Probability
-probability space: (ILI, IP) where III countable set of outcomes (sample
space) TP: P.(DL) -> [0,1] the probability measure satisfying:
() 16(77) = 1
2) For E = D, P(F) = ZP((fug)
2+) Is E, Ez, & D w) E, N E = 0 for i = j, then
P(V; =, E;) = ∑; =, P(E;)
- ID (R) = 0
- P(Ec)=1-1P(E)
-P(EUF)=P(E)+P(F) P(ENF)
- E, F = D, P(F) + O, P(E(F) = P(E) Conditional Probability
- E, F = D, $P(F) \neq 0$, $P(E F) = \frac{P(E \cap F)}{P(F)}$ (one; troud Probability - G, F independent $\Leftrightarrow P(E \cap F) = P(F) P(F)$
- E, & muinally exclusive => ENF = &
-Bayes, Theorem: IP(B/A) = P(A/B) (P(B))
(1404)
- Law of Total Probability: For paraliseon B1, B2,, Bn of cample space
OL, we have IP(A) = [P(A B,) IP(B,), IP(A B2) IP(B2)'+ + P(A Bn) P(Bn)
or P(A) = 1P(A1B)1P(B) + 1P(A1B)P(BC)
Bayes': P(BIA) = 1P(AIB) P(B)
with cam of IP(AIB) IP(B) + IP(AIBC) P(BC)
Total Probability
- Binomial Distribution: Flip in wins of Prob p to land heads,
P[k ne ads] = (n) pk(1-p)n-k

	Problems
١.	Email site unvolls new spam-detection tool that correctly identifies
	a spam email with probability 80%. The probability that it labels a
	non-spam email as spam is 20%. It is estimated that 40%
	of all emails are spam. It an email is detected as spam, what
	is the probability it is actually spam?
	, ,
	Soln:
	P[spam detected]
	P[detected spam] (P[spam] by Bayes)
5	P[detected] Spam] P[spam] by Bayes)
2	80%. • 40%
	P[detected spom] P[spam] + P[detected I not spam] P[not spam]
	¹ / ₅ · ² / ₅
	4/5.2/5 + 1/5.3/5
	8
=	= 11
	<u>'</u>
2.	You roll a fair 5-sided are 5 times, what is the provability
	you roll an even number exactly twice? (The sides of the
	die are numbered 1 through 5).
	•
	SO(N:
	Let p=1P [even number on one roll]
	= 2/5
	Sine 2 and 4 are even.
	We can treat this as a binomial distribution. For every
	successful outcome where we roll an even number exactly
	twice, we need to choose 2 of 5 rolls to roll an even
	number. Each such ourcome has probability of (3/5)3
	of occuring, since the two even rolls occur with probability
	215 and the odd volls ocen with probability 3/5. Thus, our
	overan probability is (5) (2/5)2(3/5)3.
	· · · · · · · · · · · · · · · · · · ·

3.	You roll a 6-sided die 3 times. What is the probability you
	LOIN 3 CONSECUTINE NAMPERS IN OLGETS
	Soln:
	P[3 consecutive numbers in order]
	= IP [1,2,3] + IP [2,3,4] + IP [3,4,5] + IP [4,5,6]
	$=4(1/6)^3$
	Since we have 4 equally likely outcomes and each one has
	probability (1/6)3 of occurring.
4	You roll a fair 4 - sided die +wice. You lose \$1 if your second
	roll is less than your pirst. It you lost money, what is the
	probability you rolled a 2 on your first roll?
	Soln:
	By Bayes, Theorem:
	P[10st 2 on 1st] [P[2 on 1st]
	P[2 on 18+ 1 108+] = P[108+]
	By Law of Total Probability:
	P[108+] = P[108+ 1 on 18+] P[1 on 16+] + P[108+ 2 on 18+] P[2 on 18+]
	+ P[1084 3 on 187] P[3 on 188] + P[1084 4 on 187] P[4 on 188]
	= 0.1/4 + 1/4.1/4 + 2/4.1/4 + 3/4.1/4
	$=\frac{3}{8}$
	So, IP [2 on 1st los+] = 1/4.1/4
	3/8
	= 1/6
	7 / 6