Elección de técnica de escalamiento según el algoritmo

Contexto:

El tipo de algoritmo de Machine Learning define si es necesario escalar todos los datos y qué técnica conviene. Esta actividad ayuda a decidir con criterio técnico.

Consigna:

Analiza distintos algoritmos de ML y decide si requieren escalamiento, y en ese caso, cuál es la técnica más adecuada (Min-Max o Z-score). Justifica tus decisiones.

Paso a paso:

- 1. El docente presentará una lista de 5 algoritmos:
 - K-Nearest Neighbors (KNN)
 - Árbol de Decisión (Decision Tree)
 - Regresión Lineal
 - Support Vector Machine (SVM)
 - Random Forest
- Para cada algoritmo responde:
 - o ¿Es sensible a la escala de las variables?
 - ¿Necesita escalamiento? ¿Cuál conviene más?
- 3. Discute las decisiones en grupos pequeños.
- 4. Arma una tabla resumen con tus conclusiones.

1. K-Nearest Neighbors (KNN)

• ¿Es sensible a la escala?

Sí, porque KNN se basa en cálculos de distancia (normalmente Euclidiana) entre puntos de datos. Si las variables tienen diferentes escalas, las de mayor rango dominarán la distancia.

• ¿Necesita escalamiento?

Sí, es muy recomendable escalar.

• ¿Cuál conviene más?

Min-Max o Z-score (normalización o estandarización) funcionan bien. La elección puede depender de los datos:

- Min-Max: si quieres que los datos estén en un rango definido (0 a 1), útil si el algoritmo espera inputs acotados.
- Z-score: si hay valores atípicos, estandarizar puede ayudar.

2. Árbol de Decisión (Decision Tree)

• ¿Es sensible a la escala?

No, porque las decisiones se basan en umbrales sobre valores individuales de cada variable, no en distancias.

¿Necesita escalamiento?

No es necesario.

3. Regresión Lineal

• ¿Es sensible a la escala?

En teoría no afecta la capacidad predictiva, pero la escala sí impacta la interpretación de coeficientes y la convergencia del algoritmo cuando se usa regularización.

Necesita escalamiento?

Sí, si se usan técnicas de regularización (Ridge, Lasso), el escalamiento es importante para que todas las variables tengan la misma importancia en la penalización.

• ¿Cuál conviene más?

Z-score (Estandarización), porque centra y escala, facilitando la convergencia y comparación de coeficientes.

4. Support Vector Machine (SVM)

• ¿Es sensible a la escala?

Sí, SVM busca maximizar márgenes y usa distancias en su cálculo, por lo que la escala afecta el resultado.

• ¿Necesita escalamiento?

Sí, es fundamental.

• ¿Cuál conviene más?

Z-score es la técnica más común, ya que el SVM suele funcionar mejor con datos estandarizados (media 0, desviación 1).

5. Random Forest

• ¿Es sensible a la escala?

No, al igual que los árboles, Random Forest divide según valores individuales, sin basarse en distancias.

• ¿Necesita escalamiento?

No es necesario.

Algoritmo	Sensible a la escala	Necesita escalamiento	Técnica recomendada	Justificación
KNN	Sí	Sí	Min-Max o Z-score	Se basa en distancias; evita que una variable domine.
Árbol de Decisión	No	No	No aplica	Usa umbrales; no afecta la escala.
Regresión Lineal	Parcialmente	Sí (con regularización)	Z-score	Mejora convergencia y comparación de coeficientes.
SVM	Sí	Sí	Z-score	Márgenes y distancias requieren variables en misma escala.
Random Forest	No	No	No aplica	Basado en árboles; insensible a la escala.