

Course logistics

- Assignment 2 will be out today
 - Oue date: midnight 10/16

Today's agenda

- Review: CNN for image classification
- Intro to object detection
 - Problem definition
 - Overall pipeline
 - Evaluation metrics
- Object detection using CNN
 - o R-CNN
 - SPPNet, Fast R-CNN, Faster R-CNN

Image classification

identifying presence/absence of concepts in an image

Is there motorcycle? Yes Is there person? Yes Is there dog? No

...

Outputs: Motorcycle, person

Object detection

• Classification + **localization** of object instances

Class label:

A label indicating object category

Bounding box:

A 2d box indicating object location and size

Object detection

- Challenges
 - How do we localize the object?
 - How do we handle variable number of object?
 - How do we handle various size, aspect ratio, etc?

E.g. Histogram of Oriented Gradient (HOG)

Bounding boxes that have probability > 0.9 for person and motorcycle

Traditional object detection pipeline -- region proposal

Extract candidate bounding boxes by measuring "objectness" of all possible boxes

Traditional object detection pipeline -- region proposal

Extract candidate bounding boxes by measuring "objectness" of all possible boxes

Challenge 1. How can we detect these guys?

figure: http://www.deceptology.com/2011-02/participants-in-facebook-game-of-lying.html

Challenge 2. How fast should we detect the object?

- Example: computational cost of sliding window approach
 - Image grid of the size W (width) x H (height)
 - Number of scales: S
 - Number of aspect ratios: A
 - Total number of classification: W x H x S x A
 - o If W, H=128, S=5, A=32: **2,420,640** classification per image

DPM $v5^{[1]}$: 0.07 FPS = 14s per image

For a car driving at 80 km/h, it proceeds > 300m to detect objects

Summary: Introduction

- Object detection: region-based classification
- Pipeline of object detection:
 - Region extraction, feature extraction, classification, post-processing
- Challenges:
 - Building a robust representation (i.e. feature)
 - Improving a processing speed

Progress in object detection

Convolutional Neural Network (CNN) for classification

- Operations (low-level)
 - Convolution
 - Non-linear activation (e.g. ReLU)
 - Sub-sampling (e.g. max-pooling)
 - Fully-connected Layer

- Operations (high-level)
 - Feature extractor
 - Classifier (e.g. the last layer)

Convolutional Neural Network (CNN) for Detection

Convolutional Neural Network (CNN) for Detection

The pre-trained network on a large-scale dataset provides **a powerful representation** that are robust to various appearance variations!

Girshick et al. CVPR14.

Regions of Interest (RoI) from a proposal method (~2k)

Girshick et al. CVPR14.

Girshick et al. CVPR14.

Girshick et al. CVPR14.

Region-based CNN (R-CNN)

Region-based CNN (R-CNN)

Apply boundingHbox regressors

Post hoc componerite credit: Ross Girshick

Bounding box Regression

Predicted bounding box

$$\mathbf{p} = (p_x, p_y, p_w, p_h)$$

y

Bounding box Regression

Predicted bounding box

$$\mathbf{p} = (p_x, p_y, p_w, p_h)$$

Target bounding box

$$\mathbf{g} = (g_x, g_y, g_w, g_h)$$

y

Bounding box Regression

Predicted bounding box

$$\mathbf{p} = (p_x, p_y, p_w, p_h)$$

Target bounding box

$$\mathbf{g} = (g_x, g_y, g_w, g_h)$$

Compute the displacement that modifies the predicted box to the target box

$$\mathbf{d}(\mathbf{p}) = (d_x(\mathbf{p}), d_y(\mathbf{p}), d_w(\mathbf{p}), d_h(\mathbf{p}))$$

- Predicted box
- $\hat{g}_x = p_w d_x(\mathbf{p}) + p_x$

$$\hat{g}_{y} = p_{h}d_{y}(\mathbf{p}) + p_{y}$$

$$\hat{g}_{y} = p_{h}d_{y}(\mathbf{p}) + p_{y}$$

$$\hat{g}_w = p_w \exp(d_w(\mathbf{p}))$$

$$\hat{g}_h = p_h \exp(d_h(\mathbf{p}))$$

• Target displacement

$$t_x = (g_x - p_x)/p_w$$

$$t_{y} = (g_{y} - p_{y})/p_{h}$$

$$t_w = \log(g_w/p_w)$$

$$t_h = \log(g_h/p_h)$$

The loss: $\mathcal{L}_{\text{reg}} = \sum_{i \in \{x, y, w, h\}} (t_i - d_i(\mathbf{p}))^2$

Training

Results

,																					1
VOC 2010 test	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mAP
DPM v5 [23]	49.2	53.8	13.1	15.3	35.5	53.4	49.7	27.0	17.2	28.8	14.7	17.8	46.4	51.2	47.7	10.8	34.2	20.7	43.8	38.3	33.4
UVA [21]	56.2	42.4	15.3	12.6	21.8	49.3	36.8	46.1	12.9	32.1	30.0	36.5	43.5	52.9	32.9	15.3	41.1	31.8	47.0	44.8	35.1
Regionlets [54]	65.0	48.9	25.9	24.6	24.5	56.1	54.5	51.2	17.0	28.9	30.2	35.8	40.2	55.7	43.5	14.3	43.9	32.6	54.0	45.9	39.7
SegDPM [57]	61.4	53.4	25.6	25.2	35.5	51.7	50.6	50.8	19.3	33.8	26.8	40.4	48.3	54.4	47.1	14.8	38.7	35.0	52.8	43.1	40.4
R-CNN T-Net	67.1	64.1	46.7	32.0	30.5	56.4	57.2	65.9	27.0	47.3	40.9	66.6	57.8	65.9	53.6	26.7	56.5	38.1	52.8	50.2	50.2
R-CNN T-Net BB	71.8	65.8	53.0	36.8	35.9	59.7	60.0	69.9	27.9	50.6	41.4	70.0	62.0	69.0	58.1	29.5	59.4	39.3	61.2	52.4	53.7
R-CNN O-Net	76.5	70.4	58.0	40.2	39.6	61.8	63.7	81.0	36.2	64.5	45.7	80.5	71.9	74.3	60.6	31.5	64.7	52.5	64.6	57.2	59.8
R-CNN O-Net BB	79.3	72.4	63.1	44.0	44.4	64.6	66.3	84.9	38.8	67.3	48.4	82.3	75.0	76.7	65.7	35.8	66.2	54.8	69.1	58.8	62.9

Quiz: limitation of R-CNN?

Feature extraction for every regions!

Summary: R-CNN

- Integrate CNN to detection pipeline
- Pipeline
 - Region proposal, CNN feature extraction, classification (SVM), post-processing
- Pros
 - Powerful representation by CNN
 - Robust to various appearance variations
- Cons
 - Slow processing time: CNN forward for every region proposal
 - Separate training of feature extractor (CNN) and classifier (SVM)

Improving R-CNN

- Improving the speed
 - How can we extract features more efficiently?
 - How can we potentially remove region proposal operation?
- Improving the training
 - How can we train all model components end-to-end?
- In the remaining class..
 - We will learn following=up works that improve R-CNN!
 - SPPNet, Fast & Faster R-CNN

Slide credit: Ross Girshick

He et al. ECCV14.

He et al. ECCV14.

Slide credit: Ross Girshick

Spatial Pyramid Pooling

SPP-Net (Spatial Pyramid Pooling Pooling Hoox regressors

Limitation of SPP-Net

Inherits many problems in R-CNN

- Ad-hoc training object (SVM)
- Faster than R-CNN, but still slow training

Introduce another problem

Convolutional layers are fixed!

Slide credit: Ross Girshick

Fast R'CNN

Fast testHtime, like SPPHnet

Fast R'CNN

- Fast testHtime, like SPPHnet
- One network, trained in one stage

Fast R'CNN

- Fast testHtime, like SPPHnet
- One network, trained in one stage
- Higher mean average precision than slow RHCNN and SPPHnet

Fast R'CNN (training)

Fast R'CNN (training) Log loss + smooth L1 loss Linear + Linear softmax **FCs** ConvNet

MultiHtask loss

Fast R'CNN (training) Log loss + smooth L1 loss MultiHtask loss Linear + Linear softmax **FCs Trainable** ConvNet

Main results

	Fast R'CNN	R'CNN [1]	SPP'net [2]
Train time (h)	9.5	84	25
HSpeedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

- [1] Girshick et al. CVPR14.
- [2] He et al. ECCV14.

Main results

	Fast R'CNN	R'CNN [1]	SPP'net [2]
Train time (h)	9.5	84	25
HSpeedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

- [1] Girshick et al. CVPR14.
- [2] He et al. ECCV14.

End'to'end training matters

	Fast R'CNN (VGG16)				
FineHtune layers	≥fc6	≥conv3_1	≥conv2_1		
VOC07 mAP	61.4%	66.9%	67.2%		
Test time per image	0.32s	0.32s	0.32s		

1.4x slower training

	Fast R'CNN (VGG16)						
MultiHtask training?		Υ		Υ			
StageHwise training?			Υ				
TestHtime bbox reg.			Υ	Υ			
VOC07 mAP	62.6%	63.4%	64.0%	66.9%			

	Fast R'CNN (VGG16)						
MultiHtask training?		Υ		Υ			
StageHwise training?			Υ				
TestHtime bbox reg.			Υ	Υ			
VOC07 mAP	62.6%	63.4%	64.0%	66.9%			

Trained without a bbox regressor

	Fast R'CNN (VGG16)						
MultiHtask training?		Υ		Υ			
StageHwise training?			Υ				
TestHtime bbox reg.			Υ	Υ			
VOC07 mAP	62.6%	63.4%	64.0%	66.9%			

Trained with a bbox regressor, but it's disabled at test time

	Fast R'CNN (VGG16)						
MultiHtask training?		Υ		Υ			
StageHwise training?			Υ				
TestHtime bbox reg.			Υ	Υ			
VOC07 mAP	62.6%	63.4%	64.0%	66.9%			

Post hoc bbox regressor, used at testtime

Multi'task training helps

	Fast R'CNN (VGG16)			
MultiHtask training?		Υ		Υ
StageHwise training?			Υ	
TestHtime bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

MultiHtask objective, using bbox regressors at test time

Summary: SPPNet, Fast-RCNN

Summary: SPPNet, Fast-RCNN

SPPNet: reduce the computation by sharing the feature extraction

Summary: SPPNet, Fast-RCNN

SPPNet: reduce the computation by sharing the feature extraction

Fast RCNN: train classifier and Bounding box regression with CNN in an end=to-end manner

Faster R-CNN

Fast R-CNN +
Region Proposal
Network (RPN)

Region Proposal Network

- Slide a small window on the feature map
- Build a small network for:
 - · classifying object or not-object, and
 - regressing bbox locations
- Position of the sliding window provides localization information with reference to the image
- Box regression provides finer localization information with reference to this sliding window

Slide credit: Kaiming He

Anchors as references

- Anchors: pre-defined reference boxes
 - Box regression is with reference to anchors: regressing an anchor box to a ground-truth box
 - Object probability is with reference to anchors, e.g.:
 - anchors as positive samples: if IoU > 0.7 or IoU is max
 - anchors as negative samples: if IoU < 0.3

Anchors as references

- Anchors: pre-defined reference boxes
- Translation-invariant anchors:
 - the same set of anchors are used at each sliding position
 - the same prediction functions (with reference to the sliding window) are used
 - a translated object will have a translated prediction

Anchors as references

- Anchors: pre-defined reference boxes
- Multi-scale/size anchors:
 - multiple anchors are used at each position:
 e.g., 3 scales (128², 256², 512²) and 3 aspect ratios
 (2:1, 1:1, 1:2) yield 9 anchors
 - each anchor has its own prediction function
 - single-scale features, multi-scale predictions

Faster R-CNN: training

image credit: Kaiming He

Comparisons of accuracy vs. speed

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img

Summary

Region extraction

Faster RCNN: learn to extract region proposals

Feature extraction

SPPNet: reduce the computation by sharing the feature extraction

Classification

Fast RCNN: train classifier and Bounding box regression with CNN in an end=to-end manner