

Adatbázisok előadás 03

Adatbázisok tervezése

A tervezés lépései

Fogalmi adatmodell

Logikai adatmodell

Fizikai adatmodell

Egyed – kapcsolat modell (ER-modell)

Adatbázisterv

Implementálás terve

Adatbázisterv – hol tartunk?

- □Technikai architektúra (MS SQL):
- □Megszorítások (kényszerek)
- □Hatékonysági megfontolások

Mit jelent a hatékonyság?

- Egy hatékony adatbázisterv ...
- ☐ Segít az adatminőségi problémák csökkentésében
- Biztosítja a nagyobb adatmennyiség hatékony kezelését
- ☐ Támogatja a változó üzleti igényeket
- □ Védi az adatok integritását
- ☐ Megkönnyíti az adatbázisra épülő alkalmazásfejlesztést

Hogyan lehet hatékony a tervezett adatbázis?

https://www.linkedin.com/pulse/mastering-data-modeling-unlocking-key-efficient-albilasi-pmp-/

A hatékonyság elérésének eszközei

fejlesztési folyamatot ciklikusan ismétl d lépésekre bontják.

- ☐ Egyszerűségre törekvés
- ☐ Iteratív tervezés
- □ Folyamatos dokumentálás
- Együttműködés az érintettekkel
- Normalizálás vagy Denormalizálás

A normalizálás egy olyan adatbázis tervezési technika, amely csökkenti az adattárolásban lévő redundanciát, és növeli az adatok integritását.

- A normalizálás során a reláció (tábla) rendszerint több részre bomlik szét
- A normalizálás egyes lépései során előállított állapotot normálformáknak is nevezzük

FONTOS: a normalizálást a működési célú (OLTP) adatbázisok tervezésénél alkalmazzuk (az elemzési célú adatbázisoknál egy ellentétes folyamat, a denormalizálás jellemző)

Milyen a tipikus nem hatékony (rossz) adatbázis?

Példa: oktatók nyilvántartása

- Egy felsőoktatási intézmény az oktatóiról a következő adatokat tárolja:
- ☐ Oktató azonosítója, neve, fokozata
- ☐ Tanszékek azonosítója, neve
- ☐ Tantárgyak azonosítója, neve, szintje

Feltételezzük, hogy egy oktató több tárgyat is oktathat, viszont pontosan egy tanszéken tanít

Készítsünk relációs adatmodellen alapuló adatbázistervet!*

Oktatói adatbázis – kezdeti terv

Tegyünk be minden adatot egy táblába!

	OKTATÓ							
Oktató azonosító	Oktató név	Oktató tudományo s fokozat	Tanszék kód	Tanszék név	Tantárgy kód	Tantárgy név	Tantárgy szintje	
O01	Kiss Péter	Docens	T01	Matematika	Tan01, Tan02	Algebra, Analízis	BSC, BSC	
002	Nagy László	Adjunktus	T02	Informatika	Tan03, Tan04	Programozás, Adatbázisok	BSC, MSC	

Probléma: a relációs adatbáziskezelők megkövetelik az atomi (nem összetett) attribútumértékeket

CORVINUS EGYETEM NORMALIZÁLÁS – A lényeg

A normalizálás lényege az adatok közötti összefüggések (un. Függőségi kapcsolatok) feltárása és kezelése

Példák:

- ☐ Funkcionális függőség
- □ Teljes függőség
- □ Tranzitív függőség
- Többértékű függőség (ld. Később)
- ☐ Kapcsolásfüggőség (ld. Később)

Funkcionális függőség

Az attribútumokAhalmaza funkcionálisan meghatározza az attribútumok B halmazát, ha teljesül, hogy amennyiben két rekord megegyezik az A halmazon, akkor a B-n is.

• Jele: A→ B

 PI: DOLGOZÓ(<u>AZON</u>, NÉV, SZÜLIDŐ) esetén {AZON} → {NÉV, SZÜLIDŐ}

 Megj: Ha Afunkcionálisan meghatározza B-t, akkor azt is mondhatjuk, hogy B funkcionálisan függ A-tól

Triviális funkcionális függőség

Triviális funkcionális függőségek: egy adott attribútumhalmaz bármely részhalmaza funkcionálisan függ az eredeti halmaztól.

pl: {A, B, C} → {A, B}

Példák:

Mindig igaz!

ELADÁS (Dátum, Termékkód, Darabszám) esetén

{Dátum, Termékkód} → {Dátum}

{Dátum, Termékkód} → {Termékkód}

Teljes függőség

B attribútumhalmaz teljesen függ A-tól, ha nem függ külön az A egyik részhalmazától sem

PI: ELADÁS (<u>DÁTUM, TERMÉKKÓD</u>, DARABSZÁM) esetén {DÁTUM, TERMÉKKÓD} → {DARABSZÁM}, de {DÁTUM} → {DARABSZÁM} és {TERMÉKKÓD}→ {DARABSZÁM}

Eladás tábla						
Dátum	Termékkód	Darabszám				
2020.01.05	2	5				
2020.01.05	4	9				
2020.01.06	4	10				

Az A attribútumhalmaz részhalmazától való függőséget részleges függőségnek nevezzük.

Tranzitív függőség

C attribútumhalmaz tranzitíven függ A-tól, ha van olyan B attribútumhalmaz, amelyre A→B és B→C, de visszafele nem igazak a függőségek

- PI: SZAKKÖR(Szakkörnév, Tanár, Végzettség) esetén
- {Szakkörnév}→ {Tanár} és {Tanár} → {Végzettség}, de
- {Végzettség} → {Tanár} és {Tanár} → /{Szakkörnév}

Első normálforma

A reláció első normálformában van, ha minden egyes attribútumhoz maximum egy érték tartozik.

Pl: a DOLGOZÓ (AZON, NÉV, VÉGZETTSÉG)

DOLGOZÓ					
AZON	NÉV	VÉGZETTSÉG			
01	Kiss Béla	Asztalos, Kőműves			
02	Nagy Ervin	Lakatos, Gépész			

Nem teljesül az első normálforma

DOLGOZÓ						
AZON	NÉV	VÉGZETTSÉG				
05	Horváth István	Cipész				
08	Balogh Tamás	Tanító				

Teljesül az első normálforma

Első normálformára hozás módja

Ha egy attribútumhoz több érték is tartozik, akkor - többnyire egy új reláció sémában - minden értéket egy-egy külön rekordban rögzítünk.

Pl: Kis Béla végzettsége asztalos és kőműves

DOLGOZÓ				
AZON	NÉV			
01	Kiss Béla			
02 Nagy Ervin				

VEGZETTSEG				
AZON	NÉV			
05	Asztalos			
08 Kőműves				

DOLG_VEGZETTSEG					
DAZON	VAZON				
01	05				
01	08				

CORVINUS Első normálformára hozás módja II.

Az összetett attribútumokat részattribútumokkal helyettesíthetjük

PI: Kis Béla végzettsége asztalos és kőműves

	DOLGOZO		
AZON	NÉV	VÉGZETTSÉG1	VÉGZETTSÉG2
01	Kiss Béla	Asztalos	Kőműves
02	Nagy Ervin	Lakatos	Gépész

Oktatói adatbázis – Első normálforma

	OKTATÓ							
Oktató azonosító	Oktató név	Oktató tudományo s fokozat	Tanszék kód	Tanszék név	Tantárgy kód	Tantárgy név	Tantárgy szintje	
O01	Kiss Péter	Docens	T01	Matematika	Tan01	Algebra	BSC	
001	Kiss Péter	Docens	T01	Matematika	Tan02	Analízis	BSC	
002	Nagy László	Adjunktus	T02	Informatika	Tan03	Programozás	BSC	
002	Nagy László	Adjunktus	T02	Informatika	Tan04	Adatbázisok	MSC	

Problémák (ld. később: Anomáliák)

- ☐ Az Algebra tárgyat csak Kiss Péter tanítja. Ha őt töröljük az adatbázisból, akkor elvesznek a tárgy adatai
- ☐ Nagy Lászlót előléptetik, docens lesz. Ezt a táblában több helyen is módosítani kell
- ☐ Új oktató érkezik, de még nincs meg, hogy melyik tárgyat fogja tanítani. Addig nem lehet őt rögzíteni.

Megoldás: a második normálforma

corvinus Második normálforma

A reláció második normálformában (2NF) van, ha teljesülnek az első normálforma feltételei és a kulcs valódi részhalmazaitól egyetlen másodlagos attribútum sem függ.

PI: Az ELADÁS(<u>dátum, termékkód</u>, terméknév, darab) reláció nincs 2NF-ben, mert a kulcs: {dátum, termékkód}, {termékkód} a kulcs valódi részhalmaza, {terméknév} másodlagos attribútum, és {termékkód} --> {terméknév}

CORVINUS Második normálformára hozás módja

Ha az első normálformában lévő reláció minden kulcsa egy attribútumból áll, vagy nincs másodlagos attribútum, akkor automatikusan teljesül a 2NF. Ellenkező esetben a relációt felbontjuk a normálformát sértő funkcionális függőségek mentén.

PI: Az ELADÁS(dátum, termékkód, terméknév, darab) esetén a normálformát sértő függőség:

{termékkód} --> {terméknév}

CORVINUS Második normálformára hozás módja - Példa

PI: ELADÁS(<u>dátum, termékkód</u>, terméknév, darab) esetén két új reláció jön létre:

TERMÉK(Termékkód, terméknév) és

ELADÁS_2(Dátum, Termékkód, darab)

				ELADÁS_2		
				 Dátum	Termékkód	darab
	ELADÁS					
Dátum	Termékkód	terméknév	darab			
					TERMÉK	
				Termékkód	terméknév	

Anomáliák – Ezek megszűnnek 2NF esetén

Bővítési anomália:

Az új rekord felvitele a szükséges adatok hiánya miatt nem lehetséges.

Módosítási anomália:

Egy adott módosítást annyi helyen kell végrehajtani, ahányszor az előfordul.

Törlési anomália:

Egy adott rekord törlésekor információvesztés történhet.

CORVINUS Oktatói adatbázis – hozzuk második normálformára

	OKTATÓ							
Oktató azonosító	Oktató név	Oktató tudományo s fokozat	Tanszék kód	Tanszék név	Tantárgy kód	Tantárgy név	Tantárgy szintje	
O01	Kiss Péter	Docens	T01	Matematika	Tan01	Algebra	BSC	
001	Kiss Péter	Docens	T01	Matematika	Tan02	Analízis	BSC	
002	Nagy László	Adjunktus	T02	Informatika	Tan03	Programozás	BSC	
002	Nagy László	Adjunktus	T02	Informatika	Tan04	Adatbázisok	MSC	

Funkcionális függőségek:

- {Oktató azonosító , Tantárgy kód } → { }
- {Oktató azonosító} →{Oktató név, Oktató tudományos fokozata, Tanszék kód, Tanszék név}
- {Tantárgy kód}→ {Tantárgy név, Tantárgy szintje}

Az Oktató tábla 3 részre esik szét

Harmadik normálforma

A 2NF-ben lévő reláció harmadik normálformában van, ha nincsenek benne tranzitív függőségek.

PL: ELŐADÁS(Előadás, Terem, Férőhelyek) nem 3NF, mert {Előadás}-->{Terem}, {Terem}-->{Férőhelyek},

és ezek fordítva nem teljesülnek, ezért a Férőhelyek attribútum tranzitívan függ az Előadástól.

Harmadik normálformára hozás módja

A relációt részekre bontjuk a tranzitív függőségek mentén.

PL: ELŐADÁS(Előadás, Terem, Férőhelyek) reláció esetén a tranzitív függőség:

{Előadás}→{Terem}→{Férőhely}

Ebből két reláció lesz:

ELŐADÁS_2(Előadás, Terem) és TEREM(Terem, Férőhelyek)

Oktatói adatbázis: hozzuk harmadik normálformára!

OKTATÓ							
Oktató azonosító	Oktató név	Oktató tudományos fokozat	Tan- szék kód	Tanszék név			

TANTÁRGY			
Tantárgy	Tantárgy	Tantárgy	
kód	név	szintje	

OKTATÁS		
Oktató azonosító	Tantárgy kód	

Tranzitív függőségek

{Oktató azonosító} →{Tanszék kód}
 {Tanszék kód} →{Tanszék név},

de fordítva nem igaz, ezért a Tanszék név tranzitíven függ az Oktató azonosító mezőtől

A tranzitív függés miatt az Oktató táblát két részre bontjuk:

- Oktató (Oktató azonosító, Oktató név, Oktató tudományos fokozata, Tanszék kód)
- Tanszék (<u>Tanszék kód</u>, Tanszék név)

Tranzitív függőségek az Oktató táblában

Ez már harmadik normálforma (3NF)

A végső adatbázis 3NF-ben

Normalizálás – előnyök és hátrányok

- Csökkenti a redundanciát
- → Növeli az adatintegritást
- Csökkenti az adatok tárolásához szükséges helyet
- Megszüntet bizonyos anomáliákat
- □Az egytáblás lekérdezések futása gyorsabb lesz

- A lekérdezések bonyolultabbak lesznek
- Az adatbázisra épülő alkalmazások lassabban futhatnak

Magasabb normálformák

CORVINUS Normalizálás – mindig elég a 3NF?

PI: TANÁCSADÁS(ügyfél, téma, tanácsadó, munkaidő)

- Minden tanácsadó csak egy témakörrel foglalkozik, de ugyanabból a témából más és más ügyfeleknek különböző tanácsadók adhatnak tanácsokat.
- Egy ügyfélnek több témából lehet tanácsadója, de egy adott témában mindig ugyanaz a tanácsadója van.
- Nyilvántartjuk még minden ügyfélnél a tanácsadóknak az egyes témakörökben történt tanácsadásra fordított munkaidejét is.

Itt mi lesz a kulcs? Van-e redundancia? Ha igen, hogyan szüntethető meg?

Normalizálás – mindig elég a 3NF?

TANÁCSADÁS			
ÜGYFÉL	TÉMA	TANÁCSADÓ	MUNKAIDŐ
Kiss Péter	Adózás	Nagy Ilona	10
Kiss Péter	Befektetés	Nagy András	8
Bíró Evelin	Adózás	Nagy Ivett	12
Bíró Evelin	Befektetés	Nagy András	9

Kulcs: ÜGYFÉL + TANÁCSADÓ vagy ÜGYFÉL + TÉMA

Másodlagos attribútum: MUNKAIDŐ

Függőségi diagram

- {Ügyfél, téma}→ {tanácsadó, munkaidő}
- {tanácsadó} → {téma}
- {ügyfél, tanácsadó} → {téma, munkaidő}

Boyce-Codd normálforma (BCNF)

Egy 3NF-ben lévő reláció BCNF-ben van, ha bármely nem triviális funkcionális függőség baloldalán egy szuperkulcs áll.

PI: TANÁCSADÁS(ügyfél, téma, tanácsadó, munkaidő) reláció esetén

{Ügyfél, téma}→ {tanácsadó, munkaidő}

{tanácsadó} → {téma}

{ügyfél, tanácsadó} → {téma, munkaidő}

→ Ez a reláció nincs BCNF-ben

baloldal: (szuper)kulcs

baloldal: nem szuperkulcs

baloldal: (szuper)kulcs

Boyce-Codd normálformára hozás módja

A relációt felbontjuk a normálformát sértő funkcionális függőségek mentén.

TANÁCSADÁS			
ÜGYFÉL	TÉMA	TANÁCSADÓ	MUNKAIDŐ
Kiss Péter	Adózás	Nagy Ilona	10
Kiss Péter	Befektetés	Nagy András	8
Bíró Evelin	Adózás	Nagy Ivett	12
Bíró Evelin	Befektetés	Nagy András	9

Kulcs: ÜGYFÉL + TANÁCSADÓ vagy ÜGYFÉL + TÉMA

Szétbontás

Új relációk:

TANÁCSADÓ (TANÁCSADÓ, TÉMA)
TANÁCSADÁS_2(ÜGYFÉL, TANÁCSADÓ, MUNKAIDŐ)

Normalizálás – mindig elég a 3NF?

FELMÉRÉS			
Személy	Hobbi	Barát	
Kiss Béla	Foci	Nagy Róbert	
Kiss Béla	Foci	Nagy Ivó	
Nagy László	Sakk	Kiss Béla	
Nagy László	Foci	Kiss Béla	

Itt mi lesz a kulcs? Van-e redundancia? Ha igen, hogyan szüntethető meg?

Negyedik normálforma (4NF)

Egy 3NF-ben lévő reláció negyedik normálformában van, ha bármely nem triviális többértékű függőség* baloldalán szuperkulcs áll.

PI: FELMÉRÉS(Személy, Hobbi, Barát) reláció esetén

- Kulcs: Személy + Hobbi + Barát
- Többértékű függőségek:
 - {Személy} ->>{Hobbi} baloldal: nem szuperkulcs
 - {Személy} ->>{Barát} baloldal: nem szuperkulcs
- → Ez a reláció nincs 4NF-ben

A funkcionális függőség általánosítása. A->>B esetén egy adott A attribútum(halmaz) értékéből több B attribútum(halmaz) érték is következhet. Pl: Személyi szám ->> Végzettség

Negyedik normálformára hozás módja

A relációt felbontjuk a normálformát sértő többértékű függőségek mentén.

Normalizálás – mindig elég a 4NF?

OKTATÁS			
Tanár	Tanfolyam	Helyszín	
Kiss Béla	Adatbázisok	Szeged	
Kiss Béla	Programozás	Pécs	
Nagy László	Adatbázisok	Győr	
Nagy László	Adatbázisok	Pécs	

Elég, ha két részre bontjuk? TANÁR(Tanár, Tanfolyam) és TANFOLYAM(Tanfolyam, Helyszín) → inf. veszteség

Ötödik normálforma (5NF)

Egy 4NF-ben lévő reláció ötödik normálformában van, ha bármely nem triviális kapcsolásfüggés* szuperkulcsokból ál

PI: OKTATÁS(Tanár, Tanfolyam, Helyszín) reláció esetén

- Kulcs: Tanár + Tanfolyam + Helyszín
- Kapcsolás függés:
 - {Tanár, Tanfolyam}, {Tanfolyam, Helyszín}, {Tanár, Helyszín} összekapcsolva visszaadja az OKTATÁS relációt, de egyik sem szuperkulcs
- → Ez a reláció nincs 5NF-ben

A többértékű függőség általánosítása (Join Dependency). Ilyenkor a reláció veszteségmentesen felbontható több relációra. A kapott relációk összekapcsolása (Join) visszaadja az eredeti relációt.

Ötödik normálformára hozás módja

A relációt felbontjuk a normálformát sértő kapcsolás függőség mentén.

Normálformák és függőségek (összefoglalás)

https://www.javatpoint.com/dbms-normalization

Köszönöm a figyelmet!