Analysis goal: class comparison

Analyze one m/z at a time

- What to compare:
 Average ion intensity across tissue: between groups
- Statistical methods:
 T-test, ANOVA, linear regression
- Limitations: loss of spatial information

Spatial-DGMM model

- Spatial-DGMM is a Dirichlet Gaussian mixture model with spatial dependence
- Assumptions:
 - 1. k subgroups per ion image
 - 2. The intensities of pixels are from k Gaussian components with unique means and variances
 - 3. The component membership of a pixel ~ Dirichlet process
 - 4. The component memberships of pixels are spatially correlated

one m/z across the sample)

K = 2 $\sim N (\mu_1, \sigma^2_1)$ $\sim N (\mu_2, \sigma^2_2)$

Output

- Number of Gaussian components and their means and variances
- Component membership of each pixel

Spatial-DGMM uncovers differences in ion abundance between conditions

- Goal: class comparison
- Spatial-DGMM overcomes the limitation of average ion intensity across tissue

Spatial-DGMM uncovers differences in ion abundance between conditions

- Goal: class comparison
- Spatial-DGMM overcomes the limitation of average ion intensity across tissue

Spatial-DGMM uncovers differences in ion abundance between conditions

- Goal: class comparison
- Spatial-DGMM overcomes the limitation of average ion intensity across tissue

