Developing and Verifying Speed Trading Algorithms on FPGAs

20th Century

21st Century

Traditional Trading

Algorithmic Trading

High Frequency Trading

- □ The core difference between them is that Algorithmic Trading (AT) is designed for the long-term, while High-Frequency Trading (HFT) allows one to buy and sell at a very fast rate. The reason we shifted form AT to HFT is Speed.
- ☐ Usually, the latency should be between 300 800 nanoseconds.
- ☐ Typically short holding period about 22 seconds

High Frequency Trading System

20th century

21st century

Evolution of High Frequency Trading

What is FPGA (Field Programmable Gate Arrays)?

Introduction to FPGA

- ☐ Reprogrammable chip contains thousands of Logic Gates
- ☐ Software defined Hardware
- ☐ HDL language is used (VHDL or Verilog)
- ☐ Main Components
- CLB (Configurable Logic Gates)
- o Connection Blocks (Wires)
- Switch boxes
- Input/ Output Blocks

Why we use FPGA for HFT?

☐ HFT system requires extremely low latency in response to market updates which is achieved by FPGA.

□ FPGA chips enable them to execute certain types of trading algorithms up to 1000 times faster than traditional software solutions. ♠

Software on CPU

Longer Development Time
FPGA
Reduction in dev. time
through prebuilt library

Development Time
Hours Days Weeks Months

Methods of Stock Market Prediction

An automated trading system (ATS) uses a computer program to create buy and sell orders and automatically submits the orders to a market center or exchange.

- 1. Traditional Techniques
- 2. Machine Learning Techniques

Software Implementation

Methodology

Machine Learning Algorithms

K Nearest Neighbors (KNN)

• Support Vector Machine (SVM)

Random Forest

• Logistic regression (LR)

• Artificial Neural Network (ANN)

- ADA Boost
- XG Boost
- Naïve Bayes
- Decision Tree

Research Contribution

- ☐ A performance comparison of nine ML models trained using the traditional methodology for stock market prediction using both performance metrics and financial system simulations.
- ☐ Proposing a novel strategy to train the ML models for financial markets that perform much better than the traditional methodologies.
- ☐ Proposing a novel financial system simulation that provides financial performance metrics like returns, maximum drawdown and risk-to-reward ratio for each ML model.

Hardware Implementation Methodology

Hardware Implementation Methodology

Implemented Trading Algorithms on FPGA

- ☐ Moving Average Convergence Divergence (MACD)
- ☐ Relative Strength Index (RSI)
- ☐ Aroon Indicator

MACD Analysis

```
Algorithm 1 Modified MACD Algorithm
Input: C_p - close prices of all cyrprocurrencies; N - number of
    close prices; C_{12,j}, C_{26,j}, C_{9,j} - modified smoothing factors
    for EMA<sub>12</sub>, EMA<sub>26</sub> and EMA<sub>9</sub> respectively; 1 \le j \le 3
Output: MACD, EMA<sub>9</sub> ∈ MACD signal
 1: for i = 0 to N do
        Sum = \sum_{p=1}^{26} C_p(i)
        if i == 12 then
            EMA_{12}(i) = Sum * C_{12.1}
            EMA_{12}(i) = EMA_{12}(i) >> 16
        else if i > 12 then
 6:
 7:
            EMA_{12}(i) = C_p * C_{12,2} + EMA_{12}(i-1) * C_{12,3}
            EMA_{12}(i) = EMA_{12}(i) >> 16
 8:
        else
 9:
            EMA_{12}(i) = 0.
10:
        end if
11:
        if i == 26 then
12:
13:
            EMA_{26}(i) = Sum * C_{26.1}
            EMA_{26}(i) = EMA_{26}(i) >> 16
14:
        else if i > 26 then
15:
            EMA_{26}(i) = C_p * C_{26,2} + EMA_{26}(i-1) * C_{26,3}
16:
            EMA_{26}(i) = EMA_{26}(i) >> 16
17:
        else
18:
19:
            EMA_{26}(i) = 0.
        end if
20:
21: end for
22: Sum = \emptyset
23: for i = 26 \text{ to } N \text{ do}
        MACD(i) = EMA_{12}(i) - EMA_{26}(i).
        Sum = \sum_{n=1}^{9} MACD(i).
        if i == 34 then
26:
27:
            EMA_9(i) = Sum * C_{9,1}
            EMA_9(i) = EMA_9(i) >> 16
28:
        else if i > 34 then
29:
            EMA_9(i) = MACD(i) * C_{9,2} + EMA_9(i-1) * C_{9,3}
30:
            EMA_9(i) = EMA_9(i) >> 16
31:
        else
32:
             EMA_9(i) = 0.
33:
        end if
35: end for
```


RSI Analysis

```
Algorithm 2 RSI Algorithm
                                                                                          close price
                                                                                                                                                             close price
Input: Cp_i \in Close\ Prices
                                                                                                                       cntr_in
                                                                                                                                                                                          cntr_in
                                                                                                              addr
                                                                                                                                                                                 addr
         Cp_i = (Cp_0, Cp_1...Cp_a), 0 \le i \le a
Output: RSI_i
 1: for i = 1 to a do
        if Cp_i - Cp_{i-1} > 0 then Gain_i = Cp_i - Cp_{i-1}
        else Gain_i = 0
        end if
       if Cp_i - Cp_{i-1} < 0 then Loss_i = |Cp_i - Cp_{i-1}|
        else Loss_i = 0
        end if
                                                                                                                              Reg
                                                                                                                                                                                                  Reg
                                                                                                                                        reg
                                                                      reg
 8: end for
 9: for j = 14 to a do
        if j = 14 then RS_{14} = \frac{AG_{14}}{AL_{14}}
        else RS_j = \frac{(AG_{j-1}*13+Gain_j)/14}{(AL_{j-1}*13+Loss_j)/14}
11:
                                                                                                                                               rom
        end if
12:
        RSI_j = 100 - \frac{100}{1 + RS_j}
                                                                                              order_signal
14: end for
                                                                                                                                                                  order_signal
                                                                          Gain module
                                                                                                                  Loss module
                                                                                                                                                                                       Loss module
                                                                                                                                             Gain module
                                                                                                   (a)
```

RSI Analysis (Fully Pipelined Divider)

Design	Delay	Freq.	Clock Cycles	Latency
	(ns)	(MHz)		(ns)
d1	33.7	29.6	365	12,318
d2	4.4	227.2	4,380	19,272
d3	5.5	181.8	377	2,074
RS	I variant	ts based o	n the dividers u	sed
$\overline{\text{RSI}_{\text{ppl-d1}}}$	35.2	28.4	368	12,957
RSI_{ppl-d2}	8.9	112	4,383	39,228
RSI _{ppl-d3}	8.5	117	380	3,245

Performance of three divider variants followed by the performance of entire RSI architectures based on these dividers.

Notation

d1 - combinational divider

d2 - 2-stage pipelined divider

d3 - Fully pipelined divider

Aroon Analysis

Algorithm 3 Aroon Algorithm

23: end for

```
Input: C_H: high prices of all cryptocurrencies
          C_L: low prices of all cryptocurrencies
          F_s: frame size of time period
         N: number of required high and low prices
Output: Aroon<sub>up</sub>, Aroon<sub>down</sub>
 1: for i = 0 to N - F_s do
         Previous_{high} = C_H(i)
         Previous_{low} = C_L(i)
         for j = i + 1 to i + F_s do
             if C_H(j) > Previous<sub>high</sub> then
 5:
                   Previous_{high} = C_H(j), Count_{up} = \emptyset
 6:
              else
                  Count_{up} = Count_{up} + 1
              end if
 9:
             if C_L(j) < Previous<sub>low</sub> then
10:
                   Previous_{low} = C_L(j), Count_{down} = \emptyset
11:
              else
12:
                  Count_{down} = Count_{down} + 1
13:
              end if
14:
              if j == i + F_s then
15:
                  Period_{up} = Count_{up}
16:
                  Period_{down} = Count_{down}
17:
                  Aroon_{up}(j) = \frac{14 - Period_{up}(j)}{14} * 100
18:
                  Aroon_{down}(j) = \frac{14 - Period_{down}(j)}{14} * 100
19:
                  Count_{up} = \emptyset, Count_{down} = \emptyset
20:
              end if
21:
         end for
22:
```


Financial Performance

Prediction Models	Cum Return (%)	Annual Return (%)	Max Draw down (%)	Sharpe Ratio	Ending Capital (USD)
Decision Tree	48.35	6.82	-48.11	0.36	14835
Logistic Regression	83.69	10.71	-59.35	0.47	18369
KNN	14.00	2.22	-59.25	0.23	11400
Naive Bayes	-19.16	-3.50	-53.85	0.10	8084
Random Forest	189.66	19.48	-37.21	0.68	28966
ADA Boost	135.91	15.44	-45.76	0.58	23591
SVM	104.10	12.69	-44.23	0.51	20417
XG Boost	130.37	14.99	-35.79	0.57	23037
ANN	154.46	16.92	-55.77	0.62	25446

Financial performance of ML models for Tesla Inc. stocks on 1-day time frame

Prediction Models	Cum Return (%)	Annual Return (%)	Max Draw down (%)	Sharpe Ratio	Ending Capital (USD)
Decision Tree	67.51	9.02	-12.74	0.73	16751
Logistic Regression	86.59	11.00	-21.17	0.68	18659
KNN	47.67	6.74	-19.33	0.51	14767
Naive Bayes	-0.36	-0.06	-20.85	0.05	9964
Random Forest	153	16.80	-35.09	0.79	25300
ADA Boost	92.73	11.60	-21.23	0.71	19273
SVM	79.52	10.29	-17.04	0.77	17952
XG Boost	101.77	12.46	-18.01	0.74	20177
ANN	122.94	14.36	-19.33	0.91	22294

Financial performance of ML models for Tesla Inc. stocks on 15-min time frame

Financial Performance

Classification Performance

ML Models	Accuracy (%)	F1_score (%)	ROC_AUC (%)	Precision (%)	Recall (%)
Decision Tree	83.01	83.00	83.58	83.50	83.50
Logistic Regression	85.51	85.50	85.77	85.50	86.00
KNN	79.15	79.12	79.49	79.50	79.50
Naive Bayes	73.49	70.10	70.50	79.50	70.50
Random Forest	84.45	85.11	85.13	85.00	85.50
ADA Boost	83.74	84.53	84.97	85.00	84.00
SVM	82.68	82.51	82.82	82.50	83.00
XG Boost	84.80	85.52	85.45	85.50	85.00
ANN	84.45	84.50	90.95	84.50	84.50

Classification metrics for Tesla Inc. stocks for 1-day time frame data

ML Models	Accuracy (%)	F1_score (%)	ROC_AUC (%)	Precision (%)	Recall (%)
Decision Tree	88.10	88.50	88.96	88.00	88.50
Logistic Regression	90.60	90.55	90.52	90.50	90.50
KNN	80.53	80.50	80.37	81.00	80.00
Naive Bayes	81.54	81.50	81.77	82.50	81.50
Random Forest	91.27	91.00	91.28	92.00	91.50
ADA Boost	90.93	91.02	91.03	91.50	91.00
SVM	88.59	88.50	88.49	89.00	88.50
XG Boost	90.93	91.00	91.53	91.00	90.50
ANN	89.93	90.00	90.63	90.00	90.00

Classification metrics for Tesla Inc. stocks for the proposed 15-min time interval strategy

Classification Performance

Hardware Results

Arch.	Clock Cycles	Critical Path	Freq.	Resource Utilization	Latency	Throughput
	•	(ns)	(MHz)	(LUTs, BRAMs, DSPs)	(ns)	(Mbits/s)
				MACD		
$\overline{x1}$	367	14.0	71.3	(419, 0, 9)	5,143	3.9
x2	368	7.7	129.6	(252, 1, 9)	2,839	7.0
				RSI		
ppl-d1	368	35.2	28.4	(1488, 0, 2)	12,957	1.5
ppl-d2	4383	8.9	112.1	(1004, 1, 0)	39,228	0.5
ppl-d3	377	8.5	117.0	(1227, 0, 0)	3,219	6.2
				AROON		
<u>x1</u>	5616	14.3	69.8	(619, 0, 2)	80,510	0.3
x2	5616	6.5	153.1	(124, 1, 0)	36,683	0.6

Results for the hardware architectures of all variants of the technical indicators, i.e., MACD, RSI and Aroon.

Hardware Results

Highest performing software and hardware architectures for all three indicators

Algorithm	Arch.	Latency (ns)	Throughput (Mbits/s)	Speedup
MACD	SW x2	84,000 2,839	0.24 7.0	30* SW
RSI	SW ppld3	170,000 3,219	0.1 6.2	52* SW
Aroon	SW x2	289,000 36,683	0.1 0.6	32* SW

Comparison of the best hardware architecture from each of the technical indicators with the software implementation of the respective algorithm

Hardware Results

Contribution to the Field

Contribution to the Field

- 1. A Performance Comparison of Machine Learning Models for Stock Market Prediction with Novel Investment Strategy (Partially accepted in PLOS ONE Journal).
 - 2. Speed vs. Efficiency: A Framework for High-Frequency Trading Algorithms on FPGA using Zynq SoC Platform Under review in Journal of Computational Science (Elsevier).
- 3. High-Performance FPGA Architectures for Low-Latency Machine Learning Models in Stock Market Prediction: An In-Depth Complexity Analysis (Current Research).

Team

Dr. Umar Sharif Doctorate in Post Quantum Cryptography

Dr. Zaka Ullah Doctorate in Power Electronics

Abbas Ali FPGA Engineer

Abdullah Shah FPGA Engineer

Azaz Hassan Khan FPGA Engineer