Quiz 4 Solutions: Functions, Boolean Logic

1. Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined as $f(n) = n^2 - 7n + 1$ div 11 and $g: \mathbb{Z} \to \mathbb{Z}$ be defined as $g(n) = n^2 - n^3$. Calculate $(f \circ g)(3)$.

Answer(s)

First, calculate g(3):

$$g(3) = 3^2 - 3^3 = 9 - 27 = -18.$$

Now calculate f(-18):

$$f(-18) = \left| \frac{(-18)^2 - 7(-18) + 1}{11} \right| = \left| \frac{324 + 126 + 1}{11} \right| = \left| \frac{451}{11} \right| = 41.$$

2. Given the following matrices:

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}$$

Find the result of $(\mathbf{AB})^T - \mathbf{C}$, which will be a 2×2 matrix of the form:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Answer(s)

Step 1: Calculate AB

$$AB = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 2 \cdot 1 + 1 \cdot 4 & 2 \cdot 2 + 1 \cdot 3 \\ 3 \cdot 1 + 0 \cdot 4 & 3 \cdot 2 + 0 \cdot 3 \end{pmatrix} = \begin{pmatrix} 6 & 7 \\ 3 & 6 \end{pmatrix}$$

Step 2: Calculate $(AB)^T$

$$(AB)^T = \begin{pmatrix} 6 & 7 \\ 3 & 6 \end{pmatrix}^T = \begin{pmatrix} 6 & 3 \\ 7 & 6 \end{pmatrix}$$

Step 3: Calculate $(AB)^T - C$

$$(AB)^T - C = \begin{pmatrix} 6 & 3 \\ 7 & 6 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 6-1 & 3-2 \\ 7-3 & 6-1 \end{pmatrix} = \begin{pmatrix} 5 & 1 \\ 4 & 5 \end{pmatrix}$$

Where a = 5, b = 1, c = 4, and d = 5.

- 3. Which of the following is true about the function $g(n) = 2^n + n^3$?
 - (a) $g(n) \in O(2^n)$
 - (b) $g(n) \in O(n^3)$
 - (c) $g(n) \in \Theta(2^n)$

- (d) $g(n) \in \Theta(n^3)$
- (e) $g(n) \in \Omega(2^n)$
- (f) $g(n) \in \Omega(n^3)$
- (g) $g(n) \in O(2^n + n^3)$
- (h) $g(n) \in \Theta(2^n + n^3)$

Answer(s)

- True: As n grows, 2^n dominates n^3 , so $g(n) \le c \cdot 2^n$ for some constant c and large enough n.
- False: 2^n grows faster than n^3 , so g(n) cannot be bounded by n^3 .
- True: We have $g(n) \in O(2^n)$ and $g(n) \in \Omega(2^n)$
- False: g(n) grows faster than n^3 due to the 2^n term.
- True: $g(n) \ge 2^n$ for all $n \ge 0$.
- True: $g(n) \ge n^3$ for all $n \ge 0$.
- True: $g(n) = 2^n + n^3$, so it's exactly in $O(2^n + n^3)$.
- True: $g(n) = 2^n + n^3$, so it's exactly in $\Theta(2^n + n^3)$.
- 4. Which of the following functions grows the fastest as n approaches infinity?
 - (a) $f(n) = n^2 \log n$
 - (b) $q(n) = 2^{\sqrt{n}}$
 - (c) h(n) = n!
 - (d) $k(n) = n^{\log n}$

Answer(s)

- Compare $n^2 \log n$ and $2^{\sqrt{n}}$: For all $n \ge 16$, we have $n^2 \log n \le 2^{\sqrt{n}}$. Therefore, $n^2 \log n \in O(2^{\sqrt{n}})$.
- Compare $2^{\sqrt{n}}$ and n!: For all $n \geq 5$, we have $2^{\sqrt{n}} \leq n!$. Therefore, $2^{\sqrt{n}} \in O(n!)$.
- Compare n! and $n^{\log n}$: For all $n \geq 3$, we have $n^{\log n} \leq n!$. Therefore, $n^{\log n} \in O(n!)$.

This means that n! grows the fastest.

- 5. Which of the following functions is in $O(n^2)$?
 - (a) $f(n) = 100n \log n$
 - (b) $g(n) = n^2 / \log n$
 - (c) $h(n) = n^2 + n \log n$
 - (d) $k(n) = n^3$
 - (e) None of the Above

Answer(s)

- For all $n \ge 1$, we have $100n \log n \le 100n^2$ so $f(n) \in O(n^2)$.
- For all $n \ge 10$, we have $\log n \ge 1$ so we find that $n^2/\log n \le n^2$. Therefore $g(n) \in O(n^2)$.
- For all $n \ge 1$, we have $n \log n \le n^2$ so $n^2 + n \log n \le 2n^2$. Therefore $h(n) \in O(n^2)$.
- Suppose that $n^3 \in O(n^2)$. Then, there exists $n_0 \in \mathbb{N}$ and real number c > 0 such that $n^3 \le cn^2$ when $n \ge n_0$. This means that $n \le c$, but, this is not true for all $n \ge n_0$. This is a contradiction so $k(n) \notin O(n^2)$.
- 6. Let $\Sigma = \{a, b\}$ be an alphabet and $\Sigma^{\leq 2} = \{\lambda, a, b, aa, ab, ba, bb\}$.

Define a function $f: \Sigma^{\leq 2} \to \mathbb{N}$ as follows:

$$f(w) = \begin{cases} 0 & \text{if } w = \varepsilon \\ 2^{|w|} & \text{if } w \text{ ends with 'a'} \\ 2^{|w|} - 1 & \text{if } w \text{ ends with 'b'} \end{cases}$$

where |w| denotes the length of the word w. Which of the following statements are true?

- (a) f is an injective function
- (b) f is invertible and f^{-1} exists
- (c) *f* is a bijection from $\Sigma^{\leq 2}$ to $\{0, 1, 2, 3, 4, 7, 8\}$
- (d) None of the other options

Answer(s)

Let's analyze the function f

- f is not injective as f(aa) = f(ba) = 4 and f(ab) = f(bb) = 3
- f is not invertible as it's not injective
- f is not surjective as the image of f is $\{0, 1, 2, 3, 4\}$, not $\{0, 1, 2, 3, 4, 7, 8\}$

Therefore, none of the other options are true.

- 7. Which of the following options are correct?
 - (a) ((p || q) && (!r || s)) && ((!p || t) && (q || !s)) is in CNF
 - (b) ((x && y) && !z) || ((!x && y) && w) || ((x && !y) && z)is in DNF
 - (c) ((a || b) || c) && (((!a || d) || e) && ((b || !c) || !e)) is in CNF
 - (d) (((g && h) && i) || ((!g && h) && !i)) || ((g && !h) && i) is in DNF
 - (e) None of these options

Answer(s)

- True: It's a conjunction of four clauses, each clause being a disjunction of literals.
- True: It's a disjunction of three terms, each term being a conjunction of literals.
- True: It's a conjunction of three clauses, each clause being a disjunction of literals.
- True: It's a disjunction of three terms, each term being a conjunction of literals.

All options are correct.

8. Consider the system of linear equations:

$$2x + y - z = 3$$

$$x - y + 2z = 1$$

$$3x + 2y + z = 4$$

Which of the following is equivalent to matrix representation of this system?

(a)
$$\begin{pmatrix} 2 & 1 & -1 \\ 1 & 2 & -1 \\ 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} z \\ x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 2 & -1 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & -1 \end{pmatrix} \begin{pmatrix} x \\ z \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$$

(c)
$$\begin{pmatrix} 1 & 2 & -1 \\ -1 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix} \begin{pmatrix} y \\ x \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$$

(d)
$$\begin{pmatrix} 2 & 1 & -1 \\ -1 & 2 & 1 \\ -1 & 3 & 2 \end{pmatrix} \begin{pmatrix} z \\ x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}$$

Answer(s)

• Not equivalent. Expanding the matrix equation gives:

$$2z + x - y = 1$$

$$z + 2x - y = 3$$

$$z + 3x + 2y = 4$$

• Equivalent. Expanding the matrix equation gives:

$$2x - z + y = 3$$

$$3x + z + 2y = 4$$

$$x + 2z - y = 1$$

• Equivalent. Expanding the matrix equation gives:

$$y + 2x - z = 3$$
$$-x + y + 2z = 1$$
$$2x + 3y + z = 4$$

• Not equivalent. Expanding the matrix equation gives:

$$2z + x - y = 1$$
$$-z + 2x + y = 3$$
$$-z + 3x + 2y = 4$$

9. Consider the following diagram representing functions $f:A\to B, g:B\to C$, and $h:A\to C$, where $h=g\circ f$:

- (a) Which of the following statements are true about functions f, g, and h?
 - i. *f* is injective
 - ii. g is surjective
 - iii. The converse of f is a function from B to A
 - iv. There exists an element in C that is not in the image of h
 - v. $h(a_2) = h(a_3)$
- (b) Let $B' = \{b_2, b_3, b_4, b_5\}$. We define $k: A \to B'$ where k(x) = f(x). Which of the following statements would be true?
 - i. The converse of k is a function from B' to A
 - ii. k is injective but not surjective
 - iii. The image of k would have fewer elements than its domain

Answer(s)

- (a) False: The function f is not injective as $f(a_2) = f(a_3)$.
 - True: Every element in C has at least one element from B mapping to it.

- ullet False: The function f is not bijective so f has no inverse.
- True: There is no $a \in A$ such that $f(a) = c_1$.
- True: Both a_2 and a_3 map to b_2 under f, which then maps to c_5 under g.
- (b) False: The function k is not bijective so k has no inverse.
 - False: The function k is not injective.
 - True: The image has 4 elements (b_2, b_3, b_4, b_5) while the domain has 5 elements.