PURDUE UNIVERSITY

Department of Mathematics

GALOIS THEORY HONORS, MA 45401

Homework 3 (Jan 31 – Feb 13).

- 1 (5+10+15) 1) Show that $t^3 + t + 1$ is irreducible in $\mathbb{F}_2[t]$.
 - 2) Consider the quotient ring $L := \mathbb{F}_2[t]/(t^3+t+1)$ and compute its size.
 - 3) Take g = t + 1 and prove that the set $\{0, g, g^2, \dots, g^7\}$ coincides with L.
- **2** (15) Let K be a field and $p, q \in K[t]$ be irreducible polynomials over K, $(p) \neq (q)$ (this is equivalent to the statement that p is coprime to q). Consider the field $\mathbb{F} := K(t)$ and the polynomial $g(x) = x^n + px + pq \in \mathbb{F}[x]$. Prove that g is irreducible over \mathbb{F} .
- **3** (10) Prove that $t^2 7$ is irreducible over $\mathbb{Q}(\sqrt{5})$.
- 4 (5+5+5+10+20) 1) Let $\alpha=2^{1/6}$ and $\varepsilon_3^3=1,\ \varepsilon_3\neq 1$. Find the minimal polynomials of α over
 - a) \mathbb{Q} b) $\mathbb{Q}(\alpha)$ c) $\mathbb{Q}(\alpha^2)$ d) $\mathbb{Q}(\alpha\varepsilon_3)$.
 - 2) In each case (a—d), find the conjugate elements of all roots of $x^6 2$.
- 5 Midterm exam is next Thursday!