DESIGN AND SYNTHESIS OF LOGIC CIRCUITS

COMBINATIONAL LOGIC CIRCUITS

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Synthesis of XOR/XNOR Gate

Synthesis of BCD-to-7-Segment Decoder

SYNTHESIS OF XOR/XNOR GATE

EXCLUSIVE-OR GATE

Logic Symbol

Truth Table

A	В	Y	Minterm
0	0	0	
0	1	1	$m_1 = \bar{A}B$
1	0	1	$m_2 = A\bar{B}$
1	1	0	

Equivalent Logic Circuit

$$Y = \bar{A}B + A\bar{B}$$

EXCLUSIVE-NOR GATE

Logic Symbol

Truth Table

A	В	Y	Minterm
0	0	1	$m_0 = \bar{A}\bar{B}$
0	1	0	
1	0	0	
1	1	1	$m_3 = AB$

Equivalent Logic Circuit

$$Y = \bar{A}\bar{B} + AB$$

Develop a logic circuit with four input variables that will only produce a 1 output when exactly three input variables are 1s.

O 1	
\sim	11tion
	lution

ABCD	Minterm

Reduce the combinational logic circuit to a minimum form.

Solution

Reduce the combinational logic circuit to a minimum form.

Solution

N	ABCD	f
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	

N	ABCD	f
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

SYNTHESIS OF BCD-TO7-SEGMENT DECODER

THE 7-SEGMENT DISPLAY

A standard <u>7-segment display</u> consists of <u>seven</u>

<u>LEDs</u> (segments) arranged in a rectangular layout to form the number 8. Each segment is labeled from *a* to *g*, and an optional eighth segment (DP) is used for the decimal point.

Segment Arrangement

Truth Table

DCBA	f_a
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
	0000 0001 0010 0011 0100 0101 0110 0111

N	DCBA	f_a
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

Segment Arrangement

Truth Table

N	DCBA	f_a
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	

N	DCBA	f_a
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

K-Map

DC BA	00	01	11	10
00				
01				
11				
10				

Truth Table

N	DCBA	f_a
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	
8	1000	

N	DCBA	f_a
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

QM Method

Group	DCBA	Minterm	1 st Level
			/

Prime Implicants Chart

Prime Implicants	m_0	m_2	m_3	m_5	m_7	m_8	m_9

QM Method

Group	2 nd Level	3 rd Level

Using Karnaugh Map and the Quine-McCluskey method, synthesize the minimized Boolean expressions for each segment (a–g) of a 7-segment display decoder.

Segment Arrangement

LABORATORY

