Week 2 Questions

tprasad@tcd.ie~16326505

February 12, 2019

Question 1.

- (a) 6 choices each time. If order of die rolls matters then $6^3=216$
- (b) $5^3 = 125$ ways to not get a single 2. 216 125 = 91 = number of events where at least single 2. $\frac{91}{216} = .421$ percentage of where at least one 2.

(c)

```
function out = tripleDieRoll(reps)
    out = simulation (reps);
end
function out = dieRoll(sides, reps)
    out = randi([1 sides],1,reps);
end
function prob = simulation (reps)
    count = 0;
    for index = 1:reps
        currentRolls = dieRoll(6,3);
        for throwno = 1:3
            if currentRolls(throwno) == 2
                 count = count + 1;
                 break;
            end
        end
    end
    prob = (count/reps)*100;
end
```

call with triple DieRoll(ARBIRTARY_NUMBER_OF_SIMULATIONS) $42\%\pm1\%$ with a number of 10 million simulations.

(d) 6+6+5=17 which is the only way to actually. get 17 but also can be in any order so

$$\frac{3}{216} = 0.014$$

(e) Since purely a sum we don't really need to use conditional probability we can just consider 2 dice rolls that sum to 12 - 1 = 11

$$\{6,5\},\{5,6\}$$

$$\frac{2}{(6^2)} = 0.056$$

Question 2

(a) $\frac{1}{6}$ chance of a 5 if 6 sided and $\frac{1}{20}$ if 20 sided. $\frac{1}{6}$ chance of a 1 and $\frac{5}{6}$ chance of anything else in first throw.

$$\frac{1}{6} * \frac{1}{6} + \frac{5}{6} * \frac{1}{20} = .0694$$

(b) If 6 sided die then impossible hence

$$\frac{1}{6} * 0 + \frac{5}{6} * \frac{1}{20} = 0.0417$$

Question 3

$$P(E|F) * P(F) = P(F|E) * P(E)$$

Probability of brown hair P(F) = .2 * .4 + .6 * 1 = 0.68Probability of being criminal given brown hair = ? Probability of being criminal P(E) = .6Probability of brown hair given criminal = 1

$$\frac{.6*1}{.68} = 0.882$$

Question 4

Assumption is that P(Observation) is 100 which implies we know that regardless of where we are we will ping the cellphone at a set time. The alternative is to use marginalisation and say

$$P(Observation) = P(Observe|Location) * P(Location) + (1 - P(Location)) * (1 - P(Observe|Location)) * (1 - P(Obse$$

Which assumes that P(Observation|'Location) = 1 - P(Observe|Location) which isnt necessarily true wither hence I went with the initial assumption instead

$$P(Observe|Location) = given$$

 $P(Location) = given$

P(Location|Observe) = unknown

P(Observation) = Sum of all P(Location) * P(Observe|Location) by marginalisation since all P(Locations) add to 1. Assume that all tiles have same P(Observation)

$$(P(O|L)*P(L))/P(O) = P(L|O)$$

answer =

0.0744	0.1885	0.0744	0.0050
0.0050	0.1488	0.0942	0.0744
0.0010	0.0050	0.1488	0.0942
0.0010	0 0010	0 0099	0 0744

```
function resGrid = cell_tracker(locGrid, obsGivenLocGrid)
    [rowLen, colLen] = size(locGrid);
    if [rowLen, colLen] = size(obsGivenLocGrid)
        error ("grid dimensions are different");
    end
   %Calculate P(observation)
    obs = calcObs(locGrid, obsGivenLocGrid);
    resGrid = zeros (rowLen, colLen);
    for i = 1:rowLen
        for j = 1:colLen
            resGrid(i,j) = calcCondLocProb(locGrid(i,j), ...
                obsGivenLocGrid(i,j),obs);
        end
    end
end
function res = calcCondLocProb(locProb, obsGivenLocProb, obsProb)
    res = (obsGivenLocProb*locProb)/obsProb;
end
function res = calcObs(locGrid, obsGivenLocGrid)
    [rowLen, colLen] = size(locGrid);
    res = 0;
    if [rowLen, colLen] ~= size(obsGivenLocGrid)
        error ("grid dimensions are different");
    end
    for i = 1:rowLen
        for j = 1:colLen
            res = res + locGrid(i,j)*obsGivenLocGrid(i,j);
        end
    end
end
```

Iterates over both grids and applies formula given above to both grids