Real-Time Human Pose Recognition in Parts from Single Depth Images

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake

CVPR 2011

Microsoft Research

The mission

Auto-initialize
a tracking algorithm
& recover from failures

- All human poses, shapes & sizes
- Limited compute budget
 - super-real time on Xbox 360
 to allow games to run concurrently

The approach: body part recognition

Body part recognition

- No temporal information
 - frame-by-frame

- Local pose estimate of parts
 - each pixel & each body joint treated independently
 - reduced training data and computation time
- Very fast
 - simple depth image features
 - parallel decision forest classifier

Object segmentation

[Shotton, Winn, Rother, Criminisi o6 + o8] [Winn & Shotton o6]

[Shotton, Johnson, Cipolla o8]

The Kinect pose estimation pipeline

Classifying pixels

- Compute $P(c_i | w_i)$
 - pixels i = (x, y)
 - body part c_i
 - image window w_i

- Discriminative approach
 - learn classifier $P(c_i | w_i)$ from training data

Synthetic training data

Record mocap 500k frames distilled to 100k poses

Retarget to several models

Train invariance to:

Synthetic vs real data

synthetic (train & test) real (test)

Fast depth image features

- Depth comparisons
 - very fast to compute

feature response
$$f(I,\mathbf{x}) = d_I(\mathbf{x}) - d_I(\mathbf{x} + \Delta)$$
 image coordinate

$$\Delta = \frac{\mathbf{v}}{d_I(\mathbf{x})}$$

scales inversely with depth

Background pixels d =large constant

Decision tree classification

Training decision trees

[Breiman et al. 84]

Take (Δ, θ) that maximises information gain:

$$\Delta E = -\frac{|Q_{\mathrm{l}}|}{|Q_{\mathrm{n}}|} E(\mathbf{Q}_{\mathrm{l}}) - \frac{|Q_{\mathrm{r}}|}{|Q_{\mathrm{n}}|} E(\mathbf{Q}_{\mathrm{r}})$$

Goal: drive entropy at leaf nodes to zero

Depth of trees

input depth ground truth parts inferred parts (soft) depth 18

Depth of trees

900k training images

***** 15k training images

Decision forest classifier

[Amit & Geman 97] [Breiman 01] [Geurts et al. 06]

- Trained on different random subset of images
 - "bagging" helps avoid over-fitting

Average tree posteriors
$$P(c|I, \mathbf{x}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|I, \mathbf{x})$$

Number of trees

Feature window size

Number of training images

Body parts to joint hypotheses

Define 3D world space density:

pixel spixel spixel spixel
$$f_c(\hat{\mathbf{x}}) \propto \sum_{i=1}^{N} \widehat{w_{ic}} \exp\left(-\left\|\frac{\hat{\mathbf{x}} - \hat{\mathbf{x}}_i}{b_c}\right\|^2\right)$$
 bandwidth pixel index i

$$w_{ic} = \underbrace{P(c|I,\mathbf{x}_i) \cdot d_I(\mathbf{x}_i)^2}_{ ext{inferred}}$$
 depth at probability i^{th} pixel

Mean shift for mode detection

no tracking or smoothing

input depth

inferred body parts

front view

side view inferred joint positions

top view

no tracking or smoothing

Joint prediction accuracy

Joint prediction accuracy

From proposals to skeleton

- Use...
 - 3D joint hypotheses
 - kinematic constraints
 - temporal coherence
- ... to give
 - full skeleton
 - higher accuracy
 - invisible joints
 - multi-player

Summary

Frame-by-frame gives robustness

- Body parts representation for efficiency
- Fast, simple machine learning
- Significant engineering to scale to a massive, varied training data set

Research

With thanks to:

Research

Andrew Fitzgibbon, Mat Cook, Andrew Blake, Toby Sharp, Ollie Williams, Sebastian Nowozin, Antonio Criminisi, Mihai Budiu, Ross Girshick, Duncan Robertson, John Winn, Shahram Izadi, Pushmeet Kohli

The whole Kinect team, especially: Alex Kipman, Mark Finocchio, Ryan Geiss, Richard Moore, Robert Craig, Momin Al-Ghosien, Matt Bronder, Craig Peeper