Operações em vírgula flutuante

- 1. Escrever fragmentos de código assembly AArch64 que implementem o seguinte código C++-:

 - b) int W = 7; double X = 7.1; double Y = sqrt(X) + W;
- 2. Escrever um programa para calcular:
 - a) o valor da expressão $\frac{(A-B)\times C}{D+A-3}$, assumindo valores com precisão simples.
 - **b)** o valor da área de um círculo dado o respetivo raio (considerar $\pi \approx 3,141\,592\,653$).
 - c) a distância entre dois pontos, $P(x_1, y_1)$ e $Q(x_2, y_2)$, dada por $\sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$.
- 3. Considere o polinómio $p(x)=1.5\,x^3-12.5\,x+7$. Escreva a sub-rotina calc_poly_tab que calcula o polinómio para valores de x pertencentes a $\{0;0.1;0.2;\cdots;9.9;10\}$ (ao todo são 101 valores). Assumir que para executar esta sub-rotina é chamada a função em C com o protótipo

em que tab é o vetor a ser preenchido com os valores $p(0), p(0,1), \dots, p(9,9)$ e p(10).

4. O cálculo do polinómio $p(x)=a_0+a_1x+a_xx^2+\cdots+a_{n-1}x^{n-1}$ pode ser realizado através do cálculo de $p(x)=a_0+x(a_1+x(a_2+\cdots+x(a_{n-2}+a_{n-1}x)))$. Esta expressão minimiza o número total de operações necessárias para o cálculo do polinómio, sendo o processo conhecido por método de Horner.

Desenvolver uma sub-rotina que calcula, para um dado x, o valor de um polinómio definido pelos seus n coeficientes $a_0, a_1, \ldots, a_{n-1}$ contidos no vetor coefs. Assumir que para executar esta sub-rotina é chamada a função em C com o protótipo

5. Sejam $X=[x_1,x_2,...,x_n]$ e $Y=[y_1,y_2,...,y_n]$ dois vetores de n números reais (n>0). O seu produto interno é dado por:

$$X \cdot Y = x_1 \times y_1 + x_2 \times y_2 + \dots + x_n \times y_n$$

Apresentar o código da sub-rotina que calcula o produto interno de X e Y. Considerar o seguinte protótipo da função a chamar em $\mathbb C$ para executar a sub-rotina:

AJA, BMCL, JCF, JFS Pág. 1 de 2

MPCP (FEUP/MIEIC) 2019/20

6. Considerar um vetor V com n valores do tipo float. Escrever uma sub-rotina que determina o número de valores do vetor que pertencem ao intervalo [a;b]. Assumir que para executar esta sub-rotina é chamada a função em C com o seguinte protótipo:

long int conta_intervalo(float *V, long int n, float a, float b)

7. Considerar a função $f(x), x \in \mathbb{R}$, definida por

$$f(x) = \begin{cases} \sqrt{(x+\pi)^3} & \text{se} \quad x \ge 0\\ \frac{1}{\sqrt{4-x}} & \text{se} \quad x < 0 \end{cases}$$

Implementar a sub-rotina rotF que calcula o valor da função para qualquer valor de x. Considerar que o protótipo da função a invocar em C é: double rotF(double x).

8. A função erf(x) tem a seguinte aproximação racional para $x \ge 0$:

$$\operatorname{erf}(x) \approx 1 - \frac{1}{(1 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4)^4}$$

com $a_1 = 0.278393$, $a_2 = 0.230389$, $a_3 = 0.000972$ e $a_4 = 0.078108$.

a) Apresentar uma sub-rotina que calcula o valor de $\operatorname{erf}(x)$ usando a aproximação indicada. Considerar que o protótipo da função a invocar em C é:

b) A função $\operatorname{erf}(x)$ é impar, ou seja, $\operatorname{erf}(-x) = -\operatorname{erf}(x)$.

Apresentar uma sub-rotina que calcula $\operatorname{erf}(x)$, para qualquer valor de x, com recurso à sub-rotina da alínea anterior. O protótipo da nova sub-rotina é:

- 9. Pretende-se implementar um programa que produza uma tabela de valores da função $y = 100 + 50\cos(x)$ com $x \in [0^\circ; 90^\circ]$ (x em graus). Para isso, procede-se da seguinte maneira:
 - a) Escrever a sub-rotina cosseno que calcula o cosseno de um valor real expresso em radianos (assumir a declaração double cosseno(double x)), usando a seguinte variante da fórmula de Taylor:

$$\cos(x) \approx 1 - x^2 \left(\frac{1}{2!} - x^2 \left(\frac{1}{4!} - x^2 \left(\frac{1}{6!} - x^2 \left(\frac{1}{8!} - x^2 \left(\frac{1}{10!} \right) \right) \right) \right) \right)$$

Sugestão: Declarar um vetor com as constantes (n!) pré-calculadas.

- **b)** Usando a sub-rotina da alínea anterior, apresentar uma sub-rotina func para calcular o valor de $y = 100 + 50 \times \cos(x)$ com x em graus. Considerar o protótipo double func(double graus).
- c) Escrever um programa para calcular (usando a sub-rotina da alínea anterior, func) e imprimir uma tabela de y(x) para os valores inteiros de x entre 0° e 90° .

Fim

AJA,BMCL,JCF,JFS Pág. 2 de 2