Take-Home Quiz 3 (Point Processes)

- 1. Consider a homogeneous Poisson process with intensity λ .
 - (a) Suppose that up to time t, exactly one arrival occurred. Given this information, find the conditional distribution of the arrival time.
 - (b) Suppose that exactly two arrivals occured. Compute the conditional expectations of both arrival times.
- 2. Let $\rho:(0,\infty)\to[0,\infty)$ be a function. A Poisson process with intensity function ρ is a counting process characterized by the following two properties:
 - For $a \leq b$, $N_b N_a \sim Poisson\left(\int_a^b \rho(t)dt\right)$. Consequently, $N_t \sim Poisson\left(\int_0^t \rho(s)ds\right)$.
 - Any restrictions of the process (regarded as a random subset of $(0, \infty)$) to disjoint intervals are independent.

Consider a Poisson process with intensity function:

$$\rho(t) = \frac{1}{1+t} \tag{1}$$

Find the distribution of the first two (inter)-arrival times T_1 and T_2 .

- 3. Let N be a random variable denoting the number of arrivals, ditributed by Poisson $Pois(\lambda)$. Each arrival is successful with probability p, independently of other arrivals, as well as of the number of arrivals. Denote by S the number of successful and by T the number of unsuccessful arrivals, that is, T = N S.
 - (a) Find the distribution of S and T.
 - (b) Show that the random variables S and T are independent.
 - (c) Show that under some other choice of the distribution of N, S and T are no longer necessarily independent.