Discrete Categorical Distribution

Carl Edward Rasmussen

November 11th, 2016

Key concepts

We generalize the concepts from binary variables to multiple discrete outcomes.

- discrete and multinomial distributions
- the Dirichlet distribution

The multinomial distribution (1)

Generalisation of the binomial distribution from 2 outcomes to m outcomes. Useful for random variables that take one of a finite set of possible outcomes. Throw a die n=60 times, and count the observed (6 possible) outcomes.

Outcome	Count
$X = x_1 = 1$	$k_1 = 12$
$X = x_2 = 2$	$k_2 = 7$
$X = x_3 = 3$	$k_3 = 11$
$X = x_4 = 4$	$k_4 = 8$
$X = x_5 = 5$	$k_5 = 9$
$X = x_6 = 6$	$k_6 = 13$

Note that we have one parameter too many. We don't need to know all the k_i and n, because $\sum_{i=1}^6 k_i = n$.

The multinomial distribution (2)

Consider a discrete random variable X that can take one of m values $x_1, ..., x_m$. Out of n independent trials, let k_i be the number of times $X = x_i$ was observed. It follows that $\sum_{i=1}^{m} k_i = n$.

Denote by π_i the probability that $X = x_i$, with $\sum_{i=1}^m \pi_i = 1$.

The probability of observing a vector of occurrences $\mathbf{k} = [k_1, \dots, k_m]^{\top}$ is given by the *multinomial distribution* parametrised by $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^{\top}$:

$$p(\mathbf{k}|\boldsymbol{\pi},n) = p(k_1,\ldots,k_m|\boldsymbol{\pi}_1,\ldots,\boldsymbol{\pi}_m,n) = \frac{n!}{k_1!k_2!\ldots k_m!}\prod_{i=1}^{m} \pi_i^{k_i}$$
 interested in count, at a that we can write $p(\mathbf{k}|\boldsymbol{\pi})$ since p is redundant.

- Note that we can write $p(k|\pi)$ since n is redundant. not sequence.
- The multinomial coefficient $\frac{n!}{k_1!k_2!...k_m!}$ is a generalisation of $\binom{n}{k}$.

The discrete or *categorical distribution* is the generalisation of the Bernoulli to \underline{m} outcomes, and the special case of the multinomial with one trial:

$$p(X = x_i | \boldsymbol{\pi}) = \pi_i$$
.

Example: word counts in text

Consider describing a text document by the frequency of occurrence of every distinct word.

The UCI Bag of Words dataset from the University of California, Irvine. ¹

¹ http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

Priors on multinomials: The Dirichlet distribution

The Dirichlet distribution is to the categorical/multinomial what the Beta is to the Bernoulli/binomial.

It is a generalisation of the Beta defined on the m-1 dimensional simplex.

- Consider the vector $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^\top$, with $\sum_{i=1}^m \pi_i = 1$ and $\pi_i \in (0,1) \ \forall i$.
- Vector π lives in the open standard m-1 simplex.
- π could for example be the parameter vector of a multinomial. [Figure on the right m = 3.]

The Dirichlet distribution is given by

$$\operatorname{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}_1,\ldots,\boldsymbol{\alpha}_m) \; = \; \frac{\Gamma(\sum_{i=1}^m \boldsymbol{\alpha}_i)}{\prod_{i=1}^m \Gamma(\boldsymbol{\alpha}_i)} \prod_{i=1}^m \boldsymbol{\pi}_i^{\boldsymbol{\alpha}_i-1} \; = \; \frac{1}{B(\boldsymbol{\alpha})} \prod_{i=1}^m \boldsymbol{\pi}_i^{\boldsymbol{\alpha}_i-1}$$

- $\alpha = [\alpha_1, \dots, \alpha_m]^{\top}$ are the shape parameters.
- $B(\alpha)$ is the multivariate beta function.
- $E(\pi_j) = \frac{\alpha_j}{\sum_{j=1}^m \alpha_j}$ is the mean for the j-th element.

Dirichlet Distributions from Wikipedia

The symmetric Dirichlet distribution

In the symmetric Dirichlet distribution all parameters are identical: $\alpha_i = \alpha$, $\forall i$. en.wikipedia.org/wiki/File:LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif To sample from a symmetric Dirichlet in D dimensions with concentration α use: w = randg(alpha, D, 1); bar(w/sum(w));

Distributions drawn at random from symmetric 10 dimensional Dirichlet distributions with various concentration parameters.