Lab 7: OS Summary

Group Names: Marisa Long, Anna Schoeny, Garrett Gilliom, Jonathan Licht Note: The provided examples are in blue.

Tables

Identify and summarize issues of this course in the following tables. Some cells have already been filled to serve as an example.

• Interesting terms and concepts (aka new fancy words you learned or revisited in this course)

Term and/or brief summary	Computer system examples	Examples from different academic areas (including other branches of CS)	Examples from everyday life
Caching (storing a copy of recently accessed data in a storage that's faster than the primary storage).	 Processor cache maintains small subset of data from main memory. Flash drive is used as cache for HDD.		Putting your most worn coats back at the front of the closet each time.
Kernel/User Mode (The CPU has two primary modes of operation, kernel and user mode. Kernel mode is privileged, meaning that the hardware and memory can be accessed, while user mode is not, requiring user processes to use system calls for privileged operations).	A bit that determines whether the CPU has privileged access to the hardware of the system.	Security permissions for users of a website who have accounts/are "logged in" versus those who are just guests.	Disney World's Star Wars: Galaxy's Edge originally allowed guests to only have a limited time to be inside the area. During their time window, they are privileged; before or after, though, they do not have access to restricted activities/attractions
CPU Schedulers	First In First Out Shortest Job First Shortest Time to Completion First Round Robin Multilevel Feedback Queue	In business/economics, first in first out (FIFO) can be understood as an assumption that the oldest inventory/packages/supply will be sold or shipped to consumers before newer product.	Deciding what homework should be done first (based on difficulty, due date, etc).

Lab 7: OS Summary

Multi-threaded programming/Concurrency (parts of some thread of execution/multiple processes running at the same time, sharing information and data while sharing the same address space).	Dining Philosophers Problem Producer/Consumer Problem	Members of a lab group splitting up individual tasks to then combine the results of once they are each complete	Cooking: focusing on assembling one part of a meal while another cooks
Locks (a variable that can either be available/unlocked meaning no thread holds it or held/locked meanings that the thread holds the lock and is in a critical section. Locks ensure that a resource cannot be accessed by several concurrent threads).	Spin locks Pthread locks Ticket locks	Vacuum chamber to do work with gravity; prevents outside factors, such as wind/air resistance, from disturbing the event/situation that is being studied	Turning off one's phone when studying so as to not be distracted/interrupted
Virtualization (take a physical resource and turn it into the virtual form or creating a virtual space to run software in to separate it from its physical form)	Memory Virtualization CPU Virtualization Processes unaware that they are sharing the CPU, process think has complete access to memory		Multitasking: Trying to do homework while also trying to watch a basketball game.
Limited Direct Execution (idea of controlling the scope of executing user processes, such as loading up registers, set IP to main, swap processes, access hardware directly, or begin I/O)	System Calls Traps/Tables Kernel/User mode - prevent a process from having too much access within a system Enabling time sharing - context switches and timer interrupts	Psychology: preventing a subject/volunteer from modifying, altering, or affecting more than one independent variable at a time (depends on the type of experiment)	Don't let a child have access to all tools. Ex: an oven, a car, cookie jar, credit card, kitchen knives Using an ATM – a user is only given access to their money supply, rather than the whole system's
Context Switching (a low-level code that the OS uses to stop running one program and start running another. The currently running processes' state is saved,	Queued by timer interrupts from various system calls Forced by CPU scheduling algorithm	Performing arithmetic in one's head until a math problem that requires a calculator is encountered; one must stop using mental math/the flow of their work, perform another process	Changing the channel on a TV when ads begin (regular show/programming is the "process")

Lab 7: OS Summary

and the other processes' machine state is loaded).		to compute the calculation, and then resume the original process (may happen more than once during a single problem!)	
Eviction Policy (Algorithm used by the OS to prevent an overflow of pages in the TLB)	The TLB cache in memory can only hold so many different pages to quickly access; if it held all pages, then it wouldn't be convenient or quick! Different eviction policies include: Optimal (accessed furthest in the future) FIFO RANDOM LRU	Heating up 5 different chemical combinations to test their boiling points while only using 3 different hot plates	Deleting photos/apps/data from a phone when attempting to take new pictures/download a new app/etc. when the phone's storage is full Only carrying specific textbooks/notebooks in a backpack when they are necessary, rather than all of them at once due to their weight
Starvation (when there are too many interactive jobs in a system, processes may starve if they are continually denied the ability to run on the CPU. Processes may starve if they are constantly held at a lower scheduling priority than other processes).	A poor CPU scheduling algorithm may accidentally prevent one or more processes from having time on the CPU	(Poli Sci) House/Senate filibuster - shorter tasks (the people filibustering) are repeatedly completed, taking time away from a longer, perhaps more important, task. Good example of a "process" that is specifically designed to "starve" other processes	Repeatedly working on the shortest piece of homework to inevitably never touch the long essay due in a month Living on the top floor of a dorm, if people are constantly getting on the elevator at lower floors and having the elevator go down it may never get to your floor
Memory Bus (hard wires/cords through which information/data is passed from different parts of the hardware, such as the CPU, graphics card, memory locations	Parts of the hardware that require greater CPU processing power are located physically closer to the CPU than others, such as RAM and graphics, and I/O devices/chip	Algorithm to find the shortest path in between two places (google maps).	Car keys near a door, kitchen appliances in the kitchen, bathroom near the bedroom

Lab 7: OS Summary

• Useful problem-solving approaches

Brief statement	Computer system examples	Examples from different academic areas (including other branches of CS)	Examples from everyday life
Periodically check the system status in order to detect errors early.	Periodically checking that there is still enough free space in the physical memory to avoid needing to evict data to the hard disk, which allows us to avoid thrashing. Using conditionals to ensure that a certain condition is being checked and met each time before starting a certain part of a process so that if the condition is false, we stop before the error would have occurred.	Periodically check the status of a biological experiment to catch obvious problems early.	Going to the doctor for an annual physical to check up on your general health and catch any developing issues early. Continually check the weather to avoid getting caught out in a storm
Using print statements in order to identify where an error is occurring in the code or to see in what order different processes are running	Putting print statements after the child in exec() to make sure that exec() is working properly (it's a good sign if those print statements never print) Printing in both the child and parent function after calling fork() to see which process is running first	Repeatedly plugging in a random number for a variable in a mathematical expression when attempting to simplify it (ensure that the expression continually outputs the same value)	Periodically tasting food when cooking to make sure it's "just right" or checking the temperature of a turkey/steak/etc. when cooking it
Lock Implementation Evaluation metrics (Correctness, Performance, Fairness)	Placing locks around the critical section of code to ensure that it is not being interrupted in the middle of one thread running.	Economics/Business: to be successful, businesses interact with customers quickly/efficiently, fairly (to not give any customer advantage over others), and correctly to follow through with product/service promises	Fast food restaurants must meet all these requirements; the orders must be fulfilled correctly, quickly, and fairly to see that each order is actually completed

Lab 7: OS Summary

		<u> </u>	
Considering an unrealistic, yet	Considering an impossible to	STEM labs: a 100% percent yield	Finding gifts for people: a
"optimal" algorithm for a task to	implement algorithm for CPU	or 0% error would be optimal, but	perfect gift would be nice, but it
compare realistic	scheduling or page swapping	unrealistic. So, other values that are	also could be too expensive/out
implementations to		slightly off of the theoretical/desired	of reach. Other gifts could be
		values are accepted and compared	compared to this "optimal" gift
		to the "perfect" values.	
Preventing software from directly	Kernel and user mode indicates	Sealed historical archives/ records -	Having parental controls on a
accessing hardware to avoid	when processes can access hardware	sealing a document can legally	smartphone or iPad so that
security mishaps	or memory and when system calls are	prevent access without a court	children do not have access to
1	necessary for user processes to use	order. This can be the case with	inappropriate content or any
	privileged operations. Kernel mode	court cases or other legal or	other potentially harmful apps
	indicates that the software can	historical records that the public for	and websites that they would
	execute and access hardware and	some reason should not have access	otherwise be able to access
	memory, whereas user mode	to for security or other interests.	while using a device (parents
	prevents software that might either		are privileged "kernel mode"
	accidentally or maliciously access		and have access, whereas
	hardware that might lead to		children are the users that are
	corruption or a computer crash.		denied access and can only gain
			access by asking the parent like
			through system calls)

• Neat solutions, hacks, design tricks

Brief statement	Computer system examples	Examples from different academic	Examples from everyday life
		areas (including other branches of	
		CS)	
Devising separate solutions for	Different types of actions are	When writing an essay, there are	Similarly, different types of
initial system startup, system	performed at OS booting, standard	different elements that must be	actions are performed at
resume, and normal system	OS operation, and OS shutdown.	present in the introduction, the	starting a car, continuous
operation.		body paragraphs, and the	running of a car, and car
		conclusion. Therefore, our layout	shutoff.

Lab 7: OS Summary

		and our approach to writing each of	
		these segments must be different.	
Making access faster to specific	Using the TLB to store most recently	Chemistry: a scientist dealing with	Similarly, Spotify puts our most
pieces of information that are	accessed pages so that there are less	specific atoms, molecules,	used playlists at the top of our
more likely to be needed.	accesses to the disk, which is slow.	reactions, etc. may remember those	home page but stores the rest of
		which are relevant to them, rather	our playlist in a long list of all of
		than those pertaining to another	them that takes longer to scroll
		unrelated field	through.
Using one tool to accomplish	Semaphores can be used as a lock or	Integration can be used to find area	Spork, one tool that can be
different problems	condition variable.	under a curve, but can be also used	used as a spoon or a fork.
		to find relationship between	
		acceleration/velocity/position	
Being proactive about issues	In memory management, the OS	Wearing safety goggles/equipment	Starting big projects early on so
	moves pages to hard disk	while doing experiments	that it makes the whole
	preemptively so that the computer		experience easier and less
	doesn't start thrashing as quickly		stressful.

• Other (optional, bonus points)

If there are other interesting ideas from the course that don't fit into the above categories, name them and provide examples here. Essentially, you're looking to create a cheat-sheet that you could use as a reference for most essential course content in the future.

Lab 7: OS Summary References

1) https://pages.cs.wisc.edu/"remzi/OSTEP/

Operating Systems: Three Easy Pieces Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau Arpaci-Dusseau Books August, 2018 (Version 1.00)

2) Notes from lecture