Universität Salzburg Florian Graf

Machine Learning

Übungsblatt 6 25 Punkte

Aufgabe 1. MAP Schätzer – Gauß Prior

11 P.

Es sei $\mathcal{D} = \{x_1, \dots, x_n\} \in \mathbb{R}$ eine Stichprobe einer univariaten Normalverteilung mit bekannter Varianz σ^2 und unbekanntem Mittelwert μ . Außerdem nehmen wir eine A-priori-Verteilung für $\mu \sim \mathcal{N}(m, s^2)$ an, wobei $m \in \mathbb{R}$ und $s^2 > 0$ bekannt und fest sind.

(a) Zeigen Sie, dass der Logarithmus der A-posteriori-Verteilung durch

$$\log p(\mu|\mathcal{D}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{1}{2s^2} (\mu - m)^2 + \text{const}$$

gegeben ist, wobei const einen Term beinhaltet, der nicht von μ abhängt.

- (b) Bestimmen Sie den Maximierer $\hat{\mu}_{\text{MLE}} := \arg \max_{\mu} \log p(\mu|\mathcal{D})$ der Dichte der A-Posteriori-Verteilung und schreiben Sie diesen in Abhängigkeit des Maximum-Likelihood Schätzers $\hat{\mu}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x_i$ von μ .
- (c) Folgern Sie, dass

$$|\hat{\mu}_{\text{MAP}} - m| \leq |\hat{\mu}_{\text{MLE}} - m|$$
,

und dass Gleichheit gilt, falls $m = \hat{\mu}_{\text{MLE}}$.

- (d) Folgern Sie auch, dass mit zunehmendem Stichprobenumfang n, der MAP-Schätzer $\hat{\mu}_{\text{MAP}}$ gegen den MLE-Schätzer $\hat{\mu}_{\text{MLE}}$ von μ konvergiert.
- (e) Wogegen konvergiert der MAP-Schätzer mit zunehmender a priori Varianz s^2 (für festes n).
- (f) Wogegen konvergiert der MAP-Schätzer mit abnehmender a priori Varianz s^2 (für festes n).
- (g) Interpretieren Sie die Ergebnisse von (c) bis (h).

Aufgabe 2. Regularisierung

4 P.

Wir betrachten ein diskriminatives Klassifizierungsmodell $p(y|\mathbf{x}, \boldsymbol{\theta})$ mit Parametervektor $\boldsymbol{\theta} \in \mathbb{R}^d$.

(a) Zeigen Sie, dass die Maximum-A-Posteriori-Schätzung (MAP) des Parameters $\boldsymbol{\theta}$ unter der Annahme einer isotropen Normalverteilung $\boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \frac{1}{\lambda}\mathbf{I})$ dem Minimum der regularisierten Fehlerfunktion

$$\mathcal{L}(\boldsymbol{\theta}) = \text{NLL}(\boldsymbol{\theta}) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|^2$$

entspricht.

(b) Wir machen nun stattdessen die Annahme, dass die Komponenten θ_i des Vektors $\boldsymbol{\theta}$ unabhängig voneinander Laplaceverteilt sind, also $\theta_i \sim \text{Lap}(0, \frac{1}{\lambda})$. Welcher regularisierten Fehlerfunktion entspricht die Maximum-A-Posteriori-Schätzung des Parameters $\boldsymbol{\theta}$ in diesem Fall?

Hinweis: Die Dichtefunktion einer Laplace- Lap (μ, b) mit Parametern μ , b ist gegeben durch

$$y \mapsto \frac{1}{2b} \exp(-\frac{|y-\mu|}{b})$$
.

Wir sind erneut in dem Setting von Aufgabe 1 (d.h. $\mathcal{D} = \{x_1, \dots, x_n\} \in \mathbb{R}$ sei eine Stichprobe einer univariaten Normalverteilung mit bekannter Varianz σ^2 und unbekanntem Mittelwert μ). Allerdings nehmen wir nun einen Laplace Prior $\mu \sim \text{Lap}(0, s)$ an, wobei s > 0 bekannt und fest ist.

(a) Zeigen Sie, dass der Logarithmus der (Dichte der) A-posteriori-Verteilung durch

$$\log p(\mu|\mathcal{D}) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 - \frac{1}{s} |\mu| + \text{const}$$

gegeben ist, wobei const einen Term beinhaltet, der nicht von μ abhängt.

- (b) Berechnen Sie die Ableitung von $\log p(\mu|\mathcal{D})$ für alle $\mu \neq 0$ und schreiben Sie diese in Abhängigkeit des Maximum-Likelihood Schätzers $\hat{\mu}_{\text{MLE}}$ von μ .
- (c) Nutzen Sie die hergeleitete Formel der Ableitung von $\log p(\mu|\mathcal{D})$ um den Funktionsgraphen von $\log p(\mu|\mathcal{D})$ in den folgenden Fällen handschriftlich zu skizzieren:

(i)
$$\hat{\mu}_{\text{MLE}} > 0$$
 und $\hat{\mu}_{\text{MLE}} < \frac{\sigma^2}{ns}$

(ii)
$$\hat{\mu}_{\text{MLE}} > 0$$
 und $\hat{\mu}_{\text{MLE}} = \frac{\sigma^2}{ns}$

(iii)
$$\hat{\mu}_{\text{MLE}} > 0$$
 und $\hat{\mu}_{\text{MLE}} > \frac{\sigma^2}{ns}$

(iv)
$$\hat{\mu}_{\text{MLE}} = 0$$

Beschreiben Sie außerdem Ihr Vorgehen.

- (d) Folgern Sie, dass $\log p(\mu|\mathcal{D})$ genau ein Maximum besitzt. Bestimmen Sie dieses und geben Sie es als Funktion von $\hat{\mu}_{\text{MLE}}$ und $\frac{\sigma^2}{ns}$ an.
- (e) Interpretieren Sie die hergeleitete Formel für den MAP Schätzer.