AI-BASED DIABETES PREDICTION SYSTEM PHASE-3 SUBMISSION

In an AI-based diabetes prediction project, you can use various machine learning algorithms and data sources to make predictions. Here are some key components and prediction techniques that can be employed:

- **1. Data Collection:** Gather relevant data, which may include patient health records, demographic information, lifestyle factors, and genetic data.
- **2. Feature Selection:** Choose the most relevant features (variables) that might influence diabetes risk, such as age, body mass index (BMI), family history, blood sugar levels, etc.
- **3. Machine Learning Algorithms:** You can use various machine learning techniques, such as logistic regression, decision trees, random forests, support vector machines, or neural networks, to build predictive models.
- **4. Data Preprocessing:** Clean and preprocess the data, handle missing values, and scale/normalize features as needed.
- **5. Model Training:** Train the machine learning models on historical data, using a portion of your dataset.
- **6. Model Evaluation:** Assess the performance of your models using metrics like accuracy, precision, recall, F1 score, and AUC-ROC, depending on the problem formulation (binary classification, multi-class classification, etc.).
- **7. Hyperparameter Tuning:** Optimize the parameters of your machine learning models to improve predictive accuracy.
- **8. Cross-Validation:** Implement cross-validation techniques to ensure the model's generalization capability.
- **9. Deployment:** Once your model is trained and validated, deploy it in a real-world setting, such as a mobile app, website, or healthcare system, where it can make predictions for new data.

10. Continuous Monitoring: Continuously monitor and update the model as more data becomes available to ensure its accuracy over time.

Remember to consider the ethical and privacy aspects when working with healthcare data, and ensure that your project complies with relevant regulations and guidelines.

Prediction Model:

In an AI-based diabetes prediction project, the choice of prediction model or algorithm will depend on the specific requirements and characteristics of your dataset. Here are some commonly used machine learning models for diabetes prediction:

- **1. Logistic Regression:** This is a simple and interpretable model that can be used for binary classification to predict the likelihood of a patient having diabetes or not.
- **2. Decision Trees:** Decision trees are useful for both classification and regression tasks. They can help identify the most relevant features and decision paths related to diabetes prediction.
- **3. Random Forest:** Random Forest is an ensemble method that combines multiple decision trees to improve prediction accuracy and reduce overfitting.
- **4. Support Vector Machines (SVM):** SVMs can be used for binary classification and are effective at finding optimal hyperplanes to separate diabetic and non-diabetic cases.
- **5. Neural Networks:** Deep learning models, such as feedforward neural networks or convolutional neural networks (CNNs), can capture complex patterns in the data. They may be particularly useful when dealing with large and diverse datasets.
- **6. Naïve Bayes:** Naïve Bayes is a probabilistic model that can be employed for classification tasks and is particularly useful when dealing with text data or simple feature sets.

- **7. Gradient Boosting:** Algorithms like XGBoost, LightGBM, or AdaBoost can be used to boost the performance of predictive models and handle imbalanced datasets.
- **8. K-Nearest Neighbors (KNN):** KNN is a non-parametric method that can make predictions based on the similarity of cases in the dataset.
- **9. Long Short-Term Memory (LSTM):** If you're working with time series data or sequences, LSTMs can be used to capture temporal dependencies in diabetes-related information.

The choice of the prediction model will depend on the nature of your data, the problem formulation (binary classification, multi-class, or regression), and the specific goals of your project. You may also want to try multiple models and compare their performance to select the most suitable one for your Al-based diabetes prediction project.

Program:

Import necessary libraries

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

sns.set()

from mlxtend.plotting import plot_decision_regions import missingno as msno from pandas.plotting import scatter_matrix from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import confusion_matrix from sklearn import metrics from sklearn.metrics import classification_report import warnings warnings.filterwarnings('ignore') %matplotlib inline

Load the dataset (make sure you have a suitable diabetes dataset in CSV format)

```
diabetes_df = pd.read_csv('diabetes.csv')
diabetes df.head()
```

<u>Output</u>

Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
6	148	72	35	0	33.6	0.627	50	1
1	85	66	29	0	26.6	0.351	31	0
8	183	64	0	0	23.3	0.672	32	1
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
	6 1 8	6 148 1 85 8 183 1 89	6 148 72 1 85 66 8 183 64 1 89 66	6 148 72 35 1 85 66 29 8 183 64 0 1 89 66 23	6 148 72 35 0 1 85 66 29 0 8 183 64 0 0 1 89 66 23 94	6 148 72 35 0 33.6 1 85 66 29 0 26.6 8 183 64 0 0 23.3 1 89 66 23 94 28.1	6 148 72 35 0 33.6 0.627 1 85 66 29 0 26.6 0.351 8 183 64 0 0 23.3 0.672 1 89 66 23 94 28.1 0.167	6 148 72 35 0 33.6 0.627 50 1 85 66 29 0 26.6 0.351 31 8 183 64 0 0 23.3 0.672 32 1 89 66 23 94 28.1 0.167 21

let's see that what are columns available in our dataset.

diabetes df.columns

<u>Output</u>

#Information about the dataset

diabetes_df.info()

Output

RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

Column Non-Null Count Dtype

--- ----- -----

0 Pregnancies 768 non-null int64
1 Glucose 768 non-null int64
2 BloodPressure 768 non-null int64
3 SkinThickness 768 non-null int64

4 Insulin 768 non-null int64 5 BMI 768 non-null float64

6 DiabetesPedigreeFunction 768 non-null float64

7 Age 768 non-null int64

8 Outcome 768 non-null int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

#To know more about the dataset

diabetes_df.describe()

Output:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

#Now let's check the number of null values our dataset has.

diabetes_df.isnull().sum()

Output:

Pregnancies 0

Glucose 0

BloodPressure 0

SkinThickness 0

Insulin 0 BMI 0

DiabetesPedigreeFunction 0

Age 0

Outcome 0

dtype: int64

Showing the Count of NANs

print(diabetes_df_copy.isnull().sum())

Output:

Pregnancies 0

Glucose 5

BloodPressure 35

SkinThickness 227

Insulin 374

BMI 11

DiabetesPedigreeFunction 0

Age 0

Outcome 0

dtype: int64

DATA VISUALIZATION:

#Plotting the data distribution plots before removing null values

p = diabetes_df.hist(figsize = (20,20))

Output

#Plotting Null Count Analysis Plot

p = msno.bar(diabetes_df)

<u>Output</u>

#Correlation between all the features before cleaning

plt.figure(figsize=(12,10))

seaborn has an easy method to showcase heatmap

p = sns.heatmap(diabetes_df.corr(), annot=True,cmap ='RdYlGn')

Output

