CSCI E-89C Deep Reinforcement Learning

Harvard Summer School

Dmitry Kurochkin

Summer 2020 Lecture 3

Contents

- Markov Decision Processes (MDP): Notations
 - State, Action, and Reward sets
 - Transition Probabilities
 - Value Functions
- Methods for Finding Optimal Policy
- Oynamic Programming
 - Bellman Equations for State-value Functions
 - Bellman Equation for $v_{\pi}(s)$
 - Bellman Equation for $v_*(s)$
 - Numerical Solutions to Bellman Equations
 - Fixed point iteration
 - Policy Evaluation: Solving for $v_{\pi}(s)$
 - Policy Improvement
 - Policy Iteration: Solving for $v_*(s)$

Contents

- Markov Decision Processes (MDP): Notations
 - State, Action, and Reward sets
 - Transition Probabilities
 - Value Functions
- 2 Methods for Finding Optimal Policy
- Oynamic Programming
 - Bellman Equations for State-value Functions
 - Bellman Equation for $v_{\pi}(s)$
 - Bellman Equation for $v_*(s)$
 - Numerical Solutions to Bellman Equations
 - Fixed point iteration
 - Policy Evaluation: Solving for $v_{\pi}(s)$
 - Policy Improvement
 - Policy Iteration: Solving for $v_*(s)$

State, Action, and Reward Sets

State set:

 $\mathcal{S}=$ set of all possible states S_t of the environment, excluding the terminal state if the problem is episodic

 $S^+ = S \cup \{\text{terminal state}\}\$

Action set:

 $\mathcal{A}(s)=$ set of all admissible actions A_t the agent can take, given $S_t=s$

Reward set:

 \Re = set of all possible rewards R_t the agent can receive

Contents

- Markov Decision Processes (MDP): Notations
 - State, Action, and Reward sets
 - Transition Probabilities
 - Value Functions
- 2 Methods for Finding Optimal Policy
- Oynamic Programming
 - Bellman Equations for State-value Functions
 - Bellman Equation for $v_{\pi}(s)$
 - Bellman Equation for $v_*(s)$
 - Numerical Solutions to Bellman Equations
 - Fixed point iteration
 - Policy Evaluation: Solving for $v_{\pi}(s)$
 - Policy Improvement
 - Policy Iteration: Solving for $v_*(s)$

Transition Probabilities

Transition Probabilities:

$$p(s', r|s, a) \doteq P\{S_t = s', R_t = r|S_{t-1} = s, A_{t-1} = a\}$$

Contents

- Markov Decision Processes (MDP): Notations
 - State, Action, and Reward sets
 - Transition Probabilities
- Value Functions
- Methods for Finding Optimal Policy
- Oynamic Programming
 - Bellman Equations for State-value Functions
 - Bellman Equation for $v_{\pi}(s)$
 - Bellman Equation for $v_*(s)$
 - Numerical Solutions to Bellman Equations
 - Fixed point iteration
 - Policy Evaluation: Solving for $v_{\pi}(s)$
 - Policy Improvement
 - Policy Iteration: Solving for $v_*(s)$

Value Functions

Value Functions:

State-value: $v_{\pi}(s) \doteq E_{\pi} \left[G_t | S_t = s \right]$

Action-value: $q_{\pi}(s,a) \doteq E_{\pi}\left[G_t|S_t=s,A_t=a\right]$

Value Functions

Value Functions:

State-value: $v_{\pi}(s) \doteq E_{\pi} \left[G_t | S_t = s \right]$

Action-value: $q_{\pi}(s,a) \doteq E_{\pi} \left[G_t | S_t = s, A_t = a \right]$

Optimal Value Functions:

take \max_{π} - denote results by $v_*(\cdot)$, $q_*(\cdot)$

Methods for finding $\pi_*(a|s)$

Model-based approach:

If we know $p(s^\prime,r|s,a)$ then we can solve the Bellman equation: Dynamic Programming

Model-free approaches:

If we do not know p(s', r|s, a): Monte Carlo Method etc.

Contents

- Markov Decision Processes (MDP): Notations
 - State, Action, and Reward sets
 - Transition Probabilities
- Value Functions
- Methods for Finding Optimal Policy
- Oynamic Programming
 - Bellman Equations for State-value Functions
 - Bellman Equation for $v_{\pi}(s)$
 - Bellman Equation for $v_*(s)$
 - Numerical Solutions to Bellman Equations
 - Fixed point iteration
 - Policy Evaluation: Solving for $v_{\pi}(s)$
 - Policy Improvement
 - Policy Iteration: Solving for $v_*(s)$

Bellman Equation for $v_{\pi}(s)$

 v_{π} from q_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s, a)$$

 q_{π} from v_{π} :

$$q_{\pi}(s, a) = E\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a\right]$$

Bellman Equation for $v_{\pi}(s)$

 v_{π} from q_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a|s) q_{\pi}(s, a)$$

 q_{π} from v_{π} :

$$q_{\pi}(s, a) = E\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a\right]$$

Bellman equation:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{q_{\pi}(s,a)}$$

Bellman Equation for $v_*(s)$

 v_* from q_* :

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_*(s, a)$$

 q_* from v_* :

$$q_*(s, a) = E[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

Bellman Equation for $v_*(s)$

 v_* from q_* :

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_*(s, a)$$

 q_* from v_* :

$$q_*(s, a) = E[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

Bellman equation:

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s')\right]}_{q_*(s,a)}$$

Contents

- Markov Decision Processes (MDP): Notations
 - State, Action, and Reward sets
 - Transition Probabilities
 - Value Functions
- Methods for Finding Optimal Policy
- Oynamic Programming
 - Bellman Equations for State-value Functions
 - Bellman Equation for $v_{\pi}(s)$
 - Bellman Equation for $v_*(s)$
 - Numerical Solutions to Bellman Equations
 - Fixed point iteration
 - Policy Evaluation: Solving for $v_{\pi}(s)$
 - Policy Improvement
 - Policy Iteration: Solving for $v_*(s)$

Fixed point iteration

Bellman equation for v_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{q_{\pi}(s,a)}$$

Bellman equation for v_* :

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s')\right]}_{q_*(s,a)}$$

Fixed point iteration to solve x = f(x):

- \bullet initialize x_0
- ② for $k \geq 0$ compute $x_{k+1} \doteq f(x_k)$

Policy Evaluation: Solving for $v_{\pi}(s)$

Bellman equation for v_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{q_{\pi}(s,a)}$$

Bellman equation for v_* :

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s')\right]}_{q_*(s,a)}$$

Fixed point iteration to solve x = f(x):

- \bullet initialize x_0
- ② for $k \geq 0$ compute $x_{k+1} \doteq f(x_k)$

Policy Evaluation: Solving for $v_{\pi}(s)$

Let $v_k(s)$, $k=0,1,2,\ldots$ denote estimates of $v_\pi(s)$. The fixed-point iteration can be written as follows:

$$v_{k+1}(s) \doteq \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right]$$

Policy Evaluation: Solving for $v_{\pi}(s)$

Let $v_k(s)$, $k=0,1,2,\ldots$ denote estimates of $v_{\pi}(s)$. The fixed-point iteration can be written as follows:

$$v_{k+1}(s) \doteq \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_k(s')]$$

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

Input π , the policy to be evaluated

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

 $\Lambda \leftarrow 0$

Loop for each $s \in S$:

$$V \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$

The Environment has three states: 1, 2, and 3. Possible transitions are:

- (1) $1 \mapsto 1, 1 \mapsto 2;$
- (2) $2 \mapsto 1$, $2 \mapsto 2$, $2 \mapsto 3$;
- (3) $3 \mapsto 2, 3 \mapsto 3.$

Actions of the Agent are decoded by -1, 0, and +1, which correspond to its intention to move left, stay, and move right, respectively.

The Environment, however, does not always respond to these intentions exactly, and there is 10% chance that action 0 will result in moving to the left (if moving to the left is admissible), and action +1 will result in staying - in other words, there is an "east wind."

If the process enters state 3, the Environment generates reward = 1. In all other cases the reward is 0. Discounting $\gamma=0.9$.

Under $\pi(0|s)=1$ for all $s\in\mathcal{S}$, the expected cumulative discounted reward starting in states 3 would be:

$$v_{\pi}(3) = E_{\pi} [G_0|S_0 = 3]$$

$$= 0.9 \cdot (1 + \gamma \cdot 0.9 \cdot (1 + \gamma \cdot 0.9 \cdot (1 + \dots)))$$

$$= 0.9 \cdot 1 + \gamma \cdot 0.9^2 \cdot 1 + \gamma^2 \cdot 0.9^3 \cdot 1 + \dots$$

$$= \frac{0.9}{1 - \gamma \cdot 0.9} = 4.74.$$

Under $\pi_*(+1|1)=1$, $\pi_*(+1|2)=1$, $\pi_*(0|3)=1$, the expected cumulative discounted reward starting in states 3 would be:

$$v_*(3) = E_{\pi_*} [G_0|S_0 = 3]$$

= $0.9 \cdot \frac{1}{1 - 0.9} = 9.$

Here, $\frac{1}{1-0.9}$ is the expected cumulative reward if there is no wind.

Solving the Bellman equation explicitly for this policy $\pi_*(a|s)$: plug

 $\pi_*(-1|1) = 0, \pi_*(0|1) = 0, \pi_*(+1|1) = 1.$

$$\begin{split} \pi_*(-1|2) &= 0, \pi_*(0|2) = 0, \pi_*(+1|2) = 1, \\ \pi_*(-1|3) &= 0, \pi_*(0|3) = 1, \pi_*(+1|3) = 0. \\ p(s' = 1, r = 0|s = 1, a = 0) = 1, \\ p(s' = 1, r = 0|s = 1, a = +1) = 0.1, p(s' = 2, r = 0|s = 1, a = +1) = 0.9, \\ p(s' = 1, r = 0|s = 2, a = -1) = 1, \\ p(s' = 1, r = 0|s = 2, a = 0) = 0.1, p(s' = 2, r = 0|s = 2, a = 0) = 0.9, \\ p(s' = 2, r = 0|s = 2, a = +1) = 0.1, p(s' = 3, r = 1|s = 2, a = +1) = 0.9, \\ p(s' = 2, r = 0|s = 3, a = -1) = 1, \\ p(s' = 2, r = 0|s = 3, a = 0) = 0.1, p(s' = 3, r = 1|s = 3, a = 0) = 0.9. \end{split}$$

to the Bellman eq.: $v_{\pi_*}(s) = \sum_a \pi_*(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi_*}(s')\right]$ and get a linear system of 3 equations.

For s = 1 and $a \in \{-1, 0, +1\}$, we have:

$$\pi_*(-1|1) = 0, \pi_*(0|1) = 0, \pi_*(+1|1) = 1$$

$$p(s' = 1, r = 0|s = 1, a = 0) = 1,$$

 $p(s' = 1, r = 0|s = 1, a = +1) = 0.1, p(s' = 2, r = 0|s = 1, a = +1) = 0.9$

and the Bellman eq. $v_{\pi_*}(s)=\sum_a \pi_*(a|s)\sum_{s',r}p(s',r|s,a)\left[r+\gamma v_{\pi_*}(s')\right]$ becomes:

$$\begin{split} v_*(1) &= \underbrace{\pi_*(-1|1)}_0 \cdot \left(\sum_{s',r} \dots \right) + \underbrace{\pi_*(0|1)}_0 \cdot \left(\sum_{s',r} \dots \right) + \underbrace{\pi_*(+1|1)}_1 \cdot \left(\sum_{s',r} \dots \right) \\ &= p(s'=1,r=0|s=1,a=+1) \left[0 + \gamma v_*(1) \right] \\ &+ p(s'=2,r=0|s=1,a=+1) \left[0 + \gamma v_*(2) \right] \\ &= 0.1 \cdot \left[0 + \gamma v_*(1) \right] + 0.9 \cdot \left[0 + \gamma v_*(2) \right] \end{split}$$

4□ > 4□ > 4□ > 4□ > 4□ > 900

Similarly, for s=2 and s=3 we arrive at the following system of equations:

$$\begin{cases} v_*(1) = & 0.1 \cdot [0 + \gamma v_*(1)] + 0.9 \cdot [0 + \gamma v_*(2)] \\ v_*(2) = & 0.1 \cdot [0 + \gamma v_*(2)] + 0.9 \cdot [1 + \gamma v_*(3)] \\ v_*(3) = & 0.1 \cdot [0 + \gamma v_*(2)] + 0.9 \cdot [1 + \gamma v_*(3)] \end{cases}$$

Similarly, for s=2 and s=3 we arrive at the following system of equations:

$$\begin{cases} v_*(1) = & 0.1 \cdot [0 + \gamma v_*(1)] + 0.9 \cdot [0 + \gamma v_*(2)] \\ v_*(2) = & 0.1 \cdot [0 + \gamma v_*(2)] + 0.9 \cdot [1 + \gamma v_*(3)] \\ v_*(3) = & 0.1 \cdot [0 + \gamma v_*(2)] + 0.9 \cdot [1 + \gamma v_*(3)] \end{cases}$$

The iterative policy iteration in this example would be: pick some $v_0(1)$, $v_0(2)$, $v_0(3)$ and run for $k \geq 0$ until converges:

$$\begin{cases} v_{k+1}(1) = & 0.1 \cdot [0 + \gamma v_k(1)] + 0.9 \cdot [0 + \gamma v_k(2)] \\ v_{k+1}(2) = & 0.1 \cdot [0 + \gamma v_k(2)] + 0.9 \cdot [1 + \gamma v_k(3)] \\ v_{k+1}(3) = & 0.1 \cdot [0 + \gamma v_k(2)] + 0.9 \cdot [1 + \gamma v_k(3)] \end{cases}$$

Policy Improvement

Suppose we know $v_{\pi}(s)$ for a given policy π . Can this policy π be improved?

Policy Improvement

Suppose we know $v_{\pi}(s)$ for a given policy π .

Can this policy π be improved?

We can find the action-value function as follows

$$q_{\pi}(s, a) \doteq E \left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = a \right],$$

= $\sum_{s', r} p(s', r | s, a) \left[r + \gamma v_{\pi}(s') \right]$

and what if there an action, $\pi'(s)$, such that $q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$?

If we <u>always</u> follow π' , will this new policy π' be at least as good as π ?

Policy Improvement Theorem

Theorem

If
$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$$
 then $v_{\pi'}(s) \ge v_{\pi}(s)$.

Policy Improvement Theorem

Theorem

If
$$q_{\pi}(s, \pi'(s)) \ge v_{\pi}(s)$$
 then $v_{\pi'}(s) \ge v_{\pi}(s)$.

Proof:

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$= E[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s, A_t = \pi'(s)]$$

$$= E_{\pi'}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

$$\leq E_{\pi'}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) | S_t = s]$$

$$= E_{\pi'}[R_{t+1} + \gamma E_{\pi'}[R_{t+2} + \gamma v_{\pi}(S_{t+2}) | S_{t+1}, A_{t+1} = \pi'(S_{t+1})] | S_t = s]$$

$$= E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(S_{t+2}) | S_t = s]$$

$$\leq E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 v_{\pi}(S_{t+3}) | S_t = s]$$

$$\vdots$$

$$\leq E_{\pi'}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \gamma^3 R_{t+4} + \dots | S_t = s]$$

$$= v_{\pi'}(s)$$

Convergence to $v_*(s)$

Suppose π' does not further improve π , i.e. $v_{\pi'}(s) = v_{\pi}(s)$ for all $s \in \mathbb{S}$, then

$$v_{\pi'}(s) = \max_{a} q_{\pi}(s, a)$$

$$= \max_{a} q_{\pi'}(s, a)$$

$$= \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r|s, a) \left[r + \gamma v_{\pi'}(s') \right]$$

i.e. $v_{\pi'}(s)$ solves the Bellman optimality equation.

Then π' is the optimal policies!

Policy Iteration: Solving for $v_*(s)$

Bellman equation for v_{π} :

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s')\right]}_{q_{\pi}(s,a)}$$

Bellman equation for v_* :

$$v_*(s) = \max_{a \in \mathcal{A}(s)} \underbrace{\sum_{s',r} p(s',r|s,a) \left[r + \gamma v_*(s')\right]}_{q_*(s,a)}$$

Fixed point iteration to solve x = f(x):

- \bullet initialize x_0
- ② for $k \geq 0$ compute $x_{k+1} \doteq f(x_k)$

Policy Iteration: Solving for $v_*(s)$

Let $v_k(s)$, $k = 0, 1, 2, \ldots$ denote an estimate of $v_*(s)$. The fixed-point iteration can be written as follows:

$$v_{k+1}(s) \doteq \max_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right]$$

Policy Iteration: Solving for $v_*(s)$

Let $v_k(s)$, $k=0,1,2,\ldots$ denote an estimate of $v_*(s)$. The fixed-point iteration can be written as follows:

$$v_{k+1}(s) \doteq \max_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s') \right]$$

```
Value Iteration, for estimating \pi \approx \pi.
```

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

```
Loop for each s \in S:
```

$$v \leftarrow V(s) V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

Source: Reinforcement Learning: An Introduction by R. Sutton and A. Barto

until $\Delta < \theta$

Output a deterministic policy, $\pi \approx \pi_*$, such that $\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r \mid s,a) [r + \gamma V(s')]$

$$\pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$