 и $E\setminus A$ измеримо $\Rightarrow E=A\cup E\setminus A$ – измеримо \Box

Замечание. Свойство 5 верно для любой полной меры.

6. Если $E \subset \mathbb{R}^m$, т.ч. $\forall \varepsilon > 0$ найдется измеримое $B_{\varepsilon} \supset E$, т.ч. $\lambda B_{\varepsilon} < \varepsilon$, то E измеримо и $\lambda E = 0$.

Доказательство.
$$A_{\varepsilon}=arnothing\stackrel{\mathrm{fi.}}{\Rightarrow}E$$
 — измеримо и $\lambda E\leq \lambda B_{\varepsilon}<\varepsilon\Rightarrow \lambda E=0$

7. Счетное объединение множеств меры 0 имеет меру 0.

(верно для любой меры, заданной на σ -алгебре)

8. Счетное множество имеет меру 0. В частности $\lambda(\mathbb{Q}^m)=0$.

(так как одноточечные множества имеют меру 0)

9. Множество нулевой меры имеет пустую внутренность.

Доказательство. Если Int
$$A \neq \emptyset$$
, то $A \supset B_r(a) \Rightarrow \lambda A \geq \lambda B_r(a) > 0$

10. Если $\lambda e=0$, то $\forall \varepsilon>0$ \exists такие кубические ячейки Q_j , т.ч. $e\subset\bigcup_{j=1}^\infty Q_j$ и $\sum_{j=1}^\infty \lambda Q_j<\varepsilon$.

Доказательство.
$$0 = \lambda e = \inf\{\sum_{n=1}^{\infty} \lambda_m P_n \mid e \subset \bigcup_{j=1}^{\infty} P_j \text{ и } P_j \in \mathcal{P}_{\mathbb{Q}}^m\} \Rightarrow$$

$$\Rightarrow$$
 можно выбрать $P_j \in \mathcal{P}_{\mathbb{Q}}^m$, Т.ч. $e \subset \bigcup_{j=1}^{\infty} P_j$ и $\sum \lambda P_j < \varepsilon$

Рассмотрим ячейку P_1 , пусть n=HOK знаменателей длин ее сторон. Тогда P_1 можно разбить на кубические ячейки со стороной $\frac{1}{n}$.

11. Пусть $m \geq 2$. Гиперплоскость $H_j := \{x \in \mathbb{R}^m \mid x_j = c\}$ имеет нулевую меру.

Доказательство.
$$A_n:=(-n,n]^m\cap H_j(c),\ H_j(c)\bigcup_{n=1}^\infty A_n$$
 Достаточно проверить, что $\lambda A_n=0$: $A_n\subset (-n,n]\times ...\times (-n,n]\times (c-\varepsilon,c]\times (-n,n]\times ...\times (-n,n]\Rightarrow \lambda A_n\leq (2n)^{m-1}\cdot \varepsilon$

12. Любое множество, содержащееся в не более чем счетном объединении таких гиперплоскостей, имеет меру 0.

(счетное объединение множеств нулевой меры имеет нулевую меру)

9.4 Мера Лебега 18

13.
$$\lambda(a,b) = \lambda(a,b] = \lambda[a,b]$$

Доказательство. $(a,b)\subset (a,b]\subset [a,b],\ [a,b]\setminus (a,b)\subset$ конечное объединение таких гиперплоскостей.

Замечание.

1. Существуют несчетные множества нулевой меры.

Если $m \geq 2$, то подойдет $H_i(c)$.

Если m=1, то подойдет канторово множество **K**.

$$\lambda \mathbf{K} + \sum \lambda$$
 (выкинутые полуинтервалы) = $\lambda[0,1) = 1$ $\frac{1}{3} + 2 \cdot \frac{1}{9} + 4 \cdot \frac{1}{27} + \dots + 2^{n-1} \cdot \frac{1}{3^n} + \dots = \sum_{n=0}^{\infty} \frac{2^n}{3^{n+1}} = \frac{1}{3} \sum_{n=0}^{\infty} (\frac{2}{3})^n = \frac{1}{3} \cdot \frac{1}{1-\frac{2}{3}} = 1 \Rightarrow$ оставшееся множество имеет нулевую меру.

Другая интерпретация этого примера:

Троичная запись чисел из [0,1).

Средний отрезок – первая цифра после запятой 1.

Два средних отрезка – вторая цифра после запятой 1.

Продолжая так делать, получим, что останутся в точности те числа, у которых в троичной записи 0 и 2.

Полученное множество несчетно (так как есть биекция между полученными числами и числами в двоичной записи, просто заменяем 2 на 1).

2. Существуют неизмеримые множества. Более того, любое множество положительной меры содержит неизмеримое подмножество.

(пример неизмеримого множества будет позже)

Теорема 9.4.2. Регулярность меры Лебега.

Eсли $E \subset \mathbb{R}^m$ измеримое множество, то найдется G – открытое, т.ч. $G \supset E$ и $\lambda(G \setminus E) < \varepsilon$.

Доказательство.

1.
$$\lambda E < +\infty$$
, $\lambda E = \inf\{\sum_{n=1}^{\infty} \lambda P_n \mid E \subset \cup P_n \text{ if } P_n \in \mathcal{P}^m\}$

Выберем такое покрытие ячейками, что $\sum_{n=1}^{\infty} \lambda P_n < \lambda E + \varepsilon$.

$$P_n=(a_n,b_n]\subset (a_n,b_n')$$
, т.ч. $\lambda(a_n,b_n')<\lambda P_n+rac{arepsilon}{2^n}$

$$G = \bigcup_{n=1}^{\infty} (a_n, b'_n) \supset \bigcup_{n=1}^{\infty} P_n \subset E$$

$$\lambda(G \setminus E) = \lambda G - \lambda E \le \sum_{n=1}^{\infty} \lambda(a_n, b'_n) - \lambda E \le \sum_{n=1}^{\infty} (\lambda P_n + \frac{\varepsilon}{2^n}) - \lambda E = \varepsilon + \sum \lambda P_n - \lambda E < 2\varepsilon$$

9.4 Мера Лебега 19

2. $\lambda E=+\infty$. Разобьем E в объединение E_n , т.ч. $\lambda E_n<+\infty$.

Возьмем G_n – открытое, т.ч. $E_n \subset G_n$ и $\lambda(G_n \setminus E_n) < \frac{\varepsilon}{2^n}$

$$G := \bigcup_{n=1}^{\infty} G_n \supset E$$

$$G \setminus E \subset \bigcup_{n=1}^{\infty} G_n \setminus E_n \overset{\text{полуад.}}{\Rightarrow} \lambda(G \setminus E) \leq \sum_{n=1}^{\infty} \lambda(G_n \setminus E_n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n} = \varepsilon$$

Следствие.

1. Если $E\subset\mathbb{R}^m$ измеримо, то найдется F – замкнутое, т.ч. $F\subset E$ и $\lambda(E\setminus F)<\varepsilon.$

Доказательство.
$$G$$
 для $X\setminus E, \lambda\underbrace{(G\setminus (X\setminus E))}_{=E\setminus (X\setminus G)}<\varepsilon$

$$F := X \setminus G$$
 — замкнутое

2. Е – измеримое, тогда

$$\lambda E = \inf\{\lambda G \mid G - om\kappa pumoe \ u \ G \supset E\}$$

$$\lambda E = \sup \{ \lambda F \mid F - \text{замкнутое } u \mid F \supset E \}$$

$$\lambda E = \sup \{ \lambda K \mid K - \kappa o \lambda n a \kappa m \ u \ K \supset E \}$$

$$\begin{subarray}{c} \begin{subarray}{c} \be$$

3. Если E – измеримо, то существует K_n – компакты, т.ч. $K_1 \subset K_2 \subset ...$ и e – нулевой меры, т.ч. $E = \bigcup_{n=1}^{\infty} K_n \cup e$.

Доказательство. Берем компакты $\tilde{K_n}$, т.ч. $\lambda \tilde{K_n} \to \lambda E$.

Если $\lambda E < +\infty$, то $\lambda(E \setminus \tilde{K_n}) \to 0 \Rightarrow \lambda(E \setminus \bigcup_{n=1}^{\infty} \tilde{K_n}) = 0 \Rightarrow e := \bigcup_{n=1}^{\infty} \tilde{K_n}$ и $K_n = \tilde{K_1} \cup \tilde{K_2} \cup ... \cup \tilde{K_n}$ подходят.

Если $\lambda E \to +\infty$, то $E = \sqcup E_n$, т.ч. $\lambda E_n < +\infty$.

$$E_n = \bigcup_{j=1}^{\infty} K_n \cup e_n, \ \lambda e_n = 0, \ K_{nj}$$
 – компакты.

Теорема 9.4.3. При сдвиге измеримого множества его измеримость и мера сохраняются.

Доказательство. Сдвиг на вектор v: $\lambda \mu E := \lambda (v+E)$ на ячейках λ и μ совпадают \Rightarrow по единственности продолжения они совпадают.

9.4 Mepa Лебега 20

Теорема 9.4.4. Пусть μ мера на \mathcal{L}^m , m.ч.

- 1. Инвариантна относительно сдвигов.
- 2. Мера μ для каждой ячейки конечна = мера любого ограниченного измеримого множества конечна.

Тогда найдется $k \in [0, +\infty)$, т.ч. $\mu = k \cdot \lambda$ (т.е. $\mu E = k\lambda E$).

Доказательство. $Q := (0,1]^m, k := \mu Q$

1. Случай k=1

Надо доказать, что $\mu = \nu$. Для этого достаточно совпадения на $\mathcal{P}^m_{\mathbb{Q}}$. Любая такая ячейка складывается из кубиков со стороной вида $\frac{1}{n}$, т.е. достаточно совпадения на кубике $(0,\frac{1}{n}]^m$.

$$\lambda(0, \frac{1}{n}]^m = (\frac{1}{n})^m$$

$$\mu(0,\frac{1}{n}]^m \stackrel{?}{=} (\frac{1}{n})^m$$

Возьмем n^m сдвигов такого кубика и сложим Q:

$$\mu(0,\frac{1}{n}]^m = \frac{\mu Q}{n^m} = (\frac{1}{n})^m$$

2. Случай $k \neq 0$

 $\tilde{\mu}:=rac{1}{k}\mu$. Тогда $\tilde{\mu}Q=1,\,\tilde{\mu}$ инваривантна относительно сдвигов $\Rightarrow \tilde{\mu}=\lambda$

3. Случай k=0

 \mathbb{R}^m – счетное объединение сдвигов $Q\Rightarrow \mu(\mathbb{R}^m)=0$

Теорема 9.4.5. Пусть $G \subset \mathbb{R}^m$ открытое, $\Phi : G \to \mathbb{R}^m$ непрерывно дифференцируемо. Тогда:

- 1. Если $e \subset G$, т.ч. $\lambda e = 0$, то Phi(e) измеримо и $\lambda(\Phi(e)) = 0$.
- 2. Если $E \subset G$, т.ч. E измеримо, то $\Phi(E)$ измеримо.

Доказательство.

1. Шаг 1. Пусть $e \subset P \subset \operatorname{Cl} p \subset G$, где P – ячейка.

 $\|\Phi'(x)\|$ – непрерывна на компакте $\operatorname{Cl} P \Rightarrow \|\Phi'(x)\|$ ограниченна на $\operatorname{Cl} P$.

Пусть
$$\|\Phi'(x)\| \le M$$
. Тогда $\|\Phi'(x) - \Phi'(y)\| \le M\|x - y\| \ \forall x, y \in \operatorname{Cl} P$.

Накроем e кубическими ячейками Q_i так, что $\sum \lambda Q_i < \varepsilon$.

Пусть h_j – ребро Q_j . Тогда если $x,y\in Q_j$, то $\|x-y\|\leq \sqrt{m}h_j\Rightarrow \|Phi'(x)-\Phi'(y)\|\leq M\sqrt{m}h_j\Rightarrow \Phi(Q_j)$ содержится в шаре радиуса $M\sqrt{m}h_j\Rightarrow \Phi(Q_j)$ содержится в кубе со стороной $2M\sqrt{m}h_j$

$$\Phi(e) \subset \cup \Phi(Q_j), \sum \lambda(\Phi(Q_j)) \leq \sum (2M\sqrt{m}h_j)^m = (2M\sqrt{m})^m \sum h_j^m = (2M\sqrt{m})^m \sum \lambda Q_j < (2M\sqrt{m})^m \cdot \sum_{j=1}^m \lambda_j Q_j < (2M\sqrt{m$$

Шаг 2. e произвольное, $G=\bigsqcup P_k$, где P_k – ячейки, т.ч. $\operatorname{Cl} P_k\subset G$ $e_k:=e\cap P_k\Rightarrow$ по шагу 1 $\lambda e_k=0\Rightarrow \lambda e=0$

2. $E=e\cup\bigcup K_n$, где $\lambda e=0$ и K_n – компакт \Rightarrow $\Phi(E)=\Phi(e)$ \cup $\Phi(K_n)$ все множества измеримы нулев. мера компакты

Теорема 9.4.6. Мера Лебега инвариантна относительно движения.

Доказательство. Надо доказать, что мера Лебега не меняется при вращении.

Пусть U – поворот. $\mu E := \lambda(UE)$ – мера на \mathcal{L}^m .

 μ конечна на ограниченных множествах.

μ инвариантна относительно сдвигов.

$$\mu(E+v) = \lambda(U(E+v)) = \lambda(UE+Uv) = \lambda(UE) = \mu E$$

Тогда $\mu = k\lambda$ для $k \in [0, +\infty)$. Но единичный шар переходит в себя при вращении $\Rightarrow k = 1$

Теорема 9.4.7. Теорема об изменении меры лебега при линейном отображении.

Пусть
$$T: \mathbb{R}^m \to \mathbb{R}^m$$
 линейное, E – измеримое. Тогда $\lambda(T(E)) = |\det T| \cdot \lambda E$.

Доказательство. $\mu E := \lambda(T(E))$ инвариантно относительно сдвигов и конечна на ограниченных множествах $\Rightarrow \mu = k\lambda$ для $k = \lambda(T((0,1]^m))$. Это $|\det T|$ (из алгебры).

Пример неизмеримого множества

 $x,y \in (0,1], x\tilde{y}$, если $x-y \in \mathbb{Q}$

А – берем из каждого класса эквивалентности по одному представителю

А – неизмеримо

Доказательство. От противого. Пусть A измеримо.

1.
$$\lambda A=0$$
. Тогда $(0,1]\subset\bigcup_{x\in\mathbb{Q}}^{\text{множества нулевой меры}}(A+x)\Longrightarrow\lambda(0,1]=0,$ противоречие.

2.
$$\lambda A\supset 0$$
. Тогда $\bigsqcup_{x\in\mathbb{Q}}(A+x)\subset (0,2]\Rightarrow 2\geq \sum_{x\in\mathbb{Q},0\leq x\leq 1}\lambda$ все меры одинак. ($A+x$) , противоречие.

9.5 Измеримые функции

Определение 9.5.1. Пусть $f: E \to \overline{\mathbb{R}}, a \in \mathbb{R}$.

$$E\{f < a\} := \{x \in E \mid f(x) < a\} = f^{-1}((-\infty, a))$$

$$E\{f \le a\} := \{x \in E \mid f(x) \le a\} = f^{-1}((-\infty, a])$$

$$E\{f \leq a\}$$
 и $E\{f \leq a\}$

Все это – лебеговые множества функции f.

Теорема 9.5.1. Пусть E – измеримое, $f: E \to \overline{\mathbb{R}}$. Следующие условия равносильны:

- 1. $E\{f < a\}$ измеримо $\forall a \in \mathbb{R}$.
- 2. $E\{f \leq a\}$ измеримо $\forall a \in \mathbb{R}$.
- 3. $E\{f > a\}$ измеримо $\forall a \in \mathbb{R}$.
- 4. $E\{f \geq a\}$ измеримо $\forall a \in \mathbb{R}$.

Доказательство.

- $E\{f < a\} = E \setminus E\{f \ge a\} \Rightarrow 1 \Leftrightarrow 4$
- $E\{f > a\} = E \setminus E\{f \le a\} \Rightarrow 2 \Leftrightarrow 3$
- $2 \Rightarrow 1$: $E\{f < a\} = \bigcup_{n=1}^{\infty} E\{f \le a \frac{1}{n}\}$
- $4 \Rightarrow 3$: $E\{f > a\} = \bigcup_{n=1}^{\infty} E\{f \ge a + \frac{1}{n}\}$

Определение 9.5.2. $f: E \to \overline{\mathbb{R}}$ – *измерима*, если все ее лебеговы множества при всех $a \in \mathbb{R}$ измеримы.

Пример.

- 1. Константа (на измеримом множестве)
- $2. E \supset A$ измеримы

$$\mathbf{1}_A(x) := egin{array}{ccc} 1, & ext{если } x \in A \ 0, & ext{если } x \in E \setminus A \ \end{array}, \, \mathbf{1}_A : E o \mathbb{R}$$

3. $E \in \mathcal{L}^m, \, f: E \to \mathbb{R}$ непрерывна $\Rightarrow f$ – измерима относительно $\mathcal{L}^m.$

Доказательство. Достаточно измеримости множеств $E\{f < a\} = f^{-1}((-\infty, a))$ – открытые множества \Rightarrow они из \mathcal{L}^m .

Свойства измеримых функций:

1. Если $f: E \to \overline{\mathbb{R}}$ измерима, то E – измеримое множество.

Доказательство.
$$E = \bigcup_{n=1}^{\infty} E\{f < n\} \cup \bigcap_{n=1}^{\infty} E\{f > n\}$$

$$= E\{f < +\infty\}$$

$$= E\{f = +\infty\}$$

2. Если $f:E o\overline{\mathbb{R}}$ измерима, E_0 $\subset E\Rightarrow f\mid_{E_0}$ – измеримо.

Доказательство.
$$E_0\{f \mid_{E_0} < a\} = E_0 \cap E\{f < a\}$$

3. Если $f:E \to \overline{\mathbb{R}}$ измеримая, то прообраз любого промежутка – измеримое множество.

Доказательство. $E\{a < f \le b\} = E\{f \le b\} \cap E\{a < f\}$

4. Если f – измеримая, то прообраз открытого множества измерим.

Доказательство.
$$G$$
 – открытое $\subset \mathbb{R} \Rightarrow G = \bigsqcup_{k=1}^{\infty} (a_k, b_k] \Rightarrow f^{-1}(G) = \bigcup_{k=1}^{\infty} f^{-1}(a_k, b_k]$

5. Если f и g измеримые, то $\max\{f,g\}$ и $\min\{f,g\}$ измеримые. В частности $f_+ = \max\{f,0\}$ и $f_- = \max\{-f,0\}$ измеримые.

Доказательство. $E\{\max\{f,g\} \leq a\} = E\{f \leq a\} \cap E\{g \leq a\}$

Остальное аналогично.

6. Пусть $E=\bigcup_{n=1}^\infty E_n$. Если $f\mid_{E_n}$ измерима, то $f:E o\overline{\mathbb{R}}$ измерима.

Доказательство.
$$E\{f \leq a\} = \bigcup E_n\{f \leq a\}$$

7. Если $f:E o\overline{\mathbb{R}}$ измерима, то найдется $g:X o\overline{\mathbb{R}}$ измеримая, т.ч. $f=g\mid_E$.

Доказательство.
$$g(x) = \begin{cases} f(x), & \text{если } x \in E \\ 0, & \text{иначе} \end{cases}$$

Теорема 9.5.2. Пусть $f_n: E \to \overline{\mathbb{R}}$ поселдовательность измеримых функций. Тогда:

- 1. $\sup f_n$ $u\inf f_n$ измеримые функции $(g=\sup f_n,\ ecnu\ g(x)=\sup f_n(x)).$
- 2. $\lim f_n \ u \ \underline{\lim} f_n u$ змеримые функции.
- 3. Если $\forall x \in E$ существует $\lim_{n \to \infty} f_n(x)$, то $\lim f_n$ измеримая функция.

Доказательство.

1.
$$E = \{\sup f_n > a\} = \bigcup_{n=1}^{\infty} E\{f_n > a\}$$

 $E = \{\inf f_n < a\} = \bigcap_{n=1}^{\infty} E\{f_n < a\}$

Объединили измеримые множества, поэтому измеримость осталась.

2.
$$\overline{\lim} f_n = \inf_{n} \sup_{k \ge n} f_k(x)$$

 $\underline{\lim} f_n = \sup_{n} \inf_{k \ge n} f_k(x)$

3. Если существует $\lim_{n\to\infty} f_n(x)$, то $\lim f_n(x) = \overline{\lim} f_n$

Теорема 9.5.3. Пусть $f: E \to H \subset \mathbb{R}^m$, т.ч. $f = (f_1, ..., f_m)$ и $f_1, ..., f_m$ – измеримые; $\varphi \in C(H)$, $\varphi: H \to \mathbb{R}$. Тогда $F = \varphi \circ f$ – измеримая.

Доказательство. $E\{F < a\} = F^{-1}(-\infty, c) = f^{-1}(\underbrace{\varphi^{-1}(-\infty, c)}_{H\{\varphi < c\}})$

 $H\{\varphi < c\}$ — открытое множество в H, т.е. это $H \cap G$, где G открыто в \mathbb{R}^m .

G – открытое $\Rightarrow G$ – счетное объединение ячеек.

$$f^{-1}(H \cap G) = f^{-1}(G)$$

То есть надо понять, что $f^{-1}(a,b]$ – измеримо $a,b\in\mathbb{R}^m$

$$f^{-1}(a,b] = \bigcap_{k=1}^{m} f(a_k, b_k]$$
 измеримые

Следствие. В условии теоремы можно в качестве φ взять поточечный предел непрерывных функций.

Определение 9.5.3. *Арифметические операции* $c \propto :$

- 1. Если x>0, то $x\cdot\pm\infty=\pm\infty$. Если x<0, то $x\cdot\pm\infty=\mp\infty$
- 2. Если $x \in \overline{\mathbb{R}}$, то $0 \cdot x = 0$
- 3. Если $x \in \overline{\mathbb{R}}$, то $x + (\pm \infty) = \pm \infty$ и $x (\pm \infty) = \mp \infty$.
- 4. $(+\infty) + (-\infty) = (+\infty) (+\infty) = (-\infty) (-\infty) = 0$

Деление на 0 не определено.

Теорема 9.5.4.

- 1. Произведение и сумма измеримых функций измеримая функция.
- 2. Если f измеримая, φ непрерывная, то $\varphi \circ f$ измеримая.
- 3. Если $f \ge 0$ измеримая, p > 0, то f^p измеримая $((+\infty)^p = +\infty)$.
- 4. Если f измеримая, то $\frac{1}{f}$ измерима на множестве $E\{f \neq 0\}$.

Доказательство.

1. f и g – измеримые. $E = \{-\infty < f < +\infty\}$ и $E\{-\infty < g < +\infty\}$

$$\varphi(x,y) = x + y, \ \varphi \circ \binom{f}{g}$$

Рассмотрим такие кусочки: $E\{-\infty < f < 0\}$, $E\{f = 0\}$, $E\{f = -\infty\}$, $E\{f = +\infty\}$, $E\{0 < f < +\infty\}$

- 2. Частный случай предыдущей теоремы.
- 3. $E\{f^p \le a\} = \emptyset$ и = $\{f \le a^{\frac{1}{p}}\}$, если $a \ge 0$.
- 4. $\tilde{E} := E\{f \neq 0\}$

$$ilde{E}\{rac{1}{f} < a\} = E\{f < 0\} \cup E\{f > rac{1}{a}\}$$
 при $a > 0$

$$ilde{E}\{rac{1}{f} < a\} = E\{f < rac{1}{a}\}$$
 при $a < 0$

Следствие.

- 1. Произведение конечного числа измеримых функций измеримая функция.
- 2. Натуральная степень измеримой функции измеримая функция.
- 3. Линейная комбинация измеримой функции измеримая функция.

Теорема 9.5.5. Пусть мера задана на \mathcal{B}^n , $E \in \mathcal{B}^n$, $f \in C(E)$. Тогда f – измеримая.

Доказательство.
$$E\{f < a\}$$
 – открытое в $E \Rightarrow E\{f < a\} = E \cap G$, где G – открыто в \mathbb{R}^n . G – открыто $\Rightarrow G \in \mathcal{B}^n \Rightarrow E \cap G \in \mathcal{B}^n$

Определение 9.5.4. Измеримая функция называется *простой*, если они принимает лишь конечное число значений.

Определение 9.5.5. Допустимое разбиение – разбиение X на конечное число измеримых множеств, т.ч. на каждом множестве функция постоянна.

Замечание. У простой функции есть допустимое разбиение.

Пусть
$$f: X \to \mathbb{R}, y_1, y_2, ..., y_n$$
 – ее значения. Тогда $X = \bigsqcup_{k=1}^n f^{-1}(y_k)$.

Свойства простых функций

- 1. Функция, постоянная на элементах конечного разбиения X на измеримые множества простая функция.
- 2. Для любых двух простых функций есть общее допустимое разбиение.
- 3. Сумма и произведение простых функций простая функция. (они постоянны на элементах общего допустимого разбиения)
- 4. Линейная комбинация простых функций простая функция.
- 5. Максимум (минимум) конечного числа простых функций простая функция.

Теорема 9.5.6. Теорема о приближении измеримых функций простыми.

Пусть $f:X\to \overline{\mathbb{R}}$ неотрицательная измеримая функция. Тогда существует последовательность простых функций $\varphi_n:X\to \mathbb{R},\ m.ч.\ \varphi_n\leq \varphi_{n+1}\ u\ f=\lim \varphi_n.$ Более того, если f – ограниченная функция, то φ_n можно так выбрать, что $\varphi\rightrightarrows_X f$.

$$\mathcal{A}$$
оказательство. $\triangle_k:=[\frac{k}{n},\frac{k+1}{n}),\ \triangle_{n^2}:=[n,+\infty)$ $[0,+\infty]=\triangle_0\sqcup\triangle_1\sqcup\ldots\triangle_{n^2},\ A_k:=f^{-1}(\triangle_k)$ Тогда $X=\bigsqcup_{k=0}^{n^2}A_k$ $\varphi_n(x)=\frac{k}{n},\$ если $x\in A_k,\ \varphi_n-$ простая функция.

 $0 \le \varphi_n(x) \le f(x)$

Если $f(x) \neq +\infty$, то при больших n x попадет в прообразы конечных полуинтервалов $\Rightarrow f(x) - \frac{1}{n} < \varphi_n(x) \leq f(x) \Rightarrow \lim \varphi_n(x) = f(x)$

Если $f(x)=+\infty$, то x всегда в прообразе луча $\Rightarrow \varphi_n(x)=n \to +\infty=f(x)$

Если f ограниченная, то сходимость будет равномерной.

Берем
$$\varphi_{2^n}$$
. Тогда $\varphi_{2^n}(x) \leq \varphi_{2^{n+1}}(x)$. $f(x) \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right)$

9.6 Последовательность функций

Напоминание:

Поточечная сходимость: f_n сходится к f поточечно, если $\forall x \in E$ $f_n(x) \to f(x)$.

Равномерная сходимость: $f_n \rightrightarrows f$ на E, если $\sup |f_n(x) - f(x)| \to 0$.

Обозначение $\mathcal{L}(E,\mu)$ – класс функций $f:E \to \overline{\mathbb{R}}$, измеримых относительно μ и $\mu\{f=\pm\infty\}=0$.

Определение 9.6.1. Пусть $f_n, f: E \to \overline{\mathbb{R}}$. Тогда f_n сходится κ f почти везде относительно μ (μ п.в.), если $\exists e \subset E$, т.ч. $\mu e = 0$ и $\forall x \in E \setminus e$. $\lim_{n \to \infty} f_n(x) = f(x)$

Определение 9.6.2. Пусть $f_n, f \in \mathcal{L}(E, \mu)$. Тогда f_n сходится f по мере μ , если $\forall \varepsilon > 0$ $\mu E\{|f_n - f| > \varepsilon\} \to 0$.

3амечание. Раавномерная сходимость \Rightarrow поточечная \Rightarrow п.в.

Раавномерная сходимость ⇒ сходимость по мере.

Утверждение 9.6.1. Единственность предела.

- 1. Если $f_n \to f$ и $f_n \to g$ μ -п.в., то f=g п.в. (за исключением множества нулевой меры)
- 2. Если $f_n o f$ по мере μ и $f_n o g$ по мере μ , то f = g п.в.

Доказательство.

1. $f_n \to f$ поточечно на $E \setminus e_1$

 $f_n \to g$ поточечно на $E \setminus e_2$

$$\mu e_1 = \mu e_2 = 0 \Rightarrow f(x) = g(x)$$
 при $x \in E \setminus (e_1 \cup e_2)$

2.
$$E\{f \neq g\} \subset \bigcup_{n=1}^{\infty} E\{|f-g| > \frac{1}{n}\} \subset \bigcup_{n=1}^{\infty} E\{|f-f_n| > \frac{1}{2n}\} \cup E\{|g-f_n| > \frac{1}{2n}\}$$

Теорема 9.6.1. Теорема Лебега

Если $\mu E < +\infty$, $f_n, f : \mathcal{L}(E, \mu)$, f_n cxoдится κ f, μ -n.в. Тогда f_n сходится κ f по мере μ .

Случай 1: $f_n \searrow 0$

Надо доказать, что $\mu E\{f_n > \varepsilon\} \to 0$.

$$A_n := E\{f_n > \varepsilon\}, A_{n+1} \subset A_n, f_{n+1} \le f_n$$

$$\bigcap_{n=1}^{\infty} A_n = \varnothing \Rightarrow$$
 по непрерывности меры сверху $\lim_{n \to \infty} \mu A_n = 0$

Случай 2: $f_n \to f$ поточечно

$$\lim_{n \to \infty} |f_n(x) - f(x)| = 0 \Rightarrow 0 = \overline{\lim_{n \to \infty}} |f_n(x) - f(x)| = \lim_{n \to \infty} \sup_{\underline{k \ge n}} |f_k(x) - f(x)| \Rightarrow g_n \searrow 0 \Rightarrow \mu E\{g_n > \varepsilon\} \to 0,$$

но
$$E\{g_n>\varepsilon\}=E\{\sup_{k\geq n}|f_k-f|>\varepsilon\}\supset E\{|f_n-f|>\varepsilon\}$$

Замечание.

1. Условие $\mu E < +\infty$ существенно.

$$E=\mathbb{R},\,\mu=\lambda_1$$
 – мера Лебегаб $f_n=\mathbf{1}_{[n,+\infty)}$ – характеристическая функция множества $[n,+\infty)$.

Тогда $f_n \to 0$ поточечно

Ho
$$E\{f_n > \frac{1}{2}\} = \mathbb{R}$$
 и $\lambda E\{f_n > \frac{1}{2}\} \not\to 0$

2. Обратное утверждение неверно. Более того, из сходимости по мере не следует сходимость хотя бы в одной точке.

$$E = [0, 1), \, \mu = \lambda_1$$

 $\mathbf{1}_{[0,1)}$

$$\mu E\{|\mathbf{1}_{\lceil\frac{k}{.}.\frac{k+1}{n}\rangle}-0|>\varepsilon\}=\frac{1}{n}\to 0$$
есть сходимость по мере.

Но ни в какой точке нет сходимости.

Теорема 9.6.2. Теорема Рисса.

Если f_n сходится κ f по мере μ , то существует подпоследовательность f_{nk} , т.ч. f_{nk} сходится κ fn.в. no мере $\mu.$

 \mathcal{A} оказательство. $\mu E\{|f_n-f|>\frac{1}{k}\}\underset{n\to\infty}{\to} 0$ из определения сходимости по мере.

Выберем такое $n_k > n_{k-1},$ что $\mu\underbrace{E\{|f_n - f| > \frac{1}{k}\}}_{=:A_k} < \frac{1}{2^k}$

$$B_n := \bigcup_{k=n}^{\infty} A_k, \ \mu B_n \le \sum_{k=n+1}^{\infty} \mu A_k < \frac{1}{2^n} \to 0$$

$$B_n \supset B_{n+1}$$

$$B_n \supset B_{n+1}$$

$$B := \bigcap_{n=1}^{\infty} B_n \subset B_n \Rightarrow \mu B = 0$$

Проверим, что если $x \notin B$, то $f_{n_k}(x) \to f(x)$.

Если $x \notin B$, то $x \notin B_m$ для некоторого $m \Rightarrow x \notin A_k \forall k > m \Rightarrow |f_{n_k}(x) - f(x)| \le \frac{1}{k} \ \forall k > m \Rightarrow \lim f_{n_k}(x) = f(x)$ f(x)

Следствие.

- 1. Если f_n сходится κ f по мере μ , то сходимость n.в. может быть только κ функции f.
- 2. Если f_n сходится κ f по мере μ и $f_n \leq g$, то $f \leq g$ n.в.

Доказательство. Выберем подпоследовательность f_{n_k} сходится к f п.в. $\Rightarrow f \leq g$ во всех точках, где есть сходимость.

Теорема 9.6.3. Теорема Фреше.

Пусть $f: \mathbb{R}^m \to \mathbb{R}$ измеримая относительно меры Лебега. Тогда существует последовательность $f_n \in C(\mathbb{R}^m), m.ч. f_n \to f$ n.в.

Теорема 9.6.4. Теорема Егорова.

Пусть $f_n, f \in \mathcal{L}(E,\mu)$ и $\mu E < +\infty$. Если f_n сходится κ f n.s., то $\forall \varepsilon > 0$ найдется $e \subset E$, т.ч. $\mu e < \varepsilon$ и $f_n \Rightarrow f$ на $E \setminus e$.

Теорема 9.6.5. Теорема Лузина.

Пусть $f: \mathbb{R}^m \to \mathbb{R}$, $E \subset \mathbb{R}^m$, f – измеримая. Тогда $\forall \varepsilon > 0$ существует $A \subset E$, т.ч. $\lambda_m(E \setminus A) < \varepsilon$ и $f \mid_A$ непрерывная.

Замечание. То, что множество точек разрыва имеет маленькую меру, – неверно.

 $f = \mathbf{1}_{\mathbb{O}}$, но $f \mid_{\mathbb{R} \setminus \mathbb{O}}$ – непрерывна.

Фреме + Егоров \Rightarrow Лузин. Продолжим f нулем на все $\mathbb{R}^m \stackrel{\Phi \text{peme}}{\Rightarrow} f_n \to f$ п.в. $f \in C(\mathbb{R}^m) \stackrel{\text{Егоров}}{\Rightarrow} \exists e \subset \mathbb{R}^m$, т.ч. $\lambda_m e < \varepsilon$ и $f_n \Rightarrow f$ на $\mathbb{R} \setminus e$

Но равномерный предел непрерывных функций – непрерывная функция: $f_n \mid_{\mathbb{R}^m \setminus e} \rightrightarrows f \mid_{\mathbb{R}^m \setminus e}$

10. Интеграл Лебега

10. Интеграл Лебега

10.1 Определение интеграла

Лемма 10.1.1. Пусть $f \ge 0$ простая функция $A_1, A_2, ..., A_m$ и $B_1, B_2, ..., B_n$ – допустимые разбиения, $a_1, a_2, ..., a_m$ и $b_1, b_2, ..., b_n$ – значения f на соответствующих множествах. Тогда для любого измеримого множества E: $\sum_{i=1}^m a_i \mu(E \cap A_i) = \sum_{i=1}^n b_j \mu(E \cap B_j)$

Доказательство. Если $A_i \cap B_j \neq \emptyset$, то $a_i = b_j$. $\sum_{i=1}^m a_i \mu(E \cap A_i) = \sum_{i=1}^m a_i \sum_{j=1}^n \mu(E \cap A_i \cap B_j) = \sum_{i=1}^m \sum_{j=1}^n a_i (E \cap A_i \cap B_j) = \sum_{i=1}^m \sum_{j=1}^n b_j (E \cap A_i \cap B_j) = \sum_{j=1}^n b_j \mu(E \cap$

Определение 10.1.1. Интеграл от неотрицательной простой функции f.

 $\int_E f d\mu := \sum_{i=1}^m a_i \mu(E \cap A_i)$, где $A_1, ..., A_n$ – допустимое разбиение, $a_1, ..., a_n$ – значения на соответствующих множествах.

Свойства:

- 1. $\int_{E} c d\mu = c\mu E$
- 2. Если $0 \le f \le g, f, g$ простые, то $\int\limits_E f d\mu \le \int\limits_E g d\mu$.
- 3. Если f,g неотрицательные простые, то $\int_E (f+g)d\mu = \int_E f d\mu + \int_E g d\mu$.

Доказательство. 2 и 3. Берем общее допустимое разбиение A_i , где a_i – значения f на A_i , b_i – значения g на A_i .

- 2. $a_i \le b_i \Rightarrow \sum a_i \mu(A_i \cap E) \le \sum b_i \mu(A_i \cap E)$
- 3. a_i+b_i значение f+g на $A_i, \int\limits_E (f+g)d\mu = \int\limits_E (a_i+b_i)\mu(E\cap A_i) = \dots$

Определение 10.1.2. Интеграл от неотрицательной измеримой функции f

$$\smallint_E f d\mu := \sup\{\smallint_E \varphi d\mu \mid \varphi - \text{простая и } 0 \leq \varphi \leq f\}$$

Определение 10.1.3. Интеграл от измеримой функции f

$$\int\limits_E f d\mu := \int\limits_E f_+ d\mu - \int\limits_E f_- d\mu$$
 Если $(+\infty) - (+\infty),$ то \int не определен.

Замечание.

1. Если $f \ge 0$ простая, то новое определение совпадает со старым.

Комментарий: можно в качестве φ взять f, тогда $f = \varphi \leq f$, то есть берем супремум от множества, в котором есть старый интеграл + все функции не больше него.

2. Новое определение для неотрицательной измеримой (через f_+ и f_-) совпадает со старым. Комментарий: $f_-=0$.

Свойства ∫ от неотрицательной измеримых функций:

- 1. Если $f \leq g$, то $\int_{\mathbb{R}} f d\mu \leq \int_{\mathbb{R}} g d\mu$.
- 2. Если $\mu E=0$, то $\int_E f d\mu=0$.
- 3. $\int_E f d\mu = \int_X \mathbf{1}_E f d\mu.$
- 4. Если $A \subset B$, то $\int_A f d\mu \leq \int_B f d\mu$.

Доказательство.

- 1. Простые, подходящие для f, подходят и для g, то есть считаем sup от большего множества.
- 2. $\mu E=0\Rightarrow\int\limits_{F}\varphi d\mu=0,$ если φ простая.
- 3. $\int\limits_{E} \varphi d\mu = \int\limits_{Y} \mathbf{1}_{E} d\mu$ верно для простых функций.
- 4. $\mathbf{1}_A f \leq \mathbf{1}_B f \Rightarrow 1 + 3 = 4$

Теорема 10.1.1. Теорема Беппо Леви

Пусть $f_n \leq 0$ – измеримые, $0 \leq f_1 \leq f_2 \leq \dots$ Если f_n поточечно сходится κ f, то $\lim_{\kappa} \int_{\Gamma} f_n d\mu = \int_{\Gamma} f_n d\mu$.

Доказательство. $f_n \leq f_{n+1} \Rightarrow \int\limits_X f_n d\mu \leq \int\limits_X f_{n+1} d\mu \Rightarrow$ последовательность $\int\limits_X f_n d\mu$ возрастает.

Пусть $L:=\lim \int\limits_X f_n d\mu$. Поскольку $f_n\leq f,\int\limits_X f_n d\mu\leq \int\limits_X f d\mu\Rightarrow L\leq \lim \int\limits_X f_n d\mu$

Надо доказать, что $L \ge \lim \int\limits_X f_n d\mu = \sup\{\int\limits_X \varphi d\mu \mid 0 \le \varphi \le f\}$, где φ – простая. Достаточно доказать, что $L \ge \lim \int\limits_X f_n d\mu \ \forall \varphi$ простая $0 \le \varphi \le f$.

Берем $\Theta \in (0,1)$. $X_n := X\{f_n \geq \Theta \varphi\}, \ X_1 \subset X_2 \subset \dots$ Докажем, что $\bigcup_{n=1}^{\infty} X_n = X$. Берем $x \in X$. Если $\varphi(x) = 0$, то $x \in X_n \forall n$. Если $\varphi(x) > 0$, то $f(x) \geq \varphi(x) > 0$ и $\lim f_n(x) = f(x) > \Theta \varphi(x) \Rightarrow$ при больших $n \ f_n(x) \leq \Theta \varphi(x) \Rightarrow x \in X_n$ при больших n.

Пусть A_i – допустимое разбиение для φ . $\mu(A_i\cap X_n)\underset{n\to\infty}{\to}\mu A_i$ непрерывность меры снизу. Тогда

$$\sum a_i \mu(A_i \cap X_n) \to \sum_{\substack{f \in X_n \\ X_n}} a_i \mu A_i.$$

Достаточно доказать, что $L \geq \Theta \int\limits_{\mathcal{X}} \varphi d\mu$:

$$L \ge \int_{X} f_n d\mu \ge \int_{X_n} f_n d\mu \ge \int_{X_n} \Theta \varphi d\mu = \Theta \int_{X_n} \varphi d\mu$$

Свойства Г от неотрицательной измеримых функций:

5. Аддитивность.

Если
$$f,g\geq 0$$
 измеримые, то $\int\limits_E (f+g)d\mu=\int\limits_E (f+g)=\int\limits_E f+\int\limits_E g.$

6. Однородность.

Если
$$\alpha \geq 0, f \geq 0$$
 измеримая, то $\int\limits_E (\alpha f) d\mu = \alpha \int\limits_E f d\mu.$

Доказательство.

5. По теореме о приближении f простыми $0 \le \varphi_1 \le \varphi_2 \le ... \to f$ (поточечно) и $0 \le \psi_1 \le \psi_2 \le ...$ $\dots \to g$ (поточечно).

Тогда
$$\varphi_n + \psi_n \to f = g$$
, $0 \le \varphi_1 + \psi_1 \le \varphi_2 + \psi_2 \le \dots$

На простых функциях есть аддитивность:
$$\int_E (\varphi_n + \psi_n) d\mu = \int_E \varphi_n d\mu + \int_E \psi_n d\mu$$

$$\stackrel{\text{по th Леви}}{\to} \smallint_E (f+g) d\mu = \smallint_E f d\mu + \smallint_E g d\mu$$

6. Считаем, что $\alpha>0$ (иначе, 0=0 и очевидно). Приблизим f простыми: $0\leq \varphi_1\leq \varphi_2\leq ... \to f$ (поточечно). Тогда:

$$0 \le \alpha \varphi_1 \le \alpha \varphi_2 \le ... \to \alpha f$$
 (поточечно) и $\int\limits_E (\alpha \varphi) d\mu = \int\limits_E \varphi d\mu$

$$\stackrel{\text{no th } \text{Леви}}{\to} \smallint_E (\alpha f) d\mu = \smallint_E f d\mu$$

7. Аддитивность по множеству.

$$f \geq 0$$
 измеримая $\Rightarrow \int\limits_{A \sqcup B} f d\mu = \int\limits_{A} f d\mu + \int\limits_{B} f d\mu$

Доказательство.
$$\mathbf{1}_A f + \mathbf{1}_B f = \mathbf{1}_{A \sqcup f}$$

8. Если $\mu E>0$ и f>0 на E, то $\int\limits_{E}fd\mu>0$

Доказательство. Рассмотрим
$$E_n:=E\{f\geq \frac{1}{n}\},$$
 тогда $\bigcup_{n=1}^{\infty}E_n=E$

$$E_1 \subset E_2 \subset ... \Rightarrow \mu E_n \to \mu E > 0 \Rightarrow \mu E_n > 0 \text{ if } \int_{E_n} f d\mu > \frac{1}{n} \mu E_n$$

Пример. Пусть $T = \{t_1, t_2, ...\}$ не более чем счетное, $\{w_1, w_2, ...\}$ неотрицательные и $\mu A_i := \sum_{i: t_i \in A} w_i$.

Проверим, что
$$\int_A f d\mu = \sum_{i=1,2,4,4} f(t_i) \cdot w_i$$
.

Проверим, что
$$\int\limits_A f d\mu = \sum\limits_{i:t_i \in A} f(t_i) \cdot w_i$$
. Если $f = \mathbf{1}_E$: $\int\limits_A \mathbf{1}_E d\mu = \mu(E \cap A) = \sum\limits_{i:t_i \in (A \cap E)} w_i = \sum\limits_{i:t_i \in A} f(t_i) \cdot w_i$

Если $f \ge 0$ простая, то формула работает по линейности.

Если $f \ge 0$ измеримая:

$$\geq \varphi_n = f \mid_{\{t_1,\dots,t_n\}}$$

$$\int_A f d\mu \geq \int_A \varphi_n d\mu = \sum_{i \leq n: t_i \in A} f(t_i) w_i \xrightarrow{j} \sum_{i: t_i \in A} f(t_i) w_i$$

 \leq . Пусть φ – простая, $0 \leq \varphi \leq f$

$$\int\limits_A f d\mu = \sum\limits_{i:t_i \in A} \varphi(t_i) w_i \le \sum\limits_{i:t_i \in A} f(t_i) w_i$$
 и берем sup от $\int\limits_A \varphi d\mu$

Если f произвольная измеримая, то $f=f_+-f_-$ и вычитаем равенства для f_\pm :

$$\int_{A} f_{\pm} d\mu = \sum_{i:t_i \in A} f_{\pm}(t_i) w_i$$

Определение 10.1.4. Свойство P(x) верно почти везде на E или для почти всех точек из E: Если существует $e \subset E$, т.ч. $\mu e = 0$ и P(x) верно $\forall x \in E \setminus e$.

Замечание. Если P_1, P_2, \dots – последовательность свойств, верных почти везде на E, то они все вместе верны почти везде на E.

Теорема 10.1.2. Неравенство Чебышева

Пусть $f \leq 0$ измерима, p,t>0. Тогда $\mu E\{f\geq t\}\leq \frac{1}{t^p}\int\limits_E f^p d\mu$.

Доказательство. Заметим, что
$$E\{f\geq t\}=E\{f^p\geq t^p\}$$

$$t^p\mu E\{f\geq t\}=t^p\cdot \mu E\{f^p\geq t^p\}\leq \int E\{f^p\geq t^p\}f^pd\mu\leq \int\limits_E f^pd\mu$$

Свойства интеграла, связанные с почти везде

1. Если $\int\limits_{E}|f|d\mu<+\infty,$ то f почти везде конечна на E.

Доказательство.
$$\mu E\{|f| \geq n\} \leq \frac{1}{n} \int_{E} |f| d\mu \underset{n \to +\infty}{\to}$$

$$muE\{|f| \geq \pm \infty\} \leq muE\{|f| \geq n\} \to 0$$

2. Если $\int\limits_{E}|f|d\mu=0,$ то f=0 почти везде на E

Доказательство. Если
$$\mu E\{|f|>0\}>0,$$
 то $\int\limits_{E\{|f|>0\}}|f|d\mu>0$

3. Если $A\subset B$ измеримое и $\mu B\setminus A=0$, то $\int\limits_A f d\mu=\int\limits_B f d\mu$ (и существуют / не существуют одновременно).

Доказательство.
$$\int\limits_B f_\pm d\mu = \int\limits_A f_\pm d\mu + \int\limits_{B\backslash A} f_\pm d\mu = \int\limits_A f_\pm d\mu$$

4. Если f и g измеримы и f=g почти везде на E, то $\int\limits_E f d\mu = \int\limits_E g d\mu$ (и существуют / не существуют одновременно).

Доказательство. Пусть f = g на $E \setminus e$ и $\mu e = 0$.

$$\int\limits_E f d\mu = \int\limits_{E \backslash e} f d\mu = \int\limits_{E \backslash e} g d\mu = \int\limits_E g d\mu$$

10.2 Суммируемые функции

Определение 10.2.1. Пусть f – измеримая функция. Если $\int_E f_{\pm} d\mu$ конечны, то f – cymmupyemas на множестве E.

Свойства:

1. Пусть f – измеримая. Тогда f – суммируемая на $E \Leftrightarrow \int\limits_E |f| d\mu < +\infty.$

Доказательство.
$$\Leftarrow$$
. $0 \le f_{\pm} \le |f| \Rightarrow \int_{E} f_{\pm} d\mu \le \int_{E} |f| d\mu < +\infty$ \Rightarrow . $|f| = f_{+} + f_{-} \Rightarrow \int_{E} |f| d\mu = \int_{E} f_{+} d\mu + \int_{E} f_{-} d\mu < +\infty$

- 2. Суммируемая на E функция почти везде конечна на E.
- 3. Пусть $A \subset B$. Если f суммируемая на B, то f суммируемая на A.

Доказательство.
$$\int\limits_A f d\mu \leq \int\limits_B f d\mu$$

- 4. Ограниченная функция суммируемая на множестве конечной мере.
- 5. Если f и g суммируемые на множестве E и $f \leq g$ почти везде на E, то $\int\limits_E f d\mu \leq \int\limits_E g d\mu$.

Доказательство.
$$f_+ - f_- \le g_+ - g_-$$
 почти везде на $E \Rightarrow f_+ + g_- \le g_+ + f_-$ почти везде на E
$$\int\limits_E f_+ + \int\limits_E g_- = \int\limits_E (f_+ + g_-) d\mu \le \int\limits_E (g_+ + f_-) d\mu = \int\limits_E g_+ + \int\limits_E f_-$$

6. Аддитивность интеграла.

Если f и g суммируемые на множестве E, то f+g суммируемая на множестве E и $\int\limits_E (f+g)d\mu = \int\limits_E f d\mu + \int\limits_E g d\mu.$

Доказательство.
$$|f+g| \le |f| + |g| \Rightarrow \int_E |f+g| d\mu \le \int_E |f| d\mu + \int_E |g| d\mu < +\infty \Rightarrow$$
 суммируемость есть Пусть $h = f + g$. $h_+ - h_- = h = f + g = f_+ - f_- + g_+ - g_- \Rightarrow h_+ f_- + g_- = f_+ + g_+ + h_- \Rightarrow \int_E (h_+ f_- + g_-) d\mu = \int_E (f_+ + g_+ + h_-) d\mu$

7. Однородность интеграла.

Если f – суммируемая на E, $\alpha \in \mathbb{R}$, то αf суммируемая на E и $\int\limits_E (\alpha f) d\mu = \alpha \int\limits_E f d\mu.$

Доказательство.
$$\int_{E} |\alpha f| d\mu = |\alpha| \int_{E} |f| d\mu < +\infty$$

Если $\alpha = 0$, то все очевидно.

Пусть
$$\alpha > 0$$
. $(\alpha f)_+ = \alpha f_+$, $(\alpha f)_- = \alpha f_-$, $\int_E \alpha f_\pm d\mu = \alpha \int_E f_\pm d\mu$ и вычтем Пусть $\alpha = -1$, $(-f)_+ = f_-$, $(-f)_- = f_+$, $\int_E (-f) d\mu = \int_E (-f)_+ d\mu - \int_E (-f)_- d\mu = \int_E f_- d\mu - \int_E f_+ d\mu = -\int_E f d\mu$

8. Линейность интеграла.

Если f,g суммируемые на $E,\,\alpha,\beta\in\mathbb{R},\,$ то $\alpha f+\beta g$ суммируема на E и $\int\limits_{\mathbb{R}}(\alpha f+\beta g)d\mu=\alpha\int\limits_{\mathbb{R}}fd\mu+$ $\beta \int_E g d\mu$.

9. Аддитивность интеграла по множеству.

Пусть $E = \bigcup_{k=1}^n E_k$ — измеримые множества, f — измеримая. Тогда f суммируема на $E \Leftrightarrow f$ суммируема на E_k при k=1,...,n. В этом случае, если $E=\bigsqcup_{k=1}^n E_k$, то $\int\limits_E f d\mu=\sum_{k=1}^n \int\limits_{E_k} f d\mu$.

Доказательство. $|\mathbf{1}_{E_k}f| \leq |\mathbf{1}_{E_l}f| \leq |\mathbf{1}_{E_l}f| + |\mathbf{1}_{E_n}f| \Rightarrow$ равносильность

Если
$$E = \bigsqcup_{k=1}^{n} E_k$$
, то $\mathbf{1}_E = \mathbf{1}_{E_1} + ... + \mathbf{1}_{E_n} \Rightarrow \mathbf{1}_E f = \mathbf{1}_{E_1} f + ... + \mathbf{1}_{E_n} f$ и линейность интеграла. \square

10. Интегрирование по сумме мер Пусть μ_1 и μ_2 – меры, заданные на одной и той же σ -алгебре, $\mu = \mu_1 + \mu_2$. Если $f \ge 0$ измеримая, то $\int\limits_E f d\mu = \int\limits_E d\mu_1 + \int\limits_E d\mu_2$.

f суммируемая относительно $\mu \Leftrightarrow f$ суммируемая относительно μ_1 и μ_2 .

Доказательство. Равенство.

Проверим на простых $\int\limits_{E} \varphi d\mu = \sum_{k=1}^{n} a_{i}\mu(A_{i}\cap E) = \sum_{k=1}^{n} a_{i}\mu_{1}(A_{i}\cap E) + \sum_{k=1}^{n} a_{i}\mu_{2}(A_{i}\cap E) = \int\limits_{E} \varphi d\mu_{1} + \int\limits_{E} \varphi d\mu_{2}$ Берем простые $0 \le \varphi_1 \le \varphi_2 \le \dots \to f$

$$\begin{split} & \int\limits_{E} \varphi_n d\mu = \int\limits_{E} \varphi_n d\mu_1 + \int\limits_{E} \varphi_n d\mu_2 \\ & \stackrel{\text{по th Леви}}{\to} \int\limits_{E} \varphi d\mu = \int\limits_{E} \varphi d\mu_1 + \int\limits_{E} \varphi d\mu_2 \end{split}$$

Суммируемость

$$\int_{E} |f| d\mu = \int_{E} |f| d\mu_1 + \int_{E} |f| d\mu_2$$

Определение 10.2.2. Пусть $f: E \to \mathbb{C}$. Тогда f измерима, если $\operatorname{Re} f$ и $\operatorname{Im} f$ измеримы. $\int\limits_E f d\mu := \int\limits_E {\rm Re}\, f d\mu + \int\limits_E {\rm Im}\, f d\mu,$ если то, что написано справо, конечно.

Замечание. Все свойства, связанные с равенством сохраняются.

Утверждение 10.2.1. Неравенство: $|\int_{E} f d\mu| \leq \int_{E} |f| d\mu$

$$\mathcal{A}$$
оказательство. Если $\int\limits_E |f| d\mu = +\infty$, то все очевидно. Пусть $\int\limits_E |f| d\mu < +\infty \Rightarrow \int\limits_E (\operatorname{Re} f)_\pm d\mu, \int\limits_E (\operatorname{Im} f)_\pm d\mu < +\infty; \ (\operatorname{Re} f)_\pm, (\operatorname{Im} f)_\pm \leq |f|$

Тогда
$$\int\limits_E f d\mu$$
 конечный \Rightarrow для некоторых $\alpha \in \mathbb{R}|\int\limits_E f d\mu| = e^{i\alpha} \cdot \int\limits_E f d\mu = \int\limits_E (e^{i\alpha}) d\mu = \int\limits_E \operatorname{Re}(e^{i\alpha}f) d\mu + i \cdot \int\limits_E \operatorname{Im}(e^{i\alpha}f) d\mu = \int\limits_E \operatorname{Re}(e^{i\alpha}f) d\mu \le \int\limits_E |\operatorname{Re}(e^{i\alpha}f)| d\mu \le \int\limits_E |e^{i\alpha}f| d\mu = \int\limits_E |f| d\mu$

Теорема 10.2.1. Теорема о счетной аддитивности интеграла.

Пусть
$$f \geq 0$$
, измерима, $E = \bigsqcup_{n=1}^{\infty} E_n$. Тогда $\int_E f d\mu = \sum_{n=1}^{\infty} \int_{E_n} f d\mu$.

Доказательство. $S_n:=\sum\limits_{k=1}^n \mathbf{1}_{E_k}f,\, S_n\leq S_{n+1},\, S_n\to f$ поточечно на E.

По теореме Леви: $\int_{\Gamma} S_n d\mu \xrightarrow{r-1} \int_{\Gamma} f d\mu$

$$\int\limits_E S_n d\mu = \int\limits_E \sum_{k=1}^n \mathbf{1}_{E_k} d\mu = \sum_{k=1}^n \int\limits_E \mathbf{1}_{E_k} f d\mu = \sum_{k=1}^n \int\limits_{E_k} f d\mu$$
 это части суммы нужного ряда. \square

Следствие.

- 1. Если $f \geq 0$ измерима, то $\nu E := \int\limits_{E} f d\mu$ мера на той же σ -алгебре, что и μ .
- 2. Если f суммируемая u $E = \bigsqcup_{n=1}^{\infty} E_n$, то $\int_E f d\mu = \sum_{n=1}^{\infty} \int_{E_n} f d\mu$.

Доказательство. Для f_+ и f_- – теорема. Дальше вычтем.

3. Если $E_1 \subset E_2 \subset ...$ и $E = \bigcup_{n=1}^{\infty} E_n$ или $E_1 \supset E_2 \supset ...$ и $E = \bigcap_{n=1}^{\infty} E_n$, f – суммируемая, то $\int_{E} f d\mu \rightarrow \int_{E} f d\mu$.

 \mathcal{A} оказательство. $\nu_{\pm}A:=\int\limits_{\Lambda}fd\mu$ – конечные меры. По непрерывности сверху (снизу) $\nu_{\pm}E_{n} o\nu_{\pm}E$

4. Если f суммируемая на E, то $\forall \varepsilon>0$ $\exists A\subset E,$ т.ч. $\mu A<+\infty$ $u\int\limits_{E\backslash A}|f|d\mu<\varepsilon$.

Доказательство. $E_n := E\{|f| < \frac{1}{n}\}, E_1 \supset E_2 \subset \dots$

$$E = \bigcap_{n=1}^{\infty} E_n = E\{f=0\}$$
. Тогда $\lim_{n \to \infty} \int_{E_n} |f| d\mu = \int_{E\{f=0\}} |f| d\mu = 0$

Берем такое n, что $\int\limits_{E_n}|f|d\mu<\varepsilon$ и $A=E\setminus E_n$. Надо доказать, что $\mu A<+\infty$: $\mu A=\mu E=\{|f|>$

$$\frac{1}{n} \Big\} \underset{\text{Uofuruop}}{\leq} \frac{\int_{E} |f| d\mu}{\frac{1}{n}} < +\infty$$

Теорема 10.2.2. Абсолютная непрерывность интеграла.

Пусть f суммируемая на E. Тогда $\forall \varepsilon > 0 \exists \delta > 0$, m.ч. если $e \subset E$ и $\mu e < \delta$, то $\int |f| d\mu < \varepsilon$.

Доказательство. $\int\limits_E |f| d\mu = \sup\{\int\limits_E \varphi d\mu \mid 0 \leq \varphi \leq |f|, \varphi - \text{простая}\}.$ Берем такую простую φ_{ε} , что $0 \leq \varphi_{\varepsilon} \leq |f|$ и $\int\limits_E \varphi_{\varepsilon} d\mu \int\limits_E |f| d\mu - \varepsilon.$ φ_{ε} – простая \Rightarrow ограниченная, пусть $\varphi_{\varepsilon} \leq C.$

Возьмем $\delta = \frac{\varepsilon}{C}$. Пусть $\mu e < \delta = \frac{\varepsilon}{C}$. $\int\limits_e \varphi_\varepsilon d\mu \le C \cdot \mu e < \varepsilon$ $\int\limits_e |f| d\mu = \int\limits_e \varphi_\varepsilon d\mu + \int\limits_e (|f| - \varphi_\varepsilon) d\mu < \varepsilon + \int\limits_e (|f| - \varphi_\varepsilon) d\mu < 2\varepsilon$

Следствие. Если $\{e_n\}$ последовательность множеств, т.ч. $\mu e_n \to 0$, f суммируемая $\Rightarrow \int\limits_{e_n} |f| d\mu \to 0$.