

Profesor Branko Jerer

analiza vremenski kontinuiranih signala

Digitalna obradba signala

Profesor Branko Jeren

04. listopad 200.

obradba signala skolska godina 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red

Frekvencijska analiza vremenski kontinuiranih signala

linearna kombinacija sinusoidnih signala generira periodični signal

Digitalna

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

Branko Jeren

vremenski kontinuiranil signala Fourierov red Fourierova transformacija

Frekvencijska analiza vremenski kontinuiranih signala

• na slici je prikazan zbroj sinusoida $x_1(t) = 0.8\cos(t), x_2(t) = \cos(4t + \frac{\pi}{3}), i$ $x_3(t) = 0.7\cos(8t + \frac{\pi}{2}),$

$$x(t) = 0.8\cos(t) + \cos(4t + \frac{\pi}{3}) + 0.7\cos(8t + \frac{\pi}{2})$$

- signal x(t) je periodičan, i nastao je linearnom kombinacijom sinusoida $A_k\cos(\Omega_k t+\Theta_k)$, pa može biti karakteriziran frekvencijama, Ω_k , amplitudama, A_k , i fazama Θ_k sinusoidnih komponenti koje ga sačinjavaju
- u konkretnom primjeru periodičan signal, x(t), karakteriziran je frekvencijama, $\Omega_1=1,\Omega_2=4,\Omega_3=8$, amplitudama, $A_1=0.8,A_2=1,A_3=0.7$, i fazama $\Theta_1=0,\Theta_2=\frac{\pi}{3},\Theta_3=\frac{\pi}{2}$ sinusoidnih komponenti koje ga sačinjavaju

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

> Profesor Franko Jeren

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova

Frekvencijska analiza vremenski kontinuiranih signala

• signal x(t) možemo grafički predstaviti prikazom njegove funkcije u vremenskoj domeni ali i, sukladno kazanom, prikazom A_k i Θ_k u ovisnosti o frekvenciji $\Omega(rad/s)$

Profesor

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Frekvencijska analiza vremenski kontinuiranih signala

- ullet na slici su dani vremenski prikaz x(t), amplitudni spektar, te fazni spektar
- amplitudni spektar prikazuje amplitude (njihove apsolutne vrijednosti) različitih frekvencijskih komponenti koje čine signal
- fazni spektar predstavlja prikaz faze Θ_k, u radijanima, u ovisnosti o frekvenciji
- linearnom kombinacijom kompleksnih signala također se generira periodičan signal i dalje razmatramo upravo taj prikaz

Digitalna obradba signala ikolska godina 2007/2008 Predavanje 1.2.

Profesor

analiza vremenski kontinuiranih signala Fourierov red Fourierova

Frekvencijska analiza vremenski kontinuiranih signala

• linearna kombinacija harmonijski vezanih, vremenski kontinuiranih, kompleksnih eksponencijala generira kontinuirani signal x(t)

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

koji je periodičan s periodom

$$T_0 = \frac{2\pi}{\Omega_0}$$

pri čemu se signal $e^{jk\Omega_0t}$ naziva k—tom harmonijskom komponentom ili k-tim harmonikom signala x(t)

 to upućuje kako linearna kombinacija kompleksnih eksponencijala može poslužiti u prikazu realnih i kompleksnih periodičnih kontinuiranih signala

Profesor Branko Jeren

analiza vremenski kontinuiranih signala

Frekvencijska analiza vremenski kontinuiranih signala

ullet prikaz periodičnog signala x(t) linearnom kombinacijom harmonijski vezanih kompleksnih eksponencijala

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

naziva se Fourierov red

• $T_0=rac{2\pi}{\Omega_0}$ određuje osnovnu periodu, a koeficijenti reda valni oblik signala x(t)

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Frekvencijska analiza vremenski kontinuiranih signala

- prikaz periodičnih signala trigonometrijskim redom koristio je Jean Baptiste Joseph Fourier (1768-1830)
- politički aktivan, dva puta izbjegao giljotinu, blizak Napoleonu, bio prefect jedne francuske regije sa sjedištem u Grenobleu i baš u to vrijeme razvio ideje o primjeni trigonometrijskih redova

- 21. 12. 1807. prezentirao, u Institut de France, svoj rad o difuziji topline i pokazao kako red harmonijski vezanih sinusoida može biti koristan u prikazu distribucije temperature kroz tijela
- tada "hrabro" tvrdi i da "bilo koji" periodični signal može biti prikazan s takvim redom

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

Branko Jerer

analiza vremenski kontinuiranih signala Fourierov red Fourierova

Frekvencijska analiza vremenski kontinuiranih signala

- koncept korištenja "trigonometrijskih suma" potječe još od babilonaca koji su ove ideje koristili u predikciji astronomskih događaja
- istom se konceptu, 1748., vraća Euler (1707.-1783.) u istraživanju gibanja (titranja) žice
- Lagrange (1736.-1813.) kritizira, 1759., njegov pristup tvrdeći kako su trigonometrijski redovi ograničene uporabivosti
- Fourier je imao jasnu ideju, iako matematički ne sasvim precizno utemeljenu, u kojoj ga je podržavao Laplace (1749.-1827.)
- Lagrange, inače Fourierov profesor, je zadržao svoj stav iz 1759. i žestoko je kritizirao Fourierove ideje i prezentaciju te zaustavio, kao jedan od tri recenzenta, publiciranje njegova rada (tek je druga verzija rada publicirana 1822., dakle podosta poslije Lagrangeove smrti)

Digitalna obradba signala ikolska godina 2007/2008 Predavanje

Profesor

rekvencijska inaliza rremenski kontinuiranih ignala Fourierov red

Frekvencijska analiza vremenski kontinuiranih signala

 strogu matematičku podlogu za konvergenciju dao je tek njemački matematičar Dirichlet 1829.

Predavanj 1.2.

Profesor Branko Jer

analiza vremenski kontinuiranih signala Fourierov red

Fourierov red

- da bi neki periodični vremenski kontinuirani signal prikazali uz pomoć Fourierovog reda potrebno je odrediti koeficijente reda X_k
- izračunavanje koeficijenata $\{X_k\}$ započinje množenjem, s obje strane,

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

s $e^{-jm\Omega_0 t}$, za $m \in \mathsf{Cjelobrojni}$

• slijedi integriranje s obje strane, preko jednog perioda, dakle, 0 do T_0 , ili općenitije od t_0 do t_0+T_0

$$\int_{t_0}^{t_0+T_0} x(t)e^{-j\Omega_0 mt} dt = \int_{t_0}^{t_0+T_0} e^{-jm\Omega_0 t} \left(\sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}\right) dt$$
(1)

• desnu stranu transformiramo u

Digitalna obradba signala kolska godina 2007/2008 Predavanje 1.2.

Profesor

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierov red

$$\sum_{k=-\infty}^{\infty} X_k \underbrace{\int_{t_0}^{t_0+T_0} e^{j(k-m)\Omega_0 t} dt}_{\text{let}} = \sum_{k=-\infty}^{\infty} X_k \left[\frac{e^{j(k-m)\Omega_0 t}}{j(k-m)\Omega_0} \right]_{t_0}^{t_0+T_0}$$

- brojnik izraza u pravokutnim zagradama jednak je na obje granice, pa je za regularni nazivnik $(k \neq m)$ integral jednak nuli
- s druge strane, za k = m, integral Int iznosi

$$\int_{t_0}^{t_0+T_0} e^{j(k-m)\Omega_0 t} dt = \int_{t_0}^{t_0+T_0} dt = t \Big|_{t_0}^{t_0+T_0} = T_0$$

pa se (1) reducira u

$$\int_{t_0}^{t_0+T_0} x(t)e^{-jm\Omega_0t}dt = X_m T_0 \Rightarrow 0$$

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red

Fourierov red

• slijedi izraz za koeficijente Fourierovog reda

$$X_m = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} x(t) e^{-jm\Omega_0 t} dt$$

• budući je t_0 proizvoljan, integral može biti izračunat preko bilo kojeg intervala duljine T_0 pa je konačno, uz zamjenu k=m, izraz za izračun koeficijenata Fourierovog reda

$$X_k = rac{1}{T_0} \int_{T_0} x(t) e^{-jk\Omega_0 t} dt$$

Digitalna obradba signala skolska godina 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala

Konvergencija Fourierovog reda

- postoje dvije klase periodičnih signala za koje postoji konvergentan Fourierov red
 - periodični signali konačne energije u jednom periodu (konačne ukupne srednje snage) za koje vrijedi

$$\int_{T_0} |x(t)|^2 dt < \infty$$

- 2 periodični signali koji zadovoljavaju Dirichletove uvjete
 - (a) signal x(t) je apsolutno integrabilan u bilo kojem periodu

$$\int_{T_0} |x(t)| dt < \infty$$

- (b) signal x(t) ima konačni broj maksimuma i minimuma u bilo kojem periodu
- (c) ima konačni broj diskontinuiteta u bilo kojem periodu
- svi periodični signali od praktičnog interesa zadovoljavaju gornje uvjete

Digitalna obradba signala školska godini 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red Fourierova

Konvergencija Fourierovog reda

• za periodični signal x(t), koji zadovoljava uvjete konvergencije, vrijedi par

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

$$X_k = \frac{1}{T_0} \int_{T_0} x(t) e^{-jk\Omega_0 t} dt$$

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

Profesor

rekvencijska naliza rremenski ontinuiranih ignala Fourierov red

Fourierov red – primjer

 određuju se koeficijenti Fourierovog reda za periodični signal dan na slici

- signal je periodičan s osnovnim periodom T_0
- signal je paran i vrijedi x(t) = x(-t)
- signal možemo interpretirati kao periodično ponavljanje pravokutnog impulsa amplitude 1 i širine au

Digitalna obradba signala školska godii 2007/2008 Predavanje 1.2.

Profesor Branko Jere

analiza vremenski kontinuiranih signala Fourierov red Fourierova

Fourierov red - primjer

• određuju se koeficijenti Fourierovog reda za k=0, X_0 inače predstavlja srednju vrijednost (istosmjernu komponentu) signala x(t)

$$X_0 = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) dt = \frac{1}{T_0} \int_{-\frac{T}{2}}^{\frac{\tau}{2}} dt = \frac{\tau}{T_0}$$

 $za k \neq 0$

$$X_{k} = \frac{1}{T_{0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} x(t) e^{-jk\Omega_{0}t} dt = \frac{1}{T_{0}} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-jk\Omega_{0}t} dt =$$

$$= \frac{1}{T_{0}} \frac{e^{-jk\Omega_{0}t}}{(-jk\Omega_{0})} \Big|_{-\frac{\tau}{2}}^{\frac{\tau}{2}} = \frac{1}{k\Omega_{0}T_{0}} \frac{e^{\frac{jk\Omega_{0}\tau}{2}} - e^{\frac{-jk\Omega_{0}\tau}{2}}}{j} =$$

$$= \frac{2\tau}{T_{0}k\Omega_{0}\tau} \frac{e^{\frac{jk\Omega_{0}\tau}{2}} - e^{\frac{-jk\Omega_{0}\tau}{2}}}{2j} = \frac{\tau}{T_{0}} \frac{\sin\frac{k\Omega_{0}\tau}{2}}{\frac{k\Omega_{0}\tau}{2}} za \ k = \pm 1, \pm 2, \dots$$

obradba signala kolska godina 2007/2008 Predavanje

Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red Fourierova

Linijski spektar

- općenito, koeficijenti Fourierovog reda poprimaju kompleksne vrijednosti i skup $\{X_k\}_{k=-\infty}^\infty$ može biti grafički prikazan odvojenim grafovima njihove amplitude i faze
- kombinacija oba grafa $X_k = |X_k| e^{j \angle X_k}$ naziva se linijski spektar signala x(t)
- $|X_k|$ predstavlja amplitudni spektar,
- $\angle X_k$ je fazni spektar periodičnog signala

Linijski spektar

- za parnu funkciju x(t), koeficijenti Fourierovog reda su
- u tom slučaju obično se crta samo jedan graf, $\{X_k\}$, s pozitivnim i negativnim vrijednostima X_k
- izračunati su koeficijenti Fourierovog reda pravokutnog periodičnog signala

$$X_k = \frac{\tau}{T_0} \frac{\sin \frac{k\Omega_0 \tau}{2}}{\frac{k\Omega_0 \tau}{2}}$$

za primijetiti je kako je njihova dodirnica oblika²

$$sinc(w) = \frac{sin(w)}{w}$$

• koeficijenti su realni i prikazujemo ih jednim grafom

Linijski spektar - primjer

Parsevalova relacija

 periodični kontinuirani signal x(t) ima beskonačnu energiju ali konačnu srednju snagu koja je dana s

$$P_{x}=\frac{1}{T_{0}}\int_{T_{0}}|x(t)|^{2}dt$$

• uz $|x(t)|^2 = x(t)x^*(t)$ možemo pisati

$$\begin{split} P_{x} &= \frac{1}{T_{0}} \int_{T_{0}} x(t) \left(\sum_{k=-\infty}^{\infty} X_{k}^{*} e^{-jk\Omega_{0}t} \right) dt = \\ &= \sum_{k=-\infty}^{\infty} X_{k}^{*} \left(\frac{1}{T_{0}} \int_{T_{0}} x(t) e^{-jk\Omega_{0}t} dt \right) = \sum_{k=-\infty}^{\infty} |X_{k}|^{2} \end{split}$$

ova se jednakost naziva Parsevalova relacija

Parsevalova relacija

• ilustrirajmo fizikalno značenje Parsevalove relacije

$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} |x(t)|^{2} dt = \sum_{k=-\infty}^{\infty} |X_{k}|^{2}$$

• neka se x(t) sastoji samo od jedne kompleksne eksponencijale

$$x(t) = X_k e^{jk\Omega_0 t}$$

• u tom slučaju svi su koeficijenti Fourierovog reda, osim X_k , jednaki nuli, i sukladno tomu srednja snaga signala je

$$P_{x} = \frac{1}{T_{0}} \int_{T_{0}} |X_{k}e^{jk\Omega_{0}t}|^{2}dt = \frac{1}{T_{0}} \int_{T_{0}} |X_{k}|^{2}dt = |X_{k}|^{2}$$

- očigledno je kako $|X_k|^2$ predstavlja srednju snagu k-te harmoničke komponente signala
- ukupna srednja snaga periodičnog signala je, prema tome,

Spektar vremenski kontinuiranog periodičnog signala

- pokazano je kako je spektar periodičnog signala diskretan
- dan je primjer parnog periodičnog pravokutnog signala čiji je spektar

$$X_k = \frac{\tau}{T_0} \frac{\sin \frac{k\Omega_0 \tau}{2}}{\frac{k\Omega_0 \tau}{2}}$$

gdje je T_0 perioda, a au širina pravokutnog impulsa

- razmatra se spektar tri pravokutna signala, za tri vrijednosti periode T_{01} ; $T_{02} = 2.5 T_{01}$ i $T_{03}=2\,T_{02}=5\,T_{01}$, uz fiksirani au
- na slici koja slijedi prikazuju se normalizirani amplitudni spektri $T_{01}X_{k1}$, $T_{02}X_{k2}$ i $T_{03}X_{k3}$ (normaliziranjem se zadržava ista amplituda, au, sva tri normalizirana spektra)

Spektar vremenski kontinuiranog periodičnog signala

Slika 1: Periodični signali $\tilde{x_1}(t), \tilde{x_2}(t), \tilde{x_3}(t)$ i normalizirani spektri $T_{01}X_{k1}, T_{02}X_{k2}, T_{03}X_{k3}$

4□ > 4酉 > 4 Ē > 4 Ē > Ē 9 9 0

¹pokazuje se kasnije

 $^{2 \}operatorname{sinc}(0) = 1$

Profesor Branko Jeren

vremenski kontinuiranih signala Fourierov red

Spektar vremenski kontinuiranog periodičnog signala

- periodični pravokutni signal³ $\tilde{x}(t)$ možemo interpretirati kao signal koji je nastao periodičnim ponavljanjem aperiodičnog pravokutnog impulsa x(t) trajanja τ
- normalizirani koeficijenti spektra T_0X_k mogu se interpretirati kao uzorci sinc funkcije koji čine linijski spektar signala $\tilde{x}(t)$
- očigledno je kako s povećanjem osnovne periode spektar periodičnog signala $\tilde{x}(t)$ postaje gušći i gušći no dodirnica ostaje nepromijenjena
- intuitivno zaključujemo kako za $T_0 \to \infty$ linijski spektar postaje kontinuirana funkcija frekvencije Ω identična dodirnici koju bi mogli izračunati iz

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

 $\tilde{x}(t)$ želi se, zbog potrebe izvoda koji slijedi, naglasiti periodičnost signala

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

vremenski kontinuiran signala Fourierov rei Fourierova

Spektar vremenski kontinuiranog periodičnog signala

• naime, kako se normalizirani koeficijenti spektra T_0X_k izračunavaju iz

$$T_0 X_k = \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \tilde{x}(t) e^{-jk\Omega_0 t} dt$$

za očekivati je onda kako se vremenski kontinuirana dodirnica izračunava iz

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
 (2)

obradba signala školska godina 2007/2008 Predavanje 1.2.

Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red

Spektar vremenski kontinuiranog periodičnog signala

dakle,

$$X(j\Omega)=\int_{-\infty}^{\infty}x(t)e^{-j\Omega t}dt=\int_{-rac{ au}{2}}^{rac{ au}{2}}e^{-j\Omega t}dt= aurac{\sinrac{\Omega au}{2}}{rac{\Omega au}{2}}$$

• pa koeficijente Fourierovog reda možemo prikazati kao uzorke $X(j\Omega)$ jer vrijedi

$$X_k = \frac{\tau}{T_0} \frac{\sin \frac{k\Omega_0 \tau}{2}}{\frac{k\Omega_0 \tau}{2}} = \frac{1}{T_0} X(jk\Omega_0)$$

- općenito, periodični signal $\tilde{x}(t)$ prikazujemo Fourierovim redom oblika

$$\tilde{x}(t) = \sum_{k=-\infty}^{\infty} \frac{1}{T_0} X(jk\Omega_0) e^{jk\Omega_0 t}$$

Digitalna obradba signala školska godina 2007/2008 Predavanje

Profesor

rrekvencijska inaliza rremenski kontinuiranih ignala Fourierov red Fourierova

Spektar vremenski kontinuiranog periodičnog signala

• odnosno, uz $\Omega_0 = \frac{2\pi}{T_0}$,

$$ilde{x}(t) = rac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(jk\Omega_0) e^{jk\Omega_0 t} \Omega_0$$

- za $T_0 \to \infty$, dakle kad periodični signal prelazi u aperiodičan, možemo interpretirati
 - $\Omega_0 o d\Omega$ osnovna frekvencija postaje neizmjerno malom veličinom
 - $k\Omega_0 o \Omega$ harmonijske frekvencije postaju tako bliske da prelaze u kontinuum
 - sumacija teži k integralu
 - $ilde{x}(t)
 ightarrow x(t)$ periodični signal prelazi u aperiodičan
 - pa gornji izraz prelazi u

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$
 (3)

Digitalna obradba signala školska godina 2007/2008

Profesor

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija

- jednadžba (2) predstavlja Fourierovu transformaciju ili spektar signala x(t), a (3) inverznu Fourierovu transformaciju koja omogućuje određivanje signala x(t) iz njegova spektra
- dakle, jednadžbe (2) i (3) predstavljaju transformacijski par
 - Fourierova transformacija

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

• inverzna Fourierova transformacija

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) e^{j\Omega t} d\Omega$$

• koriste se i oznake

$$X(j\Omega) = \mathcal{F}\{x(t)\}$$
 ili $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\Omega)$

Digitalna obradba signala kolska godina 2007/2008 Predavanje 1.2.

Profesor

rekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Konvergencija Fourierove transformacije

- slično kao kod Fourierovog reda, i ovdje postoje dvije klase signala za koje Fourierova transformacija konvergira
 - 1 signali konačne totalne energije za koje vrijedi

$$\int_{-\infty}^{\infty} |x(t)|^2 dt < +\infty$$

- 2 signali koji zadovoljavaju Dirichletove uvjete
 - (a) signal x(t) je apsolutno integrabilan

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

- (b) signal x(t) ima konačni broj maksimuma i minimuma, u bilo kojem konačnom intervalu vremena
- (c) ima konačni broj diskontinuiteta, u bilo kojem konačnom intervalu vremena, pri čemu svaki od diskontinuiteta mora biti konačan

Profesor

analiza vremenski kontinuiranih signala Fourierov red Fourierova

Veza Fourierove i Laplaceove transformacije

usporedimo izraze za Fourierovu i dvostranu Laplaceovu transformaciju

$$\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt \qquad \mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-st}dt$$

- očigledno je kako je Fourierova transformacija vremenskog signala jednaka Laplaceovoj transformaciji na imaginarnoj osi 4 , $s=j\Omega$, kompleksne ravnine
- pa, u slučaju da područje konvergencije \mathcal{L} -transformacije sadrži imaginarnu os $s=j\Omega$, vrijedi

$$\mathcal{F}\{x(t)\} = \mathcal{L}\{x(t)\}\Big|_{s=i\Omega}$$

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

> Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija

• rezultat Fourierove transformacije, $X(j\Omega)$,

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

naziva se i Fourierov spektar ili jednostavno spektar signala x(t)

• $X(i\Omega)$ je kompleksna funkcija realne varijable⁵ Ω i pišemo

$$X(j\Omega) = |X(j\Omega)|e^{j\angle X(j\Omega)}$$

gdje su $|X(j\Omega)|$ amplitudni spektar a, $\angle X(j\Omega)$ fazni spektar

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

Branko Jerer

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija – Parsevalova jednakost

energija aperiodičnog kontinuiranog signala x(t), čija je Fourierova transformacija $X(j\Omega)$, je

$$E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2}dt, \quad {\sf za}\ |x(t)|^{2}=x(t)x^{*}(t)\Rightarrow$$

$$E_{x} = \int_{-\infty}^{\infty} x(t)x^{*}(t)dt = \int_{-\infty}^{\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X^{*}(j\Omega)e^{-j\Omega t}d\Omega \right] dt =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X^{*}(j\Omega) \left[\int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt \right] d\Omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^{2}d\Omega$$

$$E_{x} = \int_{-\infty}^{\infty} |x(t)|^{2}dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\Omega)|^{2}d\Omega$$

je Parsevalova jednakost za aperiodične vremenski kontinuirane signale konačne energije, i izražava princip očuvanja energije u vremenskoj i frekvencijskoj domeni

Digitalna obradba signala skolska godina 2007/2008 Predavanje

Profesor

Frekvencijska Inaliza Irremenski Kontinuiranih Iignala Fourierov red Fourierova Fourierova

Fourierova transformacija jediničnog impulsa

• \mathcal{F} -transformacija jediničnog impulsa $\delta(t)$ je

$$\mathcal{F}\{\delta(t)\}=\int_{-\infty}^{\infty}\delta(t)\mathrm{e}^{-j\Omega t}dt=1$$

• ${\mathcal F}$ —transformacija pomaknutog jediničnog impulsa $\delta(t-t_0)$ je

$$\mathcal{F}\{\delta(t-t_0)\}=\int_{-\infty}^{\infty}\delta(t-t_0)e^{-j\Omega t}dt=e^{-j\Omega t_0}$$

- očigledno je da pomak jediničnog impulsa $\delta(t)$ ne mijenja amplitudu Fourierove transformacije, ali mijenja fazu $\angle \{\mathcal{F}\{\delta(t)\}\}$ koja, za $t_0>0$, pada linearno
- gradijent faze odgovara iznosu pomaka jediničnog impulsa, za t_0 , u vremenskoj domeni
- slijedi slika koja ilustrira oba primjera

Profesor

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierov at

Frekvencijska analiza vremenski kontinuiranih signala

<□ > < □ > < □ > < Ē > < Ē > Ē < ੭ < ♡

Digitalna obradba signala kolska godina 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red Fourierova

Fourierova transformacija pravokutnog impulsa

• F-transformacija pravokutnog impulsa

$$p_{ au}(t) = \left\{egin{array}{ll} 1 & \mathsf{za} & -rac{ au}{2} \leq t < rac{ au}{2} \ 0 & \mathsf{za} ext{ ostale } t \end{array}
ight.$$

je

$$\mathcal{F}\{p_{ au}(t)\}=\int_{-\infty}^{\infty}p_{ au}(t)e^{-j\Omega t}dt=\int_{-rac{ au}{2}}^{rac{ au}{2}}e^{-j\Omega t}dt= aurac{sinrac{\Omega au}{2}}{rac{\Omega au}{2}}$$

• spektar je realna funkcija, što je posljedica parnosti signala $p_{\tau}(t)$, i prikazujemo ga jednim grafom

⁴usporedi vezu prijenosne funkcije H(s) i frekvencijske karak. $H(j\Omega)$

 $^{^5}$ naizgled zbunjuje oznaka $X(j\Omega)$, a ne $X(\Omega)$, no to je samo stvar konvencije jer se želi istaknuti kako je funkcija definirana na imaginarnoj osi. Smisao konvencije je vidljiv i kod usporedbe s $\mathcal{L}_{\overline{\sigma}}$ transformacijom

Fourierova transformacija pravokutnog impulsa

prikazuju se pravokutni impuls i njegov realni spektar

40×40×42×42× 2 990

Fourierova transformacija pravokutnog impulsa

- prikazuju se pravokutni impuls i amplitudni i fazni spektar
- s obzirom da je spektar realan, faza je nula za nenegativne vrijednosti spektra, a $+\pi$ ili $-\pi$, za negativne vrijednosti spektra

Simetrije kod Fourierove transformacije

- u trećoj cjelini predavanja, razmatrana je parnost i neparnost signala te, konjugirana simetričnost kompleksnih signala, a ovdje će oni biti korišteni u izvodu nekih svojstva simetrije kod Fourierove transformacije
- razmotrimo Fourierovu transformaciju realnog signala

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$X(-j\Omega) = \int_{-\infty}^{\infty} x(t)e^{j\Omega t}dt$$

$$X^*(-j\Omega) = \int_{-\infty}^{\infty} x^*(t)e^{-j\Omega t}dt = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt = X(j\Omega)$$

• zaključujemo kako realni signali imaju konjugirano simetričan spektar

Simetrije kod Fourierove transformacije

 konjugirana simetričnost spektra, realnog vremenskog signala, rezultira u parnosti i neparnosti slijedećih komponenti spektra

$$\begin{array}{lll} X(j\Omega) = & X^*(-j\Omega) \\ Re\{X(j\Omega)\} = & Re\{X(-j\Omega)\} & \text{realni dio spektra paran} \\ Im\{X(j\Omega)\} = & -Im\{X(-j\Omega)\} & \text{imaginarni dio spektra neparan} \\ |X(j\Omega)| = & |X(-j\Omega)| & \text{amplitudni spektar paran} \\ \angle\{X(j\Omega)\} = & -\angle\{X(-j\Omega)\} & \text{fazni spektar neparan} \end{array}$$

Simetrije kod Fourierove transformacije

- razmotrimo Fourierovu transformaciju parnog signala
- za realan i paran signal $x(t) = x(-t) = \frac{1}{2}[x(t) + x(-t)],$ vrijedi $\mathcal{F}\{x(t)\} = \frac{1}{2}[\mathcal{F}\{x(t)\} + \mathcal{F}\{x(-t)\}]$

$$\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$

$$\mathcal{F}\{x(-t)\} = \int_{-\infty}^{\infty} x(-t)e^{j\Omega t}dt = \int_{-\infty}^{\infty} x(t)e^{j\Omega t}dt$$

$$\mathcal{F}\{x(t)\} + \mathcal{F}\{x(-t)\} = 2\int_{-\infty}^{\infty} x(t)\cos(\Omega t)dt$$

• pa je za realan, i paran, signal x(t) Fourierova transformacija realna i parna

$$\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \cos(\Omega t) dt$$

Fourierova transformacija – svojstvo vremenskog pomaka

• Fourierova transformacija signala $x(t) = p_{\tau}(t - \frac{\tau}{2})$, dakle,

$$x(t) = \begin{cases} 1 & \text{za } 0 \le t < \tau \\ 0 & \text{za ostale } t \end{cases}$$

$$\mathcal{F}\{x(t)\} = \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt = \int_{0}^{\tau} e^{-j\Omega t} dt = e^{-j\frac{2\tau}{2}} \underbrace{\tau \frac{\sin\frac{2\tau}{2}}{\frac{2\tau}{2}}}_{\mathcal{F}\{n_{\sigma}(t)\}}$$

• očito da se radi o svojstvu pomaka Fourierove transformacije jer vrijedi

$$\mathcal{F}\{x(t-t_0)\} = e^{-j\Omega t_0}X(j\Omega) = |X(j\Omega)|e^{j[\angle X(j\Omega) - \Omega t_0]}$$

• pomak signala u vremenskoj domeni rezultira u linearnom faznom pomaku njegove transformacije

Digitalna obradba signala školska godina 2007/2008

Profesor

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red

Fourierova transformacija pravokutnog impulsa – neparnog

 prikazuju se pomaknuti pravokutni impuls (signal nije više paran) i njegov spektar

Digitalna obradba signala skolska godina 2007/2008 Predavanje

Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija pravokutnog impulsa – neparnog

- interpretira se faza pomaknutog pravokutnog impulsa
- plavo je faza nepomaknutog (parnog) pravokutnog impulsa, $\angle \mathcal{F}\{p_{\tau}(t)\}$, zeleno je doprinos fazi zbog pomaka signala u vremenskoj domeni $-\frac{\Omega \tau}{2}$, a crveno je ukupna faza
- na donjoj slici prikazuju se samo glavne vrijednosti faze u intevalu $-\pi$ i π (dakle faza modulo 2π), i to je u literaturi uobičajeni način prikaza faze

obradba signala školska godina 2007/2008 Predavanje 1.2.

> Protesor Branko Jere

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija – svojstvo dualnosti

- očigledna je sličnost izraza za Fourierovu i inverznu Fourierovu transformaciju
- za očekivati je, ako je npr. Fourierova transformacija pravokutnog impulsa sinc funkcija, da će inverzna transformacija spektra koji je oblika pravokutnog impulsa dati vremensku funkciju oblika sinc
- ovo svojstvo Fourierove transformacije naziva se svojstvo dualnosti
- može se pokazati da ako je

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\Omega)$$

vrijedi⁶

$$X(jt) = X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\Omega)$$

⁶za
$$t \in Realni \text{ vrijedi } X(jt) = X(t)$$

Digitalna obradba signala školska godina 2007/2008 Predavanje

Profesor

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova Fourierova transformacija – svojstvo dualnosti – izvod za potrebe izvoda

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt$$
 pišemo $X(j\nu) = \int_{-\infty}^{\infty} x(t)e^{-j\nu t}dt$

zamjenom $t=-\Omega$ slijedi

$$X(j\nu) = -\int_{\Omega = +\infty}^{\Omega = -\infty} x(-\Omega)e^{-j\nu(-\Omega)}d\Omega = \frac{1}{2\pi}\int_{\Omega = -\infty}^{\Omega = \infty} 2\pi x(-\Omega)e^{j\nu\Omega}d\Omega$$

zamjenom $\nu=t$ slijedi

$$X(jt) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi x (-\Omega) e^{j\Omega t} d\Omega$$

$$X(jt) = X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\Omega)$$

sličnim izvodom (zamjenama $t=\Omega$ i $\nu=-t)$

$$X(-jt) = X(-t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(\Omega)$$

Digitalna obradba signala školska godina 2007/2008

Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija – svojstvo dualnosti

<□ > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□** > <**□**

Digitalna obradba signala skolska godina 2007/2008 Predavanje

Profesor

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija – svojstvo dualnosti

• pokazano je kako je $\mathcal{F}\{\delta(t)\}=1$, dakle,

$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1$$

• određuje se inverzna Fourierova transformacija $\delta(\Omega)$

$$\mathcal{F}^{-1}\{\delta(\Omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\Omega) \mathrm{e}^{\mathrm{j}\Omega t} \mathrm{d}\Omega = \frac{1}{2\pi}$$

pa je

$$\frac{1}{2\pi} \stackrel{\mathcal{F}}{\longleftrightarrow} \delta(\Omega)$$

odnosno

$$1 \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi\delta(\Omega)$$

 do istog rezultata bilo je moguće doći izravnom uporabom svojstva dualnosti

Fourierova transformacija – svojstvo dualnosti

 \mathcal{F} -transformacija – vremensko skaliranje

• neka je $X(j\Omega) = \mathcal{F}\{x(t)\}$, tada je

$$\mathcal{F}\{x(at)\} = \frac{1}{|a|}X\left(\frac{j\Omega}{a}\right)$$

izvod:

$$\mathcal{F}\{x(at)\} = \int_{-\infty}^{\infty} x(at)e^{-j\Omega t}dt =$$

$$= \frac{1}{a} \int_{-\infty}^{\infty} x(\tau)e^{-\frac{j\Omega}{a}\tau}d\tau = \frac{1}{a}X\left(\frac{j\Omega}{a}\right)$$

- izvod je proveden za a > 0, sličan je izvod za a < 0 čime se dokazuje gornje svojstvo
- zaključuje se kako vremenska kompresija signala za faktor a>1 rezultira u ekspanziji spektra za isti faktor
- ekspanzija x(t), za a < 1, rezultira u kompresiji $X(j\Omega)$

Fourierova transformacija periodičnih signala

- Fourierova transformacija nije konvergentna, u smislu regularnih funkcija, za neke vrlo uobičajene funkcije
- ovdje se pokazuje da je, unatoč tome, moguća njihova Fourierova transformacija, uvođenjem singularnih funkcija, tj. Diracove funkcije u frekvencijskoj domeni
- ilustrirajmo to na primjeru kompleksne eksponencijale

$$x(t) = e^{j\Omega_0 t}$$

uvrštenjem u transformacijski integral

$$\int_{-\infty}^{\infty} e^{j\Omega_0 t} e^{-j\Omega t} dt = \int_{-\infty}^{\infty} e^{j(\Omega_0 - \Omega)t} dt$$

evidentno je kako on ne konvergira za $\Omega=\Omega_0$

Fourierova transformacija periodičnih signala

- · već je pokazano kako je Fourierova transformacija Diracove funkcije konstanta, te kako je Fourierova transformacija konstante Diracova funkcija (svojstvo dualnosti)
- isto tako je pokazano kako je Fourierova transformacija pomaknute Diracove funkcije kompleksna eksponencijala
- može se zaključiti da će, primjenom svojstva dualnosti, pomaknuta Diracova funkcija, u frekvencijskom području, za inverznu transformaciju imati kompleksnu eksponencijalu u vremenskoj domeni
- razmotrimo signal x(t) čija je Fourierova transformacija Diracova funkcija, površine (intenziteta) 2π , na frekvenciji
- inverzna \mathcal{F} -transformacija ovog impulsa je

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(\Omega - k\Omega_0) e^{j\Omega t} d\Omega = e^{jk\Omega_0 t}$$

Fourierova transformacija periodičnih signala

• Fourierova transformacija signala $e^{jk\Omega_0t}$ je

$$e^{jk\Omega_0t} \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi\delta(\Omega - k\Omega_0)$$

• zaključujemo kako je Fourierova transformacija, proizvoljnih periodičnih signala, koje prikazujemo Fourierovim redom,

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_0 t}$$

oblika

$$X(j\Omega) = \sum_{k=-\infty}^{\infty} 2\pi X_k \delta(\Omega - k\Omega_0)$$

• Fourierova transformacija periodičnog signala, čiji su koeficijenti Fourierovog reda X_k , je niz Diracovih funkcija, intenziteta $2\pi X_k$, koji se pojavljuju na frekvencijama $k\Omega_0$

1.2. Profesor

Frekvencijska analiza vremenski kontinuiranih signala

Fourierova transformacija sinusoidnog signala

• određuje se Fourierova transformacija svevremenskog sinusoidnog signala $x(t) = \cos(\Omega_0 t)$

$$\mathcal{F}\{\cos(\Omega_0 t)\} = \mathcal{F}\left\{\frac{1}{2}e^{j\Omega_0 t} + \frac{1}{2}e^{-j\Omega_0 t}\right\} =$$

$$= \pi\delta(\Omega - \Omega_0) + \pi\delta(\Omega + \Omega_0)$$

Digitalna obradba signala skolska godina 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija sinusoidnog signala

• određuje se Fourierova transformacija svevremenskog sinusoidnog signala $x(t)=\sin(\Omega_0 t)$

$$\begin{split} \mathcal{F}\{\sin(\Omega_0 t)\} &= \mathcal{F}\Big\{\frac{1}{2j}e^{j\Omega_0 t} - \frac{1}{2j}e^{-j\Omega_0 t}\Big\} = \\ &= -j\pi\delta(\Omega - \Omega_0) + j\pi\delta(\Omega + \Omega_0) \end{split}$$

• općenito, za svevremenski sinusoidni signal vrijedi

$$A\cos(\Omega_0 t + \Theta) \stackrel{\mathcal{F}}{\longleftrightarrow} \pi A e^{j\Theta} \delta(\Omega - \Omega_0) + \pi A e^{-j\Theta} \delta(\Omega + \Omega_0)$$

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

Protesor Branko Jeren

analiza vremenski kontinuiranik signala Fourierov red Fourierova transformacija

Fourierova transformacija niza Diracovih δ funkcija

• određuje se Fourierova transformacija niza Diracovih δ funkcija

$$comb_{T_s}(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT_s)$$

• kako se radi o periodičnom signalu, s periodom \mathcal{T}_s , moguće ga je prikazati pomoću Fourierovog reda

$$comb_{T_s}(t) = \sum_{k=-\infty}^{\infty} X_k e^{jk\Omega_s t} = \frac{1}{T_s} \sum_{k=-\infty}^{\infty} e^{jk\Omega_s t}, \quad \Omega_s = \frac{2\pi}{T_s}$$

jer su Fourierovi koeficijenti

$$X_k = rac{1}{T_s} \int_{-rac{T_s}{2}}^{rac{T_s}{2}} \delta(t) e^{-jk\Omega_s t} dt = rac{1}{T_s}$$

Digitalna obradba signala školska godina 2007/2008 Predavanje

Profesor

Frekvencijska Inaliza Irremenski Kontinuiranih Iignala Fourierov red

Fourierova transformacija niza Diracovih δ funkcija

• pa se prema izrazu za \mathcal{F} -transformaciju periodičnih signala, perioda \mathcal{T}_s ,

$$X(j\Omega) = \sum_{k=-\infty}^{\infty} 2\pi X_k \delta(\Omega - k\Omega_s)$$

određuje Fourierova transformacija niza Diracovih δ funkcije

$$\begin{split} \mathcal{F}\{comb_{\mathcal{T}_s}(t)\} &= \sum_{k=-\infty}^{\infty} 2\pi \frac{1}{T_s} \delta(\Omega - k\Omega_s) = \\ &= \frac{2\pi}{T_s} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\frac{2\pi}{T_s}) = \frac{2\pi}{T_s} comb_{\frac{2\pi}{T_s}}(j\Omega) \end{split}$$

1.2. Profesor Branko Jere

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija niza Diracovih δ funkcija

Digitalna obradba signala školska godin 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija vremenski omeđenog sinusoidnog signala

• određuje se Fourierova transformacija vremenski omeđenog sinusoidnog signala

$$x(t) = p_{ au}(t)\cos(\Omega_0 t) = \left\{egin{array}{ll} \cos(\Omega_0 t) & -rac{ au}{2} \leq t < rac{ au}{2} \ 0 & ext{za ostale } t \end{array}
ight.$$

$$\begin{split} X(j\Omega) &= \int_{-\infty}^{\infty} x(t) e^{-j\Omega t} dt = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \cos(\Omega_0 t) e^{-j\Omega t} dt = \\ &= \frac{1}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} \left(e^{j\Omega_0 t} + e^{-j\Omega_0 t} \right) e^{-j\Omega t} dt = \\ &= \frac{1}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-j(\Omega - \Omega_0)t} dt + \frac{1}{2} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-j(\Omega + \Omega_0 t)} dt = \\ &= \frac{\tau}{2} \frac{\sin(\frac{\Omega - \Omega_0}{2})\tau}{2} + \frac{\tau}{2} \frac{\sin(\frac{\Omega + \Omega_0}{2})\tau}{2} \\ &= \frac{\tau}{2} \frac{\sin(\frac{\Omega - \Omega_0}{2})\tau}{2} + \frac{\tau}{2} \frac{\sin(\frac{\Omega + \Omega_0}{2})\tau}{2} \end{split}$$

Predavanje 1.2.

Profesor Branko Jeres

vremenski kontinuiranih signala Fourierov red Fourierova

Digitalna

Digitalna obradba signala solska godina 2007/2008 Predavanje 1.2.

Profesor Branko Jeren

analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija vremenski omeđenog sinusoidnog signala

- do istog rezultata moguće je bilo doći primjenom svojstva frekvencijskog pomaka
- za $x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(j\Omega)$ vrijedi

$$x(t)e^{j\Omega_0t} \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(\Omega-\Omega_0))$$

$$x(t)e^{-j\Omega_0t} \stackrel{\mathcal{F}}{\longleftrightarrow} X(j(\Omega + \Omega_0))$$

• nadalje za produkt (što je zapravo amplitudna modulacija)

$$x(t)\cos(\Omega_0 t) = \frac{1}{2}[x(t)e^{j\Omega_0 t} + x(t)e^{-j\Omega_0 t}]$$

vrijedi

$$x(t)\cos(\Omega_0 t) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2}[X(j(\Omega-\Omega_0)) + X(j(\Omega+\Omega_0))]$$

• za $x(t)=p_{ au}(t)$ slijedi prije izvedeni izraz za spektar omeđenog sinusoidalnog signala

Digitalna obradba signala školska godina 2007/2008 Predavanje 1.2.

Profesor Branko Jerei

analiza vremenski kontinuiranik signala Fourierov red Fourierova transformacija

Fourierova transformacija vremenski omeđenog sinusoidnog signala

- razmotrimo i treći način izračuna spektra omeđenog sinusoidnog signala
- primjenjuje se svojstvo konvolucije u frekvencijskoj domeni⁷

$$\begin{split} x_1(t)x_2(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2\pi} X_1(j\Omega) * X_2(j\Omega) \\ x_1(t)x_2(t) & \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(j(\Omega - \Psi)) X_2(j\Psi) d\Psi \end{split}$$

• u prethodnom slučaju, omeđenog sinusoidalnog signala $x_1(t)=p_{\tau}(t)$ a $x_2(t)=\cos(\Omega_0 t)$ i njegov spektar možemo interpretirati i kao frekvencijsku konvoluciju spektra pravokutnog signala $p_{\tau}(t)$ i signala $\cos(\Omega_0 t)$

Digitalna obradba signala školska godin 2007/2008 Predavanje

Profesor

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

školska godi 2007/2008 Predavanj 1.2.

Profesor Branko Jer

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red Fourierova transformacija

Fourierova transformacija – konvolucija u vremenskoj domeni

 za Fourierovu transformaciju konvolucije, u vremenskoj domeni, vrijedi, slično kao i kod Laplaceove transformacije,

$$x_1(t) * x_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(j\Omega)X_2(j\Omega)$$

- ovo svojstvo ilustriramo na primjeru Fourierove transformacije trokutastog signala $v(t) = (\tau |t|)p_{2\tau}(t)$
- ovaj signal moguće je prikazati kao rezultat konvolucije $p_{\scriptscriptstyle T}(t)*p_{\scriptscriptstyle T}(t)$

• pa, prepoznajemo kako se \mathcal{F} -transformacija signala v(t) svodi na produkt spektara signala $p_{\tau}(t)$

・ ・ ・ロト(回)(音)(音) 音) りへで

obradba signala kolska godina 2007/2008 Predavanje

Profesor Branko Jere

Frekvencijska analiza vremenski kontinuiranih signala Fourierov red

Fourierova transformacija – konvolucija u vremenskoj domeni

 $v(t) = p_{ au}(t) * p_{ au}(t) \overset{\mathcal{F}}{\longleftrightarrow} \left[au rac{\sinrac{\Omega au}{2}}{rac{\Omega au}{2}}
ight] \left[au rac{\sinrac{\Omega au}{2}}{rac{\Omega au}{2}}
ight] = au^2 \left[rac{\sinrac{\Omega au}{2}}{rac{\Omega au}{2}}
ight]^2$

