Le second degré

Algebre - Cours

I Les fonctions polynômes du second degré

I. 1 Forme développée

Définitions:

On appelle fonction polynôme (ou trinôme) du second degré toute fonction f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ où a, b et c sont trois réel avec $a \neq 0$. Les réels a, b et c sont appelés coefficients de la fonction.

Remarque : L'expression $ax^2 + bx + c$ est dit forme développée de f(x).

I. 2 Forme canonique

Théorème 1:

Toute fonction trinôme du second degré définie par $f(x)=ax^2+bx+c$ peut s'écrire sous une forme appelée canonique $f(x)=a(x-\alpha)^2+\beta$, avec $\alpha=-\frac{b}{2a}$ et $\beta=f(\alpha)$.

I. 3 Sens de variation

Propriété 1:

Soit f une fonction définie sur \mathbb{R} par $f(x) = a(x - \alpha)^2 + \beta$.

- (i) Cas où a > 0: la fonction f est strictement décroissante sur $]-\infty;\alpha]$ puis strictement croissante sur $[\alpha; +\infty[$. La fonction f admet un minimum égal à β atteint en $x=\alpha$.
- (ii) Cas où a < 0: la fonction f est strictement croissante sur $]-\infty;\alpha]$ puis strictement décroissante sur $[\alpha; +\infty[$. La fonction f admet un maximum égal à β atteint en $x=\alpha$.

On retient:

I. 4

Propriété 2 : conséquence

Soit f une fonction définie par $f(x) = a(x - \alpha)^2 + \beta$.

Représentation graphique

Dans un repère orthogonal d'origine O, la représentation graphique de la fonction f est une parabole de sommet $S(\alpha; \beta)$ qui admet pour axe de symétrie la droite d'équation $x = \alpha$.

On retient:

II Factorisation d'une fonction du second degré et résolution d'équation du second degré

II. 1 Factorisation

Définition: discriminant

On appelle discriminant de la fonction trinôme $f(x) = ax^2 + bx + c$ ou de l'équation $ax^2 + bx + c = 0$ le réel Δ défini par $\Delta = b^2 - 4ac$.

Théorème 2 : factorisation d'un trinôme du second degré

Soit f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

(i) Si
$$\Delta < 0$$
, alors $f(x) = ax^2 + bx + c$ n'est pas factorisable.

(ii) Si
$$\Delta = 0$$
, alors $f(x) = a(x - \alpha)^2$ où $\alpha = -\frac{b}{2a}$.

(iii) Si
$$\Delta > 0$$
, alors $f(x) = a(x - x_1)(x - x_2)$ où $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

II. 2 Résolution des équation du second degré

Théorème 3:

Soit l'équation $ax^2 + bx + c = 0$ avec $a \neq 0$.

- (i) Si $\Delta < 0$, l'équation $ax^2 + bx + c = 0$ n'admet aucune solution.
- (ii) Si $\Delta = 0$, l'équation $ax^2 + bx + c = 0$ admet une unique solution $\alpha = \frac{-b}{2a}$.
- (iii) Si $\Delta > 0$, l'équation $ax^2 + bx + c = 0$ admet deux solutions distinctes : $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

II. 3 Somme et produit des racines

Propriété 3:

Soit x_1 et x_2 les racines d'une fonction polynôme du second degré $f(x) = ax^2 + bx + c$, avec $a \neq 0$. On a alors $x_1 + x_2 = -\frac{b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$

III Signe d'une fonction du second degré et inéquations

Propriété 4:

Soit f définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$.

- (i) Si $\Delta < 0$, alors pour tout réel x, f(x) est du signe de a.
- (ii) Si $\Delta = 0$, alors pour tout réel x, f(x) est du signe de a sauf en α où f(x) = 0.
- (iii) Si $\Delta > 0$, alors pour tout réel x, f(x) s'annule en x_1 et x_2 et est du signe de a pour tout $x \in]-\infty; x_1[\cup]x_2; +\infty[$ avec $x_1 < x_2$ et du signe opposé à celui de a pour tout $x \in]x_1; x_2[$.

Remarque : On peut retenir que f(x) est du signe de a sauf entre les racines lorsqu'elles existent.