Isomerism of Organic Molecules

Organic Molecules

molecules containing carbon, hydrogen, oxygen, nitrogen and other atoms except any metal atom

Isomers

Compounds that have the same molecular formula but are not identical

Isomerism of Organic Molecules: Structural Isomerism

Chain Isomerism

carbon atoms are linked to the main chain in different ways

Position Isomerism

functional groups are attached on different positions on a carbon chain

 $C_4H_{10}O$

 C_4H_8O

C₅H₁₁OH

Metamerism

limited to molecules having a divalent atom like O or S and alkyl groups around it

Functional Isomerism

compounds are different due to different arrangements of atoms leading to different functional groups.

Isomerism of Organic Molecules: Structural Isomerism

Tautomerism

isomerism is due to spontaneous inter-conversion of two isomeric forms with different functional groups

Ring-Chain isomerism

one isomer is an open chain molecule and the other a cyclic molecule

Isomerism of Organic Molecules: Stereoisomer

Stereoisomers differ in the way their atoms are arranged in **space**.

Unlike the atoms in constitutional isomers, the atoms in stereoisomers are connected in the same way.

Geometric

Isomers differ in their spatial arrangement about a double bond. Optical

Isomers differ in the arrangement of atoms in 3D space which create mirror images of each other.

Geometric isomers

also called cis-trans isomers **result from restricted rotation** caused either by a double bond or by a cyclic structure

cis isomer has the hydrogens (less priority group) on the same side of the double bond

trans isomer has the hydrogens (less priority group) on opposite sides of the double bond

$$H_3C$$
 CH_2CH_3 H_3C H $C=C$ H CH_2CH_3 CH_3 CH_3

Stereo

restricted rotation caused by a double bond

Isomerism of Organic Molecules: Geometric isomers

Cis- isomer has the hydrogens on the same side of the ring

trans -isomer has the hydrogens on opposite sides of the ring.

restricted rotation caused by a cyclic structure H_3C CH_3 H_3C H_3C H_3C trans-1,4-dimethylcyclohexane

The cis-trans system of nomenclature cannot be used because there are four different substituents on the two vinylic carbons.

The E,Z system of nomenclature was devised for these kinds of situations.

First determine the relative priorities of the two groups bonded to one of the sp² carbon then the relative priorities of the two groups bonded to the other sp² carbon.

If the high-priority groups are on the same side of the double bond, the isomer has the **Z** configuration

(Z is for zusammen, German for "together")

If the high-priority groups are on opposite sides of the double bond, the isomer has the *E configuration*

(E is for entgegen, German for "opposite")

Rules to determine the relative priorities of the two groups bonded to an carbon are

Rule 1. The relative priorities of the two groups depend on the atomic numbers of the atoms that are bonded directly to the sp² carbon.

The greater the atomic number, the higher is the priority.

Br has a greater atomic number than H, so Br has a higher priority than H.

Cl has the greater atomic number, so Cl has a higher priority than C.

Notice that you use the atomic number of C, not the mass of the group, because the priorities are based on the atomic numbers of atoms, *not on the masses of groups*.

Rule 2: If the atoms attached to sp² carbons are the same, the atoms attached to the "tied" atoms are compared; the one with the greatest atomic number belongs to the group with the higher priority.

Cl has a greater atomic number than C, so the Cl group has the higher priority CH₂Cl.

Both atoms bonded to the other sp^2 carbon are Carbon atoms, so there is a tie at this point. The C of the group CH_2OH is bonded to **O**, **H**, and **H**, and the **C** of the $CH(CH_3)_2$ group is bonded to **C**, **C**, and **H**. Of these six atoms, **O** has the greatest atomic number, so CH_2OH has a higher priority than $CH(CH_3)_2$

Note that you **do not add** the atomic numbers; you take the single atom with the greatest atomic number.

Rule 3: If an atom is doubly bonded to another atom, treat it as if it were singly bonded to two of those atoms.

If an atom is triply bonded to another atom, treat it as if it were singly bonded to three of those atoms.

Cancel atoms that are identical in the two groups; use the remaining atoms to determine the group with the higher priority.

HOCH₂
$$CH=CH_2$$
 CH_2CH_3 $C=C$ $C=C$ $C=C$ CH_2CH_3 $C=C$ $CH=CH_2$ $CH=CH_2$ $CH=CH_2$ $CH=CH_2$

Rule 4. In the case of isotopes (atoms with the same atomic number, but different mass numbers), the mass number is used to determine the relative priorities.

H CHCH₃

H CH=CH₂

$$C=C$$
 $C=C$
 $C+CH=CH_2$
 $C+CH=CH_3$
 $C+CH=$

D and H have the same atomic number, but D has a greater mass number, so **D** has a higher priority than **H**.

Draw and label the E and Z isomers for each of the following compounds:

HOCH₂CH₂C=CC=CH

$$|$$
 $|$ $|$ O=CH C(CH₃)₃

Looking forward

Optical Isomerism:

Optical activity

Chiral and achiral compounds

R/S- Nomenclature

Course material will be uploaded after 17:00 h on every Friday @

http://www.iitg.ac.in/ckjana/ckjana/Teaching.html