Homework 2

Anthony Falcon

April 14, 2021

Problem 1-3

Submitted as a hand written pdf attached at the end of this report.

Problem 4

In problem 4 we implemented classic 4th order Runge-Kutta method to solve the following IVP $\,$

$$y'' - \mu(2 - \exp(y'^2))y' + y = 0$$
$$y(0) = y_0, \quad y'(0) = v_0$$

using $y_0 = 3, v_0 = 0.5$ and h = 0.025. Before we can use RK4 we convert the IVP to a first order system. We are asked to solve the IVP to T = 30 for 3 different μ values being $\mu = 0.5, 2, 4$. Below are 6 figures grouped by μ one is y(t) vs t and y'(t) vs t and the other is y'(t) vs y(t)

Problem 5

In problem 5 we were asked to solve the IVP in problem 4 using $y_0=3$ and $v_0=0.5$ but this time $\mu=4$ and we vary the time stepsize $h=\frac{1}{2^3},\frac{1}{2^4},...,\frac{1}{2^{13}}$ We

used the numerical solutions to estimate the error in the numerical solutions.

Part 1

In part 1 we look at the max error for each time step size. Below is the plot of E_{\max} vs h

Part 2

In part 2 we needed to find a step-size such that $E_{max}(h) < 5 \times 10^{-8}$. that value was

$$h_c = \frac{1}{2^9}$$

Below is the plot of $||E_n(h)||$ vs t_n with time step size h_c and $\frac{h_c}{2}$

Problem 6

In Problem 6 we program the fehlberg 45 method. Using this method we once again solve the IVP to T=30 from problem 4. We use $y_0=3, v_0=0.5\mu=4$ and our step size h=0.025.

Part 1

Part 1 asks us to calculate $E_n^{Fehlberg}(h)$ and make a plot of $E_n^{Fehlberg}(h)$ vs t_n . The plot of that is below.

Part 2

Finally in part 2 we used

$$E_n(h) = \frac{1}{1 - (0.5)^5} \|w_n(h) - w_n(\frac{h}{2})\|$$

to calculate the error then we plot $E_n^{Fehlberg}(h)$ vs t_n and $E_n(h)$ vs t_n in one figure to compare them. from the figure below we can see that E_n is more consistent with error than $E_n^{Fehlberg}(h)$ is.

