Homework #11 Answers and Hints (MATH4052 Partial Differential Equations)

Xiaoyu Wei*

December 1, 2016

Problem 1. (Page 196, Q1). Find the one-dimensional Green's function for the interval (0,l). The three properties defining it can be restated as follows.

- 1. It solves G''(x) = 0 for $x \neq x_0$ ("harmonic").
- 2. G(0) = G(l) = 0.
- 3. G(x) is continuous at x_0 and $G(x) + \frac{1}{2}|x x_0|$ is harmonic at x_0 .

Solution. It is clear from the harmonic condition that G(x) is a piecewise linear function, whose derivative is continuous in $(0, x_0)$ and (x_0, l) . Then, since the singularity at x_0 should be such that

$$G(x) + \frac{1}{2}|x - x_0|$$

is harmonic at x_0 , it can be written as

$$G(x) = H(x) - \frac{1}{2}|x - x_0|,$$

where H(x) is a harmonic (linear) function over (0, l). Lastly, to satisfy the boundary conditions,

$$0 = G(0) = H(0) - \frac{1}{2}|x_0|,$$

$$0 = G(l) = H(l) - \frac{1}{2}|l - x_0|.$$

From the equations above we can solve

$$H(x) = \frac{|l - x_0| - |x_0|}{2l}x + \frac{1}{2}|x_0|.$$

^{*}For any issues, email me at xweiaf@connect.ust.hk.

Therefore,

$$G(x,x_0) = -\frac{1}{2}|x - x_0| + \frac{|l - x_0| - |x_0|}{2l}x + \frac{1}{2}|x_0|,$$

using the fact that $0 \le x_0 \le l$,

$$G(x,x_0) = -\frac{1}{2}|x - x_0| + \frac{l - 2x_0}{2l}x + \frac{1}{2}x_0,$$

which is a piecewise linear function in x,

$$G(x, x_0) = \begin{cases} \frac{l - x_0}{l} x, & x \in [0, x_0], \\ -\frac{x_0}{l} x + x_0, & x \in [x_0, l] \end{cases}$$

Problem 2. (Page 196, Q6).

- 1. Find the Green's function for the half-plane $\{(x,y): y>0\}$.
- 2. Use it to solve the Dirichlet problem in the half-plane with boundary values h(x).
- 3. Calculate the solution with u(x,0) = 1.

Solution. We first state the three conditions that defined the Green's function G(x,y) of $-\Delta$ at the point (x_0,y_0) on the half-plane:

- 1. $G_{xx} + G_{yy} = 0$ for y > 0 and $(x, y) \neq (x_0, y_0)$.
- 2. G(x,0) = 0.
- 3. $H(x,y)=G(x,y)-\frac{1}{2\pi}\ln\rho$, where $\rho^2=(x-x_0)^2+(y-y_0)^2$, is harmonic everywhere in the half-plane.

Using the reflection method, let $(x_0^{\star}, y_0^{\star}) = (x_0, -y_0)$ to be the reflected source point, and $\rho^{\star} = \sqrt{(x - x_0^{\star})^2 + (y - y_0^{\star})^2}$. Then

$$G(x,y) = \frac{1}{2\pi} \ln \rho - \frac{1}{2\pi} \ln \rho^*.$$

Therefore,

$$u(x_0, y_0) = -\int_{x=-\infty}^{+\infty} h(x) \frac{\partial G}{\partial y}(x, 0) dx$$

$$= -\frac{1}{2\pi} \int_{x=-\infty}^{+\infty} h(x) \frac{\partial (\ln \rho - \ln \rho^*)}{\partial y}(x, 0) dx$$

$$= -\frac{1}{4\pi} \int_{x=-\infty}^{+\infty} h(x) \left[\frac{-2y_0 - 2y_0}{(x - x_0)^2 + y_0^2} \right] dx$$

$$= \frac{1}{\pi} \int_{x=-\infty}^{+\infty} h(x) \left[\frac{y_0}{(x - x_0)^2 + y_0^2} \right] dx.$$

When taking h(x) = 1, we have

$$u(x_0, y_0) = \frac{1}{\pi} \int_{x=-\infty}^{+\infty} \frac{y_0}{(x - x_0)^2 + y_0^2} dx$$

$$= \frac{1}{\pi} \int_{x=-\infty}^{+\infty} \frac{1}{(\frac{x - x_0}{y_0})^2 + 1} \frac{1}{y_0} dx$$

$$= \frac{1}{\pi} \int_{x=-\infty}^{+\infty} \frac{1}{(\frac{x - x_0}{y_0})^2 + 1} d\frac{x - x_0}{y_0}$$

$$= 1.$$

which is what is expected when the boundary condition is a constant.

Problem 3. (Page 197, Q9). Find the Green's function for the tilted half-space $T = \{(x, y, z) : ax + by + cz > 0\}$. (Hint: Either do it from scratch by reflecting across the tilted plane, or change variables in the double integral (3)

$$0 = \iint_{bdu D} \left(u \frac{\partial H}{\partial n} - \frac{\partial u}{\partial n} H \right) dS$$

using a linear transformation.)

Solution. Let (x^*, y^*, z^*) be the reflection point of $(x, y, z) \in T$ with respect to ∂T , then $\exists \lambda \neq 0$, s.t.

$$x^* = x + \lambda a$$

$$y^* = y + \lambda b$$

$$z^* = z + \lambda c$$

$$(x^*)^2 + (y^*)^2 + (z^*)^2 = x^2 + y^2 + z^2.$$

Therefore,

$$\begin{split} (x+\lambda a)^2 + (y+\lambda b)^2 + (z+\lambda c)^2 &= x^2 + y^2 + z^2 \\ 2(ax+by+cz) + \lambda (a^2 + b^2 + c^2) &= 0 \\ \lambda &= -2\frac{ax+by+cz}{a^2 + b^2 + c^2}. \end{split}$$

It is clear that given ax + by + cz > 0,

$$ax^* + by^* + cz^* = ax + by + cz + \lambda(a^2 + b^2 + c^2)$$

= $-(ax + by + cz) < 0$.

Now, using the fundamental solution

$$F(x, y, z; x_0, y_0, z_0) = -\frac{1}{4\pi\rho},$$

where $\rho^2 = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$, the Green's function of the tilted half-space is

$$G(x, y, z; x_0, y_0, z_0) = \frac{1}{4\pi\rho^*} - \frac{1}{4\pi\rho},$$
 with $(\rho^*)^2 = (x - x_0^*)^2 + (y - y_0^*)^2 + (z - z_0^*)^2$, and
$$x_0^* = x_0 - 2a\frac{ax_0 + by_0 + cz_0}{a^2 + b^2 + c^2},$$
$$y_0^* = y_0 - 2b\frac{ax_0 + by_0 + cz_0}{a^2 + b^2 + c^2},$$
$$z_0^* = z_0 - 2c\frac{ax_0 + by_0 + cz_0}{a^2 + b^2 + c^2}$$

Problem 4. (Page 197, Q17).

1. Find the Green's function for the quadrant

$$Q = \{(x, y) : x > 0, y > 0\}.$$

(*Hint*: Either use the method of reflection or reduce to the half-plane problem by the transformation $(x, y) \mapsto (x^2 - y^2, 2xy)$.)

2. Use your answer in the previous part to solve the Dirichlet problem

$$u_{xx} + u_{yy} = 0$$
 in Q , $u(0, y) = g(y)$ for $y > 0$,
 $u(x, 0) = h(x)$ for $x > 0$.

Solution. Using the method of reflection, we reflect a point $(x_0, y_0) \in Q$ with respect to ∂Q to get its three images $(-x_0, y_0)$, $(x_0, -y_0)$, and $(-x_0, -y_0)$. The idea is to take linear superpositions of the fundamental solutions centered at these points to construct the Green's function.

Since the fundamental solution in 2D is

$$F(x, y; x_0, y_0) = \frac{1}{2\pi} \ln \rho,$$

where $\rho = \sqrt{(x-x_0)^2 + (y-y_0)^2}$, the Green's function should be

$$G(x, y; x_0, y_0) = \frac{1}{2\pi} \ln \rho - \frac{1}{2\pi} \ln \rho_a - \frac{1}{2\pi} \ln \rho_b + \frac{1}{2\pi} \ln \rho_c,$$

where $\rho_a = \sqrt{(x+x_0)^2 + (y-y_0)^2}$, $\rho_b = \sqrt{(x-x_0)^2 + (y+y_0)^2}$, and $\rho_c = \sqrt{(x+x_0)^2 + (y+y_0)^2}$.

Now, given the boundary functions, we have

$$u(x_0, y_0) = -\int_0^\infty g(y) \frac{\partial G}{\partial x}(0, y) dy - \int_0^\infty h(x) \frac{\partial G}{\partial y}(x, 0) dx.$$

Calculating the derivatives,

$$\begin{split} \frac{\partial G}{\partial x}(x,y;x_0,y_0) &= \frac{1}{4\pi} \frac{2(x-x_0)}{\rho^2} - \frac{1}{4\pi} \frac{2(x+x_0)}{\rho_a^2} - \frac{1}{4\pi} \frac{2(x-x_0)}{\rho_b^2} + \frac{1}{4\pi} \frac{2(x+x_0)}{\rho_c^2} \\ \frac{\partial G}{\partial y}(x,y;x_0,y_0) &= \frac{1}{4\pi} \frac{2(y-y_0)}{\rho^2} - \frac{1}{4\pi} \frac{2(y-y_0)}{\rho_a^2} - \frac{1}{4\pi} \frac{2(y+y_0)}{\rho_b^2} + \frac{1}{4\pi} \frac{2(y+y_0)}{\rho_c^2} \end{split}$$

yielding

$$\frac{\partial G}{\partial x}(0, y; x_0, y_0) = -\frac{1}{\pi} \frac{x_0}{\rho^2} + \frac{1}{\pi} \frac{x_0}{\rho_c^2}$$
$$\frac{\partial G}{\partial y}(x, 0; x_0, y_0) = -\frac{1}{\pi} \frac{y_0}{\rho^2} + \frac{1}{\pi} \frac{y_0}{\rho_c^2}$$

Then,

$$u(x_0, y_0) = \int_0^\infty g(y) \left(-\frac{1}{\pi} \frac{x_0}{\rho^2} + \frac{1}{\pi} \frac{x_0}{\rho_c^2} \right) dy - \int_0^\infty h(x) \left(-\frac{1}{\pi} \frac{y_0}{\rho^2} + \frac{1}{\pi} \frac{y_0}{\rho_c^2} \right) dx$$

$$= -\int_0^\infty g(y) \left(\frac{1}{\pi} \frac{x_0}{x_0^2 + (y - y_0)^2} - \frac{1}{\pi} \frac{x_0}{x_0^2 + (y + y_0)^2} \right) dy +$$

$$\int_0^\infty h(x) \left(\frac{1}{\pi} \frac{y_0}{(x - x_0)^2 + y_0^2} - \frac{1}{\pi} \frac{y_0}{(x + x_0)^2 + y_0^2} \right) dx$$

Therefore,

$$u(x,y) = -\int_0^\infty x g(\eta) \left[\frac{1}{(y-\eta)^2 + x^2} - \frac{1}{(y+\eta)^2 + x^2} \right] \frac{d\eta}{\pi} + \int_0^\infty y h(\xi) \left[\frac{1}{(x-\xi)^2 + y^2} - \frac{1}{(x+\xi)^2 + y^2} \cdot \right] \frac{d\xi}{\pi}.$$

Remark 1. Note should be taken for the signs of the integrals consisting of u(x,y).