Ejercicios tipo de Aritmética

Ejercicio 1. Da la expresión en bases 4, 8 y 16 de los naturales que en base 2 se escriben:

- 1. 101101100010011010111
- 2. 10001000000100110
- 3. 1011101111011111

Ejercicio 2. Escribe en las bases 2,8 y 16 los números naturales que en base 10 se escriben:

- 1. 23
- 2. 512
- 3. 65537

Ejercicio 3. Sean x = 48572₁₆ e y = 95883₁₆. Expresa el valor de x + y en base 8.

Ejercicio 4. Encuentra los sistemas o bases de numeración, si existe alguno, para los que se verifica cada una de las siguientes igualdades:

- 1. $3 \times 4 = 22$,
- $2.41 \times 14 = 1224$
- 3. $52 \times 25 = 1693$,

Ejercicio 5. Enumera los divisores positivos de 120, y calcula cuántos divisores tiene el número 118800.

Ejercicio 6. Determina la factorización como producto de números primos de 10! y 15!. ¿Cuántos divisores tiene cada uno de ellos?

Ejercicio 7. Encuentra todas las parejas de números a, b tales que mcd(a, b) = 210 y mcm(a, b) = 840.

Ejercicio 8. Sean $a, b \in \mathbb{N}$ tal que b es divisor de a y a + 2. Demuestra que b = 1 ó b = 2.

Ejercicio 9. Sean $a, b \in \mathbb{Z}$ primos relativos. Demuestra que si a|c y b|c entonces ab|c. Estudia que pasa si $mcd(a, b) \neq 1$.

Ejercicio 10. Dado un número entero n, demuestra que mcd(8n + 3, 5n + 2) = 1.

Ejercicio 11. Sea $\alpha \in \mathbb{Z}$. Demuestra que el máximo común divisor de $35\alpha + 57$ y $45\alpha + 76$ vale 1 ó 19. ¿Para que valores de α es este máximo común divisor igual a 19?.

Ejercicio 12. Calcula las soluciones enteras de cada una de las siguientes ecuaciones diofánticas:

- 1. 2x + 3y = 7.
- 2. 6x + 10y = 16.

3.
$$232x - 341y = 17$$
.

Ejercicio 13. ¿Cuántas soluciones tiene la ecuación diofántica

$$210x - 91y = 77$$

que verifiquen que $-500 \le x, y \le 500$?

Ejercicio 14. En \mathbb{Z}_{300} realiza, si es posible, los siguientes cálculos:

- **25** · 60.
- **■** 127 · (−100).
- **237**⁻¹.
- $13 50 \cdot 101^{-1}$.
- Encuentra $x \neq 0$ tal que $111 \cdot x = 0$.
- Encuentra x tal que 13x + 25 = 32x 50.
- Encuentra x tal que 11x 100 = 45x + 12.

Ejercicio 15. Calcula, si es posible, 1392^{-1} en \mathbb{Z}_{7585} .

Ejercicio 16. Calcula el resto de dividir 4225¹⁸⁵⁰ entre 1237.

Ejercicio 17. Demuestra que:

- 1. Un número escrito en base 10 es un múltiplo de 3 si, y sólo si, la suma de sus cifras es un múltiplo de 3.
- 2. Un número escrito en base 10 es un múltiplo de 9 si, y sólo si, la suma de sus cifras es un múltiplo de 9.

Ejercicio 18. Resuelve las siguientes congruencias:

- 1. $3x \equiv 2 \pmod{5}$,
- 2. $17x \equiv 45 \pmod{92}$,
- 3. $3276x \equiv 1239 \pmod{531}$.

Ejercicio 19. Resuelve los siguientes sistemas de ecuaciones en congruencias:

1.

$$\begin{cases} x \equiv 1 \pmod{2} \\ 6x \equiv 3 \pmod{9} \\ 3x \equiv 3 \pmod{5} \end{cases}$$

2.

$$\begin{cases} x \equiv 123 \pmod{371} \\ x \equiv 331 \pmod{644} \end{cases}$$

Ejercicio 20. Resuelve la congruencia 1211^{399} n $\equiv 20 \pmod{17}$.

Ejercicio 21. Encuentra un número entero cuyo resto al dividirlo entre 5 sea 3 y que al multiplicarlo por 3 y dividirlo entre 4 dé resto 1.

Ejercicio 22. Calcula los números que hay entre 20000 y 30000 que terminen en 39, al escribirlos en base 4 terminan en 33, y al escribirlos en base 8 acaban en 37.

Ejercicio 23. Calcula las raíces en \mathbb{Z}_5 del polinomio $x^2 + x + 4$.

Ejercicio 24. Calcula en $\mathbb{Z}_7[x]$ el resto de dividir

1.
$$x^7 + x^2 + 1$$
 entre $x - 1$,

2.
$$x^n + 1$$
 entre $x - 1$.

Ejercicio 25. Calcula el resto de dividir el polinomio $x^{1321} + 5$ por el polinomio x + 3 en el anillo $\mathbb{Z}_7[x]$.

Ejercicio 26. Calcula todos los polinomios irreducibles de grado dos en $\mathbb{Z}_2[x]$

Ejercicio 27. Demuestra que el polinomio $x^4 + x + 1$ es irreducible en $\mathbb{Z}_2[x]$.

Ejercicio 28. Calcula un máximo común divisor de a(x) y b(x) en los siguientes casos:

1.
$$a(x) = x^4 + 2x^2 + 1$$
, $b(x) = x^4 - 1$ en $\mathbb{Z}_5[x]$.

2.
$$a(x) = x^4 + 2x^2 + 1$$
, $b(x) = x^2 + 2$ en $\mathbb{Z}_3[x]$.

Ejercicio 29. Sea $A = \mathbb{Z}_2[x]_{x^3+1}$.

- 1. Calcula las unidades de A, y da, en cada caso, su inverso. ¿Es la suma de dos unidades una unidad? ¿Y el producto?
- 2. Calcula los divisores de cero. Para cada uno de ellos, encuentra un elemento no nulo de A que al multiplicarlo por él de cero. ¿Es la suma de dos divisores de cero un divisor de cero? ¿Y el producto?.