

Investigating the Validity of Ground Truth in Code Reviewer Recommendation Studies

۰

Emre Doğan, Eray Tüzün, K. Ayberk Tecimer, H. Altay Güvenir

MSc Student Computer Engineering Department Bilkent University

ESEM 2019 Porto de Galinhas, Brazil 19th August 2019

Outline

•

- 1 Introduction
 - Code Review and Code Reviewer
 - Code Reviewer Recommendation
 - Reviewer Selection
- 2 Ground Truth
 - Definitions
 - Problematical Reviewer Selection Scenario
 - Ideal Reviewer
- 3 Reasons of Non-Ideality
 - Availability Reasons
 - Cognitive Bias
- 4 Possible Reviewer Assignment Scenarios
- 5 Quantitative Evidence
- 6 Solution Alternatives
 - Expensive Setup in Real Life
 - Forward-Looking Mining
- 7 Conclusion & Future Work
- 8 References

What is Code Review, Who is a Code Reviewer?

Introduction • Code Review and Code Reviewer

Code Review: A systematic examination of source code in order to highlight bugs and enhance the code quality.

Code Reviewer: The developer performing a code review.

What is Code Review, Who is a Code Reviewer?

Introduction • Code Review and Code Reviewer

Code Review: A systematic examination of source code in order to highlight bugs and enhance the code quality.

Code Reviewer: The developer performing a code review.

What is Code Review, Who is a Code Reviewer?

Introduction • Code Review and Code Reviewer

Code Review: A systematic examination of source code in order to highlight bugs and enhance the code quality.

Code Reviewer: The developer performing a code review.

How to find an efficient code reviewer?

Introduction • Code Reviewer Recommendation

- Code reviewer recommendation models/tools help us to choose efficient reviewers.
- These tools help software teams:
 - to find reviewers who can find more(critical) bugs in the source code.
 - to speed up the code review process.

Reviewer Selection in Recommendation Models

Introduction • Reviewer Selection

Reviewer Selection in Real Life

Introduction • Reviewer Selection

Comparison of Real Life and Algorithms

Introduction • Reviewer Selection

Notice:

- There exists a discrepancy between real life and algorithm based reviewer selection process.
- This discrepancy creates a ground truth problem in code reviewer recommendation studies and datasets.

Ground Truth

Ground Truth . Definitions

Ground Truth:

- Factual data that has been observed or measured.
- If data stands on some assumptions, is subject to opinion, then it cannot be ground truth data.

Ground Truth in Software Engineering

- The more human aspects involved, the more tendency to the ground truth problems.
- Many fields of empirical software engineering research suffer from the ground truth problem. (i.e. code reviewer recommendation, bug report assignee recommendation, etc.)

Ground Truth

Ground Truth . Definitions

Ground Truth:

- Factual data that has been observed or measured.
- If data stands on some assumptions, is subject to opinion, then it cannot be ground truth data.

Ground Truth in Software Engineering:

- The more human aspects involved, the more tendency to the ground truth problems.
- Many fields of empirical software engineering research suffer from the ground truth problem. (i.e. code reviewer recommendation, bug report assignee recommendation, etc.)

Ground Truth

Ground Truth . Definitions

Ground Truth in Code Reviewer Recommendation Studies:

- Recommendation models rely on the real-life assignments.
- These assignments are assumed to be ideal.
- Studies in real-life projects show that code reviewers are not usually assigned with the aim of finding the ideal one.

Problematical Reviewer Selection Scenario

Ground Truth • Problematical Reviewer Selection Scenario

Problematical Reviewer Selection Scenario

Ground Truth • Problematical Reviewer Selection Scenario

Problematical Reviewer Selection Scenario

Ground Truth • Problematical Reviewer Selection Scenario

Who is an ideal reviewer?

Ground Truth . Ideal Reviewer

Ideal Reviewer:

The theoretical best possible reviewer in the team that would improve or preferably perfect (such as pointing out all the defects) the pull request under review.

Warning

- In our case, the selection of ideal reviewer is assumed to be completed by only technical factors.
- i.e. If a developer is considered as the ideal reviewer for a pull request but is not available for a review at that moment, he/she is still the ideal reviewer.

Who is an ideal reviewer?

Ground Truth • Ideal Reviewer

Ideal Reviewer:

The theoretical best possible reviewer in the team that would improve or preferably perfect (such as pointing out all the defects) the pull request under review.

Warning:

- In our case, the selection of ideal reviewer is assumed to be completed by only technical factors.
- i.e. If a developer is considered as the ideal reviewer for a pull request but is not available for a review at that moment, he/she is still the ideal reviewer.

What causes a non-ideal reviewer assignment?

Reasons of Non-Ideality • Availability Reasons

Availability Reasons:

The ideal reviewer might be...

- physically absent from work, so he/she cannot review the pull request.
- busy with some other tasks, so he/she declines to review the pull request.
- busy with some other tasks and is late to reply the review request.

What causes a non-ideal reviewer assignment?

Reasons of Non-Ideality • Cognitive Bias

Cognitive Bias:

Attribute Substitution:

It occurs when an individual has to make a judgment (of a target attribute) that is computationally complex, and instead substitutes a more easily calculated heuristic attribute.

The team leader prefers to assign...

- a volunteer for the review.
- a reviewer based on their work schedule.
- a new hire as a reviewer for educational purposes.
- a developer based on their relative response time to review requests.

Possible Reviewer Assignment Scenarios

Data, data, data...

Quantitative Evidence •

Without data, you're just another person with an opinion.

Dr. W. Edwards Deming

Quantitative Evidence from Real Life

Quantitative Evidence •

Project Name	Total Number of Pull Requests	Number of PRs with at least one non-responsive reviewer	The ratio of PRs having at least one non-responsive reviewer
Android	36,771	24,367	66%
LibreOffice	18,716	3,039	16%
Open Stack	108,788	24,589	23%
Qt	65,815	30,630	47%
TOTAL	230,090	82,625	36%

Table: An Analysis of Pull Request Reviews from 4 Large OSS Projects¹

Notice

The results illustrate that 36% of pull requests suffer from the availability reasons.

¹S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Matsumoto, "The impact of human factors on the participation decision of reviewers in modern code review," *Empirical Software Engineering*, vol. 24, no. 2,pp. 973–1016, 2019. pp. 973–1016; 2019. • O

Solution Alternatives

Solution Alternatives •

- Expensive Setup in Real Life
- Forward-Looking Mining

Expensive Setup in Real Life

Solution Alternatives • Expensive Setup in Real Life

Forward-Looking Mining

Solution Alternatives • Forward-Looking Mining

- If a bug is reopened, it is a potential indicator that the assigned reviewer was not the ideal reviewer for that pull request.
- Deleting these instances will increase the validity of the dataset.

Conclusion

Conclusion & Future Work •

- The validation of real-life collected datasets are problematic.
- This problem is valid for other software engineering tasks. (i.e. bug localization, developer recommendation etc.)
- As future work, we are planning to introduce quantitative evidence for cognitive bias and explore alternative solutions for this problem.

Future Work

Conclusion & Future Work •

- Introducing quantitative evidence for attribute substitution bias.
- Explore alternative solutions for this problem.

Any Questions

Conclusion & Future Work •

For any further, please contact me.

Emre Doğan
MSc Student
Department of Computer Engineering
Bilkent University
Ankara, Turkey
emre.dogan@bilkent.edu.tr

References I

References •