Definitions

For a given $m \times n$ matrix A, what are the four Fundamental subspaces of A?

Here is an important theorem.

Theorem. Let A be an $m \times n$ matrix, then

- 1. dim(KerA) + dim(RanA) = n
- 2. $dim(KerA^T) + dim(RanA^T) = m$
- $\textit{3. }\dim(\mathit{RanA})=\dim(\mathit{RanA}^T)$

Questions

1. A 54×37 matrix has rank 31. What are the dimensions of all 4 fundamental subspaces?

2. Prove that if Ax = 0 has unique solution, then the equation $A^Tx = b$ has a solution for every right side b.

- 3. Write a matrix with the required property, or explain why no such matrix exists
 - (a) Column space contains $(1,0,0)^T$, $(0,0,1)^T$, row space contains $(1,1)^T$

(b) Column space is spanned by $(1,1,1)^T$, nullspace is spanned by $(1,1)^T$

(c) Column space is \mathbb{R}^4 , row space is \mathbb{R}^3 .

4. Compute the rank and find bases of all four fundamental subspaces for the matrices

$$\begin{pmatrix} 1 & 2 & 3 & 1 & 1 \\ 1 & 4 & 0 & 1 & 2 \\ 0 & 2 & -3 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$