Financial Engineering Exam

Kasper Rosenkrands

Aalborg University

S20

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

- 1. Lebesgue integration theory
- 1.1 Monotone Convergence Theorem
- 1.2 Proof of Monotone Convergence Theorem
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Lebesgue integration theory Monotone Convergence Theorem

Theorem (Monotone Convergence Thereom)

If (f_n) is a monotone increasing sequence of functions in $M^+(X,m)$ which converges to f, then

$$\int f \, d\mu = \lim \int f_n \, d\mu. \tag{1.1}$$

Proof of Monotone Convergence Theorem

The strategy of the proof is to first show that

$$\lim \int f_n \, d\mu \le \int f \, d\mu, \tag{1.2}$$

then afterwards to show that also

$$\lim \int f_n \, d\mu \ge \int f \, d\mu, \tag{1.3}$$

in order to conclude that

$$\lim \int f_n \, d\mu = \int f \, d\mu \tag{1.4}$$

Lebesgue integration theory Proof of Monotone Convergence Theorem

According to Corollary 2.10

Corollary (2.10)

If (f_n) is a sequence in M(X, m) which converges to f on X, the f is in M(X, m).

the function f is measurable.

Proof of Monotone Convergence Theorem

From Lemma 4.5(1.)

Lemma

1. If f and g belong to $M^+(X, m)$ and $f \leq g$, then

$$\int f \, d\mu \le \int g \, d\mu. \tag{1.5}$$

2. If f belongs to $M^+(X, m)$, if E, F belong to m, and if $E \subseteq F$, then

$$\int_{E} f \, d\mu \le \int_{F} f \, d\mu. \tag{1.6}$$

we have that

$$\int f_n d\mu \leq \int f_{n+1} d\mu \leq \int f d\mu, \quad \forall n \in \mathbb{N}.$$
 (1.7)

Proof of Monotone Convergence Theorem

Therefore we must also have that

$$\lim \int f_n \, d\mu \le \int f \, d\mu. \tag{1.8}$$

So this was the first step of our strategy, now we proceed to the second step.

Proof of Monotone Convergence Theorem

Let $\alpha\in\mathbb{R}$ be such that $0<\alpha<1$ and let φ be a simple measurable function such that $0\leq\varphi\leq f$. Let

$$A_n = \{x \in X : f_n(x) \ge \alpha \varphi(x)\}, \qquad (1.9)$$

such that

- 1. $A_n \in m$
- 2. $A_n \subseteq A_{n+1}$
- 3. $X = \bigcup A_n$

Proof of Monotone Convergence Theorem

According to Lemma 4.5

Lemma

1. If f and g belong to $M^+(X, m)$ and $f \leq g$, then

$$\int f \, d\mu \le \int g \, d\mu. \tag{1.10}$$

2. If f belongs to $M^+(X, m)$, if E, F belong to m, and if $E \subseteq F$, then

$$\int_{E} f \, d\mu \le \int_{F} f \, d\mu. \tag{1.11}$$

it must be that

$$\int_{A_n} \alpha \varphi \, d\mu \le \int_{A_n} f_n \, d\mu \le \int f_n \, d\mu. \tag{1.12}$$

Proof of Monotone Convergence Theorem
Since the sequence A is monotone increasing and has union X, it follows from Lemma 4.3(2.) and Lemma 3.4(1.),

Lemma (4.3)

1. If φ and ψ are simple functions in $M^+(X, m)$ and c > 0, then

$$\int carphi\, d\mu = c\intarphi\, d\mu,$$
 (1.13)
$$\int (arphi+\psi)\, d\mu = \intarphi\, d\mu + \int\psi\, d\mu.$$
 (1.14)

2. If λ is defined for E in m by

$$\lambda(E) = \int \varphi \chi_E \, d\mu, \quad (1.15)$$

then λ is a measure on m.

Lemma (3.4)

Let μ be a measure defined on a σ -algebra m.

1. If (E_n) is an increasing sequence in m, then

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim \mu\left(E_n\right). \tag{1.16}$$

2. If (F_n) is a decreasing sequence in m and if $\mu(F_1) < +\infty$, then

$$\mu\left(\bigcap_{n=1}^{\infty}F_{n}\right)=\lim\mu\left(F_{n}\right).$$

(1.17)

Proof of Monotone Convergence Theorem

that

$$\int \varphi \, d\mu = \lim \int_{A_n} \varphi \, d\mu. \tag{1.18}$$

Taking the limit as n tends to infinity in (1.12) therefore gives that

$$\alpha \int \varphi \, d\mu \le \lim \int f_n \, d\mu. \tag{1.19}$$

Since this holds for all 0 < α < 1, by taking the limit as α tends to 1 we obtain

$$\int \varphi \, d\mu \le \lim \int f_n \, d\mu. \tag{1.20}$$

Proof of Monotone Convergence Theorem

As φ is any simple function in M^+ such that $0 \le \varphi \le f$, we can conclude that

$$\int f \, d\mu = \sup_{\varphi} \int \varphi \, d\mu \le \lim_{\varphi} \int f_n \, d\mu, \tag{1.21}$$

which concludes the proof.

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

L^p spaces

Proof of Monotone Convergence Theorem

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- Approximation by nice functions
- 6. Fourier transform

Decomposition of measures Proof of Monotone Convergence Theorem

- 1. Lebesgue integration theory
- 2. L^p spaces
- Decomposition of measures
- 4. Generation of measures and product measures
- Approximation by nice functions
- 6. Fourier transform

Generation of measures and product measures

Proof of Monotone Convergence Theorem

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Approximation by nice functions Proof of Monotone Convergence Theorem

- 1. Lebesgue integration theory
- 2. L^p spaces
- 3. Decomposition of measures
- 4. Generation of measures and product measures
- 5. Approximation by nice functions
- 6. Fourier transform

Fourier transform Proof of Monotone Convergence Theorem