Nombre y Apellidos:

1- Realizar un programa que pida por teclado un número mayor de 1 (si no es >1 lo seguirá preguntando hasta que el usuario lo introduzca. Suponemos que el usuario solo introduce números). Una vez leído el número el programa debe de mostrar los n primeros números de la serie de Fibonacci. (3ptos)

La sucesión de Fibonacci es: $x_n = x_{n-1} + x_{n-2}$, donde x_n son los términos de la sucesión. Dicho de otro modo, cada número de la sucesión es la suma de los dos anteriores. La sucesión siempre comienza por 0, 1, ...

Por ejemplo:

```
Si n es 10 debe de mostrar: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 Explicación: 1=0+1, 2=1+1, 3=2+1, 5=3+2, ...
```

2- Hacer un programa que cree un vector de n elementos y lo rellene con números aleatorios del 1 al 100 pudiendo ser estos positivos o negativos. Una vez lleno, mostrarlo por pantalla. Luego mostrar todos los números "abundantes" del vector. El número n lo pedirá por pantalla. El vector debe de ser de 50 como mínimo, si el usuario introduce un número menor se le volverá a pedir.

Un número abundante es aquel cuyos divisores propios (todos los divisores excepto el propio número) sumen más que dicho número. (5ptos)

Ejemplo de ejecución:

```
Introduce el tamaño del vector: 30
Introduce el tamaño del vector: 60
-1, 4, 45, 32, 12, -46, -23, -12, 87, 18, .....
Números abundantes: 12, 18
```

Nombre y Apellidos:

3- Dado el siguiente código: import java.util.Scanner; public class combinaciones dados { public static void main (String args[]) { Scanner sc=new Scanner(System.in); int puntuacion; int [] $dado1=\{1,2,3,4,5,6\};$ int [] $dado2={5,6,7,8,9,0};$ int contador=0; System.out.print("Introduce un resultado: "); puntuacion=sc.nextInt(); for (int i=0;i<=dado1.length;i++) {</pre> for (int j=0;j<=dado2.length;j++) {</pre> if (dado1[i]+dado2[j]==puntuacion) { contador++; } System.out.println("Hay "+contador+" puntuaciones"); } }

Comprobar si compila o no, Si no compila razona tu respuesta, si compila muestra lo que saldría por pantalla si el vector generado fuera:

33 45 3 5 55 23 12 87 78 56 5 3