Analysis 2 W5-2 1 SPECTRUM

Analysis 2 W5-2

fat

March 21, 2024

1 Spectrum

Recall: $\mathcal{B}(X) = \mathcal{B}(X, X)$. If X is a Banach space then $\mathcal{B}(X)$ is a Banach space. I is the identity map from X to $X, I \in \mathcal{B}(X)$.

Definition 1. $\lambda \in \mathbb{C}$ is called an **eigenvalue** of T is \exists nonzero $x \in X$ called an **eigenvector**, such that $Tx = \lambda x$.

We will focus on the case that X is a Banach space and T is bounded. Open mapping theorem \Rightarrow

$$T - \lambda I$$
 invertible $\Leftrightarrow T - \lambda I$ bijective

Definition 2. $\lambda \in \mathbb{C}$ is called a **regular value** for T if $T - \lambda I$ is invertible.

$$\rho(T) = \{ \lambda \in \mathbb{C} : \lambda \text{ is a regular value for } T \}$$

$$\sigma(T) = \mathbb{C} \setminus \rho(T)$$

where $\rho(T)$ is called the **resolvent set** and $\sigma(T)$ the **spectrum** of T.

If λ is an eigenvalue of T then $\lambda \in \sigma(T)$. $(T - \lambda I)$ is not injective.) In finite dimensions, $S: X \to X$ injective $\Leftrightarrow S$ is surjective. NOT TRUE in infinite dimensions.

Example 1. Let $X = C^0([0,1])$. Consider

$$Tf(x) = xf(x) \ \forall x \in [0, 1], f \in C^0([0, 1]).$$

 $T \in \mathcal{B}(C^0([0,1])), ||T|| \leq 1$. If λ is an eigenvalue of T and φ is an eigenvector/eigenfunction, theen

$$x\varphi(x) = \lambda\varphi(x) \ \forall x \in [0,1]$$

$$\Rightarrow \varphi = 0$$

T does not have any eigenvalue! For $\lambda \in \mathbb{C} \setminus [0,1]$, the inverse of $T - \lambda I$ is

$$Sf(x) = \frac{f(x)}{x - \lambda}$$

Can check: $S \in \mathcal{B}(C^0([0,1]))$. If $\lambda \in [0,1]$, then the inverse of $T - \lambda I$ does not exist. Conclusion: T has no eigenvalues, but $\sigma(T) = [0,1], \rho(T) = \mathbb{C} \setminus [0,1]$.

Analysis 2 W5-2 1 SPECTRUM

What can we say about $\sigma(T)$?

Proposition 1 (Lemma). Let $T \in \mathcal{B}(X)$, where X is a Banach space. Then I - T is invertible if ||T|| < 1. (Want to prove that $(I - T)^{-1} = \sum_{k=0}^{\infty} T^k$.)

Proof.

By assumption, $\exists r \in (0,1)$ such that $||T|| \leq r$.

$$||T^k|| < ||T||^k < r^k$$

 $\Rightarrow \sum_{k} T^{k}$ converges in X (similar to the Weierstrass M-test).

$$(I-T)\sum_{k=0}^{\infty} T^k = \lim_{n \to \infty} \left((I-T)\sum_{k=0}^n T^k \right) = \lim_{n \to \infty} (I-T^{n+1}) = I$$

Similaraly,

$$\sum_{k=0}^{\infty} T^k(I-T) = I$$

So I - T is invertible with inverse $\sum_{k=0}^{\infty} T^k$.

Corollary 1. Suppose that $T \in \mathcal{B}(X)$. Then $\sigma(T)$ is compact in \mathbb{C} . In fact, $|\lambda| \leq ||T|| \ \forall \lambda \in \sigma(T)$.

Proof.

Let $\lambda \notin \sigma(T)$ ($\lambda \in \rho(T)$). Then $T - \lambda I$ is invertible. Want: If $\lambda' \approx \lambda$ then $T - \lambda' I$ is also invertible. Let $r = \|(T - \lambda I)^{-1}\|^{-1}$. Consider $S \in \mathcal{B}(T - \lambda I, r)$, a ball in $\mathcal{B}(X)$.

$$||I - (T - \lambda I)^{-1}S|| = ||(T - \lambda I)^{-1}(T - \lambda I - S)||$$

$$\leq ||(T - \lambda I)^{-1}|| ||T - \lambda I - S|| < \frac{1}{r} \cdot r = 1$$

By lemma, $(T - \lambda I)^{-1}S$ is invertible $\Rightarrow S$ is invertible $\Rightarrow \rho(T)$ is open $\Rightarrow \sigma(T)$ is closed. If $|\lambda| > ||T||$, then $I - \lambda^{-1}T$ is invertible. ($||T/\lambda|| < 1$ and by lemma.) $I - \lambda^{-1}T$ invertible $\Rightarrow \lambda I - T$ is invertible $\Rightarrow \lambda \in \rho(T)$. If $\lambda \in \sigma(T)$, then $|\lambda| \leq ||T||$. $\Rightarrow \sigma(T)$ is bounded $\Rightarrow \sigma(T)$ is compact.

Is $\sigma(T) \neq \phi \ \forall T \in \mathcal{B}(X)$? Yes, but the proof relies on complex analysis.

Theorem 1 (Liouville's Theorem). If $f: \mathbb{C} \to \mathbb{C}$ is complex analytic, and if f is bounded then f is a constant.

Theorem 2. Let $T \in \mathcal{B}(X)$, X Banach space over \mathbb{C} . Then

- (a) For each $\Lambda \in \mathcal{B}(X)^*$, the function $\varphi(\lambda) = \Lambda(\lambda I T)^{-1}$ is analytic in $\rho(T)$.
- (b) $\sigma(T) \neq \phi$.

Proof.

Analysis 2 W5-2 1 SPECTRUM

(a) Fix $\lambda_0 \in \rho(T)$. It suffices to show that we can represent φ as a power series in λ around λ_0 .

$$\lambda I - T = \lambda_0 I - T + (\lambda - \lambda_0) I$$

$$= (I + (\lambda - \lambda_0)(\lambda_0 I - T)^{-1})(\lambda_0 I - T)$$

$$" \Rightarrow "(\lambda I - T)^{-1} = (\lambda_0 I - T)^{-1} (I + (\lambda - \lambda_0)(\lambda_0 I - T)^{-1})^{-1}$$

Consider

$$(\lambda_0 I - T)^{-1} \sum_{k=0}^{\infty} (-1)^k (\lambda_0 I - T)^{-k} (\lambda - \lambda_0)^k$$

 $\|(\lambda - \lambda_0)(\lambda_0 I - T)^{-1}\| < 1$ happens when

$$|\lambda - \lambda_0| < \|(\lambda_0 I - T)^{-1}\|^{-1}$$

For such a λ , the power series converges, and it converges to $(\lambda I - T)^{-1}$.

For $\Lambda \in \mathcal{B}(X)^*$,

$$\varphi(\lambda) = \sum_{k=0}^{\infty} (-1)^k \Lambda((\lambda_0 I - T)^{-k-1}) (\lambda - \lambda_0)^k$$

This series converges when $|\lambda - \lambda_0| < \|(\lambda_0 I - T)^{-1}\|^{-1}$. So φ is analytic at λ_0 .

(b) We first show that $\varphi(\lambda) \to 0$ as $|\lambda| \to \infty$ for any $\Lambda \in \mathcal{B}(X)^*$. We expand φ "at ∞ ".

$$(\lambda I - T)^{-1} = \frac{1}{\lambda} (I - \lambda^{-1} T)^{-1} = \frac{1}{\lambda} \sum_{k=0}^{\infty} \lambda^{-k} T^k$$

This series makes sense when $|\lambda| > ||T||$.

$$|\varphi(\lambda)| = |\Lambda(\lambda I - T)^{-1}| \le \frac{1}{|\lambda|} \sum_{k=0}^{\infty} |\lambda|^{-k} |\Lambda T^k|$$

Note that

$$|\lambda|^{-k}|\Lambda T^k| \leq \frac{\|\Lambda\|\|T^k\|}{|\lambda|^k} \leq \|\Lambda\| \left(\frac{\|T\|}{\lambda}\right)^k < \|\Lambda\|$$

Thus

$$|\varphi(\lambda)| \leq \frac{C\|\Lambda\|}{|\lambda|} \to 0 \text{ as } |\lambda| \to \infty$$

If $\sigma(T) = \phi$, then φ is analytic over \mathbb{C} . Moreover, it is bounded. By Liouville's theorem, $\varphi(\lambda) = 0 \ \forall \lambda \in \mathbb{C}$. $\Rightarrow \Lambda(\lambda I - T)^{-1} = 0 \ \forall \lambda \in \mathbb{C}, \ \forall \Lambda \in \mathcal{B}(X)^*$. By Hahn-Banach,

$$(\lambda I - T)^{-1} = 0 \ \forall \lambda \in \mathbb{C}$$

Impossible! So $\sigma(T) \neq \phi$.

Definition 3. Let $T \in \mathcal{B}(X)$. The spectral radius of T is

$$r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$$

Analysis 2 W5-2 2 HILBERT SPACE

We know $0 \le r(T) \le ||T||$.

Theorem 3 (Spectral Radius Formula). If X is a Banach space over \mathbb{C} and if $T \in \mathcal{B}(X)$, then

$$r(T) = \lim \sup_{n \to \infty} (\|T^n\|)^{\frac{1}{n}}$$

Remark 1. Can replace $\limsup_{n\to\infty}$ by $\lim_{n\to\infty}$.

$$||T^{m+n}|| \le ||T^m|| ||T^n||$$

$$\log \|T^{m+n}\| \le \log \|T^m\| + \log \|T^n\|$$

$$\lim_{n\to\infty}\frac{\log\|T^n\|}{n}=\inf_{n\geq 1}\frac{\log\|T^n\|}{n}$$

By Fekete's lemma, $\lim_{n\to\infty} (\|T^n\|)^{\frac{1}{n}}$ exists and equals $\inf_{n>1} (\|T^n\|)^{\frac{1}{n}}$.

Proof of Theorem.

For $|\lambda| > \limsup_{n \to \infty} (||T^n||)^{\frac{1}{n}}, \exists \delta \in (0,1) \text{ and } n_0 \text{ such that}$

$$|\lambda|(1-\delta) > (||T^n||)^{\frac{1}{n}} \ \forall n \ge n_0$$

$$\Leftrightarrow \frac{\|T^n\|}{|\lambda|^n} < (1-\delta)^n \ \forall n \ge n_0$$

 $\Rightarrow (1/\lambda) \sum_{k=0}^{\infty} \lambda^{-k} T^k = (\lambda I - T)^{-1} \text{ converges.} \Rightarrow \lambda \in \rho(T). \Rightarrow r(T) \leq \limsup_{n \to \infty} (\|T^n\|)^{\frac{1}{n}}. \text{ On the other hand, if } |\lambda| > \|T\|, \text{ then } \lambda \in \rho(T). \text{ For } \Lambda \in \mathcal{B}(X)^*, \varphi(\lambda) = \Lambda(\lambda I - T)^{-1} = \sum_{k=0}^{\infty} \frac{\Lambda T^k}{\lambda^{k+1}} \text{ holds } \forall |\lambda| > \|T\|. \varphi \text{ is analytic on } \rho(T). \Rightarrow \varphi(\lambda) \text{ is analytic if } |\lambda| > r(T). \text{ So } \varphi(\lambda) = \sum_{k=0}^{\infty} \text{ still holds } \forall |\lambda| > r(T). \Rightarrow \text{ for each such } \lambda, \left(\frac{\Lambda T^k}{\lambda^{k+1}}\right)_k \text{ is bounded for each } \Lambda \in \mathcal{B}(X)^*.$

$$\frac{\Lambda T^k}{\lambda^{k+1}} = \frac{\tilde{T^k}\Lambda}{\lambda^{k+1}}$$

where $\tilde{T}^k \in \mathcal{B}(X)^{**}$ is the canonical identification. We have $\left(\frac{\tilde{T}^k}{\lambda^{k+1}}\right)_k$ is bounded pointwise. By the uniform boundedess principle, $\exists M > 0$ such that

$$\frac{\|T^k\|}{|\lambda|^{k+1}} = \left\| \frac{\tilde{T^k}}{\lambda^{k+1}} \right\| \le M \ \forall k$$

$$\Rightarrow \limsup_{n \to \infty} (\|T^n\|)^{\frac{1}{n}} \le |\lambda|$$

$$\Rightarrow \limsup_{n \to \infty} (\|T^n\|)^{\frac{1}{n}} \le r(T)$$

2 Hilbert Space

A Hilbert space is a Banach space whose norm is induced by an inner product.

Analysis 2 W5-2 2 HILBERT SPACE

Example 2. • ℓ^2 is an inner product space with

$$\langle x, y \rangle = \sum_{j=1}^{\infty} x_j \overline{y_j}$$

This is well-defined by Cauchy-Schwarz. Can also define sequences over integers:

$$\ell^{2}(\mathbb{Z}) = \{x = (x_{n})_{n \in \mathbb{Z}} : \sum_{n = -\infty}^{\infty} |x_{n}|^{2} < \infty \}$$

$$\langle x, y \rangle = \sum_{n=-\infty}^{\infty} x_n \overline{y_n}$$

• The inner product of $L^2(\mathbb{R})$ is given by

$$\langle f, g \rangle = \int_{\mathbb{R}} f(x) \overline{g(x)} dx$$

We say two vectors x, y are orthogonal if $\langle x, y \rangle = 0$. Define a norm by using inner product:

$$||x|| = \sqrt{\langle x, x \rangle}$$

Check:

- $(x,y) \mapsto \langle x,y \rangle$ is continuous from $X \times X$ to \mathbb{C} .
- If $(X, \langle \cdot, \cdot \rangle)$ is an inner product space, and if $(X', \|\cdot\|')$ is a completion of $(X, \|\cdot\|)$, where $\|\cdot\|$ is the norm induced by $\langle \cdot, \cdot \rangle$, then \exists an inner product $\langle \cdot, \cdot \rangle'$ on X' such that it induces $\|\cdot\|'$.

A complete inner product space is called a Hilbert space.

Proposition 2 (Parallelogram law). If $\|\cdot\|$ is induced by an inner product then $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$.

Example 3. (a) On \mathbb{C}^n , $n \geq 2$, $\|\cdot\|_{[}$ is induced from an inner product $\Leftrightarrow p = 2$. Take x = (1, 1, 0, ..., 0) and y = (1, -1, 0, ..., 0). $\|x\|_p = 2^{1/p} = \|y\|_p$. $\|x + y\|_p = 2 = \|x - y\|_p$. Parallelogram law holds only when p = 2.

(b) The sup norm on $C^0([0,1])$ is not from an inner product. Take f(x)=1, g(x)=x.

Remark 2. Polarization identity:

$$\operatorname{Re}\langle x, y \rangle = \frac{1}{4}(\|x + y\|^2 - \|x - y\|^2), \operatorname{Im}\langle x, y \rangle = \frac{1}{4}(\|x + iy\|^2 - \|x - iy\|^2)$$

Theorem 4. Let K be a nonempty closed, convex, proper subset of a Hilbert space. Let $x_0 \in X \setminus K$. Then $\exists ! x^* \in K$ such that

$$||x_0 - x^*|| = \inf_{x \in K} ||x - x_0||$$

Proof.

Let (x_n) be a minimizing sequence:

$$||x_0 - x_n|| \to \inf_{x \in K} ||x - x_0|| =: d$$

Analysis 2 W5-2 2 HILBERT SPACE

Claim. (x_n) is Cauchy.

Proof.

$$||x_n - x_m||^2 = ||x_n - x_0 + x_0 - x_m||^2$$
//-gram law
$$-||x_n - x_0 + x_m - x_0||^2 + 2(||x_n - x_0||^2 + ||x_m - x_0||^2)$$

$$= -4 \left| \left| \frac{x_m + x_n}{2} - x_0 \right| \right|^2 + 2(||x_n - x_0||^2 + ||x_m - x_m||^2)$$

$$\leq -4d^2 + 2(||x_n - x_0||^2 + ||x_m - x_0||^2)$$

Since $(x_m + x_n)/2 \in K$,

$$\to -4d^2 + 2(d^2 + d^2) = 0$$

So $x^* = \lim_{n \to \infty} x_n \in K$ exists. Norm is continuous $\Rightarrow d = ||x_0 - x^*||$. Uniqueness: exercise.

6