

Sequence Listing

<110> Takeda Chemical Industries, Ltd.

<120> Screening Method

<130> 2639WOOP

<150> JP 11-236597

<151> 1999-08-24

<160> 23

<210> 1

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 1

Phe Met Arg Phe

1

<210> 2

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 2

Tyr Phe Met Arg Phe

1

5

<210> 3

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 3

Tyr Gly Gly Phe Met Arg Phe

1

5

<210> 4

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223>

<400> 4
Tyr Gly Gly Phe Met Arg Phe
1 5

<210> 5
<211> 4
<212> PRT
<213> Artificial Sequence

<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 5
Pro Gln Arg Phe
1

<210> 6
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 6
Phe Leu Phe Gln Pro Gln Arg Phe
1 5

<210> 7
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form

<220>
<221>
<222> (1)
<223> Xaa means pGlu

<400> 7
Xaa Asp Pro Phe Leu Arg Phe
1 5

<210> 8
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 8
Asp Arg Asn Phe Leu Arg Phe

1 5
<210> 9
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 9
Asn Arg Asn Phe Leu Arg Phe
 1 5

<210> 10
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 10
Thr Asn Arg Asn Phe Leu Arg Phe
 1 5

<210> 11
<211> 10
<212> PRT
<213> Artificial Sequence

<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 11
Pro Asp Val Asp His Val Phe Leu Arg Phe
 1 5 10

<210> 12
<211> 7
<212> PRT
<213> Artificial Sequence

<220>
<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 12
Lys Asn Glu Phe Ile Arg Phe
 1 5

<210> 13
<211> 7
<212> PRT
<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 13
Lys His Glu Tyr Leu Arg Phe
1 5

<210> 14
<211> 5
<212> PRT
<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 14
Leu Pro Leu Arg Phe
1 5

<210> 15
<211> 31
<212> PRT
<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 15
Ser Arg Ala His Gln His Ser Met Glu Ile Arg Thr Pro Asp Ile Asn
1 5 10 15
Pro Thr Trp Tyr Thr Gly Arg Gly Ile Arg Pro Val Gly Arg Phe
20 25 30

<210> 16
<211> 20
<212> PRT
<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 16
Ser Pro Glu Ile Asp Pro Phe Trp Val Tyr Gly Arg Gly Val Arg Pro
1 5 10 15
Ile Gly Arg Phe
20

<210> 17
<211> 11
<212> PRT
<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 17
Ser Gly Gln Ser Trp Arg Pro Gln Gly Arg Phe

1

5

10

<210> 18

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 18

Leu Ser Ser Phe Val Arg Ile

1

5

<210> 19

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 19

Ala Arg Pro Gly Tyr Leu Ala Phe Pro Arg Met

1

5

10

<210> 20

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> the C-terminus of the polypeptide is amide (-CONH2) form

<400> 20

Met Asn Tyr Leu Ala Phe Pro Arg Met

1

5

<210> 21

<211> 1209

<212> DNA

<213> Human

<400> 21

atggcttgca	atggcagtgc	ggccaggggg	cactttgacc	ctgaggactt	gaacctgact	60
gacgaggcac	tgagactcaa	gtacctgggg	ccccagcaga	cagagctgtt	catgcccata	120
tgtgccacat	acctgctgat	cttcgtgggt	ggcgctgtgg	gcaatgggct	gacctgtctg	180
gtcattcctgc	gccacaaggc	catgcgcacg	cctaccaact	actacctctt	cagcctggcc	240
gtgtcgacc	tgctgggtct	gctgggtggc	ctgcccctgg	agctctatga	gatgtggcac	300
aactaccct	tcctgctggg	cgttggtgcc	tgctatttcc	gcacgctact	gtttgagatg	360
gtctgcctgg	cctcagtgtct	caacgtca	gccctgagcg	tggaacgcta	tgtggccgt	420
gtgcacccac	tccaggccag	gtccatgggt	acggggcc	atgtgcgccg	agtgccttgg	480
gccgtctggg	gtcttgccat	gctctgtccc	ctgccccaaa	ccagcctgca	cggcatccgg	540
cagctgcacg	tgccctgccc	gggcccagt	ccagactca	ctgtttgcat	gctggccgc	600
ccacggcc	tctacaacat	ggttagtgcag	accacccgc	tgctcttctt	ctgcctgccc	660
atggccatca	tgagcgtgtct	ctacactgctc	attggctgc	gactgcggcg	ggagaggctg	720

ctgctcatgc	aggaggccaa	gggcagggc	tctgcagcag	ccaggtccag	atacacctgc	780
aggctccagc	agcacgatcg	gggccggaga	caagtacca	agatgctgtt	tgcctggtc	840
gtggtgtttg	gcatctgctg	ggccccgttc	cacgcccacc	gcgtcatgtg	gagcgtcgtg	900
tcacagtgga	cagatggcct	gcacctggcc	ttccagcacg	tgcacgtcat	ctccggcatc	960
ttcttctacc	tgggctcggc	ggccaacccc	gtgctctata	gcctcatgtc	cagccgcttc	1020
cgagagacct	tccaggaggc	cctgtgcctc	gggcctgct	gccatgcct	cagaccccgcc	1080
cacagctccc	acagcctcag	caggatgacc	acaggcagca	ccctgtgtga	tgtggctcc	1140
ctggcagct	gggtccaccc	cctggctggg	aacgatggcc	cagaggcgca	gcaagagacc	1200
gatccatcc						1209

<210> 22

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 22

gtcgaccatg gcttgcaatg gcagtgcggc cagg 34

<210> 23

<211> 30

<212> DNA

<213> Artificial Sequence

<220>

<223>

<400> 23

gctagctcag gatggatcgg tctttgctg 30