

The COQ Proof Assistant

coq.8.14.0, 2021

Copyright © 2021

Useful Links

Main site: https://coq.inria.fr/ Install: https://github.com/coq/platform Sources: https://github.com/coq/coq

Installing coq with opam

opam init
eval \$(opam env)
opam switch create with-coq 4.05.0
opam pin add coq \${VERSION}
opam install coqide
opam repo add coq-released https://coq.inria.fr/opam/released
opam install coq-sudoku

Executables

coqc --help Coq compiler coqtop --help Coq toplevel coqide --help Coq IDE

Vernacular Commands

SearchPattern pattern. Search for a pattern (type)
Search patterns. Search a combination of patterns
Search (<=) (+). Search example

Print ident. Print more information on ident Fixpoint faras:= exp. Recursive definition

 $\label{eq:fixed-exp} \text{Fixpoint } f \ args \colon= \ exp \,. \qquad \text{Recursive definition} \\ \text{requires } \ structural \ recursion$

 $\begin{array}{ll} {\it Theorem} \ ident: \ exp \, . & {\it Theorem} \ definition \\ {\it Lemma} \ ident: \ exp \, . & {\it Lemma} \ definition \end{array}$

Expressions

True, False	Prop	
1	nat	
1,1	nat * nat	
1=1 / textbackslash1<=2	Prop	
nat -> Prop	Туре	
forall A: Prop, ~A	Prop	
fun $x : nat \Rightarrow x = 3$	nat -> Prop	
<pre>forall x:nat, x<3 \/ exists y:nat, x=y+3</pre>	Prop	
let $x := 1$ in $x+x$	nat	
A -> B -> C	A implies (B implies C)	
if cond then e1 else e2	Conditional	
(match e with $\theta \Rightarrow$ true	Pattern-matching	
S p => false end)	_	

Libraries

ZArith

Bool Booleans
Arith Natural Numbers: 0, 1 = S 0
List Lists: nil, 1::nil, [1;2], map f l, l++l
Omega Provide tactic omega
ArithRing Provide tactic ring

Integer Numbers

Tactics Table

	Hypothesis H	Conclusion
\Rightarrow	apply H [with x:=E]	intros H
_	elim H	intros H
	case H	
False	elim H	intros H
	case H	
A	apply H	intros H
3	elim H	exists v
	case H	
	destruct H as [x H1]	
\wedge	elim H	split
	case H	
	destruct H as [H1 H2]	
V	elim H	left
	case H	right
	destruct H as [H1 H2]	
=	rewrite H [with x:=E]	reflexivity
	rewrite <- H [with x:=E]	ring

New Datatypes

Inductive bin : Type :=
 L : bin
| N : bin -> bin -> bin.

Tactics

Revision r1

assumption Search goal in assumptions intuition, tauto Auto use of conj, disj and neg firstorder tauto with exist and forall Proof finished, to be saved 0ed t1;t2 Use t1, then t2 apply le trans with Apply, with free-var subst (m:=1)unfold identSubstitute with definition assert (H : P) introduce hypoth. Has P Use user-provided theorems auto, eauto ring equalities, add and mult omega linear inequations induction on a natural number induction n substitute recursive call simpl remove self-contradictory goals discriminate instantiate H before goal injection H Use left-to-right rewrite of equality rewrite H rewrite <- H Use right-to-left rewrite of equality Split between H and ~H case H exact H inversion H

inversion H	
Theroem t1: forall x1 xk, A1 x1 xk	
-> A2 x1 xk ->> C x1 xk	
===========	
C a1 ak	
use: apply t1	
=======================================	
A1 a1 ak,, An a1 ak	

AAA

 $\mathbf{A}\mathbf{A}\mathbf{A}$