A Partial Metric Semantics of Higher-Order Types and Approximate Program Transformations

Guillaume Geoffroy, Paolo Pistone

DIAPASoN, Università di Bologna

26th January 2021

How to measure distances between programs?

Why measure distances between programs? Justify approximate transformations:

Justify approximate transformations:

```
float Q_rsqrt( float number ) {
  int32_t i; float x2, y;
  const float threehalfs = 1.5F;
 x2 = number * 0.5F;
  y = number;
 i = * (long *) &y; // evil floating point
                     // bit-level hacking
  i = 0x5f3759df - (i >> 1) // WTF?
    = * ( float * ) &i;
 y = y * (threehalfs - (x2 * y * y));
  return y;
```

Justify approximate transformations:

```
float Q_rsqrt( float number ) {
  int32_t i; float x2, y;
  const float threehalfs = 1.5F;
  x2 = number * 0.5F;
    = number;
 i = * (long *) &y; // evil floating point
                       // bit-level hacking
   = 0x5f3759df - (i >> 1) // WTF?
    = * ( float * ) &i;
    = y * (threehalfs - (x2 * y * y));
  return y;
```

Justify approximate transformations:

```
float Q_rsqrt( float number ) {
  int32_t i; float x2, y;
  const float threehalfs = 1.5F;
 x2 = number * 0.5F;
    = number;
 i = * (long *) &y; // evil floating point
                       // bit-level hacking
   = 0x5f3759df - (i >> 1) // WTF?
    = * ( float * ) &i;
    = y * (threehalfs - (x2 * y * y));
  return y;
```

A context-dependent transformation

Approximate semantics

[Dal Lago, Gavazzo, Yoshimizu: Differential logical relations]

- Substitute part of a program with a close enough approximation of it,
- Whether this substitution is close enough depends on the context,
- ▶ Interaction with the context goes both ways.

Approximate semantics

[Dal Lago, Gavazzo, Yoshimizu: Differential logical relations]

$$\triangleright x, y \in \mathbb{R} \leadsto d(x, y) = |x - y|,$$

$$\triangleright$$
 $x, y \in \mathbb{R} \leadsto d(x, y) = |x - y|,$

$$b d(\sin, \mathrm{id}) = (x \mapsto |\sin(x) - x|)$$

$$\triangleright$$
 $x, y \in \mathbb{R} \leadsto d(x, y) = |x - y|,$

$$d(\sin, \mathrm{id}) = (x, e) \mapsto \bigvee_{y \text{ st } |x - y| \le e} \max \left(\begin{array}{c} |\sin(x) - y|, \\ |\sin(y) - x| \end{array} \right),$$

$$\triangleright$$
 $x, y \in \mathbb{R} \leadsto d(x, y) = |x - y|,$

$$\triangleright$$
 $x, y \in \mathbb{R} \leadsto d(x, y) = |x - y|,$

$$b d(\mathsf{id},\mathsf{id}) = (x,e) \mapsto e.$$

How distances are defined:

$$\blacktriangleright x, y \in \mathbb{R} \leadsto d(x, y) = |x - y|,$$

$$d(\mathsf{id},\mathsf{id}) = (x,e) \mapsto e.$$

Distances between programs of type A measured in $((A), \leq, \bigvee, +)$

How distances are defined:

- $\blacktriangleright x, y \in \mathbb{R} \leadsto d(x, y) = |x y|,$

- $b d(\mathsf{id},\mathsf{id}) = (x,e) \mapsto e.$

Distances between programs of type A measured in $((A), \leq, \bigvee, +)$ \rightsquigarrow quantale.

Type A interpreted by

- ► A set [A] of denotations,
- \blacktriangleright A quantale $((A), \leq, +)$ of distances,
- ▶ A "distance function" $d: [A] \times [A] \rightarrow (A)$

Type A interpreted by

- ► A set [A] of denotations,
- \blacktriangleright A quantale $((A), \leq, +)$ of distances,
- ▶ A "distance function" $d: [A] \times [A] \rightarrow (A)$ with $d(x,x) \neq 0$ in general.

Type A interpreted by

- ► A set [A] of denotations,
- \blacktriangleright A quantale $((A), \leq, +)$ of distances,
- ▶ A "distance function" $d: [A] \times [A] \rightarrow (A)$ with $d(x,x) \neq 0$ in general.

Triangular inequality of partial metric spaces:

$$d(x,z)+d(y,y)\leq d(x,y)+d(y,z)$$

Type A interpreted by

- ► A set [A] of denotations,
- \blacktriangleright A quantale $((A), \leq, +)$ of distances,
- ▶ A "distance function" $d: [A] \times [A] \rightarrow (A)$ with $d(x, x) \neq 0$ in general.

Triangular inequality of partial metric spaces:

$$d(x,z)+d(y,y)\leq d(x,y)+d(y,z)$$

Not satisfied

DLRs are not partial metric spaces

DLRs are not partial metric spaces

DLRs are not partial metric spaces

Object of this talk

Two ideas:

- By changing slightly how distances between functions are computed, we obtain partial metric spaces,
- ▶ Independently of distances, approximate semantics ↔ cartesian lax-closed poset-enriched categories.

A change in point of view:

► Forget about reference points

Object of this talk

Two ideas:

- By changing slightly how distances between functions are computed, we obtain partial metric spaces,
- ▶ Independently of distances, approximate semantics ↔ cartesian lax-closed poset-enriched categories.

A change in point of view:

▶ Forget about reference points: $1 \pm 0.1 \rightsquigarrow [0.9, 1.1]$.

Removing the reference: balls \rightsquigarrow intervals

Diameter spaces

To each simple type A, associate

Diameter spaces

To each simple type A, associate

- ► a set [A] of denotations:
 - ightharpoonup [Real] = \mathbb{R} ,
 - $\blacktriangleright [A \times B] = [A] \times [B],$
 - $\blacktriangleright \ [A \to B] = [A] \to [B],$

Diameter spaces

To each simple type A, asssociate

- ► a set [A] of denotations:
 - ightharpoonup [Real] = \mathbb{R} ,
 - $\blacktriangleright [A \times B] = [A] \times [B],$
 - $\blacktriangleright [A \to B] = [A] \to [B],$
- lacktriangle a set $[\![A]\!]\subseteq \mathcal{P}([\![A]\!])\setminus\{\emptyset\}$ of intervals:
 - $lackbox{ } \llbracket \mathsf{Real}
 rbracket = \mathsf{non\text{-}empty} \ \mathsf{compact} \ \mathsf{intervals} + \mathbb{R} \ \mathsf{,}$

To each simple type A, asssociate

- ▶ a set [A] of denotations:
 - ightharpoonup [Real] = \mathbb{R} ,
 - $\blacktriangleright [A \times B] = [A] \times [B],$
 - $\blacktriangleright [A \to B] = [A] \to [B],$
- lacktriangle a set $[\![A]\!]\subseteq \mathcal{P}([\![A]\!])\setminus\{\emptyset\}$ of intervals:
 - $lackbox{ } \llbracket \mathsf{Real}
 rbracket = \mathsf{non\text{-}empty} \ \mathsf{compact} \ \mathsf{intervals} + \mathbb{R} \ \mathsf{,}$
 - ▶ $[A \times B]$ = products of intervals,
- ► a quantale (|A|) of distances:

 - $\blacktriangleright (A \times B) = (A) \times (B),$
 - $\blacktriangleright (A \to B) = [A] \to (B),$

To each simple type A, asssociate

- ▶ a set [A] of denotations:
 - ightharpoonup [Real] = \mathbb{R} ,
 - $\blacktriangleright [A \times B] = [A] \times [B],$
 - $\blacktriangleright \ [A \to B] = [A] \to [B],$
- lacktriangle a set $[\![A]\!]\subseteq \mathcal{P}([\![A]\!])\setminus\{\emptyset\}$ of intervals:
 - $lackbox{ } \llbracket \mathsf{Real}
 rbracket = \mathsf{non\text{-}empty} \ \mathsf{compact} \ \mathsf{intervals} + \mathbb{R} \ \mathsf{,}$
 - ▶ $[A \times B]$ = products of intervals,
- ► a quantale (A) of distances:

 - $\blacktriangleright (A \times B) = (A) \times (B),$
 - $\blacktriangleright (A \to B) = [A] \to (B),$
- ▶ a diameter function δ_A : [A] → (A):

To each simple type A, asssociate

- a set [A] of denotations,
- ▶ a set $\llbracket A \rrbracket \subseteq \mathcal{P}([A]) \setminus \{\emptyset\}$ of *intervals*:
 - $lackbox{ } \llbracket \mathsf{Real}
 rbracket = \mathsf{non\text{-}empty} \ \mathsf{compact} \ \mathsf{intervals} + \mathbb{R} \ \mathsf{,}$
 - $\blacktriangleright \ [\![A \times B]\!] = \text{products of intervals,}$
 - $\blacktriangleright \ \llbracket A \to B \rrbracket = \{ f \ st \ \forall x, f(x) \in \varphi(x) \} \text{ for all } \varphi \in \llbracket A \rrbracket \to \llbracket B \rrbracket,$
- ► a quantale (A) of distances:
 - $\blacktriangleright \quad (|Real|) = [0, +\infty],$
 - $\blacktriangleright (A \times B) = (A) \times (B),$
 - $\blacktriangleright (A \rightarrow B) = [A] \rightarrow (B),$
- \blacktriangleright a diameter function δ_A : $\llbracket A \rrbracket \to \llbracket A \rrbracket$:

To each simple type A, associate

- ▶ a set [A] of denotations,
- ▶ a set $\llbracket A \rrbracket \subseteq \mathcal{P}([A]) \setminus \{\emptyset\}$ of *intervals*,
- ► a quantale (A) of distances,
- ightharpoonup a diameter function $\delta_A : [\![A]\!] \to \overline{(\![A]\!]}$.

To each simple type A, asssociate

- ▶ a set [A] of denotations,
- ▶ a set $\llbracket A \rrbracket \subseteq \mathcal{P}([A]) \setminus \{\emptyset\}$ of *intervals*,
- ► a quantale (A) of distances,
- \blacktriangleright a diameter function $\delta_A : \llbracket A \rrbracket \to (A)$.

Let $d(x, y) = \delta(\text{smallest interval containing } x \text{ and } y)$

To each simple type A, asssociate

- ▶ a set [A] of denotations,
- ▶ a set $\llbracket A \rrbracket \subseteq \mathcal{P}([A]) \setminus \{\emptyset\}$ of *intervals*,
- ► a quantale (A) of distances,
- \blacktriangleright a diameter function $\delta_A : \llbracket A \rrbracket \to (A)$.

Let $d(x, y) = \delta(\text{smallest interval containing } x \text{ and } y)$:

Do we have
$$d(x,z) + d(y,y) \le d(x,y) + d(y,z)$$
?

Sub-modularity

Sub-modularity

For all types A, if $a \wedge b \neq \emptyset$, $\delta_A(a \vee b) + \delta_A(a \wedge b) \leq \delta_A(a) + \delta_A(b)$

Sub-modularity

For all types A, if
$$a \wedge b \neq \emptyset$$
, $\delta_A(a \vee b) + \delta_A(a \wedge b) \leq \delta_A(a) + \delta_A(b)$

$$\rightsquigarrow d(x,z) + d(y,y) \leq d(x,y) + d(y,z)$$

Definition: An approximate function from A to B is an interval $f \subseteq [A \rightarrow B]$.

Definition: An approximate function from A to B is an interval $f \subseteq [A \rightarrow B]$.

Types and approximate functions do not form a category: no associativity

Definition: An approximate function from A to B is a monotone map from A to B.

Definition: An approximate function from A to B is a monotone map from A to B.

Types and approximate functions do form a category

Definition: An approximate function from A to B is a monotone map from A to B.

Types and approximate functions do form a category

$$\llbracket A \rrbracket \to \llbracket B \rrbracket \ \stackrel{\mathsf{pack}}{\underset{\mathsf{unpack}}{\longleftarrow}} \ \llbracket A \to B \rrbracket$$

Definition: An approximate function from A to B is a monotone map from A to B.

Types and approximate functions do form a category

$$\llbracket A
rbracket o \llbracket B
rbracket o \llbracket A o B
rbracket$$

 $unpack(pack(f)) \leq f$

 $pack(unpack(g)) \ge g$

Definition: An approximate function from A to B is a monotone map from [A] to [B].

Types and approximate functions do form a category

$$\llbracket A
rbracket o \llbracket B
rbracket o \llbracket A o B
rbracket$$

 $unpack(pack(f)) \leq f$

 $pack(unpack(g)) \ge g$

Thank you!