Bioinformatics

Discrete Mathematics and Optimisation

Solutions to Problem Sheet Convexity and Newton method

Exercise 1.

(a) The Hessian matrix of $f_1(x, y, z)$ is given by

$$H_{f_1}(x,y,z) = \begin{pmatrix} 12x^2 + 4 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Furthermore, we have

$$\Delta_{1} = \det (12x^{2} + 4) = 12x^{2} + 4 > 0, \quad \text{as } x^{2} \ge 0 \quad \forall x \in \mathbb{R},$$

$$\Delta_{2} = \det \begin{pmatrix} 12x^{2} + 4 & -2 \\ -2 & 2 \end{pmatrix} = 24x^{2} + 4 > 0, \quad \text{as } x^{2} \ge 0 \quad \forall x \in \mathbb{R},$$

$$\Delta_{3} = \det \begin{pmatrix} 12x^{2} + 4 & -2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = 2\Delta_{2} > 0, \quad \text{as } \Delta_{2} > 0.$$

Hence, by Sylvester's criterion $H_{f_1}(x, y, z)$ is definite positive for any $(x, y, z) \in \mathbb{R}^3$. Therefore $f_1(x, y, z)$ is strictly convex in \mathbb{R}^3 .

(b) The function x^2 is strictly convex in \mathbb{R} as it is a monomial with an even power, so that the same holds for $5x^2$ as the scalar 5>0. Similarly, $9y^4$ is strictly convex in \mathbb{R} . Furthermore, both e^x and e^{-z} are strictly convex in \mathbb{R} by definition of the exponential function.

Therefore, $f_2(y, y, z)$ is the sum of functions that are strictly convex and is hence strictly convex in \mathbb{R}^3 .

- (c) By arguments analogue to those in (b), the function $x^2 + y^2$ is convex in \mathbb{R}^2 . Thus $f_3(x,y) = -(x^2 + y^2)$ is concave in \mathbb{R}^2 .
- (d) The Hessian matrix of $f_4(x, y)$ is given by

$$H_{f_4}(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix}.$$

And we have $\det(H_{f_4}(x,y)) = -4 < 0$. Therefore by Sylvester's criterion, $H_{f_4}(x,y)$ is indefinite and $f_4(x,y)$ is neither convex nor concave in \mathbb{R}^2 .

However, notice that when restricting its domain to $\mathbb{R} \times \{0\}$, the function $f_4(x,y)$ is convex. While when restricting its domain to $\{0\} \times \mathbb{R}$, it is concave.

1

Exercise 2.
$$f(x,y) = (x-y)^2 + (x+2y+1)^2 - 8xy = 2x^2 - 6xy + 5y^2 + 2x + 4y + 1$$
.

(a) Let
$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}$$
. If we set $Q = \begin{pmatrix} 2 & -3 \\ -3 & 5 \end{pmatrix}$, $b = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ and $c = 1$, then we obtain
$$f(x,y) = (x-y)^2 + (x+2y+1)^2 - 8xy = 2x^2 - 6xy + 5y^2 + 2x + 4y + 1$$
$$= \mathbf{x}^T Q \mathbf{x} + \mathbf{x}^T b + c.$$

(b) The Hessian matrix of f(x, y) is given by

$$H_f(x,y) = 2Q = \begin{pmatrix} 4 & -6 \\ -6 & 10 \end{pmatrix}.$$

Furthermore, we have $\Delta_1 = 4 > 0$ and $\Delta_2 = \det(2Q) = 4 > 0$. So that by Sylvester's criterion, $H_f(x, y)$ is a definite positive matrix for any $(x, y) \in \mathbb{R}^2$. This implies that f(x, y) is strictly convex in \mathbb{R}^2 .

(c) The critical points of f(x,y) are determined by

$$\nabla f(x,y) = 2Q\mathbf{x} + b = \begin{pmatrix} 4 & -6 \\ -6 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 4x - 6y + 2 \\ 10y - 6x + 4 \end{pmatrix} = 0.$$

The only solution is (x,y) = (-11,-7). Since f(x,y) is strictly convex in \mathbb{R}^2 , which admits no boundary point, (-11,-7) is the global minimum of f(x,y) in \mathbb{R}^2 .

Exercise 3.

(a) Let $x, y \in C$ and $0 \le \lambda \le 1$. First, because C is a convex set we have $\lambda x + (1 - \lambda)y \in C$. Furthermore, since both functions f(x) and g(x) are convex in C we also have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
 and $g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y)$.

It follows that

$$h(\lambda x + (1 - \lambda)x) = \max \left(f(\lambda x + (1 - \lambda)y), g(\lambda x + (1 - \lambda)y) \right)$$

$$\leq \max \left(\lambda f(x) + (1 - \lambda)f(y), \lambda g(x) + (1 - \lambda)g(y) \right)$$

$$\leq \max \left(\lambda f(x), \lambda g(x) \right) + \max \left((1 - \lambda)f(y), (1 - \lambda)g(y) \right)$$

$$= \lambda \max \left(f(x), g(x) \right) + (1 - \lambda) \max \left(f(y), g(y) \right)$$

$$\leq \lambda h(x) + (1 - \lambda)h(y).$$

Hence, by definition, h(x) is also convex in C.

(b) Let $x' \in C$ be a global minimum of h(x) in C, i.e. $h(x') \leq h(x)$ for all $x \in C$.

First, if g(x') = f(x') then we are done. So only the case $g(x') \neq f(x')$ remains. We can then assume without loss of generality that g(x') < f(x') = h(x'). And we will show next that x' is also a global minimum of f(x) in C.

Assume to a contradiction that there exists some $x'' \in C$ such that f(x'') < f(x'). Since $h(x'') \ge h(x')$, it follows that $g(x'') = h(x'') \ge h(x') = f(x')$. This means that there exists some $0 < \lambda_0 < 1$ satisfying

$$\lambda_0 g(x') + (1 - \lambda_0) g(x'') = \lambda_0 f(x') + (1 - \lambda_0) f(x'').$$

Furthermore, by convexity of C, we have $\lambda_0 x' + (1 - \lambda_0)x'' \in C$. But, by convexity of f and g in C, we also have that both

$$f(\lambda_0 x' + (1 - \lambda_0)x'') \le \lambda_0 f(x') + (1 - \lambda_0)f(x'') < f(x') = h(x'),$$

and

$$g(\lambda_0 x' + (1 - \lambda_0)x'') \le \lambda_0 g(x') + (1 - \lambda_0)g(x'') = \lambda_0 f(x') + (1 - \lambda_0)f(x'')$$

$$< f(x') = h(x').$$

This gives

$$h(\lambda_0 x' + (1 - \lambda_0) x'') < h(x').$$

This contradicts the assumption that x' is a global minimum of h(x) in C.

Exercise 4.

(a) The gradient of g(x,y) is given by

$$\nabla g(x,y) = (4x^3 + 4x - y, 4y^3 + 2y - x).$$

While its Hessian matrix is

$$H_g(x,y) = \begin{pmatrix} 12x^2 + 4 & -1 \\ -1 & 12y^2 + 2 \end{pmatrix}.$$

(b) The leading principal minors of $H_q(x,y)$ are

$$\begin{split} &\Delta_1 = 12x^2 + 4 \ge 4 > 0, \quad \text{as } x^2 \ge 0 \quad \forall x \in \mathbb{R}, \\ &\Delta_2 = (12x^2 + 4)(12y^2 + 2) - 1 \\ &= 144x^2y^2 + 24x^2 + 48y^2 + 7 \ge 7 > 0, \quad \text{as } x^2, y^2 \ge 0 \quad \forall x, y \in \mathbb{R}. \end{split}$$

Hence by Sylvester's criterion $H_g(x,y)$ is a definite positive matrix for any $(x,y) \in \mathbb{R}^2$. This implies that g(x,y) is a strictly convex function in \mathbb{R}^2 . And because the exponential function is increasing over \mathbb{R} , this further means that $f(x,y) = e^{g(x,y)}$ is also a strictly convex function in \mathbb{R}^2 .

(c) Another consequence of the fact that the exponential function is increasing over \mathbb{R} is that f(x,y) will reach its (global as f is convex) minimum when g(x,y) is minimum.

From (b), we know that g(x,y) is convex in \mathbb{R}^2 , thus its (unique) critical point will be a global minimum in \mathbb{R}^2 . The latter is determined by the equation $\nabla g(x,y) = 0$, whose unique solution in \mathbb{R}^2 is given by (x,y) = (0,0).

Thus the global minimum of f(x,y) in \mathbb{R}^2 is (0,0).