Greenish Warbler Genomic Analysis

Darren Irwin

2023-09-10

This page contains notes and code describing the data analysis for a manuscript on Greenish Warbler genomics. I've been working with the data for several years, and the R and then Julia code has been in development for a while. This is a Quarto notebook, which can run and display the results of Julia (or other) code blocks, along with text narration, and output in html, pdf, Word, etc.

The Julia code here is loosely based on R code written for Greenish Warbler analysis (Irwin et al. 2016), and then the North American warbler analyses (Irwin et al. 2019), and then my (unpublished) 2019 Greenish Warbler analysis. Most recently, this was adapted from the scripts called GW2022_R_analysis_script.R and IrwinLabGenomicsAnalysisScript.jl but has had a lot of opimizations since then. The SNP data here are a result of GBS reads mapped to our new 2022 Biozeron genome assembly for a greenish warbler from southern China.

Load packages

If running this for the first time, you will need to load packages used in the script, so run what is in this section below. It will take some time to install and precompile the packages:

```
import Pkg; Pkg.add("CSV") # took less than a minute
Pkg.add("DataFrames") # took about a minute
Pkg.add("Plots") # seems to install and working more simply than Makie (but less powerful)
Pkg.add("Haversine") # for great circle (Haversine) distances
Pkg.add("Distributions") # this seemed to fix a problem installing GLMakie
Pkg.add("MultivariateStats")
Pkg.add("StatsBase")
Pkg.add("Impute")
Pkg.add("Impute")
Pkg.add("JLD2")
Pkg.add("CairoMakie")
Pkg.add("PrettyTables") # for printing nice tables to REPL
```

Now actually load those packages into the Julia session:

```
using CSV # for reading in delimited files
using DataFrames # for storing data as type DataFrame
using Haversine # for calculating Great Circle (haversine) distances between sites
using MultivariateStats # for Principal Coordinates Analysis (multidimensional scaling)
using DelimitedFiles # for reading delimited files (the genotypic data)
using Impute # for imputing missing genotypes
using JLD2 # for saving data
using CairoMakie # for plots
using PrettyTables
CairoMakie.activate!() # this makes CairoMakie the main package for figures (in case another alread
```

Load my custom package SNPlots:

```
include("SNPlots.jl") # load file containing custom-built functions
using .SNPlots # actually make SNPlots module available with SNPlots.functionName(),
# or if functions are exported from SNPlots then they are available.
```

```
WARNING: replacing module SNPlots.
WARNING: using SNPlots.getFst in module Main conflicts with an existing identifier.
WARNING: using SNPlots.plotPCA in module Main conflicts with an existing identifier.
WARNING: using SNPlots.limitIndsToPlot in module Main conflicts with an existing identifier.
```

WARNING: using SNPlots.plotGenotypeByIndividual in module Main conflicts with an existing identifier.

WARNING: using SNPlots.getFreqsAndSampleSizes in module Main conflicts with an existing identifier.

WARNING: using SNPlots.chooseChrRegion in module Main conflicts with an existing identifier.

Test Julia:

```
x = 1; y = 2; z = x+y
println("z = ", z)
```

z = 3

(If Quarto is calling Julia properly, you will see z = 3 as the output of the code block above.)

Choose working directory:

```
repoDirectory = pwd() # this gets the starting working directory, for later use
cd("/Users/darrenirwin/Dropbox/Darren's current work/")
```

OK, let's load the genomic data!

```
# choose path and filename for the O12NA files
baseName = "GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs.
filenameTextMiddle = ".max2allele_noindel.vcf.maxmiss"
# indicate percent threshold for missing genotypes for each SNP--
# this was set by earlier filtering, and is just a record-keeper for the filenames:
missingGenotypeThreshold = 60
filenameTextEnd = ".MQ20.lowHet.tab"
tagName = ".Sept2023." # choose a tag name for this analysis
# indicate name of metadata file, a text file with these column headings:
        location
                    group Fst_group
                                        plot_order
metadataFile = "GW_genomics_2022_with_new_genome/GW_all4plates.Fst_groups.txt"
# load metadata
metadata = DataFrame(CSV.File(metadataFile)) # the CSV.File function interprets the correct delimite
num_metadata_cols = ncol(metadata)
num_individuals = nrow(metadata)
# read in individual names for this dataset
individuals_file_name = string(baseName, filenameTextMiddle, missingGenotypeThreshold, filenameTextE
ind = DataFrame(CSV.File(individuals_file_name; header=["ind"], types=[String]))
indNum = size(ind, 1) # number of individuals
if num_individuals != indNum
    println("WARNING: number of rows in metadata file different than number of individuals in .indv
end
# read in position data for this dataset
position_file_name = string(baseName, filenameTextMiddle, missingGenotypeThreshold, filenameTextEnd,
pos_whole_genome = DataFrame(CSV.File(position_file_name; header=["chrom", "position"], types=[String"]
# read in genotype data
column_names = ["null"; string.("c.", pos_whole_genome.chrom, ".", pos_whole_genome.position)]
genotype_file_name = string(baseName, filenameTextMiddle, missingGenotypeThreshold, filenameTextEnd,
@time if 1 <= indNum <= 127</pre>
    geno = readdlm(genotype_file_name, '\t', <mark>Int8</mark>, '\n'); # this has been sped up dramatically, by f
elseif 128 <= indNum <= 32767
    geno = readdlm(genotype_file_name, '\t', Int16, '\n'); # this needed for first column, which is
else
    print("Error: Number of individuals in .indv appears outside of range from 1 to 32767")
end
loci_count = size(geno, 2) - 1  # because the first column is not a SNP (just a count from zero)
print(string("Read in genotypic data at ", loci_count," loci for ", indNum, " individuals. \n"))
```

56.255896 seconds (3.12 M allocations: 15.941 GiB, 1.07% gc time, 0.01% compilation time) Read in genotypic data at 2431709 loci for 310 individuals.

Check that individuals are same in genotype data and metadata

```
ind_with_metadata = hcat(ind, metadata)
println(ind_with_metadata)
println() # prints a line break
if isequal(ind_with_metadata.ind, ind_with_metadata.ID)
    println("GOOD NEWS: names of individuals in metadata file and genotype ind file match perfectly.
else
    println("WARNING: names of individuals in metadata file and genotype ind file do not completely end
```

310×6	5 DataFrame						
Row	ind IC)	location g	roup	Fst_group	plot_order	
	String St	ring31	String7	String15	String15	Float64	
1	 GW_Armando_plate1_AB1	GW_Armando_plat	e1_AB1	AB v	ir vi	r	20.01
2	GW_Armando_plate1_JF07G02	gw_Armando_pla	te1_JF07G02	ST	plumb	plumb	87.0
3	GW_Armando_plate1_JF07G03	GW_Armando_pla	te1_JF07G03	ST	plumb	plumb	87.0
4	GW_Armando_plate1_JF07G04	GW_Armando_pla	te1_JF07G04	ST	plumb	plumb	87.0
5	GW_Armando_plate1_JF08G02	gw_Armando_pla	te1_JF08G02	ST	plumb	plumb	87.0
6	GW_Armando_plate1_JF09G01	. GW_Armando_pla	te1_JF09G01	ST	plumb	plumb	87.0
7	GW_Armando_plate1_JF09G02	gw_Armando_pla	te1_JF09G02	ST	plumb	plumb	87.0
8	GW_Armando_plate1_JF10G03	GW_Armando_pla	te1_JF10G03	ST	plumb_vir	plumb_vir	7
9	GW_Armando_plate1_JF11G01	. GW_Armando_pla	te1_JF11G01	ST	plumb	plumb	87.0
10	GW_Armando_plate1_JF12G0	1 GW_Armando_pla	ate1_JF12G01	ST	plumb	plumb	87.
11	GW_Armando_plate1_JF12G0	2 GW_Armando_pla	ate1_JF12G02	ST	plumb	plumb	87.
12	GW_Armando_plate1_JF12G0	4 GW_Armando_pla	ate1_JF12G04	ST_vi	vir	vir	24.0
13	GW_Armando_plate1_JF13G0	1 GW_Armando_pla	ate1_JF13G01	ST	plumb	plumb	87.
14	GW_Armando_plate1_JF15G0	3 GW_Armando_pla	ate1_JF15G03	KK	plumb	plumb	87.
15	GW_Armando_plate1_JF16G0	1 GW_Armando_pla	ate1_JF16G01	KK_vi	plumb_vir	vir	2
16	GW_Armando_plate1_JF20G0	1 GW_Armando_pla	ate1_JF20G01	KK	plumb	plumb	87.
17	GW_Armando_plate1_JF22G0	1 GW_Armando_pla	ate1_JF22G01	KK	plumb	plumb	87.
18	GW_Armando_plate1_JF23G0	1 GW_Armando_pla	ate1_JF23G01	KK	plumb	plumb	87.
19	GW_Armando_plate1_JF23G0	2 GW_Armando_pla	ate1_JF23G02	KK	plumb	plumb	87.
20	GW_Armando_plate1_JF24G0	2 GW_Armando_pla	ate1_JF24G02	KK	plumb	plumb	87.
21	GW_Armando_plate1_JF26G0	1 GW_Armando_pla	ate1_JF26G01	ST	plumb	plumb	87.
22	GW_Armando_plate1_JF27G0	1 GW_Armando_pla	ate1_JF27G01	ST	plumb	plumb	87.
23	GW_Armando_plate1_JF29G0	1 GW_Armando_pla	ate1_JF29G01	ST	plumb	plumb	87.

24	GW_Armando_plate1_JF29G02	GW_Armando_plate1_JF29G02	ST	plumb	plumb	87.
25	GW_Armando_plate1_JF29G03	GW_Armando_plate1_JF29G03	ST	plumb	plumb	87.
26	GW_Armando_plate1_JG02G02	GW_Armando_plate1_JG02G02	KK	plumb	plumb	87.
27	GW_Armando_plate1_JG02G04	GW_Armando_plate1_JG02G04	KK	plumb	plumb	87.
28	GW_Armando_plate1_JG08G01	GW_Armando_plate1_JG08G01	ST	plumb	plumb	87.
29	GW_Armando_plate1_JG08G02	GW_Armando_plate1_JG08G02	ST	plumb	plumb	87.
30	GW_Armando_plate1_JG10G01	<pre>GW_Armando_plate1_JG10G01</pre>	ST	plumb	plumb	87.
31	GW_Armando_plate1_JG12G01	<pre>GW_Armando_plate1_JG12G01</pre>	ST	plumb	plumb	87.
32	GW_Armando_plate1_JG17G01	GW_Armando_plate1_JG17G01	ST	plumb_vir	plumb	77
33	GW_Armando_plate1_NO_BC_TTGWG	05 GW_Armando_plate1_NO_BC_	TTGW05	blank blank	blank	
34	GW_Armando_plate1_NO_DNA	GW_Armando_plate1_NO_DNA	bla	nk blank	blank	-99
35	GW_Armando_plate1_RF20G01	GW_Armando_plate1_RF20G01	ВЈ	obs_plumb	plumb_BJ	7
36	GW_Armando_plate1_RF29G02	GW_Armando_plate1_RF29G02	ВЈ	obs_plumb	plumb_BJ	7
37	GW_Armando_plate1_TL3	GW_Armando_plate1_TL3	TL	vir vir	11	.01
38	GW_Armando_plate1_TTGW01	GW_Armando_plate1_TTGW01	MN	troch_MN	troch_west	5
39	GW_Armando_plate1_TTGW05_rep1	. GW_Armando_plate1_TTGW05	_rep1	MN_rep troch_MN	_rep troch_v	vest_r
40	GW_Armando_plate1_TTGW05_rep2	<pre>GW_Armando_plate1_TTGW05</pre>	_rep2	MN troch_MN	troch_wes	t
41	GW_Armando_plate1_TTGW06	GW_Armando_plate1_TTGW06	SU	lud_Sukhto	lud_central	
42	GW_Armando_plate1_TTGW07	GW_Armando_plate1_TTGW07	SU	lud_Sukhto	lud_central	
43	GW_Armando_plate1_TTGW10	GW_Armando_plate1_TTGW10	SU	lud_Sukhto	lud_central	
44	GW_Armando_plate1_TTGW11	GW_Armando_plate1_TTGW11	SU	lud_Sukhto	lud_central	
45	GW_Armando_plate1_TTGW13	GW_Armando_plate1_TTGW13	TH	lud_Thalligha	ar lud_centra	l
46	GW_Armando_plate1_TTGW17	GW_Armando_plate1_TTGW17	TH	lud_Thalligha	ar lud_centra	L
47	GW_Armando_plate1_TTGW19	GW_Armando_plate1_TTGW19	TH	lud_Thalligha	ar lud_centra	l
48	GW_Armando_plate1_TTGW21	GW_Armando_plate1_TTGW21	SR	lud_Sural	lud_central	4
49	GW_Armando_plate1_TTGW22	GW_Armando_plate1_TTGW22	SR	lud_Sural	lud_central	4
50	GW_Armando_plate1_TTGW23	GW_Armando_plate1_TTGW23	SR	lud_Sural	lud_central	4
51	GW_Armando_plate1_TTGW29	GW_Armando_plate1_TTGW29	SR	lud_Sural	lud_central	4
52	GW_Armando_plate1_TTGW52	GW_Armando_plate1_TTGW52	NG	lud_Nainaghar	lud_central	•
53	GW_Armando_plate1_TTGW53	GW_Armando_plate1_TTGW53	NG	lud_Nainaghar	lud_central	•
54	GW_Armando_plate1_TTGW55	GW_Armando_plate1_TTGW55	NG	lud_Nainaghar	lud_central	
55	GW_Armando_plate1_TTGW57	GW_Armando_plate1_TTGW57	NG	lud_Nainaghar	lud_central	
56	GW_Armando_plate1_TTGW58	GW_Armando_plate1_TTGW58	NG	lud_Nainaghar	lud_central	
57	GW_Armando_plate1_TTGW59	GW_Armando_plate1_TTGW59	NG	lud_Nainaghar	lud_central	
58	GW_Armando_plate1_TTGW63	GW_Armando_plate1_TTGW63	SP	lud_Spiti	troch_west	5
59	GW_Armando_plate1_TTGW64	GW_Armando_plate1_TTGW64	SP	lud_Spiti	troch_west	5
60	GW_Armando_plate1_TTGW65	GW_Armando_plate1_TTGW65	SP	lud_Spiti	troch_west	5

61	GW_Armando_plate1_TTGW66	GW_Armando_plate1_TTGW66	SP	lud_Spiti	troch_wes	t 5
62	GW_Armando_plate1_TTGW68	GW_Armando_plate1_TTGW68	SP	lud_Spiti	troch_wes	t 5
63	GW_Armando_plate1_TTGW70	GW_Armando_plate1_TTGW70	SA	lud_Sathrun	di lud_Sath	4
64	GW_Armando_plate1_TTGW71	GW_Armando_plate1_TTGW71	SA	lud_Sathrun	di lud_Sath	4
65	GW_Armando_plate1_TTGW72	GW_Armando_plate1_TTGW72	SA	lud_Sathrun	di lud_Sath	4
66	GW_Armando_plate1_TTGW74	GW_Armando_plate1_TTGW74	SA	lud_Sathrun	di lud_Sath	4
67	GW_Armando_plate1_TTGW78	GW_Armando_plate1_TTGW78	SA	lud_Sathrun	di lud_Sath	4
68	GW_Armando_plate1_TTGW_15_05	GW_Armando_plate1_TTGW_15	_05	SR lud_Sura	l lud_cer	ntral
69	GW_Armando_plate1_TTGW_15_07	GW_Armando_plate1_TTGW_15	_07	SR lud_Sura	l lud_cer	ntral
70	GW_Armando_plate1_TTGW_15_08	GW_Armando_plate1_TTGW_15	_08	SR lud_Sura	l lud_cer	ntral
71	GW_Armando_plate1_TTGW_15_09	GW_Armando_plate1_TTGW_15	_09	SR lud_Sura	l lud_cer	ntral
72	GW_Armando_plate1_UY1	GW_Armando_plate1_UY1	UY	plumb p	olumb	88.01
73	GW_Armando_plate2_IL2	GW_Armando_plate2_IL2	IL_re	p plumb_rep	plumb_rep	83
74	GW_Armando_plate2_JE31G01	<pre>GW_Armando_plate2_JE31G01</pre>	KK.	_vi vir_misID	vir	24
75	GW_Armando_plate2_JF03G01	GW_Armando_plate2_JF03G01	ST.	_vi vir_misID	vir	24
76	GW_Armando_plate2_JF03G02	GW_Armando_plate2_JF03G02	KK.	_vi vir_misID	vir	24
77	GW_Armando_plate2_JF07G01	GW_Armando_plate2_JF07G01	ST	plumb	plumb	87.0
78	GW_Armando_plate2_JF08G04	GW_Armando_plate2_JF08G04	ST	plumb	plumb	87.0
79	GW_Armando_plate2_JF10G02	GW_Armando_plate2_JF10G02	ST	plumb	plumb	87.0
80	GW_Armando_plate2_JF11G02	GW_Armando_plate2_JF11G02	ST	plumb	plumb	87.0
81	GW_Armando_plate2_JF12G03	GW_Armando_plate2_JF12G03	ST	plumb	plumb	87.0
82	GW_Armando_plate2_JF12G05	GW_Armando_plate2_JF12G05	ST	plumb	plumb	87.0
83	GW_Armando_plate2_JF13G02	GW_Armando_plate2_JF13G02	ST	plumb	plumb	87.0
84	GW_Armando_plate2_JF14G01	GW_Armando_plate2_JF14G01	KK	plumb	plumb	87.0
85	GW_Armando_plate2_JF14G02	GW_Armando_plate2_JF14G02	KK	plumb	plumb	87.0
86	GW_Armando_plate2_JF15G01	GW_Armando_plate2_JF15G01	KK	plumb	plumb	87.0
87	GW_Armando_plate2_JF15G02	GW_Armando_plate2_JF15G02	KK	plumb	plumb	87.0
88	GW_Armando_plate2_JF16G02	GW_Armando_plate2_JF16G02	KK.	_vi plumb_vir	vir	24
89	GW_Armando_plate2_JF19G01	GW_Armando_plate2_JF19G01	KK	plumb	plumb	87.0
90	GW_Armando_plate2_JF20G02	GW_Armando_plate2_JF20G02	KK	plumb	plumb	87.0
91	GW_Armando_plate2_JF24G01	GW_Armando_plate2_JF24G01	KK	plumb	plumb	87.0
92	GW_Armando_plate2_JF24G03	GW_Armando_plate2_JF24G03	ST	plumb	plumb	87.0
93	GW_Armando_plate2_JF25G01	GW_Armando_plate2_JF25G01	KK	plumb	plumb	87.0
94	GW_Armando_plate2_JF26G02	GW_Armando_plate2_JF26G02	KK	plumb	plumb	87.0
95	GW_Armando_plate2_JF27G02	GW_Armando_plate2_JF27G02	KK	plumb	plumb	87.0
96	GW_Armando_plate2_JF30G01	GW_Armando_plate2_JF30G01	ST.	_vi vir_misID	vir	24
97	GW_Armando_plate2_JG01G01	GW_Armando_plate2_JG01G01	KK	plumb	plumb	87.0

98	GW_Armando_plate2_JG02G01	GW_Armando_plate2_JG02G01	KK	plumb	plumb	87.0
99	GW_Armando_plate2_JG02G03	GW_Armando_plate2_JG02G03	KK	plumb	plumb	87.0
100	GW_Armando_plate2_JG10G02	GW_Armando_plate2_JG10G02	ST	plumb	plumb	87.
101	GW_Armando_plate2_JG10G03	GW_Armando_plate2_JG10G03	ST	plumb	plumb	87.
102	GW_Armando_plate2_JG12G02	GW_Armando_plate2_JG12G02	ST	plumb	plumb	87.
103	GW_Armando_plate2_JG12G03	GW_Armando_plate2_JG12G03	ST	plumb	plumb	87.
104	GW_Armando_plate2_LN11	GW_Armando_plate2_LN11	LN_rep	troch_LN_re	p troch_LN.	_rep
105	GW_Armando_plate2_LN2	GW_Armando_plate2_LN2	LN	troch_LN	troch_LN	58.0
106	GW_Armando_plate2_NO_BC_TTGW	05 GW_Armando_plate2_NO_BC_	TTGW05 k	olank blank	blank	
107	GW_Armando_plate2_NO_DNA	GW_Armando_plate2_NO_DNA	blank	k blank	blank	-99
108	GW_Armando_plate2_RF29G01	GW_Armando_plate2_RF29G01	ВЈ	obs_plumb	plumb_BJ	7
109	GW_Armando_plate2_TTGW02	GW_Armando_plate2_TTGW02	MN	troch_MN	troch_west	5
110	GW_Armando_plate2_TTGW03	GW_Armando_plate2_TTGW03	MN	troch_MN	troch_west	5
111	GW_Armando_plate2_TTGW05_rep	3 GW_Armando_plate2_TTGW05_	rep3 M	N_rep troch_	MN_rep trod	ch_west_r
112	GW_Armando_plate2_TTGW05_rep	4 GW_Armando_plate2_TTGW05_	rep4 M	N_rep troch_	MN_rep trod	ch_west_r
113	GW_Armando_plate2_TTGW08	GW_Armando_plate2_TTGW08	SU	lud_Sukhto	lud_centr	al
114	GW_Armando_plate2_TTGW09	GW_Armando_plate2_TTGW09	SU	lud_Sukhto	lud_centr	al
115	GW_Armando_plate2_TTGW12	GW_Armando_plate2_TTGW12	TH	lud_Thallig	har lud_cent	tral
116	GW_Armando_plate2_TTGW14	GW_Armando_plate2_TTGW14	TH	lud_Thallig	har lud_cent	tral
117	GW_Armando_plate2_TTGW15	GW_Armando_plate2_TTGW15	TH	lud_Thallig	har lud_cent	tral
118	GW_Armando_plate2_TTGW16	GW_Armando_plate2_TTGW16	TH	lud_Thallig	har lud_cent	tral
119	GW_Armando_plate2_TTGW18	GW_Armando_plate2_TTGW18	TH	lud_Thallig	har lud_cent	tral
120	GW_Armando_plate2_TTGW20	GW_Armando_plate2_TTGW20	SR	lud_Sural	lud_centr	al 4
121	GW_Armando_plate2_TTGW24	GW_Armando_plate2_TTGW24	SR	lud_Sural	lud_centr	al 4
122	GW_Armando_plate2_TTGW25	GW_Armando_plate2_TTGW25	SR	lud_Sural	lud_centr	al 4
123	GW_Armando_plate2_TTGW27	GW_Armando_plate2_TTGW27	SR	lud_Sural	lud_centr	al 4
124	GW_Armando_plate2_TTGW28	GW_Armando_plate2_TTGW28	SR	lud_Sural	lud_centr	al 4
125	GW_Armando_plate2_TTGW50	GW_Armando_plate2_TTGW50	NG	lud_Nainagh	ar lud_cent	ral
126	GW_Armando_plate2_TTGW51	GW_Armando_plate2_TTGW51	NG	lud_Nainagh	ar lud_cent	ral
127	GW_Armando_plate2_TTGW54	GW_Armando_plate2_TTGW54	NG	lud_Nainagh	ar lud_cent	ral
128	GW_Armando_plate2_TTGW56	GW_Armando_plate2_TTGW56	NG	lud_Nainagh	ar lud_cent	ral
129	GW_Armando_plate2_TTGW60	GW_Armando_plate2_TTGW60	SP	lud_Spiti	troch_wes	t 5
130	GW_Armando_plate2_TTGW61	GW_Armando_plate2_TTGW61	SP	lud_Spiti	troch_wes	t 5
131	GW_Armando_plate2_TTGW62	GW_Armando_plate2_TTGW62	SP	lud_Spiti	troch_wes	t 5
132	GW_Armando_plate2_TTGW67	GW_Armando_plate2_TTGW67	SP	lud_Spiti	troch_wes	t 5
133	GW_Armando_plate2_TTGW69	GW_Armando_plate2_TTGW69	SP	lud_Spiti	troch_wes	t 5
134	GW_Armando_plate2_TTGW73	GW_Armando_plate2_TTGW73	SA	lud_Sathrun	di lud_Sath	

135	GW_Armando_plate2_TTGW75	GW_Armando_plate2_TT(GW75	SA	lud_Sathrundi	lud_Sath
136	GW_Armando_plate2_TTGW77	GW_Armando_plate2_TT(SA	lud_Sathrundi	lud_Sath
137	GW_Armando_plate2_TTGW79	GW_Armando_plate2_TT(GW79	SA	lud_Sathrundi	lud_Sath
138	GW_Armando_plate2_TTGW80	GW_Armando_plate2_TT	GW80	SA	lud_Sathrundi	lud_Sath
139	 GW_Armando_plate2_TTGW_15_	_01 GW_Armando_plate2_T	TGW_15_0	91 SR	lud_Sural	lud_central
140	GW_Armando_plate2_TTGW_15_	_02 GW_Armando_plate2_T	TGW_15_0	92 SR	lud_Sural	lud_central
141	GW_Armando_plate2_TTGW_15_	_03 GW_Armando_plate2_T	TGW_15_0	93 SR	lud_Sural	lud_central
142	GW_Armando_plate2_TTGW_15.	_04 GW_Armando_plate2_T	TGW_15_0	94 SR	lud_Sural	lud_central
143	GW_Armando_plate2_TTGW_15.	_06 GW_Armando_plate2_T	TGW_15_0	96 SR	lud_Sural	lud_central
144	GW_Armando_plate2_TTGW_15_	_10 GW_Armando_plate2_T	TGW_15_3	10 SR	lud_Sural	lud_central
145	GW_Lane5_AA1	GW_Lane5_AA1	AA	vir_S	vir_S	25.0
146	GW_Lane5_AA10	GW_Lane5_AA10	AA	vir_S	vir_S	33.0
147	GW_Lane5_AA11	GW_Lane5_AA11	AA	vir_S	vir_S	34.0
148	GW_Lane5_AA3	GW_Lane5_AA3	AA	vir_S	vir_S	26.0
149	GW_Lane5_AA4	GW_Lane5_AA4	AA	vir_S	vir_S	27.0
150	GW_Lane5_AA5	GW_Lane5_AA5	AA	vir_S	vir_S	28.0
151	GW_Lane5_AA6	GW_Lane5_AA6	AA	vir_S	vir_S	29.0
152	GW_Lane5_AA7	GW_Lane5_AA7	AA	vir_S	vir_S	30.0
153	GW_Lane5_AA8	GW_Lane5_AA8	AA	vir_S	vir_S	31.0
154	GW_Lane5_AA9	GW_Lane5_AA9	AA	vir_S	vir_S	32.0
155	GW_Lane5_AB1	GW_Lane5_AB1	AB_rep	vir_rep	vir_rep	20.0
156	GW_Lane5_AB2	GW_Lane5_AB2	AB	vir	vir	21.0
157	GW_Lane5_AN1	GW_Lane5_AN1	AN	plumb	plumb	80.0
158	GW_Lane5_AN2	GW_Lane5_AN2	AN	plumb	plumb	81.0
159	GW_Lane5_BK2	GW_Lane5_BK2	BK	plumb	plumb	78.0
160	GW_Lane5_BK3	GW_Lane5_BK3	ВК	plumb	plumb	79.0
161	GW_Lane5_DA2	GW_Lane5_DA2	XN	obs	obs	73.0
162	GW_Lane5_DA3	GW_Lane5_DA3	XN	obs	obs	74.0
163	GW_Lane5_DA4	GW_Lane5_DA4	XN	obs	obs	75.0
164	GW_Lane5_DA6	GW_Lane5_DA6	XN	obs	low_reads	76.0
165	GW_Lane5_DA7	GW_Lane5_DA7	XN	obs	obs	77.0
166		GW_Lane5_EM1	EM	troch_EM	troch_EM	72.0
167	GW_Lane5_IL1	GW_Lane5_IL1	IL	plumb	plumb	82.0
168	GW_Lane5_IL2	GW_Lane5_IL2	IL_rep	plumb_1	ep plumb_re	ep 83.0
169	GW_Lane5_IL4	GW_Lane5_IL4	IL	plumb	plumb	84.0
170		GW_Lane5_KS1	OV	lud_KS	lud_KS	40.0
171	GW_Lane5_KS2	GW_Lane5_KS2	OV	lud_KS	lud_KS	40.0

	1					
172	GW_Lane5_LN1	GW_Lane5_LN1	LN	troch_LN	troch_LN	57.0
173	GW_Lane5_LN10	GW_Lane5_LN10	LN	troch_LN	troch_LN	64.0
174	GW_Lane5_LN11	GW_Lane5_LN11	LN	troch_LN	troch_LN	65.0
175	GW_Lane5_LN12	GW_Lane5_LN12	LN	troch_LN	troch_LN	66.0
176	GW_Lane5_LN14	GW_Lane5_LN14	LN	troch_LN	troch_LN	67.0
177	GW_Lane5_LN16	GW_Lane5_LN16	LN	troch_LN	troch_LN	68.0
178	GW_Lane5_LN18	GW_Lane5_LN18	LN	troch_LN	troch_LN	69.0
179	GW_Lane5_LN19	GW_Lane5_LN19	LN	troch_LN	troch_LN	70.0
180	GW_Lane5_LN2	GW_Lane5_LN2	LN_rep	troch_LN_re	p troch_LN_re	p 58.0
181	GW_Lane5_LN20	GW_Lane5_LN20	LN	troch_LN	troch_LN	71.0
182	GW_Lane5_LN3	GW_Lane5_LN3	LN	troch_LN	troch_LN	59.0
183	GW_Lane5_LN4	GW_Lane5_LN4	LN	troch_LN	troch_LN	60.0
184	GW_Lane5_LN6	GW_Lane5_LN6	LN	troch_LN	troch_LN	61.0
185	GW_Lane5_LN7	GW_Lane5_LN7	LN	troch_LN	troch_LN	62.0
186	GW_Lane5_LN8	GW_Lane5_LN8	LN	troch_LN	troch_LN	63.0
187	GW_Lane5_MN1	GW_Lane5_MN1	MN	troch_MN	troch_west	51.0
188	GW_Lane5_MN12	GW_Lane5_MN12	MN	troch_MN	troch_west	56.0
189	GW_Lane5_MN3	GW_Lane5_MN3	MN	troch_MN	troch_west	52.0
190	GW_Lane5_MN5	GW_Lane5_MN5	MN	troch_MN	troch_west	53.0
191	GW_Lane5_MN8	GW_Lane5_MN8	MN	troch_MN	troch_west	54.0
192	GW_Lane5_MN9	GW_Lane5_MN9	MN	troch_MN	troch_west	55.0
193	GW_Lane5_NA1	GW_Lane5_NA1	NR	lud_PK	lud_PK	39.2
194	GW_Lane5_NA3-3ul	GW_Lane5_NA3-3ul	NR	lud_PK	lud_PK	39.2
195	GW_Lane5_PT11	GW_Lane5_PT11	KL	lud_KL	lud_central	42.0
196	GW_Lane5_PT12	GW_Lane5_PT12	KL	lud_KL	lud_central	42.0
197	GW_Lane5_PT2	GW_Lane5_PT2	ML	lud_ML	lud_ML	51.0
198	GW_Lane5_PT3	GW_Lane5_PT3	PA	lud_PA	lud_central	46.0
199	GW_Lane5_PT4	GW_Lane5_PT4	PA	lud_PA	lud_central	46.0
200	GW_Lane5_PT6	GW_Lane5_PT6	KL	lud_KL	lud_central	42.0
201	GW_Lane5_SH1	GW_Lane5_SH1	PK	lud_PK	lud_PK	39.1
202	GW_Lane5_SH2	GW_Lane5_SH2	PK	lud_PK	lud_PK	39.1
203	GW_Lane5_SH4	GW_Lane5_SH4	PK	lud_PK	lud_PK	39.1
204	GW_Lane5_SH5	GW_Lane5_SH5	PK	lud_PK	lud_PK	39.1
205	GW_Lane5_SL1	GW_Lane5_SL1	SL	plumb	plumb	95.0
206	GW_Lane5_SL2	GW_Lane5_SL2	SL	plumb	plumb	96.0
207	GW_Lane5_ST1	GW_Lane5_ST1	ST	plumb	plumb	85.0
208	GW_Lane5_ST12	GW_Lane5_ST12	ST	plumb	plumb	87.0

209	GW_Lane5_ST3	GW_Lane5_ST3	ST	plumb	plumb	86.0	
210	GW_Lane5_STvi1	GW_Lane5_STvi1	STvi	vir	vir	22.0	
211	GW_Lane5_STvi2	GW_Lane5_STvi2	STvi	vir	vir	23.0	
212	GW_Lane5_STvi3	GW_Lane5_STvi3	STvi	vir	vir	24.0	
213	GW_Lane5_TA1	GW_Lane5_TA1	TA	plumb	plumb	94.0	
214	GW_Lane5_TL1	GW_Lane5_TL1	TL	vir	vir	9.0	
215	GW_Lane5_TL10	GW_Lane5_TL10	TL	vir	vir	17.0	
216	GW_Lane5_TL11	GW_Lane5_TL11	TL	vir	vir	18.0	
217	GW_Lane5_TL12	GW_Lane5_TL12	TL	vir	vir	19.0	
218	GW_Lane5_TL2	GW_Lane5_TL2	TL	vir	vir	10.0	
219	GW_Lane5_TL3	GW_Lane5_TL3	TL_rep	vir_rep	vir_rep	11.0	
220	GW_Lane5_TL4	GW_Lane5_TL4	TL	vir	vir	12.0	
221	GW_Lane5_TL5	GW_Lane5_TL5	TL	vir	vir	13.0	
222	GW_Lane5_TL7	GW_Lane5_TL7	TL	vir	vir	14.0	
223	GW_Lane5_TL8	GW_Lane5_TL8	TL	vir	vir	15.0	
224	GW_Lane5_TL9	GW_Lane5_TL9	TL	vir	vir	16.0	
225	GW_Lane5_TU1	GW_Lane5_TU1	TU	nit	nit	35.0	
226	GW_Lane5_TU2	GW_Lane5_TU2	TU	nit	nit	36.0	
227	GW_Lane5_UY1	GW_Lane5_UY1	UY_rep	plumb_rep	plumb_rep	88.0	
228	GW_Lane5_UY2	GW_Lane5_UY2	UY	plumb	plumb	89.0	
229	GW_Lane5_UY3	GW_Lane5_UY3	UY	plumb	plumb	90.0	
230	GW_Lane5_UY4	GW_Lane5_UY4	UY	plumb	plumb	91.0	
231	GW_Lane5_UY5	GW_Lane5_UY5	UY	plumb	plumb	92.0	
232	GW_Lane5_UY6	GW_Lane5_UY6	UY	plumb	plumb	93.0	
233	GW_Lane5_YK1	GW_Lane5_YK1	YK	vir	vir	1.0	
234	GW_Lane5_YK11	GW_Lane5_YK11	YK	vir	vir	8.0	
235	GW_Lane5_YK3	GW_Lane5_YK3	YK	vir	vir	2.0	
236	GW_Lane5_YK4	GW_Lane5_YK4	YK	vir	vir	3.0	
237	GW_Lane5_YK5	GW_Lane5_YK5	YK	vir	vir	4.0	
238	GW_Lane5_YK6	GW_Lane5_YK6	YK	vir	vir	5.0	
239	GW_Lane5_YK7	GW_Lane5_YK7	YK	vir	vir	6.0	
240	GW_Lane5_YK9	GW_Lane5_YK9	YK	vir	vir	7.0	
241	GW_Liz_GBS_Liz10045	GW_Liz_GBS_Liz10045	ML	. lud	lud_ML	51.01	
242	GW_Liz_GBS_Liz10094	GW_Liz_GBS_Liz10094	ML	. lud	lud_ML	51.02	
243	GW_Liz_GBS_Liz5101	GW_Liz_GBS_Liz5101	ML	lud	lud_ML	51.03	
244	GW_Liz_GBS_Liz5101_R	GW_Liz_GBS_Liz5101_R	M	L_rep lud_	rep lud_M	L_rep 51.	
245	GW_Liz_GBS_Liz5118	GW_Liz_GBS_Liz5118	ML	lud	lud_ML	51.05	

246	GW_Liz_GBS_Liz5139	GW_Liz_GBS_Liz5139	ML	lud	lud_ML	51.06
247	GW_Liz_GBS_Liz5142	GW_Liz_GBS_Liz5142	ML	lud	lud_ML	51.07
248	GW_Liz_GBS_Liz5144	GW_Liz_GBS_Liz5144	ML	lud	lud_ML	51.08
249	GW_Liz_GBS_Liz5150	GW_Liz_GBS_Liz5150	ML	lud	lud_ML	51.09
250	GW_Liz_GBS_Liz5159	GW_Liz_GBS_Liz5159	ML	lud_chick	lud_ML	51.1
251	GW_Liz_GBS_Liz5162	GW_Liz_GBS_Liz5162	ML	lud_chick	lud_ML	51.11
252	GW_Liz_GBS_Liz5163	GW_Liz_GBS_Liz5163	ML	lud_chick	lud_ML	51.12
253	GW_Liz_GBS_Liz5164	GW_Liz_GBS_Liz5164	ML	lud_chick	lud_ML	51.13
254	GW_Liz_GBS_Liz5165	GW_Liz_GBS_Liz5165	ML	lud	lud_ML	51.14
255	GW_Liz_GBS_Liz5167	GW_Liz_GBS_Liz5167	ML	lud_chick	lud_ML	51.15
256	GW_Liz_GBS_Liz5168	GW_Liz_GBS_Liz5168	ML	lud_chick	lud_ML	51.16
257	GW_Liz_GBS_Liz5169	GW_Liz_GBS_Liz5169	ML	lud_chick	lud_ML	51.17
258	GW_Liz_GBS_Liz5171	GW_Liz_GBS_Liz5171	ML	lud	lud_ML	51.18
259	GW_Liz_GBS_Liz5172	GW_Liz_GBS_Liz5172	ML	lud_chick	lud_ML	51.19
260	GW_Liz_GBS_Liz5173	GW_Liz_GBS_Liz5173	ML	lud_chick	lud_ML	51.2
261	GW_Liz_GBS_Liz5174	GW_Liz_GBS_Liz5174	ML	lud	lud_ML	51.21
262	GW_Liz_GBS_Liz5175	GW_Liz_GBS_Liz5175	ML	lud	lud_ML	51.22
263	GW_Liz_GBS_Liz5176	GW_Liz_GBS_Liz5176	ML	lud	lud_ML	51.23
264	GW_Liz_GBS_Liz5177	GW_Liz_GBS_Liz5177	ML	lud_chick	lud_ML	51.24
265	GW_Liz_GBS_Liz5178	GW_Liz_GBS_Liz5178	ML	lud_chick	lud_ML	51.25
266	GW_Liz_GBS_Liz5179	GW_Liz_GBS_Liz5179	ML	lud_chick	lud_ML	51.26
267	GW_Liz_GBS_Liz5180	GW_Liz_GBS_Liz5180	ML	lud	lud_ML	51.27
268	GW_Liz_GBS_Liz5182	GW_Liz_GBS_Liz5182	ML	lud_chick	lud_ML	51.28
269	GW_Liz_GBS_Liz5184	GW_Liz_GBS_Liz5184	ML	lud_chick	lud_ML	51.29
270	GW_Liz_GBS_Liz5185	GW_Liz_GBS_Liz5185	ML	lud	lud_ML	51.3
271	GW_Liz_GBS_Liz5186	GW_Liz_GBS_Liz5186	ML	lud_chick	lud_ML	51.31
272	GW_Liz_GBS_Liz5187	GW_Liz_GBS_Liz5187	ML	lud_chick	lud_ML	51.32
273	GW_Liz_GBS_Liz5188	GW_Liz_GBS_Liz5188	ML	lud	lud_ML	51.33
274	GW_Liz_GBS_Liz5189	GW_Liz_GBS_Liz5189	ML	lud_chick	lud_ML	51.34
275	GW_Liz_GBS_Liz5190	GW_Liz_GBS_Liz5190	ML	lud_chick	lud_ML	51.35
276	GW_Liz_GBS_Liz5191	GW_Liz_GBS_Liz5191	ML	lud_chick	lud_ML	51.36
277	GW_Liz_GBS_Liz5192	GW_Liz_GBS_Liz5192	ML	lud_chick	lud_ML	51.37
278	GW_Liz_GBS_Liz5193	GW_Liz_GBS_Liz5193	ML	lud_chick	lud_ML	51.38
279	GW_Liz_GBS_Liz5194	GW_Liz_GBS_Liz5194	ML	lud_chick	lud_ML	51.39
280	GW_Liz_GBS_Liz5195	GW_Liz_GBS_Liz5195	ML	lud	lud_ML	51.4
281	GW_Liz_GBS_Liz5197	GW_Liz_GBS_Liz5197	ML	lud	lud_ML	51.41
282	GW_Liz_GBS_Liz5199	GW_Liz_GBS_Liz5199	ML	lud_chick	lud_ML	51.42

283	GW_Liz_GBS_Liz6002	GW_Liz_GBS_Liz6002	ML	lud	lud_ML	51.43
284	GW_Liz_GBS_Liz6006	GW_Liz_GBS_Liz6006	ML	lud	lud_ML	51.44
285	GW_Liz_GBS_Liz6008	GW_Liz_GBS_Liz6008	ML	lud	lud_ML	51.45
286	GW_Liz_GBS_Liz6009	GW_Liz_GBS_Liz6009	ML	lud	lud_ML	51.46
287	GW_Liz_GBS_Liz6010	GW_Liz_GBS_Liz6010	ML	lud	lud_ML	51.47
288	GW_Liz_GBS_Liz6012	GW_Liz_GBS_Liz6012	ML	lud	lud_ML	51.48
289	GW_Liz_GBS_Liz6014	GW_Liz_GBS_Liz6014	ML	lud	lud_ML	51.49
290	GW_Liz_GBS_Liz6055	GW_Liz_GBS_Liz6055	ML	lud	lud_ML	51.5
291	GW_Liz_GBS_Liz6057	GW_Liz_GBS_Liz6057	ML	lud	lud_ML	51.51
292	GW_Liz_GBS_Liz6060	GW_Liz_GBS_Liz6060	ML	lud	lud_ML	51.52
293	GW_Liz_GBS_Liz6062	GW_Liz_GBS_Liz6062	ML	lud	lud_ML	51.53
294	GW_Liz_GBS_Liz6063	GW_Liz_GBS_Liz6063	ML	lud	lud_ML	51.54
295	GW_Liz_GBS_Liz6066	GW_Liz_GBS_Liz6066	ML	lud	lud_ML	51.55
296	GW_Liz_GBS_Liz6072	GW_Liz_GBS_Liz6072	ML	lud	lud_ML	51.56
297	GW_Liz_GBS_Liz6079	GW_Liz_GBS_Liz6079	ML	lud	lud_ML	51.57
298	GW_Liz_GBS_Liz6203	GW_Liz_GBS_Liz6203	ML	lud_chick	lud_ML	51.58
299	GW_Liz_GBS_Liz6204	GW_Liz_GBS_Liz6204	ML	lud_chick	lud_ML	51.59
300	GW_Liz_GBS_Liz6461	GW_Liz_GBS_Liz6461	ML	lud	lud_ML	51.6
301	GW_Liz_GBS_Liz6472	GW_Liz_GBS_Liz6472	ML	lud	lud_ML	51.61
302	GW_Liz_GBS_Liz6478	GW_Liz_GBS_Liz6478	ML	lud	lud_ML	51.62
303	GW_Liz_GBS_Liz6766	GW_Liz_GBS_Liz6766	ML	lud	lud_ML	51.63
304	GW_Liz_GBS_Liz6776	GW_Liz_GBS_Liz6776	ML	lud	lud_ML	51.64
305	GW_Liz_GBS_Liz6794	GW_Liz_GBS_Liz6794	ML	lud	lud_ML	51.65
306	GW_Liz_GBS_P_fusc	GW_Liz_GBS_P_fusc	fusc	fusc	fusc	101.0
307	GW_Liz_GBS_P_h_man	GW_Liz_GBS_P_h_man	hmand	hmand	hmand	102.0
308	GW_Liz_GBS_P_humei	GW_Liz_GBS_P_humei	hume	hume	hume	103.0
309	GW_Liz_GBS_P_inor	GW_Liz_GBS_P_inor	inor	inor	inor	104.0
310	GW_Liz_GBS_S_burk	GW_Liz_GBS_S_burk	burk	burk	burk	105.0

GOOD NEWS: names of individuals in metadata file and genotype ind file match perfectly.

Filtering

Filter out duplicate runs (indicated with _rep in Fst_group column)

```
selection = occursin.("_rep", ind_with_metadata.Fst_group)
println("""Filtering out these runs because they are duplicates of another,
```

```
according to having "rep" in Fst_group: """)
      display(ind_with_metadata.ind[selection])
      ind_with_metadata_indFiltered = ind_with_metadata[Not(selection), :];
      geno_indFiltered = view(geno, Not(selection), :); # use of view() avoids copying large memory or
Filtering out these runs because they are duplicates of another,
according to having "rep" in Fst_group:
11-element Vector{String}:
"GW_Armando_plate1_TTGW05_rep1"
"GW_Armando_plate2_IL2"
"GW_Armando_plate2_LN11"
"GW_Armando_plate2_TTGW05_rep3"
"GW_Armando_plate2_TTGW05_rep4"
"GW_Lane5_AB1"
"GW_Lane5_IL2"
"GW_Lane5_LN2"
"GW_Lane5_TL3"
"GW_Lane5_UY1"
"GW_Liz_GBS_Liz5101_R"
```

Filter specific individuals

If there are certain individuals that we want to filter out prior to any additional analysis, we can do so here by setting filter to true and specifying the individual row numbers in filter_out_inds:

```
filter = true
# Specify individuals to filter out:
filter_out_inds = ["GW_Liz_GBS_P_fusc", "GW_Liz_GBS_P_h_man", "GW_Liz_GBS_P_humei", "GW_Liz_GBS_P_in
if filter
    selection = map(in(filter_out_inds), ind_with_metadata_indFiltered.ind)
    filtered_out = ind_with_metadata_indFiltered.ind[selection]
    ind_with_metadata_indFiltered = ind_with_metadata_indFiltered[Not(selection), :]
    geno_indFiltered = view(geno_indFiltered, Not(selection), :)
    println("Specific individuals filtered out as requested: ")
    display(filtered_out)
else
    println("No specific individuals filtered (because filter not true)")
end
```

Specific individuals filtered out as requested:

```
5-element Vector{String}:

"GW_Liz_GBS_P_fusc"

"GW_Liz_GBS_P_h_man"

"GW_Liz_GBS_P_humei"

"GW_Liz_GBS_P_inor"

"GW_Liz_GBS_S_burk"
```

Filter individuals based on missing genotypes

Here we determine number of missing SNPs per individual (40% for this round), and filter out those individual datasets with more than a certain percent of missing SNPs:

```
SNPmissing_percent_allowed_per_ind = 40  # this is the percentage threshold
threshold_missing = loci_count * SNPmissing_percent_allowed_per_ind/100
numMissings = sum(geno_indFiltered .== -1, dims=2)
ind_with_metadata_indFiltered.numMissings .= numMissings
selection = vec(numMissings .<= threshold_missing) # the vec command converts to BitVector rather th
println("Filtering out these individuals based on too many missing genotypes: ")
filtered_inds = ind_with_metadata_indFiltered.ind[selection.==false]
println(DataFrame(filtered_inds = filtered_inds)) # did this to print all lines
ind_with_metadata_indFiltered = ind_with_metadata_indFiltered[selection, :]
geno_indFiltered = view(geno_indFiltered, selection, :);
println()
println("Here are the remaining individuals: ")
println(DataFrame(ind_with_metadata_indFiltered))</pre>
```

Filtering out these individuals based on too many missing genotypes: 33×1 DataFrame

```
Row filtered_inds
String

1 GW_Armando_plate1_JG08G02
2 GW_Armando_plate1_JG10G01
3 GW_Armando_plate1_NO_BC_TTGW05
4 GW_Armando_plate1_NO_DNA
5 GW_Armando_plate1_TTGW21
6 GW_Armando_plate1_TTGW71
7 GW_Armando_plate2_NO_BC_TTGW05
```

8 GW_Armando_plate2_NO_DNA 9 GW_Armando_plate2_TTGW15 GW_Lane5_AA10 10 11 GW_Lane5_DA6 12 GW_Lane5_LN11 13 GW_Liz_GBS_Liz5101 GW_Liz_GBS_Liz5118 14 15 GW_Liz_GBS_Liz5139 GW_Liz_GBS_Liz5142 16 17 GW_Liz_GBS_Liz5150 ${\tt GW_Liz_GBS_Liz5159}$ 18 19 GW_Liz_GBS_Liz5162 20 GW_Liz_GBS_Liz5169 21 GW_Liz_GBS_Liz5171 GW_Liz_GBS_Liz5172 22 23 GW_Liz_GBS_Liz5174 GW_Liz_GBS_Liz5176 24 25 GW_Liz_GBS_Liz5177 26 GW_Liz_GBS_Liz5180 27 GW_Liz_GBS_Liz5186 28 GW_Liz_GBS_Liz5187 29 GW_Liz_GBS_Liz5192 30 GW_Liz_GBS_Liz5195 GW_Liz_GBS_Liz6012 31 ${\tt GW_Liz_GBS_Liz6203}$ 32 33 GW_Liz_GBS_Liz6766

Here are the remaining individuals:

261×7 DataFrame

Row	ind	ID	loca	tion {	group	Fst_gro	up plot_orde	r numMissin@
	String	String31	St	ring7	String15	Strin	ng15 Float64	Int64
1	GW_Armando_plate1_AB1	GW_A	Armando_plate1_AE	1	AB	vir	vir	20.01
2	GW_Armando_plate1_JF07	G02 GW.	_Armando_plate1_3	JF07G02	2 ST	plumb	plumb	87.001
3	GW_Armando_plate1_JF07	G03 GW.	_Armando_plate1_3	JF07G0	3 ST	plumb	plumb	87.002
4	GW_Armando_plate1_JF07	G04 GW.	_Armando_plate1_3	JF07G04	4 ST	plumb	plumb	87.003
5	GW_Armando_plate1_JF08	G02 GW.	_Armando_plate1_3	JF08G02	2 ST	plumb	plumb	87.004
6	GW_Armando_plate1_JF09	G01 GW.	_Armando_plate1_3	JF09G0:	1 ST	plumb	plumb	87.005

7	GW_Armando_plate1_JF09G02	GW_Armando_plate1_JF09G02	ST	plumb	plumb	87.006
8	GW_Armando_plate1_JF10G03	GW_Armando_plate1_JF10G03	ST	plumb_vir	plumb_vir	77.91
9	GW_Armando_plate1_JF11G01	GW_Armando_plate1_JF11G01	ST	plumb	plumb	87.008
10	GW_Armando_plate1_JF12G01	GW_Armando_plate1_JF12G01	ST	plumb	plumb	87.009
11	GW_Armando_plate1_JF12G02	GW_Armando_plate1_JF12G02	ST	plumb	plumb	87.01
12	GW_Armando_plate1_JF12G04	GW_Armando_plate1_JF12G04	ST_vi	vir	vir	24.001
13	GW_Armando_plate1_JF13G01	GW_Armando_plate1_JF13G01	ST	plumb	plumb	87.011
14	GW_Armando_plate1_JF15G03	GW_Armando_plate1_JF15G03	KK	plumb	plumb	87.012
15	GW_Armando_plate1_JF16G01	GW_Armando_plate1_JF16G01	KK_vi	plumb_vir	vir	24.04
16	GW_Armando_plate1_JF20G01	GW_Armando_plate1_JF20G01	KK	plumb	plumb	87.014
17	GW_Armando_plate1_JF22G01	GW_Armando_plate1_JF22G01	KK	plumb	plumb	87.015
18	GW_Armando_plate1_JF23G01	GW_Armando_plate1_JF23G01	KK	plumb	plumb	87.016
19	GW_Armando_plate1_JF23G02	GW_Armando_plate1_JF23G02	KK	plumb	plumb	87.017
20	GW_Armando_plate1_JF24G02	GW_Armando_plate1_JF24G02	KK	plumb	plumb	87.018
21	GW_Armando_plate1_JF26G01	GW_Armando_plate1_JF26G01	ST	plumb	plumb	87.019
22	GW_Armando_plate1_JF27G01	GW_Armando_plate1_JF27G01	ST	plumb	plumb	87.02
23	GW_Armando_plate1_JF29G01	GW_Armando_plate1_JF29G01	ST	plumb	plumb	87.021
24	GW_Armando_plate1_JF29G02	GW_Armando_plate1_JF29G02	ST	plumb	plumb	87.022
25	GW_Armando_plate1_JF29G03	GW_Armando_plate1_JF29G03	ST	plumb	plumb	87.023
26	GW_Armando_plate1_JG02G02	GW_Armando_plate1_JG02G02	KK	plumb	plumb	87.024
27	GW_Armando_plate1_JG02G04	GW_Armando_plate1_JG02G04	KK	plumb	plumb	87.025
28	GW_Armando_plate1_JG08G01	GW_Armando_plate1_JG08G01	ST	plumb	plumb	87.026
29	GW_Armando_plate1_JG12G01	GW_Armando_plate1_JG12G01	ST	plumb	plumb	87.029
30	GW_Armando_plate1_JG17G01	GW_Armando_plate1_JG17G01	ST	plumb_vir	plumb	77.92
31	GW_Armando_plate1_RF20G01	GW_Armando_plate1_RF20G01	ВЈ	obs_plumb	plumb_BJ	77.50
32	GW_Armando_plate1_RF29G02	GW_Armando_plate1_RF29G02	ВЈ	obs_plumb	plumb_BJ	77.50
33	GW_Armando_plate1_TL3	GW_Armando_plate1_TL3	TL v	ir vi	.r 11.	01 1
34	GW_Armando_plate1_TTGW01	GW_Armando_plate1_TTGW01	MN	troch_MN	troch_west	53.0
35	GW_Armando_plate1_TTGW05_re	ep2 GW_Armando_plate1_TTGW05	_rep2 MN	troch_MN	troch_we	st 53
36	GW_Armando_plate1_TTGW06	GW_Armando_plate1_TTGW06	SU	lud_Sukhto	lud_central	47.0
37	GW_Armando_plate1_TTGW07	GW_Armando_plate1_TTGW07	SU	lud_Sukhto	lud_central	47.0
38	GW_Armando_plate1_TTGW10	GW_Armando_plate1_TTGW10	SU	lud_Sukhto	lud_central	47.0
39	GW_Armando_plate1_TTGW11	GW_Armando_plate1_TTGW11	SU	lud_Sukhto	lud_central	47.0
40	GW_Armando_plate1_TTGW13	GW_Armando_plate1_TTGW13	TH	lud_Thallig	nar lud_centra	al 43.
41	GW_Armando_plate1_TTGW17	GW_Armando_plate1_TTGW17	TH	lud_Thallig	nar lud_centra	al 43.
42	GW_Armando_plate1_TTGW19	GW_Armando_plate1_TTGW19	TH	lud_Thallig	nar lud_centra	al 43.
43	GW_Armando_plate1_TTGW22	GW_Armando_plate1_TTGW22	SR	lud_Sural	lud_central	45.0
	•					

44	GW_Armando_plate1_TTGW23	GW_Armando_plate1_TTGW23	SR	lud_Sural	lud_central	45.0
45	GW_Armando_plate1_TTGW29	GW_Armando_plate1_TTGW29	SR	lud_Sural	lud_central	45.0
46	GW_Armando_plate1_TTGW52	GW_Armando_plate1_TTGW52	NG	lud_Nainaghar	lud_central	49.
47	GW_Armando_plate1_TTGW53	GW_Armando_plate1_TTGW53	NG	lud_Nainaghar	lud_central	49.
48	GW_Armando_plate1_TTGW55	GW_Armando_plate1_TTGW55	NG	lud_Nainaghar	lud_central	49.
49	GW_Armando_plate1_TTGW57	GW_Armando_plate1_TTGW57	NG	lud_Nainaghar	lud_central	49.
50	GW_Armando_plate1_TTGW58	GW_Armando_plate1_TTGW58	NG	lud_Nainaghar	lud_central	49.
51	GW_Armando_plate1_TTGW59	GW_Armando_plate1_TTGW59	NG	lud_Nainaghar	lud_central	49.
52	GW_Armando_plate1_TTGW63	GW_Armando_plate1_TTGW63	SP	lud_Spiti	troch_west	55.0
53	GW_Armando_plate1_TTGW64	GW_Armando_plate1_TTGW64	SP	lud_Spiti	troch_west	55.0
54	GW_Armando_plate1_TTGW65	GW_Armando_plate1_TTGW65	SP	lud_Spiti	troch_west	55.0
55	GW_Armando_plate1_TTGW66	GW_Armando_plate1_TTGW66	SP	lud_Spiti	troch_west	55.0
56	GW_Armando_plate1_TTGW68	GW_Armando_plate1_TTGW68	SP	lud_Spiti	troch_west	55.0
57	GW_Armando_plate1_TTGW70	GW_Armando_plate1_TTGW70 S	SA	lud_Sathrundi	lud_Sath	41.0
58	GW_Armando_plate1_TTGW72	GW_Armando_plate1_TTGW72	SA	lud_Sathrundi	lud_Sath	41.0
59	GW_Armando_plate1_TTGW74	GW_Armando_plate1_TTGW74	SA	lud_Sathrundi	lud_Sath	41.0
60	GW_Armando_plate1_TTGW78	GW_Armando_plate1_TTGW78	SA	lud_Sathrundi	lud_Sath	41.0
61	GW_Armando_plate1_TTGW_15_05	GW_Armando_plate1_TTGW_15_05	SR SR	lud_Sural	lud_centra	al 45
62	GW_Armando_plate1_TTGW_15_07	GW_Armando_plate1_TTGW_15_07	' SR	lud_Sural	lud_centra	al 45
63	GW_Armando_plate1_TTGW_15_08	GW_Armando_plate1_TTGW_15_08	S SR	lud_Sural	lud_centra	al 45
64	GW_Armando_plate1_TTGW_15_09	GW_Armando_plate1_TTGW_15_09	SR	lud_Sural	lud_centra	al 45
65	GW_Armando_plate1_UY1 G	GW_Armando_plate1_UY1 UY	рΊ	lumb plu	ımb 88.	.01
66	GW_Armando_plate2_JE31G01	GW_Armando_plate2_JE31G01	KK_vi	vir_misID	vir	24.00
67	GW_Armando_plate2_JF03G01	GW_Armando_plate2_JF03G01	ST_vi	vir_misID	vir	24.00
68	GW_Armando_plate2_JF03G02	GW_Armando_plate2_JF03G02	KK_vi	vir_misID	vir	24.00
69	GW_Armando_plate2_JF07G01	GW_Armando_plate2_JF07G01	ST	plumb	plumb	87.031
70	GW_Armando_plate2_JF08G04	GW_Armando_plate2_JF08G04	ST	plumb	plumb	87.032
71	GW_Armando_plate2_JF10G02	GW_Armando_plate2_JF10G02	ST	plumb	plumb	87.033
72	GW_Armando_plate2_JF11G02	GW_Armando_plate2_JF11G02	ST	plumb	plumb	87.034
73	GW_Armando_plate2_JF12G03	GW_Armando_plate2_JF12G03	ST	plumb	plumb	87.035
74	GW_Armando_plate2_JF12G05	GW_Armando_plate2_JF12G05	ST	plumb	plumb	87.036
75	GW_Armando_plate2_JF13G02	GW_Armando_plate2_JF13G02	ST	plumb	plumb	87.037
76	GW_Armando_plate2_JF14G01	GW_Armando_plate2_JF14G01	KK	plumb	plumb	87.038
77	GW_Armando_plate2_JF14G02	GW_Armando_plate2_JF14G02	KK	plumb	plumb	87.039
78	GW_Armando_plate2_JF15G01	GW_Armando_plate2_JF15G01	KK	plumb	plumb	87.04
79	GW_Armando_plate2_JF15G02	GW_Armando_plate2_JF15G02	KK	plumb	plumb	87.041
80	GW_Armando_plate2_JF16G02	GW_Armando_plate2_JF16G02	KK_vi	plumb_vir	vir	24.04

81	GW_Armando_plate2_JF19G01	GW_Armando_plate2_JF19G01	KK	plumb	plumb	87.043
82	GW_Armando_plate2_JF20G02	GW_Armando_plate2_JF20G02	KK	plumb	plumb	87.044
83	GW_Armando_plate2_JF24G01	GW_Armando_plate2_JF24G01	KK	plumb	plumb	87.045
84	GW_Armando_plate2_JF24G03	GW_Armando_plate2_JF24G03	ST	plumb	plumb	87.046
85	GW_Armando_plate2_JF25G01	GW_Armando_plate2_JF25G01	KK	plumb	plumb	87.047
86	GW_Armando_plate2_JF26G02	GW_Armando_plate2_JF26G02	KK	plumb	plumb	87.048
87	GW_Armando_plate2_JF27G02	GW_Armando_plate2_JF27G02	KK	plumb	plumb	87.049
88	GW_Armando_plate2_JF30G01	GW_Armando_plate2_JF30G01	ST_v	i vir_misID	vir	24.00
89	GW_Armando_plate2_JG01G01	GW_Armando_plate2_JG01G01	KK	plumb	plumb	87.05
90	GW_Armando_plate2_JG02G01	GW_Armando_plate2_JG02G01	KK	plumb	plumb	87.051
91	GW_Armando_plate2_JG02G03	GW_Armando_plate2_JG02G03	KK	plumb	plumb	87.052
92	GW_Armando_plate2_JG10G02	GW_Armando_plate2_JG10G02	ST	plumb	plumb	87.053
93	GW_Armando_plate2_JG10G03	GW_Armando_plate2_JG10G03	ST	plumb	plumb	87.054
94	GW_Armando_plate2_JG12G02	GW_Armando_plate2_JG12G02	ST	plumb	plumb	87.055
95	GW_Armando_plate2_JG12G03	GW_Armando_plate2_JG12G03	ST	plumb	plumb	87.056
96	GW_Armando_plate2_LN2	GW_Armando_plate2_LN2	LN	troch_LN	troch_LN	58.01
97	GW_Armando_plate2_RF29G01	GW_Armando_plate2_RF29G01	ВЈ	obs_plumb	plumb_BJ	77.50
98	GW_Armando_plate2_TTGW02	GW_Armando_plate2_TTGW02	MN	troch_MN	troch_west	53.0
99	GW_Armando_plate2_TTGW03	GW_Armando_plate2_TTGW03	MN	troch_MN	troch_west	53.0
100	GW_Armando_plate2_TTGW08	GW_Armando_plate2_TTGW08	SU	lud_Sukhto	lud_centra	1 47.0
101	GW_Armando_plate2_TTGW09	GW_Armando_plate2_TTGW09	SU	lud_Sukhto	lud_centra	1 47.0
102	GW_Armando_plate2_TTGW12	GW_Armando_plate2_TTGW12	TH	lud_Thallig	har lud_cent	ral 43
103	GW_Armando_plate2_TTGW14	GW_Armando_plate2_TTGW14	TH	lud_Thallig	har lud_cent	ral 43
104	GW_Armando_plate2_TTGW16	GW_Armando_plate2_TTGW16	TH	lud_Thallig	har lud_cent	ral 43
105	GW_Armando_plate2_TTGW18	GW_Armando_plate2_TTGW18	TH	lud_Thallig	har lud_cent	ral 43
106	GW_Armando_plate2_TTGW20	GW_Armando_plate2_TTGW20	SR	lud_Sural	lud_centra	l 45.0
107	GW_Armando_plate2_TTGW24	GW_Armando_plate2_TTGW24	SR	lud_Sural	lud_centra	l 45.0
108	GW_Armando_plate2_TTGW25	GW_Armando_plate2_TTGW25	SR	lud_Sural	lud_centra	l 45.0
109	GW_Armando_plate2_TTGW27	GW_Armando_plate2_TTGW27	SR	lud_Sural	lud_centra	l 45.0
110	GW_Armando_plate2_TTGW28	GW_Armando_plate2_TTGW28	SR	lud_Sural	lud_centra	l 45.0
111	GW_Armando_plate2_TTGW50	GW_Armando_plate2_TTGW50	NG	lud_Nainagh	ar lud_centr	al 49
112	GW_Armando_plate2_TTGW51	GW_Armando_plate2_TTGW51	NG	lud_Nainagh	ar lud_centr	al 49
113	GW_Armando_plate2_TTGW54	GW_Armando_plate2_TTGW54	NG	lud_Nainagh	ar lud_centr	al 49
114	GW_Armando_plate2_TTGW56	GW_Armando_plate2_TTGW56	NG	lud_Nainagh	ar lud_centr	al 49
115	GW_Armando_plate2_TTGW60	GW_Armando_plate2_TTGW60	SP	lud_Spiti	troch_west	55.0
116	GW_Armando_plate2_TTGW61	GW_Armando_plate2_TTGW61	SP	lud_Spiti	troch_west	55.0
117	GW_Armando_plate2_TTGW62	GW_Armando_plate2_TTGW62	SP	lud_Spiti	troch_west	55.0

	1						
118	GW_Armando_plate2_TTGW67	GW_Arman	do_plate2_TTGW67		lud_Spiti	troch_west	55.0
119	GW_Armando_plate2_TTGW69	GW_Arman	do_plate2_TTGW69	SP	lud_Spiti	troch_west	55.0
120	GW_Armando_plate2_TTGW73	GW_Arman	do_plate2_TTGW73	SA	lud_Sathrundi		41.0
121	GW_Armando_plate2_TTGW75	GW_Arman	do_plate2_TTGW75	SA	lud_Sathrundi	lud_Sath	41.0
122	GW_Armando_plate2_TTGW77	GW_Arman	do_plate2_TTGW77	SA	lud_Sathrundi	lud_Sath	41.0
123	GW_Armando_plate2_TTGW79	GW_Arman	do_plate2_TTGW79	SA	lud_Sathrundi	lud_Sath	41.0
124	GW_Armando_plate2_TTGW80	GW_Arman	do_plate2_TTGW80	SA	lud_Sathrundi	lud_Sath	41.0
125	GW_Armando_plate2_TTGW_15.	_01 GW_Arma	ando_plate2_TTGW_	.15_01 SR	lud_Sural	lud_cent	ral 4
126	GW_Armando_plate2_TTGW_15.	_02 GW_Arma	ando_plate2_TTGW_	.15_02 SR	lud_Sural	lud_cent	ral 4
127	GW_Armando_plate2_TTGW_15.	_03 GW_Arma	ando_plate2_TTGW_	.15_03 SR	lud_Sural	lud_cent	ral 4
128	GW_Armando_plate2_TTGW_15.	_04 GW_Arma	ando_plate2_TTGW_	.15_04 SR	lud_Sural	lud_cent	ral 4
129	GW_Armando_plate2_TTGW_15.	_06 GW_Arma	ando_plate2_TTGW_	.15_06 SR	lud_Sural	lud_cent	ral 4
130	GW_Armando_plate2_TTGW_15.	_10 GW_Arma	ando_plate2_TTGW_	.15_10 SR	lud_Sural	lud_cent	ral 4
131	GW_Lane5_AA1 G	GW_Lane5_AA1	AA	vir_S	vir_S	25.0	71767
132	GW_Lane5_AA11 (GW_Lane5_AA1	L1 AA	vir_S	vir_S	34.0	73608
133	GW_Lane5_AA3 G	GW_Lane5_AA3	AA	vir_S	vir_S	26.0	66255
134	GW_Lane5_AA4 G	GW_Lane5_AA4	AA	vir_S	vir_S	27.0	66596
135	GW_Lane5_AA5 G	GW_Lane5_AA5	AA	vir_S	vir_S	28.0	71861
136	GW_Lane5_AA6	GW_Lane5_AA6	AA	vir_S	vir_S	29.0	77882
137	GW_Lane5_AA7 G	GW_Lane5_AA7	AA	vir_S	vir_S	30.0	72471
138	GW_Lane5_AA8 G	GW_Lane5_AA8	AA	vir_S	vir_S	31.0	92231
139	GW_Lane5_AA9 G	GW_Lane5_AA9	AA	vir_S	vir_S	32.0	79151
140	GW_Lane5_AB2	GW_Lane5_AB2	AB	vir	vir	21.0	915622
141	GW_Lane5_AN1 G	GW_Lane5_AN1	AN	plumb	plumb	80.0	71904
142	GW_Lane5_AN2	GW_Lane5_AN2	AN	plumb	plumb	81.0	68434
143	GW_Lane5_BK2	GW_Lane5_BK2	ВК	plumb	plumb	78.0	66601
144	GW_Lane5_BK3	GW_Lane5_BK3	ВК	plumb	plumb	79.0	66509
145	GW_Lane5_DA2	GW_Lane5_DA2	XN	obs	obs	73.0	655980
146	GW_Lane5_DA3	GW_Lane5_DA3	XN	obs	obs	74.0	696722
147	GW_Lane5_DA4 G	GW_Lane5_DA4	XN	obs	obs	75.0	634940
148	GW_Lane5_DA7	GW_Lane5_DA7	XN	obs	obs	77.0	733664
149	GW_Lane5_EM1 G	GW_Lane5_EM1	EM	troch_E	EM troch_EM	72.0	711
150	GW_Lane5_IL1 G	GW_Lane5_IL1	IL	plumb	plumb	82.0	69803
151	GW_Lane5_IL4	GW_Lane5_IL4	IL	plumb	plumb	84.0	72605
152	GW_Lane5_KS1 G	GW_Lane5_KS1	OV	lud_KS	lud_KS	40.0	7516
153	GW_Lane5_KS2	GW_Lane5_KS2	OV	lud_KS	lud_KS	40.0	82024
154	GW_Lane5_LN1 G	GW_Lane5_LN1	LN	troch_L	N troch_LN	57.0	707

155	GW_Lane5_LN10	GW_Lane5_LN10	LN	troch_LN	troch_LN	64.0	783
156	GW_Lane5_LN12	GW_Lane5_LN12	LN	troch_LN	troch_LN	66.0	884
157	GW_Lane5_LN14	GW_Lane5_LN14	LN	troch_LN	troch_LN	67.0	753
158	GW_Lane5_LN16	GW_Lane5_LN16	LN	troch_LN	troch_LN	68.0	738
159	GW_Lane5_LN18	GW_Lane5_LN18	LN	troch_LN	troch_LN	69.0	711
160	GW_Lane5_LN19	GW_Lane5_LN19	LN	troch_LN	troch_LN	70.0	731
161	GW_Lane5_LN20	GW_Lane5_LN20	LN	troch_LN	troch_LN	71.0	738
162	GW_Lane5_LN3	GW_Lane5_LN3	LN	troch_LN	troch_LN	59.0	702
163	GW_Lane5_LN4	GW_Lane5_LN4	LN	troch_LN	troch_LN	60.0	683
164	GW_Lane5_LN6	GW_Lane5_LN6	LN	troch_LN	troch_LN	61.0	690
165	GW_Lane5_LN7	GW_Lane5_LN7	LN	troch_LN	troch_LN	62.0	758
166	GW_Lane5_LN8	GW_Lane5_LN8	LN	troch_LN	troch_LN	63.0	662
167	GW_Lane5_MN1	GW_Lane5_MN1	MN	troch_MN	troch_west	51.0	943
168	GW_Lane5_MN12	GW_Lane5_MN12	MN	troch_MN	troch_west	56.0	67
169	GW_Lane5_MN3	GW_Lane5_MN3	MN	troch_MN	troch_west	52.0	946
170	GW_Lane5_MN5	GW_Lane5_MN5	MN	troch_MN	troch_west	53.0	752
171	GW_Lane5_MN8	GW_Lane5_MN8	MN	troch_MN	troch_west	54.0	77:
172	GW_Lane5_MN9	GW_Lane5_MN9	MN	troch_MN	troch_west	55.0	897
173	GW_Lane5_NA1	GW_Lane5_NA1	NR	lud_PK	lud_PK	39.2	91921
174	GW_Lane5_NA3-3ul	GW_Lane5_NA3-3ul	NR	lud_PK	lud_PK	39.2	79
175	GW_Lane5_PT11	GW_Lane5_PT11	KL	lud_KL	lud_central	42.0	77
176	GW_Lane5_PT12	GW_Lane5_PT12	KL	lud_KL	lud_central	42.0	79
177	GW_Lane5_PT2	GW_Lane5_PT2	ML	lud_ML	lud_ML	51.0	76034
178	GW_Lane5_PT3	GW_Lane5_PT3	PA	lud_PA	lud_central	46.0	722
179	GW_Lane5_PT4	GW_Lane5_PT4	PA	lud_PA	lud_central	46.0	705
180	GW_Lane5_PT6	GW_Lane5_PT6	KL	lud_KL	lud_central	42.0	763
181	GW_Lane5_SH1	GW_Lane5_SH1	PK	lud_PK	lud_PK	39.1	96676
182	GW_Lane5_SH2	GW_Lane5_SH2	PK	lud_PK	lud_PK	39.1	76864
183	GW_Lane5_SH4	GW_Lane5_SH4	PK	lud_PK	lud_PK	39.1	84964
184	GW_Lane5_SH5	GW_Lane5_SH5	PK	lud_PK	lud_PK	39.1	92939
185	GW_Lane5_SL1	GW_Lane5_SL1	SL	plumb	plumb	95.0	64888
186	GW_Lane5_SL2	GW_Lane5_SL2	SL	plumb	plumb	96.0	65473
187	GW_Lane5_ST1	GW_Lane5_ST1	ST	plumb	plumb	85.0	60624
188	GW_Lane5_ST12	GW_Lane5_ST12	ST	plumb	plumb	87.0	69126
189	GW_Lane5_ST3	GW_Lane5_ST3	ST	plumb	plumb	86.0	69699
190	GW_Lane5_STvi1	GW_Lane5_STvi1	STvi	vir	vir	22.0	69009
191	GW_Lane5_STvi2	GW_Lane5_STvi2	STvi	vir	vir	23.0	89733

192	GW_Lane5_STvi3	GW_Lane5_STvi3	ST	/i	vir	vir	24.0	76816
193	GW_Lane5_TA1	GW_Lane5_TA1	TA	р	lumb	plumb	94.0	71190
194	GW_Lane5_TL1	GW_Lane5_TL1	TL	V	ir	vir	9.0	743509
195	GW_Lane5_TL10	GW_Lane5_TL10	TL	,	vir	vir	17.0	669934
196	GW_Lane5_TL11	GW_Lane5_TL11	TL	,	vir	vir	18.0	638402
197	GW_Lane5_TL12	GW_Lane5_TL12	TL	,	vir	vir	19.0	585697
198	GW_Lane5_TL2	GW_Lane5_TL2	TL	V	ir	vir	10.0	770857
199	GW_Lane5_TL4	GW_Lane5_TL4	TL	V	ir	vir	12.0	758037
200	GW_Lane5_TL5	GW_Lane5_TL5	TL	V	ir	vir	13.0	867165
201	GW_Lane5_TL7	GW_Lane5_TL7	TL	V	ir	vir	14.0	803407
202	GW_Lane5_TL8	GW_Lane5_TL8	TL	V	ir	vir	15.0	698745
203	GW_Lane5_TL9	GW_Lane5_TL9	TL	V	ir	vir	16.0	606969
204	GW_Lane5_TU1	GW_Lane5_TU1	TU	n	it	nit	35.0	793640
205	GW_Lane5_TU2	GW_Lane5_TU2	TU	n	it	nit	36.0	736785
206	GW_Lane5_UY2	GW_Lane5_UY2	UY	р	lumb	plumb	89.0	72900
207	GW_Lane5_UY3	GW_Lane5_UY3	UY	р	lumb	plumb	90.0	67752
208	GW_Lane5_UY4	GW_Lane5_UY4	UY	р	lumb	plumb	91.0	74984
209	GW_Lane5_UY5	GW_Lane5_UY5	UY	р	lumb	plumb	92.0	71837
210	GW_Lane5_UY6	GW_Lane5_UY6	UY	р	lumb	plumb	93.0	71367
211	GW_Lane5_YK1	GW_Lane5_YK1	YK	V	ir	vir	1.0	831245
212	GW_Lane5_YK11	GW_Lane5_YK11	YK	,	vir	vir	8.0	730798
213	GW_Lane5_YK3	GW_Lane5_YK3	YK	V	ir	vir	2.0	731944
214	GW_Lane5_YK4	GW_Lane5_YK4	YK	V	ir	vir	3.0	740051
215	GW_Lane5_YK5	GW_Lane5_YK5	YK	V	ir	vir	4.0	738740
216	GW_Lane5_YK6	GW_Lane5_YK6	YK	V	ir	vir	5.0	697420
217	GW_Lane5_YK7	GW_Lane5_YK7	YK	V	ir	vir	6.0	692052
218	GW_Lane5_YK9	GW_Lane5_YK9	YK	V	ir	vir	7.0	768722
219	GW_Liz_GBS_Liz10045	GW_Liz_GBS_Liz10045		ML	lud	lu	d_ML	51.01
220	GW_Liz_GBS_Liz10094	GW_Liz_GBS_Liz10094		ML	lud	lu	d_ML	51.02
221	GW_Liz_GBS_Liz5144	GW_Liz_GBS_Liz5144		ML	lud	lud	_ML	51.08 9
222	GW_Liz_GBS_Liz5163	GW_Liz_GBS_Liz5163		ML	lud_chi	.ck l	ud_ML	51.12
223	GW_Liz_GBS_Liz5164	GW_Liz_GBS_Liz5164		ML	lud_chi	.ck l	ud_ML	51.13
224	GW_Liz_GBS_Liz5165	GW_Liz_GBS_Liz5165		ML	lud	lud	_ML	51.14 9
225	GW_Liz_GBS_Liz5167	GW_Liz_GBS_Liz5167		ML	lud_chi	.ck l	ud_ML	51.15
226	GW_Liz_GBS_Liz5168	GW_Liz_GBS_Liz5168		ML	lud_chi	.ck l	ud_ML	51.16
227	GW_Liz_GBS_Liz5173	GW_Liz_GBS_Liz5173		ML	lud_chi	.ck l	ud_ML	51.2
228	GW_Liz_GBS_Liz5175	GW_Liz_GBS_Liz5175		ML	lud	lud	_ML	51.22 9

229	GW_Liz_GBS_Liz5178	GW_Liz_GBS_Liz5178	ML	lud_chick	lud_ML	51.25	
230	GW_Liz_GBS_Liz5179	GW_Liz_GBS_Liz5179	ML	lud_chick	lud_ML	51.26	
231	GW_Liz_GBS_Liz5182	GW_Liz_GBS_Liz5182	ML	lud_chick	lud_ML	51.28	
232	GW_Liz_GBS_Liz5184	GW_Liz_GBS_Liz5184	ML	lud_chick	lud_ML	51.29	
233	GW_Liz_GBS_Liz5185	GW_Liz_GBS_Liz5185	ML	lud	lud_ML	51.3	9
234	GW_Liz_GBS_Liz5188	GW_Liz_GBS_Liz5188	ML	lud	lud_ML	51.33	8
235	GW_Liz_GBS_Liz5189	GW_Liz_GBS_Liz5189	ML	lud_chick	lud_ML	51.34	
236	GW_Liz_GBS_Liz5190	GW_Liz_GBS_Liz5190	ML	lud_chick	lud_ML	51.35	
237	GW_Liz_GBS_Liz5191	GW_Liz_GBS_Liz5191	ML	lud_chick	lud_ML	51.36	
238	GW_Liz_GBS_Liz5193	GW_Liz_GBS_Liz5193	ML	lud_chick	lud_ML	51.38	
239	GW_Liz_GBS_Liz5194	GW_Liz_GBS_Liz5194	ML	lud_chick	lud_ML	51.39	
240	GW_Liz_GBS_Liz5197	GW_Liz_GBS_Liz5197	ML	lud	lud_ML	51.41	8
241	GW_Liz_GBS_Liz5199	GW_Liz_GBS_Liz5199	ML	lud_chick	lud_ML	51.42	
242	GW_Liz_GBS_Liz6002	GW_Liz_GBS_Liz6002	ML	lud	lud_ML	51.43	Ś
243	GW_Liz_GBS_Liz6006	GW_Liz_GBS_Liz6006	ML	lud	lud_ML	51.44	8
244	GW_Liz_GBS_Liz6008	GW_Liz_GBS_Liz6008	ML	lud	lud_ML	51.45	Ş
245	GW_Liz_GBS_Liz6009	GW_Liz_GBS_Liz6009	ML	lud	lud_ML	51.46	Ş
246	GW_Liz_GBS_Liz6010	GW_Liz_GBS_Liz6010	ML	lud	lud_ML	51.47	8
247	GW_Liz_GBS_Liz6014	GW_Liz_GBS_Liz6014	ML	lud	lud_ML	51.49	8
248	GW_Liz_GBS_Liz6055	GW_Liz_GBS_Liz6055	ML	lud	lud_ML	51.5	8
249	GW_Liz_GBS_Liz6057	GW_Liz_GBS_Liz6057	ML	lud	lud_ML	51.51	8
250	GW_Liz_GBS_Liz6060	GW_Liz_GBS_Liz6060	ML	lud	lud_ML	51.52	8
251	GW_Liz_GBS_Liz6062	GW_Liz_GBS_Liz6062	ML	lud	lud_ML	51.53	8
252	GW_Liz_GBS_Liz6063	GW_Liz_GBS_Liz6063	ML	lud	lud_ML	51.54	8
253	GW_Liz_GBS_Liz6066	GW_Liz_GBS_Liz6066	ML	lud	lud_ML	51.55	8
254	GW_Liz_GBS_Liz6072	GW_Liz_GBS_Liz6072	ML	lud	lud_ML	51.56	8
255	GW_Liz_GBS_Liz6079	GW_Liz_GBS_Liz6079	ML	lud	lud_ML	51.57	8
256	GW_Liz_GBS_Liz6204	GW_Liz_GBS_Liz6204	ML	lud_chick	lud_ML	51.59	
257	GW_Liz_GBS_Liz6461	GW_Liz_GBS_Liz6461	ML	lud	lud_ML	51.6	8
258	GW_Liz_GBS_Liz6472	GW_Liz_GBS_Liz6472	ML	lud	lud_ML	51.61	Ś
259	GW_Liz_GBS_Liz6478	GW_Liz_GBS_Liz6478	ML	lud	lud_ML	51.62	7
260	GW_Liz_GBS_Liz6776	GW_Liz_GBS_Liz6776	ML	lud	lud_ML	51.64	ç
261	GW_Liz_GBS_Liz6794	GW_Liz_GBS_Liz6794	ML	lud	lud_ML	51.65	8

Filter SNPs with too many missing genotypes:

```
# (remember that first column is arbitrary row number in input file)
missing_genotypes_per_SNP = sum(geno_indFiltered .== -1, dims=1)
missing_genotypes_percent_allowed_per_site = 5  # this is the percentage threshold
threshold_genotypes_missing = size(geno_indFiltered)[1] * missing_genotypes_percent_allowed_per_site
selection = vec(missing_genotypes_per_SNP .<= threshold_genotypes_missing)
geno_ind_SNP_filtered = geno_indFiltered[:, selection]
pos_SNP_filtered = pos_whole_genome[selection[Not(1)],:] # the Not(1) is needed because first column
println("Started with ", size(geno_indFiltered, 2)-1, " SNPs.
After filtering SNPs for no more than ", missing_genotypes_percent_allowed_per_site, "% missing_genotypes_percent_allowed_per_site)</pre>
```

Started with 2431709 SNPs.

After filtering SNPs for no more than 5% missing genotypes, 1017581 SNPs remain.

2nd round of filtering individuals

I added this in August 2023, to improve accuracy of imputation-based PCA, because I noticed outliers tended to have more missing data. Now I only allow up to 10% missing SNPs per individual.

```
SNPmissing_percent_allowed_per_ind_round2 = 10  # this is the percentage threshold threshold_missing = (size(geno_ind_SNP_filtered, 2) - 1) * SNPmissing_percent_allowed_per_ind_round2 numMissings = sum(geno_ind_SNP_filtered .== -1, dims=2) selection = vec(numMissings .<= threshold_missing) # the vec command converts to BitVector rather the geno_ind_SNP_ind_filtered = geno_ind_SNP_filtered[selection, :] println("Filtering out these individuals based on too many missing genotypes: ") filtered_inds = ind_with_metadata_indFiltered.ind[selection.==false] println(DataFrame(filtered_inds = filtered_inds)) # did this to print all lines ind_with_metadata_indFiltered = ind_with_metadata_indFiltered[selection, :] println("This leaves ", size(geno_ind_SNP_ind_filtered, 1), " individuals and ", size(geno_ind_SNP_ind_filtered, 1), " individuals and ", size(geno_ind_SNP_ind_filtered, 1), " individuals and ", of genotypes and no loci missing in more than ", missing_genotypes_percent_allowed_per_site, "% of individuals.")
```

Filtering out these individuals based on too many missing genotypes:

4×1 DataFrame

Row	filtered_inds
	String
1	GW_Armando_plate1_TTGW74
2	GW_Armando_plate2_TTGW54
3	GW_Lane5_AA8

4 | GW_Lane5_YK1
This leaves 257 individuals and 1017581 loci, with no individuals missing more than 10% of genotypes and no loci missing in more than 5% of individuals.

Estimate relationships of individuals using PCA

Our goal is to produce plots showing individuals in genotype space, using Principal Components Analysis. First we need to do a couple changes to our data matrix:

Remove the first column of the genotype matrix (which was an initial row number):

```
genosOnly = geno_ind_SNP_ind_filtered[:, Not(1)]
```

257×1017581 Matrix{Int16}:

For missing genotypes, change our code of -1 to missing:

```
genosOnly_with_missing = Matrix{Union{Missing, Int32}}(genosOnly)
genosOnly_with_missing[genosOnly_with_missing .== -1] .= missing;
```

Impute and save genotypes for each scaffold

PCA requires imputation of missing genotypes. I did imputation for each scaffold above a certain size threshold. Those scaffolds (many of which correspond to whole chromosomes) are listed here:

```
chromosomes_to_process = vec(["gw2",
                               "gw1",
                               "gw3",
                               "gwZ",
                               "gw1A",
                               "gw4",
                               "gw5",
                               "gw7",
                               "gw6",
                               "gw8",
                               "gw9",
                               "gw11",
                               "gw12",
                               "gw10",
                               "gw13",
                               "gw14",
                               "gw18",
                               "gw20",
                               "gw15",
                               "gw1B",
                               "gws100",
                               "gw17",
                               "gw19",
                               "gws101",
                               "gw4A",
                               "gw21",
                               "gw26",
                               "gws102",
                               "gw23",
                               "gw25",
```

```
"gws103",
"gw22",
"gws104",
"gw28",
"gw27",
"gw24",
"gws105",
"gws106",
"gws107",
"gws108",
"gws109",
"gws110",
"gws112"]);
```

Imputation can take several minutes per scaffold, so I ran this imputation step separately from this Quarto notebook (otherwise render would take long) and saved the genotype data for each scaffold for loading in the next step. This is the code I used for imputing:

Now we can cycle through a set of chromosomes and plot a PCA for each. We need to first specify some groups to include in the plot, and their colors:

```
groups_to_plot_PCA = ["vir","vir_misID","vir_S","nit", "lud_PK", "lud_KS", "lud_central", "lud_Sath"
group_colors_PCA = ["blue","blue","turquoise1","grey","seagreen4","seagreen3","seagreen2","olivedrab
```

Now we'll actually do the PCA and make the plot for each scaffold:

```
for i in eachindex(chromosomes_to_process)
    chrom = chromosomes_to_process[i]
    regionText = string("chr", chrom)
    filename = string(baseName, tagName, regionText, ".imputedMissing.jld2")
```

```
imputed_genos = load(filename, "imputed_genos")
      ind_with_metadata_indFiltered = load(filename, "ind_with_metadata_indFiltered")
      pos_SNP_filtered_region = load(filename, "pos_SNP_filtered_region")
      println(string("Loaded ",filename))
      println(string(regionText, ": ", size(imputed_genos,2), " SNPs from ", size(imputed_genos,1), "
      plotPCA(imputed_genos, ind_with_metadata_indFiltered,
               groups_to_plot_PCA, group_colors_PCA;
               sampleSet = "greenish warblers", regionText=regionText,
               flip1 = true, flip2 = true)
  end
Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who
chrgw2: 93292 SNPs from 257 individuals
Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who
chrgw1: 80862 SNPs from 257 individuals
Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who
chrgw3: 82372 SNPs from 257 individuals
Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who
chrgwZ: 53336 SNPs from 257 individuals
Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who
```

chrgw1A: 50051 SNPs from 257 individuals
Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw5: 55329 SNPs from 257 individuals

 $Loaded~GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.where the property of t$

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw6: 40175 SNPs from 257 individuals

 $Loaded\ GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes. SNPs_only.where the contraction of the contraction$

chrgw8: 37818 SNPs from 257 individuals

chrgw4: 49980 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw9: 38180 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw11: 27683 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw12: 33294 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw10: 26962 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw13: 33543 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who

chrgw14: 30969 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who

chrgw18: 19359 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw20: 32739 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw15: 27517 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who chrgw1B: 638 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who chrgws100: 208 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw17: 26313 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw19: 25414 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who chrgws101: 158 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw4A: 18467 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw21: 13321 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw26: 14303 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgws102: 302 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw23: 13949 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw25: 3794 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgws103: 322 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw22: 5473 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgws104: 369 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw28: 11180 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw27: 9684 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw24: 13821 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who chrgws105: 475 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who chrgws106: 115 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgws107: 260 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who chrgws108: 160 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgws109: 310 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgws110: 175 SNPs from 257 individuals

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgws112: 1884 SNPs from 257 individuals

Whole-genome PCA

In addition to making PCA plots for each scaffold, we can do one for the whole genome. The imputing for the whole genome takes some time (almost 2 hours!) for this dataset because the earlier GBS plates had low read depth so more missing genotypes, so I did this in advance and saved a file. This is incorporated into the code below—to actually do the imputing, set do_imputing = true. Otherwise this code will load the previously-imputed data.

```
genosOnly_for_imputing = Matrix{Union{Missing, Float32}}(genosOnly_with_missing)
regionText = "wholeGenome"
filename = string(baseName, tagName, regionText, ".imputedMissing.jld2")
# to do the imputing, do this by setting to true, but TAKES A LONG TIME:
do_imputing = false
if do_imputing
    @time imputed_genosOnly = Impute.svd(genosOnly_for_imputing)
    # took almost 2 hours!
    jldsave(filename; imputed_genosOnly, ind_with_metadata_indFiltered, pos_SNP_filtered)
    imputed_genosOnly_wholeGenome = imputed_genosOnly
    ind_with_metadata_indFiltered_wholeGenome = ind_with_metadata_indFiltered
```

```
pos_SNP_filtered_wholeGenome = pos_SNP_filtered
  print("Saved matrix of real and imputed genotypes for filtered individuals. \n")
else # load the already saved imputing
  imputed_genosOnly_wholeGenome = load(filename, "imputed_genosOnly")
  ind_with_metadata_indFiltered_wholeGenome = load(filename, "ind_with_metadata_indFiltered")
  pos_SNP_filtered_wholeGenome = load(filename, "pos_SNP_filtered")
  println(string("Loaded ",filename))
  println(string(regionText, ": ", size(imputed_genosOnly_wholeGenome, 2), " SNPs from ", size(imputed_genosOnly_wholeGenome, 2), " size(imputed_genosOnly_wholeGenome, 2), "
```

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.wholeGenome: 1017581 SNPs from 257 individuals

Now make the whole-genome PCA:

Genotype-by-individual plots

Now, show individual genotypes for subsets of the dataset. Can choose individuals and genomic regions to plot, along with an Fst cutoff (only show SNPs with greater Fst than the cutoff).

```
set = "vir_plumb"
                    #"59_inds_around_ring" #"east_side_of_ring"
                                                                     #"67_inds_around_ring" # "west
if set == "59_inds_around_ring"
    groups = ["vir","troch_LN","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to
   plotGroups = ["vir","vir_S","lud_PK","lud_KS","lud_central","troch_LN","troch_EM","obs", "plumb_
    plotGroupColors = ["blue","turquoise1","seagreen4","seagreen3","seagreen2","yellow","gold","oran
    numIndsToPlot = [10, 5, 2, 1, 8, 15, 1, 4, 3, 10] # maximum number of individuals to plot from e
    group1 = "vir" # these groups will determine the color used in the graph
    group2 = "plumb"
    groupsToCompare = "vir_plumb"
                                   #"Fst_among" #"vir_troch_LN"
                                                                       #"vir_plumb"
                                                                                          #"troch_LN
   Fst\_cutoff = 0.95
    missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "37_inds_around_ring_plusAllVirPlumb"
    groups = ["vir","troch_LN","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to
```

```
plotGroups = ["vir","lud","troch_LN","troch_EM","obs", "plumb_BJ","plumb"]
   plotGroupColors = ["blue","seagreen4","yellow","gold","orange", "pink","red"]
   numIndsToPlot = [100, 15, 15, 15, 15, 15, 100] # maximum number of individuals to plot from each
   group1 = "vir"
                  # these groups will determine the color used in the graph
   group2 = "plumb"
   groupsToCompare = "Fst_among"
   Fst\_cutoff = 0.7
   missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "west_side_of_ring"
   groups = ["vir","troch_LN"] # for purpose of calculating pairwise Fst and Fst_group (to determine
   plotGroups = ["vir","vir_misID","vir_S","nit", "lud_PK", "lud_KS", "lud_central", "lud_Sath", "l
   plotGroupColors = ["blue","blue","turquoise1","grey","seagreen4","seagreen3","seagreen2","olived
   group1 = "vir" # these groups will determine the color used in the graph
   group2 = "troch_LN"
   groupsToCompare = "vir_troch_LN" # "Fst_among"
   Fst\_cutoff = 0.6
   missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "all_ludlowi_plus_a_few_other"
   groups = ["vir","troch_LN","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to
   plotGroups = ["vir","vir_S","nit", "lud_PK", "lud_KS", "lud_central", "lud_Sath", "lud_ML","troc
   plotGroupColors = ["blue","turquoise1","grey","seagreen4","seagreen3","seagreen2","olivedrab3","
   numIndsToPlot = [4, 4, 4, 1000, 1000, 1000, 1000, 1000, 4, 4] # maximum number of individu
   group1 = "vir" # these groups will determine the color used in the graph
   group2 = "troch_LN"
   groupsToCompare = "vir_troch_LN" # "Fst_among"
   Fst\_cutoff = 0.6
   missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "east_side_of_ring"
   groups = ["troch_LN","obs","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to
   plotGroups = ["troch_LN","troch_EM","obs","plumb_BJ","plumb"]
   plotGroupColors = ["yellow","gold","orange","pink","red"]
   numIndsToPlot = [15, 15, 15, 15, 15] # maximum number of individuals to plot from each group
   group1 = "troch_LN"  # these groups will determine the color used in the graph
   group2 = "plumb"
   groupsToCompare = "troch_LN_plumb"
   Fst\_cutoff = 0.7
   missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "vir_plumb"
   groups = ["vir","plumb"]
   plotGroups = ["vir","plumb_vir","plumb"]
```

```
plotGroupColors = ["blue","purple","red"]
numIndsToPlot = [100,100,100] # maximum number of individuals to plot from each group
group1 = "vir" # these groups will determine the color used in the graph
group2 = "plumb"
groupsToCompare = "vir_plumb"
Fst_cutoff = 0.8
missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among end
```

0.2

Calculate allele freqs and sample sizes (use column Fst_group)

```
freqs, sampleSizes = getFreqsAndSampleSizes(genosOnly_with_missing, ind_with_metadata_indFiltered.Fs
println("Calculated population allele frequencies and sample sizes")
```

Calculated population allele frequencies and sample sizes

calculate Fst

```
Fst, FstNumerator, FstDenominator, pairwiseNamesFst = getFst(freqs, sampleSizes, groups; among=true) println("Calculated Fst values")
```

Calculated Fst values

limit the individuals to include in plot

```
# For this figure only, filter out individuals with lots of missing genotypes
numMissings_threshold = 800_000
selection = ind_with_metadata_indFiltered.numMissings .< numMissings_threshold
genosOnly_with_missing_selected = view(genosOnly_with_missing, selection, :)
ind_with_metadata_indFiltered_selected = view(ind_with_metadata_indFiltered, selection, :)
# now limit each group to specified numbers
genosOnly_included, ind_with_metadata_included = limitIndsToPlot(plotGroups, numIndsToPlot, genosOnl</pre>
```

choose the scaffold and region to show

```
chr = "gw28"
regionInfo = chooseChrRegion(pos_SNP_filtered, chr; positionMin=1, positionMax=NaN) # this gets the regionInfo
```

("gw28", 1, 7900230, "gw28_whole")

NOTE FOR LATER: SHOULD REALLY GET CHROMOSOME LENGTH FOR position-

Now actually make the plot

choose another chromosome, and plot similarly to above

```
chr = "gw28"
regionInfo = chooseChrRegion(pos_SNP_filtered, chr; positionMin=1, positionMax=NaN) # this gets the plotInfo = plotGenotypeByIndividual(groupsToCompare, Fst_cutoff, missingFractionAllowed, regionInfo, pos_SNP_filtered, Fst, pairwiseNamesFst, genosOnly_included, ind_with_metadata_included, freqs, plotGroups, plotGroupColors);
```


Make a GBI plot to illustrate variation along west side of ring

groups = ["vir","troch_LN"] # for purpose of calculating pairwise Fst and Fst_group (to determine SN plotGroups = ["vir","vir_S","nit", "lud_PK", "lud_KS", "lud_central", "lud_Sath", "lud_ML","troch_we plotGroupColors = ["blue","turquoise1","grey","seagreen4","seagreen3","seagreen2","olivedrab3","olivenumIndsToPlot = [10, 5, 2, 3, 5, 15, 3, 5, 10, 10] # maximum number of individuals to plot from each group1 = "vir" # these groups will determine the color used in the graph

```
group2 = "troch_LN"
groupsToCompare = "vir_troch_LN" # "Fst_among"
Fst\_cutoff = 0.9
missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among in
# Calculate allele freqs and sample sizes (use column Fst_group)
freqs, sampleSizes = getFreqsAndSampleSizes(genosOnly_with_missing, ind_with_metadata_indFiltered.Fs
println("Calculated population allele frequencies and sample sizes")
# calculate Fst
Fst, FstNumerator, FstDenominator, pairwiseNamesFst = getFst(freqs, sampleSizes, groups; among=true)
println("Calculated Fst values")
# limit the individuals to include in plot
# For this figure only, filter out individuals with lots of missing genotypes
numMissings_threshold = 800_000
selection = ind_with_metadata_indFiltered.numMissings .< numMissings_threshold</pre>
genosOnly_with_missing_selected = view(genosOnly_with_missing, selection, :)
ind_with_metadata_indFiltered_selected = view(ind_with_metadata_indFiltered, selection, :)
# now limit each group to specified numbers
genosOnly_included, ind_with_metadata_included = limitIndsToPlot(plotGroups, numIndsToPlot, genosOnl
# choose the scaffold and region to show
chr = "gw26"
regionInfo = chooseChrRegion(pos_SNP_filtered, chr; positionMin=1, positionMax=NaN) # this gets the
#### Now actually make the plot
plotInfo = plotGenotypeByIndividual(groupsToCompare, Fst_cutoff, missingFractionAllowed,
    regionInfo, pos_SNP_filtered, Fst, pairwiseNamesFst,
    genosOnly_included, ind_with_metadata_included, freqs, plotGroups, plotGroupColors);
# plotInfo contains a tuple with: (f, plottedGenotype, locations, plottedMetadata)
```

Calculated population allele frequencies and sample sizes Calculated Fst values

Make a GBI plot to illustrate variation along east side of ring

```
groups = ["troch_LN","obs","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to dete
plotGroups = ["troch_LN","troch_EM","obs","plumb_BJ","plumb"]
plotGroupColors = ["yellow","gold","orange","pink","red"]
numIndsToPlot = [15, 15, 15, 15] # maximum number of individuals to plot from each group
group1 = "troch_LN" # these groups will determine the color used in the graph
```

```
group2 = "plumb"
groupsToCompare = "troch_LN_plumb"
Fst_cutoff = 0.9
missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among in
# Calculate allele freqs and sample sizes (use column Fst_group)
freqs, sampleSizes = getFreqsAndSampleSizes(genosOnly_with_missing, ind_with_metadata_indFiltered.Fs
println("Calculated population allele frequencies and sample sizes")
# calculate Fst
Fst, FstNumerator, FstDenominator, pairwiseNamesFst = getFst(freqs, sampleSizes, groups; among=true)
println("Calculated Fst values")
# limit the individuals to include in plot
# For this figure only, filter out individuals with lots of missing genotypes
numMissings_threshold = 800_000
selection = ind_with_metadata_indFiltered.numMissings .< numMissings_threshold</pre>
genosOnly_with_missing_selected = view(genosOnly_with_missing, selection, :)
ind_with_metadata_indFiltered_selected = view(ind_with_metadata_indFiltered, selection, :)
# now limit each group to specified numbers
genosOnly_included, ind_with_metadata_included = limitIndsToPlot(plotGroups, numIndsToPlot, genosOnl
# choose the scaffold and region to show
chr = "gw28"
regionInfo = chooseChrRegion(pos_SNP_filtered, chr; positionMin=1, positionMax=NaN) # this gets the
#### Now actually make the plot
plotInfo = plotGenotypeByIndividual(groupsToCompare, Fst_cutoff, missingFractionAllowed,
    regionInfo, pos_SNP_filtered, Fst, pairwiseNamesFst,
    genosOnly_included, ind_with_metadata_included, freqs, plotGroups, plotGroupColors);
# plotInfo contains a tuple with: (f, plottedGenotype, locations, plottedMetadata)
```

Calculated population allele frequencies and sample sizes Calculated Fst values

PCA plot of the east side of the ring, for one chromosome

```
eastern_groups_to_plot_PCA = ["troch_LN","troch_EM","obs","plumb_BJ","plumb"]
eastern_group_colors_PCA = ["yellow","gold","orange","pink","red"];
chrom = "gw28"
regionText = string("chr", chrom)
filename = string(baseName, tagName, regionText, ".imputedMissing.jld2")
```

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.whochrgw28: 11180 SNPs from 257 individuals

(model = PCA(indim = 11180, outdim = 3, principalratio = 0.16694187), values = Float32[3.3884857 2.7183135 ...

Calculate distances around ring

The locations around the ring (assuming barrier in North) can be graphed against genomic PC1 (or other variables).

Load lat/long data

```
cd(repoDirectory)
latlong_filepath = "metadata/GW_locations_LatLong_2023.txt"
latlongs = DataFrame(CSV.File(latlong_filepath))
print(latlongs)
```

32×5 DataFrame

Row	Location_name	location_short	lat_N	long_E	subspecies
	String31	String7	Float64	Float64	String15
1	Yekaterinburg	YK	56.8	60.6	viridanus
2	Abakan	AB	52.0	89.5	viridanus
3	Teletsk	TL	51.7	87.6	viridanus
4	Stolbi	ST_vi	55.9	92.6	viridanus
5	Krasnoyarski_Krai_vi	KK_vi	55.9	92.6	viridanus
6	Turkey	TU	41.0	42.0	nitidus
7	Ala_Archa	AA	42.54	74.5	viridanus
8	Naran_Pakistan	NR	34.884	73.691	ludlowi
9	Shogran_Pakistan	SH	34.594	73.466	ludlowi
10	Overa_Kashmir	OV	33.991	75.243	ludlowi
11	Satharundhi_ChambaDistrict	SA	32.974	76.222	ludlowi
12	KL_Killar_HP	KL	33.106	76.409	ludlowi
13	Thalighar	TH	32.828	76.45	ludlowi
14	Sural	SR	33.134	76.455	ludlowi
15	PA_Tindi_HP	PA	32.771	76.472	ludlowi
16	Sukhto	SU	32.868	76.855	ludlowi
17	Nainaghar	NG	32.728	76.8594	ludlowi
18	Mooling_and_Keylong	ML	32.508	76.981	ludlowi
19	Manali	MN	32.237	77.13	ludlowi
20	Spiti	SP	32.377	77.281	ludlowi
21	Langtang	LN	28.25	85.5	trochiloides
22	Emeishan	EM	29.5	103.3	obscuratus

23	Xining	XN	37.0	102.0	obscuratus
24	Beijing	ВЈ	40.0	115.5	plumbeitarsus
25	Baikal	BK	51.9	104.9	plumbeitarsus
26	Arshan	AN	51.9	102.5	plumbeitarsus
27	Ilinka	IL	51.1	95.5	plumbeitarsus
28	Tuva	TA	51.3	92.0	plumbeitarsus
29	Stolbi	ST	55.9	92.6	plumbeitarsus
30	Krasnoyarski_Krai	KK	55.9	92.6	plumbeitarsus
31	Uyukski	UY	51.9	94.1	plumbeitarsus
32	Solgonski	SL	55.7	91.0	plumbeitarsus

Make a quick plot to inspect latlong data:

```
f = CairoMakie.Figure()
ax = Axis(f[1, 1],
    title = "Research locations",
    xlabel = "longitude (E)",
    ylabel = "latitude (N)"
)
scatter!(latlongs.long_E, latlongs.lat_N)
f
```


remove "Green warbler" nitidus

 $Phylloscopus\ [t.]\ nitidus$ is outside of the main ring, so remove these samples from this analysis:

```
latlongs2 = latlongs[Not(latlongs.subspecies .== "nitidus"), :];
print(latlongs2)
```

31×5 DataFrame

Row	Location_name	location_short	lat_N	long_E	subspecies
	String31	String7	Float64	Float64	String15
1	Yekaterinburg	YK	56.8	60.6	viridanus
2	Abakan	AB	52.0	89.5	viridanus
3	Teletsk	TL	51.7	87.6	viridanus
4	Stolbi	ST_vi	55.9	92.6	viridanus
5	Krasnoyarski_Krai_vi	KK_vi	55.9	92.6	viridanus
6	Ala_Archa	AA	42.54	74.5	viridanus

7	Naran_Pakistan	NR	34.884	73.691	ludlowi
8	Shogran_Pakistan	SH	34.594	73.466	ludlowi
9	Overa_Kashmir	OV	33.991	75.243	ludlowi
10	Satharundhi_ChambaDistrict	SA	32.974	76.222	ludlowi
11	KL_Killar_HP	KL	33.106	76.409	ludlowi
12	Thalighar	TH	32.828	76.45	ludlowi
13	Sural	SR	33.134	76.455	ludlowi
14	PA_Tindi_HP	PA	32.771	76.472	ludlowi
15	Sukhto	SU	32.868	76.855	ludlowi
16	Nainaghar	NG	32.728	76.8594	ludlowi
17	Mooling_and_Keylong	ML	32.508	76.981	ludlowi
18	Manali	MN	32.237	77.13	ludlowi
19	Spiti	SP	32.377	77.281	ludlowi
20	Langtang	LN	28.25	85.5	trochiloides
21	Emeishan	EM	29.5	103.3	obscuratus
22	Xining	XN	37.0	102.0	obscuratus
23	Beijing	ВЈ	40.0	115.5	plumbeitarsus
24	Baikal	ВК	51.9	104.9	plumbeitarsus
25	Arshan	AN	51.9	102.5	plumbeitarsus
26	Ilinka	IL	51.1	95.5	plumbeitarsus
27	Tuva	TA	51.3	92.0	plumbeitarsus
28	Stolbi	ST	55.9	92.6	plumbeitarsus
29	Krasnoyarski_Krai	KK	55.9	92.6	plumbeitarsus
30	Uyukski	UY	51.9	94.1	plumbeitarsus
31	Solgonski	SL	55.7	91.0	plumbeitarsus

Make a matrix of great circle distances

These are Haversine distances, assuming spherical Earth which is really close:

```
geoPoints = GeoLocation.(latlongs2.long_E, latlongs2.lat_N)
# this next line is so neat--uses list comprehension to make a matrix of pairwise calculations
distances = [(HaversineDistance(geoPoints[i], geoPoints[j])/1000) for i in eachindex(geoPoints), j i
```

31×31 Matrix{Float64}:

0.0	1929.03	1829.5	1956.21	•••	1956.21	2214.04	1866.47	
1929.03	0.0	134.698	478.643		478.643	315.404	422.996	
1829.5	134.698	0.0	570.583		570.583	447.369	497.776	

```
570.583
1956.21
          478.643
                                0.0
                                             0.0
                                                      455.478
                                                                102.442
          478.643
1956.21
                    570.583
                                0.0
                                             0.0
                                                      455.478
                                                                102.442
1866.88 1539.57
                   1417.12
                                         1971.61
                                                               1883.0
                             1971.61
                                                     1800.23
                   2174.21
2629.03 2280.66
                             2744.17
                                          2744.17
                                                     2492.37
                                                               2664.81
2653.46 2318.81
                   2212.24
                             2782.15
                                          2782.15
                                                     2530.6
                                                               2702.67
2768.57 2304.58
                   2204.89
                             2775.3
                                          2775.3
                                                     2498.42
                                                               2700.28
2905.38 2370.69
                   2276.33
                             2845.24
                                           2845.24
                                                     2550.34
                                                               2773.58
2897.44 2350.4
                   2256.5
                             2825.21
                                       ... 2825.21
                                                     2529.04
                                                               2753.85
2927.82 2377.48
                   2284.21
                             2852.64
                                          2852.64
                                                     2554.28
                                                               2781.67
2895.96 2345.88
                   2252.09
                             2820.75
                                          2820.75
                                                     2524.24
                                                               2749.47
   :
                                                                  :
3728.75 2661.7
                   2613.39
                             3126.13
                                          3126.13
                                                     2725.19
                                                               3083.74
4484.94 2747.98
                   2788.34
                             3054.87
                                          3054.87
                                                     2603.84
                                                               3071.78
3751.29 1934.14
                   1987.84
                                           2216.8
                                                     1768.98
                                                               2237.85
                             2216.8
4317.27 2390.71
                   2499.26
                             2434.21
                                           2434.21
                                                     2104.82
                                                               2502.82
2869.29 1053.52
                   1187.02
                              918.603
                                           918.603
                                                     740.322
                                                               1003.57
2724.34
         889.835 1023.03
                              785.302
                                           785.302
                                                      576.015
                                                                863.881
2341.58
         426.63
                    551.809
                              567.027 ...
                                           567.027
                                                      131.542
                                                                591.859
2117.8
          189.217
                    307.752
                              513.021
                                           513.021
                                                      159.644
                                                                493.694
1956.21
          478.643
                    570.583
                                0.0
                                             0.0
                                                      455.478
                                                                102.442
1956.21
          478.643
                    570.583
                                0.0
                                             0.0
                                                      455.478
                                                                102.442
2214.04
          315.404
                    447.369
                              455.478
                                           455.478
                                                        0.0
                                                                468.914
1866.47
          422.996
                    497.776
                              102.442 ...
                                           102.442
                                                      468.914
                                                                  0.0
```

Now adjust distances to assume no gene flow through centre of ring.

```
# get some key distances
function getIndex(name, nameVector = latlongs2.Location_name)
    findfirst(isequal(name), nameVector)
end

index_AA = getIndex("Ala_Archa")
index_PK = getIndex("Naran_Pakistan")
index_LN = getIndex("Langtang")
index_EM = getIndex("Emeishan")
index_XN = getIndex("Xining")
index_BJ = getIndex("Beijing")
index_last = nrow(latlongs2)

dist_PK_to_LN = distances[index_PK, index_LN]
dist_LN_to_EM = distances[index_LN, index_EM]
```

```
dist_EM_to_BJ = distances[index_EM, index_BJ]
# This next part will assume locations in the input file are arranged in order around ring:
distsAroundRing = Matrix{Float32}(undef, size(distances)[1], size(distances)[2])
# accept all distances within viridanus:
# function for accepting straight-line great circle dists as distances between sets of sites
acceptDists = function(straightGreatCircleDists, start, finish, distsAroundRing)
    distsAroundRing[start:finish, start:finish] = straightGreatCircleDists[start:finish, start:finish
    return(distsAroundRing)
end
# accept all distances within viridanus:
distsAroundRing = acceptDists(distances, 1, index_AA, distsAroundRing)
# accept dist from AA to PK:
distsAroundRing = acceptDists(distances, index_AA, index_PK, distsAroundRing)
# accept all distances from PK to LN:
distsAroundRing = acceptDists(distances, index_PK, index_LN, distsAroundRing)
# accept dist from LN to EM:
distsAroundRing = acceptDists(distances, index_LN, index_EM, distsAroundRing)
# accept dists between EM, XN, BJ:
distsAroundRing = acceptDists(distances, index_EM, index_BJ, distsAroundRing)
# accept all distances within plumbeitarsus:
distsAroundRing = acceptDists(distances, index_BJ, index_last, distsAroundRing)
# function for adding up distances measured through certain sites:
addDists = function(set1start, set1end, set2start, set2end, distsAroundRing)
    firstDists = repeat(distsAroundRing[set1start:(set1end-1), set1end], 1, set2end-set2start+1)
    secondDists = repeat(transpose(distsAroundRing[set1end, set2start:set2end]), set1end-set1start,
    totalDists = firstDists + secondDists
    distsAroundRing[set1start:(set1end-1), set2start:set2end] = totalDists
    distsAroundRing[set2start:set2end, set1start:(set1end-1)] = transpose(totalDists)
    return(distsAroundRing)
end
# dists from viridanus to PK are sum of dists to AA plus AA to PK:
```

```
distsAroundRing = addDists(1, index_AA, index_PK, index_PK, distsAroundRing)

# dists from "northwest of PK" to Himalayas are sum of ringdists to PK plus PK to locations up to LN distsAroundRing = addDists(1, index_PK, index_PK+1, index_LN, distsAroundRing)

# dists from "west / northwest of LN" to EM are sum of dists to LN plus LN to EM: distsAroundRing = addDists(1, index_LN, index_EM, index_EM, distsAroundRing)

# dists from "west / northwest of EM" to China are sum of dists to EM plus EM to (XN, BJ): distsAroundRing = addDists(1, index_EM, index_XN, index_BJ, distsAroundRing)

# dists from "west of BJ" to east Siberia are sum of dists to BJ plus BJ to other plumbeitarsus: distsAroundRing = addDists(1, index_BJ, index_BJ+1, index_last, distsAroundRing);
```

Do Principal Coordinates Analysis on the distances around the ring

This produces a single location axis around ring, going from west Siberia south, then east, then north to east Siberia.

```
PCO_around_ring = fit(MDS, distsAroundRing; distances=true, maxoutdim=1)
# add this as a column to the data frame:
latlongs2.LocationAroundRing = vec(-predict(PCO_around_ring))
# another way:
# latlongs2[:, :LocationAroundRing] = vec(-predict(PCO_around_ring))
latlongs2[:, [:location_short, :LocationAroundRing]]
println(latlongs2[:, [:location_short, :LocationAroundRing]])
```

31×2 DataFrame

Row	location_short String7	LocationAroundRing Float32
1	YK	-4484.22
2	АВ	-4223.99
3	TL	-4104.65
4	ST_vi	-4655.8
5	KK_vi	-4655.8
6	AA	-2705.3
7	NR	-1849.44
8	SH	-1844.6

```
9
     ٥٧
                                 -1675.97
                                 -1539.62
10
     SA
11
     KL
                                 -1532.33
12
     ΤH
                                 -1513.07
13
     SR
                                 -1530.28
14
     PΑ
                                 -1508.06
     SU
15
                                 -1483.0
                                 -1474.58
16
     NG
     ML
                                 -1452.26
17
                                 -1424.96
18
     MN
19
     SP
                                 -1420.66
20
     LN
                                  -507.711
                                  1233.65
21
     \mathsf{EM}
22
                                  1914.05
     XN
23
     ВJ
                                  2846.22
                                  4390.92
24
     BK
25
     AN
                                  4498.45
26
     ΙL
                                  4817.46
27
     TΑ
                                  5039.28
28
     ST
                                  5276.86
29
     ΚK
                                  5276.86
     UY
30
                                  4946.53
     SL
31
                                  5346.01
```

Add these ring locations to the metadata table:

```
ind_with_metadata_indFiltered_wholeGenome.ring_km .= NaN # pre-allocate the column
for i in axes(latlongs2, 1)
    match_indices = findall(ind_with_metadata_indFiltered_wholeGenome.location .== latlongs2.locatio
    ind_with_metadata_indFiltered_wholeGenome.ring_km[match_indices] .= latlongs2.LocationAroundRing
end
```

Plot location around ring vs. PC1:

```
# plot(ind_with_metadata_indFiltered_wholeGenome.ring_km, ind_with_metadata_indFiltered_wholeGenome.
f = CairoMakie.Figure()
ax = Axis(f[1, 1],
    title = "Genomic PC1 around ring",
```

```
xlabel = "Location around ring (km)",
  ylabel = "Genomic PC1"
)
jitterSize = 100  # in km
x_plot_values = ind_with_metadata_indFiltered_wholeGenome.ring_km .+ jitterSize .* (rand(length(ind_ry_plot_values = ind_with_metadata_indFiltered_wholeGenome.PC1
for i in eachindex(groups_to_plot_PCA)
  selection = ind_with_metadata_indFiltered_wholeGenome.Fst_group .== groups_to_plot_PCA[i]
  CairoMakie.scatter!(ax, x_plot_values[selection], y_plot_values[selection], marker = :diamond, cend
display(f);
```


Z chromosome differentiation

The PCA of Z chromosome variation (see far above) showed some unexpected structure, which I think it likely due to females being shifted (especially on PC2) compared to males. I think this is likely due to females having W chromosomes, reads from which are sometimes incorrectly mapped to the Z. Hence a small fraction of SNPs differ between females and males (with

females called as heterozygotes, males as homozygotes, at those SNPs). However, at loci that are only on the Z, males can be heterozygous (2 alleles) whereas females can only be hemizygous (one allele). I am not sure of the net effect.

To remove this problem, we could take several approaches (e.g., remove problematic SNPs, or look at one sex at a time). Here we'll plot only males as that will remove the W chromosome. To infer sex of the birds, we'll try plotting heterozygosity of Z chromosome SNPs per bird.

```
chrom = "gwZ"
regionText = string("chr", chrom)
loci_selection = (pos_SNP_filtered.chrom .== chrom)
pos_SNP_filtered_gwZ = pos_SNP_filtered[loci_selection,:]
genotypes_gwZ = genosOnly[:,loci_selection]
numHetSNPs = sum(genotypes_gwZ .== 1, dims=2)
numGenotypedSNPs = sum(map(in([0, 1, 2]), genotypes_gwZ), dims=2)
hetFraction = numHetSNPs ./ numGenotypedSNPs
ind_with_metadata_indFiltered[!, :hetFractionZ] .= hetFraction
f = CairoMakie.Figure()
ax = Axis(f[1, 1],
    title = "Average heterozygosity at SNPs on the Z chromosome",
    xlabel = "Individual (order as in metadata)",
    ylabel = "Heterozygosity (as fraction of genotypes SNPs)"
)
x_plot_values = eachindex(ind_with_metadata_indFiltered.hetFractionZ)
y_plot_values = ind_with_metadata_indFiltered.hetFractionZ
CairoMakie.scatter!(ax, x_plot_values, y_plot_values, marker = :diamond, color="black", markersize=1
display(f);
```


That doesn't provide super clear separation.

Let's try looking at number of missing genotypes:

```
missingGenotypeCount = sum(genotypes_gwZ .== -1, dims=2)
ind_with_metadata_indFiltered[!, :missingZgenotypeCount] .= missingGenotypeCount
f = CairoMakie.Figure()
ax = Axis(f[1, 1],
    title = "Number of missing SNP genotypes on the Z chromosome",
    xlabel = "Individual (order as in metadata)",
    ylabel = "Number of missing SNPs (out of 53336 SNPs)"
)
x_plot_values = eachindex(ind_with_metadata_indFiltered.missingZgenotypeCount)
y_plot_values = ind_with_metadata_indFiltered.missingZgenotypeCount
CairoMakie.scatter!(ax, x_plot_values, y_plot_values, marker = :diamond, color="black", markersize=1display(f);
```


Now let's plot those together:

```
f = CairoMakie.Figure()
ax = Axis(f[1, 1],
    title = "Missing vs. fraction heterozygous Z SNPs",
    xlabel = "Number missing genotypes",
    ylabel = "Fraction heterozygous"
)
x_plot_values = ind_with_metadata_indFiltered.missingZgenotypeCount
y_plot_values = ind_with_metadata_indFiltered.hetFractionZ
CairoMakie.scatter!(ax, x_plot_values, y_plot_values, marker = :diamond, color="black", markersize=1 display(f);
```


I don't think number missing is very helpful–probably similar in females and males.

I realized that Z-chromosome read depth is probably the best way I presently have to infer sex of individuals. So I used vcftools to compare average SNP read depth on chr gwZ and the largest of the autosomes, gw2. These commands were run in the Terminal (I've simplified the file paths here):

vcftools --vcf GW2022_all4plates.genotypes.SNPs_only.whole_genome.max2allele_noindel.vcf.maxmiss60.MQ20.

- # After filtering, kept 310 out of 310 Individuals
- # Outputting Mean Depth by Individual
- # After filtering, kept 134926 out of a possible 2431709 Sites
- # Run Time = 155.00 seconds

vcftools --vcf GW2022_all4plates.genotypes.SNPs_only.whole_genome.max2allele_noindel.vcf.maxmiss60.MQ20.

- # After filtering, kept 310 out of 310 Individuals
- # Outputting Mean Depth by Individual
- # After filtering, kept 229227 out of a possible 2431709 Sites
- # Run Time = 155.00 seconds

The plan is to load these read depth files into Julia and determine sex of individuals from the ratio of read depth on chromosome Z to chromosome 2:

```
filename_gwZ = "metadata/GW2022_all4plates.genotypes.SNPs_only.chrgwZ.max2allele_noindel.vcf.maxmiss
readDepthZ = DataFrame(CSV.File(filename_gwZ))

filename_gw2 = "metadata/GW2022_all4plates.genotypes.SNPs_only.chrgw2.max2allele_noindel.vcf.maxmiss
readDepth2 = DataFrame(CSV.File(filename_gw2))

readDepthRatioZto2 = innerjoin(readDepthZ, readDepth2, on = :INDV, renamecols = "_gwZ" \Rightarrow "_gw2")

readDepthRatioZto2[!, :depthRatio] = readDepthRatioZto2.MEAN_DEPTH_gwZ ./ readDepthRatioZto2.MEAN_DE
ind_with_metadata_indFiltered_sex = leftjoin(ind_with_metadata_indFiltered, readDepthRatioZto2, on =
plot(ind_with_metadata_indFiltered_sex.depthRatio)
```


That is quite a clear difference. The cluster with the lower Z / autosome read depth ratio should correspond to females (one copy of Z), whereas the higher Z / autosome ratio should be males. Interestingly, the ratios are a little higher than the expected 0.5 and 1, likely due to

some repetitive elements (on the Z) and some W fragments being mapped to Z. Additional, the pseudoautosomal region, which is homologous and recombines between Z and W, will drive up Z read depth in females.

It is these SNPs with a W copy that I will now try to detect and remove. They should show high heterozygosity in females.

```
ind_with_metadata_indFiltered_sex.sex .= "na"
females = ind_with_metadata_indFiltered_sex.depthRatio .< 0.8</pre>
ind_with_metadata_indFiltered_sex.sex[females] .= "F"
num_females = sum(females)
females_genotypes_gwZ = view(genotypes_gwZ, females, :)
numHetsPerSNP_females = vec(sum(females_genotypes_gwZ .== 1, dims=1))
female_heterozygosity = numHetsPerSNP_females ./ num_females
CairoMakie.hist(female_heterozygosity)
CairoMakie.plot(female_heterozygosity)
# compare with males:
males = ind_with_metadata_indFiltered_sex.depthRatio .> 0.9
ind_with_metadata_indFiltered_sex.sex[males] .= "M"
num_males = sum(males)
males_genotypes_gwZ = view(genotypes_gwZ, males, :)
numHetsPerSNP_males = vec(sum(males_genotypes_gwZ .== 1, dims=1))
male_heterozygosity = numHetsPerSNP_males ./ num_males
CairoMakie.hist(male_heterozygosity)
CairoMakie.plot(male_heterozygosity)
CairoMakie.scatter(vec(numHetsPerSNP_females ./ num_females), vec(numHetsPerSNP_males ./ num_males),
    xlabel = "Proportion females heterozygous",
    ylabel = "Proportion males heterozygous")
f = CairoMakie.Figure()
ax = Axis(f[1, 1],
    title = "Heterozygosity by sex of putative Z-chromosome SNPs",
    xlabel = "Proportion females heterozygous",
    ylabel = "Proportion males heterozygous"
x_plot_values = female_heterozygosity
y_plot_values = male_heterozygosity
CairoMakie.scatter!(ax, x_plot_values, y_plot_values, marker = :diamond, color="black", markersize=1
display(f);
```


This really clarifies things. The SNPs in the middle of the graph, with similar heterozygosity in females and males, are consistent with being pseudoautosomal SNPs. But the SNPs that have much higher female heterozygosity than male heterozygosity could be non-pseudoautosomal SNPs with reads from the W mapping to the Z, and giving appearance of Z heterozygosity in females (and not males). It is these SNPs we should remove. Also, there are a few with > 0.5 heterozygosity in males, which should be removed because they are likely due to paralogs.

So, going to remove SNPs according to these rules: If (female heterozygosity is above 0.05) AND (ratio of male to female heterozygosity is less than 1/2), REMOVE the SNP from consideration. If (male heterozygosity is above 0.5), REMOVE the SNP.

This filtering removed 1831 SNPs.

Check that the filtering did remove the problematic SNPs:

```
females_genotypes_gwZ = view(genotypes_gwZ_SNPfiltered, females, :)
numHetsPerSNP_females = vec(sum(females_genotypes_gwZ .== 1, dims=1))
female_heterozygosity = numHetsPerSNP_females ./ num_females
CairoMakie.hist(female_heterozygosity)
CairoMakie.plot(female_heterozygosity)
# compare with males:
males_genotypes_gwZ = view(genotypes_gwZ_SNPfiltered, males, :)
numHetsPerSNP_males = vec(sum(males_genotypes_gwZ .== 1, dims=1))
male_heterozygosity = numHetsPerSNP_males ./ num_males
CairoMakie.hist(male_heterozygosity)
CairoMakie.plot(male_heterozygosity)
CairoMakie.scatter(vec(numHetsPerSNP_females ./ num_females), vec(numHetsPerSNP_males ./ num_males),
    xlabel = "Proportion females heterozygous",
    ylabel = "Proportion males heterozygous")
f = CairoMakie.Figure()
ax = Axis(f[1, 1],
    title = "After filtering of SNPs: Heterozygosity by sex of putative Z-chromosome SNPs",
    xlabel = "Proportion females heterozygous",
    ylabel = "Proportion males heterozygous"
)
x_plot_values = female_heterozygosity
y_plot_values = male_heterozygosity
CairoMakie.scatter!(ax, x_plot_values, y_plot_values, marker = :diamond, color="black", markersize=1
display(f);
```

After filtering of SNPs: Heterozygosity by sex of putative Z-chromoson

Looks good. Now impute and do the PCA:

```
genotypes_gwZ_SNPfiltered_with_missing = Matrix{Union{Missing, Float32}}(genotypes_gwZ_SNPfiltered)
# change "-1" to "missing":
genotypes_gwZ_SNPfiltered_with_missing[genotypes_gwZ_SNPfiltered_with_missing .== -1] .= missing;
regionText = "chrgwZ_cleaned"
filename = string(baseName, tagName, regionText, ".imputedMissing.jld2")
# to do the imputing, do this by setting to true:
cd("/Users/darrenirwin/Dropbox/Darren's current work/")
do_imputing = false
if do_imputing
   @time imputed_genos = Impute.svd(genotypes_gwZ_SNPfiltered_with_missing)
   # took 102 sec
   jldsave(filename; imputed_genos, ind_with_metadata_indFiltered = ind_with_metadata_indFiltered_s
   imputed_genos_chrZcleaned = imputed_genos
   ind_with_metadata_indFiltered_sex_chrZcleaned = ind_with_metadata_indFiltered_sex
   pos_SNP_filtered_chZcleaned = pos_SNP_filtered_gwZ_SNPfiltered
   print("Saved matrix of real and imputed Z chromosome genotypes. \n")
else # load the already saved imputing
```

Loaded GW_genomics_2022_with_new_genome/GW2022_GBS_012NA_files/GW2022_all4plates.genotypes.SNPs_only.who chrgwZ_cleaned: 51505 SNPs from 257 individuals

(model = PCA(indim = 51505, outdim = 3, principalratio = 0.28502297), values = Float32[26.585491 -27.490622

Looks Great!! Now have a Z chromosome PCA with both males and females, based on only Z-chromosome markers.

Genotype-by-individual plots for Z chromosome

set = "54_inds_around_ring" #"east_side_of_ring"

```
if set == "54_inds_around_ring"
    groups = ["vir","troch_LN","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to
   plotGroups = ["vir","vir_S","lud_PK","lud_KS","lud_central","troch_LN","troch_EM","obs", "plumb_
   plotGroupColors = ["blue","turquoise1","seagreen4","seagreen3","seagreen2","yellow","gold","orang
   numIndsToPlot = [10, 5, 2, 1, 8, 10, 1, 4, 3, 10] # maximum number of individuals to plot from e
    group1 = "vir" # these groups will determine the color used in the graph
    group2 = "plumb"
    groupsToCompare = "vir_plumb" #"Fst_among" #"vir_troch_LN"
                                                                   #"vir_plumb"
                                                                                      #"troch_LN
   Fst\_cutoff = 0.95
   missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "37_inds_around_ring_plusAllVirPlumb"
   groups = ["vir","troch_LN","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to
    plotGroups = ["vir","lud","troch_LN","troch_EM","obs", "plumb_BJ","plumb"]
   plotGroupColors = ["blue","seagreen4","yellow","gold","orange", "pink","red"]
   numIndsToPlot = [100, 15, 15, 15, 15, 15, 100] # maximum number of individuals to plot from each
    group1 = "vir"
                  # these groups will determine the color used in the graph
    group2 = "plumb"
    groupsToCompare = "Fst_among"
   Fst\_cutoff = 0.7
   missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "west_side_of_ring"
    groups = ["vir","troch_LN"] # for purpose of calculating pairwise Fst and Fst_group (to determine
   plotGroups = ["vir","vir_misID","vir_S","nit", "lud_PK", "lud_KS", "lud_central", "lud_Sath", "l
   plotGroupColors = ["blue","blue","turquoise1","grey","seagreen4","seagreen3","seagreen2","olived
   group1 = "vir" # these groups will determine the color used in the graph
    group2 = "troch_LN"
   groupsToCompare = "vir_troch_LN" # "Fst_among"
   Fst\_cutoff = 0.6
   missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "all_ludlowi_plus_a_few_other"
    groups = ["vir","troch_LN","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to
   plotGroups = ["vir","vir_S","nit", "lud_PK", "lud_KS", "lud_central", "lud_Sath", "lud_ML","troc
   plotGroupColors = ["blue","turquoise1","grey","seagreen4","seagreen3","seagreen2","olivedrab3","
   numIndsToPlot = [4, 4, 4, 1000, 1000, 1000, 1000, 1000, 4, 4] # maximum number of individu
    group1 = "vir" # these groups will determine the color used in the graph
    group2 = "troch_LN"
    groupsToCompare = "vir_troch_LN" # "Fst_among"
```

#"67_inds_around_ring" # "west_side_of_ring"

```
Fst\_cutoff = 0.6
    missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "east_side_of_ring"
    groups = ["troch_LN","obs","plumb"] # for purpose of calculating pairwise Fst and Fst_group (to
    plotGroups = ["troch_LN","troch_EM","obs","plumb_BJ","plumb"]
    plotGroupColors = ["yellow","gold","orange","pink","red"]
    numIndsToPlot = [15, 15, 15, 15, 15] # maximum number of individuals to plot from each group
    group1 = "troch_LN"  # these groups will determine the color used in the graph
    group2 = "plumb"
    groupsToCompare = "troch_LN_plumb"
    Fst\_cutoff = 0.7
    missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
elseif set == "vir_plumb"
    groups = ["vir","plumb"]
    plotGroups = ["vir","plumb_vir","plumb"]
    plotGroupColors = ["blue","purple","red"]
    numIndsToPlot = [100,100,100] # maximum number of individuals to plot from each group
    group1 = "vir"
                   # these groups will determine the color used in the graph
    group2 = "plumb"
    groupsToCompare = "vir_plumb"
    Fst\_cutoff = 0.7
    missingFractionAllowed = 0.2 # only show SNPs with less than this fraction of missing data among
end
# Calculate allele freqs and sample sizes (use column Fst_group)
freqs, sampleSizes = getFreqsAndSampleSizes(genotypes_gwZ_SNPfiltered_with_missing, ind_with_metadat.
println("Calculated population allele frequencies and sample sizes")
Fst, FstNumerator, FstDenominator, pairwiseNamesFst = getFst(freqs, sampleSizes, groups; among=true)
println("Calculated Fst values")
# For this Z-chromosome genotype-by-individual plot, include only males (so 2 Z chromosomes) and fil
numMissings_threshold = 800_000
selection = (ind_with_metadata_indFiltered_sex_chrZcleaned.numMissings .< numMissings_threshold) .&&
genotypes_gwZ_SNPfiltered_with_missing_selected = view(genotypes_gwZ_SNPfiltered_with_missing, selec
ind_with_metadata_indFiltered_sex_chrZcleaned_selected = view(ind_with_metadata_indFiltered_sex_chrZ
# now limit each group to specified numbers
genosOnly_included, ind_with_metadata_included = limitIndsToPlot(plotGroups, numIndsToPlot, genotype
chr = "gwZ"
```

```
regionInfo = chooseChrRegion(pos_SNP_filtered_chZcleaned, chr; positionMin=1, positionMax=NaN) # thi

plotInfo = plotGenotypeByIndividual(groupsToCompare, Fst_cutoff, missingFractionAllowed,
    regionInfo, pos_SNP_filtered_chZcleaned, Fst, pairwiseNamesFst,
    genosOnly_included, ind_with_metadata_included, freqs, plotGroups, plotGroupColors);
# plotInfo contains a tuple with: (f, plottedGenotype, locations, plottedMetadata)
```

Calculated population allele frequencies and sample sizes Calculated Fst values

Make final whole-genome PCA

Now that the Z-chromosome problem has been solved (by removing SNPs that had a divergent W sequence mapped onto that Z location), we can construct a new whole-genome PCA. I will combine the saved imputed genotypes for each chromosome into a large data matrix, and conduct PCA on that:

```
chromosomes_to_process[chromosomes_to_process .== "gwZ"] .= "gwZ_cleaned"
# initialize data structures for gneotypes and positions
genos_imputed_loaded = Matrix{Union{Missing, Float32}}(undef, nrow(ind_with_metadata_indFiltered), 0
pos_SNP_loaded = DataFrame(chrom = String[], position = Int64[])
for i in eachindex(chromosomes_to_process)
    chrom = chromosomes_to_process[i]
    regionText = string("chr", chrom)
    filename = string(baseName, tagName, regionText, ".imputedMissing.jld2")
    imputed_genos_one_chr = load(filename, "imputed_genos")
    genos_imputed_loaded = hcat(genos_imputed_loaded, imputed_genos_one_chr)
    if ind_with_metadata_indFiltered.ind != load(filename, "ind_with_metadata_indFiltered")[:, :ind]
        println("""Warning: "ind" columns in loaded data and memory data don't match.""")
    end
    pos_SNP_filtered_region = load(filename, "pos_SNP_filtered_region")
    pos_SNP_loaded = vcat(pos_SNP_loaded, pos_SNP_filtered_region)
    # println(string("Loaded ",filename))
    # println(string(regionText, ": ", size(imputed_genos_one_chr,2), " SNPs from ", size(imputed_ge
end
PCA_wholeGenome = plotPCA(genos_imputed_loaded, ind_with_metadata_indFiltered,
        groups_to_plot_PCA, group_colors_PCA;
        sampleSet = "greenish warblers", regionText = "wholeGenome",
        flip1 = true, flip2 = true)
totalObservationVariance = var(PCA_wholeGenome.model)
PC1_variance, PC2_variance = principalvars(PCA_wholeGenome.model)[1:2]
PC1_prop_variance = PC1_variance / totalObservationVariance
PC2_prop_variance = PC2_variance / totalObservationVariance
println("PC1 explains ", 100*PC1_prop_variance, "% of the total variance.
PC2 explains ", 100*PC2_prop_variance, "%.")
```


PC1 explains 11.98665% of the total variance. PC2 explains 6.385296%.

Make a whole-genome PCA just for the eastern side of the ring

PC1 explains 9.814026% of the total variance. PC2 explains 1.9549228%.

Make a whole-genome PCA just for the western side of the ring

PC1 explains 11.305296% of the total variance. PC2 explains 1.8353019%.