B1-CLAT3-18MAB101T-Calculus and Linear Algebra

pp0783@srmist.edu.in Switch account

Draft saved

Your email will be recorded when you submit this form

* Required

PART-A(30*1=30 marks)Answer all the questions

Choose the correct answer

If
$$u_n=\sqrt{\frac{n}{n+1}}.x^n$$
 then $u_{n+1}=$ A) $\sqrt{\frac{n}{n+1}}.x^{n+1}$ B) $\sqrt{\frac{n}{n+2}}.x^n$ C) $\sqrt{\frac{n+1}{n+2}}.x^{n+1}$ D) $\sqrt{\frac{n+1}{n+2}}.x^n$

A)
$$\sqrt{\frac{n}{n+1}} \cdot x^{n+1}$$

B)
$$\sqrt{\frac{n}{n+2}} x^n$$

C)
$$\sqrt{\frac{n+1}{n+2}} x^{n+1}$$

D)
$$\sqrt{\frac{n+1}{n+2}} \cdot x^n$$

In De'Alembertz ratio test if $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=l$ then the series is----- if l<1.

- A) absolutely convergent B) convergent C) divergent D) Conditionally convergent
- A
- (E
- \bigcirc c

*

The locus of the ultimate points of intersection of consecutive members of a family of curves is called the-----of the family of curves.

- A) Evolute B) envelope C) locus D) curvature
- O A
- E
- 0
- () D

The intrinsic formula for radius of curvature is

A) $\rho = \frac{d\psi}{ds}$ B) $\rho = \frac{ds}{d\psi}$ c) $\rho = c.\frac{d\psi}{ds}$ D) $\rho = r.\frac{ds}{d\psi}$

- (A
- (E
- \bigcirc

þ

 $\Gamma(n).\Gamma(1-n) =$

A) $\frac{\pi}{\cos{(n\pi)}}$ B) $\frac{\pi}{\sec{(n\pi)}}$ C) $\frac{\pi}{\sin{(n\pi)}}$ D) $\frac{\pi}{\csc{(n\pi)}}$

- A
- O B
- 0
- \bigcap D

Recurrence formula for Gamma function is

 $\mathsf{A})\Gamma(n+1) = n\Gamma(n) \quad \mathsf{B})\ \Gamma(n-1) = n\Gamma(n) \quad \mathsf{C})\ \Gamma(n) = n\Gamma(n) \quad \mathsf{D})\ \Gamma(1-n) = n\Gamma(n)$

- \bigcirc D

The value of $\Gamma(\frac{1}{2})$ is

A)
$$\sqrt{\pi}$$
 B) $\sqrt{\frac{\pi}{2}}$ C) $\sqrt{\frac{\pi}{4}}$ D) $\sqrt{\frac{\pi}{3}}$

C)
$$\sqrt{\frac{\pi}{4}}$$

D)
$$\sqrt{\frac{\pi}{3}}$$

Ratio test fails when $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}$ is

A)< 1 B)> 1 C)equal to 1 D) equal to 0

- A
- B
- () C
- O D

*

The curvature of a circle of radius a is

- A) a B)∞
- C)0
- D)1/a

- O A
- O E
- 0
- D

$$\lim_{n\to\infty}\frac{n+1}{2n+7}=$$

A) 1 B)1/2 C)1/7 D)∞

- A
- B
- O 0

*

An absolutely convergent series is also

A) convergent B) divergent C) conditionally convergent D) conditionally divergent

- A
- (E
- 0
- O D

*							
The evolute of a cycloid is							
A) a circle	B) a cycloid	C) an ellipse	D) a parabola				
O A							
B							
O c							
OD							

The series $\sum u_n$ is convergent while $\sum |u_n|$ is not convergent is called

- A) absolutely convergent B) convergent C) divergent D) Conditionally convergent
- A
- B
- () C

*

If $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = ex$ then ratio test fails if x is

- A) $<\frac{1}{e}$ B) equal to e C)equal to $\frac{1}{e}$ D) $>\frac{1}{e}$
- () A

- \bigcap D

The definite integral $\int_0^\infty e^{-x} x^{n-1} dx$ represents

- A) $\beta(m+1,n)$ B) $\Gamma(n+1)$ C) $\Gamma(n)$ D) $\beta(m,n)$

The nth term of the series $1 - \frac{1}{2^p} + \frac{1}{3^p} - \frac{1}{4^p} + \dots$ For p> 0 is

- A) $\frac{n}{n^p}$ B) $\frac{1}{(n+1)^p}$ C) $\frac{1}{n^p}$ D) $\frac{n}{(n+1)^p}$

- \bigcirc D

$$\frac{B(m,n+1)}{n}$$
=

- A) $\frac{B(m,n+1)}{m+1}$ B) $\frac{B(m+1,n)}{n}$ C) $\frac{B(m,n+1)}{m}$ D) $\frac{B(m+1,n)}{m}$

If κ is the curvature of the curve then the radius of curvature ρ is equal to

- A) $\frac{\alpha}{\kappa}$ B) $\frac{1}{\kappa}$ C) $\frac{1}{r}$ D) $\alpha \kappa$

The number of evolutes for a given curve is

A)1 B)2 C) 3 D)∞

A

B

C

C

D

The radius of curvature at any point of a circle is equal to its

A) area B) diameter C) circumference D) radius

A

O c

The value of $\lim_{n\to\infty} \frac{1}{(1+\frac{1}{n})^n}$ is

- A) $\frac{1}{e}$ B) e^2 C) e D) $\frac{1}{e^2}$
- A
- B
- O 0

×

The series $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ represents

- A) $\log(1+x)$ b) $\log(1-x)$ C) e^{x} D) e^{-x}
- (A
- () B
- O D

 $\sum \frac{1}{n}$ is -----while $\sum \frac{1}{n^2}$ is convergent.

A) convergent B) divergent C) neither convergent nor divergent D) bounded

- A
- B
- O 0

y

The nth term of the series $\frac{3}{1^2 2^2} + \frac{5}{2^2 3^2} + \frac{7}{3^2 4^2} + \cdots + to \infty$ is

A)
$$\frac{2n+1}{(n+1)^2}$$
 B) $\frac{2n+1}{n(n+1)^2}$ C) $\frac{2n+1}{n^2(n+1)^2}$ D) $\frac{2n+3}{n^2(n+1)^2}$

- A
- () B
- \bigcap D

The Parametric formula for radius of curvature is

- A) $\frac{({x'}^2 + {y'}^2)^{1/2}}{x'y'' y'x''}$ B) $\frac{({x'}^2 + {y'}^2)^{3/2}}{x'y'' y'x''}$ C) $\frac{({x'}^2 + {y'}^2)^{2/3}}{x'y'' y'x''}$ D) $\frac{({x'}^2 + {y'}^2)^{3/2}}{x'y'' + y'x''}$

The geometric series $1+x+x^2+x^3+...+\infty$ is convergent for

- A) |x| > 1 B) |x| = 1 C) |x| < 1 D) |x| = -1

The radius of curvature at the point (0,3) on x+y=3 is

- A)3 b) 0 C) ∞ D) $\frac{1}{3}$

If $\sum u_n$ is convergent then $\lim_{n\to\infty}u_n$ =

- A) 0 B)1 C) n
- D) ∞

*				
		ns x= a secθ, y= C)Hyperbola	= b tanθ represent the cu D)Parabola.	irve
(A			Con T Nov January Contract Co	
ОВ				
C				
O D				
Back	Next			Clear form

Never submit passwords through Google Forms.

This form was created inside of SRM Institute of Science and Technology. Report Abuse

Google Forms