Actividad

Poryecto Regresion

Table of Contents

Actividad.....

Poryecto Regresion	1
Fecha:	
Objetivos:	1
Nombre:	2
Repository:	2
Librarys:	
Paso 0: Descartar cualquier cambio realizado en el repositorio clonado	
Paso 1: Limpiar variables y linea de comandos	
Paso 2 Configuración de carpeta ./src para librerias	
Paso 3- Configuranción de carpeta de ./data para datasets	
Paso 4- Desde Open Energy Data Initiative, seleccionar un archivo CSV cualquiera de cualquier estado	
Informacion del dataset	
Paso 4- Buscar los nombres y Cargar los datos de todos los archivos dentro de la carpeta ./data	
Paso 5- Extraer nombres de variables y crear datetime	4
Paso 6- Graficar todas las variables.	
Paso 7- Definir la variable de salida y las variables de entrada del sistema	6
Paso 8- Cambiar la resolucion temporal de los datos: Dias, Semanas, meses	7
Paso 9- Seleccionar Variables o caracteristicas	8
Paso 10- Seleccionar el algortimo de ML con un menos error de prediccion empleando el toolbox de Matl	lab
Regression Learner	
Paso 11- Dividir el dataset en 70% para entrenar y 30% validar	
Paso 12- Usando el algoritmo de ML se entrena el modelo de regression (costo computacional)	
Paso 13- Cargar y validar el modelo entrenado	
paso 14 - Graficar el valor predecido vs el valor real	
paso 14 - Mejorar el modelo de prediccion	
Fachar	
Fecha:	

```
fecha = datetime('now', 'Format', 'dd-MM-yyyy');
disp(['Fecha actualizada: ', char(fecha)])
```

Fecha actualizada: 06-07-2024

Objetivos:

- Desde Open Energy Data Initiative, seleccionar un archivo CSV cualquiera de cualquier estado: https://openei.org/datasets/files/961/pub/COMMERCIAL_LOAD_DATA_E_PLUS_OUTPUT/
- Definir la variable de salida y las variables de entrada del sistema
- Definir basado en alguna aplicacion, Cambiar la resolucion temporal de los datos: n Dias (Ajustar nhoras)
- Seleccionar Variables o caracteristicas empleando la matriz de correlacion (Ajustar el threshold)
- Seleccionar el algortimo de ML con un menos error de prediccion empleando el toolbox de **Matlab Regression Learner**

- Dividir el dataset en 70% para entrenar y 30% validar (Ajustar el PSplit)
- Usando el algoritmo de ML se entrena el modelo de regression
- Cargar y validar el modelo entrenado
- Graficar el valor predecido vs el valor real
- · Analizar el resultado obtenido y tratar de reducir el error

Nombre:

sunombre

Repository:

https://github.com/vasanza/SSE

Librarys:

- https://github.com/vasanza/Matlab_Code
- https://es.mathworks.com/help/matlab/ref/ls.htm
- https://es.mathworks.com/help/matlab/ref/matlab.git.gitrepository.discardchanges.html#d126e406558

Paso 0: Descartar cualquier cambio realizado en el repositorio clonado

```
%Version Online, Opcion 1:
% Source Control -> Discard all changes
% Source Control -> git pull
```



```
%Version Online, Opcion 2:
% repo = gitrepo;
% discardChanges(repo,repo.ModifiedFiles);
% Source Control -> git pull
```

```
Command Window
>> repo = gitrepo;
discardChanges(repo,repo.ModifiedFiles);
>>
```

```
% Version para PC, en el Bash del Git:
% git status
```

```
% git reset --hard
% Git pull
```

Paso 1: Limpiar variables y linea de comandos

```
clear % Para borrar el workspace y liberar memoria RAM
clc % Limpiar el command window
```

Paso 2.- Configuración de carpeta ./src para librerias

```
%nombre de la carpeta donde estan los codigos
addpath(genpath('./src'));
```

Paso 3- Configuranción de carpeta de ./data para datasets

```
%Nombre de la carpeta donde estan los archvios csv
datapath=fullfile('./data/');
```

Paso 4- Desde Open Energy Data Initiative, seleccionar un archivo CSV cualquiera de cualquier estado

Informacion del dataset

- USA AK FAIRBANKS.csv
- USA AK Anchorage.Intl.AP.702730 TMY3/

```
cd data %Comando linux para entrar una carpeta
httpsUrl = "https://openei.org/datasets/files/961/pub/COMMERCIAL_LOAD_DATA_E_PLUS_OUTPUT/USA_ANd dataUrl = strcat(httpsUrl, "/RefBldgSmallHotelNew2004_v1.3_7.1_8A_USA_AK_FAIRBANKS.csv");
DataFile = "RefBldgSmallHotelNew2004_v1.3_7.1_8A_USA_AK_FAIRBANKS.csv";
DataFileFullPath = websave(DataFile,dataUrl);
```

```
cd .. %Comando linux para salir de la carpeta
clear httpsUrl dataUrl DataFile DataFileFullPath
```

Paso 4- Buscar los nombres y Cargar los datos de todos los archivos dentro de la carpeta ./data

```
%Leer un archivo csv y lo carga como una tabla
filename = FindCSV(datapath);
maxnames=size(filename,1);
% Dataset es una tabla donde cada columna es una variable con su
% respectivo nombre
index=1; % El archivo que quiero que lea desde la carpeta data
filename(index).name
```

ans =

Dataset=fLoadTableCSV_index(filename,datapath,index)

Warning: Column headers from the file were modified to make them valid MATLAB identifiers before creating variable names for the table. The original column headers are saved in the VariableDescriptions property. Set 'VariableNamingRule' to 'preserve' to use the original column headers as table variable names.

Dataset = 8760×11 table

	Date_Time	Electricity_Facility_kWHourly_	Fans_Electricity_kWHourly_
1	'01/01 01:0	49.7663	4.9317
2	'01/01 02:0	49.0528	4.9225
3	'01/01 03:0	45.6644	4.9503
4	'01/01 04:0	46.4704	4.9665
5	'01/01 05:0	48.4044	4.9731
6	'01/01 06:0	52.7617	4.9778
7	'01/01 07:0	70.7867	4.9323
8	'01/01 08:0	83.3511	4.8494
9	'01/01 09:0	103.3132	4.7682
10	'01/01 10:0	92.3172	4.8234
11	'01/01 11:0	67.0967	4.9117
12	'01/01 12:0	63.2558	4.9205
13	'01/01 13:0	63.0341	4.9156
14	'01/01 14:0	62.7386	4.9091

Paso 5- Extraer nombres de variables y crear datetime

% Extraer todos los nombres de variables de la tabla
% Se hace el cast de cell a string

^{&#}x27;RefBldgSmallHotelNew2004_v1.3_7.1_8A_USA_AK_FAIRBANKS.csv'

```
varnames=string(Dataset.Properties.VariableNames);
% Eliminar el primero nombbre de variable
varnames=varnames(2:end)';
% Esto es para eliminar el warning de los legend en el plot
%LegendNames=char(varnames);
%LegendNames=LegendNames(:,1:15);
%LegendNames=[LegendNames char(65*ones([size(varnames,1),1]))];
%LegendNames=string(LegendNames);
% Crear datatime con una frecuencia de muestreo de un dato por hora segun el
% dataset
%Time = Start Time: Step Time: End Time
time = datetime(2004, 1, 1):hours(1):datetime(2004, 12, 31);
% Se elimina el primer valor
time=time(1,2:end)';
% para agregar una nueva variables en la tabla
%Dataset.('Time Stamp')=time;
```

Paso 6- Graficar todas las variables

```
figure;
% Dataset
Variable1=Dataset.(varnames(1));
plot(time, Variable1)
hold on
Variable2=Dataset.(varnames(2));
plot(time, Variable2)
Variable3=Dataset.(varnames(3));
plot(time, Variable3)
Variable4=Dataset.(varnames(4));
plot(time, Variable4)
Variable5=Dataset.(varnames(5));
plot(time, Variable5)
Variable6=Dataset.(varnames(6));
plot(time, Variable6)
Variable7=Dataset.(varnames(7));
plot(time, Variable7)
Variable8=Dataset.(varnames(8));
plot(time, Variable8)
Variable9=Dataset.(varnames(9));
plot(time, Variable9)
Variable10=Dataset.(varnames(10));
plot(time, Variable10)
hold off
%legend(LegendNames);
legend(varnames);
```

```
% tambien se puede usar latex para los lables y titles
% https://en.wikibooks.org/wiki/LaTeX/Mathematics
title('Open Energy Data Initiative $ \sum_{i=1}^{10} t_i $', 'interpreter', 'latex');
xlabel('horas $ \lim\limits_{x \to \infty} \exp(-x) = 0 $ (deg/m)', 'interpreter', 'latex')
ylabel(' $ f(n) = n^5 + 4n^2 + 2 |_{n=17} + \frac{\frac{1}{x}+\frac{1}{y}}{y-z} $', 'interprete
```



```
clear filename maxnames index
clear Variable1 Variable2 Variable3 Variable4 Variable5 Variable6 ...
Variable7 Variable8 Variable9 Variable10
```

Paso 7- Definir la variable de salida y las variables de entrada del sistema

```
figure;
% Dataset
output=Dataset.(varnames(1));
plot(time,output)
title('Variable de salida: Energia');
xlabel('horas')
ylabel('[kW](Hourly)')
```



```
% Estamos usando las variables como caracteristicas
input=[Dataset.(varnames(2)) Dataset.(varnames(3))...
    Dataset.(varnames(4)) Dataset.(varnames(5))...
    Dataset.(varnames(6)) Dataset.(varnames(7))...
    Dataset.(varnames(8)) Dataset.(varnames(9))...
    Dataset.(varnames(10))];
```

Paso 8- Cambiar la resolucion temporal de los datos: Dias, Semanas, meses

```
%Variable de conversion de horas a Dias, Semanas o meses
nhoras=24*1; %dias

outputDias=[];
inputDias=[];
for i=1:nhoras:size(output,1)-(nhoras-1)
    outputDias=[outputDias;sum(output(i:i+nhoras-1),1)];%1+23 =24
    inputDias=[inputDias;sum(input(i:i+nhoras-1,:),1)];%1+23 =24
end

% Crear datatime con una frecuencia de muestreo de un dato por hora segun el
% dataset
%Time = Start Time: Step Time: End Time
timeDias = datetime(2004, 1, 1):hours(nhoras):datetime(2004, 12, 31);
% Se elimina el primer valor
timeDias=timeDias(1,2:end)';
```

```
figure;
plot(timeDias,outputDias,'-*r')
hold on
plot(timeDias,inputDias)
hold off
title('Variable de salida: Energia');
xlabel('Dias')
ylabel('[kW](Hourly)')
legend(varnames);
```


clear i nhoras;

Paso 9- Seleccionar Variables o caracteristicas

```
%Maximum correlation value allowed
% Dafault 0.75
threshold = 0.6;

% El numero de variables a analizar debe ser igual al numero de nombres de
% variables
Features_labels=cellstr(varnames(2:end)');
%corrcoef(input)

% Example:
% a=[1:10];b=a+3;c=a.*b;
% corrcoef([a b c])
```

```
      % 1.0000
      1.0000
      0.9816

      % 1.0000
      1.0000
      0.9816

      % 0.9816
      0.9816
      1.0000
```

Electrical Consumption Parameters

[NewDataFeatures, NewFeaturesLabels, LabelsRemove] = Feature_Selection(inputDias, Features_labels


```
123.5053 612.5234 470.2083 144.2000 433.5407
NewFeaturesLabels = 1×5 cell
'Fans_Electricity_kW__Hourly_''Heating_Electricity_kW__Hourly_''InteriorLights_E...
LabelsRemove = 1\times4 cell
'Cooling_Electricity_kW__Hourly_''InteriorEquipment_Electricity_kW__Hourly_''Gas · · ·
%Variables eliminadas por superarf el threshold
LabelsRemove'
ans = 4 \times 1 cell
'Cooling_Electricity_kW__Hourly_'
'InteriorEquipment_Electricity_kW__Hourly_'
'Gas_Facility_kW__Hourly_'
'Heating_Gas_kW__Hourly_
%variables que se quedan por no superan el threshold en coreelacion
NewFeaturesLabels'
ans = 5 \times 1 cell
'Fans_Electricity_kW__Hourly_'
'Heating_Electricity_kW__Hourly_'
'InteriorLights_Electricity_kW__Hourly_'
'InteriorEquipment Gas kW Hourly '
'WaterHeater_WaterSystems_Gas_kW__Hourly_'
clear threshold Features labels LabelsRemove;
```

Paso 10- Seleccionar el algortimo de ML con un menos error de prediccion empleando el toolbox de Matlab Regression Learner

```
% Concatenando la variables de entrada actual con
% la salida al dia siguiente
DataRegression=[NewDataFeatures(1:end-1,:) outputDias(2:end,1)];
regressionLearner
```


Paso 11- Dividir el dataset en 70% para entrenar y 30% validar


```
%Set de % de entrenamiento
% Dafault 0.70
PSplit = 0.7;
```

```
% Dataset de entrenamiento 70%
trainingData=DataRegression(1:round(end*PSplit),:);
traninTime=timeDias(1:round(end*PSplit));
%Calcular el minimo numero de filas entre Data y Time
nfilas=min([size(trainingData,1) size(traninTime,1)]);
%Tomamos el valor minimo de nfilas como maixmo de filas
trainingData=trainingData(1:nfilas,:);
traninTime=timeDias(1:nfilas,:);
% Dataset de validcion 30%
validationData=DataRegression(round(end*PSplit):end,:);
validationTime=timeDias(round(end*PSplit):end);
%Calcular el minimo numero de filas entre Data y Time
nfilas=min([size(validationData,1) size(validationTime,1)]);
%Tomamos el valor minimo de nfilas como maixmo de filas
validationData=validationData(1:nfilas,:);
validationTime=validationTime(1:nfilas,:);
figure;
% Dataset
hold on
plot(traninTime, trainingData(:,end))
plot(validationTime, validationData(:,end))
hold off
title(['Training ' num2str(PSplit*100) '% vs Validation '...
    num2str(100-PSplit*100) '% Data']);
xlabel('Fechas')
ylabel('[kW](Hourly)')
legend('trainingData','validationData')
```


clear PSplit;

Paso 12- Usando el algoritmo de ML se entrena el modelo de regression (costo computacional)

%Esta funcion permite generar un modelo actualizado cada vez que se ejecuta
% Siempre que el numero de variables de entrada sea la misma y la cantidad
% de nuevos datos no sea muy alta
[trainedModel, validationRMSE] = trainRegressionModel(trainingData);

Warning: Iteration limit reached.
Warning: Regression design matrix is rank deficient to within machine precision.
Warning: Regression design matrix is rank deficient to within machine precision.
Warning: Regression design matrix is rank deficient to within machine precision.
Warning: Regression design matrix is rank deficient to within machine precision.
Warning: Iteration limit reached.
Warning: Regression design matrix is rank deficient to within machine precision.

Warning: Regression design matrix is rank deficient to within machine precision.

```
%Este es el error de entrenaamiento validationRMSE
```

validationRMSE = 49.9473

%Permite guardar el modelo entrenado que se encuentra en el workspace
save("trainedModel.mat", "trainedModel")

Paso 13- Cargar y validar el modelo entrenado

```
%Cargar el modelo entrenado y guardado
load("trainedModel.mat")

%Usar el modelo entrenado para predecir valores de consumo de energia
yest = trainedModel.predictFcn(validationData(:,1:end-1));

%El valor real de consumo de energia para comparar
yout = validationData(:,end);

%Error de prediccion con datos de validacion
validationRMSE = sqrt(mean((yest - yout).^2))
```

validationRMSE = 63.3533

paso 14 - Graficar el valor predecido vs el valor real

```
figure;
% Dataset
hold on
plot(validationTime,yest)
plot(validationTime,yout)
title('Prediccion vs Valor real');
xlabel('Fechas')
ylabel('[kW](Hourly)')
legend('Estimacion','Real')
```


paso 15 - Mejorar el modelo de prediccion

Con el dataset USA_AK_FAIRBANKS.csv se llegaron a obtener los siguientes Resultados:

- Para predicciones de meses, al tener solo 12, se vuelve necesario tener mas informacion por parte de las variables de entrada. Es decir, no importa la redundancia en las variables de entrada de la informacion por que ayudara a que el modelo tenga un menor error. En este ejemplo, se puso un threshold=0 y el eror de prediccion se vio decrementado.
- Para predicciones de dias, al tener mas dias y por tanto mas ejemplos, la redundancia de las variables de entrada se vuelve contraproducente. Es decir, al usar un threshold=0.75 se eliminaron 4 variables de entrada y esto mejoro la prediccion del modelo de regresion.