Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Информационных технологий и программирования

Расчетно-графическая работа **«Интеграл и функция нескольких переменных»** Математический анализ

Выполнили: Бобков Артем Грибов Артем Комашко Александр Насонов Петр Орлов Максим

<u>Группа</u>: М3100 ∡

<u>Преподаватель:</u> Далевская Ольга Петровна

Содержание

Задание 1. Интеграл функции одной переменной	3
Задание 2. Исследование функции двух переменных	4
Задание 3. Интегралы Пуассона и Френеля	5
Задание 4. Потенциал векторного поля	6
Задание 5. Поток векторного поля	7

Задание 1. Интеграл функции одной переменной

Условие.

В задачах проведите исследование:

- 1.Составьте математическую модель задачи: введите обозначения, выпишите данные, составьте уравнение (систему уравнений), содержащее неизвестное.
 - 2.Решите задачу аналитически.
 - 3. Сделайте графическую иллюстрацию к решению задачи.
 - 4.Запишите ответ.

Вычислите силу давления воды на пластинку, вертикально погруженную в воду, считая, что удельный вес воды равен 9.81 kH/m^3 . Результат округлите до целого числа. Форма, размеры и расположение пластины указаны на рисунке.

Решение.

It is empty but you can fill it!

Omsem: It is empty but you can fill it!

Задание 2. Исследование функции двух переменных

Условие.

- А. Изобразите поверхность, заданную уравнением z = z(x, y), в программе Geogebra 3D. Выполните следующие этапы исследования:
 - 1. Найдите область определения z = z(x, y).
 - 2. Постройте в программе Geogebra Classic (на одном листе!) семейство линий уровня z(x,y)=c. Для построения выберите 3–4 значения c. Определите тип построенных кривых (найдите уравнения линий уровня при выбранных значениях c). Если разным c соответствуют кривые разных типов (например: прямые, окружности, точка), изобразите все типы линий уровня.
 - 3. Выберите на поверхности какую-либо обыкновенную и не стационарную точку M_0 (определите ее координаты $x_0, y_0, z = z(x_0, y_0)$). Докажите (по определению), что выбранная точка не является особой и стационарной.
 - 4. Найдите вектор \overrightarrow{m} направление наискорейшего спуска (подъема) в точке M_0 .
 - 5. Изобразите в программе Geogebra Classic линию уровня $z = z(x_0, y_0)$ и направление. Проверьте их ортогональность.
- В. Найдите наибольшее и наименьшее значения функции u = u(x, y) в области D:
 - 1. Найдите стационарные точки внутри области.
 - 2. Определите, являются ли стационарные точки точками экстремума.
 - 3. Исследуйте значения функции вдоль границ области.
 - 4. Определите точки области, в которых достигаются наибольшее и наименьшее значения функции, и сами значения

Функция
$$z = z(x,y)$$
 Функция $u = u(x,y)$ Область D
$$z = \frac{8y}{x^2 + 4u^2} \qquad u = x^2 + 2x + y^2 - 4y + 4 \quad 0 \le x \le 2, \ 0 \le y \le 3$$

Решение.

It is empty but you can fill it!

Omsem: It is empty but you can fill it!

Задание 3. Интегралы Пуассона и Френеля

Условие.

Вычислите интеграл K:

$$\int_0^\infty \frac{\sin\left(\frac{\pi}{2} - t\right)}{\sqrt{t}} dt$$

Замечание. В задачах физики и дифракционной оптики возникают интегралы вида:

$$\int e^{-x^2} dx, \int \frac{\sin(t)}{\sqrt{t}} dt, \int \frac{\cos(t)}{\sqrt{t}} dt$$

которые являются специальными функциями (т.е. «неберущимися» интегралами).

Однако, переход к «многомерным» интегралам позволяет вычислить по крайней мере функцию ошибок $\Phi(z) = \int_0^z e^{-x^2} dx$ и интегралы Френеля: $\Phi_S(z) = \int_0^z \frac{\sin(t)}{\sqrt{t}} dx$ и $\Phi_C(z) = \frac{\cos(t)}{\sqrt{t}} dx$

- 1. Вычисление $\int_0^\infty e^{-x^2} dx = I$:
 - Заметьте, что $I = \int_0^\infty e^{-x^2} dx = \int_0^\infty e^{-y^2} dy$ Тогда $I^2 = \int_0^\infty e^{-x^2} dx \int_0^\infty e^{-y^2} dy$ дву-кратный интеграл.
 - Перейдите к полярным координатам и вычислите его.
- 2. Вычисление $\int_0^\infty \frac{\sin(t)}{\sqrt{t}} dt = J$
 - Используя результат пункта 1), докажите справедливость интегрального представления функции $\frac{2}{\sqrt{\pi}} \int_0^\infty e^{-u^2} du = \frac{1}{\sqrt{t}}$.В интеграле J замените функцию $\frac{1}{\sqrt{t}}$ её интегральным представлением и получите двойной (несобственный) интеграл.
 - Выберите порядок интегрирования так, чтобы можно было найти первообразную в элементарных функциях. (Смена порядка интегрирования требует обоснования, но в данном случае она разрешена.)
 - Вычислите интеграл J, затем интеграл K.
 - Используя замену переменной и сводя эти интегралы к J, вычислите также:

$$\int_0^\infty \sin(x^2) dx \, \operatorname{u} \int_0^\infty \sin(\frac{\pi x^2}{2}) dx$$

3. Нарисуйте графики функции ошибок, интегралов Френеля и их подынтегральных функций.

Решение.

It is empty but you can fill it!

Omsem: It is empty but you can fill it!

Задание 4. Потенциал векторного поля

Условие.

Дано векторное поле $\overrightarrow{H} = \left(\frac{1}{x^2}; \frac{1}{y^2}\right)$

Выполните:

- 1. Убедитесь, что данное векторное поле потенциально.
- 2. Найдите уравнения векторных линий. Изобразите векторные линии на рисунке.
- 3. Найдите потенциал поля при помощи криволинейного интеграла.
- 4. Найдите уравнения линий уровня потенциала (эквипотенциальных линий). Изобразите линии уровня потенциала.
- 5. Докажите ортогональность найденных векторных линий поля и линий уровня потенциала. Проиллюстрируйте ортогональность на графике.
- 6. Выберите какую-либо векторную линию поля и зафиксируйте на ней точки Аи В, выбрав для них числовые координаты. Вычислите работу поля вдоль этой линии, используя найденный в п. 3) потенциал.

Решение.

It is empty but you can fill it!

Omeem: It is empty but you can fill it!

Задание 5. Поток векторного поля

Условие.

Решение.

It is empty but you can fill it!

Omeem: It is empty but you can fill it!

Дано тело T, ограниченное следующими поверхностями: $y-\sqrt{1-x^2-z^2}=0, x^2+z^2=1, y-z=2.$

На рисунке представлено сечение тела T координатной плоскостью Oyz.

- 1) Изобразите тело T на графике в пространстве.
 - 2) Вычислите поток поля

$$\overrightarrow{a} = (\cos^2(z+y))\overrightarrow{i} + 2x\overrightarrow{j} + (\sqrt{y+5} + 2z)\overrightarrow{k}$$

через боковую поверхность тела T, образованную вращением дуги ABC вокруг оси Оу, в направлении внешней нормали поверхности тела T.