Growth of Functions

	constant	logarithmic	linear	N-log-N	quadratic	cubic	exponential
n	O(1)	O(log n)	O(n)	O(n log n)	O(n ²)	$O(n^3)$	O(2 ⁿ)
1	1	1	1	1	1	1	2
2	1	1	2	2	4	8	4
4	1	2	4	8	16	64	16
8	1	3	8	24	64	512	256
16	1	4	16	64	256	4,096	65536
32	1	5	32	160	1,024	32,768	4,294,967,296
64	1	6	64	384	4,069	262,144	1.84 x 10 ¹⁹

Asymptotic Notations

Figure 3.1 Graphic examples of the Θ , O, and Ω notations. In each part, the value of n_0 shown is the minimum possible value; any greater value would also work. (a) Θ -notation bounds a function to within constant factors. We write $f(n) = \Theta(g(n))$ if there exist positive constants n_0 , c_1 , and c_2 such that at and to the right of n_0 , the value of f(n) always lies between $c_1g(n)$ and $c_2g(n)$ inclusive. (b) O-notation gives an upper bound for a function to within a constant factor. We write f(n) = O(g(n)) if there are positive constants n_0 and c such that at and to the right of n_0 , the value of f(n) always lies on or below cg(n). (c) Ω -notation gives a lower bound for a function to within a constant factor. We write $f(n) = \Omega(g(n))$ if there are positive constants n_0 and c such that at and to the right of n_0 , the value of f(n) always lies on or above cg(n).

Binary Tree, Summations...

Binary Tree depth items

Summations

Let
$$s = a + ar + ar^2 + ar^3 + \dots + ar^{n-1}$$
.

Then
$$rs = ar + ar^2 + ar^3 + ar^4 + \dots + ar^n$$

Then
$$s - rs = a - ar^n$$

Then
$$s(1-r) = a(1-r^n)$$
, so $s = a\frac{1-r^n}{1-r}$ (if $r \neq 1$).

Sums of Powers of Natural Numbers

1.
$$1+2+3+\cdots+n=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}$$

2.
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

3.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \sum_{i=1}^n i^3 = \frac{n^2 (n+1)^2}{4}$$

Sorting Algorithms

Insertion sort

In	SERTION-SORT (A)	cost	times
1	for $j = 2$ to A.length	c_1	n
2	key = A[j]	c_2	n - 1
3	// Insert $A[j]$ into the sorted		
	sequence $A[1 j - 1]$.	0	n-1
4	i = j - 1	c_4	n - 1
5	while $i > 0$ and $A[i] > key$	c_5	$\sum_{j=2}^{n} t_j$
6	A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
7	i = i - 1	c_7	$\sum_{j=2}^{n} (t_j - 1)$
8	A[i + 1] = k e v	Co	n _ 1

Note: More Sorting algorithms (Bubble sort, selection sort) are covered in the class, take notes in class

Divide and Conquer: Merge Sort

```
MERGE(A, p, q, r)
    n_1 = q - p + 1
 2 n_2 = r - q
   let L[1..n_1 + 1] and R[1..n_2 + 1] be new arrays
 4 for i = 1 to n_1
        L[i] = A[p+i-1]
    for j = 1 to n_2
        R[j] = A[q+j]
   L[n_1+1]=\infty
    R[n_2+1]=\infty
    for k = p to r
13
        if L[i] \leq R[j]
            A[k] = L[i]
15
            i = i + 1
        else A[k] = R[j]
16
            j = j + 1
```

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```


Divide and Conquer: Quick Sort

```
QUICKSORT(A, p, r)

1 if p < r

2 q = \text{PARTITION}(A, p, r)

3 QUICKSORT(A, p, q - 1)

4 QUICKSORT(A, q + 1, r)
```

```
PARTITION(A, p, r)

1 x = A[r]

2 i = p - 1

3 for j = p to r - 1

4 if A[j] \le x

5 i = i + 1

6 exchange A[i] with A[j]

7 exchange A[i + 1] with A[r]

8 return i + 1
```


Masters Theorem

The Master Theorem

• if
$$T(n) = aT(n/b) + f(n)$$
 then

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & f(n) = O(n^{\log_b a - \varepsilon}) \\ \Theta(n^{\log_b a} \log n) & f(n) = \Theta(n^{\log_b a}) \end{cases}$$

$$\Theta(f(n)) & f(n) = \Omega(n^{\log_b a + \varepsilon}) \text{AND}$$

$$af(n/b) < cf(n) \text{ for large } n \end{cases}$$