IEEE 802.1 Audio/Video Bridging and Time-Sensitive Networking

Ling Wang

ling.wang2@wayne.edu

Outline

- General Overview
- Basic Technology
- TSN/VB Protocol Services
- Applications
- Summary

Outline

- General Overview
- Basic Technology
- TSN/VB Protocol Services
- Applications
- Summary

What is Time-Sensitive Networking?

- Time-Sensitive Networking (TSN) is a set of standards developed by the *Time-Sensitive Networking Task Group (IEEE 802.1)*
- Formed at November 2012 by renaming the existing Audio/video
 Bridging Task Group and continuing its work.
- Renamed as a result of extension of the working area of the standardization group.
- Define mechanisms for the time-sensitive transmission of data over Ethernet.

Standard Architecture

- IEEE 802.3
 - PHY layer and MAC layer of Ethernet
- IEEE 802.1
 - 802 LAN/MAN architecture
 - Internetworking among 802 LANs, MANs and wide area networks
 - 802 Link Security
 - 802 overall network management
 - Protocol layers above the MAC layers

AVB Task Group

- AVB task group
 - Formerly a part of "residential Ethernet" study group
 - Standardize protocol and mechanisms to improve the real time behavior of video/audio system
- "IEEE Standard for Local and Metropolitan Area Networks- " (in 2011)
 - 802.1AS Timing and Synchronization for Timing-Sensitive Applications
 - 802.1Qat Stream Reservation protocol(SRP)
 - 802.1Qav Forwarding and Queuing Enhancements
 - 802.1BA lists of standards and definition of profiles fro AVB systems

TSN Task Group

- Core standards (currently working)
 - 802.1ASbt Timing and Synchronization
 - 802.1Qcc Stream Reservation Protocol
 - 802.1Qby Enhancements for scheduled traffic
 - 802.1Qbu Frame Preemption
 - 802.1Qca Path control and Reservation
 - 802.1CB Frame Replication and Elimination for reliability

Recommends using no more than 6-7 switches/hops to low delay

Target Markets

Traffic Type

- Best-effort (BE) traffic, low-priority traffic without timing and delivery guarantees
- Rate constrained (RC) traffic, each flow has a bandwidth limit defined by two parameters: minimum inter-frame intervals and maximal frame size
- Time-trigger (TT) traffic, each flow has a accurate time to be sent

Markets

- Originally video/audio markets
- New markets of time-sensitive applications such as industrial control and automotive applications

Outline

- General Overview
- Basic Technology
- TSN/VB Protocol Services
- Applications
- Summary

Physical Topology

- Switched Ethernet
 - End stations
 - Bridges (switch)
 - Physical ports
 - Ethernet Frame
- Bridge Functions
 - Switching: find a path from source to destination
 - Traffic shaping (traffic scheduling)

Ethernet Frame

7B	1B	6B		6B	4B	2B	42B-1500B	4B	12B
Preamble	SOF	MAC destinat		MAC source	802.1Q "VLAN" Tag	Ethertype/ length	Payload	FCS	IFG
					7				
	16 bits		bits 3 bits			12 bits			
	Tag protocol identifier			rity code point	Drop eligible indicator	VLAN identifie			

FIGURE 20.2 Structure of an Ethernet frame and detailed representation of the IEEE 802.1Q VLAN tag.

Switching

- Active topology
 - Spanning tree protocol
 - Shortest path bridging

Traffic Shaping

- Traffic shaping
 - Each bridge decides how to schedule multiple packets serially
- Mechanisms
 - Best-effort traffic "Priority Scheduling Algorithm"
 - Rate Constraints traffic "Credit based shaper"
 - Time-trigger traffic "Time aware shaper"

Outline

- General Overview
- Basic Technology
- TSN/AVB Protocol Services
- Applications
- Summary

Time Sensitive Stream

- Examples
 - Node 1 is talker of a stream X
 received by listeners 6 and 3
 - Node 5 is talker of a stream Y
 received by listeners 1 and 4
- Strategies for time guarantee
 - reserve resource for each stream
 - Stream Reservation Protocol (SRP)
 - Traffic shaper (credit based shaper)

TSN/AVB Protocol Services

- Traffic shaper
 - Strict Priority algorithm
 - Credit based shaper
 - Time aware shaper
- Stream Reservation Protocol (SRP)
 - Register streams / reserve bandwidth
- Clock Synchronization Protocol
- Redundancy Management: proactive transmission of multiple copies without having to use retransmission for ensuring reliability and real-time

Strict Priority Algorithm

- No resource reservation between flow transmission
- Frames tagged with a 3 bit Priority Code Point value

- Bridge ports have between 1 and 8 outbound queues (1:1 mapping)
- Each outbound queue of a port has a traffic class number assigned (1:1 mapping)
- Traffic classes numbers range from 0 to N-1. (N = number of the ports outbound queues).

Strict Priority Algorithm (cont.)

 Port is configured with a mapping: "PCP codes" to "Traffic Classes (queues)".

Example:

PCP Code in Frame	0	1	2	3	4	5	6	7
Traffic class number	0	0	0	0	1	1	2	2

(Recommended mapping for 3 queues in cases where only strict priority scheduling is used)

The PCP values of a frame and the mapping will determine the traffic class (= queue into which frame will be placed).

Strict Priority Algorithm (cont.)

- Strict Priority Algorithm:
 - Available for transmission = Queue contains one or more frames
- Next frame for transmission:
 - From queue with the highest traffic class number that has a frame available for transmission.

 Note: For other algorithms, the fact that a queue contains a frame does not automatically imply that the frame is available for transmission.

Credit Based Shaper

To improve fairness between flows

Rules

- Separate queue for Class A and Class B
- Separate credit variable for Class A queue and Class B queue
- When no frame in the queue, credit is set to 0
- A queue is available to transmit when credit is nonnegative
- Credit increased by idleSlope when there is a least a frame in the queue
- Credit decreased by sendSlope when a frame is transmitted

Credit Based Shaper (cont.)

FIGURE 20.7 Example execution trace of traffic shaped according to the credit-based shaper.

Credit Based Shaper (cont.)

Advantages

- Fairer scheduling to low-priority packets
- Smooths out the traffic flow to greatly reduce the possibility of dropped packets due to congestion

Disadvantages

- Average delay is actually increased
- Delay can be up to 250us per hop
- Delay too high for control applications

Time Aware Shaper

- Control system applications
 - Typically closed-loop, fixed cycle
 - 30 us to several ms, typical 125 us
- Rules (in discussion)
 - One option is to reserve bandwidth during the fixed time periodically
 - Use Time-aware signal
 - When TA is enabled, time-aware frames transmitted; when TA is disabled, frames from other queues may transmit

Time Aware Shaper (cont.)

FIGURE 20.8 Example execution trace of traffic shaped according to the time-aware shaper.

Time Aware Shaper Issue

- A non-TA frame must end before TS starts
- Bring resource waste if the guard band is idle

Time Aware Shaper Premption

- A frame is divided into fragment; resume transmission after TA frames transmit
- Guard band can be narrower with TA preemption

Stream Reservation Protocol (SRP)

- Priorities and Shaping must work with SRP together
- AVB SRP use existing MRP
- Multiple registration protocol (MRP)
 - Defined in 802.10
 - General framework for stream registration
 - Used for switch/bridge/other devices to register and de-register attribute values
 - Applications: MSRP, MVRP, MMRP (S reservation, V VLAN, M multicast)

Register A Stream

FIGURE 20.4 Example of MRP declaration/registrations as they propagate through the network.

Fields of Talker Advertise Message (i.e., registration message)

- Stream ID
 - talker MAC address + 16 stream id
- Data Frame Parameters
 - Destination MAC address + VLAN id
- Traffic Specification (Tspec)
 - MaxFrameSize
 - MaxIntervalFrame: max. number of frames in a measurement interval (e.g., 125 us, 250 us)
- Priority And Rank
- Accumulated Latency

Stream Bandwidth Preservation

- Two stream reservation classes: Class A & Class B
 - Measurement intervals CMI (measurement interval): Class A 125 us:
 Class B 250 us
- Required Bandwidth

$$BW = \frac{Tspec_{MaxIntervalFrames}}{CMI} \times 8 \times (Tspec_{MaxFrameSize} + Overhead_{mediaSpecific})$$

During stream registration SRP checks

Sufficient resources? for a stream of desired class/ listeners? Yes? = Stream is OK'd. NO? = Stream Preservation is not accepted.

Talker Advertise and Listener Ready

FIGURE 20.6 Example of talker advertise and listener ready propagation through an AVB network.

Clock Synchronization Protocol

- Select a grandmaster from multiple grandmasters
 - Receivers compare by "announce message"
- Periodically synchronize to the grandmaster clock
 - Distribute local time" preciseOrigininTimeStamp"
 - "Sync message" and "Follow up message"
- Measure the forwarding delays in the bridges
 - Bridge delay (Transmission time Reception time)
- Measure the communication delays
 - Bridge A: t1-→ C: t2; C: t3--→A:t4
 - Communication delay [(t4-t1)-(t3-t2)]/2

Redundancy Management

- Retransmission unacceptable in real-time networks
- Redundancy management (in discussion)
 - Redundant communication paths
 - Multiple copies with the same sequence number
 - Eliminate redundant copies by sequence number

Outline

- General Overview
- Basic Technology
- TSN/AVB Protocol Services
- Applications
- Summary

AVB in Advanced Driver Assistance System

G. Alderisi, G. Iannizzotto, and L. Lo Bello. Towards IEEE 802.1 Ethernet AVB for advanced driver assistance systems: A preliminary assessment. *IEEE Conference on Emerging Technologies and Factory Automation (ETFA)*, Krakow, Poland, September 2012.

Traffic model / AVB priority

Туре	Bandwidth [Mbps]	Appl.Payload [Byte]	Service rate [ms]	AVB Priority
Cameras	32.75	910	1.11	AVB SR Class A
LDW/TSR camera	13.10	910	0.555	AVB SR Class A
DA-Cam Video traffic				
Single flow (Case A)	6.55	910	1.11	AVB SR Class A
Aggregated flow (Case B)	32.76	910	0.22	
DA-Cam Warning traffic	0.016	100	50	AVB SR Class A
BluRay	40	1400	0.28	AVB SR Class B
Audio	8	1400	1.4	AVB SR Class B

Table 1 – Characteristics of Traffic Model and configured traffic/priority classes

Simulation Results

		Laten	cy [ms]		Jitter [μs]				
Traffic type	Case A		Case B		Case A		Cas	se B	
	Mean	Max	Mean	Max	Mean	Max	Mean	Max	
Cameras	0.321	0.487	0.333	0.487	1.45	54	6.02	81	
LDW/TSR	0.365	0.569	0.385	0.569	555	881	555	960	
camera									
DA-Cam	0.238	0.238	0.242	0.242	0	0	0	0	
Navigation	0.098	0.170	0.105	0.180	0.52	6.2	0.62	7.8	
warnings									
BluRay	0.239	0.239	0.239	0.239	0	0	0	O	
Audio	0.239	0.239	0.239	0.239	0	0	0	O	

Table 3: Mean and maximum latency and jitter of the Ethernet frames for every traffic class.

TF 661		Latenc	y [ms]		Jitter [μs]			
Traffic	Case A		Case B		Case A		Case B	
type	Mean	Max	Mean	Max	Mean	Max	Mean	Max
Cameras	32.68	32.68	32.43	32.43	2.80	81	2.86	135
LDW/TSR	16.50	16.50	16.51	16.51	6.24	78	7.6	118
camera								
DA-Cam	32.41	32.41	32.43	32.43	0	0	0	0

Table 2: Mean and maximum latency and jitter values for the ADAS video frames

	Workload	(Mbps)	Throughput (Mbps)		
	Case A	Case B	Case A	Case B	
Switch 1	57.64	87.78	57.64	87.78	
Switch2	58.27	87.49	58.27	87.49	

Table 4: Switch workload and throughput

Simulation Results Analysis

- Warning messages latency is less than standardization (0.5 ms)
- Camera traffic less than 33ms (45ms)
- LDW/TSR delay less than 16.55ms (22.5ms)
- No packet loss

Outline

- General Overview
- Basic Technology
- TSN/AVB Protocol Services
- Applications
- Summary

Summary

- TSN history
 - Extend to wider application area
- TSN protocols
 - Based on AVB/Under standardization
 - Extend from reserving bandwidth to minumize latency
 - Extend from credit based shaper to time aware shaper
- Potential Applications
 - Industrial automation
 - Automotive applications

Credit

 AAA2C Discussion Topic: Type of Traffic in AVB 2, Michael Johas Teener, Markus Jochim