Positive Collaborative Representation for Subspace Clustering

June 14, 2017

Abstract

1 Introduction

2 Motivation

- Positive collaborative representation could achieve sparse representation since similar points are sparse while dissimilar points are dense.
- Positive supports are positive to self-representation while negative supports are negative to self-representation.
- Better performance. Faster?

3 LSR Model

The least squares regression (LSR) model [1] is proposed by Lu et al. can be formulated as follows:

$$\min_{\boldsymbol{A}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^2 + \lambda \|\boldsymbol{A}\|_F^2 \text{ s.t. diag}(\boldsymbol{A}) = \boldsymbol{0}. \quad (1)$$

Here we denote by diag(A) both a diagonal matrix whose diagonal elements are the diagonal entries of A and the vector consisted of the diagonal elements. According to [1], the above problem has the optimal solution as

$$\hat{A} = -Z(\operatorname{diag}(Z)) \text{ s.t. } \operatorname{diag}(\hat{A}) = 0,$$
 (2)

where
$$\boldsymbol{Z} = (\boldsymbol{X}^{\top}\boldsymbol{X} + \lambda \boldsymbol{I})^{-1}$$
.

The constraint of diag(A) = 0 in (1) could be removed and the LSR model achieves similar performance.

4 Collaborative Representation based Clustering with Constraint diag(A) = 0

The LSR model can be reformulated as a collaborative representation model [2] for subspace clustering with an additional constraint of $\operatorname{diag}(A) = 0$. The constraint of $\operatorname{diag}(A) = 0$ is used to avoid the samples to represent themselves.

By introducing auxiliary variables into the optimization program, we can set C = A. The LSR model (1) can be transformed into

$$\min_{\boldsymbol{A},\boldsymbol{C}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^F + \lambda \|\boldsymbol{C}\|_F^2$$
s.t. $\boldsymbol{C} = \boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}),$ (3)

whose solution for A coincides with the solution of Eq. (1). By introducing a Lagrangian multipliers Δ and a penalty parameter ρ , the Lagrangian function of the Eq. (31) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^F + \lambda \|\boldsymbol{C}\|_F^2$$
$$+ \langle \boldsymbol{\Delta}, \boldsymbol{C} - (\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A})) \rangle + \frac{\rho}{2} \|\boldsymbol{C} - (\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}))\|_F^2$$
(4)

Denote by (C_k, A_k) the optimization variables at iteration k, by Δ_k the Lagrangian multipliers at iteration k, and by ρ the penalty parameter at iteration k. Taking detivatives of $\mathcal L$ with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the fol-

lowing problem:

$$A_{k+1} = J - \operatorname{diag}(J),$$

$$J = (X^{\top}X + \frac{\rho}{2}I)^{-1}(X^{\top}X + \frac{\rho}{2}C_k + \frac{1}{2}\Delta_k)$$
(5)

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$C_{k+1} = \arg\min_{C} \frac{\rho}{2} \|C - (A_{k+1} - \rho^{-1} \Delta)\|_F^2 + \lambda \|C\|_F^2$$
(6)

This is a least squares regression problem which has a closed-form solution as

$$C_{k+1} = H - \operatorname{diag}(H),$$

$$(X^{\top}X + I)H = X^{\top}P_k + Q_k,$$
(7)

where $P_k = X - E_k - \rho^{-1} \Delta_k$ and $Q_k = A_{k+1} - \rho^{-1} \delta_k$.

(3) Obtain E_{k+1} by minimizing \mathcal{L} with respect to E, while fixing $(C_{k+1}, A_{k+1}, \Delta_k, \delta_k)$. This is equivalent to solve the following problem:

$$\min_{\mathbf{E}} \frac{1}{2} \| (\mathbf{X} - \mathbf{X} \mathbf{C}_{k+1} - \rho^{-1} \mathbf{\Delta}_k) - \mathbf{E} \|_F^2 + \rho^{-1} \| \mathbf{E} \|_1.$$
(8)

The solution of E can be computed in closed-form as

$$E_{k+1} = S_{\rho^{-1}}(X - XC_{k+1} - \rho^{-1}\Delta_k),$$
 (9)

where $S_{\tau}(x) = \text{sign}(x) * \max(|x| - \tau, 0)$ is the soft-thresholding operator.

(4) Obtain the Lagrangian multipliers $(\Delta_{k+1}, \delta_{k+1})$ while fixing $(C_{k+1}, A_{k+1}, E_{k+1})$:

$$\Delta_{k+1} = \Delta_k + \tau \rho (\boldsymbol{E}_{k+1} - \boldsymbol{X} + \boldsymbol{X} \boldsymbol{C}_{k+1}),$$

$$\delta_{k+1} = \delta_k + \tau \rho (\boldsymbol{C}_{k+1} - \boldsymbol{A}_{k+1}),$$
 (10)

where $\tau \in (0, \frac{\sqrt{5}+1}{2})$ is the dual step size and is usually set as $\tau = 1$.

(5) Update the penalty parameter ρ as $\rho=\mu\rho$, where $\mu>1$.

5 Non-Negatie Collaborative Representation

This model enforces non-negative representation and hence produce sparse solutions, in the sense that it results only a few non-negative coefficients.

6 Large Scale Subset Selection Via Woodbury Identity

The Woodbury Identity is

$$(A+UCV)^{-1} = A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}.$$
(11)

We can also restrict that $\operatorname{diag}(A) = 0$ to avoid the samples to be self-represented. However, I want to mention that the proposed model solved by ADMM algorithm with three variables and does not have convergence results.

Then the model above can be

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_{p,1}. \tag{12}$$

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{A,C} \|X - XA\|_F^2 + \lambda \|C\|_{p,1} \text{ s.t. } C = A,$$
 (13)

whose solution for A coincides with the solution of Eq. (31). By introducing two Lagrangian multipliers Δ , the Lagrangian function of the Eq. (31) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A}\|_F^2 + \lambda \|\boldsymbol{C}\|_{p,1} + \langle \boldsymbol{\Delta}, \boldsymbol{C} - \boldsymbol{A} \rangle + \frac{\rho}{2} \|\boldsymbol{C} - \boldsymbol{A}\|_F^2$$
(14)

Denote by (C_k, A_k) the optimization variables at iteration k, by Δ_k the Lagrangian multipliers at iteration k, and by ρ the penalty parameter at iteration k. Taking detivatives of $\mathcal L$ with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the following problem:

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_F^2 + \frac{\rho}{2} \|\mathbf{A} - (C_k + \rho^{-1}\mathbf{\Delta}_k)\|_F^2,$$
 (15)

which is equalivalently to solve the following problem

$$A = (X^{\top}X + \frac{\rho}{2}I)^{-1}(X^{\top}X + \frac{\rho}{2}C_k + \frac{1}{2}\Delta_k)$$
 (16)

Since the matrices X^TX is of $N \times N$ dimension. It is computational expensive when N is very large. By employing the Woodburry Identity mentioned above, we can have

$$(\frac{\rho}{2}\boldsymbol{I} + \boldsymbol{X}^{\top}\boldsymbol{X})^{-1} = \frac{2}{\rho}\boldsymbol{I} - (\frac{2}{\rho})^{2}\boldsymbol{X}^{\top}(\boldsymbol{I} + \frac{2}{\rho}\boldsymbol{X}\boldsymbol{X}^{\top})^{-1}\boldsymbol{X}.$$
(17)

and transform this problem as

$$\mathbf{A} = \left(\frac{2}{\rho}\mathbf{I} - \left(\frac{2}{\rho}\right)^{2} \mathbf{X}^{\top} \left(\mathbf{I} + \frac{2}{\rho} \mathbf{X} \mathbf{X}^{\top}\right)^{-1} \mathbf{X}\right)$$

$$* \left(\mathbf{X}^{\top} \mathbf{X} + \frac{\rho}{2} \mathbf{C}_{k} + \frac{1}{2} \mathbf{\Delta}_{k}\right)$$
(18)

which will save a lot of computational costs.

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \frac{1}{2} \| (\boldsymbol{A}_{k+1} - \rho^{-1} \boldsymbol{\Delta} k) - C \|_F^2 + \frac{\lambda}{\rho} \| C \|_{p,1}. \quad (19)$$

Since the $\ell_{p,1}$ norm is separable with respect to each row, we can write the above problem as

$$\min_{C} \sum_{i=1}^{M} \frac{1}{2} \| (\boldsymbol{A}_{k+1})_{i*} - \rho^{-1} (\boldsymbol{\Delta}_{k})_{i*} - \boldsymbol{C}_{i*} \|_{2}^{2} + \frac{\lambda}{\rho} \| \boldsymbol{C}_{i*} \|_{p},$$
(20)

where F_{i*} is the *i*th row of the matrix F. Since this step is separable w.r.t. each row, we can employ parallel processing resources and reduce its computational time.

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\Delta_{k+1} = \Delta_k + \rho (C_{k+1} - A_{k+1}). \tag{21}$$

(5) Update the penalty parameter ρ as $\rho=\mu\rho,$ where $\mu>1.$

7 Robust Large Scale Subset Selection via Dissimilarity based Outlier Detection

We can also introduce a dissimiarlity based matrix D to replace the ℓ_p or $\ell_{2,1}$ norms to ensure robustness. This can also remore the additional term Z on modeling the outliers with the restriction of ℓ_1 norm. The matrix D should better be diagonal matrix. How to design the matrix D is another problem need to be solved.

Then the proposed model can be formulated as

$$\min_{\mathbf{A}} \| (\mathbf{X} - \mathbf{X}\mathbf{A})\mathbf{D} \|_F^2 + \lambda \|\mathbf{A}\|_{p,1}.$$
 (22)

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{A \in C} \|(X - XA)D\|_F^2 + \lambda \|C\|_{p,1} \text{ s.t. } C = A.$$
 (23)

By introducing a Lagrangian multiplier Δ , the Lagrangian function of the Eq. (31) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|(\boldsymbol{X} - \boldsymbol{X}\boldsymbol{A})\boldsymbol{D}\|_F^2 + \lambda \|\boldsymbol{C}\|_{p,1} + \langle \boldsymbol{\Delta}, \boldsymbol{C} - \boldsymbol{A} \rangle + \frac{\rho}{2} \|\boldsymbol{C} - \boldsymbol{A}\|_F^2$$
(24)

Denote by (A_k, C_k) the optimization variables at iteration k, by Δ_k the Lagrangian multiplier at iteration k, and by ρ the penalty parameter at iteration k. Taking detivatives of \mathcal{L} with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the following problem:

$$\min_{\mathbf{A}} \| (\mathbf{X} - \mathbf{X}\mathbf{A})\mathbf{D} \|_F^2 + \frac{\rho}{2} \| \mathbf{A} - (\mathbf{C}_k - \rho^{-1}\mathbf{\Delta}_k) \|_F^2,$$
(25)

which is equalivalently to solve the following problem

$$\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{A} \boldsymbol{D} \boldsymbol{D}^{\top} + \frac{\rho}{2} \boldsymbol{A} = \boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{D} \boldsymbol{D}^{\top} + \frac{\rho}{2} (\boldsymbol{C}_{k} - \rho^{-1} \boldsymbol{\Delta}_{k})$$
(26)

Since the matrices $X^{T}X$ and $D^{T}D$ are positive semidefinite and positive definite, respectively. The above equation is a standard Sylvester equation which has a unique solution.

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \frac{1}{2} \| (\boldsymbol{A}_{k+1} + \rho^{-1} \boldsymbol{\Delta} k) - \boldsymbol{C} \|_F^2 + \frac{\lambda}{\rho} \| \boldsymbol{C} \|_{p,1}. \quad (27)$$

Since the $\ell_{p,1}$ norm is separable with respect to each row, we can write the above problem as

$$\min_{C} \sum_{i=1}^{M} \frac{1}{2} \| (\boldsymbol{A}_{k+1})_{i*} + \rho^{-1} (\boldsymbol{\Delta}_{k})_{i*} - \boldsymbol{C}_{i*} \|_{2}^{2} + \frac{\lambda}{\rho} \| \boldsymbol{C}_{i*} \|_{p},$$
(28)

where F_{i*} is the *i*th row of the matrix F. Since this step is separable w.r.t. each row, we can employ parallel processing resources and reduce its computational time.

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\Delta_{k+1} = \Delta_k + \rho (C_{k+1} - A_{k+1}).$$
 (29)

(5) Update the penalty parameter ρ as $\rho=\mu\rho$, where $\mu>1$.

8 Large Scale Subset Selection Via Row-Column Separation

We can also restrict that diag(A) = 0 to avoid the samples to be self-represented. However, I want to mention that the proposed model solved by ADMM algorithm with three variables and does not have convergence results.

Then the model above can be

$$\min_{\mathbf{A}} \|\mathbf{X} - \mathbf{X}\mathbf{A}\|_F^2 + \lambda \|\mathbf{A}\|_{p,1}$$
 s.t. $\operatorname{diag}(\mathbf{A}) = \mathbf{0}$. (30)

By introducing an auxiliary variable C into the optimization program, we can get

$$\min_{\boldsymbol{A},\boldsymbol{C}} \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{C}\|_F^2 + \lambda \|\boldsymbol{A}\|_{p,1}$$
s.t. $\boldsymbol{C} = \boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}),$ (31)

whose solution for A coincides with the solution of Eq. (31). By introducing two Lagrangian multipliers Δ , the Lagrangian function of the Eq. (31) can be written as

$$\mathcal{L}(\boldsymbol{A}, \boldsymbol{C}, \boldsymbol{\Delta}, \rho) = \|\boldsymbol{X} - \boldsymbol{X}\boldsymbol{C}\|_F^2 + \lambda \|\boldsymbol{A}\|_{p,1}$$
$$+ \langle \boldsymbol{\Delta}, \boldsymbol{C} - (\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A})) \rangle + \frac{\rho}{2} \|\boldsymbol{C} - (\boldsymbol{A} - \operatorname{diag}(\boldsymbol{A}))\|_F^2$$
(32)

Denote by (C_k, A_k) the optimization variables at iteration k, by Δ_k the Lagrangian multipliers at iteration k, and by ρ the penalty parameter at iteration k. Taking detivatives of $\mathcal L$ with respect to the variables and setting the derivatives to be zeros, we can alternatively update the variables as follows:

(1) Obtain A_{k+1} by minimizing \mathcal{L} with respect to A, while fixing (C_k, Δ_k) . This is equivalent to solve the following problem:

$$A_{k+1} = J - \text{diag}(J),$$

$$J = \arg \min_{J} \frac{1}{2} \|C_k + \rho^{-1} \Delta_k - J\|_F^2 + \frac{\lambda}{\rho} \|J\|_{p,1}.$$
(33)

(2) Obtain C_{k+1} by minimizing \mathcal{L} with respect to C, while fixing (A_{k+1}, Δ_k) . This is equivalent to solve the following problem:

$$\min_{C} \|X - XC\|_F^2 + \frac{\rho}{2} \|C - A_{k+1} + \frac{1}{\rho} \Delta_k\|_F^2 \quad (34)$$

This is a least squares regression problem which has a closed-form solution as

$$C_{k+1} = (X^{\top}X + \frac{\rho}{2}I)^{-1}(X^{\top}X + \frac{\rho}{2}A_{k+1} - \frac{1}{2}\Delta_k).$$
(35)

(3) Obtain the Lagrangian multipliers (Δ_{k+1}) while fixing (C_{k+1}, A_{k+1}) :

$$\Delta_{k+1} = \Delta_k + \rho (C_{k+1} - A_{k+1}). \tag{36}$$

(5) Update the penalty parameter ρ as $\rho = \mu \rho$, where $\mu > 1$.

References

[1] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang Huang, and Shuicheng Yan. Robust and efficient subspace

- segmentation via least squares regression. ECCV, pages 347–360, 2012. \blacksquare
- [2] Lei Zhang, Meng Yang, and Xiangchu Feng. Sparse representation or collaborative representation: Which helps face recognition? *ICCV*, pages 471–478, 2011. 1