

Normalización

- Licenciatura e Ingeniería en Sistemas
- 2do. año

Normalización

- Proceso en el que se transforma un esquema de relación en otro con buenas propiedades:
 - Baja redundancia.
 - Nulos controlados.
 - Sin generación de tuplas erróneas.
- Se puede basar en dependencias funcionales o en otros tipos de dependencias.

Normalización = Descomposición ¿de cualquier forma?

- La idea básica de normalización es el reemplazo de un esquema de relación por una descomposición en una forma normal más alta.
- ¿Sirve cualquier descomposición?

Ejemplo

- Univ(CodMat, CiEst, IdGrupo, HrsSem, Cred)
- SC={CodMat→HrsSem;
 CiEst→IdGrupo; HrsSem→Cred}

Ejemplo

SC={CodMat→HrsSem; CiEst→IdGrupo;
 HrsSem→Cred}

CodMat	CiEst	IdGrp	HrsS	Cred
cm ₁	ce ₁	gr ₁	h ₁	cr ₁
cm ₂	ce ₂	gr ₂	h ₂	cr ₂

CodMat	HrsS	CiEst	IdGrp	HrsS	Cred
cm ₁	h ₁	ce ₁	gr ₁	h_1	cr ₁
cm ₂ Este materia	h ₂ Les de uso exclusivo p	CE ₂	gr ₂	h ₂ Empresa y asociados	cr ₂

Ejemplo

- Observar que:
 - En cada tabla de la descomposición se cumple una dependencia.
 - El Join genera tuplas erróneas !!
 - Es Join Con Pérdida

CodMat	CiEst	IdGrp	HrsS	Cred
cm ₁	ce ₁	gr ₁	h ₁	cr ₁
cm ₁	ce ₂	gr ₂	h ₁	cr ₁
cm ₂	ce ₁	gr ₁	h ₂	cr ₂
cm ₂	Ce ₂	gr ₂	h ₂	cr ₂

Otro Ejemplo

• OK. Entonces partimos de esta forma:

CodMat	HrsS	IdGrp
cm ₁	h ₁	gr ₁
cm ₂	h ₂	gr ₂

CiEst	HrsS	Cred
ce ₁	h ₁	Cr ₁
ce ₂	h ₂	cr ₂
ce ₁	h ₂	Cr ₂

Conclusiones

- No alcanza sólo con las dependencias.
- Es necesario definir claramente los criterios con que se van a construir descomposiciones, teniendo en cuenta:
 - La no generación de tuplas erróneas.
 - La preservación o no de dependencias.

Las descomposiciones ideales cumplen las siguientes dos condiciones:

- No se pierden atributos
- Tienen JSP.
- Tienen Preservación de Dependencias.

Nunca se pueden aceptar esquemas que tengan join con pérdida (no tengan JSP).

Formas Normales

- Una forma normal, es un conjunto de condiciones que debe cumplir un esquema relacional para que se considere que es "bueno".
- Se definen en función de las dependencias que pueden ser funcionales o de otro tipo.
- Se presentarán algoritmos basados en estrategias de descomposición que garantizan que ese esquema cumple determinada forma normal.

Formas Normales

- Todas las formas normales se definen para un esquema de relación (tabla) y un determinado conjunto de dependencias.
- Un esquema relacional (BD) cumple con una determinada forma normal si la cumplen todos los esquemas de relación que contiene.

Primera Forma Normal

- Un esquema de relación está en primera forma normal (1NF) si todos los dominios de los atributos son atómicos.
 - Si no está en 1NF entonces no está en el Modelo Relacional.

Definiciones

- Atributo Primo: Un atributo A en ATR es primo si es miembro de alguna clave de la relación. De lo contrario es No Primo.
- Ejemplos:
 - -R(A,B,C,D,E)
 - AB→ CDE
 - Por la dependencia, AB es clave, por lo tanto
 A y B son primos y C,D y E no lo son.

- Dependencia Parcial
 - Se dice que una df X→A es parcial si hay algún subconjunto Y de X tal que Y→A
 - Ejemplo:
 - $SC=\{ABC \rightarrow D, B \rightarrow D\}$
 - Entonces ABC→D es parcial (existe una df reducida respecto de ella).

Segunda Forma Normal

 Un esquema de relación R está en segunda forma normal (2NF) con respecto al conjunto de dependencias funcionales SC si no hay ningún atributo NO primo de R que dependa parcialmente de una clave.

Ej:Segunda Forma Normal

- Emp-Proy(CI, NumP, Horas, NomE, NomP, LugarP)
- SC={CI,NUMP→Horas; CI→NomE; NumP→NomP,LugarP}
 - Busco la clave (CI,NUMP)
 - Emp-Proy no está en 2NF porque:
 - NomE no es primo
 - CI→NomE (parte de clave determina un atributo no primo)
- Emp-Proy está en 1NF solamente.

Hacia la Tercera Forma Normal

- Dependencia Transitiva
 - Una df X→Y sobre un esquema de relación R es transitiva si:
 - Existe Z ⊆ R tal que Z no está en ninguna clave de R
 - Se cumple que $X \rightarrow Z$ y $Z \rightarrow Y$.

Tercera Forma Normal

- Un esquema de relación R está en tercera forma normal (3NF) con respecto a un conjunto de dependencias F si no hay atributos no primos que dependan transitivamente de una clave.
- R está en 3NF con respecto a F si toda dependencia X→ A de F+ cumple que:
 - -O bien X es superclave de R.
 - -O bien A es primo.

Ejemplo de Tercera Forma Normal

- Emp-Depto(NomE, CI, FechaN, Dir, NumD, NombreD, Cljefe)
- SC={CI→NomE,FechaN,Dir,NumD; NumD→NomD,Cljefe}
 - Busco la clave (CI)
 - Emp-Depto no está en 3NF porque:
 - NumD es tal que Cl→NumD y NumD→NomD y NomD no es primo.
 - Otra forma:
 - Dada NumD

 NomD, se cumple que NomD no es primo y NumD no es superclave (verificar).

BCNF

- BCNF (Boyce Code NF):
- Un esquema de relación RS con un conjunto SC que contiene dfs cumple con BCNF si:
 - Para c/X→Y (dentro de SC) tal que Y no pertenece a X, X es una superclave de RS.
- Ejemplo:
 - Dicta(est,curso,prof)
 - SC={est,curso→prof;prof→curso}
 - Las claves son (est,prof) o (est,curso)
 - Prof no es superclave por lo que viola BCNF.

Formas Normales

1NF – Esquemas del Modelo Relacional

2NF – Sin Parciales (respecto de claves)

3NF - Sin Parciales ni Transitivas

BCNF –X→A con X Superclaves