問題3 次のネットワークに関する記述を読み、各設問に答えよ。

データ通信を実現するために、コンピュータが持つべき通信機能を 7 階層に分割し、国際標準化機構 (ISO) が制定したプロトコル体系が OSI 基本参照モデルである。これに対して、インターネットで利用される TCP/IP 階層モデルでは、4 階層に分割して体系化している (図 1)。

OSI基本参照モデル		TCP/IP 階層モデル		
アプリケーション層				
プレゼンテーション層		アプリケーション層		
セション層				
トランスポート層		トランスポート層		
ネットワーク層		インターネット層		
データリンク層		ネットワーク		
物理層		インタフェース層		

図 1 OSI 基本参照モデルと TCP/IP 階層モデル

両モデルとも、データ送信時は上位層から下位層の順序で処理が施され、各層ごとに \sim ッダが付けられる(図 2)。

図2 TCP/IP 階層モデルの送信データの構造

ヘッダには様々な情報が書き込まれるが、代表的なものとして次のような情報が含まれる(図 3)。

トランスポートヘッダ	送信元および宛先ポート番号
インターネットヘッダ	送信元および宛先 IP アドレス
ネットワークインタフェースヘッダ	送信元および宛先 MAC アドレス

図3 ヘッダに含まれる代表的な情報

IP アドレスでネットワーク上のコンピュータを一意に識別し、ポート番号でデータを渡すべきプログラムを識別する。 イーサネット上で通信する場合は MAC アドレスを使用する。

<設問1> 次のDHCPの仕組みに関する記述中の に入れるべき適切な字句を解答群から選べ。

DHCP サーバを設置している社内 LAN で, クライアント PC が IP アドレスを得るまでの手順を次に示す。なお, サーバとクライアント間の通信には, トランスポート層のプロトコルとして, コネクションレス型の (1) を利用する。

また、IPアドレスはクラスCで標準のサブネットマスクを使用する。

「DHCP サーバを利用するときの手順]

- ① クライアントは、ブロードキャスト(宛先 IP アドレスは (2) で DHCP を探す。このとき、宛先ポート番号を 67、送信元ポート番号を 68 に設定することで、 応答するのは DHCP サーバだけである。
- ② DHCP サーバは、提案 IP アドレスを添えてクライアントに送信する。
- ③ クライアントは、提案 IP アドレスを使用できるよう DHCP サーバに要求する。
- ④ DHCP サーバは、要求に対して正式 IP アドレスとして承認する。

(1) の解答群

ア. IP

イ. SMTP

ウ. TCP

エ. UDP

(2) の解答群

ア. 0.0.0.0

イ. 255.255.0.0

ウ. 255.255.255.0

工. 255.255.255.255

<設問2> 次の異なる LAN 間の通信に関する記述中の に入れるべき適切な 字句を解答群から選べ。

図4に示すような、ルータを経由する通信を考える。

また、IPアドレスはクラスCで標準のサブネットマスクを使用する。

ホストム	LAN1	11.—4	LAN2	ホストB
ホストA		ルーダ		ハヘトロ

装置名	IPアドレス	MACアドレス(16進数)	デフォルトゲートウェイ
ホストA	192. 168. 1. 1	0000 0000 0001	192. 168. 1. 254
ルータ(LAN1 側)	192. 168. 1. 254	0000 0000 0002	_
ルータ (LAN2 側)	192. 168. 2. 254	0000 0000 0003	_
ホストB	192. 168. 2. 1	0000 0000 0004	192. 168. 2. 254

図4 ルータを経由した通信と各装置の基本情報

ホストAとホストBは、デフォルトゲートウェイとして、ルータのアドレスを設定している。ここで、ホストAからホストBへの通信を考えるが、ホストAは自身の IP アドレスとサブネットマスクから、ホストBが異なる LAN に属していることを認識している。

[ホストAからホストBへの通信]

- ① ホストAは、デフォルトゲートウェイ(ルータ)の MAC アドレスを知るために、
- (3) パケットをブロードキャスト(宛先 IP アドレス: 192.168.1.254, 宛先 MAC アドレス: FFFF FFFF)で LAN1 に送信する。
- ② ルータは, 宛先 IP アドレスが自身宛なので, ホストAに自身の LAN1 側のインタフェースの MAC アドレス (0000 0000 0002) を返す。
- ③ ホストAは、ホストB宛のデータ(宛先 IP アドレス: 192.168.2.1, 宛先 MAC アドレス: (4) をルータに送信する。
- ④ ルータは、宛先 MAC アドレスは自身のものだが、宛先 IP アドレスが自身の IP アドレスとは異なるので、自身宛ではないと認識する。そして、ルーティングテーブルから、宛先 IP アドレスが自身の LAN2 側のインタフェースのアドレスと認識する。

(3) の解答群

ア. ARP イ. FTP ウ. HTTP エ. SNMP

(4) の解答群

ア. 0000 0000 0001 イ. 0000 0000 0002 ウ. 0000 0000 0003 エ. 0000 0000 0004

<設問3> 次のサブネット化に関する記述中の に入れるべき適切な字句を 解答群から選べ。

クラス方式のホストアドレス部の一部をネットワークアドレスとして利用し、複数 のサブネットワークを構築することをサブネット化という。このとき、サブネットマ スクは、標準のネットワークアドレス部にサブネットワーク部を含んでネットワーク アドレスとして指定する。

例えば、クラスCの IP アドレスに対して、サブネットマスク「255. 255. 255. 240」を指定した場合、一つのサブネットワーク内には (5) 個のホストアドレスを設定できる。ただし、各サブネットワーク内において、すべてのビットが「0」とすべてのビットが「1」のホストアドレスは設定できないものとする。

図5のネットワークの例は、クラスCのネットワークに対し、サブネットマスク 「255.255.255.240」を指定している。

また, ルータの LAN1 側インタフェースの IP アドレスは「192.168.4.174」, LAN2 側インタフェースの IP アドレスは「192.168.4.190」である。

ここで、ホストAに設定できる IP アドレスは (6) であり、ホストCに設定で きる IP アドレスは (7) である。

(5) の解答群

ア. 14

イ. 16

ウ. 31 エ. 32

(6), (7) の解答群

ア. 192.168.4.133

イ. 192.168.4.165

ウ. 192.168.4.181

エ. 192.168.4.213