EECS 203: Discrete Mathematics Winter 2024 FOF Discussion 5a Notes

1 Induction

• Mathematical Induction: Mathematical Induction is a proof method used to prove a predicate P(n) holds for "all" $n \ge n_0$. Often "all" n is \mathbb{N} or \mathbb{Z}^+ , but the desired domain of n varies by problem. Mathematical induction consists of a base case and an inductive step, which proves: $[P(n_0) \land \forall k \ge n_0(P(k) \implies P(k+1))] \implies \forall n \ge n_0, P(n)$

• Induction Steps:

- Base Case: The part of the inductive proof which directly proves the predicate for the *first* value in the domain (generally n_0). The base case does not rely on P(k) for any other value of k. Often this will be P(0) or P(1)
- Inductive Hypothesis: The assumption we make at the beginning of the inductive step. The inductive hypothesis assumes that the predicate holds for some arbitrary member of the domain
- Inductive Step: The proof which shows that the predicate holds for the "next" value in the domain. The inductive step should make use of the inductive hypothesis.
- Exponent Product Rule: $b^n \cdot b^m = b^{n+m}$. Often useful in induction proofs involving exponents

1.1 Equality

Prove by induction that the following equality is true for all positive integers n.

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$$

Let P(n) be _____ = ____.

Inductive Step: We assume that P(k) is true for an arbitrary positive integer k such that $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{k\cdot (k+1)} = \frac{k}{k+1}$. It must be shown that $P(\underline{\hspace{0.2cm}})$ follows from this assumption.

Consider the LHS of P(k+1):

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k \cdot (k+1)} + \dots = \frac{k}{k+1} + \frac{1}{(k+1) \cdot ((k+1)+1)}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1) \cdot (k+2)}$$

$$= \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{(k+1)+1}$$

$$= \text{RHS of P(k+1)}$$

This shows that P(k+1) is true under the assumption that P(k) is true. Note that the equality in line 1 is true by ______.

Base Case:

Our base case of P(1) is true since ______.

Therefore, since P(1) and $\forall k[P(k) \rightarrow P(k+1)]$ are both true, then by mathematical induction, the claim is proven.

1.2 Bandar's Blunder \star

Bandar writes a proof for the following statement:

$$n! > n^2$$
 for all $n > 4$.

His proof is incorrect, and it's your task to help him identify his mistake!

Proof:

Inductive step:

Let k be an arbitrary integer ≥ 4 .

Assume $P(k): k! > k^2$. We need to show $P(k+1): (k+1)! > (k+1)^2$

$$(k+1)! = (k+1) \cdot k!$$

$$> (k+1) \cdot k^2$$

$$= (k+1)(k \cdot k)$$

$$\ge (k+1)(2 \cdot k)$$

$$= (k+1)(k+k)$$

$$\ge (k+1)(k+1)$$

$$= (k+1)^2$$
(By the Inductive Hypothesis)
(Because $k \ge 2$)
(Because $k \ge 1$)

This proves $(k+1)! > (k+1)^2$.

Base Case:

Prove
$$P(0): 0! > 0^2, 0! = 1 > 0^2 = 0$$

Thus by mathematical induction, $n! > n^2$ for all $n \ge 0$.

What is wrong with Bandar's proof?

1.3 Check Your Understanding

- a) If I wanted to show by induction that 3 divides $n^3 + 2n$ whenever n is a positive integer. What would I need to show?
- b) Prove by induction that 3 divides $n^3 + 2n$ whenever n is a positive integer.

$$Hint: (a+b)^3 = a^3 + 3ab(a+b) + b^3$$

1.4 Sum Mathematical Induction

Using induction, prove that for all integers $n \geq 1$:

$$\sum_{r=1}^{n} (r+1) \cdot 2^{r-1} = n \cdot 2^{n}$$

2 Exam Review

2.1 Satisfiability \star

Determine whether each of these compound propositions is satisfiable.

(a)
$$(p \vee \neg q) \wedge (\neg p \vee q) \wedge (\neg p \vee \neg q)$$

(b)
$$(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$$

2.2 Nested Quantifier Translations

Let P(x, y) be the statement "Student x has taken class y," where the domain for x consists of all students in your class and for y consists of all computer science courses at your school. Express each of these quantifications in English.

- a) $\exists x \exists y P(x, y)$
- b) $\exists x \forall y P(x, y)$
- c) $\forall x \exists y P(x, y)$
- $\mathrm{d}) \ \exists y \forall x P(x,y)$
- e) $\forall y \exists x P(x, y)$
- f) $\forall x \forall y P(x, y)$

2.3 English to Logic Translation

Define the following propositions:

- p: the user enters a valid password
- q: access is granted
- r: the user has paid the subscription fee

Express the following using p, q, r and logical operators

- a) the user has paid the subscription fee, but does not enter a valid password
- b) access is granted whenever the user has paid the subscriptoin fee and enters a valid password
- c) access is denied if the user has not paid the subscription fee
- d) if the user has not entered a valid password but has paid the subscription fee, then access is granted

2.4 Proof Practice

2.4.1 Proof I

Prove that the product of two odd numbers is odd.

2.4.2 Proof II

Prove that for all integers n, if $n^2 + 2$ is even, then n is even.

2.4.3 Proof III

Prove that for all integers x and y, if xy^2 is even, then x is even or y is even.

2.4.4 **Proof IV**

Prove or Disprove that for all integers $n, n^2 + n$ is even.

2.4.5 Proof V

Prove or Disprove that for all integers a and b, $\frac{a}{b}$ is a rational number.

2.5 Set Equality

Let A, B, and C be sets. Show that (A - B) - C = (A - C) - (B - C) by showing that either side is a subset of the other.

2.6 More Power Sets \star

Determine whether each of these sets is the power set of a set, where a and b are distinct elements.

- a) Ø
- b) $\{\emptyset, \{a\}\}$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$
- d) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

2.7 Inclusion–Exclusion Principle:

The inclusion-exclusion principle states the size of the union of two sets is equal to the sum or their sizes minus the size of their intersection:

$$|A \cup B| = |A| + |B| - |A \cap B|$$

A similar principle can be applied to obtain the following formula, for the cardinality of the union of three sets:

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap C|$$

2.8 Three sets

Suppose there is a group of 120 U of M students. Here's what you know:

- There are 31 in Engineering.
- There are 65 in LSA.
- There are 44 in Ross.
- There are 20 that are not in any of these 3 schools.
- There are 15 in Engineering and Ross.
- There are 17 in Engineering and LSA.
- There are 18 in LSA and Ross.

How many are in all 3 schools?