1. [intro\_to\_numpy.py] เติมคำสั่งลงในช่องว่าง/พัฒนาโปรแกรม เพื่อให้โปรแกรมสามารถทำงานได้อย่างถูกต้อง ตัวอย่างการทำงานโปรแกรม

1.1

```
>>>
                                >>> import numpy as np
>>> a = np.array(
                                >>> x =
>>> type(a)
                                >>> x*2
<class 'numpy.ndarray'>
                                array([ 4, 6, 10, 14, 22, 26])
>>> len(a)
                                >>> y =
                                >>> x*2+y
>>> a[0]
                                array([ 5, 6, 11, 14, 23, 26])
>>> a[1]
>>> a[-1]
32
>>> a[-2]
21
```

1.3

## ในไฟล์ values.txt

## ข้อมูลส่งออก

| 18.2        | Sum of | all | values | is | 74.8 |
|-------------|--------|-----|--------|----|------|
| <u>17.9</u> |        |     |        |    |      |
| 18.2        |        |     |        |    |      |
| 20.5        |        |     |        |    |      |
|             |        |     |        |    |      |

1.4 หาคา x(rms) เมื่อกำหนดให้ x = (2,3,5,7,11,13)

$$x_{rms} = \sqrt{rac{1}{n}(x_1^2 + x_2^2 + \ldots + x_n^2)}.$$

1.5

```
>>> import numpy as np
                                 >>> import numpy as np
>>> a =
                                >>> table =
np.array([[5,6,7],[3,2,1]])
                                >>> type(table)
>>> a[ ][ ]
                                 <class 'numpy.ndarray'>
                                 >>> table.shape
>>> a[ ][ ]
                                 (3, 4)
                                 >>> table[0][0]
>>> a[__][__]
                                 >>> table[1][3]+table[2][1]
                                 15
                                 >>> table.T[2]
                                 array([ 3, 4, 5])
```

1.7 หาผลรวมของแต่ละแถวและแต่ละหลักจากไฟล์ที่กำหนดให้

## ในไฟล์ values.txt

## ข้อมูลส่งออก

| 23,48,51,79 | Sum of row#0 is 201.0                                                                                        |
|-------------|--------------------------------------------------------------------------------------------------------------|
| 80,76,43,20 | Sum of row#1 is 219.0                                                                                        |
| 98,67,55,85 | Sum of row#2 is 305.0                                                                                        |
|             | Sum of column#0 is 201.0<br>Sum of column#1 is 191.0<br>Sum of column#2 is 149.0<br>Sum of column#3 is 184.0 |

- 2. [matrix\_operation.py] กำหนดให้ A, B, C เป็นเมทริกซ์ขนาด [3x4] [4x4] และ [4x3] ตาม ลำดับซึ่งสามารถดูค่าภายในเมทริกซ์ได้จากลิงค์ไฟล์ที่แนบไว้ในหมายเหตุ ต้องการให้หาคำ ตอบของการดำเนินการเมทริกซ์ต่อไปนี้ (หากไม่สามารถหาค่าได้เนื่องด้วยจำนวนมิติของเมทริกซ์ให้ระบุสาเหตุมาด้วย)
  - 1.  $A^t + 7C$
  - 2.  $B^3$
  - 3.  $(AB)^{t} C$
  - **4.**  $C(C^t + 2A)$

สามารถดาว์นโหลดไฟล์เมทริกซ์ A B C ได้ที่ https://goo.gl/nxLmaa

- 3. [plot\_function.py] ให้นิสิตพล็อตกราฟ f(x) =  $x^3 2x + 1$  ในช่วง -2 <= x <= 2
- 4. **[plot\_weather.py]** จากข้อมูลที่กำหนดให้ให้สร้างกราฟตามแบบที่กำหนด (Rainfall ใช้สี jet colormap)

| Temperature<br>(C) | Humidity<br>(%) | Daily Rainfall<br>(mm) |
|--------------------|-----------------|------------------------|
| 28                 | 50              | 10                     |
| 32                 | 65              | 25                     |
| 25                 | 34              | 0                      |
| 35                 | 90              | 50                     |
| 30                 | 75              | 16                     |



5. **[plot\_bmi.py]** ให้โหลดข้อมูลความสูงและน้ำหนัก โดยโหลดข้อมูลได้จาก https://goo.gl/iDDKcd และ bmi สามารถคำนวณได้จาก น้ำหนักหารส่วนสูงกำลังสอง

