DATENMODELLIERUNG I KONZEPTIONELLES MODELL

INFORMATIONSSYSTEME 3. JAHRGANG
ABTEILUNG INFORMATIONSTECHNOLOGIE

MOTIVATION

Warum Datenmodellierung?

Modellierung = Strukturierung + Vereinfachung der Realität

- * Notwendige Informationen präzisieren
- **★** Unnötige Informationen eliminieren
- * Wissen des Kunden zu seinem Geschäftsumfeld "sichtbar" machen
- ★ Datenmodell als Hilfsmittel zur Kommunikation zwischen Kunde (Experte in seinem Umfeld) und Informatiker (Experte in Softwareentwicklung)

KONZEPTION

Die Datenmodellierung erfolgt durch Identifizieren und Klassifizieren von **Geschäftsobjekten**, deren **Eigenschaften** und **Beziehungen** in einem bestimmten **Anwendungsbereich** (Domäne).

Die Darstellung erfolgt meist in grafischer Form. In der Praxis sind folgende Darstellungen verbreitet:

- ★ Entity-Relationship-Diagram (ERD) nach Chen
- ★ ERD nach Martin ("Krähenfüße")
- **★** Unified-Modeling-Language (UML)

BEGRIFFE

* Objekte / Objekttypen Entitäten / Entitätstypen

Weitere in diesem Zusammenhang häufig verwendete Begriffe:

- **★** Geschäftsobjekte
- **★** Objektklassen
- ★ Entities, Entity-Typen
- * Attribute und Schlüssel
- * Beziehungen und Beziehungstypen
- * Subtypen und Supertypen

BEGRIFFE

Objekttypen

Ein Objekt ist:

- ★ Gegenstand (z.B. Ware, Transportmittel)
- * Rolle oder Person (z.B. Kunde, Lieferant)
- **★** Organisation (z.B. Firma, Behörde)
- ★ Konzept (z.B. Projekt, Plan)
- * Transaktion (z.B. Kauf, Stornierung, Lieferung

Objekte mit gleichartigen Merkmalen werden zu einem Objekttyp zusammengefasst.

BEGRIFFE

Attribute und Schlüssel

Attribute enthalten Informationen, die Objekte beschreiben oder identifizieren.

Attribute sollten immer **atomar** (nicht weiter unterteilbar) und für die Domäne **vollständig** sein.

z.B. Objekt: Kunde, Attribute: Name, Ort, Telefonnr.

Attribute, die ein Objekt eindeutig identifizieren können, werden als Schlüsselkandidaten bzw. Schlüsselattribute bezeichnet.

SCHLÜSSEL

Finden der Schlüsselkandidaten

Schlüsselkandidaten können auf mehrere Arten gefunden werden:

- 1. ein bestehendes Attribut ist alleine eindeutig für einen Objekttyp
 - → dieses Attribut wird einteiliger

Schlüsselkandidat für diesen Objekttyp

z.B.

Objekttyp: Buch

Schlüsselkandidat: ISBN

SCHLÜSSEL

Finden der Schlüsselkandidaten

- 2. mehrere bestehende Attribute sind **zusammen** eindeutig für einen Objekttyp
 - → alle diese Attribute gemeinsam bilden einen mehrteiligen Schlüsselkandidaten.

D.h. nur die Kombination der Attribute muss eindeutig sein, nicht jedes für sich.

z.B.

Objekttyp: Hotel

Schlüsselkandidat: Name + Ort + Land

SCHLÜSSEL

Finden der Schlüsselkandidaten

3. existieren gar keine eindeutigen Merkmale, kann ein **künstlicher Schlüsselkandidat** "erfunden" werden. Dies ist meist eine Nummer.

z.B.

Objekttyp: Kunde

Schlüsselkandidat: Kundennummer

Vergleich: ist die ISBN-Nummer eines Buches nicht auch ein künstlicher Schlüsselkandidat? Wo ist der Unterschied?

SCHLÜSSEL

Vom Schlüsselkandidat zum Schlüssel

Letztendlich wird ein Schlüsselkandidat pro Objekttyp als **Schlüssel** für diesen Objekttyp ausgewählt.

z.B.

Objekttyp: Fußballspieler

Schlüsselkandidaten:

eMail-Adresse

Sozialversicherungsnummer

Mannschaft + Trikotnummer

künstlicher Schüssel z.B. SpielerNr

Welchen wählen?

SCHLÜSSEL

Vom Schlüsselkandidat zum Schlüssel eMail-Adresse:

weltweit eindeutig, aber haben alle eine (z.B. Seniorenmannschaft)?

Sozialversicherungsnummer:

ausreichend eindeutig, jeder hat eine (oder Ersatzkennzeichen), aber darf sie verwendet werden (Datenschutz)?

Mannschaft + Trikotnummer:

eindeutig für die Domäne, aber was passiert wenn auch historische Daten gespeichert werden sollen?

künstlicher Schlüssel:

löst obige Probleme, aber erhöht die Datenmenge und sorgt für kompliziertere Abfragen (dazu später mehr)

SCHLÜSSEL

Daher:

Schlüssel müssen vollständige Attribute sein.

Schlüssel sollten nicht (zu viele) Möglichkeiten einschränken.

Schlüssel sollen ein Datenmodell nicht verkomplizieren.

--> Schlüssel müssen mit Bedacht gewählt werden!

BEGRIFFE

Beziehungen, Beziehungstypen

Beziehungen sind **Assoziationen** zwischen Objekttypen und können meist durch Verben in der Domänenbeschreibung identifiziert werden.

z.B. Kunde bestellt Waren

Beziehungen sind gegenseitiger Natur, d.h. bei der Betrachtung ist die jeweilige **Richtung entscheidend**.

Name	Richtung 1	Richtung 2	
bestellt	Kunde bestellt Waren	Waren werden von Kunden bestellt	
unterrichtet	Lehrer unterrichten Schüler	Schüler werden von Lehrern unterrichtet	

BEGRIFFE

Kardinalität von Beziehungen (nach Modified-Chen)

Die Kardinalität einer Beziehung beschreibt, wie viele Objekte des einen Objekttyps in Beziehung zu einem Objekt des anderen Objekttyps stehen können.

Beziehung	Kardinalität	grafisch
Vater zeugt Erstgeborenen	1:1 Beziehung ⇒ ein Vater zeugt <u>genau einen</u> Erstgeborenen ← ein Erstgeborener wurde von <u>genau einem</u> Vater gezeugt	
Buch <i>enthält</i> Seiten	1: n Beziehung ⇒ ein Buch enthält <u>ein oder mehrere</u> (1n) Seiten ← eine Seite ist <u>genau in einem</u> Buch enthalten	
Kunde kauft Artikel	m: n Beziehung ⇒ ein Kunde kauft <u>ein oder mehrere</u> (1m) Artikel ⇔ ein Artikel wird von <u>ein oder mehreren</u> (1n) Kunden gekauft	

BEGRIFFE

Optionalität von Beziehungen

Manche Objekte **müssen** in einer Beziehung stehen, andere **können**.

z.B.

Vater hat Erstgeborenen:

Ein Vater **muss** genau einen Erstgeborenen haben (sonst wäre er kein Vater), jeder Erstgeborene **muss** genau einen Vater haben.

Mann zeugt Erstgeborenen:

Ein Mann **kann** genau einen Erstgeborenen zeugen (muss aber nicht -> optional), jeder Erstgeborene **muss** genau von einem Mann gezeugt worden sein.

BEGRIFFE

Optionalität von Beziehungen

In der MC-Notation (Modified Chen) werden Optionalitäten mit dem Buchstaben c (für can) gekennzeichnet

Beziehung	Kardinalität	grafisch
Mann zeugt Erstgeborenen	1 : c Beziehung ⇒ ein Mann zeugt <u>höchstens einen</u> Erstgeborenen ← ein Erstgeborener wurde von <u>genau einem</u> Mann gezeugt	
Schüler <i>macht</i> Hausübungen	1: mc Beziehung ⇒ ein Schüler macht <u>keine, eine oder mehrere</u> (0m) HÜs ← eine Hausübung ist von <u>genau einem</u> Schüler gemacht	

Jede weitere Kombination ist natürlich möglich: c:1, mc:mc, m:c, ...

BEGRIFFE

Subtypen und Supertypen

Die Objekte eines Subtyps sind eine Untermenge von Objekten des übergeordneten Supertyps.

Der Subtyp erbt dabei alle Attribute des Supertyps, insbesondere die Schlüsselattribute.

Die Definition von Sub-/Supertypen ist sinnvoll, wenn zwei Entitäten viele gemeinsame Attribute haben.

z.B. Supertyp: Person, Subtypen: Mitarbeiter, Kunde

QUELLEN

- ★ SQL von Kopf bis Fuß: Lynn Beighley, Verlag O'Reilly 1. Auflage 2008
- ★ Skript zur Vorlesung Datenbanksysteme SS06:
 Christian Böhm, Universität Heidelberg 2005
 http://www-dbs.informatik.uni-heidelberg.de/teaching/ws2007/dbs/skript/dbs07_4pages.pdf