1. Consider the following relation instance of R(B,C,D,E).

В	U	۵	Е
8	6	1	7
0	4	1	9
8	6	1	7
8	5	2	7

List all FDs of the form $\alpha \to \beta$ (where $\alpha \subseteq R$ and $\beta \in R$) that definitely do not hold on R.

- 2. Consider a relational schema R and let a, b, c, d \subseteq R. Use Armstrong's Axioms to prove the soundness of the following two inference rules:
 - (a) Pseudo Transitivity: If $a \rightarrow b$ and $bc \rightarrow d$, then $ac \rightarrow d$
 - (b) Composition rule: If $a \rightarrow b$ and $c \rightarrow d$, then $ac \rightarrow bd$
- 3. Consider R(A, B, C, D, E, G) with FDs F = {ABC \rightarrow E, BD \rightarrow A, CG \rightarrow B}.
 - (a) Use Armstrong's Axioms to show that F implies CDG → E
 - (b) Compute {CDG}+
 - (c) Find all the keys of R
- 4. Consider the schema R(A,B,C,D,E) with FDs

$$F = \{AB \rightarrow CDE, AC \rightarrow BDE, B \rightarrow C, C \rightarrow B, C \rightarrow D, B \rightarrow E\}.$$

Find all the keys of R.