

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

GODFREY LOWELL CABOT SCIENCE LIBRARY of the Harvard College Library

This book is FRAGILE

and circulates only with permission.

Please handle with care
and consult a staff member
before photocopying.

Thanks for your help in preserving Harvard's library collections.

.

, •

HAND-BOOK OF TABLES

FOR

ELECTRICAL ENGINEERS.

PUBLISHED BY

JOHN A. ROEBLING'S SONS CO.

TRENTON, N. J., U. S. A.

The Brandt Press, Trenson. 1892. Era 4878.92.5

1893, June 23. Scientific School.

COPYRIGHTED, 1892,

BY

JOHN A. ROEBLING'S SONS CO.

All rights reserved.

TABLE OF CONTENTS.

GENERAL FORMULÆ AND DEFINITIONS.	
Deficience Company Description of Discourse	PAGES.
Definitions from Brackett & Anthony's Physics	1–10
Definitions from Clark & Sabine	10-15
Tabulation of Formulæ and Dimensions	16–18
GENERAL TABLES.	
Trigonometrical Table	19
Tables of Lengths, Areas, Volumes, Weights and Press-	
`ures	20–24
Table for changing Telegraph Knots into Miles	25
Table of Decimal Equivalents of Parts of an Inch	26
Table of the Density and Volume of Water	27
Table of Comparison of Different Thermometers	28-29
Tables of Specific Gravities	30-32
THE LINE.	
A.—General Tables of the Line.	
The Properties of Copper Wire	33-36
Table of Resistance of 1 Mil Foot of Copper Wire at	
various Temperatures	37
Table of Squares and Areas by various Wire Gauges	38-39
Tables of Resistance per 1000 feet of various sized	
Copper Wires	40-41
Table showing the Conductivity of Metals	42
Table showing the Influence of Temperature on Re-	
sistance and Conductivity of Pure Copper	42
Table of Tensile Strength for Copper Wire	43
Fusing Effects of Electric Currents	44-46
•	
B.—Calculations of the Line. Wiring Tables	47–4 8
Wiring Tables Tables of Loss of Voltage	49-69
Tables of Resistance of Wires	70-93
Graphical Method for Wiring Calculations	94-95
Table of Carrying Capacity of Copper Wires	96-97
Tables of Formation of Strands	98-100

Unit of Time.—The unit of time is the mean time second, which is the $\frac{1}{86400}$ of a mean solar day.

Unit of Mass.—The unit of mass in the United States is the avoirdupois pound. The unit of mass usually adopted in scientific work is the gram. It is equal to the one-thousandth part of a certain piece of platinum, called the kilogram, preserved as a standard in the archives of France. This standard was intended to be equal in mass to one cubic decimeter of water at its greatest density.

Dimensions of Units.—Any derived unit may be represented by the product of certain powers of the symbols representing the fundamental units of length, mass, and time. Any equation showing what powers of the fundamental units enter into the expression for the derived unit is called its dimensional equation. In a dimensional equation time is represented by T, length by L, and mass by M. To indicate the dimensions of any quantity the symbol representing that quantity is enclosed in brackets.

Mass.—In many cases it is convenient to speak of the quantity of matter in a body as a whole. It is then called the *mass* of the body.

Density.—The *density* of any substance is defined as the limit of the ratio of the quantity of matter in any volume within the substance to that volume, when the volume is diminished indefinitely.

Particle.—A body constituting a part of a material system, and of dimensions such that they may be considered infinitely small in comparison with the distances separating it from all other parts of the system, is called a particle.

Motion.—The change in position of a material particle is called its *motion*.

Path.—The moving particle must always describe a continuous line or path.

Velocity.—The rate of motion of a particle is called its velocity. If the particle move in a straight line, and describe equal spaces in any arbitrary equal times, its velocity is constant. A constant velocity is measured by the ratio of the

space traversed by the particle to the time occupied in traversing that space.

Speed.—If the path of the particle be curved, or if the spaces described by the particle in equal times be not equal, its velocity is variable and is called the *speed*.

Momentum.—The momentum of a body is a quantity which varies with the mass and with the velocity of the body jointly, and is measured by their product.

Acceleration.—When the velocity of a particle varies, its rate of change is called the *acceleration* of the particle. Acceleration is either positive or negative, according as the velocity increases or diminishes. If the path of the particle be a straight line, and if equal changes in velocity occur in equal times, its acceleration is *constant*.

Simple Harmonic Motion.—If a point moves in a circle with a constant velocity, the point of intersection of a diameter and a perpendicular drawn from the moving point to this diameter, will have a simple harmonic motion.

Period.—The *period* is the time between any two successive recurrences of a particular condition of the moving point.

Phase.—The *phase* is the interval of time, expressed as a fraction of the period, which has elapsed since the point has passed through the middle of its path in the positive direction.

Displacement.—The displacement is the distance from the center of motion. We further define rotation in the positive direction as that rotation in the circle which is contrary to the motion of the hands of a clock, or counter-clockwise. Motion from left to right in the diameter is also considered positive. Displacement to the right of the center is positive, and to the left is negative.

Force.—Whenever any change occurs or tends to occur in the momentum of a body, we ascribe it to a cause called a force.

Field of Force.—A field of force is a region such that a particle constituting a part of a mutually interacting system, placed at any point in the region, will be acted on by a force, and will move, if free to do so, in the direction of the force. The particle so moving would, if it had no inertia, describe

what is called a *line of force*, the tangent to which at any point is the direction of the force at that point.

Inertia.—Inertia is not of itself a force, but the property of a body, enabling it to offer a resistance to a change of motion.

Work.—When a force causes motion through space, it is said to do work.

Energy.—A body may, in consequence of its motion or position with respect to other bodies, have a certain capacity for doing work. This capacity for doing work is its energy. Potential energy is due to the position of the body. Kinetic energy is due to the motion of the body.

Difference of Potential.—The difference of potential between two points in a field of force is measured by the work done in moving a test unit of the quantity to whose presence the force is due from one point to the other.

Absolute Potential.—The absolute potential at a point in a field of force is measured by the work done in moving a test unit of the quantity to whose presence the force is due from an infinite distance to that point.

Equipotential Surface.—A surface to which the lines of force are perpendicular is called an equipotential surface.

Moment of Force.—The moment of force about a point is defined as the product of the force and the perpendicular drawn from the point upon the line of direction of the force.

Couple.—The combination of two forces, equal and oppositely directed, acting on the ends of a rigid bar, is called a couple.

Moment of Couple.—The moment of couple is the product of either of the two forces into the perpendicular distance between them.

Center of Inertia.—If we consider any system of equal material particles, the point of which the distance from any plane is equal to the average distance of the several particles from that plane, is called the center of inertia.

Center of Gravity.—When the force acting is the force gravity the center of inertia is usually called the center of gravity.

Moment of Inertia.—The moment of inertia of any body about an axis is defined as the summanation of the products of the masses of the particles making up the body into the squares of their respective distances from the axis.

Stress and Strain.—When a body is made the medium for the transmission of force, there is a stress in the medium. This stress is always accompanied by a corresponding change of form of the body, called a strain.

Set.—If the strain be carried beyond the limit of perfect elasticity, the body is permanently deformed. This permanent deformation is called set.

Solid.—A solid requires the stress acting upon it to exceed a certain limit before any permanent set occurs, and it makes no difference how long the stress acts provided it lie within the limits.

Fluid.—A fluid may be deformed by the slightest shearing stress, provided time enough be allowed for the movement to take place.

Specific Gravity.—The *specific gravity* of a body is defined as the ratio of its weight to the weight of an equal volume of pure water at a standard temperature.

Temperature.—Two bodies are said to be at the same temperature when, if they be brought into intimate contact, no heat is transferred from one to the other. A body is at a high temperature relatively to other bodies when it gives up heat to them.

Unit of Heat.—The English unit of heat is the heat necessary to raise one pound of water at 60° F., one degree Fahrenheit. The unit of heat generally adopted in scientific works is the heat required to raise the temperature of one kilogram of water from zero to one degree C. It is called the calorie.

Specific Heat.—The quantity of heat required to raise the temperature of one kilogram of a substance from zero to one degree is called the *specific heat* of the substance.

MAGNETISM.

Masses of iron ore are sometimes found which possess the property of attracting pieces of iron and a few other sub-

stances. Such masses are called natural magnets or lodestone. A bar of steel may be so treated as to acquire similar properties. It is then called a *magnet*.

Poles.—In an ordinary bar-magnet there are two small regions, near the ends of the bar, at which the attractive powers of the magnet are most strongly manifested. These regions are called the *poles* of the magnet.

Magnetic Axis.—A line joining these two regions is called the magnetic axis.

Unit Magnetic Pole.—If two perfectly similar magnets, infinitely thin, uniformly and longitudinally magnetized, be so placed that their positive poles are unit distance apart, and if these poles repel one another with unit force, the magnet poles are said to be of *unit strength*.

Magnetic Moment.—The product of the strength of the positive pole of a uniformly and longitudinally magnetized magnet into the distance between its poles is called its magnetic moment.

Intensity of Magnetization.—The quotient of the magnetic moment of such a magnet by its volume, or the magnetic moment of unit of volume, is called the *intensity of magnetization*.

Magnetic Shell.—A magnetic shell may be defined as an infinitely thin sheet of magnetizable matter, magnetized transversely; so that any line in the shell normal to its surfaces may be looked on as an infinitesimally short and thin magnet. These imaginary magnets have their like poles contiguous. The product of the intensity of magnetization at any point in the shell into the thickness of the shell at that point is called the strength of the shell at that point.

Declination.—The declination is the angle between the magnetic meridian, or the direction assumed by the axis of a magnetic needle suspended to move freely in a horizontal plane, and the geographical meridian.

Dip.—The dip is the angle made with the horizontal by the axis of a magnetic needle suspended so as to turn freely in a vertical plane containing the magnetic meridian.

Horizontal Intensity.—The horizontal intensity is the strength of the earth's magnetic field resolved along the horizontal line in the plane of the magnetic meridian.

ELECTRICITY IN EQUILIBRIUM.

Unit Quantity of Electricity.—Let there be two equal and similar charges concentrated at points unit distance apart in air, such that the repulsion between them equals the unit of force, then each of the charges is a unit charge, or a unit quantity of electricity.

Capacity.—The electrical capacity of a conductor is defined to be the charge which the conductor must receive to raise it from zero to unit potential, while all other conductors in the field are kept at zero potential.

Specific Inductive Capacity.—The fact that the capacity of a condenser of given dimensions depends upon the medium used as the dielectric was first discovered by Cavendish and afterwards rediscovered by Faraday. The property of the medium upon which this fact depends is called its specific inductive capacity.

ELECTRICITY IN MOTION.

Electromotive Force.—The power of maintaining a difference of potential is ascribed to an E. M. F. existing in the circuit.

Current.—The transfer of electricity in the circuit is called the electrical *current*, and the rate of transfer is called the current strength, and often simply the current. The current as here defined is independent of the nature of the conductor, and is the same for all parts of the circuit.

Electro-Magnetic Unit of Current.—That current is defined as the *unit current* which will set up the same magnetic field as that due to a magnetic shell of which the edge coincides with the circuit and the strength is unity.

Ohm's Law.—It was shown on theoretical consideration in 1827, by Ohm, of Berlin, that in a homogeneous conductor which is kept constant, the current varies directly with the difference of potential between the terminals.

Resistance.—We may define the ratio of the electromotive force to the current in any circuit as the *resistance* in that circuit.

Specific Conductivity and Specific Resistance.—If two points be kept at a constant difference of potential, and joined by a homogeneous conductor of uniform cross-section, it is found that the current in the conductor is directly proportional to its cross-section and inversely as its length. The current also depends upon the nature of the conductor. If conductors of similar dimensions, but of different materials, are used, the current in each is proportional to a quantity called the specific conductivity of the material. The numerical value of the current set up in a conducting cube, with edges of unit length, by unit difference of potential between two opposite faces, is the measure of the conductivity of the material of the cube. The reciprocal of this member is the specific resistance of the material.

Kirchhoff's Laws.—Kirchhoff's laws may be stated as follows: (1.) The algebraic sum of all the currents meeting at any point of junction of two or more branches is equal to zero. This first law is evident, because, after the current has become steady, there is no accumulation of electricity at the junctions. (2.) The sum, taken around any number of branches forming a closed circuit, of the products of the currents in those branches into their respective resistances is equal to the sum of the electromotive forces in those branches. This law can easily be seen to be only a modified statement of Ohm's law.

Self-Induction.—When a current is set up in any circuit, the different parts of the circuit act on one another in the relation of primary and secondary circuits. In a long straight wire, for example, the current which is set up through any small area in the cross-section of the wire tends to develop an opposing electro-motive force through every other area in the same cross-section. The true current will thus be temporarily weakened, and will require a certain time to attain its full strength. On the other hand, when the circuit is broken, the induced electro-motive force is in the same direction as the electro-motive force of the circuit. Since the time occupied by the change of the true current from its full value to zero, when

the circuit is broken, is very small, the induced electro-motive force is very great. The current formed at breaking is called the extra current, and gives rise to a spark at the point where the circuit is broken. The extra current may be heightened by anything which will increase the change in the number of lines of force, as by winding the wire in a coil and by inserting in the coil a piece of soft iron. This action of a circuit on itself is called self-induction.

Induced Currents.—It has been shown by experiment that the movement of a magnet in the neighborhood of a closed circuit will give rise, in general, to an electro-motive force in the circuit, and that the current due to this electro-motive force will be in the direction opposite to that current which, by its action upon the magnet, would assist the actual motion of the magnet. This current is called an induced current. From the equivalence between a magnetic shell and an electrical current, it is plain that a similar induced current will be produced in a closed circuit by the movement near it of an electrical current or any part of one. Since the joining up or breaking the circuit carrying a current is equivalent to bringing up that same current from an infinite distance, or removing it to an infinite distance, it is further evident that similar induced currents will be produced in a closed circuit when a circuit is made or broken in its presence.

Ampere's Law for Mutual Action of Currents.—Ampere's first case of equilibrium shows that the forces due to two currents identical in strength and in position but opposite in direction are equal and opposite. Ampere's second case of equilibrium shows that the action of the elements of the curved conductor is the same as that of their projections on the straight conductor. The third case of equilibrium: the deduction from this observation is that no closed circuit tends to displace an element of current in the direction of its length. From the fourth case of equilibrium, is deduced the law that the force between two current elements is inversely as the square of the distance between them.

Electrolysis.—In certain cases, the existence of an electrical current in a circuit is accompanied by the decomposition into their constituents of chemical compounds forming part of the

circuit. This process is called electrolysis. Bodies which can be decomposed were called by Faraday, to whom the nomenclature of this subject is due, electrolytes. The current is usually introduced into the electrolyte by solid terminals called electrodes. The one at the higher potential is called the positive electrode or anode; the other, the negative electrode, or cathode. The two constituents into which the electrolyte is decomposed are called ions. One of them appears at the anode, and is called anion; the other, at the cathode, and is called the cation.

Faraday's Laws.—(1.) The amount of an electrolyte decomposed is directly proportional to the quantity of electricity which passes through it; or, the rate at which a body is electrolyzed is proportional to the current strength. (2.) If the same current be passed through different electrolytes, the quantity of each ion evolved is proportional to its chemical equivalent. If we define an electro-chemical equivalent as the quantity of any ion which is evolved by unit current in unit time, then the two laws may be summed up by saying: The number of electrochemical equivalents evolved in a given time by the passage of any current through any electrolyte is equal to the number of units of electricity which pass through the electrolyte in the given time.

LAWS OF DYNAMIC ELECTRIC CIRCUITS.

(From Clark & Sabine.)

- 1. The strength of a galvanic current is equal to the quantity of electricity flowing per second, and is the same in every point of an undivided conductor.
- 2. The strength of the current is proportional to the electromotive force, when the resistance remains constant.—(Ohm.)
- 3. The current strength is inversely proportional to the resistance of the conductor, and therefore directly proportional to its conducting power.—(Ohm.)
- 4. The current strength is equal to the electromotive force divided by the resistance.
- 5. The current strength obtained with a battery of given surface is at its maximum when the plates are so divided that the internal resistance of the battery is equal to that of the circuit without.—(Jacobi.)

- 6. The sum of the current strengths in all those wires which converge to a point is equal to nothing.—(Kirchhoff.)
- 7. The sum of all the products of the intensities and resistances in all the wires which form an enclosed figure is equal to the sum of all the electromotive forces in the same circuit.—
 (Kirchhoff.)
- 8. If, in any system of circuits, containing any electromotive forces, a conductor exists in which the current strength is equal to nothing, the currents in the remaining circuits will not be altered, in the least, if the circuit of the conductor in question be separated or removed together with whatever electromotive force it may contain.
- 9. If the conductor in question contains no electromotive force, the currents will not be altered if, after its removal, the points between which it previously existed be connected directly with each other.—(Bosscha.)
- 10. If, on the other hand, it contained an electromotive force, the points can only be joined again, whilst retaining the balance, by inserting between them an equivalent electromotive force, but irrespective of the resistance which may accompany it.—(Bosscha.)
- 11. In a system of linear conductors, containing electromotive forces, the current set up in any conductor, A, by any electromotive force contained in any other conductor, B, will be identically the same as that which would be set up in B by an equal electromotive force in A.—(Bosscha.)
- 12. If, in a system of electromotive forces and conductors, there be two of the latter, say A and B, in which the electromotive force in A occasions no current in B, whatever current may be circulating in B will not be affected if A be interrupted or removed; nor will the current in A be altered if B be interrupted or removed, however the electromotive forces in the other circuits may be arranged.—(Bosscha.)
- 13. In any linear conductor through which a current of electricity is flowing, the difference of potential, between any two points with a given resistance between them is the same as that between any other two points having between them an equal resistance.—(Ohm.)

LAWS OF VOLTAIC INDUCTION.

- 1. In a secondary closed circuit, the excited induction current is proportional to the current strength in the primary circuit.
- 2. The induction currents arising from the action of a galvanic current upon itself are, both on breaking and making the circuit, equally great so long as the inducing current strength remains equal.—(Edlund.)
- 3. When a metallic closed circuit and a conductor through which an electric current is circulating are either brought nearer to each other or separated, a current is induced in the metallic closed circuit. This current is in the reverse direction to that which would have been necessary to effect the approach or separation of itself.—(Lenz.)
- 4. The electromotive force which a magnet excites in a helix of wire is, other things being equal, proportional to the number of convolutions of the wire.—(Lenz.)
- 5. The electromotive force which a magnet excites in a surrounding helix is equal, whatever may be the radius of the coil. Therefore, the currents induced in the different rings of wire are inversely proportional to their diameters.—(Lenz.)
- 6. The electromotive force excited by a magnet in a helix of given number of turns is the same, whatever may be the thickness or conducting power of the wire.
- 7. The strengths of the induction currents in different spirals of equal number of turns are proportional to their conducting powers.
- 8. The longer the connecting wires are, so much more numerous should be the convolutions in order to obtain the maximum current.
- 9. The more turns which can be put next to each other close by the magnet or magnetized armature, the fewer turns will be necessary to give a maximum current.
- 10. The maximum of an induction current is proportional to the strength of the inducing magnet.—(Lenz.)
- 11. The retardation of the development of magnetism in soft iron cores which are wholly covered by helices, depends principally upon the opposite currents induced in the helices themselves. The magnetism of the simultaneous currents induced in the periphery of the core, and the coercive force of iron, are of less influence.—(Beets.)

- 12. The retardation of the disappearance of the magnetism from soft iron cores which are wholly covered with galvanic helices, depends however principally upon the formation of currents in the periphery of the soft iron cores.—(Bects.)
- 13. The retardations of development and disappearance of magnetism in soft iron cores which are only partially covered with helices, depends principally upon the magnetic inertia of the iron.

LAWS OF MAGNETISM.

- 1. A magnetic field is any space in the neighborhood or under the influence of a magnet.—(B. A. Report.)
- 2. The direction of the force in the field is the direction in which any pole is urged by the magnetism of the field; this is the direction which a short, balanced, freely-suspended magnet would assume.
- 3. A uniform magnet field is one in which the intensity is equal throughout, and hence the lines of force parallel.—
 (Thomson.)
- 4. Opposite poles attract each other; similar poles repel each other.
- 5. The forces directed from any magnetic point upon equal masses are reciprocally proportional to the square of the distance.—(Musschenbrock.)
- 6. When two magnets are very small and the distance between them very great in proportion to their length, the magnetic action between them is reciprocally proportional to the cube of their distance.—(Gauss.)
- 7. The force directed from any magnet point upon any other mass upon which it acts is reciprocally proportional to the square of the distance. The total action between them both is, however, reciprocally proportional to the third power of the distance, when the latter is great.—(Gauss.)
- 8. Magnetic forces between a suspended magnet and any mass upon which it acts are proportional to the square of the number of oscillations which (under their mutual action alone) the same magnet makes in a given time.—(Coulomb.)
- 9. Magnetic forces between a suspended magnet and any magnetic mass are inversely proportional to the square of the time which the suspended magnet takes to complete one oscillation.—(Coulomb.)

- 10. The attraction of a magnet for an armature is proportional to the square of its free magnetism.
- 11. The magnetism excited at any given transverse section of a magnet is proportional to the square root of the distance between the given section and the nearest end of the magnet.

 —(Dub.)
- 12. The free magnetism at any given transverse section of a magnet is proportional to the difference between the square root of half the length of the magnet and the square root of the distance between the given section and the nearest end.— (Dub.)

LAWS OF ELECTRO-MAGNETISM.

- 1. If we imagine a positive current to flow through the axis of an ordinary corkscrew, the tip of the latter, in any position, represents the direction assumed by the north end of a magnet. If a current circulate in the corkscrew-helix in the direction in which it is turned, a soft iron core in its center will have its north end towards the tip.—(L. Clark.)
- 2. The total effect of any infinitely long and straight conductor upon any magnetic element is inversely proportional to the perpendicular distance between element and the conductor.

 —(Biot and Savart.)
- 3. A magnetic element in the axis of a circular current is attracted or repelled from the center with a force which is directly proportional to the superficial content of the circle and inversely to the third power of the distance of the element from the periphery.—(Weber.)
- 4. A circular current flowing in the plane of the magnetic meridian deflects a magnetic needle (which is infinitely short in comparison with the radius of the current) so that the tangent of the angle of deflection is proportional to the strength of the current.—(Weber.)
- 5. The magnetic intensity of a single deflected needle is without influence upon the angle of deflection.—(Weber.)
- 6. If the circular conductor be turned after the deflected needle until the latter again coincides with the plane of the former, the current strength is proportional to the sine of the angle through which the conductor is turned.
- 7. In electro-magnets, the south pole is always found at that end where the positive current enters a right-handed helix.

- 8. The free magnetism of the end-faces of an electro-magnet is proportional to the current strength in its helix.—(Dub.)
- 9. The attraction between electro-magnets is proportional to the square of the strength of the magnetizing current.
- 10. The material and the thickness of the helix wire of an electro-magnet are, when the current is equal, without influence upon its magnetism.—(Lenz.)
- 11. The free magnetism of an electro-magnet, with a given current strength, is directly proportional to the number of turns of its helix.—(Jacobi.)
- 12. Its attraction is proportional to the square of the number of convolutions.—(Dub.)
- 13. The attraction between two electro-magnets is proportional to the sum of the products of the current strength and number of convolutions of both helices.
- 14. The force with which a bar of soft iron is attracted by a galvanic helix is proportional to the square of the product of current strength and number of convolutions of the helix.— (Dub.)
- 15. The force with which a saturated steel magnet is attracted by a galvanic helix is directly proportional to the product of the current strength and number of convolutions.
- 16. The free magnetism of a solid cylindrical soft iron core of given length is, other things being equal, proportional to the square root of its diameter.—(Nicklès.)
- 17. The free magnetism at the poles of a horse-shoe magnet is, other things being equal, proportional to the square root of the length.
- 18. The free magnetism of any given transverse section of an electro-magnet is proportional to the difference between the square root of half the length and the square root of the distance of the given section from the nearest end.—(Dub.)
- 19. The poles of an electro-magnet attract most favorably when their faces have the same area as the transverse section of the magnet.

20. The attraction between an electro-magnet and its armature increases when the mass of the armature is increased.

21. The magnetizing powers of coils of one and the same metal, with the same surface of battery plates, arranged so as to give a maximum strength of current in each case, are as the square roots of the weights of the metallic wire used.—(Menzzer.)

FORMULÆ AND DIMENSIONS OF UNITS.

The formulæ of these tables are the algebraic expression of the definitions which have preceded. In the case of the Fundamental Units and the Derived Mechanical Units they are in the form in which they are commonly used for calculation, but in the case of the Magnetic and Electrical Units more special expressions are preferred, ones in which the force, F, is expressed in its mechanical equivalent involving the constants of conversion.

FUNDAMENTAL UNITS.

Unit.	Formula.	Dimensions.
Length	s m	L M
Time	t	T

DERIVED MECHANICAL UNITS.

Unit.	Formula.	Dimensions.
Area Volume	$ \begin{array}{l} \mathbf{A} = \mathbf{S}^2 \\ \mathbf{V} = \mathbf{S}^3 \end{array} $	L ³
Velocity	$V = \frac{s}{\tilde{t}}$	L T - 1
Acceleration	$\mathbf{f} = \frac{\mathbf{v} - \mathbf{v_0}}{\mathbf{t}}$	LT-*
Momentum	$m v = \frac{m s}{t}$	MLT-1
Density	$\mathbf{d} = \mathbf{\tilde{v}}$	ML-s
Force	$\mathbf{F} = \mathbf{m} \mathbf{f} = \mathbf{m} \frac{\mathbf{v} - \mathbf{v_0}}{\mathbf{t}}$	M L T- 2
Weight	$\mathbf{w} = \mathbf{m} \mathbf{f} = \mathbf{m} \mathbf{g}$	MLT-s
Work	W = Fs = mfs	M L2 T - 2

DERIVED MECHANICAL UNITS—Continued.

Unit.	Formula.	Dimensions.
Simple Harmonic Motion	$s = a \cos \frac{2 \pi t}{T}$,
	$\mathbf{v} = -\frac{2\pi \mathbf{a}}{\mathbf{T}} \operatorname{sine} \frac{2\pi \mathbf{t}}{\mathbf{T}}$	
•	$f = -\frac{4\pi^2}{T^2} a \cos \frac{2\pi t}{T}$	
Kinetic Energy	$K = \frac{m V^2}{2}$	M L2 T - 2
Potential Energy	$P = \sum m fs$	M L2 T - 2
Energy	$E = K + P = \frac{m v^2}{2} + \Sigma m fs$	M L2 T - 2
Moment of Couple	= Fs $=$ m fs	. M L2 T - 2
Angular Velocity	$=\frac{1}{t}$	T-1 .
Angular Acceleration	$=\frac{1}{t^2}$	7-2
Moment of Inertia	$I = \Sigma m s^2$	M L2
Moment of Momentum	$=\Sigma \frac{m s^2}{t}$	M L. T-1
Intensity of Pressure	$\frac{\mathbf{F}}{\mathbf{A}} = \frac{\mathbf{m}}{\mathbf{s}^2} \mathbf{f}$	ML-1T-2

DERIVED MAGNETIC UNITS.

Unit.	Formula.	Dimensions.
Magnetic Pole	$=\sqrt{\mathbf{F}\mathbf{s}^2}$	M ¹ / ₂ L ³ / ₂ T - 1
Magnetic Moment	$=8 \gamma \overline{F_{6}^2}$	M 2 L 2 T - 1
Intensity of Magnetization	$=8\frac{\sqrt{F}s^2}{s^3}$	Mg L - g L - 1
Magnetic Density	$=\frac{\sqrt{F}s^2}{s^2}$	M1 L-1 T-1
Magnetic Shell	$=\frac{8^2 \sqrt{F} 8}{8^3}$	M ¹ / ₂ L ¹ / ₂ T´'
Horizontal Intensity	$=\frac{\mathbf{F}}{\mathbf{V}\mathbf{F}\mathbf{s}^2}$	M 1 L - 1 T - 1
Magnetic Potential	$=\frac{\mathbf{F}\mathbf{s}}{\sqrt{\mathbf{F}\mathbf{s}^2}}$	M2 L2 T-1

^{*}In these formulæ the angles are measured in radians.

DERIVED ELECTROSTATIC UNITS.

Unit.	Formula.	Dimensions.
Current	$=\frac{\sqrt{F s^2}}{t}$	M2 L3 T-2
Electromotive force	$=\frac{\mathbf{W}}{\mathbf{V}\mathbf{F}\mathbf{\bar{s}^2}}$	M ¹ L ¹ T - 1
Resistance	$\frac{\mathbf{W}}{\mathbf{V}\mathbf{F}\mathbf{S}^2} + \frac{\mathbf{V}\mathbf{F}\mathbf{S}^2}{\mathbf{t}}$	V - 1 J
Quantity	$=\sqrt{F s^2}$	M ¹ / ₂ L ³ / ₂ T-1
Capacity	$\sqrt{\mathbf{F}\mathbf{s}^2} + \frac{\sqrt{\mathbf{F}\mathbf{s}^2}}{\mathbf{t}}$	L
Difference of Potential	$\frac{\mathbf{W}}{\mathbf{V}\mathbf{F}\mathbf{s}^2}$	M2 L2 T-1
Specific Inductive Capacity	$\frac{\sqrt{\mathbf{F}\mathbf{g}^2}}{\sqrt{\mathbf{F}_1\mathbf{s}_1^{\;2}}}$	

DERIVED ELECTRO-MAGNETIC UNITS.

Unit.	Formula.	Dimensions.
Current	Fs	M ¹ / ₂ L ¹ / ₂ T - 1
Electromotive force	W Fst	M ¹ / ₂ L ³ / ₂ T - 2
Resistance	$\frac{\mathbf{W}}{\mathbf{F}\mathbf{s}\mathbf{t}} \div \mathbf{F}\mathbf{s}$	LT-1
Quantity	Fst	$M^{\frac{1}{2}}L^{\frac{1}{2}}$
Capacity	$\mathbf{Fst} + \frac{\mathbf{W}}{\mathbf{Fst}}$	L-1T-2
Difference of Potential	W Fst	M ₂ L ₂ T - 2

TARLE FOR TRICONOMETRICAL TRANSFORMATIONS

	TABLE FUR	TRIGONOM.	TABLE FOR TRIGONOMETRICAL TRANSFORMATIONS	KANSFORM	TIONS.	
	Sine.	Cosine.	Tangent.	Cotangent.	Secant.	Cosecant.
Sine	Sinex	$V1-\cos x$	$\frac{\tan x}{\sqrt{1+\tan x}}$	$\frac{1}{V1+\cot z}$	$V \text{ NeC.}^2 x - 1$ sec. x	1 00:ec. x
Costine	$\sqrt{1-\sin^2 x}$	Cosine x	$\frac{1}{\sqrt{1+\tan x}}$	$\cot x$ $V1 + \cot x$	1 sec. x	$V \operatorname{cosec} {}^{2}x - 1$ cosec. x
Tangent	$\frac{\sin x}{\sqrt{1-\sin^2 x}}$	$\frac{V1-\cos^2x}{\cos x}$	Tangentx	1 cot. x	$V \sec^{2} x - 1$	$\frac{1}{V \cos e c.^3 x - 1}$
Cotangent	$\sqrt{1-\sin^2 x}$ $\sin x$	$\frac{\cos x}{\sqrt{1-\cos^2 x}}$	tan.x	Cotangent x	$\frac{1}{\sqrt{\sec^2 x - 1}}$	$V \operatorname{cosec.}^2 x - 1$
Secant	$\frac{1}{\gamma 1 - \sin^2 x}$	1 008.2	$V1 + \tan^{-3}x$	$\frac{V1 + \cot^{2}x}{\cot x}$	Secantz	$\frac{\cos c. x}{\sqrt{\csc a} - 1}$
Cosecant	sin. x	$\frac{1}{V \cdot 1 - \cos^2 x}$	$\frac{V1+\tan^{2}x}{\tan x}$	$\sqrt{1+\cot^2x}$	$\frac{\sec x}{V\sec^2 x-1}$	Cosecantx

MEASURES OF LENGTH.

NAME OF UNIT.	Inches.	Feet.	Yards.	Meters.	Cheins.	Kilometers.	Miles.	Knots.
								1
Inches	H		.027	.025 399	9.	.000 025 4		.000 013 7
Feet	12.000 00		333 33	304 795	.015	.000 304 8		.0001643
Yards	36.000 00				25.	.000 914 4		0004928
Meters	39.370 79	3.280 90	1.093 63		.049 710	.001 000 0		0005390
Chains	792.000 00	_	• •	20,116 437	-	.0201164	0125000	.010 842 7
Kilometers	39 370.79	3 280.899 16	1 093.633 05	1 000 000 000	49.710 479	-i		.5390010
Miles	63 360.000 00	5 280,000 00	1 760.000 00 1	1 609.314 926	80.000 000	1.6093149		.867 422 3
Knots	73 044.000 00 6 087.000 00 2 029.000 00	6 087.000 00	2 029.000 00	1 855.284 082 92.227 272	92.227 272	1.8552840	1.1528409	1.

LOGARITHMS OF MEASURES OF LENGTH.

NAME OF UNIT.	Inches.	Feet.	Yards.	Meters.	Chains.	Kilometers.	Miles.	Knots.
Inches	0.000 000	$\bar{2}.920801$	2.443 732	$\bar{2.404817}$	3.101 403	,	$\bar{5}.198657$	$\overline{5}.136721$
Feet	1.079 181	0.000 0000	$\overline{1.522874}$	$\overline{1.484007}$	2.180442		4.277380	$\overline{4}.215638$
Yards	1.556 303	0.477121	0.000 0000	$\overline{1.961128}$	$\overline{2}.657572$	4.961128	4.754501	4.692671
Meters	1.595 174	0.515993	0.038871	0.000 000	$\bar{2}.696448$,	$\overline{4.793301}$	4.731589
Chains	2.898 725	1.819 544	1.342 423	1.303551			$\overline{2}.096910$	$\overline{2}.035\ 138$
Kilometers	4.595 174	3.515 993	3.038 871	3.000 000	1.696 448	0.000 0000	$\overline{1.793357}$	$\overline{1.731589}$
Miles	4.801815	3.722634	3.245513	3.206 641	1.903090	0.206 641	0.000 0000	$\overline{1.938230}$
Knots	4 863 585	3.784 403	3.307 282	3.268410	1.964859	0.268411	0.061 768	0.000 000

MEASURES OF AREA.

NAME OF UNIT.	Square	Square	Square	Square	Square
	Centimeters.	Inches.	Feet.	Yards.	Меtега,
Square Centimeters. Square Inches. Square Freet. Square Yards. Square Meters.	1.	.155	.001 076	.000 119 61	.000 100
	6.451 6	1.	.006 944	.000 771 60	.000 645
	928.989	144.000	1.	.111 111 11	.092 898
	8 361.	1 296.000	9.000 000	1.	.836 100

LOGARITHMS OF MEASURES OF AREA.

NAME OF UNIT.	Square Centimeters.	Square Inches.	Square Feet.	Square Yards.	Square Meters.
Square Centimeters	0.000 0000	1,190 332	3.031 812	4.077 767	4.000 000
Square Inches	0.809 667	0.000 0000	$\bar{3}.841610$	$\overline{4}.887\ 392$	$\overline{4.809560}$
Square Feet	2.968 010	2.158 362	0.000 0000	1.045 757	$\overline{2}.968006$
Square Yards	3.922 258	3.112605	0.954 242	0.000 000	$\overline{1.922258}$
Square Meters	4.000 000	3.190340	1.031974	0.077 767	0.000 000

MEASURES OF VOLUME.

Cubic Inches.	Liters.	Gallons.	Cubic Feet.	Cubic Yards.	Cubic Meters
.061 02 1. 61.027 00 231.000 00 1 728.000 00 46 656.000 00	.001 .016 39 1. 3.785 21 28.315 33 764.505	.000 264 .004 33 .264 189 1. 7.480 5 201.974	17 28 3	.000 001 31 .000 021 40 .001 308 .004 952 .037 037 03	.000 001 0 .000 016 4 .001 000 0 .003 785 2 .028 315 3
.061 02 1. 61.027 00 231.000 00 728.000 00 656.000 00 027.000 00	1	001 016 39 785 21 315 33 705	1 7.23	.000 264 .004 33 .004 33 .006 578 7 .264 189 .005 517 7.480 5 .01.974 .01.974 .01.974 .01.974 .01.974 .01.974 .01.974 .01.974 .01.974	.000 264 .004 33 .264 189 1. 7.480 5 01.974 64.189

LOGARITHMS OF MEASURES OF VOLUME.

NAME OF UNIT.	Cubic Centimeters.	Cubic Inches.	Liters.	Gallons.	Cubic Feet.	Cubic Yards.	Cubic Meters.
Cubic Centimeters	0.000 0000	2.785 472	3.000 000	4.421 604	5.547 775	6.117 271	6.000 000
Cubic Inches	1.214 474	0.000 0000	2.214 579	$\overline{3.636488}$	$\overline{4.762453}$	$\overline{5.330414}$	5.214844
Liters	3.000 000	1.785,522	0.000 000	$\overline{1.421914}$	2.547 983	3.116 608	$\overline{3}.000\ 000$
Gallons	3.578 090	2.363 612	0.578 090	0.000 000	1.126009	3.694 781	$\overline{3.578089}$
Cubic Feet	4.452 022	3.237 544	1.452022	0.873931	0.000 0000	$\overline{2.568636}$	$\overline{2.452021}$
Cubic Yards	5.883 397	4.668 908	2.883 396	2.305 296	1.431 364	0.000 0000	$\overline{1.883380}$
Cubic Meters	6.000 000	4.785 522	3.000 000	2.421 914	1.547983	0.116 608	0.000 000

MEASURES OF WEIGHT.

		,					
NAME OF UNIT.	Grains.	Grams.	Ounces Avoirdupois.	Pounds Troy.	Pounds Avoirdupois.	Kilograms.	Long Tons.
Grains	-	.064 80	.002 28	.000 174	.000 143	.000 064 8	
Grams	15.432	-i	.035 27	.002 68	.002 204	0001000	
z. Avd	437.500		H	.075 95	.062 500	.028 350	.000 028
hs. Trov	5 760.000		13.166	H	.822 857	.373 250	.000367
Lbs. Avd	2 000.000	453.603	16.000	1.2153		.453 603	.000 447
Cilograms.	15 432.	1 000:000	35.273	2.6792	2.204 571	-:	.000 984
ong Tons.	15 680 000.000	1 016 070.502	35 840.000	2 722.222 2	2 240.000 000	1 016.070 502	1.

LOGARITHMS OF MEASURES OF WEIGHT.

NAME OF UNIT.	Grains.	Grams.	Ounces Avoirdupois.	Pounds Troy.	Pounds Avoirdupois.	Kilograms.	Long Tons.
Grains	0.000 0000	2.811 575	$\bar{3}.357935$	4.240 549	$\overline{4.155336}$	5.811 575	
Grams	1.188 422	0.000 000	2.547 405	$\overline{3.428135}$	$\overline{3.34}3212$	$\overline{3.0000000}$	
Oz. Avd	2.640 978	1.452 553	0.000 000	$\overline{2}.880528$	2.795880	2.452553	5.447158
Lbs. Troy	3.760 422	2.572 000	1.119 454	0.000 0000	$\overline{1.915324}$	$\overline{1.572000}$	$\overline{4}.564666$
Lbs. Avd	3.845 098	2.656 676	1.204120	0.084683	0.000 0000	$\overline{1.656676}$	4.650308
Kilograms.	4.188 422	3.000 000	1.547 442	0.428 008	0.343330	0.000 000	4.992995
Long Tons.	7.195346	6.006 924	4.554 368	3.434920	3.350 242	3.006924	0.000 0000

MEASURES OF PRESSURE.

NAME OF UNIT.	Atmos- pheres.	Pounds on Square Inch.	Inches of Mercury.	Feet of Water at 60° F.	Millimeters of Mercury.	Pounds on Square Foot	Kilograms on Square Meter.
Atmospheres Pounds on Square Inch Inches of Mercury Feet of Water at 660 F. Millimeters of Mercury Pounds on Square Foot Kilograms on Square Meter	1. .068 03 .033 42 .029 47 .001 316 .000 472 6	14.7 1. .491 3 .433 2 .019 34 .006 947 .001 423	29.922 2.036 1. .881 8 .039 37 .014 14	33.93 2.309 1.134 1. .044 64 .016 03 .003 283	760.000 25.398 22.399 1. 359.2 .073.55	2 116.000 143.946 70.700 62.363 2.784 1.	10 333 000 702 925 345 331 304 565 13 596 4.883

LOGARITHMS OF MEASURES OF PRESSURE.

NAME OF UNIT.	Atmos- pheres.	Pounds on Square of Inches	Inches of Mercury.	Feet of Water at 60° F.	Millimeters of Mercury.	Pounds on Square Foot.	Kilograms on Square Meter.
Atmospheres	€0.000 000	0.000 000 1.167 317 1.475 991 1.530 584	1.475 991	1.530 584	2.880 814	3.325 516	4.014 226
Pounds on Square Inch	2.832 700	0.000 0000	0.308 778	2.832 700 0.000 000 0.308 778 0 361 897			
Inches of Mercury	2.524006	$\bar{1.691347}$	0.000 0000	0.054613	1.404 800		2.538 238
Feet of Water at 60° F	2.469 380	$\bar{1}.636688$	1.636 688 1.945 370	0000000	1.350229	1.794 927	2.483679
Millimeters of Mercury	$\bar{3}.119256$	$\bar{2}.286456$	2.286 456 2.595 165 2.649 735	2.649 735	_	_	1.133413
Pounds on Square Foot	4.674 494	3.841797	3.150449	3.841 797 3.150 449 2.204 934	1 555 336	_	0.688 687
Kilograms on Square Meter	5.985 741	5.985 741 3.153 205 3.461 649 3.516 271	3.461 649	3.516 271	2.866 642	$\overline{1.311330}$	0.000 000

TELEGRAPH KNOTS INTO MILES.

Table for the Conversion of Knots of 2029 Yards into Statute Miles of 1760 Yards.

Vnote	•		•	0	,	r	٣	1-		6
9014	•	4	4	•	r	.	>	•)	
0		1.1528	2.305 7		4.6114	5.764 2			9.212.7	
01	11.528 4		13.8341		16.1398	17.2926			20.751 1	
8	23.0568		25.362.5		27.668 2	28.821 0			32.279 5	
8	34.585 2		36.8909		39.1966	40.3494			43.8079	
40	46.1136		48.4193		50.7250	51.8778			55.3363	
20	57.6420	58.794.8	59.947 7	61.1005	62.2534	63.406 2	64.559 0	62.711.9	66.8647	68.017 6
09	69.1704		71.476 1		73.7818	74.934 6			78.3931	
2	80.698		83.004 5		85.3102	86.4630			89.9215	
œ	92.227 2		94.5329		96.838 6	97.991 4			101.4499	
06	103.7556		106.061.3		108.367 0	109.5198			112.9783	

DECIMAL EQUIVALENTS OF PARTS OF AN INCH.

l ths.	₃ ⁄₂ds.	ths.	Mils.	isths.	∄ ds.	dths.	Mils.
		1	15.625			33	515.625
	1	2	31.250	#	17	34	531.250
		3	46.875			35	546.875
1	2	4	62.500	9	18	36	562.500
		5	78.125			37	578.125
	3	6	93.750		19	38	593.750
		7	109.375			39	609.375
2	4 ·	8	125.000	10	20	40	625.000
		9	140.625	1 1		4 l	640.625
	5	10	156.250		21	42	656.250
_		11	171.875			43	671.875
3	6	12	187.500	11	22	44	687.500
		13	203.125			45	703.125
	7	14	218.750		23	46	718.750
		15	234.375			47	734.375
4	8	16	250.000	12	24	48	750.000
		17	265.625			49	765.625
	9	18	281.250		25	50	781.250
_		19	296.875			51	796.875
5	10	20	312.500	13		52	812.500
		21	328.125			53	828.125
-	11	22	343.750	Ì	27	54	843.750
_		23	359.375			55	859.375
6	12	24	375 000	14	28	56	875.000
		25	390.625			57	890.625
-	13	26	406.250		29	58	906.250
_		27	421.875			59	921.875
7	14	28	437.500	15	30	60	937.500
		29	453.125			61	953.125
	15	30	468.750		31	62	968.750
		31	484.375	_		63	984.375
8	16	32	500.000	16	32	64	1000.000

TABLE OF THE DENSITY AND VOLUME OF WATER FROM 9° C. TO 100° C.

According to M. Despretz (the density and volume at 4° taken as unity).

Temperature.	Volume.	Density.	Temperature.	Volume.	Density.
-9° -8 -7 -6 -5	1.001 631 1	0.998 371	15°	1.000 875 1	0.999 125
	1.001 373 4	0.998 628	16	1.001 021 5	0.998 979
	1.001 135 4	0.998 865	17	1.001 206 7	0.998 794
	1.000 918 4	0.999 082	18	1.001 39	0.998 612
	1.000 698 7	0.999 302	19	1.001 58	0.998 422
-4	1.000.561 9	0.999 437	20	1.001 79	0.998 213
-3	1.000 422 2	0.999 577	21	1.002 00	0.998 004
-2	1.000 307 7	0.999 692	22	1.002 22	0.997 784
-1	1.000 213 8	0.999 786	23	1.002 44	0.997 566
0	1.000 126 9	0.999 873	24	1.002 71	0.997 297
1	1.000 073 0	0.999 927	25	1.002 93	0.997 078
2	1.000 033 1	0.999 966	26	1.003 21	0.996 800
3	1.000 008 3	0.999 999	27	1.003 45	0.996 562
4	1.000 000 0	1.000 000	28	1.003 74	0.996 274
5	1.000 008 2	0.999 999	29	1.004 03	0.995 986
6	1.000 030 9	0.999 969	30	1.004 33	0.995 688
7	1.000 070 8	0.999 929	40	1.007 73	0.992 329
8	1.000 121 6	0.999 878	50	1.012 05	0.988 093
9	1.000 187 9	0.999 812	60	1.016 98	0.983 303
10	1.000 268 4	0.999 731	70	1.022 55	0.977 947
11 12 13 14	1 000 359 8 1.000 472 4 1.000 586 2 1.000 714 6	0.999 640 0.999 527 0.999 414 0.999 285	80 90 100	1.028 85 1.035 66 1.043 15	0.971 959 0.965 567 0.958 634

THE COMPARISON OF DIFFERENT THERMOMETERS.

Two temperatures may be easily obtained and are constant when produced, namely, the boiling point of water and the melting point of ice.

On the scale of the Reaumur thermometer the boiling point is called 80° and the melting point of ice 0°. Zero is also the same point on the Centigrade scale, but the boiling point is placed at 100°. On the Fahrenheit scale the melting point of ice is placed at 32°, 0° being considered at the time the lowest obtainable temperature, and the boiling point is called 212°.

Therefore, if we wish to convert a temperature on any one of these scales to the equivalent temperature on another, we use one of the following formulæ:

$$t^{\circ}R. = \frac{5}{4}t^{\circ}C. = 32 + \frac{3}{4}t^{\circ}F.$$

 $t^{\circ}C. = \frac{4}{8}t^{\circ}R. = 32 + \frac{3}{8}t^{\circ}F.$
 $t^{\circ}F. = 32^{\circ}F. = \frac{4}{3}t^{\circ}R. = \frac{5}{8}t^{\circ}C.$

TABLE OF COMPARISON OF DIFFERENT THERMOMETERS.

Fabrenheit.	Reaumur.	Centigrade.	Fahrenheit.	Reaumur.	Centigrade.	Fahrenheit.	Reaumur.	Centigrade.	Fahrenheit.	Reaumur.	Centigrade.
212 211	80.0 79.5	100.0 99.4	192 191	71.1 70.6	88.8 88.3	172 171	62.2 61.7	77.7 77.2	152 151	53.3 52.8	66.6 66.1
210	79.1	98.8	190	70.2	87.7	170	61.3	76.6	150	52.4	65.5
209	78.6	98.3	189	69.7	87.2	169	60.8	76.1	149	52.0	65.0
208	78.2	97.7	188	69.3	86.6	168	60.4	75.5	148	51.5	64.4
207	77.7	97.2	187	68.8	86.1	167	60.0	75.0	147	51.1	63.8
206	77.3	96.6	186	68.4	85.5	166	59.5	74.4	146	50.6	63.3
205	76.8	96.1	185	68.0	85.0	165	59.1	73.8	145	50.2	62.7
204 203	76.4 76.0	95.5 95.0	184 183	67.5 67.1	84.4 83.8	164 163	58.6 58.2	73.3 72.7	144 143	49.7 49.3	$62.2 \\ 61.6$
202	75.5 75.1	94.4 93.8	182 181	66.6 66.2	83.3 82.7	162 161	57.7 57.3	72.2 71.6	142 141	48.8 48.4	61.1 60.5
201	74.6	93.3	180	65.7	82.2	160	56.8	71.1	140	48.0	60.0
199	74.2	92.7	179	65.3	81.6	159	56.4	70.5	139	47.5	59.4
201 200 199 198	73.7	92.2	178	64.8	81.1	158	56.0	70.0	138	47.1	58.8
197	73.3	91.6	177	64.4	80.5	157	55.5	69.4	137	46.6	58.3
196	72.8	91.1	176	64.0	80.0	156	55.1	68.8	136	46.2	57.7
195	72.4	90.5	175	63.5	79.4	155	54.6	68.3	135	45.7	57.2
194 193	72.0	90.0	174	63.1	78.8	154	54.2	67.7	134	45.3	56.6
193	71.5	89.4	173	62.6	78.3	153	53.7	67.2	133	44.8	56.1

TABLE OF COMPARISON OF DIFFERENT THERMOMETERS—Continued.

								1			
Fahrenheit.	Reaumur.	Centigrade.	Fahrenheit.	Reaumur.	Centigrade.	Fahrenheit.	Resumur.	Centigrade.	Fahrenheit.	Reaumur,	Centigrade.
132 131 130 129 128	44.4 44.0 43.5 43.1 42.6	55.5 55.0 54.4 53.8 53.3	93 92 91 90 89	27.1 26.6 26.2 25.7 25.3	33.8 33.3 32.7 32.2 31.6	54 53 52 51 50	9.7 9.3 8.8 8.4 8.0	12.2 11.6 11.1 10.5 10.0	15 14 13 12 11	-7.5 -8.0 -8.4 -8.8 -9.3	-9.5 -10.0 -10.5 -11.1 -11.6
127 126 125 124 123	42.2 41.7 41.3 40.8 40.4	52.7 52.2 51.6 51.1 50.5	88 87 86 85 84	24.8 24.4 24.0 23.5 23.1	31.1 30.5 30.0 29.4 28.8	49 48 47 46 45	7.5 7.1 6.6 6.2 5.7	7.7 7.2	10 9 8 7 6	-9.7 -10.2 -10.6 -11.1 -11.5	-12.2 -12.7 -13.3 -13.8 -14.4
122 121 120 119 118	40.0 39.5 39.1 38.6 38.2	50.0 49.4 48.8 48.3 47.7	83 82 81 80 79	22.6 22.2 21.7 21.3 20.8	28.3 27.7 27.2 26.6 26.1	44 43 42 41 40	5.3 4.8 4.4 4.0 3.5	6.6 6.1 5.5 5.0 4.4	5 4 3 2 1	-12.0 -12.4 -12.8 -13.3 -13.7	-15.0 -15.5 -16.1 -16.6 -17.2
117 116 115 114 113 112	37.7 37.3 36.8 36.4 36.0 35.5	47.2 46.6 46.1 45.5 45.0	78 77 76 75 74	20.4 20.0 19.5 19.1 18.6	25.5 25.0 24.4 23.8 23.3	39 38 37 36 35	3.1 2.6 2.2 1.7 1.3 0.8	3.8 3.3 2.7 2.2 1.6	$ \begin{array}{c} 0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \end{array} $	-14.2 -14.6 -15.1 -15.5 -16.0	-17.7 -18 3 -18.8 -19.4 -20.0
111 110 109 108	35.1 34.6 34.2 33.7	44.4 43.8 43.3 42.7 42.2 41.6	73 72 71 70 69	18.2 17.7 17.3 16.8 16.4 16.0	22.7 22.2 21.6 21.1 20.5	34 33 32 31 30	0.4 0.0 -0.4 -0.8	0.5 0.0 -0.5 -1.1	- 5 -6 -7 -8 -9 -10	-16.4 -16.8 -17.3 -17.7 -18.2	-21.1 -21.6 -22.2 -22.7
107 106 105 104 103	33.3 32.8 32.4 32.0 31.5 31.1	41.1 40.5 40.0 39.4 38.8	68 67 66 65 64 63	15.5 15.1 14.6 14.2	19.4 18.8 18.3 17.7	29 28 27 26 25	-1.3 -1 7 -2.2 -2.6 -3.1 -3.5	-1.6 -2.2 -2.7 -3.3 -3.8 -4.4	—11 —12 —13 —14	-18.6 -19.1 -19.5 -20.0 -20.4 -20.8	-23.3 -23.8 -24.4 -25.0 -25.5 -26.1
102 101 100 99 98 98	30.6 30.2 29.7 29.3 28.8	38.3 37.7 37.2 36.6 36.1	62 61 60 59	13.7 13.3 12.8 12.4 12.0 11.5	17.2 16 6 16.1 15.5 15.0	24 23 22 21 20 19	-3.5 -4.0 -4.4 -4.8 -5.3 -5.7	$ \begin{array}{r r} -4.4 \\ -5.0 \\ -5.5 \\ -6.1 \\ -6.6 \\ \hline -7.2 \end{array} $	-15 -16 -17 -18 -19	$ \begin{array}{r} -20.8 \\ -21.3 \\ -21.7 \\ -22.2 \\ -22.6 \\ \hline -23.1 \end{array} $	-26.1 -26.6 -27.2 -27.7 -28.3 -28.8
96 95 94	28.4 28.0 27.5	35.5 35.0 34.4	56 56 55	11.5 11.1 10.6 10.2	13.8 13.3 12.7	18 17 16	-6.2 -6.6 -7.1	-7.2 -7.7 -8.3 -8.8	-20	-20.1	-20.8

TABLES OF SPECIFIC GRAVITIES.

METALS.

Aluminum, Cast " Hammered.	$\begin{array}{c} 2.5^{1} \\ 2.67^{1} \\ 6.702^{2} \end{array}$	156.06	.214 3	
" Hammered.	2.67^{1}	100 07		• • • • • • • • • • • • • • • • • • • •
	6 7022	166.67		• • • • • • • • • • • • • • • • • • • •
Antimony		418.37	.0508	810.
Arsenic	5.763 ²	359.76	.081 4	365.
Barium	4.3	249.70	l	
Bismuth	9.8222	613.14	.030 8	497.
Cadmium	8.6045	537.10	.056 7	500.
Calcium		97.76		
Chromium		455.70		
Cobalt		536.86	.107.0	
Copper		555.27	.095 1	1 996.
Rolled	8.8782	554.21		
" Cast		548.59		
" Drawn		558.47		
" Hammered		559.25		
" Pressed		557.52		
" Electrolytic		556.46	,	
Gold	19.2582	1 202.18	.032 4	2 016.
Iron, Bar		467.18	.130	2 786.
" Wrought		486.29	.113	3 286.
Steel		490.03	.116	3 286.
Lead		714.45	.031 4	612.
Magnesium		139.83	.249 9	012.
Manganese		430.73	.114	3 000.
Mercury		846.98	.031 9	-38
Nickel		488.91	.109 1	280 0.
Platinum		1 267.22	.032 4	328 6.
Potassium	.86514	54.00	.169 6	136.
Silver	10.52211	656.84	.057 0	1 873.
Sodium		60.68	.293 4	194.
Strontium		156.31	.200 4	1.74.
Fin		455.14	.056 2	442.
Zinc		428.29	.095 5	773.

^{1.} Wohler.

Bunsen.

Hatchett.

^{2.} Brisson. Clarke.

^{8.} Brezenius,

^{11.} Playfair & Joule. 12. Bergman.

^{13.} Watts' Dictionary.

^{5.} Stromeyer. 10. Musschenbroek. 11. Guy-Lussac & Thenard.

LIQUIDS.

Liquid.	Specific Gravity.	Temperature.
Alcohol	0.815 71	At 50° F.
Benzine	0.883	At 59° F.
Chloroform	1.491	At 62.6° F.
Carbon Bisulphide	1.2931	At 32° F.
Ether	0.7204	At 60.8° F.
Glycerine	1.2636	At 59° F.
Hydrochloric Acid	1.270	
Mercury	13.596	At 32° F.
Nitric Acid	1.552	At 59° F.
Oil of Turpentine	0.855 to 0.864	At 68° F.
Linseed Oil	0.940	
Olive Oil	0.915	
Sulphuric Acid	1.854	At 32° F.

GASES

Gas.	At 0° C. and 760 mm. pressure compared to water.	Compared to air at similar pressure and Temperature.
Air	0.001 292 8	1.000 00
Oxygen	0.001 429 3	1.105 63
Nitrogen	0.001 255 7	0.971 37
Hydrogen	0.000 089 54	0.069 26
Carbonic Dioxide	0.001 976 7	1.529 10
Mixed Gases from Electro- lysis of Water	0.000 536 1	0.414 72
Aqueous Vapor		0.623 00

WEIGHTS OF SUBSTANCES PER CUBIC FOOT.

Name of Substance.	Average Weight Pounds.
Asphaltum	87.
Brick, common, hard	125.
Brickwork, pressed brick	140.
" ordinary	112.
Coal, Anthracite, solid, of Pennsylvania	93.
" broken, loose	54.
" Bituminous, solid	84.
" broken, loose	49.
Coke, loose, of good coal	
Cork	12.4
Earth, common loam, dry, loose	76.
" " " moderately rammed.	95.
" as a soft, flowing mud	108.
Gneiss, common	168.
Granite	170.
Glass, Crown	168.5
" flint	218.3
Ice at 0	57.2
Lime, thoroughly shaken	
Masonry, of granite or limestone, well dressed	
Mortar, hardened	103.
Mud, dry, close	80 to 1
Quartz	
Sulphur	
Wax	
Wood, ebony	
" birch	
" oak	
" pine	

PROPERTIES OF COPPER WIRE.

By F. A. C. PERRINE, D.Sc.

Early in 1889 I found it necessary to revise certain tables of the resistance of copper wires in our catalogues, and to adopt a standard of conductivity which should represent the best results which had been obtained; on investigation it was found that the most reliable results were those to be found in Fleeming Jenkins' tabulation of Dr. Matthiessen's experiments, and from which I adopted as our standard the case "one mil foot at 0° C. measures 9.718 B. A. ohms." The most accurate temperature correction I found to be expressed in the formula

Conductivity at $C = 1 - .0038701 t + .000009009 t^2$

and the specific gravity was taken as 8.9, water being at its greatest density 62.425 pounds per cubic foot.

On September 16th, 1890, the Standard Wiring Table Committee of the American Institute of Electrical Engineers presented a report in which they have recommended practically the same results, as follows:

"The subject of Matthiessen's standard alone is so confused and involved, and the discrepancies in regard to it are so great between the best authorities that the Committee has devoted its attention almost entirely to this subject up to the present time.

"A very thorough investigation of Matthiessen's work has been made by a sub-committee, consisting of Professor William E. Geyer, George B. Prescott, Jr., and the Chairman, Francis B. Crocker, and the conclusion has been reached that the most correct and satisfactory 'Matthiessen's Standard,' and the one which we now recommend for general adoption, is stated as follows: A soft copper wire one meter long and one millimeter in diameter ('meter-millimeter') has an electrical resistance of .02057 B. A. units at 0° Centigrade.

"From this the resistance of a soft copper wire one foot long and one-thousandth of an inch in diameter ('mil-foot') is found to be 9.720 B. A. units at 0° C.

"In order to convert these values into legal ohms, we may assume one B. A. unit to be equal to .9889 legal ohms, and the

meter-millimeter value then becomes .02034 legal ohms, and the mil-foot value becomes 9.612 legal ohms.

"The resistance of copper at temperature other than 0° Centigrade may be determined by using Matthiessen's formula $C_t = C_0 (1-.00387 \, t +.000009009 \, t^2)$ in which C_t is the conductivity at the given temperature, C_0 is the conductivity at 0° and t is the given temperature in degrees Centigrade. It should be carefully noted, however, that this formula refers to conductivity. Therefore, in order to apply it to resistance, it is necessary to take the reciprocal, and this should not be done by merely changing signs, which is not mathematically correct, although usually given in that way. The correct modification of Matthiessen's formula, when referred to resistance, is

$$R_t = R_0 (1 + .00387 t + .00000597 t^2)$$

"The sub-committee, after careful consideration, came to the conclusion that Matthiessen's 'mile standard' (one statute mile of copper wire 15-inch in diameter has a resistance of 13.59 B. A. units at 15.5° C.) is not the correct one, although very commonly used. Matthiessen himself did not place much confidence in this 'mile standard.' The Committee, acting under instructions from a meeting of the Institute, held September 16th, 1890, has based all standards and values in this report upon soft or annealed copper since its properties are reasonably constant and reliable. Whereas, the Committee has purposely excluded from its recommendations all standards and values based upon hard copper, although several were given by Matthiessen, because the hardness of copper is merely relative, and the resistance of hard copper may vary between wide and uncertain limits depending upon the degree of hardness.

"As to the fact often brought up, that copper may be found which tests one or two per cent higher conductivity or less resistance than Matthiessen's standard, we are of the opinion that this is no real objection, provided the value of the standard is definite and generally accepted. A standard which is not the highest attainable value may even be considered an advantage, since the average commercial wires will approximate to it more closely.

"Although we believe the standard we recommend will answer the purpose temporarily and probably permanently, nevertheless, we think that if a thoroughly correct and complete redetermination of the standard resistance of copper could be accomplished, it would be a benefit to electrical science and industry. Favorable offers in this direction have already been received by this Committee from Johns Hopkins University, Cornell University, and Columbia College, and it is likely that this redetermination may be undertaken.

"The following statement of the most important and reliable figures and facts given by Matthiessen will serve to show the derivation of the standard which we recommend.

"A hard-drawn copper wire 1 meter long weighing 1 gram ('meter-gram') has a resistance of .1469 B. A. units at the temperature of 0° Centigrade.*

"Matthiessen also gives the resistance of a hard-drawn copper wire 1 meter long and 1 millimeter in diameter ('metermillimeter') as .02104 B. A. units at 0° C.*

"This implies a specific gravity of 8.89 for the copper used by Matthiessen, but unfortunately he neglected to actually determine the specific gravity.

"Matthiessen's figures for relative conducting power are: †

Silver	100
Hard or unannealed copper	99.95
Soft or annealed copper	102.21

"From these the resistance of Matthiessen's hard copper is found to be 1.0226 times that of soft copper, therefore the resistance of a soft copper wire 1 meter long and 1 millimeter diameter ('meter-millimeter') is .02057 B. A. units at 0° C., which is the standard we recommend.

"From this the resistance of 1 cubic centimeter of soft copper is found to be .000001616 B. A. units at 0° C.

"And the resistance of soft copper wire 1 foot long and .001 inch in diameter ('mil-foot') is 9.720 B. A. units at 0° C.

"Taking one B. A. unit as .9889 legal ohms any of the above values may be converted into legal ohms. To find the conductivity of copper at temperatures other than 0° C., Matthiessen's formula may be used, viz.:

$$C_t = C_0 (1 - .00387 t + .000009009 t^2)$$
 or
 $R_t = R_0 (1 + .00387 t + .00000597 t^2)$

^{*}Philosophical Magazine, May, 1865.

[†]Philosophical Transactions, 1864.

TABLE.

Standard Resistance at 0° C. of	B. A. U.	Legal Ohms.
"Meter-millimeter," Soft Copper" "Cubic Centimeter," " " " " " " " " " " " " " " " " " "	.02057 .000001616 9.720	.02034 .000001598 9.612

"F. B. CROCKER,
"Chairman."

Shortly after this report was presented, I took an average of my tests on 682 samples, the result of a year's work, and found that the average conductivity of the whole number was 98.98 per cent., or practically 99 per cent. All of this copper was from Calumet and Hecla bars rolled and drawn at our own mill at Trenton, and it represents daily practice, since no selection was made of the samples, and all results are included in the average.

That commercial copper should give 99 per cent. the conductivity of a standard, I believe to be one of the strongest arguments in favor of that standard for the practical electrical engineer, since it will allow the use of tables calculated therefrom without correction, one per cent. being well within the limits of practice in manufacture.

The tables in this book, having been calculated before this report was presented, have not been corrected to the value "one mil-foot at 0° C. measures 9.720 B. A. units," since the value used varies from it by only .02 per cent.

RESISTANCE OF 1 MIL FOOT OF COPPER WIRE AT DIFFERENT TEMPERATURES FAHRENHEIT.

Temperature in Degrees.	B. A. Units.	Legal Ohms.	Temperature in Degrees.	B. A. Units.	Legal Ohms.	Temperature in Degrees.	B. A. Units.	Legal Ohms.
0	9.067 73	8.967 07	34	9.759 85	9.651 52	68	10.493 37	10.376 89
1	9.087 49	8.986 62	35	9.780 84	9.672 27	69	10.515 57	10.398 84
2	9.107 29	9.006 20	36	9.801 86	9.693 06	70	10.537 80	10.420 83
3	9.127 13	9.025 82	37	9.822 91	9.713 88	71	10.560 08	10.442 86
4	9.147 01	9.045 47	38	9.844 00	9.734 73	72	10.582 38	10.464 92
5	9.166 91		39	9.865 13	9.755 63	73	10.604 73	10.487 02
6	9.186 86		40	9.886 29	9.776 55	74	10.627 11	10.509 15
7	9.206 84		41	9.907 49	9.797 52	75	10.649 52	10.531 31
8	9.226 86		42	9.928 72	9.818 51	76	10.671 97	10.553 51
9	9.246 91		43	9.949 99	9.839 55	77	10.694 46	10.575 75
10	9.267 00	9.164 13	44	9.971 30	9.860 62	78	10.716 98	10.598 02
11	9.287 12	9.184 03	45	9.992 64	9.881 72	79	10.739 54	10.620 33
12	9.307 28	9.203 97	46	10.014 02	9.902 86	80	10.762 14	10.642 68
13	9.327 48	9.223 94	47	10.035 43	9.924 03	81	10.784 77	10.665 05
14	9.347 71	9.243 95	48	10.056 88	9.945 25	82	10.807 43	10.687 47
15	9.367 98	9.263 99	49	10.078 36	9.966 49	83	10.830 13	10.709 92
16	9.388 28	9.284 07	50	10.099 88	9.987 77	84	10.852 87	10.732 40
17	9.408 62	9.304 18	51	10.121 44	10.009 09	85	10.875 64	10.754 92
18	9.428 99	9.324 33	52	10.143 03	10.030 44	86	10.898 45	10.777 48
19	9.449 40	9.344 51	53	10.164 66	10.051 83	87	10.921 30	10.800 07
20	9.469 85	9.364 73	54	10.186 32	10.073 25	88	10.944 18	10.822 70
21	9.490 33	9.384 99	55	10.208 02	10.094 71	89	10.967 09	10.845 36
22	9.510 85	9.405 28	56	10.229 75	10.116 20	90	10.990 05	10.868 06
23	9.531 40	9.425 60	57	10.251 53	10.137 73	91	11.013 04	10.890 79
24	9.551 99	9.445 96	58	10.273 33	10.159 30	92	11.036 06	10.913 56
25	9.572 62	9.466 36	59	10.295 17	10.180 90	93	11.059 12	10.936 36
26	9.593 28	9.486 79	60	10.317 05	10.202 53	94	11.082 21	10.959 20
27	9.613 97	9.507 26	61	10.338 97	10.224 20	95	11.105 35	10.982 08
28	9.634 71	9.527 76	62	10.360 92	10.245 91	96	11.128 51	11.004 99
29	9.655 48	9.548 30	63	10.382 90	10.267 65	97	11.151 72	11.027 93
30 31 32 33	9.676 28 9.697 12 9.718 00 9.738 91	9.568 87 9.589 48 9.610 13 9.630 80	64 65 66 67	10.404 92 10.426 98 10.449 07 10.471 20	10.289 43 10.311 24 10.333 09 10.354 97	98 99 100	11.174 95 11.198 23 11.221 54	11.050 91 11.073 93 11.096 98

TABLE OF SQUARES

Wire		Roeblin	G.	Brown and Sharpe.			
Number of Wire Gauge.	rter Kils.	A	REA.	eter dils.	Area.		
Number Gauge.	Diameter in Mils.	Circular Mils.	Square Mils.	Diameter in Mils.	Circular Mils.	Square Mils.	
000000	460.	211 600.	166 190.640 0				
00000	430.	184 900.	145 220.460 0	•••••	222222		
0000	393.	154 449.	121 304.244 6	460.000	211 600.0	166 191.	
000	362. 331.	131 044. 109 561.	102 921.957 6 86 049.209 4	409.640 364.800	167 805.0 133 079.2	131 790. 104 520.	
			'				
0	307.	94 249.	74 023.164 6	324.860	105 534.0	82 886.	
1	283.	80 089.	62 901.900 6	289.300	83 694.0	65 733.	
2	263. 244.	69 169. 59 536.	54 325.332 6 46 759.574 4	257.630 229.420	66 373.0 52 633.4	52 129. 41 338.	
2 3 4	225.	59 536. 50 625.	39 760.875 0	204.310	41 742.5	32 784.	
	207.	42 849.	33 653.604 6		33 102.3	25 998.	
5	192.	36 864.	28 952.985 6	181.940 162.020	26 250.5	20 617.	
7	177.	31 329.	24 605.796 6	144.280	20 817.0	16 349.	
8 ¦	162.	26 244.	20 612.037 6	128.490	16 509.0	12 967.	
9	148.	21 904.	17 203.401 6	114.430	13 094.0	10 284.	
10	135.	18 225.	14 313 915 0	101.890	10 381.0	8 153.6	
11	120.	14 400.	11 309.760 0	90.742	8 234.1	6 467.1	
12	105.	11 025.	8 659.035 0	80.808	6 529.9	5 128.6	
13 14	92. 80.	8 464. 6 400.	6 647.625 6 5 026.560 0	71.961 64.084	5 178.4 4 106.8	4 067.1 3 225.4	
				 '			
15 16	72. 63.	5 184. 3 969.	4 071.513 6 3 117.252 6	57.068 50.820	3 256.8 2 582.7	2 557.8 2 028.4	
17	54.	2 916.	2 290.226 4	45.257	2 048.2	1 608.6	
18	457	2 209.	1 734.948 6	40.303	1 624.3	1 275.7	
19	41.	1 681.	. 1 320.257 4	35.890 1	1 288.1	1 011.7	
20	35.	1 225.	962.115 0	31.961	1 021.5	802.2	
21	32.	1 024.	804.249 6	28.462	810.08	636.2	
22	28.	784.	615.753 6	25.347	642.47	504.5	
23	25. 23.	625. 529.	490.875 0		5(9.45	400.1 317.3	
24			415.476 6		404.01		
25	20.	400.	314.160 0	17.900	320.41	251.6	
26 27	18. 17.	324. 289.	254.469 6	15.940 14.195	254.08 201.50	199.5 158.2	
28	16.	256. 256.	226.980 6 201.062 4	12.641	159.79	125.5	
29	15.	225.	176.715 0	11.257	126.72	99.5	
30	14.	196.	153.938 4	10.025	100.50	78.9	
31	13.5	182.25	143.139 2	8.928	79.71	62.6	
32	13.0	169.00	132.732 6	7.950	63.20	49.6	
33		121.00	95.033 4	7.080	50.13	39.8	
34	10.0	100.00	78.540 0	6.304	39.74	31.2	
35	9.5	90.25		5.614	31.52	24.7	
36	9.0	81.00	63.617 4	5.000	25.00^{-1}	19.6	

AND AREAS.

В	IRMINGHAI	d OR STUBS.	Enc	GLISH LEGAI	. Standard.	Wire
Diameter in Mils.	Circular	Area.	Diameter in Mils.	Circular	AREA.	Number of Wire Gauge.
Α	Mils.	Mils.	<u> </u>	Mils.	Mils.	Z
		***************************************	464.	215 296.	169 093.478 4	000000
454.	206 116.	161 883.506 4	432.	186 624.	146 574.489 6	00000
425.		141 000 077 0	400. 372.	160 000.	125 664.000 0	0000
380.	180 625. 144 400.	141 862.875 0 113 411.760 0		138 384.	108 686.793 6	000
ecu.	144 400.	118 411.700 0	348.	121 104.	95 115.081 6	00
340.	115 600.	90 792.240 0	324.	104 976.	82 448.150 4	0
300.	90 000.	70 686.000 0	300.	90 000.	70 686.000 0	1
284.	80 656.	63 347.222 4	276.	76 176.	59 828.630 4	2
259.	67 081.	52 685.417 4	252.	63 504.	49 876.041 6	1 2 3
238.	56 644.	44 488 197 6	232.	53 824.	42 273.369 6	4
220.	48 400.	38 013.360 0	212.	44 944.	35 299.017 6	5
203.	41 209.	32 365.548 6	192.	36 864.	28 952.985 6	5 6 7 8
180.	3 2 400.	25 446,960 0	176.	30 976.	24 328.550 4	7
165.	27 225.	21 382.515 0	160.	25 600.	20 106.240 0	ė
148.	21 904.	17 203.401 6	144.	20 736.	16 286.054 4	ğ
134.	17 956.	14 102.642 4	128.	16 384.	12 867.993 6	10
120.	14 400.	11 309.760 0	116.	13 456.	10 568.342 4	ii
109.	11 881.	9 331.337 4	104.	10 816.	8 494.886 4	12
95.	9 025.	7 088.235 0	92.	8 464.	6 647.625 6	13
83.	6 889.	5 410.620 6	80.	6 400.	5 026.560 0	14
72.	5 184.	4 071.513 6	72.	5 184.	4 071.513 6	15
65.	4 225.	3 318.315 0	64.	4 096.	3 216.998 4	16
58.	3 364.	2 642.085 6	56.	3 136.	2 463.014 4	17
49.	2 401.	1 885.745 4	48.	2 304.	1 809.561 6	18
42.	1 764.	1 385.445 6	40.	1 600.	1 256.640 0	19
35.	1 225.	962.115 0	36.	1 296.	1 017.878 4	20
32.	1 024.	804.249 6	32.	1 024.	804.249 6	21
28.	784.	615.753 6	28.	784.	615.753 6	22 23
25.	625.	490.875 0	24.	576.	452.390 4	23
22.	484.	380.133 6	22.	484.	380.133 6	24
20.	400.	814.160 0	20.	400.	314.160 0	25
18.	324.	254 469 6	18.	824.	254.469 6	26
16.	256.	201.062 4	16.4	268.96	211.241 184	27
14.	196.	153.938 4	14.8	219.04	172.034 016	28
13.	169.	132.732 6	13.6	184.96	145.267 584	29
12.	144.	113.097 6	12.4	153.76	120.763 104	30
10.	100.	78.540 0	11.6	134.56	105.683 424	31
9.	81.	63.617 4	10.8	116.64	91.609 056	32
8.	64.	50.265 6	10.0	100.00	78.540 900	33
7.	49.	38.484 6	9.2	84 64	66.476 256	34
5.	25.	19.635 0		70.56	55.417 824	35
4.	16.	12.566 4	7.6	57.76	45.364 704	36

RESISTANCE PER 1,000

Vire	1	Roei	BLING.		В	Brown and Sharpe,			
er of 7 ge.	55° I	Fahr.	70° Fahr.		55° I	ahr.	70° Fahr.		
Number of Wire	B. A.	Legal	B. A.	Legal	B. A.	Legal	B. A.	Legal	
Gauge.	Units.	Ohms.	Units.	Ohms.	Units.	Ohms.	Units.	Ohms.	
000000 00000 0000 000 000	.048 24 .055 21 .066 09 .077 90 .093 17	.054 59 .065 36	.049 81 .056 99 .068 23 .080 41 .096 18	.067 47 .079 52	.048 24 .060 83 .076 71	.060 16	.049 81 .062 80 .079 18	.049 25 .062 10 .078 81	
0 1 2 8	.108 3 .127 4 .147 6 .171 5 .201 6	.107 1 .126 0 .145 9 .169 6 .199 4	.111 8 .131 6 .152 3 .177 0 .208 2	.110 6 .130 1 .150 6 .175 0 .205 8	.096 73 .122 0 .153 8 .198 9 .244 5	.095 66 .120 6 .152 1 .191 8 .241 8	.099 85 .125 9 .158 7 .200 2 .252 5	.098 74 .124 2 .157 0 .198 0 .249 6	
5	.238 2	.235 6	.245 9	.243 2	.308 4	.304 9	.318 3	.314 8	
6	.276 9	.273 8	.285 9	.282 7	.388 9	.384 6	.401 4	.397 0	
7	.325 8	.322 2	.336 4	.332 7	.490 4	.484 9	.506 1	.500 6	
8	.389 0	.384 6	.401 6	.897 1	.618 3	.611 4	.638 2	.631 2	
9	.466 0	.460 9	.481 1	.475 8	.779 6	.770 9	.804 6	.795 8	
10	.560 1	.553 9	.578 2	.571 8	.983 3	.972 4	1.015	1.040	
11	.708 9	.701 0	.731 8	.723 7	1.240	1.260	1.280	1.266	
12	.925 9	.915 6	.955 8	.945 2	1.563	1.546	1.614	1.596	
13	1.206	1.193	1.245	1.231 0	1.971	1.950	2.035	2.012	
14	1.595	1.577	1.646	1.628 0	2.486	2.458	2.566	2.537	
15	1.969	1.947	2.033	2.010	3.134	8.100	8.285	8.200	
16	2.572	2.543	2.655	2.626	3.952	8.909	4.080	4.035	
17	3.501	3.462	3.614	8.574	4.984	4.929	5.145	5.088	
18	4.621	4.570	4.771	4.718	0.284	6.215	6.487	6.415	
19	6.072	6.005	6.269	6.199	7.925	7.887	8.180	8.089	
20	8.333	8.240	8.602	8.507	9.998	9.882	10.81	10.20	
21	9.969	9.858	10.29	10.18	12.60	12.46	13.00	12,86	
22	13.02	12.87	13.44	13.29	15.89	15.71	16.40	16,22	
23	16.33	16.15	16.86	16.67	20.04	19.82	20.68	20.45	
24	19.30	19.08	19.92	19.70	25.26	24.99	26.08	25.79	
25	25.52	25.24	26.34	26.05	31.86	31.50	82.88	\$2.52	
26	81.51	31.16	32.52	82.16	40.18	89.73	41.47	41.01	
27	35.32	84.93	36.46	86.06	50.66	50.10	52.30	51.72	
28	39.88	39.43	41.16	40.71	63.88	63.17	65.95	65.21	
29	45.37	44.87	46.83	46.31	80.56	79.66	83.16	82.23	
30	52.08	51.50	53.76	53.17	101.6	100.5	104.8	103.7	
31	56.01	55.39	57.82	57.18	128.1	126.6	132.2	130.7	
32	60.40	59.73	62.35	61.66	161.5	159.7	166.8	164.9	
33	84.36	83.43	87.09	86.12	208.6	201.4	210.2	207.9	
34	102.1	100.9	105.4	104.20	256.9	254.0	265.2	262.2	
35	113.1	111.8	116.8	115 5	323.9	820 8	834.4	830.6	
36	126.0	124.6	180.1	128.7	408.3	403.8	421.5	416.8	

FEET COPPER WIRE.

Bn	RMINGHA	M OR STU	Bs.	Exei	ish Leg	al Stani	DARD.	Wire
55° 1	ahr.	70° I	ahr.	55° I	ahr.	70° 1	ahr.	er of ge.
B. A.	Legal	B. A.	Legal	B. A.	Legal	B. A.	Legal	Number of
Units.	Ohms.	Units.	Ohms.	Units.	Ohms.	Units.	Ohms.	Gauge.
.049 53	.048 97	.051 13		.047 41 .054 70 .063 80 .073 77	.054 09 .063 09 .072 95	.048 95 .056 47 .065 86 .076 15	.048 40 .055 84 .065 13 .075 80	000000 00000 0000 000
.070 69 .088 3 .113 4 .126 6 .152 2 .180 2	.069 91 .087 32 .112 2 .125 2 .150 5 .178 2	.072 98 .091 16 .117 1 .130 7 .157 1 .186 0	.072 17 .090 15 .115 8 .129 2 .155 4 .184 0	.084 29 .097 24 .113 4 .134 0 .160 7 .189 6	.083 36 .096 16 .112 2 .132 5 .159 0 .187 5	.087 02 .100 4 .117 1 .138 3 .166 0 .195 8	.086 05 .099 27 .115 8 .136 8 .164 1 .198 6	0 1 2 8 4
.210 9	.208 6	.217 7	.215 3	.227 1	.224 6	.284 5	.281 9	5
.247 7	.245 0	.255 8	.252 9	.276 9	.273 8	.285 9	.282 7	6
.315 1	.311 6	.325 8	.321 6	.329 5	.325 9	.840 2	.836 4	7
.374 9	.870 8	.387 1	.382 9	.398 8	.394 3	.411 6	.407 0	8
.466 0	.460 9	.481 1	.475 8	.492 8	.486 8	.508 2	.502 6	9
.568 5	.562 2	.586 9	.580 4	.623 0	.616 1	.643 2	.686 1	10
.708 9	.701 0	.731 8	.723 7	.758 6	.750 2	.783 1	.774 5	11
.859 2	.849 6	.886 9	.877 1	.943 8	.933 3	.974 8	.963 5	12
1.131	1.118	1.168	1.155	1.206	1.193	1.245	1.281	18
1.482	1.465	1.530	1.513	1.595	1.577	1.646	1.628	14
1.969	1.947	2.083	2.010	1.969	1.947	2.083	2.010	15
2.416	2.389	2.494	2.466	2.492	2.464	2.572	2.544	16
3.034	3.001	8.133	3.098	3.256	8 219	8.860	3.828	17
4.252	4.204	4.889	4.340	4.430	4.382	4.574	4 523	18
5.787	5.723	5.974	5.908	6.380	6.309	6.586	6.518	19
8.333	8.240	8.602	8.507	7.876	7.789	8.113	8.041	20
9.969	9.858	10.29	10.18	9.969	9.858	10.29	10.18	21
13.02	12.87	13.44	13.29	13.02	12.87	13.44	13.29	22
16.33	16.15	16.86	16.67	17.72	17.52	18.29	18.09	23
21.09	20.86	21.77	21.53	21.09	20.86	21.77	21.58	24
25.52	25.24	26.34	26.05	25.52	25.24	26.34	26.05	25
31.51	81.16	32.52	82.16	31.51	81.16	32.52	32.16	26
39.88	89.48	41.16	40.71	37.95	37.53	39.18	38.75	27
52.08	51.50	53.76	53.17	46.60	46.08	48.11	47.57	28
60.40	59.78	62.35	61.66	55.19	54.58	56.97	56.34	29
70.89	70.10	73.18	72.37	66.39	65.65	68.54	67.77	30
102.1	100.9	105.4	104.2	75.86	75.02	78.31	77.44	31
126.0	124.6	130.1	128.7	87 52	86.55	90.35	89.34	82
159.5	157.7	164.7	162.8	102.1	100.9	105.4	104.2	33
208.3	206.0	215 1	212.7	120.6	119.3	124.5	123.1	34
408.3	403.7	421.5	416.8	144.7	148.1	149.4	147.7	35
638.0	630.9	658.6	651.3	176.7	174.7	182.5	180.4	36

CONDUCTIVITY OF METALS.

Coëfficients for the temperature: t in degrees Centigrade.

Metal.	Coëfficient.
Gold	$ \begin{array}{l} C = 100 - 0.387 \ 01 \ t + 0.000 \ 900 \ 9 \ t^2 \\ C = 100 - 0.367 \ 45 \ t + 0.000 \ 844 \ 3 \ t^2 \\ C = 100 - 0.370 \ 47 \ t + 0.000 \ 827 \ 4 \ t^2 \\ C = 100 - 0.368 \ 71 \ t + 0.000 \ 757 \ 5 \ t^2 \\ C = 100 - 0.360 \ 29 \ t + 0.000 \ 613 \ 6 \ t^2 \\ C = 100 - 0.387 \ 56 \ t + 0.000 \ 914 \ 6 \ t^2 \\ C = 100 - 0.389 \ 96 \ t + 0.000 \ 887 \ 9 \ t^2 \\ \end{array} $

INFLUENCE OF THE TEMPERATURE ON THE RE-SISTANCE AND THE CONDUCTIVITY OF PURE COPPER.

Temperature, Centigrade.	Registance.	Conductivity.	Temperature, Centigrade.	Resistance.	Conductivity.	Temperature, Centigrade.	Resistance.	Conductivity.
0 1 2 3 4	1.000 00 1.003 81 1.007 56 1.011 35 1.015 15	0.98878	11 12 13 14 15	1.041 99 1.045 99 1.049 90 1.054 06 1.057 74	0.956 03 0.952 47	22 23 24 25 26	1.089 54 1.093 56	0.921 21 0.917 82 0.914 45 0.911 10 0.907 76
5 6 7 8 9	1.030 48 1.034 35		16 17 18 19 20	1.073 56 1.077 42	0.938 41 0.934 94 0.931 48	27 28 29 30	1.105 67 1.119 72 1.113 82 1.117 82	0.901 13

TABLE OF TENSILE STRENGTH FOR COPPER WIRE.

Size of Wire, B. & S.	Breaking Weight of	Breaking Weight of	Size of Wire, B. & S.	Breaking Weight of	Breaking Weight of
Gauge.	Hard-Drawn.	Annealed.	Gauge.	Hard-Drawn.	Annealed.
0000 000 00 0 0	Lbs. 9 971 7 907 6 271 4 973 3 943	Lbs. 5 650 4 480 3 553 2 818 2 234	9 10 11 12 13	Lbs. 617 489 388 307 244	277 219 174 138
2	3 127	1 772	14	193	109
3	2 480	1 405	15	153	87
4	1 967	1 114	16	133	69
5	1 559	883	17	97	55
6	1 237	700	18	77	43
7 8	980	555	19	61	34
	778	440	20	48	27

FUSING EFFECTS OF ELECTRIC CURRENTS.

By W. H. PREECE, F.R.S.

[See "Proc. Roy. Soc.," Vol. XLIX., March 15, 1888.]

The Law— $C = ad^{\frac{3}{2}}$, where, C current; a, constant; and d, diameter—is strictly followed; and the following are the final values of the constant, "a," for the different metals as determined by Mr. Preece:

	Inches.	Centimeters.	Millimeters.
Copper	10,244	2,530	80.0
	7,585	1,873	59.2
Platinum	5,172	1.277	40.4
German Silver	5,230	1,292	40.8
Platinoid	4,750	1,173	37.1
Iron	3,148	777.4	24.6
	1,642	405.5	12.8
Alloy (Lead and Tin 2 to 1)	1,318 1,379	325.5 340.6	10.3

With these constants the following tables have been calcuated:

TABLE SHOWING THE AMPERES REQUIRED TO FUSE WIRES OF VARIOUS SIZES AND MATERIALS.

								į	i		
Number, S. W. G.	Diameter d.	ope D	Copper a=10,244.	Aluminum a==7585.	Platinum a=5172.	German Silver a=5230.	Platinoid a=4750.	Iron a=3148.	Tin 8=1642.	Tin-lead Alloy a=1318.	Lead a=1379.
14	0.080.0	0.022 627	231.80	171.600	117.000	118.300	107.500	71.220	37.150	29.820	31.200
16	0.064 0	0.016 191	165.80	122.800	83.730	84.680	2000	50.960	26.580	21.340	22.320
18	0.048 0	0.010516	107.70	79.750	54.370	54.990	49 950	33.100	17.270	13.860	14.500
20	0.0360	0.006831	69.97	51.180	35.330	35.720	32.440	21.500	11.220	9.003	9.419
83	0.0280	0.004 685	48.00	35.530	24.230	24.500	22.250	14.750	7.692	6.175	6.461
24	0.022 0	0.003 263	33.43	.24.750	16.880	17.060	15.500	10.270	5.357	4.300	4.499
56	0.0180	0.002415	24.74	18.320	12.490	12.630	11.470	7.602	3.965	3.183	3.330
88	0.0148	0.001 801	18.44	13.660	9.311	9.416	8.552	29.9	2.956	2.373	2.483
30	0.0124	0.001 381	14.15	10.470	7.142	7.222	6.559	4.347	2.267	1.820	1.904
32	0.0108	0.001 122	11.50	8.512	5.805	5.870	5.330	3.533	1.843	1.479	1.548

table. Pure copper wire makes the best and most reliable cut-out or fuse, and should never be less than one Norg.—The size of "cut-outs," or fuses for electric-lighting circuits, can be taken at once from the second inch in length between the terminals to which it is fixed so as to prevent the cooling effect of the terminals.

TABLE GIVING THE DIAMETER OF WIRES OF VARIOUS MATERIALS WHICH WILL BE FUSED BY A CURRENT OF GIVEN STRENGTH.

W. H. PREECE, F.R.S.

$$\mathbf{d} = \left(\frac{\mathbf{C}}{\bar{\mathbf{a}}}\right)^{\frac{2}{3}}$$

res.				DIAME	TER IN I	NCHES.			
Current in Amperes.	Copper a=10,244.	Aluminum a=7585.	Platinum a==5172	German Silver a=5230.	Platinoid a=4750.	Iron 8=3148.	Tin a=1642.	Tin-lead Alloy a=1318.	Lead a=1379.
1	0.002 1	0.002 6	0.003 3	0.003 3	0.003 5	0.004 7	0.007 2	0.008 3	0.008 1
2	0.003 4	0.004 1	0.005 3	0.005 3	0.005 6	0.007 4	0.011 3	0.013 2	0.012 8
3	0.004 4	0.005 4	0.007 0	0.006 9	0.007 4	0.009 7	0.014 9	0.017 3	0.016 8
4	0.005 3	0.006 5	0.008 4	0.008 4	0.008 9	0.011 7	0.018 1	0.021 0	0.020 3
5	0.006 2	0.007 6	0.009 8	0.009 7	0.010 4	0.013 6	0.021 0	0.024 3	0.023 6
10	0.009 8	0.012 0	0 015 5	0.015 4	0.016 4	0.021 6	0.033 4	0.038 6	0.037 5
15	0.012 9	0.015 8	0.020 3	0.020 2	0.021 5	0.028 3	0.043 7	0.050 6	0.049 1
20	0.015 6	0.019 1	0.024 6	0.024 5	0.026 1	0.034 3	0.052 9	0.061 8	0.059 5
25	0.018 1	0.022 2	0.028 6	0.028 4	0.030 3	0.039 8	0.061 4	0.071 1	0.069 0
30	0.020 5	0.025 0	0.032 3	0.032 0	0.034 2	0.045 0	0.069 4	0.080 3	0.077 9
35	0.022 7	0.027 7	0.035 8	0.035 6	0.037 9	0.049 8	0.076 9	0.089 0	0.086 4
40	0.024 8	0.030 3	0.039 1	0.038 8	0.041 4	0.054 5	0.084 0	0.097 3	0.094 4
45	0.026 8	0.032 8	0.042 3	0.042 0	0.044 8	0.058 9	0.090 9	0.105 2	0.102 1
50	0.028 8	0.035 2	0.045 4	0.045 0	0.048 0	0.063 2	0.097 5	0.112 9	0.109 5
60	0.032 5	0.039 7	0.051 3	0.050 9	0.054 2	0.071 4	0.110 1	0.127 5	0.123 7
80 90 100 120	0.036 0 0.039 4 0.042 6 0.045 7 0.051 6	0.044 0 0.048 1 0.052 0 0.055 8 0.063 0	0.056 8 0.062 1 0.067 2 0.072 0 0.081 4	0.056 4 0.061 6 0.066 7 0.071 5 0.080 8	0.060 1 0.065 7 0.071 1 0.076 2 0.086 1	0.079 1 0.086 4 0.093 5 0.100 3 0.113 3	0.122 0 0.133 4 0.144 3 0.154 8 0.174 8	0.141 3 0.154 4 0.167 1 0.179 2 0.202 4	0.137 1 0.149 9 0.162 1 0.173 9 0.196 4
140	0.057 2	0.069 8	0.090 2	0.089 5	0.095 4	0.125 5	0.193 7	0.224 3	0.217 6
160	0.062 5	0.076 3	0.098 6	0.097 8	0.104 3	0.137 2	0.211 8	0.245 2	0.237 9
180	0.067 6	0.082 6	0.106 6	0.105 8	0.112 8	0.148 4	0.229 1	0.265 2	0.257 3
200	0.072 5	0.088 6	0.114 4	0.113 5	0.121 0	0.159 2	0.245 7	0.284 5	0.276 0
225	0.078 4	0.095 8	0.123 7	0.122 8	0.130 9	0.172 2	0.265 8	0.307 7	0.298 6
250	0.084 1	0.102 8	0.132 7	0.131 7	0.140 4		0.285 1	0.330 1	0.320 8
275	0.089 7	0.109 5	0.141 4	0.140 4	0.149 7		0.303 8	0.351 8	0.341 8
800	0.095 0	0.116 1	0.149 8	0.148 7	0.158 6		0.322 0	0.372 8	0.861 7

WIRING TABLES.

Calculated by F. A. C. PERRINE, D.Sc.

The first section of these tables is calculated from the expression of Ohm's law $R=\frac{E}{C}$, and gives the resistances for currents from one to one hundred amperes at voltages varying by half volts from one-half to ten volts, and the resistances for currents from one to two hundred amperes at voltages varying by single volts from ten to twenty volts. The second section furnishes the actual resistance of copper wire drawn according to the Brown & Sharpe gauge for various distances at 70° F.

From the first section we can get the required resistance of any circuit absorbing an electromotive force with a given current, and from the second the wire which will be of the required resistance.

Rule.—The first column of the tables of loss of voltage on any circuit represents, with the uppermost cross-row of figures, amperes. The figures in the other columns represent resistances of circuits carrying different currents at the loss of voltage given by the table. Thus:

What must be the resistance of a circuit carrying 98 amperes to show a drop of 3.5 volts? Ans. .0357 ohms.

Now, to obtain the requisite size of wire necessary to carry 98 amperes 550 feet (that is, for a distance of 225 feet—the total length of circuit then being 550 feet), it is necessary to look in the tables showing resistances of the various sizes of wires at different lengths, and obtain a wire whose resistance at 550 feet equals .0357 ohms. Doing this, we find that the resistance of a No. 000 B. & S. wire, 570 feet in length, would be .03454 ohms. Therefore, we would select a No. 000 B. & S. copper wire to carry 98 amperes 550 feet, with a drop (or loss) of 3.5 volts.

Example.—Required, the size wire to carry 87 amperes 1,850 feet, on a 110 volt circuit, the drop being 5 per cent.

Ans. The absolute loss of voltage on this circuit is 5.5 volts. The resistance of a circuit carrying 87 amperes with 5.5 volts loss, from the tables, is found to be .0632 ohms. Upon inspec-

tion of the tables, giving the resistance of wire, it is found that none show so low a resistance as .0632 ohms for 1850 feet. If now we multiply the required resistance by 2, we may find a wire which would carry $\frac{1}{2}$ the current under the conditions named; thus: .0632 \times 2=.1264 ohms. Now, upon inspection of the tables, we can find no wire 1850 feet in length showing .1264 ohms resistance, and so we try with the multiple 3 to divide the line into 3 circuits each carrying $\frac{1}{2}$ of the current; thus: .0632 ohms \times 3=.1896 ohms. The nearest approach to this resistance for 1850 feet is a No. 0 wire. Therefore three No. 0 B. & S. wires or their equivalent would carry 87 amperes 1850 feet, with a loss of 5.5 volts.

SHOWING RESISTANCE OF ANY CIRCUIT CARRYING A GIVEN NUMBER OF AMPERES WITH A GIVEN LOSS OF ELECTROMOTIVE FORCE. TABLES

AT .5 VOLTS LOSS.

		_							
	-	61	æ	4	S.	9	7	∞	6
Ī	.500 0	.2500	.1667	.1250	.1000	.0833	071 4	062.5	055.6
0	.0454	.0417	.038 5	.035 7	.0333	.031 2	0.00	8 2200	0.000
0.0	.0238	.022 7	.021 7	.020	.020	019 2	0.018.5	8 210	017.0
67	.016	.0156	.015 1	.014 7	.0143	013 9	013.5	013.9	2 610
25	.0122	0110	.0116	.0114	.0111	010.	010	.010	010.
0100	8 600.	9 600.	.009	.009 2	.0091	6 800	8 800	008.6	200
83	.008 2	.008	6 200.	8 200	7 200	9 200	007.5	0023	0020
71	0 200.	6 900:	8 900.	2 900.	7 900.	9900	006.5	4 900	900
82	.0062	.0061	0900	9 200.	6 200	8 200	005 7	005.7	200
55	.005 5	.005 4	.005 4	.005 3	.005 3	.005 2	.0051	0051	00.00

AT 1 VOLT LOSS.

Current.	0	-	2	89	4	5	9	7	80	6
0	8	1.000 0	.500 0	.333 3	.2500	200 0	.1667	.1429	.1250	11111
10	1000	6 060.	.0833	6 9 20.	.071 4	.066 7	.062 5	.0588	.055 6	.052.6
ಜ	.050	.047 6	.0455	.043 5	.0417	0400	.038 5	.037 0	.035 7	.034 5
ස	.0333	.0323	.0313	.0303	.029	.028 6	.027 8	0220	.0263	.025 6
4	.0250	.024 4	.023 8	.0233	.022 7	.022	.021 7	.0213	.0208	.020
22	.020	9610.	.019 2	9810.	.0185	.0182	6 210.	.017 5	.0172	.0169
8	.016 7	.0164	.0161	.0159	.0156	.015 4	.015 2	.0149	.0147	.0145
2	.0143	.0141	.0139	.013 7	.0135	.0133	.0132	.0130	.0128	.0127
08	0125	.0123	.012 2	.0120	.0119	.0118	.0116	.011 5	.0114	.0112
8	.0111	0110.	6 010.	.0108	.010	.010 5	.0104	.0103	.010	.010
100	.0100	6 600.	8 600.	.009 7	9 600.	.009 5	.009 4	.009 3	.0093	.009

AT 1.5 VOLTS LOSS.

Current.	0	1	2	8	4	.c	9	7	80	6
0	8	1.5000	.7500	.500 0	.3750	3000	.2500	2143	.187.5	.1667
10	1500	.1364	.1250	.1154	107.1	1000	.093 7	0882	0833	0789
8	.0750	.071 4	.0682	.065 2	.062 5	0000	.057 7	.055 5	.053 6	.0517
06	.050	.0484	.0469	.045 4	.044	.0429	7 170.	.040 5	.039 5	038 5
4	.037 5	.0366	.035 7	.0349	.034 1	.033 3	.0326	.0319	.031 2	•030 6
20	.030	.029 4	.028 8	.0283	.027 8	.027 3	.0268	.0263	.025 9	.025 4
8	.0250	.024 6	.024 2	.023 8	.023 4	.023 1	.022 7	.022	.022 1	7 120
2	.021 4	.021	.020	.020 5	.0203	.020	7 610.	019 5	019 2	0190
8	.0187	.018 5	.0183	.0181	.0178	.017 6	.017 4	.017 2	0170	0169
6	.0167	.016 5	.0163	.0161	0 910.	.0158	.0156	.015 5	.0153	.015 1

AT 2 VOLTS LOSS.

Current.	0	1	2	3	4	5	9	7	8	6
0	8	2.000 0	1.0000	7 999	.500 0	400 0	3333	.285 7	.2500	222.2
10 10	200 0	.1818	1667	.1538	1429	.1333	.1250	.1176	1111	1053
ଷ	1000	.095 2	6 060	0840	.083 3	080.	6 9 20.	.0741	.0714	0 690
30	2 990	.0645	.0625	9 090	.058 8	.057 1	.055 5	.0540	.0526	.0513
40	.050	.0488	.047 6	.0465	.045 5	4 440.	.0435	.0426	.041 7	.0408
20	0.040	.039 2	.038 5	.037 7	.037 0	.0364	.035 7	.035 1	.034 5	.033 9
8	.033 3	.0328	.0323	.031 7	.031 2	.0308	.0303	.029 8	.029	0200
20	.028 6	.028 2	.0278	.027 4	.027 0	.026 7	.0263	.026 0	.0256	.025 3
8	.0250	.0247	.024 4	.024 1	.0238	.023 5	.023 3	.023 0	.022 7	.022 5
83	.022 2	.0220	7 120.	.021 5	.0213	.021 0	.020 8	.020	.020	.020

AT 2.5 VOLTS LOSS.

Outrein.	0	1	8	က	4	ro.	9	1	∞	6
0	8	2.5000	1.250 0	.833 3	.6250	0 0000	.4166	.357 1	.3125	.277 8
10	.2500	.227 2	.2083	.1923	.1786	.1667	.1562	.1470	.1389	1316
20	.1250	.1190	.1136	.1087	.104 2	1000	.096	.0926	.089 2	.0862
30	.0833	9 080.	.0781	.075 7	.073 5	.071 4	.069	9 290.	.0658	.064
40	.062 5	6 090.	.059 5	.058 1	.0568	.055 5	.0543	.053 2	.0521	.0510
20	.050 0	.0490	.048 1	.047 2	.0463	.045 4	.044 6	.0438	.0431	.0424
99	.0417	.0410	.0403	.039 7	.039 1	.0384	.037	.037 3	.0368	.0362
20	.035 7	.035 2	.034 7	.0342	.0338	.033 3	.0329	.032 5	.032 0	031 6
 08	.031 2	030 6	.030 5	.030	.029 7	.029 4	.029 1	.028 7	.028 4	.028 1
 8	.0278	.027 5	.027 2	.0269	.026 6	.0263	.026 0	.0258	.025 5	.025 2

а		١
8	i	ì
Č	3	į
	1	ĺ
9	P	į
E	ŕ	
2	7	į
c	3	ŀ
Ì		
•		
ø	,	t
E		
4	1	Į

2 (10)			- :		- 5		•	
		2 2 2	=======================================	0 3 3	0 (3)	= K.	0 5 7	=======================================
•	_ ====================================	x = 5	======================================	335	€ ` ¥	ν Ε Ξ Τ :	=	= =
-		= = = = = = = = = = = = = = = = = = = =	= : :-:	= 5.	- - - -	<u>-</u> =		=======================================
-		C (X)(0)	T KAC	- C-KE)		=	= 10	====
-	# T./a.	# G	TE	S HHH.	E 1981	¥ = =	C 5.35	2 = =
		I poor	n con.	1010	100:00	E COL	2 140	7
Ξ.	- X	0 210	====	2 == 0.	4410	X == :	=	5.50
=	<u>.</u> =	=	4010.	===	C.E. D	====	2 = =	E
ij	===	27 5	7 Y 300	H 631	=======================================	4 13	=======================================	7 333
Ξ	=	F 21:0'	8 150	# H #	= = = = = = = = = = = = = = = = = = =	888	=======================================	=======================================
		AT 3,1	NOLTH	LOHM,				
=	_	=	_	_	=	_		3
===	000	1 100 7	O d'YK.	7000	IN I I I	500	4 / 1	3 843
Ę	- 2	35.5	- S-	=======================================	K K I	300	=	3 7
=	=	# E	X CE	==	=======================================	= = :	365	> = = = = = = = = = = = = = = = = = = =
Ξ	_ 	385.	= 25 = :	- C R C -	2 /25	5 7 5	- 535	7 HHI.
Ę	- =	¥ E	40%0.	M 2/0.	1 8/0.	4 t /:	11 / 13	+ 1/31
Ę	. 2007	0 88.0	X TEST	\$1,000,	CHEAD.	+ 130	: (B.C)	E BYE
Ę	Ş	.055 6	7 t-do,	M EGO	0 1140.	25.2	4 140.	900
₹	=======================================	= 24	.047 ::	7 240,	= = = = = = = = = = = = = = = = = = =	- 1	= FF 0:	=======================================
Ę	- 2	25 C.	7 170	======================================			# 05.0°	=======================================
ë								464

AT 4 VOLTS LOSS.

Current.	0	н	61	က	4	2	9	7	∞	6
0	8	4.0000	2.0000	1.3333	1.0000	0 008.	7 999.	.571 4	.500 0	.444
10	.400 0	.363 6	.333 3	.307 7	.285 7	.2667	.2500	.235 3	.222 2	2105
ଛ	200 0	.1905	.1818	173 9	.1667	.1600	.1538	.148 2	.1428	.1379
 08	.133 3	1290	.1250	.121 2	.117 6	.1143	1111	.1081	.1053	.1026
40	.100	9 260.	.095 2	.093	6 060	6 880.	0 280.	.0851	.083 3	0816
25	080.	.0784	6 920.	.075 5	.0741	.0727	.071 4	.070 2	0 690.	.0678
8	7 990.	.065 6	.064 5	.063 5	.062 5	.0615	9 090.	.059 7	.0588	0580
2	.057 1	.0563	.0556	.0548	.054	.0533	.0526	.0519	.0513	050.0
8	.050	.0494	.0488	.0482	.047 6	.047	.046 5	.0460	.045 5	.0449
6	4 44	.0440	.043.5	.043.0	0426	045.1	7 1 7	041 2	040.8	040

AT 4.5 VOLTS LOSS.

_	-	7	တ	4	2	9	7	∞	6
8	4.500 0	2.2500	1.5000	1.1250	0 006.	.7500	.6428	.562 5	.500 0
10 .4500	.4091	.3750	.3461	.321 4	.300	.281 2	.264 7	.2500	.2368
	.2143	204 5	.1957	.187 5	.180 0	.1731	.1667	.1607	.1552
	.1452	.1406	.1364	.1323	.1285	.1250	.121 6	.1184	.1154
40 .112.5	.1097	.1071	.1047	.1023	.1000	8 260.	.095 7	.093 7	8 160.
50 000 000	.0882	.086 5	.0849	.083 3	.0818	.080	9 8 20.	9 2 2 2 0	.0763
0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0738	.0726	.071 4	.070	.0692	.068 2	.067 2	.0662	.065 2
70 .0643	.063 4	0625	.061	8 090.	0 090.	0592	.0584	.057 7	.0569
	.055 6	.0549	.0542	.053 5	.0529	.0523	.051 7	.051 1	.050 6
0020. 06	.0494	.0489	.0484	.047	.0474	.0469	.0464	.0459	.0455

AT 3 VOLTS LOSS.

Current.	0	-	81	89	4	2	9	7	∞	6
0	8	3.0000	1.5000	1.0000	.7500	0 009.	.500 0	.428 6	.3750	.333 3
10	300 0	.272.7	.250 0	.2308	.2143	.200 0	.187 5	.1765	.1667	.1579
ଛ	.1500	.1429	.1364	.1304	.1250	1200	.1154	.1111	.1071	.1034
8	.1000	8 960.	7 860.	6 060:	.0882	.085 7	.0833	.081	6 8 20.	0769
4	.075.0	.0732	.071 4	8 690.	.068	.066 7	.065 2	.0638	.062 5	.0612
ಜ	0 090.	.0588	.057 7	.0566	.0556	.0546	.053 6	.0526	.051 7	.050
8	.050	.049 2	.0484	.047 6	.0469	.0462	.045 5	.0448	.041	.043 5
20	.0429	.0423	.0417	.041 1	.040 5	.040	.039 5	0380	.038 5	0380
8	.037 5	.037	9 980.	.0362	.035 7	.035 3	.034 9	.034 5	.034 1	0337
8	.0333	.033 0	.0326	.032 3	.0319	0316	.031 2	6 080.	.030 6	0303

AT 3.5 VOLTS LOSS.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Current.	0	1	2	8	4	ī.	9	7	oo	6
350 0 .318 2 .291 7 .269 2 .250 0 .233 3 .218 8 .205 9 .194 4 .175 0 .166 7 .159 1 .152 2 .145 8 .140 0 .134 6 .129 6 .125 0 .116 7 .112 9 .109 4 .106 0 .107 9 .100 0 .097 2 .094 6 .092 1 .077 0 .087 4 .083 3 .081 4 .077 8 .077 8 .077 1 .074 5 .072 9 .070 0 .068 6 .067 0 .064 8 .067 8 .063 8 .063 0 .061 5 .061 5 .058 3 .057 4 .047 3 .047 3 .047 3 .047 3 .046 7 .042 5 .041 9 .043 7 .043 7 .043 7 .047 3 .047 3 .047 3 .040 7 .040 7 .040 2 .038 9 .038 6 .037 2 .036 8 .036 1 .036 7 .036 7	0	8	3.5000	1.7500	1.1667	.8750	.7000	.583 3	.5000	.437 5	.3889
1750 .1667 .1591 .1522 .1458 .1400 .1346 .1296 .1250 .1167 .1129 .1094 .1060 .1029 .1000 .0972 .0946 .0921 .087 5 .0854 .0833 .0814 .0795 .0778 .0761 .0745 .0729 .070 0 .0686 .0660 .0648 .0636 .0636 .0636 .0636 .0636 .0636 .068 1 .049 3 .0486 .047 3 .0487 .0487 .0486 .047 3 .0447 .0440 .0465 .0449 .038 9 .038 6 .038 6 .037 2 .036 8 .036 5 .044 9 .047 9	10	.3500	.3182	.291 7	269 2	.250 0	.233 3	.2188	.205	.1944	.1842
.116 7 .112 9 .109 4 .106 0 .102 9 .100 0 .097 2 .094 6 .092 1 .087 5 .085 6 .083 3 .081 4 .075 5 .077 8 .076 1 .077 5 .077 9 .070 0 .068 6 .067 3 .066 0 .064 8 .063 6 .062 5 .061 4 .060 3 .058 3 .057 4 .046 5 .054 7 .056 8 .053 0 .052 2 .051 5 .049 3 .048 6 .047 9 .047 3 .047 3 .048 7 .044 7 .044 5 .044 5 .038 9 .038 6 .037 6 .037 2 .036 5 .036 5 .037 2 .036 7	8	.1750	.1667	.1591	.152 2	.1458	.1400	.1346	.1296	.1250	.1207
.087 5 .085 4 .083 3 .081 4 .079 5 .077 8 .076 1 .077 5 .077 6 .077 5 .072 5 .072 9 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .072 3 .074 3<	္က	.1167	.1129	1094	.1060	.1029	1000	.097 2	.0946	.092 1	2 680.
.070 0 .068 6 .067 3 .066 0 .064 8 .063 6 .062 5 .061 4 .060 3 .058 3 .057 4 .056 5 .056 6 .054 7 .053 8 .053 0 .052 2 .051 5 .050 0 .049 3 .048 6 .047 9 .047 3 .046 7 .046 0 .045 5 .048 9 .043 7 .043 2 .042 2 .041 2 .041 2 .040 7 .040 2 .038 9 .038 9 .038 6 .037 2 .037 2 .036 8 .036 1 .036 1 .036 7	\$.087 5	.085 4	.0833	.081	.079 5	.077 8	.0761	.074 5	.0729	.0714
.058 3 .057 4 .056 5 .055 6 .054 7 .053 8 .053 0 .052 2 .051 5 .050 0 .049 3 .048 6 .047 9 .047 3 .046 7 .046 7 .046 5 .045 5 .044 9 .043 7 .043 2 .042 2 .041 7 .041 2 .040 7 .040 9 .039 8 .038 9 .038 6 .038 6 .037 6 .037 2 .036 8 .036 5 .036 1 .035 7	ිසි	0020	.068 6	.067 3	0 990.	.0648	.0636	.062 5	.061 4	.0603	.059 3
.050 0 .049 3 .048 6 .047 9 .047 3 .046 7 .046 0 .045 5 .044 9 .043 7 .043 2 .042 2 .041 7 .041 2 .040 7 .040 2 .039 8 .038 9 .038 6 .038 6 .037 6 .037 2 .036 8 .036 5 .036 1 .035 7	8	.0583	.057 4	.056 5	.055 6	.054 7	.0538	.0530	.052 2	.051 5	.050 7
.043 7 .042 2 .041 7 .041 2 .040 7 .040 2 .039 8 .038 9 .038 6 .038 6 .037 6 .037 2 .036 8 .036 5 .036 1 .035 7	2	.050	.0493	.048 6	.0479	.0473	.0467	.0460	.045 5	.044 9	.0443
038 9 038 5 038 0 037 6 037 2 036 8 036 5 036 5 036 5	8	.043 7	.043 2	.042 7	.042 2	7 140.	.0412	.040	.040	.039 8	.039 3
	8	6 880.	.038 5	0380	.037 6	.037 2	.0368	.036 5	.0361	.035 7	.0354

AT 4 VOLTS LOSS.

Current.	0	1	2	89	4	2	9	7	80	6
0	8	4.000 0	2:000 0	1.3333	1.0000	0 008.	7 999.	.5714	.500 0	4444
10	400 0	.3636	.333 3	.307 7	.285 7	.266 7	.2500	.235 3	.222 2	2105
_ გ	.200	.1905	.1818	1739	.1667	.1600	.1538	.1482	.1428	.1379
90	.1333	.1290	.1250	.121 2	.1176	.1143	.1111	.1081	.1053	.1026
40	.1000	9 260.	.095 2	0830	6 060.	6 880.	0 280.	.085	.083 3	0816
20	0.080	.078 4	6 9 2 0 .	.075 5	.074 1	.0727	.0714	.070	0690	.0678
8	.0667	.0656	.064 5	.063 5	.062 5	.0615	9 090.	.059 7	.0588	0580
2	.057 1	.0563	.055 6	.0548	.054 1	.0533	.0526	.0519	.0513	.0506
8	.050	. 0494	.0488	.0482	.047 6	.047 1	.0465	.0460	.045 5	.0449
6.	.044 4	.0440	.043 5	.0430	.0426	.0421	.041 7	.041 2	.0408	.040

AT 4.5 VOLTS LOSS.

urrent.	0	-	83	က	4	rc.	9	7	80	6
0	8	4.5000	2.2500	1.5000	1.1250	0 006	.7500	.642.8	.562.5	5000
10	.4500	.4091	.3750	.3461	.321 4	3000	2812	264 7	250 0	9368
20	.225 0	.2143	204 5	.1957	.187 5	.180 0	1731	1667	1607	155.9
200	.1500	.1452	.1406	.1364	.1323	.1285	.1250	121 6	1184	115.4
40	.112 5	1097	107.1	.1047	.1023	.1000	8 260.	.095 7	.093 7	.0918
20	0 060.	.0882	.086 5	.0849	.083 3	.0818	.080	6 820	9 220	0763
9	.0750	.0738	.0726	.071 4	.0703	.0692	0682	.067 2	.066 2	065.9
20	.0643	.0634	.062 5	.0616	8 090.	0 090	.059 2	.058 4	.057 7	056.9
8	.0562	.055 6	.0549	.0542	.053 5	.0529	.0523	.051 7	.0511	050.
8	.050	.0494	.0489	.048 4	.0479	.047 4	0469	046 4	045.9	245.5

AT 5 VOLTS LOSS.

111					1					•
Current.	•	-	81	en	4	ß	•	-	*	6
0	8	5.0000	2.5000	1.6667	1.2500	1.0000	8333	.7143	0330	.555 5
10	500 0	454.5	.4167	.3846	.357 1	.3333	.3125	136	2778	9. 3. 3. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
- 20 20	.250 0	.238 1	.227 2	.2174	2083	0 006:	.1923	.185 2	.1786	1724
8	.1667	.1613	.1562	.151 5	.1470	.1429	.1389	1351	.1316	198 5
40	.1250	.1220	.1190	.1163	.1136	1111	1087	1064	104.3	.1020
28	1000	0 860	.0961	.0944	.002 6	6 060	.0893	.087 7	.0862	8 780.
8	.0833	.082	9080.	.079 4	.078 1	6 9 20.	.0758	.0746	.073 5	.072 5
22	.071 4	.070	.069 4	.068 5	9 290.	.066 7	.0658	6 130	1 490.	8880.
8	.0625	.0617	0 190.	.0602	.059 5	.058 8	.058 1	.057 5	.056 s	.050
-	.0556	.0550	.0543	.053 7	.0532	.0526	.052 1	.051 5	.0510	.050.5

AT 5.5 VOLTS LOSS.

Current.	0	-	61	<u>~</u>	4	ď	9	7	æ	æ
0	8	5.5000	2.7500	1.8333	1.3750	1.1000	7 916.	7857	.687 5	.611
10	.5500	2000	.4583	.423 0	.392 9	.3667	.343 7	.323 5	305 6	280 5
ಜ	.275 0	.2619	.2500	.2391	.229 2	.2200	.2115	.2037	.1964	.1897
80	.1833	.1774	.171	.1667	.1618	.1571	.1528	.1486	.1447	.1410
- -	.137 5	.1341	.1309	.1279	.1250	.122 2	9611.	.1170	.1146	.1122
- 50	.1100	.107 8	.1058	.103 8	.101	.1000	.098	.096 5	.0948	.093 2
8	.091 7	2080	.088	.0873	.085	.084 6	.0833	.082	6 080:	7 620.
2	.078 5	.077 5	.0764	.0753	.0743	.0733	.0724	.071 4	.070 5	9 690.
8	.068 7	6 290.	.067 1	.0663	.065 5	.0647	.084 0	.063 2	.062 5	.0618
8	.061	.060	.0598	.059 1	.058 5	.057 9	.0573	.0567	.056 1	.055 8

AT 6 VOLTS LOSS.

Current.	•	-	81	80	4	2	9	7	80	6
0	8	6.000 0	3.0000	2.0000	-1.5000	1.2000	1.000 0	.8571	.7500	7 999.
10	0009	.5455	.5000	.4615	.428 6	.400 0	.3750	.352 9	3333	.3158
8	3000	.2857	.272.7	2609	.250 0	.240 0	2308	222 2	.2143	2069
ဓ	2000	.1936	.187 5	.1818	.1765	.1714	.1667	.162 2	.157 9	.1538
40	.1500	.1463	.1429	.139 5	.1364	.1333	.1305	.127 7	.1250	.1224
20	.1200	.1177	.1154	.1132	.1111	.1091	1071	.1053	.1035	7 101.
9	1000	.0984	8 960.	.095 2	.093 8	.0923	6 060	9 680.	.088 2	087.0
2	.085 7	.084 5	.0833	.0822	.081	0 080	0 620	0820	6 9 20.	0920
8	.0220	.0741	.073 2	.0723	.071 4	9 0 20.	8 690.	0690	.068 2	.067 4
8	.066 7	0 990.	.0652	.0645	.0638	.063 2	.062 5	9 190.	.061 2	9 090

AT 6.5 VOLTS LOSS.

Current.	0	1	2	ေ	4	5	9	7	80	6
0	8	6.5000	3.2500	2.1667	1.6250	1.3000	1.083.3	928.5	812.5	799.9
9	.6500	.5909	.5417	.5000	.4643	.433 3	4063	382.4	361 1	3421
ଛ	.3250	.309 5	.295 5	.282 6	2708	2600	.250 0	240 7	232 1	224 1
8	.2167	2097	.2031	0.1970	1912	.1857	.1806	1757	1710	1667
40	.1625	.1585	.1548	.1512	.1477	.1444	.1413	.1383	.1354	.132 7
20	.1300	.127 5	.1250	.1226	.1204	.1182	.1161	.1140	.1120	1102
8	.1083	.1066	.1048	.1032	.101 6	1000	.098 5	0 260	.095 7	0.042
2	.0929	.0915	.0903	0 680.	8 280.	7 980.	.085 5	084 4	0833	.0823
8	.0813	.080	.0793	.0783	.077 4	.0765	.075 6	.0747	073 9	0730
8	.072 2	.0714	9 020.	6 690.	.0691	.068 4	7 290.	0 290.	,0663	.065 7

AT 7 VOLTS LOSS.

Current.	0	-	67	က	4	ro	9	7	œ	6
0	8	7.000 0	3.5000	2.333 3	1.750 0	1.4000	1.1667	1.000 0	.875 0	.777.8
10	.700 0	.6364	.583 3	.538 5	.500 0	.466 7	.437 5	.4118	.388	.368 4
8	.3500	.333 3	.3182	.304 5	.291 7	.280 0	269 2	.2593	.250 0	.2414
စ္တ	2333	.225 8	.2188	.2121	.205 9	200 0	1944	.189 2	.1842	.1795
40	.1750	.1707	1667	.1628	.1591	.155 6	.1522	.1490	.1458	.1429
යි	.1400	.137.3	.1346	.1321	.1296	.1273	.1250	.1228	.1207	.1186
8	.1167	.1148	.1129	.1111	1094	.107 7	.1061	.1045	.1030	.1014
2	.1000	9860	.097 2	.095	9460	.0933	.092	6 060.	2 680.	9880.
8	.087 5	.086	.085 4	4 4.0.	.0833	.0824	.081 4	.080	.079 5	.078
8	.0778	6 9 2 0 .	.0761	.0753	.0745	.0737	.0729	.072 2	.0714	.070

AT 7.5 VOLTS LOSS.

Current.	0	1	2	ಣ	4	2	9	7	∞	6
0	8	7.5000	3.7500	2.5000	1.8750	1.5000	1.2500	1.071 4	.937 5	.833 3
10	.750 0	.6818	.625 0	.5769	.535 7	.500 0	.468 7	.4412	.4167	.394 7
ଛ	.3750	.357 1	.3409	.326 1	.3125	300 0	.288 5	.277 8	9 292	.2586
೫	.2500	.242 0	.234 4	.227 3	.220 6	.2143	.2083	.2027	.197 4	.1923
\$.187 5	.1829	.1786	.1744	.1705	.1667	.1630	.1596	.1562	.1530
32	.1500	.1471	.1442	.1415	.1389	.1364	.133 9	.131 6	.1293	.127 1
8	.1250	.1230	.1210	0 611.	.1172	.1154	.1136	9111.	.1103	.1087
2	.107 1	.1056	.1042	.1028	101 4	1000	7 860.	.097 4	.0962	.095 0
8	.093 7	.0026	.091 5	4 060.	.089 3	.088 2	.087 2	.0862	.085 2	.0843
8	.0833	.082 4	.081 5	9 080.	8 620.	6 8 2 0 .	.078 1	.077 3	.0765	.0758
								!		

AT 8 VOLTS LOSS.

Current.	0	1	2	8	4	٩	9	7	8	6
0	8	8.0000	4.000 0	2.6667	2.0000	1.6000	1.3333	1.1429	1.000 0	888
9	0 008:	.727 3	2 999.	.615 4	.571 4	.5333	.500	.470 6	4444	.421 1
25	.400 0	.3810	.363 6	.3478	.333 3	.3200	.307 7	.2963	.285 7	.2759
2	.2667	.2581	.250 0	.242 4	.2353	.228 6	222 2	2162	.210 6	.205 1
9	.200 0	.1951	.1905	.1860	.181	.1778	.1739	.170 2	.1667	.1633
<u>ක</u>	.1600	.1569	.1538	.151 0	.1482	.145 5	1429	.1403	.1379	.135.6
8	.1333	.1311	.1290	.127 0	.1250	.1230	.121 2	.1194	.117.7	.1159
23	.1143	.1127	.1111	.1096	.108	.1067	.1053	.103 9	.1026	.101.3
3 6	1000	8 860.	9 260.	.0964	.095 2	.0941	0860.	.092	6 060:	6 680.
3	6880	0879	0 280.	0980	.085	.0842	.0833	.082 5	.081	8080

AT 8.5 VOLTS LOSS.

Current.	0	-	8	က	4	20	9	7		6
0	8	8.5000	-4.2500^{-}	2.8333	2.1250	1.7000	1.4167	1.2143	1.062.5	0.44.4
01	.850 0	.7727	.7083	.653.8	.607 1	5667	531 2	0.00	472.2	4474
20	.4250	.4048	.3864	.369 6	354 2	3400	.3269	3148	303 6	203
e 2	.2833	.2742	.2656	.257 6	2500	2429	.2361	229 7	223 7	917.9
4	.2125	.2073	.202 4	1977	.193 2	1889	.1848	.1808	.1771	.173 5
20	.170 0	.1667	.1635	.1604	.157 4	.1545	.151.8	1491	.1466	1441
8	.141 7	.1393	.1371	.1349	.1328	.1308	.1288	1269	.1250	.123 2
20	.1214	1197	.1181	.1164	1149	.1133	.1118	1104	1090	.107 6
3	.1062	.1049	.1037	1024	.101	1000	8 860.	2 260.	9 960.	.095 5
86	.094 4	.093 4	.092 4	.091 4	.090	.089 5	.088 5	9 280.	.0867	.085

AT 9 VOLTS LOSS.

Current.	0	-	63	တ	4	ī	9	-	∞	6
0	8	9.000 0	4.5000	3.0000	2.2500	1.8000	1.5000	1.285 7	1.1250	1.000 0
10	0 006:	.8182	.750 0	.6923	.6429	0 009.	.562 5	.5294	.500 0	.4737
8	.4500	.428 6	.4091	.3913	.3750	.360 0	.3461	.333 3	.321 4	.3103
90	300 0	.2903	.2813	.272.7	.2647	.257 1	.250 0	.243 2	.2368	230.8
\$.225 0	2195	.2143	2003	.204 5	200 0	.1957	.191 5	.187 5	.1837
25	.1800	.1766	.1731	.1698	.1667	.1637	.1607	.157 9	.1552	.1525
8	.1500	.147.5	.1452	.1429	.1406	.1385	.1364	.1343	.1324	.1304
2	.1286	.1268	.1250	.1234	.121 6	.120 0	.1184	1169	.1154	.1139
8	.1125	.1111	.1098	.1084	.1071	.1059	.1047	.1033	.1023	.101
8	.1000	6 860.	8 260.	8 960.	.095 7	.0947	8 860.	.0928	.0918	6 060

AT 9.5 VOLTS LOSS.

AT 10 VOLTS LOSS.

Current.	0	-	61	ေ	4	20	9	-	∞	G.
0	8	10.000 0	5.000 0	3.333 3	2.5000	2.0000	1.6667	1.428 6	1.2500	1.1111
10	1.000 0	.909 1	.833 3	.7692	.7143	7 999.	.625 0	.5882	.555 6	.5263
20	.500	.4762	.454 5	.4348	.4167	.400 0	.3846	.3704	.357 1	.3448
30	.333 3	.322 6	.312 5	.303 0	294 1	.285 7	.2778	.2703	.263 2	.2564
40	.2500	.243 9	.2381	.2326	.227 3	.222	.2174	.2128	.2083	.2041
20	.200	.1961	.1923	.1887	.185 2	.1818	.1786	.1754	.1724	.1695
8	.1667	.1639	.1613	.1587	.1563	.1538	.1515	.1493	.1471	.1449
20	.1429	.1408	.1389	.1370	.1351	.1333	.1316	.1299	.1282	.1266
08	.1250	.1235	.122 0	.1205	.1190	.117 6	.1163	.1149	.1136	.1124
66	.1111	.1099	.1087	.107 5	1064	.1053	.1042	1031	.1020	0.101
100	.100	0 660.	0860	.097 1	.0962	.095 2	.0943	.093 5	.0926	7 160.
110	6 060.	.090	.089	.088 5	7 280.	0820	.0862	.085 5	.084 7	.0840
120	.0833	.082	.082	.0813	9 080.	0 080.	.079 4	7 870.	.078 1	.077 5
130	6 9 20.	.0763	.0758	.075 2	.0746	.074 1	0735	.073 0	.0725	.071 9
140	.0714	6 0 2 0 .	.070	6 690.	.069	0 690.	.068 5	0890	9 290.	.067 1
150	7 990.	.0662	.0658	.065 4	.0649	.064 5	.0641	.063 7	.0633	.0629
160	.0625	.0621	.061 7	.0613	.061	9 090.	.0602	6 690.	.059 5	0592
170	.0588	0585	.058 1	.0578	.057 5	.0571	.0568	.056 5	.0562	.0559
180	.0556	.0552	.0549	.0546	.0543	.0541	.0538	.053 5	.053 2	0529
190	.0526	.0524	.0521	.0518	.051 5	.0513	.051 0	.0508	.050 5	.0503

AT 9 VOLTS LOSS.

Current.	0	-	81	89	4	2	9	7	œ	6
0	8	0.0000	4.5000	3.0000	2.2500	1.8000	1.5000	1.2857	1.1250	1.0000
10	0 006	.8182	.750 0	.6923	.6429	0 009:	.562 5	.5294	.500 0	.4737
200	450 0	.428 6	.4091	.391 3	.375 0	.360 0	.3461	.333 3	.321 4	.3103
- 6	3000	2903	.2813	272.7	.264 7	.257 1	.250 0	.243 2	.2368	2308
9	225 0	.2195	.2143	2093	204 5	200 0	.1957	.191 5	.1875	.1837
023	180 0	.1766	.1731	.1698	.1667	.1637	.1607	.1579	.1552	.1525
£	1500	.147 5	.1452	.1429	.1406	.138 5	.1364	.1343	.1324	.1304
2	1286	1268	.1250	1234	.121 6	.120 0	.1184	.1169	.1154	113.9
· &	.1125	1111	.1098	.1084	.107 1	.1059	.104 7	.1033	.1023	.101
8	1000	6 860	8 260.	8 960.	.095 7	7 460	.093 8	.0928	8 160.	6 060

AT 9.5 VOLTS LOSS.

	-	81	ေ	4	2	9	4	œ	o.
8	65	4.7500	3.1667	2.3750	1.900 0	1.5833	1.357 2	1.1875	1.0556
		7917	.7308	9 8 29.	.633 3	.593 7	.5588	.5278	.500 0
		.4318	.4130	.395 8	.3800	.3654	.3519	.339 3	.327 6
	_	.2969	.287 9	.279 4	.271 4	.263 9	.2568	.2500	.243 6
40 .237 5	5 2317	.2262	.220 9	.2159	2111	206 5	.2021	.197	.1938
_	_	.1827	.1792	.1759	.1727	.1696	.1667	.1638	0 191.
.158		.1532	.1508	.1484	.1462	.1439	.1418	.1397	.1377
_		.1320	1301	.1284	.1267	.1250	.1234	.121 6	.1203
811.		.1159	.1145	.1131	.1118	.1105	.1092	.1080	.1067
_		.1033	.1022	101.	1000	6 860.	097 9	6 960	.0959

AT 10 VOLTS LOSS.

urrent. 0	1	83	•	4	20	9	7	œ	6
8	ĭ	5.000 0	3.333.3	2.500 0	2.000 0	1.6667	1.428 6	1.2500	1.1111
1.000		8333	769 2	.7143	7 999.	.625 0	.5882	.555 6	.5263
500		.4545	4348	.4167	4000	.3846	3704	.357 1	.3448
333		.312.5	303 0	204	285 7	277 8	2703	2632	.2564
.2500	0 .2439	.238 1	.2326	.227 3	.222 2	2174	.2128	2083	2041
.200	<u> </u>	.1923	.1887	.185 2	.1818	.1786	1754	.1724	.1695
.166		.1613	.1587	.1563	.1538	.1515	.1493	.1471	.1449
.142		.1389	.137 0	.1351	.133 3	.1316	.1299	.1282	.1266
.125		.1220	.1205	.1190	.117 6	.1163	.1149	.1136	.1124
111		.1087	.107 5	.1064	.1053	.1042	.1031	.1020	.101
1000	_	0860	.097 1	.0962	.095 2	.0943	.093 5	.092 6	7 160.
060:		.0893	.088 5	7 280	087.0	.0862	.085 5	.084 7	.084 0
.083		.082	.0813	9080	080	.079 4	7 8 20.	.078 1	0775
920.		.0758	.075 2	.0746	.0741	.073 5	.0730	.0725	.0719
.071		.070	6 690.	.069 4	0 690.	.068 5	0880	9 290.	.067 1
990	_	.0658	.0654	.0649	.064 5	.0641	.063 7	.0633	.0629
.062		.0617	.0613	0610	9 090.	.0602	.059	.059 5	.0592
.058		.0581	.0578	.057 5	.057 1	.0568	.056 5	.0562	0559
.055		.0549	.054 6	.0543	.0541	.0538	.053 5	.053 2	.0529
.052	_	.052 1	8 150	251 55	0513	0510	050 8	050.5	.0503

AT 11 VOLTS LOSS.

Current.	0	-	63	es	4	20	9	4	«	6
0	8	11.000 0	5.5000	3.6667	2.750 0	2.2000	1.833.3	1.571 5	1.3750	1.222 2
10	1.1000	1.0000	.9167	.8461	7857	.733 4	.687.5	.647 0	.611 1	.5789
8	.5500	.523 8	.500 0	4783	.4583	.440 0	.423 1	407 4	.392 9	.3793
30	3667	.354 9	.3438	2333	323 5	.3143	3056	.2973	.289 5	.2820
9	.275 0	.2683	.2619	.255 8	.250 0	244 4	.2391	2340	.229 2	.224 5
25	.220 0	2157	2115	207 6	203 7	2000	1964	1930	1897	.1864
99	183 4	1803	1774	1746	171.9	1692	1667	1642	.1618	.1594
20	.157 2	.1550	.1528	.1507	.1486	.1467	144 7	.1429	.1410	.1392
8	.1375	.1358	.1341	.1325	.1310	1294	.127 9	.1264	.1250	.1236
 8:	1222	.1209	9611.	.1183	.117 0	.1158	.1146	.1134	.1122	.1111
100	.1100	.1089	.107.8	.1068	.1058	104.8	.1038	.1028	.101 9	1009
110	.1000	.099	.098 2	.097 5	.0965	.095 7	.0948	.094 0	.093 2	.0924
120	.091	6 060:	.090	.089	.088	0880	.0873	9 980.	.085	.0853
130	.0846	.0840	.0833	.082 7	.082	.081 5	6 080.	.080	7 620.	0791
140	.078 5	0820	.077 4	6 9 20.	.0764	.075 9	.075 4	.0748	.0743	0738
150	.073 4	.0728	.0723	.071 9	.0714	0110	.070 5	.070 1	9 690.	.0692
160	8 890.	.0683	6 290.	.067 5	.067 1	2 990.	.0662	.0659	.065 5	.0651
170	.064 7	.0643	.0639	.063 6	.063 2	.0629	.062 5	.0621	.0618	.061 5
180	.061 2	8 090.	.060	.0601	.0598	.059 5	.059 1	.0589	.058 5	.0582
190	.0579	0576	.0573	0220	.0566	.0564	.0561	.0558	.0556	.0553

AT 12 VOLTS LOSS.

0 ∞ 12.000 0 6.000 0 4.000 0 3.000 10 1.200 0 1.090 9 1.000 0 .923 0 .857 1 .501 7 .500 857 1 .501 7 .500 857 1 .500 1 .571 4 .545 5 .521 7 .500 857 1 .500 1 .352 1 .500 1 .352 1 .500 1 .352 1 .352 1 .500 1 .352 1 .352 1 .252 1 </th <th>8 920 28 20 28 8</th> <th>4,000 0 .923 0 .521 7 .363 6 .279 1 .226 4 .190 5 .164 4 .144 6</th> <th>3.000 0 3.000 0 3.52 9 272 7 222 2 187 5 142 8</th> <th>2.400 0 480 0 342 9 266 6 218 2 184 6 160 0</th> <th>2.000 0 .750 0 .451 6 .333 4 .260 8 .214 3 .181 9</th> <th>1.7144 705 8 4444 3243 255 3 255 3 179 1 155 9</th> <th>1.500 0 .666 7 .428 5</th> <th>1.3333</th>	8 920 28 20 28 8	4,000 0 .923 0 .521 7 .363 6 .279 1 .226 4 .190 5 .164 4 .144 6	3.000 0 3.000 0 3.52 9 272 7 222 2 187 5 142 8	2.400 0 480 0 342 9 266 6 218 2 184 6 160 0	2.000 0 .750 0 .451 6 .333 4 .260 8 .214 3 .181 9	1.7144 705 8 4444 3243 255 3 255 3 179 1 155 9	1.500 0 .666 7 .428 5	1.3333
1.200 1.090 1.000 0.923 0.400 0.5714 0.545 0.521 0.500 0.5714 0.545 0.521 0.500 0.5714 0.545 0.521 0.520 0.522 0.222 0	6417 87026 8	.923 0 .521 7 .363 6 .279 1 .226 4 .190 5 .164 4	.857 1 .500 0 .352 9 .272 7 .222 2 .187 5 .142 8	.800 0 .480 0 .342 9 .266 6 .218 2 .218 2 .184 6 .160 0	.750 0 .451 6 .333 4 .260 8 .214 3 .181 9	.705 8 .444 4 .324 3 .255 3 .210 4 .179 1	.6667	
. 600 0 . 571 4 . 545 5 . 521 7 . 540 0 . 387 1 . 375 0 . 363 6 . 360 0 . 292 7 . 285 7 . 279 1 . 240 0 . 235 3 . 230 7 . 226 4 . 170 0 . 196 7 . 193 5 . 190 5 . 150 0 . 148 2 . 146 4 . 144 6 . 133 3 . 131 9 . 130 6 . 118 8 . 117 6 . 116 5 . 100 1 . 108 1 . 108 1 . 106 1 . 106 2 . 092 3 . 091 6 . 091 0 . 090 2	417 8708 8	.521 7 .363 6 .279 1 .226 4 .190 5 .164 4	.500 0 .352 9 .272 7 .222 2 .187 5 .142 8	2429 2429 2666 2182 11846 11600	260 8 214 3 214 3 1181 9	.324 3 .324 3 .255 3 .210 4 .179 1	.428 5	.631 5
.400 .387 1 .375 0 .363 6 .300 .292 7 .285 7 .279 1 .240 .235 3 .230 7 .226 4 .200 .196 7 .193 5 .190 5 .171 5 .169 0 .146 4 .144 6 .150 0 .118 8 .117 6 .116 5 .100 1 .108 1 .107 1 .106 5 .100 2 .099 2 .098 4 .097 5 .092 3 .091 6 .091 0 .090 2	8 8 8 9 8 9 1	.363 6 .279 1 .226 4 .190 5 .164 4	.352 9 .272 7 .222 2 .187 5 .142 8	.3429 .2666 .2182 .1846 .1600	.333 4 .260 8 .214 3 .181 9	.324 3 .255 3 .210 4 .179 1	215.8	.4138
300 0 .292 7 .285 7 .279 1 240 0 .235 3 .230 7 .226 4 200 0 .196 7 .193 5 .190 5 .171 5 .169 0 .166 7 .164 4 .150 0 .148 2 .148 4 .144 6 .133 3 .131 9 .130 5 .129 1 .100 1 .108 1 .107 1 .106 2 .100 2 .092 2 .098 4 .097 5 .092 3 .091 6 .091 0 .090 2	N 80000 8	226 4 190 5 164 4 144 6	.272.7 .222.2 .187.5 .162.1 .142.8	.266 6 .218 2 .184 6 .160 0	.260 8 .214 3 .181 9 .157 9	255 3 210 4 179 1 155 9	0 010	.307 7
240 .235 .230 .236 .236 200 .1967 .1935 .1905 .1715 .1690 .1667 .1484 .1446 .1500 .1319 .1348 .1446 .1333 .1319 .1176 .1291 .1001 .1081 .1176 .1165 .1001 .0992 .0984 .0975 .0923 .0916 .0910 .0902	m - 0 2 0 m	.226 4 .190 5 .164 4 .144 6	.222 2 .187 5 .162 1 .142 8	.218.2 .184.6 .160.0	.181 9 .157 9	.2104 .1791 .1559	.2499	.2500
200 0 1967 1935 1905 1715 1690 1667 1644 1500 1482 1484 1446 1333 1319 1319 1305 1291 1001 1081 1081 1062 1000 0092 0098 00902	-080 x	.1905 .1644 .1446	.187 5 .162 1 .142 8	.184 6 .160 0	.181 9	.1791	.2068	.203 4
.171 5 .169 0 .166 7 .164 4 .150 0 .148 2 .146 4 .144 6 .133 3 .131 9 .130 5 .129 1 .120 0 .118 8 .117 6 .116 5 .100 1 .069 2 .098 4 .097 2 .092 3 .091 6 .091 0 .090 2	080 8	.164 1446	.162 1 .142 8	1600	.157 9	.155 9	.1765	.1739
. 150 0 . 148 2 . 146 4 . 144 6 133 3 131 9 130 5 129 1 100 1 108 1 106 2	87.00 8	.1446	.1428	1419	1 00	(.1538	.151.9
.133 3 .131 9 .130 5 .129 1 .120 0 .118 8 .117 6 .116 5 .109 1 .108 1 .107 1 .106 5 .100 0 .099 2 .098 4 .097 5 .092 3 .091 6 .090 2	0 0			7711.	- 0 8ST.	.137.9	.1364	.1348
. 1200 . 1188 . 1176 . 1165 . 1000 . 1000	<u> </u>	.1291	.127 6	.1263	.1250	.1237	.1224	.1212
. 109 1 . 108 1 . 107 1 . 106 2 . 100 0 . 090 2 . 098 4 . 097 5 . 092 3 . 091 6 . 091 0 . 090 2		.1165	.1154	.1143	.1132	.1122	.1112	.1101
.100 0 .099 2 .098 4 .097 5 .092 3 .091 6 .090 2	_	.1062	.1053	1044	.1034	.1027	101.	300.0
2 060. 0 160. 0 160. 8 260.	0	.097 5	8 960.	0 960.	.095 2	.094 5	.093 7	0930
		.090 2	9 680.	6 880.	.0884	9 280.	0840	0863
. 085 7	_	.083	.0833	.0828	.082 2	.081 6	.081	080.2
.080 0 .079 4 .078 9	_	.078 4	6 220	.077 5	6 9 20.	.0764	.075 9	.075 5
.075 0 .074 4 .074 1 .073 6		.0736	.073 2	.0727	.0723	6 120.	.0725	0 1 1 0 .
070 6 .070 2 .069 7 .069 4		.069 4	0 690.	.068 5	.068 2	6 290	.067 4	.067 1
0667 .0662 .0659 .0656		.065 6	.0651	.0649	.064 5	.0642	.0638	.063 5
.063 2 .062 8 .062 5 .062 2	_	.062 2	.0618	.0615	.0612	0 190.	.060 7	.060

AT 13 VOLTS LOSS.

Current.	0	-	23	က	4	ç	9	7	∞	6
0	8	13.000 0	6.500 0	4.333 2	3.2500	2.6000	2.1667	1.8571	1.6250	1.444 4
10	1.3000	1.1818	1.0833	1.000 0	.928 6	7 998.	.812.5	7647	.722 2	.684 2
20	.650 0	0619.	.590 9	.565 2	.541 7	.5200	.500 0	.4815	.4643	.4483
င္တ	.433 2	4194	.4063	.393 9	.382 2	.371 4	.361 1	.351 4	.342 1	3333
\$.3250	.3171	.309 5	.302 2	.295 5	.288	.282 6	.2766	.2708	.2653
20	.2600	.254 9	.2500	.2453	.240 7	.2364	.2321	.228 1	.224 1	.2203
99	.2167	.213 1	209 7	.2064	.203 1	200 0	.1970	.1940	.1912	.1884
. 02	.185 7	.1831	.1806	.1781	.1757	.1733	.171	.1688	.1667	.1646
8	.1625	.1605	.1585	.1566	.1548	.1529	.1512	.1494	.147 7	.1461
86	.1444	.1429	.141 3	.1398	.1383	.1368	.1354	.1340	.132 7	.1313
100	.1300	.1287	.127 4	.1262	.1250	.1238	.1226	.121 5	.1204	.1193
110	.1182	.1171	.1161	.1150	.1140	.1130	.1121	.1111	.1102	$^{109}_{2}$
120	.1083	.107 4	.1066	.1057	.1048	.1040	.1032	.1024	.101 6	.1008
130	.1000	.099 2	.098 5	7 260.	0 260.	.0963	.095 6	.0949	.094 2	.093 5
140	.0929	.092 2	.091 5	6 060:	.090	2 680.	0 680.	.0884	8 280.	0872
150	7 980.	.0861	.085 5	.085 0	.0844	.083	.083 3	.0828	.0823	.0818
160	.0813	2 080.	.080	8 620.	.0793	8 8 20.	.0783	8 220.	.077 4	6 9 20.
170	.0765	0920	.075 6	.075 1	.0747	.0743	.0739	.0734	.0730	0726
180	.0722	.0718	.071 4	.0710	.070 7	.0703	6 690.	.069 5	.069	6 890.
190	.0684	.0681	.0678	.067 4	0670	9990.	.0663	0990.	.065 7	.0653

AT 14 VOLTS LOSS.

Current.	0	-	81	89	4	ro	9	1	∞	6
0	8	14.0000	7.000 0	4.6667	3.5000	2.8000	2.333 3	2.0000	1.750 0	1.555 5
10	1.4000	1.272.7	1.1667	1.0768	1.0000	.933 3	.8750	.823 5	.777 8	.7368
ಜ	.700	7 999.	.6363	.608	.5833	.5600	.5384	.5186	.500 0	.4827
೫	.4666	.4516	.437 5	.4242	.4117	.400 0	.388	.3784	.368 5	.3590
40	.3500	.341 5	.333 3	.325 6	.3182	.3110	.3044	.297 9	.2916	.285 7
22	.2800	.2745	2692	.264 2	.2593	.254 5	.250 0	.245 6	.2414	.237 3
8	.233 3	.229 5	.2258	.222 2	.2188	.2154	.2121	.209 0	.205 9	202.9
2	2000	.1972	.1945	1918	1891	.1867	.1842	.181	.1795	.1772
8	.1750	.1728	.1707	.1687	.1667	.1647	.1628	.1609	.1591	.1573
8	.155 5	.1538	.1522	.1506	.1490	.1474	.1458	.1443	.1429	.1414
81	.140 0.	.1386	.137 2	.1359	.1345	.133 3	.1321	.1308	.129 6	.1284
110	.1273	.1261	.1250	.1239	.1228	.121 8	.1207	1197	.1186	.1177
120	.1167	.1157	.1148	.1138	.1129	.1120	.111	.1102	.1094	1085
130	.107 7	.1069	.1061	.1053	.1045	.103 7	.1030	.1022	.101 5	1007
140	.100	.099 3	9860	6 260.	.097 2	.096 5	.095	.0953	.094 6	.094 0
150	.0933	.092 7	.092 1	.0916	6 060	.0903	7 680.	2 680.	9880.	.0881
160	.087 5	6 980.	.0864	.085	.085 4	.0848	.0844	6 880.	.0833	.0828
170	.0823	.081	.081 4	6 080.	.080	080.	.079 5	.079 1	7 8 20.	0782
180	7 2 2 2 2	.077 4	8 9 20.	.076 5	0920	.075 7	.075 3	.0749	.0745	.0741
190	.073 6	.073 4	.0729	.0725	.0721	.0718	.0714	.0711	7 020.	.0704

AT 15 VOLTS LOSS.

3.7500
.071 4
.625 1
.441 1
3409
277 8
234 4
2026
.1785
.1596
1443
.1316
.1210
.1120
1041
.097
.0915
.0862
.0815
.077

AT 16 VOLTS LOSS.

Current.	0	T	63	80	4	ro	9	7	œ	6
0	8	15.000 0	8.000 0	5.333 3	4.000 0	3.2000	2.6667	2.285 7	2.0000	1.777 8
10	1.600 0	1.454 5	1.333 2	1.2207	1.1428	1.0668	1.000 0	.941 1	0 688.	.8420
20	.800	9 192	.727 3	.695 7	.666	.640 0	.6154	.592 6	.5713	.551 7
30	.533 3	.5162	.500 0	.4848	.4706	.457 2	.444 5	.4324	.421 0	.4102
40	.400 0	.390 3	.380 9	.372 1	.363 6	3.55	.3478	.340 5	.333 3	.3265
20	.320 0	.3137	.307 7	.3019	.2963	290 9	.285 8	280 7	.275 8	2712
8	.2667	.2623	.258 0	.254 0	.250 0	.2462	.242 5	.238 8	.235 3	.2319
2	.2286	.225 3	.222 2	2192	2162	.2133	.2105	.207 8	.205 1	.2025
& &	200 0	.1975	.1951	.1928	.1905	.188 2	.1860	.1839	.1818	.1798
8	.1778	.1758	.1740	.1720	.1702	.1684	.1663	.1649	.1632	.1616
100	.160 0	.1584	.1568	.1553	.1539	.1523	.1509	.1495	.148 2	.1468
110	.145 5	.1441	.1429	.1416	.1404	.1391	.1379	.1367	.1356	.1344
120	.1333	.132 2	.1312	.1300	.129 0	.1280	.127 0	.1260	.1250	.1241
130	.1231	.1221	.121 2	.1205	.1194	.1185	.117.7	.1168	.1160	.1151
140	.1143	.1135	.1127	9 111.	.1111	.1104	.1096	1089	.1081	.107 4
150	.1067	.1059	.1053	.1046	.1039	.103 2	.1025	9 101.	.101 2	.1007
160	.100	.0993	8 860.	.098	9 260.	0 260.	.0963	.0958	.095 2	.0946
170	.094 1	9 860.	0830	.092 5	065 0	.091 4	6 060.	.090 4	6 680.	.089 4
180	6 880.	.0884	6 280.	.087 4	6 980.	.086 5	.086	.085 7	.085 1	.084 7
190	.0842	.0838	.0833	.082	.082 4	.082	.0816	.081 3	6080	.080

AT 17 VOLTS LOSS.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Current.	0	r -	7	8	4	ī	9	7	&	6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	8	17.000 0	8.5000	5.6667	4.2500	3.4000	2.833 3	2.428 6	2.1250	1.8889	J
850 0 809 5 7727 739 1 708 4 .680 0 .653 9 .629 6 425 0 414 6 4048 .315 1 .500 0 .485 7 .472 2 .459 5 425 0 .414 6 .404 8 .395 4 .386 4 .377 7 .369 6 .361 7 .340 0 .333 3 .327 0 .320 8 .314 8 .309 1 .303 6 .298 2 .242 9 .239 4 .286 6 .226 5 .261 5 .257 6 .258 7 .242 9 .207 3 .204 8 .202 4 .200 0 .197 7 .195 4 .188 9 .186 8 .184 8 .182 8 .180 9 .177 1 .175 3 .170 0 .168 3 .166 6 .165 0 .163 5 .161 9 .166 1 .155 9 .141 6 .140 5 .139 3 .137 1 .147 8 .134 9 .138 9 .131 4 .120 6 .119 7 .118 9 .118 1 .116 4 .116 6 .132 3 .126 6	10	1.7000	1.545 4	1.4166	1.307 7	1.2143	1.1333	1.0625	1,000 0	4 446	.894 7	O,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	.8500	3 608.	.7727	.7391	708 4	0 089.	.653 9	.629 6	.607 2	.5862	
.425 0 .414 6 .404 8 .395 4 .386 4 .377 7 .369 6 .361 7 .340 0 .333 3 .327 0 .320 8 .314 8 .309 1 .303 6 .298 2 .283 3 .278 7 .274 2 .269 8 .265 6 .261 5 .257 6 .258 7 .282 9 .278 1 .232 9 .229 7 .226 6 .223 7 .220 8 .212 5 .209 9 .207 3 .204 8 .202 4 .200 0 .197 7 .195 4 .188 9 .186 8 .184 8 .180 9 .177 1 .175 3 .145 9 .147 8 .146 5 .145 9 .147 8 .146 5 .145 9 .145 9 .145 9 .126 9 </th <th>ස</th> <th>.5667</th> <th>.548 4</th> <th>.5313</th> <th>.5151</th> <th>5000</th> <th>.485 7</th> <th>.472.2</th> <th>.459 5</th> <th>.4474</th> <th>435 9</th> <th>•</th>	ස	.5667	.548 4	.5313	.5151	5000	.485 7	.472.2	.459 5	.4474	435 9	•
340.0 .333 3 .327 0 .320 8 .314 8 .309 1 .303 6 .298 2 283 3 .278 7 .274 2 .269 8 .265 6 .261 5 .257 6 .253 7 .242 9 .239 4 .229 7 .226 6 .223 7 .220 8 .212 5 .209 9 .207 3 .204 8 .202 4 .200 0 .197 7 .195 4 .188 9 .186 8 .184 8 .182 8 .180 9 .177 1 .175 3 .170 0 .168 3 .166 6 .165 0 .147 8 .146 5 .145 9 .154 5 .153 1 .139 3 .138 2 .137 1 .146 5 .145 3 .130 8 .127 8 .127 8 .126 9 .125 9 .124 1 .131 4 .120 6 .118 7 .118 1 .118 1 .116 4 .108 7 .108 1 .106 3 .106 3 .068 8 .098 8 .098 7 .097 1 .096 9 .096 9	9	.425 0	.4146	.4048	.395 4	.3864	.377 7	.369 6	.3617	.354 2	.3469	л.
283 3 278 7 274 2 289 8 285 6 261 5 257 6 253 7 242 9 239 4 236 1 232 9 229 7 226 6 225 7 220 8 212 5 289 3 207 3 204 8 202 4 200 0 197 7 195 4 188 9 186 8 184 8 182 8 180 9 177 1 175 3 170 0 168 3 166 6 165 0 167 8 147 8 146 5 145 9 130 8 159 1 159 3 138 2 137 1 136 9 133 9 130 8 129 7 129 8 127 8 126 9 125 9 124 1 131 4 120 6 119 7 118 9 118 1 111 6 110 6 110 3 106 3 106 3 106 3 106 3 106 3 106 3 100 4 100 4 100 7 100 7 100 7 100 8 100 8 100 4 100 4 100 4 100 7 100 1 100 1	20	.340.0	.333 3	.327 0	.3208	.314.8	.3091	.303 6	2982	.293 1	.2881	T,
242 9 239 4 236 1 232 9 229 7 226 6 223 7 220 8 212 5 209 9 207 3 204 8 202 4 200 0 197 7 195 4 188 9 186 8 184 8 182 8 180 9 177 0 177 1 175 3 170 0 168 3 166 6 165 0 163 5 147 8 146 5 158 9 130 8 151 8 152 4 138 2 137 8 134 9 134 9 134 9 130 8 129 7 188 8 127 8 126 9 125 9 124 1 131 4 120 6 119 7 118 9 118 1 117 2 116 4 116 6 133 3 106 3 106 1 106 1 106 1 106 1 106 1 106 1 100 3 106 4 106 3 106 3 106 3 106 3 106 3 106 3 100 4 100 0 106 4 106 4 106 1 106 1 106 1 106 1 100 0	8	.2833	.2787	.274 2	8 698	2656	261 5	.257 6	.253 7	.250 0	2464	O F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	.2429	.2394	.2361	.232 9	229 7	.226 6	.223 7	.2208	9 212.	.215 2	D.
.186 9 .186 8 .184 8 .182 8 .180 9 .177 1 .175 3 .170 0 .168 3 .166 6 .165 0 .163 5 .161 9 .160 4 .155 3 .154 5 .153 1 .151 8 .150 4 .149 0 .147 8 .146 5 .145 5 .145 5 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .145 3 .133 3 .133 3 .134 3 .125 9	8	2125	506 6	.2073	.2048	202 4	200 0	.197 7	.1954	.1932	.191	LI
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	.1889	.1868	.1848	.1828	.180	.1790	.1771	.1753	.1735	.171 7	740
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	.170 0	.1683	.1666	.1650	.1635	9 191.	.1604	.1589	.1574	.1560	1 13
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110	.1545	.1531	.1518	.1504	.1490	.1478	.1465	.1453	1440	.1429	Ö
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120	.1416	.1405	.1393	.138 2	.1371	.1360	.1349	.133 9	.1328	.1318	O.F.
.1214 .1206 .1197 .1189 .1181 .1172 .1164 .1156 .1133 .1126 .1118 .1111 .1104 .1097 .1090 .1083 .1063 .1056 .1050 .1043 .1037 .1030 .1023 .1018 .1000 .0994 .0988 .0988 .0987 .0977 .0971 .0994 .0994 .0896 .0897 .0887 .0872 .0814 .0999 .0894 .0884 .0881 .0881 .0881 .0883	130	30.8	.1297	.1288	.1278	.1269	.1259	.1250	.1241	.123 2	.1223	ı
. 1133 1126 1118 1111 1104 1097 1090 1083	140	.121 4	.120 6	11197	1189	.1181	.1172	.1164	.115 6	.1149	.1141	C
.106 3 .105 6 .105 0 .104 3 .103 7 .103 0 .102 3 .101 8 .100 0 .069 4 .068 8 .098 8 .097 7 .097 1 .096 6 .096 0 .094 4 .093 9 .098 4 .092 9 .091 4 .090 9 .089 6 .088 1 .087 5 .081 4 .090 9	150	.1133	.1126	.1118	1111	.1104	.1097	1090	.1083	.107 6	.1069	υ.
. 100 0 . 099 4 . 098 8 . 098 7 . 097 1 . 096 6 . 096 0 . 094 4 . 093 9 . 092 9 . 092 4 . 091 9 . 091 9 . 091 4 . 090 9 . 089 5 . 089 0 . 088 1 . 087 6 . 087 9 . 086 7 . 086 3	160	.1063	.1056	.1050	.1043	.103 7	.103 0	.1023	.101 8	.1012	.1006	
. 094 4 . 093 9 . 093 4 . 092 9 . 092 4 . 091 9 . 091 4 . 090 9 . 089 5 . 089 0 . 088 1 . 087 6 . 087 9 . 086 7 . 086 3	170	.100	.099	8 860.	.0983	7 260.	.097 1	9 960.	0 960	.095 5	0950	
0895 0890 0885 0881 0878 0879 0863	180	.094	.093	.0934	.092	.092 4	.0919	.091 4	6 060.	.090	6 680.	
Cont lengt lengt lengt lengt lengt	190	.089	0 680.	.088 5	.0881	9 280.	.087 2	.086	.0863	.085 9	.0854	

AT 18 VOLTS LOSS.

Current.	•	-	61	m	4	ro	9	7	•	6
0	8	18,000 0	0 000 6	6.000.0	4.500 0	3.6000	3.0000	2.571 4	2.2500	2.000 0
2	1 800 0	1 6363	15000	1 384 6	1 285 7	1,200 0	1.1250	1.0588	1.0000	.947 4
3	000	857 1	818	789.6	750 0	7200	692.3	7 999	.6429	.6207
3 G	009	580 7	562.5	24.5	529.4	5143	5000	4865	.473 7	.4615
3	.4500	.439 0	.428 6	4186	.4091	4000	.3913	.383 0	.3750	.3673
50	360 0	.352.9	3462	339 6	.333 3	.327 3	.321 4	.3158	.3103	. 305 1
8	3000	202	8008	285 7	2813	276.9	2727	7 892	.264 7	. 260 9
88	257 1	253.5	2500	9466	943.9	2400	2368	.233 8	.2308	.227 8
2 6	225.0	222.2	219.5	9169	214.3	2117	2093	.2069	204 5	202.
8	2000	.1978	1957	1935	1915	.1895	.187 5	.1856	.1837	.181
100	1800	1783	1765	174.8	.173.1	171.4	1698	.1682	.1667	.1651
200	1636	162.2	1607	1593	157.9	.1566	.1552	.1540	.1525	.1513
120	1500	1488	147.5	1463	1452	1440	.1429	.141 7	.1406	.1395
130	138.5	137.4	1364	135.3	1343	1333	.1323	.1314	.1305	.1295
140	.1285	.127 7	.1268	.1259	.1250	.1241	.1233	.1224	.121 6	.1208
150	.1200	.119 2	1184	.117.7	1169	.1161	.1153	.1147	.1139	.1132
169	1125	1118	1111	1104	1098	1091	.1084	.1078	.1071	.1065
12	1059	105 2	104	104	1034	1029	.1023	7 101.	.101	.1006
26	1000	099 4	6 860	0.983	8 260	.097 3	8 960.	.0962	.095	.095 2
100	094.7	0 700	003.7	0033	7 600	000	2 100	001 4	6 060	090.5

AT 19 VOLTS LOSS.

1				1			:				
Current.	0	-	23	6	4	'n	9	7	∞	6	
0	8	19.000 0	9.500 0	6.333 3	4.7500	3.8000	3.1667	2.7144	2.3750	2.1111	·
10	1.9000	1.727 2	1.5833	1.4615	1.3571	1.2667	1.187 5	1.1176	1.0555	1.0000	٠,
20	.950 0	7 406.	.863 6	.8261	7917	.760 0	.7308	7037	9 8 29.	.6552	
8	.633 3	.6130	.5938	.575 7	.5588	.5429	.527 8	.5135	.500 0	.487 2	•
4	.4750	.4634	.4523	.4419	.4318	.422 2	.4130	.4043	.395 8	.387 7	4×.
28	.3800	.3726	.365 4	.358 5	.3518	.345 5	.339 3	.333 3	.327 6	.322 0	Tr.
8	.3167	.3115	.3064	.3016	6 967	.2923	.287 9	.283 6	.279 5	.275 4	O.E.
20	.271 5	.267 6	.264 0	.2603	.256 7	.2532	.2500	.2468	.243 6	.240 5	. د.
08	.237 5	.2346	.231 7	.229 0	.226 2	.223 5	.220 9	.2184	.215 9	.2135	
8	.2111	.208 8	.206 5	.2043	.202	.200	.197 5	.1958	.1938	9191.	746
100	1900	.1881	.1862	1844	.1827	.181 0	1792	.177 5	.1760	.1743	נויו
110	.1737	.1711	.1696	.1682	.1667	.1652	.1637	.1624	.1610	.1596	S
120	.1582	.1570	.1558	.1544	.153 2	.1520	.1508	.1496	.1484	.1473	O.
130	.1462	.1450	.1439	.1428	.1418	.1407	1397	.138 7	.1377	.1367	·
140	.135 7	.1347	.1338	.1329	.1319	.1310	.1302	.1292	.1284	.1274	·
150	.1267	.1258	.1250	.1242	.1234	.1226	.121.7	.121 0	.1203	.1195	v.
160	.1189	.1180	.1173	.1166	.1159	.1152	.1144	.1138	.1131	.1124	
170	.1118	.1112	.1105	.1098	.1092	.1086	.108 5	.107 4	1067	.1061	
180	0.056	.1048	.1043	.1038	.103 2	.1027	.1022	.101 7	.101	.1006	
18	.1000	.099 5	6 860.	₹ 860:	6 260.	.097 4	6 960.	.096 5	0.096	.095 5	

AT 20 VOLTS LOSS.

0	г	2	8	4	2	9	-	«	6
8	20.000 0	10.000 0	6.6667	5.000 0	4.000 0	3.3333	2.857 1	2.5000	2.222 2
0000	1.8182	1.6667	1.5384	1.4286	1.3333	1.2500	1.1764	1.1111	1.0526
0000	.9524	0 606.	9 698.	.833 3	0 008.	.769 2	.7408	.7142	9 689.
.6667	.6452	.6250	0 909.	.5882	.571 4	.555 6	.540 5	.5264	.5128
.5000	.4878	.4762	.465 2	.4546	.4444	.4348	.425 6	.4167	.4082
4000	.392 2	.384 6	.3774	.3704	.363 6	.3572	.3508	.3448	.339 0
3333	.327 9	.322 6	.317 5	.3125	307 7	.303 0	.298 5	2945	289 9
285 7	.281 7	.277 8	.274 0	.2703	.266 7	.263 2	.259 7	.2564	.2532
2500	.2469	.243 9	.2410	.238 1	.235 3	.2326	.229 9	.227 3	.224 7
2222	8612.	.217 4	.215 1	.2128	2105	.208 4	2062	.2041	.2020
.200	.1980	1961.	.194 2	.1923	.1905	1887	.1869	.1852	.1834
.1818	180 2	.1786	.1770	.1754	.1739	.1724	.1709	.1695	.1681
.1667	.1653	.1639	.1626	.1613	.160 0	.1587	.157 5	.1563	.1550
.1538	.1527	.151 5	.1504	.1493	.1481	.147 1	.1460	.1449	.1439
.1429	.1418	.1408	.1399	.1389	.1379	.1370	.1361	.1351	.1342
.1333	.1325	.131 6	.1307	.1299	1290	.1282	.127 4	.1266	.1258
.1250	.1242	.1235	.122 7	.1220	.121 2	.1205	.1198	.1190	.1183
.1176	.1170	.1163	.115 6	.1149	.1143	.1136	.1130	.1124	.1117
.1111	.1105	1097	.1093	.1086	1081	.107 5	.1070	.1064	.1058
.1052	.1048	.1042	.1036	.1031	1026	102.0	101	101 0	100 5

TABLES SHOWING RESISTANCE OF VARIOUS SIZES OF WIRES (B. & S. GAUGE) AT DIFFERENT LENGTES AT 70° F.

RESISTANCE OF NO. 0000 COPPER WIRE.

100 200 200 300 300 300 300	1 3		3	ì	;	3	:	;	
	•	8	1	1	1	1		.003 984	, -
.009	200	.00	-1	•••					009462
.014	.010	.010	-	•					•
	0.015	015		-					•
.019	020 020 41	418 .020 916	.021 414	.021 912	022410	.022 908	.023406	.023 904	•
024	025	.025	112	1	1.	1.	.028 386	.028 884	1 =
0.20	030	080		.031 872	.032 370	032868	.033366	.033864	.034362
034	035	689			:-				
680	8	8			-:				
<u>\$</u>	320 .045 31	18 .045 816	.046 314	.046 812					
0.49	050	1 -	1 .	-	123	1	1 7 7	1	.054 282
	.055	.055						.058 764	.059262
600	98	99		•			7.7		
8	.065	.065		•		-			Ξ.
690	-	917 070. 81	.071214	.071 712	072210	.072 708	.073 206	.073 704	:
.074	075	.075	.076 194	.076 692	.077 190	.077 688	1	_	.079 182
620	080	_			.082170	.082 668	.083 166	.083 664	
480	580	58				_	•	_	
680	060	060							
60.	.095	8 .095 616			1 '			_	

RESISTANCE OF NO. 000 COPPER WIRE.

0 .000 6280 .001 256 .001 884 .002 512 .003 140 .003 768 .004 396 .005 024 .005 024 .001 048 .006 056 .007 024 .007 024 .009 0420 .003 140 .006 048 .007 048 .007 048 .007 048 .007 049 .001 049 .002 044 .002 049 .002 028 .002 028 .002 029 .002 028 .002 029 .002 028 .002 029	Feet.	0	10	20	80	40	25	99	20	08	06
.006 280 .006 908 .007 536 .008 164 .008 792 .009 420 .010 048 .010 676 .011 304 .011 304 .012 560 .013 188 .013 816 .014 444 .015 702 .022 806 .023 236 .023 864 .023 336 .023 864 .017 584 .018 80 .023 236 .023 864 .018 80 .023 236 .023 864 .018 80 .023 236 .023 864 .023 864 .018 80 .023 236 .023 864 .023 864 .023 864 .032 140 .025 748 .026 976 .023 236 .023 864 .036 149 .037 80 .038 308 .039 564 .040 192 .040 870 .041 448 .042 076 .042 076 .043 80 .043 80 .044 80 .042 076 .042 076 .042 076 .043 90 .044 80 .045 144 .046 472 .047 100 .044 80 .042 076 .042 076 .042 076 .042 076 .042 076 .042 076 .043 04 .043 04 .045 144 .046 472 .047 100 .044 80 .045 144 .045 04 .046 144 .042 076	0			1 :	1 .	1 -1	۱ 📥			1	_
012 560 013 188 013 816 014 444 015 072 015 700 016 328 016 956 017 584 017 584 018 108 017 584 017 584 017 584 017 584 017 584 021 980 022 988 022 386 023 386 033 386 033 386 034 386 <t< th=""><th>100</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th></t<>	100								_		
.018 840 .019 468 .020 096 .020 724 .021 352 .021 980 .022 608 .023 236 .023 864 .024 .025 120 .025 748 .026 376 .027 632 .027 632 .028 888 .029 516 .030 144 .030 144 .031 400 .032 028 .032 656 .033 284 .033 912 .034 590 .041 48 .042 796 .036 424 .037 .043 960 .045 88 .045 216 .046 772 .047 100 .047 78 .048 356 .048 386 .055 244 .046 472 .047 100 .047 78 .048 356 .048 386 .055 244 .046 772 .047 100 .047 78 .048 356 .048 384 .049 36 .056 782 .048 356 .048 366 .055 264 .057 78 .048 356 .048 366 .055 264 .057 376 .058 369 .056 08 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38 .069 38	800					_					
.025 120 .025 748 .026 376 .027 632 .028 260 .028 888 .029 516 .030 144 .030 144 .031 400 .032 028 .032 656 .033 284 .040 192 .040 820 .041 448 .042 776 .035 796 .036 424 .037 78 .043 960 .044 588 .045 286 .039 564 .040 192 .040 820 .041 448 .042 776 .042 779 .043 94 .042 779 .042 779 .043 94 .042 779 .042 779 .043 94 .042 779 .042 779 .043 94 .042 779 .043 94 .042 779 .042 779 .043 94 .042 779 .042 779 .043 94 .042 779 .043 94 .044 94 .046 94 .046 94 .052 124 .052 124 .052 94 .065 96 .064 008 .064 064 .065 94 .065 96 .065 96 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97 .069 97	300			_	_		•				•
.031 400 .032 628 .033 284 .033 912 .034 540 .035 168 .035 796 .036 424 .037 680 .037 680 .038 308 .038 936 .039 564 .040 192 .040 820 .041 448 .042 776 .042 774 .043 710 .043 960 .044 588 .054 512 .054 212 .054 752 .059 660 .054 636 .055 264 .050 980 .056 520 .055 148 .052 124 .052 752 .059 680 .054 636 .055 264 .056 902 .065 520 .055 148 .057 406 .054 634 .056 762 .059 680 .064 634 .056 762 .059 680 .064 83 .055 264 .056 902 .065 908 .069 91 .067 196 .067 196 .067 196 .067 196 .067 196 .067 196 .067 196 .067 196 .067 196 .067 196 .067 196 .067 196 .067 196 .067 106 .067 106 .068 106 .067 106 .067 106 .067 106 .067 106 .067 106 .067 106 .067 106 .067 106 .067 106 <td< th=""><th>400</th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>_</th></td<>	400	-								_	_
.037 680 .038 308 .038 936 .039 564 .040 192 .040 820 .041 448 .042 776 .042 704 .043 .043 960 .044 588 .045 216 .046 472 .047 100 .047 728 .048 356 .048 984 .049 109 .050 240 .050 886 .051 496 .052 124 .052 752 .053 880 .054 00 .055 64 .056 940 .056 980 .054 00 .056 940 .056 940 .066 916 .067 196 .068 107 .068 107 .077 107 .077 107 .077 107 .077 107 .077 107 .077 107 .077 107 .077 107 .077 107 .077 107 .077 107 .078 107 .078 107 .078 107 .078 107	200	I 7.					1		۱. ـ		_
.043 960 .044 588 .045 216 .046 8472 .047 100 .047 728 .048 356 .048 984 .049 984 .050 240 .050 868 .051 496 .052 124 .052 752 .053 380 .054 008 .054 636 .055 264 .055 384 .056 520 .057 148 .057 776 .058 404 .059 960 .065 98 .061 468 .067 83 .056 908 .061 576 .055 342 .066 98 .067 136 .067 88 .061 576 .065 312 .065 98 .060 916 .061 576 .067 98 .067 136 .067 88 .067 136 .067 82 .067 88 .071 89 .072 848 .072 476 .072 848 .067 89 .067 89 .084 152 .084 780 .072 848 .073 476 .074 136 .074 976 .074 976 .075 98 .084 152 .084 780 .085 408 .086 664 .087 920 .087 920 .072 848 .087 920 .087 920 .087 920 .087 920 .087 920 .087 920 .087 920 .087 920 .087 920 .087 920 .087 920 .087 920	9				_	_	=				
.050 240 .050 868 .051 496 .052 124 .052 752 .053 380 .054 008 .054 636 .055 264 .055 264 .055 264 .055 264 .055 360 .052 380 .054 008 .054 636 .055 264 .055 264 .056 303 .056 009 .060 288 .060 916 .065 264 .056 268 .067 148 .057 776 .058 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .067 008 .068 008	200						Ξ.				_
.056 520 .057 148 .057 776 .058 404 .059 032 .059 660 .060 288 .060 916 .061 544 .062 280 .062 800 .062 800 .063 428 .064 056 .067 322 .065 594 .065 594 .067 286 .067 196 .067 824 .067 824 .067 824 .067 824 .067 824 .074 104 .0	<u>8</u>	_								_	
.062 800 .063 428 .064 056 .064 056 .065 340 .065 580 .065 688 .067 196 .067 824 .067 824 .067 824 .067 824 .067 824 .067 824 .067 824 .067 824 .067 824 .074 104	006				. 1	_	Ξ	_	_		
.069 080 .069 708 .070 336 .070 964 .071 592 .072 220 .072 848 .073 476 .074 104 .071 104 .075 360 .075 988 .076 616 .077 244 .077 872 .078 500 .079 128 .079 756 .080 384 .081 .081 640 .082 268 .082 896 .083 524 .084 152 .084 780 .085 6036 .086 664 .087 .087 920 .085 44 .089 176 .090 432 .091 060 .091 688 .093 316 .092 944 .093 .094 200 .094 828 .089 176 .096 712 .097 340 .097 98 .096 896 .099 892 .103 620 .104 248 .104 876 .105 992 .100 780 .101 108 .101 108 .114 296 .114 924 .116 180 .116 580 .117 436 .118 68 .113 320 .119 948 .121 204 .121 324 .122 307 .122 37716 .124 344 .124 34	1 000	1	1		- · ·			۱.	1.	1.	1
.075 360 .075 988 .076 616 .077 244 .077 872 .078 500 .079 128 .079 756 .080 384 .081 (9) .081 640 .082 288 .082 896 .083 524 .084 152 .084 780 .085 408 .086 684 .087 686 .086 684 .087 686 .086 684 .087 686 .086 684 .087 686 .0	1 100	=	_	_		٠.					
.081 640 .082 268 .082 896 .083 524 .084 152 .084 780 .085 408 .086 036 .086 664 .087 30 .087 920 .088 548 .089 176 .080 432 .091 060 .091 688 .092 316 .092 944 .093 .094 200 .094 828 .095 456 .096 084 .096 712 .097 340 .097 968 .098 596 .099 224 .093 .100 480 .101 108 .101 736 .102 364 .102 992 .103 620 .104 286 .109 504 .106 509 .111 156 .111 156 .111 784 .112 313 349 .113 688 .114 296 .114 294 .114 294 .114 296 .114 294 .114 294 .118 329 .121 204 .121 304 .121 304 .121 304 .123 3716 .124 344 .124 344 .124 344 .124 344 .124 344	1 200						_	_	_		_
.087 920 .088 548 .089 176 .089 804 .090 432 .091 060 .091 688 .092 316 .092 944 .093 4 .094 200 .094 828 .095 456 .096 084 .096 712 .097 340 .097 968 .098 596 .099 224 .099 804 .100 480 .101 108 .101 736 .102 992 .103 620 .104 248 .104 876 .105 504 .106 106 .113 040 .113 668 .114 296 .114 924 .115 552 .116 180 .116 808 .117 436 .118 64 .119 320 .119 948 .121 204 .121 832 .122 460 .123 761 .124 344 .124 344	1 300	_							_	_	
.094 200 .094 828 .095 456 .096 084 .096 712 .097 340 .097 968 .098 596 .099 224 .096 712 .100 480 .101 108 .101 736 .102 364 .102 992 .103 620 .104 248 .104 876 .105 504 .106 .106 760 .107 388 .108 016 .108 644 .109 272 .109 900 .110 528 .111 156 .111 784 .112 .113 040 .113 668 .114 296 .114 924 .115 552 .116 180 .116 380 .117 436 .118 064 .118 118 .119 320 .119 948 .121 204 .121 832 .122 460 .123 716 .124 344 .124 344	1400			_			╼.	Ξ.		-	
.100 480 .101 108 .101 736 .102 364 .102 992 .103 620 .104 248 .104 876 .105 504 .106 .106 760 .107 388 .108 016 .108 644 .109 272 .109 900 .110 528 .111 156 .111 784 .112 .113 040 .113 668 .114 296 .114 924 .115 552 .116 180 .116 180 .117 436 .118 064 .118 .119 320 .119 948 .120 576 .121 204 .121 832 .122 460 .123 088 .123 716 .124 344 .124	1 500			1.1			1.7	1.	1	1 -	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 600	-									
. 113 040 . 113 668 . 114 296 . 114 924 . 115 552 . 116 180 . 116 808 . 117 436 . 118 064 . 118 180 . 119 320 . 119 948 . 120 576 . 121 204 . 121 832 . 122 460 . 123 088 . 123 716 . 124 344 . 124	1 700						Ξ.	_		Ξ.	
119 320 .119 948 .120 576 .121 204 .121 832 .122 460 .123 088 .123 716 .124 344 .124	1800								. "		_
	1 900		_	_					7		

RESISTANCE OF NO. 00 COPPER WIRE.

reer.	0	10	8	8	40	20	9	0.2	80	06
0			1 7	1	111	1	1 -			1 .
100		7	.009 492	-,	_		_	.013 447	.014238	.015029
200	~	_	. "			_				
300	•				~~		•	Ξ,	_	_
400	.031 640	.032 431	.033222	.034013	.034 804	.035595	.036 386	.037 177	••	.038759
200	1 -	.040 341			1	1	1	_		_
909	.*		=		_			•••	-	
2007	•••			7		_	_	••	т.	
908		.064 071	.064 862	.065 653	.066 444	.067235	.068026	.068 817	809 690	070399
0 6	* :				.074 354	_		•		
1 000	1'-'	1	_	1 -	1	1	1	-	1 -	
1 100	.087 010	.087 801	.088 592	.089 383	_	_	Ξ.	.092 547	.093 338	.094129
1 200	٠.					_	=	•		_
1 300	~							••	_	_
1 400	•	.111531		.113 113	.113 904	.114 695	.115 486	.116 277		.117859
1 500	.118 650	.119 441	1 -	1	1 .	1	1::	1.		1 -
1 600	.126560		.128 142	.128933	.129 724	.130515	.131 306	.132097	.132888	.133679
1 700	4.	٠.	_					_		-
1800	•••							-		-
1 900	••	_			-1		_			

RESISTANCE OF NO. 0 COPPER WIRE.

Feet.	0	<u>a</u>	8	. 8	- 0\$	ಜ	8	02	8	8
0		_				-				
100	_	_				_				
200	_	_	-:							-:
300	_	_	- 7			_				
400	039920		.041 916	.042914	.043912	.044 910	.045 908	.046 906	.047 904	.048902
200	_	.050 898	.051 896	1		1 - 7	1.4	1	12-	.058 882
009	_									
202	098 690.		.071 856	.072854	.073 852			.076846		
908										
96						.094 810	.095 808	908 960.	.097 804	:::
1 000	1	1 -	.101 796	1 7 .	1 -	1 -	1	.106 786	.107 784	.108 782
1 100	08780	.110 778	.111 776	.112774	.113 772	.114 770	.115 768		-	• -
1 200	-		• -	-	_	•	:-		-	•
1 300	-		• -	-	-	• -	:-		-	• -
1 400	-	.140 718		Ξ.	-	.144 710	.145 708	.146 706	Ξ.	• -
1 500	۱ ـ		I .	1	1 -		1 -		.157 684	
1 600	.159 680	.160678	.161676		.163 672	.164 670	.165 668	.166666	.167664	
1 700	_		т.		_		_			
1800	_	=	Ξ.		_		_			
1 900	_	=		.192614	.193612	.194 610	.195 608			.198602

RESISTANCE OF NO. 1 COPPER WIRE.

0 0 001 259 002 518 100 .012 590 .013 849 .015 108 200 .025 180 .026 439 .027 698 300 .037 770 .039 029 .040 288 400 .050 360 .051 619 .052 878 500 .062 950 .064 209 .075 448 600 .075 540 .076 938 .079 054 700 .088 130 .089 389 .079 054 100 .113 310 .114 569 .115 28 1 100 .125 900 .127 159 .138 440 .138 440 1 200 .152 339 .153 598 .155 598	777 367 367 367 367 367 368 367 368 377 367 368 368 377 367 368 368 368 368 368 368 368 368	.006 295					
	.030 .030 .042 .055 .067	1	1	1 -	1 =	1 1	J
	.030 .042 .067		_		Ξ.		OI
	.067 .080	•				••	IN
. 050 360 . 051 619 . 052. . 062 950 . 064 209 . 065. . 075 540 . 076 799 . 078. . 088 130 . 089 389 . 090. . 100 720 . 114 569 . 115. . 125 900 . 127 159 . 128. . 125 900 . 139 749 . 1418. . 151 080 . 139 349 . 1418.	.055 .080.			. =	-	_	1
	.080		.057 914	.059 173	.060 432	.061691	Α.
	86.6	-				.074 281	R
.088 130 .089 389 .090 .100 720 .101 979 .103 .115 .115 .115 .125 .126 .128 .151 .080 .152 .339 .151 .080 .152 .339 .153 .151 .080 .152 .339 .153 .153 .153 .153 .153 .153 .153 .153	600				. =		JΕ
. 100 720 . 101 979 . 103 . 113 310 . 114 569 . 115 . 125 900 . 127 159 . 128 . 138 490 . 139 749 . 141 . 151 080 . 152 339 . 153	5						B.
. 113 310 . 114 569 . 115 . 125 900 . 127 159 . 128 . 138 490 . 139 749 . 141 . 151 080 . 152 339 . 153	.105			_	_		LI
. 125 900 . 127 159 . 128	.118	.119 605	.120864	.122 123			NG
.138 490 .139 749 .141 .151 080 .152 339 .153	.130	.132 195	.133 454	.134 713	.135 972	.137 231	S
.151 080 .152 339 .153	.143					_	S
	.156						U
.163 670 .164 929 .166	.168	_					NS
.176 260 .177 519 .178	181.		.183814				С
.188 850	627 .193 886	.195 145	.196 404	.197 663	.198 922	.200 181	O.
.201 440 .202 699 .203	.206	: -	208 994	_		1.	
.214 030 .215 289 .216	219	=	٠.				
.226 620 .227 879 .229	.23	-					
.239 210 .240 469 .241	247				Ξ.	_	

RESISTANCE OF NO. 2 COPPER WIRE.

Feet.	0	10	ន	8	\$	22	8	2	8	8
0					1	1 .	1 -			
2										_
25								-	- 1.	.=
200						- 3				
9	.063 480	.065 067	.066 654	.068 241	.069 828	.071 415	.073 002	.074 589	.076 176	.077 763
200	4 -		1 -		.085 698	.087 285	.088 872	-	.092 046	
200										_
28	_					_				.125 373
Ş	_		_						_	- :
88			_		_	.150 765	_	.153939	.155526	1
000			1 .					1 -	171 396	.172 983
100								. =		
007							_			
1 300			_						-	_
1 400			.225 354	.226 941	.228528	.230115	.231 702			-1
005	1	1 =	I.	1	1	245 985	.247 572	.249 159	.250 746	.252 333
909			Ξ							Ξ.
200	_		~				_	_		_
008	285 660	287 247	~	_		293 595	295 182		_	Ξ.
006	.301 530	303 117	304 704	306 291	.307 878	_	_			

RESISTANCE OF NO. 3 COPPER WIRE.

Feet.	0	01	8	8	94	26	8	02	88	8
0		_	1 -		_	_	1 -	1 7.		_
100	=	_				Ξ				_
200	=	_	Ξ.			Ξ				_
300	Ž.	_	Ξ.			Ξ		Ξ.		_
400	_	_	.084 000			000 060	.092 000	Ξ.		.098 000
200	.100 000	_			4 -	.110 000		1	.116 000	. –
9	_	_	Ξ.		-	_				_
202	=	_	Ξ.			_		- ī.		_
908	=	_	Ξ.			_				_
006	_	_	Τ.			_		·		_
1 000	.200 000	.202 000	204 000	.206 000	208 000	.210 000	.212 000	.214 000	216 000	.218 000
1 100	_	_	_			_				
1 200	_	_	_			_				
1 300	_	_	_			_				
1400	_	_	_		-	290 000				
1 500	300 000	.302 000	.304 000		.308 000	.310 000	.312 000	.314 000	1	1 -
1 600	_		Ξ.	.326000		.330 000	.332000	.334 000	.336 000	.338 000
1700	_	_	╌.		_	_	_			
1800	_		⁻		_	_	_	Ξ.		_
- 26 180	_		╼.		_	_	_	_		_

RESISTANCE OF NO. 4 COPPER WIRE.

Feet.	0	10	50	90	40	æ	8	2	8	06
0		1	_	1		1	1 12			
100	.025240	.027764	.030288	.032812	.035 336	037860			•	
200	÷			=	_				_	
300			_				=		_	
400	=				.111056	.113 580	.116 104	.118 628	$.121\ 152$.123 676
200	.126 200	.128 724		.133 772	.136 296	.138 820	.141 344	1	1	
009	٠.		.156488	Ξ	.161536			_	_	
200			_	:			~	- 4:		
000	Τ.	- 7.	•	-			$\overline{}$	_		
206				.234 732		.239 780	-	.244 828		
1 000	.252 400	.254 924	.257 448	.259 972	.262 496	.265 020	1 -	1 -	1	1.
1 100		.280 164			.287 736	.290 260	292 784	.295 308		
1 200				_	Ξ.			_		
1300		_				-		_		
1400			-1	_	. 1	-:		.371 028	.373552	.376 076
1 500				.386 172	_	1 - 1	.393 744	1	10.0	
1 600				٠.		•	••	-		
1 700	.429 080	.431 604	.434 128	.436 652	.439 176	.441 700	.444 224	.446 748	.449 272	.451 796
1 800						••	- 7	-		
1 900			_	1		٠.	• -		_	

RESISTANCE OF NO. 5 COPPER WIRE.

Feet.	0	10	ន	8	40	28	8	20	8	8
0		11.	1	_	1		_	1 11	1.1	1
9	-	_		•••			-	٠		
200			_				Ξ.		_	
200				_				-	.120 954	
400	.127 320	.130503	.133686	.136869	.140 052	.143 235	.146 418	.149 601	1.	.155967
200	_			1	1 .		.178 248			.187 797
99	_			_				• •	-	_
200								_		•
200			_	٠				•••	280 104	
8	.286 470	.289 653	.292 836	.296 019	299 202	.302 385	.305 568	.308 751	.311 934	
1 000			1	1.			1	1	1	
100	_							.372411	.375 594	.378 777
1 200	_						_			_
300	-		_			_		_	Ξ.	
1 400	.445 620	.448 803	.451 986	.455169	.458 352	.461 535	.464 718	.467 901	Ξ.	
1 500	1 - 1		1			1			1 = -	.506 097
1 600	509 280	.512463	.515 646	.518 829	.522012	.525 195	.528 378	.531561	.534 744	-
1 700										
1800		_								_
06						_		$\overline{}$	_	-

RESISTANCE OF NO. 6 COPPER WIRE.

0 .040 140 .008 012 .012 042 .016 056 .020 070 .024 084 .028 098 .032 112 .072 552 .076 200 .080 280 .084 154 .048 168 .052 182 .056 196 .060 210 .064 224 .068 238 .072 252 .076 300 .124 434 .128 448 .128 448 .128 446 .176 616 .180 630 .144 504 .144 504 .144 504 .148 518 .152 532 .156 500 .100 400 .204 714 .208 728 .212 742 .216 776 .220 770 .224 784 .188 658 .196 78 .186 587 .196 500 .200 700 .204 714 .208 728 .21 742 .216 776 .220 770 .224 784 .188 658 .196 78 .318 672 .196 500 .200 700 .204 714 .208 728 .227 036 .301 060 .326 044 .188 658 .318 672 .35 .37 .300 078 .318 092 .317 .300 078 .318 092 .318 092 .317 <td< th=""><th>Feet.</th><th>0</th><th>10</th><th>8</th><th>88</th><th>40</th><th>20</th><th>09</th><th>20</th><th>88</th><th>8</th></td<>	Feet.	0	10	8	88	40	20	09	20	8 8	8
.040 140 .044 154 .048 168 .052 182 .056 196 .060 210 .064 224 .068 238 .072 252 .080 280 .084 294 .088 308 .092 322 .096 336 .100 350 .104 364 .108 378 .112 392 .120 420 .124 434 .128 448 .132 462 .136 476 .144 644 .148 518 .152 582 .100 500 .204 714 .208 728 .216 76 .220 770 .224 784 .188 658 .192 672 .240 840 .244 854 .248 868 .252 882 .220 770 .224 784 .288 798 .272 952 .280 980 .284 994 .289 008 .293 022 .297 036 .301 050 .309 078 .313 092 .281 120 .325 134 .329 148 .333 162 .337 116 .341 504 .345 504 .349 218 .333 162 .377 316 .341 504 .446 963 .349 318 .353 322 .341 309 .345 504 .349 318 .343 512 .341 309 .345 504 .345 504 .345 504 .345 504 .345 504 <th>0</th> <th></th> <th>ı –.</th> <th>1 -</th> <th>1</th> <th>1</th> <th></th> <th>1 7.</th> <th>1</th> <th>1 '. '</th> <th></th>	0		ı –.	1 -	1	1		1 7.	1	1 '. '	
080 280 .084 294 .088 308 .092 322 .096 336 .100 350 .104 364 .108 378 .112 392 .120 420 .124 434 .128 448 .132 442 .136 476 .140 490 .144 504 .148 518 .112 392 .120 50 .106 560 .176 616 .186 446 .188 658 .186 588 .172 602 .176 616 .184 644 .188 658 .186 588 .172 602 .176 616 .184 644 .188 658 .182 609 .184 644 .188 658 .182 609 .184 644 .188 658 .182 609 .184 644 .188 658 .184 644 .188 658 .182 609 .184 644 .188 658 .184 644 .188 658 .184 644 .188 658 .184 644 .188 658 .184 644 .188 658 .188 609 .280 909 .289 788 .256 809 .289 78 .289 78 .289 78 .289 78 .289 78 .289 78 .289 78 .289 78 .289 78 .289 78 .289 78 .389 38 .289 38 .289 38 .489 58 .487 58 .481 58 .489 58 .48	100	_		٠.				:			.076266
120 420 124 434 128 448 132 462 136 476 140 490 144 504 148 518 152 532 160 560 164 574 168 588 172 602 176 616 180 630 184 644 188 658 192 672 200 700 204 714 208 728 212 742 216 756 220 770 224 784 228 798 272 952 240 840 224 854 286 88 252 882 256 896 260 910 284 924 286 93 272 952 280 980 224 994 289 008 293 102 237 310 30 078 313 092 272 952 321 120 325 134 359 148 333 102 377 316 345 204 349 218 358 322 361 260 365 274 490 428 437 316 341 190 345 204 349 218 353 322 441 540 445 554 449 428 437 32 441 40 449 48 449 48 449 48 558 84 453 42 451 40 560 44 560 44 560 44 560 44 560 44 560 44	8	=									•
160 560 .164 574 .168 588 .172 602 .176 616 .180 630 .184 644 .188 658 .192 672 200 700 .204 714 .208 728 .212 742 .216 756 .220 770 .224 784 .288 798 .232 812 .240 840 .248 864 .252 882 .256 896 .260 910 .264 924 .288 938 .272 952 .280 980 .289 994 .289 008 .283 712 .375 146 .373 16 .364 924 .288 938 .272 952 .381 120 .325 134 .389 148 .333 162 .377 316 .345 204 .349 218 .353 372 .401 400 .405 428 .417 440 .417 440 .445 554 .449 68 .457 596 .461 610 .456 624 .489 38 .433 722 .411 540 .445 554 .449 648 .537 842 .457 596 .561 760 .569 764 .599 778 .513 792 .521 820 .525 834 .529 848 .537 862 .541 890 .545 904 .599 918 .553 862 .551 80 .560 918 <t< th=""><th>මූ</th><th>-</th><th>- 1.</th><th></th><th></th><th></th><th>•</th><th></th><th></th><th></th><th></th></t<>	මූ	-	- 1.				•				
200 700 204 714 208 728 212 742 216 756 220 770 224 784 228 798 222 812 240 840 244 854 248 868 252 882 256 896 260 910 264 924 268 938 272 952 220 980 284 994 289 904 288 908 256 896 260 910 264 924 268 938 272 952 280 980 285 344 389 148 333 162 337 176 341 190 345 204 349 218 353 322 321 120 325 134 389 288 377 316 341 190 345 204 349 218 353 322 401 400 405 416 445 544 445 564 449 568 447 596 451 60 469 60 439 372 51 80 526 84 589 708 489 708 487 796 541 80 545 904 549 918 553 932 51 80 561 90 565 874 589 94 589 94 439 58 574 90 549 918 553 932 521 82 526 848 574 96 547 96 547 96	400	=						Ξ.		_	_
240 849 244 864 248 868 252 882 256 896 260 910 264 924 268 938 272 952 280 890 284 994 289 908 283 022 287 036 301 050 395 064 398 078 313 092 321 120 325 134 329 148 333 162 387 176 341 190 345 204 349 218 358 322 361 260 365 274 369 288 373 302 377 316 341 190 345 204 349 218 358 322 301 260 365 274 369 288 373 302 377 316 341 190 345 204 349 218 358 322 411 540 456 544 489 568 481 722 441 100 465 624 469 638 433 552 51 80 526 846 538 862 557 896 541 890 545 904 549 918 553 992 561 960 565 874 569 988 574 002 578 016 586 044 590 088 594 072 602 100 606 114 610 128 614 142 618 156 622 170 <t< th=""><th>200</th><th>-</th><th>1</th><th></th><th>_</th><th></th><th>_</th><th>l</th><th>1 -</th><th></th><th>.236 826</th></t<>	200	-	1		_		_	l	1 -		.236 826
280 980 .284 994 .289 008 .293 022 .297 036 .301 050 .345 204 .309 078 .313 092 .321 120 .325 134 .323 148 .333 162 .337 176 .341 190 .345 204 .309 078 .313 092 .361 260 .365 274 .369 288 .373 302 .377 316 .381 130 .345 204 .389 358 .383 332 .401 400 .405 414 .409 288 .413 582 .457 596 .461 10 .466 624 .499 38 .433 722 .487 736 .461 10 .466 624 .499 68 .473 522 .487 736 .501 750 .566 904 .599 078 .513 792 .513 802 .578 904 .549 908 .539 902 .578 904 .549 904 .549 908 .539 902 .578 904 .590 908 .578 902 .578 904 .590 908 .549 908 .578 902 .580 903 .580 904 .599 908 .581 902 .580 903 .582 902 .580 903 .580 903 .583 902 .580 903 .580 903 .583 902 .583 902 .580 903 .580 903	8	=					_	-:-	7.1	-	
321 120 .325 134 .329 148 .333 162 .337 176 .341 190 .345 204 .349 218 .358 232 .361 260 .365 274 .369 288 .373 302 .377 316 .381 330 .385 344 .389 368 .385 342 .401 400 .405 414 .409 428 .413 442 .417 456 .421 440 .425 484 .429 498 .433 512 .411 560 .445 564 .449 568 .453 722 .467 736 .461 610 .466 624 .499 498 .473 652 .521 830 .526 834 .598 848 .574 002 .578 016 .582 030 .545 904 .590 778 .599 778 .602 100 .606 114 .610 128 .614 142 .618 156 .622 170 .626 184 .690 198 .634 212 .622 240 .686 394 .690 288 .654 282 .658 296 .662 310 .666 324 .670 338 .674 352 .682 380 .686 394 .690 488 .670 288 .654 282 .688 396 .666 324 .690 198 .634 212	20	Ξ		-	_			-	_	_	1 1
.361 260 .365 274 .369 288 .373 302 .377 316 .381 330 .385 344 .389 358 .393 372 .401 400 .405 414 .409 428 .413 442 .417 456 .421 470 .425 484 .429 498 .433 512 .481 680 .485 694 .489 708 .493 722 .497 736 .501 750 .505 764 .509 778 .513 792 .521 820 .555 834 .523 862 .577 876 .541 890 .545 904 .599 918 .553 932 .561 960 .565 974 .569 988 .574 002 .578 016 .582 030 .586 044 .590 058 .594 072 .602 100 .606 114 .610 128 .614 142 .618 156 .622 170 .666 324 .670 058 .674 352 .622 200 .686 334 .650 288 .654 282 .682 396 .682 310 .666 324 .710 478 .622 30 .666 324 .650 288 .654 282 .682 396 .662 314 .710 478 .622 30 .666 324 .720 596 .742 590 .	2	. :		_							
.401 400 .405 414 .409 428 .413 442 .417 456 .421 470 .425 484 .429 498 .433 512 .441 540 .445 554 .449 568 .453 582 .457 596 .461 610 .465 624 .469 638 .473 652 .481 680 .485 694 .489 702 .497 736 .501 750 .505 764 .509 778 .513 792 .551 820 .552 834 .533 862 .578 706 .541 890 .545 904 .599 918 .553 932 .662 100 .665 974 .669 988 .574 002 .578 016 .582 030 .586 044 .590 058 .594 072 .622 100 .606 114 .610 128 .614 142 .618 156 .622 170 .666 324 .670 38 .674 352 .682 380 .682 396 .665 296 .662 310 .666 324 .710 478 .714 492 .682 380 .688 394 .690 464 .770 478 .778 744 .790 758 .794 772	8	- :									
.441 540 .445 554 .449 568 .453 582 .457 596 .461 610 .465 624 .469 638 .473 652 .481 680 .485 694 .489 702 .487 736 .501 750 .505 764 .509 778 .513 792 .521 820 .556 834 .523 848 .533 862 .578 776 .541 890 .545 904 .549 918 .553 932 .561 960 .565 974 .569 988 .574 002 .578 016 .582 030 .586 044 .590 058 .594 072 .602 100 .606 114 .610 128 .614 142 .618 156 .622 170 .626 184 .670 198 .674 352 .682 380 .682 396 .662 310 .666 324 .710 478 .714 492 .722 520 .726 554 .774 702 .778 776 .782 730 .786 744 .790 758 .794 772	1 000	٦.	1.1	1 -		1.	Ι .	1 :	1 -		
481 680 .485 694 .489 702 .497 736 .501 750 .505 764 .509 778 .513 792 .51 820 .525 834 .529 848 .533 862 .578 776 .541 890 .545 904 .549 918 .553 932 .561 960 .565 974 .569 988 .574 002 .578 016 .582 030 .586 044 .590 058 .594 072 .602 100 .606 114 .610 128 .614 142 .618 156 .622 170 .626 184 .630 198 .634 212 .622 240 .686 324 .670 488 .674 282 .688 396 .668 324 .670 388 .674 352 .722 520 .726 534 .778 546 .778 776 .782 730 .786 744 .790 758 .794 772	1 100		=				_	-			.477 666
521 820 .525 834 .529 848 .533 862 .557 876 .541 890 .545 904 .549 918 .553 932 .561 960 .565 974 .569 988 .574 002 .578 016 .582 030 .586 044 .590 058 .594 072 .602 100 .606 114 .610 128 .614 142 .618 156 .622 170 .626 184 .630 198 .634 212 .632 240 .646 254 .650 268 .654 282 .688 394 .692 31 .666 324 .670 338 .674 352 .722 520 .726 534 .776 544 .778 716 .782 730 .786 744 .790 758 .754 692	1 200	╼.	.=	_		:	٠.	_	_		
.561 960 .565 974 .569 988 .574 002 .578 016 .582 030 .586 044 .590 058 .594 072 .602 100 .604 114 .610 128 .614 142 .618 156 .622 170 .626 184 .630 198 .634 212 .642 240 .646 224 .650 268 .654 282 .658 296 .662 310 .666 324 .670 338 .674 352 .682 380 .682 384 .694 422 .688 436 .702 450 .716 464 .710 478 .714 492 .726 580 .736 534 .734 562 .738 576 .748 559 .746 604 .750 618 .756 618 .762 680 .766 674 .770 688 .744 772 .782 730 .782 740 .782 740 .782 740 .782 740	1 300	٠.		_					_		••
.602 100 .606 114 .610 128 .614 142 .618 156 .622 170 .626 184 .630 198 .634 212 .642 240 .646 254 .650 268 .654 282 .658 296 .662 310 .666 324 .670 338 .674 352 .682 380 .686 394 .690 408 .694 422 .698 436 .702 450 .706 464 .710 478 .710 478 .762 660 .766 674 .770 688 .774 702 .785 776 .782 730 .786 744 .770 688 .774 702 .787 787 .782 730 .786 744 .770 688 .774 702 .787 787 .782 730 .786 744 .770 688 .774 702 .787 787	1400	•		_	_				=		_
. 642 240	1500				I ' .:			i		1 .	, - '
. 682 380 . 686 394 . 690 408 . 694 422 . 698 436 . 702 450 . 706 464 . 710 478 . 714 492 . 722 520 . 726 534 . 730 548 . 734 562 . 738 576 . 742 590 . 746 604 . 750 618 . 754 632 . 762 660 . 766 674 . 770 688 . 774 702 . 778 716 . 782 730 . 786 744 . 790 758 . 794 772	1 600				:	-	11				
.722 520 .726 534 .730 548 .734 562 .738 576 .742 590 .746 604 .750 618 .754 632 .762 660 .766 674 .770 688 .774 702 .778 716 .782 730 .786 744 .790 758 .794 772	1 700				٦.					-	.718 506
	1800	_:	-						_		_
The second secon	1 900		_				Ξ.	-	_	-	_

RESISTANCE OF NO. 7 COPPER WIRE.

			CTCUTAT		OF NO.	COLLEGE	WIEE.				
Feet.	0	10	8	8	94	25	8	70	08	06	
0	!		_		1 -	1	1	1.2	1 2	1	J
100	Ξ	_	_						_		OI
200	.101 220	.106281	.111 342	.116 403	.121 464						IN
000											١.
400					.222 684	.227 745	.232 806	.237 867	.242 928	.247 989	A.
200	.253 050	.258 111	.263 172	.268 233	1 7 7	1	1	1 1	1		R
9	_	-						_		_	ЭE
20	٠,	_				_				_	(B)
<u>@</u>		.409 941	.415 002	.420 063	.425 124	.430185	.435 246	.440 307	_	.450429	LI
8	•	_			_	_	.485 856	.490 917	.495 978	.501 039	NG
1 000	.506 100	1 :		1	1			1	1 5	1 .	S
1 100	• -	٠.			-						S
1 200		.612 381	.617 442	.622503	-			Ξ.			ON
1300	~-	Ξ.									S
1400				.723 723	.728 784	.733 845	.738 906	.743 967	.749 028	.754 089	C
1500	.759 150	1		1	1 -	1	1 -	1 7	1 -		0.
1 600					_		_	· ' - '			
1 700					_	_	_				
1800		.916 041	.921 102	.926 163		.936 285		.946 407			
1 900		_			.981 834	.986 895	.991 956	710 266.	1.002078	1.007139	

RESISTANCE OF NO. 8 COPPER WIRE.

Feet.	0	10	8	8	9	26	8	۶		8 '
0					.025 52	Ι.		1 -		.057 43
100								•		
200						_		.172 31	.178 69	
300	٦.						-			
400	.255 28	261 66	268 04	274 42	.28080	.287 19	.293 57	299 95	.306 33	.31271
200	1			1	1					.376 53
99	.382 92		.395 68	.402 06	.408 44	.414 83	.421 21	.427 59	.433 97	.440 35
92										
- - - - -			-	-						
006	.574 38	.580 76			_			_		
1 000	1			1		1 -				
1 100	.702 02	.708 40	.714 78	.721 16	.727 54	.733 93	.740 31	.746 69	753 07	.75945
1 200				-		-				
1300	_									
1 400				_	_					
1 500	1 .	1	_			1 -				1.014 73
1 600	1.02112	1.02750	1.03388	1.04026	1.046 64	1.05303	1.05941	1.065 79	1.07217	1.07855
1 700			_					_		1.14237
1 800	~					_				1.20619
1 900	•	~~						•		1.27001

RESISTANCE OF NO. 9 COPPER WIRE.

			-	-		-				
Feet.	•	10	8	80	40	3 2 ·	9	2	8	8
0									1 .	
100	-					_				
200	-									
900		_	.257 47	.265 51	.273 56	.281 61	.289 65			_
400	.321 84	.329 88	.337 93	-	.354 02	362 07	.37011	.378 16	.386 20	394 25
200		_					_		,	
දි		_	.498 85	.506 89	.514 94		.531 03		.54712	
20										
2									_	
8						.764 37	.772 41	.780 46	.788 50	.796 55
1 000			-		1 -	1		-		1 -
1 100	.885 06	.893 10	.901 15	909 19	.917 24	.925 29	.933 33			
1 200					_					
1 300			•							
1400	1.126 44	1.134 48	1.14253			1.16667		1.18276	1.19080	1.19885
1 500	1.20690	1.214 94	1.222 99	1.231 03	1.239 08	1.247 13				
1 600	1.287 36	1.29540	1.30345	_	1.319 54	1.32759	1.33563	1.343 68	1.351 72	1.359 77
1 700		1.37586			1.400 00					
1800		1.45632		^	1.48046					
1 900		1.53678		^1	1.56092					

RESISTANCE OF NO. 10 COPPER WIRE.

0 .010 15 .020 30 .030 45 .040 60 .050 75 .060 90 .071 05 .081 16 200 .203 00 .213 15 .223 30 .233 45 .243 60 .253 75 .263 90 .274 05 .284 50 200 .203 00 .213 15 .223 30 .233 45 .243 60 .255 75 .263 90 .274 05 .284 50 300 .344 50 .314 65 .324 80 .334 95 .345 10 .355 25 .365 40 .375 55 .385 40 500 .507 50 .517 65 .527 80 .345 46 .446 60 .465 75 .466 90 .771 40 .781 55 .582 50 .882 16 .882 16 .882 16 .882 16 .882 16 .882 16 .882 16 .890 60	Feet.	0	10	8	. 08	9	20	99	92	86	06
101 50 .111 66 .121 80 .131 95 .142 10 .152 25 .162 40 .172 55 203 00 .213 15 .223 34 .243 60 .253 75 .263 70 .274 05 304 50 .314 65 .324 80 .324 80 .354 55 .365 40 .375 55 304 50 .314 615 .426 30 .344 60 .466 70 .476 90 .377 95 .507 50 .617 65 .529 30 .639 45 .544 60 .568 40 .578 96 .609 00 .619 15 .629 30 .547 95 .548 10 .761 25 .771 40 .781 55 .710 50 .720 65 .730 80 .740 95 .751 10 .761 25 .771 40 .781 55 .913 50 .923 60 .943 95 .954 10 .964 25 .974 40 .984 55 .1015 00 .128 15 .128 80 .1348 95 .1349 95 .177 40 .187 55 1.187 56 .1116 50 .128 15 .134 99 .134 10 .145 90 .139 90 .139 90	0		.010 15	1		1 -		1 -		.081 20	
203 00 213 15 223 30 233 45 243 60 253 75 263 90 274 05 304 50 314 65 324 80 334 95 345 10 355 25 365 40 375 55 304 50 416 15 426 30 436 46 446 60 477 05 507 50 517 65 527 80 537 95 548 10 558 25 568 40 477 05 508 0 699 0 639 45 548 10 558 25 689 90 487 05 710 50 770 65 730 80 740 95 775 10 771 40 788 05 710 50 822 15 832 30 842 45 852 60 862 75 874 40 984 55 110 50 1025 15 1.085 30 1.045 45 1.055 60 1.065 75 1.075 90 1.88 30 1218 60 1.228 10 1.348 95 1.350 10 1.370 25 1.389 05 1.389 05 1.389 05 1.389 05 1.389 05 1.389 05 1.389 05 1.389 05 1.389 05 1.389 05 1.389 05 1.389	100		111								
304 50 .314 66 .324 80 .334 95 .345 10 .355 25 .365 40 .375 55 .406 00 .416 15 .426 30 .436 46 .446 60 .456 75 .466 90 .477 05 .507 50 .517 65 .527 80 .537 95 .548 10 .558 25 .568 40 .578 55 .609 00 .619 15 .629 30 .639 45 .649 60 .569 75 .689 90 .680 90 .710 50 .720 65 .730 80 .740 95 .751 10 .761 25 .771 40 .781 50 .812 00 .822 15 .822 30 .842 45 .852 60 .862 75 .872 90 .883 05 .913 50 .923 65 .933 80 .943 95 .954 10 .964 25 .974 40 .984 55 .1015 00 .1202 15 .128 80 .146 95 .1157 10 .167 50 .177 40 .187 55 .1116 50 .1228 15 .128 80 .1248 45 .1268 60 .1278 90 .1289 65 .1310 50 .1328 65 .1348 45	200		.213								
406 00 .416 15 .426 30 .436 45 .446 60 .456 75 .466 90 .477 05 .507 50 .517 65 .527 80 .537 95 .548 10 .558 25 .568 40 .578 56 .609 00 .619 15 .629 30 .639 45 .649 60 .559 75 .669 90 .680 06 .710 50 .720 65 .730 80 .740 95 .751 10 .761 25 .771 40 .781 55 .812 00 .822 15 .822 30 .842 45 .852 60 .862 75 .883 75 .883 56 .913 50 .923 65 .942 45 .852 60 .964 25 .774 40 .781 55 .1.116 50 .1.025 10 .1.025 60 .1.045 75 1.1.075 90 1.187 55 1.187 55 .1.116 50 .1.228 15 .1.288 45 .1.268 60 1.268 75 1.187 55 1.187 55 1.187 55 1.187 55 1.187 55 1.187 55 1.187 55 1.187 55 1.187 55 1.187 55 1.187 55 1.187 55 1.189 50 1.189 55 1.188 55 1.18	300		.314			_					.395 85
507 50 .517 65 .527 80 .537 95 .548 10 .558 25 .568 40 .578 55 .609 00 .619 15 .629 30 .639 45 .649 60 .559 75 .669 90 .680 06 .710 50 .720 65 .73 80 .74 95 .751 10 .761 25 .771 40 .781 55 .812 00 .822 15 .822 30 .842 45 .852 60 .862 76 .689 90 .883 05 .913 50 .923 65 .934 96 .751 10 .761 25 .771 40 .781 55 .1.015 00 .1.025 15 .1.025 90 .1.44 95 1.1.55 60 1.107 50 1.084 55 .1.116 50 .1.228 15 .1.288 30 1.248 45 1.258 60 1.270 50 1.380 55 1.390 55 .1.319 50 .1.329 65 .1.341 30 1.451 46 1.451 60 1.451 50 1.451 60 1.451 60 1.451 60 1.562 95 1.562 95 1.562 95 1.562 95 1.562 95 1.562 95 1.562 95 1.562 95 1.562 90 1.562 95 1.562 95 <t< th=""><th>400</th><th>_</th><th>.416</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	400	_	.416								
609 00 .619 15 .629 30 .639 45 .649 60 .559 75 .669 90 .680 06 .710 50 .720 65 .730 80 .741 95 .751 10 .761 25 .771 40 .781 55 .812 00 .822 15 .822 30 .842 45 .852 60 .862 60 .883 75 .883 75 .883 80 .913 50 .025 15 .1035 30 .1045 45 .1045 50 .1046 45 .1045 50 .1046 75 .1075 90 .1086 15 .1.116 50 .1.228 15 .1.238 30 .1.248 45 .1.258 60 .1.248 45 .1.258 60 .1.270 50 .1.380 55 .1.390 55 .1.390 55 .1.390 55 .1.390 55 .1.390 55 .1.390 55 .1.390 55 .1.390 55 .1.390 55 .1.390 55 .1.390 55 .1.451 60 <th>200</th> <th></th> <th></th> <th>1</th> <th></th> <th></th> <th>.558</th> <th></th> <th></th> <th>.588 70</th> <th>.598 85</th>	200			1			.558			.588 70	.598 85
710 50 720 65 730 80 740 95 751 10 761 25 771 40 781 56 812 00 822 15 832 30 842 46 852 60 368 75 372 90 883 05 913 50 923 65 933 80 943 96 954 10 364 25 374 40 384 56 1015 00 1025 15 1036 80 1146 95 1146 75 1177 40 1187 55 1.116 50 1128 66 1138 80 1349 95 1158 70 1187 55 1189 05 1.319 50 1.228 00 1.349 95 1.360 10 1.370 25 1.380 40 1.390 55 1.421 00 1.431 15 1.441 30 1.451 45 1.461 60 1.471 75 1.481 90 1.492 05 1.624 00 1.634 15 1.664 60 1.674 75 1.684 90 1.653 65 1.725 50 1.735 66 1.745 80 1.562 95 1.664 60 1.674 75 1.684 90 1.695 05 1.725 50 1.735 66 1.745 80 1.562 95 1.664 60 1.674 75 1.684 90	009	_					.559			_	
. 812 00 . 822 15 . 832 30 . 842 45 . 852 60 . 862 75 . 872 90 . 883 05 . 913 50 . 923 65 . 938 80 . 948 95 . 954 10 . 964 25 . 974 40 . 984 55 1 1015 00 1 126 51 1 126 80 1 126 60 1 126 60 1 127 40 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 187 55 1 188 55 1 188 55 1 188 55 1 188 55 1 188 55 1 188 55 1 188 55 1 188 55 1 188 55 1 188 55 1 188 50 1 188 56	200	-		_			.761				.80185
.913 50 .923 65 .933 80 .943 95 .954 10 .964 25 .974 40 .984 55 1.015 00 1.025 15 1.035 30 1.045 45 1.055 60 1.065 75 1.075 90 1.086 05 1.086 05 1.116 50 1.126 65 1.136 80 1.146 95 1.157 10 1.167 25 1.177 40 1.187 55 1.187 55 1.218 00 1.228 15 1.238 30 1.248 45 1.258 60 1.268 75 1.278 90 1.289 05 1.399 60 1.399 60 1.349 95 1.360 10 1.471 75 1.481 90 1.492 06 1.492 06 1.492 06 1.492 06 1.492 06 1.492 06 1.492 06 1.552 50 1.562 95 1.563 10 1.573 25 1.583 40 1.593 55 1.492 06 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 55 1.593 40 1.593 55 1.593 40 1.593 55 1.593 40 1.593 55 <t< th=""><td>800</td><td>_</td><td></td><td></td><td></td><td></td><td>.862</td><td></td><td></td><td></td><td></td></t<>	800	_					.862				
1,015 00 1,025 15 1,025 15 1,025 15 1,025 15 1,025 25 1,045 45 1,055 60 1,055 60 1,065 75 1,075 90 1,086 05 1 1,116 50 1,126 65 1,126 80 1,146 95 1,157 10 1,167 25 1,177 40 1,187 55 1,187 55 1,218 00 1,228 15 1,238 30 1,248 45 1,258 60 1,268 75 1,278 90 1,289 05 1,319 50 1,329 65 1,339 80 1,349 95 1,360 10 1,370 25 1,380 40 1,390 55 1,421 00 1,431 15 1,441 30 1,451 46 1,461 60 1,471 75 1,481 90 1,492 05 1,622 50 1,532 60 1,562 95 1,563 10 1,573 25 1,583 40 1,593 55 1 1,624 00 1,634 30 1,654 45 1,664 60 1,674 75 1,684 90 1,693 05 1 1,725 50 1,736 56 1,776 59 1,776 25 1,796 55 1 1,998 40 1,998 55 1 1,928 66 1,938 66 1,969 10	006	_					.964				
1.116 50 1.126 65 1.136 80 1.146 95 1.157 10 1.167 25 1.177 40 1.187 55 1.218 00 1.228 15 1.238 30 1.248 45 1.258 60 1.268 75 1.278 90 1.289 05 1.319 50 1.329 65 1.339 80 1.349 95 1.360 10 1.370 25 1.380 40 1.390 55 1.421 00 1.431 15 1.441 30 1.451 46 1.461 60 1.471 75 1.481 90 1.492 05 1.522 50 1.532 66 1.542 80 1.562 95 1.563 10 1.573 25 1.583 40 1.593 55 1.725 50 1.735 65 1.745 80 1.765 95 1.766 10 1.777 25 1.786 40 1.893 55 1.827 00 1.837 15 1.847 80 1.857 35 1.887 90 1.898 95 1.989 55 1.928 60 1.938 65 1.948 80 1.869 91 1.979 55 1.989 40 1.989 55	1 000			1		_					
1.218 00 1.228 15 1.238 30 1.248 45 1.258 60 1.268 75 1.278 90 1.289 05 1.319 50 1.329 65 1.339 80 1.349 95 1.360 10 1.370 25 1.380 40 1.390 55 1.315	1 100									1.197 70	1.20785
1.319 50 1.329 65 1.339 80 1.349 95 1.360 10 1.370 25 1.380 40 1.390 55 1.380 40 40 1.390 55 1.380 40 1.390 40 40 40 40 40 40 40 40 40 40 40 40 40	1 200					_					
1.522 50 1.532 66 1.542 80 1.552 95 1.563 10 1.573 25 1.583 40 1.563 40 1.573 25 1.583 40 1.593 55 1.583 40 1.593 55 1.593 65 1.776 50 1.776 50 1.776 50 1.776 50 1.776 50 1.877 75 1.887 90 1.898 90 1.898 65 1.898 86 1.898 86 1.898 86 1.988 86 1.988 96 1.989 86 1.988 86	1 300										
1.522 50 1.532 65 1.542 80 1.552 95 1.563 10 1.573 25 1.563 40 1.593 55 1.593 55 1.624 00 1.634 15 1.644 30 1.654 45 1.664 60 1.674 75 1.684 90 1.695 05 1.695 05 1.725 50 1.735 65 1.745 80 1.755 95 1.776 50 1.776 55 1.786 40 1.796 55 1.786 50 1.827 10 1.837 15 1.847 80 1.857 45 1.867 75 1.887 90 1.898 90 1.898 95 1.998 86	1 400			•••		_					
1.624 00 1.634 15 1.644 30 1.654 45 1.664 60 1.674 75 1.684 90 1.695 05 1 1.725 50 1.735 65 1.745 80 1.755 95 1.766 10 1.777 25 1.786 40 1.796 55 1 1.827 00 1.837 15 1.847 30 1.857 16 1.877 75 1.887 90 1.898 90 1898 96 1 1.928 50 1.938 65 1.948 80 1.958 96 1.969 10 1.979 25 1.989 40 1.999 55 2	1 500						1.573	1 - 1			1.61385
1,725 50 1,735 65 1,745 80 1,755 95 1,766 10 1,776 25 1,786 40 1,796 55 1 1,827 00 1,837 15 1,847 30 1,857 45 1,867 60 1,877 75 1,887 90 1,898 05 1 1,928 50 1,938 65 1,948 80 1,958 95 1,969 10 1,979 25 1,989 40 1,999 55 2	1 600						1.674			1.70520	1.71535
1.827 00 1.837 15 1.847 30 1.857 45 1.867 60 1.877 75 1.887 90 1.898 05 1 1.928 50 1.938 65 1.948 80 1.958 95 1.969 10 1.979 25 1.989 40 1.999 55 2	1 700						1.776				1.81685
1.928 50 1.938 65 1.948 80 1.958 95 1.969 10 1.979 25 1.989 40 1.999 55 2	1 800						1.877				1.91835
to some for some for some for some for some for some	1 900						1.979				2.01985

RESISTANCE OF NO. 11 COPPER WIRE.

1 2 3 4 5 6 7 7 .001 27 .002 55 .003 83 .005 11 .006 39 .007 67 .008 95 7 .014 06 .015 34 .016 62 .017 90 .019 18 .020 46 .021 74 156 .026 85 .026 81 .029 41 .030 69 .033 25 .034 53 .034 52 .034 52 .034 52 .047 32 .044 32 .044 32 .044 32 .044 32			_	-	- - -						
.012 79 .001 27 .002 55 .003 83 .006 11 .006 39 .007 67 .008 95 .010 23 .025 58 .026 85 .028 41 .017 90 .019 18 .020 46 .021 74 .023 02 .032 58 .026 85 .028 41 .030 69 .031 97 .033 25 .034 53 .035 81 .038 37 .042 42 .042 49 .052 78 .064 99 .054 74 .046 94 .047 32 .044 76 .046 94 .047 32 .048 69 .051 16 .052 43 .054 99 .056 57 .064 96 .077 34 .047 62 .047 30 .043 86 .044 11 .061 39 .068 36 .066 50 .067 78 .069 06 .070 34 .071 62 .047 39 .080 67 .068 89 .094 41 .065 92 .098 99 .098 44 .071 62 .072 90 .080 67 .083 36 .094 64 .095 92 .099 44 .095 92 .099 44 .085 92 .097 20 .099 76 .112 57 .112 57 .112 57 .112 57 .11	Feet.	•	-	61	က	4	ro	•	-	∞	6
.012 79 .014 06 .015 62 .017 90 .019 18 .020 46 .021 74 .023 02 .025 58 .026 85 .028 13 .029 41 .030 69 .031 97 .033 25 .034 53 .034 53 .034 63 .032 58 .026 84 .040 92 .042 99 .042 76 .044 76 .046 04 .047 32 .048 69 .051 16 .052 43 .052 77 .056 96 .076 75 .056 88 .064 13 .061 39 .063 95 .066 50 .067 78 .069 06 .077 78 .069 10 .077 80 .087 20 .072 90 .089 53 .090 80 .092 08 .094 64 .095 92 .099 44 .095 92 .099 76 .098 84 .099 76 .102 32 .108 59 .104 87 .106 15 .107 43 .108 99 .112 56 .112 56 .115 11 .115 11 .115 38 .117 66 .118 94 .120 22 .121 50 .122 78 .136 89 .136 34 .166 27 .118 34 .120 22	0			1 -	1		1 2				
.025 58 .026 85 .026 85 .029 41 .030 69 .031 97 .032 55 .034 58 .035 81 .088 37 .039 64 .040 92 .042 20 .043 48 .044 76 .046 94 .047 32 .045 83 .044 76 .046 94 .047 32 .046 94 .047 32 .046 94 .047 32 .046 94 .047 32 .046 94 .047 32 .046 94 .047 32 .046 11 .047 32 .046 94 .047 41 .047 32 .047 41 .047 32 .046 94 .047 41 .047 32 .046 94 .047 32 .046 94 .047 32 .046 94 .047 32 .047 32 .046 97 .048	10					_	_				
.038 37 .039 64 .040 92 .042 20 .043 48 .044 76 .046 04 .047 32 .048 60 .051 16 .052 43 .054 37 .054 99 .056 27 .057 55 .058 83 .060 11 .061 39 .063 96 .065 74 .066 50 .067 78 .069 06 .070 34 .071 62 .072 90 .074 18 .076 74 .078 01 .079 29 .080 57 .089 64 .084 41 .085 69 .089 78 .089 53 .089 63 .090 80 .092 08 .089 64 .084 41 .085 69 .089 48 .099 76 .102 32 .104 87 .104 87 .107 43 .108 71 .112 77 .112 53 .111 27 .112 53 .140 69 .141 96 .143 62 .133 01 .134 29 .136 84 .149 84 .183 31 .140 69 .141 96 .144 52 .133 01 .134 29 .148 36 .149 36 .188 13 .153 48 .167 54 .144 52 .158 59 .156 87 .161 16	20					_	-				
.051 16 .052 45 .053 71 .054 99 .056 27 .057 55 .058 83 .060 11 .061 39 .063 95 .065 22 .066 50 .067 78 .069 06 .070 34 .071 62 .072 90 .074 18 .076 74 .078 01 .079 29 .080 57 .081 85 .084 41 .085 69 .086 97 .089 53 .090 80 .092 08 .080 57 .081 85 .084 41 .085 69 .086 97 .102 32 .108 89 .104 87 .106 15 .107 43 .108 99 .111 27 .112 55 .115 11 .116 38 .117 66 .118 94 .120 22 .121 56 .124 96 .125 34 .143 96 .143 29 .135 57 .136 85 .136 15 .136 84 .156 34 .157 34 .144 52 .135 80 .143 29 .156 73 .148 36 .136 84 .156 34 .166 27 .167 54 .185 89 .177 18 .148 36 .178 43 .149 44 .182 89 .158 45 .178 44	ဓ္ဗ					-					_
.063 95 .065 22 .066 50 .067 78 .069 06 .070 34 .071 62 .072 90 .074 18 .076 74 .078 01 .079 29 .080 57 .081 85 .083 13 .084 41 .085 69 .086 97 .078 63 .090 80 .092 08 .089 50 .087 20 .089 48 .089 76 .102 32 .108 59 .104 87 .106 15 .107 43 .108 71 .109 99 .111 27 .112 56 .115 11 .116 38 .117 66 .118 94 .120 22 .127 78 .124 06 .124 38 .134 39 .134 57 .149 69 .136 84 .156 34 .140 69 .141 96 .143 52 .134 29 .135 57 .149 64 .156 34 .153 48 .154 75 .158 59 .159 87 .161 15 .162 43 .163 37 .166 27 .167 54 .185 89 .170 10 .171 38 .172 66 .173 94 .176 50 .199 6 .180 12 .181 40 .195 68 .196 96 .198 49 <	4						_				.062 67
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	33	.063 95	065 29			1 =	1 -				
.089 53 .090 80 .092 08 .093 36 .094 64 .095 92 .097 20 .098 48 .099 76 .102 32 .108 59 .104 87 .106 15 .107 43 .108 71 .109 99 .111 27 .112 55 .115 11 .116 13 .117 66 .118 94 .120 22 .121 78 .124 06 .125 34 .127 90 .129 17 .130 45 .131 73 .133 01 .134 29 .135 67 .136 85 .138 13 .153 48 .144 96 .143 24 .144 52 .145 80 .147 96 .149 64 .150 92 .153 48 .145 75 .148 59 .147 96 .148 34 .149 64 .150 92 .166 27 .167 54 .167 31 .171 38 .172 66 .173 94 .176 50 .179 06 .180 33 .181 61 .182 89 .184 17 .185 45 .186 73 .189 29 .191 85 .193 12 .194 40 .195 68 .196 96 .198 32 .220 88 .221 87 .217 43 .2	8	.076 74	078 01								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	.089 53	080				_				
.115 11 .116 38 .117 66 .118 94 .120 22 .121 50 .122 78 .124 06 .125 34 .127 90 .129 17 .130 45 .131 73 .133 01 .134 29 .135 57 .136 85 .138 13 .140 69 .141 96 .143 24 .144 52 .145 80 .147 08 .148 36 .149 64 .150 92 .153 48 .154 75 .156 03 .157 31 .158 59 .159 87 .161 15 .162 43 .165 92 .166 27 .167 54 .168 82 .177 10 .171 38 .172 66 .173 94 .176 24 .156 92 .179 06 .180 33 .181 61 .182 89 .184 17 .185 45 .186 73 .188 01 .189 29 .191 85 .205 91 .207 19 .208 47 .209 75 .211 03 .212 81 .214 87 .204 64 .205 91 .225 44 .225 54 .225 54 .225 54 .226 58 .226 58 .230 22 .231 24 .225 54 .226 58 .226 58	8	.102 32	.103 59					_			.11383
127 90 129 17 130 45 131 73 133 01 134 29 135 57 136 85 138 13 140 69 141 96 143 24 144 52 145 80 147 08 148 36 149 64 150 92 153 48 154 75 156 03 157 31 158 59 159 87 161 15 162 43 165 92 166 27 167 54 168 82 170 10 171 38 172 66 173 94 176 243 165 10 179 06 180 33 181 61 182 89 184 17 185 45 186 73 189 29 189 29 191 85 193 12 194 40 195 88 196 96 198 24 199 82 225 10 226 38 226 10 217 43 218 70 220 25 225 42 225 38 225 10 226 38 227 66 230 22 231 29 225 34 228 61 226 38 227 66 226 38 227 66 244 28 245 56 246 84 249 40 249 40 259 32 251 96 <t< td=""><td>6</td><td>11511.</td><td>.116 38</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	6	11511.	.116 38								
140 69 .141 96 .143 24 .144 52 .145 80 .147 08 .148 36 .149 64 .150 92 .153 48 .154 75 .156 03 .157 31 .158 59 .159 87 .161 15 .162 43 .156 92 .166 27 .167 54 .156 03 .157 31 .158 59 .159 87 .161 15 .162 43 .163 71 .179 06 .180 33 .181 61 .182 89 .184 17 .185 45 .186 73 .188 01 .189 29 .204 64 .205 91 .207 19 .208 47 .209 75 .211 03 .212 81 .226 38 .227 18 .230 22 .231 49 .225 42 .228 53 .226 54 .228 53 .226 38 .227 86 .244 28 .244 28 .246 84 .249 40 .249 40 .253 24 .253 24	100	.127 90	.129 17				1 .	ł _			.139 41
153 48 154 75 156 03 157 31 158 59 159 87 161 15 162 43 163 71 166 27 167 54 168 82 170 10 171 38 172 66 173 94 176 25 179 06 180 33 181 61 182 89 184 17 185 45 186 73 189 29 191 85 193 12 194 40 195 68 196 96 198 24 210 3 212 31 213 59 214 87 217 43 218 70 219 98 221 26 225 44 225 38 225 10 226 38 227 66 230 22 231 42 234 28 232 54 236 38 227 13 224 36 244 28 245 56 246 84 249 40 249 40 250 68 251 96	110	.140 69	.141 96				_				
166 27 167 54 188 82 170 10 171 38 172 66 173 94 175 22 176 50 179 06 180 33 181 61 182 89 184 17 185 45 186 73 188 01 189 29 191 85 193 12 194 40 195 68 196 96 198 24 196 52 200 80 202 08 204 84 205 81 207 19 208 47 208 47 209 75 211 03 212 31 213 89 221 87 217 43 218 70 230 22 231 49 232 77 234 05 236 38 227 68 243 01 244 88 246 84 248 12 249 40 250 68 251 96 253 94	120	.153 48	.154 75								
.179 06 .180 33 .181 61 .182 89 .184 17 .185 45 .186 73 .188 01 .189 29 .204 64 .205 91 .207 40 .195 68 .196 96 .198 24 .196 52 .200 80 .202 08 .217 43 .218 61 .207 71 .208 47 .209 75 .211 03 .212 31 .213 59 .214 87 .217 43 .218 70 .219 98 .221 26 .222 54 .223 62 .225 10 .226 38 .227 66 .290 22 .231 28 .232 77 .234 05 .235 33 .236 61 .237 89 .239 17 .246 84 .246 84 .249 40 .250 68 .253 24	130	.166 27	.167 54								
191 85 194 40 195 68 196 96 198 24 199 52 200 80 202 08 204 64 205 91 207 19 208 47 209 75 211 03 212 31 213 59 214 87 217 43 218 70 219 98 221 26 222 54 222 82 225 10 226 38 227 66 230 22 231 23 232 61 228 38 236 10 226 38 227 66 243 21 244 28 246 56 246 84 248 12 249 40 250 68 251 96 253 24	140	90 621.	.180 33				•				.19057
204 64 205 91 207 19 208 47 209 75 211 03 212 31 213 59 221 487 217 43 218 70 219 98 221 26 222 54 223 82 225 10 226 38 227 66 230 22 231 49 232 77 234 65 235 33 236 61 237 89 239 17 240 45 243 01 244 28 245 56 246 84 248 12 249 40 250 68 251 96 253 24	150	.191 85	193 12	1		I	1				.203 36
217 43 218 70 219 98 221 26 222 54 223 54 223 82 225 10 226 38 227 66 230 22 231 49 232 77 234 05 235 33 236 61 237 89 239 17 240 45 243 01 244 28 245 56 246 84 248 12 249 40 250 68 251 96 253 24	160		.205 91				_		_		21615
230 22 231 49 232 77 234 65 235 33 236 61 235 89 239 17 240 45 243 01 244 28 245 56 246 84 248 12 249 40 250 68 251 96 253 24	170		.218 70	_							.228 94
. 243 01 . 244 28 . 245 56 . 246 84 . 248 12 . 249 40 . 250 68 . 251 96 . 253 24	180		231 49								.241 73
	190		.244 28						-		.254 52

RESISTANCE OF NO. 12 COPPER WIRE.

Feet.	•		- 7	ಕಾ	4	10	9	7	o o	.
0		-	1 72	1 .			1 =	1 :		.014 52
10		-		_					_	.030
8							-			.046 80
8		_				.056 49	.058 10	.059 71	.061 33	.062 94
40	.064 56	.066 17	.067 78	.06940	10 120.	.072 63	.074 24			.079 08
20		1	1	.085 54	.087 15		.090 38	1	1	
8						104 91	_	.108 13	.109 75	
2									_	
8		_								
8	.145 26	.14687	.148 48	.150 10	.151 71	.152 33	.153 94		.157 17	.159 78
8	1 -	1 .		1		1 -	.171 08	1 -		.175 92
110	177 54	_	.180 76	.182 38	183 99	.185 61	.187 22	.188 83	.190 45	
130										
130										
140	.225 96	.227 57	.229 18	.230 80		_		-		
150	1		1.4	1				1	.255 01	.256 62
160	.258 24	259 85	.261 46	.263 08	264 69	.266 31	267 92	.269 53	271 15	
170				_				. =		
180						. =				
190	-		_					7.	_	

RESISTANCE OF NO. 13 COPPER WIRE.

Feet.	0.	н	5	es	4	ıc	۰.	7	o c	6
C			1 -							
10	_		.024 42	.026 45	02849	.030 52	03256	.034 59	.036 63	.038 66
8	_		-							
30	т.									
40	.081 40	.083 43	•	084 50					.097 68	.099
20	.101 75	.103 78				-			_	.120 06
8	.12210	.124 13	.126 17	.12820	.130 24	.132 27	.134 31	.136 34	.138 38	.14041
2				- 5		_		_	-	.16076
8					_	•	-	_	_	.181 11
8						••			.19943	.20146
100			1 -		_	_	1 -			
110	.223 85		.227 92	.22995	.231 99	.234 02	.236 06	.238 09	.240 13	.24216
120										
130										
140	.284 90	.286 93	-	291 00	_	_	.297 11		.301 18	.30321
150		1.7 1	.309 32	.311 35	.313 39	-	.317 46		1	.323 56
160			=			-				
170			=						_	
180	.366 30	.368 33	.370 37	.372 40	.374 44	.376 47	.378 51	.380 54	.382 58	.38461
190			_						-	Ξ.

RESISTANCE OF NO. 14 COPPER WIRE.

Feet.	0		61	60	4	ı	9	۲.	«	6
0		1		١.	1 =		.015 40	.017 96		.023 10
10	.=		.03080					.043 63		.048 77
8	•		- 7	_	Ξ.					.074 44
99	10 220.	_								.100 11
40	.102 68	.105 24	.107 81	.110 38	.11294	.115 51			12321	.125 78
20				.136 05		.141 18	.143 75		.148 88	.151 45
8								-		.17712
2	.179 69	$.182\ 25$.18482	.187 39	.18995	.192 52	.195 09	.197 65	200 22	202.79
08										.237 46
6	.231 03							-		.254 13
100	1 -	.259 26		264 40		1 –		1 7	١.	279 80
110										.30547
120	308 04	_	.313 17	.315 74	.318 30	.320 87		.326 00	.328 57	.331 14
130	_							_		.35681
140	.359 38	.361 94				.37221	.374 78	.377 34	379 91	.38248
150	_	.387 61	.390 18					1		.408 15
160					_			-		.433 82
170	.436 39		.441 52	44 00	.446 65	.449 22	.451 79	.454 35	.456 92	.459 49
180	_							_		.485 16
190						_		_		.51083

RESISTANCE OF NO. 15 COPPER WIRE.

Feet.	•	-	81	65	4	ъ	9	4	æ	6
0						.01617		_		
2						.048 52				
8						.080 87			.090 58	.093 81
8	_					.113 22		_		
40	.129 40	.132 63	.13587	.139 10	.14234	.145 57	.148 81	.152 04	.155 28	
55	161 75				.174 69		181 16	.184 39		.19086
8	192				207 04			.216 74		
2	226 45			_	.239 39			.249 09		
8	258 80			.268 50	271 74			281 44		.287 91
8	291 15	294 38	297 62	_	30409	.307 32	.310 56	.313 79	.317 03	
100	1			1		.339 67		.34614		.352 61
110				_		.372 02	.375 26	.378 49	.381 73	.384 96
120						.404 37		410 84		
130	_			_		.436 72		.443 19		
140	.452 90	.456 13	.459 37	.462 60	.465 84	.469 07	.472 31	.475 54		
150							504 66	1.	.51113	.51436
160	.517 60	.52083	.524 07	.527 30	530 54	.533 77	.537 01	540 24	.543 48	.546 71
170							.569 36		.575 83	.579 06
82	- :						.601 71	-:-	.608 18	.611 41
6							A34 OB		640 53	.643 76

RESISTANCE OF NO. 16 COPPER WIRE.

Feet.	•	-	сı	ಣ	4	45	9		60	6
0			1		1.5		1 .			.036 72
10					.057 12					.07752
8			_			-				.11832
8			_							.159 12
9	.163 20	.167 28	.171 36	.175 44	.179 52	.183 60	.187 68	.191 76	.195 84	.19992
20	·					1	1 . 1		l	
8								••		
5	.285 60	.289 68	.293 76	297 84	.301 92	306 00	310 08	.314 16	.318 24	.32232
8					À.		_	•	_	
8				.379 44	•	.387 60		-	_	.40392
100	.408 00	1		_						
110				-						
120	_		.497 76		.505 92		_			
130	-									
140	.571 20	.575 28	.579 36	.583 44	.587 52	.591 60	.595 68	.599 76	.603 84	.607 92
150		1	I -		1 12			1		
160	.65280	.656 88	96 099.	.665 04	.669 12	.673 20	.677 28	.681 36	685 44	.68952
170							_			
180		. 1			_					
190		_			-	_	_			

RESISTANCE OF NO. 17 COPPER WIRE.

			TONTOTOTOTOT	TO TONTE	7 .04		W TREE			
Fect.	0	F	ы	&	4	z,	9	7	∞	6
0						I -	_			
2									_	
8									_	
8	_					_			.195 47	
\$.205 76		.216 04	221 19	.226 33	.231 48	236 62	.241 76	.246 91	.25205
.g		.262 34	.267 48	.272 63	277 77	1	1 -			.303 49
8				_	_		_		_	
2				.375 51	.380 65	.385 80	.390 94	396 08	.401 23	.406 37
8				-					_	
8								.498 96		
100			.524				1	_		
110			.576							
120		.622 42	.627	.632 71			.648 14	.653 28	.658 43	.663 57
130			629				_			
140			.730	.735 59	.740 73	.745 88	.751 02	.756 16	.761 31	.766 45
150	.771 60	.776 74	Ľ	_		1 -	1	1.		
160			83	•	_			_		
170		_	88.	889 91	.895 05	900 20	.905 34	.910 48	.915 63	.920 77
180		т.	986			-				
180			286	-	.997 93	_	1.00822	1.01336	1.01851	
								-		

RESISTANCE OF NO. 18 COPPER WIRE.

Feet.	0	-	63	ω,	4	70	9	1	*	6
				1 -			1	1		
_								_		
_	.12850	.134 92	.141 35	.147 77	.154 20	.160 62	.167 05	.173 47	179 90	
_			_							
_				.276 27						.31482
20	1 .			1 _						
0										
0	.449 75	.456 17	.462 60	.469 02	.475 45	.481 87	.488 30	.494 72	501 15	.507 57
0										
_ 0					.60395					
0				1 .		_	I	1		1
0	.706 75	713 17	.719 60	.726 02	.732 45	.738 87	.745 30	.751 72	.758 15	.764 57
_	Ξ.			_						
_										_
						_	_	- 7		.95732
0	l	l _		1	-	1		1		1.021 57
						_				1.08582
_	1.09225	1.09867	1.10510	1.11152	1.11795	1.12437	1.13080	1.13722	1.14365	1.15007
_							_			1.21432
_	_			ā			_			1.278 57

RESISTANCE OF NO. 19 COPPER WIRE.

Feet.	0	1	8	80	4	ъ	9	7	8 0	6
•						1 -		.057 26	.065 44	
2		680						_		
2 8		171								
8		253		269 94	278 12				.310 84	31902
\$.327 20	.335 38	.343 56		.35992	.368 10	.376 28	- 7		
5.	1 -	.417	1		-	1 -		.466 26		
8			.507 16	.515 34	.523 52	.531 70	.539 88	.548 06	.556 24	.56442
9		580								
æ		.662	_		1 1					
8		.744	.752 56		7.7	_				
100		.826				1				.891 62
110		.907				_			.965 24	.97342
120		686.								1.05522
130		1 071						_		1.13702
140	1.145 20			1.16974	1.17792	1.18610	1.194 28	1.20246		1.21882
150	1.227 00	1.235 18	1.243 36	1.251 54	1.259 72	1.26790	1.278 08	1.284 26	1.292 44	1.300 62
168		1.316		1.33334		_	1.35788		1.374 24	138242
170		1.398		1.41514			1.43968			1.46422
180		1.480		1.49694			1.52148			1.54602
180		1.562		1.578 74			1.60328			1.62782

RESISTANCE OF NO. 20 COPPER WIRE.

Feet.	0	H	73	89	4	ıo	ø	7	•	6
0		.010 31		1 -	.041 24			1	.082 48	
10		.11341							.185 58	
20		.216 51							288 68	
98		.319 61		.340 23	350 54			.381 47	391 78	
9	.41240	.422 71	.433 02	.443 33		.463 95	.474 26	.484 57	.494 88	.505 19
20				.546 43					.597 98	
8	.618 60	.628 91	.639 22	.649 53	.659 84				.701 08	
2									.804 18	
8									.907 28	
8					.969 14	.979 45		1.000 07	1.010 38	
100	_							1.103 17	1.113 48	
110		1.144 41						1.20627	1.21658	
120								1.30937	1.31968	
130								1.412 47	1.42278	
140	1.443 40	1.453 71	1.464 02	1.47433	1.484 64	1.49495	1.50526	1.51557	1.52588	
150			1.567 12	1.577 43	1.587 74	1.598 05	1.608 36	1.618 67	1.628 98	
160	1.649 60	1.65991		_	_	1.70115		1.721 77	1.73208	1.74239
170								1.82487		
180				-				1.927 97		1.94859
061				_	_		_	2.03107		

WIRING CHART.

The resistance in any circuit may be determined either by the length and size of the conductor composing it, or by the current and fall of potential along the conductor. In the first case, the resistance is directly as the length and inversely as the cross-section. In the second, it is directly as the fall of potential and inversely as the current.

The consideration of these principles has led to a graphic method of determining the sizes of wire necessary to carry certain currents over any given distance when the fall of potential is known. To say that the resistance is directly as one quantity and inversely as another, determines that if these quantities be plotted along any pair of rectangular coördinates, then lines of equal resistance will be straight lines radiating from the origin of the coördinates, and if these two separate sets of quantities be plotted along the same coördinates, the lines of equal resistance will be common to both pairs.

The diagram shown has been plotted with falls of potential in volts and distances in feet along the vertical, and with currents in amperes and areas in circular mils along the horizontal. Resistance lines have also been drawn, which are common to both sets of quantities. If now we wish to determine the size of a wire necessary to carry a certain current at a known fall of potential over a given distance, we follow the line of the resistance determined by the current and fall of potential till it intersects the line corresponding to the given distance, and this point determines the area of the copper wire required.

If, as an instance, it is required to find the wire necessary to carry a current of eighty amperes over a circuit of sixteen hundred feet at a hundred volts, the allowable loss of potential being five per cent, we immediately see that the line of .0625 resistance is determined by a current of eighty amperes and five volts loss, and if now this line is followed till it intersects the horizontal line corresponding to 1600 feet, we find that a copper wire of 269,768 C. M. has the required cross-section.

The most available form of this diagram for every-day work is one where the resistance lines have been drawn to correspond to the loss of potential generally allowed, thus avoiding the confusion of a number of useless resistance lines. The resistance lines we have chosen are those corresponding to a fall of potential of either $2\frac{1}{2}$, 5, 10 or 15 volts.

CARRYING CAPACITY OF COPPER WIRES.

Very many tables and formulæ have been offered for evidence in determining the carrying capacity of copper wires for electrical currents, and since the original limit set by the London Board of Trade, 1,000 amperes per square inch, nearer and nearer approximations to what may be called a true figure have been arrived at through the experimental results of the various physicists whose attention has been turned to this problem.

For long lines in the air carrying moderate amounts of current the wire in which the loss of electromotive force is not excessive will ordinarily be of sufficient size as regards heating, but where the amounts of current to be carried become large, or where short lengths are to be run, the closest attention needs be paid to this particular.

It need not be urged that especial care be taken where lights are run over wires concealed in mouldings or under the plaster of a house.

Fortunately, the formulæ at present at the disposal of the electrician are so safe that a fire from an overheated wire in normal running has become entirely an unknown thing, and with the most ordinary care must be impossible.

We have selected the formulæ of Forbes and Kennelly in calculating the following tables, the former relating entirely to wires suspended out of doors in the free air, while the formulæ of Kennelly discuss the problem of interior insulated and concealed wiring, the rise of temperature being in all cases 18° F. It will be noticed that the carrying capacity of a wire is increased by its insulating coating—this is a phenomenon observed by all experimenting along this line, and is explained by the greater radiating surface offered by the insulation as well as by the increased radiating power of the dark surfaces.

CARRYING CAPACITY OF WIRES.

		For	BES.		F	CENNELY	<i>r</i> .		er.
S.ze, B. & S. Gauge.	Circular Mila.	Bright.	Black.	Paneled Wire.	Bright Wire sus- pended in Room.	Black Copper sus- pended in Room.	Bright Copper sus- pended Out-doors.	Black Copper sus- pended Out-doors.	1000 Amperes per Square Inch.
	600 000	271.	374.	381.	288.	370.	706.	744.	471.
	550 000	254.	350.	357.	272.	349.	662.	698.	432.
	500 000	236.	326.	332.	255.	329.	618.	652.	393.
	450 000	218.	301.	307.	238.	303.	572.	602.	353.
	400 000	200.	276.	281.	220.	280.	524.	552.	314.
0000	350 000	181.	250.	254.	202.	255.	476.	500.	275.
	300 000	161.	222.	227.	183.	229.	425.	447.	236.
	250 000	141.	194.	198.	163.	203.	372.	391.	196.
	211 600	124.	171.	174.	146.	181.	329.	346.	166.
	167 805	104.	144.	146.	127.	155.	278.	292.	132.
00	133 079	88.	121.	123.	110.	133.	236.	247.	105.
0	105 534	74.	102.	103.	95.	114.	199.	209.	83.
1	83 694	63.	86.	88.	83.	98.	169.	177.	66.
2	66 373	52.	72.	73.	72.	85.	141.	148.	52.
3	52 633	44.	60.	61.	63.	73.	121.	127.	41.
4	41 742	37.	51.	52.	55.	63.	103.	108.	33.
5	83 102	30.8	43.	43.	48.	55.	88.	91.	26.
6	26 250	25.9	36.	36.	42.	47.	75.	78.	20.6
7	20 817	21.8	30.	31.	37.	41.	63.	66.	16.3
8	16 509	18.3	25.3	25.7	32.	36.	54.	56.	13.0
9	13 094	15 4	21.2	21.6	28.2	31.	46.	48.	10.3
10	10 381	12.9	17.8	18.2	24.9	27.2	40.	41.	8.2
11	8 234	10.9	15.0	15.3	21.9	23.8	34.	35.	6.5
12	6 530	9.1	12.6	12.8	19.3	20.8	29.	30.	5.1
13	5 178	7.7	10.6	10.8	17.0	18.3	25.	25.8	4.1
14	4 107	6.4	8.9	9.1	15.0	16.0	21.5	22.2	3.2
15	3 257	5.4	7.5	7.6	13.3	14.1	18.5	19.1	2.6
16	2 583	4.6	6.3	6.4	11.8	12.4	16.0	16.5	2.0
17	2 048	3.8	5.2	5.4	10.4	10.9	13.8	14.2	1.6
18	1 624	3.2	5.0	5.1	9.2	9.6	12.0	12.3	1.3
19	1 288	2.7	3.7	3.8	8.2	8.5	10.4	10.7	1.0
20	1 022	2.3	3.1	3.2	7.2	7.5	9.0	9.2	

TABLE OF DIAMETER OF WIRES IN STRAND

EA IN	A									res.
275 000	250 000	225 000	200 000	175 000	150 000	125 000	100 000	75 000	50 000	of Wires.
ER OF	DIAME					'				No.
524.4	500.0	474.3	447.2	418.3	387.3	353.5	816.2	273.8	223.6	1
302.7	288.6	273.8	258.1	241.5	223.6	204.1	182.5	158.1	129.1	1 3 7
198.2	189.0	179.2	169.0	158.1	146.3	133.6	120.3	103.5	84.5	7
120.3	114.7	108.8	102.5	95.9	88.9	81.1	72.5	62.8	51.3	19 87
86.2	82.1	77.9	73.5	68.7	63.6	58.1	51.9	45.0	36.7	87
67.1	64.0	60.7	57.2	53.6	49.6	45.2	40.5	35.1	28.6	61 84 91 127
57.2	54.5	51.7	48.7	45.6	42.2	38.5	34.5	29.8	24.3	84
54.9	52.4	49.7	46.8	43.8	40.6	37.0	33.1	28.7	23.4	91
46.5	44.3	42.1	39.6	37.1	34.3	31.5	28.0	24.3	19.9	127
45.4	43.8	41.1	38.7	36.2	33.5	30.6	27.3	23.7	19.3	133
40.3	38.4	36.4	34.4	32.1	29.7	27.1	24.3	21.0	17.2	169 217
35.5	33.9	32.2	80.4	28.3	26.2	24.0	21.4	18.5	15.1	517

REA IN	A								res.
750 000	725 000	700 000	675 000	650 000	625 000	600 000	575 000	550 000	of Wires.
TER OF	DIAME		'	<u>'</u>		<u>'</u>		'	No.
866.0	851.4	836.6	821.5	806.2	790.5	774.6	758.2	741.6	1
500.0	491.4	483.1	474.8	465.4	456.4	447.2	437.8	428.1	1 3 7
827.3	321.8	316.3	310.5	304.7	298.8	292.7	286.6	280.3	7
198.6 142.8	195.3 139.9	191.9 137.5	188.4 135.0	184.9 132.5	181.3 129.9	177.6 127.3	173.9 124.6	170.1 121.9	19 37
142.0				102.0	129.9	121.0	124.0	121.9	
110.8	109.0	107.1	105.1	103.2	101.2	99.1	97.1	94.9	61 84 91 127
94.4	92.9	91.2	89.6	87.9	86.2	84.5	82.7	80.9	84
90.7	89.2	87.7	86.1	84.5	82.8	81.2	79.4	77.7	91
76.8	75.5	74.2	72.9	71.5	70.1	68.7	67.2	65.8	127
75.0	73.8	72.5	71.2	69.9	68.5	67.1	65.7	64.2	133
66.6	65.4	64.3	63.1	62.0	60.8	59.5	58.3	57.1	169
58.8	57.8	56.7	55.7	54.7	53.6	52.5	51.4	50.3	217

EQUIVALENT TO GIVEN CIRCULAR MILAGES.

CIRCUL	AR MIL	8.							
300 000	325 00	0 350 00	0 375 00	400 00	0 425 000	450 00	0 475 00	500 000	525 00
WIRES	IN MIL	5.							·
547.7	7 570.	1 591.	6 612	4 632.	4 651.9	9- 670.	8 689.	2 707.1	724.
316.2	2 329.	1 341.	5 353	.5 365.	1 376.3	387.	2 398.		
207.0									
125.6									
90.0	93.	7 97.	2 100	.6 103.	9 107.1	1 110.	3 113.	3 116.2	119.
70.1	73.	0 75.	7 78	4 80.	9 83.4	85.	8 88.	2 90.5	92.
59.8									
57.4			0 64	1 66.			3 72.		
48.6			6 54						
	49.	4 51.	2 53	.0 54.	8 56.	58.	1 59.	7 61.3	62.
47.4					6 50.1	51.	6 53.0	54.3	55.
47.4	43	8 45	5 47	11 4×					
47.4 42.1 37.1	1 38.	7 40.							
47.4 42.1 37.1 CIRCUL	AR MIL	7 40. s.	1 41		9 44.:	2 45.	5 46.	7 48.0	49.
47.4 42.1 37.1 CIRCUL.	AR MIL	7 40. s. 825 000	1 41	.6 42.	9 44.:	2 45.	5 46.	7 48.0	49.
47.4 42.1 37.1 CIRCUL 775 000 WIRES:	AB MIL 800 000 IN MIL 894.4	7 40. 8. 825 000 3.	850 000 921.9	875 000	900 000	925 000 961.7	950 000	975 000	1 000 00
47.4 42.1 37.1 CIRCUL. 775 000 WIRES: 880.3 508.2	800 000 IN MILE 894.4 516.3	7 40. 8. 825 000 3. 908.3 524.4	850 000 921.9 532.2	875 000 935.4 540.1	9 44.5 900 000 948.6 547.7	925 000 961.7 555.2	950 000 974.6 562.7	975 000 987.4 570.0	1 000.00
47.4 42.1 37.1 CIRCUL 775 000 WIRES: 880.3 508.2 332.7	800 000 IN MILE 894.4 516.3 338.0	8. 825 000 3. 908.3 524.4 343.3	850 000 921.9 532.2 348.4	875 000 875 000 935.4 540.1 353.5	9 44.5 900 000 948.6 547.7 358.5	925 000 961.7 555.2 363.5	950 000 974.6 562.7 368.4	975 000 975 000 987.4 570.0 873.2	1 000 000 1 000 77.: 577.:
47.4 42.1 37.1 CIRCUL. 775 000 WIRES: 880.3 508.2 332.7 201.9	800 000 IN MILE 894.4 516.3 338.0 205.0	7 40. 8. 825 000 3. 908.3 524.4 343.3 208.3	850 000 921.9 532.2 348.4 211.5	875 000 935.4 540.1 353.5 214.5	9 44.5 900 000 948.6 547.7 358.5 217.6	925 000 961.7 555.2 363.5 220.6	950 000 974.6 562.7 368.4 223.6	975 000 987.4 570.0 873.2 226.5	1 000 000 1 000 000 1 077.1 229.
47.4 42.1 37.1 CIRCUL 775 000 WIRES: 880.3 508.2 332.7 201.9 144.7	800 000 IN MILL 894.4 516.3 338.0 205.0 147.0	8. 825 000 3. 908.3 524.4 343.3 208.3 149.3	850 000 921.9 532.2 348.4	875 000 875 000 935.4 540.1 333.5 214.5 153.7	9 44.5 900 000 948.6 547.7 358.5	925 000 961.7 555.2 363.5	950 000 974.6 562.7 368.4	975 000 975 000 987.4 570.0 873.2	1 000 00 1 000 00 577. 377. 229. 164.
47.4 42.1 37.1 CIRCUL 775 000 WIRES: 880.3 508.2 332.7 201.9 144.7	800 000 IN MILL 894.4 516.3 338.0 205.0 147.0	825 000 8. 825 000 3. 908.3 524.4 343.3 208.3 149.3 116.2	850 000 921.9 532.2 348.4 211.5 151.5	875 000 875 000 935.4 540.1 333.5 214.5 153.7 119.7	900 000 948.6 547.7 358.5 217.6 155.9	925 000 961.7 555.2 363.5 220.6 158.1 123.1	950 000 974.6 562.7 368.4 223.6 160.2 124.7	975 000 987.4 570.0 873.2 226.5 162.3 126.4	1 000 000 1 000 000 577.1 229.1 164
47.4 42.1 37.1 CIRCUL. 775 000 WIRES: 880.3 508.2 332.7 201.9 144.7 112.7 96.0	894.4 894.4 516.3 338.0 205.0 147.0 114.5 97.5	8. 825 000 8. 908.3 524.4 343.3 208.3 149.3 116.2 99.1	850 000 921.9 532.2 348.4 211.5 118.0 100.5	875 000 875 000 935.4 540.1 333.5 214.5 153.7 119.7	948.6 547.7 358.5 217.6 155.9 121.4 103.5	925 000 961.7 555.2 363.5 220.6 153.1 123.1 104.9	950 000 974.6 562.7 368.4 223.6 160.2 124.7 106.3	975 000 987.4 570.0 873.2 226.5 162.4 107.1	1 000 00 577. 877. 229. 164.
47.4 42.1 37.1 CIRCUL 775 000 WIRES: 880.3 508.2 332.7 201.9 144.7 112.7 96.0 92.2	894.4 516.3 338.0 205.0 147.0 114.5 97.5 98.7	7 40. 8. 825 000 3. 908.3 524.4 343.3 149.3 116.2 99.1 95.2	921.9 532.2 348.4 211.5 151.5 118.0 90.6	875 000 875 000 935.4 540.1 353.5 214.5 153.7 119.7 102.0 98.0	948.6 547.7 358.5 217.6 155.9 121.4 103.5 99.5	925 000 961.7 555.2 363.5 220.6 158.1 123.1 100.8	950 000 974.6 562.7 368.4 160.2 124.7 106.3 102.1	975 000 975 000 987.4 570.0 873.2 226.5 162.3 126.4 107.1 103.5	1 000 00 1 000 00 577. 229. 164. 128. 104.
47.4 42.1 37.1 CIRCUL 775 000 WIRES: 880.3 508.2 332.7 201.9 144.7 112.7 96.0 92.2 78.1	894.4 516.3 338.0 205.0 114.5 97.5 93.7 79.3	8. 825 000 8. 908.3 524.4 343.3 208.3 149.3 116.2 99.1 99.5 280.5 80.5	921.9 532.2 348.4 211.5 118.0 100.5 96.6 81.8	875 000 935.4 540.1 353.5 214.5 119.7 119.7 102.0 98.0 83.0	900 000 948.6 547.7 358.5 217.6 155.9 121.4 103.5 99.5 84.1	925 000 961.7 555.2 363.5 220.6 158.1 123.1 104.9 100.8 85.3	950 000 974.6 562.7 368.4 223.6 160.2 124.7 106.3 102.1 86.4	975 000 975 000 987.4 570.0 873.2 226.5 126.4 107.1 103.5 87.6	1 000 00 1 000 00 577. 377. 229. 164. 128. 109. 104. 88.
47.4 42.1 37.1 CIRCUL 775 000 WIRES: 880.3 508.2 332.7 201.9 144.7 112.7 96.0 92.2	894.4 516.3 338.0 205.0 147.0 114.5 97.5 98.7	7 40. 8. 825 000 3. 908.3 524.4 343.3 149.3 116.2 99.1 95.2	921.9 532.2 348.4 211.5 151.5 118.0 90.6	875 000 875 000 935.4 540.1 353.5 214.5 153.7 119.7 102.0 98.0	948.6 547.7 358.5 217.6 155.9 121.4 103.5 99.5	925 000 961.7 555.2 363.5 220.6 158.1 123.1 100.8	950 000 974.6 562.7 368.4 160.2 124.7 106.3 102.1	975 000 975 000 987.4 570.0 873.2 226.5 162.3 126.4 107.1 103.5	1 000 000 1 000 000 577.3 877.4 128.6 109.1 104.8 88.7
47.4 42.1 37.1 CIRCUL 775 000 WIRES: 880.3 508.2 332.7 201.9 144.7 112.7 96.0 92.2 78.1	894.4 516.3 338.0 205.0 114.5 97.5 93.7 79.3	8. 825 000 8. 908.3 524.4 343.3 208.3 149.3 116.2 99.1 99.5 280.5 80.5	921.9 532.2 348.4 211.5 118.0 100.5 96.6 81.8	875 000 935.4 540.1 353.5 214.5 119.7 119.7 102.0 98.0 83.0	900 000 948.6 547.7 358.5 217.6 155.9 121.4 103.5 99.5 84.1	925 000 961.7 555.2 363.5 220.6 158.1 123.1 104.9 100.8 85.3	950 000 974.6 562.7 368.4 223.6 160.2 124.7 106.3 102.1 86.4	975 000 975 000 987.4 570.0 873.2 226.5 126.4 107.1 103.5 87.6	49.

NOTE.—To find the size wire necessary to make a strand of given Circular Milage and of a given number of wires find from above table the diameter in mils of wire corresponding to size of strand and number of wires in strand. Then, by inspection of any table showing sizes in B. & S. Gauge, the desired gauge of wire can be found.

TABLE SHOWING DIAMETER IN MILS OF A GIVEN NUMBER OF WIRES LAID UP IN STRANDS.

	JOHN	А.	KUI	EBL
2	181.9 105.0 68.7	29.9	38.5 5.85 5.85 5.85 5.85 5.85 5.85 5.85	19.0
4	204.3 117.9 77.2	88.6	 388	21.4
တ	229.4 132.4 86.7	37.7	25.53 5.4.0	19.9
7	257.6 148.7 97.3 59.1	42.3	888	22.3
1	289.3 167.0 109.3 66.3	47.5	37.0 31.5	25.0 25.0
0	324.9 187.5 122.8 74.5	53.4	25.4 25.4	28.0
8	364.8 210.6 137.9 83.7	59.9	46.7 89.8	31.6
000	409.6 236.5 154.8	67.3	2524 7.74	85.5
0000	460. 265.6 173.9	75.6	20.5	39.9
0000	650.5 875.6 245.9	106.9	83.3 70.9	56.4
8	796.7 460.0 301.1	131.0	1020 86.9	69.0
4 0000	920.0 531.2 346.2	151.2	117.8	79.7
Yo. of wires.	1876	32	# 52 £	28

80	32. 18.4 12.1 7.3	
19	85.9 13.6 8.2	
18	8.23.0 8.23.0 2.0	
17	45.3 26.1 17.1 10.3	
16	50.8 29.3 11.7	
15	57.1 32.9 21.6 13.0	
14	64.1 37.0 24.2 14.7	
13	72. 41.5 27.2 16.5	
12	80.8 46.7 30.5 18.5	
11	90.7 84.3 20.8	
10	25.88.83 9.65.84	14.5 13.0 10.7 8.8
6	114.4 66.0 86.0 86.3	16.3 12.4 11.9 19.9
80	28.42.4 28.62.2 28.53.5 28.53.5	13.5 14.0 13.5 13.5
7	41.88.72.88 8.83.72.88	25. 15.7 15.7 15.7 15.7
9	162.0 83.5 87.2	, 28.1 17.7 16.9 14.0
No. of Wirea.	18761	8 6 2 2 2 E E E

TABLES OF LENGTHS AND STRAINS IN SPANS OF WIRE AND SUSPENSION CABLES.

The tables of lengths and strains in spans of wire and cables here given are calculated from the formulæ derived from the equation of a parabola, which is the curve assumed by a wire hanging between two points of suspension unloaded, except by its own weight.

Since telegraph poles are ordinarily spaced by the number per mile, and the distance on an electric railroad or city lighting plant are laid out by the foot, two tables are given based on the usage in the two different cases, which also has determined the selection of different proportionated deflections.

It has been found by observation that the practice with telegraph lines is to allow a deflection of about .005 of the span. though there is no rule set, and the actual amount depends upon the lineman and the appliances for tightening the line which are at his disposal; with the heavier soft copper wires the custom has been to allow two or three times this deflection, and in some of our cities the unsightliness of the overhead wires is largely due to lack of attention to the possibilities of uniformity and small deflection in the spans. The table of lengths gives the actual lengths of wire between the points of suspension required by each different amount of deflection, and the table of strains is one in which a factor is given by which the weight per foot of the suspended wire is to be multiplied in order to ascertain the total strain at the center of the span. The strain at the point of suspension is slightly greater, but the difference is negligable in comparison with the chafing and cutting effect of the tie wire by which the line is fastened to the insulators.

In the case of a weight suspended at the center of the span, as is the case with arc lamp and trolley wire suspenders, the general solution is too intricate for tabulation, and either half the weight may be added to the total tension, or the weight per foot be increased by a proportionate amount of the extra suspended weight, and the factor of safety be increased as with either method the result obtained will be somewhat too low.

TABLE OF TOTAL LENGTH OF WIRE CORRES

6. t	ä.					PER CENT.
Poles to Mile.	Spans in Feet.	.004	.006	.008	.010	.015
20	264.0	264.011	264.025	264.045	264.070	264.158
21	251.4	251.410	251.424	251.442	251.466	251.550
22 23	240.0	240.010	240.023	240.040	240.063	240.144
23	229.5	229.509	229.522	229.539	229.561	229.637
24	220.0	220.009	220.021	220.037	220.058	220.132
25	211.2	211.209	211.202	211.236	211.256	211.326
26	203.0	203.008	203.019	203.034	203.053	203.121
26 27	195.5	195.508	195.518	195.533	195.552	195.617
28 29	188.5	188.508	188.518	188.532	188.550	188.613
29	182.0	182.007	182.017	182.031	182.048	182.109
30	176.0	176.007	176.016	176.030	176.046	176.105
31 32	170.3	170,307	170.316	170.329	170.345	170.402
32	165.0	165.007	165.015	165.028	165.043	165.099
33	160.0	160.006	160.015	160.027	160.042	160.096
34	155.3	155.306	155.314	155.326	155.341	155.393
35	150.8	150.806	150.814	150.825	150.840	150.890
36	146.6	146.606	146.614	146.625	146.638	146.687
37	142.7	142.706	142.713	142.724	142.737	142.785
38	138.9	138.905	138.913	138.923	138.937	138.983
39	135.4	135.405	135.412	135.423	135.436	135.481
40	132.0	132.005	132.012	132.022	132.035	132.079
41	128.8	128.805	128.812	128.821	128.834	128.877
42	125.7	125.705	125.712	125.721	125.733	125.775
43	122.8	122.805	122.811	122.820	122.832	122.873
44	120.0	120.005	120.011	120.020	120.031	120.072
45	117.3	117.305	117.311	117.320	117.331	117.370
46	114.7	114.704	114.711	114.719	114.730	114.768
47	112.3	112.304	112.310	112.319	112.329	112.367
48	110.0	110.004	110.010	110.018	110.029	110.066
49	107.7	107.704	107.710	107.718	107.728	107.764
50	105.6	105.604	105.610	105.618	105.628	105.663

PONDING TO A GIVEN PERCENTAGE DEFLECTION.

DEFLECTIONS.

				1		l .
.020	.025	.030	.035	.040	.045	.050
264.281	264.440	264.633	264.862	265.126	265.425	265.760
251.668	251.819	252.003	252.221	252.472	252.757	253.076
240.255	240.400	240.576	240.784	241.024	241.296	241.600
229.744	229.882	230.050	230.249	230.479	230.739	231.030
220.234	220.366	220.528	220.718	220.938	221.188	221.466
211.424	211.552	211.706	211.889	212.101	212.340	212.608
203.216	203.338	203.487	203.663	203.866	204.096	204.353
195.708	195.825	195.969	196.138	196.334	196.555	196.803
188.700	188.814	188.952	189.115	189.304	189.517	189.756
182.193	184,803	182.436	182.594	182.776	182.982	183.213
176.187	176.193	176.422	176.574	176.750	176.950	177.173
170.481	170.583	170.708	170.856	171.026	171.219	171.435
165.176	165.275	165.396	165.539	165.704	165.891	166.100
160.170	160.266	160.384	160.522	160.682	160.864	161.066
155.465	155.558	155.672	155.807	155.962	156.138	156.335
150.960	151.051	151.161	151.292	151.443	151.614	151.805
146.756	146.844	146.951	147.078	147.225	147.391	147.577
142.852	142.937	143.042	143.166	143.308	143.470	143.651
139.048	139.131	139.233	139.353	139.492	139.650	139.826
135.544	135.625	135.724	135.842	135.977	136.131	136.302
132.140	132.220	132.316	132.431	132.563	132.712	132.880
128.937	129.014	129.109	129.220	129.349	129.495	129.658
125.834	125.909	126.001	126.110	126.236	126.378	126.538
122.930	123.004	123.094	123.201	123.323	123.463	123.618
120.128	120.200	120.288	120.392	120.512	120.648	120.800
117.425	117.495	117.581	117.683	117.800	117.933	118.082
114.822	114.891	114.975	115.074	115.189	115.319	115.461
112.419	112.487	112.569	112.666	112.779	112.906	113.048
110.116	110.183	110.264	110.359	110.469	110.594	110.733
107.814	107.879	107.958	108.051	108.159	108.281	108.418
105.712	105.776	105.853	105.944	106.050	106.170	106.304

TABLE OF TOTAL LENGTH OF WIRE CORRES

st.				* #			PER CENT.
Spans in Feet.	.010	.015	.020	.025	.030	.035	.040
10	10.002	10.006	10.010	10.016	10.024	10.032	10.042
20	20,005	20.012	20.021	20.033	20.048	20.065	20.085
30 I	30.008	30.018	30.032	30.050	30.072	30.098	30.128
40	40.010	40.024	40.042	40.066	40.096	40.130	40.170
5ŏ	50.013	50.030	50.053	50.083	50.120	50.163	50.213
60	60.016	60.036	60.064	60.100	60.144	60.196	60.256
70	70.018	70.042	70.074	70.116	70.168	70.228	70.298
80	80.021	80.048	80.085	80.133	80.192	80.261	80.341
90	90.024	90.054	90.096	90.150	90.216	90.294	90.384
100	100.026	100.060	100.106	100.166	100.240	100.326	100.426
110	110.029	110.066	110.117	110.183	110.264	110.359	110.469
120	120.032	120.072	120.128	120.200	120.288	120.392	120.512
130	130.034	130.078	130.138	130.216	130.312	130.424	130.554
140	140.037	140.084	140.149	140.233	140.336	140.457	140.597
150	150.040	150.090	150.160	150.250	150.360	150.490	150.640
160	160.042	160.096	160.170	160.266	160.384	160.522	160.682
170	170.045	170.102	170.181	170.283	170.408	170.555	170.725
180	180.048	180.108	180.192	180.300	180.432	180.588	180.768
190	190.050	190.114	190.202	190.316	190.456	190.620	190.810
200	200.053	200.120	200.213	200.333	200.480	200.653	200.853

s in						P	ER CENT.
Spans in Feet.	.085	.090	.095	.100	.110	.120	.130
10	10.192	10.216	10.240	10.266	10.322	10.384	10.450
20	20.385	20.432	20.481	20.533	20.645	20.768	20.901
30	30.578	30.648	30.722	30.800	30.968	31.152	31.352
40	40.770	40.864	40.962	41.066	41.290	41.536	41.802
50	50.963	51.080	51,203	51.333	51.613	51.920	52.253
60	61.156	61.296	61.444	61.600	61.936	62.304	62.704
70	71.348	71.512	71.684	71.866	72.258	72.688	73.154
80	81.541	81.728	81.925	82.133	82.581	83.072	83.605
90	91.734	91.944	92.166	92.400	92.904	93.456	94.056
100	101.926	102.160	102.406	102.666	103.226	103.840	104.506
110	112.119	112.376	112.647	112.933	113.549	114.224	114.957
120	122.312	122.592	122.888	123.200	123.872	124.608	125.408
130	132.504	132.808	133.128	133.466	134.194	134.992	135.858
140	142.697	143.024	143.369	143.733	144.517	145.376	146.309
150	152.890	153.240	153.610	154.000	154 840	155.760	156.760
160	163.082	163.456	163.850	164.266	165.162	166.144	167.210
170	173.275	173.672	174.091	174.533	175.485	176.528	177.661
180	183.468	183.888	184.332	184.800	185.808	186.912	188.112
190	193.660	194.104	194.572	195.066	196.130	197.296	198.562
200	203.853	204.320	204.813	205.333	206.453	207.680	209.018

PONDING TO A GIVEN PERCENTAGE DEFLECTION.

DEFLECTION.

.050	.055	.060	.065	.070	.075	.080
10.066	10.080	10.096	10.112	10.130	10.150	10.170
20.133	20.161	20.192	20.225	20.261	20.300	20.341
80.200	30.242	30.288	30.338	30.392	30.450	30.512
40.266	40.322	40.384	40.450	40.522	40.600	40.682
50.333	50.403	50.480	50.563	50.653	50.750	50.853
	CO 404	CO F70		CO 704		61.004
						61.024
						71.194
						81.365
						91.536
100.666	100.806	100.960	101.126	101.306	101.500	101.706
110 733	110 887	111 056	111 239	111 437	111 650	111.877
						122.048
						132.218
						142.389
						152.560
101.000	101.210	101.440	101 090	101.900	152,200	152.500
161.066	161.290	161.536	161.802	162.090	162.400	162.730
171.133	171.371	171.632	171.915	172.221	172,550	172.901
181.200	181.452	181.728	182.028	182.352	182,700	183.072
						193.242
						203,413
	10.066 20.133 30.200 40.266 50.333 60.400 70.466 80.533 90.500 100.666 110.733 120.800 130.866 140.933 151.000	10.066 10.080 20.133 20.161 30.200 30.242 40.266 40.322 50.333 50.403 60.400 60.484 70.466 70.564 80.533 80.645 90.600 90.726 100.666 100.806 110.733 110.887 120.806 131.048 140.933 141.129 151.000 151.210 161.066 161.290 171.133 171.371 181.200 181.452	10.066 10.080 10.096 20.133 20.161 20.192 30.200 30.242 30.288 40.266 40.322 40.384 50.333 50.403 50.480 60.406 70.564 70.672 80.533 80.645 80.768 90.600 90.726 90.864 100.666 100.806 100.960 110.733 110.887 111.056 120.806 130.408 131.248 140.933 141.129 141.344 151.000 151.210 151.440 161.066 161.290 161.536 171.133 171.371 171.632 181.200 181.452 181.728 191.266 191.532 181.728	10.066 10.080 10.096 10.112 20.133 20.161 20.192 20.225 30.200 30.242 30.288 30.338 40.266 40.322 40.384 40.450 50.333 50.403 50.480 50.563 60.406 70.564 70.672 70.788 80.533 80.645 80.768 80.901 90.600 90.726 90.864 91.014 100.666 100.806 100.960 101.126 110.733 110.887 111.056 111.239 120.800 120.968 121.152 121.352 130.866 131.048 131.248 131.444 140.933 141.129 141.344 141.577 151.000 151.210 151.440 151 690 161.066 161.290 161.536 161.802 171.133 171.371 171.632 171.915 181.200 181.452 181.728 182.028	10.066 10.080 10.096 10.112 10.130 20.133 20.161 20.192 20.225 20.261 30.200 30.242 30.288 30.383 30.392 40.266 40.322 40.384 40.450 40.522 50.333 50.403 50.480 50.563 50.653 60.406 70.564 70.672 70.788 70.914 80.533 80.645 80.768 80.901 81.045 90.600 90.726 90.864 91.014 91.176 100.666 100.806 100.960 101.126 101.306 110.733 110.887 111.056 111.239 111.437 120.800 120.968 121.152 121.352 121.569 130.866 131.048 131.448 131.448 131.482 140.933 141.129 141.344 141.577 141.829 151.000 151.210 151.440 151 690 151.990 171.133 171.371 <	10.066

DEFLECTION.

.140	.150	.160	.170	.180	.190	.200
10.522	10.600	10.682	10.770	10.864	10.962	11.066
21.045	21.200	21.365	21.541	21.728	21.925	22.133
31.568	31.800	32.048	32.312	32.592	32.888	83.200
42.090	42.400	42.730	43.082	43.456	43.850	44.266
52.613	53.000	53.413	53.853	54.320	54.813	55.333
63.136	63,600	64.096	64.624	65.184	65,776	66,400
73.658	74.200	74.778	75.394	76.048	76.738	77,466
84.181	84.800	85.461	86.165	86.912	87.701	88,533
94.704	95.400	96.144	96.936	97.776	98.664	99,600
105.226	106.000	106.826	107.706	108.640	109.626	110.666
115.749	116.600	117.509	118.477	119.504	120.589	121.733
126.272	127.200	128.192	129.248	130.368	131.552	132,800
136.794	137.800	138.874	140.018	141.232	142.514	143.866
147.317	148.400	149.557	150.789	152.096	153.477	154.933
157.840	159.000	160.240	161.560	162.960	164.440	166.000
168.362	169.600	470.922	172.330	173.824	175.402	177.066
178.885	180.200	181.605	183.101	184.688	186.365	188.133
189.408	190.800	192.288	193.872	195.552	197.328	199.200
199.930	201.400	202.970	204.642	206.416	208.290	210.166
210.458	212,000	213.653	215.413	217.280	219,253	2:21.333

TABLE OF ACTUAL DEFLECTIONS OF WIRE PERCENTAGE

ile.						PER CENT
Poles to Mile.	Length of Span in Feet.	.004	.006	.008	.010	.015
Pol	Jes I				D	EFLECTION
20	264.0	1.05	1.58	2.11	2.64	3.96
21	251.4	1.01 0.96	1.51	2.01	2.51	3.77
20 21 22 23 24	240.0	0.96	1.44	1.92	2.40	3.60
23	229.5	0.92	1.38	1.84	2.29	3.44
24	220.0	0.88	1.32	1.76	2.20	3.30
25 26 27	211.2	0.85	1.27	1.69	2.11	3.17
26	203.0	0.81	1.22	1.62	2.03	3.04
27	195.5	0.81 0.78	1.22 1.17 1.13	1.56	1.95	2.93
28	188.5	0.75	1.13	1.50	1.88	2.83
29	182.0	0.73	1.09	1.45	1.82	2.73
30	176.0	0.70	1.05	1.41	1.76	2.64
31	170.3	0.68	1.02	1.36	1.70	2.55
31 32	170.3 165.0	0.68 0.66	1.02 0.99 0.96	1.36 1.32	1.65	2.47
33	160.0	0.64	0.96	1.28	1.60	2.40
34	155.3	0.62	0.93	1.24	1.55	2.33
35	150.8	0.60	0.90	1.21 1.17	1.51	2.26
36	146.6	0.59	0.88	1.17	1.47	2.20
36 37	146.6 142.7	0.59 0.57	0.88 0.86	1.14	1.43	2.14
38 39	138.9	0.55	0.83	1.11	1.39	2.08
39	135.4	0.54	0.83 0.81	1.08	1.35	2.03
40	132.0	0.53 0.52 0.50	0.79	1.05	1.32	1.98
41	128.8 125.7 122.8	0.52	0.77	1.03	1.29	1.93
42	125.7	0.50	0.75	1.01	1.26	1.88
43	122.8	0.49	0.74	0.98	1.23	1.84
44	120.0	0.48	0.72	0.96	1.20	1.80
45	117.3	0.47	0.70	0.94	1.17	1.76
46	114.7	0.46	0.69 0.67	0.92	1 15	1.72
47	112.3	0.45	0.67	0.90	1.13	1.68
48	110.0	0.44	0.66	0.88	1.10	1.65
49	107.7	0.43	0.65	0.86	1.08	1.62
50	105.6	0.42	0.63	0.84	1.06	1.58

IN FEET CORRESPONDING TO A GIVEN DEFLECTION.

DEFLECTIO	N8.					
.020	.025	.030	.035	.040	.045	.050
N FEET.		<u>'</u>		·	<u> </u>	!
5.28	6.60	7.92	9.24	10.56	11.88	18.20
5.03	6.29	7.54	8.80	10.05	11.31	12.57
4.80	6.00	7.20	8.40	9.60	10.80	12.00
4.59	5.74	6.88	8.03	9.18	10.33	11.47
4.40	5.50	6.60	7.70	8.80	9.90	11.00
4.22	5.28	6.33	7.39	8.44	9.50	10.56
4.06	5.08	6.09	7.10	8.12	9.14	10.16
3.91	4.89	5.86	6.84	7.82	8.80	9.77
3.77	4.71	5.65	6.60	7.54	8.48	9.42
3.64	4.55	5.46	6.37	7.28	8.19	9.10
3.52	4.40	5.28	6.16	7.04	7.92	8.81
3.41	4.26	5.11	5.96 5.77	6.81	7.66	8.51
3.30	4.12	4.95	5.77	6.60	7.42	8.25
3.20	4.00	4.80	5.60	6.40	7.20	8.00
3.11	3.88	4.66	5.44	6.21	6.99	7.76
3.02	3.72	4.52	5.28	6.03	6.79	7.54
2.92	3.66	4.39	5.13	5.86	6.60	7.33
2.85	3.57	4.28	4.99	5.70	6.42	7.13
2.77	3.47	4.16	4.86	5.55	6.25	6.94
2.71	3.38	4.06	4.74	5.41	6.09	6.77
2.64	3.30	3.96	4.62	5.28	5.94	6.60
2.57	3.22	3.86	4.51	5.15	5.80	6.44
2.51	3.14	3.77	4.40	5.02	5.66	6.28
2.45	3.07	3.68	4.30	4.91	5.53	6.14
2.40	3.00	3.60	4.20	4.80	5.40	6.00
2.34	2.93	3.52	4.11	4.69	5.28	5.86
2.29	2.87	3.44	4.01	4.58	5.16	5.73
2.25	2.81	3.38	3.94	4.49	5.05	5.61
2.20	2.75	3.30	3.85	4.40	4.95	5.50
2.15	2.69	3.23	3.77	4.30	4.85	5.38
2.11	2.64	3.16	3.70	. 4.22	4.75	5.28

TABLE OF ACTUAL DEFLECTIONS OF WIRE PERCENTAGE

						P	ER CENT
ند	.010	.015	.020	.025	.030	.035	.040
Feet.		!!				DEI	LECTION
10 20 30 40 50	.1 .2 .3 .4 .5	.150 .300 .450 .600	.200 .400 .600 .800 1.000	.250 .500 .750 1.000 1.250	.300 .600 .900 1.200 1.500	.350 .700 1.050 1.400 1.750	.400 .800 1.200 1.600 2.000
60 70 80 90 100	.6 .7 .8 .9	.900 1.050 1.200 1.350 1.500	1.200 1.400 1.600 1.800 2.000	1.500 1.750 2.000 2.250 2.500	1.800 2.100 2.400 2.700 8.000	2.100 2.450 2.800 8.150 3.500	2.400 2.800 3.200 3.600 4.000
110 120 130 140 150	1.1 1.2 1.3 1.4 1.5	1.650 1.800 1.950 2.100 2.250	2.300 2.400 2.600 2.800 3.000	2.750 3.000 3.250 3.500 3.750	3.300 3.600 3.900 4.200 4.500	3.850 4.200 4.550 4.900 5.250	4.400 4.800 5.200 5.600 6.000
160 170 180 190 200	1.6 1.7 1.8 1.9	2.400 2.550 2.700 2.850 3.000	3.200 3.400 3.600 3.800 4.000	4.000 4.250 4.500 4.750 5.000	4.800 5.100 5.400 5.700 6.000	5.600 5.950 6.300 6.650 7.000	6.400 6.800 7.200 7.600 8.000

							PER CENT
نب	.085	.090	.095	.100	.110	.120	.130
Feet.					<u> </u>	Di	EFLECTIONS
10	.850	.900	.950	1.000	1.100	1.200	1.300
20	1.700	1.800	1.900	2.000	2.200	2.400	2.600
30	2.550	2.700	2.850	3.000	3.300	3.600	3.900
40	3.400	3.600	3.800	4.000	4.400	4.800	5.200
50	4.250	4.500	4.750	5.000	5.500	6.000	6.500
60	5.100	5.400	5.700	6,000	6,600	7.200	7.800
70	5.950	6.300	6.650	7.000	7.700	8.400	9.100
80	6.800	7.200	7.600	8.000	8.800	9.600	10.400
90	7.650	8.100	8.550	9.000	9,900	10.800	11.700
100	8.500	9.000	9.500	10.000	10,000	12.000	13.000
110	9.350	9.900	10,450	11.000	11.100	13.200	14.300
120	10.200	10.800	11.400	12.000	12.200	14.400	15,600
130	11.050	11.700	12.350	13.000	13.300	15.600	16.900
140	11.900	12.600	13.300	14.000	14.400	16.800	18.200
150	12.750	13.500	14.250	15.000	15.500	18.000	19.500
160	13.600	14.400	15.200	16.000	16.600	19.200	20.800
170	14.450	15.300	16.150	17.000	17.700	20,400	22,100
180	15.300	16.200	17.100	18.000	18.800	21.600	23,400
190	16.150	17.100	18.050	19.000	19.900	22.800	24.700
200	17.000	18.000	19.000	20.000	21.000	24.000	26,000

IN FEET CORRESPONDING TO A GIVEN DEFLECTION.

DEFLECT	TIONS.									
.045	.050	.055		.060	.0	65	.070		.075	.080
IN FEET			<u> </u>							
.450	.500	.550		.600		650	.70		.750	.800
.900 1.350	1.000 1.500	1.100 1.650		1.200 1.800		300 950	1.40		1.500 2.250	1.600
1.800	2.000	2.200		2.400		600	2.10 2.80		3.000	2.400 3.200
2.250	2.500	2.750		3.000		250	3.50		3.750	4.000
2.700	3.000	8.300		3.600	3.	900	4.20		4.500	4.800
3.150	3.500	3.850		1.200		550	4.90		5.250	5.600
3.600	4.000	4.400		1.800		200	5.60		6.000	6.400
4.050 4.500	4.500 5.000	4.950 5.500		5.400 6.000		850 500	6.30 7.00		6.750 7.500	7,200 8,000
4.950	5.500	6.050		6.600		150	7.70	_	8.250	
5.400	6.000	6.609		7.200		800	8.40		9.000	8.800 9.600
5.850	6.500	7.150		7.800		450	9.10		9.750	10.400
6.300	7.000	7.700	8	3.400		100	9.80		10.500	11.200
6.750	7.500	8.250		9.000	9.	750_	10.50	0_	11.250	12.000
7.200	8.000	8.800		9.600	10.		11.20		12.000	12.800
7.650	8.500	9.350		0.200	11.		11.90		12.750	13.600
8.100 8.550	9.000 9.500	9.900 10.450		0.800 1.400	11. 12.		12.60 13.30		13.500 14.250	14.400 15.200
9.000	10.000	11.000		2.000	13.		14.00		15.000	16.000
DEFLECT	ions.									
DEFLECT	ions.	.16	0	.1'	70	.	180		.190	.200
.140	.150	.16	0	.1	70		180		.190	.200
.140	.150									
.140 IN FEET 1.400 2.800	.150 1.500 3.000	1.6	500	1. 3.	700 400		1.800	-	.190 1.900 3.800	.200 2.000 4.000
.140 IN FEET 1.400 2.800 4.200	.150 1.500 3.000 4.500) 1.6) 3.2) 4.8	500 200 300	1. 3. 5.	700 400 100		1.800 3.600 5.400		1.900 3.800 5.700	2.000 4.000 6.000
.140 IN FEET 1.400 2.800 4.200 5.600	1.500 3.000 4.500 6.000	1.6 3.2 3.2 4.8 6.4	500 200 300 400	1. 3. 5. 6.	700 400 100 800		1.800 3.600 5.400 7.200		1.900 3.800 5.700 7.600	2.000 4.000 6.000 8.000
.140 IN FEET 1.400 2.800 4.200 5.600 7.000	.150 1.500 3.000 4.500 6.000 7.500	1.6 3.2 4.8 0 6.4 0 8.0	500 200 300 400	1. 3. 5. 6. 8.	700 400 100 800 500		1.800 3.600 5.400 7.200 9.000		1.900 3.800 5.700 7.600 9.500	2.000 4.000 6.000 8.000 10.000
.140 IN FEET 1.400 2.800 4.200 5.600 7.000 8.400	.150 1.500 3.000 4.500 6.000 7.500 9.000	1.6 3.2 3.2 3.4.8 3.6.4 3.8.0 9.6	500 800 800 800 800	1. 3. 5. 6. 8.	700 400 100 800 500	10	1.800 3.600 5.400 7.200 9.000		1.900 3.800 5.700 7.600 9.500	2.000 4.000 6.000 8.000 10.000
.140 IN FEET 1.400 2.800 4.200 5.600 7.000 8.400 9.800	.150 1.500 3.000 4.500 6.000 7.500 9.000 10.500) 1.6) 3.2) 4.8) 6.4) 8.0) 9.6	500 800 800 800 800 800	1. 3. 5. 6. 8.	700 400 100 800 500 200 900	10	1.800 3.600 5.400 7.200 9.000 0.800 2.600		1.900 3.800 5.700 7.600 9.500 11.400 13.300	2.000 4.000 6.000 8.000 10.000 12.000 14.000
.140 IN FEET 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600	.150 3.000 4.500 6.000 7.500 10.500 12.000 13.500	1.6 3.2 3.2 4.8 6.4 8.0 11.2 12.8 12.8 14.4	500 500 500 500 500 500 500 500	1. 3. 5. 6. 8. 10. 11. 13. 15.	700 400 100 800 500 200 900 600 300	11 12 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1.800 3.600 5.400 7.200 9.000 0.800 2.600 4.400 6.200		1.900 3.800 5.700 7.600 9.500	2.000 4.000 6.000 8.000 10.000
.140 IN FEET 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200	1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000	1.6 3.2 4.8 6.4 8.0 9.6 11.2 12.8 14.4	500 500 500 500 500 500 500 500	1. 3. 5. 6. 8. 10. 11. 13. 15.	700 400 100 800 500 200 900 600	11 12 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1.800 3.600 5.400 7.200 9.000 0.800 2.600 4.400	:	1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200	2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000
1.400 1. FEET 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600 14.000	1.500 3.000 4.500 6.000 7.500 10.500 12.000 13.500 16.500	1.6 1.6 1.6 1.6 1.6 1.6 1.2 1.2 1.2 1.2 1.3 1.3 1.4 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	500 500 600 600 600 600 600 600 600 600	1. 3. 5. 6. 8. 10. 11. 13. 15. 17.	700 400 100 800 500 200 900 600 300 000 700	10 11 14 10 11	1.800 3.600 5.400 7.200 9.000 0.800 2.600 4.400 6.200 8.000 9.800		1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200 17.100 19.000 20.900	2.000 4.000 6.000 8.000 10.000 14.000 16.000 18.000 20.000
1.400 IN FEET 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600 14.000 15.400 16.800	1.500 3.000 4.500 6.000 7.500 10.500 12.000 15.000 16.500 16.500	1 1.6 3.2 4.8 6.4 8.0 11.2 12.8 14.4 16.0 17.6 19.2	500 500 600 600 600 600 600 600 600 600	1. 3. 5. 6. 8. 10. 11. 13. 15. 17.	700 400 100 800 500 200 900 600 300 000 700 400	10 11 14 14 11 12	1.800 3.600 5.400 7.200 9.000 0.800 2.600 4.400 8.000 9.800 1.600	-	1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200 17.100 19.000 20.900 22.800	2.000 4.000 6.000 8.000 10.000 14.000 16.000 18.000 20.000 22.000 24.000
1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600 14.000 15.400 16.800 18.200	1.500 3.000 4.500 6.000 7.500 12.000 13.500 16.500 18.000 19.500	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	500 500 500 500 500 500 500 500 500 500	1. 3. 5. 6. 8. 10. 11. 13. 15. 17.	700 400 100 800 500 200 900 600 300 000 700 400 100	10 11 11 11 11 22 22	1.800 3.600 5.400 7.200 9.000 0.800 2.600 4.400 5.200 8.000 9.800 1.600		1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200 17.100 19.000 20.900 22.800 24.700	2.000 4.000 6.000 8.000 10.000 12.000 14.000 18.000 20.000 22.000 24.000 26.000
.140 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600 14.000 15.400 16.800 18.200	1.500 3.000 4.500 6.000 7.500 10.500 12.000 15.000 16.500 16.500	1.6 1.6 1.6 1.6 1.1 1.2 1.2 1.2 1.3 1.3 1.4 1.6 1.6 1.7 1.6 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	500 500 500 500 500 500 500 500 500 500	1. 3. 5. 6. 8. 10. 11. 13. 15. 17. 18. 20. 22. 22.	700 400 100 800 500 200 900 600 300 000 700 400 100 800	10 11 11 11 12 22 22	1.800 3.600 5.400 7.200 9.000 0.800 2.600 4.400 6.200 8.000 9.800 1.600 3.400 5.200		1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200 17.100 19.000 20.900 22.800 24.700 26.600	2.000 4.000 6.000 10.000 12.000 14.000 18.000 20.000 22.000 24.000 28.000
.140 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600 14.000 15.400 16.800 18.200 19.600 21.000	1.500 3.000 4.500 6.000 7.500 10.500 12.000 13.500 16.500 18.000 19.500 21.000 22.500	1.6.0 1.	500 500 500 500 500 500 500 500 500 500	1. 3. 5. 6. 8. 10. 11. 13. 15. 17. 18. 20. 22. 23.	700 400 100 800 500 200 900 600 300 000 700 400 100 800 500	10 11 11 11 11 22 22 22	1.800 3.600 5.400 7.200 9.000 0.800 2.600 4.400 5.200 8.000 9.800 1.600 3.400 5.200 7.000		1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200 17.100 20.900 22.800 24.700 26.600 28.500	2.000 4.000 6.000 8.000 10.000 12.000 14.000 18.000 20.000 24.000 24.000 28.000 30.000
.140 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600 14.000 15.400 16.800 18.200	1.500 3.000 4.500 6.000 7.500 12.000 13.500 15.000 18.000 19.500 19.500 21.000	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	600 600 600 600 600 600 600 600 600 600	1, 3, 5, 6, 8, 10, 11, 13, 15, 17, 18, 20, 22, 22, 25,	700 400 100 800 500 200 900 600 300 000 700 400 100 800 500	10 11 11 11 11 12 22 22 22	1.800 3.600 5.400 7.200 9.000 2.600 4.400 5.200 9.800 1.600 3.400 5.200 8.300 8.300		1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200 17.100 19.000 22.800 22.800 24.700 26.600 30.400	2.000 4.000 6.000 10.000 12.000 14.000 20.000 22.000 22.000 24.000 26.000 30.000 32.000
1.400 1.8 FEET 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600 14.000 15.400 16.800 19.600 21.000 22.400 23.800 25.200	1.500 3.000 4.500 6.000 7.500 10.500 12.000 13.500 15.000 18.000 21.000 22.500 22.500 22.500 27.000	1.6.0 3.2 4.8.0 6.4.4 6.4.0 11.2.2 12.8 14.4 16.0 17.6 19.0 20.8 22.4 24.0 25.0 25.0 25.0 26.0 27.2 27.2 28.0 2	500 500 500 500 500 500 500 500	1. 3. 5. 6. 8. 10. 11. 13. 15. 17. 18. 20. 22. 23. 25. 27. 28. 30.	700 400 100 800 500 200 900 600 300 700 400 100 800 500 200 900 600	11 11 11 11 12 22 22 22 23 33 3	1.800 3.600 5.400 7.200 9.000 0.800 2.600 4.400 6.200 8.000 9.800 1.600 3.400 5.200 7.000 8.800 0.600 2.600		1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200 17.100 19.000 22.800 22.800 24.700 26.600 28.500 30.400 32.300 34.200	2.000 4.000 6.000 10.000 12.000 14.000 18.000 20.000 22.000 24.000 25.000 28.000 30.000
.140 IN FEET 1.400 2.800 4.200 5.600 7.000 8.400 9.800 11.200 12.600 14.000 15.400 21.000 21.000 22.400 23.800	1.500 3.000 4.500 6.000 7.500 10.500 13.500 13.500 16.500 18.000 22.500 24.000 22.500	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	500 500 500 500 500 500 500 500	1. 3. 5. 6. 8. 10. 11. 13. 15. 17. 120. 222. 23. 25. 27. 28. 30. 30. 32.	700 400 100 800 500 200 900 600 300 000 700 400 100 800 500 200 900	11 11 11 11 12 22 22 22 23 33 33 3	1.800 5.400 5.400 7.200 9.000 0.800 2.600 4.400 6.200 8.000 1.600 3.400 5.200 7.7000 8.800 1.600 8.800 1.600 8.000		1.900 3.800 5.700 7.600 9.500 11.400 13.300 15.200 17.100 19.000 22.800 24.700 28.500 30.400 82.300	2.000 4.000 6.000 8.000 10.000 12.000 14.000 20.000 22.000 24.000 28.000 30.000

TABLE OF STRAINS AT CENTER OF SPANS RESULT

.le.	Feet.					PER CENT.
Poles to Mile.	Spansin F	.004	.006	.008	.010	.015
Pol	Spa					MULTI
20	264.0	8 250.176	5 500.264	4 125.352	3 300.440	2 200.660
21	251.4	7 856.417	5 237.751	3 928.460	3 142.919	2 095.628
22 23	240.0	7 500.160	5 000.240	3 750.320	3 000.400	2 000.600
23	229.5	7 172.028	4 781.479	3 586.243	2 869.132	1 913.073
24	220.0	6 875.146	4 583.553	3 437.793	2 750.366	1 833.883
25	211.2	6 600.140	4 400.211	3 300.281	2 640.352	1 760.528
26	203.0	6 343.885	4 229.369	3 172.145	2 537.838	1 692.174
27	195.5	6 109.505	4 073.112	3 054.948	2 444.075	1 629.655
28 29	188.5	5 890.750	3 927.271	2 945.563	2 356.564	1 571.304
29	182.0	5 687.621	3 791.848	2 843.992	2 275.303	1 517.121
30	176.0	5 500,117	3 666.842	2 750,234	2 200,293	1 467,106
31	170.3	5 321.988	3 548.086	2 661.164	2 129.033	1 419.592
32	165.0	5 136.360	3 437.665	2 578.345 •	2 062.775	1 375.412
33	160.0	5 000.106	3 333.493	2 500.213	2 000.266	1 333.733
34	155.3	4 853.228	3 235.571	2 426.769	1 941.508	1 294.554
35	150.8	4 712,600	3 141.817	2 356.451	1 885.251	1 257.043
36	146.6	4 581.347	3 054.313	2 290.820	1 832.744	1 222.033
37	142.7	4 459.470	2 973.059	2 229.877	1 783.987	1 189.523
38	138.9	4 340.717	2 893.888	2 170.497	1 736.481	1 157.847
39	135.4	4 231.340	2 820.968	2 115.805	1 692.725	1 128.671
40	132.0	4 125.088	2 750.132	2 062.676	1 650.220	1 100.330
41	128.8	4 025.085	2 683.462	2 012.671	1 610.214	1 073.655
42	125.7	3 928.208	2 618.875	1 964.230	1 571.459	1 047.814
43	122.8	3 837.581	2 558.456	1 918.913	1 535.204	1 023.640
44	120.0	3 750.080	2 500.120	1 875.160	1 500.200	1 000.300
45	117.3	3 665.703	2 443.867	1 832.968	1 466.445	977.793
46	114.7	3 584.451	2 389.698	1 792.339	1 433.941	956.120
47	112.3	3 509.449	2 339.695	1 754.836	1 403.937	936.114
48	110.0	8 437.573	2 291.776	1 718.896	1 375.183	916.941
49	107.7	3 365.696	2 243.857	1 682.955	1 346.429	897.769
50	105.6	3 300.070	2 200.105	1 650.140	1 320.176	880.264

ING FROM A GIVEN PERCENTAGE DEFLECTION.

DEFLECTION	8.					
.020	.025	.030	.035	.040	.045	.050
PLIERS.	· · · · ·	· · · · · · · · · · · · · · · · · · ·	·	'		
1 650.880 1 572.088	1 321.100 1 258.047	1 101.320 1 048.757 1 001.200	944.397 899.323 858.542	826.760 787.301	735.318 700.218	662.200 630.595
1 500.800 1 435.140 1 375.733	1 201.000 1 148.456 1 100.916	957.364 917.766	820.981 786.997	751.600 718.717 688.966	668.466 639.221 612.761	602.000 575.662 551.833
1 320.704	1 056.880	881.056	755.517	661.408	588.250	529.760
1 269.426	1 015.845	846.848	726.184	635.728	565.410	509.191
1 222.526	978.314	815.560	699.354	612.240	544.521	490.379
1 178.753	943.285	786.359	674.314	590.319	525.024	472.820
1 138.106	910.758	759.243	658.204	569.963	506.920	456.516
1 100.586	880.733	784.213	629.598	551.173	490.208	441.466
1 064.942	852.209	710.434	609.207	533.322	474.332	427.169
1 031.800	825.687	688.325	590.248	516.725	459.570	413.875
1 000.533	800.666	667.466	572.361	501.066	445.644	401.333
971.142	777.147	647.859	555.548	486.347	432.552	389.544
943.002	754.628	629.087	539.451	472.255	420.019	378.256
916.738	733.610	611.566	524.426	459.102	408.321	367.721
892.350	714.096	595.296	510.475	446.888	397.459	357.939
868.588	695.078	579.444	496.881	434.988	386.875	348.407
846.701	677.564	564.843	484.361	424.027	377.126	339.628
825.440	660.550	550.660	472.198	413.380	367.656	331.100
805.429	644.536	537.310	460.751	403.358	358.743	323.073
786.044	629.023	524.378	449.661	393.650	350.109	315.297
767.909	614.511	512.280	439.287	384.568	342.032	308.023
750.400	600.500	500.600	429.271	375.800	334.233	301.000
733.516	586.988	489.336	419.612	367.344	326.713	294.227
717.257	573.977	478.490	410.311	359.202	319.471	287.705
702.249	561.967	468.478	401.726	351.686	312.786	281.685
687.866	550.458	458.883	393.498	344.483	306.380	275.916
673.484	538.948	449.288	385.271	337.280	299.974	270.147
660.352	528.440	440.528	377.758	330.704	294.125	264.880

Rule.—To find strain in pounds on wire of given span and deflection, multiply numbers in column answering to wire span and deflection by the weight per foot of wire.

PERCENTAGE SPANS RESULTING PROM A GIVEN DEFLECTION STRAINS AT CENTER OF TABLE OF

83.358 166.716 250.075 333.433 416.791 500.150 583.508 666.866 750.225 833.583 916.941 000.300 083.658 167.016 250.375 333.733 417.091 500.450 583.808 667.166 95 125.016 250.033 875.050 500.066 625.083 750.100 875.116 000.133 125.150 250 166 875.188 600.200 625.216 750.233 875.250 000.266 125.283 250.300 375.316 500.333 010 138.903 277.807 416.711 555.615 694.519 833.423 972.327 1111.231 250.135 389.038 527.942 666.846 805.750 944.654 083.558 222.462 861.366 500.269 639.173 778.077 8 156.263 312.526 468.790 625.053 781.316 987.580 093.843 250.106 406.370 562.633 1 718.896 1 875.160 2 031.423 2 187.686 2 343.950 8 178.583 357.166 535.749 714.332 892.915 071.498 250.081 428.664 607.247 785.830 1 964.414 2 142.997 2 321.580 2 500.163 2 678.746 857.329 035.912 214.495 393.078 571.661 ğ PER CENT. DEFLECTIONS. 208.343 416.686 625.030 833.373 041.716 250.060 458.403 666.746 875.090 083.433 2 291.776 2 500.120 2 708.463 2 916.806 8 125.150 333.493 541.836 750.180 958.523 166.866 MULTIPLIERS 8 250.008 500.016 750.025 000.033 250.041 1 500.050 1 750.058 2 000.066 2 250.075 2 500.083 750.091 000.100 250.108 500.116 750.125 000.133 250.141 500.150 750.158 000.166 용 \$12.506 625.013 987.520 250.026 562.533 875.040 187.546 500.053 812.560 125.066 437.573 750.080 062.586 375.098 687.600 5 000.106 5 312.613 5 625.120 5 987.626 6 250.133 ğ 416.671 833.343 250.015 666.686 083.358 2 500.030 2 916.701 3 333.373 3 750.045 4 166.716 583.388 000.060 416.731 833.403 250.075 666.746 083.418 500.090 916.761 333.433 8 625.008 1 250.006 1 875.010 2 500.013 3 125.016 750.020 375.023 000.026 625.030 250.033 875.036 500.040 125.043 750.046 875.050 000.058 625.056 250.060 875.063 80 500.010 750.011 000.013 250.015 500.016 750.018 000.020 250.021 500.028 750.025 250.001 500.003 750.006 000.006 250.008 000.026 250.028 500.030 750.031 000.033 8 22584 81928 ន្តន្តន្តន្ Feet. gbens in

TABLE OF STRAINS AT CENTER OF SPANS RESULTING FROM A GIVEN PERCENTAGE DEFLECTION Continued

		.075		16.791	83.583	50.375	67.166 83.958	100.750	117.541	134,333	151.125	167.916	184.708	201.500	218.291	235.083	251.875	268.666	285.458	302.250	819.041	335.833
		070.		17.973	35.947	53.921	71.895 89,869	107.842	125.816	143.790	161.764	179.738	197.711	215.685	233.659	251.633	269.607	287.580	305.554	823.528	341.502	359.476
		.065		19.339	88.678	58.017	77.356 96.695	116.034	135.373	154.712	174.051	193.391	212.730	232.069	251.408	270.747	290.086	309.425	328.764	348.103	367.442	386.782
				20.933	41.866	62.800	83.733 104.666	125.600	146.533	167.466	188.400	209.333	230.266	251.200	272.133	293.066	314.000	334.933	355.866	876.800	397.733	418.666
				22.818	45.637	68.456	114.094	136.913	159.732	182.551	205.370	228.189	251.008	273.827	296.646	319.465	342.284	365.103	387.921	410.740	433.559	456.378
DEFLECTION—Continued	ECTIONS.	.050	RS.	25.083	50.166	75.250	125.416	150.500	175.583	200.666	225.750	250.833	275.916	301.000	326.083	351.166	376.250	401.333	426.416	451.500	476.583	999.109
TON	PER CENT. DEFLECTIONS.	.045	MULTIPLIERS	27.852	55.705	83.558	139.263	167.116	194.969	222.822	250.674	278.527	306.380	334.233	362.086	389.938	417.791	445.644	473.497	501.349	529.202	657.055
CHILECT	PER C	-040	,	31.316	62.633	98.50	156.583	187.900	219.216	250.533	281.850	313.166	344.483	375.800	407.116	438.433	469.750	501.066	532.383	563.700	295.016	626.333
i				35.772	71.545	107.317	143.030 178.863	214.635	250.408	286.180	321.953	357.726	393.498	429.271	465.044	500.816	536.589	572.361	608.134	643.907	629.629	715.452
		080.		41.716	83.453	125.150	208.583 208.583	250.300	292.016	333.738	375.450	417.166	458.883	200,600	542.316	584.033	625.750	667.466	709.183	750.900	792.616	834.333
		.025		50.041	100.083	150.125	200.166 250.208	300.250	350.291	400.333	450.375	500.416	550.458	600.500	650.541	700.583	750.625	999.008	820.708	900.750	950.791	1 000.833
		.020		62.533	125.066	187.600	312.666	375.200	437.733	200.266	262.800	625.333	687.866	750.400	812.933	875.466	938.000	1 000.533	1 063.066	1 125.600	1 188.133	1 250.666
		us in	eq2	10	8	8	\$2S	 8	2	8	8	100	110	17,0	130	140	120	160	170	8	16	- 8

TABLE OF STRAINS AT CENTER OF SPANS RESULTING FROM A GIVEN PERCENTAGE DEFLECTION—Continued.

					-		PER CEN	PER CENT. DEFLECTIONS	ECTIONS.			-	-		
ns in eet.	080.	.085	060.	.095	.100	.110	.120	.130	.140	.150	.160	.170	.180	.190	.200
eq8 A							Mī	MULTIPLIERS	.s.						
10	15.758	14.847	14.038	13.		11.546	10.616	9.832	9.161	8.583	8.079	7.636	7.244	6.895	6.583
ឧ	31.516	29.695	28.077	8		88	21.23 25.23 26.23	19.664	18.323	17.166	16.158	15.272	14.488	13.791	13.166
2	47.275	44.542	42.116	35 E		24.640	21.850	23.496	27.483	3.5	23.53	27.5	21.733	86	19.750
328	78.791	74.237	26.15 194.15	66.581	88.88	57.734	53.083	49.160	45.809	42.916	40.395	38.181	36.22	24.478 34.478	20.333 32.916
8			84.233	79.897		69.281	63.700	88	54.971	51.500	48.475	45.817	43.466	41.373	39.500
2	110.308	103.932	98.272	93.213	88.666	80.828	74.316	68.854	64.133	60.083	56.554	53.453	50.711	48.269	46.083
8			112.311	106.529		92.375	84.933	9	73.295	999.89	64.633	61.090	57.955	55.164	52.666
8			126.350	119.846		103.922	95.550	æ:	82.457	77.250	72.712	68.726	65.199	62.060	59.250
100			140.388	133.162		115.469	106.166	æ,	91.619	85.833	80.791	76.362	72.444	68.956	65.833
110	173.341			146.478	139.333	127.016	116.783	108.152	100.780			83.999	79.688	75.851	72.416
22	189.100			159.794	152.000	138.563	127.400	117.984	109.942			91.635	86.933	82.747	79.000
130	204.858	193.018	182.505	173.110	164.666	150.110	138.016	127.816	119.104	111.583	105.029	99.271	94.177	89.647	85.583
140	220.616			186.427	177.333	161.657	148.633	137.648	128.266			106.907	101.422	96.538	92.166
150 20	236.375			199.743	190.000	173.204	159.250	147.480	137.428			114.544	108.666	108.434	98.750
160	252.133	8			-202.666	184.751	169.866	157.312	146.590	137.333		122.180	115,911	110.329	105.333
170	267.891	225				196.298		167.144	155.752			129.816	123,155	117.225	111.916
180	283.650	267				207.845		176.976	164.914			137.452	130.399	124.121	118.500
190	299.408	282.103	266.738	253.008	240.666	219.392	201.716	186.808	174.076	163.083	153.504	145.089	137.644	131.016	125.083
200	315.166	8				230.939		196.641	183.238			152.725	144.888	137.912	131.666

RULE.—To find strain in pounds on wire of given span and deflection, multiply numbers in column answering to wire span and deflection by the weight per foot of wire.

WEIGHTS OF INSULATED WIRE.

		WEIGHT	PER 10	00 FEET.	WEIG	HT PER M	ILE.
Size, B. & S. Gauge.	Circular Mils.	Bare Wire.	Double-Braided Weatherproof.	Triple-Braided Weatherproof.	Bare Wire.	Double-Braided Weatherproof.	Triple-Braided Weatherproof,
	500 000.	1 600		1 867	8 448		9 858
•••••	450 000.	1 440	•••	1 680	7 603	• • • • • • • • • • • • • • • • • • • •	8 870
•••••	400 000.	1 280	•••••	1 493	6 758	•••••	7 883
•••••	350 000.	1 120	•••••	1 307	5 914	*********	6.901
	300 000.	960		1 120	5 069	••••••	5 914
•••••	250 000.	800		933	4 224	•••••	4 926
0000	211 600.	641	703	739	3 386	3712	3 902
000	167 805.	508 403	565	598	2 685 2 129	2 983	3 157
00	133 079 2	403	454	485	2 129	2 397	2 561
0	105 534.0	320	366	395	1 688	1 932	2 086
1	83 694.0	254	288	313	1 339	1 521	1 653
2	66 373.0	201	232	251	1 062	1 225	1 325
1 2 3 4 5	52 633.4	160	187	205	842	987	1 082
4	41 742.5	126	152 123	168	668	803	887
5	33 102.3	100	123	139	530	649	734
6	26 250.5	80	100	113	420	528	597
7	20 817.0	63	.77	88	333	407	465
8	16 509.0	50	63 52	74	264	333	391
9	13 094.0	40	52	61 51	210	275	322 269
10	10 381.0	31	43	51	166	227	269
11 12	8 234.1	25	36	43	132	190	227
12	6 529.9	20	29	37	105	,153	195

GALVANIZED STRANDS.

-		WEIG	HT PEI FEET.	R 1000	86			WEIG	нт реі Геет.	R 1000	lng		
Seven Wires.	Diameter.	Bare Strand.	Double-Braided Weatherproof.	Triple-Braided Weatherproof.	Estimated Breaking Strength.	Seven Wires.	Diameter.	Bare Strand.	Double-Braided Weatherproof.	Triple-Braided Weatherproof.	Estimated Breaking Strength.		
No.	,		01.0			No.		100			1 000		
8	12 5 2 6 8 5 6 9 27 4 18 7 1 8 8 5 8 9 27 4	520	616	677	8 320	15	147 3 16 14 9 14 16 8 8	100	148	163	1 600		
9	3,2	420	510	561	6 720	16	3 2	80	122	134	1 280		
10	16	360	444	488	5 720	17	16	60	96	105	960		
11	8	290	362	398	4 640	18	84	43	76	84	688		
12	-5 ₋	210	270	297	3 360	19	9 84	33	60	66	528		
13	32	160	214	235	2560	20	ا يُؤَ	24	48	53	384		
10 11 12 13 14	1 7	120	171	188	1 920	21	3 2	20	38	42	320		

TABLE OF GALVANIZED E. B. B. TELEGRAPH WIRE.

Size, B. W. G.	Weight per Mile.	Resistance per Mile in Ohms.	Breaking Weight.	Twists in 6 inches.	Size, B. W. G.	Weight per Mile.	Resistance per Mile in Ohms.	Breaking Weight.	Twists in 6 inches.
4 6	730 540	6.34 8.45	1 898 1 404	18 19	10	260 214	17.79 21.61	676 556	24 25
8	380	12.17	988	21	11 12	165	28.03	429	25 27
9	330	14.01	858	21 22	14	96	48.18	250	28

00 00 00 00 00

28824

2222 | ×××××

70/20/24 "11111111111 " 22 4 4 2" 0 0 0 0 0

inch of Serew.

No. of Threads per

Nominal Internal.

WROUGHT-IRON WELDED STEAM, GAS AND WATER PIPE.

1.668 2.244 2.678 3.609 5.739 7.586 9.001 10.665 12.340 14.502 28.271 28.177 28.177 33.701 40.065 43881 Pound per foot. Nominal Weight 166.9 26.25 70.66 30.10 19.50 14.57 1.31 7.20 7.20 48244 85888 513.0 383.3 751.2 472.4 270.0 Cubic foot. Length of Pipe containing one Table of Standard Dimensions, as manufactured by National Tube Works Company. OF PIPE. 36336 3.645 2.768 2.871 1.848 1.547 83428 Surface. Internal LENGTH (233253 7524888 75248888 9.440 7.075 5.657 4.547 3.637 2.302 1.608 1.328 Surface External .495 4 .668 .797 1.708 25,55,55 35,55,55 35,55,55 35 35,55 35 35,55 35 35,55 35 35,55 35 35 35 35 35 35 35 5.584 6.926 8.386 10.030 11.924 2.243 2.679 8.174 8.674 4.316 Metal. TRANSVERSE AREAS. .862 2.038 3.356 4.784 7.388 9.887 12.730 15.961 19.990 ፠ጜ골ጜ፠ Internal. 888888 9.621 12.566 15.904 19.635 24.306 34.472 45.664 58.426 72.760 90.768 858833 2.164 2.835 4.430 6.492 Sq. In. External. 9.636 11.146 12.648 14.162 15.849 19.064 22.068 25.076 28.076 31.477 .848 1.144 1.552 1.957 2.589 3.292 4.335 5.061 6.494 7.753 CIRCUMFERENCE Inches Internal. 20.813 27.096 30.238 83.772 5.215 5.215 5.969 7.461 9.082 Inches External. Inches. 88885 25522 ដូននេះ 822328 Thickness. 1.048 1.380 1.611 2.067 2.468 6.065 7.023 7.982 8.937 10.019 22422 3.067 3.548 4.026 5.045 Inches Internal. Actual DIAMETER, **3363**8 1.315 1.660 1.900 2.375 2.875 8.4.4.6.6 000.2.6 000.2.6 000.2.6 6.625 2.625 9.625 0.750 Inches External. Actual

WEIGHTS AND DIMENSIONS OF LEAD-ENCASED ELECTRIC-LIGHT CABLES.

Size, B. & S.	Number of Wires	Diameter of Wire in Mils.	Area in Circular Mils.	Thickness of Lead.	PAPER INSU- LATION.		FIBRE INSU- LATION.	
					Outside Diameter.	Weight per 1000 Feet.	Outside Diameter.	Weight per 1000 Feet.
0000	61 61 61 61 37 37 27 27 27 19	99 95 91 86 104 97 105 96 106 94	600 000 550 000 500 000 450 000 450 000 350 000 350 000 250 000 211 600 167 805	10 10 10 10 10 10 10 10 10 10 88 82 82 82	$ \begin{array}{c} 1_{16}^{76} \\ 1_{132}^{18} \\ 1_{38}^{18} \\ 1_{16}^{18} \\ 1_{32}^{18} \\ \hline 1_{32}^{18} \\ 1_{16$	4 280 4 060 3 745 3 570 3 345 3 070 2 850 2 585 2 300 2 050	12 52 1 1 5 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2	4 475 4 245 4 030 3 755 3 520 3 240 3 020 2 755 2 425 2 175
00 0 1 2 3	19 19 7 7 7	84 75 109 98 87	133 079 105 534 83 694 66 373 52 633	32 5 64 5 64 16 16	5/67/20/60 11/2451/1-6/4/215	1 845 1 480 1 315 1 035 950	1 263 800 553	1 955 1 575 1 415 1 120 1 035
4 5 6	1 1 1	204 182 162	41 743 33 102 26 250	16 16 16	2 1 2 2 3 5 6 8 9 6 4	875 805 745	2427-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	960 890 825

WEIGHTS AND DIMENSIONS OF LEAD-ENCASED TELEPHONE CABLES.

•	Li Li			ı.	
Number of Pairs.	Outside Diameter.	000	Pairs.	Outside Diameter.	00
of I	Diar	Weight per 1000 Feet,	of I	Diar	Weight per 1000 Feet.
lber	ide	ght] et.	lber	ide	ght 1 et.
Nam N	Juts	Weig Fe	Number of	Outs	Weig Fe
5 7	34 7 8	775	48 56 61 75 85 91 100	$1^{rac{78}{18}}$ $1^{rac{5}{18}}$ $2^{rac{1}{4}}$ $2^{rac{5}{18}}$ $2^{rac{1}{4}}$ $2^{rac{5}{18}}$	3 970
7	18	1 105 1 680	96	148	4 215 4 415
12 16 19 27 33 37	11	1 990	75	21	5 125
19	$1\frac{1}{1}$	2 285	85	$\overset{-4}{2}_{\tau^{5}x}$	5 525
27	18	2 655 2 995	91	280	5 865 6 250
33		2 995	100	$2\frac{1}{2}$	6 250
37	18	3 305			

WEIGHTS AND DIMENSIONS OF LEAD-ENCASED TELEGRAPH CABLES.

		NSULATION.	COTTON INSULATION.		
Number of Conductors.	Outside Diameter.	Weight per 1000 Feet.	Outside Diameter.	Weight per 1000 Feet.	
5 10 15 20 25 30 40 50 65 75 85 100	orthodocoperio	880 1 200 1 520 1 860 2 210 3 020 3 520 4 020 4 640 5 160 5 690	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 280 1 620 1 960 2 770 3 170 3 580 4 110 4 650 5 310 5 860 6 430	

•

Eng 4876.92.5 Hand-book of tables for electrical Cabot Science 006457475