Lecturers: L. Ducas

T.A.: S. Etinski

Lattice Problems and Rounding Algorithms - Part II

1 Orthogonal Projections

DEFINITION 1 The Gram-Schmidt Orthogonalization (GSO) \mathbf{B}^* of a non-singular matrix \mathbf{B} is defined by $\mathbf{b}_i^* = \pi_i(\mathbf{b}_i)$ where π_i denotes the projection orthogonal to the span of $\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}$.

The projections π_i can be given explicitly by recursion:

$$\pi_i: \mathbf{x} \mapsto \mathbf{x} - \sum_{j < i} \frac{\langle \mathbf{x}, \mathbf{b}_j^{\star} \rangle}{\|\mathbf{b}_j^{\star}\|_2^2} \mathbf{b}_j^{\star}.$$

We recall some key properties of the Gram-Schmidt Orthogonalization:

- $b_1^* = b_1$
- $\operatorname{Span}_{\mathbb{R}}(\mathbf{b}_1,\ldots,\mathbf{b}_j) = \operatorname{Span}_{\mathbb{R}}(\mathbf{b}_1^{\star},\ldots,\mathbf{b}_j^{\star})$ for all $j \leq n$
- $\mathbf{b}_i^{\star} \perp \mathbf{b}_i^{\star}$ for all $i \neq j$
- $\mathbf{b}_i \perp \mathbf{b}_i^{\star}$ for all i < j.

The Gram-Schmidt Orthogonalization can also be written as a matrix decomposition: $\mathbf{B} = \mathbf{B}^* \cdot \mathbf{T}$ where \mathbf{T} is an upper triangular matrix with unit diagonal and \mathbf{B}^* has orthogonal row. In particular $\det(\mathbf{T}) = 1$, and therefore if \mathbf{B} is a basis of a lattice L we have

$$\prod_{i=1}^n \|\mathbf{b}_i^\star\|_2 = \sqrt{|\mathrm{det}(\mathbf{B}^{\star\top}\mathbf{B}^\star)|} = \sqrt{|\mathrm{det}(\mathbf{B}^\top\mathbf{B})|} = \mathrm{det}(L).$$

Note however that **T** is not necessarily integral: \mathbf{B}^* is not necessarily a basis of L! And yet, we will see that $\mathcal{P}(\mathbf{B}^*)$ is also a tiling of L.

For any non-zero vector \mathbf{v} , we denote by $\pi_{\mathbf{v}}^{\perp}: \mathbf{x} \mapsto \mathbf{x} - \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\|\mathbf{v}\|_2^2} \mathbf{v}$ the projection orthogonally to \mathbf{v} .

Theorem 2 Let L be a rank k lattice, and $\mathbf{v} \in L$. Then, $\pi_{\mathbf{v}}^{\perp}(L)$ is a lattice of rank k-1.

PROOF: Because $\pi_{\mathbf{v}}^{\perp}$ is linear, $L' = \pi_{\mathbf{v}}^{\perp}(L)$ is a group. To prove that it is discrete, we claim that any $\mathbf{x} \in \pi_{\mathbf{v}}^{\perp}(L)$ has a pre-image $\mathbf{y} \in L$ such that $|\langle \mathbf{y}, \mathbf{v} \rangle| \leq \frac{1}{2} \|\mathbf{v}\|^2$; i.e. there exists a pre-image of \mathbf{x} in $\mathbf{x} + [-1/2, 1/2) \cdot \mathbf{v}$. Indeed, consider an arbitrary pre-image \mathbf{y}' of \mathbf{x} , and set $k = \left\lfloor \frac{\langle \mathbf{y}', \mathbf{v} \rangle}{\|\mathbf{v}\|^2} \right\rfloor \in \mathbb{Z}$, and set $\mathbf{y} = \mathbf{y}' - k\mathbf{v}$.

If L' were not discrete, it would contain infinitely many distinct points in the unit ball \mathfrak{B} . Each of them can be lifted to a distinct point of L in the body $\mathfrak{B} + [-1/2, 1/2] \cdot \mathbf{v}$, which is a bounded: this would imply that L is not discrete.

Regarding the rank, we note the inclusion $\operatorname{Span}_{\mathbb{R}}(L') \subset \pi^{\perp}_{\mathbf{v}}(\operatorname{Span}_{\mathbb{R}}(L))$. Since $\mathbf{v} \in \operatorname{Span}_{\mathbb{R}}(L)$, the dimension of $\pi^{\perp}_{\mathbf{v}}(\operatorname{Span}_{\mathbb{R}}(L))$ is k-1, so the rank of L' is at most k-1. We also note that $\operatorname{Span}_{\mathbb{R}}(L') + \mathbf{v} \cdot \mathbb{R} \supseteq \operatorname{Span}_{\mathbb{R}}(L)$, hence the rank of L' is at least k-1. \square

The process by which we chose a particular lift \mathbf{y} of \mathbf{x} in the segment $\mathbf{x} + [-1/2, 1/2) \cdot \mathbf{v}$ will be central in many algorithms to follow, referred to as the **nearest plane method** or as **size-reduction**. Note that in general, such a lift may not be unique. This can happen if \mathbf{v} is not *primitive* with respect to L, that is if \mathbf{v} is an integral multiple of another vector $\mathbf{v} = j \cdot \mathbf{w}$ for some integer j > 1. This is in fact, the only exception to uniqueness.

DEFINITION 3 (PRIMITIVE VECTOR) A non-zero vector \mathbf{v} in a lattice L is said primitive (with respect to L) if $(\mathbf{v} \cdot \mathbb{R}) \cap L = \mathbf{v} \cdot \mathbb{Z}$. Equivalently, it is primitive if $\frac{1}{i}\mathbf{v} \notin L$ for any integer j > 1.

LEMMA 4 A vector \mathbf{v} in a lattice L is primitive if and only if \mathbf{v} is part of some basis of L.

PROOF: Let **B** be a basis of *L* with $\mathbf{b}_1 = \mathbf{v}$. Let *j* be a positive integer such that $\mathbf{w} = \frac{1}{j}\mathbf{v}$ is in *L*. Because $\mathbf{w} \in L$, we can write $\mathbf{w} = \mathbf{B} \cdot \mathbf{x}$ for some non-zero integer vector $\mathbf{x} \in \mathbb{Z}^n$. It can also be written as $\mathbf{w} = \mathbf{B} \cdot (1/j, 0, \dots, 0)$; because **B** is non singular this implies $\mathbf{x} = (1/j, 0, \dots, 0)$, and therefore that j = 1.

Reciprocally, let \mathbf{v} be primitive, and let \mathbf{B}' be a basis of $L' = \pi_{\mathbf{v}}(L)$. Let \mathbf{b}_i be a pre-image in L of \mathbf{b}_i' for each $i \in \{1, \ldots, n-1\}$. We claim that setting $\mathbf{b}_n = \mathbf{v}$ makes $\mathbf{B} = (\mathbf{b}_1, \ldots, \mathbf{b}_n)$ into a basis of L. By construction, all the \mathbf{b}_i belong to L so \mathbf{B} generates a sublattice S of L. Furthermore, S and L have the same rank, so any vector \mathbf{w} of L writes as $\mathbf{B} \cdot \mathbf{x}$ for some *real* vector $\mathbf{x} \in \mathbb{R}^n$; we need to prove that \mathbf{x} is in fact integer. Note that $\pi_{\mathbf{v}}(\mathbf{w}) = \sum_{i=1}^{n-1} x_i \mathbf{b}_i'$, and that it belongs to L', hence the x_i 's are all integers for $i \in \{1 \ldots n-1\}$. Substracting $\sum_{i=1}^{n-1} x_i \mathbf{b}_i$ from \mathbf{w} , we get that $\mathbf{B} \cdot (0,0,\ldots,0,x_n)$ belongs to L, that is $x_n \cdot \mathbf{v} \in L$: by primitivity of \mathbf{v} , x_n is an integer. Hence \mathbf{B} is indeed a basis of L. \square

2 The Nearest Plane Algorithm and the $\mathcal{P}(\mathbf{B}^{\star})$ Tiling

LEMMA 5 Let **v** be a primitive vector of a lattice L, define $L' = \pi_{\mathbf{v}}^{\perp}(L)$, and let T' be a tiling of L'. Then $T = T' + [-1/2, 1/2) \cdot \mathbf{v}$ is a tiling of L.

PROOF: Let us shorten $\pi_{\mathbf{v}}^{\perp}$ as π . We start by showing that T is covering for L. Any target $\mathbf{t} \in \operatorname{Span}_{\mathbb{R}}(L)$ as $\mathbf{t} = t_1\mathbf{v} + \mathbf{t}'$ where $\mathbf{t}' = \pi(\mathbf{t}) \in \operatorname{Span}_{\mathbb{R}}(L')$. Because T' is covering for L', \mathbf{t}' can be written as $\mathbf{t}' = \mathbf{e}' + \mathbf{w}'$ for some $\mathbf{e}' \in T'$ and $\mathbf{w}' \in L'$. Let $\mathbf{w}'' \in L$ be a pre-image of \mathbf{w}' for π , in particular $\mathbf{w}'' = \mathbf{w}' + w_1\mathbf{v}$ for some $w_1 \in \mathbb{R}$. Unrolling, we have:

$$\mathbf{t} = t_1 \mathbf{v} + \mathbf{t}'$$

$$= t_1 \mathbf{v} + \mathbf{e}' + \mathbf{w}'$$

$$= (t_1 - w_1) \mathbf{v} + \mathbf{e}' + \mathbf{w}''$$

$$= \underbrace{((t_1 - w_1) - \lfloor t_1 - w_1 \rceil) \cdot \mathbf{v}}_{\in [-1/2, 1/2) \cdot \mathbf{v}} + \underbrace{\mathbf{e}'}_{\in T'} + \underbrace{\lfloor t_1 - w_1 \rceil \cdot \mathbf{v} + \mathbf{w}''}_{\in L}$$

and we conclude that $T = T' + [-1/2, 1/2) \cdot \mathbf{v}$ is covering for L.

We now prove that T is packing for L. Let $\mathbf{t} \in \operatorname{Span}_{\mathbb{R}}(L)$ and let $\mathbf{e} + \mathbf{f} + \mathbf{w} = \mathbf{e}' + \mathbf{f}' + \mathbf{w}' = \mathbf{t}$ were $\mathbf{e}, \mathbf{e}' \in T'$, $\mathbf{f}, \mathbf{f}' \in [-1/2, 1/2) \cdot \mathbf{v}$ and $\mathbf{w}, \mathbf{w}' \in L$. Note that $\pi(\mathbf{t}) = \mathbf{e} + \pi(\mathbf{w}) = \mathbf{e}' + \pi(\mathbf{w}')$ where $\pi(\mathbf{w}), \pi(\mathbf{w}') \in L'$. Since T' is L' packing we have that $\mathbf{e} = \mathbf{e}'$ and that $\pi(\mathbf{w}) = \pi(\mathbf{w}')$. The kernel of π over L is $(\mathbb{R} \cdot \mathbf{v}) \cap L$, which by primitivity is exactly $\mathbf{v} \cdot \mathbf{Z}$, so $\mathbf{w} - \mathbf{w}' \in \mathbb{Z} \cdot \mathbf{v}$. Furthermore, $\mathbf{f} - \mathbf{f}' = \mathbf{w} - \mathbf{w}'$, and $\mathbf{f} - \mathbf{f}' \in (-1,1) \cdot \mathbf{v}$; noting that $(-1,1) \cdot \mathbf{v} \cap \mathbb{Z}\mathbf{v} = \{\mathbf{0}\}$ we conclude that $\mathbf{f} = \mathbf{f}'$ and $\mathbf{w} = \mathbf{w}'$. That is, T is indeed packing. \square

Corollary 6 Let **B** be a basis of L; then $\mathcal{P}(\mathbf{B}^*)$ is a tiling of L.

PROOF: We proceed by induction on the dimension. The base case when n=1 is immediate since then $\mathbf{B}^{\star}=\mathbf{B}$. Denote $\pi=\pi_{\mathbf{b}_1}$ and let $\mathbf{C}=(\pi(\mathbf{b}_2),\ldots,\pi(\mathbf{b}_n))$ be a basis of $L'=\pi(L)$. Our inductive assumption is that $\mathcal{P}(\mathbf{C}^{\star})$ is tiling for $\pi(L)$. By Lemma 5, we have that $\mathcal{P}(\mathbf{C}^{\star})+[-1/2,1/2)\cdot\mathbf{b}_1$ is tiling for L. It remains to note that $\mathbf{b}_1^{\star}=\mathbf{b}_1$ and that $\mathbf{b}_{i+1}^{\star}=\mathbf{c}_i^{\star}$ to conclude that $\mathcal{P}(\mathbf{B}^{\star})=\mathcal{P}(\mathbf{C}^{\star})+[-1/2,1/2)\cdot\mathbf{b}_1$ is tiling. \square

An important remark is that $\mathcal{P}(\mathbf{B}^*)$ can be characterized as follow:

$$\mathbf{e} \in \mathcal{P}(\mathbf{B}^*) \Leftrightarrow \langle \mathbf{e}, \mathbf{b}_i^* \rangle / \|\mathbf{b}_i^*\|_2^2 \in [-1/2, 1/2) \text{ for all } i.$$
 (1)

This characterization is a special case of the argument used in the proof of Lemma 7 from the previous lecture, using the property that \mathbf{B}^* has orthogonal columns, as in the claim below.

CLAIM 7 If $\mathbf{M} \in GL_n(\mathbb{R})$ has orthogonal columns, then $\mathbf{M}^{-1} = \mathbf{D}^{-1} \cdot \mathbf{M}^{\top}$ where \mathbf{D} is a diagonal matrix with $d_{i,i} = \|\mathbf{m}_i\|_2^2$.

PROOF: Note that **M** having orthogonal columns is equivalent to $\mathbf{M}^{\top} \cdot \mathbf{M}$ being diagonal. \square

In this case, defining $\mathbf{C} = (\mathbf{B}^{\star - 1})^{\top}$, we have $\mathbf{C} = (\mathbf{D}^{-1} \cdot \mathbf{B}^{\star \top})^{\top} = \mathbf{B}^{\star} \cdot \mathbf{D}^{-\top} = \mathbf{B}^{\star} \cdot \mathbf{D}^{-1}$ and conclude that $\mathbf{c}_i = \mathbf{b}_i^{\star} / \|\mathbf{b}_i\|_2^2$.

```
Algorithm 1: NearestPlane (\mathbf{B}, \mathbf{t}): Nearest Plane Algorithm (Babai)

Input: A basis \mathbf{B} \in \mathbb{Q}^{n \times n} of a full rank lattice \Lambda, a target \mathbf{t} \in \operatorname{Span}_{\mathbb{R}}(L).

Output: \mathbf{v} \in L such that \mathbf{e} = \mathbf{t} - \mathbf{v} \in \mathcal{P}(\mathbf{B}^*)

Compute the GSO \mathbf{B}^* of \mathbf{B}

\mathbf{v} \leftarrow \mathbf{0}

\mathbf{e} \leftarrow \mathbf{t}

for i = n \ down \ to \ 1 \ d\mathbf{o}

\begin{vmatrix} k \leftarrow \lfloor \langle \mathbf{e}, \mathbf{b}_i^* \rangle / \| \mathbf{b}_i^* \|^2 \rceil

\mathbf{v} \leftarrow \mathbf{v} + k \mathbf{b}_i

\mathbf{e} \leftarrow \mathbf{v} - k \mathbf{b}_i

end
```

LEMMA 8 Algorithm 1 is correct and runs in polynomial time.

return v

PROOF: For correctness, we consider various invariants of the **for** loop. First, the equation $\mathbf{v} + \mathbf{e} = \mathbf{t}$ is true at initialization and maintained at each iteration. Secondly, $\mathbf{v} = \mathbf{0}$ at initialization so $\mathbf{v} \in L$, and it remains in L during the loop as we only add integer combination of basis vectors.

We now prove that $\mathbf{e} \in \mathcal{P}(\mathbf{B}^*)$ at the end of the algorithm. By construction of k, and noting that $|\langle \mathbf{b}_i, \mathbf{b}_i^* \rangle| = \|\mathbf{b}_i^*\|^2$, it holds that $|\langle \mathbf{e}, \mathbf{b}_i^* \rangle| / \|\mathbf{b}_i^*\|^2 \in [-1/2, 1/2)$ at the end of iteration i. Furthermore, the inner product $\langle \mathbf{e}, \mathbf{b}_i^* \rangle$ is unaffected by the operation $\mathbf{e} \leftarrow \mathbf{v} - k\mathbf{b}_j$ at later stages of the loop j < i because $\mathbf{b}_j \perp \mathbf{b}_i^*$ (note crucially that the loop goes by **decreasing** indices i).

We conclude that by the end of the algorithm, it holds that $|\langle \mathbf{e}, \mathbf{b}_i^* \rangle| / \|\mathbf{b}_i^*\|^2 \in [-1/2, 1/2)$ for all i, which, by the characterization (1) implies $\mathbf{e} \in \mathcal{P}(\mathbf{B}^*)$.

Regarding polynomial running time, the algorithm, including the GSO process itself, requires $O(n^3)$ operations over \mathbb{Q} , but it remains to analyze how large the numerators and denominators at hand are. We refer the interested reader to Micciancio's Lecture notes.¹

 $^{^{1}}$ https://cseweb.ucsd.edu/classes/wi10/cse206a/lec2.pdf

Inner and Outer Radii of $\mathcal{P}(\mathbf{B}^*)$. Because orthogonal projections and GSO are intimately tied to the Euclidean metric, we will only consider inner and outer radius in the ℓ_2 norm.

For the outer radius we claim that:

$$\mu^{(2)}(\mathcal{P}(\mathbf{B}^{\star})) = \frac{1}{2} \sqrt{\sum_{i=1}^{n} \|\mathbf{b}_{i}^{\star}\|_{2}^{2}}.$$
 (2)

Indeed, because the \mathbf{b}_i^{\star} are orthogonal we have Euclidean additivity: $\|\mathbf{B}^{\star} \cdot \mathbf{x}\|_2^2 = \sum x_i^2 \cdot \|\mathbf{b}_i^{\star}\|_2^2$. Now since $\mathcal{P}(\mathbf{B}^{\star}) = \mathbf{B}^{\star} \cdot [-1/2, 1/2)^n$, the result follows.

At last, using Lemma 7 from the previous lecture and the characterization of orthogonal parallelepiped (1) we can cumpute the inner-radius:

$$\nu^{(2)}(\mathcal{P}(\mathbf{B}^{\star})) = \frac{1}{2} \min_{i=1}^{n} \|\mathbf{b}_{i}^{\star}\|_{2}.$$
 (3)