데이터베이스 기초

Chapter 15

일변량 자료 탐색

오세종

DANKOOK UNIVERSITY

Contents

- 1. 기초 통계 개념
- 2. 일변량 질적 자료의 분석
- 3. 일변량 양적 자료의 분석
- [R Tip] 문자열 함수

- 통계 기법은 자료를 정리하고 분석할 수 있는 강력한 수단
- 데이터 분석 에서도 많은 부분에서 통계적 기법을 필요로 한다
 - 여론조사 결과 분석
 - 제조업 불량율 분석
 - 학습 효과 분석
 - **o** ...

데이터 분석가가 되기 위해서는 통계학을 알아야 한다.

- 질적 자료(qualitative data) 또는 범주형 자료(categorical data) : 원칙적으로 숫자로 표시될 수 없는 자료
 - 예) 교육수준 : 초졸, 중졸, 고졸, 대졸 / 성별 : M, F

```
> iris$Species
    [1] setosa
                                       setosa
                                                                setosa
                                                                                         setosa
                                                                                                                    setosa
                                                                                                                                             setosa
                                                                                                                                                                      setosa
                                                                                                                                                                                               setosa
                                                                                                                                                                                                                         setosa
  [10] setosa
                                       setosa
                                                                setosa
                                                                                         setosa
                                                                                                                   setosa
                                                                                                                                             setosa
                                                                                                                                                                      setosa
                                                                                                                                                                                               setosa
                                                                                                                                                                                                                        setosa
  [28] setosa
                                       setosa
                                                                setosa
                                                                                         setosa
                                                                                                                   setosa
                                                                                                                                             setosa
                                                                                                                                                                      setosa
                                                                                                                                                                                               setosa
                                                                                                                                                                                                                         setosa
  [37] setosa
                                      setosa
                                                                setosa
                                                                                         setosa
                                                                                                                   setosa
                                                                                                                                             setosa
                                                                                                                                                                      setosa
                                                                                                                                                                                               setosa
                                                                                                                                                                                                                        setosa
                                                                setosa
                                                                                         setosa
                                                                                                                   setosa
                                                                                                                                             versicolor versicolor versicolor versicolor
  [55] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
  [64] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
  [73] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
  [82] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
  [91] versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor versicolor
[100] versicolor virginica virginica virginica virginica virginica virginica virginica virginica
[109] virginica virginica virginica virginica virginica virginica virginica virginica virginica
[118] virginica virginica virginica virginica virginica virginica virginica virginica virginica
[127] virginica virginica virginica virginica virginica virginica virginica virginica virginica
[136] virginica 
[145] virginica virginica virginica virginica virginica virginica
```

- 양적 자료(quantitative data) : 자료자체가 숫자로 표현됨.
 - 이산자료(discrete data) : 정수값을 취할 수 있는 자료(각 세대의 자녀수)
 - 연속자료(continuous data): 실수 값을 취할 수 있는 자료(키, 몸무게, 온도)

```
> iris$sepal.Length
[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.9 5.4 4.8 4.8 4.3 5.8 5.7 5.4 5.1 5.7 5.1 5.4 5.1 4.6 5.1 4.8 5.0
[27] 5.0 5.2 5.2 4.7 4.8 5.4 5.2 5.5 4.9 5.0 5.5 4.9 4.4 5.1 5.0 4.5 4.4 5.0 5.1 4.8 5.1 4.6 5.3 5.0 7.0 6.4
[53] 6.9 5.5 6.5 5.7 6.3 4.9 6.6 5.2 5.0 5.9 6.0 6.1 5.6 6.7 5.6 5.8 6.2 5.6 5.9 6.1 6.3 6.1 6.4 6.6 6.8 6.7
[79] 6.0 5.7 5.5 5.5 5.8 6.0 5.4 6.0 6.7 6.3 5.6 5.5 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.1 5.7 6.3 5.8 7.1 6.3
[105] 6.5 7.6 4.9 7.3 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.4 6.5 7.7 7.7 6.0 6.9 5.6 7.7 6.3 6.7 7.2 6.2 6.1 6.4 7.2
[131] 7.4 7.9 6.4 6.3 6.1 7.7 6.3 6.4 6.0 6.9 6.7 6.9 5.8 6.8 6.7 6.7 6.3 6.5 6.2 5.9
```

- 일변량 자료(univariate data)
 - 분석대상이 되는 변수의 개수가 1개
 - ex) 단국대 학생들의 몸무게 분포를 분석해보자
 - vector 에 저장하여 분석
- 다변량 자료 (multivariate data)
 - 분석대상이 되는 변수의 개수가 2개 이상인 경우
 - 변수가 2개인 경우를 특별히 이변량 자료(bivariate data) 라고함
 - Ex) 출생 지역과 몸무게가 상관관계가 있는지 분석해보자
 - matrix 또는 data frame 에 저장하여 분석

이번 강의에서는 일변량 자료의 분석에 대해서 다룬다. 일변량 자료는 벡터(vector) 에 저장하여 분석 한다.

• 변수의 개수와 형태에 따른 그래프의 종류

<u>변수 개수</u>	<u>변수 형태</u>	<u>그래프</u>			
일변량 (변수 1개)	연속형 데이터	 히스토그램 (Histogram) 커널 밀도 곡선 (Kernel Density Curve) 박스 그래프 (Box Plot) 바이올린 그래프 (Violin Plot) 			
	범주형 데이터 (명목형, 순서형)	■ 막대 그림 (Bar Chart) ■ 원 그림 (Pie Chart)			
다변량 (변수 2개 이상)	연속형 데이터	■ 산점도 (행렬) (Scatter Plot) ■ 선 그래프 (Line Plot) ■ 시계열 그래프 (Time Series Plot)			
	범주형 데이터	■ 모자이크 그림 (Mosaic Chart)			

참조: http://rfriend.tistory.com/72

• 도수분포표 작성

```
ans=c("Y","Y","N","Y","Y")
table(ans) #도수분포표 출력
table(ans)/length(ans) #비율 출력
```

```
> ans=c("Y","Y","N","Y","Y")
> table(ans) # 도수분포표 출력
ans
N Y
1 4
> table(ans)/length(ans) # 비율 출력
ans
N Y
0.2 0.8
```

```
> table(iris$Species)

setosa versicolor virginica
50 50 50
```

• 막대그래프 작성

```
favorite.color <- c("red", "green", "yellow", "red", "green", "red")
sum <- table(favorite.color) #도수분포표
sum
barplot(sum, main="Favorite color")
```

```
> sum
favorite.color
green red yellow
2 4 1
```


Note

• Rstudio 에서 그래프 보기

• 막대그래프 사례

```
head(mtcars) # 자동차 모델별 제원
carb <- mtcars[,"carb"] # 기화기 수
table(carb) # 도수분포표
barplot(table(carb),
    main="Barplot of Carburetors",
    xlab="#of carburetors",
    ylab="frequency")
```

○ table() 함수 : 주어진 자료로 부터 도수 분포표를 그려준다.

```
> table(mtcars$carb)

1 2 3 4 6 8
7 10 3 10 1 1
```

barplot() 매개변수

- 옵션↓

인수	설명				
angle, density, col	막대를 칠하는 선분의 각도, 선분의 수, 선분의 색 지정				
legend	오른쪽 상단에 범례추가				
names	각 막대의 라벨을 정하는 문자열 벡터를 지정				
width	각 막대의 상대적인 폭을 벡터로 지정				
space	각 막대 사이의 간격을 지정				
beside	TRUE를 지정하면 각각의 값마다 막대를 그림				
horiz	TRUE를 지정하면 막대를 옆으로 눕혀서 그림				

```
> barplot(table(carb),
+ main="Barplot of Carburetors",
+ xlab="#of carburetors",
+ ylab="frequency")
```



```
> barplot(table(carb),
+ main="Barplot of Carburetors",
+ xlab="#of carburetors",
+ ylab="frequency",
+ col="red")
```


• 한 화면에 그래프 여러 개 그리기

```
# 1x3 윈도우 생성
par (mfrow=c(1,3))
barplot(table(mtcars$carb),
        main="Barplot of Carburetors",
        xlab="#of carburetors",
        ylab="frequency",
        col="blue")
barplot(table(mtcars$cyl),
        main="Barplot of Cylender",
        xlab="#of cylender",
        ylab="frequency",
        col="red")
barplot(table(mtcars$gear),
        main="Barplot of Grar",
        xlab="#of gears",
        ylab="frequency",
        col="green")
                          # 화면분할 취소
par(mfrow=c(1,1))
```


Barplot에 대한 보다 상세한 옵션을 보려면

? barplot

또는 Rstudio 의 help 탭에서 barplot 검색

- 다양한 막대 그래프 예제
 http://www.theanalysisfactor.com/r-11-bar-charts/
- R 에서 지원하는 color 이름
 http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

[연습 1]

- 1. R에서 제공하는 infert 데이터셋의 education 컬럼에는 각 사람이 교육 받은 기간이 범주형 자료 형태로 저장되어 있다. infert 데이터셋의 education 컬럼 값을 잘라내어 edu 에 저장한뒤 edu 의 값을 보이시오
- 2. edu 에 있는 값들을 중복을 제거하고 보이시오
- 3. edu 에 있는 값들에 대해 도수 분포표를 작성하여 보이시오
- 4. edu 에 있는 값들에 대해 막대 그래프를 작성하여 보이시오

• 원 그래프 작성

```
favorite.color <- c("red", "green", "yellow", "red", "green", "red")
sum <- table(favorite.color) # 도수분포표
pie(sum, main="Favorite color")
```


원그래프 참고사이트

3. 일변량 양적 자료의 분석

- 양적자료는 질적 자료에 비해 분석 방법이 많다
 - ⊙ 평균/중앙값
 - 4분위수
 - 분산, 표준편차
 - Boxplot
 - Histogram
 - 나무-잎 그림

3. 일변량 양적 자료의 분석 : 평균

모든 국민들의 소득자료를 가지고 있다. 이 자료를 요약해서 설명할수 있는 값은 무엇이 있을까?

- 평균(mean)
 - 균형점, 무게중심

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

- 중앙값(median)
 - 어떤 주어진 값들을 정렬했을 때 가장 중앙에 위치하는 값을 의미
- 절사평균(trimmed mean)
 - 표본중에서 작은값 n% 와 큰값 n%를 제외하고 나머지 (100-2n)% 의 자료만 사용하여 구한 평균

3. 일변량 양적 자료의 분석 : 평균

평균

중앙값

절사평균

3. 일변량 양적 자료의 분석: 4 분위 수

- 4분위수 (quartile)
 - 측정값을 4등분하는 백분위수
 - 제 1 사분위수 (Q1) : 제 25 백분위수
 - 제 2 사분위수 (Q2): 제 50 백분위수, 중앙값
 - 제 3 사분위수 (Q3): 제 75 백분위수

3. 일변량 양적 자료의 분석

mean(), median(), quantile(), summary()

```
mydata = c(50, 60, 100, 75, 200)
mydata.big = c(mydata, 50000)
                             # 평균
mean (mydata)
mean (mydata.big)
                             # 중앙값
median (mydata)
median (mydata.big)
mean (mydata, trim=0.2) # 절사평균
mean (mydata.big, trim=0.2)
                             # 사분위수
quantile (mydata)
quantile(mydata, (0:10)/10)
summary (mydata)
fivenum (mydata)
                             # quantile()과 비슷
```

3. 일변량 양적 자료의 분석

quantile()

```
> quantile(mydata, (0:10)/10)
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
50 54 58 63 69 75 85 95 120 160 200
```

summary()

```
> summary(mydata)
Min. 1st Qu. Median Mean 3rd Qu. Max.
50 60 75 97 100 200
```

3. 일변량 양적 자료의 분석 : 산포(distribution)

- 산포
 - 데이터가 퍼져 있는 정도, 흩어져 있는 정도
 - 분산과 표준편차를 가지고 표현
- 분산 (variance)

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

표준편차(standard deviation)

$$S = \sqrt{(분산)}$$

3. 일변량 양적 자료의 분석

diff(), var(), sd()

```
diff(range(mydata)) #최대값-최소값
var(mydata) #분산
sd(mydata) #표준편차
```

```
> diff(range(mydata))
[1] 150
> var(mydata)
[1] 3670
> sd(mydata)
[1] 60.58052
```


Box plot 또는 Box whisker plot 이라고 불리움

☞ box 의 넓이는 아무 의미가 없음

• 사례1

시간제 일자리 근무시간(남녀)

• 사례2

20명의 학생에 대한 수면시간


```
head(state.x77)
st.income <- state.x77[,"Income"]
boxplot(st.income, ylab="Income value")</pre>
```


iris dataset에서 품종(Species)에 따른 Petal.Width 자료에 대한 boxplot 을 그려 보시오 (데이터에 그룹이 있는 경우)

```
boxplot(Petal.Width~Species, data=iris,
     ylab="Petal.Width")
```

```
> head(iris)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
           5.1
                      3.5
                                   1.4
          4.9
                      3.0
                                                     setosa
          4.7
                      3.2
                                   1.3
                                                     setosa
          4.6
                      3.1
                                   1.5
                                                0.2 setosa
          5.0
                      3.6
                                   1.4
                                                0.2
                                                     setosa
                                   1.7
          5.4
                      3.9
                                                0.4
                                                     setosa
```


3. 일변량 양적 자료의 분석 : 히스토그램

 막대 그래프는 도수 분포표를 만들 수 있는 정수형, 문자형 자료의 경우에 사용하고, 실수형 자료에 대해서는 히스토그 램을 사용한다

막대그래프는 막대간 간격이 있고 막대의 면적은 의미가 없다 히스토그램은 막대가 붙어 있고 막대의 면적이 의미가 있다

11000

3. 일변량 양적 자료의 분석 : 히스토그램

• 히스토그램 그리기

```
st.income <- state.x77[,"Income"]
hist(st.income, # data
main="Histogram for Income", # 제목
xlab ="income", # x축 레이블
ylab="frequency", # y축 레이블
border="blue", # 막대 테두리색
col="green", # 막대 색
las=2, # x축 글씨방향(0~3)
breaks=5) # x축 막대 개수 조절
```

breaks=n 일때 막대 개수는 $log_2(n)+1$ 로 계산 N이 커질수록 막대의 개수가 늘어난다

3. 일변량 양적 자료의 분석 : 히스토그램

3. 일변량 양적 자료의 분석 : 줄기-잎 그림

• 줄기-잎 그림

```
score <- c(40,55,90,75,59,60,63,65,69,71)
stem(score, scale=2)</pre>
```

Scale 값이 커지면 줄기의 수 증가 (줄기당 잎 수 감소)

3. 일변량 양적 자료의 분석 : 줄기-잎 그림

> stem(score,scale=0.5)

The decimal point is 1 digit(s) to the right of the

- 0 | 00058
- 2 | 13334588890355789
- 4 | 11133456678111222333344456688
- 6 | 14777933478
- 8 | 2909

> stem(score,scale=2)

The decimal point is 1 digit(s) to the right of the |

- 0 | 00
- 0 |
- 1 | 0
- 1 | 58
- 2 | 13334
- 2 | 58889
- 3 | 03
- 3 | 55789
- 4 | 111334
- 4 | 56678
- 5 | 111222333444
- 5 | 56688
- 6 I 14

[연습2]

홍길동군의 과목별 성적은 다음과 같다.

KOR	ENG	MATH	HIST	soc	MUSIC	BIO	EARTH	PHY	ART
90	85	73	80	85	65	78	50	68	96

- 1. 이 데이터를 score 벡터에 저장하시오. (과목명은 데이터 이름으로 저장하시오)
- 2. score 벡터의 내용을 보이시오
- 3. 전체 성적의 평균은 얼마인가
- 4. 전체 성적의 중앙값은 얼마인가
- 5. 전체 성적의 표준편차를 보이시오
- 6. 가장 성적이 높은 과목의 이름을 보이시오
- 7. 성적에 대한 boxplot 을 그리시오. 이상치에 해당하는 과목이 있으면 제 시하시오
- 8. 성적에 대한 histogram 을 그리되 다음조건을 만족하도록 하시오 (그래프 title : Hong's score, 막대색: 보라색)

[연습3]

- mtcars 데이터셋을 이용하여 다음 문제를 해결하시오
- 1. 중량(wt) 의 평균값, 중앙값, 절사평균값(절사범위:15%), 표준편차 를 구하시오
- 2. 중량(wt)에 대해 summary() 함수의 적용 결과를 보이시오
- 3. 실린더수(cyl) 에 대해 도수분포표를 구하시오
- 4. 앞에서 구한 도수분포표를 막대그래프로 그려 보시오
- 5. 중량(wt)의 히스토그램, 실린더(cyl), 기어(gear) 에 대한 막대 그래프를 한 화면에 보이게 작성하시오
- 6. 중량(wt)에 대해 boxplot 을 그려 보시오. Boxplot 으로 부터 관찰할 수 있는 정보를 적으시오
- 7. 배기량(disp)에 대해 boxplot 을 그려 보시오. Boxplot 으로 부터 관찰할 수 있는 정보를 적으시오

[tip] 문자열 함수

paste() 함수 : 여러 문자열을 연결하여 하나로 만들 때 사용

```
paste("Good", "Morning", "Tom", sep=" ")
paste("Good", "Morning", "Tom", sep="/")
paste(1:10, "is good", sep=" ")
```

sep : 연결하는 단어 사이사이에 넣을 값을 지정

```
> paste("Good", "Morning", "Tom", sep=" ")
[1] "Good Morning Tom"
> paste("Good", "Morning", "Tom", sep="/")
[1] "Good/Morning/Tom"
> paste(1:10, "is good", sep=" ")
[1] "1 is good" "2 is good" "3 is good" "4 is good" "5 is good"
[6] "6 is good" "7 is good" "8 is good" "9 is good" "10 is good"
```

[tip] 문자열 함수

- substr(): 문자열 자르기
- nchar(): 문자열 길이

```
str <- "Good Morning"
substr(str, 1,4)
substr(str, 6,nchar(str))</pre>
```

```
> str <- "Good Morning"
> substr(str, 1,4)
[1] "Good"
> substr(str, 6,nchar(str))
[1] "Morning"
>
```

[tip] 문자열 함수

gsub(): 문자열 바꾸기(replace)

```
str <- "Good Morning"
gsub ("Good", "nice", str)
str <- gsub(" ", "/", str)
str</pre>
```

```
> str <- "Good Morning"
> gsub ("Good", "nice", str)
[1] "nice Morning"
> str <- gsub (" ", "/", str)
> str
[1] "Good/Morning"
>
```