This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Original) Compound of the general formula I

$$R^{11}$$
 A_a Z^{11} W B_b D_d Y^{11} I

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or a halgenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH2 groups in this radical may each be replaced, independently of one another, by-C=C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow .

a is 0, 1 or 2;

Z¹¹ represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-CF₂-, -CH₂-CF₂-, -CH₂-, -CH₂-

W denotes >CH- or >C=;

b and d, independently of one another, are 0 or 1;

- denotes =O, =C(SR¹²)(SR¹³), =CF₂, -H, -F, -Cl, -Br, -I, -CN, -OH, -SH, -CO-R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(-SR¹³)X̄, -B(OR¹⁶)(OR¹⁷), -BF₃Cat⁺,
 -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which, in addition, one or more CH₂ groups may each be replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;
- Y¹² and Y¹³, independently of one another, denote H or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atom, in which, in addition, one or more CH₂ groups may each be replaced, independently of one another, by -C≡C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

L¹, L² and L³, independently of one another, denote H or F;

- R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH½ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;
- R¹⁴ denotes OH, O-aryl, O-aralkyl, O-alkyl, Cl, Br, aryl, aralkyl or alkyl;
- R¹⁵ denotes aryl, aralkyl or a halogenated or unsubstituted alkyl radical having 1 to 15 carbon atoms, where, in addition, one or more CH₂ groups in this alkyl radical may each be replaced, independently of one another, by-C=C-,

-CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another;

 R^{16} and R^{17} denote H or an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a- $(CH_2)_p$ - unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH2 groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

R¹⁸, R¹⁹ and R²⁰, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms;

Cat⁺ is an alkali metal cation or a quaternary ammonium cation;

and

X is a weakly coordinating anion;

with the proviso

that W denotes >CH if $b+d \neq 0$;

that Y^{11} does not denote =0, =C(SR¹²)(SR¹³) or =CF₂ if Y^{11} is connected to B or D =

that Y¹¹ denotes -H, -I, -OH, -SH, -CO₂R¹⁴, -OSO₂R¹⁵, -C(=S⁺R¹²)(SR¹³)X̄, -B(OR¹⁶)(OR¹⁷), -BF₃Cat⁺, -Si(OR¹⁸)(OR¹⁹)(OR²⁰) or alkyl, where alkyl denotes a halogenated or unsubstituted alkyl radical having 1 to 15 C atoms, in which one or more CH₂ groups have each been replaced, independently of one another, by-C=C-, -CH=CH-, -O-, -CO-, -CO-O- or -O-CO- in such a way that O atoms are not linked directly to one another and alkyl does not stand for alkoxy, if W is connected directly

MERCK-3017

that B does not stand for if d = 1; and

that A can adopt identical or different meanings if a is 2.

2. (Original) Compound according to Claim 1, characterised in that

A stands for

- (Original) Compound according to Claim 1, characterised in that
 a is 0.
- (Currently Amended) Compound according to any one of Claims 1 to 3 Claim 1, characterised in that
 Y¹² and Y¹³ denote H.
- (Currently Amended) Compound according to any one of Claims 1 to 4 Claim 1, characterised in that
 Z¹¹ represents a single bond, -CF₂O- or -OCF₂-.
- 6. (Currently Amended) Compound according to any one of Claims 1 to 5 Claim 1, characterised in that

R¹¹ denotes an unbranched halogenated or unsubstituted alkyl radial having 1 to 7 carbon atoms.

7. (Currently Amended) Compound according to any one of Claims 1 to 6 Claim 1, characterised in that

 Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂.

8. (Currently Amended) Compound according to any one of Claims 1 to 6 Claim 1, characterised in that

Y¹¹ denotes -H, -F, -Cl, -Br, -I, -OH, -CO₂H, -C(=S⁺R¹²)(-SR¹³)X, -B(OR¹⁶)(OR¹⁷), -BF₃Cat⁺ or -Si(OR¹⁸)(OR¹⁹)(OR²⁰).

9. (Currently Amended) Compound according to any one of Claims 1 to 6 and 8 Claim 1, characterised in that

denotes BF₄, CF₃SO₃, C₄F₉SO₃, PF₆, SbF₆ or AsF₆.

- (Currently Amended) Compound according to any one of Claims 1 to 9 Claim 1, characterised in that
 b is 0 and d is 0.
- (Currently Amended) Compound according to any one of Claims 1 to 9 Claim 1, characterised in that
 b is 1 and d is 0.
- 12. (Currently Amended) Compound according to any one of Claims 1 to 9 Claim 1, characterised in that b is 1 and d is 1.
- 13. (Original) Process for the preparation of a compound of the formula IA

$$R^{11} - A_a - Z^{11} - O W - Y^{11}$$
IA

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl σ alkyl;

- a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;
- z¹¹ represents a single bond, $-CH_2-CH_2-$, $-CF_2-CF_2-$, $-CF_2-CH_2-$, $-CH_2-CF_2-$, $-CH_2-CF_2-$, $-CH_2-CF_2-$;
- W denotes >C=;
- Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂;

Y¹² and Y¹³, independently of one another, denote H or alkyl; and
R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl
radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p
= 2, 3, 4, 5 or 6, where one, two or three of these CHb groups may be
substituted by at least one unbranched or branched alkyl radical having 1 to 8
carbon atoms;

characterised in that

a compound of the formula II

$$R^{11}$$
 A_a Z^{11} CHO

in which R^{11} , A, a and Z^{11} are as defined above for the formula IA, is reacted in a reaction step (A1)

(A1) in the presence of a base with a compound of the formula III

$$R^{31}O$$
 V^{12}
 V^{13}
III

in which Y^{12} and Y^{13} are as defined above for the formula IA, and R^{1} denotes an alkyl radical having 1 to 15 carbon atoms, to give a compound of the formula IV

$$R^{11}$$
 A_a Z^{11} $COOR^{31}$ IV

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the formula IA, and R^{31} is as defined above for the formula III; and subsequently, in a reaction step (A2),

(A2) the compound of the formula IV is converted into the compound IA1

$$R^{11} - A_a - Z^{11} - O$$
IA1

and optionally, in a reaction step (A3),

(A3) the compound of the formula IA1 is converted into the compound IA2

$$R^{11} - A_a - Z^{11} - O = CF_2$$
IA2

by reaction with CF_2Br_2 in the presence of $P(N(R^{21})_2)_3$, $P(N(R^{21})_2)_2(OR^{22})$ or $P(N(R^{21})_2)(OR^{22})_2$, where R^{21} and R^{22} , independently of one another, denote an alkyl radical having 1 to 15 carbon atoms; or optionally, in a reaction step (A3'),

(A3') the compound of the formula IA1 is converted into the compound IA3

$$R^{11}$$
 A_a Z_a A_a A

by reaction with CHG(SR¹²)(SR¹³), in which G denotes P(OCH₂R²³)₃, where R²³ is a perfluorinated alkyl radical having 1 to 5 carbon atoms, or Si(CH₃)₃ or Si(CH₂CH₃)₃, and R¹² and R¹³ are as defined above for the formula IA, in the presence of a strong base.

14. (Original) Process for the preparation of a compound of the formula IB

$$R^{11}$$
 A_a Z^{11} Y^{12} Y^{13} Y^{13} Y^{13} Y^{14} Y^{15} Y^{1

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow .

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

-8-

Z¹¹ represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

Y¹¹ denotes -H, -F, -Cl, -Br, -I, -CN, -OH or -B(OR¹⁶)(OR¹⁷);

Y¹² and Y¹³, independently of one another, denote H or alkyl;

L¹, L² and L³, independently of one another, denote H or F; and

R¹⁶ and R¹⁷, independently of one another, denote H or an urbranched or branched alkyl radical having 1 to 15 carbon atomsor together form a-(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH½ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

characterised in that, in a reaction step (B1),

(B1) a compound of the formula IA1

$$R^{11} - A_a - Z^{11} - O$$
IA1

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the formula IB, is reacted with a compound of the formula V

$$M \longrightarrow \begin{array}{c} L^1 \\ Q \\ L^3 \end{array}$$
 V

in which L¹, L² and L³ are as defined above for the formula IB, M denotes Li, ClMg, Br-Mg or I-Mg, and Q denotes H, F, Cl, Br, I or CN, with formation of the compound of the formula IB1

$$R^{11}$$
 A_a Z^{11} Q Q IB1

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^1 , L^2 and L^3 are as defined for the formula IB, and Q is as defined for the formula V; and optionally, in a reaction step (B2),

(B2) the compound of the formula IB1 in which Q denotes Br is reacted with $B(OR^{16})(OR^{17})(OR^{24})$, where R^{16} , R^{17} and R^{24} are an unbranched or branched alkyl radical having 1 to 15 carbon atoms, or with $HB(OR^{6})(OR^{17})$, where R^{16} and R^{17} denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a- $(CH_2)_p$ - unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH_2 groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms, in the presence of an alkyllithium base, to give the compound of the formula IB2

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

and optionally, in a reaction step (B3),

(B3) the compound IB2 is converted into the compound IB3

$$R^{11}$$
 A_a Z^{11} A_a A_a

by reaction with an aqueous acid; and/or optionally, in a reaction step (B4),

(B4) the compound IB2 or the compound IB3 is converted into the compound IB4

by reaction with hydrogen peroxide in alkaline or acidic solution.

15. (Original) Process for the preparation of a compound of the general formula IC

$$R^{11} - A_a - Z^{11}$$
 Y^{12} Y^{13} Y^{13} Y^{11}

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

A stands for ,
$$\longrightarrow$$
 , \longrightarrow or \longrightarrow , \longrightarrow

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

Z¹¹ represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂-, -CH₂-

 Y^{11} denotes =0, =C(SR¹²)(SR¹³) or =CF₂;

Y¹² and Y¹³, independently of one another, denote H or alkyl; and

 R^{12} and R^{13} , independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH½ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms;

characterised in that, in a reaction step (C1),

(C1) the compound of the formula IB4

$$R^{11}$$
 A_a Z^{11} A_a A_a

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the formula IC, and L^1 , L^2 and L^3 denote H,

is converted into the compound IC1

$$R^{11} - A_a - Z_{12}^{11}$$
 O IC1

using hydrogen in the presence of a transitionmetal catalyst; and optionally, in a reaction step (C2),

(C2) the compound IC1 is converted into the compound IC2

$$R^{11}$$
 A_a Z^{11} CF_2 CF_2 CF_2

by reaction with CF_2Br_2 in the presence of $P(N(R^{21})_2)_3$, $P(N(R^{21})_2)_2(OR^{22})$ or $P(N(R^{21})_2)(OR^{22})_2$, where R^{21} and R^{22} , independently of one another, are an alkyl radical having 1 to 15 carbon atoms; or optionally, in a reaction step (C2'),

(C2') the compound of the formula IC1 is converted into he compound IC3

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

by reaction with CHG(SR¹²)(SR¹³), in which G denotes P(OCH₂R²³)₃, where R²³ is a perfluorinated alkyl radical having 1 to 5 carbon atoms, or Si(CH₂O)₃ or Si(CH₂CH₃)₃, and R¹² and R¹³ are as defined above for the formula IC, in the presence of a strong base.

16. (Original) Process for the preparation of a compound of the formula ID

$$R^{11}$$
 A_a Z_1^{11} A_a $A_$

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

Z¹¹ represents a single bond, $-CH_2$ - $-CH_2$ -, $-CF_2$ - $-CF_2$ -, $-CF_2$ - $-CH_2$ -, $-CH_2$ -, $-CH_2$ -, $-CH_2$ -, $-CF_2$ -O or -O- $-CF_2$ -;

 Y^{11} denotes -CO₂H or -C(=S⁺R¹²)(-SR¹³)X⁻;

Y¹² and Y¹³, independently of one another, denote H or alkyl;

L¹, L² and L³, independently of one another, denote H or F;

R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; and

X is a weakly coordinating anion; characterised in that, in a reaction step (D1),

(D1) a compound of the formula IB1

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^1 , L^2 and L^3 are as defined for the formula ID, and Q denotes H or Br,

is reacted with an organometallic base and CQ to give the compound ID1

$$R^{11} - A_a - Z^{11}$$

$$V^{12}$$

$$V^{13} L^3 L^2$$

$$CO_2H$$

$$D1$$

in which R^{11} , A, a, Z^{11} , Y^{12} , Y^{13} , L^{1} , L^{2} and L^{3} are as defined for the formula ID; and optionally, in a reaction step (D2),

(D2) the compound ID1 is converted into the compound ID2

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

in the presence of an acid HX using HSR¹² and HSR¹³ or using HSR¹²R¹³SH.

17. (Original) Process for the preparation of a compound of the formula IE

$$R^{11}$$
 A_a $Z_{Y^{12}}^{11}$ A_a A

in which

R¹¹ denotes H, F, Cl, Br, I, CN, aryl, heterocyclyl or alkyl;

a is 0, 1 or 2, where A can adopt identical or different meanings if a is 2;

Z¹¹ represents a single bond, -CH₂-CH₂-, -CF₂-CF₂-, -CF₂-CH₂-, -CH₂-CF₂-, -CH₂O-, -O-CH₂-, -CF₂-O- or -O-CF₂-;

 Y^{11} denotes -CO₂H or -C(=S⁺R¹²)(-SR¹³)X⁻;

Y¹² and Y¹³, independently of one another, denote H or alkyl;

R¹² and R¹³, independently of one another, denote an unbranched or branched alkyl radical having 1 to 15 carbon atoms or together form a -(CH₂)_p- unit, where p = 2, 3, 4, 5 or 6, where one, two or three of these CH₂ groups may be substituted by at least one unbranched or branched alkyl radical having 1 to 8 carbon atoms; and

X is a weakly coordinating anion;

characterised in that, in a reaction step (E1),

(E1) the compound of the formula ID1

$$R^{11}$$
 A_a $Z_{Y^{12}}$ A_a A_a

in which R^{11} , A, a, Z^{11} , Y^{12} and Y^{13} are as defined above for the formula IE, and L^1 , L^2 and L^3 denote H,

is converted into the compound IE1

$$R^{11}$$
 A_a Z_{12}^{11} CO_2H $IE1$

using hydrogen in the presence of a transitionmetal catalyst; and optionally, in a reaction step (E2),

(E2) the compound of the formula IE1 is converted into the compound IE2

$$R^{11}$$
 A_a Z_{12}^{11} A_a A_a

in the presence of an acid HX using $\mathrm{HSR^{12}}$ and $\mathrm{HSR^{13}}$ or using $\mathrm{HSR^{12}R^{13}SH}$.