Politechnika Gdańska

Wydział Fizyki Technicznej i Matematyki Stosowanej

Anna Wieżel

Nr albumu: 132540

Funkcjonalne Modele Liniowe

Praca magisterska na kierunku MATEMATYKA w zakresie MATEMATYKA FINANSOWA

> Praca wykonana pod kierunkiem **dra hab. Karola Dziedziula** Katedra Analizy Matematycznej i Numerycznej

Oświadczenie kierujcego prac

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje si do przedstawienia jej w postpowaniu o nadanie tytułu zawodowego.

Data

Podpis kierujcego prac

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowizujcymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur zwizanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załczon wersj elektroniczn.

Data

Podpis autora (autorów) pracy

Streszczenie

 \cos

Słowa kluczowe

funkcjonalna analiza danych, dane funkcjonalne, funkcjonalne modele liniowe, test istotności

Dziedzina pracy (kody wg programu Socrates-Erasmus)

- 11.1 Matematyka
- 11.2 Statystyka

Klasyfikacja tematyczna

62 Statistics62-07 Data analysis62J12 Generalized linear models

Tytuł pracy w jzyku angielskim

Functional Linear Models

Spis treści

Wstęp	. 5
1. Preliminaria	. 7
1.1. Klasyfikacja operatorów liniowych	. 7
1.2. Przestrzeń L^2	. (
1.3. Zmienne funkcjonalne w L^2 . Pojęcie operatora kowariancji	. (
1.4. Funkcjonalne modele liniowe	. 10
2. Test istotności w funkcjonalnym modelu liniowym	. 13
2.1. Idea ogólna	. 13
2.2. Formalizm	15
3. Przykład zastosowania	. 17
A. Kod w R	. 19
Ribliografia	21

Wstęp

Odpowiednik testu istotności dla prostego modelu regresji = F-test (+ t-test) [patrz: artykuł]

Rozdział 1

Preliminaria

Przestrzenią funkcyjną nazywać będziemy przestrzeń liniową funkcji z dowolnego zbioru X do zbioru Y.

Definicja 1.0.1 [Ferraty, Vieu]

Zmienną losową X nazywamy **zmienną funkcjonalną** wtedy i tylko wtedy, gdy przyjmuje wartości w nieskończenie wymiarowej przestrzeni (przestrzeni funkcyjnej). Obserwację χ zmiennej X nazywamy **daną funkcjonalną** (ang. functional data).

Jeśli zmienna funkcjonalna X (odpowiednio obserwacja χ) jest krzywą, to zachodzi $X=\{X(t),\ t\in T\}$ (odp. $\chi=\{\chi(t),\ t\in T\}$), gdzie zbiór indeksów $T\subset\mathbb{R}$. Taką zmienną funkcjonalną możemy zatem utożsamiać z procesem stochastycznym z nieskończenie wymiarową przestrzenią stanów. W szczególności, zmienna funkcjonalna może być powierzchnią, czyli dwuwymiarowym wektorem krzywych - wtedy, analogicznie, T będzie dwuwymiarowym zbiorem indeksów tj. $T\subset\mathbb{R}^2$ - lub dowolnie wymiarowym wektorem krzywych.

W niniejszej pracy skupimy się na zmiennych funkcjonalnych przyjmujących postać krzywych.

Aby zbudować pojęcia średniej oraz kowariancji dla zmiennych funkcjonalnych wprowadzimy niezbędne pojęcia z dziedziny operatorów liniowych.

1.1. Klasyfikacja operatorów liniowych

Niech (Ω, \mathcal{F}, P) będzie przestrzenią probabilistyczną, Ω jest zatem zbiorem scenariuszy ω , \mathcal{F} jest σ -algebrą podzbiorów Ω , a P miarą prawdopodobieństwa nad \mathcal{F} . Dla uproszczenia zakładamy zupełność zadanej przestrzeni probabilistycznej. Rozważmy proces stochastyczny z czasem ciągłym $X = \{X_t, t \in T\}$, gdzie T jest przedziałem w \mathbb{R} , zdefiniowany na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , taki, że $X_t(\omega)$ należy do przestrzeni funkcyjnej E dla wszystkich $\omega \in \Omega$.

W pracy rozważać będziemy zmienne funkcjonalne przyjmujące wartości w przestrzeni Hilberta.

Rozważmy ośrodkową nieskończenie wymiarową przestrzeń Hilberta H z iloczynem skalarnym $\langle\cdot,\cdot\rangle$ zadającym normę $\|\cdot\|$ i oznaczmy przez $\mathcal L$ przestrzeń ciągłych (ograniczonych) operatorów liniowych w H z normą

$$\|\varPsi\|_{\mathcal{L}} := \sup\{\|\varPsi(x)\|: \ \|x\| \leqslant 1\}.$$

Definicja 1.1.1 [Horváth, Kokoszka]

Operator $\Psi \in \mathcal{L}$ nazywamy **operatorem zwartym**, jeśli istnieją dwie ortonormalne bazy $\{\nu_j\}_{j=1}^{\infty}$ i $\{f_j\}_{j=1}^{\infty}$, oraz rzeczywisty ciąg $\{\lambda_j\}_{j=1}^{\infty}$ zbieżny do zera, takie że

$$\Psi(x) = \sum_{j=1}^{\infty} \lambda_j \langle x, \nu_j \rangle f_j, \quad x \in H.$$
 (1.1)

Bez straty ogólności możemy założyć, że w przedstawionej reprezentacji λ_j są wartościami dodatnimi, w razie konieczności wystarczy f_j zamienić na $-f_j$.

Równoważną definicją operatora zwartego jest spełnienie następującego warunku: zbieżność $\langle y, x_n \rangle \to \langle y, x \rangle$ dla każdego $y \in H$ implikuje $\| \Psi(x_n) - \Psi(x) \| \to 0$.

Inną klasą operatorów są operatory Hilberta-Schmidta, którą oznaczać będziemy przez \mathcal{S} .

Definicja 1.1.2 |Bosq|

Operatorem Hilberta-Schmidta nazywamy taki operator zwarty $\Psi \in \mathcal{L}$, dla którego ciąg $\{\lambda_j\}_{j=1}^{\infty}$ w reprezentacji (1.1) spełnia $\sum_{j=1}^{\infty} \lambda_j^2 < \infty$.

Uwaga 1.1.1 |Bosq|, |Horváth, Kokoszka|

Klasa S jest przestrzenią Hilberta z iloczynem skalarnym

$$\langle \Psi_1, \Psi_2 \rangle_{\mathcal{S}} := \sum_{j=1}^{\infty} \langle \Psi_1(e_j), \Psi_2(e_j) \rangle,$$

 $gdzie\ \{e_j\}_{j=1}^{\infty}\ jest\ dowolna\ baza\ ortonormalna\ w\ H.$

Powyższy iloczyn skalarny zadaje normę $\|\Psi\|_{\mathcal{S}} := \left(\sum_{j=1}^{\infty} \lambda_j^2\right)^{1/2}$.

Definicja 1.1.3 |Bosq|

Operator liniowy nazywamy **operatorem śladowym** (ang. nuclear operator), jeśli równość (1.1) spełniona jest dla ciągu takiego, że $\sum_{j=1}^{\infty} |\lambda_j| < \infty$.

Uwaga 1.1.2 |Bosq|

Klasa operatorów śladowych \mathcal{N} z normą $\|\Psi\|_{\mathcal{N}} := \sum_{j=1}^{\infty} |\lambda_j|$ jest przestrzenią Banacha.

Definicja 1.1.4 | Horváth, Kokoszka|

Operator $\Psi \in \mathcal{L}$ nazywamy **symetrycznym**, jeśli

$$\langle \Psi(x), y \rangle = \langle x, \Psi(y) \rangle, \quad x, y \in H,$$

oraz **nieujemnie określonym** (połowicznie pozytywnie określonym, ang. positive semidefinite), jeśli

$$\langle \Psi(x), x \rangle \geqslant 0, \quad x \in H.$$

Uwaga 1.1.3 [Horváth, Kokoszka]

Symetryczny nieujemnie określony operator Hilberta-Schmidta Ψ możemy przedstawić w reprezentacji

$$\Psi(x) = \sum_{j=1}^{\infty} \lambda_j \langle x, \nu_j \rangle \nu_j, \quad x \in H,$$
(1.2)

gdzie ortonormalne ν_j są **funkcjami własnymi** Ψ , tj. $\Psi(\nu_j) = \lambda_j \nu_j$. Funkcje ν_j mogą być rozszerzone do bazy, przez dopełnienie ortogonalne podprzestrzeni rozpiętej przez oryginalne ν_j . Możemy zatem założyć, że funkcje ν_j w (1.2) tworzą bazę, a pewne wartości λ_j mogą być równe zero.

1.2. Przestrzeń L^2

Przestrzeń $L^2 = L^2(K, \mathcal{A}, \mu)$ nad pewną przestrzenią liniową K jest zbiorem mierzalnych funkcji rzeczywistych określonych na K spełniających $\int_K x^2(t)dt < \infty$. Przestrzeń L^2 jest ośrodkową przestrzenią Hilberta z iloczynem skalarnym

$$\langle x, y \rangle := \int_K x(t)y(t)dt.$$

Tak jak zwyczajowo zapisujemy L^2 zamiast $L^2(K)$, tak w przypadku symbolu całki bez wskazania obszaru całkowania będziemy mieć na myśli całkowanie po całej przestrzeni K. Jeśli $x, y \in L^2$, równość x = y zawsze oznaczać będzie $\int [x(t) - y(t)]^2 dt = 0$.

Ważną klasę operatorów liniowych na przestrzeni L^2 stanowią operatory całkowe.

Definicja 1.2.1 Operatorem całkowym nazywamy operator liniowy Ψ dający się przedstawić w formie

$$\varPsi(x)(t) = \int \psi(t,s) x(s) ds, \quad x \in L^2,$$

 $gdzie \ \psi \ stanowi \ jqdro \ całkowe \ operatora \ \Psi.$

Uwaga 1.2.1 [Horváth, Kokoszka]

Operatory całkowe są operatorami Hilberta-Schmidta wtedy i tylko wtedy, gdy

$$\iint \psi^2(t,s)dtds < \infty.$$

Ponadto zachodzi

$$\|\Psi\|_{\mathcal{S}}^2 = \iint \psi^2(t,s)dtds.$$

Uwaga 1.2.2 (Twierdzenie Mercera) [Horváth, Kokoszka]

Jeśli operator spełnia również $\psi(s,t) = \psi(t,s)$ oraz $\iint \psi(t,s)x(t)x(s)dtds \geqslant 0$, to operator całkowy Ψ jest symetryczny i nieujemnie określony, zatem z uwagi 1.1.3 mamy

$$\psi(t,s) = \sum_{j=1}^{\infty} \lambda_j \nu_j(t) \nu_j(s) \quad w \ L^2(K) \times L^2(K).$$

Jeżeli funkcja ψ jest ciągła, powyższe rozwinięcie jest prawdziwe dla wszystkich $s,t\in K$ i szereg jest zbieżny jednostajnie.

1.3. Zmienne funkcjonalne w L^2 . Pojęcie operatora kowariancji

Rozważmy zmienną funkcjonalną $X = \{X(t), t \in T\}$ będącą krzywą $(T \subset \mathbb{R})$ jako element losowy z przestrzeni $L^2(T)$ zaopatrzonej w σ -algebrę borelowskich podzbiorów T. Mówimy, że zmienna X jest **całkowalna**, jeśli $\mathbb{E} \|X\| = \mathbb{E} \left[\int X^2(t) dt \right]^{1/2} < \infty$.

Definicja 1.3.1 |Bosq|

Operator kowariancji scentrowanej zmiennej funkcjonalnej X (tj. $\mathbb{E}X = 0$) przyjmującej wartości w przestrzeni funkcyjnej L^2 spełniającej $\mathbb{E} \|X\|^2 < \infty$ definiujemy następująco

$$C_X(x) := \mathbb{E}[\langle X, x \rangle X], \quad x \in L^2.$$

Jeśli Y jest zmienną funkcjonalną spełniającą powyższe warunki, wtedy operator kowariancji między zmiennymi X i Y przedstawiamy następująco

$$C_{X,Y}(x) := \mathbb{E}[\langle X, x \rangle Y], \quad x \in L^2$$

oraz

$$C_{Y,X}(x) := \mathbb{E}[\langle Y, x \rangle X], \quad x \in L^2.$$

Operatory kowariancji są operatorami śladowymi,...

$$C_X(x)(t) = \int c(t, s)x(s)ds$$
, gdzie $c(t, s) = \mathbb{E}[X(t)X(s)]$.

Oczywistym jest, że c(t,s) = c(s,t) i mamy

$$\iint c(t,s)x(t)x(s)dtds = \iint \mathbb{E}\left[X(t)X(s)\right]x(t)x(s)dtds = \mathbb{E}\left[\left(\int X(t)x(t)dt\right)^2\right] \geqslant 0.$$

Zatem operator kowariancji C_X jest symetryczny oraz nieujemnie określony. Wartości własne λ_j operatora C_X są dodatnie i spełniony jest warunek $\sum_{j=1}^{\infty} \lambda_j = \mathbb{E} \|X\|^2 < \infty$. C_X jest operatorem Hilberta-Schmidta (a nawet operatorem śladowym) i posiada on następującą reprezentację

$$C_X(x) = \sum_{j=1}^{\infty} \lambda_j \langle x, \nu_j \rangle \nu_j, \quad x \in L^2.$$

Zakładamy, że zmienne X_n , Y_n są scentrowanymi zmiennymi losowymi przyjmującymi wartości w przestrzeni Hilberta L^2 . Oznaczając przez X (analogicznie Y) losową funkcję o tym samym rozkładzie co X_n (Y_n) wprowadzamy operatory

$$C(x) = \mathbb{E}[\langle X, x \rangle X], \quad \Gamma(x) = \mathbb{E}[\langle Y, x \rangle Y], \quad \Delta(x) = \mathbb{E}[\langle X, x \rangle Y].$$

...

1.4. Funkcjonalne modele liniowe

Rozróżniamy 3 postaci funkcjonalnych modeli liniowych

(i) pelen model funkcjonalny (ang. the fully functional model)

$$Y(t) = \int \beta(s,t)X(s)ds + \varepsilon(t),$$

(ii) model z odpowiedzią skalarną (ang. the scalar response model)

$$Y = \int \beta(s)X(s)ds + \varepsilon,$$

(iii) model z odpowiedzią funkcyjną (ang. the functional response model)

$$Y(t) = \beta(t)x + \varepsilon(t).$$

Rozważmy pełen model funkcjonalny postaci

$$\mathbf{Y}(t) = \int \beta(s, t) \mathbf{X}(s) ds + \boldsymbol{\varepsilon}(t),$$

gdzie

$$\mathbf{Y}(t) = \begin{bmatrix} Y_1(t) \\ Y_2(t) \\ \vdots \\ Y_N(t) \end{bmatrix}, \mathbf{X}(s) = \begin{bmatrix} X_1(s) \\ X_2(s) \\ \vdots \\ X_N(s) \end{bmatrix}, \boldsymbol{\varepsilon}(t) = \begin{bmatrix} \varepsilon_1(t) \\ \varepsilon_2(t) \\ \vdots \\ \varepsilon_N(t) \end{bmatrix}.$$

Rozdział 2

Test istotności w funkcjonalnym modelu liniowym

2.1. Idea ogólna

Jednym z podstawowych testów na efektywność modelu jest test istotności zmiennych objaśniających. Zarówno jak i w przypadku klasycznego modelu liniowego w przypadku funkcjonalnego modelu liniowego badamy zerowanie się funkcji β , tj.

$$H_0: \boldsymbol{\beta} = 0 \text{ przeciw } H_A: \boldsymbol{\beta} \neq 0.$$

Zauważmy, że przyjęcie H_0 nie oznacza braku związku między zmienną objaśnianą a objaśniającą. Prowadzi jedynie do stwierdzenia braku zależności liniowej.

Zakładamy, że zmienna objaśniana Y_n , zmienne objaśniające X_n i błędy ε_n są scentrowanymi zmiennymi losowymi przyjmującymi wartości w przestrzeni Hilberta L^2 . Oznaczając przez X (analogicznie Y) losową funkcję o tym samym rozkładzie co X_n (Y_n) wprowadzamy operatory

$$C(x) = \mathbb{E}[\langle X, x \rangle X], \quad \Gamma(x) = \mathbb{E}[\langle Y, x \rangle Y], \quad \Delta(x) = \mathbb{E}[\langle X, x \rangle Y].$$

Przez \hat{C} , $\hat{\Gamma}$, $\hat{\Delta}$ oznaczamy ich estymatory, np.

$$\hat{C}(x) = \frac{1}{N} \sum_{n=1}^{N} \langle X_n, x \rangle X_n.$$

Definiujemy również wartości i wektory własne C i Γ

$$C(v_k) = \lambda_k v_k, \quad \Gamma(u_i) = \gamma_i u_i,$$

których estymatory będziemy oznaczać $(\hat{\lambda}_k, \hat{v}_k), (\hat{\gamma}_j, \hat{u}_j).$

Test obejmuje obcięcie powyższych operatorów na podprzestrzenie skończenie wymiarowe. Podprzestrzeń $\mathcal{V}_p = \operatorname{span}\{v_1,...,v_p\}$ zawiera najlepsze przybliżenia X_n , które są liniowymi kombinacjami pierwszych p głównych składowych (FPC). Metodą głównych składowych wyznaczamy p największych wartości własnych operatora \hat{C} tak, że $\hat{\mathcal{V}}_p = \operatorname{span}\{\hat{v}_1,...,\hat{v}_p\}$ zawiera najlepsze przybliżenie X_n . Analogicznie $\mathcal{U}_q = \operatorname{span}\{u_1,...,u_q\}$ zawiera przybliżenia $\operatorname{span}\{Y_1,...,Y_N\}$.

Z równości

$$Y(t) = \int \beta(s,t) X(s) ds + \varepsilon(t)$$

wynika $\Delta = \beta C$ i dla $k \leq p$ mamy

$$\beta(\upsilon_k) = \lambda_k^{-1} \Delta(\upsilon_k).$$

Stąd, β zeruje się na span $\{v_1,...,v_p\}$ wtedy i tylko wtedy, gdy $\Delta(v_k)=0$ dla każdego k=1,...,p. Zauważmy, że

$$\Delta(v_k) \approx \hat{\Delta}(v_k) = \frac{1}{N} \sum_{n=1}^{N} \langle X_n, v_k \rangle Y_n.$$

Skoro zatem span $\{Y_1,...,Y_N\}$ są dobrze aproksymowane przez \mathcal{U}_q , to możemy ograniczyć się do sprawdzania czy

$$\langle \hat{\Delta}(v_k), u_j \rangle = 0, \quad k = 1, ..., p, \quad j = 1, ..., q.$$
 (2.1)

Jeśli H_0 jest prawdziwa, to dla każdego $x \in \mathcal{V}_p$, $\beta(x)$ nie należy do \mathcal{U}_q . Co znaczy, że żadna funkcja Y_n nie może być opisana jako liniowa kombinacja X_n , n = 1, ..., N. Statystyka testowa powinna zatem sumować kwadraty iloczynów skalarnych (2.1). Poniższe twierdzenia prowadzą do wyznaczenia statystyki

$$\hat{T}_{N}(p,q) = N \sum_{k=1}^{p} \sum_{j=1}^{q} \hat{\lambda}_{k}^{-1} \hat{\gamma}_{j}^{-1} \left\langle \hat{\Delta}(\hat{v}_{k}), \hat{u}_{j} \right\rangle^{2}, \tag{2.2}$$

która zbiega według rozkładu do rozkładu χ^2 z pq stopniami swobody. Przy czym

$$\left\langle \hat{\Delta}(\hat{v}_k), \hat{u}_j \right\rangle = \left\langle \frac{1}{N} \sum_{n=1}^N \left\langle X_n, \hat{v}_k \right\rangle Y_n, \hat{u}_j \right\rangle = \frac{1}{N} \sum_{n=1}^N \left\langle X_n, \hat{v}_k \right\rangle \left\langle Y_n, \hat{u}_j \right\rangle$$

oraz $\lambda_k = \mathbb{E} \langle X, v_k \rangle^2$ i $\gamma_j = \mathbb{E} \langle Y, u_j \rangle^2$.

Uwaga 2.1.1 Oczywistym jest, że jeśli odrzucamy H_0 , to $\beta(v_k) \neq 0$ dla pewnego $k \geqslant 1$. Jednak ograniczając się do p największych wartości własnych, test jest skuteczny tylko jeśli β nie zanika na którymś wektorze v_k , k = 1, ..., p. Aczkolwiek takie ograniczenie jest intuicyjnie niegroźne, ponieważ test ma za zadanie sprawdzić czy główne źródła zmienności Y mogą być opisane przez główne źródła zmienności zmiennych X.

Schemat przebiegu testu

- 1. Sprawdzamy założenie o liniowości metodą FPC score predictor-response plots.
- 2. Wybieramy liczbę głównych składowych p i q metodami $scree\ test$ oraz CPV.
- 3. Wyliczamy wartość statystyki $\hat{T}_N(p,q)$ (2.2).
- 4. Jeśli $\hat{T}_N(p,q) > \chi_{pq}^2(1-\alpha)$, to odrzucamy hipotezę zerową o braku liniowej zależności. W przeciwnym razie nie mamy podstaw do odrzucenia H_0 .

...

2.2. Formalizm

Założenia:

1. Trójka $(Y_n, X_n, \varepsilon_n)$ tworzy ciąg niezależnych zmiennych losowych o jednakowym rozkładzie, takich że ε_n jest niezależne od X_n oraz

$$\mathbb{E}X_n = 0, \quad \mathbb{E}\varepsilon_n = 0,$$

$$\mathbb{E}||X_n||^4 < \infty$$
 i $\mathbb{E}||\varepsilon_n||^4 < \infty$.

2. Wartości własne operatorów C oraz Γ spełniają, dla pewnych p>0 i q>0

$$\lambda_1 > \lambda_2 > \dots > \lambda_p > \lambda_{p+1}, \quad \gamma_1 > \gamma_2 > \dots > \gamma_q > \gamma_{q+1}.$$

Twierdzenie 2.2.1 Jeśli spełnione są H_0 i powyższe Założenia, to $\hat{T}_N(p,q) \stackrel{d}{\longrightarrow} \chi^2_{pq}$ przy $N \to \infty$.

Twierdzenie 2.2.2 Przy powyższych Założeniach oraz jeśli $\langle \beta(v_k), u_j \rangle \neq 0$ dla pewnych $k \leqslant p$ oraz $j \leqslant q$, to $\hat{T}_N(p,q) \xrightarrow{P} \chi^2_{pq}$ przy $N \to \infty$.

Dowody...

Rozdział 3

Przykład zastosowania

Magnetometer data...

Dodatek A

Kod w R

...

Bibliografia

- [Bosq] D. Bosq, Linear Processes in Function Spaces. Springer, 2000.
- [Ferraty, Vieu] F. Ferraty, P. Vieu, Nonparametric Functional Data Analysis. Theory and practice. Springer, 2006.
- [Horváth, Kokoszka] Lajos Horváth, Piotr Kokoszka, Interference for Functional Data with Applications. Springer, 2012.
- [I] INTERMAGNET http://www.intermagnet.org/index-eng.php
- [Kokoszka et al. 2008] P. Kokoszka, I. Maslova, J. Sojka, L. Zhu, Testing for lack of dependence in the functional linear model. Canadian Journal of Statistics, 2008, 36, 207-222.
- [Ramsay, Silverman] J. O. Ramsay, B. W. Silverman, Functional Data Analysis. Springer, 2005.