

编译原理

作业

授 课 教 师 : 郑艳伟

手 机 : 18614002860 (微信同号)

簡 : zhengyw@sdu.edu.cn

【作业2-1】令文法为

$$E \to T|E + T|E - T$$
$$T \to F|T * F|T/F$$
$$F \to (E)|i$$

- (1) 给出i + i * i、i * (i + i)的最左推导和最右推导。
- (2) 给出i+i+i、i+i*i、i-i-i的语法树。

【作业2-2】证明下面的文法是二义的: $S \rightarrow iSeS|iS|i$

【作业2-3】把下面的文法改为无二义的: $S \to SS|(S)|(S)$

【作业2-4】给出下面语言的相应文法

$$L_{1} = \{a^{n}b^{n}c^{i} | n \ge 1, i \ge 1\}$$

$$L_{2} = \{a^{i}b^{n}c^{n} | n \ge 1, i \ge 0\}$$

$$L_{3} = \{a^{n}b^{n}a^{m}b^{m} | m \ge 0, n \ge 0\}$$

$$L_{4} = \{1^{n}0^{m}1^{m}0^{m} | m \ge 0, n \ge 0\}$$

【作业2-1】令文法为

$$E \to T|E + T|E - T$$
$$T \to F|T * F|T/F$$
$$F \to (E)|i$$

- (1) 给出i + i * i、i * (i + i)的最左推导和最右推导。
- (2) 给出i+i+i、i+i*i、i-i-i的语法树。
- (1) 最左推导:
- \checkmark $E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow i + T \Rightarrow i + T * F \Rightarrow i + F * F \Rightarrow i + i * F \Rightarrow$
- $\checkmark E \Rightarrow T \Rightarrow T * F \Rightarrow F * F \Rightarrow i * F \Rightarrow i * (E) \Rightarrow i * (E + T) \Rightarrow i * (T + T) \Rightarrow i * (F + T) \Rightarrow i * (i + T) \Rightarrow i * (i + F) \Rightarrow i * (i + I)$

【作业2-1】令文法为

$$E \to T|E + T|E - T$$
$$T \to F|T * F|T/F$$
$$F \to (E)|i$$

- (1) 给出i + i * i、i * (i + i)的最左推导和最右推导。
- (2) 给出i+i+i、i+i*i、i-i-i的语法树。
- (1) 最右推导:
- $\checkmark E \Rightarrow E + T \Rightarrow E + T * F \Rightarrow E + T * i \Rightarrow E + F * i \Rightarrow E + i * i \Rightarrow T + i * i \Rightarrow F + i *$ $i \Rightarrow i + i * i$
- $\checkmark E \Rightarrow T \Rightarrow T * F \Rightarrow T * (E) \Rightarrow T * (E + T) \Rightarrow T * (E + F) \Rightarrow T * (E + i) \Rightarrow T * (T + i) \Rightarrow T * (F + i) \Rightarrow T * (i + i) \Rightarrow F * (i + i) \Rightarrow i * (i + i)$

【作业2-1】令文法为

$$E \to T|E + T|E - T$$
$$T \to F|T * F|T/F$$
$$F \to (E)|i$$

- (1) 给出i + i * i、i * (i + i)的最左推导和最右推导。
- (2) 给出i+i+i、i+i*i、i-i-i的语法树。

【作业2-2】证明下面的文法是二义的: $S \rightarrow iSeS|iS|i$

【二义文法定义】如果一个文法的某个句子对应两棵不同的语法树,即其最左(最右)推导不唯一,称该文法为二义文法。

【思路】这个文法可以看做 $S \rightarrow if b then S else S | if b then S | if b then find then then the self b the self b then t$

【证明】句子iiiei存在两棵不同语法树,如下图所示,因此该文法是二义的。

【作业2-3】把下面的文法改为无二义的: $S \to SS|(S)|(S)$

【解】二义性原因

【改写】 $S \to A \mid (S), A \to A() \mid ()$

【作业2-4】给出下面语言的相应文法

$$L_1 = \{a^n b^n c^i | n \ge 1, i \ge 1\}$$
 $L_2 = \{a^i b^n c^n | n \ge 1, i \ge 0\}$
 $L_3 = \{a^n b^n a^m b^m | m \ge 0, n \ge 0\}$
 $L_4 = \{1^n 0^m 1^m 0^m | m \ge 0, n \ge 0\}$: 应为 $L_4 = \{1^n 0^m 1^m 0^n | m \ge 0, n \ge 0\}$

【解】

$$G_1[S]: S \to AB, A \to aAb|ab, B \to Bc|c$$

 $G_2[S]: S \to AB, A \to Aa|\varepsilon, B \to bBc|bc,$
 $G_3[S]: S \to AB, A \to aAb|\varepsilon, B \to aBb|\varepsilon$
 $G_4[S]: S \to 1S0|A, A \to 0A1|\varepsilon$

第三章作业一

【作业3-1】对正规式: 1(0|1)*101

- (1) 构造NFA, 要求每条弧上或为单个字符, 或为ε。
- (2) 确定化。
- (3) 最小化

【作业3-2】二进制符号串长度为偶数,不允许出现连续的0和连续的1(这个表述有错

-) ,用正规式可表示为: (01|10)*
 - (1) 构造NFA,要求每条弧上或为单个字符,或为ε。
 - (2) 确定化。
 - (3) 最小化

I	I_0	I_1
{ <i>X</i> }	Ø	{1,2,3}
{1,2,3}	{2,3}	{2,3,4}
{2,3}	{2,3}	{2,3,4}
{2,3,4}	{2,3,5}	{2,3,4}
{2,3,5}	{2,3}	{2,3,4, <i>Y</i> }
{2,3,4, <i>Y</i> }	{2,3,5}	{2,3,4}

	_	I	I_0	I_1
0		0	Ø	1
1		1	2	3
2		2	2	3
3		3	4	3
4		4	2	5
5		5	4	3

	I	I_0	I_1
{X}	0	Ø	1
{1,2,3}	1	2	3
{2,3}	2	2	3
{2,3,4}	3	4	3
{2,3,5}	4	2	5
{2,3,4, <i>Y</i> }	5	4	3

- □ 初次划分: $\Pi_0 = \{\{0,1,2,3,4\},\{5\}\}$
- □ 考察子集{0,1,2,3,4}
 - \triangleright $\delta(0,0) = \emptyset$, 其它非空

(1) 构造NFA,要求每条弧上或为单个字符,或为ε。(2) 确定化。(3) 最小化

□ 考察子集{1,2,3,4}

- $\delta(1,0) = 2 \in \{1,2,3,4\}, \delta(2,0) = 2 \in \{1,2,3,4\},$
- $\delta(3,0) = 4 \in \{1,2,3,4\}, \delta(4,0) = 2 \in \{1,2,3,4\},$
- $\delta(1,1) = 3 \in \{1,2,3,4\}, \delta(2,1) = 3 \in \{1,2,3,4\},$
- $\delta(3,1) = 3 \in \{1,2,3,4\}, \delta(4,1) = 5 \in \{5\}$

(1) 构造NFA,要求每条弧上或为单个字符,或为ε。(2) 确定化。(3) 最小化

□ 考察子集{1,2,3}

 $\delta(1,0) = 2 \in \{1,2,3\}, \delta(2,0) = 2 \in \{1,2,3\}, \delta(3,0) = 4 \in \{4\}$

(1) 构造NFA,要求每条弧上或为单个字符,或为ε。(2) 确定化。(3) 最小化

□ 考察子集{1,2}

- $\delta(1,0) = 2 \in \{1,2\}, \delta(2,0) = 2 \in \{1,2\},$
- $\delta(1,1) = 3 \in \{3\}, \delta(2,1) = 3 \in \{3\}.$
- 最终划分: П₃ = {{0}, {1,2}, {3}, {4}, {5}}

□ 初态{0},终态{5}

(1) 构造NFA,要求每条弧上或为单个字符,或为ε。(2) 确定化。(3) 最小化

□ 最终划分: $\Pi_3 = \{\{0\}, \{1,2\}, \{3\}, \{4\}, \{5\}\}\}$ □ 初态 $\{0\}$, 终态 $\{5\}$

I	I_0	I_1
${X, 1, Y}$	{2}	{3}
{2}	Ø	{1, <i>Y</i> }
{3}	{1, <i>Y</i> }	Ø
{1, <i>Y</i> }	{2}	{3}

	I	${ m I}_0$	I_1
0	0	1	2
1	1	Ø	3
2	2	3	Ø
3	3	1	2

	I	I_0	I_1
$\{X,1,Y\}$	0	1	2
{2}	1	Ø	3
{3}	2	3	Ø
{1, <i>Y</i> }	3	1	2

(1) 构造NFA,要求每条弧上或为单个字符,或为ε。(2) 确定化。(3) 最小化

- □ 初次划分: $\Pi_0 = \{\{0,3\},\{1,2\}\}$
- □ 考察子集{1,2}

$$> \delta(1,0) = \emptyset, \delta(2,0) = 3 \neq \emptyset$$

□ 考察子集{0,3}

$$\delta(0,0) = 1 \in \{1\}, \delta(3,0) = 1 \in \{1\}$$

$$\delta(0,1) = 2 \in \{2\}, \delta(3,1) = 2 \in \{2\}$$

□ 初态{0,3}, 终态{0,3}

(1) 构造NFA,要求每条弧上或为单个字符,或为ε。(2) 确定化。(3) 最小化

0 1 0 0 1 2

- 最终划分: П₁ = {{0,3},{1},{2}}
- □ 初态{0,3}, 终态{0,3}

第三章作业二

【作业3-3】将右线性文法 $G[S]: S \to xA \mid yB \mid \varepsilon, A \to yA \mid y, B \to xB \mid x$,转换为:

- (1) 有限自动机。
- (2) 正规式。

【作业3-4】给定右线性文法G[S],求其等价的左线性文法:

$$S \rightarrow 0S \mid 1S \mid 1A \mid 0B$$

$$A \rightarrow 1C \mid 1$$

$$B \rightarrow 0C \mid 0$$

$$C \rightarrow 0C \mid 1C \mid 0 \mid 1$$

【作业3-3】将右线性文法 $G[S]: S \to xA \mid yB \mid \varepsilon, A \to yA \mid y, B \to xB \mid x$,转换为:

- (1) 有限自动机。(2) 正规式。
- (1) 有限自动机

(2) 正规式

$$A \Rightarrow yy^*$$

$$B \Rightarrow xx^*$$

$$S \Rightarrow xyy^*|yxx^*|\varepsilon$$

【作业3-4】给定右线性文法G[S],求其等价的左线性文法:

$$S \rightarrow 0S \mid 1S \mid 1A \mid 0B$$

$$A \rightarrow 1C \mid 1$$

$$B \rightarrow 0C \mid 0$$

$$C \rightarrow 0C \mid 1C \mid 0 \mid 1$$

(1) 转FA

(2) 转左线性文法G[F]

$$F \rightarrow C0 \mid C1 \mid A1 \mid B0$$

$$C \rightarrow C0 \mid C1 \mid A1 \mid B0$$

$$A \rightarrow C0 \mid C1 \mid A1 \mid B0$$

【作业3-4】给定右线性文法G[S],求其等价的左线性文法:

$$S \rightarrow 0S \mid 1S \mid 1A \mid 0B$$

$$A \rightarrow 1C \mid 1$$

$$B \rightarrow 0C \mid 0$$

$$C \rightarrow 0C \mid 1C \mid 0 \mid 1$$

(2) 转左线性文法G[F]

$$F \rightarrow C0 \mid C1 \mid A1 \mid B0$$

$$C \rightarrow C0 \mid C1 \mid A1 \mid B0$$

$$A \rightarrow S1$$

$$B \rightarrow S0$$

$$S \rightarrow S0 \mid S1 \mid \varepsilon$$

第四章作业

【作业4-1】令文法为G[E]

$$E \to TE'$$

$$E' \to +E|\varepsilon$$

$$T \to FT'$$

$$T' \to T|\varepsilon$$

$$F \to PF'$$

$$F' \to *F'|\varepsilon$$

$$P \to (E)|a|b|^{\wedge}$$

- (1) 计算该文法每个非终结符号的终结首符集和后继符号集。
- (2) 这个文法是否为LL(1)文法。
- (3) 构造它的预测分析表。
- (4) 给出句子 $(a + b) * a^b$ 的分析过程。

シネガる 郑艳伟, zhengyw@sdu.edu.cn

【作业4-1】令文法为
$$G[E]: E \to TE'$$

$$E' \to +E \mid \varepsilon$$
 $T \to FT'$

$$T \to FT'$$

$$T' \to T | \varepsilon$$
 $F \to PF'$

$$F \rightarrow PF'$$

$$F' \to *F' | \varepsilon$$

$$F' \to F' | \varepsilon$$
 $P \to (E) |a|b|^{\wedge}$

(1) 计算该文法每个非终结符号的终结首符集和后继符号集

$$First(P) = \{(,a,b,^{\wedge}\}\$$

$$First(F) = \{(a, b, ^{\wedge})\}$$

$$First(T) = \{(,a,b,^{\wedge}\}\$$

$$First(T') = \{(a, b, ^{\circ}, \varepsilon)\}$$

$$First(E) = \{(a, b, ^{\wedge})\}$$

$$First(E') = \{+, \varepsilon\}$$

$$First(F') = \{*, \varepsilon\}$$

$$Follow(E) = \{\#,\}$$

$$Follow(E') = \{\#, \}$$

$$Follow(T) = \{+, \#, \}$$

$$Follow(T') = \{+, \#, \}$$

$$Follow(F) = \{(,a,b,^{,+},\#,)\}$$

$$Follow(F') = \{(,a,b,^{,+},\#,)\}$$

$$Follow(P) = \{*, (, a, b, ^, +, \#,)\}$$

(2) 这个文法是否为LL(1)文法

E',T',F',P各候选式First交集为空

对 $\varepsilon \in First(A)$ 的非终结符E', T', F', First与Follow交集为空

因此是LL(1)文法

金シメガる 郑艳伟, zhengyw@sdu.edu.cn

【作业4-1】令文法为 $G[E]: E \to TE'$ $E' \to +E|\epsilon$ $T \to FT'$ $T' \to T \mid \varepsilon$ $F \to PF'$ $F' \to *F' \mid \varepsilon$ $P \to (E) \mid a \mid b \mid^{\wedge}$

(3) 构造它的预测分析表

 $Follow(E) = \{\#,\}$ $Follow(E') = \{\#,\}$ $Follow(T) = \{+, \#, \}$ $Follow(T') = \{+, \#, \}$ $Follow(F) = \{(,a,b,^{,+},\#,)\}$ $Follow(F') = \{(,a,b,^{,+},\#,)\}$ $Follow(P) = \{*, (, a, b, ^, +, \#,)\}$

	а	b	+	*	۸	()	#
E	$E \rightarrow TE'$	$E \to TE'$			$E \to TE'$	$E \rightarrow TE'$		
E'			$E' \rightarrow +E$				$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T \to FT'$	$T \to FT'$			$T\to FT'$	$T \to FT'$		
T'	$T' \to T$	$T' \to T$	$T' \to \varepsilon$		$T' \to T$	$T' \to T$	$T' \to \varepsilon$	$T' \to \varepsilon$
F	$F \rightarrow PF'$	$F\to PF'$			$F \to PF'$	$F\to PF'$		
F'	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to *F'$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$
P	$P \rightarrow a$	$P \rightarrow b$			$P \rightarrow ^{\wedge}$	$P \rightarrow (E)$		

郑艳伟, zhengyw@sdu.edu.cn

(4) 给出句子 $(a +b)*a^{b}$ 的分析过程。

	а	b	+	*	۸	()	#
E	$E \rightarrow TE'$	$E \rightarrow TE'$			$E \to TE'$	$E \to TE'$		
E'			$E' \rightarrow +E$				$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T \to FT'$	$T \to FT'$			$T \to FT'$	$T \to FT'$		
T'	$T' \to T$	$T' \to T$	$T' \to \varepsilon$		$T' \to T$	$T' \to T$	$T' \to \varepsilon$	$T' \to \varepsilon$
F	$F \rightarrow PF'$	$F\to PF'$			$F \to PF'$	$F\to PF'$		
F'	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to *F'$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$
P	$P \rightarrow a$	$P \rightarrow b$			$P \rightarrow ^{\wedge}$	$P \rightarrow (E)$		

序号	文法符号栈	输入串	所用产生式
1	# <i>E</i>	$(a+b)*a^b\#$	
2	# <i>E'T</i>	$(a+b)*a^b\#$	$E \rightarrow TE'$
3	# <i>E'T'F</i>	$(a+b)*a^b\#$	$T \to FT'$
4	#E'T'F'P	$(a+b)*a^b\#$	$F \rightarrow PF'$
5	#E'T'F')E($(a+b)*a^b\#$	$P \rightarrow (E)$
6	#E'T'F')E	$(a+b)*a^b\#$	
7	#E'T'F')E'T	$(a + b) * a^b #$	$E \rightarrow TE'$
8	#E'T'F')E'T'F	$(a + b) * a^b #$	$T \to FT'$

序号	文法符号栈	输入串	所用产生式
9	#E'T'F')E'T'F'P	$(a + b) * a^b #$	$F \to PF'$
10	#E'T'F')E'T'F'a	$(a + b) * a^b #$	$P \rightarrow a$
11	#E'T'F')E'T'F'	+b) * a^b#	
12	#E'T'F')E'T'	+b) * a^b#	$F' o \varepsilon$
13	#E'T'F')E'	+b) * a^b#	$T' o \varepsilon$
14	#E'T'F')E +	+b) * a^b#	$E' \rightarrow +E$
15	#E'T'F')E	b) * a^b#	
16	#E'T'F')E'T	b) * a^b#	$E \rightarrow TE'$

郑艳伟, zhengyw@sdu.edu.cn

(4) 给出句子 $(a +b)*a^{b}$ 的分析过程。

	а	b	+	*	۸	()	#
E	$E \rightarrow TE'$	$E \to TE'$			$E \rightarrow TE'$	$E \to TE'$		
E'			$E' \rightarrow +E$				$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T \to FT'$	$T \to FT'$			$T \to FT'$	$T \to FT'$		
T'	$T' \to T$	$T' \to T$	$T' \to \varepsilon$		$T' \to T$	$T' \to T$	$T' \to \varepsilon$	$T' \to \varepsilon$
F	$F \to PF'$	$F\to PF'$			$F \to PF'$	$F\to PF'$		
F'	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to *F'$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$
P	$P \rightarrow a$	$P \rightarrow b$			$P \rightarrow ^{\wedge}$	$P \rightarrow (E)$		

序号	文法符号栈	输入串	所用产生式
16	#E'T'F')E'T	b) * a^b#	$E \to TE'$
17	#E'T'F')E'T'F	b) * a^b#	$T \rightarrow FT'$
18	#E'T'F')E'T'F'P	b) * a^b#	$F \to PF'$
19	#E'T'F')E'T'F'b	b) * a^b#	$P \rightarrow b$
20	#E'T'F')E'T'F') * a^b#	
21	#E'T'F')E'T') * a^b#	$F' \to \varepsilon$
22	#E'T'F')E') * a^b#	$T' o \varepsilon$
23	#E'T'F')) * a^b#	$E' o \varepsilon$

序号	文法符号栈	输入串	所用产生式
24	#E'T'F'	* a^b#	
25	#E'T'F'*	* a^b#	$F' \rightarrow * F'$
26	# <i>E'T'F'</i>	a^b#	
27	# <i>E'T'</i>	a^b#	$F' o \varepsilon$
28	# <i>E'T</i>	a^b#	$T' \rightarrow T$
29	# <i>E'T'F</i>	a^b#	$T \to FT'$
30	#E'T'F'P	a^b#	$F \rightarrow PF'$
31	#E'T'F'a	a^b#	$P \rightarrow a$

(4) 给出句子 $(a +b)*a^{b}$ 的分析过程。

	а	b	+	*	۸	()	#
E	$E \rightarrow TE'$	$E \rightarrow TE'$			$E \to TE'$	$E \to TE'$		
E'			$E' \rightarrow +E$				$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T \to FT'$	$T \to FT'$			$T \to FT'$	$T \to FT'$		
T'	$T' \to T$	$T' \to T$	$T' \to \varepsilon$		$T' \to T$	$T' \to T$	$T' \to \varepsilon$	$T' \to \varepsilon$
F	$F \rightarrow PF'$	$F\to PF'$			$F \to PF'$	$F \to PF'$		
F'	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to *F'$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$
P	$P \rightarrow a$	$P \rightarrow b$			$P \rightarrow ^{\wedge}$	$P \rightarrow (E)$		

序号	文法符号栈	输入串	所用产生式
31	#E'T'F'a	a^b#	$P \rightarrow a$
32	#E'T'F'	^ <i>b</i> #	
33	#E'T'	^ <i>b</i> #	$F' o \varepsilon$
34	#E'T	^ <i>b</i> #	$T' \rightarrow T$
35	# <i>E'T'F</i>	^ <i>b</i> #	$T \to FT'$
36	#E'T'F'P	^ <i>b</i> #	$F \rightarrow PF'$
37	# <i>E'T'F'</i> ^	^ <i>b</i> #	$P \rightarrow ^{\wedge}$
38	#E'T'F'	<i>b</i> #	

序号	文法符号栈	输入串	所用产生式
39	#E'T'	b#	$F' o \varepsilon$
40	#E'T	<i>b</i> #	$T' \rightarrow T$
41	#E'T'F	<i>b</i> #	$T \rightarrow FT'$
42	#E'T'F'P	<i>b</i> #	$F \rightarrow PF'$
43	#E'T'F'b	<i>b</i> #	$P \rightarrow b$
44	# <i>E'T'F'</i>	#	
45	# <i>E'T'</i>	#	$F' \to \varepsilon$
46	# <i>E'</i>	#	$T' \to \varepsilon$

郑艳伟, zhengyw@sdu.edu.cn

(4) 给出句子 $(a +b)*a^h$ 的分析过程。

	а	b	+	*	٨	()	#
E	$E \to TE'$	$E \rightarrow TE'$			$E \rightarrow TE'$	$E \to TE'$		
E'			$E' \rightarrow +E$				$E' \to \varepsilon$	$E' \to \varepsilon$
T	$T\to FT'$	$T \to FT'$			$T \to FT'$	$T \to FT'$		
T'	$T' \to T$	$T' \to T$	$T' \to \varepsilon$		$T' \to T$	$T' \to T$	$T' \to \varepsilon$	$T' \to \varepsilon$
F	$F \to PF'$	$F\to PF'$			$F \to PF'$	$F\to PF'$		
F'	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to *F'$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$	$F' \to \varepsilon$
P	$P \rightarrow a$	$P \rightarrow b$			$P \rightarrow ^{\wedge}$	$P \rightarrow (E)$		

序号	文法符号栈	输入串	所用产生式
46	# <i>E'</i>	#	$T' o \varepsilon$
47	#	#	$E' o \varepsilon$
48	#	#	成功

第四章作业

【作业4-2】令文法为G[Expr](在左部出现的是非终结符号)

$$Expr \rightarrow -Expr$$
 $Expr \rightarrow (Expr)|Var ExprTail$
 $ExprTail \rightarrow -Expr|\varepsilon$
 $Var \rightarrow id VarTail$
 $VarTail \rightarrow (Expr)|\varepsilon$

- (1) 构造LL(1)分析表。
- (2) 给出句子id -id((id))的分析过程。

【作业4-2】 $Expr \rightarrow -Expr$ $Expr \rightarrow (Expr)|Var ExprTail$ $ExprTail \rightarrow -Expr|\varepsilon \quad Var \rightarrow id \ VarTail \qquad VarTail \rightarrow (Expr)|\varepsilon$

(1) 构造LL(1)分析表。

$$First(Expr) = \{-, (,id\} \\ First(ExprTail) = \{-, \varepsilon\} \\ Follow(ExprTail) = \{\#, \} \\ First(Var) = \{id\} \\ First(VarTail) = \{(, \varepsilon\} \\ Follow(VarTail) = \{\#, \}, -\} \\ Follow(VarTail) = \{\#, \}, -\}$$

	_	id	()	#
Expr	$Expr \rightarrow -Expr$	$Expr \rightarrow Var$ $ExprTail$	$Expr \rightarrow (Expr)$		
ExprTail	ExprTail → –Expr			$ExprTail \rightarrow \varepsilon$	$ExprTail \rightarrow \varepsilon$
Var		Var → id VarTail			
VarTail	$VarTail \rightarrow \varepsilon$		$VarTail \rightarrow (Expr)$	$VarTail \rightarrow \varepsilon$	$VarTail \rightarrow \varepsilon$

第四章 自上而下的语法分析

無いまたる 郑艳伟, zhengyw@sdu.edu.cn

(2) 给出句子i d —i d ((i d))的分析过程。

	_	id	()	#
Expr	$Expr \rightarrow -Expr$	$Expr \rightarrow Var$ $ExprTail$	$Expr \rightarrow (Expr)$		
ExprTail	$\begin{array}{c} ExprTail \rightarrow \\ -Expr \end{array}$			$ExprTail \rightarrow \varepsilon$	$ExprTail \rightarrow \varepsilon$
Var		Var → id VarTail			
VarTail	$VarTail \rightarrow \varepsilon$		$VarTail \rightarrow (Expr)$	$VarTail \rightarrow \varepsilon$	$VarTail \rightarrow \varepsilon$

序号	文法符号栈	输入串	所用产生式
1	#Expr	idid((id))#	
2	#ExprTail Var	idid((id))#	$Expr \rightarrow Var\ ExprTail$
3	#ExprTail VarTail id	idid((id))#	$Var \rightarrow id \ VarTail$
4	#ExprTail VarTail	id((id))#	
5	#ExprTail	id((id))#	VarTail ightarrow arepsilon
6	#Expr —	id((id))#	$ExprTail \rightarrow -Expr$
7	#Expr	-id((id))#	
8	#Expr —	-id((id))#	Expr o -Expr
9	#Expr	id((id))#	
10	#ExprTail Var	id((id))#	$Expr \rightarrow Var \ ExprTail$

第四章 自上而下的语法分析

無いまたる 郑艳伟, zhengyw@sdu.edu.cn

(2) 给出句子i d —i d ((i d))的分析过程。

	_	id	()	#
Expr	$Expr \rightarrow -Expr$	$Expr \rightarrow Var$ $ExprTail$	$Expr \rightarrow (Expr)$		
ExprTail	$\begin{array}{c} ExprTail \rightarrow \\ -Expr \end{array}$			$ExprTail \rightarrow \varepsilon$	$ExprTail \rightarrow \varepsilon$
Var		Var → id VarTail			
VarTail	$VarTail \rightarrow \varepsilon$		$VarTail \rightarrow (Expr)$	$VarTail \rightarrow \varepsilon$	$VarTail \rightarrow \varepsilon$

序号	文法符号栈	输入串	所用产生式
10	#ExprTail Var	id((id))#	$Expr \rightarrow Var\ ExprTail$
11	#ExprTail VarTail id	id((id))#	$Var \rightarrow id \ Var Tail$
12	#ExprTail VarTail	((id))#	
13	#ExprTail)Expr(((id))#	$VarTail \rightarrow (Expr)$
14	#ExprTail)Expr	(id))#	
15	#ExprTail)Expr)Expr((id))#	Expr o (Expr)
16	#ExprTail)Expr)Expr	id))#	
17	#ExprTail)Expr)ExprTail Var	<i>id</i>))#	$Expr \rightarrow Var \ ExprTail$
18	#ExprTail)Expr)ExprTail VarTail id	<i>id</i>))#	$Var \rightarrow id \ Var Tail$
19	#ExprTail)Expr)ExprTail VarTail))#	

第四章 自上而下的语法分析

(2) 给出句子i d —i d ((i d))的分析过程。

	_	id	()	#
Expr	$Expr \rightarrow -Expr$	$Expr \rightarrow Var$ ExprTail	$Expr \rightarrow (Expr)$		
ExprTail	$\begin{array}{c} ExprTail \rightarrow \\ -Expr \end{array}$			$ExprTail \rightarrow \varepsilon$	$ExprTail \rightarrow \varepsilon$
Var		Var → id VarTail			
VarTail	$VarTail \rightarrow \varepsilon$		$VarTail \rightarrow (Expr)$	$VarTail \rightarrow \varepsilon$	$VarTail \rightarrow \varepsilon$

序号	文法符号栈	输入串	所用产生式
19	#ExprTail)Expr)ExprTail VarTail))#	
20	#ExprTail)Expr)ExprTail))#	$VarTail \rightarrow \varepsilon$
21	#ExprTail)Expr)))#	$ExprTail \rightarrow \varepsilon$
22	#ExprTail)Expr)#	
23	#ExprTail)Expr出错)#	$ExprTail \rightarrow \varepsilon$

【作业5-1】文法G[S]

$$S \to a|^{\wedge}|(T)$$

 $T \to T, S|S$

- (1) 计算该文法的 $FirstV_T$ 和 $LastV_T$ 。
- (2) 构造优先关系表。
- (3) 构造优先函数。
- (4) 给出句子(a, (a, a))的分析过程。

(1) 计算 $FirstV_T$ 和 $LastV_T$

$$S \rightarrow a|^{\wedge}|(T)$$

$$T \rightarrow T, S | S$$

$$FirstV_T(S) = \{a, ^{\land}, (\}$$

$$FirstV_T(T) = \{,,a,^{\land},(\}$$

$$LastV_T(S) = \{a, ^{\land}, \}$$

$$LastV_T(T) = \{,,a,^{,}\}$$

(2) 计算优先关系表

$$FirstV_T(S) = \{a, ^{\land}, (\}$$

$$FirstV_T(T) = \{,,a,^{\land},(\}$$

$$LastV_T(S) = \{a, ^{\wedge},)\}$$

$$LastV_T(T) = \{,,a,^{\wedge},\}$$

	a	^	()	,	#
a				≽	>	≽
^				⊳	⊳	≽
(⋖	⋖	<	÷	⋖	
)				⊳	≽	⊳
,	⋖	<	⋖	>	⇒	
#	<	⋖	⋖			÷

(3) 计算优先函数

6	
6	
2	
6	
4	
2	
7	

	a	^	()	,	#
a				>	⊳	≽
^				⊳	⊳	⊳
(⋖	<	<	÷	<	
)				⊳	⊳	⊳
,	⋖	<	<	⊳	⊳	
#	<	<	⋖			÷

	a	^	()	,	#
f	6	6	2	6	4	2
g	7	7	7	2	3	2

(4)给出句子(a ,(a ,a))的分析过程。

$S \to a ^{\wedge} (T)$
$T \to T, S S$

	a	^	()	,	#
f	6	6	2	6	4	2
g	7	7	7	2	3	2

序号	文法符号栈	输入串	动作
1	#	(a, (a, a))#	初始
2	#(a,(a,a))#	移进
3	#(a	,(a,a))#	移进
4	#(N	,(a,a))#	归约
5	#(N,	(a,a))#	移进
6	#(N,(a,a))#	移进
7	#(N,(a	,a))#	移进
8	#(N,(N	,a))#	归约
9	#(N,(N,	a))#	移进
10	#(N,(N,a)))#	移进
11	#(N,(N,N)))#	归约

序号	文法符号栈	输入串	动作
12	#(N,(N))#	归约
13	#(N,(N))#	移进
14	#(N, N)#	归约
15	#(N)#	归约
16	#(N)	#	移进
17	# <i>N</i>	#	归约
18	# <i>N</i>	#	成功

第五章作业二

 $(0) S' \rightarrow S$

- $(1) S \to AS \qquad (2) S \to b \qquad (3) A \to SA$
- $(4) A \rightarrow a$

第五章 自下而上的语法分析

- $(0) S' \rightarrow S$
- $(1) S \rightarrow AS$
- $(2) S \rightarrow b$

- $(3) A \rightarrow SA$
- $(4) A \rightarrow a$

(2) 构造SLR分析表。

 $Follow(S) = \{\#, a\}, Follow(A) = \{b\}$

$$(1) S \rightarrow AS$$

$$(2) S \rightarrow b$$

$$(1) S \to AS \qquad (2) S \to b \qquad (3) A \to SA \qquad (4) A \to a$$

$$(4) A \to a$$

 $I_{10} = Go(I_{10}, A)$

 $I_9 = Go(I_{10}, S)$

 $I_7 = Go(I_{10}, b)$

 $I_4 = Go(I_{10}, a)$

$I_0: [S' \rightarrow S, \#]$	$I_4 = Go(I_0, a)$	$I_8 = Go(I_2, S)$	$I_{10} = Go(I_5, A)$
$[S \rightarrow AS, \# a b]$	$[A \rightarrow a \cdot, a b]$	$[S \rightarrow AS \cdot, \# a b]$	$[S \rightarrow A \cdot S, a b]$
$[S \rightarrow b, \# a b]$	$I_5 = Go(I_1, A)$	$[A \rightarrow S \cdot A, a b]$	$[S \rightarrow AS, a b]$
$[A \rightarrow SA, a b]$	$[A \rightarrow SA \cdot, a b]$	$[S \rightarrow AS, a b]$	$[S \rightarrow b, a b]$
$[A \rightarrow a, a b]$	$[S \rightarrow A \cdot S, a b]$	$[S \rightarrow b, a b]$	$[A \rightarrow SA, a b]$
$I_1 = Go(I_0, S)$	$[S \rightarrow AS, a b]$	$[A \rightarrow SA, a b]$	$[A \rightarrow a, a b]$
$[S' \rightarrow S \cdot, \#]$	$[S \rightarrow b, a b]$	$[A \rightarrow a, a b]$	
$[A \rightarrow S \cdot A, a b]$	$[A \rightarrow SA, a b]$		$I_5 = Go(I_6, A)$
$[A \rightarrow SA, a b]$	$[A \rightarrow \cdot a, a b]$	$I_3 = Go(I_2, b)$	$I_6 = Go(I_6, S)$
$[A \rightarrow a, a b]$	$I_6 = Go(I_1, S)$	$I_4 = Go(I_2, a)$	$I_7 = Go(I_6, b)$
$[S \rightarrow AS, a b]$	$[A \to S \cdot A, a b]$	$I_9 = Go(I_5, S)$	$I_4 = Go(I_6, a)$
$[S \rightarrow b, a b]$	$[A \rightarrow SA, a b]$	$[S \rightarrow AS \cdot, a b]$	$I_5 = Go(I_8, A)$
$I_2 = Go(I_0, A)$	$[A \rightarrow a, a b]$	$[A \to S \cdot A, a b]$	$I_6 = Go(I_8, S)$
$[S \to A \cdot S, \# a b]$	$[S \rightarrow AS, a b]$	$[S \rightarrow AS, a b]$	$I_7 = Go(I_8, b)$
$[S \rightarrow AS, \# a b]$	$[S \rightarrow b, a b]$	$[S \to b, a b]$	$I_4 = Go(I_8, a)$
$[S \rightarrow b, \# a b]$	$I_7 = Go(I_1, b)$	$[A \rightarrow SA, a b]$	$I_5 = Go(I_9, A)$
$[A \rightarrow SA, a b]$	$[S \rightarrow b \cdot, a b]$	$[A \rightarrow a, a b]$	$I_6 = Go(I_9, S)$
$[A \rightarrow \cdot a, a b]$	$I_4 = Go(I_1, a)$	$I_7 = Go(I_5, b)$	
$I_3 = Go(I_0, b)$	$I_2 = Go(I_2, A)$	$I_4 = Go(I_5, a)$	$I_7 = Go(I_9, b)$
$[S \rightarrow b \cdot, \# a b]$	12 00 (12,111)	1 (3,)	$I_4 = Go(I_9, a)$

$$(0) S' \rightarrow S$$

$$(1) S \rightarrow AS$$

$$(2) S \rightarrow b$$

$$(3) A \rightarrow SA$$

$$(4) A \rightarrow a$$

	Action			Go	oto
状态	а	b	#	S	Α
0	S_4	S_3		1	2
1	S_4 S_4	S_3 S_7	асс	6	5
2					2
3	r_2	r_2	r_2		
4	r_4	r_4			
5	r_3	r_3			
6					
7	r_2	r_2			
8					
9					
10					

```
I_0: [S' \rightarrow S, \#] \qquad I_4 = Go(I_0, a)
 [S \rightarrow AS, \#|a|b] [A \rightarrow a \cdot, a|b]
[S \rightarrow b, \#|a|b]
[A \rightarrow SA, a|b]
[A \rightarrow a, a|b]
[S \rightarrow A \rightarrow A, a|b]
[S \rightarrow A \rightarrow S, a|b]
I_{1} = Go(I_{0}, S) 
[S' \to S \cdot, \#] 
[A \to S \cdot A, a|b] 
[A \to S \cdot A, a|b] 
[A \to SA, a|b] 
                                  [A \rightarrow \cdot a, a|b]
 [A \rightarrow SA, a|b]
 [A \rightarrow \cdot a, a|b]
                                    I_6 = Go(I_1, S)
 [S \rightarrow AS, a|b] [A \rightarrow S \cdot A, a|b]
[S \rightarrow b, a|b] [A \rightarrow SA, a|b]
                            [A \rightarrow \overline{a}, \overline{a}|b]
I_2 = Go(I_0, A)
 [S \rightarrow A \cdot S, \#|a|b] [S \rightarrow AS, a|b]
 [S \rightarrow AS, \#|a|b] [S \rightarrow b, a|b]
 [S \rightarrow b, \#|a|b]
                               I_7 = Go(I_1, b)
                                    [S \rightarrow b \cdot, a|b]
  [A \rightarrow SA, a|b]
 [A \rightarrow \cdot a, a|b]
                                     I_4 = Go(I_1, a)
I_3 = Go(I_0, b)
                                     I_2 = Go(I_2, A)
  [S \rightarrow b \cdot, \#|a|b]
```


$$(0) S' \rightarrow S$$

$$(1) S \to AS \qquad (2) S \to b$$

$$(2) S \rightarrow b$$

$$(3) A \rightarrow SA$$

$$(4) A \rightarrow a$$

	Action			Go	oto
状态	а	b	#	S	Α
0	S_4	S_3		1	2
1	S_4	S_7	асс	6	5
2	S_4	S_3		8	2
3	r_2	r_2	r_2		
4	r_4	r_4			
5	$ST_4 r_3$	S_{73}/r_{3}		9	10
6	S_4	S_7		6	5
7	r_2	r_2			
8	ST_1r_1	$SF_1 r_1$	r_{1}	6	5
9	ST_1r_1	SF_1r_1		6	5
10	S_4	S_7		9	10

	(1)/23 1/1 12(8	
$I_8 = Go(I_2, S)$	$I_{10} = Go(I_5, A)$	$I_{10} = Go(I_{10}, A)$
$[S \rightarrow AS \cdot, \# a b]$		$I_9 = Go(I_{10}, S)$
$[A \to S \cdot A, a b]$	$[S \rightarrow AS, a b]$	$I_7 = Go(I_{10}, b)$
$[S \rightarrow AS, a b]$	$[S \rightarrow b, a b]$	$I_4 = Go(I_{10}, a)$
$[S \rightarrow b, a b]$	$[A \rightarrow SA, a b]$	
$[A \rightarrow SA, a b]$	$[A \rightarrow \cdot a, a b]$	
$[A \rightarrow \cdot a, a b]$	$I_5 = Go(I_6, A)$	
$I_3 = Go(I_2, b)$	$I_6 = Go(I_6, S)$	
$I_4 = Go(I_2, a)$	$I_7 = Go(I_6, b)$	
$I_9 = Go(I_5, S)$	$I_4 = Go(I_6, a)$	
$[S \rightarrow AS \cdot, a b]$	$I_5 = Go(I_8, A)$	
$[A \rightarrow S \cdot A, a b]$	$I_6 = Go(I_8, S)$	
$[S \rightarrow AS, a b]$	$I_7 = Go(I_8, b)$	
$[S \rightarrow b, a b]$	$I_4 = Go(I_8, a)$	
$[A \to SA, a b]$ $[A \to a, a b]$	$I_5 = Go(I_9, A)$	
2 1 1 2	$I_6 = Go(I_9, S)$	
$I_7 = Go(I_5, b)$	$I_7 = Go(I_9, b)$	Ì
$I_4 = Go(I_5, a)$	$I_4 = Go(I_0, a)$	i I
	-1 _A $ -$	/* 1

$$(0) S' \rightarrow S$$

$$(1) S \rightarrow AS$$

$$(2) S \rightarrow b$$

$$(0) S' \to S \qquad (1) S \to AS \qquad (2) S \to b \qquad (3) A \to SA \qquad (4) A \to a$$

$$(4) A \rightarrow a$$

	Action			Go	oto
状态	а	b	#	S	Α
0	S_4	S_3		1	2
1	S_4	S_7	асс	6	5
2	S_4	S_3		8	2
3	r_2	r_2	r_2		
4	r_4	r_4			
5	S_4/r_3	S_7/r_3		9	10
6	S_4	S_7		6	5
7	r_2	r_2			
8	S_4/r_1	S_7/r_1	r_1	6	5
9	S_4/r_1	S_7/r_1		6	5
10	S_4	S_7		9	10

- $(0) S' \rightarrow S$
- $(1) S \rightarrow AS$

 $(2) S \rightarrow b$

 $(3) A \rightarrow SA$

 $(4) A \rightarrow a$

 $I_{10} = Go(I_{10}, A)$

 $I_9 = Go(I_{10}, S)$

 $I_7 = Go(I_{10}, b)$

 $I_4 = Go(I_{10}, a)$

(4) 合并(3)的同心集(如果有)。

 $I_2 = Go(I_0, A)$ $[S \rightarrow A \cdot S, \#|a|b]$ $[S \rightarrow AS, \#|a|b]$ $[S \rightarrow b, \#|a|b]$ $[A \rightarrow SA, a|b]$

 $[S \rightarrow b, a|b]$

- $I_4 = Go(I_0, a)$
- $[A \rightarrow a \cdot, a|b]$
- $I_5 = Go(I_1, A)$ $[A \rightarrow SA \cdot, a|b]$
- $S \rightarrow A \cdot S, a|b|$ $[S \rightarrow AS, a|b]$
 - $[S \rightarrow b, a|b]$
 - $[A \rightarrow SA, a|b]$
- $[A \rightarrow \cdot a, a|b]$
- $I_6 = Go(I_1, S)$
- $[A \rightarrow S \cdot A, a|b]$
- $[A \rightarrow SA, a|b]$
- $[A \rightarrow \cdot a, a|b]$
- $[S \rightarrow AS, a|b]$ $[S \rightarrow b, a|b]$
- $I_7 = Go(I_1, b)$
- $[S \rightarrow b \cdot, a|b]$

 $I_4 = Go(I_1, a)$

- $I_8 = Go(I_2, S)$
- $[S \rightarrow AS \cdot, \#|a|b] [S \rightarrow A \cdot S, a|b]$
- $[A \rightarrow S \cdot A, a|b]$
- $[S \rightarrow AS, a|b]$
 - $[S \rightarrow b, a|b]$
 - $[A \rightarrow SA, a|b]$
 - $[A \rightarrow \cdot a, a|b]$
 - $I_3 = Go(I_2, b)$
 - $I_4 = Go(I_2, a)$
 - $I_9 = Go(I_5, S)$
 - $[S \rightarrow AS \cdot, a|b]$
 - $[A \rightarrow S \cdot A, a|b]$
 - $[S \rightarrow AS, a|b]$
 - $[S \rightarrow b, a|b]$
 - $[A \rightarrow SA, a|b]$
 - $[A \rightarrow \cdot a, a|b]$
- $I_7 = Go(I_5, b)$
- $I_4 = Go(I_5, a)$ $I_2 = Go(I_2, A)$

- $I_{10} = Go(I_5, A)$
- $[S \rightarrow AS, a|b]$
- $[S \rightarrow b, a|b]$
- $[A \rightarrow SA, a|b]$
- $[A \rightarrow \cdot a, a|b]$
- $I_5 = Go(I_6, A)$
- $I_6 = Go(I_6, S)$
- $I_7 = Go(I_6, b)$
- $I_4 = Go(I_6, a)$
- $I_5 = Go(I_8, A)$
- $I_6 = Go(I_8, S)$
- $I_7 = Go(I_8, b)$
- $I_4 = Go(I_8, a)$
- $I_5 = Go(I_9, A)$
- $I_6 = Go(I_9, S)$
- $I_7 = Go(I_9, b)$
- $I_4 = Go(I_9, a)$

 $I_3 = Go(I_0, b)$ $[S \rightarrow b \cdot, \#|a|b]$

 $[A \rightarrow \cdot a, a|b]$

第五章 自下而上的语法分析

$$(0) S' \rightarrow S$$

$$(1) S \rightarrow AS$$

$$(2) S \rightarrow b$$

$$(0) S' \to S \qquad (1) S \to AS \qquad (2) S \to b \qquad (3) A \to SA \qquad (4) A \to a$$

$$(4) A \rightarrow a$$

(5) 用LR(1)分析表分析句子: b a a b

	Action			Go	oto
状态	а	b	#	S	Α
0	S_4	S_3		1	2
1	S_4	S_7	асс	6	5
2	S_4	S_3		8	2
3	r_2	r_2	r_2		
4	r_4	r_4			
5	S_4/r_3	S_7/r_3		9	10
6	S_4	S_7		6	5
7	r_2	r_2			
8	S_4/r_1	S_7/r_1	r_1	6	5
9	S_4/r_1	S_7/r_1		6	5
10	S_4	S_7		9	10

序号	状态	符号	输入
1	0	#	baab#
2	03	# <i>b</i>	aab#
3	01	# <i>S</i>	aab#
4	014	#Sa	ab#
5	015	#SA	ab#
6	02	# <i>A</i>	ab#
7	024	#Aa	b#
8	022	#AA	b#
9	0223	#AAb	#
10	0228	#AAS	#
11	028	#AS	#
12	01	# <i>S</i>	#
13	01	成功	#

		1	
6	0154	#SAa	<i>b</i> #
7	0159	#SAS	b#
8	0159	#SAS	<i>b</i> #
9	01597	#SASb	#
10	01596	#SASS	#
11	01596	出错	#

9	016	#SS	b#
10	0167	#SSb	#
11	0167	出错	#

作业

The End

谢谢

授 课 教 师 : 郑艳伟

手 机 : 18614002860 (微信同号)

簡 : zhengyw@sdu.edu.cn