APPLICATION UNDER UNITED STATES PATENT LAWS

Invention: ENHANCED WIRELESS NETWORK SECURITY USING GPS

Inventor(s): Joseph M. CANNON;

James A. JOHANSON; and

Philip D. MOONEY

Farkas & Manelli P.L.L.C. 2000 M Street, N.W. Suite 700 Washington, D.C. 20036-2396 Attorneys Telephone: (202) 261-1000

This is a:

[]	Provisional Application
[X]	Regular Utility Application
[]	Continuing Application
[]	PCT National Phase Application
[]	Design Application
[]	Reissue Application
[]	Plant Application

SPECIFICATION

ENHANCED WIRELESS NETWORK SECURITY USING GPS

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to wireless networks. More particularly, it relates to improved security apparatus and techniques for wireless networks, particularly piconet type networks such as a BLUETOOTH™ conforming piconet network.

10 2. Background

5

15

20

25

30

Conventional secured networks have been wired networks physically connecting a plurality of network devices. Such networks are conventionally secured with authorization of one or more passwords input by a user of a particular network device.

A wired network connection affords a reasonable level of security in that the user must be inside a building to connect to the network. However, when expanding a network to include wireless connectivity, wireless connections to the network do not inherently have the same physical restrictions to access that wired connections do.

Piconet networks, or small, short range wireless networks, are being formed by more and more devices in many homes and offices. In particular, a popular piconet standard is commonly referred to as a BLUETOOTH™ piconet. Piconet technology in general, and BLUETOOTH technology in particular, provides peer-to-peer communications over short distances.

The wireless frequency of piconets may be 2.4 GHz as per BLUETOOTH standards, and/or typically have a 30 to 300 foot range. The piconet RF transmitter may operate in common frequencies which do not necessarily require a license from the regulating government authorities, e.g., the Federal Communications Commission (FCC) in the

10

15

20

25

30

United States. Alternatively, the wireless communication can be accomplished with infrared (IR) transmitters and receivers, but this is less preferable because of the directional and visual problems often associated with IR systems.

A plurality of piconet networks may be interconnected through a scatternet connection, in accordance with BLUETOOTH protocols. BLUETOOTH network technology may be utilized to implement a piconet wireless network connection (including scatternet). The BLUETOOTH standard for piconet wireless networks is well known, and is available from many sources, e.g., from the web site www.bluetooth.com.

Short range wireless connections such as those offered by piconets in general, and BLUETOOTH conforming piconets in particular, while having many advantages provided by wireless connectivity, also inherently have distinct disadvantages from wired connections. For instance, a person just outside the building, but still in range of the short range wireless network (e.g., 802.11, BLUETOOTH etc.) could gain access to an internal wireless server from outside the building but still within the range of the short range wireless network.

Fig. 6 depicts an exemplary secured building **510** including a network of exemplary wireless devices **500**, **502**, with connectivity access inadvertently provided to an unauthorized wireless device **504**.

In particular, as shown in Fig. 6, an exemplary short range wireless network is established within the confines a building **510**. In the given example, wireless connectivity is established between an entering wireless device, e.g., BLUETOOTH piconet device **502**, or 802.11b compliant device, whereupon a password entered by a user of the entering wireless device **502** is authorized by a piconet security server **500**. However, in the given example, an unauthorized wireless device **504** lurks outside the secured building, but within the short range of at least one wireless network device within the building, unbeknownst to the

10

15

20

25

30

wireless network administrator. Unfortunately, while the unauthorized wireless device **504** may still be required to input a properly authorized password to allow access to resources on the wireless network, a first layer of security has already been breached by allowing the unauthorized wireless device **504** the ability to receive wireless transmissions in the short range wireless network.

In such a scenario, since connectivity access to the secured network may be obtained from a location outside of the secured building, the network security relies entirely on the password strategies for the particular network. However, this may be problematic in certain higher security applications because access may be gained external to the secured building using, e.g., stolen access codes.

Previous attempts to provide security to wired network devices included dial up access techniques using one or more passwords or even constantly changing passwords to prevent unauthorized access. However, dial up access techniques do not address specific challenges of wireless access to secure servers. Moreover, dial up security solutions in a wireless world would require all users inside the secured building to go through excessive security steps which simply add layers of password type strategies.

There is a need for an apparatus and technique which allows wireless devices, and in particular wireless BLUETOOTH piconet devices, to be implemented in secure environments allowing secure communications which prevent unauthorized communications within range of the piconet devices.

SUMMARY OF THE INVENTION

In accordance with the principles of the present invention, a wireless piconet device comprises a wireless piconet front end, and a GPS receiver in communication with the wireless piconet front end.

In accordance with another aspect of the present invention, a wireless piconet server comprises a wireless piconet front end. An earth coordinates authorization module determines authority of a received set of coordinates to gain access to a wireless network. Boundary coordinates correspond to a predetermined secured area for access to the wireless network.

A method of authorizing a wireless piconet network device to gain access to a wireless network in accordance with yet another aspect of the present invention comprises receiving a set of earth coordinates from the wireless piconet network device. The received set of earth coordinates are compared to predetermined boundaries of a secured area. If the received set of earth coordinates are within the predetermined boundaries of the secured area, the wireless piconet network device is authorized to gain access to the wireless network.

15

10

5

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings, in which:

20

Fig. 1 depicts two piconet wireless network devices, one within a secured building permitted to have authorized access to the wireless network in the secured building, and another external to a secured building and not permitted to have authorized access to the wireless network in the secured building, in accordance with the principles of the present invention.

25

Fig. 2 shows an exemplary piconet wireless network device including a BLUETOOTH piconet front end and Global Positioning System (GPS) receiver for providing location information for security authorization purposes, in accordance with the principles of the present invention.

10

15

20

25

Fig. 3 shows an exemplary wireless piconet security server capable of authorizing earth coordinates of another wireless network device and/or a password, in accordance with the principles of the present invention.

Fig. 4 shows an exemplary process flow of authorization of a piconet wireless network device within defined absolute earth coordinates, in accordance with the principles of the present invention.

Fig. 5 shows another application of piconet wireless devices including GPS capability allowing exchange of certain data (e.g., business card data) when within a particularly defined region (e.g., conference room), in accordance with the principles of the present invention.

Fig. 6 depicts an exemplary secured building including a network of exemplary wireless devices, with connectivity access inadvertently provided to an unauthorized wireless device.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention relates to the automatic restriction of access to a wireless network (e.g., a wireless local area network (LAN) such as a piconet network) by requiring a wireless network device to provide earth coordinates (e.g., GPS location information) as part of an establishment or maintenance of a connection to a wireless network, independent of a range of communication of any device in the wireless network. Thus, in accordance with the principles of the present invention, a wireless piconet network device outside of predetermined earth coordinates of a secured area (e.g., a building, a room in a building, a desk in a room in a building, etc.) may be denied access to resources on the wireless network, and/or required to provide additional authorization information so as to confirm authorized secured status of the entering wireless device.

10

15

20

25

Fig. 1 depicts two piconet wireless network devices, one within a secured building permitted to have authorized access to the wireless network in the secured building, and another external to a secured building and not permitted to have authorized access to the wireless network in the secured building, in accordance with the principles of the present invention.

In particular, Fig. 1 shows the perimeter of a secured building 210, including a short range wireless (e.g., BLUETOOTH piconet) security server 200, and an authorized wireless piconet network device 100a. In accordance with the principles of the present invention, the authorized wireless piconet network device 100a includes a Global Positioning Satellite (GPS) receiver 106a suitable for receiving information as a basis for determining earth coordinates of the relevant wireless piconet network device 100a.

The global positioning system (GPS) is a worldwide radio-navigation system formed from a constellation of 24 satellites and their ground stations. GPS uses these "man-made stars" as reference points to calculate positions accurate to a matter of meters. In fact, with advanced forms of GPS location measurements are achievable to better than one centimeter. In recent years, GPS receivers have been miniaturized to just a few integrated circuits and thus are becoming very economical. The GPS receivers 106a, 106b shown in Fig. 1 are conventional. Information about GPS receivers is well known, and available, e.g., at www.trimble.com/gps/howgps/gpsfram2.htm, which in its entirety is explicitly incorporated herein by reference.

The GPS receiver **106a** may be a separate module in communication with the piconet front end of the relevant wireless piconet network device **100a**, or may be integrated within the wireless piconet network device **100a** to reduce the chance of faking the coordinates.

10

15

20

25

30

In accordance with the principles of the present invention, the earth coordinates determined based on the GPS receiver **106a** are forwarded to the piconet security server **200** or other network device to determine whether or not the earth coordinates forwarded by the wireless piconet network device **100a** correspond to a secured area, e.g., to an area internal to the boundary defined by the four walls of the perimeter **210**. Of course secured areas may include any shaped area, in both two-and three dimensions.

Also shown in Fig. 1 is an unauthorized wireless piconet network device 100a potentially attempting to communicate with devices in the wireless piconet network within the secured area defined internal to the perimeter 210. However, in accordance with the principles of the present invention, the unauthorized wireless piconet network device 100b will determine either GPS coordinates which will not be within the secured areas coordinates stored in the piconet security server 200, or will be a network device which does not include a GPS receiver at all. In either case, authorization will be denied by devices within the wireless piconet network, and thus an additional level of security relating to physical location of the communicating wireless device will not have been breached, providing increased security protection.

The wireless piconet network device **100** may be virtually any device including a short range wireless front end (e.g., a BLUETOOTH piconet front end). For instance, the wireless piconet network device **100** may be, e.g., a computer, personal digital assistant (PDA), printer, scanner, cell phone, etc.

In accordance with the principles of the present invention, while a wireless piconet network device **100** attempts to gain access to a wireless network service (e.g., a BLUETOOTH compatible piconet printer, LAN access), the BLUETOOTH application in the wireless piconet network device **100** determines and then passes its earth coordinates

10

15

20

25

(e.g., GPS location), typically accurate to a few meters (or even centimeters using Differential GPS), along with any other required authentication information to the wireless network, e.g., to the piconet security server 200. A suitable application in the relevant gatekeeper of the wireless network will determine whether or not the received GPS location is within a predefined secured, authorized access area. If the received GPS location is within the authorized access area, access is granted. If outside the authorized access area, access may be denied. Alternatively, if outside the authorized access area, further authentication information may be requested of the entering wireless piconet network device 100. Once authorized, a device may be permitted to wander outside the secured area, or not.

The authorized area may be defined in any suitable manner. For instance, it may be defined as internal to a particular perimeter **210** as shown in Fig. 1, or it may simply be a specified distance from a particular point (e.g., within a circle) less than a given range of the wireless network.

Fig. 2 shows an exemplary piconet wireless network device including a BLUETOOTH piconet front end and Global Positioning System (GPS) receiver for providing location information for security authorization purposes, in accordance with the principles of the present invention.

In particular, Fig. 2 shows a more detailed embodiment of a wireless piconet network device 100, including a BLUETOOTH piconet front end 102, a GPS receiver 106, and a suitable processor communicating with both the BLUETOOTH piconet front end 102 and the GPS receiver 106. The processor 108 may be, e.g., a microprocessor, a microcontroller, ASIC, or a digital signal processor (DSP). Also, the processor 108 may be integrated within the GPS receiver 106 and/or the BLUETOOTH front end 102 such that as few as one processor may be required within the wireless piconet network device 100.

10

15

20

25

Also shown in Fig. 2 is a password entry device **104**, e.g., a keyboard, allowing the user to input a password for forwarding to the piconet security server **200** and authorization of wireless network access.

Fig. 3 shows an exemplary wireless piconet security server capable of authorizing earth coordinates of another wireless network device and/or a password, in accordance with the principles of the present invention.

In particular, as shown in Fig. 3, the exemplary wireless piconet security server **200** includes a BLUETOOTH front end **630**, a suitable processor **610** (e.g., a microprocessor, a microcontroller, or a DSP), and an earth coordinates authorization module **600**. The wireless piconet security server **200** may further include a password authorization module **620**.

The earth coordinates authorization module **600** may be, e.g., an application program operating on the processor **610**. The earth coordinates authorization module **600** accesses predetermined boundary earth coordinates **602** defining the secured area (or areas). Received GPS location coordinates received from wireless piconet network devices requesting authorization are compared to the boundary coordinates **602** by the earth coordinates authorization module **600** to determine whether or not the requesting wireless piconet network device is within the predetermined secured area. If so, then authorization is allowed to proceed. If not, the requesting wireless piconet network device is denied access to resources on the wireless network. Depending upon the particular application, a denied request might indicate that the reason for denial is outside of the secured area.

The wireless piconet security server **200** may also include the password authorization module **620** and associated database storage of pre-authorized passwords **622**. The password authorization module

10

15

20

25

30

620 compares passwords received from requesting wireless piconet network devices to determine whether or not the password is authorized.

The wireless piconet security server **200** may determine authorization using earth coordinates before using a password received from the requesting wireless piconet network device, or after using the password, within the scope of the present invention.

Fig. 4 shows an exemplary process flow of authorization of a piconet wireless network device within defined absolute earth coordinates, in accordance with the principles of the present invention.

In particular, step **402** of Fig. 4 shows the new presence of a wireless piconet network device in a piconet wireless network.

Step **404** shows the presentation of a password from the wireless piconet network device **100** to the wireless piconet security server **200**. Of course, the GPS location may be checked first, and then the password verified, within the scope of the present invention.

In step 406, the wireless piconet security server 200 determines whether or not the supplied password is among those stored in the authorized password database 622. If not, the wireless piconet network device is disapproved, as shown in step 414, and the process ends. The network may or may not ignore further communications from the disapproved wireless piconet network device, depending upon the particular application.

However, if the password is approved in step **406**, the process may proceed to check the supplied GPS earth coordinates against secured areas defined by boundary coordinates **602**.

In particular, as shown in step **408**, the GPS location information determined by the requesting wireless piconet network device is presented to the wireless piconet security server **200**.

In step **410**, the earth coordinates authorization module **600** determines whether or not the earth coordinates supplied by the

10

15

20

25

30

requesting wireless piconet network device are within the predetermined secured area(s). If not, the process disapproves the requesting wireless piconet network device **100** as shown in step **414**, and the process ends.

However, if the received earth coordinates are within an area defined by the boundary coordinates **602**, then the requesting wireless piconet network device **100** is granted access to the wireless network.

In a preferred embodiment, the earth coordinates are periodically, and/or upon demand of the wireless piconet security server in a polling scenario, provided to the wireless piconet security server to determine whether or not the relevant wireless piconet network device remains within the secured area defined by the boundary coordinates **602**. If not, access is preferably terminated, at least until the wireless piconet network device re-authorizes its presence in and access to the wireless network.

The password provided by the wireless piconet network device may be input by the user, or may be pre-set in the wireless piconet network device.

The boundary coordinates **602** may be established using a configuration routine which receives GPS coordinates relating to extreme boundaries of the secured area as a person walks a suitable wireless piconet network device along the perimeter of the secured area.

In an alternative embodiment, a wireless piconet network device may determine whether or not there are multiple short range wireless services detected within range. For instance, when a wireless piconet network device discovers that there are multiple similar services within range, it may access the wireless network which has a communicating device which is physically closest. Alternatively, using prior knowledge of walls or other obstacles, it may automatically access the wireless service provider whose RF signal is the least obstructed.

10

15

20

25

30

Fig. 5 shows another application of piconet wireless devices including GPS capability allowing exchange of certain data (e.g., business card data) when within a particularly defined region (e.g., conference room), in accordance with the principles of the present invention.

In particular, another use for GPS in a piconet wireless is to implement a piconet front end (e.g., a BLUETOOTH piconet front end) on a PDA device. Then, in a given scenario, a feature may allow a user's PDA to exchange business card information with others automatically, but, e.g., only within the walls of a convention. This requirement can be implemented as an enhancement to the Generic Object Exchange Profile found in BLUETOOTH specifications.

As shown in Fig. 5, a conference room **304** includes a server **372** including a wireless piconet (e.g., BLUETOOTH) front end, and a database **300** including information to be exchanged between conference participants (e.g., business card type information, service descriptions, exhibited product information, etc.)

Conference participants each have a wireless piconet network device 100 (e.g., PDA devices) including information to be exchanged with other conference participants. Each wireless piconet network device 100 includes a suitable exchange information database 340a-340c, which establishes a presence on a piconet network after entering the doorway of the conference room 304 at least long enough to synchronize exchange information databases 300, 340. In the given example, password authorization is not required: only earth coordinate information.

Thus, using a PDA with a BLUETOOTH piconet front end and an exchange information database **340** which is synchronized with another exchange information database **300**, while a user is outside a convention buying a newspaper, exchange information remains private to the user's PDA. However, once the user enters the convention area,

10

15

20

25

information such as business card information, etc., may be exchanged with a suitable server **372** allowing relevant exchange information databases **300**, **340** to be appropriately synchronized. When a user leaves the convention, their PDA may again be synchronized with exchange information.

The earth coordinates of the convention area or other defined exchange area may be established by, e.g., walking the perimeter of the relevant area and storing periodic boundary coordinates. Alternatively, the appropriate coordinates may be published by the convention organizers beforehand for PDA users to input into their own PDA devices.

Shared exchange information can be based on GPS location coordinates of the relevant wireless piconet network devices and/or based on the earth coordinates of another wireless piconet network device requesting the exchange information.

Accordingly, the utilization of earth coordinates with a wireless piconet network device provides an additional level of security for wireless network connections, and provides greater control over privacy of information, while requiring minimal user input.

While the use of actual coordinates are shown and described in the given embodiments, the present invention relates equally to the use of an actual vector distance determined by a distance between earth coordinate locations of two separate wireless piconet network devices, within the scope of the present invention.

While the embodiments of the present invention are described and shown with reference to absolute earth coordinates determined by a GPS receiver, other coordinate or location determining technology may be implemented within the principles of the present invention. For instance, the present invention relates equally to the use of

cell tower triangulation in determining a location of a particular wireless device.

While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.