Similitude Planes Direct

 $10~\mathrm{mai}~2024$

I. Définitions

On appelle similitude plane directe toute transformation du plan qui multiplie les distances par un réel k>0 et qui conserve la mesure des angles orientés. k est appelé le rapport de la similitude.

- Les translations et les rotations sont des similitudes de rapport 1.
- L'homothétie de rapport k est une similitude de rapport |k|.
- Les composées d'homothétie et de rotation sont des similitudes.
- Les rotations, les homothéties, les composées d'homothétie et de rotation sont appelées des similitudes à centre.
- La réciproque d'une similitude de rapport k est une similitude de rapport k^{-1} .
- La composée de deux similitudes s et s' de rapports respectifs k et k' est une similitude de rapport kk'.
- Si la similitude est la composée d'une rotation $r_{(\Omega,\theta)}$ et d'une homothétie h de centre Ω et de rapport k > 0, on dira que $S = h \circ r$ est une similitude de rapport k, d'angle θ et de centre Ω notée $s_{(\Omega,k,\theta)}$.

II. Expression complexe

Si s est une similitude définie par z' = az + b, alors :

- Si a = 1, alors s est une translation de vecteur $\overrightarrow{u}(b)$.
- Si $a \in \mathbb{R}^* \setminus \{1\}$, alors s est une homothétie de rapport a et de centre Ω tels que $z_{\Omega} = az_{\Omega} + b$.

 Ω tels que $z_{\Omega} = az_{\Omega} + b$. Donc $z_{\Omega} = \frac{b}{1-a}$ et on note : $\omega = \frac{b}{1-a}$

- Si $a \in \mathbb{C} \setminus \mathbb{R}^{\frac{1}{a}}$ et |a| = 1, alors s est une rotation d'angle θ tel que $\theta = \arg(a)$ et de centre Ω tels que $z_{\Omega} = \frac{b}{1-a}$.
- Si $a \in \mathbb{C}\backslash\mathbb{R}$, alors $z = ke^{i\theta}z + b$ où k = |a| et $\theta = \arg(a)$. On dira que s est une similitude de rapport k, d'angle θ et de centre Ω tels que $z_{\Omega} = \frac{b}{1-a}$.
- Soit $s = s_{(\Omega,k,\theta)}$ définie par $z z_{\Omega} = |a|e^{i\theta}(z z_{\Omega})$ ou $z' = |a|e^{i\theta}z + \alpha$ avec |a| = k. Sa réciproque s^{-1} est donnée par $s^{-1} = s_{(\Omega,\frac{1}{k},-\theta)}$.
- Considérons deux similitudes s_1 et s_2 définies par :

$$s_1 = s_{(\Omega, k_1, \theta_1)}; s_1(z) = k_1 e^{i\theta_1} z + \alpha_1$$

$$s_2 = s_{(\Omega, k_2, \theta_2)}; s_2(z) = k_2 e^{i\theta_2} z + \alpha_2$$

Leur composée notée $s_1 \circ s_2$ sera définie par

$$s_1 \circ s_2(z) = s_1[s_2(z)] = k_1 e^{i\theta_1} (k_2 e^{i\theta_2} z + \alpha_2) + \alpha_1 = k_1 k_2 e^{i(\theta_1 + \theta_2)} z + \alpha_1$$

- Si $s_1 \circ s_2 = t$ alors, $\theta_1 + \theta_2 = 0[2\pi]$ et $k_1 k_2 = 1$
- Si $s_1 \circ s_2 = h$ alors, $\theta_1 + \theta_2 = 0[2\pi]$ et $k_1 k_2 \neq 1$
- Si $s_1 \circ s_2 = r$ alors, $\theta_1 + \theta_2 \neq 0[2\pi]$ et $k_1 k_2 = 1$
- Si $s_1 \circ s_2 = s$ alors, $\theta_1 + \theta_2 \neq 0[2\pi]$ et $k_1 k_2 \neq 1$

Exercice d'application

Le plan est muni d'un repère $(O; \vec{I}, \vec{J})$ orthonormé. Déterminer les écritures complexes des transformations du plan suivantes :

- 1. La translation t de vecteur $\overrightarrow{u}(3,-2)$.
- 2. L'homothétie h de centre A(-2,1) et de rapport $\frac{3}{2}$.
- 3. L'homothétie de centre A(2,3) qui transforme B(-1,-3) en C(1,1).
- 4. L'homothétie h qui applique le point A(1,2) sur le point B(-1,-3) et le point C(-2,3) sur le point D(5,-5).
- 5. La rotation r de centre O et d'angle orienté $\frac{2\pi}{3}$.
- 6. La rotation r de centre A(2; -2) qui transforme le point B(3; -2) en C(1; -2).
- 7. La similitude directe s de centre $\Omega(1-i)$ de rapport 2 et d'angle orienté $-\frac{5\pi}{6}$.
- 8. La similitude de centre A(-1) qui transforme le point B(-1-i) en C(-i).
- 9. La similitude qui transforme les points A et B respectivement en C et D avec $z_A = 3 + i$, $z_B = -1 + 2i$, $z_C = 6 3i$ et $z_D = 3 + 2i$.

III. Propriétés

Soient $s = s_{(\Omega,k,\theta)}$ une similitude, M et N deux points du plan d'images respectives, par s, M' et N', alors :

$$s(M) = M' \Leftrightarrow \begin{cases} \Omega M' = k\Omega M \\ (\overrightarrow{\Omega M'}, \overrightarrow{\Omega M}) = \theta[2\pi] \end{cases}$$

$$\begin{cases} s(M) = M' \\ s(N) = N' \end{cases} \Leftrightarrow \begin{cases} M'N' = kMN \\ (\overrightarrow{MN}, \overrightarrow{M'N'}) = \theta[2\pi] \end{cases}$$

- Toute similitude de rapport k peut être décomposée en la composée d'une homothéties de rapport k et d'un déplacement.
- Les similitudes conservent les barycentres, les angles orientés, le parallélisme et la perpendicularité.
- L'image d'une figure quelconque est une figure de même nature.