Seattle Car Accident Prediction

Venugopal T September 24th 2020

Problem Statement

There are many accidents happening in and around Seattle region and Seattle Department of Transportation(SDOT) Has approached to understand the cause of the car accidents and want the best solution which can avoid accidents and casualities

SDOT has gathered various parameters based on the previous car accidents and want to understand the impact of various factors through Machine Learning and come up with the best model which can predict the factor which is the cause for these accidents and take measure to avoid these

Data Description

- We have used the SDOT data from Feb 2004 till May 2020
- The data consists of 194673 rows and 38 columns
- Some of the attributes which are being considered are SEVERITYCODE, WEATHER, LIGHTCOND, ROADCOND
- Accidents involving parked cars
- There are 2 types of SEVERITY CODES which cause major accidents
- Class1 and Class2
- They are in the ratio of 30:70 respectively
- Some of the Variables are categorical type which are transformed into numeric data type

	SEVERITYCODE	Х	Υ	OBJECTID	INCKEY	COLDETKEY	REPORTNO	STATUS	ADDRTYPE	INTKEY	 ROADCOND	LIGHTCOND	PEDROWNOTO
0	2	-122.323148	47.703140	1	1307	1307	3502005	Matched	Intersection	37475.0	 Wet	Daylight	
1	1	-122.347294	47.647172	2	52200	52200	2607959	Matched	Block	NaN	 Wet	Dark - Street Lights On	
2	1	-122.334540	47.607871	3	26700	26700	1482393	Matched	Block	NaN	 Dry	Daylight	
3	1	-122.334803	47.604803	4	1144	1144	3503937	Matched	Block	NaN	 Dry	Daylight	
4	2	-122.306426	47.545739	5	17700	17700	1807429	Matched	Intersection	34387.0	 Wet	Daylight	
5 rows × 38 columns													
4													+

	SEVERITYCODE	Х	Υ	OBJECTID	INCKEY	COLDETKEY	INTKEY	SEVERITYCODE.1	PERSONCOUNT	PEDCOUNT
count	194673.000000	189339.000000	189339.000000	194673.000000	194673.000000	194673.000000	65070.000000	194673.000000	194673.000000	194673.000000
mean	1.298901	-122.330518	47.619543	108479.364930	141091.456350	141298.811381	37558.450576	1.298901	2.444427	0.037139
std	0.457778	0.029976	0.056157	62649.722558	86634.402737	86986.542110	51745.990273	0.457778	1.345929	0.198150
min	1.000000	-122.419091	47.495573	1.000000	1001.000000	1001.000000	23807.000000	1.000000	0.000000	0.000000
25%	1.000000	-122.348673	47.575956	54267.000000	70383.000000	70383.000000	28667.000000	1.000000	2.000000	0.000000
50%	1.000000	-122.330224	47.615369	106912.000000	123363.000000	123363.000000	29973.000000	1.000000	2.000000	0.000000
75%	2.000000	-122.311937	47.663664	162272.000000	203319.000000	203459.000000	33973.000000	2.000000	3.000000	0.000000
max	2.000000	-122.238949	47.734142	219547.000000	331454.000000	332954.000000	757580.000000	2.000000	81.000000	6.000000
1)

Packages and Functions used for analysis

```
import numpy as np
import pandas as pd
import itertools
import matplotlib.pyplot as plt
from matplotlib.ticker import NullFormatter
import pandas as pd
import numpy as np
import matplotlib.ticker as ticker
from sklearn import preprocessing
%matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn import preprocessing, svm, metrics, ensemble, tree
from sklearn.preprocessing import OneHotEncoder, RobustScaler
from sklearn.compose import make column transformer
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy score, classification report
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
```

Exploratory Data Analysis

The Data-Collisions CSV provided SDOT was used for analysis of data

We used the read_csv on pandas package And DataFrame for reading the data

There were 194673 rows and 38 columns

We split the data through the existing train_test_split function to analyze the data

And have split the data into Training: Test = 70:30

```
X_train, X_test, y_train, y_test = train_test_split(
          X, y, test_size=0.3, random_state=42)
```

```
df = pd.read_csv("https://s3.us.cloud-object-storage.appdomain.cloud/cf-courses-data/CognitiveClass/DP0701EN/version-2/Data-Collisions.csv")
df.head()

//opt/conda/envs/Python36/lib/python3.6/site-packages/IPython/core/interactiveshell.py:3020: DtypeWarning: Columns (33) have mixed type
s. Specify dtype option on import or set low_memory=False.
interactivity=interactivity, compiler=compiler, result=result)

1]: SEVERITYCODE X Y OBJECTID INCKEY COLDETKEY REPORTNO STATUS ADDRTYPE INTKEY ... ROADCOND LIGHTCOND PEDROWNOTK
0 2 .122.323148 47.703140 1 1307 1307 3502005 Matched Intersection 37475.0 ... Wet Daylight

1 1 .122.347294 47.647172 2 52200 52200 2607959 Matched Block NaN ... Wet Clights On

2 1 .122.334540 47.607871 3 26700 26700 1482393 Matched Block NaN ... Dry Daylight

3 1 .122.334803 47.604803 4 1144 1144 3503937 Matched Block NaN ... Dry Daylight

4 2 .122.306426 47.545739 5 17700 17700 1807429 Matched Intersection 34387.0 ... Wet Daylight

5 rows × 38 columns
```

```
print ('Training set:', X_train.shape, y_train.shape)
print ('Testing set:', X_test.shape, y_test.shape)

Training set: (81463, 3) (81463,)
Testing set: (34913, 3) (34913,)
```


Machine Learning Models used for analysis

- K-Nearest Neighbors
- Decision Tree
- Linear Regression
- Random Forest Classification

K-Nearest Neighbors

```
K-Nearest Neighbors (KNN)

from sklearn.neighbors import KNeighborsClassifier
k = 25

#Train Model & Predict
neigh = KNeighborsClassifier(n_neighbors = k).fit(X_train,y_train)
neigh
Kyhat = neigh.predict(X_test)
Kyhat[0:5]

7]: array([1, 1, 1, 1, 1])
```

```
K-Nearest Neighbor Evaluation

# Jaccard Similarity Score
jaccard_similarity_score(y_test, Kyhat)

11]: 0.5237017729785467

# F1-Score
f1_score(y_test, Kyhat, average='macro')

12]: 0.5196155093297656
```

Decision Tree

```
Decision Tree
# Building the Decision Tree
from sklearn.tree import DecisionTreeClassifier
colDataTree = DecisionTreeClassifier(criterion="entropy", max depth = 7)
colDataTree
colDataTree.fit(X train,y train)
8]: DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=7,
                max_features=None, max_leaf_nodes=None,
                min_impurity_decrease=0.0, min_impurity_split=None,
                min_samples_leaf=1, min_samples_split=2,
                min_weight_fraction_leaf=0.0, presort=False, random_state=None.
                splitter='best')
# Train Model & Predict
dtyhat = colDataTree.predict(X_test)
print (dtyhat [0:5])
print (y_test [0:5])
     [1 2 2 2 2]
    [1 1 2 1 1]
```

```
# Jaccard Similarity Score
jaccard_similarity_score(y_test, dtyhat)

3]: 0.5626843869045914

# F1-Score
f1_score(y_test, dtyhat, average='macro')

4]: 0.5385207275454998
```

Linear Regression

Logistic Regression

```
# Building the linear regression Model
from sklearn.linear model import LogisticRegression
from sklearn.metrics import confusion_matrix
lr = LogisticRegression(C=0.03, solver='liblinear').fit(X train,y train)
lr
[0]: LogisticRegression(C=0.03, class_weight=None, dual=False, fit_intercept=True,
               intercept_scaling=1, max_iter=100, multi_class='warn',
               n_jobs=None, penalty='12', random_state=None, solver='liblinear',
              tol=0.0001, verbose=0, warm_start=False)
# Train Model & Predictor
lryhat = lr.predict(X test)
print(lryhat)
yhat prob = lr.predict proba(X test)
print(yhat prob)
     [2 1 2 ... 2 2 1]
    [[0.40364293 0.59635707]
     [0.53529771 0.46470229]
     [0.46743605 0.53256395]
     [0.46293233 0.53706767]
     [0.46743605 0.53256395]
      [0.67878612 0.32121388]]
```

```
Logistic Regression Evaluation

# Jaccard Similarity Score
jaccard_similarity_score(y_test, lryhat)

5]: 0.523501274596855

# F1-Score
f1_score(y_test, lryhat, average='macro')

6]: 0.5098573271706865

# LogLoss
yhat_prob = lr.predict_proba(X_test)
log_loss(y_test, yhat_prob)

7]: 0.6855290309651024
```

Random Forest Classification

```
Classification of different models Random Forest Classification
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=10, max_features='auto', max_leaf_nodes=None,
           min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
           min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=None,
            oob_score=False, random_state=None, verbose=0,
            warm start=False)
```

Weather Count

CONCLUSION

Model	Jaccard Score	F1-Score	Logloss	
KNN	0.551256346829839	8 0.504660848528	1039	0
Decision Tree	0.563338107017315	5 0.538715484894	4434 0	[
Logistic Regressi	on 0.523733888816566	4 0.509724417453	9972 0.685508642	2628527
Random Forest	0.561749772165082	7 0.509724417453	9972 0	

- By looking the above evaluation parameters
 - Jaccard Score is being measured for different models
 - F1 Score shows that Decision Tree has highest prediction
 - Logloss is only measured for Linear Regression
- Through Decision Tree Model we can get to the root cause of the entire data and is mostly dependent on only 3 factors WEATHER, ROAD_COND, LIGHT_COND
- This can be used by Police, Health Authorities and Civil Society to take enough measures so as to avoid Car Accident Severity