Matemática Discreta: Lista 2

Igor Lacerda

May 11, 2023

Questões discursivas

- 1. O binômio de Newton é uma forma é uma forma sistemática de se escrever as expansões simplificadas (ou seja, termos semelhantes agrupados) de expressões do tipo $(a+b)^n$, onde n é um inteiro não negativo. Para isso, é feito uso de *coeficientes binomiais*, discutidos no item seguinte.
- 2. O coeficiente binomial é o número "base" que acompanha cada termo das expansões simplificadas de expressões do tipo $(a+b)^n$. Para deixar essa questão de número base mais clara, considere o exemplo $(2+2)^2$, que expandindo é $2^2+2\cdot 2\cdot 2+2^2$ e simplificando é 4+8+4, mas perceba que isso não contradiz o fato de a expansão de $(a+b)^2$ ter como coeficientes em ordem tradicional a tripla (1,2,1). Em termos simples, números no lugar de variáveis não alteram o coeficiente.

O coeficiente binomial é justamente calculado a partir de $\binom{n}{k}$, onde n é a potência em questão e k corresponde à ordenação "natural" dada a essas expansões.

- 3. O triângulo de Pascal é uma construção abstrata em que cada linha corresponde aos coeficientes binomiais $\binom{n}{k}$ em ordem. Em particular, a primeira linha contém apenas o coeficiente $\binom{0}{0}$, a segunda linha $\binom{1}{0}$ e $\binom{1}{1}$, e assim por diante. Pela identidade de Pascal, os termos que não estão nos extremos podem ser construídos pela soma dos números imediatamente nas diagonais superiores. Por exemplo, $\binom{2}{1}$ é a soma de $\binom{1}{0}$ e $\binom{1}{1}$.
- 4. Bem, tem várias propriedades interessantes, inclusive a que comentei na questão anterior. Além dela e das comentadas em aula (encontrar Fibonacci nas diagonais, a soma das linhas é igual a 2^n onde n corresponde ao termo de $(a+b)^n$ em questão), adiciono o fato de que em base 10, cada algarismo corresponde aos dígitos das potências de base 11. Por exemplo: 11^2 é 121, que corresponde justamente com os coeficientes de $(a+b)^2$. Para números de mais de um algarismo é preciso fazer algumas correções no entanto, mas ainda funciona.
- 5. Uma "prova combinatória" é um tipo de demonstração que usa do seguinte argumento: dada uma equação que envolve alguma técnica de contagem,

se a contagem de ambos os lados da equação for igual, estes são equivalentes. Uma "prova algébrica" é uma demonstração mais na raça mesmo, usando de manipulações algébricas para partir de um lado da equação que se deseja mostrar para se chegar no outro. Parece simples mas é comum envolver operações não triviais, como certos tipos de "multiplicação por 1". Acho que na prática ninguém usa esses termos.

	Nome	Exemplo	Fórmula
6.	Perm sem repetição	Permutando ABCDEFGH	n!
	Comb sem repetição	Subconjuntos de tamanho r	$\frac{n}{r!(n-r)!}$
	Perm com repetição	Permutando AAABBC	n^r
	Comb com repetição	$x_1 + x_2 + x_3 = n$	C(r+n-1,r)
	Perm com idênticos	Anagramas	$\frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}$
	Obj dist Caixa dist	Mãos de poker	$\frac{n!}{n_1! \cdot n_2! \cdot \dots \cdot n_k!}$
	Obj idên Caixa dist	Bolas em Caixas Coloridas	C(r+n-1,r)
	Obj dist Caixa idên	Funcionários em Escritórios	Não tem
	Obj idên Caixa idên	Livros em Caixas	Não tem

- 7. $|A_1 \cup A_2 \cup A_3 \cup A_4| = (|A_1| + |A_2| + |A_3| + |A_4|) (|A_1 \cap A_2| + |A_1 \cap A_3| + |A_1 \cap A_4| + |A_2 \cap A_3| + |A_2 \cap A_4| + |A_3 \cap A_4|) + (|A_1 \cap A_2 \cap A_3| + |A_1 \cap A_3 \cap A_4|) (|A_1 \cap A_2 \cap A_3 \cap A_4|)$
- 8. Usando a notação bonitinha do slide do professor:

$$|A_1 \cap A_2 \cap \ldots \cap A_n| = S_1 - S_2 + S_3 - \ldots + (-1)^{n+1} S_n$$

9. $N(P_1'P_2'\dots P_3'):=|\{x\in A\mid x \text{ não tem nenhuma das propriedades }P_i\}|$ e N a cardinalidade do universo:

$$N(P_1'P_2'\dots P_3') = N - |A_1 \cap A_2 \cap \dots \cap A_n|$$

É essa mesma? Ficou confusa a questão

10. Pela fórmula anterior:

$$N(P_1'P_2'\dots P_3') = N - S_1 + S_2 - S_3 + \dots + (-1)^n S_n$$

11. Para $m \geq n$ há:

$$n^m - C(n,1)(n-1)^m + C(n,2)(n-2)^m - \ldots + (-1)^{n-1}C(n,n-1) \cdot 1^m$$

funções sobrejetivas de um conjunto de m elementos para um conjunto com n elementos.

12. O ponto fixo de uma permutação é uma posição que não foi alterada após a permutação. Se P for uma "função de permutação", podemos dizer que um ponto a é fixo se P(a)=a.

13. As permutações que não possuem pontos fixo são chamadas de desarranjos ou permutações caóticas e são aquelas que **não preservam pontos fixos**. Podemos calcular D_n , o número de permutações caóticas para um arranjo usando com n elementos:

$$D_n = \left\lfloor \frac{n!}{e} \right\rfloor$$

Desse modo, para calcular as permutações que preservam pontos fixos podemos fazer:

$$\frac{n! - D_n}{n!}$$

Detalhe: para n grande, essa probabilidade aproxima:

$$1 - \frac{1}{e} \approx 63.2\%$$

Exercícios