Sistemes Operatius II Avaluació contínua - Parcial 1 - 5 de novembre del 2018

Nom i Cognoms:	
_	

La part test té un pes d'un 40% sobre la qualificació final. Només hi ha una resposta vàlida per pregunta. Preguntes incorrectes no resten punts. Marcar més d'una resposta equival a zero punts.

Pregunta 1. En el context de màquines virtuals, què és la Virtual Machine Manager (VMM)?:

- 1. És la màquina virtual que permet executar cadascun dels sistemes operatius.
- 2. És el "sistema operatiu" que permet executar múltiples màquines virtuals.
- 3. És un programari que emula, a les màquines virtuals, un maquinari diferent del que realment hi ha.
- 4. És un programari que s'executa com a aplicació a sobre d'un sistema operatiu tradicional

Pregunta 2. L'aplicació Docker és considerada una "màquina virtual lleugera". Marqueu la resposta falsa.

- 1. El Docker permet executar aplicacions de forma segura permetent l'accés a dades fora del context (i.e. la màquina) en què s'executa l'aplicació.
- 2. El Docker permet executar aplicacions i aquestes no poden accedir a cap dada fora del context (i.e. la màquina) en què s'executa l'aplicació.
- 3. El Docker permet executar aplicacions com el fork-bomb sense que el sistema operatiu hoste quedi afectat.
- 4. El Docker és utilitzat, entre altres coses, pel desenvolupament de noves distribucions de sistemes operatius.

Pregunta 3. L'operació de lectura és...

- 1. Bloquejant per a dispositius amb parts mecàniques com el disc, però no bloquejant per altres dispositius com la xarxa que no tenen parts mecàniques.
- 2. Bloquejant per defecte, tot i que existeix l'opció d'utilitzar una crida no bloquejant.
- 3. Bloquejant per arxius formatats; no bloquejant per arxius no formatats ja que no cal transformar les dades en llegir-les.
- 4. És bloquejant sempre.

Pregunta 4. L'operació d'escriptura és...

- 1. Per defecte bloquejant ja que hem d'estar segurs que les dades han estat escrites un cop retornem de la funció d'escriptura.
- 2. Per defecte no bloquejant tot i que no es pot modificar de valor la variable que s'ha escrit a disc fins que el sistema operatiu ens indica que ha estat escrita.
- 3. Per defecte no bloquejant ja que les dades a escriure es copien a un buffer intern del sistema operatiu i la funció retorna de seguida.
- 4. Per defecte bloquejant ja que la funció de lectura també ho és.

Pregunta 5. Suposeu un fitxer que emmagatzema un vector sencers de forma formatada (és a dir, en format ASCII imprimible). Quina de les següents respostes és correcta?

- 1. Si intentem llegir el fitxer amb fread l'aplicació petarà ("Segmentation fault").
- 2. Les dades s'haurien de llegir amb la funció fread.
- 3. Les dades s'haurien de llegir amb la funció fscanf.
- 4. Hem de saber prèviament quants sencers hi ha al fitxer ja que si es llegeixen més sencers dels que realment hi ha, el programa peta.

Pregunta 6. En cas que es transfereixin dades de forma no formatada (és a dir, tal i com estan representades internament a memòria) entre dos ordinadors diferents:

- 1. Cal invertir els bytes per a dades multibyte (float, double, ...) entre dos ordinadors qualssevol.
- 2. Cal invertir els bytes per a dades multibyte (float, double, ...) en cas que un ordinador sigui little-endian i l'altre bit-endian.
- 3. Cal invertir sempre els bytes de totes les dades, incloent cadenes de caràcter.
- 4. Cal invertir els bits (no pas els bytes) de les dades multibyte entre dos ordinadors diferents qualssevol.

Pregunta 7. En sistemes de fitxers FAT i un que fa servir i-nodes

- 1. Hi ha una taula FAT per a cada fitxer i un i-node per a cada fitxer.
- 2. Només hi ha una taula FAT per a tots els fitxers del disc mentre que hi ha un i-node per cada fitxer.
- 3. La taula FAT i els i-nodes s'utilitzen per emmagatzemar les metadades d'un fitxer (data de creació, mida, etc.).
- 4. La FAT permet guardar els fitxers de forma no contigua mentre que el sistema d'i-nodes no ho permet.

Pregunta 8. En el context d'un sistema d'arxius, què són els i-nodes?

- 1. Els i-nodes s'utilitzen per emmagatzemar les metadades d'un fitxer (nom del fitxer, data de creació, mida del fitxer en bytes, etc.).
- 2. Els i-nodes s'utilitzen per emmagatzemar, entre altres coses, els blocs de què estan compostos els fitxers.
- 3. La a) i b) són correctes.
- 4. Els i-nodes són els nodes que s'utilitzen per establir enllaços entre fitxers.

Pregunta 9. En el context d'un sistema d'arxius com s'emmagatzemen, per a un determinat directori, els noms dels fitxers i dels sub-directoris associats?

- 1. Cada directori s'emmagatzema en un fitxer, amb un format conegut pel sistema de fitxers, el llistat dels fitxers i subdirectoris que en formen part.
- 2. El directori al qual pertany cada fitxer està emmagatzemat a les metadades associades a cada fitxer.
- 3. En un sistema amb i-nodes, cada i-node emmagatzema el directori al qual pertany el fitxer.
- 4. Tots els fitxers que formen part d'un directori s'emmagatzemen en un i-node.

Pregunta 10. Els sistemes de fitxers més habituals no són adequats per ser utilitzats en discos d'estat sòlid. Quina és la raó d'això?

- 1. Els sistemes FAT són els únics que es poden utilitzar a un disc sòlid. Per això s'utilitzen a les memòries flash de les càmeres, per exemple.
- 2. Els discos sòlids utilitzen sistemes com el NTFS, més moderns i adequats per aquests tipus de dispositius.
- 3. Els sistemes habituals com el FAT i l'NTFS escriuen molt sovint als mateixos blocs del disc, cosa que fa reduir la durabilitat dels discos d'estat sòlid.
- 4. Els sistemes habituals com el FAT i l'NTFS escriuen a blocs allunyats físicament entre sí, cosa que fa reduir molt el rendiment dels discos d'estat sòlid.