6 Moore–Penrose Pseudoinverse

Contents

6.1	Classical least squares problem
	Pseudoinverse characterization
6.3	Criterion for pseudoinverse checking
6.4	Some identities for pseudoinverse matrices
6.5	Solution of least squares problem using pseudoinverse
6.6	Cline's formulas
6.7	Pseudo-ellipsoids

In this subsection we follow Albert (1972).

6.1 Classical least squares problem

Lemma 6.1. Let x be a vector and \mathcal{L} is a linear manifold in \mathbb{R}^n (that is, if $x, y \in \mathcal{L}$, then $\alpha x + \beta y \in \mathcal{L}$ for any scalars α, β). Then if

$$x = \hat{x} + \tilde{x} \tag{6.1}$$

where $\hat{x} \in \mathcal{L}$ and $\tilde{x} \perp \mathcal{L}$, then \hat{x} is "nearest" to x, or, in other words, it is the **projection** of x to the manifold \mathcal{L} .

Proof. For any $y \in \mathcal{L}$ we have

$$||x - y||^2 = ||\hat{x} + \tilde{x} - y||^2 = ||(\hat{x} - y) + \tilde{x}||^2$$

$$= ||\hat{x} - y||^2 + 2(\hat{x} - y, \tilde{x}) + ||\tilde{x}||^2 = ||\hat{x} - y||^2 + ||\tilde{x}||^2$$

$$\geq ||\tilde{x}||^2 = ||x - \hat{x}||^2$$

with strict inequality holding unless $\|y - \hat{x}\|^2 = 0$.

Theorem 6.1. Let z be an n-dimensional real vector and $H \in \mathbb{R}^{n \times m}$.

1. There is always a vector, in fact a unique vector \hat{x} of minimal (Euclidean) norm, which minimizes

$$||z-Hx||^2$$

2. The vector \hat{x} is the unique vector in the range

$$\mathcal{R}(H^{\mathsf{T}}) := \{x : x = H^{\mathsf{T}}z, z \in \mathbb{R}^n\}$$

which satisfies the equation

$$H\hat{x} = \hat{z}$$

where \hat{z} is the projection of z on $\mathcal{R}(H)$.

Proof. By (6.1) we can write

$$z = \hat{z} + \tilde{z}$$

where \hat{z} is the projection of z on the kernel (the null space)

$$\mathcal{N}(H^{\mathsf{T}}) := \{ z \in \mathbb{R}^n : 0 = H^{\mathsf{T}}z \}$$

Since $Hx \in \mathcal{R}(H)$ for any $x \in \mathbb{R}^m$, it follows that

$$\hat{z} - Hx \in \mathcal{R}(H)$$

and, since $\tilde{z} \in \mathcal{R}^{\perp}(H)$,

$$\tilde{z} \perp \hat{z} - Hx$$

Therefore,

$$||z - Hx||^2 = ||(\hat{z} - Hx) + \tilde{z}||^2$$

= $||\hat{z} - Hx||^2 + ||\tilde{z}||^2 \ge ||\tilde{z}||^2 = ||z - \hat{z}||^2$

This low bound is attainable since \hat{z} , being the range of H, is the afterimage of some x^* , that is, $\hat{z} = Hx^*$.

1. Let us show that x^* has a minimal norm. Since x^* may be decomposed into two orthogonal vectors

$$x^* = \hat{x}^* + \tilde{x}^*$$

where $\hat{x}^* \in \mathcal{R}(H^{\perp})$ and $\tilde{x}^* \in \mathcal{N}(H)$. Thus $Hx^* = H\hat{x}$ we have

$$||z - Hx^*||^2 = ||z - H\hat{x}||^2$$

and

$$||x^*||^2 = ||\hat{x}^*||^2 + ||\tilde{x}^*||^2 \ge ||\hat{x}^*||^2$$

with strict inequality unless $x^* = \hat{x}^*$. So, x^* may be selected equal to \hat{x}^* .

2. Show now that $x^* = \hat{x}^*$ is unique. Suppose that $Hx^* = Hx^{**} = \hat{z}$. Then

$$(x^* - x^{**}) \in \mathcal{R}(H)$$

But $H(x^* - x^{**}) = 0$, which implies,

$$(x^* - x^{**}) \in \mathcal{N}(H) = \mathcal{R}^{\perp}(H^{\perp})$$

Thus $(x^* - x^{**})$ is orthogonal to itself, which means that $||x^* - x^{**}||^2 = 0$, or equivalently, $x^* = x^{**}$.

Corollary 6.1. $||z - Hx||^2$ is minimized by x_0 if and only if $Hx_0 = \hat{z}$ where \hat{z} is the projection of z on $\mathcal{R}(H)$.

Corollary 6.2. There is always an n-dimensional vector y such that

$$||z - HH^{\mathsf{T}}y||^2 = \inf_{x} ||z - Hx||^2$$

and if

$$||z - Hx_0||^2 = \inf_{x} ||z - Hx||^2$$

then

$$\left\|x_0\right\|^2 \ge \left\|H^{\mathsf{T}}y\right\|^2$$

with strict inequality unless $x_0 = H^{\mathsf{T}} y$. The vector y satisfies the equation

$$HH^{\mathsf{T}} y = \hat{z}$$

Theorem 6.2. (on the system of normal equations) Among those vectors x, which minimize $||z - Hx||^2$, \hat{x} , the one having minimal norm, is the unique vector of the form

$$\hat{\mathbf{x}} = H^{\mathsf{T}} \mathbf{y} \tag{6.2}$$

satisfying

$$H^{\mathsf{T}}H\hat{x} = H^{\mathsf{T}}z \tag{6.3}$$

Proof. By direct differentiation we have

$$\frac{\partial}{\partial x} \left\| z - Hx \right\|^2 = 2H^{\mathsf{T}} \left(z - Hx \right) = 0$$

which gives (6.3). The representation (6.2) follows from the previous corollary.

6.2 Pseudoinverse characterization

We are now in the position to exhibit an explicit representation for the minimum norm solution to a least square problem.

Lemma 6.2. For any real symmetric matrix $A \in \mathbb{R}^{n \times n}$ the limit

$$P_A := \lim_{\delta \to 0} \left(A + \delta I_{n \times n} \right)^{-1} A \tag{6.4}$$

always exists. For any vector $z \in \mathbb{R}^n$

$$\hat{z} = P_A z$$

is the **projection** of x on $\mathcal{R}(A)$.

Proof. By symmetricity of A for all $\delta > 0$ such that $0 < |\delta| < \min_{j:\lambda_j(A) \neq 0} |\lambda_j(A)|$ the matrix $(A + \delta I_{n \times n})^{-1}$ exists. Any $z \in \mathbb{R}^n$ may be represented as

$$z = \hat{z} + \tilde{z}$$

where $\hat{z} \in \mathcal{R}(A)$, $\tilde{z} \in \mathcal{N}(A)$ and $Az = A\hat{z}$. There exists x_0 such that $\hat{z} = Ax_0$, so

$$(A + \delta I_{n \times n})^{-1} Az = (A + \delta I_{n \times n})^{-1} A\hat{z} = (A + \delta I_{n \times n})^{-1} A (Ax_0)$$

By the spectral theorem (4.4) for symmetric matrices it follows that

$$A = T \Lambda T^{\mathsf{T}}$$

where $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ and $T^{\mathsf{T}} = T^{-1}$. Thus

$$(A + \delta I_{n \times n})^{-1} Az = (A + \delta I_{n \times n})^{-1} A^{2} x_{0}$$

$$= (T \Lambda T^{\mathsf{T}} + \delta T T^{\mathsf{T}})^{-1} T \Lambda^{2} T^{\mathsf{T}} x_{0}$$

$$= (T [\Lambda + \delta I_{n \times n}] T^{\mathsf{T}})^{-1} T \Lambda^{2} T^{\mathsf{T}} x_{0}$$

$$= T ([\Lambda + \delta I_{n \times n}]^{-1} \Lambda^{2}) T^{\mathsf{T}} x_{0}$$

It is plain to see that

$$\lim_{\delta \to 0} \left[\Lambda + \delta I_{n \times n} \right]^{-1} \Lambda^{2} = \lim_{\delta \to 0} \left[\Lambda + \delta I_{n \times n} \right]^{-1} \left[\Lambda + \delta I_{n \times n} - \delta I_{n \times n} \right] \Lambda$$

$$= \lim_{\delta \to 0} \left[I_{n \times n} - \delta \left[\Lambda + \delta I_{n \times n} \right]^{-1} \right] \Lambda$$

$$= \left[\lim_{\delta \to 0} \operatorname{diag} \left(1 - \frac{\delta}{\lambda_{1} + \delta}, \dots, 1 - \frac{\delta}{\lambda_{n} + \delta} \right) \right] \Lambda = \Lambda$$

since

$$1 - \frac{\delta}{\lambda_i + \delta} = \begin{cases} 0 & \text{if} \quad \lambda_i = 0\\ \to 1 & \text{if} \quad \lambda_i \neq 0 \end{cases}$$

This implies

$$\lim_{\delta \to 0} (A + \delta I_{n \times n})^{-1} Az = T \Lambda T^{\mathsf{T}} x_0 = A x_0 = \hat{z}$$

Theorem 6.3. For any real $(n \times m)$ -matrix H the limit

$$H^{+} := \lim_{\delta \to 0} \left(H^{\mathsf{T}} H + \delta^{2} I_{m \times m} \right)^{-1} H^{\mathsf{T}}$$

$$= \lim_{\delta \to 0} H^{\mathsf{T}} \left(H H^{\mathsf{T}} + \delta^{2} I_{n \times n} \right)^{-1}$$
(6.5)

always exists. For any vector $z \in \mathbb{R}^n$

$$\hat{x} = H^+ z$$

is the vector of minimal norm among those which minimize

$$||z-Hx||^2$$

Proof. It is clear that the right sides in (6.5) are equal, if either exists, since

$$H^{\mathsf{T}}HH^{\mathsf{T}} + \delta^{2}H^{\mathsf{T}} = (H^{\mathsf{T}}H + \delta^{2}I_{m \times m})H^{\mathsf{T}}$$
$$= H^{\mathsf{T}}(HH^{\mathsf{T}} + \delta^{2}I_{n \times n})$$

and the matrices $(H^{\mathsf{T}}H + \delta^2 I_{m \times m})$ and $(HH^{\mathsf{T}} + \delta^2 I_{n \times n})$ are inverse for any $\delta^2 > 0$. By the composition

$$z = \hat{z} + \tilde{z}$$

where $\hat{z} \in \mathcal{R}(H^{\mathsf{T}})$, $\tilde{z} \in \mathcal{N}(H^{\mathsf{T}})$ and $H^{\mathsf{T}}z = H^{\mathsf{T}}\hat{z}$, there exists x_0 such that $\hat{z} = Hx_0$. So,

$$(H^{\mathsf{T}}H + \delta^2 I_{m \times m})^{-1} H^{\mathsf{T}} z = (H^{\mathsf{T}}H + \delta^2 I_{m \times m})^{-1} H^{\mathsf{T}} \hat{z}$$
$$= (H^{\mathsf{T}}H + \delta^2 I_{m \times m})^{-1} H^{\mathsf{T}} H x_0$$

By the previous Lemma there exists the limit

$$\lim_{\delta \to 0} \left(H^{\mathsf{T}} H + \delta^2 I_{m \times m} \right)^{-1} H^{\mathsf{T}} H = P_{H^{\mathsf{T}} H}$$

which gives

$$\lim_{\delta \to 0} \left(H^{\mathsf{T}} H + \delta^2 I_{m \times m} \right)^{-1} H^{\mathsf{T}} H x_0 = \left(P_{H^{\mathsf{T}} H} \right) x_0 := \hat{x}_0$$

where \hat{x}_0 is the projection on $\mathcal{R}(H^{\mathsf{T}}H) = \mathcal{R}(H^{\mathsf{T}})$. Thus we conclude that

$$\hat{x}_0 = \lim_{\delta \to 0} \left(H^{\mathsf{T}} H + \delta^2 I_{m \times m} \right)^{-1} H^{\mathsf{T}} \hat{z}$$
$$= \lim_{\delta \to 0} \left(H^{\mathsf{T}} H + \delta^2 I_{m \times m} \right)^{-1} H^{\mathsf{T}} z$$

always exists and is an element of $\mathcal{R}(H^{\mathsf{T}})$ satisfying $\hat{z} = H\hat{x}_0$.

Definition 6.1. The matrix limit H^+ (6.5) is called the **pseudoinverse** (the generalized inverse) of H in the **Moore–Penrose sense**.

Remark 6.1. It follows that

- (HH^+z) is the projection of z on $\mathcal{R}(H)$;
- (H^+Hx) is the projection of x on $\mathcal{R}(H^{\mathsf{T}})$;
- $(I_{n\times n} HH^+)z$ is the projection of z on $\mathcal{N}(H^{\mathsf{T}})$;
- $(I_{n\times n}-H^+H)x$ is the projection of x on $\mathcal{N}(H)$.

The following properties can be proven by the direct application of (6.5).

Corollary 6.3. For any real $n \times m$ matrix H

Ι.

$$H^{+} = (H^{\mathsf{T}}H)^{+}H^{\mathsf{T}} \tag{6.6}$$

2.

$$(H^{\mathsf{T}})^+ = (H^+)^{\mathsf{T}} \tag{6.7}$$

3.

$$H^+ = H^{\mathsf{T}} \left(H H^{\mathsf{T}} \right)^+ \tag{6.8}$$

4.

$$H^{+} = H^{-1} \tag{6.9}$$

if H is square and nonsingular.

6.3 Criterion for pseudoinverse checking

The next theorem represents the **criterion** for a matrix B, to be the pseudoinverse H^+ of H.

Theorem 6.4. For any real $n \times m$ matrix H the matrix $B = H^+$ if and only if I.

2.

$$HBH = H \tag{6.11}$$

3.

$$BHB = B \tag{6.12}$$

Proof.

- 1. Necessity. Let $B = H^+$.
 - (a) Since

$$HH^{+} = \lim_{\delta \to 0} HH^{\mathsf{T}} \left(HH^{\mathsf{T}} + \delta^{2} I_{n \times n} \right)^{-1}$$
$$\left(HH^{+} \right)^{\mathsf{T}} = \left(H \lim_{\delta \to 0} \left(H^{\mathsf{T}} H + \delta^{2} I_{m \times m} \right)^{-1} H^{\mathsf{T}} \right)^{\mathsf{T}}$$
$$= H \left[\lim_{\delta \to 0} \left(H^{\mathsf{T}} H + \delta^{2} I_{m \times m} \right)^{-1} \right] H^{\mathsf{T}} = HH^{+}$$

and

$$H^{+}H = \left[\lim_{\delta \to 0} H^{\mathsf{T}} \left(H H^{\mathsf{T}} + \delta^{2} I_{n \times n} \right)^{-1} \right] H$$

$$\left(H^{+}H \right)^{\mathsf{T}} = \left(\left[\lim_{\delta \to 0} H^{\mathsf{T}} \left(H H^{\mathsf{T}} + \delta^{2} I_{n \times n} \right)^{-1} \right] H \right)^{\mathsf{T}}$$

$$H^{\mathsf{T}} \lim_{\delta \to 0} \left(H^{\mathsf{T}} H + \delta^{2} I_{m \times m} \right)^{-1} H = H^{+}H$$

the symmetricity (6.10) takes place.

(b) Since by (6.1) HH^+ is a projector on $\mathcal{R}(H)$ and the projection of any vector from $\mathcal{R}(H)$ coincides with the same vector, one has for any $z \in \mathbb{R}^n$

$$HH^+(Hz) = Hz$$

which gives (6.11). By (6.6)

$$H^+H = (H^\mathsf{T}H)^+ (H^\mathsf{T}H)$$

which, in view of (6.11) and the symmetricity property (6.10) of HH^+ , implies

$$H^{+} = (H^{\mathsf{T}} H)^{+} H^{\mathsf{T}} = (H^{\mathsf{T}} H)^{+} (H H^{+} H)^{\mathsf{T}}$$
$$= (H^{\mathsf{T}} H)^{+} H^{\mathsf{T}} (H H^{+})^{\mathsf{T}} = (H^{\mathsf{T}} H)^{+} H^{\mathsf{T}} (H H^{+})$$
$$= (H^{\mathsf{T}} H)^{+} (H^{\mathsf{T}} H) H^{+} = H^{+} H H^{+}$$

So, (6.12) is proven.

2. Sufficiency. Suppose B satisfies (6.10), (6.11) and (6.12). Since

$$BH = (BH)^{\mathsf{T}}, \quad H = HBH$$

then

$$H = HBH = H(BH)^{\mathsf{T}}$$

Using this representation and since $HH^+H = H$, we derive

$$H^{+}H = H^{+}H (BH)^{\mathsf{T}} = [HH^{+}H]^{\mathsf{T}} B^{\mathsf{T}} = H^{\mathsf{T}}B^{\mathsf{T}} = BH$$
 (6.13)

Analogously, since B = BHB and HB is symmetric, we have

$$B^{\mathsf{T}} = HBB^{\mathsf{T}}$$

Pre-multiplying this identity by HH^+ , we obtain

$$HH^+B^{\mathsf{T}} = HH^+HBB^{\mathsf{T}} = HBB^{\mathsf{T}} = B^{\mathsf{T}}$$

Taking transposes and in view of (6.13) we get

$$B = B (HH^{+})^{\mathsf{T}} = B (HH^{+}) = BHH^{+} = H^{+}HH^{+} = H^{+}$$

The theorem above is extremely useful as a method for proving identities. If one thinks that a certain expression coincides with the pseudoinverse of a certain matrix H, a good way to decide is to run the expressions through conditions (6.10), (6.11), (6.12) and observe whether or not they hold.

6.4 Some identities for pseudoinverse matrices

Lemma 6.3. $b \in \mathcal{R}(A) := \text{Im}(A) \subseteq \mathbb{R}^n$ if and only if

$$AA^+b = b \tag{6.14}$$

Proof.

(a) Necessity. If $b \in \mathcal{R}(A)$, then there exists a vector $d \in \mathbb{R}^n$ such that b = Ad, and, therefore,

$$AA^{+}b = AA^{+}(Ad) = (AA^{+}A)d = Ad = b$$

(b) Sufficiency. Suppose that (6.14) is true. Any vector b can be represented as $b = Ad + b^{\perp}$ with $b^{\perp} \perp Ad$, namely, $b^{\perp} = (I - AA^{+})v$. Then

$$AA^{+}\left(Ad+b^{\perp}\right) = Ad+b^{\perp}$$

which implies $AA^+b^{\perp}=b^{\perp}$, and, hence,

$$AA^{+}(I - AA^{+})v = 0 = (I - AA^{+})v = b^{\perp}$$

So, $b^{\perp} = 0$, and, hence, b = Ad, or, equivalently, $b \in \mathcal{R}(A)$. Lemma is proven. \square

The following identities can be proven more easily by simple verification of (6.10), (6.11), (6.12).

Claim 6.1.

1.

$$\left(O_{m\times n}\right)^{+} = O_{n\times m} \tag{6.15}$$

2. For any $x \in \mathbb{R}^n$ $(x \neq 0)$

$$x^{+} = \frac{x^{\mathsf{T}}}{\|x\|^{2}} \tag{6.16}$$

3.

$$\left(H^{+}\right)^{+} = H \tag{6.17}$$

4. In general,

$$(AB)^+ \neq B^+A^+ \tag{6.18}$$

The identity takes place if

$$A^{\mathsf{T}}A = I$$
 or $BB^{\mathsf{T}} = I$ or $B = A^{\mathsf{T}}$ or $B = A^{\mathsf{+}}$ or both A and B are of full rank, or rank $A = \operatorname{rank} B$

The identity in (6.18) holds if and only if

$$\overline{\mathcal{R}(BB^{\mathsf{T}}A^{\mathsf{T}}) \subseteq \mathcal{R}(A^{\mathsf{T}})} \tag{6.19}$$

and

$$\overline{\mathcal{R}(A^{\mathsf{T}}AB) \subseteq \mathcal{R}(B)} \tag{6.20}$$

5.

$$(6.21)$$

where

$$B_1 = A^+ A B$$
$$A_1 = A B_1 B_1^+$$

6.

$$(H^{\mathsf{T}}H)^{+} = H^{+}(H^{\mathsf{T}})^{+}, (HH^{\mathsf{T}})^{+} = (H^{\mathsf{T}})^{+}H^{+}$$
(6.22)

7. If A is symmetric and $\alpha > 0$, then

$$(A^{\alpha})^{+} = (A^{+})^{\alpha}$$

$$A^{\alpha} (A^{\alpha})^{+} = (A^{\alpha})^{+} A^{\alpha} = AA^{+}$$

$$A^{+}A^{\alpha} = A^{\alpha}A^{+}$$

$$(6.23)$$

8. If $A = U \Lambda V^{\mathsf{T}}$ where U, V are orthogonal and Λ is a diagonal matrix, then

$$A^{+} = V\Lambda^{+}U^{\mathsf{T}} \tag{6.24}$$

9. Greville's formula (Greville 1960): if $C_{m+1} = \begin{bmatrix} C_m \\ \vdots \\ C_{m+1} \end{bmatrix}$ then

$$C_{m+1}^{+} = \begin{bmatrix} C_{m}^{+} \left[I - c_{m+1} k_{m+1}^{\mathsf{T}} \right] \\ \cdots \\ k_{m+1}^{\mathsf{T}} \end{bmatrix}$$
 (6.25)

where

$$k_{m+1} = \begin{cases} \frac{\left[I - C_m C_m^+\right] c_{m+1}}{\left\| \left[I - C_m C_m^+\right] c_{m+1} \right\|^2} & \text{if} \quad \left[I - C_m C_m^+\right] c_{m+1} \neq 0\\ \frac{\left(C_m^+\right)^{\mathsf{T}} C_m^+ c_{m+1}}{1 + \left\| C_m^+ c_{m+1} \right\|^2} & \text{otherwise} \end{cases}$$

10. If H is rectangular and S is symmetric and nonsingular then

$$(SH)^{+} = H^{+}S^{-1} \left[I - \left(QS^{-1} \right)^{+} \left(QS^{-1} \right) \right]$$
(6.26)

where

$$O = I - H^+ H$$

Example 6.1. Simple verification of (6.10), (6.11), (6.12) shows that

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}^{+} = \begin{bmatrix} -1.333 & -0.333 & 0.667 \\ 1.8033 & 0.333 & -0.4167 \end{bmatrix}$$

6.5 Solution of least squares problem using pseudoinverse

Theorem 6.5.

(a) The vector x_0 minimizes $||z - Hx||^2$ if and only if it is of the form

$$x_0 = H^+ z + (I - H^+ H) y$$
 (6.27)

for some vector y.

(b) Among all solutions x_0 (6.27) the vector

$$\boxed{\bar{x}_0 = H^+ z} \tag{6.28}$$

has the minimal Euclidean norm.

Proof. By theorem (6.3) we know that H^+z minimizes $||z - Hx||^2$ and by (6.1), any x_0 minimizes $||z - Hx||^2$ if and only if $Hx_0 = \hat{z}$ where \hat{z} is the projection of z on $\mathcal{R}(H)$. In view of that

$$Hx_0 = H\left(H^+z\right)$$

This means that $x_0 - H^+z$ is a null vector of H that is true if and only if

$$x_0 - H^+ z = \left(I - H^+ H\right) y$$

for some y. So, (a) (6.27) is proven. To prove (b) (6.28) it is sufficient to notice that

$$||x_{0}||^{2} = ||H^{+}z + (I - H^{+}H) y||^{2} = ||H^{+}z||^{2}$$

$$+ (H^{+}z, (I - H^{+}H) y) + ||(I - H^{+}H) y||^{2} = ||H^{+}z||^{2}$$

$$+ ((I - H^{+}H)^{\mathsf{T}} H^{+}z, y) + ||(I - H^{+}H) y||^{2} = ||H^{+}z||^{2}$$

$$+ ((I - H^{+}H) H^{+}z, y) + ||(I - H^{+}H) y||^{2}$$

$$= ||H^{+}z||^{2} + ||(I - H^{+}H) y||^{2} \ge ||H^{+}z||^{2} = ||\bar{x}_{0}||^{2}$$

Corollary 6.4. (LS problem with constraints) Suppose the set

$$\mathcal{J} = \{x : Gx = u\}$$

is not empty. Then the vector x_0 minimizes $||z - Hx||^2$ over \mathcal{J} if and only if

$$x_{0} = G^{+}u + \bar{H}^{+}z + (I - G^{+}G)(I - \bar{H}^{+}\bar{H})y$$

$$\bar{H} := H(I - G^{+}G)$$
(6.29)

and among all solutions

$$\bar{x}_0 = G^+ u + \bar{H}^+ z \tag{6.30}$$

has the minimal Euclidean norm.

Proof. Notice that by the Lagrange multipliers method x_0 solves the problem if it minimizes the Lagrange function

$$||z-Hx||^2+(\lambda,Gx-u)$$

for some λ . This λ and x_0 satisfy the equation

$$\frac{\partial}{\partial x} \left[\left\| z - Hx \right\|^2 + (\lambda, Gx - u) \right] = -2H^{\mathsf{T}} \left(z - Hx_0 \right) + G^{\mathsf{T}} \lambda = 0$$

or, equivalently,

$$H^{\mathsf{T}}Hx_0 = \left[H^{\mathsf{T}}z - \frac{1}{2}G^{\mathsf{T}}\lambda\right] := \tilde{z}$$

which in view of (6.27) implies

$$x_{0} = (H^{\mathsf{T}}H)^{+} \tilde{z} + \left[I - (H^{\mathsf{T}}H)^{+} (H^{\mathsf{T}}H)\right] y$$

$$= (H^{\mathsf{T}}H)^{+} \left[H^{\mathsf{T}}z - \frac{1}{2}G^{\mathsf{T}}\lambda\right] + \left[I - (H^{\mathsf{T}}H)^{+} (H^{\mathsf{T}}H)\right] y$$
(6.31)

But this x_0 should satisfy $Gx_0 = u$ which leads to the following equality

$$Gx_0 = G\left[(H^{\mathsf{T}}H)^+ \left(H^{\mathsf{T}}z - \frac{1}{2}G^{\mathsf{T}}\lambda \right) + \left[I - (H^{\mathsf{T}}H)^+ (H^{\mathsf{T}}H) \right] y \right] = u$$

or, equivalently,

$$[G(H^{\mathsf{T}}H)^{+}]\left(\frac{1}{2}G^{\mathsf{T}}\lambda\right) = G(H^{\mathsf{T}}H)^{+}H^{\mathsf{T}}z + G[I - (H^{\mathsf{T}}H)^{+}(H^{\mathsf{T}}H)]y - u$$

or

$$\frac{1}{2}G^{\mathsf{T}}\lambda = \left[G(H^{\mathsf{T}}H)^{+}\right]^{+}\left[G(H^{\mathsf{T}}H)^{+}H^{\mathsf{T}}z\right]
+ G\left[I - (H^{\mathsf{T}}H)^{+}(H^{\mathsf{T}}H)\right]y - u\right]
+ \left[I - \left[G(H^{\mathsf{T}}H)^{+}\right]^{+}\left[G(H^{\mathsf{T}}H)^{+}\right]\right]\tilde{y}$$
(6.32)

Substitution of (6.32) into (6.31) and using the properties of the pseudoinverse implies (6.29). The statement (6.30) is evident.

6.6 Cline's formulas

In fact, the direct verification leads to the following identities (see Cline (1964, 1965)).

Claim 6.2. (Pseudoinverse of a partitioned matrix)

$$\begin{bmatrix} U \vdots V \end{bmatrix}^{+} = \begin{bmatrix} U^{+} - U^{+}VJ \\ \cdots \\ J \end{bmatrix}$$
 (6.33)

where

$$J = C^{+} + (I - C^{+}C) K V^{\mathsf{T}} (U^{+})^{\mathsf{T}} U^{+} (I - V C^{+})$$

$$C = (I - U U^{+}) V$$

$$K = (I + [U^{+}V (I - C^{+}C)]^{\mathsf{T}} [U^{+}V (I - C^{+}C)])^{-1}$$
(6.34)

Claim 6.3. (Pseudoinverse of sums of matrices)

$$(UU^{\mathsf{T}} + VV^{\mathsf{T}})^{+} = (CC^{\mathsf{T}})^{+} + [I - (VC^{+})^{\mathsf{T}}] \times [(UU^{\mathsf{T}})^{+} - (UU^{\mathsf{T}})^{+} V (I - C^{+}C) KV^{\mathsf{T}} (UU^{\mathsf{T}})^{+}] \times [I - (VC^{+})^{\mathsf{T}}]$$
(6.35)

where C and K are defined in (6.34).

6.7 Pseudo-ellipsoids

6.7.1 Definition and basic properties

Definition 6.2. We say that the set $\varepsilon(\mathring{x}, A) \in \mathbb{R}^n$ is **the pseudo-ellipsoid** (or **elliptic** cylinder) in \mathbb{R}^n with the center at the point $\mathring{x} \in \mathbb{R}^n$ and with the matrix $0 \le A = A^{\mathsf{T}} \in \mathbb{R}^{n \times n}$ if it is defined by

$$\varepsilon(\dot{x}, A) := \left\{ x \in \mathbb{R}^n \mid \|x - \dot{x}\|_A^2 = (x - \dot{x}, A(x - \dot{x})) \le 1 \right\}$$
(6.36)

If A > 0 the set $\varepsilon(\mathring{x}, A)$ is an **ordinary ellipsoid** with the semi-axis equal to $\lambda_i^{-1}(A)$ (i = 1, ..., n).

Remark 6.2. If

- (a) A > 0, then $\varepsilon(\mathring{x}, A)$ is a bounded set;
- (b) $A \ge 0$, then $\varepsilon(\mathring{x}, A)$ is an unbounded set.

Lemma 6.4. If $0 < A = A^{\mathsf{T}} \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$ and $\alpha < 1 - \|b\|_{A^{-1}}^2$, then the set given by

$$(x, Ax) - 2(b, x) + \alpha < 1$$

is the ellipsoid $\varepsilon\left(A^{-1}b, \frac{1}{1-\alpha+\|b\|_{A^{-1}}^2}A\right)$.

Proof. It follows from the identity

$$||x - A^{-1}b||_A^2 - ||b||_{A^{-1}}^2 = ||x||_A^2 - 2(b, x)$$

Lemma 6.5. If $0 \le A = A^{\mathsf{T}} \in \mathbb{R}^{n \times n}$, $b \in \mathcal{R}(A) \subseteq \mathbb{R}^n$ and $\alpha < 1 - \|b\|_{A^+}^2$, then the set given by

$$(x, Ax) - 2(b, x) + \alpha \le 1$$

is the pseudo-ellipsoid $\varepsilon\left(A^+b, \frac{1}{1-\alpha+\|b\|_{A^+}^2}A\right)$.

Proof. It follows from the identity

$$||x - A^+b||_A^2 - ||b||_{A^+}^2 = ||x||_A^2 - 2(b, x)$$

Lemma 6.6.

$$\varepsilon (A^{+}A\mathring{x}, A) = \varepsilon (\mathring{x}, A)$$
(6.37)

Proof. Indeed,

6.7.2 Support function

Definition 6.3. The function $f_S : \mathbb{R}^n \to \mathbb{R}$ defined by

$$f_{S}(y) := \max_{x \in S} (y, x)$$

$$(6.38)$$

is called the **support** (or Legendre) function (SF) of the convex closed set $S \subseteq \mathbb{R}^n$.

Lemma 6.7. If S is the pseudo-ellipsoid ε (\mathring{x} , A) (6.36), that is,

$$S = \varepsilon (\mathring{x}, A) = \left\{ x \in \mathbb{R}^n \mid \|x - \mathring{x}\|_A^2 = (x - \mathring{x}, A(x - \mathring{x})) \le 1 \right\}$$

then

$$f_S(y) = y^{\mathsf{T}} \mathring{x} + \sqrt{y^{\mathsf{T}} A^{+} y}$$
(6.39)

Proof. Using the Lagrange principle (see Theorem 21.12), for any $y \in \mathbb{R}^n$ we have

$$\arg \max_{x \in S} (y, x) = \arg \min_{\lambda \ge 0} \max_{x \in \mathbb{R}^n} L(x, \lambda \mid y)$$

$$L(x, \lambda \mid y) := (y, x) + \lambda \left[(x - \mathring{x}, A(x - \mathring{x})) - 1 \right]$$

and, therefore, the extremal point (x^*, λ^*) satisfies

$$0 = \frac{\partial}{\partial x} L(x^*, \lambda^* \mid y) = y + \lambda^* A(x^* - \mathring{x})$$
$$\lambda^* [(x^* - \mathring{x}, A(x^* - \mathring{x})) - 1] = 0$$

The last identity is referred to as the *complementary slackness condition*. The x satisfying the first equation can be represented as follows

$$\arg_{x \in \mathbb{R}^{n}} \{ y + \lambda A (x - \mathring{x}) = 0 \} = \arg \min_{x \in \mathbb{R}^{n}} \| y + \lambda A (x - \mathring{x}) \|^{2}$$

If $\lambda = 0$, it follows that y = 0. But $L(x, \lambda \mid y)$ is defined for any $y \in \mathbb{R}^n$. So, $\lambda > 0$, and hence, by (6.27),

$$x^* - \mathring{x} = \frac{1}{\lambda^*} A^+ y + \left(I - A^+ A \right) v, \quad v \in \mathbb{R}^n$$

Substitution of this expression in the complementary slackness condition and taking into account that $A^+ = (A^+)^T$ implies

$$1 = \left(\frac{1}{\lambda^*} A^+ y + (I - A^+ A) v, \frac{1}{\lambda^*} A A^+ y\right)$$

$$= \frac{1}{(\lambda^*)^2} (y, A^+ A A^+ y) + \left(A^+ A (I - A^+ A) v, \frac{1}{\lambda^*} y\right)$$

$$= \frac{1}{(\lambda^*)^2} (y, A^+ y)$$

or, equivalently, $\lambda^* = \sqrt{(y, A^+ y)}$, which finally gives

$$f_{S}(y) = \max_{x \in S} (y, x) = L(x^{*}, \lambda^{*} \mid y) = (y, x^{*})$$

$$= \left(y, \mathring{x} + \frac{1}{\lambda^{*}} A^{+} y + (I - A^{+} A) v\right)$$

$$= (y, \mathring{x}) + \frac{1}{\lambda^{*}} (y, A^{+} y) + (y, (I - A^{+} A) v)$$

$$= (y, \mathring{x}) + \frac{(y, A^{+} y)}{\sqrt{(y, A^{+} y)}} - (\lambda A (x - \mathring{x}), (I - A^{+} A) v)$$

$$= (y, \mathring{x}) + \frac{(y, A^{+} y)}{\sqrt{(y, A^{+} y)}} - (\lambda (x - \mathring{x}), A (I - A^{+} A) v)$$

$$= (y, \mathring{x}) + \frac{(y, A^{+} y)}{\sqrt{(y, A^{+} y)}}$$

Lemma is proven.

6.7.3 Pseudo-ellipsoids containing vector sum of two pseudo-ellipsoids

The support function $f_S(y)$ (6.38) is particularly useful since the vector sum of convex closed sets and a linear transformation \bar{A} of S have their simple counterparts in the support function description (see Appendix in Schlaepfer & Schweppe (1972)).

Lemma 6.8. (on SF for the vector sum of convex sets) Let

$$S_1 \oplus S_2 := \{x \in \mathbb{R}^n \mid x = x_1 + x_2, x_1 \in S_1, x_2 \in S_2\}$$

where S_1 , S_2 are convex closed sets. Then

$$f_{S_1 \oplus S_2}(y) = f_{S_1}(y) + f_{S_2}(y)$$
(6.40)

Proof. By (6.38), it follows

$$f_{S_1 \oplus S_2}(y) = \max_{x \in S} (y, x) = \max_{x_1 \in S_1, x_2 \in S_2} ((y, x_1) + (y, x_2))$$

= $\max_{x_1 \in S_1} (y, x_1) + \max_{x_2 \in S_2} (y, x_2) = f_{S_1}(y) + f_{S_2}(y)$

which completes the proof.

Lemma 6.9. (on SF for a linear transformation) Let

$$\mathcal{B}_S := \{ x \in \mathbb{R}^n \mid x = Bz, z \in S \}$$

where $B \in \mathbb{R}^{n \times n}$ is an $(n \times n)$ matrix. Then

$$f_{\mathcal{B}_{S}}(y) = f_{S}(B^{\mathsf{T}}y) \tag{6.41}$$

Proof. By (6.38), we have

$$f_{\mathcal{B}_{\mathcal{S}}}\left(y\right) = \max_{x \in \mathcal{B}_{\mathcal{S}}}\left(y, x\right) = \max_{z \in \mathcal{S}}\left(y, Bz\right) = \max_{z \in \mathcal{S}}\left(B^{\mathsf{T}}y, z\right) = f_{\mathcal{S}}\left(B^{\mathsf{T}}y\right)$$

which proves the lemma.

Lemma 6.10. (on SF for closed sets) *If two convex closed sets are related as* $S_1 \supseteq S_2$, then for all $y \in S$

$$f_{S_1}(y) \ge f_{S_2}(y)$$
 (6.42)

Proof. It follows directly from the definition (6.38):

$$f_{S_1}(y) = \max_{x \in S_1} (y, x) \ge \max_{x \in S_2} (y, x) = f_{S_2}(y)$$

Lemma 6.11. (on SF for the vector sum of two ellipsoids) Let S_1 and S_2 be two pseudo-ellipsoids, that is, $S_i = \varepsilon (\mathring{x}_i, A_i)$ (i = 1, 2). Then

$$f_{S_1 \oplus S_2}(y) = f_S(y) = y^{\mathsf{T}} (\mathring{x}_1 + \mathring{x}_2) + \sqrt{y^{\mathsf{T}} A_1^+ y} + \sqrt{y^{\mathsf{T}} A_2^+ y}$$
(6.43)

Proof. It results from (6.39) and (6.40).

To bound $S_1 \oplus S_2$ by some pseudo-ellipsoid $S_{S_1 \oplus S_2}^*$ means to find (\mathring{x}^*, A^*) such that (see Lemma 6.11) for all $y \in \mathbb{R}^n$

$$y^{\mathsf{T}} (\mathring{x}_1 + \mathring{x}_2) + \sqrt{y^{\mathsf{T}} A_1^+ y} + \sqrt{y^{\mathsf{T}} A_2^+ y} \le y^{\mathsf{T}} \mathring{x}^* + \sqrt{y^{\mathsf{T}} (A^*)^+ y}$$
(6.44)

Lemma 6.12. The choice

$$\hat{x}^* = \hat{x}_1 + \hat{x}_2
A^* = (\gamma^{-1}A_1^+ + (1-\gamma)^{-1}A_2^+)^+, \quad \gamma \in (0,1)$$
(6.45)

is sufficient to satisfy (6.44).

Proof. Taking $\mathring{x}^* = \mathring{x}_1 + \mathring{x}_2$, we should to prove that

$$\sqrt{y^{\mathsf{T}} A_{1}^{+} y} + \sqrt{y^{\mathsf{T}} A_{2}^{+} y} \le \sqrt{y^{\mathsf{T}} (A^{*})^{+} y}$$

or, equivalently,

$$\left(\sqrt{y^{\mathsf{T}}A_{1}^{+}y} + \sqrt{y^{\mathsf{T}}A_{2}^{+}y}\right)^{2} \le y^{\mathsf{T}} (A^{*})^{+} y$$

for some A^* . Applying the inequality (12.2), for any $\varepsilon > 0$ we have

$$\begin{split} \left(\sqrt{y^\intercal A_1^+ y} + \sqrt{y^\intercal A_2^+ y}\right)^2 &\leq \left(1 + \varepsilon\right) y^\intercal A_1^+ y + \left(1 + \varepsilon^{-1}\right) y^\intercal A_2^+ y \\ &= y^\intercal \left[\left(1 + \varepsilon\right) A_1^+ + \left(1 + \varepsilon^{-1}\right) A_2^+\right] y \end{split}$$

Denoting $\gamma^{-1} := (1 + \varepsilon)$ and taking into account the identity (6.17) we get (6.45).

6.7.4 Pseudo-ellipsoids containing intersection of two pseudo-ellipsoids

If $S_i = \varepsilon$ (\mathring{x}_i , A_i) (i = 1, 2) are two pseudo-ellipsoids, then $S_1 \cap S_2$ is not a pseudo-ellipsoid. Sure, there exists a lot of pseudo-ellipsoids $S^*_{S_1 \cap S_2}$ (in fact, a set) containing $S_1 \cap S_2$. To bound $S_1 \cap S_2$ by $S^*_{S_1 \cap S_2}$ means to find (\mathring{x}^* , A^*) such that

$$S_1 \cap S_2 \subseteq S_{S_1 \cap S_2}^*$$

where

$$S_{1} \cap S_{2} := \{x \in \mathbb{R}^{n} \mid (x - \mathring{x}_{1}, A_{1}(x - \mathring{x}_{1})) \leq 1$$
and
$$(x - \mathring{x}_{2}, A_{2}(x - \mathring{x}_{2})) \leq 1\}$$

$$S_{S_{1} \cap S_{2}}^{*} := \{x \in \mathbb{R}^{n} \mid (x - \mathring{x}^{*}, A^{*}(x - \mathring{x}^{*})) \leq 1\}$$

$$(6.46)$$

Lemma 6.13. Let $S_1 \cap S_2 \neq \emptyset$. Then (\mathring{x}^*, A^*) can be selected as follows

$$\hat{x}^* = A_{\gamma}^+ b_{\gamma}
b_{\gamma} = \gamma A_1 \hat{x}_1 + (1 - \gamma) A_2 \hat{x}_2
A_{\gamma} = \gamma A_1 + (1 - \gamma) A_2, \ \gamma \in (0, 1)$$
(6.47)

and

$$A^* = \frac{1}{\beta_{\gamma}} A_{\gamma}$$

$$\beta_{\gamma} = 1 - \alpha_{\gamma} + \|b_{\gamma}\|_{A_{\gamma}^{+}}^{2}$$

$$\alpha_{\gamma} = \gamma (\mathring{x}_{1}, A_{1}\mathring{x}_{1}) + (1 - \gamma) (\mathring{x}_{2}, A_{2}\mathring{x}_{2})$$
(6.48)

Proof. Notice that $S_{S_1 \cap S_2}^*$ can be selected as

$$S_1 \cap S_2 := \{ x \in \mathbb{R}^n \mid \gamma (x - \mathring{x}_1, A_1 (x - \mathring{x}_1)) + (1 - \gamma) (x - \mathring{x}_2, A_2 (x - \mathring{x}_2)) \le 1 \}, \ \gamma \in (0, 1)$$

Straightforward calculations imply

$$\gamma (x - \mathring{x}_1, A_1 (x - \mathring{x}_1)) + (1 - \gamma) (x - \mathring{x}_2, A_2 (x - \mathring{x}_2))$$

= $(x, A_{\gamma} x) - 2 (b_{\gamma}, x) + \alpha_{\gamma} \le 1$

Applying Lemma 6.5 we get (6.48). Lemma is proven.