

Design and Performance of the Dawning Cluster File System

Jin Xiong (xj@ncic.ac.cn)

National Research Center for Intelligent Computing Systems
Institute of Computing Technology
Chinese Academy of Sciences

December 3, 2003

Outline

- Motivation & Background
- Design Issues
- Performance Evaluation
- Future Work
- **p** Source

1. Motivation & Background

Why need cluster file systems?

- D Linux Clusters
 - n High performance computing and information services
- Clustered applications impose new requirements on the file system
 - n Shared global file system with single file system image
 - n High parallel I/O bandwidth
 - n Intensive concurrent accesses from a large number of nodes

Key Issues

Cluster file system is aimed at provide global, shared, uniform, high-performance and scalable file service for applications on clusters.

- Single file system image
 - n Global namespace, shared among nodes, uniform access method
- P High performance
 - n High parallel I/O bandwidth
 - High metadata performance, include file/directory creation, removal, lookup, etc
- p Scalability
 - n Very large number of nodes
 - Note: Not
- Reliability and faulty tolerance
- Manageability

Related Work

- Academic research systems
 - n xFS (UCB)
 - n PVFS (Clemson University)
 - Open GFS (University of Minnesota)
- Industrial products or research systems
 - n Frangipani (DEC)
 - n GPFS (IBM)
 - n CXFS (SGI)
 - n Lustre (CFS Inc.)

Background

NCIC is a research center that aims at developing highperformance computers

http://www.ncic.ac.cn/ (Chinese)

Supported by "863" High-Tech Program of China

Dawning-1 (SMP, 1993)

Dawning 1000 (MPP, 1995)

Dawning 2000-I (Cluster, 1998)

Dawning 2000-II (Cluster, 1999)

Dawning 3000 (Cluster, 2000)

Dawning 4000-L (Cluster, 2003)

Dawning 4000-A (Cluster, 2004)

COSMOS

- COSMOS (1996-2000) (AIX)
 - n A file-server based cluster file system for Dawning 2000 & 3000
 - n Scalable architecture
 - § Separate metadata handling from file data handling
 - § Multiple file servers and multiple metadata servers, file data striping
 - n Cooperative client-side cache, UNIX semantics, too complicated
- What DCFS improves
 - n Metadata distribution policy
 - n Striping policy
 - n Communication mechanism
 - n Caching policy
 - n Management support

2. Design Issues

Overview

- **DCFS (2001-2002)**
 - n A file-server based cluster file system for Linux clusters, especially for Dawning 4000-L
- **p** Features
 - n Shared global file system with single file system image
 - n Standard interface: OS system calls and system commands
 - n Scalable architecture
 - n High performance
 - n Flexible communication mechanism
 - n Easy management

Client-side Implementation

Metadata Management

- Supporting multiple DCFS file systems
- p Each DCFS file system
 - n A super-manager & a set of *MGR*s,
 - n The super-mgr maintains the root directory
 - n Each other MGR maintains one or more subtrees of the root directory
 - n Retains parent –child relationships of objects
- Problems
 - n Workload imbalance
 - n Storage utilization imbalance

Storage Server Implementation

- Server-side Caching
 - n IOSes cache file data
- Multithreaded storage servers
 - Disk accesses and network transfer can be processed simultaneously
- Files are striped
 - n RAID 0
 - n Striping info. is stored in each file's inode
 - § Start disk
 - § Disks that form the stripe group

Communication Sublayer

A logical communication library

- Provides communication interface between DCFS components
- On top of physical communication protocols:
 - n Either stream type protocols(TCP, UDP) or message-passing type protocols(BCL, VIA, ...)
- Flexible communication mechanism

3. Performance Evaluation

Targets

- Peek performance: Peak(N)
 - n The highest performance with N servers
- p Server speedup(N)
 - n The performance enhancement with the increase of the number of servers
 - n Speedup(N) = Peak(N)/ Peak(1)
- P Efficiency: E(N)
 - n Disk I/O utilization, when disk I/O is performance bottleneck
 - $n E(N) = BW(N) / (BW_{disk} \cdot N)$
 - n Protocol cost: C(N) = 1 E(N)
- Sustainability
 - n The maximum number of clients that can be supported simultaneously by N servers

Test Platform

- 32 compute nodes of Dawning 4000-L
 - n 22 client nodes,
 - n 1 MGR, 1/2/4/8 IOSes for bandwidth tests
 - n 4 IOSes, 1/2/4/8 MGRs for metadata performance tests
- Node: Dawning Tiankuo R220XP server
 - n 2 2.4GHz Intel Xeon Processors, 2GB memory
 - n Redhat 7.2, Linux-2.4.18-3smp
- Network
 - n Gigabit Ethernet: 106.2MB/sec, 97.1 µsec latency, by netperf with 16KB message size
- **Disks**
 - n Seagate Ultra320 SCSI disk:
 - § 8MB data buffer, 2.99 msec average latency
 - § 60MB/sec by iozone on EXT2 (for multiple read threads, 33MB/sec)
- **p** Benchmarks
 - n Bandwidth: iozone, http://www.iozone.org/
 - n Metadata: thput, a self-written program

3.1 Aggregate I/O Bandwidth

Aggregate I/O Bandwidth for Small Files(1)

- All read/write data are in storage servers' cache
- Total read/write size = 256MB X number of storage servers

Aggregate I/O Bandwidth for Small Files(2)

Write

Aggregate I/O Bandwidth for Small Files(3)

Num. of IOSes	Total RW Size (MB)	Read			Write		
		Num. of Clients	Peak Bandwidth (MB/s)	Speedup	Num. of Clients	Peak Bandwidth (MB/s)	Speedup
1	256	16	90.054	1	16	103.594	1
2	512	20	141.378	1.57	22	191.198	1.84
4	1024	20	305.922	3.40?	22	206.504	1.99?
8	2048	22	384.295	4.27?	22	319.717	3.09?

For 4 and 8 IOSes, these tests did not reach the peak bandwidth, limited by the total number of clients available (22).

Aggregate I/O Bandwidth for Large Files(1)

- Total read/write size is much larger than the total cache size
- Total read/write size = 6GB X number of storage servers

Aggregate I/O Bandwidth for Large Files(2)

Write

Aggregate I/O Bandwidth for Large Files(3)

Num. of IOSes	Total RW Size (MB)	Read			Write		
		Peak Bandwidth (MB/s)	Speedup	Disk I/O Utilization	Peak Bandwidth (MB/s)	Speedup	Disk I/O Utilization
1	6144	31.192	1	89.28%	59.578	1	94.13%
2	12288	60.790	1.95	86.98%	111.725	1.88	88.26%
4	24576	100.347	3.22	71.81%	198.840	3.34	78.54%
8	49152	178.361	5.72	64.82%	292.576	4.91	57.78%

3.2 Metadata Performance

Aggregate File Creation Rate

- Each process created 5000 files, so total number of files = 5000 X number of clients
- File size is 0, only MGRs involved

Aggregate File Removal Rate

Aggregate File Creation & Removal Rate

		File Creation	1	File Removal			
Num. of MGRs	Num. of Clients	Peak Creation Rate (Files/s)	Speedup	Num. of Clients	Peak Removal Rate (Files/s)	Speedup	
1	10	545.07	1	10	3903.97	1	
2	18	1065.37	1.95	20	7455.02	1.91	
4	22	1898.54	3.84 ?	22	10523.67	3.62?	
8	22	2765.00	?		?	?	

p For 4 and 8 MGRs, these tests did not reach the peak rates, limited by the total number of clients available (22).

3.3 DCFS vs. PVFS

Aggregate I/O Bandwidth for Small Files

- DCFS: 22 client nodes, 1 MGR, 8 IOSes
- **PVFS: 22 client nodes, 1 MGR, 8 IODs**

- Aggregate read bandwidth: DCFS underperformed PVFS
- Aggregate write bandwidth: DCFS outperformed PVFS

Aggregate I/O Bandwidth for Large Files

- Aggregate read bandwidth: DCFS outperformed PVFS
- Aggregate write bandwidth: DCFS outperformed PVFS

Metadata Performance – File Creation Rate

- DCFS: 22 client nodes, 1 MGR, 4 IOSes
- PVFS: 22 client nodes, 1 MGR, 4 IODs

Metadata Performance – File Removal Rate

- Aggregate creation rate: DCFS outperformed PVFS
- Aggregate removal rate: DCFS outperformed PVFS

4. Future Work

Future Work

- Performance analysis on larger scale platforms and real applications
- Reliability and fault recovery
- Metadata distribution policies that can eliminate imbalance
- Client-side caching
- p DCFS2
 - n In progress

2002 12 02

Source

- DCFS source code is available. Please contact us for the source code.
- DCFS Web Site

http://www.ncic.ac.cn/dcfs/

Contact

dcfs@ncic.ac.cn

xj@ncic.ac.cn

The End

Thank you!