<m

2a0 \$\$\lim_{x \to \infty} \frac{1}{x^2}\$\$

Limit a): The limit as (x) approaches infinity for (\frac{1} {{x^2}}) is:
\lim_{{x \to \infty}} \frac{1}{{x^2}} = 0

As (x) increases without bound, the value of ($\frac{1}{x^2}$) approaches 0 because the denominator grows much faster than the numerator.

2b) $\lim_{x \to -\inf y} \frac{1}{x^2}$

 $\lim_{x \to -\inf y} \frac{1}{x^2}$

The limit as (x) approaches negative infinity for ($\frac{1}{x^2}$) is: $\lim_{x \to 0} \frac{x^2}{x^2} = 0$

As (x) decreases without bound, the value of ($\frac{1}{x^2}$) approaches 0, similar to part a), because squaring a negative number results in a positive number, which grows larger.

2c): \$\lim_{x \to \infty} x^4\$

The limit as (x) approaches infinity for (x^4) is: $\lim_{x \to 0} {x^4} = \inf_{x \to 0} {x^4} = \inf_{x \to 0} {x^4} = \lim_{x \to$

As (x) increases without bound, the value of (x^4) grows at an increasing rate and approaches infinity.

If you have more expressions or need further assistance, feel free to ask

ļ

Similar to the previous expressions, the term ($2x^5$) grows at a faster rate than the others, causing the expression to approach infinity.

2d):
$$\lim_{x \to 0} {x \to \inf y} (2x^4 - 3x^3 + x + 6)$$

The limit as (x) approaches infinity for ($2x^4 - 3x^3 + x + 6$) is: $\lim_{x \to 0} (2x^4 - 3x^3 + x + 6) = \inf$

As (x) grows larger, the term ($2x^4$) dominates, leading the expression to increase without bound.

Limit ii): The limit as (x) approaches negative infinity for (2x^4 - 3x^3 + x + 6) is:
\lim_{x \to -\infty} (2x^4 - 3x^3 + x + 6) = \infty

Even though (x) is negative, the highest power term (x^4) will still lead the expression to increase without bound because the even power makes it positive.

 Limit iii): The limit as (x) approaches infinity for (2x^5 - 3x^2 + 6) is: \lim_{x \to \infty} (2x^5 - 3x^2 + 6) = \infty

Similar to the previous expressions, the term ($2x^5$) grows at a faster rate than the others, causing the expression to approach infinity.

Limit i): The limit as (x) approaches infinity for (2x^4 - 3x^3 + x + 6) is:

$$\lim_{x \to 0} (2x^4 - 3x^3 + x + 6) = \inf y$$

As (x) grows larger, the term ($2x^4$) dominates, leading the expression to increase without bound.

 Limit ii): The limit as (x) approaches negative infinity for (2x^4 - 3x^3 + x + 6) is: \lim_{x \to -\infty} (2x^4 - 3x^3 + x + 6) = \infty

Even though (x) is negative, the highest power term (x^4) will still lead the expression to increase without bound

because the even power makes it positive.

• Limit iii): The limit as (x) approaches infinity for (2x^5 - 3x^2 + 6) is:

$$\lim_{x \to 0} (2x^5 - 3x^2 + 6) = \inf_{x \to 0}$$

Similar to the previous expressions, the term ($2x^5$) grows at a faster rate than the others, causing the expression to approach infinity.

Limit i): The limit as (x) approaches infinity for (2x⁴ - 3x³ + x + 6) is:

$$\lim_{x \to 0} (2x^4 - 3x^3 + x + 6) = \inf y$$

As (x) grows larger, the term ($2x^4$) dominates, leading the expression to increase without bound.

• **Limit ii)**: The limit as (x) approaches negative infinity for (2x^4 - 3x^3 + x + 6) is:

$$\lim_{x \to 0} (2x^4 - 3x^3 + x + 6) = \inf_{x \to 0}$$

Even though (x) is negative, the highest power term (x^4) will still lead the expression to increase without bound because the even power makes it positive.

• Limit iii): The limit as (x) approaches infinity for (2x^5 - 3x^2 + 6) is:

$$\lim_{x \to 0} (2x^5 - 3x^2 + 6) = \inf_{x \to 0}$$

Similar to the previous expressions, the term ($2x^5$) grows at a faster rate than the others, causing the expression to approach infinity.