Foundations of Financial Economics Choice under uncertainty

Paulo Brito

¹pbrito@iseg.ulisboa.pt University of Lisbon

March 12, 2020

Topics covered

- ► Contingent goods:
 - Definition
 - Comparing contingent goods
- ▶ Decision under risk:
 - ▶ von-Neumann-Morgenstern utility theory
 - Certainty equivalent
 - ► Attitudes towards risk: risk neutrality and risk aversion
 - ► Measures of risk
 - ► The HARA family of utility functions

Contingent goods informal definition

Contingent goods (or claims or actions): are goods whose outcomes are state-dependent, meaning:

- ▶ the quantity of the good to be available is uncertain at the moment of decision (i.e, *ex-ante* we have **several odds**)
- ▶ the actual quantity to be received, the outcome, is revealed afterwards (*ex-post* we have **one realization**)
- **state-dependent**: means that nature chooses which outcome will occur (i.e., the outcome depends on a mechanism out of our control)

Contingent goods

Example: flipping a coin

lottery 1: flipping a coin with state-dependent outcomes:

before flipping a coin the contingent outcome is

▶ after flipping a coin there is only one realization: 0 or 100

lottery 2: flipping a coin with state-independent outcomes:

before flipping a coin the non-contingent outcome is

odds	head	tail
outcomes	50	50

▶ after flipping a coin we always get: 50

Contingent goods

Example: tossing a dice

lottery 3: dice tossing with state-dependent outcomes:

before tossing a dice the contingent outcome is

odds	1	2	3	4	5	6
outcomes	100	80	60	40	20	0

▶ after tossing the dice we will get: 100, or 80 or 60 or 40, or 20, or 0.

- ▶ Question: given two contingent goods (lotteries, investments, actions, contracts) how do we compare them ?
- ► Answer: we need to reduce to a number which we interpret as its value

contingent good 1 \rightarrow Value of contingent good 1 = V_1 contingent good 2 \rightarrow Value of contingent good 2 = V_2

contingent good 1 is better that 2 $\Leftrightarrow V_1 > V_2$

Example: farmer's problem

farmer's problem: what to plant?

▶ before planting the costs (known) and the contingent outcomes are

	in	come	$\cos t$	I	orofit
weather	rain drought			rain	drought
vegetables	200	30	50	150	-20
cereals	10	100	20	-10	80

- ▶ if he decides to plant vegetables, after the season the profit realization will be: −20 or 150
- ▶ if he decides to plant cereals after the season the profit realization will be: -10 or 80

Example: investor's problem

investors's problem: to risk or not to risk?

▶ before investing, contingent incomes and the cost are

	income i	f market is	$\cos t$	profit i	f market is
\max	bull	bear		bull	bear
equity	130	50	100	30	-50
bonds	98	105	100	-2	5

- deciding to invest in equity the profit realizations will be:
 -50 or 30
- ightharpoonup deciding to invest in bonds profit realizations will be: 5 or -2

Examples: gambler's problem

gambler's problem : to flip or not to flip?

- comparing one non-contingent with another contingent outcome
- ▶ Before flipping the coin the alternatives are

	outcomes		outcomes		$\cos t$	pı	ofit
odds	Н	Τ		Н	Τ		
lottery 1	100	0	20	80	- 20		
lottery 2	50	50	45	5	5		

- ightharpoonup if he decides lottery 1 the profit will be: 80 or -20
- ▶ if he decides lottery 2 the profit will get 5 with certainty

Examples: potencial insured's problem

insurance problem: to insure or not to insure?

 \blacktriangleright Before insuring, assuming that the coverage is 50%

	outcomes		cost	net	ıncome
damage	no	yes		no	yes
insured	0	- 250	10	-10	- 240
uninsured	0	-500	0	0	-500

- if he decides to insure the net income is : -10 or -240
- if he decides not to escape taxes the net income is : 0 or -500

Examples: tax evasion

Tax dodger problem: to report or or not to report?

An agent can evade taxes by reporting truthfully or not, the odds refer to existence of inspection by the taxman.

	income	evasion	tax	penalty		net i	income
inspection				no	yes	no	yes
dodge	100	40	10	0	50	90	40
no dodge	100	0	30	0	0	70	70

- ▶ if he dodge the net income will be : 90 or 40
- if he decides not to insure the net income is: 70 or 70

Gambler problem: different lottery profiles

gambler's problem: which lottery to choose

	income							$\cos t$	
	coin dice								
odds	head	tail	1	2	3	4	5	6	
lottery 1	100	0							20
lottery 2			100	80	60	40	20	0	30

Choosing among contingent goods

Questions

- ▶ what is the source of uncertainty (nature or endogenous) ?
- which kind of information do we have (risk or uncertainty)
 ?
- ▶ how are contingent outcomes distributed?
- ▶ how do we value contingent outcomes?

Decision under risk

Environment

- ▶ Information: we know the probability space (Ω, \mathbb{P}) , and the outcomes for a contingent good X, we do not know which state will materialize X = x (realization)
 - $ightharpoonup \Omega$ space of states of nature

$$\Omega = \{\omega_1, \ldots, \omega_N\}$$

▶ P be an **objective** probability distribution over states of nature

$$\mathbb{P} = (\pi_1, \ldots, \pi_N)$$

- where $0 \le \pi_s \le 1$ and $\sum_{s=1}^{N} \pi_s = 1$
- ➤ X a **contingent good** with possible outcomes

$$X = (x_1, \ldots, x_s, \ldots x_N)$$

 \blacktriangleright Question: what is the value of X?

Assumptions

- ► Assumptions:
 - ▶ the **value of the contingent good** *X*, is measured by a utility functional

$$U(X) = \mathbb{E}[u(X)]$$

called expected utility function or von-Neumann Morgenstern utility functional

- ▶ the Bernoulli utility function $u(x_s)$ measures the value of outcome x_s
- Expanding

$$\mathbb{E}[u(X)] = \sum_{s=1}^{N} \pi_s u(x_s)$$

= $\pi_1 u(x_1) + \dots + \pi_s u(x_s) + \dots + \pi_N u(x_N)$

▶ Do not confuse: U(X) value of one lottery with $u(x_s)$ value of one outcome

Expected utility theory Properties

Properties of the expected utility function

- **state-independent** valuation of the outcomes: $u(x_s)$ only depends on the outcome x_s and not on the state of nature s
- ▶ linear in probabilities: the utility of the contingent good U(X) is a linear function of the probabilities
- information context: U(X) refers to choices in a context of risk because the odds are known and \mathbb{P} are objective probabilities
- **attitude towards risk**: is implicit in the shape of u(.) (in particular in its concavity).

Comparing contingent goods

► Consider two contingent goods with outcomes

$$X = (x_1, \ldots, x_N), Y = (y_1, \ldots, y_N)$$

▶ we can rank them using the relationship

$$X$$
 is preferred to $Y \Leftrightarrow \mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$

that is $U(X) > U(Y) \Leftrightarrow \mathbb{E}[u(X)] > \mathbb{E}[u(Y)]$

$$\mathbb{E}[u(X)] > \mathbb{E}[u(Y)] \Leftrightarrow \sum_{s=1}^{N} \pi_s u(x_s) > \sum_{s=1}^{N} \pi_s u(y_s)$$

ightharpoonup There is **indifference** between X and Y if

$$U(X) = U(Y) \Leftrightarrow \mathbb{E}[u(X)] = \mathbb{E}[u(Y)]$$

Comparing contingent goods

► Examples: coin flipping

utility of tossing a dice is

 $\Omega = \{head, tail\}$ $P = (P(\{head\}, P(\{tail\}) = (\frac{1}{2}, \frac{1}{2}))$ If the outcomes are $X = (X(\{head\}, X(\{tail\}) = (60, 10))$ then the utility of flipping a coin is

$$U(X) = \frac{1}{2}u(60) + \frac{1}{2}u(10)$$

▶ dice tossing:

$$\Omega = \{1, \dots, 6\}$$
 $P = (P(\{1\}, \dots, P(\{6\})) = (\frac{1}{6}, \dots, \frac{1}{6}))$ If the outcomes are $X = (X(\{1\}, \dots, X(\{6\})) = (10, 20, 30, 40, 50, 60))$ then the

$$U(Y) = \frac{1}{6}u(10) + \frac{1}{6}u(20) + \dots + \frac{1}{6}u(60)$$

• whether $U(X) \geq U(Y)$ depends on the utility function

Comparing one contingent good with a non-contingent good

▶ given one contingent goods and one non-contingent good

$$X = (x_1, \ldots, x_N), Z = (z, \ldots, z)$$

▶ we can rank them using the relationship

X is preferred to
$$Z \Leftrightarrow U(X) \geq U(Z)$$

► There is indifference between the two if

$$U(X) = U(Z) \Leftrightarrow \mathbb{E}[u(X)] = \mathbb{E}[u(Z)]$$

► But

$$\mathbb{E}[u(Z)] = \sum_{s=1}^{N} \pi_s u(z) = u(z) \sum_{s=1}^{N} \pi_s = u(z)$$

► Then

$$\mathbb{E}[u(X)] = u(z)$$

Certainty equivalent

Definition: certainty equivalent is the certain outcome, x^c , which has the same utility as a contingent good X

$$x^{c} = u^{-1} \left(\mathbb{E}[u(X)] \right) = u^{-1} \left(\mathbb{E}\left[\sum_{s=1}^{N} \pi_{s} u(x_{s}) \right] \right)$$

Equivalently: given u and \mathbb{P} , CE is the certain outcome such that the consumer is indifferent between X and x^c

$$u(x^c) = \mathbb{E}[u(X)] \Leftrightarrow u(z) = \sum_{s=1}^{N} \pi_s u(x_s)$$

Example: the certainty equivalent of flipping a coin is the outcome z such that

$$x^{c} = u^{-1} \left(\frac{1}{2} u(60) + \frac{1}{2} u(10) \right)$$

Risk neutrality

Definition: for any contingent good, X, we say there is risk neutrality if the utility function u(.) has the property

$$\boxed{\mathbb{E}[u(X)] = u(\mathbb{E}[X])}$$

• equivalently, there is risk neutrality if the

$$\mathbb{E}[X] = x^c = u^{-1} \left(\mathbb{E}[u(X)] \right)$$

- ► Intuition:certainty equivalent is equal to the expected outcome
- **Proposition**: there is risk neutrality if and only if the utility function u(.) is linear

$$\sum_{s} \pi_s u(x_s) = u(\sum_{s} p_s x_s)$$

Risk aversion

Definition: for any contingent good, X, we say there is risk aversion if the utility function u(.) has the property

$$\mathbb{E}[u(X)] < u(\mathbb{E}[X])$$

▶ Equivalently there is risk aversion if $x^c < \mathbb{E}[X]$

$$x^{c} = u^{-1} (\mathbb{E}[u(X)]) \le u^{-1} (u(\mathbb{E}[X])) = \mathbb{E}[X]$$

- ► Intuition: certainty equivalent is smaller than the expected value of the outcome
- **Proposition**: there is risk aversion if and only if the utility function u(.) is concave.
- ▶ Proof: the Jensen inequality states that if u(.) is strictly concave then

$$\mathbb{E}[u(X)] < u[E(X)] \Leftrightarrow \sum_{s=1}^{N} \pi_s u(x_s) < u\left(\sum_{s=1}^{N} x_s \pi_s\right).$$

Jensen's inequality and risk aversion u(x)

Measures of risk

- ▶ Risk and the shape of *u*: if *u* is linear it represents risk neutrality if *u*(.) is concave then it represents risk aversion
- ► Arrow-Pratt measures of risk aversion:
 - 1. coefficient of **absolute** risk aversion:

$$\varrho_a \equiv -\frac{u''(x)}{u'(x)}$$

2. coefficient of **relative** risk aversion

$$\varrho_r \equiv -\frac{xu''(x)}{u'(x)}$$

3. coefficient of **prudence**

$$\varrho_p \equiv -\frac{xu'''(x)}{u''(x)}$$

HARA family of utility functions

▶ Meaning: hyperbolic absolute risk aversion

$$u(x) = \frac{\gamma - 1}{\gamma} \left(\frac{\alpha x}{\gamma - 1} + \beta \right)^{\gamma}$$
 (1)

- ► Cases: (prove this)
 - 1. linear: if $\beta = 0$ and $\gamma = 1$

$$u(x) = ax$$

properties: risk neutrality

2. quadratic : if $\gamma = 2$

$$u(x) = ax - \frac{b}{2}x^2$$
, for $x < \frac{2a}{b}$

properties: risk aversion, has a satiation point $x = \frac{2a}{b}$

HARA family of utility functions

1. CARA: if $\gamma \to \infty$, (note that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$)

$$u(x) = -\frac{e^{-\lambda x}}{\lambda}$$

properties: constant absolute risk aversion (CARA), variable relative risk aversion, scale-dependent

2. CRRA: if $\gamma = 1 - \theta$ and $\beta = 0$

$$u(x) = \begin{cases} \ln(x) & \text{if } \theta = 1\\ \frac{x^{1-\theta} - 1}{1 - \theta} & \text{if } \theta \neq 1 \end{cases}$$

(if $\theta = 1$ note that $\lim_{n\to 0} \frac{x^n-1}{n} = \ln(x)$) properties: constant relative risk aversion (CRRA); scale-independent

Coin flipping vs dice tossing

► Take our previous case:

$$U(X) = \frac{1}{2}u(60) + \frac{1}{2}u(10)$$

or

$$U(Y) = \frac{1}{6}u(10) + \frac{1}{6}u(20) + \frac{1}{6}u(30) + \frac{1}{6}u(40) + \frac{1}{6}u(50) + \frac{1}{6}u(60)$$

- ▶ We will rank them assuming
 - 1. a linear utility function u(x) = x
 - 2. a logarithmic utility function $u(x) = \ln(x)$
- ▶ Observe that the two contingent goods have the same expected value

$$\mathbb{E}[X] = 35 \ \mathbb{E}[Y] = 35$$

Coin flipping vs dice tossing: linear utility

- ightharpoonup If u(x) = x

 - ► $U(X) = \mathbb{E}[u(x)] = \frac{1}{2}60 + \frac{1}{2}10 = 35$ ► $U(Y) = \mathbb{E}[u(y)] = \frac{1}{6}10 + \dots + \frac{1}{6}60 = 35$
- ► Then there is risk neutrality

$$\mathbb{E}[u(x)] = \mathbb{E}[X] = 35, \ \mathbb{E}[u(y)] = \mathbb{E}[Y] = 35$$

▶ and we are indifferent between the two lotteries because $\mathbb{E}[X] = \mathbb{E}[Y]$

Coin flipping vs dice tossing: log utility

- $\blacktriangleright \text{ If } u(x) = \ln\left(x\right)$
 - ► $U(X) = \frac{1}{2} \ln{(60)} + \frac{1}{2} \ln{(10)} \approx 3.20$ and $u(\mathbb{E}[X]) = \ln{(\mathbb{E}[X])} = \ln{(35)} \approx 3.56$, $x_X^c \approx 24.5$ (certainty equivalent)
 - ► $U(Y) = \frac{1}{6} \ln{(10)} + \ldots + \frac{1}{6} \ln{(60)} \approx 3.40$ and $u(\mathbb{E}[Y]) = \ln{(\mathbb{E}[Y])} \approx 3.56$ $x_Y^c \approx 29.9$ (certainty equivalent)
- ▶ there is risk aversion: $x_X^c < \mathbb{E}[X]$ and $x_Y^c < \mathbb{E}[Y]$ and the certainty equivalents are smaller than the
- ▶ as U(X) < U(Y) (or $x_X^c < x_Y^c$) we see that Y is better than X

Choosing among contingent and non-contingent goods with log-utility

The problem

Assumptions

- **contingent good**: has the possible outcomes $Y = (y_1, \ldots, y_N)$ with probabilities $\pi = (\pi_1, \ldots, \pi_N)$
- **non-contingent good**: has the payoff \bar{y} where $\bar{y} = \mathbb{E}[Y] = \sum_{s=1}^{N} \pi_s y_s$ with probability 1
- ▶ utility: the agent has a vNM utility functional with a logarithmic Bernoulli utility function.

Would it be better if he received the certain amount or the contingent good?

Choosing among contingent and non-contingent goods with log-utility

The solution

1. the value for the non-contingent payoff z is

$$\ln(\bar{y}) = \ln(\mathbb{E}[Y]) = \ln\left(\sum_{s=1}^{N} \pi_s y_s\right)$$

has the certainty equivalent

$$e^{\ln\left(\mathbb{E}[Y]\right)} = \mathbb{E}[Y]$$

2. the value for the contingent payoff y is

$$U(Y) = \sum_{s=1}^{N} \pi_s \ln(y_s) = \mathbb{E}[\ln Y] = \ln(G\mathbb{E}[Y])$$

where $G\mathbb{E}[Y] = \prod_{s=1}^{N} y_s^{\pi_s}$ is the geometric mean of Y

3. the certainty equivalent is

$$e^{\ln(G\mathbb{E}[Y])} = G\mathbb{E}[Y]$$

Choosing among contingent and non-contingent goods with log-utility

The solution: cont

▶ Because the arithmetical average is larger than the geometrical

$$\mathbb{E}[Y] \ge G\mathbb{E}[Y]$$

then he would be better off if he received the average endowment rather than the certainty equivalent

▶ This is the consequence of risk aversion

Application: the value of insurance The problem

- Let there be two states of nature $\Omega = \{L, H\}$ with probabilities $\mathbb{P} = (p, 1 p) \ 0 \le p \le 1$
- consider the outcomes
 - ▶ without insurance

$$X = (x_L, x_H) = (x - L, x)$$

where L > 0 is a potential damage and there is full coverage

ightharpoonup with full insurance : $y_L = y_H = y$

$$Y = (y, y) = (x - L + L - qL, x - qL) = (x - qL, x - qL)$$

where q is the cost of the insurance

ightharpoonup Given L under which conditions we would prefer to be insured?

The value of insurance

The solution

▶ It is better to be insured if

$$u(y) \ge \mathbb{E}[u(X)]$$

▶ that is if

$$u(x - qL) \ge pu(x - L) + (1 - p)u(x)$$

ightharpoonup if u(.) is linear then it is better to insure if

$$x - qL \ge p(x - L) + (1 - p)x \Leftrightarrow p \ge q$$

if the cost to insure is lower than the probability of occurring the damage

• if u(.) is concave x - qL should be higher than the certainty equivalent of X

$$x - qL \ge v\left(pu(x - L) + (1 - p)u(x)\right) \ v(.) \equiv u^{-1}(.)$$
 equivalently

References

- ▶ (LeRoy and Werner, 2014, Part III), (Lengwiler, 2004, ch. 2), (Altug and Labadie, 2008, ch. 3)
- Sumru Altug and Pamela Labadie. Asset pricing for dynamic economies. Cambridge University Press, 2008.
- Yvan Lengwiler. *Microfoundations of Financial Economics*. Princeton Series in Finance. Princeton University Press, 2004.
- Stephen F. LeRoy and Jan Werner. *Principles of Financial Economics*. Cambridge University Press, Cambridge and New York, second edition, 2014.