

Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis D4 Teknik Informatika, Politeknik Pos Indonesia Jalan Sari Asih No.54, Kota Bandung, Jawa Barat

Judul:

Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis 2021,

Penulis : AHMAD AGUNG TAWAKKAL M. YUSRIL HELMI SETYAWAN, S.Kom., M.Kom., SFPC.

Penyunting: MOHAMAD NURKAMAL, S.T., M.T.,

SFPC.

Layout : AHMAD AGUNG TAWAKKAL

Kata Sambutan

Alhamdulillah kami panjatkan puji syukur kami ke hadirat Allah SWT. Sehingga penulis telah menyelesaikan buku laporan internshif I dengan tepat waktu.

Salah satu tujuan penulis dalam menulis buku laporan ini adalah untuk sebagai dokumentasi. Buku laporan yang penulis buat ini berdasarkan data-data yang valid yang telah dikumpulkan dalam berbagai metode.

Penulis menyampaikan terima kasih pada beberapa pihak yang ikut mendukung proses pembuatan laporan ini hingga selesai. Yaitu:

- Bapak M. YUSRIL HELMI SETYAWAN, S.Kom., M.Kom., SFPC. Selaku pembinging utama dalam penyusunan buku laporan.
- 2. Bapak Andi Bali Rekeng, S.Pd. selaku pembimbing external.
- Orang Tua penulis sebagai pendukung utama segala kegiatan yang penulis lakukan.

Penulis menyadari atas ketidaksempurnaan penyusunan buku laporan kegiatan internshif I. Namun penulis tetap berharap buku laporan ini akan memberikan manfaat bagi para pembaca. Demi kemajuan penulis, penulis juga mengharapkan adanya masukan berupa kritik atau saran yang berguna. Terima kasih.

Bandung, 07 Februari 2022

Penulis

Kata Penghantar

Puji dan syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan penyusunan buku laporan Intership dengan lancar dan tepat pada waktunya. Buku laporan program Internship ini penulis susun sebagai salah satu syarat untuk memenuhi persyaratan kelulusan program Internship I.

Semoga buku laporan yang berjudul "Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis" dapat menjadi laporan yang sempurna beserta dengan hasil peneliatan yang selanjutnya dan dapat bermanfaat bagi para pembacanya.

Kami menyadari dalam buku laporan ini masih banyak kekurangan, oleh karena itu perlu kritik dan saran untuk penyempurnaan buku laporan selanjutnya.

> Bandung, 07 Februari 2022 Penulis

Ahmad Agung Tawakkal

Daftar Isi

nghantar	v
si	vi
Sambar	viii
'abel	ix
PENDAHULUAN	1
Latar Belakang	1
Rumusan Masalah	4
Tujuan Penelitian	4
Manfaat Penelitian	4
Penelitian yang berhubungan	5
ANDASAN TEORI	8
Landasan Teori	8
1 Pengambilan Keputusan	8
2 MADM	9
3 TOPSIS	10
4 Wawancara	11
5 Quantitative Data Analysis	12
6 Skala	12
METODOLOGI PENELITIAN	14
Metode Penelitian	14
1 Diagram Alur Penelitian	16
Metode Pengumpulan Data	17
1 Wawancara	17
2 Tujuan Wawancara	18
	Fambar Fabel FENDAHULUAN Latar Belakang Rumusan Masalah Tujuan Penelitian Manfaat Penelitian Penelitian yang berhubungan ANDASAN TEORI Landasan Teori 1 Pengambilan Keputusan 2 MADM 3 TOPSIS 4 Wawancara 5 Quantitative Data Analysis 6 Skala METODOLOGI PENELITIAN Metode Penelitian 1 Diagram Alur Penelitian Metode Pengumpulan Data 1 Wawancara

	3.2.3	Perencanaan Wawancara
	3.3	Metode Analisis Data
	3.3.1	Quantitative Data Analysis25
	3.4	Implementasi Metode Topsis
	3.4.1	Membuat matriks keputusan ternormalisasi 28
	3.4.2 terbobo	Membuat matriks keputusan ternormalisasi dan ot29
	3.4.3 solusi i	Menentukan matriks solusi ideal <i>positif</i> & matriks deal <i>negatif</i> 30
		Menentukan jarak antara nilai setiap <i>alternatif</i> matriks solusi ideal <i>positif</i> & matriks solusi ideal30
		Menentukan nilai preferensi untuk setiap
	3.5	Metode Pengukuran Penelitian
	3.4.1	Skala ordinal
BAB	4 PEN	NGUJIAN DAN HASIL35
	4.1	Pengujian
	4.1.1	Pengumpulan data35
	4.1.2	Analisis data
	4.1.3	Implementasi metode topsis
	4.2	Hasil
	4.1.4	Rangking82
BAB	5 KES	SIMPULAN 87
Dafta	ar Pust	akaviii
Lam	piran -	- Lampiran x
		774

Daftar Gambar

Gambar III 1: Diagram Alur Penelitian

Daftar Tabel

Tabel IV 15: Hasil Penentuan Jarak Antar Nilai Setiap	
Alternatif	76
Tabel IV 16: Hasil Perhitungan nilai preferensi untuk setiap	
alternatif	81
Tabel IV 17: Rangking	86

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Indonesia merupakan salah satu negara berkembang yang dimana pada tahun 2021 Indonesia di kategorikan salah satu negera dengan berpendapatan menegah bawah. yang ke Kartasasmita (1993) mengemukakan ada tiga jenis kemiskinan, yaitu: (a) kemiskinan natura/alamiah yang disebabkan oleh keterbatasan aset alam (natural asset); (b) kemiskinan struktural yang disebabkan oleh struktur sosial ekonomi yang tidak memadai sehingga terjadi keterbatasan aset sosial, aset manusia, aset finansial, dan aset fisik; dan (c) kemiskinan kultural disebabkan oleh keterbatasan aset budaya (cultural asset) misalnya pola kerja, apatis, sikap fatalis, dan malas (Theresia, et al., 2015). [1]

Selain itu penyebab lain dari sebuah kemiskinan dikarenakan keterbatasannya kegiatan atau aktivitas yang dihadapi oleh individu dalam melaksanakan tugas atau tindakan. Disabilitas boleh dikatakan adalah fenomena kompleks, yang

mencerminkan interaksi antara fungsi tubuh seseorang dan fungsi atau kesempatan yang diberikan kepadanya oleh masyarakat di mana ia tinggal.

Untuk membantu pemerintah dan warga disabilitas, lahirlah sebuah organisasi salah satunya Yayasan Kominitas Kelurga Angkat (KKA) yang membantu masyarakat kurang mampu seperti memberikan sembako dan mendanai pembangunan rumah bagi warga yang kurang mampu serta warga yang terkena musibah. Organisasi ini juga memprioritaskan warga disabilitas dari data yang di peroleh.

Agar dapat memprioritaskan warga yang kurang mampu maupun lanjut usia dibutuhkan sebuah proses pengelolaan data yang baik atau sebuah kerangka kerja untuk menghasilkan pengambilan keputusan yang tepat. TOPSIS (Technique for Orders Preference by Similarity to Ideal Solution) metode ini adalah salah satu langkah yang tepat untuk menyelesaikan sebuah masalah yang timbul dalam sebuah organisasi misalnya, pengambilan keputusan yang masih terkadang salah dan kurang teliti untuk menentukan anggota

Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis / 2 keluarga angkat dalam prioritas penerimaan sembako. Pada penelitian ini metode topsis digunakan karena kosepnya sederhana, mudah dimengerti, perhitungan komputasinya lebih cepat, altenatif terbaik yang terpilih merupakan model matematika sederhana.

Dalam sebuah organiasi kerap terjadi kesahalan penyampian informasi sehingga informasi yang didapatkan akan berdampak besar bagi sebuah nama dikemukakan organiasai seperti yang dikemukakan oleh Pical G. (2014) Komunikasi seringkali menjadi salah satu masalah mendasar yang mendera berbagai organisasi. Organisasi yang tidak memiliki manajemen komunikasi yang baik, mulai dari top sampai down manajemen atau akan menemui kesulitan sebaliknya, untuk berinovasi atau mengejar tujuan-tujuan organisasi tersebut. [2]

Dari fakta diatas, penulis tertarik megimplementasikan metode pengambilan keputusan untuk menentukan prioritas anggota keluarga angkat diberi sembako dengan tema judul penelitian "Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis".

Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis / 3

1.2 Rumusan Masalah

Berdasarkan dari latar belakang diatas, dapat dirumuskan bahwa permasalahan yang akan diselesakan dalam penelitian ini yaitu:

- 1.2.1 Bagaimana pengelolaan data anggota keluarga angkat dengan menggunakan metode Topsis?
- 1.2.2 Bagaimana menentukan anggota keluarga angkat dapat diprioritaskan untuk diberikan sembako?

1.3 Tujuan Penelitian

Tujuan dalam penelitian ini berguna untuk menentukan prioritaskan anggota keluarga angkat yang akan diberikan sembako dan perhatian khusus. Pengelolaan data dalam penelitian ini menggunakan metode Topsis, dimana metode ini merupakan pengambilan keputusan multi kriteria, sehingga dapat memecahkan permasalahan untuk pembagian sembako.

1.4 Manfaat Penelitian

Melalui penelitian ini diharapkan dapat memberi manfaat antara lain sebagai berikut:

- 1.4.1 Dapat digunakan sebagai metode pengambilan keputusan dalam penentuan prioritas anggota keluarga angkat.
- 1.4.2 Meningkatnya efisien dan afiktivitas penglolahan data bagi instansi anggota keluarga angkat dalam penentuan prioritas pembagian sembako.

1.5 Penelitian yang berhubungan

Penelitian yang berhubungan dapat di lihat pada tabel I 1. Dalam tabel terdapat journal, judul penelitian dan nama peneliti.

No	Nama Journal	Judul	Peneliti
	- 100	Penelitian	
1	Mechanical	A Vikor and	Sarfaraz
	Engineering	Topsis	Hashemkhani
		Focused	Zolfani,
		Reanalysis Of	Morteza
		the MADM	Yazdani,
		Methods	Dragan
		Based On	Pamucar,
		Logarithmic	Pascale
		Normalization	Zarate
2	Mathematical	Multiple-	Harish Garg,
	Problems in	Attribute	Abazar
	Engineering	Decision- Keikha,	
		Making	Hassan
		Problem	Mishmast
		Using	Nehi
		TOPSIS and	

Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis / 5

		Choquet	
		Integral with	
		Hesitant	
		Fuzzy	
		Number	
		Information	
3 M	ULTINETICS	Sistem	Avriana
		Pendukung	Indarwasti
		Keputusan	
		Pemilihan	
		Tempat	
		Kuliner di	
		Depok dengan	
		TOPSIS	
4 Co	omplexity	TOPSIS	Mingwei Lin
	1 ,	Method Based	, Chao
		on Correlation	Huang,
		Coefficient	Zeshui Xu
		and Entropy	
		Measure for	
		Linguistic	
		Pythagorean	
		Fuzzy Sets	
		and Its	
		Application to	
		Multiple	
		Attribute	
		Decision	
		Making	
5 M	athematical	A Novel	Wenguang
Pr	oblems in	TOPSIS	Yang, Yunjie
En	ngineering	Method Based	Wu
	-	on Improved	
		Grow	
1 1		Grey	

	Analysis for Multiattribute Decision- Making Problem	
--	--	--

Tabel I 1: Penelitian yang Berhubungan

BAB 2

LANDASAN TEORI

2.1 Landasan Teori

Landasan teori merupakan pernyataan yang disusun secara sistematis dan memiliki variabel yang kuat. Landasan teori secara isi memuat teoriteori dan hasil penelitian, dimana teori dan hasil penelitian yang digunakan ini digunakan sebagai kerangka teori peneliti untuk menyelesaikan penelitian. [3] Adapun teori yang digunakan dalam menyelesaikan penelitian ini sebagai berikut.

2.2.1 Pengambilan Keputusan

Pengambilan keputusan adalah suatu pemecahan masalah untuk memilih satu alternatif dari beberapa pilihan alternatif yang tersedia. Pengambilan keputusan menjadi salah satu proses dan cara cepat mengatasi masalah yang bisa dikatakan sebagai tahap *milestone* atau titik krusial saat menghadapi tantangan dan rintangan yang menghadang. [4]

Pengambilan keputusan dapat dianggap sebagai suatu hasil atau keluaran dari proses mental atau kognitif yang membawa pada pemilihan suatu jalur tindakan di antara beberapa alternatif yang tersedia.

Setiap proses pengambilan keputusan selalu menghasilkan satu pilihan final. Keputusan dibuat untuk mencapai tujuan melalui pelaksanaan atau tindakan serta capaian. Dalam proses pengambilan keputusan bisa jadi berupa rasional atau irasional. [5]

Proses pengambilan keputusan adalah proses penalaran berdasarkan asumsi nilai, preferensi, dan keyakinan pembuat keputusan. Dalam proses memutuskan tentang sesuatu yang penting dapat dilakukan baik itu individu, sekelompok orang atau dalam suatu organisasi. [5]

2.2.2 MADM

Multi-attribute decision making (MADM) mengacu pada pembuatan keputusan preferensi dengan mengevaluasi dan memprioritaskan serangkaian alternatif terbatas berdasarkan beberapa atribut konflik. [6]

MADM dapat dijelaskan dengan satu set atribut dan alternatif yang terbatas. Untuk memecahkan masalah MADM, terdapat tiga langkah yang diperlukan. Langkah pertama adalah menentukan bobot atribut, langkah kedua adalah menentukan

dan menormalkan nilai atribut untuk setiap alternatif, dan ketiga adalah menggabungkan nilai atribut yang dinormalisasi ke dalam indeks keseluruhan untuk menentukan peringkat atribut.

2.2.3 TOPSIS

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) adalah metode analisis keputusan multi kriteria, yang pada awalnya dikembangkan oleh Ching-Lai Hwang dan Yoon pada tahun 1981. [7] Topsis adalah metode agregasi kompensasi yang membandingkan satu set alternatif dengan mengidentifikasi bobot untuk setiap kriteria, menormalkan skor untuk setiap kriteria dan menghitung jarak geometris antara setiap alternatif dan alternatif ideal, yang merupakan skor terbaik di setiap kriteria. [8] Topsis didasarkan pada konsep, dimana alternatif terpilih yang terbaik tidak hanya memiliki jarak terpendek dari solusi ideal positif, namun juga memiliki jarak terpanjang dari solusi ideal negatif. [9]

Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis / 10

2.2.4 Wawancara

Wawancara merupakan suatu langkah untuk memperoleh data dari pertanyaan yang diajukan oleh pewawancara serta petanyaan tersebut akan di jawab oleh narasumber. Wawancara biasanya dilakukan oleh dua orang atau lebih. Infomasi yang didapatkan bisa dalam bentuk audio visual dan tulisan. Singh (2002) menuliskan bahwa terdapat dua macam wawancara yaitu wawancara formal dan informal. Wawancara formal atau disebut juga wawancara terstruktur adalah sebuah prosedur sistematis untuk menggali informasi mengenai dengan kondisi responden dimana satu pertanyaan ditanyakan dengan urutan yang telah disiapkan oleh pewawancara dan jawabannya direkam dalam bentuk yang terstandardisasi. [10]

Wawancara informal adalah sebuah wawancara dimana tidak dipersiapkan terlebih dahulu pertanyaan-pertanyaan, tidak ada persiapan urutan pertanyaan, dan pewawancara yang berkuasa penuh untuk menentukan pertanyaan sesuai dengan poin- poin utama. [10]

2.2.5 Quantitative Data Analysis

Metode analisis data kuantitatif adalah sebuah langkah yang digunakan untuk pengelolaan data secara statistik maupun matematika. Hasil dari analisis ini berupa angka kemudian akan ditampilkan dalam bentuk diagram, tabel, dan kalimat uraian yang mudah dimengerti. Pada penelitian ini data anggota keluarga angkat akan diolah dengan menggunakan nilai alternatif dari setiap opsi kriteria. [11]

2.2.6 Skala

Skala pengukuran adalah kesepakatan untuk menentukan panjang pendek interval pada alat ukur. Baik digunakan untuk dijadikan sebagai acuan ataupun sebagai tolak ukur untuk memperoleh data. [12]

Pengertian skala pengukuran data dalam penelitian menurut Stanley Smith Stevens (1946) adalah pengukuran data dalam penelitian yang membuat klasifikasi skala pengukuran penelitian sosial. Dimana pengukuran penelitian inilah yang nantinya akan dibuat menjadi 4 jenis skala yang

BAB 3

METODOLOGI PENELITIAN

3.1 Metode Penelitian

Metodologi penelitian adalah cara yang digunakan dalam memperoleh berbagai data untuk dikelola menjadi sebuah informasi yang lebih akurat sehingga dapat memecahkan masalah. Metodologi penelitian digunakan sebagai pedoman dalam pelaksanaan penelitian agar hasil yang dicapai tidak menyimpang dari tujuan yang telah dilakukan sebelumnya. Dalam penelitian ini data yang akan dihasilkan adalah beru pa data kuantitatif, dimana data berupa angka sebagai alat menganalisis keterangan mengenai apa yang diketahui.

Untuk dapat memberikan peringkat dengan berdasarkan nilai diperoleh maka dalam penelitian ini menerapkan metode pengambilan keputusan *Multi Attribute Decision Making* (MADM). MADM mengacu pada proses di mana beberapa alternatif sehubungan dengan beberapa atribut dinilai dan diberi peringkat. [13] *Topsis* merupakan salah satu metode MADM klasik [14] dimana berfungsi untuk menyelesaikan masalah MADM [15] dengan Ide perancangannya adalah alternatif

optimal harus paling dekat dengan solusi ideal positif dan terjauh dari solusi ideal negatif. [15]

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) adalah metode analisis keputusan multi kriteria, yang pada awalnya dikembangkan oleh Ching-Lai Hwang dan Yoon pada tahun 1981. [7] Topsis adalah metode agregasi kompensasi yang membandingkan satu set alternatif dengan mengidentifikasi bobot untuk setiap kriteria, menormalkan skor untuk setiap kriteria dan menghitung jarak geometris antara setiap alternatif dan alternatif ideal, yang merupakan skor terbaik di setiap kriteria. [8] Topsis didasarkan pada konsep, dimana alternatif terpilih yang terbaik tidak hanya memiliki jarak terpendek dari solusi ideal positif, namun juga memiliki jarak terpanjang dari solusi ideal negatif. [9]

Langkah-langkah penyelesaian masalah Multi *Attribute Decision Making* dengan TOPSIS [16]:

- 1. Membuat matriks keputusan yang ternormalisasi.
- 2. Membuat matriks keputusan yang ternormalisasi terbobot.
- 3. Menentukan matriks solusi ideal *positif* & matriks solusi ideal *negatif*.

- 4. Menentukan jarak antara nilai setiap *alternatif* dengan matriks solusi ideal *positif* & matriks solusi ideal *negatif*.
- 5. Menentukan nilai preferensi untuk setiap alternatif.

3.1.1 Diagram Alur Penelitian

Gambar III 1: Diagram Alur Penelitian

3.2 Metode Pengumpulan Data

Metode pengumpulan data merupakan cara yang dilakukan seorang peneliti dalam memperoleh data. Metode pengumpulan data ada tiga, yaitu wawancara, observasi, dan angket (kuisioner). Dalam penelitian ini menggunakan metode pengumpulan data dengan wawancara yang dimana metode ini digunakan untuk menanyakan secara lansung terhadap narasumber.

3.2.1 Wawancara

Wawancara merupakan suatu langkah untuk memperoleh data dari pertanyaan yang diajukan oleh pewawancara serta petanyaan tersebut akan di jawab oleh narasumber. Wawancara biasanya dilakukan oleh dua orang atau lebih. Infomasi yang didapatkan bisa dalam bentuk audio visual dan tulisan. Singh (2002) menuliskan bahwa terdapat dua macam wawancara yaitu wawancara formal dan informal. Wawancara formal atau disebut juga wawancara terstruktur adalah sebuah prosedur sistematis untuk menggali informasi mengenai dengan kondisi dimana responden satu pertanyaan ditanyakan dengan urutan yang telah disiapkan oleh pewawancara dan jawabannya direkam dalam bentuk yang terstandardisasi. [10]

Wawancara informal adalah sebuah wawancara dimana tidak dipersiapkan terlebih dahulu pertanyaan-pertanyaan, tidak ada persiapan urutan pertanyaan, dan pewawancara yang berkuasa penuh untuk menentukan pertanyaan sesuai dengan poinpoin utama. [10]

3.2.2 Tujuan Wawancara

Wawancara bertujuan agar informasi yang dikumpulkan dapat dipercaya dan tepat dari narasumber, sehingga tidak dapat menimbulkan keraguan dari informasi yang diterima. Adapun data yang diperoleh dalam penelitian ini adalah menggunakan data sekunder. Berikut merupakan data yang diperoleh saat mewawancarai narasumber.

3.2.3 Perencanaan Wawancara

Perencanaan wawancara dilakukan untuk mengetahui informasi melalui tatap muka antara ditanya dan penjawab. Adapun penerencanaan wawancara dapat dilakukan dalam penelitian ini dapat dilihat pada tabel III 1.

Keterangan:

A = Pewawancara

B = Narasumber

NO	Pertanyaan dan Jawaban
1	A: Bapak/ibu namanya siapa?
	B: Nama saya Tampa
2	A: Pekerjaan sehari-hari sebagai apa?
	B: Pekerjaan saya tidak ada
3	A: Bapak/ibu kalau saya boleh tanya
	penghasilan perbulannya berapa?
	B: Penghasilan perbulan tidak ada
4	A: Kondisi rumah bapak/ibu bagaimana?
	B: Kondisi rumah saya tidak layak
5	A: Apakah bapak/ibu menerima bantuan
	pemerintah?
	B: Saya tidak menerima bantuan
	pemerintah
6	A: Kondisi bapak/ibu sekarang sehat atau
	merasa tidak sehat?
	B: Alhamdulillah sehat

Tabel III 1: Perencanaan Wawancara

3.2.4 Data sample Anggota Keluarga Angkat pada bulan Juni 2021 Instansi Komunitas Keluarga Angkat Dari hasil sesi wawancara yang dilakukan sebanyak 108 warga lanjut usia maupun warga yang tidak mampu dijadikan anggota keluarga angkat. Dalam sesi wawancara rata-rata tidak memiliki pekerjaan, tidak memiliki penghasilan perbulan, kondisi rumah yang masih kurang layak, tidak menerima bantuan pemerintah dan rata-rata memiliki kondisi kesehatan yang tidak baik. Data hasil wawancara dapat dilihat pada tabel III 2.

RE	REKAP DATA DAN ASESMEN ANGGOTA KELUARGA ANGKAT APRIL 2021							
No.	NAMA	PEKERJAAN	PENGHASIL AN/BULAN	KONDISI RUMAH	BANTUAN PEMERINTA H	KONDISI KESEHAT AN		
1	Hasi	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SANGAT SEHAT		
2	Boddi	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT		
3	Sitti	TIDAK ADA	TIDAK ADA	LAYAK	PKH dan BPNT	SANGAT SEHAT		
4	Masi	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT		
5	Pisa	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	BPNT dan PKH	SANGAT SEHAT		
6	Tampa	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	SANGAT SEHAT		
7	Nahang	PETANI	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT		
8	Galiri	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT		
9	Misi	URT	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT		
10	Licu	PETANI	Rp. 400.000	KURANG LAYAK	TIDAK MENERIMA	TIDAK SEHAT		
11	Saiya	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT		
12	Saonang	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT		
13	RASSAKO	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT		
14	Leppa	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BST	TIDAK SEHAT		

Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis / 20

15	Tubong	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
16	воко	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	BST	TIDAK SEHAT
17	BACCE	URT	TIDAK ADA	KURANG LAYAK	BST	KURANG SEHAT
18	TAHANG	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BST	TIDAK SEHAT
19	Rami	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
20	Hawise	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
21	Hawiyah	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
22	Nuro	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
23	Marwiyah	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
24	A. Pabo	PETANI	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
25	HANDUNG	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
26	RAMPE	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
27	SAMPE	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
28	Rosmiati	URT	TIDAK ADA	LAYAK	BST	KURANG SEHAT
29	Dombo	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
30	Hasi	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
31	UPA	WIRASWAST A	TIDAK MENENTU	LAYAK	TIDAK MENERIMA	KURANG SEHAT
32	SANDDONG	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
33	HARUNA	PETANI	TIDAK MENENTU	LAYAK	TIDAK MENERIMA	KURANG SEHAT
34	JAMU	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
35	HATIMAN	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
36	MALIK	URT	TIDAK ADA	LAYAK	BST	KURANG SEHAT
37	Halidang	PETANI	TIDAK ADA	LAYAK	PKH	KURANG SEHAT
38	Bacce	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
39	Jumanong	URT	TIDAK ADA	TIDAK LAYAK	BST	TIDAK SEHAT
40	ROSI	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	TIDAK SEHAT
41	CEKONG	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	TIDAK SEHAT
42	AMI	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
43	Hasa	PETANI	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT

44	Kaddosan	URT	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	TIDAK SEHAT
45	Hapijang	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
46	Rukia	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BST	TIDAK SEHAT
47	Bacce	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BPNT	TIDAK SEHAT
48	Jumaan	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BPNT	TIDAK SEHAT
49	Tuwe	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
50	Jumang	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	TIDAK SEHAT
51	Nini	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	TIDAK SEHAT
52	OMBE	TIDAK ADA	TIDAK ADA	LAYAK	BPNT dan PKH	KURANG SEHAT
53	BACCE ALI	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
54	MUHAMMA D YUSUF	TIDAK ADA	TIDAK ADA	LAYAK	BST	SEHAT
55	JUMA	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	SEHAT
56	BUNGENG	TIDAK ADA	TIDAK ADA	LAYAK	BST	SEHAT
57	SUHORIA	PETANI	100.000	LAYAK	TIDAK MENERIMA	KURANG SEHAT
58	LENGGENG	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
59	HENDENG	URT	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
60	Jawiyah	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
61	Nompo	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
62	Kamaruddin	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	BST	KURANG SEHAT
63	Arisa	TIDAK ADA	TIDAK ADA	LAYAK	BST	TIDAK SEHAT
64	Caya	TIDAK ADA	TIDAK ADA	SANGAT LAYAK	BPNT	KURANG SEHAT
65	Budong	TIDAK ADA	TIDAK ADA	LAYAK	BST	KURANG SEHAT
66	Saiga	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BPNT	TIDAK SEHAT
67	ANDI RUPI	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	KURANG SEHAT
68	SA'BO	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
69	HALOWANG	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	KURANG SEHAT
70	Cambo	URT	TIDAK ADA	LAYAK	BST	TIDAK SEHAT
71	Mustamin	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
72	Naning	WIRASWAST A	400.000	KURANG LAYAK	BPNT	KURANG SEHAT

73	BUA	IRT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
74	RAJANANG	IRT	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
75	GAU	PETANI	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
76	Sinnong Upa	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
77	Sugi	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
78	Sabunga	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
79	Maang	URT	TIDAK ADA	LAYAK	BST	KURANG SEHAT
80	Tupeng	PETANI	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
81	Hau	URT	TIDAK ADA	LAYAK	BPNT	SEHAT
82	RIA	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
83	MUNA	URT	TIDAK ADA	KURANG LAYAK	BST	KURANG SEHAT
84	BOCCA	TIDAK ADA	TIDAK ADA	KURANG LAYAK	PKH	KURANG SEHAT
85	SIMO	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
86	Bunganong	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
87	НАМІ	URT	TIDAK ADA	TIDAK LAYAK	BST	TIDAK SEHAT
88	HASNA	IRT	500000	TIDAK LAYAK	BST	TIDAK SEHAT
89	SABO	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
90	BOMBONG NASO	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
91	TENGKO	PETANI	300000	KURANG LAYAK	TIDAK MENERIMA	KURANG SEHAT
92	BADDU	PETANI	250000	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
93	RODDING	PETANI	300000	KURANG LAYAK	BST	KURANG SEHAT
94	Bungalia	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
95	Niso	URT	200000	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
96	Bacce	URT	150000	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
97	DAPO	URT	TIDAK ADA	TIDAK LAYAK	BST	TIDAK SEHAT
98	Hadelia Binti Palasai	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
99	Rosi	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
100	Mambua	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
101	Rabasing	PETANI	100000	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT

102	Sahoria	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
103	KAMARIA	URT	50.000	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
104	MARNI	URT	100000	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
105	RADI	URT	100000	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
106	Nambo	URT	TIDAK ADA	LAYAK	BST	SEHAT
107	Jumansia	URT	TIDAK ADA	LAYAK	BST	SEHAT
108	Sawwang	PETANI	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT

Tabel III 2: Data Hasil Wawancara atau data Anggota Keluarga Angkat

Untuk dapat menentukan priorotas anggota keluarga angkat maka dilakukan pengubahan data wawancara. Data wawancara yang mulanya berbentuk pernyataan akan dibuah menjadi nilai. Proses pengubahan pernyataan menjadi nilai akan dilakukan pada metode analisi data.

3.3 Metode Analisis Data

Metode analisis data adalah salah satu komponen penting dalam proses Data Analysis. Metode analisis data merupakan bagian dari proses analisis dimana data yang dikumpulkan lalu diproses untuk menghasilkan kesimpulan dalam pengambilan keputusan. Macam-macam metode analisis data ini dibagi menjadi dua bagian besar, kualitatif dan kuantitatif. [19] Dalam Penelitian ini

menggunakan metode Quantitative Data Analysis yang berjuan agar proses analisis berjalan baik.

3.3.1 Quantitative Data Analysis

Metode analisis data kuantitatif adalah sebuah langkah yang digunakan untuk pengelolaan data secara statistik maupun matematika. Hasil dari analisis ini angka kemudian berupa akan ditampilkan dalam bentuk diagram, tabel, dan kalimat uraian yang mudah dimengerti. Pada penelitian ini data anggota keluarga angkat akan diolah dengan menggunakan nilai alternatif dari setiap opsi kriteria. [11] Tabel III 3 menerangkan tentang kriteria pada tabel III 2, dimana setiap kriteria akan diberikan alias atau samaran sehingga dapat memudahkan dalam proses perhitungan.

Kriteria			
Alias	Kriteria	Cost / Benefit	
C1	Pekerjaan	Benefit	
C2	Penghasilan/bulan	Cost	
C3	Kondisi Rumah	Benefit	
C4	Bantuan Pemerintah	Cost	
C5	Kondisi Kesehatan	Benefit	

Tabel III 3: Kriteria Tabel Anggota Keluarga Angkat

Setiap kriteria memiliki opsi yang bebedabeda, dimana opsi ini memiliki nilai. Tabel III 4 menerangakan tentang nilai atau value setiap opsi dari kriteria C1(Pekerjaan).

Opsi C1		
Nilai	Pekerjaan	
1	Wiraswasta	
2	Nelayan	
3	Petani	
4	IRT/URT	
5	Tidak Ada	

Tabel III 4: Nilai Setiap Opsi Pada Kriteria Pekerjaan

Tabel III 5 menerangakan tentang nilai atau value setiap opsi dari kriteria C2(Penghasilan Perbulan).

Opsi C2		
Nilai	Penghasilan Perbulan	
1	Tidak Ada	
2	Tidak menentu/ 50k - 100k	
3	200k - 300K	
4	400k	
5	500k	

Tabel III 5: Nilai Setiap Opsi Pada Kriteria Penghasilan Pekerjaan

Tabel III 6 menerangakan tentang nilai atau value setiap opsi dari kriteria C3(Kondisi Rumah).

•	arde setrap opsi dari kriteria es(Rondisi Ruman).					
	Opsi C3					
	Nilai	kondisi rumah				
	1	Sangat layak				
	2	Layak				
	3	Kurang layak				
	4	Tidak layak				
	5	Sangat tidak layak				

Tabel III 6: Nilai Setiap Opsi Pada Kriteria Kondisi Rumah

Tabel III 7 menerangakan tentang nilai atau value setiap opsi dari kriteria C4(Bantuan Pemerintah).

	Opsi C4				
Nilai	bantuan pemerintah				
1	Tidak Menerima				
2	PKH				
3	BST				
4	BPNT				
5	PKH & BST				
5	BPNT & BST				
5	BPNT & PKH				

Tabel III 7: Nilai Setiap Opsi Pada Kriteria Bantuan Pemerintah

Tabel III 8 menerangakan tentang nilai atau value setiap opsi dari kriteria C5(Kondisi Kesehatan).

	Opsi C5				
Nilai	Nilai kondisi kesehatan				
1	Sangat sehat				
2	Sehat				
3	Kurang sehat				
4	Tidak sehat				
5	Sangat tidak sehat				

Tabel III 8: Nilai Setiap Opsi Pada Kriteria Kondisi Kesehatan

Hasil menggunakan metode analisis data kuantitatif dapat disimpulkan bahwa setiap kriteria memiliki opsi. Opsi merupakan hasil berbagai jawaban dari narasumber yang kemudian akan diubah kedalam bentuk nilai.

3.4 Implementasi Metode Topsis

Pada penelitian ini dilakukan impelementasi metode topsis terhadap data wawacara yang telah diubah kedalam bentuk nilai. Adapun langkahlangkah untuk menerapkan metode topsis ialah sebagai berikut.

3.4.1 Membuat matriks keputusan ternormalisasi.

Untuk dapat membuat matrix keputusan ternormalisasi dapat digunakan persamaan sebagai berikut.

$$rij = \frac{xij}{\sqrt{\sum_{i=1}^{m} x_{ij}^{2}}}$$

Keterangan:

 r_{ij} = normalisasi marix

 x_{ij} = matrix x

Dari persamaan tersebut dapat menghasilkan nilai ternormaliasi.

3.4.2 Membuat matriks keputusan ternormalisasi dan terbobot.

Untuk dapat membuat matrix keputusan ternormalisasi dan terbobot dapat menggunakan persamaan berikut.

$$yij = wi * rij$$

Keterangan:

 y_{ij} = normalisasi marix dan terbobot

 w_i = bobot kriteria

 r_{ij} = normalisasi matrix

Matrix normalisasi dan terbobot merupakan hasil dari perkalian atara bobot kriteria dengan normalisasi matrix.

3.4.3 Menentukan matriks solusi ideal *positif* & matriks solusi ideal *negatif*.

Dalam menentukan solusi ideal positif dan negatif dapat menggnakan persamaan sebagai berikut.

$$A+ = max (y1+, y2+, ..., y108+)$$

 $A- = max (y1-, y2-, ..., y108-)$

Keterangan:

A+= solusi ideal positif

A- = solusi ideal negatif

Dalam penentuan solusi ideal positif dilakukan penyortiran data untuk menentukan nilai tertinggi pada setiap kriteria. Begitu juga degan penentuan solusi ideal postif dilakukan penyortiran data agar dapat menentukan nilai terendah pada pada tiap-tiap kriteria.

3.4.4 Menentukan jarak antara nilai setiap *alternatif* dengan matriks solusi ideal *positif* & matriks solusi ideal *negatif*.

Menentukan jarak antar nilai setiap alternatif dengan solusi ideal postif dan solusi ideal negatif dapat menggunakan persamaan berikut.

$$D_i^+ = \sqrt{\sum_{j=1}^m (y_{ij} - A_j^+)^2}$$

$$D_i^- = \sqrt{\sum_{j=1}^m (y_{ij} - A_j^-)^2}$$

Keterangan:

D+= jarak alternatif solusi ideal positif

D- = jarak alternatif solusi ideal negative

Jarak alternatif solusi ideal positif didapatkan dari perhitungan matix keputusan dan terbobot dengan hasil solusi ideal postif atau nilai maksimal disetiap kriteria. Jarak alternatif solusi ideal negatif didapatkan dari perhitungan matix keputusan dan terbobot dengan hasil solusi ideal negatif atau nilai minimal disetiap kriteria.

3.4.5 Menentukan nilai preferensi untuk setiap *alternatif*.

Nilai preferensi seiap alternatif merupkan hasil akhir dari penerapan metode topsis. Berikut merupakan persamaan yang digunaan dalam menentukan preferensi setiap alternatif.

$$V_i = \frac{D_i^-}{D_i^- + D_i^+}$$

Keterangan:

V_i = nilai prefensi alternatif

Nilai preferensi didapatkan dari hasil pembagian jarak alternatif solusi ideal negatif dengan jarak alternatif solusi ideal negatif ditambah dengan jarak alternatif solusi ideal positif. Hasil dari perhitungan ini merupakan hasil akhir dari penerapan metode topsis.

3.5 Metode Pengukuran Penelitian

Dalam penelitian ini menggunakan skala pengukuran yang dimana dapat diartikan sebagai sarana untuk menentukan panjang pendek interval yang ditentukan dalam satuan alat ukur.

Skala pengukuran adalah kesepakatan untuk menentukan panjang pendek interval pada alat ukur. Baik digunakan untuk dijadikan sebagai acuan ataupun sebagai tolak ukur untuk memperoleh data. [12]

Pengertian skala pengukuran data dalam penelitian menurut Stanley Smith Stevens (1946) adalah pengukuran data dalam penelitian yang membuat klasifikasi skala pengukuran penelitian sosial. Dimana pengukuran penelitian inilah yang nantinya akan dibuat menjadi 4 jenis skala yang meliputi skala nominal, skala ordinal, skala interval dan skala rasio. [12]

Untuk dapat menampilkan data secara terukur dalam penelitian ini skala yang digunakan adalah skala ordinal.

3.4.1 Skala ordinal

Skala ordinal adalah skala pengukuran yang menunjukan jarak interval antar tingkatan tidak harus sama. Skala ordinal setingkat lebih tinggi dibandingkan dengan skala nominal. Skala ordinal pengkategorisasian disusun berdasarkan urutan terendah ke tingkat yang lebih tinggi maupun berdasarkan urutan tertinggi ke tingkat yang terendah. [12] Dalam penelitian ini sangat cocok menggunakan pengukuran skala ordinal yang dimana dapat menentukan anggota keluarga angkat dengan menggunakan hasil akhir dari penjumlahan metode topsis.

Hasil penggunakan skala ordinal terhadap penjumlahan topsis menghasilkan data ranking yang dimana data ini bertujuan untuk menampilkan

urutan dengan nilai preferensi alternatif tertinggi hingga ke nilai preferensi alternatif terndah.

Hasil dari data rangking inilah merupakan hasil akhir dari penentuan prioritas anggota keluarga angkat dalam pemberian sembako.

BAB 4 PENGUJIAN DAN HASIL

4.1 Pengujian

Dalam pengujian ini, penulis akan menguji data hasil wawancara sebanyak 108. Untuk mendukung proses pengujian sudah dijelaskan bahwa penguji akan menggunakan beberapa tahapan-tahapan pada BAB III.

4.2.1 Pengumpulan data

Dalam penelitian ini sudah dilakukan proses pengumpulan data. Metode pengumpulan data yang digunakan adalah wawancara yang bertujuan untuk dapat mengetahui secara pasti informasi yang diterima benar. Hasil pengumpulan data dapat dilihat pada tabel IV 1.

RE	REKAP DATA DAN ASESMEN ANGGOTA KELUARGA ANGKAT APRIL 2021					
No.	NAMA	PEKERJAAN	PENGHASIL AN/BULAN	KONDISI RUMAH	BANTUAN PEMERINTA H	KONDISI KESEHAT AN
1	Hasi	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SANGAT SEHAT
2	Boddi	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
3	Sitti	TIDAK ADA	TIDAK ADA	LAYAK	PKH dan BPNT	SANGAT SEHAT
4	Masi	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
5	Pisa	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	BPNT dan PKH	SANGAT SEHAT
6	Tampa	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	SANGAT SEHAT

7	Nahang	PETANI	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
8	Galiri	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
9	Misi	URT	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
10	Licu	DETANI	D- 400 000	KURANG	TIDAK	TIDAK
		PETANI	Rp. 400.000	LAYAK	MENERIMA TIDAK	SEHAT TIDAK
11	Saiya	TIDAK ADA	TIDAK ADA	LAYAK	MENERIMA	SEHAT
12	Saonang	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
13	RASSAKO	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
14	Leppa	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BST	TIDAK SEHAT
15	Tubong	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
16	воко	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	BST	TIDAK SEHAT
17	BACCE	URT	TIDAK ADA	KURANG LAYAK	BST	KURANG SEHAT
18	TAHANG	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BST	TIDAK SEHAT
19	Rami	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
20	Hawise				TIDAK	KURANG
	Hawise	TIDAK ADA	TIDAK ADA	LAYAK	MENERIMA	SEHAT
21	Hawiyah	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
22	Nuro	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
23	Marwiyah	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
24	A. Pabo	PETANI	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
25	HANDUNG	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
26	RAMPE	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
27	SAMPE	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
28	Rosmiati	URT	TIDAK ADA	LAYAK	BST	KURANG SEHAT
29	Dombo	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
30	Hasi	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
31	UPA	WIRASWAST A	TIDAK MENENTU	LAYAK	TIDAK MENERIMA	KURANG SEHAT
32	SANDDONG	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG
33	HARUNA	PETANI	TIDAK MENENTU	LAYAK	TIDAK MENERIMA	SEHAT KURANG
34	JAMU	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	SEHAT KURANG
35	HATIMAN	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	SEHAT KURANG SEHAT

36	MALIK	URT	TIDAK ADA	LAYAK	BST	KURANG
37	Halidang	PETANI	TIDAK ADA	LAYAK	PKH	KURANG
38	Bacce	URT	TIDAK ADA	TIDAK	TIDAK	SEHAT
39	Jumanong	URT	TIDAK ADA	TIDAK	MENERIMA BST	SEHAT TIDAK
40	ROSI	TIDAK ADA	TIDAK ADA	KURANG	TIDAK	SEHAT TIDAK
41	CEKONG	TIDAK ADA	TIDAK ADA	KURANG	MENERIMA TIDAK	SEHAT TIDAK
42	AMI	TIDAK ADA	TIDAK ADA	LAYAK	MENERIMA TIDAK	SEHAT KURANG
43	Hasa	PETANI	TIDAK ADA	LAYAK	MENERIMA TIDAK	SEHAT KURANG
44	Kaddosan	URT	TIDAK ADA	KURANG	MENERIMA TIDAK	SEHAT TIDAK
				LAYAK	MENERIMA TIDAK	SEHAT KURANG
45	Hapijang	URT	TIDAK ADA	LAYAK	MENERIMA	SEHAT TIDAK
46	Rukia	TIDAK ADA	TIDAK ADA	LAYAK	BST	SEHAT
47	Bacce	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	SEHAT
48	Jumaan	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	SEHAT
49	Tuwe	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
50	Jumang	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	TIDAK SEHAT
51	Nini	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	TIDAK SEHAT
52	ОМВЕ	TIDAK ADA	TIDAK ADA	LAYAK	BPNT dan PKH	KURANG SEHAT
53	BACCE ALI	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
54	MUHAMMA D YUSUF	TIDAK ADA	TIDAK ADA	LAYAK	BST	SEHAT
55	JUMA	TIDAK ADA	TIDAK ADA	LAYAK	BPNT	SEHAT
56	BUNGENG	TIDAK ADA	TIDAK ADA	LAYAK	BST	SEHAT
57	SUHORIA	PETANI	100.000	LAYAK	TIDAK MENERIMA	KURANG SEHAT
58	LENGGENG	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
59	HENDENG	URT	TIDAK ADA	LAYAK	BPNT	KURANG SEHAT
60	Jawiyah	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
61	Nompo	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
62	Kamaruddin	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	BST	KURANG SEHAT
63	Arisa	TIDAK ADA	TIDAK ADA	LAYAK	BST	TIDAK SEHAT
64	Caya	TIDAK ADA	TIDAK ADA	SANGAT LAYAK	BPNT	KURANG SEHAT

65	Budong	TIDAK ADA	TIDAK ADA	LAYAK	BST	KURANG SEHAT
66	Saiga	TIDAK ADA	TIDAK ADA	KURANG LAYAK	BPNT	TIDAK SEHAT
67	ANDI RUPI	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	KURANG SEHAT
68	SA'BO	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
69	HALOWANG	TIDAK ADA	TIDAK ADA	KURANG LAYAK	TIDAK MENERIMA	KURANG SEHAT
70	Cambo	URT	TIDAK ADA	LAYAK	BST	TIDAK SEHAT
71	Mustamin	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
72	Naning	WIRASWAST A	400.000	KURANG LAYAK	BPNT	KURANG SEHAT
73	BUA	IRT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
74	RAJANANG	IRT	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
75	GAU	PETANI	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
76	Sinnong Upa	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
77	Sugi	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
78	Sabunga	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
79	Maang	URT	TIDAK ADA	LAYAK	BST	KURANG SEHAT
80	Tupeng	PETANI	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
81	Hau	URT	TIDAK ADA	LAYAK	BPNT	SEHAT
82	RIA	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
83	MUNA	URT	TIDAK ADA	KURANG LAYAK	BST	KURANG SEHAT
84	BOCCA	TIDAK ADA	TIDAK ADA	KURANG LAYAK	PKH	KURANG SEHAT
85	SIMO	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
86	Bunganong	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
87	НАМІ	URT	TIDAK ADA	TIDAK LAYAK	BST	TIDAK SEHAT
88	HASNA	IRT	500000	TIDAK LAYAK	BST	TIDAK SEHAT
89	SABO	TIDAK ADA	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
90	BOMBONG NASO	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	TIDAK SEHAT
91	TENGKO	PETANI	300000	KURANG LAYAK	TIDAK MENERIMA	KURANG SEHAT
92	BADDU	PETANI	250000	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
93	RODDING	PETANI	300000	KURANG LAYAK	BST	KURANG SEHAT

94	Bungalia	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	SEHAT
95	Niso	URT	200000	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
96	Bacce	URT	150000	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
97	DAPO	URT	TIDAK ADA	TIDAK LAYAK	BST	TIDAK SEHAT
98	Hadelia Binti Palasai	URT	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
99	Rosi	URT	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
100	Mambua	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
101	Rabasing	PETANI	100000	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
102	Sahoria	TIDAK ADA	TIDAK ADA	LAYAK	TIDAK MENERIMA	KURANG SEHAT
103	KAMARIA	URT	50.000	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
104	MARNI	URT	100000	TIDAK LAYAK	TIDAK MENERIMA	KURANG SEHAT
105	RADI	URT	100000	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT
106	Nambo	URT	TIDAK ADA	LAYAK	BST	SEHAT
107	Jumansia	URT	TIDAK ADA	LAYAK	BST	SEHAT
108	Sawwang	PETANI	TIDAK ADA	TIDAK LAYAK	TIDAK MENERIMA	TIDAK SEHAT

Tabel IV 1: Data Hasil Wawancara atau data Anggota Keluarga Angkat

Dari hasil pengumpulan data menggunakan metode wawancara sebanyak 108 dapat dilihat ratarata tidak memiliki pekerjaan, tidak memiliki penghasilan bulanan, kondisi rumah tidak layak, tidak menerima bantuan pemerintah, dan kesehatan kesehatan yang terganggu. Jawaban dari narasumber ini akan diolah dan diubah kedalam bentuk nilai sehingga dapat memudahkan proses penjumlahan dengan metode topsis. Pengubahan

data kedalam bentuk nilai dapat dilakukan pada proses analisis data.

4.2.2 Analisis data

Analisis data merupakan langkah yang paling penting untuk menyajikan data sebaik mungkin sehingga dapat memutuskan keputusan yang tepat dalam penglolaan data.

Pada tahapan pengelolaan data hasil wawancara atau data anggota keluarga angkat dilakukan perubahan nama (alias) pada setiap kriteria. Pengubahan nama dilakukan agar proses analisis dan penglolaan data dapat mudah dimengerti. Data hasil wawancara memiliki kriteria pekerjaan C1, penghasilan perbulan C2, kondisi rumah C3, bantuan pemerintah C4, dan kondisi kesehatan C5.

Kriteria				
Alias	Kriteria	Cost/Benefit		
C1	Pekerjaan	Benefit		
C2	Penghasilan/bulan	Cost		
C3	Kondisi Rumah	Benefit		
C4	Bantuan Pemerintah	Cost		

C5	Kondisi Kesehatan	Benefit
----	-------------------	---------

Tabel IV 2: Kriteria Tabel Anggota Keluarga Angkat

Dari hasil analisis data yang telah diteliti jawaban anggota keluarga angkat, dapat disimpulkan bahwa setiap kriteria memiliki opsi atau iawaban yang sama. Untuk dapat mengimplementasikan metode topsis maka dipelukan pengubahan data anggota keluarga angkat yang dimana setiap opsi akan diubah menjadi nilai atau value.

Adapun value dari setiap opsi C1 (pekerjaan), yaitu wiraswasta 1, nelayan 2, petani 3, irt/urt 4, dan tidak memiliki pekerjaan 5.

	Opsi C1			
Nilai	Pekerjaan			
1	Wiraswasta			
2	Nelayan			
3	Petani			
4	IRT/URT			
5	Tidak Ada			

Tabel IV 3: Opsi Pekerjaan Tabel Anggota Keluarga Angkat

Value setiap opsi C2 (penghasilan perbulan), yaitu 500.000 nilai 1, 400.000 nilai 2, 200.000 sampai 300.000 nilai 3, tidak menentu/ 50.000 sampai 100.000 nilai 4, tidak memiliki penghasilan perbulan nilai 5.

	Opsi C2			
Nilai	Penghasilan Perbulan			
1	Tidak Ada			
2	Tidak menentu/ 50k - 100k			
3	200k - 300K			
4	400k			
5	500k			

Tabel IV 4: Penghasilan Perbulan Tabel Anggota Keluarga Angkat

Value setiap opsi C3 (kondisi rumah), yaitu sangat layak 1, layak 2, kurang layak 3, tidak layak 4, dan sangat tidak layak 5.

Opsi C3				
Nilai kondisi rumah				
1	Sangat layak			

2	Layak
3	Kurang layak
4	Tidak layak
5	Sangat tidak layak

Tabel IV 5: Kondisi Rumah Tabel Anggota Keluarga Angkat

Value setiap opsi C4 (bantuan pemerintah), yaitu BPNT & PKH 1, BPNT & BST 1, BST & PKH 1, PKH 2, BST 3, BPNT 4, dan tidak menerima bantuan pemerintah 5.

Opsi C4					
Nilai bantuan pemerintah					
1	Tidak Menerima				
2	PKH				
3	BST				
4	BPNT				
5	BPNT & PKH				
5	BPNT & BST				
5	PKH & BST				

Tabel IV 6: Bantuan Pemerintah Tabel Anggota Keluarga Angkat

Value setiap opsi C5 (kondisi kesehatan), yaitu sangat sehat 1, sehat 2, kurang sehat 3, tidak sehat 4, dan sangat tidak sehat 5.

Opsi C5					
Nilai kondisi kesehatan					
1	Sangat sehat				
2	Sehat				
3	Kurang sehat				
4	Tidak sehat				
5	Sangat tidak sehat				

Tabel IV 7: Kondisi Kesehatan Tabel Anggota Keluarga Angkat

Bersarkan hasil analisis data yang telah dilakukan dengan menjabarkan nilai setiap opsi pada kriteria dan juga memberikan alias pada kriteria maka hasil konversi pengubahan opsi kriteria menjadi angka atau bilangan dari data anggota keluarga angkat dapat dilihat pada tabel IV 8.

Alternatif	Kriteria					
7 Htteritatii	C1	C2	C3	C4	C5	
A1	5	1	2	1	1	
A2	5	1	2	1	2	

A3	5	1	2	5	1	
A4	5	1	2	1	2	
A5	5	1	4	5	1	
A6	5	1	4	1	1	
A7	3	1	2	1	2	
A8	5	1	2	1	2	
A9	4	1	2	4	3	
A10	3	4	3	1	4	
A11	5	1	2	1	4	
A12	5	1	2	1	4	
A13	5	1	2	1	4	
A14	5	1	3	3	4	
A15	5	1	2	1	4	
A16	5	1	4	3	4	
A17	4	1	3	3	3	
A18	5	1	3	3	4	
A19	5	1	2	4	3	
A20	5	1	2	1	3	
A21	5	1	2	1	3	
A22	4	1	2	1	3	
A23	4	1	2	1	3	
A24	3	1	4	1	4	
A25	5	1	2	1	3	

A26	5	1	2	1	3
A27	5	1	2	1	3
A28	4	1	2	3	3
A29	4	1	2	1	2
A30	4	1	2	1	2
A31	1	2	2	1	3
A32	4	1	2	1	3
A33	3	2	2	1	3
A34	5	1	2	4	3
A35	5	1	2	4	3
A36	4	1	2	3	3
A37	3	1	2	2	3
A38	4	1	4	1	4
A39	4	1	4	3	4
A40	5	1	3	1	4
A41	5	1	3	1	4
A42	5	1	2	1	3
A43	3	1	2	1	3
A44	4	1	3	1	4
A45	4	1	2	1	3
A46	5	1	3	3	4
A47	5	1	3	4	4
A48	5	1	3	4	4

A49	5	1	2	1	3	
A50	5	1	3	1	4	
A51	5	1	3	1	4	
A52	5	1	2	5	3	
A53	5	1	2	4	3	
A54	5	1	2	3	2	
A55	5	1	2	4	2	
A56	5	1	2	3	2	
A57	3	2	2	1	3	
A58	4	1	4	1	4	
A59	4	1	2	4	3	
A60	4	1	4	1	3	
A61	5	1	4	1	3	
A62	5	1	4	3	3	
A63	5	1	2	3	4	
A64	5	1	1	4	3	
A65	5	1	2	3	3	
A66	5	1	3	4	4	
A67	5	1	3	1	3	
A68	5	1	2	1	2	
A69	5	1	3	1	3	
A70	4	1	2	3	4	
A71	5	1	2	1	4	

A72	1	4	3	4	3
A73	4	1	4	1	3
A74	4	1	2	1	4
A75	3	1	2	1	3
A76	5	1	2	1	4
A77	5	1	2	1	4
A78	5	1	2	1	4
A79	4	1	2	3	3
A80	3	1	2	1	3
A81	4	1	2	4	2
A82	4	1	2	1	3
A83	4	1	3	3	3
A84	5	1	3	2	3
A85	4	1	4	1	4
A86	4	1	4	1	4
A87	4	1	4	3	4
A88	4	5	4	3	4
A89	5	1	4	1	4
A90	5	1	2	1	4
A91	3	3	3	1	3
A92	3	3	4	1	3
A93	3	3	3	3	3
A94	4	1	2	1	2

A95	4	3	4	1	4
A96	4	2	4	1	4
A97	4	1	4	3	4
A98	4	1	2	1	3
A99	4	1	4	1	4
A100	5	1	2	1	3
A101	3	2	4	1	3
A102	5	1	2	1	3
A103	4	2	4	1	4
A104	4	2	4	1	3
A105	4	2	4	1	4
A106	4	1	2	3	2
A107	4	1	2	3	2
A108	3	1	4	1	4
	ı	I	ı	I	

Tabel IV 8: Ubah Data Opsi Kriteria Menjadi Angka setiap Alternatif

Hasil konversi data anggota keluarga angkat sebanyak 108 akan di implementasikan kedalam metode topsis.

4.2.3 Implementasi metode topsis

Data yang telah dikonversikan akan digunakan untuk menentukan nilai preferensi setiap alternatif. Sebelum menentukan nilai preferensi setiap

alternatif berikut merupaka tahapan-tahapan metode topsis.

4.1.3.1 Membuat matrix x

Pada tahapan ini data hasil konversi akan diubah kedalam bentuk matrix. Adapun persamaan yang digunakan dalam pembuatan matrix adalah sebagai berikut.

$$x = [x_{ij}]$$

Keterangan:

m = alternatif

 $i = 1,2,3, \dots m$

n = kriteria

i = 1,2,3, n

x = matrix

 x_{ij} = nilai alternatif dan kriteria.

Hasil penggunaan matrix dengan menggunakan data yang telah dikonversikan dapat dilihat pada tabel IV 9.

Matrix x_{ij}						
	x_{j}					
x_i	X1	X2	X3	X4	X5	

X1	ے ا	1 1	۱ ،	1	1
	5	1	2		1
X2	5	1	2	1	2
X3	5	1	2	5	1
X4	5	1	2	1	2
X5	5	1	4	5	1
X6	5	1	4	1	1
X7	3	1	2	1	2
X8	5	1	2	1	2
X9	4	1	2	4	3
X10		4	3	1	4
X11	_	1	2	1	4
X12		1	2 2	1	4
X13		1		1	4
X14		1	3	3	4
X15		1	2	1	4
X16	5 5	1	4	3	4
X17	4	1	3	3	3
X18	5	1	3	3	4
X19	5	1	2	4	3
X20	5	1	2	1	3
X21		1	2	1	3
X22	4	1	2	1	3
X23	4	1	2	1	3
X24	3	1	4	1	4
X25		1	2	1	3
X26		1	2	1	3
X27		1	2	1	3
X28		1	2	3	3
X29		1	2	1	2
X30		1	2	1	2
ı	ı	I	I	I	ı l

X31	1	2	2	1	3
X32	4	1	2	1	3
X33	3	2	2	1	3
X34	5	1	2	4	3
X35	5	1	2	4	3
X36	4	1	2	3	3
X37	3	1	2	2	3
X38	4	1	4	1	4
X39	4	1	4	3	4
X40	5	1	3	1	4
X41	5	1	3	1	4
X42	5	1	2	1	3
X43	3	1	2	1	3
X44	4	1	3	1	4
X45	4	1	2	1	3
X46	5	1	3	3	4
X47	5	1	3	4	4
X48	5	1	3	4	4
X49	5	1	2	1	3
X50	5	1	3	1	4
X51	5	1	3	1	4
X52	5	1	2	5	3
X53	5	1	2	4	3
X54	5	1	2	3	2
X55	5	1	2	4	2
X56	5	1	2	3	2
X57	3	2	2	1	3
X58	4	1	4	1	4
X59	4	1	2	4	3
X60	4	1	4	1	3

X61	5	1	4	1	3	
X62	5	1	4	3	3	
X63	5	1	2	3	4	
X64	5	1	1	4	3	
X65	5	1	2	3	3	
X66	5	1	3	4	4	
X67	5	1	3	1	3	
X68	5	1	2	1	2	
X69	5	1	3	1	3	
X70	4	1	2	3	4	
X71	5	1	2	1	4	
X72	1	4	3	4	3	
X73	4	1	4	1	3	
X74	4	1	2	1	4	
X75	3	1	2	1	3	
X76	5	1	2	1	4	
X77	5	1	2 2	1	4	
X78	5	1	2	1	4	
X79	4	1	2	3	3	
X80	3	1	2	1	3	
X81	4	1	2 2	4	2 3	
X82	4	1	2	1	3	
X83	4	1	3	3	3	
X84	5	1	3	2	3	
X85	4	1	4	1	4	
X86	4	1	4	1	4	
X87	4	1	4	3	4	
X88	4	5	4	3	4	
X89	5	1	4	1	4	
X90	5	1	2	1	4	

X91	3	3	3	1	3
X92	3	3	4	1	3
X93	3	3	3	3	3
X94	4	1	2	1	2
X95	4	3	4	1	4
X96	4	2	4	1	4
X97	4	1	4	3	4
X98	4	1	2	1	3
X99	4	1	4	1	4
X100	5	1	2	1	3
X101	3	2	4	1	3
X102	5	1	2	1	3
X103	4	2	4	1	4
X104	4	2	4	1	3
X105	4	2	4	1	4
X106	4	1	2	3	2
X107	4	1	2	3	2
X108	3	1	4	1	4

Tabel IV 9: Matrix x

Jika matrix x telah dibuat maka langkah selanjutnya adalah penentuan bobot dan pembagi pada setiap kriteria.

4.1.3.2 Menentukan bobot dan pembagi

Sebelum mencari nilai ternormalisasi, perlu didilakukan pencarian nilai bobot dan nilai pembagi pada matrix yang telah dibuat. Untuk mencari nilai bobot, dapat digunakan rumus berikut.

$$Wn = \frac{\sum_{i=1}^{m} x_{ij}}{tr}$$

Keterangan:

$$w_n$$
 = bobot kriteria

$$tr = totol ricord$$

 m_i = keseluruhan nilai alternatif

$$Wc1 = \frac{m1+m2+m3+m4+m5.....+m108}{108} = 4,314815$$

$$Wc2 = \frac{m1+m2+m3+m4+m5.....+m108}{108} = 1,240741$$

$$Wc3 = \frac{m1+m2+m3+m4+m5.....+m108}{108} = 2,657407$$

$$Wc4 = \frac{m1 + m2 + m3 + m4 + m5 \dots + m108}{108} = 1,898148$$

$$Wc5 = \frac{m1+m2+m3+m4+m5.....+m108}{108} = 3,175926$$

Sedangkan untuk mencari pembagi dapat menggunakan rumus berikut.

$$Xn = \sqrt{\sum_{i=1}^{m} x_{ij}^2}$$

Keterangan:

$$x_n = \text{pembagi atribut}$$

$$Xc1 = \sqrt{((m1)^2 + (m2)^2 + (m3)^2 \dots + (m108)^2)} = 45,67275$$

$$Xc2 = \sqrt{((m1)^2 + (m2)^2 + (m3)^2 \dots + (m108)^2)} = 14,76482$$

$$\begin{split} &Xc3 = \sqrt{((m1)^2 + (m2)^2 + (m3)^2 \dots \dots + (m108)^2)} = 29 \\ &Xc4 = \sqrt{((m1)^2 + (m2)^2 + (m3)^2 \dots \dots + (m108)^2)} = 23,60085 \\ &Xc5 = \sqrt{((m1)^2 + (m2)^2 + (m3)^2 \dots \dots + (m108)^2)} = 34,0147 \end{split}$$

Hasil penentuan bobot dan pembagi dari matrix x dapat dilihat pada tabel IV 10 dimana terdapat 5 kriteria yang masing masing memiliki nilai bobot dan pembagi.

Kriteria	Pembagi	Bobot
C1	45,67275	4,314815
C2	14,76482	1,240741
C3	29	2,657407
C4	23,60085	1,898148
C5	34,0147	3,175926

Tabel IV 10: Bobot dan Pembagi tiap Kriteria

Setelah menentukan bobot dan pembagi setiap kritria maka tahapan proses penentuan matrix keputusan ternormasilasi dapat bisa dilakukan.

4.1.3.3 Menentukan matrix keputusan ternormalisasi

Normalisasi matrix keputusan dapat dilakukan dengan menggunakan r_{ij} adalah normasiliasi matrix x_{ij} nilai alternatif kriteria dan x_n adalah nilai pembagi.

$$rij = \frac{xij}{Xn}$$

Keterangan:

 r_{ij} = normalisasi marix

$$R_{11} = 5 / 45,67275 = 0,109474$$

$$R_{1\,2} = 5 / 45,67275 = 0,109474$$

.

 $R_{5\,108} = 4 / 34,0147 = 0,117596$

Untuk hasil matrix keputusan ternormalisasi dapat dilihat pada tabel IV 11.

alternativ	kriteria					
alternativ	C1	C2	С3	C4	C5	
A1	0,109474	0,067729	0,068966	0,042371	0,029399	
A2	0,109474	0,067729	0,068966	0,042371	0,058798	
A3	0,109474	0,067729	0,068966	0,211857	0,029399	
A4	0,109474	0,067729	0,068966	0,042371	0,058798	
A5	0,109474	0,067729	0,137931	0,211857	0,029399	
A6	0,109474	0,067729	0,137931	0,042371	0,029399	
A7	0,065685	0,067729	0,068966	0,042371	0,058798	
A8	0,109474	0,067729	0,068966	0,042371	0,058798	
A9	0,08758	0,067729	0,068966	0,169485	0,088197	
A10	0,065685	0,270914	0,103448	0,042371	0,117596	
A11	0,109474	0,067729	0,068966	0,042371	0,117596	
A12	0,109474	0,067729	0,068966	0,042371	0,117596	
A13	0,109474	0,067729	0,068966	0,042371	0,117596	
A14	0,109474	0,067729	0,103448	0,127114	0,117596	

A15	0,109474	0,067729	0,068966	0,042371	0,117596
A16	0,109474	0,067729	0,137931	0,127114	0,117596
A17	0,08758	0,067729	0,103448	0,127114	0,088197
A18	0,109474	0,067729	0,103448	0,127114	0,117596
A19	0,109474	0,067729	0,068966	0,169485	0,088197
A20	0,109474	0,067729	0,068966	0,042371	0,088197
A21	0,109474	0,067729	0,068966	0,042371	0,088197
A22	0,08758	0,067729	0,068966	0,042371	0,088197
A23	0,08758	0,067729	0,068966	0,042371	0,088197
A24	0,065685	0,067729	0,137931	0,042371	0,117596
A25	0,109474	0,067729	0,068966	0,042371	0,088197
A26	0,109474	0,067729	0,068966	0,042371	0,088197
A27	0,109474	0,067729	0,068966	0,042371	0,088197
A28	0,08758	0,067729	0,068966	0,127114	0,088197
A29	0,08758	0,067729	0,068966	0,042371	0,058798
A30	0,08758	0,067729	0,068966	0,042371	0,058798
A31	0,021895	0,135457	0,068966	0,042371	0,088197
A32	0,08758	0,067729	0,068966	0,042371	0,088197
A33	0,065685	0,135457	0,068966	0,042371	0,088197
A34	0,109474	0,067729	0,068966	0,169485	0,088197
A35	0,109474	0,067729	0,068966	0,169485	0,088197
A36	0,08758	0,067729	0,068966	0,127114	0,088197
A37	0,065685	0,067729	0,068966	0,084743	0,088197
A38	0,08758	0,067729	0,137931	0,042371	0,117596
A39	0,08758	0,067729	0,137931	0,127114	0,117596
A40	0,109474	0,067729	0,103448	0,042371	0,117596
A41	0,109474	0,067729	0,103448	0,042371	0,117596
A42	0,109474	0,067729	0,068966	0,042371	0,088197
A43	0,065685	0,067729	0,068966	0,042371	0,088197
A44	0,08758	0,067729	0,103448	0,042371	0,117596

A45	0,08758	0,067729	0,068966	0,042371	0,088197	
A46	0,109474	0,067729	0,103448	0,127114	0,117596	
A47	0,109474	0,067729	0,103448	0,169485	0,117596	
A48	0,109474	0,067729	0,103448	0,169485	0,117596	
A49	0,109474	0,067729	0,068966	0,042371	0,088197	
A50	0,109474	0,067729	0,103448	0,042371	0,117596	
A51	0,109474	0,067729	0,103448	0,042371	0,117596	
A52	0,109474	0,067729	0,068966	0,211857	0,088197	
A53	0,109474	0,067729	0,068966	0,169485	0,088197	
A54	0,109474	0,067729	0,068966	0,127114	0,058798	
A55	0,109474	0,067729	0,068966	0,169485	0,058798	
A56	0,109474	0,067729	0,068966	0,127114	0,058798	
A57	0,065685	0,135457	0,068966	0,042371	0,088197	
A58	0,08758	0,067729	0,137931	0,042371	0,117596	
A59	0,08758	0,067729	0,068966	0,169485	0,088197	
A60	0,08758	0,067729	0,137931	0,042371	0,088197	
A61	0,109474	0,067729	0,137931	0,042371	0,088197	
A62	0,109474	0,067729	0,137931	0,127114	0,088197	
A63	0,109474	0,067729	0,068966	0,127114	0,117596	
A64	0,109474	0,067729	0,034483	0,169485	0,088197	
A65	0,109474	0,067729	0,068966	0,127114	0,088197	
A66	0,109474	0,067729	0,103448	0,169485	0,117596	
A67	0,109474	0,067729	0,103448	0,042371	0,088197	
A68	0,109474	0,067729	0,068966	0,042371	0,058798	
A69	0,109474	0,067729	0,103448	0,042371	0,088197	
A70	0,08758	0,067729	0,068966	0,127114	0,117596	
A71	0,109474	0,067729	0,068966	0,042371	0,117596	
A72	0,021895	0,270914	0,103448	0,169485	0,088197	

A73	0,08758	0,067729	0,137931	0,042371	0,088197	١
A74	0,08758	0,067729	0,068966	0,042371	0,117596	Ì
A75	0,065685	0,067729	0,068966	0,042371	0,088197	١
A76	0,109474	0,067729	0,068966	0,042371	0,117596	١
A77	0,109474	0,067729	0,068966	0,042371	0,117596	١
A78	0,109474	0,067729	0,068966	0,042371	0,117596	Ì
A79	0,08758	0,067729	0,068966	0,127114	0,088197	Ì
A80	0,065685	0,067729	0,068966	0,042371	0,088197	Ì
A81	0,08758	0,067729	0,068966	0,169485	0,058798	Ì
A82	0,08758	0,067729	0,068966	0,042371	0,088197	١
A83	0,08758	0,067729	0,103448	0,127114	0,088197	Ì
A84	0,109474	0,067729	0,103448	0,084743	0,088197	١
A85	0,08758	0,067729	0,137931	0,042371	0,117596	١
A86	0,08758	0,067729	0,137931	0,042371	0,117596	Ì
A87	0,08758	0,067729	0,137931	0,127114	0,117596	١
A88	0,08758	0,338643	0,137931	0,127114	0,117596	١
A89	0,109474	0,067729	0,137931	0,042371	0,117596	Ì
A90	0,109474	0,067729	0,068966	0,042371	0,117596	Ì
A91	0,065685	0,203186	0,103448	0,042371	0,088197	Ì
A92	0,065685	0,203186	0,137931	0,042371	0,088197	١
A93	0,065685	0,203186	0,103448	0,127114	0,088197	١
A94	0,08758	0,067729	0,068966	0,042371	0,058798	١
A95	0,08758	0,203186	0,137931	0,042371	0,117596	Ì
A96	0,08758	0,135457	0,137931	0,042371	0,117596	
A97	0,08758	0,067729	0,137931	0,127114	0,117596	١
A98	0,08758	0,067729	0,068966	0,042371	0,088197	
A99	0,08758	0,067729	0,137931	0,042371	0,117596	

A100	0,109474	0,067729	0,068966	0,042371	0,088197	
A101	0,065685	0,135457	0,137931	0,042371	0,088197	
A102	0,109474	0,067729	0,068966	0,042371	0,088197	
A103	0,08758	0,135457	0,137931	0,042371	0,117596	
A104	0,08758	0,135457	0,137931	0,042371	0,088197	
A105	0,08758	0,135457	0,137931	0,042371	0,117596	
A106	0,08758	0,067729	0,068966	0,127114	0,058798	
A107	0,08758	0,067729	0,068966	0,127114	0,058798	
A108	0,065685	0,067729	0,137931	0,042371	0,117596	

Tabel IV 11: Hasil Normaliasi Data

Setelah menormalisasikan data tahap selanjutnya ialah menentukan matrix ternormalisasi dan terbobot.

4.1.3.4 Menentukan matrix keputusan ternormalisasi dan terbobot

Normalisasi matrix keputusan dan berbobot dapat dilakukan menggunakan rumus permsaan yij adalah normalisasi matrix dan terbobot yang didapatkan dari perkalian antara nilai bobot setiap keritaria wi dengan matrix keputusan ternormalisasi rij.

$$yij = wi * rij$$

Keterangan:

 y_{ij} = normalisasi marix dan terbobot

$$Y_{11} = 4,314815 * 0,109474 = 0,472362$$

 $Y_{12} = 4,314815 * 0,109474 = 0,472362$
......
 $Y_{5108} = 3,175926 * 0,117596 = 0,373477$

Untuk hasil matrix keputusan ternormalisasi dan terbobot dapat dilihat pada tabel IV 12.

1,		kriteria				
alternativ	C1	C2	С3	C4	C5	
A1	0,472362	0,084034	0,183269	0,080427	0,093369	
A2	0,472362	0,084034	0,183269	0,080427	0,186738	
A3	0,472362	0,084034	0,183269	0,402136	0,093369	
A4	0,472362	0,084034	0,183269	0,080427	0,186738	
A5	0,472362	0,084034	0,366539	0,402136	0,093369	
A6	0,472362	0,084034	0,366539	0,080427	0,093369	
A7	0,283417	0,084034	0,183269	0,080427	0,186738	
A8	0,472362	0,084034	0,183269	0,080427	0,186738	
A9	0,37789	0,084034	0,183269	0,321708	0,280108	
A10	0,283417	0,336134	0,274904	0,080427	0,373477	
A11	0,472362	0,084034	0,183269	0,080427	0,373477	
A12	0,472362	0,084034	0,183269	0,080427	0,373477	
A13	0,472362	0,084034	0,183269	0,080427	0,373477	
A14	0,472362	0,084034	0,274904	0,241281	0,373477	
A15	0,472362	0,084034	0,183269	0,080427	0,373477	
A16	0,472362	0,084034	0,366539	0,241281	0,373477	
A17	0,37789	0,084034	0,274904	0,241281	0,280108	

A18	0,472362	0,084034	0,274904	0,241281	0,373477
A19	0,472362	0,084034	0,183269	0,321708	0,280108
A20	0,472362	0,084034	0,183269	0,080427	0,280108
A21	0,472362	0,084034	0,183269	0,080427	0,280108
A22	0,37789	0,084034	0,183269	0,080427	0,280108
A23	0,37789	0,084034	0,183269	0,080427	0,280108
A24	0,283417	0,084034	0,366539	0,080427	0,373477
A25	0,472362	0,084034	0,183269	0,080427	0,280108
A26	0,472362	0,084034	0,183269	0,080427	0,280108
A27	0,472362	0,084034	0,183269	0,080427	0,280108
A28	0,37789	0,084034	0,183269	0,241281	0,280108
A29	0,37789	0,084034	0,183269	0,080427	0,186738
A30	0,37789	0,084034	0,183269	0,080427	0,186738
A31	0,094472	0,168067	0,183269	0,080427	0,280108
A32	0,37789	0,084034	0,183269	0,080427	0,280108
A33	0,283417	0,168067	0,183269	0,080427	0,280108
A34	0,472362	0,084034	0,183269	0,321708	0,280108
A35	0,472362	0,084034	0,183269	0,321708	0,280108
A36	0,37789	0,084034	0,183269	0,241281	0,280108
A37	0,283417	0,084034	0,183269	0,160854	0,280108
A38	0,37789	0,084034	0,366539	0,080427	0,373477
A39	0,37789	0,084034	0,366539	0,241281	0,373477
A40	0,472362	0,084034	0,274904	0,080427	0,373477
A41	0,472362	0,084034	0,274904	0,080427	0,373477
A42	0,472362	0,084034	0,183269	0,080427	0,280108
A43	0,283417	0,084034	0,183269	0,080427	0,280108
A44	0,37789	0,084034	0,274904	0,080427	0,373477
A45	0,37789	0,084034	0,183269	0,080427	0,280108
A46	0,472362	0,084034	0,274904	0,241281	0,373477
A47	0,472362	0,084034	0,274904	0,321708	0,373477
		'			

A48	0,472362	0,084034	0,274904	0,321708	0,373477
A49	0,472362	0,084034	0,183269	0,080427	0,280108
A50	0,472362	0,084034	0,274904	0,080427	0,373477
A51	0,472362	0,084034	0,274904	0,080427	0,373477
A52	0,472362	0,084034	0,183269	0,402136	0,280108
A53	0,472362	0,084034	0,183269	0,321708	0,280108
A54	0,472362	0,084034	0,183269	0,241281	0,186738
A55	0,472362	0,084034	0,183269	0,321708	0,186738
A56	0,472362	0,084034	0,183269	0,241281	0,186738
A57	0,283417	0,168067	0,183269	0,080427	0,280108
A58	0,37789	0,084034	0,366539	0,080427	0,373477
A59	0,37789	0,084034	0,183269	0,321708	0,280108
A60	0,37789	0,084034	0,366539	0,080427	0,280108
A61	0,472362	0,084034	0,366539	0,080427	0,280108
A62	0,472362	0,084034	0,366539	0,241281	0,280108
A63	0,472362	0,084034	0,183269	0,241281	0,373477
A64	0,472362	0,084034	0,091635	0,321708	0,280108
A65	0,472362	0,084034	0,183269	0,241281	0,280108
A66	0,472362	0,084034	0,274904	0,321708	0,373477
A67	0,472362	0,084034	0,274904	0,080427	0,280108
A68	0,472362	0,084034	0,183269	0,080427	0,186738
A69	0,472362	0,084034	0,274904	0,080427	0,280108
A70	0,37789	0,084034	0,183269	0,241281	0,373477
A71	0,472362	0,084034	0,183269	0,080427	0,373477
A72	0,094472	0,336134	0,274904	0,321708	0,280108
A73	0,37789	0,084034	0,366539	0,080427	0,280108
A74	0,37789	0,084034	0,183269	0,080427	0,373477
A75	0,283417	0,084034	0,183269	0,080427	0,280108
A76	0,472362	0,084034	0,183269	0,080427	0,373477
A77	0,472362	0,084034	0,183269	0,080427	0,373477
	-		·-	•	•

1 1	i	ı	ı	l i	i i
A78	0,472362	0,084034	0,183269	0,080427	0,373477
A79	0,37789	0,084034	0,183269	0,241281	0,280108
A80	0,283417	0,084034	0,183269	0,080427	0,280108
A81	0,37789	0,084034	0,183269	0,321708	0,186738
A82	0,37789	0,084034	0,183269	0,080427	0,280108
A83	0,37789	0,084034	0,274904	0,241281	0,280108
A84	0,472362	0,084034	0,274904	0,160854	0,280108
A85	0,37789	0,084034	0,366539	0,080427	0,373477
A86	0,37789	0,084034	0,366539	0,080427	0,373477
A87	0,37789	0,084034	0,366539	0,241281	0,373477
A88	0,37789	0,420168	0,366539	0,241281	0,373477
A89	0,472362	0,084034	0,366539	0,080427	0,373477
A90	0,472362	0,084034	0,183269	0,080427	0,373477
A91	0,283417	0,252101	0,274904	0,080427	0,280108
A92	0,283417	0,252101	0,366539	0,080427	0,280108
A93	0,283417	0,252101	0,274904	0,241281	0,280108
A94	0,37789	0,084034	0,183269	0,080427	0,186738
A95	0,37789	0,252101	0,366539	0,080427	0,373477
A96	0,37789	0,168067	0,366539	0,080427	0,373477
A97	0,37789	0,084034	0,366539	0,241281	0,373477
A98	0,37789	0,084034	0,183269	0,080427	0,280108
A99	0,37789	0,084034	0,366539	0,080427	0,373477
A100	0,472362	0,084034	0,183269	0,080427	0,280108
A101	0,283417	0,168067	0,366539	0,080427	0,280108
A102	0,472362	0,084034	0,183269	0,080427	0,280108
A103	0,37789	0,168067	0,366539	0,080427	0,373477
A104	0,37789	0,168067	0,366539	0,080427	0,280108
A105	0,37789	0,168067	0,366539	0,080427	0,373477
A106	0,37789	0,084034	0,183269	0,241281	0,186738
A107	0,37789	0,084034	0,183269	0,241281	0,186738

A108 0,283417 0,084034 0,366539 0,080427 0,373477

Tabel IV 12: Hasil Normalisasi Data dan Terbobot

Setelah tahap normliasi data dan terbobot dapat dilakukan maka selanjutnya yaitu penentuan solusi ideal positif dan solusi ideal negative.

4.1.3.5 Menentukan solusi ideal positif dan solusi ideal negatif

Pada tahapan ini nilai alternatif tertinggi dan terendah pada akan diambil dengan menggunakan beberapa cara, yaitu mensortir data normalisasi dan terbobot yij atau menggunakan persamaan berikut.

$$A+ = \max (y1+, y2+,...,y108+)$$

 $A- = \max (y1-, y2-,...,y108-)$

Keterangan:

A+= solusi ideal positif

A-= solusi ideal negatif

Namun pada penelian ini saya menggunakan cara dengan mengurutkan data dari terbesar hingga terkecil. Hasil dari penyortiran nilai alternatif disetiap kriteria dapat dilihat pada tabel IV 13.

Kriteria				
C1	C2	С3	C4	C5
0,472362	0,420168	0,366539	0,402136	0,373477
0,472362	0,336134	0,366539	0,402136	0,373477
0,472362	0,336134	0,366539	0,402136	0,373477
0,472362	0,252101	0,366539	0,321708	0,373477
0,472362	0,252101	0,366539	0,321708	0,373477
0,472362	0,252101	0,366539	0,321708	0,373477
0,472362	0,252101	0,366539	0,321708	0,373477
0,472362	0,168067	0,366539	0,321708	0,373477
0,472362	0,168067	0,366539	0,321708	0,373477
0,472362	0,168067	0,366539	0,321708	0,373477
0,472362	0,168067	0,366539	0,321708	0,373477
0,472362	0,168067	0,366539	0,321708	0,373477
0,472362	0,168067	0,366539	0,321708	0,373477
0,472362	0,168067	0,366539	0,321708	0,373477
0,472362	0,168067	0,366539	0,321708	0,373477
0,472362	0,084034	0,366539	0,321708	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,366539	0,241281	0,373477
0,472362	0,084034	0,274904	0,241281	0,373477

Kriteria

0,472362	0,084034	0,274904	0,241281	0,373477	
0,472362	0,084034	0,274904	0,241281	0,373477	
0,472362	0,084034	0,274904	0,160854	0,373477	
0,472362	0,084034	0,274904	0,160854	0,373477	
0,472362	0,084034	0,274904	0,080427	0,373477	
0,472362	0,084034	0,274904	0,080427	0,280108	
0,472362	0,084034	0,274904	0,080427	0,280108	
0,472362	0,084034	0,274904	0,080427	0,280108	
0,472362	0,084034	0,274904	0,080427	0,280108	
0,472362	0,084034	0,274904	0,080427	0,280108	
0,472362	0,084034	0,183269	0,080427	0,280108	
0,472362	0,084034	0,183269	0,080427	0,280108	
0,472362	0,084034	0,183269	0,080427	0,280108	
0,472362	0,084034	0,183269	0,080427	0,280108	
0,472362	0,084034	0,183269	0,080427	0,280108	
0,472362	0,084034	0,183269	0,080427	0,280108	
0,472362	0,084034	0,183269	0,080427	0,280108	
0,472362	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis / 68					

0,472362

0,472362

0,472362

0,472362

0,472362

0,472362

0,472362

0,472362

0,084034

0,084034

0,084034

0,084034

0.084034

0,084034

0,084034

0.084034

0,084034

0,274904

0,274904

0,274904

0,274904

0,274904

0,274904

0,274904

0.274904

0,274904

0,241281

0,241281

0,241281

0,241281

0,241281

0,241281

0,241281

0.241281

0,241281

0,373477

0,373477

0,373477

0,373477

0,373477

0,373477

0,373477

0,373477

0,373477

0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis / 69					

0,183269

0,183269

0,183269

0,183269

0,183269

0,183269

0,37789

0,37789

0,37789

0,37789

0,37789

0,37789

0,37789

0,084034

0,084034

0,084034

0,084034

0,084034

0,084034

0,084034

0,280108

0,280108

0,280108

0,280108

0,280108

0,280108

0,280108

0,080427

0,080427

0,080427

0,080427

0,080427

0,080427

0,080427

0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,280108	
0,37789	0,084034	0,183269	0,080427	0,186738	
0,37789	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,186738	
0,283417	0,084034	0,183269	0,080427	0,093369	
0,283417	0,084034	0,183269	0,080427	0,093369	
0,094472	0,084034	0,183269	0,080427	0,093369	
0,094472	0,084034	0,091635	0,080427	0,093369	

Tabel IV 13: Mengurutkan Data Kriteria Berdasarkan Nilai Tertinggi ke Terendah

Nilai alternative tertinggi dan terendah dapat dilihat pada tabel IV 14.

	A^+	A-
C1	0,472362	0,094472
C2	0,420168	0,084034

C3	0,366539	0,091635
C4	0,402136	0,080427
C5	0,373477	0,093369

Tabel IV 14: Hasil Pengambilan Nilai Tertinggi dan Terendah

Setelah nilai alternatif tertinggi dan terendah ditemukan maka tahapn selanjtunya ialah menentukan jarak antara nilai setiap alternatif dengan solusi ideal positif dan solusi ideal negative.

4.1.3.6 Menentukan jarak antara nilai setiap alternatif dengan solusi ideal positif dan solusi ideal negatif

Penentuan jarak antar nilai setiap alternatif dapat dihitung dengan menggunakan rumus sebagai berikut.

$$D_i^+ = \sqrt{\sum_{j=1}^m (y_{ij} - A_j^+)^2}$$
$$D_i^- = \sqrt{\sum_{j=1}^m (y_{ij} - A_j^-)^2}$$

Keterangan:

D+= jarak alternatif dgn solusi ideal positif
D-= jarak alternatif dgn solusi ideal negatif

Dari persamaan tersebut, dapat menghitung jarak solusi ideal positif sebagai berikut.

$$D1^{+} = \sqrt{\frac{((0,472 - 0,472)^{2} + (0,084 - 0,420)^{2} + (0,183 - 0,366)^{2} + (0,080 - 0,402)^{2} + (0,093 - 0,373)^{2})} = 0,573}$$

$$D2^{+} = \sqrt{\frac{((0,472 - 0,472)^{2} + (0,084 - 0,420)^{2} + (0,183 - 0,366)^{2} + (0,080 - 0,402)^{2} + (0,186 - 0,373)^{2})} = 0,533}$$

$$D108^{+} = \sqrt{\frac{((0,283 - 0,472)^{2} + (0,084 - 0,420)^{2} + (0,366 - 0,366)^{2} + (0,080 - 0,402)^{2} + (0,373 - 0,373)^{2}) = 0,502}}$$

Sedangkan untuk solusi ideal negatif sebagai berikut.

$$D1^{-} = \sqrt{\frac{((0,472 - 0,094)^{2} + (0,084 - 0,084)^{2} + (0,183 - 0,091)^{2} + (0,080 - 0,080)^{2} + (0,093 - 0,093)^{2}) = 0,388}}$$

$$D2^{-} = \sqrt{\frac{((0,472 - 0,094)^{2} + (0,084 - 0,084)^{2} + (0,183 - 0,091)^{2} + (0,080 - 0,080)^{2} + (0,186 - 0,093)^{2}) = 0,399}}$$

 $D108^{-} = \begin{cases} ((0.283 - 0.094)^{2} + (0.084 - 0.084)^{2} + \\ (0.366 - 0.091)^{2} + (0.080 - 0.080)^{2} + \\ (0.373 - 0.093)^{2}) = 0.435 \end{cases}$

Untuk lebih detail dapat dilihat hasil jarak antara nilai setiap alternatif pada tabel IV 15.

alternativ	D +	D -
A1	0,573176278	0,388841589
A2	0,533799557	0,399894528

	A9	0,413141036	0,426392413
	A10	0,393262407	0,459676989
	A11	0,500070672	0,479226674
	A12	0,500070672	0,479226674
	A13	0,500070672	0,479226674
	A14	0,383741458	0,529833023
	A15	0,500070672	0,479226674
	A16	0,372639994	0,568073582
	A17	0,406079258	0,417921758
	A18	0,383741458	0,529833023
	A19	0,402194596	0,494252798
	A20	0,508712601	0,431357286
	A21	0,508712601	0,431357286
	A22	0,517410411	0,351559055
	A23	0,517410411	0,351559055
	A24	0,502178323	0,435583381
	A25	0,508712601	0,431357286
	A26	0,508712601	0,431357286
	A27	0,508712601	0,431357286
	A28	0,435994439	0,386610758
	A29	0,542095	0,31215428
	A30	0,542095	0,31215428
	A31	0,59342862	0,224342992
	A32	0,517410411	0,351559055
Ì	Menentukan .	Prioritas Bantuan Menggunakan M	Keluarga Angkat Ietode Topsis / 73

0,533799557

0,437546229

0,543086841

0,566252671

0,533799557

0,50467232

0,399894528

0,567335378

0,467304036

0,229815209

0,399894528

A3

A4

A5

A6

A7

A8

Menggunakan Metode Topsis / 73

1130	0,4/4//1493	0,484103312
A39	0,384428912	0,510129646
A40	0,474215025	0,504825636
A41	0,474215025	0,504825636
A42	0,508712601	0,431357286
A43	0,542668067	0,281013353
A44	0,483533776	0,438604131
A45	0,517410411	0,351559055
A46	0,383741458	0,529833023
A47	0,357563802	0,559522692
A48	0,357563802	0,559522692
A49	0,508712601	0,431357286
A50	0,474215025	0,504825636
A51	0,474215025	0,504825636
A52	0,394070928	0,538112886
A53	0,402194596	0,494252798
A54	0,455323603	0,431033343
A55	0,433490426	0,467046415
A56	0,455323603	0,431033343
A57	0,495032432	0,293308854
A58	0,474771493	0,484105512
A59	0,413141036	0,426392413
A60	0,483865482	0,436771164
A61	0,474553245	0,50323393
A62	0,384159341	0,528316664

0,402194596

0,402194596

0,435994439

0,499208294

0.474771493

0,293308854

0,494252798

0,494252798

0,386610758

0,292296152

0.484105512

A33

A34

A35

A36

A37

A38

A68	0,533799557	0,399894528	
A69	0,483319484	0,459630097	
A70	0,425879463	0,439382493	
A71	0,500070672	0,479226674	
A72	0,416467952	0,436153931	
A73	0,483865482	0,436771164	
A74	0,508916201	0,408880015	
A75	0,542668067	0,281013353	
A76	0,500070672	0,479226674	
A77	0,500070672	0,479226674	
A78	0,500070672	0,479226674	
A79	0,435994439	0,386610758	
A80	0,542668067	0,281013353	
A81	0,443665383	0,394533921	
A82	0,517410411	0,351559055	
A83	0,406079258	0,417921758	
A84	0,433956234	0,466613718	
A85	0,474771493	0,484105512	
A86	0,474771493	0,484105512	
A87	0,384428912	0,510129646	
A88	0,186545582	0,610915973	
A89	0,465277281	0,54482427	
A90	0,500070672	0,479226674	
A91	0,429602249	0,363875903	
A92	0,419715559	0,41760057	
Menentukan Prioritas Bantuan Keluarga Angkat			

0,451381352

0,425636145

0,357563802

0,483319484

0,505502042

0,485684009

0,460372911

0,559522692

0,459630097

A63

A64

A65

A66

A67

A93	0,327010259	0,397843917
A94	0,542095	0,31215428
A95	0,375057621	0,512449605
A96	0,41949547	0,491344814
A97	0,384428912	0,510129646
A98	0,517410411	0,351559055
A99	0,474771493	0,484105512
A100	0,508712601	0,431357286
A101	0,459858	0,391414568
A102	0,508712601	0,431357286
A103	0,41949547	0,491344814
A104	0,429760727	0,444781552
A105	0,41949547	0,491344814
A106	0,465021082	0,351161507
A107	0,465021082	0,351161507
A108	0,502178323	0,435583381

Tabel IV 15: Hasil Penentuan Jarak Antar Nilai Setiap Alternatif

Setelah hasil penentuan jarak antar nilai setiap alternatif dilakukan maka tahap selanjutnya ialah menghitung nilai preferensi setiap alternatif. Nilai preferensi setial altenatif adalah hasil akhir dari penerapan metode topsis pada data anggota keluarga angkat sebanyak 108.

4.1.3.7 Menghitung nilai preferensi setiap alternatif

hasil perhitungan nilai D_i^- jarak alternatif solusi ideal negatif yang dibagi dengan hasil penjumlahan nilai D_i^- jarak alternatif solusi ideal negatif ditambah nilai D_i^+ jarak alternatif solusi ideal positif.

$$V_i = \frac{D_i^-}{D_i^- + D_i^+}$$

Keterangan:

V_i = nilai prefensi alternatif

$$V1 = \frac{0,388}{0.388 + 0.573} = 0,404$$

$$V2 = \frac{0,399}{0.399 + 0.533} = 0,428$$

$$V108 = \frac{0,435}{0.435 + 0.502} = 0,464$$

Perhitungan nilai preferensi alternatif sebanyak 108 alternatif dapat dilihat pada tabel IV 16.

alternativ	V
A1	0,404193729
A2	0,42829288
A3	0,51547131

A4	0,42829288	
A5	0,564579324	
A6	0,462498273	
A7	0,288687956	
A8	0,42829288	
A9	0,507892108	
A10	0,538932767	
A11	0,489357677	
A12	0,489357677	
A13	0,489357677	
A14	0,579956023	
A15	0,489357677	
A16	0,603875182	
A17	0,507185974	
A18	0,579956023	
A19	0,551346126	
A20	0,458856615	
A21	0,458856615	
A22	0,40457009	
A23	0,40457009	
A24	0,46449261	
A25	0,458856615	
A26	0,458856615	
A27	0,458856615	
A28	0,469983365	
A29	0,365413571	
A30	0,365413571	
A31	0,274334532	
A32	0,40457009	
A33	0,372058218	

A34	0,551346126	
A35	0,551346126	
A36	0,469983365	
A37	0,369291864	
A38	0,504867161	
A39	0,570258528	
A40	0,515632962	
A41	0,515632962	
A42	0,458856615	
A43	0,341167527	
A44	0,475638327	
A45	0,40457009	
A46	0,579956023	
A47	0,610108966	
A48	0,610108966	
A49	0,458856615	
A50	0,515632962	
A51	0,515632962	
A52	0,577260491	
A53	0,551346126	
A54	0,486297698	
A55	0,518631103	
A56	0,486297698	
A57	0,372058218	
A58	0,504867161	
A59	0,507892108	
A60	0,474422961	
A61	0,514666119	
A62	0,578992391	
A63	0,548998666	

A64	0,518303236
A65	0,519602941
A66	0,610108966
A67	0,487438678
A68	0,42829288
A69	0,487438678
A70	0,507802857
A71	0,489357677
A72	0,511544378
A73	0,474422961
A74	0,445501962
A75	0,341167527
A76	0,489357677
A77	0,489357677
A78	0,489357677
A79	0,469983365
A80	0,341167527
A81	0,470692256
A82	0,40457009
A83	0,507185974
A84	0,518131564
A85	0,504867161
A86	0,504867161
A87	0,570258528
A88	0,766075768
A89	0,539375739
A90	0,489357677
A91	0,458583393
A92	0,498737043
A93	0,548860626

A94	0,365413571
A95	0,577403304
A96	0,539441242
A97	0,570258528
A98	0,40457009
A99	0,504867161
A100	0,458856615
A101	0,459799344
A102	0,458856615
A103	0,539441242
A104	0,508587821
A105	0,539441242
A106	0,430248711
A107	0,430248711
A108	0,46449261

Tabel IV 16: Hasil Perhitungan nilai preferensi untuk setiap alternatif

Nilai preferensi setiap alternatif merupakan hasil implementasi metode topsis hadap data anggota keluarga angkat. Untuk dapat menentukan prioritas anggota keluarga angkat dalam pemberian sembako maka dipelukan proses akhir yaitu Ranking. Rangking diambil dari tabel hasil nilai preferensi setiap alternatif sehingga pada perangkingan ini altenatif dengan nilai preferensi tertinggi ditempatkan di posisi pertama hingga

dengan preferensi terendah ditempatkan di posisi terakhir.

4.2 Hasil

Adapun hasil pengujian metode topsis terhadap data anggota keluarga angkat belum bisa menentukan prioritas pembagian sembako, maka dari itu diperulukan tahap pengurutan penelitian dengan menerapkan metode skala ordinal (rangking) pada nilai preferensi setiap alternatif.

4.2.4 Rangking

Ranking merupakan hasil akhir dari nilai preferensi yang telah dijumlah dan diurutkan berdasarkan nilai preferensi tertinggi hingga terkecil. Data anggota keluarga angkat yang di prioritaskan dapat dilihat pada tabel IV 17

alternativ	V	Ranking
A88	0,766075768	1
A47	0,610108966	2
A48	0,610108966	3
A66	0,610108966	4
A16	0,603875182	5
A14	0,579956023	6

A18	0,579956023	7
A46	0,579956023	8
A62	0,578992391	9
A95	0,577403304	10
A52	0,577260491	11
A39	0,570258528	12
A87	0,570258528	13
A97	0,570258528	14
A5	0,564579324	15
A19	0,551346126	16
A34	0,551346126	17
A35	0,551346126	18
A53	0,551346126	19
A63	0,548998666	20
A93	0,548860626	21
A96	0,539441242	22
A103	0,539441242	23
A105	0,539441242	24
A89	0,539375739	25
A10	0,538932767	26
A65	0,519602941	27
A55	0,518631103	28
A64	0,518303236	29
A84	0,518131564	30
A40	0,515632962	31
A41	0,515632962	32
A50	0,515632962	33
A51	0,515632962	34
A3	0,51547131	35
A61	0,514666119	36

A72 0,511544378 37 A104 0,508587821 38 A9 0,507892108 40 A59 0,507892108 40 A70 0,507185974 42 A83 0,507185974 43 A38 0,504867161 44 A58 0,504867161 45 A85 0,504867161 47 A99 0,504867161 48 A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 54 A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A69 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,47			
A9 0,507892108 40 A59 0,507892108 40 A70 0,507802857 41 A17 0,507185974 42 A83 0,507185974 43 A38 0,504867161 44 A58 0,504867161 46 A86 0,504867161 47 A99 0,504867161 48 A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 55 A77 0,489357677 55 A77 0,489357677 55 A78 0,489357677 56 A78 0,489357677 57 A78 0,489357677 58 A60 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A72	0,511544378	37
A59 0,507892108 40 A70 0,507802857 41 A17 0,507185974 42 A83 0,507185974 43 A38 0,504867161 44 A58 0,504867161 45 A85 0,504867161 47 A99 0,504867161 48 A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 55 A76 0,489357677 56 A78 0,489357677 56 A79 0,489357677 56 A79 0,489357677 56 A79 0,489357677 57 A60 0,487438678 60 A54 0,486297698 61 A54 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,47	A104	0,508587821	38
A70 0,507802857 41 A17 0,507185974 42 A83 0,507185974 43 A38 0,504867161 44 A58 0,504867161 45 A85 0,504867161 46 A86 0,504867161 47 A99 0,504867161 48 A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 55 A77 0,489357677 56 A78 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 60 A54 0,486297698 61 A54 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A9	0,507892108	39
A17 0,507185974 42 A83 0,507185974 43 A38 0,504867161 44 A58 0,504867161 45 A85 0,504867161 46 A86 0,504867161 47 A99 0,504867161 48 A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 55 A76 0,489357677 56 A78 0,489357677 56 A78 0,489357677 58 A67 0,489357677 58 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A59	0,507892108	40
A83	A70	0,507802857	41
A38	A17	0,507185974	42
A58	A83	0,507185974	43
A85 0,504867161 46 A86 0,504867161 47 A99 0,504867161 48 A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 54 A76 0,489357677 55 A77 0,489357677 55 A78 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,489357677 58 A67 0,489357677 58 A69 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A38	0,504867161	44
A86 0,504867161 47 A99 0,504867161 48 A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 55 A76 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A58	0,504867161	45
A99 0,504867161 48 A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 54 A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A85	0,504867161	46
A92 0,498737043 49 A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 54 A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A86	0,504867161	47
A11 0,489357677 50 A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 54 A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A99	0,504867161	48
A12 0,489357677 51 A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 54 A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A92	0,498737043	49
A13 0,489357677 52 A15 0,489357677 53 A71 0,489357677 54 A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A11	0,489357677	50
A15 0,489357677 53 A71 0,489357677 54 A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A12	0,489357677	51
A71 0,489357677 54 A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A13	0,489357677	52
A76 0,489357677 55 A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A15	0,489357677	53
A77 0,489357677 56 A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A71	0,489357677	54
A78 0,489357677 57 A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A76	0,489357677	55
A90 0,489357677 58 A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A77	0,489357677	56
A67 0,487438678 59 A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A78	0,489357677	57
A69 0,487438678 60 A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A90	0,489357677	58
A54 0,486297698 61 A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A67	0,487438678	59
A56 0,486297698 62 A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A69	0,487438678	60
A44 0,475638327 63 A60 0,474422961 64 A73 0,474422961 65	A54	0,486297698	61
A60 0,474422961 64 A73 0,474422961 65	A56	0,486297698	62
A73 0,474422961 65	A44	0,475638327	63
	A60	0,474422961	64
A81 0,470692256 66	A73	0,474422961	65
	A81	0,470692256	66

A28	0,469983365	67
A36	0,469983365	68
A79	0,469983365	69
A24	0,46449261	70
A108	0,46449261	71
A6	0,462498273	72
A101	0,459799344	73
A20	0,458856615	74
A21	0,458856615	75
A25	0,458856615	76
A26	0,458856615	77
A27	0,458856615	78
A42	0,458856615	79
A49	0,458856615	80
A100	0,458856615	81
A102	0,458856615	82
A91	0,458583393	83
A74	0,445501962	84
A106	0,430248711	85
A107	0,430248711	86
A2	0,42829288	87
A4	0,42829288	88
A8	0,42829288	89
A68	0,42829288	90
A22	0,40457009	91
A23	0,40457009	92
A32	0,40457009	93
A45	0,40457009	94
A82	0,40457009	95
A98	0,40457009	96

A1	0,404193729	97
A33	0,372058218	98
A57	0,372058218	99
A37	0,369291864	100
A29	0,365413571	101
A30	0,365413571	102
A94	0,365413571	103
A43	0,341167527	104
A75	0,341167527	105
A80	0,341167527	106
A7	0,288687956	107
A31	0,274334532	108

Tabel IV 17: Rangking

Dari tabel IV 17 terdapat data 108 anggota keluarga angkat yang dimana namanya disamarkan menjadi alternatif. Nilai preferensi tertinggi dengan alterantif A88 merupakan ranking pertama dalam memprioritaskan pembagian sembako dan A31 merupakan rangking terakhir dalam pembagian sembako.

BAB 5

KESIMPULAN

Berdasarkan pengujian dan hasil uji coba yang telah teliti, didapatkan beberapa kesimpulan sebagai berikut:

- 5.1 Impelementasi metode topsis terhadap data anggota keluarga angkat dapat membuat pengelolaan penentuan prioritas semakin cepat dan efisien.
- 5.2 Hasil pengelolaan data menggunakan metode topsis menghasilkan data preferensi setiap alternatif. Dimana data preferensi didapatkan dari penjumlahan jarak alternatif solusi ideal negatif yang dibagi dengan jarak alternatif solusi ideal negatif ditambah dengan jarak alternatif solusi ideal positif.
- 5.3 Dengan menggunakan skala ordinal sebagai wadah untuk mengurutkan data preferensi setiap alternatif tertinggi hingga terendah maka anggota keluarga angkat dapat bisa diprioritaskan dengan memberikan sembako.

Daftar Pustaka

- [1] Theresia, A., Andini, K. S., Nugraha, P. G. & Mardikanto, T., 2015. Pembangunan Berbasis Masyarakat. 1st penyunt. Bandung: Alfabeta.
- [2] Kompasiana.com, "Noise Penyebab Miskom Dalam Organisasi," *KOMPASIANA*, 20-Sep-2014. [Online]. Available:https://www.kompasiana.com/picalgadi/54f5c c51a333111e1f8b45d7/noise-penyebab-miskom-dalamorganisasi. [Accessed: 02-Des-2021].
- [3] "Cara membuat Landasan teori: Pengertian Dan Contoh," *Buku Deepublish*, 09-Sep-2021. [Online]. Available: https://penerbitbukudeepublish.com/landasan-teori/. [Accessed: 10-Feb-2022].
- [4] QuBisa, "Teori Pengambilan Keputusan Yang menghasilkan Solusi Bijak," *QuBisa*. [Online]. Available: https://www.qubisa.com/article/teoripengambilan-keputusan. [Accessed: 10-Feb-2022].
- [5] "Pengambilan Keputusan," *Wikipedia*. [Online]. Available: https://id.wikipedia.org/wiki/Pengambilan_keputusan#ci te note-Reason-1. [Accessed: 10-Feb-2022].
- [6] "Multi-attribute decision making | SpringerLink." [Online]. Available: https://link.springer.com/referenceworkentry/10.1007% 2F978-94-007-0753-5 1863. [Accessed: 10-Feb-2022].
- [7] Hwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.
- [8] Zavadskas, E.K.; Zakarevicius, A.; Antucheviciene, J. (2006). "Evaluation of Ranking Accuracy in Multi-Criteria Decisions"
- [9] H. Garg, "Some methods for strategic decision-making problems with immediate probabilities in Pythagorean fuzzy environment," *International Journal of Intelligent Systems*, vol. 33, no. 4, pp. 687–712, 2018.

- [10] Singh, A.K. 2004. Tests, Measurements and Research Methods in Behavioral Sciences. Patna: Bharati Bhawan.
- [11] R. Hans, "Pahami proses Dan Macam Metode analisis data kuantitatif," https://dqlab.id/files/dqlab/cache/6b8c33bdec694a9af1b 696bef97d2d25_x_Thumbnail200.png, 18-Sep-2021.
- [12] "Skala pengukuran data dalam Penelitian disertai contoh," *Buku Deepublish*, 08-Oct-2021. [Online]. Available:https://penerbitbukudeepublish.com/skala-pengukuran-data-dalam-penelitian/. [Accessed: 04-Feb-2022].
- [13] C.-L. Hwang, Y.-J. Lai, and T.-Y. Liu, "A new approach for multiple objective decision making," *Computers & Operations Research*, vol. 20, no. 8, pp. 889–899, 1993.
- [14] M. Akram, W. A. Dudek, and F. Ilyas, "Group decision-making based on pythagorean fuzzy TOPSIS method," *International Journal of Intelligent Systems*, vol. 34, no. 7, pp. 1455–1475, 2019.
- [15] H. Garg, "A new improved score function of an intervalvalued Pythagorean fuzzy set based TOPSIS method," *International Journal for Uncertainty Quantification*, vol. 7, no. 5, pp. 463–474, 2017.
- [16] Kusumadewi, dkk. 2006. Fuzzy Multi-Atribute Decision Making (MADM). Graha Ilmu, Yogyakarta.

Lampiran – Lampiran

Menentukan Prioritas Bantuan Keluarga Angkat Menggunakan Metode Topsis

Penyebab dari kemiskinan dikarenakan keterbatasannya kegiatan atau aktivitas yang dihadapi oleh individu dalam melaksanakan tugas atau tindakan. Disabilitas boleh dikatakan adalah fenomena yang kompleks, yang mencerminkan interaksi antara fungsi tubuh seseorang dan fungsi atau kesempatan yang diberikan kepadanya oleh masyarakat di mana ia tinggal.

Untuk membantu pemerintah dan warga disabilitas, lahirlah sebuah organisasi salah satunya Yayasan Kominitas Kelurga Angkat (KKA) yang membantu masyarakat kurang mampu seperti memberikan sembako dan mendanai pembangunan rumah bagi warga yang kurang mampu serta warga yang terkena musibah. Organisasi ini juga memprioritaskan warga disabilitas dari data yang di peroleh.

Agar dapat memprioritaskan warga yang kurang mampu maupun lanjut usia dibutuhkan sebuah proses pengelolaan data yang baik atau sebuah kerangka kerja untuk menghasilkan pengambilan keputusan yang tepat. TOPSIS (Technique for Orders Preference by Similarity to Ideal Solution) metode ini adalah salah satu langkah

