Benchmark problems for curve fitting with soft computing methods.

Danial Amini Baghbadorani

Source of benchmark functions:

Trejo-Caballero, G., Rostro-Gonzalez, H., Garcia-Capulin, C. H., Ibarra-Manzano, O. G., Avina-Cervantes, J. G., & Torres-Huitzil, C. (2015). Automatic curve fitting based on radial basis functions and a hierarchical genetic algorithm. Mathematical Problems in Engineering, 2015.

Summary

Function $f(x)=(\sin(2^*\pi^*x^3))^3$ for $0 \le x \le 1$ is used to benchmark the following methods: ANN, ANFIS, RBF NN, Regression, and sum of ABS functions

Function 1

$$f_1(x) = \sin^3(2\pi x^3), 0 \le x \le 1$$

Results

In These figures, C = complexity parameter = number of model coefficients. Curve fitting was done using N=2001 points (dx=0.005). The functions used are summarized below:

ANN:
$$y = a_0 + \sum_{i=1}^{N} a_i \tanh(a_{i0} + a_{i1}x)$$

a0=0.887621 N=3
a1=-30.6171 a10=-8.3362 a11=10.00038
a2=-106.861 a20=6.457407 a21=-8.23377
a3=-75.3389 a30=-6.68999 a22=8.784619

Sum of abs: $y = a_0 + \sum_{i=1}^{N} a_i |x - x_i|$

N	7	a0	-15.1763
x1	-0.00042	a1	15.31751
x2	0.430233	a2	2.440755
х3	0.640074	a3	-6.98449
x4	0.757591	a4	3.867542
x5	0.830855	a5	-6.20475
х6	0.906872	a6	13.58662
x7	1	a7	8.476821

ANFIS

$$w_1 = \exp\left(-\frac{(x - x_1)^2}{\sigma^2}\right), w_2 = \exp\left(-\frac{(x - x_2)^2}{\sigma^2}\right), w_3 = \exp\left(-\frac{(x - x_3)^2}{\sigma^2}\right)$$

$$f_1 = a_{10} + a_{11}x + a_{12}x^2, f_2 = a_{20} + a_{21}x + a_{22}x^2, f_3 = a_{20} + a_{21}x + a_{22}x^2$$

$$f_1 = a_{10} + a_{11}x + a_{12}x^2$$
, $f_2 = a_{20} + a_{21}x + a_{22}x^2$, $f_3 = a_{30} + a_{31}x + a_{32}x^2$

$$y = \frac{w_1 f_1 + w_2 f_2 + w_3 f_3}{w_1 + w_2 + w_3}$$

RBF
$$y = a_0 + \sum_{i=1}^{N} \exp\left(-\frac{(x - x_i)^2}{\sigma^2}\right)$$
, N=4

a_0	0.019731	σ	0.052387
a_1	0.358906	X_1	0.511221
a_2	0.8014	X_2	0.595444
a ₃	0.760517	X 3	0.670027
a ₄	-1.00736	X ₄	0.906368

Regression

 $y = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6$

a0 -0.2177 a1 6.098263 a2 -32.181 a3 -0.25721 a4 269.289 a5 -469.599 a6 227.3128