Uncertainty in global irrigation water use persists after 50 years of research

R code of the multiverse analysis

Arnald Puy

Contents

1	Preliminary functions	2
	The Multiverse Analysis	3
	2.1 The dataset	3
	2.2 Graphical representation of the multiverse	10
	2.3 The garden of forking paths	18
	2.4 Random forest model	22
3	Session information	32

1 Preliminary functions

```
sensobol::load_packages(c("openxlsx", "data.table", "tidyverse", "cowplot",
                       "benchmarkme", "parallel", "wesanderson", "scales", "ncdf4",
                       "countrycode", "rworldmap", "sp", "doParallel", "here", "lme4",
                       "microbenchmark", "mgcv", "brms", "randomForest", "here",
                       "igraph", "ggraph", "gganimate", "magick",
                       "randomForestExplainer", "ggrepel"))
# Create custom theme -----
theme_AP <- function() {</pre>
 theme_bw() +
   theme(panel.grid.major = element_blank(),
         panel.grid.minor = element_blank(),
         legend.background = element_rect(fill = "transparent",
                                      color = NA),
         legend.key = element rect(fill = "transparent",
                                color = NA),
         strip.background = element_rect(fill = "white"),
         legend.text = element_text(size = 7.3),
         axis.title = element_text(size = 10),
         legend.key.width = unit(0.4, "cm"),
         legend.key.height = unit(0.4, "cm"),
         legend.key.spacing.y = unit(0, "lines"),
         legend.box.spacing = unit(0, "pt"),
         legend.title = element_text(size = 7.3),
         axis.text.x = element_text(size = 7),
         axis.text.y = element_text(size = 7),
         axis.title.x = element_text(size = 7.3),
         axis.title.y = element_text(size = 7.3),
         plot.title = element_text(size = 8),
         strip.text.x = element_text(size = 7.4),
         strip.text.y = element_text(size = 7.4))
}
# Select color palette -----
selected.palette <- "Darjeeling1"</pre>
# Source all .R files in the "functions" folder -------------
r functions <- list.files(path = here("functions"), pattern = "\\.R$", full.names = TRUE)
lapply(r_functions, source)
```

2 The Multiverse Analysis

2.1 The dataset

```
references.projected <- data.table(read.xlsx("./data/references_projection.xlsx")) %>%
 .[, focus:= "projected"]
references.current <- data.table(read.xlsx("./data/references_current.xlsx")) %>%
 .[, focus:= "current"]
references.full.dt <- rbind(references.projected, references.current) %>%
 .[, study:= paste(author, model, climate.scenario, sep = ".")]
colnames_vector <- c("title", "author", "region")</pre>
# Remove leading and trailing spaces -----
references.full.dt[, (colnames_vector):= lapply(.SD, trimws), .SDcols = (colnames_vector)]
references.full.dt[, (colnames_vector):= lapply(.SD, str_squish), .SDcols = (colnames_vector)]
# Lowercaps -----
references.full.dt[, (colnames_vector):= lapply(.SD, tolower), .SDcols = (colnames_vector)]
# Remove multiple spaces ------
references.full.dt[, (colnames_vector):= lapply(.SD, function(x)
 gsub("\\s+", " ", x)), .SDcols = (colnames_vector)]
# Correct America ------
references.full.dt[, region:= ifelse(region == "america", "americas", region)]
# Extract the publication year -----
references.full.dt[, publication.date:= str_extract(author, "\\d{4}")] %>%
 .[, publication.date:= as.numeric(publication.date)]
# Definition of target years -----
```

```
target_year <- c(2000, 2010, 2050, 2070, 2100)
# Name of different studies -
sort(unique(references.full.dt[variable == "iww" & region == "global", title]))
      [1] "a global water scarcity assessment under shared socio-economic pathways - part 2: water
      [2] "a pathway of global food supply adaptation in a world with increasingly constrained g
##
      [3] "a reservoir operation scheme for global river routing models"
     [4] "agricultural green and blue water consumption and its influence on the global water s
##
     [5] "an integrated assessment of global and regional water demands for electricity generat
##
##
      [6] "an integrated model for the assessment of global water resources - part 2: application
      [7] "appraisal and assessment of world water resources"
     [8] "aquastat: fao's global information system on water and agriculture"
     [9] "bending the curve: toward global sustainability"
## [10] "cited in world resources 1990-1991, p. 172"
## [11] "climate change impacts on irrigation water requirements: effects of mitigation, 1990-
## [12] "climate impacts on global irrigation requirements under 19 gcms, simulated with a veg
## [13] "climate mitigation policy implications for global irrigation water demand"
## [14] "climate policy implications for agricultural water demand"
## [15] "future long-term changes in global water resources driven by socio-economic and clima
## [16] "global and regional evaluation of energy for water"
## [17] "global hydrological cycles and world water resources,"
## [18] "global impacts of conversions from natural to agricultural ecosystems on water resour
## [19] "global irrigation characteristics and effects simulated by fully coupled land surface
## [20] "global irrigation water demand: variability and uncertainties arising from agriculture
## [21] "global modeling of irrigation water requirements"
## [22] "global modeling of withdrawal, allocation and consumptive use of surface water and groups are supplied to the surface water and groups are supplied to the supplied t
## [23] "global monthly sectoral water use for 2010-2100 at 0.5° resolution across alternative
## [24] "global water demand and supply projections"
## [25] "globwat - a global water balance model to assess water use in irrigated agriculture"
## [26] "green and blue water accounting in the ganges and nile basins: implications for food
## [27] "high-resolution modeling of human and climate impacts on global water resources"
## [28] "how can we cope with the water resources situation by the year 2050?"
## [29] "human appropriation of renewable fresh water"
## [30] "impact of climate forcing uncertainty and human water use on global and continental water
## [31] "implementation and evaluation of irrigation techniques in the community land model"
## [32] "incorporating anthropogenic water regulation modules into a land surface model"
## [33] "incorporation of groundwater pumping in a global land surface model with the represen-
## [34] "integrated crop water management might sustainably halve the global food gap"
## [35] "isimip database"
## [36] "long-term global water projections using six socioeconomic scenarios in an intgrated a
## [37] "lpjm14 - a dynamic global vegetation model with managed land - part 2: model evaluation
## [38] "modelling global water stress of the recent past: on the relative importance of trend
## [39] "multimodel projections and uncertainties of irrigation water demand under climate char
## [40] "pcr-globwb 2: a 5 arcmin global hydrological and water resources model"
```

[41] "physical impacts of climate change on water resources"

```
## [42] "present-day irrigation mitigares heat extremes"
## [43] "projecting irrigation water requirements across multiple socio-economic development f
## [44] "projection of future world water resources under sres scenarios: water withdrawal"
## [45] "quantifying global agricultural water appropriation with data derived from earth obser
## [46] "recent global cropland water consumption constrained by observations"
## [47] "reconciling irrigated food production with environmental flows for sustainable develop
## [48] "reconstructing 20th century global hydrography: a contribution to the global terrestr
## [49] "sustainability of global water use: past reconstruction and future projections"
## [50] "the land-water-energy-nexus: biophysical and economic consequences"
## [51] "the state of the world's land and water resources for food and agriculture"
## [52] "the united nations world water development report 2014: water and energy"
## [53] "the world's water, 2000-2001: the biennial report on freshwater resources"
## [54] "united nations world water development report 2020: water and climate change"
## [55] "water 2050. moving toward a sustainable vision fot the earth's fresh water"
## [56] "water and sustainability. global pattern and long-range problems"
## [57] "water savings potentials of irrigation systems: global simulation of processes and li
## [58] "water scarcity in the twenty-first century"
## [59] "water sector assumptions for the shared socioeconomic pathways in an integrated model
## [60] "world agriculture towards 2030/2050: the 2012 revision"
## [61] "world agriculture towards 2030/2055"
## [62] "world resources 1992-93. a guide to the global environment"
## [63] "world water demand and supply, 1990 to 2025: scenarios and issues"
## [64] "world water in 2025 - global modeling and scenario analysis for the world commission
## [65] "world water resources and their future"
# Number of data points -----
nrow(references.full.dt[variable == "iww" & region == "global"])
## [1] 1408
# Number of different studies per variable -----
references.full.dt[region == "global", unique(title), variable] %>%
.[, .N, variable]
##
      variable
        <char> <int>
## 1:
           iww
                  65
## 2:
           tww
                  20
## 3:
           iwc
                  20
## 4:
                   4
           twc
## 5:
           iwr
                   2
# Number of data points for each target year -----
references.full.dt[variable == "iww" & region == "global" &
                     estimation.year %in% target_year, .N, estimation.year]
```

##

estimation.year

N

```
##
                <num> <int>
## 1:
                 2000
                         65
                 2070
## 2:
                        124
## 3:
                 2100
                        121
## 4:
                 2010
                        111
## 5:
                 2050
                        128
# Number of unique studies estimating for each target year -----
references.full.dt[variable == "iww" & region == "global" &
                     estimation.year %in% target_year, unique(title), estimation.year] %>%
.[, .N, estimation.year]
##
      estimation.year
##
                <num> <int>
## 1:
                 2000
                         24
## 2:
                 2070
                          5
## 3:
                 2100
                          5
## 4:
                 2010
                         11
## 5:
                 2050
                         16
# Number of data points for every targeted year -----
references.full.dt[variable == "iww" & region == "global", .N, estimation.year] %>%
  .[order(estimation.year)]
##
       estimation.year
##
                 <num> <int>
## 1:
                  1900
                           3
## 2:
                  1910
                           2
                  1920
                           2
## 3:
## 4:
                  1930
                           2
                           4
## 5:
                  1940
## 6:
                  1950
                           4
## 7:
                  1960
                           7
## 8:
                  1970
                           5
## 9:
                  1975
                          22
## 10:
                  1980
                          29
## 11:
                  1983
                           1
## 12:
                  1985
                          33
## 13:
                  1986
                           1
## 14:
                  1988
                           1
## 15:
                  1990
                          29
## 16:
                  1993
                           2
## 17:
                  1994
                           3
## 18:
                  1995
                          40
## 19:
                  1996
                           2
## 20:
                  2000
                          65
## 21:
                  2002
                           1
```

```
## 22:
                  2003
                           1
## 23:
                  2004
                           1
## 24:
                  2005
                          34
## 25:
                  2006
                           2
## 26:
                  2007
                           1
## 27:
                  2008
                           1
## 28:
                  2010
                         111
## 29:
                  2015
                           9
## 30:
                  2020
                          97
## 31:
                  2021
                           1
## 32:
                  2025
                          16
## 33:
                  2030
                          88
                           7
## 34:
                  2035
## 35:
                  2040
                          99
## 36:
                  2050
                         128
## 37:
                  2055
                           6
## 38:
                  2060
                          88
## 39:
                  2065
                           7
## 40:
                  2070
                         124
## 41:
                  2075
                           6
## 42:
                  2080
                         103
## 43:
                  2090
                          85
## 44:
                  2095
                          14
## 45:
                  2100
                         121
##
       estimation.year
                           N
# Number of data points for year 2000 or later years ------
references.full.dt[variable == "iww" & region == "global", .N, estimation.year] %>%
  .[estimation.year >= 2000] %>%
  .[, N] %>%
 sum(.)
## [1] 1216
# Cumulative sum of published studies -----
cumulative.iww <- references.full.dt[, .(title, publication.date, variable)] %>%
  .[variable == "iww"] %>%
  .[!duplicated(.)] %>%
  setorder(., publication.date) %>%
  .[, .N, publication.date] %>%
  .[, cumulative_sum := cumsum(N)] %>%
  ggplot(., aes(publication.date, cumulative_sum)) +
  geom_line() +
  scale_x_continuous(breaks = breaks_pretty(n = 3)) +
  geom_point(size = 0.7) +
  theme_AP() +
  labs(x = "Publication year", y = "Nº studies")
```

cumulative.iww


```
plot.bar <- references.full.dt[variable == "iww" & region == "global", .N, estimation.year] %>'
    ggplot(., aes(estimation.year, N)) +
    geom_bar(stat = "identity") +
    scale_x_continuous(breaks = breaks_pretty(n = 3)) +
    labs(x = "Estimation year", y = "Nº data points") +
    theme_AP()
```



```
def.alpha <- 0.2

plot.iww <- references.full.dt[variable == "iww" & region == "global"] %>%
    .[, .(author, study, estimation.year, value)] %>%
    na.omit() %>%
    ggplot(., aes(estimation.year, value, color = author, group = study)) +
    geom_point(alpha = def.alpha, size = 0.5) +
    labs(x = "Estimation year", y = bquote("Km"^3)) +
    scale_color_discrete(name = "") +
    geom_line(alpha = def.alpha) +
    theme_AP() +
    guides(color = guide_legend(ncol = 2)) +
```



```
plot.models <- references.full.dt[variable == "iww" & region == "global"] %>%
        [, .(title, doi, model)] %>%
        [, model:= tolower(model)] %>%
        [, unique(doi), model] %>%
        [, model := gsub("(?i)watergap\\s*\\d*\\.?\\d*", "watergap", model, perl = TRUE)] %>%
        [, .N, model] %>%
        [, model:= ifelse(is.na(model), "No info", model)] %>%
        ggplot(., aes(reorder(model, N), N)) +
        geom_bar(stat = "identity") +
        labs(x = "", y = "N° studies") +
        coord_flip() +
        theme_AP() +
        theme(axis.text.y = element_text(size = 5.5))

plot.models
```


2.2 Graphical representation of the multiverse

```
# Set seed for reproducibility -----
set.seed(123)
# Create datasets for different SD trends ------
data_increasing <- data.frame(</pre>
 period = rep(c("1990-2000", "2000-2010", "2010-2020"), times = c(5, 7, 4)),
 value = c(rnorm(5, mean = 5, sd = 0.3), # Low SD
          rnorm(7, mean = 7, sd = 0.8), # Medium SD
          rnorm(4, mean = 6, sd = 1.5)), # High SD
 target_year = 2000
)
data_decreasing <- data.frame(</pre>
 period = rep(c("1980-2000", "2000-2020"), times = c(5, 7)),
 value = c(rnorm(5, mean = 5, sd = 1.5), # High SD
          rnorm(7, mean = 7, sd = 0.8)), # Medium
 target_year = 2010
)
data_invertedV <- data.frame(</pre>
```

```
period = rep(c("1990-2000", "2000-2010", "2010-2020"), times = c(5, 7, 4)),
 value = c(rnorm(5, mean = 5, sd = 0.4), \# Low SD
           rnorm(7, mean = 7, sd = 1.4), # High SD (peak in the middle)
           rnorm(4, mean = 5, sd = 0.4)), # Low SD again
 target_year = 2070
# Function to compute SD and create a ggplot -----
create_plot <- function(data, title) {</pre>
  sd_values <- data %>%
   group_by(period) %>%
   summarize(sd_value = sd(value) + 3)
  ggplot(data, aes(x = period, y = value)) +
   geom_point(size = 1) +
    geom_point(data = sd_values, aes(x = period, y = sd_value), color = "red", size = 1.5) +
   geom_line(data = sd_values, aes(x = period, y = sd_value, group = 1), color = "red", linew
   theme AP() +
   theme(axis.text.x = element_text(size = 5.35),
         plot.margin = unit(c(0.1, 0.1, 0, 0.1), "cm")) +
   scale_y_continuous(breaks = breaks_pretty(n = 3)) +
   scale_x_discrete(guide = guide_axis(n.dodge = 2)) +
   labs(x = "", y = "Value") +
    annotate("text", x = 0.1 + 0.5, y = max(data$value),
            label = unique(data$target_year), hjust = 0, vjust = 1,
            size = 2)
}
# Generate the three plots ------
p1 <- create_plot(data_increasing)</pre>
p2 <- create_plot(data_decreasing)</pre>
p3 <- create_plot(data_invertedV)</pre>
# Merge using plot_grid -----
plot.examples.trends.data <- plot_grid(p1, p2, p3, ncol = 1, labels = c("e", "", ""))</pre>
plot.examples.trends.data
```



```
# Define size of nodes -----
size.nodes <- 1.5
# Create a balanced binary tree with height 3 -----
tree <- make_tree(15, children = 2, mode = "out")</pre>
# Create a tree plot with all edges highlighted in red ------
all.paths <- ggraph(tree, layout = "dendrogram") +</pre>
 geom_edge_link(color = "red", width = 1) +
 geom_node_point(size = size.nodes, color = "red") +
 theme AP() +
 labs(x = "", y = "") +
 theme(legend.position = "none",
      axis.ticks = element_blank(),
      axis.text.x = element_blank(),
      axis.text.y = element_blank())
all.paths
```



```
# Create a tree plot with only one analytical path highlighted ------
# Define the path to highlight (from root to a specific node) ------
highlight_nodes <- c(1, 2, 5, 11) # Path: 1 \rightarrow 2 \rightarrow 5 \rightarrow 11
highlight_edges <- apply(cbind(head(highlight_nodes, -1),
                               tail(highlight_nodes, -1)), 1, function(x)
                                 paste(x, collapse = "-"))
# Assign default colors (black) to all edges and nodes ------
E(tree)$edge_color <- "black"</pre>
V(tree)$node_color <- "black"</pre>
# Extract edges from the tree and match with highlight_edges ------
edge_list <- apply(get.edgelist(tree), 1, function(x) paste(x, collapse = "-"))</pre>
## Warning: `get.edgelist()` was deprecated in igraph 2.0.0.
## i Please use `as_edgelist()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

```
E(tree)$edge_color[edge_list %in% highlight_edges] <- "red"</pre>
# Highlight the selected nodes in red -___
V(tree)$node_color[highlight_nodes] <- "red"</pre>
# Plot the tree with explicitly defined colors for both edges and nodes ------
one.path <- ggraph(tree, layout = "dendrogram") +</pre>
  geom_edge_link(aes(edge_color = edge_color), width = 1) + # Correct edge colors
  geom_node_point(aes(color = node_color), size = size.nodes) + # Correct node colors
  scale_edge_color_manual(values = c("black" = "black", "red" = "red")) + # Fix for edges
  scale_color_manual(values = c("black" = "black", "red" = "red")) + # Fix for nodes
 theme_AP() +
  labs(x = "", y = "") +
  theme(legend.position = "none",
        axis.ticks = element_blank(),
        axis.text.x = element_blank(),
        axis.text.y = element_blank())
one.path
```



```
plot_grid(one.path, all.paths, ncol = 2, labels = c("a", ""))
```



```
# Define size of nodes ------
size.nodes <- 1.5
# Create a balanced binary tree with height 3 -----
tree <- make_tree(15, children = 2, mode = "out")</pre>
# Create a tree plot with all edges highlighted in red ------
all.paths <- ggraph(tree, layout = "dendrogram") +</pre>
 geom_edge_link(color = "red", width = 1) +
 geom_node_point(size = size.nodes, color = "red") +
 theme AP() +
 labs(x = "", y = "") +
 theme(legend.position = "none",
     axis.ticks = element_blank(),
      axis.text.x = element_blank(),
      axis.text.y = element_blank())
all.paths
```



```
one.path2 <- ggraph(tree, layout = "dendrogram") +
   geom_edge_link(aes(edge_color = edge_color), width = 1) + # Correct edge colors
   geom_node_point(aes(color = node_color), size = size.nodes) + # Correct node colors
   scale_edge_color_manual(values = c("black" = "black", "red" = "red")) + # Fix for edges
   scale_color_manual(values = c("black" = "black", "red" = "red")) + # Fix for nodes
   theme_AP() +
   labs(x = "", y = "") +
   theme(legend.position = "none",
        axis.ticks = element_blank(),
        axis.text.x = element_blank(),
        axis.text.y = element_blank())

one.path2</pre>
```


2.3 The garden of forking paths

```
# Target year ------
## Defined above
# Target year interval ------
target_year_interval <- c("yes", "no")</pre>
# Interval publication ------
interval <-c(10, 15, 20)
# Metrics of study -----
metrics <- c("cv", "range", "sd", "var", "entropy", "iqr")</pre>
# Rolling windows ------
rolling_window_factor <- c(1, 0.5)
# Define the forking paths -----
forking_paths <- expand.grid(target_year = target_year,</pre>
                 target_year_interval = target_year_interval,
                 interval = interval,
                 rolling_window_factor = rolling_window_factor,
                 metric = c(metrics, paste(metrics, "_normalized", sep = ""))) %>%
 data.table()
# Number of simulations -----
nrow(forking paths)
## [1] 720
# Select only simulations at the global level of iww ------
dt <- references.full.dt[variable == "iww" & region == "global"]</pre>
# Run simulations -----
trend <- list()</pre>
```

```
for (i in 1:nrow(forking_paths)) {
 trend[[i]] <- forking_paths_fun(dt = dt,</pre>
                               target_year = forking_paths[[i, "target_year"]],
                               target_year_interval = forking_paths[[i, "target_year_interval"]
                               interval = forking_paths[[i, "interval"]],
                               rolling_window_factor = forking_paths[[i, "rolling_window_fa
                               metric = forking_paths[[i, "metric"]])
}
output.dt <- lapply(trend, function(x) x[["results"]]) %>%
 do.call(rbind, .) %>%
 data.table() %>%
 setnames(., "V1", "trend") %>%
 .[, row:= .I]
final.dt <- cbind(forking_paths, output.dt)</pre>
# Export simulations -----
fwrite(final.dt, "forking.paths.dataset.csv")
write.xlsx(final.dt, "forking.paths.dataset.xlsx")
# Print the fraction of simulations in each classification ------
final.dt %>%
 .[, .(total = .N), trend] \%
 .[, fraction:= total / nrow(output.dt)] %>%
 print()
##
           trend total fraction
          <char> <int>
##
                           <num>
## 1:
          Random 345 0.47916667
## 2:
         Decrease 149 0.20694444
## 3:
         Increase 196 0.27222222
## 4: single point 30 0.04166667
# Now remove all simulations that produced just one single point -----
final.dt <- final.dt[!trend == "single point"]</pre>
# Simulations that did not lead to a reduction in uncertainty ------
final.dt %>%
 .[, .(total = .N), trend] \%
.[, fraction:= total / nrow(output.dt)] %>%
```

```
.[!trend == "Decrease"] %>%
.[, sum(fraction)]
## [1] 0.7513889
plots.dt <- lapply(trend, function(x) x[["plot"]])</pre>
# Increasing trends -----
plots.increasing <- plot_grid(plots.dt[[15]], plots.dt[[667]], plots.dt[[117]],</pre>
                      plots.dt[[644]], ncol = 1)
# Decreasing trend ------
plots.decreasing <- plot_grid(plots.dt[[44]], plots.dt[[600]], plots.dt[[155]],</pre>
                      plots.dt[[628]], ncol = 1)
# Random trend ------
plots.random <- plot_grid(plots.dt[[34]], plots.dt[[2]], plots.dt[[616]],</pre>
                   plots.dt[[579]], ncol = 1)
plots.examples.trends <- plot_grid(plots.increasing, plots.decreasing,</pre>
                          plots.random, ncol = 3)
plots.examples.trends
```


2.4 Random forest model

```
# Convert categorical variables to factors ------
df <- data.frame(final.dt[trend != "single point"]) # Remove 5% observations</pre>
df$metric <- as.factor(df$metric)</pre>
df$trend <- as.factor(df$trend)</pre>
df$target_year_interval <- as.factor(df$target_year_interval)</pre>
# Train the model with weights on 2,000 random trees -----
rf_model <- randomForest(trend ~ target_year + target_year_interval + interval +
                       rolling_window_factor + metric,
                     data = df, importance = TRUE, ntree = 5000,
                     classwt = c(1.5, 2, 1), mtry = 3)
# Check model summary ------
print(rf model)
##
## Call:
## randomForest(formula = trend ~ target_year + target_year_interval + interval + rolling
               Type of random forest: classification
##
##
                    Number of trees: 5000
## No. of variables tried at each split: 3
         OOB estimate of error rate: 18.84%
##
## Confusion matrix:
         Decrease Increase Random class.error
                     26 14 0.2684564
## Decrease
             109
## Increase
                     147
                           28 0.2500000
              21
## Random
              19
                     22
                            304
                                 0.1188406
# View variable importance ------
dt rf model <- data.frame(importance(rf model))</pre>
dt_rf_model
##
                                         Random MeanDecreaseAccuracy
                     Decrease Increase
## target_year 233.33675 127.67405 235.39101
                                                       313.15103
## target_year_interval 2.49685 80.37727 73.15638
                                                        91.51887
                     122.21030 73.59620 158.73968
## interval
                                                       192.26397
## rolling_window_factor 93.60813 128.16285 227.48552
                                                       256.35584
                      97.93797 120.70981 37.83513
                                                        135.03712
##
                     MeanDecreaseGini
## target_year
                           110.60836
```

```
## target_year_interval
                                 38,66901
## interval
                                 64.52131
## rolling_window_factor
                                 40.38888
## metric
                                150.02786
# Compute importance -----
importance_frame <- measure_importance(rf_model)</pre>
data <- importance_frame[importance_frame$no_of_trees > 0, ]
# Retrieve data -----
data for labels <- importance frame[importance frame$variable %in%
                                      important_variables(importance_frame, k = 10,
                                                          measures = c("mean_min_depth",
                                                                        "times_a_root",
                                                                        "no_of_nodes")),]
data_for_labels
##
                  variable mean_min_depth no_of_nodes accuracy_decrease
## 1
                  interval
                                   1.9240
                                               130132
                                                             0.07868340
## 2
                                               219195
                    metric
                                   0.7480
                                                             0.06873110
## 3 rolling_window_factor
                                                48391
                                                             0.09902980
                                   1.6088
## 4
               target year
                                   0.6768
                                               179300
                                                             0.16078828
## 5 target_year_interval
                                   2.5628
                                                84286
                                                             0.03069028
    gini_decrease no_of_trees times_a_root p_value
##
## 1
          64.52131
                          5000
                                        123
## 2
        150.02786
                          5000
                                       2104
                                                  0
## 3
        40.38888
                          5000
                                        415
                                                  1
                                                  0
## 4
       110.60836
                          5000
                                       2345
## 5
          38.66901
                          5000
                                         13
                                                  1
plot.rf <- data.frame(importance(rf_model)) %>%
 rownames_to_column(., var = "factors") %>%
 data.table() %>%
  setnames(., c("MeanDecreaseAccuracy", "MeanDecreaseGini"),
           c("Accuracy", "Gini")) %>%
 melt(., measure.vars = c("Accuracy", "Gini")) %>%
  .[variable == "Accuracy"] %>%
 ggplot(., aes(reorder(factors, value), value)) +
  geom_point() +
  coord_flip() +
  scale_y_continuous(breaks = breaks_pretty(n = 3)) +
  labs(x = "", y = "Decrease accuracy") +
  theme_AP()
```

plot.rf

Scale for fill is already present.

Adding another scale for fill, which will replace the existing scale.

plot.predict

Scale for fill is already present.

Adding another scale for fill, which will replace the existing scale.

```
20.0 Decrease Increase Random

17.5 -

12.5 -

10.0 -

2000 2050 2100 2000 2050 2100 2000 2050 2100

Target year
```


library(rpart)

```
## Warning: package 'rpart' was built under R version 4.3.3
library(rpart.plot)
```

```
## Warning: package 'rpart.plot' was built under R version 4.3.3
```



```
left <- plot_grid(cumulative.iww, plot.bar, ncol = 1, labels = c("b", "c"))
bottom <- plot_grid(left, plot.models, ncol = 2, labels = c("", "d"), rel_widths = c(0.4, 0.6)
bottom.right <- plot_grid(bottom, plot.examples.trends.data, ncol = 2, rel_widths = c(0.7, 0.3)
plot_grid(plot.iww, bottom.right, ncol = 1, rel_heights = c(0.5, 0.5), labels = c("a", ""))</pre>
```


 $labels = c("", "f")) \\ plot_grid(plot.iww, bottom.right, ncol = 1, rel_heights = c(0.5, 0.5), labels = c("a", "")) \\$


```
## Warning in melt.data.table(., measure.vars = c("target_year",
## "target_year_interval", : 'measure.vars' [target_year, target_year_interval,
## interval, rolling_window_factor, ...] are not all of the same type. By order of
## hierarchy, the molten data value column will be of type 'character'. All
## measure variables not of type 'character' will be coerced too. Check DETAILS in
## ?melt.data.table for more on coercion.
```

plot.sa.facet

3 Session information

[28] splines_4.3.3

```
sessionInfo()
## R version 4.3.3 (2024-02-29)
## Platform: aarch64-apple-darwin20 (64-bit)
## Running under: macOS Sonoma 14.2.1
##
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRblas.0.dylib
## BLAS:
## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib;
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## time zone: Europe/London
## tzcode source: internal
## attached base packages:
## [1] parallel stats
                          graphics grDevices utils
                                                       datasets methods
## [8] base
##
## other attached packages:
## [1] randomForest_4.7-1.2 brms_2.22.0
                                                Rcpp_1.0.13-1
## [4] mgcv_1.9-1
                            nlme_3.1-166
                                                microbenchmark_1.5.0
## [7] lme4_1.1-35.5
                            Matrix_1.6-5
                                                here_1.0.1
## [10] doParallel_1.0.17
                            iterators_1.0.14
                                                foreach_1.5.2
## [13] rworldmap_1.3-8
                            sp_2.1-4
                                                 countrycode_1.6.0
## [16] ncdf4_1.23
                            scales_1.3.0
                                                wesanderson_0.3.7
## [19] benchmarkme_1.0.8
                            cowplot_1.1.3
                                                lubridate_1.9.3
## [22] forcats_1.0.0
                            stringr_1.5.1
                                                dplyr_1.1.4
## [25] purrr_1.0.2
                            readr_2.1.5
                                                tidyr_1.3.1
## [28] tibble_3.2.1
                            ggplot2_3.5.1
                                                tidyverse_2.0.0
## [31] data.table_1.16.2
                            openxlsx_4.2.7.1
## loaded via a namespace (and not attached):
## [1] Rdpack_2.6.2
                             rlang_1.1.4
                                                  magrittr_2.0.3
## [4] matrixStats_1.4.1
                             compiler_4.3.3
                                                  100_2.8.0
## [7] vctrs_0.6.5
                             maps_3.4.2.1
                                                  crayon_1.5.3
## [10] pkgconfig_2.0.3
                             fastmap_1.2.0
                                                  backports_1.5.0
## [13] labeling_0.4.3
                             utf8_1.2.4
                                                  rmarkdown_2.29
## [16] tzdb_0.4.0
                             nloptr_2.1.1
                                                  tinytex_0.54
## [19] xfun_0.49
                             terra_1.7-78
                                                  R6_2.5.1
## [22] stringi_1.8.4
                             boot_1.3-31
                                                  estimability_1.5.1
## [25] knitr_1.49
                             fields_16.3
                                                  bayesplot_1.11.1
```

tidyselect_1.2.1

timechange_0.3.0

```
## [31] rstudioapi_0.17.1
                            abind_1.4-8
                                                 yaml_2.3.10
## [34] codetools_0.2-20
                            lattice_0.22-6
                                                 withr_3.0.2
## [37] bridgesampling_1.1-2
                            benchmarkmeData_1.0.4 posterior_1.6.0
## [40] coda_0.19-4.1
                            evaluate_1.0.1
                                                 RcppParallel_5.1.9
## [43] zip 2.3.1
                            pillar 1.9.0
                                                 tensorA_0.36.2.1
## [46] checkmate_2.3.2
                            distributional_0.5.0 generics_0.1.3
## [49] rprojroot 2.0.4
                            hms_1.1.3
                                                 rstantools_2.4.0
## [52] munsell_0.5.1
                            minqa_1.2.8
                                                 sensobol_1.1.5
## [55] xtable_1.8-4
                            glue_1.8.0
                                                 emmeans_1.10.5
## [58] tools_4.3.3
                            mvtnorm_1.3-2
                                                 dotCall64_1.2
## [61] grid_4.3.3
                            rbibutils_2.3
                                                 colorspace_2.1-1
## [64] raster_3.6-30
                            cli_3.6.3
                                                 spam_2.11-0
## [67] fansi_1.0.6
                            viridisLite_0.4.2
                                                 Brobdingnag_1.2-9
## [70] gtable_0.3.6
                            digest_0.6.37
                                                 farver_2.1.2
## [73] htmltools_0.5.8.1
                            lifecycle_1.0.4
                                                 httr_1.4.7
## [76] MASS_7.3-60.0.1
## Return the machine CPU -----
cat("Machine: "); print(get_cpu()$model_name)
## Machine:
## [1] "Apple M1 Max"
## Return number of true cores ------
cat("Num cores: "); print(detectCores(logical = FALSE))
## Num cores:
## [1] 10
## Return number of threads -----
cat("Num threads: "); print(detectCores(logical = FALSE))
## Num threads:
## [1] 10
```