Melhorando a Resposta Transitória Via Compensação em Cascata

Fundamentos de Controle

Compensação Derivativa Ideal (PD)

$$G_c(s) = s + z_c$$

$$\frac{K}{(s+1)(s+2)(s+5)}$$

$$\frac{K(s+2)}{(s+1)(s+2)(s+5)}$$

$$\frac{K(s+3)}{(s+1)(s+2)(s+5)}$$

$$\frac{K(s+4)}{(s+1)(s+2)(s+5)}$$

*	Uncompensated	Compensation b	Compensation c	Compensation d
Di . I	K	K(s+2)	K(s+3)	K(s+4)
Plant and compensator	(s+1)(s+2)(s+5)	(s+1)(s+2)(s+5)	(s+1)(s+2)(s+5)	(s+1)(s+2)(s+5)
Dom, poles	$-0.939 \pm j2.151$	$-3 \pm j6.874$	$-2.437 \pm j5.583$	$-1.869 \pm j4.282$
K	23.72	51.25	35.34	20.76
ζ	0.4	0.4	0.4	0.4
ω_n	2.347	7.5	6.091	4.673
%OS	25.38	25.38	25.38	25.38
T_s	4.26	1.33	1.64	2.14
T_p	1.46	0.46	0.56	0.733
K_p	2.372	10.25	10.6	8.304
$e(\infty)$	0.297	0.089	0.086	0.107
Third pole	-6.123	None	-3.127	-4.262
Zero	None	None	-3	-4
Comments	Second-order	Pure	Second-order	Second-order
92	approx. OK	second-order	approx. OK	approx. OK

Exemplo 9.3

Projeto de Compensador Derivativo Ideal

PROBLEMA: Dado o sistema da Figura 9.17, projete um compensador derivativo ideal para resultar em 16 % de ultrapassagem, com uma redução de três vezes no tempo de acomodação.

FIGURA 9.17 Sistema de controle com realimentação para o Exemplo 9.3.

$$T_s = \frac{4}{\zeta \omega_n} = \frac{4}{1.205} = 3.320$$

$$\sigma = \frac{4}{T_s} = \frac{4}{1.107} = 3.613$$

$$\omega_d = 3.613 \tan(180^\circ - 120.26^\circ) = 6.193$$

$$T(s) = \frac{KG(s)}{1 + KG(s)H(s)}$$

$$\angle KG(s)H(s) = (2k+1)180^{\circ}$$

$$\theta = \sum_{i=1}^{m} \text{zero angles} - \sum_{j=1}^{m} \text{pole angles}$$

$$= \sum_{i=1}^{m} \angle(s + z_i) - \sum_{j=1}^{n} \angle(s + p_j)$$

$$\frac{6.193}{3.613 - \sigma} = \tan(180^\circ - 95.6^\circ)$$

$$G_c(s) = K_2 s + K_1 = K_2 \left(s + \frac{K_1}{K_2} \right)$$

FIGURE 9.23 PD controller

	Uncompensated	Simulation	Compensated	Simulation
Plant and compensator	$\frac{K}{s(s+4)(s+6)}$		$\frac{K(s+3.006)}{s(s+4)(s+6)}$	
Dominant poles	$-1.205 \pm j2.064$		$-3.613 \pm j6.193$	
K	43.35		47.45	
ζ	0.504		0.504	
ω_n	2.39		7.17	
%OS	16	14.8	16	11.8
T_s	3.320	3.6	1.107	1.2
T_p	1.522	1.7	0.507	0.5
K_{ν}	1.806		5.94	
$e(\infty)$	0.554		0.168	
Third pole	-7.591		-2.775	
Zero	None		-3.006	
Comments	Second-order approx. OK		Pole-zero not canceling	

Compensação de Avanço de Fase

$$\theta_2 - \theta_1 - \theta_3 - \theta_4 + \theta_5 = (2k+1)180^\circ$$

 $(\theta_2 - \theta_1) = \theta_c$

Exemplo 9.4

Projeto de Compensador de Avanço de Fase

PROBLEMA: Projete três compensadores de avanço de fase para o sistema da Figura 9.17 que irão reduzir o tempo de acomodação por um fator de 2 enquanto mantém 30 % de ultrapassagem. Compare as características do sistema entre os três projetos.

$$\frac{5.252}{p_c - 2.014} = \tan 7.31^\circ \qquad p_c = 42.96$$

X = Closed-loop pole

X = Open-loop pole

	Uncompensated	Compensation a	Compensation b	Compensation c
	K	K(s+5)	K(s+4)	K(s+2)
Plant and compensator	s(s+4)(s+6)	s(s+4)(s+6)(s+42.96)	s(s+4)(s+6)(s+20.09)	s(s+4)(s+6)(s+8.971)
Dominant poles	$-1.007 \pm j2.627$	$-2.014 \pm j5.252$	$-2.014 \pm j5.252$	$-2.014 \pm j5.252$
K	63.21	1423	698.1	345.6
ζ	0.358	0.358	0.358	0.358
ω_n	2.813	5.625	5.625	5.625
%OS*	30 (28)	30 (30.7)	30 (28.2)	30 (14.5)
T_s^*	3.972 (4)	1.986(2)	1.986 (2)	1.986 (1.7)
T_p^{*}	1.196 (1.3)	0.598 (0.6)	0.598 (0.6)	0.598 (0.7)
K_{ν}	2.634	6.9	5.791	3.21
$e(\infty)$	0.380	0.145	0.173	0.312
Other poles	-7.986	-43.8, -5.134	-22.06	-13.3, -1.642
Zero	None	-5	None	-2
Comments	Second-order approx. OK	Second-order approx. OK	Second-order approx. OK	No pole-zero cancellation
		<u> </u>		

Exercício 9.2

PROBLEMA: Um sistema com realimentação unitária com a função de transferência à frente

$$G(s) = \frac{K}{s(s+7)}$$

está operando com uma resposta ao degrau em malha fechada que tem 15 % de ultrapassagem. Faça o seguinte:

- Calcule o tempo de acomodação.
- Projete um compensador de avanço de fase para reduzir o tempo de acomodação por um fator de três. Escolha o zero do compensador em −10.

RESPOSTAS:

- **a.** $T_s = 1,143 \text{ s}$
- **b.** $G_{\text{avanço}}(s) = \frac{s+10}{s+25,52}$ K = 476,3

A solução completa está disponível no GEN-IO, Ambiente de Aprendizagem do Grupo GEN.