### **Descriptive Analysis**

R for Advanced Stata Users

Luiza Andrade, Leonardo Viotti, Rob Marty, Rony Rodriguez, Luis Eduardo San Martin DIME |The World Bank

30 November 2020



### Table of contents



- 1. Quick summary statistics
- 2. Descriptive statistics tables
- 3. Exporting descriptive statistics tables
- 4. Formatting tables
- 5. Aggregating observations
- 6. Running regressions
- 7. Exporting regression tables

## Workflows for outputs



### Not reproducible

Anything that requires

- Copy-pasting
- Manual formatting after exported

### Reproducible

R Markdown: dynamic document containing code and text that is exported directly from R into PDF, HTML, Word, Power Point and other formats

LaTeX: typesetting system used for scientific publications that automatically reloads tables and figures every time the document is rendered

# Setting the stage



Set folder paths to your computer

```
# Set folder paths
projectFolder ← file.path("EDIT/THIS/FILE/PATH/dime-r-training")

dataWorkFolder ← file.path(projectFolder, "DataWork")
Data ← file.path(dataWorkFolder, "DataSets")
finalData ← file.path(Data, "Final")
rawOutput ← file.path(dataWorkFolder, "Output", "Raw")
```

Load the packages that we will use today

```
# Load packages
packages ← c("tidyverse", "skimr", "huxtable", "lfe")
pacman::p_load(packages, character.only = TRUE)
```

Load the data that we will use today: Stata's census dataset

```
# Load data
census ←
readRDS(file.path(finalData, "census.RDS"))
```

## Taking a peek at the data



```
str(census)
```

```
50 obs. of 13 variables:
'data.frame':
$ state : chr "Alabama" "Alaska" "Arizona" "Arkansas" ...
$ state2 : chr "AL" "AK" "AZ" "AR" ...
$ region : Factor w/ 4 levels "NE","N Cntrl",..: 3 4 4 3 4 4 1 3 3 3 ...
           : int 3893888 401851 2718215 2286435 23667902 2889964 3107576 594338 9746324 5463105 ...
 $ poplt5 : int 296412 38949 213883 175592 1708400 216495 185188 41151 570224 414935 ...
 $ pop5 17 : int 865836 91796 577604 495782 4680558 592318 637731 125444 1789412 1231195 ...
$ pop18p : int 2731640 271106 1926728 1615061 17278944 2081151 2284657 427743 7386688 3816975 ...
$ pop65p : int 440015 11547 307362 312477 2414250 247325 364864 59179 1687573 516731 ...
$ popurban: int 2337713 258567 2278728 1179556 21607606 2329869 2449774 419819 8212385 3409081 ...
$ medage : num 29.3 26.1 29.2 30.6 29.9 ...
$ death : int 35305 1604 21226 22676 186428 18925 26005 5123 104190 44230 ...
$ marriage: int 49018 5361 30223 26513 210864 34917 26048 4437 108344 70638 ...
$ divorce : int 26745 3517 19908 15882 133541 18571 13488 2313 71579 34743 ...
- attr(*. "datalabel")= chr "1980 Census data by state"
- attr(*, "time.stamp")= chr "11 Nov 2020 18:02"
- attr(*, "formats")= chr [1:13] "%-14s" "%-2s" "%-8.0g" "%12.0gc" ...
- attr(*. "types")= int [1:13] 14 2 65529 65528 65528 65528 65528 65528 65528 ...
- attr(*, "val.labels")= Named chr [1:13] "" "" "cenreg" "" ...
  ..- attr(*, "names")= chr [1:13] "" "" "cenreg" "" ...
- attr(*, "var.labels")= chr [1:13] "State" "Two-letter state abbreviation" "Census region" "Population" ...
- attr(*, "version")= int 118
- attr(*, "label.table")=List of 1
 ..$ cenreg: Named int [1:4] 1 2 3 4
 .. ..- attr(*, "names")= chr [1:4] "NE" "N Cntrl" "South" "West"
- attr(*. "expansion.fields")= list()
- attr(*, "byteorder")= chr "LSF"
- attr(\star, "orig.dim")= int [1:2] 50 13
```

# Quick summary statistics

## Exploring a dataset



#### summary(x, digits)

Equivalent to Stata's codebook. Its arguments are:

- **x:** the object you want to summarize, usually a vector or data frame
- digits: the number of decimal digits to be displayed

#### Exercise ==

Use the summary() function to describe the census data frame.

## Exploring a dataset



summary(census)

```
state2
                                            region
      state
                                                          pop
                      Length:50
                                                     Min. : 401851
   Length:50
                                        NΕ
                                        N Cntrl:12
                                                     1st Qu.: 1169218
   Class : character
                      Class : character
   Mode :character
                     Mode :character
                                         South :16
                                                     Median : 3066433
                                              :13
                                                           : 4518149
##
                                         West
                                                     Mean
                                                     3rd Qu.: 5434033
##
                                                            :23667902
                                                     Max.
       poplt5
                                                             pop65p
                        pop5 17
                                          pop18p
                                                         Min. : 11547
        : 35998
                     Min. : 91796
                                      Min. : 271106
   1st Qu.: 98831
                     1st Qu.: 257949
                                      1st Qu.: 823702
                                                         1st Qu.: 118660
   Median : 227468
                     Median: 629654
                                      Median : 2175130
                                                         Median : 370495
        : 326278
                     Mean : 945952
                                      Mean : 3245920
                                                         Mean : 509503
   3rd Qu.: 361321
                     3rd Qu.:1143292
                                      3rd Qu.: 3858173
                                                         3rd Qu.: 580087
         :1708400
                           :4680558
                     Max.
                                      Max.
                                            :17278944
                                                         Max. :2414250
      popurban
                          medage
                                         death
                                                         marriage
                     Min. :24.20
   Min. : 172735
                                     Min. : 1604
                                                      Min. : 4437
   1st Qu.: 826651
                     1st Qu.:28.73
                                     1st Qu.: 9087
                                                      1st Qu.: 14840
   Median : 2156905
                      Median :29.75
                                     Median : 26176
                                                      Median : 36279
   Mean
         : 3328253
                      Mean
                            :29.54
                                      Mean
                                          : 39474
                                                      Mean
                                                           : 47701
   3rd Qu.: 3403450
                      3rd Qu.:30.20
                                     3rd Qu.: 46532
                                                      3rd Qu.: 57338
         :21607606
                            :34.70
                                            :186428
   Max.
                      Max.
                                     Max.
                                                      Max.
                                                             :210864
      divorce
   Min.
        : 2142
   1st Qu.: 6898
   Median : 17112
   Mean
        : 23679
   3rd Qu.: 27986
          :133541
```

# Summarizing continuous variables



- summary() can also be used with a single variable.
- When used with continuous variables, it works similarly to summarize in Stata.
- When used with categorical variables, it works similarly to tabulate.

# Summarizing continuous variables



#### Exercise =

Use the summary() function to display summary statistics for a continuous variable in the census data frame.

summary()

# Summarizing continuous variables



#### Exercise ==

Use the summary() function to display summary statistics for a continuous variable in the census data frame.

summary(census\$pop)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 401851 1169218 3066433 4518149 5434033 23667902
```



#### table()

Equivalent to tabulate in Stata, creates a frequency table. Its main arguments are vectors to be tabulated.

#### Exercise ==

Use the table() function to display frequency tables for:

- 1. The variable region in the census data frame
- 2. The variables region and state in the census data frame, simultaneously



### One way tabulation

table()



### One way tabulation

```
## NE N Cntrl South West ## 9 12 16 13
```

### Two way tabulation

```
table()
```



table(census\$region, census\$state)

```
Alabama Alaska Arizona Arkansas California Colorado Connecticut
    ΝE
    N Cntrl
    South
    West
             Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas
    ΝE
                    0
##
    N Cntrl
    South
    West
##
             Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota
##
    ΝE
                    0
                                              0
    N Cntrl
    South
    West
```

# Descriptives tables

## Descriptives tables



### What if you want to...

- ...export the summary statistics to another software?
- ...customize which statistics to display?
- ...format the table?

#### Well, then you will need to go beyond base R

- There are many packages that can be used both for displaying and exporting summary statistics
- Today we will show you a combination of two packages: skimr and huxtable
- We chose this combination because together, they can perform all the tasks we are interested in



- The skimr package features are very similar to those of the functions summary.
- It is used to present summary statistics for a dataset.
- Like summary, the statistics presented vary with the class of each variable.
- skimr's main function is called skim(), and its syntax is also very similar to summary.



skim(census)

#### Variable type: character

| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---------------|-----------|---------------|-----|-----|-------|----------|------------|
| state         | 0         | 1             | 4   | 13  | 0     | 50       | 0          |
| state2        | 0         | 1             | 2   | 2   | 0     | 50       | 0          |

#### Variable type: factor

| skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts                       |
|---------------|-----------|---------------|---------|----------|----------------------------------|
| region        | 0         | 1             | FALSE   | 4        | Sou: 16, Wes: 13, N C: 12, NE: 9 |

#### Variable type: numeric

| skim_variable | n_missing | complete_rate | mean       | sd         | p0       | p25        | p50        | p75        | p100       | hist     |
|---------------|-----------|---------------|------------|------------|----------|------------|------------|------------|------------|----------|
| рор           | 0         | 1             | 4518149.44 | 4715037.75 | 401851.0 | 1169218.50 | 3066433.00 | 5434033.25 | 23667902.0 | <b></b>  |
| poplt5        | 0         | 1             | 326277.78  | 331585.14  | 35998.0  | 98831.00   | 227467.50  | 361321.25  | 1708400.0  |          |
| pop5_17       | 0         | 1             | 945951.60  | 959372.83  | 91796.0  | 257948.75  | 629654.00  | 1143292.50 | 4680558.0  |          |
| pop18p        | 0         | 1             | 3245920.06 | 3430531.31 | 271106.0 | 823701.50  | 2175130.00 | 3858173.25 | 17278944.0 | <b>_</b> |
| pop65p        | 0         | 1             | 509502.80  | 538932.38  | 11547.0  | 118660.00  | 370495.00  | 580087.25  | 2414250.0  |          |



The main advantage of skimr is that it is designed to fit well with the tidyverse syntax and within a data pipeline.

So, for example, if you only want to summarize a few variables, you can write the following:



#### Variable type: numeric

| skim_variable | n_missing | complete_rate | mean       | sd         | p0       | p25        | p50        | p75        | p100       | hist     |
|---------------|-----------|---------------|------------|------------|----------|------------|------------|------------|------------|----------|
| рор           | 0         | 1             | 4518149.44 | 4715037.75 | 401851.0 | 1169218.50 | 3066433.00 | 5434033.25 | 23667902.0 | <b>_</b> |
| popurban      | 0         | 1             | 3328253.18 | 4090177.93 | 172735.0 | 826651.00  | 2156905.00 | 3403449.50 | 21607606.0 | <b>I</b> |
| medage        | 0         | 1             | 29.54      | 1.69       | 24.2     | 28.73      | 29.75      | 30.20      | 34.7       |          |
| death         | 0         | 1             | 39474.26   | 41742.35   | 1604.0   | 9087.00    | 26176.50   | 46532.50   | 186428.0   | <b>I</b> |
| marriage      | 0         | 1             | 47701.40   | 45130.42   | 4437.0   | 14839.50   | 36279.00   | 57338.25   | 210864.0   | <b>I</b> |
| divorce       | 0         | 1             | 23679.44   | 25094.01   | 2142.0   | 6897.50    | 17112.50   | 27986.50   | 133541.0   | <b>I</b> |

## Customizing skimr



You can also create your own skimr function list (sfl) for each class of variables.

Here are a few functions that can be used within sfl():

Center: mean(), median()
Spread: sd(), IQR(), mad()
Range: min(), max(), quantile()
Position: first(), last(), nth(),
Count: n(), n\_distinct()
Logical: any(), all()

# Customizing skimr



#### Variable type: character

| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---------------|-----------|---------------|-----|-----|-------|----------|------------|
| state         | 0         | 1             | 4   | 13  | 0     | 50       | 0          |
| state2        | 0         | 1             | 2   | 2   | 0     | 50       | 0          |

#### Variable type: factor

| skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts                       |
|---------------|-----------|---------------|---------|----------|----------------------------------|
| region        | 0         | 1             | FALSE   | 4        | Sou: 16, Wes: 13, N C: 12, NE: 9 |

#### Variable type: numeric

| skim_variable | n_missing | complete_rate | Mean       | Median     | SD         | Min      | Max        |
|---------------|-----------|---------------|------------|------------|------------|----------|------------|
| рор           | 0         | 1             | 4518149.44 | 3066433.00 | 4715037.75 | 401851.0 | 23667902.0 |
| poplt5        | 0         | 1             | 326277.78  | 227467.50  | 331585.14  | 35998.0  | 1708400.0  |
| pop5_17       | 0         | 1             | 945951.60  | 629654.00  | 959372.83  | 91796.0  | 4680558.0  |
| pop18p        | 0         | 1             | 3245920.06 | 2175130.00 | 3430531.31 | 271106.0 | 17278944.0 |
| pop65p        | 0         | 1             | 509502.80  | 370495.00  | 538932.38  | 11547.0  | 2414250.0  |
| popurban      | 0         | 1             | 3328253.18 | 2156905.00 | 4090177.93 | 172735.0 | 21607606.0 |
| medage        | 0         | 1             | 29.54      | 29.75      | 1.69       | 24.2     | 34.7       |

# Customizing skimr



```
census %>%
  summary_stats() %>%
  yank("numeric") %>% # keep only numeric variables on the table
  select(-n_missing, -complete_rate) # remove default statistics
```

#### Variable type: numeric

| skim_variable | Mean       | Median     | SD         | Min      | Мах        |
|---------------|------------|------------|------------|----------|------------|
| pop           | 4518149.44 | 3066433.00 | 4715037.75 | 401851.0 | 23667902.0 |
| poplt5        | 326277.78  | 227467.50  | 331585.14  | 35998.0  | 1708400.0  |
| pop5_17       | 945951.60  | 629654.00  | 959372.83  | 91796.0  | 4680558.0  |
| pop18p        | 3245920.06 | 2175130.00 | 3430531.31 | 271106.0 | 17278944.0 |
| рор65р        | 509502.80  | 370495.00  | 538932.38  | 11547.0  | 2414250.0  |
| popurban      | 3328253.18 | 2156905.00 | 4090177.93 | 172735.0 | 21607606.0 |
| medage        | 29.54      | 29.75      | 1.69       | 24.2     | 34.7       |
| death         | 39474.26   | 26176.50   | 41742.35   | 1604.0   | 186428.0   |
| marriage      | 47701.40   | 36279.00   | 45130.42   | 4437.0   | 210864.0   |
| divorce       | 23679.44   | 17112.50   | 25094.01   | 2142.0   | 133541.0   |

# Exporting tables

## **Exporting tables**



To export the tables to a different software, we will need a different package, huxtable. The easiest way to save tables is through this family of commands:

```
quick_latex(..., file)
quick_pdf(..., file)
quick_html(..., file)
quick_docx(..., file)
quick_pptx(..., file)
quick_xlsx(..., file)
quick_rtf(..., file)
```

- ...: the huxtable objects or data frames to be exported
- file: the file path to where the table should be saved, including the file extension

## **Exporting tables**



The code below exports the table we just created to Excel and LaTeX

# Formatting tables







```
# Extract variable labels from data frame
census dictionary ←
 data.frame("Variable" = attributes(census)$var.labels,
            "name" = names(census))
summary stats table ←
  summary stats table %>%
  rename(name = skim variable) %>% # Rename var with var names so we can merge the datasets
  left join(census dictionary) %>% # Merge to variable labels
  select(-name) %>% # Keep only variable labels instead of names
  as hux # Convert it into a huxtable object
summary stats table ←
  summary stats table %>%
  relocate(Variable) %>% # Make variable labels the first column
  set header rows(1, TRUE) %>% # Use stats name as table header
  set header cols("Variable", TRUE) %>% # Use variable name as row header
  theme basic() # Set a theme for quick formatting
```



```
# Extract variable labels from data frame
census dictionary ←
 data.frame("Variable" = attributes(census)$var.labels,
            "name" = names(census))
summary stats table ←
  summary stats table %>%
  rename(name = skim variable) %>% # Rename var with var names so we can merge the datasets
  left join(census dictionary) %>% # Merge to variable labels
  select(-name) %>% # Keep only variable labels instead of names
  as hux # Convert it into a huxtable object
summary stats table ←
  summary stats table %>%
  relocate(Variable) %>% # Make variable labels the first column
  set header rows(1, TRUE) %>% # Use stats name as table header
  set header cols("Variable", TRUE) %>% # Use variable name as row header
  theme basic() # Set a theme for quick formatting
# Now export it
quick xlsx(summary stats table,
          file = file.path(rawOutput, "summary-stats-basic.xlsx"))
quick latex(summary stats table,
          file = file.path(rawOutput, "summary-stats-basic.tex"))
```

# Other themes to play with



# Aggregating observations

## Aggregating observations



- If you want to show aggregated statistics, the function summarise is a powerful tool.
- It is similar to skim in that it calculates a series of statistics for a data frame.
- However, it does not have pre-defined statistics, so it requires more manual input.
- On the other hand, its output is a regular data frame, so it is also useful to create constructed data sets.
- Its Stata equivalent would be collapse

```
summarise(.data, ...,)
```

- o data: the data frame to be summarized
- ...: Name-value pairs of summary functions. The name will be the name of the variable in the result.

The "name-value" pairs mentioned under ... look like this: new\_variable = stat(existing\_variable), where stat takes the same functions as sfl

# Aggregating observations



## `summarise()` ungrouping output (override with `.groups` argument)

| region  | Number of States | Total Population |
|---------|------------------|------------------|
| NE      | 9                | 49135283         |
| N Cntrl | 12               | 58865670         |
| South   | 16               | 74734029         |
| West    | 13               | 43172490         |



#### Exercise ==

Recreate the region\_state data set, now including the average and the standard deviation of the population.



| region  | <b>Number of States</b> | <b>Total Population</b> | Average Population | SD of Population |
|---------|-------------------------|-------------------------|--------------------|------------------|
| NE      | 9                       | 49135283                | 5459476            | 5925235          |
| N Cntrl | 12                      | 58865670                | 4905472            | 3750094          |
| South   | 16                      | 74734029                | 4670877            | 3277853          |
| West    | 13                      | 43172490                | 3320961            | 6217177          |



#### Exercise ==

Use huxtable to format and export the object region\_stats.

| Region  | Number of States | Total Population | Average Population | SD of Population |
|---------|------------------|------------------|--------------------|------------------|
| NE      | 9                | 49135283         | 5459476            | 5925235          |
| N Cntrl | 12               | 58865670         | 4905472            | 3750094          |
| South   | 16               | 74734029         | 4670877            | 3277853          |
| West    | 13               | 43172490         | 3320961            | 6217177          |



```
region_stats_table \(
    region_stats %>%
    rename(Region = region) %>%
    as_hux %>%
    set_header_cols("Region", TRUE) %>%
    theme_bright()

quick_xlsx(region_stats_table,
        file = file.path(rawOutput, "region-stats.xlsx"))

quick_latex(region_stats_table,
        file = file.path(rawOutput, "region-stats.tex"))
```

# Ok, can we run some regressions now?!



The base R command for linear regressions is called lm

#### lm(formula, data, subset, weights, ...)

- formula: an object of class "formula" containing a symbolic description of the model
- data: a data frame containing the variables indicated in the formula
- subset: an optional vector specifying a subset of observations to be used in the regression
- weights: an optional vector of weights to be used in the regression

#### Formulas can take three specifications:

- y ~ x1 + x2 regresses variable y on covariates x1 and x2
- y ~ x1:x2 regresses variable y on the interaction of covariates x1 and x2
- y ~ x1\*x2 is equivalent to y ~ x1 + x2 + x1:x2



#### Exercise ==

Using the census data, run a regression of the number of divorces on population, urban population and number of marriages.

```
lm(y \sim x1 + x2, data)
```



#### Exercise =

Coefficients:

## (Intercept)

Using the census data, run a regression of the number of divorces on population, urban population and number of marriages.

```
lm(divorce ~ pop + popurban + marriage,
     census)
## Call:
  lm(formula = divorce ~ pop + popurban + marriage, data = census)
##
```

marriage

2.587e-01

• The output of regression commands is a list of relevant information.

popurban

1.954e-03

• By default, it prints only a small portion of this information.

pop

1.207e+02 1.044e-03

• The best way to visualize results is to store this list in an object and then access its contents using the function summary 56



```
reg1 ←
  lm(divorce ~ pop + popurban + marriage.
     census)
summary(reg1)
## Call:
## lm(formula = divorce ~ pop + popurban + marriage, data = census)
## Residuals:
       Min
               1Q Median
                                 3Q
  -22892.3 -1665.1 796.5 4138.0 17212.2
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.207e+02 1.838e+03 0.066
                                         0.948
            1.044e-03 1.633e-03 0.639
                                        0.526
## pop
## popurban 1.954e-03 1.796e-03 1.088
                                         0.282
## marriage 2.587e-01 5.958e-02 4.342 7.7e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 7466 on 46 degrees of freedom
## Multiple R-squared: 0.9169, Adjusted R-squared: 0.9115
## F-statistic: 169.2 on 3 and 46 DF, p-value: < 2.2e-16
```



The lfe command felm allows for more flexibility in model specification

#### felm(formula, data, subset, weights, ...)

- formula: an object of class "formula" containing a symbolic description of the model
- data: a data frame containing the variables indicated in the formula
- subset: an optional vector specifying a subset of observations to be used in the regression
- weights: an optional vector of weights to be used in the regression

Formulas for felm are more complex, and take the following format:  $y \sim x1 + x2 \mid fe1 + fe2 \mid (Q|W \sim iv3+iv4) \mid clu1 + clu2$ 

- $y \sim x1 + x2$  takes all the same formulas as lm
- fe1 + fe2 list the variables to be included as fixed effects
- (Q|W ~ iv3 + iv4) uses instruments iv3 and iv4 for variables Q and W
- clu1 + clu2 indicates that standard errors should be clustered using variables clu1 and clu2



#### Exercise ==

Using the census data, run a regression of the number of divorces on population, urban population and number of marriages controlling for region fixed effects.

```
felm(y ~ x1 + x2 | fe1 + fe2 | 0 | 0,
data)
```



#### Exercise ==

Using the census data, run a regression of population, urban population and number of marriages controlling for region fixed effects.

```
felm(divorce ~ pop + popurban + marriage | region | 0 | 0, census)
```

```
## pop popurban marriage
## 0.0003951 0.0035532 0.1836593
```



```
reg2 ←
  felm(divorce ~ pop + popurban + marriage | region | 0 | 0.
     census)
summary(reg2)
## Call:
     felm(formula = divorce ~ pop + popurban + marriage | region | 0 | 0, data = census)
  Residuals:
     Min 1Q Median
  -17919 -3112 -448 3047 13830
## Coefficients:
            Estimate Std. Error t value Pr(>|t|)
           0.0003951 0.0017881 0.221 0.82615
## pop
## popurban 0.0035532 0.0019981 1.778 0.08243 .
## marriage 0.1836593 0.0580271 3.165 0.00285 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6748 on 43 degrees of freedom
## Multiple R-squared(full model): 0.9365 Adjusted R-squared: 0.9277
## Multiple R-squared(proj model): 0.9354 Adjusted R-squared: 0.9264
## F-statistic(full model):105.8 on 6 and 43 DF, p-value: < 2.2e-16
## F-statistic(proj model): 207.7 on 3 and 43 DF, p-value: < 2.2e-16
```

### Some notes on regressions



- Whenever a factor is included in the list of covariates, it is treated as a categorical variable, i.e., as if you had written i.x in Stata.
- Whenever a boolean is included in the list of covariates, it is treated as a dummy variable, where TRUE is 1 and FALSE is 0.
- felm also allows for bootstrapping, but this is beyong the scope of this session.

# Exporting regression tables

### Exporting regression tables



huxtable also has a quick wrapper for regression tables

#### huxreg(...)

- ...: Models, or a single list of models. Names will be used as column headings.
- number\_format: Format for numbering. See number\_format() for details.
- stars: Levels for p value stars.
- bold\_signif: Where p values are below this number, cells will be displayed in bold.
- note: Footnote for bottom cell, which spans all columns.
- statistics: A vector of summary statistics to display.
- coefs: A vector of coefficients to display. To change display names, name the coef vector: c("Displayed title" = "coefficient\_name", ...)

# Exporting regression tables



huxreg(reg1, reg2)

|                                         | (1)        | (2)      |  |  |
|-----------------------------------------|------------|----------|--|--|
| (Intercept)                             | 120.730    |          |  |  |
|                                         | (1838.216) |          |  |  |
| рор                                     | 0.001      | 0.000    |  |  |
|                                         | (0.002)    | (0.002)  |  |  |
| popurban                                | 0.002      | 0.004    |  |  |
|                                         | (0.002)    | (0.002)  |  |  |
| marriage                                | 0.259 ***  | 0.184 ** |  |  |
|                                         | (0.060)    | (0.058)  |  |  |
| N                                       | 50         | 50       |  |  |
| R2                                      | 0.917      | 0.937    |  |  |
| logLik                                  | -514.766   |          |  |  |
| AIC                                     | 1039.531   |          |  |  |
| *** p < 0.001; ** p < 0.01; * p < 0.05. |            |          |  |  |

# Formatting regression tables



|                                         | (1)       | (2)      |  |  |
|-----------------------------------------|-----------|----------|--|--|
| Population                              | 0.001     | 0.000    |  |  |
|                                         | (0.002)   | (0.002)  |  |  |
| Urban population                        | 0.002     | 0.004    |  |  |
|                                         | (0.002)   | (0.002)  |  |  |
| Number of marriages                     | 0.259 *** | 0.184 ** |  |  |
|                                         | (0.060)   | (0.058)  |  |  |
| Region FE                               | No        | Yes      |  |  |
| N. obs.                                 | 50        | 50       |  |  |
| *** p < 0.001; ** p < 0.01; * p < 0.05. |           |          |  |  |

#### References and recommendations



- Skimr documentation: https://qiushi.rbind.io/post/introduction-to-skimr/
- Introduction to huxtable: https://cran.r-project.org/web/packages/huxtable/vignettes/huxtable.html
- Using huxtable for regression tables: https://cran.r-project.org/web/packages/huxtable/vignettes/huxreg.html
- Johns Hopkins Exploratory Data Analysis at Coursera: https://www.coursera.org/learn/exploratory-data-analysis
- Udacity's Data Analysis with R: https://www.udacity.com/course/data-analysis-with-r--ud651
- Applied econometrics with R https://www.springer.com/us/book/9780387773162

#### Since we talked about LaTeX so much...

- DIME LaTeX templates and trainings: https://github.com/worldbank/DIME-LaTeX-Templates
- All you need to know about LaTeX: https://en.wikibooks.org/wiki/LaTeX

# Thank you!