Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Iowa State University

June 19, 2013

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Several Random

Mean and Variance

Outline

Functions of Several Random Variables

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Functions of Several Random Variables

Mean and Variance

Functions of Several Random Variables

Approximating the

▶ We often consider functions of random variables of the form:

$$U = g(X, Y, \dots, Z)$$

where X, Y, \ldots, Z are random variables.

U is itself a random variable.

Several Random Variables (Ch. 5.5)

Functions of

➤ Suppose that a steel plate with nominal thickness .15 in. is to rest in a groove of nominal width .155 in., machined on the surface of a steel block.

Relative Frequency Distribution of Slot

 Slot Width (in.)
 Relative Frequency

 .153
 2

 .154
 2

 .155
 4

 .156
 2

Relative Frequency Distribution of Plate Thicknesses

Plate Thickness (in.)	Relative Frequency
.148	.4
.149	.3
.150	.3

- $\triangleright X =$ plate thickness
- ► Y = slot width
- ightharpoonup U = Y X, the "wiggle room" of the plate

Functions of Several Random Variables

Approximating the Mean and Variance of a Function

xpectations and ariances of linear ombinations

The Probability Function for the Clearance U = Y - X

Marginal and Joint	Probabilities	for X	and Y

у \	x .148	.149	.150	$f_Y(y)$
.156	.08	.06	.06	.2
.155	.16	.12	.12	.4
.154	.08	.06	.06	.2
.153	.08	.06	.06	.2
$f_X(x)$.4	.3	.3	

и	f(u)
.003	.06
.004	.12 = .06 + .06
.005	.26 = .08 + .06 + .12
.006	.26 = .08 + .12 + .06
.007	.22 = .16 + .06
.008	.08

▶ Determining the distribution of *U* is difficult in the continuous case.

Outline

Approximating the Mean and Variance of a Function

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Several Random

Approximating the Mean and Variance of a Function

Approximating the Mean and Variance of a Function

The Central Limit

If X, Y, \dots, Z are independent, g is well-behaved, and the variances Var(X), Var(Y),..., Var(Z) are small enough, then U = g(X, Y, ..., Z)has.

$$\begin{split} E(U) &\approx g(E(X), E(Y), \dots, E(Z)) \\ \text{Var}(U) &\approx \left(\frac{\partial g}{\partial x}\right)^2 \text{Var}(X) + \left(\frac{\partial g}{\partial y}\right)^2 \text{Var}(Y) + \dots + \left(\frac{\partial g}{\partial z}\right)^2 \text{Var}(Z) \end{split}$$

These formulas are often called the **propagation of error formulas**.

Example: an electric circuit

- R is the total resistance of the circuit.
- \triangleright R_1 , R_2 , and R_3 are the resistances of resistors 1, 2, and 3, respectively.
- $E(R_i) = 100$, $Var(R_i) = 2$, i = 1, 2, 3.

$$R = g(R_1, R_2, R_3) = R_1 + \frac{R_2 R_3}{R_2 + R_3}$$

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Several Random Variables

Approximating the Mean and Variance of a Function

Approximating the Mean and Variance of a Function

$$E(R) \approx g(100, 100, 100) = 100 + \frac{(100)(100)}{100 + 100} = 150\Omega$$

$$\frac{\partial g}{\partial r_1} = 1$$

$$\frac{\partial g}{\partial r_2} = \frac{(r_2 + r_3)r_3 - r_2r_3}{(r_2 + r_3)^2} = \frac{r_3^2}{(r_2 + r_3)^2}$$

$$\frac{\partial g}{\partial r_3} = \frac{(r_2 + r_3)r_2 - r_2r_3}{(r_2 + r_3)^2} = \frac{r_2^2}{(r_2 + r_3)^2}$$

$$Var(R) \approx (1)^2(2)^2 + \left(\frac{(100)^2}{(100 + 100)^2}\right)^2(2)^2 + \left(\frac{(100)^2}{(100 + 100)^2}\right)^2(2)^2$$

$$= 4.5$$

$$SD(R)\sqrt{4.5} \approx 2.12\Omega$$

Outline

Expectations and variances of linear combinations

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Several Random

Mean and Variance

 X_1, X_2, \dots, X_n are independent random variables and

$$Y = a_0 + a_1 X_1 + a_2 X_2 + \cdots + a_n X_n$$

then:

$$E(Y) = E(a_0 + a_1X_1 + a_2X_2 + \dots + a_nX_n)$$

= $a_0 + a_1E(X_1) + a_2E(X_2) + \dots + a_nE(X_n)$

$$Var(Y) = Var(a_0 + a_1X_1 + a_2X_2 + \dots + a_nX_n)$$

= $a_1^2 \cdot Var(X_1) + a_2^2 \cdot Var(X_2) + \dots + a_n^2 \cdot Var(X_n)$

Approximating the Mean and Variance Expectations and

variances of linear combinations

- Say we have two independent random variables X and Y with E(X) = 3.3, Var(X) = 1.91, E(Y) = 25, and Var(Y) = 65.
- Find:

$$E(3+2X-3Y)$$

 $E(-4X+3Y)$
 $E(-4X-6Y)$
 $Var(3+2X-3Y)$
 $Var(2X-5Y)$
 $Var(-4X-6Y)$

June 19, 2013

Mean and Variance

$$E(3+2X-3Y) = 3+2E(X) - 3E(Y)$$

= 3+2\cdot 3.3 - 3\cdot 25
= -65.4

$$E(-4X + 3Y) = -4E(X) + 3E(Y)$$

$$= -4 \cdot 3.3 + 3 \cdot 25$$

$$= 61.8$$

$$E(-4X - 6Y) = -4 \cdot E(X) - 6 \cdot E(Y)$$

= -4 \cdot 3.3 - 6 \cdot 25
= -163.2

Approximating the Mean and Variance Expectations and

variances of linear combinations

$$Var(3 + 2X - 3Y) = 2^{2} \cdot Var(X) + (-3)^{2} Var(Y)$$

$$= 4 \cdot 1.91 + 9 \cdot 65$$

$$= 592.64$$

$$Var(2X - 5Y) = 2^2 \cdot Var(X) + (-5)^2 Var(Y)$$

= $4 \cdot 1.91 + 25 \cdot 65$
= 1632.64

$$Var(-4X - 6Y) = (-4)^{2} \cdot Var(X) + (-6)^{2} Var(Y)$$

$$= 16 \cdot 1.91 + 36 \cdot 65$$

$$= 2370.56$$

Functions of

Mean and Variance

- ▶ Say $X \sim \text{Binomial}(n = 10, p = 0.5)$ and $Y \sim$ Poisson($\lambda = 3$).
- Calculate:

$$E(5+2X-7Y)$$

 $Var(5+2X-7Y)$

First. note that:

$$E(X) = np = 10 \cdot 0.5 = 5$$

 $E(Y) = \lambda = 3$
 $Var(X) = np(1 - p) = 10(0.5)(1 - 0.5) = 2.5$
 $Var(Y) = \lambda = 3$

Now, we can calculate:

$$E(5+2X-7Y) = 5 + 2E(X) - 7E(Y)$$

= 5 + 2 \cdot 5 - 7 \cdot 3
= -6

$$Var(5 + 2X - 7Y) = 2^2 \cdot Var(X) + (-7)^2 \cdot Var(Y)$$

= $4 \cdot 2.5 + 49 \cdot 3$
= 157

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Functions of Several Random Variables

Approximating the Mean and Variance

iid random variables

- ▶ Identically Distributed: Random variables X_1, X_2, \dots, X_n are identically distributed if they have the same probability distribution.
- "iid": Random variables X_1, X_2, \dots, X_n are iid if they are Independent and Identically Distributed.

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Functions of Several Random

Approximating the

Derive:

$$E(\overline{X})$$

 $Var(\overline{X})$

where:

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

the mean of the X_i 's.

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Several Random

Mean and Variance

$$E(\overline{X}) = E\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \frac{1}{n}E(X_1) + \frac{1}{n}E(X_2) + \dots + \frac{1}{n}E(X_n)$$

$$= \underbrace{\frac{1}{n}\mu + \frac{1}{n}\mu + \dots + \frac{1}{n}\mu}_{n \text{ times}}$$

$$= n \cdot \frac{1}{n}\mu$$

$$= \boxed{\mu}$$

Remember $E(\overline{X}) = \mu$: it's an important result.

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Several Random

Mean and Variance

Approximating the Mean and Variance of a Function

Expectations and

variances of linear combinations

The Central Limit
Theorem

$$Var(\overline{X}) = Var\left(\frac{X_1 + X_2 + \dots + X_n}{n}\right)$$

$$= \left(\frac{1}{n}\right)^2 Var(X_1) + \left(\frac{1}{n}\right)^2 Var(X_2) + \dots + \left(\frac{1}{n}\right)^2 \cdot Var(X_n)$$

$$= \underbrace{\frac{1}{n^2}\sigma^2 + \frac{1}{n^2}\sigma^2 + \dots + \frac{1}{n^2}\sigma^2}_{n \text{ times}}$$

$$= n \cdot \frac{1}{n^2}\sigma^2$$

$$= \underbrace{\frac{\sigma^2}{n}}$$

► Remember $Var(\overline{X}) = \frac{\sigma^2}{n}$: it's another important result.

variances of linear combinations

- A botanist has collected a sample of 10 seeds and measures the length of each.
- ▶ The seed lengths $X_1, X_2, ..., X_{10}$ are supposed to be iid with mean $\mu = 5$ mm and variance $\sigma^2 = 2$ mm².

$$E(\overline{X}) = \mu = 5$$

 $Var(\overline{X}) = \sigma^2/n = 2/10 = 0.2$

Outline

The Central Limit Theorem

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Several Random

Mean and Variance

The Central Limit Theorem

If X_1, X_2, \dots, X_n are any iid random variables with mean μ and variance $\sigma^2 < \infty$ then as $n \to \infty$

$$\overline{X} \approx \operatorname{Normal}\left(\mu, \frac{\sigma^2}{n}\right)$$

The Central Limit Theorem (CLT) one of the most important and useful results in statistics.

- $ightharpoonup W_1 =$ last digit of the serial number observed next Monday at 9 AM
- V_2 = last digit of the serial number the Monday after at 9 AM
- \triangleright W_1 and W_2 are independent with pmf:

$$f(w) = \begin{cases} 0.1 & w = 0, 1, 2, \dots, 9 \\ 0 & \text{otherwise} \end{cases}$$

 $\overline{W} = \frac{1}{2}(W_1 + W_2)$ has the pmf:

The Probability Function for \overline{W} for n=2

\bar{w}	$f(\bar{w})$	$ar{w}$	$f(\bar{w})$	\bar{w}	$f(\bar{w})$	\bar{w}	$f(\bar{w})$	\bar{w}	$f(\bar{w})$
0.0	.01	2.0	.05	4.0	.09	6.0	.07	8.0	.03
0.5	.02	2.5	.06	4.5	.10	6.5	.06	8.5	.02
1.0	.03	3.0	.07	5.0	.09	7.0	.05	9.0	.01
1.5	.04	3.5	.08	5.5	.08	7.5	.04		

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Functions of Several Random Variables

Mean and Variance

Example: tool serial numbers

▶ What if $\overline{W} = \frac{1}{8}(W_1 + W_2 + \cdots + W_8)$, the average of 8 days of initial serial numbers?

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Several Random

Mean and Variance

- Each individual excess sale time should have an $Exp(\alpha = 16.5 \text{ s})$ distribution. That means:
 - $E(S) = \alpha = 16.5 \text{ s}$
 - $SD(\overline{S}) = \sqrt{Var(\overline{S})} = \sqrt{\frac{\alpha^2}{100}} = 1.65 \text{ s}$
 - ▶ By the Central Limit Theorem, $\overline{S} \approx N(16.5, 1.65^2)$
- We want to approximate $P(\overline{S} > 17)$.

The approximate probability distribution of \overline{S} is normal with mean 16.5 and standard deviation 1.65 -Approximate $P[\overline{S} > 17]$

> 16 17

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Functions of Several Random Variables

Mean and Variance

Mean and Variance

$P(\overline{S} > 17) = P(\frac{\overline{S} - 16.}{1.65}$	$\frac{5}{1.65} > \frac{17 - 16.5}{1.65}$)			
$\approx P(Z > 0.3$	$(Z \sim N(0,1))$			
$=1-P(Z \le 0.303)$				
$=1-\Phi(0.30$	03)			
= 1 - 0.62	from the standard normal table			
= 0.38				

The Central Limit Theorem

- ▶ Individual jar weights are iid with unknown mean μ and standard deviation $\sigma = 1.6$ g
- \overline{V} = sample mean weight of n jars $\approx N\left(\mu, \frac{1.6^2}{n}\right)$.
- ▶ We want to find μ . One way to hone in on μ is to find n such that:

$$P(\mu - 0.3 < \overline{V} < \mu + 0.3) = 0.8$$

That way, our measured value of \overline{V} is likely to be close to μ .

$$\begin{array}{l} 0.8 = P(\mu - 0.3 < \overline{V} < \mu + 0.3) \\ = P(\frac{-0.3}{1.6/\sqrt{n}} < \frac{\overline{V} - \mu}{1.6/\sqrt{n}} < \frac{0.3}{1.6/\sqrt{n}}) \\ \approx P(-0.19\sqrt{n} < Z < 0.19\sqrt{n}) \quad \text{(by CLT)} \\ = 1 - 2\Phi(-0.19\sqrt{n}) \quad \text{(look at the N(0,1) pdf)} \\ \Phi^{-1}(0.1) = -0.19\sqrt{n} \\ n = \frac{\Phi^{-1}(0.1)^2}{(-0.19)^2} \\ = \frac{(-1.28)^2}{(-0.19)^2} \quad \text{(standard normal table)} \end{array}$$

▶ Hence, we'll need a sample size of n = 47.

= 46.10

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Functions of Several Random Variables

Approximating the Mean and Variance of a Function

variances of linear combinations

- Suppose a bunch of cars pass through certain stretch of road. Whenever a car comes, you look at your watch and record the time.
- ▶ Let X_i be the time (in hours) between when the i'th car comes and the (i + 1)'th car comes, i = 1, ..., 44. Suppose you know:

$$X_1, X_2, \dots, X_{44} \sim \text{ iid } f(x) = e^{-x} \quad x \ge 0$$

► Find the probability that the average time gap between cars exceeds 1.05 hours.

$$\mu = E(X_1)$$

$$= \int_{-\infty}^{\infty} x f(x) dx$$

$$= \int_{0}^{\infty} x e^{-x} dx$$

$$= -e^{-x} (x+1)|_{0}^{\infty} \quad \text{integration by parts}$$

$$= 1$$

Mean and Variance

The Central Limit

Theorem

$$E(X_1^2) = \int_{-\infty}^{\infty} x^2 f(x) dx$$

$$= \int_0^{\infty} x^2 e^{-x} dx$$

$$= -e^{-x} (x^2 + 2x + 2)|_0^{\infty} \quad \text{integration by parts}$$

$$= 2$$

$$\sigma^2 = Var(X_1)$$

$$= E(X_1^2) - E^2(X_1)$$

$$= 2 - 1^2$$

$$= 1$$

$$\overline{X} \sim \text{ approx. } N(\mu, \sigma^2/n)$$

= $N(1, 1/44)$

Thus:

$$rac{\overline{X}-1}{\sqrt{1/44}}\sim N(0,1)$$

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Mean and Variance

Mean and Variance

The Central Limit Theorem

Now, we're ready to approximate:

$$P(\overline{X} > 1.05) = P(\frac{\overline{X} - 1}{\sqrt{1/44}} > \frac{1.05 - 1}{\sqrt{1/44}})$$

$$= P(\frac{\overline{X} - 1}{\sqrt{1/44}} > 0.332)$$

$$\approx P(Z > 0.332)$$

$$= 1 - P(Z \le 0.332)$$

$$= 1 - \Phi(0.332)$$

$$= 1 - 0.630 = 0.370$$

Example: cars

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Mean and Variance

Example: cars

Density of Average(X)

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Functions of Several Random Variables

Mean and Variance of a Function

Expectations and variances of linear combinations

Example: cars

Densities of and Average(X) and N(1,1/44)

Functions of Several Random Variables (Ch. 5.5)

Dason Kurkiewicz

Mean and Variance