Engenharia de Computação Fundamentos de Programação

Aula 04 – Operadores Aritméticos

Prof. Muriel de Souza Godoi muriel@utfpr.edu.br

Operadores Aritméticos

- Permitem realizar "contas" com os valores das variáveis
- Operações são realizadas sempre entre operandos de mesmo tipo.
 - Se necessário, converte-se o operando para o tipo mais abrangente usado pelos operandos
- O resultado do cálculo será o mesmo tipo que os operandos.
- Valores Inteiros e Valores
 Flutuantes → conversão
 implícita de tipo int para float

Operador	Operação
+	Soma
-	Subtração
*	Multiplicação
1	Divisão
%	Resto
	Pré ou pós decremento
++	Pré ou pós incremento

Operadores Aritméticos

Exemplos:

```
n = 10+2;
n = a-3;
m = a*b;
n = a/2;
n = b%3;
//atribui, incrementa
m = C++;
//incrementa, atribui
m = ++c;
//atribui, decrementa
c = b - -;
```

Para pensar:

```
float n, m;
int a, b;
a = 10;
b = 3;
n = a/b;//qual resultado?
m = 3
n = a/m;// ?
n = (float) a/b;// ?
```

Casting: Possibilita determinar o tipo do resultado da operação. Caso contrário, o tipo de maior abrangência entre a ou b será usado

Precedência de Operadores

- Primeiro: Expressões entre parênteses
- Segundo: Operações de multiplicação e divisão (da esquerda para a direita)
- Terceiro: Operações de soma e subtração (da esquerda para a direita.

Exemplo:

```
v1 = (a * (c+d)) / (b * (e+f));
```

Precedência de Operadores

Exemplo:

$$v1 = (a * (c+d)) / (b * (e+f));$$

Ordem	Operação	Resultado
1 ^a	(c+d)	(2+3)=5
2 ^a	(e+f)	(1.2 + 4.3) = 5.5
3 ^a	(a * 1 ^a)	(1.5 * 5) = 7.5
4 ^a	(b * 2 ^a)	(4 * 5.5) = 22.0
5 ^a	3 ^a / 4 ^a	7.5 / 22.0 = 0.341
6 ^a	V1 = 5 ^a	V1 = 0.341

Exemplo: somar dois números

```
Real Valor1
      Real Valor2
      Real Soma
     Input Valor1
     Input Valor2
Soma = Valor1 + Valor2
    Output Soma
```

```
#include <stdio.h>
#include <stdlib.h>
float valor1 = 0;
float valor2 = 0;
float soma = 0;
int main(){
    valor1 = 5;
    valor2 = 6;
    soma = valor1 + valor2;
    printf("A soma é: %.2f\n", soma);
    return 0;
}//main
```

Exercícios

Desenvolva um programa que resolva o seguinte problema:

- 1) Escreva um programa para determinar a quantidade de litros de combustível gastos em uma viagem por um automóvel que faz 12 km/litro. Para isso, sabe-se que o tempo gasto na viagem é de 35 min e a velocidade média do automóvel é 80 km/h.
- 2) Uma conta de caderneta de poupança foi aberta com um depósito de R\$ 500,00. Imagine que esta conta é remunerada em 1% de juros ao mês. Qual será o valor da conta após três meses?

Para calcular potência, deve-se colocar a biblioteca #include <math.h> no começo do arquivo, e usar a função pow. Exemplo:

variavel = pow(base,expoente);

Exercícios

- 3) Faça um programa com 2 variáveis, A e B, onde A terá o valor 40 e B terá o valor -1. Imprima o valor de A+B, A-B, AxB e A/B. Em seguida, faça B incrementar de uma unidade e repita as 4 operações.
- 4) Tendo a Altura da pessoa definida como uma constante, calcule seu peso ideal utilizando a seguinte fórmula:
 - peso ideal = 72.7 x altura 58