# LESSON 3 – PERFORM STARTING SYSTEM DIAGNOSIS

#### INTRODUCTION

A faulty starting system doesn't always mean the starter motor itself is the issue. A proper diagnosis involves checking the entire starting circuit, including the battery, solenoid, cables, switches, and electronic control units. This lesson teaches how to systematically identify faults using tools like a multimeter, amp clamp, and OBD-II scanner to avoid guesswork and costly part replacements.

#### **©** LEARNING OBJECTIVES

By the end of this lesson, students should be able to:

- I. Identify common symptoms and causes of starting system problems.
- 2. Use diagnostic tools, including multimeters and OBD-II scanners.
- 3. Interpret voltage, current, and code readings to isolate faults accurately.

# SECTION I: COMPONENTS OF THE STARTING SYSTEM

- Battery
- Ignition switch
- Starter relay / solenoid
- Starter motor
- Ground/power cables
- ECU/immobilizer (in modern vehicles)

Any failure in this chain can prevent the engine from starting.

# SECTION 2: COMMON SYMPTOMS & CAUSES

| Symptom               | Possible Cause                           |
|-----------------------|------------------------------------------|
| No crank, no click    | Dead battery, faulty ignition switch     |
| Clicks only           | Weak battery, bad solenoid               |
| Slow crank            | Corroded terminals, poor ground          |
| Crank but won't start | Not a starting issue—fuel or spark fault |
| Starts intermittently | Faulty switch, relay, or control module  |

# SECTION 3: DIAGNOSTIC TOOLS

| Tool           | Use                                    |
|----------------|----------------------------------------|
| Multimeter     | Voltage, resistance, continuity checks |
| Battery tester | Battery health and load test           |
| Amp clamp      | Measure starter current draw           |
| Test light     | Check power at terminals               |
| OBD-II scanner | Read electronic fault codes (DTCs)     |

### SECTION 4: DIAGNOSTIC PROCEDURE

- Step I: Visual Inspection
   Check for loose or corroded terminals
   Ensure battery cables are tight and clean
  - Step 2: Battery Voltage TestMultimeter should read ≥ I 2.6V at restDuring cranking: should not drop below 9.6V

## SECTION 4: DIAGNOSTIC PROCEDURE

Step 3: Check Voltage at Starter
Probe the starter terminal during crank
If power is present but no crank → bad starter
If no power → check relay, ignition switch, or wiring

Step 4: Voltage Drop Test

Positive side: <0.5V

Ground side: <0.2V during cranking

High readings = corroded or damaged cables

Step 5: Amp Draw Test

Normal draw: 125-250 amps (depending on engine size)

High draw + no crank = starter motor binding

Low draw = weak battery or high resistance

# SECTION 5: USING AN OBD-II SCANNER FOR DIAGNOSIS

In modern vehicles, the ECU stores fault codes related to:

- Starter relay
- Ignition switch
- Immobilizer or anti-theft system
- Low voltage or starter circuit failure

#### Steps:

- I. Connect scanner to OBD port
- 2. Turn ignition ON (don't crank)
- 3. Scan for DTCs (e.g., P0615 Starter Relay Malfunction)
- 4. Use codes + live data to check starter request status
- OBD-II tools enhance diagnostic accuracy, especially on push-start vehicles or newer models with electronic start controls.

#### TROUBLESHOOTING MATRIX

| Issue                    | Likely Fault                           |
|--------------------------|----------------------------------------|
| No crank, all lights OK  | Faulty starter or relay                |
| Click but no spin        | Bad solenoid or internal starter fault |
| Engine starts then dies  | Immobilizer or ECU issue               |
| Cranking is weak or slow | Battery or high cable resistance       |

## RECOMMENDED VIDEO TUTORIAL

Video: How to Diagnose Starting System Problems
 YouTube Channel: ProDemand Training

https://www.youtube.com/watch?v=sfuEKQBWsIc

#### Shows:

Live system diagnosis
Use of multimeter & scanner
Fault isolation techniques



#### LESSON SUMMARY

- A good diagnosis checks electrical and electronic components
- Combine visual checks, electrical testing, and OBD code scanning
- High resistance, weak batteries, or ECM faults can all mimic starter issues
- Always follow a step-by-step test flow to avoid misdiagnosis

#### REFERENCES

- Auto Electrical System Module TESDA Learning Material <a href="https://www.scribd.com/document/601714455/Auto-Electrical-System-Module-PDF">https://www.scribd.com/document/601714455/Auto-Electrical-System-Module-PDF</a>
- TESDA Training Regulations Automotive Servicing NC II <a href="https://www.tesda.gov.ph">https://www.tesda.gov.ph</a>
- YouTube ProDemand Training
   How to Diagnose Starting System Problems
   https://www.youtube.com/watch?v=sfuEKQBWslc