Indexing, Lattice Parameter Determination

Some references

A.R. West, *Solid State Chemistry and Its Applications*, (John Wiley & Sons, New York, 1984).

M.F.C. Ladd, R.A. Palmer, *Structure Determination by X-ray Crystallography*, 3rd ed., (Plenum Press, New York, 1993).

Presented by
Hank Eng
4480 Chem Annex
heng AT ucdavis DOT edu

Bragg's Law

$$xy = yz = d \sin \theta$$

$$xyz = 2d \sin \theta$$

$$xyz = n\lambda$$

$$n\lambda = 2d \sin \theta$$

Bragg's Law $n\lambda = 2d \sin \theta$

Cubic
$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Tetragonal
$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

Orthorhombic
$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$$

Hexagonal
$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

Monoclinic
$$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{2hl \cos \beta}{ac} \right)$$

Triclinic
$$\frac{1}{d^2} = \frac{1}{V^2} \begin{pmatrix} h^2b^2c^2\sin^2\alpha + k^2a^2c^2\sin^2\beta + l^2a^2b^2\sin^2\gamma \\ + 2hkabc^2(\cos\alpha\cos\beta - \cos\gamma) \\ + 2kla^2bc(\cos\beta\cos\gamma - \cos\alpha) \\ + 2hlab^2c(\cos\alpha\cos\gamma - \cos\beta) \end{pmatrix}$$

$$V = abc(1 - \cos^2 \alpha - \cos^2 \beta - \cos^2 \gamma + 2\cos \alpha \cos \beta \cos \gamma)^{1/2}$$

Primitive cubic example

$$n\lambda = 2d \sin \theta$$

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

		а	3.905	angstroms				
	la	mbda	1.5406	angstroms				
h	k		h2+k2+l2	1/d2	d	sin(Theta)	Theta (rad)	2Theta (deg)
1	0	0	1	0.0656	3.9050	0.1973	0.1986	22.7536
1	1	0	2	0.1312	2.7613	0.2790	0.2827	32.3972
1	1	1	3	0.1967	2.2546	0.3417	0.3487	39.9566
2	0	0	4	0.2623	1.9525	0.3945	0.4055	46.4721
2	1	0	5	0.3279	1.7464	0.4411	0.4568	52.3465
2	1	1	6	0.3935	1.5942	0.4832	0.5043	57.7875
2	2	0	8	0.5246	1.3806	0.5579	0.5919	67.8263
3	0	0	9	0.5902	1.3017	0.5918	0.6333	72.5669
2	2	1	9	0.5902	1.3017	0.5918	0.6333	72.5669
3	1	0	10	0.6558	1.2349	0.6238	0.6736	77.1870
3	1	1	11	0.7214	1.1774	0.6542	0.7132	81.7237
2	2	2	12	0.7869	1.1273	0.6833	0.7523	86.2086
3	2	0	13	0.8525	1.0831	0.7112	0.7912	90.6704
3	2	1	14	0.9181	1.0437	0.7381	0.8302	95.1362

Limiting conditions/Systematic absences

Type Limiting conditions

P none

$$C h + k = 2n$$

I
$$h+k+l=2n$$

F
$$h + k = 2n, k + l = 2n, and h + l = 2n$$

The limiting conditions are the conditions where reflections *can* occur. Systematic absences are the conditions where reflections *cannot* occur.

The limiting conditions exist because of the structure factor, \mathbf{F}_{hkl} , for the given unit cell type.

Body-centered cubic example

$$n\lambda = 2d \sin \theta$$

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Going the other way: Indexing

1. Calculate the d-spacings and convert to $1/d^2$ $n\lambda = 2d \sin \theta$

2Theta (deg)

27.4344 30.1790 36.0710 39.1885 41.2390 44.0389

56.6232

62.7525

64.0439

68.9969

Before you index, are you sure these peak positions are correct? There are peak finding programs (e.g., Xfit) that can help you determine if a broad peak is composed of two or more peaks.

Indexing

2. Find any common multiples and divide by that common divisor

2Theta (deg)	d	1/d2	
27.4344	3.2484	0.0948	←
30.1790	2.9590	0.1142	
36.0710	2.4880	0.1615	
39.1885	2.2970	0.1895	←
41.2390	2.1874	0.2090	
44.0389	2.0546	0.2369	
56.6232	1.6242	0.3791	←
62.7525	1.4795	0.4569	
64.0439	1.4527	0.4738	←
68.9969	1.3600	0.5406	

Indexing

3. Try to find other common multiples or similar differences between numbers

2Theta (deg)	d	1/d2	/ 0.0948		
27.4344	3.2484	0.0948	1.0000		
30.1790	2.9590	0.1142	1.2052	•	
36.0710	2.4880	0.1615	1.7047	←	multiply
39.1885	2.2970	0.1895	2.0001		by 2?
41.2390	2.1874	0.2090	2.2055	◀——	by 2:
44.0389	2.0546	0.2369	2.4998	←	
56.6232	1.6242	0.3791	4.0001		
62.7525	1.4795	0.4569	4.8209		
64.0439	1.4527	0.4738	5.0001		
68.9969	1.3600	0.5406	5.7049	4	

Indexing

4. Try to find corresponding hkl's.

2Theta (deg)	d	1/d2		- common
27.4344	3.2484	0.0948	2.0000	
30.1790	2.9590	0.1142	2.4104	0.4104
36.0710	2.4880	0.1615	3.4094	1.4094
39.1885	2.2970	0.1895	4.0001	
41.2390	2.1874	0.2090	4.4110	0.4110
44.0389	2.0546	0.2369	4.9996	
56.6232	1.6242	0.3791	8.0002	
62.7525	1.4795	0.4569	9.6418	1.6418
64.0439	1.4527	0.4738	10.0002	
68.9969	1.3600	0.5406	11.4098	1.4098

Lattice parameters

5. Estimate the lattice parameters

2Theta (deg)	d	1/d2		- common	hkl
27.4344	3.2484	0.0948	2.0000		110
30.1790	2.9590	0.1142	2.4104	0.4104	111
36.0710	2.4880	0.1615	3.4094	1.4094	?
39.1885	2.2970	0.1895	4.0001		200
41.2390	2.1874	0.2090	4.4110	0.4110	201
44.0389	2.0546	0.2369	4.9996		210
56.6232	1.6242	0.3791	8.0002		220
62.7525	1.4795	0.4569	9.6418	1.6418	222
64.0439	1.4527	0.4738	10.0002		310
68.9969	1.3600	0.5406	11.4098	1.4098	?

It looks tetragonal, so we'll use
$$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

a=b=4.594 Å and $c=\sim7.17$ Å, but 2 peaks are not indexed

Indexing and lattice parameters

Try to re-index the peaks.

d	1/d2		- common	hkl
3.2484	0.0948	2.0000		110
2.9590	0.1142	2.4104	2.4104	001
2.4880	0.1615	3.4094	2.4094	101
2.2970	0.1895	4.0001		200
2.1874	0.2090	4.4110	2.4110	111
2.0546	0.2369	4.9996		210
1.6242	0.3791	8.0002		220
1.4795	0.4569	9.6418	9.6418	002
1.4527	0.4738	10.0002		310
1.3600	0.5406	11.4098	2.4098	301
	3.2484 2.9590 2.4880 2.2970 2.1874 2.0546 1.6242 1.4795 1.4527	3.24840.09482.95900.11422.48800.16152.29700.18952.18740.20902.05460.23691.62420.37911.47950.45691.45270.4738	3.24840.09482.00002.95900.11422.41042.48800.16153.40942.29700.18954.00012.18740.20904.41102.05460.23694.99961.62420.37918.00021.47950.45699.64181.45270.473810.0002	3.2484 0.0948 2.0000 2.9590 0.1142 2.4104 2.4104 2.4880 0.1615 3.4094 2.4094 2.2970 0.1895 4.0001 2.1874 0.2090 4.4110 2.4110 2.0546 0.2369 4.9996 1.6242 0.3791 8.0002 1.4795 0.4569 9.6418 9.6418 1.4527 0.4738 10.0002

a=b=4.594 Å and c=2.959 Å, and all the peaks are indexed.

The sample is pure, and appears to have a primitive unit cell. It was the rutile phase $(P4_2/mnm)$ of TiO_2 .

There must be an easier way to index

0. Use a program

Free programs available at www.ccp14.ac.uk.

Programs

Crysfire program

- DOS program
- creates and runs (!) setup files for many indexing programs: DICVOL, ITO12, TREOR, etc.
- These programs typically give you a figure of merit, M or F, of their results.
- so what can go wrong?

Zero point error and impurities: the bane of students who are indexing

	DicVol	TREOR
Ideal	Hex $(a = 5.066\text{Å}, c = 5.404\text{Å})$	Hex $(a = 5.066\text{Å}, c = 5.404\text{Å})$
Random errors	Mono (a = 5.062Å, b = 5.4031Å, c = 5.054Å, β = 119.8°)	Orth (a = 8.7799Å, b = 5.3994Å, c = 5.0547 Å)
0.1° error	Mono (a = 5.0914Å, b = 5.4108Å, c = 5.0791Å, β = 119.56°)	Hex $(a = 8.786\text{Å}, c = 5.416\text{Å})$
0.2° error	Mono (a = 5.0926Å, b = 5.0769Å, c = 5. 4214Å, β = 119.76°)	Mono (a = 5.1098Å, b = 5.4249Å, c = 5.0918Å, β = 119.56°)
2 impurity peaks	Mono (a = 8.789Å, b = 5.403Å, c = 2.697Å, β = 93.11°)	Hex $(a = 5.066\text{Å}, c = 10.807\text{Å})$