Solving Knapsack Problems in a Sticker based model Computación Bioinspirada

Fernando Sancho Caparrini & Mario de Jesús Pérez Jiménez

Adam Lei Yi Chen Abolacio

January 19, 2025

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- 3 Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- Solución molecular al SSP
- \bigcirc Solución molecular al KP 0/1 Acotado
- $oxed{8}$ Solución molecular al KP 0/1 no acotado
- Conclusiones

Modelo Sticker de Roweis

- Representación de la información mediante cadenas de memoria (n, p, m).
- Hebras simples de ADN.
- Se trabaja con tubos que contienen multiconjuntos finitos de complejos de memoria.
- Bibliotecas (k, l): conjuntos de complejos de memoria cuyas primeras l regiones contienen todas las combinaciones.

Modelo Sticker de Roweis

Operaciones

- $Merge(T_1, T_2) = T_1 \cup T_2$
- Separate(T, i) : +(T, i), -(T, i)
- *Set*(*T*, *i*)
- Unset(T, i)
- Read(T)

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- Solución molecular al SSP
- 8 Solución molecular al KP 0/1 no acotado
- Conclusiones

Problema de la suma de subconjuntos (SSP)

Entrada:

- Un conjunto de numeros enteros $A = \{1, \dots, p\}$.
- Una función $w: A \to \mathbb{N}$. Notación: $w(A) = \sum_{i \in A} w(i)$
- Un número entero (target) $k \in \mathbb{N}$.

Objetivo: decidir si existe un subconjunto $B \subseteq A$ cuya suma de los pesos de B sea exactamente k. w(B) = k.

SSP es un problema NP-Completo.

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- 3 Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- Solución molecular al SSP
- 7 Solución molecular al KP 0/1 Acotado
- 8 Solución molecular al KP 0/1 no acotado
- Onclusiones

Problema de la mochila (KP)

- Objetos
- Peso máximo (mochila)
- Valor (objeto)
- Peso (objeto)
- Multiplicidad (objeto)

El problema de la mochila es uno de los **21 problemas NP-Completos de Karp** (1972).

KP es un problema de optimización.

Problema de la mochila (KP)

En este trabajo veremos la versión 0/1, donde cada objeto tiene multiplicidad 1.

Entrada:

- Un conjunto $A = \{1, \dots p\}$ que representan los índices de cada objeto.
- Una función $w: A \to \mathbb{N}$ que asocia un peso a cada objeto.
- Una función $\rho: A \to \mathbb{N}$ que asocia un valor a cada objeto.
- Un valor $k \in \mathbb{N}$ que indica el peso máximo de la mochila.

Problema de la mochila (KP)

Versión 0/1 unbounded: determinar si existe un subconjunto $B \subseteq A$ tal que $\rho(B) = max\{\rho(C) : C \subseteq A \land w(C) \le k\}$.

Versión 0/1 bounded: dado un valor adicional de entrada k' (valor mínimo) determinar si existe un subconjunto $B \subseteq A$ tal que $w(B) \le k$ y $\rho(B) > k'$.

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- 3 Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- Solución molecular al SSP
- $oxed{8}$ Solución molecular al KP 0/1 no acotado
- Onclusiones

Sea: $A = \{1, \dots, p\}, B = \{b_1, \dots, b_s\} \subseteq A, \mathcal{F} = \{D_1, \dots, D_t\} \subseteq \mathcal{P}(A)$. Ordenar los conjuntos de \mathcal{F} según la cardinalidad relativa a B.

Entrada: (T_0, B)

 T_0 : tubo de entrada, contiene complejos de memoria σ que representan los elementos seleccionados de B.

Codificación de $\sigma \in T_0$: Si la región b_i está activa, entonces el elemento b_i pertenece al conjunto representado en σ .

$$s \leq p$$

Ejemplo de codificación de $\sigma \in \mathcal{T}_0$: un conjunto D que solo contiene a b_1

 b_i

Idea intuitiva del programa: un bucle principal FOR de s pasos, en cada paso i, generar i+1 tubos: $T_0, T_1, \ldots T_i$. Cada tubo generado verifica:

$$\forall \sigma(\sigma \in T_j \to |\sigma \cap \{b_1, \dots b_i\}| = j)$$

Para cumplir la propiedad anterior se generan los tubos de la siguiente manera:

$$\begin{cases} T_0 = -(T_0, b_{i+1}) \\ T_j = +(T_{j-1}, b_{i+1}) \cup -(T_j, b_{i+1}) & (1 \leq j \leq i) \\ T_{i+1} = +(T_i, b_{i+1}) \end{cases}$$

```
Cardinal_sort(T_0, B), Cardinal_sort(T_0), Cardinal_sort(T_0, I, k)
Input: (T_0, B)
     for i = 1 to s do
          (T_0, T_1') \leftarrow \text{separate}(T_0, b_i)
          for i = 0 to i - 1 do
               (T_i'', T_{i+1}') \leftarrow \text{separate}(T_i, b_i)
               T_i \leftarrow T_i' \cup T_i''
          end for
          T_i \leftarrow T'_i
     end for
Output: T_0, \ldots, T_s
```

- 2s tubos auxiliares.
 - $\frac{s(s+3)}{2}$ operaciones moleculares (separate).

Verificación Formal

```
Input: T_0
T_{0,0} \leftarrow T_0; T_{0,-1} \leftarrow \emptyset; T_{0,1} \leftarrow \emptyset
for i=1 to s do
T_{i,-1} \leftarrow \emptyset; T_{i,i+1} \leftarrow \emptyset
for j=0 to i do
T_{i,j} \leftarrow + (T_{i-1,j-1},b_i) \cup -(T_{i-1,j},b_i)
end for
end for
Output: T_{s,0}, \ldots, T_{s,s}
```

Verificación Formal

Notación:
$$B_j = \{b_1, \ldots, b_j\}$$
 y $B_0 = \emptyset$.

Proposición 1

$$\forall i (1 \leq i \leq s \rightarrow \forall j \leq i \ \forall \sigma (\sigma \in T_{i,j} \rightarrow |\sigma \cap B_i| = j))$$

Inducción en i:

- $i = 1 \rightarrow \forall j \leq 1 \ \forall \sigma (\sigma \in T_{1,j} \rightarrow |\sigma \cap B_1| = j)$
 - Si $\sigma \in T_{1,0} = +(T_{0,-1},b_1) \cup -(T_{0,0},b_1)$, j=0 $T_{0,-1} = \emptyset$ y $T_{0,0} = T_0$, entonces $T_{1,0} = -(T_0,b_1)$ y se cumple que $|\sigma \cap B_1| = 0$ ya que $b_1 \notin \sigma$
 - Si $\sigma \in T_{1,1} = +(T_{0,0},b_1) \cup -(T_{0,1},b_1)$, j=1 $T_{0,0} = T_0$, $T_{0,1} = \emptyset$, entonces $T_{1,1} = +(T_0,b_1)$ y $b_1 \in \sigma$ por lo que también se cumple $|\sigma \cap B_1| = 1$

Verificación Formal

Paso inductivo en i, suponemos que se verifica la **Proposición 1** para i:

$$\forall j \leq i \ \forall \sigma \in T_{i,j} \ (|\sigma \cap B_i = j|)$$

verifiquemos que también se cumple para i + 1.

Inducción en j: $\forall j \leq i+1 \ \forall \sigma \in T_{i+1,j} \ (|\sigma \cap B_{i+1} = j|)$

• j=0 $\sigma \in T_{i+1,0} = +(T_{i,-1},b_{i+1}) \cup -(T_{i,0},b_{i+1})$ $T_{i,-1} = \emptyset, \text{ entonces } \sigma \in T_{i,0} \text{ y } b_{i+1} \notin \sigma. \text{ Por hipótesis de inducción}$ $|\sigma \cap B_i| = 0, \text{ como } b_{i+1} \notin \sigma \text{ se cumple que } |\sigma \cap B_{i+1}| = 0.$

Inducción en j:

$$\forall j \leq i+1 \ \forall \sigma \in T_{i+1,j} \ (|\sigma \cap B_{i+1} = j|)$$

- j > 0 $\sigma \in T_{i+1,j} = +(T_{i,j-1}, b_{i+1}) \cup -(T_{i,j}, b_{i+1})$
 - Si $\sigma \in T_{i,j-1}$, entonces $b_{i+1} \in \sigma$. Por hipótesis de inducción $|\sigma \cap B_i| = j-1$, además como $b_{i+1} \in \sigma$ tenemos que $|\sigma \cap B_{i+1}| = j-1+1=j$
 - Si $\sigma \in T_{i,j}$, entonces $b_{i+1} \notin \sigma$. Por hipótesis de inducción $|\sigma \cap B_i| = j$, como $b_{i+1} \notin \sigma$, $|\sigma \cap B_{i+1}| = j$.

Hemos verificado que se cumple la **Proposición 1** para cualquier valor de i, j.

Verificación Formal

Proposición 2

$$\forall \sigma \in T_0 \ \forall i \ (0 \leq i \leq s \rightarrow \sigma \in T_{i,|\sigma \cap B_i|})$$

Inducción en i:

• i=0El resultado es trivial, ya que $B_0=\emptyset$, entonces $|\sigma\cap B_0|=0$, por lo que $\forall \sigma\in T_0\to\sigma\in T_{0,0}$ esto se cumple ya que $T_{0,0}=T_0$.

Suponemos que se verifica para cualquier i.

- i + 1
 - Si $b_{i+1} \in \sigma$ tenemos que $|\sigma \cap B_{i+1}| = 1 + |\sigma \cap B_i|$. Por hipótesis de inducción $\sigma \in T_{i,|\sigma \cap B_i|}$, por lo que $\sigma \in +(T_{i,|\sigma \cap B_i|},b_{i+1}) \subseteq T_{i+1,|\sigma \cap B_i|+1}$
 - Si $b_{i+1} \notin \sigma$ tenemos que $|\sigma \cap B_{i+1}| = |\sigma \cap B_i|$. Por hipótesis de inducción $\sigma \in T_{i,|\sigma \cap B_i|}$, por lo que $\sigma \in -(T_{i,|\sigma \cap B_i|}, b_{i+1}) \subseteq T_{i+1,|\sigma \cap B_i|} = T_{i+1,|\sigma \cap B_{i+1}|}$

Verificación Formal

Corolario 1. (Solución correcta)

$$\forall j \ \forall \sigma \ (0 \leq j \leq s \land \sigma \in T_{s,j} \rightarrow |\sigma \cap B| = j)$$

Corolario 2. (Solución completa)

If
$$\sigma \in T_0$$
 and $|\sigma \cap B| = j$, then $\sigma \in T_s, j$

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- 3 Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- Solución molecular al SSP
- 8 Solución molecular al KP 0/1 no acotado
- Onclusiones

Notación:
$$f(B) = \sum_{i \in B} f(i)$$

Sea:

- $A = \{1, \ldots, p\}$
- $r \in \mathbb{N}$
- $f: A \to \mathbb{N}$: función que asigna un valor a cada elemento del conjunto A.

La entrada de la rutina es un multiconjunto de complejos de memoria (n, k, m) que denominamos como T_0 , $k \ge p + r + f(A)$.

Si $\sigma \in T_0$, dividiremos el complejo de memoria cuatro zonas:

$$(A\sigma) = \sigma(1) \dots \sigma(p) \qquad (F\sigma) = \sigma(p+r+1) \dots \sigma(p+r+f(A))$$

$$(L\sigma) = \sigma(p+1) \dots \sigma(p+r) \qquad (R\sigma) = \sigma(p+r+f(A)+1) \dots$$

La salida de la rutina codifica en la zona $(F\sigma)$ el valor total de los elementos codificados en $(A\sigma)$ para cualquier función f.

$$\sum_{i=1}^{p} \sigma(i)f(i) = \sum_{j=p+r+1}^{p+r+f(A)} \sigma(j)$$

```
Parallel_fill(T_0, f, p, r)

Input: (T_0, f, p, r)

for i = 1 to p do

(T^+, T^-) \leftarrow separate(T_0, i)

for j = 1 to f(i) do

T^+ \leftarrow set(T^+, p + r + f(A_{i-1}) + j)

end for

T_0 \leftarrow merge(T^+, T^-)

end for

Output: T_0
```

Verificación Formal

```
Input: (T_0, f, p, r)

for i = 1 to p do

(T_{i,0}^+, T_i^-) \leftarrow separate(T_{i-1}, i)

for j = 1 to f(i) do

T_{i,j}^+ \leftarrow set(T_{i,j-1}^+, p + r + f(A_{i-1}) + j)

end for

T_i \leftarrow merge(T_{i,f(i)}^+, T_i^-)

end for

Output: T_p
```

Verificación Formal

Para cada valor i ($1 \le i \le p$) consideramos las regiones:

$$R_i = \{p + r + f(A_{i-1} + 1, \dots, p + r + f(A_i))\}$$

Definición σ^k

Para cualquier $\sigma \in T_0$ y cada k $(1 \le k \le p)$, σ^k es la molécula obtenida de σ en el paso de ejecución k-ésimo del bucle principal.

Lema 1

La zona inicial $(A\sigma)$ no cambia durante la ejecución del programa:

$$\forall \sigma \in T_0 \ \forall k \ (1 \leq k \leq p \rightarrow (A\sigma) = (A\sigma^k))$$

Verificación Formal

Lema 2

Las moléculas del paso k-ésimo del bucle principal son almacenados en el tubo T_k :

$$\forall \sigma \in T_0 \ \forall k \ (1 \leq k \leq p \rightarrow \sigma^k \in T_k)$$

Lema 3

Toda molécula de T_k viene de una molécula del tubo inicial:

$$\forall k \ (1 \le k \le p \to \forall \tau \in T_k \ \exists \ \sigma \in T_0(\sigma^k = \tau))$$

Lema 4

La ejecución de un paso en el bucle principal no modifica las regiones de los pasos anteriores:

$$\forall \sigma \in T_0 \ \forall i \ \forall k \ (1 \leq i \leq k \leq p \rightarrow \sigma^i_{|R_i} = \sigma^k_{|R_i})$$

Verificación Formal

Lema 5

Tras la ejecución del paso *i*-ésimo del bucle principal, la región R_i de σ ha sido modificada para representar el valor de $\sigma(i)$:

$$\forall \sigma \in T_0 \ \forall i \ \forall k \ (1 \leq i \leq k \leq p \rightarrow \sigma^k_{|R_i|} \equiv \sigma(i))$$

Lema 6

El programa no modifica las zonas ($L\sigma$) ni ($R\sigma$):

$$\forall \sigma \in T_0 \ \forall k \ (1 \leq i \leq k \leq p \rightarrow (L\sigma) = (L\sigma^k) \land (R\sigma) = (R\sigma^k))$$

Verificación Formal

Partiendo de los lemas (1) y (5) podemos verificar la **Proposición 3**.

Proposición 3

Sea $B \subseteq A$ tal que $\sigma_B \in T_0$, para cada valor de k $(1 \le k \le p)$ se tiene que:

$$f(B \cap \{1,\ldots,k\}) = \sum_{j=p+r+1}^{p+r+f(A_k)} \sigma_B^k(j)$$

Corolario 3

Para cada $B \subseteq A$ tal que $\sigma_B \in T_0$ existe un $\tau \in T_p$ tal que:

$$f(B) = \sum_{i=p+r+1}^{p+r+f(A)} \tau(i)$$

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- 3 Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- 6 Solución molecular al SSP
- O Solución molecular al KP 0/1 Acotado
- $oxed{8}$ Solución molecular al KP 0/1 no acotado
- Onclusiones

Solución molecular al SSP

- $A = \{1, \ldots, p\}$
- $w: A \to \mathbb{N}$: función de pesos
- $k \in \mathbb{N}, (k \le w(A))$: suma objetivo
- T_0 : biblioteca (p + w(A), p)

Determinar si existe un conjunto $B \subseteq A$ tal que w(B) = k.

$$\begin{aligned} \mathsf{Subset_Sum}(p, w, k) \\ q_w &\leftarrow \sum_{i=1}^p w(i) \\ T_0 &\leftarrow (p+q_w, p)\text{-library} \\ T_1 &\leftarrow \mathsf{Parallel_Fill}(T_0, w, p, 0) \\ T_{out} &\leftarrow \mathsf{Cardinal_sort}(T_1, p+1, p+q_w)[k] \\ \mathsf{Read}(T_{out}) \end{aligned}$$

- 4 + 2q tubos usados.
- $2p + q + 1 + \frac{q(q+3)}{2}$ operaciones moleculares.

| ロ ト 4回 ト 4 重 ト 4 重 ト ・ 重 ・ 夕 Q ()・

Solución molecular al SSP

Verificación Formal

Correctitud: Si $T_{out} \neq \emptyset$ entonces existe un $B \subseteq A$ tal que w(B) = k.

Si tomamos cualquier molécula $\tau \in T_{out}$, por el **Lema 3** sabemos que τ viene de una molécula del tubo de entrada $\sigma \in T_0$. Además, por la **Proposición 3**, la molécula τ codifica correctamente el peso total de B_{σ} .

Completitud: sea $\sigma \in T_0$ tal que $w(B_\sigma) = k$, entonces $T_{out} \neq \emptyset$

Sea $\sigma \in T_0$ tal que $w(B_\sigma) = k$, tras la ejecución de Parallel_Fill, por el **Corolario** $\mathbf{3}$ ($\forall \sigma_B \in T_0 \exists \tau \in T_p(f(B) = \sum_{i=p+r+1}^{p+r+f(A)} \tau(i))$ sabemos que tenemos una molécula $\tau = \sigma^p \in T_1$ tal que $w(B_\sigma) = \sum_{i=p+1}^{p+q_w} \tau(i)$, por lo que $\tau \in T_{out}$.

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- 3 Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- Solución molecular al SSP
- ∇ Solución molecular al KP 0/1 Acotado
- $oxed{8}$ Solución molecular al KP 0/1 no acotado
- Conclusiones

Solución molecular al KP 0/1 Acotado

- $A = \{1, \ldots, p\}$
- $w: A \to \mathbb{N}$: función de pesos
- $\rho \to \mathbb{N}$: función de valores
- $k \in \mathbb{N}(k \le w(A))$: peso máximo
- $k' \in \mathbb{N} \ (k' \leq \rho(B))$: valor mínimo

Determinar si existe un conjunto $B \subseteq A$ tal que $w(B) \le k$ y $\rho(B) \ge k'$.

Solución molecular al KP 0/1 Acotado

```
Knapsack(p, w, \rho, k, k')
Input: (p, w, \rho, k, k')
     q_w \leftarrow \sum_{i=1}^p w(i); \ q_\rho \leftarrow \sum_{i=1}^p p(i); \ T_0 \leftarrow (p+q_w+q_\rho,p)-library
      T_0 \leftarrow \text{Parallel\_fill}(T_0, w, p, 0)
     Cardinal_sort(T_0, p+1, p+q_w)
      T_1 \leftarrow \emptyset
     for i = 1 to k do
           T_1 \leftarrow \mathsf{merge}(T_1, \mathsf{Cardinal\_sort}(T_0, p+1, p+q_w)[i])
     end for
      T_0 \leftarrow \text{Parallel\_Fill}(T_1, \rho, p, q_w)
     Cardinal_sort(T_0, p + q_w + 1, p + q_w + q_o)
      T_1 \leftarrow \emptyset
     for i = k' to q_o do
           T_1 \leftarrow \mathsf{merge}(T_1, \mathsf{Cardinal\_sort}(T_0, p + q_w + 1, p + q_w + q_\rho)[i])
     end for
     Read(T_1)
```

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- 3 Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- Solución molecular al SSP
- 7 Solución molecular al KP 0/1 Acotado
- 8 Solución molecular al KP 0/1 no acotado
- Onclusiones

Solución molecular al KP 0/1 no acotado

```
Unbounded_Knapsack(p, w, \rho, k)
Input: (p, w, \rho, k)
     q_w \leftarrow \sum_{i=1}^p w(i); q_\rho \leftarrow \sum_{i=1}^p p(i)
      T_0 \leftarrow (p + q_w + q_o, p)-library
      T_0 \leftarrow \text{Parallel\_fill}(T_0, w, p, 0)
     Cardinal_sort(T_0, p+1, p+q_w)
     T_1 \leftarrow \emptyset
     for i = 1 to k do
           T_1 \leftarrow \mathsf{merge}(T_1, \mathsf{Cardinal\_sort}(T_0, p+1, p+q_w)[i])
     end for
      T_0 \leftarrow \text{Parallel\_Fill}(T_1, \rho, p, q_w)
     i \leftarrow q_0: t \leftarrow 0
     Cardinal_sort(T_0, p + q_w + 1, p + q_w + q_o)
     while i > 1 \land t = 0 do
           T' \leftarrow \mathsf{Cardinal\_sort}(T_0, p + q_w + 1, p + q_w + q_o)[i]
          if T' \neq \emptyset then Read(T'); t \leftarrow 1
          else i \leftarrow i - 1
          end if
     end while
```

Solución molecular al KP 0/1 no acotado

- $5 + 2 \cdot max\{q_w, q_\rho\}$ tubos auxiliares
- $4p+k-k'+rac{q_w(q_w+5)+q_
 ho(q_
 ho+9)}{2}$ operaciones moleculares

- Modelo Sticker de Roweis
- 2 Problema de la suma de subconjuntos (SSP)
- 3 Problema de la mochila (KP)
- 4 Programa para ordenar por cardinalidad
- 5 Subrutina de codificación
- Solución molecular al SSP
- \bigcirc Solución molecular al KP 0/1 Acotado
- 8 Solución molecular al KP 0/1 no acotado
- Onclusiones

Conclusiones

- Las soluciones propuestas permiten resolver los problemas SSP y KP 0/1, problemas NP-Completos.
- Número de tubos lineal
- Número de operaciones moleculares cuadrático
- Se requiere un espacio de tamaño exponencial para las bibliotecas
- Solución para valores en N