2022 Vill. Mat A1 - 2. gyakorlat

Vektorok koordinátamentesen

1. Szabályos hatszög csúcsai rendre AB...F. Fejezzük ki az $\mathbf{a} = \overrightarrow{AB}$, $\mathbf{b} = \overrightarrow{AF}$ vektorokkal a hatszög oldal- és átlóvektorait!

gy. A szabályos hatszög alapú hasáb alaplapja AB...F, egyik oldaléle AN, fedőlapjának megfelelő csúcsai NO...S. Fejezzük ki az $\mathbf{a} = \overrightarrow{AB}$, $\mathbf{b} = \overrightarrow{AF}$, $\mathbf{c} = \overrightarrow{AN}$ vektorokkal az \overrightarrow{FQ} , \overrightarrow{EO} , \overrightarrow{CQ} vektorokat!

hf. Az ABCD négyzet középpontja O, AB oldalának felezéspontja F. Fejezzük ki az $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OF}$ vektorokkal a négyzet oldal- és átlóvektorait!

2. Az ABCD téglalap AB oldala 5, az AD oldala 4 egység. Az $\mathbf{a} = \overrightarrow{AE}$ egységvektor az AB oldalon a B irányába mutat, a $\mathbf{b} = \overrightarrow{AF}$ egységvektor az AD oldalon a D irányába mutat. Legyen H az AD felezőpontja, K az AB szakaszon az A-tól 3, D az D szakaszon az D-tól 4 egységre van. Igazoljuk, hogy D és D0 merőleges egymásra!

gy. Az $\mathbf{a} = \overrightarrow{OA}$, $\mathbf{b} = \overrightarrow{OB}$, $\mathbf{c} = \overrightarrow{OC}$ vektorok páronként merőlegesek egymásra és egységvektorok. Az ABC középpontja S. Igazoljuk, hogy OS merőleges az ABC síkjára!

hf. Igazoljuk, hogy a deltoid átlói merőlegesek egymásra!

3. Igazoljuk, hogy az egyenlőszárú háromszög alaphoz tartozó magassága felezi az alapot!

gy. Igazoljuk a Thales-tétel megfordítását!

hf. Igazoljuk a Thales-tételt!

4. Igazoljuk, hogy

gy. Igaz-e, hogy

1. ha $\mathbf{a}\times\mathbf{b}=\mathbf{0},$ akkor \mathbf{a} és \mathbf{b} közül legalább az egyik nulla,

2. ha $\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c}$ és $\mathbf{a} \neq 0$, akkor $\mathbf{b} = \mathbf{c}$

3. ha $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$, akkor $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}$

hf. Igaz-e, hogy

1. ha $\mathbf{ab}=\mathbf{0},$ akkor \mathbf{a} és \mathbf{b} közül legalább az egyik nulla.

2. ha $\mathbf{ab} = \mathbf{ac}$, és $\mathbf{a} \neq \mathbf{0}$, akkor $\mathbf{b} = \mathbf{c}$

3. ha $\mathbf{ab} = \mathbf{ac},$ akkor vagy $\mathbf{b} - \mathbf{c} \parallel \mathbf{a},$ vagy $\mathbf{b} - \mathbf{c} \perp \mathbf{a}.$