E - 129 - 2012

저압 개폐장치 및 제어장치의 유지관리 등에 관한 기술지침

2012. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- o 작성자: 한국전력기술인협회 남기범 처장
- o 제·개정 경과
 - 2012년 10월 전기안전분야 제정위원회 심의
- o 관련규격
 - BS EN 60947-3:2009+A1:2012 Low-voltage switchgear and controlgear Part 3: Switches, disconnectors, switch-disconnectors and fuse-combination units
 - IEC 60947 Standards for low-voltage switchgear and controlgear
 - IEC 60950 Safety of information technology equipment
 - KOSHA GUIDE E-6-2012 (전기개폐장치의 관리에 관한 기술지침)
 - KOSHA GUIDE E-18-2012 (저압 개폐장치의 정비에 관한 기술지침)
- o 관련법령·고시 등
- 0 코드적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 11월 29일

제 정 자 : 한국산업안전보건공단 이사장

E - 129 - 2011

저압 개폐장치 및 제어장치의 유지관리 등에 관한 기술지침

1. 목적

이 기술지침은 스위치, 단로기, 퓨즈 결합장치, 단로기 퓨즈 등 저압 개폐장치 및 제어장치의 설치와 유지관리에 관하여 필요한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

- (1) 이 기술지침은 교류 1,000 V 이하 또는 직류 1,500 V 이하의 배전 분기회로 및 전동기 회로에서 사용되는 스위치, 단로기, 퓨즈 결합장치, 단로기 퓨즈 등 저전 압 개폐장치 및 제어장치에 관하여 적용한다.
- (2) 이 기술지침은 폭발위험장소에서의 전기기계 · 기구에는 적용하지 않는다.

3. 정의

- (1) 이 지침에서 사용하는 용어의 뜻은 다음과 같다.
 - (가) "개폐장치(Switchgear)"라 함은 전력공급계통에서 전원을 연결하거나 차단하기 위한 개폐기구, 제어장치, 측정장치, 보호장치 등이 하나의 외함 또는 부속설비로 이루어 진 것을 말한다.
 - (나) "제어장치(Controlgear)"라 함은 전력계통에 연결된 전력설비의 제어를 위하여, 개폐장치, 측정장치, 보호장치 등이 하나의 외함 또는 부속설비로 이루어 진 것을 말한다.
 - (다) "단로기(Disconnector)"라 함은 전로의 개폐기능을 갖춘 스위치 장치이며, 송전선이나 변전소 등에서 무부하 상태(無負荷 狀態)에서 주회로의 접속을 변경하기위해 전기회로를 개폐(開閉)하는 장치를 말한다.

E - 129 - 2011

- (라) "퓨즈 결합장치(Fuse-combination unit)"라 함은 기계식 개폐기와 퓨즈를 결합해 놓은 장치를 말한다.
- (마) "스위치 퓨즈(Switch-fuse)"라 함은 한 개 이상의 극을 가지고 있는 스위치를 말하며, 퓨즈링크의 한쪽 회로만 개방되는 "스위치 퓨즈 단일차단 (Switch-fuse single break)"과 퓨즈링크의 양쪽 회로가 개방되는 "스위치 퓨즈 이중차단(Switch-fuse double break)"으로 구분된다.
- (바) "단로기 퓨즈(Disconnector-fuse)"라 함은 한 개 이상의 전극에 복합 단위의 퓨즈가 있는 단로기를 말하며, 퓨즈링크가 한쪽 회로만 개방되는 "단로기 퓨즈 단일 차단(Disconnector-fuse single break)"과 퓨즈링크가 양쪽 회로 모두 개방되는 "단로기 퓨즈 이중 차단(Disconnector-fuse double break)"으로 구분된다.
- (2) 그 밖에 용어의 뜻은 이 지침에서 특별히 규정하고 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 산업안전보건기준에 관한 규칙에서 정하는 바에 따른다.

4. 개폐장치의 특성

4.1 개폐장치의 형식

개폐장치의 형식에는 다음의 내용이 포함되어야 한다.

- (1) 전극 수(Number of poles)
- (2) 전류의 종류(AC, DC)
- (3) AC에서의 정격 주파수
- (4) 주요 접속기의 위치의 수(2개 이상일 경우)

4.2 회로의 정격

회로의 정격은 관련제품규격에서 요구하는 대로 4.2.1 내지 4.2.6에 따라 지정되어야

E - 129 - 2011

하지만 모든 정격을 지정할 필요는 없다.

4.2.1 정격 전압

(1) 정격 사용전압

- (가) 기기의 정격 사용전압이란 정격 사용전류와 함께 기기의 용도를 결정하고 관련 시험 및 사용범주에 관련된 전압 값이다.
- (나) 단극 기기의 경우, 정격 사용전압은 일반적으로 극에 걸리는 전압으로 지정된다.
- (다) 다극 기기의 경우, 정격 사용전압은 일반적으로 선간전압으로 지정된다.
 - 주 1 어떤 장치에 있어서 특별한 용도의 경우, 정격 사용전압을 나타내는 방법을 달리 적용할 수 있다. 이는 관련제품규격에서 지정되어야 한다.
 - 주 2 다른 책무와 사용범주에 대해 정격 사용전압과 정격 사용전류 또는 정격 의 몇 개의 조합이 기기에 적용될 수 있다.
 - 주 3 다른 책무와 사용범주에 대해 몇 개의 정격 사용전압과 몇 개의 관련된 투 입용량 및 차단용량이 기기에 적용될 수 있다.

(2) 정격 절연전압

- (가) 기기의 절연전압이란 절연시험 및 연면거리와 관련된 전압값이다.
- (나) 어떠한 경우에도 정격 사용전압의 최대값이 정격 절연전압의 최대값을 초과할 수 없다.
 - 주: 규정된 정격 절연전압을 가지고 있지 않은 기기의 경우, 정격 사용전압의 최 대값을 정격 절연전압으로 본다.

(3) 정격 임펄스 내전압

KOSHA GUIDE E - 129 - 2011

- (가) 규정된 시험 조건하에서 기기가 절연파괴 없이 견딜 수 있는 규정된 파형 및 극성의 임펄스 파고값으로 공간거리와 관련된 값이며, 임펄스 내전압별 최소 공간거리는 <표 1>과 같다.
- (나) 기기의 정격 임펄스 내전압은 기기가 설치된 회로에 발생하는 과도 과전압에 대해 규정된 값 이상이어야 한다.

<표 1> 최소 공간거리

	최소공간거리 (mm)							
정격 임펄스 내전압 _{Uimp} kV	A 불균일전계 조건			B 이상적 균일전계 조건				
THIP	오손등급			오손등급				
	1	2	3	4	1	2	3	4
0.33	0.01	0.2	0.8	1.6	0.01	0.2	0.8	1.6
0.5	0.04				0.04			
0.8	0.1				0.1			
1.5	0.5	0.5			0.3	0.3		
2.5	1.5	1.5	1.5		0.6	0.6		
4.0	3	3	3	3	1.2	1.2	1.2	
6.0	5.5	5.5	5.5	5.5	2	2	2	2
8.0	8	8	8	8	3	3	3	3
12	14	14	14	14	4.5	4.5	4.5	4.5

주: 대기 중의 최소공간거리 값은 표고 2,000 m에서의 통상의 대기압과 같은 80 kPa의 기압에 있어서 1.2/50 μ s 임펄스전압을 근거로 하고 있다.

4.2.2 정격 전류

E - 129 - 2011

(1) 개방시험

- (가) 개방시험 전류는 대기중에 노출된 기기에 대한 온도상승시험에 사용되는 시 험전류의 최대값이다.
 - 주 1 시험 중의 주위온도는 +10 ℃와 +40 ℃ 사이에 있어야 하며, 시험 중에는 10 ℃를 초과하는 온도변화가 있어서는 안 된다. 다만, 주위온도의 변화가 3 ℃를 초과하는 경우에는 기기의 열시정수에 따라 적당한 보정계수를 적용할 수 있다
- (나) 개방시험 전류값은 적어도 8시간 책무에서의 노출된 기기에 대한 정격 사용 전류의 최대값과 같아야 한다.
- (다) 대기는 통풍 및 외부 방사가 거의 없는 정상적인 내부 조건하에서의 공간을 말한다.
- 주 2 전류는 정격이 아니며, 기기에 반드시 표시되어야 하는 것은 아니다.
- 주 3 노출된 기기는 외함 없이 제조자에 의해서 공급되는 기기 또는 보통은 단독으로 기기를 보호할 목적으로 설계된 외함이 아닌 일체형 외함을 가지고 제조자에 의해서 공급되는 기기를 말한다.

(2) 밀폐시험

- (가) 밀폐시험 전류란, 제한된 기기 외함안에 설치되어 있는 경우, 기기의 온도상 승시험에 사용되는 제조자에 의해 지정된 전류값이다.
- (나) 밀폐시험 전류값은 적어도 8시간 책무에서의 폐쇄된 기기의 정격 사용전류의 최대값과 같아야 한다.
 - 주: 밀폐시험 전류값은 통풍이 잘되지 않는 외함안에 설치된 기기에 대한 전류값이다.
- (다) 일반적으로 기기를 외함내에서 사용하고자 하는 경우, 대기열적 전류에 대한

E - 129 - 2011

시험은 반드시 수행되어야 하는 것은 아니다.

(3) 정격 사용전류

- (가) 정격 사용전류는 제조자에 의해 지정되지만, 정격 사용전압, 정격주파수, 정격 책무(4.2.4), 사용범주(4.3 참조) 등 외함의 형태가 고려되어야 한다.
- (나) 개별 전동기의 적접 개폐를 위한 기기의 경우, 정격 사용전류의 표시는 고려되고 있는 정격 사용전압에서 기기가 사용되어질 전동기의 최대 정격출력의 표시로 대체되거나 추가될 수 있다.
- (다) 제조자는 정격 사용전력이 정해져 있는 경우, 정격 사용전류와 그 사용 전력 사이에 추정되는 기술적 관계를 고려하여야 한다.

(4) 정격 연속전류

정격 연속전류는 기기의 연속 책무 상태에서 제조자에 의해서 주어진 전류값이다.

4.2.3 정격 주파수

정격 주파수는 제조자에 의해 전기기기에 설계된 전원주파수를 말한다.

주: 같은 기기에 몇 개의 정격주파수 또는 일정 범위의 정격주파수가 주어지거나 교 류나 직류 양쪽의 정격이 주어질 수도 있다.

4.2.4 정격 사용률

(1) 8시간 책무

기기의 주접점이 폐로인 상태로 8시간을 넘지 않으면서 기기가 열적 평형에 이르게 하는데 충분한 시간동안 중단 없이 정상상태의 전류를 흘리는 책무

(2) 연속 책무

E - 129 - 2011

기기의 주접점이 폐로인 상태로 8시간 이상의 기간(주, 달, 년) 동안 중단 없이 정상 전류를 통전시키고 어떤 무통전 기간도 없는 책무

주: 이런 종류의 사용은 산화물과 먼지가 접점에 축적되고 점진적으로 열을 발생 시킬 수 있기 때문에 8시간 책무와 다르다. 감쇄율이나 특별 설계사항의 어 느 하나에 의해서 연속책무를 고려할 수 있다.

(3) 단시간 책무

- (가) 기기의 주접점이 폐로상태로 부하가 걸리는 기간과 부하가 걸리지 않는 기간 사이에 일정한 관계가 있는 책무로 두 기간은 너무 짧아서 기기가 열적 평형 에 도달하지 않는다.
- (나) 단시간 책무는 전류값, 통전시간 및 백분율로 표현되는 전체 기간에 대한 사용 기간의 비율인 부하 가동률에 의해서 특성이 정해진다.
- (다) 단시간 책무의 표준값은 접점이 폐로되어 있는 상태에서 3분, 10분, 30분, 60분, 90분을 적용한다.

4.2.5. 정상부하 및 과부하 특성

(1) 과부하 전류에 대한 내력

- (가) 전동기 개폐를 하기 위한 기기는 전동기의 기동과 정상속도로의 가속에 의한 열적 스트레스와 과부하 운전에 따른 열적 스트레스에 견딜 수 있어야 한다.
- (나) 과부하 전류에 대한 내력을 충족시키기 위한 세부조건은 관련제품규격에서 정하고 있다.

(2) 정격 투입용량

(가) 기기의 정격 투입용량은 규정된 투입조건에서 기기를 만족스럽게 투입할 수 있도록 제조자에 의해서 지정된 전류값이다.

E - 129 - 2011

- (나) 규정되어야 할 투입조건은 다음과 같다.
 - ① 시험 회로의 특성
 - ② 정격 투입용량은 관련제품규격에 따라 정격 사용전압 및 정격 사용전류를 기준으로 하여 지정된다.
 - 주 1 적용할 수 있는 경우, 관련제품규격에서 정격 투입용량과 사용범주 사이의 관련성을 기술한다.
- (다) 교류의 경우, 정격 투입용량은 전류의 대칭성분의 실효값으로 표시되고 일정 한 값으로 가정한다.
 - 주 2 교류의 경우, 기기의 주접점의 투입에 이은 첫 반주기 동안 전류의 파고값은 투입용량을 결정하는데 사용되는 정상적인 조건에서의 전류의 파고값보다 매우 커질 수 있다.

주 3 파고전류는 회로의 역률과 전압투입 시점에 따라 좌우되기도 한다..

(3) 정격 차단용량

- (가) 모든 기기의 정격 차단용량은 규정된 차단조건에서 기기를 만족스럽게 차단할 수 있도록 제조자에 의해서 지정된 전류값이다.
- (나) 규정되어야 할 차단조건은 다음과 같다.
 - ① 시험 회로의 특성
 - ② 상용주파 회복전압
- (다) 정격 차단용량은 관련제품규격에 따라 정격 사용전압 및 정격 사용전류를 기준으로 하여 지정된다.
- (라) 기기는 그 정격 차단용량 이하의 어떠한 전류값에서도 차단할 수 있어야 한다.
- 주 1 개폐기는 하나 이상의 정격 차단용량을 가질 수 있으며, 각 차단용량은 사용

E - 129 - 2011

전압 및 사용범주에 상응하여야 한다.

(마) 교류의 경우, 정격 차단용량은 전류의 대칭성분의 실효값으로 표시된다.

주 2 적용할 수 있는 경우, 관련제품규격에서 정격 차단용량과 사용범주 사이의 관련성을 기술한다.

4.2.6 단락 특성

(1) 정격 단시간내 전류

기기의 정격 단시간내 전류는 관련제품규격에서 규정된 시험 조건하에서 기기가 손상 없이 흘릴 수 있는 제조자가 정한 단시간내 전류의 값이다..

(2) 정격 단락 투입용량

기기의 정격 단락 투입용량은 교류의 경우, 정격주파수 및 규정된 역률에서, 직류의 경우, 규정된 시정수에서 정격 사용전압에 대해 제조자가 지정한 단락 투입용량 값이다.

(3) 정격 단락 차단용량

기기의 정격 단락 차단용량은 교류의 경우, 정격주파수 및 규정된 역률에서, 직류의 경우, 규정된 시정수에서 정격 사용전압에 대해 제조자가 정한 단락 차단용량 값이다. 이 값은 규정된 조건하에서 예상차단전류의 값(교류의 경우, 교류성분의 실효값)으로 표시된다.

(4) 정격 조건부 단락전류

기기의 정격 조건부 단락전류는 관련제품규격에서 규정된 시험 조건하에서 제조 자가 지정한 단락 보호장치에 의해서 보호되는 기기가 이 보호 장치의 동작시간 동안 지장 없이 견딜 수 있는 제조자가 정한 예상전류의 값이다.

주 1 교류의 경우, 정격 조건부 단락전류는 교류성분의 실효값으로 표시된다.

E - 129 - 2011

주 2 단락 보호장치는 기기의 구성요소로서 일부분을 형성하거나 또는 개별장치가 될 수도 있다,

4.3 사용범주

기기의 사용범주는 원래 용도를 규정하고 관련제품규격에서 규정되어야 하며, 다음의한 가지 또는 그 이상의 사용조건에 의해 구분된다

- (1) 전류, 정격 사용전류의 배수로 표현되는 전류
- (2) 전압, 정격 사용전압의 배수로 표현되는 전압
- (3) 역률 또는 시정수
- (4) 단락 성능
- (5) 선택도
- (6) 적용 가능한 다른 사용조건

4.4 제어회로

4.4.1 전기제어회로

- (1) 전기제어회로의 특성은 다음과 같다,
 - (가) 전류의 종류
 - (나) 교류의 경우, 정격 주파수
 - (다) 정격 제어회로 전압(전압의 종류, 교류일 경우에는 주파수)
 - (라) 적용할 수 있는 경우, 정격 제어 전원전압(전압의 종류, 교류일 경우에는 주파수)
- (2) 정격 제어회로 전압과 정격 주파수는 제어회로의 동작 및 온도상승 특성에 근거한 값이다. 정격 동작조건은 제어회로의 전류가 최대값의 상태에서 그 정격 값의 85 % 이상 110 % 이하의 제어전원 전압의 값에 근거하고 있다,
- (3) 제조자는 정격 제어전원 전압에서 제어회로에 의한 한 개 또는 복수의 전류값을 표시해야 한다.

E - 129 - 2011

4.4.2 공기공급 제어회로

- (1) 전기공급 제어회로의 특성은 다음과 같다.
 - (가) 정격 압력 및 그 한계
 - (나) 각각의 투입 및 개방 동작에 필요한 대기압에서의 공기량
- (2) 공기식 또는 전기-공기식 기기의 정격공급압력은 공기식 제어계통의 동작 특성이 정해지는 공기압력이다.

4.5 보조회로

- (1) 보조회로의 특성은 각각의 회로에서의 접점의 수와 접점의 종류(a-접점, b-접점) 그리고 그것의 정격으로 한다.
- (2) 보조 접점과 보조 스위치의 특징은 위의 규격의 요구사항에 따라야 한다.

4.6 릴레이 및 릴리스((Relays and Releases)

릴레이 및 릴리스에 대한 다음과 같은 특성은 관련제품규격에서 규정되어야 한다.

- (1) 릴레이 또는 릴리스의 형식
- (2) 정격 값
- (3) 전류설정 또는 전류 설정범위
- (4) 시간, 전류 특성
- (5) 주위온도의 영향

4.7 단락보호장치(SCPD)와의 협조

제조자는 단락보호장치(Short circuit protective devices, SCPD)와의 협조를 하는 경우에는 기기 또는 기기 내에서 사용되어질 단락보호 장치의 형식, 특성 및 단락 보호장치 등에 대해 지정된 사용전압에서 적합한 최대예상단락전류를 표시해야 한다.

E - 129 - 2011

4.8 개폐시의 과전압

- (1) 제품규격에서 요구하는 경우, 제조자는 개폐기기의 동작에 따라 발생하는 개폐 과전압의 최대값을 지정해야 한다.
- (2) 이 값은 정격 임펄스내전압의 최대값을 초과해서는 안 된다.

5. 제품 정보

5.1 정보의 내용

관련제품규격에서 요구하는 경우, 제조자는 다음 정보를 제공하여야 한다.

5.1.1 명시 사항

- (1) 제조자의 명칭 또는 상표
- (2) 형식명 또는 제조번호
- (3) 제조자가 적합성을 주장하는 경우, 관련제품규격 번호

5.1.2 정격 특성

- (1) 정격 사용전압
- (2) 기기의 정격 사용전압에 대한 사용범주
- (3) 정격 사용전류(또는 정격전력 또는 정격연속전류)
- (4) 정격 주파수의 값
- (5) 정격 절연전압
- (6) 정격 임펄스 내전압
- (7) 개폐 과전압
- (8) 지속시간을 포함한 정격 단시간 내 전류
- (9) 정격 단락투입용량 및 정격 단락차단용량

E - 129 - 2011

- (10) 정격 조건부 단락전류
- (11) 오손등급
- (12) 정격 제어회로전압, 전류의 종류 및 주파수

5.2 표시(Marking)

- (1) 5.1에서 기술했듯이 기기에 표시해야 하는 모든 관련정보는 관련제품규격에서 규정한다.
- (2) 명판 표시는 쉽게 지워지지 않고 쉽게 읽을 수 있도록 되어야 한다.
- (3) 제조자의 명칭 또는 상표, 형식명 또는 제조번호의 표식은 제조자로부터 얻은 전체의 데이터를 수용하기 위해 가능한 한 명판에 표시되어야 한다.
- (4) 다음 사항에 관한 정보는 기기의 설치 후에도 육안으로 확인할 수 있도록 표시되어야 한다.
 - (가) 적용할 수 있는 경우, 조작기의 동작방향
 - (나) 조작기의 위치표시
 - (다) 적용할 수 있는 경우, 승인 또는 인증 표시
 - (라) 소형화된 기기의 경우, 기호, 색코드, 또는 문자기호
 - (마) 단자식별 및 표시
 - (바) 명확하고 혼돈할 우려가 없도록 표시

5.2.1 개폐장치의 표시 방식

- (1) 개폐장치의 명칭은 제조업자의 지침에 따라 쉽게 알아볼 수 있도록 장치의 전면에 부착하여야 한다.
- (2) 개폐장치의 종류별 표시 방식은 <표 2>와 같다.

<표 2> 개폐장치의 종류별 표시 방식(기호)

E - 129 - 2011

기능				
투입 및 개폐전류	단로	투입, 개폐와 단로		
스위치 	단로기 /	스위치-단로기 ──		
퓨즈 결합장치				
스위치-단일차단 퓨즈	단로기-단일차단 퓨즈 ────────────	스위치-단로기-단일차단 퓨즈		
스위치-이중차단 퓨즈	단로기-퓨즈 이중차단	스위치-단로기-이중차단 퓨즈		
퓨즈-단일차단 스위치 ———————	퓨즈-단일차단 단로기 /	퓨즈-스위치-단일차단 단로기 ──────		
퓨즈- 이중차단 스위치 ──── ──	퓨즈-이중차단 단로기 ──── ───────────────────────────────	퓨즈-스위치-이중차단 단로기 ──── ──		
ĺ				

주 1 단일 차단으로 보여지는 장비는 이중 차단일 수도 있다. 주 2 그림은 IEC 60617-7을 기본으로 하였다.

5.2.2 개폐장치의 전면에 표시하지 않아도 되는 사항

- (1) 제조업자 상호 및 상표
- (2) 형태 지정 및 제작 고유번호

E - 129 - 2011

- (3) 정격 작동전압과 용도분류에서 정격 작동전류
- (4) 정격 주기 값
- (5) 퓨즈 결합장치(Fuse-Combination unit)의 퓨즈형태, 최대 초기설정전류, 퓨즈 링크의 전력손실 등

5.3 설치, 동작 및 유지보수에 관한 사항

- (1) 제조자는 설치와 관련하여 동작 중 또는 고장 후, 기기의 동작 및 유지보수에 필요한 기술적 사항을 문서 또는 카탈로그에 명기하여야 한다.
- (2) 제조자는 필요한 경우, EMC(Electromagnetic Compatibility)와 관련된 대책을 규정하여야 한다.
- (3) 필요한 경우, 기기의 운송 설치 및 동작에 관한 사용 설명서에는 적절하고 올바른 설치, 취급 및 동작에 관한 내용이 기술되어야 한다.

6. 정상사용, 설치 및 운송조건

6.1 정상 사용조건

- 이 기준에 적합한 기기는 정상 사용조건 하에서 충분히 동작할 수 있어야 한다.
 - 주: 표준상태가 아닌 사용에 대해서는 제조자가 정한 부속서를 참조한다. 이러한 경우에는 제조자와 사용자간의 상호 협의가 필요 할 수도 있다.

6.1.1 주위 온도

(1) 주위온도는 +40 ℃를 초과하지 않아야 하며 24시간 평균 주위온도는 +35 ℃를 초과하지 않아야 한다.

E - 129 - 2011

- (2) 주위온도의 하한기준은 -5 ℃이다.
- (3) 주위온도는 외함이 없는 경우에는, 기기의 근처 온도를, 외함이 있는 경우에는 외함의 근처 온도를 기준으로 한다.
 - 주 1 +40 ℃를 초과하는 주위온도(예를 들면, 단조공장, 보일러실 등) 또는 -5 ℃ 보다 낮은 주위온도에서 사용되는 기기를 적용하는 경우, 관련제품규격 및 제조자 와 사용자 사이의 협의에 따라 설계 또는 사용된다.
 - 주 2 회로차단기 또는 시동기용의 과부하 릴레이와 같은 특정기기에 대한 주위 온도의 표준 값은 관련제품규격에서 표시된다,

6.1.2 기기설치의 지상높이

기기설치의 지상 높이는 최대 2,000 m를 넘지 않도록 하여야 한다.

주: 높은 표고에서 사용되는 기기에 대해서는, 공기의 절연내력 저하 및 공기의 냉각효과 저하 등을 고려하여야 한다. 이러한 조건에서 사용되는 전기기기는 제조자와 사용자간의 상호 협의에 따라 설계 또는 사용되어야 한다.

6.1.3 대기 조건

- (1) 상대습도(Relative humidity)
- (가) 공기중의 상대습도는 최고온도 +40 ℃에서 50 %를 초과하지 않도록 한다.
- (나) 필요에 따라 더 낮은 온도와 더 높은 습도(ex, +20 ℃에서 90 %)에서도 사용이 가능하나, 이 경우에는 온도 및 습도변화에 따른 결로현상 등을 예방하기 위한 특별한 조치가 필요하다.

(2) 오손 등급

(가) 오손등급은 기기가 사용되어질 환경조건과 관계된다.

E - 129 - 2011

- 주 1 절연상태에 영향을 미치는 것은 연면거리 또는 공간거리의 환경조건이며, 기기의 환경조건은 아니다.
- 주 2 환경조건은 기기의 환경조건보다 더 좋을 수도 더 나쁠 수도 있으며, 환경 조건에는 기후, 전자기장, 오손의 발생 등과 같이 절연에 영향을 미치는 모든 요소를 포함한다.
- (나) 외함 내부에 사용되는 기기 또는 일체형 외함을 갖는 기기에 대해서는 외함 내부 환경의 오손등급이 적용될 수 있다.
- (다) 공간거리 및 연면거리를 평가하기 위해 다음 4가지 환경의 오손등급이 설정된다.

① 오손등급 1

- 오손이 없거나 건조한 비전도성의 오손만이 발생한다.

② 오손등급 2

- 보통은 비전도성의 오손만이 발생한다. 그러나 간혹 결로현상에 의해 일시적인 전도성의 오손이 발생되기도 한다.

③ 오손등급 3

- 전도성의 오손이 발생되거나 결로현상으로 인해 전도성으로 되는 건조한 비전도성의 오손이 발생된다.

④ 오손등급 4

- 지속적으로 전도성을 갖는 오손이 발생된다. 전도성의 먼지나 비 또는 눈에 의해 야기될 수도 있다.

(라) 산업용 기기의 표준 오손등급

- 관련제품규격에서 특별한 규정이 없는 경우, 산업용 기기는 일반적으로 오손등급 3의 환경이 적용된다. 그러나 특수용도 또는 주변 환경조건에 따라 다른 오손 등급을 적용할 수 있다.

E - 129 - 2011

- (마) 가정용 및 유사한 용도의 기기의 표준 오손등급
 - 관련제품규격에서 특별한 규정이 없는 경우, 가정용 및 유사한 용도의 기기는 일반적으로 오손등급 2의 환경이 적용된다.

6.2 운송 및 보관 시의 조건

- (1) 기기의 운송 및 보관 시의 온도와 습도조건은 6.1.1의 기준을 적용한다. 다만, 6.1.1의 기준을 따르지 않을 경우에는 다음의 사항을 제외하고 사용자와 제조 자간의 협의를 통하여 정할 수 있다.
- 운송 및 보관 시의 온도범위와 사용시간은 -25 °C 내지 +55 °C 사이에서 24시간 을 넘지 않아야 한다. 다만, 짧은 시간동안에 대해서는 +70 °C 이하로 할 수 있다.
- (2) 극한 온도에서 동작되지 않은 상태로 놓여 있었던 기기는 회복할 수 없는 어떠한 손상을 입어서도 안 되며 규정된 조건하에서 정상적으로 동작해야 한다.

7. 구조 및 성능에 관한 요구사항

7.1 구조에 관한 요구사항

7.1.1 일반사항

- (1) 자체의 외함을 가진 기기는 일체형이든 그렇지 않던 간에 설치 또는 정상 사용 시에 발생하는 스트레스에 견디도록 설계되고 조립되어야 한다.
- (2) 비정상적인 사용조건에서 발생하는 열 또는 화재에 대한 내성의 등급기준을 표시하여야 한다.

7.1.2 邓昱(Materials)

E - 129 - 2011

- (1) 재료에 대한 일반 요구사항
- (가) 절연재료의 부품은 전기적 영향에 따른 열적 스트레스를 받은 경우에도 기기 의 안전성을 저하시키는 열화현상이 발생하지 않도록 하여야 한다.
- (나) 제조자는 이 요구사항에 적합하다는 것을 증명하기 위해 절연재료 공급자로부 터 받은 자료를 제공할 수도 있다.
- (2) 내화성 시험(Glow wire testing)
- (가) 사용된 재료의 적합성은 다음의 시험에 의해 검증한다.
 - ① 기기에 대한 시험
 - ② 기기로부터 취한 일부분에 대한 시험
 - ③ 대표성이 있는 단면적을 가진 동일한 재료의 시험품에 대한 시험
- (나) 적합성은 비정상적인 열과 화재에 대한 내성과 관련하여 결정된다.
- (다) 제조자는 다음의 ①, ②, ③중 어느 시험이 사용될 것인가를 지정하여야 한다.
 - ① 가연성 시험
 - ② 열선 연소시험
 - ③ 아크 연소시험
 - 시험 (다)는 재료가 아크부 또는 접속이 느슨해지기 쉬운 충전부로부터 13 mm 이내에 위치하는 경우에만 필요하다.
- (라) 위에서 기술한 부분 이외의 절연재료는 시험 온도 650 ℃에서 내화성시험의 요구사항에 적합해야 한다.
- (3) 가연성 분류에 근거한 시험

절연재료 부품은 열선 연소시험 및 아크 연소시험을 가연성 분류에 근거하여 실시 해야 한다.

E - 129 - 2011

7.1.3 통전부 및 접속

- (1) 통전부는 사용 목적에 맞는 기계적 강도 및 통전용량을 갖추어야 한다.
- (2) 전기적 접속에 대한 접촉압력은 세라믹 또는 적합한 특성을 갖는 재료 이외의 절연재료를 통해서 전달되어서는 안 된다. 다만, 절연재료의 수축 또는 구부러짐을 보정하는 금속부에 충분한 탄성이 있는 경우를 제외한다.
- (3) 적합성은 검사 및 관련제품규격에 따른 시험 절차에 따라 검증되어야 한다.

7.1.4 공간거리 및 연면거리(Clearances and Creepage distance)

- (1) 전기적 요구사항은 7.2.3에서 정하고 있다.
- (2) 이외의 경우에는 최소값은 관련제품규격에서 규정한다.

7.1.5 조작기(Actuator)

(1) 절연

- (가) 기기의 조작기는 정격 절연전압 및 정격 임펄스내전압에 대하여 충전부와 절 연되어야 한다.
- (나) 금속으로 만들어진 경우, 신뢰성 있는 부가적인 절연이 제공되지 않는다면 보호도체에 확실하게 접속될 수 있어야 한다.
- (다) 절연재료로 만들어지거나 절연재료로 피복되어 있는 경우, 절연파괴가 일어났을 때 접촉되어질 수 있는 내부의 모든 금속부는 충전부와 절연되어야 한다.

(2) 동작 방향

조작기의 동작방향은 일반적으로 IEC 60447의 규정에 따라야 한다. 기기가 특별한 용도로 사용되거나 또는 거꾸로 설치되는 경우와 같이 이 요구사항을 만족할 수 없을

E - 129 - 2011

때에는 기기에 "I"와 "O" 위치 및 동작방향에 대해서 명확하게 되도록 확실히 표시해야 한다.

7.1.6 접점위치의 표시

(1) 표시 수단

- (가) 기기에 개폐위치를 표시하는 경우에는 그 위치를 명확하게 표시하여야 한다. 이 경우, 위치 표시기(Position indication device)로 표시하여야 한다.
 - 주: 폐쇄된 기기의 경우에는 접점표시를 외부에서 보이게 할 수도 있고 보이지 않 게 할 수도 있다.
- (나) 관련제품규격은 기기가 위치 표시기를 구비해야 할 것인가 아닌가를 규정할 수 있다.
- (다) 두 개의 누름버튼으로 동작하는 기기는 개방동작을 하기위한 누름버튼만 적색이나 기호 "O"로 표시해야 한다.
- (라) 적색은 다른 어떤 누름버튼에도 사용되어서는 안 된다.

(2) 조작기에 의한 표시

- (가) 조작기가 접점의 위치를 나타내는 수단으로 사용되는 경우에는, 릴리스가 해제 되었을 때 가동접점에 상응하는 위치에 자동적으로 이동 또는 정지해야 한다.
- (나) 조작기는 가동접점에 상응하는 두 개의 별개의 정지위치를 갖고 있어야 한다. 그러나 자동개방에 대해서는 조작기가 제3의 별도위치를 가질 수도 있다.

7.1.7 격리(Isolation)에 대한 추가 요구사항

(1) 구조에 관한 추가 요구사항

E - 129 - 2011

- (가) 격리에 적합한 기기는 개로위치(Open position)에 있어서 격리거리에 필수적인 요구사항에 따라 격리거리를 확보하여야 한다. 주 접점의 위치는 다음의 하나 이상의 수단에 의해 표시되어야 한다.
 - ① 조작기의 위치
 - ② 분리된 기계식 표시기
 - ③ 가동접점의 위치가 보이는 구조
- (나) "트립위치" 또는 "대기위치"와 같은 표시된 개로위치가 아닌 위치를 갖는 기기의 경우, 그러한 위치들은 분명히 구분되어야 한다. 그러나 위치를 표시하는데 기호 "I"나 "O"를 사용하지 않아야 한다.
- (다) 개로위치에 있는 기기를 고정하기 위해, 제조자가 그 수단을 제공하거나 지정하는 경우 그 위치에서의 고정은 주접점이 개로위치에 있을 때만 가능해야 한다.
- (라) 기기는 올바른 접점위치의 표시 및 고정을 확실히 할 수 있는 방법으로 조작기, 전면판 또는 커버가 기기에 취부 되도록 설계되어야 한다.
- 주: 보조접점이 연동목적으로 설치되는 경우, 보조접점 및 주접점의 동작시간을 제조자가 명시해야 한다. 더 상세한 요구사항이 관련제품규격에 주어질 수도 있다.
- (마) 표시된 개로위치는 접점 사이의 규정된 이격 거리가 확보되는 바로 그 위치이다.
- (2) 차단기 등과의 전기적 연동을 갖는 기기에 대한 추가 요구사항
- (가) 기기의 주극이 개로하기 전에 관련된 접촉기 또는 차단기가 전류를 확실하게 차단하기 위해, 보조 스위치 접점의 개방동작과 주접점의 개방동작 사이의 시간간격이 충분해야 한다.
- (나) 제조자의 특별한 요구사항이 없는 경우, 제조자의 취급 설명서에 따라 기기를 동작시킬 때 그 시간차는 20 ms 이상이어야 한다.

E - 129 - 2011

- (다) 제조자의 취급 설명서에 따라 조작하는 경우, 무부하 상태에서 보조 스위치의 개로시점과 주극의 개로시점 사이의 시간간격을 측정하는 것으로 적합성을 검증해야 한다.
- (라) 투입동작 중 보조 스위치의 접점은 주접점보다 늦거나 또는 동시에 폐로 되어야 한다.

7.1.8 단자

- (1) 구조에 관한 요구사항
- (가) 접속을 유지하고 전류를 흘리는 단자의 모든 부분은 적절한 기계적 강도를 가지는 금속제 이어야 한다.
- (나) 단자의 접속은 필요한 접촉 압력이 유지되도록 나사, 스프링 또는 다른 동등한 수단에 의해서 도체를 접속할 수 있도록 하여야 한다.
- (다) 단자는 도체나 단자에 심각한 손상을 입히지 않고, 도체가 적절한 표면 사이에서 체결될 수 있는 구조이어야 한다.
- (라) 용도에 따라, 동도체에 있어서 단자와 도체가 케이블 러그로 접속될 수 있다.

(2) 접속용량

제조자는 전선의 종류(경도체; 단선, 연선, 연도체), 단자에 적합한 도체의 최소 및 최대 단면적, 단자에 동시 접속 가능한 도체의 수를 명시하여야 한다.

- 주 1 최소값 보다 작은 도체의 단면적을 다른 제품규격에서 요구할 수 있다.
- 주 2 전압강하 및 다른 조건에 의해 온도상승시험에서 규정하고 있는 것보다 큰 도체의 단면적에 적합한 단자를 제품규격에서 요구할 수도 있다. 도체 단면적 과 정격전류의 관계가 관련제품규격에서 주어질 수도 있다.

E - 129 - 2011

(3) 접속

- (가) 외부 도체에의 접속단자는 취부 시에 용이하게 접속할 수 있어야 한다.
- (나) 체결 나사 및 너트는 단자를 제 위치에 고정시키거나 또는 회전을 방지하기 위해 사용될 수 있지만 다른 부품을 고정하기 위해 사용되어서는 안 된다.

(4) 단자 식별 및 표시

- (가) 단자는 관련제품규격의 요구사항으로 대체되지 않는 한 IEC 60445에 따라 명확하고 영구적으로 식별할 수 있어야 한다.
- (나) 보호접지단자는 7.1.10에 따라 식별되어야 한다.

7.1.9 중성극을 갖는 기기의 추가 요구사항

- (1) 기기가 중성점에만 접속되도록 설계된 극을 갖고 있는 경우, 이 극은 7.1.8.4로 그 기능을 명확하게 식별해야 한다.
- (2) 개폐되는 중성극은 다른 극 보다 먼저 차단되지 않아야 하며, 다른 극 보다 나중에 투입되어서도 안 된다.
- (3) 적절한 단락 차단용량(Short-circuit breaking capacity) 및 단락 투입용량 (Short-circuit making capacity)을 갖는 한 극이 중성극으로 사용된다면, 중성 극을 포함한 모든 극이 실질적으로 동시에 동작해도 좋다.

7.1.10 보호접지에 관한 규정

- (1) 구조에 관한 요구사항
- (가) 위험을 일으키지 않는 부분들을 제외한 다른 노출 도전부(ex, 샤시, 금속 외함 의 고정부 등)는 전기적으로 상호 접속되어야 하고, 접지전극이나 외부 보호도

E - 129 - 2011

체의 접속을 위한 보호 접지단자에 접속되어야 한다.

- (나) 이 요구사항은 충분한 전기적 연속성이 주어지는 정상적인 구조부품에 의해 충족될 수 있으며, 기기가 그 자체로 사용되는 경우 및 조립품 내에 내장되는 경우에도 적용된다.
- (다) 노출 도전부가 노출부위는 크지만 사람의 접촉 우려가 적거나 또는 노출부위가 작은 경우(약 50 mm × 50 mm)에는, 당해 노출 도전부는 위험을 유발하지 않는 것으로 간주 될 수 있다.
 - 이런 예로서는 나사, 리벳, 변압기 철심, 개폐기기의 전자석 및 릴리스의 특수 부품 등이 있다.

(2) 보호접지 단자

- (가) 보호접지 단자는 쉽게 접근할 수 있어야 하며, 덮개나 다른 착탈할 수 있는 부분이 제거되었을 때에도 접지전극이나 보호도체에 기기의 접속이 유지되도록 배치되어야 한다.
- (나) 보호접지단자는 부식되지 않도록 적절한 보호조치를 하여야 한다.
- (다) 도전성 구조물 외함 등이 있는 기기의 경우, 기기의 노출된 도전부와 접속도 체의 금속 외함 사이에 전기적 연속성을 확실하게 하는 수단이 강구되어야 한다.
- (3) 보호접지 단자의 표시 및 식별

보호접지 단자는 표시에 의해 명확하고 영구적으로 식별되어야 한다.

7.1.11 기기의 외함

(1) 설계

(가) 기기 외함은 설치 및 유지보수를 위해 접근할 필요가 있는 모든 부분들이 제

E - 129 - 2011

조자가 기술한 대로 쉽게 접근할 수 있도록 설계되어야 한다.

- (나) 외함의 내부에는 외부도체를 인입점으로 부터 단자에 확실히 접속할 수 있도록 충분한 공간을 확보해야 한다.
- (다) 금속 외함의 고정부는 접지보호도체와 전기적으로 접속이 가능하도록 견고하게 고정되어야 한다.
- (라) 외함의 분리 가능한 금속부는 제 위치에 있을 때, 어떠한 상황에서도 접지단 자에 접속되어 있는 부분으로부터 절연되지 않도록 하여야 한다.
- (마) 외함의 분리 가능한 금속부는 기기의 동작이나 진동의 영향 때문에 느슨해지거나 떨어지지 않도록 고정부에 견고하게 고정시켜야 한다.

(2) 절연

금속 외함과 충전부 사이에 우연한 접촉을 막기 위해 외함 내부에 부분적 또는 전체적으로 절연재질을 부착하는 경우에는 외함에 확실하게 부착시켜야 한다.

7.2. 성능에 관한 요구사항

(1) 일반사항

- (가) 투입용량 및 차단용량이 조작자의 숙련도에 따라 달라질 수 있는 수동 동작 기 기는 제조자의 취급설명서 또는 관련제품규격에 따라 조작되어야 한다.
- (나) 정격 단락용량 10 kA를 초과하는 퓨즈 스위치, 퓨즈 단로기, 퓨즈 스위치 단로기는 폐쇄장치를 기계에 의하지 않고 수동으로 작동하여야 한다.
- (다) 개폐장치는 제조업자의 지침에 따라 무부하 상태에서 수동으로 15 회(3명이 번갈아 가며 5 회씩) 이상 작동시켜야 한다.

(2) 전원 구동장치의 동작한계

E - 129 - 2011

- (가) 관련제품규격에서 별도로 규정되어 있지 않는 한, 전자식 및 전기-공기식 기기는 정격 제어전원전압($U_{\rm s}$) 정격값의 85% ~ 110%, 주위온도 -5% ~ +40% 사이에서 폐로 되어야 한다. 이러한 제한 값은 교류나 직류 모두 적용된다.
- (나) 공기식 및 전기-공기식 기기의 공기 공급압력 한계값은 달리 언급되어 있지 않는 한, 정격압력의 85 % ~ 110 % 사이가 적정하다.
- (다) 전자식 및 전기-공기식 기기의 경우, 개방전압은 정격 제어전원전압(U_s)의 75 % 이하이고, 교류의 경우에는 정격주파수에서 U_s 의 20 % 이상, 직류의 경우에는 U_s 의 10 % 이상이어야 한다.
- (라) 공기식 및 전기-공기식의 경우, 별도로 규정하고 있지 않는 한, 정격압력의 $75\% \sim 10\%$ 사이의 압력에서 개방되어야 한다.
- (3) 부족전압 릴레이 및 릴리스의 동작한계

(가) 동작전압

- ① 부족전압 릴레이 또는 릴리스는 계통전압이 천천히 떨어지더라도 정격전압의 70 % ~ 35 % 범위 내에서 개폐기를 개방시켜야 한다.
- ② 전원전압이 릴레이 또는 릴리스 정격전압의 35 % 미만인 경우에는 부족전압 릴레이 또는 릴리스는 기기가 폐로 되지 않도록 해야 한다.
- ③ 관련제품규격에서 특별히 규정하고 있지 않는 한, 전원전압의 상한 값은 정격의 110 % 이어야 한다.
- ④ 위의 ①항 내지 ③항에서 정한 값은 직류 또는 정격 주파수에서의 교류에도 동일하게 적용된다.

(나) 동작시간

E - 129 - 2011

- 시간 지연(Time-delay) 부족전압 릴레이 또는 릴리스의 경우, 시간 지연은 전압이 동작전압에 도달하는 순간으로부터 릴레이 또는 릴리스가 기기의 트립장치를 동작시키는 순간까지 측정한다.

(4) 전류 동작형 릴레이 및 릴리스의 동작한계

전류 동작형 릴레이 및 릴리스의 동작한계는 관련제품규격에서 규정되어야 한다.

주: "전류 동작형 릴레이 및 릴리스"는 과전류 릴레이 및 릴리스와 역방향 전류 릴레이 및 릴리스 등을 포함한다.

7.2.2 온도 상승한도

- (1) 개폐장치 각 부위의 온도 측정은 해당 기기가 동작하는 동안에 하여야 한다.
- (2) 재질별로 단자의 온도상승 한도는 <표 3>과 같다.

<표 3> 단자의 온도상승 한도

단자 재질	온도상승 한도 ^{a) c)} (K)
- 나 동	60
- 나 황동	65
- 주석 도금된 동 또는 황동	65
- 은도금 또는 니켈 도금된 동 또는 황동	70
- 기타 금속	b)

- a) c) 다른 시험조건 및 크기가 작은 기기에 대해, 제품규격에서 다른 값을 규정해도 좋다. 단, 이 표의 값보다 $10\,\mathrm{K}$ 를 초과하지 않아야 한다.
- b) 사용경험이나 수명시험을 기초로 한 온도상승한도. 단, 65 K를 초과하지 않아 야 한다.
- (3) 접근 가능한 부분에 대한 온도상승 한도는 <표 4>와 같다.

E - 129 - 2011

<표 4> 접근 가능한 부분에 대한 온도상승 한도

접근 가능한 부분	온도 상승 한도 ^{a)} (K)		
1) 수동 조작 기구			
- 금속	15		
- 비금속	25		
2) 접촉되어질 그러나 손으로 잡는 부분이 아닌 부품			
- 금속	30		
- 비금속	40		
3) 정상 사용 중에 접촉되어질 필요가 없는 부품 ^{b)}	_		
4) 케이블 인입구에 인접한 외함의 표면			
- 금속	40		
- 비금속	50		
5) 저항기의 외함 표면	200 ^{b)}		
6) 저항기의 외함 환기구로부터 분출되는 공기	200 ^{b)}		

a) 다른 시험조건 및 크기가 작은 기기에 대해, 제품규격에서 다른 값을 규정해도 좋다. 단, 이 표의 값보다 $10\,\mathrm{K}$ 를 초과하지 않아야 한다.

7.2.3 절연 특성

- (1) 절연 특성은 기본안전규격인 IEC의 관련규격을 적용한다.
- (2) 기기는 다음의 조건에 견딜 수 있어야 한다.
 - (가) 과전압 범주에 따른 정격 임펄스 내전압
 - (나) <표 5>에 주어진 이격에 적합한 기기의 접점간에 걸리는 임펄스 내전압
 - (다) 상용주파 내전압

(1) 임펄스 내전압

b) 기기는 가연성 물질과의 접촉 또는 사람과의 우발적인 접촉에 대해 보호되어야 한다.

E - 129 - 2011

(가) 주회로

- ① 충전부와 접지설비간의 공간거리 또는 극간의 공간거리는 정격 임펄스 내전압에 상응하는 시험전압에 견디어야 한다.
- ② 개로 접점간의 공간거리는 다음에 견디어야 한다.
 - 관련제품규격을 적용할 수 있는 경우, 그 규격에서 규정된 정격 임펄스 내전압
 - 이격거리가 적합하다고 명시된 기기의 경우에는 정격 임펄스 내전압에 상응하는 주어진 시험전압
- ③ 임펄스 내전압의 시험 값은 <표 5>와 같다.

<표 5> 임펄스 내전압의 시험 값

기거시되고기기시	시험전압 및 표고					
정격임펄스내전압 $U_{\rm imp}$ kV	$U_{1.2/50}$ kV					
C _{imp} KV	해수면	200 m	500 m	1,000 m	2,000 m	
0.33	0.35	0.35	0.35	0.34	0.33	
0.5	0.55	0.54	0.53	0.52	0.5	
0.8	0.91	0.9	0.9	0.85	0.8	
1.5	1.75	1.7	1.7	1.6	1.5	
2.5	2.95	2.8	2.8	2.7	2.5	
4.0	4.8	4.8	4.7	4.4	4.0	
6.0	7.3	7.2	7.0	6.7	6.0	
8.0	9.8	9.6	9.3	9.0	8.0	
12.0	14.8	14.5	14.0	13.3	12.0	

(나) 보조회로 및 제어회로

- ① 정격전압의 주회로에서 직접 동작하는 보조회로 및 제어회로는 정격 임펄스 내전압 및 제조자가 정한 과전압 범주에 해당하는 시험전압에 견디어야 한다.
- ② 주회로에서 직접 동작하지 않는 보조회로 및 제어회로는 주회로의 과전압 내량

KOSHA GUIDE E - 129 - 2011

과는 다른 과전압 내량을 가질 수도 있다.

- ③ 회로의 공간거리 또는 관련된 고체절연물은 교류나 직류 어느 경우에도 제조자가 정한 해당전압에 견디어야 한다.
- ④ 단자와 인근 부품의 온도상승 임계 값은 <표 6>과 같다.

<표 6> 단자와 인근 부품의 온도상승 임계 값

부품 상세	온도상승 임계 값 ^{a)} (K)
1) 외부 연결 단자	80
2) 수동 작동 기구	
- 금속	25
- 비금속	35
3) 소형이나 취급할 수 있는 부품	
- 금속	40
- 비금속	50
4) 정상 작동으로 취급할 필요가 없는 부품	
- 금속	50
- 비금속	60
a) 파손된 부품 이외에 부품에 대한 가격은 최	백정하지 않은 것은 근접