Avant tout réviser

- (1) La loi de Bernoulli
- (2) L'indépendance
- (3) La loi géométrique
- (4) La loi uniforme sur $a, b \mid (a < b)$.

Exercices

Exercice 1 Soit X_1 et X_2 deux variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ indépendantes suivant une loi de Bernoulli de paramètre $p \in]0,1[$.

Déterminer la loi de $Y = \max\{X_1, X_2\}$ ainsi que la loi de $Z = \min\{X_1, X_2\}$.

Exercice 2 Soit (X_n) une suite de variables aléatoires de Bernoulli définies sur $(\Omega, \mathcal{A}, \mathbb{P})$ indépendantes de paramètre $p \in]0,1[$. On note Z_1 la variable aléatoire donnant le rang du premier succès.

- (1) Déterminer la loi de Z_1 , son espérance et sa variance.
- (2) On note Z_2 la variable aléatoire donnant le rang du second succès. Déterminer sa loi, son espérance et sa variance.
- (3) Plus généralement, pour tout entier $n \ge 1$, on note Z_n le rang du n-ième succès et $A_n = Z_n Z_{n-1}$. Montrer que pour $n \ge 2$ les variables A_1, \dots, A_n sont indépendantes et suivent une même loi que l'on déterminera.

Exercice 3 Soit (X_n) une suite de variables aléatoires définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes, de même loi géométrique sur \mathbb{N}^* de paramètre p. Pour tout $n \in \mathbb{N}^*$, on définit la variable aléatoire S_n par

$$S_n = \sum_{j=1}^{j=n} X_j.$$

Calculer la loi de la variable S_2 puis celle de S_3 .

Exercice 4 Soient X et Y deux variables aléatoires indépendantes définies sur $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes, de même loi géométrique sur \mathbb{N} de paramètre p.

- (1) Calculer $\mathbb{P}(Y \geqslant X)$; étudier le cas particulier $p = \frac{1}{2}$.
- (2) Calculer $\mathbb{P}(Y = X)$; étudier le cas particulier $p = \frac{1}{2}$.
- (3) On note $U = \max(X, Y)$ et $V = \min(X, Y)$. Calculer pour tout $(u, v) \in \mathbb{N}^2$ la probabilité $\mathbb{P}(U \leq u, V \geq v)$. En déduire les lois de U et V.

Exercice 5 Soit X une variable aléatoire définie sur $(\Omega, \mathcal{A}, \mathbb{P})$ à valeurs dans]0,1[et de loi uniforme sur]0,1[. On définit

$$Z = \frac{1 - X}{X}.$$

- (1) Déterminer la fonction de répartition de Z.
- (2) La variable aléatoire Z est-elle une variable à densité? Dans l'affirmative, calculer cette densité.

Exercice 6 [Loi de Laplace] Soit X une variable aléatoire ayant pour densité de probabilité la fonction f définie sur $\mathbb R$ par

$$f(x) = \frac{1}{2} \exp\left(-|x|\right).$$

- (1) Déterminer L'espérance et la variance de X.
- (2) Déerminer la fonction de répartition de X.
- (3) Soient Y et Z deux variables aléatoires indépendantes de même loi exponentielle $\mathcal{E}(1)$. Déterminer la loi de Y-Z.