Recurrent Neural Networks

Week 12 - Day 02

Recap

MLPClassifier(hidden_	_layer_	sizes=(100,

10))

Backpropagation

to train ANN

Simple Neural Network

Deep Learning Neural Network

Convolutional Layers

Deep Learning learns layers of features

 \mathbf{I} \mathbf{K} $\mathbf{I} * \mathbf{K}$

Filters

No need to build the features!

Recurrent Neura Networks

Let's talk about

CNN = images

output P(Snorlax is showering) = 0.6P(Snorlax is drinking water) = 0.3P(Snorlax is being attacked) = 0.1Neural Network I see Snorlax and water. He's probably taking a bath.

input

CNN = what I see

RNN = what I see + what happened before

Input

Image caption

Time series forecasting

Frame-by-frame classification

The Unreasonable Effectiveness of

Recurrent Neural Networks

Long Short Term Memory

LSTM = A complex RNN

$$z_t = \sigma\left(W_z \cdot [h_{t-1}, x_t]\right)$$

$$r_t = \sigma\left(W_r \cdot [h_{t-1}, x_t]\right)$$

$$\tilde{h}_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Suggested Read - LSTM

LSTM + TS

one to many many to one many to many many to many one to one

Pros/cons

- no assumptions (stationarity...)
- good results
- non-linear models
- complex models (SARIMA are simple)
- require a lot of data (it depends...)

Time series shootout: ARIMA vs. LSTM

Conclusion

- LSTM works fine for tasks where ARIMA is known to work well, even
 - given very little data
 - without much hyperparameter tuning
 - without having more than one level of LSTM
 - for multi-step forecasts
- LSTM works great for multiple seasonality, again, without any tuning!

The Great Time Series Classification Bake Off: An Experimental Evaluation of Recently Proposed Algorithms. Extended Version