Measuring relationship of variables

Test statistic:
$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \left[\frac{\left(n_{ij} - n_{ij}^*\right)^2}{n_{ij}^*} \right]$$

- **Expected frequency under the assumption of independence:** n_{ii}^*
- **❖** Degrees of freedom (in case of estimation):

$$v = k - b - 1 = rc - (r - 1) - (c - 1) - 1 = (r - 1)(c - 1)$$

- **Condition:** sufficiently large sample: $n_{ii}^* \ge 10(5)$
- * Right-tailed critical region: $c_f = \chi_{1-\alpha}^2$
- A significant relationship is not necessarily a strong relationship (Cramér's V)

$$n_{ij}^* = \frac{n_{i.} \cdot n_{.j}}{n} = n \cdot \frac{n_{i.}}{n} \cdot \frac{n_{.j}}{n} = n \cdot p_{i.} \cdot p_{.j}$$

$$40,83 = \frac{175 \cdot 56}{240} = 240 \cdot \frac{175}{240} \cdot \frac{56}{240} = 240 \cdot 0,7292 \cdot 0,2333$$

Employment Type	Credit rating		Total
	Good	Bad	Iotai
Non-earner	40,83	15,17	56,00
Pensioner	29,17	10,83	40,00
Employed	51,04	18,96	70,00
Entrepreneur	53,96	20,04	74,00
Total	175,00	65,00	240,00

Туре	Credit rating	n_{ij}	n_{ij}^*	$\frac{\left(n_{ij}-n_{ij}^*\right)^2}{n_{ij}^*}$
Non-earner	Good	35	40,83	0,833
Pensioner		35	29,17	1,167
Employed		55	51,04	0,307
Entrepreneur		50	53,96	0,290
Non-earner		21	15,17	2,244
Pensioner	Bad	5	10,83	3,141
Employed		15	18,96	0,826
Entrepreneur		24	20,04	0,782
Total		240,00	240,00	9,590

$$\frac{(35-40,83)^2}{40,83}$$

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{ij} - n_{ij}^{*}\right)^{2}}{n_{ij}^{*}}$$

$$\chi^{2} = \frac{(35 - 40,83)^{2}}{40,83} + \frac{(35 - 29,17)^{2}}{29,17} + \dots + \frac{(24 - 20,04)^{2}}{20,04} = 9,59$$

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{ij} - n_{ij}^{*}\right)^{2}}{n_{ij}^{*}}$$

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{ij} - n_{ij}^{*}\right)^{2}}{n_{ij}^{*}} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{n_{ij}^{2} - 2n_{ij} \cdot n_{ij}^{*} + \left(n_{ij}^{*}\right)^{2}}{n_{ij}^{*}}$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{c} \left(\frac{n_{ij}^{2}}{n_{ij}^{*}} - \frac{2n_{ij} \cdot n_{ij}^{*}}{n_{ij}^{*}} + \frac{(n_{ij}^{*})^{2}}{n_{ij}^{*}} \right) = \sum_{i=1}^{r} \sum_{j=1}^{c} \left(\frac{n_{ij}^{2}}{n_{ij}^{*}} - 2n_{ij} + n_{ij}^{*} \right)$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{c} \left(\frac{n_{ij}^{2}}{n_{ij}^{*}} - 2n_{ij} + n_{ij}^{*} \right)$$

$$=\sum_{i=1}^{r}\sum_{j=1}^{c}\frac{n_{ij}^{2}}{n_{ij}^{*}}-2\sum_{i=1}^{r}\sum_{j=1}^{c}n_{ij}+\sum_{i=1}^{r}\sum_{j=1}^{c}n_{ij}^{*}=\sum_{i=1}^{r}\sum_{j=1}^{c}\frac{n_{ij}^{2}}{n_{ij}^{*}}-2n+n$$

$$= \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{n_{ij}^{2}}{\underline{n_{i.} \cdot n_{.j}}} - n = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{n_{ij}^{2} \cdot n}{n_{i.} \cdot n_{.j}} - n = n \cdot \left(\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{n_{ij}^{2}}{n_{i.} \cdot n_{.j}} - 1\right)$$

Type	Credi	it rating	Total	
-5,60	Good	Bad		
Non-earner	35	21	56	
Pensioner	35	5	40	
Employed	55	15	70	
Entrepreneur	50	24	74	
Total	175	65	240	

$$\chi^{2} = n \cdot \left(\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{n_{ij}^{2}}{n_{i.} \cdot n_{.j}} - 1 \right)$$

$$\chi^2 = 240 \cdot \left(\frac{35^2}{175 \cdot 56} + \frac{35^2}{175 \cdot 40} + \frac{55^2}{175 \cdot 70} + \frac{50^2}{175 \cdot 74} + \frac{21^2}{65 \cdot 56} + \frac{5^2}{65 \cdot 40} + \frac{15^2}{65 \cdot 70} + \frac{24^2}{65 \cdot 74} - 1 \right) = 0$$

$$\chi^2 = 240 \cdot (1,039959 - 1) = 240 \cdot 0,039959 = 9,59$$

Hypotheses:
$$H_0: P_{ij} = P_{i.} \cdot P_{.j}$$
 (independence)

 $H_1: P_{ij}$ is not equal to $P_i \cdot P_{ij}$ in every case

Test statistic:

$$\chi^2 = 9,59$$

Critical value:

$$c_f = \chi_{0.95}^2 [(r-1)(c-1) = 3 \cdot 1 = 3] = 7.81$$

Decision:

$$c_f = 7.81 < 9.59$$

We reject H₀; the relationship between client type and credit rating is significant at the 5% significance level.

Measuring relation

Cramér's V association coefficient

$$0 \le C = \sqrt{\frac{\chi^2}{N \cdot \min\{(r-1), (c-1)\}}} \le 1$$

$$W = \chi \quad \text{value of } \chi^2$$

ANOVA

Hypotheses:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_j = \dots = \mu_M = \mu$$

There is no relationship between variable Y and the characteristic that distinguishes the populations.

$$H_1: \exists j, \quad \mu_j \neq \mu$$

There is a stochastic relationship between the two variables.

ANOVA

$$F = \frac{SSB / (M - 1)}{SSW / (n - M)} = \frac{s_b^2}{s_w^2}$$

Mean between sum of squares:

$$S_b^2 = \frac{SSB}{M - 1}$$

Mean within sum of squares : $S_w^2 = \frac{SSW}{M}$

$$S_w^2 = \frac{SSW}{n-M}$$

Distribution of the test statistic: $F(v_1 = M - 1, v_2 = n - M)$

Acceptance and critical range:

$$\begin{array}{c|c} A & C \\ \hline 0 & C_f \end{array}$$

H² interpretation

- What proportion of the variance in the Y characteristic is explained by the grouping characteristic (interpretable in percentage, a distribution ratio-type measure).
- To what extent does the grouping characteristic reduce the uncertainty in the inference about the membership of the Y characteristic (PRE)?

Н

$$H = \sqrt{H^2}$$

H cannot be expressed as a percentage, but is solely used to assess the strength of the relationship.

Limits

Limits:
$$0 \le H^2, H \le 1$$

$$H^{2} = \frac{\sigma_{B}^{2}}{\sigma^{2}} = \frac{\sigma_{W}^{2}}{\sigma_{W}^{2} + \sigma_{B}^{2}} \qquad \sigma^{2} \neq 0$$

$$H^2 = H = 0$$
, if $\forall \overline{Y}_j = \overline{Y} \rightarrow \sigma_B = 0 \rightarrow \sigma_W = \sigma$

$$H^2 = H = 1$$
, if $\forall Y_{ij} = \overline{Y}_i \rightarrow \sigma_W = 0 \rightarrow \sigma_B = \sigma$

The Strength of the Linear Relationship - Covariance (C)

If X and Y are independent of each other. :
$$\frac{\sum X_i Y_i}{N} = \overline{X}\overline{Y}$$

The measure of covariance (the joint variability of X and Y):

$$C(X,Y) = \frac{\sum X_i Y_i}{N} - \overline{X}\overline{Y} = \frac{\sum d_{X_i} d_{Y_i}}{N}$$

where:
$$d_{X_i} = X_i - \overline{X}$$
 $d_{Y_i} = Y_i - \overline{Y}$

C(X,Y)

$$\sum_{i=1}^{N} d_{X_i} d_{Y_i} = \sum_{i=1}^{N} \left(X_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - X_i \cdot \overline{Y} - Y_i \cdot \overline{X} + \overline{X} \cdot \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{X} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{Y} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{Y} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{Y} \right) \left(Y_i - \overline{Y} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i Y_i - \overline{Y} \right) \left(Y_i - \overline{Y} \right) \left(Y_i - \overline{Y} \right) = \sum_{i=1}^{N} \left(X_i - \overline{Y} \right) \left(Y_i - \overline{Y} \right)$$

$$= \sum_{i=1}^{N} X_{i} Y_{i} - \overline{Y} \sum_{i=1}^{N} X_{i} - \overline{X} \sum_{i=1}^{N} Y_{i} + \sum_{i=1}^{N} \overline{X} \overline{Y}$$

$$=\sum_{i=1}^{N}X_{i}Y_{i}-\overline{Y}\cdot N\cdot \overline{X}-\overline{X}\cdot N\cdot \overline{Y}+N\cdot \overline{X}\cdot \overline{Y}=\sum_{i=1}^{N}X_{i}Y_{i}-N\cdot \overline{Y}\cdot \overline{X}$$

$$C(X,Y) = \frac{\sum X_i Y_i}{N} - \overline{X}\overline{Y} = \frac{\sum X_i Y_i - N \cdot \overline{X}\overline{Y}}{N} = \frac{\sum d_{X_i} d_{Y_i}}{N}$$

STRENGTH OF THE LINEAR RELATIONSHIP – COVARIANCE (C)

- * X = Y in special case $C(Y,Y) = \frac{\sum d_{Y_i} d_{Y_i}}{N} = \frac{\sum d_{Y_i}^2}{N} = \sigma_Y^2$
- * The C(X,Y) alone indicates the existence and direction of the relationship between $\ X$ and $\ Y$
- * Its sign is determined by the sign of the $\sum d_{{\scriptscriptstyle X_i}}d_{{\scriptscriptstyle Y_i}}$ product sum
- $C(X,Y) = 0 \rightarrow$ no linear correlation
- * $C(X,Y) > 0 \rightarrow$ positive correlation
- \bullet $C(X,Y) < 0 \rightarrow$ negative correlation

$$0 \le |C(X,Y)| \le \sigma_X \sigma_Y$$

LINEAR CORRELATION COEFFICIENT

$$r(X,Y) = \frac{C(X,Y)}{\sigma_X \sigma_Y} \qquad C(X,Y) = \frac{\sum d_{X_i} d_{Y_i}}{N}$$

$$r(X,Y) = \frac{\frac{\sum d_{X_i} d_{Y_i}}{N}}{\sqrt{\frac{\sum d_{X_i}^2}{N}} \sqrt{\frac{\sum d_{Y_i}^2}{N}}} = \frac{\sum d_{X_i} d_{Y_i}}{\sqrt{\sum d_{X_i}^2 \sum d_{Y_i}^2}}$$

$$-1 \le r \le 1$$