quiere decir que A es invertible. Todavía debe demostrarse que $B=A^{-1}$. Sea $A^{-1}=C$. Entonces, AC=I. Así

$$BAC = B(AC) = BI = B$$
 y $BAC = (BA)C = IC = C$

Por lo tanto, B = C, y el inciso i) queda demostrado.

ii) Sea AB = I. Entonces del inciso i), $A = B^{-1}$. De la definición 2.4.2 esto significa que AB = BA = I, lo que prueba que A es invertible y que $B = A^{-1}$. Esto completa la demostración.

RESUMEN 2.4

- La matriz identidad $n \times n$, I_n , es la matriz de $n \times n$ con unos en la diagonal principal y ceros en otra parte. I_n se denota generalmente por I.
- Si A es una matriz cuadrada, entonces AI = IA = A.
- La matriz A de $n \times n$ es invertible si existe una matriz A^{-1} de $n \times n$ tal que

$$AA^{-1} = A^{-1}A = 1$$

En este caso la matriz A^{-1} se llama la **inversa** de A.

- Si A es invertible, su inversa es única.
- Si A y B son matrices invertibles de $n \times n$, entonces AB es invertible y

$$(AB)^{-1} = B^{-1}A^{-1}$$

- Para determinar si una matriz A de $n \times n$ es invertible:
 - i) Se escribe la matriz cuadrada aumentada $(A \mid I)$.
 - ii) Se reduce A por renglones a la forma escalonada reducida por renglones.
 - iii) a) Si la forma escalonada reducida por renglones de A es I, entonces A^{-1} será la matriz a la derecha de la raya vertical punteada.
 - b) Si la forma escalonada reducida por renglones de A contiene un renglón de ceros, entonces A no es invertible.
- La matriz de 2×2 , $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ es invertible si y sólo si el determinante de A, det $A = a_{11}a_{22}$ $-a_{12}a_{21} \neq 0$.

En cuyo caso

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix}$$

- Dos matrices A y B son equivalentes por renglón si A se puede transformar en B reduciendo por renglones.
- Sea A una matriz de $n \times n$. Si AB = I o BA = I, entonces A es invertible y $B = A^{-1}$.