Entwicklung einer Webanwendung zur Abfrage und Anzeige von Kalkulationsvorgängen aus dem Kfz-Bereich nach dem Client-Server-Prinzip

liest office

iourdec

1 Einleitung

1 Einleitung

1.1 Projektumfeld

Die IcamSystems GmbH bietet Softwarelösungen im Bereich der Kfz-Schadensregulierung an. Sie ist Teil eines Firmenverbundes mit ca. 160 Mitarbeitern. Zu den Kunden zählen unter anderem Versicherungsunternehmen, Sachverständigenorganisationen, Prüfdienstleister und Schadensteuerungsgesellschaften.

Zum Leistungsspektrum gehört die automatisierte Prüfung von Gutachten und Kostenvoranschlägen, welche durch Gutachter oder Frenze werkstätten erstellt wurden.

Das Projekt wurde intern durch das Team Reklar onsbearbeitung aus der Abteilung Prozessautomatisierung in Auftrag gegeben. Die Fachabteilung setzt unternehmensspezifische Prozesse u. a. mittels Business Process Management Software (BPMS) um.

1.2 Projektziel

Ziel ist eine Webanwendung mit einer funktionalen Benutzeroberfläche, welche Daten von einem Backend-Service abfragt, um diese strukturiert und übersichtlich darzustellen. Reklamationen sollen so schneller bearbeitet werden können und die händische Suche nach allen Teilinformationen überflüssig machen.

1.3 Projektbegründung

Die Vorgangsprüfung erfolgt über das automatisierte Prüfregelwerk ClaimsGuard (CG). Darin prüft ein individuell erstelltes Regelwerk die, z.B. von Werkstätten, erstellten Kostenvoranschläge und Gutachten. Für die individuellen Parameter jedes Fahrzeugtyps greift der CG auf die recherchierten Fahrzeugdaten der Vehicle Information Database (VID) zurück. Die VID bietet für jedes Kfz-Bauteil Informationen zur Beschaffenheit und Verarbeitung. + lufos zum Fahrzeug Bei der Plausibilitätsprüfung durch den CG entsteht ein detaillierter Prüfber it, in dem die modell in sge angewendeten Prüfregeln gelistet sind und ggf. Diskrepanzen aufgeführt werden.

Sollte der Kunde das Prüfergebnis bewistanden, so hat er die Möglichkeit eine Reklamation an die IcamSystems GmbH zu senden.

Aktuell können nur die Projektverantwortlichen selbst, mittels des jeweiligen Aktenzeichens der Reklamation, eine händische Suche in mehreren Datenbanken und dem Regelwerk des CG durchführen, um den Vorgang nachzuvollziehen. Es soll für die Bewertung des Vorgangs ersichtlich sein, welche Regeln ausgelöst wurden. welche Kfz-Bauteile (inkl. dere Zenslafter) kalku-Dieser Prozess ist aufgrund des hohen Anteils manueller Arbei Weiterhin kann dieser, wegen der Komplexität der Datenbanksysteme, nur von Experten durchgeführt werden. Durch das ReklaTool sollen die Suchanfragen vereinfacht und standardisiert werden, was wiederum eine Erweiterung des Nutzerkreises möglich macht.

es werder uur die Diskoepanze aufgeführt

Entwicklung einer Webanwendung zur Abfrage und Anzeige von Kalkulationsvorgängen aus dem Kfz-Bereich nach dem Client-Server-Prinzip

2

2 Projektplanung

1.4 Projektschnittstellen

Technische Schnittstellen

In der Abteilung Prozessautomatisierung wurde mittels BPMS ein Webservice erstellt. Dieser trägt Daten aus Produktiv-, Archiv- und Testdatenbanken zusammen. Die Daten werden mit den fahrzeugspezifischen Daten aus der VID ergänzt. Hinzu kommen die im Vorgang ausgelösten Regeln des CG. Dieses Datenpaket wird der Webanwendung in strukturierter Form zur Verfügung gestellt.

Verantwortlichkeit

Das Projekt wird durch die Abteilung Projektmanagement begleitet.

Benutzer der Anwendung

Anwender sind zum jetzigen Stand die Projektverantwortlichen des CG. Aufgrund der bisherigen Komplexität der Datenbankabfragen waren bisher nur Subject Matter Expert (SME) für die Abfragen zuständig. Durch die Vereinfachung dieses Vorgangs, ist eine Erweiterung des Nutzerkreises denkbar.

Endabnahme

Das Ergebnis des Projekts wird in der IT-Abteilung und von den SME getestet und abgenommen. Die Dokumentation wird der Projektmanagementabteilung übergeben.

1.5 Projektabgrenzung

Der Webservice für den Datenbankzugriff wurde via BPMS in der Abteilung Prozessautomatisierung realisiert und bereitgestellt. Er existiert unabhängig vom ReklaTool.

2 Projektplanung

2.1 Projektphasen

Für die Bearbeitung des Projekts standen dem Autor im Projektzeitraum täglich etwa 5 Stunden zur Verfügung. Insgesamt wurde das Projekt in 80 Stunden umgesetzt. Diese Zeit wurde in Phasen aufgeteilt, welche den Projektablauf widerspiegeln. Aus Tabelle 1 kann die grobe Zeitplanung entnommen werden.

Eine detailliertere Zeitplanung befindet sich im Anhang A.1: Detaillierte Zeitplanung auf Seite i.

Entwicklung einer Webanwendung zur Abfrage und Anzeige von Kalkulationsvorgängen aus dem Kfz-Bereich nach dem Client-Server-Prinzip

2 Projektplanung

Projektphase	Geplante	Zeit	
Analyse		8 h	
Entwurf		16 h	
Implementierung und Tests		40 h	
Abnahme		3 h	
Dokumentation		13 h	
Gesamt		80 h	

Tabelle 1: Zeitplanung

2.2 Ressourcenplanung

Im Anhang A.2: Ressourcen auf Seite ii befindet sich eine Auflistung der verwendeten Ressourcen. Dort werden sowohl Hardware- und Softwareressourcen, als auch das beteiligte Personal aufgeführt. Es wurde nur auf Software zurückgegriffen, für die bereits Lizenzen im Unternehmen vorhanden war, bzw. die kostenfrei genutzt werden konnte. Dieser Umstand wirkte sich positiv auf die Projektkosten aus.

2.3 Entwicklungsprozess

Das Projekt wird vom Autor als einzelner Entwickler in einem überschaubaren Zeitraum von 3 Wochen umgesetzt. Aus diesen Gründen und da die Anforderungen zu Beginn schon klar definiert wurden, wurde das Projekt anhand der Phasen des Wasserfallmodells umgesetzt. Eine Eigenschaft des Wasserfallmodells ist die lineare Abfolge der einzelnen Projektphasen. Bei der Implementierung wurde bewusst ein inkrementeller Ansatz gewählt, um die Produktqualität zu gewährleisten.

Besonders bei Analyse und Entwurf ist die Rücksprache mit dem Fachbereich vorgesehen.

Zur Sicherstellung der späteren Wartbarkeit wurde die Webanwendung nach den fünf SOLID-Prinzipien für objektorientierte Programmierung entworfen.

Um die einzelnen schritte während der Implementierung nachvollziehbar zu halten, wurde das Projekt in die Vers verwaltung integriert. Dazu wurden Änderungen im lokalen Projektverzeichnis mit dem Clientprogramm SmartGit überwacht. Bei Fertigstellung einer Implementierungseinheit und festen Zeitpunkten wurde das lokale Projekt in das Remote-Repository im Firmennetz gepusht. Die Versionsverwaltung in der Firma erfolgt über eine lokal gehostete Instanz von GitLab. Zum Zweck des Codereview wurden Mitarbeiter der IT-Abteilung zum GitLab-Projekt hinzugefügt.

Die Qualitätssicherung während der Entwicklung der Webanwendung wurde durch Unit-Tests umgesetzt. Die Tests sorgen dafür, dass das erwartete Verhalten einzelner Komponenten sichergestellt wird. Weiterhin ist dadurch sichergestellt, dass zukünftige Änderungen an der Anwendung deren Lauffähigkeit nicht beeinträchtigen.

Entwicklung einer Webanwendung zur Abfrage und Anzeige von Kalkulationsvorgängen aus dem Kfz-Bereich nach dem Client-Server-Prinzip

3 Analysephase

Die Integration der einzelnen Module der Anwendung wurde während der Entwicklung immer wieder durch Whitebox-Tests sichergestellt.

3 Analysephase

Um die Anforderungen an das ReklaTool zu bestimmen wurde zusammen mit der Fachabteilung der aktuelle Prozess zur Reklamationsbearbeitungen fasst. Aus der Analyse des Vorgangs ergaben sich einzelne Anwendungsfälle (Use-Cases) für die zu erstellende Webanwendung. Basierend auf dem Umfang der Anwendung wurde eine Wirtschaftlichkeitsanalyse durchgeführt und schließlich das Lastenheft erstellt.

3.1 Ist-Analyse

Um den im Folgenden beschriebenen Prozess zu verbildlichen, wurde das im Anhang A.4: Aktivitätsdiagramm auf Seite iv befindliche Schaubild erstellt.

Zum Leistungsspektrum der IcamSystems gehört die automatisierte Prüfung von Gutachten und Kostenvoranschlägen, welche durch Gutachter oder Partnerwerkstätten erstellt wurden. Die Prüfung wird durch die Versicherungen oder Sachverständigenorganisationen (Kunden) veranlasst und wird durch den CG durchgeführt. Als Ergebnis bekommt der Kunde eine Rückmeldung über die ausgelösten Regeln des CG.

Im Fall, dass die Regelauslösungen für den Kunden nicht nachvollziehbar sind, hat er die Möglichkeit eine Reklamation an die IcamSystems GmbH zu senden. Diese wird firmenintern geprüft und an die Fachabteilung Prozessautomatisierung weitergeleitet.

Ein/-e Mitarbeiter/-in des Teams Reklamationsbearbeitung recherchiert anschließend mittels des Aktenzeichens des Vorgangs die dazugehörigen Daten. Je nach Zeitpunkt des Vorgangs können die Daten in verschiedenen Datenbanken (Produktiv-, Archiv- und Testdatenbank) abgelegt sein. Der/die Mitarbeiter/-in sucht mittels Datenbankmanagementsystem (DBM) und selbst erstellten SQL-Skripten nach dem Vorgang.

Mit diesen Daten kann dann die beanstandete Regelauslösung nachvollzogen werden. Dazu bietet der CG die Möglichkeit Vorgänge Schritt für Schritt durchzugehen. Fällt dabei eine fehlerhafte Prüfregel auf, so wird diese ergänzt oder angepasst. Liegt die Unache der feulerhafte In einem weiteren Schritt wird die Reklamation an die Rechercheabteilung gegeben. Diese prüft die Fahrzeugdaten des Vorgangs auf Vollständigkeit und Korrektheit. Auch hier werden bei Auffälligkeiten Daten korrigiert oder nachrecherchiert und ergänzt.

Der Kunde bekommt Rückmeldung über die angepassten Daten und Prüfregeln. Sind die Daten jedoch nach Prüfung initial richtig gewesen, so bekommt der Kunde auch darüber eine Rückmeldung, inklusive von Quellen (z.B. Herstellerdaten) als Nachweis. Danach ist der Prozess abgeschlossen und kann für den nächsten Vorgang von vorne beginnen.

Ablage un
Test - DB
un abh. Zec
punkt, abh
von Ungeb.
beim kunde
(Testungb.
Rogel)
austosuco
uicht
in der Regel
impremention
wild...

Entwicklung einer Webanwendung zur Abfrage und Anzeige von Kalkulationsvorgängen aus dem Kfz-Bereich nach dem Client-Server-Prinzip

3 Analysephase

3.2 Wirtschaftlichkeitsanalyse

Wie bereits im Abschnitt Ist-Analyse zu erkennen ist, war der vorherige Reklamationsprozess mit viel manueller Recherchearbeit verbunden. Im Folgenden wird analysiert, ob das Projekt durch die Zeitersparnis, welche mit dem ReklaTool einhergeht, wirtschaftlich sinnvoll ist.

3.2.1 "Make or Buy"-Entscheidung

Das ReklaTool greift mittels des Webservice auf sensible Firmendaten zu, mit denen auch Verpflichtungen gegenüber Kunden einhergehen. Weiterhin soll die Webanwendung unternehmensspezifischen Anforderungen genügen. Aus diesen Gründen ist von dem Beziehen von Software von Dritten abzusehen und die Eigenentwicklung vorzuziehen.

3.2.2 Projektkosten

Dieser Abschnitt betrachtet die Kosten, die für die Umsetzung des Projekts entstehen.

Diese setzen sich sowohl aus Personalkosten, als auch aus Kosten für verwendete Ressourcen (siehe Kapitel 2.2: Ressourcenplanung) zusammen.

Die brutto Personalkosten je Projektmitarbeiter wurden durch die Personalabteilung vorgegeben. Für einen Mitarbeiter der IT-Abteilung wurde ein Stundensatz in Höhe von 50,00 € angenommen. Mitarbeiter der Fachabteilung gehen mit 70,00 € pro Stunde in die Berechnung ein. Da der Autor aufgrund seiner Umschulung nicht direkt von der Praktikumsfirma bezahlt wird, wird für diesen das Azubigehalt des dritten Lehrjahrs, mit 10,00 € pro Stunde angenommen.

Die Betriebskosten für die Webanwendung werden mit jährlich $100,00 \in$ beziffert und für die Nutzung der Ressourcen gilt ein Pauschalbetrag von $20,00 \in$.

Die Gesamtkosten des Projekts betragen somit €. Die genaue Berechnung kann der Tabelle 2 entnommen werden.

Eine Aufstellung der Kosten befindet sich in Tabelle 2 und sie betragen insgesamt 2739,20 \in

Vorgang	Zeit	Kosten pro Stunde	Kosten
Entwicklungskosten	70 h	$7,56 \in +15 \in =22,56 \in$	1579,20€
Fachgespräch	3 h	25 € + 15 € = 40 €	120€
Abnahmetest	1 h	25 € + 15 € = 40 €	40 €
Anwenderschulung	25 h	$25 \mathbin{\leqslant} + 15 \mathbin{\leqslant} = 40 \mathbin{\leqslant}$	1000€
			2739,20 €

Tabelle 2: Kostenaufstellung

Entwicklung einer Webanwendung zur Abfrage und Anzeige von Kalkulationsvorgängen aus dem Kfz-Bereich nach dem Client-Server-Prinzip

3 Analysephase

3.2.3 Amortisationsdauer

Der Wegfall der in Abschnitt 3.1 Ist-Analyse beschriebenen Recherchearbeit in mehreren Datenbanken schlägt sich in einer Zeitersparnis nieder, welche sich u. a. über die Lohnkosten als finanzieller Vorteil beziffern lässt.

Die Ermittlung der Amortisationsdauer soll dabei helfen, die Wirtschaftlichkeit des Projekts zu beurteilen. Für die Berechnung wird die vorher im Abschnitt 3.2.2 Projektkosten kalkulierte Gesamtsumme mit den Einsparungen verglichen. An der Stelle, wo sich Projektkosten und Einsparung nach einer bestimmten Zeit treffen, lässt sich der Break-Even Point ablesen. Durch diesen hat man eine Aussage darüber, ab welchem Zeitpunkt sich das Projekt amortisiert hat.

3.3 Nicht-monetärer Nutzen

Der alte Reklamationsprozess (Vgl. Kapitel 3.1 Ist-Analyse) wurde aufgrund seiner Komplexität meist von SME durchgeführt. Durch die hohe Priorität der Reklamationen wurde der Arbeitsablauf dieser Mitarbeiter für einen längeren Zeitraum unterbrochen. Diese Unterbrechung wurde durch den automatisierten Zugriff auf alle relevanten Quellen mit dem ReklaTool verkürzt. Durch die einfachere Handhabung ist nun auch die Einbeziehung weiterer Mitarbeiter in das Reklamationsmanagement möglich.

Weiterhin wird durch die Vereinheitlichung des Prozesses und die Reduzierung manueller Teilschritte, die Fehlerquote minimiert werden.

3.4 Anwendungsfälle

Zusammen mit der Fachabteilung wurden während der Analyse Anforderungen definiert und daraus Anwendungsfälle abgeleitet. Im Anhang A.5: Use-Case-Diagramm auf Seite v befindet sich das dabei entstandene Use-Case-Diagramm.

Die Ausdifferenzierung der einzelnen Fälle diente dann später im Entwurf als Richtlinie für einzelne Features.

3.5 Qualitätsanforderungen

Die Software soll eine funktionale und übersichtliche Benutzeroberfläche bieten. Diese soll ohne Installation, in Form einer Webanwendung im Browser erreichbar sein. Nach einer Nutzeranfrage an die Anwendung soll das Ergebnis in einer festgelegten Zeit erscheinen, um den Arbeitsablauf nicht zu sehr zu stören. Die Funktionalität der Software soll mittels Tests sichergestellt werden.