

Data Mining -- Special Data Mining

Instructor: Jen-Wei Huang

Office: 92528 in the EE building jwhuang@mail.ncku

Mining Data Streams

- Data streams: continuous, ordered, changing, fast, huge amount
- Characteristics
 - Huge volumes of continuous data, possibly infinite
 - Fast changing and requires fast, real-time response
 - Data stream captures nicely our data processing needs of today
 - Random access is expensive—single scan algorithm (can only have one look)
 - Store only the summary of the data seen thus far
 - Most stream data are at pretty low-level or multidimensional in nature, needs multi-level and multidimensional processing

Data Stream Applications

- Telecommunication calling records
- Business: credit card transaction flows
- Network monitoring and traffic engineering
- Financial market: stock exchange
- Sensor, monitoring & surveillance: video streams, RFIDs
- Security monitoring
- Web logs and Web page click streams

Challenges

- Queries are often continuous
 - Evaluated continuously as stream data arrives
 - Answer updated over time
- Queries are often complex
 - Beyond element-at-a-time processing
 - Beyond stream-at-a-time processing
 - Beyond relational queries (scientific, data mining, OLAP)
- Multi-level/multi-dimensional processing and data mining
 - Most stream data are at low-level or multi-dimensional in nature

Methodologies

- Methodology
 - Synopses (trade-off between accuracy and storage)
 - Use synopsis data structure, much smaller (O(logk N) space) than their base data set (O(N) space)
 - Compute an approximate answer within a small error range (factor ϵ of the actual answer)
- Major methods
 - Random sampling
 - Histograms
 - Sliding windows
 - Multi-resolution model
 - Sketches
 - Radomized algorithms

Data Mining & Social Network Analysis 2021/03/24

5

Wavelet Transform

Graph Mining

- Modeling
- Circuits
- Images
- Chemical compounds
- Biological networks
- Social networks
- Web structures

Data Mining & Social Network Analysis 2021/03/24

7

Categories

- Frequent subgraph patterns
- Graph classification
- Graph clustering
- Indices building
- Similarity search

Definition

- A graph g is a subgraph of another graph g' if there exists a subgraph isomorphism from g to g'.
- Given a labeled graph data se $D = \{G_1, G_2, \ldots, G_n\}$, support(g) is the percentage of graphs in D where g is a subgraph
- A frequent graph is a graph whose support is no less than *min_sup*.

_

Example

Subgraphs:

Frequency = 2 Frequency = 3

* Example from Han's book

Methods

- Apriori-based method
 - AGM, FSG, path-join method
- Pattern-growth method
 - gSpan

11

Apriori-based Method

- AprioriGraph(D, min_sup , S_k)
 - 1. $S_{k+1} \leftarrow \Psi$
 - 2. For each size (k+1) graph g formed by merging frequent g_i and g_i in S_k
 - 3. If g is frequent in D and g is not in S_{k+1}
 - 4. Insert g into S_{k+1}
 - 5. If $S_{k+1} != \psi$
 - 6. Apriori(D, min_sup , S_{k+1});
 - 7. Return;

Algorithm AGM

- AGM uses vertex-based candidate generation.
- ▶ Two size-k frequent graphs are joined if they have the same size-(k-1) subgraph
- > Size is the number of vertices in the graph.

Data Mining & Social Network Analysis 2021/03/24

13

AGM join

Algorithm FSG

- FSG adopts edge-based candidate generation.
- Two size-k frequent graphs are merged if they share the same subgraph having (k-1) edges, which is called the core.
- > Size is the number of edges in the graph.

Data Mining & Social Network Analysis 2021/03/24

15

FSG merge

Edge-disjoint path method

- A subgraph with k+1 disjoint paths is generated by joining subgraphs with k disjoint paths.
- Two paths are edge-disjoint if they do not share any common edge.

17

Pattern-Growth Method

- PatternGrowth(g, D, min_sup, S)
 - 1. If g is in S then return;
 - 2. Else insert g into S;
 - 3. Scan D to find all the edges such that g can be extended to g_x^{\diamond} e
 - 4. For each frequent go_xe
 - 5. PatternGrowth(g⋄,e, *D*, *min_sup*, *S*)
 - 6. Return;

Graph Extension

- A graph g can be extended by adding a new edge e. The new graph is denoted by g⋄xe.
- If e introduces a new vertex, the new graph is denoted by g⋄_{xf}e, otherwise g⋄_{xb}e, where f or b indicates a forward or backward extension.

Duplicate Graph

- An n-edge graph can be extended from n different (n-1)-edge graphs.
- We call a graph that is discovered a second time a duplicate graph.
- The generation and detection of duplicate graph introduce huge overheads.
- gSpan algorithm is designed to remedy this problem.

gSpan Algorithm

- To traverse a graph, a starting vertex is randomly selected.
- The visited vertex set is expanded repeatedly until a full depth-first search tree is built.
- A DFS tree T of a graph G is called a DFS subscripting of G.

Example

Right-most path

- The root of T is set to v_0 and the last visited vertex is set to v_n .
- \mathbf{v}_{n} is called the right-most vertex.
- The path from v_0 to v_n is called the rightmost path.

Example

Right-most extension

- A new edge e can be added in two ways :
 - Link between the right-most vertex (backward extension)
 - Introduce a new vertex on the right-most path (forward extension)
- They are called right-most extension, denoted by G⋄re.

25

Example

Edge order

- Backward edges should appear before the forward ones of a vertex in the edge code.
- The forward edges are visited in the order of (0,1), (1,2), (1,3).
- A complete sequence is (0,1), (1,2), (2,0), (1,3).

Data Mining & Social Network Analysis 2021/03/24

27

DFS code

- ► Each edge is transformed into an edge code (i, j, I_i, I_(i,j), I_j).
- For a given edge order, we can obtain an DFS code for a subscripting of a graph g.

Example

Data Mining & Social Network Analysis 2021/03/24

29

Example

Edge order	(1)	(2)	(3)
0	(0,1,X,a,X)	(0,1,X,a,X)	(0,1,Y,b,X)
1	(1,2,X,a,Z)	(1,2,X,b,Y)	(1,2,X,a,X)
2	(2,0,Z,b,X)	(1,3,X,a,Z)	(2,3,X,b,Z)
3	(1,3,X,b,Y)	(3,0,Z,b,X)	(3,1,Z,a,X)

DFS Lexicographic Order

- **(**1)<(2)<(3)
- The subscripting that generates the minimum DFS code is called the base subscripting.
- According to the base subscripting, gSpan creates a lexicographic search tree.

31

Other Interesting Issues

- Mining variant and constrained substructure patterns
- Mining closed frequent substructures
- Mining alternative substructure patterns
- Constraint-based mining
- Mining approximate frequent substructures

Other Interesting Issues

- Mining coherent substructures
- Mining dense substructure
- Graph indexing, similarity search, classification and clustering

Data Mining & Social Network Analysis 2021/03/24

33

Social Network Analysis

Mining Biomedical Data

Data Mining & Social Network Analysis 2021/03/24

35

Text Mining

Web Mining

- Web usage mining
- Web contents mining
- Web structure mining

Multimedia Data Mining

- Progressive Image Search and Recommendation System
 - http://pisar.cse.yzu.edu.tw

References

- Slides from Prof. J.-W. Han, UIUC
- ▶ Slides from Prof. M.–S. Chen, NTU
- ▶ Slides from Prof. W.–Z. Peng, NCTU

