Applied Linear Algebra and Matrix Analysis Revised Second Edition

Thomas S. Shores

Contents

Prefa	ce	
Chap	ter 1. LINEAR SYSTEMS OF EQUATIONS	1
1.	Some Examples	and in the
2.	Notations and a Review of Numbers	8
3.	Gaussian Elimination: Basic Ideas	18
4.	Gaussian Elimination: General Procedure	28
5.	*Computational Notes and Projects	38
6.	Review Exercises	45
Chap	ter 2. MATRIX ALGEBRA	47
1.	Matrix Addition and Scalar Multiplication	47
2.	Matrix Multiplication	52
3.	Applications of Matrix Arithmetic	58
4.	Special Matrices and Transposes	66
5.	Matrix Inverses	77
6.	Basic Properties of Determinants	89
7.	*Applications and Proofs for Determinants	98
8.	*Computational Notes and Project	106
9.	Review Exercises	111
Chap	ter 3. VECTOR SPACES	113
1.	Definitions and Basic Concepts	113
2.	Subspaces	123
3.	Subspaces Associated with Matrices and Operators	130
4.	Standard Norm and Inner Product	137
5.	Applications of Norms and Inner Products	144
6.	Bases and Dimension	153
7.	Linear Systems Revisited	164
8.	*Computational Notes and Projects	172
9.	Review Exercises	177
Chap	ter 4. THE EIGENVALUE PROBLEM	179
1.	Definitions and Basic Properties	179
2.	Similarity and Diagonalization	189
3.	Applications to Discrete Dynamical Systems	196
4.	*Computational Notes and Projects	205
5	Raviow Everrises	208

Chapter 5. GEOMETRICAL ASPECTS OF VECTORS	
1. Normed Linear Spaces	211
2. Inner Product Spaces	216
3. Gram-Schmidt Algorithm	226
4. Unitary and Orthogonal Matrices	235
5. Linear Systems Revisited	241
6. *Computational Notes and Projects	248
7. Review Exercises	254
Chapter 6. ADDITIONAL TOPICS	
1. *Tensor Products	257
2. *Change of Basis and Linear Operators	260
3. *Operator Norms	264
4. *Schur Form and Applications	268
5. *The Singular Value Decomposition	271
Appendix A. Table of Symbols	
Appendix B. Solutions to Selected Exercises	
Bibliography	
Index	