Reducing data complexity

Table of contents

1	Principal component analysis			
	1.1	Sources		
1.2 Dat		Data for PCA		
	1.3	Purpose of PCA		
	1.4	What I get from PCA		
1.5		Data for the tutorial		
		1.5.1 Raw data visualization		
		1.5.2 Centering the data		
		1.5.3 Scaling the data		
		1.5.4 Data reduction		
		1.5.4.1 Using prcomp		
		1.5.4.2 Using all the data		
		1.5.4.3 What Else is in the PCA Results?		
		1.5.4.4 Scree plot		
		1.5.4.5 Loading plot		
	1.6	Undoing the Scaling		
		1.6.1 Perfect reconstruction		
	1.7	Partial reconstruction		
		1.7.1 Example with 3 components		
		1.7.2 Visualizing the Root Mean Squared Deviation (RMSD) by adding com-		
		ponents		
	1.8	Image reconstruction		
		1.8.1 Sources for images		
		1.8.2 Import image		
		1.8.3 Express image as data		
		1.8.4 Visualize image		
		1.8.5 Reconstruction using components		
		1.8.5.1 Prepare data		
		1.8.5.2 Principal component analysis		

1.0.0.4	result of reconstruction using different number of components	19
library(tidyverse)		
library(ade4)		
<pre>library(tidymodels)</pre>		
<pre>library(latex2exp)</pre>		
<pre>library(imager)</pre>		
library(LearnPCA)		

1 Principal component analysis

1.8.5.3

This document is a reproduction using the tidyverse and tidymodels of the LearnPCA¹ package vignettes and adding or deleting information.

1.1 Sources

- Statquest:
 - StatQuest: Principal Component Analysis (PCA), Step-by-Step:
 - * https://youtu.be/FgakZw6K1QQ?feature=shared
 - Principal Components Analysis in R: Step-by-Step Example:
 - * https://www.statology.org/principal-components-analysis-in-r/
 - PCA in tidyverse framework:
 - * https://cmdlinetips.com/2022/12/pca-with-tidyverse/
 - Making sense of principal component analysis, eigenvectors & eigenvalues:
 - \ast https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues/140579
 - Relationship between SVD and PCA. How to use SVD to perform PCA?:
 - $*\ https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca$
 - PCA and UMAP with tidymodels and #TidyTuesday cocktail recipes:
 - * https://juliasilge.com/blog/cocktail-recipes-umap/

¹https://CRAN.R-project.org/package=LearnPCA

- LearnPCA
 - * https://CRAN.R-project.org/package=LearnPCA

1.2 Data for PCA

- Samples organized by rows
- Variables organized in columns, which are measure for each sample

1.3 Purpose of PCA

- Data reduction
 - Identify variables that are not informative
 - Collapsing correlating variables

1.4 What I get from PCA

- Indication of how many principal components (PC) are needed to describe the data
 - Summary in scree plot (In `broom` we use matrix `d`)
- Scores
 - In `broom` matrix `u`
 - Relationships between samples
- Loadings
 - In `broom` matrix `v`
 - Contributions of the different variables

1.5 Data for the tutorial

```
data(tintoodiel)
T0 <- tintoodiel$tab |>
  as_tibble(rownames = "sites")
FeCu <- T0 |>
  select(Fe203, Cu) |>
```

```
slice(28:43)
FeCu
```

```
# A tibble: 16 x 2
  Fe203
         Cu
  <dbl> <dbl>
1 9.5 594
2 7.35 328
3 15.0
       1.67
4 18.5
       2.99
5 7.72 402
6 13.4 342
7 12.4 1.05
8 11.8 399
9 20.6 3.67
       2.25
10 19.4
11 25.6 2.02
12 32.4 787
13 12 238
14 11.0 249
15 16.6 1.28
16 12.7 238
```

1.5.1 Raw data visualization

```
FeCu |>
    ggplot(aes(x = Fe203, y = Cu)) +
    geom_point() +
    labs(x = TeX(r'($Fe_20_3$ (percent))'),
        y = TeX(r'($Cu$ (ppm))'))
```


Figure 1: The relationship between the raw data values in FeCu

1.5.2 Centering the data

```
# A tibble: 16 x 2
    Fe203
              Cu
    <dbl>
           <dbl>
1 -5.88
           370.
2 -8.03
           104.
3 -0.386 -223.
4 3.12
         -222.
5 -7.66
           178.
6 -1.98
           118.
7 -2.98
         -223.
8 -3.58
           175.
9 5.22 -221.
```

```
    10
    4.02
    -222.

    11
    10.2
    -222.

    12
    17.0
    563.

    13
    -3.38
    13.5

    14
    -4.33
    24.5

    15
    1.22
    -223.

    16
    -2.68
    13.5
```

1.5.3 Scaling the data

```
# A tibble: 16 x 2
    Fe203
               Cu
    <dbl>
            <dbl>
1 -0.879
           1.52
2 -1.20
           0.426
3 -0.0577 -0.917
4 0.468 -0.911
5 -1.15
          0.730
6 -0.296
          0.483
7 -0.445 -0.919
8 -0.535
          0.718
9 0.782 -0.908
10 0.602 -0.914
11 1.53
          -0.915
12 2.55
          2.31
13 -0.505
         0.0555
14 -0.647
           0.101
15 0.183 -0.918
16 -0.400
           0.0555
```

1.5.4 Data reduction

1.5.4.1 Using prcomp

```
pca_FeCu <- FeCu_centered_scaled |>
  prcomp(center = FALSE, scale. = FALSE)
str(pca_FeCu)
```

```
List of 5
$ sdev : num [1:2] 1.007 0.992
$ rotation: num [1:2, 1:2] 0.707 -0.707 -0.707 -0.707
..- attr(*, "dimnames")=List of 2
....$ : chr [1:2] "Fe203" "Cu"
....$ : chr [1:2] "PC1" "PC2"
$ center : logi FALSE
$ scale : logi FALSE
$ x : num [1:16, 1:2] -1.697 -1.15 0.607 0.975 -1.327 ...
..- attr(*, "dimnames")=List of 2
....$ : NULL
....$ : chr [1:2] "PC1" "PC2"
- attr(*, "class")= chr "prcomp"
```

If you compare Figure 1 to Figure 2, it looks broadly similar, but the points are rotated and the scales are different.

Figure 2: Scores

1.5.4.2 Using all the data

```
pca_TO <- prcomp(select(TO, -sites),</pre>
                 retx = TRUE,
                 center = TRUE, scale. = TRUE)
str(pca_T0)
List of 5
          : num [1:16] 2.1 1.77 1.35 1.17 1.06 ...
 $ rotation: num [1:16, 1:16] -0.4496 0.3152 -0.0889 0.2175 0.1645 ...
  ..- attr(*, "dimnames")=List of 2
  ....$ : chr [1:16] "SiO2" "Al2O3" "CaO" "MgO" ...
  ....$ : chr [1:16] "PC1" "PC2" "PC3" "PC4" ...
 $ center : Named num [1:16] 53.57 12.1 1.7 1.45 2.21 ...
  ..- attr(*, "names")= chr [1:16] "SiO2" "Al2O3" "CaO" "MgO" ...
 $ scale : Named num [1:16] 14.821 3.425 2.262 0.472 0.798 ...
  ..- attr(*, "names")= chr [1:16] "SiO2" "Al2O3" "CaO" "MgO" ...
           : num [1:52, 1:16] -2.75 1.122 -0.755 -0.336 2.647 ...
  ..- attr(*, "dimnames")=List of 2
  .. ..$ : NULL
  ....$ : chr [1:16] "PC1" "PC2" "PC3" "PC4" ...
```

```
- attr(*, "class")= chr "prcomp"
```

A similar plot of the raw data is not possible, because it is not two-dimensional: there are 16 dimensions corresponding to the 16 variables. Figure 3 shows the first two principal component scores:

Figure 3: Score plot using all the data

1.5.4.3 What Else is in the PCA Results?

prcomp

- pca_T0\$sdev: standard deviations of the principal components
- pca_TO\$rotation: loadings
- pca_TO\$x: scores
- pca_TO\$center: values used for centering
- pca_TO\$scale: values used for scaling

broom::tidy

- tidy(pca_TO, matrix = "u"): scores
- tidy(pca_TO, matrix = "v"): loadings
- tidy(pca_TO, matrix = "d"): standard deviations of the principal components

1.5.4.4 Scree plot

To obtain the eingevalues you need to extract the pca_T0\$sdev values and square them to generate Figure 4.

Figure 4: Scree plot

1.5.4.5 Loading plot

To generate the plot you choose the first principal component and arrange it as is shown in Figure 5.

Figure 5: Plot of the loadings on PC1

1.6 Undoing the Scaling

1.6.1 Perfect reconstruction

```
TOhat <- (as.matrix(scores) %*% t(as.matrix(loading))) |>
    scale(center = FALSE, scale = 1 / pca_TO$scale) |>
    scale(center = -pca_TO$center, scale = FALSE) |>
    as_tibble(.name_repair = "unique") |>
    set_names(colnames(TO)[-1]) |>
    add_column(sites = TO$sites, .before = "SiO2")

mean(as.matrix(select(TO, -sites)) - as.matrix(select(TOhat, -sites)))
```

[1] -2.120299e-15

1.7 Partial reconstruction

1.7.1 Example with 3 components

```
ncomp <- 3
### Calculate Xhat
Xhat <- pca_TO$x[, 1:ncomp] %*% t(pca_TO$rotation[, 1:ncomp])
### Undoing the scaling
Xhat <- scale(x = Xhat, center = FALSE, scale = 1/pca_TO$scale)
### Undoing the centering
Xhat <- scale(x = Xhat, center = -pca_TO$center, scale = FALSE)
### Calculating the original data
X <- TO |>
    select(-sites) |>
    as.matrix()
## Compare original data vs reconstruction
error <- X - Xhat
dim(X)</pre>
```

[1] 52 16

```
### Root Mean Squared Deviation (RMSD)
rmsd <- sqrt(sum(error^2) / length(error))
rmsd</pre>
```

[1] 109.6484

1.7.2 Visualizing the Root Mean Squared Deviation (RMSD) by adding components

```
rmsd_tbl <- 1:ncol(X) |>
  map(.f = ~ XtoPCAtoXhat(X, .x, sd)) |>
  map(.f = ~.x - X) \mid >
  map(.f = \sim sqrt(sum(.x^2)/length(.x))) >
  enframe(name = "pc", value = "rmsd") |>
  unnest(cols = rmsd)
rmsd_tbl |>
  ggplot(aes(x = pc, y = rmsd)) +
  geom_point(shape = 21, color = "black",
             fill = "#E31A1C", size = 3) +
  geom line() +
  scale_x_continuous(breaks = 1:16) +
  scale_y_continuous(breaks = seq.int(from = 0,
                                       to = max(rmsd_tbl$rmsd) |> ceiling(),
                                      by = 20)) +
  labs(x = "Principal Component",
       y = "Root Mean Squared Deviation (RMSD)")
```


Figure 6: Reduction of error as the number of components included in the reconstruction increases

1.8 Image reconstruction

- Reconstructing Images Using PCA
 - https://www.r-bloggers.com/2019/10/reconstructing-images-using-pca/
 - https://kieranhealy.org/blog/archives/2019/10/27/reconstructing-images-using-pca/

1.8.1 Sources for images

- The USC-SIPI Image Database:
 - https://sipi.usc.edu/database/ > Miscellaneous

1.8.2 Import image

1.8.3 Express image as data

```
boat_gray_long <- boat_gray |>
  as.data.frame() |>
  as_tibble()
boat_gray_long
```

```
# A tibble: 262,144 x 3
      X
           y value
  <int> <int> <dbl>
      1
           1 0.498
 1
2
      2
          1 0.482
3
      3
          1 0.490
4
      4
          1 0.471
          1 0.494
5
      5
6
      6
          1 0.482
7
      7
          1 0.498
8
      8
          1 0.502
9
      9
          1 0.490
10
     10
           1 0.506
# i 262,134 more rows
```

1.8.4 Visualize image

```
boat_gray_long |>
 ggplot(aes(x = x, y = y)) +
 geom_raster(aes(fill = value)) +
 # We need this part because imager uses
 # the following coordinate system
 ## Top-left origin (0, 0)
 ## Positive x-coordinates increase rightwards
 ## Positive y-coordinates increase downwards
 # However ggplot used the following coordinate
 # system
 ## Bottom-left origin (0, 0)
 ## Positive x-coordinates increase rightwards
 ## Positive y-coordinates increase upwards
 scale_y_reverse() +
 scale_fill_gradient(low = "black", high = "white") +
 theme(legend.position = "none",
       aspect.ratio = 1)
```


1.8.5 Reconstruction using components

1.8.5.1 Prepare data

```
# A tibble: 512 x 513
                                                           `2`
                                                                                `3`
                                                                                                     `4`
                                                                                                                          `5`
                                                                                                                                              `6`
                                                                                                                                                                   `7`
                                                                                                                                                                                        `8`
                                                                                                                                                                                                             `9` `10` `11`
                                      `1`
          <int> <dbl> 
                        1 0.498 0.502 0.502 0.486 0.494 0.490 0.498 0.482 0.494 0.486 0.478 0.494
  2
                       2 0.482 0.494 0.486 0.498 0.490 0.498 0.498 0.529 0.502 0.502 0.494 0.498
  3
                       3 0.490 0.502 0.502 0.502 0.502 0.494 0.494 0.471 0.486 0.498 0.502 0.490
                       4 0.471 0.478 0.494 0.506 0.494 0.494 0.486 0.502 0.502 0.486 0.494 0.478
   4
   5
                       5 0.494 0.490 0.498 0.475 0.494 0.502 0.471 0.475 0.490 0.498 0.482 0.490
   6
                        6 \ 0.482 \ 0.490 \ 0.471 \ 0.502 \ 0.490 \ 0.502 \ 0.498 \ 0.482 \ 0.482 \ 0.475 \ 0.498 \ 0.475 \\
  7
                       7 0.498 0.478 0.502 0.506 0.498 0.502 0.502 0.494 0.502 0.502 0.486 0.498
  8
                       8 0.502 0.506 0.506 0.502 0.502 0.494 0.494 0.494 0.510 0.510 0.506 0.502
                       9 0.490 0.498 0.502 0.506 0.514 0.510 0.502 0.502 0.502 0.518 0.514 0.514
```

1.8.5.2 Principal component analysis

```
boat_gray_wider_pca <- boat_gray_wider |>
  select(-x) |>
  prcomp(retx = TRUE, center = TRUE, scale. = TRUE)
```

1.8.5.3 Variance explained

```
boat_gray_pca_variance <- boat_gray_wider_pca |>
   tidy(matrix = "d")
boat_gray_pca_variance
```

```
# A tibble: 512 x 4
     PC std.dev percent cumulative
          <dbl> <dbl>
  <dbl>
                           <dbl>
          10.6 0.218
1
      1
                            0.218
2
        6.49 0.0823
      2
                           0.300
3
      3
          6.24 0.0760
                           0.376
4
      4 5.21 0.0531
                           0.429
5
      5
        4.78 0.0446
                           0.474
6
      6 4.33 0.0366
                           0.510
7
      7
         4.07 0.0323
                            0.543
8
          3.59 0.0252
                            0.568
      8
9
      9
          3.34 0.0218
                            0.590
10
     10
           3.29 0.0212
                            0.611
# i 502 more rows
```


1.8.5.4 Result of reconstruction using different number of components

```
n_pc \leftarrow c(1, 5, 10, 50, 100, 500)
pca_tidy_reconstruction <- tibble(pc = n_pc) |>
  mutate(x_hat = map(.x = n_pc,
                      .f = ~ boat_gray_wider_pca$x[, 1:.x] %*%
                              t(boat_gray_wider_pca$rotation[, 1:.x])),
         x_{hat} = map(.x = x_{hat},
                      .f = \sim scale(x = .x,
                                    center = FALSE,
                                    scale = 1/boat_gray_wider_pca$scale)),
         x_{hat} = map(.x = x_{hat},
                      .f = \sim scale(x = .x,
                                    center = -boat_gray_wider_pca$center,
                                    scale = FALSE)),
         x_{hat} = map(.x = x_{hat},
                      .f = ~as_{tibble}(.x)),
         x_{hat} = map(.x = x_{hat},
                      .f = ~ bind_cols(select(boat_gray_wider, x), .x)),
         x_{hat} = map(.x = x_{hat},
                      .f = ~ pivot_longer(.x,
                                            cols = -x,
                                            names_to = "y",
                                            values_to = "value",
                                            names_transform = list(y = as.integer)))) |>
```

