EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

HAFTA 5 – DERS 2 20 Mart 2025

Dr. Sibel ÇİMEN

Örnek:

"A1 A0" ve "B1 B0" şeklinde verilen 2-Bitlik iki sayının birbirine eşit, küçük ve büyük olduğunu bulan 2-Bit Genlik Karşılaştırıcı devrenin tasarlanarak gerçekleştirilmesi.

Tasarlanacak devrenin iki tane 2-Bit girişi ve eşit, küçük ve büyük olmak üzere üç tane çıkışı vardır. Girişler "A1 A0" ve "B1 B0", çıkışlar ise büyük (A>B, t1), eşit (A=B, t2) ve küçük (A<B, t3) olarak adlandırılsın. (Giriş ve çıkış değişkenlerinin sayısı belirlenir ve adlandırılır)

Örnek:

m	A1	A0	B 1	B0	A>B, t1	A=B, t2	A <b, t3<="" th=""></b,>
0	0	0	0	0	0	1	0
1	0	0	0	1	0	0	1
2	0	0	1	0	0	0	1
3	0	0	٦	1	0	0	1
4	0	1	0	0	1	0	0
<i>5</i>	0	1	0	1	0	1	0
6	0	1	1	0	0	0	1
7	0	1	1	1	0	0	1
8	1	0	0	0	1	0	0
9	1	0	0	1	1	0	0
<i>10</i>	1	0	1	0	0	1	0
11	1	0	1	1	0	0	1
12	1	1	0	0	1	0	0
13	1	1	0	1	1	0	0
14	1	1	1	0	1	0	0
15	1	1	1	1	0	1	0

$$t_{1}=\sum m(4,8,9,12,13,14)$$

 $t_{2}=\sum m(0,5,10,15)$
 $t_{3}=\sum m(1,2,3,6,7,11)$

Örnek:

 $t1=\Sigma m(4,8,9,12,13,14)$

$$t_1 = A_1 \cdot \overline{B}_1 + A_0 \cdot \overline{B}_1 \cdot \overline{B}_0 + A_1 \cdot A_0 \cdot \overline{B}_0$$
$$t_1 = A_1 \cdot \overline{B}_1 + A_0 \cdot \overline{B}_0 \cdot \overline{A_1 \oplus B_1}$$

Örnek:

$$t2=\Sigma m(0,5,10,15)$$

$$\overline{\text{A1}}\ \overline{\text{A0}}\ \overline{\text{B1}}\ \overline{\text{B0}} + \overline{\text{A1}}\ \overline{\text{A0}}\ \overline{\text{B1}}\ \overline{\text{B0}} + \overline{\text{A1}}\ \overline{\text{A0}}\ \overline{\text{B1}}\ \overline{\text{B0}} + \overline{\text{A1}}\ \overline{\text{A0}}\ \overline{\text{B1}}\ \overline{\text{B0}}$$

$$t_{2} = \overline{A}_{1} \cdot \overline{A}_{0} \cdot \overline{B}_{1} \cdot \overline{B}_{0} + \overline{A}_{1} \cdot A_{0} \cdot \overline{B}_{1} \cdot B_{0}$$
$$+ A_{1} \cdot A_{0} \cdot B_{1} \cdot B_{0} + A_{1} \cdot \overline{A}_{0} \cdot B_{1} \cdot \overline{B}_{0}$$
$$t_{2} = \overline{A_{1} \oplus B_{1}} \cdot \overline{A_{0} \oplus B_{0}}$$

Örnek:

$$t3=\Sigma m(1,2,3,6,7,11)$$

Örnek:

Fiziksel gerçeklemede elde edilen sonuç fonksiyonlara ilişkin lojik devre şeması çizilir.

Örnek:

4 Bitlik 2 sayıyı karşılaştıran ve sayılar eşit ise çıkış olarak lojik-1 veren lojik devreyi tasarlayınız.

8 girişli tek çıkışlı bir devre tasarımı olmalı.

Modüler bir tasarım yapılabilir mi?

Bunun için bir bitlik karşılaştırıcı devre tasarlayalım.

x değişkenini a=b girişi olarak adlandıralım.

a	b	Х	е
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$e = \overline{a}.\overline{b}.x + a.b.x$$

$$e = x(\overline{a}.\overline{b} + a.b)$$

$$e = x(\overline{a} \oplus \overline{b})$$

4 bitlik A sayısı: $a_3 a_2 a_1 a_0$ olsun.

4 bitlik B sayısı: b₃b₂b₁b₀ olsun.

8 Bitlik 2 sayıyı karşılaştıran ve A>B, A<B ve A=B diye 3 çıkışı bulunan ve çıkış adlarına uygun olarak çıkış değeri üreten lojik devreyi tasarlayınız?

REFERANSLAR:

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, http://tuncayuzun.com/Dersnot_LDT.htm, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.
- 3. M. Morris Mano, Sayısal Tasarım (Çeviri), Literatür Yayıncılık: İstanbul, 2003.