Roll No. ..1601.00116.....

EE-101, S4: Quiz # 1

Date: 7th Sep, 2017

Time: 10:10am to 10:30am

Instructions: (a) Answer all questions

(b) Answer only in the space provided next to the question

(c) You can use back side of the 2nd sheet for rough work

Q1. Determine the Thevenin equivalent of the circuit shown in Fig. 1 as seen from terminals A-B.

Q2. (a) In the circuit shown in Fig. 2(a), the cut-in voltage of the diode is 1.5 V and the diode on state dynamic resistance is 0 Ω .

(i)
$${}^{\circ}V_{A}{}^{\circ} = 3.5 \text{ V} \text{ and } {}^{\circ}V_{C}{}^{\circ} = 2.5 \text{ V}$$

(ii)
$${}^{\circ}V_{A}$$
 = 10 V and ${}^{\circ}V_{C}$ = 2.5 V

(2)

$$(i)$$
 $i = 8 = 5 \cdot 10 \cdot 2 \cdot 5 - 1 \cdot 5 = 6 = 1 \cdot 5 \text{ mA}$

Fig. 2(a)

Q2 (b). In the circuit shown in Fig. 2(b), plot the dimensional waveforms of the voltages V_0 and V_0 for the given input voltage V_1 . Assume the diode to be ideal. (3)

Soln.:

Vo =

(No drop across diode)

Q3. In the circuit shown in Fig. 3, $\beta = 100$. Determine the values of ' I_C ' and ' V_{CE} '. Comment on the mode of operation of the BJT in the circuit. (5) Soln.: $\frac{J_c}{I_B} = 100$ $\frac{J_c}{I_E} = A$ $\frac{J_c}{I_E} = A$ $\frac{J_c}{J_c} = A$ $\frac{J_c}{J_c} = A$ $\frac{J_c}{J_c} = A$ $\frac{J_c}{J_c} = A$ Fig. 3 Vc-VE = - 0.665