Phase-4

Model Development and Evaluation

Date	25 October 2023
Team ID	Proj-212168-Team-2
Project Name	Market Basket Insights
Maximum marks	

Developing and evaluating a market basket analysis model typically involves the use of association rule mining algorithms, such as the Apriori algorithm, and the evaluation of these rules using relevant metrics. You can use programming languages like Python to accomplish this task. Below, I'll provide a step-by-step example of how to develop and evaluate a market basket analysis model using Python, specifically with the mlxtend library.

Steps:

- First, you load your transaction data into a pandas DataFrame. Each row represents a transaction, and each column represents an item, with binary values (1 for purchased, 0 for not purchased).
- ➤ Then use the Apriori algorithm to find frequent itemsets based on a minimum support threshold.
- ➤ Association rules are generated using a minimum confidence threshold.
- > The code then displays the frequent itemsets and association rules.
- ➤ You can evaluate the rules based on other metrics like lift, conviction, etc. In the example, we filtered the rules with a minimum lift threshold of 0.5.

Market basket analysis can be a powerful tool for understanding customer behavior and optimizing product recommendations. You can customize the minimum support and confidence thresholds as well as other evaluation criteria to suit your specific business needs.

Formatting the transaction data in a suitable format for analysis

Split the 'Itemname' column in transaction_data into individual items using str.split(', ', expand=True).Concatenate the original DataFrame (transaction_data) with the items DataFrame (items_df) using pd.concat.Drop the original 'Itemname' column since individual items are now in separate columns.Display the resulting DataFrame.

```
In [4]: df= pd.DataFrame(dataset)
   items_df = df['Itemname'].str.split(', ', expand=True)

   transaction_data = pd.concat([df, items_df], axis=1)

   transaction_data = transaction_data.drop('Itemname', axis=1)

   print(transaction_data.head())
```

	(0 1 \	
0	WHITE HANGING HEART T-LIGHT HOLD	DER WHITE METAL LANTERN	
1	HAND WARMER UNION JA	ACK HAND WARMER RED POLKA DOT	
2	ASSORTED COLOUR BIRD ORNAM	ENT POPPY'S PLAYHOUSE BEDROOM	
3	JAM MAKING SET WITH JA	ARS RED COAT RACK PARIS FASHION	
4	BATH BUILDING BLOCK W	ORD None	
	2	3	
\			
0	CREAM CUPID HEARTS COAT HANGER	KNITTED UNION FLAG HOT WATER BOTTLE	
1	None	None	
2	POPPY'S PLAYHOUSE KITCHEN	FELTCRAFT PRINCESS CHARLOTTE DOLL	
3	YELLOW COAT RACK PARIS FASHION	BLUE COAT RACK PARIS FASHION	
4	None	None	
	4	5	١
0	RED WOOLLY HOTTIE WHITE HEART.	SET 7 BABUSHKA NESTING BOXES	
1	None	None	

0	RED	WOOLLY	HOTTI	E WHIT	E HEAF	₹T.	,	SET	7 BABUS	HKA NE	STING	BOXES	
1					No	ne						None	
2		IV	ORY KN	ITTED	MUG CO	SY BO	OX OF	6	ASSORTED	COLOU	JR TEA	SP00NS	
3					No	ne						None	
4					No	ne						None	
						6						7	١
0	GLAS	S STAR	FROST	ED T-L	IGHT H	OLDER						None	
1						None						None	
2		BOX 0	F VINT	AGE JI	GSAW E	BLOCKS	BOX	0F	VINTAGE	ALPHA	BET B	LOCKS	
3						None						None	
4						None						None	
				8					9		53	4 53	5
53	36 \												
0				No	ne				Non	e	Non	e Non	e
No	one												
1				No	ne				Non	e	Non	e Non	e
No	one												
1				Non	е				None		None	None	
No	ne												
2	HOME	BUILDI	NG BLO	CK WOR	D LOV	E BUIL	DING	BLC	OCK WORD		None	None	
No	ne												
3				Non	е				None	• • •	None	None	
	ne												
4				Non	е				None	• • • •	None	None	
No	ne												
	507	500	500	E 40	E 41	E40	E 40						
0	537 Nana	538 Nana	539 Nana	540 Nana	541	542 Nana	543						
0	None	None	None None	None	None	None	None						
1	None None	None None	None	None None	None None	None None	None						
3	None	None	None	None	None	None	None						
4	None	None	None	None	None	None	None						

[5 rows x 544 columns]

Converting items to Boolean columns:

To prepare the data for association rule mining, we convert the items in the transaction_data DataFrame into boolean columns using one-hot encoding. This is achieved through the pd.get_dummies function, which creates a new DataFrame (df_encoded) with boolean columns representing the presence or absence of each item.

```
In [5]: df_encoded = pd.get_dummies(transaction_data, prefix='', prefix_sep='').groupby(level=0, axis=1).max()
df_encoded.to_csv('transaction_data_encoded.csv', index=False)
```

Association Rule mining:

Apply the Apriori algorithm to perform association rule mining on the encoded transaction data. The min_support parameter is set to 0.007 to filter out infrequent itemsets. The resulting frequent itemsets are then used to generate association rules based on a minimum confidence threshold of 0.5. Print the generated association rules.

```
frequent_itemsets = apriori(df_encoded, min_support=0.007, use_colnames=True)
    rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.5)

print("Association Rules:")
print(rules.head())
```

Association Rules:

ASSOCIACION Rules.								
			antecedents		conse	quents		
\								
0		(CHOCOLATE E	BOX RIBBONS)	(6 RIBB	ONS RUSTIC	CHARM)		
1	(60 CAKE	CASES DOLLY (GIRL DESIGN) (PAC	K OF 72 RETR	OSPOT CAKE	CASES)		
2	(60 T	EATIME FAIRY	CAKE CASES) (PAC	K OF 72 RETR	OSPOT CAKE	CASES)		
3	(ALARM C	LOCK BAKELIKE	CHOCOLATE)	(ALARM CLOC	K BAKELIKE	GREEN)		
4	4 (ALARM CLOCK BAKELIKE CHOCOLATE) (ALARM CLOCK BAKELIKE PINK)							
	anteceden	t support co	onsequent support	support o	onfidence	li		
ft	\							
0		0.012368	0.039193	0.007036	0.568889	14.5150		
44								
1		0.018525	0.054529	0.010059	0.543027	9.9584		
09								
2		0.034631	0.054529	0.017315	0.500000	9.1693		
55								
3		0.017150	0.042931	0.011379	0.663462	15.4541		
51								
4		0.017150	0.032652	0.009125	0.532051	16.2947		
42								
	leverage	conviction	zhangs_metric					
0	0.006551	2.228676	0.942766					
1	0.009049	2.068984	0.916561					
2		1.890941	0.922902					
3			0.951613					
4	0.008565	2.067210	0.955009					

Visualization:

Use matplotlib and seaborn libraries to create a scatterplot visualizing the results of the market basket analysis. The plot depicts the relationship between support, confidence, and lift for the generated association rules.

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(12, 8))
sns.scatterplot(x="support", y="confidence", size="lift", data=rules, hue="lift", palette="viridis", sizes=(20, 200))
plt.title('Market Basket Analysis - Support vs. Confidence (Size = Lift)')
plt.xlabel('Support')
plt.ylabel('Confidence')
plt.legend(title='Lift', loc='upper right', bbox_to_anchor=(1.2, 1))
plt.show()
```

