

Kelompok Y1

PERANCANGAN LOW COST OKSIGEN KONSENTRATOR

OUT TEAM

Muhammad Fikri A.Triantoro 18524097

- 1.Definisi Permasalahan
- 2. Observasi
- 3. Usulan Perancangan Sistem
- 4. Hasil Perancangan Sistem
- 5. Implementasi Sistem dan analisis
- 6. Kesimpulan

DEFINISI PERMASALAHAN

- Latar belakang dan Solusi
- Batasan Realistis dan Batasan Masalah.

Perkembangan penyebaran COVID-19 yang dipublikasikan oleh BPNP (Badan Nasional Penanggulangan Bencana), Kamis (14/10/2021) tercatat 1.053 kasus penyebaran, dan untuk kasus kematian Corona di Indonesia hingga hari ini berjumlah 142.848 kasus kematian.

kekurangan stok oksigen hingga awal bulan Juli tahun 2021 sehingga sejumlah rumah sakit mulai kesulitan dengan pasokan oksigen dan bahkan ada yang menerapkan sistem buka tutup IGD untuk menghemat oksigen

LATAR BELAKANG DAN SOLUSI

Low Cost Oksigen Konsentrator

BATASAN REALISTIS

Biaya

Manufaktur

Keberlanjutan

Lingkungan

BATASAN MASALAH

Kondisi Ruangan

Konsentrasi Oksigen dan Laju aliran

Kapasitas Proses Adsorpsi

Tekanan Udara

OBSERVASI

- Studi Literatur
- Survei Loka Pasar
 Online

STUDI LITERATUR

PENULI	S
---------------	---

USULAN SOLUSI

HASIL/EVALUASI

Stevanus

(2022)

Ari, dkk (2019)

Manohar, dkk (2021) Penggunaan sistem kontrol 6 solenoid valve dengan keluaran konsentrasi oksigen maksimal 81,5%. Menggunakan metode PSA (Pressure Swing Adsorption).

Pengukuran konsentrasi oksigen menggunakan sensor oksigen ultrasonic gas board 7500E.

Penggunaan sistem kontroler arduino dengan relay, menggunakan 2 langkah pressure swing adsorption.

Terjadi kebocoran pada selang dan solenoid valve yang digunakan sehingga dibutuhkan selang, ftiing, dan solenoid valve pneumatic.

Hasil pengukuran ketidakpastian dari nilai sensor paling besar 0,17%, hasil tersebut masih dalam batasan ±3%.

Konsentrasi oksigen mencapai 90% dengan sistem pembacaan menggunakan oxygen analyzer tanpa menggunakan sistem monitoring langsung melalui sensor

SURVEI LOKA PASAR ONLINE

No	Nama	Spesifikasi	Harga (Rp.)	Sumber
1	Yuwell 8F-5AW	 Berat: 15.5 kg Dimensi: 39 cm x 24.5 cm x 50 cm Kebisingan: 49 dB Tekanan keluaran: 40-70 kPa Oxygen flow: 0.5-5 L/menit Oxygen concentration: 87%-95.5% Bisa digunakan nebulizer 	6.990.000	https://www.tokopedia.com/jualangadgets/yu well-8f-5aw-oxygen-concentrator-medical- grade-generator-oksigen-ready?src=topads
2	Medris JY 2606	1. Berat: 6.8 kg 2. Dimensi: 20 cm x 32 cm x 34 cm 3. Kebisingan: 44 dB 4. Tekanan keluaran: 86-106 kPa 5. Oxygen flow: 2-9 L/menit 6. Oxygen concentration: 30%-93%	4.599.000	https://www.tokopedia.com/laris- superstore/medris-oxygen-concentrator- generator-oksigen-2-91-konsentrasi- 93?src=topads
3	Haier HA-105	1. Berat: 5.5 kg 2. Dimensi: 21 cm x 21.5 cm x 30.5 cm 3. Kebisingan: 40 dB 4. Tekanan keluaran: 20-50 kPa 5. Oxygen flow: 1-7 L/menit 6. Maximal oxygen concentration: 93%	5.999.999	https://www.tokopedia.com/simonsaysbogor/h aier-oxygen-concentrator-ha105-generator- oksigen-konsentrator- oksigen?extParam=ivf%3Dfalse%26src%3Ds earch
4	Yuwell YU300	 Berat: 8.5 kg Dimensi: 29.5 cm x 17.5 cm x 27 cm Kebisingan: 43 dB Tekanan keluaran: 85-105 kPa Oxygen flow: 1-5L/menit Oxygen concentration: 30%- 93% 	2.350.000	https://www.tokopedia.com/sbjj-2016/yuwell- yu300-oxygen-concentrator-homecare-mesin- generator- oksigen?extParam=ivf%3Dfalse%26src%3Ds earch
5	Yuwell YU500	 Berat: 8.5 kg Dimensi: 38.5 cm x 13.5 cm x 22 cm Kebisingan: 40 dB Tekanan keluaran: 85-105 kPa Oxygen flow: 1-7L/menit Oxygen concentration: 30%- 90% 	3.290.000	https://www.tokopedia.com/mitra-led/yuwell- yu500-oxygen-concentrator-home-mesin- generator-oksigen- new?extParam=ivf%3Dfalse%26src%3Dsearc h

USULAN PERANCANGAN SISTEM

- Usulan Rancangan Sistem
- Metode Uji Coba dan Pengujian

\rightarrow

SPESIFIKASI

Dimensi

Panjang 46.4 cm

Lebar 39 cm

Tinggi 36.5 cm

Metode

PSA (Pressure Swing Adsorption)

Berat

8Kg

Oxygen flow

1-9L/min

Sumber daya

220 VAC

Konsentrasi Oksigen

75 - 80%

Tekanan Keluaran

48-60 kPa

DESAIN SISTEM

Sistem Elektronis

Sistem Pneumatik

METODE PENGUJIAN

- 1. Pengujian dilakukan dengan 5 kali pengambilan data dengan variasi waktu pengujian alat yang berbeda dengan waktu 10, 20, 30, 40 dan 50 menit setiap variasi waktu adsorpsi yang berbeda yaitu 5, 7, 9, 11, 13, dan 15.
- 2. Melakukan perhitungan rata-rata untuk menentukan waktu adsorpsi terbaik untuk menghasilkan konsentrasi oksigen.

HASIL PERANCANGAN SISTEM

- Hasil Realisasi dengan
 Usulan
- Hasil RAB

HASIL REALISASI DENGAN 3D

REALISASI USULAN

RAB REALISASI

TOTAL

Rp 3,792,000,-

RAB USULAN

TOTAL

Rp 5,974,500,-

*Rincian terlampir

*Rincian terlampir

IMPLEMENTASI SISTEM DAN ANALISIS

- Hasil dan Analisis
 Implementasi
- Dampak Implementasi

HASIL IMPLEMENTASI KALIBRASI

KONSENTRASIOKSIGEN

SEBELUM

NILAI RATA-RATA

11.39%

SESUDAH

NILAI RATA-RATA

1.5%

*Rincian terlampir

*Rincian terlampir

HASIL UJI COBA

No	Hasil pengujian waktu adsorpsi (s)	Rata-Rata Konsentrasi Oksigen (%)	Rata-rata flow meter (LPM)
1	5	77.66	8.44
2	7	76.92	7.52
3	9	80.32	5.02
4	11	76.82	6.04
5	13	80.1	3.8
6	15	81.96	3.46

PENGALAMAN PENGGUNA

No	Fitur/Komponen	Capaian	Aksi/Perbaikan	
1	Fungsi	Penghasil konsentrasi oksigen dari udara disekitar.	Konsentrasi oksigen ditingkatkan hingga >90%	
3	Sistem monitoring	Menampilkan konsentrasi oksigen dan laju aliran oksigen untuk pengguna dapat dengan mudah mengetahui.	Ditingkat dengan sistem monitoring menggunakan IOT.	
4	Sistem kontrol	Menggunakan sistem kontrol solenoid untuk metode PSA	Dipertahankan	

DAMPAK IMPLEMENTASI

Fitur/Komponen	Sistem yang dibuat	Manohar dkk	Stevanus dkk	Ari dkk
monitoring		×	✓	
Sistem kontrol				✓
Harga	Rp. 3.792.000,-	Rp. 5.900.000,-	×	×
Metode	PSA	PSA	PSA	X
Sistem pneumatik	Standar	Standar	×	×

DAMPAK IMPLEMENTASI

Penggunaan oksigen konsentrator komersial berdasarkan survei yang dilakukan dengan harga paling mahal Rp. 6.990.000,- dan paling murah Rp. 2.350.000,-. Pembuatan oksigen konsentrator oleh penulis dengan harga Rp. 3.792.000,- dengan spesifikasi sesuai kebutuhan berdasarkan hasil observasi.

KESIMPULAN

KESIMPULAN

Kalibrasi Sensor

Konsentrasi Oksigen Error 1.5% dan Flow Meter Error 10.04%

Waktu Adsorpsi

Waktu adsorpsi terbaik adalah 15 detik.

