Magnitude Comparators and Multiplexers

Overview

Discussion of two digital building blocks

Magnitude comparators

- Compare two multi-bit binary numbers
- Create a single bit comparator
- Use repetitive pattern

Multiplexers

- Select one out of several bits
- Some inputs used for selection
- Also can be used to implement logic

- The comparison of two numbers
 - outputs: A>B, A=B, A<B
- Design Approaches
 - the truth table
 - 2²ⁿ entries too cumbersome for large n
 - use inherent regularity of the problem
 - reduce design efforts
 - reduce human errors

How can we find A > B?

How many rows would a truth table have?

$$2^8 = 256$$

Therefore, one term in the logic equation for A > B is A3 . B3'

If
$$A = 1010$$
 and $B = 1001$ is $A > B$? Why?

Therefore, the next term in the logic equation for A > B is C3 . C2 . A1 . B1'

Magnitude Comparison

Algorithm -> logic

- $A = A_3A_2A_1A_0$; $B = B_3B_2B_1B_0$
- A=B if A₃=B₃, A₂=B₂, A₁=B₁and A₁=B₁

Test each bit:

- equality: x_i= A_iB_i+A_i'B_i'
- $(A=B) = x_3x_2x_1x_0$

More difficult to test less than/greater than

- (A>B) = $A_3B_3'+x_3A_2B_2'+x_3x_2A_1B_1'+x_3x_2x_1A_0B_0'$
- $(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$
- Start comparisons from high-order bits

Implementation

• $x_i = (A_iB_i'+A_i'B_i)'$

TRUTH TABLE

COMPARING INPUTS			CASCADING INPUTS			OUTPUTS			
A ₃ , B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A>B}	I _{A < B}	I_{A-B}	O _{A>B}	$O_{A < B}$	O_{A-B}
A ₃ >B ₃	×	X	Х	×	×	Х	H	L	L
A ₃ <b<sub>3</b<sub>	X	X	X	X	X	X	L	H	L
$A_3 = B_3$	$A_2 > B_2$	X	X X X	X	×	X	H	L	L
$A_3 = B_3$	$A_2 < B_2$	X	Х	X	X X X	X X X	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	×	X	×	X X X	H	L	L
$A_3 = B_3$	$A_2 = B_2$	A1 < B1		X X	×	X	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 > B_0$	X	×	X	H	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	X	×	X	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Н	L	L	Н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	H	L	L	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	X	×	Н	L	L	H
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	L	L	H	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	Н	H	L	L	L	L

H = HIGH Voltage LevelL = LOW Voltage Level

X = Immaterial

Multiplexers

- Select an input value with one or more select bits
- Use for transmitting data
- Allows for conditional transfer of data
- Sometimes called a mux

Fig. 4-24 2-to-1-Line Multiplexer

4- to- 1- Line Multiplexer

Quadruple 2–to–1-Line Multiplexer

Multiplexer as combinational modules

- Connect input variables to select inputs of multiplexer (n-1 for n variables)
- Set data inputs to multiplexer equal to values of function for corresponding assignment of select variables

Using a variable at data inputs reduces size of the multiplexer

 $4 \times 1 \text{ MUX}$

Fig. 4-27 Implementing a Boolean Function with a Multiplexer

Implementing a Four-Input Function with a Multiplexer

Α	Р	_	Б	F	
А	В	С	U	Г	
0	0	0	0	0	F = D
0	0	0	1	1	5
0	0	1	0	0	F = D
0	0	1	1	1	1 - 0
0	1	0	0	1	F = D
0	1	0	1	0	FED
0	1	1	0	0	F = 0
0	1	1	1	0	F = 0
1	0	0	0	0	F = 0
1	0	0	1	0	F = 0
1	0	1	0	0	F = D
1	0	1	1	1	1 - 0
1	1	0	0	1	F = 1
1	1	0	1	1	. – .
1	1	1	0	1	F = 1
1	1	1	1	1	' - '

Typical multiplexer uses

Figure 9.21: Multiplexer example of use.

Three-state gates

- A multiplexer can be constructed with three-state gates
- Output state: 0, 1, and high-impedance (open ckts)

If the select input (E) is 0, the three-state gate has no output

Opposite true here,

No output if \overline{E} is 1

Three-state gates

- A multiplexer can be constructed with three-state gates
- Output state: 0, 1, and high-impedance (open ckts)
- If the select input is low, the three-state gate has no output

Summary

- Magnitude comparators allow for data comparison
 - Can be built using and-or gates
- ° Greater/less than requires more hardware than equality
- Multiplexers are fundamental digital components
 - Can be used for logic
 - Useful for datapaths
 - Scalable
- Tristate buffers have three types of outputs
 - 0, 1, high-impedence (Z)
 - Useful for datapaths