Sec. 7. T In determinate Forms
$$\frac{\partial}{\partial}, \frac{\infty}{\infty}, 0.\infty, \infty - \infty$$

$$\frac{\partial}{\partial}, \frac{\chi^2/x}{x}, \frac{\chi}{x}, \frac{\chi}{x} have different ansers.$$

THEOREM 5— L'Hôpital's Rule Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

$$\frac{1-\cos\theta-\frac{9}{6}}{\frac{1-\cos\theta-\frac{9}{$$

$$\frac{E}{x-100} \left(\sqrt{9}x^{2}+x-7x \right) = \infty - \infty$$

$$\frac{E}{x-100} \left(\sqrt{9}x^{2$$

Math 104 49 / 53

bude terminate Bules 1°,0°,00° $l' (1+x)^{1/x} = 1^{\infty}$ $y = (1+x)^{1/x}$ $lug = \frac{1}{x} lu(1+x)$ lu (1+X) l-by-lig-li L'Husp.

lúg=1 ×→0 $\frac{2}{x \to 0} \quad y = e^1 \quad ; \quad y = (1+x)^{1/x}$ l(1+x)"= e = = = = = = = = = =y=(1+(inx))/x e' lug = e_ lu (1+ sinx) 1 Holb. e' lug = l' x-20 () = 1/20 ling=1=) ling=e

Math 104 51 / 53 04/03/2014

EX 2 (-lux) 1/x = 1 $\frac{1}{x\rightarrow0^{+}}(6tx)^{x}=1$ $\mathcal{L}'_{x\to 0} + (\cos(x))'/x = e^{-\frac{t}{2}}$

 $E \times l_{X\rightarrow 0} \left(e^{-Codx}\right)^{X}$ $y = (-\zeta dx)^{x}$ $eny = x(-\zeta dx) - lne$ L' lny = - li Sinx $\frac{1}{100} = \frac{-1}{-1/e}$ $\frac{1}{100} = \frac{-1}{-1/e}$

Math 104 53 / 53 04/03/2014