CS 486 A3 Q1

(a)

Decision network:

Utility function that I designed according to the question:

Call	В	Utility
Т	Т	-1000.0
Т	F	-115.0
F	Т	-65000.0
F	F	0.0

Optimal decision for each combinations of values for the evidence variable:

The general policy for maximizing expected utility is NOT to call police no matter what W and G are.

For example:

```
For W = true and G = true,

If we call the police, E(U) = -2.22185

But if we do NOT, E(U) = -1.98121
```

For W = true and G = false, If we call the police, E(U) = -44.31412But if we do NOT, E(U) = -3.0888

We can easily see that NOT calling police can always achieve better expected utility.

(b)

Decision network:

Utility function is the same as in (a).

Optimal decision:

Relay Call				
Т	✓ T	F		
F	T	✓ F		
This decision function was created by optimizing.				
Clear	ОК	Cancel		

The general policy is to call police when relay is true, NOT call police when relay is false.

For example:

```
For relay = true,

if call police, E(U) = -1.25144

if not, E(U) = -6.17502

For relay = false,

if call police, E(U) = -113.83706

if not, E(U) = -0.32498
```

As we can see, we need to follow the relay to decide if we call the police to maximize the expected utility.

Value of the relay = Expected utility WITH relay - Expected utility WITHOUT relay = (-1.57642) - (-6.5) = 4.92358