

IES Augusto González de Linares.

Tarea 8:

Introducción a los sistemas en red.

Direccionamiento IP.

SISTEMAS INFORMÁTICOS.

(DAM_SI)

Ciclo formativo

Desarrollo De Aplicaciones Multiplataforma (DAM)

CURSO:

2021/2022

Esquema para los ejercicios 1 y 2.

Ejercicio 1.

En base al siguiente esquema de red, reconoce los dispositivos 1 y 2, y rellena la tabla con los datos pedidos.

	Nombre	Nivel OSI	Función del dispositivo
Dispositivo 1	Router	Nivel 3 o nivel de red	Se encargan de conectar redes diferentes. Su principal uso está en la conexión a Internet, ya que permite que redes de área local puedan conectarse a Internet.
Dispositivo 2	Switch	Nivel 2 o nivel de enlace de datos	Son un dispositivo que permiten conectar varios ordenadores, pero de forma inteligente, ya que sólo se envía la información al ordenador que la necesita
Dispositivo 2	Hub	Nivel 1 o nivel físico	Son un dispositivo que permiten conectar varios ordenadores, pero lo realiza de forma no inteligente, pues envía la información a todos los ordenadores, sin regular el tráfico.

Con respecto al anterior esquema, contestar:

¿Qué topología de conexión tenemos en el esquema si tomamos como referencia el Dispositivo 2?

Topología en estrella, ya que conecta todos los ordenadores a un nodo central, llamado equipo de interconexión, que puede ser: un router, un conmutador o switch, o, un concentrador o hub.

¿Qué tipo de cable usarías para conectar los dispositivos y los ordenadores con el Dispositivo 2?

Cable de par trenzado en configuración directa.

¿Qué conectores usarías y con qué estándar de conexión?

2 conectores Rj45 machos y el estándar ANSI/EIA/TIA 568B.

Ejercicio 3

Rellenar si se necesita cable directo o cruzado (desde el punto de vista teórico) para unir los 2 elementos indicados en cada fila:

2 dispositivos a unir con cable.

¿Cable directo o cruzado?

1 PC y 1 switch	Directo
1 PC y 1 router	Cruzado
2 PC	Cruzado
1 switch y 1 router	Directo
2 switch	Cruzado

¿Cuándo se utiliza un cable cruzado?, entre dispositivos del mismo nivel, o cuando hay 2 niveles de diferencia, por ejemplo, si se conectan dos ordenadores directamente, la conexión se realiza con un cable cruzado entre ambas tarjetas de red (dos dispositivos de nivel 1). O si se conecta un ordenador (nivel 1) a un router (nivel 3) directamente, por habernos saltado un nivel.

Averiguar la dirección física (dirección MAC) y la dirección lógica (dirección IP) de tu tarjeta de red, en una máquina windows y en una maquina Linux. Los comandos a utilizar son:

En Linux: ifconfig

En Windows: ipconfig /all

Ejecútalos en tu máquina anfitrión y en una virtual del sistema operativo contrario. Copiar y pegar ambas capturas, y rellenar:

		Dirección física	Dirección IP
Máquina Windows	Ethernet	00-E0-4C-74-4D-81	192.168.1.134
	Inalámbrica	48-51-B7-F0-25-4E	192.168.1.193
Máquina Linux	Ethernet (eth0)	08:00:27:ce:2f:9a	192.168.1.178
	Inalámbrica (wlan)		

Ejecutamos en Windows >> ipconfig /all

Red ethernet.

Red wifi.

Ejecutamos el siguiente comando en Linux (máquina virtual) >> ifconfig

```
enp0s3: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.178 netmask 255.255.255.0 broadcast 192.168.1.255
inet6 fe80::6189:6b23:cd48:e8a3 prefixlen 64 scopeid 0x20<link>
ether 08:00:27:ce:2f:9a txqueuelen 1000 (Ethernet)
RX packets 103 bytes 21125 (21.1 KB)
RX errors 0 dropped 0 overruns 0 frame 0
TX packets 137 bytes 14857 (14.8 KB)
TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Al ser máquina virtual, solo aparece la red ethernet.

Observaciones:

- Buscar en las capturas solo conexiones ethernet e inalámbricas. Aparecen conexiones distintas como lo (que es el loopback de la red)
- Que aparezcan tarjeta ethernet y/o inalámbrica en tu sistema anfitrión, dependerá de las conexiones que tengas en tu PC.
- En la máquina virtual tendrás una tarjeta ethernet que incorpora el propio VirtualBox.

Dividir la dirección de red 200.200.10.0 en las siguientes subredes:

- 3 redes de 50 ordenadores.
- 4 redes de 12 ordenadores.

Para cada subred, especificar:

- Dirección de red y dirección de broadcast
- Dirección del primer equipo y último equipo
- Máscara de red
- Especificar, ¿cuántas direcciones se pierden en total en la red?
- Para las redes de 50 ordenadores usamos 64 direcciones, a las cuales les restamos 2 de la red y el broadcast quedando 62 direcciones.

62-50= 12. >> Se pierden 12 en cada red de 50 ordenadores. (12*3=36)

- Para las redes de 12 ordenadores usamos 16 direcciones, a las cuales les restamos 2 de la red y el broadcast quedando 14 direcciones.

14-12= 2. >> Se pierden 2 en cada red de 12 ordenadores. (2*4=8).

En total se pierden 44 direcciones de red.

- Para las redes de 50 ordenadores necesitamos:

2^6=64. 6 bits de host

11111111.111111111.11111111.11<mark>000000</mark>

Cálculo de mascara de red= 256-64= 192 para el ultimo byte en decimal.

- Para las redes de 12 ordenadores necesitamos:

2^4=16. 4 bits de host

<mark>11111111.111111111.111111111.11110000</mark>

Cálculo de mascara de red= 256-16= 240 para el ultimo byte en decimal.

Dirección subred	Broadcast	Primer equipo	Último equipo	Máscara 26 bits
200.200.10.0	200.200.10.63	200.200.10.1	200.200.10.62	255.255.255.192
200.200.10.64	200.200.10.127	200.200.10.65	200.200.10.126	255.255.255.192
200.200.10.128	200.200.10.191	200.200.10.129	200.200.10.190	255.255.255.192
200.200.10.192	200.200.10.207	200.200.10.193	200.200.10.206	255.255.255.240
200.200.10.208	200.200.10.223	200.200.10.209	200.200.10.222	255.255.255.240
200.200.10.224	200.200.10.239	200.200.10.225	200.200.10.238	255.255.255.240
200.200.10.240	200.200.10.255	200.200.10.241	200.200.10.254	255.255.255.240

Queremos crear varias subredes de 2000 PC.

Partiendo de la red dirección de red 150.200.0.0, responder:

¿A qué clase pertenece esta red?

Clase B (entre 128-191).

¿Cuál es el máximo número de subredes con 2000 PC que se pueden crear?

Como queremos redes de 2000 pc es necesario usar 11 bits de host.

2^11= 2048.

De las 16 cifras originales de la red clase B, las 2 primeras son obligatorias (10), por lo que quedan 14 a las cuales les sumaremos 5 que anteriormente eran de host. Finalmente quedan 19 bits para redes.

2¹⁹= 524.288. (Se puede crear 524.288 subredes).

¿Cuántos PC exactamente puede haber en cada subred?

2048-2= 2046 pcs.

Como son muchas subredes, especificar de las 4 primeras subredes:

- Dirección de red y broadcast
- Dirección de primer y último equipo
- Máscara de red

Mascara de red.

111111111111111111111000.0000000 >>> (255.255.248.0)

 $2^3=8 > 256-8=248$.

Salto de red.

256-248=8.

Dirección subred	Broadcast	Primer equipo	Último equipo	Máscara 26 bits
150.200.0.0/21	150.200.7.255	150.200.0.1	150.200.7.254	255.255.248.0
150.200.8.0/21	150.200.15.255	150.200.8.1	150.200.15.254	255.255.248.0
150.200.16.0/21	150.200.23.255	150.200.16.1	150.200.23.254	255.255.248.0
150.200.24.0/21	150.200.31.255	150.200.24.1	150.200.31.254	255.255.248.0