LFA laboratory_01

Terman Emil & Ganuscheak Vlad FAF161 September 22, 2017

1 1. Part A

$$\begin{split} V_N &= \{ \text{S, L, D} \} \ V_T = \{ \text{a, b, c, d, e, f, j} \} \\ \text{P} &= \{ \\ \text{S} &\to \text{aS} \mid \text{bS} \mid \text{cD} \mid \text{dL} \mid \text{e} \\ \text{L} &\to \text{eL} \mid \text{fL} \mid \text{jD} \mid \text{e} \\ \text{D} &\to \text{eD} \mid \text{d} \ \} \end{split}$$

1.1 Presentation of five strings that belong to the language L(G)

1. S \rightarrow dL \rightarrow deL \rightarrow deeL \rightarrow deeeL \rightarrow deeee

2. S \rightarrow aS \rightarrow adL \rightarrow adjD \rightarrow adjeD \rightarrow adjed

3. $S \rightarrow cD \rightarrow ceD \rightarrow ceeD \rightarrow ceeD \rightarrow ceeeD$

4. S \rightarrow a
S \rightarrow aaS \rightarrow aad
L \rightarrow aadj
D \rightarrow aadjd

1.2 Conversion of regular grammar to Finite Automaton

$$FA = \{Q, \Sigma, \sigma, S, F\}$$

$$Q = \{S, L, D\}$$

$$F = \{X\}$$

$$\Sigma = \{a, b, c, d, e, f, j\}$$

1.
$$\sigma(S, a) = \{S\}$$

2.
$$\sigma(S, b) = \{S\}$$

3.
$$\sigma(S, c) = \{D\}$$

4.
$$\sigma(S, d) = \{L\}$$

5.
$$\sigma(S, e) = \{X\}$$

6.
$$\sigma(L, e) = \{L\}$$

7.
$$\sigma(L, f) = \{L\}$$

8.
$$\sigma(L, j) = \{D\}$$

9.
$$\sigma(L, e) = \{X\}$$

10.
$$\sigma(D, e) = \{D\}$$

11.
$$\sigma(D, d) = \{X\}$$

1.3 Type of the grammar

The given grammar is of type 3 - right linear, by Chomsky clasifiction, because the productions are only of the type:

•
$$A \rightarrow xB$$

$$\bullet$$
 A \rightarrow x