Induction sur les mots : Exemples d'exercices corrigés

Exercice 1 (76 du poly)

Enoncé:

On considère l'ensemble \mathcal{E} des mots sur l'alphabet $\{a,b\}$ défini par le shéma d'induction suivant :

- i) Le mode vide ε appartient à \mathcal{D} .
- ii) Soit W un mot de \mathcal{D} . Les mots aWb et bWa appartiennent à \mathcal{D} .
- 1. Donnez les mots de longueur inférieure ou égale à 4.
- 2. Montrez par induction que tout mot de \mathcal{D} contient autant de a que de b.

Une solution:

1. $m_0 = \varepsilon \in \mathcal{E}$. Ensuite $m_1 = am_0b = ab$ et $m_2 = bm_0a = ba$ appartiennent à \mathcal{E} . Puis $m_3 = am_1b = aabb$, $m_4 = am_2b = abab$ appartiennent à \mathcal{E} ainsi que $m_5 = bm_1a = baba$ et $m_6 = bm_2a = bbaa$.

Ensuite les mots auront plus de 4 lettres.

- 2. On notera $n_a(m)$ et $n_b(m)$ le nombre de a respectivement de b du mot m. Soit P(m) la propriété le mot m contient autant de a que de b c'est à dire $n_a(m) = n_b(m)$.
 - * pour $m = \varepsilon : n_a(\varepsilon) = 0$ et $n_b(\varepsilon) = 0$ donc $P(\varepsilon)$ est vraie.
 - * soient u un mot de \mathcal{E} tel que P(u) est vraie. Alors $n_a(u) = n_b(u)$. Montrons que P(aub) et P(bua) sont vraies.

 $n_a(aub) = 1 + n_a(u) + 0$ et $n_b(aub) = 0 + n_b(u) + 1$. Comme $n_a(u) = n_b(u)$, on en déduit que $n_a(aub) = n_b(aub)$. De la même façon on a $n_a(bua) = 0 + n_b(u) + 1 = n_a(u) + 1 = n_a(bua)$ donc P(bua) est vraie.

* D'après le principe d'induction, on en déduit que P(m) est vraie pour tout $m \in \mathcal{E}$. Tous les mots de \mathcal{E} contiennent autant de a et de b.

Exercice 2 (110 du poly)

Enoncé:

On considère l'alphabet $\mathcal{A} = \{a, b, c\}$. On définit $\mathcal{N} \subset \mathcal{A}^*$ avec le schéma d'induction suivant :

- (i) $c \in \mathcal{N}$.
- (ii) Soit u et v deux mots de \mathcal{N} . Alors $m_1 = ubv$ et $m_2 = uav$ sont deux mots de \mathcal{N} .
- 1. Quels sont les mots de \mathcal{N} de moins de 6 lettres?
- 2. Montrez par induction que tout mot de \mathcal{N} est de longueur impaire.
- 3. Pour tout mot m de \mathcal{A}^* , notons $n_a(m)$ (resp. $n_b(m)$ et $n_c(m)$) le nombre d'occurrences de la lettre a (resp. b, c) dans m.

Montrez par induction que $n_c(m) = n_b(m) + n_a(m) + 1$, pour tout mot m de \mathcal{N} .

Une solution:

1. $m_0 = c \in \mathcal{N}$

puis $m_1 = cbc \in \mathcal{N}$ et $m_2 = cac \in \mathcal{N}$ sont les premiers mots qu'on peut construire (en prenant u = v = c

Ensuite on peut construire $m_3 = m_0 b m_1$, $m_4 = m_1 b m_0$, $m_5 = m_0 a m_1$, $m_6 = m_1 a m_0$ ainsi

que $m_7 = m_0 b m_2$, $m_8 = m_2 b m_0$, $m_9 = m_0 a m_2$, $m_{10} = m_2 a m_0$ ce qui donne en supprimant ceux obtenus plusieurs fois c, cbc, cac, cbcbc, cacbc, cbcac, cacac.

Les mots suivants sont obtenus avec m_1 et m_2 donc auront 7 lettres.

On a donc 7 mots de 6 lettres ou moins dans $\mathcal N$

- 2. Notons n(m) le nombre de lettres du mot m.
 - * Soit P(m) la propriété : n(m) est impaire.
 - * pour $m = m_0 = c : n(c) = 1$ donc P(c) est vraie.
 - * soient u, v des mots de \mathcal{N} tels que P(u) et P(v) soient vraies. Montrons que P(ubv) et P(uav) sont vraies.

On a:
$$n(ubv) = n(u) + 1 + n(v) = n(uav)$$

Or P(u) et P(v) sont vraies donc n(u) et n(v) sont impaires.

La somme de 3 nombres impairs est impaire donc n(ubv) et n(uav) sont impaires. Donc P(ubv) et P(uav) sont vraies.

- * d'après le principe d'induction on en déduit que P(m) est vraie pour tout $m \in \mathcal{N}$.
- 3. Soit Q(m) la propriété $n_c(m) = n_b(m) + n_a(m) + 1$.
 - * pour $m = m_0 = c : n_c(c) = 1$ et $n_b(c) = 0 = n_a(c)$ donc $n_b(c) + n_a(c) + 1 = 1$ et donc Q(c) est vraie.
 - * soient u, v des mots de \mathcal{N} tels que Q(u) et Q(v) soient vraies. Montrons que Q(ubv) et Q(uav) sont vraies.

$$n_c(ubv) = n_c(u) + n_c(v)$$

$$n_b(ubv) = 1 + n_b(u) + n_b(v)$$

$$n_a(ubv) = n_a(u) + n_a(v)$$

Or
$$Q(u)$$
 et $Q(v)$ sont vraies donc $n_c(u) = n_b(u) + n_a(u) + 1$ et $n_c(v) = n_b(v) + n_a(v) + 1$

Donc
$$n_c(ubv) = n_b(u) + n_a(u) + 1 + n_b(v) + n_a(v) + 1 = 1 + n_b(u) + n_b(v) + 1 + n_a(u) + n_a(v) = n_b(ubv) + n_a(ubv) + 1$$

Donc Q(ubv) est vraie.

De même $n_c(uav) = n_c(u) + n_c(v)$

$$n_b(uav) = n_b(u) + n_b(v)$$

$$n_a(uav) = n_a(u) + n_a(v) + 1$$

Or
$$Q(u)$$
 et $Q(v)$ sont vraies donc $n_c(u) = n_b(u) + n_a(u) + 1$ et $n_c(v) = n_b(v) + n_a(v) + 1$

Donc
$$n_c(uav) = n_b(u) + n_a(u) + 1 + n_b(v) + n_a(v) + 1 = 1 + n_b(u) + n_b(v) + 1 + n_a(u) + n_a(v) = n_b(ubv) + n_a(ubv) + 1$$

Donc Q(uav) est vraie.

^{*} d'après le principe d'induction on en déduit que Q(m) est vraie pour tout $m \in \mathcal{N}$.