ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

wireless microphone

ISSUED TO Guangzhou Xihe Electronics Co., Ltd.

No.33 Industrial Road Dong Guang Village Huadu District, Guangzhou

Brand Name:

Test Standard: FCC ID:

Test conclusion: Pass Test Date:

Report No.: BL-SZ1660216-601

EUT Type: wireless microphone

Model Name: XH-1824MHZ

N/A

47 CFR Part 74 Subpart H

2AIMS-XIHE1824MHZ

Jul. 10, 2016 ~ Jul. 21, 2016

Date of Issue: Jul. 27, 2016

NOTE: This test report can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. BALUN Laboratory. Any objections should be raised within thirty days from the date of issue. To validate the report, please visit BALUN website.

Revision History

Version Rev. 01 Issue Date Jul. 27, 2016 Revisions Content Initial Issue

TABLE OF CONTENTS

1	AD	MIN	ISTRATIVE DATA (GENERAL INFORMATION)	.5
	1.1	Ide	ntification of the Testing Laboratory	.5
	1.2	Ide	ntification of the Responsible Testing Location	.5
	1.3	Lab	poratory Condition	.5
	1.4	Anr	nounce	.5
2	PR	RODU	JCT INFORMATION	.6
	2.1	App	plicant Information	.6
	2.2	Ma	nufacturer Information	.6
	2.3	Fac	ctory Information	.6
	2.4	Gei	neral Description for Equipment under Test (EUT)	.6
	2.5	And	cillary Equipment	.6
	2.6	Tec	chnical Information	.6
	2.7	Add	ditional Instructions	.6
3	SU	JMMA	ARY OF TEST RESULTS	.7
	3.1	Tes	st Standards	.7
	3.2	Ver	dict	.7
4	GE	NEF	RAL TEST CONFIGURATIONS	.8
	4.1	Tes	st Environments	.8
	4.2	Tes	st Equipment List	.8
	4.3	Des	scription of Test Setup	.9
	4.3	3.1	For Antenna Port Test	.9
	4.3	3.2	For Radiated Test (30 MHz-1 GHz)	.9
	4.3	3.3	For Radiated Test (Above 1 GHz)	10
	4.3	3.4	Modulation Characteristics	10
5	TE	STI	TEMS	11

5.1 Ou	utput Power	11
5.1.1	Test Limit	11
5.1.2	Test Setup	11
5.1.3	Test Procedure	11
5.1.4	Test Result	12
5.2 Mo	odulation Characteristics	13
5.2.1	Limit	13
5.2.2	Test Setup	13
5.2.3	Test Procedure	13
5.2.4	Test Result	13
5.3 En	nission Bandwidth and Emission Mask	14
5.3.1	Limit	14
5.3.2	Test Setup	14
5.3.3	Test Procedure	14
5.3.4	Test Result	14
5.4 Sp	ourious Emissions at Antenna Terminals	15
5.4.1	Limit	15
5.4.2	Test Setup	15
5.4.3	Test Procedure	15
5.4.4	Test Result	15
5.5 Fie	eld Strength of Spurious Radiation	16
5.5.1	Limit	16
5.5.2	Test Setup	16
5.5.3	Test Procedure	16
5.5.4	Test Result	16
5.6 Fr	equency Stability	17
5.6.1	Limit	17
5.6.2	Test Setup	17
5.6.3	Test Procedure	17
5.6.4	Test Result	17
ANNEX A	TEST RESULT	18

A.1	Output Power	18
A.2	Modulation Characteristics	19
A.3	Emission Bandwidth and Emission Mask	22
A.4	Spurious Emissions at Antenna Terminals	23
A.5	Field Strength of Spurious Radiation	24
A.6	Frequency Stability	28
ANNEX	(B TEST SETUP PHOTOS	29
ANNEX	C EUT EXTERNAL PHOTOS	29
ANNEX	(D EUT INTERNAL PHOTOS	29

1 ADMINISTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.
A dalaga a a	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100
Fax Number	+86 755 6182 4271

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory has been listed by Industry Canada to perform electromagnetic emission measurements. The recognition numbers of test site are 11524A-1. The laboratory has been listed by US Federal Communications Commission to perform electromagnetic emission measurements. The recognition numbers of test site are 832625. The laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L6791.
Description	All measurement facilities used to collect the measurement data are located at Block B, FL 1, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China 518055

1.3 Laboratory Condition

Ambient Temperature	20 to 25°C
Ambient Relative Humidity	45% - 55%
Ambient Pressure	100 kPa - 102 kPa

1.4 Announce

- (1) The test report reference to the report template version v1.0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Guangzhou Xihe Electronics Co., Ltd.
Address	No.33 Industrial Road Dong Guang Village Huadu District, Guangzhou

2.2 Manufacturer Information

Manufacturer	Guangzhou Xihe Electronics Co., Ltd.
Address	No.33 Industrial Road Dong Guang Village Huadu District, Guangzhou

2.3 Factory Information

Factory	Guangzhou Xihe Electronics Co., Ltd.
Address	No.33 Industrial Road Dong Guang Village Huadu District, Guangzhou

2.4 General Description for Equipment under Test (EUT)

EUT Type	wireless microphone
Model Name	XH-1824MHZ
Series Model Name	N/A
Description of Model	N/A
name differentiation	IN/A
Hardware Version	N/A
Software Version	N/A
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A
Network and Wireless	FM
connectivity	FIVI

2.5 Ancillary Equipment

N/A

2.6 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

Modulation Technology	FM
Frequency Range	182.4 MHz
Tested Channel	182.4 MHz
Antenna Type	Helical Antenna
Antenna Gain	3 dBi
About the Product	The equipment is wireless microphone, it contains FM module.

2.7 Additional Instructions

EUT Software Settings: TX LEVEL is built-in set parameters and cannot be changed and selected.

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title
	47 CFR Part 74,	Part 74 – Experimental radio, auxiliary, special broadcast and other
1	Subpart H	program distributional services.
	(10-1-15 Edition)	Subpart H – Low power auxiliary stations.
2	TIA-603-D 2010	Land Mobile FM or PM communications equipment measurement and
2		performance standards.
		American National Standard for Standard for Methods of
3	ANSI C63.4-2014	Measurement of Radio-Noise Emissions from Low-Voltage Electrical
		and Electronic Equipment in the Range of 9 kHz to 40 GHz

3.2 Verdict

No.	Description	FCC Part No.	Test Result	Verdict
1	Output Power	74.861(e)(1)	ANNEX A.1	Pass
2	Modulation Characteristics	74.861(e) (3)	ANNEX A.2	Pass
3	Emission Bandwidth and	74 961(0) (5) (6)	ANNEX A.3	Pass
3	Emission Mask	74.861(e) (5) (6)	ANNLA A.5	F a 5 5
4	Spurious Emissions at Antenna	74.861(e) (6)	ANNEX A.4	Pass
†	Terminals	74.001(e) (0)	AININEX A.4	F a55
5	Field Strength of Spurious	74.861(e) (6)	ANNEX A.5	Pass
	Radiation	74.001(e) (0)	AININEA A.S	1 455
6	Frequency Stability	74.861(e) (4)	ANNEX A.6	Pass

4 GENERAL TEST CONFIGURATIONS

4.1 Test Environments

During the measurement, the normal environmental conditions were within the listed ranges:

Relative Humidity	45% - 55%		
Atmospheric Pressure	100 kPa - 102 kPa		
	NT (Normal Temperature)	+22°C to +25°C	
Temperature	LT (Low Temperature)	-0°C	
	HT (High Temperature)	+50°C	
Working Voltage of the EUT	NV (Normal Voltage)	3 V	

4.2Test Equipment List

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	ROHDE&SCHWARZ	FSV-30	103118	2016.07.13	2017.07.12
Vector Signal Generator	ROHDE&SCHWARZ	SMBV100A	177746	2016.07.13	2017.07.12
Analyzer, Modulation	HP	8901A	2026A00934	2016.07.13	2017.07.12
Signal Generator	ROHDE&SCHWARZ	SMB100A	260592	2016.07.13	2017.07.12
Switch Unit with OSP- B157	ROHDE&SCHWARZ	OSP120	101270	2016.07.13	2017.07.12
Spectrum Analyzer	AGILENT	E4440A	MY45304434	2015.10.15	2016.10.14
EMI Receiver	ROHDE&SCHWARZ	ESRP	101036	2016.07.05	2017.07.04
LISN	SCHWARZBECK	NSLK 8127	8127-687	2016.07.05	2017.07.04
Bluetooth Tester	ROHDE&SCHWARZ	CBT	101005	2016.07.13	2017.07.12
Power Splitter	KMW	DCPD-LDC	1305003215	2016.07.13	2017.07.12
Power Sensor	ROHDE&SCHWARZ	NRP-Z21	103971	2016.07.13	2017.07.12
Attenuator (20 dB)	KMW	ZA-S1-201	110617091		
Attenuator (6 dB)	KMW	ZA-S1-61	1305003189		
DC Power Supply	ROHDE&SCHWARZ	HMP2020	018141664	2016.07.13	2017.07.12
Temperature Chamber	ANGELANTIONI SCIENCE	NTH64-40A	1310	2015.08.07	2016.08.06
Test Antenna- Loop(9 kHz-30 MHz)	SCHWARZBECK	FMZB 1519	1519-037	2015.07.22	2017.07.21
Test Antenna- Bi-Log(30 MHz-3 GHz)	SCHWARZBECK	VULB 9163	9163-624	2015.07.22	2017.07.21
Test Antenna- Horn(1-18 GHz)	SCHWARZBECK	BBHA 9120D	9120D-1148	2015.07.22	2017.07.21
Test Antenna- Horn(15-26.5 GHz)	SCHWARZBECK	BBHA 9170	9170-305	2015.07.22	2017.07.21
Anechoic Chamber	RAINFORD	9m*6m*6m	N/A	2015.02.28	2017.02.27
Shielded Enclosure	ChangNing	CN-130701	130703		
Audio Analyzer	Agilent	U8903B	MRTSUE061 43	2015.08.12	2016.08.11

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Modulation Analyzer	HP	8901A	MRTSUE062 10	2015.12.09	2016.12.08
Temperature/Humidity Meter	Yuhuaze	HTC-2	MRTSUE061 80	2015.12.21	2016.12.20

4.3 Description of Test Setup

4.3.1 For Antenna Port Test

(Diagram 1)

4.3.2 For Radiated Test (30 MHz-1 GHz)

(Diagram 2)

4.3.3 For Radiated Test (Above 1 GHz)

(Diagram 3)

4.3.4 Modulation Characteristics

(Diagram 4)

5 TEST ITEMS

5.1 Output Power

5.1.1 Test Limit

FCC §74.861(e) (1)

The power of the measured unmodulated carrier power at the output of the transmitter power amplifier (antenna input power) may not exceed the following:

, ,	
Frequency Band (MHz)	Limit
54-72,76-88, and 174-216 MHz	50 mW EIRP
470-608 and 614-698 MHz	250 mW conducted power
600 MHz duplex gap	20 mW EIRP

5.1.2 Test Setup

See section 4.3.1 (Diagram 1) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.1.3 Test Procedure

Connect the EUT to spectrum analyzer and set the spectrum analyzer as following:

Center frequency: channel frequency under test;

RBW: 100 kHz;

VBW: 300 kHz;

Detector mode: peak;

Span: 1MHz

Max-hold the trace and record the peak value once the race stabilized.

In many cases, the RF output power limits for licensed digital transmission devices is specified in terms of effective radiated power (ERP) or equivalent isotropic radiated power (EIRP). Typically, ERP is specified when the operating frequency is less than or equal to 1 GHz and EIRP is specified when the operating frequency is greater than 1 GHz. Both are determined by adding the transmit antenna gain to the conducted RF output power with the primary difference between the two being that when determining the ERP, the transmit antenna gain is referenced to a dipole antenna (i.e., dBd) whereas when determining the EIRP, the transmit antenna gain is referenced to an isotropic antenna (dBi).

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

ERP/EIRP = PMeas + GT - LC

where:

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW;

GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

dBd (ERP)=dBi-2.15

LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

5.1.4 Test Result

Please refer to ANNEX A.1.

5.2 Modulation Characteristics

5.2.1 Limit

FCC §2.1047(a) & 74.861(e) (3)

For Voice Modulation Communication Equipment, the frequency response of the audio modulation circuit over a range of 100 to 5000Hz shall be measured.

Any form of modulation may be used. A maximum deviation of ±75 kHz is permitted when frequency modulation is employed.

5.2.2 Test Setup

See section 4.3.4 (Diagram 4) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

Modulation Limit

- (i) Configure the EUT as shown in next figure, adjust the audio input for 60% of rated system deviation at 1KHz using this level as a reference (0dB) and vary the input level from –20 to +20dB. Record the frequency deviation obtained as a function of the input level.
- (ii) Repeat step (i) with input frequency changing to 100, 500, 2500, and 10000 Hz in sequence.

Audio Frequency Response

- (i) Configure the EUT as shown in next figure.
- (ii) Adjust the audio input for 20% of rated system deviation at 1 KHz using this level as a reference (0 dB).
- (iii) Vary the Audio frequency from 100 Hz to 30 KHz and record the frequency deviation.
- (iv) Audio Frequency Response = 20log10 (Deviation of test frequency/Deviation of 1 KHz reference).

Figure: Modulation Characteristic Measurement Configuration

5.2.4 Test Result

Please refer to ANNEX A.2.

5.3 Emission Bandwidth and Emission Mask

5.3.1 Limit

FCC §74.861(e) (5) (6)

The operating bandwidth shall not exceed 200 kHz.

The mean power of emissions shall be attenuated below the mean output power of the transmitter in accordance with the following schedule:

- (i) On any frequency removed from the operating frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: at least 25 dB;
- (ii) On any frequency removed from the operating frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: at least 35 dB;
- (iii) On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10log(mean output power in watts) dB;

5.3.2 Test Setup

See section 4.3.1 (Diagram 1) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.3.3 Test Procedure

The transmitter shall be operated at its maximum carrier power measured under normal test condition. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used given that a peak or peak hold my produce a wider bandwidth than actual.

The trace data points are recovered and directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between two recorded frequencies is the occupied bandwidth.

5.3.4 Test Result

Please refer to ANNEX A.2.

5.4 Spurious Emissions at Antenna Terminals

5.4.1 Limit

FCC §74.861(e) (6) (iii)

On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10log (mean output power in watts) dB;

5.4.2 Test Setup

See section 4.3.1 (Diagram 1) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.4.3 Test Procedure

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

5.4.4 Test Result

Please refer to ANNEX A.5.

5.5 Field Strength of Spurious Radiation

5.5.1 Limit

FCC §2.1055(a)(1) & 2.1055(d)(2) & 74.861(e) (6) (iii)

The frequency stability shall be measured with variation of ambient temperature from -30° C to $+50^{\circ}$ C centigrade.

For hand carried battery powered equipment, the frequency stability shall be measured with reducing primary supply voltage to the battery operating end point, which is specified by the manufacture.

On any frequency removed from the operating frequency by more than 250 percent of the authorized bandwidth: at least 43+10log (mean output power in watts) dB;

5.5.2 Test Setup

See section 4.3.2, 4.3.3 (Diagram 2, 3) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.5.3 Test Procedure

The measurement frequency range is from 9 kHz to the 10th harmonic of the fundamental frequency. The Turn Table is actuated to turn from 0° to 360°, and both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The power of the EUT transmitting frequency should be ignored.

All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported, Otherwise, the emission measurement will be repeated using the guasi-peak detector and reported.

5.5.4 Test Result

Please refer to ANNEX A.6.

5.6 Frequency Stability

5.6.1 Limit

FCC §74.861(e) (4)

The frequency tolerance of the transmitter shall be 0.005 percent.

5.6.2 Test Setup

See section 4.3.1 (Diagram 1) for test setup description for the antenna port. The photo of test setup please refer to ANNEX B.

5.6.3 Test Procedure

FREQUENCY STABILITY VERSUS ENVIRONMENTAL TEMPERATURE

- (i) Setup the configuration for frequencies measurement inside an environment chamber.
- (ii) Turn on EUT and set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1 KHz and Frequency Span to 50KHz. Record this frequency as reference frequency.
- (iii) Set the temperature of chamber to 50℃. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. While maintaining a constant temperature inside the chamber, turn the EUT on and measure the EUT operating frequency.
- (iv) Repeat step (ii) with a 10℃ decreased per stage until the lowest temperature -30℃ is measured, record all measured frequencies on each temperature step.

FREQUENCY STABILITY VERSUS INPUT VOLTAGE

- (i) Setup the configuration for frequencies measured at temperature if it is within 15℃ to 25℃. Otherwise, an environment chamber set for a temperature of 20℃ shall be used.
- (ii) Set SA center frequency to the EUT radiated frequency. Set SA Resolution Bandwidth to 1 KHz and Video Resolution Bandwidth to 1KHz. Record this frequency as reference frequency.
- (iii) For battery operated only device, supply the EUT primary voltage at the operating end point which is specified by manufacturer and record the frequency.

5.6.4 Test Result

Please refer to ANNEX A.7.

ANNEX A TEST RESULT

A.1 Output Power

Peak Power Test Data

Frequency	Output Peak Power dBm	Li	mit	Vordiet
(MHz)	Output Feak Fower ubili	dBm	mW Verdict	
182.4	-22.97	17	50	Pass

Test Plots

182.4 MHz

Date: 19.JUL.2016 12:08:52

A.2 Modulation Characteristics

Test Data of Modulation Limit

Modulation Level (dB)	Peak Freq. Deviation At 100 Hz (KHz)	Peak Freq. Deviation At 500 Hz (KHz)	Peak Freq. Deviation At 2500 Hz (KHz)	Peak Freq. Deviation At 10000 Hz (KHz)	Limit (kHz)	Verdict
-20	9.13	9.38	10.82	12.50		
-15	9.83	10.45	12.30	14.42		
-10	10.81	11.48	14.03	16.83		
-5	12.33	13.03	16.46	20.35		
0	13.98	15.01	19.81	24.48	±75	Pass
+5	16.53	17.76	24.15	30.82		
+10	19.57	21.95	30.26	38.57		
+15	24.15	26.90	38.16	49.36		
+20	29.95	33.72	49.01	64.14		

Test Plots of Modulation Limit

Test Data of Audio Frequency Response

F (11)	Deviation (KHz)	
Frequency (Hz)	+ Peak	- Peak
20	8.83	8.79
30	11.14	11.05
40	13.29	13.24
50	15.77	15.75
100	18.03	17.99
200	18.31	18.24
520	19.37	19.32
1020	22.13	22.1
1520	23.37	23.33
2020	24.34	24.42
2520	25.52	25.46
3020	27.17	27.09
3520	27.5	27.47
4020	28.38	28.42
4520	29.66	29.66
5020	29.81	29.74
5520	30.49	30.46
6020	30.87	30.81
6520	31.2	31.11
7020	31.71	31.76
7520	32.16	32.07
8020	32.61	32.6
8520	33.26	33.24
9020	33.85	33.79
9520	34.24	34.15
10020	34.71	34.68
10520	34.94	34.86
11020	35.29	35.26
11520	35.5	35.4
12020	35.83	35.83
12520	36.14	36.09
13020	36.49	36.49
13520	36.63	36.65
14020	36.71	36.77
14520	36.85	36.78
15020	37.11	37.11
15520	37.12	37.03
16020	37.39	37.39
16520	37.45	37.45
17020	37.74	37.65

Fraguency (Uz)	Deviation (KHz)			
Frequency (Hz)	+ Peak	- Peak		
17520	37.78	37.69		
18020	37.82	37.81		
18520	38	37.91		
19020	38.08	38		
19520	38.25	38.16		
20000	38.43	38.36		

Test Plots of Audio Frequency Response

A.3 Emission Bandwidth and Emission Mask

Test Data

Frequency	26 dB Bandwidth	99% Bandwidth	Limits	Verdict
(MHz)	(kHz)	(kHz)	(kHz)	
182.4	40.23	33.86	200	Pass

Test plots ()

Test Data of Mask

_								
	Frequency	Refer to Plot	Verdict					
	(MHz)	1.0101 10 1 101						
	182.4	A.3.3	Pass					

A.3.3 LOW CHANNEL

A.4 Spurious Emissions at Antenna Terminals

Frequency (MHz)	Max Spurious Emission (MHz)	Value(dBm)	Limits (dBm)	Verdict
182.4	166.9	-35.19	-13	Pass

Test Plots

A.5 Field Strength of Spurious Radiation

Note 1: The marked spike "N/A" should be ignored because they are Fundamental signal.

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	91.09	37.04	-21.68	43.5	6.46	Peak	102.70	100	Vertical	Pass
2	182.25	48.46	-22.01	43.5	-4.96	Peak	82.40	100	Vertical	N/A
3	197.53	33.37	-20.45	43.5	10.13	Peak	193.20	100	Vertical	Pass
4	273.41	36.93	-18.53	46.0	9.07	Peak	334.50	100	Vertical	Pass
5	377.42	24.61	-15.77	46.0	21.39	Peak	122.70	100	Vertical	Pass
6	640.22	28.72	-10.27	46.0	17.28	Peak	72.40	100	Vertical	Pass

30 MHz to 1 GHz, ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	91.09	26.94	-21.68	43.5	16.56	Peak	197.70	100	Horizontal	Pass
2	182.25	38.50	-22.01	43.5	5.00	Peak	261.90	100	Horizontal	N/A
3	197.53	30.04	-20.45	43.5	13.46	Peak	112.60	100	Horizontal	Pass
4	273.41	35.78	-18.53	46.0	10.22	Peak	122.90	100	Horizontal	Pass
5	415.48	24.58	-14.74	46.0	21.42	Peak	92.60	100	Horizontal	Pass
6	610.88	28.90	-10.44	46.0	17.10	Peak	358.30	100	Horizontal	Pass

1 GHz to 6 GHz. ANT V

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1147.96	43.07	-5.99	74.0	30.93	Peak	161.83	100	Vertical	Pass
2	1333.42	45.27	-4.78	74.0	28.73	Peak	275.62	100	Vertical	Pass
3	1601.35	44.95	-4.31	74.0	29.05	Peak	-17.57	100	Vertical	Pass
4	1999.75	46.51	-2.44	74.0	27.49	Peak	232.59	100	Vertical	Pass
5	2666.58	48.45	0.98	74.0	25.55	Peak	105.55	100	Vertical	Pass
6	4001.75	49.91	11.20	74.0	24.09	Peak	37.80	100	Vertical	Pass

1 GHz to 6 GHz. ANT H

No.	Frequency	Results	Factor (dB)	Limit	Margin	Detector	Table	Height	ANT	Verdict
	(MHz)	(dBuV/m)		(dBuV/m)	(dB)		(0)	(cm)		
1	1184.45	44.41	-5.48	74.0	29.59	Peak	11.90	100	Horizontal	Pass
2	1565.36	44.31	-3.98	74.0	29.69	Peak	0.80	100	Horizontal	Pass
3	2519.62	49.71	-0.11	74.0	24.29	Peak	158.10	100	Horizontal	Pass
4	2899.03	50.75	2.61	74.0	23.25	Peak	62.50	100	Horizontal	Pass
5	3560.86	47.64	9.75	74.0	26.36	Peak	39.60	100	Horizontal	Pass
6	4708.82	52.27	13.38	74.0	21.73	Peak	333.00	100	Horizontal	Pass

A.6 Frequency Stability

Voltage vs. Frequency Stability

Test Con	ditions	Test	Measurement	Max.	Max.	Limit	
Temperature	Voltage	Frequency	Frequency	Deviation	Deviation		
(°C)	(VDC)	(MHz)	(MHz)	(MHz)	(ppm)	(ppm)	
	3.5	182.4	182.398883	-0.003606	-9.11	-19.77	
20	3.0	182.4	182.399305	-0.004101	26.39	-22.48	
	2.0	182.4	182.398747	-0.000604	1.46	-3.31	

Temperature vs. Frequency Stability (LOW CHANNEL)

Test C	Conditions	Test	Measurement	Max.	Max.	Limit
Voltage (VDC)	Temperature (°C)	Frequency (MHz)			Deviation (ppm)	Limit (ppm)
	-10	182.4	182.396879	-0.003121	-17.11	50
	-5	182.4	182.396274	-0.003726	-20.43	50
	0	182.4	182.39967	-0.00033	-1.81	50
	10	182.4	182.403834	0.003834	21.02	50
3.0	20	182.4	182.397842	-0.002158	-11.83	50
	30	182.4	182.405919	0.005919	32.45	50
	40	182.4	182.406112	0.006112	33.51	50
	45	182.4	182.396203	-0.003797	-20.82	50
	50	182.4	182.395213	-0.004787	-26.24	50

ANNEX B TEST SETUP PHOTOS

Please refer the document "BL-SZ1660216-AR.PDF".

ANNEX C EUT EXTERNAL PHOTOS

Please refer the document "BL- SZ1660216-AW.PDF".

ANNEX D EUT INTERNAL PHOTOS

Please refer the document "BL- SZ1660216-AI.PDF".

--END OF REPORT--