A General Framework for Sparse Sufficient Dimension Reduction

Jing Zeng

Department of Statistics Florida State University

Joint work with Dr. Xin Zhang and Dr. Qing Mai July 29th, 2019

Jing Zeng | JSM 2019 1/20

Motivation

Motivation

- High-dimensional dataset: sample covariance matrix $\widehat{\Sigma}_X$ is singular.
- Dimension selection, variable selection and central subspace estimation
 - Existing methods: multi-stage
 - Our method: simultaneously
- Our method estimates a $p \times H$ matrix and $d < H \ll p$, where d is the dimension of central subspace.
- General framework: applied to existing sufficient dimension reduction methods.

Jing Zeng | JSM 2019 3/

Introduction

Sufficient dimension reduction (SDR) and central subspace (CS)

Variables:

- $Y \in \mathbb{R}$: response
- **X** $\in \mathbb{R}^p$: predictor

Definition:

■ A subspace span(**B**), the span of the basis matrix $\mathbf{B} \in \mathbb{R}^{p \times d}$, $\mathbf{d} < \mathbf{p}$, is called a **central subspace (CS)** if it is the smallest subspace such that

$$Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! X | B^T X \iff Y | X \sim Y | B^T X.$$

And it is denoted by $S_{Y|X}$.

■ By projecting **X** onto span(**B**), the dimension is reduced from p to d, which is called **Sufficent Dimension Reduction (SDR)**.

Jing Zeng | JSM 2019 5/

Sliced Inverse Regression (SIR)

- Partition the range of Y into disjoint intervals, each interval is called the **slice** of Y.
- Assume

$$\mathbb{S}_{Y|X} = \Sigma_X^{-1} \mathsf{span}\{\mu_1 - \overline{\mu}, \dots, \mu_H - \overline{\mu}\} = \mathsf{span}(\Sigma_X^{-1}U)\text{,}$$

—
$$\mathbf{U} = (\mu_1 - \overline{\mu}, \dots, \mu_H - \overline{\mu}) \in \mathbb{R}^{p \times H}$$

— $\mu_h = \mathbb{E}[\mathbf{X}|J_h(Y) = 1]$: the h-th within-slice mean

$$J_h(y) = \begin{cases} 1, & y \text{ is in the h-th slice,} \\ 0, & \text{otherwise,} \end{cases} \quad h = 1, \dots, H$$

- $\overline{\mu} = \mathbb{E}[X]$: the marginal mean of X
- Estimate $S_{Y|X}$ by estimating $p \times H$ matrix $\Sigma_X^{-1}U(H \ll p)$.
- \blacksquare rank($S_{Y|X}$) = rank($\Sigma_{Y}^{-1}U$) = d < H

Jing Zeng | JSM 2019 6/20

Methods

Sparse Sufficient Dimension Reduction (SSDR)

■ Objective function:

$$\begin{split} L(\boldsymbol{B}) &= \frac{1}{2}\mathsf{tr}\left(\boldsymbol{B}^\mathsf{T}\boldsymbol{M}\boldsymbol{B}\right) - \mathsf{tr}\left(\boldsymbol{U}^\mathsf{T}\boldsymbol{B}\right). \end{split}$$
 where $\boldsymbol{M} \in \mathbb{R}^{p \times p} > 0$, $\boldsymbol{U} \in \mathbb{R}^{p \times H}(H \ll p)$.
$$\boldsymbol{B}^* = \text{argmin } L(\boldsymbol{B}) = \boldsymbol{M}^{-1}\boldsymbol{U} \end{split}$$

 $\mathbf{B} \in \mathbb{R}^{p \times H}$

4 D > 4 D > 4 B > 4 B > B = 9000

Jing Zeng | JSM 2019 8/20

Penalty terms

■ Penalized objective function:

$$\widehat{S}(\boldsymbol{B}; \lambda_1, \lambda_2) = \frac{1}{2} \text{tr}\left(\boldsymbol{B}^T \widehat{\boldsymbol{M}} \boldsymbol{B}\right) - \text{tr}\left(\widehat{\boldsymbol{U}}^T \boldsymbol{B}\right) + \lambda_1 \|\boldsymbol{B}\|_{2,1} + \lambda_2 \|\boldsymbol{B}\|_*$$

- $\blacksquare \ \|B\|_{2,1} = \sum_{i=1}^p \sqrt{\sum_{j=1}^H b_{i,j}^2} \ (\text{impose sparsity}).$
- $\|\mathbf{B}\|_* = \sum_{i=1}^H \sigma_i$, where σ_i is the i-th singular value (impose low-rank structure).
- Goal: optimize the penalized objective function:

$$\widehat{\mathbf{B}} = \underset{\mathbf{B} \in \mathbb{R}^{p \times H}}{\operatorname{argmin}} \, \hat{\mathbf{S}}(\mathbf{B}; \lambda_1, \lambda_2).$$

 $\hat{\mathbf{B}}$ is the sparse and low-rank estimation of $\mathbf{M}^{-1}\mathbf{U}$.

Jing Zeng | JSM 2019 9/20

Introduction Methods Numerical Study References

Examples

■ Sliced inverse regression (SIR) [Li, 1991]

$$\widehat{M}=\widehat{\Sigma}_X, \widehat{U}=(\hat{\mu}_1-\hat{\mu},\cdots,\hat{\mu}_H-\hat{\mu})$$

■ Intraslice covariance [Cook and Ni, 2005]

$$\widehat{M} = \widehat{\Sigma}_X, \widehat{U} = \left(\widehat{\mathsf{Cov}}(X, \mathsf{YJ}_1(\mathsf{Y})), \ldots, \widehat{\mathsf{Cov}}(X, \mathsf{YJ}_\mathsf{H}(\mathsf{Y}))\right)$$

$$J_h(y) = \begin{cases} 1, & y \text{ is in the h-th slice ,} \\ 0, & \text{otherwise.} \end{cases} \quad h = 1, \dots, H$$

■ Principle Fitted Components (PFC) [Cook and Forzani, 2008]

$$\widehat{\boldsymbol{M}} = \widehat{\boldsymbol{\Sigma}}_{\boldsymbol{X}}, \widehat{\boldsymbol{U}} = \tilde{\boldsymbol{X}}^\mathsf{T} \tilde{\boldsymbol{F}} (\tilde{\boldsymbol{F}}^\mathsf{T} \tilde{\boldsymbol{F}})^{-1/2}$$

- The ith row of $\tilde{\mathbf{X}} = \mathbf{X}_i \overline{\mathbf{X}}$, where \mathbf{X}_i is the i-th sample.
- The ith row of $\tilde{\mathbf{F}}=\mathbf{f}(y_i)-\bar{\mathbf{f}}$, where $\mathbf{f}(y_i)$ is a vector of functions of sample y_i .

Jing Zeng | JSM 2019 10/20

Algorithm: ADMM

■ Recast the problem

$$\widehat{\boldsymbol{B}} = \mathop{\mathsf{argmin}}_{\boldsymbol{B} \in \mathbb{R}^{p \times H}} \widehat{\boldsymbol{S}}(\boldsymbol{B}; \lambda_1, \lambda_2)$$

to

$$\begin{array}{ll} \underset{B \in \mathbb{R}^{p \times H}}{\text{argmin}} & \frac{1}{2} \text{tr} \left(B^T \widehat{M} B \right) - \text{tr} \left(\widehat{\mathbf{U}}^T B \right) + \lambda_1 \|B\|_{2,1} + \lambda_2 \|C\|_*, \\ \text{subject to} & B = C. \end{array}$$

■ Implement the **ADMM** algorithm.

Jing Zeng | JSM 2019

Parameter tuning

Method: cross-validation

■ For each combination of $(\lambda_1, \lambda_2, \gamma)$,

$$(Y_{train}, X_{train}) \xrightarrow{SSDR-based method} \widehat{B}$$

■ Projecting X_{val} onto \hat{B} :

$$\mathbf{X}_{\mathsf{val}} \xrightarrow{\mathsf{projection}} \ \mathbf{ ilde{X}} := \mathbf{\hat{B}}^\mathsf{T} \mathbf{X}_{\mathsf{val}}$$

■ Fit (linear) regression model:

$$(Y_{\text{val}}, \tilde{X}) \xrightarrow{\text{(linear) regression}} \text{RMSE}$$

■ Minimal RMSE \Leftrightarrow optimal $(\lambda_1, \lambda_2, \gamma)$.

Numerical Study

Comparison between SSDR-based methods and other competitor

Our methods

- SSDR-SIR
- SSDR-intra
- SSDR-PFC

Competitor:

■ LassoSIR¹

Jing Zeng | JSM 2019 14/20

¹Qian Lin, Zhigen Zhao and Jun S. Liu. Sparse Sliced Inverse Regression via Lasso. *Journal of the American Statistical Association*, 0(0):1-33, 2019.

Simulation models

- $X \in \mathbb{R}^p \sim N(\mathbf{0}, \mathbf{\Sigma})$, where $\mathbf{\Sigma} = AR(0.5)$.
- \bullet $\epsilon \sim N(0, 1)$
- p = 1000, N = 500
- d : dimension of central subspace
- s: the number of non-zero variables in rows
- Models:
 - Model I (linear model, d = 1, s = 20):

$$y = \textbf{B}^\mathsf{T} X + 0.5\varepsilon, \ \textbf{B} \in \mathbb{R}^p.$$

- Model II (single index model, d = 1, s = 20):

$$y = (\mathbf{B}^T X)^3 / 2 + \varepsilon$$
, $\mathbf{B} \in \mathbb{R}^p$.

- Model III(1 \sim 3) (multiple index model, d = 2, s = 6):

$$y = (\beta_1^T X) \cdot \exp(\beta_2^T X) + \sigma \cdot \varepsilon, \ \mathbf{B} = (\beta_1, \beta_2) \in \mathbb{R}^{p \times 2}$$

where $\sigma = 0.2, 0.6, 1$.

Subspace distance

■ Subspace distance: For the true central subspace **B** and the estimator $\hat{\mathbf{B}}$,

$$D(\mathbf{B}, \widehat{\mathbf{B}}) = \|\mathbf{P}_{\mathbf{B}} - \mathbf{P}_{\mathbf{B}} \mathbf{P}_{\widehat{\mathbf{B}}} \mathbf{P}_{\mathbf{B}}\|_{\mathsf{F}} / \sqrt{d},$$

where d is the dimension of true subspace **B**.

	Model	SSDR-SIR	SSDR-intra	SSDR-PFC	LassoSIR
	I	0.1(0.29)	0.08(0.29)	0.09(0.3)	0.12(0.35)
	II	0.17(0.72)	0.16(0.67)	0.16(0.64)	0.39(0.88)
	III(1)	0.19(1.89)	0.21(1.91)	0.14(1.41)	0.36(2.05)
	III(2)	0.25(2.2)	0.22(1.92)	0.28(2.58)	0.57(1.46)
	III(3)	0.25(1.99)	0.24(1.99)	0.33(2.49)	0.68(0.75)

Table: Mean subspace distance $D(\mathbf{B}, \widehat{\mathbf{B}})$ and standard error (×10⁻²)

Rank estimation

	Model	SSDR-SIR	SSDR-intra	SSDR-PFC	LassoSIR
	I(d=1)	100	95	92	76
	II(d=1)	76	89	67	76
	III(1)(d=2)	76	89	66	88
	III(2)(d=2)	72	90	54	69
	III(3)(d=2)	63	86	52	47

Table: The correct rate (%) of rank estimation

Jing Zeng | JSM 2019 17/20

Variable selection

Model	SSDR-SIR	SSDR-intra	SSDR-PFC	LassoSIR
I	99.5/0.03	99.65/0.03	99.15/ 0.02	99.95/5.65
II	95.95/0.71	97.4/ 0.28	95.6/0.74	93.55/7.96
III(1)	100/0.27	98.5/0.42	100/0.52	100/11.79
III(2)	100/0.28	99.83/0.47	100/0.3	100/10.17
III(3)	99.8/0.18	99/0.4	99.8/0.13	99.3/7.01

Table: True positive rate (%)/false positive rate (%). The standard errors are all less than 0.01.

Jing Zeng | JSM 2019 18/20

References

Jing Zeng | JSM 2019

- R Dennis Cook and Liliana Forzani. Principal fitted components for dimension reduction in regression. Statistical Science, 23(4):485-501, 2008.
- R Dennis Cook and Liqiang Ni. Using intraslice covariances for improved estimation of the central subspace in regression. Biometrika, 93(1):65-74, 2005.
- Ker-Chau Li. Sliced inverse regression for dimension reduction. *Journal of the American Statistical Association*, 86(414):316–327, 1991.

ベロト (部) (注) (注) 19/20

Thank you!