

(11) Veröffentlichungsnummer:

0 173 951 A2

12

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 85110757.3

(f) Int. Cl.4: A 61 K 39/44 A 61 K 37/54

(22) Anmeldetag: 27.08.85

30 Priorität: 06.09.84 DE 3432714

49 Veröffentlichungstag der Anmeldung: 12.03.86 Patentblatt 86/11

Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI LU NL SE

(7) Anmelder: BEHRINGWERKE Aktiengesellschaft Postfach 1140 D-3550 Merburg 1(DE)

(72) Erfinder: Boselet, Klaus, Dr. Ockershäuser Allee 5 D-3550 Marburg 1(DE)

(2) Erfinder: Sedlacek, Hans-Harald, Dr. Am Sonnenhang 3 D-3550 Marburg 1(DE)

(*4) Vertreter: Becker, Heinrich Karl Engelbert, Dr. et al, HOECHST AKTIENGESELLSCHAFT Central Patent Department P.O. Box 80 03 20 D-6230 Frankfurt am Main 80(DE)

(64) Tumortherapeutikum und Verfahren zu seiner Herstellung.

(37) Es wird ein Verfahren zur Herstellung eines Therapeutikums aus Tumorzellen zur Therapie von Tumorerkrankungen beschrieben. Darin werden entweder menschliche Tumorzellen, die Antigene tragen, welche von den in der deutschen Offenlegungsschrift 33 29 184 beschriebenen monoklonalen Antikörpern gebunden werden, getrocknet oder durch eine chemische Behandlung stabilisiert, oder es werden aus menschlichen Zellen mittels dieser monoklonalen Antikörper Antigene isoliert und zu einem Therapeutikum aufgearbeitet, wobei gegebenenfalls Neuraminidase zugegeben wird.

P 0 173 95'

Croydon Printing Company Ltd.

Applicants: Ron S. Israeli, et al.

Serial No. : 09/724,026 Filed: November 28, 2000

Exhibit 1

Tumortherapeutikum und Verfahren zu seiner Herstellung

Die Erfindung betrifft ein Verfahren zur Herstellung eines Therapeutikums aus Tumorzellen zur Therapie von Tumorerkrankungen sowie ein solches Therapeutikum.

5 Es ist beispielsweise aus "Mechanisms of Tumor Immunity, Gree et al., eds., John Wiley Sons, N.Y., 1977, Seite 196, bekannt, daß bereits versucht wurde, Tumorerkrankungen durch Impfen mit Tumorzellen, die durch Gefrieren und Auftauen, Lyophilisieren, Druck oder Homogenisieren 10 modifiziert waren, zu therapieren. Auch subzelluläre Fraktionen oder Zellextrakte wurden zu diesem Zweck verwendet.

Es ist jedoch bisher kein Impfstoff gegen eine Tumorerkrankung bekannt.

Wir haben überraschenderweise gefunden, daß lyophilisierte oder mit einem Aldehyd behandelte Zellen aus menschlichen Tumoren oder aus solchen gewonnene Zellaggregate,
die Antigene tragen, die von den in der deutschen Offenlegungsschrift 33 29 184 beschriebenen monoklonalen
Antikörper gebunden werden, als Therapeutikum zur Behandlung von Tumorerkrankungen benutzt werden können.

Gegenstand der Erfindung ist deshalb ein Therapeutikum

25 zur Behandlung einer Tumorerkrankung, enthaltend getrocknete oder durch eine chemische Behandlung stabilisierte menschliche Zellen, die Antigene tragen, welche
von den in der deutschen Offenlegungsschrift 33 29 184
beschriebenen monoklonalen Antikörpern gebunden werden.

15

10

Ein Vorteil eines solchen Therapeutikums gegenüber einer Verwendung von nativen Zellen besteht darin, daß native Zellen nicht stabil sind, so daß sie jeweils frisch hergestellt werden müssen. Sie können deshalb auch nicht 5 standardisiert werden.

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung eines Therapeutikums zur Behandlung einer Tumorerkrankung, dadurch gekennzeichnet, daß menschliche Tumorzellen, die Antigene tragen, welche von den in der deutschen Offenlegungsschrift 33 29 184 beschriebenen monoklonalen Antikörper gebunden werden, getrocknet oder durch eine chemische Behandlung stabilisiert und zu einem Therapeutikum aufgearbeitet werden, wobei gegebenenfalls Neuraminidase zugegeben wird. 15

Ferner ist Gegenstand der Erfindung ein Verfahren zur Herstellung eines Therapeutikums zur Behandlung einer Tumorerkrankung, dadurch gekennzeichnet, daß mittels eines in der deutschen Offenlequngsschrift 33 29 184 20 beschriebenen monoklonalen Antikörpers ein Antigen aus menschlichen Zellen isoliert und zu einem Therapeutikum aufgearbeitet wird, wobei gegebenenfalls Neuraminidase zugegeben wird.

25 Die Möglichkeit, eine Immunantwort durch Neuraminidase zu verstärken, ist aus der deutschen Offenlegungsschrift 26 20 649 bekannt.

30 Als Therapeutikum ist ein Mittel zu verstehen, das sowohl prophylaktisch als auch zur Behandlung einer manifesten Erkrankung geeignet sein kann.

Die im Rahmen der Erfindung verwendbaren Zellen werden nach bekannten Zellkulturverfahren aus Tumoren gewonnen. Auf mechanische oder enzymatische Weise aus solchen

Kulturen gewonnene, gegebenenfalls mit Mitomycin C inaktivierte Zellen werden getrocknet, vorzugsweise lyophilisiert, oder mit einem dem Fachmann als Stabilisierungsmittel für organische Gewebe bekannten Agenz, vorzugsweise einem Mono- oder Dialdehyd mit 1 bis 6 Kohlenstoffatomen, behandelt.

Zu den zur chemischen Stabilisierung und Fixierung besonders geeigneten Agenzien gehören besonders bifunk10 tionelle Verbindungen, also solche, die zwei Gruppen
enthalten, die mit funktionellen Gruppen auf dem biologischen Material reagieren - es also "vernetzen" können. Das sind beispielsweise Dialdehyde, besonders
aliphatische Dialdehyde mit 2-8 Kohlenstoffatomen. Dazu
sind jedoch auch geeignet Monoalkanale mit 1-4 Kohlenstoffatomen, wie Formaldehyd, der bifunktionell reagieren
kann, aber auch bifunktionelle Immunoester wie Suberomidat, Isocyanate oder Isothiocyanate.

- 20 Als Agenzien, die biologisches Material stabilisieren können, können auch sogenannte Gerbmittel dienen wie zum Beispiel Gerbsäure und ihre Derivate oder Chromsalze. Auch Sulfosalicylsäure ist geeignet.
- 25 Im allgemeinen liegen die Zellen als Zellklumpen oder als Einzelzellen vor. Es können auch aus den Tumorzellen isolierte Antigene oder Zellbruchstücke verwendet werden. Derartige Antigene können aus Tumorgewebe von Patienten wie aus humanen Tumoren, die in immundefizienten Tieren wachsen, gewonnen und verwendet werden.

Definierte Antigene werden mit den in der DOS 33 29 184 beschriebenen monoklonalen Antikörpern aus den Tumor-zellen oder Bruchstücken davon gewonnen.

0173951

Beispiele für derartige Antigene sind C A (carcinoembryonic antigen; J.exp.Med. (1965) 122, 467) oder NCA (nonspecific crossreacting antigen; J.Immun. (1973) III,
1926), welche mittels Immunaffinitätschromatographie aus

den Tumorzellen isoliert werden können. Hierzu werden
die in der Tabelle I in der deutschen Offenlegungsschrift
34 16 774 beschriebenen monoklonalen Antikörper als gereinigte Proteine kovalent an CNBr-aktivierte Sepharose
4B gebunden und die von diesen monoklonalen Antikörpern
erkannten Antigene (C A, NCA) aus D -TA Colonkarzinomzellextrakten isoliert. in geeignetes Verfahren ist im
Pharmacia Buch "Affinity Chromatography, Principles and
Methods", 12-18 (1979), zusammengefaßt auf Seite 15,
beschrieben.

15

20

Ein solches mittels monoklonaler Antikörper gewonnenes Antigen kann als Therapeutikum besipielsweise als Wirkstoff in Impfstoffen gegen eine Erkrankung, die durch die Tumorzellen verursacht wird, aus denen das Antigen gewonnen wurde, verwendet werden.

Die Qualitätskontrolle eines als Impfstoff zu benutzenden Materials wird beispielsweise durch Typisierung mit monoklonalen Antikörpern, oder durch Auftrennung der Gesamtzellproteine mittels SDS-Polyacrylamidgelelektrophorese oder isoelektrischer Fokussierung (1. Dimension) kombiniert mit SDS-Polyacrylamidgelelektrophorese (2. Dimension) mit nachfolgender Anfärbung des Gels (Silberfärbung) durchgeführt.

30

35

Das antigene Material wird bevorzugt in Kombination mit einem Adjuvans, besonders Neuraminidase (Deutsche Offenlegungsschrift 26 20 649), intradermal vorzugsweise nach dem Verfahren der Schachbrettvakzination (Cancer Immunol. and Immunother. 6, 47-58 (1979), spez. S.48) appliziert. Ein solcher Impfstoff wird vorzugsweise gegen bestimmte
Stadien des Colonkarzinoms (Duke C) sowie gegen andere
Tumoren eingesetzt, die Antigene oder pitope tragen,
welche im Impfstoff vorhanden sind. Solche anderen Tumoren sind solide Tumoren, beispielsweise Pankreaskarzinom, Magenkarzinome, Mammakarzinome und Lungenkarzinome.
Der Impfstoff kann parenteral oder oral verabreicht werden. Die Antigene können in physiologischer Kochsalzlösung gelöst oder suspendiert appliziert werden, vorzugsweise intradermal in PBS.

Als Qualitätskriterien für die Stabilität der Antigenzusammensetzung des Impfstoffs wurden zwei Tests durchgeführt:

a) Der Terasaki-IIF-Assay (indirekte Immunfluoreszenz 15 unter Verwendung von Tumorzellen, die in den Näpfchen der Terasaki-Mikrotiterplatte wachsen) mit monoklonalen Antikörpern verschiedener Spezifität. Mittels dieses Tests ist es möglich, die Expression von Membranantigenen auf intakten Tumorzellen zu messen, gegen die eine Reihe 20 monoklonaler Antikörper verfügbar sind (Cancer Detection and Prevention $\underline{6}$, 181-184, 1983). Hiermit ließen sich drastische Veränderungen auf der DE-TA-Zellmembran im Laufe der Kultivierung feststellen; b) Solubilisierung der Gesamtzellproteine durch ein Detergens (Hybridoma 1, 25 413-421, 1982) sowie nachfolgende SDS-Polyacrylamidgelelektrophorese kombiniert mit Silberfärbung (Anal. Biochem. 105, 361-363, 1980). Die Kombination dieser Techniken stellt sicher, daß keine signifikanten Veränderungen im Gesamtproteingehalt der DE-TA-Zellinie ein-30 getreten sind.

Die folgenden Beispiele erläutern die Erfindung.

Die Karzinomzellinie BW X wurde in Zellkultur als Monolayer wachsend in RPMI-1640-Medium (Moore, G.E., Ger-5 ner, R.E., Franklin, H.A., Culture of normal human leucocytes, J.A.M.A. 199, 519-524 (1967)) mit 10% foetalem Kälberserum in Plastikflaschen kultiviert. Die adhärent wachsenden Zellen konfluenter Kulturen wurden mechanisch oder mittels Trypsin, das in foetalem Kälberserum-freien 10 RPMI-1640-Medium gelöst war, abgelöst, die Kollagenase durch Zugabe von in RPMI-1640 gelöstem foetalen Kälberserum inaktiviert, anschließend die Zellen aus den Gewebekulturflaschen herausgelöst und 3 mal in 37°C warmer phosphatgepufferter Kochsalzlösung (PBS) gewaschen.

15

Etwa 107 Zellen, die größerenteils als Klumpen vorliegen, wurden 1 Stunde bei 37°C in 1 ml PBS, das 100 µg Mitomycin C enthält, inkubiert. Anschließend wurden die so inaktivierten Zellen 3 mal mit PBS gewaschen und 20 a) 3 mal in 0,18 molarem Ammoniumbicarbonat-Puffer, der mit Essigsäure auf pH 7,4 eingestellt worden war, gewaschen. Ein 107 Zellen entsprechendes Zellsediment wurde in 100 µl desselben Ammoniumbicarbonat-Puffers aufgenommen und bei -70°C gefroren. Anschließend wurde das gefrorene Material gefriergetrocknet und bei +4°C im Kühlschrank in einem luftdicht verschlossenen Glasfläschchen gelagert. Das so behandelte Zellmaterial kann, in PBS aufgenommen, in eine Vakzination am Patienten eingesetzt werden.

Alternativ wurde 30

b) 5 Minuten bei +4°C mit 0,1% Glutaraldehyd in PBS inkubiert, der überschüssige Glutaraldehyd durch 3 maliqes Waschen mit PBS entfernt, anschließend mit 2% BSA (Bovine Serum Albumin) für 5 Minuten bei +4°C inkubiert und 3 mal in PBS gewaschen. Die so behandelten Zellen können bei +4°C gelagert werden und in die Vakzination am Pa-

tienten eingesetzt werden.

Oder es wurde

c) bei 25°C in Formalin nach Lilly (Benno Romeis (1968), S. 65, Kap. 266, Oldenburg Verlag München) unter gelegentlichem Schütteln über Nacht inkubiert. Die Zellen (ca. 108) wurden zentrifugiert, der Überstand dekantiert (10 Minuten bei 800 g) und das Zellsediment in 7 ml doppelt destilliertem Wasser suspendiert (= 1-mal Waschen). Dieser Waschvorgang wurde in 1-stündigen Abständen 4-mal wiederholt. Anschließend wurde das Zellsediment 3-mal in 10 1-stündigen Abständen in je 7 ml 70%-igem Ethanol gewaschen. Anschließend wurde das Zellsediment 3-mal in 30minütigen Abständen in je 7 ml 80% igem Ethanol gewaschen. Anschließend wurde das Zellsediment 3-mal in 30-minütigen Abständen in je 7 ml 96%igem Ethanol gewaschen. Anschließend wurde das Zellsediment 3-mal in 30-minütigen 15 Abständen in je 7 ml 99%igem Ethanol gewaschen. Anschließend wurde das Zellsediment 3-mal in 30-minütigen Abständen in je 7 ml sterilem PBS gewaschen und steril bei 4°C aufbewahrt. Die so behandelten Zellen können bei 4°C gelagert werden und in die Vakzination am Patienten 20 eingesetzt werden.

Beispiel 2

25 Zur Isolierung von Antigenen mittels Immunaffinitätschromatographie aus Tumorzellen wurden gereinigte monoklonale Antikörper, die eindeutig mit Antigenen auf den als Impfstoff zu verwendenden Tumorzellen reagieren, kovalent an CNBr-aktivierte Sepharose 4B gebunden. Es wur-30 de nach dem Pharmacia Buch "Affinity Chromatography", Principles and Methods, 12-18 (1979), spez. S. 15, gearbeitet. Anschließend wurden die trägergebundenen monoklonalen Antikörper für 2 Stunden bei +4°C unter gelegentlichem Aufschütteln mit Zellsolubilisaten inkubiert.
35 Diese waren aus mechanisch von den Kulturflaschen abgelösten Kulturzellen mittels Lysispufferextraktion (5 g/1

Natriumdesoxycholat, 0,5 mmol/l PMSF = Phenylmethylsul-fonylfluorid, PBS, pH 8,3), wie in Hybridoma $\underline{1}$, 413-421 (1982), sp. auf Seite 414, beschrieben, gewonnen worden.

- Der beladene Träger wurde zentrifugiert und in Lysispuffer-SDS (20 mM Tris-HCl pH 8,0, 1 mmol/l DMSF, 5 g/l Nonidet P-40 (= octylphenyl ethylene oxide; Fluka AG), 5 g/l Natriumdeoxycholat, 1 mmol/l thylendiaminotetraacetat, 1 g/l Natriumdodecylsulfat (SDS)) zur Waschung
 - 10 suspendiert.

 Dieser Waschvorgang wurde 3-mal wiederholt. Anschließendwurde der Träger 2-mal in Lysispuffer ohne Zusatz von

 SDS gewaschen und anschließend 1-mal mit einem Waschpuffer (2 M Tris-HCl, pH 8,0, 10 mmol/l NaCl, 0,1 mmol/l
 - 15 EDTA, 0,5 g/l NP-40) gewaschen. Die so gereinigten Antigene wurden vom festen Träger entweder durch 5-minütiges Aufkochen bei +95°C oder durch Inkubation in 6 mol/l NH4SCN für 30 Minuten bei +4°C abgelöst.

Patentansprüche:

- Therapeutikum zur Behandlung einer Tumorerkrankung, enthaltend getrocknete oder durch eine chemische Behandlung stabilisierte menschliche Zellen, die Antigene tragen, welche von den in der deutschen Offenlegungsschrift 33 29 184 beschriebenen monoklonalen Antikörpern gebunden werden.
- Therapeutikum zur Behandlung einer Tumorerkrankung, enthaltend ein mittels eines in der deutschen Offenlegungsschrift 33 29 184 beschriebenen monoklonalen Antikörpers aus menschlichen Tumorzellen isoliertes Antigen.
- Therapeutikum nach Anspruch 1, dadurch gekennzeich net, daß es Neuraminidase enthält.
 - 4. Therapeutikum nach Anspruch 2, dadurch gekennzeichnet, daß es Neuraminidase enthält.
- 20 5. Verfahren zur Herstellung eines Therapeutikums zur Behandlung einer Tumorerkrankung, dadurch gekennzeichnet, daß menschliche Tumorzellen, die Antigene tragen, welche von den in der deutschen Offenlegungsschrift 33 29 184 beschriebenen monoklonalen Anti-
- körpern gebunden werden, getrocknet oder durch eine chemische Behandlung stabilisiert und zu einem Therapeutikum aufgearbeitet werden, wobei gegebenenfalls Neuraminidase zugegeben wird.
- 30 6. Verfahren zur Herstellung eines Therapeutikums zur Behandlung einer Tumorerkrankung, dadurch gekennzeichnet, daß mittels eines in der deutschen Offenlegungsschrift 33 29 184 beschriebenen monoklonalen Antikörpers ein Antigen aus menschlichen Zellen isoliert und zu einem Therapeutikum aufgearbeitet wird, wobei gegebenenfalls Neuraminidase zugegeben wird.