Digital Communications Equalization

Dott.ssa Ernestina Cianca a.a. 2016-2017

Optimal receiver

Optimum linear receiver in presence of noise and ISI

- $\{a_k\}$ Stationary with autocorrelation $\alpha_m = E[a_n a_{n+m}]$
- w(t) Stationary with zero mean and power spectral density $\left|Q(f)\right|^2$
- $\{a_k\}$ w(t) Statistically independent
- $h(t) = g_T(t) * h_c(t) * r(t)$ is assumed to be real (extension to the complex case can be done by the reader)

Optimum linear receiver in presence of noise and ISI

Given $G_T(f)$ and $H_c(f)$ (we are assuming that the channel is KNOWN at the receiver....and time-invariant!!!!!)

choose R(f)

that minimizes the Mean Square Error (MSE)

$$MSE = E[(y_k - a_k)^2]$$

Note: the real problem should be to minimize $P[\hat{a}_k \neq a_k]$ However, it is a very difficult problem and if $E[(y_k - a_k)^2] << 1$ then y_k is very close to a_k in mean square sense and hence, in most of the cases it is is possible to assume that the

$$\mu(y_k) = \hat{a}_k \equiv a_k$$

Optimum linear receiver in presence of noise and ISI

$$y_k = \sum_{i} a_i h((k-i)T) + w(kT) = \sum_{i} a_i h_{k-i} + w_k$$

$$MSE = E[(y_k - a_k)^2] = E[\sum_i a_i h_{k-i} + w_k - a_k]^2]$$

$$= \sum_i \sum_j E[a_i a_j h_{k-i} h_{k-j}] + \sigma^2 + \alpha_0 + 2\sum_i E[a_i h_{k-i} w_k] - 2\sum_i E[a_i h_{k-i} a_k] - 2\sum_i E[w_k a_k]$$

$$MSE = \sigma^{2} + \alpha_{0} + \sum_{i} \sum_{j} \alpha_{i-j} h_{k-i} h_{k-j} - 2 \sum_{i} \alpha_{k-i} h_{k-i}$$

$$p = k - i, q = k - j$$

$$MSE = \sigma^2 + \alpha_0 + \sum_{p} \sum_{q} \alpha_{p-q} h_p h_q - 2 \sum_{i} \alpha_p h_q$$

Optimum linear receiver in presence of noise and ISI

Going in the frequency domain

$$M(f) = \sum_{i} \alpha_{i} e^{-j2\pi iT}$$

$$U(f) = G_{T}(f)H_{c}(f)$$
 being real
$$h_{k} = \int_{-\infty}^{\infty} H(f)e^{j2\pi jkT}$$

$$h_{k} = \int_{-\infty}^{\infty} H^{*}(f)e^{-j2\pi jkT}$$

$$\sigma^{2} = \int_{-\infty}^{\infty} |Q(f)|^{2} |R(f)|^{2} df = \int_{-\infty}^{\infty} |Q(f)|^{2} \frac{|H(f)|^{2}}{|U(f)|^{2}} df$$

$$\sum_{p} \sum_{q} \alpha_{p-q} h_{p} h_{q} = \sum_{p} \sum_{q} \alpha_{p-q} \int_{-\infty}^{\infty} H^{*}(f) e^{-j2\pi f pT} df h_{q}$$

$$= \int_{-\infty}^{\infty} H^{*}(f) \sum_{q} \left(\sum_{p} \alpha_{p-q} e^{-j2\pi f pT} \right) h_{q} df$$

$$= \int_{-\infty}^{\infty} H^{*}(f) \sum_{q} M(f) e^{-j2\pi f qT} h_{q} df$$

$$= \int_{-\infty}^{\infty} H^{*}(f) M(f) \frac{1}{T} \sum_{l} H\left(f - \frac{l}{T} \right) df$$

$$-2\sum_{p}\alpha_{p}h_{p} = -2\sum_{p}\alpha_{p}\int_{-\infty}^{\infty}H^{*}(f)e^{-j2\pi fpT}df$$
$$= -2\int_{-\infty}^{\infty}H^{*}(f)M(f)df$$

Optimum linear receiver in presence of noise and ISI

Let us summarize

$$MSE = \int_{-\infty}^{\infty} |Q(f)|^{2} \frac{|H(f)|^{2}}{|U(f)|^{2}} df + \alpha_{0} + \frac{1}{T} \int_{-\infty}^{\infty} M(f) H^{*}(f) \sum_{l} H\left(f - \frac{l}{T}\right) df$$
$$-2 \int_{-\infty}^{\infty} M(f) H^{*}(f) df$$

Given U(f)

$$\min_{R(f)} MSE = \min_{H(f)=R(f)U(f)} MSE$$

con
$$H_{opt}(f)$$
: $\frac{\partial MSE}{\partial H(f)} = 0$

siccome
$$\frac{\partial MSE}{\partial H(f)} = 2 \frac{|Q(f)|^2}{|U(f)|^2} H(f) + \frac{2}{T} M(f) \sum_{l} H(f - \frac{l}{T}) - 2M(f) = 0$$

Product of periodic terms of 1/T

periodic term of 1/T

Optimum linear receiver in presence of noise and ISI

$$G(f) = \frac{|Q(f)|^2}{|U(f)|^2} H(f)$$
 Must be a periodic function of 1/T

Condition of optimum:

$$G(f) + \frac{1}{T}M(f)\sum_{l}G\left(f - \frac{l}{T}\right)\left|\frac{U\left(f - \frac{l}{T}\right)}{Q\left(f - \frac{l}{T}\right)}\right|^{2} - M(f) = 0$$

$$G(f)$$

Since it is periodic....therefore, I can bring it outside the sum

Optimum linear receiver in presence of noise and ISI

Solution

$$G(f) = \frac{M(f)}{1 + M(f) \frac{1}{T} \sum_{l} \left| \frac{U\left(f - \frac{l}{T}\right)}{Q\left(f - \frac{l}{T}\right)} \right|^{2}}$$

SO:

$$H_{opt}(f) = G(f) \frac{\left| H(f) \right|^2}{\left| Q(f) \right|^2}$$
Fundamental result
$$R_{opt}(f) = \frac{H(f)}{U(f)} = \frac{U^*(f)}{\left| Q(f) \right|^2}$$

$$1 + M(f) \frac{1}{T} \sum_{l} \frac{U\left(f - \frac{l}{T} \right)}{Q\left(f - \frac{l}{T} \right)}$$

Optimum linear receiver in presence of noise and ISI

Optimum linear receiver in presence of noise and ISI

Hypothesis: white noise $\implies |Q(f)|^2 = N_0$ constant

Let us define

$$\Phi(e^{j2\pi fT}) = \sum_{p} \varphi(pT)e^{-j2\pi fpT}$$

where

$$\varphi(t) = \int_{-\infty}^{\infty} u(x)u(x+t)dx$$
 Autocorrelation of the pulse u(t)

$$U(f) = F[u(t)] \Rightarrow \Phi(e^{j2\pi fT}) = \frac{1}{T} \sum_{l} \left| U(f - \frac{l}{T}) \right|^{2}$$

matched filter

 $R_2(e^{j2\pi fT})$

Optimum linear receiver in presence of noise and ISI

Let us semplify $R_2(e^{j2\pi fT})$

It is a periodic function, so we can write the Fourier series:

$$R_2(e^{j2\pi fT}) = \sum_{n=-\infty}^{\infty} c_n e^{-j2\pi fnT}$$

$$c_n = \frac{1}{T} \int_{-\infty}^{\infty} R_2(e^{j2\pi fT}) e^{j2\pi fnT} df$$

Let us truncate it up to the N most significant terms:

$$R_{2}(e^{j2\pi fT}) pprox \sum_{n=-\frac{N-1}{2}}^{\frac{N-1}{2}} c_{n}e^{-j2\pi fnT}$$

$$R_{2}(z) pprox \sum_{n=-\frac{N-1}{2}}^{\frac{N-1}{2}} c_{n}z^{-n}$$

Transfer function of a FIR filter which introduce a delay of N-1/2

Optimum linear receiver in presence of noise and ISI

Let us considetr two specific cases

1) Uncorrelated zero mean symbols $M(f) = \alpha_0$

$$M(f) = \alpha_0$$

$$R_{opt}(f) = U^*(f) \frac{\alpha_0}{N_0 + \alpha_0 \Phi(e^{j2\pi fT})}$$

In low noise conditions, i.e. $\frac{\alpha_0}{N_0} >> 1$

$$R_2(e^{j2\pi fT}) \approx \frac{1}{\Phi(e^{j2\pi fT})} \Rightarrow R_2(e^{j2\pi fT})\Phi(e^{j2\pi fT}) = \cos t.$$

Transform of the fundamental pulse after sampling before R2

The effect of $|R_2|$ is to force the ISI to zero after the matched filter

 R_2 is called **EQUALIZER**

On the other hand, for moderate noise, there is always some ISI if we use the MSE criterion

Optimum linear receiver in presence of noise and ISI

Moreover, always in case 1), if $\varphi(t)$ satisfies the Nyquist criteria

$$\varphi(iT) = \varphi(0)\delta(iT) \Rightarrow \Phi(e^{j2\pi fT}) = \varphi(0)$$

$$R_2(e^{j2\pi fT}) = \frac{\alpha_0}{N_0 + \alpha_0 \phi_0} = \cos t.$$

No equalization is needed

Optimum linear receiver in presence of noise and ISI

- 2) Correlated zero mean symbols $M(f) \neq \alpha_0$
- 3) Nyquist criterion for the pulse

$$\varphi(iT) = \varphi(0)\delta(iT) \Rightarrow \Phi(e^{j2\pi fT}) = \varphi(0)$$

The equalizer is needed

$$R_2(e^{j2\pi fT}) = \frac{M(f)}{N_0 + \alpha_0 M(f)}$$

The correlation introduces some ISI to compensate the noise Correlation is used to reduce the effect of noise

Optimum linear receiver in presence of noise and ISI

- 2) Correlated zero mean symbols $M(f) \neq \alpha_0$
- 3) Nyquist criterio for the pulse

$$\varphi(iT) = \varphi(0)\delta(iT) \Rightarrow \Phi(e^{j2\pi fT}) = \varphi(0)$$

The equalizer is needed

$$R_2(e^{j2\pi fT}) = \frac{M(f)}{N_0 + \alpha_0 M(f)}$$

The correlation introduces some ISI to compensate the noise Correlation is used to reduce the effect of noise

Alternative Derivation of the optimum MSE receiver in presence of noise and ISI

Hypothesis

- 1) White noise with power spectral density
- <u>2)</u> $R_1(f) = U^*(f)$
- $\underline{\mathbf{3)}} \quad E[a_i a_j] = \alpha_0 \delta_{ij}, \quad E[a_i \eta_k] = 0 \quad \forall i, k$

The frequency response to the fundamental pulse in the decision point is:

$$|U(f)|^2 \stackrel{F^1}{\longleftrightarrow} \varphi(t)$$
 (autocorrelation of the pulse $u(t)$)

The power spectral density of the noise just before sampling is:

$$N_0 |U(f)|^2$$

Alternative Derivation of the optimum MSE receiver in presence of noise and ISI

The autocorrelation of the sampled process $x_k = \sum_i a_i \varphi_{k-i} + n_k$

$$x_k = \sum_i a_i \varphi_{k-i} + n_k$$

is given by:

$$R_{x}(m) = E\left[x_{k+m}x_{k}^{*}\right] = \alpha_{0} \sum_{n} \varphi_{n+m}\varphi_{n}^{*} + N_{0}\varphi_{m}$$

the sampled PAM signal

autocorrelation of autocorrelation of the sampled noise

The correlation between x_k and a_k

$$V(m) = E[a_{k+m}x_k^*] = \sum_{i} E[a_{k+m}a_i^*] \varphi_{k-i}^* + E[a_{k+m}n_k^*] = \alpha_0 \varphi_{-m}^*$$

MSE algorithm

$$J = E[|e_k|^2] = E[|y_k - a_k|^2] = E\left[\left|\sum_{j = -\frac{N-1}{2}}^{\frac{N-1}{2}} c_j x_{k-j} - a_k\right|^2\right]$$

$$\frac{\partial J}{\partial \underline{c}_{l}} = 0$$

$$2E[(y_{k} - a_{k})x_{k-l}^{*}] = 0$$

$$\sum_{j=-\frac{N-1}{2}}^{2} c_{j} E[x_{k-j}x_{k-l}^{*}] = E[a_{k}x_{k-l}^{*}]$$

$$V(l)$$

$$\sum_{j=-\frac{N-1}{2}}^{\frac{N-1}{2}} c_j E[x_{k-j} x_{k-l}^*] = E[a_k x_{k-l}^*]$$

$$K_x(l-j) \qquad V(l)$$

$$\sum_{j=-\frac{N-1}{2}}^{\frac{N-1}{2}} c_{j} \left[\alpha_{0} R_{\varphi}(l-j) + N_{0} \varphi_{l-j} \right] = \alpha_{0} \varphi_{-l}^{*}$$

MSE algorithm

Let us consider the case of an ideal equalizer $N \to \infty$

Denoting with $\Phi(z) = Z[\varphi_n]$

The previous equation can be written in terms of zeta-transforms as follows:

$$C(z)\left[\alpha_0\Phi(z)\Phi^*\left(\frac{1}{z}\right) + N_0\Phi(z)\right] = \alpha_0\Phi^*\left(\frac{1}{z}\right)$$

$$\Phi(z) = \Phi^* \left(\frac{1}{z^*}\right)$$

MSE algorithm

$$C(z)[\alpha_0\Phi(z)+N_0]=\alpha_0$$

$$C_{opt}(z) = \frac{\alpha_0}{\alpha_0 \Phi(z) + N_0}$$

