Quiz 4 - Solutions

1) Let $f(z) = \frac{1}{1+2^2}$. The poles of of f are $\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$, $-\frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$, $-\frac{\sqrt{2}}{2} - i \frac{\sqrt{2}}{2}$,

and $\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$. The first two lie on the upper half plane. Clearly, If (=) | < 1/2 for all 2+0.

Hence $\int f(z) dz = 2\pi i \left(\text{Res} \left(f, \sqrt{2} + i \sqrt{2} \right) + \text{Res} \left(f, \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right) \right)$ Per $\left(+, \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right) = \frac{1}{4 \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \right)^3} = \frac{1}{\sqrt{2} \left(-2.12 \right)}$

$$\operatorname{Res}\left(f_{1} - \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = \frac{1}{4\left(\frac{-\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)^{3}} = \frac{1}{\sqrt{2}(2+2i)}$$

$$\int f(z) dz = 2\pi i \left(\frac{1}{2\sqrt{2}} \left(\frac{1}{(1+i)} + \frac{1}{(1+i)}\right)\right) = \frac{\pi i}{\sqrt{2}} \left(\frac{1+i-1+i}{-2}\right) = \frac{\pi}{\sqrt{2}}$$

Since f is even, we have $\int f(x)dx = \frac{1}{2} \int f(x)dx = \frac{TT}{2\sqrt{2}}$

C1 and C2 be circles contered at 2 let f(2)= 29+25-823+22+1. And let O of radii 1 and 2. First note that if we take g,(2)=-823, then |g,(2)| > |29+25+22+1| for $2 \in C_1$. Hence f(z) has the same number of zeros as $g_1(z)$ inside C_2 . This means that of has 3 zeros in the unit disc.

Now let $g_2(z)=2^9$. Then $|g_2(z)|>|2^5-8z^3+2z+1|$ for $z\in C_2$. So f has as many zeros as g_2 in the disc centred of 0 & of radius 2. Therefore f has 9 zeros in the given annulus.