Multi-Linear Regression

Example- Computer Dataset

Target Variable is Price

Summary →

Х	price	speed	hd	ram	screen	ads	trend
Min. : 1	Min. : 949	Min. : 25.00	Min.: 80.0	Min. : 2.000	Min. :14.00	Min. : 39.0	Min. : 1.00
1st Qu.:1566	1st Qu.:1794	1st Qu.: 33.00	1st Qu.: 214.0	1st Qu.: 4.000	1st Qu.:14.00	1st Qu.:162.5	1st Qu.:10.00
Median:3130	Median:2144	Median :50.00	Median :340.0	Median :8.000	Median:14.00	Median:246.0	Median:16.00
Mean :3130	Mean :2220	Mean : 52.01	Mean : 416.6	Mean : 8.287	Mean :14.61	Mean :221.3	Mean :15.93
3rd Qu.:4694	3rd Qu.:2595	3rd Qu.: 66.00	3rd Qu.: 528.0	3rd Qu.: 8.000	3rd Qu.:15.00	3rd Qu.:275.0	3rd Qu.:21.50
Max. :6259	Max. :5399	Max. :100.00	Max. :2100.0	Max. :32.000	Max. :17.00	Max. :339.0	Max. :35.00

cd	multi	premium
no :3351	no :5386	no : 612
yes:2908	yes: 873	yes:5647

From the above summary cd, multi and premium are factor type and rest all are in discrete type.

Box Plot →

From the above plot, so many outliers are present in variable price and hd.

Unitless and scale free box plot

Pairs Plot →

...

Correlation →

	price	speed	hd	ram	screen	ads	trend
price	1	0.300976459	0.430257794	0.622748245	0.296041474	0.054540473	-0.199986935
speed	0.300976459	1	0.372304101	0.234760496	0.189074122	-0.21523206	0.405438333
hd	0.430257794	0.372304101	1	0.777726299	0.23280153	-0.323222005	0.577790128
ram	0.622748245	0.234760496	0.777726299	1	0.20895374	-0.181669713	0.276843843
screen	0.296041474	0.189074122	0.23280153	0.20895374	1	-0.093919429	0.188614445
ads	0.054540473	-0.21523206	-0.323222005	-0.181669713	-0.093919429	1	-0.318552508
trend	-0.199986935	0.405438333	0.577790128	0.276843843	0.188614445	-0.318552508	1

From the above table it is seen that none of the variables are strongly correlated.

Model-1 →

model_Comp_1 <-lm(price~speed+hd+ram+screen+cd+multi+premium+ads+trend,data =
df_comp)</pre>

Multiple R-squared: 0.7756, Adjusted R-squared: 0.7752

Correlation is 0.8806631

rmse = 275.1298

From the above plot we can see dispersion of the points

Large number of influencing observations available in our model.

Now we will make data scale free and unitless for next model.

Model-2 →

```
df_comp2 <- data.frame(scale(log(Comp[,-c(1,2,7,8,9)])),"price" = df_comp$pri
ce,"cd" = df_comp$cd,"premium" = df_comp$premium,"multi" = df_comp$multi)</pre>
```

model_Comp_2 <- lm(price~.,data=df_comp2)</pre>

Multiple R-squared: 0.7426, Adjusted R-squared: 0.7422

After standardizing the whole data and log transformation we are getting coefficient of determination 0.742 which is less than previous model.

So, we are removing influencing index for our next model.

Model-3 →

influ comp <- as.integer(rownames(influencePlot(model Comp 2,id = list(n=20, col="blue"))))</pre>

```
df_comp3 <- df_comp2[-c(influ_comp),]#head(df_comp2)
> model_Comp_3 <- lm(price~.,data=df_comp3)
Multiple R-squared: 0.7508, Adjusted R-squared: 0.7504
Correlation is 0.8664749</pre>
```

rmse = 281.3819

<u>In mode-3 we have removed 20 influencing observations, so there is only slight improvement coefficient of determination, RMSE, and correlation.</u>

But our dataset contain still more influencing index with count 291, so now we will remove 3% of data in our next model.

Model-4 →

nfluencing_obs <- length(which(rowSums(influence.measures(model_Comp_1)\$is.in
f) > 0));influencing_obs

These are the influencing observations [1] 294

influence_obs <- as.integer(rownames(influencePlot(model_Comp_1,id=list(n=90, col="red"))))</pre>

> length(influence_obs) [1] 186

> df_Comp_scale <- df_Comp_scale[-c(influence_obs),]</pre>

model_Comp_4 <- lm(price~.,data=df_Comp_scale)</pre>

Multiple R-squared: 0.804, Adjusted R-squared: 0.8037

Correlation is 0.879

rmse = 238.0004

In model-4 without influencing factor we are getting good results with less RMS E compared with other models.

Comparison →

Model No	Modeled with	Predicted With	Transformation	R^2	RMSE	cor
Model-1	All Observations	All Observations	NA	0.7756	275.1298	0.880663
Model-2	All Observations	All Observations	NA	0.7426	-	-
Model-3	99.4 % data	99.4 % data	log	0.7508	281.3819	0.86647
Model-4	97.02% data	All Observations	NA	0.804	238.0004	0.879204

From the above comparison we can infer that Model-4 is good model with 80% of variation in our target variable due to observations along with least RMSE.