Алгоритм прогнозирования структуры локально-оптимальных моделей.

Михаил Лепехин

МФТИ ФИВТ

lepehin.mn@phystech.edu

21 марта 2019 г.

Цель исследования

Цель

На основе генетического алгоритма, а также с использованием нейронных сетей построить метод для предсказания структуры нелинейной ранжирующей функции и сравнить полученные результаты с результатами сообщества TREC.

Проблема

Предсказание структуры нелинейной модели по имеющимся данным - тяжёлая задача.

Решение

Использование генетического алгоритма для построения ранжирующей функции в виде дерева с покрашенными вершинами с разбиением выборки на кластеры.

Существующие методы

Простые методы

 Salton, Gerard and McGill, Michael J. Introduction to Modern Information Retrieval // McGraw- Hill, Inc. New York, NY, USA, 1986

Перебор суперпозиций

 P. Goswami, S. Moura, E. Gaussier, M.-R. Amini, F. Maes Exploring the space of ir functions // ECIR'14, 2014, pp. 372–384.

Использование генетического алгоритма

 Fan, Weiguo and Gordon, Michael D. and Pathak, Praveen Personalization of Search Engine Services for Effective Retrieval and Knowledge Management // In Proceedings of the twenty first international conference on I

Существующие методы

 A.S. Kulunchakov, V.V. Strijov Study of image retrieval and classification based on adaptive features using genetic algorithm feature selection, Expert Systems with Applications: An International Journal (2017).

Дано

Коллекция текстовых документов C, состоящая из документов $\{d_i\}_{i=1}^{|C|}$ и множество поисковых запросов $Q=\{q_j\}_{j=1}^{|Q|}$.

Часть документов оценена экспертами. Таким образом задана функция $r(d,q) \to \{0,1\}$, где оценка 1 ставится в случае релевантности документа d запросу q.

Обозначения

 $\operatorname{count}(w,\ C)$ - количество документов $d\in C$, в которые входит слово w,

freq(w, d) - количество вхождений слова w в документ d, $size_{avg}$ - среднее количество слов в документах коллекции, size(d) - количество слов в документе d.

Рассматриваемые характеристики

$$\mathsf{idf}(w,C) := \frac{\mathsf{count}(w,C)}{|C|}$$
 $\mathsf{tf}(w,d,C) := \mathsf{freq}(w,d) * log\left(1 + \frac{\mathsf{size}_{avg}}{\mathsf{size}(d)}\right)$

Пусть $f: \mathbb{R}^2 \to \mathbb{R}$ - функция 2 переменных. Тогда её значение на паре (d,q) определяется как сумма её значений на парах (d,w), где $w \in q$ - слово из запроса:

$$f(d,q) := \sum_{w \in q} f(\mathsf{tf}(w,d),\mathsf{idf}(w))$$
 $\mathsf{MAP}(f,C,Q) = \frac{1}{|Q|} \sum_{g \in Q} \mathsf{AvgP}(f,q),$

Метрика качества ранжирующей функции

$$MAP(f, C, Q) = \frac{1}{|Q|} \sum_{q \in Q} AvgP(f, q),$$

где

$$\mathsf{AvgP}(f,q) = rac{\sum\limits_{k=1}^{|\mathcal{C}_q|} \mathsf{Prec}(k) imes r(q,k)}{\sum\limits_{k=1}^{|\mathcal{C}_q|} r(q,k)},$$

$$\operatorname{Prec}(k) = \frac{\sum_{s=1}^{k} r(q, s)}{k}$$

Пространство исследуемых функций

В качестве математических примитивов h(x,y) будем использовать функции $\sqrt{x}, x+y, x-y, x*y, x/y, \log x, e^x$. Будем исследовать пространство всех суперпозиций этих примитивов. Обозначим его \mathcal{F} .

Оптимизируемая функция

$$f^* = \arg\max_{f \in \mathcal{F}} \mathsf{MAP}(f, C, Q) - R(f),$$

где R - регуляризатор, штрафующий за структурную сложность порождаемой суперпозиции.

Постановка задачи на кластерах документов

Разбиение на кластеры

Обозначим L множество всех рассматриваемых слов в документах, |L|=n.

Определим tf - idf для всей коллекции документов. Отображение $V:C\to\mathbb{R}^n$ каждому документу сопоставляет вектор tf - idf представления всех слов в нем. Расстояние для кластеризации при помощи стандартной эвклидовой метрики. Получаем множество кластеров D, |D|=m.

Для каждого кластера при помощи генетического алгоритма построим семейство ранжирующих функций $F_{d_i}^* = \{f_i^1, \dots, f_i^n\}$. В каждом семействе i выделим наилучшую по описанной выше метрике ранжирующую функцию $f_i^* \in F_{d_i}$.

Постановка задачи на кластерах документов

Метрика качества на кластерах

Определим

$$f^* = \arg\max_{W \in \mathbb{R}^m} \left(\left(MAP\left(\sum_{i=1}^m W_i f_i^*, C, Q \right) \right) - \sum_{i=1}^m R(f_i^*) \right)$$

Веса W_i находятся при помощи линейной регрессии.

Метод решения

Базовый алгоритм

Используется генетический алгоритм со следующими процедурами:

- мутация замена произвольной вершины на заново сгенерированную.
- скрещивание (crossover) обмен местами двух произвольных вершин деревьев.

Регуляризация

$$R(f) = ||f||^2,$$

где ||f|| - число вершин в дереве функции f.

Цель эксперимента

Цель эксперимента

Проверить работоспособность метода. Улучшить результаты по сравнению с работами сообщества TREC.

Данные

Коллекция TREC (датасеты 5-8). https://trec.nist.gov/data.html

Результаты эксперимента

Зависимость сложности модели от значения целевой метрики.

Результаты эксперимента

Результаты при сравнении на корпусах TREC-5, TREC-6, TREC-7.

Superposition	TREC-5	TREC-6	TREC-7
Функции сообщества			
f_1	8.785	13.715	10.038
f_2	8.908	13.615	9.905
f ₃	8.908	13.615	9.905
Найденные наилучшие функции			
h ₅ *	9.537	13.762	10.584
h ₆ *	8.903	13.967	10.771
h ₇ *	8.526	13.424	11.060

Заключение

- Показана работоспособность метода
- Для каждого корпуса была получена функция наилучшим образом ранжирующая документы для данного запроса

Планируется

Улучшить текущий метод путём деления набора коллекций на 3 части:

- На первой части генерируется ансамбль моделей
- На второй части подбираются оптимальные веса для данных моделей
- Последняя часть используется для проверки итогового качества.