Reações Químicas Reversíveis

As reações químicas reversíveis são aquelas que podem ocorrer tanto no sentido direto como no sentido inverso, ou seja, pode ser revertidas.

Por exemplo,

$$2A + B \leftrightarrow C$$

pode ser caracterizada pela seguinte relação de equilíbrio:

$$K = \frac{c_c}{c_a^2 c_b}$$

 c_i representa a concentração do elemento químico i.

Vamos definir uma variável x representando o número de mols de C produzidos. A conservação de massa pode ser usada para reformular a relação de equilíbrio como

$$K = \frac{c_{c,0} + x}{(c_{a,0} - 2x)^2 (c_{b,0} - x)}$$

onde o subscrito 0 representa a concetração inicial de cada elemento.

Dado o valor de K, $c_{a,0}$, $c_{b,0}$, $c_{c,0}$ determine o valor de x considerando o chute inicial de x_l e x_u e com n algoritmos significativos, ou seja, o erro de aproximação ε_a dado por

$$\varepsilon_a = |x^{new} - x^{old}|$$

menor que 0.5×10^{-n}

Entrada

A entrada é composta por um linha com 7 valores K, $c_{a,0}$, $c_{b,0}$, $c_{c,0}$, x_l , x_u e ε representando constante de equílibrio, concetração inicial dos elementos A, B, C, intervalo inicial e final para o número de mols produzidos de C e o limite do erro aceito.

Saída

A saída é composta de uma única linha contendo o número de mols produzidos de C com 15 casas decimais.

Entrada

0.016 42 28 4 0 20 2

Saída

15.925292968750000

Entrada

0.012 42 28 4 0 20 2

Saída

15.354003906250000