Homework 1 Solutions CSCI-2300: Data Structures and Algorithms Spring 2007

1. 2.1) Order the following functions by growth rate: N, \sqrt{N} , $N^{1.5}$, N^2 , $N \log N$, $N \log \log N$, $N \log^2 N$, $N \log(N^2)$, 2/N, 2^N , $2^{N/2}$, 37, $N^2 \log N$, N^3 . Indicate which functions grow at the same rate.

Solution: 2/N, 37, \sqrt{N} , N, $N \log \log N$, $N \log N$, $N \log(N^2)$, $N \log^2 N$, $N^{1.5}$, N^2 , $N^2 \log N$, N^3 , $2^{N/2}$, 2^N . $N \log N$ and $N \log(N^2)$ grow at the same rate.

- 2. 2.2) Suppose $T_1(N) = O(f(N))$ and $T_2(N) = O(f(N))$. Which of the following are true?
 - (a) $T_1(N) + T_2(N) = O(f(N))$
 - (b) $\frac{T_1(N)}{T_2(N)} = O(1)$
 - (c) $T_1(N) = O(T_2(N))$

Solution:

- (a) True.
- (b) False. A counterexample is $T_1(N) = N^2$, $T_2(N) = N$, and $f(N) = N^2$.
- (c) False. The same counterexample applies.
- 3. 2.7) For each of the following six program fragments:
 - (a) Give an analysis of the running time (Big-Oh will do).
 - (b) Implement the code in the language of your choice, and give the running time for several values of N
 - (c) Compare your analysis with the actual running times

```
(1) sum = 0;
     for( i = 0; i < n; i++ )
         sum++;
(2) sum = 0;
     for( i = 0; i < n; i++ )
         for( j = 0; j < n; j++)
             sum++;
(3) sum = 0;
     for( i = 0; i < n; i++ )
         for( j = 0; j < n * n; j++)
             sum++;
(4) sum = 0;
     for( i = 0; i < n; i++)
        for(j = 0; j < i; j++)
            sum++;
(5) sum = 0;
    for( i = 0; i < n; i++ )
        for( j = 0; j < i * i; j++)
            for(k = 0; k < j; k++)
                sum++;
(6) sum = 0;
    for( i = 1; i < n; i++ )
        for( j = 1; j < i * i; j++)
            if( j % i == 0)
                for(k = 0; k < j; k++)
                    sum++;
```

Answer:

- (a) i. The running time is O(N)
 - ii. The running time is $O(N^2)$
 - iii. The running time is $O(N^3)$
 - iv. The running time is $O(N^2)$
 - v. j can be as large as i^2 , which could be as large as N^2 . k can be as large as j, which is N^2 . The running time is thus proportional to $N \cdot N^2 \cdot N^2$, which is $O(N^5)$.
 - vi. The if statement is executed at most N^3 times, by previous arguments, but it is true only $O(N^2)$ times (because it is true exactly i times for each i). Thus the unnermost loop is only exectued $O(N^2)$ times. Each time through, it takes $O(j^2) = O(N^2)$ time, for a total of $O(N^4)$. This is an example where multiplying loop sizes can occasionally give an overestimate.
- (b) Running times of the code segments for several values of N

	Size (N)	Time	growth rate
i.	64	$0.0048 \; \mathrm{ms}$	
	128	0.0051 ms	1.0601
	256	0.0057 ms	1.1136
	512	$0.0068 \; \text{ms}$	1.1955
	1024	$0.0090 \; \text{ms}$	1.3223
	2048	0.0135 ms	1.5010
	4096	0.0217 ms	1.6683
	8192	0.0381 ms	1.7544
	16384	0.0715 ms	1.8754
	32768	0.1369 ms	1.9151
-	Size (N)	Time	growth rate
	64	$0.0248~\mathrm{ms}$	
	128	$0.0831~\mathrm{ms}$	3.3482
ii.	256	$0.3145~\mathrm{ms}$	3.7836
	512	$1.2706~\mathrm{ms}$	4.0407
	1024	$4.9505~\mathrm{ms}$	3.8960
	2048	$19.6078~\mathrm{ms}$	3.9608
-	Size (N)	Time	growth rate
	32	$0.1513~\mathrm{ms}$	
iii.	64	$1.1723~\mathrm{ms}$	7.7491
	128	$9.3458~\mathrm{ms}$	7.9720
	256	76.9231 ms	8.2308
iv.	Size (N)	Time	growth rate
	64	0.0151 ms	
	128	0.0435 ms	2.8865
	256	0.1570 ms	3.6095
	512	0.6098 ms	3.8848
	1024	2.4272 ms	3.9806

	Size (N)	Time	growth rate
v.	16	$0.1079~\mathrm{ms}$	
	32	$3.1056~\mathrm{ms}$	28.7733
	64	$100.0000~\mathrm{ms}$	32.2000
	Size (N)	Time	growth rate
vi.	16	$0.0467~\mathrm{ms}$	
	32	$0.6596~\mathrm{ms}$	14.1194
	64	$10.2041~\mathrm{ms}$	15.4694
	128	$166.6667~\mathrm{ms}$	16.3333

- (c) i. The running time for this algorithm is O(N). At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2, which it does.
 - ii. The running time for this algorithm is $O(N^2)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^2 , which it does.
 - iii. The running time for this algorithm is $O(N^3)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^3 , which it does.
 - iv. The running time for this algorithm is $O(N^2)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^2 , which it does.
 - v. The running time for this algorithm is $O(N^5)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^5 , which it does.
 - vi. The running time for this algorithm is $O(N^4)$. At each new row we have doubled the input size, so we would expect the experimental growth rate to approach 2^4 , which it does.
- 4. 2.11) An algorithm takes 0.5 ms for input size 100. How long will it take for input size 500 if the running time is the following (assume low-order terms are negligible)
 - (a) linear
 - (b) $O(N \log N)$
 - (c) quadratic
 - (d) cubic

Answer:

- (a) $\frac{500}{100} = \frac{N}{0.5}$ and solving for N, 2.5 ms.
- (b) $\frac{500 \log 500}{100 \log 100} = \frac{N}{0.5}$ and solving for N, 3.3737 ms.
- (c) $\frac{500^2}{100^2} = \frac{N}{0.5}$ and solving for N, 12.5 ms.

- (d) $\frac{500^3}{100^3} = \frac{N}{0.5}$ and solving for N, 62.5 ms.
- 5. 2.12) An algorithm takes 0.5 ms for input size 100. How large a problem can be solved in 1 min if the running time is the following (assume low-order terms are negligible)
 - (a) linear
 - (b) $O(N \log N)$
 - (c) quadratic
 - (d) cubic

Answer: 1 min = 60 s = 60000 ms.

- (a) $\frac{x}{100} = \frac{60,000}{0.5}$ and solving for x gives an input size of 12,000,000.
- (b) $\frac{x \log x}{100 \log 100} = \frac{60,000}{0.5}$ and solving for x gives an input size of 3,656,807.
- (c) $\frac{x^2}{100^2} = \frac{60,000}{0.5}$ and solving for x gives an input size of 34,641.
- (d) $\frac{x^3}{100^3} = \frac{60,000}{0.5}$ and solving for x gives an input size of 4,932.