Insper

Sistemas Hardware-Software

Aula 1 – Apresentação da Disciplina & Inteiros na CPU

Engenharia

Fabio Lubacheski Maciel Calebe Vidal Igor Montagner Fábio Ayres

Professor

Fabio Lubacheski

Ninja

Diego Saragoza da Silva

Aulas

Seg 15h45 às 17h45 – Lab Ágil 2 Qui 15h45 às 17h45 – Lab Ágil 2

Atendimento presencial

Qui 14h00 às 15h30 – Lab Ágil 1

Objetivo da disciplina

Resumidamente o objetivo da disciplina é apresentar as interfaces e abstrações que permitem entender:

- Como seu código-fonte se torna algo que o computador entenda ?
- O que acontece quando seu computador executa um ou mais processos?

Conteúdo da disciplina

```
Linguagem C:
car *c = malloc(sizeof(car));
c->miles = <u>100</u>;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

```
Linguagem
              get_mpg:
Assembly
                          %rbp
                  pushq
                          %rsp, %rbp
                  movq
                          %rbp
                  popq
                  ret
```

Código de Máquina

0111010000011000 100011010000010000000010 1000100111000010 1100000111111101000011111

Decimal & Binário & Hexa Assembly do x86 Executáveis

funções & stacks Arrays & structs

Padrão POSIX

Alocação de memória Sinais & função Exec Arquivos

Processos & Threads Sincronização

Sistema Operacional

Computador

Bibliografia básica

Computer Systems: A Programmer's

Perspective

R. E. Bryant and D. R. O'Hallaron

• site: http://csapp.cs.cmu.edu

Este livro é **realmente importante** para disciplina!

Critérios para Avaliação

Exercícios práticos (atividades e labs)

- Série de exercícios práticos de implementação
- Complexidade crescente
- Testes automatizados quando possível
 - Facilitar correção
 - Criar espaços para conversar da matéria

Exercícios práticos (entrega)

- Github classroom
 - Testes automatizados para alguns exercícios
 - Ver link e tutorial em Conteúdos (Blackboard) para cadastro

Cálculo da média final (MF)

• Média Final (MF) se cumpridas as condições:

Atv: Atividades

PI: Aval. intermediária

AF: Aval. final Labs: laboratórios C: prova mutirão C

• Condições para aprovação:

Média Final (MF) se NÃO cumpridas as condições:

Avaliação PD (Prova DELTA)

Se MF
$$\geq$$
= 5.0 E

Se Lab
$$\geq$$
 5 E

Se
$$((AI + AF) / 2) >= 4,5 E$$

Se (AI <
$$4 E AF >= 5$$
) OU (PI >= $5 E PF < 4$):

- 1. Aluno faz uma nova prova PD no dia da SUB relativa a avaliação em que tirou nota menor que 4.
- 2. Critério de barreira de provas é cumprido se PD >= 5.

Ferramentas

- . GCC 9.3 (ou superior) -- C99
- Linux (Preferencialmente Ubuntu 22.04)
- . PC x86-64

Não há suporte a outros sistemas. Instalem direto ou usem uma VM. Se usar VM, veja se funciona com proctorio.

Colaboração e Integridade Acadêmica

- Nas entregas espera-se que todos os envios sejam seus e somente seus;
- Você é incentivado a discutir suas tarefas com outros alunos (ideias), mas esperamos que o que você entregar seja seu.
- NÃO é aceitável copiar soluções de outros alunos ou copiar soluções da Web (incluindo ferramentas de IA);
- Nosso objetivo é que *VOCÊ* aprenda o conteúdo para estar preparado para exames, entrevistas e para o futuro

Aula!

O que é isto?!

Representação de inteiros na CPU

Bits e Bytes

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Bits e Bytes

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Não é possível distinguir conteúdo a partir de uma sequência de bits

Bits e Bytes

Agrupamos 8 bits em 1 byte

Informação é codificada como sequência de 0 e 1

- Inteiros, Strings, Números reais
- Instruções da CPU, Endereços, etc

Não é possível distinguir conteúdo a partir de uma sequência de bits

Inteiros (decimal)

Número **9153**

Inteiros (decimal)

Número **9153**

$$9000 + 100 + 50 + 3 = 9 \times 10^3 + 1 \times 10^2 + 5 \times 10^1 + 3 \times 10^0$$

- 1. Cada dígito multiplica uma potência de 10
- 2. O dígito mais significativo é 9 (multiplica a maior potência)
- 3. O dígito menos significativo é 3 (multiplica a menor potência)

Inteiros (binário)

Número **1010011** (base 2)

Inteiros (binário)

Número **1010011** (base 2)

$$2^6 + 2^4 + 2^1 + 2^0 = 83$$
 (base 10)

- 1. Cada dígito multiplica uma potência de 2
- 2. O dígito mais significativo é 1 (multiplica a maior potência)
- 3. O dígito menos significativo é 0 (multiplica a menor potência)

Conversão Binário -> Decimal: Exercício

Converta o número abaixo para decimal

1100 0010

Conversão Decimal -> Binário

Fazemos agora o caminho inverso: dividimos sucessivamente por 2 e guardamos o resto

75 (base 10)

Conversão Decimal -> Binário: Exercício

Agora é sua vez:

165

Conversão Decimal -> Binário

Forma bônus:

Arquitetura de computadores

- Todo dado tem tamanho fixo.
- Um inteiro pode ter os seguintes tamanhos:

Tamanho em bytes	Tipo em C	Capacidade
1	char	
2	short	
4	int	
8	long	

Arquitetura de computadores

- Todo dado tem tamanho fixo.
- Um inteiro pode ter os seguintes tamanhos:

Tamanho em bytes	Tipo em C	Capacidade
1	char	256
2	short	65536
4	int	2 ³²
8	long	2 ⁶⁴

Inteiros sem sinal

Representação para números positivos somente (modificador unsigned)

Tamanho em bytes	Tipo em C	Menor número	Maior Número
1	char	0	
2	short	0	
4	int	0	
8	long	0	

Inteiros sem sinal

Representação para números positivos somente (modificador unsigned)

Tamanho em bytes	Tipo em C	Menor número	Maior Número
1	char	0	255
2	short	0	65535
4	int	0	2 ³² - 1
8	long	0	2 ⁶⁴ - 1

Inteiros com sinal (Complemento de dois)

Dado um inteiro **b**₂ com **w bits**, seu valor em decimal é

$$\mathbf{b}_{10} = -2^{w-1}b_{w-1} + \sum_{i=0}^{w-2} 2^{i}b_{i}$$

- 1. Somamos todos os bits normalmente
- 2. Menos o último, que ao invés de somar **subtrai**

Inteiros com e sem sinal

Qual o valor de 0100 0101 (base2) em base 10?

Sem sinal:

Inteiros com e sem sinal

Qual o valor de 0100 0101 (base2) em base 10?

Sem sinal:

$$2^6 + 2^2 + 2^0 = 71$$
 (base 10)

$$2^6 + 2^2 + 2^0 = +71$$
 (base 10)

Inteiros com e sem sinal - Exercício

Qual o valor de 0101 1010 (base2) em base 10?

Sem sinal:

Inteiros com e sem sinal

Qual o valor de 11 0001 (base 2)?

Sem sinal:

Inteiros com e sem sinal

Qual o valor de 11 0001 (base 2)?

Sem sinal:

$$2^5 + 2^4 + 2^0 = 49$$
 (base 10)

Com sinal:

$$-2^5 + 2^4 + 2^0 = -32 + 17 = -15$$
 (base 10)

Inteiros com e sem sinal – Exercício

Qual o valor de 1 0101 0001 (base 2)?

Sem sinal:

Com sinal:

Os dois números abaixo são o mesmo? Se não qual o bit diferente?

1001110011101110

1001110111101110

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Objetivo: facilitar a leitura de números binários

Os dois números abaixo são o mesmo?

0x9CEE

0x9DEE

Ideia:

- agrupar 4 em 4 bits em um dígito que vai de 0 a 15
- letras para os dígitos maiores que 10

Binário	Hexa	Binário	Hexa
0000	0×0	1000	0x8
0001	0×1	1001	0×9
0010	0×2	1010	0xA
0011	0×3	1011	0xB
0100	0×4	1100	0xC
0101	0×5	1101	0xD
0110	0×6	1110	0×E
0111	0×7	1111	0xF

Exercício

Converta para binário: 0xDE9 (base 16)

Converta para hexadecimal: 1100 1110 0011 1010 (base 2)

Exercício

Converta para binário: 0xDE9 (base 16)

1101 1110 1001 (base 2)

Converta para hexadecimal: 1100 1110 0011 1010 (base 2)

0xCE3A (base 16)

Conversões de tipos

Conversões de tipos inteiros

Duas regras:

- 1. O valor é mantido quando convertemos de um tipo menor para um tipo maior
 - char -> int
- 2. A conversão de um tipo maior para um tipo menor é feita pegando o X bits menos significativos
 - int -> char pega os 8 bits menos significativos, o restante é descartado

Conversões de tipos inteiros - sinal

Atividade prática

Conversão de números: bases e sinal

- rodar programa bases_e_sinais
- 2. colocar sua solução em solucao.txt
- 3. verificar se tudo está ok rodando

./bases_e_sinais < solucao.txt</pre>

Atividade Extra (Não será cobrada)

Atividade extra para os curiosos!

Pesquise como o computador representa números reais. Qual o padrão utilizado?

Git

https://insper.github.io/SistemasHardwareSoftware/

https://github.com/Insper/SistemasHardwareSoftware

Insper

www.insper.edu.br