

points

Given
$$f(x,y)=\pi x^3+xy^2+my^4$$
 , with m a constant, what are $rac{\partial f}{\partial x}$ and $rac{\partial f}{\partial y}$?
$$rac{\partial f}{\partial x}=3\pi x^3+y^2$$
 ,

$$rac{\partial f}{\partial x}=3\pi x^3+y^2, \ rac{\partial f}{\partial y}=2xy^2+4my^4$$

$$rac{\partial f}{\partial x}=3\pi x^3+y^2+my^4,$$

$$rac{\partial f}{\partial u}=\pi x^3+2xy+4my^3$$

$$rac{\partial f}{\partial x}=3\pi x^2+y^2+my^4,$$
 $rac{\partial f}{\partial y}=3\pi x^2+y^2+my^4$

$$rac{\partial f}{\partial x}=3\pi x^2+y^2$$
 ,

$$rac{\partial f}{\partial y}=2xy+4my^3$$

Correct Well done!

$$\bigcirc \qquad rac{\partial f}{\partial x} = 2xy + y^2z + z^2x,$$

Given $f(x,y,z)=x^2y+y^2z+z^2x$, what are $rac{\partial f}{\partial x},rac{\partial f}{\partial y}$ and $rac{\partial f}{\partial z}$?

$$rac{\partial f}{\partial y}=x^2+2yz+z^2x$$

 $\frac{\partial f}{\partial z} = x^2y + y^2 + 2zx$

$$rac{\partial f}{\partial y} = 3xyz$$
 $rac{\partial f}{\partial z} = 3xyz$

 $\frac{\partial f}{\partial x} = xy + z^2$,

 \bigcirc $\frac{\partial f}{\partial x}=3xyz$,

$$rac{\partial f}{\partial y} = x^2 + yz$$
 $rac{\partial f}{\partial z} = y^2 + zx$

 $\frac{\partial f}{\partial y} = x^2 + 2yz$

 \bigcirc $rac{\partial f}{\partial x}=2xy+z^2$,

$$rac{\partial f}{\partial z} = y^2 + 2zx$$

Well done!

ooints
$$rac{\partial f}{\partial x}=4e^{2x}cos(y)z-sin(z)e^xe^y, \ rac{\partial f}{\partial y}=4e^{2x}cos(y)z-sin(z)e^xe^y$$

Given $f(x,y,z)=e^{2x}sin(y)z^2+cos(z)e^xe^y$, what are $rac{\partial f}{\partial x},rac{\partial f}{\partial y}$ and $rac{\partial f}{\partial z}$?

$$iggle rac{\partial f}{\partial x} = 2e^{2x}sin(y)z^2 + cos(z)e^xe^y$$
 ,

 $\frac{\partial f}{\partial z} = 4e^{2x}cos(y)z - sin(z)e^xe^y$

 $\frac{\partial f}{\partial y} = e^{2x} \cos(y) z^2 + \cos(z) e^x e^y$

$$rac{\partial f}{\partial z}=2e^{2x}sin(y)z-sin(z)e^xe^y$$

 $\frac{\partial f}{\partial x} = 2e^{2x}\sin(y)z^2 + \cos(z)e^x e^y,$

Well done!

$$egin{aligned} rac{\partial f}{\partial y} &= e^{2x} cos(y) z^2 + cos(z) e^x e^y \ & \ rac{\partial f}{\partial z} &= 2 e^{2x} sin(y) z + sin(z) e^x e^y \end{aligned}$$

$$rac{\partial f}{\partial x}=2e^{2x}sin(y)z^2+cos(z)e^y$$
 ,

 $\frac{\partial f}{\partial z} = 2e^{2x}sin(y)z - sin(z)e^xe^y$

$$rac{\partial f}{\partial y} = e^{2x} cos(y) z^2 + cos(z) e^x$$

4.

calculate
$$\frac{df}{dt}=\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}.$$
 Given that $f(x,y)=\pi x^2y, x(t)=t^2+1$, and $y(t)=t^2-1$, calculate the total derivative $\frac{df}{dt}.$

Recall the formula for the total derivative, that is, for f(x,y), x=x(t) and y=y(t), one can

$$\frac{df}{dt} = 8\pi^2 t^2 (t^2 + 1)^3 (t^2 - 1)$$

$$\frac{df}{dt} = 4\pi t (t^2 + 1)(t^2 - 1) + 2\pi t (t^2 + 1)^2$$

$\frac{df}{dt} = 4\pi t(t^2+1)^2 + 2\pi t(t^2+1)^2$

5.

Recall the formula for the total derivative, that is, for
$$f(x,y,z), x=x(t), y=y(t)$$
 and $z=z(t)$, one can calculate $\frac{df}{dt}=\frac{\partial f}{\partial x}\frac{dx}{dt}+\frac{\partial f}{\partial y}\frac{dy}{dt}+\frac{\partial f}{\partial z}\frac{dz}{dt}$.

Given that
$$f(x,y,z)=cos(x)sin(y)e^{2z},$$
 $x(t)=t+1,$ $y(t)=t-1,$ $z(t)=t^2$, calculate the total derivative $\frac{df}{dt}$.

$$\frac{df}{dt} = [cos(t+1)sin(t-1) + cos(t+1)cos(t-1) + 4tcos(t+1)sin(t-1)]e^{2t^2}$$

$$\frac{df}{dt} = [-sin(t+1)sin(t-1) + cos(t+1)cos(t-1) + 4tcos(t+1)sin(t-1)]e^{2t^2}$$

Correct

$$rac{df}{dt} = [-sin(t+1)sin(t-1) + cos(t+1)cos(t-1) + 2cos(t+1)sin(t-1)]e^{2t^2}$$

$$\frac{df}{dt} = [-(t+1)sin(t+1)sin(t-1) + (t-1)cos(t+1)cos(t-1) + 4tcos(t+1)sin(t-1)]e^{2t^2}$$