

Schwungmassenspeicher

Energiespeicher (ESP), Laborversuch

8. Januar 2022

Verfasser: Jonas Fuhrmann 560960

Constantin Nölte 561439 Abdoualkahar Ameziane 560241 Filip Tandara 579676 Martin Teichert 564191 Jana Deichsel 564440

Studiengang: Regenerative Energien

Semester: WiSe 2021/22

Prüfer: Prof. Dr.-Ing. Jens Fortmann

Inhaltsverzeichnis

A	.bbildur	ngsverzeichnis	2
1.	Ein	leitung	4
2.	Vor	bereitungsfragen	4
	2.1.	Erläutern Sie kurz das Prinzip der Schwungradspeicherung	4
	2.2.	Wo kommen Schwungradspeicher zum Einsatz (min. 3 Beispiele)?	4
	2.3.	Geben Sie Vor- und Nachteile von Schwungradspeichern im Vergleich zu anderen	
		Methoden der Elektrizitätsspeicherung an (min. je 3 Beispiele)	4
	2.4.	Physikalische Zusammenhänge	5
	2.4.1	Zusammenhang zwischen Bahngeschwindigkeit v und Winkelgeschwindigkeit ω	5
	2.4.2		5
	2.4.3	3. Zusammenhang zwischen Drehmoment M , Drehzahl n und Leistung P_{mech}	5
	2.4.4		
		$P_{\mathrm{V,R}}$ eines Schwungradspeichers	5
	2.4.5		5
	2.4.6		5
	2.4.7		
		digkeit	5
	2.4.8	Rotationsenergie $E_{\rm rot}$ als Funktion der Winkelgeschwindigkeit / der Drehzahl .	5
	2.5.	Die Zugfestigkeit ρ des Schwungradmaterials hängt von der Dichte des Materials	
		ρ sowie der maximalen Bahngeschwindigkeit v während der Rotation ab. Es gilt:	
		$\sigma = \rho \cdot v^2 \cdot \dots \cdot $	6
	2.5.1	Welche Bedeutung ergibt sich damit für die Zugfestigkeit des Schwungradma-	
		terials?	6
	2.5.2		
			6
	2.6.	Wie hängt die Spezifische Speicherfähigkeit (bzw. Energiedichte) E/m einer ho-	
		mogenen Kreisscheibe von diesen beiden Materialparametern (σ, ρ) sowie von der	
		Winkelgeschwindigkeit und dem Massenträgheitsmoment ab (Formel)?	6
	2.7.	Würden Sie bei vorgegebener Masse ($m=200~{\rm kg}$) das Schwungrad aus Stahl, Blei	
		oder Plastik (GFK - Glasfaserverstärkter Kunststoff bzw. CFK - Kohlenstofffaser-	
		verstärkter Kunststoff) herstellen?	6
	2.8.	Beispielrechnung für eine WEA	7
3.	Ver	suchsdurchführung und -aufbau	7
4.		swertung	8
	4.1.		8
	4.2.		1
	4.3.		1
	4.3.1		1
	4.3.2		12
	4.3.3		12
	4.3.4	<u> </u>	13
	4.4.		13
	4.5.	•	14
A	. Mes		14

Abbildungsverzeichnis

1.	Ermittlung der Reibungsverluste ohne Schwungmasse (Leerlaufversuch)	8
2.	Ermittlung der Reibungsverluste mit Schwungmasse 1 (Leerlaufversuch)	9
3.	Ermittlung der Reibungsverluste mit Schwungmassen 1 und 2 (Leerlaufversuch)	10
4.	Auslaufkurve der Antriebsmaschine ohne Schwungmassen	11
5.	Auslaufkurve der Antriebsmaschine mit beiden Schwungmassen	12
6.	Grafische Ermittlung des linearen und quadratischen Anteils des Reibmoments	14

Schwungmassenspeicher 1. Einleitung

1. Einleitung

Schwungmassen- bzw. Schwungradspeicher stellen insbesondere als Kurzzeitspeicher eine wichtige Art der Energiespeicherung dar und kommen unter anderem in Fahrzeugen zum Einsatz, welche häufig beschleunigen und wieder abbremsen. So kann beispielsweise die Bremsenergie von Bahnen des öffentlichen Nahverkehrs zwischengespeichert werden, sodass beim anschließenden Beschleunigsvorgang deutlich weniger zusätzliche Energie benötigt wird. Auch die Rotoren großer Kraftwerke stellen eine Art Schwungmassenspeicher dar und können als Stabilisator des Stromnetzes dienen, falls etwas mehr oder weniger Energie entnommen wird als zur selben Zeit eingespeist werden kann. In diesem Versuch geht es um das grundlegende Verständnis solcher Schwungradspeicher und deren Parameter im Betrieb.

2. Vorbereitungsfragen

2.1. Erläutern Sie kurz das Prinzip der Schwungradspeicherung.

Die Schwungradspeicherung ist eine Methode der mechanischen Energiespeicherung in Form von Rotationsenergie. Dabei wird ein Schwungrad mittels Elektromotor auf eine möglichst hohe Drehzahl beschleunigt. Bei Bedarf kann die Rotationsenergie über einen elektrischen Generator zurück in elektrische Energie gewandelt werden. Schwungradspeicher eignen sich besonders als Kurzzeitspeicher, da sie kurze Zugriffszeiten, hohe Leistungen und eine hohe Zyklenzahl aufweisen.

2.2. Wo kommen Schwungradspeicher zum Einsatz (min. 3 Beispiele)?

Schwungradspeicher kommen bei dem Ausgleich von Spitzenlasten im Netz (positive und negative) zum Einsatz. Weiterhin dienen sie der unterbrechungsfreie Stromversorgung in Krankenhäusern und Industrieanlagen und der Rekuperation bei Elektrofahrzeugen (Umwandlung von Bremsenergie in elektrische Energie und umgekehrt).

2.3. Geben Sie Vor- und Nachteile von Schwungradspeichern im Vergleich zu anderen Methoden der Elektrizitätsspeicherung an (min. je 3 Beispiele).

Die Vorteile der Schwungradspeicher lauten wie folgt:

- Sehr hohe Leistungen möglich
- Kurze Ladungs- und Zugriffszeiten
- Hoher Wirkungsgrad
- Einfache robuste Bauweise (wartungsarm, lange Lebensdauer, temperaturresistent)

Folgende Nachteile bringen Schwungradspeicher mit sich:

- · Hohes Gewicht
- Hohe Selbstentladung (nur als Kurzzeitspeicher einsetzbar)
- Hohe Investitionskosten durch massive Schutzhülle, Schutz vor Zerbersten der Scheibe
- Geringe Energiedichte

Schwungmassenspeicher 2. Vorbereitungsfrager

2.4. Physikalische Zusammenhänge

2.4.1. Zusammenhang zwischen Bahngeschwindigkeit v und Winkelgeschwindigkeit ω

$$v = \omega \cdot r \tag{1}$$

2.4.2. Zusammenhang zwischen Winkelgeschwindigkeit ω und Drehzahl n

$$\omega = 2\pi \cdot n \tag{2}$$

2.4.3. Zusammenhang zwischen Drehmoment M, Drehzahl n und Leistung P_{mech}

$$P_{\text{mech}} = M \cdot \omega = M \cdot 2\pi \cdot n \tag{3}$$

2.4.4. Scheinleistung S, Wirkleistung $P_{\rm el}$, Kupferverluste $P_{\rm V,Cu}$ und Reibungsverluste $P_{\rm V,R}$ eines Schwungradspeichers

$$S = \sqrt{3} \cdot U_{\rm LL} \cdot I \tag{4}$$

$$P_{\rm el} = \sqrt{3} \cdot U_{\rm LL} \cdot I \cdot \cos \phi \tag{5}$$

$$P_{\text{V,Cu}} = 3 \cdot I^2 \cdot (R_1 + R_2) \tag{6}$$

$$P_{\rm R} = M_{\rm R} \cdot \omega \tag{7}$$

2.4.5. Massenträgheitsmoment (allg.): J

$$J = \int_{m} r^2 dm \tag{8}$$

2.4.6. Massenträgheitsmoment für eine homogene Kreisscheibe: $J_{\text{Kreisscheibe}}$

$$J_{\text{Kreisscheibe}} = 1/2 \cdot m \cdot r^2 \tag{9}$$

2.4.7. Zusammenhang zwischen Drehmoment, Massenträgheitsmoment Winkelgeschwindigkeit

$$M = J \cdot \Delta\omega \cdot \Delta t \tag{10}$$

2.4.8. Rotationsenergie $E_{\rm rot}$ als Funktion der Winkelgeschwindigkeit / der Drehzahl

$$E_{\rm rot} = 1/2 \cdot J \cdot \omega^2 \tag{11}$$

$$E_{\text{rot}} = 2 \cdot J \cdot (\pi n)^2 \tag{12}$$

(13)

Schwungmassenspeicher 2. Vorbereitungsfragen

2.5. Die Zugfestigkeit ρ des Schwungradmaterials hängt von der Dichte des Materials ρ sowie der maximalen Bahngeschwindigkeit v während der Rotation ab. Es gilt: $\sigma = \rho \cdot v^2$

2.5.1. Welche Bedeutung ergibt sich damit für die Zugfestigkeit des Schwungradmaterials?

Je höher die Dichte des verwendeten Materials, desto höher ist die Zugfestigkeit. Die Zugfestigkeit reglementiert die maximale Drehzahl bzw. die maximale Bahngeschwindigkeit. Dies beeinflusst wiederum die maximal gespeicherte Energie. Je dichter das verwendete Material, desto mehr Energie kann in einem Schwungradspeicher gespeichert werden.

2.5.2. Warum wird die zulässige Umlaufgeschwindigkeit durch die Zugfestigkeit des Materials bestimmt (Formel)?

Die Zugfestigkeit wird allgemein über folgenden Zusammenhang beschrieben:

$$R_{\rm m} = F_{\rm z}/A_0 \tag{14}$$

Dabei beschreibt F_z die Zugkraft und A_0 den ursprünglichen Querschnitt. Im Falle eines Schwungrads ist die Zugkraft die auftretende Zentripetalkraft. Die Zentripetalkraft ergibt sich nach:

$$F_{\rm Zp} = m \cdot \omega^2 \cdot r \tag{15}$$

Die Zugfestigkeit beeinflusst also direkt die maximal mögliche Umlaufgeschwindigkeit. Wird diese überschritten, zerschellt das verwendete Material im Schwungradspeicher.

2.6. Wie hängt die Spezifische Speicherfähigkeit (bzw. Energiedichte) E/m einer homogenen Kreisscheibe von diesen beiden Materialparametern (σ, ρ) sowie von der Winkelgeschwindigkeit und dem Massenträgheitsmoment ab (Formel)?

$$E/m = k \cdot \sigma_{\text{zul}}/\rho \tag{16}$$

Hierbei ist k ein Formfaktor, der von der Form des verwendeten Schwungrads abhängig ist. Für eine homogene Kreisscheibe gleicher Dicke beträgt diese 0,606.

2.7. Würden Sie bei vorgegebener Masse ($m=200~{\rm kg}$) das Schwungrad aus Stahl, Blei oder Plastik (GFK - Glasfaserverstärkter Kunststoff bzw. CFK - Kohlenstofffaserverstärkter Kunststoff) herstellen?

 $\textbf{Tabelle 1:} \ \ \textbf{Bereitgestellte und berechnete Materialparameter zur Vorbereitungsfrage 7}$

9	•		_	0
	Stahl	Blei	GFK	CFK
Zugfestigkeit σ in MPa	1300	12	1200	6300
Dichte ρ in kg/m ³	7830	11342	1900	1.550
Spezifische Speicherfähigkeit in	Wh/kg 27,95	0,18	106,32	684,19
Speicherbare Energie in Wh	5590	36	21264	136838

Schwungmassenspeicher 3. Versuchsdurchführung und -aufbau

Für die Berechnung wurde die Formel aus 6 genutzt. Um die Berechnung vergleichbar zu machen, wurde für alle ein k von 0,606 angesetzt. Durch die errechneten Zahlenwerte wird deutlich das die beiden Kunststoffe deutlich mehr Energie speichern können als die metallischen Stoffe. Besonders Kohlefaserverstärkter Kunststoff (CFK) sticht heraus. Dieser kann Faktor 24 mehr Energie speichern als Stahl. Jedoch ist CFK erheblich teurer als Stahl. Ob der Energie- oder Kostenfaktor überwiegt, muss projektspezifisch geprüft werden.

2.8. Beispielrechnung für eine WEA

Generator Rotor (ü=105:1) Gesamt-WEA CFK Massenträgheit J in kgm² 90 5 622 749 6 300 n_1 in $1/\min$ 1 800 17,1 1 550 ω_1 in 1/s 188,0 1,8 684,2 9 060 301 E_1 in Ws 1 598 875 10 659 174 136 838 n_2 in $1/\min$ 1 620 15.4 ω_2 in 1/s 169 1.6 1 295 100 7 338 842 E_2 in Ws 8 633 932 E_1 - E_2 in Ws 303 788 1 721 455 2 025 245 Trägheitskonstante H der WEA in s 780 Zusätzliche Leistung P_{zus} in kW für 10s 203

Tabelle 2: Berechnete Parameter der WEA

3. Versuchsdurchführung und -aufbau

Zu Beginn des Versuches wurde sich mit dem Versuchs- und Messaufbau vertraut gemacht. Der Versuch lief folgendermaßen ab:

Der erste Teilversuch besteht darin, dass die Antriebsmaschine aus dem Stillstand schrittweise durch Erhöhung der Spannung des Stelltransformators auf die Nennspannung gebracht wird. Hierfür werden die jeweiligen Werte von Spannung, Strom, Drehzahl, Wirkleistung und Scheinleistung notiert. Weiterhin erfolgt eine Messung bei der die Zeit für das vollständige Auslaufen des Rotors (hartes Ausschalten am Schaltpult) festgehalten wird. Zudem sollen die Zeiten für das Hochlaufen durch hartes Einschalten abgeschätzt werden. Indem man die Schwungmasse 1 ankoppelt und somit die Antriebsmaschine und Schwungmasse vermisst, werden die vorherigen Teilversuche wiederholt. Im letzten Teil des Versuches wird zusätzlich zu der einen Schwungmasse eine weitere gekoppelt und alle vorherigen Aufgaben/Zeitmessungen wiederholt.

Der Versuchsaufbau gestaltet sich folgendermaßen: Der Versuchsstand besteht aus der Antriebsmaschine (Drehstrommotor) und zwei Schwungmassen (Masse eines Gleichstrommotors und Schwungräder). Die beiden Schwungmassen 1 und 2 werden im beschriebenen Versuch an die Antriebsmaschine gekoppelt. Die verschiedenen Ströme und Leistungen können am analogen Schaltpult oder am digitalen Messgerät abgelesen werden und sollten idealerweise mit der Kamera festgehalten werden.

4. Auswertung

4.1. Bestimmung der Reibungsverluste

Beim Schwungmassenspeicher herrscht eine Differenz zwischen elektrisch aufgenommener und mechanisch abgegebener Leistung. Dies ist auf die Verluste zurückzuführen, die sich in drei Komponenten gliedern lassen. Unter anderem die mechanischen Reibungsverluste, die Eisenverluste und ein kleiner Anteil an Stromwärmeverlusten (Kupferverluste). Die Reibungsverluste stellen einen konstanten Wert dar. Wohingegen die Eisenverluste mit zunehmender Spannung ansteigen. Die Reibungsverluste können durch Veränderung der Spannung im Leerlaufversuch bestimmt werden.

Bei der graphischen Darstellung wird die Wirkleistung über der quadratischen Spannung (Transformator) im Leerlaufversuch dargestellt.

Anmerkung: Da bei den aufgezeichneten Messwerten negative Wirkleistungen auftraten, wird für die Bestimmung der Reibungsverluste und Kupferverluste auf die online zur Verfügung gestellten Messwerte zurückgegriffen.

Abbildung 1: Ermittlung der Reibungsverluste ohne Schwungmasse (Leerlaufversuch)

Die Grafik veranschaulicht die acht Messwerte aus dem ersten Versuch, einschließlich ihrer Fehlertoleranz. Die Toleranz des digitalen Messgerätes beträgt \pm (1 % + 4 Ziffern). Die Messpunkte, die dem Anstieg der Verluste bei steigenden quadratischen Spannungen und somit der Trendlinie nicht folgen, werden aussortiert (blau dargestellt). Übrig bleiben die gewählten Messpunkte (rot) und die Trendlinie (rot gepunktet). Der extrapolierte Achsenabschnitt, der sich aus der Trendlinie ergibt, kennzeichnet die Reibungsverluste des Systems: 20,39 W \pm 4,3 W.

mit Schwungmasse 1

Leistung in W Quadrat der Spannung in V2

Abbildung 2: Ermittlung der Reibungsverluste mit Schwungmasse 1 (Leerlaufversuch)

gewählte Messwerte

······ Trendlinie gewählter Messpunkte

aussortierte Messwerte

-- Reibungsverluste

Die Grafik stellt Versuch 2 dar, welcher mit einer Schwungmasse durchgeführt wurde. Der erste Messpunkt war instationär. Somit fällt dieser in der Betrachtung weg. Die Messpunkte 2, 3, 4 und 5 tragen zur Bildung der Trendlinie bei. Die ermittelten Reibungsverluste betragen hierbei einschließlich der Fehlertoleranz 65,5 W \pm 4,7 W.

mit Schwungmassen 1 und 2

100 90 80 70 Leistung in W 60 50 40 30 20 10 0 0 20000 40000 60000 80000 100000 120000 140000 160000 Quadrat der Spannung in V² aussortierte Messwerte gewählte Messwerte ---- Reibungsverluste ······ Trendlinie gewählter Messpunkte

Abbildung 3: Ermittlung der Reibungsverluste mit Schwungmassen 1 und 2 (Leerlaufversuch)

Bei Versuch 3 mit zwei Schwungmassen (siehe Bild) werden die nicht stationären Messpunkte 1, 2 und 3 nicht weiter betrachtet. Die Trendlinie ergibt sich lediglich aus dem Anstieg der Messpunkte 4 und 5. Die mechanischen Verluste (Reibungsverluste) betragen $76,11\pm4,9$ W. Jedoch kann man von einer erhöhten Ungenauigkeit ausgehen, da nur zwei Messpunkte zur Bildung der Trendlinie beigetragen haben.

Die Berechnung der Kupferverluste erfolgt wie in den Vorbereitungsunterlagen des Versuchs beschrieben.

Die Stromwärmeverluste durch das Kupfer ergeben sich nach:

$$P_{\rm Cu} = 3 \cdot I^2 \cdot (R_1 + R_2) \tag{17}$$

Bei Durchführung des Leerlaufversuchs kann R_2 vernachlässigt werden, so dass gilt:

$$P_{\mathrm{Cu}} = 3 \cdot I^2 \cdot R_1 \tag{18}$$

Außerdem kann von einem Statorwiderstand $R_1=1~\Omega$ je Wicklung ausgegangen werden:

$$P_{\text{Cu}} = 3 \cdot I^2 \cdot \Omega \tag{19}$$

	ohne Schwungmasse		mit Schwungmasse 1		mit Schwungmassen 1 und 2	
Messwert	Strom I in A	P _{cu} in W	Strom I in A	P _{cu} in W	Strom I in A	P _{cu} in W
1	0,92	2,54	4,15	51,67	3,65	39,97
2	1,05	3,31	1,53	7,02	8,12	197,80
3	1,41	5,96	1,60	7,68	1,71	8,77
4	1,80	9,72	1,88	10,60	1,92	11,06
5	2,21	14,65	2,24	15,05	2,29	15,73
6	2,63	20,75	2,62	20,59	2,63	20,75
7	3,05	27,91	3,06	28,09	3,07	28,27
8	3,53	37,38	3,52	37,17	3,52	37,17

Tabelle 3: Betrachtung der Kupferverluste bei den drei Versuchen

4.2. Bestimmung der Hochlaufzeiten

Aufgrund von Zeitmangel konnte das harte Einschalten mit 200 V nicht durchgeführt werden. Bei der Auswertung der Hochlaufzeiten ist allerdings dieselbe Tendenz zu erwarten, wie auch bei den Auslaufzeiten. So sollte es deutlich länger dauern, die Schwungmassen zu beschleunigen als nur die elektrische Maschine, da die Trägheitsmomente mit Schwungrad deutlich höher sind.

4.3. Bestimmung der Auslaufzeiten

4.3.1. Auslaufkurven und Ermittlung der Auslaufzeitkonstanten

Um die Auslaufzeitkonstante $T_{\rm aus}$ zu ermitteln, werden zunächst die Auslaufkurven grafisch dargestellt. Im Labor wurden dabei aus Zeitgründen nur die elektrische Maschine und die Kombination von Schwungmasse 1 und 2 im Auslaufverhalten untersucht. Wird an die Auslaufkurven die Tangente zum Zeitpunkt t=0 s angelegt, ergibt sich die Auslaufzeitkonstante $T_{\rm aus}$ als Schnittpunkt dieser Tangenten mit der Zeitachse.

Abbildung 4: Auslaufkurve der Antriebsmaschine ohne Schwungmassen

Abbildung 5: Auslaufkurve der Antriebsmaschine mit beiden Schwungmassen

Konkret ergeben sich die folgenden Auslaufzeitkonstanten:

$$T_{\text{aus,ohneSchwungmasse}} = 18 \,\text{s}$$
 (20)

$$T_{\text{aus,mitBeidenSchwungmassen}} = 250 \,\text{s}$$
 (21)

4.3.2. Ermittlung der Massenträgheitsmomente

Die Massenträgheitsmomente J lassen sich wie folgt berechnen:

$$J = \frac{P_{\rm R} \cdot T_{\rm aus}}{w_{\rm aus}^2} \tag{22}$$

 $\omega_{\rm aus}$ stellt dabei diejenige Winkelgeschwindigkeit dar, bei der der Motor ausgeschaltet wird. Sie lässt sich mithilfe der gemessenen Drehzahl n in 1/min durch $\omega=2\pi\cdot n/60$ ermitteln. Werden die ermittelten Reibungsverluste $P_{\rm R}$ von 20,39 W (ohne Schwungmassen) beziehungsweise 76,10 W (mit beiden Schwungmassen) eingesetzt, ergeben sich folgende Massenträgheitsmomente:

Tabelle 4: Berechnung der Massenträgheitsmomente

~	-	
	$\omega_{\rm aus}$ in 1/s	J in kgm^2
Ohne Schwungmassen	153,9	0,015
Mit beiden Schwungmassen	156,7	0,775

4.3.3. Herleitung der Formel

Die verwendete Formel zur Berechnung des Massenträgheitsmoments J lässt sich wie folgt herleiten:

1. Allgemein gilt:
$$P_{\rm R} = \omega \cdot M$$
 bzw. $M = \frac{P_{\rm R}}{\omega}$

2. Außerdem gilt für die Betrachtung von Drehmoment und Massenträgheitsmoment: $M = J \cdot \frac{d\omega}{dt}$

- 3. Wird nun eine lineare Auslaufkonstante angenommen, kann der Differentialquotient durch den Anstieg k der Auslaufgeraden ersetzt werden, welcher sich wiederum aus der Auslaufwinkelgeschwindigkeit ω_{aus} und der Auslaufkonstanten ergibt. $M = J \cdot k = J \cdot \frac{\Delta \omega}{\Delta t} = J \cdot \frac{\omega_{\text{aus}}}{T_{\text{aus}}}$
- 4. Da Punkt 1 für jede Winkelgeschwindigkeit gilt, gilt er natürlich auch für ω_{aus} und demzufolge ergibt sich die Gleichung $\frac{P_{\text{R}}}{\omega} = J \cdot \frac{\omega_{\text{aus}}}{T_{\text{aus}}}$ aus der direkt die Formel $J = \frac{P_{\text{R}} \cdot T_{\text{aus}}}{\omega_{\text{aus}}^2}$ folgt.

4.3.4. Ermittlung der mechanischen Energie und der Speicherleistung

Die gespeicherte Rotationsenergie $E_{\rm rot}$ lässt sich mithilfe der Winkelgeschwindigkeit ω und des Massenträgheitsmomentes J bestimmen. Dafür kommt die Formel $E_{\rm rot}=1/2\cdot J\cdot \omega^2$ zum Einsatz. Die Speicherleistung $P_{\rm aus}$ ergibt sich anschließend durch Division dieser Energie durch die Auslaufzeit.

Tabelle 5: Berechnung der gespeicherten mechanischen Energie und der Speicherleistung

	$E_{\rm rot}$ in Ws	$P_{\rm aus}$ in W
Ohne Schwungmassen	183,5	10,2
Mit beiden Schwungmassen	9512,5	38,1

Hier wird deutlich wie viel mehr Energie allein dadurch gespeichert werden kann, wenn Schwungmassen mitrotieren, da diese einen enormen Einfluss auf das Trägheitsmoment haben. Auch die Speicherleistung ist größer, wenn Schwungmassen verwendet werden.

4.4. Bestimmung des konstanten und quadratischen Anteils des Reibmoments

Für das Auslaufverhalten der Antriebsmaschine mit beiden Schwungmassen wurde eine Vielzahl von Messwerten aufgenommen, sodass im nachfolgenden mithilfe dieser Messwerte der konstante und der quadratische Anteil des Reibmoments $M_{\rm R}$ ermittelt wird. Dazu wird zwischen den Messwerten ein lineares Verhalten angenommen, sodass das Reibmoment mit folgender Formel bestimmt werden kann:

$$M_{\rm R} = J \cdot \frac{\Delta\omega}{\Delta t} \tag{23}$$

Wird dieses Reibmoment für jeden Zeitschritt nun über dem Quadrat der Drehzahl (in $1/s^2$) aufgetragen, ergibt sich folgende Grafik.

Schwungmassenspeicher A. Messwerte

Abbildung 6: Grafische Ermittlung des linearen und quadratischen Anteils des Reibmoments

Mithilfe linearer Regression ergibt sich der konstante Anteil des Reibmoments mit 2,518 Nm und der quadratische Anteil mit $0,0038 \text{ Nm}/(1/\text{s}^2)$ bzw. $0,0038 \text{ Nms}^2$. Es ist allerdings zu beachten, dass die Ausgleichsgerade nur ein Bestimmtheitsmaß von 0,523 (von maximal 1) besitzt, weshalb die Parameter nicht wirklich aussagekräftig sind.

4.5. Rückmeldung

Die kurze Einführung vor dem Versuch war sehr hilfreich, um während dem Versuch möglichst zeiteffizient die gesetzten Versuchsziele zu erreichen. Insgesamt wurde so die Funktionsweise von Schwungradspeichern klar. Besonders eindrucksvoll ist der Einfluss der Schwungmassen auf das Trägheitsmoment und demzufolge auch auf die Auslaufzeit, welche sich mehr als verzehnfachte. In der Versuchsanleitung gibt es leider einige Fehler (bspw. $R_{\rm R}$ statt $P_{\rm R}$ in der Einführung in Formel 3), die das Vorbereiten etwas erschwerte.

A. Messwerte

Da bei den Messwerten für das langsame Hochfahren der Maschine negative Wirkleistungen gemessen wurden, wurden für die Auswertung von 4.1 die Messwerte verwendet, welche online im Nachhinein bereitgestellt wurden. Die Messwerte für die Auslaufzeiten sind nachfolgend aufgelistet.

Schwungmassenspeicher A. Messwerte

Tabelle 6: Messwerte für die Auslaufzeiten

Ta	abelle 6: Messwerte	e für die Ausla	ufzeiten
Mit beiden	Schwungmassen		hwungmassen
Zeit in s	Drehzahl in 1/min	Zeit in s I	Orehzahl in 1/min
0	1496	0	1470
5	1462	1	1388
10	1435	2	1310
15	1417	3	1234
20	1383	4	1158
25	1349	5	1085
30	1316	6	1014
35	1292	7	944,5
40	1269	8 9	877,3
45 50	1245 1214	10	$ \begin{array}{c c} 812 \\ 747,7 \end{array} $
55	1192	11	686,4
60	1169	12	627,9
65	1139	13	570,6
70	1115	14	514,6
75	1095	15	459,7
80	1073	16	406,8
85	1044	17	355,8
90	1022	18	307,1
95	993,2	19	261
100	970,8	20	217,9
105	948,6	21	178,2
110	$920,\!4$	22	143,9
115	899,3	23	109,9
120	880,2	24	75,8
125	851,8		
130	830,9		
135	810,9		
140	785,9		
145 150	762,6 $742,1$		
155	742,1 $722,2$		
160	702,4		
165	681,9		
170	656,1		
175	636,5		
180	616,6		
185	597,6		
190	573,4		
195	554,6		
200	536,1		
205	512,1		
210	500		
215	473,2		
220 225	457,9 $440,2$		
230	422,9		
235	399,5		
240	387,4		
245	364,3		
250	346,5		
255	329,1		
260	312,5		
265	294,2		
270	278,1		
275	266,8		
280	249,1		
285	232,4		
290 295	215,9 $194,2$		
300	194,2 175		
305	163,3		
310	145,1		
315	134,4		
320	117,7		
325	104,4		
330	91,5		
335	72,7		
340	65,8		
345	58		
350	40,3		
355	31,6		
360	20,1		

Schwungmassenspeicher A. Messwerte

 $\textbf{Tabelle 7:} \ \, \text{Aufgenommene Messwerte für Versuch 1-ohne Schwungmasse (nicht verwendet)}$

Spannung LL in V	Spannung LE in V	Strom in A	Drehzahl in rpm	Wirkleistung in W	Scheinleistung in VA
50	29,68	0,96	1460	20	28
100	59,1	1,03	1492	19	61
150	88,8	1,42	1495	17	126
200	118,2	1,82	1497	12	215
250	147,6	2,23	1498	11	329
300	175,9	2,62	1499	3	459
350	206,7	3,06	1499	-10	640
400	238,3	3,57	1499	-21	851

 $\textbf{Tabelle 8:} \ \, \text{Aufgenommene Messwerte für Versuch 3-mit beiden Schwungmassen (nicht verwendet)}$

Spannung LL in V	Spannung LE V	Strom in A	Drehzahl in rpm	Wirkleistung in W	Scheinleistung in VA
50	30,49	4,37	0	57	134
100	59,9	8,43	200	214	504
150	90,4	12,17	700	481	1080
200	118,8	1,92	1492	63	229
250	147,3	2,27	1494	56	335
300	177,7	2,67	1496	53	477
350	206,8	3,09	1496	38	641
400	238,2	3,57	1497	26	851