CSE 6331 – Algorithms – Spring, 2015 – Prof. Supowit

Homework 9 – Due: Friday, April 10

1. In lecture we discussed the following version of the LP problem:

Problem A: Given a matrix $A \in \mathbb{R}^{m \times n}$ and vectors $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c} \in \mathbb{R}^n$, find a vector $\mathbf{x} \in \mathbb{R}^n$ that maximizes $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} \ge \mathbf{b}$.

Now consider

Problem *B*: Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{b} \in \mathbb{R}^m$, find a vector $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} \ge \mathbf{b}$.

Assuming that you have a subroutine that efficiently solves problem B, how could you efficiently solve problem A?

2. Describe a way to solve the following problem using linear programming:

Input: a weighted digraph G = (V, E, dist), where $dist : E \to \Re^+$ and some $s \in V$.

Output: for each $v \in V$, the number

 d_v = the length of a shortest path from s to v.

Your LP should have O(|E|) constraints.