Лабораторная работа 5.5.5Компьютерная сцинтилляционная γ -спектрометрия

Симанкович Александр Б01-108

07.10.2023

Аннотация

В работе экспериментально определяются спектры γ -квантов, которые формируются при распаде Co, Cs, Na, Eu, Am. Проводится анализ спектров.

Теоретическое введение

Базовые принципы работы сцинтиллятора

При прохождении γ -квантов через среду существует три механизма взаимодействия со средой: фотоэффект, комптоновское рассеяние и образование электрон-позитронных пар. Эти эффекты приводят к образованию быстрых электронов в веществе. Быстрые электроны ионизируют и возбуждают атомы при движении через вещество за счет неупругих столкновений. При переходах атомов и молекул в основное состояние и рекомбинации излучаются фотоны, характерные для вещества сцитиллятора.

Обратим внимание, что такие фотоны должны иметь очень небольшой шанс выйти из сцинтиллятора, поскольку их энергия совпадает с разностью энергий между уровнями. Поэтому кристалл (напр. NaI) легируется примесью (напр. Tl) с малой концентрацией (0.1%). Примесь имеет излучающий переход в запрещенной зоне кристалла. Таким образом, фотон может без потерь двигаться сквозь кристалл.

Вспышки из сцинтиллятора имеют низкую интенсивность, для усиления используется фотоэлектронный умножитель. С помощью фотоэффекта и электронной лавины сигнал усиливается, после чего передается на АЦП.

Процессы взаимодействия γ -излучения с веществом

Фотоэффект

Процесс поглощения γ -кванта связанным электроном. Электрон получает почти всю энергию γ -кванта, часть которой затрачивается на потенциал ионизации:

$$T_e = E_{\gamma} - I_i$$
.

Более вероятен для тяжелых веществ и низкоэнергетичных фотонов.

Комптоновское рассеяние

Рассеяние фотона на свободном электроне. Электрон получает часть энергии γ -кванта. Максимальная возможная энергия электрона:

$$E_{max} = \frac{\hbar\omega}{1 + \frac{mc^2}{2\hbar\omega}}. (1)$$

Образование электрон-позитронных пар

Энергия кванта идет на образование пары электрон-позитрон. Данное явление происходит в присутствии ядра или электрона, поскольку в пустоте законы сохранения для электрон-позитронной пары несовместны. Пороговая энергия:

$$E_{\text{nop}} = 2mc^2 = 1.022 \text{ M} \cdot \text{B}.$$

Образовавшийся электрон будет двигаться, теряя энергию на ионизацию и возбуждение атомов. Его энергия полностью останется в детекторе. Позитрон аннигилирует с электроном, излучив два γ -кванта. Один или оба γ -кванта могут покинуть детектор.

Компоненты спектра

В спектре будут наблюдаться различные составляющие:

- 1. Φ отопик. Φ ормируется при рассеянии полной энергии начального γ -кванта.
- 2. $E_{\gamma} E_0, E_{\gamma} 2E_0$. Компоненты от электрон-позитронных пар.
- 3. Пик обратного рассеяния. Формируется от рассеяния γ -квантов от стенок детектора. Положение пика:

$$E_{\text{ofp}} = \frac{E}{1 + 2E/mc^2}. (2)$$

4. Комптоновский спектр. Континуальный спектр от комптоновского рассеяния.

Энергетическое разрешение спектрометра

При поглощении частиц с одинаковой энергии, значения энергии, получаемые спектрометром, будут различаться. Это связано со статистической природой сцинтиллятора. Как следствие, пик, который должен быть δ -функцией, становится размытым.

Энергетическое разрешение спектрометра:

$$R_i = \frac{\Delta E_i}{E_i},$$

где E_i – положение пика, ΔE_i – ширина пика на половине его высоты.

Получим оценку для R_i . Энергия E_i пропорциональна среднему числу фотонов $\overline{n_i}$:

$$E_i = \alpha \overline{n_i}$$
.

Ширина пика ΔE_i пропорциональна дисперсии $\overline{\Delta n_i}$. При этом $\overline{\Delta n_i} \approx \sqrt{\overline{n_i}}$, если приблизить форму пика гауссианом.

Тогда для R_i :

$$R_i = \frac{\Delta E_i}{E_i} = \frac{const}{\sqrt{E_i}}. (3)$$

Методика эксперимента

Рис. 1: Принципиальная схема спектрометра. (S - источник γ -квантов, 1 - сцинтиллятор, 2 - ФЭУ, 3 - предусилитель импульсов, 4 - блок питания ФЭУ, 5 - АЦП, 6 - компьютер для сбора и обработки данных)

Принципиальная схема приведена на рис. 1. В качестве сцинтиллятора используется кристалл NaI(Tl). Сцинтиллятор, усилитель и источник излучения находятся в защитном кожухе, предохраняющем от внешнего излучения. Сигнал с Φ ЭУ усиливается и подается на АЦП, после чего сохраняется на компьютере. Обработанный сигнал выводится на экран в виде графика спектра.

Результаты

Кобальт 60Со

Кобальт $^{60}_{27}$ Со претерпевает β^- распад в $^{60}_{28}$ Ni по двум схемам. После этого излучается один или два γ -кванта. Энергии указаны на схеме (2).

Рис. 2: Слева: спектр 60 Со (1,2 - фотопики, 3 - край комптоновского спектра, 4 - пик обратного рассеяния, 5 - пик характеристического излучения свинца). Справа: схема распада 60 Со.

Рис. 3: Измеренный спектр ⁶⁰Co

Цезий $^{137}\mathrm{Cs}$

Ядро $^{137}_{55}$ С
s испытывает β^- распад, в результате которого образует- ся ядро $^{137}_{56}$ Ва. Большинство переходов происходит на возбужденный метастабильный уровень ядра. При переходе в основное состояние излучается γ -квант.

Рис. 4: Слева: спектр 137 Cs (1 - фотопик, 2 - край комптоновского спектра, 3 - пик обратного рассеяния). Справа: схема распада 137 Cs.

Рис. 5: Измеренный спектр $^{137}\mathrm{Cs}$

Hатрий ^{22}N а

Вещество 22 Nа подвержено, в отличие от 60 Co и 137 Cs, β^+ распаду. Позитроны аннигилируют, не долетая до сцинтиллятора, давая γ -кванты, долетающие до сцинтиллятора и дающие аннигиляционный пик 511 кэВ. Также есть фотопик от перехода в основное состояние.

Рис. 6: Слева: спектр 22 Na (1 - фотопик, 2 - аннигиляционный пик, 3,4 - края комптоновских спектров, 5 - пик обратного рассеяния, 6 - пик характеристического излучения свинца). Справа: схема распада 22 Na.

Рис. 7: Измеренный спектр 22 Na

\mathbf{E} вропий $^{152}\mathbf{E}\mathbf{u}$

Рис. 8: Спектр ¹⁵²Eu

Рис. 9: Измеренный спектр $^{152}{\rm Eu}$

\mathbf{A} мериций $^{241}\mathbf{Am}$

Рис. 10: Слева: спектр $^{241}\mathrm{Am}.$ Справа: схема распада $^{241}\mathrm{Am}.$

Рис. 11: Измеренный спектр $^{241}{\rm Am}$

Калибровка каналов спектрометра

Откалибруем спектрометр по известным нам энергиям некоторых пиков.

Источник	E_i , кэВ	N_{i}
Co 1	1332	1776
Co 2	1173	1577
Cs	662	889
Na (анниг)	511	693
Na	1274	1683

Таблица 1: Пики для калибровки

Рис. 12: Калибровочная прямая

Фотопики

С помощью калибровки пересчитаем значения положений фотопиков и их ширины.

Источник	N_i	ΔN_i	E_i , кэ ${ m B}$	ΔE_i , кэВ	R_i , %
Co 1	1776	75.0	1334	57.0	4.3
Co 2	1577	75.0	1183	57.0	4.8
Cs	889	56.0	660	42.5	6.4
Na	1683	60.0	1263	45.6	3.6
Eu 3	181	12.0	122	9.1	7.4
Eu 5	337	25.0	241	19.0	7.9
Eu 6	471	34.0	343	25.8	7.5
Eu 7	1044	57.0	778	43.3	5.6
Eu 8	1283	62.0	959	47.1	4.9
Eu 9	1474	86.0	1105	65.3	5.9
Eu 10	1874	90.0	1408	68.4	4.9
Am	97	13.0	59	9.9	16.9

Таблица 2: Характеристики фотопиков

Проверим зависимость (3). Построим $R_i^2 = f(1/E_i)$.

Рис. 13: Линеаризация разрешения R_i от энергии E_i

Обратное рассеяние

Некоторые пики на спектре вызваны обратным рассеянием. Построим таблицу для всех пиков:

Источник	N_i	E_i , кэ ${ m B}$	E_{back}^{theory} , кэ ${f B}$
Co (back)	315	224	119
Co (photo)	1577	1183	210
Co(photo)	1776	1334	214
Cs(peak)	55	27	24
Cs(pb)	116	73	57
Cs(back)	270	190	109
$Cs\ (photo)$	889	660	184
Na(pb)	116	73	57
$Na\ (back)$	269	189	109
$Na\ (annih)$	693	511	170
$Na\ (photo)$	1683	1263	213
Eu 1	67	36	31
Eu 2 $(back)$	134	87	65
Eu 3 (photo)	181	122	83
Eu 4	240	167	101
Eu 5 (photo)	337	241	124
Eu 6 (photo)	471	343	146
Eu 7 (photo)	1044	778	192
Eu 8 (photo)	1283	959	202
Eu 9 (photo)	1474	1105	208
Eu 10 (photo)	1874	1408	216
Am 1	50	23	21
Am (photo)	97	59	48

Таблица 3: Характеристики всех пиков

Пики вызванные обратным рассеянием обозначены как (back), фотоэффектом – (photo), аннигиляцией – (annih), характеристическое излучение свинца – (pb).

Большинство пиков для европия предполагаются

Комптоновский спектр

Пересчитаем значения энергии на краях комптоновских спектров (E_k) . Также рассчитаем края комптоновских спектров исходя из (1) (E_k^{theory}) .

Источник	N_{i}	N_k	E_i , кэ ${ m B}$	E_k , кэВ	E_k^{theory} , кэВ
Со	1577	1263	1183	944	973
Cs	889	614	660	451	476
Na	693	431	511	312	341
Na	1689	1376	1268	1030	1055

Таблица 4: Края комптоновских спектров

Рис. 14: Зависимость E_k от энергии E_k^{theory}

Как можно видеть, теоретические значения хорошо описывают экспериментальные данные.

Характеристическое излучение свинца

Для Co, Cs, Na на графиках можно наблюдать характеристическое излучение свинца.

Источник	N_{pb}	E_{pb} , кэ ${ m B}$
Со	116	73
Cs	116	73
Na	116	73

Таблица 5: Характеристическое излучение свинца

С учетом ширины пиков получим:

$$E_{pb} = (116 \pm 10) \; {
m кэB}$$

Заключение и выводы

В работе экспериментально получены спектры γ -квантов, образующихся при распаде Со, Сs, Na, Eu, Am. Проведен анализ спектров. Вычислено значение энергии характеристического излучения свинца $E_{pb}=(116\pm10)$ кэВ. Проверена зависимость края комптоновского излучения от энергии фотопика.

В качестве улучшения работы можно провести более тщательный анализ пиков, поскольку некоторые из них имеют неизвестное происхождение.