Probabilistic Method Pset 2

EGMOTC 2023 - Rohan

December 13, 2023

Problems

Remark. * marked problems are considered harder.

Remark. Try to do as much as possible and submit whatever progress you have. You can then look at the solutions after submitting. Try to spend atleast somewhere around 30-40 minutes on this set.

- 1. (MP4G 2022) Across the face of a rectangular post-it note, you idly draw lines that are parallel to its edges. Each time you draw a line, there is a 50% chance it'll be in each direction and you never draw over an existing line or the edge of the post-it note. After a few minutes, you notice that you've drawn 20 lines. What is the expected number of rectangles that the post-it note will be partitioned into?
- 2. (Folklore) Let $v_1, v_2, \ldots v_n \in \mathbb{R}^n$, all $|v_i| = 1$ where |x| refers to the Euclidean distance of x from the origin. Then there exist $\epsilon_1, \epsilon_2, \ldots \epsilon_n = \pm 1$ such that

$$|\epsilon_1 v_1 + \epsilon_2 v_2 + \dots + \epsilon_n v_n| \le \sqrt{n}$$

and also there exist $\epsilon_1, \epsilon_2, \dots \epsilon_n = \pm 1$ such that

$$|\epsilon_1 v_1 + \epsilon_2 v_2 + \dots + \epsilon_n v_n| \ge \sqrt{n}$$

3. (*) Suppose $p > n > 10m^2$, with p prime, and let $0 < a_1 < a_2 < \cdots < a_m < p$ be integers. Prove that there is an integer 0 < x < p for which the m numbers

$$(xa_i \pmod{p}) \pmod{n}$$

are pairwise distinct.

Solutions

Problem 1

Problem 1. (MPFG 2022) Across the face of a rectangular post-it note, you idly draw lines that are parallel to its edges. Each time you draw a line, there is a 50% chance it'll be in each direction and you never draw over an existing line or the edge of the post-it note. After a few minutes, you notice that you've drawn 20 lines. What is the expected number of rectangles that the post-it note will be partitioned into?

Solution. Initially the paper is exactly one rectangle. Let X_i be the RV corresponding to the number of more rectangles introduced by the *i*th line. Now, the final number of rectangles created is precisely $1 + X_1 + \cdots + X_{20}$.

Now, we have by linearity of expectation that

$$\mathbb{E}[1 + X_1 + \dots X_{20}] = 1 + \mathbb{E}[X_1] + \mathbb{E}[X_2] + \dots + \mathbb{E}[X_{20}]$$

Now, X_i just depends on the number of lines already drawn not parallel to it i.e. if j lines are already drawn not parallel to it, it divides the rectangle into j+1 regions.

Thus, $\mathbb{E}[X_i] = 1 + \mathbb{E}[\text{number of lines drawn not parallel to the } i \text{th line}] = 1 + \frac{i-1}{2}$ (each line is parallel to the i th line with probability $\frac{1}{2}$).

Thus, the final answer is
$$1 + \frac{2}{2} + \frac{3}{2} + \cdots + \frac{21}{2} = \frac{1+231}{2} = \boxed{116}$$
.

Problem 2

Problem 2. (Folklore) Let $v_1, v_2, \ldots v_n \in \mathbb{R}^n$, all $|v_i| = 1$ where |x| refers to the Euclidean distance of x from the origin. Then there exist $\epsilon_1, \epsilon_2, \ldots \epsilon_n = \pm 1$ such that

$$|\epsilon_1 v_1 + \epsilon_2 v_2 + \dots + \epsilon_n v_n| \le \sqrt{n}$$

and also there exist $\epsilon_1, \epsilon_2, \dots \epsilon_n = \pm 1$ such that

$$|\epsilon_1 v_1 + \epsilon_2 v_2 + \dots + \epsilon_n v_n| \ge \sqrt{n}$$

Solution. We let $v = \epsilon_1 v_1 + \epsilon_2 v_2 + \cdots + \epsilon_n v_n$ where v is a random variable and ϵ_i are picked as ± 1 with probability $\frac{1}{2}$ each.

Thus, finally let X be the RV corresponding to $v \cdot v = |v|^2$ where (\cdot) is used for the dot product.¹.

We will show that $\mathbb{E}[X] = n$ which will immediately imply both the results!

$$\mathbb{E}[X] = \left(\sum_{i} \mathbb{E}[\epsilon_{i}^{2}] v_{i} \cdot v_{i}\right) + \left(\sum_{i \neq j} \mathbb{E}[\epsilon_{i} \epsilon_{j}] v_{i} \cdot v_{j}\right)$$

$$\mathbb{E}[\epsilon_i^2] = 1$$

since $\epsilon_i^2 = 1$ always and

$$\mathbb{E}[\epsilon_i \epsilon_i] = \mathbb{E}[\epsilon_i] \mathbb{E}[\epsilon_i] = 0 \cdot 0$$

as ϵ_i and ϵ_j are independent. Finally, $v_i \cdot v_i = 1$ for all i as we know $\sqrt{v_i \cdot v_i} = |v_i| = 1$ for all i. Thus,

$$\mathbb{E}[X] = \left(\sum_{i} \mathbf{1}\right) + \mathbf{0} = n$$

Thus, we are done!

¹check inequalities material if you don't remember definition of dot product.

Problem 3

Problem 3. (Probabilistic Method by Alon and Spencer Exercise. 2.7.4) Suppose $p > n > 10m^2$, with p prime, and let $0 < a_1 < a_2 < \cdots a_m < p$ be integers. Prove that there is an integer 0 < x < p for which the m numbers

$$(xa_i \pmod{p}) \pmod{n}$$

are pairwise distinct.

Solution. Remind me to put up a solution. Writing it is more convoluted than I initially expected. $\hfill\Box$