Neural Network 的实现

一、数据

从 http://yann.lecun.com/exdb/mnist/ 下载 MNIST 数据集。

数据文件	说明
train-images-idx3-ubyte	images 训练集, 60000 个样本, 每个样本包含
	28x28 无符号整数
train-labels-idx1-ubyte	训练集的标签,60000 个,标签是 0-9 之间的数
	字
t10k-images-idx3-ubyte	Images 测试集, 10000 个样本, 每个样本包含
	28x28 无符号整数
t10k-labels-idx1-ubyte	测试集的标签, 10000 个, 标签是 0-9 之间的数
	字

二、实验过程

	网络结构	迭代	学习率	准确率	说明
1	784->200->10	1	0.5	0.8968	
2	784->200->10	1	0.7	0.871	增大学习率后,效果反而 不好
3	784->200->10	1	0.3	0.9391	降低学习率后,效果变好
4	784->200->10	1	0.1	0.9490	降低学习率后,效果变好
5	784->200->10	1	0.01	0.9186	继续降低 lr 后, 效果反而 没有 0.1 的效果好
6	784->300->10	1	0.05	0.9475	0.01-0.1 的学习率比较好 些
7	784->250->10	13	0.05	0.971	增加迭代轮次,效果更好
8	784->600->10	9	0.1	0.9712	增加隐藏层节点数量,效果好一点
9	784->1024->10	28	0.05	0.9751	增加隐藏层节点数量,效果好些
10	784->500->300->10	20	0.05	0.9412	增加网络层次,效果没有 变好
11	784->500->150->10	19	0.1	0.9269	降低第 2 个 hidden 层的 节点数量,效果没有变好

实验调优主要考虑的方面:

- 1. 增加网络的宽度:通过增加隐藏节点的数量,来增大网络宽度,实验效果确实有增加,参考7和9;
- 2. 增加网络的深度:通过增加网络的层数,参考9和10,但是效果并没有变好, 准确度反而降低了一些;
- 3. 对样本做归一化处理: 由于 MNIST 样本像素值是从 0-255, 所以采用 Z=(X*0.99/255)+0.01 来处理样本;
- 4. 初始化: 初始化 weight 和 bias 采用 random 初始化;
- 5. 后续可以再考虑正则化、或者其他激活函数;

三、代码说明

cpp 文件	说明		
NNetwork.h	NNetwork 类的头文件		
NNetwork.cpp	提供 train 方法用于训练样本,提供 predict 方法用于预测结果,基于 Eigen 的矩阵运算		
MNistLoader.cpp	用于加载 MNIST 数据集		
main.cpp	执行 train 和 test, 对源数据归一化, 并统计准确度		

GCC 普通编译后, 执行速度很慢, 需要加上 -O2 参数来编译, 这样速度明显变快。