

基于蒙特卡洛 树搜索的"斗 地主"研究

研究育家和忌 义

妍九现仏

GEL all year observed also

研究内容

廿工壬岫+

的蒙特卡洛梅索

手牌拆分算法模块

蒙特卡洛树搜索算

基于手牌拆分的蒙卡洛树搜索窥法

实验比较结

스作问题公章

合作问题分析

算法缺点

基于蒙特卡洛树搜索的"斗地主"研究

二〇二二年六月

目录

1 研究背景和意义

4 基于手牌拆分的蒙特卡洛树搜索

6 结合卷积神经网络的蒙特卡洛树搜索

6 总结与展望

基于蒙特卡洛 树搜索的" 当 地主"研究

研究规状

国由亚安斯特

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块

丁胜协力并占领

基于手牌拆分的蒙

实验比较结

合作问题分析

合作问题分t 管注编占 机器博弈

机器博弈(也称计算机博弈),是人工智能领域的重要研究 方向,是机器智能、智能决策系统等人工智能领域的重要科 研基础,也是检验人工智能发展水平的一个重要手段。

机器博弈分类

按照博弈信息是否完备,可将机器博弈分为完备信息博弈 和非完备信息博弈

- □ 完备信息博弈
- ② 非完备信息博弈:
 - 德州扑克、四国军棋、斗地主等

机器博弈

机器博弈(也称计算机博弈),是人工智能领域的重要研究 方向, 是机器智能、智能决策系统等人工智能领域的重要科 研基础,也是检验人工智能发展水平的一个重要手段。

机器博弈分类

按照博弈信息是否完备,可将机器博弈分为完备信息博弈 和非完备信息博弈

- 完备信息博弈:
- 非完备信息博弈:

机器博弈

机器博弈(也称计算机博弈),是人工智能领域的重要研究 方向, 是机器智能、智能决策系统等人工智能领域的重要科 研基础,也是检验人工智能发展水平的一个重要手段。

机器博弈分类

按照博弈信息是否完备,可将机器博弈分为完备信息博弈 和非完备信息博弈

- 完备信息博弈:
 - 西洋跳棋、围棋等
- 非完备信息博弈:
 - 德州扑克、四国军棋、斗地主等

基于蒙特卡洛 树搜索的" ² 地主"研究

研究背景和意 义

研究现状

国外研究现:

国内研究現場

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛树搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法

-A-12101A-H

合作问题分

算法缺点

• 人类不可避免的进行不完备信息博弈, 比如:

● 随着全球一体化的发展,合作随处可见。"斗地主"博弈,不仅具有一般非完备信息博弈的特点,还存在农民之间的合作问题,这使得该类博弈的研究对于人工智能领域有着极其关键的影响。

基十家特卡洛 树搜索的"斗 地主"研究

研究背景和意

研究规划

国外研究现

国内研究现

研究内容

基于手牌拆允的蒙特卡洛林

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 ● 人类不可避免的进行不完备信息博弈, 比如:

● 随着全球一体化的发展,合作随处可见。"斗地主"博弈,不仅具有一般非完备信息博弈的特点,还存在农民之间的合作问题,这使得该类博弈的研究对于人工智能领域有着极其关键的影响。

● 人类不可避免的进行不完备信息博弈. 比如:

• 随着全球一体化的发展,合作随处可见。"斗地主"博 弈,不仅具有一般非完备信息博弈的特点,还存在农民 之间的合作问题,这使得该类博弈的研究对于人工智能 领域有着极其关键的影响。

目录

- 1 研究背景和意义
 - 研究现状
- 4 基于手牌拆分的蒙特卡洛树搜索
- 6 结合卷积神经网络的蒙特卡洛树搜索
- 6 总结与展望

国外研究现状

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

19176-256-17

基于手牌拆分 的蒙特卡洛枫

基于手牌拆分的蒙特 卡洛树搜索算法

大班 儿 秋 如 本

合作问题分析

算法缺点

完备信息博弈

- 1997 年超级电脑"深蓝"击败国际象棋特级大师卡斯帕罗夫
- 2016 年,google 的 AlphaGo 第一次击败人类项级职业选手
- 2017 年,google 的 AlphaZero 在无任何人类数据训练的 条件下,自学习后并以 100:0 的战绩击败 AlphaGo

- 2008 年, Zinkevich 等提出虚拟遗憾最小化算法, 并在
 2009 年的世界年度扑克机器博弈大赛的三人限注德州扑克中取得冠军

研究背景和意 以

妍九珧仏

四四切灯光现4

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

芋牌你分算法模块 蒙特卡洛树搜索算

基于手牌拆分的蒙 卡洛树搜索算法

大腿 电视频 7

合作问题分

算法缺;

国外研究现状

完备信息博弈

- 1997 年超级电脑"深蓝"击败国际象棋特级大师卡斯帕 罗夫
- 2016 年,google 的 AlphaGo 第一次击败人类项级职业选手
- 2017 年,google 的 AlphaZero 在无任何人类数据训练的条件下,自学习后并以 100:0 的战绩击败 AlphaGo

- 2008 年, Zinkevich 等提出虚拟遗憾最小化算法, 并在
 2009 年的世界年度扑克机器博弈大赛的三人限注德州扑克中取得冠军
- 2017 年卡内基梅隆大学的 Libratus, 在两人不限注的德州扑克中击败了人类顶级选手

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 以

妍九珧仏

_

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛树搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果

合作问题分

国外研究现状

完备信息博弈

- 1997 年超级电脑"深蓝"击败国际象棋特级大师卡斯帕 罗夫
- 2016 年,google 的 AlphaGo 第一次击败人类顶级职业选手
- 2017 年,google 的 AlphaZero 在无任何人类数据训练的条件下,自学习后并以 100:0 的战绩击败 AlphaGo

- 2008年,Zinkevich等提出虚拟遗憾最小化算法,并在2009年的世界年度扑克机器博弈大赛的三人限注德州扑克中取得冠军
- 2017 年卡内基梅隆大学的 Libratus, 在两人不限注的德州扑克中击败了人类顶级洗手

国外研究现状

完备信息博弈

- 1997 年超级电脑"深蓝"击败国际象棋特级大师卡斯帕 罗夫
- 2016 年,google 的 AlphaGo 第一次击败人类顶级职业选 手
- 2017 年,google 的 AlphaZero 在无任何人类数据训练的 条件下, 自学习后并以 100:0 的战绩击败 AlphaGo

不完备信息博弈

研究背景和意

研究现状

国外研究现:

国内研究现:

研究内容

基于手牌拆分 的蒙特卡洛树 地索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果

国外研究现状

完备信息博弈

- 1997 年超级电脑"深蓝"击败国际象棋特级大师卡斯帕 罗夫
- 2016 年,google 的 AlphaGo 第一次击败人类顶级职业选手
- 2017 年,google 的 AlphaZero 在无任何人类数据训练的 条件下,自学习后并以 100:0 的战绩击败 AlphaGo

- 2008 年, Zinkevich 等提出虚拟遗憾最小化算法, 并在
 2009 年的世界年度扑克机器博弈大赛的三人限注德州扑克中取得冠军
- 2017 年卡内基梅隆大学的 Libratus, 在两人不限注的德州扑克中击败了人类顶级选手

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 ツ

研究现状

国外研究现1

国内研究规

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 合作问题分析

国外研究现状

- 完备信息博弈
 - 1997 年超级电脑"深蓝"击败国际象棋特级大师卡斯帕 罗夫
 - 2016 年,google 的 AlphaGo 第一次击败人类顶级职业选手
 - 2017 年,google 的 AlphaZero 在无任何人类数据训练的 条件下,自学习后并以 100:0 的战绩击败 AlphaGo
- 不完备信息博弈
 - 2008 年,Zinkevich 等提出虚拟遗憾最小化算法, 并在 2009 年的世界年度扑克机器博弈大赛的三人限注德州扑克中取得冠军
 - 2017 年卡内基梅隆大学的 Libratus, 在两人不限注的德州扑克中击败了人类顶级选手

研究背景和意

研究现状

国外研究现象

国内研究现:

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 合作问题分析

国外研究现状

- 完备信息博弈
 - 1997 年超级电脑"深蓝"击败国际象棋特级大师卡斯帕 罗夫
 - 2016 年,google 的 AlphaGo 第一次击败人类顶级职业选手
 - 2017 年,google 的 AlphaZero 在无任何人类数据训练的条件下,自学习后并以 100:0 的战绩击败 AlphaGo
- 不完备信息博弈
 - 2008 年,Zinkevich 等提出虚拟遗憾最小化算法, 并在 2009 年的世界年度扑克机器博弈大赛的三人限注德州扑克中取得冠军
 - 2017 年卡内基梅隆大学的 Libratus,在两人不限注的德州扑克中击败了人类顶级选手

国内研究现状

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

妍九现

国外研究期:

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块 蒙特卡洛树搜索算法

差丁于牌外万的家 卡洛树搜索算法

实验比较结果

合作问题分析

算法缺点

完备信息博弈

- 2006 年,东北大学的象棋程序"棋天大圣"战胜了有中国象棋第一人之称的许银川
- 不完备信息博弈
 - 2013 年哈尔滨工业大学在 ACPC 大赛中的三人限注德州 扑克项目上获得了第四名的成绩
 - 2017年世界计算机桥牌锦标赛中,北京新睿桥科技有限公司的新睿桥牌程序取得了第二名的好成绩
 - 2019 年,上海交通大学的 You Y 等人针对"斗地主"博弈中每次出牌时,存在可能组合牌型较多的情况,提出

国内研究现状

完备信息博弈

• 2006 年, 东北大学的象棋程序"棋天大圣"战胜了有中 国象棋第一人之称的许银川

不完备信息博弈

国内研究现状

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

1911 / 6-2964/

国外研究规:

国内研究现1

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 完备信息博弈

● 2006 年,东北大学的象棋程序"棋天大圣"战胜了有中国象棋第一人之称的许银川

不完备信息博弈

● 2013 年哈尔滨工业大学在 ACPC 大赛中的三人限注德州 扑克项目上获得了第四名的成绩

● 2017 年世界计算机桥牌锦标赛中,北京新睿桥科技有限 公司的新睿桥牌程序取得了第二名的好成绩

● 2019 年,上海交通大学的 You Y 等人针对"斗地主"博弈中每次出牌时,存在可能组合牌型较多的情况,提出一种处理组合动作的新方注组合 O 学习(COL)

研究背景和意 >

研究规划

EE AL EEE sky state

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树 地索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果

国内研究现状

- 完备信息博弈
 - 2006 年,东北大学的象棋程序"棋天大圣"战胜了有中国象棋第一人之称的许银川
- 不完备信息博弈
 - 2013 年哈尔滨工业大学在 ACPC 大赛中的三人限注德州 扑克项目上获得了第四名的成绩
 - 2017 年世界计算机桥牌锦标赛中,北京新睿桥科技有限 公司的新睿桥牌程序取得了第二名的好成绩
 - 2019 年,上海交通大学的 You Y 等人针对"斗地主"博弈中每次出牌时,存在可能组合牌型较多的情况,提出一种处理组合动作的新方法组合 O 学习(COL)

研究现状

国外研究现出

国内研究现象

研究内容

基于手牌拆分 的蒙特卡洛枫

手牌拆分算法模块 蒙特卡洛村搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果

合作问题分析

国内研究现状

- 完备信息博弈
 - 2006 年,东北大学的象棋程序"棋天大圣"战胜了有中国象棋第一人之称的许银川
- 不完备信息博弈
 - 2013 年哈尔滨工业大学在 ACPC 大赛中的三人限注德州 扑克项目上获得了第四名的成绩
 - 2017 年世界计算机桥牌锦标赛中,北京新睿桥科技有限 公司的新睿桥牌程序取得了第二名的好成绩
 - 2019 年,上海交通大学的 You Y 等人针对"斗地主"博弈中每次出牌时,存在可能组合牌型较多的情况,提出一种处理组合动作的新方法组合 O 学习(COL)

研究背景和意 以

研究现状

国内研究现

研究内容

基于手牌拆分 的蒙特卡洛枫

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果

合作问题分析

算法缺点

国内研究现状

- 完备信息博弈
 - 2006年,东北大学的象棋程序"棋天大圣"战胜了有中国象棋第一人之称的许银川
- 不完备信息博弈
 - 2013 年哈尔滨工业大学在 ACPC 大赛中的三人限注德州 扑克项目上获得了第四名的成绩
 - 2017 年世界计算机桥牌锦标赛中,北京新睿桥科技有限 公司的新睿桥牌程序取得了第二名的好成绩
 - 2019 年,上海交通大学的 You Y 等人针对"斗地主"博弈中每次出牌时,存在可能组合牌型较多的情况,提出一种处理组合动作的新方法组合 Q 学习(CQL)

目录

- 1 研究背景和意义

 - 3 研究内容
- 4 基于手牌拆分的蒙特卡洛树搜索
- 6 结合卷积神经网络的蒙特卡洛树搜索
- 6 总结与展望

研究内容

本课题主要以国内比较流行的"斗地主"博弈作为研究对 象,蒙特卡洛树搜索为主要研究手段,针对游戏的特点设计 算法,并对算法讲行不断改讲。具体为:

研究内容

本课题主要以国内比较流行的"斗地主"博弈作为研究对 象,蒙特卡洛树搜索为主要研究手段,针对游戏的特点设计 算法,并对算法讲行不断改讲。具体为:

- 结合游戏特点,探索一种基于手牌拆分的蒙特卡洛树搜 以实现"斗地主"的出牌决策程序

研究内容

本课题主要以国内比较流行的"斗地主"博弈作为研究对 象,蒙特卡洛树搜索为主要研究手段,针对游戏的特点设计 算法,并对算法讲行不断改讲。具体为:

- 结合游戏特点,探索一种基于手牌拆分的蒙特卡洛树搜 索方法,以实现"斗地主"的出牌决策程序
- 针对基于手牌拆分的蒙特卡洛树搜索算法在实际决策中 的缺点, 提出结合卷积神经网络的蒙特卡洛树搜索算法

目录

基士家特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

研究现状

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块

基于手牌拆分的蒙

下沿柄 搜案 界法

A.作品服A.

合作问题分

算法缺点

- ① 研究背景和意义
- ② 研究现状
- ③ 研究内容
- 4 基于手牌拆分的蒙特卡洛树搜索
- 6 结合卷积神经网络的蒙特卡洛树搜索
- 6 总结与展望

各 斗

研究背景和意

研究现状

FELM EN elyman

国内研究现状

研究内容

基于手牌拆欠 的蒙特卡洛林

手牌拆分算法模块

家符下沿柯搜案界法

基于手牌拆分的家? 卡洛树搜索算法

实验比较结果

合作问题分析

算法缺点

基于手牌拆分的蒙特卡洛树搜索

基于手牌拆分的蒙特卡洛树搜索模型

手牌拆分算法

蒙特卡洛树搜索算法

• 手牌拆分算法

• 思想

。 通过对人类玩家历史数据的分析, 得出牌包含于对应长度

基于手牌拆分的蒙特卡洛树搜索

基于手牌拆分的蒙特卡洛树搜索模型

手牌拆分算法

蒙特卡洛树搜索算法

- 手牌拆分算法
 - 思想

长度	L _{max}	L _{min}	$L_{min}+1$	$L_{min}+2$	L_{min} +3
	21130	18289	20204	20907	20989
比例	100%	85.55%	95.62%	98.94%	=9,9.33% o

基于手牌拆分的蒙特卡洛树搜索

• 手牌拆分算法

长度

次数

比例

思想

• 通过对人类玩家历史数据的分析, 得出牌包含于对应长度 的拆分结果中的比例:

 L_{max}

21130

100%

 L_{min}

18289

85.55%

 $L_{min}+2$ $L_{min}+1$ 20204

95.62%

20907

20989 **■99.33**% 98.94%

 $L_{min} + 3$

基干手牌拆分的蒙特卡洛树搜索模型

蒙特卡洛树搜索算法

手牌拆分算法

44 (101 2/2 113

国从研究期1

国内研究现象

研究内线

基于手牌拆分 的蒙特卡洛枫 搜索

手牌拆分算法模块

基于手牌拆分的蒙 卡洛树搜索算法

实验比较结

合作问题分析

算法缺点

基于"斗地主"规则的拆分 Split 算法

function Split(F,X)

if $X = \emptyset$

then return F;

else

 $Return \ (Split(F+Y_1, X-Y_1) \bigcup Split(F+Y_2, X-Y_2) \bigcup \cdots \bigcup Split(F+Y_n, X-Y_n))$

,其中 F+
$$Y_i$$
={ z ∪ { Y_i } | z ∈ F};

手牌拆分算法模块

基于蒙特卡洛树搜索的"斗地主"研究

研究背景和意 ッ

研究现

国小亚农亚4

研究内容

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块

基于手牌拆分的蒙特 卡洛树搜索算法

实验比较结果

合作问题分析

算法缺点

```
基于"斗地主"规则的手牌较小拆分算法 (LessSplit)
```

Input: handpoker X

Output: handpoker smaller split set MS

function LessSplit(X)

$$F = \{\emptyset\}$$
, $MS = \emptyset$;

$$S=Split(F,X);$$

$$L_{min} = \operatorname{Min}(\{\operatorname{len}(z) \mid z \in S\});$$

for each s in S:

if
$$len(s) \le (L_{min} + 3)$$

then
$$MS = MS \cup s$$
;

return MS:

地主"研究

研究背景和意 义

研光现状

国外研究现状

国内研究现状

研究内

基于手牌拆分 的蒙特卡洛树 地索

手牌拆分算法模块

基于手牌拆分的蒙特 卡洛树搜索算法

合作问题分析

算法缺点

● 玩家的手牌为: 34556789LB。对玩家手牌进行拆分,所有拆分结果为:

```
• s_1 = \{3, 4, 5, 5, 6, 7, 8, 9, L, B\}
```

$$\bullet$$
 $s_2 = \{3, 4, 5, 5, 6, 7, 8, 9, LB\}$

•
$$s_3 = \{3, 4, 55, 6, 7, 8, 9, L, B\}$$

•
$$s_4 = \{3, 4, 55, 6, 7, 8, 9, LB\}$$

•
$$s_5 = \{3, 4, 5, LB, 56789\}$$

•
$$s_6 = \{3, 4, 5, L, B, 56789\}$$

•
$$s_7 = \{3, 5, 9, LB, 45678\}$$

•
$$s_8 = \{3, 5, 9, L, B, 45678\}$$

•
$$s_9 = \{3, 5, LB, 456789\}$$

•
$$s_{10} = \{3, 5, L, B, 456789\}$$

•
$$s_{11} = \{5, 8, 9, LB, 34567\}$$

•
$$s_{12} = \{5, 8, 9, L, B, 34567\}$$

树搜索的"斗 地主"研究

研究背景和意 以

研究现状

国外研究和3

国内研究现状

研究内容

基于手牌拆

的蒙特卡洛枫 搜索

手牌拆分算法模块

基于手牌拆分的蒙特

实验比较结果

合作问题分析

算法缺点

结合卷积油经

● 玩家的手牌为: 34556789LB。对玩家手牌进行拆分,所有拆分结果为:

• $s_1 = \{3, 4, 5, 5, 6, 7, 8, 9, L, B\}$

• $s_2 = \{3, 4, 5, 5, 6, 7, 8, 9, LB\}$

• $s_3 = \{3, 4, 55, 6, 7, 8, 9, L, B\}$

• $s_4 = \{3, 4, 55, 6, 7, 8, 9, LB\}$

• $s_5 = \{3, 4, 5, LB, 56789\}$

• $s_6 = \{3, 4, 5, L, B, 56789\}$

• $s_7 = \{3, 5, 9, LB, 45678\}$

. (2 E O I D 45670)

• $s_8 = \{3, 5, 9, L, B, 45678\}$

• $s_9 = \{3, 5, LB, 456789\}$

• $s_{10} = \{3, 5, L, B, 456789\}$

• $s_{11} = \{5, 8, 9, LB, 34567\}$

• $s_{12} = \{5, 8, 9, L, B, 34567\}$

• $s_{13} = \{5, 9, LB, 345678\}$

40 > 40 > 42 > 42 > 2 4

树搜索的"斗 地主"研究

研究背景和意 以

研究现状

国外研究和3

国内研究现状

研究内容

基于手牌拆

的蒙特卡洛枫 搜索

手牌拆分算法模块

基于手牌拆分的蒙特

实验比较结果

合作问题分析

算法缺点

结合卷积油经

● 玩家的手牌为: 34556789LB。对玩家手牌进行拆分,所有拆分结果为:

• $s_1 = \{3, 4, 5, 5, 6, 7, 8, 9, L, B\}$

• $s_2 = \{3, 4, 5, 5, 6, 7, 8, 9, LB\}$

• $s_3 = \{3, 4, 55, 6, 7, 8, 9, L, B\}$

• $s_4 = \{3, 4, 55, 6, 7, 8, 9, LB\}$

• $s_5 = \{3, 4, 5, LB, 56789\}$

• $s_6 = \{3, 4, 5, L, B, 56789\}$

• $s_7 = \{3, 5, 9, LB, 45678\}$

. (2 E O I D 45670)

• $s_8 = \{3, 5, 9, L, B, 45678\}$

• $s_9 = \{3, 5, LB, 456789\}$

• $s_{10} = \{3, 5, L, B, 456789\}$

• $s_{11} = \{5, 8, 9, LB, 34567\}$

• $s_{12} = \{5, 8, 9, L, B, 34567\}$

• $s_{13} = \{5, 9, LB, 345678\}$

40 > 40 > 42 > 42 > 2 4

● 玩家的手牌为: 34556789LB。对玩家手牌进行拆分,所有拆分结果为:

```
• s_1 = \{3, 4, 5, 5, 6, 7, 8, 9, L, B\}
```

•
$$s_2 = \{3, 4, 5, 5, 6, 7, 8, 9, LB\}$$

•
$$s_3 = \{3, 4, 55, 6, 7, 8, 9, L, B\}$$

•
$$s_4 = \{3, 4, 55, 6, 7, 8, 9, LB\}$$

•
$$s_5 = \{3, 4, 5, LB, 56789\}$$

•
$$s_6 = \{3, 4, 5, L, B, 56789\}$$

•
$$s_7 = \{3, 5, 9, LB, 45678\}$$

•
$$s_8 = \{3, 5, 9, L, B, 45678\}$$

•
$$s_9 = \{3, 5, LB, 456789\}$$

•
$$s_{10} = \{3, 5, L, B, 456789\}$$

•
$$s_{11} = \{5, 8, 9, LB, 34567\}$$

•
$$s_{12} = \{5, 8, 9, L, B, 34567\}$$

•
$$s_{13} = \{5, 9, LB, 345678\}$$

手牌拆分算法实例

● 玩家的手牌为: 34556789LB。对玩家手牌进行拆分, 所 有拆分结果为:

• $s_1 = \{3, 4, 5, 5, 6, 7, 8, 9, L, B\}$

• $s_2 = \{3, 4, 5, 5, 6, 7, 8, 9, LB\}$

• $s_3 = \{3, 4, 55, 6, 7, 8, 9, L, B\}$

• $s_4 = \{3, 4, 55, 6, 7, 8, 9, LB\}$

• $s_5 = \{3, 4, 5, LB, 56789\}$

• $s_6 = \{3, 4, 5, L, B, 56789\}$

• $s_7 = \{3, 5, 9, LB, 45678\}$

• $s_8 = \{3, 5, 9, L, B, 45678\}$

• $s_9 = \{3, 5, LB, 456789\}$

• $s_{10} = \{3, 5, L, B, 456789\}$

• $s_{11} = \{5, 8, 9, LB, 34567\}$

• $s_{12} = \{5, 8, 9, L, B, 34567\}$

• $s_{13} = \{5, 9, LB, 345678\}$

蒙特卡洛抽样法

为了求解问题,首先建立一个概率模型或随机过程,使它 的参数或数字特征等于问题的解. 然后通过对模型、过程的 观察或者抽样试验来计算这些参数、数字特征, 最后给出所 求解的近似值。

如:Buffon's needle problem

地主"研究

研究背景和意 义

研究现状

国中毗参加朴

研究内容

T = 1.00

的蒙特卡洛树 搜索

手牌拆分算法模块

基于手牌拆分的蒙 卡洛树搜索算法

实验比较结果

合作问题分析

算法缺点

博弈树搜索算法: 将初始状态和所有可能的后续状态通过直流 后关系连接在一起形成博弈树

基士家特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

研究现状

国外研究现状

国内研究现状

研究内容

基于手牌拆分的蒙特卡洛树

手牌拆分算法模块

蒙特卡洛柯搜索第

卡洛树搜索算法

实验比较结果

合作问题分析

算法缺点

 $v(s) = \frac{G_1(s) + \cdots + G_n(s)}{s}$

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

研究现状

国外研究现状

_

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块

基于手牌拆分的蒙

实验比较结

合作问题分析

算法缺点

思想

$$v(s) = \frac{G_1(s) + \cdots + G_n(s)}{n}$$

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

研究现状

国内研究和出

研究内容

训儿内台

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块

基于手牌拆分的蒙特

实验比较结果

合作问题分析

算法缺点

算法缺点

思想

利用经验平均来代替随机变 量的期望。如在博弈状态 s 时 期望值为 $v_{\pi}(s)$, 一般难以通过 计算直接求出该值, 但是可以 通过蒙特卡洛方法获得一系列 收益 $G_1(s), \cdots, G_n(s)$. 根据大 数定律, 当n趋于无穷大时, 抽样收益的均值趋近于期望 值。定义 v(s) 为系列收益的平 均值,即

$$v(s) = \frac{G_1(s) + \cdots + G_n(s)}{n}$$

基士家特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

研究现状

国外研究现状

国内研究现

研究内

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块

勃帖丰次超越安全

基于手牌拆分的蒙 卡洛树搜索算法

实验比较结

合作问题分析

算法缺点

蒙特卡洛树搜索算法过程

基于手牌拆分的蒙特卡洛树搜索算法 (MCTSHS)

基于手牌拆分的蒙特卡洛树搜索算法过程

与规则算法 (RB) 比较

基于蒙特卡洛树搜索的"当地主"研究

研究背景和意 义

研究规状

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛树搜索算

实验比较结果

合作问题分析

规则算法 (RB)

该算法分为主动策略和被动策略两种。主动策略中若上轮 玩家取得主动权,那本轮该玩家可根据自己手牌主动选择出 牌类型,而不需要考虑其他玩家的出牌类型;被动策略中玩 家需要考虑本轮其他玩家的出牌,被动选择跟牌类型。

不区分角色比较结果:

基于蒙特卡洛 树搜索的" ² 地主"研究

研究背景和意 义

研究现料

国外研究现状

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块

蒙特卡洛柯搜索算

卡洛树搜索算法

实验比较结果

合作问题分析

_

与规则算法 (RB) 比较

规则算法 (RB)

该算法分为主动策略和被动策略两种。主动策略中若上轮 玩家取得主动权,那本轮该玩家可根据自己手牌主动选择出 牌类型,而不需要考虑其他玩家的出牌类型;被动策略中玩 家需要考虑本轮其他玩家的出牌,被动选择跟牌类型。

不区分角色比较结果:

990

与规则算法 (RB) 比较

地主 MCTSHS 对农民 RB:

与规则算法 (RB) 比较

农民 MCTSHS 对地主 RB:

与 7k7k 算法比较

7k7k 算法

该算法为北京迦游网络科技有限公司开发的"斗地主"智 能算法。

不区分角色比较结果:

990

合作问题分析

合作问题分析:

算法事例	合作问题算法事例
当前玩家手牌	334567QQKKA2B
当前玩家位置	1(其中0表示地主,1表示农民一,2表示农民二)
当前玩家角色	农民一
地主已出牌	339922789JQK666JJL
当前玩家已出牌	55TTB
农民二已出牌	77AA89TJQKA44488
本轮中地主出牌	L
	0 33, 1 55, 2 77; 0 99, 1 TT, 2 AA; 0 22, 1 pass, 2 pass; 0 7
博弈过程	89TJQK, 1 pass, 2 89TJQKA;0 pass, 1 pass, 2 4448;0 66
	6JJ, 1 pass, 2 pass; 0 L, 1 B, 2 pass; 0 pass, 1 3, 2 2.

算法缺点

树搜索的"斗 地主"研究

义

9月711351八

国外研究現る

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树

手伸扳分管注模包

蒙特卡洛树搜索算

基于手牌拆分的第 卡洛树搜索算法

实验比较结

스作问题公

質法禁止

算法缺点

算法缺点:

• 每次决策思考时间过长

• 已搜索到的决策未能充分利用

算法缺点

算法缺点:

• 每次决策思考时间过长

• 已搜索到的决策未能充分利用

算法缺点

算法缺点:

- 每次决策思考时间过长
- 己搜索到的决策未能充分利用

改进算法!!

目录

村搜索的" ³地主"研究

研究背景和意 义

研究现状

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块

基于手牌拆分的蒙

ole mild Live drived: HI

合作问题分析

合作问题分

1 研究背景和意义

② 研究现状

③ 研究内容

● 基于手牌拆分的蒙特卡洛树搜索

5 结合卷积神经网络的蒙特卡洛树搜索

6 总结与展望

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 ッ

研究现状

国内研究现制

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法

合作问题分析 管注缺占

/± A 36 fg 2± /7

手牌拆分的蒙特卡洛树搜索模块

MCM 模型

CNN 策略学习模块

改善策略模块

基于蒙特卡洛树搜索的"斗

研究背景和意

研究现状

国内研究现出

研究内容

基于手牌拆欠 的蒙特卡洛枫

手牌拆分算法模块

基于手牌拆分的蒙特 卡洛树搜索算法

火短に収弱米

合作问题分析

是人类和她每

结合卷积神经网络的蒙特卡洛树搜索模型

手牌拆分的蒙特卡洛树搜索模块

MCM 模型 ⟨

CNN 策略学习模块

改善策略模块

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意

研究现状

国内研究现出

研究内容

T Z lib

的蒙特卡洛林搜索

手牌拆分算法模块

基于手牌拆分的蒙

实验比较结果

合作问题分析

结合卷积神经网络的蒙特卡洛树搜索模型

手牌拆分的蒙特卡洛树搜索模块

MCM 模型 { CNN 策略学习模块

改善策略模块

基于蒙特卡洛树搜索的"斗

研究背景和意

研究现状

国内研究和出

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块

基于手牌拆分的蒙特

下沿柄搜案界法

合作问题分析

合作问题分析

是人类和加尔

结合卷积神经网络的蒙特卡洛树搜索模型

手牌拆分的蒙特卡洛树搜索模块

MCM 模型。

CNN 策略学习模块

改善策略模块

结合卷积神经网络的蒙特卡洛树搜索模型

MCM 模型

手牌拆分的蒙特卡洛树搜索模块

CNN 策略学习模块

改善策略模块

基于蒙特卡洛 树搜索的"斗 地主"研究

研九月京和 № 义

研究现状

国由政党期件

研究内容

基于手牌拆分的蒙特卡洛树

手牌拆分算法模块

基于手牌拆分的蒙 卡洛树搜索算法

实验比较结

合作问题分析

算法缺点

• X 维度:表示 15 种扑克

• Y 维度:

0-3(下标)表示扑克的张数

• 4-13(下标) 表示扑克是否参与组成出牌类型

● 14(下标) 表示该出牌是否为地主玩家。

Z 维度:

■ X 维度:表示 15 种扑克

Y 维度:

• 0-3(下标) 表示扑克的张数

• 4-13(下标) 表示扑克是否参与组成出牌类型

• 14(下标) 表示该出牌是否为地主玩家。

• Z 维度:

基士蒙特卡洛树搜索的" ³ 地主"研究

研九月京和 E 义

研究现状

File de cor elv made

P4119170000

基丁手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块

基于手牌拆分的蒙 卡洛树搜索算法

实验比较结果

合作问题分析

算法缺点

Y 维度:

• 0-3(下标) 表示扑克的张数

■ X 维度:表示 15 种扑克

0 0 (1 44.) 32.31.31 32.83

• 4-13(下标) 表示扑克是否参与组成出牌类型

• 14(下标)表示该出牌是否为地主玩家。

Z 维度:

基士家特卡》 树搜索的" ³ 地主"研究

研九月京和 E 义

研究现状

El de en sy mali

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块

基于手牌拆分的蒙 卡洛树搜索算法

实验比较结果

合作问题分

算法缺点

• X 维度:表示 15 种扑克

Y 维度:

• 0-3(下标) 表示扑克的张数

• 4-13(下标) 表示扑克是否参与组成出牌类型

• 14(下标)表示该出牌是否为地主玩家。

Z 维度:

基士家特卡/ 树搜索的" ³ 地主"研究

研究育景和E 义

研 光 塊 キ

国由蓝安斯4

गा क्षेत्र क्षेत्र क्षेत्र

並丁于牌が万 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛树搜索第

基于手牌拆分的 卡洛树搜索算法

实验比较结果

合作问题分

算法缺点

- X 维度:表示 15 种扑克
- Y 维度:
 - 0-3(下标) 表示扑克的张数
 - 4-13(下标) 表示扑克是否参与组成出牌类型
 - 14(下标)表示该出牌是否为地主玩家。
- Z 维度:

X 维度:表示 15 种扑克

Y 维度:

0-3(下标)表示扑克的张数

• 4-13(下标) 表示扑克是否参与组成出牌类型

• 14(下标) 表示该出牌是否为地主玩家。

Z 维度:

维度	意义
0-2	分别表示当前玩家、下家、上家8轮之前所有出牌的张数,不区
	分每次出牌类型。
3-5	分别表示当前玩家、下家、上家前第8轮的出牌
6-8	分别表示当前玩家、下家、上家前第7轮的出牌
9-11	分别表示当前玩家、下家、上家前第6轮的出牌
12-14	分别表示当前玩家、下家、上家前第5轮的出牌
15-17	分别表示当前玩家、下家、上家前第4轮的出牌
18-20	分别表示当前玩家、下家、上家前第3轮的出牌
21-23	分别表示当前玩家、下家、上家前第2轮的出牌
24-26	分别表示当前玩家、下家、上家前第1轮的出牌
27	表示本轮玩家出牌
28	表示当前玩家的手牌,只记录牌张数,不区分牌型

树搜索的"斗 地主"研究

义

191 76-196-19

国外研究现制

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块

蒙特卡洛树搜索算法

基于手牌拆分的蒙 卡洛树搜索算法

实验比较结果

合作问题分析

.....

算法缺点

• 学习样本处理

- 将 MCTSHS 决策结果的数据进行去重
- 随机打乱去重后的样本顺序,并从打乱的样本中,随机

选择 90% 的样本组成训练集, 10% 作为测试集

• 学习样本处理

- 将 MCTSHS 决策结果的数据进行去重
- 随机打乱去重后的样本顺序, 并从打乱的样本中, 随机

基于蒙特卡洛 树搜索的" ³ 地主"研究

研究背景和意 义

研究现状

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛枫

手牌拆分算法模块 塑料卡洛姆物委等

基于手牌拆分的蒙 卡洛树搜索算法

实验比较结员

合作问题分

算法缺;

- 学习样本处理
 - 将 MCTSHS 决策结果的数据进行去重
 - 随机打乱去重后的样本顺序,并从打乱的样本中,随机 选择 90% 的样本组成训练集,10% 作为测试集

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意义

妍九珧扒

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果 • 学习样本处理

• 将 MCTSHS 决策结果的数据进行去重

随机打乱去重后的样本顺序,并从打乱的样本中,随机 选择 90% 的样本组成训练集,10% 作为测试集

MCTSHS 学习的部分历史数据记录:

CNN 网络学习策略损失变化图:

实验结果——实验比较设定

实验比较设定

- 地主、农民使用不同的决策算法,其中农民一、农民二 均使用农民的决策算法
- 地主、农民一、农民二使用不同的决策算法
- 地主、农民一、农民二使用不同的决策算法进行相同牌

实验结果——实验比较设定

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和:

1917649C47C

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 合作问题分析 实验比较设定

- 地主、农民使用不同的决策算法,其中农民一、农民二均使用农民的决策算法
- 地主、农民一、农民二使用不同的决策算法
- 地主、农民一、农民二使用不同的决策算法进行相同牌 局比较

实验结果——实验比较设定

基士家特卡洛 树搜索的"之 地主"研究

研究背景和:

61 / 6-20-V

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 合作问题分析 实验比较设定

- 地主、农民使用不同的决策算法,其中农民一、农民二均使用农民的决策算法
- 地主、农民一、农民二使用不同的决策算法
- 地主、农民一、农民二使用不同的决策算法进行相同牌 局比较

实验结果 ——与随机算法 (Random) 比较

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

研究现状

国外研究现状

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛林

随机算法 (Random) 介绍

思路为:根据玩家的手牌、本轮其它玩家出牌等信息按照 博弈规则计算出当前状态下玩家可能的所有出牌,并从中随 机选择一种可能出牌作为本轮的最终出牌。

地主 MCM 对农民 Random 的胜率变化图:

900

实验结果 ——与随机算法 (Random) 比较

基丁家符下沿 树搜索的"斗 地主"研究

研究背景和意 以

研究现状

国内研究现状

基于手牌拆分的蒙特卡洛树

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法

A作品期公共

合作问题分

算法缺.

农民 MCM 对地主 Random 的胜率变化图:

实验结果 ——与 RHCP 算法比较

RHCP 算法介绍

该算法引入手牌剩余价值的概念,其总体思路是将手牌按 照"斗地主"规则进行不同的组合,并选择使得出牌后手牌 价值较高的出牌作为本轮最佳出牌。

地主 MCM 对农民 RHCP 的胜率变化图:

900

实验结果——与 RHCP 算法比较

基十家特卡浴 树搜索的"斗 地主"研究

研究背景和意 以

研究现状

国外研究现状

研究内容

研光内谷

基于手牌拆分的蒙特卡洛树

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 会作届聯分析

合作问题分析

农民 MCM 对地主 RHCP 的胜率变化图:

实验结果——与 CQL 算法比较

研究背景和意 >

研究现状

国外研究现状

国内研究现状

研究内容

基于手牌拆允的蒙特卡洛林

的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果

合作问题分析

CQL 算法介绍

该算法由上海交通大学 You Y 等人提出。You Y 等人针对"斗地主"博弈中,每次出牌时存在较多可能组合牌型的情况,提出一种处理组合动作的新方法组合 Q 学习 (CQL)。

地主 MCM 对农民 CQL 的胜率变化图:

900

实验结果 ——与 CQL 算法比较

基于蒙特卡洛 树搜索的" ³ 地主"研究

研究背景和意 以

研究现状

国外研究现状

研究内容

基于手牌拆分 的蒙特卡洛树

搜索 手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法

合作问题分析

erotati Ja

农民 MCM 对地主 CQL 的胜率变化图:

实验结果 ——CQL、RHCP、MCM 相互比

基于蒙特卡洛 树搜索的"斗 地主"研究

研究现状 国外研究现状

研究内容

基于手牌拆允的蒙特卡洛枫

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 合作间膜分析

CQL、RHCP 以及 MCM 算法相互比较:

地主		农民一		农民二	
决策算法	胜率	决策算法	胜率	决策算法	胜率
CQL	44.4%	RHCP	21.6%	MCM	34%
CQL	44.8%	МСМ	21.6%	RHCP	33.6%
RHCP	52.6%	CQL	6.4%	MCM	41%
RHCP	46.4%	МСМ	28%	CQL	25.6%
MCM	63%	CQL	6%	RHCP	31%
MCM	59.2%	RHCP	26.6%	CQL	14.2%
MCM	56%	МСМ	22.4%	МСМ	21.6%

实验结果 ——CQL、RHCP、MCM 相互比

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意

研究现状 国外研究现状

研究内容

基于手牌拆分 的蒙特卡洛枫

手牌拆分算法模块 蒙特卡洛树搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果 合作问题分析

CQL、RHCP 以及 MCM 算法相互比较:

地主		农民一		农民二	
决策算法	胜率	决策算法	胜率	决策算法	胜率
CQL	44.4%	RHCP	21.6%	MCM	34%
CQL	44.8%	МСМ	21.6%	RHCP	33.6%
RHCP	52.6%	CQL	6.4%	MCM	41%
RHCP	46.4%	МСМ	28%	CQL	25.6%
MCM	63%	CQL	6%	RHCP	31%
MCM	59.2%	RHCP	26.6%	CQL	14.2%
MCM	56%	МСМ	22.4%	MCM	21.6%

实验结果 ——CQL、RHCP、MCM 相互比

基于蒙特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

研究现状 国外研究现状

国内研究现状

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块 蒙特卡洛树搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果 合作问题分析

CQL RHCP 以及 MCM 算法相互比较:

地主		农民一		农民二	
决策算法	胜率	决策算法	胜率	决策算法	胜率
CQL	42%	RHCP	19%	МСМ	40%
CQL	47%	МСМ	19%	RHCP	34%
RHCP	57%	CQL	10%	МСМ	32%
RHCP	52%	МСМ	31%	CQL	17%
MCM	66%	CQL	8%	RHCP	36%
МСМ	67%	RHCP	20%	CQL	13%

• 上述实验结果详见:

https://github.com/StarrySky3/experimental-result/tree/master/experimental-result

目录

- 1 研究背景和意义
- 4 基于手牌拆分的蒙特卡洛树搜索
- 6 结合卷积神经网络的蒙特卡洛树搜索
- 6 总结与展望

基于蒙特卡洛 树搜索的" ³ 地主"研究

研究背景和:

研究現状

国外研究现状

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果

总结:

- 论文提出 MCTSHS 算法对"斗地主"进行研究。实验 表明该算法针对"斗地主"博弈能做出不错的决策。
- 针对基于 MCTSHS 算法的思考时间过长且已搜索策略 未能充分利用的缺点,论文提出 MCM 算法。实验表明 MCM 算法相较于其它智能决策算法具有一定优势。

基士家特卡洛 树搜索的" ² 地主"研究

研究背景和:

研究现状

国外研究现状国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 合作问题分析

总结:

- 论文提出 MCTSHS 算法对"斗地主"进行研究。实验 表明该算法针对"斗地主"博弈能做出不错的决策。
- 针对基于 MCTSHS 算法的思考时间过长且已搜索策略 未能充分利用的缺点,论文提出 MCM 算法。实验表明, MCM 算法相较于其它智能决策算法具有一定优势。

基于蒙特卡泽 树搜索的" ^注 地主"研究

研究背景和意 义

研究现状

_

国内研究现状

研究内容

基于手牌拆分 的蒙特卡洛树

手牌拆分算法模块

蒙特卡洛柯搜索算

基于手牌拆分的? 卡洛树搜索算法

实验比较结

会作问题分

算法缺点

合作问题分

展望:

- 后续研究对玩家手牌信息进行预测处理。
- 在后续的工作中,可以对玩家进行对手建模。通过预测 玩家手牌以实现对手当前状态下的可能决策,从而找到 最佳的应对之策以取得游戏胜利。

基于蒙特卡》 树搜索的" ³ 地主"研究

研究背景和意 义

研究现状

国外研究现状国内研究现状

研究内容

基于手牌拆分的蒙特卡洛树地索

手牌拆分算法模块 蒙特卡洛树搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果 全作问题公析

展望:

- 后续研究对玩家手牌信息进行预测处理。
- 在后续的工作中,可以对玩家进行对手建模。通过预测 玩家手牌以实现对手当前状态下的可能决策,从而找到 最佳的应对之策以取得游戏胜利。

参与项目及成果

树搜索的"斗 地主"研究

研究背景和意 义

研究现状

国内研究和批

研究内容

基于手牌拆分的蒙特卡洛树

手牌拆分算法模块

基于手牌拆分的

实验比较结员

合作问题分析

算法缺点

作者在攻读硕士学位期间参与项目及成果

- 发表了一篇中文核心
- 申请了一项国家发明专利(在审)
- 参加国家自然科学基金 1 项

参与项目及成果

基于家特卡洛 树搜索的"斗 地主"研究

研究背景和意 义

研究现状

国由研究和批

研究内容

基于手牌拆分的蒙特卡洛枫

手牌拆分算法模块 蒙特卡洛柯搜索算法 基于手牌拆分的蒙特 卡洛柯搜索算法 实验比较结果 作者在攻读硕士学位期间参与项目及成果

- 发表了一篇中文核心
- 申请了一项国家发明专利 (在审)
- 参加国家自然科学基金 1 项

参与项目及成果

基于蒙特卡洛 树搜索的"马 地主"研究

研究背景和意义

研究现状

国内研究和出

研究内炎

基于手牌拆分的蒙特卡洛树 地索

手牌拆分算法模块 蒙特卡洛树搜索算法 基于手牌拆分的蒙特 卡洛树搜索算法 实验比较结果 作者在攻读硕士学位期间参与项目及成果

- 发表了一篇中文核心
- 申请了一项国家发明专利 (在审)
- 参加国家自然科学基金 1 项

基于蒙特卡洛树搜索的"斗地主"研究

研究背景和意义

研究和状

国外研究規制

_

研究内

基于手牌拆分 的蒙特卡洛树 搜索

手牌拆分算法模块

蒙特卡洛树搜索第

基于手牌拆分的第 卡洛树搜索算法

实验比较结

A 76-27-186 A 4

合作问题分析

敬请各位老师批评指正 谢谢!