Weighing scale-reader

2.737 Mechatronics

Instructor: Prof. David L. Trumper

Key takeaway: Oversampling for noise reduction.

Code Overview

- Field Programmable Gate Array (FPGA)
 - Reads C/AIO at 333 kHz as a 12-bit integer value, and
 - Oversampling Implemented: Takes a moving average with 320 previous values and converts the result into fixed point.
 - Effectively, the fidelity (tracking of AI without too much phase lag) of the output oversampled AI signal is at frequencies considerably below 333/320 = 1.041 kHz. The <u>phase decreases linearly</u> with frequency going to -180 degree at 333/320 = 1.041 kHz.
 - We are trading throughput (limiting how fast dynamics we can perceive from the AI signal) for lower noise and hence better resolution.
 - For more information, refer to http://www.cypress.com/file/236481/download
- Real-Time (RT)
 - Reads the oversampled C/AIO from the FPGA.
 - Has operations for filtering, converging voltage to load and implements the "tare" function.

Frequency response of Moving average filter

If you need better frequency response, then look at alternative FIR implementations - http://www.analog.com/media/en/technical-documentation/dsp-book/dsp_book_Ch15.pdf

Oversampling

Oversampling implemented (320:1)

Oversampling implemented (320:1)

Effective resolution increase:

$$w = \frac{\log(N_{avg})}{\log(4)}$$

 N_{avg} = 320 sample average,

w = 4.17

The system effectively should behave as a 16-bit ADC.

16-bit resolution: $20/2^16 = 0.305 \text{ mV}$

Measurement:

10 times better resolution and lower noise than original.

Total spread:

Max-Min = 0.778 mV

Original 12-bit Analog input

Original 12-bit Analog input

Distance from mean (mV)

12-bit resolution: 20/2^12 = 4.883 mV

Total spread:

Max-Min = 9.776 mV

Code screenshots

Front Panel

Block diagram

FPGA Blockdiagram

Tasks

Modify the 3 sub-VIs

- Implement any further filtering if you would like.
- Write to code to convert from voltage to weight measurement.
- Write code to implement tare functionality on pressing the tare button.

and modify to implement

your own code.

References

- https://forums.ni.com/t5/Example-Programs/Convert-Sine-Wave-Generator-Raw-Output-to-Fixed-Point/ta-p/3530621
- https://forums.ni.com/t5/LabVIEW/Moving-Average-Filter/tdp/2550513
- https://terpconnect.umd.edu/~toh/spectrum/Smoothing.html
- http://www.cypress.com/file/236481/download