KEGUS Contador ultrasonidos

Contador de energía térmica de ultrasonidos

KEGUS - Contador ultrasonidos

CARACTERÍSTICAS DEL CONTADOR

- Ideal para medir el consumo de energía térmica en sistemas de calefacción o refrigeración.
- Sin partes en movimiento en el interior. Instalación horizontal o vertical.
- Intervalo de medición: 1:100 según EN 1434; intervalo total 1:1000.
- No se aplican requisitos de tubería recta.
- Sensible a caudales bajos.
- Interfaz óptica.
- Punto de instalación estándar: retorno. Unidades y posición del contador (ida/retorno) programables.
- No aplicable para uso con glycol.
- Registro mensuales de datos hasta 36 meses.

CARACTERÍSTICAS DE LA UNIDAD ELECTRÓNICA

- Diseño compacto
- Batería reemplazable, y alimentación a 3V opcional.
- Interfaces de comunicación (que también se pueden instalar más adelante):
 - wireless M-Bus
 - wireless M-Bus + 3 entradas
 - M-Bus
 - M-Bus + 3 entradas
 - 1 salida de pulsos / 2 salidas de pulsos
 - LoRa 868 MHz
 - ModBus

SONDAS DE TEMPERATURA:

Precisión PT500.

Longitud de 3 m (opcional 10 m) y calibre 6 mm.

Instalación Directa, o con portasondas

KIT:

Se suministra los componentes por separado, y se adjunta manual de montaje.

DATOS TÉCNICOS

Características técnicas

Clase	2 (EN 1434)
Clase ambiental	A (EN 1434) para interior
Clase mecánica	M1
Clase electromagnética	E1
T ^a almacenamiento	-20 °C +60 °C
Unidad Electrónica	
T ^a ambiente	+5 °C +55 °C
Protección	IP65 según EN 60529
Alimentación	Batería, mínimo 10 años
Interfaz óptica	Standard, EN 62056-21
Salida de pulsos	
Tipo	Colector abierto
Ancho de pulso	25 ms
Secuencia	0.5 s (no regular)
Opciones (pulsos/litros)	DN 50-DN 65: 1/25 DN 80-DN 100: 1/100
Longitud de cable	2 m
Voltaje	Máx. 30 V
Corriente	Máx. 30 mA
Caída de voltaje	<0.3 V at 10 mA
Polaridad	Bipolar
Frecuencia	10 Hz
Sensor de flujo	
Protección	IP65 según EN 60529
Posición de instalación	Cualquiera
Rango de medición	1:100 or 1:50
Rango de T ^a	+5 °C +130 °C
T ^a Calor	+10 °C +130 °C
T ^a Frío	+5 °C +50 °C
T ^a máxima	150 °C para 2000 horas
Sobrecarga	2.8 x qp
Presión nominal	PN 25

DN	Q _p	L	q _s	q _i	Pérdida de carga* a qp	Caudal a Δp 1 bar	Caudal a Δp 100 mbar	Pulsos/ litro	Peso
DN	m³/h	mm	m³/h	l/h	mbar	m³/h	m³/h	p/l	kg
DN 50	15	270	30	150	110	45	14.3	1/25	8
DN 65	25	300	50	250	105	77	24.4	1/25	11
DN 80	40	300	80	400	160	100	31.6	1/100	13
DN 100	60	360	120	600	115	177	56.0	1/100	22

^{*} Tolerancia pérdida de carga: ±5%

RESOLUCIÓN

Nom. flowrate in $\rm m^3/h$

El número de posiciones decimales de un valor viene dado por el caudal nominal.

DATOS TÉCNICOS

Pérdida de carga

DN	Longitud	qp	Pérdida de carga a qp	Caudal a Δp 1 bar	Diagrama	
DN	mm	m³/h	mbar	m³/h	Referencia	
DN 50	270	15	110	45	K	
DN 65	300	25	105	77	М	
DN 80	300	40	160	100	N	
DN 100	360	60	115	177	0	

La pérdida de carga se calcula al caudal nominal qp. Se puede calcular a cualquier velocidad de flujo utilizando esta fórmula con el factor Kv, que determina la velocidad de flujo con una pérdida de carga de 1 bar.

$$\Delta p = 1bar \times \left(\frac{Q}{K_v}\right)^2$$
 $\Delta p = pérdida de carga en bar$
 $Q = caudal en m^3/h$
 $K_v = K_v - factor a \Delta p = 1bar$

Pérdida de carga

Dimensiones

DN	a	b	Øc	Ød	Øe	Taladros	f	g	h
50	270	46	165	125	18	4	102	20	91
65	300	52	185	145	18	8	122	22	97
80	300	56	200	160	18	8	138	24	101
100	360	68	235	190	22	8	158	24	113

Conthidra Cohisa Janz

@ConthidraSL

Cohisa-Conthidra

