Modular Arithmetic 1

Andres Buritica Monroy

1 Residue Classes

Let n be a nonzero integer. For integers a and b, we say that

$$a \equiv b \pmod{n} \iff n \mid b - a.$$

Notice that for fixed values of a and n, infinitely many values of b satisfy $a \equiv b \pmod{n}$.

The numbers $0, 1, \ldots, n-1$ are called the *least residues mod n*. Every integer is congruent to a unique least residue mod n.

- Find the least residue of 81 mod 7.
- Find the least residue of $-1 \mod 2023$.

2 Operations

Prove that if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then

- $a + c \equiv b + d \pmod{n}$
- $a c \equiv b d \pmod{n}$
- $ac \equiv bd \pmod{n}$
- $a^m \equiv b^m \pmod{n}$ for any nonnegative integer m.

Let a, n, x, y be integers such that $a \mid x, y$.

- Find a counterexample to the statement that if $x \equiv y \pmod{n}$ then $x/a \equiv y/a \pmod{n}$.
- Find some m in terms of a and n such that you can guarantee that $x/a \equiv y/a \pmod{m}$.

3 Multiplication by coprime residues

Let a and n be positive integers such that gcd(a, n) = 1.

- Prove that if gcd(y, n) = 1 then there exists some x such that $ax \equiv y \pmod{n}$.
- Prove that $a^{\varphi(n)} \equiv 1 \pmod{n}$.

This last dot point is known as Euler's Theorem. If n = p is prime, then $\varphi(p) = p - 1$ so $a^{p-1} \equiv 1 \pmod{p}$, which is known as Fermat's Little Theorem.

4 Problems

- 1. Let n > 6 be an integer such that n-1 and n+1 are both prime. Prove that $720 \mid n^2(n^2+16)$.
- 2. Let $a_1=20,\ a_2=23.$ For $n\geq 1,$ let a_{n+1} be the least residue of a_n+a_{n-1} mod 100. Find the least residue of $a_1^2+\cdots+a_{2023}^2$ mod 8.
- 3. Find all primes p such that $29^p + 1$ is a multiple of p.
- 4. Define the sequence $a_n = 2^n + 3^n + 6^n 1$, $n \in \mathbb{N}$. Find all primes which do not divide a_n for any n.

5 Homework

- 1. Let S be a subset of the set of numbers $\{1, 2, 3, \dots, 2023\}$ such that if a, b are in S, then $23 \nmid a + b$. What is the maximum possible size of S?
- 2. Prove that every positive integer has at least as many divisors which are $1 \pmod{4}$ as divisors which are $3 \pmod{4}$.
- 3. Does one of the first $10^8 + 1$ Fibonacci numbers end with four zeroes?