Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application:

- 1. (cancelled)
- 2. (cancelled)
- 3. (currently amended) A method of making a 1-(hydroxyalkyl)indazole comprising:
 - (a) nitrosation and reduction-cyclization of a 2-alkylaminobenzonitrile to form a 1-alkyl-3-aminoindazole; and
- (b) deamination of the 1-alkyl-3-aminoindazole to form a

 1-(hydroxyalkyl)indazole, The method of Claim 2 wherein the 1(hydroxyalkyl)indazole has is of the formula:

$$R^2$$
 R^3
 R^4
 R^4

wherein R is a C_2 to C_{12} (hydroxy)alkyl group optionally substituted with phenyl, methoxyphenyl, (dimethylamino)phenyl, OR^5 , $OC(=O)R^5$, $OC(=O)OR^5$, $N(R^5)_2$, $N(R^5)_2$, $OC(=O)R^5$, $OC(=O)OR^5$, or with one or more F atoms;

 R^1 , R^2 , R^3 and R^4 are independently H, F, CI, Br, CF_3 , OH, OR^5 , $OC(=O)R^5$, $OC(=O)OR^5$, $N(R^5)_2$, $N(R^5)_C(=O)R^5$, $N(R^5)_C(=O)OR^5$, NO_2 , NO_3 , NO_4 , NO_5 , NO_6

 R^5 is C_1 to C_6 alkyl optionally substituted with phenyl, methoxyphenyl, (dimethylamino)phenyl, methoxy, ethoxy, benzyloxy, or with one or more F atoms, or R^5 is phenyl, methoxyphenyl, or (dimethylamino)phenyl; and n = 0, 1, or 2.

4. (original) The method of claim 3, wherein R is a C_2 to C_6 (hydroxyl)alkyl optionally substituted with phenyl, OR^5 , $N(R^5)C(=O)R^5$, $N(R^5)C(=O)OR^5$, or with one or more F atoms; R^1 , R^2 , R^3 and R^4 are independently H, F, Cl, CF_3 , OR^5 , $OC(=O)R^5$, $OC(=O)OR^5$, $N(R^5)_2$, $OC(=O)R^5$, or $OC(=O)OR^5$, $OC(=O)C^5$, OC(=O

 R^5 is C_1 to C_6 alkyl optionally substituted with phenyl, methoxyphenyl, methoxy, benzyloxy, or with one or more F atoms.

- 5. (cancelled)
- 6. (cancelled)