PROCESADORES DE LENGUAJES TEMA IV.- ANÁLISIS SINTÁCTICO DESCENDENTE

Prof. Dr. Nicolás Luis Fernández García

Departamento de Informática y Análisis Numérico Escuela Politécnica Superior de Córdoba Universidad de Córdoba

- Tema I.- Introducción.
- Tema II.- Análisis Lexicográfico
- Tema III.- Fundamentos Teóricos del Análisis Sintáctico
- Tema IV.- Análisis Sintáctico Descendente
- Tema V.- Análisis Sintáctico Ascendente

- Introducción
- Descenso recursivo con retroceso o backtracking
- 3 Análisis sintáctico descendente predictivo
- 4 Detección y recuperación de errores

- Introducción
- 2 Descenso recursivo con retroceso o backtracking
- 3 Análisis sintáctico descendente predictivo
- 4 Detección y recuperación de errores

- Introducción
- 2 Descenso recursivo con retroceso o backtracking
- 3 Análisis sintáctico descendente predictivo
- 4 Detección y recuperación de errores

- Introducción
- 2 Descenso recursivo con retroceso o backtracking
- 3 Análisis sintáctico descendente predictivo
- Detección y recuperación de errores

Contenido del tema

- Introducción
- ② Descenso recursivo con retroceso o backtracking
- 3 Análisis sintáctico descendente predictivo
- 4 Detección y recuperación de errores

Contenido de la sección

- Introducción
 - Objetivo
 - Tipos de análisis sintáctico descendente
 - Limitación general

Objetivo

Estrategias

- Comprobar si una gramática genera una cadena de entrada utilizando alguna de las siguientes estrategias:
 - Construcción de una derivación por la izquierda de la cadena de entrada.
 - Construcción de un árbol sintáctico de forma descendente desde la raíz hasta las hojas.

Objetivo

```
Ejemplo (Gramática de expresiones aritméticas
                                                                                             15)
      P = \{
        (1) S \rightarrow identificador = E
        (2) E \rightarrow T E'
        (3) E' \rightarrow + T E'
        (4) E' \rightarrow \epsilon
        (5) T \rightarrow F T'
        (6) T' \rightarrow *FT'
        (7) T' \rightarrow \epsilon
        (8) F \rightarrow (E)
        (9) F \rightarrow identificador
      (10) F \rightarrow número
```

Objetivo

Ejemplo (Gramática de expresiones aritméticas

/ 15)

• Sentencia de asignación

identificador = identificador + número * identificador

Objetivo

Ejemplo (Gramática de expresiones aritméticas 3 / 15) Sentencia: id = id + n * id Derivación por la izquierda S Árbol sintáctico S

Objetivo

Ejemplo (Gramática de expresiones aritméticas 15) Sentencia: id = id + n * idÁrbol sintáctico Derivación por la izquierda $S \Rightarrow \underline{id = E}$ Emparejamientos: id, = identificador

Objetivo

Ejemplo (Gramática de expresiones aritméticas 5/15)

Sentencia: id = id + n * idDerivación por la izquierda

$$\begin{array}{ccc}
S & \Rightarrow & \mathbf{id} = \mathbf{E} \\
\Rightarrow & \mathbf{id} = \underline{TE'}
\end{array}$$

Objetivo

Ejemplo (Gramática de expresiones aritméticas

5 / 15)

Sentencia: id = id + n * idDerivación por la izquierda

$$S \Rightarrow \mathbf{id} = E$$

$$\Rightarrow \mathbf{id} = TE'$$

$$\Rightarrow \mathbf{id} = FT'E'$$

Objetivo

Ejemplo (Gramática de expresiones aritméticas

15)

Sentencia: id = id + n * idDerivación por la izquierda

$$S \Rightarrow id = E$$

$$\Rightarrow id = TE'$$

$$\Rightarrow id = FT'E'$$

$$\Rightarrow id = idT'E'$$

$$\Rightarrow id = TE'$$

$$\Rightarrow id = FT'E'$$

$$\Rightarrow \text{id} = \underline{\text{id}} T' E'$$

Emparejamiento de id

Objetivo

Ejemplo (Gramática de expresiones aritméticas

3 / 15)

Sentencia: id = id + n * idDerivación por la izquierda

$$\begin{array}{ll} \Rightarrow & \mathrm{id} = E \\ \Rightarrow & \mathrm{id} = TE' \\ \Rightarrow & \mathrm{id} = FT'E' \\ \Rightarrow & \mathrm{id} = \mathrm{id} T'E' \\ \Rightarrow & \mathrm{id} = \mathrm{id} \ \underline{\epsilon} \ E' \end{array}$$

Objetivo

Ejemplo (Gramática de expresiones aritméticas 15) Sentencia: id = id + n * idÁrbol sintáctico Derivación por la izquierda id = Eid = TE'id = FT'E'id = id T'E' $id = id \in E'$ $id = id \epsilon + TE'$ Emparejamiento de + identificador identificador

Objetivo

Ejemplo (Gramática de expresiones aritméticas 10 / 15)

Sentencia: id = id + n * idDerivación por la izquierda

$$S \Rightarrow id = E$$

$$\Rightarrow id = TE'$$

$$\Rightarrow id = FT'E'$$

$$\Rightarrow id = idT'E'$$

$$\Rightarrow id = id \epsilon E'$$

$$\Rightarrow id = id \epsilon + TE'$$

$$\Rightarrow id = id \epsilon + FT'E$$

$$\begin{array}{ll}
\stackrel{7}{\Rightarrow} & \text{id} = \text{id } \epsilon + TE' \\
\stackrel{7}{\Rightarrow} & \text{id} = \text{id } \epsilon + \underline{FT'}E'
\end{array}$$

Objetivo

Ejemplo (Gramática de expresiones aritméticas 11/15)

Sentencia: id = id + n * idDerivación por la izquierda

$$S \Rightarrow id = E$$

$$\Rightarrow id = TE'$$

$$\Rightarrow id = FT'E'$$

$$\Rightarrow id = idT'E'$$

$$\Rightarrow id = id \epsilon E'$$

$$\Rightarrow id = id \epsilon + TE'$$

$$\Rightarrow id = id \epsilon + TE'$$

$$\Rightarrow id = id \epsilon + TE'$$

$$\Rightarrow id = id \epsilon + TE'E'$$

$$\Rightarrow id = id \epsilon + TE'E'$$

Emparejamiento de n

Objetivo

Ejemplo (Gramática de expresiones aritméticas

12 / 15

Sentencia: id = id + n * idDerivación por la izquierda

Emparejamiento de *

Objetivo

Ejemplo (Gramática de expresiones aritméticas 13 / 15) Sentencia: id = id + n * idÁrbol sintáctico Derivación por la izquierda id = Eid = TE'id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ identificador identificador $id = id \epsilon + n * idT'E'$ Emparejamiento de id

Objetivo

Ejemplo (Gramática de expresiones aritméticas 14 / 15) Sentencia: id = id + n * idÁrbol sintáctico Derivación por la izquierda id = Eid = TE'id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ identificador $id = id \epsilon + n * id T'E'$ identificador número $id = id \epsilon + n * id \epsilon E'$

Objetivo

Ejemplo (Gramática de expresiones aritméticas

15 /

Sentencia: id = id + n * idDerivación por la izquierda

Derivación por la izquierda

S
$$\Rightarrow$$
 id = E

 \Rightarrow id = TE'

 \Rightarrow id = FT'E'

 \Rightarrow id = id \in FT'

 \Rightarrow id = id \in FT'

 $id = id \epsilon + n * id \epsilon \epsilon$

Contenido de la sección

- Introducción
 - Objetivo
 - Tipos de análisis sintáctico descendente
 - Limitación general

Tipos de análisis sintáctico descendente

Tipos de análisis sintáctico descendente

- 1.- Método de descenso recursivo con retroceso o backtracking.
- 2.- Método de descenso predictivo, es decir, sin retroceso.

Tipos de análisis sintáctico descendente

1.- Método de descenso recursivo con retroceso o backtracking

- Utiliza funciones asociadas a los símbolos no terminales de la gramática.
- Cada función intenta simular el uso de las reglas de producción del símbolo no terminal asociado.
- Las funciones pueden ser recursivas.

Tipos de análisis sintáctico descendente

2.- Método de descenso predictivo

 Utiliza una tabla predictiva para determinar qué regla de producción se puede usar en cada paso.

Tipos de análisis sintáctico descendente

2.- Método de descenso predictivo

- Tipos de implementación
 - Método recursivo
 - Codifica una función para cada símbolo no terminal de la gramática.
 - El código de la función está basado en la tabla predictiva.
 - Cada función determina cuál es la única regla de producción que se puede utilizar en cada paso.
 - Las funciones pueden ser recursivas.
 - Método iterativo
 - En cada paso, consulta la tabla predictiva para determinar la única regla de producción que se puede aplicar.

Contenido de la sección

- Introducción
 - Objetivo
 - Tipos de análisis sintáctico descendente
 - Limitación general

Limitación general

Limitación general

 El análisis descendente no se puede realizar si la gramática posee recursividad por la izquierda.

(Se explicará en las siguientes secciones).

Contenido del tema

- Introducción
- 2 Descenso recursivo con retroceso o backtracking
- 3 Análisis sintáctico descendente predictivo
- 4 Detección y recuperación de errores

Contenido de la sección

- Descenso recursivo con retroceso o backtracking
 - Descripción
 - Implementación
 - Limitaciones o inconvenientes

Descenso recursivo con retroceso o backtracking

Descripción

Características

- Método exhaustivo o de fuerza bruta:
 - Método de ensayo y error: para reconocer una cadena, intenta aplicar (simular) todas las reglas de producción que pueda emplear en su derivación.
- Método con retroceso:
 - Si la simulación de una regla de producción de A ∈ V_N es correcta, el análisis continúa.
 - En caso contrario, hay dos posibilidades:
 - Retroceso: intenta probar con otra regla de A, si existe, retrocediendo en la cadena de entrada.
 - Error: la simulación fracasa si A no posee más reglas de producción.

Descenso recursivo con retroceso o backtracking

Descripción

Simulación de la regla $A \longrightarrow X_1 X_2 \dots X_n \in P$

Para i desde 1 hasta n hacer

- Si $X_i \in V_N$ entonces se elige una regla de producción de X_i y se simula su funcionamiento.
 - Si tiene éxito, continúa el análisis.
 - En caso contrario, hay dos posibilidades:
 - Retroceso: se elige otra regla de X_i , si existe.
 - Error: la simulación fracasa si X_i no posee más reglas de producción.
- Si $X_i \in V_T$ entonces se intenta emparejar con el componente léxico actual de la cadena de entrada.
 - Si son iguales, el análisis continúa.
 - En caso contario, fracasa la simulación de esta regla de A

fin_para

Descenso recursivo con retroceso o backtracking

Nota (Simulación de la regla $A \longrightarrow \epsilon$)

• La simulación de la regla ε siempre tiene éxito.

Descripción

Ejemplos

- 1.- Gramática simple.
- 2.- Gramática que genera sentencias de asignación de expresiones aritméticas.

Ejemplo (1.- Gramática simple

/ 12)

Gramática

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow \mathbf{a} \mathbf{b}$
- (3) $A \longrightarrow a$

}

Análisis de c a d

Descenso recursivo con retroceso o backtracking Descripción

Ejemplo (1.- Gramática simple

Gramática

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- $\begin{array}{ccc} (2) & A \longrightarrow \mathbf{a} \mathbf{b} \\ (3) & A \longrightarrow \mathbf{a} \end{array}$
- Análisis de c a d
- Símbolo inicial: S

Árhol sintáctico

S

Ejemplo (1.- Gramática simple

3 / 12)

Gramática

$$P = \{$$

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow \mathbf{a} \mathbf{b}$
- $(3) A \longrightarrow \mathbf{a}$

}

- Análisis de c a d
- Regla de S

$$S \Rightarrow \mathbf{c}A\mathbf{d}$$

Descenso recursivo con retroceso o backtracking Descripción

Ejemplo (1.- Gramática simple

Gramática

$$P = \{ (1) \ S \longrightarrow \mathbf{c} \ A \ \mathbf{d} \}$$

- (2) $A \longrightarrow a b$
- (3) $A \longrightarrow a$

- Análisis de c a d
- Emparejamiento de c

$$S \Rightarrow \mathbf{c}A\mathbf{d}$$

Ejemplo (1.- Gramática simple

5 / 12)

Gramática

$$P = \{$$

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow \mathbf{a} \mathbf{b}$
- $(3) A \longrightarrow \mathbf{a}$
- Análisis de c a d
- Primera regla de A

$$S \Rightarrow \mathbf{c}A\mathbf{d} \Rightarrow \mathbf{cabd}$$

Ejemplo (1.- Gramática simple

6 / 12)

Gramática

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow \mathbf{a} \mathbf{b}$
- $(3) A \longrightarrow \mathbf{a}$

}

- Análisis de c a d
- Emparejamiento de a

$$S \Rightarrow \mathbf{c}A\mathbf{d} \Rightarrow \mathbf{cabd}$$

Ejemplo (1.- Gramática simple

7 / 12)

Gramática

$$P = \{$$

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow \mathbf{a} \mathbf{b}$
- $(3) A \longrightarrow \mathbf{a}$
- Análisis de c a d
- Fallo al emparejar b

$$S \Rightarrow \mathbf{c}A\mathbf{d} \Rightarrow \mathbf{cabd}$$

Ejemplo (1.- Gramática simple

3 / 12)

Gramática

$$P = \{$$

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow a b$
- $(3) A \longrightarrow \mathbf{a}$

}

Retroceso

$$S \Rightarrow \mathbf{c}A\mathbf{d}$$

Ejemplo (1.- Gramática simple

9 / 12)

Gramática

$$P = \{$$

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow \mathbf{a} \mathbf{b}$
- $(3) A \longrightarrow \mathbf{a}$

}

- Análisis de c a d
- Segunda regla de A

$$S \Rightarrow \mathbf{c}A\mathbf{d} \Rightarrow \mathbf{cad}$$

Ejemplo (1.- Gramática simple

10 / 12)

Gramática

$$P = \{$$

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow \mathbf{a} \mathbf{b}$
- $(3) A \longrightarrow \mathbf{a}$

}

- Análisis de c a d
- Emparejamiento de a

$$S \Rightarrow \mathbf{c}A\mathbf{d} \Rightarrow \mathbf{cad}$$

Ejemplo (1.- Gramática simple

11 / 12)

Gramática

$$P = \{$$

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow a b$
- $(3) A \longrightarrow \mathbf{a}$
- Análisis de c a d
- Emparejamiento de d

$$S \Rightarrow \mathbf{c}A\mathbf{d} \Rightarrow \mathbf{cad}$$

Descripción

Ejemplo (1.- Gramática simple

12 / 12)

Gramática

- (1) $S \longrightarrow \mathbf{c} A \mathbf{d}$
- (2) $A \longrightarrow \mathbf{a} \mathbf{b}$
- $(3) A \longrightarrow \mathbf{a}$

}

- Análisis de c a d
- Fin del ánalisis

$$S \Rightarrow \mathbf{c}A\mathbf{d} \Rightarrow \mathbf{cad}$$


```
Ejemplo (2.- Gramática de expresiones aritméticas
      P = \{
        (1) S \rightarrow identificador = E
        (2) E \rightarrow T E'
        (3) E' \rightarrow + T E'
        (4) E' \rightarrow \epsilon
        (5) T \rightarrow F T'
        (6) T' \rightarrow *FT'
        (7) T' \rightarrow \epsilon
        (8) F \rightarrow (E)
        (9) F \rightarrow identificador
      (10) F \rightarrow número
```

Descenso recursivo con retroceso o backtracking Descripción

Ejemplo (2.- Gramática de expresiones aritméticas 2 / 29)

• Análisis mediante descenso recursivo con retroceso:

identificador = identificador + número * identificador

Ejemplo (2.- Gramática de expresiones aritméticas 3 / 29)

Análisis de
$$id = id + n * id$$

5

Árbol sintáctico

S

Ejemplo (2.- Gramática de expresiones aritméticas 18 / Análisis de id = id + n * idÁrbol sintáctico id = E $\begin{array}{c} 1 \\ \Rightarrow \\ 2 \\ \Rightarrow \\ 5 \\ \Rightarrow \\ 6 \\ \Rightarrow \\$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ Retroceso identificador identificador

Ejemplo (2.- Gramática de expresiones aritméticas Análisis de id = id + n * idÁrbol sintáctico id = Eid = TE'id = FT'E'id = idT'E' $\mathsf{id} = \mathsf{id} \; \epsilon \; E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + nT'E'$ $id = id \epsilon + n *FT'E'$ Retroceso identificador identificador

Descripción

identificador

Emparejamiento de id

 $id = id \epsilon + n * idT'E'$

número

identificador

Descripción

Descripción

Ejemplo (2.- Gramática de expresiones aritméticas 26 / Análisis de id = id + n * idÁrbol sintáctico id = Eid = TE' $\stackrel{\bigstar}{\Rightarrow} 2 \stackrel{\bigstar}{\Rightarrow} 5 \stackrel{\bigstar}{\Rightarrow} 9 \stackrel{\bigstar}{\Rightarrow} 7 \stackrel{\bigstar}{\Rightarrow} 3 \stackrel{\bigstar}{\Rightarrow} 5 \stackrel{\bigstar}{\Rightarrow} 10 \stackrel{\bigstar}{\Rightarrow} 6 \stackrel{\bigstar}{\Rightarrow} 9$ id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id T'E'$ identificador identificador número $id = id \epsilon + n * id \epsilon E'$

Ejemplo (2.- Gramática de expresiones aritméticas 29) 27 / Análisis de id = id + n * idÁrbol sintáctico id = F \uparrow 1 \uparrow 2 \uparrow 5 \uparrow 9 \uparrow 7 \uparrow 3 \uparrow 5 \uparrow 10 \uparrow 6 \uparrow 9 \uparrow 7 \uparrow 2 id = TE'id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id T'E'$ identificador $id = id \epsilon + n * id \epsilon E'$ $id = id \epsilon + n * id \epsilon + TE'$

Error al emparejar

Descripción

Descripción

Ejemplo (2.- Gramática de expresiones aritméticas Análisis de id = id + n * idÁrbol sintáctico id = Eid = TE' $\mathsf{id} = \mathit{FT'E'}$ id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id T'E'$ identificador número $id = id \epsilon + n * id \epsilon E'$ $id = id \epsilon + n * id \epsilon \epsilon$ Cadena generada

Contenido de la sección

- Descenso recursivo con retroceso o backtracking
 - Descripción
 - Implementación
 - Limitaciones o inconvenientes

Método

- Se codifica una función para cada símbolo $A \in V_N$
- Si A posee alguna regla recursiva entonces la función es recursiva.
- La función simula **una** a **una** las reglas de producción de *A*.
- La función devuelve un valor lógico:
 - Si la simulación de una regla es correcta, la función devuelve Verdadero
 - En caso contrario, intenta probar con otra regla de A, si existe.
 - Si todas las reglas de A fallan entonces la función devuelve Falso.

Nota (Referencia)

- Al probar con una regla, se debe establecer una referencia al componente léxico actual.
- Dicha referencia será utilizada si hay retroceso para simular otra regla.

Simulación de la regla $A \longrightarrow X_1 X_2 \dots X_n \in P$

Para i desde 1 hasta n hacer

- Si $X_i \in V_N$ entonces se llama a la función asociada al símbolo X_i
 - Si tiene éxito, continúa el análisis.
 - En caso contario, fracasa la simulación de esta regla de A.
- Si $X_i \in V_T$ entonces se intenta emparejar con el componente léxico actual de la cadena de entrada.
 - Si son iguales, el análisis continúa.
 - En caso contario, fracasa la simulación de esta regla de A.

fin_para

Nota (Simulación de la regla $A \longrightarrow \epsilon$)

- La simulación de la regla ϵ siempre tiene éxito.
- Si un símbolo A posee una regla ϵ ,
 - deberá ser simulada en último lugar
 - y la función siempre devolverá el valor Verdadero.

Ejemplo (Gramática de expresiones aritméticas)

- **Primera parte**: codificación de funciones asociadas a símbolos no terminales de una gramática.
- **Segunda parte**: uso de las funciones para analizar una expresión aritmética.

Ejemplo (Gramática de expresiones aritméticas)

- Primera parte: codificación de funciones asociadas a símbolos no terminales de una gramática.
- **Segunda parte**: uso de las funciones para analizar una expresión aritmética.

```
Ejemplo (Gramática de expresiones aritméticas
       P = \{
        (1) S \rightarrow identificador = E
        (2) E \rightarrow T E'
        (3) E' \rightarrow + T E'
        (4) E' \rightarrow \epsilon
        (5) T \rightarrow F T'
        (6) T' \rightarrow *FT'
        (7) T' \rightarrow \epsilon
        (8) F \rightarrow (E)
        (9) F \rightarrow identificador
      (10) F \rightarrow número
```

Ejemplo (2.- Gramática de expresiones aritméticas

(2 / 9)

• Codificación de las funciones asociadas a los símbolos no terminales: S, E, E', T, T' y F.

```
Ejemplo (Función S: lógico
inicio
    \{SIMULACIÓN\ DE\ (1)\ S \rightarrow identificador = E\}
    si emparejar(identificador) = VERDADERO entonces
                                                                     si no {empareja "="}
        avanzar_entrada
                                                                          DEVOLVER FALSO
        si emparejar("=") = VERDADERO entonces
                                                                     fin si
            avanzar entrada
                                                                 si no { empareja identificador }
            si F = VFRDADFRO entonces
                                                                     DEVOLVER FALSO
                DEVOLVER VERDADERO
                                                                 fin si
            si no
                                                             fin
                DEVOLVER FALSO
            fin si
```

```
Ejemplo (Función E: lógico
   inicio
        {SIMULACIÓN DE (2) E \rightarrow T E'}
        si T = VERDADERO entonces
            si F' = VFRDADFRO entonces
                DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

```
Ejemplo (Función E': lógico
inicio
    referencia ← componente léxico actual
    { SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                          si no
    si emparejar ("+") = VERDADERO entonces
                                                                              retroceder_entrada(referencia)
         avanzar entrada
                                                                          fin si
        si T = VFRDADFRO entonces
                                                                     si no {empareja "+" }
             si F' = VFRDADFRO entonces
                                                                          retroceder_entrada(referencia)
                  DEVOLVER VERDADERO
                                                                     fin si
             si no
                                                                     \{SIMULACIÓN\ DE\ (4)\ E' \rightarrow \epsilon\}
                  retroceder_entrada(referencia)
                                                                     DEVOLVER VERDADERO
             fin si
                                                                 fin
```

```
Ejemplo (Función T: lógico
                                                                   6 /
   inicio
        {SIMULACIÓN DE (5) T \rightarrow F T'}
        si F = VERDADERO entonces
            si T' = VERDADERO entonces
                DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

```
Ejemplo (Función T': lógico
 inicio
      referencia ← componente léxico actual
      {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                        si no
      si emparejar ("*") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
          avanzar entrada
                                                                        fin si
          si F = VFRDADFRO entonces
                                                                   si no {empareja "*" }
               si T' = VFRDADFRO entonces
                                                                        retroceder_entrada(referencia)
                   devolver VFRDADFRO
                                                                   fin si
               si no
                                                                    {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                   retroceder_entrada(referencia)
                                                                    DEVOLVER VERDADERO
               fin si
                                                               fin
```

```
Ejemplo (Función F: lógico (primera parte)
  inicio
   referencia ← componente léxico actual
   {SIMULACIÓN DE (8) F \rightarrow (E)}
                                                                si no {es verdadero E}
   si emparejar ("(") = VERDADERO entonces
                                                                    retroceder_entrada(referencia)
       avanzar entrada
                                                                fin si
       si E = VERDADERO entonces
                                                            si no {empareja "("}
           si emparejar (")") = VERDADERO entonces
                                                                retroceder_entrada(referencia)
               avanzar_entrada
                                                            fin si
               DEVOLVER VERDADERO
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin si
```

```
Ejemplo (Función F: lógico (segunda parte)
      { SIMULACIÓN DE (9) F → identificador }
                                                                {SIMULACIÓN DE (10) F \rightarrow \text{número} }
      si empareiar (identificador) = VERDADERO
                                                                si empareiar (número) = VERDADERO
          entonces
                                                                    entonces
              avanzar entrada
                                                                        avanzar_entrada
              DEVOLVER VERDADERO
                                                                        DEVOLVER VERDADERO
          si no { empareja identificador }
                                                                    si no { empareja número }
              retroceder_entrada(referencia)
                                                                        DEVOLVER FALSO
      fin_si
                                                                fin_si
                                                           fin
```

Ejemplo (Gramática de expresiones aritméticas)

- **Primera parte**: codificación de funciones asociadas a símbolos no terminales de una gramática.
- Segunda parte: uso de las funciones para analizar una expresión aritmética.

Ejemplo (Gramática de expresiones aritméticas 1 / 113)

• Uso de las funciones para analizar la sentencia:

identificador = identificador + número * identificador

Ejemplo (Gramática de expresiones aritméticas

2 / 113)

• Llamada a la función asociada al símbolo inicial S

Árbol de activación

S

Pila de activación

Descenso recursivo con retroceso o backtracking Implementación

Ejemplo (2.- Gramática de expresiones aritméticas 3 / 113)

Análisis de
$$id = id + n * id$$

S

Árbol sintáctico

S

```
Ejemplo (Función S: lógico
                                                                                     4 / 113)
inicio
     \{SIMULACIÓN\ DE\ (1)\ S \rightarrow identificador = E\}
    si emparejar(identificador) = VERDADERO entonces
                                                                     si no {empareja "="}
        avanzar entrada
                                                                         DEVOLVER FALSO
        si emparejar("=") = VERDADERO entonces
                                                                     fin si
            avanzar_entrada
                                                                 si no { empareja identificador }
            si E = VERDADERO entonces
                                                                     DEVOLVER FALSO
                DEVOLVER VERDADERO
                                                                 fin si
            si no
                                                            fin
                DEVOLVER FALSO
            fin si
```



```
Ejemplo (Función S: lógico
                                                                                      6 / 113
  inicio
       \{SIMULACIÓN\ DE\ (1)\ S \rightarrow identificador = E\}
si emparejar(identificador) = VERDADERO entonces
                                                                      si no {empareja "="}
                                                                          DEVOLVER FALSO
            avanzar_entrada
                                                                      fin si
                                                                  si no { empareja identificador }
           si emparejar("=") = VERDADERO entonces
                                                                      DEVOLVER FALSO
               si E = VERDADERO entonces
                                                                  fin si
                   DEVOLVER VERDADERO
                                                              fin
              si no
                   DEVOLVER FALSO
               fin si
```

```
Ejemplo (Función S: lógico
                                                                                       7 / 113)
  inicio
       \{SIMULACIÓN\ DE\ (1)\ S \rightarrow identificador = E\}
       si emparejar(identificador) = VERDADERO entonces
                                                                       si no {empareja "="}
                                                                           DEVOLVER FALSO
si emparejar("=") = VERDADERO entonces
                                                                       fin si
                avanzar_entrada
                                                                   si no { empareja identificador }
                                                                       DEVOLVER FALSO
               si E = VERDADERO entonces
                                                                   fin si
                   DEVOLVER VERDADERO
                                                               fin
               si no
                   DEVOLVER FALSO
               fin si
```

```
Ejemplo (Función S: lógico
                                                                                           113)
inicio
    \{SIMULACIÓN\ DE\ (1)\ S \rightarrow identificador = E\}
    si emparejar(identificador) = VERDADERO entonces
                                                                     si no {empareja "="}
        avanzar entrada
                                                                         DEVOLVER FALSO
        si emparejar("=") = VERDADERO entonces
                                                                     fin si
            avanzar_entrada
             si E = VERDADERO entonces
                                                                 si no { empareja identificador }
                                                                     DEVOLVER FALSO
                DEVOLVER VERDADERO
                                                                 fin si
            si no
                                                             fin
                DEVOLVER FALSO
            fin si
```

Ejemplo (Gramática de expresiones aritméticas

9 / 113)

• Llamada a la función asociada al símbolo E

Árbol de activación

Pila de activación


```
Ejemplo (Función E: lógico
                                                               10 / 113)
   inicio
         \{SIMULACIÓN\ DE\ (2)\ E \rightarrow T\ E'\}
        si T = VFRDADFRO entonces
            si E' = VERDADERO entonces
                DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```



```
Ejemplo (Función E: lógico
                                                                12 / 113)
    inicio
        \{SIMULACIÓN\ DE\ (2)\ E 
ightarrow\ T\ E'\}
         si T = VERDADERO entonces
            si F' = VFRDADFRO entonces
                DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

Ejemplo (Gramática de expresiones aritméticas

13 / 113)

• Llamada a la función asociada al símbolo T

Árbol de activación

Pila de activación


```
Ejemplo (Función T: lógico
                                                                   <u>14</u> / 113)
    inicio
         \{SIMULACIÓN\ DE\ (5)\ T \rightarrow F\ T'\}
        si F = VFRDADFRO entonces
             si T' = verdadero entonces
                 DEVOLVER VERDADERO
             si no
                 DEVOLVER FALSO
             fin si
        si no
             DEVOLVER FALSO
        fin si
    fin
```

Ejemplo (2.- Gramática de expresiones aritméticas 15 / 113) Análisis de id = id + n * idÁrbol sintáctico $\Rightarrow id = E$ $\Rightarrow id = TE'$ $\Rightarrow id = FT'E'$

identificador

```
Ejemplo (Función T: lógico
                                                                 16 / 113)
    inicio
        \{SIMULACIÓN\ DE\ (5)\ T \rightarrow F\ T'\}
         si F = VERDADERO entonces
            si T' = verdadero entonces
                 DEVOLVER VERDADERO
            si no
                 DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

Ejemplo (Gramática de expresiones aritméticas

17 / 113)

• Llamada a la función asociada al símbolo F

Árbol de activación

Pila de activación


```
Ejemplo (Función F: lógico (primera parte)
                                                                                     18 / 113)
  inicio
   referencia ← componente léxico actual
   \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                               si no {es verdadero E}
  si emparejar ("(") = VERDADERO entonces
                                                                   retroceder_entrada(referencia)
       avanzar entrada
                                                               fin_si
      si E = VERDADERO entonces
                                                           si no {empareja "("}
           si emparejar (")") = VERDADERO entonces
                                                               retroceder_entrada(referencia)
               avanzar entrada
                                                           fin si
               DEVOLVER VERDADERO
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin_si
```

```
Ejemplo (Función F: lógico (primera parte)
                                                                                     19 / 113)
  inicio
  referencia ← componente léxico actual
    \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                               si no {es verdadero E}
  si emparejar ("(") = VERDADERO entonces
                                                                   retroceder_entrada(referencia)
                                                               fin si
       avanzar entrada
      si E = VERDADERO entonces
                                                           si no {empareja "("}
                                                               retroceder_entrada(referencia)
           si empareiar (")") = VERDADERO entonces
                                                           fin si
               avanzar entrada
               DEVOLVER VERDADERO
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin si
```

Ejemplo (2.- Gramática de expresiones aritméticas 20 / 113)

Análisis de
$$id = id + n * id$$

$$S \Rightarrow id = E$$

$$\Rightarrow id = TE'$$

$$\Rightarrow id = FT'E'$$

$$\Rightarrow id = FT'E'$$

$$\Rightarrow id = (E)T'E'$$

Error al emparejar


```
Ejemplo (Función F: lógico (primera parte)
                                                                                     21 / 113)
  inicio
  referencia ← componente léxico actual
   \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                               si no {es verdadero E}
   si emparejar ("(") = VERDADERO entonces
                                                                    retroceder_entrada(referencia)
       avanzar_entrada
                                                               fin_si
                                                            si no { empareja "(" }
      si E = VERDADERO entonces
           si emparejar (")") = VERDADERO entonces
                                                                 retroceder_entrada(referencia)
               avanzar_entrada
               DEVOLVER VERDADERO
                                                           fin si
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin si
```


Descenso recursivo con retroceso o backtracking Implementación

```
113)
Ejemplo (Función F: lógico (segunda parte)
       \{SIMULACIÓN\ DE\ (9)\ F \rightarrow identificador\ \}
                                                                 {SIMULACIÓN DE (10) F \rightarrow \text{número} }
                                                                 si emparejar (número) = VERDADERO
      si emparejar (identificador) = VERDADERO
                                                                     entonces
          entonces
                                                                         avanzar entrada
              avanzar_entrada
                                                                         DEVOLVER VERDADERO
              DEVOLVER VERDADERO
                                                                     si no {empareja número }
          si no {empareja identificador }
                                                                         DEVOLVER FALSO
              retroceder_entrada(referencia)
                                                                fin si
     fin si
                                                            fin
```



```
Ejemplo (Función F: lógico (segunda parte)
                                                                                  25 / 113)
      { SIMULACIÓN DE (9) F → identificador }
                                                               {SIMULACIÓN DE (10) F \rightarrow \text{número} }
       si empareiar (identificador) = VERDADERO
                                                               si empareiar (número) = VERDADERO
                                                                  entonces
           entonces
                                                                       avanzar_entrada
               avanzar_entrada
                                                                       DEVOLVER VERDADERO
               DEVOLVER VERDADERO
                                                                  si no { empareja número }
                                                                       DEVOLVER FALSO
          si no { empareja identificador }
                                                              fin si
              retroceder_entrada(referencia)
                                                          fin
      fin_si
```

Ejemplo (Gramática de expresiones aritméticas

26 / 113)

- Fin de la función asociada al símbolo F
- Regreso a la función asociada al símbolo T

Árbol de activación

Pila de activación


```
Ejemplo (Función T: lógico
                                                               27 / 113)
    inicio
        {SIMULACIÓN DE (5) T \rightarrow F T'}
        si F = VERDADERO entonces
             si T' = verdadero entonces
                DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

Ejemplo (Gramática de expresiones aritméticas

28 / 113)

• LLamada a la función asociada al símbolo T'

Árbol de activación

Pila de activación


```
Ejemplo (Función T': lógico
                                                                                                113)
 inicio
       referencia ← componente léxico actual
      {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                       si no
      si emparejar ("*") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
          avanzar entrada
                                                                       fin si
          si F = VFRDADFRO entonces
                                                                   si no {empareja "*" }
              si T' = VERDADERO entonces
                                                                       retroceder_entrada(referencia)
                   devolver VFRDADFRO
                                                                   fin si
              si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                   retroceder_entrada(referencia)
                                                                   DEVOLVER VERDADERO
              fin si
                                                              fin
```

```
Ejemplo (Función T': lógico
                                                                                                 113)
  inicio
      referencia ← componente léxico actual
       {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                       si no
      si emparejar ("*") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
                                                                       fin si
           avanzar_entrada
                                                                   si no {empareja "*" }
          si F = VERDADERO entonces
                                                                       retroceder_entrada(referencia)
               si T' = VERDADERO entonces
                   devolver VERDADERO
                                                                   fin si
               si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                                                                   DEVOLVER VERDADERO
                   retroceder_entrada(referencia)
               fin si
                                                               fin
```



```
Ejemplo (Función T': lógico
                                                                                                  113)
   inicio
       referencia ← componente léxico actual
       {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                        si no
                                                                             retroceder_entrada(referencia)
si emparejar ("*") = VERDADERO entonces
                                                                        fin si
                                                                     si no {empareja "*"
            avanzar entrada
           si F = VFRDADFRO entonces
                                                                          retroceder_entrada(referencia)
                si T' = VFRDADFRO entonces
                    devolver VFRDADFRO
                                                                    fin si
                si no
                                                                    {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                    retroceder_entrada(referencia)
                                                                    DEVOLVER VERDADERO
                fin si
                                                                fin
```



```
Ejemplo (Función T': lógico
                                                                                                  113)
  inicio
      referencia ← componente léxico actual
      {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                        si no
      si emparejar ("*") = VERDADERO entonces
                                                                             retroceder_entrada(referencia)
           avanzar_entrada
                                                                        fin si
          si F = VERDADERO entonces
                                                                    si no {empareja "*" }
               si T' = VERDADERO entonces
                                                                        retroceder_entrada(referencia)
                   devolver VFRDADFRO
                                                                    fin si
               si no
                                                                     \{SIMULACIÓN\ DE\ (7)\ T' \rightarrow \epsilon\}
                   retroceder_entrada(referencia)
                                                                     DEVOLVER VERDADERO
               fin si
                                                               fin
```


Ejemplo (Gramática de expresiones aritméticas

36 / 113)

- Fin de la función asociada al símbolo T'
- Regreso a la función asociada al símbolo T

Árbol de activación

Pila de activación


```
Ejemplo (Función T: lógico
                                                              37 / 113)
    inicio
        {SIMULACIÓN DE (5) T \rightarrow F T}
        si F = VERDADERO entonces
            si T' = verdadero entonces
                 DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

Ejemplo (Gramática de expresiones aritméticas

38 / 113)

- Fin de la función asociada al símbolo T
- Regreso a la función asociada al símbolo E

Árbol de activación

Pila de activación


```
Ejemplo (Función E: lógico
                                                                39 / 113)
    inicio
        \{SIMULACIÓN\ DE\ (2)\ E \rightarrow T\ E'\}
        si T = VERDADERO entonces
             si E' = VERDADERO entonces
                DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

Ejemplo (Gramática de expresiones aritméticas

40 / 113

• 1^a activación de la función asociada al símbolo E'

Árbol de activación

Pila de activación


```
Ejemplo (Función E': lógico
                                                                                        <u>41</u> / 113)
inicio
     referencia ← componente léxico actual
    { SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                         si no
    si emparejar ("+") = VERDADERO entonces
                                                                              retroceder_entrada(referencia)
         avanzar entrada
                                                                         fin si
        si T = VFRDADFRO entonces
                                                                     si no
             si E' = VERDADERO entonces
                                                                         retroceder_entrada(referencia)
                 DEVOLVER VERDADERO
                                                                     fin si
             si no {empareja "+" }
                                                                     \{SIMULACIÓN DE (4) E' \rightarrow \epsilon\}
                 retroceder_entrada(referencia)
                                                                     DEVOLVER VERDADERO
             fin si
                                                                fin
```

```
Ejemplo (Función E': lógico
                                                                                                113)
inicio
    referencia ← componente léxico actual
      { SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                         si no
    si emparejar ("+") = VERDADERO entonces
                                                                             retroceder_entrada(referencia)
                                                                         fin si
         avanzar_entrada
         si T = VERDADERO entonces
                                                                    si no
             si E' = VERDADERO entonces
                                                                         retroceder_entrada(referencia)
                 DEVOLVER VERDADERO
                                                                    fin si
             si no {empareja "+" }
                                                                    { SIMULACIÓN DE (4) E' \rightarrow \epsilon}
                 retroceder_entrada(referencia)
                                                                    DEVOLVER VERDADERO
             fin si
                                                                fin
```

Ejemplo (2.- Gramática de expresiones aritméticas 43 / 113) Análisis de id = id + n * idÁrbol sintáctico id = Eid = TE'id = FT'E'id = id T'E' $id = id \in E'$ $id = id \epsilon + TE'$ Emparejamiento de + identificador identificador

```
Ejemplo (Función E': lógico
                                                                                       44 / 113)
inicio
    referencia ← componente léxico actual
     {SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                        si no
     si emparejar ("+") = VERDADERO entonces
                                                                             retroceder_entrada(referencia)
          avanzar_entrada
                                                                        fin si
                                                                    si no
        si T = VFRDADFRO entonces
                                                                        retroceder_entrada(referencia)
             si F' = VFRDADFRO entonces
                                                                    fin si
                 DEVOLVER VERDADERO
                                                                    { SIMULACIÓN DE (4) E' \rightarrow \epsilon}
             si no {empareja "+" }
                                                                    DEVOLVER VERDADERO
                 retroceder_entrada(referencia)
                                                               fin
             fin si
```

```
Ejemplo (Función E': lógico
                                                                                       45 / 113)
inicio
    referencia ← componente léxico actual
    {SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                        si no
    si emparejar ("+") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
         avanzar entrada
         si T = VERDADERO entonces
                                                                        fin si
                                                                   si no
            si E' = VERDADERO entonces
                                                                        retroceder_entrada(referencia)
                 DEVOLVER VERDADERO
                                                                   fin si
            si no {empareja "+" }
                                                                    { SIMULACIÓN DE (4) E' \rightarrow \epsilon}
                 retroceder_entrada(referencia)
                                                                   DEVOLVER VERDADERO
            fin_si
                                                               fin
```

Ejemplo (Gramática de expresiones aritméticas

46 / 113)

• Llamada a la función asociada al símbolo T

Árbol de activación

Pila de activación


```
Ejemplo (Función T: lógico
                                                                  <u>47</u> / 113)
    inicio
         \{SIMULACIÓN\ DE\ (5)\ T \rightarrow F\ T'\}
        si F = VFRDADFRO entonces
             si T' = verdadero entonces
                 DEVOLVER VERDADERO
             si no
                 DEVOLVER FALSO
             fin si
        si no
             DEVOLVER FALSO
        fin si
    fin
```



```
Ejemplo (Función T: lógico
                                                                49 / 113)
    inicio
        \{SIMULACIÓN\ DE\ (5)\ T \rightarrow F\ T'\}
         si F = VERDADERO entonces
            si T' = verdadero entonces
                 DEVOLVER VERDADERO
            si no
                 DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

Ejemplo (Gramática de expresiones aritméticas

50 / 113)

• Llamada a la función asociada al símbolo F

Árbol de activación

Pila de activación


```
Ejemplo (Función F: lógico (primera parte)
                                                                                     51 / 113)
  inicio
   referencia ← componente léxico actual
   \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                               si no {es verdadero E}
  si emparejar ("(") = VERDADERO entonces
                                                                   retroceder_entrada(referencia)
       avanzar entrada
                                                               fin_si
      si E = VERDADERO entonces
                                                           si no {empareja "("}
           si emparejar (")") = VERDADERO entonces
                                                               retroceder_entrada(referencia)
               avanzar entrada
                                                           fin si
               DEVOLVER VERDADERO
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin_si
```

```
Ejemplo (Función F: lógico (primera parte)
                                                                                     52 / 113)
  inicio
  referencia ← componente léxico actual
    \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                               si no {es verdadero E}
  si emparejar ("(") = VERDADERO entonces
                                                                   retroceder_entrada(referencia)
                                                               fin si
       avanzar entrada
      si E = VERDADERO entonces
                                                           si no {empareja "("}
                                                               retroceder_entrada(referencia)
           si empareiar (")") = VERDADERO entonces
                                                           fin si
               avanzar entrada
               DEVOLVER VERDADERO
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin si
```



```
Ejemplo (Función F: lógico (primera parte)
                                                                                     54 / 113)
  inicio
  referencia ← componente léxico actual
   \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                               si no {es verdadero E}
   si emparejar ("(") = VERDADERO entonces
                                                                    retroceder_entrada(referencia)
       avanzar_entrada
                                                               fin_si
                                                            si no { empareja "(" }
      si E = VERDADERO entonces
           si emparejar (")") = VERDADERO entonces
                                                                 retroceder_entrada(referencia)
               avanzar_entrada
               DEVOLVER VERDADERO
                                                           fin si
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin si
```



```
Ejemplo (Función F: lógico (segunda parte)
                                                                                    56 / 113)
       \{SIMULACIÓN\ DE\ (9)\ F \rightarrow identificador\ \}
                                                                {SIMULACIÓN DE (10) F \rightarrow \text{número} }
                                                                si emparejar (número) = VERDADERO
      si emparejar (identificador) = VERDADERO
                                                                    entonces
          entonces
                                                                         avanzar entrada
              avanzar_entrada
                                                                         DEVOLVER VERDADERO
              DEVOLVER VERDADERO
                                                                    si no {empareja número }
          si no {empareja identificador }
                                                                        DEVOLVER FALSO
              retroceder_entrada(referencia)
                                                                fin si
     fin si
                                                            fin
```



```
Ejemplo (Función F: lógico (segunda parte)
                                                                                  58 / 113)
      {SIMULACIÓN DE (9) F → identificador }
                                                              {SIMULACIÓN DE (10) F \rightarrow \text{número} }
       si emparejar (identificador) = VERDADERO
                                                              si emparejar (número) = VERDADERO
                                                                  entonces
          entonces
                                                                       avanzar entrada
              avanzar_entrada
                                                                       DEVOLVER VERDADERO
              DEVOLVER VERDADERO
                                                                  si no { empareja número }
           si no {empareia identificador }
                                                                      DEVOLVER FALSO
               retroceder_entrada(referencia)
                                                              fin_si
                                                          fin
     fin si
```



```
Ejemplo (Función F: lógico (segunda parte)
                                                                                   60 / 113)
      { SIMULACIÓN DE (9) F → identificador }
                                                        { SIMULACIÓN DE (10) F \rightarrow \text{número} }
      si empareiar (identificador) = VERDADERO
          entonces
                                                               si\ empareiar\ (número) = VERDADERO
              avanzar entrada
                                                                   entonces
              DEVOLVER VERDADERO
                                                                       avanzar entrada
          si no { empareja identificador }
                                                                       DEVOLVER VERDADERO
              retroceder_entrada(referencia)
                                                                   si no {empareja número }
      fin_si
                                                                       DEVOLVER FALSO
                                                               fin si
                                                           fin
```



```
Ejemplo (Función F: lógico (segunda parte)
                                                                                     62 / 11<u>3)</u>
      \{SIMULACIÓN\ DE\ (9)\ F \rightarrow identificador\ \}
                                                                 \{SIMULACIÓN\ DE\ (10)\ F \rightarrow número\ \}
      si emparejar (identificador) = VERDADERO
                                                          si empareiar (número) = VERDADERO
          entonces
              avanzar_entrada
                                                                      entonces
              DEVOLVER VERDADERO
                                                                           avanzar_entrada
          si no {empareja identificador }
                                                                           DEVOLVER VERDADERO
              retroceder_entrada(referencia)
      fin si
                                                                     si no {empareja número }
                                                                         DEVOLVER FALSO
                                                                 fin si
                                                             fin
```

Ejemplo (Gramática de expresiones aritméticas

63 / 113)

- Fin de la función asociada al símbolo F
- Regreso a la función asociada al símbolo T

Árbol de activación

Pila de activación


```
Ejemplo (Función T: lógico
                                                               64 / 113)
    inicio
        {SIMULACIÓN DE (5) T \rightarrow F T}
        si F = VERDADERO entonces
             si T' = verdadero entonces
                DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

Ejemplo (Gramática de expresiones aritméticas

65 / 113)

• 1^a activación de la función asociada al símbolo T'

Árbol de activación

Pila de activación


```
Ejemplo (Función T': lógico
                                                                                                113)
 inicio
       referencia ← componente léxico actual
      {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                       si no
      si emparejar ("*") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
          avanzar entrada
                                                                       fin si
          si F = VFRDADFRO entonces
                                                                   si no {empareja "*" }
              si T' = VERDADERO entonces
                                                                       retroceder_entrada(referencia)
                   devolver VFRDADFRO
                                                                   fin si
              si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                   retroceder_entrada(referencia)
                                                                   DEVOLVER VERDADERO
              fin si
                                                              fin
```

```
Ejemplo (Función T': lógico
                                                                                        67 / 113)
  inicio
      referencia ← componente léxico actual
       {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                       si no
      si emparejar ("*") = VERDADERO entonces
                                                                           retroceder_entrada(referencia)
                                                                       fin si
          avanzar_entrada
                                                                  si no {empareja "*" }
          si F = VERDADERO entonces
                                                                       retroceder_entrada(referencia)
               si T' = VERDADERO entonces
                   devolver VERDADERO
                                                                  fin si
               si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                                                                  DEVOLVER VERDADERO
                   retroceder_entrada(referencia)
               fin si
                                                              fin
```



```
Ejemplo (Función T': lógico
                                                                                         69 / 113)
   inicio
       referencia ← componente léxico actual
       {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                        si no
si emparejar ("*") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
                                                                        fin si
             avanzar_entrada
                                                                   si no {empareja "*" }
                                                                        retroceder_entrada(referencia)
           si F = VFRDADFRO entonces
                                                                   fin si
                si T' = VERDADERO entonces
                                                                    {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                    devolver VFRDADFRO
                                                                   DEVOLVER VERDADERO
                si no
                                                               fin
                    retroceder_entrada(referencia)
                fin si
```

```
Ejemplo (Función T': lógico
                                                                                        70 / 113)
 inicio
      referencia ← componente léxico actual
      {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                       si no
      si emparejar ("*") = VERDADERO entonces
                                                                           retroceder_entrada(referencia)
          avanzar entrada
           si F = VERDADERO entonces
                                                                       fin si
                                                                  si no {empareja "*" }
              si T' = VERDADERO entonces
                                                                       retroceder_entrada(referencia)
                   devolver VFRDADFRO
                                                                  fin si
              si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                   retroceder_entrada(referencia)
                                                                   DEVOLVER VERDADERO
              fin si
                                                              fin
```

Ejemplo (Gramática de expresiones aritméticas

71 / 113)

• I lamada a la función asociada al símbolo F

Árbol de activación

Pila de activación


```
Ejemplo (Función F: lógico (primera parte)
                                                                                     72 / 113)
  inicio
   referencia ← componente léxico actual
   \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                               si no {es verdadero E}
  si emparejar ("(") = VERDADERO entonces
                                                                   retroceder_entrada(referencia)
       avanzar entrada
                                                               fin_si
      si E = VERDADERO entonces
                                                           si no {empareja "("}
           si emparejar (")") = VERDADERO entonces
                                                               retroceder_entrada(referencia)
               avanzar entrada
                                                           fin si
               DEVOLVER VERDADERO
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin_si
```

```
Ejemplo (Función F: lógico (primera parte)
                                                                                     73 / 113)
  inicio
  referencia ← componente léxico actual
    \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                               si no {es verdadero E}
  si emparejar ("(") = VERDADERO entonces
                                                                   retroceder_entrada(referencia)
                                                               fin si
       avanzar entrada
      si E = VERDADERO entonces
                                                           si no {empareja "("}
                                                               retroceder_entrada(referencia)
           si empareiar (")") = VERDADERO entonces
                                                           fin si
               avanzar entrada
               DEVOLVER VERDADERO
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin si
```

Ejemplo (2.- Gramática de expresiones aritméticas 74 / 113)

Análisis de id = id + n * id

$$S \Rightarrow id = E$$

$$\Rightarrow id = TE'$$

$$\Rightarrow id = FT'E'$$

$$\Rightarrow id = idT'E'$$

$$\Rightarrow id = id \in E'$$

$$\Rightarrow id = id \in E'$$

$$\Rightarrow id = id \in FT'E'$$

Error al emparejar


```
Ejemplo (Función F: lógico (primera parte)
                                                                                     75 / 113)
  inicio
  referencia ← componente léxico actual
   \{SIMULACIÓN DE (8) F \rightarrow (E)\}
                                                                si no {es verdadero E}
   si emparejar ("(") = VERDADERO entonces
                                                                    retroceder_entrada(referencia)
       avanzar_entrada
                                                                fin_si
                                                            si no { empareja "(" }
      si E = VERDADERO entonces
           si emparejar (")") = VERDADERO entonces
                                                                 retroceder_entrada(referencia)
               avanzar_entrada
               DEVOLVER VERDADERO
                                                           fin si
           si no {empareja ")"}
               retroceder_entrada(referencia)
           fin si
```



```
Ejemplo (Función F: lógico (segunda parte)
                                                                                    77 / 113)
       \{SIMULACIÓN\ DE\ (9)\ F \rightarrow identificador\ \}
                                                                {SIMULACIÓN DE (10) F \rightarrow \text{número} }
                                                                si emparejar (número) = VERDADERO
      si emparejar (identificador) = VERDADERO
                                                                    entonces
          entonces
                                                                         avanzar entrada
              avanzar_entrada
                                                                         DEVOLVER VERDADERO
              DEVOLVER VERDADERO
                                                                    si no {empareja número }
          si no {empareja identificador }
                                                                        DEVOLVER FALSO
              retroceder_entrada(referencia)
                                                                fin si
     fin si
                                                            fin
```

Ejemplo (2.- Gramática de expresiones aritméticas 78 / 113)

Análisis de id = id + n * id

$$S \Rightarrow id = E$$

$$\Rightarrow id = TE'$$

$$\frac{2}{5} id = FT'E'$$

$$\Rightarrow id = idT'E'$$

$$\Rightarrow id = id \cdot E'$$

Emparejamiento de id


```
Ejemplo (Función F: lógico (segunda parte)
                                                                                  79 / 113)
      { SIMULACIÓN DE (9) F → identificador }
                                                               {SIMULACIÓN DE (10) F \rightarrow \text{número} }
       si empareiar (identificador) = VERDADERO
                                                               si empareiar (número) = VERDADERO
                                                                  entonces
           entonces
                                                                       avanzar_entrada
               avanzar_entrada
                                                                       DEVOLVER VERDADERO
               DEVOLVER VERDADERO
                                                                  si no { empareja número }
                                                                       DEVOLVER FALSO
          si no { empareja identificador }
                                                              fin si
              retroceder_entrada(referencia)
                                                          fin
      fin_si
```

Ejemplo (Gramática de expresiones aritméticas

80 / 113)

- Fin de la función asociada al símbolo F
- Regreso a la 1ª activación de la función asociada al símbolo T'

Árbol de activación

Pila de activación


```
Ejemplo (Función T': lógico
                                                                                        81 / 113)
 inicio
      referencia ← componente léxico actual
      {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                       si no
      si emparejar ("*") = VERDADERO entonces
                                                                           retroceder_entrada(referencia)
          avanzar entrada
                                                                       fin si
          si F = VERDADERO entonces
                si T' = VERDADERO entonces
                                                                  si no {empareja "*" }
                                                                       retroceder_entrada(referencia)
                   devolver VFRDADFRO
                                                                  fin si
              si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                   retroceder_entrada(referencia)
                                                                   DEVOLVER VERDADERO
              fin si
                                                              fin
```

Ejemplo (Gramática de expresiones aritméticas

82 / 113)

• 2ª activación de la función asociada al símbolo T'

Árbol de activación

Pila de activación


```
Ejemplo (Función T': lógico
                                                                                                113)
 inicio
       referencia ← componente léxico actual
      {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                       si no
      si emparejar ("*") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
          avanzar entrada
                                                                       fin si
          si F = VFRDADFRO entonces
                                                                   si no {empareja "*" }
              si T' = VERDADERO entonces
                                                                       retroceder_entrada(referencia)
                   devolver VFRDADFRO
                                                                   fin si
              si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                   retroceder_entrada(referencia)
                                                                   DEVOLVER VERDADERO
              fin si
                                                              fin
```

```
Ejemplo (Función T': lógico
                                                                                                 113)
  inicio
      referencia ← componente léxico actual
       {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                       si no
      si emparejar ("*") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
                                                                       fin si
           avanzar_entrada
                                                                   si no {empareja "*" }
          si F = VERDADERO entonces
                                                                       retroceder_entrada(referencia)
               si T' = VERDADERO entonces
                   devolver VERDADERO
                                                                   fin si
               si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                                                                   DEVOLVER VERDADERO
                   retroceder_entrada(referencia)
               fin si
                                                               fin
```

Ejemplo (2.- Gramática de expresiones aritméticas 85 / 11<u>3)</u> Análisis de id = id + n * idÁrbol sintáctico id = Eid = TE'id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id T'E'$ identificador $id = id \epsilon + n * id *FT'E'$ Error al emparejar

```
Ejemplo (Función T': lógico
                                                                                                 113)
                                                                                         86 /
   inicio
       referencia ← componente léxico actual
       {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                        si no
                                                                            retroceder_entrada(referencia)
si emparejar ("*") = VERDADERO entonces
                                                                        fin si
                                                                     si no {empareja "*"
            avanzar entrada
           si F = VFRDADFRO entonces
                                                                         retroceder_entrada(referencia)
                si T' = VFRDADFRO entonces
                    devolver VFRDADFRO
                                                                    fin si
                si no
                                                                    {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                    retroceder_entrada(referencia)
                                                                    DEVOLVER VERDADERO
                fin si
                                                               fin
```

Ejemplo (2.- Gramática de expresiones aritméticas 87 / 113) Análisis de id = id + n * id Árbol sintáctico

Retroceso


```
Ejemplo (Función T': lógico
                                                                                                   113)
   inicio
       referencia ← componente léxico actual
       {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                         si no
si emparejar ("*") = VERDADERO entonces
                                                                              retroceder_entrada(referencia)
                                                                         fin si
            avanzar entrada
                                                                     si no {empareja "*" }
           si F = VFRDADFRO entonces
                                                                         retroceder_entrada(referencia)
                si T' = VFRDADFRO entonces
                                                                     fin si
                    devolver VFRDADFRO
                                                                      \{SIMULACIÓN\ DE\ (7)\ T' \rightarrow \epsilon\}
                si no
                                                                      DEVOLVER VERDADERO
                    retroceder_entrada(referencia)
                fin si
                                                                fin
```

Ejemplo (2.- Gramática de expresiones aritméticas 89 / 113)

Implementación

Ejemplo (Gramática de expresiones aritméticas

90 / 113)

- Fin de la 2^a activación de la función asociada al símbolo T'
- Regreso a la 1ª activación de la función asociada al símbolo T'

Árbol de activación

Pila de activación


```
Ejemplo (Función T': lógico
                                                                                                 113)
  inicio
      referencia ← componente léxico actual
      {SIMULACIÓN DE (6) T' \rightarrow *FT'}
                                                                        si no
      si empareiar ( '*" ) = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
           avanzar entrada
                                                                        fin si
          si F = VERDADERO entonces
                                                                   si no {empareja "*" }
                si T' = VERDADERO entonces
                                                                        retroceder_entrada(referencia)
                    devolver VERDADERO
                                                                   fin si
               si no
                                                                   {SIMULACIÓN DE (7) T' \rightarrow \epsilon}
                                                                   DEVOLVER VERDADERO
                   retroceder_entrada(referencia)
               fin si
                                                               fin
```

Ejemplo (Gramática de expresiones aritméticas

92 / 113)

- Fin de la 1^a activación de la función asociada al símbolo T'
- Regreso a la función asociada al símbolo T

Árbol de activación

Pila de activación


```
Ejemplo (Función T: lógico
                                                         93 / 113)
   inicio
       {SIMULACIÓN DE (5) T \rightarrow F T'}
       si F = VERDADERO entonces
           si T' = verdadero entonces
               DEVOLVER VERDADERO
           si no
               DEVOLVER FALSO
           fin si
       si no
           DEVOLVER FALSO
       fin si
   fin
```

Implementación

Ejemplo (Gramática de expresiones aritméticas 94

- Fin de la llamada a la función asociada al símbolo T
- Regreso a la 1ª activación de la función asociada al símbolo E'

Árbol de activación

Pila de activación

113)

Ejemplo (2.- Gramática de expresiones aritméticas 95 / 113)


```
Ejemplo (Función E': lógico
                                                                                       96 / 113)
inicio
    referencia ← componente léxico actual
    {SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                        si no
    si emparejar ("+") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
         avanzar entrada
                                                                        fin si
        si T = VERDADERO entonces
              si E' = VERDADERO entonces
                                                                    si no {empareja "+" }
                                                                        retroceder_entrada(referencia)
                 DEVOLVER VERDADERO
                                                                    fin si
            si no
                                                                    { SIMULACIÓN DE (4) E' \rightarrow \epsilon}
                 retroceder_entrada(referencia)
                                                                    DEVOLVER VERDADERO
             fin si
                                                               fin
```

Ejemplo (Gramática de expresiones aritméticas

97 / 113)

• 2ª activación de la función asociada al símbolo E'

Árbol de activación

Pila de activación


```
Ejemplo (Función E': lógico
                                                                                       98 / 113)
inicio
     referencia ← componente léxico actual
    { SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                        si no
    si emparejar ("+") = VERDADERO entonces
                                                                             retroceder_entrada(referencia)
        avanzar entrada
                                                                        fin si
        si T = VFRDADFRO entonces
                                                                    si no
             si E' = VERDADERO entonces
                                                                        retroceder_entrada(referencia)
                 DEVOLVER VERDADERO
                                                                    fin si
             si no {empareja "+" }
                                                                    \{SIMULACIÓN DE (4) E' \rightarrow \epsilon\}
                 retroceder_entrada(referencia)
                                                                    DEVOLVER VERDADERO
             fin si
                                                               fin
```

```
Ejemplo (Función E': lógico
                                                                                                 113)
inicio
    referencia ← componente léxico actual
      { SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                         si no
    si emparejar ("+") = VERDADERO entonces
                                                                             retroceder_entrada(referencia)
                                                                         fin si
         avanzar_entrada
         si T = VERDADERO entonces
                                                                    si no
             si E' = VERDADERO entonces
                                                                         retroceder_entrada(referencia)
                 DEVOLVER VERDADERO
                                                                    fin si
             si no {empareja "+" }
                                                                     { SIMULACIÓN DE (4) E' \rightarrow \epsilon}
                 retroceder_entrada(referencia)
                                                                    DEVOLVER VERDADERO
             fin si
                                                                fin
```

Ejemplo (2.- Gramática de expresiones aritméticas 100 / 113)

Error al emparejar

Ejemplo (2.- Gramática de expresiones aritméticas 102 / 113) Análisis de id = id + n * idÁrbol sintáctico id = Eid = TE'id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id T'E'$ identificador $id = id \epsilon + n * id \epsilon E'$ identificador Retroceso

```
Ejemplo (Función E': lógico
                                                                                     103 / 113)
inicio
    referencia ← componente léxico actual
     { SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                        si no
    si emparejar ("+") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
         avanzar_entrada
                                                                        fin si
         si T = VERDADERO entonces
                                                                   si no {empareia "+" }
             si E' = VERDADERO entonces
                                                                        retroceder_entrada(referencia)
                 DEVOLVER VERDADERO
                                                                    fin si
             si no
                                                                     {SIMULACIÓN DE (4) E' \rightarrow \epsilon}
                 retroceder_entrada(referencia)
                                                                     DEVOLVER VERDADERO
             fin si
                                                               fin
```

Ejemplo (2.- Gramática de expresiones aritméticas 104 / 113)

Análisis de id = id + n * id

$$S \Rightarrow id = E$$

$$\Rightarrow id = TE'$$

$$\Rightarrow id = FT'E'$$

$$\Rightarrow id = idT'E'$$

$$\Rightarrow id = id \in E'$$

$$\Rightarrow id = id \in E'$$

$$\Rightarrow id = id \in FT'E'$$

$$\Rightarrow id = id \in TE'$$

$$\Rightarrow id = id \in T$$

Ejemplo (Gramática de expresiones aritméticas 105 / 113)

- Fin de la 2ª activación de la función asociada al símbolo E'
- Regreso a la 1ª activación de la función asociada al símbolo E'

Árbol de activación

Pila de activación


```
Ejemplo (Función E': lógico
                                                                                     106 / 113)
inicio
    referencia ← componente léxico actual
    {SIMULACIÓN DE (3) E' \rightarrow + T E'}
                                                                        si no
    si emparejar ("+") = VERDADERO entonces
                                                                            retroceder_entrada(referencia)
         avanzar entrada
                                                                        fin si
        si T = VFRDADFRO entonces
                                                                   si no {empareja "+" }
             si E' = VERDADERO entonces
                  DEVOLVER VERDADERO
                                                                        retroceder_entrada(referencia)
                                                                   fin si
            si no
                                                                    { SIMULACIÓN DE (4) E' \rightarrow \epsilon}
                 retroceder_entrada(referencia)
                                                                   DEVOLVER VERDADERO
             fin si
                                                               fin
```

Ejemplo (Gramática de expresiones aritméticas 107 / 113)

- Fin de la 1^a activación de la función asociada al símbolo E'
- Regreso a la llamada a la función asociada al símbolo E

Árbol de activación

Pila de activación


```
Ejemplo (Función E: lógico
                                                              108 / 113)
    inicio
        \{SIMULACIÓN\ DE\ (2)\ E \rightarrow T\ E'\}
        si T = VERDADERO entonces
            si E' = VERDADERO entonces
                 DEVOLVER VERDADERO
            si no
                DEVOLVER FALSO
            fin si
        si no
            DEVOLVER FALSO
        fin si
    fin
```

Descenso recursivo con retroceso o backtracking Implementación

Ejemplo (Gramática de expresiones aritméticas 109 /

- Fin de la llamada a la función asociada al símbolo E
- Regreso a la llamada a la función asociada al símbolo S

Árbol de activación

Pila de activación


```
Ejemplo (Función S: lógico
                                                                                110 / 113)
inicio
    \{SIMULACIÓN\ DE\ (1)\ S \rightarrow identificador = E\}
    si emparejar(identificador) = VERDADERO entonces
                                                                    si no {empareja "="}
        avanzar entrada
                                                                        DEVOLVER FALSO
        si emparejar("=") = VERDADERO entonces
                                                                    fin si
            avanzar entrada
                                                                si no { empareja identificador }
            si E = VERDADERO entonces
                                                                    DEVOLVER FALSO
                 DEVOLVER VERDADERO
                                                                fin si
            si no
                                                            fin
                DEVOLVER FALSO
            fin si
```

Ejemplo (Gramática de expresiones aritméticas 111 / 113)

• Fin de la llamada a la función asociada al símbolo inicial S

Árbol de activación

Pila de activación

Ejemplo (2.- Gramática de expresiones aritméticas 112 / 113)

Contenido de la sección

- Descenso recursivo con retroceso o backtracking
 - Descripción
 - Implementación
 - Limitaciones o inconvenientes

Limitaciones o inconvenientes

Limitaciones o inconvenientes

1 / 2

1.- Ineficiencia computacional

- Las reglas de la gramática siempre se simulan según un orden preestablecido, que puede provocar numerosos retrocesos para probar otras reglas.
- Si se ha generado código durante el análisis entonces dicho código debe ser descartado si se produce un retroceso.

Limitaciones o inconvenientes

Limitaciones o inconvenientes

2 / 2

2.- No localización de errores

 Si la cadena de entrada es incorrecta, no localiza la ubicación del error, ya que siempre termina en la función asociada del símbolo inicial.

3.- Riesgo de recursión infinita

 Las funciones pueden provocar una recursión infinita si la gramática posee recursividad inmediata o general por la izquierda.

Limitaciones o inconvenientes

Ejemplos (Gramáticas con recursividad por la izquierda)

- 1.- Gramática con recursividad inmediata por la izquierda.
- 2.- Gramática con recursividad general por la izquierda.

Limitaciones o inconvenientes

Ejemplo (1.- Recursividad inmediata por la izquierda 1/2)

Esta gramática genera sentencias de asignación múltiple.

```
P = \{
 (1) S \longrightarrow L E
 (2) L \longrightarrow L identificador =
 (3) L \longrightarrow identificador =
 (4) E \longrightarrow E + T
  (5) E \longrightarrow T
 (6) T \longrightarrow T * F
 (7) T \longrightarrow F
 (8) F \longrightarrow (E)
 (9) F \longrightarrow identification
(10) F \longrightarrow \text{número}
```

Limitaciones o inconvenientes

Ejemplo (1.- Recursividad inmediata por la izquierda 2 / 2)

• Se genera una recursión infinita al analizar la sentencia:

identificador = identificador = número

Árbol de activación

Árbol sintáctico

Limitaciones o inconvenientes

Ejemplo (2.- Recursividad general por la izquierda

. / 2)

```
P = \{
```

- (1) $S \longrightarrow A$ a
- (2) $A \longrightarrow S \mathbf{b}$
- (3) $A \longrightarrow \mathbf{c}$

}

• Esta gramática genera el lenguaje $L(G) = c(ba)^*a$

Limitaciones o inconvenientes

Ejemplo (2.- Recursividad general por la izquierda

2 / 2)

• Se genera una recursión infinita al analizar la sentencia:

cbaa

Árbol de activación

Árbol sintáctico

Contenido del tema

- 1 Introducción
- 2 Descenso recursivo con retroceso o backtracking
- 3 Análisis sintáctico descendente predictivo
- 4 Detección y recuperación de errores

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Descripción

Objetivo

- Comprobar si la gramática puede generar la cadena de entrada mediante
 - la generación de una derivación por la izquierda
 - o la construcción del árbol sintáctico de forma descendente.
- Utiliza una tabla predictiva para determinar qué regla de producción (si existe) se puede usar en cada paso

Descripción

Notas (Tabla predictiva)

- La tabla predictiva indica cuál es la única regla de producción (si existe) que permite continuar el análisis.
- Si la tabla predictiva no indica ninguna regla entonces la cadena de entrada no puede ser generada por la gramática.

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

				la pre										
		Símbolo de entrada												
	id	id = + * () número \$												
5	1													
E	2				2		2							
E'			3			4		4						
T	5				5		5							
T'			7	6		7		7						
F	9				8		10							

Análisis sintáctico descendente predictivo Descripción

Ejemplo (Gramática de expresiones aritméticas

/ 27)

• Análisis mediante descenso recursivo con retroceso:

identificador = identificador + número * identificador \$

Descripción

Ejemplo (Gramática de expresiones aritméticas

/ 27)

Análisis de
$$id = id + n * id $$$
S

Árbol sintáctico

S

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow$ número

					dictiv								
		Símbolo de entrada											
	id	=	+	*	()	número	\$					
5	1												
Ε	2				2		2						
E'			3			4		4					
T	5				5		5						
T'			7	6		7		7					
F	9				8		10						

Descripción

Descripción

Ejemplo (Gramática de expresiones aritméticas

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
 - (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) T'
- (7) $T' \rightarrow \epsilon$
- (8) $F \to (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow$ número

				la pre									
		Símbolo de entrada											
	id	=	+	*	()	número	\$					
5	1												
E	2				2		2						
E'			3			4		4					
T	5				5		5						
T'			7	6		7		7					
F	9				8		10						

Descripción

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow \text{número}$

				la pre									
		Símbolo de entrada											
	id	id = + * () número \$											
S	1												
E	2				2		2						
E'			3			4		4					
T	5				5		5						
T'			7	6		7		7					
F	9				8		10						

Descripción

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

				la pre								
		Símbolo de entrada										
	id	=	+	*	()	número	\$				
5	1											
E	2				2		2					
E'			3			4		4				
T	5				5		5					
T'			7	6		7		7				
F	9				8		10					

Descripción

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

	Tabla predictiva Símbolo de entrada													
	id	id = + * () número \$												
S	1													
E	2				2		2							
E'			3			4		4						
T	5				5		5							
T'			7	6		7		7						
F	9				8		10							

Descripción

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

Tabla predictiva Símbolo de entrada												
id	id = + * () número \$											
1												
2				2		2						
		3			4		4					
5				5		5						
		7	6		7		7					
9				8		10						
	1 2 5	5	Sí id = + 1 2 3 5 7	Símbolc	Símbolo de e id = + * (Símbolo de entrada	Símbolo de entrada					

Descripción

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow$ número

				la pre										
		Símbolo de entrada												
	id	id = + * () número \$												
S	1													
E	2				2		2							
E'			3			4		4						
T	5				5		5							
T'			7	6		7		7						
F	9				8		10							

Descripción

Ejemplo (Gramática de expresiones aritméticas 17 / 27Análisis de id = id + n * id \$Árbol sintáctico id = E $\begin{array}{cccc} 1 \\ & \\ \hline \Rightarrow & \text{id} = TE' \\ & \\ \hline \Rightarrow & \text{id} = FT'E' \\ \hline \Rightarrow & \text{id} = \text{id}T'E' \\ \hline \Rightarrow & \text{id} = \text{id} \epsilon E' \\ \hline \Rightarrow & \text{id} = \text{id} \epsilon + TE' \\ \hline \Rightarrow & \text{id} = \text{id} \epsilon + FT'E' \\ \hline \end{array}$ $\mathsf{id} = \mathsf{id} \; \epsilon + \mathit{FT'E'}$ identificador identificador

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow$ número

					la pre										
			Símbolo de entrada												
		id	id = + * () número \$												
5	; [1													
E		2				2		2							
E	'			3			4		4						
7		5				5		5							
7	'			7	6		7		7						
F		9				8		10							

Descripción

Ejemplo (Gramática de expresiones aritméticas Análisis de id = id + n * id \$Árbol sintáctico $\begin{array}{cccc} 1 & & & \\ \Rightarrow & \text{id} & = TE' \\ \Rightarrow & \text{id} & = FT'E' \\ \Rightarrow & \text{id} & = \text{id}T'E' \\ \Rightarrow & \text{id} & = \text{id} \in E' \\ \Rightarrow & \text{id} & = \text{id} \in E' \\ \Rightarrow & \text{id} & = \text{id} \in + TE' \\ \Rightarrow & \text{id} & = \text{id} \in + TE'E' \\ \Rightarrow & \text{id} & = \text{id} \in + TE'E' \\ \Rightarrow & \text{id} & = \text{id} \in + TE'E' \\ \end{array}$ Emparejamiento de n identificador identificador

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- $(1) \quad 1 \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

				Tab	la pre	dictiv	a							
			Símbolo de entrada											
		id	id = + * () número \$											
ſ	S	1												
ſ	E	2				2		2						
ſ	E'			3			4		4					
Ī	T	5				5		5						
ſ	T'			7	6		7		7					
Ī	F	9				8		10						

Descripción

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

- C
J
\Box
4
7
\Box

Descripción

Ejemplo (Gramática de expresiones aritméticas Análisis de id = id + n * id\$ Árbol sintáctico id = Eid = TE'id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * idT'E'$ identificador identificador número Emparejamiento de id

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow \text{número}$

	11	Tabla predictiva Símbolo de entrada												
	id													
S	1													
E	2				2		2							
E'			3			4		4						
T	5				5		5							
T'			7	6		7		7						
F	9				8		10							

Descripción

Ejemplo (Gramática de expresiones aritméticas Análisis de id = id + n * id\$ Árbol sintáctico id = Eid = TE' $\stackrel{\bigstar}{\Rightarrow} 2 \stackrel{\bigstar}{\Rightarrow} 5 \stackrel{\bigstar}{\Rightarrow} 9 \stackrel{\bigstar}{\Rightarrow} 7 \stackrel{\bigstar}{\Rightarrow} 3 \stackrel{\bigstar}{\Rightarrow} 5 \stackrel{\bigstar}{\Rightarrow} 10 \stackrel{\bigstar}{\Rightarrow} 6 \stackrel{\bigstar}{\Rightarrow} 9$ id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id T'E'$ identificador identificador número $id = id \epsilon + n * id \epsilon E'$

Descripción

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow \text{número}$

Tabla predictiva Símbolo de entrada							
id	=	+	*	()	número	\$
1							
2				2		2	
		3			4		4
5				5		5	
		7	6		7		7
9				8		10	
	1 2 5	1 2 5	Si	Símbol id = + * 1	Símbolo de e	Símbolo de entrad id = + * () 1	Símbolo de entrada id = + * () número 1 2 2 2 2 2 2 2 2 2 3 4 5 5 5 5 5 5 5 7 6 7 7 7 7 7 7 7 7 7 7 8 7 8 8 7 8 8 7 8

Descripción

Ejemplo (Gramática de expresiones aritméticas Análisis de id = id + n * id \$Árbol sintáctico

id = Eid = TE' $\stackrel{\Rightarrow}{\Rightarrow} \stackrel{2}{\Rightarrow} \stackrel{5}{\Rightarrow} \stackrel{9}{\Rightarrow} \stackrel{7}{\Rightarrow} \stackrel{3}{\Rightarrow} \stackrel{5}{\Rightarrow} \stackrel{10}{\Rightarrow} \stackrel{6}{\Rightarrow} \stackrel{9}{\Rightarrow} \stackrel{7}{\Rightarrow} \stackrel{7$ id = FT'E'id = idT'E' $id=id \; \epsilon \; E'$ $id = id \epsilon + TE'$ $id = id \ \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id \epsilon E'$

 $id = id \ \epsilon \ + n \ * \ id \ T'E'$

 $\mathsf{id} = \mathsf{id} \; \epsilon \; + \mathsf{n} \; * \; \mathsf{id} \; \epsilon \; \epsilon$

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Análisis sintáctico descendente predictivo Gramáticas LL(k)

Definición (Gramática LL(k))

• Una gramática LL(k) es una gramática de contexto libre que admite un análisis descendente predictivo

Análisis sintáctico descendente predictivo Gramáticas LL(k)

Significado

- LL(k): procesa la cadena de entrada de izquierda a derecha.
- LL(k): genera una derivación por la izquierda.
- LL(k): número de componentes léxicos que explora de la cadena de entrada para determinar qué regla se va a procesar en cada paso de la derivación.

Nota

Generalmente, k vale 1.

Análisis sintáctico descendente predictivo Gramáticas LL(k)

Condiciones de una gramática LL(1)

- Para cada par de reglas $A \longrightarrow \alpha | \beta$ se verifican las siguientes condiciones:
 - 1.- No existe ningún símbolo terminal $\mathbf{a} \in V_T$ que pueda ser el primer símbolo de una cadena derivable por α y β , es decir, $Primero(\alpha) \cap Primero(\beta) = \emptyset$
 - 2.- La palabra vacía ϵ solamente puede ser derivada, **a lo sumo**, o por α o por β , pero no por ambas simultáneamente, es decir, si $\epsilon \in Primero(\alpha)$ entonces $\epsilon \notin Primero(\beta)$ y viceversa.
 - 3.- Si β (o α) deriva la palabra vacía ϵ entonces α (o β) no puede derivar un cadena que comience por un símbolo terminal $\mathbf{a} \in V_T$ que pertenezca al conjunto **Siguiente(A)**, es decir, si $\epsilon \in Primero(\beta)$ entonces $Primero(\alpha) \cap Siguiente(A) = \emptyset$

Análisis sintáctico descendente predictivo Gramáticas LL(k)

Primera condición de una gramática LL(1)

/ 3

- Para cada par de reglas $A \longrightarrow \alpha | \beta$ se verifica que
 - 1.- No existe ningún símbolo terminal $\mathbf{a} \in V_T$ que pueda ser el primer símbolo de una cadena derivable por α y β , es decir, $Primero(\alpha) \cap Primero(\beta) = \emptyset$

Si
$$A \longrightarrow \alpha | \beta \in P$$
 entonces $\nexists a \in V_T$ tal que
$$\left\{ \begin{array}{l} A \Rightarrow \alpha \overset{*}{\Rightarrow} a \ \delta \\ A \Rightarrow \beta \overset{*}{\Rightarrow} a \ \gamma \end{array} \right.$$

Análisis sintáctico descendente predictivo Gramáticas LL(k)

Ejemplo (Primera condición de una gramática LL(1) 2 / 3)

Gramática que genera sentencias condicionales

```
P = \{ \\ (1) \ S \rightarrow \mathbf{si} \ C \ \text{entonces} \ S \ \mathbf{si\_no} \ S \ \mathbf{fin\_si} \qquad (S \rightarrow \alpha) \\ (2) \ S \rightarrow \mathbf{si} \ C \ \text{entonces} \ S \ \mathbf{fin\_si} \qquad (S \rightarrow \beta) \\ (3) \ S \rightarrow \dots \\ (4) \ C \rightarrow \dots \\ \} \\ Primero(\alpha) \cap Primero(\beta) = \\ = Primero(\mathbf{si} \ C \ \text{entonces} \ S \ \mathbf{si\_no} \ S \ \mathbf{fin\_si}) \cap Primero(\mathbf{si} \ C \ \text{entonces} \ S \ \mathbf{fin\_si}) \\ = \{\mathbf{si}\} \neq \emptyset
```

Gramáticas LL(k)

Ejemplo (Primera condición de una gramática LL(1) 3/3

Gramática que genera sentencias condicionales

```
\begin{array}{l} P = \{\\ (1) \ S \rightarrow \mathbf{si} \ \ C \ \mathbf{entonces} \ \ S \ \mathbf{si\_no} \ \ S \ \mathbf{fin\_si} \\ (2) \ S \rightarrow \mathbf{si} \ \ C \ \mathbf{entonces} \ \ S \ \mathbf{fin\_si} \\ (3) \ S \rightarrow \dots \\ (4) \ \ C \rightarrow \dots \\ \} \end{array}
```

- Conflicto al analizar una sentencia que empieza por si
 - Primera opción

$$S \Rightarrow \mathbf{si} \ C \ \mathbf{entonces} \ S \ \mathbf{si_no} \ S \ \mathbf{fin_si}$$

Segunda opción

$$S \Rightarrow \underset{2}{\mathbf{si}} C$$
 entonces S fin_si

Análisis sintáctico descendente predictivo Gramáticas LL(k)

Segunda condición de una gramática LL(1)

L / 3

- Para cada par de reglas $A \longrightarrow \alpha | \beta$ se verifica que
 - 2.- la palabra vacía ϵ solamente puede ser derivada, **a lo sumo**, o por α o por β , pero no por ambas simultáneamente, es decir, si $\epsilon \in Primero(\alpha)$ entonces $\epsilon \notin Primero(\beta)$ y viceversa.

Si
$$A \longrightarrow \alpha | \beta \in P$$
 entonces

- si $A \Rightarrow \alpha \stackrel{*}{\Rightarrow} \epsilon$ entonces $A \Rightarrow \beta \stackrel{*}{\Rightarrow} \epsilon$
- si $A \Rightarrow \beta \stackrel{*}{\Rightarrow} \epsilon$ entonces $\nexists A \Rightarrow \alpha \stackrel{*}{\Rightarrow} \epsilon$

Análisis sintáctico descendente predictivo Gramáticas LL(k)

Ejemplo (Segunda condición de una gramática LL(1) 2 / 3)

Gramática

```
P = \{ (1) S \rightarrow \epsilon \quad (S \rightarrow \alpha) \\ (2) S \rightarrow A \quad (S \rightarrow \beta) \\ (3) A \rightarrow \epsilon \\ (4) A \rightarrow \dots \} 
\epsilon \in Primero(\alpha) \land \epsilon \in Primero(\beta) \\ \epsilon \in Primero(\epsilon) \land \epsilon \in Primero(A)
```

Gramáticas LL(k)

Ejemplo (Segunda condición de una gramática LL(1) 3 / 3)

Gramática

$$P = \{ (1) S \rightarrow \epsilon \\ (2) S \rightarrow A \\ (3) A \rightarrow \epsilon \\ (4) A \rightarrow \dots \}$$

- Conflicto al derivar la palabra vacía ε:
 - Primera opción

$$S \Rightarrow \epsilon$$

Segunda opción

$$S \underset{2}{\Rightarrow} A \underset{3}{\Rightarrow} \epsilon$$

Análisis sintáctico descendente predictivo Gramáticas LL(k)

Tercera condición de una gramática LL(1)

. / 3

- Para cada par de reglas $A \longrightarrow \alpha | \beta$ se verifica que
 - 3.- Si β (o α) deriva la palabra vacía ϵ entonces α (o β) no puede derivar un cadena que comience por un símbolo terminal $\mathbf{a} \in V_T$ que pertenezca al conjunto **Siguiente(A)**, es decir, si $\epsilon \in Primero(\beta)$ entonces $Primero(\alpha) \cap Siguiente(A) = \emptyset$

Si $A \longrightarrow \alpha | \beta \in P$ y $\beta \stackrel{*}{\Rightarrow} \epsilon$ entonces $\not \exists A \Rightarrow \alpha \stackrel{*}{\Rightarrow} a \gamma$ donde $a \in Siguiente(A)$

Análisis sintáctico descendente predictivo Gramáticas LL(k)

```
Ejemplo (Tercera condición de una gramática LL(1)

    Gramática

       P = \{
       (1) S \rightarrow A a
       (2) A \rightarrow B \mathbf{c} (A \rightarrow \alpha)

(3) A \rightarrow \epsilon (A \rightarrow \beta)
       (4) B \rightarrow \mathbf{a}
         \epsilon \in Primero(\beta) = Primero(\epsilon)
         Primero(Bc) \cap Siguiente(A) = \{a\} \neq \emptyset
```

Gramáticas LL(k)

Ejemplo (Tercera condición de una gramática LL(1) 3 / 3)

Gramática

- Conflicto al derivar una cadena que comienza por a:
 - Primera opción

$$S \Rightarrow A \mathbf{a} \Rightarrow \mathbf{a}$$

Segunda opción

$$S \underset{1}{\Rightarrow} A a \underset{2}{\Rightarrow} B c a \underset{4}{\Rightarrow} a c a$$

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Fases

Fases

- 1.- Construcción del conjunto Primero.
- 2.- Construcción del conjunto Siguiente.
- 3.- Construcción de la tabla predictiva.
- 4.- Uso de la tabla predictiva para aplicar un método de análisis descendente predictivo
 - Método recursivo: basado en funciones recursivas, pero sin retroceso en la cadena de entrada.
 - Método iterativo.

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Conjunto Primero

Definición (Primero(α))

• Si
$$\alpha \in V^* = (V_N \cup V_T)^*$$
 entonces

$$Primero(\alpha) = \{ \mathbf{a} \mid \mathbf{a} \in V_T \land \alpha \stackrel{*}{\Rightarrow} \mathbf{a} \gamma \} \cup \{ \epsilon \mid \alpha \stackrel{*}{\Rightarrow} \epsilon \}$$

Conjunto Primero

Nota (Primero(α))

- Primero(α) va a estar compuesto por
 - los símbolos terminales que aparecen en la primera posición de una cadena que es derivable a partir de α
 - y la palabra vacía ϵ , si α la deriva.

Análisis sintáctico descendente predictivo Conjunto Primero

Algoritmo (Construcción del conjunto Primero

1 / 5)

- Caso básico 1: $\alpha = \epsilon$
- Caso básico 2: $\alpha = \mathbf{a} \in V_T$
- Caso básico 3: $\alpha = A \in V_N$
- Caso general: $\alpha = X_1 X_2 \dots X_n \in V^+ = (V_N \cup V_T)^+$

Conjunto Primero

Algoritmo (Construcción del conjunto Primero

/ 5)

• Caso básico 1: $\alpha = \epsilon$

$$Primero(\alpha) = Primero(\epsilon) = \{\epsilon\}$$

porque $\alpha = \epsilon \stackrel{0}{\Rightarrow} \epsilon$

Análisis sintáctico descendente predictivo Conjunto Primero

Algoritmo (Construcción del conjunto Primero

/ 5)

• Caso básico 2: $\alpha = a \in V_T$

$$Primero(\alpha) = Primero(\mathbf{a}) = \{\mathbf{a}\}\$$

porque $\alpha = \mathbf{a} \stackrel{0}{\Rightarrow} \mathbf{a}$

Conjunto Primero

Algoritmo (Construcción del conjunto Primero

· / 5)

- Caso básico 3: $\alpha = A \in V_N$
 - a) Si $A \rightarrow \epsilon \in P$ entonces $\epsilon \in Primero(A)$
 - b) $Si A \longrightarrow X_1 X_2 \dots X_n \in P$
 - entonces $Primero(X_1) \{\epsilon\} \subseteq Primero(A)$
 - $Si \in Primero(X_i) \ \forall i \in \{1, 2, ..., k-1\}$ entonces $Primero(X_k) \{\epsilon\} \subseteq Primero(A)$
 - $Si \in Primero(X_i) \ \forall i \in \{1, 2, ..., n\} \ entonces \ \epsilon \in Primero(A)$

Conjunto Primero

Algoritmo (Construcción del conjunto Primero

5 / 5)

- Caso general: $\alpha = X_1 X_2 ... X_n \in V^+ = (V_N \cup V_T)^+$
 - $Primero(X_1) \{\epsilon\} \subseteq Primero(\alpha)$
 - $Si \in Primero(X_i) \ \forall i \in \{1, 2, ..., k-1\} \ entonces$ $Primero(X_k) - \{\epsilon\} \subseteq Primero(\alpha)$
 - $Si \ \epsilon \in Primero(X_i) \ \forall i \in \{1, 2, ..., n\} \ entonces \ \epsilon \in Primero(\alpha)$

Análisis sintáctico descendente predictivo Conjunto Primero

Ejemplos (Construcción del conjunto Primero)

- 1.- Gramática de las expresiones aritméticas.
- 2.- Gramática de las declaraciones.

Conjunto Primero

```
Ejemplo (1.- Gramática de las expresiones aritméticas
      P = \{
        (1) S \rightarrow identificador = E
        (2) E \rightarrow T E'
        (3) E' \rightarrow + T E'
        (4) E' \rightarrow \epsilon
        (5) T \rightarrow F T'
        (6) T' \rightarrow *FT'
        (7) T' \rightarrow \epsilon
        (8) F \rightarrow (E)
        (9) F \rightarrow identificador
      (10) F \rightarrow número
```

Conjunto Primero

Ejemplo (1.- Gramática de las expresiones aritméticas 2 / 2)

- $id \in Primero(S) \ por \ (1) \ S \rightarrow identificador = E$
- por (2) $E \longrightarrow TE'$ $A \leftarrow Primerr(E')$ por (3) $E' \longrightarrow A$
- \bullet $\epsilon \in Primero(E')$ por (4) $E' \longrightarrow \epsilon$
- Primero(F) {e} ⊂ Primero(T)
- $por(5) T \longrightarrow F T'$
 - a = D : (T) = (7) T
 - $\bullet \in Primero(1^{\circ}) \text{ por } (7) \mid 1 \longrightarrow \epsilon$
 - "(" \in Primero(F) por (8) F \longrightarrow (E)
- a id < Primara(F) nor (0) F id
- $n \in Primero(F) por (10) F \rightarrow n$

Primero id

F'

F

Conjunto Primero

Ejemplo (1.- Gramática de las expresiones aritméticas 2/2)

- $id \in Primero(S) por(1) S \rightarrow identificador = E$
- $Primero(T) \{\epsilon\} \subseteq Primero(E)$

por (2) $E \longrightarrow T E'$

ullet $\epsilon \in Primero(E')$ por (4) $E' \longrightarrow \epsilon$

 $por(5) T \longrightarrow FT'$ $\bullet * \in Primero(T') por(6) T' \longrightarrow *FT''$

• E Frimero(1) por (1) 1 --> E

• "(" \in Primero(F) por (8) F \longrightarrow (E)

• id \in Primero(F) por (9) F \longrightarrow id

 \bullet $n \in Primero(F) por (10) F <math>\longrightarrow n$

	Primero
S	id
E	"(" , id 🔨
E'	+, 6
T	"(" , id , n
T'	* , ∈
F	"(" , id , n

Conjunto Primero

- $id \in Primero(S) por(1) S \rightarrow identificador = E$
- $Primero(T) \{\epsilon\} \subseteq Primero(E)$ $por(2) E \longrightarrow T E'$
- \bullet + \in Primero(E') por (3) E' \longrightarrow + T E'

	Primero
S	id
Ε	"(" , id , ,
E'	+ , ∈
T	"(" , id , n
T'	* , ∈
F	"(", id, n

- \bullet $\epsilon \in Primero(T')$ por (7) $T' \longrightarrow \epsilon$
 - "(" ∈ Primero(F) por (8) F → (E)
- id C Primara(E) nor (0) E id
- $n \in Primero(F) por (10) F \rightarrow n$

Conjunto Primero

- $id \in Primero(S) por(1) S \rightarrow identificador = E$
- Primero(T) $-\{\epsilon\} \subseteq Primero(E)$ por (2) $E \longrightarrow T E'$
- \bullet + \in Primero(E') por (3) E' \longrightarrow + T E'
- $\epsilon \in Primero(E')$ por (4) $E' \longrightarrow \epsilon$

	Primero
S	id
E	"(" , id ,
E'	$+$, ϵ
T	"(" , id , n /
T'	* , ∈
F	"(", id, n

- $n \in Primero(F) por(10) F \longrightarrow n$

Conjunto Primero

- $id \in Primero(S) por(1) S \rightarrow identificador = E$
- Primero(T) $-\{\epsilon\} \subseteq Primero(E)$ por (2) $E \longrightarrow T E'$
- \bullet + \in Primero(E') por (3) E' \longrightarrow + T E'
- $\epsilon \in Primero(E')$ por (4) $E' \longrightarrow \epsilon$
- $Primero(F) \{\epsilon\} \subseteq Primero(T)$ por (5) $T \longrightarrow F T'$

- $n \in Primero(F) por(10) F \longrightarrow n$

	Primero
S	id
Ε	"(" , id 🔻
E'	$+$, ϵ
T	"(" , id , n (
T'	* , ∈
F	"(" , id , n

Conjunto Primero

- $id \in Primero(S) \ por \ (1) \ S \rightarrow identificador = E$
- $Primero(T) \{\epsilon\} \subseteq Primero(E)$ $por(2) E \longrightarrow T E'$
- $+ \in Primero(E') por (3) E' \longrightarrow + T E'$
- $\epsilon \in Primero(E') por (4) E' \longrightarrow \epsilon$
- $Primero(F) \{\epsilon\} \subseteq Primero(T)$ $por(5) T \longrightarrow F T'$
- $* \in Primero(T') por (6) T' \longrightarrow * F T'$
 - $\epsilon \in F$
- "(" \in Primero(F) por (8) F \longrightarrow (E)
- id \in Primero(F) por (9) F \longrightarrow id
 - \bullet $n \in Primero(F)$ por (10) $F \longrightarrow n$

	Primero
S	id
E	"(" , id 🔻
E'	$+$, ϵ
T	"(" , id , n 🗲
T'	* , (
F	"(", id, n

Conjunto Primero

- $id \in Primero(S) \ por \ (1) \ S \rightarrow identificador = E$
- $Primero(T) \{\epsilon\} \subseteq Primero(E)$ $por(2) E \longrightarrow T E'$
- $+ \in Primero(E') por(3) E' \longrightarrow + T E'$
- $\epsilon \in Primero(E')$ por (4) $E' \longrightarrow \epsilon$
- $Primero(F) \{\epsilon\} \subseteq Primero(T)$ $por(5) T \longrightarrow F T'$
- $* \in Primero(T') por (6) T' \longrightarrow * F T'$
- $\epsilon \in Primero(T') por(7) T' \longrightarrow \epsilon$
- "(" \in Primero(F) por (8) F \longrightarrow (E)
- $id \in Primero(F) por(9) F \longrightarrow id$
- $n \in Primero(F) por(10) F \longrightarrow n$

	Primero
S	id
Ε	"(" , id 🔭
E'	$+$, ϵ
T	"(" , id , n k
T'	* , <i>e</i>
F	"(" , id , n /

Conjunto Primero

- $id \in Primero(S) \ por \ (1) \ S \rightarrow identificador = E$
- $Primero(T) \{\epsilon\} \subseteq Primero(E)$ $por(2) E \longrightarrow T E'$
- $+ \in Primero(E') por(3) E' \longrightarrow + T E'$
- $\epsilon \in Primero(E') por (4) E' \longrightarrow \epsilon$
- $Primero(F) \{\epsilon\} \subseteq Primero(T)$ $por(5) T \longrightarrow F T'$
- $* \in Primero(T') por (6) T' \longrightarrow * F T'$
- $\epsilon \in Primero(T') por (7) T' \longrightarrow \epsilon$
- "(" \in Primero(F) por (8) F \longrightarrow (E)

()	minero (1) por (0) i	/ (-)

	Primero
S	id
Ε	"(" , id 🥎
E'	$+$, ϵ
Т	"(" , id , n (
T'	*, €
F	"(" , id , n /

Conjunto Primero

- $id \in Primero(S) \ por \ (1) \ S \rightarrow identificador = E$
- $Primero(T) \{\epsilon\} \subseteq Primero(E)$ $por(2) E \longrightarrow T E'$
- $+ \in Primero(E') por(3) E' \longrightarrow + T E'$
- $\epsilon \in Primero(E')$ por (4) $E' \longrightarrow \epsilon$
- $Primero(F) \{\epsilon\} \subseteq Primero(T)$ por (5) $T \longrightarrow F T'$
- $* \in Primero(T') por (6) T' \longrightarrow * F T'$
- $\epsilon \in Primero(T') por(7) T' \longrightarrow \epsilon$
- "(" \in Primero(F) por (8) F \longrightarrow (E)
- $id \in Primero(F) por (9) F \longrightarrow id$

	Primero
S	id
Ε	"(" , id , , ,
E'	$+$, ϵ
T	"(",id,,
T'	* , <i>e</i>
F	"(", id, n/

Conjunto Primero

- $id \in Primero(S) \ por \ (1) \ S \rightarrow identificador = E$
- $Primero(T) \{\epsilon\} \subseteq Primero(E)$ $por(2) E \longrightarrow T E'$
- $+ \in Primero(E') por(3) E' \longrightarrow + T E'$
- $\epsilon \in Primero(E') por (4) E' \longrightarrow \epsilon$
- $Primero(F) \{\epsilon\} \subseteq Primero(T)$ por (5) $T \longrightarrow F T'$
- $* \in Primero(T') por (6) T' \longrightarrow * F T'$
- $\epsilon \in Primero(T') por(7) T' \longrightarrow \epsilon$
- "(" \in Primero(F) por (8) F \longrightarrow (E)
- $id \in Primero(F) por (9) F \longrightarrow id$
- $\mathbf{n} \in Primero(F) \ por \ (10) \ F \longrightarrow \mathbf{n}$

	Primero
S	id
E	"(", id, n 🤻
E'	$+$, ϵ
T	"(", id, n 🗲
T'	* , <i>ϵ</i>
F	"(" , id , n /

Conjunto Primero

```
Ejemplo (2.- Gramática de declaraciones
       P = \{
         (1) S \longrightarrow DS
         (2) S \longrightarrow \epsilon
         (3) D \longrightarrow TL;
         (4) T \longrightarrow int
         (5) T \longrightarrow float
         (6) L \longrightarrow id L'
         (7) L' \longrightarrow, id L'
         (8) L' \longrightarrow \epsilon
```

Conjunto Primero

Ejemplo (2.- Gramática de declaraciones

2 / 2)

- $Primero(D) \{\epsilon\} \subseteq Primero(S)$ $por(1) S \longrightarrow D S$
 - $\epsilon \in Primero(S)$ por (2) $S \longrightarrow \epsilon$
- $Primero(T) \{\epsilon\} \subseteq Primero(D)$

por (3) $D \longrightarrow TL$;

- int e i innero(i) por (4) i —7 int
- $\bullet \quad \mathsf{float} \in \mathsf{Primero}(1) \ \mathsf{por} \ (5) \ 1 \longrightarrow \mathsf{float}$
- id \in *Primero*(*L*) *por* (6) *L* \longrightarrow id *L'*
- "," \in Primero(L') por (7) L' \longrightarrow , id L
- $\epsilon \in Primero(L') por(8) L' \longrightarrow \epsilon$

	Primero
S	ϵ , int , float $_{lack}$
D	int , float
T	int , float
L	id
.,	(4.11

Conjunto Primero

Ejemplo (2.- Gramática de declaraciones

2 / 2)

- $Primero(D) \{\epsilon\} \subseteq Primero(S)$ por (1) $S \longrightarrow D S$
- $\epsilon \in Primero(S) \ por \ (2) \ S \longrightarrow \epsilon$
- por (3) D \rightarrow T L:
- $Int \in Primero(1) \ por (4) \ 1 \longrightarrow Int$
- $\bullet \quad \mathsf{float} \in \mathsf{Primero}(1) \ \mathsf{por} \ (5) \ 1 \longrightarrow \mathsf{float}$
- $id \in Primero(L) por(6) L \longrightarrow id L'$
- "," \in Primero(L') por (7) L' \longrightarrow , id L
- \bullet $\epsilon \in Primero(L')$ por (8) $L' \longrightarrow \epsilon$

	Primero
S	ϵ , int , float $_{f \uparrow}$
D	int , float
T	int , float
L	id
1'	44 77

Conjunto Primero

Ejemplo (2.- Gramática de declaraciones

2 / 2)

- $Primero(D) \{\epsilon\} \subseteq Primero(S)$ $por(1) S \longrightarrow D S$
- $\epsilon \in Primero(S)$ por (2) $S \longrightarrow \epsilon$
- $Primero(T) \{\epsilon\} \subseteq Primero(D)$ por (3) $D \longrightarrow TL$;
- $\bullet \quad \mathsf{int} \in Primero(1) \ por (4) \ 1 \longrightarrow \mathsf{int}$
- float ∈ Primero(T) por (5) T → float
- \bullet id \in *Primero*(*L*) por (6) $L \longrightarrow$ id L'
- "," \in Primero(L') por (7) L' \longrightarrow , id L
- \bullet $\epsilon \in Primero(L')$ por (8) $L' \longrightarrow \epsilon$

	Primero
S	ϵ , int , float $_{ ightharpoonup}$
D	int , float &
T	int , float
L	id
1,	66 33

Conjunto Primero

Ejemplo (2.- Gramática de declaraciones

2 / 2)

- $Primero(D) \{\epsilon\} \subseteq Primero(S)$ $por(1) S \longrightarrow D S$
- $\epsilon \in Primero(S) por(2) S \longrightarrow \epsilon$
- $Primero(T) \{\epsilon\} \subseteq Primero(D)$ por (3) $D \longrightarrow TL$;
- int \in Primero(T) por (4) T \longrightarrow int
- Hoat C i Hilliero (i) por (5) i i Ho
- $\mathbf{u} \in Primero(L) \ por \ (o) \ L \longrightarrow \mathbf{u} \ L$
- "," \in Primero(L') por (7) L' \longrightarrow , id L'
- 5: (10)

	Primero
S	ϵ , int , $float_{lackfooldsymbol{\uparrow}}$
D	int , float 🗸
T	int , float /
L	id
1,	64 17

Conjunto Primero

Ejemplo (2.- Gramática de declaraciones

2 / 2)

- $Primero(D) \{\epsilon\} \subseteq Primero(S)$ por (1) $S \longrightarrow D S$
- $\epsilon \in Primero(S) \text{ por } (2) S \longrightarrow \epsilon$
- $Primero(T) {\epsilon} \subseteq Primero(D)$ $por(3) D \longrightarrow TL;$
- $int \in Primero(T) por (4) T \longrightarrow int$
- float \in Primero(T) por (5) T \longrightarrow float
- ullet "," \in Primero(L') por (7) L' \longrightarrow , id L
- $\bullet \in Primero(1') \text{ por } (8) 1' \longrightarrow \epsilon$

	Primero	
S	ϵ , int , float $_{igwedge}$	
D	int , float 🦯	
T	int , float /	
L	id	
L'	<i>"</i> , , ∈	

Conjunto Primero

Ejemplo (2.- Gramática de declaraciones

- $Primero(D) \{\epsilon\} \subseteq Primero(S)$ por (1) $S \longrightarrow D S$
- $\epsilon \in Primero(S) por(2) S \longrightarrow \epsilon$
- $Primero(T) \{\epsilon\} \subseteq Primero(D)$ por (3) $D \longrightarrow TL$;
- $int \in Primero(T) por (4) T \longrightarrow int$
- $float \in Primero(T) \ por \ (5) \ T \longrightarrow float$

	$id \in$	Primero(L)	por (6)	L	\longrightarrow id L'	,
--	----------	------------	---------	---	---------------------------	---

	Primero	
S	ϵ , int , float $_{igwedge}$	
D	int , float 🦯	
T	int , float [/]	
L	id	
L'	4, 11	

Conjunto Primero

Ejemplo (2.- Gramática de declaraciones

2 / 2)

- $Primero(D) \{\epsilon\} \subseteq Primero(S)$ $por(1) S \longrightarrow D S$
- $\epsilon \in Primero(S) \text{ por } (2) S \longrightarrow \epsilon$
- $Primero(T) {\epsilon} \subseteq Primero(D)$ $por(3) D \longrightarrow TL;$
- int \in Primero(T) por (4) T \longrightarrow int
- float ∈ Primero(T) por (5) T → float
- $id \in Primero(L) por (6) L \longrightarrow id L'$
- "," \in Primero(L') por (7) L' \longrightarrow , id L'

	Primero	
S	ϵ , int , float $_{igwedge}$	
D	int , float 🦯	
T	int , float [/]	
L	id	
L'	",", ∈	

Conjunto Primero

Ejemplo (2.- Gramática de declaraciones

2 / 2)

- $Primero(D) \{\epsilon\} \subseteq Primero(S)$ $por(1) S \longrightarrow D S$
- $\epsilon \in Primero(S) \text{ por } (2) S \longrightarrow \epsilon$
- $Primero(T) {\epsilon} \subseteq Primero(D)$ $por(3) D \longrightarrow TL;$
- $int \in Primero(T) por (4) T \longrightarrow int$
- float ∈ Primero(T) por (5) T → float
- $id \in Primero(L) por (6) L \longrightarrow id L'$
- "," \in Primero(L') por (7) L' \longrightarrow , id L'
- $\epsilon \in Primero(L')$ por (8) $L' \longrightarrow \epsilon$

	Primero	
S	ϵ , int , float $_{igwedge}$	
D	int , float 🧹	
T	int , float [/]	
L	id	
L'	",", €	

Análisis sintáctico descendente predictivo Conjunto Primero

Ejercicios (Construcción del conjunto Primero)

- 1.- Gramática de prototipos
- 2.- Gramática que genera $L(G) = L(a^* b^* c^*)$

Conjunto Primero

```
Ejercicio (1.- Gramática de los prototipos
       P = \{
        (1) S \rightarrow D S
         (2) S \rightarrow \epsilon
        (3) D \rightarrow T identificador ( P );
         (4) T \longrightarrow int
         (5) T \longrightarrow float
         (6) P \rightarrow \epsilon
         (7) P \rightarrow identificador L
         (8) L \rightarrow \epsilon
         (9) L \rightarrow, identificador L
```

Conjunto Primero

```
Ejercicio (2.- Gramática que genera L(G) = L(a^* b^* c^*) 2 / 2)
       P = {
         (1) S \rightarrow ABC
         (2) A \rightarrow a A
         (3) A \rightarrow \epsilon
         (4) B \rightarrow \mathbf{b} B
         (5) B \rightarrow \epsilon
         (6) C \rightarrow \mathbf{c} C
         (7) C \rightarrow \epsilon
```

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Conjunto Siguiente

Definición (Conjunto Siguiente)

• Si $A \in V_N$ entonces

$$\textbf{Siguiente(A)} = \{ \mathbf{a} \mid \mathbf{a} \in V_T \ \land \ S \overset{*}{\Rightarrow} \alpha \ A \ \mathbf{a} \ \beta \} \cup \{ \$ \mid S \overset{*}{\Rightarrow} \alpha \ A \}$$

Conjunto Siguiente

Nota (Conjunto Siguiente)

- Si A es un símbolo no terminal entonces Siguiente(A) está compuesto por
 - los símbolos terminales que pueden aparecer detrás de A en una derivación de la gramática
 - y el símbolo \$ (fin de cadena), si A aparece en la última posición durante algún paso de la derivación.

Análisis sintáctico descendente predictivo Conjunto Siguiente

Nota (Conjunto Siguiente)

• La palabra vacía ϵ nunca pertenece al conjunto **Siguiente(A)**.

Conjunto Siguiente

Construcción del conjunto Siguiente

- 1.- $S \in Siguiente(S)$, donde $S \in S$ es el símbolo inicial de la gramática.
- 2.- Si $A \to \alpha B \beta \in P$ entonces $Primero(\beta) - \{\epsilon\} \subseteq Siguiente(B)$
- 3.- Si $A \to \alpha$ $B \in P \lor (A \to \alpha \ B \ \beta \land \epsilon \in Primero(\beta))$ entonces $Siguiente(A) \subseteq Siguiente(B)$

Conjunto Siguiente

Ejemplo (Construcción del conjunto Siguiente: tercera regla)

3.- $Si A \rightarrow \alpha B \in P \lor (A \rightarrow \alpha B \beta \land \epsilon \in Primero(\beta))$ entonces $Siguiente(A) \subseteq Siguiente(B)$

Los símbolos que siguen al símbolo A también siguen al símbolo B:

- (a) $S \stackrel{*}{\Rightarrow} \delta A \gamma \Rightarrow \delta \underline{\alpha} \underline{B} \gamma$
- (b) $S \stackrel{*}{\Rightarrow} \delta A \gamma \Rightarrow \delta \underline{\alpha} \underline{B} \beta \gamma \stackrel{+}{\Rightarrow} \delta \alpha \underline{B} \gamma$ porque $\epsilon \in Primero(\beta)$ y, por tanto, $\beta \stackrel{+}{\Rightarrow} \epsilon$

Conjunto Siguiente

Ejemplos (Construcción del conjunto Siguiente)

- 1.- Gramática de las expresiones aritméticas.
- 2.- Gramática de las declaraciones.

Conjunto Siguiente

```
1/8
Ejemplo (1.- Gramática de las expresiones aritméticas
      P = \{
        (1) S \rightarrow identificador = E
        (2) E \rightarrow T E'
        (3) E' \rightarrow + T E'
        (4) E' \rightarrow \epsilon
        (5) T \rightarrow F T'
        (6) T' \rightarrow *FT'
        (7) T' \rightarrow \epsilon
        (8) F \rightarrow (E)
        (9) F \rightarrow identificador
      (10) F \rightarrow número
```

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 2 / 8)

- $\$ \in Siguiente(S)$ (regla 1)
- por (1) $S \rightarrow identificador = E$
- por (2) $E \rightarrow TE'$ (regla 2)
- por (2) $E \longrightarrow T E'$ (regla 3)
 - $Siguiente(E) \subseteq Siguiente(T)$

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	5
E'	+, ε	5
T	"(", id, n	+,\$
T'	* , €	
F	"(" id n	

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 2 / 8

- $\$ \in Siguiente(S)$ (regla 1)
- Siguiente(S) ⊆ Siguiente(E)
 por (1) S → identificador = E (regla 3)

PrimeroSiguienteSid\$E"(", id, n\$E'+, ϵ T"(", id, nT'*, ϵ F"(", id, n

- Siguiente(E) \subseteq Siguiente(T)

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 2 / 8

- $\$ \in Siguiente(S)$ (regla 1)
- Siguiente(S) ⊆ Siguiente(E)
 por (1) S → identificador = E (regla 3)
- $Primero(E') \{\epsilon\} \subseteq Siguiente(T)$ $por(2) E \longrightarrow T E' (regla 2)$
- por $(2) E \longrightarrow T E$ (regia 3)

 Como e ∈ Primero(E') entonces

 Siguiente(E) ⊆ Siguiente(T)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$ 1
E'	+, ε	5
T	"(", id, n	→ + , S
T'	* , €	
F	"(", id, n	

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 2 / 8

- $\$ \in Siguiente(S)$ (regla 1)
- Siguiente(S) ⊆ Siguiente(E)
 por (1) S → identificador = E (regla 3)
- $Primero(E') \{\epsilon\} \subseteq Siguiente(T)$ por (2) $E \longrightarrow T$ E' (regla 2)
- Siguiente(E) \subseteq Siguiente(E') por (2) E \longrightarrow T E' (regla 3)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$ \
E'	+, ε	\$ 1
T	"(", id, n	+ - 5
T'	* , €	
F	"(", id, n	

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 2 / 8

- $\$ \in Siguiente(S)$ (regla 1)
- Siguiente(S) ⊆ Siguiente(E)
 por (1) S → identificador = E (regla 3)
- $Primero(E') \{\epsilon\} \subseteq Siguiente(T)$ por (2) $E \longrightarrow T$ E' (regla 2)
- Siguiente(E) \subseteq Siguiente(E') por (2) E \longrightarrow T E' (regla 3)
- Como $\epsilon \in Primero(E')$ entonces Siguiente(E) \subseteq Siguiente(T) por (2) E \longrightarrow T E' (regla 3)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$
E'	+, ε	\$ 1
T	"(", id, n	→ + , \$ [↓]
T'	*, <i>ϵ</i>	
F	"(", id, n	

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas

• Primero(E') $-\{\epsilon\} \subseteq Siguiente(T)$ (repetido)

por (3) $E' \longrightarrow + T E'$ (regla 2)

	Primero	Siguiente
S	id	\$ \
Ε	"(", id, n	\$ \
E'	$+$, ϵ	\$ 1
T	"(", id, n	→ +, \$↓
T'	* , €	
F	"(", id, n	

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 3 / 8)

• $Primero(E') - \{\epsilon\} \subseteq Siguiente(T)$ (repetido)

por (3)
$$E' \longrightarrow + T E'$$
 (regla 2)

 Siguiente(E') ⊆ Siguiente(E') (superflua)

por (3)
$$E' \longrightarrow + T E'$$
 (regla 3)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$
E'	$+$, ϵ	\$ 1
T	"(", id, n	→ +, \$↓
T'	*, €	
F	"(", id, n	

(ロ) (部) (注) (注) 注 り(○)

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 3/8)

- Primero(E')- $\{\epsilon\}$ \subseteq Siguiente(T) (repetido)
 - por (3) $E' \longrightarrow + T E'$ (regla 2)
- Siguiente(E') ⊆ Siguiente(E') (superflua)

por (3)
$$E' \longrightarrow + T E'$$
 (regla 3)

• Como $\epsilon \in Primero(E')$ entonces Siguiente $(E') \subseteq Siguiente(T)$ por $(3) E' \longrightarrow + T E'$ (regla 3)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$ \
E'	$+$, ϵ	\$
T	"(", id, n	→ +, \$\$
T'	*, €	
F	"(", id, n	

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 4/8)

• Primero(T') – $\{\epsilon\}$ \subseteq Siguiente(F) por (5) $T \longrightarrow F$ T' (regla 2)

• Como $\epsilon \in Primero(T')$ entonces

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$
E'	+, ε	\$
Т	"(", id, n	→ +, \$\\
T'	*, <i>ϵ</i>	+ , \$
F	"(", id, n	* + 5

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 4/8)

- Primero(T')- $\{\epsilon\}$ \subseteq Siguiente(F) por (5) $T \longrightarrow F$ T' (regla 2)
- Siguiente(T) \subseteq Siguiente(T') por (5) $T \longrightarrow F T'$ (regla 3)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$ \
E'	+, ε	\$
T	"(", id, n	→ +, \$ *
T'	*, <i>ϵ</i>	+ , \$↓
F	"(", id, n	*

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 4 / 8)

- Primero(T')- $\{\epsilon\}$ \subseteq Siguiente(F) por (5) $T \longrightarrow F$ T' (regla 2)
- Siguiente(T) \subseteq Siguiente(T') por (5) $T \longrightarrow F T'$ (regla 3)
- Como $\epsilon \in Primero(T')$ entonces Siguiente $(T) \subseteq Siguiente(F)$ por $(5) T \longrightarrow F T'$ (regla 3)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$ \
E'	$+$, ϵ	\$ <
T	"(", id, n	→ +, \$
T'	*, <i>ϵ</i>	+ , \$ 1
F	"(", id, n	→* , + , \$ →

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas

• Primero(T') $-\{\epsilon\} \subseteq Siguiente(F)$ (repetido) por (6) $T' \longrightarrow *FT'$ (regla 2)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$ \
E'	$+$, ϵ	\$
T	"(", id, n	→ +, \$ \
T'	*, <i>ϵ</i>	+, \$ ✓ \
F	"(", id, n	→* , +, \$↓

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 5/8)

• $Primero(T') - \{\epsilon\} \subseteq Siguiente(F)$ (repetido)

por (6)
$$T' \longrightarrow *FT'$$
 (regla 2)

 Siguiente(T') ⊆ Siguiente(T') (superflua)

por (6)
$$T' \longrightarrow *FT'$$
 (regla 3)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$ \
E'	$+$, ϵ	\$
T	"(", id, n	→ +, \$ \
T'	*, <i>ϵ</i>	+, \$ ✓ \
F	"(", id, n	→ *, +, \$↓

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 5/8)

- Primero(T')- $\{\epsilon\}$ \subseteq Siguiente(F) (repetido)
 - por (6) $T' \longrightarrow *FT'$ (regla 2)
- Siguiente(T') ⊆ Siguiente(T') (superflua)
 - por (6) $T' \longrightarrow *FT'$ (regla 3)
- Como $\epsilon \in Primero(T')$ entonces Siguiente $(T') \subseteq Siguiente(F)$ por $(6) \ T' \longrightarrow *FT'$ (regla 3)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$
E'	$+$, ϵ	\$
T	"(", id, n	→ +, \$ \
T'	*, <i>ϵ</i>	+, \$
F	"(", id, n	→ *, +, \$¥

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 6/8)

• ")" \in Siguiente(E) por (8) F \rightarrow (E) (regla 2)

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$, ")"
E'	+, ε	\$, ")"
T	"(", id, n	→ +, \$, ")" \
T'	*, €	+, \$, ")"
F	"(", id, n	→ *, +, \$, ")" ¥

Conjunto Siguiente

Nota (1.- Gramática de las expresiones aritméticas

' / 8)

- Las reglas de producción que no contienen ningún símbolo no terminal en su parte derecha no influyen en el conjunto
 Siguiente
 - (4) $E' \rightarrow \epsilon$
 - (7) $T' \rightarrow \epsilon$
 - (9) $F \rightarrow$ identificador
 - (10) $F \rightarrow \text{número}$

Conjunto Siguiente

Ejemplo (1.- Gramática de las expresiones aritméticas 8/8)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$, ")"
E'	$+$, ϵ	\$, ")"
T	"(", id, n	+, \$, ")"
T'	* , ∈	+, \$, ")"
F	"(", id, n	*, +, \$, ")"

Conjunto Siguiente

```
Ejemplo (2.- Gramática de las declaraciones
       P = \{
         (1) S \longrightarrow DS
         (2) S \longrightarrow \epsilon
         (3) D \longrightarrow TL;
         (4) T \longrightarrow int
         (5) T \longrightarrow float
         (6) L \longrightarrow id L'
         (7) L' \longrightarrow , id L'
         (8) L' \longrightarrow \epsilon
```

Conjunto Siguiente

Ejemplo (2.- Gramática de las declaraciones

• $\$ \in Siguiente(S)$ (regla 1)

Primero Siguiente ϵ , int, float D int, float int, float id

Conjunto Siguiente

Ejemplo (2.- Gramática de las declaraciones

2 / 2)

- $\$ \in Siguiente(S)$ (regla 1)
- $Primero(S) \{\epsilon\} \subseteq Siguiente(D)$ por (1) $S \longrightarrow D S$ (regla 2)

	Primero	Siguiente
S	ϵ , int, float	\$
D	int, float	→ int, float → ■
T	int, float	id
L	id	j
L'	"," , €	

←ロ> <問> <き> くき > くき > き の < で の </p>

Conjunto Siguiente

Ejemplo (2.- Gramática de las declaraciones

(2/2)

- $\$ \in Siguiente(S)$ (regla 1)
- $Primero(S) \{\epsilon\} \subseteq Siguiente(D)$ por (1) $S \longrightarrow DS$ (regla 2)
- Como $\epsilon \in Primero(S)$ entonces Siguiente(S) \subseteq Siguiente(D) por (1) $S \longrightarrow D$ S (regla 3)

	Primero	Siguiente
S	ϵ , int, float	\$
D	int, float	int, float, \$
T	int, float	id
L	id	;
L'	"," , ε	

 $por(3) D \longrightarrow IL; (regla 2)$

por (6) $L \longrightarrow id L'$ (regla 3)

Conjunto Siguiente

Ejemplo (2.- Gramática de las declaraciones

(2/2)

- $\$ \in Siguiente(S)$ (regla 1)
- $Primero(S) \{\epsilon\} \subseteq Siguiente(D)$ $por(1) S \longrightarrow D S (regla 2)$
- Como $\epsilon \in Primero(S)$ entonces Siguiente(S) \subseteq Siguiente(D) por (1) $S \longrightarrow D$ S (regla 3)
- Primero(L;) $-\{\epsilon\}\subseteq Siguiente(T)$ por (3) $D \longrightarrow TL$; (regla 2)
- $\begin{array}{|c|c|c|c|c|c|} \hline \textbf{Primero} & \textbf{Siguiente} \\ \hline S & \epsilon, \text{ int, float} & \$ \\ \hline D & \text{int, float} & \text{int, float} \\ \hline T & \text{int, float} & \text{id} \\ \hline L & \text{id} & \\ \hline L' & \text{","}, \epsilon \\ \hline \end{array}$

- por (3) $D \longrightarrow TL$; (regla 2)
- por (6) $L \longrightarrow id L'$ (regla 3)

Conjunto Siguiente

Ejemplo (2.- Gramática de las declaraciones

(2/2)

- $\$ \in Siguiente(S)$ (regla 1)
- $Primero(S) \{\epsilon\} \subseteq Siguiente(D)$ $por(1) S \longrightarrow D S (regla 2)$
- Como $\epsilon \in Primero(S)$ entonces $Siguiente(S) \subseteq Siguiente(D)$ $por(1) S \longrightarrow D S (regla 3)$
- Primero(L;) $-\{\epsilon\} \subseteq Siguiente(T)$ por (3) $D \longrightarrow TL$; (regla 2)
- ; \in Siguiente(L) por (3) D \longrightarrow T L ; (regla 2)
- Siguiente(L) ⊆ Siguiente(L')
 nor (6) I → id I' (regla 3)

	Primero	Siguiente
S	ϵ , int, float	\$
D	int, float	int, float, \$\frac{1}{2}
T	int, float	id
L	id —	;
L'	"," , ε	

Conjunto Siguiente

Ejemplo (2.- Gramática de las declaraciones

- $\$ \in Siguiente(S)$ (regla 1)
- Primero(S) $-\{\epsilon\} \subseteq Siguiente(D)$ por (1) $S \longrightarrow D S$ (regla 2)
- Como $\epsilon \in Primero(S)$ entonces $Siguiente(S) \subseteq Siguiente(D)$ por (1) $S \longrightarrow D S$ (regla 3)
- Primero(L;) $-\{\epsilon\} \subseteq Siguiente(T)$ por (3) $D \longrightarrow TL$; (regla 2)
- \bullet ; \in Siguiente(L) por (3) $D \longrightarrow TL$; (regla 2)
- Siguiente(L) \subseteq Siguiente(L')
 - por (6) $L \longrightarrow id L'$ (regla 3)

	Primero	Siguiente
S	ϵ , int, float	\$
D	int, float	int, float , 🖇
T	int, float	id
L	id —	; \
L'	"." . €	. 1

Conjunto Siguiente

Limitaciones del análisis sintáctico descendente predictivo

- No se puede realizar si la gramática posee alguna de las siguiente propiedades:
 - Es recursiva por la izquierda.
 - No está factorizada por la izquierda.
 - Es ambigua.

Nota

• Estas condiciones son necesarias pero no suficientes.

Conjunto Siguiente

Ejercicios (Construcción del conjunto Siguiente)

- 1.- Gramática de prototipos
- 2.- Gramática que genera $L(G) = L(a^* b^* c^*)$

Conjunto Siguiente

```
Ejercicio (1.- Gramática de los prototipos
       P = \{
         (1) S \rightarrow DS
         (2) S \rightarrow \epsilon
         (3) D \rightarrow T identificador ( P );
          (4) T \longrightarrow int
         (5) T \longrightarrow float
         (6) P \rightarrow \epsilon
         (7) P \rightarrow \text{id } L
         (8) L \rightarrow \epsilon
         (9) L \rightarrow, id L
```

Conjunto Siguiente

```
Ejercicio (2.- Gramática que genera L(G) = L(a^* b^* c^*) 2 / 2)
       P = {
         (1) S \rightarrow ABC
         (2) A \rightarrow a A
         (3) A \rightarrow \epsilon
         (4) B \rightarrow \mathbf{b} B
         (5) B \rightarrow \epsilon
         (6) C \rightarrow \mathbf{c} C
         (7) C \rightarrow \epsilon
```

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Construcción de la tabla predictiva

Definición (Tabla predictiva)

M		Símbolo de entrada								
	σ_1		σ_j		σ_m	\$				
S										
A_1										
A_i			Regla k							
A_n										

- $S, A_i \in V_N \ \forall i \in \{1, 2, ..., n\}$
- \bullet $\sigma_{\mathbf{j}} \in V_T \ \forall j \in \{1, 2, \ldots, m\}$
- \$: símbolo que indica el fin de la cadena de entrada
- Regla K: regla del símbolo A_i que se debe usar cuando σ_i es el símbolo actual.

Construcción de la tabla predictiva

Ejemplo (Gramática de expresiones aritméticas)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- $(1) \quad 1 \rightarrow \epsilon$
- (8) $F \to (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow \text{número}$

Tabla predictiva											
M		Símbolo de entrada									
	id	=	+	*	()	número	\$			
5	1										
E	2				2		2				
E'			3			4		4			
T	5				5		5				
T'			7	6		7		7			
F	9				8		10				

Construcción de la tabla predictiva

```
Algoritmo (Construcción de la tabla predictiva)
                  Para cada A \rightarrow \alpha \in P hacer
                        si \mathbf{a} \in Primero(\alpha) - \{\epsilon\}
                               entonces A \rightarrow \alpha \in M[A, a]
                        fin si
                        si \epsilon \in Primero(\alpha)
                               entonces
                                      para cada \mathbf{b} \in Siguiente(A) hacer
                                            A \rightarrow \alpha \in M[A, \mathbf{b}]
                                       fin_para
                          fin si
                   fin_para
```

Construcción de la tabla predictiva

Notas (Construcción de la tabla predictiva)

- M: tabla predictiva
- Las celdas vacías de M representan situaciones de error que han de ser tratadas.
- Si M posee alguna celda con valores múltples entonces la gramática tiene un conflicto y no admite un análisis descendente predictivo.

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

1 / 12)

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (I) $I \rightarrow \epsilon$
- (8) $F \to (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

	Paso previo								
	Primero	Siguiente							
S	id	\$							
Ε	"(", id, n	\$, ")"							
E'	$+$, ϵ	\$, ")"							
T	"(", id, n	+, \$, ")"							
T'	* , €	+, \$, ")"							
F	"(", id, n	*, +, \$, ")"							

Construcción de la tabla predictiva

2 / 12)

Tabla predictiva M Símbolo de entrada										
id	=	+	*	()	número	\$			
1										
	id 1	id =	Sí	Símbolo	Símbolo de e	Símbolo de entrad	Símbolo de entrada			

$$(1) \quad \underbrace{S}_{A} \rightarrow \underbrace{\mathsf{identificador} = E}_{\alpha}$$

• $Primero(\alpha) - \{\epsilon\} = Primero(identificador = E) = \{ identificador \}$

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

3 / 12)

M		Tabla predictiva Símbolo de entrada										
	id	=	+	*	()	número	\$				
S	1											
E	2				2		2					
E'												
T												
T'												
F												

(2)
$$\underset{\Delta}{\underbrace{E}} \rightarrow \underset{\alpha}{\underbrace{TE'}}$$

• $Primero(\alpha) - \{\epsilon\} = Primero(T E') = \{$ "(", id, n $\}$

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

4 / 12)

Tabla predictiva											
M		Símbolo de entrada									
	id	=	+	*	()	número	\$			
5	1										
E	2				2		2				
E'			3								
T											
T'											
F											

(3)
$$\underbrace{E'}_{A} \rightarrow \underbrace{+ T E'}_{\alpha}$$

• Primero(α) – $\{\epsilon\}$ = Primero(+ T E') = $\{+\}$

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

5 / 12)

Tabla predictiva M Símbolo de entrada										
	id	=	+	*	()	número	\$		
S	1									
Ε	2				2		2			
E'			3			4		4		
T										
T'										
F										

- (4) $\underset{A}{\underbrace{E'}} \rightarrow \underset{\alpha}{\underbrace{\epsilon}}$
 - Como $\epsilon \in Primero(\alpha)$, entonces se añade la regla 4 en las celdas $M[E', \mathbf{b}]$ donde $\mathbf{b} \in Siguiente(E') = \{ ")", $}$

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

6 / 12)

Tabla predictiva											
M		Símbolo de entrada									
	id	=	+	*	()	número	\$			
5	1										
E	2				2		2				
E'			3			4		4			
T	5				5		5				
T'											
F											

(5)
$$T \rightarrow FT'$$

• $Primero(\alpha) - \{\epsilon\} = Primero(F T') = \{$ "(", id, n \}

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

7 / 12)

Tabla predictiva											
M Símbolo de entrada											
	id	=	+	*	()	número	\$			
S	1										
E	2				2		2				
E'			3			4		4			
T	5				5		5				
T'				6							
F											

(6)
$$T' \rightarrow \underbrace{* T E'}_{\alpha}$$

• Primero(α) – $\{\epsilon\}$ = Primero(* F T') = $\{*\}$

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

8 / 12)

Tabla predictiva											
M Símbolo de entrada											
	id	=	+	*	()	número	\$]		
5	1]		
E	2				2		2		1		
E'			3			4		4]		
T	5				5		5]		
T'			7	6		7		7]		
F											

- (7) $\underbrace{T'}_{A} \rightarrow \underbrace{\epsilon}_{\alpha}$
- Como $\epsilon \in Primero(\alpha)$, entonces se añade la regla 7 en las celdas $M[T',\mathbf{b}]$ donde $\mathbf{b} \in Siguiente(T') = \{+, ")", \$\}$

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

9 / 12)

Tabla predictiva Símbolo de entrada										
S	1									
E	2				2		2			
E'			3			4		4		
T	5				5		5			
T'			7	6		7		7		
F					8					

(8)
$$\underset{A}{\stackrel{F}{\longleftarrow}} \rightarrow \underbrace{(E)}_{\alpha}$$

• Primero(α) – $\{\epsilon\}$ = Primero((E)) = { "(")}

Construcción de la tabla predictiva

• $Primero(\alpha) - \{\epsilon\} = Primero(identificador) = \{identificador\}$

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

11 / 12)

Tabla predictiva M Símbolo de entrada										
	1		<u>'</u>		_ (,	namero		ח	
E	2				2		2		ď	
E'			3			4		4	Π	
T	5				5		5		Π	
T'			7	6		7		7	D	
F	9				8		10		0	

(10)
$$\underset{A}{\underbrace{F}} \rightarrow \underbrace{\text{número}}_{\alpha}$$

• $Primero(\alpha) - \{\epsilon\} = Primero(\text{ número }) = \{\text{ número }\}$

Construcción de la tabla predictiva

Ejemplo (Construcción de la tabla predictiva

12 / 12)

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

Tabla predictiva										
M	Símbolo de entrada									
	id = + * () número \$									
S	1									
E	2				2		2			
E'			3			4		4		
T	5				5		5			
T'			7	6		7		7		
F	9				8		10			

Construcción de la tabla predictiva

Ejercicios (Construcción de la tabla predictiva)

- 1.- Gramática de declaraciones
- 2.- Gramática de prototipos
- 3.- Gramática que genera $L(G) = L(a^* b^* c^*)$

Construcción de la tabla predictiva

Ejercicio (1.- Gramática de declaraciones 1a / 3) $P = \{$ (1) $S \longrightarrow DS$ (2) $S \longrightarrow \epsilon$ Paso previo Siguiente Primero (3) $D \longrightarrow TL$; ϵ , int, float (4) $T \longrightarrow int$ int, float, \$ int, float (5) $T \longrightarrow float$ int, float id (6) $L \longrightarrow id L'$ Ыi "," , ε (7) $L' \longrightarrow$, id L'(8) $L' \longrightarrow \epsilon$

Construcción de la tabla predictiva

Ejercicio (1.- Gramática de declaraciones

1b / 3)

$$P = \{$$

(1)
$$S \longrightarrow DS$$

(2)
$$S \longrightarrow \epsilon$$

(3)
$$D \longrightarrow TL$$
;

(4)
$$T \longrightarrow int$$

- (5) $T \longrightarrow float$
- (6) $L \longrightarrow id L'$
- (7) $L' \longrightarrow$, id L'
- (8) $L' \longrightarrow \epsilon$

rabia predictiva									
M	Símbolo de entrada								
	;	int	float	id	,	\$			
5		1	1			2			
D		3	3						
T		4	5						
L				6					
L'	8				7				
L'	8			6	7				

Table predictive

4 D > 4 A > 4 B > 4 B > B 900

Construcción de la tabla predictiva

```
Ejercicio (2.- Gramática de los prototipos
       P = \{
         (1) S \rightarrow D S
         (2) S \rightarrow \epsilon
         (3) D \rightarrow T identificador ( P );
         (4) T \longrightarrow int
         (5) T \longrightarrow float
         (6) P \rightarrow \epsilon
         (7) P \rightarrow id L
         (8) L \rightarrow \epsilon
         (9) L \rightarrow, id L
```

Construcción de la tabla predictiva

```
Ejercicio (3.- Gramática que genera L(G) = L(a^* b^* c^*) 3 / 3)
       P = {
         (1) S \rightarrow ABC
         (2) A \rightarrow a A
         (3) A \rightarrow \epsilon
         (4) B \rightarrow \mathbf{b} B
         (5) B \rightarrow \epsilon
         (6) C \rightarrow \mathbf{c} C
         (7) C \rightarrow \epsilon
```

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Conflictos en la tabla predictiva

Definición (Conflicto en la tabla predictiva)

• Se produce un conflicto en una tabla predictiva cuando hay una celda $M[A_i,\sigma_j]$ que tiene asignadas dos o más reglas de producción.

Conflictos en la tabla predictiva

Definición (Conflicto en la tabla predictiva)

 Se produce un conflicto en una tabla predictiva cuando hay una celda M[A_i,σ_j] que tiene asignadas dos o más reglas de producción.

Ejemplo (Conflicto en la tabla predictiva)

М	Símbolo de entrada							
	σ_1		σ_j		σ_m	\$		
S								
A_1								
A_i			k, k'					
An								

Conflictos en la tabla predictiva

Nota (Conflicto en la tabla predictiva)

- Si una gramática posee al menos un conflicto entonces
 - no admite un análisis descendente predictivo.
 - no es una gramática LL

Conflictos en la tabla predictiva

Nota (Conflicto en la tabla predictiva)

- Si una gramática posee recursividad por la izquierda o no está factorizada por la izquierda entonces tendrá conflictos en su tabla predictiva
- Estas condiciones son necesarias pero no suficientes:
 - Existen gramáticas que no poseen recursividad por la izquierda y que están factorizadas por la izquierda que también presentan conflictos en su tabla predictiva.

Conflictos en la tabla predictiva

Ejemplos (Conflicto en la tabla predictiva)

- 1.- Gramática con recursividad por la izquierda.
- 2.- Gramática no factorizada por la izquierda.
- 3.- Gramática sin recursividad por la izquierda y factorizada por la izquierda.

Conflictos en la tabla predictiva

Ejemplo (1.- Gramática con recursividad por la izquierda)

$$P = \{ (1) \ S \longrightarrow S \ D \\ (2) \ S \longrightarrow D \\ (3) \ D \longrightarrow T \ I$$

(2) $S \longrightarrow D$

$$(3) D \longrightarrow TL;$$

$$(4) T \longrightarrow int$$

(5)
$$T \longrightarrow float$$

(6)
$$L \longrightarrow L$$
, id

$$(7) L \longrightarrow id$$

Tabla predictiva con conflictos

М	Símbolo de entrada								
	;	int	float	,	id	\$			
S		1, 2	1, 2						
D									
T									
L									

$$(1) S \to \underbrace{SD}$$

$$Primero(\alpha) = Primero(S D) = \{ int, float \}$$

(2)
$$S \rightarrow D$$

$$Primero(\alpha) = Primero(D) = \{ int, float \}$$

Conflictos en la tabla predictiva

Ejemplo (2.- Gramática no factorizada por la izquierda)

$$P = \{$$

- (1) $S \rightarrow a A$
- (2) $A \rightarrow a A$
- (3) $A \rightarrow a B$
- (4) $B \rightarrow \mathbf{b} B$
- (5) $B \rightarrow \mathbf{b} C$
- (6) $C \rightarrow \mathbf{c} C$
- (7) $C \rightarrow \mathbf{c}$

Tabla predictiva con conflicto

[М	Sím	bolo	de e	entrada	
ĺ		a	b	С	\$	
ĺ	S					
ſ	A	2, 3				
ĺ	В					
ĺ	С					

$$(2) A \to \underline{\mathbf{a}} A$$

$$Primero(\alpha) = Primero(\mathbf{a} \ A) = \{\mathbf{a}\}$$

(3)
$$A \rightarrow \underline{\mathbf{a}} B$$

$$Primero(\alpha) = Primero(\mathbf{a} \ B) = \{\mathbf{a}\}$$

Conflictos en la tabla predictiva

Ejemplo (3.- Gramática sin recursividad por la izquierda y factorizada por la izquierda)

$$P = \{ \\
(1) S \longrightarrow \mathbf{a} S \\
(2) S \longrightarrow A B \\
(3) A \longrightarrow \mathbf{a} A \\
(4) A \longrightarrow \mathbf{c} \\
(5) B \longrightarrow \mathbf{b} B \\
(6) B \longrightarrow \mathbf{d}$$

Tabla predictiva con conflictos

	Tabl	a predic	LIVA	COII	COIII	lictos							
	М	Sím	Símbolo de entrada										
		a	b	С	d	\$							
ĺ	S	1, 2		2									
Ì	Α												
ſ	В												

(1)
$$S \rightarrow \underline{a} \underline{S}$$

$$Primero(\alpha) = Primero(\mathbf{a} \ S) = \{\mathbf{a}\}$$

(2)
$$S \rightarrow AB$$

$$Primero(\alpha) = Primero(A B) = \{a, c\}$$

Conflictos en la tabla predictiva

Ejercicio (Conflicto de la tabla predictiva)

 Comprueba que la siguiente gramática del else danzante genera un conflicto en la tabla predictiva:

```
\begin{array}{l} P = \{\\ (1) \ S \longrightarrow \text{if } C \text{ then } S \ S' \\ (2) \ S \longrightarrow \text{instrucción} \\ (3) \ S' \longrightarrow \text{else } S \\ (4) \ S' \longrightarrow \epsilon \\ (5) \ C \longrightarrow \text{condición} \end{array}
```

Conflictos en la tabla predictiva

Gramática ideal que no genera conflictos

- Una gramática puede generar una tabla predictiva sin conflictos de forma inmediata si cumple dos condiciones:
 - Está en la Forma Normal de Greibach:

$$A \longrightarrow \boldsymbol{\sigma} \ \alpha \in P$$

donde $\boldsymbol{\sigma} \in V_T \land \alpha \in V_N^*$

• Para cada símbolo **no** terminal $A \in V_N$, sus alternativas comienzan por un símbolo **terminal** diferente:

Si
$$A \longrightarrow \sigma \alpha \mid \sigma' \alpha' \in P$$
 entonces $\sigma \neq \sigma'$

Conflictos en la tabla predictiva

Ejemplo (Gramática ideal que no genera conflictos)

$$P = \{$$

- (1) $S \longrightarrow \mathbf{a} A B C$
- (2) $A \longrightarrow \mathbf{a} B D$
- (3) $A \longrightarrow \mathbf{b} D C$
- (4) $B \longrightarrow \mathbf{b} B AD$
- (5) $B \longrightarrow \mathbf{c}$
- (6) $C \longrightarrow \mathbf{d} D$
- (7) $D \longrightarrow \mathbf{c} A B$
- (8) $D \longrightarrow \mathbf{d}$

Tabla predictiva sin conflictos

	Tubia prodictiva citi commetee												
[М	S	Símbolo de entrada										
		a	b	С	d	\$							
	S	1											
ſ	A	2	3										
ĺ	В		4	5									
ĺ	С				6								
Ì	D			7	8								

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Implementación recursiva

Descripción

- Codifica un procedimiento para cada símbolo no terminal de la gramática.
- El código del procedimiento está basado en la tabla predictiva.
- Cada procedimiento determina cuál es la única regla de producción que se puede utilizar en cada paso.
- Los procedimientos pueden ser recursivas si hay reglas de producción recursivas.

Implementación recursiva

Descripción

- Se codifica ua procedimiento para cada símbolo $A \in V_N$
- Se utiliza la tabla predictiva para determinar cuál es la única regla de A que se puede simular teniendo en cuenta el símbolo actual de la cadena de entrada:
 - Si la simulación de una regla es correcta, el procedimiento termina correctamente.
 - En caso contrario, el procedimiento lanza un error.
- Si A posee alguna regla recursiva entonces el procedimiento es recursivo.

Implementación recursiva

Nota (Método recursivo sin retroceso)

• Si la simulación de una regla falla entonces no se prueba con ninguna otra regla.

Implementación recursiva

Simulación de la regla $A \longrightarrow X_1 X_2 \dots X_n \in P$

Para i desde 1 hasta n hacer

- Si X_i = B ∈ V_N entonces se llama a la función asociada al símbolo B
 - Si tiene éxito, continúa el análisis.
 - En caso contario, fracasa la simulación de esta regla de A.
- Si $X_i = \sigma \in V_T$ entonces se intenta emparejar σ con el componente léxico actual de la cadena de entrada.
 - Si son iguales, el análisis continúa.
 - En caso contario, fracasa la simulación de esta regla de A.

fin_para

Implementación recursiva

Nota (Simulación de la regla $A \longrightarrow \epsilon$)

• La simulación de la regla ϵ siempre tiene éxito, ya que se ejecuta una sentencia nula.

Implementación recursiva

Ejemplos

- 1.- Codificación de los procedimientos asociados a los símbolos no terminales de la gramática
- 2.- Uso de los procedimientos para analizar una sentencia.

Implementación recursiva

Ejemplo (Codificación de los procedimientos

1 / 15)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

Tabla predictiva													
		Símbolo de entrada											
	id	=	+	*	()	número	\$					
5	1												
E	2				2		2						
E'			3			4		4					
T	5				5		5						
T'			7	6		7		7					
F	9				8		10						

Implementación recursiva

Ejemplo (Codificación de los procedimientos

/ 15)

• Codificación de los **procedimientos** asociados a los símbolos **no terminales**: S, E, E', T, T' y F.

Implementación recursiva

Ejemplo (Codificación de los procedimientos

3 / 15)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

Tabla predictiva												
	Símbolo de entrada											
	id	=	+	*	()	número	\$				
5	1											
E	2				2		2					
E'			3			4		4				
T	5				5		5					
T'			7	6		7		7				
F	9				8		10					

```
Ejemplo (Codificación de los procedimientos
Procedimiento S
 inicio
      \{Regla\ (1)\ S \rightarrow identificador = E\}
                                                                si_no { token es otro símbolo }
      si (token = identificador ) entonces
                                                                    ERROR
          avanzar_entrada(token)
                                                                 fin si
          si (token = "=") entonces
                                                            fin
              avanzar_entrada(token)
              I lamada a F
          si_no { token es distinto de "="}
              ERROR
          fin si
```

Implementación recursiva

Ejemplo (Codificación de los procedimientos

5 / 15)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

Tabla predictiva Símbolo de entrada													
	id	=	+	*	()	número	\$					
S	1												
Ε	2				2		2						
E'			3			4		4					
T	5				5		5						
T'			7	6		7		7					
F	9				8		10						

```
Ejemplo (Codificación de los procedimientos
Procedimiento E
    inicio
        {Regla (2) E \rightarrow T E'}
        si\ (token = identificador)\ o\ (token = número\ )\ o\ (token = "("\ )
             entonces
                  I lamada a T
                  Llamada a E'
             si_no { token es otro símbolo }
                  ERROR
        fin si
    fin
```

Implementación recursiva

Ejemplo (Codificación de los procedimientos

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- $(3) E' \rightarrow + TE'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

Tabla predictiva													
		Símbolo de entrada											
	id	=	+	*	()	número	\$					
5	1												
E	2				2		2						
E'			3			4		4					
T	5				5		5						
T'			7	6		7		7					
F	9				8		10						

```
Ejemplo (Codificación de los procedimientos
                                                                                                    15)
Procedimiento E'
 inicio
                                                                    { Regla (4) E' \longrightarrow \epsilon}
      {Regla (3) E' \longrightarrow + T E'}
                                                                    si (token = ")") o (token = $) entonces
      si (token = "+") entonces
                                                                        { Sentencia nula }
          avanzar_entrada(token)
                                                                    si_no { token es otro símbolo }
          Llamada a T
                                                                        ERROR
          Llamada a E'
                                                                    fin si
      si_no { token es distinto de "+" }
                                                               fin si
                                                           fin
```

Implementación recursiva

Ejemplo (Codificación de los procedimientos

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- $(5) T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow \text{número}$

Tabla predictiva													
		Símbolo de entrada											
	id	=	+	*	()	número	\$					
S	1												
E	2				2		2						
E'			3			4		4					
T	5				5		5						
T'			7	6		7		7					
F	9				8		10						

```
Ejemplo (Codificación de los procedimientos
                                                                      10 /
Procedimiento T
    inicio
        {Regla (5) T \rightarrow F T'}
        si\ (token = identificador)\ o\ (token = número\ )\ o\ (token = "("\ )
             entonces
                  I lamada a F
                  Llamada a T'
             si no
                  ERROR
        fin si
    fin
```

Implementación recursiva

Ejemplo (Codificación de los procedimientos

11 / 15)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

	Tabla predictiva Símbolo de entrada													
Ė		id	=	+	*	()	número	\$					
	5	1												
	E	2				2		2						
	E'			3			4		4					
	T	5				5		5						
	T'			7	6		7		7					
	F	9				8		10						

Implementación recursiva

Ejemplo (Codificación de los procedimientos Procedimiento T' inicio { Regla (6) $T' \longrightarrow \epsilon$ } { Regla (5) $T' \longrightarrow *FT'$ } si (token = "+") o (token = ")") si (token = "*") o (token = \$) entonces entonces { Sentencia nula} avanzar_entrada(token) si_no { token es otro símbolo } Llamada a F **ERROR** I lamada a T' fin si si_no { token es distinto de "*" } fin si fin

Implementación recursiva

Ejemplo (Codificación de los procedimientos

13 / 15)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow$ número

Tabla predictiva Símbolo de entrada													
	id	=	+	*	()	número	\$					
S	1												
Ε	2				2		2						
E'			3			4		4					
T	5				5		5						
T'			7	6		7		7					
F	9				8		10						

```
Ejemplo (Codificación de los procedimientos
                                                                    14
Procedimiento F
    inicio
    {Regla (8) F \rightarrow (E)}
    si (token = "(") entonces
        avanzar_entrada(token)
        Llamada a E
        si (token = ")") entonces
            avanzar_entrada(token)
        si_no { token es distinto de ")"}
                 FRROR
        fin_si
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

/ 75)

• Análisis de la sentencia:

identificador = identificador + número * identificador \$

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

2 / 75)

• Llamada al procedimiento asociado al símbolo inicial S

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia 3/75) Análisis de id = id + n * id \$ Árbol sintáctico S

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento S
 inicio
       \{Regla\ (1)\ S \rightarrow identificador = E\}
                                                                 si_no { token es otro símbolo }
       si (token = identificador) entonces
                                                                     ERROR
                                                                 fin si
           avanzar_entrada(token)
                                                            fin
          si (token = "=") entonces
              avanzar_entrada(token)
              I lamada a F
          si_no { token es distinto de "="}
              ERROR
          fin si
```

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento S
 inicio
       { Regla (1) S \rightarrow identificador = E}
                                                                si_no { token es otro símbolo }
     si (token = identificador ) entonces
                                                                    ERROR
          avanzar_entrada(token)
                                                                fin si
           si (token = "=") entonces
                                                            fin
               avanzar_entrada(token)
              Llamada a E
          si_no { token es distinto de "="}
              FRROR
          fin si
```

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento S
 inicio
       { Regla (1) S \rightarrow identificador = E}
                                                                si_no { token es otro símbolo }
     si (token = identificador ) entonces
                                                                    ERROR
          avanzar_entrada(token)
                                                                fin si
          si (token = "=") entonces
                                                            fin
              avanzar_entrada(token)
               Llamada a E
          si_no { token es distinto de "="}
              FRROR
          fin si
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

8 / 75)

• Llamada al procedimiento asociado al símbolo E

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento E
   inicio
         {Regla (2) E \rightarrow T E'}
         si (token = identificador) o (token = número ) o (token = "(" )
             entonces
                 Llamada a T
               I lamada a F'
           si_no { token es otro símbolo }
               ERROR
       fin si
   fin
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

1 / 75)

• Llamada al procedimiento asociado al símbolo T

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento T
   inicio
         {Regla (5) T \rightarrow F T'}
        si (token = identificador) o (token = número ) o (token = "(" )
            entonces
                 Llamada a F
               I lamada a T'
           si no
               ERROR
       fin si
   fin
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

4 / 75)

• Llamada al procedimiento asociado al símbolo F

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento F
   inicio
    { Regla (8) F \rightarrow (E)}
    si (token = "(") entonces
       avanzar_entrada(token)
       I lamada a F
       si (token = ")") entonces
           avanzar_entrada(token)
       si_no { token es distinto de ")"}
               ERROR
       fin_si
                                                             ←□→ ←□→ ←□→
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

18 / 75)

- Fin de la llamada al procedimiento asociado al símbolo F
- Se devuelve el control al procedimiento asociado al símbolo T

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento T
   inicio
         {Regla (5) T \rightarrow F T'}
        si (token = identificador) o (token = número ) o (token = "(" )
            entonces
               Llamada a F
                Llamada a T'
           si_no
               ERROR
       fin si
   fin
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

0 / 75)

• Llamada al procedimiento asociado al símbolo T'

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

23 / 75)

- Fin de la llamada al procedimiento asociado al símbolo T'
- Se devuelve el control al procedimiento asociado al símbolo T

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento T
    inicio
         {Regla (5) T \rightarrow F T'}
        si\ (token = identificador)\ o\ (token = número\ )\ o\ (token = "("\ )
             entonces
                  I lamada a F
                  I lamada a T'
             si no
                  FRROR
        fin si
     fin
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

26 / 75)

- Fin de la llamada al procedimiento asociado al símbolo T
- Se devuelve el control al procedimiento asociado al símbolo E

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento E
   inicio
         {Regla (2) E \rightarrow T E'}
         si (token = identificador) o (token = número ) o (token = "(" )
           entonces
               Llamada a T
                 Llamada a E'
           si_no { token es otro símbolo }
               FRROR
       fin si
   fin
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

8 / 75)

• Llamada al procedimiento asociado al símbolo E'

```
Ejemplo (2.- Análisis de una sentencia
 Procedimiento E'
 inicio
                                                                     { Regla (4) E' \longrightarrow \epsilon}
       {Regla (3) E' \longrightarrow + T E'}
                                                                     si (token = ")") o (token = $) entonces
       si (token = "+") entonces
                                                                          { Sentencia nula}
            avanzar_entrada(token)
                                                                     si_no { token es otro símbolo }
                                                                         FRROR
           Llamada a T
                                                                     fin si
          Llamada a E'
                                                                fin si
      si_no { token es distinto de "+" }
                                                            fin
```



```
Ejemplo (2.- Análisis de una sentencia
 Procedimiento E'
 inicio
                                                                     {Regla (4) E' \longrightarrow \epsilon}
        {Regla (3) E' \longrightarrow + T E'}
                                                                    si (token = ")") o (token = $) entonces
       si (token = "+") entonces
                                                                         { Sentencia nula}
                                                                    si_no { token es otro símbolo }
          avanzar_entrada(token)
                                                                         FRROR
            Llamada a T
                                                                    fin si
          Llamada a E'
                                                                fin si
      si_no { token es distinto de "+" }
                                                           fin
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

2 / 75)

• Llamada al procedimiento asociado al símbolo T

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento T
   inicio
         {Regla (5) T \rightarrow F T'}
        si (token = identificador) o (token = número ) o (token = "(" )
            entonces
                 Llamada a F
               I lamada a T'
           si no
               ERROR
       fin si
   fin
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

5 / 75)

Llamada al procedimiento asociado al símbolo F

```
Ejemplo (2.- Análisis de una sentencia
                                                                    36
Procedimiento F
    inicio
     {Regla (8) F \rightarrow (E)}
     si (token = "(") entonces
        avanzar_entrada(token)
        Llamada a E
        si (token = ")") entonces
             avanzar_entrada(token)
        si_no { token es distinto de ")"}
                 FRROR
        fin_si
```



```
Ejemplo (2.- Análisis de una sentencia
                                                                                         38
 Procedimiento F
                              (continuación)
si_no { token es distinto de "("}
                                                                si_no { token es otro símbolo }
                                                                     ERROR
   {Regla (9) F \rightarrow identificador}
                                                                fin si
   si (token = "id") entonces
                                                            fin si
       avanzar_entrada(token)
                                                         fin
   si_no { token es distinto de "id"
         { Regla (10) F \rightarrow \text{número} }
         si (token = "número")
             entonces
                 avanzar_entrada(token)
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

40 / 75)

- Fin de la llamada al procedimiento asociado al símbolo F
- Se devuelve el control al procedimiento asociado al símbolo T

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento T
   inicio
         {Regla (5) T \rightarrow F T'}
        si (token = identificador) o (token = número ) o (token = "(" )
            entonces
               Llamada a F
                Llamada a T'
           si_no
               ERROR
       fin si
   fin
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

2 / 75)

• Llamada al procedimiento asociado al símbolo T'

```
Ejemplo (2.- Análisis de una sentencia
 Procedimiento T'
 inicio
                                                                {Regla (6) T' \longrightarrow \epsilon}
   {Regla (5) T' \longrightarrow *FT'}
                                                                si (token = "+") o (token = ")")
       si (token = "*")
                                                                     o (token = $) entonces
            entonces
                                                                     { Sentencia nula}
                                                                si_no { token es otro símbolo }
                avanzar_entrada(token)
                                                                     ERROR
                                                                fin si
               I lamada a F
                                                            fin si
               I lamada a T'
          si_no { token es distinto de "*" }
                                                            fin
```



```
Ejemplo (2.- Análisis de una sentencia
 Procedimiento T'
 inicio
   {Regla (5) T' \longrightarrow *FT'}
                                                                {Regla (6) T' \longrightarrow \epsilon}
                                                                si (token = "+") o (token = ")")
       si (token = "*")
                                                                    o (token = $) entonces
            entonces
                                                                    { Sentencia nula}
                                                                si_no { token es otro símbolo }
               avanzar_entrada(token)
                                                                    FRROR
                Llamada a F
                                                                fin si
                                                           fin si
               Llamada a T'
          si_no { token es distinto de "*" }
                                                           fin
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

6 / 75)

• Llamada al procedimiento asociado al símbolo F

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento F
   inicio
    { Regla (8) F \rightarrow (E)}
    si (token = "(") entonces
       avanzar_entrada(token)
       I lamada a F
       si (token = ")") entonces
           avanzar_entrada(token)
       si_no { token es distinto de ")"}
               ERROR
       fin_si
                                                             ←□→ ←□→ ←□→
```

```
Ejemplo (2.- Análisis de una sentencia
 Procedimiento F
                             (continuación)
si_no { token es distinto de "("}
                                                                 si_no { token es otro símbolo }
    { Regla (9) F \rightarrow identificador
                                                                     ERROR
                                                                 fin si
    si (token = "id") entonces
                                                            fin si
         avanzar_entrada(token)
                                                        fin
   si_no { token es distinto de "id" }
       {Regla (10) F \rightarrow \text{número} }
       si (token = "número")
            entonces
                avanzar_entrada(token)
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia Análisis de id = id + n * id\$ Árbol sintáctico id = Eid = TE'id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * idT'E'$ identificador identificador número Emparejamiento de id

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

50 / 75)

- Fin de la llamada al procedimiento asociado al símbolo F
- Se devuelve el control al procedimiento asociado al símbolo T'

```
Ejemplo (2.- Análisis de una sentencia
 Procedimiento T'
 inicio
                                                                {Regla (6) T' \longrightarrow \epsilon}
   { Regla (5) T' \longrightarrow *FT'}
                                                                si (token = "+") o (token = ")")
       si (token = "*")
                                                                     o (token = $) entonces
            entonces
                                                                     { Sentencia nula}
                                                                si_no { token es otro símbolo }
               avanzar_entrada(token)
                                                                     ERROR
               Llamada a F
                                                                fin si
                Llamada a T
                                                            fin si
          si_no { token es distinto de "*" }
                                                            fin
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

2 / 75)

• Llamada recursiva al procedimiento asociado al símbolo T' (segunda activación)

```
Ejemplo (2.- Análisis de una sentencia
 Procedimiento T'
 inicio
                                                                 { Regla (6) T' \longrightarrow \epsilon}
   { Regla (5) T' \longrightarrow *FT'}
                                                                 si (token = "+") o (token = ")")
       si (token = "*")
                                                                     o (token = $) entonces
          entonces
                                                                      { Sentencia nula}
               avanzar_entrada(token)
               Llamada a F
                                                               si_no { token es otro símbolo }
               Llamada a T'
                                                                    ERROR
          si_no { token es distinto de "*" }
                                                               fin si
                                                           fin si
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

55 / 75)

- Fin de la segunda activación del procedimiento asociado al símbolo T'
- Se devuelve el control a la primera activación del procedimiento asociado al símbolo T'

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

58 / 75)

- Fin de la primera activación del procedimiento asociado al símbolo T'
- Se devuelve el control al procedimiento asociado al símbolo T

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento T
   inicio
         {Regla (5) T \rightarrow F T'}
        si (token = identificador) o (token = número ) o (token = "(" )
            entonces
               Llamada a F
               Llamada a T'
           si no
               ERROR
       fin si
```


Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

61 / 75)

- Fin de la ejecución del procedimiento asociado al símbolo T
- Se devuelve el control al procedimiento asociado al símbolo E'

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento E'
 inicio
                                                                     { Regla (4) E' \longrightarrow \epsilon}
       {Regla (3) E' \longrightarrow + T E'}
                                                                     si (token = ")") o (token = $) entonces
       si (token = "+") entonces
                                                                          { Sentencia nula }
                                                                     si_no { token es otro símbolo }
          avanzar_entrada(token)
                                                                          ERROR
           Llamada a T
                                                                     fin si
            Llamada a E'
                                                                fin si
      si_no { token es distinto de "+" }
                                                            fin
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

63 / 75)

• LLamada recursiva al procedimiento asociado al símbolo E' (segunda activación)

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia 65 Análisis de id = id + n * id \$Árbol sintáctico id = Eid = TE' $\stackrel{\Rightarrow}{\Rightarrow} \stackrel{2}{\Rightarrow} \stackrel{5}{\Rightarrow} \stackrel{9}{\Rightarrow} \stackrel{7}{\Rightarrow} \stackrel{3}{\Rightarrow} \stackrel{5}{\Rightarrow} \stackrel{10}{\Rightarrow} \stackrel{6}{\Rightarrow} \stackrel{9}{\Rightarrow} \stackrel{7}{\Rightarrow} \stackrel{7$ id = FT'E' $id=id\mathit{T'E'}$ $id=id \; \epsilon \; E'$ $id = id \epsilon + TE'$ $id = id \ \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \ \epsilon \ + n \ * \ id \ T'E'$ identificador $id = id \epsilon + n * id \epsilon E'$

 $\mathsf{id} = \mathsf{id} \; \epsilon \; + \mathsf{n} \; * \; \mathsf{id} \; \epsilon \; \epsilon$

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

66 / 75)

- Fin de la ejecución del procedimiento asociado al símbolo E' (segunda activación)
- Se devuelve el control al procedimiento asociado al símbolo E' (primera activación)

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia 68 Análisis de id = id + n * id \$Árbol sintáctico id = Eid = TE' $\stackrel{\Rightarrow}{\Rightarrow} \stackrel{2}{\Rightarrow} \stackrel{5}{\Rightarrow} \stackrel{9}{\Rightarrow} \stackrel{7}{\Rightarrow} \stackrel{3}{\Rightarrow} \stackrel{5}{\Rightarrow} \stackrel{10}{\Rightarrow} \stackrel{6}{\Rightarrow} \stackrel{9}{\Rightarrow} \stackrel{7}{\Rightarrow} \stackrel{7$ id = FT'E' $id=id\mathit{T'E'}$ $id=id \; \epsilon \; E'$ $id = id \epsilon + TE'$ $id = id \ \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \ \epsilon \ + n \ * \ id \ T'E'$ identificador $id = id \epsilon + n * id \epsilon E'$

 $\mathsf{id} = \mathsf{id} \; \epsilon \; + \mathsf{n} \; * \; \mathsf{id} \; \epsilon \; \epsilon$

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

(9 / 75)

- Fin de la ejecución del procedimiento asociado al símbolo E' (primera activación)
- Se devuelve el control al procedimiento asociado al símbolo E

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento E
   inicio
         {Regla (2) E \rightarrow T E'}
         si (token = identificador) o (token = número ) o (token = "(" )
           entonces
               I lamada a T
               I lamada a F'
           si_no { token es otro símbolo }
               ERROR
       fin si
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia Análisis de id = id + n * id \$Árbol sintáctico id = Eid = TE' $\stackrel{\Rightarrow}{\Rightarrow} \stackrel{2}{\Rightarrow} \stackrel{5}{\Rightarrow} \stackrel{9}{\Rightarrow} \stackrel{7}{\Rightarrow} \stackrel{3}{\Rightarrow} \stackrel{5}{\Rightarrow} \stackrel{10}{\Rightarrow} \stackrel{6}{\Rightarrow} \stackrel{9}{\Rightarrow} \stackrel{7}{\Rightarrow} \stackrel{7$ id = FT'E' $id=id\mathit{T'E'}$ $id=id \; \epsilon \; E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \ \epsilon \ + n \ * \ id \ T'E'$ identificador $id = id \epsilon + n * id \epsilon E'$

 $\mathsf{id} = \mathsf{id} \; \epsilon \; + \mathsf{n} \; * \; \mathsf{id} \; \epsilon \; \epsilon$

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

72 / 75)

- Fin de la ejecución del procedimiento asociado al símbolo E
- Se devuelve el control al procedimiento asociado al símbolo S

```
Ejemplo (2.- Análisis de una sentencia
Procedimiento S
 inicio
       {Regla (1) S \rightarrow identificador = E}
                                                                si_no { token es otro símbolo }
       si (token = identificador ) entonces
                                                                    ERROR
                                                                fin si
          avanzar_entrada(token)
          si (token = "=") entonces
              avanzar_entrada(token)
              I lamada a F
          si_no { token es distinto de "="}
              FRROR
          fin si
```

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia

1 / 75)

• Fin de la ejecución del procedimiento asociado al símbolo S

Implementación recursiva

Ejemplo (2.- Análisis de una sentencia 75 Análisis de id = id + n * id \$Árbol sintáctico S id = Eid = TE' $\stackrel{\Rightarrow}{\Rightarrow} 2 \stackrel{\Rightarrow}{\Rightarrow} 5 \stackrel{\Rightarrow}{\Rightarrow} 9 \stackrel{\Rightarrow}{\Rightarrow} 7 \stackrel{\Rightarrow}{\Rightarrow} 3 \stackrel{\Rightarrow}{\Rightarrow} 5 \stackrel{\Rightarrow}{\Rightarrow} 10 \stackrel{\Rightarrow}{\Rightarrow} 6 \stackrel{\Rightarrow}{\Rightarrow} 9 \stackrel{\Rightarrow}{\Rightarrow} 7 \stackrel{\Rightarrow}{\Rightarrow}$ id = FT'E'id = idT'E' $id = id \in E'$ $\mathsf{id} = \mathsf{id} \; \epsilon + \mathit{TE}'$ $id = id \epsilon + FT'E'$ $\mathsf{id} = \mathsf{id} \; \epsilon \; + \mathsf{n} \; T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id T'E'$ identificador $id = id \epsilon + n * id \epsilon E'$ $id = id \epsilon + n * id \epsilon \epsilon$ Fin del análisis

Implementación recursiva

Ejercicios (Método recursivo)

1.- Gramática de las expresiones.

```
id = número * (identificador + identificador) $
```

2.- Gramática de las declaraciones.

```
int id, id; float id; $
```

3.- Gramática de prototipos

```
int id (int id, float id); $
```

Implementación recursiva

Ejercicio (1.- Gramática de expresiones aritméticas)

• Utiliza el método recursivo para realizar el análisis descendente y predictivo de la sentencia:

id = número * (identificador + identificador) \$

Implementación recursiva

Ejercicio (2.- Gramática de declaraciones)

Gramática de declaraciones

$$P = \{$$

- (1) $S \longrightarrow DS$
- (2) $S \longrightarrow \epsilon$
- (3) $D \longrightarrow TL$;
- $(4) T \longrightarrow int$
- (5) $T \longrightarrow float$
- (6) $L \longrightarrow id L'$
- (7) $L' \longrightarrow$, id L'
- (8) $L' \longrightarrow \epsilon$

Análisis de las declaraciones

int id, id; float id; \$

Implementación recursiva

Ejercicio (3.- Gramática de prototipos)

• Gramática de prototipos

$$P = \{ \\ (1) \ S \longrightarrow D \ S \\ (2) \ S \longrightarrow \epsilon \\ (3) \ D \longrightarrow T \ \text{id} \ (P) \ ; \\ (4) \ T \longrightarrow \text{int} \\ (5) \ T \longrightarrow \text{float} \\ (6) \ P \longrightarrow \epsilon \\ (7) \ P \longrightarrow T \ \text{id} \ L \\ (8) \ L \longrightarrow , T \ \text{id} \ L \\ (9) \ L \longrightarrow \epsilon \\ \end{cases}$$

- Construcción del conjunto Primero
- Construcción del conjunto **Siguiente**
- Construcción de la **Tabla** predictiva
- Análisis del prototipo int id (int id, float id); \$

Contenido de la sección

- 3 Análisis sintáctico descendente predictivo
 - Descripción
 - Gramáticas LL(k)
 - Fases
 - Conjunto Primero
 - Conjunto Siguiente
 - Construcción de la tabla predictiva
 - Conflictos en la tabla predictiva
 - Implementación recursiva
 - Implementación iterativa

Implementación iterativa

Componentes

- La implementación iterativa del análisis sintáctico descendente y predictivo consta de cuatro compenentes:
 - 1.- Entrada.
 - 2.- Tabla predictiva.
 - 3.- Pila del análisis sintáctico.
 - 4.- Programa de control.

Implementación iterativa

Componentes: representación tabular

Pila	Entrada	Acción
\$ S	$\sigma_1 \ \sigma_2 \cdots \sigma_n $ \$	
	•••	• • •
\$	\$	Aceptar

Nota (Acción)

Esta columna será utilizada para indicar cada una de las acciones que realizará el Programa de control.

Implementación iterativa

Componentes: representación tabular

Pila	Entrada	Acción
\$ S	$\sigma_1 \ \sigma_2 \cdots \sigma_n $ \$	
	•••	• • •
\$	\$	Aceptar

Nota (Acción)

Esta columna será utilizada para indicar cada una de las acciones que realizará el Programa de control.

Implementación iterativa

1.- Entrada 1 / 2

- Contiene los componentes léxicos o tokens que ha reconocido el analizador léxico.
- \$: indica el fin de la cadena de entrada.

Pila	Entrada	Acción
\$ S	$\sigma_1 \ \sigma_2 \cdots \sigma_n $ \$	
	•••	•••
\$	\$	Aceptar

Implementación iterativa

2.- Tabla predictiva

1 / 2

• Se genera a partir de la gramática G utilizada en el análisis sintáctico.

M		Símbolo de entrada					
	σ_1		σ_j		σ_m	\$	
S							
A_1							
A_i			Regla k				
A_n							

Implementación iterativa

3.- Pila del análisis sintáctico

/ 2

- Puede contener símbolos de la gramática o el símbolo \$
- Configuración inicial:
 - \$: situado en el fondo de la pila
 - Símbolo inicial de la gramática S: situado encima de \$.

Pila	Entrada	Acción
\$ S	$\sigma_1 \ \sigma_2 \cdots \sigma_n $ \$	
• • •	• • •	• • •

Implementación iterativa

4.- Programa de control

2 / 15

- M: tabla predictiva
- $X \in V_N \cup V_T \cup \{\$\}$: símbolo situado en la cima de la pila.
- $\sigma \in V_T \cup \{\$\}$: símbolo actual de la cadena de entrada.

Pila	Entrada	Acción
\$ S	$\sigma_1 \ \sigma_2 \cdots \sigma_n $ \$	
	• • •	• • •
\$ · · · X	$\sigma \cdots \sigma_n$ \$	
• • •	• • •	• • •

Implementación iterativa

4.- Programa de control

4 / 15

1.-
$$X \in V_T \cup \{\$\}$$

a) $X = \sigma =$ \$

Aceptar: la cadena de entrada es aceptada y finaliza el análisis con éxito.

b) $X = \sigma \neq \$$

Emparejar: se **elimina** el símbolo σ de la cima de la pila y se **avanza** en la entrada.

c) $X \neq \sigma$

Error: el símbolo terminal de la cima de la pila no coincide con el símbolo actual de la entrada.

Se debe aplicar un método de recuperación de errores.

Implementación iterativa

4.- Programa de control

5 / 15

- 2.- $X = A \in V_N$
 - a) $M[A,\sigma] = A \longrightarrow X_1 X_2 \cdots X_N$ Se **extrae** el símbolo A de la pila y se **introducen** los símbolos X_i ($i \in \{1, 2, \dots, N\}$) en orden inverso.
 - b) $M[A, \sigma] = vacía$

Error: no se puede aplicar ninguna regla de producción. Se debe aplicar un método de recuperación de errores.

Implementación iterativa

4.- Programa de control

6 / 15

- 1.- $X \in V_T \cup \{\$\}$
 - a) $X = \sigma =$ \$

Aceptar: la cadena de entrada es aceptada y finaliza el análisis con éxito.

Pila	Entrada	Acción
\$ S	$\sigma_1 \ \sigma_2 \cdots \sigma_n $ \$	
	•••	• • •
\$	\$	Aceptar

Implementación iterativa

4.- Programa de control

8 / 15

1.-
$$X \in V_T \cup \{\$\}$$

b)
$$X = \sigma \neq \$$$

Emparejar: se **elimina** el símbolo σ de la cima de la pila y se **avanza** en la entrada.

Pila	Entrada	Acción
\$ · · · X' σ	$\sigma \ \sigma' \cdots \sigma_n $ \$	Emparejar
\$ · · · X'	$\sigma' \cdots \sigma_n $ \$	
• • •	• • •	• • •

Implementación iterativa

4.- Programa de control

10 / 15

- 1.- $X \in V_T \cup \{\$\}$
 - c) $X \neq \sigma$

Error: no coinciden los símbolos actuales de la entrada y la pila. Se debe aplicar un método de recuperación de errores.

Pila	Entrada	Acción
\$ · · · X	$\sigma \cdots \sigma_n$ \$	Error
• • •	• • •	• • •

Implementación iterativa

4.- Programa de control

12 / 15

2.-
$$X = A \in V_N$$

a) $M[A,\sigma] = \text{regla k}$ donde la regla k es $A \longrightarrow X_1 X_2 \cdots X_N$

Se **extrae** el símbolo A de la pila y se **introducen** los símbolos X_i ($i \in \{1, 2, \dots, N\}$) en orden inverso.

Pila	Entrada	Acción
\$ · · · A	$\sigma \cdots \sigma_n$ \$	k) A $\longrightarrow X_1 X_2 \cdots X_N$
$\mathbf{\$} \cdots \underline{X_N \cdots X_2 X_1}$	$\sigma \cdots \sigma_n$ \$	
• • •	• • •	• • •

Implementación iterativa

4.- Programa de control

14 / 15

2.-
$$X = A \in V_N$$

b) $M[A, \sigma] = vacía$

Error: no se puede aplicar ninguna regla de producción. Se debe aplicar un método de recuperación de errores.

Pila	Entrada	Acción
\$ · · · A	$\sigma \cdots \sigma_n$ \$	Error


```
Ejemplo (Gramática de expresiones aritméticas
                                          Análisis de la sentencia:
P = \{
                                              id = id + n * id $
 (1) S \rightarrow identificador = E
 (2) E \rightarrow T E'
 (3) E' \rightarrow + T E'
 (4) E' \rightarrow \epsilon
 (5) T \rightarrow F T'
 (6) T' \rightarrow *FT'
 (7) T' \rightarrow \epsilon
 (8) F \rightarrow (E)
 (9) F \rightarrow identificador
(10) F \rightarrow número
```

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

2 / 40)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (0) Γ (0)
- (8) $F \to (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

Tabla predictiva Símbolo de entrada							
id	=	+	*	()	número	\$
1							
2				2		2	
		3			4		4
5				5		5	
		7	6		7		7
9				8		10	
	1 2 5	5	Sí id = + 1	Símbolc	Símbolo de e id = + * (Símbolo de entrada	Símbolo de entrada

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas 3 /

Pila	Entrada	Acción
\$ 5	id = id + n * id \$	

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

1 / 40)

Análisis de
$$id = id + n * id $$$

S

Árbol sintáctico

- 5

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

5 / 40)

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

Tabla predictiva Símbolo de entrada								
	id	=	+	*	()	número	\$
5	1							
E	2				2		2	
E'			3			4		4
T	5				5		5	
T'			7	6		7		7
F	9				8		10	

Ejemplo (Gramática de expresiones aritméticas $6/40$)					
Pila	Entrada	Acción			
\$ 5	id = id + n * id \$	1) $S \rightarrow identificador = E$			
E = id	id = id + n * id \$	Emparejar			
	= id + n * id \$	Emparejar			
	id + n * id \$				

Ejemplo (Gramática de expresiones aritméticas $6/40$)					
Pila	Entrada	Acción			
\$ <i>S</i>	id = id + n * id \$	1) $S \rightarrow \text{identificador} = E$			
E = id	id = id + n * id \$	Emparejar			
\$ E =	= id + n * id \$	Emparejar			
	id + n * id \$				

Ejemplo (Gramática de expresiones aritméticas $6/40$)					
Pila	Entrada	Acción			
\$ 5	id = id + n * id \$	1) $S \rightarrow identificador = E$			
E = id	id = id + n * id \$	Emparejar			
\$ E =	= id + n * id \$	Emparejar			
\$ <i>E</i>	id + n * id \$				

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
 - (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow$ número

	Tabla predictiva							
			Sí	mbolo	de e	ntrad	a	
	id	=	+	*	()	número	\$
S	1							
E	2				2		2	
E'			3			4		4
T	5				5		5	
T'			7	6		7		7
F	9				8		10	
	9						10	

Ejemplo (Gram	Ejemplo (Gramática de expresiones aritméticas 9 / 40)					
Pila	Entrada Acción					
\$ <i>S</i>	id = id + n * id \$	1) $S \rightarrow \text{identificador} = E$				
E = id	id = id + n * id \$	Emparejar				
\$ E =	= id + n * id \$	Emparejar				
\$ <i>E</i>	id + n * id \$	2) E → T E'				
\$ E' T	id + n * id \$					

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- $(2) E \to T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow$ número

	Tabla predictiva Símbolo de entrada									
[id	=	+	*	()	número	\$	
lſ	S	1								
	Ε	2				2		2		
П	E'			3			4		4	
	T	5				5		5		
	T'			7	6		7		7	
IÌ	F	9				8		10		
L										

Ejemplo (Gramática de expresiones aritméticas $12 / 40$)								
Pila	Entrada	Acción						
\$ 5	id = id + n * id \$	1) $S \rightarrow identificador = E$						
E = id	id = id + n * id \$	Emparejar						
\$ E =	= id + n * id \$	Emparejar						
\$ <i>E</i>	id + n * id \$	2) E → T E'						
\$ <u>E' T</u>	id + n * id \$	5) $T \rightarrow F T'$						
\$ E' <u>T' F</u>	id + n * id \$							
	'							

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) T'
- (7) $T' \rightarrow \epsilon$
- (8) $F \to (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

	Tabla predictiva									
		Símbolo de entrada								
	id	=	+	*	()	número	\$		
S	1									
E	2				2		2			
E'			3			4		4		
T	5				5		5			
T'			7	6		7		7		
F	9				8		10			
'	9				0		10	ш		

Ejemplo (Gramática de expresiones aritméticas $15 / 40$)								
Pila	Entrada	Acción						
\$ <i>S</i>	id = id + n * id \$	1) $S \rightarrow identificador = E$						
E = id	id = id + n * id \$	Emparejar						
\$ E =	= id + n * id \$	Emparejar						
\$ <i>E</i>	id + n * id \$	2) E → T E'						
\$ <u>E' T</u>	id + n * id \$	$5) T \rightarrow F T'$						
\$ E' <u>T' F</u>	id + n * id \$	$9) F \rightarrow identificador$						
\$ E' T' <u>id</u>	id + n * id \$	Émparejar						
\$ E' T'	+ n * id \$							

Ejemplo (Gramática de expresiones aritméticas $15 / 40$)								
Pila	Entrada	Acción						
\$ 5	id = id + n * id \$	1) $S \rightarrow identificador = E$						
E = id	id = id + n * id \$ Emparejar							
\$ E =	= id + n * id \$	Emparejar						
\$ <i>E</i>	id + n * id \$	2) E → T E'						
\$ <u>E' T</u>	id + n * id \$	5) $T \rightarrow F T'$						
\$ E' <u>T' F</u>	id + n * id \$	$9) F \rightarrow identificador$						
\$ E' T' id	id + n * id \$	Émparejar						
\$ E' T'	+ n * id \$							

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow \text{número}$

	Tabla predictiva									
		Símbolo de entrada								
	id	id = + * () número \$								
5	1									
E	2				2		2			
E'			3			4		4		
T	5				5		5			
T'			7	6		7		7		
F	9				8		10			
	11 -		l				10			

Ejemplo (Gramática de expresiones aritméticas 18 / 40)								
Pila	Entrada	Acción						
\$ 5	id = id + n * id \$	1) $S \rightarrow identificador = E$						
\$ $E = id$	id = id + n * id \$	Emparejar						
\$ E =	= id + n * id \$	Emparejar						
\$ <i>E</i>	id + n * id \$	2) E → T E'						
\$ <u>E' T</u>	id + n * id \$	5) $T \rightarrow F T'$						
\$ E' <u>T' F</u>	id + n * id \$	9) $F \rightarrow$ identificador						
\$ E' T' <u>id</u>	id + n * id \$	Emparejar						
\$ E' T '	+ n * id \$	7) $T' \rightarrow \epsilon$						
\$ E'	+ n * id \$							

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow$ número

Tabla predictiva									
	Símbolo de entrada								
	id = + * () número \$								
S	1								
E	2				2		2		
E'			3			4		4	
T	5				5		5		
T'			7	6		7		7	
F	9				8		10		

Ejemplo (Gramática de expresiones aritméticas 21 / 40)							
Pila	Entrada	Acción					
\$ 5	id = id + n * id \$	1) $S \rightarrow identificador = E$					
E = id	id = id + n * id \$	Emparejar					
\$ E =	= id + n * id \$	Emparejar					
\$ <i>E</i>	id + n * id \$	2) E → T E'					
\$ <u>E' T</u>	id + n * id \$	(5) $T \rightarrow F T'$					
\$ E' <u>T' F</u>	id + n * id \$	9) $F \rightarrow$ identificador					
\$ E' T' <u>id</u>	id + n * id \$	Emparejar					
\$ E' T'	+ n * id \$	7) $T' \rightarrow \epsilon$					
\$ E'	+ n * id \$	3) $E' \rightarrow + T E'$					
\$ E' T +	+ n * id \$	Emparejar					
\$ E' T	n * id \$						

Ejemplo (Gramática de expresiones aritméticas 21 / 40)							
Pila	Entrada	Acción					
\$ 5	id = id + n * id \$	1) $S \rightarrow identificador = E$					
E = id	id = id + n * id \$	Emparejar					
\$ E =	= id + n * id \$	Emparejar					
\$ <i>E</i>	id + n * id \$	2) $E \rightarrow T E'$					
\$ <u>E' T</u>	id + n * id \$	5) $T \rightarrow F T'$					
\$ E' <u>T' F</u>	id + n * id \$	9) $F \rightarrow$ identificador					
\$ E' T' <u>id</u>	id + n * id \$	Emparejar					
\$ E' T'	+ n * id \$	7) $T' \rightarrow \epsilon$					
\$ E'	+ n * id \$	3) $E' \rightarrow + T E'$					
\$ E' T +	+ n * id \$	Émparejar					
\$ E' T	n * id \$						

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- $(2) E \to T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow \text{número}$

Ĺ	Tabla predictiva									
l		Símbolo de entrada								
	id = + * () número \$									
١	5	1								
	E	2				2		2		
	E'			3			4		4	
	T	5				5		5		
	T'			7	6		7		7	
	F	9				8		10		
				•				•		

Ejemplo (Gramática de expresiones aritméticas	24 / 40)
---	----------

Pila	Entrada	Acción		
\$ <u>E' T +</u> \$ E' T \$ E' <u>T' F</u>	 + n * id \$ n * id \$ n * id \$	 Emparejar 5) T → F T'		

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

Tabla predictiva								
			Sí	mbolo	de e	ntrad	a	
	id	=	+	*	()	número	\$
5	1							
E	2				2		2	
E'			3			4		4
T	5				5		5	
T'			7	6		7		7
F	9				8		10	

27 / 40)

Análisis sintáctico descendente predictivo

Figure (Cramática de expresiones aritméticas

Ejemplo (Gramatica de expresiones aritméticas 21 / 40)						
Pila	Entrada	Acción				
• • •						
\$ E' T +	+ n * id \$	Emparejar				
\$ E' T	n * id \$	5) $T \rightarrow F T'$				
\$ E' <u>T' F</u>	n * id \$	10) $F \rightarrow$ número				
¢ F' T' n	n * id ¢	Emparaiar				

Implementación iterativa

Pila Entrada Acción

\$ E' T +	+ n * id \$	Emparejar
\$ E' T	n * id \$	<i>5) T</i> → <i>F T'</i>
\$ E' <u>T' F</u>	n * id \$	10) $F \rightarrow$ número
\$ E' <u>T' n</u>	n * id \$	Emparejar
\$ E' T'	* id \$	

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas Análisis de id = id + n * id \$Árbol sintáctico $\begin{array}{cccc} 1 & & & \\ \Rightarrow & \text{id} & = TE' \\ \Rightarrow & \text{id} & = FT'E' \\ \Rightarrow & \text{id} & = \text{id}T'E' \\ \Rightarrow & \text{id} & = \text{id} \in E' \\ \Rightarrow & \text{id} & = \text{id} \in E' \\ \Rightarrow & \text{id} & = \text{id} \in + TE' \\ \Rightarrow & \text{id} & = \text{id} \in + TE'E' \\ \Rightarrow & \text{id} & = \text{id} \in + TE'E' \\ \Rightarrow & \text{id} & = \text{id} \in + TE'E' \\ \end{array}$ Emparejamiento de n identificador identificador

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow identificador$
- (10) $F \rightarrow \text{número}$

l	Tabla predictiva Símbolo de entrada							
	<u> </u>		51	mbolo	de e	ntrad		
	id	=	+	~	_ (_		número	5
S	1							
E	2				2		2	
E'			3			4		4
T	5				5		5	
T'			7	6		7		7
F	9				8		10	

Implementación iterativa

Pila Entrada Acción ...

• • •	• • •	•••
\$ <u>E' T +</u>	+ n * id \$	Emparejar
\$ E' T	n * id \$	5) $T \rightarrow F T'$
\$ E' <u>T' F</u>	n * id \$	10) $F \rightarrow$ número
\$ E' <u>T' n</u>	n * id \$	Emparejar
\$ E' T'	* id \$	<i>6) T'</i> → * <i>F T'</i>
\$ E' <u>T' F *</u>	* id \$	
	id \$	

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas 30 / 40)

Pila	Entrada	Acción
		,,,
\$ E' T +	+ n * id \$	Emparejar
\$ E' T	n * id \$	<i>5) T</i> → <i>F T'</i>
\$ E' <u>T' F</u>	n * id \$	<i>10)</i> $F \rightarrow$ número
\$ E' <u>T' n</u>	n * id \$	Emparejar
\$ E' T'	* id \$	<i>6) T'</i> → * <i>F T'</i>
\$ E' <u>T' F *</u>	* id \$	Emparejar
\$ E' T' F	id \$	

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

Tabla predictiva Símbolo de entrada								
	id	=	+	*	()	número	\$
S	1							
E	2				2		2	
E'			3			4		4
T	5				5		5	
T'			7	6		7		7
F	9				8		10	

Implementación iterativa

Pila Entrada Acción

		• • •
\$ E' T +	+ n * id \$	Emparejar
\$ <u>E' T</u>	n * id \$	5) $T \rightarrow F T'$
\$ E' <u>T' F</u>	n * id \$	10)~F ightarrow número
\$ E' T' n	n * id \$	Emparejar
\$ E' T'	* id \$	6) T' → * F T'
\$ E' <u>T' F *</u>	* id \$	Émparejar
\$ E' T' F	id \$	9) $F \rightarrow$ identificador
\$ E' T' <u>id</u>	id \$	Émparejar
	S	

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

Pila	Entrada	Acción
		• • •
\$ E' T +	+ n * id \$	Emparejar
\$ E' T	n * id \$	<i>5) T</i> → <i>F T'</i>
\$ E' <u>T' F</u>	n * id \$	10) $F \rightarrow$ número
\$ E' <u>T' n</u>	n * id \$	Emparejar
\$ E' T'	* id \$	6) $T' \rightarrow *FT'$
\$ E' <u>T' F *</u>	* id \$	Émparejar
\$ E' T' F	id \$	9) $F \rightarrow$ identificador
\$ E' T' <u>id</u>	id \$	Émparejar
\$ E' T'	\$	

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas Análisis de id = id + n * id\$ Árbol sintáctico id = Eid = TE'id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * idT'E'$ identificador identificador número Emparejamiento de id

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) *F* → identificador
- (10) $F \rightarrow \text{número}$

Γ,	Tabla predictiva								
Ιl				Sí	mbolo	de e	ntrad	a	
[id	=	+	*	()	número	\$
١	5	1							
	E	2				2		2	
lſ	E'			3			4		4
lſ	T	5				5		5	
	T'			7	6		7		7
Ì	F	9				8		10	
٠		•		•	•		•		

Ejemplo (Gramátic	Ejemplo (Gramática de expresiones aritméticas 36 / 40)						
Pila	Entrada	Acción					
\$ E' T +	+ n * id \$	Emparejar					
\$ <u>E' T</u>	n * id \$	5) $T \rightarrow F T'$					
\$ E' <u>T' F</u>	n * id \$	10) $F \rightarrow$ número					
\$ E' <u>T' n</u>	n * id \$	Emparejar					
\$ E' T'	* id \$	6) T' → * F T'					
\$ E' <u>T' F *</u>	* id \$	Emparejar					
\$ E' T' F	id \$	9) $F \rightarrow$ identificador					
\$ E' T' <u>id</u>	id \$	Emparejar					
\$ E' T'	\$	7) $T' \rightarrow \epsilon$					
\$ E'	\$						

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas Análisis de id = id + n * id\$ Árbol sintáctico id = Eid = TE' $\stackrel{\bigstar}{\Rightarrow} 2 \stackrel{\bigstar}{\Rightarrow} 5 \stackrel{\bigstar}{\Rightarrow} 9 \stackrel{\bigstar}{\Rightarrow} 7 \stackrel{\bigstar}{\Rightarrow} 3 \stackrel{\bigstar}{\Rightarrow} 5 \stackrel{\bigstar}{\Rightarrow} 10 \stackrel{\bigstar}{\Rightarrow} 6 \stackrel{\bigstar}{\Rightarrow} 9$ id = FT'E'id = idT'E' $id = id \in E'$ $id = id \epsilon + TE'$ $id = id \epsilon + FT'E'$ $id = id \epsilon + n T'E'$ $id = id \epsilon + n * FT'E'$ $id = id \epsilon + n * id T'E'$ identificador identificador $id = id \epsilon + n * id \epsilon E'$

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

```
P = \{
```

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow$ número

Tabla predictiva							
Símbolo de entrada							
id	=	+	*	()	número	\$
1							
2				2		2	
		3			4		4
5				5		5	
		7	6		7		7
9				8		10	
	1 2 5	5	Sid = +	Símbol id = + * 1 2 3 5 5 7 6	Símbolo de 6	Símbolo de entrad id = + * () 1	Símbolo de entrada

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

Pila	Entrada	Acción
	, , ,	
\$ E' T +	+ n * id \$	Emparejar
\$ E' T	n * id \$	<i>5) T</i> → <i>F T'</i>
\$ E' <u>T' F</u>	n * id \$	10) $F \rightarrow$ número
\$ E' <u>T' n</u>	n * id \$	Emparejar
\$ E' T'	* id \$	6) T' → * F T'
\$ E' <u>T' F *</u>	* id \$	Emparejar
\$ E' T' F	id \$	9) $F \rightarrow$ identificador
\$ E' T' <u>id</u>	id \$	Emparejar
\$ E' T'	\$	7) $T' \rightarrow \epsilon$
\$ E'	\$	4) $E' \rightarrow \epsilon$
\$	\$	Áceptar

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas

Pila	Entrada	Acción
\$ E' T +	+ n * id \$	Emparejar
\$ E' T	n * id \$	<i>5) T</i> → <i>F T'</i>
\$ E' <u>T' F</u>	n * id \$	10) $F \rightarrow$ número
\$ E' <u>T' n</u>	n * id \$	Emparejar
\$ E' T'	* id \$	<i>6) T'</i> → * <i>F T'</i>
\$ E' <u>T' F *</u>	* id \$	Emparejar
\$ E' T' F	id \$	9) $F \rightarrow$ identificador
\$ E' T' <u>id</u>	id \$	Emparejar
\$ E' T'	\$	7) $T' \rightarrow \epsilon$
\$ E'	\$	4) $E' \rightarrow \epsilon$
\$	\$	Áceptar

Implementación iterativa

Ejemplo (Gramática de expresiones aritméticas 40 / 4Análisis de id = id + n * id \$ $S \Rightarrow id = E$ Árbol sintáctico

 $S \Rightarrow id = E$ $\Rightarrow id = TE'$ $\Rightarrow id = FT'E'$ $\Rightarrow id = id T'E'$ $\Rightarrow id = id \epsilon E'$ $\Rightarrow id = id \epsilon E'$ $\Rightarrow id = id \epsilon + TE'$ $\Rightarrow id = id \epsilon + TE'$ $\Rightarrow id = id \epsilon + n T'E'$ $\Rightarrow id = id \epsilon + n * FT'E'$ $\Rightarrow id = id \epsilon + n * id T'E'$ $\Rightarrow id = id \epsilon + n * id \epsilon E'$ $\Rightarrow id = id \epsilon + n * id \epsilon E'$ $\Rightarrow id = id \epsilon + n * id \epsilon E'$ $\Rightarrow id = id \epsilon + n * id \epsilon E'$

Implementación iterativa

Ejercicios (Método iterativo)

1.- Gramática de las expresiones.

```
id = número * (identificador + identificador) $
```

2.- Gramática de las declaraciones.

```
int id, id; float id; $
```

3.- Gramática de prototipos

int id (int id, float id); \$

Implementación iterativa

Ejercicio (1.- Gramática de expresiones aritméticas)

• Utiliza el método iterativo para realizar el análisis descendente y predictivo de la sentencia:

id = número * (identificador + identificador) \$

Implementación iterativa

Ejercicio (2.- Gramática de declaraciones)

Gramática de declaraciones

$$P = \{$$

- (1) $S \longrightarrow DS$
- (2) $S \longrightarrow \epsilon$
- (3) $D \longrightarrow TL$;
- $(4) T \longrightarrow int$
- (5) $T \longrightarrow float$
- (6) $L \longrightarrow id L'$
- (7) $L' \longrightarrow$, id L'
- (8) $L' \longrightarrow \epsilon$

Análisis de las declaraciones

int id, id; float id; \$

Implementación iterativa

Ejercicio (3.- Gramática de prototipos)

Gramática de prototipos

```
P = \{ \\ (1) S \longrightarrow D S \\ (2) S \longrightarrow \epsilon \\ (3) D \longrightarrow T \text{ id ( } P \text{ ) ;} \\ (4) T \longrightarrow \text{int} \\ (5) T \longrightarrow \text{float} \\ (6) P \longrightarrow \epsilon \\ (7) P \longrightarrow T \text{ id } L \\ (8) L \longrightarrow , T \text{ id } L \\ (9) L \longrightarrow \epsilon
```

- Construcción del conjunto Primero
- Construcción del conjunto Siguiente
- Construcción de la **Tabla** predictiva
- Análisis del prototipo int id (int id, float id); \$

Contenido del tema

- 1 Introducción
- 2 Descenso recursivo con retroceso o backtracking
- 3 Análisis sintáctico descendente predictivo
- 4 Detección y recuperación de errores

Contenido de la sección

- 4 Detección y recuperación de errores
 - Introducción
 - Detección de errores
 - Recuperación de errores
 - Modo de pánico
 - Método de nivel de frase

Introducción

Objetivos

- Fase de detección
 - Debe detectar el mayor número de errores posibles.
- Fase de recuperación
 - Debe proponer una solución aceptable que permita que el análisis continúe para detectar más errores.
 - Es responsabilidad del programador la elección de la solución más adecuada.

Introducción

Ejemplo (Detección y recuperación)

• Considérese la siguiente sentencia errónea:

$$id = = id _n * id$$

• Se podría proponer la siguiente solución

$$id = id + n * id$$

pero las siguientes soluciones también son correctas

$$id = id * n * id$$

$$id = n * id$$

$$id = id * id$$

Introducción

Nota (Responsabilidad del programador)

- Al detectar un error, el analizador solamente propone una solución para continuar el análisis.
- El programador deberá comprobar si la solución propuesta es o no la más adecuada.

Contenido de la sección

- 4 Detección y recuperación de errores
 - Introducción
 - Detección de errores
 - Recuperación de errores
 - Modo de pánico
 - Método de nivel de frase

Detección de errores

Detección de errores

- Tipos de errores detectados por el análisis sintáctico descendente predictivo:
 - 1.- El símbolo situado en la cima de la pila es un símbolo terminal σ o \$ que no coincide con el símbolo de la entrada.
 - 2.- La celda $M[A,\sigma]$ está vacía, donde A es el símbolo situado en la cima de la pila y σ es el símbolo actual de la entrada.

Detección de errores

Detección de errores

2 / 7

1.- El símbolo situado en la cima de la pila es un símbolo terminal σ o \$ que no coincide con el símbolo de la entrada.

a)

Pila	Entrada	Acción
$\cdots \sigma$	$\sigma' \cdots \sigma_n $ \$	Error
• • •	• • •	• • •

b)

Pila	Entrada	Acción
\$	$\sigma' \cdots \sigma_n $ \$	Error
	• • •	• • •

Detección de errores

Detección de errores

Detección de errores

1 / 7

2.- La celda $M[A,\sigma]$ está vacía, donde A es el símbolo situado en la cima de la pila y σ es el símbolo actual de la entrada.

Pila	Entrada	Acción
\$ · · · A	$\sigma \cdots \sigma_n $ \$	Error
• • •	• • •	• • •

Detección de errores

Detección de errores

Nota (Detección de errores

6 / 7)

- Se ha realizado la descripción de la detección de errores que se produce si se utiliza el método predictivo e iterativo.
- La descripción para el método predictivo y recursivo sería similar.

Detección de errores

Nota (Detección de errores

7 / 7)

 El método de descenso recursivo con retroceso o bactracking no permite detectar la ubicación del error, porque siempre termina en la función asociada al símbolo inicial de la gramática.

Contenido de la sección

- 4 Detección y recuperación de errores
 - Introducción
 - Detección de errores
 - Recuperación de errores
 - Modo de pánico
 - Método de nivel de frase

Recuperación de errores

Métodos de recuperación de errores

- 1.- Modo de pánico.
- 2.- Método de nivel de frase.
- 3.- Regla de producción de control de errores.
- 4.- Corrección global.

Recuperación de errores

Métodos de recuperación de errores

- 1.- Modo de pánico
 - Es el método más fácil de aplicar.
 - Busca símbolos de sincronización para continuar el análisis.

Recuperación de errores

Métodos de recuperación de errores

- 2.- Método de nivel de frase
 - Realiza transformaciones en la cadena de entrada o en la pila para continuar el análisis.

Recuperación de errores

Métodos de recuperación de errores

/ 5

- 3.- Regla de producción de control de errores
 - Se amplia la gramática con nuevas reglas de producción que permiten generar los errores más frecuentes.
 - Si se utilizan dichas reglas de producción entonces el analizador activa un método de recuperación de errores.

Este método será descrito en las clases de prácticas.

Recuperación de errores

Métodos de recuperación de errores

/ 5

- 3.- Regla de producción de control de errores
 - Se amplia la gramática con nuevas reglas de producción que permiten generar los errores más frecuentes.
 - Si se utilizan dichas reglas de producción entonces el analizador activa un método de recuperación de errores.

Nota

Este método será descrito en las clases de prácticas.

Recuperación de errores

Métodos de recuperación de errores

5 / 5

4.- Corrección global

- Método teórico basado en los anteriores, pero, especialmente, en el método de nivel de frase.
- Trata de obtener un programa correcto (sin errores) realizando el menor número de transformaciones de la cadena de entrada.
- Las transformaciones no están basadas solamente en el entorno local, sino en el programa completo.

Contenido de la sección

- 4 Detección y recuperación de errores
 - Introducción
 - Detección de errores
 - Recuperación de errores
 - Modo de pánico
 - Método de nivel de frase

Modo de pánico

Estrategia del método de modo de pánico

Al detectar un error,

- o comienza a eliminar símbolos de la cadena de entrada
- hasta que encuentre un componente léxico o token
- que pertenezca a un conjunto de sincronización
- que permita continuar el análisis.

Modo de pánico

Métodos de construcción del conjunto de sincronización

- 1.- Método basado en el conjunto Siguiente.
- 2.- Método que incorpora símbolos que indican el comienzo de una sentencia de mayor jerarquía.
- 3.- Método basado en el conjunto Primero.
- 4.- Método basado en las reglas de producción ϵ .
- 5.- Caso especial para los símbolos terminales.
- 6.- Caso especial para el símbolo \$.

Modo de pánico

Métodos de construcción del conjunto de sincronización

1.- Método basado en el conjunto Siguiente.

Si
$$M[A, \sigma] = vacía$$
 entonces

- a) se eliminan símbolos de la entrada hasta que se encuentra un símbolo $\sigma' \in Siguiente(A)$
- b) y se extrae el símbolo A de la pila y el análisis continúa.

Pila	Entrada	Acción
\$ · · · X' A	$\sigma \cdots \sigma' \cdots \sigma_n $ \$	Error: extraer σ de la entrada
		• • •
\$ · · · X' A	$\sigma' \cdots \sigma_n $ \$	Sincronización: extraer A de la pila
\$ · · · X'	$\sigma' \cdots \sigma_n$ \$	Continúa el análisis

Modo de pánico

Ejemplo (1.- Método basado en el conjunto **Siguiente** 1/2)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow * F T'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$, ")"
E'	+, <i>ϵ</i>	\$, ")"
T	"(", id, n	+, \$, ")"
T'	* , ∈	+, \$, ")"
F	"(", id, n	*, +, \$, ")"

Modo de pánico

Ejemplo (1.- Método basado en el conjunto Siguiente 2 / 2)

	Tabla predictiva								
					Símbol	o de	entrada		
		id	=	+	*	()	número	\$
S		1							Sincr.
E		2				2	Sincr.	2	Sincr.
E	,			3			4		4
T	- 1	5		Sincr.		5	Sincr.	5	Sincr.
T	,			7	6		7		7
F		9		Sincr.	Sincr.	8	Sincr.	10	Sincr.

Modo de pánico

Métodos de construcción del conjunto de sincronización

2.- Método que incorpora símbolos que indican el comienzo de una sentencia de mayor jerarquía.

Si M[
$$A,\sigma$$
] = vacía entonces

- a) se eliminan símbolos de la entrada hasta que se encuentra un símbolo $\sigma' \in Siguiente(A)$ o que indica el comienzo de una sentencia de mayor jerarquía.
- b) y se extrae el símbolo A de la pila y el análisis continúa.

Pila	Entrada	Acción
\$ · · · X' A	$\sigma \cdots \sigma' \cdots \sigma_n $ \$	Error: extraer σ de la entrada
		• • •
\$ · · · X' A	$\sigma' \cdots \sigma_n $ \$	Sincronización: extraer A de la pila
\$ · · · X'	$\sigma' \cdots \sigma_n $ \$	Continúa el análisis

Modo de pánico

Ejemplo (2.- Símbolos que indican el comienzo de una sentencia de mayor jerarquía)

• Considérese el siguiente código

```
dato = __ * 3;
...
if
```

en el que falta el primer factor del producto.

El análisis podría continuar a partir de la palabra clave **if** que indica el comienzo de una sentencia condicional.

Modo de pánico

Métodos de construcción del conjunto de sincronización

3.- Método basado en el conjunto Primero.

Si
$$M[A, \sigma] = vacía$$
 entonces

- a) se eliminan símbolos de la entrada hasta que se encuentra un símbolo $\sigma' \in \mathsf{Primero}(\mathsf{A})$
- b) y el análisis continúa sin extraer el símbolo A de la pila.

Pila	Entrada	Acción
\$ · · · X' A	$\sigma \cdots \sigma' \cdots \sigma_n $ \$	Error: extraer σ de la entrada
\$ · · · X' A	$\sigma' \cdots \sigma_n$ \$	Sincronización: continúa el análisis

Modo de pánico

Ejemplo (1.- Método basado en el conjunto Primero)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow * F T'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$, ")"
E'	+, <i>ϵ</i>	\$, ")"
T	"(", id, n	+, \$, ")"
T'	*, <i>ϵ</i>	+, \$, ")"
F	"(", id, n	*, +, \$, ")"

Modo de pánico

Métodos de construcción del conjunto de sincronización

- 4.- Método basado en las reglas de producción ϵ .
 - a) Si ε ∈ Primero(A) entonces se completan todas las celdas vacías de A en la tabla predictiva con la regla A → ε, aunque dicha regla no pertenezca al conjunto inicial de producciones de la gramática.
 - b) Si $M[A,\sigma] = vacía$ entonces se extrae el símbolo A de la pila y el análisis continúa.

Pila	Entrada	Acción
\$ · · · X' A	$\sigma \cdots \sigma_n $ \$	Extraer A de la pila
\$ · · · X'	$\sigma \cdots \sigma_n $ \$	Continúa el análisis

Modo de pánico

Nota (4.- Método basado en las reglas de producción e)

- Se **reduce** el número de errores que se deben controlar.
- Este método posterga o retrasa la detección del error para que sea tratado por otro símbolo al que se le haya asignado el conjunto de sincronización.

Modo de pánico

Ejemplo (4.- Método basado en las reglas de producción ϵ 1 / 2)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow * F T'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$, ")"
E'	+, €	\$, ")"
T	"(", id, n	+, \$, ")"
T'	*,€	+, \$, ")"
F	"(", id, n	*, +, \$, ")"

Modo de pánico

Ejemplo (4.- Método basado en las reglas de producción ϵ

2 / 2)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow$ número

	Tabla predictiva								
			Símbolo de entrada						
		id	=	+	*	()	número	\$
	5	1							
Ī	Ε	2				2		2	
П	E'	4*	4*	3	4*	4*	4	4*	4
Ĭ	T	5				5		5	
Ĭ	T'	7*	7*	7	6	7*	7	7*	7
Ĭ	F	9				8		10	
_						•		•	•

Modo de pánico

Métodos de construcción del conjunto de sincronización

- 5.- Caso especial para los símbolos terminales.
 - Si σ está situado en la cima de la pila, σ' es el símbolo actual de la entrada y $\sigma \neq \sigma'$ entonces
 - a) Se indica que falta el símbolo σ en la entrada
 - b) Se elimina el símbolo σ de la pila y el análisis **continúa**.

Pila	Entrada	Acción
\$ · · · X' σ	$\sigma' \cdots \sigma_n $ \$	Falta σ en la entrada.
		Extraer σ de la pila
\$ · · · X'	$\sigma' \cdots \sigma_n $ \$	Continúa el análisis

Modo de pánico

Métodos de construcción del conjunto de sincronización

- 5.- Caso especial para los símbolos terminales.
 - Si σ está situado en la cima de la pila, σ' es el símbolo actual de la entrada y $\sigma \neq \sigma'$ entonces
 - a) Se indica que falta el símbolo σ en la entrada
 - b) Se elimina el símbolo σ' en la entrada y el análisis **continúa**.

Nota

 El conjunto de sincronización de un símbolo terminal σ está compuesto por todos los demás símbolos terminales y el símbolo \$:

$$sincronización(\sigma) = (V_T \cup \{\$\}) - \{\sigma\}$$

Modo de pánico

Métodos de construcción del conjunto de sincronización

- 6.- Caso especial para el símbolo \$.
 - Si \$ está situado en la cima de la pila, σ es el símbolo actual de la entrada y \$ $\neq \sigma$ entonces
 - a) Se indica que σ es un símbolo inesperado,
 - b) se elimina de la entrada y el análisis continúa.

Pila	Entrada	Acción
\$	$\sigma \sigma' \cdots \sigma_n \$$	Símbolo inesperado
		Extraer σ de la entrada
\$	$\sigma' \cdots \sigma_n $ \$	Continúa el análisis

Modo de pánico

Ejemplo (Aplicación del modo de pánico

L / 5)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \rightarrow (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$, ")"
E'	$+$, ϵ	\$, ")"
T	"(", id, n	+, \$, ")"
T'	* , €	+, \$, ")"
F	"(", id, n	*, +, \$, ")"

Modo de pánico

Nota (Aplicación del modo de pánico

3 / 5)

- ullet Reglas de producción ϵ
 - Se han usado para **completar** las celdas vacías de los símbolos que contienen a ϵ en su conjunto **Primero**.
- Sincronización (Sincr.)
 - Se ha usado el conjunto Siguiente como conjunto de sincronización.
 - Al alcanzar un símbolo de sincronización en la entrada, se eliminará el símbolo no terminal de la pila y el análisis continuará.

Pila	Entrada	Acción
\$ <i>5</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$
	id = = id n * id \$	Emparejar
	= = id n * id \$	Emparejar
	= id n * id \$	Error: extraer = de la entrada
	id n * id \$	Sincronización
		2) E → T E'
	id n * id \$	$5) T \rightarrow F T'$
	id n * id \$	9) $F \rightarrow$ identificador
	id n * id \$	Émparejar
	n * id \$	$7*)$ $T' \rightarrow \epsilon$
	n * id S	$(4*) F' \rightarrow \epsilon$
	n * id S	Símbolo inesperado
		Extraer n de la entrada

mplo (Aplicación del modo de pánico 4 / !		
Pila	Entrada	Acción
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$
E = id	id = = id n * id \$	Émparejar
	= = id n * id \$	Emparejar
	= id n * id \$	Error: extraer = de la entrada
	id n * id \$	Sincronización
		2) E → T E'
	id n * id \$	5) $T \rightarrow F T'$
	id n * id \$	9) $F \rightarrow$ identificador
	id n * id \$	Émparejar
	n * id \$	7*) $T' \rightarrow \epsilon$
	n * id \$	$4^*)~E' ightarrow\epsilon$
	n * id \$	Símbolo inesperado
		Extraer n de la entrada

Pila	Entrada	Acción
\$ 5	id = = id n * id \$	1) $S \rightarrow identificador = E$
E = id	id = = id n * id \$	Émparejar
\$ E =	= = id n * id \$	Emparejar
	= id n * id \$	Error: extraer = de la entrada
	id n * id \$	Sincronización
		2) E → T E'
	id n * id \$	5) T → F T'
	id n * id \$	9) $F \rightarrow$ identificador
	id n * id \$	Émparejar
	n * id \$	7*) $T' \rightarrow \epsilon$
	n * id \$	$4^*)~E' ightarrow \epsilon$
	n * id \$	Símbolo inesperado
		Extraer n de la entrada

Ejemplo (Aplica	ción del modo de	pánico 4 / 5)
Pila	Entrada	Acción
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$
E = id	id = = id n * id \$	Émparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	Error: extraer = de la entrada
	id n * id \$	Sincronización
		2) E → T E'
	id n * id \$	5) T → F T'
	id n * id \$	9) $F \rightarrow$ identificador
	id n * id \$	Emparejar
	n * id \$	$7^*) \ T' \rightarrow \epsilon$
	n * id \$	$4^*)~E' ightarrow \epsilon$
	n * id \$	Símbolo inesperado
		Extraer n de la entrada

Ejemplo (Aplica	ción del modo de	pánico 4 / 5)
Pila	Entrada	Acción
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$
\$ <u>E = id</u>	id = = id n * id \$	Emparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	Error: extraer = de la entrada
\$ <i>E</i>	id n * id \$	Sincronización 2) E → T E'
	id n * id \$	5) $T \rightarrow F T'$
	id n * id \$	9) $F \rightarrow$ identificador
	id n * id \$	Emparejar
	n * id \$	$7^*) \ T' \to \epsilon$
	n * id \$	$4^*) E' \rightarrow \epsilon$
	n * id \$	Símbolo inesperado
		Extraer n de la entrada

Pila	Entrada	Acción
\$ 5	id = = id n * id \$	1) $S \rightarrow identificador = E$
E = id	id = = id n * id \$	Emparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	Error: extraer = de la entrada
\$ <i>E</i>	id n * id \$	Sincronización
		2) $E \rightarrow T E'$
\$ <u>E' T</u>	id n * id \$	$)$ $T \rightarrow F T'$
\$ E' T' F	id n * id \$	9) $F \rightarrow$ identificador
	id n * id \$	Émparejar
	n * id \$	7*) $T' \rightarrow \epsilon$
	n * id \$	$4*)~E' ightarrow\epsilon$
	n * id \$	Símbolo inesperado

mplo (Aplica	ación del modo de	pánico 4 /
Pila	Entrada	Acción
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$
E = id	id = = id n * id \$	Émparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	Error: extraer = de la entrada
\$ <i>E</i>	id n * id \$	Sincronización
		2) E → T E'
\$ <u>E' T</u>	id n * id \$	5) T → F T'
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador
	id n * id \$	Emparejar
	n * id \$	7*) $T' o \epsilon$
	n * id \$	$4*)~E' ightarrow \epsilon$
	n * id \$	Símbolo inesperado
		Extraer n de la entrada

nplo (Aplica	ación del modo de	pánico 4 /
Pila	Entrada	Acción
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$
E = id	id = = id n * id \$	Émparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	Error: extraer = de la entrada
\$ <i>E</i>	id n * id \$	Sincronización
		2) E → T E'
\$ <u>E' T</u>	id n * id \$	$5) T \rightarrow F T'$
\$ E' <u>T' F</u>	id n * id \$	$9) F \rightarrow identificador$
\$ E' <u>T' id</u>	id n * id \$	Émparejar
	n * id \$	$7^*) \ T' \rightarrow \epsilon$
	n * id \$	$4*) E' \rightarrow \epsilon$
	n * id \$	Símbolo inesperado
		Extraer n de la entrada

Pila	Entrada	Acción
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$
E = id	id = = id n * id \$	Emparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	Error: extraer = de la entrada
\$ <i>E</i>	id n * id \$	Sincronización
		2) E → T E'
\$ <u>E' T</u>	id n * id \$	5) T → F T'
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador
\$ E' <u>T' id</u>	id n * id \$	Emparejar
\$ E' T'	n * id \$	7*) $T' \rightarrow \epsilon$
	n * id \$	$4*)~E' ightarrow \epsilon$
	n * id \$	Símbolo inesperado

Pila	Entrada	Acción
\$ <i>5</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$
E = id	id = = id n * id \$	Émparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	Error: extraer = de la entrada
\$ <i>E</i>	id n * id \$	Sincronización
		2) E → T E'
\$ <u>E' T</u>	id n * id \$	$5) T \rightarrow F T'$
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador
\$ E' T' id	id n * id \$	Émparejar
\$ E' T'	n * id \$	7*) $T' \rightarrow \epsilon$
\$ E'	n * id \$	$4*) E' \rightarrow \epsilon$
	n * id \$	Símbolo inesperado
		Extraer n de la entrada

<mark>mplo</mark> (Aplica	ación del modo de	pánico 4 /		
Pila	Entrada	Acción		
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$		
E = id	id = = id n * id \$	Emparejar		
\$ E =	= = id n * id \$	Emparejar		
\$ <i>E</i>	= id n * id \$	Error: extraer = de la entrada		
\$ <i>E</i>	id n * id \$	Sincronización		
		2) E → T E'		
\$ <u>E' T</u>	id n * id \$	$5) T \rightarrow F T'$		
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador		
\$ E' <u>T' id</u>	id n * id \$	Emparejar		
\$ E' T'	n * id \$	7*) $T' \rightarrow \epsilon$		
\$ E'	n * id \$	$4^*)~E' ightarrow \epsilon$		
\$	n * id \$	Símbolo inesperado		
		Extraer n de la entrada		

Ejemplo (Aplicación del modo de pánico				5 / 5)
	Pila	Entrada	Acción	:
	\$	n * id \$	Símbolo inesperado Extraer n de la entrada	
	\$	* id \$	Símbolo inesperado Extraer * de la entrada	
	s	S	Extraer id de la entrada Aceptar	

Modo de pánico

Pila Entrada Acción \$ n * id \$ Símbolo inesperado Extraer n de la entrada \$ id \$ Símbolo inesperado Extraer * de la entrada \$ Símbolo inesperado Extraer * de la entrada \$ Símbolo inesperado Extraer * de la entrada Extraer * de la entrada Símbolo inesperado Extraer id de la entrada

Modo de pánico

Ejemplo (Aplicación del modo de pánico 5 / 5) Pila Entrada Acción n * id \$ Símbolo inesperado Extraer n de la entrada * id \$ Símbolo inesperado Extraer * de la entrada id \$ Símbolo inesperado Extraer id de la entrada \$ Aceptar

Modo de pánico

Ventajas e inconveniente

- Ventajas:
 - Es fácil de aplicar.
 - Evita caer en bucles infinitos, ya que solamente elimina símbolos de la entrada o la pila.
- Inconveniente:
 - No es capaz de detectar todos los errores posibles.

Modo de pánico

Ejemplo (No detección de todos los errores)

• Al analizar la sentencia errónea:

$$id = = id n * id$$

el método de modo de pánico ha propuesto la solución

$$id = id$$

pero las siguientes soluciones parecen más adecuadas

$$id = id + n * id$$

$$id = id * n * id$$

$$id = n * id$$

$$id = id * id$$

Modo de pánico

Ejercicios (Aplicación del modo de pánico)

- 1.- Gramática de las expresiones aritméticas.
- 2.- Gramática de las declaraciones.
- 3.- Gramática de los prototipos.

Modo de pánico

Ejercicio (1.- Gramática de las expresiones aritméticas)

 Utiliza el modo de pánico para analizar la siguiente sentencia errónea

$$id = n$$
 (id id

Modo de pánico

Ejercicio (2.- Gramática de las declaraciones

. / 3)

 Utiliza el modo de pánico para analizar la siguiente sentencia errónea

int int id id , id ;

Modo de pánico

Ejercicio (2.- Gramática de las declaraciones

2 / 3

- (1) $S \longrightarrow DS$
- (2) $S \longrightarrow \epsilon$
- (3) $D \longrightarrow TL$;
- (4) $T \longrightarrow int$
- (5) $T \longrightarrow float$
- (6) $L \longrightarrow id L'$
- (7) $L' \longrightarrow$, id L'
- (8) $L' \longrightarrow \epsilon$
- (o) L —

	Primero	Siguiente	
S	ϵ , int, float	\$	
D	int, float	int, float, \$	
T	int, float	id	
L	id	;	
L'	"," , €	;	

Modo de pánico

Ejercicio (2.- Gramática de las declaraciones

(1)
$$S \longrightarrow DS$$

$$(2)$$
 $S \longrightarrow \epsilon$

$$(3)$$
 $D \longrightarrow TL$;

$$(4)$$
 $T \longrightarrow int$

$$(T)$$
 T (T)

(5)
$$T \longrightarrow float$$

(6)
$$L \longrightarrow \operatorname{id} L'$$

(7)
$$L' \longrightarrow$$
 , id L'

(8)
$$L' \longrightarrow \epsilon$$

Tabla predictiva						
M	Símbolo de entrada					
	;	int	float	id	,	\$
S		1	1			2
D		3	3			
T		4	5			
L				6		
L'	8				7	

Modo de pánico

Ejercicio (3.- Gramática de los prototipos)

$$P = \{ (1) \ S \longrightarrow D \ S \}$$

- (2) $S \longrightarrow \epsilon$
- (3) $D \longrightarrow T \text{ id } (P)$;
- $(4) T \longrightarrow int$
- $(5) T \longrightarrow \mathsf{float}$
- (6) $P \longrightarrow \epsilon$
- (6) $P \longrightarrow T \text{ id } L$
- (7) $L \longrightarrow$, T id L
- $(1) L \longrightarrow , 1 \text{ Id } L$
- (8) $L \longrightarrow \epsilon$

}

- 1.- Construcción del conjunto **Primero**
- 2.- Construcción del conjunto Siguiente
- 3.- Construcción de la **Tabla** predictiva
- 4.- Análisis del prototipo erróneo usando el modo de pánico
 - int int id , , float id) ; \$

Contenido de la sección

- 4 Detección y recuperación de errores
 - Introducción
 - Detección de errores
 - Recuperación de errores
 - Modo de pánico
 - Método de nivel de frase

Método de nivel de frase

Descripción 1 / ·

- 1.- La tabla predictiva se **amplía** con una parte inferior.
- 2.- Se completan con **acciones** las celdas situadas en la diagonal principal de la parte inferior.
- 3.- Se completan las celdas vacías con funciones de error
 - Todas las celdas vacías de la parte superior.
 - Algunas de las celdas vacías de la parte inferior.

Método de nivel de frase

Descripción 2 / 7

- 1.- La tabla predictiva se **amplía** con una parte inferior.
 - Primer elemento de cada fila: símbolo terminal o \$
 - Representa la situación en la que el símbolo actual de la entrada coincide con el símbolo situado en la cima de la pila

Método de nivel de frase

Descripción

3 / 7

M	Símbolo de entrada					
	σ_1		σ_j		σ_m	\$
S						
A_1						
A _i						
A _n						
σ_1						
σ_j						
σ_m						
\$						

Método de nivel de frase

Descripción: acciones de la parte inferior

. / 7

- 2.- Se completan con **acciones** las celdas situadas en la diagonal principal de la parte inferior.
 - Emparejar
 - El símbolo terminal actual de la entrada se corresponde con el símbolo terminal que está en la cima de la pila.
 - Aceptar
 - El símbolo \$ es el símbolo actual de la entrada y el símbolo que aparece en la cima de la pila.

Método de nivel de frase

. . .

Aceptar

 σ_j

 σ_m

Emparejar

Método de nivel de frase

Descripción

6/7

- 3.- Se completan las celdas vacías con funciones de error
 - Celdas vacías que se han de completar
 - Todas las celdas vacías de la parte superior.
 - Algunas de las celdas vacías de la parte inferior.
 - Método local:
 - Se debe usar una función específica para cada caso.
 - Tipos de funciones:
 - Eliminar un componente léxico de la entrada
 - Insertar un componente léxico en la entrada
 - Sustituir un componente léxico de la entrada
 - Eliminar el símbolo de la cima de la pila

Método de nivel de frase

Nota (Eliminar un símbolo de la cima de la pila)

- Esta acción se debe aplicar con cuidado.
- Puede provocar que la cadena reconocida no se corresponda con una cadena que pueda ser generada por la gramática.

Método de nivel de frase

Descripción 7 / 7

- 3.- Se completan las celdas vacías con funciones de error
 - Celdas de la parte inferior que se han de completar
 - Celdas vacías de las filas de los símbolos terminales que aparecen en alguna regla de producción en un lugar que no es el primero.
 - En caso contrario, no hay que completar sus celdas vacías con funciones de error: estas celdas nunca se consultarán.

Método de nivel de frase

Ejemplo (Método de nivel de frase

1/16)

$$P = \{$$

- (1) $S \rightarrow identificador = E$
- (2) $E \rightarrow T E'$
- (3) $E' \rightarrow + T E'$
- (4) $E' \rightarrow \epsilon$
- (5) $T \rightarrow F T'$
- (6) $T' \rightarrow *FT'$
- (7) $T' \rightarrow \epsilon$
- (8) $F \to (E)$
- (9) $F \rightarrow$ identificador
- (10) $F \rightarrow \text{número}$

	Primero	Siguiente
S	id	\$
Ε	"(", id, n	\$, ")"
E'	+, <i>ϵ</i>	\$, ")"
T	"(", id, n	+, \$, ")"
T'	*, <i>ϵ</i>	+, \$, ")"
F	"(", id, n	*, +, \$, ")"

Método de nivel de frase

Ejemplo (Método de nivel de frase: tabla predictiva 2 / 16)

	Tabla predictiva										
		Símbolo de entrada									
	id = + * () número \$										
П	S	1								Π	
I	Ε	2				2		2		Ī	
	E'			3			4		4		
П	T	5				5		5		П	
П	T'			7	6		7		7		
	F	9				8		10			
_										_	

Método de nivel de frase

Ejemplo (Método de nivel de frase: diagonal inferior 4/16)

Tabla predictiva								
		Símbolo de entrada						
	id	=	+	*	()	número	\$
S	1							
E	2				2		2	
E'			3			4		4
T	5				5		5	
T'			7	6		7		7
F	9				8		10	
id	Етр.							
=		Emp.						
+			Emp.					
*				Emp.				
(Emp.			
)						Emp.		
número							Emp.	
\$								Aceptar
								· · · · · · · · · · · · · · · · · · ·

Método de nivel de frase

Ejemplo (Método de nivel de frase: reglas **épsilon** 5/16)

Tabla predictiva								
		Símbolo de entrada						
	id	=	+	*	()	número	\$
S	1							
E	2				2		2	
E'	4*	4*	3	4*	4*	4	4*	4
T	5				5		5	
T'	7*	7*	7	6	7*	7	7*	7
F	9				8		10	
id	Етр.							
=		Emp.						
+			Emp.					
*				Етр.				
(Етр.			
)						Emp.		
número							Emp.	
\$								Aceptar

Método de nivel de frase

Ejemplo (Método de nivel de frase: parte superior 6/16)

Tabla predictiva									
		Símbolo de entrada							
	id	=	+	*	()	número	\$	
S	1	E1	E2	E2	E2	E2	E2	E3	
E	2	E2	E4	E4	2	E2	2	E5	
E'	4*	4*	3	4*	4*	4	4*	4	
T	5	E2	E4	E4	5	E2	5	E5	
T'	7*	7*	7	6	7*	7	7*	7	
F	9	E2	E4	E4	8	E2	10	E5	
id	Emp.								
=		Emp.							
+			Етр.						
*				Етр.					
(Етр.				
)						Emp.			
número							Emp.		
\$								Aceptar	

Método de nivel de frase

Ejemplo (Método de nivel de frase: parte inferior 7 / 16)

Tabla predictiva									
		Símbolo de entrada							
	id	=	+	*	()	número	\$	
S	1	E1	E2	E2	E2	E2	E2	E3	
E	2	E2	E4	E4	2	E2	2	E5	
E'	4*	4*	3	4*	4*	4	4*	4	
T	5	E2	E4	E4	5	E2	5	E5	
T'	7*	7*	7	6	7*	7	7*	7	
F	9	E2	E4	E4	8	E2	10	E5	
id	Emp.								
=	E6	Emp.	E7	E7	E7	E7	E6	E8	
+			Emp.						
*				Етр.					
(Етр.				
)	E9	E9	E10	E10	E9	Emp.	E9	E11	
número							Emp.		
\$	E2	E2	E2	E2	E2	E2	E2	Aceptar	

Método de nivel de frase

Ejemplo (Método de nivel de frase: errores

8/16)

- E1
 - Símbolo inesperado: falta identificador
 - Insertar identificador en la entrada
- E2
 - Símbolo inesperado
 - Eliminar símbolo de la entrada
- E3
 - Final de entrada inesperada
 - Eliminar símbolo de la pila
- E4
 - Símbolo inesperado: falta operando
 - Insertar identificador en la entrada

Método de nivel de frase

Ejemplo (Método de nivel de frase: errores

9/16)

- E5
 - Final de entrada inesperada
 - Insertar identificador en la entrada
- E6
 - Símbolo inesperado: falta símbolo = en la entrada
 - Insertar = en la entrada
- E7
 - Símbolo inesperado: falta símbolo = en la entrada
 - Eliminar símbolo de la entrada
- E8
 - Fin de entrada inesperado: falta símbolo = en la entrada
 - Insertar = en la entrada

Método de nivel de frase

Ejemplo (Método de nivel de frase: errores

10 / 16)

- E9
 - Símbolo inesperado: falta símbolo) en la entrada
 - Eliminar símbolo de la entrada
- E10
 - Símbolo inesperado: falta símbolo) en la entrada
 - Insertar) en la entrada
- E11
 - Fin de entrada inesperado: falta símbolo) en la entrada
 - Insertar) en la entrada

Método de nivel de frase

Ejemplo (Sentencias con errores

11 / 16)

- 1.- id = = id n * id
- 2.- id id * + n

Pila	Entrada	Acción
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$
	id = = id n * id \$	Émparejar
	= = id n * id \$	Emparejar
	= id n * id \$	E2: eliminar símbolo de la entrada
	id n * id \$	2) E → T E'
	id n * id \$	$5) T \rightarrow F T'$
	id n * id \$	9) $F \rightarrow$ identificador
	id n * id \$	Émparejar
	n * id \$	7*) $T \rightarrow \epsilon$
	n * id \$	$4^*) E \rightarrow \epsilon$
	n * id \$	E2: eliminar símbolo de la entrada
	* id \$	E2: eliminar símbolo de la entrada
	id \$	E2: eliminar símbolo de la entrada
	S	Aceptar

emplo (Primera sentencia con errores 12 / 1					
Pila	Entrada	Acción			
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$			
E = id	id = = id n * id \$	Émparejar			
	= = id n * id \$	Emparejar			
	= id n * id \$	E2: eliminar símbolo de la entrada			
	id n * id \$	2) E → T E'			
	id n * id \$	$5) T \rightarrow F T'$			
	id n * id \$	9) $F \rightarrow$ identificador			
	id n * id \$	Émparejar			
	n * id \$	7*) $T \rightarrow \epsilon$			
	n * id \$	$4^*)~E ightarrow\epsilon$			
	n * id \$	E2: eliminar símbolo de la entrada			
	* id \$	E2: eliminar símbolo de la entrada			
	id \$	E2: eliminar símbolo de la entrada			
	\$	Aceptar			

jemplo (Primera sentencia con errores 12 / 16					
Pila	Entrada	Acción			
\$ 5	id = = id n * id \$	1) $S \rightarrow identificador = E$			
E = id	id = = id n * id \$	Emparejar			
\$ E =	= = id n * id \$	Emparejar			
	= id n * id \$	E2: eliminar símbolo de la entrada			
	id n * id \$	2) $E \rightarrow T E'$			
	id n * id \$	5) $T \rightarrow F T'$			
	id n * id \$	9) $F \rightarrow$ identificador			
	id n * id \$	Emparejar			
	n * id \$	7*) $T \rightarrow \epsilon$			
	n * id \$	$4^*) E \rightarrow \epsilon$			
	n * id \$	E2: eliminar símbolo de la entrada			
	* id \$	E2: eliminar símbolo de la entrada			
	id \$	E2: eliminar símbolo de la entrada			
	S	Aceptar			

jemplo (Primera sentencia con errores 12 / 16)						
Pila	Entrada	Acción				
\$ 5	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$				
E = id	id = = id n * id \$	Emparejar				
\$ E =	= = id n * id \$	Emparejar				
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada				
	id n * id \$	2) $E \rightarrow T E'$				
	id n * id \$	5) T → F T'				
	id n * id \$	9) $F \rightarrow \text{identificador}$				
	id n * id \$	Emparejar				
	n * id \$	$7^*) \ T \rightarrow \epsilon$				
	n * id \$	$4^*) E \rightarrow \epsilon$				
	n * id \$	E2: eliminar símbolo de la entrada				
	* id \$	E2: eliminar símbolo de la entrada				
	id \$	E2: eliminar símbolo de la entrada				
	S	Aceptar				

jemplo (Primera sentencia con errores 12 / 16						
Pila	Entrada	Acción				
\$ 5	id = = id n * id \$	1) $S \rightarrow identificador = E$				
E = id	id = = id n * id \$	Émparejar				
\$ E =	= = id n * id \$	Emparejar				
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada				
\$ <i>E</i>	id n * id \$	2) E → T E'				
	id n * id \$	$\vec{5}) \ T \rightarrow F \ T'$				
	id n * id \$	9) $F \rightarrow$ identificador				
	id n * id \$	Emparejar				
	n * id \$	$7^*) \ T \rightarrow \epsilon$				
	n * id \$	$4^*) E \rightarrow \epsilon$				
	n * id \$	E2: eliminar símbolo de la entrada				
	* id \$	E2: eliminar símbolo de la entrada				
	id \$	E2: eliminar símbolo de la entrada				
	S	Aceptar				

Ejemplo (Prim	jemplo (Primera sentencia con errores 12 / 16						
Pila	Entrada	Acción					
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$					
\$ <u>E = id</u>	id = = id n * id \$	Emparejar					
\$ E =	= = id n * id \$	Emparejar					
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada					
\$ <i>E</i>	id n * id \$	2) $E \rightarrow T E'$					
\$ <u>E' T</u>	id n * id \$	$5) T \rightarrow F T'$					
	id n * id \$	9) $F \rightarrow \text{identificador}$					
	id n * id \$	Emparejar					
	n * id \$	$7^*) T \rightarrow \epsilon$					
	n * id \$	$4^*) E \rightarrow \epsilon$					
	n * id \$	E2: eliminar símbolo de la entrada					
	* id \$	E2: eliminar símbolo de la entrada					
	id \$	E2: eliminar símbolo de la entrada					
\$	\$	Aceptar					

Ejemplo (Primera sentencia con errores 12 / 16)				
Pila	Entrada	Acción		
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$		
E = id	id = = id n * id \$	Emparejar		
\$ E =	= = id n * id \$	Emparejar		
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada		
\$ <i>E</i>	id n * id \$	2) E → T E'		
\$ <u>E' T</u>	id n * id \$	\mid 5) $T \rightarrow F T'$		
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador		
	id n * id \$	Emparejar		
	n * id \$	7*) $T \rightarrow \epsilon$		
	n * id \$	$4^*)~E ightarrow\epsilon$		
	n * id \$	E2: eliminar símbolo de la entrada		
	* id \$	E2: eliminar símbolo de la entrada		
	id \$	E2: eliminar símbolo de la entrada		
	S	Aceptar		

Ejemplo (Primera sentencia con errores 12 / 16)				
Pila	Entrada	Acción		
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$		
E = id	id = = id n * id \$	Emparejar		
\$ E =	= = id n * id \$	Emparejar		
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada		
\$ <i>E</i>	id n * id \$	2) $E \rightarrow T E'$		
\$ <u>E' T</u>	id n * id \$	$5) T \rightarrow F T'$		
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador		
\$ E' <u>T' id</u>	id n * id \$	Emparejar		
	n * id \$	$7^*) \ T \rightarrow \epsilon$		
	n * id \$	$4^*) E \rightarrow \epsilon$		
	n * id \$	E2: eliminar símbolo de la entrada		
	* id \$	E2: eliminar símbolo de la entrada		
	id \$	E2: eliminar símbolo de la entrada		
	\$	Aceptar		

Ejemplo (Primera sentencia con errores 12 / 16)				
Pila	Entrada	Acción		
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$		
\$ <u>E = id</u>	id = = id n * id \$	Émparejar		
\$ E =	= = id n * id \$	Emparejar		
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada		
\$ <i>E</i>	id n * id \$	2) E → T E'		
\$ <u>E' T</u>	id n * id \$	$5) T \rightarrow F T'$		
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador		
\$ E' <u>T' id</u>	id n * id \$	Emparejar		
\$ E' T'	n * id \$	7*) $T \rightarrow \epsilon$		
	n * id \$	$4^*) E \rightarrow \epsilon$		
	n * id \$	E2: eliminar símbolo de la entrada		
	* id \$	E2: eliminar símbolo de la entrada		
	id \$	E2: eliminar símbolo de la entrada		
	S	Aceptar		

Ejemplo (Prim	Ejemplo (Primera sentencia con errores 12 / 16)				
Pila	Entrada	Acción			
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$			
E = id	id = = id n * id \$	Émparejar			
\$ E =	= = id n * id \$	Emparejar			
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada			
\$ <i>E</i>	id n * id \$	2) $E \rightarrow T E'$			
\$ <u>E' T</u>	id n * id \$	$(5) T \rightarrow F T'$			
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador			
\$ E' <u>T' id</u>	id n * id \$	Emparejar			
\$ E' T'	n * id \$	7*) $T \rightarrow \epsilon$			
\$ <i>E'</i>	n * id \$	$4*) E \rightarrow \epsilon$			
	n * id \$	E2: eliminar símbolo de la entrada			
	* id \$	E2: eliminar símbolo de la entrada			
	id \$	E2: eliminar símbolo de la entrada			
	S	Aceptar			

ijemplo (Primera sentencia con errores 12 / 16)				
Pila	Entrada	Acción		
\$ <i>5</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$		
\$ <u>E = id</u>	id = = id n * id \$	Émparejar		
\$ E =	= = id n * id \$	Emparejar		
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada		
\$ <i>E</i>	id n * id \$	2) E → T E'		
\$ <u>E' T</u>	id n * id \$	(5) $T \rightarrow F T'$		
\$ E' <u>T' F</u>	id n * id \$	$9) F \rightarrow identificador$		
\$ E' T' id	id n * id \$	Émparejar		
\$ E' T'	n * id \$	$7*) T \rightarrow \epsilon$		
\$ <i>E'</i>	n * id \$	$4*) E \rightarrow \epsilon$		
\$	n * id \$	E2: eliminar símbolo de la entrada		
	* id \$	E2: eliminar símbolo de la entrada		
	id \$	E2: eliminar símbolo de la entrada		
	\$	Aceptar		

emplo (Primera sentencia con errores 12 / 1		
Pila	Entrada	Acción
\$ <i>5</i>	id = = id n * id \$	1) $S \rightarrow identificador = E$
E = id	id = = id n * id \$	Émparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada
\$ <i>E</i>	id n * id \$	2) E → T E'
\$ <u>E' T</u>	id n * id \$	$5) T \rightarrow F T'$
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador
\$ E' <u>T' id</u>	id n * id \$	Emparejar
\$ E' T'	n * id \$	7*) $T \rightarrow \epsilon$
\$ E'	n * id \$	$4^*) E \rightarrow \epsilon$
\$	n * id \$	E2: eliminar símbolo de la entrada
\$	* id \$	E2: eliminar símbolo de la entrada
	id \$	E2: eliminar símbolo de la entrada
	\$	Aceptar

emplo (Primera sentencia con errores 12 / 16		
Pila	Entrada	Acción
\$ <i>S</i>	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$
E = id	id = = id n * id \$	Émparejar
\$ E =	= = id n * id \$	Emparejar
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada
\$ <i>E</i>	id n * id \$	2) E → T E'
\$ <u>E' T</u>	id n * id \$	(5) $T \rightarrow F T'$
\$ E' <u>T' F</u>	id n * id \$	9) $F \rightarrow$ identificador
\$ E' <u>T' id</u>	id n * id \$	Emparejar
\$ E' T'	n * id \$	$7^*) T \rightarrow \epsilon$
\$ <i>E'</i>	n * id \$	$(4*) E \rightarrow \epsilon$
\$	n * id \$	E2: eliminar símbolo de la entrada
\$	* id \$	E2: eliminar símbolo de la entrada
\$	id \$	E2: eliminar símbolo de la entrada
	S	Aceptar

Ejemplo (Prime	Ejemplo (Primera sentencia con errores 12 / 16			
Pila	Entrada	Acción		
\$ 5	id = = id n * id \$	1) $S \rightarrow \text{identificador} = E$		
E = id	id = = id n * id \$	Emparejar		
\$ E =	= = id n * id \$	Emparejar		
\$ <i>E</i>	= id n * id \$	E2: eliminar símbolo de la entrada		
\$ <i>E</i>	id n * id \$	2) E → T E'		
\$ <u>E' T</u>	id n * id \$	(5) $T \rightarrow F T'$		
\$ E' <u>T' F</u>	id n * id \$	$9) \ F ightarrow ext{identificador}$		
\$ E' <u>T' id</u>	id n * id \$	Emparejar		
\$ E' T'	n * id \$	$7*) T \rightarrow \epsilon$		
\$ E'	n * id \$	$4^*) E \rightarrow \epsilon$		
\$	n * id \$	E2: eliminar símbolo de la entrada		
\$	* id \$	E2: eliminar símbolo de la entrada		
\$	id \$	E2: eliminar símbolo de la entrada		
\$	\$	Aceptar		

Método de nivel de frase

Ejemplo (Primera sentencia con errores

13 / 16)

• Sentencia de entrada:

$$id = = id n * id$$

• Sentencia propuesta por el método de nivel de frase:

$$id = id$$

Pila	Entrada	Acción
\$ <i>5</i>	id id * + n \$	1) $S \rightarrow identificador = E$
	id id * + n \$	Emparejar
	id * + n \$	E6: insertar =
	= id * + n \$	Emparejar
	id * + n \$	2) $E \rightarrow T E'$
	id * + n \$	5) $T \rightarrow F T'$
	id * + n \$	9) $F \rightarrow identificador$
	id * + n \$	Emparejar
	* + n \$	6) $T' \rightarrow *FT'$
	* + n \$	Emparejar
	+ n \$	E4: insertar id
	id + n \$	9) $F \rightarrow identificador$

Método de nivel de frase

Ejemplo (Segunda sentencia con errores 14 / 1<u>6)</u> Pila Entrada Acción 1) $S \rightarrow identificador = E$ **\$** 5 id id * + n \$ E = idid id * + n\$ Emparejar

emplo (Segunda sentencia con errores 14		
Pila	Entrada	Acción
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow identificador = E$
E = id	id id * + n \$	Émparejar
\$ E =	id * + n \$	E6: insertar =
	= id * + n \$	Emparejar
	id * + n \$	2) E → T E'
	id * + n \$	5) T → F T'
	id * + n \$	9) $F \rightarrow$ identificador
	id * + n \$	Émparejar
	* + n \$	6) T' → * F T'
	* + n \$	Émparejar
	+ n \$	E4: insertar id
	id + n \$	9) $F \rightarrow$ identificador

Ejemplo (Segunda sentencia con errores 1		
Pila	Entrada	Acción
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow \text{identificador} = E$
\$ <u>E = id</u>	id id * + n \$	Émparejar
\$ E =	id * + n \$	E6: insertar =
\$ E =	= id * + n \$	Emparejar
	id * + n \$	2) E → T E'
	id * + n \$	5) $T \rightarrow F T'$
	id * + n \$	9) $F \rightarrow$ identificador
	id * + n \$	Emparejar
	* + n \$	6) T' → * F T'
	* + n \$	Emparejar
	+ n \$	E4: insertar id
\$ E' T' F	id + n \$	9) $F \rightarrow identificador$

Ejemplo (Segunda sentencia con errores 1		
Pila	Entrada	Acción
\$ 5	id id * + n \$	1) $S \rightarrow \text{identificador} = E$
\$ <u>E = id</u>	id id * + n \$	Émparejar
\$ E =	id * + n \$	E6: insertar =
\$ E =	= id * + n \$	Emparejar
\$ <i>E</i>	id * + n \$	2) $E \rightarrow T E'$
	id * + n \$	5) $T \rightarrow F T'$
	id * + n \$	9) $F \rightarrow$ identificador
	id * + n \$	Emparejar
	* + n \$	6) T' → * F T'
	* + n \$	Emparejar
	+ n \$	E4: insertar id
\$ E' T' F	id + n \$	9) $F \rightarrow \text{identificador}$

Ejemplo (Segunda sentencia con errores 1		
Pila	Entrada	Acción
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow identificador = E$
\$ <u>E = id</u>	id id * + n \$	Emparejar
\$ E =	id * + n \$	E6: insertar =
\$ E =	= id * + n \$	Emparejar
\$ <i>E</i>	id * + n \$	$2) E \rightarrow T E'$
\$ <u>E' T</u>	id * + n \$	$5) T \rightarrow F T'$
	id * + n \$	9) $F \rightarrow identificador$
	id * + n \$	Emparejar
	* + n \$	6) T' → * F T'
	* + n \$	Emparejar
	+ n \$	E4: insertar id
\$ E' T' F	id + n \$	9) $F \rightarrow identificador$

Ejemplo (Segunda sentencia con errores 14					
Pila	Entrada	Acción			
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow identificador = E$			
\$ <u>E = id</u>	id id * + n \$	Emparejar			
\$ E =	id * + n \$	E6: insertar =			
\$ E =	= id * + n \$	Emparejar			
\$ <i>E</i>	id * + n \$	2) E → T E'			
\$ <u>E' T</u>	id * + n \$	5) T → F T'			
\$ E' <u>T' F</u>	id * + n \$	9) $F \rightarrow$ identificador			
	id * + n \$	Emparejar			
	* + n \$	6) T' → * F T'			
	* + n \$	Emparejar			
	+ n \$	E4: insertar id			
\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador			

Ejemplo (Segunda se	Ejemplo (Segunda sentencia con errores				
Pila	Entrada	Acción			
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow identificador = E$			
\$ <u>E = id</u>	id id * + n \$	Émparejar			
\$ E =	id * + n \$	E6: insertar =			
\$ E =	= id * + n \$	Emparejar			
\$ <i>E</i>	id * + n \$	2) E → T E'			
\$ <u>E' T</u>	id * + n \$	5) T → F T'			
\$ E' <u>T' F</u>	id * + n \$	9) $F \rightarrow$ identificador			
\$ E' <u>T' id</u>	id * + n \$	Emparejar			
	* + n \$	<i>6)</i> T' → * F T'			
	* + n \$	Emparejar			
	+ n \$	E4: insertar id			
	id + n \$	9) $F \rightarrow$ identificador			

Ejemplo (Segunda sentencia con errores 14					
Pila	Entrada	Acción			
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow identificador = E$			
\$ <u>E = id</u>	id id * + n \$	Emparejar			
\$ E =	id * + n \$	E6: insertar =			
\$ <i>E</i> =	= id * + n \$	Emparejar			
\$ <i>E</i>	id * + n \$	2) E → T E'			
\$ <u>E' T</u>	id * + n \$	5) T → F T'			
\$ E' <u>T' F</u>	id * + n \$	9) $F \rightarrow$ identificador			
\$ E' <u>T' id</u>	id * + n \$	Émparejar			
\$ E' T'	* + n \$	6) T' → * F T'			
	* + n \$	Émparejar			
	+ n \$	E4: insertar id			
\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador			

Ejemplo (Segunda s	Ejemplo (Segunda sentencia con errores 1				
Pila	Entrada	Acción			
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow \text{identificador} = E$			
\$ <u>E = id</u>	id id * + n \$	Émparejar			
\$ E =	id * + n \$	E6: insertar =			
\$ <i>E</i> =	= id * + n \$	Emparejar			
\$ <i>E</i>	id * + n \$	2) E → T E'			
\$ <u>E' T</u>	id * + n \$	5) T → F T'			
\$ E' <u>T' F</u>	id * + n \$	9) $F \rightarrow$ identificador			
\$ E' <u>T' id</u>	id * + n \$	Émparejar			
\$ E' T'	* + n \$	6) T' → * F T'			
\$ E' T' F *	* + n \$	Émparejar			
	+ n \$	E4: insertar id			
	id + n \$	9) $F \rightarrow identificador$			

Ejemplo (Segunda s	emplo (Segunda sentencia con errores 1				
Pila	Entrada	Acción			
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow identificador = E$			
\$ <u>E = id</u>	id id * + n \$	Émparejar			
\$ E =	id * + n \$	E6: insertar =			
\$ <i>E</i> =	= id * + n \$	Emparejar			
\$ <i>E</i>	id * + n \$	2) E → T E'			
\$ <u>E' T</u>	id * + n \$	$5) T \rightarrow F T'$			
\$ E' <u>T' F</u>	id * + n \$	9) $F \rightarrow$ identificador			
\$ E' <u>T' id</u>	id * + n \$	Émparejar			
\$ E' T'	* + n \$	6) T' → * F T'			
\$ E' T' F *	* + n \$	Émparejar			
\$ E' T' F	+ n \$	E4: insertar id			
\$ E' T' F	id + n \$	9) $F o identificador$			

Ejemplo (Seguno	jemplo (Segunda sentencia con errores				
Pila	Entrada	Acción			
\$ <i>S</i>	id id * + n \$	1) $S \rightarrow identificador = E$			
\$ <u>E = id</u>	id id * + n \$	Émparejar			
\$ E =	id * + n \$	E6: insertar =			
\$ E =	= id * + n \$	Emparejar			
\$ <i>E</i>	id * + n \$	2) E → T E'			
\$ <u>E' T</u>	id * + n \$	5) T → F T'			
\$ E' <u>T' F</u>	id * + n \$	9) $F \rightarrow$ identificador			
\$ E' <u>T' id</u>	id * + n \$	Emparejar			
\$ E' T'	* + n \$	6) T' → * F T'			
\$ E' T' F *	* + n \$	Émparejar			
\$ E' T' F	+ n \$	E4: insertar id			
\$ E' T' F	id + n \$	9) $F \rightarrow identificador$			

Ejemplo	(Segunda ser	15 / 16)		
	Pila	=		
	\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador	_
		id + n \$	Emparejar	
		+ n \$	7) $T' \rightarrow \epsilon$	
		+ n \$	3) $E' \rightarrow + T E'$	
		+ n \$	Emparejar	
		n S	5) T → F T'	
		n S	<i>10) F</i> → n	
		n \$	Emparejar	
		S	7) $T' \rightarrow \epsilon$	
		\$	4) $E' \rightarrow \epsilon$	
	\$	\$	Aceptar	_

Ejemplo	(Segunda ser	15 / 16)		
	Pila	Entrada	Acción	=
	\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador	_
	\$ E' T' <u>id</u>	id + n \$	Emparejar	
		+ n \$	7) $T' \rightarrow \epsilon$	
		+ n \$	3) $E' \rightarrow + T E'$	
		+ n \$	Emparejar	
		n \$	5) $T \rightarrow F T'$	
		n 5	<i>10) F</i> → n	
		n 5	Emparejar	
		S	7) $T' \rightarrow \epsilon$	
		S	4) $E' \rightarrow \epsilon$	
	\$	\$	Aceptar	_

Ejemplo	(Segunda sentencia con errores			15 / 16)
	Pila	=		
	\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador	_
	\$ E' T' <u>id</u>	id + n \$	Emparejar	
	\$ E' T'	+ n \$	7) $T' \rightarrow \epsilon$	
		+ n \$	3) $E' \rightarrow + T E'$	
		+ n \$	Emparejar	
		n \$	5) T → F T'	
		n \$	10) $F \rightarrow n$	
		n \$	Emparejar	
		S	7) $T' \rightarrow \epsilon$	
		S	4) $E' \rightarrow \epsilon$	
		S	Aceptar	

Ejemplo	(Segunda sentencia con errores			15 / 16)
	Pila	=		
	\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador	_
	\$ E' T' <u>id</u>	id + n \$	Emparejar	
	\$ E' T'	+ n \$	7) $T' \rightarrow \epsilon$	
	\$ E'	+ n \$	3) $E' \rightarrow + T E'$	
		+ n \$	Émparejar	
		n \$	5) T → F T'	
		n \$	10) $F \rightarrow n$	
		n \$	Emparejar	
		S	7) $T' \rightarrow \epsilon$	
		S	4) $E' \rightarrow \epsilon$	
		S	Aceptar	

Ejemplo	Segunda sentencia con errores		15 / 16)	
	Pila	=		
	\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador	_
	\$ E' T' <u>id</u>	id + n \$	Emparejar	
	\$ E' T'	+ n \$	7) $T' \rightarrow \epsilon$	
	\$ E'	+ n \$	3) $E' \rightarrow + T E'$	
	\$ E' T +	+ n \$	Émparejar	
	\$ <u>E' T</u>	n \$	5) T → F T'	
		n \$	10) $F \rightarrow n$	
		n \$	Emparejar	
		S	7) $T' \rightarrow \epsilon$	
		S	4) $E' \rightarrow \epsilon$	
		S	Aceptar	

Ejemplo (S	(Segunda sentencia con errores				
P	Pila	Entrada	Acción	=	
-\$	E' T' F	id + n \$	9) $F \rightarrow$ identificador	_	
\$	E' T' <u>id</u>	id + n \$	Emparejar		
\$	E' T'	+ n \$	7) $T' \rightarrow \epsilon$		
\$	<i>E'</i>	+ n \$	3) $E' \rightarrow + T E'$		
\$	E' T +	+ n \$	Emparejar		
\$	<u>E' T</u>	n \$	5) T → F T'		
	E' T' F	n \$			
	<i>E' T'</i> n	n \$			
	E' T'	S			
	E'	S			
		S			

Ejemplo (Segunda s	(Segunda sentencia con errores		15 / 16)
Pila \$ E' T' F \$ E' T' id \$ E' T' \$ E' \$ E' T +	Entrada id + n \$ id + n \$ + n \$ + n \$ + n \$	Acción 9) $F \rightarrow$ identificador $Emparejar$ 7) $T' \rightarrow \epsilon$ 3) $E' \rightarrow + T E'$ $Emparejar$	=
\$ <u>E' T</u> \$ <u>E' T'</u>	n \$ n \$	5) $T \rightarrow F T'$ 10) $F \rightarrow \mathbf{n}$	

Ejemplo (Segu	(Segunda sentencia con errores		15 / 16)
Pila	Entrada	Acción	=
\$ E' T	<i>F</i> id + n \$	9) $F \rightarrow$ identificador	_
\$ E' T	" <u>id</u> id + n \$	Emparejar	
\$ E' T	" + n \$	7) $T' \rightarrow \epsilon$	
\$ E'	+ n \$	3) $E' \rightarrow + T E'$	
\$ <u>E'</u> T	+ + n \$	Émparejar	
\$ <u>E' T</u>	n \$	$5) T \rightarrow F T'$	
\$ <u>E' T</u>	<u>" <i>F</i></u> n \$	10) $F \rightarrow \mathbf{n}$	
\$ E' T	" n n \$	Emparejar	
	\$	7) $T' \rightarrow \epsilon$	
	\$	4) $E' \rightarrow \epsilon$	
	S	Aceptar	

Ejemplo (Segunda sentencia con errores		15 / 16)	
Pila	Entrada	Acción	=
\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador	_
\$ E' T' <u>id</u>	id + n \$	Émparejar	
\$ E' T'	+ n \$	7) $T' \rightarrow \epsilon$	
\$ E'	+ n \$	3) $E' \rightarrow + T E'$	
\$ <u>E' T +</u>	+ n \$	Emparejar	
\$ <u>E' T</u>	n \$	$5) T \rightarrow F T'$	
\$ <u>E' T' F</u>	n \$	10) $F \rightarrow \mathbf{n}$	
\$ E' T' n	n \$	Emparejar	
\$ E' T'	\$	7) $T' \rightarrow \epsilon$	
	S	4) $E' o \epsilon$	
	S	Aceptar	

Ejemplo (Segunda sentencia con errores		15 / 16)	
Pila	Entrada	Acción	-
\$ E' T' F	id + n \$	9) $F \rightarrow$ identificador	-
\$ E' T' <u>id</u>	id + n \$	Emparejar	
\$ E' T'	+ n \$	7) $T' \rightarrow \epsilon$	
\$ E'	+ n \$	3) $E' \rightarrow + T E'$	
\$ <u>E' T +</u>	+ n \$	Emparejar	
\$ <u>E' T</u>	n \$	5) T → F T'	
\$ <u>E' T' F</u>	n \$	<i>10) F</i> → n	
\$ E' T' n	n \$	Emparejar	
\$ E' T'	\$	7) $T' \rightarrow \epsilon$	
\$ E'	\$	4) $E' \rightarrow \epsilon$	
5	S	Aceptar	

Ejemplo (Segun	Ejemplo (Segunda sentencia con errores		15 / 16)
Pila	Entrada	Acción	=
\$ E' T'	F id + n \$	9) $F \rightarrow$ identificador	_
\$ E' T' j	<u>id</u>	Emparejar	
\$ E' T'	+ n \$	$7)$ $T' \rightarrow \epsilon$	
\$ E'	+ n \$	3) $E' \rightarrow + T E'$	
\$ E' T +	+ n \$	Emparejar	
\$ <u>E' T</u>	n \$	\mid 5) $T \rightarrow F T'$	
\$ <u>E' T'</u>	<i>E</i> n \$	10) $F \rightarrow \mathbf{n}$	
\$ E' T'	n n \$	Emparejar	
\$ E' T'	\$	7) $T' \rightarrow \epsilon$	
\$ E'	\$	4) $E' \rightarrow \epsilon$	
\$	\$	Áceptar	_

Método de nivel de frase

Ejemplo (Segunda sentencia con errores

16 / 16)

• Sentencia de entrada:

$$id id * + n$$

• Sentencia propuesta por el método de nivel de frase:

$$id = id * id + n$$

PROCESADORES DE LENGUAJES TEMA IV.- ANÁLISIS SINTÁCTICO DESCENDENTE

Prof. Dr. Nicolás Luis Fernández García

Departamento de Informática y Análisis Numérico Escuela Politécnica Superior de Córdoba Universidad de Córdoba