```
# Simulation for Problem 20.1-3e
# To run, click Source (or highlight everything and click Run
from the menu above)
# set.seed(1) # optional - specify a seed to reproduce the
simulation exactly
SimSize=300 # set number of trials in the simulation
sold = c(2,3,4,5,6)
days = c(4,7,8,5,1)
probs = days/sum(days)
sim = sample(sold, size=SimSize, replace=T,prob=probs)
cat("Average sales over 300 simulated days:", mean(sim), sep='')
# Another whay this could be simulated is as follows
# It is less efficient, but works nonetheless
P \leftarrow c(.16, .44, .76, .96, 1) # define the cumulative distribution
function probabilities
x < -c(2,3,4,5,6) # establish the corresponding outcomes in the
distribution
nn <- 0 # set simulation clock to 0 to begin simulation
sold <- rep(0,SimSize)</pre>
while (nn < SimSize) {</pre>
counter <- 1 # restart counter</pre>
r < -runif(1,0,1) # generate random number from the U(0,1)
distribution
while(r > P[counter]) {
  counter=counter + 1
}
nn <- nn + 1 # increase the simulation count
sold[nn] <- x[counter] # number of stoves sold for each random</pre>
observation
}
# Summarize results for the simulation
mean(sold)
sd(sold)
summary(sold)
```

b=c(1.5,2.5,3.5,4.5,5.5,6.5) # specify these breaks for a better looking histogram hist(sold,breaks=b,xlab="Number of Stoves Sold")

Make a nice plot of the probability mass function (optional)
b=c(1.5,2.5,3.5,4.5,5.5,6.5)
relfreq <- hist(sold,plot=F,breaks=b)\$density
plot(x,relfreq,type="h",xlab="Number of Stoves
Sold",ylab="Probability")</pre>

Output:

> # Summarize results for the simulation

> mean(sold)

[1] 3.69

> sd(sold)

[1] 1.072879

> summary(sold)

Min. 1st Qu. Median Mean 3rd Qu. Max. 2.00 3.00 4.00 3.69 4.00 6.00

20.6-6. The order quantity that maximizes the mean profit is approximately 55.

Order Quantity	Mean Profit
50	\$46.45
51	\$46.74
52	\$46.97
53	\$47.13
54	\$47.22
55	\$47.26
56	\$47.22
57	\$47.13
58	\$46.97
59	\$46.74
60	\$46.45

20.6-7.

(a) and (b) The expected value of the college fund at year 5 is approximately \$36 thousand. The standard deviation of the college fund at year 5 is just over \$1700.

	Initial	Annual							
Stock Fund	\$3,000	\$2,000							
Bond Fund	\$3,000	\$2,000							
	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5			
Stock Fund Investment	\$5,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000			
Stock Fund Start	\$5,000	\$7,519	\$9,962	\$12,804	\$15,794	\$19,738		Mean	St. Dev.
Stock Fund Return (%)	10%	6%	8%	8%	12%		Normal	8%	6%
Stock Fund End	\$5,519	\$7,962	\$10,804	\$13,794	\$17,738				
Bond Fund Investment	\$5,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000			
Bond Fund Start	\$5,000	\$7,298	\$9,649	\$11,516	\$13,722	\$16,862			
Bond Fund Return (%)	6%	5%	-1%	2%	8%		Normal	4%	3%
Bond Fund End	\$5,298	\$7,649	\$9,516	\$11,722	\$14,862				
					Total	\$36,600			
					Mean	\$35,993			
				St.	Deviation	\$1,729			

(c) The probability that the college fund at year 5 will be at least \$35,000 is approximately 69.5%.

(d) The probability that the college fund at year 5 will be at least \$40,000 is approximately 1.4%.


```
# Simulation for Problem 20.6-7
# To run, click Source (or highlight everything and click Run from the
menu above)
# set.seed(1) # optional - specify a seed to reproduce the simulation
exactly
SimSize=1000 # set number of trials in the simulation
# Compute the total for the college fund from the stock fund
# do this for all simulation replications in a matrix for each year
s0 <- rep(5000,SimSize) * (rep(1,SimSize) +</pre>
rnorm(SimSize, mean=0.08, sd=0.06)) # total for year 0
s1 < - (s0 + 2000) * (rep(1, SimSize) + rnorm(SimSize, mean=0.08, sd=0.06)) #
grand total at end of year 1
s2 < - (s1 + 2000) * (rep(1, SimSize) + rnorm(SimSize, mean=0.08, sd=0.06)) #
grand total at end of year 2
s3 < -(s2 + 2000) * (rep(1, SimSize) + rnorm(SimSize, mean=0.08, sd=0.06)) #
grand total at end of year 3
s4 <- (s3 + 2000) * (rep(1, SimSize) + rnorm(SimSize, mean=0.08, sd=0.06)) #
grand total at end of year 4
stocktotal <- s4 + 2000 # grand total for stock fund after 5 years
# Compute the total for the college fund from the bond fund
b0 \leftarrow rep(5000, SimSize) * (rep(1, SimSize) +
rnorm(SimSize, mean=0.04, sd=0.03)) # total for year 0
b1 < (b0 + 2000) * (rep(1, SimSize) + rnorm(SimSize, mean=0.04, sd=0.03)) #
grand total at end of year 1
b2 < -(b1 + 2000) * (rep(1, SimSize) + rnorm(SimSize, mean=0.04, sd=0.03)) #
grand total at end of year 2
b3 < - (b2 + 2000) * (rep(1, SimSize) + rnorm(SimSize, mean=0.04, sd=0.03)) #
grand total at end of year 3
b4 < - (b3 + 2000) * (rep(1, SimSize) + rnorm(SimSize, mean=0.04, sd=0.03)) #
grand total at end of year 4
bondtotal <- b4 + 2000 # grand total for bond fund after 5 years
grandtotal <- stocktotal + bondtotal</pre>
# Summarize results for the simulation
mean(grandtotal) # answer to part (a) find the expected value (i.e. mean)
sd(grandtotal) # answer to part (b) find the standard deviation
sum(grandtotal >= 35000)/SimSize # answer to part (c) find the
probability the total is at least $35000
sum(grandtotal >= 40000)/SimSize # answer to part (d) find the
probability the total is at least $40000
Output:
> # Summarize results for the simulation
> mean(grandtotal) # answer to part (a) find the expected value (i.e.
mean)
[1] 36045.98
> sd(grandtotal) # answer to part (b) find the standard deviation
[1] 1716.243
```

- > sum(grandtotal >= 35000)/SimSize # answer to part (c) find the probability the total is at least \$35000 [1] 0.741
- > sum(grandtotal >= 40000)/SimSize # answer to part (d) find the probability the total is at least \$40000 [1] 0.015

20.6-9.

(a) The mean profit is approximately \$0.3 million. The probability of winning the bid is approximately 52.6%.

Data				
Our Project Cost (\$million)	5.000			
Our Bid Cost (\$million)	0.050			
Competitor Bids	Competitor 1	Competitor 2	Competitor 3	Competitor 4
Bid (\$million)	5.824	5.959	6.114	6.136
Distribution	Triangular	Triangular	Triangular	Triangular
Competitor Distribution Para				
Minimum	105%	105%	105%	105%
Most Likely	120%	120%	120%	120%
Maximum	140%	140%	140%	140%
Competitor Distribution Para	meters (\$millior	ns)		
Minimum	5.250	5.250	5.250	5.250
Most Likely	6.000	6.000	6.000	6.000
Maximum	7.000	7.000	7.000	7.000
Minimum Competitor				
Bid (\$million)	5.824			
Our Bid (\$million)	5.700			
Win Bid?	1	(1=yes, 0=no)		
Profit (\$million)	0.650			
Mean Profit (\$million)	0.303			

(b) A bid of approximately \$5.5 million maximizes RPI's mean profit.

OurBid	Mean Profit (\$million)
5.3	0.248
5.4	0.323
5.5	0.364
5.6	0.356
5.7	0.313
5.8	0.234
5.9	0.140
6.0	0.061

(c)

(d) The optimal bid is approximately \$5.57 million, as found by Solver.

Data				
Our Project Cost (\$million)	5.000			
Our Bid Cost (\$million)	0.050			
Competitor Bids	Competitor 1	Competitor 2	Competitor 3	Competitor 4
Bid (\$million)	6.133	5.864	6.312	6.341
Distribution	Triangular	Triangular	Triangular	Triangular
Competitor Distribution Para	meters (Proport	ion of Our Proiec	et Cost)	
Minimum	105%	105%	105%	105%
Most Likely	120%	120%	120%	120%
Maximum	140%	140%	140%	140%
Competitor Distribution Para				
Minimum	5.250	5.250	5.250	5.250
Most Likely	6.000	6.000	6.000	6.000
Maximum	7.000	7.000	7.000	7.000
Minimum Competitor				
Bid (\$million)	5.864			
Our Bid (\$million)	5.569			
Our Dia (willingii)	0.000			
Win Bid?	1	(1=yes, 0=no)		
Profit (\$million)	0.519			
Mean Profit (\$million)	0.366			

CHAPTER 28: EXAMPLES OF PERFORMING SIMULATIONS ON SPREADSHEETS WITH ANALYTIC SOLVER PLATFORM

28-1.

- (a) Answers will vary. A typical set of 5 runs: 45.83, 46.26, 45.94, 45.98, and 46.89.
- (b) Answers will vary. A typical set of 5 runs: 46.49, 46.12, 46.38, 46.23, and 46.37.
- (c) The mean completion times in part *b* should be more consistent.

28-2.

- (a) Error function (Scale = 0.0109, Shift = 460.94)
- (b) Normal Distribution (Mean = 460.94, Standard Deviation = 64.78).

28-3.

- (a) Uniform Distribution (Min = 302, Max = 496).
- (b) Max Extreme Distribution (Mode = 62.01, Scale = 46.41, Shift = 301.99).

28-4.

	Α	В	С	D	Ε	F	G	Н	1
1							(all times in mont		าร)
2							Start	Activity	Finish
3	Activity	Predecessor	Distribution	Parar	neters	;	Time	Time	Time
4	A Secure funding		Normal (mean, st. dev.)	6	1		0.0	6.257	6.3
5	B Design Building	Α	Uniform (min, max)	6	10		6.3	9.188	15.4
6	C Site Preparation	Α	Triangular (min, most likely, max)	1.5	2	2.5	6.3	1.661	7.9
7	D Foundation	B, C	Triangular (min, most likely, max)	1.5	2	3	15.4	2.219	17.7
8	E Framing	D	Triangular (min, most likely, max)	3	4	6	17.7	4.100	21.8
9	F Electrical	E	Triangular (min, most likely, max)	2	3	5	21.8	2.322	24.1
10	G Plumbing	Е	Triangular (min, most likely, max)	3	4	5	21.8	3.514	25.3
11	H Walls and Roof	F, G	Triangular (min, most likely, max)	4	5	7	25.3	4.862	30.1
12	I Finish Work	Н	Triangular (min, most likely, max)	5	6	7	30.1	6.000	36.1
13	J Landscaping	Н	Fixed (5)				30.1	5	35.1
14									
15						Pr	oject Co	mpletion Time	35.140
16					Mean Project Completion Time		34.917		

(a) The mean project completion time is approximately 35 months.

28-10.(a) Accepting approximately 185 reservations maximizes the mean profit.

Reservations to Accept	Mean Profit
180	\$11,612
181	\$11,719
182	\$11,806
183	\$11,875
184	\$11,918
185	\$11,940
186	\$11,936
187	\$11,917
188	\$11,875
189	\$11,812
190	\$11,732

(c) The optimal number of reservations to accept is approximately 185, as found by Solver.

	В	С	D	E	F
3		Data			
4	Available Seats	150			
5	Fixed Cost	\$30,000			
6	Avg. Fare / Seat	\$300			
7	Cost of Bumping	\$450			
8					
9				Mean	Standard Dev.
10	Ticket Demand	161.58	Normal	195	30
11	Demand (rounded)	162			
12					
13	Reservations to Accept	185			
14					
15				Tickets	Probability
16				Purchased	to Show up
17	Number that Show	129	Binomial	162	80%
18					
19					
20	Number of Filled Seats	129	Ticket Revenue		\$38,700
21	Number Denied Boarding	0	Bumping Cost		\$0
22				Fixed Cost	\$30,000
23	Mean Filled Seats	141.04		Profit	\$8,700
24	Mean Denied Boarding	0.86			
25	Mean Profit	\$11,925			