Stat 155 Lecture 14 Notes

Daniel Raban

March 13, 2018

1 Evolutionary Game Theory of Mixed Strategies and Multiple Players

1.1 Relationships between ESSs and Nash equilibria

We have mentioned this before, but it is worth stating explicitly.

Theorem 1.1. Every ESS is a Nash equilibrium.

Proof. This follows from the definition. We have that for each pure strategy $z, z^{\top}Ax \leq x^{\top}Ax$. Any mixed strategy is $w = \sum_{j=1}^{n} c_j z_j$ for $c_j \geq 0$ and $\sum_{j=1}^{n} c_j = 1$. Then

$$w^{\top}Ax = \left(\sum_{j=1}^{n} c_j z_j^{\top}\right) Ax = \sum_{j=1}^{n} c_j (z_j^{\top} Ax) \le \sum_{j=1}^{n} c_j x^{\top} Ax = x^{\top} Ax. \qquad \Box$$

Does this theorem have a converse?

Definition 1.1. A strategy profile $x^* = (x_1^*, \dots, x_k^*) \in \Delta_{S_1} \times \dots \times \Delta_{S_k}$ is a *strict Nash equilibrium* for utility functions u_1, \dots, u_k if for each $j \in \{1, \dots, k\}$ and for each $x_k \in \Delta_{S_j}$ with $x_j \neq x_j^*$,

$$u_j(x_j, x_{-j}^*) < u_j(x_j^*, x_{-j}^*).$$

This is the same definition as for a Nash equilibrium, except that the inequality in the definition is strict. By the principle of indifference, only a pure Nash equilibrium can be a strict Nash equilibrium.

Theorem 1.2. Every strict Nash equilibrium is an ESS.

Proof. A strict Nash equilibirum has $z^{\top}Ax < x^{\top}Ax$ for $z \neq x$, so both conditions defining an ESS are satisfied. In particular, for the second condition, the case where $z^{\top}Ax = x^{\top}Ax$ for $z \neq x$ never occurs.

1.2 Evolutionary stability against mixed strategies

An ESS is a Nash equilibrium (x^*, x^*) such that for all $e_i \neq x^*$, if $e_i^\top A x^* = (x^*)^\top A x^*$, then $e_i^\top A e_i < (x^*)^\top A e_i$. But what about mixed strategies?

Definition 1.2. A symmetric strategy (x^*, x^*) is evolutionarily stable against mixed strategies (ESMS) if

- 1. x is a Nash equilibrium.
- 2. For all mixed strategies $z \neq x^*$, if $z^\top A x^* = (x^*)^\top A x^*$, then $z^\top A z < (x^*) A z$.

Sometimes, people refer to these as ESSs.

Theorem 1.3. For a two-player 2×2 symmetric game, every ESS is ESMS.

Proof. Assume that x = (q, 1-q) with $q \in (0,1)$ is an ESS. Let x = (p, 1-p) for $p \in (0,1)$ be such that $z^{\top}Ax = x^{\top}Ax$. Since $e_1^{\top}Ax \leq x^{\top}Ax$, $e_2^{\top}Ax \leq Ax$, and $z^{\top}Ax = pe_1^{\top}Ax + (1-p)e_2^{\top}Ax$, we must have that

$$e_1^{\mathsf{T}} A x = e_2^{\mathsf{T}} A x = x^{\mathsf{T}} A x.$$

Hence, q is obtained though the equalizing conditions, and

$$q = \frac{a_{1,2} - a_{2,2}}{a_{1,2} + a_{2,1} - a_{1,1} - a_{2,2}}.$$

Next, define the function $G(p) := x^{\top}Az = z^{\top}Az$. We want to show that G is positive.

$$G(p) = (a_{2,1} - a_{1,1})[p^2 - pq] + (a_{1,2} - a_{2,2})[q - qp - p + p^2]$$

However, since $e_1^{\top}Ax = x^{\top}Az$, by the ESS condition, we must above $e_1^{\top}Ae_1 < x^{\top}Ae_1$. The latter is equivalent to

$$a_{1,1} < qa_{1,1} + (1-q)a_{1,2},$$

which gives us that $a_{1,1} < a_{1,2}$. Similarly, $a_{2,2} < a_{2,1}$. By inspection, we see that G(0) > 0 and G(1) > 0. G'(0) = 0 if and only if

$$0 = (a_{2,1} - a_{1,1})[2p - q] + (a_{1,2} - a_{2,2})[-q - 1 + 2p],$$

which is equivalent to

$$2p[a_{1,2} + a_{2,1} - a_{1,1} - a_{2,2}] = q[a - 1, 2 + a_{2,1} - a_{1,1} - a_{2,2}] + a_{1,2} - a_{2,2}.$$

From this, we get that p = q. Moreover, G(q) = 0.

Example 1.1. Here is an example where an ESS is not an ESMS. Consider the symmetric game with matrix

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 20 \\ 1 & 20 & 0 \end{pmatrix}.$$

 $x = e_1$ is an ESS, but it is not an ESMS because for $x = (1/3, 1/3, 1/3)^{\top}$,

$$x^{\top}Ax = 5 > 1 = e_1^{\top}Ax.$$

1.3 Multiplayer evolutionarily stable strategies

Consider a symmetric multiplayer game (that is, unchanged by relabeling the players). Suppose that a symmetric mixed strategy x is invaded by a small population of mutants z; x is replaced by $(1 - \varepsilon)x + \varepsilon z$. Will the mix x survive? The utility for x is, by linearity,

$$u_1(x, \varepsilon z + (1 - \varepsilon)x, \dots, \varepsilon z + (1 - \varepsilon)x)$$

$$= \varepsilon(u(x, z, x, \dots, x) + u_1(x, x, z, x, \dots, x) + \dots + u_1(x, \dots, x, z))$$

$$+ (1 - (n - 1)\varepsilon)u_1(x, \dots, x) + O(\varepsilon^2).$$

Similarly, the utility for z is

$$u_1(z, \varepsilon z + (1 - \varepsilon)x, \dots, \varepsilon z + (1 - \varepsilon)x)$$

$$= \varepsilon(u(z, z, x, \dots, x) + u_1(z, x, z, x, \dots, x) + \dots + u_1(z, \dots, x, z))$$

$$+ (1 - (n - 1)\varepsilon)u_1(z, \dots, x) + O(\varepsilon^2).$$

Definition 1.3. Suppose, for simplicity, that the utility for player i depends on s_i and on the set of strategies played by the other players but is invariant to a permutation of the other players' strategies. A strategy $x \in \Delta_n$ is an *evolutionarily stable strategy (ESS)* if for any pure strategy $z \neq x$,

- 1. $u_1(z, x_{-1}) \le u_1(x, x_{-1})$ (x is a Nash equilibrium).
- 2. If $u_1(z, x_{-1}) = u_1(x, x_{-1})$, then for all $j \neq 1$, $u_1(z, z, x_{-1,-j}) < u_1(x, z, x_{-1,j})$.