7/3/25, 10:30 AM OneNote

Module 2

Thursday, July 03, 2025 12:24 AM

Linear regression

- Supervised learning model
- Models a relationship between a continuous target variable and explanatory features

What is a regression model?

Finding the best fit

Estimating the coefficients of the linear regression model

What is logistic regression?

What is logistic regression?

7/3/25, 10:30 AM OneNote

Binary classification

Predicting churn using linear regression

Predicting churn using linear regression

Challenges of linear regression

Towards probabilities

Probabilities to class predictions

Recap

ML logistic regression: A binary classifier based on statistical logistic regression, a probability predictor.

togistic regression, a probability predictor

- Logistic regression is a good choice for a binary target, probabilistic results, and understanding feature impact
- Logistic regression is a probability predictor and a binary classifier
- Goal: Build a model to predict class by considering the predicted probability

Optimal logistic regression

Understanding log-loss

$$\label{eq:loss_loss} \operatorname{Log-loss} = -\frac{1}{N} \sum_{i=1}^{N} \, y_i \log(\hat{p}_i) + (1-y_i) \log(1-\hat{p}_i)$$

Confident and correct: Predicted probability of class 1 is high and correct => log-loss is small

Confident and incorrect: Predicted probability of class 0 is high and incorrect => log-loss is large

Module 2 Summary and Highlights

Congratulations! You have completed this lesson. At this point in the course, you know:

- Regression models relationships between a continuous target variable and explanatory features, covering simple and multiple regression types.
- Simple regression uses a single independent variable to estimate a dependent variable, while
 multiple regression involves more than one independent variable.
- Regression is widely applicable, from forecasting sales and estimating maintenance costs to predicting rainfall and disease spread.
- In simple linear regression, a best-fit line minimizes errors, measured by Mean Squared Error (MSE); this approach is known as Ordinary Least Squares (OLS).
- OLS regression is easy to interpret but sensitive to outliers, which can impact accuracy.
- Multiple linear regression extends simple linear regression by using multiple variables to predict outcomes and analyze variable relationships.
- Adding too many variables can lead to overfitting, so careful variable selection is necessary to build a balanced model.
- Nonlinear regression models complex relationships using polynomial, exponential, or logarithmic functions when data does not fit a straight line.
- Polynomial regression can fit data but mayoverfit by capturing random noise rather than underlying patterns.
- Logistic regression is a probability predictor and binary classifier, suitable for binary targets and assessing feature impact.
- Logistic regression minimizes errors using log-loss and optimizes with gradient descent or stochastic gradient descent for efficiency.
- Gradient descent is an iterative process to minimize the cost function, which is crucial for training logistic regression models.

Cheat Sheet: Linear and Logistic Regression

Comparing different regression types

Model Name	Description	Code Syntax
Simple linear regression	Purpose: To predict a dependent variable based on one independent variable. Pros: Easy to implement, interpret, and efficient for small datasets. Cons: Not suitable for complex relationships; prone to underfitting. Modeling equation: $y = b_0 + b_1 x$	<pre>from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, y)</pre>

	Orienot
Purpose: To capture nonlinear relationships between variables. Pros: Better at fitting nonlinear data compared to linear regression. Cons: Prone to overfitting with high-degree polynomials. Modeling equation: $y = b_0 + b_1x + b_2x^2 + \dots$	<pre>from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression poly = PolynomialFeatures(degree=2) X_poly = poly.fit_transform(X) model = LinearRegression().fit(X_pol y, y)</pre>
Purpose: To predict a dependent variable based on multiple independent variables. Pros: Accounts for multiple factors influencing the outcome. Cons: Assumes a linear relationship between predictors and target. Modeling equation: $y = b_0 + b_1x_1 + b_2x_2 + \dots$	<pre>from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, y)</pre>
Purpose: To predict probabilities of categorical outcomes. Pros: Efficient for binary classification problems. Cons: Assumes a linear relationship between independent variables and logodds. Modeling equation: log(p/(1-p)) = b ₀ +	<pre>from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X, y)</pre>
	between variables. Pros: Better at fitting nonlinear data compared to linear regression. Cons: Prone to overfitting with high-degree polynomials. Modeling equation: $y = b_0 + b_1 x + b_2 x^2 + \dots$ Purpose: To predict a dependent variable based on multiple independent variables. Pros: Accounts for multiple factors influencing the outcome. Cons: Assumes a linear relationship between predictors and target. Modeling equation: $y = b_0 + b_1 x_1 + b_2 x_2 + \dots$ Purpose: To predict probabilities of categorical outcomes. Pros: Efficient for binary classification problems. Cons: Assumes a linear relationship between independent variables and logodds.

Associated functions commonly used

Function/Me thod Name	Brief Description	Code Syntax
train_test_spl it	Splits the dataset into training and testing subsets to evaluate the model's performance.	<pre>from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)</pre>

StandardScal er	Standardizes features by removing the mean and scaling to unit variance.	<pre>from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_scaled = scaler.fit_transform(X)</pre>
log_loss	Calculates the logarithmic loss, a performance metric for classification models.	<pre>from sklearn.metrics import log_loss loss = log_loss(y_true, y_pred_proba)</pre>
mean_absolut e_error	Calculates the mean absolute error between actual and predicted values.	<pre>from sklearn.metrics import mean_absolute_error mae = mean_absolute_error(y_true, y_pred)</pre>
mean_square d_error	Computes the mean squared error between actual and predicted values.	<pre>from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_true, y_pred)</pre>
root_mean_s quared_error	Calculates the root mean squared error (RMSE), a commonly used metric for regression tasks.	<pre>from sklearn.metrics import mean_squared_error import numpy as np rmse = np.sqrt(mean_squared_error(y_true , y_pred))</pre>

r2_score	Computes the R-squared value, indicating how well the model explains the variability of the target variable.	<pre>from sklearn.metrics import r2_score r2 = r2_score(y_true, y_pred)</pre>