SOOAD

UNIT 2 THE PROCESS MODELLING

UNIT -2 Process Modelling

- Introduction
- Data Flow Diagram
 - Reading Data Flow Diagrams
 - Elements of Data Flow Diagrams
 - Process Description
- Creating Data Flow Diagrams
 - Context Diagram
 - Data Flow Diagram Fragments
 - Level 0 Diagram
 - Level 1 Diagram
 - Validating the Data Flow Diagrams

Introduction

A picture is worth a thousand words.

- A Data Flow Diagram (DFD) is a traditional way to visualize the information flows within a system.
- A neat and clear DFD can depict a good amount of the system requirements graphically.
- It can be manual, automated, or a combination of both.
- It shows how information enters and leaves the system, what changes the information and where information is stored.
- The purpose of a DFD is to show the scope and boundaries of a system as a whole.

Introduction

- It may be used as a communications tool between a systems analyst and any person who plays a part in the system that acts as the starting point for redesigning a system.
- They work for both technical and nontechnical audiences, from developer to CEO.
- That's why DFDs remain so popular after all these years.
- While they work well for data flow software and systems, they are less applicable nowadays to visualizing interactive, real-time or database-oriented software or systems.

Introduction – Example of DFD

Introduction – Example of DFD

Data Flow Diagrams

- Elements of Data Flow Diagrams
 - There are four symbols in the DFD
 - Process
 - Data Flow
 - Data Stores
 - External Entities
 - There are two commonly used styles of symbols:
 - Chris Gane & Trish Sarson
 - Tom Demarco & Ed Yourdon

Data Flow Diagrams - Process

- A Process is an activity or a function that is performed for some specific business reason.
- Every process should named starting with a verb and ending with a noun.
- · Process performs only one activity.

Process

- Names should be short and contain information
- It contains business logic, that transforms the data and produce the required result.
- In DFD the process symbol refers to as black box.
- Beacuse:- inputs, outputs and general functions of the process are known, but logic is hidden.
- Example:
 - Determining request quality
 - Record offer

Process

- Every process must have at least one input data flow and at least one output data flow.
- It should have a unique identification number, a name and a description.

Data Flow Diagrams – Data Flow

- A Data flow is a single fact or logical collection of sereral facts.
- It should be named with a noun.
- It act as a glue that holds the processes together.

Data Flow Diagrams – Data Flow

- One end of every data flow will always come from or go to process.
- While the other arrow can be to other process or database.
- Every process must create atleast one output data flow.

Data Flow

- Spontaneous Generation: A process that produces output but no input data flow.
- Black Hole: A process has input but no output.
- Gray Hole: A process that has at least one input and one output, but the input is not sufficient to generate the output.
- e.g dob input is not sufficient to produce a final grade output in the calculate grade process.

Data Flow Diagrams – Data Store

- A Data store is a collection of data is stored in some way.
- Data store is named with noun.
- All data stores must have at least one input data flow.

D1 Name
D1 Name

Gane Sarson
Yourdon

Data Flow Diagrams – Data Store

- Data flows coming out of a data store indicate that information is retrieved from the data store.
- All data stores must have atleast one input data flow.
- The data flow that stores data and the data flow that retreives data should always be shown as two seperate data flows.

Data Flow Diagrams – External Entity

 An External entity is a person, organization unit, or system that is external to the system but interacts with it.

Name

Gane Sarson

Name

Yourdon

External Entity

- DFD entities are also known as Terminators.
- Source: Entity that supplies data to the system.
- Sink: Entity that receives data.
- An entity can be both source and sink.
- Example:
 - Managers
 - Clerks
 - Customers

Data Flow Diagrams

Data Flow Diagram Element	Typical Computer-Aided Software Engineering Fields	Gane and Sarson Symbol	DeMarco and Yourdon Symbol
Every process has a number a name (verb phase) a description at least one output data flow at least one input data flow	Label (name) Type (process) Description (what is it) Process number Process description (structured English) Notes	1 Name	Name
Every data flow has a name (a noun) a description one or more connections to a process	Label (name) Type (flow) Description Alias (another name) Composition (description of data elements) Notes	Name	Name
Every data store has a number a name (a noun) a description one or more input data flows one or more output data flows	Label (name) Type (store) Description Alias (another name) Composition (description of data elements) Notes	D1 Name	D1 Name
Every external entity: has a name (a noun) a description	Label (name) Type (entity) Description Alias (another name) Entity description Notes	Name	Name

Business Processes

- Most business processes are too complex in one DFD.
- There for Process models are therefore composed of a set of DFDs.
- First DFD provides a summary of the overall system, with the additioal DFDs providing more and more details about each part.
- It consist of
 - Context Diagram
 - Level 0 Diagram
 - Level 1 Diagram
 - Level 2 Diagram

Process Description

- The purpose of process descriptions is to explain what the process does and provide additional information that the DFD does not provide.
- Three techniques are commonly used to describe ore complex processing logic :
 - Structured English: uses shorts sentences to describe the work that a process performs.
 - Decision Trees: display the decision logic as a set of nodes and branches.
 - Decision Tables: represent comples policy decisions as rules that link various condition with actions.

- "The Top-level DFD in every business process model, whether a manual system or a computerized system, is the context diagram."
- Context diagram shows the overall business process as a single process.

- The Context diagram is the highest level in a Data Flow Diagram.
- It is a tool popular among Business Analysts who use it to understand the details and boundaries of the system to be designed in a project.
- It points out the flow of information between the system and external components.
- It is made up of a context bubble, first drawn in the middle of the chart.
- It is usually a circle shape that represents a conceptual boundary that encloses a group of interconnected processes and activities of a project.

- The objective of the system context diagram is to focus attention on external factors and events that should be considered in developing a complete set of systems requirements and constraints.
- A system context diagram is often used early in a project to determine the scope under investigation.
- A system context diagram represents all external entities that may interact with a system.
- The entire software system is shown as a single process.
- Such a diagram pictures the system at the center, with no details of its interior structure, surrounded by all its External entities, interacting systems, and environments.

Example: Ordering system

Level 0 Diagram / Level 0 DFD

- The Level 0 diagram shows all the
 - major processes at the first level of numbering
 - The data stores
 - External entities
 - Data flow among them

Level 0

- Diverging data flow:
 - Indicates data that starts out naturally as one flow, but is routed to different destinations. — Also useful to indicate multiple copies of the same output going to different destinations.

Functional Primitive

- It is a process that consists of a single function that is not exploded further.
- e.g Assign final grade process.
- Leveling: it also known as exploding, partitioning.

- Black Hole A process that may have input flows but no output flows.
- Grey Hole A process that may have outputs that are greater than the sum of its inputs - e.g., its inputs could not produce the output shown.
- Diverging Data flow is a data flow in which same data goes to two or more different locations.
- Parent Diagram Higher level Diagram
- Child Diagram lower level Diagram
- Functional Primitives a process that consists of a single function that is not exploded further.
- Black Box most general view of system and contains a single process.
- **Leveling** process of drawing a series of increasingly detailed diagrams, untill all functional primitives are identified.

Level 0 Diagram / Level 0 DFD

Level 1 Diagram / Level 1 DFD

- The level 0 DFD shows only how the major high-level processes in the system interact.
- Each process on the level 0 DFD MUST be decomposed into a more explicit DFD called a level 1 diagram or level 1 DFD.

Level 1 Diagram / Level 1 DFD – Process 1

Level 1 Diagram / Level 1 DFD – Process 2

Level 1 Diagram / Level 1 DFD - Process 3

a send manufact that become aid in second the second from common type of

Level 2 Diagram / Level 2 DFD

- If any of the processes in the level 1 diagram appear to be "busy" with multiple inflows and outflows, IT MAY be appropriate to decompose that process iinto a lower level child diagram.
- Such diagram, the next level under level 1 would be labeled as level 2.

Numbering Rule for Process in Diagram

- A **level 0 DFD** has process numbers **with no decimal** points (i.e 1, 2, 3)
- A **level 1 DFD** has process numbers **with one decimal** points (i.e 2.1, 5.4,....)
- A level 2 DFD has process numbers with has numbers with two decimal points (i.e 1.2.1, 3.3.2,)

And so on.....