24년도 2학기 기전융합프로젝트 제안서

지도교수님: 기계제어공학부 김영근 교수님

21800226 노윤기

목차

• 연구배경

• 3D Scanning 핵심 및 장비

• 일정: 2주차 ~ 8주차 / 9주차 ~ 15주차

• 추가과제: 다 방향 스캔 시도

연구배경

산업의 발전으로 인한 대량 생산 > 품질 검사의 중요성 증가

2D 이미지를 통한 품질검사: 높이 정보 X, 이상적인 환경 조성

3D 스캔을 통해 복잡한 형상의 부품을 검증

단거리 3D Scanning의 종류

1. 접촉식

a. CMM(Coordinate Measuring Machine): 물체 변형 가능성 O

2. 비 접촉식

a. 백색광(White Light) 방식: 일정한 패턴의 백색광 활용

b. 변조광(Structured-Light) 방식: 약한 세기 → 10~30m

c. 레이저 삼각법(Light Triangulation) 방식: 보편적인 방법

단거리 3D Scanning의 종류

- 1. 백색광(White Light) 방식 2. 변조광(Structured-Light) 방식

3. 레이저 삼각법

변조광(structured-light)방식의 원리

Scan direction

레이저 3D Scan

1. Standard

- 1. 간단한 Resolution Z 계산식
- 2. Z 범위 낮음
- 3. 보편적인 방법

2. Reverse

- 1. 복잡한 Resolution Z 계산식
- 2. Z 범위 높음
- 3. 정확도

3. Specular

- 1. 어두운 물체에 적합
- 2. 정반사로 인한 오류 가능성

레이저 Specification[기준]

• Osela

Streamline/Compact/Telecentric laser

	Specification
Wavelet length(파장)	405~830[nm]
Fan angle(레이저 각도)	1 to 90
Uniformity(균일도)	20%
Line Straightness(직선오차)	0.1% 이하
Diode Power	5,10,35,50,75,120,,150,100,200 [mW]
두께	5m에서 대략 1.75mm

레이저 Specification[1]

Quarton

ML-100 Red Laser Line Generator

	Specification
Wavelet length(파장)	635[nm] → Red
Fan angle(레이저 각도)	120도 이상
Uniformity(균일도)	laser width → 2mm 이하 at 4M
Line Straightness(직선오차)	??
Diode Power	5,10,35,50,75,120,,150,100,200 [mW]
가격	238,570원

레이저 Specification[2]

Coherent

Machine Vision Laser_mini

기준	Specification					
Wavelet length(파장)	640,660,685,785[nm] → Red					
Fan angle(레이저 각도)	1~75[degree]					
Uniformity(균일도)	기준치 보다 낮은 성능 예상					
Line Straightness(직선오차)	0.1[%] 이하					
Diode Power	최대 35[mW]					

Coherent

Osela

레이저 Specification[3]

Quarton

Laser Module VLM-520-37 LPT

기준	Specification
Wavelet length(파장)	505um~530um
Fan angle(레이저 각도)	120[degree] 이상
Uniformity(균일도)	기준치 보다 낮은 성능 예상
Line Straightness(직선오차)	1mm per 10m
작동전압	7~10 VDC
가격	139,830원

카메라 Specification[기준]

• 화인스텍

C5 Series

기준	Specification
Resolution(해상도)	1280x1024, 2048x1088, 2048x2048, 4096x3072
Pixel Size(픽셀 사이즈)	6.6[um]x6.6[um], 5.5[um]x5.5[um]
센서크기	8.448mm x 6.758mm
fps	32 fps
양자효율	파란색(450nm~500nm): 50% ~ 60%
	녹색(500nm~570nm): 50%~55%
	빨간색(620nm~750nm):55%~60%
셔터타입	Global Shutter type
요구전력	10W
가격	92만원, 97만원, 1250만원, 1300만원

카메라 Specification[1]

Basler

Basler Ace acA1920-25gc

기준	Specification					
Resolution(해상도)	1920x1080					
Pixel Size(픽셀 사이즈)	2.2[um]x2.2[um]					
마운트	C 마운트					
센서크기	4.22mm x 2.38mm					
fps	25 fps					
양자효율	파란색(450nm~500nm): 7.21%					
	녹색(500nm~570nm): 41.09%					
	빨간색(620nm~750nm): 6.72%					
셔터타입	Rolling Shutter type					
요구전력	2.2W					
가격	37만원					
전원공급	PoE or 12 VDC(Hirose 6-in)					

카메라 Specification[2]

Basler

Basler acA1300-60gm

기준	Specification					
Resolution(해상도)	1282 x 1026					
Pixel Size(픽셀 사이즈)	5.3um x 5.3um					
마운트	C 마운트					
센서크기	6.8mm x 5.4mm					
fps	60 fps					
양자효율	파란색(450nm~500nm): 50% ~ 70%					
	녹색(500nm ~ 570nm): 40% ~ 60%					
	빨간색(620nm~750nm): 40%~60%					
셔터타입	Global & Rolling(소프트웨어 전환)					
요구전력	2W					
가격	50만원					
전원공급	PoE or 12 VDC(Hirose 6-in)					

연구계획(2~8주차: 장비 결정 및 1차 적용완료)

내용	2주차		3주차	4주차	5주차	6주차	7주차	8주차
Calibration	(이론)목적 및 적용 방법	파악 (실습)기본 카메라 및 레이저로		르 적용	(실습)선정장비 수령하면 적용		덕용	
Hardware	C6 견적서 파악 및 대안탐색 / 전반적인 형태 잡기(스테이지)		· 안장비 견적서 출력 및 주문 / 라 및 레이저로 수행 가능한지 파악	주문 및 수령	실물 수령하면 3D printing		카메라, 스테이	
Software	삼각 측량법 이론 파악 및 적용	삼각 측량법 알고리즘 (높이 정보 출력)		축	선정장비 calibration 완료 후 적용		적용	
GUI	대기							

연구계획(9주차~15주차: 정확도 개선 및 GUI 구축)

내용	9주차	10주차	11주차	12주차	13주차	14주차	15주차
Calibration	1차 시기 이후 미흡한 점 보완						
Hardware	1차 시기 이후 미흡한 점 보완 및 장비화						
Software	1차 시기 이후 미흡한 점 보완 및 정확도 개선						
GUI	3d scan 결과 창 출력 /						