Имитационное моделирование работы троллейбусного маршрута №1 г. Калуги с целью повышения эффективности обслуживания пассажиров

Малынковский Олег БПМ-16-2

Актуальность

Работа калужского общественного транспорта вызывает справедливые нарекания у жителей

Определить способ улучшения показателей его работы

Троллейбусы

курсируют с известной интенсивностью λ , всего в распоряжении 7 троллейбусов, вмещают до 30 человек

Остановки

Есть 22 остановочных пункта, где люди ждут в очереди. Очередь неограничена, FIFO, уход по таймауту

Пассажиры

Появляются с известностью интенсивностью β, имеют желаемый пункт назначения

Постановка задачи

Необходимо найти:

• Среднее число заявок в очереди(людей, ожидающий транспорт на остановке)

• Среднее время пребывания заявки в очереди (время ожидания на остановочном пункте).

• Процент заявок, получивших отказ в обслуживании.

Когнитивная модель

Законы распределения

В соответствии с этим интервалы между транспортными средствами распределены по показательному закону вида:

$$F(t) = 1 - e^{-\lambda t},$$

где λ - средняя интенсивность потока троллейбусов.

Вероятность появления п пассажиров возьмем из распределение Пуассона :

$$P_n = P\{N = n\} = \frac{a^n}{n!}e^{-a}$$

где a- параметр распределения.

Работа с GIS-картой

Троллейбусное депо

Остановочный пункт

Водитель троллейбуса и пассажир

Schedule

Результат моделирования

16

Параметрический синтез

Avg_queue_time 27,438 измерений [10.035...19.971]. Среднее=15.771

E Avg_queue_time 22,721 измерений [10.03...19.932]. Среднее=14.762

Avg_queue_time 27,438 измерений [10.035...19.971]. Среднее=15.771

Avg_gueue_time 23,547 измерений [9.015...19.685]. Среднее=11.89

_

Спасибо за внимание