Introduction to Linear Modelling

NGSchool2022

Nuno Sepúlveda, 16.09.2022 nuno.Sepulveda@mini.pw.edu.pl http://www.immune-stats.net

Your thoughts about linear regression

PLOS BIOLOGY

META-RESEARCH ARTICLE

Educating the future generation of researchers: A cross-disciplinary survey of trends in analysis methods

Taylor Bolt 1*, Jason S. Nomi 1, Danilo Bzdok2,3, Lucina Q. Uddin 1,4

Linear regression as a foundation for more complex models

Objectives

Touch-base on simple linear regression

How to estimate parameters?

How to interpret the results?

How to be cautious in reporting?

Use R to conduct data analysis

Study of the relationship between x and y

Simple linear regression

$$y = a + bx$$

y = response variabledependent variableoutcome variable

x = explicative variableindependent variablecovariate/predictorfeature

Simple linear regression

$$y = a + bx$$

$$a = intercept$$

$$b = slope$$

Simple linear regression

$$y = a + bx$$

$$a = intercept$$

$$b = slope$$

Footnote

$$y = \alpha + \beta x$$

$$y = \beta_0 + \beta_1 x$$

Statisticians/Mathematicians

What is the advantage of writing the equation like this?

What does the intercept represent?

What does the slope represent?

In a perfect world

In a not-so-perfect world

Introducing uncertainty/randomness

$$y_i = a + bx_i + \epsilon_i$$
, $i = 1, ..., n$

$$\epsilon_i \rightsquigarrow N(\mu = 0,\sigma)$$

Random error

What is the source of this random error?

How to estimate a and b?

Ordinary Least Squares Method

Ordinary Least Squares Method

$$\begin{pmatrix} \hat{a} \\ \hat{b} \end{pmatrix} = \underset{a,b}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \hat{a} - \hat{b}x_i)^2$$

Inference of interest (in large samples)

$$H_0: a = 0 \text{ versus } H_1: a \neq 0$$

$$H_0: b = 0 \text{ versus } H_1: b \neq 0$$

$$t = \frac{\hat{a}}{se(\hat{a})} | H_0 \rightsquigarrow N(\mu = 0, \sigma = 1)$$

$$t = \frac{\hat{a}}{se\left(\hat{a}\right)} \mid H_0 \rightsquigarrow N\left(\mu = 0, \sigma = 1\right) \qquad t = \frac{\hat{b}}{se\left(\hat{b}\right)} \mid H_0 \rightsquigarrow N\left(\mu = 0, \sigma = 1\right)$$

p-value < 0.05, reject H_0

p-value ≥ 0.05 , not reject H_0

0.05 is the significance level of the test

Warnings

Technical warning

Be aware of the model assumptions and their validity in the data

Interpretative warnings

Be aware of the dangers of extrapolating

Be aware of the dangers of inferring causality

It is R time!

