Deep Learning Techniques for Activity Recognition: Dealing With Inactivity

Matteo Drago, Riccardo Lincetto
Dept. of Information Engineering, University of Padova, Italy

Prof. Michele Rossi

matteo.drago@studenti.unipd.it riccardo.lincetto@studenti.unipd.it

September, 5, 2018

Outline

- Introduction
- Dataset description
- Related Work
- Our proposal
- Discussion of results
- Conclusion and future works

Introduction

Human Activity Recognition:

- Visual detection from images and video
- Gesture recognition from sensor-based data

In the past decade, many models have been designed for time series classification.

Main problems:

- LACK of BENCHMARKING DATASET to compare different solutions
- ABSENCE of DETAILS in most of the models presented in the literature

OPPORTUNITY DATASET

= Triaxial Accelerometer

[1] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. del R. Millán, and D. Roggen, "The opportunity challenge: A benchmark database for on-body sensor-based activity recognition," *Pattern Recognition Letters*, 2013.

(online annotation) A5 8

- 4 different subjects
- 7 Inertial Measurement Units
- 12 accelerometer sensors

113 channels of measurements

Data has been collected in two distinct modalities:

- 5 sessions of Activity of Daily Living (ADL)
- **Drill** : 20 repetitions of low level activities

Multiclass Classification Problem

TASK A:

 Classification of high level gestures / modes of locomotion

Standing, Walking, Lying, Sitting

TASK B2:

Recognition of low level gestures (17 in total)

Open Dishwasher, Close Dishwasher, Open Fridge, Close Fridge,

Open Drawer 1, Close Drawer 1, Open Door 1, Close Door 1, ...

Both tasks comprehend the *Null Class*, which represents inactivity. A more detailed discussion on this in a couple of slides

State of the Art

In the literature there's no shortage of models trying to solve the problem. For example:

- Complete framework in [2] that performs interpolation in preprocessing and tries to cope with class imbalances (**1NN** and **SVM** as classifiers)
- Convolutional layers were implemented in NN along with ReLU and pooling layers in [3], in order to extract better features; they also segment the datasets into windows of samples
- A complete comparison can be found in [4] were they also implement a model comprehensive of both convolutional and LSTM layers, in order to extract sensible features and exploit the correlation among consecutive samples and independent windows

[2] H. Cao, M. N. Nguyen, C. Phua, S. Krishnaswamy, and X. Li, "An integrated framework for human activity classification.," in *UbiComp*,pp. 331–340, 2012.

[3] J. Yang, M. N. Nguyen, P. P. San, X. Li, and S. Krishnaswamy, "Deep convolutional neural networks on multichannel time series for human activity recognition.," in *Ijcai*, vol. 15, pp. 3995–4001, 2015.

[4] F. Li, K. Shirahama, M. A. Nisar, L. Köping, and M. Grzegorzek, "Comparison of feature learning methods for human activity recognition using wearable sensors," *Sensors*, vol. 18, no. 2, p. 679, 2018.

Processing Pipeline of Our Proposal

Original dataset (Dark squares = NaN values)

Discard of useless columns, keeping on-body sensor signals

Cutting of initial and final NaNs

Interpolation

Concatenation

Setting Nan columns to zero

Normalization

Shaping (windowing)

Shaping (windowing)

Models

Layer type \
\
Model name

Convolutional	Recurrent (LSTM)	Fully connected
3	0	2
1	2	2
1	2	2

2

2

Conv
Conv1DRec
Conv2DRec
ConvDeepRec

In our code:

Conv → Convolutional

Conv1DRec → Convolutional1DRecurrent

3

Conv2DRec → Convolutional2DRecurrent

ConvDeepRec → ConvolutionalDeepRecurrent

Pipelines

3 types of classification for each model:

- One-Shot
 - Classification (n+1 class)
- Cascade
 - Activity detection (binary)
 - Activity classification (n-class)

Results on locomotion

One-Shot vs Activity classification

Results on locomotion

One-Shot vs Cascade classification

Results on gestures

One-Shot vs Activity classification

Results on gestures

One-Shot vs Cascade classification

Conclusions

- No clear best choice
- Class imbalance
- Cascade implementation ... notebook

These problems could be addressed in future work

Deep Learning Techniques for Activity Recognition: Dealing With Inactivity

Matteo Drago, Riccardo Lincetto
Dept. of Information Engineering, University of Padova, Italy

Prof. Michele Rossi

matteo.drago@studenti.unipd.it riccardo.lincetto@studenti.unipd.it

September, 5, 2018

