Tutorial 11 Euclidean Vector Spaces

Euclidean vector spaces

- 1. Given the vectors $\boldsymbol{a}=[1,2,0,2]$ and $\boldsymbol{b}=[-2,0,1,1],$ find:
 - (i) a + 2b
 - (ii) The unit vector $\hat{\boldsymbol{b}}$
 - (iii) A vector in the same direction as \boldsymbol{b} but has the same length of \boldsymbol{a}

2. Given the points A(2,4,3,-1,1) and B(3,1,1,0,-2) in \mathbb{R}^5 , find the distance between the points A and B.

3. For the vectors $\mathbf{a}=[4,1,-2,2]$ and $\mathbf{b}=[1,0,3,2]$ determine the vector projection of \mathbf{a} on \mathbf{b} .

4. Find the angle between the hyperplanes $2x_1-x_2-2x_3+x_4=-1$ and $x_1+3x_2-x_4=2$.

Vector subspaces

 For each of the following sets of vectors, determine whether or not it is a subspace of \(\mathbb{R}^3 \), giving reasons for your answer.

(i)
$$V = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid x - 2y = 0 \right\}$$
 (ii) $U = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3 \mid x^2 = 2y \right\}$

(iii)
$$W = \left\{ \begin{bmatrix} 2 \\ y \\ z \end{bmatrix} \in I\!\!R^3 \mid y,z \in I\!\!R \right\}$$

Do on Thursday in lecture

Linear combinations

6. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \in \mathbb{R}^3$. Show that $\mathbf{w} = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$ is a linear combination of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 .

7. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix} \in \mathbb{R}^3$. Show that $\mathbf{w} = \begin{bmatrix} 3 \\ -3 \\ 1 \end{bmatrix}$ can not be written as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 .

Linearly Independent (LI) & Linearly Dependent (LD)

Scalar Multiples

If you only have 2 vectors and they are scalar multiples, then the set is LD.

Linear Combinations

For a set of vectors $\{v_1, v_2, v_3, ...\}$ if the only solution to

 $C_1v_1 + C_2v_2 + C_3v_3 \dots = 0$ is $C_1 = C_2 = C_3 = 0$ (trivial solution) then the set of vectors is \Box

• Any other solution for C_1 , C_2 , C_3 , ... then LD. (e.g. infinite solutions or non-trivial solutions)

Determinant Method

If the vectors make a square matrix and the determinant = 0, then LD.

More vectors than the space then LD

If you are in 4 space but have 5 vectors then the set is LD

BUT...if you have 4 vectors in 5 space then you need to check using the Linear Combination method.

Linear dependence / independence

8. For each of the following sets of vectors, decide whether they are l.i. or l.d.

(i)
$$\left\{ \begin{bmatrix} -10\\15 \end{bmatrix}, \begin{bmatrix} 4\\-6 \end{bmatrix} \right\}$$
 (ii) $\left\{ \begin{bmatrix} 7\\3 \end{bmatrix}, \begin{bmatrix} 21\\12 \end{bmatrix} \right\}$

(iii)
$$\left\{ \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\2\\-3 \end{bmatrix} \right\}$$
 (iv) $\left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$

(v)
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \begin{bmatrix} 3\\1\\2 \end{bmatrix} \right\}$$
 (vi) $\left\{ \begin{bmatrix} 1\\-1\\2\\-2 \end{bmatrix}, \begin{bmatrix} 3\\-1\\4\\-4 \end{bmatrix}, \begin{bmatrix} 2\\-3\\6\\-2 \end{bmatrix} \right\}$