Annales de la SOCIÉTÉ SCIENTIFIQUE de Bruxelles

Association sans but lucratif

TOME SOIXANTE-TREIZIÈME

SÉRIE I

SCIENCES MATHÉMATIQUES ASTRONOMIQUES ET PHYSIQUES

PREMIER FASCICULE
27 mars 1959

Publié avec le concours de la Fondation universitaire de Belgique et du Gouvernement

SECRÉTARIAT DE LA SOCIÉTÉ SCIENTIFIQUE 11, RUE DES RÉCOLLETS, 11 LOUVAIN

1959

Publication trimestrielle. Prix de ce fascicule séparé: 90 frs

Les périodiques internationaux de références et de bibliographie sont autorisés à reproduire, moyennant une référence, les résumés que les auteurs placent en tête de leurs travaux dans ces Annales.

TABLE DES MATIÈRES

Manuscrit r	eçu	le 31	janvier	1959.
-------------	-----	-------	---------	-------

DEUXIÈME SECTION : SCIENCES PHYSIQUES ET CHIMIQUES	. 5
Spectre infrarouge à grande dispersion et constantes moléculaires du CO	2,

Le prix d'ABONNEMENT aux Annales, série I, pour des personnes ne faisant pas partie de la Société scientifique, est fixé comme suit : en Belgique, au Congo-Belge et au Luxembourg 100 F 150 F

dans les autres pays

MANUSCRIT REÇU LE 31 JANVIER 1959

Deuxième Section SCIENCES PHYSIQUES

SPECTRE INFRAROUGE A GRANDE DISPERSION ET CONSTANTES MOLECULAIRES DU CO₂

Charles-P. COURTOY
Dr en Sciences
Facultés Universitaires
N. D. de la Paix, Namur

Dissertation présentée pour l'obtention du grade d'Agrégé de l'Enseignement Supérieur

RÉSUMÉ

Le spectre du $\rm CO_2$ a été obtenu entre l'infrarouge photographique et 3440 cm $^{-1}$. Le $\rm CO_2$ ordinaire a été utilisé ainsi qu'un échantillon avec 66 % de $^{13}\rm C$. Les courbes sont données avec leur interprétation.

Plus de 4000 raies d'absorption ont été mesurées avec une bonne précision. Elles se groupent en 91 bandes d'absorption dues aux formes isoto-

piques ¹²C¹⁶O₂, ¹³C¹⁶O₂, ¹²C¹⁶O¹⁸O, et ¹³C¹⁶O¹⁸O.

Quelques précisions sont apportées pour la molécule $^{12}C^{16}O_2$. L'analyse complète est faite pour $^{13}CO_2$ et certains résultats sont obtenus pour les molécules asymétriques. Pour la molécule $^{13}CO_2$, les constantes de vibration et de rotation sont indiquées. Les valeurs de B_o et B_e sont respectivement 0,39025 et 0,39163 $_5$ cm $^{-1}$. La valeur obtenue pour D_o est 13,7 10^{-8} cm $^{-1}$.

La constante q_v du dédoublement des états \prod , là où la résonance Fermi

n'intervient pas, est représentée par :

 $q_0 = (63 - 1.7 v_3) \frac{1}{2} (v_2 + 1) 10^{-5} \text{cm}^{-1}$

Le terme de perturbation de la résonance Fermi est

 $-(46,52-0,10v_1-0,37v_2-0,74v_3)\frac{1}{2}[(v_2+2)^2-l^2]^{1/2}v_1^{1/2}$

En utilisant cette expression on peut retrouver les différents effets de la résonance Fermi, calculer les niveaux d'énergie de vibration, la constante B de chacun de ces niveaux et la constante q_v des états Π perturbés. Pour les constantes D on retrouve aussi l'effet de la résonance Fermi et de la résonance de type l entre les niveaux (v_1, v_2, l, v_3) et $(v_1, v_2, l \pm 2, v_3)$

Un cas typique de perturbation de rotation est obtenu par suite de la

perturbation de Coriolis entre les niveaux 30°0 et 03°1°.

L'effet isotopique sur les différentes constantes répond remarquablement aux prévisions sauf en ce qui concerne la constante principale du terme de perturbation de la résonance Fermi. C'est une question qui doit être étudiée.

INTRODUCTION

Relativement peu de vérifications expérimentales précises ont été réalisées en ce qui concerne l'effet de la substitution isotopique sur les constantes moléculaires des molécules polyatomiques, et jamais, sauf pour H₂O et D₂O, elles n'ont porté sur l'ensemble de ces constantes.

Vu l'importance que présente ce problème, il a paru intéressant de l'étudier sur un cas particulièrement simple, avec l'espoir d'arriver à des déterminations suffisamment précises. Le choix s'est porté sur la molécule de CO₂ en vue d'étudier l'effet de la substitution isotopique sur les molécules ¹²CO₂ et ¹³CO₂ (¹), avec la possibilité de quelques renseignements supplémentaires en provenance des molécules ¹⁴CO₂, ¹²C¹⁸O₂, ¹²C¹⁶O¹⁸O, et ¹³C¹⁶O¹⁸O.

De nombreuses recherches, anciennes et récentes, ont été consacrées à l'étude de la structure moléculaire du CO₂, soit au moyen des spectres Raman, soit, surtout par les spectres infrarouges, au moyen des bandes d'absorption obtenues à grande dispersion.

On trouvera dans le livre de Herzberg (1945) les références des travaux anciens et l'exposé des résultats obtenus. On sait que c'est l'analyse du spectre Raman du CO₂ qui a conduit à la découverte du phénomène de résonance Fermi (²) dont nous aurons à parler plusieurs fois dans la suite.

On sait aussi que la molécule CO_2 possède 3 vibrations fondamentales, la vibration symétrique v_1 observée pour le CO_2 ordinaire à 1388 cm⁻¹, la vibration antisymétrique v_3 à 2349 cm⁻¹, et la vibration doublement dégénérée v_2 à 667 cm⁻¹.

Parmi les travaux plus récents, on peut citer les suivants. En Raman, Welsh, Pashler, et Stoicheff (1952) ont étudié les bandes v_1 , 2 v_2 et les bandes « chaudes » (3) corrrespondantes.

(2) Voir p. 91 quelques détails sur ce phénomène de résonance.

⁽¹⁾ Quand le nombre de masse de l'oxygène n'est pas précisé, il s'agira de l'isotope 16, de loin le plus commun.

⁽³⁾ On appelle « bande chaude » la transition secondaire accompagnant la transition principale et partant d'un niveau supérieur, p. ex. les bandes $\nu_1 + \nu_2 - \nu_2$ et ν_1 . Quand la température augmente un nombre plus élevé de molécules se trouve au niveau d'énergie supérieur et l'intensité de cette bande augmente. Au contraire on peut les atténuer en refroidissant le gaz.

Les deux bandes principales, ainsi que le spectre de rotation pure ont été étudiés par Kotov, Tyulin, et Tatevskii (1958) mais leurs mesures ne sont guère précises. Simultanément, Stoicheff (1958) remesurait avec une bonne précision les 4 bandes. Il pouvait de même obtenir la structure fine des deux bandes principales, ainsi qu'un très beau spectre de rotation pure.

Pour l'infrarouge moyen, un nouveau spectre de la fondamentale v_2 a été publié par Rossman, Rao, et Nielsen (1956). Rossman, France, Rao et Nielsen (1956) étudient aussi le spectre des transitions $v_1 - v_2$, $v_2 - v_2$, $v_3 - v_1$, $v_3 - v_2$.

La fondamentale v_3 qui avait été obtenue par Nielsen et Yao (1945) a été réétudiée par Plyler, Blaine, et Tidwell (1955a).

Ces régions spectrales ont aussi été étudiées au moyen d'un tube d'absorption à 500° par Taylor, Benedict, et Strong (1952).

Dans l'infrarouge plus proche, au dessus de 3500 cm⁻¹, les bandes $v_1 + v_3$, $2 v_2 + v_3$, ont été obtenues par Jones et Bell (1950) puis par France et Dickey (1955). Ces bandes ont été remesurées par Rossman, France, Rao, et Nielsen (1956) après que nous ayons signalé (Courtoy et Herzberg 1955) que la résonance Fermi modifiait la constante de distorsion moléculaire pour les niveaux d'énergie en question. Ils ont retrouvé le même effet. Les bandes $2 v_1 + v_3$, $v_1 + v_2 + v_3$, $4 v_2 + v_3$ et $3 v_1 + v_3$, $2 v_1 + 2 v_2 + v_3$, $v_1 + 4 v_2 + v_3$, $6 v_2 + v_3$ ont été étudiées par Goldberg, Molher, McMath et Pierce (1949). La bande $3 v_3$ a été étudiée par Gailar et Plyler (1952).

Finalement, une étude systématique du spectre dans l'infrarouge photographique a été faite par Herzberg et Herzberg (1953).

- Malgré le nombre assez considérable de résultats connus par ces travaux, il apparut rapidement que pour le but poursuivi, à savoir la comparaison entre les constantes des différentes molécules isotopiques, il était opportun, si pas nécessaire, de préciser certains résultats précédents. Il était d'ailleurs préférable que les valeurs à comparer aient été obtenues dans des conditions semblables, dans la mesure du possible. Cette étude préliminaire s'est révélée beaucoup plus féconde qu'on ne l'avait prévu d'abord et dès 1955 (Courtoy et Herzberg) nous avons signalé, comme il vient d'être dit, que la constante de distorsion centrifuge était modifiée par la résonance Fermi Nous aurons à revenir avec plus de détails sur cet effet lors de la discussion des résultats actuels, mais signalons dès maintenant que, suite à notre travail sur ¹²C¹⁶O₂,

cet effet a été étudié théoriquement et retrouvé par d'autres expérimentateurs, comme nous l'avons signalé plus haut dans un cas particulier.

D'autres effets du second ordre ont aussi pu être mis en en évidence et une étude assez complète sur la molécule \$^{12}C^{16}O_2\$ a été publiée (Courtoy 1957a). Nous ne reprendrons pas ici le détail et les discussions concernant cette molécule. Cependant les courbes d'absorption du CO2 ordinaire (99 % de \$^{12}C\$ et 1 % de \$^{13}C\$) avec leur interprétation, qui n'avaient pas été publiées pour abréger, seront données ici, mises en regard des courbes du CO2 avec 66 % de \$^{13}C\$. Cette juxtaposition rendra plus claire les attributions proposées.

Par suite de nouvelles mesures, les tableaux donnant les raies de rotation et les niveaux d'énergie de vibration du ¹²CO₂ ont été complétés et certains d'entre eux ont dû être légèrement corrigés.

Lors de notre travail cité plus haut sur $^{12}C^{16}O_2$ certaines données non publiées fournies par le Dr Benedict nous avaient rendu de grands services pour l'établissement des constantes de vibration. L'ensemble de ce travail n'a pas encore été publié, mais un certain nombre de constantes de rotation sont reprises dans une note récente de Benedict (1957) accompagnant la deuxième partie (Mesures et Identifications) du spectre solaire de Migeotte, Neven, et Swensson. Les constantes de rotation d'une série de bandes perpendiculaires où interviennent les nombres quantiques de vibration ν_1 , ν_2 et le moment angulaire de vibration l montrent que la valeur que nous avions proposée pour α_2 (4) était un peu trop élevée. Nous donnerons dans ce travail les modifications que cela entraîne sur les constantes de rotation B correspondant aux différents niveaux d'énergie de vibration de la molécule $^{12}C^{16}O_2$.

Pour la comparaison des constantes, il fallait ensuite passer à la seconde partie du programme et établir ces constantes pour la molécule ¹³C¹⁶O₂. Par suite de la présence de l % de ¹³C dans le carbone naturel, un certain nombre de bandes du ¹³CO₂ apparaissent dans les spectres du CO₂ ordinaire. De la sorte quelques données purent être obtenues et publiées.

La bande v_3 a été repérée depuis longtemps et un certain nombre de raies ont été remesurées par Plyler, Blaine et Tidwell

⁽⁴⁾ Les constantes α_1 , α_2 , et α_3 donnent la variation des constantes de rotation B suivant les 3 nombres quantiques de vibration.

(1955a) (5). Parmi les bandes de plus grande fréquence, on trouve $\nu_1 + \nu_3$ signalée par France et Dickey (1955), $4 \nu_2 + \nu_3$ et $\nu_1 + 2 \nu_2 + \nu_3$ observées par Goldberg, Mohler, McMath, et Pierce (1949), et enfin, dans l'infrarouge photographique, Herzberg et Herzberg ont mesuré une bande indiquée comme $2 \nu_2 + 3 \nu_3$ et qui, en fait, est $\nu_1 + 3 \nu_3$. Tout récemment, Benedict (1957) a publié les constantes correspondant aux bandes ν_2 et $\nu_1 + \nu_2$, et Stoicheff (1958) dans sa série d'études sur les spectres Raman a obtenu les branches Q des bandes ν_1 et $2 \nu_2$, avec les deux bandes chaudes correspondantes.

Dans nos spectres du CO₂ ordinaire, entre 3500 cm⁻¹ et l'infrarouge photographique, nous avons aussi repéré nombre de bandes secondaires dues au ¹³C¹⁶O₂. Pour obtenir les bandes plus faibles et réaliser des mesures plus précises, nous avons étudié à nouveau la plupart des bandes se trouvant dans la même région

spectrale avec un échantillon enrichi à 66 % en 13C.

C'est l'étude systématique des spectres du $^{13}C^{16}O_2$ qui constitue la partie principale de ce travail. Nous en avons fait l'analyse vibrationnelle et rotationnelle pour déterminer les constantes de vibration et de rotation. Nous avons examiné avec soin l'effet de la résonance Fermi sur la plupart des niveaux d'énergie, sur les constantes de rotation B, sur les constantes de distorsion centrifuge D et sur les constantes q et μ de la formule

$$\Delta v = q J(J + 1) - \mu J^2 (J + 1)^2$$

du dédoublement des états Π . Nous retrouvons aussi, de nouveau, l'effet de la résonance de type l entre les niveaux (v_1, v_2, l, v_3) et $(v_1, v_2, l \pm 2, v_3)$, sur la plupart des constantes de distorsion centrifuge. Et, de plus, nous pouvons observer un très beau cas de perturbation de rotation due aux forces de Coriolis.

La molécule $^{14}\text{C}^{16}\text{O}_2$ garde la même symétrie que $^{12}\text{CO}_2$ et $^{13}\text{CO}_2$, mais on connaît peu de chose concernant cette molécule radioactive. Nielsen et Lagemann (1954) ont obtenu le spectre de vibration-rotation des bandes ν_2 et ν_3 . Récemment, Wilkinson (travail non publié), a repris le spectre de la bande ν_3 et ses résultats doivent être plus précis.

La molécule 12C18O2 conserve aussi la même symétrie, mais

 $^(^5)$ Après la publication de l'article, une erreur de numérotation a été corrigée et la série des raies P_4 à P_{42} a été remesurée.

on en connaît encore moins. Seule la bande v_2 a été trouvée, à faible dispersion, par Eggers et Arends (1957).

Afin de compléter l'étude du CO_2 , nous indiquons ce que nous avons pu obtenir concernant les molécules $^{12}C^{16}O^{18}O$ et $^{13}C^{16}O^{18}O$. La première de ces molécules avait déjà été observée précédemment. Goldberg, Mohler, et Pierce (1949) ont trouvé les bandes 4 ν_2 + ν_3 et ν_1 + 2 ν_2 + ν_3 . Goldberg (1954) signale de plus la bande 2 ν_1 + ν_3 . Eggers et Arends (1957) ont obtenu, à faible dispersion, les bandes ν_1 , ν_2 , ν_3 et 2 ν_2 qui pour ces formes isotopiques non symétriques sont toutes actives en infrarouge.

Pour chacune de ces deux molécules nous avons pu faire l'analyse de 5 bandes. La constante de rotation du niveau fondamental, B_0 , a pu être déterminée ainsi qu'une valeur approchée des coefficients α_1 , α_2 , et α_3 . On retrouve aussi les mêmes effets de la résonance Fermi et de la résonance de type I.

Dans l'ensemble, on constate que des règles assez simples concernant l'effet isotopique sur les constantes de vibration permettent de retrouver très bien les constantes du ${}^{13}\mathrm{C}^{16}\mathrm{O}_2$ et permettent aussi de calculer, avec une très bonne précision, les niveaux de vibration des autres molécules isotopiques. Nous verrons cependant qu'il y a une exception en ce qui concerne la constante de perturbation de la résonance Fermi, ce qui indique un problème à étudier de près.

PREMIER CHAPITRE

TECHNIQUE EXPERIMENTALE

Toute la partie expérimentale de ce travail a été réalisée au département de physique des National Research Laboratories à Ottawa, pendant les deux années que nous y avons passées comme Postdoctorate Fellow.

La technique expérimentale et les méthodes de mesures sont les mêmes, dans les lignes principales, que celles qui ont été décrites dans l'article sur le ¹²CO₂ (Courtoy 1957a).

Pour les spectres du CO₂ enrichi en ¹³CO₂, le gaz a été obtenu par action d'acide nitrique sur le BaCO₃ contenant au moins 66 % de ¹³C, fourni par Eastmann Kodak.

Le spectromètre que nous avons pu utiliser a été décrit par Douglas et Sharma (1953) et il n'est pas nécessaire d'en donner ici de nombreux détails. Signalons seulement quelques caractéristiques. La partie principale du spectromètre est sous vide. La convergence des rayons lumineux est obtenue par deux miroirs paraboliques hors d'axe de 2 m de distance focale. Le déroulement du spectre sur la fente de sortie peut être obtenu par rotation du réseau ou par déplacement parallèle du second miroir. Pour les bandes de 3500 à 3800 cm⁻¹, nous avons utilisé un réseau original de 300 traits par mm et, pour les bandes de plus grandes fréquences, un réseau à 600 traits par mm. Le détecteur du rayonnement infrarouge était une cellule au PbS (Kodak) refroidie à la température de la neige carbonique par une circulation d'acétone. Le pouvoir de résolution est un peu inférieur à 0,1 cm⁻¹ dans la région de 4000 cm⁻¹.

Nous avons employé un tube d'absorption à réflexions multiples, suivant le système proposé par White (1942) et par Bernstein et Herzberg (1948). Les miroirs sphériques avaient 1 m de rayon de courbure. Le nombre de traversées a varié de 8 pour les bandes les plus intenses jusqu'à 80 pour les bandes plus faibles. Dans la mesure du possible, le gaz a été utilisé sous faible pression, pour éviter l'élargissement des raies. Cependant pour les bandes moins intenses ou pour les raies avec J élevé, plus faibles mais particulièrement importantes pour la détermination des constantes de distorsion centrifuge, la pression devait être augmentée. Pour le ¹²CO₂ nous sommes allé jusqu'à la pression atmosphérique, mais pour l'échantillon enrichi en ¹³C, la pression maximum correspondant à la quantité de gaz dont nous disposions était d'environ 40 cm de Hg.

La mesure des nombres d'onde des raies d'absorption a été réalisée suivant le système des franges d'interférences (Douglas et Sharma 1953). L'interféromètre de Fabri-Perot était sous vide et maintenu à température constante. Pour les raies de référence, nous nous sommes servi d'une lampe à Hg à basse pression et nous avons adopté les valeurs des nombres d'onde données par Burns, Adams et Longwell (1950). Par cette méthode, la précision des mesures est assez bonne, du moins la précision relative à l'intérieur d'une bande d'absorption. C'est celle-ci qui est particulièrement importante pour établir les constantes moléculaires et donc pour le but même de ce travail, la comparaison entre les constantes moléculaires du ¹²CO₂ et du ¹³CO₂. Comme on pourra

le constater dans les tableaux de la deuxième partie, en comparant pour les raies bien marquées les valeurs calculées, aux valeurs expérimentales, la précision relative est aux environs de 0,01 cm⁻¹.

Le problème de la précision absolue des mesures est plus délicat. La méthode que nous avons employée pour étalonner les spectres est assez semblable à celle décrite par Plyler, Blaine et Tidwell (1955b) ou Plyler et Tidwell (1957). Cependant les raies de référence sont superposées aux franges et non au spectre infrarouge. Cette méthode, qui a certains avantages, présente, l'inconvénient d'introduire une erreur systématique. Celle-ci vient du fait que les fentes utilisées sont rectilignes et que l'image d'une fente rectiligne donnée par un réseau plan est une courbe (Minkowski 1942). La partie centrale de la fente était réservée pour le spectre d'absorption infrarouge, de manière à ne pas réduire le pouvoir de résolution du spectromètre, tandis que le spectre de comparaison est reporté sur une partie plus éloignée de la fente. L'écart en cm 1 dépend des conditions géométriques de l'installation et est proportionnel au nombre d'onde de la région étudiée.

La formule de correction est :

$$dv = -v y^2/2f^2$$

où ν est le nombre d'onde de la région, y la distance au centre de la fente, et f la distance focale du miroir.

Nous avons commencé par apporter à tous les spectres une correction de

-- v 31.500

ainsi qu'il résultait d'essais faits dans différentes régions spectrales. Cette correction supprimait le principal de l'erreur systématique, mais n'était pas parfaitement satisfaisante, car la distance y au centre de la fente n'avait pas été la même pour tous les enregistrements. Des corrections secondaires ont pu être apportées dans la suite, grâce aux transitions partant des niveaux d'énergie 02_00 et 10_00 . En effet, elles nous ont permis de relier entre eux des enregistrements éloignés dans le spectre. Grâce à ces recoupements, des mesures cohérentes ont pu être obtenues pour presque toutes les bandes d'absorption, et, par comparaison avec des mesures faites ailleurs, nous croyons avoir finalement des nombres d'onde qui,

en valeur absolue aussi, doivent être très voisins de la grandeur correcte. Les recoupements dont il est question ci-dessus nous ont amené à corriger un peu les nombres d'onde de certaines bandes du ¹²CO₂ par rapport aux valeurs publiées précédemment (Courtoy 1957a).

Pour chercher à préciser l'erreur absolue qui subsiste on peut comparer les valeurs obtenues par Plyler et Tidwell (1957) pour les raies de CO₂ et de H₂O qu'ils ont mesurées et que nous retrouvons dans nos spectres. Il semble en résulter que nos valeurs sont environ 0,04 cm⁻¹ trop faibles, du moins dans la région de 3700 à 3500 cm⁻¹. Ce faible écart n'affecte pas les constantes de rotation et est de l'ordre de grandeur des erreurs expérimentales pour les niveaux d'énergie de vibration.

DEUXIÈME CHAPITRE

RESULTATS EXPERIMENTAUX

Entre l'infrarouge photographique et $2,7 \mu$, nous avons pu obtenir et analyser nombre de bandes attribuables aux différentes espèces isotopiques du CO_2 .

Suivant la nomenclature habituelle, les niveaux d'énergie sont indiqués par les trois nombres quantiques de vibration v_1 , v_2 , et v3. Le second est accompagné en indice supérieur du nombre quantique de moment angulaire de vibration l. Comme nous l'avons rappelé dans un travail antérieur, ces dénominations sont claires pour les niveaux d'énergie où les phénomènes de résonance Fermi, dont nous aurons à parler souvent plus loin, n'interviennent pas. Mais, quand ils entrent en action, nous voyons apparaître un groupe de niveaux d'énergie, sans qu'il soit possible d'établir une correspondance directe entre chacun de ces niveaux et les niveaux qu'on obtiendrait en faisant abstraction du phénomène de résonance. Pour ¹²C¹⁶O₂, ¹³C¹⁶O₂, ¹¹C¹⁶O₂, ¹³C¹⁶O¹⁸O, la valeur de v₁ non perturbée par résonance Fermi est supérieure à la valeur correspondante de 2 v_s. Dans ce cas, nous adoptons l'habitude généralement admise de classer ces niveaux dans l'ordre des fréquences croissantes et de les dénommer en fonction de la participation croissante du nombre quantique v_1 . Nous trouverons donc en remontant l'échelle d'énergie les niveaux en résonance : $06^{\circ}1$, $14^{\circ}1$, $22^{\circ}1$, $30^{\circ}1$. Cette dénomination reste arbitraire. Dans le cas du $^{12}\text{CO}_2$ (Courtoy 1957a) on a pu remarquer que les niveaux correspondants, abstraction faite des phénomènes de résonance, ne viennent pas dans le même ordre par suite de la proximité entre les valeurs de ω_1 et de $2\omega_2$, et de l'influence considérable de certains facteurs d'anharmonicité. Pour $^{13}\text{CO}_2$, l'écart entre ω_1 et $2\omega_2$ est nettement plus grand, et dans tous les groupes de niveaux en résonance, que nous avons étudiés, les niveaux d'énergie perturbés et non perturbés viennent dans le même ordre.

Pour le ¹²C¹⁶O¹⁸O, et a fortiori pour ¹²C¹⁸O₂, la valeur non perturbée de v₁ est inférieure à la valeur non perturbée de 2 v₂. Comme Eggers et Arends (1957), nous croyons devoir adopter dans ce cas le classement inverse et utiliser l'ordre des dénominations ci-dessus pour les bandes que l'on rencontre, non plus en remontant l'échelle d'énergie, mais en la descendant. Nous verrons à la fin de ce travail, lors de l'étude des constantes de rotation et des constantes de distorsion centrifuge du 12C16O18O, que ce choix particulier s'impose d'ailleurs ici, si l'on veut comparer ses constantes de rotation avec celles des autres formes isotopiques du CO₂. Mais il y aurait cependant une difficulté pour cette molécule, car, par suite de l'influence des coefficients d'anharmonicité, l'écart entre les niveaux non perturbés diminue quand va augmente, s'annule environ pour $v_3 = 3$ et s'inverse certainement pour $v_3 = 4$ ou 5. Pour les bandes $3v_3 + v_1$ et $3v_3 + 2v_2$ la résonance Fermi doit être très forte.

Les bandes principales des spectres sont des transitions $\Sigma_u \leftarrow \Sigma_g$ partant du niveau fondamental et arrivant à un niveau supérieur impliquant ν_3 ou $3\nu_3$. La plupart de ces bandes sont accompagnées d'une bande plus faible de type $\Pi_g \leftarrow \Pi_u$, partant du niveau 01^10 et aboutissant à un niveau comportant les mêmes nombres quantiques plus une fois le second, p. ex. :

$$\Sigma_u \leftarrow \Sigma_g$$
 $02^01 \leftarrow 00^00$ $\Pi_g \leftarrow \Pi_u$ $03^11 \leftarrow 01^10$

Ces bandes sont appelées bandes « chaudes », ainsi que nous l'avons signalé plus haut.

Nous avons aussi observé un certain nombre des bandes encore plus faibles et partant des niveaux d'énergie plus élevés 02%,

 $10^{\circ}0$, ou $02^{\circ}0$. Dans les deux premiers cas, on a des transitions $\Sigma_{u} \leftarrow \Sigma_{g}$ analogues aux bandes principales. Dans le troisième cas, on a des transitions $\Delta_{u} \leftarrow \Delta_{g}$. Plusieurs de ces dernières bandes ont été analysées dans les spectres du $^{12}\text{CO}_2$ (Courtoy 1957a) et c'était probablement la première analyse de bandes de ce type dans des spectres infrarouges de vibration-rotation. Nous en retrouvons plusieurs dans les spectres du $^{13}\text{CO}_2$.

Comme dans le cas du 12CO2, nous avons pu observer pour le $^{13}\text{CO}_2$, les trois branches d'une transition $\Pi_u \leftarrow \Sigma_q$. Il s'agit de la bande v₂ 1- 2v₃. On la trouvera sur la figure 11, mais dans le tableau correspondant, on n'indiquera pas de valeurs expérimentales car l'étalonnage de ce spectre n'avait pas été fait. Nous ne donnerons donc pas non plus l'analyse de cette bande. Cependant les nombres d'onde des différentes raies ont pu être calculés (v. tabl. 2) en fonction des constantes vo et B établies d'après ce qu'on connaît du reste de la molécule (valeurs calculées des tableaux 7 et 24) et en supposant, comme on doit s'y attendre, que la constante D du niveau 01¹2 est la même que pour le niveau fondamental. Les valeurs obtenues ainsi sont remarquablement précises. En effet, un certain nombre de raies de H₂O apparaissent dans ce spectre et elles peuvent être calculées par interpolation entre les raies du CO₂. On peut comparer ci-dessous les valeurs obtenues de cette manière avec les valeurs observées par Nelson (1949) et Mohler (1955). Plyler et Tidwell (1957) ont aussi mesuré certaines des raies avec une très bonne précision. On constate que l'accord est excellent, surtout avec les nombres d'onde de Plyler et Tidwell.

Travail actuel	Nelson	Mohler	Plyler et Tidwell ± 0,03
5185,05	5185,1	5184,95	
5184,66	5184,8		
5180,55	5180,6	5180,48	5180,64
5178,04	5178,1	5178,48	5178,11
5176,10	5176,1	5176,12	5176,15
5163,72	5163,6	5163,92	5163,70

Ceci nous semble une première confirmation de la valeur des constantes obtenues dans cette étude.

Nous obtenons aussi une transition $\Sigma_g \leftarrow \Pi_u$ mais uniquement

1...

les branches P et R à partir de J -25 et 31. Nous l'interprétons comme la bande $30^{\circ}0 - 01^{\circ}0$ qui apparaît par suite d'une perturbation du niveau $30^{\circ}0$ avec le niveau $03^{\circ}1$ (v. p. 147).

Pour le $^{12}\text{CO}_2$, une étude plus détaillée des spectres a montré la branche Q d'une transition $\Delta_g \leftarrow \Pi_u$, qui n'avait pas été indiquée dans notre travail précédent. Il s'agit de la bande $2v_2^2 + v_3 - v_2$. Les raies ont pu être calculées a priori et elles expliquent très bien la structure observée. En fait, chaque raie d'absorption observée est la superposition de deux raies appartenant aux deux composantes $(02^21)^c - (01^10)^c$, et $(02^21)^d - (01^10)^d$ (1).

D'autres bandes faibles apparaissent encore dans les spectres. Ce sont les bandes les plus intenses des molécules ¹²C¹⁶O¹⁸O et ¹³C¹⁶O¹⁸O.

On trouvera dans le tableau 1 la liste des 91 bandes observées, avec la valeur obtenue pour le centre de la bande.

La plupart des résultats obtenus pour le $^{12}\mathrm{CO}_2$ ont été publiés (Courtoy 1957a). Les courbes d'absorption n'avaient pas été fournies et nous les donnons ici, sauf pour les bandes $3\,\nu_3$ et $2\,\nu_2+\nu_3-2\,\nu_2$ qui avaient été montrées à titre d'exemple. Chaque fois qu'il y a lieu, nous mettrons en juxtaposition la courbe du CO_2 ordinaire avec celle du CO_2 enrichi en $^{13}\mathrm{C}$. Elles seront mises en ordre de fréquences décroissantes.

Depuis le visible jusqu'à 5150 cm ¹, les spectres sont relativement simples et l'interprétation des différentes raies est donnée sur la figure elle-même. Faisant suite aux courbes, des tableaux indiquent les nombres d'onde (⁷) des raies de rotation de chaque bande. Pour les bandes du ¹²CO₂, ces nombres ont en général été donnés précédemment. Cependant nous avons cru utile de reprendre ces tableaux car, par suite de nouvelles mesures, ils ont été complétés et certains d'entre eux ont dû être légèrement corrigés.

Ces tableaux présentent chaque fois les valeurs expérimentales et les valeurs calculées en fonction des constantes ν_0 , B et D résultant de l'analyse de la bande. Ces constantes obtenues directement par l'analyse des bandes seront considérées comme valeurs expérimentales dans les sections suivantes, consacrées à l'interprétation des résultats.

⁽⁶⁾ v. p. 116 la signification des indices c et d.

⁽⁷⁾ Les nombres d'onde que nous donnons sont toujours ramenés au vide.

TABLEAU 1

Liste des bandes observées (Centre des bandes)

0000 010 1300 2	
8089,010 13 CO ₂ $v_1 + 3 v_3$	très faible
8070,88	faible
7734,302 $^{12}\text{CO}_2$ 3 ν_1 + 2 ν_2 + ν_3	»
7599,940 $^{13}\text{CO}_2$ 3 ν_1 + 2 ν_2 + ν_3	» , partiellement cachée
7593,536 $^{12}\text{CO}_2$ 2 ν_1 + 4 ν_2 + ν_3	, partionement caesio
7481,340 $^{13}\text{CO}_2$ 2 ν_1 + 4 ν_2 + ν_3	faible
7460,371 $^{12}\text{CO}_2 \text{ v}_1 + 6 \text{ v}_2 + \text{v}_3$	»
6972,490 » 3 v ₃	
6935,046 » $v_2 + 3 v_3 - v_2$	
6780,140 ¹³ CO ₂ 3 v ₃	
$6745,046$ » $v_2 + 3 v_3 - v_2$	
6536,430 $^{12}\text{CO}_2$ 3 $\nu_1 + \nu_2 + \nu_3 - \nu_2$	faible, branche P partielle- ment cachée
6503,050 » $3 v_1 + v_3$	
6397,505 $^{13}\text{CO}_2$ 3 $\nu_1 + \nu_2 + \nu_3 - \nu_2$	faible, branche P partielle- ment cachée
$6363,580$ » $3 v_1 + v_3$	
$6356,245 {}^{12}\text{CO}_2 2 \nu_1 + 3 \nu_2 + \nu_3 - \nu_2$	faible, partiellement cachée
6347,810 » $2 v_1 + 2 v_2 + v_3$	
6308,113 » $2\nu_1 + 4\nu_2 + \nu_3 - 2\nu_2$	très faible, quelques raies de la branche P
$6243,540~^{13}\text{CO}_2~2~\nu_1 + 3~\nu_2 + \nu_3 \nu_2$	faible, partiellement cachée
6241,930 » $2 v_1 + 2 v_2 + v_3$	
6227,884 $^{12}\text{CO}_2 \text{ v}_1 + 4 \text{ v}_2 + \text{ v}_3$	
$6196,123$ » $v_1 + 5 v_2 + v_3 - v_2$	faible, partiellement cachée
$6119,560 ^{13}\text{CO}_2 \nu_1 + 4 \nu_2 + \nu_3$	
$6088,160 \text{>} \text{$\nu_1 + 5 \ \nu_2 + \nu_3 - \nu_2$}$	faible, fragmentaire
6075,928 $^{12}\text{CO}_2$ 6 $^{12}\text{CO}_2$ 7 $^{12}\text{CO}_3$	
$6020,750$ » $7 v_2 + v_3 - v_2$ $5951,530 ^{13}CO_2 6 v_2 + v_3$	très faible
$5315,696 \ ^{12}\text{CO}_2 \ v_2 + 2 \ v_3$	
$5291,12$ » $2 v_2^2 + 2 v_3 - v_2$	brancha O caula
5168,60 $^{13}\text{CO}_2 $	branche Q seule observée, pas mesurée
5139,400 $^{12}\text{CO}_2$ 2 ν_1 + 2 ν_2^2 + ν_3 — 2 ν_2^2	faible, branche P presque totalement cachée
5123,170 » $2 v_1 + v_2 + v_3 - v_2$	
5099,619 » $2 v_1 + v_3$	
5062,394 » $2 v_1 + 2 v_2^0 + v_3 - 2 v_2^0$	faible
5042,538 $^{12}\text{C}^{16}\text{O}^{18}\text{O}$ 4 $^{12}\text{V}_2$ + $^{12}\text{V}_3$	»

TABLEAU 1 (suite)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5028,730 $^{13}\text{CO}_2$ 2 ν_1 + 2 ν_2^2 + ν_3 — 2 ν_2^2	» , branche P presque cachée
$\begin{array}{llllllllllllllllllllllllllllllllllll$	5013,730 » $2 v_1 + v_2 + v_3 - v_2$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4993,520 » $3 v_1 + v_3 - v_1$	douteux, très fragmentaire
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4991,309 » $2 \nu_1 + \nu_3$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4977,793 $^{12}\mathrm{CO_2}\ v_1 + 2\ v_2 + v_3$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4976,095 $^{13}\text{CO}_2$ 2 ν_1 + 2 ν_2^0 + ν_3 — 2 ν_2^0	douteux, très fragmentaire
cachée faible, fragmentaire faible $302, 327$ $302, 32$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	4953,327 » $v_1 + 4 v_2^2 + v_3 - 2 v_2^2$	faible, fragmentaire
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$4942,484$ » $\nu_1 + 4 \nu_2^0 + \nu_3 - 2 \nu_2^0$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$4924,990 {}^{13}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O} 2 \nu_1 + \nu_3$	», très fragmentaire
$\begin{array}{llllllllllllllllllllllllllllllllllll$		faible
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		faible, fragmentaire
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ # 0 #	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$4853,745$ » $v_1 + 4 v_2^0 + v_3 - 2 v_2^0$	faible, fragmentaire
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- " "	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		faible
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 0	faible
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4790,520 \ ^{12}\text{CO}_2 \ 6 \ v_2^0 + v_3 - 2 \ v_2^0$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$4768,49$ » $6 v_2^2 + v_3 - 2 v_2^2$	très fragmentaire
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$4748,012 {}^{13}\text{CO}_2 4 \nu_2 + \nu_3$	
mentaire 4685,715 $^{13}\text{CO}_2$ 6 $^{9}_2 + ^{9}_3 - ^{2}_2$ $^{9}_2$ branche R fragmentaire 4673,635 $^{9}_3$ 6 $^{9}_2 + ^{9}_3 - ^{2}_2$ $^{9}_2$ faible, fragmentaire 3814,260 $^{12}\text{CO}_2$ 2 $^{9}_1 + ^{9}_3 - ^{2}_2$ $^{9}_2$ 3726,610 $^{9}_3$ $^{9}_1 + ^{9}_2$ $^{9}_2$ fragmentaire 3723,208 $^{9}_3$ $^{9}_1 + ^{9}_2$ $^{9}_1$ $^{9}_3$ $^{9}_4$ $^{9}_1$ $^{9}_3$ $^{9}_4$ $^{9}_1$ $^{9}_4$ $^{$	$4708,477$ » $5 v_2 + v_3 - v_2$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	2	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		branche R fragmentaire
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$4673,635$ » $6 v_2^2 + v_3 - 2 v_2^2$	faible, fragmentaire
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		fragmentaire
$\begin{array}{lll} 3711,438 & \gg & 2 \ v_1 + v_3 - v_1 & \text{faible} \\ 3692,396 & \gg & v_1 + 2 \ v_2^0 + v_3 - 2 \ v_2^0 & \text{faible} \\ 3675,110 & ^{12}\text{C}^{16}\text{O}^{18}\text{O} & 2 \ v_2 + v_3 & \text{faible} \\ 3641,530 & ^{13}\text{CO}_2 \ v_1 + 2 \ v_2^2 + v_3 - 2 \ v_2^2 & \text{fragmentaire} \end{array}$	1 4 9 2	
$\begin{array}{lll} 3692,396 & \gg & \nu_1 + 2 \; \nu_2^0 + \nu_3 - 2 \; \nu_2^0 & \text{faible} \\ 3675,110 \; ^{12}\text{C}^{16}\text{O}^{18}\text{O} \; 2 \; \nu_2 + \nu_3 & \text{faible} \\ 3641,530 \; ^{13}\text{CO}_2 \; \nu_1 + 2 \; \nu_2^2 + \nu_3 - 2 \; \nu_2^2 & \text{fragmentaire} \end{array}$	$3/14,/57$ » $v_1 + v_3$	
3675,110 $^{12}\text{C}^{16}\text{O}^{18}\text{O}$ 2 $\nu_2 + \nu_3$ faible 3641,530 $^{13}\text{CO}_2$ $\nu_1 + 2$ $\nu_2^2 + \nu_3 - 2$ ν_2^2 fragmentaire		
$3641,530 {}^{13}\text{CO}_2 \nu_1 + 2 \nu_2^2 + \nu_3 - 2 \nu_2^2$ fragmentaire	$3692,396$ » $v_1 + 2 v_2^0 + v_3 - 2 v_2^0$	
3641,530 $^{13}\text{CO}_2 \text{v}_1 + 2 \text{v}_2^2 + \text{v}_3 - 2 \text{v}_2^2$ fragmentaire 3639,181 $ \text{v}_1 + \text{v}_2 + \text{v}_3 - \text{v}_2$	$36/5,110^{-12}C^{16}O^{18}O \ 2 \ v_2 + v_3$	
$3039,181 \text{>} \text{V}_1 + \text{V}_2 + \text{V}_3 - \text{V}_2$	3641,330 $^{13}CO_2$ $v_1 + 2$ $v_2^2 + v_3 - 2$ v_2^2	fragmentaire
	$\nu_1 + \nu_2 + \nu_3 - \nu_2$	

TABLEAU 1 (suite)

$3632,876~^{13}\text{CO}_2~\nu_1 + \nu_3$	
3621,534 » $\nu_1 + 2 \nu_2^0 + \nu_3 - 2 \nu_2^0$	très fragmentaire
$3621,264 \text{>>} 2 \text{ν_1} + \text{ν_3} - \text{ν_1}$	très fragmentaire
$3612,810\ ^{12}\text{CO}_2\ 2\ \nu_2\ +\ \nu_3$	
3589,609 » $\nu_1 + 2 \nu_2^0 + \nu_3 - \nu_2$	très fragmentaire
3587,510 $^{13}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}\ \nu_{1}\ +\ \nu_{3}$	faible
3580,295 $^{12}\mathrm{CO_2}$ 3 ν_2 + ν_3 — ν_2	
3571,105 $^{12}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}\ v_1 + v_3$	faible
3568,185 $^{12}\text{CO}_2$ 4 ν_2^0 + ν_3 — 2 ν_2^0	faible
3552,824 » $4 v_2^2 + v_3 - 2 v_2^2$	faible
$3527,705 {}^{13}\text{CO}_2 2 \nu_2 + \nu_3$	
3517,300 » $\nu_1 + 2 \nu_2^0 + \nu_3 - \nu_1$	branche P fragmentaire
$3498,719$ » $3 v_2 + v_3 - v_2$	niveaux perturbés
$3497,6$ » $3 v_1 - v_2$	Inveaux perturbes
$3490,349~^{13}C^{16}O^{18}O~^{2}\nu_{2}+\nu_{3}$	faible
$3482,197^{-13}CO_2 4 v_2^0 + v_3 - 2 v_2^0$	faible
$3473,675$ » $4 v_2^2 + v_3 - 2 v_2^2$	faible

Entre 5150 et 3450 cm⁻¹, les spectres obtenus sont beaucoup plus complexes et montrent la superposition d'un nombre plus grand de bandes. Il n'était plus possible d'indiquer directement, sur les figures, l'interprétation des raies. Dans ce cas, les raies sont numérotées suivant une double numérotation, indiquées ¹²CO₂ et ¹³CO₂ suivant que la courbe est obtenue avec le CO₂ ordinaire ou avec le CO₂ enrichi à 66 % de ¹³C. L'interprétation des raies sera reportée dans des tableaux en annexe (tableaux A — Y).

Dans ces tableaux, la première ou les deux premières colonnes indiquent le numéro d'ordre de la raie sur les courbes. La colonne suivante donne la valeur observée pour le nombre d'onde des raies d'absorption. Puis viennent les valeurs calculées, au sens que nous venons de donner à ce terme. Suit l'interprétation : espèce isotopique de CO₂, niveaux de vibration impliqués, nombre quantique de rotation du niveau inférieur.

Quand de 5160 à 5110 puis de 3760 à 3520 cm ¹ la raie d'absorption est attribuable à H₂O, nous l'indiquons dans la colonne « molécule ». La valeur de référence est mise dans la colonne « valeur calculée ». Quand la raie a été mesurée par Plyler et Tidwell (1957) nous avons choisi cette valeur comme étant plus précise et nous la mettons entre parenthèse pour rappeler que c'est une valeur expérimentale et non une valeur calculée. En

dessous de 3760 cm⁻¹, pour les raies qui n'ont pas été mesurées par Plyler et Tidwell nous mettons les valeurs calculées par Benedict (Communication privée) (8). Entre 3760 et 3520 cm⁻¹, lorsqu'il y a lieu, nous indiquons près du symbole H₂O l'intensité de la raie telle qu'elle a été observée par Benedict et Plyler (1951).

D'autres tableaux indiqueront encore les nombres d'onde pour la série des raies d'une même bande. Il a paru utile d'indiquer comme pour les séries précédentes, la valeur calculée en regard de la valeur expérimentale. Pour éviter la dispersion, il a semblé préférable de grouper ces tableaux à la suite des tableaux correspondants pour les niveaux d'énergie supérieurs.

Par suite du décalage isotopique assez considérable de v_2 et v_3 , toutes les bandes du $^{13}\mathrm{CO}_2$ que nous observons dans nos spectres sont bien séparées des bandes correspondantes du $^{12}\mathrm{CO}_2$. Cependant, chaque fois que v_3 intervient une fois, ce qui est le cas de la plupart des bandes observées, on constatera que le décalage équivaut à peu près à la séparation des bandes en résonance, si bien que dans ce cas la bande (v_1, v_2, v_3) du $^{13}\mathrm{CO}_2$ est en général partiellement superposée à la bande (v_1-1, v_2+2, v_3) du $^{12}\mathrm{CO}_2$, quand celle-ci est possible. Seules donc les bandes du $^{13}\mathrm{CO}_2$ de plus basse fréquence à l'intérieur du groupe en résonance, $2v_2+v_3$; $4v_2+v_3$, et $6v_2+v_3$, ne seront pas superposées avec des bandes importantes de $^{12}\mathrm{CO}_2$.

Quand le nombre quantique v_3 intervient trois fois, le décalage isotopique est suffisant pour séparer complètement les bandes d'absorption du $^{13}\text{CO}_2$ et du $^{12}\text{CO}_2$. Les bandes $v_1 + 3\,v_3$ et $2\,v_2 + 3\,v_3$ sont donc bien séparées des bandes correspondantes du $^{12}\text{CO}_2$ observées par Herzberg et Herzberg (1953) dans l'infrarouge photographique. Elles sont semblables à ces dernières, comme on peut s'en rendre compte d'après les courbes (fig. 1), mais les intensités relatives ne sont pas les mêmes. Nous avons pu obtenir dans des conditions analogues, et permettant donc la comparaison, les spectres de ces bandes pour les deux molécules. Si l'on mesure les intensités des raies P 16 et P 18, qui sont bien dégagées et où la bande chaude n'intervient guère, on trouve que pour la molécule $^{12}\text{CO}_2$, la bande $2\,v_2 + 3\,v_3$ a une intensité 73 % de celle de la bande $v_1 + 3\,v_3$, tandis que pour le $^{13}\text{CO}_2$ l'intensité

⁽⁸⁾ Nous remercions les Dr Plyler et Benedict pour l'envoi de ces valeurs non publiées.

relative correspondante ne serait que 39 %. Cette variation est une première indication du fait que la résonance Fermi est beaucoup plus faible pour $^{13}\text{CO}_2$ que pour $^{12}\text{CO}_2$. Stoicheff (1958) a observé le même phénomène dans les spectres Raman des bandes v_1 , $2v_2$.

Pour la bande chaude $v_1 + v_2 + 3v_3 - v_2$, comme d'ailleurs pour la bande analogue $v_2 + 3v_3 - v_2$, on constate, d'après les valeurs calculées, que les têtes de bandes correspondant aux deux composantes de ces bandes ne coïncident pas. Mais dans les deux cas, les deux têtes de bande ne peuvent être séparées sur le spectre.

De 7700 à 7500 cm⁻¹, nous voyons apparaître un certain nombre de bandes faibles. Il a été nécessaire d'apporter une correction de 0.16 cm⁻¹ aux nombres d'onde des bandes du $^{12}\mathrm{CO}_2$ arrivant dans cette région spectrale. Nous verrons plus loin que la bande $2\nu_1 + 4\nu_2 + \nu_3$ du $^{13}\mathrm{O}_2$ doit être perturbée, car la constante B obtenue est anormale (v. tableau 24).

Vers 6146,8 cm 1 , dans le spectre du $^{12}\mathrm{CO}_2$, on peut observer ce qui semble être la branche Q d'une bande très faible, avec en fait de part et d'autre un certain nombre de raies de rotation. D'après l'allure de cette bande, il semble qu'il s'agisse d'une transition $\Sigma - \Pi$ ou $\Pi - \Delta$ entre niveaux où ν_3 n'interviendrait pas. Le niveau supérieur doit alors appartenir à un groupe de 5 ou 6 bandes en résonance Fermi et les calculs sont laborieux et peu précis. Les essais d'interprétation que nous avons faits n'ont rien apporté de concluant.

A 6020,79 cm $^{-1}$, se trouve la bande très faible $7 v_2 + v_3 - v_2$ du $^{12}\mathrm{CO}_2$ dont nous n'avions pas donné précédemment les nombres d'onde des raies de rotation.

De 5340 à 5160 cm⁻¹, apparaissent les transitions $\Pi \leftarrow \Sigma$ et $\Delta \leftarrow \Pi$ dont nous avons parlé plus haut.

Ensuite viennent des spectres avec superposition de nombreuses bandes secondaires. Un premier groupe va de 5170 à 4650 cm ⁻¹, et un second groupe de 3765 à 3440 cm ⁻¹. L'étude de ces spectres a constitué la partie la plus longue du travail.

Un résultat particulièrement intéressant a été obtenu lors de l'analyse de la bande $3\nu_2 - \nu_3 - \nu_2$ du $^{13}\text{CO}_2$. On trouve en effet un cas particulièrement intéressant de perturbation de Coriolis entre les niveaux 03^{11}c et $30^{\circ}0$. Mais par suite de la complexité des spectres d'absorption dans cette région, il faut une analyse complète des spectres pour mettre ce phénomène en évidence.

Fig. 1 Courbes d'absorption 8100-7925 cm⁻¹.

Fig. 2 Courbes d'absorption 7700-7425 cm⁻¹.

Fig. 3 Courbes d'absorption 6800-6680 cm⁻¹.

Fig. 4 Courbes d'absorption 6560-6455 cm⁻¹.

Fig. 5 Courbes d'absorption 6420-6355 cm⁻¹.

Fig. 6 Courbes d'absorption 6354-6275 cm⁻¹.

Fig. 7 Courbes d'absorption 6275-6205 cm⁻¹.

Fig. 8 Courbes d'absorption 6205-6135 cm⁻¹.

Fig. 9 Courbes d'absorption 6135-6065 cm⁻¹.

Fig. 10 Courbes d'absorption 6065-5920 cm⁻¹.

Fig. 11 Courbes d'absorption 5340-5270 5190-5160 cm⁻¹.

Fig. 13 Courbes d'absorption 5090-5022 cm⁻¹.

Fig. 14 Courbes d'absorption 5022-4985 cm⁻¹,

Fig. 15 Courbes d'absorption 4985-4950 cm⁻¹.

Fig. 16 Courbes d'absorption 4950-4915 cm⁻¹.

Fig. 17 Courbes d'absorption 4915-4880 cm⁻¹.

Fig. 19 Courbes d'absorption 4845-4810 cm⁻¹.

Fig. 21 Courbes d'absorption 4740-4655 cm⁻¹.

Fig. 22 Courbes d'absorption 3765-3700 cm⁻¹.

Fig. 23 Courbes d'absorption 3700-3665 cm⁻¹.

Fig. 24 Courbes d'absorption 3665-3630 cm⁻¹.

Fig. 25 Courbes d'absorption 3630-3595 cm⁻¹.

Fig. 26 Courbes d'absorption 3595-3560 cm⁻¹.

Fig. 27 Courbes d'absorption 3560-3525 cm⁻¹.

Fig. 29 Courbes d'absorption 3490-3440 cm⁻¹.

TABLEAU 2

Nombres d'onde des bandes observées

$^{13}{\rm CO}_2~{ m V}_1+3~{ m V}_3$	1	21 23	8083,383	3,347 4,032	8050,581 8048,214	0,563 8,201
$v_0 = 8089,010$		25 27		4,642 5,175	5,758	5,764 3,253
Obs. Calc. Obs.	Calc.	29 31 33		5,635 6,021 6,331	0,684 8038,020	0,667 8,009 5,276
0 8089,783 9,771 2 8091,235 1,239 8087,446 4 2,630 2,627 5,760 6 3,955 3,942 4,022 8 5,202 5,179 2,225	5,774 4,042 2,234	35 37 39		6,566 6,726 6,811		2,468
10 6,347 6,341 0,328 12 7,423 7,427 8078,384	0,350 8,391		(11	13)d —	(01¹0) d	
14 8,421 8,437 6,360 16 9,373 9,371 4,261 18 8100,244 0,229 2,062	6,356 4,246 2,059		Obs.	Calc.	Obs. P(J	Calc.
1,008 1,010 8069,788 22 1,711 1,717 7,462 24 2,350 2,347 5,058 26 2,918 2,901 2,548 28 3,379 3,379 8059,985 30 3,808 3,780 7,346 32 4,142 4,107 4,641 34 4,358 1,835 36 4,533 8048,982 38 4,632 6,048 40 4,654 3,053 42 4,603 8039,950 44 4,476 6,754 46 3,552 48 0,248 50 8026,850° 52 3,408 54 8019,860°	9,797 7,460 5,047 2,559 9,996 7,356 4,644 1,756 9,990 6,052 3,038 9,950 6,790 3,553 0,242 6,856 3,398	10 12 14	8077,073 9,371 8081,373 3,061	3,117 4,516 5,841 7,093 8,271 9,374 0,404 1,361 2,244 3,052 3,787 4,447 5,034 5,547 5,649 6,640 6,856	8064,144 8058,267 6,146 3,998 8049,407 7,010 4,527 2,048 8039,365	9,297 7,639 5,909 4,104 2,226 0,275 8,249 6,151 3,979 1,734 4,557 2,019 9,407 6,720
$^{13}\text{CO}_2 \ \nu_1 + \nu_2 + \nu_3 - \nu_3$	12			$_{0} = 798$		
$v_0 = 8070,880$			R(J)		P(J)	
$(11^13)^c - (01^10)^c$,		Obs.	Calc.	Obs.	Calc.
Obs. Calc. Obs.	Calc.	0 2 4 6	7981,921° 3,419 4,834 6,184	1,934 3,416 4,833 6,187	7979,615 7,934 6,252	9,593 7,949 6,248
1 2,387 3 818 5 8075,226 5,176 7 6,459 9 7,690 7,667 8063,174 11 8,801 1,241 13 9,859 8059,270 15 8080,814 0,844 17 1,753 5,104 19 2,587 2,843	8,480 6,787 5,019 3,178 1,261 9,270 7,205 5,066 2,851	8 10 12 14 16 18 20 22 24 26	7,484 8,684 9,860 7990,965 2,007 2,973 3,882 4,726 5,487 6,207	7,478 8,703 9,864 0,963 1,998 2,967 3,872 4,714 5,490 6,201	4,476 2,637 0,735 7968,790 6,756 4,678 2,547 0,330 7958,035 5,697	4,480 2,649 0,753 8,793 6,772 4,686 2,535 0,332 8,044 5,702

Rem. Dans tous ces tableaux indiquant les nombres d'onde pour les différentes bandes, le signe " ajouté à certaines valeurs expérimentales signale les valeurs moins précises. En général, cela résulte de la superposition de la raie en question avec une raie d'une autre bande.

28 7996,858 6,855 7953,292 3,296 30 7,439 7,429 0,813 0,832 32 7,947 7,945 7948,283 8,291 34 8,410 8,397 5,686 5,692 36 8,782 8,782 3,015 3,029 38 9,112° 9,102 0,278 0,301 40 9,348° 9,355 7937,477 7,508 42 9,542 4,651° 4,649 44 9,663 1,722° 1,726 46 9,718 7928,692° 8,738 48 9,706 5,685	30 7619,815° 9,831 7572,761 2,768 32 7620,835 0,840 0,709° 0,693 34 1,838° 1,820 7568,583 8,587 36 2,777° 2,768 6,445 6,452 38 3,658° 3,687 4,268 4,287 40 4,527° 4,576 2,095 2,093 42 5,438 9,870 44 6,273
$^{12}\text{CO}_2 3\nu_1 + 2\nu_2 + \nu_3$	$v_0 = 7593,536$
v ₀ - 7734,302	R(J) P(J) Obs. Calc. Obs. Calc.
R(J) Obs. Calc. Obs. Calc. 0 7735,145 5,076 2 6,584 6,605 2,735 4 8,135 8,108 7731,152 1,142 6 9,591 9,585 7729,562 9,523 8 7741,038 1,037 7,879 7,880 10 2,446 2,462 6,220 6,209 12 3,850 3,862 4,528 4,514 14 5,248 5,237 2,790 2,794 16 6,596 6,585 1,050 1,048 18 7,922 7,907 7719,269 9,276 20 9,188 9,204 7,462 7,479 22 7750,477 0,474 5,642 5,656 24 1,712 1,720 3,827 3,809 26 2,943 2,939 1,948 1,936 28 4,123 4,132 0,030 0,038 30 5,277 5,299 7708,136 8,115 32 6,435 6,441 6,198 6,167 34 7,528 7,557 4,198 4,193 36 8,614 8,647 2,187 2,196 38 9,711 0,172 40 0,750 8,125	0 7594,342 4,307 2 5,823 5,822 7591,931° 1,966 4 7,306 7,300 0,374 0,359 6 8,752 8,740 7588,726 8,715 8 7600,147 0,144 7,030 7,035 10 1,507 1,510 5,317 5,316 12 2,841 2,839 3,564 3,562 14 4,130 4,132 1,769 1,771 16 5,385 5,388 7579,942 9,943 18 6,601 6,606 8,090 8,079 20 7,801 7,788 6,180 6,178 22 8,943 8,932 4,241 4,240 24 7610,049 0,040 2,259 2,267 26 1,103 1,110 0,250 0,256 28 2,140 2,142 7568,208 8,209 30 3,150 3,139 6,127 6,126 28 2,140 2,142 7568,208 8,209 30 3,150 3,139 6,127 6,126 32 4,108 4,100 4,006 4,007 34 5,020 5,022 1,851 1,852 36 5,906 5,908 7559,659 9,661 38 6,754 6,757 7,443 7,433 40 7,561 7,570 5,187 5,171 42 8,343 8,346 2,875 2,872 44 9,094 9,085 0,590° 0,538 46 9,807 9,788 7548,211° 8,169 48 7620,460° 0,454 50 1,107° 1,084
$v_0 = 7599,940$	$^{13}\mathrm{CO}_2~2~\mathrm{v}_1 + 4~\mathrm{v}_2 + \mathrm{v}_3$
R(J) $P(J)$	$v_0 = 7481,340$
Obs. Calc. Obs. Calc.	R(J) $P(J)$ Obs. Calc.
2 7602,203 2,229 8,370 4 3,712 3,710 7596,759 6,765 6 5,170° 5,156 5,116 5,125 8 6,579° 6,568 3,455 3,449 10 7,957 7,943 1,748 1,739 12 9,291 9,285 7589,999 9,993 14 7610,585 0,591 8,225 8,214 16 1,893° 1,863 6,406 6,400 18 3,121° 3,101 4,551 4,551 20 4,298° 4,305 2,652 2,669 22 5,475° 5,476 0,755 0,755 24 6,625° 6,613 7578,806 8,806 26 7,694° 7,718 6,806 6,825 28 8,831° 8,791 4,825 4,813	0 2,110 2 7483,652 3,624 4 5,059° 5,098 7478,178 8,160 6 6,557 6,535 6,574° 6,513 8 7,958 7,933 4,879 4,828 10 9,287 9,292 3,087 3,104 12 7490,631 0,614 1,375 1,342 14 1,909 1,899 7469,555 9,543 16 3,135 3,146 7,727 7,708 18 4,340 4,355 5,841 5,834 20 5,523 5,528 3,938 3,923 22 6,655 6,665 1,976 1,978 24 7,743 7,765 7459,997 9,995

26 7498,851° 8,830 7457,967 7,977 28 9,844 9,860 5,920° 5,925 30 7500,849 0,854 3,849 3,837 32 1,805 1,814 1,715° 1,716 34 2,742 7449,561° 9,561 36 3,643 3,636 7,379° 7,374 38 4,523 4,496 5,207° 5,155 40 5,294 5,339 2,904 42 6,128 0,623	30 6987,512 7,517 6941,072 1,067 32 8,869 7,877 6938,381 8,385 34 8,150 8,161 5,617 5,629 36 2,793 2,800 38 6929,890 9,897 40 6,920 42 3,873 3,873 444 0,750 0,751 46 6917,551 7,556 48 4,284 4,288 50 0,962 0,947 52 6907,542° 7,534 54 4,037 4,047 55 690 0,481 0,487 58 6896,855° 6,855 60 3,139 3,150 62
0 1,146 2 7462,698 2,678 4 4,197 4,186 7457,165 7,215 6 5,655 5,670 5,594 5,601 8 7,131 7,133 3,964 3,965 10 8,577 8,570 2,281 2,305 12 9,995 9,984 0,623 0,622 14 7471,376 1,375 7448,897 8,916 16 2,743 2,742 7,177 7,186 18 4,093 4,083 5,430 5,432 20 5,400 5,401 3,667 3,655 22 6,696 6,694 1,849 1,853 24 7,959 7,963 0,013 0,029 26 9,218 9,206 7438,167 8,179 28 7480,429 0,424 6,311 6,305 30 1,634 1,617 4,413 4,407 32 2,792 2,784 2,483 2,485 34 3,937 3,924 0,550° 0,536 36 5,000 5,039 7428,560 8,563 38 6,101 6,126 40 7,180° 7,187 4,540	$\begin{array}{c} ^{12}CO_2 \ \nu_2 + 3 \ \nu_3 - \nu_2 \\ \\ \nu_0 = 6935,046 \\ Q = 6934,986 \\ \\ (01^13)^c - (01^10)^c \\ \\ \hline R(J) \\ Obs. Calc. Obs. Calc. \\ \\ 1 \ 6936,527 \ 6,554 \\ 3 \ 7,985 \ 7,988 \\ 5 \ 9,346 \ 9,349 \ 6930,959 \ 0,956 \\ 7 \ 6940,636 \ 0,638 \ 6929,175 \ 9,194 \\ 9 \ 1,855 \ 1,852 \ 7,349 \ 7,357 \\ 11 \ 2,990 \ 2,994 \ 5,438 \ 5,448 \\ 13 \ 4,068 \ 4,062 \ 3,464 \ 3,465 \\ 15 \ 5,066 \ 5,057 \ 1,406 \ 1,409 \\ 17 \ 5,986^\circ 5,978 \ 6919,274 \ 9,281 \\ 19 \ 6,842 \ 6,827 \ 7,080 \ 7,079 \end{array}$
42 8,187° 8,219 44 9,190° 9,224 12CO ₂ 3 y ₃ y ₀ = 6972,490 R(J) P(J) Obs. Calc. Obs. Calc. 0 6973,247 3,252 2 4,718 4,721 6970,894 0,911 4 6,108 6,116 6969,263 9,258 6 7,428 7,436 7,522 7,531 8 8,672 8,684 5,719 5,731 10 9,856 9,856 3,858 3,856 12 6980,956 0,955 1,914 1,908 14 1,985 1,981 6959,884 9,887 16 2,938 2,932 7,791 7,792 18 3,813 3,809 5,622 5,623 10 4,622 4,613 3,380 3,381 22 5,356 5,341 1,059 1,065 24 5,997 5,997 6948,678 8,676 26 6,574 6,578 6,225 6,213 28 7,087 7,084 3,663 3,667	21 7,603 7,601 4,803 4,805 23 8,313 8,303 2,446 2,458 25 8,926 8,931 0,032 0,038 27 9,488 9,486 6907,528° 9,545 29 9,962 9,968 4,981 4,981 31 6950,388 0,377 2,345 2,343 35 0,973 6,845° 6,850 37 1,162 3,990 3,995 39 1,276 1,070 1,068 41 1,319 6888,072 8,068 43 1,287 5,017 4,996 44 1,319 6878,611 8,635 47 6878,611 8,635 5,347 (01¹3)d — (01¹0)d R(J) Obs. Calc. 2 6937,220° 7,284 6933,477 3,463 4 8,676 8,682 1,806 1,806 6 6940,005 0,009 8 1,258° 1,261 6928,262 8,271

10 6942,445 2,439 6926,398 6,394 12 3,546 4,434 4,444 14 4,572 4,577 2,417 2,421 16 5,536 5,533 0,315 0,322 18 6,419 6,417 6918,162 8,153 20 7,224 7,227 5,908 5,909 22 7,980 7,963 3,589 3,592 24 8,626 1,189 1,202 26 9,211 9,214 6908,730 8,738 28 9,721 9,729 6,194 6,201 30 6950,164 0,170 3,592 3,592 32 0,532° 0,537 0,904 0,909 34 0,830 6898,144 8,153 36 5,326 5,323 38 2,429 2,421 40 6889,426 9,446 42 6899,50 6,398 44 63,318 °3,276 46 0,115° 0,082 48 6,815	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} ^{13}\text{CO}_2 \ 3 \ \nu_3 \\ \\ \nu_0 = 6780,\!140 \\ \hline \text{R(J)} \\ \text{Obs.} \text{Calc.} \text{Obs.} \text{Calc.} \\ 0 \ 6780,\!902 0,\!903 \\ 2 \ 2,\!378 2,\!376 6,\!715,\!556 8,\!562 \\ 4 \ 3,\!773 3,\!776 6,\!915 6,\!912 \\ 6 \ 5,\!106 5,\!107 5,\!192 5,\!191 \\ 8 \ 6,\!357 6,\!366 3,\!409 3,\!400 \\ 10 \ 7,\!556 7,\!554 1,\!536 1,\!537 \\ 12 \ 8,\!672 8,\!671 6769,\!610 9,\!604 \\ \end{array}$	23 8,514 8,515 2,634 25 9,161 9,178 0,238 0,247 27 9,779 9,771 6717,787 7,789 29 6760,290 0,293 5,262 5,263 31 0,744 0,744 2,656° 2,666 33 1,113 6709,996 9,998 35 1,443 1,432 7,246 7,250 37 1,672 4,446° 4,453 39 1,838 1,570 1,576 41 1,934 6698,617 8,627 43 1,959 5,619 5,611 45 1,913 2,536 2,523 47 1,796 6689,353° 9,365 49 1,607 6,147° 6,138 51 2,781° 2,840
14 9,716 9,717 7,599 7,601 16 6790,676 0,691 5,531 5,525 18 1,597 1,595 3,380 3,380 20 2,430 2,426 1,172 1,163 22 3,183 3,187 6758,865 8,876 24 3,878 3,876 6,520 6,517 26 4,499 4,494 4,092 4,089 28 5,047 5,041 1,589 1,589 30 5,521 5,515 6749,009 9,019 32 5,926 5,919 6,377 6,378 34 6,262 6,250 3,658 3,667 36 6,534° 6,510 0,888 0,883 38 6,697 6738,023 8,030 40 6,813 5,099 5,105 42 6,858 2,102 2,110 44 6,830 6729,037 9,045 46<	(01 ¹ 3) ^d — (01 ¹ 0) ^d R(J) Obs. Calc. Obs. Calc. 2 6747,291 7,287 4 8,707 8,693 6741,809 1,809 6 6750,029 0,028 0,083 0,086 8 1,303 1,292 6738,269 8,291 10 2,486 2,485 6,424 6,425 12 3,608 3,607 4,492 4,489 14 4,657 4,658 2,477 2,482 16 5,640 5,639 0,397 0,405 18 6,548 6728,258 8,257 20 7,391 7,386 5,989 6,038 22 8,149 8,154 3,747 3,750 24 8,849 1,400 1,392 26 9,476 9,474 6718,962 8,959 28 6760,032 0,028 6,459 6,459 30 0,516 0,510 3,887 3,888 32 0,920 1,247 1,245 34 1,261 6708,534 8,532 36 1,529 5,712° 5,751 38 1,726 2,895 2,893 40 1,852 6699,975 9,974 42 1,905 6,989 6,980 44 1,887 3,911 3,915

46 6761,798 6690,752° 0,780	$^{12}{ m CO}_2$ 3 ${ m v}_1+{ m v}_3$
48 1,637 6687,574 7,575 50 4,306 4,298	$v_0 = 6503,050$
52 54 6677,546 7,536	R(J) P(J)
	Obs. Calc. Obs. Calc.
$^{12}\text{CO}_2$ 3 $\nu_1 + \nu_2 + \nu_3 - \nu_2$	0 6503,835 3,826
$ \begin{array}{r} \nu_0 = 6536,430 \\ Q = 6536,361 \end{array} $	2 5,371 5,365 6501,490 1,485 4 6,881 6,885 6499,909 9,902 6 8,387 8,388 8,294 8,300
(31 ¹ 1) ^c — (01 ¹ 0) ^c	8 9,870 9,874 6,682 6,683 10 6511,339 1,340 5,045 5,046
P(J) Obs. Calc. Obs. $P(J)$	12 2,794 2,790 3,403 3,392 14 4,221 4,222 1,694° 1,722 16 5,639 5,637 0,037 0,033
1 7,975 3 6539,512° 9,495 5 6541,011 0,990 7 2,481 2,463 6530,806 0,835 9 3,907 3,910 9,182 11 5,329 5,334 7,506 13 6,741 6,733 6525,767° 5,805 15 8,130° 8,107 4,080 17 9,464 9,458 2,331 19 6550,738° 0,785 0,559 21 2,087 8,763 23 3,321° 3,366 25 4,638° 4,620 6515,138 5,101 27 5,850 3,234 29 7,074 7,057 31 8,238 8,240 6509,412° 9,432 33 9,348° 9,398 7,513° 7,496 35 6560,561° 0,533 37 1,628° 1,645 3,555 39 2,741° 2,732 1,551 41 3,797 9,524	18 7,035 7,034 6488,327 8,328 20 8,419 8,415 8,613 6,606 22 9,795 9,777 4,871 4,867 24 6521,132 1,125 3,121 3,112 26 2,441 2,454 1,348 1,341 28 3,776 3,767 6479,551 9,553 30 5,062 5,065 7,746 7,750 32 6,347 6,347 5,922 5,933 34 7,606 7,612 4,085 4,099 40 1,332 1,322 6468,502 8,513 42 2,534 2,529 646 8,502 8,513 42 2,534 2,529 646 8,502 8,513 42 2,534 2,529 646 8,502 8,513 42 2,534 2,529 646 8,502 8,513 42 2,534 2,529 646 8,502 8,513 6,098 6,070 6,887 0,878 50 7,270° 7,224 6458,934 8,939 50 7,270° 7,224 6458,934 8,939 50 7,270° 7,224 6458,934 8,939 50 7,270° 7,224 6458,934 8,939 5,028
,	$v_0 = 6397,505$ $(31^11)^c - (01^10)^c$
$(31^11)^d - (01^10)^d$	R(J) P(J)
R(J) P(J) Obs. Calc. Obs. Calc.	Obs. Calc. Obs. Calc.
2 8,753 4,861 3,275 6 1,796 1,789 6531,680° 1,671 8 3,264 3,282 0,051 10 4,750 4,757 6528,439 8,415 12 6,213 6,218 6,765° 6,762 14 7,658 7,660 5,093 16 9,105 9,084 3,407° 3,405 18 6550,473° 0,494 1,694 1,703 20 1,918° 1,887 9,984 22 3,321° 3,263 24 4,638° 4,625 6516,531 6,502 26 5,969 4,758° 4,737 28 7,314 7,297 2,956 30 8,623° 8,612 1,160 32 9,910 34 6561,207 1,194 6507,513° 7,526 36 2,417° 2,462 5,687 38 3,717 3,835 4,956 1,969	1 6399,008° 9,045 3 6400,552 0,554 5 2,046 2,034 6393,565° 3,523 7 3,486 3,484 1,889 1,877 9 4,906 4,904 11 6,303 6,293 6388,504 8,498 13 7,661 7,652 15 9,010 8,982 4,986 4,986 17 6410,285 0,281 3,204 19 1,562 1,551 1,375 1,379 21 2,801° 2,791 23 4,009° 4,002 7,645 25 5,169° 5,182 5,734 27 6,374° 6,334 3,793 29 7,503° 7,456 31 8,586° 8,550 33 9,610 9,614 35 6420,656 0,648 37 1,639 1,657 39 2,672 2,635 41 3,585

$(31^11)^d - (01^10)^d$	$^{12}\mathrm{CO}_{2}2\nu_{1}+3\nu_{2}+\nu_{3}-\nu_{2}$
R(J) Obs. Calc. Obs. Calc.	$v_0 = 6356,245$
	$(23^{1}1)^{c} - (01^{1}0)^{c}$
2 6399,883° 9,817 5,934 4 6401,337 1,328 6394,343 4,339 6 2,842 2,816 2,732 2,721 8 4,268 4,281 1,079	R(J) Obs. Calc. Obs. $P(J)$ Calc.
10 5,737 5,721 6389,406 9,414 12 7,148 7,137 7,751° 7,725 14 8,543 8,530 5,993° 6,012 16 9,905 9,900 4,282 4,276 18 6411,258 1,245 20 2,609 2,566 0,733 0,735 22 3,924° 3,865 24 5,169° 5,138 7,101 26 6,374° 6,388 5,248 28 7,621° 7,615 30 8,800° 8,818 32 9,991 9,997 34 6421,172 1,153 36 2,323° 2,284 38 3,393 40 4,477	1 7,785 3 6359,286 9,293 6353,893 3,879 5 6360,769 0,770 2,273 2,261 7 0,630 0,615 9 3,632 6348,957 8,936 11 5,017 7,240 7,228 13 6,355 6,371 5,490 5,488 15 7,696 7,693 3,731 3,718 17 8,991 8,984 1,918 1,917 19 0,244 0,082 0,085 21 1,473 6338,212 9,222 23 6,078 0,472 0,468 27 4,996° 4,973 2,452 29 6,078 0,472 0,468 31 7,141° 7,151 6328,465 8,453 33 8,216° 8,192 6,415° 6,407
$^{13}\text{CO}_2 3\nu_1 + \nu_3$	35 9,208° 9,203 4,331 37 6380,168 0,182 2,208° 2,225 39 1,133° 1,129 0,084° 0,088 31 1,139° 1,129 0,084° 0,088
$v_0 = 6363,580$	41 2,046 6317,923° 7,921 43 2,955 2,931 5,724 5,723 45 3,784 3,496
R(J) P(J) Obs. Calc.	47 4,627° 4,606 1,237 49 5,431° 5,396 8,949
0 6364,376 4,354 2 5,880° 5,883 6362,010 2,013 4 7,342° 7,386 0,420° 0,419 6 8,864 8,864 6358,776° 8,801 8 6370,359° 0,317 7,226° 7,157 10 1,734 1,743 5,491 5,488 12 3,142 3,144 3,804 3,793	51 6,155 (23 ¹ 1) ^d — (01 ¹ 0) ^d R(J) P(J) Obs. Calc. Obs. Calc.
14 4,509 4,521 2,081 2,073 16 5,868 5,870 0,329 0,328 18 7,193 7,195 6348,557 8,558 20 8,499 8,495 6,767 6,763 22 9,768 9,771 4,928 4,945 24 6381,027 1,021 3,050° 3,101 26 2,246 2,247 1,233 28 3,447 3,448 6339,359 9,342 30 4,617 4,625 7,436 7,427 32 5,781 5,778 5,479 5,487 34 6,903 6,908 3,522 3,527 36 8,005 8,013 1,527 1,540 38 9,090 9,094 6329,518 9,532 40 6390,160 0,153 7,500 7,502	2 8,556 4,674 4 0,064 6 6361,557 1,547 8 3,000 3,006 6349,828 9,811 10 4,447 4,438 8,158 8,139 12 5,849 6,438° 6,443 14 7,232 4,724 16 8,585 8,588 2,977 18 9,925 9,922 20 1,233 6339,391 9,414 22 2,515 7,604 7,595 24 6373,807° 3,775 5,762° 5,754 26 4,996° 5,009 3,888 3,887 28 6,219 1,984 1,996 30 7,392 7,408 0,101 0,082 32 8,567 6328,164 8,144 34 9,688 9,704 6,194° 6,183 36 6380,838° 0,817 4,238° 4,197 40 40 40 6,194° 6,183 36 6380,838° 0,817 4,238° 4,197 40 40 2,973 42 4,015 6318,109° 8,106 44 5,023° 5,035

46 6386,004° 6,031 6313,933 48 7,004 1,813 50 7,954 1,813 $^{12}CO_2 \ 2 \ \nu_1 + 2 \ \nu_2 + \nu_3$ $\nu_0 = 6347,810$	24 6286,708 6,695 26 4,643 4,660 28 2,590 2,589 30 0,479 32 6278,343 8,331 34 6,147 6,148 36 3,946 3,927 38 1,669
R(I) P(I)	40 6269,416 9,375
Obs. Calc. Obs. Calc.	$^{13}{ m CO}_2$ 2 ${ m v}_1$ $+$ 3 ${ m v}_2$ $+$ ${ m v}_3$ $ { m v}_2$
0 6348,586 8,583 2 6350,115 0,106 6346,243 6,242	$v_0 = 6243,540$
4 1,595 1,599 4,653 4,643 6 3,064 3,062 3,021 3,014	$(23^{1}1)^{\circ} - (01^{1}0)^{\circ}$
8 4,491 4,495 1,369 1,357 10 5,899 5,897 6339,663 9,667 12 7,265 7,270 7,946 7,949 14 8,610 8,613 6,138 6,202	R(J) Obs. $Calc.$ Obs. $Calc.$
14 8,610 8,613 6,188 6,202 16 9,932 9,926 4,408 4,424 18 6361,212 1,209 2,604 2,617 20 2,460 2,463 0,780 0,781 22 3,678 3,686 6328,933 8,915 24 4,880 4,881 7,014 7,021 26 6,039 6,045 5,099 5,097 28 7,181 3,149 3,144 30 8,292 8,288 1,167 1,164 32 9,365 9,367 6319,153 9,156 34 6370,403 0,416 7,111 7,119 36 1,437 1,438 5,052 5,055 38 2,440 2,431 2,962 2,963 40 3,396 3,397 0,841 0,845 42 4,334 4,334 4,618 6,526 46 6,137 6,128 4,3	1 5,077 3 6246,588 6,581 5 8,026 8,052 7 9,489 7,882 7,895 9 6250,862 9,893 6,167 6,208 11 2,266 2,262 4,487 13 3,598 2,723 2,731 15 4,901 0,950 0,944 17 6,169 6229,121 9,123 19 7,403 7,276 7,267 21 8,604 5,368 5,381 23 9,771 3,454 3,458 23 9,771 3,454 3,458 23 9,771 3,454 3,458 23 9,771 3,454 3,458 23 9,771 3,454 3,458 24 6261,9849 2,001 6219,4919 9,514 29 3,070 3,065 7,489 7,494 31 4,090 4,095 5,429 5,439 33 5,104 5,090 3,332 3,350 35 6,037 6,051 3,76,868 41 8,724
60 1,582° 1,583 6288,225° 8,237 62 2,216° 2,262 5,879° 5,842 64 2,919 3,409° 3,426	$(23^{1}1)^{d} - (01^{1}0)^{d}$
$\begin{array}{c} 66 & 3,550 & 0,987 \\ & ^{12}\text{CO}_2 \ 2 \ \nu_1 + 4 \ \nu_2 + \nu_3 - 2 \ \nu_2 \end{array}$	R(J) $P(J)$ Obs. Calc. Calc.
$\begin{array}{c} \text{CO}_2 \ 2 \ v_1 + 4 \ v_2 + v_3 = 2 \ v_2 \\ \\ v_0 = 6308,153 \\ \hline \\ \text{Obs.} \text{Calc.} \\ \\ 2 \\ 4 \\ 4 \\ 4,931 \\ 6 \\ 3,282 \\ 8 \\ 1,593 \\ 10 \\ 9,865 \\ 12 \\ 6298,082 \\ 8,099 \\ 14 \\ 6,278 \\ 6,294 \\ 16 \\ 4,475 \\ 4,451 \\ 18 \\ 2,595 \\ 2,569 \\ 20 \\ 0,649 \\ 22 \\ 6288,701 \\ 8,691 \\ \end{array}$	2 5,845 6241,968 4 7,346 0,367 6 8,820 6238,739 8 6250,251 0,265 7,083 10 1,682 5,398 12 3,069 3,070 3,686 14 4,429 4,430 1,945 16 5,760 5,763 0,177 18 7,091 7,068 6228,381 20 8,346 8,341 6,556 22 9,589 4,705 24 0,807 2,825 26 6261,984° 1,997 0,917 28 3,165 3,159 6218,982 30 4,316 4,293 7,019 32 5,397 5,028 34 6,474 3,010

36 6267,542 7,522 6210,964 38 8,543 8,542 6208,891 40 9,533 42 6270,480 0,495 $v_0 = 6241,930$ R(J) P(J) Obs. Calc.	20 6242,619 2,633 6210,941 0,937 22 3,867 3,872 6209,082 9,085 24 5,087 5,083 7,199 7,207 26 6,258 6,263 5,302 5,299 28 7,405 7,413 3,362 3,362 30 8,530 8,534 1,400 1,396 32 9,624 9,626 6199,403 9,402 34 6250,686 0,686 7,364° 7,378 36 1,715 1,717 5,323 5,325 38 2,702 2,716 3,244 3,242 40 3,682 3,685 1,128 1,130 42 4,611 4,622 6188,982 8,987
0 6242,648° 2,702 2 4,226° 4,219 6240,350 0,360 4 5,714 5,701 6238,744 8,755 6 7,168° 7,148 7,142 7,116 8 8,552 8,561 5,455 5,441 10 9,932 9,936 3,728 3,732 12 6251,283 1,278 1,980 1,986 14 2,603 2,585 0,202° 0,209 16 3,858 3,858 6228,405 8,394 18 5,095 5,094 6,550 6,546	44 5,528 5,528 6,822 6,814 46 6,390 6,403 4,629° 4,612 48 7,249 7,245 2,392 2,379 50 9,055 8,054 0,088° 0,114 52 8,822 8,832 6177,809 7,819 54 9,597 9,576 5,501 5,492 56 6260,280 0,286 3,136 3,134 58 0,939° 0,963 0,724 0,743 60 1,607 8,321 62 2,215 9,866
20 6,296 6,296 4,676 4,662 22 7,465 7,465 2,750 2,746 24 8,590 8,597 0,804 0,795	$^{12}{ m CO}_2~{ m v}_1+5~{ m v}_2+{ m v}_3-{ m v}_2$
26 9,696 9,695 6218,796 8,809 28 6260,769 0,759 6,790 6,790 30 1,797 1,787 4,719 4,736	$\begin{array}{c} v_0 = 6196,123 \\ Q = 6196,099 \\ (15^11)^c - (01^10)^c \end{array}$
34 3,747° 3,744 0,524 0,531 36 4,686 4,670 6208,370 8,376	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
38 5,569 5,563 6,187 6,189 40 6,432 6,422 3,965 3,969 42 7,259 7,248 1,710 1,718 44 8,047° 8,039 6199,416 9,432 46 8,800 8,798 7,127 7,117 48 9,535 9,523 4,763 4,768 50 6270,220 0,217 2,370 2,386 50 6270,220 0,217 2,370 2,386 51 1,505 1,504 7,533 7,530 52 0,888 0,876 6189,960 9,975 53 1,505 1,504 7,533 7,530 54 1,505 1,504 7,533 7,530 55 2,640 2,663 2,099 5,035 5,056 58 2,640 2,663 2,550 60 3,226 3,194 0,014 62 3,700 3,695 64 4,177 4,164	1 7,664 3 9,175 6193,753 3,758 5 6200,653 0,655 2,148 2,143 7 2,108 2,107 0,500 0,500 9 3,528 11 4,921 4,921 6187,126 7,124 13 6,276 6,284 5,403 5,392 15 7,615 7,616 3,637 3,631 17 8,916 1,841 1,840 19 6210,181 0,190 21 1,412 1,432 6178,171 8,168 23 2,644 6,291 6,289 25 3,803° 3,826 4,388 4,379 27 4,991 4,976 2,438 2,440 29 6,097 0,462 0,471
$^{12}{ m CO}_2{ m v}_1+4{ m v}_2+{ m v}_3$	31 7,190 7,186 6168,455 8,472 33 8,244 6,431° 6,442
$v_0 = 6227,884$	35 9,300° 9,272 4,356° 4,383 37 6220,283° 0,268 2,299° 2,294 39 1,232 0,161° 0,174
Obs. Calc. Obs. Calc.	41 2,166 6158,038° 8,024 43 3,032° 3,067 5,870° 5,843
0 6228,654 8,657 2 6230,182 0,183 6226,314 6,316 4 1,684 1,681 4,704 4,720	45 3,936 3,663° 3,632 47 4,773 1,389 49 5,578 9,116
6 3,159 3,149 3,088 3,096 8 4,596 4,590 1,440 1,444 10 6,004 6,002 6219,759 9,762	$(15^11)^d - (01^10)^d$
12 7 393 7 385 8 047 8 054	R(J) P(J) Obs. Calc.
16 6240,073 0.067 4,555 4,552	2 6198,419 8,437 6194,568 4,553

4 6199,951 9,948 6192,963° 2,959 6 1,439 1,338° 1,341 8 6202,919 2,906 6189,707 9,701 10 4,340 4,348 8,052 8,039 12 5,754 5,770 6,365 6,353 14 7,166 16 8,543 8,537 2,924 2,911 18 9,882 9,887 1,158 1,156 20 6211,188° 1,211 6179,379 9,379 22 2,512 7,583 7,575 24 3,803° 3,790 5,747 5,751 26 5,001° 5,041 3,906 3,902 28 6,269 2,019 2,028 30 7,461 7,472 0,125 0,132 31 8,640 8,650 6168,251 8,211 34 9,802 6,269° 6,266 36 6220,888 0,928 4,348° 4,295 38 2,029 2,299° 2,301 40 3,104 0,241° 0,281	$\begin{array}{c} ^{13}\mathrm{CO_2} \ \nu_1 + 5 \ \nu_2 + \nu_3 - \nu_2 \\ \nu_0 = 6088, 160 \\ (15^{11})^{\mathrm{c}} - (01^{10})^{\mathrm{c}} \\ \hline R(J) & P(J) \\ \mathrm{Obs.} & \mathrm{Calc.} & \mathrm{Obs.} & \mathrm{Calc.} \\ \\ 1 & 9,703 \\ 3 & 6091,259^{\circ} & 1,219 \\ 5 & 2,716 & 2,711 \\ 7 & 4,166 & 4,175 & 8082,575 & 2,554 \\ 9 & 5,614 & 0,882 & 0,894 \\ 11 & 7,034 & 7,026 & 6079,199 & 9,208 \\ 13 & 8,409 & 8,411 & 7,486 & 7,495 \\ 15 & 9,771 & 9,771 & 5,752 & 5,757 \\ 17 & 1,103 & 3,957^{\circ} & 3,993 \\ 19 & 6102,421 & 2,409 & 2,197^{\circ} & 2,201 \\ 21 & 3,679 & 3,688 & 0,380 & 0,380 \\ \hline \end{array}$
42 4,172° 4,152 6158,248 8,237 44 5,173 6,184° 6,167 46 6,167 4,071° 4,071 48 7,134 1,949	21 3,679 3,688 0,380 0,385 23 4,942 6068,541 8,542 25 6,187° 6,167 6,671 6,674 27 7,427° 7,366 4,778 29 8,515 8,536 2,882° 2,858 31 9,682 0,912° 0,909 33 6110,795 0,799 6058,920° 8,936 35 1,887 6,953 6,935 37 2,949 4,908
$v_0 = 6119,560$ R(J) P(J)	39 4,013 3,984 2,854
Obs. Calc. Obs. Calc.	$(15^11)^d - (01^10)^d$
0 6120,342 0,335 2 1,871 1,870 6117,990 7,994	R(J) $Calc.$ $P(J)$ $Calc.$
4 3,375 3,383 6,411 6,406 6 4,865 4,875 4,796 4,798 8 6,339 6,346 3,163 3,168 10 7,787 7,794 1,506 1,517 12 9,213 9,222 6109,830 9,844	2 0,480 · 6,590 4 2,002 6084,975 5,002 6 6093,516 3,507 3,384 3,395 8 4,991 4,992 1,773 1,770
14 6130,623 0,629 8,145 8,151 16 2,001 2,012 6,433 6,436 18 3,371 3,374 4,707 4,700 20 4,712 4,713 2,954 2,942 22 6,025 6,031 1,172 1,163 24 7,323 7,325 6099,367 9,361 26 8,586 8,597 7,540 7,537 28 9,831 9,845 5,686 5,692 30 6141,061 1,070 3,833 3,824 32 2,269 2,271 1,933 1,932 34 3,450 3,449 0,007 0,018 36 4,601 4,601 6088,073 8,081 38 5,719 5,730 6,112 6,120 40 6,821 6,831 4,133 4,136 42 7,891 7,909 2,125 2,127 44 8,956 8,961 0,095 0,095	8 4,991 4,992 1,773 1,770 10 6,454 6,458 12 7,900 7,905 6078,449 8,462 14 9,334 6,757 6,780 16 6100,758 0,743 5,060 5,081 18 2,151 2,133 3,347 3,361 20 3,500 3,502 22 4,854 6069,853 9,866 24 6,187 6,184 8,090 26 7,494 4,493 4,479 30 0,054 2,635° 2,644 32 1,302 0,790° 0,789 34 6112,516° 2,530 6058,920° 8,915 36 3,732 3,736 7,001 7,020 38 4,921 5,105 40 6,084 3,169
14 6130,623 0,629 8,145 8,151 16 2,001 2,012 6,433 6,436 18 3,371 3,374 4,707 4,700 20 4,712 4,713 2,954 2,942 22 6,025 6,031 1,172 1,163 24 7,323 7,325 6099,367 9,361 26 8,586 8,597 7,540 7,537 28 9,831 9,845 5,686 5,692 30 6141,061 1,070 3,833 3,824 32 2,269 2,271 1,933 1,932 34 3,450 3,449 0,007 0,018 36 4,601 4,601 6088,073 8,081 38 5,719 5,730 6,112 6,120 40 6,821 6,831 4,133 4,136 42 7,891 7,909 2,125 2,127 44 8,956 8,961 0,095 0,095	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14 6130,623 0,629 8,145 8,151 16 2,001 2,012 6,433 6,436 18 3,371 3,374 4,707 4,700 20 4,712 4,713 2,954 2,942 22 6,025 6,031 1,172 1,163 24 7,323 7,325 6099,367 9,361 26 8,586 8,597 7,540 7,537 28 9,831 9,845 5,686 5,692 30 6141,061 1,070 3,833 3,824 32 2,269 2,271 1,933 1,932 34 3,450 3,449 0,007 0,018 36 4,601 4,601 6088,073 8,081 38 5,719 5,730 6,112 6,120 40 6,821 6,831 4,133° 4,136 42 7,891 7,909 2,125 2,127 44 8,956 8,961 0,095 0,095 46 9,981 9,986 6078,037 8,038 48 6150,984 0,985	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
14 6130,623 0,629 8,145 8,151 16 2,001 2,012 6,433 6,436 18 3,371 3,374 4,707 4,700 20 4,712 4,713 2,954 2,942 22 6,025 6,031 1,172 1,163 24 7,323 7,325 6099,367 9,361 26 8,586 8,597 7,540 7,537 28 9,831 9,845 5,686 5,692 30 6141,061 1,070 3,833 3,824 32 2,269 2,271 1,933 1,932 34 3,450 3,449 0,007 0,018 36 4,601 4,601 6088,073 8,081 38 5,719 5,730 6,112 6,120 40 6,821 6,831 4,133° 4,136 42 7,891 7,909 2,125 2,127 44 8,956 8,961 0,095 0,095 46 9,981 9,986 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4 6079,779 9,788 6072,792 2,789 6 6081,310 1,314 1,200 1,203 8 2,826 2,830 6069,602 9,609 10 4,331 4,333 8,004 8,002 12 5,827 5,825 6,380 6,385	$^{12}\text{CO}_2 \ 7 \ \nu_2 + \nu_3 - \nu_2 \ (*)$ $\nu_0 = 6020,750$ $(07^11)^c - (01^10)^c$
10 4,331 4,333 8,004 8,002 12 5,827 5,825 6,380 6,385 14 7,309 7,307 4,758 4,757 16 8,778 8,777 3,116 3,118 18 6090,235 0,235 1,464 1,468	R(J) P(J) Obs. Calc. Obs. Calc.
20	1 2,300 3,832 8,393 5 6025,389 5,349 7 6,868 6,847 6015,188 5,194 9 8,311 8,329 3,551 3,569 11 9,803 9,796 1,9600 1,926 13 6031,188° 1,243 0,282 0,267 15 2,675 2,673 6008,599 8,590 17 4,109 4,086 6,900 6,897 19 5,464 5,480 5,192 5,187 21 6,857 3,426 3,458 23 8,212° 8,216 1,733 1,714 25 9,555 9,556 5999,959 9,951 27 0,878 8,095° 8,170 29 6042,219 2,181 6,354° 6,373 31 3,452 3,464 4,515° 4,556 33 4,783 4,728 35 5,972 37 7,248 7,196 39 8,379 8,400
$^{13}\text{CO}_2$ 6 $\text{V}_2 + \text{V}_3$	39 8,379 8,400
$v_{o} = 5951.530$	(0.511) d (0.110) d
$V_0 = 5951,530$ $R(J) P(J)$	$(07^{1}1)^{d} - (01^{1}0)^{d}$
$V_0 = 5951,530$ $R(J)$ Obs. Calc. Obs. Calc.	(07 ¹ 1) ^d — (01 ¹ 0) ^d R(J) Obs. Calc. Obs. Calc.
2 5953,860 3,865 5949,978° 9,968 4 5,420 5,415 8,425 8,401 6 6,970 6,961 6,820 6,830 8 8,496 8,501 5,269 5,254 10 5960,027 0,036 3,688 3,672 12 1,575 1,566 2,084 2,086 14 3,095 3,090 0,488 0,495 16 4,596 4,608 5938,872 8,899 18 6,120 6,119 7,286 7,296 20 7,627 7,624 5,693 5,687 22 9,124 9,122 4,078 4,074 24 5970,616 0,612 2,446 2,452 26 2,110 2,093 0,813 0,824 28 3,580 3,566 5929,185 9,188 30 5,035 5,028 7,539 7,543 32 6,469 6,481 5,884 5,890 34 7,917 7,924 4,231 4,228 36 9,356 9,354 2,558 2,556	$ \begin{array}{c} (07^11)^{\rm d} \leftarrow (01^10)^{\rm d} \\ \hline \\ R(J) \\ Obs. \\ Calc. \\ \hline \\ 2 \\ 3,085 \\ 4 \\ 4,631 \\ 66026,153 \\ 6,170 \\ 8 \\ 7,692 \\ 7,699 \\ 8,7,692 \\ 7,699 \\ 6014,438 \\ 4,433 \\ 10 \\ 9,227 \\ 9,219 \\ 2,241 \\ 2,236 \\ 6009,587 \\ 9,608 \\ 16 \\ 3,732 \\ 3,728 \\ 7,966 \\ 7,982 \\ 18 \\ 5,214 \\ 6,327 \\ 6,348 \\ 20 \\ 6,689 \\ 4,722 \\ 4,706 \\ 22 \\ 8,212° \\ 8,154 \\ 3,054 $
2 5953,860 3,865 5949,978° 9,968 4 5,420 5,415 8,425 8,401 6 6,970 6,961 6,820 6,830 8 8,496 8,501 5,269 5,254 10 5960,027 0,036 3,688 3,672 12 1,575 1,566 2,084 2,086 14 3,095 3,090 0,488 0,495 16 4,596 4,608 5938,872 8,899 18 6,120 6,119 7,286 7,296 20 7,627 7,624 5,693 5,687 22 9,124 9,122 4,078 4,074 24 5970,616 0,612 2,446 2,452 26 2,110 2,093 0,813 0,824	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2 5953,860 3,865 5949,978° 9,968 4 5,420 5,415 8,425 8,401 6 6,970 6,961 6,820 6,830 8 8,496 8,501 5,269 5,254 10 5960,027 0,036 3,688 3,672 12 1,575 1,566 2,084 2,086 14 3,095 3,090 0,488 0,495 16 4,596 4,608 5938,872 8,899 18 6,120 6,119 7,286 7,296 20 7,627 7,624 5,693 5,687 22 9,124 9,122 4,078 4,074 24 5970,616 0,612 2,446 2,452 26 2,110 2,093 0,813 0,824 28 3,580 3,566 5929,185 9,188 30 5,035 5,028 7,539 7,543 32 6,469 6,481 5,884 5,890 34 7,917 7,924 4,231 4,228 36 9,356 9,354 2,558 2,556	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^(*) Les valeurs expérimentales de cette bande sont moins précises car la bande est très faible et n'a été obtenue que sur un enregistrement.

2 5317,969 7,970 4 9,430 9,428 6 5320,836 0,841 8 2,211 2,210 5309,127° 9,136 10 3,530 3,531 7,388° 7,382 12 4,810 4,808 5,600 5,583 14 6,035 6,040 3,739 3,740 16 7,253° 7,226 1,850 1,851 18 8,360 8,366 5299,924 9,917 20 9,461 9,461 7,941 7,938 22 5330,505 0,509 5,912 5,913 24 1,513 1,513 3,846 3,844 26 2,463 2,470 1,729 1,729 28 3,378 3,382 5289,576 9,569 30 4,242 4,248 7,365 7,365 32 5,073 5,069 5,129 5,116 34 5,852 5,843 2,823 2,821 36 6,566 5,572 0,488 0,482 38 7,256 7,255 5278,092 8,097 40 7,878° 7,893 5,678 5,669 42 8,491° 8,483 3,201° 3,195	$ \begin{array}{c} 1^{12}\text{CO}_{2} \ 2 \ v_{2}^{2} + 2 \ v_{3} - v_{2}^{1} \\ v_{0} = 5291,12 \\ Q(J) \\ Calc. Obs. \\ 2 5291,086 \\ 3 1,059 \\ 4 1,007 \\ 5 0,968 0,975 \\ 6 0,882 \\ 7 0,837 \\ 8 0,712 0,685 \\ 9 0,665 \\ 10 0,498 \\ 11 0,453 \\ 12 0,237 \\ 13 0,201 \\ 14 5,0003 1 0,0000 \\ 14 6,0003 1 0,0000$
46 9,498° 9,528 8,112 48 9,960° 9,982 5,504 50 Obs. Calc. 6 5315,482 5,483 8 5,332 5,331 10 5,141 5,138 12 3,905 4,905 14 4,632 4,630 16 4,318 4,316 18 3,967 3,960 20 3,569 3,565 22 3,131 3,128 24 2,645 2,649 26 2,128 2,131	14 5289,931 9,890° 15 9,908 16 9,580 17 9,575 18 9,184 9,220° 19 9,201 20 8,743 8,800 21 8,787 22 8,257 8,270 23 8,332 24 7,724 7,790 25 7,837 26 7,147 27 7,302 28 6,524 29 6,726 30 5,856
28 1,564 1,570 30 0,949 0,970 32 0,323 0,328 34 5309,645 9,645 36 8,930 8,920 38 8,150 8,153 40 7,346 42 6,500 6,498 44 5,606 46 4,674 4,674 48 3,699 50 2,681 2,682	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

⁽¹) Ces valeurs sont calculées d'après les constantes ν_0 , B et D obtenues a priori en fonction de l'ensemble des constantes de la molécule.

28 5164,597 5186,410 5142,577 30 4,015 7,293 0,389 32 3,394 8,132 5138,146 34 2,733 8,927 5,882 36 2,033 9,675 3,564 38 1,294 5190,380 1,195 40 0,515 1,041 5128,788	37 5164,692 4,680 39 5,778 5,779 41 6,857 6,851 43 7,900 $^{12}CO_2 2 v_1 + v_2 + v_3 - v_2$
$^{12}\text{CO}_2 \ 2 \ \nu_1 + 2 \ \nu_2^2 + \nu_3 - 2 \ \nu_2^2$	$ \begin{array}{r} \nu_0 = 5123,170 \\ Q = 5123,140 \end{array} $
$v_0 = 5139,400$	$(21^{1}1)^{c} - (01^{1}0)^{c}$
(22°21)° — (02°20)°	R(J) Obs. $P(J)$ Calc.
R(J) Obs. Calc. 2 1,714 4 5143,215 3,226 6 4,713 4,608 8 6,177 2,964 10 7,609 7,614 12 9,028 5129,595 9,600 14 5150,437° 0,418 16 1,782 6,139 18 3,121 4,379 4,372 20 4,436 4,437 22 5,754° 5,727 0,766 24 6,976° 6,992 8,926 26 8,269° 8,232 7,061 28 9,457 9,446 5,173 30 5160,651 0,636 32 1,807 1,800 34 2,973 2,938 36 4,046 4,051 38 5,134 5,138 40 6,220 6,199 42 7,258 7,233 44 (22²1)d — (02²0)d	1 4,713 3 5126,227 6,231 5120,797 0,807 5 7,722 7,721 5119,210 9,199 7 9,188 7,529° 5,5967 9 5130,623 0,627 5,920° 5,907 11 2,053 2,041 4,207 4,223 13 3,433 3,429 2,514 2,512 15 4,784 4,791 17 6,117 6,127 5109,000 9,015 19 7,426 7,438 7,211 7,228 21 8,727 8,723 5,402 5,416 23 9,983 9,983 25 5141,199 1,217 1,717 1,718 27 2,400° 2,425 5099,817 9,831 29 3,609 7,923° 7,920 31 4,767 5,981 5,984 33 5,918 5,900 4,035 4,023 35 7,013 7,008 2,026 2,039 31 4,767 5,981 5,984 33 5,918 5,900 4,035 4,023 35 7,013 7,008 2,026 2,039 37 8,097 8,091 39 9,142 9,149 41 5150,190 0,184 5085,932° 5,941 43 1,183 1,193 3,875° 3,861 45 2,184 2,179 1,750° 1,758 47 3,140 9,632 49 4,062° 4,077 7,483 5,881
R(J) P(J) Obs. Calc. Obs. Calc.	$(21^{1}1)^{d} - (01^{1}0)^{d}$
3 2,472 7,031	R(J) Obs. Calc. Obs. $P(J)$ Calc.
5 5143,949° 3,972 5,423 7 5,455 5,445 5133,752 3,789 9 6,899 2,132 11 8,326 0,451 13 9,727 8,745 15 1,107 7,016 17 5152,467 2,460 5125,252 5,262 19 3,795 3,789 3,484 21 5,095 1,684 23 23 6,396° 6,375 9,858 25 7,632 7,635 5117,950° 8,011 27 8,871 8,870 6,140 29 5160,051° 0,079 31 1,266 1,266 33 2,424 2,439 3,569	2 5125,497 5,487 5121,613 1,600 4 7,004 0,009 6 8,511 8,500 5118,397 8,397 8 9,990 9,975 6,762 6,762 10 1,428 5,104 5,108 12 5132,878 2,863 14 4,283 4,275 1,737 1,738 16 5,675 5,666 0,017 0,020 18 7,035 7,035 5108,272 8,284 20 8,383 8,384 6,527 20 8,383 8,384 6,527 22 9,723 9,713 4,747 4,749 24 5141,029 1,021 2,944 2,952 26 2,353° 2,309 1,128 1,133 28 3,576 5099,291 9,296 30 4,824 7,439 7,439

32 5146,059 6,052 5095,569 34 7,268 7,260 3,667 36 8,452 8,447	$v_0 = 3,668$ $v_0 = 5062.394$	ž.
38 9,631 9,616 40 5150,775 0,766 5087,884	9,820 4 7,868 R(J) P(J) 2 5,899 Obs. Calc. Obs. Calc	c.
	10 1,906 0 3,167 0,884 2 4,688 0,818 6,178 5059,2010 9,218 6 5067,630 7,636 7,518 8 9,050 9,060 5,925 5,919 12 1,814 2,476 2,448	22 88 22 23
$^{12}{\rm CO}_2~2\nu_1~+~\nu_3$	14 3,136 3,143 0,741 0,73 16 4,448 4,441 5048,948 8,93 18 5,706 7,114 7,13	32 39
$v_0 = 5099,619$	20 6,945 6,941 5,269 5,25 22 8,131 8,144 3,378 3,37	59 73
	P(J) 24 9,316 1,458° 1,45° 1,4	98
4 3,442 3,440 6,475 6 4,923 4,929 4,854 8 6,394 6,400 3,238 10 7 828 7 843 1,572	30 5,531 5,53 6,465 34 1,429 1,4 4,855 36 5029,349 9,32 3,224 38 7,20	87 22 28
14 5110,666 0,672 8,204	$8,200$ $^{12}C^{16}O^{18}O 4 v_2 + v_3$	
18 3,410 3,414 4,753 20 4,746 4,753 2,995	$v_0 = 5042,538$ $v_0 = 5042,538$	
24 7,356 7,367 5079,430	9,405 Obs. Calc. Obs. Calc).
30 5121,136 1,132 3,878 32 2,344 2,347 1,986 34 3,546 3,540 0,088 36 5,724 4,715 5068,174 38 5,878 5,869 6,227 40 7,010° 7,006 4,271 42 8,136 8,122 2,293 44 9,216 9,219 0,303 46 5130,316 0,299 5058,298 48 1,406° 1,360 6,279 50 2,422 2,403 4,238 52 3,424 3,430 2,174 54 4,451 4,439 0,090 56 5,449 5,431 5047,995 58 6,416 6,407 5,903 60 7,369 8,313 1,618° 64 9,295° 9,244 5039,491° 66 0,160 7,317°	3,880 1 3,999 1,880 2,000 2 4,723 0,099 3 5,442 5040,302 0,31 8,179 4 5046,123° 6,158 9,56 6,240 5 6,858 6,869 5038,837 8,81 4,283 6 7,603 7,577 8,074 8,09 2,308 7 8,263 8,281 7,309° 7,22 0,314 8 8,940° 8,979 6,545 6,53 8,303 9 9,661° 9,674 5,806° 5,76 6,275 10 5050,359° 0,366 4,98 4,229 11 1,046° 1,052 4,217 4,21 2,168 12 1,728 1,735 3,42 0,090 13 2,414 2,631 2,64 7,997 14 3,086 3,089 1,859 1,85 5,888 15 3,769 3,759 1,104 1,06 9 1,628 17 5,098 5,088 9,46 9 7,477 18 5,758 5,747 5028,676 8,58 9 7,312 19 6,401 7,838	51 16 56 57 57 56 53 10 57 57 57 57 57 57 57 57 57 57 57 57 57

27 5061,485 1,499 1,237 28 2,117 5020,442 0,393 29 2,734 5019,577 9,548 30 3,347 8,677 8,696 31 7,841 7,843 32 7,010 6,987 33 6,125	37 5053,345 3,329 39 4,348 41 5,366° 5,341 $^{13}CO_{2} 2 v_{1} + v_{2} + v_{3} - v_{2}$ $v_{0} = 5013,730$ $Q = 5013,700$ $(21^{1}1)^{2} - (01^{1}0)^{2}$
$^{13}\text{CO}_2 \ 2 \ \nu_1 + 2 \ \nu_2^* + \nu_3 - 2 \ \nu_2^*$	R(J) P(J) Obs. Calc.
$v_0 = 5028,730$	
(22 ² 1)° — (02 ² 0)° R(J) Obs. Calc. Obs. Calc. 2 1,038 4 2,542 5025,552 5,555 6 5034,009° 4,017 3,925 8 5,477 5,465 2,272 2,268 10 6,884 12 8,255° 8,275 5018,829° 8,869 14 9,642 9,638 7,126° 7,127 16 5040,966 0,973 5,359 18 2,280 3,531° 3,562 20 3,553 3,558 1,737° 1,738 22 4,828° 4,807 24 6,029 8,004 26 7,209 7,223 6,097 28 8,382 8,387 4,161 30 9,533° 9,523 2,197 32 5050,659 0,631 34 1,722 1,710 36 2,761 2,762 38 3,785° 3,784 40 4,769 4,777 42 5,757° 5,742 44 6,674° 6,678	1 5,270 3,5016,781 6,780 5,270 8,260 77 9,716 9,710 5008,099 8,103 9,749 7,781 5,758 1,363 5,250 1,473 1,363 6,433 6,429 1,55 5,215 5,210 1,233 1,226 1,76 6,506 6,510 1,97,785 7,780 4997,617 7,608 21 9,034 9,021 5,771 5,758 23 5030,234 0,232 3,874 3,875 2,5 1,405 1,413 1,968 1,964 27 2,568 2,563 0,024 2,568 2,563 1 4,756 4,759 4,059 6,059 33 5,866 5,843 4,055 6,059 33 5,866 6,874 6,875 1,930 1,979 37 7,887 7,881 9,881 9,881 9,881 9,881 9,881 9,881 9,881 9,881 9,881 9,881 9,881 1,968 1,978 4,055 6,650 43 5040,737 0,724 45 1,624 1,616 1,616 1,288 4,91 1,624 1,616 1,288 4,91 1,624 1,616 1,288 55 5,642 5,649 57 6,376 6,373 59 7,106 7,071
$(22^21)^d - (02^20)^d$	
Obs. Calc. Obs. P(J) Calc.	$(21^{1}1)^{d} - (01^{1}0)^{d}$
3 5031,817 1,793 6,359	R(J) Obs. Calc. Obs. $Calc$.
5 3,281° 3,282 4,743 7 4,744 3,099 9 6,166 6,178 5021,415 1,428 11 7,576 7,583 13 8,961 5017,995 8,002 15 0,311 6,247 17 1,632 4,487 4,465 19 5042,933 2,927 2,656 21 4,192 0,819 23 5,418 5,431 25 6,640 6,640 27 7,809 7,825 29 8,969° 8,979 31 0,107 33 5051,190 1,208 35 2,282	2 5016,038 6,038 2,158 4 7,533 7,543 5010,576 0,560 6 9,020 9,023 5008,945 8,936 8 5020,476 0,476 7,286 10 1,930° 1,902 5,623 5,609 12 3,306 3,302 3,913 3,906 14 4,675 4,676 2,177 16 6,018 6,024 18 7,348 7,346 4998,658 8,642 20 8,664 8,641 6,848 6,836 22 9,915 9,912 24 5031,157 1,156 3,167 3,148 26 2,393 2,374 1,266 28 3,596° 3,568 4989,367 9,359 30 4,756° 4,735 7,411° 7,428

32 5035,866° 5,877 4985,424° 5,470 34 6,990 6,995 3,490 3,490 36 8,101 8,088 1,485 38 9,138 9,155 40 5040,212 0,200 4977,407 7,403 42 1,223 1,218 5,328 5,328 44 2,233 2,214 3,221° 3,228 46 3,196 3,186 1,111 1,107 48 4,160° 4,135 50 5,043 5,060 52 6,009° 5,963 54 6,839 6,843 56 7,667° 7,701 58 8,537 60 9,340° 9,352	24 5008,532 8,532 4970,651 0,645 26 9,745 9,721 4968,746 8,744 28 5010,882 0,884 6,816 6,816 30 2,016 2,019 4,856 4,863 32 3,126 3,128 2,883 2,883 34 4,212 4,211 0,829° 0,877 36 5,270 5,267 4958,889° 8,843 38 6,290 6,297 6,780 6,786 40 7,294 7,301 4,687° 4,703 42 8,270° 8,279 2,596 2,597 44 9,231 9,232 0,470 0,465 46 5020,160 0,160 4948,311 8,309 48 1,100° 1,062 6,141 6,129 50 1,927° 1,941 3,941 3,945 52 2,803 2,798 1,713 1,700 54 3,645 3,628 4939,461 9,451 56 4,446 4,436 7,197° 7,180
$^{13}\text{CO}_2$ 3 ν_1 + ν_3 — ν_1	58 5.221 4.893 4.887
$v_0 = 4993,520$	60 5,983 2,572° 2,572° 62 6,705 6,725 0,230 0,237 6,444 4927,878 7,882
R(J) P(J) Obs. Calc. Obs. Calc.	66 8,154 8,141 5,506 68 8,819 3,111
0 4,294 2 5,825 1,955 4 7,337 0,369 6 8,825 8,762 8 0,293 7,133	70 9,471 9,477 0,698 $^{12}CO_2 v_1 + 2 v_2 + v_3$ $v_0 = 4977,793$
8 0,293 7,133 10 5001,732 1,738 5,483 12 3,163° 3,162 4983,778°, 3,811	R(I) P(I)
14 4.568 4.564 2.118	Obs. Calc. Obs. Calc.
16 5,945 0,405 18 7,307 20 8,546 22 9,961 24 1,258 26 2,534 28 3,788 30 5015,015 5,022 32 6,234 34 7,427 36 8,597 8,598 38 9,750	0 4978,568 8,566 2 4980,087 0,090 4976,232 6,225 4 1,585° 1,585 4,635 4,627 6 3,054 3,049 3,002 3,000 8 4,490 4,485 1,350 1,344 10 5,885 5,890 4969,661 9,657 12 7,270 7,266 7,949 7,942 14 8,622 8,613 6,204 6,198 16 9,920 9,930 4,422 4,424 18 4991,212 1,217 2,620 2,621 20 2,462 2,475 0,784 0,789 22 3,695 3,702 4958,933 8,927
$^{13}{ m CO}_2~2~{ m v}_1+{ m v}_3$	24 4,892 4,900 7,042 7,037 26 6,062 6,068 5,110 5,116
$v_0 = 4991,309$	28 7,200 7,206 3,171 3,167 30 8,318 8,314 1,175° 1,189
R(J) Obs. Calc. Obs. Calc.	32 9,392 9,393 4949,187 9,182 34 5000,432 0,441 7,142 7,145 36 1,449 1,460 5,089 5,080
0 4992,064° 2,082 2 3,608 4989,743° 9,741	38 2,449 2,449 2,995 2,985 40 3,405 3,408 0,874 0,863 42 4,329 4,336 4938,708 8,710 44 5,229 5,234 6,527 6,528 46 6,997 6,103 4,322 4,318 48 6,939 6,942 2,074 2,079 50 7,744 7,750 4929,806 9,811 52 8,524° 8,529 7,501° 7,515 54 9,267 9,276 5,194° 5,189 56 9,987 9,994 2,834 2,834 58 5010,682 0,682 0,462 0,451 60 1,333 1,340 4918,038° 8,040 62 1,994° 1,966 5,619° 5,599

64 5012,568 2,564 66 3,135 3,130 68 3,690° 3,666 70 4,172 72 4,690° 4,648	4913,156 3,130 0,655 0,632 8,106 5,550	47 4994,217° 4,257 4920,820° 0,84 49 5,092° 5,094 4918,610° 8,60 51 5,900 6,347° 6,32 53 6,676 4,081° 4,02 55 1,69
¹³CO₂ 2 ν₁ + 2 ν	$v_2 + v_3 - 2 v_2$	$(13^11)^d - (01^10)^d$
$v_0 = 49^{\circ}$	76,095	R(J) P(J) Obs. Calc. Obs. Calc
R(J)	Obs. P(J)	
Obs. Calc. 0 6,867 2 8,379 4 9,852 6 1,284 8 4982,662° 2,675 10 4,027 12 5,338 14 6,608 16 7,838 7,838 18 9,034 9,028 20 0,178 22 1,289 24 2,359 26 3,390 28 4994,383 4,382 30 5,335	$\begin{array}{c} 4,521 \\ 2,906 \\ 1,252 \\ 9,556 \\ 7,821 \\ 6,046 \\ 4,231 \\ 4962,375 \\ 2,374 \\ 0,480 \\ 4958,575 \\ 8,544 \\ 6,571 \\ 4,557 \\ 2,505 \\ 0,414 \\ 8,284 \\ \end{array}$	2 4967,676 7,648 4963,774 3,76 4 9,168 9,154 2,182 2,17 6 4970,648 0,639 0,559 0,54 8 2,101 2,098 10 3,535 3,532 4957,225 7,23 12 4,942 4,941 5,529 5,53 14 6,323 3,807 3,81 16 7,679 7,679 2,057 2,06 18 9,008 9,012 0,307 0,29 20 4980,308 0,319 4948,502 8,50 22 1,600 6,687 6,68 24 2,872 2,857 4,839 4,83 26 4,087 4,087 28 5,287 5,292 1,082 1,07 30 6,478° 6,472 4939,150 9,15 32 7,585 7,627 7,217 7,21 34 8,755 5,242 5,24 38 3490,947 0,934 1,222 1,23 40 1,997 1,985 4929,182° 9,18 42 3,009 3,010 7,117 7,11 44 4,008 4,009 5,039 5,02 46 9,857 3,244 3,24 47,914 4,008 4,009 5,039 5,029 48 9,189 4,081 4,081 4,081 4,091 5,039 5,039 48 6,009 3,010 7,117 7,11 49 4,008 4,009 5,039 5,029
$Q = 496$ $(13^{1}1)^{c}$		48 5,928 0,820° 0,76 50 6,857° 6,848 4918,610° 8,59 52 6,347° 6,40
70 (1)	TO ZTO	52 6,347° 6,40 54 4,212° 4,18
Obs. Calc.	Obs. Calc.	$^{12}{ m CO}_2$ 2 ${ m v}_1$ + 2 ${ m v}_2$ + ${ m v}_3$ — ${ m v}_1$
1 4966,863 6,878 3 8,379 8,390	4962,942° 2,972	$v_0 = 4959,635$
5 9,859 9,872 7 1,327	1,362 1,358 4959.716 9.717	R(J) P(J) Obs. Calc
11 4,150 4,147	8,056 8,046 6,342 6,347	
13 5,520 5,514 15 6,852 6,851 17 8,158 8,160 19 9,429 9,439 21 4980,672 9,688 23 1,895 1,909 25 3,101 27 4,269 4,262 29 5,370 5,395	4047 407 7 417	0 0,408 2 1,931 8,06 4 4963,426 3,425 6,46 6 4,889 4,84 8 6,322 4953,171 3,18 10 7,727 1,477° 1,477° 12 9,100 4949,791 9,77 14 4970,441 0,444 8,027 8,03 16 1,748 1,758 6,272° 6
31 6,479° 6,498 33 7,585 7,572 35 8,616	4939,767 9,757	16 1,748 1,758 6,272° 6,25 18 3,042 4,445° 4,45 20 4,297 2,626° 2,61 22 5,522 0,75
37 9,646 9,630 39 4990,624 0,615 41 1,574 1,571 43 2,496 45 3,347° 3,392	1,638 1,638 4929,547 9,536 7,407 5,248 3,082° 3,061	18 3,042 4,445° 4,45° 2,61° 20° 4,297° 2,626° 2,61° 22° 5,522° 24° 6,723° 6,717° 26° 7,882° 4936,926° 6,93° 28° 9,018° 4,995° 4,98° 30° 0,125° 3,005° 3,00° 32° 4981,230° 1,202° 0,997° 0,99

38 4,	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6,885 4,789 8 10 12	7,715° 4950,558 1,925°	9,168 0,571 1,942 3,284	6,014	7,683 6,022 4,331 2,611 0,860
		18	5,867	5,875	7,264 5,421	7,268
V ₀ =	= 4953,327	20	8 349	7,124 8,343	5,421 3,551	5,428 3,556
(1421))° — (02²0)°	24	9,530	9,531 0,687	1 6320	1,655 9,723
Obs. Ca	olc. Obs. P((J) 28 Calc. 30		1,813 2,907 3,970	4919,724 7,752	7,762 5,769
4 7, 6 8, 8 4960,095 0, 10 1, 12 2,	109	0,175 34 8,552 38 6,902 40 5,227 42 3,527 1,801	5,023	5,002 6,003 6,972 7,909	1,733° 4909,630° 7,506 5,357 3,234°	9,611 7,498
16 5,681 5,	682 4940,050	0,049	¹³ C ¹	6O18O 2	$2 v_1 + v_3$	
18 7, 20 8, 22 9,	012 4938,278 315 593 4,635	6,471	٧	0 = 492	24,990	
24 49 / 0,840 0,	845 2,785° 070 270	2,792 0,914 9,011	R(J) Obs.	Calc.	Obs. P(J) Calc.
(1421)	^d — (02 ² 0) ^d	0 1 2 3 3 4 4 Calc. 5		5,721 6,447 7,167 7,880 8,590		4,254 3,512 2,764 2,012
Obs. Ca	olc. Obs. P(Calc. 5		9,293		1,252
3 6, 5 7, 7 9, 9 0, 11 2, 13 4963,611 3, 15 5,023 5,	416 913 383 4947,715 828 6,059 248 641	0,978 9,367 7,730 6,068 4,380 11 2,667 12	2,713° 3,384° 4,075	9,991 0,684 1,370 2,052 2,728 3,398 4,064 4,724 5,378	4916,583 5,793 5,033	0,489 9,720 8,945 8,165 7,379 6,588 5,791 4,990 4,183
19 7, 21 8,961 8, 23 4970,211 0,	667 957 5,580 221	9,165 7,376 5,561 3,720 14 15 15 16 17	6,0140	6,026 6,670 7,308		3,370 2,552 1,729
27 29 3,838 31 33 6,	674	0,925 9,165 14 7,376 15 5,561 16 3,720 17 1,855 18 9,966 19 8,051 6,109 21 4,144 22,152		7,941 8,567 9,191 9,807 0,419	0,894 0,076	0,901
37	0,125	0,137	¹² C ¹⁶ O	¹8O v₁ -	+ 2 v ₂ + v	3
¹²CO₂ ν₁ +	$4 v_2 + v_3 - 2$	ν ₂	ν	0 = 490	04,820	
V ₀ =	= 4942,484		R(J)		Obs. P(J)
R(J)	olc. Obs.	(J)				Calc.
	254	Calc. 1 2 2 3 4	4907,701	6,273 6,989 7,699 8,402	4902,593	3,340 2,590 1,834

5 4909,112 9,098 4901,086° 1,071 6 9,778 9,788 0,322 0,301 7 4910,481 0,470 8 1,169 1,146 4898,748 8,741 9 1,822° 1,816 7,940° 7,951 10 2,470 2,478 7,144 7,153 11 3,166° 3,134 6,353 6,350 12 3,760° 3,783 5,540 13 4,423 4,426 4,705° 4,724 14 5,063 5,062 3,905 3,901 15 5,691 3,071 16 6,928 6,929 1,392 1,392 18 7,541 7,538 0,541 0,542 19 8,140 9,685	48 4917,136 7,132 4842,244 2,219 50 7,994 7,985 4839,985 9,995 52 8,797 8,810 7,753 7,744 54 9,597 9,604 5,460° 5,460 56 4920,398° 0,369 3,152 3,156 58 1,103 1,104 0,802 0,820 60 1,812 1,809 8,455 62 2,490 2,483 6,063 64 3,115 3,126 4823,631 3,640 66 3,753 3,739 1,179° 1,188 68 4,320 4,321 70 4,850 4,873 72 5,392
20 8,715 8,736 4888,812 8,823 21 9,335 9,324 7,964 7,953	$^{13}\text{CO}_2 \ 2 \ v_1 + 2 \ v_2 + v_3 - v_1$
23 0.483 6.195 6.195	$v_0 = 4871,860$
24 4921,066° 1,051 5,305 25 1,632° 1,614 4,387 4,411	R(J) P(J) Obs. Calc. Obs. Calc.
26 2,165° 2,169 3,514 3,508 2,719 2,600 2,600 2,719 2,600 2,709 3,797 3,797 0,764 30 4,350 4,326 4879,831 9,837 31 4,850 4,849 8,895 8,903 32 5,365 7,987 7,961 33 5,877 5,875 7,015 34 6,391 6,378 6,068 6,062 3,568 6,874 5,081 5,102 4,136	0 2,632 2 4,151 2,292 4 5,641 8,695 8 4878,542 8,526 5,402 5,407 10 4880,916° 9,921 3,711 3,717 12 1,280 1,286 1,996 14 2,620 0,237 0,244 16 3,923 4858,475 8,460 18 5,194 6,667 6,648 20 6,435 4,803 22 7,645 2,928
$^{13}\text{CO}_2 \nu_1 + 2 \nu_2 + \nu_3$	24 8,827 8,824 1,022 26 9,978 9,972 9,086
$v_0 = 4887,348$	28 1,089 7,120 30 4892,208° 2,176 4845,132 5,125
R(J) P(J) Obs. Calc. Obs. Calc. 0 4888,105 8,122 2 9,640 9,649 4885,772 5,780	32 3,250° 3,231 3,101 3,098 34 4,253 1,022° 1,040 36 5,246 8,953 38 6,208 4836,837° 6,836 40 4,688
4 4891,135 1,149 4,206 4,185 6 2,620° 2,621 2,563° 2,564 8 4,064 4,068 0,915 0,914	$^{13}\text{CO}_2\nu_1 + 3\nu_2 + \nu_3 - \nu_2$
10 5,482 5,484 4879,241 9,238 12 6,866 6,875 7,527° 7,534	$v_0 = 4871,408$
14 8,240 8,238 5,796 5,805 16 9,583 9,574 4,049 4,046	$Q = 4871,379$ $(13^{1}1)^{c} - (01^{1}0)^{c}$
18 4900,884 0,882 2,260 2,263 20 2,158 2,162 0,433° 0,450 22 3,420 3,415 4868,608 8,612	
24 4,633 4,639 6,741 6,745	R(J) $P(J)$ Obs. Calc.
26 5,843 5,837 4,843° 4,852 28 7,007 7,005 2,939 2,932 30 8,149 8,147 0,986 0,984 32 9,260 9,259 4858,983° 9,010 34 4910,357 0,344 7,009 7,007 36 1,404 1,400 4,979 4,977 38 2,437 2,427 2,927 2,920 40 3,428 3,424 0,843 0,835 42 4,404 4,393 4848,744 8,723 44 5,339 5,337 6,578 6,580 46 6,258 6,249 4,416 4,415	1 4872,935 2,949 3 4,429° 4,461 9,042 5 5,946 4867,421 7,430 7 7,397 7,401 5,789 5,789 9 8,832 8,829 4,118 4,120 11 4880,232 0,228 2,430 2,423 13 1,599 1,597 0,690 0,697 15 2,932 2,939 17 4,253 4857,144° 7,161 19 5,540 5,537 5,353 5,351

21 4886,793 6,794 4853,512 3,513 23 8,031° 8,022 1,652 1,647 25 9,222 9,222 4849,761 9,754 27 4890,395 0,392 7,836 7,833 29 1,490 1,536 5,894 5,885 31 2,651 3,909 33 3,796° 3,738 1,906 1,905 35 4,797 4,796 4839,880 9,874 37 5,832 5,827 7,817 39 6,831 5,732° 5,732 41 7,813 7,806 43 8,770 8,755 1,468° 1,483 45 9,676 4829,311° 9,319 47 4900,581 0,570 7,104° 7,128 49 1,429° 1,436 4,912 51 2,275 2,657° 2,669 53 3,067° 3,087 55 3,764° 3,873° 577 4,631	6 4863,409 3,307 8 4,870 1,660 10 6,306 9,987 12 7,717 4848,332 8,291 14 9,101 6,569 18 1,799 3,052 20 3,110 1,241 1,257 22 4,394 9,436 24 5,654 7,591 26 6,889 5,722 28 8,098 3,827 30 9,283 1,908 (14°1)d — (02°0)d R(J) P(J) Obs. Calc. Calc.
(13 ¹ 1) ^d — (01 ¹ 0) ^d R(J) P(J) Obs. Calc. Obs. Calc. 2 4873,732 3,719 4869,847 9,837 4 5,231 5,229 8,240 8,241 6 6,720 6,715 6,621 6,622 8 8,225° 8,177 4,678 10 9,607 9,614 3,310 12 1,027 1,618 1,618 14 4882,434° 2,416 4859,900 9,902 16 3,785 3,781 8,161 8,163 18 5,123 5,120 6,403 6,399 20 6,447 6,435 4,598 4,610 22 7,713 7,727 2,800° 2,799 24 8,992 8,994 9,057° 0,963 26 4890,235 0,236 4849,113 9,104 28 1,490° 1,454 30 2 6447 5,315 5,314	3 1,171 4855,731 5 2,670 4,121 7 4,142 2,487 9 5,592 0,826 11 4867,038° 7,014 4849,142 13 8,413 7,433 15 9,785 5,699 17 4871,116° 1,134 3,939 19 2,457 2,158 21 3,754 0,349 23 5,027 4838,516 21 3,754 0,349 23 5,027 4838,516 25 6,242 6,275 6,659 27 7,497 4,778 29 8,694 2,871 31 0,941
32 3,796° 3,815 3,3183 3,382 34 4,960 4,959 1,429 1,428 36 6,085 6,079 4839,446 9,449 38 7,171 7,174 7,455 7,448 40 8,245 5,422 42 9,271° 9,290 3,389° 3,373 44 4900,323 0,312 1,300° 1,300 46 1,314 1,309 4829,211° 9,205 48 2,282 7,104° 7,086 50 3,230 4,943 52 4,142° 4,153 2,778 54 5,034° 5,053 0,589 56 5,927	R(J) Obs. Calc. Obs. Calc. 0 4,520 2 6,050 2,174 4 7,554 0,577 6 9,031 8,954 8 0,481 7,303 10 1,905 12 3,301 4844,894 4,924 14 4,671 2,195 16 4866,014 6,013 0,425 0,437
$^{13}CO_{2} v_{1} + 4 v_{2}^{2} + v_{3} - 2 v_{2}^{2}$ $v_{0} = 4858,100?$ $(14^{2}1)^{\circ} - (02^{2}0)^{\circ}$ R(J) Calc. $^{\circ}Calc.$ $^{\circ}C$	18

$^{12}\text{CO}_2 \text{ 4 } \nu_2 + \nu_3$ $\nu_0 = 4853,578$ $R(J) \cdot P(J)$ Obs. Calc. Obs. Calc.	26 4858,102 8,095 7,131 28 9,233 9,245 5,194 30 0,366 3,228 32 1,456 1,232 34 2,514 36 3,542 4807,148 7,150
0 4854,364 4,354 2 5,896 5,895 4852,007 2,013 4 7,426 7,419 0,432 0,432	$^{13}\text{C}^{16}\text{O}^{18}\text{O} \nu_1 + 2\nu_2 + \nu_3$
6 8,936 8,927 4848,824 8,834 8 4860,421 0,419 7,222 7,222	$v_0 = 4814,530$
10 1,889 1,893 5,583 5,591	R(J) $P(J)$ Obs. Calc. Obs. Calc.
12 3,334 3,351 3,935 3,945 14 4,797 4,793 2,276 2,283 16 6,219 6,217 0,602 0,604 18 7,626 7,625 4838,892 8,908 20 9,005 9,015 7,196 7,197 24 1,744 1,742 3,718 3,722 26 3,076 3,079 1,956 1,958 28 4,400 4,397 0,172 0,178 30 5,719° 5,698 4828,381 8,380 32 6,984 6,980 6,559 6,559 34 8,244 8,242 4,726° 4,732 36 9,489 9,485 2,870 2,881 38 4880,726 0,708 1,002 1,010 40 1,919 1,912 4819,113 9,122 42 3,098 3,095 7,201 7,214 46 5,403°	0 5,260 1 5,983 3,794 2 6,699 3,051 3 7,408 2,300 4 4818,116° 8,111 5 8,739° 8,806 6 9,496 4809,972° 0,010 7 4820,176 0,178 9,233 8 0,854 8,446 8,450 9 1,508 1,522 7,643° 7,659 10 2,185 6,863 6,863 11 2,839 6,058 12 3,455° 3,488 5,248 13 4,125 4,130 4,431 14 4,764 3,607 15 5,394 5,392 2,771 2,776 16 6,013 1,950 1,938 17 6,628 1,097 1,095 18 7,235 0,242 0,244 19 7,843 7,836 4799,384 9,386 20 8,431 8,530 8,523 17 6,628 1,097 1,095 18 7,235 0,242 0,244 19 7,843 7,836 4799,384 9,386 20 8,431 8,530 8,523 21 9,002 9,018 7,649 7,652 22 9,598 9,599 6,774 6,775 23 0,173 5,892 5,992 24 0,739 5,005 5,000 25 1,300 4,106 4,103 27 4832,400 2,400 2,302 2,290
$^{12}\mathrm{CO^2} \nu_1 + 4 \nu_2 + \nu_3 - \nu_1$	28 2,925 2,939 1,322° 1,372 29 3,474 0,465° 0,449
$v_0 = 4839,704$?	30 3,999 9,518 31 4834,526° 4,520 4788,592 8,583
R(J) P(J)	32 5,020 5,033 7,643 7,639 33 5,538 6,688 6,689
Obs. Calc. Obs. Calc. 0 0,477 2 2,003 8,136	34 6,045 6,038 5,761 5,733 35 6,531 4,770
4 4843,502 3,502 6,541 6 4,962 4,971 4,918	$^{12}{ m CO}_2$ 5 ${ m v}_2$ $+$ ${ m v}_3$ $ { m v}_2$
8 6,412 3,266 10 7,823 7,827 1,587 12 9,210 8,879	$ \begin{array}{r} \nu_0 = 4807,652 \\ Q = 4807,608^{\circ} \end{array} $
14 0,567 8,143 16 1,894 6,379	(05 ¹ 1) ^c — (01 ¹ 0) ^c (*)
18 3,193 4,586 20 4,462 2,766 22 5,703 0,916	R(J) P(J) Obs.
24 6,914 9,038	1 4809,210

(*) Pour la composante $05^11^{\rm c}$ de $^{12}C^{18}O_2$ les valeurs calculées ne sont pas indiquées par suite d'un phénomène de perturbation de Coriolis (v. Courtoy 1957a p. 646).

3 4810,706 4805,329° 5 2,208 3,680 7 3,674 2,042 9 5,145 0,392 11 6,565 4798,737 13 7,974 7,028 15 9,367 5,325 17 4820,745 3,595 19 2,105 1,844 21 3,441 0,068 23 4788,283 25 6,029° 6,480 27 7,358° 4,646 29 8,579 2,815 31 9,827 0,935 33 4831,040 4779,038° 35 2,219 7,156° 37 3,397 9,277° 39 4,541 3,278 41 5,655° 1,317 43 6,772 4769,332° 45 7,849 7,312	2 3,388 9,730 3 4794,100 4,105 4788,959° 8,984 4 4,810° 4,817 5 5,509 5,524 7,448 7,477 6 6,226 6,763° 6,716 7 6,923 7,616 5,201° 5,179 9 8,302 8,303 4,404 10 8,985 3,633 3,623 11 9,662 2,837 12 0,334 2,047 2,047 13 4801,009 1,002 1,238 1,252 14 1,665 1,665 0,432° 0,452 15 2,323 2,320 4779,672° 9,647 16 2,973 8,837 17 3,621 8,027 8,021 18 4,263 4,263 7,202 18 4,903 4,900 6,372 6,377 20 5,547 5,532 5,552 5,548 21 6,158° 6,159 4,705 4,713 22 6,795 6,780 3,868 3,873 23 7,398 3,041 3,030 24 8,029 8,008 2,148° 2,179
49 3,213 ?	26 9.215 0.457 0.465
$(05^{1}1)^{d} - (01^{1}0)^{d}$	27 9,823 9,812 9,601 28 0,402 4768,725 8,731
R(J) P(J) Obs. Calc. Obs. Calc.	29 4810,985 0,987 7,857 30 1,568 6,975 6,978
2 4809,972 9,978 4806,089 6,084	31 2,143 6,086 6,093 32 2,761° 2,712 5,203 33 3,276 4,309 4,309
4 4811,507 1,510 4,501 4,500 6 3,035 3,027 2,903 2,903 8 4,522 4,529 1,254° 1,289 10 6,016 6,017 4799,667 9,662	34 3,835 3,409 35 2,465? 2,503 36 1,601? 1,593
12 7,492 7,490 8,014 8,022 14 8,958 8,947 6,364 6,365 16 4820,382 0,387 4,699 4,692	$^{12}{ m CO}_2$ 6 ${ m v}_2$ + ${ m v}_3$ — 2 ${ m v}_2$
18 1,819 1,815 3,007 3,006	$v_0 = 4790,520$
20 3,229 3,226 1,302 1,307 22 4,635° 4,621 4789,588 9,591 24 6,029° 6,001 7,843 7,860	R(J) P(J) Obs. Calc. Obs. Calc.
26 7,358° 7,364 6,103 6,113	0 1,295
30 4830,050 0,042 2,562 2,574 32 1,370 1,357 0,779 0,781 34 2,669 2,654 4778,961° 8,972	2 2,841 4788,959° 8,952 4 4794,376 4,374 7,375 6 5,900 5,896 5,784
36 3,938 3,934 7,156° 7,147 38 5,221 5,196 5,277° 5,306	10 8,896 2,465
40 6,455 6,441 3,435 3,448 42 7,680 7,667 1,564 1,574 44 8,876 4769,650° 9,682	12 0,376 0,936 14 4801,846 1,844 4779,290 9,294 16 3,291° 3,299 7,625° 7,640
46 4840,069 0,065 7,762 7,774 48 1,236 1,236 5,821° 5,847 50 2,386 3,903	18 4,738 4,739 5,978 5,972 20 6,158° 6,166 4,295 4,292 22 7,578 2,589 2,598 24 8,980 8,976 0,884 0,890
$^{12}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}\;2\;\mathrm{v_1}+\mathrm{v_3}$	26 4810,397° 0,359 4769,157° 9,168
$v_0 = 4791,208$	3.081 5.660° 5.684
T(J) P(J) Obs. Calc.	32 4,418 3,872° 3,920 34 5,740 2,120° 2,142 36 7,046 0,314 0,349
0 1,940 1 4792,702° 2,667 4790,495 0,472	38 8,352 8,335 8,541 40 9,624 9,607 6,717 42 0,862

$ \begin{array}{c} ^{12}\text{CO}_2 \ 6 \ v_2^2 + v_3 - 2 \ v_2^2 \\ \hline v_0 = 4768, 49 \\ Q = 4768, 43 \\ \hline (06^21)^c - (02^20^c) \\ \hline R(J) & \text{Obs.} & \text{Calc.} \\ \hline \\ 2 & 0,833 \\ 4 & 2,358 \\ 6 & 3,866 \\ 8 & 5,354 \\ 10 & 4776,820 \\ 6,825 \\ 10 & 4776,820 \\ 6,825 \\ 10 & 4776,820 \\ 6,825 \\ 11 & 9,672^o \ 9,711 \\ 125 & 5,427 \\ 126 & 1,125 \\ 2,521 & 3,710 \\ $	10 4756,416 6,411 0,079 0,081 12 7,898 7,901 4738,467 8,461 14 9,390 9,381 6,845 6,830 16 4760,852 0,846 5,195 5,188 18 2,319 2,301 3,543 3,534 20 3,741 3,742 1,877 1,869 22 5,170 5,172 0,186 0,192 24 6,583 6,588 4728,506 8,502 26 7,997 7,992 6,806 6,800 28 9,383 9,383 5,885 5,087 30 4770,755 0,759 3,355° 3,360 32 2,119 2,122 1,631 1,621 34 3,462 3,471 4719,891° 9,869 36 4,798 4,805 8,107 8,103 38 6,118 6,124 6,330 6,324 40 7,433 7,428 4,543° 4,530 42 8,726 8,716 2,720 2,724 44 9,987 9,987 0,903 0,902 46 4781,241 1,243 4709,075 9,065 48 2,515° 2,480 7,207 7,212 50 3,713 3,700 5,333° 5,343 52 4,903 4,905 3,457 3,459 54 6,103° 6,087 1,545 1,558 56 7,265 7,252 4699,655° 9,639 58 7,707 7,703 60 5,748 61 3,780 3,775 64 1,793° 1,783
(06 ² 1) ^d — (02 ² 0) ^d	13 CO $_{2}$ 5 ν_{2} + ν_{3} — ν_{2}
R(J) Obs. Calc. Obs. Calc.	$ \begin{array}{r} \nu_0 = 4708,477 \\ Q = 4708,468 \end{array} $
3 4771,598 6,146	(05 ¹ 1) ^c — (01 ¹ 0) ^c
3 4771,598 6,146 5 3,114 4,547 7 4,612 4762,866° 2,929 9 6,091 1,294 11 7,554 9,640	R(J) Obs. $P(J)$ Calc. Obs. Calc.
11 7,554 9,640 13 8,996 15 4780,432° 0,421 17 1,838 1,825 19 3,212 3,213 21 4,581 23 5,931 25 7,264 27 8,534 8,577 29 9,869 31 1,146	1 4710,048 0,028 3 1,566 1,562 4706,128 6,121 5 3,078 3,082 4,525 4,531 7 4,585 2,922 2,925 9 6,075 6,072 1,313 1,304 11 7,540 7,544 4699,655° 9,666 13 8,998 8,005 8,013 15 4720,431 0,438 6,345 6,344 17 1,853 1,860 4,660 4,660
13 CO $_{2}$ 4 ν_{2} + ν_{3}	25 7,358° 7,385 7,762 7,761 25 8,699° 8,724 5,996 5,996
$v_0 = 4748,012$	29 4730,013° 0,046 31 1,342 1,350 2,415° 2,419
R(J) $P(J)$ Obs. Calc.	21 4,647 4,656 1,252 1,242 23 6,018 6,029 4689,521 9,510 25 7,358° 7,385 7,762 7,761 27 8,699° 8,724 5,996 5,996 29 4730,013° 0,046 4,219 4,216 31 1,342 1,350 2,415° 2,419 33 2,628 2,637 0,586° 0,604 35 3,900 3,906 4678,805° 8,773 37 5,156 6,917 6,926
0 4748,790 8,789 2 4750,329 0,337 4746,440 6,448 4 1,873 1,872 4,887 4,873 6 3,405 3,397 3,288 3,287 8 4,911 4,910 1,690 1,690	37 5,156 6,917 6,926 39 6,395 6,391 5,072 5,061 41 7,595 7,603 3,183 3,179 43 8,778 8,800 1,271 1,280 45 9,977 4669,375° 9,364 47 4741,127° 1,135 7,429 7,429

49 4742,298° 2,273 4665,525 5,477 51 3,392 3,492 3,506 53 4,490 1,546° 1,517 55 5,569 9,509 (05 ¹ 1) ^d — (01 ¹ 0) ^d	18
R(J) P(J) Obs. Calc. Obs. Calc.	26 0,719 1,891
2 0,811 4706,887 6,910 4 4712,349 2,355 5,333° 5,333 6 3,886 3,891 3,749 3,748 8 5,416 5,417 2,145 2,154 10 6,926 6,934 0,544 0,550 12 8,442 8,441 4698,925 8,938 14 9,940 7,313 7,316 16 4721,428 1,428 5,695 5,687 18 2,901 2,907 4,055 4,046 20 4,371 4,375 2,405 2,397	27
22 5,830 5,834 0,752 0,739 24 7,283° 7,282 4689,073 9,070 26 8,699° 8,718 7,396 7,392	$^{13}\text{CO}_2$ 6 $v_2^2 + v_3 - 2 v_2^2$
28 0,146 5,707 5,704 30 4731,552 1,561 4,014 4,006	$v_0 = 4673,635$ $Q = 4673,58^{\circ}$
34 4,342 4,357 0.586° 0.577	(06 ² 1) ^c — (02 ² 0) ^c
36 5,724 5,737 4678,805° 8,847 38 7,078° 7,106 7,088 7,106 40 8,461 5,355 5,354	R(J) $P(J)$ Obs. Calc.
42 9,790° 9,803 3,580 3,589 44 4741,127° 1,132 1,827 1,813 46 2,408° 2,447 0,025 0,025 48 3,735 3,748 468,227 8,224 50 5,034 6,412 6,409 52 6,306 4,578° 4,582 54 2,788° 2,742	2 5,965 4 7,502 0,482 6 9,023 8,885 8 0,533 7,274 10 4682,047 2,028 12 3,527 3,510 4663,991 4,013 14 4,971 4,977 2,350 2,362 16 6,438 6,431 0,707° 0,698
$^{13}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}$ 4 v_{2} $+$ v_{3}	18 7 870 9 041 9 020
$v_0 = 4692,120$	22 0.703 5.618 5.620
Obs. Calc. Obs. Calc.	24 2,098 3,900 26 4693,450 3,478 28 4,841
0 2,853 1 3,583 1,384 2 4,310 0,644	$(06^21)^{d} - (02^20)^{d}$
2 4,310 0,644 3 5,033 9,900 4 5,753 9,155 5 6,469 8,405 7,183 7,652 7 7,893 4686,922 6,896	R(J) P(J) Obs. Calc.
5 6,469 8,405 6 7,183 7,652	
8 4698,600° 8,600 6,137 9 9,289 9,302 5,405 5,374 10 0,003 4,609 4,609 11 0,699 3,825° 3,838 12 1,392 3,090 3,066	5 8,264 9,685 7 4679,778 9,780 8,081 9 4681,314 1,283 6,464 11 2,773 2,771 4664,836 4,834 13 4,246 3,167 3,190 15 5,706 1,546 1,532
13 2,082 2,291 14 2,768 1,526 1,511 15 0,728 16 4704,133 4,129 4679,940 9,942 17 4,800 4,805 9,157 9,153	17 7,152 4659,829 9,860 19 8,540° 8,584 8,192 8,176 21 9,996 0,001 6,478 6,476 23 1,403 4,763 25 2,790

$^{13}\text{CO}_2$ 6 $\nu_2 + \nu_3 - 2 \nu_2$	$^{12}\text{CO}_2 \text{V}_1 + 2 \text{V}_2^2 + \text{V}_3 - 2 \text{V}_2^2$		
$v_{\theta} = 4685,715$	$v_0 = 3726,610$		
R(J) P(J) Obs. Calc.	Q = 3726,575		
0 Carc. Obs. Carc.	$(12^21)^c - (02^20)^c$		
6 6,494 4,148 4 8,045 2,572 6 9,586 4680,992 0,986	R(J) Calc. Obs. $P(J)$ Calc.		
8 1,117 4679,422 9,389 10 2,636 7,787 7,782 12 4,146 6,177 6,165 14 5,645 4,557 4,539	2 3728,907 8,923 4 3730,464° 0,433 3723,426° 3,438 6 1,925 1,919 1,829 1,815 8 3,379 0,168		
16 7,131 2,897 1 1,250 20 4700,059 0,072 4669,615 9,589 22 1,524 7,932 7,918	10 4,815 8,495 12 6,223 6,796 14 7,621 7,609 5,073 16 8,989 8,968 3,325		
26 4,393 4,578° 4,539 28 5,762 5,808 2,832 30 7,209 1,112 1,112	18 0,302 1,553 20 3741,604 1,610 3709,763° 9,755 22 2,894 2,894 7,933 7,933 24 4,158 4,152 6,078 6,085		
32 8,595 4659,368 9,376 34 9,967 7,628 7,632 36 4711,360? 1,327 5,902° 5,869 38 2,666 4,093	26 5,384 4,210 4,213 28 6,588 6,590 2,338 2,316 30 7,771 7,771 0,453° 0,394 32 8,935° 8,926 3698,461° 8,446		
$^{12}{ m CO}_2~2~{ m v}_1 + { m v}_3 - 2~{ m v}_2$	34 0,056 6,477 6,475 36 1,160 4,479 38 2,237 2,457 40 3,290		
$v_0 = 3814,260$	42. 3754.342° 4.316		
R(J) $P(J)$ Obs. Calc. Obs. Calc.	44 5,310 5,316 46 6,274° 6,290 48 7,232° 7,238		
0 3814,800° 4,801 2 6,314° 6,333 3812,446 2,458 4 7,837 7,842 0,870 0,867 6 9,330 9,326 3809,251 9,252 8 3820,780° 8,786 7,613 7,612 10 2,225 2,222 5,948 5,949 12 3,642 3,635 4,258 4,262 14 5,028 5,025 2,561 2,553 16 6,411° 6,392 0,839 0,821 18 7,738 7,734 3799,062 9,065	50		
20 9,060 8,054 7,283 7,287 22 3830,351 0,351 5,472 5,486	$(12^21)^d - (02^20)^d$		
24 1,595° 1,625 3,651 3,663 26 2,881 2,876 1,812 1,817 28 4,103 4,107 3789,944 9,951	R(J) P(J) Obs. Calc. Obs. Calc.		
32 6,503 6,501 6,148 6,154 34 7,666 4,215 4,225 36 8,816 8,811 2,275 2,275 38 9,935 0,306 0,306 40 1,040 3778,327 8,317	3 9,680 4,241 5 3731,169 1,179 3722,623 2,631 7 2,651 2,651 1,005° 0,996 9 4,111 4,099 3719,333° 9,336 11 5,521 7,651		
42 6,335 6,311	13 6,918 5,940 15 8,291 4,207 17 9,637 2,4470 2,446 19 3740,961 0,958 0,680° 0,661 21 2,256 3708,856 8,853 23 3,527 6,987° 7,019 25 4,757° 4,774 27 5,978° 5,996 3,279		

29 7,192 1,373 31 3748,350 8,364 3699,441 9,441 33 9,525° 9,511 7,461° 7,487 35 0,632 5,498° 5,507 37 3751,729 1,729 3,524° 3,504 39 2,802 2,801 1,476 41 3,831 3,848 9,426 43 4,872 45 5,852 5,869 47 6,834 6,842 49 7,779 7,791 51 8,716 53 9,615 55 0,491 57 3761,276° 1,343 59 2,170 61 2,981° 2,973 63 3,736° 3,752 65 4,520° 4,507 67 5,243° 5,239	67 3761,061 1,066 69 1,726 1,730 71 2,375 2,368 73 2,981 2,982 75 3,572° 3,570 77 4,135 79 4,716? 4,674 (11 ¹ 1) ^d — (01 ¹ 0) ^d R(J) Obs. Calc. Obs. Calc. 2 3725,529° 5,520 3721,613° 1,638 4 7,031 6 8,496° 8,517 3718,433° 8,422 8 9,985 9,979 6,779 6,779 10 3731,430 1,417 5,117 5,112 12 2,831 2,833 3,426 3,422 14 4,222 4,223 1,710° 1,708
$^{12}{ m CO}_2 { m v}_1 + { m v}_2 + { m v}_3 - { m v}_2$	16 5,587 5,587 3709,975° 9,968 18 6,929 8,220° 8,207 20 8,252 8,247 6,427 6,421
$ \begin{array}{r} \nu_0 = 3723,208 \\ Q = 3723,181 \end{array} $	22 9,561° 9,540 4,620 4,612 24 3740,821 0,811 2,788 2,779
(11 ¹ 1)° — (01 ¹ 0)°	26 2,070 2,056 0,920 0,923 28 3,278 3699,047 9,043 30 4,497° 4,476 7,137 7,141
R(J) P(J) Obs. Calc,	30 4,497° 4,476 7,137 7,141 32 5,653 5,651 5,215 5,215 34 6,804 6,803 3,266 3,267
1 3724,751 4,751 3 6,270 6,268 3720,850 0,845 5 7,756 7,758 3719,244 9,236 7 9,225 9,224 7,618 7,603 9 3730,670 0,662 5,949 5,943 11 2,109° 2,075 4,256 4,258 13 3,461 2,547 2,546 15 4,827 4,821 0,815 0,808 17 6,169 6,155 3709,051 0,045 19 7,474 7,463 7,257 7,256 21 8,757 8,744 5,434 5,441 23 3740,000 0,000 3,595 3,601 25 1,267° 1,230 1,744 1,735 27 2,433 9,844 29 3,594 3,611 7,928 31 4,757° 4,762 3696,004° 5,986 33 5,878 5,887 4,013 4,018 35 6,983 6,983 6,989 3689,985 0,008 39 9,067° 9,106 7,960 7,965 41 1,479 1,233 8,070	36 7,927 7,929 1,275° 1,296 38 9,067° 9,033 9,312 9,302 40 3750,103° 0,114 3687,285 7,285 42 1,142° 1,171 5,246 5,246 44 2,203 3,180 3,188 46 3,220 3,213 1,092 1,101 48 4,198 4,201 3678,965° 8,996 50 5,155 5,163 6,858 6,868 52 6,099 6,106 54 7,019 7,025 2,549 56 7,910 7,919 58 8,786 8,795 60 9,647° 9,646 62 3760,445° 0,475 64 1,276 1,283 66 2,061 2,069 68 2,805 2,832 70 3,572 3,574 72 4,288 4,295 74 4,985 4,995 76 5,674 78 6,328
45 2,093 1,662° 1,688 47 3,023° 3,036 9,546 49 3,929 3,954 3677,376° 7,379	$^{12}\mathrm{CO}_2\mathrm{v}_1+\mathrm{v}_3$
51 4,839 4,846 5,172° 5,188 53 3755,717 5,713	$v_0 = 3714,757$
55 6,556 6,554 57 7,354 7,370	R(J) P(J) Obs. Calc.
59 8,149 8,160 61 8,911 8,924 63 9,647° 9,664 65 3760,371° 0,378	0 3715,529 5,531 2 7,055 7,061 3713,195 3,190 4 8,547 8,564 1,607° 1,598

6 3720,048 0,042 3709,975° 9,979 8 1,489 1,497 8,327° 8,337 10 2,919 2,924 6,672 6,669	36 3736,566° 6,542 3679,984 0,006 38 8,063
12 4,315 4,326 4,976 4,976 14 5,696 5,704 3,250 3,258 16 7,051° 7,057 1,516 1,515	$^{12}\mathrm{CO_2}\nu_1 + 2\nu_2 + \nu_3 - 2\nu_2$
18 8,381 8,384 3699,754° 9,748	$v_0 = 3692,396$
22 3730,961 0,962 6,147 6,138 24 2,178° 2,214 3,292 3,297	R(J) Obs. Calc. Obs. Calc.
26 3,440 3,441 2,427 2,430 28 4,648 4,642 0,540 0,540 30 5,820 5,819 3688,614 8,625 32 6,966° 6,973 6,682 6,687 34 8,108 8,100 4,721 4,725 36 9,212 9,204 2,740 2,739 38 3740,289 0,283 0,731 0,729 40 1,319° 1,338 3678,694 8,697 42 2,390° 2,369 6,635 6,640 44 3,348° 3,375 4,565 4,561 46 4,376° 4,359 2,462 2,459 48 5,325 5,318 0,333 2,335 50 6,259 6,254 3668,186 0,187 52 7,177 7,167 6,012 6,019 54 8,049° 8,066 3,827 3,827 56 8,935° 8,923 1,615 1,614 58 9,763 9,767 3559,380 9,380 60 3750,603 0,590 7,114 7,125 62 1,390 1,388 4,849 4,849 4,849 4,849 4,849 4,849 4,849 4,849 4,4849 4,449 5,066° 5,060° 5,060° 5,060° 5,060° 5,060° 5,060° 5,060° 5,060° 5,060° 5,060° 5,060° 7,00	0 3,169 2 4,691 0,826 6 3697,633 7,642 3687,583 7,593 8 9,069 5,928 10 3700,455° 0,465 4,232 12 1,829 2,509 2,505 14 3,169 0,747 16 3704,485 4,464 3678,965 8,958 18 5,739 5,733 7,133 7,137 20 6,987° 6,972 5,293 5,286 22 8,179 3,412 3,404 24 9,360° 9,354 1,479 1,491 26 3701,491 0,498 3669,531 9,546 28 1,612 7,547° 7,573 30 2,704 2,693 5,771 5,568 32 3,579° 3,743 3,517° 3,532 34 4,769° 4,763 1,483 1,467 36 5,571 5,752 3659,380° 9,372 38 6,711 7,248 7,247 40 7,638 5,093
72 5,066° 5,060 74 5,717° 5,731 76 6,374° 6,381 78 7,022	$v_0 = 3675,110$
80 7,625 7,642	R(J) P(J) Obs. Calc.
$\begin{array}{c} ^{12}\mathrm{CO_2} \ 2 \ \nu_1 + \nu_3 - \nu_1 \\ \\ \nu_0 = 3711,438 \\ \hline \\ R(J) & \text{Obs.} & \text{Calc.} \\ \hline \\ Obs. & \text{Calc.} & \text{Obs.} & \text{Calc.} \\ \hline \\ 0 & 2,216 \\ 2 & 3713,759^{\circ} \ 3,750 \\ 4 & 5,272 & 5,263 \\ 6 & 6,753 \\ 6 & 6,753 \\ 8 & 8,235 & 8,222 \\ 5,048 \\ 10 & 9,680 & 9,670 \\ 12 & 3721,092^{\circ} \ 1,095 \\ 14 & 2,506 & 2,500 \\ 3,893 & 3,883 \\ 16 & 3,893 & 3,883 \\ 8,317 & 8,312 \\ 18 & 5,252 & 5,244 \\ 6,570 & 6,575 \\ 20 & 6,584 \\ 22 & 7,898 & 7,903 \\ 3,036 & 3,038 \\ 24 & 9,200 & 1,275^{\circ} \ 1,238 \\ \end{array}$	0 5,841 1 6,567 2 7,288 3673,590° 3,632 3 8,003 2,921° 2,884 4 8,713 2,132 2,133 5 9,417 1,353 1,375 6 3680,104 0,117 0,612 7 0,811 9,844 8 1,490 1,500 3669,062 9,071 9 2,185 2,184 8,292 10 2,863 7,547° 7,509 11 3,537 3,535 6,720 6,720 12 4,218° 4,204 5,926 13 4,867 5,120 5,127 14 5,525 5,523 4,314 4,323 15 6,172 6,176 3,517 3,513 16 6,822 2,686 2,697 17 7,474 7,464 1,875 1,879

25 26 27 28 29 30 31 32 33 34 35 36 37	3691,806 1,813 2,414 3,010 3,603° 3,601 4,186 4,768 3695,355 5,346 5,917 6,483 7,044 7,601	3656,010 5,131 4,262 3,387 1,650 3649,877	5,998 5,138 4,274 3,402 2,528 1,648 0,765 9,875 8,981 8,082 7,179 6,271 5,358 4,441	27	3659,579 3661,915° 3,097 5,298 6,375	3,096 4,216 5,309 6,374 7,412	3625,545 $3,705$ $1,861$ $3619,960$	5,524 3,702 1,853 9,978 8,081 6,150 4,197 2,219 0,214 8,181 6,122
38 39 40 41		3,504 2,552° 0,733?	1,662		\	$Q_0 = 36$ $Q = 36$	39,181	
42		,	9,788		(1	1 ¹ 1)c —	(01 ¹ 0) ^c	
	1800 1 2.5		2		R(J)	Calc.	Obs. P(
	$v_0 = 36$		V_2	1 3 5	3640,726 2,176°	0,723 2,236 3,723	3636,821°	5 205
2	(12 ² 1) ^c — R(J) Obs. Calc.	P(,	J) Calc.	7 9 11 13 15	3650,735	5,181 6,612 8,015 9,390 0,737	1,895° 0,208 3628,481 6,733 4,967	3,566 1,900 0,206 8,484 6,736
2 4 6 8 10 12	3,840 5,348 3646,828 6,829 8,296° 8,284 9,711	3638,373° 3,422	6,731 5,080 3,401	17 19 21 23 25 27 29	2,063 3,357 7,073°	2,057 3,348 4,612 5,848 7,056 8,235	3617,6120	4,959 3,155 1,324 9,466 7,580
14 16 18 20 22	1,113 2,487 3653,820° 3,835 5,151° 5,156 6,427° 6,449 7,716° 7,714 8,953	3629,964 2,764	1,696 9,965 8,208 6,424 4,614 2,775	29 31 33 35 37	8,236 9,389 3660,515 1,639° 2,665° 3,714	9,388 0,512 1,609	5,673 3,726 1,754 3609,752° 7,740 5,692°	5,669 3,727 1,761 9,766 7,745 5,697
24 26 28 30 32	8,953 0,165 1,348 2,503 3,628	3617,111° 3,194	0,911	39 41 43 45 47	4,726 7,575° 8,509°	4,730 5,715 6,673 7,603	3,611 1,576° 3599,382 7,210° 5,038°	3,622 1,519 9,392 7,237
34 36 38 40	4,727 5,797 3666,823 6,838 7,850	3607,116°	1,184 9,158	49 51	9,347° 3671,037 1,807	9,380 0,226 1,045 1,837 2,601	2,030	2,847
	(12 ² 1) ^d —	(02 ² 0) ^d		59 61 63	3,393° 4,081°	3,337 4,046		
2	R(J) Obs. Calc. 4,598	Obs. P(J	Calc.	0.5	, , , , , , , , , , , , , , , , , , ,	4,728		
3 5 7 9	6,092		9,160 7,548		(11	11)d	(01,0)q	
11 3	7,560 9,001 3650,421° 0,416		5,909 4,244 2,552		R(J) Obs.		Obs. P(.	
13 15 17	1,797 1,805 3,165 3,166 4,500		0,835 9,091 7,320	2 4 6	3641,492 3,007 4,481	1,490 2,995 4,475	3637,585° 6,042 4,394°	6,012

$^{12}{ m CO}_2$ 2 ${ m v}_2$ $+$ ${ m v}_3$	26 7,896	6,944
$v_0 = 3612,810$	26	4,995 3,017
R(J) Obs. Calc. Obs. P(J) Calc.	34 2,265 36 3,281 38 4,266 3554,805	8,969
0 3613,581 3,585	38 4,266 3554,805	6,901 4,802
2 5,120 5,119 3611,244 1,244 4 6,633 6,631 3609,670 9,656 6 8,113 8,120 8,064 8,046	$^{13}C^{16}O^{18}O \ \nu_1 + \nu_3$	
8 9,580 9,589 6,420 6,415 10 3621,035 1,035 4,766 4,761	$v_0 = 3587,510$	
12 2,457 2,459 3,083 3,087 14 3,860 3,862 1,389 1,391 16 5,243 5,242 3599,668 9,673	R(J) Obs. Calc. Obs.	P(J)
16 5,243 5,242 3599,668 9,673 18 6,590 6,599 7,930 7,933		Calc.
20 7,949 7,935 6,174 6,171 22 9,253 9,247 4,379 4,387 24 3630,541 0,538 2,579 2,582 26 1,809 1,804 0,754 0,754 28 3,044 3,048 3588,900 8,903	0 8,240 1 8,966 2 9,684 3586,063 3 3590,410 0,396 4 1,090 1,104 5 1,823 1,804 3,762 6 2,500 3,015	6,774 6,031 5,283 4,529 ° 3,768
30 4,276 4,270 7,042 7,031 32 5,467 5,468 5,143 5,138	6 2,500 3,015 7 3,178° 3,189 2,226	3,003 2,231
34 6,650° 6,642 3,215° 3,220 36 7,795 7,792 1,281 1,281 38 8,922 8,920 3579,321 9,319	7 3,178° 3,189 2,226 8 3,872 3,872 1,439 9 4,538 4,549 0,693	1,454 0,670
38 8,922 8,920 3579,321 9,319 40 3640,025 0,024 7,326 7,334	10 5,260° 5,221 3579,893	9,881 9,085
40 3640,025 0,024 7,326 7,334 42 1,093° 1,102 5,322 5,326 44 2,160 2,156 3,291 3,294	11 5,889 5,885 9,093 12 6,550 6,545 8,291 13 7,199 7,455	8,284
42 1,093° 1,102 5,322 5,326 44 2,160 2,156 3,291 3,294 46 3,187 3,187 1,238 1,240 48 4,194 4,191 3569,158 9,163	13 7,199 7,465 14 7,846 6,663 15 8,487 5,849	6,664
50 5,161° 5,170 7,086° 7,060 52 6,131 6,125 4,948 4,935 54 7,072° 7,053 2,766° 2,785 56 7,962 7,956 0,615 0,611	16 9,101° 9,122 5,008	
54 7,072° 7,053 2,766° 2,785 56 7,962 7,956 0,615 0,611	17 9,752 4,187 18 0,376 19 0,993 2,519	3,353 2,510
58 8,870 8,832 3558,416 8,413 60 9,688 9,682 6,190	19 0,993 2,519 20 3601,576° 1,605 1,664 21 2,210 0,811	1,664
62 3650,545 0,504 3,947 3,941 64 1,300 1,687° 1,668	21 2,210 0,811 22 2,792° 2,810 3569,956 23 3,403	0,809 9,949
64 1,300 1,687 1,668 66 2,068 3549,376 9,368 68 2,824 2,809 7,044	24 3,979 3,989 8,2250 25 4,571 7,344	9,084
70 4,693	24 3,979 3,989 8,225° 25 4,571 7,344 26 5,137 5,146 27 5,715 5,548	7,333 6,450
$^{12}\text{CO}_2 V_1 + 2 V_2 + V_3 - V_1$	28 6 277 4 622	4,664
$v_0 = 3589,609$	30 7,391 7,389 31 7,934 4,6328	3,764 2,856
R(J) P(J)	31 3,534 32 8,472 33 9,004 34 9,532	1,944
Obs. Calc. Obs. Calc.		0,099 9,167
0 0,382 2 1,906 8,041 4 3,402 6,444	36 0,560 0,566	8,231 7,288
4 3,402 6,444 6 3594,885 4,867 4,818	38 1,576	5,384
8 6,303 3,162	40	4,424 3,456
12 9,095 9,087 3579,760 9,763 14 0,435	42	2,484
16 3601,741 1.753 6 247	44	0,521 9,530
18 3,041 4,438 4,445 20 4,280° 4,300 2,614 22 5,529 0,758 0,754	45 46	8,534 7,530 6,521
24 6,727 8,864	47 48 3546,516	6,521 5,506

$ \begin{array}{c} ^{12}\text{CO}_2 \ 3 \ \nu_2 + \nu_3 - \nu_2 \\ \\ \nu_0 = 3580,295 \\ Q = 3580,258 \\ \\ (03^11)^c - (01^10)^c \\ \\ R(J) \text{Obs.} \text{Calc.} \\ 0\text{bs.} \text{Calc.} \\ 0\text{bs.} \text{Calc.} \\ 1 \ 3581,829 \ 1,840 \\ 3 \ 3,355 \ 3,363 \ 3577,929 \ 7,934 \\ 5 \ 4,864 \ 4,862 \ 6,320 \ 6,332 \\ 7 \ 6,347 \ 6,338 \ 4,707 \ 4,706 \\ 9 \ 7,783 \ 7,792 \ 3,056 \ 3,058 \\ 11 \ 9,220 \ 9,222 \ 1,380 \ 1,387 \\ 13 \ 3590,637 \ 0,628 \ 3569,695 \ 9,693 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15 2,006 2,012 7,969 7,975 17 3,374 3,372 6,239 6,236	$v_0 = 3571,105$
19 4,718 4,709 4,477 4,473 21 6,037° 6,023 2,706° 2,688	R(J) $P(J)$
23 7,317 7,313 0,884 0,879	Obs. Calc. Obs. Calc.
25 8,884 8,579 3559,054 9,048 27 9,815° 9,823 7,196 7,194 29 3601,033 1,043 5,311 5,317 31 2,241 2,239 3,428° 3,418 33 3,411 3,411 1,501 1,496 35 4,571 4,560 3549,550 9,550 37 5,675° 5,684 7,581 7,581 39 6,769° 6,785 5,595 5,591 41 7,902° 7,861 3,573 3,576 43 8,914 1,541 1,539 45 9,944 9,943 3539,481 9,479 47 3610,950 0,947 7,427° 7,396 49 1,927 1,926 5,259° 5,290 51 2,873 2,881 3,147° 3,160 53 3,812 0,991° 1,007 55 4,699 4,718 3528,829 8,832 57 5,599 6,632 59 6,455 4,390° 4,410	2 3,279 3 3,993 4 4,701 3568,107° 8,124 5 5,403 7,354° 7,365 6 3576,113° 6,099 6,600 7 6,791 6,789 5,836 5,828 8 7,455° 7,474 5,041° 5,052 9 8,155 7,153 4,266 4,270 10 8,811 8,825 3,479° 3,482 11 9,493 9,492 2,689 12 3580,160° 0,153 1,889 13 0,807 1,076° 1,082 14 1,477 1,457 0,300° 0,271 15 2,119 2,102 3559,463 9,454 16 2,740 2,739 8,644 8,631 17 3,372 7,808 7,803 18 3,995 3,997 6,960° 6,968 19 4,607 4,617 6,162° 6,130
$(03^{1}1)^{d} - (01^{1}0)^{d}$	20 5,230 5,311° 5,282 21 5,836 5,839 4,444 4,432
R(J) Obs. Calc. 2 3582,611 2,612 2578,722 8,725 4 4,131 4,130 7,139 7,134 6 5,628 5,631 5,525 5,524 8 7,107 3,891 3,892 10 8,563 8,563 2,233 2,241 12 3590,002 0,001 0,573 0,569 14 1,415 1,416 3568,875 8,877 16 2,813 2,810 7,155 7,163 18 4,189° 4,184 5,434 5,430 20 5,530 5,537 3,683 3,676 22 6,870 6,871 1,905 1,902 24 8,169 8,180 0,124° 0,108 26 9,485° 9,468 3558,293 8,292 28 3600,734 0,736 6,453 6,455 30 1,980 1,982 4,617° 4,599 32 3,212° 3,207 2,724° 2,721 34 4,428° 4,409 0,830 0,823 36 5,591 4,589 3548,900 8,902	22

44 3,222 45 3532,235 2,228 46 1,220 1,228 47 0,227 0,222 48 3529,231 9,210 49 8,188 8,191 50 7,167	34 3576,771° 6,780 3523,147 3,152 36 7,946 1,214 38 9,093° 9,090 3519,261 9,255 40 0,213 7,280 7,276 42 1,314 5,270 5,276 44 2,394 3,252 3,256 46 1,216 48 3509,177° 9,155 50 7,073
$^{12}\text{CO}_2$ 4 $\nu_2 + \nu_3 - 2 \nu_2$	$(04^21^{\mathrm{d}} - (02^20)^{\mathrm{d}}$
$v_0 = 3568,185$	` ` ´
P(J) Obs. P(J) Calc.	R(J) P(J) Obs. Calc.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3555,887° 5,902 3550,496° 0,457 5 7,398 7,409 3,553 8,853 7 8,864° 8,893 3547,211° 7,226 9 0,355 5,578 3,905 3,907 13 3,227 3,213 2,216 2,215 15 4,591° 4,611 0,503 0,502 17 6,008° 5,983 3538,768 8,766 19 7,354° 7,335 6,972° 7,007 21 8,683 8,665 5,259° 5,230° 23 9,982 9,972 3,409 3,428 25 1,258 1,607 29 3573,751 3,762 7,897 7,898 31 5,002° 4,981 6,011 6,011 33 6,178 4,096 4,104 35 7,351 2,143° 2,174 37 8,523° 8,503 0,225 0,223 39 9,633 3518,245 8,250 41 3580,774°
$ \overset{\circ}{Q} $ 3552,724 (04°1)° — (02°0)°	$^{13}{ m CO}_2$ 2 ${ m v}_2$ $+$ ${ m v}_3$
R(J) · P(J) Obs. Calc. Obs. Calc.	$v_0 = 3527,705$
	R(J) P(J) Obs. Calc.
2 3554,143° 5,141 4 6,651 6,658 3549,669° 9,658 6 8,152° 8,154 8,045 8,042 8 9,627 9,627 6,411° 6,405 10 3561,076° 1,078 4,702° 4,745 12 2,512 2,507 3,064 14 3,919 3,915 1,363 1,361 16 5,284° 5,300 3539,637 9,636 18 6,663 7,879° 7,890 20 8,005 6,123 22 9,321 9,324 4,330 4,334 24 0,622 2,520 2,523 26 3571,898 1,897 0,675° 0,691 28 3,150 3528,829° 8,838 30 4,382 6,957 6,963 32 5,592 5,070 5,068	0 3528,486 8,481 2 3530,019 0,020 3526,141 6,140 4 1,540 1,541 4,557 4,556 6 3,048 3,045 2,959 2,956 8 4,530 4,531 1,339 1,338 10 6,000 5,998 3519,702 9,702 12 7,443 7,448 8,044 8,048 14 8,881 8,880 6,365 6,377 16 3540,296 0,294 4,688 4,689 18 1,684 1,690 2,987 2,982 20 3,067° 3,066 1,261 1,258 22 4,430 4,426 3509,518 9,516 24 5,768 5,766 7,758° 7,756 26 7,088 7,088 5,983 5,978 28 8,384 8,391 4,177° 4,183

70 1,052 2,080 2,072	$^{13}CO_{2} \ 3 \ \nu_{2} + \nu_{3} - \nu_{2}$ $3 \ \nu_{1} - \nu_{2}$ $\nu_{0} = 3498,719$ $(03^{11})^{c} - (01^{10})^{c}$ $(30^{00}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
18CO ₂ V ₁ + 2 V ₂ + V ₃ - V ₁ V ₀ = 3517,300 R(J) Obs. Calc. Obs. Calc. 0 8,073 2 3519,578° 9,603 5,734 4 3521,105° 1,110 6 2,585 2,595 3512,560 2,536 8 4,055 4,055 0,855° 0,903 10 5,487 5,492 12 6,905 3507,537° 7,565 14 8,294° 8,295 15 9,656 9,662 16 9,656 9,662 17,565 18 3531,006 1,005 2,385 20 2,331 2,325 0,612 22 3,620 3,619 8,816 24 4,872° 4,891	21 4,807 1,391 23 6,241° 3479,661 25 7,666 7,984° 7,290 27 9,115 6,288 5,555° 29 3520,563 4,604 3,777 31 0,852° 2,929 1,950 33 3,507° 1,301 0,105 35 4,995 3,304 3469,725? 8,228 37 6,451 7,903? 6,337 39 7,921 5,651 6,337? 4,418 41 6,820 2,542 43 7,921 0,512 45 9,031 3458,488 47 6,465° 49 3531,155 4,435° 51 2,167 2,390° 53 0,336° 55 3448,179° 57 6,080°
26	(03 ¹ 1) ^d — (01 ¹ 0) ^d R(J)

34 3523,397 3,408 36 4,654 38 5,883 5,883 40 7,091 7,093 42 8,294° 8,283 44 9,456 9,454 46 3530,618° 0,607 48 1,728° 1,740 50 2,852 52 3,931 3,946 54 5,018 56 6,072 58 60 62	3469,725 9,755 7,923° 7,898 6,026 6,023 4,114 4,131 2,268° 2,221 0,295 0,293 3458,349 8,347 6,398° 6,384 4,435° 4,401 2,390° 2,400 0,336° 0,382 3448,344° 8,344 6,301° 6,290 4,218° 4,212 2,119	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$v_0 = 34$		R(J) P(J) Obs. Calc. Obs. Calc.
R(J)	P(J) Obs. Calc.	0 2,975 2 3484,519 4,518 3480,654 0,629 4 6,040 6,043 3479,008° 9,045 6 7,542 7,553 7,450 7,443
0 1,081 1 1,808 2 3492,545 2,531 3 3,270 3,248 4 3,963° 3,962 5 4,670 6 5,376 5,373	9,613 3488,930° 8,872 8,125 7,376 6,620 5,854 5,861	6 7,542 7,553 7,450 7,443 8 9,045 5,827 5,825 10 3490,520 0,522 4,195 4,191 12 1,966 1,980 2,546 2,541 14 3,424 3,423 0,861 0,873 16 4,846 3469,205 9,189 18 6,250 6,254 7,503 7,488 20 7,652 7,643 5,787 5,770
7 6,083 6,073 8 6,768 9 7,465 7,457 10 8,151 8,143 11 8,820° 8,822 12 9,506 9,498 13 0,169	5,089° 5,097 4,334 4,327 3,563 3,554 2,765° 2,777 1,986° 1,993 1,199° 1,206 0,439° 0,414	22 9,029 9,017 4,020° 4,036 24 0,370 2,283 26 1,707 0,512 0,516 28 3503,036 3,026 3458,752 8,732 30 4,327 6,942 6,928 32 5,607 5,116 5,108
14 3500,832 0,835 15 1,508 1,496 16 2,158 2,152 17 2,800 2,805 18 3,449 3,451 19 4,092	9,617 8,815 8,009 7,199 3476,383 6,383 5,563	34 6,885 6,874 3,289° 3,273 36 8,116 1,398° 1,416 38 9,342 3449,567° 9,543 40 0,548 7,691? 7,652 42 3511,756° 1,735 5,751° 5,744
20 4,731 21 5,365 5,361 22 5,990	4,736 4,737 3,911 3,908 3,081 3,075	$^{18}\mathrm{CO_2}$ 4 $\mathrm{v_2^2} + \mathrm{v_3} - 2 \mathrm{v_2^2}$
23 6,614 6,612 24 7,220 7,228 25 7,841	2,235 2,235 1,383 1,391 0,537° 0,542	$ \begin{array}{r} v_0 &= 3473,675 \\ Q &= 3473,640 \end{array} $
26 27 9,031 9,051 28 9,647	9,689 3468,832 8,829	$(04^21)^c - (02^20)^c$
29 3510,232 0,240 30 0,855° 0,826	7,966 7,096 7,098 6,230° 6,226	R(J) Obs. Calc. Obs. Calc.
31 1,410 32 1,987 33 2,560° 2,558 34 3,124 35 3,680 3,686 36 4,242	5,360 5,347 4,463 3,572 3,575 2,681 2,683 1,788 1,785 0,881 0,881	2 3475,986 5,997 4 7,521 3470,537° 0,514 6 9,008 9,026 8,904 8 0,513 3467,280 7,277 10 1,980 3,639 5,630
36 4,242 37 4,792 38 5,316 5,337 39 5,860 5,877 40 6,411	0,881 0,881 3459,970 9,973 9,063 9,060 8,147 8,142 7,216° 7,218	12 3483,421 3,428 3,965 14 4,857 2,280 16 6,275 6,268 0,578 18 7,652 7,660 3458,860 8,857 20 9,032 7,132 7,118

22 24 26 28 30 32 34 36 38	3490,392 1,720 4,322 8,151° 9,321°			3,582 1,788 9,974 8,142 6,292	15 17 19 21 23 25	3484,135 5,580° 6,961 8,331 9,707	9,772 1,249 2,706 4,146 5,565 6,965 8,348 9,711 1,055 2,380 3,686	3466,443° 3,118 1,445 3459,726 8,000 6,256 2,692 0,879°	8,093 6,456 4,800 3,125 1,432 9,719 7,989 6,240 4,473 2,687 0,883
3 5	R(J) Obs. 3476,726°	Calc. 6,761	Obs. P(0220)d	Ćalc.	29 31 33 35 37 39		4,973 6,242 7,491 8,721 9,933 1,126	3449,051° 7,202° 5,341° 3,470°	9,060 7,220 5,361

TROISIÈME CHAPITRE

ANALYSE VIBRATIONNELLE

A. Compléments sur le ¹²CO₂

Pour l'analyse des niveaux de vibration de la molécule de ¹²CO₂ (Courtoy 1957a), nous avons pu faire intervenir les termes du 3e degré pour compléter la formule habituelle permettant d'obtenir les niveaux d'énergie à partir du niveau le plus bas. Ces différences correspondent aux transitions principales. La formule devient :

(1)
$$G_0(v_1v_2 l v_3) = \sum \omega_i^o v_i + \sum x_{ij}^o v_i v_j + g_{22} l^2 + \sum y_{ijk} v_i v_j v_k i \le j \le k$$

Une formule analogue sans les indices o fournit les niveaux d'énergie en partant du minimum d'énergie :

(2) G
$$(v_1v_2 l v_3) = \sum \omega_i (v_i + \frac{d_i}{2}) + \sum x_{ij} (v_i + \frac{d_i}{2}) (v_j + \frac{d_j}{2}) + g_{22} l^2 + \sum y_{ijk} (v_i + \frac{d_i}{2}) (v_j + \frac{d_j}{2}) (v_k + \frac{d_k}{2})$$

où di... indiquent le degré de dégénérescence.

Le terme g_{22} l^2 des formules 1 et 2 comprend le terme $-\mathbf{B}_v$ l^2 de l'énergie de rotation et varie donc légèrement, comme \mathbf{B}_v , avec les niveaux de vibration. Ces variations sont cependant négligeables.

Les formules 1 et 2 sont valables pour toutes les formes isotopiques du CO₂. Les coefficients doivent être modifiés suivant des relations dont nous parlerons plus loin.

Le passage entre les formules 1 et 2 se fait par les relations suivantes que l'on trouve en développant la formule 2. Les termes g_{22} et y_{ijk} restent les mêmes.

$$\begin{split} & \omega_1 = \omega_1 + x_{11} + x_{12} + \frac{1}{2}x_{13} + \frac{3}{4}y_{111} + y_{112} + \frac{1}{2}y_{113} \\ & + y_{122} + \frac{1}{4}y_{133} + \frac{1}{2}y_{123} \\ & \omega_2^0 = \omega_2 + 2x_{22} + \frac{1}{2}x_{12} + \frac{1}{2}x_{23} + 3y_{222} + \frac{1}{4}y_{112} + y_{122} \\ & + y_{223} + \frac{1}{4}y_{233} + \frac{1}{4}y_{123} \\ & \omega_3^0 = \omega_3 + x_{33} + \frac{1}{2}x_{13} + x_{23} + \frac{3}{4}y_{333} + \frac{1}{4}y_{113} + \frac{1}{2}y_{133} \\ & + y_{223} + y_{233} + \frac{1}{2}y_{123} \\ & x_{11}^0 = x_{11} + \frac{3}{2}y_{111} + \frac{1}{2}y_{113} + y_{112} \\ & x_{22}^0 = x_{22} + 3y_{222} + \frac{1}{2}y_{122} + \frac{1}{2}y_{223} \\ & x_{33}^0 = x_{33} + \frac{3}{2}y_{333} + \frac{1}{2}y_{133} + y_{233} \\ & x_{12}^0 = x_{12} + 2y_{122} + y_{112} + \frac{1}{2}y_{123} \\ & x_{13}^0 = x_{13} + y_{113} + y_{133} + y_{123} \\ & x_{23}^0 = x_{23} + 2y_{223} + y_{233} + \frac{1}{2}y_{123} \end{split}$$

L'analyse vibrationnelle a été faite précédemment (Courtoy 1957a) pour la molécule $^{12}\mathrm{CO}_2$ et il n'est pas nécessaire d'y revenir.

TABLEAU 3 ${\it Constantes \ de \ vibration \ du \ ^{12}C^{16}O_2}$

(par rapport au minimum d'énergie suivant la formule 2)

ω_1	1354,91	ω_2	673,00	. ω ₃	2396,49
x_{11} x_{12} y_{111} y_{112} y_{113} y_{123}	3,75 3,65 0.13 0,08 0 0,02	$x_{22} \\ x_{13} \\ y_{222} \\ y_{122} \\ y_{223} \\ \mathcal{E}_{22}$	0,63 19,37 0,01 0,07 0 0,775	$x_{33} \\ x_{23} \\ y_{333} \\ y_{133} \\ y_{233}$	—12,63 —12,53 0,015 0,07 0,01

Nous reprenons seulement dans le tableau 3 les constantes de la formule 2 (avec les corrections signalées comme erratum après la publication) car nous en aurons besoin pour comparer les valeurs obtenues pour les différentes formes isotopiques du CO₂.

Nous reprenons aussi au tableau 4 les niveaux d'énergie de vibration du 12CO₂. Nous avons conservé l'ensemble des valeurs calculées pour les niveaux d'énergie perturbés telles qu'elles ont été publiées dans notre travail précédent (Courtoy 1957a). Si on veut utiliser les constantes du terme de perturbation suggérées par l'examen systématique (Courtoy et Passau 1958) et différant légèrement de celles qui ont été utilisées dans le travail cité, on n'obtient pas une meilleure concordance avec les valeurs expérimentales. Par suite de nouvelles mesures, certaines de celles-ci ont subi de petites corrections afin d'assurer plus de cohésion entre elles. Ces modifications sont de quelques centièmes de cm⁻¹ sauf pour le groupe 16°1, 24°1, et 32°1 où la correction s'élève à 0,16 cm⁻¹. L'examen des différentes bandes partant des niveaux 02º0 et 10º0 a montré que la différence qui avait été admise entre ces deux niveaux devait être trop faible d'environ 0,05 cm⁻¹. La nouvelle valeur proposée par Stoicheff (1958) pour le niveau 02º0 va dans ce sens et nous l'avons adoptée. Les niveaux 02²2, 06²1 et 14²1 ont pu être ajoutés au tableau publié précédemment.

 ${\rm TABLEAU~4}$ Niveaux d'énergie de vibration du ${\rm ^{12}C^{16}O_{2}~(cm^{-1})}$

0440	2671.00		0.000	
0110	2671,88		2672,8 e	0.00
0510	3004,06	1 2101 25	3004,08 °	0,02
13 ¹ 0	3322,40 / 3348,07 }	3181,35	2220.25.0	0.15
2110	3350,42	3500,46	3339,25 °	0,15
0530	3329,37	3241,48	3502,0 e 3241,5 e	
1330	3355,04	3442,93	3442,3 e	
0550	3341,00	(3772,73	3341,80 °	
0201	3656,20	(3612,87	3612,81	0,06
1001	3671,49	3714,82	3714,76	0,06
0600	3982,80	3792,45	5/17,70	0,00
14 ⁰ 0	4013,34	3942,15		
2200	4021,20	4063,97		
$30^{0}0$	4005,94	4224,71	4224,1 e	
$06^{4}0$	3595,20	3898,65	,-	
1440	4025,74	4122,29	4122,7 °	
0311	4308,74	4247,75	(4247,69)	0,06
1111	4329,70	4390,69	(4390,61)	0,08
0401	4958,64	4853,62	4853,58	0,04
12 ⁰ 1	4985,01	4977,69	4977,79	0,10
2001	4987,34	5099,68	5099,62	0,06
0421	4961,74	4888,04	[4888,00]	0,04
1221	4988,11	5061,80	[5061,77]	0,03
0112	5315,72	/ 5000 00	5315,70	0,02
08 ⁰ 0 16 ⁰ 0	5302,48	5022,09		
2400	5341,98	5197,14		
32 ⁰ 0	5360,08	5329,94		
4000	5356,44	5475,47		
0511	5330,40 / 5609,06 /	5666,74	(5175.05)	0.02
13 ¹ 1	5640,58	5632,71	(5475,05)	0,03
2111	5648,70	5790,55	(5632,75) (5790,57)	-0.04 -0.02
0222	5958,48	(5770,55	(5958,52)	0,02 0,04
0601	6256,96	(6075,96	6075,93	0,03
1401	6293,37	6227,91	6227,88	0,03
2201	6307,02	6347,95	6347,81	0,14
3001	6297,47	6503,00	6503,05	-0,05
06^21	6260,06	6103,75	[6103,65]	0,10
1421	6296,47	6288,48	[6288,49]	-0,01
2221	6310,12	1 6474,42	[6474,56]	-0.14
0003	6972,49		6972,49	0
0711	6905,50	(6688,20	(6688,15)	0,05
1511	6946,54	6863,65	(6863,52)	0,13
2311	6965,46	7023,84	(7023,64)	0,20
3111	6961,82	7203,63	(7203,83)	-0,20
0113	7602,45	/ =====================================	(7202,46)	0,01
08 ⁰ 1 16 ⁰ 1	7551,64	7284,05	5460.05	
2401	7597,05 1	7460,98	7460,37	0,61
3201	7620,98	7594,81	7593,54	1,27
4001	7623,09	7735,10	7734,30	0,80
10 1	7602,72	\ 7920,54		

0203	8229,65	8192,57	8192,62 f	0,05
$10^{0}3$	8256,91	8293,99	8294,01 f	-0,02
0313	8857,25	8803,25	(8803,35) f	0,10
1113	8890,13	8944,13	(8944,23) f	0,10
04^{03}	9482,21	9389,02	9389,02 f	0
$12^{0}3$	9520,54	9517,01	9517,00 f	0,01
20^{0} 3	9534,67	9631,39	9631,38 f	0,01
$00^{0}5$	11496,43		11496,43 f	0
$02^{0}5$	12703,87	12672,36	12672,28 f	0,08
$10^{0}5$	12743,32	12774,86	12774,73 f	0,09

Les valeurs expérimentales mises entre parenthèses ou entre crochets sont obtenues en ajoutant 667,40 ou 1335,16 à la valeur expérimentale de la transition partant du niveau 01¹0 ou 02²0.

- ^a Rossmann, Rao et Nielsen 1956
- b Stoicheff 1958
- c Benedict 1957
- d Plyler, Blaine, et Tidwell 1955
- e Taylor, Benedict et Strong 1952
- f Herzberg et Herzberg 1953

B. Analyse vibrationnelle pour la molécule ¹³CO₂

Comme nous l'avons signalé plus haut, la théorie prévoit, pour les différentes formes du CO₂, certaines relations entre les constantes correspondantes de la formule (2). Pour les molécules symétriques $^{12}\text{C}^{16}\text{O}_2$, $^{13}\text{C}^{16}\text{O}_2$, $^{14}\text{C}^{16}\text{O}_2$, la relation de passage dépend de l'expression

(3)
$$f^{2} = \frac{m_{0} \left(1 + \frac{2m_{0}^{*}}{m_{c}^{*}}\right)}{m_{0}^{*} \left(1 + \frac{2m_{0}}{m_{c}}\right)}$$

avec l'indice * pour une des deux formes isotopiques, habituellement la moins commune. Dans le cas des trois premières formes isotopiques envisagées (oxygène 16 partout), la formule devient :

$$f^2 = \frac{1 + \frac{32}{m_c^*}}{1 + \frac{32}{m_c}}$$

Pour la substitution ¹²CO₂, ¹³CO₂ qui nous intéresse directe-

ment maintenant, en prenant 12 C = 12,0038 et 13 C - 13,0076 on trouve f = 0.97154.

Les constantes ω_i de la formule (2) pour $^{12}\text{CO}_2$ ont été reprises au tableau 3. Les constantes correspondantes du $^{13}\text{CO}_2$ doivent être ω_1 , $f\omega_2$, $f\omega_3$.

On peut obtenir les valeurs pour les x_{ij} en assumant les relations (Herzberg 1945 p. 229):

$$\frac{x_{i\,i}^*}{x_{ij}} = \frac{\omega_i^* \, \omega_i^*}{\omega_i \, \omega_j}$$

proposées par Dennison. Bien que n'ayant pas été prouvées en rigueur, elles semblent donner d'excellents résultats. Nous verrons plus loin que pour le CO_2 ces formules simples donnent des résultats très proches de la réalité, et qu'il existe des relations plus précises encore mais beaucoup plus complexes. Ces formules simples suffiront ici pour nous aider à préciser les constantes de vibration du $^{13}\mathrm{CO}_2$. Les constantes d'anharmonicité du $^{13}\mathrm{CO}_2$ sont alors, en fonction de celles du $^{12}\mathrm{CO}_2$: x_{11} , fx_{12} , fx_{13} , f^2x_{22} , f^2x_{33} , f^2x_{23} . La relation pour g_{22} est probablement beaucoup plus complexe.

En ce qui concerne les termes du 3e degré en y, la précision n'est pas suffisante pour que nous tenions compte de la substitution isotopique. Dans ce cas, nous adoptons donc pour le ${}^{13}\mathrm{CO}_2$ les mêmes valeurs que pour le ${}^{12}\mathrm{CO}_2$. (tableau 3).

Pour la substitution $^{12}\text{CO}_2$, $^{14}\text{CO}_2$, avec $^{14}\text{C} = 14,0077$, on trouve f = 0,94656, et on peut utiliser les relations ci-dessus. Nous y reviendrons p. 102.

Nous verrons plus loin les modifications à apporter pour les autres substitutions isotopiques.

Nous passons maintenant à l'examen des résultats expérimentaux en vue de déterminer ces constantes.

La détermination expérimentale des niveaux d'énergie de vibration est faite par l'analyse de l'ensemble des raies de rotation pour chaque bande d'absorption. Dans le cas du CO₂, on peut utiliser la formule suivante, où certains termes secondaires ont été négligés :

$$R(J) + P(J) - 2v_0 + 2B' - 2(B'' - B')J(J+1) + 2(D'' - D')J^2(J+1)^2$$

Quand les différentes valeurs sont indiquées en fonction de $J(J+1)$, l'ordonnée à l'origine vaut $2v_0 + 2B'$, et il est assez facile d'obtenir une valeur assez approchée de B' pour préciser v_0 .

En général pour augmenter la précision, on diminue l'échelle nécessaire en ajoutant le terme 2A J (J+1) où A est un nombre voisin de (B"—B') et la formule devient

(5)
$$R(J) + P(J) + 2AJ(J+1) = 2v_0 + 2B' - 2(B''-B'-A)J(J+1) + 2(D''-D') J^2 (J+1)^2$$

Ces valeurs expérimentales ne répondent aux formules (1) et (2) que lorsqu'il n'y a pas de résonance Fermi. Dans le cas des différentes formes isotopiques du CO_2 , il se fait que le niveau d'énergie 02°1 a la même symétrie que le niveau 10°0, et les deux niveaux ont des énergies qui sont plus ou moins proches. Il peut y avoir résonance, et, dans le cas du CO_2 , le terme d'interaction est particulièrement important. Pour le CO_2 il y a, de même, résonance pour toutes les harmoniques ou combinaisons impliquant v_1 ou un nombre de fois v_2 supérieur au nombre quantique l. Il peut y avoir de la sorte 2, 3, 4,... niveaux en résonance. Les bandes d'absorption sont dites en résonance Fermi si un des deux niveaux de la transition répond aux conditions indiquées. Pour ces groupes de niveaux, et par extension de bandes, en résonance nous utiliserons fréquemment les termes diade, triade, tétrade, pentade.

Dans le cas du $^{13}\text{CO}_2$, parmi les bandes observées et analysées, seules les bandes $3\,v_3$ et $v_2 + 3\,v_3 - v_2$ sont exemptes de ce phénomène de résonance et répondent à la formule (1).

La valeur de v_3 est connue aussi et Benedict (1957) indique 2283,48. On a donc les relations :

$$\omega_3^0 + x_3 + y_{333} = 2283,48$$

3 $\omega_3^0 + 9 x_{33}^0 + 27 y_{333} = 6784,14$

et, si on admet $y_{333} = 0.015$ comme pour ${}^{12}\text{CO}_2$, on trouve :

$$\omega_3^0 = 2295,24$$
 $x_{33}^0 = -11,775$

Par ailleurs la différence entre la bande $3v_3$ et la bande chaude $v_2 + 3v_3 - v_2$ est donnée par $3x_{23}^0 + 3y_{223} + 9y_{233}$, et vaut -35,094. Si nous admettons de nouveau les valeurs acceptées pour le $^{12}\text{CO}_2$, soit $y_{223} = 0$ et $y_{233} = 0,01$, on obtient :

$$x_{23}^0 = -11,73$$

On peut encore obtenir d'autres renseignements au moyen

des groupes de bandes en résonance Fermi, car la somme des v_0 n'est pas perturbée.

Si on prend un groupe de transitions $\Sigma - \Sigma$ en résonance Fermi et partant du niveau fondamental, et les bandes chaudes correspondantes (transitions $\Pi - \Pi$ partant du niveau 01^{10}), on peut faire la somme des différences de fréquence

$$\Sigma \left[(v_1, v_2 + 1, l = 1, v_3) - (01^10) - (v_1, v_2, l = 0, v_3) \right]$$

Après simplification, il ne reste plus que les termes en y et le terme x_{23}^0 qui sont connus, et, en plus, l'expression $x_{12}^0 + 4 x_{22}^0$. Celle-ci peut donc être déterminée. En utilisant la diade (02°1, 10°1) et la triade (04°1, 12°1, 20°1) on trouve $x_{12}^0 + 4 x_{22}^0 = 0$,70et 0,72 en très bon accord. Nous admettons par exemple

$$x_{12}^0 + 4 x_{22}^0 = 0.71$$

Les diade, triade, et tétrade Σ peuvent alors fournir les constantes x_{13}^0 et x_{11}^0 .

Les valeurs trouvées par Stoicheff (1958) pour les raies Raman $2v_2$ et v_1 sont 1266,03 et 1369,90. Ces valeurs ne sont pas les v_0 , mais les maximums des branches Q, et nous avons vu dans l'étude du $^{12}\text{CO}_2$ que pour $2v_2$ la branche Q était décalée d'environ 0,10 cm $^{-1}$ vers les hautes fréquences par suite de la différence B' — B" (cette différence étant pratiquement nulle pour v_1). Pour $^{13}\text{CO}_2$, la résonance Fermi est moins intense, ainsi que nous l'avons déjà signalé, et les valeurs B' de ces deux bandes sont donc plus écartées. Les différences v_0 — Q doivent donc être plus importantes. Pour trouver la valeur de v_0 lors de transitions Σ — Σ du CO_2 obtenues dans des conditions expérimentales ordinaires, il semble qu'on puisse admettre que la branche Q correspond à peu près à la position de la raie Q (18). On obtient donc

$$v_0 = Q - (B' - B'') J (J + 1)$$
 $J = 18$

Pour les niveaux $02^{0}0$ et $10^{0}0$, en adoptant les valeurs calculées pour les B' (v. tableau 24), on a 1266,03 - 0,23 = 1265,80 et 1369,90 + 0,17 = 1370,07.

La somme donnée par l'expression :

(6)
$$\omega_1^0 + x_{11}^0 + y_{111} + 2 \omega_2^0 + 4 x_{22}^0 + 8 y_{222}$$

serait 2635,87 et la différence 104,27 avec une certaine approximation.

L'analyse des bandes infrarouges trouvées dans nos spectres et partant de ces deux niveaux donne les valeurs très voisines des précédentes 1265,81 et 1370,05 avec la même somme et une différence un peu plus faible 104,24.

Si nous représentons par A l'expression 6 on obtient pour les différentes polyades

$$10^{0}1,...$$
 $A + x_{13}^{0}$ $= 2617,00$ $10^{0}3,...$ $A + 3 x_{13}^{0}$ $= 2579,47$ $20^{0}1,...$ $3A + 2 x_{11}^{0} + 3 x_{13}^{0}$ $= 7844,12$ $30^{0}1,...$ $3A + 4 x_{11}^{0} + 3 x_{13}^{0}$ $= 7836,76$

Aucun système de valeurs pour les inconnues ne répond parfaitement à l'ensemble de ces équations. Nous savons que x_{11}^0 doit normalement avoir la même valeur que pour $^{12}CO_2$, soit — 3,63. Si on admet cette valeur on trouve alors :

$$x_{13}^0 = -18,80$$

et A – 2635,87 en parfait accord avec la valeur à laquelle nous étions arrivé ci-dessus.

Pour continuer l'analyse vibrationnelle nous devons tenir compte de la résonance Fermi dont la théorie a été faite par Fermi (1931) puis par Dennison (1932, 1940). Taylor, Benedict, et Strong (1952) dans une étude sur les constantes de vibration du ¹²CO₂ ont montré qu'il fallait que le terme de perturbation dépende des différents nombres quantiques de vibration. La théorie de cet effet secondaire a été faite par Amat et Goldsmith (1955), et dans notre étude précédente sur ¹²CO₂ (Courtoy 1957a) nous avons trouvé plus commode de mettre leur formule sous la forme suivante:

(7)
$$W' = -\frac{1}{2} (W_0 - \lambda_1 \nu_1 - \lambda_2 \nu_2 - \lambda_l l - \lambda_3 \nu_3) [(\nu_2 + 2)^2 - l^2]^{1/2} \nu_1^{1/2}$$

si les deux niveaux en résonance ont les nombres quantiques v_1, v_2 , l, v_3 et v_1 —1, v_2 + 2, l, v_3 respectivement.

Dans notre travail sur $^{12}C^{16}O_2$, nous étions arrivé à la conclusion que, dans ce cas au moins, λ_l devait être nul ou très petit. Une étude plus complète de cet effet vient d'être faite par Maes (1958) (¹) et il trouve, de fait, $\lambda_l = 0$. La formule, sous sa forme

⁽¹) Nous remercions S. Macs et G. Amat de nous avoir communiqué ces résultats avant leur publication.

plus complète, s'écrit:

(7bis) W' =
$$-\frac{1}{2}$$
 [W_e - $\lambda_1 v_1$ - $\lambda_2 (v_2+2)$ - $\lambda_3 (v_3+\frac{1}{2})$] $[(v_2+2)^2 - l^2]^{1/2} v_1^{-1/2}$

La formulation est donc un peu différente de ce que nous avions supposé (Courtoy 1957b). Par comparaison entre les deux formules, on obtient :

$$W_{e} = W_{0} \, + 2 \, \lambda_{2} \, + \tfrac{1}{2} \, \lambda_{3}$$

Nous indiquerons par W_i les niveaux perturbés et par W_i^0 les niveaux non perturbés tels qu'ils seraient obtenus par la formule I. D'après les méthodes générales du calcul des perturbations les W_i sont les racines des équations

$$\begin{pmatrix} W_{1}^{0} - W & W_{12}' & 0 & 0 & \dots \\ W_{12}' & W_{2}^{0} - W & W_{23}' & 0 & \dots \\ 0 & W_{23}' & W_{3}^{0} - W & W_{34}' & \dots \\ 0 & 0 & W_{34}' & W_{4}^{0} - W & \dots \end{pmatrix} = 0$$

Dans le cas de deux niveaux en résonance, on trouve :

$$W = \frac{1}{2} (W_1^0 + W_2^0) \pm \frac{1}{2} \sqrt{(W_1^0 - W_2^0)^2 + 4 W'^2}$$

avec la relation bien connue (Herzberg 1945)

(9)
$$(W_1 - W_2)^2 = (W_1^0 - W_2^0)^2 + 4 W'^2$$

Nous commencerons par l'étude des niveaux $(10^{0}v_{3}, 02^{0}v_{3})$ ainsi que nous l'avons fait pour $^{12}CO_{2}$. Dans ce cas, la formule 7 donnant le terme de perturbation devient :

$$W' = -(W_0 - \lambda_1 - v_3 \lambda_3)$$

Pour pouvoir utiliser la formule 8 il faut connaître la différence entre les niveaux non perturbés $W_1^0 - W_2^0$. Dans la série des diades envisagées, on a :

(10)
$$W_1^0 - W_2^0 = d_1 + v_3(x_{13}^0 - 2x_{23}^0 + y_{113} - 4y_{223}) + v_3^2(y_{133} - 2y_{233})$$

où d_1 est la différence pour les niveaux $10^{\circ}0$, $02^{\circ}0$. Pour $^{13}CO_2$, la relation 10 devient :

$$W_1^0 - W_2^0 = d_1 + 4.66v_3 + 0.05v_2^2$$

mais d_1 est en général une grandeur difficile à déterminer.

Dans l'étude de la molécule ¹²CO₂, nous avons choisi la valeur 9,5 car d'après les différents essais tentés, c'était celle qui semblait le mieux rendre compte des niveaux d'énergie de vibration et des constantes de rotation B_i. Il y a en effet, comme on le sait, une relation entre les constantes de rotation et les niveaux d'énergie de vibration. Récemment Nielsen et Rao (1956) (²) ont proposé de partir de là pour déterminer les termes d'interaction. Comme nous l'avons indiqué déjà, le mieux nous semble de mettre le fait en évidence de la manière suivante. Dans le cas des diades en résonance Fermi, on peut établir la relation suivante (Courtoy 1957b)

(11)
$$\frac{W_1 - W_2}{W_1^0 - W_2^0} = \frac{B_1^0 - B_2^0}{B_1 - B_2}$$

où les valeurs marquées ° sont de nouveau les valeurs non perturbées. On peut alors en principe utiliser la formule 11 pour déterminer $W_1^0 - W_2^0$ et, de là, passer à la formule 8 pour obtenir le terme de perturbation. La difficulté, comme nous l'avons signalé dans la note citée, vient du fait que souvent il ne sera pas plus facile d'obtenir $B_1^0 - B_2^0$, et, pour le CO_2 du moins, cette méthode ne semble guère précise.

Pour la série qui nous intéresse maintenant, on trouve d'après la formule 22 où les α et γ sont les coefficients des termes du premier et second degré indiquant la variation des constantes B avec les nombres quantiques de vibration,

$$B_1^0 - B_2^0 = 2 \alpha_2 - \alpha_1 + \gamma_{11} - 4 \gamma_{22} + \nu_3 (\gamma_{13} - 2 \gamma_{23})$$

Les termes en γ doivent être faibles et peuvent être négligés en première approximation.

Les différences entre les valeurs non perturbées peuvent, en général, être établies avec une bonne précision absolue, mais la précision relative de la différence $B_1^0 - B_2^0$ peut être faible. De plus il est difficile de déterminer avec certitude la différence $2\alpha_2 - \alpha_1$. Dans ces conditions, la détermination de la valeur de d_1 reste délicate.

Pour la molécule $^{13}\text{CO}_2$, les diades avec $v_3=1$ et 3 donnent les relations

(11bis)
$$\frac{105,17}{d_1 + 4,71} = \frac{2\alpha_2 - \alpha_1}{-130}$$
 $\frac{107,84}{d_1 + 14,43} = \frac{2\alpha_2 - \alpha_1}{-153,5}$

(2) v. aussi Rao et Nielsen 1956.

où les constantes de rotation et les α sont comptés en 10^{-5} cm⁻¹. Si nous admettons les valeurs $\alpha_2 = -70$ et $\alpha_1 + 2$ $\alpha_2 = -20$ qui résultent de l'analyse des résultats expérimentaux, comme on le verra plus loin, on obtient $\alpha_1 = 120$ et donc 2 $\alpha_2 - \alpha_1 = -260$. On aurait alors pour d_1 les valeurs 47,87 et 49,21. Si on adoptait la valeur $\alpha_2 = -68$ on aurait $\alpha_1 = 116$ et 2 $\alpha_2 - \alpha_1 = -252$, ce qui conduirait pour d_1 à 49,54 et 51,26.

On constate que de petites différences de α_2 conduisent à des différences notables sur d_1 et que, de plus, les valeurs obtenues ne sont pas concordantes.

Si on admet les valeurs des constantes obtenues pour le ¹²CO₂, on peut obtenir des résultats plus précis pour cette différence. En effet,

$$W_1^0 = \omega_1^0 + x_{11}^0 + y_{111} = \omega_1^0 - 3,50$$

La constante ω_1^0 peut être légèrement affectée par la substitution isotopique par suite des termes x_{12} et $\frac{1}{2}$ x_{13} (v. p. 86). Le second passe de -9,68 à -9,44. La seule inconnue est le terme x_{12}^0 . La valeur calculée par effet isotopique est 3,55, mais d'après les valeurs obtenues pour $x_{12}^0 + 4 x_{22}^0$ cette valeur semble être un peu trop grande et nous adoptons provisoirement 3,50 qui doit être plus proche de la valeur réelle. L'effet isotopique pour cette constante serait donc de 0,15 et pour $^{13}\text{CO}_2$ on aura donc $\omega_1^0 = 1345,04 + 0,24 - 0,15$ soit 1345,13 et donc $W_1^0 = 1341,63$.

Puisque la somme $W_1^0 + W_2^0$ vaut 2635,87 comme on l'a vu plus haut, on trouve $W_2^0 = 1294,24$ et

$$d_1 = W_1^0 - W_2^0 = 47,39$$

Cette valeur est de l'ordre de grandeur des valeurs indiquées précédemment mais doit être plus précise. Les relations 11 bis fourniraient alors $2\alpha_2-\alpha_1=-262$ et -267. La valeur moyenne serait -265, assez voisine de celle qui résultait des résultats expérimentaux. Avec $\alpha_1+2\alpha_2=-20$ on aurait $\alpha_2=-71$ au lieu de -70. La différence est faible et la valeur trouvée pour d_1 semble donc acceptable aux deux points de vue.

Cette différence d_1 étant fixée, nous pouvons revenir aux équations 8 et 9 et fixer les termes de perturbation. On trouve

Ces trois équations se résolvent très bien avec

$$W_0 - \lambda_1 = 46,42$$

 $\lambda_3 = 0,74$

Pour établir les dernières constantes de vibration il faut examiner les diades II en résonance Fermi. Les différences entre les niveaux non perturbés sont

$$W_{1}^{0} - W_{2}^{0} = d_{1} + (x_{12}^{0} - 4 x_{22}^{0} + y_{112} + y_{122} - 18 y_{222}) + v_{3} (x_{13}^{0} - 2 x_{23}^{0} + y_{123}) + v_{3}^{2} (y_{133} - 2 y_{233}) = 47,06 + (x_{12}^{0} - 4 x_{22}^{0}) + 4,68 v_{3} + 0,05 v_{3}^{2}$$

et le terme de perturbation de la formule 7 avec $\lambda_l = 0$ devient

$$\mathbf{W'} = -\sqrt{2}(\mathbf{W}_0 - \lambda_1 - \lambda_2 - \nu_3 \lambda_3) = -\sqrt{2}(46,42 - \lambda_2 - 0,74\nu_3)$$

Il y a donc deux inconnues $x_{12}^0 - 4 x_{22}^0$ et λ_2 .

La valeur expérimentale de la différence entre les niveaux perturbés est 140,46 pour les bandes 11¹1, 03¹1, En ce qui concerne les niveaux 11¹0, 03¹0 la détermination est moins facile. Les transitions partant du niveau 01¹0 ont été obtenues en Raman par Stoicheff (1958) qui trouve 1248,33 et 1388,47. Mais, ici, de nouveau, ce qui est observé ce n'est pas le v_0 mais le maximum de la branche Q. Lors des transitions $\Pi_u - \Pi_u$, on a deux séries de raies Q(J) pour les deux séries (03¹1^d) — (01¹0)^d et (03¹0)^c — (01¹0)^c par exemple (v. plus loin p. 121 l'analyse rotationnelle). Nous supposons que la raie Raman est la moyenne entre Q(18) et Q(19) qui, pour le CO_2 , doivent à peu près correspondre au maximum pour chaque série. En admettant la valeur de v_2 donnée par Benedict (1957) on trouve alors pour les niveaux 03¹0 et 11¹0 : 1248,23 + 648,52 — 1/2(0,268 + 0,142) = 1896,54 et 1388,47 + 648,52 + 1/2(0,068 + 0,239) = 2037,14.

Pour le niveau 11¹0, utilisant les spectres infrarouges, Benedict (1957) indique 2037,08, assez proche de la valeur obtenue ci-dessus. Si nous adoptons la valeur intermédiaire 2037,11, la différence entre les niveaux non perturbés est 140,57, et les relations deviennent (formule 9).

$$140,57^{2} = [47,06 + (x_{12}^{0} - 4 x_{22}^{0})]^{2} + 8(46,42 - \lambda_{2})^{2}$$

$$140,46^{2} = [51,79 + (x_{12}^{0} - 4 x_{22}^{0})]^{2} + 8(45,67 - \lambda_{2})^{2}$$

Nous avons supposé plus haut $x_{12} = 3,50$. D'après les relations

p. 86, on trouve $x_{12}^0 = 3,29$. Avec $x_{12}^0 + 4 x_{22} = 0,71$ (p. 92), on obtient:

$$x_{22}^0 = -0.64_5$$
 et $x_{12} - 4 x_{22}^0 = 5.87$.

Les relations précédentes deviennent :

$$140,57^2 = 52,93^2 + 8(46,42 - \lambda_2)^2$$

$$140,46^2 = 57,66^2 + 8(45,67 - \lambda_2)^2$$

On trouve $\lambda_2 = 0.38$ et 0.39.

A présent toutes les constantes de vibration peuvent être déterminées en admettant $v_2 = 648,52$. On les trouvera au tableau 5.

TABLEAU 5

Constantes de vibration du $^{13}\mathrm{C}^{16}\mathrm{O}_2~\mathrm{(cm}^{-1)}$

Formule 1

x_{11}^{0} x_{12}^{0}	1345,13	ω_2^0	648,37	ω_3^0	2295,24
$x_{11}^{0^{-}}$	-3,63	x_{22}^{0} x_{13}^{0}	0,64	$x_{33}^{0} \\ x_{23}^{0}$	-11,77 ₅
x_{12}^{0}	3,29	x_{13}^{0}	18,80	x_{23}^{0}	11,73
		200	0.79		

Formule 2

	Obs. a	Calc. b	Calc. c
ω_1	1354,91	1354,91	
ω_2	653,83	653,85	
ω_3	2328,22	2328,29	
x ₁₁	$-3,74_{5}$	$-3,74_{5}$	
χ_{22}	0,64	-0,60	0,60
x ₃₃	11,85	11,92	11,86
x ₁₂	3,50	3,55	3,53
x ₁₃	-18,89	-18,82	
x_{23}	-11,75	-11,83	-11,75

Les valeurs des y sont les mêmes que pour le $^{12}CO_2$ (tableau 3)

a Les valeurs indiquées « observées » pour la formule 2 sont déduites des valeurs précédentes par les relations de la p. 86.

[†] Ces valeurs calculées sont obtenues en partant des constantes du ¹²CO₂ par les relations p. 89-90.

^c Ces valeurs sont calculées en partant du ¹²CO₂ par Pliva (1958).

On a d'abord indiqué les constantes trouvées pour la formule 1 puis en dessous celles de la formule 2. Les valeurs dites expérimentales sont celles qui sont obtenues en partant des précédentes suivant

les relations de la page 86. En regard on a mis d'abord les valeurs calculées en partant des constantes du ¹²CO₂ suivant les relations de la page 89-90. On constate que l'accord est fort bon. La dernière colonne donne des valeurs encore meilleures, calculées suivant des formules plus précises par Pliva (1957).

Pour le calcul des triades, tétrades ou pentades en résonance nous avons besoin d'obtenir séparément la constante λ_1 . Il est de plus utile de contrôler la valeur de λ_2 qui paraît moins précise.

La meilleure manière nous semble celle que nous avons indiquée précédemment (Courtoy et Passau 1958) en utilisant les deux séries de relations : (3)

(12)
$$\Sigma w_i^2 = \Sigma w_i^{0_2} + 2 \Sigma w_{ij}^{\prime 2}$$

(13)
$$\Sigma' w_i w_j w_k = \Sigma' w_i^0 w_j^0 w_k^0 + \Sigma W_{ij}^{\prime 2} (w_i^0 + w_j^0)$$

où
$$w_i = \mathbf{W}_i - \frac{1}{n} \Sigma \mathbf{W}_i$$

$$w_i^0 = \mathbf{W}_i^0 - \frac{1}{n} \; \Sigma \mathbf{W}^0$$

 Σ' est la somme étendue à toutes les combinaisons ijk de trois indices parmi les n nombres.

En pratique ces formules donnent des relations linéaires entre λ_1 et λ_2 car on peut négliger les termes en λ^2 .

Les constantes de vibration utilisées précédemment ont été légèrement modifiées depuis l'article cité ci-dessus, mais cela n'entraîne pas grand changement pour les deux relations entre λ_1 et λ_2 correspondant à chaque polyade. Voici pour chaque polyade la valeur obtenue pour λ_1 et λ_2 :

	λ_1	λ_2
20°1,	0,126	0,358
2111,	0,123	0,354
30°1,	0,065	0,366

Afin de tenir compte du résultat donné par les diades (v. p. 98) nous adoptons $\lambda_2 = 0.37$ et pour λ_1 nous prenons la valeur moyenne qui coïncide avec la valeur obtenue pour ${}^{12}C^{16}O_2$ (Courtoy et Passau 1958) comme on devait le prévoir.

⁽³⁾ Ces formules sont équivalentes aux formules 3 et 4 de l'article cité (ou formules 9 et 10 de Woolley 1955), mais nous paraissent plus commodes.

Pour la triade 22²1,... la relation 12 donne des résultats très imprécis car on doit faire une différence entre des nombres presque égaux. La relation 13 indique :

$$\lambda_1 - 2,368 \ \lambda_2 = -0,773$$

Avec $\lambda_1=0.10$ et $\lambda_2=0.37$, on trouverait —0,776 en bon accord. Nous avons repris au tableau 6 l'ensemble des constantes du terme de perturbation. On constatera que les valeurs de λ_2 et λ_3 sont un peu plus faibles que celles que nous avions obtenues pour le $^{12}\mathrm{CO}_2$, comme on peut s'y attendre. La constante W_0 aussi est plus faible mais ici, comme nous l'avons déjà suggéré (Courtoy 1957b), un problème sérieux se pose car le décalage isotopique est beaucoup plus grand que ce qu'on devrait normalement prévoir. Nous reviendrons plus loin sur ce point.

TABLEAU 6

Coefficients du terme de perturbation de la résonance Fermi pour ¹³CO₂ (formule 7) (cm⁻¹).

W_0	46,52
λ_1	0,10
λ_2	0,37
λ_3	0,74

Si on adopte la formule plus complète, 7 bis, on a $W_e = 47,63,...$

Avec les formules 1, 7, et 8 et les constantes des tableaux 5 et 6 on peut calculer l'ensemble des niveaux perturbés. On trouvera au tableau 7 l'ensemble des niveaux d'énergie de vibration connus pour ¹³CO₂ avec les valeurs calculées correspondantes.

TABLEAU 7

Niveaux d'énergie de vibration du $^{13}C^{16}O_{\circ}$ (cm $^{-1}$)

Niveau	Valeur (calculée	Valeur	Différence
d'énergie	W ⁰	Wï	expérimentale	
$01^{1}0$ $02^{0}0$ $10^{0}0$ $02^{2}0$	648,52 1294,24 1341,63 1297,40	{ 1265,81 1370,05	648,52 a 1265,81 ₅ 1370,05	0 0 0
03 ¹ 0	1940,36	{ 1896,53	1896,54 b	0,01
11 ¹ 0	1993,29	2037,12	2037,11 b	0,01

TABLEAU 7 (suite)

0001	2283,48		2283,48 a	0
01^{10}	2920,28	(0.505.54	0.04
$02^{0}1$	3554,28	3527,75	3527,71	0,04
$10^{0}1$	3606,38]	3632,91	3632,88	0,03
0600	3869,16	3731,83		
$14^{0}0$	3937,15	3898,39		
2200	3982,98	4019,77		
3000	4006,23	4145,53	(4145,96) °	0
$03^{1}1$	4188,68 ({ 4147,24	(4147,24)	0
1111	4246,34	4287,77	(4287,70)	0,07
0401	4820,40	4748,00	4748,01	0,01
1201	4883,36	4887,26	4887,35	0,09
2001	4922,80	4991,29	4991,31	-0,02
0421	4823,56	4771,08	[4771,08]	0
1221	4886,52	4939,00	[4938,93]?	0,07
01^{12}	5168,60			
$05^{1}1$	5452,64	5356,99	(5357,00)	0,01
13 ¹ 1	5520,64	5519,89	(5519,93)	0,04
2111	5565,76	5622,25	(5622,25)	0
$06^{0}1$	6082,32	5951,46	5951,53	-0,07
1401	6155,10	6119,54	6119,56	0,02
2201	6205,64	6242,02	6241,93	0,09
3001	6233,52	6363,56	6363,58	0,02
0621	6085,48	5971,00	[5971,04]	-0,04
1421	6158,26	6155,46	[6155,50]?	0,04
2221	6208,80	6326,08	[6326,13]	0,05
0003	6780,15	,	6780,14	0,01
0711	6712,65	6552,80		
1511	6789,92	6736,65	(6736,68)	0,03
2311	6845,64 (6892,14	(6892,06)	0,08
3111	6879,32	7045,94	(7046,03)	0,09
0113	7393,57		(7393,57)	0
0801	7340,52	7142,00		
1601	7422,08	7332,24		
2401	7482,68	₹ 7482,33	7481,34	0,99
3201	7521,90	7600,93	7599,94	0,99
4001	7539,32	7748,99		
0203	8004,19	7981,17	7981,17	0
1003	8066,01	8089,03	8089,01	0,02
0313	8615,21	8578,36		
11 ¹ 3	8682,63	8719,48	(8719,40)	0,08
	, ,			

Les valeurs expérimentales mises entre parenthèses ou entre crochets sont obtenues en ajoutant 648,52 ou 1297,40 à la valeur expérimentale de la transition partant du niveau 01^{10} ou $02^{2}0$.

a) Benedict 1957

b) v. p. 97

c) Valeur approchée obtenue d'après la perturbation de Coriolis avec le niveau (03¹1)^c.

C. Niveaux d'énergie de vibration de la molécule 14CO2

Pour cette molécule, seules les bandes v_2 et v_3 sont connues et il n'est donc pas possible d'en déduire certaines constantes de de vibration de la molécule. Mais il est utile, dans le but que nous nous sommes proposé en commençant, de voir ce que l'on trouverait pour ces deux bandes en partant des constantes du $^{12}\mathrm{CO}_2$ et en appliquant les relations isotopiques (pp. 89-90). On trouvera au tableau 8 les constantes calculées pour la formule 2. De là

TABLEAU 8

Constantes de vibration calculées pour 14C16O2

ω_1	1345,91	ω_2	637,03	ω_3	2268,42
x_{11}	-3,75	x_{22}	0,56	x_{33}	-11,32
x_{12}	3,45	x_{13}	18,33	x_{23}	11,23

d'après les relations de la p. 86 on trouve facilement :

$$\omega_2^0 = 631,97 x_{22}^0 = -0,56
\omega_3^0 = 2236,77 x_{33}^0 = -11,25$$

et on peut alors comparer aux données expérimentales les valeurs déduites pour les fréquences d'absorption (en supposant $g_{22} = 0.79$ comme pour $^{13}CO_2$)

	Valeur Calc.	Nielsen et Lagemann (1954)	n Wilkinson (non publié)
v_2	632,21	632,20	
v_3	2225,53	2225,85	$2225,79_5 \pm 0,01$

On voit que l'accord est très satisfaisant.

D. Niveaux d'énergie de vibration de ¹²C¹⁸O₂ et ¹³C¹⁸O₂

Pour ces deux molécules, seule la bande v₂ du ¹²C¹⁸O₂ a été observée. Nous devons cependant calculer pour elles toutes les constantes de la formule 2 car nous en aurons besoin dans les sections suivantes.

Ces deux molécules sont encore symétriques et les relations de substitution restent simples. Mais, ici, il y a deux relations isotopiques (Herzberg 1945). La seconde donnant f_2^2 est la formule

déjà rencontrée (formule 3) et ici nous avons de plus

$$(14) f_1^2 = \frac{m_0}{m_0^*}$$

En prenant $^{18}O = 18,005$, on trouve:

On doit alors avoir, pour les molécules $^{12}C^{18}O_2$ et $^{13}C^{18}O_2$, en partant des molécules avec oxygène 16, f_1 ω_1 , f_2 ω_2 , et f_2 ω_3 . Les x_{ij} peuvent être obtenus en appliquant les relations générales 4. On trouvera au tableau 9 les constantes de vibration de la formule 2 calculées pour ces deux molécules. Pour les y, nous adoptons toujours les valeurs du $^{12}C^{16}O_2$.

On obtient alors pour ${}^{12}C^{18}O_2$ $\omega_2^0 = 657,00$ et $x_{22}^0 = -0,61$. En adoptant $g_{22} = 0,78$ on peut calculer v_2 .

Valeur calculée Observée (Eggers et Arends) (1957)
$$657,18$$
 658 ± 1

L'accord est de nouveau satisfaisant.

TABLEAU 9

Constantes de vibration calculées pour $^{12}\mathrm{C}^{18}\mathrm{O}_2$ et $^{13}\mathrm{C}^{18}\mathrm{O}_2$ (cm $^{-1}$)

120180

$egin{array}{c} \omega_1 \ x_{11} \ x_{12} \end{array}$	1277,25 —3,33 3,39	ω_2 x_{22} x_{13}	662,66 0,61 17,98	$w_3 \\ x_{33} \\ x_{23}$	235,66 —12,24 —12,15
		$^{13}\mathrm{C}^{18}\mathrm{O}_2$			
$\omega_1 \\ x_{11} \\ x_{12}$	1277,25 —3,33 3,25	$\begin{array}{c} \omega_2 \\ x_{22} \\ x_{13} \end{array}$	643,22 —0,62 —17,52	$\omega_3 \ x_{23} \ x_{23}$	2290,46 11,47 11,37

E. Niveaux d'énergie de vibration de la molécule 12C16O18O

Pour cette molécule, la symétrie est rompue et toutes les bandes sont actives en infrarouge. Eggers et Arends (1957) ont observé à faible résolution les bandes v_2 , $2v_2$, v_4 et v_3 . Dans nos

spectres nous avons pu identifier et analyser 5 autres bandes formant deux polyades en résonance.

Pour déterminer les niveaux de vibration de cette molécule on peut faire l'analyse des bandes comme pour le CO₂ ordinaire. Mais ici, puisque la symétrie est rompue, tous les niveaux de rotation sont occupés. On peut donc aussi utiliser la formule plus commode

$$(R(J-1) + P(J) = 2v_0-2(B''-B')J^2 + 2(D''-D') (J^4+J^2)$$

et en négligeant D"-D" devant B"-B' la formule devient :

(15)
$$R(J-1) + P(J) = 2v_0-2(B''-B') J^2 + 2(D''-D')J^4$$

Dans le cas de cette molécule, le niveau d'énergie W^0_{100} (v_1 non perturbé par la résonance Fermi) est inférieur au niveau W^0_{020} , ainsi que nous l'avons déjà signalé. Nous adoptons donc comme Eggers et Arends la dénomination particulière des niveaux expliquée à la page 15. Nos niveaux $04^{\circ}1$ et $20^{\circ}1$ sont donc intervertis par rapport à ceux de Goldberg (1954).

Si on cherche à calculer les constantes de vibration pour cette molécule en partant des molécules symétriques, on est amené à des formules assez compliquées. Nous supposerons ici que la variation de masse soit suffisamment faible pour qu'on puisse adopter la moyenne entre les valeurs des constantes pour $^{12}C^{16}O_2$ et $^{12}C^{18}O_2$ (v. Herzberg 1945 p. 231). On trouvera au tableau 10 la valeur des constantes de vibration ainsi obtenues pour $^{12}C^{16}O^{18}O$ et de manière analogue pour $^{13}C^{16}O^{18}O$.

TABLEAU 10

Constantes de vibration calculées pour ¹²C¹⁶O¹⁸O et ¹³C¹⁶O¹⁸O (Moyennes entre C¹⁶O₂ et C¹⁸O₂) (cm⁻¹)

	$^{12}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}$	¹³ C ¹⁶ O ¹⁸ O		¹² C ¹⁶ O ¹⁸ O	13C1(O18O
ω_1	1316,08	1316,08	ω_1^0	1306,70	1306,79
ω_2	667,83	648,53	$\omega_2^{\hat{0}}$	662,13	643,12
ω_3	2378,07	2309,34	ω_3^{0}	2344,03	2277,09
x ₁₁	3,54	3,54	x_{11}^{0}	-3,42	3,42
x_{22}	0,62	0,63	x_{22}^{0}	0,62	0,63
x_{33}	12,43	—11,66	x_{33}^{0}	—12,36	—11,59
x_{12}	3,52	3,37	x_{12}^{0}	3,31	3,16
x_{13}	18,67	18,20	x_{13}^{0}	18,58	-18,09
x_{23}	-12,34	11,56	x_{23}^{0}	12,32	11,54

On peut alors calculer les niveaux d'énergie non perturbés par la résonance Fermi (en supposant $g_{22}=0,77$). Ces valeurs se trouvent à la première colonne du tableau 11. Les valeurs expérimentales se trouvent en regard dans la 3ème colonne. Pour le niveau $00^{\circ}1$, la valeur expérimentale donnée par Eggers est certainement trop élevée pour être en accord avec les autres niveaux. Pour le niveau $01^{\circ}1$ 0 et pour la somme des niveaux en résonance les valeurs calculées sont un peu trop faibles, mais la différence n'est pas considérable et pour l'ensemble de la triade la différence n'est que $1,43 \text{ cm}^{-1}$, ce qui est très satisfaisant étant donné la manière dont nous avons dû procéder. Il ne semble pas que les règles isotopiques des sommes et des produits donneraient des résultats meilleurs.

TABLEAU 11 $\label{eq:linear} \mbox{Niveaux d'énergie de vibration du 12C16O18O$~(cm$^{-1}$)}$

Niveau	Valeur	Valeur observée	
d'énergie	Wo	W	
0110	662,29		663 ± 1 a
$10^{0}0$	1303,41	(1259,43	1259 ± 2 ª
0200	1321,86	1365,84	1367 ± 2 a
$00^{0}1$	2331,68	` '	2338 ± 3 a
1001	3616,58	(3570,73	3571,08
0201	3628,92	3674,77	3675,09
2001	4895,42	4790,52	4791,21
1201	4920.04	4904,49	4904,82
0401	4921,68	5042,13	5042,54

^a Eggers et Arends 1957.

Nous pouvons alors chercher à déterminer le terme de perturbation. Nous adoptons pour λ les valeurs

$$\lambda_1 = 0.10$$
 $\lambda_2 = 0.40$ $\lambda_3 = 0.75$

qui doivent être assez proches de la réalité. Dans ces conditions l'équation 9 appliquée aux diades $10^{\circ}0,...$ et $10^{\circ}1,...$ et les relations 12 et 13 appliquées à la triade $20^{\circ}1,...$ donnent pour W_0 les valeurs 53,31 52,49 52,44 et 52,91. Les deux valeurs du milieu sont certainement les plus précises et elles concordent assez bien. Nous admettons

$$W_0 = 52,50$$

ce qui nous permet de calculer les niveaux d'énergie perturbés que l'on trouvera au tableau 11.

De nouveau la valeur de W_0 est surprenante car elle est nettement plus élevée que celle obtenue pour la molécule $^{12}C^{16}O_2$, et nous reviendrons plus loin sur ce point.

F. Niveaux d'énergie de vibration de la molécule ¹³C¹⁶O¹⁸O

Nous avons trouvé et pu analyser dans nos spectres les 5 bandes correspondantes à celles du ¹²C¹⁶O¹⁸O. La détermination du centre de la bande se fait de la même manière.

Mais ici, comme pour ¹²C¹⁶O₂ et ¹³C¹⁶O₂, W⁰₁₀₀ est supérieur à W⁰₀₂₀, et nous adoptons donc la nomenclature ordinaire. Les constantes de vibration ont été calculées de la même manière que celles du ¹²C¹⁶O¹⁸O, en partant ici de celles du ¹³CO₂. Elles se trouvent au tableau 10. En partant de là on peut calculer les niveaux d'énergie non perturbés par la résonance Fermi (tableau 12). On constate que de nouveau les valeurs calculées sont un peu inférieures aux valeurs observées et à peu près dans le même rapport, soit environ 1,15 cm⁻¹ pour l'ensemble de la triade en résonance. L'erreur semble donc systématique mais elle est faible et nous considérons l'accord obtenu comme très satisfaisant.

TABLEAU 12

Niveaux d'énergie de vibration du ¹³C¹⁶O¹⁸O (cm⁻¹)

Niveau	· Valeur calculée		Valeur observée
d'énergie	W^0_{i}	W_i	
0110	643,29		
$02^{0}0$	1283,80	1244,93	
$10^{0}0$	1303,50	1342,37	
$00^{0}1$	2265,51	, ,	
$02^{0}1$	3526,25	(3490,05	3490,35
$10^{0}1$	3550,99	3587,19	3587,51
$04^{0}1$	4782,43	4691,68	4692,12
$12^{0}1$	4817,65	4814,26	4814,53
$20^{0}1$	4830,41	1 4924,55	4924,99

En prenant

$$\lambda_1 = 0.09$$
 $\lambda_2 = 0.36$ et $\lambda_3 = 0.74$

on peut appliquer la formule 9 à la diade et la formule 12 à la

triade. On trouve alors pour W_0 les valeurs 47,81 et 47,80 en excellent accord. La formule 13 ne peut pas donner de résultat précis car la valeur de w_2 est très faible. Nous adoptons

$$W_0 = 47,80$$

On peut alors calculer les niveaux d'énergie en résonance. Les valeurs indiquées au tableau 12 montrent que l'accord est de nouveau très bon.

Mais de nouveau, le terme de perturbation est supérieur à celui de ¹³CO₂, ce qui est surprenant.

G. Conclusions concernant l'effet isotopique sur les constantes de vibration et le terme de perturbation de la résonance Fermi.

L'accord obtenu, pour les constantes de vibration du $^{13}\mathrm{C}^{16}\mathrm{O}_2$, entre les valeurs calculées en partant du $^{12}\mathrm{C}^{16}\mathrm{O}_2$ et les valeurs déduites directement des niveaux d'énergie observés, est certainement remarquable. De même, les valeurs calculées pour les niveaux d'énergie de vibration des molécules $^{12}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}$ et $^{13}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}$ coïncident très bien avec les valeurs observées. Ce travail constitue donc une excellente confirmation pour les formules de l'effet isotopique sur les constantes de vibration du CO_2 .

Il y a cependant une exception et elle est d'importance. Il s'agit du terme de perturbation de la résonance Fermi. Voici, rassemblées ici, les valeurs obtenues pour la constante W_{ℓ} (formule 7 bis)

On admet de manière générale que le terme de perturbation de la résonance Fermi est directement lié au coefficient k_{122} du terme en q_1 ($q_{21}^2+q_{22}^2$) de la fonction potentielle en coordonnées normales sans dimensions. En première approximation la constante W_e de notre formule doit valoir $k_{122}/\sqrt{2}$. Or, ce coefficient k_{122} doit subir le même décalage isotopique que ω_2 et ω_3 (4). Suivant les indications de la p. 90 la valeur de W_e pour $^{13}\text{CO}_2$ devrait donc être 3 % plus faible que pour $^{12}\text{CO}_2$. Mais alors que l'effet

⁽⁴⁾ Ce fait nous a été confirmé par G. Amat et J. Pliva (communication privée).

isotopique est parfaitement observé pour toutes les constantes moléculaires et en particulier pour ω_2 et ω_3 ainsi qu'on peut le constater au tableau 5, il n'en est pas de même pour le terme de perturbation principal W_e qui passe de 52,51 à 47,63. Le décalage n'est pas de 3 % mais de 10 %!

Comme le terme de perturbation est obtenu assez indirectement, on peut se demander s'il ne s'agit pas d'une erreur d'interprétation. En fait, il est possible de montrer assez directement que le rapport isotopique des termes de perturbation doit être inférieur à 0.971, valeur prévue pour les coefficients k_{122} .

En effet il faut certainement admettre que W_{100}^0 (v_1 non perturbé) ne doit pas être modifié sensiblement par la substitution isotopique et d'autre part que la somme des énergies de vibration n'est pas modifiée par la résonance Fermi. Ces sommes pour les deux bandes en résonance (100 et 020) sont respectivement 2673,57 pour le $^{12}\text{CO}_2$ et 2635,87 pour $^{13}\text{CO}_2$ avec une différence d'environ 37,8 cm $^{-1}$. Dans ce cas W_{020}^0 doit donc diminuer de 37,8 cm $^{-1}$ et si d est la différence $W_{100}^0 - W_{020}^0$ pour $^{12}\text{CO}_2$, la différence correspondante pour $^{13}\text{CO}_2$ est d+37,8.

Si alors on suppose que le terme de perturbation pour ¹³CO₂ vaut 0,971 fois celui du 12CO2 (W'), on peut appliquer la relation 9 aux deux molécules. Les deux équations peuvent être résolues en fonction des deux constantes d et W' du 12CO2, ce qui est justement un des problèmes d'interprétation des spectres les plus difficiles à résoudre. Mais la seule valeur acceptable obtenue pour d est négative, ce qui voudrait dire que pour 12CO2 la valeur non perturbée W₁₀₀ est inférieure à W₀₂₀, or ceci serait en contradiction avec l'ensemble des autres résultats fournis par l'analyse des spectres de cette molécule. Il faudrait p. ex. que le coefficient x_{22}^0 soit beaucoup plus grand que ce qui résulte de l'analyse des niveaux de vibration; il faudrait aussi que, dans les diades en résonance, la constante de rotation du niveau d'énergie le plus bas soit inférieure à l'autre comme c'est le cas pour 12C16O18O (v. tableau 30). Pour obtenir une valeur de d positive il faut que le rapport isotopique pour les termes de perturbation soit inférieur à 0,945.

Nous observons le même décalage isotopique (9 %) pour l'autre substitution ^{12}C ^{13}C avec les molécules $^{12}C^{16}O^{18}O$ et $^{13}C^{16}O^{18}O$.

Par contre, en passant de $C^{16}O_2$ à $C^{16}O^{18}O$, la valeur de la constante W_0 augmente de 2,2 et 2,6 % alors que la constante

 k_{122} semble devoir diminuer d'à peu près cette valeur. Evidemment, les masses interviennent de manière compliquée dans ce rapport isotopique. Mais pour la substitution $^{12}C^{16}O_2$ $^{12}C^{18}O_2$ il doit diminuer suivant le rapport $^{(5)}$:

$$\left(\frac{16}{18}\right)^{\frac{3}{4}} \left(\frac{12 + 36}{12 + 32}\right)^{\frac{1}{2}} = 0,95616$$

soit une diminution de 4,4 % et on devrait donc s'attendre ici à une diminution égale à la moitié de cette valeur comme pour les autres constantes de vibration.

Il semble donc difficile d'admettre la relation simple de proportionnalité que l'on avait toujours supposée entre le terme de perturbation et cette constante de la fonction potentielle. La théorie de cet effet devra donc être réexaminée de près et il est probable que certains termes supérieurs de la fonction potentielle jouent un rôle plus important que l'on ne l'avait cru d'abord.

QUATRIÈME CHAPITRE

ANALYSE ROTATIONNELLE

- A. Détermination des valeurs expérimentales des constantes B et D
- 1. Molécules $^{12}\mathrm{C}^{16}\mathrm{O}_2$ et $^{13}\mathrm{C}^{16}\mathrm{O}_2$

L'énergie de rotation se combine avec l'énergie de vibration. Elle est donnée par :

(16)
$$F(J) = BJ(J+1) - DJ^2(J+1)^2$$

si on s'arrête aux deux premiers termes comme il semble qu'on puisse le faire ici. B est la constante de rotation directement liée au seul moment d'inertie I de la molécule par la relation :

$$B = \frac{h}{8 \pi^2 cI}$$

Avec les valeurs des constantes fondamentales données par Cohen,

(5) G. Amat. Communication privée.

Dumond, Layton et Rollet (1955) on trouve:

(17)
$$B = \frac{27,9889}{I}$$

si I est le moment d'inertie donné en 10-40g cm²

En assumant l'approximation de l'oscillateur harmonique, D est donné par

$$D = \frac{4B_e^3}{\omega_1^2}$$

où Be est donné par la formule 23.

Pour $^{12}\text{CO}_2$, la valeur calculée était 13,1 10^{-8}cm^{-1} , en bon accord avec la valeur expérimentale 13,5 10^{-8}cm^{-1} . Puisque les constantes ω_1 et B_e ne doivent pas être affectées par la substitution $^{12}\text{CO}_2$ et $^{13}\text{CO}_2$, nous devons retrouver ici la même valeur pour la constante D.

Comme pour ¹²C¹⁶O₂, dans le cas de la molécule ¹³C¹⁶O₂, symétrique, avec les deux oxygènes ayant un spin 0, seuls les niveaux symétriques peuvent être occupés (v. Herzberg 1945 p. 16).

Lors d'une transition, J", B" et D" indiqueront, comme d'habitude, les caractéristiques du niveau inférieur et J', B' et D' celles du niveau supérieur. Les nombres quantiques numérotant les raies d'une bande (tels p. ex. qu'ils ont été donnés dans la seconde partie) sont les nombres J" du niveau inférieur de la transition.

a) Transitions $\Sigma_u \leftarrow \Sigma_g$ partant du niveau fondamental.

En conséquence de ce que nous venons de rappeler ci-dessus, seuls les niveaux avec un J pair seront occupés dans les états Σ_g et ce sera le contraire pour les états Σ_u . Pour les bandes d'absorption partant d'un niveau Σ_g il ne peut y avoir de branche Q et pour les branches P et R toutes les raies avec un J impair manqueront dans les spectres.

Constantes du niveau fondamental.

Nous utilisons les différences combinatoires

(18)
$$\Delta_2 F''(J) = R(J-1) - P(J+1) = F''(J+1) - F''(J-1)$$

= $(4B''-6D'')(J+\frac{1}{2}) - 8D''(J+\frac{1}{2})^3$

où, dans notre cas du moins, le terme 6D" peut être négligé devant 4B".

Si nous les appliquons aux transitions partant du niveau fondamental et analysées dans ce travail, nous devons trouver les mêmes valeurs. On les trouvera au tableau 13. L'accord est en général très bon et montre en tout cas qu'il n'y a pas d'erreur de numérotation ni d'erreur systématique de mesure à l'intérieur d'aucune des bandes. La dernière colonne indique les valeurs moyennes qui ont été utilisées pour le calcul des constantes B_0 et D_0 . Pour établir ces moyennes, nous n'avons pas tenu compte des bandes $2\nu_1 + 4\nu_2 + \nu_3$ et $3\nu_1 + 2\nu_2 + \nu_3$ très faibles et dont les mesures sont certainement moins précises.

Fig. 30 — $\frac{\Delta_2 F''(J)}{J+\frac{1}{2}}$ en fonction de $(J+\frac{1}{2})^2$ permettant d'obtenir les constantes du niveau fondamental du $^{13}C^{16}O_2$.

La figure 30 indique les valeurs de ces différences secondes divisées par $J+\frac{1}{2}$, en fonction de $(J+\frac{1}{2})^2$. Dans ce cas, l'ordonnée à l'origine indique la valeur $4B_0$ et la pente permet le calcul de D_0 .

On trouve $D_0 = 13.7 \ 10^{-8} \text{cm}^{-1}$ en bon accord avec 13,1 valeur calculée et 13,5 valeur obtenue pour $^{12}\text{CO}_2$.

La constante de rotation B₀ vaut 0.39025 cm⁻¹. On en déduit

$$I_0 = \frac{27,9889}{0,39025} = 71,720 \ 10^{-40} g \ cm^2$$

D'où
$$r_0 = 1{,}1618_5 \pm 0{,}0001 \text{ A}$$

La valeur de B_0 est légèrement supérieure à celle obtenue pour $^{12}CO_2$. Ce sont seulement les valeurs pour le minimum d'énergie B_ℓ qui sont les mêmes, comme nous le verrons plus loin.

Constantes des niveaux supérieurs.

On pourrait utiliser la formule 5 pour calculer la différence B'' - B' et c'est en général la méthode la plus précise quand la différence D'' - D' est nulle. Mais ici, ce n'est généralement pas

, $\label{eq:tau_spectrum} \Lambda_2 F^{\prime\prime}(J) \mbox{ Transitions partant du niveau fondamental } 00^{\circ}0$

moyenne	2,340	5,464	8,582	11,707	14,827	17,951	21,070	24,194	27,312	30,430	33,552	36,664	39,790	42,914	46,027	49,138	52,252	55,373	58,490	61,592
5 V $_{1}$ + 3 V $_{3}$	337	475	و809	730°	8740	963	063	160°	311	4560	546	653	802	933	033	167°	307°			
2 1/2 3 1/3	306°	485	582	708	847	656	070	209	329	426	552	o I 69	790	915	046	156	261	3950	504	6350
$3 v_1 + 2 v_2 + v_3$		4440	604°	7150	8310	9580	.990	1790	3420	4690	5430	0699	8190	0696	000	0901	2520	3930	°605	5630
$2v_1 + 4v_2 + v_3$		4740		6780	8710	9120	0920	182°	294′	405°	5470	6580	0911	9310	9950	1340	2440		436°	
3 V ₈	344	463	581	269	821	946	073	185	296	425	565	663	786	910	038	144	268	374	5110	
$3 v_1 + v_3$	366	460,	,995	738°	8680	930	061	180	311	426	571	7180		887	011	138	259	376	487	290
$2 v_1 + 2 v_2 + v_3$	298°	482	592	713′	824	952	081	198	308	419	546	199	794	906	050	0660	265	377′	499	604
$_{\epsilon}$ V + $_{4}$ V $_{2}$ + $_{1}$ V	352	460	579	702	833	957	890	190	294	417	540	658	783	006	866	128	262	377	489	586
εν + ₈ ν θ		435°	009	701	808	943	087	2230	310	427	549	678	803	925	041	151	238	359	501	567°
$2 v_1 + v_3$	321	!	583,	717	8770	9240	990	205	2770	440,	268	,699	786	929	026	133	2970	3230	490	603′
$\epsilon_{V} + \epsilon_{V} + \epsilon_{V}$	333	434	572'	705'	823	955,	070	191	323	4510	550	,619	790	904	021	166°	251	378	477	594
$_{\epsilon}$ V $+$ $_{\epsilon}$ V 4	350	442	585	715	832	949	053	195	309	442	555	664	777	816	028,	124	228	355	468	575'
1 1 1 2	309	481	583,	703	827	950	073	196,	329'	439	538	650	790	930	050	134	242	396	491	
2 ٧ ۽ + ٧ ع	2 345	5,462	8,581	11,709	14,828	17,956	21,078	24,193	27,309	30,423	33,545'	36,672'	39,785	42,911′	46.009	49,130	52,246	55,369	58,493	61,589′
	<u> </u>	· m	5	7	6	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39

шодение	64,705 67,817 70,919 74,026 77,150 80,242	86,457 86,457 89,544 92,657' 95,740'	96,643 101,943' 105,822' 108,123'
εν ε + 1 v			
2 V ₂ + 3 V ₃	697′		
3 V ₁ + 2 V ₂ + V ₃			
$2v_1+4v_2+v_3$			
٤ ٧ ع			
$_{8}$ V $_{1}$ $_{4}$ V $_{8}$	802′		
$2 v_1 + 2 v_2 + v_3$	722 843 920' 037 165 260	355	
$_{8}$ V $+$ $_{4}$ V $_{4}$ $+$ $_{1}$ V	696 796 919 038 100° 296°	309° 466 533′	
εν + _ε ν 9			
εν + ₁ ν 2	698 800′ 920 019 159′ 214°	342 448 553	827
$v_1 + 2v_2 + v_8$	684 826 923 014' 151 241	337' 445 596°	936′
εν + ₈ ν 4	713 823 912 034 182° 256	383 448′ 558	
εν + 1.	695' 822 918 015 132' 225'	371' 463 531' 695' 743'	
2 V ₃ + V ₃	64,716 67,821′ 70,923 74,025 77,143′ 80,228	83,346 86, 89, 92,619' 95,736'	98,844 101,951' 105,022 108,123
	41 43 47 49 51	53 55 57 59 61	63 67 69

Les nombres marqués 'ou o sont moins précis par suite de la superposition d'une des deux raies avec une autre raie ou pour une difficulté lors des mesures. Les nombres marqués $^{\circ}$ n'ont pas été utilisés pour établir les moyennes. Les bandes 2 ν_{1} + 4 ν_{2} + ν_{3} et 3 ν_{1} $^{-}$ 2 ν_{2} $^{-}$ ν_{3} sont très faibles et les mesures des raies sont peu précises; elles n'ont pas été utilisées pour les moyennes. le cas et il n'est plus possible d'utiliser les méthodes graphiques habituelles. La formule 5 a été utilisée cependant pour déterminer la valeur de v_0 .

Pour déterminer les constantes B' et D' du niveau supérieur on pourrait utiliser chaque fois la différence seconde :

$$\Delta_2 F'(J) = R(J) - P(J) = F'(J+1) - F'(J-1)$$

$$= (4B'-6D') (J+\frac{1}{2}) - 8D'(J+\frac{1}{2})^3$$

où on trouve uniquement les constantes du niveau supérieur.

Pour diverses raisons, il nous a semblé préférable de procéder autrement. Les constantes du niveau fondamental ont pu être déterminées avec une bonne précision et elles peuvent être utilisées pour chercher les constantes du niveau supérieur d'après les relations générales

(19)
$$F'(J) = R(J-1) + F''(J-1) - v_0$$

 $F'(J) = P(J+1) + F''(J+1) - v_0$

οù ν₀ a été déterminé auparavant suivant la formule 5.

Cette méthode est utilisable même quand la bande est assez fragmentaire et que la méthode des différences ne serait guère applicable. De plus, elle nous semble donner des résultats plus précis. Les raies R(J—1) et P(J+1) donnent des valeurs de F'(J) qui doivent être en accord et éventuellement on peut faire la moyenne entre les valeurs obtenues, ce qui augmente la précision.

En divisant alors par J(J+1) on trouve :

(20)
$$\frac{F'(J)}{J(J+1)} = B' - D'J(J+1)$$

Fig. 31 — $\frac{\Gamma(J)}{J(J+1)}$ en fonction de J(J+1) donnant les constantes B et D du niveau 1201 pour $^{13}C^{16}O_2$.

Ces valeurs sont indiquées sur un graphique en fonction de J(J+1). L'ordonnée à l'origine indique directement B' et la pente donne la valeur de D'. On peut voir sur la figure 31 un exemple choisi dans les niveaux d'énergie de vibration moyens. On constate que la méthode permet d'obtenir les constantes B et D avec une bonne précision. Les valeurs trouvées pour la constante B sont les valeurs expérimentales du tableau 24. De leur côté les valeurs des constantes D ont permis de calculer les différences $D-D_0$ indiquées au tableau 26.

b) Transitions $\Sigma_u \leftarrow \Sigma_g$ partant des niveaux 02°0 et 01°0.

Ces bandes accompagnent les bandes principales à la manière des « bandes chaudes », mais comme le niveau inférieur est assez élevé, elles sont très faibles. Nous ne les avons pas analysées directement car elles sont en général assez fragmentaires et la mesure des raies est souvent peu précise.

Nous avons commencé par calculer la position des raies des différentes bandes en vue de faciliter l'identification. Le niveau supérieur est connu par les bandes principales. Pour les deux niveaux inférieurs, nous avons utilisé les valeurs des ν_0 discutés lors de l'analyse vibrationnelle et les constantes B et D calculées a priori d'après l'ensemble des constantes de la molécule. La comparaison avec les valeurs expérimentales a parfois montré un léger décalage constant, ce qui a entraîné les corrections de certaines valeurs des ν_0 dont nous avons parlé plus haut. Ces bandes ont donc été très utiles pour contrôler les valeurs obtenues et assurer plus de cohésion dans les mesures des différents groupes de bandes d'absorption.

c) Transition $\Pi_u \leftarrow \Sigma_g$

Nous avons obtenu dans nos spectres une transition de ce genre. La figure 32 en indique le schéma.

Tous les niveaux de rotation de l'état Π (nombre quantique de moment angulaire de vibration l=1) sont dédoublés suivant la formule

(21)
$$\Delta v = q J(J+1) - \mu J^2(J+1)^2$$

La constante q sera discutée p. 136, la constante p est en général négligeable, mais par suite de la résonance Fermi elle prend ici une valeur plus grande comme nous le signalerons plus loin.

En pratique, il y a avantage à considérer que pour chaque

niveau de vibration Π on a deux séries de raies de rotation, correspondant à deux valeurs différentes de B et éventuellement de D. Les notations varient considérablement suivant les auteurs. Nous reprendrons celles que nous avons choisies précédemment dans notre étude sur $^{12}C^{16}O_2$ (Courtoy 1957a) inspirées des notations utilisées pour les molécules diatomiques (Herzberg 1950 p. 239) et nous adoptons les symboles B^c , D^c pour les constantes de la composante Π^c avec les J pairs + et les J impairs —, et B^d , D^d pour les constantes de l'autre composante Π^d . La composante Π^d est en fait celle de plus grande éngerie, du moins pour le CO_2 .

Fig. 32 — Transitions $\Pi_u \leftarrow \Sigma_g$ du CO_2 .

Suivant ces symboles, les constantes q et μ de la formule 21 sont respectivement $\mathbf{B}^d - \mathbf{B}^c$ et $\mathbf{D}^d - \mathbf{D}^c$

Nous avons rappelé que pour le $^{13}C^{16}O_2$, seuls les niveaux symétriques peuvent être occupés, c'est-à-dire, pour un état Π_u , la composante inférieure Π^c pour les J impairs et la composante supérieure Π^d pour les J pairs. Les branches P et R ($\Delta J = \pm 1$) se font entre le niveau Σ et la composante Π^c . L'analyse fournirait donc les deux constantes B^c et D^c . La branche Q au contraire ($\Delta J = 0$) se fait entre le niveau Σ et la composante Π^d .

Malheureusement, ainsi que nous l'avons signalé dans le

second chapitre, la bande observée v_2+2v_3 n'a pas été mesurée car les raies d'interférence n'avaient pas été obtenues en même temps que le spectre.

d) Transition $\Sigma_g \leftarrow \Pi_u$.

Nous avons observé partiellement les branches P et R d'une transition de ce type $3\nu_1 - \nu_2$. Elle se comporte exactement comme il vient d'être dit pour la transition $\Pi_u \leftarrow \Sigma_g$. Il suffit d'intervertir les deux niveaux d'énergie de vibration. L'analyse des branches P et R peut se faire comme pour les transitions $\Sigma - \Sigma$. Pour le niveau inférieur, les différences secondes (formule 18) donneront les constantes B^c et D^c du niveau $(01^10)^c$. Ces différences sont reprises au tableau 15.

Pour le niveau supérieur l'analyse ne peut être faite car ce niveau est perturbé par une perturbation de Coriolis et les formules habituelles ne sont plus valables. Nous terminerons cette étude en discutant ce point.

e) Transition $\Pi_g \leftarrow \Pi_u$

Toutes les « bandes chaudes » partent du niveau 01¹0 et sont de ce type. La figure 33 donne le schéma de la transition. En infrarouge la branche Q est la superposition des 3 ou 4 premières raies et elle est faible. Il y a un léger décalage par rapport au v₀. Pour ¹²CO₂ et ¹³CO₂, dans toutes les bandes observées B' est inférieur à B", et la branche Q est décalée vers les grandes longueurs d'onde de quelques dixièmes de cm⁻¹, ainsi qu'on peut le constater au tableau 14.

TABLEAU 14 $\label{Valeurs obtenues pour V0} Valeurs \ obtenues \ pour \ V_0 \longrightarrow Q \ lors \ des \ transitions \ \Pi_g \! \leftarrow \! \Pi_u \ des \ ^{12}CO_2et \ ^{13}CO_2.$

	$^{12}\mathrm{CO}_2$	$^{13}\mathrm{CO}_2$
0311	0,37	
$11^{1}1$	0,27	0,16
$05^{1}1$		0,09
$13^{1}1$	0,15	0,29
$21^{1}1$	0,30	0,33
$15^{1}1$	0,29	
31 ¹ 1	0,69	
0113	0,60	0,52

L'analyse des branches P et R se fait comme pour les transitions $\Sigma - \Sigma$ à condition de prendre séparément les raies avec J pair et impair. Ainsi qu'on peut le voir sur la figure 33, les raies avec J pair (gros traits sur la figure) correspondant à des transitions entre les composantes supérieures du dédoublement l (indice d). Les raies avec J impair (traits fins) viennent au contraire de transitions entre les composantes inférieures (indice c). En faisant donc séparément l'analyse des deux séries on obtient les deux groupes de constantes B et D de chaque niveau.

Fig. 33 — Transitions $\Pi_g \leftarrow \Pi_u$ du CO_2 .

Les différences secondes $\Delta_2 F''(J)$ pour les différentes bandes partant du niveau 01^10 fourniront donc les constantes pour les deux composantes $(01^10)^c$ et $(01^10)^d$. On trouvera la valeur de ces différences dans les tableaux 15 et 16 ainsi que les moyennes qui ont servi pour le calcul des constantes. Sur la figure 34 on trouve les valeurs de $\Delta_2 F''(J)/J$ $_{-\frac{1}{2}}$ et on constate que les deux séries sont bien séparées montrant clairement le dédoublement I, comme c'était le cas pour $^{12}C^{16}O_2$.

On trouve $D=13,4\ 10^{-8} cm^{-1}$ en bon accord avec la valeur 13,7 trouvée pour D_0 . La différence n'étant pas significative, nous adoptons aussi 13,7 pour ce niveau.

TABLEAU~15 $\Delta_2 F''(J)~\textit{Composante inférieure du niveau}~01^10~B^\circ, D^\circ.$

niveau supérieur 03^11 30^00 11^11 05^11 13^11 21^11 15^11 23^11 31^11 01^13 moyenne

J											
2	3,896'			910							3,910
4	7,020′			041	008′			041	9870		7,028
6	10,1790			156			141	144	157	156	10,151
8	13,275				279	283	284			296	13,283
10	16,399		397	420'	402				402	393	16,402
12	19,		532	535	542	524	548	543		532	19,537
14	22,658		657'	648		652	657		675		22,658
16	25,763		768	771	788′		8140			784	25,775
18	28,8720			886		889			910	905	28,897
20	32,023				028	014	041			029	32,027
22	35,146′			126	141	160	138				35,142
24	38,257			256	270'	266'				276	38,265
26	41,378		400′	362'	386					374	41,380
28	44,511		510	480°	501		5450	495'		517	44,504
30	47,637		635	5980		620'	603°	641		634'	47,633
32	50,	747′	763	756'				758		748	50,754
34	53,		899'		916'	9360	842°				53,908'
36	56,	967	973'	983						997'	56,980
38	60,		103		100						60,101
40	63,	199	150°	212		217'					63,209
42	66,	308		324'	345						66,326
44	69,	433		403°	459						69,446
46	72	566′	537?								72,541'
48	75.	- 50									
50	78,	765′		806°	772'						78,769'
	,										

Les indices ' et ° ont la même signification qu'au tableau 13.

Pour les constantes de rotation on obtient $B^d = 0.39125$ et $B^c = 0.39064$. Cela donne à quelques unités de la cinquième décimale une valeur moyenne de 0.39095 et une différence de 0.00061 qui correspond donc à la constante q de la formule 21 pour ce niveau, en bon accord avec la valeur calculée comme nous le verrons plus loin.

Les constantes du niveau supérieur sont obtenues comme dans le cas des transitions $\Sigma - \Sigma$, mais toujours en séparant les raies avec J pair et impair. On peut voir sur la figure 35 les valeurs de F(J)/J(J+1) en fonction de J(J+1) pour la composante inférieure du niveau $2l^{-1}l$. On voit de suite qu'il est possible de calculer avec une précision suffisante les constantes B et D alors que la méthode

 $TABLEAU\ 16$ $\Delta_2 F''(J)\ \textit{Composante supérieure du niveau}\ 01^10\ \ B^d,\ D^d.$

niveau									
supérieur	0311	$11^{1}1$	05 ¹ 1	13 ¹ 1	21 ¹ 1	15 ¹ 1	31 ¹ 1	11^{13}	moyenne
J									
3 5	5,477	450		492	462			482	5,473
5	8,590	613′	600	610′	588		604	624	8,604
7	11,	744	741			743		760	11,747
9	14,874	854	872		853		862	879	14,866
11	17,983'	002'	001	989	017	005	986′	994	17,997
13	21,121		129			143	155'	131	21,136
15	24,266			273			261	260	24,265
17	27,383'	366′	373	382	360	4110		382	27,374
19	30,509	510	496	525	500		525	002	30,511
21	33,626	628	619	647'		647		644	33,635
23	36,754	762	757	756′	748			749	36,754
25	39,879		887	877					39,881
27	43,016		9920		026			017	43,020
29	46,163'	134'		1750		127′		145	46,142
31	49,257'	259	2390					269	49,262
33	52,393'	385	374'	367′	376′			207	52,379
35	55,4740	524	537'	514		515			55,522
37	58,		636	630′					58,633
39	61,769	772	723		731				61,749
41	64,8230				884				64,884
43	67,999'		9630	971'	002				67,991
45	71,107		102'	112'	122				71,111
47	74,220'		181º	210'					74,215'
49	77,293°		323						77,323'
									11,522

Les indices ' et ° ont la même signification qu'au tableau 13.

des différences secondes, ou la formule 5, ne seraient guère applicables par suite de l'absence de certaines raies. La moyenne entre les deux valeurs des constantes B correspond à la constante du niveau d'énergie et sera la valeur expérimentale indiquée au tableau 24. La différence entre les deux constantes B correspond à la constante q de la formule 21 et les valeurs trouvées ici fournissent les valeurs expérimentales des différences $q-q_0$ du tableau 25. En général, on obtient la même valeur pour les deux constantes D. On trouvera au tableau 26 les différences D D_0 déduites des valeurs obtenues ou éventuellement de la moyenne entre les deux valeurs trouvées pour le niveau donné. Dans le cas où il y a une différence, elle correspond à la constante q de la formule 21 et

les valeurs en sont indiquées au tableau 27. Elles sont évidemment peu précises.

Fig. 34 $-\frac{\Delta_2 F''(J)}{J+\frac{1}{2}}$ en fonction de $(J+\frac{1}{2})^2$ pour les deux composantes du niveau 01^{10} du $^{13}C^{16}O_2$.

Fig. 35 — $\frac{\Delta F(J)}{J(J+1)}$ en fonction, de J(J+1) pour la composante inférieure du niveau 21^{11} du $^{13}C^{16}O_2$.

f) Transitions $\Pi_u - \Pi_u$

Lors de l'analyse vibrationnelle, p. 97, nous avons dû interpréter les valeurs trouvées pour les branches Q des bandes Raman. Celles-ci se font entre deux états Π_u et la branche $Q(\Delta J - 0)$ correspond donc aux transitions entre les deux composantes supérieures (J pairs) ou les deux composantes inférieures (J impairs). Il y aura donc deux séries de raies. Pour les branches Q des spectres Raman l'intensité des différentes raies correspond à celle des branches P et R des spectres infrarouges avec un maximum dont

la position dépend de la température. On peut admettre qu'il correspond aux raies Q(18) et Q(19) dans les conditions expérimentales ordinaires. La différence entre ν_0 et la valeur observée pour la branche Q est normalement plus grande que dans les branches Q des transitions $\Pi_g \leftarrow \Pi_n$ observées en infrarouge. La figure 36 montre les plus intenses des raies Q(J) calculées pour les transitions $03^11 - 01^10$ et $11^10 - 01^10$ de $^{12}C^{16}O_2$ et $^{13}C^{16}O_2$. Un petit rond indique le maximum d'intensité, et l'on peut admettre que le maximum observé pour la branche Q correspond à peu près avec la position moyenne entre les deux maxima. Pour une de ces transitions, fait assez rare, les différences B'' - B' sont de signe différent, et la moyenne se trouve donc assez près de ν_0 .

Fig. 36 — Structure fine calculée pour les branches Q des transitions Raman 11^10 — 01^10 et 03^10 — 01^10 des $^{12}CO_2$ et $^{13}CO_2$.

g) Transitions $\Delta_u \leftarrow \Delta_g$

Comme pour la molécule $^{12}C^{16}O_2$, nous obtenons quelquesunes de ces transitions (partant du niveau 02^20) sous forme de bandes en général très faibles et fragmentaires. Parfois la numérotation est douteuse et le centre de la bande pourrait être décalé.

De même que pour les états Π , les niveaux de rotation des états Δ sont dédoublés, et, dans le cas des formes symétriques du CO_2 , un seul des niveaux sera chaque fois occupé. Nous utiliserons les mêmes symboles que pour les états Π dans la manière de définir les composantes des états Δ . Nous aurons donc Δ^c , composante avec les J pairs + et les J impairs -; Δ^n , composante avec les J impairs + et les J pairs - (1).

En fait le dédoublement ne résulte pas du même mécanisme que pour les états Π . La cause en jeu ici, résonance de type l entre les niveaux (v_1, v_2, l, v_3) et $(v_1, v_2, l \pm 2, v_3)$, intervient p. ex. entre

 $^(^1)$ Les symboles $\Delta^{\rm c}$ et $\Delta^{\rm d}$ correspondent aux symboles Δ^+ et Δ^- utilisés parfois.

des états Σ et Δ , et, dans ce cas, ce sera la composante Δ^e qui subira l'interaction. D'après les niveaux qui interviennent, on peut remarquer que pour le CO2 cette résonance se manifestera chaque fois qu'on a résonance Fermi. La théorie de cet effet a été faite récemment (Nielsen, Amat, et Goldsmith 1957; Amat 1957; Amat et Nielsen 1957, 1958, a, b). On a pu montrer que si cet effet se manifeste seul, la formule 16 n'est plus toujours valide surtout pour les valeurs élevées de J. Mais cette formule peut être maintenue si cet effet s'ajoute à un phénomène de résonance Fermi, surtout si celle-ci est forte comme dans le cas du CO₂. L'effet de la résonance de type *l* modifie alors uniquement la constante D en introduisant un terme en J²(J+1)². Les deux composantes ont la même constante B et, pour les premières raies, on a donc une seule série de raies espacées régulièrement, comme pour un état Σ , avec alternativement les raies des composantes Δ^c et Δ^d , ainsi qu'on peut le constater sur la figure 37. Pour les valeurs de J suffisamment élevées, la perturbation de Δ^c commence à se manifester.

Fig. 37 — Transitions $\Delta_u \leftarrow \Delta_g$ pour les molécules $^{12}C^{16}O_2$ et $^{13}C^{16}O_2.$

Pour l'analyse de la bande, si l'on n'a que les premières raies (J faibles), on peut procéder comme pour une transition où toutes les raies apparaîtraient et obtenir la constante B et une valeur approchée de D. Si on a des raies correspondant à des J

plus élevés, on constate que les raies ne sont plus régulièrement espacées. Il faut traiter séparément les deux composantes (J pairs et impairs). On doit retrouver la même valeur de v_0 et la même constante B, mais deux constantes D. La constante D^a est la composante normale de ce niveau, indépendamment de la résonance de type I.

En fait, lors de l'analyse des bandes, nous n'avions pas assez de données pour que les différences secondes puissent fournir une valeur suffisamment précise des constantes du niveau 02^20 . Nous avons donc adopté la valeur calculée pour la constante B de ce niveau (v. plus loin) et nous avons supposé que la constante D^d est la même que celle du niveau fondamental. Pour la constante D^c , nous verrons plus loin que la perturbation de type I est plus importante pour ${}^{13}C^{16}O_2$ que pour ${}^{12}C^{16}O_2$ et il a semblé qu'il y avait lieu d'en tenir compte. Nous avons donc employé la constante calculée $12.9 \cdot 10^{-8} \cdot \text{cm}^{-1}$ suivant ce qui sera expliqué plus loin. Nous avons ensuite utilisé les formules $19 \cdot \text{comme}$ pour les transitions $\Sigma - \Sigma$. S'il y avait une correction à faire aux constantes du niveau 02^20 , il faudrait donc adapter les autres niveaux Δ . Pour deux niveaux d'énergie, 12^21 et 22^21 , nous avons pu obtenir une différence entre les constantes D^c et D^d .

Les valeurs trouvées pour les constantes B et D de ces niveaux sont reprises comme valeurs expérimentales sur les tableaux 24 et 26.

h) Transition $\Delta_g \leftarrow \Pi_u$

Nous avons pu obtenir la branche Q d'une transition de ce type (02^22-01^30) pour $^{12}C^{16}O_2$, et elle est partiellement résolue. Elle n'a pas été étudiée dans notre travail précédent et nous en donnons quelques détails ici. Lors d'une telle transition, l'intensité se répartit comme pour les branches Q des transitions $\Sigma - \Pi$. Comme nous n'obtenons que des raies avec J ~ 30 la différence entre les D ne sera pas perceptible. Les deux composantes de l'état Δ ont le même B mais le niveau 01^10 a deux valeurs distinctes de B comme nous l'avons vu plus haut. On obtient donc deux séries de raies suivant les deux différences B" - B' et les deux séries peuvent se superposer par endroit.

2. Molécules 12C16O18O et 13C16O18O

Nous avons obtenu 5 transitions $\Sigma - \Sigma$ pour chacune de ces molécules. Ici la symétrie est rompue et toutes les raies apparaissent dans les niveaux d'énergie et par suite dans les bandes d'absorption.

L'analyse se fait suivant les méthodes habituelles. Les constantes du niveau fondamental sont établies par les différences secondes. La précision n'est pas suffisante pour voir apparaître une différence entre les deux molécules étudiées. Toutes les différences secondes sont donc rassemblées au tableau 17 ainsi que la valeur moyenne obtenue. Comme les bandes sont faibles, pas mal de raies sont cachées et beaucoup de différences secondes manquent. On constate que l'accord entre les valeurs observées pour les différentes bandes est satisfaisant. En fait, c'est la comparaison des différences secondes qui a permis dans plusieurs cas de déterminer le centre de la bande et ceci constitue un test extrêmement critique pour la numérotation des raies.

Les valeurs obtenues pour les constantes B et D sont :

$$\begin{array}{l} B_0 = 0.36820 \; cm^{-1} \pm 0.00005 \\ D_0 = 11.5 \; 10^{-8} cm^{-1} \pm 3 \end{array}$$

Ces valeurs correspondent bien à ce que l'on peut calculer. Si nous adoptons les masses 12,004 13,008 16 et 18,005 les distances entre l'atome de carbone (centre géométrique) et le centre de gravité sont respectivement 0,04358 r et 0,04265 r où r est la distance CO à l'équilibre. Dans le second cas, $^{13}C^{16}O^{18}O$, la masse de l'atome de carbone augmente mais le centre de gravité se rapproche du centre géométrique et, en fait, pour l'équilibre, le moment d'inertie est exactement le même $I = 33,918 \ r^2$ au lieu de $32 \ r^2$ pour les molécules avec $^{16}O_2$. Le rapport isotopique est donc 1,0599 pour les deux molécules. Cette formule n'est vraie que pour B_e . Si on l'applique à B_0 , ce qui est correct en première approximation, on trouve, par référence aux constantes B_0 de $^{12}C^{16}O_2$ et $^{13}C^{16}O_2$, 0,36815 et 0,36818 en très bon accord avec la valeur expérimentale.

La valeur calculée pour D, suivant la formule donnée p. 110, est 10,3 nettement plus faible donc que pour le CO₂ ordinaire.

Les constantes B et D du niveau supérieur pourraient être obtenues par la formule 15, mais ce n'est guère possible par suite

TABLEAU 17 $\Delta_2 F^{\prime\prime}(J)~Transitions~partant~du~niveau~fondamental~pour~les~molécules~~1^2C^{16}O^{18}O~et~^{13}C^{16}O^{18}O$

		1	¹² C ¹⁶ ()18O			13C16	O18O		į
j	$v_1 + v_3$	$2v_2 + v_3$	$2 v_1 + v_3$	$v_1 + 2 v_2 + v_3$	4 v ₂ + v ₃	$2 v_2 + v_3$	$v_1 + v_3$	$4 v_2 + v_3$	$v_1 + 2 v_2 + v_3$	moyenne
2	3,		743°							3,743′
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	6, 8, 9, 11,072° 12,525 13,976′ 15, 16, 18,418 19,860° 21, 22,833 24,311 25,780′ 27, 28, 30,163 31, 33,112° 34, 36, 37,545 39,005 40, 41,943 43, 44,46,343 47,830 49, 50,	042 943° 465 417 904 839 297	652 047° 337′ 296 711 198 679 117° 647 572	088 030 541' 025 469' 855° 830 729 637 140 542' 465° 431 902 363 796	049° 549° 058′ 444 866′ 415′ 891 471° 839 260 667′ 106′	042 520 479' 381° 765 713 130 077' 935 872	648 597 475° 979 445′ 969 424 620 567°	769 235	354 297 194 110 593 935	6,650 8,088 9,597 11,043 12,529 13,993 15,461 16,969 18,419 19,897' 21,345 22,835 24,300 25,770 27,247 28,718 30,185 31,651 33,122 34,620 36,092 37,551 39,005 40,505' 41,942 43,431' 44,891 46,353 47,830 49,259' 50,796' 53,710'
39	58,					100′				58,100′

Les indices ' et ° ont la même signification qu'au tableau 13.

de l'absence de nombreuses raies et à cause de la différence entre les constantes D. Nous avons donc de nouveau utilisé les formules 19. Les valeurs obtenues pour les constantes B et D des différents niveaux d'énergie sont les valeurs expérimentales des tableaux 30 et 31. Ces valeurs devraient être adaptées s'il fallait modifier celles du niveau fondamental.

B. Interprétation des résultats.

1. Compléments pour la molécule ¹²C¹⁶O₂

Dans notre étude sur ¹²C¹⁶O₂ (Courtoy 1957a), l'analyse des bandes chaudes avait conduit pour le niveau 0110 aux constantes $B^d = 0.39130$ et $B^c = 0.39065$. Ces valeurs étaient certainement moins précises que B_0 . La différence $B_{010}^c - B_0$ était 44 10^{-5} cm⁻¹ et nous signalions que l'analyse par Rossman, Rao et Nielsen (1956) des branches P et R de la bande v, indiquait une différence de 41 10 5 qui devait être plus précise. Ce point est confirmé par les constantes de rotation d'une série de bandes perpendiculaires publiées dans la suite par Benedict (1957). Ses résultats s'interprètent bien avec des valeurs inférieures, toutes deux, à celles que nous avions proposées soit $B^d = 0.39123$ et $B^c = 0.39062$, ce qui donne pour valeur moyenne 0,39093 et donc (formule 22 p. 132) $\alpha_2 = -72 \, 10^{-5} \text{cm}^{-1}$, au lieu de -76. La différence donnant la constante q_{010} du dédoublement l (formule 21) serait 61 10^{-5} assez voisine de la valeur adoptée 63 10⁻⁵, et correspondant exactement avec la valeur calculée.

Cela entraîne certaines modifications. D'abord pour les constantes de rotation B, p. ex. celle du niveau 02^20 devient 0,39165 au lieu de 0,39173. Toutes les valeurs expérimentales des constantes B pour les niveaux Π et Δ étaient obtenues par référence aux niveaux 01^10 ou 02^20 (excepté le niveau 01^12) et doivent être modifiées en fonction des nouvelles valeurs. On les trouvera au tableau 20.

Lors de l'analyse des groupes de bandes en résonance Fermi, nous avions obtenu la relation

$$\alpha_1 - \gamma_{11} + 2\alpha_2 - 4\gamma_{22} = -26 \ 10^{-5}$$

où les α et γ sont les coefficients des termes du premier et du

second degré indiquant la variation des constantes B avec les nombres quantiques de vibration suivant la formule 22, faute de mieux, nous avions adopté $\gamma_{11}=\gamma_{22}=0$. La relation devenait donc $\alpha_1+2\alpha_2=-26$. La modification de α_2 entraîne donc une variation de α_1 qui deviendrait 118 10 5 au lieu de 126. La différence est fort grande et il semble difficile d'obtenir de bons résultats avec cette nouvelle valeur de α_1 . D'ailleurs, la valeur de -26 qui ressortait de nos valeurs pour $\alpha_1+2\alpha_2$ ne semble pas conciliable avec la valeur des constantes de rotation indiquées par Benedict (1957) ou Stoicheff (1958). Une valeur de -22 semblerait plus probable et l'accord très satisfaisant obtenu pour l'ensemble des groupes de bandes en résonance Fermi n'était donc pas un critère suffisant.

TABLEAU 18 Constantes de rotation du $^{12}\mathrm{C}^{16}\mathrm{O}_2$ (10^{-5} cm $^{-1}$) (formules 22 et 23)

				Observé	Calculé (Pliva 195	8)
${f B}_{e000}$		39021 39163,5	$egin{array}{c} lpha_1 \ lpha_2 \ lpha_3 \end{array}$	120 —72 308,75	121 —71,9 304,1	
	$\begin{array}{c} \gamma_{11} \\ \gamma_{12} \end{array}$	—2 —1,5	Υ ₂₂ Υ ₁₃	0 2	Υ33 Υ23	0,35 2

Si on adopte $\alpha_1 - \gamma_{11} + 2\alpha_2 - 4\gamma_{22} = -22$ on obtient $\alpha_1 - \gamma_{11} - 122 \ 10^{-5} \ cm^{-1}$. Nous verrons plus loin que dans l'analyse des résultats du $^{13}C^{16}O_2$ on a obtenu de meilleurs résultats avec $\gamma_{11} = -2 \ 10^{-5}$. Il semble qu'il en soit de même ici et le tableau 18 donne les valeurs les plus satisfaisantes des constantes de rotation. On peut constater, de plus, que les nouvelles valeurs obtenues pour α_1 et α_2 correspondent bien aux valeurs calculées (Pliva 1958). La nouvelle valeur de B_e (formule 23) devient $0.39163_5 \ cm^{-1}$ d'où on trouve la distance C - O pour le minimum d'énergie $r_e = 1,1597_9 \ A$.

Au moyen de ces constantes on peut calculer les constantes B pour chaque niveau d'énergie en faisant abstraction de la résonance Fermi. Ce sont les valeurs B⁰, du tableau 20.

Pour obtenir l'effet de la résonance Fermi sur la constante B du niveau 20% indiquée par Benedict (1957) on applique les formules 25 dont nous parlerons plus loin à propos du $^{13}CO_2$. Il faut donc calculer les coefficients a_{ij}^2 pour ce groupe en résonance et on les trouvera au tableau 19.

TABLEAU 19

Carrés des coefficients de contribution partielle des fonctions d'onde non perturbées aux fonctions d'onde perturbées pour la triade $20^00,...$ du $^{12}C^{16}O_2$ $(a_{ij}{}^2)$

1	0400	0,38379	0,46815	0,14806
1	$12^{0}0$	0,33325	0,00423	0,66252
1	20^{0}	0,28287	0,52757	0,18956

Pour les autres groupes de 3, 4, ou 5 bandes en résonance les coefficients donnés dans notre étude précédente ne sont pas modifiés. On peut donc obtenir facilement les constantes B des différents niveaux d'énergie en tenant compte de la résonance Fermi. Ces valeurs sont reprises au tableau 20 avec les corrections lorsque c'était nécessaire. On constate que l'accord avec les valeurs expérimentales se retrouve dans l'ensemble et qu'il est même amélioré nettement dans certains cas p. ex. pour le niveau 20°3

TABLEAU 20 ${\it Constantes \ de \ rotation \ B_{\nu\nu\nu} \ du \ ^{12}C^{16}O_2 \ 10^{-5}cm^{-1} }$

Niveau	Valeur	calculée	Valeur	Différence
d'énergie	Sans résonance \mathbf{B}_i^0	Avec résonance \mathbf{B}_i	expérimentale	
0000	39021		29021	0
0110	39093		39092,5 (a)	0,5
0200	39165	(39044	39047 (f)	3
1000	38899	39020	39018 (a,b)	2
0220	39165		39164 (a)	1
0310	39237	(39118	39125 (a)	7
11 ¹ 0	38971	39090	39082 (a)	8
0330	39237		39236 (a)	1
0001	38172,5		38172 (c)	0,5
$04^{0}0$	39309	39100,5		,
1200	39033	38852,5		
2000	38773	39061,5	39061 (a)	0,5
$04^{2}0$	39309	39187		
1220	39033	39155	39152 (a)	3
0201	38860,5	38746,5	38749,5	3
$10^{0}1$	38592,5	38706,5	38705	1,5

TABLEAU 20 (suite)

03 ¹ 1 11 ¹ 1 04 ⁰ 1 12 ⁰ 1 20 ⁰ 1 04 ² 1 12 ² 1 01 ¹ 2 05 ¹ 1	38934,5 38665 39008,5 88737,5 38468,5 39008,5 38737,5 38481,5 39082,5	\$\ \text{38820,5} \\ 38779 \\ 38813,5 \\ 38649,5 \\ 38751,5 \\ 38893,5 \\ 38852,5 \\ \$\ \text{38871}\$	38821 38779 38818 38652,5 38748,5 38891 38852 38484	0,5 0 4,5 3 3 2,5 0,5 2,5
13 ¹ 1 21 ¹ 1 02 ² 2	38810 38539,5 38557	38757,5	38755,5 38799	2 4
06 ⁰ 1 14 ⁰ 1 22 ⁰ 1 30 ⁰ 1 06 ² 1	39156,5 38882,5 38610,5 38340,5 39156,5	38883 38662 38645 38800 38939 38845,5	38888 38668,5 38644,5 38798	—5 —6,5 0,5 2
14 ² 1 22 ² 1 00 ⁰ 3 07 ¹ 1 15 ¹ 1 23 ¹ 1	38882,5 38610,5 38098 39230,5 38955 38681,5	38865 (38930 38768 38742,5	38861° 38098,5 38936° 38764 38743	4 0,5 6 4 0,5
31 ¹ 1 01 ¹ 3 08 ⁰ 1	38410) 38176 39304,5 }	(38636,5	38835,5 38176	0
16 ⁰ 1 24 ⁰ 1 32 ⁰ 1 40 ⁰ 1	39027,5 38752,5 38749,5 38208,5	38723 38560 38699,5 38841,5	38730 38559 38700	7 1 0,5
02 ⁰ 3 10 ⁰ 3 03 ¹ 3 11 ¹ 3 04 ⁰ 3 12 ⁰ 3 20 ⁰ 3 00 ⁰ 5	38254 37982 38332 38058 38410 38135 37862 37486	38154,5 38081,5 38227 38163 38236 38048,5 38132	38152 (d) 38080 (d) 38221° (d) 38164° (d) 38232 (d) 38048 (d) 38128 (d) 37486 (d)	2,5 1,5 6 1 4 0,5 4
02 ⁰ 5 10 ⁰ 5	37650 37374	37565 37459	37561 (<i>d</i>) 37453 (<i>d</i>)	4 6

Les valeurs expérimentales sont obtenues par référence à 39021, 39093, ou 39165 suivant les transitions.

Les valeurs expérimentales marquées o sont moins précises.

- (a) Benedict 1957
- (b) Rossman, France, Rao, et Nielsen 1956
- (c) Plyler, Blaine, et Tidwell 1955
- (d) Herzberg, et Herzberg 1953
- (e) Cette constante expérimentale est modifiée par une perturbation de Coriolis.
 - (f) La valeur de Benedict pour ce niveau est 39046.

où nous avions l'écart le plus important. Pour les niveaux 03^{10} et 11^{10} , l'écart est assez important. Le seul moyen, nous semble-t-il, de réduire l'écart serait d'augmenter considérablement la constante x_{12}^{0} , mais cela ne semble guère compatible avec l'ensemble des autres résultats.

Les nouvelles valeurs B^c et B^d du niveau 01^{10} modifient aussi la constante q_0 du dédoublement l, et nous avons vu que la constante q_{010} devient $61\ 10^{-5} {\rm cm}^{-1}$. En vertu de la formule que nous discuterons plus loin, ceci a des répercussions sur le calcul des autres constantes q, suivant la méthode qui sera indiquée. Les valeurs expérimentales doivent être diminuées de deux unités car elles étaient obtenues par référence à q_{010} supposé égal à $63\ 10^{-5}$. Les nouvelles valeurs obtenues ont été publiées (Courtoy 1958). Nous les reprenons au tableau 21 avec deux corrections.

TABLEAU 21 Constantes q du dédoublement l pour les états Π du $^{12}\mathrm{C}^{16}\mathrm{O}_2$ en résonance Fermi. $(10^{-5}cm^{-1})$ $(q_{010}=61)$

Niveau d'énergie	Calculées	Observées
(03 ¹ 0	95	98 (a)
11 ¹ 0	88	86 (a)
0311	94	92,5
1111	85	85,5
0313	91,5	91 (b)
11 ¹ 3	78	75 (b)
05^{1}	132	(c)
\ 13 ¹ 1	107	110
2111	117	120
(07 ¹ 1	173	172°
) 15 ¹ 1	137,5	142
2311	129	134
3111	153	151

O Valeur expérimentale peu précise car la bande est très faible

En ce qui concerne les constantes D, les mesures effectuées pour le niveau 07^1 l fournissent les valeurs (peu précises) D = $5\,10^{-8}$ et $\mu = +\,1\,10^{-8}$ cm⁻¹ qui doivent être ajoutées aux tableaux généraux qui ont été publiés. De nouvelles mesures pour la

⁽a) Benedict 1957

⁽b) Herzberg et Herzberg 1953

⁽c) La constante B_e du niveau 05^11 est modifiée par une perturbation de Coriolis.

constante D^d des niveaux 04^21 , et 12^21 sembleraient indiquer -0.2 et -1.10^{-8} cm⁻¹ plutôt que -0.5. De même la constante D^c du niveau 04^21 serait plutôt -1 et les constantes μ des niveaux 03^{11} et 11^{11} seraient 1.2 et -0.7.

2. Molécule ¹³C¹⁶O₂

a) Constantes de rotation B.

Lors de l'analyse signalée plus haut, il nous fut possible de déterminer avec une bonne précision les constantes de rotation B pour un assez grand nombre de niveaux d'énergie de vibration du \$^{13}C^{16}O_2\$. Il est donc intéressant, ainsi que nous l'avons fait dans notre étude sur \$^{12}C^{16}O_2\$, d'introduire les termes du second degré dans la formule habituelle indiquant la valeur des constantes B pour les différents niveaux d'énergie de vibration. Elle devient :

(22)
$$B_{v_1v_2v_2} = B_{000} - \sum \alpha_i v_i + \sum_{i \le j} \gamma_{ij} v_i v_j$$
 $i, j = 1, 2, 3$

Pour obtenir la formule en partant du minimum d'énergie, il faut remplacer v_1 , v_2 et v_3 par $v_1 + \frac{1}{2}$, $v_2 + 1$, et $v_3 + \frac{1}{2}$. On trouve alors, en fonction des α_i de la formule précédente :

(23)
$$B_e = B_{000} + \frac{1}{2}(\alpha_1 + 2\alpha_2 + \alpha_3) + \frac{1}{4}(\gamma_{11} + \gamma_{33} + \gamma_{12} + \gamma_{13} + \gamma_{23})$$
 (2)

La constante α_1 ne doit pas être affectée par la substitution isotopique ${}^{12}C^{16}O_2{}^{13}C^{16}O_2$, tandis que α_2 et α_3 doivent être modifiés, comme on peut le constater d'après les formules donnant ces constantes (Herzberg 1945 p. 376).

Pour simplifier les écritures toutes les valeurs concernant les constantes B (α , γ , q,...) seront écrites ici en $10^{-5} \mathrm{cm}^{-1}$ sans le répéter chaque fois.

Pour les états II la constante B obtenue par la formule 22 est la moyenne entre B^d et B^c (v. p. 120) et c'est cette valeur qui sera indiquée dans les discussions et les tableaux. Pour les états Δ il n'y a pas de problème puisque, ainsi que nous l'avons dit, les deux constantes B sont les mêmes.

⁽²⁾ Dans notre travail précédent (Courtoy 1957a formule 12) il faut mettre un signe — devant le dernier terme. Les α de cette formule sont ceux qui sont obtenus en fonction du minimum d'énergie, ce qui donne une forme différente à la formule.

Nous avons vu (p. 111) que B₀₀₀ vaut 39025. D'autre part, pour le niveau 01¹0, nous avons trouvé 39094,5. On obtient donc:

$$\alpha_2 - \gamma_{22} = 69,5$$

mais cette valeur n'est pas très précise car elle s'obtient par différence entre deux grandeurs mesurées indépendamment avec une précision relative. L'erreur sur α_2 peut certainement être de plusieurs unités.

Les bandes v_3 et $3v_3$ fournissent les constantes α_3 et γ_{33} :

$$\alpha_3 - \gamma_{33} = 298$$
 $3\alpha_3 - 9\gamma_{33} = 887$

ce qui donnerait $\alpha_3 = 299$ et $\gamma_{33} = 1$.

La valeur obtenue pour γ_{33} correspond à peu près à ce qu'on trouverait pour la molécule $^{12}\mathrm{C}^{16}\mathrm{O}_2$ en utilisant uniquement les bandes ν_3 et $3\nu_3$. Mais pour cette molécule, on connaît aussi $5\nu_3$ et pour tenir compte de l'ensemble des trois bandes il fallait adopter 0,35. Nous ferons de même ici en prenant $\alpha_3=297$.

La constante γ_{23} peut être obtenue directement en comparant les bandes $3\nu_3$ et la bande chaude correspondante $3\nu_3 + \nu_2 - \nu_2$. Les différences B" — B' sont 887 et 882. L'écart entre les deux est significatif. Il vaut 5 et doit correspondre à $3\gamma_{23}$. On trouve donc $\gamma_{23} = 1,7$.

Les bandes en résonance Fermi peuvent aussi fournir certains renseignements car la somme des constantes B n'est pas perturbée par la résonance. Comme nous l'avons signalé dans l'étude de la molécule $^{12}\mathrm{C}^{16}\mathrm{O}_2$, les constantes α et γ arrivent en formant certains groupes qui se répètent. Si A,B, et C sont les sommes des expressions en α et γ indiquées ci-dessous, la somme des différences B″ — B′ pour l'ensemble des bandes d'une même diade, triade ou tétrade est donnée par

10°1,... A
$$+2 \alpha_3 - 2 \gamma_{33} - C = 570,5$$

20°1,... 3A $-2B + 3 \alpha_3 - 3 \gamma_{33} - 3C = 832$
30°1,... 6A $-8B + 4 \alpha_3 - 4 \gamma_{33} - 6C = 1080,5$
10°3,... A $+6 \alpha_3 - 18 \gamma_{33} - 3C = 1745,5$

Nous connaissons la valeur de α_3 et γ_{33} et il est donc possible de calculer A,B, et C. Les meilleures valeurs semblent être les

suivantes:

$$A = \alpha_{1} - \gamma_{11} + 2\alpha_{2} - 4\gamma_{22} = -18,5$$

$$B = \gamma_{11} + 4\gamma_{22} + \gamma_{12} = -4$$

$$C = \gamma_{13} + 2\gamma_{23} = 4$$

On peut chercher à préciser davantage les constantes en tenant compte de la résonance Fermi. Il y a en effet des relations qui relient les valeurs non perturbées B_i^0 aux valeurs perturbées B_i . Pour les diades :

(24)
$$B_1 = a^2 B_1^0 + b^2 B_2^0$$
$$B_2 = b^2 B_1 + a^2 B_2^0$$

et, en général:

$$(25) B_i = \sum_{j} a_{ij}^2 B_j^0$$

où les a_{ij} sont les coefficients de contribution partielle des fonctions d'onde non perturbées aux fonctions d'onde perturbées. On les obtient de la manière suivante. Les coefficients a_{1i}^2 , p. ex. sont les mineurs normalisés, correspondant à une ligne ou à une colonne des déterminants indiquant la valeur des niveaux d'énergie de vibration perturbés par la résonance Fermi (formule 8) où l'inconnue W a été remplacée par la racine W_1 .

Pour les diades, les valeurs de a^2 et b^2 sont obtenues facilement par les relations :

$$a^2 = \frac{\Delta v + \delta}{2 \Delta v} \qquad b^2 = \frac{\Delta v - \delta}{2 \Delta v}$$

où Δv est la différence entre les niveaux d'énergie perturbés $W_1 - W_2$ et δ la différence entre les niveaux non perturbés $W_1^0 - W_2^0$. Les coefficients a^2 , b^2 , et a_{ij}^2 sont indiqués dans le tableau 22 où ils sont groupés par polyade. Dans chaque groupe de coefficients la somme des termes de n'importe quelle ligne ou colonne doit être égale à l'unité si tous les calculs sont poussés avec assez de précision.

Si on connaît toutes les constantes perturbées d'un groupe, les relations 24 et 25 permettent donc de déterminer les constantes non perturbées B_i^0 . On devrait donc ainsi pouvoir préciser facilement les constantes α et γ de la formule 22. Mais les résultats, cependant, dépendent de l'exactitude de toutes les autres cons-

TABLEAU 22

Carrés des coefficients de contribution partielle des fonctions d'onde non perturbées aux fonctions d'onde perturbées pour $^{13}C^{16}O_2$

	0					
diades	$02^{0}0$	0,72731	0,27269			
1	$10^{0}0$	0,27269	0,72731			
J	$03^{1}0$	0,68824	0,31176			
)	11^{10}	0,31176	0,68824			
	$02^{0}1$	0,74772	0,25228			
ĺ	1001	0,25228	0,74772			
	0311	0,70515	0,29485			
ĺ	1111	0,29485	0,70515			
	0421	0,68747	0,31253			
	$12^{2}1$	0,31253	0,68747			
	0203	0,78657	0,21343			
	1003	0,21343	0,78657			
	0313	0,73888	0,26112			
	1113	0,26112	0,73888			
triades	0401	0,57566	0,37353	0.05081		
	1201	0,29638	0,16401	0.53961		
	2001	0,12793	0,46250	0,40957		
	0511	0,52257	0,40196	0,07547		
	1311	0,35105	0,13285	0,51610		
	2111	0,12631	0,46523	0,40846		
	06^{21}	0,49567	0,41564	0,40846		
	1421	0,37857	0,11865	0,50278		
	2221	0,12575	0,46576	0,30278		
tétrades	0600	0,12575	0,43264	,	0.01180	
tetrades	1400	0,33768	0,43204	0,13858 0,41676	0,01160	
	2200	0,33700	0,20254	0,41676	0,22900	
	3000	0,10230	0,20234		0,61730	
	0601	0,43722	0,34894	0,42699	/	
	1401	0,43722	*	0,12705	0,00991	
	2201	0,33942	0,02674	0,42899	0,20485	
	3001	0,13007	0,21768	0,00727	0,62498	
	(07 ¹ 1	0.39096	0,32981 0.43335	0,43672	0,16016	
	1511	0,39090		0,15762	0,01807	
	2311	*	0,00907	0,39261	0,23552	
	3111	0,18381	0,23687	0,00744	0,55188	
toda	/ 0801	0,06239	0,30065	0,44233	0,19463	0.00105
pentade		0,32978	0,43007	0,20082	0,03739	0,00195
	1601	0,34834	0,00079	0,28610	0,30596	0,05881
	2401	0,18085	0,12035	0,08032	0,17486	0,44362
	3201	0,10067	0,22590	0,02545	0,20435	0,44363
	4001	0,04037	0,22290	0,40732	0,27742	0,05199

tantes et il est difficile d'évaluer l'erreur introduite dans les B_{ℓ}^{0} . Si la résonance est forte, p. ex., une toute petite variation dans les constantes perturbées B_{ℓ} correspond à un grand changement dans les constantes non perturbées B_{ℓ}^{0} . En fait, lors des essais réalisés, les B_{ℓ}^{0} obtenus ne donnaient pas des valeurs cohérentes.

On trouvera au tableau 23 les constantes α et γ qui ont été adoptées pour $^{13}C^{16}O_2$. Les valeurs proposées pour les γ sont très aléatoires. On peut obtenir des résultats à peu près équivalents en modifiant certaines de ces constantes et nous ne voyons pas comment il sera possible de préciser davantage.

TABLEAU 23 Constantes de rotation utilisées pour le calcul des constantes $B^0_{\nu\nu\nu}$ du $^{13}{\rm C}^{16}{\rm O}_2$ $(10^{-5}cm^{-1})$

			Observé	Calculé (Pliva 1958)
$egin{array}{c} \mathbf{B}_{000} \ \mathbf{B}_{e} \end{array}$	39025 39163,5	$egin{array}{c} lpha_1 \ lpha_2 \ lpha_3 \end{array}$	120 —70 297	121 —68,1 293
Υ ₁₁ Υ ₁₂	2 1,5	$\begin{array}{ccc} \gamma_{22} & 0 \\ \gamma_{13} & 2 \end{array}$	Υ ₃₃ Υ ₂₃	0,35 1

On constatera que la valeur obtenue pour la constante B_e (pour le minimum d'énergie), suivant la formule 23, est exactement la même que celle qu'on avait trouvée pour $^{12}C^{16}O_2$ (v. tableau 18). On devait s'attendre à ce qu'il en soit ainsi car cette constante ne doit pas être modifiée par la substitution en jeu. Il était intéressant cependant que ce point puisse être vérifié, et c'était un des buts de cette étude et les prévisions sont donc confirmées par les résultats expérimentaux. La valeur de r_e est donc aussi la même $1,1597_9$ A.

Au tableau 24, on trouvera pour les différents niveaux d'énergie de vibration, les constantes B non perturbées par la résonance Fermi, et, dans une deuxième colonne, lorsqu'il y a lieu, les constantes résultant de la perturbation. En regard, les valeurs expérimentales sont indiquées et on constatera qu'en général l'accord est fort bon. L'écart le plus grand est 9 10^{-5} , si on met à part le niveau $24^{\circ}1$ où la différence est énorme. La seule explication de cette anomalie nous semble être une résonance de ce niveau d'énergie Σ_u avec un niveau Π_u .

b) Constantes q du dédoublement l des états Π

Tous les états II ont leurs niveaux d'énergie dédoublés suivant la formule 21 et nous examinerons ici la constante q de cette

TABLEAU 24 Constantes de rotation $B_{\nu\nu\nu}$ du $^{13}{\rm C}^{16}{\rm O}_2$ $(10^{-5}cm^{-1})$

Niveau d'énergie	Valeur sans résonance B ⁰	calculée avec résonance B _i	Valeur observée	Différence
00 ⁰ 0 01 ¹ 0 02 ⁰ 0 10 ⁰ 0 02 ² 0 03 ¹ 0	39025 39095 39165 38903 39165 39235	39093,5 38974,5 39153	39025 39095	0
$11^{1}0$ $00^{0}1$ $01^{1}1$	38971,5 } 38728,5 38799,5	(39053,5	38727 (a)	1,5
02 ⁰ 1 10 ⁰ 1 06 ⁰ 0 14 ⁰ 0 22 ⁰ 0 30 ⁰ 0	38870,5 38608,5 39445 39177 38911 38647	38804,5 38674,5 39245 39034,5 38888,5 39011	38804,5 38674,5	0 0.
03 ¹ 1 11 ¹ 1 04 ⁰ 1 12 ⁰ 1 20 ⁰ 1 04 ² 1 12 ² 1	38941,5 38678 39012,5 38747,5 38484,5 39012,5 38747,5	38864 38755,5 38886,5 38684 38673,5 38929,5 38830,5	38864 (b) 38758 38885,5 38685,5 38671,5 38929 38836	0 2,5 1 1,5 2 0,5 5,5
01 ¹ 2 05 ¹ 1 13 ¹ 1 21 ¹ 1 06 ⁰ 1 14 ⁰ 1 22 ⁰ 1 30 ⁰ 1 06 ² 1	38502 39083,5 38817 38552,5 39154,5 38886,5 38620,5 38356,5 39154,5	38936,5 38774 38742,5 38966,5 38754,5 38593,5 38705 38996	38940 38765,5 38743 38967 38760,5 38587 38705 38997	-3,5 8,5 0,5 -0,5 -6 3,5 0
$ \begin{array}{c} 14^{2}1 \\ 22^{2}1 \\ 00^{0}3 \end{array} $	38886,5 \\ 38620,5 \\ 38137	38854 38811,5	38815 38138	_3,5 _1
07 ¹ 1 15 ¹ 1 23 ¹ 1 31 ¹ 1 01 ¹ 3 08 ⁰ 1	39225,5 38956 38688,5 38423 38210 39296,5	(39009,5 38823 38709 38751 (39040	38815,5 38710 38759 38213	7,5 —1 —8 —3
16 ⁰ 1 24 ⁰ 1 32 ⁰ 1 40 ⁰ 1	39026,5 38756 38489,5 38224	38831,5 38604 38581,5 38737	38545° 38583,5°	59 —2

TABLEAU 24 (suite)

$02^{0}3$	38283)	(38227	38229	2
$10^{0}3$	38021	38077	38075,5	1,5
0313	38356	38287		
11^{13}	38092,5	38161,5	38168,50	7

Les valeurs expérimentales sont obtenues par référence à 39025, 39095 ou 39165 suivant les transitions.

Les valeurs expérimentales marquées o sont moins précises.

(a) Benedict 1957

(b) Pour le niveau 03¹1, voir la discussion p. 147.

formule. Celle-ci dépend du nombre quantique v_2 et en général on admet la formule simple (v. p. ex. de Heer et Nielsen 1952) (3).

$$q = \frac{q_0}{2} (v_2 + 1)$$

où

$$q_0 = \frac{2B_e^2}{\omega_2} (1 + \frac{4 \omega_2^2}{\omega_3^2 - \omega_2^2})$$

Pour $^{13}\text{CO}_2$ la valeur calculée pour q_0 est 63 10^{-5}cm^{-1} . Lors de l'étude (p. 119) des constantes de rotation du niveau 01^{10} , pour lequel $q=q_0$, on a trouvé 61 10^{-5} à quelques unités près. L'accord est donc satisfaisant.

Lors de notre étude sur $^{12}C^{16}O_2$ nous avons montré que la formule de la constante q est en fait plus compliquée et qu'il y avait une faible diminution avec le nombre quantique v_3 . L'étude de la bande $v_2 + 3v_3 - v_2$ montre qu'il en est de même ici. Les transitions se font suivant le schéma de la figure 33, expliqué plus haut, soit entre les deux composantes supérieures, soit entre les deux composantes inférieures. Si la constante q était la même pour les deux niveaux, les différences B'' - B' devraient être les mêmes pour les deux séries, or, il n'en est pas ainsi, comme on peut le constater directement d'après la figure 38. On voit, en effet, que pour les J'' impairs (composante inférieure) 0,01764 est plus grand que 2(B'' - B') et que pour les J'' pairs (composante supérieure) c'est le contraire. Pour le niveau 01^{13} , la composante inférieure est donc moins basse et la composante supérieure moins haute,

⁽³⁾ Pour le signe de cette constante v. Amat, Grenier-Besson et Gummins 1958.

autrement dit, la constante q est plus faible, et la formule précédente devient :

(26)
$$q = \frac{q_0}{2} (1 - 1, 7v_3) (v_2 + 1)$$

Cet effet résulte probablement de l'anharmonicité de la molécule.

Fig. 38 — R(J) + P(J) + 0.01764 J(J + 1) pour les deux séries de raies de la transition 01^13 — 01^10 du $^{13}C^{16}O_2$ montrant la différence entre les deux constantes q.

Pour les niveaux en résonance Fermi les deux constantes B^c et B^d sont modifiées suivant la formule 25, et, par suite, la différence entre les niveaux n'est plus celle qui correspond à la formule 26.

Si q_j^c est la valeur non perturbée qui correspond à cette dernière formule, on trouve alors :

$$(27) q_i = \sum_{\mathbf{j}} a_{i\mathbf{j}}^2 q_{\mathbf{j}}^{\mathbf{o}}$$

comme pour les constantes B et en utilisant les mêmes constantes a_{ij}^2 données au tableau 22.

Le calcul peut se faire de manière plus simple si on tient compte à la fois des formules 26 et 27 et de la manière symétrique dont les tableaux 22 ont été disposés dans ce travail. Pour un groupe de trois bandes en résonance on obtient :

$$q_i = (q_0 - 1,7v_3)(3a_{i1}^2 + 2a_{i2}^2 + a_{i3}^2)$$
 $i = 1,2,3$

Les calculs ont été effectués avec $q_0 = 61$ et 63. Comme les valeurs expérimentales sont obtenues par référence aux constantes du niveau 01^{10} elles pourraient devoir être adaptées, mais les différences $q - q_0$ resteraient et sont donc les grandeurs intéressantes. Pour faciliter la comparaison entre les valeurs calculées et les valeurs expérimentales ce sont donc ces différences qui sont reprises au tableau 25.

	Calcu	ılés	Observés
	q ₀ 61	q ₀ 63	
(03 ¹ 0	42	43	
1110	19	20	
03^{1}	40	41,5	a
11^{1} 1	16	16,5	18,5
0313	36,5	38	
11^{13}	9,5	10	110
105^{1}	84	87	84,5
\ 13 ¹ 1	48	49,5	53
2111	41	42,5	45,5
07^{1}	128,5	133	
15 ¹ 1	87	90	93
23 ¹ 1	62	64	66
(31 ¹ 1	71,5	74	80,5

O Valeur très peu précise car la bande est très faible.

On constatera que l'accord est très bon surtout si on admet $q_0 = 63$, valeur calculée. Ceci semble indiquer que celle-ci est la valeur correcte et que la valeur expérimentale 61 était un peu trop faible.

L'effet de la résonance Fermi explique donc très bien les résultats expérimentaux concernant la constante q et, en particulier, l'augmentation considérable avec le nombre quantique v_1 . Par contre, comme nous l'avons signalé (Courtoy 1958), les résultats ne pourraient être interprétés avec une formule linéaire comme celle proposée par Shearer, Wiggins, Guenther, et Rank (1956).

⁽a) Le niveau 03¹1 est perturbé par une résonance de Coriolis.

L'écart qui subsiste entre les valeurs calculées et les valeurs observées doit probablement résulter d'effets secondaires analogues à celui qui apparaît avec le nombre quantique v_3 et qui doivent se manifester aussi avec les nombres quantiques v_1 et v_2 .

c) Constantes de distorsion centrifuge D pour les différents niveaux d'énergie.

Signalons d'abord que, dans cette section, pour simplifier les écritures, nous écrirons toutes les constantes en 10^{-8}cm^{-1} . Rappelons ensuite que la valeur trouvée pour le niveau fondamental était 13,7 et qu'à défaut de mesures assez précises, nous avons adopté la même valeur pour les niveaux 01^{10} et $02^{2}0^{d}$, tandis que nous admettions la valeur calculée 12,9 pour le niveau $02^{2}0^{c}$ (4).

Quand, pour passer aux autres niveaux d'énergie, on utilise la formule 5 pour l'analyse des transitions $\Sigma - \Sigma$ ou pour les deux séries des transitions $\Pi - \Pi$ ou $\Delta - \Delta$, et qu'on met les valeurs obtenues pour le premier membre en fonction de J(J+1), on doit obtenir une droite si l'expression D''-D' est négligeable. Or, normalement cette différence doit être extrêmement faible et elle n'avait jamais été mise en évidence dans les spectres infrarouges avant notre étude sur le CO_2 . Dans le cas de cette molécule, nous trouvons des droites quand la résonance Fermi n'intervient dans aucun des deux niveaux de la transition. Lorsqu'on part du niveau fondamental ou du niveau 01^{10} 0 la constante D du niveau supérieur prend donc, alors, la même valeur 13,7.

Mais grâce aux mesures assez précises que nous avons pu faire, nous avons observé que, en général, dès que la résonance Fermi intervenait dans un des deux niveaux de la transition, nous n'avions plus des droites mais des courbes. Nous avons pu signaler ce fait obtenu pour la première fois lors de l'étude sur ¹²C¹⁶O₂ (Courtoy et Herzberg 1955). Par après, Rossman, France, Rao, et Nielsen (1956) ont retrouvé cet effet dans leur étude sur les spectres du CO₂.

Le terme de rotation en $J^2(J + 1)^2$ ne résulte plus seulement de la distorsion centrifuge mais de la superposition de plusieurs effets. Il est préférable dans ce cas de parler de constante D effective (D_{eff}) .

Dans le cas du 13C16O2, on observe de nouveau cet effet comme

⁽¹⁾ Rappelons que la signification des indices (c) et (d) a été donnée p. 122.

on peut s'en rendre compte sur les figures 39-41 dans le cas des transitions $\Sigma - \Sigma$. Si, en partant de la formule 5, on choisit une

Fig. 39 — $v_1 + v_3$, 2 $v_2 + v_3$ du $^{13}C^{16}O_2$. Effet de la différence D'' — D'

Fig. 40 — 2 ν_1 + $\nu_3,~\nu_1$ + 2 ν_2 + $\nu_3,$ 4 ν_2 + ν_3 du $^{13}C^{16}O_2.$ Effet de la différence D'' — D'.

valeur de A qui soit exactement B''-B', la formule devient : $R(J)+P(J)+2(B''-B')J(J+1)-2\nu_0+2B'+2(D''-D'J^2(J+1)^2)$ et les valeurs du premier membre mises en fonction de J(J+1)

doivent donner une ligne droite horizontale si D' = D''. Or, on constate que l'on observe des courbes. On constate aussi que l'asymétrie dans les courbes correspondant à un groupe de bandes, faible dans le cas du $^{12}C^{16}O_2$, est nettement plus accentuée pour $^{13}C^{16}O_2$. Cela tient au fait que nous avons affaire à la superposition de deux effets.

Comme la différence D'' - D' apparaissait avec la résonance Fermi, il était normal de chercher à l'expliquer en fonction de ce type de perturbation. Une étude théorique de cet effet a été faite par Amat, Goldsmith, et Nielsen (1956) et ils ont obtenu des différences D'' - D' dans le sens observé expérimentalement, mais plus faibles et symétriques à l'intérieur d'un groupe en résonance de telle manière que $\Sigma \Delta D = 0$.

Fig. 41 — 3 ν_1 + ν_3 , 2 ν_1 + 2 ν_2 + ν_3 , ν_1 + 4 ν_2 + ν_3 , 6 ν_2 + ν_3 du $^{13}C^{16}O_2$. Effet de la différence D'' — D'.

Ces résultats ne rendaient donc pas compte des valeurs expérimentales de manière tout à fait satisfaisante. Les mêmes auteurs (Nielsen, Amat, et Goldsmith 1957) ont alors introduit un second type d'interaction, la perturbation de type l, dont il a été question à propos des transitions $\Delta -- \Delta$, entre les niveaux (v_1, v_2, l, v_3) et $(v_1, v_2, l + 2, v_3)$. Ainsi que nous l'avons signalé, ce nouveau type d'interaction intervient chaque fois qu'il y a résonance Fermi.

Les niveaux Σ entreront en interaction avec un ou plusieurs niveaux Δ (l--2) et ceux-ci éventuellement avec un ou plusieurs niveaux Γ $(l=\pm 4)$ et ainsi de suite. Les niveaux Π de leur côté auront une interaction avec un ou plusieurs niveaux Φ $(l=\pm 3)$ etc. L'étude théorique a montré que cette interaction introduit un terme en $J^2(J-1)^2$, ce qui revient à dire que seule la constante D est perturbée.

TABLEAU 26 $D_{\rm eff}\!\!-\!\!D_{000}\ pour\ les\ différents\ niveaux\ d'énergie\ du\ ^{13}C^{16}O_{2}\ (10^{-8}cm^{-1})$

	Calculés			
	résonance Fermi	résonance type <i>l</i>	Somme	Observés
$\begin{cases} 02^{0}0\\ 10^{0}0\\ 02^{2}0^{c}\\ 02^{0}1\\ 10^{0}1\\ 02^{2}1^{c}\\ 02^{0}3\\ 10^{0}3\\ 20^{0}2^{0}3\\ 10^{0}3 \end{cases}$	1,33 —1,33 1,25 —1,25 1,10 —1,10	0,91 0,15 0,76 1,00 0,13 0,87 1,19 0,10	2,24 -1,48 -0,76 2,25 -1,38 -0,87 2,29 -1,20	2,3 1,2 1,9° 0,7°
0223		1,09	1,09	
	V	aleurs observées		
04 ⁰ 1 12 ⁰ 1 20 ⁰ 1 06 ⁰ 1 14 ⁰ 1 22 ⁰ 1 30 ⁰ 1 (08 ⁰ 1 16 ⁰ 1 24 ⁰ 1 32 ⁰ 1 40 ⁰ 1 00 ⁰ 3 01 ¹ 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \left\{\begin{array}{c} 03^{1}1\\ 11^{1}1\\ 05^{1}1\\ 3,2\\ \left\{\begin{array}{c} 13^{1}1\\ 21^{1}1\\ 07^{1}1\\ 15^{1}1\\ 23^{1}1\\ 31^{1}1 \end{array}\right.\right.$	1,9°(a) -0,7° 3,5 -1 -2,8 2,7 0,4° -1,6°	$ \begin{cases} 04^{2}1^{d} \\ 12^{2}1^{d} & 0,7^{\circ} \\ 06^{2}1^{d} \\ 14^{2}1^{d} \\ 22^{2}1^{d} &2,3^{\circ} \end{cases} $

o Valeurs moins précises.

(a) Pour le niveau 03¹1, valeur de la composante non perturbée Dd.

(b) Ce niveau doit être perturbé v.p. 136 et 147.

Lors des interactions $\Sigma - \Delta$, la composante Δ^c peut seule intervenir, et donc la constante D^d sera celle qu'on obtiendrait

sans cette perturbation supplémentaire, tandis que la constante D^c en sera affectée. Dans le tableau 26 où sont groupées les constantes D qui ont été observées, on trouvera donc séparément les constantes D^c et D^d pour les états Δ , ainsi que nous l'avions fait dans notre étude du $^{12}C^{16}O_2$.

Comme la somme des $D_{eff}-D_{000}$ des états Σ formant un groupe en résonance Fermi est chaque fois positive (nettement plus ici que pour $^{12}C^{16}O_2$) il faut que la somme des autres $D_{eff}-D_{000}$ soit négative pour les niveaux Δ^c et éventuellement Γ^c qui interviennent. Malheureusement dans le cas de $^{13}C^{16}O_2$, nous n'avons pas pu mesurer suffisamment de valeurs de constantes D^c des états Δ pour pouvoir vérifier le fait.

Nous avons signalé que la somme des D_{eff} -- D_{000} pour les états Σ est plus grande pour $^{13}C^{16}O_2$ que pour $^{12}C^{16}O_2$. Cela veut dire que l'interaction de type I est plus marquée et compense la diminution de l'effet de la résonance Fermi. On peut voir que cela résulte des formules théoriques car dans le cas d'une diade Σ entrant en interaction avec un niveau Δ^c les calculs sont assez simples. Les formules peuvent être trouvées dans l'étude théorique Rao et Nielsen (1956). Avec nos notations on peut les mettre sous la forme suivante

(28)
$$\Delta D_{\nu_{1}} = -\frac{W'^{2} \overline{\Delta} \overline{B}^{02}}{\Delta^{3}} - \frac{q_{0}^{2} (\Delta - \Delta^{0})}{\Delta (\Delta + \Delta^{0} - 8g_{22})}$$
$$\Delta D_{2\nu_{2}^{0}} = \frac{W'^{2} \overline{\Delta} \overline{B}^{02}}{\Delta^{3}} + \frac{q_{0}^{2} (\Delta + \Delta^{0})}{\Delta (\Delta - \Delta^{0} + 8g_{22})}$$

avec $\Delta=W_1-W_2$ et $\Delta^o=W_1-W_2^0$. Les indices ° sont attachés, comme précédemment, aux constantes non perturbées par la résonance Fermi.

Le premier terme se retrouve symétriquement et correspond à l'effet de la résonance Fermi. Le second correspond à l'interaction de type l. On voit d'après la formule que cet effet n'est pas symétrique pour les deux niveaux Σ et que l'asymétrie augmente avec Δ^o . Elle doit donc être plus marquée pour $^{13}C^{16}O_2$ que pour $^{12}C^{16}O_2$, comme on l'observe de fait, ainsi que nous l'avons signalé. Pour la constante D^c du niveau Δ^c , il faut prendre la différence entre les deux seconds termes de manière que, pour les trois niveaux en résonance, $\Sigma \Delta D = 0$.

Le tableau 26 donne les valeurs des constantes D. Puisque les

valeurs expérimentales sont obtenues par référence à la constante D du niveau inférieur, nous indiquerons les différences $D_{eff} - D_{000}$ en tenant compte du fait, pour les niveaux Δ^c , que nous avons supposé $D^c - 12,9$ pour le niveau 02^20 , ainsi que nous l'avons signalé plus haut.

Dans le cas des trois diades Σ , on trouvera les valeurs calculées suivant les formules indiquées plus haut et on constatera que les valeurs théoriques sont en bon accord avec les valeurs qui ont pu être observées. Pour les autres niveaux d'énergie, nous indiquons seulement les valeurs observées.

En ce qui concerne les états II, ils peuvent entrer en résonance de type l avec un ou plusieurs niveaux Φ et ainsi de suite, mais les deux composantes seront perturbées de la même manière et il n'y a donc pas lieu de distinguer les deux composantes en vertu de cet effet.

Cependant, on observe parfois une différence $D^d - D^c$ qui correspond à la constante μ de la formule 21. Celle-ci est normalement très faible (v. p. ex. Nielsen 1954). Cependant elle a pu être mise en évidence dans les spectres de rotation pure, en ondes centimétriques, pour HCN et DCN (Shulman et Townes 1950, Weatherly et Williams 1952).

En ce qui concerne les spectres infrarouges du ${\rm CO_2}$, cet effet échappe aux mesures, et, de fait, lors de notre étude sur ${\rm ^{12}C^{16}O_2}$ la valeur trouvée pour le niveau 01^{13} où la résonance Fermi n'intervient pas est très faible, à la limite des erreurs expérimentales, et n'est pas significative. Il en est de même pour la bande correspondante du ${\rm ^{13}C^{16}O_2}$ où on ne trouve pas de différence entre les constantes D ($\mu=0$).

Mais, lorsque la résonance Fermi affecte des niveaux Π, on observe une valeur supérieure pour la constante μ, et cette fois la différence est significative. Ceci a été observé pour la première fois lors de notre étude sur ¹²C¹⁶O₂. La théorie en a été faite par Amat, Goldsmith et Nielsen (1956). Là où les calculs ont été faits, pour certains niveaux du ¹²C¹⁶O₂, l'accord est très bon entre les valeurs calculées et les valeurs observées. Cet effet secondaire se retrouve pour ¹³C¹⁶O₂, et dans le même sens. Les valeurs obtenues sont indiquées au tableau 27, mais elles sont très faibles et peu précises, comme on peut s'y attendre pour ces constantes surtout lors de bandes assez faibles.

TABLEAU 27

Constantes μ (D^d—D^c) du dédoublement l des états Π pour $^{13}C^{16}O_2$.

Valeurs observées $(10^{-8}cm^{-1})$.

0311	(a)
11^{11}	0,1
0511	1,5
\ 13 ¹ 1	1,4
/ 2111	1
0711	
1511	2°
2311	-1,50
(3111	
0113	0

o Valeurs spécialement peu précises.

(a) Le niveau 03¹1 est perturbé. v. section suivante.

d) Perturbation de Coriolis

Une perturbation de Coriolis peut intervenir (v. Herzberg 1945 p. 379) entre un état Σ_g et un état Π_g , ou d'autre part entre des états Σ_u et Π_u d'une molécule linéaire. Mais dans ce cas, pour l'état Π une seule des composantes est perturbée, comme pour l'état Δ lors d'une résonance de type I ainsi que nous l'avons vu plus haut. Si c'est un état Π_g qui intervient, la composante perturbée sera Π^c (ou Π^+) avec les constantes \mathbf{B}^c et \mathbf{D}^c .

Dans l'étude de la molécule $^{12}\mathrm{C}^{16}\mathrm{O}_2$, nous avons rencontré une perturbation de ce genre entre le niveau II_g $05^1\mathrm{I}^c$ et le niveau Σ_g $32^0\mathrm{O}$. Mais les deux séries de niveaux d'énergie de rotation ne se croisaient pas et la perturbation était relativement faible.

Une perturbation analogue doit intervenir pour la molécule $^{13}C^{16}O_2$ pour le niveau Σ_u 24°1, car, ainsi que nous l'avons signalé (p. 136), nous trouvons une constante B anormale et la constante D est, elle aussi, surprenante car nous trouvons une différence D_{eff} — D_{000} positive alors qu'on s'attendrait pour ce niveau à une différence négative, comme on peut s'en rendre compte d'après l'ensemble du tableau 26.

De plus, l'étude du $^{13}C^{16}O_2$ montre un cas beaucoup plus typique amenant une perturbation de rotation tout à fait caractéristique (Herzberg 1945 p. 216). En effet, si on veut faire l'analyse des deux composantes de la transition $03^{11}-01^{10}$ et que l'on calcule les valeurs de $R(J)+0,0040\ J(J+1)$ et si on met ces valeurs en fonction de J (J+1) pour déterminer la valeur de ν_0 , on trouve

ce qui est représenté sur la figure 42. La séparation entre les deux séries montre l'effet de la variation de la constante q entre les deux niveaux d'énergie de vibration. Pour la composante supérieure une légère courbure montre la présence d'une différence D'— D' résultant de la résonance Fermi et de la résonance de type l et dans ce cas tout s'explique donc par ce que nous avons vu précédemment. Mais pour la composante inférieure on observe une courbure

Fig. 42 — R(J) + P(J) + 0,0040 J(J+1) en fonction de J(J+1) pour la transition 03^{11} — 01^{10} du $^{13}C^{16}O_2$ montrant la perturbation du niveau 03^{11} ° (J'' impairs).

absolument anormale et il faudrait supposer une valeur de D'aux environs de $-70 \ 10^{-8} {\rm cm}^{-1}$ pour en rendre plus ou moins compte! On peut donc s'attendre à une perturbation de Coriolis entre ce niveau Π_g et un niveau Σ_g . Nous pouvons alors chercher à calculer a priori ce que l'on devrait trouver pour ce niveau.

Les constantes calculées pour le niveau 03^{11} sont B 0.38864, $q=104.5 \ 10^{-5}$ et on peut admettre D = $15 \ 10^{-8}$ et $\mu=0.6 \ 10^{-8}$, ce qui donne B^d = 0.38916_5 et D^d = 15.3 en excellent accord avec les valeurs observées 0.38916_5 et 15.7. Les constantes calculées pour la composante perturbée sont 0.38812 et $14.7 \ 10^{-8}$. On peut donc calculer les niveaux de rotation de cette série en tenant compte de la valeur trouvée pour le niveau d'énergie de vibration $v_0 = 648.52 = 4147.24$. Or il se fait qu'à proximité de ce niveau 11_g on peut calculer la présence d'un niveau Σ_g , le niveau 30^{00}

dont les constantes doivent être environ $v_0 = 4145,65 \ B = 0,39011$ et $D = 11 \ 10^{-8}$. Le niveau d'énergie de vibration est donc légèrement inférieur tandis que la constante B est nettement supérieure, les niveaux doivent donc se croiser d'autant plus que la constante D est ici inférieure. C'est ce qui arrive de fait. Sur la figure 42, les courbes en trait plein suivent les valeurs calculées pour les différents niveaux de rotation des deux niveaux d'énergie de vibration.

Fig. 43 — Schéma de la perturbation de rotation entre les niveaux 30^0 0 et 03^11° . Les $^\circ$ indiquent les valeurs observées. On a retranché 0,38906 J(J+1) à toutes les valeurs afin de réduire l'échelle.

Les valeurs observées à comparer aux valeurs calculées sont celles que l'on peut obtenir en partant des données expérimentales (raies R et P) en appliquant les formules 19 résolues en fonction de v_0 \vdash F (J) à quoi il faut ajouter la valeur de la bande v_2 soit 648,52 pour avoir le niveau d'énergie supérieur. On constate que pour la série 03¹1°, les valeurs observées correspondent aux valeurs calculées pour les petits nombres J, mais que les niveaux d'énergie s'écartent rapidement des valeurs calculées pour ce niveau 03¹1 et rejoignent celles qui ont été calculées pour le niveau 30°0.

On trouve dans les spectres une autre série de raies. Le calcul des différences secondes R(J-1) - P(J+1) permet de s'assurer qu'il s'agit d'une transition partant du niveau 01^{10} ° et de numéroter

les raies de la bande. En faisant le même calcul que pour les raies de l'autre bande, on trouve les niveaux de rotation du niveau supérieur, et on constate, avec une certaine satisfaction, qu'ils se placent dans la partie inférieure de la figure, que pour les J supérieurs ils correspondent aux valeurs calculées pour le niveau 03^{11} e et qu'en extrapolant, pour les J petits, on retrouverait les valeurs calculées pour le niveau $30^{\circ}0$. Nous avons donc nommé cette série : bande $3\nu_1 - \nu_2$, sur les tableaux 2 et 15. En fait, pour que ces concordances soient satisfaisantes, nous avons utilisé pour le ν_0 du niveau $30^{\circ}0$ 4145,96 au lieu de 4145,53 qui avait été calculé. L'accord entre ces deux valeurs est très satisfaisant. La valeur utilisée est indiquée comme valeur expérimentale au tableau 7.

Ceci est probablement le plus beau cas de perturbation de rotation obtenue dans les spectres infrarouges. Ce phénomène n'a même peut-être jamais été observé sous sa forme caractéristique car il doit être très rare. Il faut en effet que les niveaux d'énergie ayant la symétrie voulue soient très proches et que les constantes de rotation soient telles que les deux séries de niveaux de rotation se croisent. Dans le cas du $^{13}C^{16}O_2$ il fut très difficile de mettre ce phénomène en évidence car cette partie du spectre est particulièrement complexe par suite de la superposition de nombreuses bandes comme on peut s'en rendre compte sur les figures 27 à 29. C'est uniquement grâce à une connaissance approfondie de l'ensemble des constantes moléculaires que l'interprétation de ce phénomène fut possible.

3. Molécule ¹⁴C¹⁶O₂

L'analyse rotationnelle de cette molécule doit se faire comme celle de $^{12}\mathrm{C}^{16}\mathrm{O}_2$ et $^{13}\mathrm{C}^{16}\mathrm{O}_2$. La valeur de B_e doit être la même soit 0,390635, et on doit s'attendre à une valeur de $\mathrm{B}_0=0,39029$ puisqu'on avait 0,39021 et 0,39025 pour $^{12}\mathrm{C}^{16}\mathrm{O}_2$ et $^{13}\mathrm{C}^{16}\mathrm{O}_2$ respectivement. La constante D doit être la même soit environ 13,5 $10^{-8}\mathrm{cm}^{-1}$.

En fait on a peu de données expérimentales concernant cette molécule. Seule, la bande v_3 a été analysée. Les meilleurs résultats doivent être ceux de Wilkinson (5) qui trouve $B_0 = 0.3902_1$ et

⁽⁵⁾ Nous tenons à remercier G. R. Wilkinson pour nous avoir communiqué ces renseignements non publiés.

 $D_0=11~10^{-8}$ avec $\alpha_3-\gamma_{33}=285,7\pm0,5~10^{-5} cm^{-1}$. Les valeurs correspondantes pour $^{12}C^{16}O_2$ et $^{13}C^{16}O_2$ étaient 308,4 et 297 et la progression est tout à fait normale.

4. Molécules 12C16O18O et 13C16O18O

Nous avons vu plus haut que pour ces molécules les moments d'inertie sont équivalents et qu'on trouve la même valeur de B_0 et D_0 . Les valeurs obtenues, d'une précision relative, étaient 0,36820 et 11,5 10^{-8} en accord suffisant avec les valeurs calculées 0,36815 ou 0,36818 et 10,3.

La somme des différences B" — B' pour la diade et la triade observées indiquent, en 10 5cm⁻¹, suivant les relations utilisées pour ¹³C¹⁶O₂, p. 134 :

Si nous adoptons les mêmes valeurs pour les γ que dans le cas du $^{13}C^{16}O_2$ (v. tableau 23), on obtient :

Ces valeurs sont des indications qu'il faudrait préciser. Dans le cas de ¹³C¹⁶O¹⁸O, elles sont particulièrement douteuses. En effet, la constante B obtenue pour le niveau 20°1 est très peu précise car la bande est faible et très fragmentaire.

Pour essayer de clarifier la question on peut utiliser les relations 25. Les constantes a_{ij}^2 peuvent être calculées puisque l'analyse vibrationnelle semble satisfaisante. Elles sont indiquées au tableau 28. On peut obtenir ainsi les valeurs non perturbées B_i^0 mais, comme nous l'avons déjà signalé à propos de $^{13}C^{16}O_2$, les résultats ne sont guère précis. Finalement, il faut quelques tâtonnements pour arriver aux valeurs les meilleures. Il semble que les nombres indiqués au tableau 29 soient les plus satisfaisants en fonction des résultats expérimentaux. Signalons cependant qu'ils restent peu précis et qu'il faudra l'analyse d'autres bandes pour avoir plus de garantie.

Les valeurs de B_e obtenues seraient respectivement 0,36559 et 0,36570. L'écart entre les deux valeurs n'est probablement pas réel et vient normalement d'une différence qu'il nous fut impossible de mettre en évidence entre les deux valeurs de B_0 et d'une différence probablement un peu trop grande entre les α_3 .

TABLEAU 28

Carrés des coefficients de contribution partielle des fonctions d'onde non perturbées aux fonctions d'onde perturbées.

$^{12}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}$							
$ \begin{cases} 10^{0}1 \\ 02^{0}1 \\ 20^{0}1 \\ 12^{0}1 \\ 04^{0}1 \end{cases} $	0,56027 0,43973 0,23172 0,64228 0,12596	0,43973 0,56027 0,47981 0,00994 0,51027	0,28847 0,34778 0,36377				
	13C16	O ¹⁸ O					
$ \begin{cases} 02^{01} \\ 10^{01} \\ 04^{01} \\ 12^{01} \\ 20^{01} \end{cases} $	0,62734 0,37266 0,45822 0,32109 0,22067	0,37266 0,62734 0,44104 0,03802 0,52092	0,10074 0,64089 0,25841				

On peut alors calculer les B_i^0 , et, grâce aux coefficients a_{ij}^2 obtenir les B_i perturbés. Ces valeurs sont indiquées au tableau 30 avec les valeurs expérimentales mises en regard. L'erreur pour le niveau 20°1 de $^{13}C^{16}O^{18}O$ est assez considérable, mais, comme

TABLEAU 29

Constantes de rotation pour $^{12}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}$ et $^{13}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}$ (10 $^{-5}cm^{-1}$)

12C16O18O 13C16O18O

100
64
280

nous l'avons signalé, cette valeur expérimentale est peu précise. Autrement, dans l'ensemble, l'accord nous semble très satisfaisant et les constantes de rotation utilisées doivent d'ailleurs correspondre assez bien à ce que l'on peut attendre par suite de l'effet isotopique.

En ce qui concerne les constantes D des différents niveaux pour ces deux molécules, les mesures sont évidemment peu précises. Il semble bien ressortir cependant que l'on retrouve les différences $D_{eff} - D_{000}$ résultant de la résonance Fermi et de la résonance de type l, avec l'asymétrie produite par ce dernier effet.

¹² C ¹⁶ O ¹⁸ O	Calcu	lées	Observées	Différence	
	sans	avec			
	résonance	résonance			
	$\mathbf{B}_{i}^{\scriptscriptstyle 0}$	\mathbf{B}_i			
1001	36427,5	(36529,5	36532	2	
0201	36660	36558	36556	+2	
2001	36323	36570,5	36575	-4	
1201	36556,5	36488,5	36484,5	+4	
0401	36792	36612,5	36613	0	
13C16O18O					
0201	36671)	(36585	36588	—3	
1001	36440,5	36526,5	36525	+1	
0401	36801	36651	36656	5	
1201	36567.5	36494	36482	+12	
2001	36336	36559	36545°	+14	

o Valeur peu précise car la bande est faible et fragmentaire.

TABLEAU 31

 $D_{eff}-D_{\rm 000}$ pour les différents niveaux d'énergie des $^{12}{\rm C}^{16}{\rm O}^{18}{\rm O}$ et $^{13}{\rm C}^{16}{\rm O}^{18}{\rm O}$ (10 $^{-8}cm^{-1}$)

15C16O18O	résonance Fermi	Calculés résonance type <i>l</i>	somme	Observés
$ \begin{cases} 10^{0}1 \\ 02^{0}1 \\ 20^{0}1 \\ 12^{0}1 \\ 04^{0}1 \end{cases} $	1,32 —1,32	0,21 —0,38	1,53 —1,70	2 -4 1,5 -2 -4
$ \begin{cases} 02^{01} \\ 10^{01} \\ 04^{01} \\ 12^{01} \\ 20^{01} \end{cases} $	1,28 1,28	0,48 0,20	1,76 —1,48	3,5 1 6 —1

Les calculs ont été faits pour les diades Σ suivant les formules 28 avec les différences pour les deux résonances. Les valeurs obsenvées sont indiquées au tableau 31 avec l'ensemble des valeurs observées. Pour $^{13}\mathrm{C^{16}O^{18}O}$, les résultats correspondent à ceux de $^{12}\mathrm{C^{16}O_2}$, et $^{13}\mathrm{C^{16}O_2}$, et la somme des ΔD pour les états Σ en résonance est positive comme les valeurs calculées le montrent d'ailleurs pour la diade. Mais pour $^{12}\mathrm{C^{16}O^{18}O}$ nous trouvons de nouveau un résultat particulier venant du fait que, dans les formules 28, Δ et Δ^{0} sont négatifs. Les ΔD changent donc de signe et comme l'effet de la résonance de type l reste supérieur pour le niveau 02°1 la somme des ΔD doit être négative pour les niveaux Σ en résonance. Les valeurs observées ont en général le signe voulu et la somme des ΔD est de fait négative.

Malgré le peu de précision de ces constantes on obtient donc des résultats très satisfaisants.

CONCLUSION

Au cours de cette étude sur la molécule du ${\rm CO_2}$ plus de 4000 raies d'absorption ont été mesurées avec une bonne précision. Les spectres obtenus, bien que parfois fort complexes, purent être interprétés. Il ne reste sans explication suffisamment garantie que quelques raies très faibles et dispersées.

Les raies identifiées se groupent en 91 bandes d'absorption. Parmi celles-ci, 82 sont très nettes, tandis que les 9 autres sont assez fragmentaires. L'ensemble de ces bandes appartient à quatre formes isotopiques du $\rm CO_2$: $^{12}\rm C^{16}\rm O_2$, $^{12}\rm C^{16}\rm O_1^{18}\rm O$, $^{13}\rm C^{16}\rm O^{18}\rm O$.

Les résultats numériques obtenus au cours de cette étude sont beaucoup trop nombreux pour qu'il soit possible de les reprendre dans cette conclusion. Le lecteur peut avoir une certaine difficulté à retrouver les niveaux d'énergie ou les constantes qui l'intéressent. Nous avons donc prévu, après la bibliographie, une liste des figures et une liste des tableaux. En se référant à cette dernière il sera facile de retrouver directement les valeurs cherchées.

Les résultats concernant la molécule ¹²C¹⁶O₂ ont été publiés dans un travail antérieur mais quelques compléments et précisions furent apportés au cours de cette nouvelle étude.

L'analyse des spectres du $^{13}C^{16}O_2$ est semblable à celle du $^{12}C^{16}O_2$ et nous avons pu la faire de manière systématique. Quant

aux molécules asymétriques, nous avons pu obtenir et analyser 5 bandes pour chacune d'entre elles.

Au moven de l'analyse vibrationnelle, les constantes de vibration du ¹³C¹⁶O₂ ont été obtenues. Elles sont rassemblées au tableau 5. On constate que les règles isotopiques simples, utilisées pour la substitution ¹²C¹⁶O₂, ¹³C¹⁶O₂ permettent de rendre compte remarquablement de l'effet isotopique sur les constantes de vibration. On peut aussi, pour les deux molécules isotopiques asymétriques, calculer les valeurs des niveaux d'énergie, et on arrive à un excellent accord (v. tableaux 11 et 12). Il y a cependant une condition. Il faut en effet calculer indépendamment pour chaque molécule le terme de perturbation de la résonance Fermi. On a toujours admis que ce terme est directement lié au coefficient k_{122} de la fonction potentielle en coordonnées normales sans dimension. Or il résulte de ce travail que l'effet isotopique observé pour le terme de perturbation ne correspond pas à celui que l'on doit avoir pour le coefficient de la fonction potentielle. La simple relation ne peut donc être admise telle quelle, et il y a lieu de réexaminer la théorie de cet effet. Il faudra probablement faire intervenir des termes d'ordre supérieur de la fonction potentielle.

L'analyse rotationnelle est satisfaisante.

Pour $^{12}C^{16}O_2$ et $^{13}C^{16}O_2$ on retrouve la même valeur de la constante de rotation pour le minimum d'énergie, B_e, soit 0,39163₅ cm⁻¹, ce qui suppose la distance C—O pour le minimum d'énergie $r_e = 1,1597_9$ Å.

Pour $^{13}C^{16}O_2$, les constantes de rotation sont maintenant établies avec une bonne précision (v. tableau 23), et, en tenant compte de la résonance Fermi, on peut calculer la valeur des B_{vvv} (v. tableau 24). On constate que, sauf 2 exceptions, elles correspondent très bien aux valeurs expérimentales. La constante q du dédoublement des états Π suivant la formule

$$\Delta v = q J(J+1) - \mu J^2(J+1)^2$$

varie de nouveau légèrement avec le nombre quantique de vibration v_3 , et les variations importantes de cette constante avec les nombres quantiques v_1 et v_2 s'expliquent très bien en tenant compte de la résonance Fermi. Les constantes de distorsion centrifuge sont de nouveau affectées par la résonance Fermi et la résonance de type l, entre les niveaux (v_1, v_2, l, v_3) et $(v_1, v_2, l + 2, v_3)$, et cette dernière est plus importante que dans le cas du ${}^{12}C^{16}O_2$. On voit apparaître

aussi, à la limite de la précision expérimentale, l'effet de la résonance Fermi, augmentant l'importance de la constante μ du dédoublement des états II. Un dernier fait intéressant concernant la molécule $^{13}C^{16}O_2$ est une perturbation de Coriolis entre les niveaux $30^{9}O$ et $03^{1}1^{\circ}$ donnant un cas typique de perturbation de rotation. Ce fait est très rare et, peut-être, observé pour la première fois dans les spectres d'absorption infrarouge.

L'analyse rotationnelle de certaines bandes d'absorption infrarouge pour les molécules $^{12}C^{16}O^{18}O$ et $^{13}C^{16}O^{18}O$ a pu être faite pour la première fois avec une précision suffisante. On trouve pour la constante de rotation du niveau fondamental $B_0 = 0.36820~\text{cm}^{-1} \pm 0.00005$. Le choix des coefficients α indiquant la variation des constantes de rotation B suivant les différents niveaux d'énergie de vibration est une première indication qu'il faudra contrôler par l'analyse d'autres bandes. On retrouve ici aussi l'effet de la résonance Fermi sur les constantes B des niveaux d'énergie et sur les constantes de distorsion moléculaire.

Dans le cas du $^{12}C^{16}O^{18}O$, v_1 est inférieur à 2 v_2 ce qui entraîne un certain nombre de conséquences sur la valeur des constantes de cette molécule pour les niveaux en résonance. Si on veut retrouver des résultats comparables à ceux des autres formes isotopiques du CO_2 , il faut modifier la nomenclature habituelle pour le CO_2 lorsqu'on aborde l'étude de cette forme isotopique. Il serait intéressant de pouvoir obtenir les bandes 3 v_3 + v_1 et 3 v_3 + 2 v_2 de cette molécule, car la résonance Fermi doit y être très forte par suite de la proximité des niveaux non perturbés.

L'ensemble de ce travail a contribué de manière importante à la connaissance de la molécule de CO₂. Celle-ci est probablement, à présent du moins, la mieux connue parmi les molécules polyatomiques. Par suite de la simplicité de cette molécule, linéaire et symétrique, et grâce à la précision des mesures réalisées, il fut possible de mettre en évidence plusieurs phénomènes secondaires qui n'avaient jamais été observés ou mesurés.

C'est une des premières fois qu'il est possible d'estimer certains coefficients des termes du troisième degré dans la formule donnant les niveaux d'énergie de vibration et certains coefficients des termes du second degré dans la formule des constantes B pour les différents niveaux d'énergie.

C'est au cours de ce travail que nous avons pu montrer que les constantes de distorsion moléculaire étaient affectées par la

résonance Fermi. C'est, en partie au moins, pour retrouver nos résultats expérimentaux que l'étude théorique de la résonance de type *l* a été entreprise, et les valeurs expérimentales ont permis le contrôle des formules théoriques.

Pour la première fois, il fut possible de mesurer la variation du terme de perturbation avec les trois nombres quantiques de vibration. Ces valeurs pourront servir de contrôle aux formules théoriques, lorsqu'elles seront précisées. Dès maintenant, la théorie a montré que le λ_I de la formule 7 était nul, ainsi que nous l'avions suggéré à la suite de l'étude des spectres du $^{12}\text{C}^{16}\text{O}_2$.

Ce fut aussi une des premières fois qu'il fut possible de mesurer l'importance de la variation de la constante q du dédoublement l des états Π avec le nombre quantique v_3 , et c'est probablement la seule étude qui permet de vérifier la théorie de l'effet de la résonance Fermi sur cette constante. C'est aussi la première fois qu'on peut mettre en évidence l'effet de la résonance Fermi sur la constante μ du dédoublement des états Π .

Le but de l'ensemble du travail était le contrôle de l'effet isotopique sur les constantes de la molécule. Il fut possible de mettre en évidence que les formules prévues étaient remarquablement observées. Cependant, comme nous l'avons signalé un peu plus haut, il reste un point à examiner de près en ce qui concerne le terme de perturbation de la résonance Fermi, où il semble que l'intervention de termes supérieurs de la fonction potentielle ne peut être négligée comme on l'a fait jusqu'à présent. Ceci est peut-être le point le plus important parmi les résultats obtenus. Une étude plus complète des molécules asymétriques ¹²C¹⁶O¹⁸O et ¹³C¹⁶O¹⁸O serait particulièrement intéressante pour donner une nouvelle garantie à la valeur expérimentale de l'effet isotopique sur le terme de perturbation, lors de la substitution C¹⁶O₂ C¹⁶O¹⁸O, car il est particulièrement surprenant de constater dans ce cas une augmentation de la valeur du terme de perturbation.

Une étude systématique des différentes formes isotopiques du CS₂ pourrait aussi être fort intéressante dans ce but, car la nature fournit un mélange avec 4 % de soufre 34 à côté du soufre 32; il serait particulièrement intéressant de voir ce que devient le terme de perturbation lors du passage d'un isotope à l'autre. L'interprétation des résultats sera cependant plus difficile que pour le CO₂ car il y a un plus grand nombre de formes isotopiques possibles; de plus les masses et les distances sont plus grandes, ce qui rappro-

chera les raies d'absorption. Les constantes de rotation et de distorsion centrifuge sont plus faibles. Enfin la résonance Fermi est moins intense car les niveaux non perturbés sont plus éloignés et le terme de perturbation moins important. Comme ce sont les substitutions sur le soufre qui semblent les plus intéressantes, il y aurait lieu d'éliminer le ¹³C en utilisant du CS₂ obtenu en partant de ¹²C pur. Nous espérons pouvoir prendre part à cette étude.

En terminant, nous tenons à remercier tous ceux qui ont contribué au succès du travail qui vient d'être terminé. Tout d'abord, le National Research Council of Canada pour le Postdoctorate Fellowship pendant lequel la partie expérimentale a été réalisée aux National Research Laboratories à Ottawa. Nous remercions aussi le Fonds National Belge de la Recherche Scientifique pour l'aide reçue pendant les travaux sur l'interprétation des spectres. Notre gratitude va très spécialement au Dr Herzberg qui nous a aidé de ses conseils et de ses encouragements. Elle va aux Dr Stoicheff, Amat et Pliva avec lesquels nous avons eu des discussions fructueuses et qui nous ont communiqué les résultats de certains de leurs travaux avant leur publication. Nous remercions les Dr Plyler et Benedict qui nous ont transmis les valeurs calculées pour les raies de H₂O non encore publiées, ainsi que le Professeur de Hemptinne dont les encouragements et les conseils nous ont été précieux lors des travaux de mise au point. Nous témoignons enfin notre reconnaissance à ceux qui nous ont aidé pour les calculs, les graphiques ou les corrections d'épreuve.

Nous remercions enfin le Gouvernement Belge dont l'aide financière a permis l'impression du travail.

BIBLIOGRAPHIE

AMAT, G. 1957. Cahiers de Physique 77, 25.

AMAT, G., et GOLDSMITH, M. 1955. J. Chem. Phys. 23, 1171.

AMAT, G., GOLDSMITH, M., et Nielsen, H. H. 1956. J. Chem. Phys. 24, 44 et 25, 800.

AMAT, G., GRENIER-BESSON, M. L., et CUMMINS, H. Z. 1957. C.R. 244, 2380. AMAT, G., et NIELSEN, H. H. 1957. C.R. 244, 2302.

1958a. J. Mol. Spectr. 2, 152.
1958b. J. Mol. Spectr. 2, 163.

Benedict, W. S. 1957. Mém. Soc. Roy. Sc. Liège Special Volume n° 2. (M. Migeotte, L. Neven, et J. Swensson The solar Spectrum from 2.8 to 23.7 microns. Part II Measures and Identifications.)

Benedict, W. S., et Plyler, E. K. 1957. *J. Res. Nat. Bur. Stand.* 46, 246. Bernstein, H. J., et Herzberg, G. 1948. *J. Chem. Phys.* 16, 30.

Burns, K., Adams, K. B., et Longwell, J. 1950. J. Opt. Soc. Am. 40, 339.
 Cohen, E. R., Dumond, J. W. M., Layton, T. W., et Rollet, J. S. 1955
 Revs. Mod. Phys. 27, 363.

COURTOY, C. P. 1957a. Canad. J. Phys. 35, 608.

— 1957b. Annales Soc. Sc. Bruxelles 71, 178.

— 1958. J. Mol. Spectr. 2, 173.

COURTOY, C. P., et Herzberg, G. 1955. J. Chem. Phys. 23, 975.

Courtoy, C. P., et Passau, P. 1958. Annales Soc. Sc. Bruxelles 72, 75.

de HEER, J., et Nielsen, H. H. 1952. J. Chem. Phys. 20, 101.

DENNISON, D. M. 1932. Phys. Rev. 41, 304.

— 1940. Revs. Mod. Phys. 12, 175.

Douglas, A. R., et Sharma, D. 1953. J. Chem. Phys. 21, 448.

EGGERS, D. F., et ARENDS, C. B. 1957. J. Chem. Phys. 27, 1405.

FERMI, E. 1931. Zs. f. Phys. 71, 251.

France, W. L., et Dickey, F. P. 1955. J. Chem. Phys. 23, 471.

GAYLAR, N. M., et PLYLER, E. K. 1952. J. Res. Nat. Bur. Stand. 48, 392.

GOLDBERG, L. 1954. dans «The earth as a planet» édité par G. Kuiper. The University of Chicago Press.
GOLDBERG, L., MOHLER, O. C., MCMATH, R. H., et PIERCE, A. K. 1949.

Phys. Rev. 776, 1848.

HERZBERG, G. 1945. Infrared and Raman Spectra of Polyatomic Molecules.

Van Nostrand Co New-York.

 — 1950. Molecular Spectra and Molecular Structure I Spectra of Diatomic Molecules 2d Ed. Van Nostrand Co New-York.

HERZBERG, G., et HERZBERG, L. 1953. J. Opt. Soc. Am. 43, 1037.

JONES, L., et BELL, E. E. 1950. Phys. Rev. 79, 1004.

Kotov, Y. I., Tyulin, V. I., et Tatevskii, V. M. 1958. Optica i Spectr. 4, 271.

MAES, S., 1958. Thèse de doctorat ès Sciences, à paraître.

MINKOWSKI, R. 1942. Astroph. J. 96, 306.

MOHLER, O. C. 1955. A Table of Solar Spectra Wavelengths 11984 Å to 25578 Å The University of Michigan Press. Ann Arbor.

Nelson, R. C. 1949. Summary Report no IV Department of Physics Northwestern University Evanston III.

NIELSEN, A. H., et YAO, Y. T. 1945. Phys. Rev. 68, 173 (et 1947 id 71, 825).

NIELSEN, A. H., et LAGEMANN, R. T. 1954. J. Chem. Phys. 22, 36.

NIELSEN, H. H. 1954. J. Phys. Rad. 15, 601.

NIELSEN, H. H., AMAT, G., et GOLDSMITH, M. 1957. J. Chem. Phys. 26, 1060.

NIELSEN, H. H., et RAO, K. N. 1956. J. Chem. Phys. 25, 1078. PLIVA, J. 1958. Collection Czeckosl. Chem. Commun. 23, 777.

PLYLER, E. K., BLAINE, L. R., et TIDWELL, E. D. 1955a. J. Res. Nat. Bur. Stand. 55, 183.

- 1955b. J. Res. Nat. Bur. Stand. 55, 279.

PLYLER, E. K., et TIDWELL, E. D., 1957. Mém. Soc. Roy. Sc. Liège 4e Série 18, 426.

RAO, K. N., et Nielsen, H. H. 1956. Canad. J. Phys. 34, 1147.

Rossman, K., France, W. L., Rao, K. N., et Nielsen, H. H. 1956. J. Chem. Phys. 24, 1007.

Rossman, K., Rao, K. N., et Nielsen, H. H. 1956. J. Chem. Phys. 24, 103. Shearer, J. N., Wiggins, T A, Guenther, A. H., et Rank. D. H. 1956. J. Chem. Phys. 25, 724.

SHULMAN, R. G., et Townes, C. H. 1950. Phys. Rev. 77, 421.

STOICHEFF, B.P. 1958. Canad. J. Phys. 36, 218.

TAYLOR, J. H., BENEDICT, W. S., et Strong, J. 1952. J. Chem. Phys. 20, 1884

Weatherly, T. L., et Williams, D. 1952. *Phys. Rev.* 87 517.
Welsh, W. L., Pashler, P. E., et Stoicheff, B. P. 1952. *Canad. J. Phys.* 30, 99.
White, J. V. 1942. *J. Opt. Soc. Am.* 32, 285.
Wilkinson, G. R. Non publié.

WOOLLEY, H. W. 1955. J. Res. Nat. Bur. Stand. 54, 299.

LISTE DES FIGURES

Fig. 1-29 — Courbes d'absorption	23-51
Fig. 30 — $\frac{\Delta_2 F^{\prime\prime} (J)}{J+\frac{1}{2}}$ en fonction de $(J+1/2)^2$ permettant d'obtenir les constantes du niveau fondamental du $^{13}C^{16}O_2$	111
Fig. 31 — $_{J} \frac{F(J)}{(J+1)}$ en fonction de $J(J+1)$ donnant les constantes B	
et D du niveau 1201 pour $^{13}\mathrm{C}^{16}\mathrm{O}_2$	114
Fig. 32 — Transitions $\prod u \leftarrow \Sigma_g$ du CO_2	116
Fig. 33 — Transitions $\Pi_g \leftarrow \Pi_u$ du CO_2	118
Fig. 34 — $\frac{\Delta_2 F^{\prime\prime}(J)}{J+\frac{1}{2}}$ en fonction de $(J+1/2)^2$ pour les deux composantes du niveau 01^{10} du $^{13}C^{16}O_2$	
Fig. 35 — $\frac{F(J)}{J(J+1)}$ en fonction de $J(J+1)$ pour la composante inférieure du niveau 21^{11} du $^{13}C^{16}O$	121
Fig. 36 — Structure fine calculée pour les branches Q des transitions Raman 11^10 — 01^10 et 03^10 — 01^10 des 1^2CO_2 et 1^3CO_2	122
Fig. 37 — Transitions $\Delta_{\it u} \leftarrow \Delta_{\it g}$ pour les molécules $^{12}{\rm C^{16}O_2}$ et $^{13}{\rm C^{16}O_2}$	123
Fig. 38 — R(J) + P(J) + 0,01764 J(J+1) pour les deux séries de raies de la transition $01^13 - 01^10$ du $^{13}C^{16}O_2$ montrant la différence entre les constantes q	139
Fig. 39 — $v_1 + v_3$, 2 $v_2 + v_3$ du $^{13}{\rm C}^{16}{\rm O}_2$ Effet des différences D'' — D'	142
Fig. 40 — $2 v_1 + v_3, v_1 + 2 v_2 + v_3, 4 v_2 + v_3$ Idem	142
Fig. 41 — $3 v_1 + v_3$, $2 v_1 + 2 v_2 + v_3$, $v_1 + 4 v_2 + v_3$, $6 v_2 + v_3$ Idem	143
Fig. 42 — R(J) + P(J) + 0,0040 J(J+1) en fonction de J(J+1) pour la transition 03^11 — 01^10 du $^{13}C^{16}O_2$ montrant la perturbation du niveau 03^11^c (J'' impairs)	148
Fig. 43 — Schéma de la perturbation de rotation entre les niveaux 3000 et 03 ¹ 1 ^c	149

LISTE DES TABLEAUX

1	Liste des bandes observées18-20
2	Nombres d'onde des bandes observées
3	Constantes de vibration du ¹² C ¹⁶ O ₂
4	Niveaux d'énergie de vibration du $12C16\Omega$.
5	Constantes de vibration du ¹³ C ¹⁶ O ₂ 98 Coefficients du terme de perturbation de la résonance Fermi pour
6	Coefficients du terme de perturbation de la résonance Fermi pour $^{13}\mathrm{C}^{16}\mathrm{O}_2$
7	Niveaux d'énergie de vibration du ¹³ C ¹⁶ O ₂
Ö	Constantes de vibration calculees pour ¹⁴ C ¹⁰ O ₉
9	Constantes de vibration calculées pour ¹² C ¹⁸ O ₉ et ¹³ C ¹⁸ O ₉
10	Constantes de vibration calculées pour ¹² C ¹⁶ O ¹⁸ O et ¹³ C ¹⁶ O ¹⁸ O 104
11	Niveaux d'énergie de vibration du ¹² C ¹⁶ O ¹⁸ O
12	Niveaux d'énergie de vibration du ¹³ C ¹⁶ O ¹⁸ O
	$\Delta_2 F''(J)$. Transitions partant du niveau fondamental 00^00 pour $^{13}C^{16}O_2$
14	Valeurs obtenues pour v_0 — Q lors des transitions $\prod_g \leftarrow \prod_n \text{des}$
	$^{12}\text{CO}_2$ et $^{13}\text{CO}_2$
15	$\Delta_2 F''(J)$. Composante inférieure du niveau 01^10 , Bc, Dc
16	
17	$\Delta_2 F''(J)$. Transitions partant du niveau fondamental pour les molé-
	cules ¹² C ¹⁶ O ¹⁸ O et ¹³ C ¹⁶ O ¹⁸ O
18	Constantes de rotation du ¹² C ¹⁶ O ₂
19	Carrés des coefficients de contribution partielle des fonctions d'onde
	non perturbées aux fonctions d'onde perturbées pour la triade
	$20^{0}0$ du $^{12}C^{16}O_{9}$
20	Constantes de rotation $B_{\nu\nu\nu}$ du $^{12}C^{10}O_0$
21	Constantes q du dédoublement l pour les états Π du $^{12}C^{16}O_0$ en
	résonance Fermi
22	Carrés des coefficients de contribution partielle des fonctions d'onde
	non perturbées aux fonctions d'onde perturbées pour ¹³ C ¹⁶ O ₂ 135
23	Constantes de rotation utilisées pour le calcal des constantes B ⁰
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
24	Constantes de rotation $B_{\nu\nu\nu}$ du $^{13}C^{16}O_2$
25	Differences $q - q_0$ pour les differents niveaux d'energie du $^{13}C^{16}O_0$ 140
26	$D_{\rm eff} - D_{000}$ pour les différents niveaux d'énergie du $^{13}C^{16}O_2$ 144
27	Constantes μ (D ^d -D ^c) du découblement I des états Π pour $^{13}C^{16}O_{2}$. 147
28	Carrés des coefficients de contribution partielle des fonctions d'onde
	non perturbées aux fonctions d'onde perturbées pour $^{12}C^{16}O^{18}O$ et $^{13}C^{16}O^{18}O$
29	Constantes de rotation pour ${}^{12}C^{16}O^{18}O$ et ${}^{13}C^{16}O^{18}O$
	Constantes de rotation B_{yyy} des $^{12}C^{16}O^{18}O$, $^{13}C^{16}O^{18}O$
	$D_{\rm eff} - D_{000}$ pour les différents niveaux d'énergie des $^{12}{\rm C}^{16}{\rm O}^{18}{\rm O}$
	et $^{13}C^{16}O^{18}O$
A-	Y Identification des raies d'absorption pour les figures 12-19 163-229

TABLE DES MATIERES

	page
Introduction	7
I. TECHNIQUE EXPÉRIMENTALE	11
II. RÉSULTATS EXPÉRIMENTAUX Courbes d'absorption Tableaux des nombres d'onde des différentes bandes	14 23 52
A. Compléments sur le ¹² CO ₂ B. Analyse vibrationnelle pour la molécule ¹³ CO ₂ C. Niveaux d'énergie de vibration pour la molécule ¹⁴ CO ₂ D. Niveaux d'énergie de vibration de ¹² C ¹⁸ O ₂ et ¹³ C ¹⁸ O ₂ E. Niveaux d'énergie de vibration de la molécule ¹² C ¹⁶ O ¹⁸ O F. Niveaux d'énergie de vibration de la molécule ¹³ C ¹⁶ O ¹⁸ O G. Conclusions concernant l'effet isotopique sur les constantes de vibration et le terme de perturbation de la résonance Fermi	85 89 102 103 106
IV.Analyse rotationnelle $A. \ \ Détermination \ des \ valeurs \ expérimentales \ des \ constantes \ B \ et \ D$ $1. \ \ Molécules \ ^{12}C^{16}O_2 \ et \ ^{13}C^{16}O_2$ $a. \ \ \ Transitions \ \Sigma_u \leftarrow \Sigma_g \ partant \ du \ niveau \ fondamental$ $Constantes \ du \ niveau \ fondamental$ $Constantes \ des \ niveaux \ supérieurs$ $b. \ \ \ Transitions \ \Sigma_u \leftarrow \Sigma_g \ partant \ des \ niveaux \ 0200 \ ou \ 1000$ $c. \ \ \ \ \ Transition \ \Sigma_u \leftarrow \Sigma_g \ partant \ des \ niveaux \ 0200 \ ou \ 1000$ $c. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	109 109 110 110 111 115 115 117 117 121 122 124 125
B. Interprétation des résultats 1. Compléments pour la molécule ¹² C ¹⁶ O ₂ 2. Molécule ¹³ C ¹⁶ O ₂ a. Constantes de rotation B b. Constantes q du dédoublement l des états ∏ c. Constantes de distorsion centrifuge D d. Perturbations de Coriolis 3. Molécule ¹⁴ C ¹⁶ O ₂ 4. Molécules ¹² C ¹⁶ O ¹⁸ O et ¹³ C ¹⁶ O ¹⁸ O	127 127 132 132 136 141 147 150 151
Conclusion	154
Bibliographie	158
Liste des figures	160
Liste des tableaux	161
Annexe. Tableaux A — Y. Identification des raies d'absorption pour les figures 12-19.	163

TABLEAU A Identification des raies d'absorption Figure 12 5160 — 5125 cm⁻¹

N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	Т	ransitio	on
{ 1 2 3	1 2 3 4	5159,457 9,327 8,871 8,444°	5159,446 9,301 8,869 ?	¹² CO ₂ » »	22 ² 1 21 ¹ 1 22 ² 1	$02^{2}0\\01^{1}0\\02^{2}0$	R 28 R 56 R 27
{ 4	5	8,5°	8,505 { 8,298	¹³ CO ₂ ¹² CO ₂	01 ¹ 2 21 ¹ 1	00°0 01°0	P 12 R 54
6	5	8,269 7,632	8,232 7,635 7,593	>> >> >>	22 ² 1 » 21 ¹ 1	02 ² 0 » 01 ¹ 0	R 26 R 25 R 57
7 8	7 8	7,295 6,976	7,274	» »	» 22°1	» 02°20	R 52 R 24
{ 9	9	6,713° 6,7	((6,96) 6,754 6,669	$^{\mathrm{H_{2}O}}_{^{12}\mathrm{CO_{2}}}$	21 ¹ 1 01 ¹ 2	01 ¹ 0 00 ⁰ 0	R 55 P 14
10 { 11 12 13	10 11 12 13	6,254 5,863 5,754 5,4°	6,376 6,234 5,881 5,727 (5,5)	12CO ₂ >> >> >> >> >> >> >> >> >>	22 ² 1 21 ¹ 1 » 22 ² 1	02 ² 0 01 ¹ 0 » 02 ² 0	R 23 R 50 R 53 R 22
14	14	5,070	5,176 5,095 4,991	H ₂ O 12CO ₂ »	$21^{1}1$ $22^{2}1$ $21^{1}1$	01 ¹ 0 02 ² 0 01 ¹ 0	R 48 R 21 R 51
15 16 17	15 16	4,8° 4,436 4,080	4,787 4,437 (4,102) 13CO ₂ 12CO ₂)	01^{12} $22^{2}1$ $21^{1}1$	00°0 02°0 01°0	P 16 R 20 R 46
18	17	3,795	3,789 3,140	» » »	» 22 ² 1 21 ¹ 1	» 0220 0110	R 49 R 19 R 47
19	18	3,060	3,121 3,008	» »	22 ² 1 21 ¹ 1	$02^{2}0$ $01^{1}0$	R 18 R 44
21 22 . 23	19 20 21	2,8° 2,467 2,184 1,902	2,862 2,460 2,179 1,896	13CO ₂ 12CO ₂ »	01 ¹ 2 22 ² 1 21 ¹ 1 >> 22 ² 1	00°0 02²0 01¹0 >> 02²0	P 18 R 17 R 45 R 42 R 16
24	22	1,183	1,782 1,193 1,108	» » »	21 ¹ 1 22 ² 1	01^{10} 02^{2}	R 43 R 15
25 26 27	23 24 25	0,775 0,437 0,190	0,893 0,766 0,418 0,184 5149,727	13CO ₂ 12CO ₂ » »	01 ³ 2 21 ¹ 1 22 ² 1 21 ¹ 1 22 ² 1	00°0 01¹0 02²0 01¹0 02²0	P 20 R 40 R 14 R 41 R 13
28 29	26 27	5149,631 9,142	9,616 9,149	» »	21 ¹ 1	01¹0 »	R 38 R 39
30 31	28	8,9° 8,452	9,028 8,880 8,447)) 13CO ₂ 12CO ₂	22 ² 1 01 ¹ 2 21 ¹ 1	02 ² 0 00 ⁰ 0 01 ¹ 0	R 12 P 22 R 36
	29 30 31 32	8,097 7,609 7,268 7,013	8,327 8,091 7,614 7,260 7,008 6,899 6,177	>> >> >> >> >> >> >> >>	22 ² 1 21 ¹ 1 22 ² 1 21 ¹ 1 » 22 ² 1	02 ² 0 01 ¹ 0 02 ² 0 01 ¹ 0 » 02 ² 0	R 11 R 37 R 10 R 34 R 35 R 9 R 8

Les valeurs expérimentales marquées $^{\circ}$ sont moins précises, comme pour le tableau 2 (v. p. 52). Pour les raies de la bande $\nu_2+2~\nu_3$ du $^{13}CO_2$, v. p. 16. Pour les raies de H_2O v. p. 20.

TABLEAU A (suite)

N° 12CO 2	Obs.	Calc.	Molécule	Transition
33 34 35 36	5146,059 5,918 5,455 4,790	5146,052 5,900 5,448 4,824 4,767	12CO ₂ >> >> >> >> >> >> >> >> >>	21 ¹ 1 01 ¹ 0 R 32 » » R 33 22 ² 1 02 ² 0 R 7 21 ¹ 1 01 ¹ 0 R 30 » » R 31
37 38	3,949° 3,590	3,973 (3,609 3,576	» » »	22 ² 1 02 ² 0 R 5 21 ¹ 1 01 ¹ 0 R 29 » » R 28
39 { 40 41 42	3,215 2,400 2,353 1,73	3,226 2,425 2,309 1,78 1,217	» » » H ₂ O	22 ² 1 02 ² 0 R 4 21 ¹ 1 01 ¹ 0 R 27 » » R 26
43 44 45 46	1,199 1,029 0,2 5139,983	1,021 0,160 5139,983	12CO ₂ >> >> >> >>	21 ¹ 1 01 ¹ 0 R 25 » » R 24 20 ⁰ 1 00 ⁰ 0 R 66 21 ¹ 1 01 ¹ 0 R 23
47 48 49 50	9,723 9,28 8,727 8,383	9,713 9,244 8,723 8,384	>> >> >> >>	» » R 22 20°1 00°0 R 64 21°1 01°0 R 21 » » R 20
51	7,426	8,313 7,438 7,369	» » »	20°1 00°0 R 62 21°1 01°0 R 19 20°1 00°0 R 60
52 53 54 (55	7,035 6,416 6,117 5,675	7,035 6,407 6,127 5,666	>> >> >> >>	21 ¹ 1 01 ¹ 0 R 18 20 ⁰ 1 00 ⁰ 0 R 58 21 ¹ 1 01 ¹ 0 R 17 » » R 16
56 57 58 59	5,449 4,784 4,451 4,283	5,431 4,791 4,439 4,275	>> >> >> >>	20°1 00°0 R 56 21°1 01°0 R 15 20°1 00°0 R 54 21°1 01°0 R 14
60	3,752 3,428	3,788 (3,430 (3,429 2,964	» » » »	22 ² 1 02 ² 0 P 7 20°1 00°0 R 52 21 ¹ 1 01 ¹ 0 R 13 22 ² 1 02 ² 0 P 8
62 63	2,878 2,422	2,863 2,403 2,132	» » »	21 ¹ 1 01 ¹ 0 R 12 20 ⁰ 1 00 ⁰ 0 R 50 22 ² 1 02 ² 0 P 9
64 65 66	2,053 1,52° 1,406	2,041 ? (1,428	» » »	21 ¹ 1 01 ¹ 0 R 11 21 ¹ 1 01 ¹ 0 R 10 20 ⁰ 1 00 ⁰ 0 R 48
67	0,623	1,360 1,293 0,627 0,451	" " " " " " " "	22 ² 1 02 ² 0 P 10 21 ¹ 1 01 ¹ 0 R 9 22 ² 1 02 ² 0 R 11
68 69 70 71	0,316 5129,990 9,595° 9,216	0,299 5129,975 9,600 (9,218	>> >> >> >> >> >>	20°1 00°0 R 46 21°1 01°0 R 8 22°1 02°0 P 12 20°1 00°0 R 44 21°1 01°0 R 7
72	8,90°	9,188 ? 8,745	" ¹²CO₂	22°1 02°0 R 13
73 74	8,511 8,136	8,500 8,122 7,882	» » »	21 ¹ 1 01 ¹ 0 R 6 20 ⁰ 1 00 ⁰ 0 R 42 22 ² 1 02 ² 0 P 14
75 76	7,722 7,450	7,721 ?	" 12CO ₂	21 ¹ 1 01 ¹ 0 R 5 22 ² 1 02 ² 0 P 15
77	7,010	7,016 7,009 7,006	» »	21 ¹ 1 01 ¹ 0 R 4 20 ⁰ 1 00 ⁰ 0 R 40
78	6,227	6,231 6,139	» »	21 ¹ 1 01 ¹ 0 R 3 22 ² 1 02 ² 0 P 16
79 80 81	5,878 5,497 5,252°	5,869 5,487 5,262	>> >> >>	20°1 00°0 R 38 21°1 01°0 R 2 22°1 02°0 P 17

TABLEAU B

Identification des raies d'absorption

Figure	12	5125 -	- 5090 cm	-1
--------	----	--------	-----------	----

NIO	Oho	Cala	Molécule		Trans	sition
N° 12CO ₂	Obs.	Calc.			Han	5111011
1	5124,724	5124,715	¹² CO ₂	2001	0000	R 36
2	4,379	4,372	»	22°1 20°1	$02^{2}0$ $00^{0}0$	P 18 R 34
3	3,546	3,540	» »	20°1	0220	P 19
4	3,140	(3,404	<i>"</i>	2111	0110	0
7	3,140	2,581	»>	22 ² 1	$02^{2}0$	P 20
5	2,344	2,347	>>	20°1	0000	R 32
6	1,613	1,684	»	22 ² 1 21 ¹ 1	02 ² 0 01 ¹ 0	P 21 P 2
7	1 126	1,600 1,132	» »	2001	0000	R 30
7	1,136 0,797	(0,807	<i>"</i>	2111	0110	P 3
O	0,171	0,766	»	22 ² 1	$02^{2}0$	P 22
9	0,190	0,220	>>	30°1	1000	R 6
4.0	5440.010	0,014	»	21 ¹ 1 20 ⁰ 1	$01^{1}0$ $00^{0}0$	P 4 R 28
10	5119,912	{5119,897 9,858	» »	20°1 22°1	0220	P 23
11	9,420	(9,44)	H ₀ O	22 1	02 0	1 25
12	9,210	9,199	¹² CO ₂	2111	0110	P 5
		8,926	>>	22°1	0220	P 24
13	8,643	8,642	» »	20°1 21°1	00°0 01°0	R 26 P 6
14	9,397 7,95°	8,397 8,011	» »	2221	0220	P 25
(16	7,5290	7,571	»	2111	0110	P 7
17	7,356	7,367	>>	20°1	0000	R 24
18	6,762	6,762	>>	2111	0110	P 8 R 22
19	6,072	6,070 5,907	» "	20°1 21°1	00°0 01°0	P 9
20	5,920 5,104	5,108	» »	21 1 »	»	P 10
22	4,746	4,753	»	20°1	00^{0}	R 20
23	4,207	4,223	>>	2111	0110	P 11
24	3,410	(3,433	¹² CO ₂	2111	0110	P 12
25	2.0650	3,414	>>	20°1	0000	R 18
25 26	2,965° 2,78°	9				
27	2,514	2,512	>>	21 ¹ 1	0110	P 13
28	2,053	2,054	>>	20°1	0000	R 16
29	1,737	1,738	»	21 ¹ 1	01¹0 »	P 14 P 15
30	0,666	0,781 0,672	» »	2001	0000	R 14
31	0,017	0,020	»	2111	0110	P 16
(32	5109,254	5109,268	>>	20°1	0000	R 12
33	9,000	9,015	>>	2111	0110	P 17 P 18
34 35	8,272 7,828	8,284 7,843	>> >>	20°1	0000	R 10
36	7,211	7,228	<i>>></i>	2111	0110 -	
37	6,990?	.,				
38	6,84	6,941	>>	30°1	1000	P 10 P 20
20	C 204	6,527	» "	21 ¹ 1 20 ⁰ 1	01^{10} 00^{0}	R 8
39 40	6,394 5,402	6,400 5,416	» »	2111	0110	P 21
(41	4,923	4,929	»	20°1	0000	R 6
42	4,747	4,749	>>	2111	0110	P 22
43	3,442	3,485	»	20°1	00°0	P 23 R 4
44	2,944	3,440 2,952	» »	2111	0110	P 24
(45	1,920	1,928	<i>"</i>	2001	0000	R 2
46	1,717	1,718	>>	2111	0110	P 25
47	1,128	1,133	>>	2001	00°0	P 26 R 0
48	0,400	0,394	>>	20°1	00-0	K U
49	0,128	i				

TABLEAU B (suite)

N° 12CO 2	Obs.	Calc.	Molécule	,	Transiti	on
50 51 52	5099,817 9,291 8,376	5099,831 9,296	¹² CO ₂	21 ¹ 1 »	01¹0 »	P 27 P 28
53 54 55	8,058 7,923 7,439	8,053 7,920 7,439	» » »	20°1 21°1 »	00°0 01°0 »	P 2 P 29 P 30
56 57 58	6,475 5,981 5,569	6,465 5,984 5,563	» » »	20°1 21°1 >>	00°0 01°0 >>	P 4 P 31 P 32
59 60 61	4,854 4,035 3,667	4,855 4,023 3,668	» » »	20°1 21°1 >> 20°1	00°0 01°10 >> 00°0	P 6 P 33 P 34 P 8
62 63 64 65	3,238 2,026 1,723° 1,572	3,224 2,039 1,754 1,570	» » »	20°1 21°1 >> 20°1	00°0 01°0 >> 00°0	P 35 P 36 P 10

TABLEAU C

Identification des raies d'absorption

Figure 13 5090 — 5057 cm—¹

N° 12CO 2	Obs.	Calc.	Molécule		Transiti	on
1	5089,899	5089,895 9,820	¹² CO ₂	20°1 21°1	00°0 01¹0	P 12 P 38
1 2	8,204	8,200 7,997	» »	20°1 21°1	00°0 01¹0	P 14 P 39
$\left\{\begin{array}{c}2\\3\\4\\5\end{array}\right.$	7,884	7,868	»	» 20°1	» 00°0	P 40 P 16
6	6,493 5,932	6,483 { 5,941	» »	2111	0110	P 41
7	4,753	5,899 4,745	>> >>	20°1	0000	P 42 P 18
8	3,875	3,911	>> >>	2111	01¹0 »	P 44 P 43
9 1 10	2,995 1,919	2,986 1,906	>> >>	20°1 21°1	00°0 01°0	P 20 P 46
111	1,750 1,218	1,758 1,205	» »	2001	0000	P 45 P 22
13 14	5079,871 9,430	9,884 9,405	» »	21 ¹ 1 20 ⁰ 1	01^{10} 00^{0}	P 48 P 24
15	8,131	9,316 8,144	» »	22°1 »	02°0 »	R 24 R 22
16 17	7,588 6,945	7,583 6,941	>> >>	20°1 22°1	00°0 02°0	P 26 R 20
18	5,751	5,741	>> >>	20°1 22°1	00°0 02°0	P 28 R 18
19 20	4,448 3,878	4,441 3,880	>> >>	20°1	00°0	R 16 P 30
21 22	3,136 1,986	3,143 2,000	>> >>	22°1 20°1	02°0 00°0	R 14 P 32
23 24	0,451 0,088	0,453 0,099	>> >>	22°1 20°1	02°0 00°0	R 10 P 34
25 26	5069,050 8,174	5069,060 8,179	>> >>	22°1 20°1	02°0 00°0	R 8 P 36
27 28	7,630 6,227	7,636 6,240	>> >>	22°1 20°1	02°0 00°0	R 6 P 38
29 30	4,271 2,293	4,283 2,308	» »	>> >>	» »	P 40 P 42
31	1,602?	?				

TABLEAU C (suite)

N° 12CO ₂	Obs.	Calc.	Molécule		Γransitio	on
32 33 34	5061,485 0,858 0,303 5059,633	5061,499 0,875 0,314 0,247 5059,615	12C16O18O 3 12CO ₂ 12C16O18O 3	04°1 >> 20°1 04°1 >>	00°0 » » »	R 27 R 26 P 44 R 25 R 24
336 37 38 39 40	7,652 7,051	9,222 8,982 (8,343 (8,303 7,699 7,588 7,053	12CO ₂ 12C16O18O 3 12CO ₂ 12C16O18O 12CO ₂ 12C16O18O	22°1 04°1 >>> 20°1 04°1 22°1 04°1	02°0 00°0 >> >> 02°0 00°0	P 4 R 23 R 22 P 46 R 21 P 6 R 20

TABLEAU D

Identification des raies d'absorption Figure 13 5057 — 5022 cm—1

		~ -8				
N° 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule	Transi	tion
1		5056,674	5056,678	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	22 ² 1 02 ² 0 04 ⁰ 1 00 ⁰ 0	R 44 R 19
2		6,279	6,041 - ₁ 6,309	13CO ₂	2221 0220	R 43
3	1 2 3	5.925	i 6,275 5,922	12CO ₂	20°1 00°0 22°1 02°0	P 48 P 8
4	3	5,758 »	5,747	12C16O18O	$04^{\circ}1 00^{\circ}0 \\ 22^{\circ}1 02^{\circ}0$	R 18 R 42
5		5,366	5,341	» 12C16O18O	» » 04°1 00°0	R 41 R 17
6 7	4	5,098 4,769	5,088 4,777	¹³ CO ₂	2221 0220	R 40
			4,426 4,348	¹² C ¹⁶ O ¹⁸ O	04°1 00°0 22°1 02°0	R 16 R 39
8	5	4,238	4,229	¹² CO ₂	20°1 00°0 22°1 02°0	
9		3,785	- 3,784	13CO ₂	2221 0220	R 38
10	6	3,769 3,345	3,759	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 22°1 02°0	
11	7	3,086	3,089 2,762	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 22°1 02°0	
(13	8	2,761 2,476	2,493	12CO2	2201 0200	P 12
}			2,414 2,282	12C16O18O 13CO ₂	04°1 00°0 22°1 02°0	R 35
1 14	9 10	2,174 1,728	2,168 + 1,735	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	20°1 00°0 04°1 »	P 52 R 12
15	10	1,722	- 1,710	¹³ CO ₂	2221 0220	R 34
16	11	1,190 1,046°	1,208 1,052	¹² C ¹⁶ O ¹⁸ O	04°1 00°0	
18	12	0,741 0,659	0,732	¹² CO ₂ ¹³ CO ₂	22°1 02°0 22°1 02°0	
19	13	0,3590	0,366	12C16O18O	0401 0000	R 10
20	14	0,090 -1	0,107 0,090	¹³ CO ₂ ¹² CO ₂	22 ² 1 02 ² 0 20 ⁰ 1 00 ⁰ 0	P 54
21	15	5049,661	5049,674 9,523	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	$04^{0}1$ » $02^{2}0$	R 9 R 30
22		9,330°	9,352	» ·	21 ¹ 1 01 ¹ 0 22 ² 1 02 ² 0	
23		8,969°-	8,979 (8,979	12C16O18O	0401 0000) R 8
	16	8,939	8,948 8,537	¹² CO ₂ ¹³ CO ₂	22°1 02°0 21°1 01°0	
24	17	8,382 8,263	8,387 8,281	» 12C16O18O	22 ² 1 02 ² 0 04 ⁰ 1 00 ⁰ 0	R 28
	- 17	0,200	0,201			

TABLEAU D (suite)

			TOLLING D	(SMILE)	
N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	Transition
$\begin{cases} 25 \\ 26 \\ 27 \end{cases}$	18	5047,995 7,809	5047,997 7,825	$^{12}_{^{13}CO_2}$	20°1 00°0 P 56 22°1 02°0 R 27
	19	7,667° 7,603°	7,701 7,577 7,223	¹² C ¹⁶ O ¹⁸ O	21 ¹ 1 01 ¹ 0 R 56 04 ⁰ 1 00 ⁰ 0 R 6
f 28	20	7,209 7,114	7,223 7,114	¹³ CO ₂ ¹² CO ₂	22 ² 1 02 ² 0 R 26 22 ⁰ 1 02 ⁰ 0 P 18
29	21	7,106 -	7,071	13CO ₂	21 ¹ 1 01 ¹ 0 R 59
(30	21	6,858 6,839	6,869 6,843	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 R 5 21°1 01°0 R 54
+ 31 32		6,640 6,376	6,640 6,373	» »	22 ² 1 02 ² 0 R 25 21 ¹ 1 01 ¹ 0 R 57
	22	6,123°	6,158	12C16O18O	04°1 00°0 R 4
33		5,959 -	6,029 5,963	¹³ CO ₂	22 ² 1 02 ² 0 R 24 21 ¹ 1 01 ¹ 0 R 52
34	23	5,903 5,642	5,888 5,649	¹² CO ₂ ¹³ CO ₂	20°1 00°0 P 58 21°1 01°0 R 55
35		5.418	5,442 5,431	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 R 3
36	24	5,269	5,259	12(() .	22°1 02°0 P 20
37 38		5,043 4,830	5,060 (4,898	¹³ CO ₂	21 ¹ 1 01 ¹ 0 R 50 » » R 53
			4,807	» »	22 ² 1 02 ² 0 R 22 22 ² 1 02 ² 0 R 21
39		4,160	4,135	>>	21 ¹ 1 01 ¹ 0 R 48
40	25	3,773	4,119 3,765	" 12CO ₂	» » R 51 20°1 00°0 P 60
41	26	3,553 3,378	3,558 3,373	¹³ CO ₂ ¹² CO ₂	22 ² 1 02 ² 0 R 20 22 ⁰ 1 02 ⁰ 0 P 22
1 42		3,319 3,196	3,312 3,186	13CO ₂	21 ¹ 1 01 ¹ 0 R 49
44		2,933	2,927	>>	22°1 02°0 R 19
1 45		2,478	2,478	» »	21 ¹ 1 01 ¹ 0 R 47 22 ² 1 02 ² 0 R 18
(46		2,233	1,632	>> >>	21 ¹ 1 01 ¹ 0 R 44 22 ² 1 02 ² 0 R 17
47	27	1,624 -	1,616	" 12CO ₂	21 ¹ 1 01 ¹ 0 R 45
40	28	1,4580	1,456	>>	22°1 02°0 P 24
48 49		1,223 0,966	1,218 0,973	¹³ CO ₂	21 ¹ 1 01 ¹ 0 R 42 22 ² 1 02 ² 0 R 16
50	29	0,737 0,302	0,724 0,316)> 12C16O18O	21 ¹ 1 01 ¹ 0 R 43 04 ⁰ 1 00 ⁰ 0 P 3
51	4/		0,311	¹³ CO ₂	22°1 02°0 R 15
52		0,212 5039,811	0,200 5039,804	» »	21 ¹ 1 01 ¹ 0 R 40 »
53		9,642	9,638 9,568	» 12C16O18O	22 ² 1 02 ² 0 R 14 04 ⁰ 1 00 ⁰ 0 P 4
54	30	9,491	9,508	¹² CO ₂	22°1 02°0 P 26
55		9,138	9,155 8,961	¹³ CO₂	21 ¹ 1 01 ¹ 0 R 38
56	2.1	8,872	8,858	13CO ₂	21 ¹ 1 01 ¹ 0 R 39
1 57	31	8,837 8,255	8,814 8,275	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 P 5 22°1 02°0 R 12
58	32	8,101 8,074	8,088 8,057	» 12C16O18O	21 ¹ 1 01 ¹ 0 R 36 04 ⁰ 1 00 ⁰ 0 P 6
59		7,887 7,576	7,881	¹³ CO ₂	21 ¹ 1 01 ¹ C R 37
	33	7,531	7,583 7,531	12CO ₂	22°1 02°0 P 28
61	34	7,309	7,312 7,296	³ C ¹⁶ O ¹⁸ O	20°1 00°0 P 66 04°1 » P 7

TABLEAU D (suite)

		•	112221-0				
N° 13CO2	$^{\mathrm{N}^{\mathrm{o}}}_{^{12}\mathrm{CO}_2}$	Obs.	Calc.	Molécule	Т	`ransitio	n
$ \left\{ \begin{array}{c} 62\\63 \end{array}\right\} $ $ \begin{array}{c} 64\\65 \end{array} $	35 36	5036,990 6,894 6,545 6,166 5,866	5036,995 (6,884) 6,875 6,531 6,178 (5,877) 5,843	13CO ₂ » 12C ¹⁶ O ¹⁸ O 13CO ₂ »	21 ¹ 1 22 ² 1 21 ¹ 1 04 ⁰ 1 22 ² 1 21 ¹ 1	01 ¹ 0 02 ² 0 01 ¹ 0 00 ⁰ 0 02 ² 0 01 ¹ 0 >>	P 34 R 10 P 35 P 8 R 9 R 32 R 33
66	37 38	5,806 - 5,531 5,477	5,762 5,762 5,524 5,465	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	04°1 22°1 22°1 20°1	00°0 02°0 02°1 00°0	P 9 P 30 R 8 P 68
	(39	5,097	4,998	12CO ₂ 12C16O18O 13CO ₂	04°1 21°1	» 0110	P 10 R 31
67	(40	4,756	4,744 4,735	» »	22 ² 1 21 ¹ 1	02 ² 0 01 ¹ 0	R 7 R 30
68 (69	41	4,217 4,009° 3,675	4,210 4,017 3,686	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂ »	04°1 22°1 21°1	00°0 02°0 01°0	P 11 R 6 R 29
(70	42	3,596 3,493 -	3,568 3,487 3,429	» ¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	» 22°1 04°1	» 02°0 00°0	R 28 P 32 P 12
71	43 44	3,281° 2,930 2,631	3,282 2,946 2,644	¹³ CO ₂ ¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	22 ² 1 20 ⁰ 1 04 ⁰ 1 21 ¹ 1	02 ² 0 00 ⁰ 0 » 01 ¹ 0	R 5 P 70 P 13 R 27
72 }	45	2,568	(2,563) 2,542	¹³ CO ₂ »	22 ² 1	02 ² 0 01 ¹ 0	R 4 R 26
73]	46	2,393 1,859	2,374 1,854	12C16O18O	21 ¹ 1 04 ⁰ 1	0000	P 14
74	47	1,817° 1,429	1,793 1,422	¹³ C ₂ ¹² CO ₂	22°1 22°1	02°0 02°0	R 3 P 34
75 76		1,405 1,157	1,413 1,156	13CO ₂ » 12C16O18O	21 ¹ 1 » 04 ⁰ 1	01¹0 » 00°0	R 25 R 24 P 15
. 77	48 49	1,104 0,247 0,234	1,060 0,263 0,232	» 13CO ₂	» 21 ¹ 1	» 01¹0	P 16 R 23
78	50	5029,915	5029,912 9,477	» »	» 20°1	>> 00°0	R 22 R 70
79	51	9,471 9,393	9,462	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	04°1 22°1	» 02°0	P 17 P 36
80	52	9,034	9,328 9,021 8,819	¹³CO₂ »	21 ¹ 1 20 ⁰ 1 22 ² 1	01 10 00°0 02°0	R 21 R 68
81	53	8,676 8,664	8,73 8,657 8,641	12C16O18O 13CO2	04°1 21°1 20°1	00°0 01°0 00°0	P 18 R 20 R 66
82	54	8,154 7,838	8,141 7,846	¹² C ¹⁶ O ¹⁸ O	0401	>>	P 19
83		7,785	7,780 7,444	¹³CO₂ ≫	21 ¹ 1 20 ⁰ 1	01¹0 00°0	R 19 R 64
84	55 56	7,348 7,080	7,346 7,035	12C16O18O	21 ¹ 1 04 ⁰ 1 20 ⁰ 1	01 ¹ 0 00 ⁰ 0 »	R 18 P 20 R 62
85 86	57	6,705° 6,506	6,725 6,510	¹³ CO ₂ ¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	2111	0110	R 17
87	58 59	6,217 6,018	6,217 (6,024 (5,998	¹³ CO ₂	04°1 21°1 20°1	0000	P 21 R 16 R 60
88	60	5,552°	5,555 5,397	» 12C16O18O	22 ² 1 04 ⁰ 1	$02^{2}0$	P 4 P 22
89	60 61	5,384 5,215	5,221	¹³CO₂ »	20°1 21°1 22°1	01 ¹ 0	R 58 R 15 P 5
{ 90 91	62	4,675 4,605 4,446	4,743 4,676 4,573 4,436	» 12C16O18O 13CO ₂	21 ¹ 1 04 ⁰ 1 20 ⁰ 1	01^{10} 00^{0}	R 14 P 23 R 56

TABLEAU D (suite)

$^{ m N^o}_{^{13}{ m CO}_2}$	Nº 12CO ₂	Obs.	Calc.	Molécule		Γransiti	on
92		5023,885	(5023,925 3,880	¹³ CO ₂	$\frac{22^21}{21^11}$	$02^{2}0$ $01^{1}0$	P 6 R 13
93	63	3,645	3,744 3,628	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 20°1	00°0	P 24 R 54
94	64	3,306	3,302	»	2111	0110	R 12
95	60	3,008°	3,099)> 19G15G18G	22°1	0220	P 7?
96	65	2,870 - 2,803	2,912 2,798	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 20°1	00°0	P 25 R 52
97	66	2,523	2,520	»	2111	0110	R 11
98		2,272°	2,268	>>	22 ² 1	$02^{2}0$	P 8

TABLEAU E

Identification des raies d'absorption

Figure 14 5022 — 4985 cm—1

		rīgu.	16 14 3022 —	4965 CIII		
N° ¹³CO ₂	N° 12CO2	Obs.	Calc.	Molécule	Transit	ion
1	1	5021,985 - 1,927	5022,076 (1,941) 1,902	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 20°1 » 21°1 01°0	P 26 R 50
2		1,415	1,428	» »	2221 0220	R 10 P 9
3	2	1,100	1,237 { 1,130 { 1,062	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂ »	04°1 00°0 21°1 01°0 20°1 00°0	P 27 R 9 R 48
4 5	{ 3 4	0,476 0,442 0,160	0,582° 0,476 0,393 0,160	» » 12C16O18O 13CO ₂	22 ² 1 02 ² 0 21 ¹ 1 01 ¹ 0 04 ⁰ 1 00 ⁰ 0 >> >>	P 10 R 8 P 28 R 46
6		5019,716	(5019,729 9,710	» »	22 ² 1 02 ² 0 21 ¹ 1 01 ¹ 0	P 11 R 7
{ 7 8	5 6	9,577 9,231 9,020	8,548 9,232 9,023	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 20°1 » 21°1 01°0	P 29 R 44 R 6
9	_	8,8290	8,869	>>	2221 0220	P 12
10	7	8,677 8,597	8,696 8,598	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 30°1 10°0	P 30 R 36
11	8	8,270	(8,279	>>	2001 0000	R 42
12		7,995	8,260 8,002	» »	$\begin{array}{cccc} 21^{1}1 & 01^{1}0 \\ 22^{2}1 & 02^{2}0 \end{array}$	R 5 P 13
13	9	7,841 7,533	7,843 7,543	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 21°1 01°0	P 31 R 4
	4.0	,	7,427	>>	3001 1000	R 34
14 15	10	7,294 7,126°	7,301 7,127	» »	$\begin{array}{ccc} 20^{0}1 & 00^{0}0 \\ 22^{2}1 & 02^{2}0 \end{array}$	R 40 P 14
16	11	7,010 6,781	6,987 6,780	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00°0 21°1 01°10	P 32
		ĺ	(6,297	»	2001 0000	R 3 R 38
17	12	6,290	6,247	» »	22 ² 1 02 ² 0 30 ⁰ 1 10 ⁰ 0	P 15 R 32
18	13	6,038	6,038	>>	2111 0110	R 2
19	14	5,270	5,359 (5,270	» »	22 ² 1 02 ² 0 21 ¹ 1 01 ¹ 0	P 16 R 1
20		5,015°	5,267 5,022	» »	20°1 00°0 30°1 10°0	R 36 R 30
(21	15	4,690 4,487°	4,648 4.465	¹² CO ₂ ¹³ CO ₂	12°1 00°0 22°1 02°0	R 72 P 17
1 22	16	4,212 4,212	4,211 4,172 3,788	» ¹² CO ₂ ¹³ CO ₂	20°1 00°0 12°1 » 30°1 10°0	R 34 R 70 R 28

TABLEAU E (suite)

			ADLLAC L	(Suite)	
N° 13CO2	N° ¹² CO ₂	Obs.	Calc.	Molécule	Transition
. 22	17	5013,700 }	{5013,676	¹² CO ₂ ¹³ CO ₂	12°1 00°0 R 68 21°1 01°0 O
23 24 25	18	3,699 { 3,531° 3,135 } 3,126 }	3,562 (3,130 (3,128	$^{^{3}}_{^{12}CO_{2}}^{CO_{2}}$	22 ² 1 02 ² 0 P 18 12 ⁰ 1 00 ⁰ 0 R 66 20 ⁰ 1 » R 32
26	19	2,568	2,656 2,564 2,524	$^{^{12}\mathrm{CO}_2}_{^{13}\mathrm{CO}_2}$	12°1 00°0 R 64 30°1 10°0 R 26
27	20	2,016 { 1,994 }	2,019 1,966	» ¹² CO ₂ ¹³ CO ₂	20°1 00°0 R 30 12°1 » R 62 22°1 02°0 P 20
28 29	21 .	1,737 1,373 1,333 {	1,738 { 1,363 { 1,340 1,258	» ¹² CO ₂ ¹³ CO ₂	21 ¹ 1 01 ¹ 0 P 3 12 ⁰ 1 00 ⁰ 0 R 60 30 ⁰ 1 10 ⁰ 0 R 24
$ \begin{cases} 30 \\ 31 \\ 32 \end{cases} $	22 23	0,882 0,682 0,576	0,884 0,682	» ¹² CO ₂ ¹³ CO-	20°1 00°0 R 28 12°1 00°0 R 58 21°1 01°0 P 4
33	24	5009,987 »	0,560 5009,994 9,961 (9,749	¹² CO ₂ ¹³ CO ₂ »	12°1 00°0 R 56 30°1 10°0 R 22 21°1 01°0 P 5
34 35	25 (26	9,745 9,267	9,721 9,276	» 12CO ₂	20°1 00°0 R 26 12°1 » R 54
36	(27	9,017? 8,945	8,936	¹³ CO ₂	21 ¹ 1 01 ¹ 0 P 6 30°1 10°0 R 20
37	28	8,532	8,546 8,532 8,529	» » 12CO ₂	20°1 00°0 R 24 12°1 » R 52
38 39	29	8,099 7,744	8,103 7,750 (7,315	¹³ CO ₂ ¹² CO ₂ ¹³ CO ₂	21 ¹ 1 01 ¹ 0 P 7 12 ⁰ 1 00 ⁰ 0 R 50 20 ⁰ 1 » R 22
40	30	7,316	5,307 7,286	» »	30°1 10°0 R 18 21°1 01°0 P 8
41 42	31 32	6,939 6,433 6,097	6,942 6,429 6,103	¹² CO ₂ ¹³ CO ₂ ¹² CO ₂	12°1 00°0 R 48 21°1 01°0 P 9 12°1 00°0 R 46
43 44 45 46	33 34	6,082°) 5,623 5,229 4,797	{ 6,069 5,945 5,609 5,234 4,797 4,724	13CO ₂ » 12CO ₂ 13CO ₂ » 12CO ₂	20°1 » R 20 30°1 10°0 R 16 21°1 01°0 P 10 12°1 00°0 R 44 20°1 » R 18 21°1 01°0 P 11
47 48 49	35	4,568° 4,329 3,913	4,564 4,336 3,906	$^{^{3}}_{^{12}CO_2}$	30°1 10°0 R 14 12°1 00°0 R 42 21°1 01°0 P 12
50 51	36	3,481 3,405 3,163	3,496 3,408 3,162)) 12CO 2 13CO 2	20°1 00°0 R 16 12°1 » R 40 30°1 10°0 R 12
52 53 54	37 38	2,999 2,449 2,181	2,989 2,449 (2,177 (2,168	13CO ₂ 12CO ₂ 18CO ₂	21 ¹ 1 01 ¹ 0 P 13 12 ⁰ 1 00 ⁰ 0 R 38 21 ¹ 1 01 ¹ 0 P 14 20 ⁰ 1 00 ⁰ 0 R 14
55 56 57 58	39 40	1,732° 1,449 1,233 0,807	1,738 1,460 1,226 0,812	» ¹² CO ₂ ¹³ CO ₂	30°1 10°0 R 10 12°1 00°0 R 36 21°1 01°0 P 15 20°1 00°0 R 12
59	41	0,432	0,441 0,423 0,293	¹² CO ₂ ¹³ CO ₂ »	12°1 » R 34 21°1 01°0 P 16 30°1 10°0 R 8
60	42	4,999,420 9,392	4999,432 9,427 9,393 8,825	» » 12CO ₂ 13CO ₂	21 ¹ 1 01 ¹ 0 P 17 20 ⁰ 1 00 ⁰ 0 R 10 12 ⁰ 1 » R 32 30 ⁰ 1 10 ⁰ 0 R 6
61		8,658	8,642	»	21 ¹ 1 01 ¹ 0 P 18

TABLEAU E (suite)

			TITOLLITO L	(built)	
N° 18CO2	N° 12CO2	Obs.	Calc.	Molécule	Transition
CO_2	CO_2				
62	43	4998,318	4998,314	$^{12}\mathrm{CO}_2$	12°1 00°0 R 30
63	44	8,025	8,016	¹³ CO ₂	20°1 » R 8
64	4.5	7,617	7,608	>>	21 ¹ 1 01 ¹ 0 P 19
65	45 46	7,200	7,206	¹² CO ₂	12°1 00°0 R 28
66	40	6,857 6,848	6,848 6,836	" 18CO ₂	13 ¹ 1 01 ¹ 0 R 50 21 ¹ 1 » P 20
67	47	6,578	6,575	»	21 ¹ 1 » P 20 20 ⁰ 1 00 ⁰ 0 R 6
0,	.,	0,570	6,068	$^{12} ilde{\mathrm{CO}}_{2}$	12°1 » R 26
68	48	6,062	5,928	»	13 ¹ 1 01 ¹ 0 R 48
			5,900	>>	13 ¹ 1 » R 51
69		5,771	5,758	¹⁸ CO ₂	21 ¹ 1 » P 21
1 70	49	5.002.)	5,105	**************************************	20°1 00°0 R 4
1 10	47	5,092	5,094	¹³ CO ₂	13 ¹ 1 01 ¹ 0 R 49 21 ¹ 1 » P 22
1		}	4,981	¹² CO ₂	21 ¹ 1 » P 22 13 ¹ 1 » R 46
71	50	4,892	4,900	>>	12°1 00°0 R 24
, 72		4,383	4,382	13CO a	22°1 02°0 R 28
73	51	4,217	4,257	¹² CO ₂	13 ¹ 1 01 ¹ 0 R 47
	52	4,008	4,009	1/	» » R 44
174	E 3	3,874	3,875	¹³ CO ₂	21 ¹ 1 01 ¹ 0 P 23
75	53	3,695	3,702	¹² CO ₂ ¹³ CO ₂	12°1 00°0 R 22
(75	54	3,3470	3,392	¹² CO ₂	20°1 » R 2 13°1 01°0 R 45
76		» ~	3,390	¹³ CO ₂	22°1 02°0 R 26
77		3,167	3,148	>>	21 ¹ 1 01 ¹ 0 P 24
78	55	3,009	3,010	¹² CO ₂	13 ¹ 1 » R 42
=0			2,496	>>	» » R 43
79	56	2,462	2,475	>> 1800	12°1 00°0 R 20
1.80		2,064	2,360 2,082	¹⁸ CO ₂	22°1 02°0 R 24 20°1 00°0 R 0
1 00	57	1,997	1.985	$^{^{12}CO_2}$	20°1 00°0 R 0 13°1 01°0 R 40
l 81	5,	1 068	1,964	¹³ CO ₂	21 ¹ 1 » P 25
82	58	1,574	1,571	12CO.	13 ¹ 1 » R 41
83		1,212	(1,289	¹³ CO ₂	22°1 00°0 R 22
₹	50		1,2660	>>	21 ¹ 1 01 ¹ 0 P 26
84	59	>> -	1,217	¹² CO ₂	12°1 00°0 R 18
85	60 61	0,947 0,624	0,934 0,615	»	13 ¹ 1 01 ¹ 0 R 38
65	01	0,024	0,178	3°CO ₂	» » R 39 22°1 02°0 R 20
			0,024	>>	21 ¹ 1 01 ¹ 0 P 27
86	62	4989,920	4989,930	¹² CO ₂	12°1 00°0 R 16
} ~~			0,857	>>	13 ¹ 1 01 ¹ 0 R 36
87	62	9,743	9,741	¹³ CO ₂	20°1 00°0 P 2
88	63	9,646 9,367	9,630 9,359	$^{12}CO_{2}^{2}$ $^{13}CO_{2}$	13 ¹ 1 01 ¹ 0 R 37
89		9,034	9,028	»	21 ¹ 1 » P 28 22 ⁰ 1 02 ⁰ 0 R 18
0,7		2,034	(8,762	13CO.	30°1 10°0 P 6
(90	64		8,755	$^{12}CO_2^2$	13 ¹ 1 01 ¹ 0 R 34
91	65	8,622	8,613	»	12°1 00°0 R 14
1 00		0.104	8,572	>>	13 ¹ 1 01 ¹ 0 R 35
92	66	8,134	8,144	¹³ CO ₂	20°1 00°0 P 4
93		7,838°	8,055 7,838	» »	21 ¹ 1 01 ¹ 0 P 29 22 ⁰ 1 02 ⁰ 0 R 16
,,,		7,030	7,627	¹² CO ₂	22°1 02°0 R 16 13°1 01°0 R 32
(94	67	7,585	7,572	>>	» » R 33
95		7,4110	7,428	13CO.	21 ¹ 1 01 ¹ 0 P 30.
1 96	68	7,270	7,266	12CO ₂	21°1 00°0 R 12
97			7,133	18CO2	30°1 10°0 P 8
98		6,509	6,608	»	22°1 02°0 R 14
70		0,309) 6,520 6,498	**************************************	20°1 00°0 P 6 13°1 01°0 R 31
	69	6,478	6,472	»	» » R 30
		,	(0, =	,,	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,

TABLEAU E (suite)

N° 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule		T ransiti	on
99	70	4986,055° 5,885	4986,059 5,890 (5,483	$^{13}_{^{12}\text{CO}_2}$	01 ¹ 1 12 ⁰ 1 30 ⁰ 1 21 ¹ 1	01 ¹ 0 00 ⁰ 0 10 ⁰ 0 01 ¹ 0	P 31 R 10 P 10 P 32
101	71	5,424) 5,370	5,470 5,395 5,338)) 12CO ₂ 13CO ₂	13 ¹ 1 22 ⁰ 1	01 ¹ 0 02 ⁰ 0	R 29 R 12 R 28
102	72	5,287	5,292	¹² CO ₂	1311	0110	K 20

TABLEAU F

Identification des raies d'absorption

Figure 15 4985 — 4950 cm—¹

		Figur	e 15 4985 —	4930 CIII -	
N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	Transition
1 2 3	1 2 3 4	4984,861 4,490 4,269 4,087	4984,868 4,485 4,262 4,087 (4,027	¹³ CO ₂ ¹² CO ₂ » » ¹³ CO ₂	20°1 00°0 P 8 12°1 » R 8 13°1 01°0 R 27 » » R 26 22°1 02°0 R 10
4 5 6 7	5	4,059 - 3,778 3,490 3,148 4,054	3,811 3,490 3,187 (3,101	» » » » 12CO ₂	21 ¹ 1 01 ² 0 P 33 30°1 10°0 P 12 21 ¹ 1 01 ¹ 0 P 34 20°1 00°0 P 10 13 ¹ 1 01 ¹ 0 R 25
8 9 10	6 7	2,872 2,662° 2,231	3,034 2,857 2,675 2,249 2,118))) 13CO 2 12CO 2 13CO 2	12°1 00°0 R 6 13°1 01°0 R 24 22°1 02°0 R 8 3 10°0 R 34 30°1 3 P 14
11	8	1,930° - 1,895	1,979 1,909 (1,600) 12CO ₂)>	21 ¹ 1 01 ¹ 0 P 35 13 ¹ 1 » R 23 » » R 32
12	9	1,585	1,585 1,485 1,477)) 13CO ₂))	12°1 00°0 R 4 21°1 01°0 P 36 20°1 00°0 P 12 22°1 02°0 R 6
13	10 11	1,230 0,672	1,283 1,202 0,688 0,405	¹² CO ₂ ,,, ¹³ CO ₂	» 10°0 R 32 13°1 01°0 R 21 30°1 10°0 P 16
14	12 13	0,308 0,087	0,319 0,125 0,090	12CO ₂ » »	13 ¹ 1 01 ¹ 0 R 20 22 ⁰ 1 10 ⁰ 0 R 30 12 ⁰ 1 00 ⁰ 0 R 2 21 ¹ 1 01 ¹ 0 P 37
16 17 18	14 15	4979,881° 9,741 9,429	9,852 9,741 9,457 1 9,439	13CO ₂ » » » 12CO ₂	22°1 02°0 R 4 20°1 00°0 P 14 21°1 01°0 P 38 13°1 » R 19
19	16	9,008	9,018 9,012 8,668	» » 13CO ₂	22°1 10°0 R 28 13°1 01°0 R 18 30°1 10°0 P 18
20 (21 22	17 18 19	8,566 8,158 7,976	8,568 8,160 7,977 7,882 7,786	12CO ₂ » 13CO ₂ 12CO ₂ 12CO ₂	12°1 00°0 R 0 13°1 01°0 R 17 20°1 00°0 P 16 22°1 10°0 P 39
23 24	20	7,679 7,407	7,780 7,679 7,403	12CO ₂ 13CO ₂	13 ¹ 1 » R 16 21 ¹ 1 » P 40

TABLEAU F (suite)

			DLL.LO	(Suite)	
N° 13CO	Nº 12CO ₂	Obs.	Calc.	Molécule	Transition
25	21 22	4976,852 - » 6,723	4976,912 6,851 6,717	¹³ CO ₂ ¹² CO ₂ »	30°1 10°0 P 20 13°1 01°0 R 15 22°1 10°0 R 24
26 \ 27	23	6,242 6,204 5,655	6,323 6,225 6,184 5,650	» » 13CO ₂ »	13 ¹ 1 01 ¹ 0 R 14 12 ⁰ 1 00 ⁰ 0 P 2 20 ⁰ 1 » P 18 21 ¹ 1 01 ¹ 0 P 41
28 29	24	5,520 5,328	5,522 5,514 5,328	¹² CO ₂ » ¹³ CO ₂	22°1 10°0 R 22 13°1 01°0 R 13 21°1 » P 42
30 31	25 26	4,942 4,635	5,021 4,941 4,627	¹² CO ₂ » »	14 ² 1 02 ² 0 R 31 13 ¹ 1 01 ¹ 0 R 12 12 ⁰ 1 00 ⁰ 0 P 4
32	27	4,357	4,445 4,365	13CO ₂	14 ² 1 02 ² 0 R 30 20 ⁰ 1 00 ⁰ 0 P 20
33 34	28 29 30	4,150 3,838 3,535	4,297 4,147 3,860 3,532	12CO ₂ 12CO ₂ 12CO ₂ »	22°1 10°0 R 20 13°1 01°0 R 11 14°1 02°0 R 29 13°0 01°0 R 10
/ 35	31	3,221°	3,481	¹³ CO ₂ ¹² CO ₂	21 ¹ 1 » P 43 14 ² 1 02 ² 0 R 28
36	32	3,002	3,228	¹³ CO ₂ ¹² CO ₂	21 ¹ 1 01 ¹ 0 P 44 22 ⁰ 1 10 ⁰ 0 R 18
37	33	2,756	3,000 2,751	» »	12°1 00°0 P 6 13°1 01°0 R 9
38 39	34 35	2,514 2,101	2,674 2,529 2,098	" 13CO ₂ 12CO ₂	14 ² 1 02 ² 0 R 27 20 ⁰ 1 00 ⁰ 0 P 22 13 ¹ 1 01 ¹ 0 R 8
40	36	1,748°	2,070 1,758	» »	14 ² 1 02 ² 0 R 26 22 ⁰ 1 10 ⁰ 0 R 16
41	37	1,350	1,460 (1,344 (1,327 1,288	» » » 13CO ₂	14 ² 1 02 ² 0 R 25 12 ⁰ 1 00 ⁰ 0 P 6 13 ¹ 1 01 ¹ 0 R 7 21 ¹ 1 P 45
42 43	38 39	1,111° 0,840 0,651	1,251 1,107 0,845 (0,645	» » 12CO ₂	22°1 02°0 P 6 21°1 01°0 P 46 14°1 02°0 R 24 20°1 00°0 P 24
) 44 45	40 41 42 43	0,441 0,221 4969,859 9,661	0,639 0,444 0,221 4969,872 9,657	12CO ₂ >> >> >> >> >> >> >> >> >>	13 ¹ 1 01 ¹ 0 R 6 22 ⁰ 1 10 ⁰ 0 R 14 14 ² 1 02 ² 0 R 23 13 ¹ 1 01 ¹ 0 R 5 12 ⁰ 1 00 ⁰ 0 P 10
46	44	9,168	9,555 9,154	¹³ CO ₂ ¹² CO ₂	22°1 02°0 P 8 13°1 01°0 R 4
47 48	45 46 47	8,961 8,746 8,379	9,100 8,957 8,744 { 8,390	» 3°CO ₂ 12°CO ₂	22°1 10°0 R 12 14°1 02°0 R 21 20°1 00°0 P 26 13°1 01°0 R 3
1 49	48	7,949	(8,315 7,942 7,820	» » ¹³ CO ₂	14 ² 1 02 ² 0 R 20 12 ⁰ 1 00 ⁰ 0 P 12
50	49	7,676	7,727 7,667 7,648	12CO ₂ »	22°1 02°0 P 10 >> 10°0 R 10 14°1 02°0 R 19 13°1 01°0 R 2
51	50	6,863 6,816 -	7,012 6,878 6,816 6,351	» » ¹³ CO ₂ ¹² CO ₂	14 ² 1 02 ² 0 R 18 13 ¹ 1 01 ¹ 0 R 1 20 ⁰ 1 00 ⁰ 0 P 28 14 ² 1 02 ² 0 R 17
52	51	6,204	6,322 6,198	>> >>	22°1 10°0 R 8 12°1 00°0 P 14
	52	5,681	6,046 5,682	¹³ CO ₂	22°1 02°0 P 12 14°1 02°0 R 16

TABLEAU F (suite)

		1	ABLEAU F	(suite)	
N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	Transition
53	53 54	4965,322 5,023	(4965,009 5,002	12CO ₂ >> >> >> >> >> >> >> >> >>	13 ¹ 1 01 ¹ 0 Q 14 ² 1 02 ² 0 R 15 14 ⁰ 1 02 ⁰ 0 R 54 22 ⁰ 1 10 ⁰ 0 R 6
54 55	55 56	4,856 4,422	4,889 4,863 4,424 4,328	¹³ CO ₂ ¹² CO ₂ ³	20°1 00°0 P 30 12°1 » P 16 14°1 02°0 R 14 22°1 02°0 P 14
56? 57	57 58 59 60	3,978 3,774 3,611 3,426	4,231 3,970 3,766 3,641 3,425	**************************************	14°1
	61	2,942	2,972 2,947	» »	14 ² 1 02 ² 0 R 12 14 ⁰ 1 02 ⁰ 0 R 30
58 59 60	62	2,883 2,620 2,375°	(2,907 2,883 2,621 2,374	» ¹³ CO ₂ ¹² CO ₂ ¹³ CO ₂ ¹² CO ₂	20°1 00°0 P 32 12°1 00°0 P 18 22°1 02°0 P 16 14°1 02°0 R 11
61	63	2,182	2,248	>>	13 ¹ 1 01 ¹ 0 P 4 14 ⁰ 1 02 ⁰ 0 R 28
	64	1,833	1,813 1,541	» »	14 ² 1 02 ² 0 R 10 13 ¹ 1 01 ¹ 0 P 5
62	65	1,362	1,358 0,877) 13CO ₂	20°1 00°0 P 34
63	66	0,829 0,784	0,828	12CO ₂	14 ² 1 02 ² 0 R 9 12 ⁰ 1 00 ⁰ 0 P 20 14 ⁰ 1 02 ⁰ 0 R 26
64	67	0,559	0,687 0,548 0,480	» ¹² CO ₂ ¹³ CO ₂	13 ¹ 1 01 ¹ 0 P 6 22 ⁰ 1 02 ⁰ 0 R 18
65 66	68 69 70	0,095 4959,716 9,530	0,109 4959,717 9,531 (8,927	12CO ₂ >> >> >> >> >> >>	14 ² 1 02 ² 0 R 8 13 ¹ 1 01 ¹ 0 P 7 14 ⁰ 1 02 ⁰ 0 R 24 12 ⁰ 1 00 ⁰ 0 P 22
67 68 69 70 71	71 72 73 74	8,933 8,889 8,575° 8,349 8,056 7,225	\[\begin{cases} 8,903 \\ 8,848 \\ 8,544 \\ 8,343 \\ 8,046 \\ 7,231 \\ 7,124 \end{cases}	"> 13CO ₂ "> 12CO ₂ "> 12CO ₂ "> "> "> "> "> "> "> "> "> "> "> "> ">	1311 0110 P 8 2001 0000 P 36 2221 0200 P 20 1401 0200 R 22 1331 0110 P 9 3 P 10 1401 0200 R 20
72 73	75	7,042 6,780	7,124 7,037 6,786 6,570	" " " " " "	12°1 00°0 P 24 20°1 » P 38 22°1 02°0 P 22
74 75 76 77	76 77 78 79	6,342 5,867 5,529 5,110	6,347 5,875 5,537 5,116 4,859	12CO ₂ » » » 12CO ₂	13 ¹ 1 01 ¹ 0 P 11 14 ⁰ 1 02 ⁰ 0 R 18 13 ¹ 1 01 ¹ 0 P 12 12 ⁰ 1 00 ⁰ 0 P 26 22 ⁰ 1 10 ⁰ 0 P 40
78	80	4,687 } 4,607 }	4,703 4,618 4,595 4,558	13CO ₂ 12CO ₂ 32 313CO ₂	13 ¹ 1 01 ¹ 0 P 13 14 ⁰ 1 02 ⁰ 0 R 16 22 ⁰ 1 » P 24
79	81	3,807	3,816 3,35 3,284	¹² CO ₂	13 ¹ 1 01 ¹ 0 P 14 14 ² 1 02 ² 0 Q 14 ⁰ 1 02 ⁰ 0 R 14
80	82	3,171	3,184	» »	22°1 10°0 P 8 12°1 00°0 P 28
81 82	83	2,859 2,596	3,167 2,861 2,597 2,504	» 3°CO 2 »	13 ¹ 1 01 ¹ 0 P 15 20 ⁰ 1 00 ⁰ 0 P 42 22 ⁰ 1 02 ⁰ 0 P 26
83 84	84 85 86	2,057 1,925° 1,477°	2,068 1,942 1,497	12CO ₂ >> >>	13 ¹ 1 01 ¹ 0 P 16 14 ⁰ 1 02 ⁰ 0 R 12 22 ⁰ 1 10 ⁰ 0 P 10

TABLEAU F (suite)

N° 13CO2	N° 12CO ₂	Obs.	Calc.	Molécule		Transit	on
85	87	4951,185	4951,199 1,085°	¹² CO ₉	1201	0000	P 30
86	88	0,558 0,470	0,571 0,465	» » 13CO ₂	13 ¹ 1 14 ⁰ 1 20 ⁰ 1	01 ¹ 0 02 ⁰ 0 00 ⁰ 0	P 17 P 10 P 44
87	89	0,307	0,414 0,299) 12CO ₂	22°1 13°1	02°0 01°0	P 28 P 18

TABLEAU G

Identification des raies spectrales

Figure 16 4950 — 4915 cm—1

		Fig	ure 16 4950 —	- 4915 cm— ¹	
N° 18CO ₂	N° 12CO2	Obs.	Calc.	Molécule	Transition
1	1	4949,791	4949,779 9,367	¹² CO ₂	22°1 10°0 P 12 14°1 02°0 P 5
2	2	9,197	9,261 9,182	» »	13 ¹ 1 01 ¹ 0 P 19 12 ⁰ 1 00 ⁰ 0 P 32
₁ 3	3	8,502	9,168 8,552 8,504	» »	14°1 02°0 R 8 14°1 02°0 P 6
1 4		8,311	8,309 8,284	13CO ₂	13 ¹ 1 01 ¹ 0 P 20 20°1 00°0 P 46
5 6	4 5 .	8,027 7,715	8,033 7,736	°°CO ₂	22°1 02°0 P 30 22°1 10°0 P 14 14°1 02°0 R 6
7 8	6 7	7,407 7,142	7,730 7,417 7,145	» » »	14 ² 1 02 ² 0 P 7 13 ¹ 1 01 ¹ 0 P 21 12 ⁰ 1 00 ⁰ 0 P 34
9	8 9 10	6,861° 6,687 6,272	6,902 6,684 (6,273	» » »	14 ² 1 02 ² 0 P 8 13 ¹ 1 01 ¹ 0 P 22 14 ⁰ 1 02 ⁰ 0 R 4
11	11 12	6,141 6,059 5,549	6,256 6,129 6,068 5,546	**************************************	22°1 10°0 P 16 20°1 00°0 P 48 14°1 02°0 P 9 13°1 01°0 P 23
13	13 14	5,089 4,839	5,227 5,080 4,839	» » »	14 ² 1 02 ⁰ 0 P 10 12 ⁰ 1 00 ⁰ 0 P 36 13 ¹ 1 01 ¹ 1 P 24
15	15	. 4,445	4,778 4,450 4,380	» »	14°1 02°0 R 2 22°1 10°0 P 18
16 17	16	4,941 3,647	3,925 4,644	» ¹³ CO ¹² CO ₂	14 ² 1 02 ² 0 P 11 20 ⁰ 1 00 ⁰ 0 P 50 13 ¹ 1 01 ¹ 0 P 25
18	17	2,995	3,527 { 2,985	» »	14 ² 1 02 ² 0 P 11 12 ⁰ 1 00 ⁰ 0 P 38
19	18	2,626	2,969 2,667 2,615	» » »	13 ¹ 1 01 ¹ 0 P 26 14 ² 1 02 ² 0 P 13 22 ⁰ 1 10 ⁰ 0 P 20
20	19	1,713	1,801 { 1,715	» »	14 ² 1 02 ² 0 P 14 13 ¹ 1 01 ¹ 0 P 27
f 21	20	1,082	1,700	¹³ CO ₂ ¹² CO ₂	20°1 00°0 P 52 13°1 01°0 P 28
22	21	0,874	$ \begin{cases} 0,929 \\ 0,911 \\ 0,863 \\ 0.751 \end{cases} $	» » »	14°1 02°0 P 15 14°1 02°0 P 2 12°1 00°0 P 40
	22	0,050	0,751 0,049	» » » 13C16O18O	22°1 10°0 P 22 14°1 02°0 P 16
23	23	4939,767	4939,807 9,757	¹² CO ₂	20°1 00°0 R 21 13°1 01°0 P 29

TABLEAU G (suite)

Nº	No	Obs.	Calc.	Molécule	Transition
¹³ CO ₂	¹² CO ₂	003.	Carc.	Molecule	i i dii sitio ii
24	24	4939,461 9,265°	4939,451 9,312	¹³ CO ₂ ¹² CO ₂	20°1 00°0 P 54 14°1 02°0 P 4
25	25	9,150	9,191 (9,165	¹³ C ¹⁶ O ¹⁸ O	20°1 00°0 R 20 14°1 02°0 P 17
26	26	8,708	9,155 8,857 8,710	» » »	13 ¹ 1 01 ¹ 0 P 30 22 ⁰ 1 10 ⁰ 0 P 24 12 ⁰ 1 00 ⁰ 0 P 42
		,	8,567	18C16O18O	20°1 » R 19
27 28	27	8,278 7,933	8,273 7,941	13C16O18O	20°1 00°0 R 18
29	28	7,766	7,770 7,683	12CO ₂ >> >>	13 ¹ 1 01 ¹ 0 P 31 14 ⁰ 1 02 ⁰ 0 P 6 14 ² 1 02 ² 0 P 19
			7,376 7,308	13C16O18O	20°1 00°0 R 17
30	29	7,217 7,197	- 7,211 - 7,180	¹² CO ₂ ¹³ CO ₂	13 ¹ 1 01 ¹ 0 P 32 20 ⁰ 1 00 ⁰ 0 P 56
31	30	6,926	6,934 6,670	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	22°1 10°0 P 26 20°1 00°0 R 16
32	31	6,527	6,528 6,471	¹² CO ₂	12°1 » P 44 14°1 02°0 P 20
33	32	6,014	6,026	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 00°0 R 15 14°1 02°0 P 8
34	33	5,756	5,754	¹² CO ₂	13 ¹ 1 01 ¹ 0 P 33
1 35	34	5,580° 5,376	5,561 5,378	13C16O18O	20°1 00°0 R 14
37	35 36	5,242 4,995	5,243 4,981	¹² CO ₂ »	13 ¹ 1 01 ¹ 0 P 34 22 ⁰ 1 10 ⁰ 0 P 28
38 39		4,893 4,713	4,887 4,724	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	20°1 00°0 P 58 » » R 13
40	37 38	4,635 4,322	4,644	¹²CO₂ »	14 ² 1 02 ² 0 P 22 14 ⁰ 1 02 ⁰ 0 P 10
41		4,075	1 4,318 4,064	¹³ C ¹⁶ O ¹⁸ O	12°1 00°0 P 46 20°1 » R 12
42	39	3,709	(3,720	¹² CO ₂	14 ² 1 02 ² 0 P 23 13 ¹ 1 01 ¹ 0 P 35
1 43	40	3,384° 3,244	3,398 3,248	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 00°0 R 11 13°1 01°0 P 36
45	41 42	3,005 2,785°	3,001	» »	22°1 10°0 P 30 14°1 02°0 P 24
(46	43	2,713° 2,611	2,792 - 2,728 2,611	18C16O18O 12CO2	20°1 00°0 R 10 14°1 02°0 P 12
47		2,572	- 2,572	13CO ₂ 12CO ₂	20°1 00°0 P 60 12°1 » P 48
48	44	2,074	2,079 2,052	13C16O18O	20°1 » R 9 14°1 02°0 P 25
49	45 46	1,868° 1,638	1,855 1,638	¹² CO ₂	13 ¹ 1 01 ¹ 0 P 37
1 50	47	1,343° 1,222	1,370 1,230	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 00°0 R 8 13°1 01°0 P 38
	48	0,997	0,991 0,914	» »	22°1 10°0 P 32 14°1 02°0 P 27
52 53	49	0,856 0,646	0,860 0,684	13C16O18O	14°1 02°0 P 14 20°1 00°0 R 7
54		0,230	0,237 9,991	13CO ₂	 » » » P 62 R 6 14²1 02²0 P 20
55	50	4929,806	4929,966 9,811	¹² CO ₂	14°1 02°0 P 20 12°1 00°0 P 50 13°1 01°0 P 39
56	51 52	9,547 9,182	9,536 9,186	» »	» » P 40
58	53	9,086°	9,080 9,011	» »	14°1 02°0 P 16 14°1 02°0 P 28
	54 55	9,948° 8,326	8,952 ?	>>	22°1 10°0 P 34

TABLEAU G (suite)

	Nº 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule		Transit	ion
ſ	59	56 57	4928,048	4928,051	¹² CO ₂	14 ² 1	0220	P 29
- {	60	58	7,882 7,878 7,501	7,882 7,515	¹⁸ CO ₂ ¹² CO ₂	20°1 12°1	0000	P 64 P 52
}	62 63	59 60 61	7,264 7,117	7,407 7,268 7,118	» » »	13 ¹ 1 14 ⁰ 1 13 ¹ 1	01 ¹ 0 02 ⁰ 0 01 ¹ 0	P 41 P 18 P 42
	64 65	62 63	6,873 6,391	7,084 6,885	» »	14 ² 1 22 ⁰ 1	02 ² 0 10 ⁰ 0	P 30 P 36
	66	64 65	6,100 5,877	6,378 6,109 5,875	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	12°1 14°1 12°1	00°0 02°0 00°0	R 34 P 31 R 33
	67	66	5,421 »	- 5,506 5,428 5,365	¹³ CO ₂ ¹² CO ₂ ¹² C16O18O	20°1 14°1 12°1	» 02°0 00°0	P 66 P 20 R 32
	68	67	5,194	5,258 5,189 5,130	12CO ₂ »	13 ¹ 1 12 ⁰ 1 14 ² 1	01 ¹ 0 00 ⁰ 0 02 ² 0	P 43 P 54 P 32
/	69 70	68 69	5,039 4,850	5,025 4,851 4,849	» ¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	13 ¹ 1 12 ⁰ 1 »	01¹0 00°0 »	P 44 R 70 R 31
	71	70 71	4,637 4,350 4,320	4,326 4,304	¹² C ¹⁶ O ¹⁸ O	12º1 >>	0000	R 30 R 68
	72	72 73	4,135 3,797 3,753	4,144 3,797 - 3,725	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	14 ² 1 12 ⁰ 1	02 ² 0 00 ⁰ 0 »	P 33 R 29 R 66
1	73 74	74 75	3,551 3,262	3,556 3,261 3,152	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	14º1 12º1 14º1	02°0 00°0 02°0	P 22 R 28 P 34
}	75	76	3,115 3,082	3,115	¹³ CO ₂ ¹² CO ₂	12º1 13¹1	0000	R 64
(76	77	2,834	2,907 2,834 2,719	» 12C16O18O	» 12°1 »	» 00°0 »	P 46 P 56 R 27
	77 78	79	2,490 2,165	2,474 (2,169) 2,152	13CO ₂ 12C16O18O 12CO ₂	» » 14 ² 1	» » 02²0	R 62 R 26 P 35
{	79		1,812	1,802	13CO	12º1 14º1	00°0 02°0	R 60 P 24
(80	80	1,632	1,614	12CO ₂ 12C16O18O 12CO ₂	12º1 14º1	00°0 02°0	R 25 P 36
	81	81 82	1,103 1,066 0,820	1,099 1,051 (0,845	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	12º1 >> 13¹1	00°0 00°0	R 58 R 24 P 47
		83	0,465	0,763 0,489 0,483	3C16O18O 12C16O18O	» 20°1 12°1	00°0 >>	P 48 P 6 R 23
	83 84	84	0,398 0,125°	- 0,451 - 0,366 0,137	¹² CO ₂ ¹³ CO ₂ ¹² CO ₂	›› ›› 14 ² 1	» » 02²0	P 58 R 56 P 37
ſ	85 86	85 86	4919,904 9,724	4919,906 1 9,723 1 9,720	¹² C ¹⁶ O ¹⁸ O ¹² C() ₂ ¹³ C ¹⁶ O ¹⁸ O	12°1 14°1 20°1	00°0 02°0 00°0	R 22 P 26
	87 88	87	9,597 9,335	9,603 9,324	13CO ₂ 12C16O18O	1201	>> >>	R 54 R 21
	89	88	8,797 8,715	8,945 8,810 8,736	13CO ₂ 12C16O18O	20°1 12°1 >>	» »	P 8 R 52 R 20
	90	89	8,610	(8,600) 8,595	12CO ₂	1311	01 ¹ 0 »	R 20 P 49 P 50

TABLEAU G (suite)

N° 13CO ₂	$^{{ m N}^{_{0}}}_{^{12}{ m CO}_{2}}$	Obs.	Calc.	Molécule	,	Transiti	on
			4918,165 8,140	¹³ C ¹⁶ O ¹⁸ O ¹² C ¹⁶ O ¹⁸ O	20°1 12°1	00°0	P 9 R 19
0.1	90	4918,038 7,994	8,040 7,986	¹² CO ₂ ¹³ CO ₂	» »	» »	P 60 R 50
91 92	91	7,752	7,762	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	14º1 12º1	02°0 00°0	P 28 R 18
93	92	7,541	7,538 7,379	¹⁸ C ¹⁶ O; ⁸¹ O	20°1	»	P 10
94	93 94	7,136 6,928	7,134 6,929	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	1201	» »	R 48 R 17
96		6,583	6,588 6,402	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 13°1	01 ¹ 0	P 11 P 52
	95	6,347	6,328	¹² C ¹⁶ O ¹⁸ O	1201	0000	P 51 R 16
97		6,258 J 5,793°	6,251 5,791	¹⁸ CO ₂ ¹⁸ C ¹⁶ O ¹⁸ O	» 20°1	>> >>	R 46 P 12
}		2,	5,769 5,691	$^{12}CO_{2}$ $^{12}C^{16}O^{18}O$	14º1 12º1	02°0 00°0	P 30 R 15
100	96 97	5,629° 5,339	5,609 5,340	¹² CO ₂ ¹³ CO ₂	>> >>	>> >>	P 62 R 44
101	98	5,063 5,035	5,062 - 4,990	12C16O18O 13C16O18O	20°1	» »	R 14 P 13

TABLEAU H

Identification des raies d'absorption

Figure 17 4915 — 4880 cm—¹

		1 15410	, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,				
N° 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule	-	Γransiti	on
1	1	4914,423	4914,426	12C18O18O	1201	0000	R 13
1 1	'	4,404	4,399	13CO ₂	>>	>>	R 42
4 *	2	4,212	4,185	¹² CO ₂	13 ¹ 1	0110	P 54
1	2 3	4,081	4,026	>>	>>	>>	P 53 ?
2	4	3,760	1 3,783	12C16O18O	1201	0000	R 12
			3,746	12CO 2	$14^{0}1$	02^{0}	P 32
(3	5	3,428	3,429	¹³ CO ₂	12°1	$00_{0}0$	R 40
1			3,370	¹³ C ¹⁸ O ¹⁸ O	20°1	>>	P 15
4	6	3,166	3,140	¹² CO ₂	12°1	>>	P 64
			1 3,134	12C16O18O	2001	>>	R 11
			2,552	'3C16O18O	2001	>>	P 16
	7	2,470	2,478	12C16O18O	1201	>>	R 10 R 38
5		2,437	2,431	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	»>	>>	R 38 R 9
	8	1,822°	1,816	13C16O18O	>> 20°1	>>	P 17
6		1 #220	1.729	¹² CO ₉	1401	0200	P 34
_	9	1,733°	1,694	13CO ₂	1201	0000	R 36
1 7	10	1,404	1,403	12C16O18O)>	>> >>	R 8
1 8	11	1,169	1,146 0,901	13C16O18O	2001	>>	P 18
9	12	0,894	0,632	¹² CO ₂	1201	>>>	P 66
10	12	0,655 0,481°	0,470	12C16O18O	>>	<i>>></i>	R 7
11	13 14	0,357	0,347	13CO ₂	<i>>></i>	<i>>></i>	R 34
12	14	0,0760	0,066	18C16O18O	2001	>>	P 19
13	15	4909,778	4909,788	12C16O18O	1201	>>	R 6
14	16	9,630	9,611	¹² CO ₂	1401	0200	P 36
15	17	9,260	9,262	13CO,	1201	0000	R 32
15	1 /	7,200	9,229	18C16O18O	2001	>>	P 20
	18	9,112	9,098	12C16O18O	1201	0000	R 5
	19	8,410	8,402	>>	>>	>>	R 4
		0,110	8,383	13C16O18O	20°1	>>	P 21
16	20	8,149	8,149	¹³ CO ₂	1201	>>	R 30

TABLEAU H (suite)

N° 13CO ₂	N° 12CO ₂	Obs.	Calc.	Molécule		Transition	
17	21	4907,701	4907,699	12C16O18O 13C16O18O	12º1 20º1	0000	R 3 P 22
18	22	7,506	7,535 7,498	¹² CO ₂	14°1	0200	P 38
19	23	7,007	7,009	¹³ CO ₂	1201	0000	R 28
20	24	5,843	5,839	»	>>	>>	R 28 R 26
	25	5,688	?				
	26	5,357	5,354	12CO ₂	1401	02°0	P 40
21	27	5,034°	5,053	¹³ CO ₂	13 ¹ 1 12 ⁰ 1	0110	R 54
22 23	27	4,633 4,142°	4,642 4,153	» »	1311	0000	R 24 R 52
24		3,7640	3,873	<i>>></i>	13-1	››	R 55 ?
25	28	3,420	3,417	<i>"</i>	1201	0000	R 22
			3,230	>>	1311	0110	R 50
	29	3,234°	3,180	12CO ₂	$14^{0}1$	02^{0}	P 42
26		3,067°	3,087	¹³ CO ₂	1311	0110	R 53
	30	2,593	2,590	12C16O18O	1201	0000	P 3
			2,282 2,275	¹³ CO ₂	13 ¹ 1	0110	R 48 R 51
27	31	2,158	1,164	<i>"</i>	1201	0000	R 20
	32	1,846	1,834	12C16O18O)>	>>>	P 4
, 28		1,429°	1,436	¹³ CO ₂	1311	0110	R 49
1 29		1,314	1,309	>>	>>	>>	R 46
/ 20	33	1,086	1,071	12C16O18O	12º1	$00_{0}0$	P 5
(30	34	0,884 0,581	0,883	¹³ CO ₂	3 ¹ 1	0110	R 18
(21	35	0,322	0,570 0,301	» 12C16O18O	1201	0000	R 47 P 6
32	23	0,323	0,312	¹³ CO ₂	1311	0110	R 44
			(4899,676	>> ×	>>	>>	R 45
(33	36	4899,583	9,575 9,523	»	1201	0000	R 16
			9,523	12C16O18O	1201	0000	P 7
34		9,271	9,290	¹³ CO ₂	13 ¹ 1	0110	R 42
35	37	8,770 8,748	8,755 8,741	¹² C ¹⁶ O ¹⁸ O	30 1201	0000	R 43 P 8
36	38	8,240	1 8,245	¹³ CO ₂	1311	0110	R 40
	20	0,270	8,238	»	1201	0000	R 14
	39	7,940	7,951	12C16O18O	>>	>>	P 9
37		7,813	7,806	¹³ CO ₂	13 ¹ 1	0110	R 41
1 38	40	7,171 7 ,144	7,174)> 19C16O19O	1 201	>>	R 38
39	40 41	7,144	7,153	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	12º1	0000	P 10
(37	41	6,866	6,875	»	3 ¹ 1	0110	R 12 R 39
	42	6,353	6,350	12C16O18O	1201	0000	P 11
40	43	6,085	6,079	¹³ CO ₂	1311	0110	R 36
41	44	5,832	5,827	>>	>>	>>	R 37
40	4.5	5 400	5,540	12C16O18O	12°1	$00_{0}0$	P 12
42	45	5,482 4,960	5,485 4,959	¹³ CO ₂	» 13¹1	0110	R 10 R 34
44		4,797	4,796	»	3>1	»	R 34 R 35
(* *	46	4,705	1 4,724	12C16O18O	1201	0000	P 13
		.,	4,639	12CO.	0401	>>	R 64
1 45	47	4,064	4,067	¹³ CO ₂	1201	>>	R 8
10	48	3,905	3,901	12C16O18O	>>	>>	P 14
(46		3,796	3,815	¹⁸ CO ₂	1311	0110	R 32
	49	3,719	1 3,738 3,709	12CO ⁵	04°1	0000	R 33 R 62
47		3,250	3,231	13CO ⁵	2201	1000	R 32
	50	3,073	3,071	12C16O18O	1201	0000	P 15
48		3,050	?				
	51	2,739	2,755	¹² CO ₂	0401	0000	R 60
49	52	2 620	(2,651	¹³ CO ₂	1311	0110	R 31
47	32	2,620	2,647 2,622	» »)> 12º1	()() ⁰ ()	R 30 R 6
	53	2,233	2,234	12C16O18O	1201))))	R 6 P 16
		-,=55	2,4JT		12 1	"	1 10

TABLEAU H (suite)

	* Y -	01 -	Colo	Molécule	Transition	1
Nº 13CO 2	$^{\mathrm{N}^{\mathrm{o}}}_{^{12}\mathrm{CO}_{2}}$	Obs.	Calc.	Molecule	Tansmo	,
50		4892,208	{4892,176	¹³ CO ₂	2201 1000	R 30
51 52	54	1,780 1,490	1,774 (1,536) 1,454	¹² CO ₂ ¹³ CO ₂ »	04°1 00°0 13°1 01°0 » »	R 58 R 29 R 28
53	55 56	1,392 1,135	1,392 (1,148 1,089	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂ »	12°1 00°0 >> >> 22°1 10°0	P 17 R 4 R 28
54	57 58	0,770 0,541	0,770 0,542	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°0 00°0 12°1 » 13°1 01°0	R 56 P 18 R 27
55 56 57		0,395 0,235	0,392 0,236 4889,972	» » »	» » 22°1 10°0	R 26 R 26
37	59	4889,978 9,710	9,741	12CO ₂ 12C16O18O	04°1 00°0 12°1 »	R 54 P 19
58 59 60	60 61	9,640) 9,222 8,992	9,649 9,222 8,994	13CO ₂ >> >>	» » 13 ¹ 1 01 ¹ 0 » » 22 ⁰ 1 10 ⁰ 0	R 2 R 25 R 24 R 24
61 62	62 63	8,827 8,812 8,692 (8,105	8,824 8,823 8,690 8,121	» ¹² C ¹⁶ O ¹⁸ O ¹² CO ₂ ¹³ CO ₂	12°1 00°0 04°1 » 12°1 »	P 20 R 52 R 0
63	64	8,031	8,022 7,953	» ¹² CO ¹⁶ O ¹⁸ O	13 ¹ 1 01 ¹ 0 12 ⁰ 1 00 ⁰ 0	R 23 P 21
64	65	7,964 7,713	7,933 7,727 7,645	¹³ CO ₂	13 ¹ 1 01 ¹ 0 22 ⁰ 1 10 ⁰ 0	R 22 R 22
65	66 67	7,606 \\ 7,078	7,595	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	04°1 00°0 12°1 00°0	R 50 P 22
66	68	6,793 6,521	6,794 6,518	¹³ CO ₂ ¹² CO ₂	13 ¹ 1 01 ¹ 0 04 ⁰ 1 00 ⁰ 0	R 21 R 48
67		6,447	6,435	¹³ CO ₂	13 ¹ 1 01 ¹ 0 22 ⁰ 1 10 ⁰ 0	R 20 R 20
68 69	69 70	6,195 5,772	6,195 5,780	¹² C ¹⁸ O ¹⁸ O ¹³ CO ₂	12°1 00°0 » »	P 23 P 2
70 71	71	5,772 5,540 5,403	5,537 5,398	$^{^{12}CO}_{^{2}}$	13 ¹ 1 01 ¹ 0 04 ⁰ 1 00 ⁰ 0 12 ⁰ 1 »	R 19 R 46 P 24
72	•	5,123	5,305 5,194 5,120	13CO ₂	22°1 10°0 13°1 01°0	R 18 R 18
1	72 73	4,387 4,263	4,411	¹² C ¹⁶ O ¹⁸ O	12°1 00°0 04°1 »	P 25 P 44
73		4,206	4,253 4,185	13CO ₂ >> >>	13 ¹ 1 01 ¹ 0 12°1 00°0 22°1 10°0	R 17 P 4 R 16
74	74 75	3,785 3,514	3,923 3,781 3,508	» 12C16O18O	13 ¹ 1 01 ¹ 0 12 ⁰ 1 00 ⁰ 0	R 16 P 26
75 76 77	76	3,098 2,932	3,095 2,939	¹² CO ₂ ¹³ CO ₂	04°1 » 13¹1 01¹0 22°1 10°0	R 42 R 15 R 14
, 70	77	2,563	2,620 - 2,600 2,563	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	12°1 00°0 >> >>	P 27 P 6
78 79 80	78	» 2,434 1,919	2,416 1,912	» ¹²CO。	13 ¹ 1 01 ¹ 0 04 ⁰ 1 00 ⁰ 0	P 14 R 40
81	79	1,700 1,599	1,685 1,597	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	12°1 » 13°1 01°0	P 28 R 13
82		1,280	1,286 (1,027	" 13CO ₂	22°1 10°0 13°1 01°0	R 12 R 12
83	80	0,915	0,921	» » 12C16O18O	22°1 10°0 12°1 00°0 12°1 00°0	R 10 P 8 P 29
84 85	81 82	0,726 0,232	0,764 0,708 0,228	¹² CO ₂ ¹³ CO ₂	04°1 » 13°1 01°10	R 38 R 11

TABLEAU I

Identification des raies d'absorption

Figure 18 4880 — 4845 cm—1

		Figi	ıre 18 4880 —	- 4845 cm ¹			
N° ¹³CO ₂	N° 12CO2	Obs.	Calc.	Molécule	7	Γransiti	ion
1		4879,916	(4879,952	¹⁸ CO ₂	1401	0200	R 40
		ĺ	9,921	>>	2201	10^{0}	R 10
2	1	9,831 9,607	9,837 9,614	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	12º1 13º1	00°0 01°0	P 30
2 3	2	9,489	9,485	¹² CO ₂	0401	0000	R 10 R 36
4	3	9,241	9,238	¹⁸ CO ₂	12º1	>>	P 10
	4	8,895	8,948 8,903	12C16O18O	14º1 12º1	$02^{0}0$ $00^{0}0$	R 38 P 31
5		8,832	8,829	¹³ CO ₂	1311	0110	R 9
0	5	8,542 8,244 (8,526 (8,242	» 12CO ₂	22º1 04º1	10°0 00°0	R 8 R 34
7		8,225	8,177	¹⁸ CO,	1311	0110	R 8
8	6	7,987 7,916	7,961 7,913	¹² C ¹⁶ O ¹⁸ O	1201	0000	P 32
(9	7	7,527	7,535	¹³ CO ₂	14º1 12º1	02°0 00°0	R 36 P 12
10		7,397	7,401	>>	1311	0100	R 7
			7,099 7,015	¹² C ¹⁶ O ¹⁸ O	22º1 12º1	10°0 00°0	R 6 P 33
1.1	8	6,984	6,980	12CO 2	0401	>>	R 32
11 12		6,720	- 6,852 6,715	¹³ CO ₂	14º1 13º1	02°0 01°0	R 34 R 6
13		6,242	6,275	>>	1421	0220	R 25
	9	6,068	6,062 (5,946	12C16O18O	1201	0000	P 34
14		5,796	5,804	¹³CO₂ »	13 ¹ 1 12 ⁰ 1	01 ¹ 0 00 ⁰ 0	R 5 P 14
	10	5,719	5,757	>> 18CO	14º1	0200	R 32
	10	3,719)	5,698 5,641	¹² CO ₂ ¹³ CO ₂	04º1 22º1	$00^{0}0$ $10^{0}0$	R 30 R 4
15	11	5,231	5,229	>>	1311	0110	R 4
16	1.1	5,081 4,631	5,102 4,637	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	12°1 14°1	00°0 02°0	P 35 R 30
17	1.0	4,429	- 4,461	>>	1311	0110	R 3
18	12 13	4,400 4,049	4,397	¹² CO ₂ ¹³ CO ₂	04º1 12º1	0000	R 28 P 16
19		3,732	3,719	»	1311)) 01¹0	P 16 R 2
20 21	14	3,505 3,076	3,489 3,079	**************************************	1401	0200	R 28
22		2,935	2,949	¹³ CO ₂	04°1 13°1	$00^{0}0$ $01^{1}0$	R 26 R 1
23	15	2,260	2,312 2,263	>>	1401	0200	R 26
24	16	1,744	1,742	**************************************	12º1 04º1	» 00°0	P 18 R 24
25 26		1,379		¹³ CO ₂	1311	0110	Q
27		1,116 0,433	1,107 (0,451	» »		02°0 00°0	R 24 P 20
28	17	0,386	0,387	12CO.	0401	>>	R 22
20		4869,847	(4869,874 9,837	¹³ CO ₂ »	14º1 13¹1	02°0 01°0	R 22 P 2
29	10	9,005	- 9,042	>>	>>	»	P 2 P 3
	18	>>	9,015	¹² CO ₂ ¹³ CO ₂		0000	R 20
30	19	8,608	8,6130	»		10°0 02°0	P 4 R 20
31		8,240	(8,614 8,241	»	1201	0000	P 22
	20	8,184	?	»	1311	0110	P 4
32 33	21	7,626	7,625	¹² CO ₂		0000	R 18
		7,421	7,430 7,327	¹³ CO ₂		0110 0200	P 5 R 18
34		7,038°	7,067	>>	2201	1000	P 6
			7,014	>>	1421	$02^{2}0$	RII

			IABLEAU	(Satte)		
N° 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule	Trans	sition
35	22	4866,741	4866,747	13CO 2	1201 0000	
36		6,621	6,622	»>	13 ¹ 1 01 ¹ 0	
37	23	6,219 6,014	6,217 6,013	¹² CO ₂ ¹³ CO ₂	04°1 00°0 14°1 02°0	
38 39		5,789	5,789	»	1311 011	0 P 7
40		5,402	5,407	>>	2201 100	
41		4,843	(4,854)) 12CO ₂	12°1 00°0 04°1 »	
	24	4,797	4,793	13CO ₂	1311 011	0 P 8
			4,671	»	1401 020	0 R 14
	25	4,138	?	¹³ CO ₂	1311 011	0 P 9
42 43		4,118 3,711	4,120 3,717	>>	2201 100	0 P 10
43		5,711	(3,351	12CO ,	0401 000	
44	26	3,334	{ 3,310	¹³ CO ₂	13 ¹ 1 01 ¹ 14 ⁰ 1 02 ⁰	
45	27	2,939	1 3,301 2,934	<i>"</i> /	1201 000	0 P 28
46	21	2,430	2,423	>>	1311 011	
	20	1 000	1,996	» »	22°1 10° 14°1 02°	
47	28	1,889	1,893	12CO o	0401 000	0 R 10
48		1,618	1,618	¹³ CO ₂	13 ¹ 1 01 ³	
49	29	0,986	0,986 0,697	>> >>	12°1 00° 13°1 01°	
50		0,690	0,481	>>	14°1 02°	0 R 8
51	30	0,421	0,419	¹²CO₂ »	04°1 00° 14°1 10°	
52		0,237	0,366	13CO ₂	2201 100	0 R 14
53		4859,900	4859,902	»	1311 01	0 P 14
	31	9,799	9,245	¹² CO ₂	1401 100	00 R 28
	32	9,233	9,031	¹³ CO ₂	» 02°	0 R 6
54		8,983	9,011	» »	12°1 00° 13°1 01	
	33	8,936	8,943	12CO.	0401 000	00 R 6
55	33	8,475	8,459	13CO ₂	2201 100	
56	2.4	8,161	8,163	12CO ₂	13 ¹ 1 01 14 ⁰ 1 10	
57	34 35	8,102 7,426	8,095 7,419	>>	0401 00	00 R 4
(58		7,144	7,161	¹³ CO ₂	13 ¹ 1 01	
1 59	36	7,009	7,009 6,914	" 12CO ₂	12°1 00 14°1 10	
60		6,667	6,648	13CO ₂	2201	P 18
61		6,403	6,399)) 12CO	13 ¹ 1 01 04 ⁰ 1 00	
62	37	5,896	5,895 5,703	¹2CO₂ »	14º1 10	
63		5,353	5,351	¹³ CO ₂	1311 01	10 P 19
64	38	4,979	4,979	>> >>	12°1 00 22°1 10	
65		4,598	4,803 4,610	>>	1311 01	10 P 20
			4,462	¹² CO ₂	14º1 10 04º1 00	
66	39	4,364 3,512	4,354 3,513	13CO ₂	1311 01	
67		3,312	3,193	12CO.	1401 10	
68	40	2,927	(2,928	¹³ CO ₂	22°1 02 12°1 00	
69		2,800	2,922	>>	1311 01	10 P 22
70	41	2,007	, 2,013	¹² CO ₂	0401 00	
2.1		1 652	1,894	13CO ₂		10 P 23
71 72		1,652 0,957	(1,022	»	2201 10	0°0 P 24
			0,963	>>	1311 01	10 P 24

TABLEAU I (suite)

N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	-	Transiti	on
73	42	4850,843	4850,837 0,567	¹³ CO ₂ ¹² CO ₂	12º1 14º1	00°0 10°0	P 40 R 14
74 75	43	0,412 4849,761	0,412 4849,754 9,210) 13CO ₂ 12CO ₂	04º1 13¹1 14º1	00°0 01°0 10°0	P 4 P 25 R 12
76	44	9,126° 9,113	? (9,104 + 9,086 8,954	13CO ₂	13 ¹ 1 22 ⁰ 1 14 ⁰ 1	01 ¹ 0 10 ⁰ 0 02 ⁰ 0	P 26 P 26 P 6
77 78 79 80	45	8,824 8,744 8,332 7,836	8,834 8,723 8,291 7,833	12CO ₂ 13CO ₂ "	04°1 12°1 14°1 13°1	00°0 >> 01°0	P 6 P 42 P 12? P 27
80	46	8,823	7,827 (7,303	12CO ₂	1401	10°0 02°0	R 10 P 8
81.	47	7,222	7,222 7,221 7,120	12CO ₂ 13CO ₂	04°1 13°1 22°1	00°0 01¹0 10°0	P 8 P 28 P 28
82	48	6,578	6,583 6,412	» 12CO»	12º1 14º1	00°0 10°0	P 44 P 8
83 84	49	5,894 5,583	5,885 (5,627) 5,591	13CO ₂ 32CO ₂	13 ¹ 1 14 ⁰ 1 04 ⁰ 1	01 ¹ 0 02 ⁰ 0 00 ⁰ 0	P 29 P 10 P 10
85 86		5,315 5,132	5,314 5,125	13CO ₂	13 ¹ 1 22 ⁰ 1	01 ¹ 0 10 ⁰ 0	P 30 P 30

TABLEAU J

Identification des raies d'absorption

Figure 19 4845 — 4810 cm—¹

N° 13CO ₂	Nº 12CO ₂	Obs.	Calc.	Molécule		Transiti	ion
	1	4844,962	4845,971	12CO ₂	1401	1000	R 6
1		4.8940	4,924	13CO ₂	>>	0200	P 12
2	2 3	4,416	4,415	>>	1201	0000	P 46
	3	3,935	3,945	12CO ₂	0401	>>	P 12
3		>>	- 3,909	13CO ₂	1311	0110	P 31
	4	3,502	3,502	12CO.	1401	1000	R 4
4 5		3,383	3,382	13CO ₂	1311	0110	P 32
5		3,101	3,098	>>	2201	1000	P 32
	5	2,276)	(2,283	12CO ₂	0401	0000	P 14
6		2.244	(2,218	13CO ₂	1201	>>	P 44
		,	2,195	>>	1401	0200	P 14
7 8		1,906	1,905	>>	1311	0110	P 33
8		1,429	1,428	>>	>>	>>	P 34
9		1,241	1,257	>>	1421	0220	P 20?
	6	1,236	1,236	12CO.,	0511	0110	R 48
10		1,022	1,040	13CO.	2201	10°0	P 34
11	7	0,602	0,604	12CO,	0401	0000	P 16
12		0,425	0,437	13CO,	1401	0200	P 16
	8	0,069	0,065	12CO.	0511	0110	R 46
13		4839,985	4839,993	13CO,	1201	0000	P 50
	9	9,961	(a)	12CO,	0511	0110	R 49
14		9,880	9,874	13CO,	1311	»>	P 35
15		9,446	9,449	»	>>	>>	P 36
		, , , ,	(a)	12CO.	0511	>>	R 47
			8,953	13CO,	2201	1000	P 36
			,,				. 50

(a) Le niveau 05¹1c est affecté par une perturbation de Coriolis et les valeurs calculées ne sont donc pas indiquées pour les raies de rotation de ce niveau.

TABLEAU J (suite)

			IABLEAU J	(suite)		
N° 13CO 2	N° 12CO2	Obs.	Calc.	Molécule	Transition	
16	10	4838,892	(4838,908) 8,876	¹² CO ₂	04°1 00°0 P 18 05°1 01°0 R 44	
17	11	8,649 7,849	8,653 (a)	¹³ CO ₂ ¹² CO ₂	14°1 02°0 P 18 05°1 01°0 R 45	
18	11	7,753	7,817	¹³ CO ₂	13 ¹ 1 01 ¹ 0 P 37 12 ⁰ 1 00 ⁰ 0 P 52	
19	12	7,680 7,455	7,667 7,448	¹² CO ₂ ¹³ CO ₂	05 ¹ 1 01 ¹ 0 P 42 13 ¹ 1 » P 38	
20 21	13	7,196 6,837	7,197 (6,842	¹² CO ₂ ¹³ CO ₂	04°1 00°0 P 20 14°1 02°0 P 20 22°1 10°0 P 38	
	14	6,772	(a)	12CO ₂	05 ¹ 1 01 ¹ 0 R 43 » » R 40	
22 23	15	6,455 6,045	6,441 6,038 5,732	¹³ C ¹⁶ O ¹⁸ O	12°1 00°0 R 34 13°1 01°0 P 39	
24	16	5,732 5,563	(a) 5,538	12CO ₂ 13C16O18O	15 ¹ 1 01 ¹ 0 R 41 12 ⁰ 1 00 ⁰ 0 R 33	
25	17	5,460	5,467 5,460	¹² CO ₂ ¹³ CO ₂	04°1 » P 22 12°1 » P 54	
		5,221	5,422	" 12CO ₂	13 ¹ 1 01 ¹ 0 P 40 15 ¹ 1 01 ¹ 0 R 38	
26 27	18	5,020	5,033	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	12°1 00°0 R 32 14°1 02°0 P 22	
28	19	4,773 4,541	4,688	» 12CO ₂	22°1 10°0 P 40 15¹1 01¹0 R 39	
29	19	4,526	4,520	13C16O18O	12°1 00°0 R 31 » » R 30	
30 31	20 21	3,938 3,718	3,933 3,722	¹² CO ₂	15 ¹ 1 01 ¹ 0 R 36 04 ⁰ 1 00 ⁰ 0 P 24	F
-7.5	des 8	2,7,10	3,620 3,474	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	13 ¹ 1 01 ¹ 0 P 41 12 ⁰ 1 00 ⁰ 0 R 29)
32		3,394	(a) 3,373	¹² CO ₂ ¹³ CO ₂	05 ¹ 1 01 ¹ 0 R 37 13 ¹ 1 » P 42	2
33	23	3,152	3,266 (3,149	¹² CO ₂ ¹³ CO ₂	14°1 10°0 P 8 12°1 00°0 P 56 14°1 02°0 P 24	5
34		2,925	1 3,143 2,939	13C16O18O	12°1 00°0 R 28	3
35 36	24	2,669 2,400	2,654 2,400	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	12°1 00°0 R 2	7
37 38	25 26	2,219 1,956	(a) 1,958	12CO ₂	04°1 00°0 P 26	6
			1,854 1,587	13C16O18O 12CO ₂	14º1 10º0 P 10	0
39	27	1,468 1,370	1,483 1,357	¹³ CO ₂ ¹² CO ₂	05 ¹ 1 » R 3	2
40		1,300 -	1 1,300	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	12°1 00°0 R 2: 13°1 01°0 P 4 14°1 02°0 P 2	4
41	28	1,040	1,253 (a)	" 12CO ₂	14°1 02°0 P 2°0 05°1 01°0 R 3°1 12°1 00°0 P 5°1	3
42		0,802	0,811 0,739	13CO ₂ 13C ¹⁶ O 18O 12CO ₂	» » R 2 04°1 » P 2	4
43	29	0,172	0,178	13C16O18O	12º1 » R 2	3
	30	0,050	0,042 4829,879	¹² CO ₂ »	14º1 10º0 P 1	2
44 45	31	4829,827 9,598	(a) 9,599	13C16O18O	12°1 00°0 R 2	2
{ 46		9,311	9,336 9,319	¹³ CO ₂ »	14°1 02°0 P 2 15¹1 01¹0 P 4 » » P 4	5
\ 47 48		9,211 9,002	9,205 9,018	13C16O18O	12°1 00°0 R 2	

⁽a) v. note p. 484.

TABLEAU J (suite)

			IABLEAU J	(Suite)			
Nº 13CO ₃	Nº 12CO 2	Obs.	Calc.	Molécule		Transit	ion
49 50	32 33	4828,719 8,579°	4828.711	¹² CO ₂	0511	01¹0 »	R 28 R 29
51		8,400	1 8,444	13CO ₂ 13C16O18O	1201	0000	P 60 R 20
	34	8,381 -	8,380 8,143	12CO ₂	()4º1 [4º1	» 10°0	P 30 P 14
52		7,843	7,836 7,391	13C16O18O	1201	00°0 02°0	R 19 P 30
53	35	7,358	7,364 (a)	» 15CO ⁵	0511	0110	R 26 R 27
54		7,104	7,235 7,128 7,086	18CO ₂	12°1 13°1 3°1	00°0 01°10 >>	R 18 P 47 P 48
55	36	6,539	0.628 0.540 6.379	12CO ₂	12°1 04°1 14°1	00°0 >> 10°0	R 17 P 32 P 16
56		0,0290-	1 6,048	13CO ₂	1201	0000	P 62 R 16
	37	>>	(a) (6,001	12CO2	0511	01 ¹ 0	R 25 R 24
	38 39	5,666 5,456	• • • • • • • • • • • • • • • • • • • •				10 27
57		5,394	1 5.419	18CO ₂ 18C16O18O	14º1 12º1	02°0 00°0	P 32 R 15
	40	5,159	4,943	13(°(),	1311	0110	P 50
			4,912 4,764	13(*16() ts()	1201	» 00°0	P 49 R 14
58	41	{ 4,726 }	4,732 (a)	12CO ₂	0401	» 01¹0	P 34 R 23
		(4,6350)	4,621	>> >>	1401	» 10°0	R 22 P 18
59 60		4,125 3,631	4,130 3,623	¹³ CO ₂	1201	0000	R 13 P 64
61	42	3,610 3,455	? 3,488	13(216()18()	1201	0000	R 12
	43	3,441	(a) 3,422	¹² CO ₂ ¹³ CO ₂	05 T 14°1	01¹0 02º0	R 21 P 34
62 63	44 45	3,229 2,870	3,226	¹² CO ₂	0511	01 ¹ 0 00 ⁰ 0	R 20 P 36
			2,881 2,839 2,778	¹³ C ¹⁶ O ¹⁸ O	1201	» 01¹0	R 11 P 52
64		2,657	2,766 2,669	12CO2	14°1 13°1	10°0 01¹0	P 20 P 51
65	46	2,105	2,185 (a)	¹³ C ¹⁶ () ¹⁸ () ¹² CO ₂	051	00°0 01°0	R 10 R 19
66 67	47	1,819 1,508	1,815 1,522	3C18O18O	1201	>> 00°0	R 18 R 9
68		1,179°	1,394 1,168	¹⁸ CO ₂	0401	02°0 00°0	R 36 R 66
69	48	1,002	1,010 0,916	12CO 2	04°1 14°1	» 10°0	P 38 P 22
70	49	0,745	0,854 (a)	13C16O18O 12CO2	1201	00°0 01°0	R 8 R 17
71 72	50	0,382 0,176	0,387 0,178	18C18O18O	1201	» 00°0	R 16 R 7
	51	4819,624	4819,607 9,496	13(C16() 18()	01º6 12º1	02°0 00°0	R 40 R 6
73	52	9,367 »	(a) - 9,340	12(CO ₂	05 ¹ 1 14 ⁰ 1	0110 0200	R 15 P 38

⁽a) v. note p. 184.

TABLEAU J (suite)

N° 13CO2	Nº 12CO 2	Obs.	Calc.	Molécule	-	Fransitio	on
74	53	4819,113	4819,122	¹² CO ₂	0401	0000	P 40
			9,038	>>	1401	1000	P 24
75	54	8,958	8,947	12CO ₂	0511	0110	R 14
76		8,739°	8,806	¹⁸ C ¹⁶ O ¹⁸ O	1201	$00_{0}0$	K 5
77		8,379	?	1200	06°1	0200	R 38
	55	8,352	8,335	¹² CO ₂	001	02"0	06, 21
78		8,116	0 111	18C16O18O	1201	0000	R 4
m o	66	7.074	8,111 (a)	¹² CO 2	0511	0110	R 13
79	56	7,974	7,490	»	>>	»	R 12
80	57	7,492 7,201	7,490	<i>>></i>	0401	0000	P 42
81	58	7,201	7,131	>>	1401	1000	P 26
			7,046	>>	06°1	0200	R 36
82	59	6,565	(a)	>>	0511	0110	R 11
83	60	6,016	6.017	>>	>>	>>	R 10
65	00	0,010	5,740	>>	$06^{\circ}1$	0200	R 34
84	61	5,264	(5,287	>>	$04^{0}1$	$()()_{0}()$	P 44
04	0.1	-,	5,194	>>	1401	10^{0}	P 28
85	62	5,145	(a)	>>	0511	0110	R 9
86	63	4,522	4,529	>>	>>	>>	R 8
			4,418	>>	0601	0200	R 32
87	64	3,674	(a)	>>	0511	0110	R 7 P 46
88	65	3,336	3,341))	0401	$00_{0}0$	
			3,276	12C16O18O	20°1 14°1	10°0	R 33 P 30
			3,228	¹² CO ₂	0601	020	R 30
		2.025	3,081	» »	051	0110	R 6
89	66	3,035	3,027	12C16O18O	20°1	0000	R 32
00	67	2,761°	2,712 (a)	¹² CO ₂	0511	0110	R 5
90	68	2,208	2,143	12C16O18O	2001	0000	R 31
	69	1,735	1,728	12CO o	0601	0200	R 28
	09	1,755	1,568	12C16O18O	2001	()()()	R 30
			1.544	18C16O18O	1201	>>	P 4
91	70	1,507	1,510	12CO2	$05^{1}1$	0110	R 4
92	71	1,372	1.374	>> "	$04^{0}1$	0000	P 48
72		-,	1,232	>>	$14^{0}1$	10^{0}	P 32
	72	0,985	0,987	¹² C ¹⁶ O ¹⁸ O	20°1	()()()	R 29
			0,780	18C16O18O	1201	>>	P 5
93	73	0,706	(a)	¹² CO ₂	0511	0110	R 3
94	74	0,397	0,402	12C16O18O	2001	0000	R 28
			0,359	$^{12}\mathrm{CO}_2$	0601	0200	R 26

TABLEAU K

Identification des raies d'absorption

Figure 20 4810 — 4775 cm⁻¹

Nº 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	,	Transiti	on
1 2 3 4	1 2 3 4	4809,972 9,823 9,377 9,210	4910,010 4809,978 9,812 9,387 (9,233 9,215 (a) 9,206	13C18O18O 12CO ₂ 12C16O18O 12CO ₂ 13C16O18O 12C16O18O 12C16O18O 22CO ₂	12°1 05°1 20°1 04°1 12°1 20°1 05°1 14°1	00°0 01°0 00°0 >> >> 01°0 10°0	P 6 R 2 R 27 P 50 P 7 R 26 R 1 P 34

(a) v. note p. 184.

TABLEAU K (suite)

			TIDELIIO II	(butte)			
No	No	Obs.	Calc.	Molécule		Transit	ion
13CO ₂	·12CO2						
5	5	4000 000	1000 076	1200	0701	0300	D 04
6	6	4808,980 8,626	4808,976 8,615	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	06°1 20°1	02°0 00°0	R 24 R 25
7	Ü	8,446	(8,450	13C16O18O	1201	>> >>	P 8
,		0,110	?		124	//	1 0
8	7	8,029	8,008	12C16O18O	20°1	0000	R 24
9		7,643 -	7,659	¹³ C ¹⁶ O ¹⁸ O	1201	>>	P 9
	8	7,608	7,61	¹² CO ₂	0511	0110	Q
10	9	7,374	7,578	32C16O18O	06°1 20°1	02°0 00°0	R 22 R 23
10	7	1,314	7,380	¹² CO ₂	0401	>>>	R 23 P 52
	10	7,1480	7,150	»	1401	1000	P 36
11		6,863	6,863	13C16O18O	1201	0000	P 10
	11	6,795	6,780	¹² C ¹⁶ O ¹⁸ O	2001	>>	R 22
	12	6,158	6,166	¹² CO ₂	0601	0200	R 20
	13	6,089	6,159	¹² C ¹⁶ O ¹⁸ O ¹² CO ,	20°1 05°1	0000	P 21
12	13	>>	6,084 - 6,058	13C16O18O	1201	01¹0 00°0	P 2 P 11
13	14	5,547	5,532	12C16O18O	2001	» ·	R 20
14	15	5,329	1 5,350	¹² CO ₂	0401	0000	P 54
			(a)	>>	0511	0110	P 3
15	1.0	4.002	5,248	13C16O18O	1201	0000	P 12
16	16 17	4,903 4,738	4,900 4,739	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 06°1	» 02°0	R 19
17	18	4,738	4,739	**CO ₂	051	0110	R 18 P 4
• /		1,501	4,431	13C16O18O	1201	0000	P 13
18	19	4,263	4,263	12C16O18O	2001	>>>	R 18
	20	3,680	(a)	¹² CO ₂	$05^{1}1$	0110	P 5
19			1 3,621	12C16O18O	2001	00_{0}	R 17
20	21	» - 3,291	3,607	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	1201	>>	P 14
20	21	3,471	(3,299	»	06°1 04°1	02°0 00°0	R 16 P 56
			2,973	12C16O18O	2001	»	R 16
21	22	2,903	2,903	12CO.	0511	0110	P 6
22	2.2	2,771	2,776	13C1eO18O	1201	0000	P 15
23 24	23 24	2,323	2,320	12C16O18O	2001	>>	R 15
25	24	2,042 1,950	(a) 1,938	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	$05^{1}1$ $12^{0}1$	01¹0 00°0	P 7
	25	1,846	1,844	¹² CO ₂	0601	0200	P 16 R 14
26	26	1,665	1 665	12C16O18O	2001	0000	R 14
27	27	1,254	1,289	¹² CO ₂	0511	0110	P 8
28		1 00=	(1,227	>>	0401	0000	P 58
28	28	1,097 1,009	1,095	13C16O18O 12C16O18O	1201	>>	P 17
29	29	0,392	1,002	¹² CO ₂	20°1 06°1	0200	R 13 R 12
		0,572	(a)	»	051	0110	P 9
			0.334	12C16O18O	2001	0000	R 12
30	20	0,242	0,244	13C16O18O	1201	0000	P 18
31	30	4799,667	14799,662	12CO ₂	0511	0110	P 10
32		9,384	9,662	12C16O18O 13C16O18O	20°1 12°1	0000	R 11 P 19
33	31	9,119	9,132	12CO,	0401	>> >>	P 19 P 60
		-,	8,985	12C16O18O	2001	<i>>></i>	R 10
			8,896	12CO ₂	0601	0200	R 10
34 35	32	8,737	(a)	12CO.	0511	0110	P 11
36	33	8,530 8,302	8,523 8,303	¹³ C ¹⁶ O ¹⁸ O ¹² C ¹⁶ O ¹⁸ O	1201	0000	P 20
37	34	8,014	8,022	12CO ₂	20°1 05°1	0110	R 9 P 12
38		7,649	7,652	13C16O18O	1201	0000	P 12
	35	7,618	7,616	12C16O18O	2001	»	R 8
39	36	7,390	7,402	¹² CO ₂	0601	0200	R 8

(a) v. note p. 184

TABLEAU K (suite)

	00°	N° 12CO 2	Obs.	Calc.	Molécule	Т	Transitio	n
	0	37	4797,028	(a) (4797,014	¹² CO ₂ » ¹² C ¹⁶ O ¹⁸ O	05 ¹ 1 04 ⁰ 1	01¹0 00°0 00°0	P 13 P 62 R 7
4	1		6,774	6,923 6,775	13C16O18O	20°1 12°1	»>	P 22
4	2	38	6,364	6,365	12CO ₂	0511	0110	P 14
		0.0	5.000	6,226 5,896	¹² C ¹⁶ O ¹⁶ O ¹² CO ₂	20°1 06°1	00°0 02°0	R 6
Δ	13	39	5,900 5,892	5,892	13C16O18O	1201	0000	P 23
	4	40	5,509	5,524	12C16O18O	20°1 05°1	» 01¹0	R 5 P 15
	15	41	5,325 5,005	(a) 5,000	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	12º1	0000	P 24
(16	42	4,810°	, 4,873	12CO ₂	0401	>>	P 64
1		4.2	4,699	4,817 4,692	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 05°1)) 0110	R 4 P 16
	17 18	43 44	4,376	4,374	¹² CO ₂	$06^{0}1$	0200	R 4
	19		4,106	4,103	¹³ C ¹⁶ O ¹⁸ O ¹² C ¹⁶ O ¹⁸ O	12º1 20º1	0000	P 25 R 3
4	50	45 46	4,100 3,595	4,105 (a)	¹² CO ₂	0511	0110	P 17
-	50	70		3,388	¹² C ¹⁶ O ¹⁸ O	20°1	0000	R 2
	٠.	47	3,196 3,190	3,200	13C16O18O	1201	0000	P 26
	51		3,190	3,021	¹² CO ₂	$06^{2}1$	$02^{2}0$	R 34
4	52	48	3,007	3,006	» »	05 ¹ 1 06 ⁰ 1	01 ¹ 0 02 ⁰ 0	P 18 P 2
	53	49	2,702	2,841 2,667	³ C ¹⁶ O ¹⁸ O	2001	0000	R 1
	55	50	2,393°	2,502	¹² CO ₂	06°1	$02^{2}0$ $00^{0}0$	R 33? P 27
	54	5.1	2,302 1,844	2,290 (a)	¹³ C ¹⁶ O ¹⁸ O ¹² CO ⁸ ₂	12°1 05°1	0110	P 19
	55	51	1,044	1,775	»	0621	02 ² 0	R 32
		52	1,605	- 1,372	¹³ C ¹⁶ O ¹⁸ O	1201	0000	P 28
	56	53	1,322 1,302	1,307	¹² CO ₂	0511	0110	P 20
		23		1,146	>>	$06^{2}1$ $04^{0}1$	$02^{2}0$ $00^{0}0$	R 31 R 62
1	57	54	0,616° 0,495	0,629	$^{13}CO_2$ $^{12}CO_2$	06°1	02 ² 0	R 30
- 1		24		0,472	12C16O18O	20°1	0000	P 1 P 29
	58		0,465	0,449 (a)	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	12°1 05°1	01 ¹ 0	P 29
	59	55	0,068	4789,869	¹² CO ₂	0621	0220	R 29
			1500 500	9,730	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 05°1	00°0 01°0	P 2 P 22
	60	56	4789,588 9,573 -	9,591	13CO ₂	$04^{0}1$	0000	R 60
	00			1 9,518	13C16O18O	12°1 06°1	» 0220	P 30 R 28
	<i>(</i> 1	57	9,237 9,033	9,224	¹² CO ₂	06-1	02-0	N 20
	61	58	8,959	(8,984	$^{12}C^{16}O^{18}O$	20°1	0000	P 3
			0.503	8,958 8,583	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	06°1 12°1	02°0 00°0	P 2 P 31
	62	59	8,592 8,534	8,577	12CO ₂	$06^{2}1$	0220	R 27
				8,399	¹³ CO ₂	0401	$00^{0}0$	R 58 P 23
	63	60	8,283	(a) 8,233	12CO ₂ 12C16O18O	05 ¹ 1 20 ⁰ 1	0000	P 4
				7,920	¹² CO ₂	06°1	$02^{2}0$	R 26
	64	61	7,843	7,860	3C16O18O	05 ¹ 1 12 ⁰ 1	01 ¹ 0 00 ⁰ 0	P 24 P 32
	65	62	7,643 7,448	7,639 7,477	12C16O18O	20°1	>>	P 5
		63	7,313°	1 7,375	¹² CO ₂	06°1 06°1	02°0 02°0	P 4 R 25
	66		7,265	1 7,264 7,252	" 13CO ₂	0401	0000	R 56
	66	64	6,763	6,716°	12C16O18O	20°1	0000	P 6

TABLEAU K (suite)

				(2000)			
N° 18CO ₂	N° 12CO 2	Obs.	Calc.	Molécule		Transit	ion
67		4786,688	4786,689 6,600	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	12º1 06º1	00°0 02°0	P 33 R 24
68 69	65 66	6,480 6,103	(a) (6,113	» »	05 ¹ 1	01¹0 »	P 25 P 26
			6,087	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	04°1 20°1	00°00	R 54 P 7
	67	5,858°	5,931 5,784	¹² CO ₂	$06^{2}1$ $06^{0}1$	02°0 02°0	R 23 P 6
70 71	68	5,761 5,201	5,733 (5,259	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	12°1 06°1	$00^{0}0$ $02^{2}0$	P 34 R 22
72		4,903	4,905 4,770	13CO ₂ 13C16O18O	20°1 04°1	00°0	P 8 R 52
73	69	4,646	4,770 (a) 4,581	¹² CO ₂	12°1 05°1 06°1	00°0 01°0 02°0	P 35 P 37 R 21
, 74	70	4,349	4,404 4,351	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 05°1	00°0 01°0	P 9 P 28
75	71 72	4,210° 3,901	4,182 3,899	>> >>	$06^{0}1$ $06^{2}1$	02°0 02°0	P 8 R 20
76	73	3,713 3,622	3,700 3,623	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	04°1 20°1	00°0	R 50 P 10
77	74 75	3,212 2,815	3,213 (2,837	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	06°1 20°1	$02^{2}0$ $00^{0}0$	R 19 P 11
	76	2,562	(a) (2,574 (2,521	¹² CO ₂	0511	01¹0 >>	P 29 P 30
78		2,515 -	2,480 2,465)) 13CO ₂ 12CO ₂	06°1 04°1 06°1	02°0 00°0 02°0	R 18 R 48 P 10
79	77 78	2,047 1,838	2,047 1,825	$^{12}C_{16}O_{18}^{18}O_{2}$	20°1 06°1	00°0 02°0	P 12 R 17
80		>>	?				
81	79	1,241 1,238	1,243 1,252	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	04°1 20°1	00°0	R 46 P 13
82	80	0,935	1,125 (0,936 ((a)	» »	06°1 06°1 05°1	02°0 02°0 01°0	R 16 P 12 P 31
83 84	81 82	0,779 0,432	0,781	» 12C16O18O	» 20°1	» 00°0	P 32 P 14
85		4779,987	0,421 4779,987	¹² CO ₂	06°1 04°1	02 ² 0 00 ⁰ 0	R 15 R 44
86	83	9,672	9,711	¹² CO ₉	$06^{2}1$	$02^{2}0$	R 14
87	84	9,290 (9,038	9,647 9,294 (a)	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 06°1 05°1	00°0 02°0	P 15 P 14
88	85	8,969	8,996 8,972	» » »	06 ² 1 05 ¹ 1	01 ¹ 0 02 ² 0 01 ¹ 0	P 33 R 13 P 34
89		, í	8,837	12(16()18()	2001	0000	P 16
90?	86	8,726 8,264	8,716 8,276	¹³ CO ₂ ¹² CO ₂	>>	>>	P 42
91	87	8,027	8,021	¹² C ¹⁶ O ¹⁸ O	06°1 20°1	$02^{2}0$ $00^{0}0$	R 12 P 17
92	88	7,843 7,625	? 7,640	¹² CO ₂	06°1	0200	P 16
93		7,433	7,554 7,428	" "CO。	06 ² 1 04 ⁰ 1	$02^{2}0$ $00^{0}0$	R 11 R 40
94	89	7,156	7,202 (a)	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 05°1	01¹0	P 18 P 35
95 96	90 91	6,820	6,825	» »	» 06°1	» 0220	P 36 R 10
70	71	6,372	6,377	¹² C ¹⁶ O ¹⁸ O	2001	0000	P 19

⁽a) v. note p. 184

N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule		Transiti	on
97	92	4776,118	4776,124 6,091	¹³ CO ₂ ¹² CO ₂	04°1 06°1	$00^{0}0$ $02^{2}0$	R 38 R 9
98	93 94	5,978 5,552	5,972 5,548	» 12C16O18O	06°1 20°1	02°0 00°0	P 18 P 20
		,	5,354	¹² CO ₂	06 ² 1 05 ¹ 1	$02^{2}0$ $01^{1}0$	R 8 P 38
99	95	5,277	(5,306 (a)	<i>>></i>	»	»	P 37

TABLEAU L

Identification des raies d'absorption

Figure 20 4775 — 4740 cm⁻⁻¹

210	NIO	Obs.	Calc.	Molécule	7	[ransitio	nn
N° 13CO2	Nº 12CO ₂	Obs.	Caic.	Molecule	,	1 tansien) II
1	_	4774,798	4774,805	¹³ CO ₂	04°1	0000	R 36
1	1	4,705	4,713	12C 16O18O	20°1	<i>>></i>	P 21
	2	4.205	4,612	¹² CO ₂	$06^{2}1$ $06^{0}1$	$02^{2}0$ $02^{0}0$	R 7 P 20
2 3	2 3	4,295 3,868	4,292 (3,873	12C16O18O	2001	0000	P 22
	,		3,866	12CO ₂	06°1	0220	R 6
4	1	3,462 3,435	3,471 3,448	¹³ CO ₂ ¹² CO ₂	04°1 05°1	00°0 01°0	R 34 P 40
	4 5	3,433	(a)	»	>>	>>	P 39
		, , , , ,	3,114	32C16O18O	06 ² 1 20 ⁰ 1	$02^{2}0$ $00^{0}0$	R 5 P 23
5 6	6 7	3,041 2,589	3,030 2,598	¹² CO ₂	0601	0200	P 22
U	,	2,507	2,358	» ~	06°1	0220	R 4
~	8	2,148	2,179	12C16O18O	20°1 »	>> 0000	P 24 R 32
7 8	9	2,119 (1,564	1,598	¹² CO ₂	$06^{2}1$	$02^{2}0$	R 3
, and the second		,	1,574	» 12C16O18O	05 ¹ 1 20 ⁰ 1	01¹0 00°0	P 42 P 25
9	10	1,317	(1,326 (a)	12CO ₉	0511	0110	P 41
	11	0,884	0,890	12CO ₂	$06^{\circ}1$	0200	P 24
10	12	0,755	0,759	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	04°1 20°1	» 00°0	R 30 P 26
11	13 14	0,457 4769,650	0,465 (4769,682	¹² CO ₂	0511	0110	P 44
		,	9,601	12C16O18O	20°1	0000	P 27 R 28
12	15	9,383 9,332	9,383 - (a)	¹³ CO ₂ ¹² CO ₂	05 ¹ 1	01 ¹ 0	R 28 P 43
	16	9,332	9,168	»>	0601	0200	P 26
13	17	8,725	8,731	12C16O18O 12CO ₂	20°1 06°1	$00^{0}0$ $02^{2}0$	P 28
14 15	18 19	8,450 7,997	7.992	13CO ₂	0401	0000	R 26
13	17	,	7,857	12C16O18O	20°1	>>	P 29
16	20	7,762	7,774 7,434	¹² CO ₂	05 ¹ 1 06 ⁰ 1	01 ¹ 0 02 ⁰ 0	P 46 P 28
16 17	21 22	7,430 7,304	(a)	>>	0511	0110	P 45
18	23	6,975	6,978	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	20°1 04°1	00°0	P 30 R 24
19	24 25	6,583 6,086	6,588 6,093	12C16O18O	2001	>> >>	P 31
+ 20	26	5,821	5,847	¹² CO ₂	0511	0110	P 48 P 30
1 21	27	5,660	5,684 5,348	» »	06°1 06°1	$02^{0}0$ $02^{2}0$	P 4
			5,.140	**	00 1		

⁽a) v. note p. 184.

N° 12CO2	Obs.	Calc.	Molécule	,	Transiti	on
28	4765,210	(4765,203	12C16O18O	2001	0000	P 32
	5,170	5,172	13CO.	0401	0000	P 47 R 22
29 30	4,309 3,872°	4,309 (3,920	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 06°1	00°0 02°0	P 5 P 33 P 32
31	3,741	3,742	18CO.	0401	0000	P 50 R 20
32 33 34 35 36 37	3,335° 3,213° 2,866° 2,465 2,319 2,120°	3,409 (a) 2,929 2,503 2,301 (2,142	12CO ₂ 12C16O18O 12CO ₂ 3 12C16O18O 13CO ₂ 12CO ₂	20°1 05°1 06°1 20°1 04°1 06°1	00°0 01°10 02°20 00°0 >> 02°0	P 6 P 34 P 49? P 7 P 35? R 18 P 34 P 8
38 39	1,913° 1,601°	1.593	¹² C ¹⁶ O ¹⁸ O	20°1	0000	P 36?
40 41 (42 (43	1,132 0,852 0,475 0,314 4759,390 7,898 6,416 4,911 3,405 1,873 0,329 4748,790 6,722° 6,440 5,718 4,887 4,032 3,735 3,288 2,934 2,498° 2,298°	? 0,846 0,470 0,349 4759,389 7,901 6,411 4,910 3,397 1,872 0,337 4748,789 6,661 6,448 5,762 4,873 3,943 3,287 ? 2,447 2,273	13CO ₂ 13CO ₂ 3 13CO ₂ 3 13CO ₂ 3 3 3 3 12CO ₂ 13CO ₂ 13CO ₂ 13CO ₂ 13CO ₂ 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	06°1 04°1 06°1 06°1 04°1	00°0 02°0 02°0 00°0 >> >> >> >> >> >> 00°0 00°0	R 16 P 10 P 36 R 14 R 12 R 10 R 8 R 6 R 2 R 0 P 26? P 27? P 29? R 48 P 29? R 48
	1,690 1,127 0,079	1,690 { 1,135 { 1,132 0,081	» » »	04°1 05°1 >> 04°1	00°0 01 10 >> 00°0	P 8 R 47 R 44 P 10
	28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	28 4765,210 5,170 5,170 5,170 5,170 5,170 5,170 5,170 5,170 5,170 6,170	28	28	28	28

TABLEAU M

Identification des raies d'absorption

Figure 21 4740 — 4705 cm⁻¹

$^{ m N^{\circ}}_{^{ m 13}{ m CO}_2}$	Obs.	Calc.	Molécule		Transiti	on
1 2	4739,790° 9,176	4739,977 9,863	¹³ CO ₂	05 ¹ 1	01¹0 >>	R 45 R 42
3	8,778	8,800	»	>>	>>	R 43

(a) v. note p. 184

	A	ABLEAU M (suite)			
N° 13CO ₂	Obs.	Calc.	Molécule	Т	'ransitio	n
4	4738,467	(4738,461 8,461	¹³CO₂ »	05 ¹ 1 04 ⁰ 1	01 ¹ 0 00 ⁰ 0	R 40 P 12
5 6 7 8 9 10	8,080? 7,595 7,078° 6,845 6,395 5,724 5,195	7,603 7,106 6,830 6,391 5,737 5,188	>> >> >> >> >> >> >>	05 ¹ 1 >> 04 ⁰ 1 05 ¹ 1 >> 04 ⁰ 1 05 ¹ 1	01 ¹ 0 » 00 ⁰ 0 01 ¹ 0 » 00 ⁰ 0 01 ¹ 0	R 41 R 38 P 14 R 39 R 36 P 16 R 37
12 13 14 15 16 17 18 19 20	4,812 4,342 3,900 1,543 2,960 2,628 1,877 1,552 1,342 0,186	? 4,357 3,906 5,534 2,964 2,637 1,869 1,561 1,350 0,192 0,146))))))))))))	>> 04°1 05°1 >> 04°1 05°1 >> 04°1 05°1	>> 00°0 01°10 >> 00°0 01°10 >> 00°0 01°10	R 34 R 35 P 18 R 32 R 33 P 20 R 30 R 31 P 22 R 28
22	0,013° 4728,699	0,046	>> >> >>	>> >> >>	>> >> >>	R 29 R 27 R 26
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	8,506 7,358 7,283 6,806 6,018 5,830 5,085 4,647 4,371 3,355 2,901 1,853 1,631 1,428 0,431 4719,891 8,993 8,442 8,107 7,540 6,926	\$ 8,718 8,502 7,385 7,282 6,800 6,029 5,834 4,087 4,656 4,375 3,360 3,286 2,907 1,860 1,621 1,428 0,438 (4719,940 9,869 8,998 8,441 8,103 7,544))))))))))))))))))))))))))	04°1 05°1 05°1 04°1 05°1 05°1 05°1 05°1 05°1 05°1 05°1 05°1 05°1 05°1 05°1 05°1 05°1 05°1	00°0 01¹0 00°0 01¹0 00°0 01¹0 00°0 01¹0 00°0 01¹0 00°0 01¹0 00°0 01¹0 00°0 01°0 00°0 01°0 00°0 00°0	R 24 R 25 R 24 R 25 R 26 R 23 R 22 R 21 R 20 R 19 R 18 R 17 P 32 R 16 R 15 R 14 P 34 R 12 P 36 R 110
44 45 46	6,330 6,075	6,934 6,324 6,072	» » »	04°1 05°1	00°0 01°0	P 38 R 9
47 48 49 50	5,708 5,416 4,543 3,886	5,417 (4,585 (4,530 3,891	>> >> >> >>	05 ¹ 1 >> 04 ⁰ 1 05 ¹ 1	01¹0 >> 00°0 01¹0	R 8 R 7 P 40 R 6
51 52 53 54 55 56 57	3,607 3,078 2,720 2,349 1,566 1,360 0,903	3,082 2,724 2,355 1,562 1,327 0,902 0,811	>> >> >> >> >> >> >> >> >>	05 ¹ 1 04 ⁰ 1 05 ¹ 1 >> 06 ⁰ 1 04 ⁰ 1 05 ¹ 1	01 ¹ 0 00 ⁰ 0 01 ¹ 0 >> 02 ⁰ 0 00 ⁰ 0 01 ¹ 0	R 5 P 42 R 4 R 3 R 36 P 44 R 2

N° 13CO ₂	Obs.	Calc.	Molécule	•	Transiti	on
58	4710,038	4710,028 4709,967	¹³CO₂ »	05 ¹ 1 06 ⁰ 1	01 ¹ 0 02 ⁰ 0	R 1 R 34
59	4709,075	9,065 8,595	» »	04°1 06°1	00°0 02°0	P 46 R 32
60	8,468	8,128	¹³ C ¹⁶ O ¹⁸ O	05 ¹ 1 04 ⁰ 1	01¹0 00°0	Q R 22
61	7,207	7,470 7,212	" 18CO ₂	» 04°1	0000	R 21 P 48
62	6,887	6,910	» »	06°1 05°1	02°0 01°0	R 30 P 2
(2)	Z 120	6,810 6,144	18C16O18O >>	04°1	00°0	R 20 R 19
63 64	6,128 5,762	6,121 5,808	¹³ CO ₂ » ¹³ C ¹⁶ O ¹⁸ O	05 ¹ 1 06 ⁰ 1	01¹0 02º0	P 3 R 28
65	5,333	5,476 (5,343 (5,333	¹³ CO ₂	04°1 » 05°1	00°0 >> 01°10	R 18 P 50 P 4

TABLEAU N

Figure 21 4705 — 4670 cm⁻⁻¹

	5		1070 0111		
N° 13CO ₂	Obs.	Calc.	Molécule	Trai	nsition
1 2	4704,800 4,525	4704,805 4,531 4,393	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00 05°1 01 06°1 02	10 P 5
3 4 5	4,133 3,749 3,457	4,129 3,748 (3,459	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°I 00 05°I 01 04°I 00	00 R 16 10 P 6
6	2,922	3,450 2,967	18C16O18O 13CO ₂	» > 06°1 02	R 15 00 R 24
7	2,145	2,925 2,768 2,154	3C16O18O	05 ¹ 1 01 04 ⁰ 1 00 05 ¹ 1 01	00 R 14 10 P 8
8	1,545	2,082 (1,558 (1,524	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 00° >> > 06°1 02	P 54 PO R 22
9	1,313	1,392 1,304 0,699	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	04°1 00° 05°1 01 04°1 00°	10 P 9 P0 R 11
10 11	0,544 0,059	0,550 0,072 0,003	¹³ CO ₂ » ¹³ C ¹⁶ O ¹⁸ O	05 ¹ 1 01 06 ⁰ 1 02 ⁰ 04 ⁰ 1 00	0 R 20
12	4699,655 9,289	(4699,666) 9,639 9,302	¹³ CO ₂ » ¹³ C ¹⁶ O ¹⁸ O	05 ¹ 1 01 04 ⁰ 1 00 >> >>	P 11 P 56
14 15	8,925 8,600	8,938 (8,609) 8,600	¹³ CO ₂ » ¹³ C ¹⁶ O ¹⁸ O	05 ¹ 1 01 06 ⁰ 1 02 ⁰ 04 ⁰ 1 00	10 P 12 00 R 18
16	8,005	8,013 7,893	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	05 ¹ 1 01 04 ⁰ 1 00	0 P 13 0 R 7
17 18	7,707 7,313	7,703 7,316 7,183 7,131 6,469	13CO ₂ 13CO ₂ 13C16O18O 13CO ₂ 13C16O18O	04°1	P 14 PO R 6 PO R 16
		,	- 0		

TABLEAU N (suite)

			(311112)			
N° 13CO ₂	Obs.	Calc.	Molécule	7	Transitio	on
19	4696,345	4696,344	$^{13}\text{CO}_{2}$ $^{13}\text{C}^{16}\text{O}^{18}\text{O}$	05 ¹ 1 04 ⁰ 1	01¹0 00°0	P 15 R 4
20	5,695	(5,753 (5,748 (5,687	¹³ CO ₂ »	04°1 05°1 06°1	» 01¹0 02º0	P 60 P 16 R 14
21	4,660	4,5,645 4,660 4,146	>> >> >>	05 ¹ 1 06 ⁰ 1	01 ¹ 0 02°0	P 17 R 12
22 23	4,055 3,780°	4,046 3,775	» »	$05^{1}1$ $04^{0}1$	$01^{1}0$ $00^{0}0$	P 18 P 62
24	3,450 2,967	3,478 2,958	» »	$06^{2}1$ $05^{1}1$	02 ² 0 01 ¹ 0	R 26 P 19
25	2,907	2,790	>>	06°1 06°1	02°0 02°0	R 25 R 10
26	2,405	2,636 2,397	>> >>	$05^{1}1$	0110	P 20
27	1,793	2,098 1,783	>> >>	$06^{2}1$ $04^{0}1$	$02^{2}0$ $00^{0}0$	R 24 P 64
28	1,252	1,403 1,242	>> >>	$06^{2}1$ $05^{1}1$	$02^{2}0$ $01^{1}0$	R 23 P 21
29	0,752	1,117	» »	06°1 05°1	02º0 01º0	R 8 P 22
		0,739	>>	$06^{2}1$	$02^{2}0$	R 22 R 21
30	4689,996	0,001 4689,586	» ») 06°1	02°0	R 6
31	9,521	9,510 9,294	» »	$05^{1}1$ $06^{2}1$	01^{10} 02^{2}	P 23 R 20
32 33	9,073 8,540°	9,070 8,584	» »	05 ¹ 1 06 ² 1	$01^{1}0$ $02^{2}0$	P 24 R 19
55	0,540	8,405	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 06°1	00°0 02°0	P 5 R 4
		8,045 7,870	>>	$06^{2}1$	$02^{2}0$	R 18
34	7,762	7,761 7,652	18C16O18O	05 ¹ 1 04 ⁰ 1	01^{10} 00^{0}	P 25 P 6
35	7,396	7,392 7,152	¹³ CO ₂	05 ¹ 1 06 ² 1	$01^{1}0$ $02^{2}0$	P 26 R 17
36	6,922	6,896 6,514	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 06°1	$00^{0}0$ $02^{2}0$	P 7 R 16
37	6,438°	6,431 6,137	» 13C16O18O	06°1 04°1	02°0 00°0	R 2 P 8
38	5,996	5,996 (5,706	¹³ CO ₂	05 ¹ 1 06 ² 1	01 10 02 20	P 27 R 15
39	5,707	5,704	» »	0511	0110	P 28
40 41	5,405 4,971	5,374 5,977	¹³ C ¹⁶ O ¹⁸ O	$04^{0}1$ $06^{2}1$	$00^{0}0$ $02^{2}0$	P 9 R 14
42	4,609	4,609 (4,246	¹⁸ C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 06°1	$00^{0}0$ $02^{2}0$	P 10 R 13
43	4,219	4,216	» »	05 ¹ 1 06 ⁰ 1	01 ¹ 0 02 ⁰ 0	P 29 P 2
1 44	4,014 3,825°	4,006 3,838	¹³ C ¹⁶ O ¹⁸ O	05 ¹ 1 04 ⁰ 1	01^{10} 00^{0}	P 30 P 11
1 45 46	3,527	3,510	13CO a	$06^{2}1$	$02^{2}0$	R 12 P 12
47 48	3,090 2,773	3,066 2,771	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 06°1	$00^{0}0$ $02^{2}0$	R 11
, 49	2,415°	2,572 2,419	» »	06°1 05°1	02°0 01°0	P 4 P 31
50	2,313°	(2,296 1 2,291	3C16O18O	>> 04º1	» 00°0	P 32 P 13
51	2,047	2,028	13CO ₂ 13C16O18O	06 ² 1 04 ⁰ 1	02 ² 0 00 ⁰ 0	R 10 P 14
52 53	1,526 1,314	1,511 1,283	¹³ CO ₂	$06^{2}1$	$02^{2}0$	R 9
54	0,992	0,986 0,728	18C16O18O	06°1 04°1	02°0 00°0	P 6 P 15

		~ .	37.17.1	,	Town and the	
Nº	Obs.	Calc.	Molécule		Transiti	on
¹³ CO ₂						
		14680,604	¹³ CO ₂	0511	0110	P 33
55	4680,586	0.577	»	>>	>>	P 34
	,	0,533	>>	$06^{2}1$	$02^{2}0$	R 8
56	4679,940	4679,942	13C16O18O	$04^{0}1$	0000	P 16
57	9,778	9,780	¹³ CO ₂	$06^{2}1$	0220	R 7
58	9,422	9,389	>>	0601	0200	P 8
59	9,157	9,153	13C16O18O	$04^{0}1$ $06^{2}1$	$00^{0}0$ $02^{2}0$	P 17 R 6
	0.005	9,023	13CO ₂	051	0110	P 36
60	8,805	(8,847) 8,773	» »	>>	»	P 35
61	8,364	8,360	13C16O18O	0401	0000	P 18
01	0,304	8,264	¹³ CO ₂	06°1	0220	R 5
62	7,787	7,782	»	0601	0200	P 10
63	7,565	(7,563	18C16O18O	0401	00^{0}	P 19
V	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7,502	¹³ CO ₂	$06^{2}1$	$02^{2}0$	R 4
1 64	7,088	7,106	»> -	0511	$01^{1}0$	P 38
1 65	6,917	6,926	>>	>>	>>	P 37
		6,764	13C16O18O	0401	0000	P 20
		6,735	¹³ CO ₂	06°1	$02^{2}0$	R 3 P 12
66	6,177	6,165	» ``	$06^{0}1$ $06^{2}1$	$02^{0}0$ $02^{2}0$	R 2
67	5,949	5,965	38C16O18O	0401	0000	P 21
68	5,355	5,354	¹³ CO ₂	0511	0110	P 40
00	5,555	5,154	¹⁸ C ¹⁶ O ¹⁸ O	0401	0000	P 22
69	5,072	5,061	¹³ CO ₂	0511	0110	P 39
70	4,557	4,539	»>	0601	0200	P 14
71	4,363	4,344	¹⁸ C ¹⁶ O ¹⁸ O	0401	0000	P 23
72	3,580	1	¹³ CO ₂	$06^{2}1$	$02^{2}0$	Q
		3,589	>>	0511	0110	P 42
		3,529	13C16O18O	0401	0000	P 24
73	3,183	3,179	¹³ CO ₂	05 ¹ 1 06 ⁰ 1	0110	P 41 P 16
74	2,915	2,897	18C16O18O	06°1	02°0 00°0	P 16 P 25
75	2,731	2,712 1,891	») >>	»>	P 26
76	1,827	1,813	¹³ CO ₂	0511	0110	P 44
70	1,027	(1,280	»	>>> 1	»	P 43
77	1,271	1,275	»>	0621	0220	P 3
, ,	1,2/1	1,250	»	0601	0200	P 18
78	1.096	1,067	18C16O18O	0401	0000	P 27
	<i>'</i>	0,482	¹³ CO ₂	$06^{2}1$	$02^{2}0$	P 4
79	0,246	0,237	18C16O18O	0401	0000	P 28
80	0,025	0,025	¹³ CO ₂	0511	0110	P 46

TABLEAU O

Identification des raies d'absorption

Figure 21 4670 — 4655 cm⁻⁻¹

N° 13CO ₂	Obs.	Calc.	Molécule		Transiti	ion
1	4669,615	(4669,685 9,589	¹⁸ CO ₂	06 ² 1	02°0 02°0	P 5 P 20
2	9,375	9,406 9,364 8,885	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	04°1 05°1 06°1	00°0 01¹0 02²0	P 29 P 45 P 6
3 4	8,579 8,227	8,569 8,224	13C16O18O	04°1 05°1	00°0 01°0	P 30 P 48
5	7,932 7,723	8,081 7,918 7,730	» » » 13C16O18O	06°1 06°1 04°1	$02^{2}0$ $02^{0}0$ $00^{0}0$	P 7 P 22 P 31

N° 13CO ₂	Obs.	Calc.	Molécule	٦	Γransiti	on
7	4667,429	4667,429	¹⁸ CO ₂	0511	0110	P 47
	6,000	7,274	13C16O18O	06 ² 1 04 ⁰ 1	$02^{2}0$ $00^{0}0$	P 8 P 32
8	6,880 6,412	6,878 (6,464	¹³ CO ₂	06°1	0220	P 9
1	0,412	6,409	»	0511	0110	P 50
10	6,253	6,235	»	06°1	0200	P 24
11	6,051	6,038	13C16O18O	04°1 06°1	$00^{0}0$ $02^{2}0$	P 33 P 10
1.0	5,525	5,650 5,477	¹³ CO ₂	051	0110	P 49
12 13	5,171°	5,187	18C16O18O	0401	0000	P 34
14	4,836	4,834	¹³ CO ₂	$06^{2}0$	$02^{2}0$	P 11
15	4,578	4,582	» »	0511	0110	P 52
	4.220	4,539	3C16O18O	06°1 04°1	02°0 00°0	P 26 P 35
16 17	4,320 3,991	4,332 4,013	¹³ CO ₂	0621	0220	P 12
18	3,492	3,506	»	0511	0110	P 51
19	3,167	3,190	>>	$06^{2}1$	02 ² 0	P 13
20	2,788	(2,832	»	06°1 05°1	02°0 01°0	P 28 P 54
21	2 250	2,742 2,362	. » »	05°1	0220	P 14
21 22	2,350 1,546	(1,532	<i>"</i>	06°1	0220	P 15
has hay	1,510	1,517	>>	05^{1}	0110	P 53
23	1,112	1,112	>>	06°1	0200	P 30
	0.707	0,886	»>	$05^{1}1$ $06^{2}1$	0110 0220	P 56 P 16
24 25	0,707 4659,829	0,698 4659,860	» »	06°1	0220	P 17
26	9,368°	9,376	»	06°1	0200	P 32
27	9,041	9,020	>>	$06^{2}1$	$02^{2}0$	P 18
28	8,192	8,176	»>	» 06°1	» 02°0	P 19 P 34
29	7,628	7,632 7,328	» »	06°1	0220	P 20
30 31	7,322 6,478	6,476	<i>"</i>	>>)>	P 21
32	5,9020	5,869	»>	$06^{0}1$	0200	P 36
33	5,618	5,620	>>	06°1	$02^{2}0$	P 22

TABLEAU P

Figure 22 3766 — 3725 cm⁻¹

	5					
N° 12CO2	Obs.	Calc.	Molécule	,	Transiti	on
1	3765,243	{3765,257 5,239	¹² CO ₂	12 ² 1	02º0 >>	R 68 R 67
2 3 4 5 6 7 8 9	4,985 4,716 4,520 4,288 4,130° 3,879° 3,736° 3,572 3,149 2,981	4,995 4,674 4,576 4,507 4,295 4,135 3,866 3,752 3,574 3,570 3,132 (2,982	>>	11 ¹ 1 > 12 ² 1 > 11 ¹ 1 > 12 ² 1 > 12 ² 1 > 12 ² 1 11 ¹ 1 12 ² 1 12 ² 1	01 ¹⁰	R 74 R 79 R 66 R 65 R 72 R 77 R 64 R 63 R 70 R 75 R 62 R 73 R 61
12	2,815	2,973 2,832	» »	1111	0110	R 68

TABLEAU P (suite)

		IABLEAU	(suite)	
Nº 12CO ₂	Obs.	Calc.	Molécule	Transition
13	3762,375	(3762,369 2,368	¹² CO ₂	12 ² 1 02 ² 0 R 60 11 ¹ 1 01 ¹ 0 R 71
14 15 16 17	2,061 1,726 1,595 1,276	2,170 2,069 1,730 1,581 (1,343 1,283	>> >> >> >> >> >>	12 ² 1 02 ² 0 R 59 11 ¹ 1 01 ¹ 0 R 66 » » R 69 12 ² 1 02 ² 0 R 58 » » R 57 11 ¹ 1 01 ¹ 0 R 64
18 19 5 20	1,061 0,767 0,445	1,066 0,763 (0,491) 0,475	» » » »	» » R 67 12 ² 1 02 ² 0 R 56 » » R 55 11 ¹ 1 01 ¹ 0 R 62
21 22 23	0,371 9,890 9,812	0,378 9,923 9,78	" 12CO ₂ H ₂ O(99)	» » R 65 12 ² 1 02 ² 0 R 54
24	9,647	9,664 9,646 9,615	12CO ₂ >> >>	11 ¹ 1 01 ¹ 0 R 63 » » R 60 12 ² 1 02 ² 0 R 53
25 26	9,034° 8,911	((9,072) (9,053 8,924	H ₂ O(90) ¹² CO ₂ »	12 ² 1 02 ² 0 R 52 11 ¹ 1 01 ¹ 0 R 61 » » R 58
27 28	8,786 8,149	8,795 8,716 (8,160	>> >> >> >>	12 ² 1 02 ² 0 R 51 11 ¹ 1 01 ¹ 0 R 59 12 ² 1 02 ² 0 R 50
29 30 31	7,910 7,779 7,625	{ 8,159 7,919 7,791 7,642 7,370	» » » »	11 ¹ 1 01 ¹ 0 R 56 12 ² 1 02 ² 0 R 49 10 ⁰ 1 00 ⁰ 0 R 80 11 ¹ 1 01 ¹ 0 R 57
{ 32 33 34	7,354 7,232° 7,019	7,238 (7,025 7,022	>> >> >>	12 ² 1 02 ² 0 R 48 11 ¹ 1 01 ¹ 0 R 54 10 ⁰ 1 00 ⁰ 0 R 78
35 36	6,834 6,556	6,842 (6,61 (6,554	» H ₂ O(95) ¹² CO ₂	12 ² 1 02 ² 0 R 47 11 ¹ 1 01 ¹ 0 R 55 10 ⁰ 1 00 ⁰ 0 R 76
37 38 39 40 41	6,374° 6,274° 6,099 5,852 5,717	6,381 6,290 6,106 5,869 (5,731	>> >> >> >> >> >> >>	10°1 00°0 R 76 12°1 02°0 R 46 11°1 01°0 R 52 12°1 02°0 R 45 10°1 00°0 R 74 11°1 01°0 R 53
42 { 43 44 45	5,310 5,155 5,066° 4,839	5,713 5,316 5,163 5,060 4,872 4,846	» » » »	12 ² 1 02 ² 0 R 44 11 ¹ 1 01 ¹ 0 R 50 10 ⁰ 1 00 ⁰ 0 R 72 12 ² 1 02 ² 0 R 43 11 ¹ 1 01 ¹ 0 R 51
46	5,342	4,369 4,316 4,201	» »	10°1 00°0 R 70 12°1 02°0 R 42 11°1 01°0 R 48
47 48 49	4,198 3,929 3,831	4,201 3,954 (3,848 (3,826)	» » » H ₂ O(65)	11 ¹ 1 01 ¹ 0 R 48 » » R 49 12 ² 1 02 ² 0 R 41
50 51	3,653 3,220	3,656 (3,290) 3,213	112C(03) 12CO ₂ >> >>	10°1 00°0 R 68 12°1 02°0 R 40 11°1 01°0 R 46
52 53 54 55	3,023 2,927° 2,802 2,471	3,036 2,922 2,801	>> >> >>	» » R 47 10°1 00°0 R 66 12°1 02°0 R 39

Pour les raies de H₂O v. p. 20.

N° 12CO2	Obs.	Calc.	Molécule	1	Γransitio	on
		(^{3752,237} 2,21	¹² CO ₂ (H ₂ O(100)	1221	0220	R 38
56	3752,173	2,203 2,166 2,093	12CO ₂ >> >>	11 ¹ 1 10 ⁰ 1 11 ¹ 1	01 ¹ 0 00 ⁰ 0 01 ¹ 0	R 44 R 64 R 45
57 58	1,729 1,390	1,729 (1,48 (1,388	H ₂ O(90) 12CO ₂	12 ² 1 10 ⁰ 1	02 ² 0 00 ⁰ 0	R 37 R 62
59	1,142	{ 1,171 1,160 1,133	>> >> >>	11 ¹ 1 12 ² 1 11 ¹ 1	01 ¹ 0 02 ² 0 01 ¹ 0	R 42 R 36 R 43
60 61	0,930 0,603	0,86 0,632 0,590	H ₂ O(70) ¹² CO ₂ »	12 ² 1 10 ⁰ 1	02 ² 0 00 ⁰ 0	R 35 R 60
62	0,103	$ \begin{cases} 0,128 \\ 0,114 \\ 0,056 \end{cases} $	>> >> >>	11 ¹ 1 >> 12 ² 1	01 ¹ 0 » 02 ² 0	R 41 R 40 R 34
63	3749,763 9,525	3749,767 (9,511 (9,51	» » H ₂ O(100)	10°1 12°1	00°0 02°0	R 58 R 33
65 66	9,302 9,067	9,32 9,106 9,034	»(100) ¹² CO ₂ »	11 ¹ 1	01¹0 »	R 39 R 38
67	8,9350	8,926 8,923 8,364	» » »	12 ² 1 10 ⁰ 1 12 ² 1	$02^{2}0$ $00^{0}0$ $02^{2}0$	R 32 R 56 R 31
68 (9 ⁹	8,350 8,049	8,066	» »	10°1 11°1	00°0 01°0	R 54 R 37
70 71 72	7,947 7,771 7,389	7,950 7,771 (7,443)	» » H ₂ O(85)	11 ¹ 1 10 ⁰ 1	01¹0 00°0	R 36 R 30
73 74	7,177 6,983	7,192 7,167 6,986	12CO ₂ >> >>	12 ² 1 10 ⁰ 1 11 ¹ 1	$02^{2}0$ $00^{0}0$ $01^{1}0$	R 29 R 52 R 35
75 76 77	6,804 6,588 6,259	6,804 6,590 6,254	>> >> >>	>> 12 ² 1 10 ⁰ 1	» 02 ² 0 00 ⁰ 0	R 34 R 28 R 50
78 79 80	5,978° 5,878 5,653	5,996 5,887 5,651	» » »	12 ² 1 11 ¹ 1 »	02 ² 0 01 ¹ 0 »	R 27 R 33 R 32
81	5,325	5,384	» »	12 ² 1 10 ⁰ 1	02 ² 0 00 ⁰ 0	R 26 R 48
82 83	5,059 4,757	5,11 (4,774 (4,762	H ₂ O(100) 12CO ₂ >>	12 ² 1 11 ¹ 1	0220 0110	R 25 R 31
84	4,618 4,497	4,70 4,53 4,476	$^{\mathrm{H}_{2}\mathrm{O}}_{\mathrm{H}_{2}\mathrm{O}}$	1111	01¹0	R 30
86 87 88	4,376 4,158 3,919	4,359 4,152 3,98	» » H ₂ O(100)	10°1 12°1	00°0 02°0	R 46 R 24
89	3,594	3,611	112O(100) 12CO ₂ >> >>	11 ¹ 1 12 ² 1 10 ⁰ 1	01 ¹ 0 02 ² 0 00 ⁰ 0	R 29 R 23 R 44
90 91	3,348 2.894	(3,375 (3,278 2,894	» » »	11 ¹ 1 12 ² 1	01 ¹ 0 02 ² 0	R 28 R 22
92	2,390	2,433 2,369 2,256	» » »	$ \begin{array}{c} 11^{1}1 \\ 10^{0}1 \\ 12^{2}1 \end{array} $	01 ¹ 0 00 ⁰ 0 02 ² 0	R 27 R 42 R 21
93 94	2,070 1,604	2,256 2,056 1,610 (1,338	>> >> >> >>	11 ¹ 1 12 ² 1 10 ⁰ 1	01 ¹ 0 02 ² 0 00 ⁰ 0	R 26 R 20 R 40
1 95	1,319 1,267	$ \begin{cases} (1,323) \\ (1,230) \end{cases} $	H ₂ O(80) ¹² CO ₂	1111	0110	R 25
						100

Nº 12CO.	Obs.	Calc.	Molécule		Transiti	ion
97	3740,961	3740,958	¹² CO ₂	1221	0220	R 19
98	0,821	(0,811	» H ₂ O(70)	1111	0110	R 24
99	0,289	0,302	¹² CO ₂	12 ² 1 10 ⁰ 1	02 ² 0 00 ⁰ 0	R 18 R 38
100	0,000	0,283	» »	1111	0110	R 23
101	3739,561	3739,637 9,540	» »	12 ² 1 11 ¹ 1	02 ² 0 01 ¹ 0	R 17 R 22
102 103	9,212 8,989	9,204 8,968	» »	$\frac{10^{0}1}{12^{2}1}$	$00^{0}0$ $02^{2}0$	R 36 R 16
104	8,757	8,744 8,291	» »	11 ¹ 1 12 ² 1	$01^{1}0$ $02^{2}0$	R 21 R 15
105 106	8,252 8,108	8,247 8,100	» »	11 ¹ 1 10 ⁰ 1	01 ¹ 0 00 ⁰ 0	R 20 R 34
107 108	7,621 7,474	7,609 7,463	» »	12 ² 1 11 ¹ 1	02 ² 0 01 ¹ 0	R 14 R 19
109	6,966	6,973	» »	1001	00°0 01°10	R 32 R 18
1110	6,703	6,60	» H ₂ O(100)	1221	0220	R 13
1111	6,566° 6,169		¹² CO ₂	20°1 12°1	10°0 02°0	R 36 R 12
4 113	5,820	6,155	» »	1111	01 ¹ 0 00°0	R 17 R 30
1114	5,587	5,587 5,521	» »	1111	01 ¹ 0 02 ² 0	R 16 R 11
1115	5,435	(5,370 } 5,32	H ₂ O(100)	2001	10°0	R 34

TABLEAU Q

Figure 22 3735 — 3700 cm⁻⁻¹

N° 12CO 2	Obs.	Calc.	Molécule Transition			on
1	3734,827	3734,821	¹² CO ₂	1111	0110	R 15
2	4,648	4,815 4,642 4,64	» » H ₂ O(100)	12 ² 1 10 ⁰ 1	$02^{2}0$ $00^{0}0$	R 10 R 28
[3	4,222	4,223 4,179	112C(100)	11 ¹ 1 20 ⁰ 1	01¹0 10°0	R 14 R 32
(4	4,1110	4,099	» »	12 ² 1 11 ¹ 1	02 ² 0 01 ¹ 0	R 9 R 13
5	3,440	3,441 3,379	» »	10°1 12°1	00°0 02°0	R 26 R 8
6 7	2,967 2,831	2,966 2,833	» »	20°1 11°1	10°0 01°0	R 30 R 12
8	2,651	2,651) (H ₂ O(80)	1221	0220	R 7
10	2,178° 2,109°	2,214 2,075	¹² CO ₂	10°1 11°1	00°0 01°0	R 24 R 11
1 11	1,925°	2,13 1,919	$^{\mathrm{H_{2}O}}_{^{12}\mathrm{CO}_{2}}$	1221	0220	R 6
12 13 14	1,745 1,430 1,169	1,731 1,417	» »	20°1 11°1 12°1	10°0 01°0 02°0	R 28 R 10 R 5
15 16	0,961 0,670	1,179 0,962 0,662	» » »	10°1 11°1	00°0 01°0	R 22 R 9

		171202710	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Nº	Obs.	Calc.	Molécule	Transition	1
12(°() ₂					
17	3730,464	(3730,476	¹² CO ₂		R 26
. ,	5750,101	0.433	>>		R 4
18	3729,985	3729,979	>>		R 8 R 20
19	9,684	9,686	» »		
20	9,225	9,224	»	1111 0110	R 7
		9,200	>>	2001 1000	R 24
21	8,907	8,923	» »	$12^{2}1 02^{2}0$ $11^{1}1 01^{1}0$	R 2 R 6
1 22 23	8,496° 8,381	8,517 8,384	<i>"</i>	1001 0000	R 18
24	7,898		>>	2001 1000	R 22
25	7,756	7,903 7,758))	11 ¹ 1 01 ¹ 0 10 ⁰ 1 00 ⁰ 0	R 5 R 16
26	7,051	7,057	<i>>></i>	1111 0110	R 4
27	6,575	(<i>"</i>	1221 0220	Q
		6,584	<i>>></i>	2001 1000	R 20
28	6,270	6,268 5,704	>> >/	11,1 00,0	R 3 R 14
30	5,696 5,529°	5,520	<i>"</i>	11,1 01,0	R 2
31	5.252	5,244	>>	2001 1000	R 18
32	4,509	(4,961)	H ₂ O(85)	1111 0110	R 1
33	4,751 4,315	4,751 4,326	¹² CO ₂	11 ¹ 1 01 ¹ 0 10 ⁰ 1 00 ⁰ 0	R 12
34	4,313	4,241	»	1221 0220	P 3
35	3,893	3,883	<i>"</i>	2001 1000	R 16 P 4
36	3,426	3,438	>>	12 ² 1 02 ² 0	P 4
37 38	3,181 2,919	2,924	<i>"</i>	1001 0000	Ř 10
39	2,623	2,631	»	1221 0220	P 5
30	2,506	2,500	» » »	20°1 10°0	R 14
41 42	2,177 1,829	2,19 1,815	H ₂ O(100)	1221 0220	P 6
(43	1,613	1,638	»	1111 0110	P 2
1 44	1,489	1,497	>>	1001 0000	R 8 R 12
1 45	1,092°	1,095 0,996	» »	$\begin{array}{ccc} 20^{\circ}1 & 10^{\circ}0 \\ 12^{2}1 & 02^{2}0 \end{array}$	R 12 P 7
46	1,005 0,850	0,845	¹² CO ₂	1111 0110	P 3
48	0,503	?			P 8
440	0.040	0,168	12CO ₂	12 ² 1 02 ² 0 11 ¹ 1 01 ¹ 0	P 8 P 4
49	0,048	0,042	<i>>></i>	1001 0000	R 6
50	3719,680	3719,670	<i>>></i>	2001 1000	R 10
1 51	9,333°	9,336	>>	$12^{2}1 02^{2}0$ $11^{1}1 01^{1}0$	P 9 P 5
1 52 53	9,244 8,931	9,236 8,95	H ₂ O (95)	11-1 01 0	, ,
(54	8,547	8,564	12(CO ₂	1001 0000	R 4
- {		8,495	>>	$\begin{array}{ccc} 12^21 & 02^20 \\ 11^11 & 01^10 \end{array}$	P 10 P 6
55	8,4330	8,422 8,222	>> >>	2001 1000	R 8
56 57	8,235 7,618	7,651	<i>"</i>	$12^21 02^20$	P 11
5,	7,010	7,603	>>	1111 0110	P 7
58	7,055	7,061	»	$\begin{array}{ccc} 10^{\circ}1 & 00^{\circ}0 \\ 12^{2}1 & 02^{2}0 \end{array}$	R 2 P 12
59	6,779	6,796 6,779	<i>>></i>	1111 0110	P 8
.,,	0,119	6,753	»	20°1 10°0	R 6
		6,711	>>	12°1 02°0 11°1 01°0	R 38 P 9
60	5,949	5,940 5,939	<i>»</i>	1221 0220	P 13
61	5,751	5,752	»	1201 0200	P 36
62	5,529	5,531	>>	1001 0000	R 0 R 4
63	5,272	5,263	» »	$\begin{array}{ccc} 20^{0}1 & 10^{0}0 \\ 12^{2}1 & 02^{2}0 \end{array}$	P 14
64	5,017	5,073	<i>>></i>	1111 0110	P 10
		, ,,,,,			

		INDLLAC Q	(suite)			
N° 12CO 2	Obs.	Calc.	Molécule		Γran siti	on
65	3714,769	((3714,809)	H ₂ O(70)	1 201	0200	D 24
66	4,256	4,763 4,258 4,207	¹² CO ₂ » »	12°1 11 ¹ 1 12°1	02°0 01°0 02°0	R 34 P 11 P 15
67 68	3,990 3,759	(3,750	¹² CO ₂	20°1	10°0	R 2
69	3,426	3,743 3,422 3,325	» »	12°1 11 ¹ 1 12 ² 1	02°0 01¹0 02²0	R 32 P 12 P 16
70 71	3,195 2,835	3,190 ?	» »	1001	0000	P 2
72 { 73	2,704 2,547	2,693 2,546	» »	$12^{0}1$ $11^{1}1$	02°0 01°0	R 30 P 13
74 75	2,447° 2,188	2,446 { 2,216 } 2,20	» »	12 ² 1 20 ⁰ 1	$02^{2}0$ $10^{6}0$	P 17 R 0
{ 76	1,710°	1,708 (1,612	H ₂ O (100) ¹² CO ₂ »	11 ¹ 1 12 ⁰ 1	01¹0 02º0	P 14 R 28
77	1,607	1,598 1,553	» »	10°1 12°1	00°0 02°0	P 4 P 18
78 79	0,815	0,92	H ₂ O (80) ¹² CO ²	1111	0110	P 15
80 (81	0,680 0,491 3709,975	0,661 0,498 (3709,979	» » »	12°1 12°1 10°1	$02^{2}0$ $02^{0}0$ $00^{0}0$	P 19 R 26 P 6
}		9,968 9,875	» »	11 ¹ 1 20°1	01¹0 10°0	P 16 P 2
82 83	9,763° 9,360	9,755 (9,43) H ₂ O (99)	1221	0220	P 20
84 85	9,071 8,856	9,354 9,065 8,853	¹² CO ₂ » »	$ \begin{array}{c} 12^{0}1 \\ 11^{1}1 \\ 12^{2}1 \end{array} $	02°0 01°0 02°0	R 24 P 17 P 21
{ 86	8,327°	(8,337) 8,286	» »	10°1 20°1	00°0 10°0	P 8 P 4
(87	8,220°	8,207 8,179	» »	11 ¹ 1 12 ⁰ 1	01 ¹ 0 02 ⁰ 0	P 18 R 22
89 90	7,257 6,987	7,256 (7,019 (6,972	» »	11 ¹ 1 12 ² 1 12 ⁰ 1	01^{10} 02^{20} 02^{0}	P 19 P 23 R 20
91	6,672	6,679	>> >> >>	20°1 10°1	10°0 00°0	P 6 P 10
92 93	6,427 6,078	6,419 6,085	» »	11 ¹ 1 12 ² 1	0110 0220	P 20 P 24
94 95	5,739 5,434	5,733 5,441 5,162	>> >> >>	12°1 11 ¹ 1 12 ² 1	$02^{0}0$ $01^{1}0$ $02^{2}0$	R 18 P 21 P 25
96	4,976	5,048 4,976	» »	20°1 10°1	10°0 00°0	P 8
97 98 99	4,620 4,485	4,612 4,464	» »	11 ¹ 1 12 ⁰ 1	01 ¹ 0 02 ⁰ 0	P 12 P 22 R 16
100	4,210 3,595	4,213 3,601	» »	1221	02°0 01°0	P 26 P 23 P 10
101	3,250	3,397 (3,279 (3,258	>> >> >>	20°1 12°1 10°1	$10^{0}0$ $02^{2}0$ $00^{0}0$	P 10 P 27 P 14
102	2,778	3,162 2,779	» »	12º1 11º1	02°0 01°0	R 14 P 24
103	2,338 1,744	2,316 1,819	» »	12 ² 1 12 ⁰ 1	02°0 02°0	P 28 R 12
.01	1,744	1,76 1,735 1,722	H ₂ O (80) ¹² CO ₂ »	11 ¹ 1 20 ⁰ 1	01¹0 10°0	P 25 P 12
		,				

N° 12CO2	Obs.	Calc.	Molécule		Transiti	on
105	3701,516	3701,515 1,373	¹²CO₂ »	10°1 12°1	00°0 02°0	P 16 P 29
106 107	0,920 0,455	0,923 0,465 0,394	» » »	11 ¹ 1 12 ⁰ 1 12 ² 1	01 ¹ 0 02 ⁰ 0 02 ² 0	P 26 R 10 P 30

TABLEAU R

Identification des raies d'absorption

Figure 23 3700 — 3665 cm⁻¹

	5					
N° 12CO ₂	Obs.	Calc.	Molécule	,	Γransiti	on
1	3699,996	3700,028 (3699,844	¹² CO ₂	20°1 11°1	10°0 01°0	P 14 P 27
2 3 4	9,754 9,441 9,202	9,748 9,441 ?	» »	10°1 12°1	00°0 02°0	P 18 P 31
5	9,047	9,069 9,043	» »	12°1 11°1	02°0 01°0	R 8 P 28
6 7 8 9	8,706 8,461 8,317 7,956	8,446 8,312 7,956	>> >> >> >>	12 ² 1 20 ⁰ 1 10 ⁰ 1	02 ² 0 10 ⁰ 0 00 ⁰ 0 01 ¹ 0	R 32 P 16 P 20 P 29
10 11 12	7,633 7,461 7,137	7,928 7,642 7,487 7,141	» » »	12°1 12°1 12°1 11°1	02°0 02°0 01°0	R 6 P 33 P 30
13 14 15	6,843 6,570 6,477	6,575 6,475 6,183	» » »	20°1 12°1 12°1	10°0 02°0 02°0	P 18 P 34 R 4
{ 16 { 17 18 19 20 21	6,147° 6,004° 5,498° 5,355 5,215 4,803	6,138 5,986 5,507 5,346 5,215 4,817 4,768 4,691	"> "> "> "2C16O18O 12CO ₂ "12C16O18O 12CO ₂	10°1 11°1 12°1 02°1 11°1 20°1 02°1 12°1	00°0 01°0 02°0 00°0 01°0 10°0 00°0	P 22 P 31 P 35 R 30 P 32 P 20 R 29 R 2
22	4,272	4,479 4,297 4,186	» ¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	12 ² 1 10 ⁰ 1 02 ⁰ 1	02 ² 0 00 ⁰ 0 >>	P 36 P 24 R 28
23 24 25 26	4,013 3,603° 3,524° 3,266	4,018 3,601 3,504 3,267 3,169	12CO ₂ 12C16O18O 12CO ₂	11 ¹ 1 02 ⁰ 1 12 ² 1 11 ¹ 1 12 ⁰ 1	01 ¹ 0 00 ⁰ 0 02 ² 0 01 ¹ 0 02 ⁰ 0	P 33 R 27 P 37 P 34 R 0
27	3,036	{ 3,038 3,010	" 12C16O18O 12CO ₂	20°1 02°1 12°1	10°0 00°0 02°0	P 22 R 26 P 38
28	2,427	$ \left\{\begin{array}{c} 2,457 \\ 2,430 \\ 2,414 \end{array}\right. $	» 12C16O18O	10º1 02º1	0000	P 26 R 25
29 30 31	2,020 1,806 1,275	2,026 1,813 (1,296 (1,238 1,208 0,826 0,597	12CO 2 12C16O18O 12CO 2 3 12C16O18O 12CO 2 12C16O18O	11 ¹ 1 02 ⁰ 1 11 ¹ 1 20 ⁰ 1 02 ⁰ 1 12 ⁰ 1 02 ⁰ 1	01 ¹ 0 00°0 01 ¹ 0 10°0 00°0 02°0 00°0	P 35 R 24 P 36 P 24 R 23 P 2 R 22

N° 12CO ₂	Obs.	Calc.	Molécule		Transiti	on
32 33	3690,540 3689,985	3690,540 (0,008 (3689,979	¹² CO ₂ » ¹² C ¹⁶ O ¹⁸ O	10°1 11°1 02°1	00°0 01°0 00°0	P 28 P 37 R 21
34	9,312	9,417 (9,360 (9,302 9,225	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O ¹² CO ₂ »	20°1 02°1 11°1 12°1	10°0 00°0 01¹0 02°0	P 26 R 20 P 38 P 4
35	8,958	8,732	¹² C ¹⁶ O ¹⁸ O	0201	0000	R 19
(36) 37 38 39 40	8,614 8,425 8,113 7,960 7,583	8,625 8,45 8,101 7,965 (7,593	12CO ₂ H ₂ O 12C ¹⁶ O ¹⁸ O 12CO ₂	02°1 02°1 11°1 12°1	00°0 00°0 01°0 02°0	P 30 R 18 P 39 P 6
41 42 43	7,474 7,285 7,116	7,575 7,464 7,285 ?	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	20°1 02°1 11°1	10°0 00°0 01°0	P 28 R 17 P 40
44 45 46	6,682 6,172 5,901	6,822 6,687 6,176 (5,928 5,898	12C16O18O 12CO2 12C16O18O 12CO2)	02°1 10°1 02°1 12°1 11°1	00°0 » 02°0 01°0	R 16 P 32 R 15 P 8 P 41
47 48 49	5,710 5,525 5,246	5,714 5,523 5,246 4,867	**************************************	20°1 02°1 11°1 02°1	10°0 00°0 01°0 00°0	P 30 R 14 P 42 R 13
50 51	4,721 4,218	4,725 { 4,232 } 4,204	12CO ₂ » 12C16O18O	10°1 12°1 02°1	» 02°0 00°0	P 34 P 10 R 12
52	3,8070	3,832	¹² CO ₂	20°1 11°1	10°0 01°0	P 32 P 43
53 54	3,537 3,180	(3,805 3,535 3,185 2,863	12C16O18O 12CO ₂ 12C16O18O	02°1 11°1 02°1	00°0 01°0 00°0	R 11 P 44 R 10
55 56 57 58 59 60 61	2,740 2,509 2,185 1,932 1,662 1,490 1,092	2,739 2,505 2,184 1,929 1,688 1,500 1,101	12CO ₂ 32C16O18O 12CO ₂ 32C16O18O 12CO ₂	10°1 12°1 02°1 20°1 11°1 02°1 11°1	» 02°0 00°0 10°0 01°0 00°0 01°0	P 36 P 12 R 9 P 34 P 45 R 8 P 46
62	0,731	0,811 (0,747	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	02°1 12°1	00°0 02°0	R 7 P 14
63 64 65 66	0,345 0,104 3679,984 9,529°)	0,729 ? 0,117 0,006 (3679,566	» 12C16O18O 12CO ₂ »	10°1 02°1 20°1 11°1	00°0 00°0 10°0 01°0	P 38 R 6 P 36 P 47
67 68	9,403 8,965	{ (9,442) 9,417 8,996	$^{\mathrm{H_2O}}_{^{12}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}}$	02°1 11°1	00°0 01°0	R 5 P 48
69	8,694	8,958 8,713	12C16O18O	12°1 02°1	02°0 00°0	P 16 R 4
70	8,018	8,697 8,063 8,003	12CO ₂ >> 12C16O18O	10°1 20°1 02°1	» 10°0 00°0	P 40 P 38 R 3
71	7,742	? ((7,451)	H ₂ O (90)	02 1	00 0	AC 5
72	7,376	7,379	¹² CO ₂	11 ¹ 1 02 ⁰ 1	01¹0 00°0	P 49 R 2
73 74	7,133 6,858	7,137 6,868	¹² CO ₂	12°1 11°1	02°0 01°0	P 18 P 50

TABLEAU R (suite)

N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	Т	ransitio	n
	75 76	3676,635 5 991	3676,640 5,92	¹² CO ₂ H ₂ O (95)	1001	0000	P 42
1	77	5,991 5,293 5,275	5,286 - 5,232	¹² CO ₂ ¹³ CO ₂	12°1 11°1	02°0 01°0	P 20 R 62
2 3	78 79	5,172 4,925	5,188 4.96	¹² CO ₂ H ₂ O (98)	»	»	P 51
4	80	4,565	4,561 4,486	¹² CO ₂ ¹³ CO ₂	10°1 11'1	00°0 01°0	P 44 R 60
5 6	81	4,233 4,081°	4,28 4,046	H ₂ O 13CO ₂	1111	01 ¹ 0	R 61
7 8	82	3,724 3,590°	3,716 3,632	» 12C16O18O)> 02º1	0000	R 58 P 2?
9	83	3,412 3,393	3,404 3,337	¹² CO ₂ ¹³ CO ₂	12°1 11°1	02°0 01°0	P 22 R 59
10	84	2,921	2,918	¹² C ¹⁶ O ¹⁸ O	» 02°1	0000	R 56 P 3
11	85	2,462	2,601 2,459	¹³ CO ₂ ¹² CO ₂	$\frac{11^{1}1}{10^{0}1}$	01 ¹ 0 00 ⁰ 0	R 57 P 46
12	86	2,132 2,103	2,133	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	$02^{0}1$ $11^{1}1$	» 01¹0	P 4 R 54
13	87	1,807 1,783	1,837	»	``>> [^]	>>	R 55
14		1,607	?	1200	1201	0200	P 24
15 16	88 89	1,479 1,353	1,491 1,375	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	02°1 11°1	00°0 01°0	P 5 R 52
17 18		1,244 1,037	1,244 1,045	¹³ CO ₂	» »	» »	R 53
19	90	0,707	0,72 0,612	H ₂ O (100) ¹² C ¹⁶ O ¹⁸ O	0201	0000	P 6
20	91	0,333	0,368	$^{13}CO_{2}$ $^{12}CO_{2}$	11 ¹ 1 10 ⁰ 1	01 ¹ 0 00 ⁰ 0	R 50 P 48
			0,236	¹³ CO ₂ H ₂ O ?	1111	0110	R 51
21	92 93	3669,866 9,531	9,844 9,546	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	02°1 12°1	00°0 02°0	P 7 P 26
22 23	,,,	9,439° 9,347°	9,467 9,380	¹³ CO ₂	11 ¹ 1	01¹0 »	R 48 R 49
24	94	9.062	9,284 9,071	» 12C16O18O	10°1 02°1	00°0 »	R 66 P 8
25	95	8,747 8,686	8,85	H ₂ O (99) ¹³ CO ₂	1001	0000	R 64
26		8,509	- 8,643 (8,539 8,505	» »	1111	01¹ 0 »	R 46 R 47
	96	8,482	? 8,292	12C16O18O	0201	0000	P 9
27 28	97	8,186 7,981	8,187 7,974	¹² CO ₂ ¹³ CO ₂	10°1	>> >>	P 50 R 62
29		7,575	- 7,603 7,585	» »	11 ¹ 1	01¹0 »	R 45 R 44
	98	7,547	7,573	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	12°1 02°1	02°0 00°0	P 28 P 10
30	99	7,279	7,278	¹³ CO ₂	1001	»	R 60
31		7,227 6,823	6,838 6,720	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	12 ² 1 02 ⁰ 1	02 ² 0 00 ⁰ 0	R 38 P 11
32	100	6,720 6,697	- 6,673	¹³ CO ₂	1111	01¹0 »	R 43 R 42
(33		6,586	6,605	» »	$10^{0}1$	00°0 02°0	R 58 R 37
34 35	101	6,375 6,012	6,374 5,019	" 12CO ₂	12 ² 1 10 ⁰ 1	0000	P 52
			5,926	12C16O18O	0201	>>	P 12

TABLEAU R (siute)

N° 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule	Tra	ansition
36		3665,805	(3665,807 5,797 5,715	¹³ CO ₂ »	1221	0°0 R 56 02°0 R 36 01°0 R 41
37	100	5,595	- 5,600	¹³ CO ₂	1111 0	110 R 40
38	102	5,571 5,298	5,568 5,309	¹² CO ₂ ¹³ CO ₂	1221 0	02°0 P 30 02°0 R 35
39	103	5,120 5,036	5,127 5,031	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 0 10°1	00°0 P 13 » R 54

TABLEAU S

Figure 24 3665 — 3630 cm⁻¹

		Fig	ure 24 3665 —	- 3630 cm ¹			
N° 13CO ₂	N° 12CO ₂	Obs.	Calc.	Molécule		Transiti	ion
1	1	3664.726	(3664,730	¹³ CO ₂	1111	0110	R 39
2	2	4,564	4,727 4,568	» »	12 ² 1	02 ² 0 01 ¹ 0	R 34 R 38
3	3	4,314	4,323	12C16O18O	0201	00^{0}	P 14
		4,234	4,228	¹³ CO ₂	$10^{0}1$ $12^{2}1$	0220	R 52 R 33
4 5	4	3,827 3,714	3,827 3,717	¹² CO ₂ ¹³ CO ₂	10°1 11°1	00°0 01°0	P 54
3			3,628	>>	1221	$02^{2}0$	R 37 R 32
	5	3,517	{ 3,532 3,513	12CO ₂ 12C16O18O	12°1 02°1	02°0 00°0	P 32 P 15
6 7		3,4870	3,509	¹⁸ CO ₂	1111	0110	R 36
(/	6	3,421 3,097	3,398 3,096	» »	10°1 12°1	$00^{0}0$ $02^{2}0$	R 50 R 31
(9	7	2,686	2,697	12C16O18O	0201	0000	P 16
10	8	2,665 2,521	2,676 2,541	¹⁸ CO ₂	11 ¹ 1 10 ⁰ 1	0110 0000	R 35 R 48
(11		2,432	(2,483	>>	1221	0220	R 30
12		1,915	2,424 1,948	» »	11 ¹ 1 12 ² 1	01 ¹ 0 02 ² 0	R 34 R 29
13	9	1,875 1,639	1,879	¹² C ¹⁶ O ¹⁸ O ¹⁸ CO ₂	02°1 10°1	0000	P 17
10		}	1,609	>>	1111	01¹0	R 46 R 33
	10 11	1,615 <i>)</i> 1,483	1,614	¹² CO ₂	10°1 12°1	00°0 02°0	P 56 P 34
14	12	1,312	(1,348	18CO ₂	1221	$02^{2}0$	R 28
15	13	1,050	1,313	» 12C16O18O	11 ¹ 1 02 ⁰ 1	01 ¹0 00°0	R 32 P 18
16	14	0,736	0,774	¹⁸ CO ₂	1221	0220	R 27
17	15	0,515	0,745	» »	10°1	$00^{0}0$ $01^{1}0$	R 44 R 31
18	16	0,209	0,222	¹² C ¹⁶ O ¹⁸ O ¹⁸ CO ₂	02°1	0000	P 19
			0,165	»	1221	$01^{1}0$ $02^{2}0$	R 30 R 26
19 20	17	3659,807 9,579	3659,805 9,573	» »	10°1 12°1	$00^{0}0$ $02^{2}0$	R 42 R 25
21		9,389	(9,388	>>	1111	0110	R 29
	18	9,380 -	9,389	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	02°1 10°1	00°0	P 20 P 58
22	19	9,003	9,372	>>	1201	0200	P 36
		,	8,953	¹³ CO ₂	11 ¹ 1 12 ² 1	$01^{1}0$ $02^{2}0$	R 28 R 24
23	20	8,833	8,838	>>	1001	00°0	R 40

			IABLEAU S	(suite)			
N° 13CO2	N° 12CO2	Obs.	Calc.	Molécule	٦	Γransitio	n
24	21	3658,547	3658,548	¹² C ¹⁶ O ¹⁸ O	0201	0000	P 21
25 26	22 23	8,236 7,835	8,346 8,235 7,844 7,822	**************************************	12 ² 1 11 ¹ 1 10 ⁰ 1 11 ¹ 1	02 ² 0 01 ¹ 0 00 ⁰ 0 01 ¹ 0	R 23 R 27 R 38 R 26
27	24 25 26	7,716 7,248 7,114 7,073	7,714 7,705 7,247 7,125 7,090	12C16O18O 12CO ₂ 3 13CO ₂	12 ² 1 02 ⁰ 1 12 ⁰ 1 10 ⁰ 1 12 ² 1	02 ² 0 00 ⁰ 0 02 ⁰ 0 00 ⁰ 0 02 ² 0	R 22 P 22 P 38 P 60 R 21
	27	8,837	7,056	» 12C16O18O	11 ¹ 1 02 ⁰ 1	01¹0 00°0	R 25 P 23
28		6,824	6,823	¹³ CO ₂	10°1	» 01¹0	R 36
29 30	28	6,606 6,427°	6,606 6,449	>> >>	1221	0220	R 24 R 20
31	29 30	6,274 6,010	6,35 5,998	H ₂ O (85) ¹² C ¹⁶ O ¹⁸ O	0201	0000	P 24
32	31	5,788	5,848 5,810	¹³ CO ₂	11 ¹ 1 12 ² 1	01 10 0220	R 23 R 19
			5.773	>>	1001	00^{0}	R 34
33 34	32	5,361 5,151	5,364 - 5,156	» »	$12^{2}1$	01^{10} 02^{20}	R 22 R 18
	33 34	5,131 4,849	5,138 4,849	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	02°1 10°1	00°0	P 25 P 62
35	35	4,680	4,696	$^{13}\mathrm{CO}_2$	» 11 ¹ 1)) 0110	R 32 R 21
			4,500	» »	1221	$02^{2}0$	R 17
36 37	36 37	4,262 4,089	4,274 4,094	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	$02^{0}1$ $11^{1}1$	00°0 01°0	P 26 R 20
38 39	38	3,820° 3,581	3,835 3,590	» »	12 ² 1 10 ⁰ 1	$02^{2}0$ $00^{0}0$	R 16 R 30
	39	3,387	(3,404	12C16O18O	0201	>>	P 27
40 41		3,357 i 3,165	3,348 3,166	¹³ CO ₂	11 ¹ 1 12 ² 1	01 ¹0 02²0	R 19 R 15
42	40	2,824 (2,809	¹² CO ₂ ¹³ CO ₂	02º1 11º1	$00^{0}0$ $01^{1}0$	R 68 R 18
42	41	2,484	{ 2,552 2,528 2,528	12CO ₂	1001	0000	P 64
43		2,471	(2,48/	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	$02^{0}1$ $12^{2}1$	>> 0220	P 28 R 14
	42	2,072	2,457	**************************************	10°1 02°1	$00^{0}0$	R 28 R 66
44	1~	2,063	2,057	13CO ⁵	11 ¹ 1 12 ² 1	01 ¹ 0 02 ² 0	R 17 R 13
45	43	1,797 1,650	1,805 1,648	12C16O18O	$02^{\circ}1$	0000	P 29
46	44	1,461	1,478	¹³ CO ₂ H ₂ O (99)	1111	0110	R 16
47	45	1,312	{ 1,300	¹² CO ₂ ¹³ CO ₂	02°1 10°1	00°00	R 64 R 26
			1,296	13CO ₂	$12^{2}1$	$02^{2}0$	R 12
48	46	0,735	0,765	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 11°1	00°0 01°0	P 30 R 15
	47	0,545	0,63	H ₂ O (98) ¹² CO ₂	0201	0000	R 62
49	48	0,421°	0,416	¹³ CO ₂	12 ² 1 11 ¹ 1	02 ² 0 01 ¹ 0	R 11 R 14
50		0,111	(0,129	>>	1001	00_{0}	R 24
51	49	3649,877	3649,875 9,711	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 12°1	0220	P 31 R 10
52 53	50 51	9,688 9,390	9,682 9,390	¹² CO ₂ ¹³ CO ₂	02°1 11°1	00°0 01°0	R 60 R 13
54	52	9,243	9,390 9,26 8,981	H ₂ O (100) ¹² C ¹⁶ O ¹⁸ O	0201	0000	P 32
			9,001	¹³ CO ₂	1221	0220	R 9

TABLEAU S (suite)

N° 13CO2	Nº 12CO,	Obs.	Calc.	Molécule	Т	ransitio	n
(55	53	3648,870	(3648,890	¹³ CO ₂	10°1	0000	R 22
56		8,800°	8,832 8,755	¹² CO ₂ ¹³ CO ₂	$02^{0}1$ $11^{1}1$	01 ¹ 0	R 58 R 12
,	54	8,650	?	002	• • •		
57 58	55	8,445 8,296	(8,284	¹³ CO ₂	1221	0220	R 8
		,	8,227 8,082	» 12C ¹⁶ O ¹⁸ O	12°1 02°1	02°0 00°0	R 44 P 33
59		8,013 ((8,015	13CO 2	1111	0110	R 11
(60	56 57	7,962 (7,631	7,956 7,644	¹² CO ₂ ¹³ CO ₂	02°1 10°1	» 00°0	R 56 R 20
}	58	7,530	(7,61	H ₂ O (95) ¹³ CO ₂	12 ² 1	0220	R 7
61	59	7,367	7,560	¹³ CO ₂	12º1	$02^{0}0$	R 42
			7,355 7,179	» 12C16O18O	11 ¹ 1 02 ⁰ 1	01^{10} 00^{0}	R 10 P 34
62	60	7,072	7,053	¹² CO ₂	0201	0000	R 54
63		6,828	7,16 6,829	H ₂ O (100) ¹³ CO ₂	1221	0220	R 6
64	61	6,605	6,612	» »	11 ¹ 1 12 ⁰ 1	0110 0200	R 9 R 40
			6,547 ((6,486)	H.O (90)			
65	62	6,381	6,372 6,271	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	10°1 02°1	>> 0000	R 18 P 35
66	63	6,131	6,125	12CO a	>>	>>	R 52
67	64	5,926	6,092 5,928	¹³ CO ₂	12 ² 1 11 ¹ 1	$02^{2}0$ $01^{1}0$	R 5 R 8
68	65	5,6540	5,646	»	12º1	0200	R 38
69	66	5,526 5,333	5,358	$^{12}C^{16}O^{18}O$	0201	0000	P 36
			5,348 5,181	¹³ CO ₂	12 ² 1 11 ¹ 1	$02^{2}0$ $01^{1}0$	R 4 R 7
30	67	5,161	5,170	12CO.	02°1 10°1	0000	R 50
70 71	68	5,065 4,752	5,071 (4,745	¹³ CO ₂ *	20°1)» 10°0	R 16 R 34
72		4.481	4,712	» »	12°1 11°1	02°2 01°0	R 36 R 6
	69	4,454	4,441	12C16O18O	02°1	0000	R 37
73	70	4,194	4,191 (3,747	¹² CO ₂ ¹³ CO ₂	» 12º1	02°0	R 48 R 34
74	71	3,743	3.741	>>	10°1 11°1	» 01¹0	R 14 R 5
			3,723 3,600	» »	20°1	1000	R 32
75 76	72 73	3,504 3,187	3,519 3,187	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	02°1	>> 00 ₀ 0	P 38 R 46
77	74	3,007	2 995	¹³ CO ₂	1111	0110	R 4
78	75	2,743 2,552	2,745 (2,593	¹² C ¹⁶ O ¹⁸ O	12°1 02°1	02°0 00°0	R 32 P 39
		,	(2,570)	H ₂ O (55)?	2001	1000	R 30
79	76	2,386	2,384	»	1001	0000	R 12
80	77	2,176 2,160	- 2,236 2,156	" 12CO ₂	11 ¹ 0 02 ⁰ 1	$01^{1}0$ $00^{0}0$	R 3 R 44
81	78	1,706°	1,714	13CO a	1201	0200	R 30
82	79	1,492	1,662	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	$02^{0}1$ $12^{2}1$	00°0 02°0	P 40 Q
83		1,239°	1,490 1,240	» " »	11 ¹ 1 20 ⁰ 1	01 ¹ 0 10 ⁰ 0	R 2 R 28
	80	1,093	1,102	12CO.	0201	0000	R 42
84	81 82	1,011 (0,998	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	10°1 02°1	>> >>	R 10 P 41?
85		0,726	0,723	18CO ₂	1111	0110	R 1
			0,649	>>	12º1	0200	R 28

TABLEAU S (suite)

			IABLEAU 3	(suite)		
N°. 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule	Transition	
	83	3640,025	3640,024	¹² CO ₂		40
86 87	84	» 3639,583	0,024 (3639,585 9,552	¹³ CO ₂ » »	10°1 00°0 R	26 L 8 L 26
88	85	9,165	9,160	» »	12 ² 1 02 ² 0 P 11 ¹ 1 01 ¹ 0 C	
89	86	8,922	8,920 8,785	¹² CO ₂ ¹³ CO ₂	02°1 00°0 R	38
90 91	87	8,539 8,373	? { 8,421 } 8,357	¹³ CO ₂	12°1 02°0 R 12°1 02°0 P	24
92 93 94	88 89	8,141 7,795 7,585	8,143 7,792 7,610 7,548	» ¹² CO ₂ ¹³ CO ₂ »	10°1 00°0 F 02°1 » F 11°1 01°0 P 12°1 02°0 F 20°1 10°0 F	36
95 96		7,266 6,821°	7,521 7,259 6,816 6,731	» » »	12°1 02°0 F 11°1 01°0 F 12°1 02°0 F	22
97	90	6,672) 6,650 }	6,673	» 12CO°	10°1 00°0 F 02°1 » F	R 4
98 99	91	6,238 6,042	6,234 (6,063) 6,012	13CO ₂ >> >>	20°1 10°0 F 12°1 02°0 F 11°1 01°0 F	R 20
100 101 102	92 93	5,928 5,467 5,182	5,909 5,468 (5,205 (5,176 5,080	"> 12CO ₂ 13CO ₂ "> ">	12 ² 1 02 ² 0 H 02 ⁰ 1 00 ⁰ 0 H 11 ¹ 1 01 ¹ 0 H 10 ⁰ 1 00 ⁰ 0 H	R 32
103 104 (105 (106	94	4,933 4,851 4,394 4,276	4,923 4,835 4,388 4,270 4,244	" " " " " " " " " " " " " " " " " " "	20°1 10°0 H 12°1 02°0 H 11°1 01°0 H 02°1 00°0 H	R 18 R 18 P 6 R 30
107	95	3,808	3,87	H ₂ O ¹³ CO ₂		R 0
108	96	3,617	3,587 3,574	» » »	20°1 10°0 I 12°1 02°0 I	R 16 R 16 P 7
109 110 111 112 113	97 98	3,422 3,044 2,737 2,571 2,254	(3,566 3,401 3,048 2,738 2,552 (2,280 2,229	"> 12CO ₂ 13CO ₂ » »	12 ² 1 02 ² 0 1 02 ⁰ 1 00 ⁰ 0 1 11 ¹ 1 01 ¹ 0 1 12 ² 1 02 ² 0 1 12 ⁰ 1 02 ⁰ 0	P 10 R 28 P 8 P 11 R 14 R 14
(114 (115	99	1,895 1,809	1,900 1,804	¹³ CO ₂ ¹² CO ₂ ¹³ CO ₂	11 ¹ 1 01 ¹ 0 02°1 00°0	P 9 R 26 P 12
116 117	100 111	1,308 1,072	1,696 1,309 1,061	» »	10°1 00°0 11°1 01°0	P 2 P 10 R 12
118		0,843°	0,953	» »	2001 1000	R 12 R 12 P 13
119 120	112 113	0,541 0,208	0,835 0,538 0,206	» ¹² CO ₂ ¹³ CO ₂	0201 0000	R 24 P 11

TABLEAU T

Identification des raies d'absorption

Figure 25 3630 — 3595 cm—1

N° 13CO 2	N° 12CO2	Obs.	Calc.	Molécule		Transiti	on
1 2	1	3629,964 9,701	3629,965 (9,712	13CO ₂	12 ² 1 10 ⁰ 1	02 ² 0 00 ⁰ 0	P 14 P 4
	1	9,604 }	9,66 9,594 9,438	H ₂ O (100) ¹³ CO ₂ »	12º1 20º1	02°0 10°0	R 10 R 10
3 4	2	9,366 9,253	9,359 9,247 9,091	$^{^{12}CO}_{^{2}}$ $^{^{13}CO}_{^{2}}$	11 ¹ 1 02 ⁰ 1 12 ² 1	01 ¹0 00°0 02²0	P 12 R 22 P 15
5 6	3	8,481 8,311	8,484 8,33 8,208	» H ₂ O (100) ¹⁸ CO ₂	11 ¹ 1 12 ² 1	01¹0 02²0	P 13
7	4	8,089	8,202 8,088 8,008	» » »	12°1 10°1 20°1	01°0 00°0 10°0	R 8 P 6
8 9 10	5 6	7,949 7,644 7,330	7,935 7,630 7,320	¹² CO ₂ ¹⁸ CO ₂ »	02°1 11°1 12°1	00°0 01°0 02°0	R 20 P 14
11	7	6,733 6,590	6,778 6,736	» »	12°1 11 ¹ 1	02°0 01°0	R 6 P 15
13	8	6,438	6,599 6,552 (6,436	¹² CO ₂ ¹³ CO ₂ »	02°1 20°1 10°1	00°0 10°0 00°0	R 18 R 6 P 8
14 15 16	9 10	6,182° 5,893	6,424 6,22 5,876	$^{ m ^{>}}_{ m ^{13}CO_2}$	12 ² 1	02 ² 0	P 18
17	11	5,545 5,243	5,524 5,320 5,242	» » 12CO ₂	12°1 12°1 02°1	02°0 02°0 00°0	P 19 R 4 R 16
18 19	12 13	4,967 4,756	5,071 4,959 4,756	¹³ CO ₂ » »	20°1 11°1 10°1	10°0 01¹0 00°0	R 4 P 17 P 10
20 21 22	14 15	4,266° 4,095 3,860	4,614 ? 4,096 3,862	» ¹³ CO ₂ ¹² CO ₂	12 ² 1 11 ¹ 1 02 ⁰ 1	02°20 01°10 00°0	P 20 P 18 R 14
23 24	10	3,705 3,553	3,830 3,702 3,566	13CO ₂ >> >>	12°1 12°1 12°1 20°1	02°0 02°0 10°0	R 2 P 21 R 2
25 26	16	3,061 2,764	3,155 3,048 2,775	» » »	11 ¹ 1 10 ⁰ 1 12 ² 1	01 10 00°0 02°0	P 19 P 12 P 22
27 28 29	17	1,457 2,290 1,861°	2,459 2,289 1,853	¹² CO ₂ ¹⁸ CO ₂ »	02°1 11°1 12°1	00°0 01°0 02°0	R 12 P 20 P 23
30 31	18	1,607 1,313	1,324 1,313	¹³ CO ₂	11 ¹ 1 10°1	01 ¹ 0 00°0	P 21
32	19	1,035	1,035 0,911)) 12CO ₂ 13CO ₂	02°1 12°1	>>	P 14 R 10
33 34	20	0,461 3619,960	0,458 (3619,978 (9,961	» » »	12 ² 1 11 ¹ 1 12 ² 1 12 ⁰ 1	02 ² 0 01 ¹ 0 02 ² 0 02 ⁰ 0	P 24 P 22 P 25 P 2
	21	9,866	9,699	¹⁸ CO ₂	2001	1000	P 2
35	22	9,580 9,547	9,589 9,550 9,466	¹² CO ₂ ¹³ CO ₂ »	02°1 10°1 11°1	00°0 » 01¹0	R 8 P 16
36		9,248°	?	"	11-1	01-0	P 23

TABLEAU T (suite)

N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	Т	ransitio	on
38 39 40	23 24 25	3619,080° 8,864 8,599 8,351 8,113	? 3619,021 8,844 8,600 8,357 8,120 8,110	13CO ₂ 12CO ₂ 13CO ₂ 3 12CO ₂ 13CO ₂	12 ² 1 03 ¹ 1 11 ¹ 1 12 ⁰ 1 02 ⁰ 1 20 ⁰ 1	02 ² 0 01 ¹ 0 >> 02 ⁰ 0 00 ⁰ 0 10 ⁰ 0	P 26 R 62 P 24 P 4 R 6 P 4
{ 41 42 43	26 27 28	7,756 7,612° 7,290 7,111	8,081 7,968 7,759 7,580 ? (7,103) 12CO ₂ 13CO ₂)	12 ² 1 03 ¹ 1 10 ⁰ 1 11 ¹ 1 12 ² 1	02 ² 0 01 ¹ 0 00 ⁰ 0 01 ¹ 0	P 27 R 60 P 18 P 25 P 28
	29	7,063	7,067	¹² CO ₂	0311	0110	R 58
44 45	30	6,651) 6,633) 6,464	(6,719 (6,716 (6,631 (6,497 (6,455	13CO ₂ 32CO ₂ 12CO ₂ 13CO ₂ 12CO ₂	12°1 11°1 02°1 20°1 03°1	02°0 01°0 00°0 10°0 01°0	P 6 P 26 R 4 P 6 R 59
	31	6,151	6,138	» 13CO ₂	>> 12 ² 1	» 0220	R 56 P 29
46	32	5,942	6,150 5,940	»	10°1	0000	P 20
47	33	5,673 5,640	5,669 5,599	" 12CO ₂	11 ¹ 1 03 ¹ 1	01¹0 »	P 27 R 57
48	33	5,416	?				
49	34	5,120	5,191 5,158 5,119 5,050	¹² CO ₂ ¹³ CO ₂ ¹² CO ₂ ¹³ CO ₂	$03^{11} \\ 12^{21} \\ 02^{01} \\ 12^{01}$	01 10 0220 0000 0200	R 54 P 30 R 2 P 8
50		4,817	4,860	>>	20°1	1000	P 8
51	35 36 37	4,699 4,474 4,235°	4,807 4,718 (4,572) 4,216 4,197	"12CO ₂ H ₂ O (90) 12CO ₂ 13CO ₂	11 ¹ 1 03 ¹ 1 03 ¹ 1 12 ² 1	01 10 01 10 01 20 02 20	P 28 R 55 R 52 P 31
52	38	4,093	4,094	>>	1001	0000	P 22
53	39	3,751° 3,726	-\ \(\frac{3,812}{3,727}	¹² CO ₂ ¹³ CO ₂	03 ¹ 1 11 ¹ 1	0110	R 53 P 29
54	40	3,581	3,585	12CO.	02°1	0000	R 0
55	41	3,338 3,240	3,347 3,219	¹³ CO ₂ ¹² CO ₂	12°1 03°1	02°0 01°0	P 10 R 50
56	71	3,194	1 3,198	¹³ CO ₂	20°1	10^{0}	P 10
57	42	3,007	3,186	$^{\circ}_{\mathrm{2O}}$	12 ² 1	$02^{2}0$	P 32
50	43	2,873	2,881 2,872	¹²ČO₂ ¹³CO₂	03 ¹ 1 11 ¹ 1	01¹0 »	R 51 P 30
58 59	44	2,869 2,526	2,53	H ₂ O (90)			
60	45	2,221	2,220 2,219 2,198	13CO ₂ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10°1 12°1 03°1	00°0 02°0 01°0	P 24 P 33 R 48
61 62 63	46	1,927 1,754 1,600°	1,926 1,761 1,613	13CO ₂	» 11 ¹ 1 12 ⁰ 1 20 ⁰ 1	» » 02°0 10°0	R 49 P 31 P 12 P 12
64	47	1,244	1,511 (1,244	" 12CO ₂	0201	0000	P 2
(=	48	0,950	1,219 1,184 1,154 0,947 0,911); 13CO ₂ 12CO ₂); 13CO ₂	12°1 12°1 03°1 »	10°0 02°0 01°0 » 01°0	R 32 P 34? R 46 R 47 P 32
65		0,909	0,911	2	111	01 0	1 22

				` ′			
N° 18CO ₂	$^{\mathrm{N}^{\mathrm{o}}}_{^{12}\mathrm{CO}_{2}}$	Obs.	Calc.	Molécule	7	Transiti	on
66 67	49	3610,560 0,321	3610,566 0,319 0,214	13C16O18O 13CO ₂	10°1 » 12°1	00°0 » 02°0	R 36 P 26 P 35
68	50	0,109	0,142 0,086	¹² CO ₂ » ¹³ C ¹⁶ O ¹⁸ O	12º1 03¹1	10°0 01°10 00°0	R 30 R 44
	51	3609,944	0,052 3609,943 9,847 9,802	¹² CO ₂ ¹³ CO ₂ »	10°1 03°1 12°1 20°1	01 ¹ 0 02°0 10°0	R 35 R 45 P 14 P 14
69	52	9,752 9,670	9,766 9,656 9,532	» ¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	11 ¹ 1 02 ⁰ 1 10 ⁰ 1	01¹0 00°0 »	P 33 P 4 R 34
71 72	53	9,313° 9,210	9,21 9,158	H ₂ O (100)	1221	0220	P 36
73	54	9,024	9,034 9,004 8,996	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	12°1 10°1 03°1	10°0 00°0 01°10	R 28 R 33 R 42
74	55	8,959 8,927	8,914 - 8,926 8,472	» 13CO ₂ 13C16O18O	» 11 ¹ 1 10 ⁰ 1	» » 00°0	R 43 P 34 R 32
75	56	8,382	8,391 8,181 8,068	13CO ₂ ** **	» 12°1 20°1	» 02 ² 0 10 ⁰ 0	P 28 P 37 P 16
76	57	8,064 8,052	8,046 - 8,046 7,934	¹² CO ₂ ¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	02°1 12°1 10°1	00°0 02°0 00°0 10°0	P 6 P 16 R 31
77	58	7,902	7,896 7,883 7,861	12CO ₂ »	12°1 03°1 »	01¹0 »	R 26 R 40 R 41
78 79	59	7,740 7,391	7,745 7,389	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	11 ¹ 1 10 ⁰ 1	» 00°0	P 35 R 30
80	60	7,228 7,116	7,103	¹³ CO ₂	1221	0220	P 38?
81	61	6,956 6,908	7,06 - 6,914 6,837	H ₂ O (100) ¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	11 ¹ 1 10 ⁰ 1	01¹0 00°0	P 36 R 29
82	62	6,769	6,785 6,747 6,727	12CO ₂ »	03 ¹ 1 » 12 ⁰ 1	01¹0 » 10°0	R 39 R 38 R 24
\. ⁸³	63	6,420	6,434 6,415 6,310	¹³ CO ₂ ¹² CO ₂ ¹³ CO ₂	10°1 02°1 20°1	00°0 » 10°0	P 30 P 8 P 18
84		6,223°	6,277 6,216	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	10°1 12°1	00°0 02°0	R 28 P 18
85	64	5,940° 5,692	? {	¹³ C ¹⁶ O ¹⁸ O	10°1	00°0 01°0	R 27 P 37
86	65 66	5,675 J 5,591	5,684 5,589 5,529	12CO ₂ >> >>	03 ¹ 1 » 12 ⁰ 1	» » 10°0	R 37 R 36 R 22
87	67	5,190 5,137	? 5,146 4,878	13C16O18O	10°1 11°1	00°0 01°10	R 26
88	68	4,766	4,761 4,571	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	02°1 10°1	00°0 »	P 38 P 10 R 25
	69	4,581°	4,560 4,530	¹² CO ₂ ¹³ CO ₂	03 ¹ 1 20 ⁰ 1	01 ¹ 0 10 ⁰ 0	R 35 P 20
89	70	4,447 4,428	4,452 4,409 4,351	» ¹² CO ₂ ¹³ CO ₂	10°1 03°1 12°1	00°0 01¹0 02°0	P 32 R 34 P 20
	71	4,280	4,300	¹² CO ₂)>	1000	R 20

TABLEAU T (suite)

				` '			
N° 13CO2	N° 12CO2	Obs.	Calc.	Molécule	Т	ransitio	n
90	72	3603,979 3,930	3603,989	¹³ C ¹⁶ O ¹⁸ O	1001	0000	R 24
91		3,611	3,622	$^{13}CO_{2}$ $^{12}CO_{2}$	11 ¹ 1 03 ¹ 1	01¹0 »	P 39 R 33
92	73	3,411	3,411 3,403	13 (16 (18 ()	10°1	00°0 01¹0	R 23
93	74	3,212° 3,083	3,207 (3,087	¹² CO ₂	03 ¹ 1 02 ⁰ 1	0000	R 32 P 12
95		2,792	3,041	» 13CO ₂	12°1 11°1	10°0 01°0	R 18 P 40
		,	2,810 2,725	¹³ C ¹⁶ O ¹⁸ O ¹⁸ CO ₂	10°1 20°1	00°0 10°0	R 22 P 22
96	75 76	2,601° 2,438	2,456	¹³ CO ₂	12º1	0200	P 22
			2,443) 12CO ₂	10°1 03°1	00°0 01°0	P 34 R 31
97	77	2,241	2,239 2,210	13C16O18O	10°1	0000	R 21
98 99	78	1,980 1,765	1,982 ?	¹² CO ₂	03 ¹ 1	0110	R 30
100	79	1,741 1,576°	1,753 (1,605	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	12º1 10º1	10°0 00°0	R 16 R 20
101	80	1,389	1,519 1,391	¹³ CO ₂ ¹² CO ₂	11 ¹ 1 02 ⁰ 1	01¹0 00°0	P 41 P 14
101	81	1,033	1,043	H ₂ O (100)?	0311	0110	R 29
102		1,015	0,993	13C16O 18O	10°1 20°1	00°0 10°0	R 19 P 24
103	82	0,734	0,898 (0,736	¹³ CO ₂ ¹² CO ₂	0311	0110	R 28
			0,728 0,527	13CO ₂	11 ¹ 1 12 ⁰ 1	02°0	P 42 P 24
104	83	0,392	0,435 0,405	¹² CO ₂ ¹³ CO ₂	>> 10°1	10°0 00°0	R 14 P 36
/ 105	84	3599,815	0,376	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	03 ¹ I	» 01¹0	R 18 R 27
106	85	9,668	9,752 9,673	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 02°1	00°0	R 17 P 16
	86	9,485°	9,468	»	0311	0110	R 26
107		9,461 9,382	9,392	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	1111	01 ¹ 0 00 ⁰ 0	P 43
109	87	9,101 9,095	- 9,122 9,087	12CO.	10°1 12°1	10^{0}	R 16 R 12
			9,047 8,615	¹³ CO ₂ »	20°1 11°1	01 10	P 26 P 44
110	88	8,584 8,572	8,579 - 8,567	¹² CO ₂ ¹³ CO ₂	03 ¹ 1 12 ⁰ 1	» 02°0	R 25 P 26
111	89	8,333	8,487 8,342	¹³ C ¹⁶ O ¹⁸ O	10°1	00°0	R 15 P 38
112	90 91	8,169 7,930	8,180 7,923	¹² CO ₂	03 ¹ 1 02 ⁰ 1	01 ¹ 0 00 ⁰ 0	R 24 P 18
{113			7,846	¹⁸ C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 12°1	» 10°0	R 14 R 10
114	92 93	7,715 7,317	7,711 7,313 (7,237	>>	0311	0110	R 23 P 45?
115		7,210	{ 7,199	13CO ₂ 13C16O18O	11 ¹ 1 10 ⁰ 1	00°0	R 13
116	94	6,870	(7,172 6,871	¹³ CO ₂ ¹² CO ₂	20°1 03°1	10°0 01°0	P 28 R 22
{ ¹¹⁷		6,550	(6,576 (6,545	¹³ CO ₂	12°1 10°1	02°0 00°0	P 28 R 12
(118		6,480	? 6,303	¹² CO ₂	1201	10°0	R 8
∫ ¹¹⁹	95	6,198 (6,174)	6,252	¹³ CO ₂ ¹² CO ₂	10°1 02°1	00°0	P 40 P 20
120	96	6,0370	6,023	»	0311	0110	R 21

N° 13CO ₂	N° 12CO ₂	Obs.	Calc.	Molécule		Transiti	on
121	97	3595,889 5,765	3595,885	¹³ C ¹⁶ O ¹⁸ O	10°1	0000	R 11
122	98 99	5,530 5,280	5,537 (5,337)	¹² CO ₂ H ₂ O (100)	0311	0110	R 20
123		5,260	- 5,276	¹³ CÒ ₂	2001	1000	P 30
124		5,038	5,221 5,055	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	10°1 11°1	00°0 01°0	R 10 P 47

TABLEAU U

Figure 26 3595 — 3560 cm—1

		Ligi	ure 20. 3393 —	3360 cm-1			
N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule		Transiti	on
1 2	1 2	3594,885 4,718 4,538	3594,867 4,709 4,549	12CO ₂ 3C16O18O	12°1 03°1 10°1	10°0 01°0 00°0	R 6 R 19 R 9
3	3	4,379	4,551 4,387 4,316	¹³ CO ₂ ¹² CO ₂ ¹³ CO ₂	12°1 02°1 11°1	02°0 00°0	P 30 P 22
4 5	4	4,189 4,138 3,872	4,184 4,134 3,872	¹³ CO ₂ ¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	03 ¹ 1 10 ⁰ 1 »	01¹0 >> 00°0 >>	P 48 R 18 P 42 R 8
	5	3,750	3,781	¹² CO ₂	0401	0200	R 36?
6	6	3,374	3,372 3,354 3,189	12CO ₂ 313CO ₂ 13C16O18O	12°1 03°1 20°1 10°1	10°0 01°0 10°0 00°0	R 4 R 17 P 32 R 7
7 8 9	7 8 9	3,178 2,813 2,579	(3,188) 2,790 (2,582	H ₂ O (90) ¹² CO ₂ »	03 ¹ 1 02 ⁰ 1	01¹0 00°0	R 16 P 24
10	10	2,126 2,006	2,568 2,500 2,133 2,012	3C16O18O 12C16O18O 12CO ₂	04°1 10°1 >> 03°1	02°0 00°0 >> 01°10	R 34 R 6 R 32 R 15
12 13 14	12 13	1,965 1,823 1,596 1,415	- 1,992 1,906 1,804 1,591	13CO ₂ 12CO ₂ 13C16O18O 12C16O18O	10°1 12°1 10°1 >>	00°0 10°0 00°0 >>	P 44 R 2 R 5 R 31
15	13	1,266	1,416 1,411 1,334 ?	¹² CO ₂ ¹³ CO ₂ ¹² CO ₂	03 ¹ 1 20 ⁰ 1 04 ⁰ 1	0110 1000 0200	R 14 R 34 R 32
16 { 17 18 19	14 15 16 17	1,090 1,045 0,754 0,637° 0,481° 0,410	1,104 1,044 0,754 0,628 0,489 0,396	13C16O18O 12C16O18O 12CO ₂ >> 12C16O18O 13C16O18O	10°1 >> 02°1 03°1 10°1	00°0 >> 01°0 00°0	R 4 R 30 P 26 R 13 R 29
20	18	0,002	0,081 0,001 3589,929	¹² CO ₂ ³ ¹² C ¹⁶ O ¹⁸ O	04°1 03°1 10°1	» 02°0 01°0 00°0	R 30 R 30 R 12 R 28
21 22 23	19	9,818 9,450°	9,823 9,684 9,445	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	10°1 » 20°1	10 ₀ 0 »	P 46 R 2 P 36
23	20	9,353	9,363	¹² C ¹⁶ O ¹⁸ O	1001	$00_{0}0$	R 27

		,	ABLEAU U	(suite)			
N° 13CO 2	N° 12CO 2	Obs.	Calc.	Molécule	7	Fransitio	on
24 25	21 22	3589,220 8,900	3589,222 8,903 8,807 8,790	12CO ₂ >> 12C16O18O	03 ¹ 1 02 ⁰ 1 04 ⁰ 1 10 ⁰ 1	01¹0 00°0 02°0 00°0	R 11 P 28 R 28 R 26
26 27 28	23 24	8,712 8,563 8,326 8,255	8,78 8,563	H ₂ O ¹² CO ₂	0311	0110	R 10
30	25 26 27	8,205 7,783 7,624	8,213 7,792 - 7,628	12C16O18O 12CO ₂ 12C16O18O 13CO ₂	10°1 03°1 10°1 »	00°0 01°10 00°0 >>	R 25 R 9 R 24 P 48
31 32	28	7,516° »	7,625 7,513 - 7,457 7,107	¹² CO ₂ ¹³ CO ₂ ¹² CO ₂	04°1 20°1 03°1	02°0 10°0 01°0	R 26 P 38 R 8
33 34	29	7,042 6,504	7,038 7,031 6,62	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 02°1	» 00°0	R 23 P 30
35	30 31	6,484	6,58 6,444 6,441 6,338	H ₂ O (100) ¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	12°1 10°1 03°1	10°0 00°0 01°0	P 4 R 22 R 7
36 37 38	32	6,217° 6,063 5,836	6,200 6,031 5,839	3C16O18O	04°1 10°1 >> 03¹1	02°0 00°0 >> 01°10	R 24 P 2? R 21
39 40	34 35	5,628 5,389	5,631 5,404 5,283 5,230	12CO ₂ >> 13C16O18O 12C16O18O	10°1 » »	0000	R 6 P 50 P 3 R 20
41 42	36 37	5,143 4,864	5,138 , 4,868 + 4,862 + 4,818	12CO ₂ >> >> >> >>	02°1 04°1 03°1 12°1	02°0 01°0 10°0	P 32 R 22 R 5 P 6
43	38	4,607	4,617 4,529	12C16O18O	10°1 >>	0000	R 19 P 4
44 45 46	39 40	4,131 3,995 3,762	4,130 3,997 3,768	12CO ₂ 12C16O18O 13C16O18O	03 ¹ 1 10 ⁰ 1 »	01 ¹0 00°0 »	R 4 R 18 P 5
47 48	41 42	3,506° 3,355	3,516 3,372 3,363 () 3,220	12CO ₂ 12C16O18O 12CO ₂	04°1 10°1 03°1 10°1	02°0 00°0 01°0 00°0	R 20 R 17 R 3 R 34
49 50 51	43	3,215 3,196 3,015 2,740	{ (3,162 3,157 3,003	3CO ₂ 13C16O18O	12°1 10°1 10°1 »	10°0 00°0 >> >>	P 8 P 52 P 6 R 16
52 53 54	45	2,611 2,226 2,119	2,739 2,612 2,231 (2,145 + 2,102	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	03 ¹ 1 10 ⁰ 0 04 ⁰ 1 10 ⁰ 1	01 ¹ 0 00 ⁰ 1 02 ⁰ 0 00 ⁰ 0	R 2 P 7 R 18 R 15
55	47	1,829	1,840	¹² CO ₂	03 ¹ 1 04 ² 1	01 ¹0 02²0	R 1 R 43
56	48	1,477 1,439 -	1,478 1,457 1,454	12C16O18O	12°1 10°1 10°1	10°0 00°0 »	P 10 R 14 P 8
57	49	1,281	1,314 1,281	¹² CO ₂	$04^{2}1$ $02^{0}1$	02°0 00°0	R 42 P 36
58		0,863	(0,882	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	10°1	>> >>	P 54 R 13 R 16
60	50	0,774)	0,755	12CO ₂ » 13C16O18O	04°1 04°1 10°1	02°0 02°0 00°0	R 16 R 41 P 9
59		0,693°	0,670		10.1	00 0	1)

			I I I DELLI C	(surre)			
N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule		Transiti	on
60	51	3580,258	1	¹² CO ₂	03 ¹ 1	0110	Q
61	52	0,160	3580,213 (0,153) 0,09	12C16O18O H ₂ O	04 ² 1 10 ⁰ 1	$02^{2}0$ $00^{0}0$	R 40 R 12
62	53	3579,930	?	13C16O18O	1.001	0000	D 10
62	54	9,893 9,760	9,881 9,763 9,633	12CO ₂	10°1 12°1 04°1	00°0 10°0 02°0	P 10 P 12 R 39
63 64	5 5 5 6	9,494 9,321	9,492 (9,346	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 04°1	00°0 02°0	R 11 R 14
65		9,093	9,319 9,090 9,085	3C16O18O	$02^{0}1$ $04^{2}1$ $10^{0}1$	00°0 02°0 00°0	P 38 R 38 P 11
66	57	8,811	8,825	12C16O18O	>>	>>	R 10
67 68	58	8,722 8,573	8,725 8,582	¹² CO ₂ ¹³ CO ₂	03 ¹ 1 10 ⁰ 1	01¹0 00°0	P 2 P 56
69	59	8,573 8,523 8,291	- 8,503 8,284	¹³ CO ₂ ¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	04 ² 1 10 ⁰ 1	02 ² 0 00 ⁰ 0	R 37 P 12
70	60	8,155	8,153 8,020	12C16O18O 12CO ₂	» 12°1	>> 10°0	R 9 P 14
71	61	7,929	7,946 7,934 7,918	» » »	04 ² 1 03 ¹ 1 04 ⁰ 1	02 ² 0 01 ¹ 0 02 ⁰ 0	R 36 P 3
72	62	7,465 7,455°	7,477 7,474	13C16O18O 12C16O18O	10°1	» 00°0	R 12 P 13 R 8
73	63	7,326	7,351 7,334	¹² CO ₂	04°1 02°1	$02^{2}0$ $00^{0}0$	R 35 P 40
74 75	64 65	7,139 6,791	7,134 (6,789	¹² C ¹⁶ O ¹⁸ O	03 ¹ 1 10 ⁰ 1	0110 0000	P 4 R 7
76	0.5		(6,780	¹² CO ₂	0421	$02^{2}0$	R 34
77	66	6,663 6,466	6,664 6,472	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 04°1	00°0 02°0	P 14 R 10
78	67	6,320 6,280	6,332	" " " "	03 ¹ 1 10 ⁰ 1	01 ¹ 0 00 ⁰ 0	P 5
70		0,200	- 6,258 6,247	¹² CO ₂	12º1	10°0	P 16
79	68	6,113	6,178 6,099	³² C ¹⁶ O ¹⁸ O	$04^{2}0$ $10^{0}1$	$02^{2}0$ $00^{0}0$	R 33
80	69	5,889	?				
		5,849	- 5,845 5,592	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	$10^{0}1$ $04^{2}1$	00°0 02°0	P 15 R 32
81	70	5,525	5,592 5,524 5,403	» 12C16O18O	03 ¹ 1 10 ⁰ 1	01¹0 00°0	P 6
82	71	5,322	5,326	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	$02^{0}1$	0000	P 42
83		5,008 -	5,020 (5,007	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 04°1	02°0	P 16 R 8
	72	5,002	4,981	»	0421	$02^{2}0$	R 31
84	73	4,704	4,706	¹² CO ₂	0311	0110	P 7
85	74	4,438	4,701 4,445 4,382	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 12°1 04°1	$00^{\circ}0$ $10^{\circ}0$ $02^{\circ}0$	R 4 P 18 R 30
86	7.5	4,187	4,190	¹³ C ¹⁶ O ¹⁸ O	1001	0000	P 17
87	75 76	4,146 3,891	3,892	¹² CO ₂	0311	0110	P 8
88	77	3,751	3,907 3,762	13CO ₂ 12CO ₂	$10^{0}1$ $04^{2}1$	$00^{0}0$ $02^{2}0$	P 60 R 31
89	78	3,510	3,524	>>	$04^{\circ}1$	0200	R 6
90	79	3,291	3,353 3,294	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 02°1	0000	P 18 P 44
91	80	3,056	3,150 3,058	» »	04 ² 1 03 ¹ 1	$02^{2}0$ $01^{1}0$	R 28 P 9
	81	2,575	(2,614	» »	12°1 04°1	1000	P 20
92		2,519 -	2,510	18C16O18O	1001	$02^{2}0$ $00^{0}0$	R 27 P 19
116							

		•	TIDLE: IO O	(5,,,,,,			
N° ¹³CO₂	$^{\mathrm{N}^{\mathrm{o}}}_{^{12}\mathrm{CO}_{2}}$	Obs.	Calc.	Molécule	Т	ransitio	n
93	82	3572,233	3572,241	¹² CO ₂	0311	0110	P 10
94	83	2,019	2,021	» ⁻	0401	0200	R 4
95	84	1,898	1,897 1,664	3C16O18O	$04^{2}1$ $10^{0}1$	$02^{2}0$ $00^{0}0$	R 26 P 20
96 97		1,664 1,536	1.532	13CO a	»	»	P 62
98	85	1,380	1,387	$^{12}CO_2$	0311	0110	P 11
		1,238	1,258 1,240	» »	04 ² 1 02 ⁰ 1	$02^{2}0$ $00^{0}0$	R 25 P 46
99 100		0,811	- 0.809	13C16O18O	1001	»	P 21
100	86	0,758	0,754	¹² CO ₂	1201	10°0	P 22
101	0.7	0,573	0,622 0,569	» »	$04^{2}1$ $03^{1}1$	$02^{2}0$ $01^{1}0$	R 24 P 12
101	87	0,575	0,500	>>	$04^{0}1$	0200	R 2
102		0,203°	0,193	13CO ₂	0201	0000	R 68
102	89	3569,982	3569,972 9,949	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	$04^{2}1$ $10^{0}1$	$02^{2}0$ $00^{0}0$	R 23 P 22
103 104	90	9,956 9,695	9,693	12CO.	0311	0110	P 13
105		9,323	9,310	13CO.	$02^{\circ}1$	0000	R 66
	91	9,321	9,324 9,163	12CO ₂	04 ² 1 02 ⁰ 1	$02^{2}0$ $00^{0}0$	R 22 P 48
106	92	9,158 9,150 -	(9,131	13CO.	1001	»	P 64
100		2,122	9,084	¹³ C ¹⁶ O ¹⁸ O	» 04°1	» 02°0	P 23 R 0
107	93	8,875	8,961 (8,877	¹² CO ₂	0311	0110	P 14
107	93	0,073	8,864	»	1201	1000	P 24
108	94	8,683	8,665	**************************************	04°1 02°1	$02^{2}0$ $00^{0}0$	R 21 R 64
109	95	8,394 8,246	8,404 8 33	H ₂ O	02*1	00-0	N 04
110	73	8,225	8,33 8,211	13C16O18O	$10^{0}1$	0000	P 24
	96	8,107°	8,124	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	>> 04 ² 1)> 0220	P 4 R 20
111	97	7,969	{ 8,005 8,02	H.O			
	,		7,975	12CO.	0311	01¹0 00°0	P 15 R 62
112	98	7,474 7,354	7,475	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	$02^{0}1$ $10^{0}1$	>> >>	P 5
	90	7,554	7,335	12CO.	$04^{2}1$	$02^{2}0$	R 19
113		7,344 -	7,333	18C16O18O	10°1 03°1	00°0 01°0	P 25 P 16
114 115	99 100	7,155° 7,086°	7,163 7,060	¹² CO ₂	0201	0000	P 50
113	100	7,000	6 944	>>	1201	10^{0}	P 26
116		6,710 -	6,705	¹³ CO ₂ ¹² CO ₂	$10^{0}1$ $04^{2}1$	00°0 02°0	P 66 R 18
	101	6,648	6,663	→-CO ₂	04-1	0200	P 2
	101	0,040	6,600	12C16O18O	1001	00_{0}	P 6
117		(515	6,52 6,523	H ₂ O (65) ¹³ CO ₂	0201	0000	R 60
117		6,515	6.450	13C16O18O	$10^{0}1$	>>	P 26
118	102	6,239	6,236	¹² CO ₂	0311	0110	P 17
119	103	6,008	6,04	H ₂ O(60) ¹² CO ₂	0421	0220	R 17
120	104	5,836	5,828	$^{12}C^{16}O^{18}O$	1001	0000	P 7
	105	5,639°	(5,680)	H ₂ O (60) ¹³ C ¹⁶ O ¹⁸ O	10°1	0000	P 27
121		5,548 -	5,561	13CO.	0201	»	R 58
(122	106	5,434	5,430	¹² CO ₂	0311	0110	P 18
1123	107	5,284°	5,300	¹² C ¹⁶ O ¹⁸ O	04 ² 1 10 ⁰ 1	$02^{2}0$ $00^{0}0$	R 16 P 8
(124	108	5,041°	5,052 5,034	¹² CO ₂	0401	02^{0}	P 4
- {		· ·	4,995	>>	12º1 02º1	10°0 00°0	P 28 P 52
125	109	4,948 4,632°-	4,935 4,664	13C16O18O	1001	>>	P 28
126	110	4,591	4,611	¹² CO ₂	0421	0220	R 15
127		4,510 -	4,551 4,473	¹⁸ CO ₂ ¹² CO ₂	02°1 03°1	00°0 01°0	R 56 P 19
	111	4,477	4,473	CO ₂	- J J X	0.0	217

				, ,			
N° 13CO,	Nº 12CO ₂	Obs.	Calc.	Molécule		Transit	ion
CO_2							
128		3564,281 -	?				
	112	4,266	3564,270	12C18O18O	$10^{0}1$	0000	P 9
129	113	3,919	3,915	¹² CO ₂	0421	0220	R 14
130	114	3,683	3,764 3,676	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 03°1	00°0 01°10	P 29 P 20
131	117	3,525	(((3,606)	H_2O (50)	03-1	01-0	F 20
		}	3,532	¹³ CÒ ₉	0201	0000	R 54
	115	3,479	3,481	12C16O18O	1001	0000	P 10
122	116	2 227	3,431	¹² CO ₂	0401	$02^{0}0$	P 6
132 133	116 117	3,227 3,029	3,213	¹² CO ₂	0421	$02^{2}0$	R 13
134	11/	2,803	3,017 - 2,856	13C16O18O	12º1 10º1	10°0 00°0	P 30 P 30
	118	2,766°	2,785	¹² CO ₂	0201	>> >>	P 54
135	119	2,706°	(2,688	»	0311	0110	P 21
	4.00		2,689	¹² C ¹⁶ O ¹⁸ O	$10^{0}1$	0000	P 11
136	120	2,512	(2,507	¹² CO ₂	0421	$02^{2}0$	R 12
150		2,488 }	2,491 1,944	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	02°1 10°1	0000	R 52
(137	121	1.905	(1,902	¹² CO ₂	0311	00°0 01°0	P 31 P 22
-{		2,700	1,889	12C16O18O .	1001	0000	P 12
(138	122	1,790	1,810	¹² CO ₂	0401	0200	R 11
139		1.40%	1,796	>>	$04^{2}1$	$02^{2}0$	R 11
139	123	1,427 1,415	1,428	¹³ CO ₂	0201	00_{0}	R 50
	143	1,413	(1,082	12C16O18O	1001	0000	P 13
140	124	1,076	1,078	¹² CO ₂	0421	0220	R 10
			1,024	¹⁸ C ¹⁶ O ¹⁸ O	1001	0000	P 32
1.41	105	0.004	1,008	¹² CO ₂	12º1	0200	P 32
141 142	125 126	0,884	0,879	>>	0311	0110	P 23
143	120	0,615 0,343)	0,611	" "CO ₂	0201	0000	P 56
	127	0,300	0,335	12CO ₂	>> 04 ² 1)> 0220	R 48 R 9
		-,,	0,271	12C16O18O	10°1	0000	P 14
1.4.4	100		0,170	¹² CO ₂	0401	0200	P 10
144	128	0,124	0,108	>> 19 G16 G16 G	0311	0110	P 24
			(0,099	¹³ C ¹⁶ O ¹⁸ O	$10^{0}1$	00_{0}	P 33

TABLEAU V

Figure 24 3560 — 3525 cm⁻¹

$^{\mathrm{N}^{\mathrm{o}}}_{^{13}\mathrm{CO}_{2}}$	Nº 12CO ₂	Obs.	Calc.	Molécule		Transi	ion
1 2 3	1 2 3	3559,627 9,463 9,236	3559,627 9,454 9,241	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	04 ² 1 10 ⁰ 1 >>	02 ² 0 00°0 »	R 8 P 15 R 46
4 5	4 5	9,054	9,167 9,048 9,969	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂ »	» 03 ¹ 1 12 ⁰ 1	» 01¹0 10°0	P 34 P 25 P 34
6 7 8	6 7	8,864° 8,644 8,506°	8,893 8,631 8,512	12C16O18O 12CO2	04 ² 1 10 ⁰ 1 04 ⁰ 1	02°0 00°0 02°0	R 7 P 16 P 12
9	8 9	8,416 8,293	8,413 8,292 8,231	» » » »	02°1 03°1 10°1	00°0 01°0 00°0	P 58 P 26 P 35
10	10	8,152 8,113	(8,154 (8,116	¹² CO ₂ ¹³ CO ₂	04°1 02°1	0220 00°0	R 6 R 44

TABLEAU V (suite)

			TABLETTO	(Barre)			
N° 13CO 2	N° 12CO 2	Obs.	Calc.	Molécule	Ti	ransitio	on
11	11 12	3557,808 7,398°	3557,803 7,409 7,288	12C16O18O 12CO ₂ 13C16O18O	$04^{2}1$	00°0 02°0 00°0	P 17 R 5 P 36
12	13	7,194	7,197	¹² CO ₂	0311	0110	P 27
13		6,963	6,968	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	02°1 10°1	0000	R 42 P 18
	14	6,960 }	6,968	¹² CO ₂	1201	» 10°0	P 36
14	15	6,837	6,836	»	$04^{0}1$	0200	P 14
1.5	16	6,651	6,658 6,455	» »		$02^{2}0$ $01^{1}0$	R 4 P 28
15 16	17	6,453 6,338	6,340	13C16O18O	$10^{0}1$	0000	P 37
17	18	6,162	6,190	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	02°1 10°1	>>	P 60 P 19
	19	5,887°) 6,130 5,902	¹² CO ₂	0421	» 0220	P 19 R 3
18	20	5,804	5,802	¹³ CO ₂	0201	0000	R 40
19	21	5,311	5,384	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 03°1	01¹0	P 38 P 29
19	41	3,311	5,317	12C16O18O	$10^{0}1$	0000	P 20
20	22	5,143	5,142	¹² CO ₂	$04^{0}1$ $04^{2}1$	$02^{0}0$ $02^{2}0$	P 16 R 2
	23	4,805	4,802	>>	1201	10^{6}	P 38?
21	24	4,617	(4,616	¹³ CO ₂ ¹² CO ₂	02°1 03°1	$00^{0}0$	R 38 P 30
	25	4,444	4,599	12C16O18O	10 ¹ I	0000	P 21
22		>>	- 4,424	¹³ C ¹⁶ O ¹⁸ O	>>	>>	P 39
23 24	26 27	4,250 3,947	3 941	¹² CO ₂	0201	0000	P 62
25	28	3,574	3,573	12C16O18O	$10^{0}1$	>>	P 22
	29	3,428	3,456	13C16O18O 12CO ₂	›› 04°1	0200	P 40 P 18
	29	3,420	3,418))	0311	0110	P 31
26		3,413 J	3,411	¹³ CO ₂ ¹² CO ₂	$02^{0}1$ $04^{2}1$	$00^{0}0$ $02^{2}0$	R 36 O
27	30	2,724	2,721	>>	0311	0110	P 32
20		2.402	2,710 2,484	12C16O18O 13C16O18O	10°1)) 00°0	P 23 P 41
28	31	2,493 2,351	2,404		″	"	1 71
29	32	2,189	((2,188)	H ₂ O	0201	0000	R 34
30	33	1,837	1,842	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	1001	»	P 24
31	34	1,687	(1,698	¹² CO ₂	0401	0200	P 20
			1,668	13C16O18O	02°1 10°1	» 00°0	P 64 P 42
32	35	1,501	1,496	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	0311	0110	P 33
33	36	0,954 0,937	0,966 0,939	¹³ CO ₂	10°1 02°1	» 0000	P 25 R 32
34	37	0.830	0,823	12CO.	0311	0110	P 34
35	20	0,526 - 0,496	0,521	¹³ C ¹⁶ O ¹⁸ O	10°1	0000	P 43
	38	0,490	0,457	¹² CO ₂	$04^{2}1$	$02^{2}0$	P 3
36	39	0,079	0.087	¹² C ¹⁶ O ¹⁸ O	10°1 04°1	00°0 02°0	P 26 P 22
37 38	40 41	3549,942 9,669	3549,948	13CO.	0201	0000	R 30
		· ·	9,658	¹² CO ₂	0421	$02^{2}0$ $01^{1}0$	P 4 P 35
39	42	9,550	9,550 9,530	13C16O18O	03 ¹ 1 10 ⁰ 1	0000	P 44
40	43	9,376	9,368	12CO o	0201	>>	P 66 P 27
41 42	44 45	9,200 8,900	9,199	¹² C ¹⁶ O ¹⁵ O ¹² CO ₂	10°1 03°1	0110	P 27 P 36
42	70	0,700	1 8,853	>>	$04^{2}1$	$02^{2}0$	P 5
43		8,384	8,534	¹³ CO.	10°1 02°1	0000	P 45 R 28
43	46	8,367	8,306	¹² C ¹⁶ O ¹⁸ O	1001	>>	P 28

TABLEAU V (suite)

			I ADELAO V	(Sutte)			
N° 13CO 2	N° 12CO ₂	Obs.	Calc.	Molécule		Transiti	on
44	47	3548,181	3548,180	¹² CO ₂	0401	0200	P 24
	48	8,045	8,042	»	$04^{2}1$	02 ² 0	P 6
45	49	7,581	7,581	13C16O18O	0311	0110	P 37
46	50	7,410	7,530 7,408	12C16O18O	10°1	» 00°0	P 46 P 29
	51	7,2110	7,226	12CO,	0421	$02^{2}0$	P 7
47	52 53	7,088	7,088	13CO ₂	0201	0000	R 26
48	23	6,965 6,516 -	6,962 6,521	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	03 ¹ 1 10 ⁰ 1	01 ¹0 00°0	P 38 P 47?
4.0	54	6,498	6,505	12C16O18O	>>	>>	P 30
49	55	6,411	6,405	¹² CO ₂	0421	0220	P 8
	56	6,104	6,392	>>	0401	0200	P 26
50	57	5,768	5,766	¹³ CO ₂	0201	0000	R 24
51	58	5,595	5,595 5,591	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 03°1	00°0 01°0	P 31 P 39
	50	5,595	5,578	>>	03^{-1} 04^{2} 1	01°0	P 39 P 9
52	50	5,220	5,578	13CO.	1201	1000	R 42?
53	59 60	5,163 5,001	5,16 4,999	$_{^{12}\mathrm{CO}_2}^{\mathrm{H}_2\mathrm{O}_2}$	0311	0110	P 40
54	61	4,702	(4,745	>>	0421	0220	P 10
	62	4.595	1 4,679	12C16O18O	1001	0000	P 32
55	63	4,393	4,588 4,426	¹² CO ₂ ¹³ CO ₂	02°1 02°1	02°0 00°0	P 28 R 22
			4,179	>>	1201	1000	R 40
56 57	64 65	3,905 3,766	3,907 3,757	¹² CO ₂ ¹² C ¹⁶ O ¹⁸ O	0421	02 ² 0	P 11
58	66	3,573	3,576	12CO ₂	10°1 03°1	00°0 01°0	P 33 P 41
50			3,106	¹³ CO ₂	1201	$10^{0}O$	R 38
59	67	3,067	3,068	" 12CO ₂	$02^{0}1$ $04^{2}1$	$00^{0}0$ $02^{2}0$	R 20 P 12
		Í	3,016	>>	0311	0110	P 42
60	68	2,794	2,830	12C16O18O	1001	0000	P 34
	69	2,577	2,763	¹² CO ₂	04º1	0200	P 30
	70	2,318	?				
61	71	2,216	2,215 2,007	12CO ₂	$04^{2}1$ $12^{0}1$	0220	P 13
	72	1,906	1,896	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	1001	10°0 00°0	R 36 P 35
62	73	1,684	1,690	¹⁸ CO ₂	02°1	>>	R 18
63	74 75	1,541 1,363	1,539 1,361	¹² CO ₂	$03^{1}1$ $04^{2}1$	0110 0220	P 43 P 14
1 64	76	0,983	(1,011	»	0311	0110	P 44
1			0,956	12C16O18O	1001	0000	P 36
65		0,910°	0,920 0,882	¹² CO ₂ ¹³ CO ₂	04°1 12°1	02°0 10°0	P 32 R 34
	77	0,503	0,502	12CO.	$04^{2}1$	0220	P 15
66	78 79	0,296 0,024	0,294 0,011	¹⁸ CO ₂ ¹² C ¹⁶ O ¹⁸ O	0201	$00_{0}0$	R 16
-	80	3539,912	?		1001	>>	P 37
67	0.1		3539,733	13CO ₂	1201	1000	R 32
67 68	81 82	9,637 9,481	9,636 9,479	12CO ₂	$04^{2}1$ $03^{1}1$	02 ² 0 01 ¹ 0	P 16 P 45
1	83	9,011	9,058	12C16O18O	1001	0000	P 38
1			9,058	¹² CO ₂	0401	0200	P 34
69	84	8,881	8,984 8,880	13CO ₂	03 ¹ 1 02 ⁰ 1	01 ¹0 00°0	P 46 R 14
170	85	8,768	8,766	12CO.	$04^{2}1$	0220	P 17
70	86	8,578° 8,100	8,560 8,101	18CO ₂ 12C16O18O	12°1 10°1	10°0 00°0	R 30
72	87	7,879	7,890	¹² CO ₂	0421	00°0	P 39 P 18
			?				

TABLEAU V (suite)

			I I I DELETICO V	(SHIVE)			
N° 18CO2	N° ,12CO ₂	Obs.	Calc.	Molécule	٦	Fransiti	on
73		3537,443	3537,448	¹³ CO ₂	0201	0000	R 12
	88	7,427	-\ 7,396 7,361	¹² CO ₂ ¹³ CO ₂	03 ¹ 1 12 ⁰ 1	01¹0 10°0	P 47 R 28
74	89	7,163	7,177	12CO.	0401	0200	P 36
75	90	6,972	7,137	¹² C ¹⁶ O ¹⁸ O ¹² CO ₂	10°1 04°1	00°0 02°0	P 40 P 19
75		0,972	1 6,936	>>	0311	0110	P 48
	91	6,487	6,50	$_{ m H_2O}^{ m H_2O}$			
	92	6,131	6,168	12C16O18O	10°1 12°1	00°0 10°0	P 41 R 26
			6,138	¹³ CO ₂ ¹² CO ₂	0421	$02^{2}0$	P 20
76	93	6,000	5,998	» ·	0201	$00_{0}0$	R 10
	94	5,640 ?	5,290	¹² CO ₂	0311	0110	P 49
77	95	5,259	5,276	» »	$04^{0}1$ $04^{2}1$	02°0 02°0	P 38 P 21
			5,192	12C16O18O	1001	0000	P 42
78	0.0	4,872	- 4,891	¹³ CO ₂ ¹² CO ₂	12º1 03º1	10°0 01°0	R 24 P 50
1 79	96 97	» 4,530	4,865 4,531	¹³ CO ₂	0201	0000	R 8
80	98	4,330	4,334	¹² CO ₂	0421	0220	P 22
(81 82	99	4,202 3,931	4,211 3,946	¹² C ¹⁶ O ¹⁸ O ¹⁸ CO ₂	10°1 03°1	00°0 01°0	P 43 R 52
	100	3,630	?		1 201	1000	D 22
83 84	101	3,630 3,409	3,619 (3,428	$^{13}CO_{2}$ $^{12}CO_{2}$	12°1 04°1	02 ² 0	R 22 P 23
		.,	?	12C16O18O	1001	0000	P 44
(102	3,147	3,222 3,160	12CO a	0311	0110	P 51
85	103	3,048	3,045	¹3CO₂	0421	0220	R 6 R 50
86	104	2,765	2,852 2,773	**************************************	03 ¹ 1	01¹0 »	P 52
87	105	2,520	2,523	>>	$04^{2}1$	$02^{2}0$	P 24
88	106	2,331 2,235	2,325 2,228	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	12°1 10°1	10°0 00°0	R 20 P 45
89	100	2,167	(a)	¹³ CO ₂	3000	0110	R 51
90 91	107	1,916 1,728°	? 1,740	¹³ CO ₂	0311	0110	R 48
		,	1,607	12CO.	$04^{2}1$	0220	P 25
92	108 109	1,540 1,395°	1,541	¹³ CO ₂	0201	0000	R 4
	110	1,220	1,228	12C16O18O	1001	0000	P 46
93 94		1,155 1,006	(a) 1,005	¹³ CO ₂ ¹³ CO ₂	30°0 12°1	01¹0 10°0	R 49 R 18
94	111	0,991	1,007	¹² CO ₂	0311	0110	P 53
	112	0,675	0,691	» »	04 ² 1 03 ¹ 1	02 ² 0 01 ¹ 0	P 26 P 54
95		0,618	0,607	13CO ₂	0311	0110	R 46
0.6	113	0,227	0,222	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂	10°1 02°1	00°0	P 47 R 2
96	114	0,019	(a)	>>	30°0	0110	R 47
0.7	115	3529,752	3529,763	¹² CO ₂ ¹³ CO ₂	04 ² 1 12 ⁰ 1	$02^{2}0$ $10^{0}0$	P 27 R 16
97	116	9,656 9,478	9,662 ?				
98	117	9,458 9,231	9,454 9,210	¹³ CO ₂ ¹² C ¹⁶ O ¹⁸ O	03 ¹ 1 10 ⁰ 1	01 ¹ 0 00 ⁰ 0	R 44 P 48
99	117	9,231	(a)	13CO ₂	30°0	0110	R 45
	118	9,010	9,041	H ₂ O ² ?			

⁽a) Valeurs perturbées par la perturbation de Coriolis entre les niveaux 30°0 et 03°1° (v.p. 147)

TABLEAU V (suite)

N° 13CO ₂	$^{\mathrm{N}^{\mathrm{o}}}_{^{12}\mathrm{CO}_{2}}$	Obs.	Calc.	Molécule	,	Transiti	ion
100	119	3528,829	(3528,838	¹2CO₂ »	04 ² 1 03 ¹ 1	02 ² 0 01 ¹ 0	P 28 P 55
101	120	8,486	(8,520) 8,481	" » ¹³CO,	» 02º1	» 00°0	P 56 R 0
102		8,294	8,295 8,283	» »	12°1 03°1	10°0 01¹0	R 14 R 42
103	121	8,188° 7,921	8,191 ((a)	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂ »	10°1 30°0 03°1	00°0 01°0	P 49 R 43 R 39?
	122 123	7,897 ∫ 7,482	7,898	¹² CO ₂	0421	0220	P 29
104	124	7,091	7,167 7,093 ((7,033)	¹² C ¹⁶ O ¹⁸ O ¹³ CO ₂ H ₂ O (40) ?	10°1 03°1	00°0 01°10	P 50 R 40
	125	6,957	6,963 6,905	¹² CO ₂ ¹³ CO ₂	04 ² 1 12 ⁰ 1	$02^{2}0$ $10^{0}0$	P 30 R 12
105	126	6,820 6,750	(a)	» ⁻	3000	0110	R 41
106	127	6,599 6,451	6,632 (a)	¹² CO ₂ ¹³ CO ₂	03 ¹ 1	01¹0 »	P 57? R 37
107	128 129 130	6,347 6,141 6,011	6,363 6,140 6,011	¹² CO ₂ ¹³ CO ₂ ¹² CO ₂	03 ¹ 1 02 ⁰ 1 04 ² 1	01 10 0000 0220	P 58? P 2 P 31
108 109		5,883 5,651	5,883 (a)	¹³CO₂ »	03 ¹ 1 30°0	01¹0 »	R 38 R 39
110	131	5,593° 5,487	(5,621) 5,492	$^{\mathrm{H_{2}O}}_{^{13}\mathrm{CO}_{2}}$?	12º1	1000	R 10
	132 133	5,465 5,070	? 5,068	¹² CO ₂	0421	0220	P 32

TABLEAU W

Identification des raies d'absorption

Figure 28 3525 — 3490 cm⁻¹

N° 13CO 2	N° 12CO 2	Obs.	Calc.	Molécule		Transiti	ion
1		3524,995	(a) 3524,654	¹³ CO ₂	0311	0110	R 35
2	1	4,557	(4,556 (a)	» »	02°1 30°0	0000	R 36 P 4
	2	4,390	4,410 4,182	12CO ₂	0311	01¹0 »	R 37 P 59
3	3	4,096 4,055	4,104 4,055	» » ¹³ CO _°)) 04 ² 1 12 ⁰ 1	>> 02 ² 0 10 ⁰ 0	P 60 P 33
	4	3,783	?	-	12*1	100	R 8
4	5	3,507	(a)	¹³ CO ₂	0311	0110	R 33
5 6		3,397 J 3,304	3,408	»	>>	>>	R 34
	6	3,147	(a) 3,152	" 12CO ₂	30°0 04°1	» 0220	R 35 P 34
7 8	7 8	2,959 2,716	2,956 (2,732)	¹³ CO ₂ H ₂ O (30)	0201	0000	P 6

⁽a) v. page précédente

TABLEAU W (suite)

			IABLEAU W	(suite)			
N° 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule	٦	Γransiti	on
9		3522,585	3522,595	¹³ CO ₂	1201	10^{0}	R 6
	9 10	2,500 2,143 -	2,174	H ₂ O (35) ¹² CO ₂	? 04 ² 1	0220	P 35
10	10		(a)	¹³ CO ₂	30°0 03°1	01¹0 »	R 33 R 32
10		2,118	2,142 (a)	» »	» »	<i>>></i>	R 31
11	11 12	1,993° 1,339	1,338	¹³ CO ₂	02º1	0000	P 8
		1,105°	1,214 1,110	¹² CO ₂ ¹³ CO ₂	04 ² 1 12 ⁰ 1	$02^{2}0$ $10^{0}0$	P 36 R 4
12 13	13	0,852	(a)	»>	30°0	0110	R 31
14		0,563	0,859 (a)	» »	03 ¹ 1	>> >>	R 30 R 29
15	14	0,225 0,020	0,223	¹² CO ₂	0421	0220	P 37
16	15	3519,702	(a)	¹³ CO ₂	3000	0110	R 29
17	16	9,578°	(3519,701 (9,602	» »	02°1 12°1	00°0 10°0	P 10 R 2
	17	9,261	9,557 9,255	" 12CO ₂	03 ¹ 1 04 ² 1	01 ¹ 0 02 ² 0	R 28 P 38
18	18	9,115	(a)	¹³ CO ₂	0311	0110	R 27
	19 20	8,937 8,667	?				
19		8,455	? (a)	¹³ CO ₂	30°0	0110	R 27
**	21	8,245	- 8,250	12CO o	04 ² 1 03 ¹ 1	02 ² 0 01 ¹ 0	P 39 R 26
20		>>	8,237 8,073	¹³ CO ₂	1201	1000	R 0
21 22	22 23	8,044 7,666	8,048 (a)	» »	02°1 03°1	$00^{0}0$ $01^{1}0$	P 12 R 25
23		7,4590	7.463	13C16O18O	02°1 04°1	00°0 02°0	R 42 P 40
	24 25	7,280 7,088	7,276 ?	¹² CO ₂			
24	26	6,911	6,940	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 03°1	00°0 01°0	R 41 R 24
			6,411	13C16O18O	0201	0000	R 40 P 14
25 26	27	6,365 6,241°	6,377 - (a)	¹³CO₂ »	» 03 ¹ 1	01 ¹ 0	R 23
27	28	6,221° 5,860°	6,258 5,877	¹² CO ₂ ¹³ C ¹⁶ O ¹⁸ O	04 ² 1 02 ⁰ 1	$02^{2}0$ $00^{0}0$	P 41 R 39
41	29	5,763	5,734	¹³ CO ₂	1201	10°0	P 2
28	30	5,541	5,545	>>	0311	0110	R 22
29	31	5,316 5,270	5,337 5,276	¹³ C ¹⁶ O ¹⁸ O ¹² CO ₂	02°1 04°1	00°0 02°0	R 38 P 42
. 20	32	5,023	? (a)	¹³ CO ₂	0311	0110	R 21
(30	33	4,807°	4,792	13 (16 (18 (0201	0000	R 37
(31	34	4,688	4,689 4,244	¹³ CO ₂ ¹² CO ₂	» 04°1	>> 0220	P 16 P 43
20	25	4 141	4,242	¹³ C16O18O	02°1 03°1	00°0 01°0	R 36 R 20
32	35	4,161	(4,172 (4,147	»	12°1	10°0	P 4
33	36	3,942 3,680	3,686	13C16O18O	0201	0000	R 35
34	37	3,414	(a) 3,256	¹³ CO ₂ ¹² CO ₂	03 ¹ 1 04 ² 1	01¹0 02²0	R 19 P 44
	38	3,252	3,124	13 (16 (18 ()	02°1	0000	R 34
35 36	39 40	2,987 2,789	2,982 2,782	¹³ CO ₂	03 ¹ 1	01¹0	P 18 R 18

(a) v. p. 221

TABLEAU W (suite)

N° 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule		Transiti	on
37		3512,560	(3512,558	¹³ C ¹⁶ O ¹⁸ O	02°1 12°1	10°0 10°0	R 33
38	41 42	2,230° 1,999	2,536 2,207 ((a) 1,987	¹² CO ₂ ¹³ CO ₂ ¹³ C1 ⁶ O1 ⁸ O	04 ² 1 03 ¹ 1 02 ⁰ 1	02 ² 0 01 ¹ 0 00 ⁰ 0	P 6 P 45 R 17 R 32
39		1,756°	1,735 1,410	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	04°1 02°1	02°0 00°0	R 42 R 31
40 41	42	1,365 1,261	1,365 - 1,258 1,219	¹³CO₂ »	03 ¹ 1 02 ⁰ 1	01¹0 00°0	R 16 P 20
42	43	» 0,855	(0,903	¹² CO ₂ ¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	04°1 12°1 02°1	02 ² 0 10 ⁰ 0	P 46 P 8
43	44	0,596	0,826 (a) (0,569	¹³CO₂ »	03 ¹ 1 04 ² 1	00°0 01°0 02°0 02°0	R 30 R 15 R 40
44	45	0,232 0,152	0,548 0,240 0,151	3C16O18O 12CO ₂	04°1 02°1 04°1	00°0 02°0	R 40 R 29 P 47
45	46	3509,955	3509,949 9,647	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	$03^{1}1$ $02^{0}1$	$01^{10} 00^{0}$	R 14 R 28
46	47	9,518	9,516 9,342 9,245	13CO ₂ ** **) 04º1 12º1) 02°0 10°0	P 22 R 38 P 10
47 48	48	9,177 » 9,031	- 9,155 9,051	**************************************	03 ¹ 1 04 ² 1 02 ⁰ 1	01 ¹ 0 02 ² 0 00 ⁰ 0	R 13 P 48 R 27
49 50	49	8,760° 8,502	8,507	¹³ CO ₂	0311	0110	R 12
51	**	8,180	8,450	¹³ C ¹⁶ O ¹⁸ O	02º i	0000	R 26
	50	8,046?	8,116 8,073	¹³ CO ₂ ¹² CO ₂	04°1 04°1	02°0 02°0	R 36 P 49
52	51	7,758	7,841	¹³ C ¹⁶ O ¹² O ¹³ CO ₂	02°1	0000	R 25 P 24
53 54 55 56 57	52	7,537° 7,220 7,048 6,885	7,565 7,228 7,048 6,874	» 13C16O18O 13CO ₂ » 13C16O18O	03 ¹ 1 12 ⁰ 1 02 ⁰ 1 03 ¹ 1 04 ⁰ 1	01 ¹ 0 10 ⁰ 0 00 ⁰ 0 01 ¹ 0 02 ⁰ 0	R 11 P 12 R 24 R 10 R 34
58 59	53 54	6,614 6,274 5,983	6,612 (a) (5,990 (5,978 5,861	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂ ¹³ CO ₂	02°1 03°1 02°1 >> 12°1	00°0 01°0 00°0 >> 10°0	R 23 R 9 R 22 P 26 P 26
60 61	55	5,577 5,365	5,607 5,572 5,361	13C16O18O >> >>	04°1 03°1 02°1	02°0 01°0 00°0	R 32 R 8 R 21
62 63	56	5,188 4,786	? (a) 4,731	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	03 ¹ 1 02 ⁰ 1	01¹0 00°0	R 7 R 20
64	57	4,177	4,327 4,183 4,134 4,092 4,079	13CO ₂ 3) 13C16Q18O 13CO ₂	04°1 02°1 12°1 02°1 03°1	02°0 00°0 100° 00°0	R 30 P 28 P 16 R 19
65	58	3,810 3,449	?			0110	R 6
66 67	59	3,311 3,036	3,451 (a) 3,026	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂ »	02°1 03°1 04°1	$00^{0}0$ $01^{1}0$ $02^{2}0$	R 18 R 5 R 28
68 69	60 61	2,800 2,553	2,805 2,568	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 03°1	00°0 01°10	R 17 R 4

(a) v. p. 221

TABLEAU W (suite)

			IABLEAU W	(suite)			
N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule	٦	Γransiti	on
70	62	3502,375	(3502,385 2,369	¹³CO₂ >>	12º1 02º1	10°0 00°0	P 18 P 30
71 72	63	2,158 1,780	2,152 (a) 1,707	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	» 03 ¹ 1 04 ⁰ 1	» 01¹0 02º0	R 16 R 3 R 26
73 74	64 65	1,508 1,042	1,496 1,042	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 03°1	00°0 01°10	R 15 R 2
75 (76	66	0,832	0,835 0,612 (0,536	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 12°1 02°1	00°0 10°0 00°0	R 14 P 20 P 32
77	00	0,374°	0,532	>>	04 ² 1 04 ⁰ 1	02 ² 0 02 ⁰ 0	R 38 R 24
78		0,374	(a) 0,169	3CO ₂	03 ¹ 1 02 ⁰ 1	01 ¹ 0 00 ⁰ 0	R 1 R 13
79 80		3499,890° 9,748°	3499,933	¹³ CO ₂	0421	0220	R 37?
81	67	9,506 9,452°	9,498 ?	¹³ C ¹⁶ O ¹⁸ O	0201	0000	R 12
82 83		9,321° 9,029	9,330 9,017	¹³ CO ₂	04 ² 1 04 ⁰ 1	$02^{2}0$ $02^{0}0$	R 36 R 28
84		8,820°	8,822 8,816	¹³ C ¹⁶ O ¹⁸ O	02°1 12°1	00°0 10°0	R 11 P 22
85	68	8,691	8,721	» ~ »	04 ² 1 03 ¹ 1	0220 0110	R 35 Q
			8,686	>>	02°1	0000	P 34
86	69	8,350 8,151	2 8,143 8,108	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 04°1	00°0 02°0	R 10 R 34
87		7,939	?	002	0 + 1	020	1001
0.0	70	7,739	?	1200	0.401	0.201	70. 20
88 89	71	7,652 7,465	7,643 7,457	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O	04°1 02°1	02°1 00°0	R 20 R 9
90	72	7,143	7,150	¹³ CO ₂	0311	01 ¹ 0 10 ⁰ 0	P 2 P 24
			6,996 6,868	» »	12°1 04°1	0220	R 32
91	73	6,820	6,817 6,768	» 13C16O18O	02°1	00°0	P 36 R 8
	74	6,611	?				
92 93		6,351 6,250	(a) (6,254	¹³CO₂ »	03 ¹ 1 04 ⁰ 1	01 ¹ 0 02 ⁰ 0	P 3 R 18
			6,242	>>	$04^{2}1$	$02^{2}0$	R 31
94		6,083	6,073 5,609	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	$02^{0}1$ $04^{2}1$	00°0 02°0	R 7 R 30
95	75	5,565	5,564	>>	0311	0110	P 4
96 97		5,376 5,127	5,373 5,153	¹³ C ¹⁶ O ¹⁸ O	02°1 12°1	00°0 10°0	R 6 P 26
			4,973	»	$04^{2}1$	0220	R 29
98	76	4,920	4,930 4,846	» »	$02^{0}1$ $04^{0}1$	00°0 02°0	P 38 R 16
99	77	4,760	(a) 4,670	3C16O18O	03 ¹ 1 02 ⁰ 1	01 ¹ 0 00 ⁰ 0	P 5 R 5
100	78	4,322 4,244	4,332	¹³ CO ₂ ¹² CO ₂	$04^{2}1$ $00^{0}3$	$02^{2}0$ $00^{0}0$	R 28 tête de bande*
101	79	4,072 3,963	4,075 (3,962	3C16O18O	» 02°1	» »	R 34*
	00	· ·	3,941	18CO.	0311	0110	P 6
	80 81	3,934 -	3,935 3,756	¹² CO ₂	00°3	» 00 ₀ 0	R 32* R 30*

(a) v. p. 221 * 2° ordre

TABLEAU W (suite)

N° 13CO ₂	$^{\mathrm{N}^{\mathrm{o}}}_{^{12}\mathrm{CO}_{2}}$	Obs.	Calc.	Molécule		Transiti	on
102 103 104		3493,692 3,424 3,270°	3493,686 3,423 (3,286) 3,248	13CO ₂ » » 13C16O18O	$04^{2}1 \\ 04^{0}1 \\ 12^{0}1 \\ 02^{0}1$	02°0 02°0 10°0 00°0	R 27 R 14 P 28 R 3
105 106		3,132 3,028	(a) (3,036 (3,024	13CO ₂ » »	03 ¹ 1 04 ² 1 02 ⁰ 1	01 10 02 20 00 00	P 7 R 26 P 40
107 108		2,675 2,545	? 2,531 2,380	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 04°1 03°1	00°0 02°0 01°0	R 2 R 25 P 8
109 110		2,342 1,966 1,720	2,342 1,980 1,808 1,720	» 13C16O18O 28CO2	04°1 02°1 04°1	02°0 00°0 02°0	R 12 R 1 R 24
112		1,511	(a) 1,397	» »	03 ¹ 1 12 ⁰ 1	01 ¹ 0 10 ⁰ 0	P 9 P 30
113		1,088	1,098 1,081 1,055	3C16O18O 13CO ₂	02°1 >> 04°1	00°0 >> 02°0	P 42 R 0 R 23
114 115 116 117		0,703 0,520 0,392 0,272?	0,705 0,522 0,385 ?	» » »	03 ¹ 1 04 ⁰ 1 04 ² 1	01¹0 02º0 02²0	P 10 R 10 R 22

TABLEAU X

Identification des raies d'absorption

Figure 29 3490 — 3460 cm⁻⁻¹

N° 13CO ₂	N° 12CO2	Obs.	Calc.	Molécule		Transiti	ion
1		3489,875	(a)	¹³ CO ₂	0311	0110	P 11
2		9,707	3489,711	>>	0421	$02^{2}0$	R 21
3		0.472	9,613	13C16O18O	02°1 12°1	00°0 10°0	P 1 P 32
, 4		9,473 9,142	9,482 9,154	¹³CO₂ »	0201	0000	P 32 P 44
1 7		9,142	(9,052	<i>"</i>	0311	0110	P 12
1 5		9,065	9,045	»	0401	0200	R 8
		,,,,,,,	9,032	»	0421	0220	R 20
6		8,930°	8,872	13C16O18O	0201	0000	P 2?
7 8		8,729	?				
8		8,3310	8,328	$^{13}\mathrm{CO}_2$	$04^{2}1$	$02^{2}0$	R 19
9		8,195	(a)	>>	0311	0110	P 13
10		7.650	8,125	18C16O18O	0201	0000	P 3
11		7,652	7,660	¹³ CO ₂	04 ² 1 04 ⁰ 1	$02^{2}0$ $02^{0}0$	R 18 R 6
1.1		7,542	7,553 7,444	» »	1201	1000	P 34
12		7,381	(7,382	<i>"</i>	0311	0110	P 14
		7,501	7,376	13C16O18O	0201	0000	P 4
13		7,190	7,193	18CO.	>> ·	>>	P 46
14		6,961	6,965	>>	$04^{2}1$	$02^{2}0$	R 17
			6,620	¹⁸ C ¹⁶ O ¹⁸ O	02°1	0000	P 5
15		6,519	(a)	¹³ CO ₂	0311	0110	P 15
16		6,275	6,268	>>	0421	0220	R 16
17		6,040	6,043	190160160	0401	0200	R 4
18 19		5,854	5,861	13C16O18O	0201	0000	P 6
19		5,689	5,696	¹³ CO ₂	0311	0110	P 16

TABLEAU X (suite)

			INDLLING.	A. (Suite)			
Nº 13CO ₂	N° 12CO ₂	Obs.	Calc.	Molécule	1	Γransiti	ion
20	4	3485,580	(3485,583	* 13CO ₂	1201	1000	P 36
			5,565	>>	0421	$02^{2}0$	R 15
21		5,211	5,209	13CO ₂	$02^{0}1$	0201	P 48
22 23		5,089 4,833	5,097 (4,857	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂) 04 ² 1)> 0220	P 7 R 14
Am L.*			(a)	»	0311	0110	P 17
24		4,519	4,518	>>	0401	02°0	R 2
25 26		4,334 4,135	4,327	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1 04°1	$00^{0}0$ $02^{2}0$	P 8 R 13
27		3,982	4,146 3,993	» »	0311	0110	R 13 P 18
28		3,563	3,554	13C16O18O	0201	0000	P 9
29		3,421	3,428	¹³ CO ₂	0421	0220	R 12
30		3,200 3,127°	3,208 (a)	» »	02°1 03°1	00°0 01¹0	P 50 P 19
().		5,127	2,975	»	0401	0200	R 0
32		2,765	2,777	13C16O18O	02°1	0000	P 10
33		2,280	2,706 2,272	¹³CO₂ »	$04^{2}1$ $03^{1}1$	$02^{2}0$ $01^{1}0$	R 11 P 20
34		1,986	(1,993	13C16O18O	0201	0000	P 11
			1,980	¹³ CO ₂	$04^{2}1$	$02^{2}0$	R 10
35		1,391	(a)	» »	03 ¹ 1 04 ² 1	$01^{1}0$ $02^{2}0$	P 21 R 9
36		1,199	1,249	18C16O18O	0201	0000	P 12
			1,187	¹³ CO ₂	>>	»	P 52
37		0,952	?		0.401	0.300	D 2
38 39		0,654 0,535	0,629	¹³ CO ₂	04°1 03°1	02°0 01°0	P 2 P 22
1			0,513	>>	$04^{2}1$	$02^{2}0$	R 8
40		0,4390	0,414	¹³ C ¹⁶ O ¹⁸ O	0201	00_{0}	P 13
41		3479,940	3479,772	¹³ CO ₂	0421	02°0	R 7
42		9,661	(a)	>>	0311	0110	P 23
4.2		0.142	9,617	13C16O18O	0201	00_{0}	P 14 P 54
43 44		9,142 9,008	9,145 (9,045	¹³ CO ₂)> 04º1)> 02º0	P 54 P 4
		2,000	9,026	>>	$04^{2}1$	$02^{2}0$	R 6
4.5		0.500	8,815	18C16O18O	0201	0000	P 15
45 46		8,787 8,274	8,781 8,276	¹³CO₂ ≫	03 ¹ 1 04 ² 1	01^{10} $02^{2}0$	P 24 R 5
47		7,984	(8,009	13 (16 () 18 ()	0201	0000	P 16
40			(a)	¹³ CO ₂	0311	0110	P 25
48		7,812	? 7,521	¹³ CO ₂	0421	0220	R 4
49		7,450	7,443	»	0401	0200	P 6
50		7,290	(a)	>>>	30°0	$01^{1}0$	P 25
{			7,199 7,084	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	02°1	» 00°0	P 17 P 56
51		7,032	7,010	»	0311	0110	P 26
52		6,726°	6,761	>>	0421	0220	R 3
53 54		6,393 6,288	6,383 (a)	13C16O18O 13CO ₂	02°1 03°1	00°0 01°10	P 18 P 27
55		5,986	5,997	»	0421	02 ² 0	R 2
56		5,827	5,825	>>	0401	0200	P 8
57		5,555	5,563	¹³ C ¹⁶ O ¹⁸ O	02°1 30°0	00°0 01°0	P 19 P 27
58		5,229	1 (a) 5,222	»	0311	»	P 28
59		5,006	5,002	>>	0201	00_{0}	P 58
60 61		4,736 4,604	4,737	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	03 ¹ 1	01¹0	P 20 P 29
62		4,804	(a)		05-1	01-0	1 27
63		4,195	4,191	¹³ CO ₂	0401	0200	P 10
(a) v	n 221						

TABLEAU X (suite)

				()			
Nº	No	Obs.	Calc.	Molécule		Transiti	on
13CO ₂	12CO ₂		,				
2	2						
64		3473,911	3473,908	13C16O18O	$02^{0}1$	0000	P 21
65		3,771	(a)	¹³ CO ₂	30°0	0110	P 29
66		3,640	` ′	»> ⁻	$04^{2}1$	$02^{2}0$	Q
67		3,415	3,417	>>	0311	$01^{1}0$	P 30
68		3,081	3,075	13C16O18O	0201	0000	P 22
69		2,929	((a)	¹³ CO ₂	0311	$01^{1}0$	P 31
		_, _,	2,899	»»	0291	0000	P 60
70		2,546	2,541	>>	$04^{0}1$	0200	P 12
71		2,235	2,235	13C16O18O	0201	0000	P 23
72		1,950	(a)	¹³ CO ₂	30°0	0110	P 31
73		1,595	1,594	>>	0311	>>	P 32
(74		1,383	1,391	13C16O18O	0201	0000	P 24
-{			1,311	¹³ CO ₂	$04^{2}1$	$02^{2}0$	P 3
75		1,301	(a)	>> <u> </u>	0311	0110	P 33
(76		0,861°	0,873	>>	0401	0200	P 14
77		0,779°	0,777	>>	$02^{0}1$	0000	P 62
78		0,537	(0,542	¹³ C ¹⁶ O ¹⁸ O	>>	>>	P 25
			0,514	¹³ CO ₂	$04^{2}1$	$02^{2}0$	P 4
79		0,105	(a)	>>	30°0	0110	P 33
			(3469,755	>>	$03^{1}1$	>>	P 34
80		3469,725	9,711	>>	$04^{2}1$	$02^{2}0$	P 5
			(a)	>>	0311	$01^{1}0$	P 35
			9,689	¹³ C ¹⁶ O ¹⁸ O	$02^{o}1$	0000	P 26
81		9,205	9,189	¹³ CO ₂	0401	0200	P 16
			8,904	>>	$04^{2}1$	$02^{2}0$	P 6
82		8,832	8,829	¹³ C ¹⁶ O ¹⁸ O	0201	0000	P 27
83		8,630	8,632	¹³ CO ₂	>>	>>	P 64
84		8,228	(a)	>>	3000	0110	P 35
			8,093)) 120100100	0420	0220	P 7
0.5		T 000	7,966	13C16O18O	0201	0000	P 28
85		7,923	(a)	¹⁸ CO ₂	0311	0110	P 37
0.6		7.502	7,898	»>	0.401	>>>	P 36 P 18
86 87		7,503 7,280	7,488	» »	04°1 04°1	$02^{\circ}0$ $02^{\circ}0$	
88		7,280	7,277	18C16O18O	0201	0000	P 8 P 29
1 89		6,4430	7,098 (6,466	¹³ CO ₂)>)	»	P 66
02		0,443	6,456	»	0421	0220	P 9
90		6,337	(a)	<i>>></i>	30°0	0110	P 37
91		6,230°	6,226	¹³ C ¹⁶ O ¹⁸ O	0201	0000	P 30
92		6,026	6,023	¹³ CO ₂	0311	0110	P 38
93		5,787	5,770	»	0401	0200	P 20
94		5,639	5,630	<i>>></i>	0421	0220	P 10
95		5,360	5,347	18C16O18O	0201	0000	P 31
96		4,806	(?				
		.,	4,800	¹³ CO ₂	$04^{2}1$	$02^{2}0$	P 11
			4,463	13C16O18O	0201	0000	P 32
97		4,418	(a)	¹³ CO ₂	30°0	0110	P 39
98		4,301°	4,280	»> ~	0201	0000	P 68
99		4,1140	4,131	>>	0311	0110	P 40
100		4,020°	4,036	>>	$04^{0}1$	$02^{0}0$	P 22
			3,965	>>	$04^{2}1$	$02^{2}0$	P 12
101		3,572	3,575	18C16O18O	0201	0000	P 33
102		3,118	3,125	¹³ CO ₂	$04^{2}1$	$02^{2}0$	P 13
103		2,681	2,683	18C16O18O	0201	0000	P 34
104		2,452	(a)	¹³ CO ₂	3000	0110	P 41
105		0.066	$\left\{\begin{array}{c} 2,283\\ 2,280 \end{array}\right.$	>>	0401	0200	P 24
105		2,268	{ 2,280	>>	0421	0220	P 14
106		2.000	2,221	>>	0311	0110	P 42
106		2,080	2,072	13CO ₂	02°1	0000	P 70
107		1,788	1,785	¹³ C ¹⁶ O ¹⁸ O	>>	>>	P 35

TABLEAU X (suite)

N° 13CO ₂	N° 12CO 2	Obs.	Calc.	Molécule		Transiti	on
108 109		3461,445 0,881	3461,432 0,881 0,578	¹³ CO ₂ ¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₃	04 ² 1 02 ⁰ 1 04 ² 1	$\begin{array}{c} 02^20 \\ 00^00 \\ 02^20 \end{array}$	P 15 P 36 P 16
110		0,512	(0,516 (a)	» »	04°1 30°0	02°0 01°0	P 26 P 43
111		0,295	0,293	»	0311	>>	P 44

TABLEAU Y

Identification des raies d'absorption

Figure 29 3460 — 3443 cm⁻¹

N° 13CO2	N° 12CO2	Obs.	Calc.	Molécule	Transition		on
1 22 3 4 55 66 7 8 9 10 11 11 12 13 14 15 16 17		3459,970 9,726 9,063 8,860 8,752 8,488 8,349 8,147 8,000 7,595 7,428 7,216° 7,132 6,942 6,465° 6,398° 6,256 5,660	3459,973 9,841 9,719 9,060 8,857 8,732 (a) 8,347 8,142 7,989 7,587 ? 7,218 7,118 6,928 (a) 6,384 (6,290 (6,240 ?	13C16O18O 13CO2 3 13C16O18O 13CO2 3 13C16O18O 13C02 3 13C16O18O 13CO2 3 3 3 13C16O18O 13CO2 3 3 13C16O18O 13CO2	02°1 » 04°1 02°1 04°1 30°0 03°1 02°1 04°1 02°1 04°1 30°0 03°1 02°1 04°1 04°1 04°1 04°1 04°1 04°1 04°1 04	00°0 > 02°20 00°0 02°20 02°0 01°10 > 00°0 02°20 00°0 00°0 00°0 00°0 00°0 00°	P 37 P 72 P 17 P 18 P 18 P 28 P 45 P 46 P 39 P 19 P 20 P 30 P 30 P 48 P 44 P 41 P 21
19 · 20 21		5,355 5,116 4,886	5,356 5,358 5,108 2	¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂ »	02°1 04°1 04°1 04°1	00°0 02°0 02°0	P 42 P 22 P 32 P 32
22		4,435	(a) (4,417 (4,401	» ¹³ C ¹⁶ O ¹⁸ O ¹³ CO ₂	30°0 02°1 03°1	01 ¹ 0 00 ⁰ 0 01 ¹ 0	P 49 P 43 P 50
23 24 25 26		4,104 3,590 3,477 3,289	3,582 3,472	¹³ CO ₂	$04^{2}1$ $02^{0}1$	02 ² 0 00 ⁰ 0	P 24 P 44
27 28 29		2,692 2,540 2,390	3,273 2,687 2,522 2,400 (a)	13CO ₂ 3C16O18O 13CO ₂ 3CO ₂	04°1 04°1 02°1 03°1 30°0	02°0 02°0 00°0 01°0 >>	P 34 P 25 P 45 P 52 P 51
30 31		1,796° 1,568°	1,788 1,567	13C16O18O	04 ² 1 02 ⁰ 1	02 ² 0 00 ⁰ 0	P 26 P 46

(a) v. p. 221 Rem. : Toutes les valeurs expérimentales en dessous de 3452 cm⁻⁻⁻¹ sont approximatives.

TABLEAU Y (suite)

N° 13CO ₂	N° 12CO ₂	Obs.	Calc.	Molécule	Transition		
32		3451,3980	3451,416	13CO 2	0401	0200	P 36
33		0,879°	0,883	>>	0421	$02^{2}0$	P 27
34		0,633°	0,607	13C16O18O	0201	0000	P 47
35		0,336°	0,382	¹³ CO ₂	0311	0110	P 54
		,	(a)	>>	30°0	>>	P 53
36		3449,9780	3449,974	>>	$04^{2}1$	$02^{2}0$	P 28
			9,641	13C16O18O	0201	0000	P 48
37		9,567°	9,543	13CO ₂	$04^{0}1$	0200	P 38
38		9,3830	?				
39		9,0510	9,060	¹⁸ CO ₂	$04^{2}1$	$02^{2}0$	P 29
40		8,627°	8,669	¹³ C ¹⁶ O ¹⁸ O	$02^{0}1$	0000	P 49
			(?				
41		8,344°	8,344	¹³ CO ₂	0311	0110	P 56
42		8,179°	(a)	>>	30°0	>>	P 55
			8,142	>>	0421	$02^{2}0$	P 30
43		7,691°	7,693	13C16O18O	0201	0000	P 50
4.4		E 400-	1 7,652	¹³ CO ₂	0401	0200	P 40
44		7,429°	?	1200	0.404	0.000	D 21
45		7,2020	7,220	¹³ CO ₂	0421	$02^{2}0$	P 31
46		6,301°	(6,292	>>	>>	>>	P 32
47		C 0000	6,290)>	0311	0110	P 58
48		6,080° 5,751°	(a)	¹³ CO ₂	3000	0110	P 57
40		5,3410	5,744	»>	04º1 04º1	$02^{0}0$ $02^{2}0$	P 42 P 33
50		4,7570	5,361 ?	>>	04-1	02~0	P 33
51		4,4380	4,424	13CO ₉	0421	0220	P 34
52		4,2180	4,212	»	0311	0110	P 60?
53		3,826°	7,212	"	03-1	01-0	1 00 ;
54		3,470°	3,484	13CO ₂	0421	0220	P 35
5-4		3,770	3,404	CO2	04.1	02-0	1 33

(a) v. p. 221

Revue des Questions Scientifiques

Cette revue, fondée en 1877 par la Société scientifique de Bruxelles, se compose actuellement de cinq séries: la première série comprend 30 volumes (1877-1891); la deuxième, 20 volumes (1892-1901); la troisième, 30 volumes (1902-1921); la quatrième, 30 vol. (1922-1936) La livraison de janvier 1937 inaugura la cinquième série.

La revue fut interrompue par la guerre, après le deuxième fascicule, avril 1940, du tome 117 de la collection. Ce tome fut achevé par les fascicules

de février et juillet 1946.

Depuis 1947, paraît chaque année un volume, en quatre fascicules d'environ 160 pages chacun, 20 janvier, 20 avril, 20 juillet, 20 octobre.

Depuis 1947 la Revue est aussi l'organe de l'UNION CATHOLIQUE

DES SCIENTIFIQUES FRANÇAIS.

Administration et Rédaction: 11, rue des Récollets, Louvain (Belgique)

PRIX D'ABONNEMENT

Belgique, Congo-Belge et Grand-Duché de Luxembourg	200 francs belges
abonnement de soutien	500 francs belges
abonnement d'honneur	1000 francs belges
France et Union française (s'adresser à la librairie	
Masson, 120, boulevard St. Germain, Paris 6e)	2160 francs franç.
Autres pays (s'adresser au Secrétariat, à Louvain)	280 francs belges

PUBLICATIONS DE LA SOCIÉTÉ SCIENTIFIQUE

EXTRAIT DU CATALOGUE

ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES,
t. I à XLVI, 1875 à 1926. Chaque vol. in-8° de 400 à 600 pages F 150,00
ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES,
Série A (sc. mathématiques), t. XLVII à LVI (1927 à 1936) F 70,00 Série B (sc. physiques et naturelles) » » » F 70,00 Série C (sc. médicales) (1927 et 1928) F 100,00 — (1929 à 1933) (1931 à 1936) F 40,00 Série D (sc. économ. et techniques) (1927 à 1929) F 20,00 — (1930) (1931 à 1936) F 60,00
Série I (sc. mathématiques et physiques), tt. LVII à LXVII (1937 à 1953) F 70,00 t. LXVIII à LXXII (1954 à 1958) F 100,00 Série II (sc. naturelles et médicales), tt. LVII à LX (1937 à 1940, 46) F 70,00 Série III (sc. économiques), tt. LVII à LX (1937 à 1940, 46) F 100,00
REVUE DES QUESTIONS SCIENTIFIQUES,
t. I à XCII (1877 à 1927). Les deux volumes annuels
TABLES ANALYTIQUES DES ANNALES,
t. I à XXV (1875 à 1901)
TABLES ANALYTIQUES DE LA REVUE,
t. I à L (1877 à 1901)
MONOGRAPHIES DE SCIENCES NATURELLES
I — B. Tougarinoff. Les réactions organiques dans l'analyse qualitative minérale (cations). — Un vol. in-8° de 107 pages (1930): en Belgique, F 24,00; autres pays: F 30,00.
II — V. Schaffers. Le paratonnerre et ses progrès récents. Un vol. in-8° de 90 pages (1931): en Belgique, F 24,00; autres pays: F 30,00.
IV — F. Kaisin et E. de Pierpont. — Hydrogéologie des Calcaires de la Belgique. Un vol. in-8° de 111 pages, avec 35 fig. et un plan hors texte (1939): en Belgique, F 24,00; autres pays, F 30,00.
MONOGRAPHIES MEDICALES
 I — M. Schillings. Le rein en fer à cheval. Un vol. in-8° de 104 pages, avec 8 planches hors-texte (1938): en Belgique, F 70,00; autres pays, F 90.00. III — P. Van Gehuchten. La pathologie du système pallido-strié. Un vol. in-8° de 52 pages, avec 8 planches hors-texte (1930): en Belgique, F 24,00; autres pays, F 30,00.
MONOGRAPHIES DES SCIENCES ECONOMIQUES
 I — A. Henry. La structure technique de l'agriculture belge et ses particularités en Wallonie et en Flandre. Un vol. de 66 pages F 20,00 II — A. Henry. Les variations régionales de l'Agriculture en Belgique. Un vol. de 50 pages