Mobile Manipulation Calibration

Adam Heins

November 7, 2023

1 Introduction

The frames of interest are listed in Table 1.

Table 1: Coordinate frames.

Name	Subscript
World	\overline{w}
Mobile base	b
Base of arm	a
End effector	e
Tool	t

The pose T_{wt} of an arbitrary tool attached to the end effector can be computed using the sequence of transforms

$$T_{wt} = T_{wb}(q_b)T_{ba}T_{ae}(q_a)T_{et}, \tag{1}$$

where T_{wb} depends on the base configuration $q_b = [x_b, y_b, \theta_b]^T$ and T_{ae} depends on the arm configuration q_a .

2 Vicon Zero Pose

The vicon_bridge package allows one to provide a zero pose to specify the desired origin of a given model. Given the true robot frame $\{r\}$ and the Vicon model frame $\{v\}$, we have

$$T_{wr} = T_{wv}T_{vr},$$

where T_{vr} is a constant transform we need to calibrate. The zero pose T_{wv}^0 is such that $T_{wr} = I$, which implies $T_{wv}^0 T_{vr} = I$ and thus

$$oldsymbol{T}_{wv}^0 = oldsymbol{T}_{vr}^{-1} = egin{bmatrix} oldsymbol{C}_{rv} & oldsymbol{r}_r^{vr} \ oldsymbol{0}^T & 1 \end{bmatrix}$$

3 Base Calibration

3.1 Center of Rotation

We need to calibration the Vicon measured base poses \hat{T}_{wv} so that the origin of T_{wb} is correct (i.e., we want it at the center of rotation, such that there is no translational motion when the base is commanded to rotate). Starting at an arbitrary configuration $\hat{T}_{wv,0}$, we will move the base to a sequence of desired yaw angles θ_i^d and obtain the corresponding measured configurations $\hat{T}_{wv,i}$. We want to find r_v^{bv} such that $\hat{r}_{wb,i} = \hat{r}_{wb,0}$ is satisfied as closely as possible for each i, which yields the least-squares problem

$$\underset{\boldsymbol{r}_{v}^{bv}}{\operatorname{argmin}} \ \frac{1}{2} \sum_{i} \left\| \hat{\boldsymbol{C}}_{wv,i} \boldsymbol{r}_{v}^{bv} + \hat{\boldsymbol{r}}_{w,i}^{vw} - \hat{\boldsymbol{C}}_{wv,0} \hat{\boldsymbol{r}}_{v}^{bv} - \hat{\boldsymbol{r}}_{w,0}^{vw} \right\|^{2}. \tag{2}$$

This gives us r_v^{bv} , but what we want for the Vicon zero pose is $r_b^{vb} = -C_{bv}r_v^{bv}$, so we need to negate the value and be careful to rotate it from the Vicon frame to the base frame if $C_{bv} \neq I$.

We can write (2) in the form $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$ by taking $\mathbf{x} = \mathbf{r}_v^{bv}$ and

$$oldsymbol{A} = egin{bmatrix} \hat{oldsymbol{C}}_{wv,0} - \hat{oldsymbol{C}}_{wv,0} \ dots \ \hat{oldsymbol{C}}_{wv,n} - \hat{oldsymbol{C}}_{wv,0} \end{bmatrix}, \qquad \qquad oldsymbol{b} = egin{bmatrix} \hat{oldsymbol{r}}^{vw} - \hat{oldsymbol{r}}^{vw}_{w,0} - \hat{oldsymbol{r}}^{vw}_{w,0} \ dots \ \hat{oldsymbol{r}}^{vw}_{w,0} - \hat{oldsymbol{r}}^{vw}_{w,n} \end{bmatrix}.$$

3.2 Orientation (Yaw)

We also need to calibrate the Vicon measured base poses \hat{T}_{wv} so that the yaw angle of the model is aligned with the actual forward direction of T_{wb} ; that is, the direction of pure forward velocity. Starting at a particular pose $\hat{T}_{wv,0}$, we command the Ridgeback to drive forward and periodically measure the pose $\hat{T}_{wv,i}$. Ideally, the position of the base would be aligned with the x-axis of the initial frame. Let $p_i = C_{wv,0}^T(r_{w,i}^{vw} - r_{w,0}^{vw})$. The yaw error is $\Delta\theta_i = \arctan 2(p_{y,i}, p_{x,i})$. We then solve the problem

$$\underset{\theta_{vb}}{\operatorname{argmin}} \ \frac{1}{2} \sum_{i} (\theta_{vb} - \Delta \theta_i)^2, \tag{3}$$

with corresponding Vicon zero orientation $C_{bv} = C_z(-\theta_{vb})$.

Important: remember to take this into account when computing the overall base zero pose including the position, as discussed above.

We can write (3) in the form $\|\mathbf{A}x - \mathbf{b}\|^2$ by taking $x = \theta_{bv}$, \mathbf{A} a vector of ones, and \mathbf{b} a vector of the angle errors $\Delta \theta_i$.

Figure 1: Frames on the robot being calibrated.

4 Arm-End Effector-Tool Calibration

Having calibrated the base pose T_{wb} , we now wish to calibrate (static) the transforms between the base and arm T_{ba} and the EE and tool T_{et} . We will assume that factory calibration for the arm transform $T_{ae}(q_a)$ is good enough.

To do so, we will collect a sequence of pairs $(q_{a,i}, \hat{T}_{wt,i})$ by moving the arm to the sequence of configurations $q_{a,i}$. We will then solve the (nonlinear) least squares problem

$$\underset{\boldsymbol{T}_{ba}, \boldsymbol{T}_{wt}}{\operatorname{argmin}} \ \frac{1}{2} \sum_{i} \| \Box (\boldsymbol{T}_{wt}(\boldsymbol{q}), \hat{\boldsymbol{T}}_{wt}) \|^{2}. \tag{4}$$

over the manifold SE(3), where T_{wt} is computed using (1) and

is the error between the poses. We can include any prior information about the transforms as an initial guess for the solver.

5 Force Sensor Calibration

Here our goal is to find the orientation C_{bf} of the force sensor frame $\{f\}$ about the x- and y-axes of a frame $\{b\}$ with a gravity-aligned z-axis. To do so, we will zero the sensor and then attach a mass m to it and collect a set of force measurements $\{f_{f,i}\}_{i=1}^n$. We then solve the nonlinear least-squares problem

$$\underset{\Delta \boldsymbol{C} \in SO(3)}{\operatorname{argmin}} \; \frac{1}{2} \sum_{i} \| \Delta \boldsymbol{C} \bar{\boldsymbol{C}}_{bf} \boldsymbol{f}_{f,i} - m \boldsymbol{g} \|^{2}$$

for the orientation offset ΔC such that $C_{bf} = \Delta C \bar{C}_{bf}$ with \bar{C}_{bf} a nominal guess for the orientation.

Calibrating the yaw angle offset would be more complicated, and at least require multiple orientations of C_{bf} to identify.