

TEKNOFEST

HAVACILIK, UZAY VE TEKNOLOJI FESTIVALI

ROKET YARIŞMASI

UÇUŞ BENZETİMİ RAPORU

TAKIM ADI:

Astra Roket Takımı

BAŞVURU ID:

396963

İçindekiler Tablosu

2.1 Kinematik ve Dinamik Denklemler	4
İvme denklemleri:	4
Konum denklemleri:	4
Hız denklemleri:	4
Uçuş yolu açısı hesabı denklemi:	4
2.2 Atmosfer Modeli	5
Hava yoğunluğu – deniz seviyesi yüksekliği	5
Ses hızı – deniz seviyesi yüksekliği	5
2.3 Motor Modeli	6
Zamana bağlı itki kuvveti modeli	6
Zamana bağlı atılan kütle (harcanan yakıt kütlesi) modeli	7
2.4 Aerodinamik Model	8
2.5 Benzetim Yapısı	9
Genel Benzetim	9
2 Serbestlik Derecesi Benzetimi	10
Kuvvet Modeli	10
Atmosfer Modeli	11
Hava Yoğunluğu Modeli	11
Sıcaklık sistemi Modeli	12
Sıcaklık modeli üs formülü	12
Ses hızı benzetim yapısı	13
Cd Yakınsama Modeli	13
Cd veri ara değerleme algoritması	14
Benzetim Yapısındaki Pisagor 0,1,2 Formülleri	14
İlk hız eklenmesi	15
2.6 Benzetim Doğrulaması	15

3.1 Benzetim Çıktı Formatı	16
2.7 Benzetim Sonuçları	16
3.2 Benzetim Çıktı Formatı	17
Yörünge grafiği(yükseklik- menzil)	17
Uçuş yolu açısı – zaman grafiği	18
Mach grafiği	18
Dinamik basınç – Zaman Grafiği	19
Dikey tırmanma hızı (-Z ekseni hızı) – zaman grafiği	20
Referanslamalar	ıımlanmamış.

2.1 Kinematik ve Dinamik Denklemler

İvme denklemleri:

$$\bullet \quad a = \frac{v - v_0}{\Delta t} \ [1]$$

•
$$a_y = \frac{F_T - F_D}{m} \cdot \sin 85 - g$$
 $a_z = \frac{F_T - F_D}{m} \cdot \cos 85$ $a_x = \sqrt{a_y^2 + a_z^2}$

Konum denklemleri:

•
$$d = v_i * t + \frac{1}{2} * a * t^2$$
, $d = \frac{v_i + v_f}{2} * t$ [1]

•
$$\int v_y \cdot dt = \Delta d_y$$
 $\int v_z \cdot dt = \Delta d_z$ $d_x = \sqrt{d_y^2 + d_z^2}$

Hız denklemleri:

•
$$v_f = v_i + a * t , v_f^2 = v_i^2 + 2 * a * d$$
 [1]

•
$$\int a_y \cdot dt = \Delta v_y$$
 $\int a_z \cdot dt = \Delta v_z$ $v_x = \sqrt{v_y^2 + v_z^2}$

Uçuş yolu açısı hesabı denklemi:

•
$$F_v = (T - D) \sin \sin b - W$$
 [1]

•
$$F_x$$
. $\alpha = \tan^{-1}(\frac{v_y}{v_z})$

2.2 Atmosfer Modeli

Deniz seviyesinden yükseldikçe hem atmosfer basıncı hem de havanın yoğunluğu azalır. Sıcaklığın yükseklikle doğrusal olarak azaldığı varsayımı kullanılarak, hava yoğunluğu – deniz seviyesi yüksekliği grafiğini bu bilgiler doğrultusunda oluşturduk. [2]

Ses hızı – deniz seviyesi yüksekliği

Sesin hızı gazın durumuna bağlı olarak ilerler. Hava yoğunluğu azaldıkça, ses hızının iletimi de azılır. Biz oluşturduğumuz modelde yükseklik arttıkça, sıcaklığın azaldığı varsayımını

kullandık. [3]

2.3 Motor Modeli

Zamana bağlı itki kuvveti modeli

Roket üzerinde kullanılması planlanan Cesaroni M2020 Imax Rocket Motorunun, motor itki ve I_{sp} verileri kullanılarak aşağıdaki grafik çıkarılmıştır. Yarışma isterleri gereğince elimizdeki model üzerinde veri boşlukları bulunması sebebiyle bu veri noktalarında ara değerlendirme uygulanmıştır. [4] [5]

Zamana bağlı atılan kütle (harcanan yakıt kütlesi) modeli

İtki verilerini ve özgül itki değerini kullanarak atılan kütle debisini($F_t = I_{sp} * g * m'$) formülünü kullanarak Zamana bağlı atılan kütle (harcanan yakıt kütlesi) modelini oluşturduk. [6]

2.4 Aerodinamik Model

Aerodinamik modelde kullandığımız veri seti teknofestin yayınlamış olduğu (veri_aero_Cd_2022_3QHIV) adlı exceldir. Bunun sebebi ise roketin aerodinamiğinde ve dizaynında kullandığımız open rocket programında alığımız verilerle uyuşmasıdır. [7]

Elimizdeki veri setinin aralıklarının genişliğinden dolayı ara değerleme yaptık. Daha sonra ise roketimizin bulunduğu ve bulunabileceği irtifaya göre değerler arasında ağırlıklı ortalama aldık.

$$f(mach) = (C_0, C_{3k}, C_{6k})$$

0-3000 metre arasında

$$C_d = C_0 \left(1 - \frac{h}{3000} \right) + C_{3k} \left(\frac{h}{3000} \right)$$

3000-6000 metre arasında

$$C_d = C_{3k} \left(2 - \frac{h}{3000} \right) + C_{6k} \left(\frac{h}{3000} - 1 \right)$$

2.5 Benzetim Yapısı

Genel Benzetim

2 Serbestlik Derecesi Benzetimi

Kuvvet Modeli

Atmosfer Modeli

Hava Yoğunluğu Modeli

Sıcaklık sistemi Modeli

Sıcaklık modeli üs formülü

Ses hızı benzetim yapısı

Cd Yakınsama Modeli

Cd veri ara değerleme algoritması

Benzetim Yapısındaki Pisagor 0,1,2 Formülleri

İlk hız eklenmesi

2.6 Benzetim Doğrulaması

Tablo 1. Doğrulama Çalışması Başlangıç Koşul Değerleri

	Değer
Pozisyon [m]	[0, 0, 0]
Hız (bileşke) [m/s]	2
Uçuş Yolu Açısı [derece]	85

Tablo 2. Doğrulama Çalışması Diğer Verileri

	Değer
Başlangıç Kütlesi [kg]	25
Atış Noktası Rakımı [m]	980
Başlangıç Yakıt Kütlesi [kg]	4.659
Özgül İtki (Isp) [s]	209.5
İtki Profili Dosyası	"veri_itki_F_2022.xlsx"
Aerodinamik Veri Seti Dosyası	"veri_aero_Cd_2022.xlsx"
Roket Çapı [m]	0.14

3.1 Benzetim Çıktı Formatı

	Değer
Maksimum Mach Sayısı [-]	1.02
Tepe Noktası Pozisyonu [m]	[3410.75, 0, 558.75]m
Tepe Noktası Hızı (bileşke) [m/s]	21.28 m/s
Tepe Noktası Mach Sayısı [-]	0.06
Tepe Noktası Zamanı [s]	24.65sn

2.7 Benzetim Sonuçları

	Değer
Pozisyon [m]	[0,0,0]
Hız (bileşke) [m/s]	2
Uçuş Yolu Açısı [derece]	85
Başlangıç Kütlesi [kg]	28,57 kg
Atış Noktası Rakımı [m]	980

3.2 Benzetim Çıktı Formatı

	OpenRocket	Benzetim Değeri	Yüzdece Fark
	Değeri (a)	(b)	(b-a)/a*100
Maksimum Mach Sayısı [-]	0.77	0.77	%0
Tepe Noktası Pozisyonu [m]	[3048, 0, 222]	[2838, 0, 499]	%5,72
Tepe Noktası Hızı (bileşke)	22.8 m/s	20.6 m/s	%9.64
[m/s]			
Tepe Noktası Mach Sayısı [-]	0.01	0.06	%500
Tepe Noktası Zamanı [s]	25.231s	24.2s	% 4,09

Yörünge grafiği(yükseklik- menzil)

Uçuş yolu açısı – zaman grafiği

Mach grafiği

Maksiumum mach yüksekliği 514.6 metre

Dinamik basınç – Zaman Grafiği

Maksimum dinamik basınç yüksekliği 497.5 metre

Soru: Maksimum dinamik basıncın roket için önemi nedir?

Cevap: Maksimum dinamik basınç roketin uçuş sırasında maruz kalabileceği şeyleri bilmek, roketi uygun görevlerde kullanmak için önemlidir.Fırlatma sırasında roket hızı artar, ancak roket yükseldikçe hava yoğunluğu azalır. Bu nedenle (<u>Rolle teoremi</u> ile) dinamik basıncın maksimum olduğu bir nokta vardır.

Diğer bir deyişle, maksimum q'ya ulaşmadan önce, artan hıza bağlı dinamik basınç artışı, azalan hava yoğunluğuna bağlı dinamik basınç düşüşünden daha büyüktür, öyle ki, araca etki eden net dinamik basınç (karşıt kinetik enerji) artmaya devam eder. Maksimum q'yu geçtikten sonra bunun tersi doğrudur.

Bu değer, gövde roketinin taşıması gereken yapısal yükü belirleyen kısıtlardan biri olduğu için önemlidir. [8]

Dikey tırmanma hızı (-Z ekseni hızı) – zaman grafiği

Referanslama

```
[ wikipedia. [Çevrimiçi]. Available: https://tr.wikipedia.org/wiki/Hareket denklemleri.
1
]
[ homerenergy. [Çevrimiçi]. Available:
2 https://www.homerenergy.com/products/pro/docs/latest/altitude.html. [Erişildi: 25 nisan
] 2022].
[ nasa. [Çevrimiçi]. Available: https://www.grc.nasa.gov/www/k-12/airplane/sound.html.
3
]
[ thrustcurve. [Çevrimiçi]. Available:
4 https://www.thrustcurve.org/simfiles/5f4294d20002e9000000746/. [Erişildi: 2 Nisan
] 2022].
[ csrocketry. [Çevrimiçi]. Available: https://www.csrocketry.com/rocket-
5 motors/cesaroni/motors/pro-75/6g-reloads/cesaroni-m2020-imax-rocket-motor.html.
] [Erişildi: 5 nisan 2022].
[ [Çevrimiçi]. Available:
6 https://tr.wikipedia.org/wiki/%C3%96zg%C3%BCl_itici_kuvvet#:~:text=%C3%96zg%C3
] %BCl%20itici%20kuvvet%20(genellikle%20I,olarak%20itici%20kuvvetin%20t%C3%BC
 revini%20belirtir. [Erişildi: 14 Nisan 2022].
[ Teknofest. [Çevrimiçi]. Available: https://teknofest.org/tr/competitions/competition/31.
7 [Erişildi: 29 nisan 2022].
1
```

```
[ wikpedia. [Çevrimiçi]. Available: https://en.wikipedia.org/wiki/Max_q. [Erişildi: 1 Mayıs 8 2022].
```