Elliptic Partial Differential Equations

Jiwoon Park

Lent 2019

(26th February, Tuesday)

We have seen in the last lecture how we can find solution for $-\Delta u = f(u)$ using $C^{2,\alpha}$ Schauder estimates (potential theory).

One famous example of equations of such type is prescribed curvuture equation. That is, for a Riemannian surface (M, g), it solves

$$\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = H(u), \quad \det(D^2 y) = F(\kappa, u) = \tilde{F}(x, u, \nabla u)$$

for curvatures κ , H and with coefficients in te linear regime may be measurable (say L^p).

Goal: to develope a regularity theory for weak solutions.

Let L be an operator of form

$$L = -\sum_{i=1}^{d} \partial_{x_i} (a^{ij}(x)\partial_{x_i} u) + c(x) \quad \text{(so that } b^i \equiv 0)$$

and consider equation Lu = f in Ω . We impose conditions

$$\begin{cases} a^{ij} \in L^{\infty} \cap C^{0}(\Omega), \\ a^{ij} = a^{ji} \\ a^{ij}(\xi)\xi_{i}\xi_{j} \geq \lambda |\xi|^{2}, \ \forall \xi \in \mathbb{R}^{d} \\ f \in L^{\frac{2d}{d+2}}(\Omega) \quad \text{(exponent chosen for Sobolev embedding)} \end{cases}$$

u is a weak solution of Lu = f if

$$\int_{\Omega} \Big(\sum_{i,j=1}^{n} a^{ij}(x) \partial_{x_{j}} u \partial_{x_{i}} \varphi + c u \varphi \Big) dx = \int_{\Omega} \varphi f dx, \quad \forall \varphi \in H_{0}^{1}(\Omega)$$

We want to characterize Hölder continuity in terms of the growth of local integrals.

Let $\Omega \subset \mathbb{R}^d$ be bounded and connected. Given $u \in L^1_{loc}(\Omega)$, given $x_0 \in \Omega$, r > 0 such that $B(x_0, r) \subset \Omega$, we define

$$u_{x_0,r} = \frac{1}{B(x_0,r)} \int_{B(x_0,r)} u(x) dx$$

Theorem) Assume that $u \in L^2(\Omega)$ and there are M > 0, $\alpha \in (0,1)$.

$$\int_{B(x_0,r)} |u(x) - u_{x_0,r}|^2 dx \le M^2 r^{d+2\alpha}, \quad \forall B(x_0,r) \subset \Omega$$

Then u has continuous correction in $C^{0,\alpha}(\Omega)$ and $\forall \overline{\Omega'} \subset \Omega$, we have

$$|u|_{0,\alpha,\Omega'} \le C(M + ||u||_{L^2(\Omega)})$$

for some $C = C(d, \alpha, \Omega, \Omega') > 0$.

proof) Let $R_0 = \operatorname{dist}(\Omega', \partial\Omega) > 0$. Let $0 < r_1 < r_2 \le R_0$. Then

$$|u_{x_0,r_1} - u_{x_0,r_2}|^2 = \left| \frac{1}{|B(x_0,r_1)|} \int_{B(x_0,r_1)} u(y) dy - \frac{1}{|B(x_0,r_2)|} \int_{B(x_0,r_2)} u(y) dy \right|^2$$

$$\leq 2|u(x) - u_{x_0,r_1}|_{+}^2 2|u(x) - u_{x_0,r_2}|^2$$

Integrate on $B(x_0, r_1)$,

$$|B(x_0, r_1)||u_{x_0, r_1} - u_{x_0, r_2}|^2 \le 2 \int |u(x) - u_{x_0, r_1}|^2 dx + 2 \int_{B(x_0, r_2)} |u(x) - u_{x_0, r_2}|^2 dx$$

$$\le 2M^2 r_1^{d+2\alpha} + 2M^2 r_2^{d+2\alpha}$$

SO

$$|u_{x_0,r_1} - u_{x_0,r_2}|^2 \le \frac{M^2 c(d)}{r_1^d} \left(r_1^{d+2\alpha} + r_2^{d+2\alpha}\right)$$

We want $r_1, r_2 \to 0$. Take $R \leq R_0, r_{1,j} = \frac{R}{2^{j+1}}, r_{2,j} = \frac{R}{2^j}, j \in \mathbb{N}$. Then

$$|u_{x_0,R2^{-j-1}} - u_{x_0,R2^{-j}}| \le c(d) \frac{MR_0^{\alpha}}{2^{j\alpha}}$$

So we have proved that $(u_{x_0,2^{-k}R})_{k\in\mathbb{N}}$ is a Cauchy sequence in \mathbb{R} . So we may set $\hat{u}(x_0) = \lim_{k\to\infty} u_{x_0,2^{-k}R}$ and moreover $u_{x_0,r}$ converges to $u(x_0)$ with a uniform bound (that does not depend on x_0)

$$|u_{x_0,r} - \hat{u}(x_0)| \le c(d,\alpha)Mr^{\alpha} \quad \cdots \quad (\otimes)$$

Now by Lebesgue's differentiation theorem, $\lim_{r\to 0^+} \int_{B(x_0,r)} \frac{u(x)}{|B(x_0,r)|} dx = u(x_0,r)$ for a.e. x_0 , whenever $u \in L^1_{loc}(\Omega) \subset L^2(\Omega)$ so $\hat{u} = u$ a.e. in Ω . But \hat{u} is continuous because it is a uniform limit of continuous functions. Hence u is also continuous (has continuous correction) at x_0 .

Next, we prove that u is bounded in Ω with estimates. Observe that

$$|u_{x,r} - u(y,r)| = \frac{1}{|B(x,r)|} \left| \int_{B(x,r)} u(\xi) d\xi - \int_{B(y,r)} u(\xi) d\xi \right| \to 0$$

as $|x-y| \to 0$. Also by (\otimes) ;

$$|u(x_0)| \le CMR^{\alpha} + |u_{x,R}| \quad \forall x_0 \in \Omega', \forall R \le R_0$$

$$\Rightarrow |u|_{0,\Omega'} \le MR_0^{\alpha} + ||u||_{L^2(\Omega)} \quad \cdots \quad (\oplus)$$

where we have second line since

$$|u_{x,R}| = \left| \frac{1}{|B(x,R)|} \int_{B(x,R)} u(\xi) d\xi \right| \le \frac{1}{|B(x,R)|} \left(\int_{B(x,R)} dx \right)^{1/2} \left(\int_{B(x_0,R)} |u(\xi)|^2 d\xi \right)^{1/2}$$

We now prove that $u \in C^{0,\alpha}$ with estimates. First consider the case $x, y \in \Omega'$, $R := |x - y| < R_0/2$. Then

$$|u(x) - u(y)| \le |u(x) - u_{x_0,2R}| + |u(y) - u_{y,2R}| + |u_{x,2R} - u_{y,2R}|$$

$$\le 2c(d,\alpha)MR^{\alpha} + |u_{x,2R} - u_{y,2R}|$$

using the bound $|u_{x_0,r} - u(x_0)| \le c(d,\alpha)R^{\alpha}M$. We now need to estimate $|u_{x,2R} - u_{y,2R}|$. First, write

$$|u_{x,2R} - u_{y,2R}| \le |u_{x,2R} - u(\zeta)| + |u_{y,2R} - u(\zeta)|$$

Integrating over ζ ,

$$|u_{x,2R} - u_{y,2R}| \le \frac{1}{|B(x,2R)|} \left(\int_{B(x,2R)} |u(\zeta) - u_{x,2R}|^2 d\zeta + \int_{B(y,2R)} |u(\zeta) - u_{y,2R}|^2 d\zeta \right) \lesssim M^2 R^{2\alpha}$$

So we see that, for R chosen sufficiently small,

$$|u(x) - u(y)| \le 2c(d, \alpha)MR^{\alpha} \le C_d M|x - y|^{\alpha}$$

If $|x-y| > R_0/2$, we have by (\oplus)

$$|u(x) - u(y)| \le 2 \sup_{\Omega'} |u| \le C \left(M + \frac{\|u\|_{L^2\Omega}}{R_0^{\alpha}} \right) R_0^{\alpha}$$
$$\le 2^{\alpha} C \left(M + \frac{\|u\|_{L^2(\Omega)}}{(R_2/2)^{\alpha}} \right) |x - y|^{\alpha}$$

(End of proof) \square

(28th February, Thursday)

Weak solutions $u \in H^1(\Omega)$ of Lu = f satisfy

$$\sum_{i,j=1}^{d} \int_{\Omega} a^{ij}(x) \partial_{x_i} u \partial_{x_j} \varphi dx + \int_{\Omega} c(x) u \varphi dx = \int f \varphi dx \quad \forall \varphi \in H_0^1(\Omega)$$

for $f, c \in L^p(\Omega)$ and $a^{ij} \in C^0(\overline{\Omega})$. We aim to prove that

$$u \in H^1(\Omega) \cap C^{0,\alpha}(\Omega)$$

where $H^1(\Omega)$ comes from Lax-Milgram and $C^{0,\alpha}(\Omega)$ comes from elliptic regularity.

We had proved in the last lecture that if $\int_{B(x_0,r)} |u(t) - u_{x_0,r}|^2 dx \leq M^2 r^{d+2\alpha}$ for all $B(x_0,r) \subset \Omega$, then $u \in C^{0,\alpha}(\Omega)$ and we have estimation in L^2 -norm of u. We have a simple corollary of this result:

Corollary) Suppose $u \in H^1_{loc}(\Omega)$ satisfies that for some $\alpha \in (0,1)$,

$$\int_{B(x_0,r)} |\nabla u|^2 dx \le M^2 r^{d-2+2\alpha}, \quad \forall B(x_0,r) \subset \Omega$$

Then $u \in C^{0,\alpha}(\Omega)$ and $\forall \Omega'$ with $\overline{\Omega'} \subset \Omega$,

$$|u|_{0,\alpha,\Omega'} \le C(M + ||u||_{L^2(\Omega)})$$

for some $C = C(d, \alpha, \Omega', \Omega) > 0$.

proof) We use Poincaré's inequality.

$$\int_{B(x_0,r)} |u(x) - u_{x_0,r}|^2 dx \le C(d) r^2 \int_{B(x_0,r)} |\nabla u|^2 dx$$

$$\le C(d) r^2 M^2 r^{d-2+2\alpha} = C(d) M^2 r^{d+2\alpha}$$

We conclude by applying the last proposition of the last lecture.

(End of proof) \square

We expect that if $a^{ij} \in C^0(\overline{\Omega})$, $c = c(x) \in L^d(\Omega)$, $f \in L^{\frac{2d}{d+2}}(\Omega)$ then the weak solution satisfies $u \in H^1(\Omega) \cap C^{0,\alpha}(\Omega)$.

A priori, we study the setting of Ω reduced to balls. So we at the moment insist to work on B(0,1) = B, $B(0,r) = B_r$. The idea is to first assume that a^{oij} is close to some constant coefficient, say $A = (a^{ij}(x_0))_{i,j=1}^d$ freezing a^{ij} to $a^{ij}(x_0)$. Then we will use perturbation argument.

To use perturbation argument, we may write u = v + w where w is the weak solution of $L_0 w = 0$ where $L_0 w := -\sum_{i,j} \partial_{x_i} (a^{ij}(x_0) \partial_{x_i} w)$ and v solves

$$\sum_{i,j=1}^{d} \int_{B} a^{ij}(x_0) \partial_{x_i} v \partial_{x_j} \varphi dx = \int_{B} (f\varphi - cu\varphi) dx + \sum_{i,j=1}^{d} \int (a^{ij}(x_0) - a^{ij}(x)) \partial_{x_i} u \partial_{x_j} \varphi dx, \quad \forall \varphi \in H_0^1(B)$$

The first step would be to study the constant-coefficient case to have control on w.

Proposition) Suppose that $w \in H^1(B_R)$ is a weak solution of $\sum_{i,j=1}^d a^{ij}(x_0) \partial_{x_i x_j}^2 u = 0$ in B_R . Then for all $B(x_0, r) \subset B_R$ and $\rho \in (0, r]$

$$\int_{B(x_0,\rho)} |\nabla w|^2 dx \le C \left(\frac{\rho}{r}\right)^d \int_{B(x_0,r)} |\nabla w|^2 dx,$$

$$\int_{B(x_0,\rho)} |\nabla w - (\nabla w)_{x_0,\rho}|^2 dx \le C \left(\frac{\rho}{r}\right)^{d+2} \int_{B(x_0,r)} \int |\nabla w - (\nabla w)_{x_0,r}|^2 dx$$

To show this, we need the following inequality.

Theorem) (Caccioppoli's inequality for harmonic functions) If $w \in C^1$ solved $L_0w = 0$ weakly, i.e. it satisfies $\int_B a^{ij}(x_0) \partial_{x_i} w \partial_{x_j} \varphi dx = 0$ for all $\varphi \in H_0^1(B)$, then

$$\int_{B} |\nabla w|^{2} \eta^{2} dx \le C \int_{B} |\nabla \eta|^{2} |w|^{2} dx, \quad \forall \eta \in C_{0}^{1}(B)$$

for $C = C(\lambda, \Lambda) > 0$ where $\lambda |\xi|^2 \leq \sum_{ij} a^{ij}(x_0) \xi_i \xi_j \leq \Lambda |\xi|^2$.

proof) Let $\eta \in C_0^1(B)$ and choose $\varphi := \eta^2 w$ in the weak formulation. Then, noting that $\nabla \varphi = 2\eta(\nabla \eta)w + \eta^2 \nabla w$,

$$\begin{split} \lambda \int \eta^2 |\nabla w|^2 dx \leq & C(\lambda, \Lambda) \int_B \eta |w| |\nabla \eta| |\nabla w| dx \\ \leq & C(\lambda, \Lambda) \bigg(\int_B \eta^2 |\nabla w|^2 dx \bigg)^{1/2} \bigg(\int_B |\nabla \eta|^2 |u|^2 dx \bigg)^{1/2} \quad \text{(Cauchy-Schwarz)} \end{split}$$

as desired.

(End of proof) \square

Corollary) (Precis version of Cacciofolli's inequality) With same choice of w as above, for all $0 < r < R \le 1$,

$$\int_{B(0,r)} |\nabla w|^2 dx \le \frac{C}{(R-r)^2} \int_{B(0,R)} |w|^2 dx$$

[This can be thought of as a reverse of Poincaré inequality]

proof) Choose $\eta \in C_0^1(B)$ such that $\eta = 1$ on B(0, r), $\eta \equiv 1$ on B(0, r) and $\eta \equiv 0$ outside B(0, R) and such that $|\nabla \eta| \leq \frac{2}{R-r}$.

(End of proof) \square

Proposition) Assume that w is a weak solution of $\sum_{i,j=1}^d \int_B a^{ij} \partial_{x_i} w \partial_{x_j} \varphi dx$ for all $\varphi \in H_0^1(B)$. Then for all $0 < \rho \le r$,

$$\int_{B(0,\rho)} |w|^2 dx \le C \left(\frac{\rho}{r}\right)^d \int_{B(0,r)} |w|^2 dx,$$

$$\int_{B(0,\rho)} |w - w_{0,\rho}|^2 dx \le C \left(\frac{\rho}{r}\right)^{d+2} \int_{B(0,r)} |w - w_{0,r}|^2 dx$$

where $C = C(\lambda, \Lambda)$.

proof) Using dilation, without loss of generality, set r=1 and $\rho \in (0,1/2]$.

& Claim: $|w|_{L^{\infty}(B_{1/2})}^2 + |\nabla w|_{L^{\infty}(B_{1/2})}^2 \le C(\lambda, \Lambda) \int_{B_1} |w|^2 dx$.

: first observe that if w satisfies $L_0w = 0$, then w is automatically smooth (as it is only a dialation of a harmonic function) and $\partial^{\alpha}w$ satisfies the same equation. So by Cacciofolli,

$$\int_{B(0,1/2)} |\nabla(\partial^{\alpha} w)|^2 dx \le C \int |\partial^{\alpha} w|^2 dx \le \dots \lesssim \int |w|^2$$

with appropriate integration domains for in between terms. So we see $\|u\|_{H^k(B_{1/2})} \le C(k,\lambda,\Lambda)\|w\|_{L^2(B_1)}$. Also one may make embedding $H^k \hookrightarrow L^\infty$ for k>d/2, with $\|w\|_{L^\infty(B_{1/2})} \le C'\|w\|_{H^k(B_{1/2})}$, so we have the conclusion.

[A short derivation of embedding $i: H^k(\Omega) \hookrightarrow L^{\infty}(\Omega)$ for k > d/2 and Ω bounded: For $f \in L^{\infty}(\Omega)$,

$$\begin{split} |f(x)| &= \left| \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \tilde{u}(\xi) e^{ix\xi} d\xi \right| \\ &= \left| \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{(1+|\xi|^2)^{k/2}}{(1+|\xi|^2)^{k/2}} \hat{u}(\xi) e^{ix\xi} d\xi \right| \\ &\leq \left(\int \frac{d\xi}{(1+|\xi|^2)^k} \right)^{1/2} \left(\int (1+|\xi|^2)^k |\hat{u}(\xi)|^2 d\xi \right)^{1/2} \\ &\leq C' \left\| u \right\|_{H^k(\Omega)} \end{split}$$

Note that the integral converges only if k > d/2.

Having the claim,

$$\int_{B(0,\rho)} |w|^2 dx \lesssim \rho^d |w|_{L^{\infty}(B_{1/2})}^2 \leq C \rho^d \int_{B_1} |w|^2 dx$$

so we have the first statement. Also,

$$\int_{B(0,\rho)} |w - w_{0,\rho}|^2 dx = \int_{B(0,\rho)} \left| w - \frac{1}{|B(0,\rho)|} \int_{B(0,\rho)} w(y) dy \right|^2 dx
\leq \frac{1}{|B(0,\rho)|} \iint_{B(0,\rho) \times B(0,\rho)} |w(x) - w(y)|^2 dx dy
\leq \frac{1}{|B(0,\rho)|} \iint_{B(0,\rho) \times B(0,\rho)} |2\rho|^2 |\nabla w|_{L^{\infty}(B_{1/2})}^2 dx
\lesssim \rho^{d+2} |\nabla w|_{L^{\infty}(B_{1/2})}^2
\lesssim \rho^{d+2} \int_{B_c} |w|^2 dx \quad \text{(by Claim)}$$

To conclude, we observe that if w satisfies $L_0w = 0$, then so does $L_0(w - w_{0,1}) = 0$, so applying this result for $\overline{w} = w - w_{0,1}$, we have

$$\int_{B(0,\rho)} |w - w_{0,\rho}|^2 dx = \int_{B(0,\rho)} |\overline{w} - \overline{w}_{0,\rho}|^2 dx \lesssim \rho^{d+2} \int_{B_1} |\overline{w}|^2 dx = \rho^{d+2} \int_{B_1} |w - w_{0,1}|^2$$
(End of proof) \square

(5th March, Tuesday)

Recall, we had

Proposition) Assume that w is a weak solution of $\sum_{i,j=1}^d \int_B a^{ij} \partial_{x_i} w \partial_{x_j} \varphi dx$ for all $\varphi \in H_0^1(B)$. Then for all $0 < \rho \le r$,

$$\int_{B(0,\rho)} |w|^2 dx \le C \left(\frac{\rho}{r}\right)^d \int_{B(0,r)} |w|^2 dx,$$

$$\int_{B(0,\rho)} |w - w_{0,\rho}|^2 dx \le C \left(\frac{\rho}{r}\right)^{d+2} \int_{B(0,r)} |w - w_{0,r}|^2 dx$$

where $C = C(\lambda, \Lambda)$.

We have a simple corollary of this.

Corollary) Under the previous hypothesis, we have that $\forall u \in H^1(B(x_0, r))$ and $\forall 0 < \rho \leq r$, we have

$$\int_{B(x_0,\rho)} |\nabla u|^2 dx \le C \left(\left(\frac{\rho}{r} \right)^d \int_{B(x_0,r)} |\nabla u|^2 dx + \int_{B(x_0,r)} |\nabla (u-w)|^2 dx \right)$$

proof) For v = u - w and $0 < \rho \le r$, has

$$\begin{split} \int_{B_{\rho}(x_{0})} |\nabla u|^{2} dx &\leq 2 \int_{B_{\rho}(x_{0})} |\nabla w|^{2} + 2 \int_{B_{\rho}(x_{0})} |Dv|^{2} \\ &\leq C \left(\frac{\rho}{r}\right)^{d} \int_{B(x_{0},r)} |\nabla w|^{2} + 2 \int_{B_{r}(x_{0})} |Dv|^{2} dx \\ &\leq C \left(\left(\frac{\rho}{r}\right)^{d} \int_{B(x_{0},r)} |\nabla u|^{2} dx + \int_{B(x_{0},r)} |\nabla v|^{2}\right) \end{split}$$

(End of proof) \square

Theorem) Let $u \in H^1(B)$ be a weak solution of Lu = f.

$$\int_{B} \sum_{i=1}^{d} a^{ij}(x) \partial_{x_i} u \partial_{x_j} \varphi dx + \int_{B} c(x) u \varphi dx = \int f \varphi dx, \quad \forall \varphi \in H_0^1(B)$$

with $a^{ij}=a^{ji}, a^{ij}\in C^0(\overline{B}), c\in L^d(B), f\in L^q, q\in (\frac{2}{d},d)$ and $d\geq 2$. Then

$$\int_{B(x,r)} |\nabla u|^2 dx \le Cr^{d-2+2\alpha} \Big(\|f\|_{L^q(B_1)}^2 + \|u\|_{H^1}^2 \Big)$$

with $\alpha=2-\frac{d}{q}\in(0,1)$ and $C\equiv C(\lambda,\Lambda,\|c\|_{L^d(B)},\tau)>0$ where $\tau:\mathbb{R}_+\to\mathbb{R}_+\cup\{0\}$ sufficiently chosen so that

$$|a^{ij}(x) - a^{ij}(y)| \le \tau(|x - y|), \quad \forall x, y \in B$$

(End of statement) \square

Assume that the weak solution u exists. Last lecture, we took $x_0 \in B$, $B(x_0, r) \subset B$ and made decomposition u = v + w where w is the weak solution of $L_0 u = 0$. Then v must satisfy

$$\sum_{i,j=1}^{d} \int_{B} a^{ij}(x_{0}) \partial_{x_{i}} v \partial_{x_{j}} \varphi dx = \int_{B} f \varphi dx - \int_{B} c(x) u \varphi dx$$

$$+ \sum_{i,j=1}^{d} \int_{B} (a^{ij}(x_{0}) - a^{ij}(x)) \partial_{x_{i}} u \cdot \partial_{x_{j}} \varphi dx \quad \forall \varphi \in H_{0}^{1}(B) \quad \cdots \quad (WF_{v})$$

proof of Theorem) Take $\varphi = v \in H_0^1(B)$ in (WF_v) . Then

$$\sum_{i,j=1}^{d} \int a^{ij}(x_0) \partial_{x_i} v \cdot \partial_{x_j} v dx = \int f v dx + \int c u v dx + \int \sum (a^{ij}(x_0) - a^{ij}(x)) \partial_{x_i} u \cdot \partial_{x_j} v dx$$

Using ellipticity,

$$\int_{B(x_0,\rho)} |\nabla v|^2 dx \le C(\lambda,\Lambda,d) \int |fv| dx + \int |cuv| dx + \int \tau(|x-x_0|) |\nabla u| |\nabla v| dx$$

A sensible way to bound this is to separate out terms in v and use Sobolev embedding $H^1 \hookrightarrow L^{\frac{2d}{d-2}}$, $\|g\|_{L^{2d/(d-2)}} \leq C\|\nabla g\|_{L^2}$, so we will keep the power of |v| to be $\frac{2d}{d-2}$. To estimate the first term, use $H\ddot{o}ler$ inequality to see that

$$\int_{B(x_0,\rho)} |fv| dx \le \left(\int |f|^{\frac{2d}{d+2}} dx \right)^{\frac{d+2}{2d}} \left(\int |v|^{\frac{2d}{d-2}} dx \right)^{\frac{d-2}{2d}}$$

For the second term,

$$\int |cuv| dx \le \left(\int |cu|^{\frac{2d}{d+2}} \right)^{\frac{d+2}{2d}} \left(\int |v|^{\frac{2d}{d-2}} \right)^{\frac{d-2}{2d}}$$
$$\int |cu|^{\frac{2d}{d+2}} dx \le \left(\int |c|^d dx \right)^{\frac{2}{d+2}} \left(\int |u|^2 dx \right)^{\frac{d}{d+2}}$$

Hence, using Young's inequality and Sobolev embedding, with $\theta \frac{d-2}{2d} = 1$,

$$\int_{B(x_0,\rho)} |\nabla v|^2 dx \le \frac{1}{\epsilon} \left(\int |f|^{\frac{2d}{d+2}} dx \right)^{\frac{d+2}{d}} + \epsilon \int_{B(x_0,\rho)} |\nabla v|^2 dx
+ C_{\epsilon} \left(\int |c|^d dx \right)^{\frac{d+2}{d}} \int_{B(x_0,\rho)} |u|^2 dx + C_{\epsilon} \cdot \tau^2(r) \int |\nabla u|^2 dx + \epsilon \int |\nabla v|^2 dx$$

so

$$\int |\nabla v|^2 dx \lesssim \left(\int |f|^{\frac{2d}{d+2}} dx\right)^{\frac{d+2}{d}} + \left(\int |c|^d dx\right)^{\frac{d+2}{d}} \int |u|^2 dx + C(\tau) \int_{B(x_0,\rho)} |\nabla u|^2 dx$$

Now by the corollary, has

$$\int_{B(x_0, \rho)} |\nabla u|^2 dx \le C \left[\left(\frac{\rho}{r} \right)^d \int_{B(x_0, r)} |\nabla u|^2 dx + \int_{B(x_0, r)} |\nabla v|^2 dx \right]
\le C \cdot \left[\left(\frac{\rho}{r} \right)^d + \tau^2 \right) \int_{B(x_0, r)} |\nabla u|^2 dx + \left(\int |f|^{\frac{2d}{d+2}} dx \right)^{\frac{d+2}{d}}
+ \left(\int_{B(x_0, r)} |c|^d dx \right)^{\frac{d}{2}} \int_{B(x_0, r)} u^2 dx \right]$$

Also by Hölder inequality,

$$\left(\int_{B(x_0,r)} |f|^{\frac{2d}{d+2}} dx\right)^{\frac{d+2}{d}} \le \left(\int_{B(x_0,r)} |f|^q dx\right)^{\frac{2}{q}} r^{d-2+2\alpha}$$

where q was chosen so that $\alpha = 2 - \frac{n}{q} \in (0, 1)$. Hence we have

$$\int_{B(x_0,\rho)} |Du|^2 \le C \left(\left[\left(\frac{\rho}{r} \right)^d + \tau^2(r) \right] \int_{B(x_0,r)} |Du|^2 + r^{d-2+2\alpha} \left\| f \right\|_{L^q(B_1)}^2 + \left(\int_{B(x_0,r)} |c|^d dx \right)^{\frac{2}{d}} \int_{B(x_0,r)} u^2 dx \right)$$

To proceed, we note the following lemma:

Lemma) $\phi = \phi(t)$ be a non-negative, non-decreasing function on [0, R] such that

$$\phi(\rho) \le A\Big(\Big(\frac{\rho}{r}\Big)^{\alpha} + \epsilon\Big)\phi(r) + Br^{\beta}, \quad A, \epsilon, B > 0, \ \beta > \alpha$$

Then

$$\phi(r) \le C\left(\frac{\phi(R)}{R^{\gamma}}r^{\gamma} + Br^{\beta}\right), \text{ for some } \gamma \in (\beta, \alpha)$$

[I am actually bit unsure which version of the lemma I should use. See Han & Lin for reference.]

(End of statement) \square

• If in the case of $c \equiv 0$, application of the lemma with $\phi(\rho) = \int_{B(x_0,\rho)} |\nabla u|^2 dx$, $\beta = d - 2 + 2\alpha$, $\gamma = d - 2 + 2\alpha$ gives

$$\int_{B(x_0,\rho)} |\nabla u|^2 dx \le C \left(\frac{\rho}{r}\right)^{d-2+2\alpha} \int_{B(x_0,R)} |\nabla u|^2 dx + C \|f\|_{L^q}^2 r^{d-2+2\alpha}$$

$$\le \tilde{C} r^{d-2+2\alpha} (\|u\|_{H^1}^2 + \|f\|_{L^q}^2)$$

• If $c \not\equiv 0$, see example sheet #4.

(7th March, Thursday)

[This lecture is essentially a recap of the last lecture.]

Recall,

Corollary) Under the previous hypothesis, we have that $\forall u \in H^1(B(x_0, r))$ and $\forall 0 < \rho \leq r$, we have

$$\int_{B(x_0,\rho)} |\nabla u|^2 dx \le C\left(\left(\frac{\rho}{r}\right)^d \int_{B(x_0,r)} |\nabla u|^2 dx + \int_{B(x_0,r)} |\nabla (u-w)|^2 dx\right)$$
(End of statement) \square

We were working with $\Omega = B$. For a general domain, we can use estimate for balls covering the domain B to get an interior estimate.

$$L = \sum a^{ij}(x)\partial_{x_i}\partial_{x_j} + c(x)$$

with $a^{ij} \in C^0(B)$, $c(x) \in L^d(B)$, and $u \in H^1(B)$ is the weak solution to Lu = f, $f \in L^q(B)$. We want to prove

$$\int_{B(x_0,r)} |\nabla u|^2 dx \le Cr^{d-2+2\alpha} (\|u\|_{H^1(B)}^2 + \|f\|_{L^q(B)}^2)$$

We have frozen the coefficients of a^{ij} at x_0 , so $L_0 = w$ with $L_0 = \sum a^{ij}(x_0)\partial_{x_i}\partial_{x_j}$, and v = u - w, so that

$$\sum \int a^{iij}(x_0)\partial_{x_i}v\partial_{x_j}\varphi dx = \int_B f\varphi dx - \int cu\varphi dx + \sum (a^{iij}(x_0) - a^{ij}(x))\partial_{x_i}u\partial_{x_j}\varphi dx$$

For $B(x_0, R) \subset B(x_0, 1)$, $0 < \rho < r \le R$, we had, by choosing φ, v

$$\frac{1}{4} \int_{B(x_0,\rho)} |\nabla v|^2 \le C |\tau|^2 \int_{B(x_0,\rho)} |\nabla u|^2 dx + (\int |c|^d x)^{2/d} \int |u|^2 dx + (\int |f|^{\frac{2d}{d+2}} dx)^{\frac{d+2}{d}}$$

Also by Holder inequality,

$$\left(\int_{B(x_0,r)} |f|^{\frac{2d}{d+2}} dx\right)^{\frac{d+2}{2}} \le \left(\int_{B(x_0,r)} |f|^{\frac{2d}{d+2}p} dx\right)^{\frac{d+2}{dp}} \left(\int_{B(x_0,r)} dx\right)^{\frac{d+2}{dq}}$$

and with choice of $\frac{1}{q} = \frac{2d}{4-2\alpha}$ and $\frac{1}{p} = 1 - \frac{1}{q}$, we have

$$\left(\int_{B(x_0,r)} |f|^{\frac{2d}{d+2}} dx\right)^{\frac{d+2}{d}} \le \left(\int_{B(x_0,r)} |f|^q dx\right)^{\frac{2}{q}} r^{d-2+2\alpha}$$

We want to control $\in_{B(x_0,\rho)} |\nabla u|^2 dx$. To do this, we use a corollary from last lecture, that for a fixed r and $u \in H^1(B(x_0,r))$,

$$\int_{B(x_0,\rho)} |\nabla u|^2 dx \le C \left[\left(\frac{\rho}{r} \right)^d \int_{B(x_0,r)} |\nabla u|^2 dx + \int_{B(x_0,r)} |\nabla (u-w)|^2 dx \right]$$

for all $0 < \rho < r$, hence

$$\int_{B(x_0,\rho)} |\nabla u|^2 dx \leq C \bigg(\Big(\frac{\rho}{r}\Big)^2 + \tau^2(r) \bigg) \int_{B(x_0,r)} |\nabla u|^2 dx + \|f\|_{L^q}^2 r^{d-2+2\alpha} + \|c\|_{L^d}^2 \int |u|^2 dx$$

To get the conclusion of the theorem, we want to "replace" r by ρ in the RHS, using the following lemma.

Lemma) Let $\phi(t)$ be a non-negative and non-decreasing function on [0, R] and we assume that

$$\phi(\rho) \leq A \left[\left(\frac{\rho}{r} \right)^{\alpha} + \epsilon \right] \phi(r) + B r^{\beta}$$

for some $A, B, \alpha, \beta, \epsilon \geq 0$ with $\beta < \alpha$ and for all $0 < \rho \leq r < R$. Then for any $\gamma \in (\beta, \alpha)$, there exists $\epsilon_0 = \epsilon_0(A, \alpha, \beta, r)$ such that if $\epsilon < \epsilon_0$, we have

$$\phi(\rho) \le C\left(\frac{\rho}{r}\right)^{\gamma}\phi(r) + B\rho^{\beta}, \quad 0 < \rho \le r \le R$$

[I am actually bit unsure which version of the lemma I should use. See Han & Lin for reference.]
[Note: This lemma is extremely useless. It only occurs in this context.]

(End of statement) \square

• If in the case of $c \equiv 0$, application of the lemma with $\phi(\rho) = \int_{B(x_0,\rho)} |\nabla u|^2 dx$, $\beta = d - 2 + 2\alpha$, $\gamma = d - 2 + 2\alpha$ gives

$$\int_{B(x_0,\rho)} |\nabla u|^2 dx \le C \left(\frac{\rho}{r}\right)^{d-2+2\alpha} \int_{B(x_0,R)} |\nabla u|^2 dx + C \|f\|_{L^q}^2 r^{d-2+2\alpha}
\le \tilde{C} r^{d-2+2\alpha} (\|u\|_{H^1}^2 + \|f\|_{L^q}^2)$$

• Will see the case $c \not\equiv 0$ in the fourth Example sheet.

(9th March, Saturday)

De Giorgi's Theorem, Part I

Let B = B(0,1). Let $L = \sum a^{ij}(x)\partial_{ij} + c(x)$ (so that b = 0) with λ -uniformly elliptic, $a^{ij} \in L^{\infty}(B)$ (not even continuous) and $c \in L^{q}(B)$ for q > d/2.

Definition) (weak subsolution) Let $u \in H^1(B)$ is a weak subsolution of Lu = f, for f given, if

$$\sum_{i,j=1}^{d} \int_{B} a^{ij}(x) \partial_{x_{i}} u \partial_{x_{j}} \varphi dx + \int_{B} c(x) u \varphi dx \le \int_{B} f \varphi dx$$

for any $\varphi \in H_0^1(B)$ such that $\varphi \geq 0$ in B = B(0,1).

Theorem) (De Giorgi, part I) Under the previous hypothesis, assume in addition that $f \in L^q(B)$, q > d/2 and $\exists \Lambda > 0$ suhch that

$$\sup_{i,j} |a^{ij}|_{L^{\infty}(B)} + ||c||_{L^q} \le \Lambda$$

Then, if $u \in H^1(B)$ is a weak subsolution of Lu = f, then

$$u^+ \in L^{\infty}_{loc}(B)$$
 and
$$\sup_{B(0,1/2)} u^+ \le C(\|u^+\|^2_{L^2(B)} + \|f\|^2_{L^q(B)})$$

[The same bound was proved by Nash, with a method to which applies also to parabolic equations. But De Giorgi's method gives better insight.]

proof) (De Giorgi, 1957) **Idea :** Choose a suitable φ . Let

$$u \in L^{\infty}(B(0,1/2)), \quad (u-k)^+ = v \quad \int_{B(0,1/2)} (u-k)^2 dx = 0$$

with k large enough.

Take for given $k \in \mathbb{R}_{(>0)}$, and let $v := (u - k)^+$. Let $\zeta \in C_0^1(B)$, $0 \le \zeta \le 1$ and put $\varphi = v\zeta^2 \ge 0$. Inject $\varphi = v\zeta^2$ in the weak formulation, with " $\int = \int_{u>k}$ " (in this set, would have u = v + k and $\nabla u = \nabla v$ a.e., and if u < k, any derivative of v vanishes.) Exploiting that $\partial(v\zeta^2) = (\partial v)\zeta^2 + 2v\zeta\partial\zeta$, we have

$$\sum_{i,j=1} \int a^{ij} \partial_{x_i} u \partial_{x_j} (v\zeta^2) dx \ge \sum_{i,j=1}^d \int a^{ij} \partial_{x_i} v \partial_{x_j} v dx - 2\Lambda \int |\nabla v| |v| |\zeta| |\nabla \zeta| dx$$

$$\ge \lambda \int |\nabla v|^2 \zeta^2 dx - 2\Lambda \int |\nabla v| |v| |\zeta| |\nabla \zeta| dx$$

Injection of this expression in the weak formulation yields

$$\lambda \int |\nabla v|^2 \zeta^2 dx \le \int |c| |u| v \zeta^2 dx + \int |f| v \zeta^2 dx + C_{\Lambda} \int |v|^2 |\nabla \zeta|^2 dx$$

where we have used $\int |\nabla v||v||\zeta||\nabla \zeta|dx \leq \frac{C_{\Lambda,\lambda}}{2}\int |\nabla \zeta|^2|v|^2 + \frac{\lambda}{2}\int |\nabla v|^2\zeta^2$. Therefore,

$$\int |(\nabla v)\zeta|^2 \lesssim \int |c|v^2\zeta^2 dx + k \int |c|\zeta^2 v dx + \int |f|v\zeta^2 + C_{\Lambda} \int |\nabla \zeta|^2 v^2 dx$$

$$\lesssim \int |c|v^2\zeta^2 dx + k^2 \int_{\{v\zeta \neq 0\}} |c|\zeta^2 dx + \int |f|v\zeta^2 dx + C_{\Lambda} \int |\nabla \zeta|^2 v^2 dx \quad \dots \quad (*)$$

just using Young's inequality. [The integration domain $\{v\zeta \neq 0\}$ looks strange, but it would be useful in a while.] The goal is to refine this bound.

At this point, recall the Sobolev embedding

$$\left(\int |v\zeta|^{\frac{2d}{d-2}} dx\right)^{\frac{d-2}{2d}} \le C_d \left(\int |\nabla(u\zeta)|^2 dx\right)^{1/2}$$

As in the usual discussions, using Hölder inequality multiple number of times to bound the inequality above in terms of $\|v\zeta\|_{L^{\frac{2d}{d-2}}}$ along with Sobolev inequality would give the desired estimate. (Will be doing this in a moment.)

Using Hölder inequality, get

$$\int |f| v \zeta^{2} dx \leq \left(\int |f|^{q} dx \right)^{1/q} \left(\int |v \zeta|^{q'} |\zeta|^{q'} \right)^{1/q'} \\
\leq \|f\|_{L^{q}} \left(\int |v \zeta|^{q'p} dx \right)^{\frac{1}{pq'}} \left(\int |\zeta|^{q'p'} dx \right)^{1/p'q'}$$

with $\frac{1}{p} + \frac{1}{p'} = \frac{1}{q} + \frac{1}{q'} = 1$, and q is as given in the statement of the theorem. We want $q'p = \frac{2d}{d-2}$ so that $\frac{1}{p'q'} = \frac{1}{q'}(1-\frac{1}{p}) = \frac{1}{q'} - \frac{2d}{d-2} = 1 - \frac{1}{q} - \frac{d-2}{2d} = :\frac{1}{\theta}$, so

$$\int |f| v\zeta^2 dx \le ||f||_{L^q} \left(\int |v\zeta|^{\frac{2d}{d-2}} \right)^{\frac{d-2}{2d}} \left(\int_{\{\zeta v \ne 0\}} |\zeta|^{\theta} dx \right)^{1/\theta}$$

Key idea: it seems dealing with $\|\zeta\|_{L^{\theta}}$ is difficult. However, noting that $|\zeta| < 1$, then $\left(\int_{\{\zeta v \neq 0\}} |\zeta|^{\theta} dx\right)^{1/\theta} \leq \max(\{\zeta v \neq 0\})^{1/\theta}$. Also, by Sobolev embedding, has $\left(\int |v\zeta|^{\frac{2d}{d-2}}\right)^{\frac{d-2}{2d}} \leq \|\nabla(v\zeta)\|_{L^2}$. So by Young's inequality,

$$\int |f|v\zeta^2 dx \le C_\delta \|f\|_{L^q}^2 \operatorname{meas}(\{\zeta v \ne 0\})^{2/\theta} + \delta \int |\nabla(v\zeta)|^2 dx$$
$$= C_\delta \|f\|_{L^q}^2 \operatorname{meas}(\{\zeta v \ne 0\})^{1 + \frac{2}{d} - \frac{2}{q}} + \delta \int |\nabla(u\zeta)|^2 dx$$

for some C_{δ} .

Claim: if meas($\{\zeta v \neq 0\}$) is small, then the terms in (*) involving c can be absorbed by the others.

: Using Hölder again,

$$\int |c|v^{2}\zeta^{2}dx \leq \left(|c|^{q}dx\right)^{1/q} \left(\int_{\{v\zeta\neq0\}} (v\zeta)^{2q'}dx\right)^{1/q'} \\
\leq \|c\|_{L^{q}} \left(\int |v\zeta|^{\frac{2d}{d-2}}dx\right)^{\frac{d-2}{d}} \operatorname{meas}(\{v\zeta\neq0\})^{1-\frac{d-2}{d}-\frac{1}{q}} \\
\leq \delta \|c\|_{L^{q}}^{2} \int |\nabla(\zeta v)|^{2}dx + C_{\delta} \cdot \operatorname{meas}(\{v\zeta\neq0\})^{\frac{2}{d}-\frac{1}{q}}$$

Recalling $||c||_{L^q} \leq \Lambda$, we can choose $\delta > 0$ such that $\delta \cdot \Lambda < 1/100$.

The term $k^2 \int_{\{v\zeta\neq 0\}} |c|\zeta^2$ is bounded by

$$k^{2} \int_{\{v\zeta \neq 0\}} |c| \zeta^{2} dx \le k^{2} ||c||_{L^{q}} \operatorname{meas}(\{v\zeta \neq 0\})^{1 - \frac{1}{q}}$$

Also note that $\operatorname{meas}(\{v\zeta \neq 0\})^{\frac{2}{d}-\frac{1}{q}}$ may be absorbed in $\operatorname{meas}(\{v\zeta \neq 0\})^{1-\frac{1}{q}}$ whenever $\operatorname{meas}(\{v\zeta \neq 0\})$ is small.

Using the claim, we would have (*) with c eliminated and in written terms of meas($\{v\zeta \neq 0\}$),

$$\int |\nabla(\zeta v)|^2 dx \le C \left(\int v^2 |\nabla \zeta|^2 dx + \left(||f||_{L^q}^2 + k^2 \right) \operatorname{meas}(\{v\zeta \ne 0\})^{1 - \frac{1}{q}} \right) \quad \dots \dots \quad (**)$$

Using Hölder inequality and Sobolev embedding, has

$$\int (v\zeta)^2 dx \le \|v\zeta\|_{L^{\frac{2d}{d-2}}}^2 \max(\{v\zeta \ne 0\})^{\frac{2}{d}} \le C_d \int |\nabla(v\zeta)|^2 dx \cdot \max(\{v\zeta \ne 0\})^{\frac{2}{d}}$$

This yields, along with (**),

$$\int (v\zeta)^2 dx \le \int |\nabla (v\zeta)|^2 dx \cdot \max(\{v\zeta \ne 0\})^{2/d}$$

$$\lesssim \int |v|^2 |\nabla \zeta|^2 dx \cdot \max(\{v\zeta \ne 0\})^{2/d} + \left(\|f\|_{L^q}^2 + k^2\right) \cdot \max(\{v\zeta \ne 0\})^{1 - \frac{1}{q} + \frac{2}{d}}$$

Then we have proven that $\exists \epsilon = \frac{2}{d} - \frac{1}{q} > 0$ and C such that

$$\int (v\zeta)^2 dx \le C \left(\int v^2 |\nabla \zeta|^2 dx \cdot \max(\{v\zeta \ne 0\})^{\epsilon} + (k^2 + ||f||_{L^q}^2) \max(\{v\zeta \ne 0\})^{1+\epsilon} \right)$$

Next time: Choose ζ with $|\nabla \zeta| \leq (S)$, and $\{\zeta v \neq 0\} = \{u \geq k, |x| < r\}$. Hence

$$\int_{\{u > k, |x| < r\}} (u - k)^2 dx \le C(k, r)$$

Goal would be to find k_{∞} large enough so that $\int (u - k_{\infty})^2 dx = 0$. Choose (k_n, r_n) as a sequence such that

$$\int_{\{u > k_n, |x| > r_n\}} (u - k_n)^2 dx \le \gamma (k_n, r_n)^k \int (u - k_0)^2 dr$$

(12th March, Tuesday)

We were proving,

Theorem) (De Giorgi, part I) Let $L = \sum_{i,j=1}^d a^{ij}(x) \partial_{x_i x_j} + c(x)$, $a^{ij} \in L^{\infty}(B)$, $c \in L^q(B)$, $q > \frac{d}{2}$ such that $\sup_{ij} |a^{ij}|_{L^{\infty}(B)} + ||c||_{L^q} < \Lambda$ and with usual uniform ellpticity condition. If u is a weak subsolution of Lu = f, $f \in L^q(B)$, then we have $u^+ \in L^{\infty}_{loc}(B)$ and moreover

$$\sup_{B(0,1/2)} u^+ \le C(\|u^+\|_{L^2(B)} + \|f\|_{L^q(B)})$$

where $C = C(d, \lambda, \Lambda, q) > 0$.

proof continued) Last time, we chose $v = (u - k)^+$ and $\varphi = v\zeta^2$ for some $\zeta \in C_0^{\infty}(B)$, $0 \le \zeta \le 1$. The goal is to find k such that $\int v^2 dx = 0$. This will imply $u^+ \le k$.

The key result from the last lecture is that by choosing $\epsilon = \frac{2}{d} - \frac{1}{q} > 0$, we have

$$\int (v\zeta)^2 dx \le C \left(\int v^2 |\nabla \zeta|^2 dx \cdot \max(\{v\zeta \ne 0\})^{\epsilon} + (k + ||f||_{L^q})^2 \max(\{v\zeta \ne 0\})^{1+\epsilon} \right) \quad \dots \quad (\dagger)$$

Now, choose $\zeta \in C_0^{\infty}(B)$ with

$$\begin{cases} \zeta = 1 & \text{in } B(0, r) \\ \zeta = 0 & \text{in } B(0, 1) \backslash B(0, R) \\ |\nabla \zeta| \le \frac{2}{R - r} & \text{in } B(0, 1) \end{cases}$$

for some 0 < r < R < 1. With such choice of ζ , we have

$$\{v\zeta \neq 0\} = A(k,r) := \{x \in B(0,r) : u \ge k\}$$

We may then recast (†) in terms of A(k, r).

$$\int_{A(k,r)} (u-k)^2 dx \lesssim |A(k,r)|^{\epsilon} \frac{1}{(R-r)^2} \int_{A(k,r)} (u-k)^2 dx + (k+\|f\|_{L^q})^2 |A(k,r)|^{1+\epsilon} \quad \cdots \quad (\dagger')$$

whenever |A(k,r)| is small enough. We want to make some sort of bound on the RHS and use iterative scheme to make $\int_{A(h,r)} (u-h)^2 \to 0$ for some fixed h. |A(h,r)| can be estimated as

$$|A(h,r)| = \operatorname{meas}(\{x \in B(0,r) : u \ge h\})$$

$$= \int_{x \in B_r, u \ge h} dx \le \frac{1}{h} \int_{A(h,r)} u^+ dx \le \frac{1}{h} \left(\int_{A(h,r)} (u^+)^2 dx \right)^{1/2} \left(\int_{A(h,r)} dx \right)^{1/2}$$

$$= \frac{1}{h} \left(\int_{A(h,r)} (u^+)^2 dx \right) |A(h,r)|^{1/2}$$

$$\Rightarrow |A(h,r)| = \frac{1}{h^2} \left(\int_{A(h,r)} (u^+)^2 dx \right)$$

Take $k_0 := C_0 ||u||_{L^2(B)}$, for C_0 large enough so that

$$|A(k_0, r)| \le \frac{1}{(k_0)^2} ||u^+||_{L^2(B)} \le \frac{1}{C_0} \ll 1$$

For any h > k, has $A(k,r) \supset A(h,r)$, so

$$\int_{A(h,r)} (u-h)^2 dx \le \int_{A(k,r)} (u-h)^2 dx \le \int_{A(k,r)} (u-k)^2 dx$$

and

$$|A(h,r)| = \max(B(0,r) \cap \{u \ge h\})$$

$$= \int_{B(0,r),u-k \ge h-k} dx \le \int \frac{(u-k)^2}{(h-k)^2} dx \le \frac{1}{(h-k)^2} \int_{A(k,r)} (u-k)^2 dx$$

For any choice of $h > k \ge k_0$ and $\frac{1}{2} \le r < R \le 1$, any we apply (†') with the new estimates.

$$\text{LHS}(h,r) := \int_{A(h,r)} (u-h)^2 dx
\lesssim \frac{|A(h,r)|^{\epsilon}}{(R-r)^2} \int_{A(k,r)} (u-k)^2 dx + (h+\|f\|_{L^q})^2 |A(h,r)|^{1+\epsilon}
\leq \frac{1}{(R-r)^2} \frac{1}{(h-k)^{2\epsilon}} \left(\int_{A(k,r)} (u-k)^2 dx \right)^{\epsilon} \left(\int_{A(k,r)} (u-k)^2 dx \right)
+ (h+\|f\|_{L^q})^2 \frac{1}{(h-k)^{2(1+\epsilon)}} \left(\int_{A(k,r)} (u-k)^2 dx \right)^{1+\epsilon}
\leq \frac{1}{(h-k)^{2\epsilon}} \left(\int_{A(k,r)} (u-k)^2 dx \right)^{1+\epsilon} \left(\frac{1}{(R-r)^2} + \frac{(h+\|f\|_{L^q})^2}{(h-k)^2} \right) =: \text{RHS}(k,r,R) \quad \dots \quad (\dagger'')$$

Hence we have an interative scheme:

- Let $k_l = k_0 + k^* \left(1 \frac{1}{2^l}\right)$, so $k_l \le k_0 + k^*$. The constant k^* would be specified later to be sufficiently large.
- Let $r_l = \tau + \frac{1}{2^l}(1-\tau)$ where $\tau = \frac{1}{2}$.

- As $l \to \infty$, $k_l \nearrow k_0 + k^*$ and $r_l \searrow 1/2$. Also, $\frac{1}{2} \le r_l \le R < 1$ for sufficiently large l so we can apply the new estimate LHS $(h, r_l) \le \text{RHS}(k_l, r_l, R)$.
- Has $k_l k_{l-1} = k^* \left(\frac{1}{2^{l-1}} \frac{1}{2^l} \right) = \frac{k}{2^l}$ and $r_{l-1} r_l = \frac{1-\tau}{2^l}$.
- We let $\varphi(k,r) = \|(u-k)^+\|_{L^2(B(0,r))} = \left(\int_{A(k,r)} (u-k)^2 dx\right)^{1/2}$. We apply (\dagger'') , then

$$\varphi(k_{l}, r_{l}) \lesssim \left(\frac{1}{(r_{l-1} - r_{l})} + \frac{k_{l} + \|f\|_{L^{q}}}{k_{l} - k_{l-1}}\right) \frac{1}{(k_{l} - k_{l-1})^{\epsilon}} \varphi(k_{l-1}, r_{l-1})^{1+\epsilon}
= \left(\frac{2^{l}}{1 - \tau} + \frac{k_{0} + k^{*}(1 - 1/2^{l}) + \|f\|_{L^{q}}}{k^{*}/2^{l}}\right) \frac{1}{(k^{*}/2^{l})^{\epsilon}} \varphi(k_{l-1}, r_{l-1})^{1+\epsilon}
= \left(\frac{2^{l}}{1 - \tau} + \frac{2^{l}(k_{0} + k^{*} + \|f\|_{L^{q}})}{k^{*}}\right) \frac{2^{l\epsilon}}{(k^{*})^{\epsilon}} \varphi(k_{l-1}, r_{l-1})^{1+\epsilon}
= \frac{k_{0} + 3k^{*} + \|f\|_{L^{q}}}{(k^{*})^{1+\epsilon}} 2^{l(1+\epsilon)} \varphi(k_{l-1}, r_{l-1})^{1+\epsilon} \quad \text{as } \tau = \frac{1}{2}$$

Choose $k^* = C_{\infty}(k_0 + ||f||_{L^q} + \varphi(k_0, r_0))$, then, as $r^{\epsilon} > 2^{1+\epsilon} > 1$,

$$\varphi(k_l, r_l) \lesssim \frac{1}{r^l} \varphi(k_0, r_0)^{1+\epsilon} \xrightarrow{l \to \infty} 0$$

Hence

$$\varphi(k_0 + k_*, 1/2) = 0$$

This implies

$$\sup_{B(0,1/2)} u^{+} \le k_0 + k^* \le C(\|u^{+}\|_{L^2(B)} + \|f\|_{L^q})$$

(End of proof) \square

(14th March, Thursday)

De Giorgi's Theorem, Part II

Set B = B(0,1). We now write Lu in the divergence form

$$Lu = \sum_{i,j=1}^{d} \partial_{x_i} (a^{ij}(x)\partial_{x_j} u) + c(x)$$

Here, we assume c=0. Also let $a^{ij}\in L^{\infty}(B), a^{ij}=a^{ji}$ and $\lambda|\xi|^2\leq \sum a^{ij}\xi_i\xi_j\leq \Lambda|\xi|^2$.

Definition) A function $u \in H^1_{loc}(B)$ is a **(weak) subsolution** of Lu = 0 if, $\forall \varphi \in H^1_0(B)$, $\varphi \geq 0$, we have

$$\sum_{i,j=1}^{d} \int_{B} a^{ij}(x) \partial_{x_i} u \partial_{x_j} \varphi dx \le 0$$

In De Giorgi (part I), we have proved that whenever u is a weak subsolution of Lu=f, $f\in L^q(B)$, then it is in $L^\infty_{loc}(B)$ and $\|u^+\|_{L^\infty(0,\frac12)}\leq C(\|u\|_{H^1}^2+\|f\|_{L^q}^2)$.

Theorem) (De Giorgi, part II) If u is a weak solution of Lu = 0 in B(0,1), then $u \in C^{0,\alpha}(b)$ and

$$\sup_{x \in B(0,1/2)} |u(x)| + \sup_{x,y \in B(0,1/2)} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(d, \Lambda/\lambda) ||u||_{L^{2}(B)}$$

for some $\alpha = \alpha(d, \lambda/\Lambda) \in (0, 1)$.

We will need three key ingredients to prove the theorem.

- Poincaré-Sobolev ienquality
- Density theorem
- Oscillation theorem

First, we have the following lemma.

Lemma) Let $\Phi \in C^{0,1}_{loc}(\mathbb{R})$ by *convex* and $\Phi' \geq 0$. If u is a subsolution of Lu = 0, then we have that $v = \Phi(u)$ is also a subsolution of Lu = 0 whenever $v \in H^1_{loc}(B)$.

proof) Exercise.

Remark: if u is a supersolution and Φ is concave, then $\Phi(u)$ is a subsolution.

Example: if u is a subsolution, then $v = (u - k)^+$ is also a subsolution, with choice of $\Phi(s) = (s - k)^+$.

Proposition) (Poincaré-Sobolev inequality) For any $\epsilon > 0$, there is $C = C(\epsilon, d) > 0$ such that $\forall u \in H^1(B)$ satisfying meas $\{x \in B; u(x) = 0\} \ge \epsilon \cdot \text{meas}(B)$, we have

$$\int_{B} |u|^{2} dx \le C(\epsilon, d) \int_{B} |\nabla u|^{2} dx$$

proof) We prove by contradiction. We assume that there is a sequence $(u_m)_m \subset H^1(B)$ satisfyint the assumption and such that

$$\int_{B} |\nabla u_{m}|^{2} dx \xrightarrow{m \to \infty} 0 \quad \text{while} \quad \int_{B} |u_{m}|^{2} dx = 1, \ \forall m$$

This implies (u_m) is bounded in H^1 , so we have (up to a subsequence) $u_m \to u_\infty \in H^1(B)$ strongly in L^2 and weakly in $H^1(B)$. Then we should have $\int |\nabla u_\infty|^2 = 0$ which implies u_∞ is a constant almost everywhere. But by the assumption meas $\{x \in B; u(x) = 0\} \ge \epsilon \cdot \text{meas}(B)$, we have

$$\lim_{m \to \infty} \int_B |u_m - u_\infty|^2 dx \ge \lim_{m \to \infty} \int_{u_m = 0} |u_m - u_\infty|^2 dx = \int_{u_m = 0} |u_\infty|^2 dx \ge \epsilon |u_\infty|_{L^\infty}$$

so this implies u_{∞} should be identically 0, which gives a contradiction with the fact that $u_n \to u_{\infty}$ in L^2 .

(End of proof) \square

[The difference between the original Poincaré's inequality is that we only assume $u \in H^1(B)$ in place of $u \in H^1_0(B)$. There is another version of this family of inequalities: (Poincaré-Wirtinger) if $u \in H^1(\Omega)$, for Ω bounded(at least in one direction) then

$$\int_{\Omega} \left| u(x) - \int_{\Omega} u(y) dy \right|^2 dx \le C \int_{\Omega} |\nabla u|^2 dx$$

/

Proposition) (Density theorem) Suppose u is a positive supersolution of Lu=0 in B(0,2) satisfying meas $\{x \in B(0,1); u(x) \geq 1\} \geq \epsilon \cdot \text{meas}(B)$. Then there is $C = C(\epsilon, d, \Lambda/\lambda) > 0$ such that

$$\inf_{B(0,1/2)} u \ge C$$

Similarly, if u is a negative subsolution, then $\sup_{B(0,1/2)} u \leq C$.

proof) Assume that $u \ge \delta > 0$. (We will let $\delta \to 0^+$ later). Choosing $\Phi(s) = (\log(s))^- = \max\{-\log(s), 0\}$, we have $v \le \log \delta$ and $v = (\log u)^-$ is a subsolution. As v is a subsolution, the De Giorgi (Part I) guarantees that

$$\sup_{B(0,1/2)} v \le C \left(\int_{B(0,1)} |v|^2 dx \right)^{1/2} \quad \text{(has } f \equiv 0\text{)}.$$

Also,

$$\max(\{x \in B(0,1); v = 0\}) = \max(\{x \in B(0,1); u \ge 1\}) \ge \epsilon \max(B)$$

By Poincaré-Sobolev inequality, has

$$\sup_{B(0,1/2)} v \le C \left(\int_{B} |v|^{2} dx \right)^{1/2} \le \tilde{C} \left(\int_{B} |\nabla v|^{2} dx \right)^{1/2}$$

We want to bound the $\int |\nabla v|^2$ part. We use the weak formulation of u being a supersolution: $\sum \int a^{ij} \partial_{x_i} u \partial_{x_j} \varphi dx \geq 0$. We want to choose φ so that $\log u$ appear in the formulation - inject $\varphi = \zeta^2/u$, then

$$0 \le \sum_{i,j} \int_{B(0,2)} a^{ij} \partial_{x_i} u \, \partial_{x_j} \left(\frac{\zeta^2}{u}\right) dx = -\sum_{i,j} \int_{B(0,2)} a^{ij} \partial_{x_i} u \, \partial_{x_j} u dx + 2\sum_{i,j} \int_{B(0,2)} \frac{\zeta a^{ij} \partial_{x_i} u \partial_{x_j} \zeta}{u} dx$$

so using uniform ellipticity of $(a^{ij})_{ij}$ and AM-GM equality, has

$$\int \zeta^2 |\nabla(\log u)|^2 dx \le C(\Lambda/\lambda) \left(\int \frac{\zeta^2}{u^2} |\nabla u|^2 dx + \int |\nabla \zeta|^2 dx \right)$$

Fix $\zeta \in C_0^1(B(0,2))$ with $\zeta = 1$ in B(0,1), then

$$\int_{B(0,1)} |\nabla(\log u)|^2 dx \le C$$

(check this) and

$$\sup_{B(0,1/2)} v \le \|\nabla v\|_{L^2} = \|\nabla(\log u)\|_{L^2} \le C$$

But

$$\sup v = \sup(\log u)^{-} \le C$$

so taking exponential, has $u \ge e^{-C}$.

To see the general case without assuming $u \geq \delta$ for some δ , observe that our result did not depend on δ . Hence, if we take $u = \lim_{\delta \to 0} \max\{u, \delta\} =: \lim_{\delta \to 0} u_{\delta}$ then each $u_{\delta} = \max\{u, \delta\}$ is a positive supersolution to Lu = 0 so $u_{\delta} \geq e^{-C}$ uniformly over $\delta > 0$. Therefore, we would also have $u \geq e^{-C}$.

(End of proof) \square

Definition) The **oscillation** of u is defined by

$$\operatorname{osc}_{\Omega}(u) = \sup_{\Omega} u - \inf_{\Omega} u$$

Proposition) Assume that u is a bounded solution of Lu = 0 in B(0,2), then there is $\gamma = \gamma(d, \Lambda/\lambda) \in (0,1)$ such that

$$\operatorname{osc}_{B(0,1/2)}(u) \le \gamma \operatorname{osc}_{B(0,1)}(u)$$

(Not done in the lectures. Copied down from Qing Han & Fanghua Lin)

Theorem 4.10) (Osciallation Theorem) Suppose that u is a bounded solution of Lu = 0 in B_2 . Then there exists $\gamma = \gamma(n, \Lambda/\lambda) \in (0, 1)$ such that

$$\operatorname{osc}_{B_{1/2}} u \leq \gamma \operatorname{osc}_{B_1} u$$

proof) We have proved local boundedness in the *De Giorgi (Part I)*. Set

$$\alpha_1 = \sup_{B_1} u$$
 and $\beta_1 = \inf_{B_1} u$

Consider the solution

$$\frac{u-\beta_1}{\alpha_1-\beta_1}$$
 or $\frac{\alpha_1-u}{\alpha_1-\beta_1}$

Note the following equivalence

$$u \ge \frac{1}{2}(\alpha_1 + \beta_1) \quad \Leftrightarrow \quad \frac{u - \beta_1}{\alpha_1 - \beta_1} \ge \frac{1}{2}$$
$$u \le \frac{1}{2}(\alpha_1 + \beta_1) \quad \Leftrightarrow \quad \frac{\alpha_1 - u}{\alpha_1 - \beta_1} \ge \frac{1}{2}$$

• Case 1: Suppose that

$$\operatorname{meas}\left(\left\{x \in B_1 : \frac{2(u - \beta_1)}{\alpha_1 - \beta_1} \ge 1\right\}\right) \ge \frac{1}{2}\operatorname{meas}(B_1)$$

Apply the density theorem to $\frac{u-\beta_1}{\alpha_1-\beta_1} \geq 0$ in B_1 . Then we have for some C>1 that

$$\inf_{B_{1/2}} \frac{u - \beta_1}{\alpha_1 - \beta_1} \ge \frac{1}{C}$$

so $\inf_{B_{1/2}} u \ge \beta_1 + \frac{1}{C}(\alpha_1 - \beta_1).$

• Case 2: Suppose that

$$\operatorname{meas}\left(\left\{x \in B_1 : \frac{2(\alpha_1 - u)}{\alpha_1 - \beta_1} \ge 1\right\}\right) \ge \frac{1}{2}\operatorname{meas}(B_1)$$

Again by density theorem, we get $\sup_{B_{1/2}} u \leq \alpha_1 - \frac{1}{C}(\alpha_1 - \beta_1)$ for same C as above.

Now set

$$\alpha_2 = \sup_{B_{1/2}} u \quad \text{and} \quad \beta_2 = \inf_{B_{1/2}} u$$

then $\beta_2 \geq \beta_1$, $\alpha_2 \leq \alpha_1$ and in both cases, we get

$$\alpha_2 - \beta_2 \le (1 - \frac{1}{C})(\alpha_1 - \beta_1)$$

(End of proof) \square

Theorem 4.11) (De Giorgi, Part II) Suppose Lu = 0 weakly in B_1 , then there holds

$$\sup_{B_{1/2}} |u(x)| + \sup_{x,y \in B_{1/2}} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \le C(d, \Lambda/\lambda) ||u||_{L^{2}(B_{1})}$$

proof) We have already made estimate in *De Giorgi (Part I)*(as $f \equiv 0$ in this setting) that

$$\sup_{B_r} |u(x)| \le C_I(r) ||u||_{L^2(B_1)}$$

for any 0 < r < 1, for some $C_I(r) > 0$. So it is now sufficient to make an estimate for the Hölder part in terms of $||u||_{L^2(B_1)}$. To make use of the oscillation estimate earlier, it is sufficient to show that

$$\frac{\operatorname{osc}_{B_r(x_0)} u}{r^{\alpha}} \le C \sup_{x \in B_R} |u(x)|$$

for any $x_0 \in B_{1/2}$ and $0 < r < \eta$, some fixed $0 < R < 1, 0 < \eta < 1$.

To start, let $\gamma_{1/2} \in (0,1)$ be the parameter from oscillation theorem such that

$$\operatorname{osc}_{B_{r/2}(x_0)} u \leq \gamma_{1/2} \cdot \operatorname{osc}_{B_r(x_0)} u$$
 whenever $B_{2r}(x_0) \subset B$ 1.

Note that this is possible because if we scale $B_{2r}(x_0)$ to have radius 2 and the solution u accordingly, then the parameters Λ and λ scale with the same rate, and therefore the dependence of γ in oscillation theorem on Λ/λ does not affect the result.

Fix R=3/4 and a small parameter $\eta=1/8$. Now cover $B_1/2$ with balls of radius 2η , say $B_{1/2}\subset \bigcup_{j=1}^M B_{2\eta}(\xi_j),\, \xi_j\in B_{1/2}$ for each $j=1,\cdots,M$. Then for each x_j , by oscillation theorem, there is $\gamma_j\in (0,1)$ such that $\operatorname{osc}_{B_{2\eta}(x_j)}u\leq \gamma_j\operatorname{osc}_{B_R}u$. Take $\gamma'=\max_j\{\gamma_j\}$, then we have

$$\operatorname{osc}_{B_{\eta}(x)} u \le \gamma' \operatorname{osc}_{B_R} u \quad \forall x \in B_{1/2}$$

Now for any $r < \eta$, by applying oscillation theorem multiple times, we get that

$$\operatorname{osc}_{B_r(x)} u \leq (\gamma_{1/2})^{\log_{1/2}(\frac{r}{\eta/2})} \operatorname{osc}_{B_{\eta}(x)} u \quad \forall x \in B_{1/2}$$
$$= \left(\frac{2r}{\eta}\right)^{\frac{\log \gamma_{1/2}}{\log(1/2)}} \operatorname{osc}_{B_{\eta}(x)} u$$

and therefore we have the result with choice of $\alpha = \frac{\log(1/\gamma_{1/2})}{\log 2}$.

(End of proof) \square