LOI: Search Engine (SE)

Names for different retrieval

Information (IR)	Document (DR)	Text (TR)

Specific SE

Vertical	One type of data (Job search. news search)
Site	Just one site
Custom	Narrow search to small set of websites
Enterprise	Corporate intranet
	w/ collections. metadata. roles. security

Federated search organized: Meta search "janky" option

Federated search (union)			Meta search (calling bots)		
Each node full	Each node full-function SE		It itself is not a SE		
Agreement obt	ained		No agree	No agreement: May blocked	
Standard quer	y/res	ult repr.	Nonstandard and parsing		
SEs collaborat	ė		SEs do their own thing		
Difficulties of IR)				
Unstructured	Size	(cloud)	Semantic	\$	Diversity>
text / media					Personalize
Cloud computin	Cloud computing advantages (ize iss	sue)
Unlimited scaling		Many replicas and shards			
Indexing by professionals					
High cost	High cost Inconsist		ent	Inef	ficient
Timeline of IR generations 0 to 3					
1960: exact	199	3: stat.	1997: link		2001:
bool	cra	wler	analysis		advanced
LO2. Rusinos	LO2 Rusiness model (444)				

LO2: Business model (\$\$\$)

Software	Sell the software for intranet (and/or
Licensing	internet) search
Search	Outsourced content portals, monetize by
Service	ads (e.g. Yahoo)
ASP/Cloud	Do the HW/SW/Index dirty work for
	paying clients
Advertisement	Keyword-based ads / organic results. >>
	popup&banners
Charge end	End user refuses to pay unless unique
users	valuable info.
Charge	Charge by queries, pay for indexing, pay
websites	for rankina

Notes

Keyword ads	AdWords (buy keywords)
	AdSense (analyze page content)
(Content)Portal	SEs used to need portals: now
	SE=portal. need ad channels
SEM(Marketing)	SEM Company help get inclusion. find
	keywords rank high
SEP(Placement)	Pay-by-Impression (Cost Per
	Mille=1000) / Pay-per-Click
SEO(Optimization)	Make webpage rank high in algorithm
Trademark KW	Potential legal problems such as lawsuits

Retrieval models

Performance metrics

	Precision: % of relevancy in retrieval (Noise in retrieval)	Recall: % of relevant results retrieved (Completeness)
١	Model contains details	

Document repr.	Query repr.	Retrieval function
Current class of mod	dels	
Boolean model	Vector space (stat)	Probabilistic

LO3: Boolean model		
Document	Set of keywords (bag of words BOW)	
Repr.		
Query Repr.	Boolean expression of keywords (AND. OR. NOT. brackets)	
Retrieval fn.	Satisfy the Boolean query? YES/NO	
Pros	Simple. controllable. efficient. extendable to	
	include ranking	

Cons	Very rigid. no complex requests. AND/OR
COM	interpretation
	Merpreialion
	No control # docs. no ranking. no auto
	relevance feedback

LO3+LO4: Statistical models (MORE LIKE OR)

Document Repr.	Set of keywords WITH statistical information DI= < text I.O: database 0.5: information 0.2 > Weight roughly indicates important of word Weighted KW as row vector. O for missing
Query Repr.	Keywords with optional weights. NO Boolean Query keywords (optional weights) as vector Without weights: I ifterm present. else 0
Retrieval fn.	Similarity between query and documents
Challenges	Word importance (within doc. entire collectn.) Degree of similarity b/w document & query (WWW) What is collection? Links. doc structure. format info Zero weight causes math error in some algo

LO3: TFxIDF: Word importance

(within document TE & entire collection IDE)

(WIININ GOCUMENT IF & ENTIRE COTTECTION IDF)		
Word importance	Principle repeat = more important	
(intra-document):	Issue: Unbounded due to diff. doc size	
Term Frequency	Fix: Normalize by division	
(TF)	(TFmax. # of (unique) words)	
	Mod : range from 0.5 to 1.	
	favor small tf. avoid zero weight	
Word importance	Principle rare = discriminant.	
(inter-document):	formula: log(N/dfi)	
Inverse Document	Issue: N=O cause	
Frequency (IDF)	Fix: log(I+M/dfi) ranges from log(2) to	
	log(N+I) avoid zero	
BM25 weight	Average doc length affects weighting	
(OKAPI)	Pre-computation is expensive	
TFxIDF	TF and IDF anticorrelated.	
	TFxIDF max when both medium values	
LOU Visitor Space Model (cincilarity b/w dee and grown)		

LO4: Vector Space Model (similarity b/w doc and query) Similarity functions

Inner Product	Formula: term-wise multiply and then sum	
(similarity)	unbounded. favors long documents	
Cosine	Fmla: (Inner Product) / DocLength (DL) /	
similarity	QueryLength (QL) (cosine of angle)	
Jaccard Coeff	Formula: (IP) / (DL^2 + QL^2- IP)	
	Intersection size divided by union size	
Dice Coeff	Formula: 2 IP / (DL^2 + QL^2)	
	Does not satisfu triangle inequalitu!	

Operations on vectors

Relevance feedback: Q+DI or Q-DI to add/subtract good/bad terms Flexible use of similarity on different vector pairs

Doc-query:	Doc-doc:	Query-query:	
SE (typical)	doc clustering	Query suggestion	
Document centroid: reduce similarity pairs checking doc similarity.			
First find the centroid, then calculate pairs similarity centroid- $\!$			

unmatched terms matter much less in doc-query than doc-doc

Comparison between similarity functions

	Euclidean	Cosine	Inner	Jaccard
Doc-Doc	OK	OK	Fair	Fair+
Doc-Query	Bad	OK	0K	0K

Issues

Term Independence Assumption	Hardly holds True in real life
Synonyms (fix by stemming)	Causes false negative matches
Unbalanced property (fix by penalizing)	Docs without including all terms but talks a lot about it gets included
OR-like nature	First Boolean. then ran via VSM

LO5: Inverted Files

Green: Optional to be stored

Document vectors/matrix:

sparse, not stored directly. Use a word list instead. Indexing: speedup slow algorithms using inverted file.

Inverted file (document index)

Data struct	Hash file, B-tree, tries, etc: Key-value: as str
Data stored	Key: term. Value: list len(DF) postings (doc. TF)

Forward index

Data stored Key: doc. Value: list of terms & location. TFmax Boolean query

Get all postings and then perform set operations.

Optimize: start w/ AND on shortest lists: intermediate results small.

Advantages of inverted file (document index)

Filter documents	Flexible structure:	Cmplx retrieval fn.
that contain	Store "postings"	w/ word locations
query term for	with info	(phrase &
fast retrieval	(doc with terms)	proximity)

Disadvantages of inverted file (document index)

Large storage	High maintenance	Processing cost
overhead:	costs on updates.	increases with
(50% - 150% -	insertions.	# of Boolean
300%)	deletions	operators

Extensions on Inverted Indexes

Adjacency	Phrase. n words apart. same sentence. Require storing keyword locations & document components
Term	Searching for "comput*" (suffix) /
truncation	*symmetry" (prefix. hard)
(suffix /	Require storing inverted index as tree / B←
prefix)	Tree no hash file

Overhead in inverted indexing on addition

Worst: words unique, doc n words, insertion update n postings lists. Unsorted posting list: Fast append, slow retrieval

Sorted postings list: Slow insertion, fast retrieval

Insertion overhead: Big issue for news and WWW. not for library Speed improvement: batch insertion (>1 doc has the same word)

Overhead in inverted indexing on deletion and update

Update is just deletion and insertion Deletion is expensive. To reduce the cost, keep table of deleted docs for lazy deletion.

Table of del. docs Ignore del. docs Clean inverted file

Scalability and speed

Indexed keywords grow slowly, but length of postings lists increase linearly. As such, partition a collection to be index/searched in parallel by different servers.

L06: Extended Boolean model

Issue of Boolean->VSM:

AND: Boolean too restrictive	OR: Same as pure VSM
Soft logical operators	
AND: big penalty for I term	OR: small bonus for both

AND: big penalty for I term	OR: small bonus for both
sim(q _{and} . d _j)	sim(q _{or} , d _j)
= I - (((I-x) ² + (I-y) ²)/2) ^{1/2}	$= ((x^2 + y^2)/2)^{1/2}$
Complement vec len from (I.I)	Vector length from (0.0)

Replace above formula 2 to p for p-norm model p=1: similar to inner product in VSM: p=inf: fuzzy logic model.

L07: Link-based ranking

Existing issues with term-based methods

Keyword		Doc content		Agnostic to user	
spamming		insufficient		stats	
ı			a.		4.4

Link-based ranking assumption and principle

Linked pages assumed similar Return w/o exact terms

HyPursuit (MIT. 1996)

(The formulas are ad-hoc. Not directly usable in ranking. but for clustering to enhance retrieval speed and quality)

 $S_{ij}^{\rm spl} = \frac{1}{2^{\rm spl}_{i \to j}} + \frac{1}{2^{\rm spl}_{j \to i}}$ Direct Path

canc — \sum	1
$S_{ij} - \sum_{x \in X}$	$2^{\text{spl}_{\mathcal{X}} \to i, \text{no } j + \text{spl}_{\mathcal{X}} \to j, \text{no } i}$
cdsc – \sum	1
$S_{ij} - \sum_{\gamma \in X}$	$2^{\text{spl}_{i \to x, \text{no } j} + \text{spl}_{j \to x, \text{no } i}}$

Somehow (ignored) "combine" metrics w/ term-based similarity. WWW Index and Search Engine (WISE) at HKUST (1995)

Page score is the weighted sum of:

its term-based score scores inherited from parents With $\beta \ll \alpha$: score = α (exact matches) + β (match from parent) Most-cited: score = # of query terms found in pages pointing at it (frequency information is ignored)

Problems

	Related != similar	Void assumption of link-based ranking		
	Diff b/w web &	Links find more results. we don't need!		
	traditional docs	Links (abused!) promotes page rank		
	Quality&Authority	Blogpost I dream study at (link)HKUST		
	(Application aspect)	In web. doc have diff. quality/authority		
	Technical aspect	No theoretical/systematic way to set		
		fmla (WISE > HyPursuit)		
ı				

PageRank (Google, Stanford U) (NOTE: Query independent!)

(Academic citation: More cited = important page. spam-resistant) Equals random surfer model: chance (I-d):Type URL, d:click link. Uses additional data to its advantage:

link text	Location info	Visual info	Social signals
PageRank(A) = (1 - d) +			

$$d\sum_{P\in ext{direct parent}}rac{ ext{PageRank}(P)}{\# ext{links from}(P)} ext{d}$$
 = damping factor

First mark all as I. then Iterative algorithm until it converges.

Sync iteration	A.B.C = PR(A), PR(B), PR(C)
Async iteration	A = PR(A): B = PR(B): C = PR(C)
(order dependent)	PR considers value of A B C

Expensive! Parallelized. updated lazily (Google Dance) & inexactly Issues

Favor big websites	Linked != relevant	Rank sink: point
(discovery issue)	(Void assumption)	each other, no d

Anchor text ranking

If see [Computer Science Department](http://www.cse.ust.hk). Proceed to associate the URL with the human readable name tag. SEO: Link boosting

	0
Split content	Large site big PageRank (favor big websites)
Limit outlinks	PageRank leak. (w/ many internal outlinks)
Avoid sinks	Never have user stuck (purge!). +graceful exit

Spider issues

Web server hangs	Bad last-modified	Redirect. password
Dup. webpages	Different lang. ver	Dynamic (JS)

LO8: HITS (Hyperlink-Induced Topic Search)

(Highly efficient compared to tfxidf: simple combination of scores)

	Parenis nave nigh nub weighi	High duinoriig: Qualiig into
	High hub: link to high quality	Children have high authority
1	Each page authority weight and I	nub weight recursive calculate:

Authority of p is the sum of hub weights of all q where $q \rightarrow p$ Hub of p is the sum of authority weights of all q where $p \rightarrow q$

If authority vector is X, hub vector is Y (independent to initial val):

Authority: X1 = A ^T Y0	Hub: Yı = AXo
Converge to A ^t A	Converge to AA ^t

Reasons for non-convergence

Dangling nodes: to infinity	Rank sinks: Oscillating values
Mormalize each iter (stop over	flow. not affect final ranking)

Div largest element LI: div sum L2: div magnitude

CLEVER architecture

Basic search Parent and child HITS then re-rank Issues with HITS

Children reinforce each other Multi-topic page

L09: Performance Evaluation

Reason for motivation

Make comparison	Test for deviation	Fine tune query
Cost-benefit analysis (compare to manual)		Effect of change
- 1 -		

Evaluation modes

Explicit	Human judge relevance* offline. Issues: guess need and infenf. human error. inefficienf. expensive. inconsistenf (aufo filtering?) *(confinuous. subjective. situational. temporal)
Behavioral	Clicks and timestamps. Online and Realtime Metric: Average Rank of User Clicks (ARUC)

Confusion matrix

Retrieved irrelevant: FP	Not retrieved, irrelevant: N	
Retrieved relevant: TP	Not retrieved, relevant: FN	
Recall = TP / (TP+FN) (div0 if no relevant).		
Dunginian TD / /TD TD) (dis C if an document action of)		

Precision = TP / (TP+FP) [divO if no document retrieved] Recall and precision difficult to have both high (graph) Fallout: FP / (FP+TV) (prob of non-relevamt, inv. of recall, no div0) FI-measure: 2PR/(P+R)

Total number of relevant items

Hard to know. Sample collection, or apply different retrieval algo Recall-precision graph

Upper right hand corner = better. Compare system by average. For a certain recall level, precision could be missing. Interpolate! Precisions at the "standard II recall levels". O. O.I. ... O.9. I.O. evaluate How to also consider ranking?

Moving recall. Top-k precision. avg. precision (=Area Under Curve) Discounted Cumulative Gain (DCG) (wrongly low rank = penalize)

$$\mathrm{DCG}_p = \sum\nolimits_{i=1}^p \frac{\mathrm{rel}_i}{\log_2{(i+1)}}$$

Mean Reciprocal Rank: Reciprocal of first relevant document hit. Subjective relevance measure

Novelty ratio	Coverag	e ratio	Sou	ight recall	
Other factors					
User effort	Response	Form (UI)	of	Collection	
(Ul. Query)	time (trade)	Presentati	ion	coverage	

LIO: Benchmarking

Standard docs and queries, relevant docs for each query SMART collection Text Retrieval Conference

Issue: Benchmark-specific, resource-consuming, language

LII: Text processing

Information Retrieval workflow (typically use term IDs):					
	Tokenize*	Stem*	X stopwords		Indexinç
*NLP workflow adds to after the tokenize:					
Lemmatize Part-of-s		peech	NEI	Q (entity red	

cog) Stopword uses: avoid index common words. Must consistent! Stemming uses: unify variations, shrink index, enhance recall

Affix	Successor	Table	N-gram	Statistical
removal	variety	lookup		(corpus)
T		l	10- 11	a al ana ana dan d

Famous algorithm: Porter's algorithm 1960s (language dependent) (MOT linguistically accurate, for improve IR only, fries → fr) *If do not stemming, expand query terms (computer += computation), but time consuming due to many terms

LI2: Relevance feedback (user lazy and dumb!)

User lazy and dumb for query Ambiguity (disambiguation?) Method: Query Expansion/Reformulation/Modification

Manual: User lazy and dumb Automatic relevance feedback Method: Implicit vs Explicit feedback

Explicit User lazy and dumb Implicit relevance feedback Implicit relevance feedback includes their actions (clicks) Relevant: reinforce vector Nonrelevant: weaken vector (Not just adjust query term weight but can adjust document too!)

Big business. Correctness > relevance: few but unmissable results. Specific queries, no links, not webpages, security, flexible scoring.

LI3: Personalization

Cause: Not one search fits all. Capture user interests (LI2), then rerank. As always, implicit preferred, as it is easy collectable despite lazy and dumb user, reflective of real usage.

Browsed documents

Clickthrough analysis:

Important metrics Click-through rate

Eye tracking:

Absolute feedback: Relevant or irrelevant Issue:				
Click != relevant Click paradox: user trust SE. SE		ust SE. SE trust usei		
Relative feedback, more relevant or less relevant in comparison				
Not clicked == not relevant		Nore reliable	. 80% correct	
How to measure?				

200–300ms fixation.	Record rank & clicked pages		
40-50ms saccades	(assume read sequentially.		
pupil dilation?	click relevant, skip irrelevant)		
Olis Little according to the site			

Clickthrough analysis logic

Best Performance	Average Performance		
(correlation 80%–90%)	(correlation 65% to 75%)		
(I) Click > Skipped Above	(3) Click > Earlier Click		
(2) Last click > Skip Above	(5) Click > No Click Next		
(4) Click > Skip Previous			

How to rerank it

Add personal weight vector Query reformulation

L14: Index Term Selection

Indexing is pre-requisite to high quality search output!

Zipfs law (useful for SE dictionary-free stop words)

Due to principle of least effort frequency f of a word is inverse of the rank r in usage popularity. Frequent words are short and account 60% of all word usage. Meanings m correlate to sqrt(f) Content words are words which occur at most 24 times in the Corpus. These tend to clump together and for number of times F that two content words appear in interval size I (I = I. 2. 3. etc.). F correlate I'-p where p from I to 1.3

Index term selection

Too few is inaccurate, too much is noise. Want only the ones with high discriminate ability. DV (discrimination value) anticorrelate with idf. As usual, calculate every pair is expensive Calculate document centroid for ease of calculation.

Complete Term Selection Algorithm

I. Identify all words in the documents

2. Select a similarity measure (say, inner product)

3. Set all term weights to I

4. Candidates = all terms

5. Compute dv's for all Candidates

6. Select the term with the highest dv

7. Remove the term from Candidates

8. Repeat 5-7 until the desired number of terms are selected

LI5: Discovering Phrases and Correlated Terms

N-grams: number of unique n-grams is large! Improve recall but hurt precision

Some N-grams are meaningless, so use filtering:

Stop words Frequency Grammar

To detect collocations and co-occurences (interchangeable term): High frequency of bigrams Grammar pattern matches

pointwise mutual information (PMI):

normalize co-occurrence frequency:

$$I(x,y) = \log_2 \frac{p(x,y)}{p(x)p(y)}$$

$$= \log_2 \frac{N \text{freq}(x,y)}{\text{freq}(x)\text{freq}(y)} N \text{ is number of words}$$

O when uncorrelated. +ve is correlated. -ve is anti-correlated Applications: reveal real word knowledge, query suggestion. identify page topic, page summarization, page ranking, find spam. LI6: Corporate SE (mostly ignored)