Frequent Pattern Mining

Albert Bifet (@abifet)

Paris, 18 October 2016 albert.bifet@telecom-paristech.fr

Association Rules

ıA

Dataset Example

I+omc

ıu	ILEIIIS		
1	bread,	butter,	milk

- 2 eggs, milk, yogurt
- 3 bread, cheese, eggs, milk
- 4 eggs, milk, yogurt
- 5 cheese, milk, yogurt

Association rule: eggs, milk \rightarrow yogurt

$$conf(X \to Y) = \frac{sup(X \cup Y)}{sup(X)}$$

Suppose \mathscr{D} is a dataset of patterns, $t \in \mathscr{D}$, and min_sup is a constant.

Definition
Support (t): number of patterns in 𝒯 that are superpatterns of t.

Definition Pattern t is frequent if Support $(t) \ge min_sup$

Frequent Subpattern Problem Given \mathcal{D} and min_sup , find all frequent subpatterns of patterns in \mathcal{D} .

Suppose \mathscr{D} is a dataset of patterns, $t \in \mathscr{D}$, and min_sup is a constant.

Definition Support (t): number of patterns in \mathcal{D} that are superpatterns of t.

Definition Pattern t is frequent if Support $(t) \ge min_sup$

Frequent Subpattern Problem Given \mathcal{D} and min_sup , find all frequent subpatterns of patterns in \mathcal{D} .

Suppose \mathscr{D} is a dataset of patterns, $t \in \mathscr{D}$, and min_sup is a constant.

Definition Support (t): number of patterns in \mathcal{D} that are superpatterns of t.

Definition Pattern t is frequent if Support $(t) \ge min_sup$.

Frequent Subpattern Problem Given \mathcal{D} and min_sup , find all frequent subpatterns of patterns in \mathcal{D} .

Suppose \mathscr{D} is a dataset of patterns, $t \in \mathscr{D}$, and min_sup is a constant.

Definition

Support (t): number of patterns in \mathcal{D} that are superpatterns of t.

Definition

Pattern t is frequent if Support $(t) \ge min_sup$.

Frequent Subpattern Problem

Given \mathscr{D} and min_sup , find all frequent subpatterns of patterns in \mathscr{D} .

Pattern Mining

Dataset Example				
Document	Patterns			
d1	abce			
d2	cde			
d3	abce			
d4	acde			
d5	abcde			
d6	bcd			

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent
d1,d2,d3,d4,d5,d6	С
d1,d2,d3,d4,d5	e,ce
d1,d3,d4,d5	a,ac,ae,ace
d1,d3,d5,d6	b,bc
d2,d4,d5,d6	d,cd
d1,d3,d5	ab,abc,abe
	be,bce,abce
d2,d4,d5	de,cde

minimal support = 3

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent	
6	С	
5	e,ce	
4	a,ac,ae,ace	
4	b,bc	
4	d,cd	
3	ab,abc,abe	
	be,bce,abce	
3	de,cde	

d1 abced2 cded3 abced4 acded5 abcded6 bcd

Support	Frequent	Gen	Closed
6	С	С	С
5	e,ce	е	ce
4	a,ac,ae,ace	а	ace
4	b,bc	b	bc
4	d,cd	d	cd
3	ab,abc,abe	ab	
	be,bce,abce	be	abce
3	de,cde	de	cde

d1 abced2 cded3 abced4 acded5 abcded6 bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	а	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	а	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd
ρ_	→ Ce

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	а	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	а	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1 abced2 cded3 abced4 acded5 abcded6 bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	а	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1	abce
d2	cde
d3	abce
d4	acde
d5	abcde
d6	bcd
$a \rightarrow$	ace

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	се	
4	a,ac,ae,ace	a	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

d1 abced2 cded3 abced4 acded5 abcded6 bcd

Support	Frequent	Gen	Closed	Max
6	С	С	С	
5	e,ce	е	ce	
4	a,ac,ae,ace	а	ace	
4	b,bc	b	bc	
4	d,cd	d	cd	
3	ab,abc,abe	ab		
	be,bce,abce	be	abce	abce
3	de,cde	de	cde	cde

Closed Patterns

Usually, there are too many frequent patterns. We can compute a smaller set, while keeping the same information.

Example

A set of 1000 items, has $2^{1000}\approx 10^{301}$ subsets, that is more than the number of atoms in the universe $\approx 10^{79}$

Closed Patterns

A priori property

If t' is a subpattern of t, then Support $(t') \ge$ Support (t).

Definition

A frequent pattern *t* is *closed* if none of its proper superpatterns has the same support as it has.

Frequent subpatterns and their supports can be generated from closed patterns.

Maximal Patterns

Definition

A frequent pattern *t* is *maximal* if none of its proper superpatterns is frequent.

Frequent subpatterns can be generated from maximal patterns, but not with their support.

All maximal patterns are closed, but not all closed patterns are maximal.

Non streaming frequent itemset miners

Representation:

Horizontal layout

T1: a, b, c T2: b, c, e T3: b, d, e

Vertical layout

a: 100 b: 111 c: 110

Search:

- Breadth-first (levelwise): Apriori
- · Depth-first: Eclat, FP-Growth

The Apriori Algorithm

APRIORI ALGORITHM

- 1 Initialize the item set size k = 1
- 2 Start with single element sets
- 3 Prune the non-frequent ones
- 4 while there are frequent item sets
- 5 **do** create candidates with one item more
- 6 Prune the non-frequent ones
- 7 Increment the item set size k = k + 1
- 8 Output: the frequent item sets

The Eclat Algorithm

Depth-First Search

- divide-and-conquer scheme: the problem is processed by splitting it into smaller subproblems, which are then processed recursively
 - conditional database for the prefix a
 - · transactions that contain a
 - · conditional database for item sets without a
 - transactions that not contain a
- Vertical representation
- Support counting is done by intersecting lists of transaction identifiers

The FP-Growth Algorithm

Depth-First Search

- divide-and-conquer scheme: the problem is processed by splitting it into smaller subproblems, which are then processed recursively
 - conditional database for the prefix a
 - · transactions that contain a
 - conditional database for item sets without a
 - transactions that not contain a
- Vertical and Horizontal representation: FP-Tree
 - prefix tree with links between nodes that correspond to the same item
- · Support counting is done using FP-Tree

Mining Graph Data

Problem

Given a data set \mathcal{D} of graphs, find frequent graphs.

Transaction Id	Graph
	0
	C - C - S - N
1	O
	0
	C - C - S - N
2	Ċ
	N
3	C - C - S - N

The gSpan Algorithm

```
GSPAN(g,D,min\_sup,S)
      Input: A graph q, a graph dataset D, min_sup.
      Output: The frequent graph set S.
     if q \neq min(q)
        then return S
     insert q into S
     update support counter structure
  5 C \leftarrow \emptyset
    for each g' that can be right-most
          extended from q in one step
          do if support(g) \geq min\_sup
                then insert g' into C
  8
     for each q' in C
          do S \leftarrow \mathsf{GSPAN}(g', D, min\_sup, S)
 10
 11
     return S
```