

Renato Matos | Sérgio Machado

Fuzzy inference systems

- Designed the fuzzy sets with triangular and gaussian membership functions
- Used Mamdani and Sugeno controllers

$e_k \Delta e_k$	N	ZE	P
N	N	N	Z
ZE	N	ZE	P
P	ZE	P	P

$egin{array}{c} \mathbf{e_k^{}} \\ \Delta \mathbf{e_k^{}} \end{array}$	NB	NS	ZE	PS	PB
NB	NB	NB	NB	NS	ZE
NS	NB	NS	ZE	PS	PB
ZE	NB	NS	ZE	PS	PB
PS	NS	ZE	PS	РВ	PB
PB	ZE	PS	PB	РВ	РВ

$e_k \Delta e_k$	N	ZE	P
N	NB	N	Z
ZE	N	ZE	P
P	ZE	P	PB

Graphical Representation of the System

Best results Square Signal

Controller	Membership Fcn	Rules Number	Input Factor	Output Factor	Integral Squared Error
Mamdani	Gaussian	9	0.7	5.4	22.83
Sugeno	Gaussian	9	0.7	1.5	22.54

Controller: Mamdani

Controller: Sugeno

Best results Sawtooth Signal

Controller	Membership Fcn	Rules Number	Input Factor	Output Factor	Integral Squared Error
Mamdani	Gaussian	9 (5 otp. feat.)	0.5	5.7	11.18
Sugeno	Gaussian	9 (5 otp. feat.)	0.5	2.5	10.28

Controller: Mamdani

Controller: Sugeno

Best results Sinusoidal Signal

Controller	Membership Fcn	Rules Number	Input Factor	Output Factor	Integral Squared Error
Mamdani	Gaussian	9 (5 otp. feat.)	0.6	5	3.83
Sugeno	Gaussian	9	0.7	1.8	3.87

Controller: Mamdani

Controller: Sugeno

Conclusions

- Best results were obtained using the sinusoidal. It was expected since it it the type of signal with less abrupt signal changes;
- Between the controllers, the results didn't differ that much. However, Sugeno
 has a little advantage since it performed slightly better for two of the three
 signals;
- The gaussian membership function was recurrently the best function to model the systems;
- Using 9 rules was constantly the best option. Try using 9 rules with 5 output features was worth because it achieved better results in some cases.

in1 (2) in2 (2) sug61 in3 (2) f(u) sugeno in4 (2) 2 rules out1 (2) in5 (2) in6 (2) System sug61: 6 inputs, 1 outputs, 2 rules

FIS GENERATION

input1 (2)

input3 (2)

input3 (2)

input4 (2)

input5 (2)

System fis: 6 inputs, 1 outputs, 64 rules

Subtractive Clustering

Fuzzy c-means clustering

Grid Partition Clustering

Rules After Optimization

Backpropagation + Subtractive Clustering

Rules After Optimization

Optimization results

Optimization Method	Clustering Method	Mean Squared Error
	Subtractive	7.026356e-05
Backpropagation	Fuzzy c-means	4.972599e-05
	Grid Partition	3.048162e-01
	Subtractive	4.023544e-11
Hybrid	Fuzzy c-means	3.060494e-11
	Grid Partition	1.272667e-07

Hybrid + Fuzzy c-means

Backpropagation + Fuzzy c-means opt.

Backpropagation + Fuzzy c-means opt.

Backpropagation + Fuzzy c-means opt.

Conclusions

- Subtractive and fuzzy c-means better than grid partition since they're able to build fuzzy systems with a smaller number of rules;
- Fuzzy c-means clustering presents the smaller mean squared error;
- Testing the FIS with dynamic process produced an almost perfect response to the generated signal (for square, sinusoidal, sawtooth and even random).