Exercise sheet

Lecturer: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part 1. Elements of convex learning problems

Exercise 1. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(w) = g(\langle w, x \rangle + y)$ or some $x \in \mathbb{R}^d$, $y \in \mathbb{R}$. Show that: If g is convex function then f is convex function.

Exercise 2. (*)Let functions g_1 be ρ_1 -Lipschitz and g_2 be ρ_2 -Lipschitz. Then, show that, f with $f(x) = g_1(g_2(x))$ is $\rho_1\rho_2$ -Lipschitz.

Exercise 3. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ with $f(w) = g(\langle w, x \rangle + y)$ $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$. Let $g: \mathbb{R} \to \mathbb{R}$ be a β -smooth function. Then show that f is a $(\beta ||x||^2)$ -smooth.

Hint: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Exercise 4. (*)Show that $f: S \to \mathbb{R}$ is ρ -Lipschitz over an open convex set S if and only if for all $w \in S$ and $v \in \partial f(w)$ it is $||v|| \le \rho$.

Hint:: You may use Cauchy-Schwarz inequality $\langle y, x \rangle \leq ||y|| \, ||x||$

Exercise 5. (*)Let $g_1(w), ..., g_r(w)$ be r convex functions, and let $f(\cdot) = \max_{\forall j} (g_j(\cdot))$. Show that for some w it is $\nabla g_k(w) \in \partial f(w)$ where $k = \arg \max_j (g_j(w))$ is the index of function $g_j(\cdot)$ presenting the greatest value at w.

Exercise 6. (*)Consider the regression learning problem $(\mathcal{H}, \mathcal{Z}, \ell)$ with predictor rule $h(x) = \langle w, x \rangle$ labeled by some unknown parameter $w \in \mathcal{W}$, loss function $\ell(w, (x, y)) = (\langle w, x \rangle - y)^2$, feature $x \in \mathcal{X}$, and target $y \in \mathbb{R}$. Let $\mathcal{W} = \mathcal{X} = \{\omega \in \mathbb{R}^d : |\omega| \leq \rho\}$ for some $\rho > 0$.

- (1) Show that the resulting learning problem is Convex-Lipschitz-Bounded learning problem.
- (2) Specify the parameters of Lipschitnzess.

Exercise 7. (\star) If f is λ -strongly convex and u is a minimizer of f then for any w

$$f(w) - f(u) \ge \frac{\lambda}{2} \|w - u\|^2$$

Hint:: Use the definition, and set $\alpha \to 0$.

The following is given as a homework (Formative assessment 1)

Exercise 8. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex and β -smooth function.

(1) Show that for $v, w \in \mathbb{R}^d$

$$f(v) - f(w) \in \left(\left\langle \nabla f(w), v - w \right\rangle, \left\langle \nabla f(w), v - w \right\rangle + \frac{\beta}{2} \|v - w\|^2 \right)$$

(2) Show that for $v, w \in \mathbb{R}^d$ such that $v = w - \frac{1}{\beta} \nabla f(w)$, it is

$$\frac{1}{2\beta} \left\| \nabla f\left(w\right) \right\|^{2} \le f\left(w\right) - f\left(v\right)$$

(3) Additionally assume that f(x) > 0 for all $x \in \mathbb{R}^d$. Show that for $w \in \mathbb{R}^d$,

$$\|\nabla f\left(w\right)\| \le \sqrt{2\beta f\left(w\right)}$$

The following is given as a homework (Formative assessment 1)

Exercise 9. (\star) Let $f: \mathbb{R}^d \to \mathbb{R}$ be a λ -strongly convex function. Assume that w^* is a minimizer of f i.e.

$$w^* = \operatorname*{arg\,min}_{w} \left\{ f\left(w\right) \right\}$$

Show that for any $w \in \mathbb{R}^d$ it holds

$$f(w) - f(w^*) \ge \frac{\lambda}{2} \|w - w^*\|^2$$

Hint: Use the definition of λ -strongly convex function, properly rearrange it, and ...

Exercise 10. (*)Show that the function $J(x;\lambda) = \lambda ||x||^2$ is 2λ -strongly convex

Part 2. Stochastic learning

Exercise 11. (\star) Assume a Bayesian model

$$\begin{cases} z_i | w & \stackrel{\text{ind}}{\sim} f(z_i | w), \ i = 1, ..., n \\ w & \sim f(w) \end{cases}$$

and consider that our objective is the discovery of MAP estimate w^* i.e.

$$w^* = \arg\min_{\forall w \in \Theta} \left(-\log\left(L_n\left(w\right)\right) - f\left(w\right)\right) = \arg\min_{\forall w \in \Theta} \left(-\sum_{i=1}^n \log\left(f\left(z_i|w\right)\right) - \log\left(f\left(w\right)\right)\right)$$

by using SGD with update

$$w^{(t+1)} = w^{(t)} + \eta_t \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) + \nabla_w \log \left(f\left(w^{(t)}\right) \right) \right)$$

for some randomly selected set $\mathcal{J}^{(t)} \subseteq \{1,...,n\}^m$ of m integers from 1 to n via simple random sampling (SRS) with replacement. Show that

$$\mathbf{E}_{\mathcal{J}^{(t)} \sim \text{simple-random-sampling}} \left(\frac{n}{m} \sum_{j \in \mathcal{J}^{(t)}} \nabla_w \log \left(f\left(z_j | w^{(t)}\right) \right) \right) = \sum_{i=1}^n \nabla_w \log \left(f\left(z_i | w^{(t)}\right) \right)$$

Exercise 12. (*) Let $\{v_t; t = 1, ..., T\}$ be a sequence of vectors. Consider an algorithm producing $\{w^{(t)}; t = 1, 2, 3, ...\}$ with

$$w^{(1)} = 0$$
$$w^{(t+1)} = w^{(t)} - \eta v_t$$

Show that

(1) it is

$$\langle w^{(t)} - w^*, v_t \rangle = \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \left\| v_t \right\|^2$$

(2) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle = \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

(3) (continue) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

Exercise 13. (\star) Let $\{v_t; t=1,...,T\}$ be a sequence of vectors. Consider an algorithm producing $\{w^{(t)}; t=1,2,3,...\}$ with

$$w^{(1)} = 0$$

$$w^{\left(t + \frac{1}{2}\right)} = w^{(t)} - \eta v_t$$

$$w^{(t+1)} = \arg\min_{w \in \mathcal{H}} \left(\left\| w - w^{\left(t + \frac{1}{2}\right)} \right\| \right)$$

for t = 1, ..., T.

Hint: You can use the following Lemma

(**Projection Lemma**): Let \mathcal{H} be a closed convex set and let v be the projection of w onto \mathcal{H} ,i.e.

$$v = \operatorname*{arg\,min}_{x \in \mathcal{H}} \|x - w\|^2$$

then for every $u \in \mathcal{H}$ it is

$$||v - u||^2 \le ||w - u||^2$$

Show that

(1) it is

$$\langle w^{(t)} - w^*, v_t \rangle \le \frac{1}{2\eta} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \left\| v_t \right\|^2$$

(2) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{1}{2\eta} \sum_{t=1}^{T} \left(-\left\| w^{(t+1)} - w^* \right\|^2 + \left\| w^{(t)} - w^* \right\|^2 \right) + \frac{\eta}{2} \sum_{t=1}^{T} \left\| v_t \right\|^2$$

(3) (continue) it is

$$\sum_{t=1}^{T} \langle w^{(t)} - w^*, v_t \rangle \le \frac{\|w^*\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|v_t\|^2$$

Comment: Above we show that Lemma ?? from "Handout ??: Gradient descent" holds even when a projection step is included. Hence, even if a projection step is included after the update step of the recursion of GD algorithm or the SGD algorithm the analysis in Section ?? in "Handout ??: Gradient descent" holds. Hence, even if a projection step is included after the update step of the recursion of SGD algorithm or the SGD algorithm the analysis in Section ?? in "Handout ??: Stochastic gradient descent" holds.

The following is given as a homework (Formative assessment 2)

Exercise 14. (*) ¹Consider the binary classification problem with inputs $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \le L\}$ for some given value L > 0, target $y \in \mathcal{Y}$ where $\mathcal{Y} := \{-1, +1\}$, and prediction rule $h_w : \mathbb{R}^d \to \{-1, +1\}$ with

$$(1) h_w(x) = \operatorname{sign}\left(w^{\top}x\right)$$

$$= \operatorname{sign}\left(\sum_{j=1}^{d} w_j x_j\right)$$

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0 \\ +1, & \text{if } \xi > 0 \end{cases}$$

 ± 1 means either -1 or +1, $\mathbb{R}_{+}:=(0,+\infty)$, and $\left\|x\right\|_{2}:=\sqrt{\sum_{\forall j}\left(x_{j}\right)^{2}}$ for the Euclidean distance.

¹We use standard notation

Let the hypothesis class is

(3)
$$\mathcal{H} = \left\{ x \to w^{\top} x : \forall w \in \mathbb{R}^d \right\}$$

In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$, it receives an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$ where

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi < 0 \\ +1, & \text{if } \xi > 0 \end{cases}$$

Consider a loss function $\ell : \mathbb{R}^d \to \mathbb{R}_+$ with

(4)
$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\top}x) + \lambda ||w||_{2}^{2}$$

for some given value $\lambda > 0$.

Assume there is available a dataset of examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n. Do the following:

(1) Show that the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (4) is convex.

Hint:: You may use Proposition ?? from Handout ??: Elements of convex learning problems.

(2) Show that the loss $\ell(w, z)$ for $\lambda = 0$ (4) is L-Lipschitz (with respect to w) when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$.

Hint: You may use the definition of Lipschitz function. Without loss of generality, you can consider any $w_1 \in \mathbb{R}^d$ and $w_2 \in \mathbb{R}^d$ such that $1 - yw_2^\top x \le 1 - yw_1^\top x$, and then take cases $1 - yw_2^\top x > \text{or} < 0$ and $1 - yw_1^\top x > \text{or} < 0$ to deal with the max.

(3) Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1-x)$. Show that the vector v with

$$v = \begin{cases} 2\lambda w, & yw^{\top}x > 1\\ 2\lambda w, & yw^{\top}x = 1\\ -yx + 2\lambda w, & yw^{\top}x < 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

(4) Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in order to discover w^* such as

(5)
$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left(\mathbb{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$

The formulas in your algorithm should be implemented for the above learning problem and tailored to 1, 3, and 4.

(5) Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.

- (a) By using appropriate values for m, η_t and T_{max} , code in R the algorithm you designed in part 4, and run it.
- (b) Plot the trace plots for each of the dimensions of the generated chain $\{w^{(t)}\}$ against the iteration t.
- (c) Report the value of the output w_{adaGrad}^* (any type) of the algorithm as the solution to (5).
- (d) To which cluster y (i.e., -1 or 1) $x_{\text{new}} = (1,0)^{\top}$ belongs?

```
\# R code. Run it before you run anything else
#
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )
z \leftarrow matrix(z, nrow = n, ncol = 3)
z[,1] \leftarrow rep(1,times=n)
z[,2] \leftarrow runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x < z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_{obs} < 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
\#z_obs2[z_obs[,3]==-1,3]=0
#w_true <- as.numeric(glm(z_obs2[,3]~ 1+ z_obs2[,2],family = "binomial"</pre>
)$coefficients)
```