SISTEMA TESTE IEEE DE 30 BARRAS

Esse sistema contém 2 geradores síncronos nas barras 1 e 2, e 4 condensadores síncronos (barras 5, 8, 11 e 13). Possui 4 transformadores de 2 enrolamentos e 1 transformador de 3 enrolamentos. Um total de 34 linhas interligam o sistema de 30 barras, assim como mostra a Figura 1. O transformador está representado em seu modelo equivalente Y, sendo a barra 9 o ponto do meio no modelo (KINDERMANN, 1997, p. 26). Os dados para análise de curto-circuito foram adaptados de (CHRISTIE, 1993) e são mostrados no Adendo A.

Figura 1: Diagrama unifilar da rede teste IEEE 30 barras.

Fonte: Do autor.

Adendo A - Dados da Rede Teste IEEE de 30 barras

Os dados para estudo de curto-circuito são mostrados para o sistema teste IEEE de 30 barras. Os dados são divididos em dados das barras, das linhas, dos transformadores e dos geradores. Todos os valores por unidade (p.u.) estão referenciados nos valores base de 100 MVA e na tensão nominal em cada ponto do sistema.

A-1 Dados de Barra

Tabela 1: Dados das barras da rede teste IEEE de 30 barras.

#	Tipo	Bshunt (pu)	Vbase (kV)
1	2	0,000	132,0
2	1	0,000	132,0
3	0	0,000	132,0
4	0	0,000	132,0
5	1	0,000	132,0
6	0	0,000	132,0
7	0	0,000	132,0
8	1	0,000	132,0
9	0	0,000	1,0
10	0	0,190	33,0
11	1	0,000	11,0
12	0	0,000	33,0
13	1	0,000	11,0
14	0	0,000	33,0
15	0	0,000	33,0
16	0	0,000	33,0
17	0	0,000	33,0
18	0	0,000	33,0
19	0	0,000	33,0
20	0	0,000	33,0
21	0	0,000	33,0
22	0	0,000	33,0
		continua	

Bshunt (pu)	Vbase (kV)
0,000	33,0
0,043	33,0
0,000	33,0
0,000	33,0
0,000	33,0
0,000	132,0
0,000	33,0
0,000	33,0
	0,000 0,043 0,000 0,000 0,000 0,000 0,000

Fonte: Do autor.

Descrição dos dados:

- #: número da barra;
- Tipo: tipo da barra, onde:
 - o 2: barra de oscilação $(V\theta)$;
 - o 1: barra de tensão controlada (PV);
 - o 0: barra de carga (PQ).
- Bshunt: valor da susceptância shunt total em derivação na barra em p.u.;
- Vbase: valor da tensão base na barra em kV.

Observação:

• A barra 9 é uma barra fictícia que representa o ponto do meio do transformador de 3 enrolamentos no modelo Y (KINDERMANN, 1997, p. 26).

A-2 Dados das Linhas

Tabela 2: Dados das linhas da rede teste IEEE de 30 barras.

De	Para	R1 (pu)	X1 (pu)	Bshl (pu)	R0 (pu)	X0 (pu)			
1	2	0,0192	0,0575	0,0528	0,06720	0,20125			
1	3	0,0452	0,1652	0,0408	0,15820	0,57820			
2	4	0,0570	0,1737	0,0368	0,19950	0,60795			
3	4	0,0132	0,0379	0,0084	0,04620	0,13265			
2	5	0,0472	0,1983	0,0418	0,16520	0,69405			
2	6	0,0581	0,1763	0,0374	0,20335	0,61705			
4	6	0,0119	0,0414	0,0090	0,04165	0,14490			
5	7	0,0460	0,1160	0,0204	0,16100	0,40600			
6	7	0,0267	0,0820	0,0170	0,09345	0,28700			
6	8	0,0120	0,0420	0,0090	0,04200	0,14700			
6	9	0,0000	0,2080	0,0000	0,00000	0,72800			
6	10	0,0000	0,5560	0,0000	0,00000	1,94600			
9	11	0,0000	0,2080	0,0000	0,00000	0,72800			
9	10	0,0000	0,1100	0,0000	0,00000	0,38500			
4	12	0,0000	0,2560	0,0000	0,00000	0,89600			
12	13	0,0000	0,1400	0,0000	0,00000	0,49000			
12	14	0,1231	0,2559	0,0000	0,43085	0,89565			
12	15	0,0662	0,1304	0,0000	0,23170	0,45640			
12	16	0,0945	0,1987	0,0000	0,33075	0,69545			
14	15	0,2210	0,1997	0,0000	0,77350	0,69895			
16	17	0,0524	0,1923	0,0000	0,18340	0,67305			
15	18	0,1073	0,2185	0,0000	0,37555	0,76475			
18	19	0,0639	0,1292	0,0000	0,22365	0,45220			
19	20	0,0340	0,0680	0,0000	0,11900	0,23800			
10	20	0,0936	0,2090	0,0000	0,32760	0,73150			
10	17	0,0324	0,0845	0,0000	0,11340	0,29575			
10	21	0,0348	0,0749	0,0000	0,12180	0,26215			
10	22	0,0727	0,1499	0,0000	0,25445	0,52465			
21	22	0,0116	0,0236	0,0000	0,04060	0,08260			
15	23	0,1000	0,2020	0,0000	0,35000	0,70700			
22	24	0,1150	0,1790	0,0000	0,40250	0,62650			
23	24	0,1320	0,2700	0,0000	0,46200	0,94500			
24	25	0,1885	0,3292	0,0000	0,65975	1,15220			
25	26	0,2544	0,3800	0,0000	0,89040	1,33000			
continua									

continuação								
De	Para	R0 (pu)	X0 (pu)					
25	27	0,1093	0,2087	0,0000	0,38255	0,73045		
28	27	0,0000	0,3960	0,0000	0,00000	1,38600		
27	29	0,2198	0,4153	0,0000	0,76930	1,45355		
27	30	0,3202	0,6027	0,0000	1,12070	2,10945		
29	30	0,2399	0,4533	0,0000	0,83965	1,58655		
8	28	0,0636	0,2000	0,0428	0,22260	0,70000		
6	28 0,0169 0,0599 0,0130 0,05915 0,209							
Fim de Tabela								

Fonte: Do autor.

Descrição dos dados:

- De: número da barra onde se inicia o trecho;
- Para: número da barra onde termina o trecho;
- R1: valor da resistência de sequência positiva da linha em p.u.;
- X1: valor da reatância indutiva de sequência positiva da linha em p.u.;
- Bshl: valor da susceptância shunt da linha em p.u.;
- R0: valor da resistência de sequência zero da linha em p.u.;
- X0: valor da reatância indutiva de sequência zero da linha em p.u..

Observação:

• As linhas foram consideradas todas do tipo aérea, portanto $Z0 = Z1 \times 3.5$ (STEVENSON, 1986, p. 315).

A-3 Dados dos Geradores

Tabela 3: Dados dos geradores da rede teste IEEE de 30 barras.

#	Conexão	R1 (pu)	X1 (pu)	R2 (pu)	X2 (pu)	R0 (pu)	X0 (pu)	Xn (pu)
1	3	0,0000	0,15000	0,0000	0,15000	999999,0000	999999,0000	999999,0000
2	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
5	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
8	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
11	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000
13	3	0,0000	0,1500	0,0000	0,1500	999999,0000	999999,0000	999999,0000

Fonte: Do autor.

Descrição dos dados:

- #: número da barra onde o gerador está conectado;
- Conexão: tipo do fechamento da conexão das 3 fases, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- R1: valor da resistência equivalente de sequência positiva do gerador em p.u.;
- X1: valor da reatância equivalente de sequência positiva em p.u. (reatância subtransitória);
- R2: valor da resistência equivalente de sequência negativa do gerador em p.u.;
- X2: valor da reatância equivalente de sequência negativa do gerador em p.u.;
- R0: valor da resistência equivalente de sequência zero do gerador em p.u.;
- X0: valor da reatância equivalente de sequência zero do gerador em p.u.;
- Xn: valor da reatância entre o neutro do gerador e a terra em p.u..

Observações:

- Os dados dos geradores foram baseados em (STEVENSON, 1986, p. 450);
- O valor 999999 representa um valor muito alto, um circuito aberto.

A-4 Dados dos Transformadores

Tabela 4: Dados dos transformadores da rede teste IEEE de 30 barras.

De	Para	Conexão De	Conexão Para	Rt (pu)	Xt (pu)	Rm (pu)	Xm (pu)	Rn (pu)	Xn (pu)
6	9	3	2	0,0000	0,2080	999999,0000	999999,0000	0,0000	0,0000
6	10	3	2	0,0000	0,5560	999999,0000	999999,0000	0,0000	0,0000
9	11	3	2	0,0000	0,2080	999999,0000	999999,0000	0,0000	0,0000
9	10	3	2	0,0000	0,1100	999999,0000	999999,0000	0,0000	0,0000
4	12	3	2	0,0000	0,2560	999999,0000	999999,0000	0,0000	0,0000
12	13	3	2	0,0000	0,1400	999999,0000	999999,0000	0,0000	0,0000
28	27	3	2	0,0000	0,3960	999999,0000	999999,0000	0,0000	0,0000

Fonte: Do autor.

Descrição dos dados:

- De: número da barra onde está conectado um lado do transformador;
- Para: número da barra onde está conectado a outra terminação do transformador;
- Conexão De: tipo do fechamento entre as 3 fases no lado De, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- Conexão Para: tipo do fechamento entre as 3 fases no lado Para, onde:
 - o 1: conexão do tipo estrela;
 - o 2: conexão do tipo estrela-aterrada;
 - o 3: conexão do tipo triângulo.
- Rt: valor da resistência equivalente do transformador em p.u.;
- Xt: valor da reatância equivalente do transformador em p.u.;
- Rm: valor da resistência entre o neutro do transformador e a terra no lado De em p.u.;
- Xm: valor da reatância entre o neutro do transformador e a terra no lado De em p.u.;

- Rn: valor da resistência entre o neutro do transformador e a terra no lado Para em p.u.;
- Xn: valor da reatância entre o neutro do transformador e a terra no lado Para em p.u..

Observação:

• O valor 999999 representa um valor muito alto, um circuito aberto.

REFERÊNCIAS¹

CHRISTIE, R. **Power Systems Test Case Archive**. Aug. 1993. Disponível em: http://www.ee.washington.edu/research/pstca/>. Acesso em: 20 janeiro 2017.

KINDERMANN, G. Curto-Circuito. 2. ed. Porto Alegre, RS: Sagra Luzzatto, 1997. 214 p.

STEVENSON, W. D. **Elementos de análise de sistemas de potência.** 2. ed. São Paulo, SP: MCGraw-Hill, 1986. 458 p.

¹ Baseadas na norma NBR 6023, de 2002, da Associação Brasileira de Normas Técnicas (ABNT).