Lab 1 - Verilog Report

106033233 資工大四 周聖諺

Lab 1 - 1: 4-Bit Binary-To-Gray-Code Converter

Design Specification

Source Code

Input: a, b, c, d

Output: w, x, y, z

Design Implementation

First, we can observe that the MSB of the Gray code and binary code are always the same so it doesn't need any conversion. The Boolean equation is $\mathbf{a}=\mathbf{w}$

In addition, if you list the table of the conversion from 4-bit Gray-code to binary code, you can observe that $a \oplus b = x$, $b \oplus c = y$ and, $c \oplus d = z$. Thus, we can design the circuit as the following code.

Boolean Equation:

$$a = w$$

$$a \oplus b = x$$

$$b \oplus c = y$$

$$c \oplus d = z$$

BCD to Gray Code Truth Table

Decimal	Binary Code (abcd)	Gray Code (wxyz)			
0	0000	0000			
1	0001	0001			
2	0010	0011			
3	0011	0010			

Decimal	Binary Code (abcd)	Gray Code (wxyz)			
4	0100	0110			
5	0101	0111			
6	0110	0101			
7	0111	0100			
8	1000	1100			
9	1001	1100			
10	1010	1111			
11	1011	1110			
12	1100	1010			
13	1101	1011			
14	1110	1001			
15	1111	1000			

Verilog Code

```
assign w = a;
assign x = a ^ b;
assign y = b ^ c;
assign z = c ^ d;
```

Block Diagram

RTL Simulation

Lab 1 - 2: 4-Bit Adder-Subtractor

Design Specification

Full Adder

Input: a, b, c_in

Output: sum, c_out

4-Bit Adder-Subtractor

Input [3:0]a, [3:0]b, m

Output [3:0]s, v

Design Implementation

Full Adder

For 1-bit addition, it would yield 0 when 1 + 1 or 0 + 0. Otherwise, it would yield 1. As a result, we can use XOR gate to implement the addition operation like the following code.

Boolean Equation:

$$sum = a \oplus b \oplus c_{in}$$

where $c_{\rm in}$ is the carry-in bit c_in.

Verilog Code

As for the carry bit, we've known that the carry bit would be 1 while two of the input bits: a, b and c_in (the carry bit of the previous one) are 1. Thus, we can express the Boolean equation as the follow

Boolean Equation:

$$c_{out} = (a \wedge b) \vee (c_{in} \wedge (a \oplus b))$$

where $c_{\rm in}$ is the carry-in bit c_in.

Verilog Code

4-Bit Adder-Subtractor

As for 4-bit adder, all we need to do is that concatenate the 4 full-adder. Thanks to 2's complement. The full-adder also works when the input number is negative in the form of 2's complement. To adapt

the subtraction, we only need to invert the number and set the carry-in as 1.

```
wire C_IN;
wire C_OUT_0, C_OUT_1, c_OUT_2, c_OUT_3;
assign C_IN = m;
full_adder U0(.a(a[0]), .b(b[0] ^ m), .c_in(C_IN), .sum(s[0]), .c_out(C_OUT_0));
full_adder U1(.a(a[1]), .b(b[1] ^ m), .c_in(C_OUT_0), .sum(s[1]), .c_out(C_OUT_1));
full_adder U2(.a(a[2]), .b(b[2] ^ m), .c_in(C_OUT_1), .sum(s[2]), .c_out(C_OUT_2));
full_adder U3(.a(a[3]), .b(b[3] ^ m), .c_in(C_OUT_2), .sum(s[3]), .c_out(c_OUT_3));
```

However, we need to handle the overflow or underflow exceptions. We've known that the overflow might occur in 4 cases: (1) positive + positive, (2) negative + negative, (3) negative - positive, or (4) positive - negative. In this 4 cases, if we detect the last carry-out bit is different from the MSB of the summation, it means there is an overflow.

To detect the 4 possible cases:

$$\neg(a[3] \oplus b[3]) \oplus m$$

To detect the difference between carry out and the MSB.

$$c_{out} \oplus s[3]$$

where c_{out} is the last carry-out bit.

Boolean Equation:

$$v = (c_{out} \oplus s[3]) \land (\neg(a[3] \oplus b[3]) \oplus m)$$

Verilog Code

```
assign v = (c_0UT_3 ^ s[3]) & (\sim(a[3] ^ b[3]) ^ m);
```


Lab 1 - 3: 3-Bit Signed Binary Max

Design Specification

Source Code

Full Adder

Input: a, b, c_in

Output: sum, c_out

3-Bit Adder-Subtractor

Input [2:0]a, [2:0]b, m

Output [2:0]s, v

Multiplexer

Input: a, b, s

Output: z

3-Bit Signed Binary Max

Input: [2:0]a, [2:0]b

Output: [2:0]o

Design Implementation

Full Adder

Same as the module in Lab 1-2.

3-Bit Adder-Subtractor

Same as the module in Lab 1-2.

Multiplexer(MUX)

In the file *mux.v*, it's just a 1-bit simple multiplexer. If m is 0, it would output the signal of input a, vice versa. Following are the Boolean equation and the code.

Boolean Equation

$$z = ((\neg s) \land a) \lor (a \land b) \lor (s \land (\neg a) \land b)$$

Verilog Code

assign
$$z = ((\sim s) \& a) | (a \& b) | (s \& (\sim a) \& b);$$

Name	Value	0.000 ns	20.000 ns	40.000 ns	60.000 ns	80.000 ns 80.000 ns
1 8 Z	1					
₩ A	1					
₩ B	1					
₩ S	1					

3-Bit Signed Binary Max

It's easy to know that if the 2 number a and b have different sign, we only need to choose the positive one. Otherwise, we need to use the subtractor and let a minus b to determine which one is larger. If the MSB is 0, number a is larger. If the MSB is 1, number b is larger. We can simply form the Boolean equation of the multiplexer selection as the following.

Boolean Equation

$$\mathrm{SEL} = (\mathrm{a}[2] \wedge (\neg \mathrm{b}[2])) \vee (\mathrm{a}[2] \wedge \mathrm{S}[2]) \vee ((\neg \mathrm{a}[2]) \wedge (\neg \mathrm{b}[2]) \wedge \mathrm{S}[2])$$

where S is the difference between number a and b and SEL is the selection input of the multiplexer. To output the larger number, we only need to apply the multiplexer and the selection to each bit.

Verilog Code

```
wire [2:0]S;
wire M;
wire SEL;

assign M = 1;
bit3_add_sub U0(.a(a), .b(b), .m(M), .s(S));
assign minus = S;
assign SEL = (a[2] & (~b[2])) | (a[2] & S[2]) | ((~a[2]) & (~b[2]) & S[2]);

mux U1(.a(a[0]), .b(b[0]), .s(SEL), .z(o[0]));
mux U2(.a(a[1]), .b(b[1]), .s(SEL), .z(o[1]));
mux U3(.a(a[2]), .b(b[2]), .s(SEL), .z(o[2]));
```


Discussion

In the lab 1-3, I used the star symbol * to express the AND logic and plus symbol + to represent the OR logic. However, the logical operator is totally different from the computational operator and the simulation shown that it was wrong. Finally, I found the misuse and correct the errors.

Conclusion

In this lab, I've learned that how to design a logical circuit with Verilog and simulate the behavior with RTL simulation. In addition, thanks for this lab, I reviewed the logic design briefly to recap the design of the full adder and Gray code.

Reference

• Java T Point - Binary to Gray code conversion

Provide the design example of the binary-to-Gray-code convertor.

GEEKSFORGEEKS - 4-bit binary Adder-Subtractor

Provide the design example of the 4-bit binary Adder-Subtractor.

Electronics Tutorials - Binary Adder

Provide the design example of the full adder.

• Wikipedia - Two's complement

Explain how the two's complement works.