1	WHAT IS CLAIMED IS:
2	In a digital communication system, a method for communicating
3	comprising the steps of:
4	transmitting signals from one or more transmitter antenna elements;
5	receiving said signals from via a plurality of receiver antenna elements;
6	wherein separation of radiation patterns among either said transmitter antenna
7	elements or said receiver antenna elements is insufficient to establish completely
8	isolated spatial directions for communication; and wherein
9	at least one of said transmitting and receiving steps comprises processing said
10	signals to increase isolation between spatial directions employed for communication at a
11	common frequency.
12	
1 3	2. The method of claim 1 wherein a channel coupling said plurality of
14	transmitter antenna elements and receiver antenna elements at said common frequency is
15	characterized by a spatial channel matrix having a rank greater than one.
16	
17	In a digital communication system, a method for communicating
18	comprising the steps of:
119	transmitting signals from one or more transmitter antenna elements;
20	receiving said signals via a plurality of receiver antenna elements;
21	wherein separation of radiation patterns among either said transmitter antenna
22	elements or said receiver antenna elements is insufficient to establish completely
23	isolated spatial directions for communication; and wherein
24	at least one of said transmitting and receiving steps comprises processing said
25	signals to increase isolation between subchannels, each subchannel associated with a spatial
26	direction and a bin of a substantially orthogonalizing procedure.
27	
28	4. The method of claim 3 wherein said substantially orthogonalizing
29	procedure belongs to a group including: an inverse Fast Fourier Transform, a Fast Fourier
30	Transform, a Hilbert transform, a wavelet transform, and processing through a set of bandpass
31	filter/frequency unconverter pairs operating at spaced apart frequencies

32	
33	In a digital communication system, a method for preparing a sequence of
34	symbols for transmission via a plurality of inputs of a channel:
35	a) inputting said symbols of said sequence into a plurality of inputs
36	corresponding to a plurality of subchannels of said channel, each subchannel corresponding to
37	an input bin of a transmitter substantially orthogonalizing procedure and a spatial direction;
38	b) for each input bin, spatially processing symbols inputted to said subchannels
39	corresponding to said input bin, to develop a spatially processed symbol to assign to each
40	combination of channel input and input bin of said transmitter substantially orthogonalizing
41	procedure; and
42	c) applying, independently for each said channel input, said transmitter
43	substantially orthogonalizing procedure to said spatially processed symbols assigned to each
.44	said channel input.
45	
46 47	6. The method of claim 5 wherein said b) step has the effect of making
	spatial directions of said subchannels into a set of orthogonal spatial dimensions.
48	
49 50	7. The method of claim 5 wherein said transmitter substantially
50	orthogonalizing procedure belongs to one of a group consisting of an inverse Fast Fourier
51	Transform, a Fast Fourier Transform, a discrete cosine transform, a Hilbert transform, a
52	wavelet transform, and processing through a plurality of bandpass filter/frequency converter
53	pairs centered at spaced apart frequencies.
54	
55	8. /The method of claim 5 further comprising the step of, after said c) step,
56	applying a cyclic prefix processing procedure to a result of said substantially orthogonalizing
57	procedure independently for each channel input.
58	
59	9. The method of claim 5 wherein said transmitter substantially

orthogonalizing procedure is optimized to reduce interference to unintended receivers.

62	10. The method of claim 5 wherein said b) step comprises, for each
63	particular input bin, multiplying a vector comprising symbols allocated to subchannels
64	corresponding to said input bin by a beneficial weighting matrix, elements of a result vector of
65	said multiplying step corresponding to different channel inputs of said plurality of channel
66	inputs.
67	
68	11. The method of claim 10 wherein said beneficial weighting matrix
69	comprises an input singular matrix of a matrix containing values representing characteristics of
70	said channel, said coupling said plurality of channel inputs to one or more channel outputs.
71	
72	12. The method of claim 10 wherein said beneficial weighting matrix is
73	obtained from a matrix containing values representing characteristics of a channel coupling
74	said plurality of channel inputs to one or more channel outputs.
75	
76	13. The method of claim 10 wherein said beneficial weighting matrix is
77	chosen to reduce interference to unintended receivers.
79	14. The method of claim 13 wherein said beneficial weighting matrix is
80	chosen based upon characterization of a desired signal subspace.
81	
82	15. The method of claim 14 wherein said beneficial weighting matrix is
83	chosen further based upon characterization of an undesired signal subspace.
84	
85	16. The method of claim 15 wherein characterizations of said desired signal
86	subspace and said undesired signal subspace are averaged over at least one of time and
87	frequency.
88	
89	17. The method of claim 10 wherein said b) step comprises performing said
90	spatial processing step so as to reduce interference radiated to unintended receivers.
91	18. The method of claim 10 wherein said b) step comprises, for each input
92	bin, allocating symbols to each combination of channel input and input bin so that there

	Λ.
93	is a one-to-one mapping between spatial direction of a particular subchannel to which a
94	particular symbol has been allocated and channel input to which said particular symbol
95	is allocated.
96	
97	19. The method of claim 10 further comprising the step of prior to said b)
98	step applying a coding procedure to said symbols.
99	
100	20. The method of claim 19 wherein said coding procedure is applied
101	independently for each of said subchannels.
102	
103	21. The method of claim 19 wherein said coding procedure is applied
104	independently for each group of subchannels corresponding to an input bin of said substantially
105	orthogonalizing procedure.
106	
107	22. The method of claim 19 wherein said coding procedure is applied
108	independently for each group of subchannels corresponding to a particular spatial direction.
109	
110	23. The method of claim 19 wherein said coding procedure is applied
111	integrally across all of said subchannels.
112	
113	24. The method of claim 19 wherein said coding procedure belongs to a
114	group consisting of: convolutional coding, Reed-Solomon coding, CRC coding, block coding,
115	trellis coding, turbo coding, and interleaving.
116	
117	25. The method of claim 19 wherein said coding procedure comprises a
118	trellis coding procedure.
119	
120	26. The method of claim 25 wherein a code design of said trellis coding
121	procedure is based on one of: improved bit error performance in interference channels, a
122	periodic product distance metric, exhaustive code polynomial search for favorable bit error
123	rate polynomial searches, combined weighting of product distance and Euclidean distance,

	1
124	product distance of multiple Euclidean distances over short code segments or over a multi-
125	dimensional symbol, and sum of product distances over short code segments.
126	
127	27. The method of claim 25 wherein a code design of said trellis coding
128	procedure is optimized for performance in a fading matrix channel.
129	
130	28. The method of claim 19 wherein said coding procedure comprises a one
131	dimensional trellis coding procedure followed by an interleaving procedure with sequential
132	groups of symbols output by said trellis coding having their internal order maintained by said
133	interleaving procedure.
134	
135	29. The method of claim 1/9 wherein said coding procedure comprises a
136	multi-dimensional trellis coding procedure followed by an interleaving procedure with groups
137	of one-dimensional symbols output simultaneously by said multi-dimensional trellis coding
138	procedure having their internal order maintained by said interleaving procedure.
139	1 1
140	30. The method of claim 10 wherein bit loading and power are allocated to
141	each subchannel.
142	
143	31. The method of claim 10 further comprising the step of retransmitting
144	symbols by repeating at least one of said a), b), and c) steps upon receipt of a notification that
145	said symbols to be retransmitted have been incorrectly received.
146	
147	32. The method of claim 10 wherein said channel comprises a wireless
148	channel and said plurality of channel inputs are associated with a corresponding plurality of
149	transmitter antenna elements
150	
151	33. The method of claim 32 wherein said plurality of transmitter antenna
152	elements are co-located.
153	

	l)
154	34. The method of claim 32 wherein said plurality of transmitters are at
155	disparate locations.
156	
157	3 A method of processing a sequence of symbols received via a plurality of
158	outputs of a channel, said method comprising the steps of:
159	a) applying a receiver substantially orthogonalizing procedure to said sequence
160	of symbols, said procedure being applied independently for each of said plurality of channel
161	outputs, each output symbol of said receiver substantially orthogonalizing procedure
162	corresponding to a particular output bin and a particular one of said channel outputs; and
163	b) for each output bin, spatially processing symbols corresponding to said
164	output bin to develop spatially processed symbols assigned to a plurality of spatial directions,
165	each combination of spatial direction and output bin specifying one of a plurality of
166	subchannels.
167	
168	36. The method of claim 35 wherein said b) step has the effect of making
169	said plurality of spatial directions into a set of orthogonal spatial dimensions.
1 7 0	
171	37. The method of claim 35 wherein said receiver substantially
172	orthogonalizing procedure belongs to one of a group consisting of an inverse Fast Fourier
172 173	Transform, a Fast Fourier Transform, a discrete cosine transform, a Hilbert transform, a
174	wavelet transform, and processing through a plurality of bandpass filter/frequency converter
175	pairs centered at spaced apart frequencies.
176	
177	38. The method of claim 35 further comprising the step of, prior to said a)
178	step, applying a cyclic prefix removal procedure to said sequence of symbols independently
179	for each of said channel outputs.
180	
181	39. The method of claim 35 wherein said receiver substantially
182	orthogonalizing procedure is optimized to reduce deleterious effects of interference from
183	undesired co-channel transmitters.
184	

185	40. The method of claim 35 wherein said b) step comprises, for each
186	particular output bin, multiplying a vector comprising symbols of said output bin by a
187	beneficial weighting matrix, elements of a result vector of said multiplying step corresponding
188	to different spatial directions.
189	
190	41. The method of claim 40 wherein said beneficial weighting matrix
191	comprises an output singular vector of a matrix containing values representing characteristics
192	of said channel, said channel coupling one or more channel inputs to said plurality of channel
193	outputs.
194	
195	42. The method of claim 40 wherein said beneficial weighting matrix is
196	chosen to minimize deleterious effects of interference from undesired transmitters.
197	·
198	43. The method of claim 42 wherein said beneficial weighting matrix is
199	chosen based upon characterization of a desired signal subspace.
200	
201	44. The method of claim 43 wherein said beneficial weighting matrix is
202	chosen further based upon characterization of an undesired signal subspace.
203	
204	45. The method of claim 44 wherein said characterizations of said desired
205	signal subspace and said undesired signal subspace are averaged over at least one of time and
206	frequency.
207	
208	46. The method of claim 40 wherein said beneficial weighting matrix is
209	obtained from a matrix containing values representing characteristics of said channel, said
210	channel coupling one or more channel inputs and said plurality of channel outputs.
211	
212	47. The method of claim 46 wherein said beneficial weighting matrix is
213	obtained by an MMSE procedure.
214	

215	48. The method of claim 35 further comprising the step of after said b) step
216	applying a decoding procedure to said symbols.
217	
218	49. The method of claim 48 wherein said decoding procedure is applied
219	independently for each of said plurality of subchannels.
220	
221	50. The method of claim 48 wherein said decoding procedure is applied
222	independently for each group of subchannels corresponding to an output bin of said
223	substantially orthogonalizing procedure.
224	
225	51. The method of claim 48 wherein said decoding procedure is applied
226 227	independently for each group of subchannels corresponding to a spatial direction.
227	
228	52. The method of claim 48 wherein said decoding procedure is applied
229	integrally across all of said plurality of subchannels.
230	
231	53. The method of claim 48 wherein said decoding procedure belongs to a
232 233	group consisting of: Reed-Soldmon decoding, CRC decoding, block decoding, and de-
233	interleaving.
234	
235	54. The method of claim 48 wherein said decoding procedure comprises a
236	code sequence detection procedure to decode a trellis code, or convolutional code.
237	V
238	55. The method of claim 54 wherein said code sequence detection procedure
239	employs a metric belonging to a group consisting of: Euclidean metric, weighted Euclidean
240	metric, and Hamming metric.
241	
242	56. The method of claim 48 wherein said decoding procedure reduces
243	deleterious effects of interference from undesired transmitters.
244	
245	57. The method of claim 35 further comprising the step of:

246	sending a retransplission request when received symbols are
247	determined to include errors.
248	
249	58. The method of claim 35 wherein said channel comprises a wireless
250	channel and said plurality of channel outputs are coupled to a plurality of corresponding
251	receiver antenna elements.
252	
253	59. The method of claim/35 wherein said plurality of receiver antenna
254	elements are co-located.
255	\cdot
256	60. The method of claim 35 wherein said plurality of receiver antenna
257	elements are at disparate locations.
257 258	
259	In a digital communication system, a method for preparing a sequence of
260	symbols for transmission via a plurality of inputs to a channel, said method comprising the
2 61	steps of:
262	selecting a weighting vector for optimal transmission;
2 63	applying a transmitter substantially orthogonalizing procedure to
263 264	said sequence of symbols to develop a time domain symbol sequence; and
265	multiplying at least one symbol of said time domain symbol
266	sequence by said weighting vector to develop a result vector, elements of said result vector
267	corresponding to symbols to be transmitted via individual ones of said plurality of channel
268	inputs.
269	
270	62. The method of claim 61 wherein said weighting vector comprises an
271	element indicating delay to be applied for a particular one of said plurality of channel inputs.
272	
273	63. The method of claim 61 wherein said weighting vector is optimized to
274	reduce interference to unintended receivers.
275	1

	1
276	64. The method of claim 61 wherein said weighting vector is chosen based
277	upon characterization of a desired signal subspace.
278	
279	65. The method of claim 64 wherein said weighting vector is chosen furthe
280	based upon characterization of an undesired signal subspace.
281	
282	66. The method of claim 65 wherein said characterizations of said desired
283	signal subspace and said undesired signal subspace are averaged over at least one of time and
284	frequency.
285	
286	67. The method of claim 61 wherein said channel comprises a wireless
287	channel and said plurality of channel inputs are associated with a plurality of transmitter
287 288	antenna elements.
28 9	
290	
291	
in the second	
jiav.	
Carried Carried Carried Carried Carried	

	l l
292	8. In a digital communication system, a method for processing a plurality
293	of symbols received via a plurality of outputs of a channel, said method comprising the steps
294	of:
295	selecting a weighting vector for optimal reception;
296	multiplying an input vector whose elements correspond to
297	symbols received substantially simultaneously via a selected one of said plurality of channel
298	outputs by said weighting vector to obtain a time domain symbol corresponding to a particular
299	input bin of a receiver substantially orthogonalizing procedure;
300	repeating said multiplying step for successive received symbols to
301	obtain time domain symbols corresponding to successive input bins of said receiver
302	substantially orthogonalizing procedure; and
303	applying said receiver substantially orthogonalizing procedure to
304	said obtained time domain symbols.
305	
306	69. The method of claim 68 wherein said weighting vector comprises an
307	element indicating delay to be applied for a particular one of said plurality of channel outputs.
308	
309	70. The method of claim 68 wherein said weighting vector is optimized to
310	reduce deleterious effects of interference from unintended transmitters.
311	
312	71. The method of claim 68 wherein said weighting vector is chosen based
313	upon characterization of a desired signal subspace.
314	
315	72. The method of claim 71 wherein said weighting vector is chosen further
316	based upon characterization of an undesired signal subspace.
317	
318	73. The method of claim 72 wherein said characerizations of said desired
319	signal subspace and said undesired signal subspace are averaged over at least one of frequency
320	and time.
321	

322	74. The method of claim 71 wherein said channel comprises a wireless
323	channel and said plurality of channel outputs are associated with a plurality of corresponding
324	receiver antenna elements.
325	
326	15. In a digital communication system, a method of preparing symbols for
327	transmission via a plurality of inputs of a channel, said method comprising the steps of:
328	directing symbols to input bins of a transmitter substantially
329	orthogonalizing procedure so that each input bin has an allocated symbol;
330	for each particular input bin, spatially processing said symbol
331	allocated to said particular input bin to develop a spatially processed symbol vector, each
332	element of said spatially processed symbol vector being assigned to one of said channel
333 334 335	inputs;
334	applying said transmitter substantially orthogonalizing procedure
335	for a particular channel input, inputs to said substantially orthogonalizing procedure being for
336	each input bin, a symbol of said processed symbol vector for said input bin corresponding to
337	said particular channel input; and
3 338	repeating said applying step for each of said plurality of channel
339	inputs.
340	
341	76. The method of claim 75 further comprising the step of:
342	applying a cyclic prefix processing procedure to outputs of said
343	substantially orthogonalizing procedure independently for each particular channel input.
344	
345	77. The method of claim 75 wherein said transmitter substantially
346	orthogonalizing procedure is optimized to reduce interference to unintended receivers.
347	
348	78. The method of claim 75 wherein said processing step comprises:
349	multiplying said symbol allocated to said particular input bin by a
350	beneficial weighting vector to obtain said spatially processed symbol vector.
351	

	,
352	79. The method of claim 78 wherein said beneficial weighting vector is an
353	input singular vector of a matrix storing values indicative of said channel, said channel
354	coupling said plurality of channel inputs and one or more channel outputs.
355	
356	80. The method of claim 78 wherein said beneficial weighting vector is
357	chosen to select a beneficial spatial direction for transmission.
358	
359	81. The method of claim 80 wherein said beneficial weighting vector is
360	chosen to reduce interference to unintended receivers.
361	
362	82. The method of claim 81 wherein said beneficial weighting vector is
363	chosen based upon characterization of a desired signal subspace
364	
365	83. The method of claim 82 wherein said beneficial weighting vector is
366	chosen further based upon characterization of an undesired signal subspace.
367	
368	84. The method of/claim 83 wherein said characterizations of said desired
369	signal subspace and said undesired signal subspace are averaged over at least one of time and
37 0	frequency.
37 1	
372	85. The method of claim 75 wherein said channel comprises a wireless
373	channel and said plurality of channel inputs are associated with a corresponding plurality of
374	transmitter antenna elements.
375	
376	86. In a digital communication system, a method for processing symbols
377	received by a plurality of outputs of a channel comprising the step of:
378	applying a receiver substantially orthogonalizing procedure to symbols received
379	via a particular one of said channel outputs;
380	repeating said applying step for each of said channel outputs to develop a result
381	vector for each of a plurality of output bins of said receiver substantially orthogonalizing
382	procedure, said result vector including a result symbol for each of said channel outputs; and
	l l

383	for each particular output bin of said receiver substantially orthogonalizing
384	procedure, spatially processing said result vector for said particular output bin to develop a
385	spatially processed result symbol for said particular output bin.
386	
387	87. The method of claim 86 further comprising the step of:
388	prior to said applying step, applying a cyclic prefix removal procedure to
389	symbols independently for each of said charnel outputs.
390	
391	88. The method of claim 86 wherein said substantially orthogonalizing
392	procedure is optimized to reduce deleterious effects of interference from unintended
393	transmitters.
394	<u> </u>
39 5	89. The method of claim 86 wherein said spatially processing step comprises
396	multiplying a beneficial weighting vector by said result vector to obtain said spatially
397	processed result symbol.
398	
399	90. The method of claim 88 wherein said beneficial weighting vector is an
400	input singular vector of a matrix storing values indicative of characteristics of said channel,
4 01	said channel coupling one or more change inputs and said plurality of channel outputs.
402	\mathcal{L}
403	91. The method of claim 88 wherein said beneficial weighting vector is
404	chosen to select a particular spatial direction for reception.
405	
406	92. The method of claim 91 wherein said beneficial weighting vector is
407	chosen to minimize deleterious effects of interference from unintended transmitters.
408	
409	93. The method of claim 91 wherein said beneficial weighting vector is
410	chosen based upon characterization of a desired signal subspace.
411	·
412	94. The method of claim 93 wherein said beneficial weighting vector is
413	chosen based upon characterization of an undesired signal subspace.

414	
414	
415	95. The method of claim 94 wherein said characterizations of said desired
416	signal subspace and said undesired signal subspace are averaged over at least one of time and
417	frequency.
418	
419	96. The method of claim 86 wherein said channel comprises a wireless
420	channel and said plurality of channel outputs are associated with a corresponding plurality of
421	channel outputs.
422	
423	In a digital communication system including a communication channel
424	having one or more inputs and at least one or more outputs, a method for determining
425	characteristics of said channel based on signals received by said one or more outputs,
42 6	comprising the steps of:
427 428	a) receiving via said one or more channel outputs, at least v training symbols.
428	transmitted via a particular spatial direction of said channel, v being an extent in symbol
429	periods of a duration of significant terms of an impulse response of a channel; and
430	b) applying a substantially orthogonalizing procedure to said received at least
431	vtraining symbols to obtain a time domain response for said spatial direction; and
432	c) applying an inverse of said substantially orthogonalizing procedure to a zero-
433	padded version of said time domain response to obtain a frequency response for said particular
434	spatial direction.
435	
436	98. The method of claim 97 wherein said substantially orthogonalizing
437	procedure comprises an inverse Fast Fourier Transform and said inverse of said substantially
438	orthogonalizing procedure comprises a Fast Fourier Transform.
439	
440	99. The method of claim 98 wherein said a) step comprises receiving exactly
441	v training symbols.
442	
443	100. The method of claim 97 further comprising the step of repeating said a),
444	b), c), and d) steps for a plurality of spatial directions.
	Ĭ

445)
446	101. The method of claim 99 wherein each of said plurality of spatial
447	directions corresponds to transmission through one of said plurality of channel inputs
448	exclusively.
449	
450	102. The method of claim 98 wherein said v training symbols belong to a
451	burst of N symbols and said characteristics are determined for said burst.
452	
453	103. The method of claim 102 further comprising the steps of repeating said
454	a), b), c), and d) steps for successive bursts.
455	
456 457	104. The method of claim 103 further comprising the step of after, said b)
	step, smoothing said time-domain response over successive bursts.
458	
459	105. The method of claim I04 wherein said smoothing step comprises Kalman
460	filtering.
461	
462	106. The method of claim 104 wherein said smoothing step comprises Wiener
463	filtering.
464	
465	107. The method of claim 97 wherein said communication channel comprises
466	known and unknown components, wherein said effects of said known components are removed
467	by deconvolution, and characteristics of said unknown components are determined by said a),
468	b), c), and d) steps, thereby reducing
469	
470	108. In a digital communication system including a communication channel
471	having one or more inputs and one or more outputs, a method for determining characteristics
472	of said channel based on signals received via one or more channel outputs, comprising the
473	steps of:
474	receiving training symbols via said channel outputs; and

475	computing characteristics of said channel based on said received
476	training symbols and assumptions that an impulse response of said channel is substantially
477	time-limited and that variation of said impulse response over time is continuous.
478	
479	109. In a digital communication system, a method for communicating over a
480	channel having at least one input and at least one output, and having a plurality of either inputs
481	or outputs, said method comprising the steps of:
482	dividing said channel into a plurality of subchannels, each
483	subchannel corresponding to a combination of spatial direction and an input bin of a
484	substantially orthogonalizing procedure; and
485	communicating symbols over one or more of said plurality of
486	subchannels.
487	
488	110. In a digital communication system, a method for preparing a sequence of
489	symbols for transmission via a plurality of inputs of a channel, comprising the steps of:
490	a) inputting said symbols of said sequence into a plurality of
491	input corresponding to a plurality of subchannels of said channel, each subchannel
492	corresponding to an input bin of a transmitter substantially orthogonalizing procedure and a
492 493	channel input; and
494	b) applying, independently for each said channel input, said
495	transmitter substantially orthogonalizing procedure to said symbols assigned to each said
496	channel input.
497	
498	1 N. A method of processing a sequence of symbols received via a plurality of
499	outputs of a channel, said method comprising the steps of:
500	a) applying a substantially orthogonalizing procedure to said
501	sequence of symbols, said procedure being applied independently for each of said plurality of
502	channel outputs, each output symbol of said substantially orthogonalizing procedure
503	corresponding to a subchannel identified by a combination of a particular output bin and a
504	particular one of said channel outputs; and
505	b) processing symbols in said subchannels.

506	
507	1 1/2. In a digital communication system, apparatus for communicating
508	comprising:
509	a transmitter that transmits signals from one or more transmitter
510	antenna elements;
511	a receiver that receives said signals from via a plurality of
512	receiver antenna elements;
513	wherein separation of radiation patterns among either said
514	transmitter antenna elements or said receiver antenna elements is insufficient to
515	establish completely isolated spatial directions for communication; and wherein
516	at least one of said transmitter and said receiver comprises a
517	processor that processes said signals to increase isolation between spatial directions employed
	for communication at a common frequency.
519	
518 519 520 521	113. The apparatus of claim 112 wherein a channel coupling said plurality of
	transmitter antenna elements and receiver antenna elements at said common frequency is
522	characterized by a spatial channel matrix having a rank greater than one.
523	
524 525	114. In a digital communication system, apparatus for communicating
. 525	comprising:
526	a transmitter transmitting signals from one or more transmitter
527	antenna elements;
528	a receiver receiving said signals via a plurality of receiver
529	antenna elements;
530	wherein separation of radiation patterns among either said
531	transmitter antenna elements or said receiver antenna elements is insufficient to
532	establish completely isolated spatial directions for communication; and wherein
533	at least one of said transmitter and said receiver comprises a
534	processor that processes said signals to increase isolation between subchannels, each
535	subchannel associated with a spatial direction and a bin of a substantially orthogonalizing
536	procedure.

537	
538	115. The apparatus of claim 114 wherein said substantially orthogonalizing
539	procedure belongs to a group including: an inverse Fast Fourier Transform, a Fast Fourier
540	Transform, a Hilbert transform, a wavelet transform, and processing through a set of bandpass
541	filter/frequency upconverter pairs operating at spaced apart frequencies.
542	
543	16. In a digital communication system, apparatus for preparing a sequence of
544	symbols for transmission via a plurality of inputs of a channel:
545	a plurality of parallel subchannel inputs receiving said symbols, said parallel
546	subchannel inputs corresponding to a plurality of subchannels, each subchannel corresponding
547	to an input bin of a transmitter substantially orthogonalizing procedure and a spatial direction;
548	a spatial processor that, for each input bin, spatially processor symbols received
548 549 550	by said subchannel inputs corresponding to said input bin, to develop a spatially processed
550	symbol to assign to each combination of channel input and input bin of said transmitter
551	substantially orthogonalizing procedure; and
552	a substantially orthogonal procedure processor system that applies,
5 53	independently for each said channel input, said/transmitter substantially orthogonalizing
554	procedure to said spatially processed symbols assigned to each said channel input.
555	
55 5 5 56	117. The apparatus of claim 16 wherein said spatial processor has the effect
557	of making spatial directions of said subchannels into a set of orthogonal spatial dimensions.
558	
559	118. The apparatus of claim 116 wherein said transmitter substantially
560	orthogonalizing procedure belongs to one of a group consisting of an inverse Fast Fourier
561	Transform, a Fast Fourier Transform, a discrete cosine transform, a Hilbert transform, a
562	wavelet transform, and processing through a plurality of bandpass filter/frequency converter
563	pairs centered at spaced apart frequencies.
564	
565	119. The apparatus of claim 116 further comprising: a cyclic prefix processor
566	that applies a cyclic prefix processing procedure to a result of said substantially
567	orthogonalizing procedure independently for each channel input.

598

frequency.

599)
600	128. The apparatus of claim 116 wherein said spatial processor operates so as
601	to reduce interference radiated to unintended receivers.
602	
603	129. The apparatus of claim 116 wherein said spatial processor, allocates
604	symbols to each combination of channel input and input bin so that there is a one-to-one
605	mapping between spatial direction of a particular subchannel to which a particular symbol has
606	been allocated and channel input to which said particular symbol is allocated.
607	
608	130. The apparatus of claim 116 further comprising a coder that applies a
609	coding procedure to said symbols prior to processing by said spatial processor.
610 611 612	
611	131. The apparatus of claim 130 wherein said coding procedure is applied
612	independently for each of said subchannels.
613	
614	132. The apparatus of claim \(\) 30 wherein said coding procedure is applied
6 15	independently for each group of subchannels corresponding to an input bin of said substantially
616	orthogonalizing procedure.
617	/ 9)
617 618	133. The apparatus of claim 130 wherein said coding procedure is applied
619	independently for each group of subchannels corresponding to a particular spatial direction.
620	
621	134. The apparatus of claim 130 wherein said coding procedure is applied
622	integrally across all of said subchannels.
623	
624	135. The apparatus of claim 130 wherein said coding procedure belongs to a
625	group consisting of: convolutional coding, Reed-Solomon coding, CRC coding, block coding,
626	trellis coding, turbo coding, and interleaving.
627	
628	136. The apparatus of claim 130 wherein said coding procedure comprises a
629	trellis coding procedure.

(1	Λ
ni	11

- 631
- 632 633
- 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643 644 645

- 646 647 648
- 649 650
- 651 652
- 653 654
- 655
- 656 657
- 658

- The apparatus of claim 186 wherein a code design of said trellis coding 137. procedure is based on one of: improved bit error performance in interference channels, a periodic product distance metric, exhaustive code polynomial search for favorable bit error rate polynomial searches, combined weighting of product distance and Euclidean distance, product distance of multiple Euclidean distances over short code segments or over a multi-
- dimensional symbol, and sum of product distances over short code segments.
- 138. The apparatus of claim 136 wherein a code design of said trellis coding procedure is optimized for performance in a fading matrix channel.
- 139. The apparatus of claim 130 wherein said coding procedure comprises a one-dimensional trellis coding procedure followed by an interleaving procedure with sequential groups of symbols output by said trellis coding having their internal order maintained by said interleaving procedure.
- The apparatus of claim 130 wherein said coding procedure comprises a 140. multi-dimensional trellis coding procedure followed by an interleaving procedure with groups of one-dimensional symbols output simultaneously by said multi-dimensional trellis coding procedure having their internal order/maintained by said interleaving procedure.
- 141. The apparatus of claim 130 wherein bit loading and power are allocated to each subchannel.
- 142. The apparatus of claim 116 further comprising an ARQ system that retransmits symbols via at least one of said spatial processor, and said substantially orthogonalizing procedure processor upon receipt of a notification that said symbols to be retransmitted have been incorrectly received.

	•
659	143. The apparatus of claim 1/16 wherein said channel comprises a wireless
660	channel and said plurality of channel inputs are associated with a corresponding plurality of
661	transmitter antenna elements
662	
663	144. The apparatus of claim 142 wherein said plurality of transmitter antenna
664	elements are co-located.
665	
666	145. The apparatus of claim 144 wherein said plurality of transmitters are at
667	disparate locations.
668	
669	146. Apparatus of processing a sequence of symbols received via a plurality
670	of outputs of a channel, said apparatus comprising:
671	a substantially orthogonalizing procedure processor system that applies a
672	receiver substantially orthogonalizing prodedure to said sequence of symbols, said procedure
670 671 672 673 674	being applied independently for each of said plurality of channel outputs, each output symbol
674	of said substantially orthogonalizing procedure corresponding to a particular output bin and a
675	particular one of said channel outputs; and
676 677	a spatial processor that, for each output bin, spatially processes symbols
	corresponding to said output bin to develop spatially processed symbols assigned to a plurality
678	of spatial directions, each combination of spatial direction and output bin specifying one of a
679	plurality of subchannels.
680	
681	147. The apparatus of claim 146 wherein said spatial processor operates to
682	make said plurality of spatial directions into a set of orthogonal spatial dimensions.
683	
684	148. The apparatus of claim 146 wherein said receiver substantially
685	orthogonalizing procedure belongs to one of a group consisting of an inverse Fast Fourier
686	Transform, a Fast Fourier Transform, a discrete cosine transform, a Hilbert transform, a
687	wavelet transform, and processing through a plurality of bandpass filter/frequency converter
688	pairs centered at spaced apart frequencies.
689	

	•
690	149. The apparatus of claim 146 further comprising: a cyclic prefix processor
691	that applies a cyclic prefix removal procedure to said sequence of symbols independently for
692	each of said channel outputs.
693	
694	150. The apparatus of claim 146 wherein said receiver substantially
695	orthogonalizing procedure is optimized to reduce deleterious effects of interference from
696	undesired co-channel transmitters.
697	
698	151. The apparatus of claim 146 wherein said spatial processor comprises, for
699	each particular output bin, a weight multiplier that multiplies a vector comprising symbols of
700	said output bin by a beneficial weighting matrix, elements of a result vector of said multiplier
701	corresponding to different spatial directions.
702	
<i>7</i> 03	152. The apparatus of claim 151 wherein said beneficial weighting matrix
704 705	comprises an output singular vector of a matrix containing values representing characteristics
705	of said channel, said channel coupling one or more channel inputs to said plurality of channel
706	outputs.
707	
707 708	153. The apparatus of claim 151 wherein said beneficial weighting matrix is
709	chosen to minimize deleterious effects of interference from undesired transmitters.
710	
711	154. The apparatus of claim 151 wherein said beneficial weighting matrix is
712	chosen based upon characterization of a desired signal subspace.
713	
714	155. The apparatus of claim 154 wherein said beneficial weighting matrix is
715	chosen further based upon characterization of an undesired signal subspace.
716	
717	156. The apparatus of claim 155 wherein said characterizations of said desired
718	signal subspace and said undesired signal subspace are averaged over at least one of time and
719	frequency.
720	

	•
721	157. The apparatus of claim 151 wherein said beneficial weighting matrix is
722	obtained from a matrix containing values representing characteristics of said channel, said
723	channel coupling one or more channel inputs and said plurality of channel outputs.
724	
725	158. The apparatus of claim 157 wherein said beneficial weighting matrix is
726	obtained by an MMSE procedure.
727	
728	159. The apparatus of claim 146 further comprising: a decoder that applies a
729	decoding procedure to said spatially processed symbols.
730	
731	160. The apparatus of claim 159 wherein said decoding procedure is applied
732	independently for each of said plurality of subchannels.
73 3	
732 733 734 735	161. The apparatus of claim 159 wherein said decoding procedure is applied
7 35	independently for each group of subchannels corresponding to an output bin of said
736	substantially orthogonalizing procedure
737	
	162. The apparatus of claim 159 wherein said decoding procedure is applied
738 739	independently for each group of subchannels corresponding to a spatial direction.
740	/ V
741	163. The apparatus of claim 159 wherein said decoding procedure is applied
742	integrally across all of said plurality of subchannels.
743	
744	164. The apparatus of claim 159 wherein said decoding procedure belongs to
745	a group consisting of: Reed-Solomon decoding, CRC decoding, block decoding, and de-
746	interleaving.
747	
748	165. The apparatus of claim 159 wherein said decoding procedure comprises
749	code sequence detection procedure to decode a trellis code, or convolutional code.
750	

751	166. The apparatus of claim 165 wherein said code sequence detection
752	procedure employs a metric belonging to a group consisting of: Euclidean metric, weighted
753	Euclidean metric, and Hamming metric.
754	
755	167. The apparatus of claim 159 wherein said decoding procedure reduces
756	deleterious effects of interference from undesired transmitters.
757	
758	168. The apparatus of claim 146 further comprising:
759	a system that sends a retransmission request when received symbols are
760	determined to include errors.
761	
762 763	169. The apparatus of claim 170 wherein said channel comprises a wireless
763	channel and said plurality of channel outputs are coupled to a plurality of corresponding
764	receiver antenna elements.
765	
766	171. The apparatus of claim 170 wherein said plurality of receiver antenna
767	elements are co-located.
768	
769	172. The apparatus of claim 170 wherein said plurality of receiver antenna
770	elements are at disparate locations.
771	
772	173. In a digital communication system, apparatus for preparing a sequence of
773	symbols for transmission via a plurality of inputs to a channel, said apparatus comprising:
774	a substantially orthogonal procedure processor that applies a transmitter
775	substantially orthogonalizing procedure to said sequence of symbols to develop a time domain
776	symbol sequence; and
777	a weight multiplier that multiplies at least one symbol of said time domain
778	symbol sequence by a weighting vector selected for improved communication to develop a
779	result vector, elements of said result vector corresponding to symbols to be transmitted via
780	individual ones of said plurality of channel inputs.
781	

782	174. The apparatus of claim 173 wherein said weighting vector comprises an
783	element indicating delay to be applied for a particular one of said plurality of channel inputs.
784	
785	175. The apparatus of claim 174 wherein said weighting vector is optimized
786	to reduce interference to unintended receivers.
787	
788	176. The apparatus of claim 173 wherein said weighting vector is chosen
789	based upon characterization of a desired signal subspace.
790	
791	177. The apparatus of claim 176 wherein said weighting vector is chosen
792	further based upon characterization of an undesired signal subspace.
793 794	
	178. The apparatus of claim 177 wherein said characterizations of said desired
7 95	signal subspace and said undesired signal subspace are averaged over at least one of time and
796	frequency.
797	
7 98	179. The apparatus of claim 1/73 wherein said channel comprises a wireless
7 99	channel and said plurality of channel inputs are associated with a
800	plurality of transmitter antenna elements.
801	180.
802	180. In a digital communication system, apparatus for processing a plurality
803	of symbols received via a plurality of outputs of a channel, said apparatus comprising:
804	a weight multiplier that performs a multiplication of an input vector whose
805	elements correspond to symbols received substantially simultaneously via a selected one of said
806	plurality of channel outputs by a weighting vector to obtain a time domain symbol
807	corresponding to a particular input bin of a receiver substantially orthogonalizing procedure
808	and that repeats said multiplication for successive received symbols to obtain time domain
809	symbols corresponding to successive input bins of said receiver substantially orthogonalizing
810	procedure; and
811	a substantial orthogonalizing procedure processor that applies said substantially
812	orthogonalizing procedure processor to said obtained time domain symbols.

813	
814	181. The apparatus of claim 180 wherein said weighting vector comprises an
815	element indicating delay to be applied for a particular one of said plurality of channel outputs.
816	\cdot
817	182. The apparatus of claim 180 wherein said weighting vector is optimized
818	to reduce deleterious effects of interference from unintended transmitters.
819	
820	183. The apparatus of claim 180 wherein said weighting vector is chosen
821	based upon characterization of a desired signal subspace.
822	
823	184. The apparatus of claim 183 wherein said weighting vector is chosen
824	further based upon characterization of an undesired signal subspace.
825	
82 6	185. The apparatus of claim 184 wherein said characterizations of said desired
827	signal subspace and said undesired signal subspace are averaged over at least one of frequency
828	and time.
\$829	10.11.
⊕830 	186. The apparatus of claim 180 wherein said channel comprises a wireless
831 832	channel and said plurality of channel outputs are associated with a plurality of corresponding
833	receiver antenna elements.
834	1977 In a digital homoupipation greatent apparatus for propering symbols for
835	187. In a digital communication system, apparatus for preparing symbols for transmission via a plurality of inputs of a channel, said apparatus comprising:
836	a plurality of symbol inputs, each of said symbol inputs receiving a symbol
837	intended for a particular input bin of a transmitter substantially orthogonalizing procedure so
838	that each of a plurality of input bins of said transmitter substantially orthongonalizing
839	procedure has an allocated symbol;
840	a spatial processor that, for each particular input bin of said plurality of input
841	bins, spatially processes said symbol allocated to said particular input bin to develop a spatially
842	processed symbol vector, each element of said spatially processed symbol vector being
843	assigned to one of said channel inputs; and

844	a substantially orthogonalizing procedure processor that applies said
845	substantially orthogonalizing procedure for a particular channel input, inputs to said
846	substantially orthogonalizing procedure being for each input bin, a symbol of said processed
847	symbol vector for said input bin corresponding to said particular channel input, and that
848	applies said sustantially orthogonalizing procedure for each of said plurality of channel inputs.
849	
850	188. The apparatus of claim 187 further comprising:
851	a cyclic prefix processor that applies a cyclic prefix processing procedure to
852	outputs of said substantially orthogonalizing procedure independently for each particular
853	channel input.
854	
855	189. The apparatus of claim 187 wherein said substantially orthogonalizing
856	procedure is optimized to reduce interference to unintended receivers.
857	
858	190. The apparatus of claim 187 wherein said spatial processor comprises:
859	a weight multiplier that multiplies said symbol allocated to said particular input
860	bin by a beneficial weighting vector to obtain said spatially processed symbol vector.
8 61	
862	191. The apparatus of claim 190 wherein said beneficial weighting vector is
863	an input singular vector of a matrix storing values indicative of characteristics of said channel
864	said channel coupling said plurality of channel inputs and one or more channel outputs.
865	
866	192. The apparatus of claim 190 wherein said beneficial weighting vector is
867	chosen to select a beneficial spatial direction for transmission.
868	
869	193. The apparatus of claim 191 wherein said beneficial weighting vector is
870	chosen to reduce interference to unintended receivers.
871	
872	194. The apparatus of claim 193 wherein said beneficial weighting vector is
873	chosen based upon characterization of a desired signal subspace
874	

875	195. The apparatus of claim 194 wherein said beneficial weighting vector is
876	chosen further based upon characterization of an undesired signal subspace.
877	
878	196. The apparatus of claim 195 wherein said characterizations of said desired
879	signal subspace and said undesired signal subspace are averaged over at least one of time and
880	frequency.
881	
882	197. The apparatus of claim 187 wherein said channel comprises a wireless
883	channel and said plurality of channel inputs are associated with a corresponding plurality of
884	transmitter antenna elements.
885	
886	18. In a digital communication system, apparatus for processing symbols
887	received by a plurality of outputs of a channel comprising:
888	a substantially orthogonalizing procedure processor that applies a receiver
888 889 890	substantially orthogonalizing procedure to symbols received via a particular one of said
	channel outputs and that said applies said receiver substantially orthogonalizing procedure for
891	each of said channel outputs to develop a result vector for each of a plurality of output bins of
892	said substantially orthogonalizing procedure, said result vector including a result symbol for
893	each of said channel outputs; and
894	a spatial processor/that, for each particular output bin of said substantially
895	orthogonalizing procedure, spatially processes said result vector for said particular output bin
896	to develop a spatially processed result symbol for said particular output bin.
897	
898	199. The apparatus of claim 198 further comprising: a cyclic prefix removal
899	processor that applies a cyclic prefix removal procedure to symbols independently for each of
900	said channel outputs.
901	
902	200. The apparatus of claim 198 wherein said substantially orthogonalizing
903	procedure is optimized to reduce deleterious effects of interference from unintended
904	transmitters.
905	

906	201. The apparatus of claim 198 wherein said spatially processor comprises a
907	weight multiplier that multiplies a beneficial weighting vector by said result vector to obtain
908	said spatially processed result symbol.
909	
910	202. The apparatus of claim 201 wherein said beneficial weighting vector is
911	an input singular vector of a matrix storing values indicative of characteristics of said channel,
912	said channel coupling one or more chanel inputs and said plurality of channel outputs.
913	
914	203. The apparatus of claim 201 wherein said beneficial weighting vector is
915	chosen to select a particular spatial direction for reception.
916	
917	204. The apparatus of claim 203 wherein said beneficial weighting vector is
918	chosen to minimize deleterious effects of interference from unintended transmitters.
919	
920	205. The apparatus of claim 204 wherein said beneficial weighting vector is
921	chosen based upon characterization of a desired signal subspace.
922	
923 924	206. The apparatus of claim 205 wherein said beneficial weighting vector is
924	chosen based upon characterization of an undesired signal subspace.
925	
926	207. The apparatus of claim 206 wherein said characterizations of said desired
927	signal subspace and said undesired signal subspace are averaged over at least one of time and
928	frequency.
929	
930	208. The apparatus of claim 198 wherein said channel comprises a wireless
931	channel and said plurality of channel outputs are associated with a corresponding plurality of
932	channel outputs.
933	
934	209. In a digital communication system including a communication channel
935	having one or more inputs and at least one or more outputs apparatus for determining

	lacksquare
936	characteristics of said channel based on signals received by said one or more outputs,
937	comprising:
938	a receiver system receiving via said one or more channel outputs, at least
939	training symbols transmitted via a particular spatial direction of said channel, being an extent
940	in symbol periods of a duration of significant terms of an impulse response of a channel;
941	a substantially orthogonalizing procedure processor that applies a substantially
942	orthogonalizing procedure processor to said received at least training symbols to obtain a
943	time domain response for said particular spatial direction; and
944	an inverse substantially orthogonalizing procedure processor that applies an
945	inverse of said substantially orthogonalizing procedure to a zero-padded version of said time
946	domain response to obtain a frequency response for said particular spatial direction.
947 948	
948	210. The apparatus of claim 209 wherein said substantially orthogonalizing
949	procedure comprises an inverse Fast Fourier Transform and said inverse of said substantially
950 951	orthogonalizing procedure comprises a Fast Fourier Transform.
951	
952	211. The apparatus of claim 209 wherein said receiver system receives exactly
953	training symbols.
954	
955	212. The apparatus of claim 209 wherein said receiver system, said
956	substantially orthogonalizing procedure processor and said inverse substantially
957	orthogonalizing procedure process operate repeatedly for a plurality of spatial directions.
958	
959	213. The apparatus of claim 209 wherein each of said plurality of spatial
960	directions corresponds to transmission through one of said plurality of channel inputs
961	exclusively.
962	
963	214. The apparatus of claim 209 wherein said training symbols belong to a
964	burst of N symbols and said characteristics are determined for said burst.
965	

966	215. The apparatus of claim 214 said receiver system, said substantially
967	orthogonalizing procedure processor and said inverse substantially orthogonalizing procedure
968 [.]	process operate repeatedly for a plurality of bursts.
969	
970	216. The apparatus of claim 215 further comprising:
971	means for smoothing said time-domain response over successive bursts.
972	
973	217. The apparatus of claim 216 wherein said smoothing means comprises:
974	means for Kalman filtering said time-domain response over successive bursts.
975	
976	218. The apparatus of claim 217 wherein said smoothing means comprises
977 978 979 980	means for Wiener filtering said time-domain response over successive bursts.
978	
979	219. The apparatus of claim 209 wherein said communication channel
980	comprises known and unknown components, wherein said effects of said known components
	are removed by deconvolution, and characteristics of said unknown components are
982	determined by said a), b), c), and d) steps, thereby reducing.
983	
984	220. In a digital communication system including a communication channel
985	having one or more inputs and one or more outputs, apparatus for determining characteristics
986	of said channel based on signals received via one or more channel outputs, comprising:
987	a receiver that receives training symbols via said channel outputs; and
988	a processor that computes characteristics of said channel based on said received
989	training symbols and assumptions that an impulse response of said channel is substantially
990	time-limited and that variation of said impulse response over time is continuous.
991	
992	221. In/a digital communication system, apparatus for communicating over a
993	channel having at least one input and at least one output, and having a plurality of either inputs
994	or outputs, said apparatus comprising:

995 means for dividing said channel into a plurality of subchannels, each subchannel 996 corresponding to a combination of spatial direction and an input bin of a substantially 997 orthogonalizing procedure; and 998 means for communicating symbols over one or more of said plurality of 999 subchannels. 1000 1001 In a digital communication system, apparatus for preparing a sequence of 1002 symbols for transmission via a plurality of inputs of a channel, said apparatus comprising: 1003 a plurality of parallel subchannel inputs that receive said sequence of symbols, 1004 said subchannel inputs corresponding to a plurality of subchannels, each subchannel 1005 corresponding to an input bin of a transmitter substantially orthogonalizing procedure and a 1006 channel input; and 1007 a substantially orthogonalizing procedure processor that applies, independently 1008 for each said channel input, said transmitter substantially orthogonalizing procedure to said 1009 1010 symbols assigned to each said channel input. 1011 Apparatus for processing a sequence of symbols received via a plurality 1012 of outputs of a channel, said apparatus comprising the steps of: 1013 a substantially orthogonalizing procedure processor that applies a receiver 1014 substantially orthogonalizing procedure to said sequence of symbols, said procedure being 1015 applied independently for each of said plurality of channel outputs, each output symbol of said 1016 receiver substantially orthogonalizing procedure corresponding to a subchannel identified by a 1017 combination of a particular output bin and a particular one of said channel outputs; and

a processor that processes-symbols in said subchannels.

adkit

1018