2 Convexity, Derivative

2.1 Lines, hyperplanes and linear varieties

• The line segment between two points $x, y \in \mathbb{R}^n$ is the set,

$$\{\boldsymbol{z} \in \mathbb{R}^n : \boldsymbol{z} = \alpha \boldsymbol{x} + (1 - \alpha) \boldsymbol{y}, \alpha \in [0, 1]\}.$$

• A hyperplane of the space \mathbb{R}^n , is the set of all points $\boldsymbol{x} = [x_1, x_2, \dots, x_n]^{\top}$ that satisfy the linear equation

$$u_1x_1 + u_2x_2 + \dots + u_nx_n = v,$$

where at least one of the u_i is nonzero. The hyperplane is defined by

$$\left\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u}^{\top} \boldsymbol{x} = v \right\},$$

where

$$\boldsymbol{u} = [u_1, u_2, \dots, u_n]^{\top}.$$

• Two half-spaces, postive half-space and negative half-space are

$$H_+ = \left\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{u}^\top \boldsymbol{x} \ge v \right\},$$

$$H_{-} = \left\{ \boldsymbol{x} \in \mathbb{R}^{n} : \boldsymbol{u}^{\top} \boldsymbol{x} \leq v \right\}.$$

• A linear variety is a set of form

$$\{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} \},$$

for some matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and vector $\mathbf{b} \in \mathbb{R}^n$.

2.2 Convex sets

- A point $\mathbf{w} = \alpha \mathbf{u} + (1 \alpha)\mathbf{v}$ (where $\alpha \in [0, 1]$) is called a <u>convex combination</u> of the points \mathbf{u} and \mathbf{u} .
- A set $\Theta \subset \mathbb{R}^n$ is <u>convex</u> if for all $\boldsymbol{u}, \boldsymbol{v} \in \Theta$, the *line segment* between \boldsymbol{u} and \boldsymbol{v} is in Θ . That is, Θ is *convex* if and only if $\alpha \boldsymbol{u} + (1 - \alpha) \boldsymbol{v} \in \Theta$ for all $\boldsymbol{u}, \boldsymbol{v} \in \Theta$ and $\alpha \in (0, 1)$. Examples of convex sets include the following:

- The empty set - A hyperplane

- A set consisting of a single point - A linear variety

- A line or a line segment - A half-space

- A subspace - \mathbb{R}^n

- \blacktriangle THEOREM4.3 Convex subsets of \mathbb{R}^n have the following properties:
 - a. If Θ is a convex set and β is a real number, then the set

$$\beta\Theta = \{ \boldsymbol{x} : \boldsymbol{x} = \beta \boldsymbol{v}, \boldsymbol{v} \in \Theta \}$$

is also convex.

b. If Θ_1 and Θ_2 are convex sets, then the set

$$\Theta_1 + \Theta_2 = \{ \boldsymbol{x} : \boldsymbol{x} = \boldsymbol{v}_1 + \boldsymbol{v}_2, \boldsymbol{v}_1 \in \Theta_1, \boldsymbol{v}_2 \in \Theta_2 \}$$

is also convex.

- c. The intersection of any collection of *convex sets* is convex.
- An extreme point \boldsymbol{x} in a convex set Θ , if there are no two distinct points \boldsymbol{u} and \boldsymbol{v} in Θ such that $\boldsymbol{x} = \alpha \boldsymbol{u} + (1 \alpha) \boldsymbol{v}$ for some $\alpha \in (0, 1)$.

2.3 Differentiation rules

• A function $f: \mathbb{R}^n \to \mathbb{R}$ follows,

$$f(\boldsymbol{x}) = f\left(\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}\right) = a_1x_1 + a_2x_2 + \dots + a_nx_n = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$= \begin{bmatrix} \boldsymbol{a}^\top & \end{bmatrix} \begin{bmatrix} \vdots \\ \boldsymbol{x} \\ \vdots \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}^\top & \end{bmatrix} \begin{bmatrix} \vdots \\ \boldsymbol{a} \\ \vdots \end{bmatrix}.$$

• A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, \mathbf{A} is $m \times n$ matrix,

$$\mathbf{A} = \left[egin{array}{cccc} dots & dots & dots & dots \ oldsymbol{a}_{*1} & oldsymbol{a}_{*2} & \cdots & oldsymbol{a}_{*n} \ dots & dots & dots & dots & dots \end{array}
ight] = \left[egin{array}{cccc} oldsymbol{a}_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{12} & \cdots & a_{mn} \end{array}
ight] = \left[egin{array}{c} oldsymbol{a}_{1}^{ op} \ oldsymbol{a}_{2}^{ op} \ dots \ oldsymbol{a}_{m1}^{ op} \end{array}
ight].$$

• A function $g : \mathbb{R}^n \to \mathbb{R}^m$ and a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{A}x$ is a column vector whose element is a scalar $g_{\star}(x)$.

$$\mathbf{A}\boldsymbol{x} = \begin{bmatrix} \boldsymbol{a}_1^\top \\ \vdots \\ \boldsymbol{a}_m^\top \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} \boldsymbol{a}_1^\top \boldsymbol{x} \\ \vdots \\ \boldsymbol{a}_m^\top \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} g_1(\boldsymbol{x}) \\ \vdots \\ g_m(\boldsymbol{x}) \end{bmatrix} = \boldsymbol{g}(\boldsymbol{x}).$$

• To be noted, in this course, we write the **derivative** D(f(x)) as a row vector, and write the **gradient** $\nabla f(x)$ as a column vector.

2

Types of Matrix Derivatives

Types	Scalar	Vector	Matrix
Scalar	$\frac{df}{dx}, \frac{\partial f}{\partial x_*}$ (1)	$\frac{d\mathbf{g}(t)}{dt}, \frac{\partial \mathbf{g}(\mathbf{x})}{\partial x_*}$ (3)	$\frac{d\mathbf{A}(t)}{dt}$
Vector	$\frac{\partial f(\boldsymbol{x})}{\partial \boldsymbol{x}}, \nabla f(\boldsymbol{x}) (2)$	$\frac{\partial g(x)}{\partial x}$ (4)	
Matrix	$rac{\partial f}{\partial \mathbf{X}}$		

(1) Given $f: \mathbb{R} \to \mathbb{R}$, the derivative of f is a function $f': \mathbb{R} \to \mathbb{R}$ given by

$$D_x(f(x)) = \frac{df}{dx} = f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

if the limit exists.

(2) Given $f: \mathbb{R}^n \to \mathbb{R}$, consider a scalar $f(\boldsymbol{x}) = a_1 x_1 + a_2 x_2 + \dots + a_n x_n = \boldsymbol{a}^\top \boldsymbol{x}$. For **derivative** rule (2),

$$\frac{\partial}{\partial \boldsymbol{x}} f(\boldsymbol{x}) = \frac{\boldsymbol{D}_{\boldsymbol{x}}(f(\boldsymbol{x}))}{\boldsymbol{D}_{\boldsymbol{x}}(\boldsymbol{a}^{\top}\boldsymbol{x})} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} = \boldsymbol{a}^{\top},$$

For **gradient** rule (2), if $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable, then the *gradient* of f is a function $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\nabla_{\boldsymbol{x}} f(\boldsymbol{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \boldsymbol{a} = D_{\boldsymbol{x}} (f(\boldsymbol{x}))^{\top},$$

(3) Given $g: \mathbb{R} \to \mathbb{R}^m$, here $t \in \mathbb{R}$ is a scalar. g(t) is a column vector.

$$\boldsymbol{g}(t) = \begin{bmatrix} g_1(t) \\ g_2(t) \\ \vdots \\ g_m(t) \end{bmatrix}, \quad D_t \boldsymbol{g}(t) = \begin{bmatrix} \frac{d}{dt} g_1(t) \\ \frac{d}{dt} g_2(t) \\ \vdots \\ \frac{d}{dt} g_m(t) \end{bmatrix} = \begin{bmatrix} g_1'(t) \\ \vdots \\ g_m'(t) \end{bmatrix},$$

(4) Consider $\boldsymbol{g}: \mathbb{R}^n \to \mathbb{R}^m$, here $\boldsymbol{x} \in \mathbb{R}^n$ is a vector. Since $g_i(\boldsymbol{x})$ is a scalar, $\boldsymbol{g} = [g_1, \dots, g_m]^\top$, $\boldsymbol{g}(\boldsymbol{x})$ is a column vector.

$$\boldsymbol{g}\left(\boldsymbol{x}\right) = \begin{bmatrix} g_{1}(\boldsymbol{x}) \\ g_{2}(\boldsymbol{x}) \\ \vdots \\ g_{m}(\boldsymbol{x}) \end{bmatrix}, D_{\boldsymbol{x}}\boldsymbol{g}\left(\boldsymbol{x}\right) = \begin{bmatrix} D_{\boldsymbol{x}}g_{1}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\ D_{\boldsymbol{x}}g_{2}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \\ \vdots \\ D_{\boldsymbol{x}}g_{m}\left(x_{1}, x_{2}, \cdots, x_{n}\right) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x_{1}}g_{1} & \frac{\partial}{\partial x_{2}}g_{1} & \cdots & \frac{\partial}{\partial x_{n}}g_{1} \\ \frac{\partial}{\partial x_{1}}g_{2} & \frac{\partial}{\partial x_{2}}g_{2} & \cdots & \frac{\partial}{\partial x_{n}}g_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial}{\partial x_{1}}g_{m} & \frac{\partial}{\partial x_{2}}g_{m} & \cdots & \frac{\partial}{\partial x_{n}}g_{m} \end{bmatrix} = \boldsymbol{L}.$$

The matrix L is called the Jacobian matrix, or derivative matrix, of function g.

• If all elements in g(x) are linear combination of x,

$$\boldsymbol{g}(\boldsymbol{x}) = \begin{bmatrix} g_1(\boldsymbol{x}) \\ \vdots \\ g_m(\boldsymbol{x}) \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^\top \boldsymbol{x} \\ \vdots \\ \boldsymbol{a}_m^\top \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1^\top \\ \vdots \\ \boldsymbol{a}_m^\top \end{bmatrix} \boldsymbol{x} = \mathbf{A}\boldsymbol{x}.$$

Then, the derivative of $\mathbf{A}x$ is equivalent to $\frac{\partial}{\partial x}g(x)$,

$$egin{aligned} rac{\partial}{\partial oldsymbol{x}} oldsymbol{g}(oldsymbol{x}) &= rac{\partial}{\partial oldsymbol{x}} \left(\mathbf{A} oldsymbol{x}
ight) &= egin{aligned} egin{alig$$

• In summary, the derivative rules are listed as,

• Note that for $f: \mathbb{R}^n \to \mathbb{R}$, we have

$$\nabla f(\boldsymbol{x}) = \boldsymbol{D} f(\boldsymbol{x})^{\top}.$$

2.4 Differentiation rules on composite function

• To differentiate the composite function, $h(t) = f(\boldsymbol{g}(t))$ is differentiable on (a, b), and

$$f(\boldsymbol{g}(t)) = f\left(\begin{bmatrix} g_1(t) \\ g_2(t) \\ \vdots \\ g_m(t) \end{bmatrix}\right) = a_1g_1(t) + a_2g_2(t) + \dots + a_mg_m(t).$$

• The differentiated composite function with **derivative** rule is

$$h'(t) = D_{\boldsymbol{g}} f(\boldsymbol{g}(t)) D_{t} \boldsymbol{g}(t) = \nabla f(\boldsymbol{g}(t))^{\top} \begin{bmatrix} g'_{1}(t) \\ \vdots \\ g'_{m}(t) \end{bmatrix} = \begin{bmatrix} \frac{d}{dg_{1}} f(\boldsymbol{g}(t)) & \cdots & \frac{d}{dg_{m}} f(\boldsymbol{g}(t)) \end{bmatrix} \begin{bmatrix} g'_{1}(t) \\ \vdots \\ g'_{m}(t) \end{bmatrix}.$$

• Consider Hessian matrix, which is second order derivative of scalar. Noted that, $D(f(\boldsymbol{x}))$ is spreading the derivative of the polynomials on the horizontal direction. Thus, we would like to ensure each entry is located on a vertical direction, then the entry could be applied to conduct derivative.

$$D^{2}(f(\boldsymbol{x})) = D\left(Df(\boldsymbol{x})^{\top}\right) = D(\nabla f(\boldsymbol{x})) = \begin{bmatrix} D\left(\frac{\partial f}{\partial x_{1}}\right) \\ D\left(\frac{\partial f}{\partial x_{2}}\right) \\ \vdots \\ D\left(\frac{\partial f}{\partial x_{n}}\right) \end{bmatrix} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{2}} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \dots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} \end{bmatrix}.$$

2.5 Differentiation Product Rules

i) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be two differentiable functions, $x \in \mathbb{R}$,

$$D\bigg(f(x)g(x)\bigg) = f(x)Dg(x) + g(x)Df(x),$$

$$\nabla\bigg(f(x)g(x)\bigg) = f(x)\nabla g(x) + g(x)\nabla f(x).$$

ii) Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ be two differentiable functions, $\boldsymbol{x} \in \mathbb{R}^n$,

$$D\bigg(f(\boldsymbol{x})g(\boldsymbol{x})\bigg) = f(\boldsymbol{x}) \begin{bmatrix} Dg(\boldsymbol{x}) \end{bmatrix} + g(\boldsymbol{x}) \begin{bmatrix} Df(\boldsymbol{x}) \end{bmatrix},$$

$$\nabla\bigg(f(\boldsymbol{x})g(\boldsymbol{x})\bigg) = f(\boldsymbol{x}) \begin{bmatrix} \nabla g(\boldsymbol{x}) \end{bmatrix} + g(\boldsymbol{x}) \begin{bmatrix} \nabla f(\boldsymbol{x}) \end{bmatrix}.$$

iii) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ be two differentiable functions, $x \in \mathbb{R}^n$,

$$D\left(\boldsymbol{f}(\boldsymbol{x})^{\top}\boldsymbol{g}(\boldsymbol{x})\right) = \boldsymbol{f}(\boldsymbol{x})^{\top}D\boldsymbol{g}(\boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x})^{\top}D\boldsymbol{f}(\boldsymbol{x}),$$
$$\nabla\left(\boldsymbol{f}(\boldsymbol{x})^{\top}\boldsymbol{g}(\boldsymbol{x})\right) = \boldsymbol{f}(\boldsymbol{x})^{\top}\nabla\boldsymbol{g}(\boldsymbol{x}) + \boldsymbol{g}(\boldsymbol{x})^{\top}\nabla\boldsymbol{f}(\boldsymbol{x}).$$

- Based on the above **derivative** rule, we have
 - 1. Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a given matrix and $\mathbf{y} \in \mathbb{R}^m$ a given vector. Then,

$$D(\mathbf{y}^{\top} \mathbf{A} \mathbf{x}) = \mathbf{y}^{\top} \mathbf{A},$$

 $D(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}) = \mathbf{x}^{\top} (\mathbf{A} + \mathbf{A}^{\top}).$ if $m = n$

2. Consider $A \in \mathbb{R}^{m \times n}$ be a given matrix and $y \in \mathbb{R}^n$ a given vector. Then,

$$D\left(\boldsymbol{y}^{\top}\boldsymbol{x}\right) = \boldsymbol{y}^{\top}$$

3. Consider if Q is a symmetric matrix, then

$$D\left(\boldsymbol{x}^{\top}\boldsymbol{Q}\boldsymbol{x}\right) = 2\boldsymbol{x}^{\top}\boldsymbol{Q}$$

In particular,

$$D\left(\boldsymbol{x}^{\top}\boldsymbol{x}\right) = 2\boldsymbol{x}^{\top}$$

- Based on the above **gradient** rule, we have
 - 1. Consider $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a given matrix and $\mathbf{y} \in \mathbb{R}^m$ a given vector. Then,

2. Consider $A \in \mathbb{R}^{m \times n}$ be a given matrix and $y \in \mathbb{R}^n$ a given vector. Then,

$$abla \left(oldsymbol{y}^ op oldsymbol{x}
ight) = oldsymbol{y}$$

3. Consider if Q is a symmetric matrix, then

$$\nabla \left(\boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} \right) = 2 \boldsymbol{Q} \boldsymbol{x}$$

In particular,

$$abla \left(oldsymbol{x}^{ op} oldsymbol{x}
ight) = 2 oldsymbol{x}$$

[Ref]:

Edwin K.P. Chong, Stanislaw H. Żak, "PART I MATHEMATICAL REVIEW" in "An introduction to optimization", 4th Edition, John Wiley and Sons, Inc. 2013.