Caso Gamma

Relatório

Silvaneo Viera dos Santos Junior

2022-11-23

Introdução

Neste relatório apresentaremos os resultados das análises feitas sobre o GDLM k-paramétrico para o caso Gamma com parâmetro de forma e média desconhecidos. Para esta análise, vamos assumir o seguinte modelo observacional:

$$X|\phi,\mu \sim \mathcal{G}\left(\phi,\frac{\phi}{\mu}\right),$$

onde \mathcal{G} representa a distribuição Gamma. Por conveniência, usaremos a parametrização com $\alpha = \phi$ e $\beta = \frac{\phi}{\mu}$ de modo que:

$$X|\alpha,\beta\sim\mathcal{G}(\alpha,\beta)$$
,

sendo que transitar de uma parametrização para a outra é trivial e a resolução dos sistemas de compatibilização é a mesma.

Para os parâmetros α e β , temos que a priori conjugada é tal que:

$$\pi(\alpha, \beta) \propto \exp \{n_0 \alpha \ln(\beta) - k_0 \ln(\Gamma(\alpha)) + \theta_0 \alpha - \tau_0 \beta\},$$

onde n_0 , k_0 , θ_0 e τ_0 são os parâmetros da distribuição e Γ é a função Gamma. Quando um par de variáveis aleatórias X,Y tiver a densidade descrita acima, diremos que $X,Y \sim \Pi(n_0,k_0,\theta_0,\tau_0)$, sendo que $n_0,k_0,\tau_0 > 0$. No caso especial onde $n_0 = k_0$, diremos que $X,Y \sim \Pi(n_0,\theta_0,\tau_0)$.

Ao obter uma amostra de tamanho m do modelo observacional, a obtenção dos parâmetros da posteriori $(n_m, k_m, \theta_m \in \tau_m)$ pode ser feita a partir das equações a seguir:

$$n_m = n_0 + m$$

$$k_m = k_0 + m$$

$$\theta_m = \theta_0 + \sum_{i=1}^m \ln(x_i)$$

$$\tau_m = \tau_0 + \sum_{i=1}^m x_i.$$

Por último, esta distribuição pertence à família exponencial e o vetor de estatísticas suficientes associado a esta distribuição é:

$$H_p = (\alpha, \beta, \alpha \ln(\beta), \ln(\Gamma(\alpha)))'$$

Para utilizar o método proposto no artigo k-paramétrico é necessário obter $\mathbb{E}_p[H_p]$ e $\mathbb{E}_q[H_p]$, onde E_p é o valor esperado calculado com α e β tendo a distribuição conjugada p e E_q é o valor esperado calculado com α e β tendo distribuição log-Normal.

Na próxima sessão discutiremos algumas propriedades da distribuição Π , pois diversos problemas encontrados tem sua origem nas características de Π .

Na sessão subsequente abordaremos os resultados da tentativa de se calcular $\mathbb{E}_p[H_p]$ usando aproximações de Laplace (Tierney e Kadane, 1995). Infelizmente, não conseguimos obter um ajuste funcional com esta abordagem devido a problemas na solução do sistema $\mathbb{E}_p[H_p] = \mathbb{E}_q[H_p]$.

Na última sessão apresentamos uma proposta que permite obter uma expressão analítica aproximada para $\mathbb{E}_p[H_p]$. Com isso, conseguimos resolver o sistema (ainda usando Newton-Raphson, mas sem problemas numéricos) e fazer o ajuste do modelo. Ainda assim, o ajuste deixa a desejar. Mais investigações estão sendo feitas para tentar identificar o problema.

Propriedades da distribuição II

Primeiro, observemos que, se $\alpha, \beta \sim \Pi(n_0, k_0, \theta_0, \tau_0)$, então:

$$f(\beta|\alpha) \propto \pi(\alpha,\beta) \propto \exp\left\{n_0\alpha \ln(\beta) - k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha - \tau_0\beta\right\}$$
$$\propto \exp\left\{n_0\alpha \ln(\beta) - \tau_0\beta\right\} = \beta^{n_0\alpha}e^{-\tau_0\beta},$$

ou seja $\beta | \alpha \sim \mathcal{G}(n_0 \alpha + 1, \tau_0)$.

Usando a distribuição condicional de β podemos reescrever $\mathbb{E}_p[H_p] = \mathbb{E}_p[\mathbb{E}_p[H_p|\alpha]]$, de onde obtemos:

$$\mathbb{E}_{p}[\beta] = \mathbb{E}_{p}[\mathbb{E}_{p}[\beta|\alpha]] = \mathbb{E}_{p}\left[\frac{n_{0}\alpha + 1}{\tau_{0}}\right] = \frac{n_{0}\mathbb{E}_{p}[\alpha] + 1}{\tau_{0}}$$

$$\mathbb{E}_{p}[\alpha\ln(\beta)] = \mathbb{E}_{p}[\alpha\mathbb{E}_{p}[\ln(\beta)|\alpha]] = \mathbb{E}_{p}\left[\alpha(\psi(n_{0}\alpha + 1) - \ln(\tau_{0}))\right]$$

$$= \mathbb{E}_{p}\left[\alpha\psi(n_{0}\alpha + 1)\right] - \ln(\tau_{0})\mathbb{E}_{p}\left[\alpha\right].$$

Usando que $\mathbb{E}_p[\alpha] = \mathbb{E}_q[\alpha]$ ($\mathbb{E}_q[H_p]$ é suposto conhecido), temos que:

$$n_0 = \frac{\mathbb{E}_q \left[\beta\right] \tau_0 - 1}{\mathbb{E}_q \left[\alpha\right]}$$

Com as equações acimas, conseguimos escrever $\mathbb{E}_p[H_p]$ como valores esperados que dependem apenas da distribuição marginal de α , o que pode ser útil para simplicar algumas integrais e possibilitar a resolução numérica com métodos determinísticos. Vale observar que a distribuição marginal de α é tal que:

$$\begin{split} f(\alpha) &\propto \int_0^{+\infty} \pi(\alpha,\beta) d\beta \\ &\propto \int_0^{+\infty} \exp\left\{n_0\alpha \ln(\beta) - k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha - \tau_0\beta\right\} d\beta \\ &= \exp\{-k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha\} \int_0^{+\infty} \exp\left\{n_0\alpha \ln(\beta) - \tau_0\beta\right\} d\beta \\ &= \exp\{-k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha\} \int_0^{+\infty} \beta^{n_0\alpha + 1 - 1} e^{-\tau_0\beta} d \\ &= \exp\{-k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha\} \frac{\Gamma(n_0\alpha + 1)}{\tau_0^{n_0\alpha + 1}} \\ &= \exp\{-k_0 \ln(\Gamma(\alpha)) + \theta_0\alpha + \ln(\Gamma(n_0\alpha + 1)) - (n_0\alpha + 1) \ln(\tau_0)\} \\ &\propto \exp\{\ln(\Gamma(n_0\alpha + 1)) - k_0 \ln(\Gamma(\alpha)) + (\theta_0 - n_0 \ln(\tau_0))\alpha\} \\ &= \frac{\Gamma(n_0\alpha + 1)}{\Gamma(\alpha)^{k_0}} \exp\left\{(\theta_0 - n_0 \ln(\tau_0))\alpha\right\}. \end{split}$$

Usando a densidade acima e aproveitando a escrita de $\mathbb{E}_p[H_p]$ como uma valor esperado em α , podemos obter $\mathbb{E}_p[H_p]$ usando quadratura Gaussiana e dispensando o uso da aproximação de Laplace.

Como discutido em outros reuniões, um pre-requisito para o uso do Teorema da Projeção é que o valor esperado de H_p exista e seja finito. Caso esta condição não seja satisfeita, não podemos fazer a compatibilização das prioris normal e conjugada. Assim, devemos encontrar as condições para as quais Π é própria (i.e., a constante de normalização de π é finita) e o valor esperado de H_p é finito. Para facilitar esta análise, podemos fazer o estudo da distribuição marginal de α , pois se Π é própria, α também será, ademais, podemos avaliar o valor esperado de H_p olhando apenas para a distribuição de α .

Adiante, vamos exibir a densidade não normalizada de α para vários valores de k_0 , n_0 , θ_0 e τ_0 , porém, como são muitas combinações de parâmetros, a análise acaba se tornando exaustiva, por isso, antes de apresentar os gráficos, vamos resumir as conclussões:

- Se n_0 e k_0 são grandes em comparação a τ_0 e θ_0 a densidade de α se torna crescente em α a partir de algum valor de α (como conseguência, a distribuição marginal de α não é própria). Observe que, para uma amostra grande, temos que $n_m \approx k_m \approx m, \tau_m \approx n_m \sum_{i=1}^m x_i/m, \theta_m \approx k_m \sum_{i=1}^m \ln(x_i)/m,$ assim, a observação feita neste item equivale a dizer que a média dos x_i 's e dos $\ln(x_i)$'s não pode ser demasiadamente pequena.
- Se $n_0 \ge k_0$ a densidadde de α se torna crescente em α para grande parte dos possíveis valores de τ_0 e θ_0 .

Para garantir que a distribuição marginal de α seja própria, precisamos que n_0 seja significativamente maior que k_0 (o quão menor vai depender da escala de k_0) e/ou que τ_0 e θ_0 estejam compatíveis com a escala de k_0 e n_0 . Em geral, essa informação será relevante apenas para inicialização do Newton-Raphson, sendo necessária uma escolha que evite que o algoritmo passe por "regiões ruins".

A seguir, apresentamos a densidade marginal não normalizada de α para $n_0 = k_0 = 1$ e diversos valores de τ_0 e θ_0 :

Veja que, se $\tau_0 = e^{\theta_0}$, a densidade de α é simplemente uma reta crescente em α . Se $\tau_0 > e^{\theta_0}$ a densidade de α é própria e se $\tau_0 \leq e^{\theta_0}$ a desidade de α é crescente em α (a partir de algum valor), logo a distribuição de α não é própria.

 $n_0 = 2 e k_0 = 2$

Com $n_0=k_0=2$ temos um resultado parecido com o anterior, porém, o "ponto de corte" para tornar a densidade imprópria muda. De modo geral, quando $n_0=k_0=m$, observamos que o ponto de corte é $\ln\left(\frac{\tau_0}{m}\right)>\frac{\theta_0}{m}$. Intuitivamente, podemos entender a razão para este ponto de corte da seguinte forma: Se temos uma amostra de tamanho m com m muito grande, então $\tau_m\approx m\sum\frac{x_i}{m}$ e $\theta_m\approx m\sum\frac{\ln(x_i)}{m}$, então teríamos que $\ln\left(\frac{\tau_m}{m}\right)>\frac{\theta_m}{m}$, pois a função logarítmo é côncava, portanto $\ln\left(\frac{\tau_m}{m}\right)\approx \ln\left(\sum\frac{x_i}{m}\right)>\sum\frac{\ln(x_i)}{m}\approx\frac{\theta_m}{m}$. Ou seja, é "artificial" para uma Π que a condição $\ln\left(\frac{\tau_0}{m}\right)>\frac{\theta_0}{m}$ não seja válida, pois dados reais nunca produziram parâmetros sem essa propriedade.

A partir das análises feitas não conseguimos encontrar uma regra que garanta que a densidade de α seja própria a menos que tomemos $n_0=k_0$, porém, ainda nesse caso, a restrição encontrada é inconveniente, pois a restrição $\ln\left(\frac{\tau_0}{m}\right)>\frac{\theta_0}{m}$ induz um espaço parametrico onde não há garantias de que exista um elemento que minimize a divergência KL. No geral, tivemos muitos problemas em encontrar o mínimo, pois o algoritmo frequentemente saí do conjunto válido de parâmetros. Em diversas ocasiões conseguimos encontrar um valor inicial para os parâmetros de modo que o algoritmo de Newton-Raphson convirja de forma adequada, mas não conseguimos estabelecer um critério geral que garanta que sempre poderemos resolver o sistema. Uma forma de mitigar esse problema seria através da simplificação dos sistemas (se possível), pois isso facilitaria a busca dos parâmetros.

Método de Laplace

Suponhamos que queremos calcular $\mathbb{E}[g(x)]$ com x tendo densidade proporcional a f^* e g sendo uma função positiva, então podemos escrever:

$$\mathbb{E}[g(x)] = \frac{\int_{\mathbb{R}} g(x) f^*(x) dx}{\int_{\mathbb{R}} f^*(x) dx}.$$

Se considerarmos que:

$$g(x)f^*(x) \approx \exp\left\{L_1(x_1^*) - \frac{(x - x_1^*)^2}{2v_1}\right\},$$

 $f^*(x) \approx \exp\left\{L_2(x_2^*) - \frac{(x - x_2^*)^2}{2v_2}\right\},$

onde $L_1(x) = \ln(g(x)f^*(x))$, $L_2(x) = \ln(f^*(x))$, x_i^* é o argumento que maximiza L_i e $v_i = -L_i''^{-1}(x_i^*)$. Usando a aproximação acima, obtemos:

$$\mathbb{E}[g(x)] \approx \left(\frac{v_1}{v_2}\right)^{\frac{1}{2}} \exp\left\{L_1(x_1^*) - L_2(x_2^*)\right\}$$

A abordagem acima pode ser facilmente generalizada para o caso onde x é um vetor.

A ideia proposta pelo Migon é utilizar o método descrito para calcular $\mathbb{E}_p[H_p]$, porém encontramos um problema ao tentar por em prática esta proposta: Para calcular $\mathbb{E}_p[H_p]$ pelo método de Laplace precisamos conhecer os parâmetros da distribuição conjugada, mas desejamos calcular $\mathbb{E}[g(x)]$ justamente para encontrar os parâmetros da distribuição conjugada.

Para apresentar o problema de forma clara, vamos descrever o algoritimo de Newton-Raphson para a solução do sistema $\mathbb{E}_p[H_p] = \mathbb{E}_q[H_p]$:

- Passo 0: Suponha que conhecemos $\mathbb{E}_q[H_p]$ e seja $\phi = \mathbb{E}_p[H_p]$ com $p = \Pi(n, k, \tau, \theta)$.
- Passo 1: Inicializamos escolhendo n, k, τ e θ como valores válidos.
- Passo 2: Calculamos ϕ e $\nabla \phi$ (a matriz de derivadas parciais de ϕ com relação aos parâmetro de Π). Caso não exista a forma analítica para $\nabla \phi$, devemos avaliar ϕ 4 vezes (além da avaliação inicial) para calcular numericamente as derivadas de ϕ .
- Passo 3: Atualizamos n, k, τ e θ segundo o algoritmo de Newton-Raphson.
- Passo 4: Se ϕ é suficientemente próximo de $\mathbb{E}_q[H_p]$ encerramos o algoritmo, do contrário voltamos ao passo 2.

Usando o método de Laplace para obter ϕ , digamos, para encontrar $\mathbb{E}_p[\alpha]$, então temos que $g(\alpha,\beta)=\alpha$ e devemos encontrar α_1^* , β_1^* , α_2^* e β_2^* que maximizam L_1 e L_2 , respectivamente. Infelizmente, não é possível obter uma forma analítica fechada para α_1^* e β_1^* , de modo que seria necessário usar o método de Newton-Raphson para encontrar esses valores, porém isto está ocorrendo dentro de **uma** avaliação de **uma** das componentes de ϕ para **uma** iteração do método de Newton-Raphson, ou seja, seria necessário usar o método de Newton-Raphson 20 vezes **para cada iteração** do método de Newton-Raphson principal (temos de calcular ϕ 5 vezes a cada iteração e em cada cálculo precisamos usar Newton-Raphson 4 vezes). Por conta disso, é inviável usar a abordagem acima para realizar a compatibilização das prioris. Se fosse possível obter α_1^* , β_1^* de forma analítica para todos os parâmetro, não haveria problema, porém, não sendo este o caso, se torna inviável a resolução do sistema.

Como alternativa ao método descrito acima, podemos usar o seguinte fato, se $\Pi(n, k, \theta, \tau)$ pertence à família exponencial, então:

$$\mathbb{E}_p[H_p] = \nabla A(n, k, \theta, \tau),$$

onde $A(n,k,\theta,\tau)$ é o logarítimo da constante de normalização de $\Pi(n,k,\theta,\tau)$, isto é:

$$\exp\{A(n,k,\theta,\tau)\} = \left(\int_0^{+\infty} \int_0^{+\infty} \exp\left\{n\alpha \ln(\beta) - k \ln(\Gamma(\alpha)) + \theta\alpha - \tau\beta\right\} d\beta d\alpha\right)^{-1}.$$

Pelo método de Laplace, temos que:

$$\exp\{A(n, k, \theta, \tau)\} \approx \sqrt{2\pi v_2} \exp\{L_2(\alpha_2^*, \beta_2^*)\},\,$$

sendo que, especificamente para este caso, por sorte, há forma analítica aproximada para α_2^*, β_2^* . De fato, veja que $L_2(\alpha, \beta) = n\alpha \ln(\beta) - k \ln(\Gamma(\alpha)) + \theta\alpha - \tau\beta$, daí:

$$\frac{\partial}{\partial \alpha} L_2(\alpha, \beta) = n \ln(\beta) - k \psi(\alpha) + \theta$$
$$\frac{\partial}{\partial \beta} L_2(\alpha, \beta) = n \frac{\alpha}{\beta} - \tau,$$

onde ψ é a função digamma.

Da segunda equação obtemos que:

$$\frac{\partial}{\partial \beta} L_2(\alpha^*, \beta^*) = 0 \iff n \frac{\alpha^*}{\beta^*} = \tau \iff \beta^* = \frac{n}{\tau} \alpha^*$$

Substitituindo o valor de β^* na primeira equação e usando uma aproximação de primeira ordem para a função digamma obtemos que:

$$\frac{\partial}{\partial \alpha} L_2(\alpha^*, \beta^*) = n \ln\left(\frac{n}{\tau}\right) + n \ln(\alpha^*) - k\psi(\alpha^*) + \theta,$$

$$\approx n \ln\left(\frac{n}{\tau}\right) + n \ln(\alpha^*) - k \ln(\alpha^*) + \frac{k}{2\alpha^*} + \theta,$$

Usando o Wolfram, encontramos que $\frac{\partial}{\partial \alpha} L_2(\alpha^*, \beta^*) = 0$ se, e somente se:

$$\alpha^* = \frac{k}{2(k-n)W\left(\frac{k(2^{1-\frac{n}{k}}e^{\theta/k}\frac{n}{\tau}n^{k/k})^{-k/(k-n)}}{k-n}\right)},$$

onde W é a função W de Lambert.

Veja que a solução proposta não está bem definida no caso n = k, ademais, como discutido anteriormente, a aproximação de primeira ordem para a função digamma deixa muito a desejar. Contudo, no caso onde n = k podemos usar uma aproximação de segunda ordem para a função digamma, pois, neste caso, obtemos:

$$\frac{\partial}{\partial \alpha} L_2(\alpha^*, \beta^*) \approx n \ln\left(\frac{n}{\tau}\right) + n \ln(\alpha^*) - k \ln(\alpha^*) + \frac{k}{2\alpha^*} + \frac{k}{12\alpha^{*2}} + \theta = n \ln\left(\frac{n}{\tau}\right) + \frac{n}{2\alpha^*} + \frac{k}{12\alpha^{*2}} + \theta,$$

daí:

$$\frac{\partial}{\partial \alpha} L_2(\alpha^*, \beta^*) = 0 \iff \alpha^* = \frac{1}{3 + \sqrt{9 + 12\left(\ln\left(\frac{\tau}{n}\right) - \frac{\theta}{n}\right)}}.$$

Observe que, na solução acima, se $\ln\left(\frac{\tau}{n}\right) < \frac{\theta}{n} - \frac{3}{4}$, então α^* não está bem definido, o que é algo problemático. Dito isso, como visto anteriorimente, já é necessário que $\ln\left(\frac{\tau}{n}\right) > \frac{\theta}{n}$, a restrição $\ln\left(\frac{\tau}{n}\right) > \frac{\theta}{n} - \frac{3}{4}$ já está sendo satisfeita

Vale destacar que, se Π é a posteriori depois de se observar uma amostra de tamanho m do modelo observacional (m >> 0), então $\ln\left(\frac{\tau}{n}\right) \approx \ln\left(\frac{1}{m}\sum x_i\right)$ e $\theta/n \approx \frac{1}{m}\sum \ln(x_i)$, daí, como a função log é concava, vale que $\ln\left(\frac{\tau}{n}\right) > \frac{\theta}{n}$, ou seja, α^* está bem definido, logo, após observar uma quantidade razoável de dados, estaremos livres do risco de que α^* não existir.

Uma vez obtido α^* e β^* , podemos obter uma aproximação para $A(n,k,\theta,\tau)$ e então obter $\mathbb{E}_p[H_p] = \nabla A(n,k,\theta,\tau)$.

Como mencionado anteriormente, também podemos obter $\mathbb{E}_p[H_p]$ por integração numérica e obter um resultado semelhante. A princípio, não seria viável obter $\mathbb{E}_p[H_p]$ por integração numérica, pois a integral que devemos calcular é dupla, inviabilizando os métodos determinísticos que conheço (eles funcionam, mas ficam com o custo computacional irrazoável), ademais, não podemos usar integração por Monte Carlo, pois, para o método de Newton-Raphson, devemos calcular as derivadas de $\mathbb{E}_p[H_p]$ e como não conhecemos a forma analítica de $\mathbb{E}_p[H_p]$, devemos recorrer a diferenciação numérica, porém o erro de Monte Carlo impede que isso seja feito (o ruído aleatório intrínsico ao método de Monte Carlo "ofusca" o valor das derivadas, sendo necessário usar amostras irrazoavelmente grandes para contornar esse problema).

Dito isso, durante a construção deste relatório, observamos que $\mathbb{E}_p[H_p]$ pode ser escrito como uma integral que depende apenas de α , o que viabiliza o uso de métodos numérico determinísticos para calcular $\mathbb{E}_p[H_p]$ (especificamente, usamos Quadratura Gaussiana, que é o método default da função integrate do R), usando essa abordagem obtemos um resultado parecido com o resultado usando a aproximação de Laplace, porém, acredito que o uso de Quadratura Gaussiana seja mais adequado, pois evita o uso de aproximações, gerando assim valores que são numericamente iguais ao verdadeiro.

Vale destacar que, apesar da abordagem usando o método de Laplace não ser a que recomendo, acredito que o desenvolvimento dessa abordagem foi útil para dar alguns *insights* que não obteríamos se tivéssemos feito uso de integração numérica desde o início.

Isso concluí a análise sobre o uso da aproximação de Laplace para calcular $\mathbb{E}_p[H_p]$. Resolvido esta questão, resta apenas usar o algoritmo de Newton-Raphson para resolver o sistema $\mathbb{E}_p[H_p] = \mathbb{E}_q[H_p]$.

Como mencionado anteriormente, há certas escolhas de parâmetros para a distribuição conjugada para as quais Π não é própria, sendo que não conseguimos uma forma de garantir que o algoritmo de Newton-Raphson não passe por parâmetros inadequados. Não bastasse isso, também não conseguimos garantir que o sistema sequer tenha solução.

Tentando aplicar o a metodologia em dados simulados, independente da inicialização do modelo, sempre há alguma iteração onde o algoritmo de Newton-Raphson tem problemas. Ademais também reparamos que há uma distorção considerável dos dados após a compatibilização das prioris, de modo que tivemos problemas mesmo nas ocasiões em que o algoritmo de Newton-Raphson de fato convergiu.

Por último, apresentarei na próxima sessão uma abordagem alternativa que permite simplificar a resolução do sistema e obter forma analítica aproximada para $\mathbb{E}_p[H_p]$.

Proposta alternativa: Aproximação da distribuição marginal de α

Lembremos que, se $\alpha, \beta \sim \Pi(n, k, \tau, \theta)$, então $\beta | \alpha \sim \mathcal{G}(n\alpha + 1, \tau)$ e:

$$f(\alpha) \propto \frac{\Gamma(n\alpha+1)}{\Gamma(\alpha)^k} \exp\left\{(\theta - n\ln(\tau))\alpha\right\}.$$

Ademais, a fórmula de Stirling nos diz que:

$$\Gamma(x+1) \approx \sqrt{2\pi x} \left(\frac{x}{e}\right)^x$$
.

Usando essa aproximação na densidade de α obtemos que:

$$\begin{split} f(\alpha) &\propto \frac{\Gamma(n\alpha+1)}{\Gamma(\alpha)^k} \exp\left\{(\theta-n\ln(\tau))\alpha\right\} \\ &= \frac{\Gamma(n\alpha+1)}{\alpha^{-k}\Gamma(\alpha+1)^k} \exp\left\{(\theta-n\ln(\tau))\alpha\right\} \\ &\approx \frac{\sqrt{2\pi n}}{\sqrt{2\pi^k}} \frac{\alpha^{\frac{1}{2}}n^{n\alpha}\alpha^{n\alpha}e^{-n\alpha}}{\alpha^{-k}\alpha^{\frac{k}{2}}\alpha^{k\alpha}e^{-k\alpha}} \exp\left\{(\theta-n\ln(\tau))\alpha\right\} \\ &= \frac{\sqrt{n}}{(2\pi)^{\frac{k-1}{2}}} \alpha^{\frac{1}{2}+\frac{k}{2}}\alpha^{(n-k)\alpha}e^{-(n-k)\alpha} \exp\left\{(\theta-n\ln(\tau/n))\alpha\right\}. \end{split}$$

Até aqui a equação acima não é particularmente útil, porém, se assumirmos n = k, obtemos:

$$f(\alpha) \propto \alpha^{\frac{1}{2} + \frac{n}{2}} \exp \{ (\theta - n \ln(\tau/n)) \alpha \}.$$

Ao olhar com carinho, podemos reparar que α tem distribuição aproximada $\mathcal{G}\left(\frac{n+3}{2}, n \ln(\tau/n) - \theta\right)$ (e esta é uma boa aproximação). Com essa informação, temos que:

$$\mathbb{E}_p[\alpha] \approx \frac{n+3}{2(n\ln(\tau/n) - \theta)}$$

O que pode ser usado para resolver mais uma das equações do sistema $\mathbb{E}_p[H_p] = \mathbb{E}_q[H_p]$ sem recorrer a métodos numéricos.

Para obter solução analítica para todo o sistema resta apenas calcular um valor esperado, uma vez que, ao supor n=k reduzimos o sistema para 3 equações, das quais temos solução analítica para duas. Se conseguirmos resolver a última de forma analítica, podemos conseguir uma forma garantida de fazer a compatibilização das prioris sem depender de métodos iterativos.

O valor esperado que resta calcular é $\mathbb{E}_p[\alpha \ln(\beta) - \ln(\Gamma(\alpha))] = \mathbb{E}_p[\alpha \psi(n\alpha + 1) - \ln(\tau)\alpha - \ln(\Gamma(\alpha))]$ (note que, ao supor n = k, H_p se tornou outro vetor). Usando que:

$$\psi(n\alpha + 1) \approx \psi(n\alpha) \approx \ln(n\alpha) - \frac{1}{2n\alpha} - \frac{1}{12n^2\alpha^2}$$
$$\ln(\Gamma(\alpha)) \approx \alpha \ln(\alpha) - \frac{1}{2}\ln(\alpha) + \frac{1}{12\alpha},$$

podemos obter a seguinte aproximação:

$$\alpha\psi(n\alpha+1) - \ln(\tau)\alpha - \ln(\Gamma(\alpha)) \approx \alpha \ln(n\alpha) - \frac{1}{2n} - \frac{1}{12n^2\alpha} - \alpha \ln(\alpha) + \frac{1}{2}\ln(\alpha) - \frac{1}{12\alpha}$$
$$= \alpha \ln(n) - \left(\frac{1}{2n} - \frac{1}{12n^2} - \frac{1}{12}\right)\frac{1}{\alpha} + \frac{1}{2}\ln(\alpha).$$

Por último, considerando que $\mathbb{E}_p[\frac{1}{\alpha}] \approx \frac{2(n\ln(\tau/n)-\theta)}{n+1}$ e $\mathbb{E}_p[\ln(\alpha)] \approx \psi\left(\frac{n+3}{2}\right) - \ln(n\ln(\tau/n)-\theta)$ (pois α tem distribuição aproximada $\mathcal{G}\left(\frac{n+3}{2}, n\ln(\tau/n) - \theta\right)$), então:

$$\mathbb{E}_{p}[\alpha \ln(\beta) - \ln(\Gamma(\alpha))] \approx \frac{n+3}{2(n \ln(\tau/n) - \theta)} \ln(n) - \left(\frac{1}{2n} - \frac{1}{12n^2} - \frac{1}{12}\right) \frac{2(n \ln(\tau/n) - \theta)}{n+1} + \frac{1}{2}\psi\left(\frac{n+3}{2}\right) - \ln(n \ln(\tau/n) - \theta).$$

Usando a equação acima, ainda temos de usar Newton-Raphson para resolver o sistema, porém com estas simplificações o algoritmo ficou muito mais rápido e converge sem dificuldades, possibilitando a

compatibilização das prioris. Vale destacar também que a aproximação usada é muito boa, de modo que não há perdas significativas na resolução do sistema (pelo menos nos casos em que testei).

Usando os resultados acima, foi possível fazer o ajuste do GDLM, prossigamos então a análise apresentando o resultado do ajuste do modelo usando as aproximações propostas.

Para testas a qualidade do ajuste, geramos uma amostra i.i.d. com 200 elemento da distribuição $\mathcal{G}(1,1)$ e usamos a abordagem do artigo k-paramétrico para estimar os parâmetros α e β da distribuição dos dados. O resultado pode ser observado a seguir:

Distribuição preditiva

Parâmetro phi

Valor real: 10.6420752370203 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.40817291509541 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.66577720682625 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 9.43175042479924 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.14513851307554 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 10.0390122033711 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 11.375474583094 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 10.1646160202539 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 12.1642563980039 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 14.2365842354453 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 15.0980515768024 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 14.3191118480243 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 13.5094613251377 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 12.9802175208892 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 12.8493828386635 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 13.3530040031902 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 11.0824113601114 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 11.7351103868046 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 11.3948716933057 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.308275246483 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.36989513725236 Média: 15.2945149123022

Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 6.77271732228701 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.26681412523542 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.94612594800385 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.24481164134102 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.55876729949041 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.33677110950658 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.09012064572465 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.72995098582124 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.90751687075813 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 5.37087734409483 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.68443274110232 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.40745040301063 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.24704105873636 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.90745226065966 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.88832998702897 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.22089161687334 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.23572730564337 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.25415833667311 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 4.23057766194786 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.65248054643327 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.27747935241676 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.29830065038567 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.66147703399929 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.78679708013622 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.38137410307801 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.99665006341951 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.4641725807267 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 5.32607120328508 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.05301850802023 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.76850978005533 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.08539591433553 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.66183815692999 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558

Quantil de 0.025: 2.79963662432153 Parâmetro phi

Valor real: 3.18443198569877 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.70549582905552 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.85421842448243 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.9574882282157 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 2.3381653234682 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.30213268085274 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.27375505303628 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.26108608209847 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 1.99550267275025 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.03403902965008 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.52932725563237 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.54413416484128 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.6548276124931 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 2.32547181481465 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.33960517353218 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.14987819531601 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 1.90352501447387 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 1.85329240648316 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 1.87485198400149 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 1.75660230468895 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 1.65809050952203 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 1.58688614088599 Média: 15.2945149123022

Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 1.66629901054181 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 1.90754999832869 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.06069828965211 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.32716340232431 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.56208341958041 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.78928252203235 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.9534565601688 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.22865351489678 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.12905446700429 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 3.35250318727499 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.6625227233003 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.29318368515057 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.92158194942819 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.4357151664538 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.88735609793565 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.92378098560982 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.58742905180294 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.06840900486548 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 2.99388187645193 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.39051043915374 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.71648650239927 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.13775602967082 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.18330391173167 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.70854631114951 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.40767021079086 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.93964807231384 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.72514906616173 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 2.47429681809069 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.36589538165969 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.15176940115585 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.62168050440338 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.00419471245481 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.05176091855447 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.67405856530518 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.79668872740816 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.20352860906711 Média: 15.2945149123022

Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 3.24036877412505 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.87043562394239 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.92214005990333 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.94424752500388 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.22154886634289 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.22241836831841 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.15691544541476 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.64094612926813 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.35998117519627 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 3.70183559168873 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.72993665702768 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.47909637301785 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 2.93273375734699 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.22384625754934 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.43580130145966 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.58099411523248 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 3.36032222463058 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.21956661874291 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 4.93737708954286 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.10370620143637 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.35955377392898 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.85159261897674 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.17680389269775 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.19671139921028 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.34499080591429 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.00776267545166 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 10.8716900206268 Média: 15.2945149123022

Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 9.2425557011153 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.53722837021695 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.76579606584708 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 12.0627273825393 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 12.3126996511434 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 11.1475673083064 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 10.5913787834138 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.82724888597073 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.36173038106723 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 7.82052880777944 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.56346509535844 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.11098026320128 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.97104721018595 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.56143860840986 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.62602133958698 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.60234267588374 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.10566414808884 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.0338847923669 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 6.58187265008506 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.93143702314605 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.60046729047128 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.05788744378297 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.77152125916137 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.53953926261214 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.65870657013162 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.82477165772282 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.95938587419712 Média: 15.2945149123022

Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 7.6917838061013 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.8181068335552 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.09952823330539 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.8993030211159 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.76961180157853 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 9.5722923490136 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.73474097438654 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.29374853178003 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.00635006183448 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 7.24618401233172 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.77751296232366 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.53653948248973 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.94294640773751 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 8.11553880286387 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 7.21486592685349 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.7510249888242 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.20830404367871 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.85469998454104 Média: 15.2945149123022

Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 6.50969166163604 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.9955836213297 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.53242503317969 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.07859615437801 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 6.749891017086 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.25315397263608 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.86334568522566 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.33851790381636 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.66594437311736 Média: 15.2945149123022

Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Valor real: 4.65311417907475 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.22195954073716 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.22248543080549 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 4.47276979192425 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.20523640846482 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.31830117549447 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.02426242283277 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro phi

Valor real: 5.15727254886035 Média: 15.2945149123022 Mediana: 11.6910037352706

Quantil de 0.975: 48.883874825558 Quantil de 0.025: 2.79963662432153

Parâmetro mu

Valor real: 5.38478193791682 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 5.82628790638706 Média: 5.07330337642994

 ${\tt Mediana:}\ 5.07026851033013$

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.99089474365256 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.56147905304844 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.47328808491154

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.65458614081207 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.01917720705705

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.04543077802415

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.82762718688467 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.96021590655587 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 4.5482061369913 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.86225942937811 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.54699817464169 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.31308454765094

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.15685532662218 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.85994121874151 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.71122567695789

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.80553683255182

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.55688433782027 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 5.48152533837448 Média: 5.07330337642994

 ${\tt Mediana:}\ 5.07026851033013$

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.90894003520361 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.66395208626829 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.55976852436045

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.6293777821014 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.57841273907668

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.63503634299483

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.51450198683603

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.99750844648504 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 3.76848268996301 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.90952249721153 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.04411850921086 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.39086819756435

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.35236730853781 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.23030010000359

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.34023536499344 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.10102521143766

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.61982516971959 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 6.78035674895679 Média: 5.07330337642994

 ${\tt Mediana:}\ 5.07026851033013$

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.03745869293012 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.72996961386862 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.03443262269069 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.98353274652907 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.80956465148372

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.97813768888267 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.4313252552731 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.11599308622317 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 6.96717892316874 Média: 5.07330337642994

 ${\tt Mediana:}\ 5.07026851033013$

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.89985334062161 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.02174383333823 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.3296984121946 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.37081035847541 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.07533818011663 Média: 5.07330337642994

Mediana: 5.07026851033013 Quantil de 0.975: 5.27122464224986

Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.96575106142818 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.36745354688502

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.54270466933142 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 7.77128178946765 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 9.01712614799209 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.8811998457415 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.63124222984801 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.36071652818637 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.3221864094373 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.94311543045781 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.30151352000064

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.12611545451107 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 8.9138559171316 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 10.1134105435448 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 9.1087801873511 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 9.51912470487633 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 11.0959278524767 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 9.40483101624838 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.92894253109097 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.16737895122529 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.04002025801744 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 7.74614945469798 Média: 5.07330337642994

 ${\tt Mediana:}\ 5.07026851033013$

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.19109870513758 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.93107135159954 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.47555946574976

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.66615191014381 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.95463881716242

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.67011005386021 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.56633337096357 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.55084218142373 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 8.54442876190301 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.03781744071714 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.95953398281002 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.04548710629918 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.82133351638119 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.19108337189845 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.92530618652915 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.0651755164332 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.2076428445361 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 4.27627963603129 Média: 5.07330337642994

 ${\tt Mediana:}\ 5.07026851033013$

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.91730673067465 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.99977872767944 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.60125298815249

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.01803922858268 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.50081048579065

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.96875151239444

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.67935341359845

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.87679899990548 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 2.72420669244803 Média: 5.07330337642994

 ${\tt Mediana:}\ 5.07026851033013$

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.90942819802504 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.58714244923246 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.37611511592104 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.24247411511604 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 1.97610447443246

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.14946279201469

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.0747797634738 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.13241625618396 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 2.15864819758534 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.45934169741839 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.69560904344157 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 2.98358021928426

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.07311607347721 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.86943040950584

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.90063761059618

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.75609881920609

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.39506565957949 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 3.85703319189868 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.22177516522571 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.95117644462211 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.49924398538756

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.52444774349275 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.8140783890308 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.48291815763429 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.7072946248554 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.57884303158182 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 4.39747374184092 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.15914763736722 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.35680269408626 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.42950176056743 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.33091523947126 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.42178846268312

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.94389914664281 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.13268132956393

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 10.5502431002294 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 8.6101500560344 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 8.61806951182525 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 10.3550740161527 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 10.7026494788299 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 10.6522215463208 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 9.82762153663953 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 10.341435423773 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 11.4172379502598 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 10.4938803755622 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 10.2787361555612 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 10.1187404856948 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 9.20580190772067 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.84725987837543 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.18992311339023 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.99487113987776 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.87204855047158

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.88067452948738

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.88251663661959 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 7.44744668928888 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.9307258682599 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.65737019679727 Média: 5.07330337642994

Mediana: 5.07026851033013 Quantil de 0.975: 5.27122464224986

Quantil de 0.975: 5.27122464224966 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.46106125803933

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.56546208787792 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.96001117946327

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.27540720600275 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.40084592211697 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.61112192745283 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 7.19720948349467 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 7.43974234905018 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.9175285788438 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.61224492037381 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.01722425648153 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.76083835766113 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.08829691908821 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.77696356593018 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.69259265512636 Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 5.17119984311298 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.42425775800705 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.01694398067984 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.83476806454486

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.50475875208434 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.97339245697857

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.7953051011353 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.59203834936553

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.70124798618934 Média: 5.07330337642994

Mediana: 5.07026851033013

Valor real: 4.84985897849824 Média: 5.07330337642994

 ${\tt Mediana:}\ 5.07026851033013$

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.15706916496691 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.43723923685393 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.58249756138902

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.42561783252606 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.13007211068917 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 3.81260708133217 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.0114619017731 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.38625986569374

Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 4.38341472236534 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.74922381570254 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.77514428203695 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.59107043704504

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.60515180836408 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.52358167407538

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 4.50999938043971 Média: 5.07330337642994

Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 5.79550764646824

Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Parâmetro mu

Valor real: 6.54038835528552

Média: 5.07330337642994 Mediana: 5.07026851033013

Valor real: 5.5282065160932 Média: 5.07330337642994 Mediana: 5.07026851033013

Quantil de 0.975: 5.27122464224986 Quantil de 0.025: 4.88549653883937

Podemos observar que a estimativa dos parâmetros está bem ruim. Afim de tentar entender a causa para essas estimativas ruins, apresentamos um gráfico com a estimação dos parâmetros a cada iteração:

Valores do parâmetro n0 da distribuição conjugada

Valores do parâmetro k0 da distribuição conjugada

Valores do parâmetro tau0 da distribuição conjugada

Valores do parâmetro theta0 da distribuição conjugada

Claramente temos um problema na compatibilização das prioris, especificamente, parece que a informação adquirida após se observar o dado é perdida durante a compatibilização. Mais investigações serão feitas para tentar resolver esse problema.