

EMC TEST REPORT TO FCC REQUIREMENT

Product Name : RF remote

Model Number : JX-1210

Trade Name : N/A

Report Number : SZEE090619262102

Date : Aug. 10, 2009 **FCC ID** : XJZJX-1210

Standards	Results
	PASS

Prepared for:

SHENZHEN GOLDSTAR EXACT SCIENCE CO., LTD.

Goldstar Industrial, Jinan West Road, new & Hi-Tech Development Zone, Fuyong Town, Baoan

TEL: +86 1352 8745 755 FAX: +86 755 2992 6988

Prepared by:

CENTRE TESTING INTERNATIONAL (Shenzhen) Corporation Building C, Hongwei Industrial Zone, Baoan 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

This report shall not be reproduced, except in full, without the written approval of CENTRE TESTING INTERNATIONAL

广东省深圳市宝安区 70 区鸿威工业园 C 栋 Building C, Hongwei Industrial Zone, Baoan 70 District, Shenzhen

TABLE OF CONTENTS

De	scri	ption	Page
1.	CE	RTIFICATION OF CONFORMITY	4
2.	TE	ST SUMMARY	5
3.	ME	EASUREMENT UNCERTAINTY	5
4.	PR	ODUCT INFORMATION AND TEST SETUP	5
4	l.1	PRODUCT INFORMATION	5
4	l.2	TEST SETUP CONFIGURATION	5
4	1.3	SUPPORT EQUIPMENT	5
5.	FA	CILITIES AND ACCREDITATIONS	6
5	5.1	TEST FACILITY	6
5	5.2	TEST EQUIPMENT LIST	6
5	5.3	LABORATORY ACCREDITATIONS AND LISTINGS	6
6.	DU	IRATION AFTER RELEASE	7
6	5.1	SPECIFICATION	7
6	5.2	BLOCK DIAGRAM OF TEST SETUP	7
6	6.3	TEST PROCEDURE	7
6	6.4	TEST RESULTS	7
7.	тн	E BANDWIDTH OF THE EMISSION	8
7	' .1	LIMITS	8
7	7.2	BLOCK DIAGRAM OF TEST SETUP	8
7	7.3	TEST PROCEDURE	8
7	7.4	TEST RESULTS	8
8.	RA	DIATED EMISSION TEST (RE)	9
8	3.1	LIMITS	9
8	3.2	BLOCK DIAGRAM OF TEST SETUP	10
8	3.3	TEST PROCEDURE	
	3.4	DUTY CYCLE CORRECTION FACTORS	
8	3.5	TEST RESULTS	44
ΑP	PEN	IDIX 1 PHOTOGRAPHS OF TEST SETUP	47

Page	3	of	49
, ago	v	0.	

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF EUT	48
APPENDIX 3 INTERNAL PHOTOGRAPHS OF EUT	49
N/A means not applicable.	

Page 4 of 49

1. CERTIFICATION OF CONFORMITY

Applicant & Address: SHENZHEN GOLDSTAR EXACT SCIENCE CO., LTD.

Goldstar Industrial, Jinan West Road, new & Hi-Tech

Development Zone, Fuyong Town, Baoan

Manufacturer & Address: SHENZHEN GOLDSTAR EXACT SCIENCE CO., LTD.

Goldstar Industrial, Jinan West Road, new & Hi-Tech

Development Zone, Fuyong Town, Baoan

Equipment Under Test: RF remote

Trade Name: N/A

Model Number: JX-1210

Serial Number: N/A

Date of test: June 19, 2009 to Aug. 10, 2009

Condition of Test Sample: Normal

The above equipment was tested by Centre Testing International for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, Subpart B and the measurement procedure according to ANSI C63.4.

The test results of this report relate only to the tested sample identified in this report.

Prepared by :

Lily ha

Reviewed by: Chirty Chen

Christy Chen

Approved by : Jim Zhang

Manager

Date : Aug. 10, 2009

2. TEST SUMMARY

Clause	Rule / Test Item	Result	Clause in Report
15.231 (a)	Duration after release	Pass	6
(1)		1 400	Ü
15.231(c)	The bandwidth of the emission	Pass	7
15.209	B. B. C. C. C. C. C.	D	0
15.231(b)	Radiation Emission Test	Pass	8

3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement items	Value
Radiated emission	4.6 dB

4. PRODUCT INFORMATION AND TEST SETUP

4.1 PRODUCT INFORMATION

The Model: JX-1210

The major technical descriptions are described as following: (It's an short range, low power, remote control designed as an "Input Device".)

A). Operation Frequency: 418 MHz, one channel.

B). Modulation: FSK

C). Transmitting Antenna Designation: internal antenna (undetachable)

D). Power supply: DC 3V by battery

4.2 TEST SETUP CONFIGURATION

See test photographs attached in APPENDIX 1 PHOTOGRAPHS OF TEST SETUP for the actual connections between EUT and support equipment.

4.3 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	Data Cable	Power Cord
1.						

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

FACILITIES AND ACCREDITATIONS

5.1 TEST FACILITY

All measurement facilities used to collect the measurement data are located at Building C, Hongwei Industrial Zone, Baoan 70 District, Shenzhen, Guangdong, China. The sites are constructed in conformance with the requirements of ANSI C63.4, and CISPR 16-1-1.

5.2 TEST EQUIPMENT LIST

Instrumentation: The following list contains equipments used at CTI for testing. The calibrations of the measuring instruments, including any accessories that may effect such calibration, are checked frequently to assure their accuracy. Adjustments are made and correction factors applied in accordance with instructions contained in the manual for the measuring instrument.

Equipment used during the tests:

1 1							
3M Semi-anechoic Chamber - RE Test Site							
Equipment Manufacturer Model Serial No.				Due Date			
Spectrum Analyzer	Agilent E4443A MY46185649		01/29/2010				
Biconilog Antenna	A.H.System	SAS-521-2	487	06/05/2010			
Horn Antenna	ETS-LINGREN	3117	00057407	06/27/2010			
Loop Antenna	na ETS-LINGREN 6		00071730	09/22/2009			
Multi device Controller	ETS-LINGREN	2090	00057230	01/29/2010			
Microwave Preamplifier	Agilent	8449B	3008A02425	12/21/2009			

LABORATORY ACCREDITATIONS AND LISTINGS

The test facilities used to perform radiated and conducted emissions tests are accredited by China National Accreditation Board for Laboratories (CNAS). Electromagnetic Interference tests according to ANSI C63.4 and CISPR 16 requirements.

6. DURATION AFTER RELEASE

6.1 SPECIFICATION

15.231(a)(1): a manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5s of being released.

6.2 BLOCK DIAGRAM OF TEST SETUP

6.3 TEST PROCEDURE

- 1. The transmitter's output signal was coupling to the spectrum analyzer when the transmitter was set in maximum emission..
- 2. The analyzer was set to TIME mode, with RBW 10 kHz and VBW 30 kHz.
- 3. Record the duty cycle during the press and release of any key.

6.4 TEST RESULTS

Duration after release: smaller than 169 ms

Test Result: Pass

7. THE BANDWIDTH OF THE EMISSION

7.1 LIMITS

15.229(c): The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Thus, limit = 1.045MHz for CF=418 MHz.

7.2 BLOCK DIAGRAM OF TEST SETUP

7.3 TEST PROCEDURE

- 1. The transmitter's output signal was coupling to the spectrum analyzer when the transmitter was set in maximum emission...
- 2. The span of the analyzer was set to 300 kHz, with RBW 10 kHz and VBW 30 kHz.
- 3. Measured 20dB Bandwidth.

7.4 TEST RESULTS

Transmitting Frequency: 418 MHz

20dB Bandwidth: 377 kHz

Graphs:

8. RADIATED EMISSION TEST (RE)

8.1 LIMITS

FCC Part 15.231(b)

The field strength of fundamental and spurious emissions from intentional radiators shall not exceed the following (at a distance of 3 meters):

Fundamental Frequency (MHz)	Field Strength of Fundamental	Field Strength of Spurious Emissions
260-470	3750 to 12500 μV/m	375 to 1250 μV/m
Thus,		
418	80.28 dBμV/m	60.28 dBμV/m

FCC Part 15.209:

The field strength of any emissions which appear outside of this band shall not exceed the general radiated emission limits in section 3.9 (Intentional Radiators general limit) as below.

Frequency (MHz)	Field strength (μV/m)	Distance(m)	Field strength at 3m (dBμV/m)
1.705-30	30	30	29.54
30-88	100	3	40
88-216	150	3	43.5
216-960	200	3	46
Above 960	500	3	54

Note:

- 1. The tighter limit applies at the band edges.
- 2. The emission limits for the bands 9-90 kHz and 110-490 kHz are for an average detector.

8.2 BLOCK DIAGRAM OF TEST SETUP

For radiated emissions from 9 kHz to 30 MHz

For radiated emissions from 30 - 1000 MHz

For radiated emissions above 1GHz

CENTRE TESTING INTERNATIONAL CORPORATION

8.3 TEST PROCEDURE

A. Above 30MHz

- a. The EUT was placed on the top of a turntable 0.8 meters above the ground in the chamber, 3 meters away from the antenna (wideband antenna), which was mounted on the top of a variable-height antenna tower. The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- B. Below 30MHz
- a. The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 1 meter away from the antenna (loop antenna). The maximum values of the field strength are recorded by adjusting the polarizations of the test antenna and rotating the turntable.
- b. For each suspected emission, the EUT was arranged to its worst case and then turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- c. The test frequency analyzer system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

8.4 DUTY CYCLE

Duty cycle = on time/100 milliseconds or period, whichever is less

On time = N1L1+N2L2+...+NN-1LN-1+NNLN

Where N1 is number of type 1 pulses, L1 is length of type 1 pulses, etc.

Restating the basic formula

Duty cycle = (N1L1+N2L2+...+NN-1LN-1+NNLN)/100 or T, whichever is less

Where T is the period of the pulse train

Test Result:

Duty cycle (max @ Button 12) = DCmax= 0.332223702 20*log (DCmax) = -9.571387741

See more information in following plots:

For Button 1 – SLIDE SHOW:

T=31.46 ms; N1=160 us, L1=8; N2=260 us, L2=32; N3=460 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.319771

For Button 2 – MENU:

T=29.96 ms; N1=120 us, L1=8; N2=260 us, L2=32; N3=480 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.325768

For Button 3 – Picture and Music:

T=31.08 ms; N1=130 us, L1=8; N2=260 us, L2=32; N3=480 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.316602

For Button 4 – Clock/Calendar

RBW 300 kHz Delta 1 [T1] *VBW 100 kHz -0.06 dB Ref 97 dBµV *Att 10 dB SWT 20 ms 130.000000 μs Marker 1 [T1 -90 12.990000 ms Delta 2 [T1] 3.490000 ms Delta [T1] -70 3.730000 ms 3DB DC Center 418.033 MHz 2 ms/ RBW 300 kHz Marker 1 [T1] *VBW 100 kHz 49.06 dBµV Ref 97 dBµV *Att 10 dB SWT 30 ms 26.550000 ms Delta -90 480.000000 µs -80 70 3DB -40 DC

T=31.52 ms; N1=130 us, L1=8; N2=240 us, L2=32; N3=480 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.291878

Center 418.033 MHz

For Button 5 – (Up) VOL+:

T=29.92 ms; N1=120 us, L1=8; N2=240 us, L2=32; N3=480 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.304813

For Button 6 - Video:

T=29.93 ms; N1=120 us, L1=8; N2=240 us, L2=32; N3=480 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.304711

For Button 7 – (Left) PREV:

T=30.50 ms; N1=120 us, L1=8; N2=240 us, L2=32; N3=540 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.300984

For Button 8 - ENTER/PLAY/PAUSE:

T=30.20 ms; N1=140 us, L1=8; N2=240 us, L2=32; N3=540 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.309272

For Button 9 – (Right) NEXT:

T=30.00 ms; N1=120 us, L1=8; N2=260 us, L2=32; N3=480 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.325333

For Button 10 – (thumbnail/folder)

T=30.00 ms; N1=140 us, L1=8; N2=260 us, L2=32; N3=480 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.314667

For Button 11 – (Down) VOL-:

T=30.04 ms; N1=140 us, L1=8; N2=260 us, L2=32; N3=540 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.332224

For Button 12 – ROTATE:

T=30.30 ms; N1=140 us, L1=8; N2=260 us, L2=32; N3=540 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.329373

For Button 13 - BACK:

T=30.04 ms; N1=140 us, L1=8; N2=260 us, L2=32; N3=440 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.328895

For Button 14 - ZOOM

T=30.34 ms; N1=140 us, L1=8; N2=260 us, L2=32; N3=540 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.328939

For Button 15 - SELECT:

T=30.00 ms; N1=140 us, L1=8; N2=260 us, L2=32; N3=500 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.331333

For Button 16 - DEL/COPY:

T=30.50 ms; N1=140 us, L1=8; N2=260 us, L2=32; N3=560 us, L3=1 Thus, Duty Cycle = (0.16*8+0.26*32+0.46*1)/31.46 = 0.327869

Report No. SZEE090619262102 Page 44 of 49

8.5 TEST RESULTS

Mode: Continuous working **Humidity**: 60%

Test Result: Pass

FCC Radiated Emission Test Result - Rule: 15.231(b)										
Freq. (MHz)	Reading		Correct	Meas.		Limit		Maargin (dB)		н/v
	(dBuV)		Factor	(dBuV/m)		(dBuV/m)				
	Peak	AVG	(dB)	Peak	AVG	Peak	AVG	Peak	AVG	
418.0000	70.59	1	19.22	89.81	80.24	100.28	80.28	-10.47	-0.04	Н
836.0000	18.96	1	25.95	44.91	35.34	80.28	60.28	-35.37	-24.94	Н
1255.0000	47.59	1	-2.58	45.01	35.44	80.28	60.28	-35.27	-24.84	Н
2090.0000	56.87	1	6.89	63.76	54.19	80.28	60.28	-16.52	-6.09	Н
2926.0000	47.67	1	8.80	56.47	46.90	80.28	60.28	-23.81	-13.38	Η
418.0000	56.96	1	19.22	76.18	66.61	100.28	80.28	-24.10	-13.67	V
836.0000	14.85	1	25.95	40.80	31.23	80.28	60.28	-39.48	-29.05	V
1255.0000	45.18	1	-2.58	42.60	33.03	80.28	60.28	-37.68	-27.25	V
2090.0000	56.09	1	6.89	62.98	53.41	80.28	60.28	-17.30	-6.87	V
2926.0000	49.64	1	8.80	58.44	48.87	80.28	60.28	-21.84	-11.41	V
FCC Radiated Emission Test Result - Rule: 15.209										
Freq. (MHz)	Reading		Correct	Meas.		Limit		Maargin (dB)		H/V
	(dBuV)		Factor	(dBuV/m)		(dBuV/m)				
	Peak	QP	(dB)	Peak	QP	Peak	QP	Peak	QP	
683.1332	20.92	4.36	23.60	44.52	27.96		46.00		-18.04	Н

Correct Factor = Cable loss + Antenna Factor

Measurement = Reading level + Factor

Margin = Reading in reference to limit

"--" = The emission level complied with the limits, with

sufficient margin, so no further recheck.

AVG = Peak + 20*log (DCmax) = Peak - 9.57139

Hotline 400-6788-333

Page 45 of 49

Graphs of Radiated Emissions:

Page 46 of 49

26.0 30.000

127.00

224.00

321.00

418.00

515.00

612.00

709.00

806.00

1000.00 MHz

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

RE TEST SETUP

APPENDIX 2 EXTERNAL PHOTOGRAPHS OF EUT

FRONT VIEW

BOTTOM VIEW

APPENDIX 3 INTERNAL PHOTOGRAPHS OF EUT

FULL VIEW

FRONT VIEW OF BATTERY ----- End of report -----