Lecture 20 Minimum Spanning Trees

EECS 281: Data Structures & Algorithms

MST Quiz

- 1. Prove that a unique shortest edge must be included in every MSD
- 2. Prove for second shortest edge
- 3. What about third shortest edge?
- 4. Show a graph with > 1 MST
- 5. Show a graph and its MST which avoids some shortest edge
- 6. Show a graph where every longest edge must be in every MST

Prim's Algorithm

- 1. Initialize a tree with a single vertex, chosen arbitrarily from the graph
- 2. Grow the tree by one edge: of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and add that vertex to the tree
- 3. Repeat step 2 (until all vertices are in the tree)

Prim: Data structures

- A vector of classes or structures
- For each vertex v. record:
 - $-k_v$: Has v been visited? (initially **false** for all $v \in V$)
 - $-d_v$: What is the minimal edge weight to v? (initially ∞ for all $v \in V$, except $v_r = 0$)
 - $-p_v$: What vertex precedes (is parent of) v? (initially **unknown** for all $v \in V$)

The Minimum Spanning Tree Problem

- Given: edge-weighted, undirected, connected graph G = (V, E)
- Find: subgraph T = (V, E'), E' ⊆ E such that
 - All vertices are pair-wise connected
 - The sum of all edge weights in T is minimal
- See a cycle in T?
 - Remove edge with highest weight
- Therefore, T must be a tree (no cycles)

Prim's Algorithm

- Find an MST on edge weighted, connected, *undirected* graphs
- Greedily select edges one by one and add to a growing sub-graph
- Grows a tree from a single vertex

Prim's Algorithm

- Given graph G = (V, E)
- · Start with 2 sets of vertices: 'innies' & 'outies'
 - 'Innies' are visited nodes (initially empty)
 - 'Outies' are not yet visited (initially V)
- Select first innie arbitrarily (root of MST)
- · Repeat until no more outies
 - Choose outie (v') with smallest distance from <u>any</u> innie
 - Move v' from outies to innies
- Implementation issue: use linear search or PQ?

Implementing Prim's

- Implement in the order listed:
 - -1: Loop over all vertices: find smallest false k_{ν}
 - -2: Mark k_{ν} as true
 - 3: Loop over all vertices: update false neighbors of k_v
- Common Mistake: Set the first vertex to true outside the loop
- Reordering this can result in a simple algorithm that simply doesn't work

13

V	k_{v}	d_{v}	p_{v}
а	T	0	-
b	F	13	a
С	F	8	a
d	F	1	a
е	F	∞	-
f	F	∞	-

V	k _v	d_v	p_{v}
а	T	0	1
b	F	13	а
С	F	3	е
d	T	1	а
е	T	4	d
f	F	2	е

V	k _v	d_v	p_{v}
а	T	0	1
b	F	13	а
С	T	3	е
d	T	1	а
е	T	4	d
f	T	2	е

V	k _v	d_v	p_{v}
а	F	0	-
b	F	∞	-
С	F	∞	-
d	F	∞	-
е	F	∞	-
f	F	∞	-

V	k _v	d_{v}	p_{v}
а	T	0	•
b	F	13	а
С	F	5	d
d	T	1	а
е	F	4	d
f	F	5	d

V	k_{v}	d_v	p_{v}
а	T	0	-
b	F	13	а
С	F	3	е
d	T	1	а
е	T	4	d
f	T	2	е
			·

V	k _v	d_{v}	p_{v}
а	T	0	-
b	T	13	а
С	T	3	е
d	T	1	а
е	T	4	d
f	T	2	е
	a b c d	a	a T 0 b T 13 c T 3 d T 1 e T 4

MST This! (Prim's)

Using Prim's; start at node A

V	K _v	D_{v}	p_{v}
Α	F	0	-
В	F	8	-
С	F	8	-
D	F	8	-
E	F	8	-

Prim's (Heap) Algorithm

Algorithm Prims_Heaps(G, s_0)

//Initialize n = |V| $create_table(n)$ //stores k,d,p $create_pq()$ //empty heap $create_pq()$ //empty heap

Complexity - Heaps

Repeat until the PQ is empty:

|E| times

- 1. From the set of vertices for which $k_{\rm v}$ is false, select the vertex v having the smallest tentative distance $d_{\rm v}$.

 $O(\log |E|)$

3. For each vertex w adjacent to \overline{v} for which k_w is false, test whether d_w is greater than distance (v,w). If it is, set d_w to distance (v,w) and set p_w to v.

Most at this vertex: O(|V|). Cost of each: $O(\log |E|)$. Note: Visits every edge once (over all iterations) = O(|V|)

Kruskal's Algorithm

- Find an MST on edge-weighted, connected, undirected graphs
- Greedily select edges one by one and add to a growing sub-graph
- Grows a <u>forest</u> of trees that eventually merges into a single tree

Complexity - Linear Search

Loop v times:

1 times

- 1. From the set of vertices for which k_v is false, select the vertex v having the smallest tentative distance d_v .
- 2. Set k_v to true. \bigcirc 0(1)

O(|V|)

3. For each vertex w adjacent to \overline{v} for which k_w is false, test whether d_w is greater than distance(v,w). If it is, set d_w to distance(v,w) and set p_w to v.

Most at this vertex: O(|V|). Cost of each: O(1).

3

Prim's (Heap) Algorithm

while (!pq.isempty)	O(E)
v ₀ = getMin() //heap top() & pop()	<i>O</i> (log <i>E</i>)
if (!table[v ₀].k) //not known	O(1)
table[v ₀].k = true	O(1)
for each v _i ∈ Adj[v₀]	O(1 + E/V)
if (!table[v _i].k)	O(1)
distance = weight(v ₀ , v _i)	O(1)
if (distance < table[v _i].d)	O(1)
table[v _i].d = distance	O(1)
table[v _i].p = v ₀	O(1)
insert_pq(distance, v _i)	<i>O</i> (log <i>E</i>)

Prim's: Complexity Summary

• *O(V²)* for the simplest nested-loop implementation

• O(E) log E) with heaps

— Is this always faster?

 Think about the complexity of the PQ version for dense versus sparse graphs

34

Kruskal's Algorithm

- Presort all edges: O(E log E) ≈ O(E log V) time
- 2. Try inserting in order of increasing weight
- Some edges will be discarded so as not to create cycles
- Initial edges may be disjoint
 - Kruskal's grows a forest (union of disjoint trees)

Kruskal: Complexity Analysis

- Sorting takes O(E log E)
 - Happens to be the bottleneck of entire algorithm
- Remaining work: a loop over E edges
 - Discarding an edge is trivial O(1)
 - Adding an edge is easy O(1)
 - Most time spent testing for cycles O(?)
 - Good news: takes less than log E ≈ log V
- Key idea: if vertices k and j are already connected, then a new edge would create a cycle
 - Only need to maintain disjoint sets

Maintaining Disjoint Sets

- N locations with no connecting roads
- Roads are added one by one
 - Distances are unimportant (for now)
 - Connectivity is important
- Want to connect cities ASAP
 - Redundant roads would slow us down

Q: For two cities *k* and *j*, would road (*k*, *j*) be redundant?

A: Use a Union-Find data structure.

MST Summary

- MST is lowest-cost sub-graph that
 - Includes all nodes in a graph
 - Keeps all nodes connected
- · Two algorithms to find MST
 - <u>Prim</u>: iteratively adds closest node to current tree very similar to Dijkstra, O(V²) or O(E log E)
 - Kruskal: iteratively builds forest by adding minimal edges, O(E log E)
- For dense G, use the nested-loop Prim variant
- For sparse G, Kruskal is faster
 - Relies on the efficiency of sorting algorithms
 - Relies on the efficiency of union-find