MAT02010 - Tópicos Avançados em Estatística II Estrutura

Rodrigo Citton P. dos Reis citton.padilha@ufrgs.br

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística Departamento de Estatística

Porto Alegre, 2019

Uma População

Uma população

- Os 885 = 439 + 446 pacientes no Estudo ProCESS são uma população pequena e finita, não muito diferente da população de pessoas que vivem em uma cidade pequena.
- Poderíamos nos referir aos pacientes pelo nome, mas é mais conveniente numerá-los: i = 1, 2, ..., I = 885.
 - Aqui, i faz referência a um indivíduo, e I se refere ao número total de indivíduos, I = 885.
- Nos exemplos deste capítulo, o indivíduo i=17 é o nosso amigo Harry!
- ► Ao substituir 885 pacientes por I pacientes, podemos ser fiéis ao descrever o estudo ProCESS, reconhecendo ao mesmo tempo que muitos detalhes do estudo ProCESS são incidentais por exemplo, o tamanho da amostra e que o que estamos dizendo é tão verdadeiro quanto qualquer experimento formado pelo lançamento de moedas honestas.

- ▶ x_i representará as covariáveis observadas para o paciente i.
- ▶ Na Tabela 1.1, existem nove covariáveis para cada paciente *i*, e *x_i* registra os valores dessas nove covariáveis para o paciente i.
- Várias covariáveis são atributos que podem estar presentes ou ausentes em vez de números, mas é costume registrar um atributo como 1 se estiver presente e 0 se estiver ausente.
 - A média de um atributo é a proporção de vezes que o atributo está presente (e 100 vezes essa média é a porcentagem), como na Tabela 1.1.

Relembrando: Tabela 1.1

Table 1.1. Covariate balance in the ProCESS Trial

Treatment group	Aggressive	Less aggressive 446		
Sample size (number of patients)	439			
Age (years, mean)	60	61		
Male (%)	53	56		
Came from nursing home (%)	15	16		
Sepsis source				
Pneumonia (%)	32	34		
Urinary tract infection (%)	23	20 13 20.6 102 5		
Intra-abdominal infection (%)	16			
APACHE II score (mean)	20.8			
Systolic blood pressure (mean)	100			
Serum lactate (mmol/liter, mean)	4.8			

Table 2.1. The value of the nine observed covariates x_{17} for patient 17

Patient		Background			Source of sepsis		Physiology		
	Age	Male	Nursing home	p_n	UTI	A	APACHE II	Systolic BP	Serum lactate
x ₁₇	52	1	0	1	0	0	23	96.1	5.3

A = intra-abdominal infection; APACHE II = Acute Physiology and Chronic Health Evaluation II; BP = blood pressure; Pn = pneumonia; UTI = urinary tract infection.

► Cada paciente i dos pacientes I = 885 tem tal tabela x_i de nove números descrevendo o paciente i.

Covariáveis não medidas

- ▶ *u_i* representará as **covariáveis não observadas** para o paciente *i*.
- A estrutura de u_i é semelhante à estrutura de x_i , mas u_i é uma covariável que não medimos.
- ▶ O que há em u_i? Talvez . . .
 - ... u_i inclua um indicador, 1 ou 0, de uma variante de um gene relevante para sobreviver ao choque séptico, talvez um gene cuja importância ainda não foi descoberta;
 - … u_i indique o tipo específico de bactéria responsável pela infecção, incluindo sua resistência a vários antibióticos:
 - ... u_i registre a extensão da experiência do médico residente envolvido no cuidado do paciente i;
 - ... u_i descreva o suporte social disponível para o paciente i.

Covariáveis: comentários

- **1.** As covariáveis, x_i ou u_i , existem em uma única versão.
 - ▶ Em particular, o paciente i = 17 teria o x_i dado na Tabela 2.1 se Harry é aleatorizado para o tratamento agressivo ou para o tratamento menos agressivo.
- Em um estudo completamente aleatorizado como o estudo ProCESS, a chance de qualquer paciente receber o tratamento agressivo é a mesma que a chance de esse paciente receber o tratamento menos agressivo.
 - Essa chance **não depende** de x_i e nem de u_i .
 - Sabemos disso porque atribuímos tratamentos lançando uma moeda honesta.
- ► A chance de que Harry seja designado para tratamento agressivo é 1/2, e **não importa**, no que diz respeito a essa chance, que Harry tem 52 anos com uma escore APACHE II de 23.
 - As coisas seriam diferentes na ausência de atribuição de tratamentos, mas o ensaio ProCESS foi aleatorizado.

 $ightharpoonup Z_i$ registra o tratamento atribuído ao paciente i.

$$Z_i = \begin{cases} 1, \text{ se o paciente } i \text{ foi atribuído ao tratamento agressivo,} \\ 0, \text{ se o paciente } i \text{ foi atribuído ao tratamento menos agressivo.} \end{cases}$$

▶ Harry (i = 17) foi atribuído ao tratamento agressivo, $Z_{17} = 1$.

ightharpoonup Podemos reformular Z_i em termos mais genéricos

$$Z_i = \begin{cases} 1, \text{ se o paciente } i \text{ foi atribuído ao tratamento,} \\ 0, \text{ se o paciente } i \text{ foi atribuído ao controle.} \end{cases}$$

▶ m representará o número de pacientes no grupo tratado (no estudo ProCESS, m = 439).

- ▶ O estudo ProCESS atribuiu tratamentos aleatoriamente lançando uma moeda honesta, de modo que Z_i fosse uma quantidade aleatória assumindo o valor $Z_i = 1$ com probabilidade 1/2 e o valor $Z_i = 0$ com probabilidade 1/2.
 - $Pr(Z_i = 1) = 1/2 = Pr(Z_i = 0)$.
- ▶ Utilizaremos $\pi_i = \Pr(Z_i = 1)$ para designar a probabilidade do paciente i ser designado ao grupo tratado.
 - ▶ Como o estudo ProCESS é um ensaio completamente aleatorizado, $\pi_i = 1/2$ para i = 1, ..., I em que I = 885.
- ▶ Grande parte da complexidade da inferência causal surge quando π_i varia de pessoa para pessoa de maneiras que não compreendemos completamente.

Estamos vendo que há uma enorme assimetria entre duas tarefas que se referem a todos os aspectos do passado de Harry antes do tratamento. Uma tarefa é usar todos os aspectos do passado de Harry para criar grupos tratados e de controle idênticos, o que não pode ser feito. A segunda tarefa é garantir que absolutamente nenhum aspecto do passado de Harry influencie sua designação de tratamento, o que é simples: você joga uma moeda justa. Felizmente, como visto no Capítulo 3, o sucesso na segunda tarefa direta é tudo o que é necessário para a inferência causal.

Efeitos Causados por Tratamentos

Médias em Populações e Amostras

Efeitos Causais Médios

Avisos

- ▶ Para casa: Ler o Capítulo 3 do livro do Paul R. Rosenbaum.
- Próxima aula: Discussão do Capítulo 3 do livro do Paul R. Rosenbaum.

Por hoje é só!

