Functor Boxes, Compositor Sheets, and Lithographic Duality

TallCat Retreat

2022-04-12

Strict Functors of 2-Categories

A *strict functor* between 2-categories $F:\mathbb{C}\to\mathbb{D}$ preserves all composition structure:

Strict Functors of 2-Categories

We can see this operation as arising by projection from a configuration in a 3-dimensional category of 2-categories, strict functors, transformations, and modifications:

Lax Functors of 2-Categories

A lax functor between 2-categories $F:\mathbb{C}\to\mathbb{D}$ preserves composition only up to a comparison structure $\theta(f_1\,,\cdots,f_n):Ff_1\cdot\ldots\cdot Ff_n\to F(f_1\cdot\ldots\cdot f_n)$

Lax Functors of 2-Categories

A lax functor between 2-categories $F:\mathbb{C}\to\mathbb{D}$ preserves composition only up to a comparison structure $\theta(f_1\,,\cdots,f_n):Ff_1\cdot\ldots\cdot Ff_n\to F(f_1\cdot\ldots\cdot f_n)$

that is coherent:

Lax Functors of 2-Categories

A lax functor between 2-categories $F:\mathbb{C}\to\mathbb{D}$ preserves composition only up to a comparison structure $\theta(f_1\,,\cdots,f_n):Ff_1\cdot\ldots\cdot Ff_n\to F(f_1\cdot\ldots\cdot f_n)$

that is coherent:

and natural:

Functor Boxes

Another diagrammatic notation for a lax functor $F: \mathbb{C} \to \mathbb{D}$ uses *functor boxs*.

Functor Boxes

Another diagrammatic notation for a lax functor $F: \mathbb{C} \to \mathbb{D}$ uses *functor boxs*.

A \mathbb{C} -diagram in an F-box represents the \mathbb{D} -cell that is the diagram's composite's F-image.

Functor Boxes

Another diagrammatic notation for a lax functor $F: \mathbb{C} \to \mathbb{D}$ uses *functor boxs*.

A \mathbb{C} -diagram in an F-box represents the \mathbb{D} -cell that is the diagram's composite's F-image.

The side and bottom boundaries of an F-box represent the identity, and the top boundary represents the lax comparitor component θ_n .

The nullary and binary comparitor components become:

The nullary and binary comparitor components become:

the comparitor laws say boxes support tree composition:

The nullary and binary comparitor components become:

the comparitor laws say boxes support tree composition:

The nullary and binary comparitor components become:

the comparitor laws say boxes support tree composition:

Compositor Sheets

For lax functor ${\rm F}$, in surface diagrams we need to be able to distinguish

$$\mathrm{F}(\phi \cdot \cdot \psi) : \mathbb{D}\left(\mathrm{F}(f \cdot g) \to \mathrm{F}(f' \cdot g')\right) \qquad \text{and} \qquad \mathrm{F}\phi \cdot \cdot \mathrm{F}\psi : \mathbb{D}\left(\mathrm{F}f \cdot \mathrm{F}g \to \mathrm{F}f' \cdot \mathrm{F}g'\right)$$

.

Compositor Sheets

For lax functor $\boldsymbol{F},$ in surface diagrams we need to be able to distinguish

$$\mathrm{F}(\phi \cdots \psi) : \mathbb{D}\left(\mathrm{F}(f \cdot g) \to \mathrm{F}(f' \cdot g')\right) \qquad \text{and} \qquad \mathrm{F}\phi \cdots \mathrm{F}\psi : \mathbb{D}\left(\mathrm{F}f \cdot \mathrm{F}g \to \mathrm{F}f' \cdot \mathrm{F}g'\right)$$

We can do this using *compositor sheets*:

Compositor Sheets

For lax functor $\boldsymbol{F},$ in surface diagrams we need to be able to distinguish

$$\mathrm{F}(\phi \cdots \psi) : \mathbb{D}\left(\mathrm{F}(f \cdot g) \to \mathrm{F}(f' \cdot g')\right) \qquad \text{and} \qquad \mathrm{F}\phi \cdots \mathrm{F}\psi : \mathbb{D}\left(\mathrm{F}f \cdot \mathrm{F}g \to \mathrm{F}f' \cdot \mathrm{F}g'\right)$$

We can do this using *compositor sheets*:

These arise from the free/forgetful adjunction between 2-categories and 2-computads.

They are idempotent, as you would expect.

Lax Comparison Structure

Lax comparison structure arises as the passage of a compositor sheet through a lax functor surface.

Lax Comparison Structure

Lax comparison structure arises as the passage of a compositor sheet through a lax functor surface.

Lax Comparison Structure

Lax comparison structure arises as the passage of a compositor sheet through a lax functor surface.

Comparison Naturality

By comparison naturality, we have:

)

Comparison Naturality

By comparison naturality, we have:

Because θ_1 is the identity and identity disks a strict unit for vertical composition, independent disks can move freely past the comparison structure, so long as the boundary is preserved.

Diagrammatic Calculation

We can calculate using algebra:

```
 \begin{array}{l} [(\theta(f\,,g)\cdot \mathcal{F}\varphi) \cdot \cdot (\theta(h\,,i)\cdot \mathcal{F}\psi)] \cdot [\theta(f'\cdot g'\,,h'\cdot i')\cdot \mathcal{F}(f'\cdot \sigma \cdot i')] \\ = & (\theta(f\,,g) \cdot \cdot \theta(h\,,i)) \cdot (\mathcal{F}\varphi \cdot \mathcal{F}\psi) \cdot \theta(f'\cdot g'\,,h'\cdot i')\cdot \mathcal{F}(f'\cdot \sigma \cdot i') \\ = & (\theta(f\,,g) \cdot \cdot \theta(h\,,i)) \cdot \theta(f\cdot g\,,h\cdot i)\cdot \mathcal{F}(\varphi \cdot \cdot \psi) \cdot \mathcal{F}(f'\cdot \sigma \cdot i') \\ = & \theta(f\,,g\,,h\,,i)\cdot \mathcal{F}((\varphi \cdot \cdot \psi) \cdot (f'\cdot \sigma \cdot i')). \end{array}
```

Diagrammatic Calculation

We can calculate using string diagrams:

Diagrammatic Calculation

We can calculate using surface diagrams:

Lithographic Duality

A 1-object 2-category is a strict monoidal category. In this case it is convenient to represent lax functors using lithographically dual surface diagrams.

Lithographic Duality

A 1-object 2-category is a strict monoidal category. In this case it is convenient to represent lax functors using lithographically dual surface diagrams.

Taking lithographic duals of the lax comparitor diagrams:

Lithographic Duality

A 1-object 2-category is a strict monoidal category. In this case it is convenient to represent lax functors using lithographically dual surface diagrams.

Taking lithographic duals of the lax comparitor diagrams:

we get:

