the hour first first first first first seasons and seasons seasons first first first

genes
3 of 20
≺
• •

O
for the genotypes
~
×
as
≍
٠.
m
=
==
ភ
흳
œ
) score
×
×
٠.
$\overline{}$
=
물
$\overline{}$
\Rightarrow
٠,
_
ੋ
-
⋖
ANOVA
$\overline{}$
$\underline{\mathcal{L}}$
~
er.
•

Селе	=			12			22			F-ratio	d	Gene score
	z	Mean	SS	z	Mean	SS	z	Mean	S			
Dopamine genes DRDI SNP Ddel	-	-										
Li Optimized	39	20.10	10.2	164	17.58	Ξ:	133	18.30	10.9	0.848	0.43	201 201
DRD2 SNP 7ag IA Lit												020
Oplinized	15	15.93	10.3	120	19.50	10.2	201	17.51	11.4	1.560	0.21	021
Lice and mase		i i		,		:	;		6		0	202
Optimized <i>DRD4</i> ¹ 48 bp repeat	152	17.68	11.2	157	18.34	11.0	27	19.16	9.6	0.495	0.63	2002
Lit Optimized	99	19.00	10.9	162	17.98	10.5	118	17.86	11.6	0.223	0.80	002 200
DRD5 ² dinucleotide repeat Lit												220
Oplimized	74	18.63	11.4	E	19.15	11.3	151	17.38	10.6	0.881	0.41	120
DA17 repeat												012
Optimized	21	15.33	12.4	145	17.41	10.9	173	19.07	10.8	1.619	0.20	012
Serotonin genes HTT 4 (SLC6A4) promoter ins/del												
Ui Onlinited	, &	16.20.	10 0	150	10 11	40.0	õ	18 28	11.3	1 953	0.14	022
HTRIA SNP C-1918G	3			3		2	5	2	?		:	
ind Optimized	82	19.00	10.61	177	17.31	11.4	77	19.89	10.1	1.683	0.19	102
HTRIB (HTRIDB) SNP G861C				•								
Octimized	202	18 49	10.0	107	17.30	. =	7.6	000	7.5	0.496	0.61	102
HTRIDA SNP 11350C		i i	2	5	3	:	;		2	}	}	<u> </u>
pul							•			(;		
Optimized HTR24 SNP 1102C Msol	266	18.16	11.3	20	19.34	9.7	u,		,	0.641	0.43	.20
, in the second												012
Optimized	28	17.88	11.2	172	18.59	11.0	106	17.61	11.0	0.279	0.76	020
1002 SNP G: >A INI BESII Lil												.50
Optimized	315	17.98	11.0	17	20.65	10.4	'n		•	0.951	0.33	02-
יון אין אין אין אין אין אין אין אין אין אי												002
Optimized	90	19.00	10.4	180	17.73	10.8	96	19.28	11.5	0.705	0.495	202

i thing getting many games glory some many glows glory to get many glows in the glory games glory grows grown grow Figure 1(a) (continued)

Gene	=												
	:		.	22			22			F-ratio	Q.	Gene score	1
	z	Mean	S	z	Mean	SS	z	Mean	S				
Norepinephine genes									3				
DBH SNP Tag I													
. 5													
Optimized ADRAZA SNP promoter region Mspl	29	18.81	10.1	168	18.78	=======================================	101	16.69	11.3	1.285	0.28	220 220	,
and Optimized ADRA2B delfins	186	17.42	=	128	18.8	10.5	22	21.95	11.7	1.96	0.14	012	
lnd												7,0	
Optimized ADRAZC ^e dinucleotide repeat	155	18.14	11.5	158	18.46	10.6	23	19.73	9.6	0.215	0.81	102	
Optimiza												`	
NET (SLC6A2) SNP A1970G MAI	<u>ਦ</u>	18.77	10.5	13	15.79	11.0	8	20.17	11.2	4.45	0.012	707 107	
Optimized	155	17.89		777	5	9	;					120	
FYMT SNP G-148A			į	<u> </u>	50.5	0.0	8 8	16.6	11.3	0.914	0.402	120	
Optimized COMT SNP val 158 met, G1947A, Matti	110	16.89	171	156	19.59	10.9	99	17.58	10.9	2.05	0.129	012 021	
Optimized	75	19.42	10.8	. 175	18.52	11.0	88	16.59	801	 7.	ç	210	
							- 1		2	3	0.212	710	

Lit, references for literature-based gene scoring; Ind. gene scoring based on our studies of an independent set of subjects; SNP, single nucleotide polymorphism. DRD4: 11 = any < 4; 12 = 4/4; 22 = any > 4. 2DRD4: 11 = any < 4; 12 = 4/4; 22 = any > 4. 2DRD5: 11 = 148/148; 12 = het; 22 = non 148/non 148. 3DA7I: 11 = non 10/non 10; 12 = 10/non 10; 22 = 10/10. 4HT: 11 = son 10/non 10; 12 = 10/10. 5HTRID4, TDD2 since there were only 2 22s, they were combined with the 12s. 6ADRA2C: 11 = <183/ <183; 12 = het; 22 = 183/183.

David E. COMINGS METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT Serial No.: New Attorney Dkt. No.: 1954-332 Sheet 3 of 10

ANOVA of ADHD score for the Genotypes of Twenty Genes

Gene	11		12			22		F-ratio	p	Gene
	% Mean	S.D. %	Mean	S.D.	%	Mean	S.D.			Score
Other No	eurotransmitte	er Genes								
HTR6 Si	NP (Shinkai e	et al. 1998)								
ADHD	2.8 12.33	9.7 27	.1 18.26	10.3	70.0	18.66	11.2	1.44	.23	012
ODD	3.0	2.3	3.91	3.1		3.64	3.2	.44	.64	021
CD	2.11	1.5	3.65	2.6		3.17	2.6	2.05	.13	022
GABRB3	dinucleotic	le repeat (N	1utirangur	a et al.	1992)	a				
ADHD	38.0 18.99	10.8 4	7.9 17.48	11.1	14.1	19.69	10.9	1.05	.35	102
ODD	3.57	3.1	3.55	3.2		4.47	3.1	1.67	.18	002
CD	3.01	2.2	2.97	2.4		2.91	2.4	.089	.91	200
GABBR	dinucleotide	repeat (un	published)	Ь						
ADHD	9.5 17.5	11.7	27.0 19.1	11.7	63.5	5 18.2	10.5	.28	.752	020
ODD	3.54	3.7	3.6	66 3.1		3.72	3.1	.047	.953	012
CD	3.45	2.6	2.7	2 2.2		3.02	2.4	1.24	.291	201
CNR1 (C	Cannabinoid 1	receptor)	(Dawson 1	995) ^c						
ADHD	10.6 19.35	10.9	44.7 18.25	11.0	44.7	7 18.13	10.9	.174	.83	200
ODD	4.67	3.1	3.54	3.1		3.56	3.2	1.89	.15	200
CD	3.09	2.2	2.90	2.3		3.03	2.4	.146	.86	202
CHRNA	4 (Cholinergi	c, nicotinic	, alpha 4) ((Weilan	ıd,Stei	nlein 199	6) ^d			
ADHD	8.0 22.19			10.8	55.8			2.35	.096	210
ODD	5.07	3.0	3.59	3.0		3.55	3.2	2.74	.065	200
CD	3.11	2.1	2.93	2.3		2.99	2.4	.071	.930	200

David E. COMINGS METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT Serial No.: New

orney Dkt. No.: 1954-332	4
Sheet 4 of 10	

NMDAR1	(Rupp et al. 1	997) <i>Hpa</i> II	SNP							
ADHD	44.2 17.31	10.7 45.7	19.31	11.0	10.1	18.56	11.3	1.19	.303	021
ODD	3.79*	3.1	3.79*	* 3.1		4.84	3.1	2.93	.054	002
CD	2.83	2.3	3.07	2.3		3.28	2.7	.649	.523	012
ADORA2.	A (adenosine 2	2A receptor)	(Decke	ert et al	. 1996)	C 108 T	Rsa I.			
ADHD	33.2 19.95	10.4 44.7	17.57	11.0	22.0	18.97	10.8	1.48	.229	201
ODD	4.04	3.3	3.41	3.1		4.02	3.1	1.52	.219	202
CD	3.39	2.5	2.82	2.1		2.83	2.4	2.04	.131	200
GRIN2B (glutamate ion	otropic, NM	DA 2B	recepto	or) T/G	(SNP da	atabase	WIAF-	1189).	
ADHD	20.9 17.94	10.6 52.3	19.35	10.6	26.8	18.10	11.1	.582	.559	021
ODD	3.03*	3.0	4.15	3.1		3.50	3.1	3.22	.041	021
CD	2.36*	2.0	3.28	2.4		2.98	2.3	3.59	.029	021
NOS3 (nit	tric oxide syntl	nase 3) (War	ng et al.	1996)						
ADHD	67.5 18.50	10.9 25.0	18.60	10.6	7.5 1	7.12	11.6	.186	.830	220
ODD	3.72	3.1	3.87	3.3		3.29	3.1	.311	.733	120
CD	3.00	2.3	3.12	2.2	:	2.33	1.9	1.08	.339	120
Opoids										
PENK (pr	oenkephalin) (Weber, May	1990; (Coming	gs et al.	1999a) [©]	;			
ADHD	32.1 18.71	10.4 47.4	18.02	11.3	20.6	18.25	11.0	.053	.948	201
ODD	3.75	3.2	3.75	3.2		3.48	3.1	.255	.775	220
CD	3.03	2.4	3.00	2.4		2.92	2.2	.041	.959	220

Figure 1(b) (Continued)

CD

3.07

2.4

David E. COMINGS METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT Serial No.: New Attorney Dkt. No.: 1954-332 Sheet 5 of 10

MME (enl	kephalinase) (s	see Methods)) ^f .							
ADHD	33.9 19.44		17.34	10.9	15.2	19.53	10.9	1.26	.284	202
ODD	3.98	3.25	3.44	3.1		3.95	3.0	1.00	.369	202
CD	3.10	2.4	2.81	2.3		3.32	2.4	1.08	.340	202
ANPEP (a	aminopeptidas	e N) (Watt,V	Villard 1	1990) a	and see l	Methods	, A 25'	7 G		
ADHD	27.7 19.25	10.7 51.6	18.37	10.9	20.8	17.60	11.4	.398	.672	210
ODD	3.65	3.1	3.95	3.1		3.30	3.2	.945	.389	120
CD	3.12	2.4	3.05	2.4		2.42	2.0	1.96	.142	210
NATI (N-	acetyl transfer	ase) T 1088	A (Die	tz et al	. 1997;	Coming	s et al.	2000)		
ADHD	5.7 21.50	9.5 34.7	19.00	11.2	59.6	17.86	10.8	1.11	.329	210
ODD	4.94	3.7	3.51	3.2		3.68	3.1	1.58	.207	200
CD	4.11	2.8	3.00	2.3		2.88	2.2	2.26	.106	210
Hormones	s and neuropep	otides								
ESR1 (est	rogen 1 recept	tor) dinucled	tide rep	eat (de	el Senno	et al. 19	992; Co	omings	et al. 19	99).
ADHD	27.3 19.08	12.0 41.2	17.52	10.6	31.5	18.90	10.3	.673	.511	201
ODD	3.82	3.4	3.56	3.0		3.86	3.0	.293	.746	202
CD	3.26	2.6	2.53*	2.0		3.33	2.5	4.09	.017	202
<i>CYP19</i> (ar	romatase cytoc	chrome P-45	0) dinuc	eleotid	e repeat	(Polymo	eropou	los et al	. 1991b)	g
ADHD	13.4 16.88	11.6 45.2	17.28	11.7	41.4	19.76	9.9	2.11	.122	012
ODD	3.50	3.1	3.33	3.0		4.11	3.3	2.16	.116	102

Figure	1(b)
(Contin	nued

2.52* 2.2

3.37 2.4

4.61

102

.011

David E. COMINGS METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT Serial No.: New Attor

Scriai Ivo Ivov	
rney Dkt. No.: 1954-332	
Sheet 6 of 10	
	,

SHBP (sex	k hormone bin	ding protein) (Xu,L	i 1998))					
ADHD	59.8 18.39	11.2 35.2	18.38	10.4	5.0	17.44	11.4	.057	.944	220
ODD	3.61	3.1	3.76	3.1		3.50	3.1	.108	.897	120
CD	2.85	2.3	3.11	2.3		3.06	1.8	.465	.628	021
CRH (cort	icosterioid rel	easing horm	one) (X	mn I, C	Genom	e Databas	se)			
ADHD	89.8 18.25	11.1 8.6	18.78	8.8	1.5	25.00	7.9	1.189	.285	012
ODD	3.66	3.2	3.71	2.8		5.60	3.2	.972	.380	012
CD	2.96	2.4	3.10	2.1		3.80	3.3	.370	.691	012
OXTR (ox	ytocin recepto	r) (Liao et al	l. 1996)	silent	C->T i	in exon 3				
ADHD	47.1 18.48	10.5 44.3	18.0	11.5	8.7	20.11	10.7	.431	.650	102
ODD	3.59	3.1	3.65	3.2		4.39	2.8	.776	.461	012
CD	2.77	2.3	3.14	2.3		3.14	2.4	1.06	.347	022
CCK C-4	45 T (Ishiguro	et al. 1999)								
ADHD	77.0 18.57	10.8 20.4	17.66	11.0	2.2	19.71	14.3	.227	.797	102
ODD	3.83	3.2	3.30	2.9		3.00	3.0	.909	.404	210
CD	3.04	2.4	2.71	2.2		3.14	2.3	.555	.574	102
INS (Hoba	n,Kelsey 1991	l; Gade-And	lavolu e	t al. 19	999)					
ADHD	58.6 18.04	10.8 36.7	18.47	11.1	4.7	19.46	11.2	.147	.863	012
ODD	3.68	3.2	3.70	3.1		3.66	3.6	.0014	.998	120
CD	2.95	2.3	2.98	2.4		3.47	1.6	.334	.716	002
		,	•							
CD8 (Poly	meropoulos e	t al. 1991a)	n							
ADHD	23.2 17.5	11.3 44.3	18.54	10.9	32.5	18.42	10.9	.122	.885	021
ODD	3.31	3.2	4.09	3.2		3.44	3.0	1.95	.143	021
CD	2.53	2.1	3.27	2.5		2.92	2.1	2.44	.088	021

Figure 1(b) (Continued)

David B. COMINGS METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT Serial No.: New Attorney Dkt. No.: 1954-332 Sheet 7 of 10

INFG (Wu.	Comings	1998)
--------	-----	---------	-------

ADHD	21.8 18.22	10.9 58.3	18.17	10.9	27.9	18.82	10.8	.109	.896	102
ODD	3.78	2.97	3.69	3.2		3.60	3.2	.068	.934	210
CD	3.11	2.4	3.01	2.4		2.82	2.0	.333	.717	210

PS1 (Scott et al. 1996)

ADHD	36.0 17.78	11.1 48.0	18.56	10.6	15.2	18.19	11.6	.215	.806	021
ODD ·	3.44	3.3	3.92	3.1		3.57	3.1	.828	.438	021
CD	2.59	2.1	3.18	2.4		3.30	2.5	2.68	.069	012

^{*} Significantly lower than highest value by tukey test at $\alpha = .05$.

a
$$11 = <188/<188$$
, $12 = \text{het}$. $22 = =188/=188$

b
$$11 = =10/=10$$
, $12 = het$. $22 = >10/>10$

c
$$11 = <5/<5$$
 $12 = het$. $22 = =5/=5$

d
$$11 = \frac{131}{=131}$$
 $12 = \text{het.}$ $22 = \frac{131}{>131}$

e
$$11 = 178/=178$$
 $12 = \text{het.}$ $22 = >178/>178$

$$f 11 = a-c/a-c$$
 $12 = het$. $22 = d-g/d-g$

g
$$11 = <4/<4$$
 $12 = het$. $22 = =4/=4$

h
$$11 = 145/145$$
 $12 = 145/x$ $22 = x/x$

David E. COMINGS METHOD OF PROFILING GENES AS RISK FACTORS FOR ATTENTION DEFICIT Serial No.: New Attorney Dkt. No.: 1954-332 Sheet 8 of 10

Final Results for the 42 Genes for the ADHD, ODD and CD traits

Trait	r	r^2	adjusted r ²	F	p	# genes
ADHD	.466	.217	.16	3.82	<.0001	22
ODD	.443	.196	.14	3.58	<.0001	20
CD	.451	.203	.15	3.94	<.0001	19

Figure 2

ET ET III III

The same

The state of

the street street of the street stree

10.00

Genes

FIGURE 4