

	NS.s32.cpu2.SIL	2/9				
ETH Zurich	B u s-Buffers Dolo		Author:	H.Eberle	Date:	3.7.85
					REV. 21.5.86	

 \perp

unused gates, inv. :

u26 a, f , u38 a, f, d

LS 125 446 a,d

use c,d,e,f, u63 e,f ALSOF :

M300Ø 41 D3 D2 D1 D0 PULSE' BETHE ETC. INT CS' OE' R/W' Vcc 5..40pF VBB VCC Xin Xout 32.768kHz **X3**

423,14 47,13 47,7 47,5 47,3 " (R44) (R27) (M3) R23 u26,1/13 u38,1/3/9 245 pdwn u46, 1/2/12/13 u 58, 5/9/11/13 a63, 11/13 Vcc

υ66

ETH Zurich

NS.s32.cpu8.SIL SCC, RTC

79/9 Author:

H.Eberle

Date: 11.8.85 REV. 12.6.86

(R20)

REV. 3.12.85

CTTL=10MHz: Div=160

RTC

ETH Zurich

NS.s32.cpu7.SIL

Refresh Timer

Author: H. Eberle

Date: 3.7.85

REV. 3.12.85

cuf J9

Junyers:

with HHU 0 10 without 14111 010 012 0 012

EPRON 8/20:

Mind ocean fractions of

Parity cleaker:

 Quan : Cosupona (p. 257)
 NTF - 3238 32.768 KHz 4.50

 Tolieudriumor : Dish. (p. 83.10)
 83 1007 5.5 - 40 pF 1.20

 Battorie : ESD (p. D37) 54011 ? Varta 6126 11.50

ETH zurich

Ns.s32.mem2.SIL Memory (2 x 32 x 256 KBit)

Author:

H. Eberle

Date:

29.3.85

OKAM - Drives :

Au 2966 can not be used softwart damping resident.

- × provide damping revistors for CASH' / CASL' WE'

-D UNC 2965 (PMD)
DP84244 (NS)
74244)

24.6.85 data buffer med no damping resistors

-> 32 - bet Vosion: boad = 2 digst

ETH zurich

NS.s32.ni.dpt2.StL Memory (256 kB) 2/4

Author: N. Wirth H. Eberle

Date: 27.8.85 REV. 13.6.86

ונ


```
PIN

1: IOEN'; 2: A17; 3: A16; 4: A15; 5: A14; 6: A13; 7: A12; 8: A11; 9: A10; 11: A9; 13: A2; 14: IOWR'; 15: IORD';

17: MPUCWR'; 18: MPUDWR'; 19: MPUDRD';

EQUATIONS

(* MPUDRD' FFEE000 MPUOWR' FFEE000 MPUCWR' FFEE000 MP
```


ETHzürich

CeresLBP.DataShift CeresLBP3.SIL Author: N.Wirth/I.Noack

Date: 27.3.87

Ceres LBPX

V. Q1

$$V.QO$$
 of for $l_0...l_1-1$, add only

H. Q0 1 for
$$k_0-1$$
... k_1-1 and only $k_0 = 8$

H. Q1 1 for k_0-3 ... k_1-1 odd only $k_1 = 168$

H. Q2 $\frac{0}{1}$ for $\frac{1}{1}$ for $\frac{$

each hick = 16 bih k_0, k_1, k_2 even

Park d	list					
/	IS MH+	Osz.	14 pin	16 piu	20 pin	24 pin
/	LS 393		. /			
6	LS 163			6		
2	2732					2
2	LS 74		2			
5	LS 193			5		
4	LS 244				4	
4	LS 374				4	
4	LS/66			· 4		
/	LS 139			,		
/	LS 373				1	
/	LS 299				1	
/	L500	(4)	1			
1	LS02	(3)	1			
/	L508	(2)	1			
1	L\$32	(3)	1			
1	Ls 30		1			
/	06	(4)	1			
/	14	(6)	1			
/	75115		,	<i>3</i>		
1	75114		1			
41			12	18		2 .

Laser printer interface

2048 dots per line 2640 lines per page 5406720 dots per page video clock = 1.8 MHz 128 words per line 32 lines (4096 words) in buffer (band)

IO Destinations

408: Paper feed 418: Buffer address 428: Printer command 438: Fetch printer status

IO Sources

408: Interface status 418: Printer status

ETH zurich	L.overview	Author:	N.Wirth	Date:	27.9.81
------------	------------	---------	---------	-------	---------

ETH zurich

NS.s32.wd.SIL

WD1002-Interface

Author:

H.Eberle

Date: 29.8.85

REV. 21.5.86

WD1002-05/HDO Winchester/Floppy Disk Controller OEM Manual

Document No.: 61-031050-0030

WESTERN DIGITAL

2445 McCabe Way Irvine, California 92714 (714) 863-0102 TWX 910-595-1139 July 1983

WESTERN DIGITAL

CORPORATION

WD1002-05 Winchester/Floppy Controller

FEATURES

- SINGLE +5V POWER SUPPLY.
- CONTROL FOR UP TO 3 WINCHESTER AND 4 FLOPPY DRIVES.
- ON BOARD DATA SEPARATOR AND WRITE PRECOMPENSATION.
- . 128, 256, 512, AND 1024 BYTE SECTOR SIZES.
- PROGRAMMABLE SECTOR SIZES TO 1K.
- AUTOMATIC TRACK FORMATTING ON HARD AND FLOPPY DISKS.
- MULTIPLE SECTOR OPERATIONS.
- 5 BIT SINGLE BURST ERROR CORRECTION ON WINCHESTER.
- CRC GENERATION/VERIFICATION ON ID FIELDS.
- 5 MBIT DATA TRANSFER RATE.
- ECC DIAGNOSTIC COMMANDS (READ LONG & WRITE LONG).

DESCRIPTION

The WD1002-05 Winchester-Floppy Controller (WFC) is a stand-alone general purpose board designed to oterface up to three 51/4" Winchester hard disks and up to four 51/4" floppy disk drives. The WFC imprements all the logic required for a variable length ector (to 1K bytes), ECC correction, data separation and host interface circuitry. The Winchester interface interface on the Seagate ST506 and the floppy interface on the Shugart SA450. All necessary buffers and drivers/receivers are on board.

Communication to and from the Host is made via a separate computer access port. This port consists mainly an 8 bit bi-directional bus and appropriate control agnals. All data to be written to or read from the disk, status information, and macrocommands are transferd via this 8 bit bus. An on-board sector buffer allows that transfers to the Host computer at a rate independent of the drive transfer rate.

The WD1002-05 Controller board is based on the WD1014 EDS device and 1015 Buffer Controller Jevice, as well as the WD2797 Floppy Disc Controller and WD1010 Winchester Disk Controller chips. It is form factor compatible with most 51/4" Winchesters and may be directly mounted on the drive.

ARCHITECTURE

The Block Diagram of the WD1002-05 is shown in Figure 1. The heart of the system is the WD1015 Buffer/Controller, which generates and processes all data and control lines, along with the WD1014 EDS that generates all control signals that cannot be handled in real time by the WD1015.

Commands, parameters, and data are entered via the Host Interface Logic. The WD1015 accepts both floppy and Winchester commands in identical format, converting these parameters to the WD2797/WD1010 protocol. Data is read from the selected drive and transferred to the Sector Buffer. If an error in the data field has been encountered, the WD1015 will instruct one of the controllers to perform retries automatically. In the case of an access on a Winchester drive, the WD1014 ECC device is enabled and error correction procedures invoked. Error Correction may be disabled via software from the Host to allow "CRC-only" formatted Winchester drives to be used in the system. Data Separation and Write Precompensation Logic is onboard for Winchester transfers, while the WD2797 Floppy Controller provides an integrated Data Separator and adjustable write precomp. After the sector buffer is full, the WD1015 informs the Host Interface Logic that data may be read by the Host. The use of an on-board sector buffer provides both transparent error correction and data transfers to the Host that are independent of drive transfer rates.

isumed by Western Dig 's . No license is granted serves the right to char's

HOST INTERFACE

The WD1002-05 has been designed to interface to a Host processor via a parallel port or CPU bus configurations. The specific signals are compatible with the Western Digital WD1000/WD1001 series of Winchester-only controller boards. With the inclusion of the WD1015, the previous WAIT signal is no longer necessary but has been provided for compatibility;

status information is always available to the Host for monitoring command progress. When the Busy bit is set, no other status bits are valid.

The Host Interface connector (J5) consists of an 8-bit bi-directional bus, three address lines, and read and write signals. All functions within the WD1002-05 are initiated by the Host Interface.

HOST INTERFAC
SIGNAL GROUP
2 4 6 8 10 12 14
18 20 22
24
26
28
30
32
34
 36
38
40

Note: Grounds

lys available to the Host gress. When the Busy be evalided to to (J5) consists of an 8 indures lines, and read are within the WD1002-05 are ace.

HOST INTERFACE CONNECTOR J5

SIGNAL GROUND	SIGNAL PIN	SIGNAL NAME	DESCRIPTION
2 4 6 8 10 12 14	1 3 5 7 9 11 13	DALO DAL1 DAL2 DAL3 DAL4 DAL5 DAL6 DAL7	8-bit bi-directional Data Access Lines. These lines remain in a high-impedance state whenever the CS line is inactive.
18 20 22	17 19 21	A0 A1 A2	These three Address Lines are used to select one of nine registers in the Task File or the Sector Buffer. They must remain stable during all read and write operations.
24	23	<u>cs</u>	When Card Select is active along with RE or WE, Data is read or written via the DAL bus. CS must make a transition for each byte read from or written to the Task File.
26	25	WE	When Write Enable is active along with $\overline{\text{CS}}$, the Host may read data to a selected register of the WD1002-05.
28	27	RE	When Read Enable is active along with CS, the Host may read data from a selected register of the WD1002-05.
30	29	Pull-Up (PUP)	Used only when replacing WD1000 or WD1001 with WD1002-05. Tied to a pull-up resistor.
32	31	Not Connected	
34	33	Not Connected	
36	35	INTRQ	The Interrupt Request Line is activated whenever a command has been completed. It is reset to the inactive state when the Status Register is read, or a new command is loaded via the DAL lines.
38	37	DRQ	The Data Request line is activated whenever the Sector Buffer contains data to be read by the Host, or is awaiting data to be loaded by the host. This line is reset whenever the buffer has been exhausted or filled by the Host.
40	39	MR	The Master Reset line initializes all internal logic on the WD1002-05. Sector Number, Cylinder Number and SDH are cleared, stepping rate for Winchester devices are set to 7.5 mS, stepping rate for floppies is set to 40 mS, Write Precomp is set to cylinder 128 and Sector Count is set to 1. The DRQ and INTRQ lines are reset.
Note: Grounds			All even numbered pins (2 through 40) are to be used as signal grounds. Power ground is available on J6, pin 1.

Formathing a Seagase 4051

1. Boot Ceres with Medos-2 Start program Disk Test Enter muit selection mem with Select drive 2 by typing '20' 2.2. Select sleprate by typing 'OR' *2*. 3. Leare mem with ESC 2.4. 2.5. Fales visitialization man with 2.5. Restore drive by typing 121 2.6. Enter mitialization mem with 2.7. Select interleave factor by typing '87'
2.8. histolize drive by typing '772I' 3 messages are displayed for each platter of the drive 2.9. Leave initialization men by Esc Leave program by CTRL-C (urga!!!) Start program Copy Disk Enter 1 as from - Drive' 3.2. Enter 2 as 1 to - Drive' copyig needs 24 min.

Chollies Wille

i. V. N. With

ETH zurich

NS.s32.wd.SIL WD1002-Interface

Author:

H.Eberle

Date: 29.8.85

REV. 1.12.85

3 FFFC pd

O 44 A3 A2 β β χ LATI CS' β 1 χ Clear Counter 1 β Cp' HDC CS'

			a	b	C				
A		32 31 30 29 28 27 26 25 22 22 21 20 19 18 17 16 15 14 13 11 10 9 8 7 6 5 4 3 2 1	+5V +5V -12V +12V -5V GND GND SEL3' SEL1' SEL0' DSP.SEL' REQ3' REQ2' REQ1' REQ0' DSP.REQ' LO' INT5' INT6' INT6' INT5' INT6' INT5' INT6' INT5' INT6' INT5' INT6' IN	GND GND GND GND GND GND GND GND GND GND	D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0	32 33 30 29 22 22 22 22 22 22 22 22 22 22 22 22	ในเหง		
В		32 31 30 28 27 26 25 24 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	R/W' AV' DBE' RDY GND FCLK GND CLK CS' IO.ED' IO.WR' IO.EN' WAIT12' WAIT12' WAIT12' WAIT12' WAIT12' WAIT14 CNA		A31 A30 A29 A27 A26 A27 A26 A22 A21 A20 A18 A17 A16 A14 A13 A11 A10 A8 A7 A6 A5 A4 A3 A2 A10 A11 A10 A11 A10 A11 A10 A11 A11 A11	32 31 30 29 28 27 26 25 24 22 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21			
			Pullup resist for D0-D31,		C				
 ı	File:	NS.s32.Pinot Pin Out	ut.SIL		Author:	H.Ebe	erie/I.Noack	Date: REV. 9.1.86	20.6.85

ETHzürich

		•				
	16 MB		u			
		IO Devices	FFFFFF H FC0000 H			FFFFFF H
	* * *	ROM	FBFFFF H F80000 H		.]	
		colour light la	EFIFFFFH ESTONE			
		Colour Displ sm.	= 2'FFFF #			FFFF00 H
	14 ms	VIDEO RAM	E3FFFF H E00000 H			FFFEFF H
	1				ICU	
	1					
						FFFE00 H
					CF/BT.FF	_ FFFDC0 H
	12 MB	L	соооо н		SCC	FFFD80 H
			BFFFFF H		DUART	FFFD40 H
	1	1			Mouse	FFFD00 H
	1					FFFCCO H
	1				RTC	FFFC80 H
•					PCLR	FFFC40 H
	1				Disk Interface	FFFC00 H
	1					- FFFCW fi
					1	
	1				1 · ·	
	· · · · · · · · · · · · · · · · · · ·	1			1	
	8 MB	1 -	800000 H 7FFFFF H		DSP.CTRL*	
					1	· · · · · · · · · · · · · · · · · · ·
		1.			T ·	
	ļ				1	
	1				I	FFFA00 H
	ŀ					
	1					FFF800 (Swall
					CDSP	FFF800 (Swall Colour Displa
	1					
	1				LBP	FFF600
	4 MB		400000 H 3FFFFF H			
	1		3FFFF H		DSP. CTRL	FFF 400 (large colour Disple
	. !	1				COLOW Wish
					D&b DYC	FFF 200
	1				DSP. CRS	FFF000
			200000 H			
	1		1FFFFF H		P1	FFE EOO
	1	1				
	1	RAM				
	1	1	•		Basic Configuration:	
					2 MByte RAM 256 KByte Video RAM	
	O MB	L	оооооо н		32256 KByte ROM	
		NS.s32.MemMap.S				
上	TH zür	rich Memory Mar	<i>ې</i>	Auth	nor: H.Eberle	Date: 17.6.85
		1		ı		REV. 11.10.86

Ceres Part List

29.7. 19.7.86

Boards:

Processor

Memory

Display Controller

Mother Board

Disk Controller

(WD1002-5

WD

Stolz)

Cabinet:

Computer

Display

Schroff Knürr

Rotronic Knürr CH

Power Supply

XL125 4601

Boschert

Kontron

Miscellaneous

I/O Devices:

Display

17", 52kHz

83ST13-5E (US key layout) Honeywell

Aschenbrenner Honeywell CH

Keyboard Mouse

D83

Depraz

Winchester

ST4051

Seagate

Datacomp

Floppy

TEAC FD-35F PS

Teac

Wenger

Processor-Board

ICs:

u1-6,48,49,53,65	74ALS645	TI	10	Fabrimex
u7	74AS244	TI	1	Fabrimex
u8-u11	74ALS573	TI	4	Fabrimex
u12	PAL20L8A	TI/NS/MMI	1	Fabr., Fenner, Industrade
u13,14	PAL16R8A	TI/NS/MMI	2	Fabr., Fenner, Industrade
u15	74AS573	TI	1	Fabrimex
u16,21	PAL16L8A	TI/NS/MMI	2	Fabr., Fenner, Industrade
u17-20	74F779	Signetics/Fairchild	4	*Signetics Utah
u22	74AS74	TI	1	Fabrimex
u23	NS32081 FPU	NS	1	*Fenner
u24	NS32032 CPU	NS	1	*Fenner
u25	NS32082 MMU	NS	1	*Fenner
u26,38	74AS04	TI	2	Fabrimex
u27,29-32	74ALS541	TI	5	Fabrimex
u34	74AS08	TI	1	Fabrimex
u35	TL7705	TI	1	Fabrimex
u36	NS32201 TCU	NS	1	*Fenner
u37,39,62	74ALS32	TI	3	Fabrimex
u40	74ALS74	TI	1	Fabrimex
u41-44	27C64-150 ROM	Hitachi	4	Fenner, Dimos
u45	74LS393	TI	1	Fabrimex
u46	74LS125	TI	1	Fabrimex
u47	SCN2681AC1N40 UART	Signetics	1	*Philips
u50	Z8530APS SCC	Zilog/AMD	1	Moor,Kontron
u52	Am9519A-1 ICU	AMD	1	Kontron
u54	74ALS244	TI	1	Fabrimex
u55	PAL16R8A-2	TI/NS/MMI	1	Fabr.,Fenner,Industrade
u56,57	74ALS138	TI	2	Fabrimex
u58,63	74ALS04	TI	2	Fabrimex
u59	75188/1488	TI/Motorola	1	Fabrimex,Omni Ray
u60	75189/1489	TI/Motorola	1	Fabrimex,Omni Ray
u61,64	DS3696N	NS	2	Fenner
u66	M3002	MEM	1	Moor

Resistors:

R1,2,11,13,35-37 R3,10,12,14,29-31,	10K	7	,
33,34,39	4K7	1	0
R4,7,15-17	470	5	;
R5,6,24-26,47	1K	6	5
R18,21,22,28,45	560	5	;
R19,20,23,27,44	270	5	;
R40-43	00hm	4	}

s1-3	8x4K7 SIP		3	
Capacitors:				
C1,4,?	1uF Tantalum		3	en e
C2	1nF disc or monolithic ceramic		1	
C3, div.	100nF		41	
C5,8,9	27pF		3	
C6,11	4.7pF		2	
C7	15pF		1	
C10	47uF Electrolyte		ī	
(u36)		ogers	1	ARP
(u7)	-	gers	1	ARP
(47)	220.03	,8c13	•	
D. 1.				
Diodes:				
D1,2	1N4148		2	
Crystals:				
X1	20MHz		1	Compona
X2	3.6864MHz		1	Compona
X3	32.768kHz		1	Compona
u51	6MHz Crystal Oscillator		1	Compona
uJI	OWITZ Crystal Oscillator		•	Compona
5				
Battary:				
B1	Lithium Battery 6126 Va	ırta	1	ESD
Jumpers:				
u28	8xDIP Switch		1	
J1,2,4,11	Jumper		4	
J5-10	0Ohm		3 (6)	
33 20			- (-)	
Heat Sinks:				
Heat Bliks.				
u24		MP	1	Aumann
u36	DIP1495 Re	edpoint	. 1	Summerer
Connectors:				
	5 way DIN Jack		1	Seyffer (004-190 052)
	9 way Canon Connector		3	,
	25 way Canon Connector		1	
	DIN41612 Connector 3x32 circu	ıits	2	

Sockets:

u1-11,13-16,21,27,			er.	
29-32,48,49,53-55,65	5 20 pin 0.3"	Augat	27	Fabrimex
u12	24 pin 0.3" (16+8)	Augat	1	Fabrimex
u17-20,56,57,66	16 pin 0.3"	Augat	7	Fabrimex
u22,26,34,37-40,				
45,46,58,59,60,62,63	14 pin 0.3"	Augat	14	Fabrimex
u23,36	24 pin 0.6"	Augat	2	Fabrimex
u24	68 pin 0.6" LHCC 55159-1	AMP	1.	Aumann
u25	48 pin 0.6" (24 + 24)	Augat	1	Fabrimex
u35,61,64	8 pin 0.3"	Augat	3	Fabrimex
u41-44,52	28 pin 0.6"	Augat	5	Fabrimex
u47,50	40 pin 0.6"	Augat	2	Fabrimex

PCB:

4 Layer Double Eurocard (233.4 x 220 x 1.6)

ED, Photochemie

Memory Board

0/0-0/31,

ICs:				
14	A20C922\	AMD	4	Kontron
u1-u4	Am29C833)			
u5	74AS1032	TI	1	Fabrimex
u6	74AS32	TI	1	Fabrimex
u8	74ALS04	TI	1	Fabrimex
u10	74ALS138	TI	1	Fabrimex
u12	DP8419 DRAM Controller	NS	1	*Fenner
u13	74LS125	TI	1	Fabrimex
0/0-0/31,				
1/0-1/31,		The second second		
0/dp0-0/dp3,				
1/dp0-1/dp3	256k DRAM -120 (-150)	div.	72	div.
17 apo 17 apo	250K 251GHM 120 (150)	G177		
Docietoms				
Resistors:				
D1 D6	47/7			
R1-R6	4K7		6	
R7	1K		1	
u7/1-4,u11/1-8	22		12	
u7/5-8	33		4	
Capacitors:				
C1	1uE mulitlaver ceramic		1	
	1uF mulitlayer ceramic			
C2	1uF Tantalum		1	
C3,4,6	10uF Tantalum		3	
C5,7	100uF Electrolyte (radial)		2	
	220nF		72	
	100nF		9	
Jumpers:				
J1-J5,u9	0Ohm		6	
Connectors:				
	DIN41612 Connector 3x32 of	circuits	2	
Sockets:				
				
u1-4	24 pin 0.3" (16+8)	Augat	4	Fabrimex
u5,6,8,13	14 pin 0.3"	Augat	4	Fabrimex
u10,	- · F	 	-	
,				

1/0-1/31, 0/dp0-0/dp3,

1/dp0-1/dp3 16 pin 0.3" Augat 73 Fabrimex u12 48 pin 0.6" (24+24) Augat 1 Fabrimex

PCB:

4 Layer Double Eurocard (233.4 x 220 x 1.6) 1 ED,Photochemie

Display Controller Board

T	Cc.	
Ŧ	<u> </u>	

	$\boldsymbol{\epsilon} = (\boldsymbol{\epsilon}_{i}, \boldsymbol{\epsilon}_{i}, \boldsymbol{\epsilon}_{i})$	1		
u0	74AS10	TI	1	Fabrimex
u1-4	74ALS645	TI	4	Fabrimex
u5,6	74ALS541	TI	2	Fabrimex
u 7	PAL16L8A	TI/NS/MMI	1	Fabr., Fenner, Industrade
u8	DP8419 DRAM Controller	NS	1	*Fenner
	(DP8409 with 200ns VRAM	s)		
u9 44 ALO8	74AS1032	TI	1	Fabrimex
y 11,3 4	74AS1008	TI	2	Fabrimex
u12	74ALS175	TI	1	Fabrimex
u13	74ALS32	TI	1	Fabrimex
u14	74ALS74	TI	1	Fabrimex
u15	74LS125	TI	1	Fabrimex
u17,19,20,30,32	74ALS163	TI	5	Fabrimex
u18,21	27C64-200 ROM	Hitachi	2	Fenner, Dimos
u22,33	74F378	Signetics/Fairchild	2	*Philips,Moor
u23	74ALS08	TI	1	Fabrimex
u24	74F676	Signetics/Fairchild	1	*Philips,Moor
u25	74AS74	TI	1	Fabrimex
u26	74AS175	TI	1	Fabrimex
u27	74AS163	TI	1	Fabrimex
u28	74AS04	TI	1	Fabrimex
u31	74ALS04	TI	1	Fabrimex
s0-31	TMS4161-20/-15 VRAM	TI	32	Fabrimex
Resistors:				
R1,3,4,7,12,13	4K7		6	
R2	1K		1	
R8,10,16,17,19	270		5	
R9,11,15,18,20	560		5	
R14,u10/5-7	33		4	
R5,6,u10/1-4,				
u16/1-8	47		14	
Capacitors:				
Cl	1			
C1	1uF multilayer ceramic		1	
C2	1uF Tantalum		1	
C3,4	47uF Electrolyte		2	
	100nF		63	

Crystals:

u29	70MHz Crystal Oscillator NCT-070C70		1	Kraus (D)
Jumpers:				
J1,4,5	0Ohm		2 (3)	
Connectors:				
	DIN41612 Connector 3x32 circuits		2	
	Coax Jack 50 Ohm Connector for SYNC sig	nals	1	
Sockets:				
u1-7,s0-31	20 pin 0.3"	Augat	39	Fabrimex
u8 u0,9,11,13-15,23,25,	48 pin 0.6" (24 + 24)	Augat	1	Fabrimex
28,29,31,34 u12,17,19,20,22,26,	14 pin 0.3"	Augat	12	Fabrimex
27,30,32,33	16 pin 0.3"	Augat	10	Fabrimex
u18,21	28 pin 0.6"	Augat	2	Fabrimex
u24	24 pin 0.6"	Augat	1	Fabrimex
PCB:				
	4 Layer Double Eurocard (233.4 x 220 x 1.6)		1	ED,Photochemie

Motherboard

Resistors:

rp1-8 8x4K7 SIP 8

Capacitors:

10uF Electrolyte 15

Connectors:

DIN41612 Header 3x32 circuits

C1 Edge Conn. SL10PA Weidmüller

C3 Conn. 2x20 circuits SL2/53G 2x36

C2,3 Edge Conn. 1x5 circuits SL3/53G 1x36

DIN41612 Header 3x32 circuits

12 C.Geisser (123.556)

1 (5/9) ESD (44748)

2 (2/7) ESD (44762)

PCB:

4 Layer Board (160 x 278 x 3.2)

ETH Zürich

ns532.cpu2.SIL Reset–Logic, Buffers

Author:

B. Heeb

Date:

10.6.88


```
B Heeb
ETH Zuerich
8/6/88
1.0
A
EP600
Ceres2 IO Timer
OPTIONS: TURBO = OFF
PART: EP600
INPUTS: RFSH'@2, IoAcc'@11, Clk
OUTPUTS: RefReq@3, IoRdy@4
NETWORK:
Clk = INP(Clk)
nRFSH = INP(RFSH') RFSH = NOT(nRFSH)
nIoAcc = INP(IoAcc') IoAcc = NOT(nIoAcc)
Refreq = SONF(Refreqs, Clk, Refreqr, ClrRef, , )
IORdy = SONF(IORdys, Clk, IORdyr, ClrIo, , )
r0 = NOTF(r0t, Clk, , )
r1 = NOTF(r1t, Clk, , )
r2 = NOTF(r2t, Clk, , )
r3 = NOTF(r2t, Clk, , )
r3 = NOTF(r3t, C1k, , )
r4 = NOTF(r4t, C1k, , )
r5 = NOTF(r5t, Clk, , )
r6 = NOTF(r6t, Clk, , )
i0 = NOTF(i0t, Clk, ClrIo, )
i1 = NOTF(i1t, Clk, ClrIo, )
i2 = NOTF(i2t, Clk, ClrIo, )
EQUATIONS:
ClrRef = RFSH;
ClrIo = IoAcc;
r0t = VCC;
r1t = r0;
r2t = r0 & r1;
r3t = r0 & r1 & r2;
r4t = r0 & r1 & r2 & r3;
r5t = r0 & r1 & r2 & r3 & r4 & /r6;
r6t = r0 & r1 & r2 & r3 & r4 & (r5 + r6);
RefReqs = r0 & r1 & r2 & r3 & r4 & /r5 & r6;
RefReqr = GND;
i0t = VCC;
i1t = i0;
i2t = i0 & i1;
IoRdys = i0 & i1 & i2;
IoRdyr = GND;
```

DK.TIMER.ADF

END\$

```
B Heeb
ETH Zuerich
8/6/88
1.0
Α
EP600
Ceres2 Mouse Counter
OPTIONS: TURBO = OFF
PART: EP600
INPUTS: Clk1@1, Clk2@13, MA@2, MB@11, Write'@14, Sel'@23
OUTPUTS: D0@3, D1@4, D2@5, D3@6, D4@7, D5@8, D6@9,
         D7@10, D8@15, D9@16, D10@17, D11@18
NETWORK:
Clk1 = INP(Clk1)
Clk2 = INP(Clk2)
MA = INP(MA)
MB = INP(MB)
nWrite = INP(Write') Write = NOT(nWrite)
nSel = INP(Sel') Sel = NOT(nSel)
D0,D0 = TOTF(DOt, Clk1, Clr, , OutEn)
D1,D1 = TOTF(D1t, Clk1, Clr, , OutEn)
D2,D2 = TOTF(D2t, C1k1, C1r, , OutEn)
D3,D3 = TOTF(D3t, Clk1, Clr, , OutEn)
D4,D4 = TOTF(D4t, Clk1, Clr, , OutEn)
D5,D5 = TOTF(D5t, Clk1, Clr, , OutEn)
D6,D6 = TOTF(D6t, Clk1, Clr, , OutEn)
D7,D7 = TOTF(D7t, Clk1, Clr, , OutEn)
D8,D8 = TOTF(D8t, C1k2, C1r, , OutEn)
D9, D9 = TOTF(D9t, C1k2, C1r, , OutEn)
D10,D10 = TOTF(D10t, Clk2, Clr, , OutEn)
D11,D11 = TOTF(D11t, Clk2, Clr, , OutEn)
MA1 = NORF(MA1d, C1k2, , )
MB1 = NORF(MB1d, Clk2, ,
MA2 = NORF(MA2d, Clk2, , )
MB2 = NORF(MB2d, Clk2, , )
EQUATIONS:
MA1d = MA;
MB1d = MB:
     = MA1;
MA2d
MB2d = MB1:
      = MA1 & MA2 & /MB1 & MB2 + MA1 & /MA2 & MB1 & MB2 +
ďρ
         /MA1 & MA2 & /MB1 & /MB2 + /MA1 & /MA2 & MB1 & /MB2;
Down = MA1 & MA2 & MB1 & /MB2 + /MA1 & MA2 & MB1 & MB2 +
        MA1 & /MA2 & /MB1 & /MB2 + /MA1 & /MA2 & /MB1 & MB2;
OutEn = /Write & Sel;
      = Write & Sel;
Clr
      = Up + Down;
D0t
D1t
      = Up & D0 + Down & /D0;
D2t
      = Up & D0 & D1 + Down & /D0 & /D1;
      = Up & D0 & D1 & D2 + Down & /D0 & /D1 & /D2;
D3t
      = Up & D0 & D1 & D2 & D3 + Down & /D0 & /D1 & /D2 & /D3;
D4t
      = Up & D0 & D1 & D2 & D3 & D4 + Down & /D0 & /D1 & /D2 & /D3 & /D4;
D5t
      = Up & D0 & D1 & D2 & D3 & D4 & D5 +
D6t
        Down & /D0 & /D1 & /D2 & /D3 & /D4 & /D5;
D7t
      = Up & D0 & D1 & D2 & D3 & D4 & D5 & D6 +
        Down & /D0 & /D1 & /D2 & /D3 & /D4 & /D5 & /D6;
D8t
      = Up & D0 & D1 & D2 & D3 & D4 & D5 & D6 & D7 +
         Down & /D0 & /D1 & /D2 & /D3 & /D4 & /D5 & /D6 & /D7;
      = Up & D0 & D1 & D2 & D3 & D4 & D5 & D6 & D7 & D8 +
D9t
Down & /D0 & /D1 & /D2 & /D3 & /D4 & /D5 & /D6 & /D7 & /D8;
D10t = Up & D0 & D1 & D2 & D3 & D4 & D5 & D6 & D7 & D8 & D9 +
         Down & /D0 & /D1 & /D2 & /D3 & /D4 & /D5 & /D6 & /D7 & /D8 & /D9;
D11t = Up & D0 & D1 & D2 & D3 & D4 & D5 & D6 & D7 & D8 & D9 & D10 +
         Down & /D0 & /D1 & /D2 & /D3 & /D4 & /D5 & /D6 & /D7 & /D8 & /D9 & /D10;
END$
```

```
PAL priority: 16R8;
(* NS32532 Priority Encoder B. Heeb, 8.3.88 *)
PIN 2: ~DSPREQ;
                  19: ~DSPGNT;
     3: ~RefReq;
                 18: ~RFSH;
     4: ~REQ0;
                  17: ~GNT0;
     5: ~REQ1;
                  16: ~GNT1;
                  15: ~GNT2;
     6: ~REQ2;
                  14: ~GNT3;
     7: ~REQ3;
     8: ~CpuReq;
                  13: ~CpuGnt;
     9: RDY;
                   12: ~DBE;
EQUATIONS
DSPGNT := RDY * DSPREQ
       + ~DBE * CpuGnt * DSPREQ
        + DSPGNT * ~RDY;
RFSH
     := RDY * RefReq * ~DSPREQ
       + ~DBE * CpuGnt * RefReq * ~DSPREQ
        + RFSH * ~RDY * ~DSPGNT;
GNT0
       := RDY * REQ0 * ~RefReq * ~DSPREQ
       + ~DBE * CpuGnt * REQ0 * ~RefReq * ~DSPREQ
        + GNTO * ~RDY * ~RFSH * ~DSPGNT;
GNT1
       := RDY * REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
        + ~DBE * CpuGnt * REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
        + GNT1 * ~RDY * ~GNT0 * ~RFSH * ~DSPGNT;
      := RDY * REQ2 * ~REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
GNT2
       + ~DBE * CpuGnt * REQ2 * ~REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
        + GNT2 * ~RDY * ~GNT1 * ~GNT0 * ~RFSH * ~DSPGNT;
GNT3
       := RDY * REQ3 * ~REQ2 * ~REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
       + ~DBE * CpuGnt * REQ3 * ~REQ2 * ~REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
        + GNT3 * ~RDY * ~GNT2 * ~GNT1 * ~GNT0 * ~RFSH * ~DSPGNT;
CpuGnt := RDY * ~REQ3 * ~REQ2 * ~REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
        + ~DBE * CpuGnt * ~REQ3 * ~REQ2 * ~REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
        + ~RDY * DBE * ~GNT3 * ~GNT2 * ~GNT1 * ~GNT0 * ~RFSH * ~DSPGNT
        + ~RDY * ~CpuGnt * ~GNT3 * ~GNT2 * ~GNT1 * ~GNT0 * ~RFSH * ~DSPGNT;
DBE
       := ~RDY * DSPGNT
        + ~RDY * RFSH
        + ~RDY * GNTO
        + ~RDY * GNT1
        + ~RDY * GNT2
        + ~RDY * GNT3
        + ~RDY * CpuReq * ~REQ3 * ~REQ2 * ~REQ1 * ~REQ0 * ~RefReq * ~DSPREQ
        + ~RDY * DBE;
```

END priority.

END Addr.

```
PAL Addr: 16L8;
(* NS32532 Address Control Logic
                                     B. Heeb 10.6.88 *)
PIN
       1: ~CpuGnt;
                     19: ~IoSel;
       2: A16;
       3: A17;
                     18: ~boot;
       4: A18;
                     17: ~AV;
                   16: ~WRITE;
       5: ~HiAd;
       6: A24; 15: ~IOEN;
7: ~RESET; 14: ~CLRPAR;
       8: ~ClrPar; 13: ~IoDec;
       9: ~ClrBoot; 12: ~RomEn;
                     11: ~IoInh;
EQUATIONS
IF TRUE THEN IOSel := A16 * A17 * A18 * A24 * HiAd * AV * ~IoInh;
IF TRUE THEN boot := RESET
                    + boot * ~ClrBoot; (* RS Latch *)
IF CpuGnt THEN AV := ~boot
                    + WRITE
                     + A24;
IF TRUE THEN IOEN := A18 * A24 * HiAd * AV * ~IoInh
                    + ~A16 * ~A17 * ~A18 * ~A24 * HiAd * AV * WRITE * ~IoInh;
IF TRUE THEN CLRPAR := ClrPar
                      + RESET;
IF TRUE THEN IODec := A18 * A24 * HiAd * AV
                     + ~A16 * ~A17 * ~A18 * ~A24 * HiAd * AV * WRITE;
IF TRUE THEN Romen := \simA16 * \simA17 * \simA18 * \simA24 * HiAd * AV * \simRESET + CpuGnt * boot * \simA24 * \simWRITE;
```

```
PAL proc: 16L8;
(* NS32532 Processor Control Logic B. Heeb 9.6.88 *)
       1: ~CpuGnt;
                   19: ~ILO;
18: ~BE3;
17: ~BE2;
      2: ~be3;
      3: ~be2;
       4: ~be1;
                   16: ~BE1;
       5: ~be0;
       6: ~ddin;
                    15: ~BE0;
                  14: ~WRITE;
       7: ~ilo;
                   13: ~CpuRdy;
12: ~BuffEn;
       8: RDY;
       9: ~DBE;
                    11: Slave;
EQUATIONS
IF CpuGnt THEN BEO := be0 * DBE * ~RDY
                  + ddin * DBE * ~RDY
                   + BEO * RDY;
IF CpuGnt THEN BE1 := be1 * DBE * ~RDY
                  + ddin * DBE * ~RDY
                   + BE1 * RDY;
IF CpuGnt THEN BE2 := be2 * DBE * ~RDY
                   + ddin * DBE * ~RDY
                   + BE2 * RDY;
```

+ WRITE * DBE;

IF CpuGnt THEN ILO := ilo;

IF CpuGnt THEN WRITE := ~ddin * ~DBE

IF TRUE THEN BuffEn := CpuGnt * DBE;

END proc.

```
PAL timing: 16R8;
(* NS32532 20MHz Bus Timing State Machine B. Heeb, 10.2.88 *)
PIN 2: ~DBE;
                   19: ~IoAcc;
     3: ~WRITE;
                   18: RDY;
     4: ~IOEN;
                  17: ~DS;
     5: ~WAIT2;
                   16: ~IORD;
     6: ~WAIT1;
                   15: ~IOWR;
     7: ~CWAIT;
                   14: ~d0;
     8: ~IoRdy;
                   13: ~d1;
                   12: ~d2;
(*
T1:
            RDY DS IO d0 d1 d2
                                      IO = IORD + IOWR
              0 0 0 1 1 0
              0 1 0 0 1 0
   T2:
   T3:
              0 1 0 1 0 0
              0 1 0 0 0 0
   W10:
              0 1 0 1 1 0 0
   W9:
   W8:
                              0
   W7:
              0
                 1 1 1 1
   W6:
              0
                 1
                       0 1
   W5:
              0 1 1 1 0 0
              0 1 1 0 0
   W4:
              0 1 x 1 1
   W3 :
                              1
   W2:
              0 1 x 0 1 1
   W1:
              0 1 x 1 0 1
   T4:
              1 1 x 0 0 1 *)
EQUATIONS
IoAcc := ~IORD * ~IOWR * ~d0 * ~d1 * ~d2
       + IoAcc * ~d2;
~RDY := ~d0
     + d1
      + CWAIT
      + IORD * ~d2
      + IOWR * ~d2
      + ~IORD * ~IOWR * WAIT1 * ~d2
+ ~IORD * ~IOWR * WAIT2 * ~d2
      + ~IORD * ~IOWR * IOEN * ~d2;
    := ~DS * ~RDY * DBE * ~IOEN
DS
      + ~DS * ~RDY * DBE * IoRdy
      + DS * ~RDY * ~IOWR
      + DS * ~RDY * ~d0
      + DS * ~RDY * d1
      + DS * ~RDY * ~d2
      + DS * ~RDY * CWAIT;
IORD := DS \star d0 \star d1 \star ~d2 \star ~WRITE
      + IORD * DS * ~RDY;
IOWR := DS * d0 * d1 * ~d2 * WRITE
     + IOWR * DS * ~RDY * ~d0
      + IOWR * DS * ~RDY * d1
      + IOWR * DS * ~RDY * ~d2
      + IOWR * DS * ~RDY * CWAIT;
    := ~d0
      + ~DS * ~DBE
      + ~DS * IOEN * ~IoRdy
      + ~IORD * ~IOWR * d0 * ~d1 * ~d2 * WAIT1 * ~IOEN
+ ~IORD * ~IOWR * d0 * ~d1 * ~d2 * CWAIT * ~IOEN
      + d0 * ~d1 * d2 * CWAIT;
    := ~d0 * ~ d1
      + d0 * d1 * ~DS
      + d0 * d1 * IORD
      + d0 * d1 * IOWR
      + d0 * d1 * d2
      + ~IORD * ~IOWR * d0 * ~d1 * ~d2 * WAIT2 * ~IOEN
      + ~DS * ~d1;
     := ~IORD * ~IOWR * d0 * ~d1 * ~d2 * ~IOEN
      + IORD * d0 * ~d1 * ~d2
      + IOWR * d0 * ~d1 * ~d2
```

+ d2 * DS * ~RDY;

Informatik ETH Zürich

DK.ns532.time.PAL

19. 8.1988

page 2

END timing.

Zurich NS.332.mem5.PIN.SIL
Memory
(2*32*1/MBit)

2/2

Author: H.Eberle I.Noack

Date: 3.3.88

Zürich File: Cursor-Chip 5/5 Author: H.Eberle I.Noack Date: 14.9.87

NS.s32.cm6.PIN.SIL Free Gates

Zurich

Author: H. Eberle I.Noack

Date: 24.2.88

Part#	Typ	Comme	ntc		
railt	ŧ Тур	Comme	HLS		
u1	ALS645				
u2 u3	ALS645 ALS645				
u3 u4	ALS645 ALS645				
u5	ALS541				
u6	ALS541	,			
u7 u8	ALS541 PAL 20L8A				
u9	8419				
u10	AS1032				
u11 u12	R–Pack AS08	1–16:47/2–15:47/3–14:47/4–13:47/5–12:33/6–11:33/7–10:emp./8–9:33			
u12 u13	ASU8 ALS175				
u14	ALS32				
u15	ALS74				
u16 u17	LS125 R-Pack	8 × 47			
u18	ALS163				
u19	27C64				
u20 u21	ALS163 27C64				
u21 u22	AS374				
u23	ALS645				
u24	Bt431				
ս25 u26	Bt454 70MHz Osc.				
u27	ALS163				
u28	ALS163				
u29	AS08				
น30 ม31	ALS32 10H116				ļ
u32	ALS163				• •
u33	ALS04				
u34	ALS163				
u35 u36	ALS08	empty			
u37	ALS645	cinpe			
u38	ALS11				
u39 u40	ALS74 ALS32				
u40 u41	ALS27				
u42	AS02				
n.	41	0440			•
R1 R2	1k 1k	8419 8419			
R3	4.7k	u16			
R4	4.7k	u16			
R5	47	STOEO,			
R6 R7	47 1k	SHOEO' Pullup			
R8	1k	Pullup			
R8	330	Termination CCK Vcc			
R10	470 523	Termination CCK GND Bt454			
R11 R12	523 75	Termination Blue			
R13	75	Termination Green			
R14	75	Termination Red			
R15 R16	180 270	DCK DCK			
R17	820	DCK			
R18	200	Termination DCK' GND			
R19 R20	120 200	Termination DCK' Vcc			
R21	120	Termination DCK GND Termination DCK Vcc			
R22	470	Termination CCK' GND			
R23	330	Termination CCK' Vcc			
R24 R25	47 47	SCKL SCKH			
R26	47 47	SHOE1'			
R27	47	SLOE1'			
R28	33	T/OE'			
C1	1uF	8419 Multilayer Ceramic			
C2	1uF	8419 Tantalum			
C3	47uF	Pt 454 Commic			
C4 C5	0.01uF 0.01uF	Bt 454 Ceramic Bt 454 Ceramic			
C6	0.1uF	Bt 454 Ceramic			
C7	0.1uF	Bt 454 Ceramic			
C8 C9	0.01uF 10uF	Bt 454 Ceramic Bt 454 Tantalum			
C10	0.1uF	Bt 454 Ceramic			
J1		8409/8419			
J2 J3		WAIT1' WAIT2'			
)4		Bt454 GND			+
14	familia tracil				
L1	ferrite bead	Bt454 Vcc			
	NS.s32.cm7.SIL			11 El 1	1
Zurich	Part-List		Author:	H. Eberle I.Noack	Date: 1.3.88
Zuricii				I.Noack	= =====
					1

The mouse is usually held so that the X-axis is parallel to the major axis of the axis of the wrist, but the user can find any position that is comfortable. The Y-axis is perpendicular to the X-axis.

If the number of 15 pulses per mm is too high for standard applications, it can be easily divided by hardware or software.

Precision optical wheels with phototransistors and Schmitt trigger generate the signals.

On the standard mouse (P-4), 4 lines carry the pulses out of the mouse through & 9-wire cable which also carry the status of the three switches, the power supply $(+5V\pm10\%)$ and the power and signal return line (GND). Mouse H-4, shifts the 7-bit information through & 5-line cable including the power supply. Power consumption is 40 mA. All signals are CMOS and TTL-LS compatible.

MOUSE P-4

Standard connector on P-4 is a male 9-pin Canon subminiature connectors (fig. 3). An 80 cm-long 9-wire cable is provided.

The P-4 mouse schematic is given in figure 4. When a key is depressed, the corresponding output is active low.

Fig. 4

P-4 schematic

APPLICATION NOTE

Interfacing the mouse β -4 is easy. The three switches can be directly read on a parallel port and scanned by software. If handling by interrupt is required, a 3-input or gate can trigger an interrupt when any key is depressed. Two 2-input exclusive OR gate plus two flip-flops can trigger an interrupt each time a key is pressed or depressed (see figure 5).

The four pulse lines control an up-down counter which can be made by hardware, or programmed. If made in hardware, the counter will be read regularily to update the pointer on the screen. If made in software, interrupts will occur each time a pulse is decoded.

Decoding of the pulses can be made with different schematics, depending on the required resolution.

One pulse per period

Fig. 6 shows a simple schematic, which in most cases is quite adequate with the number of pulses per millimetre provided by the mouse. Direction is defined from the value of "b" at each positive pulse edge of "a", and a delayed pulse is generated for the up-down counters at each positive "a" transition.

The delayed negative pulse is required with counters made of pulse-tripped master-slave flip-flops like the 74LS190/191. With these counters, UP/DOWN state must not be changed while the clock is active low.

If the counter is updated by an interrupt routine, two flip-flops provide the required interface (flg.6c). In a microprocessor system, a better choice than the LS191 is a LS697, which provides a three-state buffer and a latch (fig.7). An AND gate inhib the load of the register when the register is read by the microprocessor, in order to avoid any change of state while reading.

Fig. 5 Examples of key interface

Fig. 6 Simple P-4 interface

- a) timing diagram
- b) schematic with hardware counter
- c) schematic with interrupts and software counters

Fig. 7 Microprocessor interface with three-state up-down counters

A better approach is in most cases to use a programmable timer/counter like the 8253, 6840 or 9513. Two channels have to be used in order to simulate an up/down counter by subtraction (fig. 8).

Two pulses per period

Both pulse edges of signal "a" can be used for an improved resolution. The corresponding timing diagram and schematic is given in fig. 8. In this schematic, generation of delays and pulses of adequate length rely on the mixing of CMOS and TTL-LS technology. If all CMOS technology must be used, or if programmable timer have to be used, additional delays must be provided inside the dotted shematic regions.

Fig. 8 Microprocessor interface with programmable timer/counter

A purely synchronous solution with clocked flip-flops for the generation of delays is shown in figure 10. There is a risk for metastable states, but due to the rather slow clock (100 kHz range, one can neglect this risk. Loosing a pulse every month is acceptable with a mouse.

3. Four pulses per period

The highest resolution is obtained with 4 pulses per period. The synchronous schematic of fig. 11 generalizes the previous scheme. The LS174 or LS175 register (LS273 for two channels) generates delayed pulses which defines the count slots (enable the counter) and the direction. The truth table is given in fig. 11b and assumes that the synchronizing clock is fast enough to never have two transitions in the same slot, CMOS technology can be used for lower power consumption.

A PROM can be used as shown in fig. 11, but this increases the power and the cost for the saving of a single chip. A registered PROM or PAL can save an additional circuit.

Synchronous intentions and a PROM Fig. 13

Fig. 9 Interface with 2 counts per pulse

a) timing diagram

- b) schematis for hardware counter
- c) schematic with interrupts and software counters.

Fig. 10 Synchronous interface with two counts per pulse

- a) timing diagram
- b) schematic with hardware counter

- a) timing diagram
- b) truth table
- c) schematic

MOUSE H-4

down H-4 has the same mechanical features as Mouse P-4. The interesce is that the 7 information bits are stored in a simple that register and shifted out serially. Two timing signals (CP for sock pulse and LD for load pulse) define the shift frequency and he load of new information every 8 or 7 clock pulses.

he standard connector is afemale 9-pin Canon subminiature processor (Figure 13). An 80-cm long, 5-wire cable is provided.

he full schematic is given in Figure 4. It should be noticed that switches re not debounced. If a shift equency greater than 10 kHz is sed, there is some risk of transfer punces. A lower frequency should at be used if very fast repositioning expected.

PPLICATION NOTE

ouse H-4 has been designed with shift register interface for lowering re cost of cables. This will also crease the number of input pins a dedicated integrated circuit terface which should be available time soon.

th a shift register, and direction tection can be performed to the performed tection can be performed to the performance to the performance

pure 15 shows the serial to parallel terface. An oscillator provides shift pulses and a divide 16 counter, while a wired in divide 8, generates a load pulse every shift pulses. The C-MOS 4094 shift pulses to every convenient for that plication. On the parallel output es of the shift register, all the hematics proposed for the parallel puse P4 can be applied (Figure 5 12). The serial interface has a parallel at a divide a generated each time a mail changes on the mouse.

Fig. 13 Standard H-4 plug

Fig. 14 H-4 schematic

Fig. 15 Serial to parallel conversion

-9EAD

NTERRUP

Figure 16 shows how a XOR (Exclusive OR) gate compares the coming 8-bit stream with the previous one. If a difference is recognised, an interrupt occurs, it is cleared while reading the register; software decodes if it is a key or a direction pulse. If the interrupt latency may be higher than 8 clock pulses, it is possible to stop the shift clock as long the interrupt is pending.

If it is too much time consuming to hendle the mouse by interrupt detection, a programmable timer can be used with some additional logic, as shown in Figure 7. Two shift registers allow to compare two consecutive states, and from these signals, some logic decodes the direction, pulses and any change in control keys.

Fig. 16 Interrupt generation on any change of state

J.D. Nicoud, LAMI-EPFL

Fig. 17 Full decoding with 4 pulses per period and interrupt on any key pressed or depressed

Price-list (January 1982)

Quantity of 1 490.- (Swiss francs)
Quantity of 2 470.Quantity of 5 440.Quantity of 10 410.Quantity of 20 380.Quantity of 50 350.-

Warranty 1 year

ÉTUDE ET FABRICATION DE COMPOSANTS POUR LA MICROMÉCANIQUE ET L'ÉLECTRONIQUE