Homework 1 – Due Tuesday, May 28th, 2024 09:00 pm

- Provide step-by-step explanations, not just answers. Answers without explanations will earn a small fraction of the points.
- Submit your solutions on Gradescope. Don't forget to include information about your collaborators (or say "Collaborators: none").

Problems

- 0. (**0 points**) The following steps are required to get you started in the course. Please complete them today.
 - (a) Make sure you are signed up on Piazza at https://piazza.com/bu/summer2024/cascs330s using your BU email address.
 - (b) Sign up on Gradescope using your BU email address and the code **PWDGPG**.
 - (c) Read and sign the Collaboration and Honesty Policy and submit it on Gradescope. We will be able to grade your homework only after you complete this step.
 - (d) (Nameplate) Please print out (or make by hand) a nameplate with your name and bring it to every lecture and lab. A template is available at the bottom of the course web page.
 - (e) Check out the course webpage: https://cs-people.bu.edu/januario/teaching/cs330/su24/index.html;
 - (f) Familiarize yourself with the homework template files at the bottom of the course webpage. Each problem must include a note about collaborators (even if you did the problem by yourself).

1. (Tracing Algorithms, 10 points)

Consider the following algorithm:

```
// A is an array of integers, indexed from 0 to n-1.
mystery( int A[] ){
   int i = 1
   while(i < A.length){
      int j = i
      while(j > 0 && A[j-1] > A[j]) {
        swap(A[j],A[j - 1])
        j = j - 1
      }
   i = i + 1
   }
}
```

- (a) Trace the run of the algorithm on the following inputs. You can draw a table showing the progress of the nested loop (the progress of the counters i, j) and the contents of the array A as the algorithm progresses. If the contents of A do not change, you can leave the corresponding cell blank.
 - A = [1, 2, 3, 4, 5]
 - A = [4, 1, 5, 3, 2]
 - A = [5, 4, 3, 2, 1]

Solution:

A = [1, 2, 3, 4, 5]:

i,j	4	3	2	1
1				
2				
3				
4				

A = [4, 1, 5, 3, 2]:

i,j	4	3	2	1
1				
2				
3				
4				

A = [5, 4, 3, 2, 1]:

i,j	4	3	2	1
1				
2				
3				
4				

(b) Brieny describe what the algorithm does in general. One word can be enough:
(c) For an input array A of length n , how many steps does the algorithm need to finish (in the worst case)? For simplicity, count the number of times the variable j is updated.
2. (Proof Techniques: Contradiction and Contraposition, 15 points) In this problem, let be a positive integer. You will prove the following claim using two different proof techniques.
Claim 1. If $3n + 2$ is odd, then n is odd.
(a) Prove the above claim by contradiction .
(b) Rewrite the contrapositive equivalent of the claim.
(c) Prove the claim you wrote in part (b). Please do not use a proof by contradiction in th question item because we want you to train on both techniques.

two children. Let T be a binary tree with n nodes and let L denote the set of leaves and I the sof nodes with exactly two children. Prove by induction that it's always true that $ I = L - 1$.	set
Hint: Start by writing down the statement you want to prove formally. Start by proving the bacase. Then, prove the inductive case by first identifying the inductive hypothesis.	se
Proof. Base case:	
Inductive Step:	
Inductive Hypothesis:	
Conclusion:	
In the inductive step, consider deleting a leaf node.	
When you dejete the node, what happens if the dejeted node is the only child? When you dejete the node, what happens if it has a sibling?	
(Programming Assignment, 10 points) Login to Vjudge and solve the programming assigment. You can choose either Pypy 3 or Python 3 as your language. No other programming language	

3. (Proofs by Induction, 15 points) A binary tree is a rooted tree in which each node has at most

will be accepted.