Computer Arch. Exams

Midter 2073

Qa

Faculty of Computers and Artificial Intelligence Cairo University

Midterm Exam

Program: Course Name: Course Code: Instructor(s):

Computer Science / Software Engineering Computer Organization and Architecture

CS331 / SCS322 Dr. Amin Allam

Date: 19/11/2022 Duration: 1 hour Total Marks: 20 marks

تعليمات هامة · جيازة الطبون المصول متزها رقل لهذة الامتحان يعتبر خالة غش تستوجب العقاب وإنا كان صرورى الدخول بالمحمول فيوضع ممالنا في المحالف.

• لا يسمع بدخول سماعة الأنن أو الماوتوث الايسمح يتحول أي كتب أو ملازم أو أو راق داخل اللجنة و المخالفة تعتبر حالة عش .

 Exam consists of 14 equal-weight multiple-choice questions in 2 pages. Record in the bubble sheet exactly ONE answer for each question.
1 The outputs of 16 registers are connected to the inputs of a bus. Each register stores 32 bits. The bus selects the outputs of one of the input registers according to the selection inputs of the bus. The bus must have the following number of partitiple vers: A 3 B 4 C 5 D 16 32
2 A memory unit contains 2048 words. Each word is 32 bits. The number of input address lines to this memory units. A 5 B 10 C 11 D 16 E 32
3 After applying arithmetic shift right to a 6-bit register containing the binary number 101100 it becomes: A 111100 B 010110 D 011001 E 011000 110110 110110
4 Consider the ADD instruction which increases the value of the accumulator register by the value located at the effective address. If the instruction uses direct addressing and it contains the address 10 in its address field. The memory word at address 10 contains the value 30, and the memory word at address 30 contains the value 45. After the instruction is executed, the accumulator register increases by: 30 contains the value 45. After the instruction is executed, the accumulator register increases by: A 10 B/S C 40 D 45 E 75
A ast carry B last two carries C memory buffers D last register bit E last two register bits A ast carry B last two carries by its previous instruction is usually:
(A) Glear B store required on average to execute any institution and a clock rate of 5,000,000 clock
Assume that 2 clock cycles are required instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with execute a program containing 10,000 instructions on a computer with ex
5,000,000

 \Rightarrow Let $A=A_2A_1A_0$, $B=B_2B_1B_0$ be input binary numbers in signed two's complement represent. Qb $\Rightarrow \text{Let } G = G_2G_1G_0 \text{ be an output binary number in signed two's complement representations of the signed two second that the signed two second the signed two second that the signed two second that the s$ \Rightarrow Let 2×1 multiplexer M_i selects input M_{i0} when S = 0, and selects input M_{i1} when \Rightarrow Let a connection [a, b] be a wire connecting a to b. For questions 8 to 14, consider electronic circuits with inputs S, A, B and output l_{obj} in contain the minimum subset of the following components: • One or more 2×1 multiplexer M_i with selection input S and inputs M_{i0} , M_{i1} and our One or more Not gate N_i with input N_{if} and output N_{ig}. ullet One or more full adder F_i with inputs F_{i0} , F_{i1} , F_{i2} and outputs F_{is} (sum), F_{ic} (carry) **8** A circuit that outputs G = A or B when $S = \emptyset$ or 1 respectively has the connection $\boxed{ \textbf{A} \ [A_0, F_{00}][N_{ig}, F_{01}] \quad \boxed{\textbf{B}} \ [B_0, M_{01}][M_{0g}, N_{if}] \quad \boxed{\textbf{C}} A_0, M_{00}][M_{0g}, G_0] \quad \boxed{\textbf{D}} [A_0, \mathbb{I}_{[0, \mathbb{N}]}]$ $E[A_0, F_{00}][N_{iq}, M_{01}]$ 9 A circuit that outputs C = -A or -B when S = 0 or 1 respectively has the connection [B] $[B_0, M_{01}]$ $[M_{0g}, N_{if}]$ [C] $[A_0, M_{00}]$ $[M_{0g}, G_0]$ [D] $[A_0, M_0]$ $[B_0, M_0]$ A $[A_0, F_{00}][N_{ig}, F_{01}]$ $\mathbb{E}[A_0, F_{00}][N_{iq}, M_{01}]$ 10 A circuit that outputs G = A + B or A - B when S = 0 or 1 respectively has the correction $[A_0,F_{00}][N_{ig},F_{01}] \quad [B] \ [B_0,M_{01}][M_{0g},N_{if}] \quad [C] \ [A_0,M_{00}][M_{0g},G_0] \quad [D] \ [A_0,M_{00}][B_0,M_{00}] \quad [B_0,M_{00}][B_0$ $[E]A_0, F_{00}][N_{ig}, M_{01}]$ A circuit that outputs G = A - B or A - B - 1 when S = 0 or 1 respectively has the contained $[A] A_0, F_{00}] [N_{ig}, F_{01}]$ $\mathbb{E}[A_0, F_{00}][N_{ig}, M_{01}]$ 12 A circuit that outputs G = A - B or B - A where S = 0 or 1 respectively, has the connections A $[A_0, F_{00}][N_{ig}, F_{01}]$ $E[A_0, F_{00}][N_{ig}, M_{01}]$ 13 A circuit that outputs G = A or -A when S or 1 respectively has the connections $A = [A_0, F_{00}][N_{ig}, F_{01}]$ $B = [A_0, M_{01}][M_{0g}, N_{if}]$ $A_0, M_{00}][N_{ig}, M_{01}]$ $D = [A_0, M_{00}][N_{ig}, M_{01}]$ $(E)[A_0, F_{00}][N_{ig}, M_{01}]$ A circuit that outputs G = A + 1 or A - 1 when S = 0 or 1 respectively has the connection $\begin{array}{c|c} \hline \textbf{B} \left[A_0, M_{01} \right] \left[M_{0g}, N_{if} \right] & \hline \textbf{C} \left[A_0, M_{00} \right] \left[N_{ig}, M_{01} \right] & \hline \textbf{D} \left[A_0, M_{00} \right] M_{ig} \end{array}$ $[A_0, F_{00}][N_{ig}, F_{01}]$ $\mathbb{E}[A_0, F_{00}][N_{ig}, M_{01}]$ 2×1 1 FA

- Sift Let: behot zero 31 shement wa a shit left 10011 10010 RXKK Right: Zero aml digit I knazel el bazy 01001

Find 2022

Faculty of Computers and Artificial Intelligence Cairo University

Final Exam

Program: Computer Science / Software Engineering
Course Name: Computer Organization and Architecture

Course Code: CS331

Instructor(s): Dr. Amin Allam

Date: 15/1/2022
Duration: 2 hours
Total Marks: 60 marks

تعليمات هامة:

- حيازة التليفون المحمول مفتوحا داخل لجنة الأمتحان بعتبر حالة غش تستوجب العقاب وإذا كان ضرورى الدخول بالمحمول فيوضع مغلقا في الحقائب.
 - لا يسمح بدخول سماعة الأذن أو البلوتوث.
 - لايسمح بدخول أي كتب أو ملازم أو أوراق داخل اللجنة والمخالفة تعتبر حالة غش .
- Exam consists of 40 multiple-choice questions in 6 pages. Each question weights 1.5 marks.
- · Record in the bubble sheet exactly ONE answer for each question.

For questions 1 to 6, consider an electronic circuit which has:

- Inputs: S_1 , S_0 , C_0 , the signed binary integer $F = F_1 F_0$, and the signed binary integer $G = G_1 G_0$.
- output: the signed binary integer $V = V_1 V_0$. (All signed integers are in the 2's complement form). The circuit consists of the following items:
- A 4 × 1 multiplexer with selection inputs S_1 , S_0 , and 4 inputs: Q_0 , Q_1 , Q_2 , Q_3 , and output: M_0 .
- Another 4×1 multiplexer with selection inputs S_1 , S_0 , and 4 inputs: R_0 , R_1 , R_2 , R_3 , and output: M_1 .
- A full-adder with inputs: F_0 , M_0 , C_0 and outputs: C_1 (carry), V_0 (sum).
- Another full-adder with inputs: F_1 , M_1 , C_1 and outputs: C_2 (carry), V_1 (sum).
- $\overline{G_0}$ is connected to Q_0 . $\overline{G_1}$ is connected to R_0 . G_0 is connected to Q_1 . G_1 is connected to R_1 .
- Logic 0 is connected to both Q_2 and R_2 . Logic 1 is connected to both Q_3 and R_3 .

3 3 3 3 2 3 8 B B C C Page 1 of 6 N P P 2.42.4 5 4

The outputs of 32 registers are connected to the inputs of a bus. Each register stores 128 bits bus selects the outputs of one of the input registers according to the selection inputs of the bus. The must have the following number of selection inputs: A 4 5 7 D 32 E 128	ne bi
The outputs of 32 registers are connected to the inputs of a bus. Each register stores 7 bits. The selects the outputs of one of the input registers according to the selection inputs of the bus. The bus have the following number of multiplexers: A 4 B 5 7 D 32 E 128	
9 A memory unit contains 1024 words. Each word is 32 bits. The number of input address line this memory unit is: A 5 10 C 11 D 16 E 32 Z = 1024	ies t
A memory unit contains 1024 words. Each word is 16 bits. The number of data output lines of this memory unit is: A 5 B 10 C 11 6 E 32	ut o
After applying logical shift right to a 6-bit register containing the binary number 101100 it become 010110 B 110110 C 011001 D 011000 E 111100	nes:
Comparing two numbers to know whether they are equal or not equal, can be done by: A bitwise complement B bitwise and C bitwise or bitwise xor E arithmetic shift	
Consider the ADD instruction which increases the value of the accumulator register by the value at the effective address. If the instruction uses indirect addressing and it contains the address 10 in its address field. The memory word at address 10 contains the value 30, and the memory word address 30 contains the value 45. After the instruction is executed, the accumulator register increases and 10 B 30 C 40 45 E 75	ress d at
Consider the ADD instruction which increases the value of the accumulator register by the value at the effective address. If the instruction uses direct addressing and it contains the address 10 its address field. The memory word at address 10 contains the value 30 and the memory word at address 30 contains the value 45. After the instruction is executed, the accumulator register increases by: A 10) in
The following register contains the instruction that is being executed: A Program counter B Accumulator Instruction register D Input register E Data register	ter
Assume that 4 clock cycles are required on average to execute any instruction. The time required to execute a program containing 10,000 instructions on a computer with a clock rate of 5,000,000 clocycles per second is: A 0.002 seconds O.008 seconds C 125 seconds D 250 seconds E 2000 seconds	
4 x 16,600 = 5,606,060	

⇒ For questions 17 to 20, consider the following control memory of a microprogrammed control unit. Each line represents a microinstruction stored in the control memory.

Microinstruction	Label	Microoperations	Condition	Branch	Address
0	ADD:	NOP	I	CALL	UNDROT
1		READ	U	JMP	NEXT
2		ADD	U	JMP	FETCH
3	INDRCT:	READ	U	JMP	NEXT
4		DRTAR	U	RET	
5	FETCH:	PCTAR	U	JMP	NEXT
6		READ, INCPC	U	JMP	NEXT
7		DRTAR	U	MAP	

						executed,		wing i	microinst	ruction	will	be ex	xecuted:
A	1	B 2	3	D	1 or 3	Eun	known						

After microinstruction 2 is executed, the following microinstruction will be executed:

A 0 B 3 5 D 3 or 5 E unknown

After microinstruction 7 is executed, the following microinstruction will be executed:

A 0 B 4 C 5 D 0 or 4 unknown

The following sequence of microinstruction execution is possible: A 0,1,2,0 B 0,1,2,3 C 0,3,4,0 0 0,3,4,1 E 0,3,4,5

Qd

-	Load/Store	Add	Branch
	Feto	ch and decode the instruction	
	Evaluate effective address	Perform the addition	Evaluate branch address
	Transfer operand from/to memory	Put result in destination register	Put branch address in PC
1 6)	The sequence of instructions: (1) Lowing pipeline difficulty: Resource conflict Data depended The pipeline difficulty in the sequence Load R1 (2) Load R2 (3) R3←R1+ Adding a no-operation instruction bet After solving the pipeline difficulty Load R1 (2) Load R2 (3) R3←R1- bock cycles to be executed:	ncy C Branch D Closed piper ce of instructions: +R2 (4) Store R3 can be solved by tween instructions 1 and 2 B Swatween instructions 2 and 3 D Swatween instructions 3 and 4 and pipelining the following	eline E Interrupt y: vapping instructions 2 and 3 vapping instructions 3 and 4 g sequence of instructions
5	After solving the pipeline difficult tructions, such that the resulting pipel mber of clock cycles: (1) Load R1 (2) following number of clock cycles to 5 B 6 C 7 8 E 12 After solving the pipeline difficult structions, such that the resulting	line of the following instruction seq 2) R2←R1+8 (3) Branch R2 (4) I be executed: lties by inserting no-operation ins pipeline of the following instruc	tructions and/or rearranging
ns nu he A	After solving the pipeline difficult structions, such that the resulting pipel mber of clock cycles: (1) Load R1 (2) to following number of clock cycles to	line of the following instruction seq 2) R2←R1+8 (3) Branch R2 (4) It be executed: Ities by inserting no-operation inspipeline of the following instruction in the following in the following instruction in the following instruction in the following in the foll	tructions and/or rearranging tion sequence requires the minimum tructions and/or rearranging tion sequence requires the nch R2 (4) R3←R2+8, the
ns nu he A	After solving the pipeline difficult structions, such that the resulting pipel mber of clock cycles: (1) Load R1 (2) the following number of clock cycles to 5 B 6 C 7 8 E 12 9 After solving the pipeline difficult structions, such that the resulting inimum number of clock cycles: (1) Load R1 B R2←R1+8 Brain structions, such that the resulting inimum number of clock cycles: (1) Load R1 B R2←R1+8 Brain structions, such that the resulting inimum number of clock cycles: (1) courth instruction will be:	line of the following instruction seq (2) R2←R1+8 (3) Branch R2 (4) It be executed: Ities by inserting no-operation inspipeline of the following instruct) Load R1 (2) R2←R1+8 (3) Branch R2 DR3←R2+8 E No of the following instruction inspipeline of the following instructions in the following instructions in the following instructions are considered in the following instructions are considered in the following instructions are considered in the following instruction in the foll	tructions and/or rearranging tion sequence requires the nch R2 (4) R3←R2+8, the peration tructions and/or rearranging tion sequence requires the nch R2 (4) R3←R2+8, the peration tructions and/or rearranging tion sequence requires the nch R2 (4) R3←R2+8, the
hoha A A A A A A A A A A A A A A A A A A A	After solving the pipeline difficult structions, such that the resulting pipel mber of clock cycles: (1) Load R1 (2) the following number of clock cycles to 5 B 6 C 7 8 E 12 9 After solving the pipeline difficult structions, such that the resulting inimum number of clock cycles: (1) Load R1 B R2←R1+8 Brain structions, such that the resulting inimum number of clock cycles: (1) Load R1 B R2←R1+8 Brain structions, such that the resulting inimum number of clock cycles: (1) courth instruction will be:	lties by inserting no-operation inspipeline of the following instruction sequence (2) R2←R1+8 (3) Branch R2 (4) It be executed: It is by inserting no-operation inspipeline of the following instruction in the following	tructions and/or rearranging tion sequence requires the nch R2 (4) R3←R2+8, the peration tructions and/or rearranging tion sequence requires the nch R2 (4) R3←R2+8, the peration tructions and/or rearranging tion sequence requires the nch R2 (4) R3←R2+8, the

Page 5 of 6

Qe	Consider the ADD instruction which increases the value of the accumulator replocated at the effective address. If the instruction uses register addressing mode a register R1 in its address field. The register R1 contains the value 10. The memory contains the value 30, and the memory word at address 30 contains the value 45. After executed, the accumulator register increases by: 10 B 30 C 40 D 45 E 75	and it co	ontains the address 10
	32 Consider the ADD instruction which increases the value of the accumulator replocated at the effective address. If the instruction uses register indirect addressing methe register R1 in its address field. The register R1 contains the value 10. The memo 10 contains the value 30, and the memory word at address 30 contains the value 45. A	ode and ry word fter the	it contains at address instruction
	is executed, the accumulator register increases by: A 10 30 C 40 D 45 E 75	push	CAIK
,	Let M[X]=the integer value at memory address X. Consider zero-address instruct (1) Push X: pushes M[X] to stack. (2) Pop X: pops the top stack element to M[X]. (3) Add: pops the two elements on the top of the stack and pushes their sum. The minimum number of such instructions that compute M[X]=M[A]+M[B]+M[C] is A 3 B 4 5 D 6 E 7	ions: 🥱	
,	Let M[X]=the integer value at memory address X. Consider one-address instruction (1) Load X: sets AC to M[X]. (2) Store X: sets M[X] to AC. (3) Add X: increases AC The minimum number of such instructions that compute M[X]=M[A]+M[B]+M[C] is A 3 4 C 5 D 6 E 7	by M[2	C) AC+ M C) AC+ M AC) AC+ M M M M M M M M M M M M M M M M M M M
	The following event should cause an internal interrupt: A keyboard moved a character to input register B printer ready to take character for constitution by zero E power.		
	The Zero flipflop becomes 1 if the last operation: A took a zero operand B result was zero C was no-operation instruction D took no operands compared two different integers		
	37 A characteristic of RISC is: A large number of instructions B variable-length instruction format D large variety of addressing modes E small size of control memory	d contr	ol unit
	The following step is not required in multiplication of floating point numbers: A check for zeros B add the exponents align the mantissas D multiply the normalize the product	e mantis	ssas
	39 The following associative memory word matches Argument=10 (10011 and Key=10010111 B 11100111 C 11110111 D 10111111 E 11111111	110110	000:
	40 A main memory contains 2 ¹⁵ words. Each word is 9 bits. A direct mapping cache 64 words. The value at address (34567) ₈ in main memory (8 means octal number) may following address in the cache memory: A (34) ₈ B (345) ₈ C (456) ₈ (567) ₈ E (67) ₈		
	[2021/2022] [Dr. Amin Allam] [End of exam]	ſ	Page 6 of 6

bus selects the outputs of 16 registers are connected to the inputs of a bus. Each register stores 32 bits. The must have the following number of selection inputs: A 3
12 The outputs of 16 registers are connected to the inputs of a bus. Each register stores 32 bits. The bus selects the outputs of one of the input registers according to the selection inputs of the bus. The bus must have the following number of multiplexers: A 3 B 4 C 5 D 16 P 32
13 A memory unit contains 2048 words. Each word is 32 bits. The number of input address lines to this memory unit is: A 5 B 10 C 11 D 16 E 32
14 A memory unit contains 2048 words. Each word is 32 bits. The number of data output lines out of this memory unit is: A 5 B 10 C 11 D 16
15 After applying arithmetic shift right to a 6-bit register containing the binary number 101100 it becomes: A 010110
16 Comparing two numbers to knew whether they are equal or not equal, can be done by: A bitwise and B bitwise or bitwise xor D bitwise complement E arithmetic shift
17 Consider the ADD instruction which increases the value of the accumulator register by the value located at the effective address. If the instruction uses direct addressing and it contains the address 10 in its address field. The memory word at address 10 contains the value 30, and the memory word at address 30 contains the value 45. After the instruction is executed, the accumulator register increases by: A 10 B 30 C 40 D 45 E 75
18 Consider the ADD instruction which increases the value of the accumulator register by the value located at the effective address. If the instruction uses indirect addressing and it contains the address 10 in its address field. The memory word at address 10 contains the value 30, and the memory word at address 30 contains the value 45. After the instruction is executed, the accumulator register increases by: A 10 B 30 C 40 D 5 E 75
The following register contains the address of the instruction that is going to be executed: Togram counter B Accumulator C Instruction register D Input register E Data register
20 Assume that 2 clock cycles are required on average to execute any instruction. The time required to execute a program containing 10,000 instructions on a computer with a clock rate of 5,000,000 clock cycles per second is: A 0.001 seconds B 0.002 seconds D 500 seconds E 1000 seconds
Puge 3 of 3

ŀc

Cairo University Faculty of Computers and Artificial Intelligence Computer Science

Computer Organization and Architecture

Practice Sheet 1

Dr. Amin Allam

 \Rightarrow A 4 × 1 multiplexer with selection inputs S_1 and S_0 selects input 0 when $S_1S_0=00$, selects input 1 when $S_1S_0 = 01$, selects input 2 when $S_1S_0 = 10$, and selects input 3 when $S_1S_0 = 11$.

For questions 1 to 6, consider an electronic circuit which has:

- Inputs: S_1 , S_0 , C_0 , the binary number $A = A_1 A_0$, and the binary number $B = B_1 B_0$.
- output: the binary number $D = D_1 D_0$.

The circuit consists of the following items:

- A 4 × 1 multiplexer with selection inputs S_1 , S_0 , and 4 inputs: Q_0 , Q_1 , Q_2 , Q_3 , and output: M_0 .
- Another 4×1 multiplexer with selection inputs S_1 , S_0 , and 4 inputs: R_0 , R_1 , R_2 , R_3 , and output: M_1 .
- A full-adder with inputs: A_0 , M_0 , C_0 and outputs: C_1 (carry), D_0 (sum).
- Another full-adder with inputs: A_1 , M_1 , C_1 and outputs: C_2 (carry), D_1 (sum).
- B_0 is connected to Q_0 . B_1 is connected to R_0 . $\overline{B_0}$ is connected to Q_1 . $\overline{B_1}$ is connected to R_1 .
- Logic 0 is connected to both Q_2 and R_2 . Logic 1 is connected to both Q_3 and R_3 .

1 When $S_1 = 0$, $S_0 = 0$, $C_0 = 0$:

When
$$S_1 = 0$$
, $S_0 = 1$, $C_0 = 1$:
 $A D = A + B$
 $B D = A - B$
 $C D = A + 1$
 $D D = A - 1$
 $E D = A$

3 When $S_1 = 1$, $S_0 = 0$, $C_0 = 0$:

$$A D = A + B$$
 $B D = A - B$ $C D = A + 1$ $D D = A - 1$ $E D = A$

4 When $S_1 = 1$, $S_0 = 0$, $C_0 = 1$:

A
$$D = A + B$$
 B $D = A - B$ C $D = A + 1$ D $D = A - 1$ E $D = A$

5 When $S_1 = 1$, $S_0 = 1$, $C_0 = 0$:

A
$$D = A + B$$
 B $D = A - B$ C $D = A + 1$ D $D = A - 1$ E $D = A$

6 When $S_1 = 1$, $S_0 = 1$, $C_0 = 1$:

A
$$D = A + B$$
 B $D = A - B$ C $D = A + 1$ D $D = A - 1$ E $D = A$

