Introduzione alle reti di calcolatori

L'evoluzione: dal "computing centralizzato"...

 Inizialmente le reti erano costituite essenzialmente da terminali remoti (terminali "stupidi") o stampanti collegati a grosse e costose unità centrali (mainframe) mediante linee telefoniche o telegrafiche

 La potenza di elaborazione era concentrata in un punto (architettura centralizzata)

Mainframe:

- grande computer con elevate prestazioni in termini di capacità di calcolo e di memoria
 - molto costoso
 - molto veloce
 nell'elaborazione dati
 poiché può eseguire
 più processi in parallelo
 - per la gestione richiede personale specializzato

architettura centralizzata

 La realizzazione di questo tipo di reti richiede la presenza di sistemi operativi e prodotti proprietari [cioè che dipendono dal costruttore ed è incompatibile con scelte di costruttori diversi] rendendone ancora più costosa la gestione.

L'evoluzione: ... al "computing distribuito"

In seguito

- all'emergeredi computer personalia basso costo
 - alla necessità di condividere le risorse
- alla necessità di realizzare **SISTEMI APERTI** che consentono di collegare e utilizzare prodotti di costruttori diversi

WAN

MAN

MAN

L'evoluzione: ...al "computing distribuito"

Il modello di un solo computer che esegue tutto il lavoro di elaborazione dati è sostituito da un altro, il cui lavoro è svolto da un gran numero di computer distinti ma interconnessi [cioè in grado di scambiare informazioni – inviandosi messaggi]

L'evoluzione: ...al "computing distribuito"

- Tale sistema è chiamato rete di calcolatori
- Oggi per rete si intende un insieme di computer indipendenti, cioè che possono lavorare autonomamente, ma collegati tra loro in modo da potersi scambiare informazioni (architettura distribuita)

Standardizzazione delle reti

La necessità di realizzare sistemi aperti cioè di utilizzare prodotti di costruttori diversi

costruttori diversi ha portato alla nascita di **standard internazionali** di rete sia nell'hardware sia nel software

Standardizzazione delle reti

Uno standard fornisce le linee guida a cui ci si deve adeguare per assicurare la comunicazione tra dispositivi di produttori diversi

Gli standard sono importanti perché aumentano i prodotti nel mercato → più concorrenza → diminuiscono i prezzi dei prodotti

Categorie di standard

Gli standard ricadono in due categorie:

- De facto (in latino "dalla realtà"): standard diventati tali grazie al suo uso senza piani formali (esempio il modello TCP/IP)
- De jure (in latino "per legge"): standard formali adottati da qualche organismo di standardizzazione autorizzato

Standardizzazione delle reti

Le più importanti organizzazioni internazionali sono:

DAL LIBRO DI TESTO pag 146

ITU-T

International Telecommunications Union - Telecommunication Standard Sector

Sito Web: www.itu.int/ITU-T

- 1865: i rappresentanti dei principali governi europei si riuniscono a Parigi per dare vita a un'organizzazione (ITU, International Telegraph Union), per la definizione di standard nel nascente settore delle telecomunicazioni;
- 1947: ITU diventa un ente supportato dalle Nazioni Unite;
- 1956-1993: ITU-Tè identificato con l'acronimo CCITT (Comité Consultatif International Télégraphique et Téléphonique");
- ITU è composto da tre settori:
 - ITU-R Radiocommunication Sector,
 - ITU-T Telecommunication Standadization Sector,
 - ITU-D Development Sector;
- l'autonomia nazionale è salvaguardata (in teoria) dal fatto che le specifiche ITU-T sono solamente recommendation, non sono standard;
- importanti raccomandazioni nell'ambito delle telecomunicazioni sono:
 - serie V (Telephone Communications, per esempio V.90 e V.92 sono gli standard per il modem analogico a 56kbps),
 - serie X (Network Interface and Public Networks, per esempio la serie X.400 specifica gli standard per la posta elettronica).

ISO

International Standards Organization, venne in seguito denominato: International Organization for Standardization

Sito Web: www.iso.org

- ente fondato nel 1946 come organizzazione volontaria il cui scopo è il raggiungimento dell'accordo sugli standard internazionali;
- i membri sono i rappresentanti degli enti di standardizzazione designati da ciascun Paese aderente (il rappresentante italiano è l'UNI Ente Nazionale Italiano di Unificazione) e di molte industrie che vi partecipano con l'obiettivo di definire nuovi modelli di compatibilità, migliore qualità, maggiore produttività e costi più bassi;
- si occupa di una vasta gamma di standard in campo scientifico, tecnologico ed economico. Lo sviluppo degli standard è controllato da un Comitato Tecnico separato.
 Nell'ambito delle telecomunicazioni, importante è stato il suo contributo con la definizione del modello a strati di riferimento: modello a sette livelli OSI (Open System Interconnection).

ANSI

American National Standards Institute

Sito Web: www.ansi.org

- è un organismo americano nato con l'obiettivo di promuovere l'adozione degli standard come mezzo per il progresso dell'economia negli Stati Uniti;
- vi partecipano organizzazioni professionali, associazioni industriali, enti governativi e gruppi di consumatori;
- in ambito ANSI sono nati alcuni importanti standard, poi ratificati dall'ISO, tra questi ricordiamo:
 - ASCII (American Standard Code for Information Interchange);
 - FDDI (Fiber Data Distributed Interface).

IEEE

Institute of Electrical and Electronics Engineering

Sito Web: www.ieee.org

- organizzazione "professionale" (è la più grande corporazione di ingegneri del mondo), dedicata non solo al processo di standardizzazione;
- definisce standard nei settori dell'ingegneria elettronica e informatica/telecomunicazioni, per le reti ricordiamo:
 - progetto 802.x, definisce un insieme di standard per le LAN e le MAN relativamente al livello Physical di TCP/IP.

ETSI

European Telecommunications Standards Institute

Sito Web: www.etsi.org

- è un'organizzazione non-profit la cui missione consiste nella definizione degli standard di telecomunicazione a livello europeo;
- riunisce oltre 700 membri provenienti da più di 60 nazioni europee e non: amministrazioni pubbliche, operatori di telecomunicazione, industrie manifatturiere, fornitori di servizi, centri di ricerca e organizzazioni di utenti;
- dal 1998 è tra le organizzazioni partner dell'associazione 3GPP che produce specifiche nell'ambito delle comunicazioni mobili.

IETF

Internet Engineering Task Force

Sito Web: www.ietf.org

- è l'organismo operativo dello IAB (Internet Architecture Board), l'ente che si occupa della supervisione del processo di creazione di standard Internet;
- è una comunità internazionale di progettisti, costruttori, enti di ricerca, che si occupa dell'evoluzione di Internet;
- i suoi documenti (RFC, Request For Comment) sono delle linee guida che rappresentano degli standard de-facto per la loro ampia diffusione.

Scopi di una rete

Perché si realizza una rete?

Una rete consente di

Condividere informazioni

 ad esempio: la maggior parte delle aziende hanno in rete tutte le informazioni sulla clientela, inventari della merce, fatture, documenti contabili ...

Condividere delle risorse

 Come files, stampanti, scanner, masterizzatori, hard disk, modem

Una rete consente di

Accedere a risorse remote

Nelle aziende più piccole tutti i computer sono probabilmente in un solo ufficio o edificio, ma in quelle più grandi i computer e gli impiegati possono essere sparsi tra dozzine di uffici e impianti situati in molte nazioni.

Una rete consente di

- Condividere applicazioni
 - Potrei ad esempio avere una sola copia di Office condivisa, installata su un server di rete, e per eseguire il programma la workstation carica i file dalla rete nella propria memoria ed esegue il programma).

Una rete

 Offre un potente mezzo di comunicazione (email, video conferenze, instant messaging, chat room, newsgroup, comunicazioni peer to peer...)

Una rete permette di

- Utilizzare servizi di vario tipo come
 - Consultazione di informazioni remote (navigazione nel web)
 - Commercio elettronico (acquisto da casa)
 - Intrattenimento (video on demand, gioco on-line)
 - Insegnamento a distanza(e-learning)

• • •

Punti di forza e punti deboli di una rete

Rispetto al mainframe

Punti di forza

Si possono indicare almeno tre punti di forza di una rete di calcolatori rispetto al mainframe tradizionale:

- 1. fault tollerance (resistenza ai guasti)
- 2. economicità
- 3. facilità di espansione (SCALABILITA')

Fault tollerance

- il guasto di una macchina in genere, non blocca tutta la rete, ed è possibile sostituire il computer guasto facilmente (la componentistica costa poco e un'azienda può permettersi di tenere i pezzi di ricambio in magazzino)
- Maggior affidabilità

Economicità

 come accennato prima, hardware e software per computer costano meno di quelli per i mainframe;

facilità di espansione

- si possono facilmente aggiungere ulteriori risorse senza che il sistema ne risenta. Inoltre utenti e risorse possono trovarsi a distanza variabile tra loro, senza che questo pregiudichi l'accesso ol'interazione.
- l'aggiunta di nuove potenzialità a una rete già esistente sono semplici e poco costose.

Punti deboli

Tuttavia una rete ha alcuni punti deboli rispetto a un mainframe:

- 1. scarsa sicurezza
- 2. alti costi di manutenzione

Scarsa sicurezza

 essendo le informazioni decentrate e frammentate su una rete possono essere utilizzate anche da persone esterne che si immettono illegalmente nel nostro sistema

Alti costi di manutenzione

 con il passare del tempo e con l'aggiunta di nuove funzioni e servizi, la struttura di rete tende ad espandersi e a diventare sempre più complessa, e i computer che ne fanno parte sono sempre più eterogenei, rendendo la manutenzione sempre più costosa in termini di ore lavorative

Alti costi di manutenzione

 Oltre un certo limite di grandezza della rete (circa 50 computer) diventa necessario eseguire gli aggiornamenti hardware e software su interi gruppi di computer invece che su singole macchine, vanificando in parte il vantaggio dei bassi costi dell'hardware.

Evoluzione delle reti

Precisazione:

- il web non è una rete di calcolatori
- È un SISTEMA DISTRIBUITO
- Un sistema distribuito è un'evoluzione delle reti perché è una rete che usa un sistema operativo in grado di rendere trasparente all'utente l'esistenza di molteplici computer autonomi

Differenza

- In una rete gli utenti devono collegarsi esplicitamente ad un certo computer per usarne i file o richiedere elaborazioni;
- in un sistema distribuito tutto viene fatto automaticamente dal sistema operativo, che viene utilizzato dall'utente in modo trasparente, senza sapere dove risiedono i file utilizzati o il programma in esecuzione

Componenti di una rete

analogia

 Ad esempio, il sistema di trasporto pubblico (autostrada)è una rete simile a una rete di computer.

analogia

- Le automobili, gli autocarri e gli altri veicoli che viaggiano nelle strade possono essere considerati come i messaggi che viaggiano all'interno della rete e nel mezzo trasmissivo.
- Ogni conducente definisce un punto di partenza (computer sorgente - mittente) e un punto di arrivo (computer di destinazione)

analogia

 All'interno di questo sistema ci sono regole come segnali di stop e semafori che controllano il flusso dalla sorgente alla destinazione. Anche una rete di computer utilizza regole per controllare il flusso dei dati tra gli host di una rete [PROTOCOLLI]

Componenti di una rete

Ci sono tre categorie di componenti di rete:

- Dispositivi (Devices)
- Canale di comunicazione o mezzo

trasmissivo (Media)

Protocolli (protocol)

Parte software – Sistema operativo di rete detto NOS (network operarating system)

parte hardware

Dispositivi (Devices)

Dispositivi finali - stazioni - host - nodi (End devices)

Dispositivi intermediari di rete (intermediary network devices)

End Devices

Esempi di end devices sono:

- Computers (workstations, laptops, file servers, web servers)
- stampanti
- Dispositivi portatili come smart phones, tablets
- Telefoni VoIP [dispositivo in grado di trasportare le telefonate sulla rete e su internet]
- TelePresence endpoint (dispositivo usato per video conferenze)

Network Infrastructure Devices

Esempi di **intermediary network devices** sono:

- Network access devices (switches, wireless access points)
- Internetworking devices (routers)
- Security devices (firewalls)

Intermediary Devices

disp<mark>ositivi di rete specializzati</mark> per inviare dati tra i dispositivi

Network media

 un canale fisico di comunicazione o mezzo trasmissivo (Media)

Network Media

I dispositivi di rete si collegano tra loro

Wireless

utilizzando una varietà di connessioni:

Cablaggio in rame - Usa segnali elettrici per la trasmissione dei dati tra dispositivi

Network Media

Cablaggio in fibra ottica. Usa fibra di vetro o di plastica per trasportare le informazioni sotto forma di impulsi di luce

Network Media

Connessione
wireless - Usa
segnali radio,
tecnologia a
raggi infrarossi o
trasmissioni
satellitari

Network Representations

Network Representations

Componenti di una rete

Protocolli (protocol)

un insieme di regole che regolano lo scambio di

Caratteristiche e vantaggi per i dispositivi di rete

Riferimento:

Cap 6 CISCO

Par.6.1.1.2 - 3

- I vantaggi del networking per computer e altri dispositivi di rete sono:
 - 1. Necessità di un Minor Numero di Periferiche
 - Ogni computer in rete non ha bisogno di avere una propria stampante o dispositivo di backup

2. Aumento delle Capacità di Comunicazione

- una rete offre numerosi strumenti di comunicazione on-line (e-mail, forum e chat, istant messaging) che permettono all'utente di dialogare con amici, parenti e colleghi

3. Protezione dei File da Duplicazione e Corruzione

- i dati risiedono sul server sono protetti da un software di monitoraggio che impedisce agli utenti di sovrascrivere o modificare i file di altri utenti che stanno accedendo nello stesso istante

4. Minori Costi di Licenza

Molti fornitori di software offrono licenze di rete che permettono a un gruppo di persone o all'intera organizzazione di utilizzare il software ad un costo inferiore.

5. Amministrazione centralizzata

- Gli utenti di una rete non devono gestire i propri dati e dispositivi, è l'amministratore di rete che lo fa, riducendo tempi e costi per l'azienda
- il backup dei dati è più facile perché i dati sono memorizzati in una posizione centrale

6. Risparmio di Risorse

L'elaborazione dei dati può essere distribuita su più computer evitando di **sovraccaricare** un computer con operazioni di elaborazione

ATTIVITA' CISCO - 6.1.1.3

Vantaggi e Svantaggi del Networking

Scegliere la risposta trascinando le opzioni sulla giusta posizione. Quindi fare click su Controlla.

