ЗАДАЧИ ПО АНАЛИТИЧНА ГЕОМЕТРИЯ

I ЧАСТ: Афинни операции с вектори

- 1 зад. Нека ABCD е произволен четириъгълник, в който точка M е средата на AB, точка K е средата на CD, точка CD е средата на CD на CD
- 2 зад. Нека ABCD е произволен четириъгълник, в който точка M е средата на AC, а точка N е средата на BD. Да се докаже, че $\overrightarrow{MN} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{CD}) = \frac{1}{2}(\overrightarrow{AD} + \overrightarrow{CB})$.
- 3 зад. Нека точките K, L, M и N са средите съответно на страните BC, CD, DE и EA на петоъгълника ABCDE, а точките P и Q са средите съответно на отсечките KM и LN. Докажете, че $\overrightarrow{QP} = \frac{1}{4}\overrightarrow{AB}$.
- 4 зад. Дадени са точките O_1 , O_2 , O_3 и A. Симетричната точка на A относно O_1 означаваме с A_1 , на A_1 относно O_2 с A_2 , на A_2 относно O_3 с A_3 , на A_3 относно O_1 с A_4 , на A_4 относно O_2 с A_5 , на A_5 относно O_3 с A_6 . Докажете, че A_6 съвпада с A.
- 5 зад. В успоредника ABCD точките M и N са средите съответно на страните BC и CD. Точката P е такава, че AMPN е успоредник. Докажете, че точката P принадлежи на правата AC.
- 6 зад. Нека CM е медиана в триъгълника ABC. Нека точките P и Q са такива, че $\overrightarrow{CP}=\frac{3}{4}\overrightarrow{CM}$ и $\overrightarrow{CQ}=\frac{3}{5}\overrightarrow{CB}$. Докажете, че точките A, P и Q са колинеарни.
- 7 зад. В четириъгълника ABCD точката P е средата на страната AB, а точката Q е средата на страната CD. Нека точките M и N са такива, че AMQD и NBCQ са успоредници. Докажете, че точката P е средата на отсечката MN .

II ЧАСТ: Линейна зависимост и независимост на вектори.

- 1 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Върху страните AC и BC са нанесени съответно точките M и N така, че CM:MA = 2:3 и CN:NB = 2:3.
 - а) Да се изразят векторите $\overrightarrow{AN}, \overrightarrow{BM}, \overrightarrow{MN}$ и \overrightarrow{AB} чрез \vec{a} и \vec{b} . Да се покаже, че правите MN и AB са успоредни;
 - b) Да се докаже, че правите AN и BM имат точно една обща точка.
- 2 зад. Даден е успоредник *ABCD*, за който $\overrightarrow{AB} = \vec{a}$ и $\overrightarrow{AD} = \vec{b}$, точката $O = AC \cap BD$, а точката P е от страната BC такава, че BP:PC = 3:1.
 - а) Да се изразят векторите \overrightarrow{OC} , \overrightarrow{OB} , \overrightarrow{OP} чрез \vec{a} и \vec{b} ;
 - b) Ако точката Q е от страната AD такава, че AQ:QD = 1:3, да се докаже, че точките P, Q и O са колинеарни.
- 3 зад. Точките M и N лежат съответно върху страните AB и BC на триъгълник ABC, като AM: MB = BN: NC = 2:1. Точките E и F са среди съответно на AB и BC. Докажете, че точките E, F и средата на MN са колинеарни.
- 4 зад. Даден е успоредник *ABCD*, за който $\overrightarrow{AB} = \vec{a}$ и $\overrightarrow{AD} = \vec{b}$, точката $O = AC \cap BD$. Точките M и N са медицентровете съответно на триъгълник ABD и триъгълник ABC.
 - а) Да се изразят векторите \overrightarrow{AN} , \overrightarrow{BM} , \overrightarrow{MN} и \overrightarrow{AB} чрез \overrightarrow{a} и \overrightarrow{b} ;
 - b) Да се покаже, че правите MN и AB са успоредни.
- 5 зад. Нека MNPQ е тетраедър, а точките A, B, C, D и E са определени с равенствата: $\overrightarrow{MA} = 2\overrightarrow{MN} + \overrightarrow{MP} + \overrightarrow{MQ}, \overrightarrow{MB} = 4\overrightarrow{MN} 2\overrightarrow{MP} + \overrightarrow{MQ}, \overrightarrow{MC} = \overrightarrow{MP}, \overrightarrow{MD} = 2\overrightarrow{MN} + 2\overrightarrow{MP},$ $\overrightarrow{ME} = \overrightarrow{MN} + \overrightarrow{MQ}.$ Нека правата AB пресича равнината CDE в точка H. Да се изрази векторът \overrightarrow{MH} като лине

Нека правата AB пресича равнината CDE в точка H. Да се изрази векторът \overrightarrow{MH} като линейна комбинация на векторите \overrightarrow{MN} , \overrightarrow{MP} , \overrightarrow{MQ} .

- 6 зад. Даден е тетраедър *OABC*, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Точките A_1 , C_1 и O_1 са медицентровете съответно на триъгълниците: *BOC*, *AOB* и *ABC*.
 - а) Да се изразят медианите на тетраедъра $\overrightarrow{AA_1}, \overrightarrow{CC_1}, \overrightarrow{OO_1}$ чрез \vec{a} , \vec{b} и \vec{c} ;
 - b) Да се докаже, че векторите $\overrightarrow{AA_1}$ и $\overrightarrow{CC_1}$ са линейно независими;
 - с) Да се докаже, че векторите $\overrightarrow{AA_1}$, $\overrightarrow{CC_1}$ и \overrightarrow{AC} са линейно зависими, т.е. четирите точки A, C, A_1 и C_1 лежат в една равнина. От двете подусловия b) и c) следва, че двете прави AA_1 и CC_1 се пресичат в единствена точка M;
 - d) Да се докаже, че намерената по-горе точка M лежи и на третата медиана OO_1 и да се намерят отношенията, в които т. M дели всяка от медианите.

7 зад. Даден е тетраедър *OABC*, за който $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ и $\overrightarrow{OC} = \overrightarrow{c}$. Точките *M*, *N*, *P* и *Q* са медицентровете съответно на триъгълниците: *AOB*, *BOC*, *ABC* и *AOC*. Да се докаже, че следните прави са две по две успоредни: *MN* и *AC*, *MQ* и *BC*, *QN* и *AB*, *MP* и *OC*, *NP* и *OA*, *PQ* и *OB*.

III ЧАСТ: Скаларно произведение на два вектора

- 1 зад. Даден е триъгълник *ABC*, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Нека $|\vec{a}| = 1, |\vec{b}| = 2, ∢(\vec{a}, \vec{b}) = \frac{\pi}{3}$. Дадени са точките *F* и *D*, съответно от страните *AB* и *CB* на триъгълника, такива че: *AF*:*FB* = 1:3 и *CD*:*DB* = 1:3.
 - а) Да се изразят векторите \overrightarrow{CF} и \overrightarrow{AD} чрез \overrightarrow{a} и \overrightarrow{b} ;
 - b) Да се намерят дължините на векторите \overrightarrow{CF} и \overrightarrow{AD} ;
 - c) Да се намери косинусът на ъгъла между векторите \overrightarrow{CF} и \overrightarrow{AD} .
- 2 зад. Даден е триъгълник ABC, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Нека $|\vec{a}| = 2$, $|\vec{b}| = 3$, $\sphericalangle(\vec{a}, \vec{b}) = \gamma$. Медианите AA_1 и BB_1 на триъгълника са взаимно перпендикулярни. Да се определи $\cos \gamma$. Упътване: Да се изразят векторите $\overrightarrow{AA_1}$ и $\overrightarrow{BB_1}$ чрез \vec{a} и \vec{b} , и да се пресметне скаларното им произведение.
- 3 зад. Даден е триъгълник *ABC*, за който $\overrightarrow{CA} = \vec{a}$ и $\overrightarrow{CB} = \vec{b}$. Нека $|\vec{a}| = 3, |\vec{b}| = \sqrt{2}, \sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{4}$. Отсечката *CH* е височина в триъгълника, т. $H \in AB$. Да се изрази вектора \overrightarrow{CH} чрез \vec{a} и \vec{b} .
- 4 зад. Даден е тетраедър *OABC*, за който $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$ и $\overrightarrow{OC} = \vec{c}$. Нека $|\vec{a}| = 2$, $|\vec{b}| = 2$, $|\vec{c}| = 1$ и трите вектора са два по два перпендикулярни. Построена е височината *OH* на тетраедъра, т. $H \in (ABC)$ и $OH \perp (ABC)$. Да се изрази вектора \overrightarrow{CH} чрез \vec{a} , \vec{b} и \vec{c} .
- 5 зад. Спрямо ОКС K = Oxy са дадени точките: A(2, -1), B(-1, 0) и C(2, 3). Да се докаже, че трите точки образуват триъгълник. Да се намерят:
 - а) Координатите на медицентъра M на триъгълник ABC и разстоянието от т.M до върха C;
 - b) Координатите на петите на трите височини на триъгълника, спуснати от върховете A, B и C.
- 6 зад. Спрямо ОКС K = Oxyz са дадени точките: A(1,-1,2), B(2,1,1), C(1,1,2)и D(-3,2,-1). Да се докаже, че четирите точки не лежат в една равнина. Да се намерят:
 - а) Да се намерят дължините на страните на триъгълник *ABC*;
 - b) Косинусите на ъглите на триъгълник *ABC*;
 - с) Координатите на медицентъра G на триъгълник **ABD** и дължината на вектора \overrightarrow{CG} ;
 - d) Координатите на точката H: $\tau.H \in (ABC)$ и $DH \perp (ABC)$.

- 1 зад. Спрямо ОКС K = Oxyz са дадени векторите $\vec{a}(1,0,2), \vec{b}(2,-1,3)$ и $\vec{c}(1,-1,0)$. Да се намерят координатите на неизвестния вектор \vec{x} от уравненията: $(\vec{a}\vec{b}\vec{x})=1, (\vec{b}\vec{c}\vec{x})=2, (\vec{c}\vec{a}\vec{x})=0$.
- 2 зад. Дадени са векторите \vec{a} и \vec{b} . Нека $|\vec{a}|=3, |\vec{b}|=2, \sphericalangle(\vec{a},\vec{b})=\frac{\pi}{2}$. Да се определи неизвестния вектор \vec{p} от равенствата : $(\vec{a}\vec{p})=-18, (\vec{b}\vec{p})=12, (\vec{a}\vec{b}\vec{p})=-12$.
- 3 зад. За кои стойности на параметъра $\lambda \in \mathbb{R}$ векторът $\vec{c}(\lambda-1,2\lambda+1,-\lambda)$ е ортогонален на $\vec{a} \times \vec{b}$, където $\vec{a}(1,2,0)$ и $\vec{b}(1,-1,1)$.
- 4 зад. Дадени са векторите \vec{a} , \vec{b} и \vec{c} . Нека $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$ и

$$\sphericalangle(\vec{a}, \vec{b}) = \frac{\pi}{3}, \sphericalangle(\vec{a}, \vec{c}) = \frac{\pi}{3}, \sphericalangle(\vec{c}, \vec{b}) = \frac{\pi}{3}.$$

- a) Да се пресметне смесеното произведение $(\vec{a}\vec{b}\vec{c})$ и да се докаже, че трите вектора са линейно независими;
- b) Нека OABC е тетраедър като: $\overrightarrow{OA} = (\vec{c} + \vec{b}), \ \overrightarrow{OB} = (\vec{c} + \vec{a})$ и $\overrightarrow{OC} = (\vec{a} + \vec{b})$. Да се намери обема на тетраедъра OABC.
- 5 зад. Дадени са векторите \vec{a} и \vec{b} . Нека $|\vec{a}|=2, |\vec{b}|=1, \sphericalangle(\vec{a},\vec{b})=\frac{2\pi}{3}$. В триъгълника *ОАВ* $\overrightarrow{OA}=(\vec{a}\times\vec{b})\times\vec{a}$, а $\overrightarrow{OB}=\vec{b}\times(\vec{a}\times\vec{b})$.
 - а) Да се намерят периметъра и лицето на триъгълника;
 - b) Ако т.M е медицентърът на триъгълник OAB, да се изрази вектора \overrightarrow{OM} чрез \overrightarrow{a} и \overrightarrow{b} , и да се пресметне дължината му.
- 6 зад. Дадени са векторите \vec{a} и \vec{b} и Δ *ABC* с медиана *AM (M* \in *BC).* Ако $\overrightarrow{AB} = (\vec{a} \times \vec{b}) \times \vec{a}$ и $\overrightarrow{AC} = \vec{b}$, $|\vec{a}| = |\vec{b}| = 1$ и $|\overrightarrow{AM}| = \frac{\sqrt{13}}{4}$, намерете $\sphericalangle(\vec{a}, \vec{b})$.
- 7 зад. Ако *OA, OB, OC* са ръбове на паралелепипед и $\overrightarrow{OA} = \vec{a}, \overrightarrow{OB} = \vec{a} \times \vec{b}, \overrightarrow{OC} = (\vec{a} \times \vec{b}) \times \vec{c},$ докажете, че обемът на паралелепипеда е равен на $|(\vec{a}\vec{c})|(\vec{a} \times \vec{b})^2$.
- 8 зад. Дадени са векторите \vec{a} и \vec{b} , като $|\vec{a}|=\left|\vec{b}\right|=1, \sphericalangle(\vec{a},\vec{b})=\frac{\pi}{3}.$

Нека $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = (\vec{a} \times \vec{b})$, $\overrightarrow{OC} = \vec{b} \times (\vec{a} \times \vec{b})$. Да се докаже, че векторите \overrightarrow{OA} , \overrightarrow{OB} и \overrightarrow{OC} са линейно независими и да се намери обема на тетраедъра *OABC*.

- 9 зад. Спрямо ОКС K = Oxyz са дадени точките: A(5,-2,1), B(1,1,-2), C(1,0,5)и D(1,1,1).
 - а) Да се намери лицето на триъгълник АВС;
 - b) Да се намери обема на тетраедъра *ABCD*.

10 зад. Спрямо ОКС K = Oxy в равнината са дадени точките: A(1,-1), B(-3,2), C(5,1). Да се намери лицето на триъгълник ABC.