

MAST30034 Group 43 Tutor: Lucas Fern

Introduction Data Downloading Data Preprocessing Defeature Selection Modelling

Overview

1. Introduction

- a. Our Team
- b. Our Project Goal
- c. Our Project Timeline

2. Approach

- a. Data Downloading
- b. Data Preprocessing & Analysis
- c. Modelling & Website

3. Conclusion

- a. Limitations
- b. Improvements & Recommendations

Jiahe Liu (Grace)

Team 2: **Livability Ranking** System

Anzhe Cai (Philip)

Team 1: Rental Price Prediction

Jongho Park (John)

Team 2: Livability Ranking System

Hyunjin Park (Jin)

Team 1: Rental Price Prediction

Nuo Chen (Katherine)

Team 1: Rental Price Prediction

Communication & Task Management Tools

> Slack, Confluence, GitHub

Introduction Data Downloading Data Preprocessing Data Feature Selection Modelling

Project Goal

- 1. <u>Influential factors</u> on rental price
- Suburbs with the highest rental price
 growth rate (2023-2027)
- 3. Most <u>liveable and affordable</u> suburbs& properties
- 4. Client-oriented <u>website https://smart-renting-vic.herokuapp.com/</u>

Conclusion

Introduction Data Downloading Data Preprocessing Data Selection

Assumption for

residence type: rural rentings,

Approach - Rental Data Downloading & Filtering

	Initial number of data	Dropping duplicates & non weekly-rent data	Filtering for residential property data	Number of outlier removed	holiday rentings are NOT residential property rentings.
API Retrieving	15k	15k → 14.6k (2.6% removed)	345k → 282k	282k -> 231k (18% removed; 1-3% removed per year)	Assumption for residence type: properties with no
Web Scraping	572k	572k → 339k (40.6% removed)	(18.2% removed)		property type label are residential properties
Total	<u>587k</u>	587k → 345k (41.2% removed)			

- Internal Features Number of beds, bathrooms, car spaces and residence type.
- Target response Weekly rent

oduction Data Downloading Data Preprocessing Data Peature Selection

Approach - External Data Collection

Liveability Influential Factor

Facilities & Index	Corresponding livability factor
Primary/secondary schools	Education
Parks, Shopping malls	Culture and environment
Hospitals	Healthcare
Police stations, Train stations	Stability and Infrastructure

- Retrieved through API url in GeoJson format
- Cumulative dataset from 2013 2022 (Registered dates)

Assumption for facilities: we will have the SAME facility dataset as 2022 (schools, hospitals etc.) in the next 5 years

Assumption for SA2: we will have the SAME_SA2 index in the next 5 years as SA2 (2021)

Approach - Retrieving Distance with Open Route

Purpose:

Measure liveability factors

Methods:

- Iterative by each SA2 suburb
- The distance to facilities (Police station, Hospital, etc..) and CBD
- Select the closest distance

troduction Data Downloading Data Preprocessing Defeature Selection Modellin

Approach - External Data Collection

Economic Influential Factor

External Datasets	Year	Unique to
Total income	2012 - 2019	SA2 (2016) & Year
Crime Cases	2013 - 2022	Year & Postcode
GDP	1970 - 2020	Year
Saving rate	1970 - 2020	Year
Population	2001 - 2021	SA2 (2021) & Year

- All external attributes are downloaded from URLs.
- Selected Range of Year: 1970 2022
- Missing years were filled by predictions

Approach - Data Preprocessing

Rental Dataset Cleaning

Internal Features	Method	Data type	ap cla
Residence Types	Keep House/Apartments, classify undefined to the two types	String	the
Bedroom number	String convert to floats	Float number	
Bathroom number	String convert to floats	Float number	
Car space number	String convert to floats	Float number	
Listed price	Regex to extract weekly rents	Float number	

Assumption for Residence Types: the majority of property consists of house and apartment, thus classify unknown to these two

External Feature Engineering

Economic Features	Method	Туре
Income per person per SA2 (2016)	Total income / The number of persons (earners)	Float number
Population density per SA2 (2021)	The number of people / SA2 (2021) area size	Float number
Crime cases	Original data (offence count)	Integer
GDP	Original data	Integer
Saving rate	Original data	Float number

Assumption for income: later year will be used, i.e 2012-2013 will be assumed as 2013

Friendly for general

Approach - Granularity

Friendly for statistical analysis

Approach - Feature selections with Different Models

Ordinary Least Square

Forward selection with lowest AIC

XGboost

Forward selection with lowest Mean Squared Error (MSE)

Random Forest Feature selection

Forward selection with lowest Mean Squared Error (MSE)

	Internal	External					
Method (Forward Selection)	# bedrooms # bathrooms # carparks Residence type	Distance to: park, CBD, train station, primary school, hospital	Distance to: police station, Shopping mall	Distance to secondary school	Income per person Crime cases Saving rate Population density	GDP	
OLS - AIC	✓	✓	✓	×	✓	✓	
XGboost - MSE	✓	✓	×	✓	✓	✓	
Random Forest - MSE	<u> </u>	<u> </u>	<u> </u>	<u> </u>	✓	<u> </u>	

- Training & testing dataset: 2013-2022
- Rental price ~ internal factors and external factors

Model	OLS Regression	Random Forest Regressor	XGboost Regressor
Training R ²	0.998	0.955	0.742
Testing R ²	0.544	0.727	0.697

• Linear Regression Models:

- Income per person ~ SA2 + year
- Population density ~ SA2 + year
- Crime cases ~ postcode + year
- log(GDP) ~ log(year)

Quadratic Regression Model:

- Saving rate ~ year^2

SA2	year	income_pp	popu_dens	gdp	saving rate	crime cases
201011001	2023	68806.0	630.0	3567759	13.58	7754

SA2	Residence Type	nbed	nbath	ncar	distance _cbd	distance_ park	etc
215011390	0	2	1	0	25	14	
215011390	0	2	1	1	28	12	
215011390	1	3	1	0	26	7	
215011390	0	3	1	1	20	11	

Where Residence Type 0 = House, Residence Type 1 = Apartment

ntroduction Data Downloading Data Preprocessing Data Feature Selection Modelling

Visualisation - Average Growth Rates by SA2 (2023-2027)

Bacth Marsi Mary Craigebur Crangebur Caroline Springs

Caroline Sp

> Avg growth rate in Victoria (2023-2027)

Dark Green: Positive growth rate Light green, pink: Mild growth rate Dark Pink: Negative growth rate > Avg growth rate in Melbourne (2023-2027)

Dark Green: Positive growth rate Light green, pink: Mild growth rate Dark Pink: Negative growth rate

Approach - Random Forest Rg. & top 10 growing suburbs

"What are the top 10 suburbs (SA2) with the highest predicted growth rate?"

1st	Narre Warren (North): 14.75%			
2nd	Point Cook (East): 14.16%			
3rd	Elwood: 10.16%			
4th	Yarriambiack: 9.96%			
5th	Nhill Region: 8.92%			

6th	Hawthorn (East): 8.55%		
7th	Kerang: 8.37%		
8th	St Kilda (Central): 7.70%		
9th	St Kilda (West): 7.69%		
10th	Frankston: 7.49%		

ntroduction Data Downloading

Data Preprocessing

Feature Selection

"What are the most liveable and affordable suburbs according to your chosen metrics?"

https://smart-renting-vic.herokuapp.com/

ntroduction Data Downloading Data Preprocessing Data Feature Selection Modelling

Approach -Livability Scoring and Ranking

"What are the most liveable and affordable suburbs according to your chosen metrics?"

https://smart-renting-vic.herokuapp.com/

Business Application - Industry "Needs Pyramid"

roduction Data Downloading Data Preprocessing Data Feature Selection

Limitations

- API
 - Limited API call quotas
- Data
 - Imbalanced dataset
 - Unstructured Web-scraping data
- Feature Classification
 - Misclassification in residence type

Imbalanced dataset

Residence Type Classification

- Improve property data accuracy
- Collaborations with real estate companies
- Establish database system for user records

Introduction Data Downloading Data Preprocessing Data Feature Selection Modelling

Reference

Bezerra, A., Alves, G., Silva, I., Rosati, P., Endo, P. T., & Lynn, T. (2019). A preliminary exploration of uber data as an indicator of urban liveability. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). https://doi.org/10.1109/cybersa.2019.8899714

Burke, T. (1999). Private rental in australia. Terry Burke 1999, 1–18. https://www.semanticscholar.org/paper/Private-rental-in-Australia-Burke/34328916dff5c5115e808a8ed79bebf9806ae0ff

Editor. (2021, June 4). Asking rent vs effective rent explained. Office Spaces Singapore. Retrieved August 30, 2022, from https://officespaces.com.sg/what-is-the-difference-between-asking-rent-vs-effective-rent/

For Sale For Lease. (2018, January 31). How to determine property rental price. Retrieved August 23, 2022, from https://forsaleforlease.com.au/how-to/how-to-determine-property-rental-price/

Gampala, V., Sai, N. Y., & Bhavya, T. N. S. (2022). Real-estate price prediction system using machine learning. 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), 533–538. https://doi.org/10.1109/icaaic53929.2022

Higgs, C., Badland, H., Simons, K., Knibbs, L. D., & Giles-Corti, B. (2019). The urban liveability index: Developing a policy-relevant urban liveability composite measure and evaluating associations with transport mode choice. International Journal of Health Geographics, 18(1). https://doi.org/10.1186/s12942-019-0178-8

Hulse, K., Martin, C., James, A., & Stone, W. (2018). Private rental in transition: Institutional change, technology and innovation in australia. AHURI Final Report, 296. https://doi.org/10.18408/ahuri-5112101

Ooi, G. L., & Yuen, B. (2009). World cities: Achieving liveability and vibrancy: Achieving liveability and vibrancy. Wspc/Others.

Razaghi, T. (2022, August 18). If property prices are going down, why are rents going up? The Sydney Morning Herald. Retrieved August 23, 2022, from https://www.smh.com.au/property/news/if-property-prices-are-going-down-why-are-rents-going-up-20220816-p5badd.html

Tan, K. Y., & Woo, W. T. (2012). Ranking the liveability of the world's major cities. Van Haren Publishing

Thome, J., Li, A., Sivaraman, V., & Bridge, C. (2014). Mobile crowdsourcing older people's opinions to enhance liveability in regional city centres. 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). https://doi.org/10.1109/issnip.2014.6827675

Victoria State Government, (2022, March). Rental report statistics - march quarter 2022. Homes Victoria, Victorian Government, Australia. https://www.dffh.vic.gov.au/publications/rental-report

Australian Bureau of Statistics. 2022. Housing Occupancy and Costs, 2019-20 financial year. [online] Available at: https://www.abs.gov.au/statistics/people/housing/housing-occupancy-and-costs/latest-release [Accessed 8 October 2022].

Hulse, K., Martin, C., James, A. and Stone, W., 2018. Private rental in transition: institutional change, technology and innovation in Australia | AHURI. [online] Ahuri.edu.au. Available at: https://www.ahuri.edu.au/research/final-reports/296 [Accessed 8 October 2022].

