Constraint Satisfaction

CS161 Guy Van den Broeck

Constraint Satisfaction Problems

- What? n-queens, cryptoarithmetic, map coloring, SAT, etc.
- Factored problem formulation
 Look inside state structure (no longer black box)
- Representation (formal language)
 - Variables X
 - Domains D
 - Constraints (=goal test)
- More powerful general-purpose solvers

Example: Graph Coloring

What is the benefit of a factorized representation?

- Example: Coloring Australia
 - Suppose we know that SA=blue
 - Still 3^6 possible states left
 - No neighboring state can be blue
 - Really only 2⁵*3 states left!

- Check inconsistency early
- Be smarter about which actions to try

Constraint Satisfaction Problems

- Constraint types
 - Unary
 - Binary
 - Higher-order
 - Global constraints
 - Soft constraints
- Binary CSPs
- Constraint Graphs

Examples

- Cryptarithmetic
- SAT solving

Constraint graphs

Binary constraints:
 Binary constraint graphs

- Higher-order constraints:
 Constraint hypergraphs/bipartite graphs

Real-World Examples

- Assignment problems (who teaches this class)
- Timetabling problems (when and where)
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Etc.

CSP Search, the Naïve Way

- Initial state: empty assignment {}
- Actions: assign to a variable X a value v
 - Any choice of unassigned X
 - Any choice of v
 - Only allowed if no constraint becomes violated
- Successor function: add {X=v} to state
- Goal test:
 - all variables get assignment
 - all constraints are satisfied

CSP Search, the Naïve Way

- Search tree
- Which search algorithm to use?
 - Why not IDS? DLS? BFS?
 - DFS is perfect for CSP: optimal and complete
- Complexity?
 - Number of variables N=|X|
 - Number of values V=|D|
 - Size of tree: $(NV)*((N-1)*V)*((N-2)*V)*... = N!V^N$
 - Note: only V^N distinct states! ☺

Can we do better?

Variable assignments are commutative

- Per node, only need consider assignment to one variable
- Branching factor V
- Complexity: V^N

This is called "backtracking search".

Backtracking Search

Improvements?

- 1. Which variable next?
- 2. Which value next?
- 3. Detect inevitable failure early
- 4. Exploit problem structure

Effect of Variable Order?

- Constraints: X=Y, Y=Z
- Constraint graph: X Y Z
- Which order to pick?
 - Order A: XZY
 - Order B: XYZ

 Variable order permutes the tree and changes its size!

Example

Variable Selection Heuristics

- Note: not a "heuristic" as in heuristic search
- General idea: first-fail principle

- 1. Most constrained variable heuristic: Pick variable with fewest legal values
 - aka Minimum remaining values heuristic
 - Reduces branching factor immediately

Example

Variable Selection Heuristics

- Note: not a "heuristic" as in heuristic search
- General idea: first-fail principle

- 2. Degree heuristic: Pick variable with most constraints on remaining variables
 - Tie-breaker among most constrained variables
 - Easily computed on constraint graph (how?)
 - Reduces branching factor further down

Value Selection Heuristics

Value Selection Heuristics

• Note: not a "heuristic" as in heuristic search

Least constraining value heuristic:
 Pick value ruling out fewest values in remaining variables

Combined with value heuristics: 1000-queens feasible

Is there something wrong?

- Most constrained variable
- <u>Least</u> constraining value

Are these contradicting?

What if all assignments are solutions? What if there is no solution?

Structure

Structure: Tree

Structure?

Structure: Cutset Conditioning

Structure: Tree Decomposition

