When Nerds Speak: How to Not Look Confused

AUC (Area Under the Curve)

A number that measures how well a model can tell the difference between two classes (like "disease" vs. "no disease"). The closer the AUC is to 1, the better the model is at making predictions.

Bipartite Graph

A graph with two separate groups of nodes, where connections (edges) can only happen between nodes in different groups (e.g., diseases and genes).

Decoder

Part of a model that takes simplified information (like embeddings) and predicts or reconstructs the original data, such as edges in a graph.

Disease-Gene Association (Host Response Aspect)

A relationship between a disease and genes involved in how the body reacts to that disease, often studied to understand underlying biological processes.

Edge List

A way to represent a graph by listing all the connections (edges) between nodes. For example, if nodes A and B are connected, the edge list will include (A, B).

Embeddings

A small set of numbers that represent a node or item in a simplified way, keeping important information about its features and relationships.

Encoder

Part of a model that takes data (like a graph) and simplifies it into embeddings, capturing the most important information.

Features

Information or properties about nodes in a graph. For example, in a gene-disease graph, features for a gene might include its expression level or role in a biological process.

Gene Propagation

A method for spreading information about genes across a graph to predict or identify new relationships, like genes associated with a disease.

Graph

A structure made of **nodes** (e.g., diseases, genes) and **edges** (connections between nodes), used to represent relationships.

Graph Autoencoder (GAE)

A special type of model that learns simplified representations (embeddings) of nodes in a graph and uses them to predict or reconstruct edges (connections).

When Nerds Speak: How to Not Look Confused

Hyperparameter

A setting that you choose before training a model (e.g., learning rate or number of layers) to control how the model learns.

Latent Space

A "hidden space" where data is represented in a simplified and compressed form, often created by an encoder.

Ontology

A structured framework for organizing information, often used in biology to classify genes, diseases, or proteins and their relationships.

Overfitting

When a model learns too much detail from the training data, including noise, and performs poorly on new, unseen data.

Parameters

Values in a model (like weights in a neural network) that are learned during training to make better predictions.

Parameter vs. Hyperparameter

- **Parameters**: Learned by the model during training (e.g., weights).
- **Hyperparameters**: Set manually before training (e.g., learning rate).

Performance Metrics

Numbers or scores that measure how well a model is working, like accuracy, AUC, or precision.

PPI Network (Protein-Protein Interaction Network)

A map showing how proteins interact with each other, often represented as a graph to study relationships and biological functions.

Precision

The proportion of correct positive predictions out of all the positive predictions made by the model. A measure of how accurate the model's "yes" predictions are.

PyTorch Data Object

A way to organize graph data (like nodes, edges, and features) in PyTorch for use in machine learning models.

ROC Curve (Receiver Operating Characteristic Curve)

A graph showing how well a model can distinguish between two groups (e.g., disease vs. no disease) at different thresholds. It plots true positives vs. false positives.

Train, Test, and Validation Split

Breaking data into three parts:

- Training: Data the model learns from.
- Validation: Data to check how well the model is learning.
- **Test**: Data to evaluate the model's final performance on unseen information.