Topics and Sample Questions for EECS 302 Exam 1:

1. Topics: Sets, Cartesian Products, Relations and Functions

Sample Problem: Given $A = \{1, 2, 4, 7\}$ and $B = \{2, 4, 5\}$, check ALL boxes that are applicable in describing the following sets and briefly justify your answers

The set in each row represents	Relation	Function	Neither	Justification
V: {(1,2),(4,2},(7,5),(4,2)}	V			V C Ax3 (relation) but 2.EA is not mapped to B (not function)
W: {(1,2),(4,2),(2,5), (7,5)}	V			(I) C Ax R (soletime) and Ruch member of A has exactly one mess to B
X: {(1,2),(4,2),(2,3), (7,5)}			\checkmark	X & AXB (not a relation hance not a function) [Junction]
Y: {(1,2),(4,2),(2,4), (7,5), (4,4)}	V			YCAXB (relation) by 4 & A has two mapping in B (not a fundly)
Z: {(1,2),(4,2),(2,4), (7,5), (4,2)}	V	1		Z = A x B (relation) and each member of A has exactly one
				map to B (& function)

Topics: Statements (or propositions) and logical operators (~, ^, ∨, →, ↔); Using logical operators to create negation of a statement, compound statements, and conditional statements; Truth values, truth tables and logical equivalences; Informal language and formal Language

Sample Problems:

2.1 Use logical identities (logical equivalence laws such as Associative laws, Commutative laws, Distributive laws, De Morgan's laws, Double negative laws, Idempotent laws, Absorption laws, and logical identities involving \rightarrow and \leftrightarrow) to show logical equivalences of the following conditional statements: Let p, q, and r be proposition variables. Then

$$pV\sim q \rightarrow rvq \equiv (\sim p \wedge q) \vee (rvq) \equiv \operatorname{negation} \operatorname{of} \sim (\sim p \wedge q) \wedge (\sim r \wedge r \wedge q)$$

$$= (\sim p \wedge q) \vee (r \vee q)$$

$$= (\sim p \wedge q) \vee (r \vee q)$$

$$\sim (\sim (\sim p \wedge q) \wedge (\sim r \wedge \sim q)) \equiv \sim ((p \vee \sim q) \wedge (\sim r \wedge \sim q))$$

$$= (\sim p \wedge q) \wedge (\sim r \wedge \sim q) = (\sim (p \vee \sim q)) \vee (\sim r \wedge \sim q)$$

$$= (\sim p \wedge q) \wedge (\sim r \wedge \sim q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \vee q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

$$= (\sim p \wedge q) \vee (\sim r \wedge q)$$

2.2 Use a truth table to reconfirm the logical equivalence of the first two statements above

	,				-			- A	17 × \\ \
p	q	7	29	p /~9	2/9	play > rlg	~P	~P/19	(~P/2) V(2Vq)
T	T	T	F	T		T	F	F	Ť
T	T	F	F	T	7	不	É	F	T
Т	F	T	T	T	T	T	_ F	F	T
Т	F	F	T	T	F	F	F	F	F
F	T	T	F	F	T	T	工	T	T
F	T	F	F	F	T	T	T	T	T
F	F	T	T	T	T	T	_ T	F	T
F	F	F	T	T	F	F	ナ	F	F
*									
Same —									
1 1/2 = C = A L)/C = N									
	·· pV~q > 2 Vg = (~P/q)V(2Vg).								

 Topics: Arguments: Proof of validity using (1) Truth Tables or (2) Rules of Inference/Valid Argument Forms (namely Modus Ponens, Modus Tollens,, Generalization, Specialization, Elimination, Transitivity, Proof by Division into Cases, and Contradiction Rule)

Sample problems:

Given the following argument in informal language (English)

Sam is a CS major or an economics major.

If Sam is a CS major, Sam is required to take EECS 302

- ... Sam is an economics major or Sam is not required to take EECS 302
- 3.1 Write the above argument using formal language (using appropriate logical operators).

 Lit p & "Sam is a CS major"; q 4 "Sam is an Econ major"; r = "Sam takes EECS 302".

 ... Argument: p V q

 p > r

 ; q V~ r

3.2 Use appropriate rules of inference to deduce whether the argument is valid. (If you think it is invalid you can provide a case to show invalidity).

The argument is invalid some the ease of (p, nq, r) makes both premises but the eonelusion q V ~ r is false.

Although finding a ease to show invalidity of the argument suffices, we will show how to use the rules of inference to do this.

We will consider the case nq !: pVqWe have pVq nq nq

3.3 Use a truth table to confirm the conclusion found in 3.2.

p	q	r	pVq.	P -> 12	A-12	9 V~2
T	T	T	T	7"	F	T
T	T	F	7	F	T	
T	F	Т	T	Τ	F	(F) E -
T	F	F	T	F	T	
F	T	Т	T	Τ	F	T
F	T	F	T	T	T	T
F	F	T	F	T	F	
F	F	F	F	T	T	

This exitical line leads to false emclusion Hone the argument is invalid.

4. Topics: Quantified statements (including quantified conditional statements and multiplyquantified statements) and negation of quantified statements

Sample problem:

Consider the following (multiply quantified) statement S:

- $\forall e \in \mathbb{Z}^{+}, \exists m \in \mathbb{N} \text{ such that } \forall n \in \mathbb{N}, \text{ if } n \geq m, \text{ then } \forall x \in \mathbb{R}, [f_n(x) f(x)] < e.$
- 4.1. What is the negation of the statement S?

4.2 What is the contrapositive form of the statement S? (Hint: Just concentrate on the if-then part)

Topics: Relationships among: i) logical conditioning quantifiers \rightarrow and \leftrightarrow ; (ii) conditional informal language operators ("if", "only if" and "if and only if"); (iii) implicit quantifiers ⇒ and ⇔; and (iv) necessary conditions, sufficient conditions and necessary and sufficient conditions

Sample problems:

Let f(x) be a twice continuously differentiable real-valued function of a real variable x (i.e. the domain of f is R and the range (co-domain) of f is also R). The following results are well known:

- a) A necessary condition for a real x^* to be a minimizer of f is that $f'(x^*) = 0$ and $f''(x^*) \ge 0$
- b) A sufficient condition for a real x^* to be a strict local minimizer of f is that $f'(x^*) = 0$ and $f''(x^*) > 0$
- c) If f is a convex function, then a necessary and sufficient condition for a real x* to be a minimizer of f is that $f'(x^*) = 0$

Write each of the above statements in a formal form using first $(\rightarrow \text{ or } \leftrightarrow)$ then $(\Rightarrow \text{ or } \Leftrightarrow)$:

a)
$$\forall x \in R, x \text{ is a minimizer of } f(x) \rightarrow f'(x) = 0 \text{ and } f''(x) \ge 0$$

A real x is a minimizer of $f(x) \Rightarrow f'(x) = 0$ and $f''(x) \ge 0$

Now write similar formal statements for b) and c).

Now write similar formal statements for b) and c).

b)
$$\forall x \in \mathbb{R}$$
, $f(x) = 0$ and $f'(x) > 0 \longrightarrow x$ is a strict local minimizer of $f(x) = 0$ and $f'(x) > 0 \Longrightarrow x$ is a strict local minimizer of $f(x) = 0$ and $f'(x) > 0 \Longrightarrow x$ is a strict local minimizer of $f(x) = 0$.

c) $\forall x \in \mathbb{R}$, $f(x) = 0$ and $f'(x) = 0$ and $f'(x) = 0$.

c) $\forall x \in \mathbb{R}$, $f(x) = 0$ a minimizer of a convex function $f(x) = 0$.

The area $f(x) = 0$ is a minimizer of a convex function $f(x) = 0$.

It is often easier to prove the above results by a contrapositive proof.

What is the contrapositive form of the necessary condition in part a) above?

Contrapositive form of the necessary condition in parties in such that either $f(x) \neq 0$ or f'(x) < 0, x is not a minimiper of f(x)

5. Topics: Direct proof, counterexample, proof by contradiction, contrapositive proof

Sample problems:

- 5.1 Prove or disprove the following statements/claims formally and briefly justify each step in the body of your proof. Also clearly specify which method of proof you are using.
 - We will disprove the claim by showing a countrexample i.e will show

 Vinteger m > 4, 2m-5m+2 is not a prime.

 Since 2m-5m+2 = (2m-1)(m-2) and both (2m-1) and (m-2) are integers greater than 1

 : 2m-5m+2 is a composite. RED

 Jor all m > 4.

b) Claim: The difference between any odd integer and an even integer is odd

Let n be an odd number and m be an even number.

" n=2k,+1 and m=2k2 for some integers k, andk2 We will use a direct proof. : $n-m = 2k_1+1+2k_2 = 2(k_1-k_2)+1 = 22+1$ integer & carciom of algebra) in n-m in odd beg definition.

- c) Claim: If a sum of two real numbers is less than 70, then at least one of the numbers is less than 35. We will prove by a contrapositive proof Suppose x and y are real numbers greater than 35 ine x 7,35 and y 35. 1. x+47,35+35=70 .. The supposition is wrong .. At least one of x andy must be less than 35. DED
- d) Claim: If x and y are rational numbers with $y \neq 0$, and if z is an irrational number, then x + yzis irrational We will prove this by contradiction.

del x and y be rational numbers with y +0

i x = m and y = k for some integers m, n, k, l with n +0, k +0 +1 +0 Assume that x+42 is realized (where z is irrational)

 $\frac{\chi_{+} yz = \frac{2}{3} \text{ for some integers } z \text{ and } s \text{ with } s \neq 0}{m + kz = \frac{2}{3}} \cdot z = \left(\frac{2}{3} - \frac{m}{10}\right) \frac{1}{k} = \frac{\left(\frac{2}{3} - \frac{m}{10}\right) \frac{1}{k}}{\ln \log n} = \frac{M}{N}$ i z isrational

A contradiction since z is irrational : x+42 is irrational

5.2 Provide a brief justification for each claim made in the following body of proof

Theorem: There are infinitely many primes.

Proof:
Suppose there are finitely many prime with p being the largest prime.

Let M = p! + 1. Clearly every prime divides $p! \cdot A$ But none divides M (Due to a theorem which says if p|a, p|a. in a factor of p!

However, since M is an integer greater than 1, M is divisible by a prime Due to a theaun which says

Let q be a prime that divides M. So q > p. Because all prime p does not divide p is the greatest prime is false. Deannth p is the greatest prime is false. So the supposition that p is the greatest prime is false. p cannot be the largest prime. Thus, there must be infinitely many primes. Hence the theorem is proved.

6. Topics: Key results and concepts in Number Theory: the quotient-remainder theorem, div and mod, floor and ceiling, the uniqueness factorization theorem

Sample Problems:

6.1 For an odd integer n, show that $\left| \frac{n^2}{4} \right| = \left(\frac{n-1}{2} \right) \left(\frac{n+1}{2} \right)$

det n be an odd inliger $k = \frac{1}{4} = \frac{1}{4$. But k2+k = k(k+1) = 2k. 2k+2 = 2k+1-1 2k+1+1 = n-1. n+1

 $\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \left(\frac{n-1}{2}\right)\left(\frac{n+1}{2}\right).$

Since n mod 15 = 3, n = 15k+3 for some inleger k (By QR Therem) 6.2 Show that if $n \mod 15 = 3$, then $10n \mod 15 = 0$. = 10m = 150k+30 = (10k+2) 15+0 : 10m mod 15 = 0

6.3 If today is Tuesday, use the quotient-remainder theorem to find out the day of the week 127 days from now.

Let Tuesday = 0, Wednesday = 1, ..., Monday = 6 Let d be the day of the week 127 days from now (which is Tevesday) .: d = 127 mod 7 = 1

Thus 127 days from now will be Wednesday.

6.4 Find the smallest value of k such that $2^5.5^1.7^7.11^3.k$ is a perfect cube.

Note any other number k that will make the given number a perfect ceube will have to be larger than 2450 (by the unique factorization 2450 is the smallest sequised number. Theorem)