Real-life Filter Loading Test Rig: Salt-Soot-Oil mixture, RH Effect, and Temperature

Chenxing Pei, Qisheng Ou, and David Y.H. Pui Particle Technology Laboratory, University of Minnesota

EPA Criteria Air Pollutants

PMs Affects the Filter Performance

- Dust
- Salt
 - NaCl
 - $-(NH_4)_2SO_4$
 - -NH₄NO₃
- Organic matter
 - VOCs
- Soot

Extreme Temperature and RH on Earth

Temperature

- Lowest reliably measured temperature on earth:
 - -89.2 °C; -128.6 °F; 184.0 K
 - Vostok Station, Antarctica
 - July 21, 1983
- Highest confirmed temperature on earth:
 - 54 °C; 129 °F; 327.2 K
 - Mitribah, Kuwait
 - July 21, 2016

Relative Humidity

- Lowest relative humidity:
 - 0.36% (46.5 °C with -33.2 °C dewpoint)
 - Safi-Abad Dezful, Iran
 - June 20, 2017
- Highest relative humidty:
 - 100%!
 - Rain, fog

Comparison between Life & Lab

Life

- Particle:
 - Multiple pollutants existence
- Temperature:
 - − −89.2 °C to 54 °C
- Relative Humidity
 - 0.36% to 100%

Lab

- Particle
 - Single test aerosol
- Temperature:
 - Room temperature
 - Unknown
- Relative Humidity
 - Uncontrolled
 - Unknown

How well the lab filter test could represent the real life filter performance?

Real-life Filter Test Rig is needed

Design Specification

- Temperature range:
 - --20°C to 50°C
- Relative humidity range:
 - -0% to 100% in the temperature range
- Module design for particle generation
- Multi-sample testing capability
- Automated test system

Insulation Enclosure

- A 2.5ft×2.5ft×4ft
 (L×W×H) structure
 was built with
 80/20 aluminum
 frame.
- I inch thick
 polystyrene sheet
 covers 5 faces of
 the frame except
 the front face,
 which one is
 covered by home made double panel
 acrylic sheet.

Heating and Cooling I

- Two 350W electric heaters with fins are installed to heat the enclosure
- A radiator type
 heat exchanger
 coupled with a
 chiller is utilized to
 cool the enclosure
- 3 pairs of fans are used to circulating air in the enclosure

Heating and Cooling II

- 3 Pairs of fans runs constantly, and each of the fan supply ~210 CFM air flow.
- Chiller is set 5°C
 below the test
 temperature.
- The heaters are PID controlled by a temperature controller which is setting to the test temperature.

Install filter test rig in insulation enclosure

- Replace the PVC tube by stainless steel tube to enhance the heat transfer between the aerosol system and insulation enclosure.
- Temperature sensitive devices, such as pressure transducer, flow meter, are not installed inside the insulation enclosure.

Test System

CFR

Test System

Current Status

- Temperature range:
 - 0°C to 50°C
- Relative humidity range:
 - 0% to 100% in partial temperature range
 - At 0°C, only high RH(~>60%) could reach
 - At 50°C, only low RH(~<45%) could reach
- Module design for particle generation
- Single sample testing
- Semi-automated test system

Test Runs' Loading Curves

Test Runs' Volume loading

Future Work

- Achieve stable low relative humidity loading at low temperature, and stable high relative humidity loading at high temperature.
- Add the second filter holder to perform the parallel filter testing.
- Rewiring current electric components.

