Assignment 4

```
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purrr 0.3.4

## v tibble 3.0.4 v dplyr 1.0.2

## v tidyr 1.1.2 v stringr 1.4.0

## v readr 1.4.0 v forcats 0.5.0
## -- Conflicts ------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
       date, intersect, setdiff, union
##
library(modelr)
library(broom)
## Attaching package: 'broom'
## The following object is masked from 'package:modelr':
##
##
       bootstrap
```

Modeller

Leser inn data

```
arblos <- read_csv("data/al9914m.csv")
```

```
##
knr = col_character(),
##
##
    knavn = col_character(),
##
    aar = col double(),
    mnd = col double(),
##
    al_Menn = col_double(),
##
##
    al_Kvinner = col_double(),
##
    alp_Menn = col_double(),
    alp_Kvinner = col_double(),
##
    alp_15_74 = col_double(),
##
    alp_15_29 = col_double(),
##
    alp_30_74 = col_double()
## )
bef <- read_csv("data/bef9914MK.csv")</pre>
##
## -- Column specification -----
## cols(
##
    knr = col_character(),
    knavn = col_character(),
##
##
    aar = col_double(),
##
    bef_K_0_14 = col_double(),
##
    bef_K_15_29 = col_double(),
##
    bef K 30 74 = \text{col double}(),
##
    bef_K_75_105 = col_double(),
##
    bef_M_0_14 = col_double(),
    bef_M_15_29 = col_double(),
##
##
    bef_M_30_74 = col_double(),
##
    bef_M_75_105 = col_double(),
    bef_MK_0_14 = col_double(),
##
    bef_MK_15_29 = col_double(),
##
    bef_MK_30_74 = col_double(),
    bef_MK_75_105 = col_double()
##
## )
Modeller med data fra bef (befolkning)
```

```
names(bef)
## [1] "knr"
                       "knavn"
                                       "aar"
                                                       "bef K 0 14"
##
  [5] "bef_K_15_29"
                       "bef_K_30_74"
                                       "bef_K_75_105" "bef_M_0_14"
  [9] "bef M 15 29"
                       "bef M 30 74"
                                       "bef M 75 105"
                                                       "bef MK 0 14"
## [13] "bef_MK_15_29" "bef_MK_30_74" "bef_MK_75_105"
names(arblos)
## [1] "knr"
                      "knavn"
                                   "aar"
                                                 "mnd"
                                                               "al_Menn"
## [6] "al Kvinner"
                     "alp_Menn"
                                   "alp_Kvinner" "alp_15_74"
                                                               "alp_15_29"
## [11] "alp_30_74"
```

Arbeidsledighetsprosenten blir beregnet som: arbl% = antall arb. ledige/arbeidsstyrken. Arbeidsstyrken er her dem man anser egnet for arbeid dvs. uføretrygdete etc. er trukket ut. Arbeidsstyren i en aldesrkategori er derfor langt mindre enn befolkningen i den tilsvarende alderskategorien.

Dessverre kjenne vi ikke arbeidsstyrken, men vi kan beregne den vha.: arbeidsstyrken = antall arb. ledige/arb. ledighetsprosent.

```
arblos <- arblos %>%
  mutate(
     wf_K = (al_Kvinner/alp_Kvinner)*100,
     wf_M = (al_Menn/alp_Menn)*100,
     wf_KM = wf_K + wf_M
)
```

arblos

```
## # A tibble: 77,330 x 14
##
            knavn
                           mnd al_Menn al_Kvinner alp_Menn alp_Kvinner alp_15_74
      knr
                     aar
                                                                               <dbl>
##
      <chr> <chr> <dbl> <dbl>
                                  <dbl>
                                              <dbl>
                                                       <dbl>
                                                                    <dbl>
    1 0101 Hald~
                    1999
                                    283
                                                248
                                                         3.9
                                                                      4.1
                                                                                 4
##
                             1
##
    2 0101
            Hald~
                    1999
                              2
                                    291
                                                236
                                                         4
                                                                      3.9
                                                                                 4
    3 0101
            Hald~
                    1999
                             3
                                    290
                                                230
                                                         4
                                                                      3.8
##
                                                                                 3.9
    4 0101
            Hald~
                    1999
                             4
                                    244
                                                207
                                                         3.4
                                                                      3.4
                                                                                 3.4
   5 0101
            Hald~
                    1999
                                    210
                                                179
                                                         2.9
                                                                      3
                                                                                 2.9
##
                             5
##
    6 0101
            Hald~
                    1999
                              6
                                    227
                                                203
                                                         3.2
                                                                      3.4
                                                                                 3.2
                             7
                                                                      4.5
##
   7 0101
            Hald~
                    1999
                                    265
                                                273
                                                         3.7
                                                                                 4.1
    8 0101
            Hald~
                    1999
                              8
                                    288
                                                278
                                                         4
                                                                      4.6
                                                                                 4.3
##
    9 0101
            Hald~
                    1999
                              9
                                    230
                                                201
                                                         3.2
                                                                      3.3
                                                                                 3.3
            Hald~
                    1999
                            10
                                    225
                                                207
                                                                      3.4
                                                                                 3.3
## 10 0101
                                                         3.1
## # ... with 77,320 more rows, and 5 more variables: alp_15_29 <dbl>,
       alp_30_74 <dbl>, wf_K <dbl>, wf_M <dbl>, wf_KM <dbl>
```

Arbeidsstyrken

Når befolkningen øker vil også arbeidsstyrken øke. Det er derfor mer naturlig å se på arbeidsstyrken relativt til delen av befolkningen som er i yrkesaktiv alder (15-74 år her).

```
names(bef)
```

```
[1] "knr"
##
                         "knavn"
                                          "aar"
                                                           "bef_K_0_14"
    [5] "bef_K_15_29"
##
                         "bef_K_30_74"
                                          "bef_K_75_105"
                                                           "bef M 0 14"
    [9] "bef M 15 29"
                         "bef M 30 74"
                                          "bef M 75 105"
                                                           "bef MK 0 14"
## [13] "bef_MK_15_29"
                         "bef_MK_30_74"
                                          "bef_MK_75_105"
```

Vi skal starte med å lage et datasett med arbeidsstyrken (wf) for hele landet samlet, men fordelt på de tre kategorien kvinner, menn og kvinner + menn.

Bruk data for januar hvert år til å beregne wf på landsbasis

```
# årlige data landet samlet
wf <- arblos %>%
    filter(mnd == 1) %>%
```

```
group_by(aar) %>%
summarise(
    wf_K = sum(wf_K, na.rm = TRUE),
    wf_M = sum(wf_M, na.rm = TRUE),
    wf_KM = wf_K + wf_M
)
```

'summarise()' ungrouping output (override with '.groups' argument)

```
dim(wf)
```

```
## [1] 16 4
```

```
names(wf)
```

```
## [1] "aar" "wf_K" "wf_M" "wf_KM"
```

Summer de ulike årskategoriene for de to kjønnene og menn+kvinner for å finne total befolkning de ulike årene. Bruk mutate til å lage de nye variablene.

```
bef <- bef %>%
mutate(
  bef_K = bef_K_0_14 + bef_K_15_29 + bef_K_30_74 + bef_K_75_105,
  bef_M = bef_M_0_14 + bef_M_15_29 + bef_M_30_74 + bef_M_75_105,
  bef_KM = bef_K + bef_M)
```

```
dim(bef)
```

```
## [1] 6688 18
```

```
names(bef)
```

```
[1] "knr"
                                                        "bef_K_0_14"
                        "knavn"
                                        "aar"
##
   [5] "bef_K_15_29"
                        "bef_K_30_74"
                                        "bef_K_75_105" "bef_M_0_14"
   [9] "bef_M_15_29"
                        "bef_M_30_74"
                                        "bef_M_75_105"
                                                       "bef_MK_0_14"
## [13] "bef_MK_15_29"
                        "bef_MK_30_74" "bef_MK_75_105" "bef_K"
## [17] "bef_M"
                        "bef_KM"
```

Legg befolkningsdata varaiablene bef_K, bef_M, bef_KM til wf. Husk at de må aggregeres for hele landet (group_by() og så summarise() før de «joines»). Bruk tilslutt mutate() make_date() for å lage en ny variabel år som er en date, dvs aar + month=1L + day=1L.

'summarise()' ungrouping output (override with '.groups' argument)

```
wf <- left_join(wf, wf_hjelp)

## Joining, by = "aar"

wf <- wf %>%
    select(aar, bef_K, bef_M, bef_KM, wf_K, wf_M, wf_KM) %>%
    mutate(år = make_date(aar, month = 1L, day = 1L))

rm(wf_hjelp)

wf
```

```
## # A tibble: 16 x 8
##
       aar
             bef_K
                     bef_M bef_KM
                                       wf_K
                                                wf_M
                                                        wf_KM år
##
      <dbl>
             <dbl>
                     <dbl>
                            <dbl>
                                      <dbl>
                                               <dbl>
                                                        <dbl> <date>
##
   1 1999 2144642 2099157 4243799 1031744. 1205745. 2237489. 1999-01-01
##
   2 2000 2159722 2115843 4275565 1037097. 1207206. 2244303. 2000-01-01
## 3 2001 2170177 2129548 4299725 1049731. 1218061. 2267791. 2001-01-01
## 4 2002 2180894 2141321 4322215 1061392. 1221762. 2283154. 2002-01-01
## 5 2003 2195125 2155667 4350792 1077983. 1219325. 2297307. 2003-01-01
## 6 2004 2206714 2167751 4374465 1079308. 1221288. 2300596. 2004-01-01
## 7 2005 2220663 2182844 4403507 1081663. 1225478. 2307142. 2005-01-01
## 8 2006 2236334 2200374 4436708 1089654. 1233306. 2322960. 2006-01-01
## 9 2007 2252272 2222818 4475090 1103816. 1249628. 2353444. 2007-01-01
## 10 2008 2274215 2256203 4530418 1132662. 1271414. 2404076. 2008-01-01
## 11 2009 2299522 2289506 4589028 1172942. 1323707. 2496649. 2009-01-01
## 12 2010 2325447 2319852 4645299 1179755. 1318575. 2498330. 2010-01-01
## 13 2011 2352727 2353491 4706218 1181768. 1330901. 2512669. 2011-01-01
## 14 2012 2380218 2390822 4771040 1194903. 1342914. 2537817. 2012-01-01
## 15 2013 2407722 2426904 4834626 1212788. 1365955. 2578743. 2013-01-01
## 16 2014 2434035 2458438 4892473 1230477. 1381665. 2612141. 2014-01-01
```

Vi vil nå se på arbeidsstyrke relativt til befolkning på landsbasis, dvs. wf_K/bef_K etc.

Plot dataen vha. geom_line() for de tre kategoriene. Bruk år som x-variabel.

```
wf %>%
    ggplot(wf, mapping = aes(x = år)) +
# geom_line(mapping = aes(y = wf_K/bef_K, color = "...")) +
# geom_line(mapping = aes(y = wf_M/bef_M, color = "darkblue")) +
# geom_line(mapping = aes(y = wf_KM/bef_KM)) +
geom_line(mapping = aes(y = wf_K/bef_K), color = "red") +
geom_line(mapping = aes(y = wf_M/bef_M, color = "darkblue")) +
geom_line(mapping = aes(y = wf_KM/bef_KM), color = "black") +
geom_line(mapping = aes(y = wf_KM/bef_KM), color = "black") +
theme(legend.position = "none")
```


Hvordan kan pukkelen rett før 2010 forklares? Dette kan skyldes finanskrisen.

names(arblos)

```
## [1] "knr" "knavn" "aar" "mnd" "al_Menn"
## [6] "al_Kvinner" "alp_Menn" "alp_Kvinner" "alp_15_74" "alp_15_29"
## [11] "alp_30_74" "wf_K" "wf_M" "wf_KM"
```

Vi vil nå generere dat for arbeidsstyrken på fylkesbasis. Husk at de to første sifferene i knr angir fylket en kommune ligger i. Bruk dataene i arblos til å finne arbeidsstyrken på fylkesbasis (wf_f). Start med å bruke mutate() til å lage en ny variabel fylke. Grupper så og finn wf_K_f, wf_M_f og wf_KM_f vha. summarise(). Lag til slutt en ny variabel år som en date. Velg til slutt de relevante variabelen vha. select().

```
# årlige data per fylke
wf_f <- arblos %>%
    mutate(
        fylke = substr(knr, start = 1, stop = 2)
) %>%
    group_by(aar, mnd, fylke) %>%
    summarise(
        wf_K_f = sum(wf_K, na.rm = TRUE),
        wf_M_f = sum(wf_M, na.rm = TRUE),
        wf_KM_f = wf_K_f + wf_M_f
) %>%
    mutate(år = make_date(aar, mnd, day=1L)) %>%
    select(aar, mnd, år, fylke, wf_K_f, wf_KM_f)
```

```
## 'summarise()' regrouping output by 'aar', 'mnd' (override with '.groups' argument)
print(wf_f, n = 5)
## # A tibble: 3,515 x 7
## # Groups:
               aar, mnd [185]
##
       aar
            mnd år
                            fylke wf_K_f wf_M_f wf_KM_f
                                             <dbl>
##
     <dbl> <dbl> <date>
                            <chr>>
                                    <dbl>
                                                     <dbl>
## 1
     1999
               1 1999-01-01 01
                                   57671. 67408. 125079.
                                  120670. 133018. 253688.
## 2
     1999
               1 1999-01-01 02
## 3 1999
               1 1999-01-01 03
                                  133500 147097. 280597.
## 4 1999
               1 1999-01-01 04
                                   42237.
                                            49356. 91593.
## 5 1999
               1 1999-01-01 05
                                   41178.
                                            47990.
                                                    89168.
## # ... with 3,510 more rows
Lag også en ny tibble bef_f fra bef som inneholder befolkningen i hvert fylke hvert år.
bef_f <- bef %>%
      mutate(
        fylke = substr(knr, start = 1, stop = 2)
    group_by(aar, fylke) %>%
    summarise(
        bef_K_f = sum(bef_K, na.rm = TRUE),
       bef_M_f = sum(bef_M, na.rm = TRUE),
        bef KM f = bef K f + bef M f
   ) %>%
   select(aar, fylke, bef_K_f, bef_M_f, bef_KM_f)
## 'summarise()' regrouping output by 'aar' (override with '.groups' argument)
bef f
## # A tibble: 304 x 5
## # Groups:
               aar [16]
        aar fylke bef_K_f bef_M_f bef_KM_f
##
##
      <dbl> <chr>
                    <dbl>
                            <dbl>
                                      <dbl>
                   123893 119292
##
   1 1999 01
                                    243185
##
   2 1999 02
                   229550
                           224826
                                    454376
##
   3 1999 03
                   257046
                           238442
                                    495488
##
   4 1999 04
                    93317
                            91073
                                    184390
##
  5 1999 05
                    87879
                            86384
                                    174263
   6 1999 06
                   117734
                           114475
##
                                    232209
##
   7
      1999 07
                    72957
                            70085
                                    143042
```

Lag til slutt tibble-en wf_f_bef som innholde arbeidsstyrke (wf-f) og befolkning (bef-f) på fylkesnivå for hvert år.

162660

100240

151965

##

##

8 1999 08

9 1999 09

... with 294 more rows

10 1999 10

82644

50362

76790

80016

49878

75175

```
wf_f_bef <- wf_f %>%
  right_join(bef_f) %>%
  arrange(fylke, aar, mnd)
## Joining, by = c("aar", "fylke")
Da skal wf f bef se slik ut:
print(arrange(wf_f_bef, fylke, aar, mnd))
## # A tibble: 3,515 x 10
## # Groups:
               aar, mnd [185]
##
        aar
              mnd år
                             fylke wf_K_f wf_M_f wf_KM_f bef_K_f bef_M_f bef_KM_f
##
      <dbl> <dbl> <date>
                                                                   <dbl>
                             <chr> <dbl> <dbl>
                                                   <dbl>
                                                           <dbl>
                                                                            <dbl>
                                   57671. 67408. 125079.
##
   1 1999
                1 1999-01-01 01
                                                          123893 119292
                                                                            243185
##
   2 1999
                2 1999-02-01 01
                                   57693. 67526. 125220.
                                                          123893
                                                                  119292
                                                                           243185
##
   3 1999
                3 1999-03-01 01
                                   57108. 67551. 124659.
                                                          123893 119292
                                                                           243185
                                                          123893 119292
##
  4 1999
                                   57526. 67355. 124881.
                4 1999-04-01 01
                                                                           243185
##
  5 1999
               5 1999-05-01 01
                                   57285. 67189. 124474.
                                                          123893 119292
                                                                           243185
   6 1999
                                   57529. 66792. 124321.
##
               6 1999-06-01 01
                                                          123893 119292
                                                                           243185
##
   7 1999
               7 1999-07-01 01
                                   57393. 67690. 125083.
                                                          123893 119292
                                                                           243185
##
   8 1999
                8 1999-08-01 01
                                   57531. 66998. 124529.
                                                          123893 119292
                                                                           243185
  9 1999
##
                9 1999-09-01 01
                                   57264. 67609. 124873.
                                                          123893 119292
                                                                           243185
## 10
      1999
               10 1999-10-01 01
                                   57702. 66907. 124610.
                                                          123893 119292
                                                                           243185
## # ... with 3,505 more rows
```

Plot nå arbeidsstyrke relativt til befolkning vha. geom_line()

Lage regioner

Alle fylkene blir litt rotete så vi definerer istedet seks regioner vha. case_when() og lager en ny tibble wf_r fra wf_f_bef.

```
# region
wf_r <- wf_f_bef %>%
   mutate(
         dato = ymd(paste(aar, mnd, "01", sep = "-")),
        region = case_when(
            as.numeric(fylke) == 3 ~ "Oslo",
            as.numeric(fylke) %in% c(1:2, 4:8) ~ "Østlandet",
            as.numeric(fylke) %in% c(9, 10) ~ "Sørlandet",
            as.numeric(fylke) %in% c(11, 12, 14, 15) ~ "Vestlandet",
            as.numeric(fylke) %in% c(16, 17) ~ "Trøndelag",
            as.numeric(fylke) %in% c(18, 19, 20) ~ "Nord-Norge"
   ) %>%
    group_by(dato, region) %>%
    summarise(
        wf_K_r = sum(wf_K_f, na.rm = TRUE),
        wf_M_r = sum(wf_M_f, na.rm = TRUE),
        wf_KM_r = wf_K_r + wf_M_r,
        bef_K_r = sum(bef_K_f, na.rm = TRUE),
        bef_M_r = sum(bef_M_f, na.rm = TRUE),
```

```
bef_KM_r = bef_K_r + bef_M_r
) %>%
select(dato, region, wf_K_r, wf_M_r, wf_KM_r, bef_K_r, bef_M_r, bef_KM_r)
```

'summarise()' regrouping output by 'dato' (override with '.groups' argument)

Plot nå for regionene wf_KM_r/bef_KM_r, både vha. geom_line() og geom_smooth(). La farge vise regionene. Sett denne i ggplot() slik at det gjelder for både geom_line() og geom_smooth(). Sett i tillegg alpha = 0.5 for geom_line() og se = FALSE for geom_smooth(). Legg til theme(legend.position = "bottom") til slutt for å få legend under plottet.

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Arbeidsstyrkens andel av befolkningen for regionene.

Plot for kvinner.

'geom_smooth()' using method = 'loess' and formula 'y ~ x'

Arbeidsstyrkens andel av befolkningen for kvinner per region.

Plot for menn.

'geom_smooth()' using method = 'loess' and formula 'y \sim x'

Forlar kort den generelle utviklingen i arbeidsstyrken. Hva er det som «redder oss»? menn har en nedgang i arbeidsstyrkens andel av befolningnen fra 2000-2007, men det er en liten stigning før det er nedgang mot 2015.

nest() arblos

Da skal vi jobbe direkte med arbeidsløshet og lage lineære modeller for hver av de 418 kommunene. Modellen vi skal lage er på ingen måte perfekt. Vi er interessert i selve teknikken med å organisere dataene og kjøre modeller på mange subsett av dataene (her for hver kommune).

Vi vil se på en modell der vi forklarer arbeidsstyrken i en kommune vha. ungdomsledighet og ledighet blant litt eldre arbeidstakere (30-74 år). En hypotese er at vi vil se en negativ sammenheng mellom ungdomsledighet og arbeidsstyrken. De unge flytter hvis det ikke er jobb.

Vi starter med å gruppere på kommune og nest-e dataene.

```
arblos_by_knr <- arblos %>%
    group_by(knr, knavn) %>%
    nest()

print(arblos_by_knr, n = 4)
```

arblos_by_knr\$data[[1]]

```
## # A tibble: 185 x 12
##
               mnd al_Menn al_Kvinner alp_Menn alp_Kvinner alp_15_74 alp_15_29
##
       <dbl>
             <dbl>
                      <dbl>
                                   <dbl>
                                             <dbl>
                                                          <dbl>
                                                                      <dbl>
                                                                                 <dbl>
##
       1999
                        283
                                     248
                                               3.9
                                                             4.1
                                                                        4
                                                                                   6.3
    1
                  1
    2
       1999
                  2
                        291
                                     236
                                               4
                                                             3.9
                                                                        4
##
                                                                                   6.1
##
    3
       1999
                  3
                        290
                                     230
                                               4
                                                             3.8
                                                                        3.9
                                                                                   5.9
       1999
##
    4
                  4
                        244
                                     207
                                               3.4
                                                             3.4
                                                                        3.4
                                                                                   4.9
##
    5
       1999
                  5
                        210
                                     179
                                               2.9
                                                             3
                                                                        2.9
                                                                                   3.8
    6
       1999
                                                                                   4.2
##
                  6
                        227
                                     203
                                               3.2
                                                             3.4
                                                                        3.2
                  7
##
    7
       1999
                        265
                                     273
                                               3.7
                                                             4.5
                                                                        4.1
                                                                                   5.2
##
       1999
                        288
                                     278
                                               4
                                                             4.6
                                                                        4.3
                                                                                   6.6
    8
                  8
##
    9
       1999
                  9
                        230
                                     201
                                               3.2
                                                             3.3
                                                                        3.3
                                                                                   4.8
## 10
       1999
                 10
                        225
                                     207
                                               3.1
                                                             3.4
                                                                        3.3
                                                                                   4.8
## # ... with 175 more rows, and 4 more variables: alp_30_74 <dbl>, wf_K <dbl>,
       wf M <dbl>, wf KM <dbl>
```

Vi har nå en tibble med data for hver kommune inne i tibble-en arblos_by_knr.

Skriv en funksjon som kjører den lineære modellen wf_KM \sim alp_15_29 + alp_30_74 på en input dataframe a_df. Kall funksjonen mod1 (i magel på noe bedre navn).

Kjøre så modellen vha. funksjonen mod1 på data i arblos_by_knr, og lag en list-column i arblos_by_knr som inneholder modellen. Kjør også tidy og glance fra broom på modellene for å få hhv. koeffisienter og ulike summary av modellen. Lagre resultatene i hhv. mod1_arblos, mod1_arblos_coef og mod1_arblos_sum (i siste er sum forkortelse for summary).

```
arblos_by_knr <- arblos_by_knr %>%
  mutate(mod1_arblos = map(data, .f = mod1)) %>%
  mutate(mod1_arblos_coef = map(.x = mod1_arblos, .f = tidy)) %>%
  mutate(mod1_arblos_sum = map(.x = mod1_arblos, .f = glance))
```

arblos_by_knr

```
## # A tibble: 418 x 6
                knr, knavn [418]
##
  # Groups:
##
      knr
                        data
                                         mod1_arblos mod1_arblos_coef mod1_arblos_sum
             knavn
##
      <chr> <chr>
                        t>
                                         t>
                                                      t>
                                                                        st>
##
    1 0101
            Halden
                        <tibble [185 ~ <lm>
                                                      <tibble [3 x 5]> <tibble [1 x 12~</pre>
##
    2 0104
                        <tibble [185 ~ <lm>
                                                      <tibble [3 x 5]> <tibble [1 x 12~</pre>
            Moss
                        <tibble [185 ~ <lm>
                                                      <tibble [3 x 5]> <tibble [1 x 12~</pre>
    3 0105
            Sarpsborg
                                                      <tibble [3 x 5]> <tibble [1 x 12~</pre>
##
    4 0106
            Fredrikst~ <tibble [185 ~ <lm>
    5 0111
            Hvaler
                        <tibble [185 ~ <lm>
                                                      <tibble [3 x 5]> <tibble [1 x 12~</pre>
##
##
    6 0118
            Aremark
                        <tibble [185 ~ <lm>
                                                      <tibble [3 x 5]> <tibble [1 x 12~
                                                      <tibble [3 x 5]> <tibble [1 x 12~</pre>
    7 0119
            Marker
                        <tibble [185 ~ <lm>
                                                     <tibble [3 x 5]> <tibble [1 x 12~</pre>
    8 0121 Rømskog
                        <tibble [185 ~ <lm>
```

Kommunestørrelse

Vi lager oss så en ny kategori variabel for kommunestørrelse.

```
kom_str <- bef %>%
   filter(aar == 2014) %>%
   mutate(
       k_str = case_when(
            bef_KM <= 2500 ~ "Svært liten",</pre>
            bef_KM > 2500 & bef_KM <= 6000 ~ "Liten",</pre>
            bef_KM > 6000 & bef_KM <= 20000 ~ "Middels",</pre>
           bef KM > 20000 & bef KM <= 60000 ~ "Stor",
           bef KM > 60000 & bef KM <= 1000000 ~ "Svært stor"
   ) %>%
    select(knr, knavn, bef_KM, k_str)
head(kom_str)
## # A tibble: 6 x 4
##
   knr knavn
                     bef_KM k_str
##
   <chr> <chr>
                       <dbl> <chr>
## 1 0101 Halden
                      29827 Stor
## 2 0104 Moss
                      30987 Stor
```

Pakker ut og henter model karakteristika

4354 Liten

1396 Svært liten

3 0105 Sarpsborg 53480 Stor ## 4 0106 Fredrikstad 76810 Svært stor

5 0111 Hvaler

6 0118 Aremark

```
mod arbl re <- arblos by knr %>%
 unnest(c("mod1_arblos_coef", "mod1_arblos_sum"), names_repair = "universal") %>%
 select(knr, knavn, term, estimate, std.error, p.value...9, adj.r.squared)
## New names:
## * statistic -> statistic...8
## * p.value -> p.value...9
## * statistic -> statistic...13
## * p.value -> p.value...14
print(mod_arbl_re, n = 10)
## # A tibble: 1,254 x 7
## # Groups: knr, knavn [418]
                                  estimate std.error p.value...9 adj.r.squared
     knr knavn
                    term
     <chr> <chr>
##
                       <chr>
                                      <dbl>
                                               <dbl>
                                                          <dbl>
                                                                        <dbl>
```

```
## 1 0101 Halden
                       (Intercept) 14288.
                                               153.
                                                       1.23e-155
                                                                       0.110
## 2 0101 Halden
                       alp_15_29
                                     228.
                                                58.0
                                                       1.19e- 4
                                                                       0.110
## 3 0101 Halden
                                    -516.
                                                                       0.110
                       alp 30 74
                                               105.
                                                       1.97e- 6
## 4 0104 Moss
                       (Intercept) 14030.
                                               252.
                                                                       0.0102
                                                       3.65e-116
## 5 0104 Moss
                       alp_15_29
                                      47.0
                                                97.2
                                                       6.30e- 1
                                                                       0.0102
## 6 0104 Moss
                       alp 30 74
                                      66.3
                                               206.
                                                       7.48e- 1
                                                                       0.0102
## 7 0105 Sarpsborg
                       (Intercept) 25250.
                                               435.
                                                       2.02e-119
                                                                       0.0138
## 8 0105 Sarpsborg
                       alp_15_29
                                                       9.72e- 2
                                                                       0.0138
                                     273.
                                               164.
## 9 0105 Sarpsborg
                       alp_30_74
                                    -416.
                                               381.
                                                       2.77e- 1
                                                                       0.0138
## 10 0106 Fredrikstad (Intercept)
                                               394.
                                                       1.15e-154
                                                                       0.550
                                   36302.
## # ... with 1,244 more rows
```

Slå sammen kom_str og mod_arbl_re vha. left_join().

```
kom_str_mod <- mod_arbl_re %>%
   left_join(kom_str, by = c("knr", "knavn"))
```

```
print(kom_str_mod, n = 5)
```

```
## # A tibble: 1,254 x 9
## # Groups: knr, knavn [418]
    knr
         knavn term
                         estimate std.error p.value...9 adj.r.squared bef KM k str
    <chr> <chr> <chr>
                            <dbl>
                                      <dbl>
                                                 <dbl>
                                                               <dbl> <dbl> <chr>
## 1 0101 Halden (Inter~ 14288.
                                      153.
                                             1.23e-155
                                                              0.110
                                                                      29827 Stor
## 2 0101 Halden alp_15~
                                             1.19e- 4
                            228.
                                      58.0
                                                              0.110
                                                                      29827 Stor
## 3 0101 Halden alp_30~
                          -516.
                                      105.
                                             1.97e- 6
                                                              0.110
                                                                      29827 Stor
## 4 0104 Moss
                 (Inter~ 14030.
                                      252.
                                             3.65e-116
                                                              0.0102 30987 Stor
## 5 0104 Moss
                 alp 15~
                             47.0
                                      97.2
                                             6.30e- 1
                                                              0.0102 30987 Stor
## # ... with 1,249 more rows
```

Vi plotter koeffisientene som er signifikante og lar farge vise kommune størrelse. Tar vekk ekstreme estimat.

Lag tilsvarende plot for alp_30_74.

Hvor mange har vi?

```
kom_str_mod %>%
    filter(term == "alp_15_29") %>%
    group_by(k_str) %>%
    summarise(n = n())
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 5 x 2
##
     k_str
##
     <chr>
                 <int>
## 1 Liten
                   126
## 2 Middels
                   115
## 3 Stor
                    39
## 4 Svært liten
                   128
## 5 Svært stor
kom_str_mod %>%
    filter(term == "alp_15_29") %>%
    filter(estimate > - 500 & estimate < 500 ) %>%
    filter(p.value...9 < 0.05) %>%
    group_by(k_str) %>%
    summarise(n = n())
```

'summarise()' ungrouping output (override with '.groups' argument)

```
## # A tibble: 4 x 2
##
   k_str
                   n
   <chr>
                 64
## 1 Liten
## 2 Middels
                 75
## 3 Stor
                 15
## 4 Swært liten 58
kom_str_mod %>%
   filter(term == "alp_30_74") %>%
   filter(estimate > - 500 & estimate < 500 ) %>%
   filter(p.value...9 < 0.05) %>%
   group_by(k_str) %>%
   summarise(n = n())
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 4 x 2
   k_str
    <chr>
               <int>
## 1 Liten
                 68
## 2 Middels
                  67
## 3 Stor
                  4
## 4 Svært liten 71
kom_str_mod %>%
   filter(term == "alp_15_29") %>%
   filter(p.value...9 < 0.05) %>%
   group_by(k_str) %>%
   summarise(mean_15_29 = mean(estimate))
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 5 x 2
##
   k_str mean_15_29
    <chr>
               <dbl>
                 -2.93
## 1 Liten
## 2 Middels
                  0.0802
## 3 Stor
                 -40.5
## 4 Svært liten -1.64
## 5 Svært stor -9901.
kom_str_mod %>%
   filter(term == "alp_30_74") %>%
   filter(p.value...9 < 0.05) %>%
   group_by(k_str) %>%
   summarise(mean_30_74 = mean(estimate))
## 'summarise()' ungrouping output (override with '.groups' argument)
```

```
## # A tibble: 5 x 2
    k_str mean_30_74
##
##
    <chr>
                <dbl>
                     -1.47
## 1 Liten
## 2 Middels
                     -2.70
## 3 Stor
                     6.15
## 4 Svært liten
                      4.75
## 5 Svært stor
                 11076.
kom_str_mod %>%
   filter(term == "alp_15_29") %>%
   filter(p.value...9 < 0.05) %>%
   group_by(k_str) %>%
   summarise(n = n())
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 5 x 2
   k_str
     <chr>
                <int>
## 1 Liten
                 64
## 2 Middels
                  75
## 3 Stor
                  23
## 4 Svært liten 58
## 5 Svært stor
                   7
kom_str_mod %>%
   filter(term == "alp_30_74") %>%
   filter(p.value...9 < 0.05) %>%
   group_by(k_str) %>%
   summarise(n = n())
## 'summarise()' ungrouping output (override with '.groups' argument)
## # A tibble: 5 x 2
    {	t k\_str}
     <chr>
                <int>
## 1 Liten
                 68
                  70
## 2 Middels
## 3 Stor
                   25
## 4 Svært liten
                   71
## 5 Svært stor
                   7
```

I litt over 50% av kommunene, hovedsaklig de små, ser modellen ut til virke. Kanskje noe å bygge videre på.

```
#siste
```