Praktikum iz vođenja procesa | Laboratorijska vježba 9 – seminarski rad razine A Seminarski rad – toplinski sustav

Na slici je prikazan pojednostavljeni toplinski sustav grijanja prostorije, koji se sastoji od grijača koji grije temperaturom T_g , prostorije koja je na temperaturi T_a , izolacijskog materijala koji se nalazi između prostorije i okoliša temperature T_0 .

Proces izmjene topline između grijača i prostorije se odvija preko površine A₁= _____ m² (1-2 m²) pri čemu je koeficijent prijenosa površine U₁= 1.5+ α (T_g - T_a) $\left[J/m^2Ks \right]$, α = _____ (0.02-0.08)

Proces izmjene topline između prostorije i izolacijskog materijala se odvija preko površine $A_2 = m^2$ (4-6 m²) pri čemu je $U_2 = [J/m^2 Ks]$ (2-3)

Proces izmjene topline između izolacijskog materijala okoliša se odvija preko površine A₃=A₂, pri čemu je U3 = $\left[J/m^2 Ks \right]$ (1-2)

Temperatura grijača T_g = _____ [K] (150-200 °C) a okoline T_o = _____ [K] (0-10 °C)

Gustoća zraka (prostorije) iznosi $\rho_{\rm A}$ =1.2 [kg/m³] , gustoća izolacijskog materijala iznosi $\rho_{\rm B}$ =920 [kg/m³]. Toplinski kapacitet zraka $C_a=1.05 \big[J/kgK\big]$, izolacijskog materijala $C_b=2 \big[J/kgK\big]$. Širina prostorije d_a= 4.0 [m] dok je debljina izolacijskog materijala d_b= 12 [cm] = 0.12 [m].

Zadatak seminarskog rada razine A

Zadatak 1: Matematički modelirati zadani sustav primjenom nelinearnih fizikalnih veza. Temperatura T_a i T_b postaviti na temperaturu okoliša T_0 .

Zadatak 2: Izračunati ravnotežnu točku sustava u kojoj se temperatura prostorije (T_a) i izolacijskog materijala (T_b) stabiliziraju.

Zadatak 3: Linearizirati matematički model oko ravnotežne točke.

Zadatak 4: Simulirati oba izvedena matematička modela (nelinerani i linearizirani) pomoću Simulink-a i analizirati značajne veličine (vrijeme porasta, ustaljeno stanje, prebačaj). Precrtati odzive. Usporediti ih i komentirati nelinearnost sustava.

Zadatak 5: Skicirati statičku karakteristiku; odnos temperature u prostoriji i temperature grijača T = f(Tg)

Zadatak 6: Dizajnirate logičke zakone vođenja koji će održavati temperaturu u prostoriji T_a oko temperature od 25°C. K, upravlja se radom grijača T_{g.} koji kasni 2 s (kašnjenje se realizira blokom unit delay). Gašenjem grijač pada na temperaturu prostorije Ta.

Zadatak 9: Precrtajte upravljački signal T_g

Komentirajte simulirani model

Ova vježba nema tablicu za upis rezultata, rezultati se upisuju u izvještaj koji studenti moraju predati.