

Prof. Dr. Max Mühlhäuser Dr. Immanuel Schweizer

Jens Heuschkel, MSc. Michael Stein, MSc.

TELEKOOPERATION Fachbereich Informatik Hochschulstr. 10 64289 Darmstadt

TK1: Distributed Systems - Programming & Algorithms

10. Theory Assignment Submission Date: 10.02.2016

By handing in a solution you confirm that you are the exclusive author(s) of all the materials. Additional information can be found here: https://www.informatik.tu-darmstadt.de/de/sonstiges/plagiarismus/

Task 1: Maekawa's Voting Algorithm (10P)

The following voting sets are defined for 8 processes (voting set V_i is defined for process i):

V ₁ : (1,2,3,4,7)	V ₅ : (2,4,5,6,8)
V ₂ : (1,2,3,5,8)	V ₆ : (3,4,5,6)
V ₃ : (1,2,3,6)	V ₇ : (2,4,7,8)
V ₄ : (1,4,5,6,7)	V ₈ : (1,5,7,8)

Answer the following questions:

- a) Does the algorithm work correctly with these voting sets? Explain your statement, e.g., by performing the essential test steps.
- b) What are the two specific fairness conditions of Maekawa's algorithm? Do they hold in this case? Explain your answer!
- c) Is it possible to change the voting sets (e.g., by adding or deleting processes) such that both fairness conditions hold? If not, why? If yes, state the modified voting sets.

TK1 - Exercise Page 1