EECS 16A Touchscreen 1

Insert your names here

Semester Outline

Today's lab:

Breadboarding

Build multiple functional circuits

Learn how to use Multimeter

Breadboarding basics

- Similar to Imaging 1: Intro to Breadboarding
- Build up breadboarding skills
 - Connect to concepts in lecture, including Voltage Dividers and KVL
- Very important skill: prototype, debug, and translate theoretical ideas into real circuits

Poll time!

Review of breadboarding practices from Imaging 1.

- 1. Which of the following are good breadboarding practices?
 - a. Check the resistor value by its color bands
 - b. Plug in a component legs in different rows
 - c. Use black and red wires for the rails

2. For which of the following components does polarity matter?

Resistor LED Capacitor Ambient Light Sensor

Poll time!

Review of breadboarding practices from Imaging 1.

- 1. Which of the following are good breadboarding practices?
 - a. Check the resistor value by its color bands
 - b. Plug in component legs in different rows
 - c. Use black and red wires for the rails

2. For which of the following components does polarity matter?

Resistor

LED

Capacitor

Ambient Light Sensor

TinkerCAD

- Circuit design prototyping software
 - Primary circuit software in this course
 - Useful for many different electrical projects

 Run online using an Autodesk account

Launchpad Review

Micro-Controller

Power Supply

Voltmeter

Series V/S Parallel Resistor Configurations

	Series	Parallel
How it looks	V_{in} R_1 R_2 R_3	V_{in} $\stackrel{+}{\longrightarrow}$ $R_1 \geqslant R_2 \geqslant R_3 \geqslant$ www.electricalengineering.xyz
Voltage	$V_{in} = V_1 + V_2 + V_3$	$V_{in} = V_1 = V_2 = V_3$
Current	$I_{series} = I_1 = I_2 = I_3$	$I_{in} = I_1 + I_2 + I_3$
Resistance	$R_{eq} = R_1 + R_2 + R_3$	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$
Features	If one components burns current becomes inactive	If one component burns current stops only through that branch rest part works fine

Multimeter (Circuit Debugger)

- Voltmeter
 - Infinite resistance
 - Connect in parallel with component
- Ammeter
 - Very low resistance
 - Act as a wire in the circuit
 - Connect in series with component
- Ohmmeter
 - Remove resistor from circuit before use
 - Connect in parallel with resistor

Circuit Elements

LED

Potentiometer

LED Fader Circuit

Voltage Divider Circuit

What is the voltage value u_2 at Node 2?

$$I_y = I_z = V_s / (R_1 + R_2)$$
 (Ohm's Law)
 $u_2 - u_0 = R_2 * I_z$
 $u_2 - 0 = R_2 * V_s / (R_1 + R_2)$
 $u_2 = V_s * R_2 / (R_1 + R_2)$

What is the voltage value u_2 if R_1 equals to R_2 ?

Pointers

- Try to debug your circuit by yourself before you ask the TAs
 - However, don't spend too long, after 5 minutes or so ask for help
- Current Limit = 0.1 A
- Voltage = 3.3V