第2章 命题演算形式系统

[本章内容]

- 1)命题、联接词、命题公式、真值表、 永真式、永假式、可满足式;
- 2) 范式、主范式;
- 3) 联接词的完备集、对偶式;
- 4)命题演算形式系统的组成、基本定理及性质定理。

§ 2.1 命题演算的基本概念

1. 命题: 能唯一确定真假值的陈述句。

一个命题的真或假称为命题的真假值, 也简称为命题的真值,通常用T(或1) 和F(或0)分别表示命题的真值为真和假

4

例 判定下列语句哪些是命题:

- 1) 北京是中国的首都。
- 2) 火星上有生命存在。
- 3) X+Y=2 2+2=5

- 2. 命题变元:用以表示命题的标识符号。例 P:北京是中国的首都。
- 3. 原子命题(简单命题): 不能分解为更简单的陈述句的命题。 例 雪是白的。
- 4. 复合命题:

由联结词及简单命题构成的命题。例 如果学校明天放假,那么我就去看电影

- 5. 逻辑联结词: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
 - 1)联结词可以将命题联结起来构成复杂的命题。
 - 2)一个逻辑联结词其实就是一个映射:

$${T,F}^n \longrightarrow {T,F}$$

通常我们也称为真值函数,它们的具体映射值(真值函数值)可以通过真值表来表示。

1) 否定词: 一, 为一元联结词。

 $\neg P$: 读作 "非P" 表示对原命题的否定

真值表:

P	$\neg P$
T	$oldsymbol{F}$
\boldsymbol{F}	T

例 设P表示命题:

所有在北京工作的人都是北京人。

则 $\neg P$ 表示:

并非所有在北京工作的人都是北京人。

即"存在在北京工作的人但不是北京人",而不是表示命题:

所有在北京工作的人都不是北京人。

2) 合取词: 人,为二元联结词,即逻辑与

 $P \wedge Q$:读作"P 与 Q"

表示P,Q的合取。

真值表:

P	Q	$P \wedge Q$
T	\boldsymbol{T}	T
T	F	F
F	T	F
F	F	F

3) 析取词: 🗸 , 为二元联结词, 即逻辑或

 $P \lor Q$:读作"P或Q"

表示P,Q的析取。

真值表:

P	Q	$P \vee Q$
$oxed{T}$	$m{T}$	$m{T}$
T	\boldsymbol{F}	T
F	T	T
$oldsymbol{F}$	F	$oldsymbol{F}$

注:在使用析取词(逻辑或)\表达复合命题时,需要注意与我们通常所说的"异或"区分开来,比如复合命题"今天我去图书馆或者去踢足球",它表达的是一种不可兼或,二者只能取一,即我们所说的"异或",而不是逻辑"或"。

4) 蕴涵词: —— 为二元联结词,即通常所说的推断符号

 $P \rightarrow Q$:读作"P蕴涵 Q" 表示如果 P,那么 Q

真值表:

P	Q	$P \rightarrow Q$
$oldsymbol{T}$	$m{T}$	\boldsymbol{T}
T	$oldsymbol{F}$	\boldsymbol{F}
F	T	T
F	F	T

注:复合命题 $P \rightarrow Q$ 表达的逻辑关系是:

P是 Q的充分条件。

或 Q 是 P的必要条件。

在逻辑推理中经常用到逻辑蕴涵词,由于自然语言的复杂性,表示的术语除了"如果 P 那么 Q"外,还有常见的表述如:

"只要P,就Q"

"只有Q,才P"等

例 设有命题:

只有你不是大一新生,才能在寝室用电脑.

P:你是大一新生.

Q:你在寝室用电脑.

则原命题可形式化为:

$$P \rightarrow \neg Q$$
 或 $Q \rightarrow \neg P$

 $P \leftrightarrow Q$:读作"P等价于 Q" 表示如果 P 当且仅当 Q

真值表:

P	Q	$P \leftrightarrow Q$
T	$m{T}$	\boldsymbol{T}
T	$oldsymbol{F}$	\boldsymbol{F}
F	T	\boldsymbol{F}
F	F	T

例: $P: \Delta ABC$ 是等腰三角形。

Q: $\triangle ABC$ 有两个角相等。

 $P \leftrightarrow Q$: $\triangle ABC$ 是等腰三角形 当且仅当 $\triangle ABC$ 中有两个角相等

6. 命题公式(合式公式)

- 1)原子命题是命题公式;
- 2)若 A.B 是命题公式,则

一
$$A$$
, $A \wedge B$, $A \vee B$, $A \rightarrow B$, $A \leftrightarrow B$ 均是命题公式:

3)有限次使用1)-3)复合所得的结果均是命题公式。

例
$$\neg P \land Q$$
, $\neg (P \lor Q)$, $P \lor Q \rightarrow R \land S$

7. 指派(赋值)

设公式中A的原子变元符号为 P_1, P_2, \dots, P_n 记为 $A(P_1, P_2, \dots, P_n)$,则对 P_1, P_2, \dots, P_n 的任意一种取值称为指派即为:

$$P_i = \begin{cases} T \\ F \end{cases} \quad i = 1, \dots, n$$

指派常用符号 ∂(或I)来表示。

若对公式 A 的一个给定的指派 ∂ ,使得 A 的真值为真,则记为 $\partial(A) = T$ 表示公式 A 在指派 ∂ 的作用下其真值为假,反之则记为 $\partial(A) = F$

8. 重言式(永真式)

若公式*A*对任一真值指派其真值均为真,则称为永真式。

$$P \lor \neg P$$

$$(A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

9. 永假式(矛盾式)

若公式 A 对任一真值指派其真值均为假,则称为永假式。

例 $P \land \neg P$

-

10. 可满足式

若公式 A 存在一个真值指派使其真值 为真,则称为可满足式。

例
$$A \rightarrow (B \rightarrow C)$$
 $P \lor Q$

11. 常用的重言式:

- 1) $P \vee \neg P$
- 2) $A \rightarrow (B \rightarrow A)$
- 3) $A \rightarrow (A \lor B), B \rightarrow (A \lor B)$
- 4) $A \wedge B \rightarrow A$, $A \wedge B \rightarrow B$
- 5) $A \wedge (A \rightarrow B) \rightarrow B$
- 6) $(A \rightarrow B) \land (B \rightarrow C) \rightarrow (A \rightarrow C)$

7)
$$(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$$

8)
$$\neg(\neg A) \longleftrightarrow A$$

9)
$$A \lor A \longleftrightarrow A$$

 $A \land A \longleftrightarrow A$

10)
$$A \lor B \longleftrightarrow B \lor A$$

$$A \wedge B \longleftrightarrow B \wedge A$$

11)
$$A \land (B \land C) \longleftrightarrow (A \land B) \land C$$

$$A \lor (B \lor C) \longleftrightarrow (A \lor B) \lor C$$

12)
$$A \land (B \lor C) \longleftrightarrow (A \land B) \lor (A \land C)$$

$$A \lor (B \land C) \longleftrightarrow (A \lor B) \land (A \lor C)$$

13)
$$\neg (A \lor B) \longleftrightarrow \neg A \land \neg B$$

$$\neg (A \land B) \longleftrightarrow \neg A \lor \neg B$$

14)
$$A \lor (A \land B) \longleftrightarrow A$$

 $A \land (A \lor B) \longleftrightarrow A$

15)
$$(A \rightarrow B) \leftrightarrow (\neg A \lor B)$$

16)
$$(A \rightarrow (B \rightarrow C)) \leftrightarrow ((A \land B) \rightarrow C)$$

$$17)(A \to B) \longleftrightarrow (\neg B \to \neg A)$$

18)
$$(A \leftrightarrow B) \leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$$

$$(A \longleftrightarrow B) \longleftrightarrow (A \land B) \lor (\neg A \land \neg B)$$

19)
$$A \lor T \longleftrightarrow T \qquad A \land F \longleftrightarrow F$$

$$A \lor F \longleftrightarrow A \qquad A \land T \longleftrightarrow A$$

12. 逻辑蕴涵(重言蕴涵)

对公式 A, B, 如果所有弄真 A 的指派 亦必弄真公式B,则称A逻辑蕴涵B或称 $B \neq A$ 的逻辑推论, 记为 $A \Rightarrow B$ 若所有弄真公式集 $\Gamma = \{A_1, A_2, \dots, A_n\}$ 中的每个公式的指派,亦必弄真公式B则称 Γ 逻辑蕴涵B,或称B是 Γ 的逻辑推论 例 $\neg A \Longrightarrow A \longrightarrow B$ $A \rightarrow (B \rightarrow C), B \Rightarrow A \rightarrow C$

定理 $A \Rightarrow B$ 当且仅当 $A \rightarrow B$ 为重言式。

13. 逻辑等价

公式 A, B逻辑等价当且仅当 $A \Rightarrow B \coprod B \Rightarrow A$ 记为 $A \Leftrightarrow B$

定理 $A \Leftrightarrow B$ 当且仅当 $A \leftrightarrow B$ 为重言式。

14. 常用的的逻辑等价式

- 1) $\neg(\neg A) \Leftrightarrow A$
- 2) $P \rightarrow Q \Leftrightarrow \neg P \lor Q$
- 3) $P \rightarrow Q \Leftrightarrow \neg Q \rightarrow \neg P$
- 4) $P \rightarrow (Q \rightarrow R) \Leftrightarrow (P \land Q) \rightarrow R$
- 5) $(A \leftrightarrow B) \Leftrightarrow (A \to B) \land (B \to A)$ $(A \leftrightarrow B) \Leftrightarrow (A \land B) \lor (\neg A \land \neg B)$
- 6) $P \rightarrow (Q \rightarrow R) \Leftrightarrow Q \rightarrow (P \rightarrow R)$
- $(P \rightarrow R) \land (Q \rightarrow R) \Leftrightarrow (P \lor Q) \rightarrow R$

15. 代入原理

定理 设A为含命题变元P的重言式, 则将A中的P的所有出现均代换为 命题公式 B 所得的公式仍为重言式。

例 $A = P \rightarrow (Q \rightarrow P)$ 为重言式。 作带入 $P/(R \vee S)$ 得:

 $A' = (R \lor S) \rightarrow (Q \rightarrow (R \lor S))$ 仍为永真式

16. 替换原理

定理 设C为命题公式 A中的子命题公式 所有的子公式C均作替换)后得公式B满足 $A \Leftrightarrow B$ $(P \rightarrow Q) \land ((R \rightarrow (P \rightarrow Q)) \lor (\neg S \land (P \rightarrow Q)))$ $\Leftrightarrow (\neg P \lor Q) \land ((R \to (P \to Q)) \lor (\neg S \land (\neg P \lor Q)))$ (因为 $P \rightarrow Q \Leftrightarrow \neg P \lor Q$)