Solve the absolute value problems.

1.
$$|x-2| < 8$$

Solution:

$$|x-2| < 8 \implies -8 < x-2 < 8$$

 $\implies -6 < x < 10$

In interval form, this is (-6, 10).

2.
$$|8x - 2| > 9$$

Solution:

$$|8x-2| > 9 \implies 8x-2 > 9 \text{ or } 8x-2 < -9$$

 $\implies x > \frac{11}{8} \text{ or } x < -\frac{7}{8}$

In interval form, this is $\left(-\infty, -\frac{7}{8}\right) \cup \left(\frac{11}{8}, \infty\right)$.

3.
$$\sqrt{16x^2} \le 24$$

Solution:

Notice:
$$\sqrt{a^2} = |a| \implies \sqrt{16x^2} = |4x|$$

$$|4x| \le 24 \implies -24 \le 4x \le 24$$

 $\implies -6 \le x \le 6$

In interval form, this is [-6, 6].

4.
$$|7 - x| > 60$$

Solution:

$$|7-x| > 60 \implies 7-x > 60 \text{ or } 7-x < -60$$

 $\implies x < -53 \text{ or } x > 67$

In interval form, this is $(-\infty, -53) \cup (67, \infty)$.

5.
$$|x^2 - 5| < 4$$

Solution:

$$|x^2 - 5| < 4 \implies -4 < x^2 - 5 < 4 \implies 1 < x^2 \text{ and } x^2 < 9$$

Since $x^2 > 1 \implies x^2 - 1 > 0 \implies (x - 1)(x + 1) > 0$, we can set up a sign chart with $x = \pm 1$ and test to see on which intervals the product (x - 1)(x + 1) is positive.

This gives us the following number line:

In interval notation, this is $(-\infty, -1) \cup (1, \infty)$.

Since $x^2 < 9 \implies x^2 - 9 < 0 \implies (x - 3)(x + 3) < 0$, we can set up another sign chart.

Since x needs to satisfy **both** inequalities, we consider the intersection of these two intervals:

$$(-3,-1) \cup (1,3)$$