FATA UNIVERSITY

Department of Computer Science

Project:

CARDIOVASCULAR DISEASE PREDICTION USING MACHINE LEARNING

Name Rizwan Ullah & Namreen

Roll No 09 & 32

Department CS

Semester 6th

Submittetd to Dr.Bilal Jan

Dated 4 July, 2025

Cardiovascular Disease Prediction using Machine Learning

Problem Statement

Cardiovascular diseases (CVDs) are the leading cause of death globally. Early prediction and diagnosis can significantly reduce mortality rates by enabling timely medical intervention. Traditional diagnosis often relies on clinical tests that can be costly, invasive, or time-consuming.

Q Objective:

To build a machine learning model that predicts the risk of cardiovascular disease in individuals using basic health indicators like age, gender, blood pressure, cholesterol, glucose level, and lifestyle habits.

Dataset Description

- Source: Kaggle Cardiovascular Disease Dataset
- File: cardio train.csv
- Size: ~70,000 rows and 13 columns
- Target Column: cardio (1 = has disease, 0 = healthy)

Features:

Feature	Description	
Age	Age (in days)	

Gender	1 = Female, 2 = Male	
height	Height in cm	
weight	Weight in kg	
ap_hi	Systolic blood pressure	
ap_lo	Diastolic blood pressure	
cholester ol	1 = normal, 2 = high, 3 = very high	
gluc	Glucose level (same as	
	cholesterol)	
smoke	1 = smokes, 0 = no	
alco	1 = drinks alcohol, 0 = no	
active	1 = physically active, 0 = not	
cardio	Target: 1 = disease, 0 = healthy	

Methodology

1. Data Preprocessing

- Converted age from days to years.
- Removed unnecessary id column.
- Scaled all features using StandardScaler.

2. Model Selection

• Chose **Random Forest Classifier** due to its robustness and performance on tabular data.

3. Model Training

- Split data: 80% training, 20% testing.
- Trained with 100 decision trees using RandomForestClassifier.

4. Evaluation Metrics

- Accuracy Score
- Classification Report (Precision, Recall, F1-Score)
- Confusion Matrix Visualization

Model Performance

Metric	Value
Accuracy	~70.37%
Precision	70% – 71%
Recall	70% – 71%
F1-Score	70%

Q Confusion Matrix:

	Predicted Healthy	Predicted Disease
Actual Healthy	<u>~</u>	X
Actual Disease	×	✓

A heatmap is also saved as confusion_matrix.png for reporting.

Saved Files

File Name	Description
heart_disease_model. pkl	Trained Random Forest model
heart_disease_scaler	Scaler to transform input
.pkl	features
confusion_matrix.png	Visual evaluation of predictions

	Streamlit Web App for
app.py	predictions

How to Use the Prediction App

1. Run the model with:

streamlit run app.py

- 2. Enter patient information:
 - a. Age, height, weight
 - b. Blood pressure, cholesterol, glucose
 - c. Smoking/alcohol/activity habits
- 3. Click "Predict"
 - a. V Low Risk
 - b. 🛕 High Risk

Conclusion

This machine learning model provides a simple and accessible way to assess heart disease risk using basic health data. It can serve as a **supportive screening tool** for early detection and preventive healthcare.