應數一線性代數 2020 春,期末考

學號:	S○U
本次考試共有1	0 頁 (包含封面),有 14 題。如有缺頁或漏題,請立刻告知監考人員。
考試須知:	
• 請在第一]	頁以及最後一頁填上姓名學號,並在每一頁的最上方屬名,避免釘書針斷裂後考卷遺失。
• 不可翻閱詞	果本或筆記。
	寫出計算過程,閱卷人員會視情況給予部份分數。沒有計算過程,就算回答正確答案也不會得到滿 請清楚乾淨,儘可能標記或是框出最終答案。
	高師大校訓:誠敬弘遠
誠,一生動念都	是誠實端正的。敬,就是對知識的認真尊重。宏,開拓視界,恢宏心胸。遠,任重致遠,不畏艱難。
	請簽名保證以下答題都是由你自己作答的,並沒有得到任何的外部幫助。

1. (10 points) Find the projection matrix P for the plane W: 3x + 2y + z = 0 in \mathbb{R}^3 and the find the projection \vec{b}_w of $\vec{b} = [4, 2, -1]$ on it. $\begin{bmatrix} 11 \\ -2 \end{bmatrix}$, $P = \begin{bmatrix} 5 & -6 & -3 \\ -6 & /0 & -2 \\ -3 & -2 \end{bmatrix}$. 13

2. (10 points) Find the lease squares straight line fit to the four points (0,1) (1,3) (2,4) (3,4) and use it to approximate the fifth points (4, a).

Answer: the line equation = $1.5 + \chi$, a = 5.5.

3. (5 points) Find the coordinate vector of $\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}$ in M_2 relative to $\begin{pmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & -b \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} c & -c \\ 0 & 3c \end{bmatrix} + \begin{bmatrix} 0 & d \\ 0 & d \end{bmatrix}$$

4. (10 points) Find the five fifth roots of -243i. (need not simplify)

A: 3 (
$$GS(\frac{3\pi}{10} + \frac{2k\pi}{5}) + \tilde{s} Sin(\frac{3\pi}{10} + \frac{2k\pi}{5}))$$
, $k = 0.1.2.3.4$

$$\overrightarrow{V} = \sqrt{V} \left(\cos\left(\frac{\theta}{5}, \frac{2\pi k}{5}\right) + \sin\left(\frac{\theta}{5}, \frac{2\pi k}{5}\right) \right) \qquad \qquad V = 0 - 4$$

5. (10 points) Find the matrix representations $R_{B,B}$, $R_{B',B'}$ and an invertible C such that $R_{B',B'} = C^{-1}R_{B,B}C$ for the given linear transformation T.

 $T:\mathbb{R}^3\to\mathbb{R}^3 \text{ defined as } \underline{\text{reflection}} \text{ of } \mathbb{R}^3 \text{ through the plane } x+y-z=0; B=E, \ B'=([1,0,1],[1,-1,0],[1,1,-1]).$

Normal of x+y-2=0; $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ of $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$ $\in X+y-2=0$

$$\Rightarrow T(\vec{V}_1) = \vec{V}_1$$

$$T(\vec{V}_2) = \vec{V}_2$$

$$T(\vec{V}_3) = \vec{V}_3$$

6. (5 points) Express $(\sqrt{3}+i)^6$ in the form a+bi for a,b are real numbers.

Answer:
$$a = -64$$
, $b = 0$

7. (10 points) Using the Gram-Schmidt process to transform the basis $\{[1,i,1-i],[1+i,1-i,1]\}$ into an orthogonal basis and then extend it as an orthogonal basis for \mathbb{C}^3 .

Answer: the found orthogonal basis for \mathbb{C}^3 is $\frac{\{[1,\bar{\lambda},1-\bar{\lambda}],[3+3\bar{\lambda},5-5\bar{\lambda},2],[-12\bar{\lambda},4,8+8\bar{\lambda}]\}}{\vec{V}_3-\vec{V}_3}$

8. (10 points) Find an unitary matrix U and a diagonal matrix D such that $D = U^{-1}AU$. Also find where

9. (10 points) Find a Jordan canonical form and a Jordan basis for the given matrix.

$$J = \begin{bmatrix}
i & 0 & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 & 0 \\
2 & 0 & -1 & 0 & 2
\end{bmatrix}$$

$$basis = \begin{cases}
0 & 0 & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
2 & 0 & -1 & 0 & 2
\end{bmatrix}$$

$$J = \begin{bmatrix}
i & 0 & 0 & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
2 & 0 & -1 & 0 & 2
\end{bmatrix}$$

$$J = \lambda J = \lambda J$$

10. (10 points) Find a polynomial in A that gives the zero matrix.

$$\begin{bmatrix} i & 0 & 0 & 0 & 0 \\ 0 & i & 1 & 0 & 0 \\ 0 & 0 & i & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \\ \end{bmatrix}$$

11. (5 points) Prove or disprove the following: All 2 × 2 matrix with determinant 1 is an orthogonal matrix.

12. (10 points) Find all the possible 2×2 real matrix that is unitarily diagonalizable.

13. (5 points) Prove that for $\vec{u}, \vec{v} \in \mathbb{C}^n$, $(\vec{u}^*\vec{v})^* = \overline{\vec{u}^*\vec{v}} = \vec{v}^*\vec{u} = \vec{u}^T \overline{\vec{v}}$

- 14. (10 points) Prove the following:
 - (a) Show that every Hermitian matrix is normal.
 - (b) Show that every unitary matrix is normal.
 - (c) Show that, if $A^* = -A$, then A is normal.

應數一線性代數期末考,	母號.	卅夕.	. 以下中閉卷人員值寫

Question:	1	2	3	4	5	6	7	8
Points:	10	10	5	10	10	5	10	10
Score:								
Question:	9	10	11	12	13	14		Total
Points:	10	10	5	10	5	10		120
Score:								