CM146 Homework#3

Zhaoxing Deng, 005024802

February 28, 2018

1 VC Dimension

VC dimension of H is 3.

First we show that $H \ge 3$. A possible shattering for $x_1 = -1$, $x_2 = 0$ $x_3 = 1$ is shown below.

x_1 label	x_2 label	x_3 label	h(x)
0	0	0	sgn(-0.001)
0	0	1	sgn(x-0.001)
0	1	0	$sgn(-x^2 + 0.001)$
0	1	1	$sgn(-x^2 + 0.5x + 1)$
1	0	0	sgn(-x - 0.001)
1	0	1	$sgn(x^2 - 0.001)$
1	1	0	sgn(-x+0.001)
1	1	1	sgn(0.001)

Then we show that H < 4. Suppose H = 4 and we label [1,0,1,0] to x = [0,1,2,3],

then we have h(0) > 0, h(1) < 0, h(2) > 0, h(3) < 0. So h(x) first comes down below x=0,

then comes up beyond x=0, then comes down again. Since h(x) is continuous, we can infer

that h(x) has three roots. But for $h(x) = ax^2 + bx + c$ we can have at most 2 roots.

So that's a contradiction. Therefore H < 4. So H = 3.

2 Kernels

$$=1+3\beta(x_1z_1+x_2z_2+x_3z_3)+3\beta^2(x_1z_1+x_2z_2+x_3z_3)^2+\beta^3(x_1z_1+x_2z_2+x_3z_3)^3$$

$$\phi_{\beta}(x)=<1,\sqrt{3\beta}x_1,\sqrt{3\beta}x_2,\sqrt{3\beta}x_3,\sqrt{3\beta}x_1^2,\sqrt{3\beta}x_1x_2,\sqrt{3\beta}x_1x_2,$$

$$\sqrt{3\beta}x_2^2,\beta^{\frac{3}{2}}x_1^3,\beta^{\frac{3}{2}}x_1^2x_2,\beta^{\frac{3}{2}}x_1x_2^2,\beta^{\frac{3}{2}}x_1^2x_2,\beta^{\frac{3}{2}}x$$

 β can be used as a scaling factor that put more weight to the distance between data points.

3 SVM

(a) In this situation, we want to minimize $\frac{1}{2}\sqrt{w_1^2+w_2^2}$, subject to $w_1+w_2 \ge 1$ and $-w_1 \ge 1$.

That is $w_2 \ge -w_1 + 1$ and $w_1 \le -1$. At $w^* = <-1, 2>$ we reach the minimum point.

The margin is $\gamma = \frac{1}{\sqrt{5}}$.

(b) We want to minimize $\frac{1}{2}\sqrt{w_1^2+w_2^2}$, subject to $w_1+w_2+b\geq 1$ and $-w_1-b\geq 1$.

That is $w_2 \ge 2$ and $w_1 \le -1 - b$. Let $w_2 = 2$, $w_1 = 0$, then $w^* = <0, 2 > b^* = -1$. The margin is $\gamma = \frac{1}{2}$. The classifier changes the boundary to be a horizontal line through (0,0.5) and the margin increases.

4 Twitter analysis using SVMs

4.1 Feature Extractions

(a) Implement extract_dictionary(...)

```
with open(infile, 'rU') as fid:

### ========= TODO: $TART ======== ###

# part 1a: process each Line to populate word_list

for line in fid:

wordsInLine = extract_words(line)

for word in wordsInLine:

if word not in word_list:

word_list[word] = index

index += 1

### ========= TODO: END ======== ###

return word list
```

(b) Implement extract_feature_vectors(...)

```
with open(infile, 'ru') as fid :
    ### ========= TODO : START ======== ###
    # part 1b: process each line to populate feature_matrix
lineNum = 0
for line in fid:
    wordsInline = extract_words(line)
    for word in wordsInline:
        feature_matrix[lineNum][word_list[word]] = 1
    lineNum += 1
    ### ======== TODO : END ======== ###

return feature_matrix

(c) Split the data
X_train = X[0:560]
y_train = y[0:560]
X_test = X[560:630]
y_test = y[560:630]
```

(d) The dimension of feature matrix is (630, 1811)

4.2 Hyper-parameter Selection for a Linear-Kernel SVM

(d)

$^{\mathrm{C}}$	accuracy	F1-score	AUROC
10^{-3}	0.7089	0.8297	0.5
10^{-2}	0.7107	0.8306	0.5031
10^{-1}	0.8060	0.8755	0.7188
10^{0}	0.8146	0.8749	0.7531
10^{1}	0.8182	0.8766	0.7592
10^{2}	0.8182	0.8766	0.7592
best C	10	10	10

4.3 Test Set Performance

(a)

part 3: train linear-kernel SVMs with selected hyperparameters
clf = SVC(kernel="linear", C = 10)
clf.fit(X_train, y_train)

(b)

y_pred = clf.decision_function(X)
print "Performance test with metric "+ str(metric) + ":"
score = performance(y, y_pred, metric)
return score

(c)

Metric	Score
Accuracy	0.7429
F1-score	0.4375
AUROC	0.6259