Aula 6: Validação de Modelos

Luíz Fernando Esser

Fundamentos de Modelagem de Distribuição de Espécies no R

Na última aula...

- ✓ Distâncias
- Envelopes
- ✓ Regressões
- ✓ Redes Neurais
- ✓ SVM
- ✓ CART
- ✓ Discriminantes
- ✓ MaxEnt

O que vamos fazer hoje?

Teórica (13:30 ~ 15:10):

- Problemas com os modelos
- Subsampling
- UValidação Cruzada
- Bootstraping
- Matriz de Confusão
- Binarização
- Métrica sem binarização

Framework - SDM

Imaginemos o seguinte cenário...

Como saber se meu modelo condiz com a realidade?

Esse modelo é melhor do que o modelo que eu gerei com outro algoritmo (SVM, MaxEnt, ...)?

Voltar a campo para coletar mais dados...

Escondendo dados:

Subsampling

spp	Long	Lat
Sp1	-49.14	-27.62
Sp1	-49.53	-26.81
Sp1	-49.41	-26.97
Sp1	-49.07	-26.22
Sp1	-48.90	-26.05
Sp1	-49.10	-25.33
Sp1	-48.69	-25.61
Sp1	-48.91	-25.39
Sp1	-48.85	-25.27
Sp1	-48.17	-25.18
Sp1	-49.13	-24.96
Sp1	-48.70	-24.86
Sp1	-48.76	-24.48
Sp1	-49.05	-24.17
Sp1	-45.69	-23.66

Teste

spp	Long	Lat
Sp1	-46.61	-23.41
Sp1	-45.30	-23.39
Sp1	-44.81	-23.23
Sp1	-46.96	-23.25
Sp1	-45.02	-23.26

✓ 80% de✓ acerto

Escondendo dados:

Validação Cruzada / Crossvalidation

spp	Long	Lat	Grupo
Sp1	-49.14	-27.62	1
Sp1	-49.53	-26.81	1
Sp1	-49.41	-26.97	1
Sp1	-49.07	-26.22	1
Sp1	-48.90	-26.05	1
Sp1	-49.10	-25.33	2
Sp1	-48.69	-25.61	2
Sp1	-48.91	-25.39	2
Sp1	-48.85	-25.27	2
Sp1	-48.17	-25.18	2
Sp1	-49.13	-24.96	3
Sp1	-48.70	-24.86	3
Sp1	-48.76	-24.48	3
Sp1	-49.05	-24.17	3
Sp1	-45.69	-23.66	3
Sp1	-46.61	-23.41	4
Sp1	-45.30	-23.39	4
Sp1	-44.81	-23.23	4
Sp1	-46.96	-23.25	4
Sp1	-45.02	-23.26	4

4-fold crossvalidation

Treino: 1 2 3 Teste: 4

Treino: 1 2 **3** 4 Teste: 3

Treino: 1 3 4 Teste: 2

Treino: 2 3 4 Teste: 1

Repetir n vezes

Jackknife: 20-fold crossvalidation

Leave-one-out: Deixe um de fora.

Escondendo dados:

Bootstrap

Reamostragem	com	reposição
	O O	- 3 - 3 - 3

Código	spp	Long	Lat
1	Sp1	-49.14	-27.62
2	Sp1	-49.53	-26.81
3	Sp1	-49.41	-26.97
4	Sp1	-49.07	-26.22
5	Sp1	-48.90	-26.05
6	Sp1	-49.10	-25.33
7	Sp1	-48.69	-25.61
8	Sp1	-48.91	-25.39
9	Sp1	-48.85	-25.27
10	Sp1	-48.17	-25.18
11	Sp1	-49.13	-24.96
12	Sp1	-48.70	-24.86
13	Sp1	-48.76	-24.48
14	Sp1	-49.05	-24.17
15	Sp1	-45.69	-23.66
16	Sp1	-46.61	-23.41
17	Sp1	-45.30	-23.39
18	Sp1	-44.81	-23.23
19	Sp1	-46.96	-23.25
20	Sp1	-45.02	-23.26

Treino: 75%

Teste: 25%

Pontos sorteados para o grupo treino também podem cair no grupo teste!

Qual dos métodos se saiu melhor?

spp	Long	Lat			
Sp1	-46.61	-23.41	✓	000/ 1-	
Sp1	-45.30	-23.39	✓	80% de	Acurácia (proporção de acertos)
Sp1	-44.81	-23.23	✓	acerto	Acutacia (proporção de acertos)
Sp1	-46.96	-23.25	✓		
Sp1	-45.02	-23.26	×		

Matriz de Confusão

tarizh ed Caonuosf

Os algoritmos retornam probabilidade de presença!

Como conseguir dados de presença e ausência dos modelos?

Binarização

Mais intuitiva: Threshold (limiar) = 0.5 Probabilidade de ocorrência > 0.5 = Presença Probabilidade de ocorrência < 0.5 = Ausência

tarizMed Cãonuosf

		Predicted condition		Sources: [13][14][15][16][17][18][19][20]	view-talk-edit	
	Total population = P + N	Predicted condition positive (PP)	Predicted condition negative (PN)	Informedness, bookmaker informedness (BM) = TPR + TNR - 1	Prevalence threshold $(PT) = \frac{\sqrt{TPR \cdot FPR} - FPR}{TPR - FPR}$	
Actual condition	Actual condition positive (P)	True positive (TP), hit	False negative (FN), Type II error, miss, underestimation	True positive rate (TPR), recall, sensitivity (SEN), probability of detection, hit rate, power $= \frac{TP}{P} = 1-FNR$	False negative rate (FNR), miss rate = $\frac{FN}{P}$ = 1-TPR	
	Actual condition negative (N)	False positive (FP), Type I error, false alarm, overestimation	True negative (TN), correct rejection	False positive rate (FPR), probability of false alarm, fall-out = $\frac{FP}{N}$ = 1-TNR	True negative rate (TNR), specificity (SPC), selectivity = $\frac{TN}{N}$ = 1-FPR	
	Prevalence = P P + N	Positive predictive value (PPV), precision = TP PP = 1-FDR	False omission rate (FOR) = FN PN = 1-NPV	Positive likelihood ratio (LR+) = $\frac{TPR}{FPR}$	Negative likelihood ratio (LR-) = FNR TNR	
	Accuracy (ACC) = TP + TN P + N	False discovery rate (FDR) = FP PP = 1-PPV	Negative predictive value (NPV) = TN PN = 1-FOR	Markedness (MK), deltaP (Δp) = PPV + NPV - 1	Diagnostic odds ratio (DOR) = LR+ LR-	
	Balanced accuracy (BA) = TPR + TNR 2	F ₁ score = 2·PPV·TPR PPV + TPR = 2TP 2TP + FP + FN	Fowlkes–Mallows index (FM) = √PPV·TPR	Matthews correlation coefficient (MCC) = √TPR·TNR·PPV·NPV – √FNR·FPR·FOR·FDR	Threat score (TS), critical success index (CSI) = TP TP + FN + FP	

Max (Sensitivity + Specificity)

TSS (True Skill Statistics) = Sensitivity + Specificity -1

Validaçã Dara S rica

Capítulo 15 Table 15.3

Table 15.3 The most commonly used metrics that can be derived from a two-way contingency table comparing presence—absence observations to binary predictions. These metrics are therefore threshold-dependent. TP = true presence, FP = false presence, FA = false absence, TA = true absence, N = TP + FP + FA + TA; see Table 15.2. See also Liu et al. (2011) for additional measures.

Type	Metric	Abbreviation	Description	Range	Formula
Data properties	Sample size Prevalence	N PRE	Total number of observations Proportion of presences in the	[1: inf] [0: 1]	TP + FP + FA + TA (TP + FA)/N
	Overall diagnostic power	ODP	dataset Proportion of absences in the dataset	[0:1]	(FP + TA)/N = 1 - PREV
Optimist's view(no difference	Correct classification rate	CCR	Percentage of correct predictions (presences and absences)	[0:1]	(TP + TA)/N
between types of errors)	Misclassification rate	MR	Percentage of false predictions (presences and absences)	[0:1]	(FP + FA)/N
Observer's view(by	Sensitivity (=true positive rate)	SE	Percentage of presences correctly predicted	[0:1]	TP/(TP + FA)
column in Table 15.2)	False absence rate (=false negative rate)	FAR	Percent of presences falsely predicted	[0:1]	FA/(TP + FA) = 1 – SE
•	Specificity (=true negative rate)	SP	Percentage of absences correctly predicted	[0:1]	TA/(TA + FP)
	False presence rate (=false positive rate)	FPR	Percentage of absences falsely predicted	[0:1]	FP/(FP + TA) = 1 - SP
Modeler's view (by row in	Presence predictive power (=positive predictive power)	PPP	Percentage of all positive predictions being presences	[0:1]	TP/(TP + FP)
Table 15.2)	Absence predictive power (=negative predictive power)	APP	Percentage of all negative predictions being absences	[0:1]	TA/(FA + TA)
Balanced view (full use of the confusion matrix,i.e. Table 15.2)	Normalized mutual information	NMI	See Forbes (1995); non- monotonic when excessive error rates		[-TP * ln(TP) - FP * ln(FP) - FN * ln(FA)-TN * ln(TA) + (TP+FP) * ln(TP + FP) + (FA + TA)* ln(FA + TA)]/[N * lnN - ((TP + FA) * ln(TP + FA) + (FP + TA) * ln(FP + TA))]
	Kappa	K	See Cohen (1960); sensitive to sample size and prevalence	[-1:1]	[(TP + TA)-(((TP + FA) * (TP + FP) + (FP + TA) * (FA + TA))/N)]/[N - (((TP + FA) * (TP + FP) + (FP + TA) * (FA + TA))/N)]
	Weighted Kappa	WK	See Cohen (1968); same as K but with weights assigned to TP, FP, FA and TA	[-1:1]	Above formula weighted for TP, FP, FA and TA; see Cohen (1968)
	Odds Ratio	OR	Infinite when either b or c are 0; i.e. same value when the algorithm is perfect or lacks one type of error	[0: inf]	(TP * TA)/(FP * FA)
	True skill statistic (or Hanssen-Kuiper skill score)	TSS (or HKSS)	See Hanssen and Kuipers (1965); tends to converge to the prevalence for rare events (i.e. when TA is very large)	[-1:1]	[(TP *TA) - (FP * FA)]/ [(TP + FA) * (FP + TA)] = SE + SP -1

E se não quiser binarizar?

Area Under the Receiver Operating Characteristic Curve

Alinhavando...

- ✓ Problemas com os modelos
- ✓ Subsampling
- ✓ Validação Cruzada
- ✓ Bootstraping
- ✓ Matriz de Confusão
- ✓ Binarização
- ✓ Métrica sem binarização