Enhanced study of complex systems by unveiling hidden symmetries with Dynamical Symmetry Visibility

Nhat Nguyen and Dr. Andrés Aragoneses

Department of Physics, Eastern Washington University, Cheney, WA, 99004, USA.

Photonic neurons: a diode laser with optical feedback and external modulation

Photonic neurons: a diode laser with optical feedback and external modulation

Dynamical Symmetry Visibilities

To quantify the presence of temporal, dynamical symmetries we introduce DSV as:

$$V_{\alpha} = 1 - |w_1 - w_{\alpha}|$$

$$V_{\beta} = 1 - |w_6 - w_{\beta}|$$

$$V_{\delta} = 1 - |P_2 - P_3| - |P_4 - P_5|$$

$$V_{\rho} = 1 - |P_1 - P_6| - |P_2 - P_4| - |P_3 - P_5|$$

$$w_1 = |P_1 - \frac{1}{6}|$$

 $w_{\alpha} = |P_2 - \frac{1}{6} + P_3 - \frac{1}{6}|$

Dynamical Symmetry Visibilities

Minimal model to describe photonics neurons

$$\varphi_{i+1} = \varphi_i + \rho + \frac{K}{2\pi} [\sin(2\pi\varphi_i) + \alpha \sin(4\pi\varphi_i))] + \beta \xi_i$$

Magnitude of external forcing

Minimal model to describe photonics neurons

11 MHz

25 MHz

Dynamical Symmetry Visibility & the logistic map

Dunamical Symmetry Vieihility & the logistic man

Dynamical Symmetry Visibility & the logistic map

Dynamical Symmetry Visibility & the logistic map

Ricker's map