Notes for General Topology by Tom Leinster

Zhao Wenchuan

April 12, 2021

Chapter 1

Topological Spaces

1.1 Review of Metric Spaces

Definition 1.1.1. Let X be a set. A *metric* on X is a function $\rho: X \times X \to \mathbb{R}_{\geq 0}$, such that $\forall x, y, z \in X$, the following (metric axioms) holds:

M1. $\rho(x, y) = 0 \iff x = y \text{ (identity of indiscernibles)};$

M2. $\rho(x, y) = \rho(y, x)$ (symmetry).

M3. $\rho(x,y) + \rho(y,z) \ge \rho(x,z)$ (triangle inequality);

A metric space is a set together with a metric on it, or more formally, a pair (X, ρ) where X is a set and ρ is a metric on X.

Example 1.1.1.

(i) The function $\rho_p: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ defined by $\forall p \in \mathbb{R}_{\geq 1}, \, \forall x, y \in \mathbb{R}^n$,

$$\rho_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}},$$

is a metric on \mathbb{R}^n . Clearly it satisfies identity of indiscernibles and symmetry. For triangle inequality, it is suggested by Minkowski inequality.

Given $x \in \mathbb{R}^3$, $r \in \mathbb{R}_{\geq 0}$, and

$$B_{\rho} = \left\{ y \in \mathbb{R}^3 \mid \rho(x, y) \le r \right\}.$$

 $\forall p, q \in \mathbb{R}_{\geq 1}$, it is true that, $\forall x, y \in \mathbb{R}^n$,

$$p \le q \implies \rho_p(x, y) \ge \rho_q(x, y).$$

Thus, $B_p \subseteq B_q$.

Geometrically, as p=1, B is a octahedron in \mathbb{R}^3 with center x and radius r; as p=2, B is a sphere in \mathbb{R}^3 with center x and radius r. It is easy to observe that as $p \to \infty$, B tends to the cube in \mathbb{R}^3 with center x and edge length 2r; i.e.,

$$\rho_{\infty}(x,y) = \lim_{p \to \infty} \rho_p(x,y) = \sup_{i \in \{1,\dots,n\}} |x_i - y_i|.$$

(ii) Let $f:(X,\rho)\to\mathbb{R}^n$ with $X\subseteq\mathbb{R}^m$ be a continuous map on X. Let $x,y\in X$, then $\rho':f[X]\times f[X]\to\mathbb{R}_{\geq 0}$ defined by

$$\rho_p'(x,y) = \int_0^1 f(\ell(t)) d_p s(t)$$

where

$$\ell(t) = x + t(y - a)$$

and

$$d_p s(t) = \left(\sum_{i=1}^m \left| \frac{dg_i}{dt}(t) \right|^p \right)^{\frac{1}{p}} dt.$$

with $p \geq \mathbb{R}_{\geq 1}$ is a metric on f[X].

Fix x and given $r \in \mathbb{R}_{\geq 0}$, the set

$$B_p = \left\{ y \in \mathbb{R}^m : \rho_p'(x, y) \le r \right\}$$

describes a set "attached" on f[X] with center x. If p=2, m=2 and n=3, and $f:[0,2\pi)\times[0,2\pi)\to\mathbb{R}^3$ is defined by

$$f(\lambda, \phi) = \begin{cases} r \cos \lambda \sin \phi, \\ r \sin \lambda \sin \phi, \\ r \cos \phi, \end{cases}$$

then ρ'_2 here is a great circle metric defined by

$$\rho_2'(x,y) = r \arccos(\sin x_\phi \sin y_\phi + \cos x_\phi \cos y_\phi \cos(x_\lambda - y_\lambda)).$$

(iii) Let $a, b \in \mathbb{R}$ with $a \leq b$, and $p \in \mathbb{R}_{\geq 1}$, and C[a, b] denote the set of continuous function $[a, b] \to \mathbb{R}$.

Then d_p defined by $\forall f, g \in C[a, b]$,

$$\rho_p(f,g) = \left(\int_a^b |f - g|^p\right)^{\frac{1}{p}}$$

is a metric on C[a, b].

Similar to ρ_p on \mathbb{R}^n ,

$$B_p = \{ g \mid \rho(f, g) \le r \}$$

defines a set with "center" f and "radius" $r \in \mathbb{R}_{>0}$.

It also implies that, on $C[a, b], \forall p, q \in \mathbb{R}_{>1}, \forall x, y \in \mathbb{R}^n$

$$p \le q \implies d_p(f,g) \ge d_q(f,g),$$

and, naturally, $B_p \subseteq B_q$. This is a straight corollary from the same case of d_p on \mathbb{R}^n .

(iv) Let A be a set. The Hamming metric ρ on a set A^n is given by $\forall x, y \in A^n$

$$\rho(x,y) = \# \left\{ i \in \{1,\ldots,n\} : x_i \neq y_i \right\}.$$

An example from Wikipedia. The word "karolin" and "kathrin" can be considered as tuples

$$x = (k, a, r, o, l, i, n), y = (k, a, t, h, r, i, n).$$

For all $i \in \{0, \dots, 6\} \setminus \{0, 1, 4, 6\}$, $x_i \neq y_i$, and $\#(\{0, \dots, 6\} \setminus \{0, 1, 4, 6\}) = 3$, thus

$$\rho(x,y) = 3.$$

(v) Let (M, ρ) be a metric space (for example, $\rho = \rho_2$ on \mathbb{R}^n), and $X, Y \in \mathcal{P}(M)$. The Hausdorff metric ρ_H on $\mathcal{P}(M)$ is defined by

$$\rho_{\mathrm{H}}(X,Y) = \max \left\{ \sup_{x \in X} \rho(x,Y), \sup_{y \in Y} \rho(X,y) \right\},\,$$

where $\rho(a, B) = \inf_{b \in B} \rho(a, b)$ for all $B \in \mathcal{P}(M)$ and $a \in M$.

This metric can be used to measure how close two figures (as sets of points) are.

Definition 1.1.2. Let X be a metric space, let $x \in X$, and $\varepsilon > 0$. The open ball with center x and radius ε , or more briefly the open ε -ball about x is the subset

$$B(x,\varepsilon) = \{ y \in X : \rho(x,y) \le \varepsilon \} \subseteq X.$$

Similarly, the closed ε -ball around x is

$$\overline{B}(x,\varepsilon) = \{ y \in X : \rho(x,y) \le \varepsilon \} \subseteq X.$$

Note 1.1.1. Clearly, the word "ball" does not mean it should look like a ball. Clearly, for all $x \in \mathbb{R}^3$, the ball $\{y \in \mathbb{R}^3 : \rho_{\infty}(x,y) < 1\}$ is a cube without its surface.

And it is interesting to think that on C[a, b] with conditions above,

$$\{g \in C[a,b] : \rho_p(f,g) < 1\}$$

defines a open ball in C[a, b].

Note 1.1.2. For hamming metric ρ with conditions above, for $\varepsilon \in \mathbb{R}_{(0,1)}$, the ball

$${y \in A^n : \rho(x,y) < 1} = {x}.$$

is a singleton.

Definition 1.1.3. Let X be a metric space.

(i) A subset U of X is open in X (or an open subset of X) iff

$$\forall u \in U, \exists \varepsilon \in \mathbb{R}_{>0}, B(u, \varepsilon) \subseteq U.$$

(ii) A subset V is closed in X iff $X \setminus V$ is open in X.

Note 1.1.3. Equivalently, U is open in X iff $\exists \varepsilon \in \mathbb{R}_{>0}$,

$$U = \bigcup_{x \in U} B(x, \varepsilon);$$

and V is closed in X iff

$$V = \bigcap_{x \in U} (X \setminus B(x, \varepsilon)),$$

by De Morgan's Law.

Definition 1.1.4. Let X be a metric space, let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence in X and let $x\in X$. Then $\{x_n\}$ converges to x iff

$$d(x_n, x) \to 0$$
 as $n \to \infty$.

Explicitly, then, $\{x_n\}$ converges to x iff

$$\forall \varepsilon \in \mathbb{R}_{>0}, \exists N \in \mathbb{N}_{\geq 1}, \forall n \in \mathbb{N}_{\geq N}, \quad d(x_n, x) < \varepsilon.$$

Note 1.1.4. Equivalently, $\{x_n\}$ converges to x iff

$$\forall \varepsilon \in \mathbb{R}_{>0}, \#(\{x_n\} \cap B(x,\varepsilon)) = \aleph_0 \wedge \#(\{x_n\} \setminus B(x,\varepsilon)) < \aleph_0.$$

In other words, $B(x, \varepsilon)$ contains all but finitely many x_n .