Serial No.: 10/589,852 3 (HIR.228)

Docket No. PKHF-05004US

AMENDMENTS TO THE CLAIMS

Please cancel claims 2-3 and 6-7 without prejudice or disclaimer, add claims 9-21, and amend claims 1, 4-5, and 8 as follows:

1. (Currently Amended) A method of controlling a conductivity of a Ga₂O₃ system single crystal, comprising characterized in that: a desired resistivity is obtained by

adding a predetermined dopant to the Ga₂O₃ system single crystal to obtain a desired resistivity,

wherein said predetermined dopant comprises one of:

a n-type dopant for decreasing a resistance of the Ga₂O₃ system single crystal comprising one of Si, Hf, Ge, Sn, and Ti; and

a p-type dopant for increasing a resistance of the Ga₂O₃ system single crystal comprising one of H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Pb.

- 2. 3. (Canceled).
- 4. (Currently Amended) A The method of controlling a conductivity of a Ga_2O_3 system single crystal according to claim 2 1, characterized in that: wherein a value of 2.0 X 10^{-3} to 8.0 X 10^2 Ω cm is obtained as the desired resistivity by adding a predetermined amount of said n-type dopant group IV element.
- 5. (Currently Amended) A The method of controlling a conductivity of a Ga₂O₃ system single crystal according to claim 4, characterized in that: wherein a carrier concentration of the Ga₂O₃

Serial No.: 10/589,852 4 (HIR.228)

Docket No. PKHF-05004US

system single crystal is controlled to fall within a range of 5.5×10^{15} to 2.0×10^{19} /cm³ as a range of the desired resistivity.

6.-7. (Cancelled)

- 8. (Currently Amended) A The method of controlling a conductivity of a Ga_2O_3 system single crystal according to claim 16, characterized in that: wherein 1 X 10^3 Ω cm or more is obtained as the desired resistivity by adding a predetermined amount of said p-type dopant group II element.
- 9. (New) A method of forming a Ga₂O₃ system single crystal layer, comprising:

heating contacting portions of β -Ga₂O₃ seed crystal and a high purity β -Ga₂O₃ polycrystalline raw material, said β -Ga₂O₃ polycrystalline raw material comprising one of a p-type dopant and an n-type dopant.

10. (New) The method of forming a Ga₂O₃ system single crystal layer according to claim 9, wherein said n-type dopant comprises one of Si, Hf, Ge, Sn, and Ti; and

wherein said p-type dopant comprises one of H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Rb.

- 11. (New) The method of forming a Ga₂O₃ system single crystal layer according to claim 9, wherein said p-type dopant comprises no less than 0.01 mol% and no more than 0.05 mol%.
- 12. (New) The method of forming a Ga_2O_3 system single crystal layer according to claim 11, wherein a resistance value of said layer is greater than or equal to 1000 M Ω .

Docket No. PKHF-05004US

13. (New) The method of forming a Ga_2O_3 system single crystal layer according to claim 9, wherein said layer comprises a resistivity of no less than $2.0 \times 10^{-3} \Omega cm$ and no more than $8 \times 10^2 \Omega cm$; and

wherein a carrier concentration of said layer comprises no less than 5.0×10^{15} / cm³ and no more than 2.0×10^{19} / cm³.

14. (New) A light emitting element, comprising:

an n-type β -AlGaO₃ cladding layer, an active layer, a p-type β -AlGaO₃ cladding layer, and a p-type β -Ga₂O₃ contact layer respectively laminated in order on an n-type β -Ga₂O₃ contact layer made of a β -Ga₂O₃ single crystal;

a transparent electrode and a pad electrode respectively formed in order on said p-type β - Ga_2O_3 contact layer; and

an n-side electrode formed over a lower surface of said n-type β-Ga₂O₃ contact layer, wherein a desired resistivity of said β-Ga₂O₃ single crystal is obtained, wherein said n-type layers comprise a dopant including one of Si, Hf, Ge, Sn, and Ti, and wherein said p-type layers comprise a dopant including one of H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Rb.

15. (New) The light emitting element of claim 14, wherein a carrier concentration of said p-type β -Ga₂O₃ contact layer is greater than that of said p-type β -AlGaO₃ cladding layer; and

wherein a carrier concentration of said n-type β -Ga₂O₃ contact layer is greater than that of said n-type β -AlGaO₃ cladding layer.

Docket No. PKHF-05004US

16. (New) A method of controlling a conductivity of a Ga₂O₃ system single crystal, comprising: adding a predetermined dopant to the Ga₂O₃ system single crystal to obtain a desired resistivity,

wherein said predetermined dopant comprises a p-type dopant for increasing a resistance of the Ga₂O₃ system single crystal, said p-type dopant comprising one of H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, and Pb.

17. (New) The method of controlling said conductivity of said Ga₂O₃ system single crystal according to claim 16, wherein the predetermined dopant comprises one of:

said p-type dopant; and

an n-type dopant for decreasing said resistance of the Ga₂O₃ system single crystal.

- 18. (New) The method of controlling a conductivity of a Ga₂O₃ system single crystal according to claim 17, wherein said n-type dopant comprises one of Si, Hf, Ge, Sn, Ti, and Zr.
- 19. (New) The method of controlling a conductivity of a Ga_2O_3 system single crystal according to claim 17, wherein a value of 2.0×10^{-3} to $8.0 \times 10^2 \Omega$ cm is obtained as the desired resistivity by adding a predetermined amount of said n-type dopant.
- 20. (New) The method of forming a Ga_2O_3 system single crystal layer according to claim 19, wherein a carrier concentration of the Ga_2O_3 system single crystal is controlled to fall within a range of 5.5 X 10^{15} to 2.0 X 10^{19} /cm³ as a range of said resistivity.

Serial No.: 10/589,852 7 (HIR.228)

Docket No. PKHF-05004US

21. (New) The method of controlling a conductivity of a Ga_2O_3 system single crystal according to claim 16, wherein 1 X 10^3 Ω cm or more is obtained as the desired resistivity by adding a predetermined amount of said p-type dopant.