DISTRIBUTIONS AND FOURIER TRANSFORM

Distributions are objects that generalize the notion of function. They allow also the generalization of notions such as the derivative and the Fourier transform.

Definition A distribution is a linear continuous
may T: E (R) -> C

In order to understand what the continuity means we need to recall that a sequence $(\Psi_n)_n \in \mathcal{E}_e^{\infty}(\mathbb{R})$ converges to $\Psi \in \mathcal{E}_e^{\infty}(\mathbb{R})$ if and only if there exist $K \subset \mathbb{R}$ compact and $m \ge 1$ such that:

· supp $Y \in K$; supp $Y_n \in K$ that

jem, that is lim sup 140(x) - pi/(x) = 0.

Notice that this second condition is equivalent to

lum sup sup |4(i)(x) = 0

Sometimes this is expressed in terms of the

seminorms

1141Kim = jem xek 14(1)(x)1.

In these terms, $T: \mathcal{C}_{c}^{\infty}(\mathbb{R}) \longrightarrow \mathbb{C}$ is continuous if and only if for all $K \subset \mathbb{R}$ compact there exist $m = m(K) \ge 1$, C = C(K) > 0 such that $|T(Y)| \le C ||Y||_{K,m}$ $\forall Y \in \mathcal{C}_{c}^{\infty}(K)$

Notation: Functions φ in $E_e^{\infty}(R)$ are usually called test functions. Sometimes D(R) is used instead of $E_e^{\infty}(R)$; that's why the set of distributions is usually denoted by D'(R).

Examples: 1 Let f: R > I be a measurable function with some mild regularity (usually fellow). This defines the distribution

Te: Ec (R) -> I given by Te(4) = <4, 4> = Sf.4.

In this sense, any (reasonable) function is a distribution.

2) Let pube a Borel measure. Define Tu: Co(R) -> C by Tn(4) = J4 du 466 (R)

In particular, if a = R and $\mu = \delta_a$ is its associated Dirac delta measure, we have the distribution

< 5a,4>= J4doa = 4(a) YEEC(R)

More generally, qu'en a sequence (an)nz, ER such that him |aul = +00 and given values In EC, 1124, we can comider the Dirac comb T= Z 2n Jan, defined by

> <T, 4> = \(\int \) \(\tan \) YEE (IR)

A particular case which appears in applications (see for example Shannon's theorem) is an=na, nek, for a ER fixed. If In=1 for all net, we get the distribution

Sa = Z Tra

the Dirac comb with equi-spaced atoms.

Several operations can be performed on distributions. For the moment we introduce two easy ones:

3 Product of 4 66°(R) with TED'(B). This is

simply defined by $\langle \Psi T, \Psi \rangle = \langle T, \Psi \Psi \rangle \qquad \Psi \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$

This is well defined because $YY \in \mathcal{C}_{c}^{\infty}(\mathbb{R})$ and because YT is continuous. To see the continuous nuity let $XCC\mathbb{R}$ be compact. Since TED'(TE) there exist $m \ge 4$ and C > 0 so that

 $|\langle \Psi T, \Psi \rangle| = |\langle T, \Psi \Psi \rangle| \leq c ||\Psi \Psi||_{K,m} \quad \forall \Psi \in \mathcal{C}_{\epsilon}(K)$ Since K is compact and $\Psi \in \mathcal{C}^{\bullet}$, all derivatives $\Psi'(i)$, $j \in m$, are uniformly bounded on K. So, there exists a constant $M = M(\Psi, K)$ such that $||\Psi \Psi||_{K,m} \leq M(\Psi) ||\Psi \Psi||_{K,m}$. Then

124T,4>1 = CM/11411Kim YYEBE(K),
as desired

As an example, let us take 4EE and T=5a.
Then

< 4 Ja, 4> = < Ja, 44> = 4(a) 4(a)

So $\forall \exists a = \forall (a) \exists a$. In particular $(x-a) \exists a = 0$ $\forall a \in \mathbb{R}$.

② Differentiation: Given $T \in D'(\mathbb{R})$ one defines its derivative $T' \in D'(\mathbb{R})$ by $\langle T', \Psi \rangle = -\langle T, \Psi' \rangle$ $\forall \in C_c^{\infty}(\mathbb{R})$.

This generalizes the formula of integration by parts for a function & & &:

<Tr>
 <Tr>
 Tr

 </

This formula can be iterated to define T''', n > 1: $\langle T'''', \varphi \rangle = (-1)^m \langle T, \varphi''' \rangle \qquad \forall \in \mathcal{C}_c^{\infty}(\mathbb{R}).$

Example The derivative of the Dirac delta Ta is the distribution Ta given by

(6/214>=-4/(a) 4 = 60 (R)

This is an example of a distribution that is neither a function not a measure.

Exercises: ① Prove that if T'=0 then there exists a constant K such that $T=T_K$, that is $\langle T, Y \rangle = K \int \varphi \quad \forall \, \varphi \in C^{\infty}(\mathbb{R})$

Det $H(x) = I_{(0,+\infty)}(x)$, the Heaviside function. Prove that $H' = \mathcal{T}_0$.

3 More generally, let $f \in \mathcal{C}^2(\mathbb{R} \setminus 3a \cdot 1)$ such that at $a \in \mathbb{R}$ it has a jump of size s $(f(a^+) - f(a^-) = s)$. Show that $T_{\mathcal{C}}^i = T_{\mathcal{C}_1} + s \delta_a$. Similarly, if $f \in \mathcal{C}^i(\mathbb{R} \setminus 3a \cdot 1_n)$, with $\lim_{n \to \infty} |a_n| = +\infty$, and an are jump discontinuities of size s_n , then $T_{\mathcal{C}}^i = T_{\mathcal{C}_1} + \sum_n S_n S_{a_n}$.

In particular, the a-periodic function f with value X/a in (0,a) has derivative $f'=\frac{1}{a}-\sum_{n\in\mathbb{Z}}\delta_{na}$

