

L Number	Hits	Search Text	DB	Time stamp
1	5806	((514/467) or (514/475) or (514/544) or (514/546) or (514/640) or (514/617) or (514/717) or (549/430) or (549/453) or (549/550) or (558/388) or (560/56) or (560/57) or (560/221) or (564/180) or (564/265)).CCLS.	USPAT; US-PGPUB; EPO; JPO; DERWENT	2003/10/06 12:44
2	3282960	2002.py. or 2003.py.	USPAT; US-PGPUB; EPO; JPO; DERWENT	2003/10/06 12:44
3	521	((514/467) or (514/475) or (514/544) or (514/546) or (514/640) or (514/617) or (514/717) or (549/430) or (549/453) or (549/550) or (558/388) or (560/56) or (560/57) or (560/221) or (564/180) or (564/265)).CCLS.) and (2002.py. or 2003.py.)	USPAT; US-PGPUB; EPO; JPO; DERWENT	2003/10/06 12:44

L16 ANSWER 25 OF 132 CAPLUS COPYRIGHT 1999 ACS
 AN 1989:113878 CAPLUS
 DN 110:113878
 TI Reactions of carboxylic acids with phosphonium anhydrides
 AU Hendrickson, James B.; Hussoin, M. Sajjat
 CS Edison Chem. Lab., Brandeis Univ., Waltham, MA, 02254, USA
 SO J. Org. Chem. (1989), 54(5), 1144-9
 CODEN: JOCEAH; ISSN: 0022-3263
 DT Journal
 LA English
 OS CASREACT 110:113878; CJACS
 AB General considerations are outlined for a reagent to ext. oxygen from org.
 mols. by an equiv. of dehydration. The reagent $(\text{Ph}_3\text{P}^+)_2\text{O}_2\text{OTf}$ ($\text{OTf} =$ triflate) was created for the purpose and subjected to a preliminary study. The reagent convert carboxylic acids readily and rapidly to anhydrides, esters, amides, amidines, benzimidazoles, and cyclic aryl ketones in good yields. Thus, treatment of 4-MeC₆H₄CO₂H with Ph₃PO in the presence of triflic anhydride and Et₃N gave 93% p-toluic anhydride.
 IT 55010-17-8P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)
 RN 55010-17-8 CAPLUS
 CN 1H-Inden-1-one, 2,3-dihydro-3,3-diphenyl- (9CI) (CA INDEX NAME)

L16 ANSWER 105 OF 132 CAPLUS COPYRIGHT 1999 ACS
 AN 1971:75859 CAPLUS
 DN 74:75859
 TI Thermolysis of substituted indenes. Sigmatropic phenyl and hydrogen migrations
 AU Miller, Larry Lee; Boyer, Rodney F.
 CS Dep. Chem., Colorado State Univ., Fort Collins, Colo., USA
 SO J. Amer. Chem. Soc. (1971), 93(3), 650-6
 CODEN: JACSAT
 DT Journal
 LA English
 AB 1,1,3-Triphenylindene, 1,1-diphenylindene, 1-methyl-1-phenylindene, and 1,3-diphenylindene rearrange at 250-300.degree. via a 1,2-phenyl migration. The resp. products formed are 1,2,3-triphenylindene, 2,3-diphenylindene, 3-methyl-2-phenylindene, and 2,3-diphenylindene. These reactions in Ph₂O are kinetically first order. The rate const. for 1,1,3-triphenylindene rearrangement is unaffected by added acid, base, or free-radical scavengers. .DELTA.S.noteq. for this phenyl migration is
 -25 entropy units. Solvation of the transition state for rearrangement accounts for a portion of this very neg. value as is indicated by the relative rates of rearrangement in solvent Decalin (2.45), Ph₂O (8.34), .omicron.-cresol (8.8), and HCONMe₂ (16.5). In contrast, H rearrangement from the 1 to the 2 position of 1-phenylindene shows no solvent effect
 and .DELTA.S.noteq. -2.3 entropy units. Studies of H (D) rearrangement in 1-deuterioindene, 1-phenylindene, and 1,3-diphenyl-1-deuterioindene at 150.degree. allow estn. of Ph substituent effects on sigmatropic H rearrangement. A 1-Ph accelerates migration by about 130 and 3-Ph by 6. Accelerative substituent effects on Ph migration are similar: 1-Ph (50), 3-Ph (5), 1-Me (8). These results are interpreted in terms of the transition state connecting reactant indene with an isoindene intermediate. The data reveal a migratory aptitude series H > Ph > Me which is detd. by the more effective bridging capabilities of H compared to C.
 IT 31366-71-9P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (prepn. of)
 RN 31366-71-9 CAPLUS
 CN 1-Indanol, 3,3-diphenyl- (6CI, 8CI) (CA INDEX NAME)

IT 4614-01-1 18636-52-7
 RL: PRP (Properties); RCT (Reactant)
 (rearrangement of, kinetics of)
 RN 4614-01-1 CAPLUS
 CN 1H-Indene, 1,1,3-triphenyl- (9CI) (CA INDEX NAME)

08/975,391

RN 18636-52-7 CAPLUS
CN 1H-Indene, 1,1-diphenyl- (9CI) (CA INDEX NAME)

=> d ide rsd fa 153

L53 ANSWER 1 OF 2 BEILSTEIN COPYRIGHT 1998 BEILSTEIN CD&S

Beilstein Reg. No. (BRN): 4924895 Beilstein
 Molecular Formula (MF): C₂₁H₁₇N O . Cl H
 Lin. Struct. Formula (LSF): C₂₁H₁₇NO*HCl
 Chemical Name (CN): 3,3-diphenyl-indan-1-one oxime ;
 hydrochloride
 3,3-Diphenyl-indan-1-on-oxim; Hydrochlorid
 Beilstein Reference (SO): 2-07-00-00496

Component Data:

Component	Component	Formula	Lawson Number
Reg. No.	Molec. Formula	Weight	
(CBRN)	(CMF)	(FW)	(LN)
3373716	C ₂₁ H ₁₇ N O	299.37	7644
1098214	Cl H	36.46	

CM 1

CBRN 3373716
 CMF C₂₁H₁₇N O

CM 2

CBRN 1098214
 CMF Cl H

Ring System Data:

Component BRN (CBRN): 3373716
 Number of Rings (CNR): 4
 Ring Systems (CNRS): 3
 Diff. Ring Systems (CNDRS): 2
 Ring Heteros (CNRH): 0
 Acyclic Heteros (CNAH): 2

Beilstein Ring Index (BRIX)	Ring System Formula (RF)	BRIX Count
9.2.5-0.0-3.3	C9	1
6.1.0-0.0-3.1	C6	2

Component BRN (CBRN): 1098214
 Number of Rings (CNR): 0
 Acyclic Heteros (CNAH): 1

Field Availability:

Code	Name	Occur. (OCC)
MF	Molecular Formula	1
LSF	Linearized Structure Formula	1
CN	Chemical Name	2
FW	Formula Weight	2
SO	Beilstein Citation	1
LN	Lawson Number	1
SF	Stereo Family	1
MP	Melting Point	1

=> d mp

L53 ANSWER 1 OF 2 BEILSTEIN COPYRIGHT 1998 BEILSTEIN CD&S

Melting Point:

Value	!Ref.	Note
(MP)		
(Cel)		

175.00 | 1 | 1

Reference(s):

1. Gagnon, Ann.Chim.(Paris), <10> 12 <1929>, 315, CODEN: ANCPAC

Notes(s):

1. Handbook Data