Laborator02

Petculescu Mihai-Silviu

Laborator02

Petculescu Mihai-Silviu

Aplicaţia 1.

Cerințe

SWI-Prolog

- A. Vinde AlfaSA calculatoare?
- B. Vinde BetaSA televizoare?
- C. Ce vinde MagicSRL?
- D. Cine vinde calculatoare?
- E. Vinde AlfaSA ceva?
- F. Vinde cineva accesorii?
- G. Cine vinde la fel ca BetaSA un anumit produs?
- H. Cine vinde ce?
- I. Vinde cineva ceva?

Aplicaţia 2.

Cerințe

SWI-Prolog

- 1. Vinde Andrei lalele?
- 2. Cine vinde crizanteme?
- 3. Ce vinde Ana?
- 4. Vinde cineva crini?
- 5. Vinde Andu ceva?
- 6. Cine vinde la fel ca Alex un anumit produs?
- 7. Ce vinde Andu și nu este floare?

Prelucrări Aritmetice

Aplicația 1.

Aplicaţia 1'.

Aplicaţia 2.

Aplicaţia 3.

Aplicaţia 4.

Aplicaţia 5.

Aplicația 1.

Se consideră următoarea bază de cunoștințe cu informații privind anumite firme și produsele distribuite.

- Magic srl vinde calculatoare și accesorii.
- Alfa sa vinde televizoareşi calculatoare
- Beta sa vinde accesorii.

Cerințe

SWI-Prolog

```
vinde(magicsrl,calculatoare).
vinde(magicsrl,accesorii).
vinde(alfasa,calculatoare).
vinde(alfasa,televizoare).
vinde(betasa,accesorii).
```

A. Vinde AlfaSA calculatoare?

```
?- vinde(alfasa,calculatoare).
true.
```

B. Vinde BetaSA televizoare?

```
?- vinde(betasa,televizoare).
false.
```

C. Ce vinde MagicSRL?

```
?- vinde(magicsrl,X).
X = calculatoare ;
X = accesorii.
```

D. Cine vinde calculatoare?

```
?- vinde(Y,calculatoare).
Y = magicsrl;
Y = alfasa.
```

E. Vinde AlfaSA ceva?

```
?- vinde(alfasa,_).
true.
```

F. Vinde cineva accesorii?

```
?- vinde(_, accesorii).
true.
```

G. Cine vinde la fel ca BetaSA un anumit produs?

```
?- vinde(betasa,X), vinde(Y,X), Y='betasa'.
X = accesorii,
Y = betasa.
```

H. Cine vinde ce?

```
?- vinde(X,Y).
X = magicsrl,
Y = calculatoare;
X = magicsrl,
Y = accesorii;
X = alfasa,
Y = calculatoare;
X = alfasa,
Y = televizoare;
X = betasa,
Y = accesorii.
```

I. Vinde cineva ceva?

```
?- vinde(_,_).
true.
```

Aplicația 2.

Se consideră următoarea bază de cunoștințe cu informații privind anumite persoane și produsele distribuite.

- Alex vinde trandafiri, lalele şi crizanteme.
- Ana vinde lalele şi crini.
- Andu vinde lalele şi nuci.

Cerințe

SWI-Prolog

```
vinde(alex, trandafiri).
vinde(alex, lalele).
vinde(alex, crizanteme).
vinde(ana, lalele).
vinde(ana, crini).
vinde(andu, lalele).
vinde(andu, nuci).
floare(X):- not(X = 'nuci').
```

1. Vinde Andrei lalele?

```
?- vinde(andrei,lalele).
false.
```

2. Cine vinde crizanteme?

```
?- vinde(X,crizanteme).
X = alex.
```

3. Ce vinde Ana?

```
?- vinde(ana,Y).
Y = lalele;
Y = crini.
```

4. Vinde cineva crini?

```
?- vinde(_,crini).
true.
```

5. Vinde Andu ceva?

```
?- vinde(andu,_).
true.
```

6. Cine vinde la fel ca Alex un anumit produs?

```
?- vinde(alex,X), vinde(Y,X), Y\='alex'.
X = lalele,
Y = ana;
X = lalele,
Y = andu;
false.
```

7. Ce vinde Andu şi nu este floare?

```
?- vinde(andu,Y), not(floare(Y)).
Y = nuci.
```

Prelucrări Aritmetice

Aplicația 1.

Să se calculeze media aritmetică a două valori reale.

SWI-Prolog:

```
media_aritmetica(A,B,M_aritmetica):- M_aritmetica is (A+B)/2.
```

Execuţie:

```
?- media_aritmetica(40, 34, Media).
Media = 37.
```

Aplicația 1'.

Să se calculeze media aritmetică a două valori reale, respectiv, media armonica.

SWI-Prolog:

```
media_aritmetica(A,B,M_aritmetica):- M_aritmetica is (A+B)/2.
media_armonica(A,B,M_armonica):- A = 0, B = 0, M_armonica is 2/(1/A + 1/B).
```

Execuţie:

```
?- media_aritmetica(40, 34, Media).
Media = 37.
?- media_armonica(40, 34, M).
M = 36.75675675675676.
```

Aplicația 2.

Să se determine maximul/minimul a două valori reale.

SWI-Prolog:

```
maxim(A,B,A):- A>=B.
maxim(A,B,B):- A<B.
minim(A,B,B):- A>=B.
minim(A,B,A):- A<B.</pre>
```

Execuţie:

```
?- maxim(40, 34, Max).
Max = 40 .
?- minim(40, 34, Min).
Min = 34 .
?- minim(21, -4, Min).
Min = -4 .
```

Aplicaţia 3.

Să se determine maximul/minimul a trei valori reale.

SWI-Prolog:

```
/* Aplicatia 2 */
maxim(A,B,A):- A>=B.
maxim(A,B,B):- A<B.
minim(A,B,A):- A<B.
minim(A,B,A):- A<B.
/* Aplicatia 3 */
maxim3(A,B,C,Max3):- maxim(A,B,R), maxim(R,C,Max3).
minim3(A,B,C,Min3):- minim(A,B,R), minim(R,C,Min3).</pre>
```

Execuţie:

```
?- maxim3(40, 34, 12, Max).

Max = 40 .

?- minim3(21, -4, 2, Min).

Min = -4 .
```

Aplicația 4.

Să se determine maximul/minimul a două valori reale. **V2 - Prin utilizarea operatorului CUT!**

Observație: Operatorul CUT! are rolul de a exclude anumite ramuri de căutare în spațiul soluților în cadrul procesului de backtracking recursiv.

SWI-Prolog:

```
maxim(A, B, A):- A>=B, !.
maxim(A, B, B).
minim(A, B, B):- A>=B, !.
minim(A, B, A).
```

Execuţie:

```
?- maxim(40, 34, Max).
Max = 40 .
?- minim(21, -4, Min).
Min = -4 .
```

Aplicația 5.

Să se determine valoarea funcției:

$$f(x,y) = x + y - 2$$
, $daca \ x > -1$, $y < 1$
 $f(x,y) = x - y$, $in \ rest$

SWI-Prolog:

```
functie_f(X,Y,Rez):- X>(-1), Y<1, Rez is X+Y-2, !.
functie_f(X,Y,Rez):- Rez is X-Y.</pre>
```

Execuţie:

```
/* x>-1 & y<1 */
?- functie_f(4,-7,Rez).
Rez = -5.
/* x<-1 & y<1 */
?- functie_f(-3,-7,Rez).
Rez = 4.
/* x>-1 & y>1 */
?- functie_f(1,10,Rez).
Rez = -9.
```