Note Title	Angle of departure (dd): it is calculated at complex pules	2/22/2
1	Single of arrival (pa):- it is calculated at complex con Zero	ijng.
	Xti O:ti Xi	
	Complex anjugate pole Complex Conjugate	Z0:
_	Angle of departure (Ød): "It gives that angle with who pole departs as leave the initial pain."	rich
	$f_{j\omega}$	
	$\frac{1}{3}$	
	$\int d = 80 + \angle G(0) + 60 $ at the image complex p	

i)
$$(5(5) + 1/5) = ($$

₹70° (-43°)

Problems on RLD:-

50/4:

- 1. Identify real axis R.L. Branches/poles. & break points.
 - 2. find the No. of assymptotes & their angle
 - 3. find the centroid if assymptotes are there.

2.
$$N = P - 2$$
 3. 1^{st} Angle $f^{2r} q = 0 = \frac{180 \times (2q+1)}{P-2} = 90$

2nd Angle 1269:1 = 180 (29+1) = 270°

$$(s^2+4s)(s+7)=0$$

(HW) i)
$$G(S) \times \frac{K(S+1)}{S(S+2)(S+3)}$$
 3) $G(S) \times \frac{K(S+1)}{S^2(S+2)(S+3)}$

2)
$$G(s)H(s) = \frac{K(s+7)-1}{s^2(s+1)}$$

