

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Rishav Das

Class Imbalance Learning on

Data-level methods

Algorithmlevel method:

uture

References

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Rishay Das

National Institute of Science Education and Research

June 7, 2024

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

- Introduction
- Class Imbalance Learning on Graphs (CILG)
- 3 Data-level methods
- Algorithm-level methods
- **Future**

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Class Imbalance Learning on

Learning on Graphs (CILG

methods

Algorithmlevel method

uture

Reference

Graphs

A graph, G can be defined as a tuple of two sets $\mathcal V$ and $\mathcal E$, i.e., $G=(\mathcal V,\mathcal E)$, where $\mathcal V$ is the set of vertices or nodes and $\mathcal E$ is the set of edges which are again tuples of vertices, (u,v) ϵ $\mathcal E$, where $u, v \in \mathcal V$.

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

ntroduction

Class Imbalance

Imbalance Learning on Graphs (CILG

Data-level methods

Algorithmlevel method

uture

References

Graphs

A graph, G can be defined as a tuple of two sets $\mathcal V$ and $\mathcal E$, i.e., $G=(\mathcal V,\mathcal E)$, where $\mathcal V$ is the set of vertices or nodes and $\mathcal E$ is the set of edges which are again tuples of vertices, (u,v) ϵ $\mathcal E$, where u, v ϵ $\mathcal V$.

We can also define a node feature set $\mathbf{X} \in \mathbf{R}^{n \times d}$, where n is the number of vertices, $n = |\mathcal{V}|$ and d is the number of features of a vertex. And we can define a label set $\mathbf{y} \in \mathbf{R}^{n \times 1}$ which contains the label of the vertices.

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

and the second

Class Imbalance Learning on Graphs (CILG

Data-level methods

Algorithmlevel method

Future

Graph Representation Learning (GRL)

Meaningful representation of graphs for various graph mining applications.

Categories of GRL approaches:

• Network embedding models: Network Embedding is a technique used in machine learning to represent nodes or links in a network as points in a continuous vector space. The goal is to learn latent low-dimensional feature representations for these nodes or links.

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Rishav Da

ntroduction

Class Imbalance Learning on Graphs (CILG

Data-level methods

Algorithmlevel methods

uture

Reference

Graph Neural Networks (GNNs) GNNs typically adopt a message-passing mechanism through neighborhood aggregation, updating a node's representation by aggregating information from its neighboring nodes and edges. After k iterations of aggregation, a node's representation encapsulates the structural information within its k-hop neighborhood, which is defined as:

$$h_v^{(k)} = \textit{Update}(h_v^{(k-1)}, \textit{Aggregate}(\{h_u^{k-1} | \forall u \in \mathcal{N}(v)\}))$$

where h_{v}^{k} is the representation vector od node $v \in \mathcal{V}$ in the k-th GNN layer, $\mathcal{N}(v)$ is the set of neigbors of node v, Aggregate(.) is the neighbor aggregation function and Update(.) is the combination function. Here h_{n}^{0} is initialized with node attribute \mathbf{X}_{v} .

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Class Imbalance Learning on Graphs (CILG

Data-leve methods

Algorithmlevel method

Future

Reference

Nnowledge Graph Embedding Methods
A knowledge graph $\mathcal{G} = \{E, R, F\}$ is a collection of entities E, relations R, and facts F. A fact is a triple $(h, r, t) \in F$ that denotes a link $r \in R$ between the head $h \in E$ and the tail $t \in E$ of the triple. Here the task is to learn node and edge embeddings by computing the acceptability score of fact triplets.

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Class Imbalance Learning on Graphs (CILG

Data-level methods

Algorithmlevel method:

Future

Reference

Class Imbalance Learning

We define Class distribution, P_k , and imbalance ratio, ρ as follows.

$$P_k = \frac{|C_k|}{\sum_{i=1}^K |C_i|}, \quad \rho = \frac{\max_k |C_k|}{\min_k |C_k|},$$

where C_k is the set of labeled samples in the class $k \in \{1, 2, ..., K\}$.

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Introductio

Class Imbalance Learning on Graphs (CILG)

Data-level methods

Algorithmlevel methods

Future

Reference

Class Imbalance Learning approaches

- Data-level methods
 - over-sampling minority,
 - under-sampling majority,
 - hybrid-sampling
- Algorithm-level methods
 - cost-sensitive learning,
 - ensemble learning,
 - 6 loss function engineering, ...

Class Imbalance Learning on Graphs (CILG)

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Rishav Das

troduction

Class Imbalance Learning on Graphs (CILG

Data-level

Algorithmlevel methods

uture

Reference

Chalanges

- The data is non-Euclidean.
- ② Imbalance could be at different levels.

Approaches

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Rishav Da

Class Imbalance Learning on

Data-level methods

Algorithmlevel methods

uture

Reference

- Data-level methods
 - Data interpolation
 - Adversarial generation
 - Seudo-labeling
- ② Algorithm-level methods
 - Model refinement
 - loss function engineering
 - post-hoc adjustments

CILG models, arranged in chronological order.

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Rishav Das

Class Imbalance Learning on Graphs (CILG)

Data-level methods

Algorithmlevel methods

-uture

Poforonco

Data-Level									
Model	Year	Venue	Data Interpolation	Adversarial Generation	Pseudo- Labeling	Key Components			
SPARC [80]	2018	KDD			/	Label propagation; Self-paced learning			
GraphSMOTE [78]	2021	WSDM	/			SMOTE; Pre-training			
GraphENS [35]	2021	ICLR	/			mixup; Neighbor sampling; Saliency filtering			
ImGAGN [38]	2021	KDD		/		Graph structure reconstruction			
D-GCN [58]	2021	CSAE				k-NN; Graph structure generator			
SET-GNN [21]	2021	ICONIP			/	Label propagation; Self-training			
GraphMixup [64]	2022	ECML/PKDD	/			mixup; Auxiliary objectives			
GATSMOTE [26]	2022	Mathematics	/			SMOTE; Attention			
SORAG [10]	2022	ECML/PKDD		/		Node generator; Edge generator			
DPGNN [59]	2022	MLG			/	Label propagation; Metric learning			
GNN-CL [24]	2022	arXiv	/			SMOTE; Curriculum learning; Attention			
GraphSR [81]	2023	AAAI			/	Label propagation; Reinforcement learning			

Algorithm-Level

	Model	Year	Venue	Model Refinement	Loss Function Post-hoc Engineering Adjustmen		Key Components
	RSDNE [62]	2018	AAAI	/			Random walk; Intra/Inter-class similarity
	ImVerde [63]	2018	Big Data	/			Random walk; Balanced sampling
	DR-GCN [46]	2020	IJCAI			/	Adversarial training; Distribution alignment
	RECT [61]	2020	TKDE	/			Class-label relaxation
	ReNode [6]	2021	NeurIPS		/		Topology imbalance; Node reweighting
	FRAUDRE [73]	2021	ICDM		/		Imbalanced distribution-oriented loss
	TAM [48]	2022	ICLR		/		Topology-aware margin loss
	CM-GCL [37]	2022	NeurIPS	✓	/		Contrastive learning; Network pruning
	LTE4G [69]	2022	CIKM	✓		/	Degree imbalance; Knowledge distillation
	ACS-GNN [28]	2022	ICNSC	✓	/		Cost-sensitive learning; Attention
	EGCN [55]	2022	ICNSC	/			Class-weighted aggregation
	KINC-GCN [1]	2022	ICNSC	/			Kernel propagation; Node clustering
	FACS-GCN [43]	2022	IJCNN		/		Cost-sensitive learning; Adversarial training
	GraphDec [72]	2022	GLFrontiers	/	/		Contrastive learning; Sparsity training
	ImGCL [71]	2023	AAAI	/	/		Contrastive learning; Balanced sampling

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

.....

Class Imbalance Learning on

Data-level methods

Algorithmlevel methods

Future

Reference

GraphSMOTE

- Step1: learning embeding, $h_v^1 = \sigma(\mathbf{W}^1.CONCAT(F[v,:], F.A[:,v]))$
- Step2: Synthetic node generation, finding the nearest neighbor from same class, $nn(v) = argmin_u ||h_u^1 h_v^1|| \quad s.t. \quad Y_u = Y_v$ then, $h_{v'}^1 = (1 \delta).h_v^1 + \delta h_{nn(v)}^1$, where $\delta \in [0, 1]$ is a random variable and v' is the generated node.
- Step3: Edge generator, predicted relation information between nodes u and v, $E_{u,v} = softmax(\sigma(h_v^1.S.h_u^1))$ Loss function for learning the parameter S, $L_e dge = ||E A||_F^2$ new adjacency matrix, $\tilde{A} = 1$ if $E > \eta$ or 0 othervise

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Class Imbalance Learning on

Data-level methods

Algorithmlevel methods

Futur

Reference

GraphSMOTE

• Step4: GNN classifier, If GraphSage GNN is used, $h_v^2 = \sigma(W^2.CONCAT(h_v^1, \tilde{H}^1.\tilde{A}[:, v])),$ $P_v = softmax(\sigma(W^c.CONCAT(h_v^2, H^2.\tilde{A}[:, v])))$ with the loss function as cross entropy loss, $L_{node} = \sum_{u \in \tilde{Y}_t} \sum_{c} (\mathbf{1}(Y_u == c). \log P_v(c))$

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

RISHAV Da

Class Imbalance

Imbalance Learning on Graphs (CILG

Data-level methods

Algorithmlevel methods

Future

Reference

GraphENS

- Graph ego network synthesis.
- ② uses mixup, $\tilde{x} = \lambda x_i + (1 \lambda)x_j$, $\tilde{y} = \lambda y_i + (1 \lambda)y_j$, i,j are random instances, where one belongs to minority class and $\lambda \in [0, 1]$
- filters out class-specific attributes of the target node using a gradient-based feature saliency that measures the importance of each feature in predicting the target node's label

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

.......

Introduction

Class Imbalance Learning on Graphs (CILG)

Data-level methods

Algorithmlevel method:

=utur∈

Reference

GraphMixup

- performs mixup in the semantic space rather than the input or embedding space, preventing the generation of out-of-domain minority sample
- incorporates two auxiliary self-supervised learning objectives: local-path prediction and global-path prediction

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Class Imbalance Learning on

Imbalance Learning on Graphs (CILG)

Data-level methods

Algorithmlevel method:

Future

Reference

GraphMixup

- performs mixup in the semantic space rather than the input or embedding space, preventing the generation of out-of-domain minority sample
- ② incorporates two auxiliary self-supervised learning objectives: local-path prediction and global-path prediction

GATSMOTE and GNN-CL

They employ attention mechanisms in their edge generators to enhance predicted edge quality between synthetic and real nodes (similar to GraphSMOTE)

Adversarial Generation

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

.......

Class mbalance

Imbalance Learning on Graphs (CILG)

Data-level methods

Algorithmlevel methods

Future

Reference

Imbalanced Network Embedding via Generative (ImGAGN)

- first to apply Generative Adversarial Networl (GAN) to graphs
- ② introduces a generator network for synthesizing minority nodes and their links to real minority nodes
- derives features from averaging neighboring minority node features
- GCN is used as the discriminator to differentiate between real and synthetic nodes and classify whether they belong to the minority class
- Iimited to binary classification, multi-class classification would need a generator for each class

Adversarial Generation

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Introduction

Class Imbalance Learning on Graphs (CILG)

Data-level methods

Algorithmlevel methods

Future

Reference

SORAG

- Targets multi-class node classification in graphs
- ② An ensemble of a GAN and a conditional GAN (cGAN) as the node generator
- GAN generated unlabeled synthetic minority nodes
- GAN creates labeled synthetic minority nodes
- onnection between synthetic and real nodes is based on the inner

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Distance Desc

Class Imbalance Learning on

Data-level

Algorithmlevel method

uture

Reference

Label propagation

iteratively propagates a node's label to neighboring nodes based on their proximity.

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Class Imbalance Learning on Graphs (CILG

Data-level methods

Algorithmlevel method:

utur

Reference

Label propagation

iteratively propagates a node's label to neighboring nodes based on their proximity.

Self-Paced Network Representation for Few-Shot Rare Category Characterization (SPARC) and SET-GNN

incorporate pseudo-labeling into self-training to enrich minority class training samples

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Class Imbalance Learning on Graphs (CILG

Data-level methods

Algorithmlevel method:

Future

Reference

Label propagation

iteratively propagates a node's label to neighboring nodes based on their proximity.

Self-Paced Network Representation for Few-Shot Rare Category Characterization (SPARC) and SET-GNN

incorporate pseudo-labeling into self-training to enrich minority class training samples

Distance-wise Prototypical Graph Neural Network (DPGNN)

transfers knowledge from head classes to tail classes using learned class prototypes and metric learning

Class-Learning on Graphs: A Survev[Ma+23]

GraphSR

generates pseudo-labels for unlabeled nodes using a GNN and identifies the most reliable and informative unlabeled nodes based on their similarity to labeled nodes, adaptively enriching minority class training nodes through reinforcement learning

Model Refinement

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Trisila V Da.

Class

Imbalance Learning on Graphs (CILG)

Data-level methods

Algorithmlevel method

Future

Reference

Relaxed Similarity and Dissimilarity Network Embedding (RSDNE)

- uses DeepWalk, a method that preserves neighborhood structure based on random walks
- adds auxiliary learning objectives to ensure that the embedding space reflects both intra-class similarity and inter-class dissimilarity

Model Refinement

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Class Imbalance Learning on Graphs (CILG

Algorithm-

uture

References

Relaxed Similarity and Dissimilarity Network Embedding (RSDNE)

- uses DeepWalk, a method that preserves neighborhood structure based on random walks
- adds auxiliary learning objectives to ensure that the embedding space reflects both intra-class similarity and inter-class dissimilarity

ImVerde

- aslo uses DeepWalk
- adjusts the transition probability during random walks to encourage minority nodes to stay within the same class
- also employs context and balanced-batch sampling to sample node-context pairs based on label information and network topology in a class-balanced manner

Model Refinement: Models that modifies AGGREGATE(.)

Class-Imbalanced Learning on Graphs: A Sur-

vev[Ma+23]

Attention and Cost-Sensitive Graph Neural Network (ACS-GNN)

 uses an attention mechanism to assign personalized weights to minority and majority samples

Model Refinement: Models that modifies AGGREGATE(.)

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Rishay Das

ntroduction

Class Imbalance Learning on Graphs (CILG

Data-level methods

level method

Future

Reference

Attention and Cost-Sensitive Graph Neural Network (ACS-GNN)

 uses an attention mechanism to assign personalized weights to minority and majority samples

Effective-aggregation Graph Convolutional Network (EGCN)

 limits the aggregation of interclass edges from a local perspective using estimation density and focuses more on the minority class based on the imbalance ratio from a global perspective

Model Refinement

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Rishay Das

Class Imbalance Learning on

Data-leve methods

Algorithmlevel methods

Future

Reference

Kernel Propagation-based model for Imbalanced Node Classification in Graph Convolutional Networks (KINC-GCN)

- introduces two modules to enhance node embeddings and exploit higher-order structural features as a pre-processing step before applying GNN for classification
- first is a self-optimizing cluster analysis module that performs clustering on the obtained node embeddings
- second module, the graph reconstruction module, uses an inner product decoder to reconstruct original graphs through reconstructed embedding vectors

Loss Function Engineering

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Rishav Das

Tallav Da.

Class Imbalance Learning on

Data-level

Algorithmlevel methods

uture

Reference

Two ways it is done

- assigning greater weight to the loss of minority class data samples during training
- expanding the decision boundary between minority and majority classes

Loss Function Engineering

Class-Imbalanced Learning on Graphs: A Survev[Ma+23]

Rishav Das

ntroductio

Class Imbalance Learning on Graphs (CILO

Data-leve methods

Algorithmlevel method

Future

Reference

Two ways it is done

- assigning greater weight to the loss of minority class data samples during training
- expanding the decision boundary between minority and majority classes

ReNode

re-weights the influence of labeled nodes based on their relative positions to class boundaries:

$$\mathcal{L}_{ReNode} = rac{1}{|\mathcal{V}^I|} \sum_{v \in \mathcal{V}^I} w_v rac{|\overline{C}|}{C_{yv}} \mathcal{L}(I_v, y_v),$$

where w_v is modified training weight of node v, $|\overline{C}|$ is the average number of elements in a class and $|C_{y_v}|$ is the number of labeled samples in the class that v belongs to.

Loss Function Engineering

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

MSHav Da

Class mbalance

Imbalance Learning on Graphs (CILG)

Data-level methods

level method

uture

Reference

Topology-Aware Margin (TAM)

considers the local topology of individual nodes and adaptively adjusts margins for topologically improbable nodes:

$$\mathcal{L}_{TAM} = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}^l} \mathcal{L}(I_v + \alpha m_v^{ACM} + \beta m_v^{ADM}, y_v),$$

where the term $m_{v}^{ACM} \in \mathbf{R}^{K}$ adjusts the margin of each class by calibrating the deviation of the neighbor label distribution for node v, $m_{v}^{ADM} \in \mathbf{R}^{K}$ modifies the target class margin based on the relative proximity to the target class compared to the self class, and α and β are hyper-parameters

Post-hoc Adjustment

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Rishav Da

Class Imbalance Learning on Graphs (CILG

Data-level methods

level method

=uture

Reference

Approaches

- fine-tuning,
- @ recalibrating, or
- aligning model outputs during the inference phase or late stages of training

Post-hoc Adjustment

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Class Imbalance Learning on Graphs (CILG

Data-level methods

level method

Poforonco

Approaches

- fine-tuning,
- @ recalibrating, or
- 3 aligning model outputs during the inference phase or late stages of training

Dual-Regularized Graph Convolutional Networks (DR-GCN)

incorporates a distribution alignment module that ensures unlabeled nodes follow a similar latent distribution to labeled nodes by minimizing the distribution difference based on Kullback-Leibler divergence

Post-hoc Adjustment

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Class Imbalance Learning on

Data-level methods

Algorithmlevel method

uture

Reference

Long-Tail Experts for Graph Neural Networks (LTE4G)

- employs a class prototype-based inference method to adjust predictions after the model's training is complete during the inference phase
- involves computing the prototype vector for each class by averaging the embeddings of all nodes in that class
- test node's class is then predicted by calculating its similarity with each class prototype vector and assigning the class with the highest similarity score

Datasets

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Rishav Das

Class Imbalance Learning on Graphs (CILG)

Data-level methods

Algorithm-

uture

References

Domain	Dataset		\mathbf{L}_0	\mathbf{L}_1	\mathbf{L}_2	\mathbf{L}_3	\mathbf{L}_4	\mathbf{L}_{5}	\mathbf{L}_6	\mathbf{L}_7	L_8	\mathbf{L}_9
	Cora [68]		30.21	15.73	15.43	12.96	11.00	8.01	6.65	-	-	-
Citation network	Citeseer [68]		21.07	20.08	17.91	17.73	15.26	7.94	-	-	-	-
	PubMed [68]		39.94	39.25	20.81	-	-	-	-	-	-	-
Co much and materials	Amazon-Photo [45]	6	25.37	22.04	11.96	11.53	10.76	9.19	4.82	4.43	-	-
Co-purchase network	Amazon-Computers [45]	18	37.51	15.68	15.58	10.28	5.95	3.94	3.54	3.17	2.24	2.12
	Flickr [70]	10	40.26	25.73	9.53	7.19	5.90	5.49	3.90	-	-	-
Social network	GitHub [41]		74.17	25.83	-	-	-	-	-	-	-	-
	Facebook [41]	2	30.62	28.91	25.67	14.81	-	-	-	-	-	-
Knowledge graph	Wiki-CS [30]	9	22.90	18.40	16.52	12.17	7.39	6.67	5.70	4.20	3.53	2.52

Future paths

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Class Imbalance Learning on Graphs (CII G

Data-level methods

Algorithmlevel method

Future

Reference

- work could be done other than node classification like, edge classification, graph classification, or node regression
- ② beyond homophilous and homogenous data like heterophilous, heterogernous, hyper, and temporal graphs
- beyond class and quantity imbalance like, topology imbalance.

Thank you

Class-Imbalanced Learning on Graphs: A Survey[Ma+23]

Rishav Da

stroduction

Class Imbalance Learning on Graphs (CILG

Data-level methods

level metho

Б. С

[Ma+23] Yihong Ma et al. Class-Imbalanced Learning on Graphs: A Survey. 2023. arXiv: 2304.04300 [cs.LG].

And almost all the papers in the reference of the above.