SHUBHANKAR MILIND POTDAR

smpotdar@andrew.cmu.edu | +14127266538 | Papers and demos: smpotdar.github.io

EDUCATION

Carnegie Mellon University, Pittsburgh, PA

May 2020

Masters in Electrical and Computer Engineering.

<u>Graduate Courses:</u> Robot localization and mapping, Intro to ML, Computer Vision, Intermediate Deep Learning, ML for Structured Data, Advanced Probability and Statistics, Foundations of Computer Systems, Distributed Systems.

Veermata Jijabai Technological Institute (VJTI), University of Mumbai, India

May 2016

Bachelor of Technology in Electrical Engineering.

PUBLICATIONS

- A Harley, Y Zuo, J Wen, A Mangal, **S. Potdar**, R. Chaudhry and K Fragkiadaki. "*Track, Check, Repeat: An EM Approach to Unsupervised Tracking*." **CVPR 2021.** Paper Page
- M Prabhudesai*, S Lal*, HYF Tung, A Harley, **S. Potdar**, and K Fragkiadaki. "3DQ-Nets: Visual Concepts Emerge in Pose Equivariant 3D Quantized Neural Scene Representations." **CVPR Workshops 2020.** Paper Page
- **S. Potdar**, S. Pund, S. Shende, S.Lote, K. Kanakgiri and F. Kazi. "Real-time localisation and path-planning in ackermann steering robot using a single RGB camera and 2D LIDAR". **IEEE ICIIECS 2017** Paper Page
- S. Potdar, A. Sawarkar, and F. Kazi. "Learning from demonstration from multiple agents in humanoid robot." IEEE SCEECS 2016 Paper Page

SKILLS AND PROGRAMMING LANGUAGES

- <u>Programming Languages:</u> Python (Level: Advance), Matlab (Level: Intermediate), C++(Level: Intermediate), C (Level: Beginner), Java(Level: Beginner), C# (Level: Beginner).
- Software Libraries: PyTorch, TensorFLow, Theano, Keras, OpenCV, Microsoft Kinect SDK, ROS, Intel RealSense SDK.

RELEVANT PROFESSIONAL EXPERIENCE

Research Intern (Advisor: Prof. Katerina Fragkiadaki), Machine Learning Department, CMU

July 2020 - Present

- Project: Various projects in tracking and object recognition
- Responsible for implementing models from research papers using pytorch, conducting experiments and contributing to new research papers.
- <u>Track, Check, Repeat:</u> Contributed in developing an EM based unsupervised technique to track 3D objects in videos and reported state-of-the-art accuracy in object discovery and tracking on CATER and KITTI.
- 3DQ-Net: Contributed in developing a model to detect objects in 3D without 3D supervision and outperform baselines
- <u>Tracking Invisible Pixels</u>: Developed a dense optical flow and voting based technique to track visible and occluded pixels in a video and achieved state of the art accuracy on modified versions of the SINTEL and Flyingthings3D datasets.

Computer Vision Intern, Bossa Nova Robotics, CMU, Pittsburgh

May 2019 - August 2019

Bossa Nova Robotics is a startup robotics company that manufactures inventory control robots for use in retail stores. **Project: Product Image Classification**

- Deployed ResNet, VGGNet on board robots to perform classification of the products seen by the robots in the aisle.
- Overcame the problem of imbalanced dataset by using various losses like focal-loss, ring-loss and techniques like imbalanced sampling to achieve test accuracy of 97%.

Research Fellow, Cerelabs Private Limited, Mumbai, India

July 2018-November 2018

Cerelabs is a software services and products' company which utilizes AI to provide solutions for businesses. I was responsible for conducting research and developing novel solutions for the clients.

Project: Electronic Information Extraction from Document. (Optical Character Recognition team)

• Developed programs to correct text from the OCR using Noisy Channel Model and Bayesian Hypothesis estimation.

COURSE PROJECTS

Project: Extending ORB SLAM to a multi-camera setup (with Prof. Michael Kaess) Page Paper

- Proposed the novel Unified Key Frame (UKF) approach for feature collection in ORB-SLAM on a multi-camera setup.
- Improved qualitative performance on KITTI dataset when compared to the baseline of single camera based ORB-SLAM.

Project: Vehicle detection from point-cloud data (with Prof. Ruslan Salakhutdinov)

- Utilized PointCNN architecture to improve feature extraction network for detection in PointRCNN architecture.
- Improved detection performance of PointRCNN by 9.33% in mIOU and 4% in mAP for the car class on KITTI dataset

Project: 3D Dense Reconstruction Using ICP and Point-based Fusion using RGB-D images. Page

- Implemented a tracking and mapping system that reconstructs a 3D dense model of a static indoor environment.
- Performed tracking using point-to-plane iterative closest point (ICP) and mapping using point-based fusion.