math notes

0.1 矩阵的三则运算性质

$$A+B=B+A \qquad (A+B)+C=A+(B+C) \qquad (AB)C=A(BC) \qquad (k+l)A=kA+lA \qquad k(A+B)=kA+kB$$

$$A(B+C)=AB+AC$$

0.2 矩阵转置的性质

$$(A^T)^T = A$$
 $(kA)^T = kA^T$ $(AB)^T = B^TA^T$ $(A^{-1})^T = ((A)^T)^{-1}$ $(A^T)^m = (A^m)^T$

0.3 伴随矩阵的性质

$$(A^T)^* = (A^*)^T$$
 $(kA)^* = k^{n-1}A^*$ $(AB)^* = B^*A^*$

0.4 逆矩阵的性质

$$(A^{-1})^{-1} = A (kA)^{-1} = \frac{1}{k}A (AB)^{-1} = B^{-1}A^{-1} (A^{T})^{-1} = (A^{-1})^{T} (A^{n})^{-1} = (A^{-1})^{n}$$

$$A_{m*m}, B_{n*n}: \begin{pmatrix} A & O \\ O & B \end{pmatrix} = \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix}$$

0.5 矩阵秩的性质

$$r(A)=r(A^T)=r(A^TA)=r(AA^T)$$
 设 A,B 都是同型矩阵,则 $r(A\pm B)\leq A+B$ 设 A,B 分别为 m*n,n*s 矩阵,且 $AB=O,$ 则 $r(A)+r(B)\leq n$

0.6 证明向量组 $\alpha_1...\alpha_n$ 线性相关的充分必要条件是该向量组中至少有一个向量被其余向量线性表示

1. "⇒": 存在不全为 0 的 $k_1, k_2, ..., k_n$ 使得 $k_1\alpha_1 + ... + k_n\alpha_n = 0$ 设 $k_1 \neq 0$, $\alpha_1 = -\frac{k_2}{k_1}\alpha_2 - ... - \frac{k_n}{k_1}\alpha_n$ 2. " \Leftarrow " $l_1\alpha_1 + ... + l_{k-1}\alpha_{k-1} + l_{k+1}\alpha_{k+1} + ... + l_n\alpha_n = 0$ 所以 $\alpha_1...\alpha_n$ 线性相关

0.7 证明 $\alpha\beta$ 线性相关 $\Leftrightarrow \alpha\beta$ 成比例

证明:"⇒" \exists 不全为 0 的 k_1k_2 , 使得 $k_1\alpha + k_2\beta = 0$ 设 $k_2 \neq 0 \Rightarrow \beta = -\frac{k_1}{k_2}\alpha \Rightarrow \alpha\beta$ 对应成比例 " \Leftarrow " 设 $\beta = l\alpha \Rightarrow l\alpha + (-1)\beta = 0$ $\Rightarrow \alpha\beta$ 线性相关

0.8 向量祖相关性与线性表示的性质

2. 设 $\alpha_1...\alpha_n$ 线性无关

(1) 若 $\alpha_1...\alpha_n$, β 线性相关, 则向量 b 可以由 $\alpha_1...\alpha_n$ 唯一线性表示

证明唯一性: 令 $\beta = l_1\alpha_1 + ... + l_n\alpha_n$; $\beta = t_1\alpha_1 + ... + t_n\alpha_n$ $\Rightarrow (l_1 - t_1)\alpha_1 + ... + (l_n - t_n)\alpha_n = 0$ 因为 $\alpha_1...\alpha_n$ 线性无关,所以 $l_1 = t_1, ..., l_n = t_n$,证毕

- $(2)\alpha_1...\alpha_n, b$ 线性无关 \Leftrightarrow 向量 b 不可以由 $\alpha_1...\alpha_n$ 线性表示;。
- 3. 全组线性无关 ⇒ 部分组线性无关
- 4. 部分组相关 ⇒ 全组线性相关

 $5.\alpha_1...\alpha_n$ 为 n 个 n 维向量 $\alpha_1...\alpha_n$ 线性无关的充分必要条件是 $|\alpha_1,...,\alpha_n| \neq 0$

用结论 $A = (\alpha_1...\alpha_n), \alpha_1...\alpha_n$ 线性无关 $\Leftrightarrow \alpha_1...\alpha_n$ 的秩 $= n \Leftrightarrow r(A) = n \Leftrightarrow |A| \neq 0$

$$6.\alpha_1...\alpha_n$$
 线性相关 \Leftrightarrow $|\alpha_1...\alpha_n| = 0$ 证: \diamondsuit $A = (\alpha_1...\alpha_n)$. $\alpha_1...\alpha_n$ 线性相关 \Leftrightarrow $\alpha_1...\alpha_n$ 的秩 $<$ n \Leftrightarrow $r(A) = n$ \Leftrightarrow $|A| = 0$

7. 设 $\alpha_1...\alpha_n$ 为 n 个 m 维向量, 若 m < n, 则向量组 $\alpha_1...\alpha_n$ 一定线性相关

qquad 口诀向量组左右长上下短一点线性相关

向量的维数代表了方程的个数;; 方程数少了,有自由变量,一定有非零解,则一定线性相关

证明: \diamondsuit $A_{m*n} = (\alpha_1...\alpha_n) \Rightarrow r(A) \leq m < n\alpha_1...\alpha_n$ 线性相关 \Leftrightarrow $\alpha_1...\alpha_n$ 的秩 <n \Leftrightarrow r(A) < n $r(A) \leq m < n$. 所以 $\alpha_1...\alpha_n$ 线性相关

0.9 汤家凤行列式强化提高

1.
$$D = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 7 & 7 & 7 & 3 & 3 \\ 3 & 2 & 4 & 5 & 2 \\ 3 & 3 & 3 & 2 & 2 \\ 4 & 6 & 5 & 2 & 3 \end{vmatrix}$$
, $MA_{31} + A_{32} + A_{33} =$

$$A_{31} + A_{32} + A_{33} = 1 * A_{31} + 1 * A_{32} + 1 * A_{33} + 0 * A_{34} + 0 * A_{35} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 7 & 7 & 7 & 3 & 3 \\ 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 2 & 2 \\ 4 & 6 & 5 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & 3 & 3 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 4 & 6 & 5 & 2 & 3 \end{vmatrix} = 0$$

2. 已知
$$|E - A| = |E - 2A| = |E - 3A| = 0$$
 求 $|B^{-1} + 2E|$

解: 因为
$$|E - A| = |E - 2A| = |E - 3A| = 0$$
 所以 A 的特征值为 $\frac{1}{3}, \frac{1}{2}, 1$
$$(u+v)^{(n)} = u^{(n)} + v^{(n)} \qquad (uv)^{(n)} = C_n^0 u^{(n)} + C_n^1 u^{(n-1)} v' + \dots + C_n^n uv^{(n)} \qquad (sinx)^{(n)} = sin(x + \frac{n\pi}{2}) \qquad (cosx)^{(n)} = coss(x + \frac{n\pi}{2})$$

$$\frac{1}{(ax+b)^{(n)}} = \frac{(-1)^n n! a^n}{(ax+b)^{(n+1)}}$$

设 y=f(x) 可导且
$$f'(x) \neq 0, x = \varphi(y)$$
 为反函数,则 $x = \varphi(y)$ 可导,且 $\varphi'(y) = \frac{1}{f'(x)}$

设
$$y=f(x)$$
 二阶可导且 $f'(x) \neq 0, x = \varphi(y)$ 为反函数,则 $x = \varphi(y)$ 二阶可导,且 $\varphi''(y) = -\frac{f''(x)}{f'^3(x)}$

$$x \to 0$$
 常用的等价无穷小 $x \sim sinx \sim tanx \sim arcsinx \sim arctanx \sim ln(1+x) \sim e^x - 1,$ $1 - cosx \sim \frac{x^2}{2}, 1 - cos^a x \sim \frac{a}{2}x^2$

$$(1+x)^a - 1 \sim ax$$
, $a^x - 1 \sim x \ln a$

$$x \to 0$$
 常用的麦克劳林公式 $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$ $sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n}{(2n+1)!}x^{2n+1} + o(x^{2n+1})$

$$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n}{(2n)!}x^{2n} + o(x^{2n}) \qquad \frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots + x^n + o(x^n)$$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + \dots + \frac{(-1)^{n-1}}{n} x^n + o(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n-1}}{n} x^n + o(x^n)$$

$$(1+x)^a = 1 + ax + \frac{a(a-1)}{2!} x^2 + \frac{a(a-1)(a-2)}{3!} x^3 + \dots + \frac{a(a-1)\dots(a+1-n)}{n!} x^n$$

$$\frac{1}{(n) = \frac{f(b)}{b}} x^n$$

$$f'(x) \in C[a,b].(a,b) \quad f_+^{'(a)>0}f(a) = f(b) : (1) \exists \xi \eta \in (a,b), f'(\xi)>0, f'(\eta)<0. \tag{2} \\ .\exists \xi \in (a,b), f''(\xi)<0. : (1) f_+^{'(a)>0} \Rightarrow c \in (a,b), f(c)>f(a); \exists \xi \in (a,c), \eta \in (c,b) \\ f'(\xi) = \frac{f(c)-f(a)}{c-a}>0. \\ f'(x) = f(a) + f(a) +$$