Data Structures: Review

- Abstract Data Type
- List
- Stack
- Queue
- Set
- Dictionary
- Priority Queue : Heaps

Imdadullah Khan

Introduction

- Algorithms work on data
- Data must be represented in a usable way
- Data is stored in data structures
- Choice of data structure significantly affects the efficiency of the algorithm

Abstract Data Types (ADTs)

Just as functions (procedures) extend the notion of operators in a programming language,

ADTs extend the notion of data types in a programming language

- ADTs are data types that have associated
 - set of (valid) values (type of data)
 - set of operations that can be applied on the set of values

For example the **Set** ADT could be defined as

- Sets of Integers
- Union, Intersection, set complement, set differences

Concrete implementation of an ADT is a Data Structure

Set can be implemented as arrays, linked list, bit vectors

Some Useful ADT's

Some of the frequently used ADT's are

- List
- Stack
- Queue
- Set
- Dictionary
- Priority Queue

List

- Sequence of elements of a certain type
- Elements can be linearly ordered
- Notion of position, next/previous, start/end of list
- Associated operations:
 - INSERT(\mathcal{L}, x, p)
 - DELETE(\mathcal{L}, x) or DELETE(\mathcal{L}, p)
 - RETRIEVE (\mathcal{L}, p)
 - SEARCH(\mathcal{L}, x)
 - NEXT (\mathcal{L}, p)
 - FIRST(\mathcal{L})
- Implemented using an array/linked list

Stacks

- Last-In First-Out(LIFO) list
- Associated operations:
 - PUSH(x)
 - Pop()
 - ISEMPTY()
 - IsFull()
 - size()
- Implemented using an array/linked list
- Use: In OS to handle recursive and procedural calls, DFS

Queues

- First-In First-Out (FIFO) list
- Associated operations:
 - \blacksquare ENQUEUE(x)
 - DEQUEUE(x)
 - ISEMPTY()
 - ISFULL()
 - size()
- Implemented using an array/linked list
- Use: In processes scheduler, BFS

Dictionary

- The **Set** ADT, in addition to INSERT, SEARCH and DELETE, includes operations such as UNION $(A \cup B)$, INTERSECTION $(A \cap B)$ and SUBTRACTION $(A \setminus B)$
- The full Set ADT is not generally needed
- E.g. Students' record at RO (Zambeel)
- E.g. How would you store the quiz scores for a set of students?
- We need to maintain a set with insertion, deletion and searching
- The scores of a quiz can be represented using a dictionary with roll numbers as keys and scores as values

```
scores = {'16020102' : 17, '11010051' : 84, '11050001' : 22, '12060009' : 92}
```

Dictionary

- A dictionary maintains a <u>set</u> of elements
- Unique elements; elements are known by their "keys"
- Elements could be compound (key, value) pairs
- Associated operations:
 - INSERT (\mathcal{D}, k, v)
 - Delete(\mathcal{D}, k)
 - Search(\mathcal{D}, k)
 - ISEMPTY(\mathcal{D})
 - \blacksquare Size(\mathcal{D})
- What if an entry (k, v') exists in \mathcal{D} and INSERT (\mathcal{D}, k, v) is called?
- Dictionary can be implemented using
 - an array (sorted or unsorted)
 - a linked list (sorted or unsorted)
 - binary search trees (balanced or unbalanced)
 - hash tables

Dictionary Implementations - Array

Unsorted Array:

- SEARCH: Linear search traverse array sequentially
- INSERT: Insertion at the end of array (first empty slot)

 $\triangleright O(n)$

 $\triangleright O(1)$

 $\triangleright O(n)$

 $\triangleright O(\log n)$

 $\triangleright O(n)$

 $\triangleright O(n)$

■ DELETE: Given a position, shift left remaining elements

Sorted Array:

- SEARCH: Binary search; repeatedly halve search interval
- INSERT: Lookup to find position and shift to make space
- DELETE: Given a position, shift left remaining elements

Dictionary Implementations - Linked List

Unsorted Linked List:

- LOOKUP: Linear search $\triangleright O(n)$
- INSERT: Insertion at start or end $\triangleright O(1)$
- DELETE: Lookup and link previous with next (doubly linked list) \triangleright O(n)

Sorted Linked List:

- LOOKUP: Linear search (can't jump to mid directly) $\triangleright O(n)$
- INSERT: Lookup to find position and update previous and next $\triangleright O(n)$
- Delete: Lookup and link previous with next $\triangleright O(n)$

Insertion to a sorted doubly linked list

Dictionary Implementations - Binary Search Tree

- A binary tree has a root node, a left subtree and a right subtree
- Each node contains data, left pointer and right pointer
- Binary Search Tree is a Binary Tree with additional properties:
 - Nodes have keys for comparison
 - Keys in left subtree are smaller than node's key
 - Keys in right subtree are larger than node's key

Dictionary Implementations - Binary Search Tree

- For a dictionary, the node data is a (key) pair
- SEARCH: Compare with root; recursively lookup in appropriate subtree
- INSERT: Lookup for appropriate leaf position to insert node
- DELETE: Given key, lookup to find pointer to node. Given pointer to node, remove and recursively link parent with one of the children Read Textbook
- For a BST of height h, all the above operations take O(h) time

Dictionary Implementations - AVL Tree

- An AVL tree is a binary search tree with additional properties:
 - The height of the left and right subtree of a node differ by at most 1
 - The left and right subtrees of a node are AVL trees
- AVL tree is a balanced BST; it's height is always O(log(n))

Dictionary Implementations - AVL Tree

- SEARCH, INSERT and DELETE methods are the same as BST but an AVL tree may become unbalanced after INSERT and DELETE
- An unbalanced tree is rebalanced using rotation; an adjustment to the tree, around an item, that maintains the required ordering of items
 Read Textbook
- All operations of AVL Tree have the same time complexity as BST i.e. $O(\log n)$, as rotation takes only constant time

- Suppose n data elements are to be stored in a dictionary with keys $k \in U$ where universe set U = [1 ... N]
- Let $m \in \mathbb{Z}^+$ and $h: U \to [m]$
- Make a array (or table) T[1, ..., m]
- SEARCH: **return** T[h(k)] $\triangleright O(1)$
- INSERT: $T[h(k)] \leftarrow 1$ $\triangleright O(1)$
- DELETE: $T[h(k)] \leftarrow 0$ $\triangleright O(1)$

■ What if $h(k_x) = h(k_y)$? Collision occurs

Collision occurs between k_2 and k_5

Hashing with Chaining:

- Make T[1,...,m] an array of linked lists
- LOOKUP: Lookup in list T[h(k)]
- INSERT: Insert in list T[h(k)]
- DELETE: Delete from list T[h(k)]
- Runtime of all operations: O(length of longest list in T[k]) ensure not many keys k map to the same index in T under h

Uniform hashing:

each key k has an equal chance of being mapped to the an index in T under h

$$Pr[h(x) = h(y)] = \frac{1}{m}$$

- Expected length of list of each index = $\frac{n}{m}$
- Space and time complexity trade-off controlled by size of table *m*
- Example: Linear Congruential Hash Function Select a prime number $p \ge m$ Choose integers a, b randomly s.t. $a \ne 0$ Then,

$$h_{a,b}(x) = ((ax + b) \mod p) \mod m$$

Read Number Theory slides from CS 210 Discrete Mathematics

Dictionary Implementations - Summary

Runtimes of dictionary operations: different implementations

Operation	Unsor. Array	Sor. Array	Unsor. L-list	Sor. L-list	BST	AVL	Hash Function
Search(D,k)	O(n)	$O(\log n)$	O(n)	O(n)	O(h)	$O(\log n)$	O(1)
Insert(D,k,v)	O(1)	O(n)	O(1)	O(n)	O(h)	$O(\log n)$	O(1)
Delete(D,k)	O(n)	O(n)	O(n)	O(n)	O(h)	$O(\log n)$	O(1)

Priority Queue ADT

- Data elements have an associated priorities (called keys)
- Retrieval is done on the basis of this priority
- Operations:
 - $\blacksquare \mathcal{P} = \text{Initialize()}$
 - lacktriangle Initialize a priority queue with n elements with associated priorities
 - INSERT (\mathcal{P}, v, k)
 - Insert an element v with priority k,
 - EXTRACTMIN(\mathcal{P})
 - Returns the element with minimum priority and delete it (also called DELETEMIN)
 - lacktriangle One can analgously define EXTRACTMAX(\mathcal{P})
 - DecreaseKey(\mathcal{P}, v, k')
 - Change the priority of element v to k'
 - lacktriangle One can analgously define IncreaseKey (\mathcal{P}, v, k')

Priority Queue ADT: Applications

Used in many algorithms

- scheduling systems
- shortest process first
- longest request first
- Cache Replacement algorithms (e.g. LRU, LFU)
- Hierarchical (Agglomerative) Clustering
- Dijkstra's and Prim's algorithm

Priority Queue: Implementation

Can be Implemented using

- Arrays (sorted or unsorted)
- Linked List (sorted or unsorted)
- Binary Heaps

Note: The terms Heap and Priority Queue are often used interchangeably as priority queues are mostly implemented using heaps and they support the same operations

Priority Queue: Implementation

Unsorted Array

- INITIALIZE: create array with elements in arbitrary order $\triangleright O(n)$
- $\triangleright O(1)$ ■ INSERT: insert at the end of the array
- EXTRACTMIN: FINDMIN in array by key, return, delete and shift $\triangleright O(n)$

Sorted Array

- INITIALIZE: sort array in descending order by key $\triangleright O(n \log n)$
 - INSERT: binary search for position and shift elements on right $\triangleright O(n)$ $\triangleright O(1)$
- EXTRACTMIN: remove the last element from array

Unsorted Linked-List (doubly linked list)

- INITIALIZE: create linked list with elements in arbitrary order $\triangleright O(n)$
- INSERT: insert new node at head of linked list. $\triangleright O(1)$
- EXTRACTMIN: FINDMIN in array by key, return, delete and shift $\triangleright O(n)$

■ Sorted Linked-List

- $\triangleright O(n^2)$ ■ INITIALIZE: sort linked list in ascending order by key
- INSERT: lienear search for position and insert new node $\triangleright O(n)$
- EXTRACTMIN: remove the element at head of linked-list $\triangleright O(1)$

DECREASEKEY is essentially a search, replace and (if needed) reorder

Priority Queue: Heap Implementation

- A binary heap can be used to implement priority queues
- A rooted binary tree that satisfies the heap property
- Min-Heap Property: If u is parent of v, then $key(u) \le key(v)$
- Max-Heap Property: If u is parent of v, then $key(u) \ge key(v)$
- Associated Operations (min-heap):
 - $\mathcal{H} \leftarrow \text{INITIALIZE}()$ $\triangleright O(n)$ builds a heap given a set of data elements with keys.
 - INSERT(H, v, k) $\triangleright O(\log n)$ inserts an element v with key value k in H
 - Delete (H, v) $\triangleright O(\log n)$ deletes the element x from H given the pointer to x
 - DecreaseKey(H, v, k') $\rhd O(\log n)$ decreases the key of element x in H to new value k' given pointer to x
 - $v \leftarrow \text{EXTRACTMIN}(H)$ $\triangleright O(\log n)$ returns the element v with min key value and deletes it from H
- lacksquare Priority of each element in $\mathcal P$ is key of the respective element in $\mathcal H.$

Min-Heap

- A min-heap maintains a set of n elements each with a key and satisfies the min-heap property.
- lacktriangle Heap implementation uses a **complete binary tree** (binary heap) ${\cal H}$
- Every node has a key smaller than its both children
- Data element with minimum key is at the root
- Binary heap can also be represented as an array A of n elements
- The minimum value (root) is at A[1]
- The left and right child of a node at A[i] are at A[2i] and A[2i+1], respectively
- The parent of a node at $\mathcal{A}[i]$ is at $\mathcal{A}[\lfloor \frac{i}{2} \rfloor]$
- The sequence of vertices visited by **level order traversal** (BFS) of the binary tree maps to the order of nodes in the array representation

Min-Heap: Binary Tree and Array Representation

A binary min-heap and its array representation

 ${\tt Insert}(H,v,3)$

INSERT(H, v, 3)Insert v to next available position in H

Insert (H, v, 3)Sift-up the added node as needed to restore heap property Each Sift-up moves the node to the level above in the tree

INSERT(H, v, 3)Min-Heap property restored At max, as many Sift-Up moves can be made as the height of the tree Recall: Height of a balanced complete binary tree with n nodes is $O(\log n)$ Therefore, sifting up takes $O(\log n)$ time

Pseudocode: INSERT, DECREASE-KEY and SIFT-UP

```
\triangleright O(\log n)
function Insert(H, v, k)
    H.APPEND(v) \triangleright insert v at end, i.e. last available position in H
    key(H[v]) \leftarrow k
    SIFTUP(H, v)
function SiftUp(H,v)
                                                                         \triangleright O(\log n)
    p \leftarrow \text{GETPARENT}(v)
    if key(H[v]) < key(H[p]) then
        SWAP(H[v], H[p])
        SIFTUP(H, p)
function DecreaseKey(H, v, k)
                                                                         \triangleright O(\log n)
    key(H[v]) \leftarrow k
    SIFTUP(H, v)
```


Extract-Min(H)

EXTRACT-MIN(H) Extract the root node to be returned

EXTRACT-MIN(H) Delete the last filled node at its place and move its element to root

EXTRACT-MIN(H)
Sift-down as needed to restore heap property
Each sift-down moves the node to the level below in the tree

EXTRACT-MIN(H)
Min-heap property restored
At max, as many Sift-Down moves can be made as the height of tree
Recall: Height of a balanced complete binary tree with n nodes is $O(\log n)$ Therefore, sifting down takes $O(\log n)$ time

Pseudocode: EXTRACT-MIN and DELETE

```
      function Extract-Min(H)
      ▷ O(\log n)

      return Delete(H, root)
      ▷ O(\log n)

      function Delete(H, node)
      ▷ node is pointer to element to be removed Swap(H[node], H[lastFilledPosition])

      Remove(H[lastFilledPosition])
      SiftDown(node)

      return key
      return key
```

Pseudocode: SIFT-DOWN

```
\triangleright O(\log n)
function Sift Down(H, node)
    I \leftarrow \text{LEFTCHILD}(node)
    r \leftarrow \text{RIGHTCHILD}(node)
   if key(H[I]) < key(H[r]) then
       if key(H[node]) > key(H[I]) then
           SWAP(H[node], H[I])
           SIFTDOWN(H, I)
   else
       if key(H[node]) > key(H[r]) then
           SWAP(H[node], H[r])
           SiftDown(H, r)
```