

INTRODUCTION TO EMBEDDED SYSTEMS

MR. UMESH KOYANDE

MR. KIRAN DATAR

CORE OF THE EMBEDDED SYSTEM

General purpose and domain specific processors

- Microprocessors
- Microcontrollers
- Digital Signal Processors

Application Specific Integrated Circuits (ASICs)

Programmable Logic Devices (PLDs)

Commercial off-the-shelf Components (COTS)

MICROPROCESSOR

A silicon chip representing a central processing unit (CPU)

Doesn't contain a built in I/O port

It is a dependent unit

Limited power saving options

It has few bit manipulation instructions

VS. MICROCONROLLERS

A chip that contains a CPU, RAM, register arrays, on chip ROM / FLASH memory, timer and interrupt control units and I/O ports.

Multiple built-in I/O ports

It is a self-contained unit

Includes lot of power saving features

It has many bit manipulation instructions

DIGITAL SIGNAL PROCESSORS

- 8/16/32 bit microprocessors designed specifically to meet the computational demands and power constraints of today's embedded audio, video, and communications applications
- A typical digital signal processor incorporates the following key units:
 - Program memory
 - Data Memory.
 - Computational Engine.
 - I/O Unit

RISC VS. CISC

Lesser number of instructions

Instruction pipelining

Orthogonal instruction set

A large number of registers are available

Single, fixed length instructions

With Harvard Architecture

Greater number of Instructions

Generally no instruction pipelining feature

Non-orthogonal instruction set

Limited number of general purpose registers

Variable length instructions

Can be Harvard or Von-Neumann Architecture

HARVARD ARCHITECTURE

Separate buses for instruction and data fetching

Easier to pipeline, so high performance can be achieved

Comparatively high cost

No chances for accidental corruption of program memory

VS. VON NEUMANN ARCHITECTURE

Single shared bus for instruction and data fetching

Low performance compared to Harvard architecture

Comparartively Cheaper

Chances for accidental corruption of program memory

APPLICATION SPECIFIC INTEGRATED CIRCUITS (ASIC)

Integrates several functions into a single chip

Reduces the system development cost

Profitable only for large volume commercial productions

Non-Recurring Engineering – Fabrication requires a nonrefundable initial investment

PROGRAMMABLE LOGIC DEVICES

COMMERCIAL OFF-THE-SHELF COMPONENTS (COTS)

Designed to provide easy integration and interoperability with existing system components

Readily available in the market, are cheap and development time to a great extent

No operational and manufacturing standards

Hardware plug-in and firmware interface compatibility varies with vendors

ONBOARD COMMUNICATION INTERFACES

- ☐ Inter Integrated Circuit Bus (I2C) Bus
 - I2C bus comprise of two bus lines
 - Serial Clock-SCL
 - Serial Data—SDA
 - Devices connected to the I2C bus can act as either 'Master' device or 'Slave' device
 - 'Master' initiating/terminating data transfer, sending data and generating necessary synchronization clock pulses.
 - 'Slave' devices wait for the commands from the master and respond upon receiving the commands
 - Bi-directional data transfer

ONBOARD COMMUNICATION INTERFACES

Serial Peripheral bus

- Synchronous bi-directional full duplex bus
- Single master multi-slave system
- SPI requires four signal lines for communication
 - Master Out Slave In (MOSI)
 - Master In Slave Out (MISO)
 - Serial clock (SCLK)
 - Slave Select (SS)
- Most suitable for applications requiring transfer of data in 'streams'
- SPI doesn't support an acknowledgement mechanism

ONBOARD COMMUNICATION INTERFACES

- Universal Asynchronous Receiver Transmitter (UART)
 - Asynchronous form of serial data transmission
 - Communication settings for both transmitter and receiver should be set as identical
 - 'Start' bit informs the receiver that a data byte is about to arrive
 - If parity is enabled for communication, the UART of the transmitting device adds a parity bit
 - Receiving device discards the 'Start', 'Stop' and 'Parity' bit from the received bit stream and converts the received serial bit data to a word