Aplicaciones de Machine Learning

Camilo Arias Martelo

Universidad Iberoamericana. Noviembre 28, 2019

Contenido

- 🚺 Introducción a *machine learning*
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

Nota sobre el material I

Este curso se basó en las siguientes clases:

- Machine Learning for Public Policy. Prof. Rayid Ghani. Computer Science, Universidad de Chicago. Primavera 2019.
- Introduction to Machine Learning. Prof. Kevin Gimpel. Toyota Institute of Technology, Universidad de Chicago. Otoño 2019.
- Big Data & Development Prof. Joshua Blumenstock. School of Information Universidad de California, Berkeley.

Nota sobre el material II

Principales textos fueron:

- Murphy, Kevin. (2012). Machine Learning: A Probabilistic Perspective. MIT press.
- Bishop, Christopher. (2006). Pattern Recognition and Machine Learning. Springer Science.
- Athey, Susan. (2018). The Impact of Machine learning on Economics.

Contenido

- Introducción a machine learning
- 2 Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

Machine Learning

Field of study that gives computers the ability to learn without being explicitly programmed (Arthur Samuel, 1959)

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E(Tom Mitchel, 1998)

¿Para qué?:

- Reducir el trabajo de un humano.
- Mejorar la precisión de los humanos.

Arthur Samuel, primer algoritmo de machine learning

- En 1959, mientras trabajaba en IBM, creó el primer programa que aprendió a jugar ajedrez.
- El programa venció al jugador 4 de Estados Unidos.

Usos comunes de machine learning

- Clasificar correo electrónico como spam o no spam.
- Publicidad: Predecir la probabilidad de compra para colocar ads.
- Reconocimiento facial o de lenguaje (Amazon Alexa)
- Finanzas: Predecir pago de préstamos.
- Clasificar imágenes https://cloud.google.com/ vision/#casos-prcticos

Supervised Learning

- ullet Dado un input X predecir un output Y.
- ullet Objetivo: Construir una función f:X o Y.
- Contamos con un training set: N Observaciones de las cuales conocemos tanto X como Y.
- Usaremos el training set para estimar la función f.
- Importante: La función f debe generalizar para observaciones fuera del training set.
- Dos tipos de tareas:
 - lacksquare Si Y es continua, es un problema de regresión.
 - ② Si $Y = \{1, 2, ..., C\}$ es un problema de clasificación.

Supervised Learning

$$y = f(\mathbf{x}; \mathbf{w})$$

y es el valor predicho ${f x}$ es una vector de d variables, inputs o features. ${f w}$ son los parámetros del modelo

Reconocimiento de dígitos

- X: Imagen de 28 X 28 pixeles, cada uno con un nivel de brillo.
- $Y = \{1, 2, ..., 9\}$

Procedimiento:

- Clasificar a mano 20,000 imágenes.
- **2** Representar cada imagen i como un vector $\mathbf{x}_i = (x_1, x_2, ..., x_d)$.
- **1** Utilizar 15,000 observaciones para entrenar modelo f. (*Training set*).
 - **1**0,000 *training*.
 - 5,000 para validación.
- Evaluar f en 5,000 observaciones restantes (Testing set).

Como entrenar modelo f

El proceso de estimación de un modelo tiene 3 componentes:

- \bullet Representación. Debemos seleccionar la familia F a la cual pertenecerá la función f que estimaremos. Hoy veremos 6 diferentes familias F
 - Árboles de Decisión
 - K Nearest Neighbors
 - Regresión logsistica
 - Support Vector Machines
 - LASSO
- Función objetivo. Necesitamos una función a optimizar.
 - Error cuadrático medio
 - Error 0 si $f(\mathbf{x}_i) = y_i$, 1 si $f(\mathbf{x}_i) \neq y_i$
 - Costo / utilidad.
- Algoritmo de optimización. No se cuenta con una solución cerrada como en regresión lineal. Hay que seleccionar método para encontrar f óptima de forma iterativa.

(Domingos, P. 2012)

12 / 56

Lo importante es generalizar

Función de error: $l(y, \mathbf{x}; \mathbf{w})$

• Utilizando el error empírico:

$$L(\mathbf{y}, \mathbf{X}, \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} l(y_i, \mathbf{x}_i, \mathbf{w})$$

• Buscamos minimizar el error esperado o el riesgo:

$$R(\mathbf{w}) = E[l(y_0, \mathbf{x}_0, \mathbf{w})]$$

Donde y_0 es la etiqueta de \mathbf{x}_i que desconocemos al momento de modelar.

• Supuesto: El training set es representativo de la distribución de ${\bf y}$ y ${\bf X}$.

Training y Test data

- Training set: Estimar modelo f.
- Validation set: Evaluar precisión de f y comparar con otras estimaciones. Hacer selección final f* final
- Test set: Evaluar modelo f* final y obtener aproximación de riesgo.

Independencia del test set.

Solo usar test set para evaluar modelo final. Queremos estimar el error esperado. No queremos optimizar según el test set.

Overfitting

Overfitting ocurre cuando seleccionamos un f que se ajusta tanto al training set que deja de generalizar para la distribución de y y X.

Overfitting

(Provost y Fawcett, 2013)

Como evitar Overfitting

- ullet Incrementar N
- Restringir la complejidad del modelo. Cada familia F tiene parámetros que sirven para restringir complejidad.
- Penalizar función objetivo por complejidad.
- Usar más de un modelo: ensembles
- Cross Validation

K folds Cross Validation

Dado K validation sets, con labels \mathbf{y}_k y features \mathbf{X}_k Seleccionar $f^* \in F$ que minimiza el error medio

$$L(\mathbf{y}, \mathbf{X}, \mathbf{w}) = \frac{1}{K} \sum_{k} L(\mathbf{y}_{k}, \mathbf{X}_{k}, \mathbf{w})$$

Unsupervised

- Set de datos X sin labels.
- El objetivo es comprender los datos, no predecir.
- Objetivos:
 - Agrupar datos en clusters
 - Estimar distribución de los datos.
 - Reducir dimension de los datos para visualizar.
- Se puede utilizar en una etapa exploratoria.

Ejemplo de K clustering, K = 3

(Flach, 2012)

Contenido

- Introducción a machine learning
- 2 Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

Contenido

- Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

- Encontrar los K nearest neighbors (KNN) de \mathbf{x}_0
- Predecir y_0 como la media, mediana or moda y_k para $k \in KNN$

Clasificar 2 nuevas obs.

- Encontrar los K nearest neighbors (KNN) de \mathbf{x}_0
- Predecir y_0 como la media, mediana or moda y_k para $k \in KNN$

- Encontrar los K nearest neighbors (KNN) de \mathbf{x}_0
- Predecir y_0 como la media, mediana or moda y_k para $k \in KNN$

- Encontrar los K nearest neighbors (KNN) de \mathbf{x}_0
- Predecir y_0 como la media, mediana or moda y_k para $k \in KNN$

0

x1

Partición del espacio con 1-NN

Voronoi Tesselation

(Murphy, 2012)

Parámetros clave de KNN

• K. Número de vecinos más cercanos. nearest neighbour (k = 1)

20-nearest neighbour

- Métrica de distancia.
 - Euclideana
 - Manhattan

Contenido

- 1 Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

Decision trees

Crear una función f discreta que minimice el error.

Decision trees

Crear una función f discreta que minimice el error.

Attributes Ta				
Name	Balance	Age	Employed	Write-off
Mike	\$200,000	42	no	yes
Mary	\$35,000	33	yes	no
Claudio	\$115,000	40	no	no
Robert	\$29,000	23	yes	yes
Dora	\$72,000	31	no	no

(Provost y Fawcett, 2013)

Decision trees

Un árbol T con M hojas, en el cual la hoja m corresponde a la región R_m que predice el valor f_m

$$f(\mathbf{x}) = \sum_{m=i} f_m \pi[\mathbf{x} \in R_m]$$

Donde $\pi = 1$ si $\mathbf{x} \in R_m$ es verdadero.

 $f_m = \text{moda de labels } y_i \ \{y_i | x_i \in R_m\}$

Error {0, 1}:

$$l(y_0, \mathbf{x}_0, f) = \pi[f(\mathbf{x}_0) \neq y_i)]$$

Entropía

Supongamos $y_i = 0, 1$

Una medida común de entropía es el índice de Gini.

$$Gini(R_m) = 2p(y = 1|R_m)(1 - p(y = 1|R_m))$$

Donde

$$p(y=1|i\in R_m) = \frac{1}{N_m} \sum_{i\in R_m} y_i$$

La medida de entropía determina el mejor *split*.

28 / 56

Comparar reducción en entropía

Comparar reducción en entropía

Algoritmo para llegar a T

Tenemos d features binarias.

- Obtener Gini de todo el training set
- 2 Para t en $\{1, 2, maxdepth\}$:
 - **1** Seleccionar $j \in d$ que logran la mayor reducción en Gini.
 - ② Crear nodo con j como variable de split.
 - 3 Obtener Gini de cada uno de los dos nodos.
 - Repetir para cada nodo.

Criterios para detenerse:

- Cero entropía
- Máxima profundidad alcanzada
- Observaciones en hoja menores a mínimo para hacer split.
- Reducción en GINI menor a minima reducción en GINI.

Partición del espacio con DT

(Gimpel, 2019)

- 1 Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

Regularización

- Los Al regularizar penalizamos la complejidad de w
- Algunas penalizaciones:
 - 1 Número de parámetros: Akaike Information Criterio
 - $||\mathbf{w}|| = \sum_{j=1}^{d} |w_j|$. LASSO
 - **3** $||\mathbf{w}||^2 = \sum_{j=1}^d w_j^2$. Ridge
- Por método de máxima verosimilitud: Maximizar: $p(\mathbf{y}, \mathbf{X}, \mathbf{w})$, penalizando por el tamaño de \mathbf{w} .

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \log p(y_i, \mathbf{x}_i, \mathbf{w}) - penalty(\mathbf{w}) \right\}$$

LASSO y RIDGE

LASSO: least absolute shrinkage and selection operator

Regresión

LASSO:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \frac{1}{n} \sum_{i=1} n(y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda ||\mathbf{w}||$$

Ridge:

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} n(y_i - \mathbf{w} \cdot \mathbf{x}_i)^2 + \lambda ||\mathbf{w}||^2$$

Importante

Es importante normalizar cada variables $\mathbf{x}_j \in \mathbf{X}$ pues magnitudes afectan $||\mathbf{w}||$

Effecto de LASSO y Risge en coeficientes

- 1 Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

Logistic Regression

Suponemos $y_i \in \{0,1\}$

$$p(y_i = 1 | \mathbf{x}_i) = \sigma(\mathbf{w} \cdot \mathbf{x}_i)$$

$$\sigma(z) = \frac{1}{1 + \exp\left(-z\right)}$$

(Wooldridge, 2013)

Partición del espacio

$$f(\mathbf{x}_0 : \mathbf{w}) = \begin{cases} 0 & \sigma(\mathbf{w} \cdot \mathbf{x}_0) \le 1/2 \\ 1 & \sigma(\mathbf{w} \cdot \mathbf{x}_0) > 1/2 \end{cases}$$

Lo cual genera una frontera lineal:

$$\frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x})} = 1/2 \implies \mathbf{w} \cdot \mathbf{x} = 0$$

Máxima verosimilitud

$$p(y_i = 1|\mathbf{x}_i) = \sigma(\mathbf{w} \cdot \mathbf{x}_i) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x}_i)}$$

Log verosimilitud:

$$\log p(\mathbf{y}, \mathbf{X}; \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i \log \sigma(\mathbf{w} \cdot \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x}_i))$$

$$\mathbf{w}^* = argmin_{\mathbf{w}}[-\log p(\mathbf{y}, \mathbf{X}; \mathbf{w})]$$

Con regularización

$$\mathbf{w}^* = argmin_{\mathbf{w}} \{ -\log p(\mathbf{y}, \mathbf{X}; \mathbf{w}) + \lambda ||\mathbf{w}||^2 \}$$

Máxima verosimilitud

$$p(y_i = 1|\mathbf{x}_i) = \sigma(\mathbf{w} \cdot \mathbf{x}_i) = \frac{1}{1 + \exp(-\mathbf{w} \cdot \mathbf{x}_i)}$$

Log verosimilitud:

$$\log p(\mathbf{y}, \mathbf{X}; \mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i \log \sigma(\mathbf{w} \cdot \mathbf{x}_i) + (1 - y_i) \log(1 - \sigma(\mathbf{w} \cdot \mathbf{x}_i))$$
$$= \frac{1}{n} \sum_{i=1}^{n} \log(\frac{1}{1 + \exp(-y_i(\mathbf{w} \cdot \mathbf{x}_i))})$$

$$\mathbf{w}^* = argmin_{\mathbf{w}}[-\log p(\mathbf{y}, \mathbf{X}; \mathbf{w})]$$

Con regularización

$$\mathbf{w}^* = argmin_{\mathbf{w}} \{ -\log p(\mathbf{y}, \mathbf{X}; \mathbf{w}) + \lambda ||\mathbf{w}||^2 \}$$

- 1 Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

Support vector machines

• ¿Qué frontera seleccionar?

Support vector machines

• ¿Qué frontera seleccionar?

SVM

Seleccionar la frontera que maximiza la distancia a los puntos más cercanos clasificados correctamente.

La frontera con el márgen máximo

 Distancia de una observación x_i correctamente clasificada:

$$\frac{1}{||\mathbf{w}||} y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$$

Distancia a la observacion mas cercana:

$$\min_{i} \frac{1}{||\mathbf{w}||} y_i(\mathbf{w} \cdot \mathbf{x}_i + b)$$

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{1}{||\mathbf{w}||} \min_{i} y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \right\}$$

Maximización

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \left\{ \frac{1}{||\mathbf{w}||} \min_i y_i (\mathbf{w} \cdot \mathbf{x}_i + b) \right\}$$

Podemos reescalar w y b para que

$$\min_{i} y_i(\mathbf{w} \cdot \mathbf{x}_i + b) = 1$$

. Por lo tanto,

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \{ \frac{1}{||\mathbf{w}||} \\ = \operatorname{argmin}_{\mathbf{w}} ||\mathbf{w}||^2$$

Datos no separables linealmente

Imposible lograr que

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$

Introducimos slack variables

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) - 1 + \xi_i \ge 0$$

$$\xi_i = \max[0, 1 - y_i(\mathbf{w} \cdot \mathbf{x}_i + b)]$$

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} \{ ||\mathbf{w}||^2 + C \sum_{i=1}^n \xi_i \}$$

- 1 Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

Ensembles

- En vez de construir un solo modelo f^* , construir M modelos y combinarlos.
- Objetivo: Mejorar precisión sobre nuevas observaciones.
- Aggregación más sencilla: Promedio

$$\hat{f}(\mathbf{x}) = \frac{1}{M} \sum_{j=i}^{M} f_j(\mathbf{x})$$

Random Forests

- Constuir M decision trees
- Entrenar cada árbol T_m usando una muestra aleatoria del training set. Usar muestras con reemplazo.
- ullet En cada nodo, únicamente considerar b de las d variables.

Boosting

- **1** Obtener f_t para todo el *training* set.
- ② Evaluar precision de f_t sobre training set.
- **1** Incrementar peso de observaciones misclasificadas usando factor 1+r.
- Estimar f_{t+1} utilizando pesos ajustados.
- **o** Repetir hasta t + i = T

Boosting

- **1** Obtener f_t para todo el *training* set.
- ② Evaluar precision de f_t sobre training set.
- lacktriangle Incrementar peso de observaciones misclasificadas usando factor 1+r.
- **1** Estimar f_{t+1} utilizando pesos ajustados.
- **o** Repetir hasta t + i = T

- Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

- Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

- 1 Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

- 1 Introducción a machine learning
- 2 Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

- 1 Introducción a machine learning
- Principales algoritmos, metodología e intuición
 - K Nearest Neighbors
 - Decision Trees
 - LASSO Y Ridge regression
 - Logistic Regression
 - Support Vector Machines
 - Ensembles
- Aplicaciones
 - Reduciendo intoxicaciones por plomo
 - Algoritmos como jueces
 - Mapeando pobreza
 - Evaluando MEDICAID

