Pendule inversé sur Robot Lego NXT

Systèmes Cyber-Physiques

INPT/ENSEEIHT - 2IMA

Mars 2018

- Prise en main de l'environnement
- 2 Implantation du pendule inversé sur le robot Lego NXT
- Travail à effectuer

- 1 Prise en main de l'environnement
- Implantation du pendule inversé sur le robot Lego NXT
- Travail à effectuer

Prise en main de l'environnement I

Les étapes :

- Ajoutez l'environnement Trampoline-OSEK dans votre chemin d'accès :
 - > source /mnt/n7fs/nxt/nxt.sh
 - ► Testez si c'est ok : tapez goil -help Vous devriez avoir la liste des options de la commande goil
 - Pour éviter de faire la manip. à chaque fois, ajoutez la commande précédente à la fin de votre ficher .bashrc
- ② Téléchargez l'archive penduleNXT.tar et décompressez la dans le répertoire que vous souhaitez.

Prise en main de l'environnement II

Fichiers présents dans l'archive :

- nxt_config.h : paramètres de configuration du robot Lego
- tools.c et tools.h : boîte à outils
- nxtSegway.oil : configuration du système OSEK
- nxtSegway.c : application du contrôle du robot Lego (à compléter)

- Prise en main de l'environnement
- 2 Implantation du pendule inversé sur le robot Lego NXT
- Travail à effectuer

Implantation du pendule inversé sur le robot Lego NXT

- Objectifs : comprendre la mise en œuvre du pendule inversé sur le système physique : le robot NXT
- Le robot Lego Mindstorm NXT en configuration pendule inversé :

Le système du pendule inversé (rappel)

• y : Etat observé du pendule

• x : Etat du pendule

• u : Commande appliquée aux moteurs

Les outils à disposition

- Le système temps réel OSEK (Trampoline)
 - exécute des tâches de façon périodique
 - ★ les tâches sont exécutées à nouveau après un temps prédéfini
 - ► Ici, 2 tâches à exécuter : pendule (à compléter), affichage (fournie)
- La boîte à outils
 - La tâche affichage affiche les valeurs de θ et de ψ fournies respectivement par les moteurs et le gyroscope du robot ainsi que l'état courant du robot (valeur de x)
 - Les fonctions :
 - \star float getGyro(int gyro_offset) : fournit en sortie la valeur de $\dot{\psi}$
 - * float getMotorAngle() : fournit en sortie la rotation des moteurs (i.e. θ_m)
 - void nxt_motors_set_command(float u) : applique la commande aux moteurs du robot Lego NXT
 - ★ float delta_t() : fournit le pas temporel

La tâche pendule

- Le rôle de cette tâche est de contrôler la position verticale du robot Lego
- C'est une fonction exécutée automatiquement toutes les 4ms

• 3 états :

- ► INIT_MODE : initialise le système (mise à zéro des variables, ...)
 - ★ 1ère exécution de la tâche pendule
- CAL MODE :
 - calibre le gyroscope dans la position verticale (tenir le robot à la verticale pendant 6s au moins)
 - ★ 6s = 1500×4ms, la tâche s'exécute 1500 fois
- CONTROLE MODE:
 - mode de fonctionnement du pendule inversé
 - ★ c'est la partie à compléter

- Prise en main de l'environnement
- Implantation du pendule inversé sur le robot Lego NXT
- Travail à effectuer

Travail à effectuer

- Créez la fonction estimateur qui fournit l'état courant du système $x=(\theta,\psi,\dot{\theta},\dot{\psi})$ à partir de l'état observé $y=(\theta_m,\dot{\psi})$ et du pas temporel, avec $\theta=\theta_m+\psi$
- ② Créez la fonction controleur qui calcule la commande u à appliquer au système en fonction de l'état courant du système
- Omplétez l'état CONTROLE_MODE de la tâche pendule contrôlant le mouvement du robot
- Compilez et exécutez le programme sur le robot Lego
 - ▶ Vérifiez qu'il n'y a pas de Makefile déjà créé, sinon supprimez le :
 - * make clean
 - * rm Makefile
 - Générez un fichier Makefile à partir du fichier .oil présent dans l'archive :
 - nxt_goil nxtSegway.oil
 - Compilation : make
 - Téléchargement sur le robot : nxt_send nxtSegway_exe.rxe