

Laboratório de Pesquisa em Redes e Multimídia

O Protocolo ARP

Endereço Físico

- Cada interface de rede (NIC network interface card) vem com um identificador único de fábrica. Este identificador é o endereço físico ou endereço de hardware da interface.
- Para garantir que não haverá conflitos de endereços, fabricantes de placas de rede – p.ex., Ethernet – devem ser registrados junto a uma autoridade central.
- O código identificador do fabricante é chamado de OUI - Organizationally Unique Identifier.
- O tamanho (número de bits) do endereço físico varia conforme a tecnologia de rede.

Endereço Físico (cont.)

- O tamanho (número de bits) do endereço físico varia conforme a tecnologia de rede. No caso da tecnologia Ethernet:
 - Os endereços têm 48 bits (6 bytes), representados por seis números hexadecimais, separados por ":"
 - Os 3 primeiros bytes definem o identificador do fabricante
 - Os 3 últimos bytes são definidos pelo fabricante, de forma única
 - Exemplo: 3COM = 02:60:8C:03:1D:91; IBM = 08:00:5A:07:4B:95; Cisco = 00:60:2F

Endereço Físico (cont.)

Endereço MAC

- Tecnologias como Ethernet e Token Ring possuem esquemas próprios de endereçamento no nível de enlace.
- Normalmente, os protocolos do nível MAC usam endereços físicos na formatação das suas primitivas.
- Logo, no nível MAC, para que um frame possa enviado de uma máquina a outra em um enlace de dados, o endereço físico da estação destino deve ser conhecido.
- Endereço MAC = Endereço Ethernet = endereço físico

Problema

- Num ambiente de rede geralmente se conhece o endereço de rede da máquina destino (ex: endereço IP) mas não o seu endereço físico (ex: endereço Ethernet).
- Infelizmente, não existe nenhuma conexão ou relacionamento entre endereços Ethernet e endereços IP/Internet.
- Pior, endereços IP só fazem sentido numa arquitetura específica, no caso, a arquitetura TCP/IP.

Problema (cont.)

 Host A quer se comunicar com host B. Host A conhece o endereço IP_B mas não sabe o endereço físico de B.

Resolução de Endereços

- Como então um host obtém o endereço físico de uma máquina destino quando ele necessita enviar um pacote através de uma rede física conhecendo apenas o endereço IP destino?
- A resposta é usar um Protocolo de Resolução de Endereços.
- A resolução de endereços provê o mapeamento entre duas diferentes formas de endereços: endereços IP de 32 bits e qualquer tipo de endereço físico usado no enlace de dados.

O Protocolo ARP

- Na arquitetura TCP/IP, a função de resolução de endereços é desempenhada pelo protocolo ARP.
- ARP = "Address Resolution Protocol"
- O ARP foi originalmente usado em redes Ethernet, mas o seu projeto é genérico, podendo ser usado em outros tipos de tecnologias de rede tais como *Token-Ring* e *FDDI*.

O Protocolo ARP

- O ARP faz o mapeamento dinâmico entre endereços IP de 32 bits e endereços de hardware usados pelas várias tecnologias de enlace.
 - No caso da tecnologia Ethernet, endereços IP de 32 bits são mapeados em endereços MAC de 48 bits (6 bytes).
- O mecanismo de tradução de endereços implementado pelo ARP é baseado no uso de broadcast.

ARP Request / Reply

Recall that a broadcast is forwarded by all bridges (bridges create a single logical network), but is not forwarded by routers (routers connect logically separate networks).

Cache ARP

- Para manter o número de broadcasts a um nível mínimo, os hosts que usam o ARP mantém um cache de mapeamentos Internet-Ethernet já resolvidos pois, assim, não precisam usar o ARP toda hora que se quiser transmitir um pacote.
- Antes de transmitir um pacote o host sempre examina o seu cache ARP, buscando verificar se já existe mapeamento anterior para o endereço destino.
- Para que o cache não cresça demasiadamente, entradas são removidas se não forem usadas dentro de um certo período de tempo.
- O cache ARP também é chamado de Tabela ARP.

O Cache ARP (cont.)

IP Address	Ethernet Address
223.1.2.1	08-00-39-00-2f-c3
223.1.2.2	08-00-5a-21-a7-22
223.1.2.3	08-00-28-00-38-a9
223.1.2.4	08-00-10-99-ac-54

Cache ARP (cont.)

- Tráfego adicional na rede é evitado fazendo o emissor do ARP Request incluir o seu próprio mapeamento Internet-Ethernet na primitiva. Isso é feito para que o *host* destino possa adicionar esse mapeamento no seu *cache*.
- Como o ARP Request inicial é uma mensagem do tipo broadcast, todos os computadores da rede vão recebê-lo, e serão capazes de aprender esse mapeamento e armazená-lo nos seus respectivos cache.

Resumindo ...

- O cache ARP (ou Tabela ARP) é uma estrutura que mantém os mais recentes mapeamentos de endereços IP em endereços físicos.
- Quando o host origem A recebe a resposta do host destino B, ele guarda no seu cache o endereço IP (I_B) e o endereço físico (F_B) de B.
- Quando B recebe o *broadcast* de A pedindo seu endereço físico, B guarda no seu *cache* os valores de I_A e F_A .
- O mapeamento endereço IP x endereço físico residirá no cache por um certo período. Esse tempo é denominado de TTL (Time To Live).

Resolução de Endereços Locais

- 1. O IP verifica se o endereço destino é da rede local.
- 2. A tabela ARP é examinada para ver se já existe armazenado o endereço físico da máquina destino.
- 3. Não existindo nenhum mapeamento, o ARP constrói uma mensagem de "ARP Request".
- 4. Os endereços IP e físico da máquina origem são incluídos na mensagem de *Request*.
- 5. O *Request* é enviado a todas as máquinas da rede local (via mecanismo de *broadcast*).

Resolução de Endereços Locais (cont.)

- Cada máquina da rede recebe a mensagem e compara o endereço IP da pergunta com o seu próprio endereço IP. Se forem diferentes a máquina ignora o *Request*.
- A máquina cujo endereço IP é igual ao endereço contido no Request responde afirmativamente.
- A máquina destino envia diretamente para a máquina origem uma mensagem de ARP Reply, informando o seu endereço físico.

Resolução de Endereços Locais (cont.)

- A máquina destino também altera a sua tabela ARP, incluindo o endereço IP e físico da máquina origem.
- A máquina origem recebe o reply e inclui o endereço IP e físico da máquina destino na sua tabela ARP.

ARP Request / Reply

Example ARP Request

	IP Address (32 bits)	Ethernet Address (48 bits)
Sender	223.1.2.1	08-00-39-00-2f-c3
Receiver	223.1.2.2	00-00-00-00-00

Example ARP Response

	IP Address (32 bits)	Ethernet Address (48 bits)
Sender	223.1.2.2	08-00-5A-21-a7-22
Receiver	223.1.2.1	08-00-39-00-2f-c3

Exemplo

Resolução de Endereços Remotos

- O IP verifica que endereço destino é o de uma máquina remota (externa à rede local).
- A tabela de rotas da máquina local é então examinada em busca de uma rota para a rede destino.
- Caso não exista nenhuma rota, é identificado o endereço IP do roteador default.
- Em ambos os casos, a máquina origem busca na sua tabela ARP pelo mapeamento endereço IP x endereço físico do roteador especificado.

Resolução de Endereços Remotos (cont.)

- Se n\(\tilde{a}\) existir nenhum mapeamento, uma mensagem \(ARP\) Request\(\tilde{e}\) enviada na rede (\(broadcast\)).
- A mensagem contém o endereço IP do roteador, ao invés do endereço da máquina destino.
- O roteador responde com o seu endereço físico.
- A máquina origem envia o pacote de dados ao roteador para que esse possa entregá-lo à rede destino.

Resolução de Endereços Remotos (cont.)

- No roteador, o IP verifica se o endereço destino é local ou remoto.
- Se for remoto, o processo anterior é repetido.
 - O roteador verifica a sua tabela de roteamento por uma rota para o gateway especificado e usa o ARP (cache ou broadcast) para obter o endereço físico deste gateway.
- Se for local, o roteador usa o ARP para obter o endereço físico da máquina destino, via exame do cache ARP ou via broadcast.
- Finalmente, o pacote é enviado diretamente à máquina destino.

Resolução de Endereços Remotos (cont.)

Encapsulamento do Pacote ARP

- Assim como o IP, o pacote ARP é encapsulado no campo de dados do *frame* Ethernet, logo após o cabeçalho.
- No caso do frame estar carregando um pacote ARP, o campo type – que especifica o tipo de dado contido no frame – possui o valor 0x0806 (para um ARP Request ou ARP Reply).

Encapsulamento do Pacote ARP (cont.)

Pacote ARP em um frame Ethernet

Encapsulamento do Pacote ARP (cont.)

Formato do Pacote ARP

Hardware Type		Protocol Type
HLEN	PLEN	Operation
Sender HA (octetos 0-3)		
Sender HA (octetos 4-5)		Sender IP (octetos 0-1)
Sender IP (octetos 2-3)		Target HA (octetos 0-1)
Target HA (octetos 2-5)		
Target IP (octetos 0-3)		

Descrição dos Campos

HwType (2)	Tipo de interface/endereço de <i>hardware</i> . No caso do Ethernet o valor é 1.
ProType (2)	Especifica o código do protocolo que está sendo mapeado (0800H se for o IP).
HLEN (1)	Tamanho do endereço de <i>hardware</i> (6 bytes se for Ethernet).
PLEN (1)	Tamanho do endereço do protocolo de alto nível (4 bytes se for o IP).
Operation (2)	Tipo da mensagem; 0001=request; 0002=response
SenderHA (6)	Endereço de <i>hardware</i> do nó origem.
SenderIP (4)	Endereço IP do nó origem.
TargetHA (6)	Endereço de <i>hardware</i> do nó destino.
TargetIP (4)	Endereço IP do nó destino.

Exemplo 1

0001	Ethernet
08 00	IP
06	Tamanho do endereço físico Ethernet
04	Tamanho do endereço IP
00 01	Mensagem de <i>request</i>
02 07 01 00 53 23	Endereço de <i>hardware</i> do nó fonte
80 24 04 12	Endereço IP do nó fonte
00 00 00 00 00 00	Endereço de <i>hardware</i> do nó destino.
80 24 04 0B	Endereço IP do nó destino.

Exemplo 2 – ARP Trace (Frame 1)

Exemplo 2 – ARP Trace (Frame 2) (cont.)

Exemplo 2 – ARP Trace (cont.)

- Qual é o endereço destino do frame 1?
- Qual é o pedaço de informação chave no frame 2?
- Que protocolos de enlace e rede estão sendo usados?

ARP Trace (Frame 1)

```
ARP:
ARP:
   Hardware type = 1 (10Mb Ethernet)
  Protocol type = 0800 (IP)
ARP:
   Length of hardware address = 6 bytes
ARP:
ARP: Length of protocol address = 4 bytes
ARP: Cocode 1 (ARP request)
ARP: Sender's hardware address = WstDig488C11
ARP: Sender's protocol address = [128.1.0.2]
ARP: Target hardware address = 000000000000
ARP: Target protocol address = [128.1.0.1]
ADDR HEX
             ASCII
0020 00 00 00 00 00 80 01 00 01 00 00 00 00 00
```


ARP Trace (Frame 2) Frame 2

```
ARP: ---- ARP/RARP frame ----
ARP:
      Hardware type = 1 (10Mb Ethernet)
ARP:
      Protocol type = 0800 (IP)
      Length of hardware address = 6 bytes
ARP:
ARP:
      Length of protocol address = 4 bytes
ARP:
      Opcode 2 (ARP reply)
ARP:
      Sender's hardware address = WstDigE58C11
      Sender's protocol address = [128.1.0.1]
ARP:
ARP:
      Target hardware address = WstDig488C11
      Target protocol address = [128.1.0.2]
ARP:
ARP:
```


Observações

- Observe que os papéis de fonte e destino se invertem na resposta.
- Note que o uso do ARP não é exclusivo do TCP/IP, já que o segundo campo identifica o protocolo que está usando o ARP.
- Observe também que, como o request original do ARP é um broadcast, qualquer máquina da rede poderia usar a informação contida na mensagem ARP para alterar as entradas da sua tabela ARP.
- Entretanto, usualmente, uma máquina faz a alteração somente quando ela é o destino da mensagem ARP.

Manipulando a Tabela ARP

- A maior parte dos sistemas operacionais de rede provê um comando que permite ao administrador examinar/alterar o cache ARP.
- No Windows:

> arp -s 157.55.85.212 00-aa-00-62-c6-09 %Adds a static entry

> arp -a %Displays the arp table

Interface: 205.169.85.250 on Interface 0x1000002

Internet Address Physical Address Type

205.169.85.250 00-60-08-3b-92-06 dynamic

> arp -a

Manipulando a Tabela ARP (cont.)

```
nomad-eth0.jvnc.net (128.121.50.50) at 0:0:c:2:85:11
r2d2.jvnc.net (128.121.50.2) at 8:0:20:a:2c:3f
minie.jvnc.net (128.121.50.141) at 8:0:20:7:b5:da
> telnet mickey.jnvc.net
> ...
> arp -a
nomad-eth0.jvnc.net (128.121.50.50) at 0:0:c:2:85:11
r2d2.jvnc.net (128.121.50.2) at 8:0:20:a:2c:3f
minie.jvnc.net (128.121.50.141) at 8:0:20:7:b5:da
mickey.jvnc.net (128.121.50.143) at 8:0:20:7:53:8f
```


Observações Gerais

- A tabela ARP mantém entradas *estáticas* e *dinâmicas*.
 - Entradas dinâmicas são adicionadas e apagadas automaticamente.
 - Entradas estáticas permanecem na tabela até que o computador seja reiniciado.
- A tabela ARP sempre mantém o endereço de broadcast de hardware (FF FF FF FF FF FF) para a sub-rede local como uma entrada permanente.
- Esta entrada permite a uma máquina aceitar uma mensagem broadcast do ARP. Este endereço não é mostrado quando visualizamos a tabela.

Observações Gerais (cont.)

- Na implementação do TPC/IP da Microsoft, cada entrada na tabela ARP tem um tempo de vida potencial de 10 minutos.
- Se ela não for usada em 2 minutos ela é apagada; do contrário ela é apagada após 10 minutos.
- Se o cache atingir a sua capacidade máxima, a entrada mais velha é apagada para que a mais nova seja incluída.
- Ambos os valores podem ser alterados via comando de configuração (parâmetro ARPCacheLife).