Environmental and Development Economics Module 2 - How does development affect the environment?

Raahil Madhok UMN Apllied Economics

2024-08-30

Lecture 2

How does development affect the environment?

Housekeeping

State things that are due.

Today

- ▶ **Guiding question:** how does economic development affect the environment?
- Descriptive overview
- Channel I: Income effects
 - Changes in consumption
 - Energy
 - Diet
- ► Channel II: Technology and Infrastructure
 - Agricultural productivity
 - ▶ Infrastructure
- ► Channel III: Institutions
 - Later in the course

How does economic development affect the environment?

- ▶ There is no one answer
- Choices that maximize economic growth often degrade environment
- But development expands our choice set (e.g. clean energy)
- ▶ Development also lowers u'(c) (model from last week)
- ► Hence: the Environmental Kuznets Curve (EKC)

Environmental Kuznets Curve

Discussion: Do you believe EKC?

► Mechanisms?

► Causality?

► Robustness?

GDP and CO2

- Middle East and North Africa
- East Asia and Pacific
- Europe and Central Asia
- A North America
- Sub-Saharan Africa
- Latin America and Caribbean
- South Asia
- --- Fitted values

GDP and PM2.5

- Middle East and North Africa
- East Asia and Pacific
- Europe and Central Asia
- North America
- Sub-Saharan Africa
- Latin America and Caribbean
- South Asia
- --- Fitted values

GDP and Ozone

- Middle East and North Africa
- East Asia and Pacific
- Europe and Central Asia
 - North America
- + Sub-Saharan Africa
- Latin America and Caribbean
- South Asia
- Fitted values

My view

Macro correlations give limited answer

- ► Not the right question
 - ▶ What do we mean by development?
 - ▶ e.g. manufacturing ↑ pollution, but services may not

- ► Narrow, micro/empirical papers more helpful
 - even if they don't find consensus

Discussion: What is the ideal (quasi-) experiment?

- Can we randomize GDP?
- ▶ What variation in "development" can approximate the experiment?
 - what proxies development?
 - what does the proxy miss?
 - what (non-random) variation isolates causal relationship?
 - what does that variation miss?

Discussion: What about mechanisms?

- ▶ Why and how does economic development affect the environment?
- ► Theory is your friend: especially total derivatives. . .
 - Sometimes enough to rationalize mechanisms
 - Otherwise generate testable predictions
- Heterogeneity is your friend
 - ▶ But have a reason **why** you choose one channel over another

Alix-Garcia et al. (2013): Ecological footprint of poverty alleviation

Question: What is the effect of income on environmental quality?

- ▶ Poverty alleviation may ↑ demand for resource-intensive good
- ► Or, it may ↑ demand for conservation

- Empirical challenge: household income is endogenous
- ▶ This paper: Exploit RDD eligibility to study impact of CCT on forests

Why can't we regress forests on income?

▶ Income correlated with other things that affect environment

► Like what?

- ► If we control for OVB, will panel fixed effects work?
 - ▶ No: small year-to-year income changes do not reflect "development"
 - ▶ Predictable short-term income fluctuations different than permanent change

Mexico's Oportunidades Program

- ► **Goal:** Ambitious program to build human capital
- ► **Scope:** \$2.6 billion/year (half of anti-poverty budget)
 - ► Transfers are 1/3 of total income
 - Represents shift to new income path
- Size: 4 million households treated
- ▶ **Design:** Randomized rollout from 1998-2000
 - ► Afterwards, enrollment is non-random and based on marginality index
 - ► Two step: 1) village selected on index; 2) households selected in eligible villages

Results Preview: conditional cash transfer increases deforestation

Data

▶ Main variables: village lat/lon, eligibility index, forest cover

► Sample size: 105,749 villages

- Unit of analysis: only village centroids provided?
 - ► How do we estimate village-level impacts? Thiessen polygons
 - Area around a point where every location closer to the point than to all others
 - ► Problems?

Thiessen/Voronoi Polygons

FIGURE 2.—ILLUSTRATION OF LOCALITY BOUNDARIES DEFINED USING THIESSEN POLYGONS

Data Visualization

Eligibility cutoff: -1.2

FIGURE 3.—Entire Sample Minus Observations with Index > 3

FIGURE 4.—KERNEL ESTIMATION OF DEFORESTATION ON MARGINALITY INDEX—RESTRICTED SAMPLE

Empirical Strategy

► OLS:

$$\Delta f_i = \alpha + \delta E_i + \beta' X_i + \epsilon_i$$

where $E_i = 1$ if index $I_i > -1.2$

- ▶ RDD: Sample window -2 < I < -0.2
- ► Fuzzy RDD/IV:

$$\Delta f_i = \alpha + \delta T_i + \gamma I_i + \beta' X_i + \epsilon_i$$

$$\Delta T_i = \omega + \tau_1 E_i + \tau_2 E_i I_i + \tau_3 M_i + \tau_4 M_i I_i + \mu I_i + \Gamma' X_i + \epsilon_i$$

where T_i is enrollment dummy, E_i is eligibility cutoff dummy, I_i is index, M_i is dummy for region where enrollment increases rapidly

Results: OLS and Sharp RDD

	Tobit			O	LS
	% Polygon Deforested			Deforestation (0/1)	% Deforested (If 1)
	(1)	(2)	(3)	(4)	(5)
Eligible	.383 (.181)**	.549 (.295)*	.370 (.217)*	.013 (.008)*	.387 (.190)**
Marginality index	.523 (.041)***	.753 (.077)***	.219 (.189)	.031 (.003)***	.069
Index ²	(12.12)	.069 (.072)	(/	.002 (.003)	.060 (.075)
Index ³		100 (.037)***		004 (.001)***	022 (.025)
Index ⁴		002 (.015)		0001 (.0005)	012 (.013)
Baseline area in forest, 2000	0004 (.001)	0005 (.001)	.004 (.002)**	.0006 (.0001)***	.005 (.001)***
Ln(polygon area)	.947 (.042)***	.954 (.042)***	.728 (.068)***	.046 (.002)***	993 (.062)***
Ln(total population in 1995)	.142 (.024)***	.144 (.024)***	.036 (.034)	.010 (.001)***	040 (.025)
Ln(slope)	052 (.005)***	053 (.005)***	009 (.010)	003 (.0002)***	029 (.006)***
Ln(road density)	059 (.026)**	056 (.026)**	.025	004 (.001)***	010 (.027)
Observations	58,587	58,587	15,758	58,587	5,545
Ecoregion controls	Yes	Yes	Yes	Yes	Yes

Results: Fuzzy RDD / Instrumental Variables

▶ Very strong first stage: eligiblity ↑ probability of enrollment $(\tau_1 = 0.8)$

			IV Tobit			IV OLS		
	Full Estimation Sample Restricted Sample		Deforestation (0/1)	% Deforested (If 1)				
	(1)	(2)	(3)	(4)	(5)	(6)		
Treated	.584 (.280)**	1.293 (.715)*		1.038 (.609)*	.031 (.019)*	1.264 (.680)*		
Proportion treated	()	(/	3.453 (1.870)*	,	(1111)	(/		
Marginality index	.521 (.042)***	.641 (.106)***	.244 (.298)	072 (.339)	.028 (.003)***	005 (.101)		
Index ²	(10.12)	.177	.391 (.221)*	(1000)	.004	.162 (.119)		
Index ³		091 (.035)***	053 (.031)*		003 (.001)***	036 (.030)		
Index ⁴		010 (.015)	037 (.022)*		0003 (.0005)	019 (.014)		
Baseline area in forest, 2000	0005 (.001)	0008 (.001)	001 (.001)	.003 (.002)**	.0006	.004		
Ln(polygon area)	.963 (.043)***	.990 (.047)***	1.075	.756 (.070)***	.047	948 (.065)***		
Ln(total population in 1995)	.055	056 (.116)	305 (.245)	097 (.086)	.005	262 (.120)**		
Ln(slope)	054 (.005)***	057 (.006)***	064 (.008)***	012 (.010)	003 (.0002)***	033 (.007)***		
Ln(road density)	075 (.027)***	092 (.033)***	119 (.043)***	.016	005 (.001)***	049 (.036)		
Observations Ecoregion controls	58,587 Yes	58,587 Yes	58,587 Yes	15,758 Yes	58,587 Yes	5,545 Yes		

Mechanisms

▶ RD results show that CCT increases deforestation

▶ Why? What changes at the household level?

▶ Approach 1: Use experimental sample (Progresa) with household survey data

▶ Approach 2: Heterogeneity by road density to study role of market access

Mechanisms: Consumption channel

- ▶ Before (1997-1998) and after (2000) data on consumption
- ▶ 506 villages, 320 treated, 186 control
- ► Treatment at the village level

Difference in differences:

$$y_{it} = \gamma_0 + \gamma_1 Treat_i + \gamma_2 Post_t + \gamma_3 Treat_i \times Post_t + \epsilon_{it}$$

- $\triangleright y_{it} = consumption$
- cluster at locality level

Hypothesis: $\gamma_3 > 0$

Mechanisms: Market channel

- Demand shock must be met by supply, which drives land use change
 - ightharpoonup e.g. \uparrow consumption of milk met by \uparrow in grazing land
- ▶ But γ_3 captures partial equilibrium
 - Part of demand shock supplied locally. What about rest?
- Hypothesis: If consumption is driving deforestation
 - ► Then effect should be larger when infrastructure quality is low
 - Low market access: demand met by local supply
 - ► High market access: demand shock propagates across markets

Triple Differences:

Heterogeneity by infrastructure quality:

$$\begin{aligned} y_{it} &= \beta_0 + \beta_1 \mathit{Treat}_i + \beta_2 \mathit{Post}_t + \beta_3 \mathit{Treat}_i \times \mathit{Post}_i \\ &+ \beta_4 \mathit{Road}_i + \beta_5 \mathit{Road}_i \times \mathit{Treat}_i + \beta_6 \mathit{Road}_i \times \mathit{Post}_t \\ &+ \beta_7 \mathit{Road}_i \times \mathit{Treat}_i \times \mathit{Post}_i + \epsilon_{it} \end{aligned}$$

 $ightharpoonup Road_i = ext{inverse road density (km of road w/n 10km of village/polygon)}$

Hypothesis: $\beta_7 > 0$

Results: Increase in consumption of land intensive goods

	Rooms in Home		Days Ate Beef		Days Drank Milk	
	(1)	(2)	(3)	(4)	(5)	(6)
Treatment effect	.014	.017	.114	.118	.337	.331
	(.033)	(.035)	(.030)***	(.031)***	(.081)***	(.087)**
Treatment × inverse road density	,	034	, , , ,	070	, , ,	.183
,		(.148)		(.097)		(.669)
Village chosen to receive Progresa	.0001	.002	025	031	133	143
	(.037)	(.038)	(.029)	(.030)	(.111)	(.118)
Posttreatment year	.053	.049	137	138	655	664
	(.028)*	(.029)*	(.024)***	(.025)***	(.061)***	(.065)**
Inverse of road density		.266		156		.051
•		(.169)		(.069)**		(.499)
Village × inverse road density		.043		.102		.232
,		(.236)		(.140)		(.682)
Posttreatment × inverse road density		.067		.016		.155
•		(.140)		(.068)		(.252)
Observations	23,318	23,318	33,128	33,128	33,128	33,128
Mean dependent	1.557		0.388		1.440	
Variable in baseline	(0.930)		(0.661)		(2.367)	

Higher beef and milk demand (land intensive products)

Demand-side impacts do not vary with market access (we did't expect it to)

Results: No increase in local production

	Number of Plots		Log (1+ Total Hectares)		Number of Cows	
	(1)	(2)	(3)	(4)	(5)	(6)
Treatment effect	.030	.031	014	015	.092	.036
	(.039)	(.040)	(.038)	(.039)	(.057)	(.057)
Treatment × inverse road density	, ,	107	, ,	.142	, , , ,	.936
		(.210)		(.223)		(.522)*
Village chosen to receive Progresa	.014	.037	004	.017	004	.058
	(.056)	(.057)	(.040)	(.040)	(.087)	(.085)
Posttreatment year	094	077	.312	.317	239	180
,	(.032)***	(.033)**	(.033)***	(.033)***	(.046)***	(.046)**
Inverse of road density	(/	.833	(/	.820	()	2.122
		(.161)***		(.227)***		(.799)**
Village × inverse road density		263		217		760
,		(.317)		(.258)		(.872)
Posttreatment × inverse road density		275		235		982
1 ostaroumont × mirotoc roug density		(.149)*		(.128)*		(.402)**
Observations	45,087	45,087	32,631	32,631	34,248	34,248
Mean dependent	0.824	,	1.724	,	0.604	,
Variable in baseline	(0.955)		(3.535)		(2.304)	

Supply-side impacts do not vary with market access

Results: Deforestation higher in places with poor market access

	Low l	Low Density		Medium Density		High Density	
Dependent Variable	(%) (1)	(0/1) (2)	(%) (3)	(0/1) (4)	(%) (5)	(0/1) (6)	
Treated	1.619 (.868)*	.075 (.037)**	.554 (.836)	.019 (.030)	1.818 (1.472)	.023	
Treated \times low	(1000)	(1007)	(1000)	(1000)	()	(1021)	
Low road density							
Observations Ecoregion controls	19,529 Yes	19,529 Yes	19,529 Yes	19,529 Yes	19,529 Yes	19,529 Yes	

Bigger impact where supply response is localized

Supports mechanism of increased demand for land-intensive goods

Thoughts?

- ► Form discussion group to think of alternate story
- Do we believe the story about increased demand for land-intensive goods?
 - Increased income relieves credit constraints
 - Expands capital, increases ag productivity on extensive margin b/c malfunctioning factor markets.
 - ► Market access may improve access to inputs, and reduce deforestation.
 - Consistent with papers results.
- Only focused on one mechanism
 - returns to off-farm labor
 - income may increase aggregate production and lead to deforestation?
 - market access may lead to migration, less population pressure and deforestation
 - also consistent story
- ▶ This all points to shortcomings of RCTs in general
 - we cannot answer why

Same results in Colombia! Malerba (2020)

- ▶ Question: What is the impacts of CCT on consumption, energy, and deforestation?
- ► Context: Familias en Accion CCT project (2001-2005)
- Design: Matched Difference in Differences
- Result: Increased beef and milk (land intensive) consumption
 - Mediated by markets
 - ▶ Negligible ↑ in deforestation (counterintuitive)
 - ► No impact on CO2

Research Design

- ► CCT program launched in 2000
 - Non-random: Municipalities selected on amenities (banks, education, health)
 - ▶ 721 eligible: slow phase-in
- ► Study sample: 5,477 households
- ► Variation: compare outcome in treated hh before/after enrollment relative to control hh
- ► Identification assumptions

	Number of municipalities enrolled (annual)
2000	2
2001	360
2002	244
2003	6
2004	0
Total	612

Results: Increased beed and milk consumption

Household DiD:

$$\Delta Y_i = \alpha + \delta T_i + X_i + \epsilon_i$$

Variables	(1) Beef, days per week	(2) Beef, days per week	(3) Milk, days per week	(4) Milk, days per week
FA	0.416**	0.879**	0.720**	1.099**
	(0.166)	(0.333)	(0.282)	(0.547)
FA *distance to closest		-0.010*		-0.008
market		(0.005)		(800.0)
Households	2268	2268	2269	2269
R-squared	0.029	0.032	0.045	0.046

- ► Effect muted with low market access (very weak)
- ▶ Why is sample size declining from 5,477?

Design: Environmental Impacts

- Unit of analysis: Municipality
- Design: municipalities enrolled gradually over time
 - Many were not enrolled by 2004
- ▶ Define $Treat_i = 1$ if enrolled by 2004
- $ightharpoonup Post_t = 1$ after treatment, zero for 2000

$$y_{it} + \beta_0 + \beta_1 Treat_i + \beta_2 Post_t + \beta_3 (Treat_i \times Post_t) + \beta_4 X_{it} + \epsilon_{it}$$

- Variation: Δ forest b/w 2000/05 for municipalities enrolled by 2004 rel. to non-enrolled

Results: No environmental impact

Variables	(1) % forest	(2) % forest, incl. ref.	(3) % forest
FA enrollment	0.510*	0.369	0.523*
	(0.271)	(0.303)	(0.293)
FA enrollment, number of years			
FA enrollment * distance to closest market			-0.000
			(0.001)
2005	-2.166***	-1.479***	-2.167**
	(0.266)	(0.309)	
Constant	22.361***	23.452***	22.358***
	(1.588)	(2.324)	(1.615)
R-squared	0.370	0.196	0.370
Observations	1440	1440	1440

Weakly positive deforestation (counterintuitive)

► Why?

Back to the question

How does development affect the environment?

- Income
 - ► Land intensive consumption
 - Energy

► Next time: Technology and Infrastructure

Development, Energy, and the Environment

- lacktriangle Energy ladder: as income \uparrow , move from solid fuel \rightarrow gas \rightarrow electricity
 - ► Electricity may displace dirty energy (wood)
- But, electricity also increases total energy (fridge, AC)
 - energy footprint increases with income
- Unless generated from solar, wind, etc
- ▶ People also buy cars as they get richer...

GDP and Car Ownership

- Middle East and North Africa
- East Asia and Pacific
- Europe and Central Asia
- North America
- Sub-Saharan Africa
- Latin America and Caribbean
- South Asia
- --- Fitted values

Gertler et al. (2016): Demand for energy-using assets among middle class

- Question: How does income affect energy demand?
- ► **Motivation:** 1.3 billion people live without electricity
- ► Should we expect linear climb up the energy ladder as incomes rise? ► what about credit markets?

	Electricity access (percent of population)	Refrigerators (share of households)	
Brazil	98.7	0.93	
China	99.7	0.69	
India	75.0	0.13	
Indonesia	73.0	0.17	
Mexico	97.9	0.83	
Sub-Saharan Africa	32.5	0.11	
Total	70.8	0.38	
United States	100.0	0.99	

Non-linear relationship between income and fridges

- Are fridges representative of energy-intensive assets?
- ► Can aggregating non-linearities → linearity?

S-shape appears robust

How can we explain the S-shape?

Set up:

- ► Two periods with no discounting
- ► Agent *i* can consume two goods
 - ▶ non-durable gives per period utility: $u'(\cdot) > 0$, $u''(\cdot) < 0$
 - lumpy durable that gives static per period utility R, if owned
- ightharpoonup Durable price = P; non-durable is numeraire
- ▶ Let Y_1 , Y_2 be per period 1, 2 income
- ▶ Let $\bar{Y} = 1/2(Y_1 + Y_2)$ be average income

No credit constraints

Without credit constraints, if don't buy, total utility is:

$$u(\bar{Y}) + u(\bar{Y}) = 2u(\bar{Y})$$

If buy durable, spend P and spread cost equally across periods:

$$2u(\bar{Y}-\frac{P}{2})+2R$$

Purchase durable iff:

$$u(\bar{Y}) - u(\bar{Y} - \frac{P}{2}) \le R$$

 $u''(\cdot) < 0$ implies acquisition increases in income

1) With credit constraints: Buy in period 1

If don't purchase, total utility is:

$$u(Y_1) + u(Y_2)$$

If purchase in period 1:

$$u(Y_1-P)+2R+u(Y_2)$$

Purchase in period 1 iff:

$$\frac{u(Y_1)-u(Y_1-P)}{2}\leq R$$

2) With credit constraints: Wait to buy in period 2

If don't purchase, total utility is:

$$u(Y_1) + u(Y_2)$$

If save in period 1, and buy in period 2:

$$2u(\bar{Y}-\frac{P}{2})+R$$

Wait to buy in period 2 if:

$$u(Y_1) + u(Y_2) - 2u(\bar{Y} - \frac{P}{2}) \le R$$

Intuition of Model

- $ightharpoonup u''(\cdot) < 0$ means consumers gain from smoothing consumption
- Unconstrained household will buy in period 1
 - Use period 2 income (loan) to smooth consumption
- Credit constrained households cannot do this
 - If buy now, magnify consumption inequality across periods
 - Or, wait and buy in period 2, but delay utility gain
- First period buyers respond only to first period income (lemma 1)
- ▶ But increase in *cumulative* income increases buying through delay/saving (lemma 2)

Testable Predictions

- Prediction 0: Acquisition increasing in income
- Prediction 1: S-shaped curve in acquisition
- ▶ Prediction 2: Faster income growth leads to more period 2 adoption
- ▶ Prediction 3: Period 1 ownership depends on interaction of income and growth

Empirical Setting: Oportunidades (again)

- ▶ 320 randomly selected communities given early treatment (April 1998)
- ▶ 186 randomly selected communities given late treatment (October 1999)

► This paper: N=506 communities, 10,000 households surveyed (1997-2007)

- Compare early and late households
 - ► Similar b/c both groups selected on "vulnerability" characteristics
 - Strongly balanced on covariates

Empirical Design

▶ **Prediction 0:** Probability of asset purchase ↑ in income

$$h(a_{it}) = Pr(a_{it} = 1 | a_{it-1} = 0) = \gamma_0 + \alpha_1 CI_{it} + \beta X_i + \beta_t F_i + R_{rt} + \epsilon_{it}$$

where h(a) is the prob. that i buys a in time t conditional on not having it in t-1.

Prediction 1: S-shaped curve in acquisition

$$h(a_{it}) = Pr(a_{it} = 1 | a_{it-1} = 0) = \gamma_0 + \alpha_1 C I_{it} + \alpha_2 C I_{it}^2 + \beta X_i + R_{rt} + \epsilon_{it}$$

Hypothesis: $\alpha_2 > 0$

Empirical Design

▶ Prediction 2 and 3: conditional on having same level of cumulative income, households which accumulated income slower are less likely to acquire asset; this effect is increasing in cumulative income

$$h(a_{it}) = Pr(a_{it} = 1 | a_{it-1} = 0) = \gamma_0 + \alpha_1 C I_{it} + \alpha_3 Early_i + \alpha_4 (Early_i \times C I_{it}) + \beta X_i + R_{rt} + \epsilon_{it}$$

- where $\mathit{Early}_i = 1$ if i began receiving transfers 18 months before control households

Measurement issues

- ► Cumulative Income is sum of wage, farm, business income, CCT transfers
 - measurement error in wage data
 - cumulation requires interpolating between survey waves

Double counting problem if households invest CCT money into business

- ▶ **Solution:** use cumulative CCT **transfers** to instrument cumulative **income**
 - Assumes transfers affect consumption only through income
 - Is this reasonable?

Identifying Variation

TABLE 2—OPORTUNIDADES BIMONTHLY SUPPORT LEVELS IN 2003 (Pesos)

Basic Support	155	
Educational scholarship		
Grade	Boys	Girls
Third	105	105
Fourth	120	120
Fifth	155	155
Sixth	205	205
Seventh	300	315
Eighth	315	350
Ninth	335	385
Tenth	505	580
Eleventh	545	620
Twelfth	575	655

Use maximum cumulative transfer as **instrument** for actual (cumulative) transfer Plus variation from early/late enrollment

Results: Prediction 0

TABLE 4—BASIC RESULTS: REFRIGERATOR (Income Effects)

	Discrete time hazard		Household FE	Discrete time hazard		Household FE
	OLS		IV	OLS (4)	IV (5)	IV (6)
	(1)		(3)			
Cumulative Transfers	0.018*** [0.005]	0.020***	0.047***			
Cumulative Income				0.003*** [0.001]	0.016*** [0.005]	0.034*** [0.007]
Observations R^2	30,414 0.103	30,414	30,258	30,414 0.104	30,414	30,258
Kleibergen-Paap Wald F-Stat on excluded variables		2,503	2,060		92	108
Number of households			6,655			6,655

 $[\]blacktriangleright$ For every 10,000 pesos, probability of buy fridge \uparrow by 4.7 pp.

Results: Prediction 1

Table 5—Basic Results: Refrigerator (Nonlinear Income Effects)

	Discrete time hazard		Household FE	
	OLS	IV	IV	
	(1)	(2)	(3)	
Cumulative Income	-0.0007 [0.0011]	-0.0059 [0.0108]	0.0132 [0.0132]	
Cumulative Income ²	0.0001*** [<0.0001]	0.0009** [0.0004]	0.0008** [0.0004]	
Observations R^2	30,414 0.105	30,414	30,258	
Kleibergen-Paap Wald F-Stat on excluded variables		22	23	
Number of households			6,655	

^{ho} $\alpha_2 > 0$ implies convex relationship b/w cumulative income and asset purchase

[▶] Since all households are poor, don't expect any to be past second inflexion point

Results: Prediction 2 and 3

▶ include only if time

Lessons from income/consumption channel?

- What do we learn about how development affects the environment?
- What are shortcomings of research designs? Measurement?
- External validity?

Research gaps

Does earned income have different effect than transfers?

▶ Which externalities have highest income elasticities?

▶ Can the effect of income on *MWTP_e* be separated from changes in consumption?

Next week

- ► How does development affect the environment?
 - ► Technology and Infrastructure

Lecture 3

How does development affect the environment?

Housekeeping

Recap

- ► Higher income leads to land-intensive **consumption**
 - ► Beef, milk, etc.
 - ► This requires clearing land for agriculture
 - Effect depends on market access

- Higher income leads to energy-intensive consumption
 - But the relationship is non-linear
 - ► Role of credit constraints

Today

- ▶ Development increases access to **productive** capital
 - ► How do we think about environmental implications?

- Case I: Development increases agricultural productivity
 - ► Abman et al. (2023)

- ► Case II: Development spurs infrastructure development
 - ► Asher et al. (2020)

Technology and infrastructure

► As economies develop, technology and infrastructure improve

- Productivity boost means firms produce at lower cost
 - Outward shift in supply curve → bad for environment
 - ightharpoonup But, technological progress reduces resource intensity ightarrow good for environment

- Most active areas of research:
 - agricultural productivity
 - ▶ infrastructure

Agricultural productivity and the environment

- ► Boserup's hypothesis : extensive margin
 - ▶ improvements in land productivity ↑ ag land value
 - leads to pressure on forests to clear land for ag
- ► Borluag's hypothesis: intensive margin
 - lacktriangle Under factor market constraints, ightarrow productivity spurs intensification
 - "spares' 'land for nature and puts less pressure on forests
- Jevon's paradox: general equilibrium
 - technology for increasing yield also lowers MC of producing given amount
 - Ag supply curve shifts out and may dominate gains in yield
 - Leads to net increase in land demand

Takeaway: this is an empirical question!

Conceptual framework

- Continuum of agents with heterogeneous outside options
 - ► Changes in returns to ag affect number of agents who select into farming
- ► Farmers allocate labor b/w farming on existing land, or cultivate new land
- lacktriangle Let γ denote household labor allocated to new land
- lacktriangle Production function for new and existing land are $f(\cdot)$ and $g(\cdot)$
- ightharpoonup Exogenous productivity shock, Ω , improves productivity of existing land more

$$\frac{\partial g(I)}{\partial \Omega} \ge \frac{\partial f(I)}{\partial \Omega} \ge 0$$
 $\forall I$

Conceptual framework

- ► Farmers are factor market constrained (Conning and Udry, 2007)
 - Cannot hire labor from market
- ► Total deforestation given by new land cleared for agriculture:

$$D^* = n^* \cdot \gamma^*$$

ightharpoonup Differentiating with respect to Ω gives:

$$\frac{\partial D^*}{\partial \Omega} = \underbrace{n^* \frac{\partial \gamma^*}{\partial \Omega}}_{\leq 0} + \underbrace{\gamma^* \frac{\partial n^*}{\partial \Omega}}_{\geq 0}$$

What does each term represent and what is the sign?

Abman et al. (2023): Agricultural Productivity and Deforestation

- ▶ **Goal:** To test $\frac{\partial D^*}{\partial \Omega}$, we need random variation in Ω
- ▶ Question: what is the impact of ag productivity on deforestation?
- Context: Large scale ag extension program in Uganda (2008-2013)
- Design: Leverage Spatial discontinuity in village eligibility
- ▶ Results: improvement in agricultural productivity; reduction in deforestation

Background: Why Uganda?

- ► Forest cover shrunk from 24% to 9% from 1990-2015
- Most forest land is privately owned
 - Land owners allowed to covert forest (Land Act, 2010)
 - Cannot use state powers to limit deforestation
- Need an indirect mechanism to incentivize conservation

Background: BRAC Extension Program

- ► Launched in 2008
- ► Aims to extend modern cultivation techniques to smallholders
- ► Two step treatment:
 - ► Training: "model farmers' trained in modern cropping, irrigation, weeding, pest control. Then, set up demo plot and train others
 - Extension: Promoters selected to sell subsidized HYV seeds in their villages
- Key feature: Program limited to villages within 6km of each BRAC branch

Data

- ▶ Deforestation from GFC (Hansen et al., 2013)
 - ► Pro: high resolution (30m)
 - Con: 1) only captures loss not gain, 2) everything relative to 2000
- ► Lat/lon of villages within 12km of BRAC office (N=807 villages)
- Attribute forest pixel to village if w/n 400m of village centroid
 - Rationale: median household distance to village center = 400m
 - Problems?
- Agricultural survey on 7,781 households (451 villages) in 2011
 - Detailed cropping practices from last two seasons

Empirical Design: Spatial Regression Discontinuity

- Estimate IIT since we do not know true treatment designation
- ▶ Local linear regression to estimate left and right side of discontinuity

$$\beta = \lim_{z \uparrow 0} E[Y|z_i = z] - \lim_{z \downarrow 0} E[Y|z_i = z]$$

- \blacktriangleright where running variable, z_i , is distance of village from 6km cutoff
 - $ightharpoonup z \le 0$ means village had access to extension
- For estimation, use 2km bandwidth
 - ► Higher regression weights on points nearer to cutoff (triangle kernel)

Aside: RD with local linear regressions

► Left side of cutoff

$$Y_i = \alpha_L + \beta_L(z_i - c),$$
 for $z_i \le c$

Right side of cutoff

$$Y_i = \alpha_R + \beta_R(z_i - c), \quad \text{for } z_i \ge c$$

► Treatment effect at threshold:

$$\beta = \alpha_R - \alpha_L$$

since $\boldsymbol{\alpha}$ are the intercepts on each side of cutoff

Identification Assumptions

(b) Distance to nearest road (meters)

Identification Assumptions

Results: 14% less deforestation in treated villages

(a) Residualized Forest Loss - Treatment period

Mechanisms: Intensification

Outcome	(1) Manure Use	(2) Intercrop	(3) Crop Rotation	(4) Irrigation	(5) Weeding	(6) Fertilizer Use	(7) HYV Seeds	(8) Perennial crops
Program Eligible	0.0977***	0.0590*	0.0737***	0.0326***	0.0644**	-0.0171	-0.0440	-0.0264
	(0.0249)	(0.0308)	(0.0251)	(0.00829)	(0.0310)	(0.0161)	(0.0323)	(0.0351)
Obs	2912	2912	2912	2912	2912	2912	2912	2912
Control mean	0.0731	0.796	0.797	0.0266	0.693	0.0725	0.356	0.351

- ► Techniques to address nutrient depletion on existing land
- ▶ No evidence of increased fertilizer, pesticides, or HYV seed adoption

Intensification vs. Extensification

	(1)	(2)	
Outcome	Revenue	IHS Cultiv	
	per acre	ag area	
Program Eligible	0.325*	0.0262	
0 0	(0.189)	(0.0514)	
Obs	2843	2907	
Control mean	11.59	1.414	

- ► Revenue/acre is a proxy for yields
- ightharpoonup No extensification ightarrow binding constraint on land clearing

Discussion

- Empirical issues
- ► Alternative explanations
- External validity (recall forest is private in Uganda)

Back to the Question

How does development affect the environment?

- ► Income
 - Land intensive consumption
 - Energy

- Access to capital
 - Technology
 - ▶ Infrastructure

Infrastructure and the Environment

- ► Roads can increase deforestation by:
 - ▶ ↓ MC (transport costs) of forest products, increasing supply
 - ▶ ↑ market access for agricultural products, causing extensification
 - ▶ ↑ land value, leading to agglomeration effects

- Roads can increase forest cover by:
 - ▶ ↑ access to forest product substitutes (i.e. clean fuel vs. firewood)
 - ▶ ↑ access to external labor/capital markets, lowering need for land-clearing

Net effect is ambiguous

What about Infrastructure and Air Pollution?

- Lets build a conceptual framework
- ► Talk to your neighbor for 10 mins

Garg et al. (2023): Rural Roads, Labor Exits, and Crop Fires

- ▶ **Question:** what is the impact of roads on air quality?
 - what is the role of labor reallocation as a mechanism?
- Context: India builds last-mile roads using population cutoff
- ▶ **Design:** Regression discontinuity with crop fires as outcome
- ▶ Results: Roads ↑ crop fires and PM2.5 levels in a village
- **Mechanism:** Roads \rightarrow labor exit \rightarrow higher wages \rightarrow labor-saving technology

Background

- ► Labor is misallocated in agriculture in developing countries
 - ► MP_{labor} lower in agriculture than other sectors
- Sources of misallocation is a big question in dev econ
- Many policies aimed at reducing misallocation
 - e.g. road-building (improve market access)
- Do these have externalities?
 - **innovation**: where do the externalities come from?

Context: India

- ▶ 14 of the 20 most polluted cities in the world are in India
- ► Important pollution source: crop burning
- ► Pros:
 - Clear rice straw residue & undergrowth b/w cropping seasons
 - Cheaper than labor/capital alternative
- Cons:
 - Carries civil/criminal penalty (weakly enforced)
 - Reduces soil nutrients and decreases ag productivity
 - Damages human health
- Roads may facilitate agricultural labor loss
 - ▶ Will farmers turn to crop burning, despit the costs?

Research Design

▶ PMGSY aims to provide all-weather roads to all unconnected villages in India

- Prioritize larger villages first
 - ► Connect villages with population > 1000 by 2003
 - Connect villages with population > 500 by 2007
 - Connect villages with population > 250 afterwards

- State-by-state basis
 - ▶ If connected all large villages, can proceed to smaller ones immediately

Data

- ► Roads: SHRUG database (N=11,151 villages w/o paved road at baseline)
- ► Fires: NASA EODIS -# fires w/n 10km of village polygon

- ▶ Pollution: Van donkelaar et al. (2016) measure PM2.5 at 10km resolution
- ▶ Infant mortality: NFHS-IV (2015-16)
 - child-birthyear panel from 2001-2013
 - ▶ Identify survey clusters (villages) within 50km of each PMGSY village

Empirical Strategy: Fuzzy RDD

First Stage:

$$\begin{aligned} \textit{Road}_{\textit{vdst}} &= \gamma_0 + \gamma_1 1 (\textit{pop}_{\textit{vds}} \geq \textit{T}) + \gamma_2 (\textit{pop}_{\textit{vds}} - \textit{T}) \\ &+ \gamma_3 (\textit{pop}_{\textit{vds}} - \textit{T}) \times 1 (\textit{pop}_{\textit{vds}} \geq \textit{T}) + \theta \textit{X}_{\textit{vds}} + \mu_{d,h} + \rho_t + \epsilon_{\textit{vdst}} \end{aligned}$$

Second Stage:

$$\begin{aligned} Y_{vdst} &= \beta_0 + \beta_1 Roads_{vdst} + \beta_2 (pop_{vds} - T) \\ &+ \beta_3 (pop_{vds} - T) \times 1 (pop_{vds} \ge T) + \delta X_{vds} + \eta_{d,h} + \omega_t + \epsilon_{vdst} \end{aligned}$$

- $ightharpoonup Road_{vdst} = 1$ if village v received road by 2013
- $ightharpoonup Y_{vdst}$ is outcome (fires, pollution, mortality)
- pop_{vds} is village population in 2001
- ► *T* is treatment threshold (500 or 1000, depending on state)

Covariate Balance

Table 1: Main analysis sample: summary statistics, and balance and falsification tests

Variable	Full	Below	Over	Difference	p-value on	RD	p-value on
	sample	threshold	threshold	of means	difference	estimate	RD estimate
Primary school	0.959	0.955	0.964	0.01	0.02	-0.018	0.59
Medical center	0.166	0.155	0.177	0.02	0.00	-0.097	0.14
Electrified	0.430	0.414	0.447	0.03	0.00	-0.014	0.87
Distance from nearest town (km)	26.490	26.379	26.613	0.23	0.58	-3.426	0.34
Land irrigated (share)	0.281	0.276	0.287	0.01	0.05	-0.02 5	0.59
Ln land area	5.151	5 .093	5 .21 5	0.12	0.00	-0.103	0.33
Literate (share)	0.457	0.454	0.461	0.01	0.01	-0.012	0.62
Scheduled caste (share)	0.143	0.141	0.145	0.00	0.24	-0.020	0.52
Land ownership (share)	0.733	0.733	0.732	-0.00	0.75	0.013	0.72
Subsistence ag (share)	0.435	0.438	0.432	-0.01	0.25	0.024	0.58
HH income > INR 250 (share)	0.754	0.752	0.757	0.00	0.37	-0.023	0.63
Outcomes at baseline:							
Annual fires (count)	0.685	0.699	0.670	-0.03	0.40	0.194	0.50
Annual PM2.5 $(\mu g/m^3)$	35.886	35.821	35.958	0.14	0.41	-0.029	0.94
Downwind infant mortality $(0/1)$	0.067	0.068	0.067	-0.00	0.28	0.002	0.63
Other directions infant mortality $(0/1)$	0.072	0.072	0.071	-0.00	0.23	-0.002	0.72
Downwind PM 2.5 ($\mu g/m^3$)	36.038	35.879	36.252	0.37	0.04	0.431	0.36
Other directions PM 2.5 ($\mu g/m^3$)	39.254	38.646	40.237	1.59	0.00	0.901	0.15
N	11151	5859	5 292				

Results

	New road	Annual f	ire activity	Annual average PM 2.5		
	(1)	$(1) \qquad (2)$		(4)	(5)	
	$1^{st} stage$	ŔF	ĬV	RF	ĬV	
Above threshold pop.	0.230***	0.366**		0.106**		
	(0.017)	(0.152)		(0.045)		
Road built			1.567**		0.470**	
			(0.689)		(0.207)	
N	133,788	133,788	133,788	133,788	133,788	
Control group mean	0.10	2.77	2.77	42.69	42.69	

[▶] Road access increases annual crop fires by 60%

[▶] Road access increase PM2.5 level by 0.5 $\mu g/m^3$ (1.1%)

Does pollution result also capture increased driving on new roads?

P	anel A: W	inter harv	est and po	ost-harves	t months			
	Fires	All sources		Biomass	Biomass burning		Other sources	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
		BC	OC	BC	OC	BC	OC	
Road built	1.051***	0.285**	3.146*	0.320***	2.791**	-0.010	-0.010	
	(0.391)	(0.130)	(1.777)	(0.103)	(1.180)	(0.009)	(0.009)	
N	133,788	133,788	133,788	133,788	133,788	133,788	133,788	
Control group mean	1.4 5	30.47	120.81	1.17	13.46	29.30	107.3 5	
		Panel B:	Rest of th	e year				
	Fires	All so	ources	Biomass	burning	Other s	sources	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	, ,	BC	ÒC	BC	ÓĆ	BC	ÒĆ	
Road built	0.276	-0.219	-0.11 5	0.192	0.886	-0.010	-0.010	
	(0.438)	(0.351)	(3.120)	(0.246)	(2.680)	(0.009)	(0.009)	
N	133,788	133,788	133,788	133,788	133,788	133,788	133,788	
Control group mean	1.27	30.83	124.70	1.53	17.34	29.31	107.36	

Mechanism: Roads increase ag wage rate

- Data: REDS Survey (1999 and 2006)
- ▶ Design: Diff-in-Diff (221 villages, 100 districts, 17 states)
 - ► Treat = 1 if v received road b/w 1999-2006; Post=1 in 2006

$$Y_{vt} = \alpha + \beta_1 (\textit{Treat}_v \times \textit{Post}_t) + \gamma_v + \theta_t + \epsilon_{vt}$$

		Wage rate	e		Log wage	е
	(1)	(2)	(3)	(4)	(5)	(6)
	Male	Female	Average	Male	Female	Average
Treat X Post	0.722*	0.918***	0.856**	0.012*	0.020**	0.016**
	(0.420)	(0.349)	(0.352)	(0.007)	(0.008)	(0.007)
N	442	442	442	442	442	442
Control group mean	62.99	47.6 5	55 .2 5	62.99	47.6 5	55 .2 5
R^2	0.76	0.78	0.77	0.7 5	0.76	0.76

Mechanism: Roads induce labor exit

Back to RDD design:

		of labor culture		n-agricultural ıal labor	
	(1) (2)		(3)	(4)	
	High rel. ag. wage	Low rel. ag. wage	High rel. ag. wage	Low rel. ag. wage	
Road built	-0.029	-0.245***	0.030	0.210**	
	(0.046)	(0.093)	(0.046)	(0.092)	
N	5 ,402	5 ,483	5 ,402	5,483	
Control group mean	0.49	0.46	0.45	0.46	

▶ More labor exit in districts with lower baseline ag wages

Mechanism: places with more labor exit burn more biomass

	High rel	. ag. wage	Low rel.	ag. wage
	(1) (2)		(3)	(4)
	Fires	PM 2. 5	Fires	PM 2. 5
Road built	0.778	0.378*	3.195**	0.617*
	(0.721)	(0.220)	(1.439)	(0.367)
N	62,880	62,880	67,740	67,740
Control group mean	2.68	4 5. 3 8	2.88	40.09

- Fire/pollution impact greater in places with lower baseline ag wage
- ► Road generates more labor exit in these places

Discussion

- ► Do you believe the story?
- ► Alternative explanations

Next week

- Presentations
- How does the environment affect development?
 - Health
 - Productivity