case 1: Distributed load (q=100N/m)

length of each beam = 50m Youngs modulus of material used = 200 GPa poisson's ratio = 0.3

Printed using Abaqus/CAE on: Sun Jun 01 23:58:12 India Standard Time 2025

Case 2: concentrated point load (2p = q = 100N/m)

length of each beam = 50m Youngs modulus of material used = 200 GPa poisson's ratio = 0.3

case 3: Uniform velocity load (v)

length of each beam = 50m Youngs modulus of material used = 200 GPa poisson's ratio = 0.3

For v = 0.5mm/s:

For v = 5 mm/s:

ODB: gbr9.odb Abaqus/Explicit Learning Edition 2024 Sun Jun 01 23:05:29 India Standard Time 2025

Step: Step-1 Increment 1083: Step Time = 1.000

Primary Var: S, Mises

For v = 50mm/s:

For v = 500mm/s:

For v = 5000mm/s:

