Linear Analysis Homework 9

Michael Nelson

Throughout this homework, let \mathcal{H} be a separable Hilbert space.

Problem 1

Proposition 0.1. Let $T: \mathcal{H} \to \mathcal{H}$ be a compact positive self-adjoint operator. Then T = |T|, and consequently the eigenvalues of T coincide with the singular values of T.

Proof. Choose an orthonormal eigenbasis (e_n) of T with $Te_n = \lambda_n e_n$ for all $n \in \mathbb{N}$ (this exists since T is compact and self-adjoint). Then (e_n) is an orthonormal basis consisting of eigenvectors of $T^2 = T^*T$ with $T^2e_n = \lambda_n^2e_n$ for all $n \in \mathbb{N}$. Then since $\lambda_n \geq 0$ for all $n \in \mathbb{N}$ (since T is positive and self-adjoint), we have

$$|T|x = \sum_{n=1}^{\infty} s_n \langle x, e_n \rangle e_n$$

$$= \sum_{n=1}^{\infty} \sqrt{\lambda_n^2} \langle x, e_n \rangle e_n$$

$$= \sum_{n=1}^{\infty} \lambda_n \langle x, e_n \rangle e_n$$

$$= Tx$$

for all $x \in \mathcal{H}$. It follows that T = |T|, and consequently $s_n = \lambda_n$ for all $n \in \mathbb{N}$.

Problem 2

Proposition o.2. Let (e_n) be an orthonormal basis for \mathcal{H} . Define $T: \mathcal{H} \to \mathcal{H}$ by

$$T(x) = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \langle x, e_n \rangle e_n.$$

for all $x \in \mathcal{H}$. Then $T: \mathcal{H} \to \mathcal{H}$ is compact but not Hilbert-Schmidt.

Remark. For this problem, I decided to prove this in an arbitrary separable Hilbert space than just $\ell^2(\mathbb{N})$.

Proof. We first show T is compact. For each $k \in \mathbb{N}$, define $T_k \colon \mathcal{H} \to \mathcal{H}$ by

$$T_k(x) = \sum_{n=1}^k \frac{1}{\sqrt{n}} \langle x, e_n \rangle e_n$$

for all $x \in \mathcal{H}$. First note that for each $k \in \mathbb{N}$, the operator T_k is bounded and has finite rank, and hence must be compact. Moreover, we have $||T - T_k|| \to 0$ as $k \to \infty$. Indeed, let $\varepsilon > 0$ and let $x \in B_1[0]$ (so $\sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2 \le 1$).

Choose *K* ∈ \mathbb{N} such that $1/K < \varepsilon$. Then $k \ge K$ implies

$$||Tx - T_k x||^2 = \left\| \sum_{n=k+1}^{\infty} \frac{1}{\sqrt{n}} \langle x, e_n \rangle e_n \right\|^2$$

$$= \sum_{n=k+1}^{\infty} \left| \frac{\langle x, e_n \rangle}{\sqrt{n}} \right|^2$$

$$= \sum_{n=k+1}^{\infty} \frac{|\langle x, e_n \rangle|^2}{n}$$

$$\leq \frac{1}{K} \sum_{n=k+1}^{\infty} |\langle x, e_n \rangle|^2$$

$$\leq \frac{1}{K}$$

$$\leq \varepsilon$$

This implies $||T - T_k|| \to 0$ as $k \to \infty$. Thus (T_k) is a sequence of compact operators such that $||T - T_k|| \to 0$ as $k \to \infty$. Therefore T is compact.

To see that *T* is not Hilbert-Schmidt, observe that

$$\sum_{n=1}^{\infty} ||Te_n||^2 = \sum_{n=1}^{\infty} ||\frac{1}{\sqrt{n}}e_n||^2$$
$$= \sum_{n=1}^{\infty} \frac{1}{n}$$

is the harmonic series which does not converge.

Problem 3

Problem 3.a

Proposition 0.3. Let $T: \mathcal{H} \to \mathcal{H}$ be a self-adjoint operator and let λ be an eigenvalue of T. Then $|\lambda| \leq ||T||$.

Proof. Choose an eigenvector x corresponding to the eigenvalue λ . By scaling if necessary, we may assume ||x|| = 1. Then

$$||T|| = \sup\{|\langle Ty, y \rangle| \mid ||y|| \le 1\}$$

$$\geq |\langle Tx, x \rangle|$$

$$= |\langle \lambda x, x \rangle|$$

$$= |\lambda|.$$

Problem 3.b

Lemma 0.1. Let $T: \mathcal{H} \to \mathcal{H}$ be a compact operator. Then |||T||| = ||T||.

Proof. Combining problem 5 on HW5 and problem 6.b on HW6, we have

$$|||T|||^2 = |||T|^2||$$

= $||T^*T||$
= $||T||^2$.

It follows that ||T|| = |T| since the norm of an operator is nonnegative.

Proposition 0.4. Let $T: \mathcal{H} \to \mathcal{H}$ be a compact operator and let s be a singular value of T. Then we have $0 \le s \le ||T||$.

Proof. Clearly we have $s \ge 0$ by definition. Combining Lemma (0.1) and Proposition (0.3) gives us

$$|s| \le |||T|||$$
$$= ||T||.$$

Problem 3.c

Proposition o.5. Let $T: \mathcal{H} \to \mathcal{H}$ be a compact operator. Let (s_n) be the sequence of singular values of T. Then $||T||_{HS} = \sqrt{\sum_{n=1}^{\infty} s_n^2}$.

Proof. Let (x_n) be an orthonormal basis for T^*T . Then

$$||T||_{HS} = \sqrt{\sum_{n=1}^{\infty} ||Tx_n||^2}$$

$$= \sqrt{\sum_{n=1}^{\infty} \langle Tx_n, Tx_n \rangle}$$

$$= \sqrt{\sum_{n=1}^{\infty} \langle T^*Tx_n, x_n \rangle}$$

$$= \sqrt{\sum_{n=1}^{\infty} \langle s_n^2 x_n, x_n \rangle}$$

$$= \sqrt{\sum_{n=1}^{\infty} s_n^2}.$$

Problem 4

Proposition o.6. Let $T: \mathcal{H} \to \mathcal{H}$ be a compact self-adjoint operator. Then $T^2 + T + 1$ cannot be the zero operator.

Proof. Choose an orthonormal eigenbasis (e_n) of T with $Te_n = \lambda_n e_n$ for all $n \in \mathbb{N}$. Assume for a contradiction that $T^2 + T + 1 = 0$. Then

$$0 = (T^2 + T + 1)e_n$$

$$= \sum_{n=1}^{\infty} (\lambda_n^2 + \lambda_n + 1) \langle e_n, e_n \rangle e_n$$

$$= (\lambda_n^2 + \lambda_n + 1)e_n,$$

which implies $\lambda_n^2 + \lambda_n + 1 = 0$ for all $n \in \mathbb{N}$. Therefore $\lambda_n = \pm e^{2\pi i/3}$ for all $n \in \mathbb{N}$, but this contradicts the fact that the λ_n must be real.

Problem 5

Proposition 0.7. Let $T: \mathcal{H} \to \mathcal{H}$ be a compact operator. Then there exists a sequence $T_n: \mathcal{H} \to \mathcal{H}$ of operators with finite dimensional range such that $||T_n - T|| \to 0$ as $n \to \infty$.

Proof. Let T = U|T| be the polar decomposition of T. Choose a sequence (S_n) of bounded operators with finite dimensional range such that $||S_n - |T||| \to 0$ as $n \to \infty$ (such a sequence exists by problem 6 HW8). Then for each $n \in \mathbb{N}$, the operator $T_n := US_n$ has finite dimensional range since S_n has finite dimensional range. Moreover we have $||T - T_n|| \to 0$ as $n \to \infty$. Indeed, let $\varepsilon > 0$. Choose $N \in \mathbb{N}$ such that $n \ge N$ implies $||T| - S_n|| < \frac{\varepsilon}{||U||}$. Then $n \ge N$ implies

$$||T - T_n|| = ||U|T| - US_n||$$

$$= ||U(|T| - S_n)||$$

$$= ||U||||T| - S_n|||$$

$$< ||U|| \frac{\varepsilon}{||U||}$$

$$= \varepsilon$$