

Mechatronics 4CCE1MCP Group Project

Remote Control Design, Build & Test of a Ship for Environmental Clean-up

Module Instructors

• Dr Francesco Ciriello, francesco.ciriello@kcl.ac.uk

In this document, you are provided with information to complete the group project assessment for the course. This extended project will be an opportunity to design, build and test the ship and collection system in the laboratory.

Deadlines

Demonstration day: Week 32, Mar 29, 31, 2022 (timetabled)

Final Report: Week 32, Apr 4, 2022 (16:00)

Brief

You have been tasked to design, build, and test a proof-of-concept prototype for a ship system that can collect floating debris.

You are responsible for:

- designing and building a ship;
- designing and building a collection system that gathers floating objects in the provided scenario;
- testing the effectiveness of your design through simulation and experiments;
- producing a technical report and video presentation with a complete set of design specifications, analysis and engineering drawings;
- submitting a version of your design for assessment;
- competing for the quickest clean-up time for the provided scenario.

Scenario

The ship will need to collect nine spherical floating objects of 20 mm in diameter. Collection is defined as storing the floating debris in a recipient so that it is not allowed to be released back into the environment.

The floating objects will be randomly dispersed in a tank that is 1.2 by 1.2 m² in area and 250 mm in water depth. You will have 10 min to demonstrate the effectiveness of your design.

Expected design components

Your ship system is expected to have the following components:

- a ship that can float in a stable configuration and adequately manoeuvre in a water tank
- a propulsion mechanism for the ship, e.g. DC motor with gearbox and / or propeller drivetrain;
- as steering mechanism for the ship, e.g. a rudder or a two-propeller system;
- a debris collection system, e.g. net, basket or gripper;
- a remote control for teleoperation.

Refer to the Final demonstration day section for specific assessment criteria.

Deliverables

- a working prototype of the ship for the demo day;
- a video log of the design, build and test. The video should be a maximum of 5 minutes long;
- a final report presenting your project for review.

Learning objectives

- Design a system by using a combination of modelling and experimentation.
- Produce a CAD model of the ship to instruct for manufacture.
- Choose appropriate materials and methods for manufacture.
- Deploy a control system to embedded hardware.
- Implement a robust remote-control solution for a real-time system
- Work effectively as an independent contributor of an engineering team
- Deliver a project within a tight set of deadlines and requirements
- Communicate effectively with sub-teams from different domains using requirements, system specifications and a testing framework.

Marking Criteria

Group project work accounts for 65% of module grade. Assessment will be staged in three sessions, which include:

- Video log, 10%
- Final demonstration, 25%
- Final report, 30%

Overall marking Criteria

Marks will be awarded to groups based on their merits in six core learning areas;

Area	Actions	
Science &	Justify design approach	
Mathematics	Interpret design performance using mathematical and statistical techniques	
	Critique choice for component characteristics and technology	
Engineering	Apply engineering tools to solve the design task	
Analysis	Conduct critical analysis to identify, classify and describe system performance compared to benchmark	
	Adopt systems approach to improve on design	
	Extract and evaluate pertinent data to solve unfamiliar problems	
Engineering	Evaluate user needs and requirements	
\mathbf{Design}	Identify and work with design constraints and unknowns	
	Communicate to a technical audience	
	Deliver efficient, effective and robust design	
Engineering	Identify and mitigate areas of risk	
Context	Appreciate the environmental and social context for the engineering project	
Engineering	Demonstrate design effectiveness in the context in which the system is applied	
Practice	Work effectively as an independent member of an engineering team	
Additional General skills	Demonstrate effectiveness, clarity and originality of communication	

Final demonstration day

Marks awarded on pass / fail basis for the following requirements. This rubric has been developed for easy and objective marking on the demonstration day, and to encourage you to deliver a functioning system.

Total marks 100 to scale to 25% of module grade

Marks	Requirement	Pass or Fail
Total 20	Project & Systems	
5	Group attends session and project ready for demonstration	
5	Ship system successfully collects at least one object in allocated time	
5	Ship system successfully collects at least three objects in allocated	
5	time Ship system successfully collects all objects in allocated time	
Total 20	Ship design & manufacture	
5	Ship is intact / does not miss components	
5	Ship floats	
5	Ship is stable	
5	Electronic components safe from splashing or water ingress	
Total 20	Control & Communication System	
5	Ship can move forward	
5	Ship can steer	
5	Remote control works	
5	Ship can approach floating objects	
Total 20	Mechatronics	
5	Ship propellers spin	
5	Propulsion system drives ship	
5	Collector system catches objects	
5	Collector system keeps collected objects	
Total 20	Competition	
	Marks awarded as a distribution of performance with respect to other	
	teams*	

^{*}Performance will be marked with respect to the number of objects collected in the allocated collection time (max 10 minutes). If all objects are collected, the quickest time of collection will be considered to rank performances.

Video log Marking Scheme

Take this opportunity to share your design. The video \log submission must be of less than 5 minutes in length.

Total marks 10

Area	Actions	Marks
Engineering	Communicate to a	• Use appropriate technical language to describe
Design	technical audience	design, 3 marks
(3 marks)		
Engineering	Demonstrate design	• Demonstrate how the ship works, 3 marks
Practice	effectiveness in the	
	context in which the	
(3 marks)	system is applied	
Additional	Demonstrate	Use media and graphics effectively to
General	effectiveness, clarity and	communicate your design, 2 marks
skills	originality of	• Clear and concise voiceover, 1 mark
	communication	• Original presentation, 1 mark
(4 marks)		

Final Report Criteria

You are expected to produce an 8-page report (excluding figures, appendices and technical drawings) to present your final design & build for review.

The submission of the report is the responsibility of the project manager. Each sub-team is expected to work on an individual section of the report.

The report must include the following sections:

Contributor	Title	Length
Project Manager,	Scope of report and list of deliverables	max ½ page
System Architect & Quality Control	System Architecture & Quality Control Process	max ½ page
Chin Dogica & Duild	Ship Hull Design \mathcal{C} Analysis	max ½ page
Ship Design & Build	Ship Manufacturing & Build	max ½ page
Mechanical Engineer,		
Control Engineer,	Ship Collector Design & Analysis	$\max 1 \text{ page}$
Quality Engineer		
Propulsion Engineer,	Ship Propulsion & Steering Design & Analysis	max 1 page
Control Engineer	Ship I ropuision & Siecring Design & Analysis	max 1 page
Communication,		
Control Engineer,	Remote Control System Design $\mathscr C$ analysis	$\max 1 \text{ page}$
Quality Engineer		
Led by System	Reflection on new technology development and	*** 1/ ** 0 ma
Architect, All	implications for Oceanic Clean-up	max ½ page
Led by PM, All	Reflection on group project delivery and new lessons learnt	max ½ page

Suggested figures and appendix items

- Project timeline
- List of requirements
- List of tests
- Technical drawing of ship hull
- Technical drawing of ship drivetrain
- Technical drawing of ship collector
- Step by step instructions on how to build for reproducibility
- Model diagram for control system, e.g. Simulink model
- Communication diagram

Detailed Final Report Mark scheme

Total marks 100 to scale to 30% of module grade

Area	Actions	Marks
Science &	Justify design approach	Project Management & System Engineering Team
Mathematics	Interpret design performance using	• Provide evidence of project delivery and well-defined project management strategies
(20 marks)	mathematical and statistical techniques	(milestones and deliverables), 5 marks
	Critique choice for actuator and sensor	• Implement a system architecture and justify the choice of components, 5 marks
Mark based on	characteristics and technology	• Provide evidence of quality control process (tests & verification), 5 marks
sub- $team$		• Demonstrate one-to-one mapping between tests and requirements, e.g. using a table of
per formance		diagram, 5 marks
		Ship Design & Build Team
		• Inform design decisions from a model of ship dynamics, 4 marks
		• Perform flotation analysis to specify ship payload, 4 marks
		• Discuss design measures to ensure ship stability about the heel and trim, 4 marks
		• Design ship hull and other floating systems to reduce drag, 3 marks
		• Appropriate choice of materials and manufacturing methods, 5 marks
		Control~ & ~Communication~ Team
		• Implement an appropriate controller for ship motion and steering, 7 marks
		• Deploy control system to hardware and comment on fixed rate performance, 3 marks
		• Implement and present a communication network diagram, 2 marks
		• Implement and present the design of a remote controller, 4 marks
		• Discuss how you designed the communication system to robustly handle issues of
		latency and quality of service, 4 marks
		Mechatronics Team
		ullet Design an appropriate load transfer mechanism between the motor shaft(s) and the
		propeller(s) and demonstrate how your design was informed by models and experimentation, 6 marks

- Design an appropriate steering mechanism and demonstrate how your design was informed by models and experimentation, **7 marks**
- Design an appropriate collector system and demonstrate how your design was informed by models and experimentation, **7 marks**

Engineering	Apply engineering tools to solve the design tas
Analysis	Conduct critical analysis to identify, classify
$(20 \mathrm{marks})$	and describe system performance compared to
	benchmark
Mark based on	Adopt systems approach to improve on design
sub- $team$	Extract and evaluate pertinent data to solve
per formance	unfamiliar problems

ask Project Management & System Engineering Team

- Provide a system architecture diagram, 4 marks
- Analyse performance of team using qualitative and quantitative means, 4 marks
- Provide requirements (in appendix) passed on to design teams, 4 marks
- Implement appropriate testing framework to measure ship performance, 4 marks
- Run and report tests run on ship, 4 marks

Ship Design & Build Team

- Report on technical drawings and models for the ship, 4 marks
- Demonstrate performance improvements compared to a benchmark initial prototype, 4 marks
- Demonstrate attempts to optimise system-level performance through modelling and experimentation, **4 marks**
- Provide images of build to demonstrate appropriate use of manufacturing technology for build and joints, 4 marks

Control & Communication Team

- Define a benchmark or target performance, 4 marks
- Demonstrate attempts of improving control performance relative to an initial prototype through appropriate tuning methods, 4 marks
- Demonstrate attempts of improving communication performance relative to an initial prototype, 4 marks

Mechatronics Team

 Report on technical drawings and models for the drivetrain, steering mechanism and collector, 4 marks

		 Reference data to justify design, 4 marks Consider weight and thrust of components used, 4 marks Provide evidence of data collection & analysis from ship build and test, 4 marks
Engineering Design (20 marks) Mark based on team performance	Evaluate user needs and requirements Identify and work with design constraints and unknowns Communicate to a technical audience Deliver efficient, effective and robust design	 Identify and evaluate trade-offs for ship weight and propulsion, 8 marks Identify and evaluate trade-offs for collector system, 5 marks Use appropriate technical language and engineering schematics to communicate design, 3 marks Demonstrate attempts at optimising system performance using physical intuition, 2 marks Demonstrate Attempts to improve mechanical parameters for design, 2 marks
Engineering Context (18 marks) Mark based on team performance	Identify and mitigate areas of risk Appreciate the environmental and social context for the engineering project	 Identify risk of sinking and demonstrate a risk mitigation strategy, 2 marks Identify risk of cap sizing and demonstrate a risk mitigation strategy, 2 marks Identify risk of water ingress and demonstrate a risk mitigation strategy, 2 marks Identify risk of poor manoeuvrability and demonstrate a risk mitigation strategy, 2 marks Identify risk of communication failure and demonstrate a risk mitigation strategy, 2 marks Identify risk of communication failure and demonstrate a risk mitigation strategy, 2 marks Acknowledge weight of components and attempt to minimise cost, 2 marks Discuss implications of new technology development to Oceanic clean-up, 6 marks
Engineering Practice (12 marks) Mark based on team performance	Demonstrate design effectiveness in the context in which the system is applied Work effectively as an independent member of an engineering team	 Address requirements provided in brief and by systems engineer, 2 mark Report on system-level performance test(s) from hardware implementation, 5 marks List key design parameters using a table or engineering drawing, 3 marks Demonstrate attempts of system integration and optimisation across sub-team domains, 2 marks

Additional
General
skills
(10 marks)

Demonstrate effectiveness, clarity and originality of communication

- Report within eight pages and with less than 20 grammatical errors, 5 marks
- Provide high quality schematics (diagrams, plots, or equivalent) to support your arguments, **5 marks**

Mark based on team

performance