Print Name: _____

Student Number: _____

$$\mathbf{F}_{\mathbf{A}} = ($$
 ______) or

$$\mathbf{F_B} = ($$
 ______) or

$$\mathbf{F}_{c} = (500\mathbf{i} - 866\mathbf{j}) \text{ or } (500 \leftarrow, 866 \downarrow)$$

$$\mathbf{F_D} = \left(\underline{\hspace{1cm}} \right)$$
 or

Find the moments about E by <u>resolving the forces into horizontal and vertical components</u>. Show the components at A, B, and D as done for \mathbf{F}_C above.

- (i) \mathbf{M}_{E} due to \mathbf{F}_{A} :
- (ii) $\mathbf{M}_{\mathbf{E}}$ due to $\mathbf{F}_{\mathbf{B}}$:
- (iii) \mathbf{M}_{E} due to F_{C} : -866 * 4 + 500 * 2 = -2464 N.m = 2464 N.m
- (iv) $\mathbf{M}_{\mathbf{E}}$ due to $F_{\mathbf{D}}$:
- (v) $\mathbf{M}_{\mathbf{E}}$ due to Distributed Load :
- (vi) (EQUIVALENT FORCE-COUPLE AT E)

 $\mathbf{R_x} = \sum F_x$ = Equivalent translation in x – direction at E = _____

 $\mathbf{R}_{\mathbf{y}} = \sum F_{\mathbf{y}} = \text{Equivalent translation in } \mathbf{y} - \text{direction at } \mathbf{E} = \underline{\hspace{1cm}}$

 \textbf{M}_E due to $F_A,\,F_B,\,F_{C,}\,F_D$ and the Distributed Load $\,$ acting together which is equivalent rotation effect at E

[add (i), (ii), (iii), (iv) and (v)]

(vii) What is the Equivalent Force-Couple at C: $\mathbf{R}_{\mathbf{x}} = \underline{}, \mathbf{R}_{\mathbf{y}} = \underline{}, \mathbf{M}_{\mathbf{C}} = \underline{}$