Package 'AccelStab'

October 21, 2024

Title Accelerated Stability Kinetic Modelling

Version 2.0.2

Description

Estimate the Šesták–Berggren kinetic model (degradation model) from experimental data. A A closed-form (analytic) solution to the degradation model is implemented as a non-linear fit, allowing for the extrapolation of the degradation of a drug product - both in time and temperature. Parametric bootstrap, with kinetic parameters drawn from the multivariate t-distribution, and analytical formulae (the delta method) are available options to calculate the confidence and prediction intervals.

The results (modelling, extrapolations and statistical intervals) can be visualised with multiple plots. The examples illustrate the accelerated stability modelling in drugs and vaccines development.

License AGPL (>= 3)

Encoding UTF-8

RoxygenNote 7.2.1

Imports dplyr, ggplot2, minpack.lm, mvtnorm, stats, scales

Suggests testthat (>= 3.0.0), knitr, rmarkdown, lifecycle

Depends R (>= 4.1.0)

Config/testthat/edition 3

LazyData true

Language en-GB

URL https://github.com/AccelStab/AccelStab

BugReports https://github.com/AccelStab/AccelStab/issues

NeedsCompilation no

Author Bernard G Franq [aut, cph],

Ben Wells [cre], Alex Ball [ctb]

Maintainer Ben Wells <benwells@bayezian.com>

Repository CRAN

Date/Publication 2024-10-21 12:50:07 UTC

2 antigenicity

Contents

anti	genicity Antigenicity Accelerated Stability Data	
Index		17
	step1_sample_mvt	14
	step1_plot_T	
	step1_plot_pred	12
	step1_plot_PI	1
	step1_plot_diagnostic	10
	step1_plot_desc	9
	step1_plot_CI	8
	step1_down_rmse	7
	step1_down	4
	potency	4
	excursion	3
	antigenicity	2

Description

An example dataset containing antigenicity concentration data at different temperatures over a period of up to 147 days.

Usage

```
data(antigenicity)
```

Format

An object of class "data.frame" with 50 rows and 5 variables

time Number of days in years for which the datapoints are gathered.

conc The concentration at a time.

K The temperature in Kelvin.

Celsius The temperature in celsius.

days Number of days for which the datapoints are gathered.

excursion 3

excursion

Temperature Excursion

Description

Predict a temperature excursion for a product.

Usage

```
excursion(
  step1_down_object,
  temp_changes,
  time_changes,
  CI = TRUE,
  PI = TRUE,
  draw = 10000,
  confidence_interval = 0.95,
  intercept = NULL,
  ribbon = TRUE,
  xname = NULL,
  yname = NULL,
  plot_simulations = FALSE
)
```

Arguments

step1_down_object

The fit object from the step1.down function (required).

temp_changes A list that represents the order of the temperatures that the product is subjected

to. Must be the same length as time changes.

time_changes List that represents the times at which the temperature changes, Starts from time

zero and must be the same length as temp_changes.

CI Show confidence intervals.

PI Show prediction intervals.

draw Number of simulations used to estimate confidence intervals.

confidence_interval

Confidence level for the confidence and prediction intervals around the predic-

tions (default 0.95).

intercept Use a forced y-intercept. If null, the fitted value will be used. ribbon Add shade to confidence and prediction intervals (optional).

xname Label for the x-axis (optional). yname Label for the y-axis (optional).

plot_simulations

If TRUE, randomly selects 100 of the simulations to display on the plot.

4 potency

Details

Use the output from step1.down to run a temperature excursion prediction.

Value

An SB class object, a list including the following elements:

- *prediction* A data frame containing the predictions with the confidence and prediction intervals.
- simulations Matrix of the simulations.
- excursion plot A plot with predictions and statistical intervals.
- *user_parameters* List of users input parameters which is utilised by other functions in the package.

Examples

potency

Potency Accelerated Stability Data

Description

An example dataset containing potency data at different temperatures..

```
data(potency)
```

step1_down 5

Format

An object of class "data.frame" with 78 rows and 3 variables

Time Time for which the datapoints are gathered.

Potency Measured potency at a time.

Celsius The temperature in celsius.

step1_down

Step1 Down Model

Description

Fit the one-step Šesták-Berggren kinetic model.

Usage

```
step1_down(
  data,
 у,
  .time,
 K = NULL
 C = NULL,
  validation = NULL,
  draw = 10000,
 parms = NULL,
  temp_pred_C = NULL,
 max_time_pred = NULL,
  confidence_interval = 0.95,
 by = 101,
  reparameterisation = FALSE,
  zero_order = FALSE
)
```

Arguments

data	Dataframe containing accelerated stability data (required).
У	Name of decreasing variable (e.g. concentration) contained within data (required).
.time	Time variable contained within data (required).
K	Kelvin variable (numeric or column name) (optional).
С	Celsius variable (numeric or column name) (optional).
validation	Validation dummy variable, the column must contain only 1s and 0s, 1 for validation data and 0 for fit data. (column name) (optional).
draw	Number of simulations used to estimate confidence intervals. When set to NULL the calculus method is used, however this is not recommended.

6 step1_down

parms Starting values for the parameters as a list - k1, k2, k3, and c0.

temp_pred_C Integer or numeric value to predict the response for a given temperature (in

Celsius).

max_time_pred Maximum time to predict the response variable.

confidence_interval

Confidence level for the confidence and prediction intervals around the predic-

tions (default 0.95).

by Number of points (on the time scale) to smooth the statistical intervals around

the predictions.

reparameterisation

Use alternative parameterisation of the one-step model which aims to reduce

correlation between k1 and k2.

zero_order Set kinetic order, k3, to zero (straight lines).

Details

Fit the one-step Šesták–Berggren kinetic (non-linear) model using accelerated stability data from an R dataframe format. Parameters are kept in even when not significant.

Value

An SB class object, a list including the following elements:

- fit The non-linear fit.
- data The data set.
- prediction A data frame containing the predictions with the confidence and prediction intervals.
- user_parameters List of users input parameters which is utilised by other functions in the package.

Examples

```
#load antigenicity and potency data.
data(antigenicity)
data(potency)

#Basic use of the step1.down function with C column defined.
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time", C = "Celsius", draw = 5000)

#Basic use of the step1.down function with K column defined.
fit2 <- step1_down(data = antigenicity, y = "conc", .time = "time", K = "K", draw = 5000)

#When zero_order = FALSE, the output suggests using zero_order = TRUE for Potency dataset.
fit3 <- step1_down(data = potency, y = "Potency", .time = "Time", C = "Celsius",
    reparameterisation = FALSE, zero_order = TRUE, draw = 5000)

#reparameterisation is TRUE.
fit4 <- step1_down(data = antigenicity, y = "conc", .time = "time", C = "Celsius",
    reparameterisation = TRUE, draw = 5000)</pre>
```

step1_down_rmse 7

step1_down_rmse

Step1 Down Model Root Mean Square Error Calculation

Description

Calculate Root Mean Square Error (RMSE) for the one-step Šesták-Berggren kinetic model.

Usage

```
step1_down_rmse(
 data,
 у,
  .time,
 K = NULL
 C = NULL
 parms,
  reparameterisation = FALSE
)
```

Arguments

data	Dataframe containing accelerated stability data (required).		
У	Name of decreasing variable (e.g. concentration) contained within data (required).		
.time	Time variable contained within data (required).		
K	Kelvin variable (numeric or column name) (optional).		
С	Celsius variable (numeric or column name) (optional).		
parms	Values for the parameters as a list - $k1$, $k2$, $k3$, and $c0$. If multiple are provided all combinations will be used (required).		
reparameterisation			

Use alternative parameterisation of the one-step model which aims to reduce correlation between k1 and k2.

Details

Calculate RMSE for the one-step Šesták-Berggren kinetic (non-linear) model using user provided parameters.

Value

A data frame containing one row for each RMSE calculation

8 step1_plot_CI

Examples

```
#load antigenicity and potency data.
data(antigenicity)
data(potency)

#Basic use of the step1_down_rmse function with C column defined.
rmse1 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
    C = "Celsius", parms = list(c0 = c(96,98,100), k1 = c(42,45),
    k2 = c(12000,12500), k3 = c(8,9,10)))

#Basic use of the step1_down_rmse function with K column defined.
rmse2 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
    K = "K", parms = list(c0 = c(98), k1 = c(42,45), k2 = c(12500), k3 = c(8,9)))

#reparameterisation is TRUE.
rmse3 <- step1_down_rmse(data = antigenicity, y = "conc", .time = "time",
    C = "Celsius", parms = list(c0 = c(100,95), k1 = c(2,2.5), k2 = c(12000,13000),
    k3 = c(9,10)), reparameterisation = TRUE)</pre>
```

step1_plot_CI

Plot Confidence Intervals

Description

Plot the stability data and visualise the predictions with confidence intervals.

Usage

```
step1_plot_CI(
   step1_down_object,
   xname = NULL,
   yname = NULL,
   xlim = NULL,
   ylim = NULL,
   ribbon = FALSE
)
```

Arguments

```
step1_down_object
```

The fit object from the step1.down function (required).

xname Label for the x-axis (optional).
yname Label for the y-axis (optional).
xlim x-axis limits (optional).
ylim y-axis limits (optional).

ribbon Add shade to confidence intervals (optional).

step1_plot_desc 9

Details

Use the fit object obtained from the step1.down function to plot the data and visualise the predictions with confidence intervals applied. There is an option to view the confidence intervals as a ribbon. The confidence interval value is chosen in the step1.down function.

Value

Plot of stability data with prediction curves and confidence intervals.

Examples

```
#load antigenciity data
data(antigenicity)

#run step1.down fit
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time",
    C = "Celsius", max_time_pred = 3, confidence_interval = 0.9)

#plot raw data with prediction curves and confidence intervals.
step1_plot_CI(step1_down_object = fit1, xlim = NULL, ylim = NULL,
    xname = "Time (Years)", yname = "Concentration", ribbon = TRUE)</pre>
```

step1_plot_desc

Plot Stability Data

Description

Plot raw accelerated stability data.

```
step1_plot_desc(
  data,
  y,
   .time,
  K = NULL,
  C = NULL,
  validation = NULL,
  xname = NULL,
  yname = NULL,
  xlim = NULL,
  ylim = NULL
)
```

Arguments

data	Dataframe containing accelerated stability data.
у	Name of decreasing variable (e.g. concentration) contained within data
.time	Time variable contained within data.
K	Kelvin variable (numeric or column name) (optional).
С	Celsius variable (numeric or column name) (optional).
validation	Validation dummy variable (column name) (optional).
xname	Label for the x-axis (optional).
yname	Label for the y-axis (optional).
xlim	x-axis limits (optional).
ylim	y-axis limits (optional).

Details

Plot the raw accelerated stability data by selecting the columns - response, time and temperature.

Value

Plot of raw accelerated stability data.

Examples

```
#load example datasets
data(antigenicity)
data(potency)
step1_plot_desc(data=antigenicity, y="conc", .time="time", C = "Celsius")
step1_plot_desc(data=potency, y="Potency", .time="Time", C = "Celsius")
```

```
step1_plot_diagnostic Create Diagnostic Plots
```

Description

Generate residual diagnostic plots from a step1_down fit.

```
step1_plot_diagnostic(step1_down_object, bins = 7)
```

step1_plot_PI 11

Arguments

```
step1_down_object

The fit object from the step1_down function (required).

bins

The number of bins in the Histogram plot (default 7).
```

Details

Use the fit object obtained from the step1_down function to plot the residual diagnostic plots, assess the quality of fit and search for anomalies. Plots created are: Residuals Histogram, Observed Vs Predicted results, Residuals Vs Predicted results and QQplot of Residuals.

Value

A list containing the four ggplot2 plots.

Examples

```
#load antigenicity data
data(antigenicity)

#run step1_down fit
fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time",
    C = "Celsius", max_time_pred = 3)

#plot diagnostic plots to asses the fit
step1_plot_diagnostic(fit1)</pre>
```

step1_plot_PI

Plot Prediction Intervals

Description

Plot the stability data and visualise the predictions with prediction intervals.

```
step1_plot_PI(
   step1_down_object,
   xname = NULL,
   yname = NULL,
   xlim = NULL,
   ylim = NULL,
   ribbon = FALSE
)
```

12 step1_plot_pred

Arguments

```
step1_down_object
The fit object from the step1.down function (required).

xname
Label for the x-axis (optional).

yname
Label for the y-axis (optional).

xlim
x-axis limits (optional).

ylim
y-axis limits (optional).

ribbon
Add shade to prediction intervals (optional).
```

Details

Use the fit object obtained from the step1.down function to plot the stability data and visualise the predictions with prediction intervals applied. There is an option to view the prediction intervals as a ribbon. The prediction interval value is chosen in the step1.down function.

Value

Plot of stability data with prediction curves and prediction intervals.

Examples

 ${\tt step1_plot_pred}$

Plot Model Predictions

Description

Plot the stability data and visualise the predictions.

```
step1_plot_pred(
   step1_down_object,
   xname = NULL,
   yname = NULL,
   xlim = NULL,
   ylim = NULL
)
```

step1_plot_T

Arguments

```
step1_down_object
The fit object from the step1.down function (required).

xname
Label for the x-axis (optional).

yname
Label for the y-axis (optional).

xlim
x-axis limits (optional).

ylim
y-axis limits (optional).
```

Details

Use the fit object from the step1.down function to plot the accelerated stability data and visualise the predictions.

Value

Plot of accelerated stability data with prediction curves.

Examples

```
#load antigenicity data
data(antigenicity)

fit1 <- step1_down(data = antigenicity, y = "conc", .time = "time",
    C = "Celsius", max_time_pred = 3)

step1_plot_pred(step1_down_object = fit1, xlim = NULL, ylim = NULL,
    xname = "Time (Years)", yname = "Concentration")</pre>
```

step1_plot_T

Focus on Temperature

Description

Plot the stability data and visualise the predictions with focus on one temperature.

```
step1_plot_T(
    step1_down_object,
    focus_T = NULL,
    xname = NULL,
    yname = NULL,
    xlim = NULL,
    ylim = NULL,
    ribbon = FALSE
)
```

14 step1_sample_mvt

Arguments

```
The fit object from the step1.down function (required).

focus_T Selected temperature to highlight on the plot.

xname Label for the x-axis (optional).

yname Label for the y-axis (optional).

xlim the x-axis limits (optional).

ylim the y-axis limits (optional).
```

Details

ribbon

Plot the stability data and visualise the predictions focusing on one chosen temperature with confidence and prediction intervals.

adds shade to confidence and prediction intervals (optional).

Value

ggplot2 object with focus on chosen temperature.

Examples

```
#load potency data
data(potency)

#run step1_down fit
fit1 <- step1_down(data = potency, y = "Potency", .time = "Time",
    C = "Celsius", zero_order = TRUE)

#plot raw data with prediction curves with focus on temperature in dataset.
step1_plot_T(fit1, focus_T = 5,ribbon = TRUE, xlim = NULL, ylim = c(0,12),
    xname = "Time (Month)", yname = "Potency")

#plot raw data with prediction curves with focus on temperature not in dataset.
step1_plot_T(fit1, focus_T = -10,ribbon = TRUE, xlim = NULL, ylim = c(0,12),
    xname = "Time (Months)", yname = "Potency")</pre>
```

step1_sample_mvt

Sample the Multivariate t Distribution

Description

Take a selected number of samples from the multivariate t distribution (mvt).

step1_sample_mvt 15

Usage

```
step1_sample_mvt(
  data,
  y,
   .time,
  K = NULL,
  C = NULL,
  validation = NULL,
  draw,
  parms = NULL,
  reparameterisation = FALSE,
  zero_order = FALSE
)
```

Arguments

data	Dataframe containing accelerated stability data (required).			
У	Name of decreasing variable (e.g. concentration) contained within data (required).			
.time	Time variable contained within data (required).			
K	Kelvin variable (numeric or column name) (optional).			
С	Celsius variable (numeric or column name) (optional).			
validation	Validation dummy variable (column name) (optional).			
draw	Number of samples to draw from mvt (required).			
parms	Starting values for the parameters as a list - k1, k2, k3, and c0 (optional).			
reparameterisation				
	Use alternative parameterisation of the one-step model which aims to reduce correlation between $k1$ and $k2$.			
zero_order	Set kinetic order, k3, to zero (straight lines).			

Details

Using the provided data the function creates a fit of the Šesták–Berggren kinetic model and then draws a selected number of samples from the mvt of the model parameters.

Value

A matrix containing parameter draws from the mvt distribution.

Examples

```
#load antigenicity data.
data(antigenicity)

#Basic use of the step1_sample_mvt function with C column defined and 1000 draws.
sample1 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
    C = "Celsius", draw = 1000)</pre>
```

step1_sample_mvt

```
#Basic use of the step1_sample_mvt function with K column defined and 50000 draws
sample2 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
K = "K", draw = 50000)

#reparameterisation is TRUE and 10000 draws.
sample3 <- step1_sample_mvt(data = antigenicity, y = "conc", .time = "time",
C = "Celsius", reparameterisation = TRUE, draw = 10000)</pre>
```

Index

```
* dataset
    antigenicity, 2
    potency, 4

antigenicity, 2

excursion, 3

potency, 4

step1_down, 5
step1_down_rmse, 7
step1_plot_CI, 8
step1_plot_desc, 9
step1_plot_diagnostic, 10
step1_plot_PI, 11
step1_plot_pred, 12
step1_plot_T, 13
step1_sample_mvt, 14
```