

## KAUNO TECHNOLOGIJOS UNIVERSITETAS INFORMATIKOS FAKULTETAS

# Skaitiniai metodai ir algoritmai (P170B115) *4 Laboratorinio darbo ataskaita*

Atliko:

IFF-1/1 gr. studentas

Arnas Bradauskas

Priėmė:

Andrius Kriščiūnas

Rimantas Barauskas

## **TURINYS**

| 1. Užduotis   | 3 |
|---------------|---|
| 2. Teorija    | 3 |
| 3. Rezultatai | 4 |

## 1. Užduotis

## 3 Uždavinys variantams 1-10

Sujungti  $m_1$  ir  $m_2$  masių objektai iššaunami vertikaliai į viršų pradiniu greičiu  $v_0$ . Oro pasipriešinimo koeficientas sujungtiems kūnams lygus  $k_s$ . Praėjus laikui  $t_s$ , objektai pradeda judėti atskirai. Oro pasipriešinimo koeficientai atskirai judantiems objektams atitinkamai yra  $k_1$  ir  $k_2$ . Oro pasipriešinimas proporcingas objekto greičio kvadratui. Raskite, kaip kinta objektų greičiai nuo 0 s iki  $t_{max}$ . Kada kiekvienas objektas pasieks aukščiausią tašką ir pradės leistis?

| 1 Lentelė. | Uždavinyje | naudojam | i dydžiai. |
|------------|------------|----------|------------|
|            |            |          |            |

| Varianto numeris | $m_1$ , kg | $m_2$ , kg | $v_0$ , m/s | $k_s$ , kg/m | $t_s$ , s | $k_1$ , kg/m | $k_2$ , kg/m | $t_{max}$ , s |
|------------------|------------|------------|-------------|--------------|-----------|--------------|--------------|---------------|
| 4                | 0,5        | 0,25       | 100         | 0,002        | 2         | 0,02         | 0,04         | 15            |

## 2. Teorija

#### Diferencialinė lygtis:

```
rac{dv}{dt} = -g - rac{kv^2 \cdot 	ext{sgn}(v)}{m}
```

```
def motion(y, m, k):
    dvdt = -g - (k * y[1] ** 2 * np.sign(y[1])) / m
    return [y[1], dvdt]
```

- dv/dt pagreitis (nurodo, kaip greitis keičiasi per laiką)
- -g gravitacijos pagreitis (neigiamas, nes visados traukia žemyn)
- k\*v^2 k yra oro pasipriešinimas. v^2 nurodo, jog oro pasipriešinimas didėja proporcingai greičio kvadratui.
- sgn(v) skirtas užtikrinti, kad pasipriešinimas visada veikia priešinga kryptimi, nei greitis.
- m objekto masė. Kuo masyvesnis objektas, tuo mažiau jis jaučia pagreitį (antras Niutono dėsnis F=ma)

#### **Eulerio metodas:**

- Pradedame taške, kuriame žinome pozicija ir greitį.
- Apskaičiuojame pagreitį tame taške.
- Pajudame mažą žingsnį, koreguojame greitį ir poziciją pagal pagreitį, kurį apskaičiavome.
- Kartojame toliau.

## IV eilės Rungės ir Kutos metodas:

- Apskaičiuojame pagreitį matuojamo intervalo pradžioje (kaip ir Eulerio metode).
- Įvertiname pagreitį dalinai praėjus intervalą naudojant pirmame žingsnyje apskaičiuotą pagreitį.
- Dar kartą įvertiname pagreitį, vėl dalinai praėjus intervalą, bet su pagreičiu iš antro punkto.
- Apskaičiuojame pagreitį gale intervalo naudodami pagreitį iš 3 punkto.
- Apskaičiuojame šių pagreičių svorinį vidurkį.
- Keičiame pozicija ir greiti atsižvelgiant į šį svorinį vidurkį.

```
# Runge-Kutta 4th order method implementation
def runge_kutta_4th_order(f, t_span, y0, args, steps):
    t0, tf = t_span
    h = (tf - t0) / steps
    t_values = np.linspace(t0, tf, steps + 1)
    y_values = np.zeros((len(y0), steps + 1))
    y_values[:, 0] = y0

for i in range(steps):
    k1 = np.array(f(t_values[i], y_values[:, i], *args))
    k2 = np.array(f(t_values[i] + h / 2, y_values[:, i] + h / 2 * k1, *args))
    k3 = np.array(f(t_values[i] + h / 2, y_values[:, i] + h / 2 * k2, *args))
    k4 = np.array(f(t_values[i] + h, y_values[:, i] + h * k3, *args))
    y_values[:, i + 1] = y_values[:, i] + h / 6 * (k1 + 2 * k2 + 2 * k3 + k4)

    return t_values, y_values
```

## 3. Rezultatai







```
Step Size: 100
Time highest point (Euler) - Object 1: 3.95 s, Object 2: 2.13 s
Time highest point (RK4) - Object 1: 4.08 s, Object 2: 3.17 s

Step Size: 250
Time highest point (Euler) - Object 1: 3.98 s, Object 2: 3.04 s
Time highest point (RK4) - Object 1: 4.08 s, Object 2: 3.14 s

Step Size: 500
Time highest point (Euler) - Object 1: 4.00 s, Object 2: 3.09 s
Time highest point (RK4) - Object 1: 4.05 s, Object 2: 3.14 s
```