

Busca en Internet información sobre estas cuestiones:

Busca en Internet estrategias de aprendizaje para afrontar problemas y ejemplos de aplicación.

Estrategias cognitivas.

Estas estrategias básicas del aprendizaje se enfocan en los proceso mentales que fortalecen la comprensión, la memoria y el pensamiento critico.

Ejemplos de aplicación:

Síntesis, consiste en condensar la información en resúmenes.

Mapas de conceptos, organizar la información en representaciones graficas como mapas mentales permite establecer conexiones entre ideas.

Autoexplicación, verbalizar o redactar explicaciones de conceptos promueve la comprensión profunda

Estrategias metacognitivas.

Esta técnica se enfoca en la autoconciencia, el seguimiento y el control del proceso de aprendizaje de uno mismo. Esto involucra el establecimiento de metas, la planeación del estudio, el seguimiento, la comprensión y la evaluación del proceso. Esto permite que los estudiantes reflexionen sobre su avance por cuenta propia.

Ejemplos de aplicación:

Establecimiento de metas, Trazar objetivos específicos y medibles permite tener una dirección clara.

Seguimiento del progreso, comprobar el avance en la comprensión durante y después del estudio le permite a los alumnos identificar áreas que requieren más atención.

Estrategias socioafectivas.

Este tipo de estrategias se enfocan en los aspectos sociales y emocionales del aprendizaje. Reconocen el impacto de la interacción, la colaboración y el bienestar emocional durante el proceso de aprender.

Ejemplos de aplicación:

Tutorías entre estudiantes, los alumnos se enseñan mutuamente lo que refuerza el aprendizaje y desarrolla la confianza.

Aprendizaje cooperativo, las actividades colaborativas y los proyectos grupales promueven la interacción, el conocimiento compartido y la resolución colectiva de problemas.

Discusiones grupales, tener discusiones estructuradas estimula el pensamiento crítico, promueve la diversidad e incentiva la participación.

• Estrategias de compensación.

Involucran encontrar un enfoque o recurso alternativo para superar las dificultades. Algunos ejemplos incluyen solicitar aclaración de profesores o tutores, el uso de recursos externos o la utilización de tecnologías para estudiantes con necesidades específicas.

Ejemplos de aplicación:

Aclaraciones, hacer preguntas, pedir explicaciones de profesores y otros alumnos ayuda a aclarar dudas y evitar brechas en el aprendizaje.

Uso de recursos externos, consultar diccionarios, libros de texto, artículos o sitios web de buena reputación proporciona información adicional y ayuda a entender temas complejos.

Estrategias de aprendizaje digital.

Consiste en aprovechar los recursos tecnológicos para fortalecer el proceso de aprendizaje.

Ejemplos de aplicación:

Simulaciones virtuales, los entornos inmersivos virtuales permiten a los alumnos experimentar escenarios del mundo real para que puedan aplicar el conocimiento.

Presentaciones multimedia, crear e interactuar con contenidos multimedia como videos o presentaciones fortalece la comprensión y la retención.

Plataformas de aprendizaje gamificado, incorporar elementos del juego como quizzes, tableros de puntuación y recompensas aumenta la motivación y la participación en el proceso del aprendizaje.

¿El aprendizaje lógico es inductivo o deductivo? Razona.

En mi opinión el aprendizaje lógico no puede encasillarse en una de las dos ramas, ya que considero que el aprendizaje lógico utiliza la razón y la lógica para adquirir conocimientos y comprender el mundo que nos rodea. Para ello hace falta tener capacidad de analizar información, saber descomponerla en partes y comprender las relaciones entre ellas, identificar patrones, formular hipótesis, predecir consecuencias en base a los datos conocidos, evaluar los argumentos y por ultimo resolver el problema al que te enfrentas. Estos pasos pueden aplicarse tanto en un razonamiento inductivo como deductivo, y los dos pueden ser necesarios para la resolución del problema, el inductivo al ser más abierto y flexible se utilizaría para aprender de la experiencia y mejorar el conocimiento del mundo, mientras que el deductivo al ser más preciso y riguroso permite deducir consecuenticas a partir de premisas conocidas.

 Expresa un par de ejemplos de afirmaciones con inferencia deductiva e inductiva en tu día a a día.

Inferencia Deductiva:

- Ejemplo 1: Hoy es domingo, entonces mañana tengo que ir al trabajo.
 - La explicación de esta afirmación es que partiendo de la base de que hoy es domingo (premisa general), los días de la semana siguen un orden concreto (regla lógica) que lleva a que mañana es lunes y los lunes es día laborable.
- Ejemplo 2: Si el semáforo está en rojo entonces debo detenerme.
 - La premisa general según las normas de trafico dice que si un semáforo esta en rojo debes detenerte y esperar a que se ponga en verde.

Inferencia Inductiva:

- Ejemplo 1: Durante los últimos 4 días ha llovido por la tarde, hoy el cielo está nublado, por la tanto es probable que llueva.
- Ejemplo 2: Cada mañana al sonar el despertador estas cansado, durante la semana pasada cada vez que has ido a la cama tarde te has sentido cansado al despertar. Por lo tanto ir a dormir tarde afecta al tu descanso.

• Busca en Internet ventajas y desventajas de los tipos de aprendizaje supervisado, no supervisado, semisupervisado y por refuerzo.

APRENDIZAJE SUPERVISADO		
VENTAJAS	DESVENTAJAS	
El aprendizaje supervisado tiende a producir modelos altamente precisos, sobre todo cuando el conjunto de datos es amplio y esta bien etiquetado	Dependencia de los datos etiquetados, la necesidad de datos etiquetados, es una tarea que consume tiempo y recursos.	
Es una forma de aprendizaje muy flexible ya que permite resolver una gran cantidad de problemas diversos, como pueden ser clasificación de imágenes hasta predecir precios de acciones, etc	Si los datos de entrenamiento no son representativos del mundo real puede dar lugar a predicciones inexactas o discriminatorias al tener los datos etiquetados un sesgo.	
Es un modelo de aprendizaje que una vez ha sido entrenado suele realizar predicciones de forma rápida y bastante eficiente.	Los modelos de aprendizaje supervisado tienen tendencia a funcionar bien en el ámbito de los datos con los que fueron entrenados y a tener dificultades para hacer predicciones precisas en caso de tener datos nuevos muy distintos a los datos de entrenamiento.	
Algunos de los algoritmos de aprendizaje supervisado como la regresión lineal, son relativamente fáciles de interpretar y comprender.	En contrapartida algunos algoritmos de aprendizaje supervisado como las redes neuronales profundas, son difíciles de interpretar y comprender.	

APRENDIZAJE NO SUPERVISADO	
No requiere datos etiquetados, lo que lo hace más flexible y menos costoso en tiempo y procesamiento que el aprendizaje supervisado.	En tareas de predicción los modelos de aprendizaje no supervisado no resultan tan precisos como en el aprendizaje supervisado.
Es ideal para la detección de patrones y estructuras ocultas en los datos que no son evidentes a simple vista.	La interpretación de los resultados pueden resultar difíciles de interpretar lo que a su vez dificulta la comprensión del por qué el modelo ha hecho las predicciones que ha hecho.
Puede manejar conjuntos de datos con muchas variables o características, lo que lo hace adecuado para problemas donde la dimensión de los datos es alta.	Algunos de los algoritmos de aprendizaje no supervisado pueden ser difíciles de escalar a grandes conjuntos de datos.
	El entrenamiento de modelos de aprendizaje no supervisado tiende a ser mas lento que el entrenamiento de modelos de aprendizaje supervisado.

APRENDIZAJE SEMISUPERVISADO	
El aprendizaje semisupervisado puede aprovechar tanto datos etiquetados como no etiquetados, lo que le permite una mejor utilización de los recursos disponibles y aumenta la eficiencia del proceso de entrenamiento.	La efectividad del aprendizaje semisupervisado puede verse comprometida si los datos no etiquetados contienen ruido o están mal representados.
Al integrar información de datos no etiquetados, el aprendizaje puede ayudar a los modelos a generalizar mejor datos nuevos o no vistos, lo que resulta en modelos más robustos y precisos.	Los algoritmos semisupervisados son mas difíciles de implementar que los enfocados puramente en supervisados o en no supervisados.
Es menos susceptible al sesgo en los datos que el aprendizaje supervisado.	Al combinar datos supervisados y no supervisados, puede ser más difícil interpretar los resultados del modelo y entender como se tomaron las decisiones, lo que complica el entendimiento de como se llego al resultado.
Es más fácilmente escalable a grandes conjuntos de datos con mayor facilidad que el aprendizaje supervisado.	Si los datos (supervisados y no supervisados) no están equilibrados o no son representativos, el modelo puede no generalizar bien a nuevos datos.

APRENDIZAJE POR REFUERZO		
Es un tipo de aprendizaje muy autónomo, ya que permite que los agentes aprendan a tomar decisiones y actuar de forma autónoma en entornos complejos.	Definir una función de recompensa adecuada puede ser difícil y crucial para el éxito del aprendizaje.	
Es un aprendizaje muy flexible que se puede emplear en muchos ámbitos.	El entrenamiento de agentes de aprendizaje por refuerzo puede ser lento y requerir mucho tiempo de computación.	
Es un tipo de aprendizaje muy escalable a grandes conjuntos de datos y entorno complejos.	Los agentes de aprendizaje por refuerzo son sensibles a la aleatoriedad en el entorno.	
Puede ser mas eficiente que el aprendizaje supervisado ya que no requiere el conjunto de datos etiquetados.	Si las recompensas están mal diseñadas existe el riesgo de que el agente aprenda comportamientos erróneos.	