

Problem Statement

Accurately predict the level of damage of buildings after natural disasters in order to assist with humanitarian assistance and disaster response.

The Data

- Maxar, Xview2
- Images pre and post disaster
- Labels metadata with coordinates of buildings and level of damage
- Types of disasters fire, flooding, earthquake, volcano, hurricane and tsunami

The Data

The Data

Joint Damage Scale

Score	Label	Visual Description of the Structure	
0 No damage		Undisturbed. No sign of water, structural damage, shingle damage, or burn marks.	
1	Minor damage	Building partially burnt, water surrounding the structure, volcanic flow nearby, roof elements missing, or visible cracks.	
2	Partial wall or roof collapse, encroaching v flow, or the structure is surrounded by wat 2 Major damage mud.		
3	Destroyed	Structure is scorched, completely collapsed, partially or completely covered with water or mu or no longer present.	

Data Preprocessing

Masks

Patches

Data Preprocessing I - Masks

Data Preprocessing II - Patchify

Modeling

UNet

ResNet

Model – uNet

- Initially introduced for biomedical segmentation
- Left contractive path
- Right expansive path

Model - ResNet

- Solve the vanishing gradient problem
- Uses skip connections
- The skip connection skips training from a few layers and connects directly to the output layer
- If any layer hurts the performance of the architecture, it will be skipped.

Model - ResNet

Metrics

- F1 score Dice Coefficient
- Measures similarity between two sets of data
- Between 0 1, with 1 signifying the greatest similarity between predicted and truth
- 2 * the Area of Overlap divided by the total number of pixels in both images

Source

Results

Models	Loc Dice Coefficient	Cls Dice Coefficient
UNet	0.83	0.7
ResNet34	0.87	0.9
ResNet50	0.9	0.95

Conclusion & Recommendations

- The model was able to successfully detect buildings with an f1 score of 0.8 and an f1 score of 0.85 for classifying the damage level
- The model successfully identified undamaged buildings with an f1 score of 95% an predicts 3 damage classes (minor, major damage and destroyed) with 60%, 68.7% and 74.2% f1 scores respectively.
- Drawback Weather (cloud cover) heavily impacts the predictions
- For efficiency and better computing time remove patches that have no buildings
- Further testing can be done to determine the transferability of the model to other geographic areas and also the viability of introducing other kinds of images like social media images

ANY QUESTIONS?