

Classical Numerical Analysis, Chapter 15

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu swise1@.utk.edu University of Tennessee

Chapter 15 Solution of Nonlinear Equations

What are we doing here?

In this chapter, we depart from *linear algebra* problems, and concentrate in the study of *nonlinear* problems. We will focus on methods for solving a nonlinear system of equations. In other words, given $m, n \in \mathbb{N}$, and $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ we wish to find a a point $\boldsymbol{\xi} \in \mathbb{R}^n$ such that

$$\mathbf{f}(\boldsymbol{\xi}) = \mathbf{0}.\tag{1}$$

Such a point $\boldsymbol{\xi}$, if it exists, is called a *root of* \mathbf{f} . Of course, if m=n, and \mathbf{f} so happens to be affine then this problem reduces to a linear one, and can be treated either by the direct methods or, iterative ones. If $m \neq n$, but the function \mathbf{f} is still affine, then the least squares methods apply.

The function \mathbf{f} in this chapter, however, is not assumed to be affine. The importance of (1) cannot be overstated; many problems can be reduced to this.

We must immediately remark that any method that attempts to find a solution to (1) must be iterative, unless a very special structure is assumed on the function f.

Strategy

The general strategy that we will follow can be simply stated as follows:

- Show that the problem has at least one solution.
- ② Isolate a root, that is, find an open region $D \subset \mathbb{R}^n$ for which there is $\xi \in D$ that solves (1) and $\mathbf{f}(\mathbf{x}) \neq \mathbf{0}$ for all $\mathbf{x} \in D \setminus \{\xi\}$.
- 3 Iterate.

Unfortunately, there is no general strategy to treat the first two points, as these usually require analytical methods or additional **knowledge** about the problem at hand.

Starting from some $\mathbf{x}_0 \in \mathbb{R}^n$, we will construct sequences $\{\mathbf{x}_k\}_{k=1}^{\infty} \subset \mathbb{R}^n$ which, hopefully, converge $\mathbf{x}_k \to \boldsymbol{\xi}$ as fast as possible. We will, as usual, stop the iteration when a prescribed tolerance $\varepsilon > 0$ is reached, i.e.,

$$\|\mathbf{x}_k - \boldsymbol{\xi}\| < \varepsilon.$$

This is not practical. So, how do we **really** know when to stop the iterations? One might be tempted to say that, since $f(\xi) = 0$ we can stop them whenever

$$\|\mathbf{f}(\mathbf{x}_k)\| < C\varepsilon$$
,

for some suitable constant C.

Sensitivity

Assume that m=n=1, and the function f is k+1 times continuously differentiable in a neighborhood of its unique root $\xi \in \mathbb{R}$. Moreover, we will assume that $f^{(p)}(\xi) = 0$ for p < k but $f^{(k)}(\xi) \neq 0$. Then, given a perturbation δx , we let η be such that

$$f(\xi + \delta x) = \eta.$$

Taylor's Theorem then shows that

$$\eta = f(\xi + \delta x)
= f(\xi) + f'(\xi)\delta x + \frac{1}{2}f''(\xi)\delta x^{2} + \dots + \frac{1}{k!}f^{(k)}(\xi)\delta x^{k} + \mathcal{O}(|\delta x|^{k+1})
= \frac{1}{k!}f^{(k)}(\xi)\delta x^{k} + \mathcal{O}(|\delta x|^{k+1}).$$

In other words, at least intuitively, the allowed relative size of the perturbation δx , to obtain an output of size η is

$$\left|\frac{\delta x}{\eta}\right| \approx \left|\eta^{1-k} \frac{k!}{f^{(k)}(\xi)}\right|^{1/k}.$$

The allowed relative size of the perturbation δx , to obtain an output of size η is

$$\left|\frac{\delta x}{\eta}\right| \approx \left|\eta^{1-k} \frac{k!}{f^{(k)}(\xi)}\right|^{1/k}$$
.

From this we learn two things: the smaller the value of the first nonzero derivative, the larger δx can be; and, the higher the order of the first nonzero derivative, the larger δx can be. For this reason, of importance to us will be so–called *simple roots*.

Definition (simple root)

Let $f: \mathbb{R} \to \mathbb{R}$ have a root $\xi \in \mathbb{R}$, and assume that f is differentiable at ξ . We say that ξ is a **simple root** if $f'(\xi) \neq 0$. If this is not the case, we say that the root is **non-simple**.

Fixed Points and Contraction Mappings

Definition (fixed point iteration)

Suppose $-\infty < a < b < \infty$, $g \in C([a,b])$, and $g(x) \in [a,b]$, for all $x \in [a,b]$. In other words, $g([a,b]) \subseteq [a,b]$. Given $x_0 \in [a,b]$, the algorithm for constructing the recursive sequence $\{x_k\}_{k=0}^{\infty}$ via

$$x_{k+1}=g(x_k), \quad k\geq 0, \tag{2}$$

is called a simple iteration scheme or, sometimes, a fixed point iteration scheme.

Convergence to a Fixed Point

The following fact follows easily from continuity.

Proposition (fixed point)

Suppose $-\infty < a < b < \infty$, $g \in C([a, b])$, and $g([a, b]) \subseteq [a, b]$. Assume that the sequence $\{x_k\}_{k=0}^{\infty}$ obtained by a simple iteration scheme converges to a limit $\xi \in [a, b]$. Then ξ is a fixed point of g, that is, $g(\xi) = \xi$.

Proof.

Indeed, by continuity

$$g(\xi) = g\left(\lim_{k \to \infty} x_k\right) = \lim_{k \to \infty} g(x_k) = \lim_{k \to \infty} x_{k+1} = \xi.$$

Theorem (existence)

Suppose $-\infty < a < b < \infty$, $g \in C([a, b])$, and $g([a, b]) \subseteq [a, b]$. Then, there exists at least one fixed point $\xi \in [a, b]$ of g.

Proof.

Define

$$f(x) = x - g(x), \quad \forall \ x \in [a, b].$$

Then, since $g([a, b]) \subseteq [a, b]$,

$$f(b) = b - g(b) \ge 0$$
 and $f(a) = a - g(a) \le 0$.

By the Intermediate Value Theorem, since $f(a) \le 0 \le f(b)$, there is a point $\xi \in [a, b]$, such that $f(\xi) = 0$. For this point $\xi = g(\xi)$.

Contractions

Definition (contraction)

Suppose $-\infty < a < b < \infty$ and $g \in C([a, b])$. We say that g is **Lipschitz continuous** on [a, b] iff there exists a constant L > 0 such that

$$|g(x)-g(y)| \le L|x-y|, \quad \forall x,y \in [a,b],$$

and the associated L is called the Lipschitz constant. The function g is called a contraction on [a, b] iff it is Lipschitz on [a, b] and its associated Lipschitz constant, L, satisfies $L \in (0, 1)$.

Proposition (translation)

Fixed Points and Contraction Mappings 000000000000000000

> Let $-\infty < a < b < \infty$ and $g \in C([a, b])$ be a contraction on [a, b]. There is a constant $m \in \mathbb{R}$ such that the function $\tilde{g} : [a, b] \to \mathbb{R}$, where

$$\tilde{g}(x) = g(x) + m, \quad \forall x \in [a, b],$$

is a contraction on [a, b] and, moreover, $\tilde{g}([a, b]) \subseteq [a, b]$.

Proof.

A homework exercise

Uniqueness of and Convergence to the Fixed Point

Theorem (uniqueness)

Suppose $-\infty < a < b < \infty$, $g \in C([a,b])$, and $g([a,b]) \subseteq [a,b]$. If g is a contraction on [a,b], then g has a unique fixed point $\xi \in [a,b]$. Furthermore, the sequence $\{x_k\}_{k=0}^{\infty}$ generated by (2) converges to ξ for any starting value $x_0 \in [a,b]$.

Proof.

The previous theorem guarantees the existence of at least one fixed point $\xi \in [a,b]$. Suppose $\eta \in [a,b]$ is another fixed point. Since g is a contraction

$$|\xi - \eta| = |g(\xi) - g(\eta)| \le L|\xi - \eta|.$$

Therefore

$$0 \leq (1-L)|\xi-\eta| \leq 0,$$

which proves that $\xi = \eta$. Hence the fixed point $\xi \in [a, b]$ is unique.

Fixed Points and Contraction Mappings 00000000000000000

Now, suppose that $\{x_k\}_{k=0}^{\infty}$ is generated by (2) for $x_0 \in [a, b]$. Then

$$|\xi - x_k| = |g(\xi) - g(x_{k-1})| \le L|\xi - x_{k-1}|.$$

By induction, for any $k \in \mathbb{N}$,

$$|\xi-x_k|\leq L^k|\xi-x_0|.$$

By the Squeeze Theorem, since $L \in (0, 1)$, we must have $x_k \to \xi$.

Local At Least Linear Convergence

Theorem (local (at least linear) convergence)

Suppose $-\infty < a < b < \infty$, $g \in C([a,b])$, and $g([a,b]) \subseteq [a,b]$. Let $\xi \in [a,b]$ be a fixed point of g, that is, $\xi = g(\xi)$. Suppose that there is a constant $\delta > 0$, such that $l_{\delta} = (\xi - \delta, \xi + \delta) \subset [a,b]$, $g \in C^1(l_{\delta})$, and $|g'(\xi)| < 1$. Then the sequence $\{x_k\}_{k=0}^{\infty}$ generated by (2) converges at least linearly to ξ , provided x_0 is sufficiently close to ξ .

Proof.

Suppose that $\xi \in (a, b)$, that is, ξ is in the interior of the set [a, b]. The reader can examine the other cases. Since $|g'(\xi)| < 1$, there is an $h \in (0, \delta)$ and an $L \in (0, 1)$ such that, for all $x \in I_h = (\xi - h, \xi + h)$,

$$|g'(x)| \le L < 1.$$

The proof of this last fact is left to the reader as an exercise.

Fixed Points and Contraction Mappings 00000000000000000

Suppose that $x_k \in I_h$. Then, using the Mean Value Theorem,

$$|\xi - x_{k+1}| = |g(\xi) - g(x_k)| = |g'(\eta_k)| \cdot |\xi - x_k| \le L|\xi - x_k|,$$

for some $\eta_k \in I_h$ between ξ and x_k . This proves that, if $x_k \in I_h$, then $x_{k+1} \in I_h$. Using induction, if $x_0 \in I_h$,

$$|\xi-x_k|\leq L^k|\xi-x_0|.$$

By the squeeze theorem, since $L^k \to 0$, as $k \to \infty$, we have $x_k \to \xi$, as $k \to \infty$. Furthermore, the convergence is at least linear.

What do we mean by a rate of convergence?

Definition

Let $d \in \mathbb{N}$, and suppose that the sequence $\{\mathbf{x}_k\}_{k=1}^{\infty} \subset \mathbb{C}^d$ converges to the point $\boldsymbol{\xi} \in \mathbb{C}^d$, i.e., $\boldsymbol{\xi} = \lim_{k \to \infty} \mathbf{x}_k$. We say that \mathbf{x}_k converges to $\boldsymbol{\xi}$ at least linearly iff there exists a sequence of positive real numbers $\{\varepsilon_k\}_{k=1}^{\infty}$ that converges to 0 and a real number $\mu \in (0,1)$ such that

$$\|\mathbf{x}_k - \boldsymbol{\xi}\|_2 \le \varepsilon_k, \ \forall k \in \mathbb{N}, \qquad \lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k} = \mu.$$
 (3)

If (3) holds with $\|\mathbf{x}_k - \boldsymbol{\xi}\|_2 = \varepsilon_k$, for k = 1, 2, ..., we say that \mathbf{x}_k converges to $\boldsymbol{\xi}$ linearly, or exactly linearly.

Order q > 1 Convergence, Quadratic and Cubic Convergence

Definition

Let $d \in \mathbb{N}$, and suppose that the sequence $\{\mathbf{x}_k\}_{k=1}^{\infty} \subset \mathbb{C}^d$ converges to the point $\boldsymbol{\xi} \in \mathbb{C}^d$, i.e., $\boldsymbol{\xi} = \lim_{k \to \infty} \mathbf{x}_k$. We say that \mathbf{x}_k converges to $\boldsymbol{\xi}$ with at least order q, q > 1, iff there exists a sequence of positive real numbers $\{\varepsilon_k\}_{k=1}^{\infty}$ that converges to 0 and a real number $\mu > 0$ such that

$$\|\mathbf{x}_{k} - \boldsymbol{\xi}\|_{2} \le \varepsilon_{k}, \ \forall k \in \mathbb{N}, \qquad \lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_{k}^{q}} = \mu.$$
 (4)

If (4) holds with $\|\mathbf{x}_k - \boldsymbol{\xi}\|_2 = \varepsilon_k$, for k = 1, 2, ..., we say that \mathbf{x}_k converges to $\boldsymbol{\xi}$ with order q, or with exactly order q. In particular, if q = 2, we say that \mathbf{x}_k converges to $\boldsymbol{\xi}$ quadratically. If q = 3, we say that \mathbf{x}_k converges to $\boldsymbol{\xi}$ cubically.

Fixed Points and Contraction Mappings

Definition (relaxation)

Let $I \subseteq \mathbb{R}$ be an interval, $f \in C(I)$, and $x_0 \in I$ be given. The **relaxation method** is an algorithm for computing the terms of the sequence $\{x_k\}_{k=0}^{\infty}$ via the recursive formula

$$x_{k+1} = x_k - \lambda f(x_k), \tag{5}$$

where $\lambda \neq 0$. The method is **well-defined** iff $x_k \in I$ for all $k = 1, 2, 3, \ldots$, and the relaxation method **converges** iff there is a $\xi \in I$, with $f(\xi) = 0$, such that $x_k \to \xi$, as $k \to \infty$.

Theorem (convergence)

Let $I \subset \mathbb{R}$ be an interval. Suppose that $f: I \to \mathbb{R}$ and, for some $\xi \in I$, $f(\xi) = 0$, but $f'(\xi) \neq 0$. Assume that, for some $\delta > 0$, $f \in C^1(I_\delta)$, where $I_\delta = [\xi - \delta, \xi + \delta] \subseteq I$. Then, there exists positive real numbers λ and $h \in (0, \delta)$ such that the sequence $\{x_k\}_{k=0}^{\infty}$ defined by the relaxation scheme (5) converges to ξ for any $x_0 \in I_h = [\xi - h, \xi + h]$.

Proof.

Suppose that $f'(\xi) = \alpha > 0$. The case $\alpha < 0$ is analogous, and left to the reader. By continuity, we may assume that

$$0 < \frac{1}{2}\alpha \le f'(x) \le \frac{3}{2}\alpha, \quad \forall \ x \in I_{\delta}.$$

If this is not the case, we can just choose a smaller δ and redefine l_{δ} . Set

$$M = \max_{x \in I_{\delta}} f'(x).$$

Thus $\frac{1}{2}\alpha \leq M \leq \frac{3}{2}\alpha$. For any $\lambda > 0$, it follows that

$$1 - \lambda M \le 1 - \lambda f'(x) \le 1 - \frac{1}{2} \lambda \alpha, \quad \forall \ x \in \mathit{I}_{\delta}.$$

We now choose, if possible, $\lambda > 0$ such that

$$1 - \lambda M = -\theta$$
 and $1 - \frac{1}{2}\lambda \alpha = \theta$.

These equations are satisfied iff

$$\lambda M - 1 = 1 - \frac{1}{2}\lambda \alpha, \quad \theta = 1 - \frac{1}{2}\lambda \alpha$$

iff

$$\lambda = \frac{4}{2M + \alpha}, \quad \theta = \frac{2M - \alpha}{2M + \alpha}.$$

Now, define the iteration function g via

$$g(x) = x - \lambda f(x) = x - \frac{4f(x)}{2M + \alpha}.$$

Fixed Points and Contraction Mappings 00000000000000000

With q defined via

$$g(x) = x - \lambda f(x) = x - \frac{4f(x)}{2M + \alpha},$$

the next step is to show the following: there is a constant $\delta > 0$, such that $I_{\delta} = (\xi - \delta, \xi + \delta) \subset [a, b], g \in C^{1}(I_{\delta}), \text{ and } |g'(\xi)| < 1.$ If this holds, then a previous theorem guarantees that $x_k \to \xi$, provided x_0 is sufficiently close to ξ . The convergence is at least linear.

The Chord Method

Definition (chord method)

Let I = [a, b] be an interval and $x_0 \in I$. The sequence $\{x_k\}_{k=0}^{\infty}$ is obtained by the **chord method** iff is constructed via the relaxation method (5) with

$$\lambda = \frac{1}{\frac{f(b) - f(a)}{b - a}}.$$

Theorem (convergence)

Let $I = [a, b] \subset \mathbb{R}$ be an interval, and $f \in C^1([a, b])$ is such that it has a unique simple root $\xi \in [a, b]$. If b - a is sufficiently small, then the sequence $\{x_k\}_{k=1}^{\infty}$ obtained by the chord method converges linearly to ξ as $k \to \infty$.

Proof.

A homework exercise

Simplified Newton's Method

Definition (simplified Newton)

Let I be an interval and $x_0 \in I$ be such that $f'(x_0) \neq 0$. The sequence $\{x_k\}_{k=0}^{\infty}$ is obtained by simplified Newton's method if is constructed via the relaxation method (5) with

$$\lambda = \frac{1}{f'(x_0)}.$$

Proposition (convergence)

Let $I \subset \mathbb{R}$ be an interval, and let $f \in C(I)$ be such that there is $\xi \in I$ for which $f(\xi) = 0$. Define, for $\delta > 0$, $I_{\delta} = [\xi - \delta, \xi + \delta] \subseteq I$ and assume that there is $\delta > 0$ such that $f \in C^1(I_{\delta})$. Finally, assume that $f'(\xi) = \alpha > 0$. Then, simplified Newton' method converges linearly to ξ .

Proof.

A homework exercise. We'll come back to this method later.

Newton's Method in One Space Dimension

Newton's Method (The Big Gun)

Definition (Newton's method)

Let $I \subseteq \mathbb{R}$ be an interval, $f \in C^1(I)$, and $x_0 \in I$, with $f'(x_0) \neq 0$, be given. **Newton's method** is an algorithm for computing the terms of the sequence $\{x_k\}_{k=0}^{\infty}$ via the recursive formula

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$
 (6)

We say that the method is **well-defined** iff $x_k \in I$ and $f'(x_k) \neq 0$, for all $k = 1, 2, 3, \ldots$ We say that Newton's method **converges** iff there is a $\xi \in I$, with $f(\xi) = 0$, such that $x_k \to \xi$, as $k \to \infty$.

At Least Linear Convergence

Proposition (linear convergence)

Let $I \subseteq \mathbb{R}$ be an interval and $f \in C^2(I)$ with $|f'(x)| \ge \alpha > 0$, for all $x \in I$. Assume that there is $\xi \in I$ for which $f(\xi) = 0$. There is a constant h > 0, such that, if $x_0 \in I$ and $|x_0 - \xi| < h$, then Newton's method converges at least linearly to ξ .

Proof.

For this proof, let us apply the theory of fixed iterations to the function

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Notice that, since $f \in C^2(I)$, then

$$g'(x) = \frac{f(x)f''(x)}{[f'(x)]^2} \quad \Longrightarrow \quad g'(\xi) = 0.$$

Thus, by continuity, there is a constant $\delta > 0$, such that, if $x \in I_{\delta} = [\xi - \delta, \xi + \delta]$, then

$$|g'(x)|<1.$$

In addition notice that, by Taylor's Theorem we have, for any $x \in I$,

$$0 = f(\xi) = f(x) + f'(x)(\xi - x) + \frac{1}{2}f''(\eta)(\xi - x)^{2},$$

for some η between x and ξ . Let us define

$$A = \frac{\max_{x \in I} |f''(x)|}{\alpha}, \quad h = \min \left\{ \delta, \frac{1}{A} \right\}.$$

Then, for any $x \in I_h = [\xi - h, \xi + h]$, we have |g'(x)| < 1 and

$$|g(x) - \xi| = \left| x - \xi - \frac{f(x)}{f'(x)} \right| = \frac{1}{2} \left| \frac{f''(\eta)}{f'(x)} (x - \xi)^2 \right| \le \frac{1}{2} A h^2 \le \frac{1}{2} h,$$

so that $g(x) \in I_h$. We conclude the (at least linear) convergence of the fixed point iteration.

Quadratic Convergence

Theorem (quadratic convergence)

Let $I \subset \mathbb{R}$ be an interval. Suppose that $f: I \to \mathbb{R}$ and, for some $\xi \in I$, $f(\xi) = 0$, but $f'(\xi) \neq 0$ and $f''(\xi) \neq 0$. Assume that, for some $\delta > 0$, $f \in C^2(I_\delta)$, where $I_\delta = [\xi - \delta, \xi + \delta] \subseteq I$, and $0 < \alpha \leq |f'(x)|$, for all $x \in I_\delta$. Set

$$A = \frac{\max_{x \in I_{\delta}} |f''(x)|}{\alpha} , \quad h = \min \left\{ \delta , \frac{1}{A} \right\}.$$
 (7)

If $|\xi - x_0| \le h$, then the sequence $\{x_k\}_{k=0}^{\infty}$ defined by Newton's method (6) converges quadratically, as $k \to \infty$, to the root ξ .

Proof.

(Well-possedness): Suppose that $x_k \in I_\delta$. Then, by Taylor's Theorem,

$$0 = f(\xi) = f(x_k) + (\xi - x_k)f'(x_k) + \frac{(\xi - x_k)^2}{2}f''(\eta_k),$$

for some η_k between x_k and ξ .

Note that $f'(x_k) \neq 0$, and we have, using Equation (6) (the definition of Newton's method),

$$x_{k+1} - \xi = \frac{(\xi - x_k)^2 f''(\eta_k)}{2f'(x_k)}.$$
 (8)

This is the fundamental error equation for Newton's method, and is the key to our analysis. Now, if $x_k \in I_h = [\xi - h, \xi + h]$,

$$|\xi - x_{k+1}| = \frac{1}{2} \frac{|f''(\eta_k)|}{|f'(x_k)|} \cdot |\xi - x_k| \cdot |\xi - x_k| \le \frac{A}{2} \cdot h \cdot |\xi - x_k| \le \frac{1}{2} |\xi - x_k|,$$

and $x_{k+1} \in I_h$ as well. The algorithm is, therefore, well-defined, since $x_{k+1} \in I_h$ and $f'(x_{k+1}) \neq 0$.

(Linear convergence): By induction, it is clear from the contraction estimate that

$$|\xi-x_k|\leq \frac{h}{2^k},$$

which proves that the sequence converges to the root ξ as $k \to \infty$, at least linearly.

(Quadratic convergence): From (8) we obtain

$$\frac{|\xi - x_{k+1}|}{|\xi - x_k|^2} = \frac{1}{2} \frac{|f''(\eta_k)|}{|f'(x_k)|}.$$

Since $x_k \to \xi$, by the Squeeze Theorem, $\eta_k \to \xi$ as $k \to \infty$ as well. Passing to limits, we have

$$\lim_{k \to \infty} \frac{|\xi - x_{k+1}|}{|\xi - x_k|^2} = \frac{1}{2} \frac{|f''(\xi)|}{|f'(\xi)|} = \sigma \in (0, \infty),$$

which establishes quadratic convergence.

Global Convergence

Theorem (global convergence)

Let $[a,b] \subset \mathbb{R}$ be an interval and $f \in C^2([a,b])$ be such that, for some $\xi \in [a,b]$, $f(\xi)=0$. Assume further that f' and f'' are strictly positive on the interval [a,b]. For any starting value $x_0 \in (\xi,b]$, the sequence $\{x_k\}_{k=0}^{\infty}$ defined by Newton's method (6) converges quadratically to the root ξ as $k \to \infty$. Moreover, $x_k > \xi$, for all $k \in \mathbb{N}$.

Proof.

Since f is monotonically increasing on [a,b], ξ is the only root in [a,b]. Otherwise, by Rolle's Theorem, one could find a point where f' is zero, contradicting the assumptions. Also note that f(x) > 0 for all $x \in (\xi,b]$, and, likewise, f(x) < 0 for all $x \in [a,\xi)$.

Assume that $x_k > \xi$. Employing Newton's method (6), and using the positivity of $f(x_k)$ and $f'(x_k)$ we immediately obtain that

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} < x_k.$$

Furthermore, from the error equation,

$$x_{k+1} - \xi = \frac{(\xi - x_k)^2 f''(\eta_k)}{2f'(x_k)},\tag{9}$$

using the positivity of $f''(\eta_k)$ and $f'(x_k)$, we find out that $\xi - x_{k+1} < 0$. In other words, $\xi < x_{k+1} < x_k$. Thus, $\{x_k\}_{k=0}^{\infty}$ is a bounded, monotonically decreasing sequence in [a, b]. By the Monotone Convergence Theorem, it must therefore have a limit point in [a, b], call it η , as $k \to \infty$. But, this limit must be a fixed point of the function

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Therefore, $f(\eta) = 0$. But since ξ is the unique root of f in [a, b], it must be that $\xi = \eta$. This shows that $x_k \to \xi$ as $k \to \infty$. Quadratic convergence follows as in the proof of the last theorem.

Let us use Newton's method to compute the square root of a positive real number. Suppose that we want to compute $\sqrt{5}$. Define $f(x) = x^2 - 5$. There are two solutions to f(x) = 0, namely $\xi_{\pm} = \pm \sqrt{5}$. Let us pick $x_0 = 5$. The last theorem guarantees that this is a suitable choice if we want to compute the zero $\xi_{+} = \sqrt{5}$. The sequence of approximations for Newton's method is defined by

$$X_{k+1} = X_k - \frac{X_k^2 - 5}{2X_k}, \quad k = 0, 1, \dots$$
 (10)

Below, the correct digits are indicated using boldface.

k	X_k
0	5.0000000000000000
1	3.000000000000000
2	2 .33333333333333
3	2.23 8095238095238
4	2.23606 8895643363
5	2.236067977499 978
6	2.236067977499790

Example (Cont.)

This example illustrates an empirical fact that is a consequence of quadratic convergence: Newton's method doubles the number of correct digits with each iteration. A partial explanation for this fact is as follows: From the proof of the convergence theorem we see that

$$|\xi - x_{k+1}| \le C|\xi - x_k|^2$$
,

so that, by taking base-10 logarithms (which essentially counts the number of correct digits) we have

$$\log_{10} |\xi - x_{k+1}| \le 2 \log_{10} |\xi - x_k| + \log_{10} C.$$

Example

Define $f:[1,5]\to\mathbb{R}$ via $f(x)=(x-3)^3$. Observe that, for this simple example, $\xi = 3$ is a non-simple root, i.e., f(3) = f'(3) = f''(3) = 0, which is something that the theory (up to this point) cannot handle. Nevertheless, Newton's method will still work. In particular, if Newton's method is employed with the starting point $x_0 = 4$ to approximate the root $\xi = 3$, then one can show directly that the convergence is exactly linear.

Reduced Convergence Rate for Non-Simple Roots

Theorem (non-simple roots)

Let $m \ge 2$ be a positive integer and I be a closed and bounded interval. Suppose that $f \in C^m(I)$, is such that there is $\xi \in I$, for which

$$f(\xi) = f'(\xi) = \cdots = f^{(m-1)}(\xi) = 0,$$

but $f^{(m)}(\xi) \neq 0$. If $|\xi - x_0|$ is sufficiently small, the sequence $\{x_k\}_{k=0}^{\infty}$ defined by Newton's method (6) is well–defined and converges to ξ exactly linearly with

$$\lim_{k \to \infty} \frac{|x_{k+1} - \xi|}{|x_k - \xi|} = \frac{m - 1}{m} = \sigma \in (0, 1).$$

Proof.

We give a sketch of the proof. The details of well-definedness and convergence, in particular, are left for an exercise.

By Taylor's Theorem

$$f(x_k) = f(\xi) + f'(\xi)(x_k - \xi) + \dots + f^{(m-1)}(\xi) \frac{(x_k - \xi)^{m-1}}{(m-1)!} + f^{(m)}(\eta_k) \frac{(x_k - \xi)^m}{m!}$$

= $f^{(m)}(\eta_k) \frac{(x_k - \xi)^m}{m!}$,

for some η_k between x_k and ξ . Another application of Taylor's Theorem gives

$$f'(x_k) = f'(\xi) + f''(\xi)(x_k - \xi) + \dots + f^{(m-1)}(\xi) \frac{(x_k - \xi)^{m-2}}{(m-2)!}$$

$$+ f^{(m)}(\zeta_k) \frac{(x_k - \xi)^{m-1}}{(m-1)!}$$

$$= f^{(m)}(\zeta_k) \frac{(x_k - \xi)^{m-1}}{(m-1)!},$$

for some ζ_{k} between x_{k} and ξ .

Thus, assuming $x_k \neq \xi$,

$$x_{k+1} - \xi = x_k - \xi - \frac{f(x_k)}{f'(x_k)} = x_k - \xi - \frac{f^{(m)}(\eta_k) \frac{(x_k - \xi)^m}{m!}}{f^{(m)}(\zeta_k) \frac{(x_k - \xi)^{m-1}}{(m-1)!}},$$

or

$$\frac{x_{k+1} - \xi}{x_k - \xi} = 1 - \frac{f^{(m)}(\eta_k)}{m \cdot f^{(m)}(\zeta_k)}.$$

Since n_k , $\zeta_k \to \xi$ as $k \to \infty$.

$$\lim_{k \to \infty} \frac{x_{k+1} - \xi}{x_k - \xi} = 1 - \frac{1}{m} = \frac{m-1}{m}.$$

Quasi-Newton Methods

Simplified Newton's Method

Recall, this method is defined by

$$x_{k+1}=x_k-\frac{f(x_k)}{f'(x_0)}.$$

Theorem (convergence)

Let $I \subseteq \mathbb{R}$ be an interval. Assume that $f \in C(I)$ is such that there is an $\xi \in I$ for which $f(\xi) = 0$, but $f'(\xi) \neq 0$ and $f''(\xi) \neq 0$. Set, for $\delta > 0$, $I_{\delta} = [\xi - \delta, \xi + \delta] \subseteq I$ and assume that for some $\delta > 0$, $f \in C^{2}(I_{\delta})$, and $0 < \alpha \leq |f'(x)|$, for all $x \in I_{\delta}$. Set

$$A = \frac{\max_{x \in I_{\delta}} |f''(x)|}{\alpha}, \quad h = \min \left\{ \delta, \frac{1}{3A} \right\}. \tag{11}$$

If $|\xi - x_0| \le h$, then the sequence $\{x_k\}_{k=0}^{\infty}$ defined by the simplified Newton's method converges linearly to the zero ξ of f as $k \to \infty$.

Proof of Convergence of Simplified Newton's Method.

Suppose $x_0, x_k \in [\xi - h, \xi + h]$. Then we have

$$x_{k+1} - \xi = \frac{1}{f'(x_0)} \Big[f'(x_0) (x_k - \xi) - f(x_k) \Big]$$

=
$$\frac{1}{f'(x_0)} \Big[(f'(x_0) - f'(\xi)) (x_k - \xi) - f(x_k) + f'(\xi) (x_k - \xi) \Big] .$$

By the Mean Value Theorem, there is $\beta \in [\xi - h, \xi + h]$ between x_0 and ξ for which

$$f''(\beta)(x_0 - \xi) = f'(x_0) - f'(\xi).$$

Furthermore, for some $\eta_k \in [\xi - h, \xi + h]$ between ξ and x_k , we have

$$f(x_k) = f(\xi) + f'(\xi)(x_k - \xi) + \frac{f''(\eta_k)}{2}(x_k - \xi)^2$$

from Taylor's Theorem. Rearranging terms and using $f(\xi) = 0$ yields

$$-f(x_k) + f'(\xi)(x_k - \xi) = -\frac{f''(\eta_k)}{2}(x_k - \xi)^2.$$

Putting things together, we find

$$x_{k+1} - \xi = \frac{1}{f'(x_0)} \left[f''(\beta)(x_0 - \xi)(x_k - \xi) - \frac{f''(\eta_k)}{2}(x_k - \xi)^2 \right]$$
$$= \frac{1}{f'(x_0)} \left[f''(\beta)(x_0 - \xi) - \frac{f''(\eta_k)}{2}(x_k - \xi) \right] (x_k - \xi).$$

Taking absolute values,

$$|x_{k+1} - \xi| = \frac{1}{|f'(x_0)|} \left| f''(\beta)(x_0 - \xi) - \frac{f''(\eta_k)}{2} (x_k - \xi) \right| \cdot |x_k - \xi|$$

$$\leq \frac{1}{|f'(x_0)|} \left(|f''(\beta)| \cdot |x_0 - \xi| + \frac{1}{2} |f''(\eta_k)| \cdot |x_k - \xi| \right) |x_k - \xi|$$

$$\leq \left(A|x_0 - \xi| + \frac{1}{2} |x_k - \xi|A \right) |x_k - \xi|$$

$$\leq \left(A \cdot \frac{1}{3A} + \frac{1}{2} \frac{1}{3A} A \right) |x_k - \xi|$$

$$= \frac{1}{2} |x_k - \xi|.$$

Hence $x_{k+1} \in [\xi - h, \xi + h]$, for any $k \in \mathbb{N}$, as long as $x_0, x_k \in [\xi - h, \xi + h]$. The simplified Newton algorithm is well-defined. Furthermore, it is clear that

Quasi-Newton Methods 0000000000000000

$$|x_k-\xi|\leq \frac{h}{2^k},$$

which proves that $x_k \to \xi$ as $k \to \infty$.

The convergence is exactly linear, as can be seen from the error equation:

$$\lim_{k \to \infty} \frac{|x_{k+1} - \xi|}{|x_k - \xi|} = \frac{|f''(\beta)| \cdot |x_0 - \xi|}{|f'(x_0)|} = \mu.$$

By our assumptions $0 < \mu < 1/3 < 1$.

Steffensen's Method

Definition (Steffensen's method)

Let $I \subseteq \mathbb{R}$ be an interval, $f \in C(I)$, and $x_0 \in I$. **Steffensen's method** is an algorithm for computing the terms of the sequence $\{x_k\}_{k=0}^{\infty}$ via

$$x_{k+1} = x_k - \frac{f(x_k)}{s_k}, \quad s_k = \frac{f(x_k + f(x_k)) - f(x_k)}{f(x_k)}.$$

We say that this method is **well-defined** iff $x_0 \in I$ implies $x_k \in I$ for all $k=1,2,\ldots$ We say that this method **converges** iff there is $\xi\in I$, with $f(\xi) = 0$, such that $x_k \to \xi$ as $k \to \infty$.

Theorem (Convergence of Steffensen's Method)

Let $I \subseteq \mathbb{R}$ be an interval, and $f \in C(I)$ be such that, for some $\xi \in I$, $f(\xi) = 0$. Define, for $\delta > 0$, $l_{\delta} = [\xi - \delta, \xi + \delta] \subseteq I$. Assume that there is $\delta > 0$ for which $f \in C^2(l_\delta)$, $f'(\xi) \neq 0$, and $f''(\xi) \neq 0$. If $|\xi - x_0|$ is sufficiently small, then the sequence $\{x_k\}_{k=0}^{\infty}$ defined by Steffensen's method is well-defined and converges quadratically to the zero ξ as $k \to \infty$.

Proof.

See the textbook.

Two-Step Newton's Method

Definition (two-step Newton)

Let $I \subseteq \mathbb{R}$ be an interval, and $f \in C^1(I)$. For $x_0 \in I$, with $f'(x_0) \neq 0$, the sequence $\{x_k\}_{k=0}^{\infty}$ defined by

$$y_k = x_k - \frac{f(x_k)}{f'(x_k)}, \qquad x_{k+1} = y_k - \frac{f(y_k)}{f'(x_k)},$$
 (12)

is called the **two-step Newton's** method. We say that the method is **well-defined** if $x_k \in I$, and $f'(x_k) \neq 0$ for all $k \geq 0$. We say that the method **converges** if there is $\xi \in I$ such that $f(\xi) = 0$ and $x_k \to \xi$ as $k \to \infty$.

Theorem (Convergence of Two-Step Newton's Method)

Let $I \subseteq \mathbb{R}$ be an interval, $f \in C(I)$ is such that there is $\xi \in I$ for which $f(\xi) = 0$, but $f'(\xi) \neq 0$, and $f''(\xi) \neq 0$. Set, for $\delta > 0$, $l_{\delta} = [\xi - \delta, \xi + \delta] \subset I$ and assume there is $\delta > 0$ for which $f \in C^2(I_{\delta})$, and $0 < \alpha < |f'(x)|$ for all $x \in I_{\delta}$. Set

$$A = \frac{\max_{x \in I_{\delta}} |f''(x)|}{\alpha}, \quad h = \min \left\{ \delta, \frac{1}{A} \right\}.$$

If $|\xi - x_0| < h$, then the sequence $\{x_k\}_{k=0}^{\infty}$ defined by the two–step Newton's method, converges exactly cubically to the zero ξ as $k \to \infty$.

Proof.

Suppose $x_k \in [\xi - h, \xi + h] \subset I_{\delta}$. Then by Taylor's Theorem

$$0 = f(\xi) = f(x_k) + f'(x_k)(\xi - x_k) + \frac{f''(\eta_k)}{2}(\xi - x_k)^2,$$

for some η_k between x_k and ξ .

Note that $f'(x_k) \neq 0$ and, using the first equation in (12), we have that

$$\xi - y_k = -\frac{(\xi - x_k)^2}{2} \frac{f''(\eta_k)}{f'(x_k)} . \tag{13}$$

Hence

$$|\xi - y_k| = \frac{1}{2} \frac{|f''(\eta_k)|}{|f'(x_k)|} \cdot |\xi - x_k| \cdot |\xi - x_k| \le \frac{A}{2} \cdot h \cdot |\xi - x_k| \le \frac{1}{2} |\xi - x_k| \le \frac{h}{2}.$$

We can conclude that if $x_k \in [\xi - h, \xi + h]$ then $y_k \in [\xi - h, \xi + h]$ as well. Now, using the second equation in (12), we have

$$x_{k+1} - \xi = \frac{1}{f'(x_k)} \Big[f'(x_k) (y_k - \xi) - f(y_k) \Big]$$

= $\frac{1}{f'(x_k)} \Big[(f'(x_k) - f'(\xi)) (y_k - \xi) - f(y_k) + f'(\xi) (y_k - \xi) \Big].$

By the Mean Value Theorem, there is $\beta_k \in [\xi - h, \xi + h]$ between x_k and ξ for which

Quasi-Newton Methods 00000000000000000

$$f''(\beta_k)(x_k - \xi) = f'(x_k) - f'(\xi).$$

Furthermore, for some $\gamma_k \in [\xi - h, \xi + h]$ between ξ and γ_k , we have

$$f(y_k) = f(\xi) + f'(\xi)(y_k - \xi) + \frac{f''(\gamma_k)}{2}(y_k - \xi)^2$$

from Taylor's Theorem. Rearranging terms and using $f(\xi) = 0$ yields

$$-f(y_k) + f'(\xi)(y_k - \xi) = -\frac{f''(\gamma_k)}{2}(y_k - \xi)^2.$$

Putting things together, we find

$$x_{k+1} - \xi = \frac{1}{f'(x_k)} \left[f''(\beta_k)(x_k - \xi)(y_k - \xi) - \frac{f''(\gamma_k)}{2}(y_k - \xi)^2 \right]. \tag{14}$$

Taking absolute values

$$|x_{k+1} - \xi| = \frac{1}{|f'(x_k)|} \left| f''(\beta_k) (x_k - \xi) (y_k - \xi) - \frac{f''(\gamma_k)}{2} (y_k - \xi)^2 \right|$$

$$\leq A|x_k - \xi| \cdot |y_k - \xi| + \frac{1}{2} |y_k - \xi| \cdot |y_k - \xi| A$$

$$\leq A|x_k - \xi| \frac{h}{2} + \frac{1}{2} \cdot \frac{h}{2} \cdot \frac{1}{2} |x_k - \xi| A$$

$$\leq \frac{1}{2} |x_k - \xi| + \frac{1}{8} |x_k - \xi|$$

$$= \frac{5}{8} |x_k - \xi|.$$

We can conclude that if $x_k \in [\xi - h, \xi + h]$ then $x_{k+1} \in [\xi - h, \xi + h]$ as well. More importantly, we see by induction that

$$|\xi-x_k|\leq \left(\frac{5}{8}\right)^k h,$$

which proves that $x_k \to \xi$ as $k \to \infty$. Using this fact, it is easy to see that y_k , β_k , γ_k , $\eta_k \to \xi$ as $k \to \infty$ as well.

Now, using (14) we see that

$$\frac{x_{k+1} - \xi}{(x_k - \xi)(y_k - \xi)} = \frac{f''(\beta_k)}{f'(x_k)} - \frac{(y_k - \xi)}{2(x_k - \xi)} \frac{f''(\gamma_k)}{f'(x_k)}.$$

Quasi-Newton Methods 000000000000000000

Making use of (13)

$$\frac{(x_{k+1}-\xi)}{(x_k-\xi)^3} = \frac{f''(\beta_k)f''(\eta_k)}{2(f'(x_k))^2} - \frac{1}{8}(x_k-\xi)\frac{(f''(\eta_k))^2}{(f'(x_k))^2}\frac{f''(\gamma_k)}{f'(x_k)}.$$

Taking limits, we have

$$\lim_{k\to\infty}\frac{|x_{k+1}-\xi|}{|x_k-\xi|^3}=\frac{1}{2}\left|\frac{f''(\xi)}{f'(\xi)}\right|^2=\sigma\in(0,\infty).$$

This shows that the convergence is exactly cubic.

Secant Method

Definition (secant method)

Let $I \subseteq \mathbb{R}$ be an interval, $f \in C(I)$, and $x_0 \in I$. **secant method** is an algorithm for computing the terms of the sequence $\{x_k\}_{k=0}^{\infty}$ via

$$x_{k+1} = x_k - \frac{f(x_k)}{s_k}, \quad s_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}, \quad k \ge 1,$$
 (15)

We say that this method is **well-defined** iff $x_0, x_1 \in I$ implies $x_k \in I$ for all $k = 2, 3, \ldots$ We say that this method **converges** iff there is $\xi \in I$, with $f(\xi) = 0$, such that $x_k \to \xi$ as $k \to \infty$.

Theorem (Convergence of the Secant Method)

Let $I \subseteq \mathbb{R}$ be an interval, and $f \in C(I)$ be such that there is $\xi \in I$ for which $f(\xi) = 0$. Set, for $\delta > 0$, $I_{\delta} = [\xi - \delta, \xi + \delta] \subset I$ and assume there is $\delta > 0$ for which $f \in C^1(I_{\delta})$ and, for simplicity, $f'(\xi) > 0$. The sequence $\{x_k\}_{k=0}^{\infty}$ defined by the secant method, converges (at least) linearly to the root ξ as $k \to \infty$, provided x_0 and x_1 are sufficiently close to ξ .

Proof.

Set $f'(\xi) = \alpha > 0$. By continuity there is no loss in generality in assuming that, for all $x \in I_{\delta}$.

$$0<\frac{3\alpha}{4}\leq f'(x)\leq \frac{5\alpha}{4}.$$

Suppose now that $x_k, x_{k-1} \in I_{\delta}$. By the Mean Value Theorem, there is η_k , between x_k and x_{k-1} , such that $s_k = f'(\eta_k)$. Then,

$$x_{k+1} - \xi = x_k - \xi - \frac{f(x_k)}{f'(\eta_k)}.$$

By Taylor's Theorem, there is a γ_k between x_k and ξ , such that

$$f(x_k) = f(\xi) + f'(\gamma_k)(x_k - \xi) = f'(\gamma_k)(x_k - \xi).$$

Thus,

$$x_{k+1} - \xi = x_k - \xi - \frac{f'(\gamma_k)(x_k - \xi)}{f'(\eta_k)} = (x_k - \xi) \left[1 - \frac{f'(\gamma_k)}{f'(\eta_k)} \right].$$

Since

$$-\frac{2}{3}\leq 1-\frac{f'(\gamma_k)}{f'(\eta_k)}\leq \frac{2}{5},$$

it follows that

$$|x_{k+1} - \xi| \le \frac{2}{3} |x_k - \xi|.$$

If $|x_0 - \xi| \le \delta$ and $|x_1 - \xi| \le \delta$ then, by induction, we see that for $k \ge 2$,

$$|x_k - \xi| \le \left(\frac{2}{3}\right)^{k-1} \delta.$$

This proves that $x_k \to \xi$ at least linearly.

Super-Linear Convergence of the Secant Method

Theorem (super-linear convergence)

Let $I \subseteq \mathbb{R}$ be an interval and $f \in C(I)$. In the setting of the previous theorem, assume, in addition, that $f \in C^2(I_\delta)$ and $f''(\xi) > 0$. Then, the sequence $\{x_k\}_{k=0}^{\infty}$ generated by the secant method converges to ξ at the rate $q = \frac{1+\sqrt{5}}{2}$.

Proof.

A homework exercise.

Newton's Method in Several Dimensions

Definition (Newton's method)

Suppose $d \in \mathbb{N}$, $\Omega \subseteq \mathbb{R}^d$ is an open, convex set, $\mathbf{x}_0 \in \Omega$ is given, and $\mathbf{f} \in C^1(\Omega; \mathbb{R}^d)$. Newton's method in d-dimensions is an algorithm for computing the terms of the sequence $\{\mathbf{x}_k\}_{k=0}^{\infty}$ via the recursive iteration

$$J_{\mathsf{f}}(\mathsf{x}_{k})(\mathsf{x}_{k+1}-\mathsf{x}_{k})=-\mathsf{f}(\mathsf{x}_{k}),\tag{16}$$

where J_f is the Jacobian matrix of \mathbf{f} . We say that the method is **well-defined** iff $\mathbf{x}_k \in \Omega$, and $J_f(\mathbf{x}_k)$ is non-singular, for all $k \in \mathbb{N}$. We say that Newton's method **converges** iff there is a $\boldsymbol{\xi} \in \Omega$, with $\mathbf{f}(\boldsymbol{\xi}) = \mathbf{0}$, such that $\mathbf{x}_k \to \boldsymbol{\xi}$, as $k \to \infty$.

Let $\boldsymbol{\xi} \in \mathbb{R}^d$ and r > 0 be given. Suppose that

$$\mathbf{f} \in C^2(\overline{B}(\boldsymbol{\xi}, r); \mathbb{R}^d),$$

 $f(\xi)=0$, and for every $\mathbf{x}\in\overline{B}(\xi,r)$ the Jacobian matrix $J_f(\mathbf{x})$ is invertible, with the estimate

$$\left\| \left[\mathsf{J}(\mathbf{x}) \right]^{-1} \right\|_{2} \leq \beta.$$

Then, the sequence $\{\mathbf{x}_k\}_{k=0}^{\infty}$ defined by Newton's method (16) converges (at least) quadratically to the root $\boldsymbol{\xi}$ as $k \to \infty$, provided \mathbf{x}_0 is sufficiently close to $\boldsymbol{\xi}$.

Proof.

By Taylor's Theorem, for each $i=1,\ldots,d$, there is a point $\eta_{k,i}\in B(\boldsymbol{\xi},r)$, such that,

$$0 = f_i(\boldsymbol{\xi}) = f_i(\mathbf{x}_k) + \nabla f_i(\mathbf{x}_k)^{\mathsf{T}} (\boldsymbol{\xi} - \mathbf{x}_k) + c_{k,i},$$

where $c_{k,i} = \frac{1}{2} (\boldsymbol{\xi} - \mathbf{x}_k)^\mathsf{T} H_i(\boldsymbol{\eta}_{k,i}) (\boldsymbol{\xi} - \mathbf{x}_k)$, and H_i is the Hessian matrix of f_i .

To simplify notation in the proof, let us set $\mathbf{c}_k = [c_{k,1}, \dots, c_{k,d}]^\mathsf{T}$, $\mathsf{J}_k = \mathsf{J}_\mathsf{f}(\mathbf{x}_k)$, and $H^{(k,i)} = H_i(\boldsymbol{\eta}_{k,i})$.

Using the definition of Newton's method together with our Taylor expansion, we get

$$\nabla f_i(\mathbf{x}_k)^{\mathsf{T}}(\mathbf{x}_{k+1}-\mathbf{x}_k) = -f_i(\mathbf{x}_k) = \nabla f_i(\mathbf{x}_k)^{\mathsf{T}}(\boldsymbol{\xi}-\mathbf{x}_k) + c_{k,i}$$

which simplifies to

$$\boldsymbol{\xi} - \mathbf{x}_{k+1} = -\mathsf{J}_k^{-1} \mathbf{c}_k.$$

Using the Cauchy-Schwarz and other basic inequalities,

$$\begin{split} \left\| J_{k}^{-1} \mathbf{c}_{k} \right\|_{2} &\leq \left\| J_{k}^{-1} \right\|_{2} \left\| \mathbf{c}_{k} \right\|_{2} \\ &\leq \beta \sqrt{\sum_{i=1}^{d} c_{k,i}^{2}} \\ &= \frac{\beta}{2} \sqrt{\sum_{i=1}^{d} \left| (\boldsymbol{\xi} - \mathbf{x}_{k})^{\mathsf{T}} \, \mathsf{H}^{(k,i)} \left(\boldsymbol{\xi} - \mathbf{x}_{k} \right) \right|^{2}} \\ &\leq \frac{\beta}{2} \sqrt{\sum_{i=1}^{d} \left\| \boldsymbol{\xi} - \mathbf{x}_{k} \right\|_{2}^{2} \left\| \mathsf{H}^{(k,i)} \left(\boldsymbol{\xi} - \mathbf{x}_{k} \right) \right\|_{2}^{2}} \\ &= \frac{\beta}{2} \left\| \boldsymbol{\xi} - \mathbf{x}_{k} \right\|_{2} \sqrt{\sum_{i=1}^{d} \left\| \mathsf{H}^{(k,i)} \left(\boldsymbol{\xi} - \mathbf{x}_{k} \right) \right\|_{2}^{2}}. \end{split}$$

$$\begin{split} \left\| \mathsf{H}^{(k,i)} \left(\boldsymbol{\xi} - \mathbf{x}_{k} \right) \right\|_{2}^{2} &= \sum_{j=1}^{d} \left| \sum_{m=1}^{d} \frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{m}} (\boldsymbol{\eta}_{k,i}) (\boldsymbol{\xi}_{m} - x_{k,m}) \right|^{2} \\ &\leq \sum_{j=1}^{d} \left[\sum_{m=1}^{d} \left| \frac{\partial^{2} f_{i}}{\partial x_{j} \partial x_{m}} (\boldsymbol{\eta}_{k,i}) \right|^{2} \| \boldsymbol{\xi} - \mathbf{x}_{k} \|_{2}^{2} \right] \\ &\leq \| \boldsymbol{\xi} - \mathbf{x}_{k} \|_{2}^{2} \sum_{j=1}^{d} \left[\sum_{m=1}^{d} A^{2} \right] \\ &= \| \boldsymbol{\xi} - \mathbf{x}_{k} \|_{2}^{2} A^{2} d^{2}, \end{split}$$

where A is a upper bound on the absolute values of the second derivatives of \mathbf{f} , which is available because $\mathbf{f} \in C^2\left(\overline{B}(\boldsymbol{\xi},r);\mathbb{R}^d\right)$. We finally get the fundamental error estimate:

$$\|\boldsymbol{\xi} - \mathbf{x}_{k+1}\|_2 \le \frac{\beta A d^{3/2}}{2} \|\boldsymbol{\xi} - \mathbf{x}_k\|_2^2.$$

Starting with the fundamental error estimate,

$$\|\boldsymbol{\xi} - \mathbf{x}_{k+1}\|_2 \le \frac{\beta A d^{3/2}}{2} \|\boldsymbol{\xi} - \mathbf{x}_k\|_2^2$$
,

if $\| \boldsymbol{\xi} - \mathbf{x}_0 \|_2 \le \frac{1}{GAd^{3/2}} = h$, then $\| \boldsymbol{\xi} - \mathbf{x}_1 \|_2 \le \frac{1}{2} \| \boldsymbol{\xi} - \mathbf{x}_0 \|_2$. By induction, it follows that

$$\|\boldsymbol{\xi} - \mathbf{x}_k\|_2 \le h\left(\frac{1}{2}\right)^{2^k-1} = \varepsilon_k.$$

Thus $\{\mathbf{x}_k\}_{k=0}^{\infty}$ is well–defined, $\mathbf{x}_k \to \boldsymbol{\xi}$, and the order is at least quadratic.

Theorem (Kantorovich Theorem)

Let $d \in \mathbb{N}$. Suppose that $\Omega \subset \mathbb{R}^d$ is an open, bounded, convex set, $\mathbf{x}_0 \in \Omega$, and $\mathbf{f} \in C^1(\overline{\Omega}; \mathbb{R}^d)$. Assume, additionally, with J_f denoting the Jacobian matrix of \mathbf{f} , that there is $\gamma > 0$ such that

$$\|J_f(\mathbf{x}) - J_f(\mathbf{y})\|_2 \le \gamma \|\mathbf{x} - \mathbf{y}\|_2$$
, $\forall \mathbf{x}, \mathbf{y} \in \Omega$.

Theorem (Kantorovich Theorem (Cont.))

Furthermore, let us assume the following:

1 For all $\mathbf{x} \in \Omega$, the Jacobian matrix $J_f(\mathbf{x})$ is invertible, and there is $\beta > 0$ such that

$$\left\| \left[J_f(\boldsymbol{x}) \right]^{-1} \right\|_2 \leq \beta, \quad \forall \boldsymbol{x} \in \Omega.$$

2 The initial iterate, $\mathbf{x}_0 \in \Omega$, satisfies

$$\left\| \left[\mathsf{J}_{\mathsf{f}}(\mathbf{x}_0) \right]^{-1} \mathbf{f}(\mathbf{x}_0) \right\|_2 \leq \alpha.$$

3 The parameters satisfy

$$h=\frac{\alpha\beta\gamma}{2}<1.$$

4 The initial iterate is well inside Ω , in the sense that

$$\overline{B}(\mathbf{x}_0, r) \subseteq \Omega$$
,

where
$$r = \frac{\alpha}{1-h}$$
.

Theorem (Kantorovich Theorem (Cont.))

In this setting, the sequence \mathbf{x}_k defined by Newton's method (16) is well-defined, and, in particular, $\mathbf{x}_k \in B(\mathbf{x}_0, r)$, for each $k \in \mathbb{N}$. Moreover, there exists a point $\xi \in \overline{B}(\mathbf{x}_0, r)$, such that $\lim_{k \to \infty} \mathbf{x}_k = \xi$, with the convergence estimate

$$\|\mathbf{x}_k - \boldsymbol{\xi}\|_2 \le \alpha \frac{h^{2^k - 1}}{1 - h^{2^k}}, \quad \forall k \in \mathbb{N}.$$

Since 0 < h < 1, convergence is at least quadratic. Finally, the point ξ is a zero of the function \mathbf{f} , that is $\mathbf{f}(\boldsymbol{\xi}) = \mathbf{0}$.

Proof.

We split the proof into several steps.

(1): Since $[J_f(\mathbf{x})]^{-1}$ exists for all $\mathbf{x} \in \Omega$, we will have that \mathbf{x}_{k+1} is defined if $\mathbf{x}_k \in B(\mathbf{x}_0, r).$

Suppose that, for all j = 0, 1, ..., k, $\mathbf{x}_j \in B(\mathbf{x}_0, r)$. Then,

$$\|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|_{2} = \|[\mathsf{J}_{\mathbf{f}}(\mathbf{x}_{k})]^{-1} \mathbf{f}(\mathbf{x}_{k})\|_{2}$$

$$\leq \|[\mathsf{J}(\mathbf{x}_{k})]^{-1}\|_{2} \|\mathbf{f}(\mathbf{x}_{k})\|_{2}$$

$$\leq \beta \|\mathbf{f}(\mathbf{x}_{k})\|_{2}$$

$$= \beta \|\mathbf{f}(\mathbf{x}_{k}) - \mathbf{f}(\mathbf{x}_{k-1}) - \mathsf{J}(\mathbf{x}_{k-1})(\mathbf{x}_{k} - \mathbf{x}_{k-1})\|_{2}$$

$$\leq \frac{\beta \gamma}{2} \|\mathbf{x}_{k} - \mathbf{x}_{k-1}\|_{2}^{2},$$
(17)

using the result of a theorem in the last step. We claim that (17) implies that, for all $k \ge 0$,

$$\|\mathbf{x}_{k+1} - \mathbf{x}_k\|_2 \le \alpha h^{2^k - 1}.$$
 (18)

The proof is by induction. The case k = 0 holds because of assumption 2:

$$\|\mathbf{x}_1 - \mathbf{x}_0\|_2 = \|[J_f(\mathbf{x}_0)]^{-1} \mathbf{f}(\mathbf{x}_0)\|_2 \le \alpha.$$

For the induction step we suppose that (18) is valid for k = j - 1:

$$\|\mathbf{x}_{j} - \mathbf{x}_{j-1}\|_{2} \leq \alpha h^{2^{j-1}-1}.$$

Let k = j now. Using (17) and the induction hypothesis,

$$\|\mathbf{x}_{j+1} - \mathbf{x}_{j}\|_{2} \leq \frac{\beta \gamma}{2} \|\mathbf{x}_{j} - \mathbf{x}_{j-1}\|_{2}^{2} \leq \frac{\beta \gamma}{2} \alpha^{2} \left(h^{2^{j-1}-1}\right)^{2} = \frac{\beta \gamma}{2} \alpha^{2} h^{2^{j}-2}$$
$$= \frac{\alpha \beta \gamma}{2} \alpha h^{2^{j}-2} = \alpha h^{2^{j}-1}.$$

Hence, estimate (18) follows by induction. Now, by the triangle inequality,

$$\|\mathbf{x}_{k+1} - \mathbf{x}_{0}\|_{2} \leq \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\|_{2} + \dots + \|\mathbf{x}_{1} - \mathbf{x}_{0}\|_{2}$$

$$\leq \alpha \left(1 + h + h^{3} + h^{7} + \dots + h^{2^{k}-1}\right)$$

$$< \alpha \left(1 + h + h^{2} + \dots\right)$$

$$= \frac{\alpha}{1 - h}$$

$$= r.$$

Thus, $\mathbf{x}_{k+1} \in B(\mathbf{x}_0, r)$. By induction, $\mathbf{x}_k \in B(\mathbf{x}_0, r)$, for all $k \in \mathbb{N}$.

(2): Using (18), we can prove that $\{\mathbf{x}_k\}_{k=0}^{\infty}$ is a Cauchy sequence. Suppose m>n>0. Then

$$\|\mathbf{x}_{m} - \mathbf{x}_{n}\|_{2} \leq \|\mathbf{x}_{m} - \mathbf{x}_{m-1}\|_{2} + \dots + \|\mathbf{x}_{n+1} - \mathbf{x}_{n}\|_{2}$$

$$\leq \alpha h^{2^{n}-1} \left(1 + h^{2^{n}} + h^{3 \cdot 2^{n}} + h^{5 \cdot 2^{n}} + \dots \right)$$

$$< \frac{\alpha h^{2^{n}-1}}{1 - h^{2^{n}}}$$

$$< \varepsilon,$$
(19)

provided n is sufficiently large. Since \mathbf{x}_k is Cauchy, it converges to a unique limit point $\boldsymbol{\xi} \in \overline{B}(\mathbf{x}_0, r)$, appealing to the fact that $\overline{B}(\mathbf{x}_0, r)$ is closed. It follows on taking $m \to \infty$ in (19) that

$$\|\boldsymbol{\xi} - \mathbf{x}_n\|_2 < \frac{\alpha h^{2^n - 1}}{1 - h^{2^n}}.$$

From this estimate it follows that convergence is at least quadratic.

(3): Finally, we prove that $\mathbf{f}(\boldsymbol{\xi}) = \mathbf{0}$. Since $\mathbf{x}_k \in B(\mathbf{x}_0, r)$,

$$\|J_{f}(\mathbf{x}_{k}) - J_{f}(\mathbf{x}_{0})\|_{2} \leq \gamma \|\mathbf{x}_{0} - \mathbf{x}_{k}\|_{2} \leq \gamma r.$$

Thus,

$$\|J_f(\mathbf{x}_k)\|_2 = \|J_f(\mathbf{x}_k) - J_f(\mathbf{x}_0) + J_f(\mathbf{x}_0)\|_2 \le \gamma r + \|J_f(\mathbf{x}_0)\|_2 = R.$$

As a consequence,

$$\|\mathbf{f}(\mathbf{x}_k)\|_2 = \|-\mathsf{J}_{\mathsf{f}}(\mathbf{x}_k)(\mathbf{x}_{k+1}-\mathbf{x}_k)\|_2 \le R \|\mathbf{x}_{k+1}-\mathbf{x}_k\|_2$$
,

which implies that $\lim_{k\to\infty} \|\mathbf{f}(\mathbf{x}_k)\|_2 = 0$. It follows that $\mathbf{f}(\boldsymbol{\xi}) = \mathbf{0}$. The proof is complete.