Единый государственный экзамен по МАТЕМАТИКЕ Профильный уровень

Инструкция по выполнению работы

Экзаменационная работа состоит из двух частей, включающих в себя 18 заданий. Часть 1 содержит 11 заданий с кратким ответом базового и повышенного уровней сложности. Часть 2 содержит 7 заданий с развёрнутым ответом повышенного и высокого уровней сложности.

На выполнение экзаменационной работы по математике отводится 3 часа 55 минут (235 минут).

Ответы к заданиям 1–11 записываются по приведённому ниже <u>образцу</u> в виде целого числа или конечной десятичной дроби. Числа запишите в поля ответов в тексте работы, а затем перенесите их в бланк ответов № 1.

KNM

Ответ: **-0,8**

]-0,8

Бланк

При выполнении заданий 12–18 требуется записать полное решение и ответ в бланке ответов № 2.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, что ответ на каждое задание в бланках ответов №1 и №2 записан под правильным номером.

Желаем успеха!

Справочные материалы

$$\sin^{2}\alpha + \cos^{2}\alpha = 1$$

$$\sin 2\alpha = 2\sin\alpha \cdot \cos\alpha$$

$$\cos 2\alpha = \cos^{2}\alpha - \sin^{2}\alpha$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

Ответом к заданиям 1–11 является целое число или конечная десятичная дробь. Запишите число в поле ответа в тексте работы, затем перенесите его в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждую цифру, знак «минус» и запятую пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерений писать не нужно.

Часть 1

1 Найдите корень уравнения

 $(x+9)^2=36x.$

Ответ: _______.

2 Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали идти. Найдите вероятность того, что часовая стрелка остановилась, достигнув отметки 7, но не дойдя до отметки 1.

Ответ:

3 В треугольнике *ABC DE* — средняя линия. Площадь треугольника *CDE* равна 24. Найдите площадь треугольника *ABC*.

Ответ: _____

4 Найдите значение выражения

 $\frac{\sqrt{1,2}\cdot\sqrt{1,4}}{\sqrt{0.42}}.$

Ответ:

5 Площадь поверхности шара равна 12. Найдите площадь большого круга шара.

Ответ:

На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Ответ:

7 На рисунке изображена схема моста. Вертикальные *пилоны* связаны провисающей *цепью*. Тросы, которые свисают с цепи и поддерживают *полотно* моста, называются *вантами*.

Введём систему координат:

ось Oy направим вертикально вверх вдоль одного из пилонов, а ось Ox направим вдоль полотна моста, как показано на рисунке. В этой системе координат линия, по которой провисает цепь моста, задаётся формулой

$$y = 0.0043x^2 - 0.74x + 35,$$

где x и y измеряются в метрах. Найдите длину ванты, расположенной в 70 метрах от пилона. Ответ дайте в метрах.

Ответ:

8 Первые 120 км автомобиль ехал со скоростью 60 км/ч, следующие 200 км – со скоростью 100 км/ч, а затем 160 км – со скоростью 120 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

Ответ:

9 На рисунке изображены графики функций $f(x) = \frac{k}{x}$ и g(x) = ax + b, которые пересекаются в точках A и B. Найдите абсциссу точки B.

Ответ:

10 На фабрике керамической посуды 20% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 55% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых.

Ответ: _______.

11 Найдите наибольшее значение функции

$$y = \ln(x+6)^3 - 3x$$
 на отрезке [-5,5; 0].

Ответ:

He забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы.

Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Для записи решений и ответов на задания 12—18 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер выполняемого задания (12, 13 и т. д.), а затем полное обоснованное решение и ответ. Ответы записывайте чётко и разборчиво.

а) Решите уравнение

$$tg^2x + 5 tg x + 6 = 0.$$

б) Найдите все корни этого уравнения, принадлежащие отрезку $\left[-2\pi;-\frac{\pi}{2}\right]$.

- В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания AB равна 3, а боковое ребро AA_1 равно $\sqrt{2}$. На рёбрах AB, A_1B_1 и B_1C_1 отмечены точки M, N и K соответственно, причём $AM = B_1N = C_1K = 1$.
 - а) Пусть L точка пересечения плоскости MNK с ребром AC. Докажите, что MNKL квадрат.
 - б) Найдите площадь сечения призмы плоскостью МNК.
- 14 Решите неравенство

$$(9^x - 2 \cdot 3^x)^2 - 62 \cdot (9^x - 2 \cdot 3^x) - 63 \ge 0.$$

- В июле 2020 года планируется взять кредит в банке на сумму 300 000 рублей. Условия его возврата таковы:
 - каждый январь долг увеличивается на r% по сравнению с концом предыдущего года;
 - с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.

Найдите r, если известно, что кредит будет полностью погашен за два года, причём в первый год будет выплачено 160 000 рублей, а во второй год — 240 000 рублей.

- В прямоугольную трапецию ABCD с прямым углом при вершине A и острым углом при вершине D вписана окружность с центром O. Прямая DO пересекает сторону AB в точке M, а прямая CO пересекает сторону AD в точке K.
 - а) Докажите, что $\angle AMO = \angle DKO$.
 - б) Найдите площадь треугольника AOM, если BC = 10 и AD = 15.
- **17** Найдите все значения *a*, при каждом из которых система уравнений

$$\begin{cases} \frac{xy^2 - xy - 4y + 4}{\sqrt{x+2}} = 0\\ y = x + a \end{cases}$$

имеет ровно два различных решения.

- В каждой клетке квадратной таблицы 6×6 стоит натуральное число, меньшее 7. Вася в каждом столбце находит наименьшее число и складывает шесть найденных чисел. Петя в каждой строке находит наименьшее число и складывает шесть найденных чисел.
 - а) Может ли сумма у Пети получиться в два раза больше, чем сумма у Васи?
 - б) Может ли сумма у Пети получиться в шесть раз больше, чем сумма у Васи?
 - в) В какое наибольшее число раз сумма у Пети может быть больше, чем сумма у Васи?

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.

О проекте «Пробный ЕГЭ каждую неделю»

Данный ким составлен командой всероссийского волонтёрского проекта «ЕГЭ 100 баллов» https://vk.com/ege100ballov и безвозмездно распространяется для любых некоммерческих образовательных целей.

Нашли ошибку в варианте?

Напишите нам, пожалуйста, и мы обязательно её исправим! Для замечаний и пожеланий: https://vk.com/topic-10175642 47937899 (также доступны другие варианты для скачивания)

СОСТАВИТЕЛЬ ВАРИАНТА:

ФИО: Евгений Пифагор		
Предмет:	Математика	
Стаж: 10 лет готовлю к ЕГЭ и ОГЭ		
Регалии:	Набрал 98 баллов на ЕГЭ по математике (профиль) 55 учеников набрали 90-100 баллов на ЕГЭ 2021 Высшее образование (ТГУ, 2009-2014) Победитель трёх олимпиад по высшей математике	
Аккаунт и группа ВК:	https://vk.com/eugene10 https://vk.com/shkolapifagora	
Ютуб и инстаграм:	https://www.youtube.com/c/pifagor1 https://www.instagram.com/shkola_pifagora/	

15

Система оценивания экзаменационной работы по математике (профильный уровень)

Каждое из заданий 1-11 считается выполненными верно, если экзаменуемый дал верный ответ в виде целого числа или конечной десятичной дроби. Верный ответ на каждое задание оценивается 1 баллом.

Номер задания	Правильный ответ	Видео решение
1	VIALUN 9 LULIUUDALLUV	
2	0,5	
3	96	
4	2	
5	3	
6	0,25	
7	4,27	
8	90	
9	-0,2	
10	0,9	
11	15	
12	a) $- \operatorname{arctg} 3 + \pi n, - \operatorname{arctg} 2 + \pi n; \ n \in \mathbb{Z}$ 6) $- \pi - \operatorname{arctg} 2; -\pi - \operatorname{arctg} 3$	
13	3,75	
14	{0} ∪ [2; +∞)	
15	20	
16	30	
17	{−3} ∪ [0; 3)	
	а) да	
18	б) нет	
	в) 31/6	

Решения и критерии оценивания выполнения заданий с развёрнутым ответом

Количество баллов, выставленных за выполнение заданий 12-18, зависит от полноты решения и правильности ответа.

Общие требования к выполнению заданий с развёрнутым ответом: решение должно быть математически грамотным, полным, все возможные случаи должны быть рассмотрены. Методы решения, формы его записи и формы записи ответа могут быть разными. За решение, в котором обоснованно получен правильный ответ, выставляется максимальное количество баллов. Правильный ответ при отсутствии текста решения оценивается в 0 баллов.

Эксперты проверяют только математическое содержание представленного решения, а особенности записи не учитывают.

При выполнении задания могут использоваться без доказательства и ссылок любые математические факты, содержащиеся в учебниках и учебных пособиях, входящих в Федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ среднего общего образования.

Содержание критерия	Баллы
Обоснованно получены верные ответы в обоих пунктах	2
Обоснованно получен верный ответ в пункте a ИЛИ получены неверные ответы из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения обоих пунктов: пункта a и пункта δ	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a , и обоснованно получен верный ответ в пункте δ	3
Получен обоснованный ответ в пункте δ ИЛИ имеется верное доказательство утверждения пункта a , и при обоснованном решении пункта δ получен неверный ответ из-за арифметической ошибки	2
Имеется верное доказательство утверждения пункта a , ИЛИ при обоснованном решении пункта δ получен неверный ответ из-за арифметической ошибки, ИЛИ	1

ИСТОЧНИКИ: FIPI (старый банк) FIPI (новый банк)

Ященко 2021 (36 вар) Ященко 2020 (36 вар)

Ященко 2019 (36 вар) Семёнов 2015 Основная волна 2020

Основная волна 2017 Основная волна 2015 Ū

ЕНИРОВОЧНЫЙ КИМ №

обоснованно получен верный ответ в пункте δ с использованием		
утверждения пункта a , при этом пункт a не выполнен		
Решение не соответствует ни одному из крите приведённых выше	оиев, 0	
Максимальный	балл 3	

Решите неравенство $(9^x - 2 \cdot 3^x)^2 - 62 \cdot (9^x)^2 - 62 \cdot (9^x)^2 + 62 \cdot (9^x)$				ИСТОЧНИКИ: Основная волна 2021 Досрочная волна (Резерв) 2017
Myers (9x-2.	3 ^x) = t	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
		a ≤	-4	
t3-e5f - e3 ≥0		L a>	9	
+ > - +				, ,
-1 63	774	3 = 1	3×≤-7	3 2 32
		× =0	8	× ≥ 2
t <-1 t ≥ 63				
_ f ≽63				
9x -2.3x <-1	9×-2.3×-	53 ≥c		
9x-2.3x+1<0				
Ayc16 3x = a				
92-20+1 50	a2 - 20 -63	. ≥0		
(a-1)2 <0	Det.			
a-1=0	7/1-7 9"	۵		
9=1				
OTBE#: 10 5 0 12	(→ ∞)			
	· · ·	A Axer		

Содержание критерия	Баллы	
Обоснованно получен верный ответ	2	
Обоснованно получен ответ, отличающийся от верного исключением / включением граничных точек ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом имеется верная последовательность всех шагов решения	1	
Решение не соответствует ни одному из критериев, перечисленных выше	0	
Максимальный балл	2	100
vk.com	/€	geluuballov

	15	В июле 2020 года планируется взять креді	цит в банке на сумму 300 000 рубл	іей.
ų		Vehicling are respected takenty		

 $\left(1+\frac{\Gamma}{100}\right)$

– каждый январь долг увеличивается на r% по сравнению с концом предыдущего года;

- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга.

Найдите r, если известно, что кредит будет полностью погашен за два года, причём в первый год будет выплачено 160 000 рублей, а во второй год – 240 000 рублей.

Содержание критерия	Баллы
Обоснованно получен верный ответ	2
Верно построена математическая модель	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Содержание критерия	Баллы
Имеется верное доказательство утверждения пункта a , и обоснованно получен верный ответ в пункте δ	3
Получен обоснованный ответ в пункте δ ИЛИ имеется верное доказательство утверждения пункта a , и при обоснованном решении пункта δ получен неверный ответ из-за арифметической ошибки	2
Имеется верное доказательство утверждения пункта a , ИЛИ при обоснованном решении пункта δ получен неверный ответ из-за арифметической ошибки, ИЛИ обоснованно получен верный ответ в пункте δ с использованием утверждения пункта a , при этом пункт a не выполнен	/e
Решение не соответствует ни одному из критериев, перечисленных выше	0

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого конечным числом точек	3
С помощью верного рассуждения получены все граничные точки искомого множества значений α	2
Верно получена хотя бы одна граничная точка искомого множества значений <i>а</i>	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

18								6×6 стоит нату ает шесть найд									чники
								ь найденных чі			I D MING	on erpone	1111102		Оспо	ов канао	лна (Резерв) 201
	б)	Мож	ет лі	і сум	мау	Пети по	олучиться	в два раза бол в шесть раз бо на у Пети може	ольше, ч	ем сумма	у Васи?						
															C 0		0
a)	4	4	4	4	4	4	4			8)	my	o Bocu	mi	v = 1	67	كرجهد	Capemi
	4	4	4	4	4	4	į	п		C	me	17ex 4	MON	- 30	: /'	noc (i	es amen
	1	1	1	1			1	proll	= 12	٥					5		, 013
	1	١	ì	i	i	ì	1										
	1	i	1	; !	1	i	;			@1	5.	7000			. 26	4	٠
	i	i	i	i	i	i	1			TOS		2	0	wy.	× 30	_	
Q.,			i.			<u></u>				Cu.	ال در	9.0	. "	اد ج	.	6	90
DOC	י ע	т1	۲ ٦	+1	+11	-1=6	•			(5)		× 1504	Lu	agge	r Ke	•	bce ruc. 190 15.e.
										91	יפ י	uone	ध				
										_	^						
										(1) (1)	Cim	م حي		Boc	e mr.	~ = (or,
										Cyn	ma	There		31			-
		0)	Æ							⇒	O	w	. 0	В	<u>31</u>	Do	
OTR	ET:	8	W	+							1	1 1	1	, ,	6	r	.7
OTBET:		81	31	•					,		6	6 6					
		יוס	6								è	66	6	66			
												6 6					
												66					
												666					
											٠	000	0	00			
										@ (•			ь			
										હ હ	cun	ري.	ww	r 120	×cu =	- +	, 70
										- '	سرور	5cue	4	< 꼴	xcu =		
										Coal		31/3	١		36	(6	
										-, -		6		>	7		
												217		>	210 42	6	
										_ 3	4				42		
										=> 4	<u>ē</u> `	wowa	-46.	wee	of.w	vLu	€.

Содержание критерия	Баллы
Верно получены все перечисленные (см. критерий на 1 балл)	4
результаты	4
Верно получены три из перечисленных (см. критерий на 1 балл)	3
результатов	3
Верно получены два из перечисленных (см. критерий на 1 балл)	2
результатов	2

Верно получен один из следующих результатов: – обоснованное решение пункта <i>a</i> ; – обоснованное решение пункта <i>б</i> ; – искомая оценка в пункте <i>в</i> ; – пример в пункте <i>в</i> , обеспечивающий точность предыдущей оценки						
Решение не соответствует ни одному из критериев, перечисленных выше	0					
Максимальный балл	4					

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минпросвещения России и Рособрнадзора от 07.11.2018 № 190/1512, зарегистрирован Минюстом России 10.12.2018 № 52952)

«82. <...> По результатам первой и второй проверок эксперты независимо друг от друга выставляют баллы за каждый ответ на задания экзаменационной работы ЕГЭ с развернутым ответом. <...>

В случае существенного расхождения в баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в баллах определено в критериях оценивания по соответствующему учебному предмету.

Эксперту, осуществляющему третью проверку, предоставляется информация о баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Существенными считаются следующие расхождения:

- 1) расхождение в баллах, выставленных двумя экспертами за выполнение любого из заданий 12–18, составляет 2 или более балла. В этом случае третий эксперт проверяет только ответ на то задание, который был оценен двумя экспертами со столь существенным расхождением;
- 2) расхождения экспертов при оценивании ответов на хотя бы два из заданий 12-18. В этом случае третий эксперт проверяет ответы на все задания работы.

