

Integrating Specialized Classifiers Based on Continuous Time Markov Chain

Zhizhong Li, Dahua Lin; Multimedia Laboratory, The Chinese University of Hong Kong

Ensemble of Specialized Classifiers

- We consider ensemble in the presence of Specialized Classifiers
- Specialized classifiers are trained using a subset of classes
- Scenario 1: Enhance the weak part

Scenario 2: Integrate classifiers from different domain

Challenges

• Motivation: tracing the preferences

4 classes in 2-dim plane. 3 specialized classifiers are drawn with decision boundaries If we trace along the arrows, we will arrive the correct class.

Idea: tracing -> random walk
 If the configuration of specialized classifiers are complex, the simple tracing algorithm faces problems like multiple solutions, or trapped in loops. Random walk is a better replacement.

Tool: Continuous Time Markov Chain

- Homogeneous CTMC is a stochastic process characterized by the transition rates between states
- If the chain is ergodic, there exists an equilibrium distribution
- Example

Two states

Transition rate matrix

Stationary distribution $\pi \propto (p_i, p_j)$ A model of preference

CTMC Ensemble

- Given a set of classifiers, assume they output probabilities
- Construct a continuous-time Markov chain as follows
- Classes as states, predictions as transition rates
- Step 1: Construct a chain for each of individual classifiers

Three classes with prediction (p_1, p_2, p_3) , Stationary distribution is also (p_1, p_2, p_3) .

• **Step 2**: Combine the by superposition

• Step 3: Output the equilibrium distribution as prediction

Experiments

On ImageNet dataset
 1000 classes, 1.2M images
 Train deep neural networks as classifiers

From local to global

Classifier Set	Top-5 Error (%)						
Classifici Set	vote	mean	m-mean	prod	m-prod	CTMC	
$\{f_0, f_2, f_4, f_6, f_8\}$	15.962	12.332	11.734	13.376	11.144	7.952	
$\{f_1, f_3, f_5, f_7, f_9\}$	16.052	12.742	12.078	12.600	10.686	7.718	
$\{f_0, f_2, f_4, f_6, f_8\} \cup \{f_1\}$	19.706	12.148	11.508	12.964	10.536	7.696	
$\{f_0, f_2, f_4, f_6, f_8\} \cup \{f_1, f_3\}$	23.898	11.806	11.046	12.924	10.050	7.528	
$\{f_0, f_2, f_4, f_6, f_8\} \cup \{f_1, f_3, f_5\}$	22.020	11.096	10.620	12.326	9.634	7.206	
$\{f_0, f_2, f_4, f_6, f_8\} \cup \{f_1, f_3, f_5, f_7\}$	14.856	10.334	10.136	9.954	9.206	6.886	
$\{f_0, f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9\}$	14.172	10.014	10.014	8.548	8.548	6.676	

Unbalanced coverage

Classifier Set	Top-5 Error (%)							
Classifier Set	vote	mean	m-mean	prod	m-prod	CTMC		
h_0	21.998	6.146	6.146	6.146	6.146	6.146		
$\{h_0\} \cup R$	16.540	8.356	8.356	6.404	6.404	5.972		
$\{h_0\} \cup S$	22.600	15.292	15.292	7.670	7.670	6.108		
$\{h_0\} \cup U$	25.912	16.532	15.196	9.948	8.794	5.802		

 h_0 : general classifier. R, S, U: three sets of specialized classifiers. Classes are covered by 1-4 times unevenly.

Properties

- **Proposition 1**. If the coverage is connected, and the prediction probabilities are positive, then the solution **exists** and is **unique**
- **Proposition 2**. The output π satisfies

$$\pi(i) = \frac{1}{|\mathcal{F}_i|} \sum_{k \in \mathcal{F}_i} \omega_k \mathbf{p}_k(i), \text{ with } \omega_k = \sum_{j \in I_k} \pi(j).$$

where \mathcal{F}_i is the set of all classifiers that covers class c_i , and $\boldsymbol{p}_k(i)$ is the prediction of k-th classifier on class c_i .