Engenharia de Software

Introdução à engenharia de software

Organização da apresentação

- História;
- Engenharia de software;
- SWEBOK áreas de conhecimento da engenharia de software;
- Software;
- Produto de software;
- Ciclo de vida do desenvolvimento de software;

História

- O termo "Engenharia de Software" foi sugerida numa conferência organizada pela NATO em 1968;
- Tinha como objetivo discutir a atual "crise no software";
- Esta crise prendia-se com as dificuldades no desenvolvimento de sistemas complexos na década de 60;
- Foi proposto a adoção de uma abordagem de engenharia para o desenvolvimento de software de forma a reduzir os custos no desenvolvimento de software de forma a garantir mais fiabilidade no software;
- Daqui resultou um relatório que definia os fundamentos da engenharia de software.

História

at universities. The discussions cover all aspects of software including

- relation of software to the hardware of computers
- design of software
- production, or implementation of software
- distribution of software
- service on software.

By including many direct quotations and exchanges of opinion, the report reflects the lively controversies of the original discussion.

Although much of the discussions were of a detailed technical nature, the report also contains sections reporting on discussions which will be of interest to a much wider audience. This holds for subjects like

- the problems of achieving sufficient reliability in the data systems which are becoming increasingly integrated into the central activities of modern society
- the difficulties of meeting schedules and specifications on large software projects
- the education of software (or data systems) engineers
- the highly controversial question of whether software should be priced separately from hardware.

Caracterização da disciplina

- A engenharia de software corresponde à:
 - ✓ aplicação dos princípios da engenharia tradicional ao processo de desenvolvimento de software;
 - ✓ utiliza os princípios básicos da engenharia para obter, de forma economicamente viável, software fiável e eficiente que corra eficientemente em computadores reais [Bauer, 1968].
 - ✓ aplicação duma abordagem sistemática, disciplinada e quantificável no contexto do planeamento, do desenvolvimento e da exploração de sistemas de software [PRESSMAN, 2016].

Caracterização da disciplina

- A engenharia de software não está centrada apenas nos aspetos técnicos associados ao desenvolvimento, mas também inclui atividades de gestão do próprio processo de desenvolvimento.
- Num projeto de com uma equipa numerosa, existe a necessidade de gerir, planear e controlar as atividades do vários profissionais.

Desenvolvimento de software

Engenharia de software - Desafios

- Prazos de entrega:
 - ✓ desenvolvimento de técnicas de software que permitam reduzir os prazos de entrega;
 - ✓ medir o progresso no desenvolvimento do software e obter estimativas mais precisas.
- Qualidade.
 - √ desenvolver técnicas e metodologias para garantia e melhoria da qualidade do software;
 - ✓ eliminar os erros antes do software entrar em produção;
 - √ desenvolver software que seja fácil/barato de manter.
- Produtividade/Custo.
 - ✓ entrega de software de qualidade a custos controlados;
 - ✓ perceber a origem dos custos e como otimizar a produção.

Engenharia de software - Princípios

- Acrescentar valor ao cliente:
 - √ é para isso que tudo existe. Alinhar com o negócio;
- KISS (Keep it simple, stupid!).
 - √ a solução deve ser o mais simples possível;
- Produzir software que outros possam alterar/melhorar
 - ✓ estruturar e documentar convenientemente.
- Antecipar a mudança
 - ✓ o software deverá ser flexível para lidar com situações previsíveis.
- Promover a reutilização do software
 - ✓ o software como um componente que pode ser usado em várias soluções.

Exercícios

- 1. Qual o âmbito de aplicação da engenharia de software?
- 2. Assinale a alternativa que preenche as lacunas corretamente relativa a definição abaixo para Engenharia de Software.

De acordo com Pressman a Engenharia de Software é a aplicação de uma abordagem sistemática, _____ e quantificável no contexto do planeamento, do _____ e exploração de sistemas de software.

- A. disciplinada desenvolvimento.
- B. completa implementação.
- C. incremental documentação.
- D. estruturada implementação.
- 3. Quais são os principais desafios da engenharia de software?
- 4. Identifique e explique 3 princípios da engenharia de software.

- Segundo Pressman, a engenharia de software é baseada em camada, com foco na qualidade:
 - ✓ Qualidade: o principal objetivo da engenharia de software é a qualidade;
 - ✓ Processo: define o enquadramento para a realização das tarefas de desenvolvimento e a aplicação dos respetivos métodos;
 - ✓ Métodos: consiste no conhecimento e nas técnicas específicas como a análise de requisitos, modelação e codificação:
 - ✓ Ferramentas: são os meios auxiliares usados, e.g. IDE, CASE, SCM.

Processo:

- ✓ quem vai fazer o quê e quando?
- ✓ constitui a base para o controlo de toda a gestão no processo de desenvolvimento de software;
- √ define a metodologia (framework, paradigma);
- √ estabelece o contexto no qual são aplicados métodos;
- ✓ são produzidos artefactos, tais como modelos, documentos, relatórios, etc.;
- √ são estabelecidos marcos;
- ✓ a qualidade é garantida e mudanças são geridas de forma apropriada (gestão de risco).

Métodos:

- ✓ fornecem informação técnica para o desenvolvimento o software;
 ✓ definem o conjunto de tarefas com determinadas técnicas para cada fase do desenvolvimento do software;
 ✓ envolvem uma grande variedade de tarefas, que incluem:
 ✓ comunicação;
 ✓ análise de requisitos;
 ✓ design do projeto;
 - √ implementação;
 - √ testes;
 - √ suporte.

Ferramentas:

- ✓ fornecem suporte automatizado ou semiautomatizado para as camadas de processo e para os métodos;
- ✓ quando as ferramentas são integradas, de modo a garantir que as informações recolhidas por uma ferramenta possam ser utilizadas por outra, é estabelecido um sistema para o suporte ao desenvolvimento de software, denominado CASE
 - Computer-Aided Software Enginnering.

Exercícios

- 1. De acordo com Pressman, a engenharia de software é baseada em camadas, com foco na qualidade. Essas camadas são:
 - a) métodos, processo e testes.
 - b) ferramentas, métodos e processos.
 - c) métodos, construção, teste e implementação.
 - d) planeamento, modelação, construção, validação e implementação.
 - e) comunicação, planeamento, modelação, construção e implementação.

SWEBOK

- O SWEBOK Software Enginnering Body of Knowledge, é um referencial para a caracterização da disciplina de engenharia de software;
- Foi criado pelo IEEE Computer Society;

Áreas de conhecimento

1	requisitos de software	9	modelos e métodos de engenharia de software
2 3 4 5 6 7 8	conceção de software construção de software testes de software manutenção de software gestão de configuração de software gestão da engenharia de software processo da engenharia de software	10 11 12 13 14 15	qualidade no software prática profissional em engenharia de software economia da engenharia de software fundamentos de informática fundamentos de matemática fundamentos de engenharia

SWEBOK I AC1: requisitos de software

- Trata o levantamento, a neles, documentação, validação e a manutenção de requisitos de software;
- Os requisitos exprimem as necessidades e as restrições que são colocados a um sistema de software (ainda em projeto);
- O resultado deste processo é:
 - √ o documento de requisitos.

SWEBOK I AC2: conceção de software

- Define a arquitetura, os componentes, as interfaces e outras características do sistema;
- Apoia-se nos requisitos para produzir uma descrição da estrutura interna e da organização do sistema;
- O resultado deste processo deve descrever:
 - √ a arquitetura do sistema;
 - √ as interfaces entre componentes;
 - ✓ os próprios componentes com pormenor suficiente para permitir a sua construção.

SWEBOK I AC3: construção de software

- Consiste na implementação do software de acordo com o pretendido e a funcionar corretamente;
- Transforma em código as arquiteturas concebidas e descritas na concepção;
- O resultado deste processo é:

√ o código fonte.

SWEBOK I AC4: teste de software

- É uma parte obrigatória no desenvolvimento de software;
- Avalia-se à qualidade do sistema e procede-se à sua melhoria, identificando defeitos e potenciais problemas;
- Inclui a verificação do comportamento dos sistemas em relação ao funcionamento esperado;
- A verificação decorre a um conjunto casos teste (documento de testes) escolhidos para cobrir as situações mais críticas.

SWEBOK I AC5: manutenção de software

- Introduz modificações no sistema de software, já em produção, com objetivo de:
 - √ melhorar o sistema;
 - √ corrigir defeitos;
 - ✓ adaptar o sistema a um novo contexto.
- Lida com os defeitos, alterações tecnológicas e as evoluções dos requisitos de utilizador.

"A manutenção consome normalmente 40 a 80% dos custos de software.

É provavelmente a mais importante fase do ciclo do desenvolvimento de software"

Rober L. Glass

SWEBOK I AC6: gestão de configurações de software

- Ou gestão de versões;
- Trata do controlo das alterações e mantém a integridade e a rastreabilidade do sistema de software;
- Inclui atividades de controlo e monitorização que iniciam quando o projeto arranca e que terminam somente quando o sistema é retirado de utilização.

SWEBOK I AC7: gestão da engenharia de software

- Inclui atividades de gestão de software, tais como: planeamento; coordenação; medição, monitorização, controlo e comunicação, para que o sistema seja desenvolvido de forma sistemática, disciplinada e quantificável;
- A gestão praticada em processos de engenharia de outras atividades é diferente da gestão na engenharia de software devido às particularidades do software e dos respetivos processos.

SWEBOK I AC8: processo de engenharia de software

- Proporciona um conjunto de diretivas que instruem a forma como os profissionais devem organizar e executar as suas atividades ao longo do tempo, a nível do desenvolvimento e manutenção de software;
- Permite aferir e melhorar o próprio processo de engenharia de software.

SWEBOK | AC9: modelos e métodos de engenharia de software

- O recurso a modelos e métodos de engenharia de software é fundamental para criar de forma sistemática, disciplinada, quantificável e eficiente sistemas de software;
- Os modelos constituem uma ferramenta indispensável na tomada de decisão em todas as fases do desenvolvimento;

SWEBOK I AC10: qualidade no software

- A preocupação com a qualidade do software deve ser constante;
- A qualidade está ligada à conformidade do sistema relativamente aos requisitos;
- Estende-se por todo o processo de desenvolvimento de software;
- Deve ser visto como uma preocupação transversal a todo o processo de software.

SWEBOK I AC11-15

- AC11 Prática profissional em engenharia de software prende-se com questões relacionadas com o profissionalismo, tais como: ética; dinâmicas de grupo; comunicação; entre outras.
- AC12 Economia da engenharia de software agrega conteúdos de natureza económica, no âmbito do ciclo de vida dos sistemas de software.
- AC3-15 estão relacionadas com conceitos fundamentais de três disciplinas: informática; matemática e engenharia.

Exercícios

- 1. Quantas áreas de conhecimento incluem o corpo de conhecimento da engenharia de software de acordo com o SWEBOK
- 2. Explique em que consistem duas das áreas de conhecimento do SWBOK e explique a sua importância.

Software

- O termo "software" foi usado a primeira vez em 1959;
- A Applied Data Reseach foi a primeira empresa a vender software separadamente do hardware - 1959;
- Tudo que na perspetiva do utilizador, compõe um computador, exceto o hardware, é software [Galler, 1962]

Software - Características do software

- Natureza intangível
 - √Não tem existência física;
 - ✓ Só a sua funcionalidade é que é perceptível;
 - ✓ Não está condicionado pelas propriedades dos materiais, nem regido pelas leis da física;
 - à maleável, uma vez que é relativamente fácil sujeitá-lo a modificações;
 - à desenvolvido, não é fabricado ou construído;
 - ✓ Produzi-lo a primeira vez é caro, no entanto a sua cópia tem muito baixo preço;
 - √ Copiá-lo é fácil e não diminui a sua qualidade.

Software - Características do software

- Ausência de desgaste
 - ✓ Não apresenta desgaste, pois não perde qualidades (físicas) ao longo do tempo;
 - ✓A sua degradação provem das alterações que vai sofrendo para mantê-lo útil;
 - ✓A incorporação de novas funcionalidades pode implicar defeitos no software;
 - ✓O software acaba por perder qualidades ao longo da sua vida útil fica obsoleto.

Produto de software

- Um produto de software é composto por:
 - ✓ programas: cujas instruções quando executadas oferecem as funcionalidades ao produto;
 - ✓ estruturas de dados: que possibilitam aos programas ter acesso a informação necessária para a sua execução;
 - ✓ documentação: que explica como instalar, usar e manter os programas.
- Um produto de software pode ser classificado quanto à proximidade que tem com hardware:
 - ✓ **Software de sistema:** responsável por gerir os recursos de hardware do computador, não sendo explicitamente usado pelo utilizador;
 - ✓ **Aplicações de software:** realizam tarefas úteis para o utilizador, sendo desenvolvidos para automatizar tarefas individuais ou processos de organizações. Para serem executadas dependem do software do sistema.

Produto de software - Qualidade (ISO/IEC 9126)

- <u>Funcionalidade</u> o conjunto de funções satisfaz as necessidades explícitas e implícitas para a finalidade a que se destina o produto?
- Confiabilidade Funciona de forma correta, com os recursos pré estabelecidos, é seguro?
- Usabilidade é fácil de usar?
- Eficiência Os recursos e os tempos utilizados são compatíveis com o nível de desempenho requerido para o produto?
- Manutenção Há facilidade para correções, atualizações e alterações?
- Portabilidade: É possível utilizar o produto em diversas plataformas?

Produto de software - Qualidades (ISO/IEC 25010)

Produto de software - Qualidades (McCall)

Produto de software - Qualidade (McCall)

- Os factores de qualidade segundo McCall concentram-se em três aspetos relativamente a um produto de software:
 - √ Características operacionais;
 - √ Capacidade de suportar mudanças
 - ✓ Adaptação a novos ambientes

Produto de software - Qualidade (McCall)

- Características operacionais
 - ✓ correção: capacidade do software satisfazer a especificação e os objetivos requeridos pelo cliente;
 - ✓ confiabilidade: capacidade do software de cobrir a funcionalidade pretendida com a precisão exigida;
 - ✓ eficiência: determina a quantidade de recursos exigidos pelo software para desempenhar a sua função;
 - ✓ integridade: controlo de acessos a dados;
 - ✓ usabilidade: esforço necessário para aprender e começar a usar o software;
 - ✓ facilidade de manutenção: esforço necessário para localizar e corrigir erros do software;

Produto de software - Qualidade (McCall)

- Capacidade de aceitas mudanças
 - ✓ facilidade de manutenção: esforço necessário para localizar e corrigir erros do software;
 - ✓ flexibilidade: esforço necessário para modificar um programa já em produção;
 - √ testar: esforço necessário para testar um programa

Produto de software - Qualidade (McCall)

- Adaptação a novos ambientes
 - ✓ portabilidade: capacidade de transferir o software de um ambiente de hardware/software para outro;
 - ✓ interoperabilidade: capacidade de integrar outros sistemas.
 - ✓ reusabilidade: capacidade de reutilizar módulos do software noutras aplicações.

Ciclo de vida do desenvolvimento do software

Ciclo de vida do desenvolvimento do software

- Planeamento: consiste na identificação de problemas, oportunidades e objetivos. Determina ainda os recursos humanos necessários para o projeto.
- Análise: consiste no processo de levantamento de requisitos.
- Desenho: consiste no desenho e modelação do software que vai ser implementado.
- Implementação: consiste no desenvolvimento e documentação de código para desenvolvimento do software.
- Testes e integração: o código desenvolvido deve ser testado antes de entrar em produção.
- Manutenção: consiste na manutenção e evolução do software até ao fim do seu ciclo de vida.

Ciclo de vida do desenvolvimento do software

Processos de software

Dimensions of software complexity

Royce

© 2005 IBM Corporation

Exercícios

- 1. Indique os atributos necessários de um bom software.
- 2. Indique e explique as fases do ciclo de desenvolvimento de software.

Engenharia de Software

Introdução à engenharia de software