West Nile Virus Prediction

Ying Ma 08/13/2018

West Niles Virus

Facts

- Symptoms ranging from a persistent fever, to serious neurological illnesses that can result in death
- No human vaccine
- The best method to reduce the risk is avoiding bites by infected mosquitoes

Prevention

- The Chicago Department of Public Health (CDPH) had established a comprehensive surveillance and control program
- Every week from late spring through the fall, mosquitos in traps across the city are tested for the virus.

Data-driven practical insights

Data

Traps

Lab test results of the presence of WNV in the traps

Train: 2007, 2009, 2011, 2013 Test: 2008, 2010, 2012, 2014

- Species
- Trap location
- Time: year and month/week of the year

Weather

Daily weather data from NOAA

Available from beginning of May to the end of Oct, 2007 - 2014

Spray

GIS data for aerial spray done in Cook county

Only available for 2011 and 2013

- Temperature
- Precipitation
- Pressure
- Wind

- Date and Time
- Spray Location

Features

Traps

- Year
- Week of the year
- Species (one hot encoding)
 - > Pipiens
 - Restuans
 - P/R
 - Others
- Latitude/Longitude
- Trap_id (one hot encoding)

Features

Weather

- Average values from the same week
- Data from Station 1 is kept
- Features relative to temperature, humidity, precipitation, pressure, wind are kept
- Highly correlated features revealed by correlation matrix

- Temperature
 - o T_diff = Tmax Tmin
 - T_avg
 - T_depart
- Relative Humidity
 - Calculate from WetBulb and DewPoint

- Total percipitation
- Atmospheric Pressure
 - Station Pressure
 - Sea Level Pressure (drop)
- Wind
 - Resultant wind speed
 - Direction (cos)
 - AvgSpeed (drop)

Model

XGBoost

- Interpretability
- Good performance
- Deals well with non-linear decision boundaries
- Works well with categorical and ordinal data
- Not strongly affected by class imbalances

Distance Encoding

Problems with one hot encoding of trap location:

- Some traps/satellite traps in the test set that didn't appear in the training set.
- Trap location migrated over the years.

Solution: distance encoder

- Distance between two sites are calculated by Haversine formula
- Weight = $2/(1+\exp(\lambda^* distance))$
 - Distance = 0 => weight =1
 - Distance $-\infty = > \text{weight} > 0$

Distance Encoding

Delayed Weather Feature

- Different weather parameter may affect the mosquito and the WNV life cycle differently
- Average lifespan of adult female mosquitoes: 4-6 weeks
- Incorporated weekly weather features up to 4 weeks prior to the test date

Results with improved features

AUC of ROC of hold out test set

AUC of ROC of Kaggle test set

XGB	0.76686	0.78143
+ distance encoder	0.77362	0.79148
+ delayed weather	0.77896	0.79988

Feature interpretation is done on the coefficients of regularized logistic regression.

Feature Weight: Species

- Species P, R and P/R have high positive weight which suggests that they're the major driving factor for WNV presence
- Other species are not tested positive in the WNV test in the training set, therefore they don't have predictive value.
- However, because other species are less representative in the training set, I can't entirely eliminate the possibility of other species getting infected
- More data about other species and expert opinion is needed

Feature Weight: Weather

Insights:

- 1. Weather of the week prior to the test is important to the model
- 2. WNV likes higher temperature, but doesn't tolerate high temperature difference.
- 3. WNV prefers less precipitation in longer term, however higher relative humidity facilitates the spread of WNV in shorter term.
- 4. WNV appears to like higher atmospheric pressure.

Feature Weight: Location

Pos

- Red: positive weight
 Blue: negative weight
- Radius of the circle stands for the weight value
- Areas at higher risk locate at top of the map
- Blue circles are more evenly distributed

Aerial Spray

