Лабораторная работа №3.3.5 Эффект Холла в металах

Гёлецян А.Г.

4 октября 2022 г.

Цель работы: Измерение подвижности и концентрации носителей заряда в металлах.

1 Теоретическая часть

Эффет Холла При наличии поперечного магнитного поля в проводнике возникает поперечное напряжение, которую можно посчитать формулой

$$U_{\perp} = \frac{B}{nqh} \cdot I = R_H \cdot \frac{B}{h} \cdot I \tag{1}$$

где h-толщина проводящего слоя. Используя связь проводимости (удельного сопротивления) и подвижности подвижных зарядов получим формулу для подвижности

$$\mu = \frac{1}{nq} \cdot \sigma = \frac{R_H}{\rho} \tag{2}$$

2 Ход работы

Рис. 1: Образец из алюминия

Измерим удельное сопротивления алюминия подключив омметр на контакты 2,3,4,6,7,8. Для нашего образца толщина h=50нм, ширина w=0.8мм, а расстояние между соседними квадратами l=1.50мм.

$$\rho = \frac{whR}{L}$$

Проводя измерения получаем

контакты	$\rho, \Omega \cdot \text{hm}$	$\Delta \rho, \Omega \cdot \text{HM}$
2-4	36.9	0.3
8-6	36.9	0.3
2 - 3	36.9	0.6
3-4	36.8	0.6
6-7	36.9	0.6
4-7	36.8	0.6
7-8	36.9	0.6
4-8	36.9	0.3

Таблица 1: Удельное сопротивление материала образца

Получаем значение

$$\bar{\rho} = (36.9 \pm 0.3)\Omega \cdot \text{HM} \tag{3}$$

Перейдем непосредственно к измерению эффекта Холла

Рис. 2: Схема измерения

Меняя внешнее магнитное поле, а так же силу протекающего тока получим зависимость U=U(I,B).

Рис. 3: Схема измерения

Контакты 2-8		Контакты 3 7			Контакты 4-6			
B	I	U	B	I	U	B	I	U
508	21.12	0.00650	508	20.62	0.00655	522	20.12	0.00580
	40.60	0.01225		40.57	0.01290		40.49	0.01315
	60.65	0.01895		60.08	0.01865		60.03	0.01835
	80.90	0.02525		80.58	0.02500		80.48	0.02515
	101.05	0.03170		100.84	0.03215		101.09	0.03185
597	21.14	0.00785	593	20.62	0.00765	615	20.13	0.00785
	40.42	0.01500		39.99	0.01460		40.57	0.01495
	60.00	0.02240		61.36	0.02265		60.67	0.02285
	79.74	0.02995		80.77	0.03005		80.54	0.03025
	101.10	0.03825		101.10	0.03760		100.89	0.03760
703	20.62	0.00905	701	20.05	0.00885	708	20.26	0.00875
	39.84	0.01755		40.55	0.01760		40.79	0.01745
	60.02	0.02615		59.86	0.02615		60.68	0.02620
	79.84	0.03510		80.46	0.03485		80.58	0.03475
	99.99	0.04405		99.76	0.04385		100.85	0.04285
840	20.60	0.01005	812	20.22	0.00980	809	20.08	0.00960
	40.05	0.01950		40.55	0.01905		41.06	0.01960
	60.54	0.02975		59.86	0.02915		60.00	0.02830
	79.85	0.03955		80.46	0.03910		80.94	0.03835
	99.99	0.04940		99.76	0.04860		100.40	0.04760
923	20.85	0.01070	909	20.70	0.01075	906	20.60	0.01070
	40.02	0.02070		40.59	0.02100		40.31	0.02040
	60.72	0.03160		60.70	0.03135		60.69	0.03070
	81.42	0.04295		79.69	0.04140		81.44	0.04085
	101.10	0.05325		101.43	0.05255		100.93	0.05170
1031	21.10	0.01185	1033	20.33	0.01150	991	20.23	0.01120
	40.62	0.02280		40.61	0.02280		40.84	0.02175
	60.08	0.03365		60.72	0.03470		60.11	0.03265
	81.45	0.04610		80.43	0.04575		80.58	0.04330
	99.99	0.05650		100.95	0.05715		100.72	0.05475

Таблица 2: Данные измерении в единицах (мT, мA, мВ)

Согласно формуле (1)
$$Uh = (IB) \cdot R_H$$

Исследуем зависимость y = y(x) где y = Uh, x = IB. Она должна быль линейной с коэффицентом наклона равной R_H . Заметим что из знака U и направления магнитного поля можно сделать вывод что в алюмине носителями заряда являются электроны, следовательно $R_H < 0$

(4)

Рис. 4: Определение постоянной Холла

Получаем значение

$$R_H = -(2.813 \pm 0.062) \cdot 10^{-11} \text{M}^3 \text{K} \text{J}^{-1}$$
(5)

Отсюда высчитываем концентрацию свободных электронов и их подвижность

$$n = \frac{-1}{R_H e} = (2.22 \pm 0.05) \cdot 10^{29} \text{M}^{-3}$$
 (6)

$$\mu = \frac{R_H}{\rho} = (7.62 \pm 0.18) \cdot 10^{-4} \text{M}^2 \text{B}^{-1} \text{c}^{-1}$$
 (7)

3 Выводы

Для чистого алюминия имеем следующие данные

$$\rho_{\rm Ta6} = 26.3\Omega \cdot {\rm HM}, \ R_{H,\rm Ta6} = -3.4 \cdot 10^{-11} {\rm m}^3 {\rm K} \pi^{-1}, \ \mu_{\rm Ta6} = 13 \cdot 10^{-4} {\rm m}^2 {\rm B}^{-1} {\rm c}^{-1} \eqno(8)$$

Как видим наши значения не совпадают с табличными значеняими, что скорее всего связано наличием примесей в нашем образце.