

머신러닝을 활용한 여론조사 무응답 예측

김무관 analyze79@naver.com

Contents

- ✓ 1. 프로젝트 소개
- ✓ 2. 분석프로그램
- ✓ 3. 데이터 설명
- ✓ 4. 데이터 확인 및 전처리
- ✓ 5. 머신러닝 모델링
- ✓ 6. 보팅/스태킹 적용
- ✓ 7. 예측결과 검증
- ✔ 8. 결론 및 제언

프로젝트 소개

- ✔ 여론조사 관련 기관에서는 여론조사의 결과 및 선거예측의 정확성 제고를 위해 지속적으로 노력중이다.
- ✔ 유권자들의 선택 및 정당이나 후보의 적절 한 선거전략 수립을 위해서 여론조사를 통한 객관적이고 신뢰성 있는 정보는 매우 중요하다.
- ✓ 이번 연구에서는 예측 정확도를 높이기 위해 머신러닝을 활용 지지후보가 "없다/무응답"이라고 응답한 무응답층을 분류해보자.

분석 프로그램

✓ Python, Orange 프로그램으로 머신러닝 적용

데이터 설명

✔ 19대 대통령선거 2~3일전에 시행된 전화여론조사(3000명)

※ 회사 내부 데이터라서 외부공유 제한됨(연구목적 사용)

< 변수구성 >

Q1

ID	응답자 구별코드	
SIDO	시도 구분	
AREA	권역별	
SEX	성별	
AGE1	연령(숫자)	
AGE	연령대	
Q2	지지 후보 결정 시기	
Q3	지지 후보 선택 이유	독립변수
Q4	지지 정당(재질문 통합)	
DQ1	정치적 이념성향	
DQ2	과거 대선 지지	
DQ3	과거 총선 정당 지지	
DQ4	직업	
DQ5	소득	

대통령 지지 후보(재질문 통합)

종속변수(target)

✓ 데이터 확인

<지지후보 응답데이터> <지지후보 없음/무응답데이터>

- Q2, Q3 변수에 결측치가 있는데, Q1(종속변수) 지지후보 "없음/무응답" 사례수에 해당함
- 독립변수에서 Q2, Q3 삭제 필요함(train 데이터셋, test 데이터셋 동일조건 맞추기 위해서)

✓ 데이터 확인

	지역	연령대	이념성향	지지정당
문재인	광주/전라	20~40대	진보	더불어민주당
홍준표	대구/경북	50대 이상	보수	자유한국당
안철수	골고루 (특히 광주/전라)	골고루 (특히 50대)	골고루 (특히 중도)	국민의당

=>지지 후보별로 독립변수 확인결과 상대적으로 아래내용에서 높은 응답 을 확인할 수 있었음

✔ 데이터 전처리(변수값 수정)

=> 독립변수 일부 변수들 극단치 확인됨

```
df['DQ4'].value_counts() # 99값 모르겠다 (사례수 14개)
       661
       652
       544
       235
       189
       181
       155
       131
       107
        84
        64
 Name: DQ4, dtype: int64
df.loc[(df.DQ4==99),'DQ4']=13
df['DQ4'].value_counts()
      661
     652
     544
     235
     189
     181
     155
     131
     107
      64
Name: DQ4, dtype: int64
```

=> DQ4 99 '모르겠다' 값이 14개 있는데, 사례수도 적고 13 '기타'가 있어서 99값을 13으로 수정함

✔ 데이터 전처리(3개 변수 생성)

```
## 성(SEX) & 연령(AGE) 으로 성연령(BSEXAGE) 변수 생성
df.loc[(df.SEX==1) & (df.AGE==1), 'BSEXAGE']=1
                                           #1.남-20대
                                             #2. 남-30대
df.loc[(df.SEX==1) & (df.AGE==2), 'BSEXAGE']=2
df.loc[(df.SEX==1) & (df.AGE==3), 'BSEXAGE']=3
                                           #3. 남-40대
df.loc[(df.SEX==1) & (df.AGE==4), 'BSEXAGE']=4
                                           #4. 남-50대
df.loc[(df.SEX==1) & (df.AGE==5), 'BSEXAGE']=5
                                           #5. 남-60대
df.loc[(df.SEX==1) & (df.AGE==6), 'BSEXAGE']=6
                                             #6.남-70대 이상
df.loc[(df.SEX==2) & (df.AGE==1), 'BSEXAGE']=7
                                             #7.04-20CH
df.loc[(df.SEX==2) & (df.AGE==2), 'BSEXAGE']=8
                                            #8.04-30CH
df.loc[(df.SEX==2) & (df.AGE==3), 'BSEXAGE']=9
                                            #9. OI-40CH
df.loc[(df.SEX==2) & (df.AGE==4), 'BSEXAGE']=10 #10.04-500H
df.loc[(df.SEX==2) & (df.AGE==5).'BSEXAGE']=11 #11.04-60CH
df.loc[(df.SEX==2) & (df.AGE==6), 'BSEXAGE']=12 #12.여-70대 이상
## DQ1(정치이념성향) 세부적인 분류를 묶어서 변수 생성
df.loc[(df.D01==1) | (df.D01==2), 'BD01']=1 #1.보수(매우 보수/보수)
                                        #2.중도
df.loc[(df.D01==3), 'BD01']=2
df.loc[(df.DQ1==4) | (df.DQ1==5), 'BDQ1']=3 #3.진보(매우 진보/진보)
df.loc[(df.D01==9).'BD01']=4
                                         #4.모름
## DQ4(직업) 세부적인 분류를 묶어서 변수 생성
df.loc[(df.DQ4==1), 'BDQ4']=1
                                                         #1. 농/임/어업
df.loc[(df.DQ4==2).'BDQ4']=2
                                                          #2. 자영업
df.loc[(df.D04==3) | (df.D04==4) | (df.D04==5). 'BD04']=3
                                                        #3.블루칼라
df.loc[(df.DQ4==6) | (df.DQ4==7) | (df.DQ4==8).'BDQ4']=4
                                                         #4.화이트칼라
df.loc[(df.DQ4==9),'BDQ4']=5
                                                         #5.가정주부
                                                         #6.학생
df.loc[(df.DQ4==10).'BDQ4']=6
df.loc[(df.DQ4==11) | (df.DQ4==12) | (df.DQ4==13), 'BDQ4']=7 #7.무직/은퇴/기타
df.loc[(df.D04==99), 'BD04']=8
                                                         #8.모름
```

✓ 데이터 전처리(SEG 변수생성)

=> K-means Clustering (모델 변수중요도에서 높게 나온 'Q4', 'SIDO' 변수로 시도함)

✔ 데이터 전처리(상관분석 확인)

=>종속변수 Q1과 상관관계가 높은 것은 Q2, Q4, SEG 변수임

✔ 데이터 전처리(다중공선성 확인)

다중공선성 : 독립 변수들이 서로 독립이 아니라 상호상관관계가 강한 경우에 발생함

=> vif가 10이상이면 다중공선성이 존재해서 확인 후, 삭제함.

- * [SEX, AGE1, AGE, BSEXAGE]
 -> [SEX, AGE1] 독립변수에서 삭제
- * [DQ1, BDQ1] -> [DQ1] 독립변수에서 삭제
- * [DQ4, BDQ4] -> [DQ4] 독립변수에서 삭제

✓ 종속변수 확인과 다중분류 모델별 accuracy 확인

종속변수 확인결과 범주형변수(명목변수) 로 다중분류 모델 적 용이 필요함!

=> XGBClassifier 모델이 가장 정확도가 높음

XGBBoost (XGBClassifier, XGBRegressor) 모델 특징

XGBoost(eXtra Gradient Boost)

트리 기반의 알고리즘의 앙상블 학습에서 각광받는 알고리즘 중 하나 GBM에 기반하고 있지만, GBM의 단점인 느린 수행시간, 과적합 규제 등을 해결한 알고리즘

XGBoost의 주요장점

- (1) 뛰어난 예측 성능
- (2) GBM 대비 빠른 수행 시간
- (3) 과적합 규제(Overfitting Regularization)
- (4) Tree pruning(트리 가지치기): 긍정 이득이 없는 분할을 가지치기해서 분할 수를 줄임
- (5) 자체 내장된 교차 검증
 - 반복 수행시마다 내부적으로 교차검증을 수행해 최적회된 반복 수행횟수를 가질 수 있음 지정된 반복횟수가 아니라 교차검증을 통해 평가 데이트세트의 평가 값이 최적화되면 반복을 중간에 멈출 수 있는 기능이 있음
- (6) 결손값 자체 처리

XGBoost는 독자적인 XGBoost 모듈과 사이킷런 프레임워크 기반의 모듈이 존재합니다. 독자적인 모듈은 고유의 API와 하이퍼파라미터를 사용하지만, 사이킷런 기반 모듈에서는 다른 Estimator와 동일한 사용법을 가지고 있음

* 자료 출처: https://injo.tistory.com/44

XGBClassifier 모델 최적화

```
## XGBClassifier : 하이퍼 파라미터 튜닝
from sklearn.model selection import GridSearchCV
from xgboost import XGBClassifier
xgb = XGBClassifier()
# 파라미터를 닥쳐더리 형태로 설정
parameters = \{ \max_{depth'} : [2, 3, 4, 5, 6] \}
             'subsample': [0.6, 0.7, 0.8, 0.9, 1.0]}
grid xgb = GridSearchCV(xgb, param grid=parameters, cv=3, refit=True)
# 하이퍼 파라미터를 순차적으로 학습, 평가
grid xgb.fit(X train, v train)
# GridSearchCV 결과를 추출해 데이터 프레임으로 반환
scores df = pd.DataFrame(grid xgb.cv results )
print('GridSearch - XGB 최적 파라미터: ', grid_xgb.best_params_)
print('GridSearch - XGB 최고 점수: ', grid xgb.best score )
# GridSearchCV의 refit으로 학습된 estimator 반환
estimator = grid_xgb.best_estimator_
# GridSearchCV의 best_estmator_ 는 이미 최적 학습이 됐으므로 별도 학습이 필요 없음
pred = estimator.predict(X test)
print('XGB 테스트 데이터세트 정확도: {0: .4f}'.format(accuracy_score(y_test, pred)))
GridSearch - XGB 최적 파라미터: {'max_depth': 2, 'subsample': 1.0}
```

GridSearch - XGB 최적 파라미터: [{'max_depth': 2, 'subsample': 1.0} GridSearch - XGB 최고 점수: 0.709297052154195 XGB 테스트 데이터세트 정확도: 0.7355

```
from xaboost import XGBClassifier
xgb model = XGBClassifier(base score=0.5.
                        booster='gbtree',
                        colsample_bylevel=1.
                        colsample bynode=1.
                        colsample_bytree=1,
                                                     # 범위 0~1(크면 과적합 발생)
                        gamma=0.
                                                     # =>값을 높이면 과적한 제어
                        learning_rate=0.1.
                        max delta step=0.
                                                     # 통상 3~10 적용(크면 과적합 발생)
                        max_depth=2,
                                                     # =>값을 높이면 과적합 제어
                        min_child_weight=1,
                        missing=None,
                        n estimators=100.
                        n_jobs=1,
                        nthread=None,
                                                     # multi:softmax(다중 분류)
                        objective='multi:softmax',
                        random_state=42,
                        regialpha=0.
                        red lambda=1.
                        scale_pos_weight=1,
                        silent=None.
                                                     # 통상 0.5~1 적용(과적한 제어)
                        subsample=1.0,
                        verbosity=1)
xgb pred = xgb model.fit(X train, v train).predict(X test)
print(classification_report(y_test, pred))
             precision
                         recall f1-score support
                 0.80
                           0.88
                                    0.84
                                               247
                           0.86
                                    0.85
                                               120
                  0.84
                                               101
                 0.62
                           0.63
                                    0.62
                 0.46
                           0.36
                                    0.41
                                                36
                                                45
                 0.35
                           0.18
                                    0.24
                 0.00
                           0.00
                                    0.00
                                                 3
                                    0.74
                                               552
   accuracy
                                               552
                           П. 49
                                     П. 49
   macro avg
                  0.51
                 0.71
                           0.74
                                    0.72
                                               552
weighted avg
```

\checkmark

XGBClassifier 모델로 예측분석

ID와 Q1 예측값 결합해서 데이터 생성

	ID	Q1
3	4	4
14	15	3
15	16	3
16	17	2
29	30	3
41	42	3
48	49	1
66	67	5
67	68	2
71	72	1
82	83	1
84	85	1
96	97	1
98	99	3
105	106	3
120	121	3

보팅/스태킹 적용

- ✔ 보팅(Voting)
- 동일 데이터셋으로 여러 개의 모델로 학습을 진행해서 투표

- ✔ 스태킹(Stacking)
- 모델 예측값으로 실제값을 다시 예측하는 기법

```
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
#개별 모델
xgb clf = XGBClassifier(objective='multi:softmax', max depth=2, subsample=1.0, random state =42)
Igbm_clf = LGBMClassifier(objective='multi:softmax', max_depth=3, subsample=0.6, random_state =42)
# 개별 모델을 소프트 보팅 기반의 양상불 모델로 구현한 분류기.
vo_clf = VotingClassifier(estimators=[('XGB', xgb_clf), ('LGBM', lgbm_clf)], voting='soft')
vo_clf.fit(X_train, y_train)
pred = vo clf.predict(X test)
print('Voting 분류기 정확도: {0:.4f}',format(accuracy_score(v_test, pred)))
classifiers = [xgb_clf, lgbm_clf]
for classifier in classifiers:
   classifier.fit(X_train, y_train)
   pred = classifier.predict(X_test)
   class_name= classifier.__class__.__name__
   print('{0} 정확도: {1:.4f}'.format(class_name, accuracy_score(y_test , pred)))
```

Voting 분류기 정확도: 0.7428 XGBClassifier 정확도: 0.7355 LGBMClassifier 정확도: 0.7446

0.7409420289855072

예측결과 검증

✓ 검증시도1 : Orange 프로그램과 결과비교

Model	AUC	CA	F1	Precision	Recall
kNN	0.793	0.624	0.578	0.572	0.624
SVM	0.847	0.650	0.635	0.627	0.650
SGD	0.786	0.701	0.690	0.685	0.701
Random Forest	0.865	0.696	0.679	0.675	0.696
Neural Network	0.835	0.639	0.632	0.626	0.639
Naive Bayes	0.870	0.629	0.640	0.657	0.629
Logistic Regression	0.884	0.708	0.693	0.686	0.708
Gradient Boosting	0.880	0.712	0.699	0.694	0.712
AdaBoost	0.847	0.661	0.645	0.641	0.661

				7월30일				7월30일
F1	0.694	0.686	F1	0.74	*파이썬	-xgboost VS	Gradient E	
ID	Gradient Boosting	Logistic Regression	ID	파이썬-xgboost			사례수	비율
4	4	4	4	4		TRUE(같음)	212	64.44
15	2	3	15	3		FALSE(다름)	117	35.56
16	2	2	16	3			329	100.00
17	2	2	17	2				
30	3	3	30	3	*파이썬	-xgboost VS	Logistic Re	egression
42	3	3	42	3			사례수	비율
49	2	2	49	1		TRUE(같음)	223	67.78
67	5	3	67	5		FALSE(다름)	106	32.22
68	2	2	68	2			329	100.00
72	1	1	72	1				
83	5	1	83	1				
85	5	3	85	1				
97	1	1	97	1				
99	3	3	99	3				
106	3	3	106	3				
121	2	3	121	3				
126	2	2	126	2				
127	2	2	127	2				
136	1	1	136	1				
142	2	2	142	2				
158	3	3	158	3				
160	1	1	160	5				
164	3	2	164	3				

=> 오렌지, 파이썬 프로그램으로 예측한 데이터 값이 서로 어느 정도 동일한지 확인함 (65% 내외로 동일)

예측결과 검증

✔ 검증시도2 : 제19대 대선 개표결과와 여론조사결과(무응답보정 포함) 비교

(SPSS 프로그램으로 보정데이터 적용한 테이블 결과임)

	개표결과	여론조사	오렌지 (무응답보정)	파이썬 (무응답보정)	
문재인	41.08	37.**	39.81	39.93	<보정으로 개표결과에 가까워짐
홍준표	24.03	18.**	22.27	21.33	
안철수	21.41	17.**	19.70	20.05	
유승민	6.76	7.**	7.73	7.72	
심상정	6.17	8.**	9.97	10.46	<과잉 보정됨
기타		0.**	.52	.52	<보정값에 6이 없음
없음/모름		10.33			

결론 및 제언

- ✓ 선거여론조사에서 지지후보의 득표율 예 측정확도를 개선하기 위해서 무응답(없다/ 무응답)층을 머신러닝으로 예측을 시도해 보았다.
- ✔ 예측(무응답보정)한 결과를 개표결과/ 기존 여론조사와 비교해보니, 전체적으로 후보별 득표율이 높아지는 것을 볼 수 있었다.
- ▼ 하지만 기존에 득표율이 낮은 후보에서 는 과잉 보정되는 경향을 보였다. 이점은 다른 사례를 통해서 추가검증이 필요해 보 인다.

(SPSS 프로그램으로 보정데이터 적용한 테이블 결과임)

	개표결과	여론조사	오렌지 (무응답보정)	파이썬 (무응답보정)
문재인	41.08	37.**	39.81	39.93
홍준표	24.03	18.**	22.27	21.33
안철수	21.41	17.**	19.70	20.05
유승민	6.76	7.++	7.73	7.72
심상정	6.17	8.++	9.97	10.46
기타		0.**	.52	.52
없음/모름		10.33		

Thank you! ZILICI.