signal (M_1) by approximately half a clock period of the external clock signal (C_0) .

- 6. (Amended) A circuit arrangement as claimed in claim 1, characterized in that
 - the first driver stage (40) comprises:
 - a clock signal input (42c) provided for the first clock signal (C_1) ;
 - a modulation signal input (42m) provided for the first modulation signal (M_1) for controlling the switching of each modulation voltage (U_unmod or U_mod) to the amplitude-modulated first power supply voltage $(U_{dd,1})$;

- a first electronic switch (44);
- a second electronic switch (46) arranged behind the first switch (44); and
- an output (48) provided for the first output signal comprising the output voltage $(U_{o,\,1})$,
 - wherein the control means (442) of the first switch (44) and the control means (462) of the second switch (46) are each connected to the clock signal input (42c);
 - the power supply voltage-sided contact (444) of the first switch (44) is connected to the amplitude-modulated first power supply voltage $(U_{dd,1})$,

- the reference potential-sided contact (464) of the second switch (46) is connected to the first reference potential $(U_{ss,1})$, and
- the output voltage-sided contact (446) of the first switch (44) and the output voltage-sided contact (466) of the second switch (46) are connected together and to the output (48), and
- in that the second driver stage (50) comprises:
 - a clock signal input (52c) provided for the second clock signal (C_2);
 - a modulation signal input (52m) provided for the second modulation signal (M_2) for controlling the switching of each modulation voltage (U_u nmod or U_m od) to the amplitude-modulated second power supply voltage ($U_{dd,2}$);
 - a first electronic switch (54);
 - a second electronic switch (56) arranged behind the first switch (54); and
 - an output (58) provided for the second output signal comprising the output voltage $(U_{0,2})$,
 - wherein the control means (542) of the first switch (54) and the control means (562) of the second switch (56) are each connected to the clock signal input (52c),
 - the power supply voltage-sided contact (544) of the first switch (54) is connected to the

amplitude-modulated second power supply voltage $(U_{dd,2})$,

the reference potential-sided contact (564) of the second switch (56) is connected to the second reference potential $(U_{ss,2})$, and the output voltage-sided contact (546) of the first switch (54) and the output voltage-sided contact (566) of the second switch (56) are connected together and to the output (58).

- - A circuit arrangement as claimed in claim 1 , 8. (Amended) characterized in that the first driver stage (40) and the second driver stage (50) are complementary with respect to each other.
 - A circuit arrangement as claimed in claim 1, 9. (Amended) characterized in that the first power supply voltage $(U_{dd,1})$ and the second power supply voltage $(U_{\text{dd,2}})$ have different values.
 - A circuit arrangement as claimed in claim 1, 10. (Amended) characterized in that the first reference potential $(U_{ss.1})$ and the second reference potential $(U_{ss,2})$ are at least approximately equally large.