¿Qué es una matriz?

Matriz. Sea (K, r,) un cuerpo conmutativo y m, n>1 enteros. Una matriz m x n sobre \mathcal{K} (o de orden m x n sobre \mathcal{K}) es una table formada por los elementos de \mathcal{K} dispuestos en m

(o de orden m x n sobre 张) es una table formada por los elementos de 《K dispuestos en m filas y n columnas de la forma

$$\begin{pmatrix} Q_{i,1} & Q_{1,2} & \cdots & Q_{j,n} \\ Q_{2,j} & Q_{2,2} & \cdots & Q_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ Q_{m,j} & Q_{m,2} & \cdots & Q_{m,n} \end{pmatrix}$$

$$K_{i,j} = 1,2,...,n, \quad j = 1,2,...,n$$

Con $\alpha_{ij} \in \mathbb{R}$; i = 1, 2, ..., m, j = 1, 2, ..., m¿Qué es una matriz?

Coeficientes de la matriz. Cada q_{ij} se denomina término, coeficiente o entrada de la matriz A. El primer subíndice, i, indica el número de la fila y el segundo, j, el de la columna que ocupa

Ejemplo 1:

el término de la matriz.

Matrices

$$A = \begin{pmatrix} 5 & 0 & 3 \\ 9 & 7 & 11 \end{pmatrix}$$

A es una matriz de orden 2 x 3 ya que tiene 2 filas y 3 columnas.

El elemento $q_{12} \approx Q$, el elemento $q_{23} \approx |V|$

¿Cuáles serían los elementos
$$a_{i_1}$$
 y a_{i_2} ?

 $Q_{i_1} = 5$ y $a_{i_3} = 3$

¿Dónde están las matrices?

Conjunto de matrices. Se denotará por
$$\mathcal{M}_{n_n}(\Bbbk)$$
 el conjunto de todas las matrices de orden m \mathtt{x} n sobre \Bbbk .

Una matriz cualquiera de $\mathcal{H}_{\text{resn}}\left(\mathbb{K}\right)$ se denotará indistintamente de A, $\left(\mathsf{q}_{ij}\right)_{m_{\text{NP}}}$ \circ $\left(\mathsf{Q}_{ij}\right)$

Cuando m = n, el conjunto de todas las matrices de orden n x m, $\mathcal{A}_{n \times n}(\mathcal{K})$, se denota

simplemente por \mathcal{M}_n (\mathcal{K}). Las matrices pertenecientes a este conjunto se dice que son de orden n en vez de n x n.

¿Cuándo dos matrices son iguales?

Igualdad de matrices. Dadas dos matrices del mismo orden m x n, $A = (a_{ij})_{m \times n}$ y $b = (b_{ij})_{m \times n}$, son iguales si

$$Q_{ij} = b_{ij} \forall i = 1,...,m, \forall j = 1,...,n$$

Ejemplo 2

$$A = \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \quad \beta = \begin{pmatrix} 3 & 1 \\ 2 & 2 \\ 1 & 3 \end{pmatrix} \quad \left(= \begin{pmatrix} 3 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix} \right) \quad \mathcal{D} = \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix}$$

A y C son las únicas matrices que son iguales

El resto de pares de matrices son diferentes porque tienen órdenes diferentes: A, C $\in \mathcal{M}_{z}$ (\mathbb{R}) $_{1}$ $_{2}$ $_{3}$ $_{4}$ $_{5}$ $_{5}$ $_{6}$ $_{7}$ $_{7}$ $_{7}$ $_{8}$ $_{7}$ $_{8}$