In the Drawings

1. Please replace the informal Drawings with the attached Formal Drawings

In the Specification

2. Please replace the paragraph starting on page 12, line 10 with the following replacement paragraph:

The Mg(OH)₂ with adsorbed arsenic exits the separator **20** and enters a tank **32**. Carbonate **40**, such as sodium carbonate or sodium bicarbonate, or potassium carbonate or potassium bicarbonate, is introduced into tank **32**, converting the Mg(OH)₂ to MgCO₃, and desorbing the arsenic into the aqueous solution. The arsenic is then removed in water stream **38**. The MgCO₃ can be allowed to settle in tank **32**, thereby permitting removal of arsenic in water stream **38** without concomitant removal of MgCO₃. Alternatively, the MgCO₃ can be filtered or otherwise separated from the water in tank **32**.

Marked Up Version to Show Changes Made

The Mg(OH)₂ with adsorbed arsenic exits the separator 20 and enters a tank 32. Carbonate 40, such as sodium carbonate or sodium bicarbonate, or potassium carbonate or potassium bicarbonate, is introduced into tank 32, converting the Mg(OH)₂ to MgCO₃, and desorbing the arsenic into the aqueous solution. The arsenic is then removed in water stream 38. The MgCO₃ can be allowed to settle in tank 32, thereby permitting removal of arsenic in water stream 38 without concomitant removal of MgCO₃. Alternatively, the MgCO₃ MgCO₃ can be filtered or otherwise separated from the water in tank 32.

3. Please replace the paragraph starting on page 8, line 25 with the following replacement paragraph:

 $Mg(OH)_2$ is essentially insoluble in water over normal pH ranges and temperatures encountered in water distribution systems. $Mg(OH)_2$ is available, and may be employed in this invention, in any of a variety of suspensions, slurries, powders or particulates. In one embodiment, a magnesium hydroxide suspension is employed, containing at least 98% $Mg(OH)_2$ with a median particle size less than 3 microns, and preferably 0.5-1.0 microns, in a suspension of water. In another embodiment, $Mg(OH)_2$ powder may be employed, of a powder size sufficiently small to essentially all pass through a 325 mesh screen, and with a surface area from about 7 to about 13 m^2/gm .

Marked Up Version to Show Changes Made

Mg(OH)₂ is essentially insoluble in water over normal pH ranges and temperatures encountered in water distribution systems. Mg(OH)₂ is available, and may be employed in this invention, in any of a variety of suspensions, slurries, powders or particulates. In one embodiment, a magnesium hydroxide suspension is employed, containing at least 98% Mg(OH)₂ with a median particle size less than 3 microns, and preferably 0.5-1.0 microns, in a suspension of water with about 7 lbs. of Mg(OH)₂ per gallon. In another embodiment, Mg(OH)₂ powder may be employed, of a powder size sufficiently small to essentially all pass through a 325 mesh screen, and with a surface area from about 7 to about 13 m²/gm.