Candidature MCF en Informatique

Université de Bordeaux - LaBRI

Nicolas Amat

Enseignement

Niveau	Intitulé	Établissement	Nature
2020-2021	Alithi ADA	INICA	TD / TD
LI	Algorithmique en ADA	INSA	TD / TP

Enseignement

Niveau	Intitulé	Établissement	Nature
2020-2021 L1	Algorithmique en ADA	INSA	TD / TP
2021-2022			
M1	SED, modélisation et analyse	Univ. Toulouse III	TP
M1	Techniques de mises en œuvre	Univ. Toulouse III	TP
M2	Modèles temporels avancés	Univ. Toulouse III	TD

Enseignement

Niveau	Intitulé	Établissement	Nature
2020-2021			
L1	Algorithmique en ADA	INSA	TD / TP
2021-2022			
M1	SED, modélisation et analyse	Univ. Toulouse III	TP
M1	Techniques de mises en œuvre	Univ. Toulouse III	TP
M2	Modèles temporels avancés	Univ. Toulouse III	TD
2022-2023			
L1	Algorithmique en ADA	INSA	TD / TP
L3	Expressions régulières	INSA	TD
M1	Programmation fonctionnelle	INSA	TP
M2	Modèles temporels avancés	Univ. Toulouse III	TD
M2	SAT/SMT solving	ENAC	TD

Thèse de doctorat

Un cadre polyédrique pour les problèmes d'accessibilité dans les réseaux de Petri

Problèmes d'accessibilité dans les réseaux de Petri

Problèmes d'accessibilité dans les réseaux de Petri

Réduction polyédrique

Réduction polyédrique

Thèse de doctorat

Theorem (Conservation de l'accessibilité)

 $F_1(\mathbf{p_1})$ est accessible dans les réseau initial (N_1, m_1) si et seulement si $F_2(\mathbf{p_2}) \triangleq \exists \mathbf{p_1} . \tilde{E}(\mathbf{p_1}, \mathbf{p_2}) \land F_1(\mathbf{p_1})$ est accessible dans le réseau réduit (N_2, m_2)

Thèse de doctorat

Réduction polyédrique

Calcul de certificats d'invariance

[Petri Nets, 21] [TACAS, 22] [FM, 23] [FI]

Model Checking Contest (2021 – 2024)

Thèse de doctorat

SMPT

SMPT is a SMT-based model checker for Petri nets focused on reachability problems that takes advantage of net reductions (polyhedral reductions).

■ Python ☆ 27 ♀ 4

Inclusion de formules existentielles de Presburger Postdoctorat

IMDEA Software Institute (Pierre Ganty et Alessio Mansutti)

$$[\![\exists y. F(x,y)]\!] \subseteq [\![\exists z. G(x,z)]\!]$$

$$\forall x. (\exists y. F(x,y) \implies \exists z. G(x,z))$$

Inclusion de formules existentielles de Presburger Postdoctorat

IMDEA Software Institute (Pierre Ganty et Alessio Mansutti)

Sujets de recherche

Théorie et applications des procédures de décision pour la vérification formelle

Avancées théoriques avec des implantations concrètes

^{*} IA symbolique

Prospective post-thèse

Constat:

- Les progrès réalisés par les solveurs SAT/SMT au cours des dernières années ont conduit à des avancées significatives dans les outils de vérification.
- Cependant, les solveurs sont encore parfois trop généraux et gagneraient à être adaptés et optimisés pour des problèmes et des formalismes spécifiques.

Prospective post-thèse

Constat:

- Les progrès réalisés par les solveurs SAT/SMT au cours des dernières années ont conduit à des avancées significatives dans les outils de vérification.
- ► Cependant, les solveurs sont encore parfois trop généraux et gagneraient à être adaptés et optimisés pour des problèmes et des formalismes spécifiques.

$$I(\boldsymbol{p}) \wedge \bigvee_{t \in T} (\mathrm{ENABLED}_t(\boldsymbol{p}) \wedge \mathrm{FIRE}_t(\boldsymbol{p}, \boldsymbol{p'})) \wedge F(\boldsymbol{p'})$$

Prospective post-thèse

Constat:

- Les progrès réalisés par les solveurs SAT/SMT au cours des dernières années ont conduit à des avancées significatives dans les outils de vérification.
- ► Cependant, les solveurs sont encore parfois trop généraux et gagneraient à être adaptés et optimisés pour des problèmes et des formalismes spécifiques.

$$I(\boldsymbol{p}) \wedge \bigvee_{t \in T} (\mathrm{ENABLED}_t(\boldsymbol{p}) \wedge \mathrm{FIRE}_t(\boldsymbol{p}, \boldsymbol{p'})) \wedge F(\boldsymbol{p'})$$

Projet : Développement de procédures de décision (pour la vérification formelle, mais pas seulement) qui prennent en compte les formalismes sous-jacents.

Applications : model-checking, ordonnancement temps réel, planification, . . .

Département Méthodes et Modèles Formels (M2F)

Modèles & Technologies pour la Vérification

Problèmes d'accessibilité dans les réseaux de Petri (VASS)

Développement logiciel

Jérôme Leroux

👺 Frédéric Herbreteau et Gérald Point

Vérification de modèles d'un point de vue solveur

Avancées théoriques avec implantations concrètes

Modèles & Technologies pour la Vérification

Problèmes d'accessibilité dans les réseaux de Petri (VASS)

Développement logiciel

Frédéric Herbreteau et Gérald Point

Vérification de modèles d'un point de vue solveur

Avancées théoriques avec implantations concrètes

- Sémantique Presburger-définissable
- Première étape avant CLT/LTL
- Inspiration des "walkers"
- ► Certificats d'invariance

Modèles & Technologies pour la Vérification

Problèmes d'accessibilité dans les réseaux de Petri (VASS)

Développement logiciel

Jérôme Leroux

Vérification de modèles d'un point de vue solveur

- Sémantique Presburger-définissable
- ► Première étape avant CLT/LTL
- Inspiration des "walkers"
- ► Certificats d'invariance

👺 Frédéric Herbreteau et Gérald Point

Avancées théoriques avec implantations concrètes

- Participation à TChecker
- Développement open-source
- Extensions temporisées
- Participation à des compétitions (MCC)

Interactions

Fondements logiques du calcul et groupe de travail "preuve"

Dualité vérification formelle et raisonnement automatisé de mon projet

- ► Développement de procédures de décision spécifiques
- Génération de certificats vérifiables

Interactions

Fondements logiques du calcul et groupe de travail "preuve"

Dualité vérification formelle et raisonnement automatisé de mon projet

- ► Développement de procédures de décision spécifiques
- Génération de certificats vérifiables

A State-of-the-Art Karp-Miller Algorithm Certified in Coq. Thibault Hilaire, David Ilcinkas et Jérôme Leroux. TACAS 2024.

- ► Première expérience de recherche avec Isabelle/HOL
- Intérêt pour le développement d'algorithmes certifiés

Informatique = Notions théoriques + Fondements techniques

- ► Formation initiale en génie logiciel
- Développeur confirmé (4 outils open-source)
- Expérience d'enseignement pour tous niveaux : L1 à M2
- ► Choix de ne pas être DCE pour expérimenter divers établissements (FTLV)

Informatique = Notions théoriques + Fondements techniques

- ► Formation initiale en génie logiciel
- Développeur confirmé (4 outils open-source)
- Expérience d'enseignement pour tous niveaux : L1 à M2
- ► Choix de ne pas être DCE pour expérimenter divers établissements (FTLV)
- Licence
- Master Vérification formelle
- ► Master Algorithmes et modèles
- Master Génie logiciel

Notions théoriques en informatique

Introduction à la vérification

- Model-checking (systèmes de transitions, logiques temporelles CTL et LTL, vérification) et résultat de (in)décidabilités
- En lien avec mes travaux de recherche

Software verification

- Model-checking symbolique, interpretation abstraire, résolution SAT
- ► Thématique de doctorat et postdoctorat
- Expérience de **développeur** (outil SMPT)

Conception formelle

- Abstraction comportementale, model-checking, raisonnement logique, raffinement, preuve de programmes
- ► En liens avec mes **enseignements**

Logique et preuve

- ► Logique du premier ordre, raisonnement inductif, preuve assistée par ordinateur
- Expérience avec Isabelle/HOL
- Lien avec ma thèse (outil Reductron)

Concepts techniques en informatique

Programmation fonctionnelle

- **Expérience** d'enseignement à l'**INSA**
- ► Maîtrise de OCaml et SML
- ► Un **outil open-source** dans ce paradigme

Programmation orientée objet

- ► Maîtrise de Java, Python et C++
- ► Maîtrise d'**UML** et d'**IDE**
- ► Trois **outils open-source** dans ce paradigme

Programmation C

- ► Intérêt pour la programmation bas niveau
- ► Maîtrise du langage et des outils associés

Programmation système

- Expérience sur le **noyau Linux** à ARM
- Notions centrales de ma formation initiale

Projet d'enseignement Propositions pour l'enseignement

Propositions pour l'enseignement

Défis logiciels

Extension d'**uSMPT**, un projet pédagogique développé dans le cadre du cours de SAT/SMT solving d'un M2 ENAC

- ▶ Plateforme d'évaluation interactive
- ► Inspiré du Model Checking Contest
- ► Motivation pour l'optimisation algo.
- ► Appropriation de la littérature

Propositions pour l'enseignement

Défis logiciels

Extension d'**uSMPT**, un projet pédagogique développé dans le cadre du cours de SAT/SMT solving d'un M2 ENAC

- ► Plateforme d'évaluation interactive
- ► Inspiré du Model Checking Contest
- ► Motivation pour l'optimisation algo.
- ► Appropriation de la littérature

Pluridisciplinarité

Mise en place de **maquettes** (drones, voitures miniatures autonomes, etc.) comme **support** pour des **projets logiciels**

- Source de motivation
- Ouverture scientifique
- ► Pertinent pour l'UE projets de prog.
- ► Valorisé par le secteur professionnel

Propositions pour l'enseignement

Défis logiciels

Extension d'**uSMPT**, un projet pédagogique développé dans le cadre du cours de SAT/SMT solving d'un M2 ENAC

- ► Plateforme d'évaluation interactive
- ► Inspiré du Model Checking Contest
- ► Motivation pour l'optimisation algo.
- ► Appropriation de la littérature

Pluridisciplinarité

Mise en place de **maquettes** (drones, voitures miniatures autonomes, etc.) comme **support** pour des **projets logiciels**

- Source de motivation
- Ouverture scientifique
- ► Pertinent pour l'UE projets de prog.
- ► Valorisé par le secteur professionnel

Enseignement en anglais et internationalisation