

BIKEABILITY IN THE WEST REGION OF SINGAPORE

GROUP 4: KOHEI YAMAMOTO

TRAN THI MINH PHUONG

WEN JIAZHE

ZHAO MUSHU

OUTLINE

- 1. Introduction
- 2. Methodology
- 3. Results
- 4. Discussion

INTRODUCTION

Active travel

- Mitigation measure for traffic congestion, air and noise pollution¹.
 - Providing health and financial benefits ².

Built environment

Clear influence on travel behaviour and active travel 3.

"Walkability"

Many studies have focused on walkability: aesthetic attributions of the street corridors, urban greenery and physical features that influence human spatial conception → mainly at street level ^{4,5,6}

Cycling in Singapore

- Cycling has been highly promoted in Singapore.
 - It is necessary to evaluate and visualize the current cycling condition.

"Bikeability"

- Few studies has been done to define and map "bikeability" 7.
- Used different criteria, indices and may not suitable for Singapore 8.

This study built a framework that incorporates multiple indices to address and evaluate "bikeability", relying on commonly available data and using spatial analysis as an important tool to solve the problems.

Framework

METHODOLOGY

Research Area

Data	Source	Description	Time
Singapore Subzone boundary	URA	the West Region of Singapore	2014
Road Network	LTA	the West Region of Singapore	2017
Google Street View	Google	16,600 images	2018
Point of Interest	Baidu	50,658 records	2019
ASTER Global DEM Model V003	USGS	Spatial Resolution of 1 arc sec	2013

Data cleansing

Proportion Parse

Semantic Segmentation

GSV* Curation

*Google Street View

Data cleansing

Proportion Parse Semantic Segmentation

GSV* Curation

*Google Street View

POI RECLASSIFICATION

Reclassification	Class	Sub-class	
Leisure	Entertainment	Cinema, theater, KTV, etc.	
	Sports	Gym, sport centre, etc.	
	Nature	Island, mountain, reservoir, etc.	
	Food	Restaurant, bakery, bar, etc.	
	Tourist Attraction	Park, zoo, botanical garden, etc.	
Transport	Transport	Airport, MRT station, bus station, etc.	
Commercial	Enterprise	Company, industry, etc.	
	Financial Industry	Bank, ATM, etc.	
Daily Routine	Shopping	Shopping centre, department store, supermarket, etc.	
	Living Service	Post office, ticket office, laundry, real estate agency, etc.	

Data cleansing

Proportion Parse

Semantic Segmentation

GSV* Curation

*Google Street View

Slope

DEM

Sinuosity

$$Sinuosity = \frac{length}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}$$

Data cleansing

Proportion Parse Semantic Segmentation

GSV* Curation

*Google Street View

SEMANTIC SEGMENTATION

- is the task of assigning a class to every pixel in a given image
 - e.g. tree, pavements, building, etc.
- is to train a Deep Neural Network to achieve finegrained pixelwise classifications

SegNet

- Lightest model of the said convolutional neural network
- Built with a dataset of 600 street images termed Camvid
 - Training acc. 96.7%
 - Validation acc. 79.6%
- Applied to curated 16,660 GSV images
 - to infer each proportion of 12 classes in total

SEMANTIC SEGMENTATION

RESULTS (1/6)

Suitability of the Study Area

Accessibility of the Study Area

RESULTS (2/6)

Indicators	Formula	Level
Psychological Greenery (G)	$G_{i} = \frac{\sum_{1}^{4} T_{n}}{4 * sum}$	Higher, Better
Visual Crowdedness (C)	$C_i = \frac{\sum_{l}^{4} C_n}{4 * sum}$	Lower, Better
Outdoor Enclosure (S)	$S_{i} = \frac{\sum_{1}^{4} B_{n} + \sum_{1}^{4} T_{n}}{\sum_{1}^{4} P_{n} + \sum_{1}^{4} R_{n} + \sum_{1}^{4} F_{n}}$	Middle, Better
Visual Path (D)	$D_{i} = \frac{\sum_{1}^{4} P_{n} + \sum_{1}^{4} F_{n}}{\sum_{1}^{4} R_{n}}$	Middle, Better

 T_n is the number of tree pixels; C_n is the number of obstacles pixels; B_n is the number of building pixels; P_n refers to the number of cycle lane pixels;

 R_n refers to the number of road pixels; F_n refers to the number of fence pixels;

Sum is the total pixel number.

RESULTS (3/6)

Perceptibility of the Study Area

RESULTS (4/6)

RESULTS (5/6)

Class	Weight	
Accessibility	1/3	
Suitability	1/3	
Perceptibility	1/3	

Class	Weight	Weight	Weight
Accessibility	0.6	0.2	0.2
Suitability	0.2	0.6	0.2
Perceptibility	0.2	0.2	0.6

Fitting overall citizens

Fitting exercise purpose

Fitting scenery purpose

DISCUSSION

Limitation

Further works in validations of scale range

Survey: Questionnaire

Field research

GSV

Outlook

- Buffer distance
- Analysis according to different types of cycling paths

Source: Walking and Cycling Design Guide, 2018

SUMMARY

APPENDIX

(a). Segmentation sample of Segnet

(b). Segmentation sample after reclassed