Tele-Operated Micro:bit & Arduino Vehicle Prototype

Members

- 1. Aangir Doshi (BT2024078)
- 2. Thrissha Arcot (BT2024024)
- 3. Abhyudaya Singh (BT2024180)
- 4. Ayush Patel (BT2024171)
- 5. Utkarsh Rastogi (BT2024119)
- 6. Shive Bhat (BT2024067)
- 7. Vraj Vashi (BT2024062)

Course: Computer Architecture Prof: Karthikeyan Vaidyanathan

Abstract

This report details the design and implementation of a low-cost remote-driving vehicle using two BBC micro:bit v2 boards for tilt-based control and an Arduino Mega for motor actuation and obstacle avoidance. One micro:bit reads accelerometer data to derive left/right motor speeds, sends these wirelessly to a second micro:bit, which relays them over UART to the Arduino. Four HC-SR04 ultrasonic sensors mounted on the vehicle provide real-time obstacle detection, enabling the Arduino to override remote commands when necessary. The system demonstrates a complete sensor-to-actuator loop and serves as a foundation for more advanced teleoperation projects.

1. Introduction

Remote operation of vehicles promises safer, more efficient transport of goods and services, especially where human presence is hazardous or impractical. This prototype explores the core pipeline—human input \rightarrow wireless link \rightarrow processing \rightarrow actuation \rightarrow safety override—

with off-the-shelf microcontrollers and sensors. The aim is to validate system logic and provide a hands-on learning platform for teleoperation fundamentals.

2. System Overview

- **Control Node (Handheld):** micro:bit v2 with accelerometer, running Python code on the micro:bit Python Editor.
- Relay Node (Vehicle Receiver): second micro:bit v2 receiving radio packets, forwarding via UART to Arduino Mega.
- Processing & Actuation Node: Arduino Mega reads commands and sonar sensors, drives two DC motors via Adafruit Motor Shield.
- **Safety Layer:** Four HC-SR04 ultrasonic sensors detect obstacles front/left/right/back and trigger immediate overrides.

3. Hardware Components

- 1. BBC micro:bit v2 (×2)
 - In-built 3-axis accelerometer
 - o 2.4 GHz radio (group 1, power 7)

2. Arduino Mega 2560

- UART interface (Serial1 at 9600 baud)
- Digital I/O for sonar triggers/echoes
- 3. Adafruit Motor Shield v1 (AFMotor library)
 - Two DC motors wired to ports M1 (left) and M2 (right)

4. HC-SR04 Ultrasonic Sensors (×4)

o Front: TRIG 28 / ECHO 29

o Left: TRIG 24 / ECHO 25

o Back: TRIG 22 / ECHO 23

o Right: TRIG 26 / ECHO 27

5. Power Supply

Two 9V batteries for the motors . microbits powered by the use battery packs
 , Arduino powered by connecting to laptop.

4. Wiring Description

- Tilt-Controller micro:bit → Radio: powered via USB battery pack.
- Receiver micro:bit P0 → Arduino Mega pin 19 (Serial1 RX): single-wire UART connection.
- Motor Shield → Arduino Mega: stacked on headers.
- **Ultrasonic Sensors:** each sensor's TRIG pin to a distinct digital pin, ECHO pins to corresponding inputs.
- Motors: connected to Shield ports M1 and M2 for left and right wheels.
- **Ground Commoning:** all devices share a common GND.

5. Software Implementation

5.1 Tilt-Remote Code (micro:bit)

- 1. Configuration Constants:
 - o Dead-zone ±400, zone thresholds ±800
 - o SPEED_LOW = 70, SPEED_HIGH = 100
- 2. Radio Setup:

```
python
radio.on()
radio.config(group=1, power=7)
```

- 3. **zone_speed(val) Function:** maps raw accelerometer tilt (-1024...+1024) to discrete speeds $\{0, \pm 70, \pm 100\}$.
- 4. Main Loop (every 10 ms):
 - Read accelerometer.get_x(), .get_y()
 - o Apply dead-zone filtering
 - o Compute xs, ys via zone_speed
 - Determine LSpeed & RSpeed through if/else blocks handling straight, pivots, and arcs
 - o radio.send("{},{}".format(LSpeed, RSpeed))

5.2 Relay Code (micro:bit)

1. Radio Receive & UART Forward:

```
python

packet = radio.receive()

if packet:

x_str, y_str = packet.split(",")

uart.write(f"{x_str} {y_str}\n")
```

2. UART initialized on pin0 at 9600 baud

5.3 Arduino Logic

1. Setup:

- Serial1.begin(9600)
- Motor shield initialized (motor L, motor R)
- Sonar pins pinMode(trig, OUTPUT) / pinMode(echo, INPUT)
- 2. readUltrasonicCM(trig, echo) triggers sensor, measures pulse, converts to cm.

3. Main Loop (~100 Hz):

- Read all four distances
- o If Serial1.available(): parse cmdLeftSpeed, cmdRightSpeed

Obstacle Avoidance:

- If front < 20 cm → pivot or reverse based on side/back clearance</p>
- Else, if turning would drive into too-close side, straighten or pivot opposite
- If reversing into obstacle, zero speeds

Motor Drive:

```
cpp
motor_L.run( (L>=0)? FORWARD : BACKWARD );
motor_L.setSpeed(abs(L));
delay(5);
```

6. Testing & Observations

- Functional Check: vehicle responds to tilt: forward/back and left/right arcs.
- **Safety Test:** sonar-triggered overrides successfully prevented collisions in static obstacle course.
- Feedback: found controls intuitive; minor jitter when tilt near dead-zone thresholds.

7. Contributions

- Hardware Integration: Aangir Doshi, Thrissha Arcot, Vraj Vashi, Abhyudaaya Singh
- Tilt-Control Algorithm: Ayush Patel, Utkarsh Rastogi, Shive Bhat.

• Obstacle Avoidance Logic: Aangir Doshi, Abhyudaya Singh, Thrissha Arcot, Al models.

Guidance from seniors: Nitheezkant R, Ishan Jha.

8. Conclusion

This project demonstrates a simple yet complete teleoperated vehicle pipeline—from human tilt input through wireless transmission, microcontroller processing, to motor actuation with real-time safety overrides. It serves as a robust foundation for future enhancements, such as richer feedback (video streaming) or lower-latency links (5G modules).

Appendix

- Full Code Listings: see attached tilt_remote.py , relay_node.py , vehical_controller.ino .
- **Component Datasheets:** HC-SR04, AFMotor library documentation.