Numerical Methods in Engineering Applications

Workshop #04

Elliptic equations (2)

ronan.vicquelin@centralesupelec.fr aymeric.vie@centralesupelec.fr nicolas.dumont@centralesupelec.fr leo.cunha@centralesupelec.fr

Objectives of Workshop #3

- SOR method
- Conjugate Gradient methods
- Multi-block

$$\Delta \phi = f(x, y)$$

with

$$f(x,y) = 2(x^2 + y^2 - 2)$$

SOR method

$$\phi_{i,j}^{(k+1)} = (1-\omega)\phi_{i,j}^{(k)} + \frac{\omega}{\frac{2}{\Delta x^2} + \frac{2}{\Delta y^2}} \left(\frac{\phi_{i+1,j}^{(k)} + \phi_{i-1,j}^{(k+1)}}{\Delta x^2} + \frac{\phi_{i,j+1}^{(k)} + \phi_{i,j-1}^{(k+1)}}{\Delta y^2} - f_{i,j} \right)$$

Conjugate Gradient Method

Compute
$$r_0 := b - Ax_0, p_0 := r_0$$
.
For $j = 0, 1, ...,$ until convergence Do:
 $\alpha_j := (r_j, r_j)/(Ap_j, p_j)$
 $x_{j+1} := x_j + \alpha_j p_j$
 $r_{j+1} := r_j - \alpha_j Ap_j$
 $\beta_j := (r_{j+1}, r_{j+1})/(r_j, r_j)$
 $p_{j+1} := r_{j+1} + \beta_j p_j$
EndDo

Conjugate Gradient Method applied to heat equation

$$r_{i,j}^{(k)} = f_{i,j} - \frac{\phi_{i+1,j}^{(k)} - 2\phi_{i,j}^{(k)} + \phi_{i-1,j}^{(k)}}{\Delta x^2} + \frac{\phi_{i,j+1}^{(k)} - 2\phi_{i,j}^{(k)} + \phi_{i,j-1}^{(k)}}{\Delta y^2}$$

laplacian of p:
$$(A \cdot p)_{i,j}^{(k)} = \frac{p_{i+1,j}^{(k)} - 2p_{i,j}^{(k)} + p_{i-1,j}^{(k)}}{\Delta x^2} + \frac{p_{i,j+1}^{(k)} - 2p_{i,j}^{(k)} + p_{i,j-1}^{(k)}}{\Delta y^2}$$

iterations with

$$p_{i,j}^{(0)} = r_{i,j}^{(0)}$$

$$\alpha^{(k)} = \frac{\sum_{i,j} r_{i,j}^{(k)} r_{i,j}^{(k)}}{\sum_{i,j} p_{i,j}^{(k)} (A \cdot p)_{i,j}^{(k)}}$$

$$\phi_{i,j}^{(k+1)} = \phi_{i,j}^{(k)} + \alpha^{(k)} p_{i,j}^{(k)}$$

$$r_{i,j}^{(k+1)} = r_{i,j}^{(k)} - \alpha^{(k)} (A \cdot p)_{i,j}^{(k)}$$

$$\beta^{(k)} = \frac{\sum_{i,j} r_{i,j}^{(k+1)} r_{i,j}^{(k+1)}}{\sum_{i,j} r_{i,j}^{(k)} r_{i,j}^{(k)}}$$

$$p_{i,j}^{(k+1)} = r_{i,j}^{(k+1)} + \beta^{(k)} p_{i,j}^{(k)}$$

Run time (ms)

$$\eta = 10^{-3}$$

					9.90	Go
	10x10	20x20	40x40	80x80	160x160	
Direct	0,7	5	187	13000	1060000 0.263	Go
Jacobi	25	392	5510	127000	1362000	
Gauss-Seidel	11	200	2888	78000	1034000	
SOR	20	86	392	2260	30000	
Conjugate Gradient	2	14	103	945	6950	

Iterations

$$\eta = 10^{-3}$$

	10x10	20x20	40x40	80x80	160x160
Jacobi	88	352	1281	4400	14306
Gauss-Seidel	45	177	642	2200	7154
SOR	63	65	75	118	382
Conjugate Gradient	6	13	26	53	107

Multi-block resolution

