Project 5: Inverting the heat equation

Brin Summer School on SciML

Consider the 1D heat equation:

$$\frac{\partial}{\partial t}u(x,t) = \nu \frac{\partial^2}{\partial x^2}u(x,t) \qquad \forall \ x \in (0,1) \quad t \in (0,0.4)$$

$$u(x,0) = u_0(x) \qquad \forall \ x \in [0,1]$$
(2)

$$u(x,0) = u_0(x) \quad \forall \ x \in [0,1]$$
 (2)

$$u(0,t) = u(1,t) = 0$$
 $\forall t \in [0,0.4]$ (3)

where $\nu > 0$ is the viscosity coefficient. We choose $\nu = 0.01$.

In this project, the goal is to determine the possible (discrete) initial condition u_0 , i.e., the inferred field X, given a noisy measurement of the (discrete) final temperature field at t = 0.4, i.e., the measured field Y. You have been provided with training samples corresponding to 2000 samples of u_0 at N_x uniformly spaced nodes in [0,1] and the corresponding (clean) final solutions at same nodes at time t=0.4. In addition, you have 100 test samples. We assume that u_0 is given by random linear inclusions as shown below.

Now train a conditional generative model on each of the following data:

- \bullet Add 5% uncorrelated Gaussian noise to the clean final temperature fields
- \bullet Add 10% uncorrelated Gaussian noise to the clean final temperature fields

Once trained, use the final generator for each type of data to predict the possible X profiles for the (similarly) noisy test Y. For a few test samples, plot the mean X (with 1-SD regions) and compare with the true inferred field.

Bonus task: Try to figure out the noise level beyond which the recovery of X becomes challenging.