Contents

CONTENTS

Chapter 1

Real Analysis

```
(1.5)
                             \mathbf{y}[<,S] := \forall_{x,y \in S} (x < y \lor x = y \lor y < x)
          r[<,S] := (OrderTrichotomy[<,S]) \land (OrderTransitivity[<,S])
(1.7)
  Bounded Above [E,S,<]:=(Order[<,S]) \land (E\subset S) \land \Big(\exists_{\beta\in S} \forall_{x\in E} (x\leq \beta)\Big)
 Bounded Below [E,S,<]:=(Order[<,S]) \land (E\subset S) \land \Big(\exists_{\beta\in S}\forall_{x\in E}(\beta\leq x)\Big)
                   \operatorname{nd}[\beta, E, S, <] := (\operatorname{Order}[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E} (x \le \beta))
                    \operatorname{ud}[\beta, E, S, <] := (\operatorname{Order}[<, S]) \land (E \subset S) \land (\beta \in S \land \forall_{x \in E}(\beta \leq x))
(1.8)
LUB[\alpha, E, S, <] := (UpperBound[\alpha, E, S, <]) \land (\forall_{\gamma}(\gamma < \alpha \implies \neg UpperBound[\gamma, E, S, <]))
\boxed{\textbf{G1.B}[\alpha,E,S,<] := (LowerBound[\alpha,E,S,<]) \land \Big(\forall_{\beta}(\alpha < \beta \implies \neg LowerBound[\beta,E,S,<])\Big)}
(1.10)
 \text{$LU$ B Property}[S,<] := \forall_E \Big( \big( (\emptyset \neq E \subset S) \land (Bounded Above[E,S,<]) \implies \exists_{\alpha \in S} (LUB[\alpha,E,S,<]) \Big) \Big) 
 \textbf{GLBP roperty}[S, <] := \forall_E \Big( \big( (\emptyset \neq E \subset S) \land (Bounded Below[E, S, <]) \implies \exists_{\alpha \in S} (GLB[\alpha, E, S, <]) \Big) \Big) 
(1.11)
(1) LUBProperty[S, <] \implies ...
   (1.1) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \dots
      (1.1.1) Order[<, S] \land \exists_{\delta' \in S}(LowerBound[\delta', B, S, <])
      (1.1.2) |B| = 1 \implies ...
          (1.1.2.1) \quad \exists_{u'}(u' \in B) \quad \blacksquare \ u := choice(\{u' : u' \in B\}) \quad \blacksquare \ B = \{u\}
          (1.1.2.2) \quad GLB[u, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])
       (1.1.3) \quad |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <])
      (1.1.4) |B| \neq 1 \Longrightarrow \dots
                                                                                                                                                                                                                   from: LUBProperty, 1
          (1.1.4.1) \quad \forall_E \left( (\emptyset \neq E \subset S \land Bounded Above[E, S, <]) \implies \exists_{\alpha \in S} (LUB[\alpha, E, S, <]) \right)
         (1.1.4.2) L := \{s \in S : LowerBound[s, B, S, <]\}
          (1.1.4.3) \quad |B| > 1 \land OrderTrichotomy[<, S] \quad \blacksquare \quad \exists_{b_1' \in B} \exists_{b_0' \in B} (b_0' < b_1')
          (1.1.4.4) \quad b_1 := choice(\{b_1' \in B : \exists_{b_0' \in B}(b_0' < b_1')\}) \quad \blacksquare \neg LowerBound[b_1, B, S, <]
          (1.1.4.5) b_1 \notin L \blacksquare L \subset S
                                                                                                                                                                                                                             from: 1.1.1
          (1.1.4.6) \quad \delta := choice(\{\delta' \in S : LowerBound[\delta', B, S, <]\}) \quad \blacksquare \quad \delta \in L \quad \blacksquare \quad \emptyset \neq L
          (1.1.4.7) \quad \emptyset \neq L \subset S
          (1.1.4.8) \quad \forall_{y \in L}(\underline{LowerBound}[y_0, B, S, <]) \quad \blacksquare \quad \forall_{y \in L} \forall_{x \in B}(y_0 \le x)
```

```
(1.1.4.9) \quad \forall_{x \in B} \left( x \in S \land \forall_{y \in L} (y_0 \le x) \right) \quad \blacksquare \quad \forall_{x \in B} (UpperBound[x, L, S, <])
          (1.1.4.10) \quad \exists_{x \in S}(UpperBound[x, L, S, <]) \quad \blacksquare \quad Bounded Above[L, S, <]
                                                                                                                                                                                                                                       from: 1.1.4.7.1.1.4.10
          (1.1.4.11) \emptyset \neq L \subset S \land Bounded Above[L, S, <]
          (1.1.4.12) \quad \exists_{\alpha' \in S}(LUB[\alpha', L, S, <]) \quad \blacksquare \quad \alpha := choice(\{\alpha' \in S : (LUB[\alpha', L, S, <])\})
          (1.1.4.13) \quad \forall_{x}(x \in \overline{B} \implies \underline{UpperBound[x, L, S, <]})
          (1.1.4.14) \quad \forall_x (\neg UpperBound[x, L, S, <] \implies x \notin B)
          (1.1.4.15) \gamma < \alpha \implies \dots
                                                                                                                                                                                                                                from: LUB, 1.1.4.12, 1.1.4.14
              (1.1.4.15.1) \quad \neg UpperBound[\gamma, L, S, <] \quad \blacksquare \quad \gamma \notin B
          (1.1.4.16) \quad \gamma < \alpha \implies \gamma \notin B \quad \blacksquare \quad \gamma \in B \implies \gamma \ge \alpha
          (1.1.4.17) \quad \forall_{\gamma \in B} (\alpha \leq \gamma) \quad \blacksquare \quad LowerBound[\alpha, B, S, <]
          (1.1.4.18) \alpha < \beta \implies \dots
                                                                                                                                                                                                                                from: LUB, 1.1.4.12, 1.1.4.18
              (1.1.4.18.1) \quad \forall_{v \in L} (y_0 \le \alpha < \beta) \quad \blacksquare \quad \forall_{v \in L} (y_0 \ne \beta)
              (1.1.4.18.2) \beta \notin L \ \square \neg LowerBound[\beta, B, S, <]
          (1.1.4.19) \quad \alpha < \beta \implies \neg LowerBound[\beta, B, S, <] \quad \blacksquare \quad \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
          (1.1.4.20) \quad LowerBound[\alpha, B, S, <] \land \forall_{\beta \in S} (\alpha < \beta \implies \neg LowerBound[\beta, B, S, <])
          (1.1.4.21) \quad \mathbf{GLB}[\alpha, B, S, <] \quad \blacksquare \quad \exists_{\epsilon_1 \in S} (\mathbf{GLB}[\epsilon_1, B, S, <])
      (1.1.5) |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <])
      (1.1.6) \quad \left( |B| = 1 \implies \exists_{\epsilon_0 \in S} (GLB[\epsilon_0, B, S, <]) \right) \land \left( |B| \neq 1 \implies \exists_{\epsilon_1 \in S} (GLB[\epsilon_1, B, S, <]) \right)
       (1.1.7) \quad (|B| = 1 \lor |B| \ne 1) \implies \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <]) \quad \blacksquare \quad \exists_{\varepsilon \in S} (GLB[\varepsilon, B, S, <])
   (1.2) \quad (\emptyset \neq B \subset S \land Bounded Below[B, S, <]) \implies \exists_{\epsilon \in S} (GLB[\epsilon, B, S, <])
   (1.3) \quad \forall_{B} \left( (\emptyset \neq B \subset \overline{S \land Bounded Below}[B, S, <]) \implies \exists_{\epsilon \in S} (GLB[\epsilon, B, S, <]) \right)
   (1.4) GLBProperty[S, <]
(2) LUBProperty[S,<] \Longrightarrow GLBProperty[S,<]
```

(1.12)

$$(1.12) \\ Field[F, +, *] := \exists_{0,1 \in F} \forall_{x,y,z \in F} \begin{cases} x + y \in F & \land & x * y \in F & \land \\ x + y = y + x & \land & x * y = y * x & \land \\ (x + y) + z = x + (y_0 + z) & \land & (x * y) * z = x * (y_0 * z) & \land \\ 1 \neq 0 & \land & x * (y_0 + z) = (x * y) + (x * z) & \land \\ 0 + x = x & \land & 1 * x = x & \land \\ \exists_{-x \in F} (x + (-x) = 0) & \land (x \neq 0 \implies \exists_{1/x \in F} (x * (1/x) = 1)) \end{cases}$$

(1)
$$y = 0 + y = (x + (-x)) + y = ((-x) + x) + y = (-x) + (x + y) = \dots$$

(2)
$$(-x) + (x+z) = ((-x) + x) + z = (x + (-x)) + z = 0 + z = z$$

Additive I dentity Uniqueness := $(x + y = x) \implies y = 0$

(1)
$$x + y = x = 0 + x = x + 0$$

$$(2) \quad y = 0$$

veInverseUniqueness := $(x + y = 0) \implies y = -x$

(1)
$$x + y = 0 = x + (-x)$$

(2)
$$y = -x$$

from: AdditiveCancellatio

Double Negative
$$:= x = -(-x)$$

(1)
$$0 = x + (-x) = (-x) + x \quad 0 = (-x) + x$$

from: AdditiveInverseUnique (2) x = -(-x)(1.15)iplicative I dentity Uniqueness: $= (x \neq 0 \land x * y = x) \implies y = 1$ iplicative I nver se Uniqueness: $= (x \neq 0 \land x * y = 1) \implies y = 1/x$ Couble Reciprocal := $(x \neq 0) \implies x = 1/(1/x)$ (1.16)Domination := 0 * x = 0(1) 0 * x = (0 + 0) * x = 0 * x + 0 * x 0 * x = 0 * x + 0 * xfrom: AdditiveIdentityUniquene $(2) \quad \mathbb{0} * x = \mathbb{0}$ (1) $(x \neq 0 \land y \neq 0) \implies \dots$ $(1.1) \quad (x * y = 0) \implies \dots$ $(1.1.1) \quad \mathbb{1} = \mathbb{1} * \mathbb{1} = (x * (1/x)) * (y * (1/y)) = (x * y) * ((1/x) * (1/y)) = \mathbb{0} * ((1/x) * (1/y)) = \mathbb{0}$ $(1.1.2) \quad 1 = 0 \land 1 \neq 0 \quad \blacksquare \perp$ $(1.2) \quad (x * y = 0) \implies \bot \quad \blacksquare \quad x * y \neq 0$ $(2) \quad (x \neq 0 \land y \neq 0) \implies x * y \neq 0$ (1) x * y + (-x) * y = (x + -x) * y = 0 * y = 0 x * y + (-x) * y = 0(2) (-x) * y = -(x * y)(3) $x * y + x * (-y) = x * (y_0 + -y) = x * 0 = 0$ x * y + x * (-y) = 0(4) x * (-y) = -(x * y)(5) (-x) * y = -(x * y) = x * (-y) $(1) \quad (-x) * (-y) = -(x * (-y)) = -(-(x * y)) = x * y$ (1.17)
$$\begin{split} I[F,+,*,<] := \left(\begin{array}{ccc} Field[F,+,*] & \wedge & Order[<,F] & \wedge \\ \forall_{x,y,z \in F}(y_0 < z \implies x+y < x+z) & \wedge \\ \forall_{x,y \in F} \left((x > 0 \wedge y > 0) \implies x * y > 0 \right) \end{array} \right) \end{split}$$
 $(1.1) \quad 0 = (-x) + x > (-x) + 0 = -x \quad \blacksquare \quad 0 > -x \quad \blacksquare \quad -x < 0$ $(2) \quad x > 0 \implies -x < 0$ $(3) -x < 0 \implies \dots$ $(3.1) \quad 0 = x + (-x) < x + 0 = x \quad 0 < x \quad x > 0$ (4) $-x < 0 \implies x > 0$ $(5) \quad x > 0 \implies -x < 0 \land -x < 0 \implies x > 0 \quad \blacksquare \quad x > 0 \iff -x < 0$ ositive Factor Preserves Order := $(x > 0 \land y < z) \implies x * y < x * z$

(1.1) (-y) + z > (-y) + y = 0 $\blacksquare z + (-y) = 0$ (1.2) x * (z + (-y)) > 0 $\blacksquare x * z + x * (-y) > 0$

```
from: Field, NegationCommutativity
   (1.3) \quad x * z = 0 + x * z = (x * y + -(x * y)) + x * z = (x * y + x * (-y)) + x * z = \dots
  (1.4) \quad x * y + (x * z + x * (-y)) > x * y + 0 = x * y
                                                                                                                                                                                       from: 1.3, 1.4
   (1.5) x * z > x * y
(2) \quad \overline{(x > 0 \land y < z)} \implies x * z > \overline{x * y}
  (1.1) -x > 0
  (1.2) \quad (-x) * y < (-x) * z \quad 0 = x * y + (-x) * y < x * y + (-x) * z \quad 0 < x * y + (-x) * z
  (1.3) \quad 0 < (-x) * (-y+z) \quad \blacksquare \quad 0 > x * (-y+z) \quad \blacksquare \quad 0 > -(x*y) + x * z
  (1.4) x * y > x * z
  Square 1 s Positive := (x \neq 0) \implies x * x > 0
(1) (x > 0) \implies x * x > 0
(2) \quad (x < 0) \implies \dots
  (2.1) \quad -x > 0 \quad \boxed{\quad} x * x = (-x) * (-x) > 0 \quad \boxed{\quad} x * x > 0
(3) (x < 0) \implies x * x > 0
\underline{OnelsPositive} := \overline{1 > 0}
(1) \quad 1 \neq 0 \quad \blacksquare \quad 1 = 1 * 1 > 0
(1) \quad (0 < x < y) \implies \dots
  (1.1) \quad x * (1/x) = 1 > 0 \quad \blacksquare \ x * (1/x) > 0
  (1.2) \quad 1/x < 0 \implies x * (1/x) < 0 \land x * (1/x) > 0 \implies \bot \quad \boxed{1/x > 0}
  (1.3) \quad y * (1/y) = 1 > 0 \quad \blacksquare \quad y * (1/y) > 0
  (1.4)  1/y < 0 \implies y * (1/y) < 0 \land y * (1/y) > 0 \implies \bot   1/y > 0
  (1.5) \quad (1/x) * (1/y) > 0
  (1.6) \quad 0 < 1/y = ((1/x) * (1/y)) * x < ((1/x) * (1/y)) * y = 1/x
(1.19)
   rdered Field \underline{Q} := Ordered Field [\mathbb{Q}, +, *, <]
             I[K, F, +, *] := Field[F, +, *] \land K \subset F \land Field[K, +, *]
                         I[K, F, +, *, <] := Ordered Field[F, +, *, <] \land K \subset F \land Ordered Field[K, +, *, <]
      [\alpha] := \emptyset \neq \alpha \subset \mathbb{Q}
        I[\alpha] := \forall_{p \in \alpha} \forall_{q \in \mathbb{Q}} (q 
        [\alpha] := \forall_{p \in \alpha} \exists_{r \in \alpha} (p < r)
    := \{ \alpha \in \mathbb{Q} : CutI[\alpha] \land CutII[\alpha] \land CutIII[\alpha] \}
    \text{uCorollary!} := (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
(1) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies \dots
  (1.1) \quad \forall_{p' \in \alpha} \forall_{q' \in \mathbb{Q}} (q' < p' \implies q' \in \alpha)
```

 $(1.2) \quad q$

 $(1.3.2) \quad (q=p) \implies (p \in \alpha \land p \notin \alpha) \implies \bot \quad \blacksquare \quad q \neq p$

 $(1.3) \quad (q \notin \alpha) \implies \dots$ $(1.3.1) \quad q \ge p$

```
(1.3.3) \quad q \ge p \land q \ne p \quad \blacksquare \quad p < q
    (1.4) \quad q \notin \alpha \implies p < q \quad \blacksquare \quad p < q
(2) \quad (\alpha \in \mathbb{R} \land p \in \alpha \land q \in \mathbb{Q} \land q \notin \alpha) \implies p < q
   \overline{\text{CutCorollaryll}} := (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
(1) \ (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies \dots
    (1.2) \quad s \in \alpha \implies (r \in \mathbb{Q} \implies (r < s \implies r \in \alpha)) \quad \blacksquare \quad s \in \alpha \implies r \in \alpha
    (1.3) \quad r \notin \alpha \implies s \notin \alpha \quad \blacksquare \quad s \notin \alpha
(2) \quad (\alpha \in \mathbb{R} \land r, s \in \mathbb{Q} \land r < s \land r \notin \alpha) \implies s \notin \alpha
  <_{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land \alpha \subset \beta
      rderTrichotomyOfR:=OrderTrichotomy[\mathbb{R},<_{\mathbb{R}}]
(1) \quad (\overline{\alpha, \beta \in \mathbb{R}}) \implies \dots
    (1.1) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \dots
         (1.1.1) \quad \alpha \not\subset \beta \land \alpha \neq \beta
         (1.1.2) \quad \exists_{p'}(p' \in \alpha \land p' \notin \beta) \quad \blacksquare \quad p := choice(\{p' : p' \in \alpha \land p' \notin \beta\})
         (1.1.3) q \in \beta \implies \dots
          (1.1.3.1) \quad p, q \in \mathbb{Q}
             (1.1.3.2) q < p
             (1.1.3.3) q \in \alpha
        (1.1.4) \quad q \in \beta \implies q \in \alpha
         (1.1.5) \quad \forall_{q \in \beta} (q \in \alpha) \quad \blacksquare \quad \beta \subseteq \alpha
         (1.1.6) \quad \beta \subset \alpha \quad \blacksquare \quad \beta <_{\mathbb{R}} \quad \alpha
     (1.2) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \implies \beta <_{\mathbb{R}} \alpha
     (1.3) \quad \neg(\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta) \quad \blacksquare \ (\beta <_{\mathbb{R}} \alpha) \lor (\alpha <_{\mathbb{R}} \beta \lor \alpha = \beta)
    (1.4) \quad \alpha = \beta \implies \neg(\alpha <_{\mathbb{R}} \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.5) \quad \alpha <_{\mathbb{R}} \beta \implies \neg(\alpha = \beta \lor \beta <_{\mathbb{R}} \alpha)
    (1.6) \quad \beta <_{\mathbb{R}} \alpha \implies \neg(\alpha = \beta \lor \alpha <_{\mathbb{R}} \beta)
    (1.7) \quad \alpha <_{\mathbb{R}} \beta \vee \alpha = \beta \vee \alpha <_{\mathbb{R}} \beta
(2) \ (\alpha,\beta\in\mathbb{R}) \implies (\alpha<_{\mathbb{R}}\beta\veebar\alpha=\beta\veebar\alpha<_{\mathbb{R}}\beta)
(3) \quad \forall_{\alpha,\beta \in \mathbb{R}} (\alpha <_{\mathbb{R}} \beta \underline{\vee} \alpha = \beta \underline{\vee} \alpha <_{\mathbb{R}} \beta)
(4) OrderTrichotomy[\mathbb{R}, <_{\mathbb{R}}]
                        ansitivityOfR := OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
(1) (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
    (1.1) \quad (\alpha <_{\mathbb{R}} \beta \wedge \beta <_{\mathbb{R}} \gamma) \implies \dots
        (1.1.1) \quad \alpha \subset \beta \land \beta \subset \gamma
         (1.1.2) \quad \overline{\forall_{a \in \alpha} (a \in \beta) \land \forall_{b \in \beta} (b \in \gamma)}
         (1.1.3) \quad \forall_{\alpha \in \alpha} (\alpha \in \gamma) \quad \blacksquare \quad \alpha \subset \gamma \quad \blacksquare \quad \alpha <_{\mathbb{R}} \quad \gamma
  (1.2) \quad (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left( (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)
(3) \quad \forall_{\alpha,\beta,\gamma\in\mathbb{R}} \left( (\alpha <_{\mathbb{R}} \beta \land \beta <_{\mathbb{R}} \gamma) \implies \alpha <_{\mathbb{R}} \gamma \right)
(4) OrderTransitivity[\mathbb{R}, <_{\mathbb{R}}]
```

OrderOf $R := Order[<_{\mathbb{R}}, \mathbb{R}]$ III B Property Of <math>R := III B P

 $LUBPropertyOfR := LUBProperty[\mathbb{R}, <_{\mathbb{R}}]$

(1) $(\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \dots$

 $(1.1) \quad \gamma := \{ p \in \mathbb{Q} : \exists_{\alpha \in A} (p \in \alpha) \}$

wts:

```
(1.2) \quad A \neq \emptyset \quad \blacksquare \ \exists_{\alpha} (\alpha \in A) \quad \blacksquare \ \alpha_0 := choice(\{\alpha : \alpha \in A\})
     (1.3) \quad \alpha_0 \neq \emptyset \quad \blacksquare \quad \exists_a (a \in \alpha_0) \quad \blacksquare \quad a_0 := choice(\{a : a \in \alpha_0\}) \quad \blacksquare \quad a_0 \in \gamma \quad \blacksquare \quad \gamma \neq \emptyset
     (1.4) Bounded Above [A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \exists_{\beta}(U \text{ pper Bound } [\beta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.5) \quad \beta_0 := choice(\{\beta : UpperBound[\beta, A, \mathbb{R}, <_{\mathbb{R}}]\})
     (1.6) \quad UpperBound[\beta_0, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \subseteq \beta_0) \quad \blacksquare \quad \forall_{\alpha \in A} \forall_{\alpha \in A} (\alpha \in \beta_0)
     (1.7) \quad (\alpha \in A \land a \in \alpha) \iff a \in \gamma \quad \blacksquare \quad \forall_{a \in \gamma} (a \in \beta_0) \quad \blacksquare \quad \gamma \subseteq \beta_0
     (1.8) \quad \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subseteq \beta_0 \subset \mathbb{Q} \quad \blacksquare \quad \gamma \subset \mathbb{Q}
     (1.9) \quad \emptyset \neq \gamma \subset \mathbb{Q} \quad \blacksquare \quad CutI[\gamma]
     (1.10) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies \dots
         (1.10.1) \quad p \in \gamma \quad \blacksquare \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_1 := choice(\{\alpha \in A : p \in \alpha\})
          (1.10.2) \quad p \in \alpha_1 \land q \in \mathbb{Q} \land q 
      (1.11) \quad (p \in \gamma \land q \in \mathbb{Q} \land q < p) \implies q \in \gamma \quad \blacksquare \quad \forall_{p \in \gamma} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \gamma) \quad \blacksquare \quad CutII[\gamma]
     (1.12) \quad p \in \gamma \implies \dots
          (1.12.1) \quad \exists_{\alpha \in A} (p \in \alpha) \quad \blacksquare \quad \alpha_2 := choice(\{\alpha \in A : p \in \alpha\})
          (1.12.2) \quad \alpha_2 \in \mathbb{R} \quad \blacksquare \quad CutII[\alpha_2] \quad \blacksquare \quad \exists_{r \in \alpha_2} (p < r) \quad \blacksquare \quad r_0 := choice(\{r \in \alpha_2 : p < r\})
          (1.12.3) \quad r_0 \in \alpha_2 \quad \boxed{r_0 \in \gamma}
          (1.12.4) \quad p < r_0 \quad \blacksquare \quad p < r_0 \land r_0 \in \gamma \quad \blacksquare \quad \exists_{r \in \gamma} (p < r)
      (1.13) \quad p \in \gamma \implies \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad \forall_{p \in \gamma} \exists_{r \in \gamma} (p < r) \quad \blacksquare \quad CutIII[\gamma]
     (1.14) \quad CutI[\gamma] \wedge CutII[\gamma] \wedge CutIII[\gamma] \quad \boxed{\gamma} \in \mathbb{R}
     (1.15) \quad \forall_{\alpha \in A} (\alpha \subseteq \gamma) \quad \blacksquare \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma)
     (1.16) \quad \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \gamma) \land \gamma \in \mathbb{R} \quad \blacksquare \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.17) \quad \delta <_{\mathbb{R}} \gamma \implies \dots
          (1.17.1) \quad \delta \subset \gamma \quad \blacksquare \ \exists_s (s \in \gamma \land s \notin \delta) \quad \blacksquare \ s_0 := choice(\{s \in \mathbb{Q} : s \in \gamma \land s \notin \delta\})
          (1.17.2) \quad s_0 \in \gamma \quad \blacksquare \quad \exists_{\alpha \in A} (s_0 \in \alpha) \quad \blacksquare \quad \alpha_3 := choice(\{\alpha \in A : s_0 \in \alpha\})
          (1.17.3) \quad s_0 \in \alpha_3 \land s_0 \notin \delta \quad \blacksquare \quad \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
          (1.17.4) \delta \geq_{\mathbb{R}} \alpha_3 \implies \dots
             (1.17.4.1) \quad \alpha_3 \subseteq \delta \quad \blacksquare \quad \forall_{s \in \mathbb{Q}} (s \in \alpha_3 \implies s \in \delta) \quad \blacksquare \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta)
               (1.17.4.2) \quad \neg \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \land \exists_{s \in \mathbb{Q}} (s \in \alpha_3 \land s \notin \delta) \quad \blacksquare \quad \bot
          (1.17.5) \quad \delta \geq_{\mathbb{R}} \alpha_3 \implies \bot \quad \blacksquare \quad \delta <_{\mathbb{R}} \alpha_3 \quad \blacksquare \quad \exists_{\alpha \in A} (\delta <_{\mathbb{R}} \alpha) \quad \blacksquare \quad \exists_{\alpha \in A} (\neg (\alpha \leq_{\mathbb{R}} \delta))
           (1.17.6) \quad \neg \forall_{\alpha \in A} (\alpha \leq_{\mathbb{R}} \delta) \quad \blacksquare \quad \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]
     (1.18) \quad \delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}]) \quad \blacksquare \quad \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.19) \quad UpperBound[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \land \forall_{\delta} (\delta <_{\mathbb{R}} \gamma \implies \neg UpperBound[\delta, A, \mathbb{R}, <_{\mathbb{R}}])
     (1.20) \quad LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}] \quad \blacksquare \quad \exists_{\gamma \in S}(LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(2) \quad (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S}(LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}])
(3) \ \forall_{A} \Big( (\emptyset \neq A \subset \mathbb{R} \land Bounded Above[A, \mathbb{R}, <_{\mathbb{R}}]) \implies \exists_{\gamma \in S} (LUB[\gamma, A, \mathbb{R}, <_{\mathbb{R}}]) \Big) \ \blacksquare \ LUBProperty[\mathbb{R}, <_{\mathbb{R}}]
     _{\mathbb{R}}[\alpha,\beta] := \alpha,\beta \in \mathbb{R} \land (\alpha +_{\mathbb{R}} \beta) = \{r + s : r \in \alpha \land s \in \beta\}
   \mathbf{0}_{\mathbb{R}} := \{ x \in \mathbb{Q} : x < 0 \}
     CeroInR := 0_{\mathbb{R}} \in \mathbb{R}
(1) \quad -1 \in 0_{\mathbb{R}} \land 1 \notin 0_{\mathbb{R}} \quad \blacksquare \quad \emptyset \neq 0_{\mathbb{R}} \subseteq \mathbb{Q} \quad \blacksquare \quad CutI[0_{\mathbb{R}}]
(2) \quad (x \in \overline{0_{\mathbb{R}} \land y \in \mathbb{Q} \land y < x)} \implies y < x < 0 \implies y < 0 \implies y \in 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \forall_{y \in \mathbb{Q}} (y_0 < x \implies y \in 0_{\mathbb{R}}) \quad \blacksquare \quad CutII[0_{\mathbb{R}}]
(3) \quad y := x/2 \quad \blacksquare \quad (x \in 0_{\mathbb{R}}) \implies (x < y < 0) \implies \exists_{y \in 0_{\mathbb{R}}} (x < y) \quad \blacksquare \quad \forall_{x \in 0_{\mathbb{R}}} \exists_{y \in 0_{\mathbb{R}}} (x < y) \quad \blacksquare \quad CutIII[0_{\mathbb{R}}]
(4) \quad CutI[0_{\mathbb{R}}] \wedge CutII[0_{\mathbb{R}}] \wedge CutIII[0_{\mathbb{R}}] \quad \blacksquare \quad 0_{\mathbb{R}} \in \mathbb{R}
                                                        \operatorname{reOf} R := (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
```

(1) $(\alpha, \beta \in \mathbb{R}) \implies \dots$

 $(1.1) \quad (\alpha +_{\mathbb{R}} \beta) = \{r + s : r \in \alpha \land s \in \beta\}$

 $(1.2) \quad \emptyset \neq \alpha \subset \mathbb{Q} \land \emptyset \neq \beta \subset \mathbb{Q}$

```
(1.5) \quad \forall_{r \in \alpha}(r < x_0) \; ; \; \forall_{s \in \beta}(s < y_0) \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in \beta}(r + s < x_0 + y_0) \quad \blacksquare \quad x_0 + y_0 \notin \alpha +_{\mathbb{R}} \beta
     (1.6) \quad \emptyset \neq \alpha +_{\mathbb{R}} \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\alpha +_{\mathbb{R}} \beta]
     (1.7) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies \dots
         (1.7.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare \quad (r_0, s_0) := choice((r, s) \in \alpha \times \beta : p = r + s)
         (1.7.2) \quad q 
         (1.7.3) \quad s_0 \in \beta \quad \blacksquare \quad q = (q - s_0) + s_0 \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad q \in \alpha +_{\mathbb{R}} \beta
     (1.8) \quad (p \in \alpha +_{\mathbb{R}} \beta \land q \in \mathbb{Q} \land q < p) \implies q \in \alpha +_{\mathbb{R}} \beta \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \forall_{q \in \mathbb{Q}} (q < p \implies q \in \alpha +_{\mathbb{R}} \beta) \quad \blacksquare \quad CutII[\alpha +_{\mathbb{R}} \beta]
     (1.9) p \in \alpha \implies \dots
         (1.9.1) \quad \exists_{r \in \alpha} \exists_{s \in \beta} (p = r + s) \quad \blacksquare (r_1, s_1) := choice(\{(r, s) \in \alpha \times \beta : p = r + s\})
         (1.9.2) \quad r_1 \in \alpha \quad \blacksquare \quad \exists_{t \in \alpha} (r_1 < t) \quad \blacksquare \quad t_0 := choice(\{t \in \alpha : r_1 < t\})
         (1.9.3) \quad s_1 \in \beta \quad \blacksquare \quad t + s_1 \in \alpha +_{\mathbb{R}} \beta \land p = r_1 + s_1 < t + s_1 \quad \blacksquare \quad \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r)
     (1.10) \quad p \in \alpha \implies \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} \beta} \exists_{r \in \alpha +_{\mathbb{R}} \beta} (p < r) \quad \blacksquare \quad CutIII[\alpha +_{\mathbb{R}} \beta]
    (1.11) \quad CutI[\alpha +_{\mathbb{R}} \beta] \wedge CutII[\alpha +_{\mathbb{R}} \beta] \wedge CutIII[\alpha +_{\mathbb{R}} \beta] \quad \boxed{\alpha +_{\mathbb{R}} \beta \in \mathbb{R}}
(2) \quad (\alpha, \beta \in \mathbb{R}) \implies ((\alpha +_{\mathbb{R}} \beta) \in \mathbb{R})
      \underline{eld} \, \underline{AdditionCommutativityOf} \, \underline{R} \, := (\alpha, \beta \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta = \beta +_{\mathbb{R}} \alpha)
(1) \quad \alpha +_{\mathbb{R}} \beta = \{r + s : r \in \alpha \land s \in \beta\} = \{s + r : s \in \beta \land r \in \alpha\} = \beta +_{\mathbb{R}} \alpha
                                                                 \text{it yOf } R := (\alpha, \beta, \gamma \in \mathbb{R}) \implies \left( (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma) \right)
(1) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies \dots
   (1.1) \quad (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \{ (a+b) + c : a \in \alpha \land b \in \beta \land c \in \gamma \} = \dots
    (1.2) \quad \{a + (b+c) : a \in \alpha \land b \in \beta \land c \in \gamma\} = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
(2) \quad (\alpha, \beta, \gamma \in \mathbb{R}) \implies (\alpha +_{\mathbb{R}} \beta) +_{\mathbb{R}} \gamma = \alpha +_{\mathbb{R}} (\beta +_{\mathbb{R}} \gamma)
  \overline{C_{iold} \, Addition \, Identity \, O_f \, R} := (\alpha \in \mathbb{R}) \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(1) \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies \dots
     (1.1.1) \quad s < 0 \quad \blacksquare r + s < r + 0 = r \quad \blacksquare r + s < r \quad \blacksquare r + s \in \alpha
    (1.2) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \implies r + s \in \alpha \quad \blacksquare \quad \forall_{r \in \alpha} \forall_{s \in 0_{\mathbb{R}}} (r + s \in \alpha)
     (1.3) \quad (r \in \alpha \land s \in 0_{\mathbb{R}}) \iff (r + \overline{s} \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \forall_{p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}} (p \in \alpha) \quad \blacksquare \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha
    (1.4) p \in \alpha \implies \dots
        (1.4.1) \quad \exists_{r \in \alpha} (p < r) \quad \blacksquare \quad r_2 := choice(\{r \in \alpha : p < r\})
         (1.4.2) \quad p < r_2 \quad \blacksquare \quad p - r_2 < r_2 - r_2 = 0 \quad \blacksquare \quad (p - r_2) < 0 \quad \blacksquare \quad (p - r_2) \in 0_{\mathbb{R}}
         (1.4.3) \quad r_2 \in \alpha \quad \blacksquare \quad p = r_2 + (p - r_2) \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.5) \quad p \in \alpha \implies p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad \forall_{p \in \alpha} (p \in \alpha +_{\mathbb{R}} 0_{\mathbb{R}}) \quad \blacksquare \quad \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}}
    (1.6) \quad \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \subseteq \alpha \wedge \alpha \subseteq \alpha +_{\mathbb{R}} 0_{\mathbb{R}} \quad \blacksquare \quad 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
(2) \quad \alpha \in \mathbb{R} \implies 0_{\mathbb{R}} +_{\mathbb{R}} \alpha = \alpha
     ield\ Addition\ Inverse\ Of\ R:=(\alpha\in\mathbb{R}) \implies \overline{\exists_{-\alpha\in\mathbb{R}} \big(\alpha+_{\mathbb{R}}(-\alpha)=\overline{0}_{\mathbb{R}}\big)}
\overline{(1)} \alpha \in \mathbb{R} \implies \dots
    (1.1) \quad \beta := \{ p \in \mathbb{Q} : \exists_{r>0} (-p - r \notin \alpha) \}
    (1.2) \quad \alpha \subset \mathbb{Q} \quad \blacksquare \ \exists_{s \in \mathbb{Q}} (s \notin \alpha) \quad \blacksquare \ s_0 := choice(\{s : s \notin \alpha\}) \quad \blacksquare \ p_0 := -s_0 - 1
     (1.3) \quad -p_0 - 1 = -(-s_0 - 1) - 1 = s_0 \not\in \alpha \quad \blacksquare \quad -p_0 - 1 \not\in \alpha \quad \blacksquare \quad \exists_{r > 0} (-p_0 - r \not\in \alpha) \quad \blacksquare \quad p_0 \in \beta
     (1.4) \quad \emptyset \neq \alpha \quad \blacksquare \quad \exists_{q \in \alpha} \quad \blacksquare \quad q_0 := choice(\{q \in \mathbb{Q} : q \in \alpha\})
     (1.5) r > 0 \Longrightarrow \dots
     (1.5.1) \quad q_0 \in \alpha \quad \blacksquare \quad -(-q_0) - r = q_0 - r < q_0 \quad \blacksquare \quad -(-q_0) - r < q_0 \quad \blacksquare \quad -(-q_0) - r \in \alpha
     (1.6) \quad \forall_{r>0} \left( -(-q_0) - r \in \alpha \right) \quad \blacksquare \quad \neg \exists_{r>0} \left( -(-q_0) - r \notin \alpha \right) \quad \blacksquare \quad -q_0 \notin \beta
```

 $(1.3) \quad \exists_a(a \in \alpha) \; ; \exists_b(b \in \beta) \quad \blacksquare \; a_0 := choice(\{a : a \in \alpha\}) \; ; \; b_0 := choice(\{b : b \in \beta\}) \quad \blacksquare \; a_0 + b_0 \in \alpha +_{\mathbb{R}} \beta$

 $(1.4) \quad \exists_{x}(x \notin \alpha) \; ; \; \exists_{y}(y_{0} \notin \beta) \quad \blacksquare \; x_{0} \mathrel{\mathop:}= choice(\{x : x \notin \alpha\}) \; ; \; y_{0} \mathrel{\mathop:}= choice(\{y : y \notin \beta\})$

 $(1.7) \quad \emptyset \neq \beta \subset \mathbb{Q} \quad \blacksquare \quad CutI[\beta]$

```
(1) (x, y \in \mathbb{R} \land x > 0) \Longrightarrow \dots
      (1.1) \quad \overline{A} := \{nx : n \in \mathbb{N}^+\} \quad \blacksquare \quad (\emptyset \neq A \subset \mathbb{R}) \land (a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a))
      (1.2) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \dots
            (1.2.1) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{n \in \mathbb{N}^+} (nx \le y) \quad \blacksquare \quad UpperBound[y_0, A, \mathbb{R}, <] \quad \blacksquare \quad Bounded Above[A, \mathbb{R}, <]
             (1.2.2) CompletenessOf R \parallel LUBProperty[\mathbb{R}, <]
            (1.2.3) \quad (\underline{LU} BProperty[\mathbb{R}, <]) \land (\emptyset \neq A \subset \mathbb{R}) \land (\underline{Bounded Above}[A, \mathbb{R}, <]) \quad \blacksquare \ \exists_{\alpha \in \mathbb{R}} (\underline{LUB}[\alpha, A, \mathbb{R}, <]) \ \ldots
            (1.2.4) \quad \dots \alpha_0 := choice(\{\alpha \in \mathbb{R} : LUB[\alpha, A, \mathbb{R}, <]\}) \quad \blacksquare LUB[\alpha_0, A, \mathbb{R}, <]
             (1.2.5) x > 0   \alpha_0 - x < \alpha_0
             (1.2.6) \quad (\alpha_0 - x < \alpha_0) \land (LUB[\alpha_0, A, \mathbb{R}, <]) \quad \blacksquare \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <]
             (1.2.7) \quad \neg UpperBound[\alpha_0 - x, A, \mathbb{R}, <] \quad \blacksquare \quad \exists_{c \in A}(\alpha_0 - x < c) \quad \dots
            (1.2.8) \quad \ldots c_0 := choice(\{c \in A : \alpha_0 - x < c\}) \quad \blacksquare (c_0 \in A) \land (\alpha_0 - x < c_0)
            (1.2.9) \quad (c_0 \in A) \land \left(a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)\right) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (mx = c_0) \quad \dots
             (1.2.10) \quad \ldots m_0 := choice(\{m \in \mathbb{N}^+ : mx = c_0\}) \quad \blacksquare \quad (m_0 \in \mathbb{N}^+) \land (m_0 x = c_0)
            (1.2.11) \quad (\alpha_0 - x < c_0) \land (m_0 x = c_0) \quad \blacksquare \quad \alpha_0 - x < c_0 = m_0 x \quad \blacksquare \quad \alpha_0 < m_0 x + x \quad \blacksquare \quad \alpha_0 < (m_0 + 1) x
             (1.2.12) m_0 \in \mathbb{N}^+ \mid m_0 + 1 \in \mathbb{N}^+
            (1.2.13) \quad (m_0 + 1 \in \mathbb{N}^+) \land \left(a \in A \iff \exists_{m \in \mathbb{N}^+} (mx = a)\right) \quad \blacksquare \quad (m_0 + 1)x \in A
            (1.2.14) \quad (\alpha_0 < (m_0 + 1)x) \land ((m_0 + 1)x \in A) \quad \blacksquare \quad \exists_{c \in A} (\alpha_0 < c)
            (1.2.15) \quad \underline{LUB}[\alpha_0, A, \mathbb{R}, <] \quad \boxed{\hspace{-0.5cm} UpperBound}[\alpha_0, A, \mathbb{R}, <] \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \forall_{c \in A}(c \leq \alpha_0) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(c > \alpha_0) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0.5cm} \downarrow \hspace{-0.5cm} } \neg \exists_{c \in A}(\alpha_0 < c) \quad \boxed{\hspace{-0
             (1.2.16) \quad \left( \exists_{c \in A} (\alpha_0 < c) \right) \land \left( \neg \exists_{c \in A} (\alpha_0 < c) \right) \quad \blacksquare \perp
      (1.3) \quad \neg \exists_{n \in \mathbb{N}^+} (nx > y) \implies \bot \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (nx > y)
(2) \quad (x, y \in \mathbb{R} \land x > 0) \implies \exists_{n \in \mathbb{N}^+} (nx > y) \quad \blacksquare \quad \forall_{x, y \in \mathbb{R}} \left( x > 0 \implies \exists_{n \in \mathbb{N}^+} (nx > y) \right)
(1) (x, y \in \mathbb{R} \land x < y) \implies \dots
      (1.1) \quad x < y \quad \blacksquare \quad (0 < y - x) \land (y - x \in \mathbb{R})
      (1.2) \quad Archimedean Property Of R \wedge (0 < y - x) \wedge (y - x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{n \in \mathbb{N}^+} (n(y - x) > 1) \quad \dots
      (1.3) 	 \ldots n_0 := choice(\{n \in \mathbb{N}^+ : n(y-x) > 1\}) \quad \blacksquare (n_0 \in \mathbb{N}^+) \land (n_0(y-x) > 1)
      (1.4) \quad (n_0 \in \mathbb{N}^+) \land (x \in \mathbb{R}) \quad \blacksquare \quad n_0 x, -n_0 x \in \mathbb{R}
      (1.5) \quad Archimedean Property Of R \land (1 > 0) \land (n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} (m(1) > n_0 x) \dots
      (1.6) 	 \dots m_1 := choice(\{m \in \mathbb{N}^+ : m(1) > n_0 x\}) \blacksquare (m_1 \in \mathbb{N}^+) \land (m_1 > n_0 x)
      (1.7) \quad Archimedean Property Of R \land (1 > 0) \land (-n_0 x, 1 \in \mathbb{R}) \quad \blacksquare \quad \exists_{m \in \mathbb{N}^+} \left( m(1) > -n_0 x \right) \dots
      (1.8) 	 \dots m_2 := choice(\{m \in \mathbb{N}^+ : m(1) > -n_0 x\}) \quad \blacksquare \quad (m_2 \in \mathbb{N}^+) \land (m_2 > -n_0 x)
      (1.9) \quad (m_1 > n_0 x) \land (m_2 > -n_0 x) \quad \blacksquare \quad -m_2 < n_0 x < m_1
      (1.10) \quad m_1, m_2 \in \mathbb{N}^+ \quad || |m_1 - (-m_2)| \ge 2
      (1.11) \quad (-m_2 < n_0 x < m_1) \land (|m_1 - (-m_2)| \ge 2) \quad \blacksquare \quad \exists_{m \in \mathbb{Z}} ((-m_2 < m < m_1) \land (m-1 \le n_0 x < m)) \quad \dots
      (1.12) \quad \dots \quad m_0 := choice \left( \{ m \in \mathbb{Z} : (-m_2 < m < m_1) \land (m-1 \le n_0 x < m) \} \right) \quad \blacksquare \quad (-m_2 < m_0 < m_1) \land (m_0 - 1 \le n_0 x < m_0) 
      (1.13) \quad \left( n_0(y-x) > 1 \right) \land \left( m_0 - 1 \le n_0 x < m_0 \right) \quad \blacksquare \quad n_0 x < m_0 \le 1 + n_0 x < n_0 y \quad \blacksquare \quad n_0 x < m_0 < n_0 y 
      (1.14) \quad (n_0 \in \mathbb{N}^+) \land (n_0 x < m_0 < n_0 y) \quad \blacksquare \ x < m_0 / n_0 < y
      (1.15) m_0, n_0 \in \mathbb{Z} \mid m_0/n_0 \in \mathbb{Q}
      (1.16) \quad (m_0/n_0 \in \mathbb{Q}) \land (x < m_0/n_0 < y) \quad \blacksquare \ \exists_{p \in \mathbb{Q}} (x < p < y)
(2) \quad (x,y \in \mathbb{R} \land x < y) \implies \exists_{p \in \mathbb{Q}} (x < p < y) \quad \blacksquare \quad \forall_{x,y \in \mathbb{R}} \left( x < y \implies \exists_{p \in \mathbb{Q}} (x < p < y) \right)
(1.21)
                                na := (0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})
(1) \quad (0 < a < b) \implies \dots

\overline{(1.1)} \quad b^n - \overline{a^n} = \overline{(b - a) \sum_{i=1}^n (b^{n-i} a^{i-1})}

      (1.2) 0 < a < b \mid b/a > 1
```

12 CHAPTER 1. REAL ANALISI

```
(1.3) \quad b/a > 1 \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} \left( b^{n-i}a^{i-1}(b/a)^{i-1} \right) = \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} \quad \blacksquare \quad \sum_{i=1}^{n} (b^{n-i}a^{i-1}) \le \sum_{i=1}^{n} (b^{n-1}) = nb^{n-1} = nb^
```

$$(1.4) \quad b^n - a^n = (b - a) \sum_{i=1}^n (b^{n-i}a^{i-1}) \le (b - a)nb^{n-1} \quad \blacksquare \quad b^n - a^n \le (b - a)nb^{n-1}$$

(2)
$$(0 < a < b) \implies (b^n - a^n \le (b - a)nb^{n-1})$$

 $Root Existence InR := \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists !_{0 < y \in \mathbb{R}} (y_0^n = x)$

- (1) $(0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \dots$
- $(1.1) \quad E := \{ t \in \mathbb{R} : t > 0 \land t^n < x \} \quad \blacksquare \quad t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)$
- $(1.2) \quad t_0 := x/(1+x) \quad \blacksquare \quad \left(t_0 = x/(1+x)\right) \land (t_0 \in \mathbb{R})$
- (1.3) $0 < x \mid 0 < x < 1 + x \mid t_0 = x/(1+x) > 0 \mid t_0 > 0$
- $(1.4) \quad 1 = (1+x)/(1+x) > x/(1+x) = t_0 \quad \blacksquare \quad 1 > t_0$
- $(1.5) \quad (t_0 > 0) \land (1 > t_0) \quad \blacksquare \quad 0 < t_0 < 1$
- $(1.6) \quad (0 < n \in \mathbb{Z}) \land (0 < t_0 < 1) \quad \blacksquare \ t_0^n \le t_0$
- (1.7) $0 < x \mid x > x/(1+x) = t_0 \mid x > t_0$
- $(1.8) \quad (t_0^n \le t_0) \land (x > t_0) \quad \blacksquare \ t_0^n < x$
- $(1.9) \quad \left(t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)\right) \land (t_0 \in \mathbb{R}) \land (t_0 > 0) \land (t_0^n < x) \quad \blacksquare \quad t_0 \in E \quad \blacksquare \quad \emptyset \neq E$
- $(1.10) \quad t_1 := choice(\{t \in \mathbb{R} : t > 1 + x\}) \quad \blacksquare \quad (t_1 \in \mathbb{R}) \land (t_1 > 1 + x)$
- $(1.11) \quad x > 0 \quad \blacksquare \ t_1 > 1 + x > 1 \quad \blacksquare \ t_1 > 1 \quad \blacksquare \ t_1^n \ge t_1$
- $(1.12) \quad (t_1^n \ge t_1) \land (t_1 > 1 + x) \land (1 > 0) \quad \blacksquare \quad t_1^n \ge t_1 > 1 + x > x \quad \blacksquare \quad t_1^n > x$
- $(1.13) \quad \left(t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)\right) \land (t_1^n > x) \quad \blacksquare t_1 \notin E \quad \blacksquare E \subset \mathbb{R}$
- $(1.14) \quad (\emptyset \neq E) \land (E \subset \mathbb{R}) \quad \blacksquare \quad \emptyset \neq E \subset \mathbb{R}$
- $(1.15) \quad t \in E \implies \dots$
 - $(1.15.1) \quad (t \in E) \land (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \quad \blacksquare t^n < x$
 - $(1.15.2) \quad (t_1^n > x) \land (t^n < x) \quad \blacksquare \ t^n < x < t_1^n \quad \blacksquare \ t < t_1$
- $(1.16) \quad t \in E \implies t < t_1 \quad \blacksquare \quad \forall_{t \in E} (t \le t_1) \quad \blacksquare \quad UpperBound[t_1, E, \mathbb{R}, <] \quad \blacksquare \quad Bounded \ Above[E, \mathbb{R}, <]$
- (1.17) CompletenessOf $R \mid LUBProperty[\mathbb{R}, <]$
- $(1.18) \quad (LUBProperty[\mathbb{R}, <]) \land (\emptyset \neq E \subset \mathbb{R}) \land (Bounded Above[E, \mathbb{R}, <]) \quad \blacksquare \ \exists_{v \in \mathbb{R}} (LUB[y, E, \mathbb{R}, <]) \ \dots$
- (1.19) ... $y_0 := choice(\{y \in \mathbb{R} : LUB[y, E, \mathbb{R}, <]\}) \mid LUB[y_0, E, \mathbb{R}, <]$
- $(1.20) \quad (LUB[y_0, E, \mathbb{R}, <]) \land (t_0 \in E) \land (t_0 > 0) \quad \blacksquare \quad 0 < t_0 \le y_0 \in \mathbb{R} \quad \blacksquare \quad 0 < y_0 \in \mathbb{R}$
- $(1.21) \quad y_0^n < x \implies \dots$
 - $(1.21.1) \quad k_0 := \frac{x y_0^n}{n(y_0 + 1)^{n 1}} \quad \blacksquare \quad k_0 \in \mathbb{R}$
 - $(1.21.2) \quad y_0^n < x \quad \blacksquare \quad 0 < x y_0^n$
 - $(1.21.3) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \ 0 < n(y_0 + 1)^{n-1}$
 - $(1.21.4) \quad (0 < x y_0^n) \land \left(0 < n(y_0 + 1)^{n-1}\right) \quad \blacksquare \quad 0 < \frac{x y_0^n}{n(y_0 + 1)^{n-1}} = k_0 \quad \blacksquare \quad 0 < k_0$
 - $(1.21.5) \quad \overline{(0 < 1 \in \mathbb{R}) \land (0 < k_0 \in \mathbb{R})} \quad \blacksquare \quad 0 < \min(\overline{1, k_0}) \in \mathbb{R}$
 - $(1.21.6) \quad \underline{QDenseInR} \land \left(0, min(1, k_0) \in \mathbb{R}\right) \land \left(0 < min(1, k_0)\right) \quad \blacksquare \quad \exists_{h \in \mathbb{Q}} \left(0 < h < min(1, k_0)\right) \quad \dots$
 - $(1.21.7) \quad \dots \quad h_0 := choice \left(\{ h \in \mathbb{Q} : 0 < h < min(1, k_0) \} \right) \quad \blacksquare \quad (0 < h_0 < 1) \land \left(h_0 < k_0 = \frac{x y_0^n}{n(y_0 + 1)^{n-1}} \right)$
 - $(1.21.8) \quad (y_0 > 0) \land (h_0 > 0) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0$
 - $(1.21.9) \quad \textit{Root Lemma} \wedge (0 < y_0 < y_0 + h_0) \quad \blacksquare (y_0 + h_0)^n y_0^n < h_0 n (y_0 + h_0)^{n-1}$
 - $(1.21.10) \quad h_0 < 1 \quad \blacksquare \quad h_0 n(y_0 + h_0)^{n-1} < h_0 n(y_0 + 1)^{n-1}$
 - $(1.21.11) \quad \left((y_0 + h_0)^n y_0^n < h_0 n (y_0 + h_0)^{n-1} \right) \wedge \left(h_0 n (y_0 + h_0)^{n-1} < h_0 n (y_0 + 1)^{n-1} \right) \quad \blacksquare \quad (y_0 + h_0)^n y_0^n < h_0 n (y_0 + 1)^{n-1}$
 - $(1.21.12) \quad \left(0 < n(y_0 + 1)^{n-1}\right) \land \left(h_0 < k_0 = \frac{x y_0^n}{n(y_0 + 1)^{n-1}}\right) \quad \blacksquare \quad h_0 n(y_0 + 1)^{n-1} < x y_0^n$
 - $(1.21.13) \quad \left((y_0 + h_0)^n y_0^n < h_0 n (y_0 + 1)^{n-1} \right) \wedge \left(h_0 n (y_0 + 1)^{n-1} < x y_0^n \right) \quad \blacksquare \quad (y_0 + h_0)^n y_0^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x y_0^n < x y_0^n \quad (y_0 + h_0)^n < x y_0^n < x -$
 - $(1.21.14) \quad (y_0 + h_0)^n y_0^n < x y_0^n \quad \blacksquare \quad (y_0 + h_0)^n < x$
 - $(1.21.15) \quad (0 < y_0 \mathbb{R}) \land (0 < h_0 < \mathbb{R}) \quad \blacksquare \quad 0 < y_0 < y_0 + h_0 \in \mathbb{R}$
- $(1.21.16) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land ((y_0 + h_0)^n < x) \land (0 < y_0 + h_0 \in \mathbb{R}) \quad \blacksquare (y_0 + h_0)^n \in E$

```
(1.21.17) \quad \left( (y_0 + h_0)^n \in E \right) \land (y_0 < y_0 + h_0) \quad \blacksquare \quad \exists_{e \in E} (y_0 < e)
        (1.21.18) \quad \overline{LUB[y_0, E, \mathbb{R}, <]} \quad \boxed{UpperBound[y_0, E, \mathbb{R}, <]} \quad \boxed{U} \quad \forall_{e \in E} (e \leq y_0) \quad \boxed{\Box} \quad \exists_{e \in E} (e > y_0)
        (1.21.19) \quad \left(\exists_{e \in E} (e > y_0)\right) \land \left(\neg \exists_{e \in E} (e > y_0)\right) \quad \blacksquare \perp
    (1.22) \quad y_0^n < x \implies \bot \quad \blacksquare \quad y_0^n \ge x
    (1.23) \quad y_0^n > x \implies \dots
        (1.23.1) \quad k_1 := \frac{y_0^{n-x}}{ny_0^{n-1}} \quad \blacksquare \quad (k_1 \in \mathbb{R}) \land (k_1 ny_0^{n-1} = y_0^{n} - x)
        (1.23.2) \quad (0 < x) \land (0 < n \in \mathbb{Z}) \quad \blacksquare \quad y_0^n - x < y_0^n \le n y_0^n \quad \blacksquare \quad y_0^n - x < n y_0^n
        (1.23.3) \quad y_0^n - x < ny_0^n \quad \blacksquare \quad k_1 = \frac{y_0^n - x}{ny_0^{n-1}} < \frac{ny_0^n}{ny_0^{n-1}} = y_0 \quad \blacksquare \quad k_1 < y_0
         (1.23.4) \quad y_0^n > x \quad \blacksquare \quad 0 < y_0^n - x
        (1.23.5) \quad (n > 0) \land (y_0 > 0) \quad \blacksquare \quad 0 < ny_0^{n-1}
        (1.23.6) \quad (0 < y_0^n - x) \land 0 < (ny_0^{n-1}) \quad \blacksquare \quad 0 < \frac{y_0^n - x}{ny_0^{n-1}} = k_1 \quad \blacksquare \quad 0 < k_1
         (1.23.7) \quad (k_1 < y_0) \land (0 < k_1) \quad \blacksquare \quad (0 < k_1 < y_0) \land (0 < y_0 - k_1 < y_0)
        (1.23.8) t \ge y_0 - k_1 \implies \dots
            (1.23.8.1) \quad t \ge y_0 - k_1 \quad \blacksquare \quad t^n \ge (y_0 - k_1)^n \quad \blacksquare \quad -t^n \le -(y_0 - k_1)^n \quad \blacksquare \quad y_0^n - t^n \le y_0^n - (y_0 - k_1)^n
            (1.23.8.2) \quad \textit{RootLemma} \land (0 < y_0 - k_1 < y_0) \quad \blacksquare \ y_0{}^n - (y_0 - k_1)^n < k_1 n y_0{}^{n-1}
            (1.23.8.3) \quad \left(y_0^n - t^n \le y_0^n - (y_0 - k_1)^n\right) \wedge \left(y_0^n - (y_0 - k_1)^n < k_1 n y_0^{n-1}\right) \quad \blacksquare \quad y_0^n - t^n < k_1 n y_0^{n-1}
            (1.23.8.4) \quad \overline{(k_1 n y_0^{n-1} = y_0^n - x) \wedge (y_0^n - t^n < k_1 n y_0^{n-1})} \quad \blacksquare \quad y_0^n - t^n < y_0^n - x \quad \blacksquare \quad -t^n < \overline{-x} \quad \blacksquare \quad t^n > x
            (1.23.8.5) \quad (t \in E \iff (t \in \mathbb{R} \land t > 0 \land t^n < x)) \land (t^n > x) \quad \blacksquare \ t \notin E
         (1.23.9) \quad t \geq y_0 - k_1 \implies t \not\in E \quad \blacksquare \quad t \in E \implies t < y_0 - k_1 \quad \blacksquare \quad \forall_{t \in E} (t \leq y_0 - k_1) \quad \blacksquare \quad \overline{U} \quad pperBound[y_0 - k_1, E, \mathbb{R}, <]
        (1.23.10) \quad (LUB[y_0, E, \mathbb{R}, <] \land (y_0 - k_1 < y_0)) \quad \blacksquare \quad \neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]
         (1.23.11) \quad (UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \land (\neg UpperBound[y_0 - k_1, E, \mathbb{R}, <]) \quad \blacksquare \ \bot
    (1.24) \quad y_0^n > x \implies \bot \quad \blacksquare \quad y_0^n \le x
    (1.25) Order[\mathbb{R}, <] \ \square \ OrderTrichotomy[\mathbb{R}, <]
    (1.26) \quad (OrderTrichotomy[\mathbb{R}, <]) \land (y_0^n \ge x) \land (y_0^n \le x) \quad \blacksquare \ y_0^n = x
    (1.27) \quad (y_0^n = x) \land (y_0 \in \mathbb{R}) \quad \blacksquare \quad \exists_{v \in \mathbb{R}} (y^n = x)
    (1.28) y_1, y_2 := choice(\{y \in \mathbb{R} : y^n = x\})
    (1.29) \quad y_1 \neq y_2 \implies \dots
        (1.29.1) \quad (OrderTrichotomy[\mathbb{R}, <]) \land (y_1 \neq y_2) \quad \blacksquare \quad (y_1 < y_2) \lor (y_2 < y_1) \quad . \quad .
        (1.29.2) 	 \dots (x = y_1^n < y_2^n = x) \lor (x = y_2^n < y_1^n = x) \blacksquare (x < x) \lor (x > x) \blacksquare \bot \lor \bot \blacksquare \bot
   (1.30) \quad y_1 \neq y_2 \implies \bot \quad \blacksquare \quad y_1 = y_2 \quad \blacksquare \quad \forall_{a,b \in \mathbb{R}} \left( (a^n = x \land b^n = x) \implies a = b \right)
   (1.31) \quad \left(\exists_{y \in \mathbb{R}} (y^n = x)\right) \land \left(\forall_{a,b \in \mathbb{R}} \left( (a^n = x \land b^n = x) \implies a = b \right) \right) \quad \blacksquare \quad \exists!_{y \in \mathbb{R}} (y^n = x)
(2) \quad (0 < x \in \mathbb{R} \land 0 < n \in \mathbb{Z}) \implies \exists!_{v \in \mathbb{R}} (y^n = x) \quad \blacksquare \quad \forall_{0 < x \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \exists!_{0 < v \in \mathbb{R}} (y_0^n = x)
                                             \text{Corollary} := \forall_{0 < a \in \mathbb{R}} \forall_{0 < b \in \mathbb{R}} \forall_{0 < n \in \mathbb{Z}} \left( (ab)^{1/n} = a^{1/n} b^{1/n} \right)
          unded Real System [\bar{\mathbb{R}}, +, *, <] := 

\begin{bmatrix}
\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} & \wedge & -\infty < x < \infty & \wedge \\
x + \infty = +\infty & \wedge & x - \infty = -\infty & \wedge & \frac{x}{+\infty} = \frac{x}{-\infty} = 0 & \wedge \\
(x > 0) \implies (x * (+\infty) = +\infty \wedge x * (-\infty) = -\infty) \wedge \\
(x < 0) \implies (x * (+\infty) = -\infty \wedge x * (-\infty) = +\infty)
\end{bmatrix}

\mathbb{C} := \{ \langle a, b \rangle \in \mathbb{R} \times \mathbb{R} \}
    [\langle a, b \rangle, \langle c, d \rangle] := \langle a +_{\mathbb{R}} c, b +_{\mathbb{R}} d \rangle
     [\langle a, b \rangle, \langle c, d \rangle] := \langle a *_{\mathbb{R}} c - b *_{\mathbb{R}} d, a *_{\mathbb{R}} d + \underline{b} *_{\mathbb{R}} c \rangle
        ubfieldC := Subfield[\mathbb{R}, \mathbb{C}, +, *]
i := \langle 0, 1 \rangle \in \mathbb{C}
    Property: =i^2=-1
                     y := (a, b \in \mathbb{R}) \implies (\langle a, b \rangle = a + bi)
```

14 CHAPTER I. KEAL AWALISIS

Conjugate
$$[\overline{a+bi}] := a-bi$$

Conjugate Properties := $(w, z \in \mathbb{C}) \implies \dots$ —

- $(1) \quad \overline{z+w} = \overline{z} + \overline{w}$
- $(2) \quad \overline{z*w} = \overline{z}*\overline{w}$
- $\overline{(3) \quad Re(z) = (1/2)(z+\overline{z}) \wedge Im(z) = (1/2)(z-\overline{z})}$
- $(4) \quad 0 \le z * \overline{z} \in \mathbb{R}$

AbsoluteV alueC[|z|] =
$$(z * \overline{z})^{1/2}$$

AbsoluteV alueProperties := $(z, w \in \mathbb{C}) \implies \dots$

(1) 123123

TODO: - MORE EXPLICIT MODUS PONENS ON OrderTrichotomyR ??? - name all properties - hyperlink all definitions ???

Chapter 2

Abstract Algebra

 ${}^{\mathsf{L}}\mathbf{D}(a,b,c) := CD(a,b,c) \land \forall_d \big((d:b \land d:c) \implies d:a \big)$

```
Relation(f, X) := f \subseteq X
 Function(f, X, Y) := X \neq \emptyset \neq Y \land Relation(f, X \times Y) \land \forall_{x \in X} \exists !_{y \in Y} ((x, y) \in f)
(Function(f, X, Y) \land A \subseteq X \land B \subseteq Y) \implies \dots
(1) Domain(f) := X; Codomain(f) := Y
(2) Image(f, A) := \{f(a) : a \in A\}; Preimage(f, B) := \{a : f(a) \in B\}
(3) \quad Range(f) := Image(Domain(f))
Injective(f, X, Y) := Function(f, X, Y) \land \forall_{x_1, x_2 \in X} (x_1 \neq x_2 \implies f(x_1) \neq f(x_2))
Surjective(f, X, Y) := Function(f, X, Y) \land \forall_{y \in Y} \exists_{x \in X} (y_0 = f(x))
 Bijective(f, X, Y) := Injective(f, X, Y) \land Surjective(f, X, Y)
                               t := (Range(f) = Codomain(f)) \implies Surjective(f)
(Function(f, X, Y) \land Function(g, Y, Z)) \implies (f \circ g)(x) := f(g(x)); Function(f \circ g, X, Z)
               of Functions := (Function(f, A, B) \land Function(g, B, C) \land Function(h, C, D)) \implies \dots
(1) h \circ (g \circ f) = (h \circ g) \circ f
(2) \quad (Injective(f) \land Injective(g)) \implies Injective(g \circ f)
(3) \quad \left( Surjective(f) \land Surjective(g) \right) \implies Surjective(g \circ f)
(4) \quad \left(Bijective(f,A,B)\right) \implies \exists_{f^{-1}} \left(Function(f^{-1},B,A) \land \forall_{a \in A} \left(f^{-1}\left(f(a)\right) = a\right)\right) \land \forall_{b \in B} \left(f\left(f^{-1}(b)\right) = b\right)
 (a,b) := a, b \in \mathbb{Z} \land a \neq 0 \land \exists_{c \in \mathbb{Z}} (b = ac)
   ivisibility \overline{Theorems} := (a, b, c, m, x, y \in \mathbb{Z}) \implies \dots
(1) (a|b) \Longrightarrow a|bc
(2) (a|b \wedge b|c) \implies a|c|
(3) \quad (a|b \wedge b|c) \implies a|(bx+cy)
(4) (a|b \wedge b|a) \implies a = \pm b
(5) (a|b \land a > 0 \land b > 0) \implies (a \le b)
(6) (a|b) \iff (m \neq 0 \land ma|mb)
   \underbrace{\text{ivisionAlgorithm}} := (a, b \in \mathbb{Z} \land a > 0) \implies \exists !_{q,r \in \mathbb{Z}} (b = aq + r)
  (\mathbf{D}(a,b,c) := a,b,c \in \mathbb{Z} \land a : b \land a : c)
```

Chapter 3

Linear Algebra

3.1 Matrix Operations and Special Matrices

```
\begin{aligned} &Matrix[A,m,n] := [a_{i,j}]_{m\times n} := \text{m rows, n columns of real numbers} \\ &\mathcal{M}_{m,n} := \{A: Matrix[A,m,n]\} \\ &O_{m,n} := (Matrix[O,m,n]) \wedge (a_{i,j} = 0) \\ &Square[A,n] := Matrix[A,n,n] \\ &UpperTriangular[A] := (Square[A]) \wedge (i > j \implies a_{i,j} = 0) \\ &LowerTriangular[A] := (Square[A]) \wedge (i < j \implies a_{i,j} = 0) \\ &Diagonal[A,n] := (Square[A,n]) \wedge (i \neq j \implies a_{i,j} = 0) \\ &Scalar[A,n,k] := (Diagonal[A,n]) \wedge (a_{i,i} = k) \\ &I_n := Scalar[I,n,1] \\ &+ (A,B) := \left( (Matrix[A,m,n]) \wedge (Matrix[B,m,n]) \right) \implies (A+B = [a_{i,j}+b_{i,j}]_{m\times n}) \\ &* (r,A) := \left( (r \in \mathbb{R}) \wedge (Matrix[A,m,n]) \right) \implies (r*A = [ra_{i,j}]_{m\times n}) \\ &* (A,B) := \left( (Matrix[A,m,p]) \wedge (Matrix[B,p,n]) \right) \implies \left( A*B = \left[ \sum_{k=1}^p (a_{i,k}b_{k,j}) \right]_{m\times n} \right) \\ &T[A] := (Matrix[A,m,n]) \implies (A^T = [a_{j,i}]_{n\times m}) \\ &AddCom := \forall_{A,B \in \mathcal{M}} (A+B=B+A) \end{aligned}
```

(1)
$$A + B = [a_{i,j} + b_{i,j}] = [b_{i,j} + a_{i,j}] = B + A$$

$$\frac{Add \, Assoc \, := \forall_{A,B,C \in \mathcal{M}} \big((A+B) + C = A + (B+C) \big)}{(1) \ \ \, (A+B) + C = [(a_{i,j} + b_{i,j}) + c_{i,j}] = [a_{i,j} + (b_{i,j} + c_{i,j})] = A + (B+C)}$$

$$\frac{AddId := \forall_{A \in \mathcal{M}} \exists !_{O \in \mathcal{M}} (A + O = A = O + A)}{(1) \quad A + O = [a_{i,i} + 0] = A = [0 + a_{i,i}] = O + A}$$

$$(2) \quad A + O_1 = A = A + O_2 \quad \blacksquare \quad O_1 = O_2$$

$$AddInv := \forall_{A \in \mathcal{M}} \exists !_{(-A) \in \mathcal{M}} (A + (-A) = O = (-A) + A)$$

$$\overline{(1) \quad A + (-A) = [a_{i,j} - a_{i,j}] = O = [-a_{i,j} + a_{i,j}] = (-A) + A}$$

$$(2) \quad A + (-A_1) = O = A + (-A_2) \quad \blacksquare \quad -A_1 = -A_2 \quad \blacksquare \quad A_1 = A_2$$

 $MulAssoc := \forall_{A,B,C \in \mathcal{M}} ((A * B) * C = A * (B * C))$

$$\overline{(1) \quad (A * B) * C = \left[\sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,j})\right] * C = \left[\sum_{k_2=1}^{p_2} \left(\sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,k_2}) c_{k_2,j}\right)\right] = \left[\sum_{k_2=1}^{p_2} \sum_{k_1=1}^{p_1} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j})\right] = \dots }$$

$$\overline{(2) \dots \left[\sum_{k_1=1}^{p_1} \sum_{k_2=1}^{p_2} (a_{i,k_1} b_{k_1,k_2} c_{k_2,j}) \right] = \left[\sum_{k_1=1}^{p_1} \left(a_{i,k_1} \sum_{k_2=1}^{p_2} (b_{k_1,k_2} c_{k_2,j}) \right) \right] = \dots = A * (B * C)$$

$$MulId := \forall_{A:Square[A,n]}(A * I_n = A = I_n * A)$$

(1)
$$A * I_n = \left[\sum_{k=1}^n \left(a_{i,k} \left(\begin{cases} 1 & k=j \\ 0 & k \neq j \end{cases} \right) \right) \right] = [a_{i,j}] = A$$

(2) TODO = A

 $ScalAssoc := \forall_{r,s \in \mathbb{R}} \forall_{A \in \mathcal{M}} (r(sA) = (rs)A = s(rA))$

- (1) $r(sA) = r[sa_{i,j}] = [rsa_{i,j}]$
- $(2) \quad (rs)A = [rsa_{i,j}]$
- (3) $s(rA) = s[ra_{i,j}] = [sra_{i,j}] = [rsa_{i,j}]$

 $TransCancel := \forall_{A \in \mathcal{M}} (A = (A^T)^T)$

(1)
$$A = [a_{i,j}] = [a_{j,i}]^T = ([a_{i,j}]^T)^T = (A^T)^T$$

 $Scal MulCom := \forall_{r \in \mathbb{R}} \forall_{A,B \in \mathcal{M}} \big((rA) * B = r(A * B) = A * (rB) \big)$

$$\overline{(1) \ (rA) * B = [ra_{i,l}] * [b_{l,j}] = \left[\sum_{k=1}^{p} (ra_{i,k}b_{k,j}) \right] = r(A * B)}$$

(2)
$$A * (rB) = [a_{i,l}] * [rb_{l,j}] = \left[\sum_{k=1}^{p} (a_{i,k}rb_{k,j})\right] = \left[\sum_{k=1}^{p} (ra_{i,k}b_{k,j})\right] = r(A * B)$$

 $ScalDistLeft := \forall_{r,s \in \mathbb{R}} \forall_{A \in \mathcal{M}} ((r+s)A = rA + sA)$

(1) TODO

 $ScalDistRight := \forall_{r \in \mathbb{R}} \forall_{A,B \in \mathcal{M}} (r(A+B) = rA + rB)$

(1) TODO

 $MulDistRight := \forall_{A,B,C \in \mathcal{M}} ((A+B) * C = A * C + B * C)$

(1)
$$(A+B)*C = [a_{i,j}+b_{i,j}]*C = \left[\sum_{k=1}^{p} \left((a_{i,k}+b_{i,k})c_{k,j}\right)\right] = \dots$$

$$\overline{(2) \quad \dots \left[\sum_{k=1}^{p} (a_{i,k} c_{k,j} + b_{i,k} c_{k,j}) \right] = \left[\sum_{k=1}^{p} (a_{i,k} c_{k,j}) \right] + \left[\sum_{k=1}^{p} (b_{i,k} c_{k,j}) \right] = A * C + B * C}$$

 $MulDistLeft := \forall_{A,B,C \in \mathcal{M}} (C * (A + B) = C * A + C * B)$

(1) TODO

 $TransAddDist := \forall_{A,B \in \mathcal{M}} ((A+B)^T = A^T + B^T)$

(1) TODO

 $TransMulDist := \forall_{A,B \in \mathcal{M}} ((A * B)^T = B^T * A^T)$

$$\overline{(1) \quad (A * B)^T = \left[\sum_{k=1}^p (a_{i,k} b_{k,j})\right]^T = \left[\sum_{k=1}^p (a_{j,k} b_{k,i})\right] = \left[\sum_{k=1}^p (b_{k,i} a_{j,k})\right] = \left[\sum_{k=1}^p (b_{i,k}^T a_{k,j}^T)\right] = B^T * A^T}$$

 $Sym[A] := A = A^T$

$$SkewSym[A] := A = -A^T$$

$$Invertible[A] := (Square[A, n]) \land \left(\exists_{A^{-1} \in \mathcal{M}} (A * A^{-1} = I_n = A^{-1} * A)\right)$$

 $SymGen := \forall_{A \in \mathcal{M}} (Sym[A + A^T])$

$$\overline{(1) (A + A^T)^T = A^T + (A^T)^T = A^T + A = A + A^T}$$

$$\frac{SkewSymGen := \forall_{A \in \mathcal{M}}(SkewSym[A - A^T])}{(1) \quad -(A - A^T)^T = -\left(A^T - (A^T)^T\right) = -(A^T - A) = (A - A^T)}$$

 $SymDecomp := \forall_{A \in \mathcal{M}} \exists !_{B:Sym[B]} \exists !_{C:SkewSym[C]} (A = B + C)$

- (1) $B := (1/2) * (A + A^T) ; C := (1/2) * (A A^T)$
- $\overline{(2)}$ $SymGen[B] \land SkewSymGen[C]$
- (3) $A = (1/2) * (A + A^T) + (1/2) * (A A^T) = B + C$
- (4) $(1/2) * (A_1 + A_1^T) = (1/2) * (A_2 + A_2^T) \blacksquare A_1 = A_2$
- (5) $(1/2) * (A_3 A_3^T) = (1/2) * (A_4 A_4^T) \blacksquare A_3 = A_4$

 $InvId := \forall_{A:Invertible[A]} \Big(\exists !_{A^{-1} \in \mathcal{M}} (A * A^{-1} = I_n = A^{-1} * A) \Big)$

$$\overline{(1) \ A^{-1}_{1} = A^{-1}_{1} * I_{n} = A^{-1}_{1} * (A * A^{-1}_{2}) = (A^{-1}_{1} * A) * A^{-1}_{2} = I_{n} * A^{-1}_{2} = A^{-1}_{2}}$$

 $InvCancel := \forall_{A:Invertible[A]} \Big((A^{-1})^{-1} = A \Big)$

- (1) $(A * A^{-1})^{-1} = I_n^{-1} = I_n$
- $\frac{(2) (A^{-1})^{-1} * A^{-1} = I_n \blacksquare A^{-1})^{-1} = I_n * A = A}{(2) (A^{-1})^{-1} * A^{-1} = I_n \blacksquare A^{-1})^{-1} = I_n * A = A}$

 $\overline{InvDist} := \forall_{A:Invertible[A]} \forall_{B:Invertible[B]} \Big((A * B)^{-1} = B^{-1} * A^{-1} \Big)$

$$\overline{(1) \ (A*B)*(A*B)^{-1} = I \ \blacksquare \ B*(A*B)^{-1} = A^{-1} \ \blacksquare \ (A*B)^{-1} = B^{-1}*A^{-1}}$$

 $InvTrans := \forall_{A:Invertible[A]} ((A^T)^{-1} = (A^{-1})^T) \blacksquare \Leftarrow$

$$\overline{(1) \quad A^T * (A^{-1})^T = (A^{-1} * A)^T = I^T = I \quad \blacksquare \ (A^{-1})^T = (A^T)^{-1}}$$

3.2 Elementary Matrices on Invertibility and Systems of Linear Equations

 $Sys[A, B] := (Matrix[A, m, n]) \land (Matrix[B, m, 1])$

 $Sol[X, A, B] := (Sys[A, B]) \land (Matrix[X, n, 1]) \land (A * X = B)$

ConsistentSys[A, B] := $(Sys[A, B]) \land \exists_X (Sol[X, A, B])$

 $TrivSol[X, A] := (Sol[X, A, O]) \land (X = O)$

 $NonTrivSol[X, A] := (Sol[X, A, O]) \land (X \neq O)$

 $HomoSysProps := (Sys[A, O]) \implies \dots$

- (1) $u_0 := O$; $u_1 := choice(\{X \in \mathcal{M} | X \neq O\})$; $k := choice(\mathbb{R})$
- (2) $TrivSol[u_0, A]$
- $\overline{(3) \ (NonTrivSol[u_1, A]) \implies (Sol[u_1 + ku_0])}$
- $(4) \ (TrivSol[\overrightarrow{X}, A]) \implies \left(TrivSol[LC(\overrightarrow{X}), A]\right)$

 $ElemMat[E] := (E = Swap[I_n, i, j]) \lor \left(Scale_*(I_n, i, c)\right) \lor \left(Combine_*(I_n, i, c, j)\right)$

$$Elem M \ at \ Prod[E^*] := \exists_{\langle E \rangle} \bigg(\forall_{E_i \in E^*} (Elem M \ at [E_i]) \land \bigg(E^* = \Pi_{E_i \in E^*} (E_i) \bigg) \bigg)$$

 $\overline{RowEquiv[A,B]} := \exists_{E^*} \left((ElemMatProd[E^*]) \land (B = E^* * A) \right)$

 $ElemMatInv := \forall_{E \in \mathcal{M}} ((ElemMat[E]) \implies (Invertible[E]))$

(1) $E - RowSwap[E] \implies TODO$; $E - RowScale_*(E) \implies TODO$; $E - RowCombine_*(E) \implies TODO$

 $ElemMatProdInv := \forall_{E^*} ((ElemMatProd[E^*]) \implies (Invertible[E^*]))$

 $\overline{(1)}$ TODO

 $RowEquivSys := \forall_{A,B,C,D,X \in \mathcal{M}} \Big(\big((Sys[A,B]) \land (Sys[C,D]) \land (RowEquiv[[AB],[CD]]) \big) \implies (Sol[X,A,B] \iff Sol[X,C,D]) \Big)$

 $\overline{(1)} \ \exists_{E^*: ElemMatProd[E^*]} ([CD] = E^* * [AB])$

CHAPTER 3. LINEAR ALGED

```
(2) (E^* * A = C) \wedge (E^* * B = D)
```

(3) $Sol[Y, A, B] \implies \dots$

$$(3.1) \quad A * Y = B$$

(3.2)
$$C * Y = (E^* * A) * Y = E^* * (A * Y) = E^* * B = D$$
 Sol $[Y, C, D]$

(4) $Sol[Y, A, B] \implies Sol[Y, C, D]$

(5)
$$\left(A = (E^*)^{-1} * C\right) \wedge \left(B = (E^*)^{-1} * D\right)$$

 $\overline{(6) \ Sol[Z,C,D] \implies \dots}$

(6.1)
$$C * Z = D$$

(6.2)
$$A * Z = ((E^*)^{-1} * C) * Z = (E^*)^{-1} * (C * Z) = (E^*)^{-1} * D = B$$

- $\overline{(7) \ Sol[Z,C,D] \implies Sol[Z,A,B]}$
- (8) $Sol[X, A, B] \iff Sol[X, C, D]$

$$RowEquivHomoSysSol := \forall_{A,C,X \in \mathcal{M}} \Big((RowEquiv[A,C]) \implies \Big((Sol[X,A,O]) \iff (Sol[X,C,O]) \Big) \Big)$$

 $\overline{(1) \quad \text{Set } B = D = O}$

$$RREF[A] := (A \in \mathcal{M}) \land \begin{cases} All \text{ zero rows are at the bottom of the matrix.} & \land \\ The leading entry after the first occurs to the right of the leading entry of the previous row. \land \\ The leading entry in any nonzero row is 1. & \land \\ All entries in the column above and below a leading 1 are zero. & \land \end{cases}$$

 $Gauss Jordan Elim := \forall_{A \in \mathcal{M}} \exists !_{B \in \mathcal{M}} \big((RREF[B]) \land (Row Equiv[A, B]) \big)$

- (1) Hit A with ElemMat's until it becomes B
- $(2) \quad (B = E^* * A) \wedge (RREF[B])$

$$HasZero[A] := (Matrix(A, m, n)) \wedge (\exists_{i \le m} (A_{i,:} = O))$$

 $HasZeroNonInvertible := \forall_{A \in \mathcal{M}} ((HasZero[A]) \implies (\neg Invertible[A]))$

- $(1) \quad i := choice(\{i \le m | A_{i,:} = O\})$
- $(2) (B \in \mathcal{M}) \Longrightarrow \dots$

$$(2.1) \quad (A * B)_{i,:} = O \neq I_{n_{i,:}} \quad \blacksquare \quad A * B \neq I_n$$

$$\overline{(3) \ (B \in \mathcal{M}) \implies (A * B \neq I_n) \ \blacksquare \ \forall_{B \in \mathcal{M}} (A * B \neq I_n) \ \blacksquare \ \neg Invertible[A]}$$

 $InvIffRowEquivI := \forall_{A \in \mathcal{M}} ((Invertible[A]) \iff (RowEquiv[A, I_n]))$

- (1) $(Invertible[A]) \implies ...$
 - (1.1) $(RREF[B]) \land (RowEquiv[A, B])$
 - $(1.2) \quad B = E^* * A$
 - (1.3) $(Invertible[E^*]) \land (Invertible[A]) \blacksquare Invertible[B]$
 - (1.4) $Invertible[B] \ \blacksquare \ \neg HasZero[B]$
 - $(1.5) \quad (RREF[B]) \land (\neg HasZero[B]) \quad \blacksquare \quad B = I_n$
 - (1.6) $RowEquiv[A, I_n]$
- (2) $(Invertible[A]) \implies (RowEquiv[A, I_n])$
- $(3) \ \ (RowEquiv[A,I_n]) \ \Longrightarrow \ \dots$

(3.1)
$$I_n = E^* * A \blacksquare (E^*)^{-1} = A$$

$$(3.2) \quad A^{-1} = E_{DescSort}^* \quad \blacksquare \quad Invertible[A]$$

- $\overline{(4) \ (RowEquiv[A,I_n])} \Longrightarrow (\overline{Invertible[A]})$
- (5) $(Invertible[A]) \iff (RowEquiv[A, I_n])$

$$RowEquivIIffTrivSol := \forall_{A \in \mathcal{M}} \bigg((RowEquiv[A, I_n]) \iff \bigg(\forall_X \big((X = O) \iff (Sol[X, A, O]) \big) \bigg) \bigg)$$

- (1) $(RowEquiv[A, I_n]) \implies ...$
 - (1.1) $RowEquiv[A, I_n]$ Invertible[A]

S.S. VECTOR SPACES

```
(1.2) (Sol[X, A, O]) \Longrightarrow \dots
```

$$(1.2.1) \quad A * X = O \quad \blacksquare \quad X = A^{-1} * O = O \quad \blacksquare \quad X = O$$

- $(1.3) \quad (Sol[X, A, O]) \implies (X = O)$
- $(1.4) \quad (X = O) \implies (Sol[X, A, O])$
- $(1.5) \quad (X = O) \iff (Sol[X, A, O]) \quad \blacksquare \quad \forall_X \big((X = O) \iff (Sol[X, A, O]) \big)$

$$(2) \quad (RowEquiv[A, I_n]) \implies \Big(\forall_X \big((X = O) \iff (Sol[X, A, O]) \big) \Big)$$

$$(3) \ \left(\forall_X \big((X = O) \iff (Sol[X, A, O]) \big) \right) \implies \dots$$

- (3.1) $(RREF[B]) \wedge (RowEquiv[A, B])$
- (3.2) Sol[X, B, O]
- $(3.3) (B \neq I_n) \Longrightarrow \dots$

$$(3.3.1) \quad \left(\exists_{Y \neq X}(Sol[Y, B, O])\right)$$

- (3.3.2) Sol[Y, A, O] Y = X
- $(3.3.3) (Y \neq X) \land (Y = X)$ $\blacksquare \bot$
- $(3.4) \quad (B \neq I_n) \implies \bot \blacksquare B = I_n$
- (3.5) $(RowEquiv[A, B]) \land (B = I_n) \mid RowEquiv[A, I_n]$

$$(4) \quad \Big(\forall_X \big((X = O) \iff (Sol[X, A, O]) \big) \Big) \implies (RowEquiv[A, I_n])$$

$$(5) \quad (RowEquiv[A,I_n]) \iff \Big(\forall_X \big((X=O) \iff (Sol[X,A,O]) \big) \Big)$$

 $InvIffUniqSol := \forall_{A \in \mathcal{M}} \Big((Invertible[A]) \iff \Big(\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X,A,B]) \Big) \Big)$

- $\overline{(1) \ (Invertible[A] \land B \in \mathcal{M}) \implies \dots}$
- $(1.1) \quad (Invertible[A]) \land (Sys[A, B])$
- $(1.2) \quad (X = A^{-1} * B) \iff (Sol[X, A, B]) \quad \blacksquare \ \exists !_{X \in \mathcal{M}} (Sol[X, A, B])$
- $(2) \left(\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B]) \right) \implies \dots$
 - (2.1) $X_i := choice(\{X_i | Sol[X_i, A, I_{n:i}]\})$
- $(2.2) \quad A * [X_1 \dots X_n] = [(A * X_1) \dots (A * X_n)] = [I_{n+1} \dots I_{n+n}] = I_n$
- (2.3) $A^{-1} = [X_1 \dots X_n]$
- $(3) \left(\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B]) \right) \implies (Invertible[A])$

$$SquareTheorems_4 := \forall_{A \in \mathcal{M}} \begin{pmatrix} (Invertible[A]) & \Longleftrightarrow \\ (RowEquiv[A, I_n]) & \Longleftrightarrow \\ \left(\forall_X \left((X = O) \iff (Sol[X, A, O]) \right) \right) & \Longleftrightarrow \\ \left(\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X, A, B]) \right) \end{pmatrix}$$

3.3 Vector Spaces

$$VectorSpace[V,+,*] := \exists_{O \in V} \forall_{\alpha,\beta \in \mathbb{R}} \forall_{u,v,w \in V} \begin{cases} (u+v \in V) \ \land \ (u+v=v+u) \ \land \ \left((u+v)+w=u+(v+w)\right) \ \land \ (u+O=u) \ \land \ \left(\exists_{-u \in V} \left(u+(-u)=O\right)\right) \ \land \ (\alpha*u \in V) \ \land \ \left(\alpha*(\beta*u)=(\alpha\beta)*u\right) \ \land \ (1*u=u) \ \land \ \left(\alpha*(u+v)=(\alpha*u)+(\alpha*v)\right) \land \left(\alpha*u+v\right) \ \end{cases}$$

 $ZeroVectorUniq := \forall_{O',v \in V} ((v + O' = v) \implies (O' = O))$

$$\overline{(1) \ O' = O' + O = O + O' = O \ \blacksquare \ O' = O}$$

 $\overline{Add} InvUnique := \forall_{-v',v \in V} \left((v + -v' = O) \implies (-v' = -v) \right)$

$$(1) \quad -v' = -v' + O = -v' + (v + -v) = (-v' + v) + -v = (v + -v') + -v = O + -v = -v \quad \blacksquare \quad -v' = -v$$

 $AddInvGen := \forall_{v \in V} ((-1) * v = -v)$

 \sim ZZ

```
(1) \quad v + (-1) * v = (1-1) * v = 0 * v = O \quad (-1) * v = -v
```

 $ZeroVectorGenLeft := \forall_{v \in V}(0 * v = O)$

$$(1) \quad 0 * v = (0+0) * v = (0*v) + (0*v) \quad \blacksquare \quad O = 0*v$$

 $ZeroVectorGenRight := \forall_{r \in \mathbb{R}} (r * O = O)$

(1)
$$r * O = r * (O + O) = (r * O) + (r * O)$$
 $O = r * O$

 $ZeroVectorEquiv := \forall_{r \in \mathbb{R}} \forall_{v \in V} \Big((r * v = O) \iff \big((v = O) \lor (r = 0) \big) \Big)$

$$(1) \quad (ZeroVectorGenLeft) \wedge (ZeroVectorGenRight) \quad \blacksquare \\ \left((v=O) \vee (r=0) \right) \implies (r*v=O))$$

- $(2) \quad (r * v = 0) \implies \dots$
- $(2.1) \quad (r \neq 0) \implies \dots$
 - (2.1.1) $r \neq 0 \blacksquare r^{-1} \in \mathbb{R}$

(2.1.2)
$$ZeroVectorGenRight \ \blacksquare \ O = r^{-1} * O = r^{-1} * (r * v) = (r^{-1}r) * v = 1 * v = v \ \blacksquare \ O = v$$

$$(2.2) \quad (r \neq 0) \implies (v = O) \quad \blacksquare \quad (r = 0) \lor (r \neq 0) \quad \blacksquare \quad (r = 0) \lor (v = O)$$

- $(3) \quad (r * v = O) \implies ((r = 0) \lor (v = O))$
- $(4) \quad (r * v = O) \iff ((r = 0) \lor (v = O))$

3.4 Subspaces and Special Subspaces

 $Subspace[S,V,+,*] := (VectorSpace[V,+,*]) \land (\emptyset \neq S \subseteq V) \land (VectorSpace[S,+,*]) \land (VectorSpace[S,$

$$SubspaceEquiv := \forall_{V,S} \left(\begin{array}{l} (VectorSpace[V,+,*]) \\ \\ \left((Subspace[S,V,+,*]) \iff \left((\emptyset \neq S \subseteq V) \land \left(\forall_{r,s \in S}(r+s \in S) \right) \land \left(\forall_{\alpha \in \mathbb{R}} \forall_{s \in S}(\alpha * s \in S) \right) \right) \end{array} \right) \right)$$

- $\overline{(1) \ (Subspace[S,V,+,*]) \implies \dots}$
 - (1.1) $Subspace[S, V, +, *] \quad \emptyset \neq S \subseteq V$
 - $(1.2) \quad VectorSpace[S, +, *] \quad \blacksquare \quad \left(\forall_{r, s \in S} (r + s \in S) \right) \land \left(\forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right)$
 - $(1.3) \quad (\emptyset \neq S \subseteq V) \land \left(\forall_{r,s \in S} (r + s \in S) \right) \land \left(\forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right)$

$$(2) \quad (Subspace[S, V, +, *]) \implies \left((\emptyset \neq S \subseteq V) \land \left(\forall_{r, s \in S} (r + s \in S) \right) \land \left(\forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right) \right)$$

$$(3) \quad \left((\emptyset \neq S \subseteq V) \land \left(\forall_{r,s \in S} (r+s \in S) \right) \land \left(\forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right) \right) \implies \dots$$

- $(3.1) \quad \left((\alpha, \beta \in \mathbb{R}) \land (\emptyset \neq S) \land (u, v, w \in S) \right) \implies \dots$
 - $(3.1.1) \quad u, v \in V \quad \square \quad u + v = v + u$
 - $(3.1.2) \quad u, v, w \in V \quad \blacksquare (u+v) + w = u + (v+w)$
 - $(3.1.3) \quad (ZeroVectorGenLeft) \land (u \in S) \quad \blacksquare \quad 0 * u = O \in S$
 - $(3.1.4) \quad u \in V \quad \blacksquare \ u + O = u$
 - $(3.1.5) \quad (AddInvGen) \land (u \in S) \quad \blacksquare \quad (-1) * u = -u \in S$
 - (3.1.6) $u \in V \quad \alpha * (\beta * u) = (\alpha \beta) * u$
 - $(3.1.7) \quad u \in V \quad \blacksquare \ 1 * u = u$
 - $(3.1.8) \quad u, v \in V \quad \blacksquare \ \alpha * (u + v) = (\alpha * u) + (\alpha * v)$
 - (3.1.9) $u \in V \quad (\alpha + \beta) * u = (\alpha * u) + (\beta * u)$

$$(4) \quad \left(\left(\forall_{r,s \in S} (r + s \in S) \right) \land \left(\forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right) \right) \implies (Subspace[S, V, +, *])$$

$$(5) \quad (Subspace[S, V, +, *]) \iff \left(\left(\forall_{r, s \in S} (r + s \in S) \right) \wedge \left(\forall_{\alpha \in \mathbb{R}} \forall_{s \in S} (\alpha * s \in S) \right) \right)$$

$$SumSubContains := \forall_{A,B,V} \left(\begin{array}{l} \left((Subspace[A,V,+,*]) \wedge (Subspace[B,V,+,*]) \wedge (SetSum[A+B,A,B,V,+,*]) \right) \Longrightarrow \\ \left((Subspace[A+B,V,+,*]) \wedge (A,B \subseteq A+B) \right) \end{array} \right)$$

```
(1) (Subspace[A, V, +, *]) \land (Subspace[B, V, +, *]) \mid (O \in A) \land (O \in B)
```

- (2) $(SetSum[A+B,A,B,V,+,*]) \land (O \in A) \land (O \in B) \blacksquare O \in A+B \blacksquare \emptyset \neq A+B$
- (3) $(Subspace[A, V, +, *]) \land (Subspace[B, V, +, *]) \blacksquare A + B \subseteq V \blacksquare \emptyset \neq A + B \subseteq V$
- $(4) \quad (u, v \in A + B) \implies \dots$

$$(4.1) \quad \left(\exists_{a_1 \in A} \exists_{b_1 \in B} (u = a_1 + b_1) \right) \land \left(\exists_{a_2 \in A} \exists_{b_2 \in B} (v = a_2 + b_2) \right)$$

- $(4.2) \quad u + v = (a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2)$
- $(4.3) \quad (a_1 + a_2 \in A) \land (b_1 + b_2 \in B) \quad \blacksquare \ u + v \in A + B$
- $(5) \quad (u, v \in A + B) \implies (u + v \in A + B) \quad \blacksquare \quad \forall_{u, v \in A + B} (u + v \in A + B)$
- (6) $((r \in \mathbb{R}) \land (v \in A + B)) \implies \dots$
 - $(6.1) \quad \exists_{a \in A} \exists_{b \in B} (v = a + b)$
 - (6.2) r * v = r * (a + b) = r * a + r * b
 - (6.3) $(r * a \in A) \land (r * b) \in B \mid r * v \in A + B$
- $(7) \quad \left((r \in \mathbb{R}) \land (v \in A + B) \right) \implies (r * v \in A + B) \quad \blacksquare \quad \forall_{r \in \mathbb{R}} \forall_{v \in A + B} (r * v \in A + B)$
- $(8) \quad (\emptyset \neq A + B \subseteq V) \land \left(\forall_{u,v \in A + B} (u + v \in A + B) \right) \land \left(\forall_{r \in \mathbb{R}} \forall_{v \in A + B} (r * v \in A + B) \right) \quad \blacksquare \quad Subspace[A + B, V, +, *]$
- (9) $(\forall_{a \in A}(a+O) = a) \land (O \in B) \mid A \subseteq A+B$
- $(10) \quad \left(\forall_{b \in B} (b + O) = b \right) \land (O \in A) \quad \blacksquare \quad B \subseteq A + B$
- (11) $(A, B \subseteq A + B) \land (Subspace[A + B, V, +, *])$

$$SumSubMinContains := \forall_{A,B,V} \left(\left((Subspace[A,V,+,*]) \land (Subspace[B,V,+,*]) \land (SetSum[A+B,A,B,V,+,*]) \right) \implies \left(\forall_{C} \left((Subspace[C,V,+,*]) \land (A,B \subseteq C) \right) \implies (A+B \subseteq C) \right) \right)$$

- (1) $SumSub \ \blacksquare (A, B \subseteq A + B) \land (Subspace[A + B, V, +, *])$
- (2) $(Subspace[C, V, +, *]) \land (A, B \subseteq C)) \implies \dots$
- $(2.1) \quad (s \in A + B) \implies \dots$
 - (2.1.1) $\exists_{a \in A} \exists_{b \in B} (s = a + b)$
 - $(2.1.2) \quad (A, B \subseteq C) \quad \blacksquare \ a, b \in C$
 - (2.1.3) Subspace[C, V, +, *] $s = a + b \in C$
- $(2.2) \quad (s \in A + B) \implies (s \in C) \quad \blacksquare A + B \subseteq C$
- $(3) \quad ((Subspace[C, V, +, *]) \land (A, B \subseteq C)) \implies (A + B \subseteq C)$

```
NullSpace[N, A, m, n] := (Matrix[A, m, n]) \land (N = \{x \in \mathbb{R}^n | A * x = O\})
RowSpace[R, A, m, n] := (Matrix[A, m, n]) \land (R = \{x^T * A \in \mathbb{R}^n | x \in \mathbb{R}^m\})
ColSpace[C, A, m, n] := (Matrix[A, m, n]) \land (C = \{A * x \in \mathbb{R}^m | x \in \mathbb{R}^n\})
```

 $NullSubspace := (NullSpace[N, A, m, n]) \implies (Subspace[N, \mathbb{R}^n, +, *])$

(1) TODO

 $RowSubspace := (RowSpace[R, A, m, n]) \implies (Subspace[R, \mathbb{R}^n, +, *])$

(1) TODO

 $ColSubspace := (ColSpace[C, A, m, n]) \implies (Subspace[C, \mathbb{R}^m, +, *])$

(1) TODO

3.5 Linear Combination, Linear Span, Linear Independence

$$\begin{aligned} &LinComb[c,U,K,V,+,*] := (VectorSpace[V,+,*]) \wedge (n \in \mathbb{N}) \wedge (U \in V^n) \wedge (K \in \mathbb{R}^n) \wedge \left(c = \sum_{i=1}^n (k_i * u_i)\right) \\ &LinSpan[S',S,V,+,*] := \left(\begin{array}{c} (VectorSpace[V,+,*]) \wedge (S \in V^n) \wedge \left((S = \emptyset) \implies (S' = \{O\})\right) \wedge \\ \left((S \neq \emptyset) \implies \left(S' = \{c \in V | \exists_{K \in \mathbb{R}^n}(LinComb[c,S,K,V,+,*])\}\right) \end{array} \right) \end{aligned}$$

4 CHAPTER 3. LINEAR ALGEBRA

```
LinSpanSubContains := \forall_{S',S,V,+,*} \Big( (LinSpan[S',S,V,+,*]) \implies \Big( (Subspace[S',V,+,*]) \land (S \subseteq S') \Big) \Big)
```

- $(1) (S = \emptyset) \Longrightarrow (S' = \{O\}) \Longrightarrow (\emptyset \neq S')$
- $(2) \quad (S \neq \emptyset) \implies (LinComb[O, S, \{0\}^n, V, +, *]) \implies (O \in S') \implies (\emptyset \neq S')$
- $(3) \quad \left((S = \emptyset) \lor (S \neq \emptyset) \right) \implies (\emptyset \neq S') \quad \blacksquare \quad \emptyset \neq S'$
- (4) $LinSpan[S', S, V, +, *] \blacksquare S' \subseteq V \blacksquare \emptyset \neq S' \subseteq V$
- $(5) (a, b \in S') \implies \dots$
 - $(5.1) \quad \left(\exists_{K \in \mathbb{R}^n}(LinComb[a, S, K, V, +, *])\right) \land \left(\exists_{L \in \mathbb{R}^n}(LinComb[b, S, L, V, +, *])\right)$
- $(5.2) \quad a+b = \sum_{i=1}^{n} (k_i * s_i) + \sum_{i=1}^{n} (l_i * s_i) = \sum_{i=1}^{n} \left((k_i + l_i) * s_i \right) \quad \blacksquare \quad a+b = \sum_{i=1}^{n} \left((k_i + l_i) * s_i \right)$
- $(5.3) \quad \langle k_i + l_i | i \in \mathbb{N}_{1,n} \rangle \in \mathbb{N}^n$
- $(5.4) \quad \left(a+b=\sum_{i=1}^{n}\left((k_i+l_i)*s_i\right)\right) \wedge \left(\langle k_i+l_i|i\in\mathbb{N}_{1,n}\rangle\in\mathbb{N}^n\right) \quad \blacksquare \quad \exists_{M\in\mathbb{N}^n}\left(a+b=\sum_{i=1}^{n}(m_i*s_i)\right)$
- $(5.5) \quad \exists_{M \in \mathbb{N}^n} (LinComb[a+b, S, M, V, +, *]) \quad \blacksquare \quad a+b \in S'$
- $(6) \quad (a, b \in S') \implies (a + b \in S') \quad \blacksquare \quad \forall_{a, b \in S'} (a + b \in S')$
- $(7) \quad ((r \in \mathbb{R}) \land (u \in S')) \implies \dots$
- $(7.1) \quad \exists_{K \in \mathbb{R}^n} (LinComb[u, S, K, V, +, *]) \quad \blacksquare \quad \exists_{K \in \mathbb{R}^n} \left(u = \sum_{i=1}^n (k_i * s_i) \right)$
- $(7.2) \quad r * u = r * \sum_{i=1}^{n} (k_i * s_i) = \sum_{i=1}^{n} (r * (k_i * s_i)) = \sum_{i=1}^{n} (rk_i) * s_i) \quad \blacksquare \quad r * u = \sum_{i=1}^{n} (rk_i) * s_i)$
- $(7.3) \quad \langle rk_i \in \mathbb{R} | i \in \mathbb{N}_{1,n} \rangle \in \mathbb{R}^n$
- $(7.4) \quad \left(\sum_{i=1}^{n} (rk_i) * s_i\right)) \land \overline{(\langle rk_i \in \mathbb{R} | i \in \mathbb{N}_{1,n} \rangle \in \mathbb{R}^n)}$
- $(7.5) \quad \exists_{M \in \mathbb{R}^n} \left(r * u = \sum_{i=1}^n (m_i * s_i) \right) \quad \blacksquare \quad \exists_{M \in \mathbb{R}^n} (LinComb[r * u, S, M, V, +, *]) \quad \blacksquare \quad r * u \in S'$
- $(8) \ \left((r \in \mathbb{R}) \land (u \in S') \right) \implies (r * u \in S') \ \blacksquare \ \forall_{r \in \mathbb{R}} \forall_{u \in S'} (r * u \in S')$
- $(9) \quad (Subspace Equiv) \land (\emptyset \neq S' \subseteq V) \land \left(\forall_{a,b \in S'} (a+b \in S') \right) \land \left(\forall_{r \in \mathbb{R}} \forall_{u \in S'} (r*u \in S') \right) \quad \blacksquare \quad Subspace[S',V,+,*]$
- $(10) (s_i \in S) \Longrightarrow \dots$

$$(10.1) \quad K := \left\langle \left\{ \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \middle| \mathbb{N}_{1,n} \right\rangle \in \mathbb{R}^n \quad \blacksquare \quad \sum_{i=1}^n (k_i * s_i) = s_j$$

- $(10.2) \dots \blacksquare \exists_{K \in \mathbb{R}^n} (LinComb[s_j, S, K, V, +, *]) \blacksquare s_j \in S'$
- $(11) \quad (s_j \in S) \implies (s_j \in S') \quad \blacksquare \quad \forall_{x \in S} (x \in S') \quad \blacksquare \quad S \subseteq S'$
- (12) $(Subspace[S', V, +, *]) \land (S \subseteq S')$

 $LinSpanSubMinContains := \forall_{S',S,V,+,*} \bigg((LinSpan[S',S,V,+,*]) \implies \Big(\forall_W \big(((Subspace[W,V,+,*]) \land (S \subseteq W) \big) \implies (S' \subseteq W) \Big) \bigg)$

- (1) $(s' \in S') \implies \dots$
 - $(1.1) \quad \exists_{K \in \mathbb{R}^n}(LinComb[s', S, K, V, +, *]) \quad \blacksquare \quad s' = \sum_{i=1}^n (k_i * s_i)$
 - (1.2) $(S \subseteq W) \land (Subspace[W, V, +, *]) \mid s' = \sum_{i=1}^{n} (k_i * s_i) \in W$
- $(2) \quad (s' \in S') \implies (s' \in W) \quad \blacksquare S' \subseteq W$

 $ZeroDependent := (O \in S) \implies (\neg LinInd[S, V, +, *])$

$$(1) \quad K := \left\langle \left\{ \begin{cases} 1 & u_i = O \\ 0 & u_i \neq O \end{cases} \middle| (1 \le i \le n) \land (i \in \mathbb{N}) \right\rangle \quad \blacksquare \quad K \in \mathbb{R}^n$$

(2) $(LinComb[O, S, K, V, +, *]) \land (K \neq \{O\}^n)$ $\ \ \, \square$ $\neg LinInd[S, V, +, *]$

 $SingletonNonZeroIndependent := (v \neq O) \implies (LinInd[\langle v \rangle, V, +, *])$

- $(1) \quad (r * v = O) \iff ((r = 0) \lor (v \neq O))$
- $(2) \quad v \neq O \quad \blacksquare \quad r = 0$
- (3) $\forall_{r \in \mathbb{R}} ((r * v = 0) \implies (r = 0))$

 $SubIndependent := \forall_{V,A,B} \Big(\big((VectorSpace[V,+,*]) \land (A \subseteq B \in V^m) \big) \implies \big((LinInd[B,V,+,*]) \implies (LinInd[A,V,+,*]) \Big) \Big) + (LinInd[A,V,+,*]) + (LinInd[A,V,+,*]) \Big) + (LinInd[A,V,+,*]) +$

 $(1) (LinComb[O, A, K, V, +, *]) \implies \dots$

$$(1.1) \quad L := \left\langle \left\{ \begin{cases} 1 & j \le n \\ 0 & j > n \end{cases} \middle| (1 \le j \le m \land (j \in \mathbb{N})) \right\rangle \quad \blacksquare \quad L \in \mathbb{R}^m$$

- $(1.2) \quad \overline{A \subseteq B} \quad \blacksquare \quad \forall_{n \ge j \in \mathbb{N}} (a_j = b_j)$
- $(1.3) \quad \forall_{n \ge j \in \mathbb{N}} (a_j = b_j) \quad \blacksquare \quad \sum_{i=1}^n (k_i * a_i)) = \sum_{i=1}^n (k_i * a_i)) + O = \sum_{j=1}^m (l_j * b_j))$
- $(1.4) \quad \overline{LinComb[O, A, K, V, +, *]} \quad \blacksquare \quad O = \sum_{i=1}^{n} (\overline{k_i} * a_i)$
- (1.5) $O = \sum_{i=1}^{n} (k_i * a_i) = \sum_{j=1}^{m} (l_j * b_j)$ LinComb[O, B, L, V, +, *] (1.6) $(LinInd[B, V, +, *]) \land (LinComb[O, B, L, V, +, *])$ L = $\{0\}^m$
- $\left(\forall_{n \geq i \in \mathbb{N}} (a_i = b_i)\right) \wedge \left(L = \{0\}^m\right) \ \blacksquare \ \forall_{n \geq i \in \mathbb{N}} (k_i * a_i = l_i * b * j = l_i * a_i) \ \blacksquare \ K = \{0\}^m$
- $(2) \quad (LinComb[O,A,K,V,+,*]) \implies (K=\{0\}^n) \quad \blacksquare \quad \forall_{K \in \subseteq \mathbb{R}^n} \left((LinComb[O,A,K,V,+,*]) \implies (K=\{0\}^n) \right) \quad \blacksquare \quad LinInd[A,V,+,*]$

$$SuperDependent := \forall_{V,A,B} \Big(\big((VectorSpace[V,+,*]) \land (A \subseteq B \subseteq V) \big) \implies \big((\neg LinInd[A,V,+,*]) \implies (\neg LinInd[B,V,+,*]) \Big) \Big) \Big) \\ = (\neg LinInd[A,V,+,*]) \\ = (\neg LinInd[B,V,+,*]) \\ = (\neg LinInd[B,V,+,$$

(1) TODO: A has a non trivial solution use the same non trivial solution in combination with B and L

$$LinIndEquiv := \forall_{U,V} \bigg((LinInd[U,V,+,*]) \iff \bigg(\forall_{j \in U} (\neg LinComb[j,U \setminus \{j\},+,*]) \bigg) \bigg)$$

- $\overline{(1)} \quad \Gamma' = \overline{\Gamma \setminus \{j\}}$
- $(2) (\neg LinInd[U,V,+,*]) \implies \dots$

(2.1)
$$\left(\exists_{\Gamma \in \mathbb{R}^{|U|}} \left(\left(\sum (\gamma_i * u_i) = O \right) \wedge (\Gamma \neq \{0\}^{|U|}) \right) \right)$$

- $(2.2) \quad \exists_{\gamma_k \in \Gamma} (\gamma_k \neq 0)$
- $(2.3) \quad \sum (\gamma_i' * u_i) = \sum (\gamma_i * u_i) \gamma_k * u_k = -\gamma_k * u_i$

$$(2.4) \quad u_k = (-1/\gamma_k) \Big(\sum (\gamma_i' * u_i) \Big) = \sum \Big((-\gamma_i'/\gamma_k) * u_i \Big) \quad \blacksquare \quad \exists_{j \in U} (LinComb[j, U \setminus \{j\}, +, *])$$

- $(3) \quad (\neg LinInd[U,V,+,*]) \implies \left(\exists_{j \in U}(LinComb[j,U \setminus \{j\},+,*])\right)$
- $(4) \left(\forall_{j \in U} (\neg LinComb[j, U \setminus \{j\}, +, *]) \right) \Longrightarrow (LinInd[U, V, +, *])$
- $(5) \left(\exists_{j \in U} (LinComb[j, U \setminus \{j\}, +, *]) \right) \implies \dots$
 - $(5.1) \quad \exists_{i \in U} \left(j = \sum (\gamma_i' * u_i) \right)$
 - (5.2) $\Gamma := \Gamma' \cup \{-1\}$

$$(5.3) \quad \left(\sum (\gamma_i * u_i) = \sum (\gamma_i' * u_i) + (-1) * \gamma_j = O\right) \wedge (\Gamma \neq \{0\}^n) \quad \blacksquare \quad \neg LinInd[U, V, +, *]$$

- (6) $\left(\exists_{j \in U}(LinComb[j, U \setminus \{j\}, +, *])\right) \Longrightarrow (\neg LinInd[U, V, +, *])$
- (7) $(LinInd[U, V, +, *]) \Longrightarrow \left(\forall_{j \in U} (\neg LinComb[j, U \setminus \{j\}, +, *]) \right)$
- $(8) \quad (LinInd[U,V,+,*]) \iff \left(\forall_{j \in U} (\neg LinComb[j,U \setminus \{j\},+,*]) \right)$

$$Spans[S, V, +, *] := LinSpan[V, S, V, +, *]$$

 $FinDim[V, +, *] := \exists_{S \in V^n}(Spans[S, V, +, *])$

$$LinInd[S,V,+,*] := (VectorSpace[V,+,*]) \land (S \in V^n) \land \left((S \neq \emptyset) \implies \left(\forall_{K \in \mathbb{R}^n} \left((LinComb[O,S,K,V,+,*]) \implies (K = \{0\}^n) \right) \right) \right)$$

$$LinDepLemma := \forall_{S,V} \left(\begin{array}{l} (\neg LinInd[S,V,+,*]) \\ \exists_{j \in \mathbb{N}_{1,n}} \Big((s_j \in LinSpan[P_1,S_{1,j-1},V,+,*]) \wedge (LinSpan[P_2,S,V,+,*] = LinSpan[P_3,S \setminus \{s_j\},V,+,*]) \Big) \end{array} \right)$$

- (1) $\neg LinInd[S, V, +, *]$ $\blacksquare \exists_{K \in \mathbb{R}^n} (LinComb[O, S, K, V, +, *]) \land (K \neq \{0\}^n))$
- $(2) \quad \exists_{j \in \mathbb{N}_{1,n}} \left((k_j \neq 0) \land \left(\forall_{i \in \mathbb{N}_{1,n}} \left((i > j) \implies (k_i = 0) \right) \right) \right)$
- (3) $s_j = (-1/k_j) \sum_{i=1}^{j-1} (k_i * s_i) = \sum_{i=1}^{j-1} ((-k_i/k_j) * s_i)$

CHAPTER 3. LINEAR ALGEDRA

```
(4) \quad \langle -k_i/k_j | i \in \mathbb{N}_{1,j-1} \rangle \in \mathbb{R}^{j-1}
```

- (5) $\exists_{M \in \mathbb{R}^{j-1}}(LinComb[s_i, S_{1,j-1}, M, V, +, *]) \quad \blacksquare \quad s_i \in LinSpan[P_1, S_{1,j-1}, V, +, *]$
- (6) $(v \in P_2) \iff (v \in LinSpan[P_2, S, V, +, *]) \iff \dots$

$$\frac{1}{(7) \dots (v = \sum_{i=1}^{n} (k_i * s_i)) = \sum_{i=1}^{j-1} (k_i * s_i)) + \sum_{i=j+1}^{n} (k_i * s_i)} \iff \frac{1}{(7) \dots (v = \sum_{i=1}^{n} (k_i * s_i))} + \sum_{i=j+1}^{n} (k_i * s_i)) + \sum_{i=j+1}^{n} (k_i * s_i)) + \sum_{i=j+1}^{n} (k_i * s_i) + \sum_{i=j+1}^{n} (k_$$

 $(8) \quad (v \in LinSpan[P_3, \overline{S} \setminus \{s_i\}, V, +, *]) \iff (v \in P_3) \quad \blacksquare \quad (v \in P_2) \iff (v \in P_3) \quad \blacksquare \quad P_2 = P_3$

 $LinIndLengthLeqSpan := \forall_{L,S} \Big(\big((LinInd[L,V,+,*]) \land (Spans[S,V,+,*]) \big) \implies (|L| \leq |S|) \Big)$

- (1) TODO: form $B = L \cup S$, remove dependent elements in S such that $(Spans[B, V, +, *]) \land (|B| = |S|)$ by LinDepLemma, $|L| \le |B| = |S|$
- (2) $\forall_{l_i \in L} \dots$
 - $(2.1) \quad l_i \in V \quad \blacksquare \quad LinComb[l_i, S, K, V, +, *] \quad \blacksquare \quad \neg LinInd[\langle l_i \rangle \cup S, V, +, *]$
 - (2.2) $LinDepLemma \ \blacksquare \ \exists_{j \in \mathbb{N}_1} (LinSpan[V, S, V, +, *] = LinSpan[V, S \setminus \{s_j\}, V, +, *])$
 - $(2.3) \quad B := \langle l_i \rangle \cup S \setminus \{s_i\} \quad \blacksquare \mid B \mid = 1 + |S| 1 = |S|$
- (3) $|L| \le |B| = |S| \quad |L| \le |S|$

 $FinSubSpace := \forall_{U,V} \Big(\big((Subspace[U,V,+,*]) \land (FinDim[V,+,*]) \Big) \implies (FinDim[U,+,*] \Big)$

- (1) TODO: take Spans[S, V, +, *], remove all $s_j \in S$ such that $U \subseteq LinSpan[S \setminus \{s_j\}] \mid S' = S \setminus \{s_j\}$ $(LinSpan[U, S', V, +, *]) \land (|S'| \le |S|) \mid FinDim[U, +, *]$
- (2) FinDim[V, +, *] $\exists_{S \in V^n}(Spans[S, V, +, *])$
- (3) $\forall_{(u_i \in U) \land (\neg LinSpan[U,S,V,+,*])} \dots$
- $(3.1) \quad \neg LinSpan[U, S, V, +, *] \quad \blacksquare \ \exists_{u_i \in U} (\neg LinComb[u_j, S_{1,j-1}, K_{1,j-1}, V, +, *])$
- $(3.2) \quad B := S_{1,j-1} \quad \blacksquare \quad |B| = |S| 1 < |S|$
- $(4) \quad LinSpan[U,B,V,+,*] \quad \blacksquare \quad \exists_{B \in V^M}(Spans[B,U,+,*]) \quad \blacksquare \quad FinDim[U,+,*]$

3.6 Bases and Dimensions

 $Basis[S, V, +, *] := (Spans[S, V, +, *]) \land (LinInd[S, V, +, *])$

 $\textit{BasisEquiv} := \forall_{S,V} \big((\textit{Basis}[S,V,+,*]) \iff (\forall_{v \in V} \exists !_{K \in \mathbb{R}^n} (\textit{LinComb}[v,S,K,V,+,*]) \big)$

- (1) $(Basis[S, V, +, *]) \implies ...$
 - $(1.1) \ (v \in V) \implies \dots$
 - $(1.1.1) \quad \textit{Basis}[S,V,+,*] \quad \blacksquare \quad \textit{Spans}[V,S,+,*] \quad \blacksquare \quad \exists_{K \in \mathbb{R}^n}(\textit{LinComb}[v,S,K,V,+,*])$
 - $(1.1.2) \quad \left((K_1, K_2 \in \mathbb{R}^n) \wedge (LinComb[v, S, K_1, V, +, *]) \wedge (LinComb[v, S, K_2, V, +, *]) \right) \implies \dots$
 - $(1.1.\overline{2}.1) \quad \left(v = \sum (k_{1i} * s_i)\right) \land \left(v = \sum (k_{2i} * s_i)\right)$
 - $(1.1.2.2) \quad O = v v = \sum (k_{1i} * s_i) \sum (k_{2i} * s_i) = \sum (k_{1i} k_{2i}) * s_i$
 - $(1.1.\overline{2.3}) \quad L := \langle k_{1i} k_{2i} | i \in \mathbb{N}_{i=1}^n \rangle \in \mathbb{R}^n$
 - $(1.1.2.4) \quad (LinInd[S,V,+,*]) \land (LinComb[O,S,L,V,+,*]) \quad \blacksquare \quad L = \{0\}^n \quad \blacksquare \quad K_2 = K_1$
 - $(1.1.3) \quad \left((K_1, K_2 \in \mathbb{R}^n) \land (LinComb[v, S, K_1, V, +, *]) \land (LinComb[v, S, K_2, V, +, *]) \right) \implies (K_1 = K_2)$
 - $(1.1.4) \quad \forall_{K_1, K_2 \in \mathbb{R}^n} \left((LinComb[v, S, K_1, V, +, *]) \wedge (LinComb[v, S, K_2, V, +, *]) \implies (K_1 = K_2) \right)$
 - $(1.1.5) \quad \exists!_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *])$
- $(1.2) \quad (v \in V) \implies \left(\exists!_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *])\right)$
- $(2) \quad (Basis[S, V, +, *]) \implies \left(\forall_{v \in V} \exists !_{K \in \mathbb{R}^n} (LinComb[v, S, K, V, +, *]) \right)$
- $(3) \left(\forall_{v \in V} \exists !_{K \in \mathbb{R}^n} (LinComb[v, S, K, V, +, *]) \right) \implies \dots$
 - $(3.1) \quad \forall_{v \in V} \exists !_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *]) \quad \blacksquare \quad \forall_{v \in V} \exists_{K \in \mathbb{R}^n}(LinComb[v, S, K, V, +, *]) \quad \blacksquare \quad Spans[S, V, +, *]$
 - $(3.2) \quad O \in V \quad \blacksquare \quad \exists !_{K \in \mathbb{R}^n}(LinComb[O, S, K, V, +, *])$
 - $(3.3) \quad (K \neq \{0\}^n) \implies \left(\neg \exists!_{K \in \mathbb{R}^n} (LinComb[O, S, K, V, +, *]) \right) \implies \bot \quad \blacksquare \quad K = \{0\}^n$

5.0. BASES AND DIMENSIONS 21

```
(3.4) (\exists !_{K \in \mathbb{R}^n}(LinComb[O, S, K, V, +, *])) \land (K = \{0\}^n)  \blacksquare LinInd[S, V, +, *]
(3.5) (Spans[S, V, +, *]) \land (LinInd[S, V, +, *])  \blacksquare Basis[S, V, +, *]
```

 $(4) \quad \left(\forall_{v \in V} \exists !_{K \in \mathbb{R}^n} (LinComb[v, S, K, V, +, *]) \right) \implies (Basis[S, V, +, *])$

```
SpanReduceBasis := \forall_{S,V} \Big( Spans[S,V,+,*] \implies \exists_B \Big( (B \subseteq S) \land (Basis[B,V,+,*]) \Big) \Big)
```

(1) TODO: Remove all dependent $s_i \in S \mid || (S' = S \setminus \{s_i\}) \wedge (LinSpan[S'] = LinSpan[S])$ until $LinInd[S'] \mid || Basis[S']$

$$LinIndExpandBasis := \forall_{L,V} \Big(LinInd[L,V,+,*] \implies \exists_{B} \Big((L \subseteq B) \land (Basis[B,V,+,*]) \Big) \Big)$$

(1) TODO: $FinDimBasis \ \blacksquare \ \exists_A (Basis[A, V, +, *]), \text{ form } B = L \cup A \ \blacksquare \ Span[B],$ use $SpanReduceBasis \ call \ it \ B', (L \subseteq B') \land (Basis[B'])$

$$FinDimBasis := \forall_V \Big((FinDim[V, +, *]) \implies \Big(\exists_B (Basis[B, V, +, *]) \Big) \Big)$$

 $\overline{(1) \quad FinDim[V,+,*] \quad \blacksquare \quad \exists_{S \in V^n}(Spans[S,V,+,*])}$

(2) $(SpanReduceBasis) \land (Spans[S, V, +, *]) \quad \exists_{B}(Basis[B, V, +, *])$

$$BasisLinearIndCard := \forall_{S,T,V} \Big(\big((Basis[S,V,+,*]) \land (LinInd[T,V,+,*]) \big) \implies (|T| \leq |S|) \Big)$$

(1) $(Basis[S, V, +, *]) \Longrightarrow ...$

 $(1.1) \quad (|T| > |S|) \implies \dots$

(1.1.1)
$$(Spans[S, V, +, *]) \land (T \subseteq V) \mid t_{1...t_i} = \sum (\gamma_i * s * i) \dots$$

$$(1.1.2) \quad \dots \quad t_i = \sum (\gamma_i' * t_i) \quad \blacksquare \quad \neg LinInd[T, V, +, *]$$

$$(1.2) \quad (|T| > |S|) \implies (\neg LinInd[T, V, +, *]) \quad \blacksquare \quad (LinInd[T, V, +, *]) \implies (|T| \leq |S|)$$

 $(2) \quad \left((Basis[S,V,+,*]) \land (LinInd[T,V,+,*]) \right) \implies (|T| \le |S|)$

$$BasisCard := \forall_{S,T,V} \Big(\big((Basis[S,V,+,*]) \land (Basis[T,V,+,*]) \big) \implies (|T| = |S|) \Big)$$

- (1) Basis[S, V, +, *] $\blacksquare LinInd[S, V, +, *]$
- $\overline{(2) \quad (Basis[T,V,+,*]) \land (LinInd[S,V,+,*]) \quad \blacksquare \mid S \mid \leq \mid T \mid}$
- (3) Basis[T, V, +, *] LinInd[T, V, +, *]
- (4) $(Basis[S, V, +, *]) \land (LinInd[T, V, +, *]) \mid | |T| \le |S|$
- (5) $(|S| \le |T|) \land (|T| \le |S|) \mid |T| = |S|$

$$Dim[d,V,+,*] := \left(\exists_B(Basis[B,V,+,*])\right) \land \left((V=\{O\}) \implies (d=0)\right) \land \left((V\neq\{O\}) \implies (d=|B|)\right)$$

$$LinIndLengthDim := \forall_{U,V} \Big(\big((LinInd[U,V,+,*]) \land (Dim[|U|,V,+,*]) \big) \implies (Basis[U,V,+,*]) \Big)$$

- (1) $(LinIndExpandBasis) \land (LinInd[U,V,+,*]) \blacksquare \exists_B ((U \subseteq B) \land (Basis[B,V,+,*]))$
- $(2) \quad (BasisCard) \land (Dim[|U|,V,+,*]) \land (Basis[B,V,+,*]) \quad \blacksquare \quad |B| = |U| \quad \blacksquare \quad B = U \quad \blacksquare \quad Basis[U,V,+,*]$

$$SpanLengthDim := \forall_{U,V} \Big(\big((Spans[U,V,+,*]) \land (Dim[|U|,V,+,*]) \big) \implies (Basis[U,V,+,*]) \Big)$$

- (1) $(SpanReduceBasis) \land (Spans[U,V,+,*]) \blacksquare \exists_B ((B \subseteq U) \land (Basis[B,V,+,*]))$
- $\overline{(2) \quad (BasisCard) \land (Dim[|U|,V,+,*]) \land (Basis[B,V,+,*]) \quad \blacksquare \quad |B| = |U| \quad \blacksquare \quad B=U \quad \blacksquare \quad Basis[U,V,+,*]}$

$$LinDepLengthDim := \forall_{U,V} \Big(\big((U \subseteq V) \land (|U| > Dim[V]) \big) \implies (\neg LinInd[U,V,+,*]) \Big)$$

(1) Contrapositive of BasisLinearIndCard

$$LinDepLengthDim := \forall_{U,V} \Big(\big((U \subseteq V) \land (|U| < Dim[V]) \big) \implies (\neg Spans[U,V,+,*]) \Big)$$

- (1) Suppose Spans[U, V, +, *], B = SpanReduceBasis[U] to form a basis, $(|B| \le |U| < Dim[V]) \land |B| = Dim[V]$
- $\overline{(2) \neg Spans[U,V,+,*]}$

3.7 Rank

 $\begin{aligned} Nullity[n,A] &:= (NullSpace[N,A]) \wedge (Dim[n,N,+,*]) \\ Rank[r,A,m,n] &:= (Matrix[A,m,n]) \wedge (RowSpace[R,A,m,n]) \wedge (Dim[r,R,A,+,*]) \end{aligned}$

 $RowRankEqColRank := \forall_A(TODO)$

(1) TODO

 $RankNullity := \forall_A ((Matrix[A, m, n]) \implies (Rank[A] + Nullity[A] = n)$

 $\overline{(1)}$ TODO

 $RankInv := \forall_A \Big((Matrix[A, m, n]) \implies \Big((Rank[A] = n) \iff (Inv[A]) \Big) \Big)$

(1) TODO

 $Rank Non Trivial Sol := \left(\exists_X \left((A * X = O) \land (X \neq O) \right) \right) \iff (Rank [A] < n)$

(1) TODO

 $RankUniqueSol := \left(\forall_{B \in \mathcal{M}} \exists !_{X \in \mathcal{M}} (Sol[X,A,B]) \right) \iff (Rank[A] = n)$

 $\overline{(1)}$ TODO

$$SquareTheorems_{()} := \forall_{A \in \mathcal{M}} \begin{cases} (Invertible[A]) & \iff \\ (RowEquiv[A,I_n]) & \iff \\ \left(\forall_X \left((X=O) \iff (Sol[X,A,O])\right)\right) & \iff \\ \left(\forall_{B \in \mathcal{M}} \exists^!_{X \in \mathcal{M}} (Sol[X,A,B])\right) & \iff \\ (Rank[A]=n) & \iff \\ (Nullity[A]=0) & \iff \\ (The rows form a linearly independent set of vectors (to get full rank)) & \iff \\ (The columns form a linearly independent set of vectors (to get full rank)) & \iff \\ \end{cases}$$

3.8 Linear Transformations

$$LinTrans[L, V, +_{v}, *_{v}, W, +_{w}, *_{w}] := \begin{pmatrix} (Function[f, V, W]) \land (VectorSpace[V, +_{v}, *_{v}]) \land (VectorSpace[W, +_{w}, *_{w}]) \land \\ \left(\forall_{\alpha, \beta \in V} \left(L(\alpha +_{v} \beta) = L(\alpha) +_{w} L(\beta) \right) \right) \land \left(\forall_{r \in \mathbb{R}} \forall_{\alpha \in V} \left(L(r *_{v} \alpha) = r *_{w} L(\alpha) \right) \right) \end{pmatrix}$$

$$LinOp[L, V, +_{v}, *_{v}] := LinTrans[L, V, +_{v}, *_{v}, V, +_{v}, *_{v}]$$

$$\mathcal{L}[V, W] := \{ L|LinTrans[L, V, +_{v}, *_{v}, W, +_{w}, *_{w}] \}$$

 $ZeroMapsToZero := \forall_{L,V,W} \Big((LinTrans[L,V,+_v,*_v,\overline{W},+_w,*_w]) \implies \Big(L(O_v) = O_w \Big) \Big)$

- $(1) L(O_v) = L(O_v +_v O_v) = L(O_v) +_w L(O_v)$
- $\overline{(2) \ O_w = L(O_v) L(O_v) = L(O_v)}$

$$SplitAddInv := \forall_{L,V,W} \bigg((LinTrans[L,V,+_{v},*_{v},W,+_{w},*_{w}]) \implies \bigg(\forall_{\alpha,\beta \in V} \big(L(\alpha -_{v}\beta) = L(\alpha) -_{w} L(\beta) \big) \bigg) \bigg)$$

(1)
$$L(\alpha - \beta) = L(\alpha + (-\beta)) = L(\alpha) + L(-\beta) = L(\alpha) + (-1) * L(\beta) = L(\alpha) - L(\beta)$$

$$Basis Domain Induce Lin Trans := \forall_{V,W} \left(\left((Basis [A,V,+_{v},*_{v}]) \land (B \subseteq W) \land (n = |B| = |A|) \land (Vector Space [W,+_{w},*_{w}]) \right) \implies \left(\exists !_{T} \left((Lin Trans [T,V,+_{v},*_{v},W,+_{w},*_{w}]) \land \left(\forall_{i \in \mathbb{N}_{1,n}} \left(T(a_{i}) = b_{i} \right) \right) \right) \right) \right)$$

$$\frac{1}{(1)} T(\sum_{i=1}^{n} (k_i * a_i)) := \sum_{i=1}^{n} (k_i * b_i)$$

(2) $(i \in \mathbb{N}_{1,n}) \implies \dots$

(2.1)
$$L := \left\langle \left\{ \begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases} \middle| j \in \mathbb{N}_{1,n} \right\rangle \ \blacksquare \ L \in \mathbb{R}^n \right.$$

(2.2)
$$T(a_i) = T(\sum_{i=1}^n (l_i * a_i)) = \sum_{i=1}^n (l_i * b_i) = b_i \quad \blacksquare \quad T(a_i) = b_i$$

$$(3) \quad (i \in \mathbb{N}_{1,n}) \implies \left(T(a_i) = b_i\right) \ \blacksquare \ \forall_{i \in \mathbb{N}_{1,n}} \left(T(a_i) = b_i\right)$$

$$(4) \quad (BasisEquiv) \land (Basis[A,V,+_v,*_v]) \quad \blacksquare \quad \forall_{v \in V} \exists !_{K \in \mathbb{R}^n} (LinComb[v,A,K,V,+,*]) \quad \blacksquare \quad T : Span[A] \rightarrow Span[B] \quad \blacksquare \quad Function[T,V,W]$$

$$(5) \quad (\alpha, \beta \in V) \implies \dots$$

$$(5.1) \quad (LinComb[\alpha, A, K_{\alpha}, V, +_{v}, *_{v}]) \wedge (LinComb[\beta, A, K_{\beta}, V, +_{v}, *_{v}])$$

$$(5.2) \quad T(\alpha + \beta) = T\left(\sum_{i=1}^{n} (k_{\alpha i} * a_i) + \sum_{i=1}^{n} (k_{\beta i} * a_i)\right) = T\left(\sum_{i=1}^{n} \left((k_{\alpha i} + k_{\beta i}) * a_i\right)\right) = \sum_{i=1}^{n} \left((k_{\alpha i} + k_{\beta i}) * b_i\right) = \dots$$

$$(5.3) \ldots \sum_{i=1}^{n} (k_{\alpha i} * b_i) + \sum_{i=1}^{n} (k_{\beta i} * b_i) = T\left(\sum_{i=1}^{n} (k_{\alpha i} * a_i)\right) + T\left(\sum_{i=1}^{n} (k_{\beta i} * a_i)\right) = T(\alpha) + T(\beta)$$

$$(6) \quad (\alpha, \beta \in V) \implies \left(L(\alpha +_{v} \beta) = L(\alpha) +_{w} L(\beta) \right) \quad \blacksquare \quad \forall_{\alpha, \beta \in V} \left(L(\alpha +_{v} \beta) = L(\alpha) +_{w} L(\beta) \right)$$

(7)
$$((r \in \mathbb{R}) \land (\alpha \in V)) \implies \dots$$

(7.1)
$$LinComb[\alpha, A, K, V, +_v, *_v]$$

$$(7.2) \quad L(r *_{v} \alpha) = L(r *_{v} \sum_{i=1}^{n} (k_{i} *_{v} a_{i})) = L(\sum_{i=1}^{n} ((rk_{i}) *_{v} a_{i})) = \sum_{i=1}^{n} ((rk_{i}) *_{w} b_{i}) = r *_{w}$$

$$\overline{(8) \ \left((r \in \mathbb{R}) \land (\alpha \in V) \right)} \implies \left(L(r *_{v} \alpha) = r *_{w} L(\alpha) \right) \ \blacksquare \ \forall_{r \in \mathbb{R}} \forall_{\alpha \in V} \left(L(r *_{v} \alpha) = r *_{w} L(\alpha) \right)$$

$$(9) \quad \left(\forall_{i \in \mathbb{N}_{1,n}} \left(T(a_i) = b_i\right)\right) \wedge \left(Function[T, V, W]\right) \wedge \left(\forall_{\alpha,\beta \in V} \left(L(\alpha +_v \beta) = L(\alpha) +_w L(\beta)\right)\right) \wedge \left(\forall_{r \in \mathbb{R}} \forall_{\alpha \in V} \left(L(r *_v \alpha) = r *_w L(\alpha)\right)\right) \wedge \dots$$

$$\overline{(10) \quad \dots (VectorSpace[V, +_v, *_v]) \land (VectorSpace[W, +_w, *_w]) \quad \blacksquare \ LinTrans[T, V, +_v, *_v, W, +_w, *_w])} \quad \blacksquare$$