TALKS-WITH-IMAGES

An Overview of Image Processing, Computer Vision, and Deep Learning

TABLE OF CONTENT

Part I:

- What are Images?
- What is OpenCV?
- Setting up OpenCV on a Linux machine.
- What is Image Processing?
- Image processing example: "blurring" in action
- Core operations
 - Basic Operations on Images
 - Arithmetic operations on images
- Image processing in OpenCV
 - Image Thresholding
 - Geometric Transformation of images
 - Image Gradients
 - o Canny Edge Detection

Part II:

- Al vs ML vs DL
- Machine Learning Steps
- Deep Learning
- MNIST Example : Code
- Image Classification
- Feature Extraction
 - Convolution Neural Network
- Object Detection
- Object segmentation
- Face Recognition
- Style Transfer
- Image Generation GAN
- Image Analytics
- Links

IMAGES

What humans see

What a computer sees

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74		62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	105	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227			201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139		20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75			47		- 6	217	255	213
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

157	153	174	168	150	152	129	151	172	161	156	156
156	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	216	211	158	139	76	20	166
189	97	166	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	256	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

IMAGE PROCESSING

Application: Removing noise from an image

IMAGE PROCESSING VS COMPUTER VISION

Image processing: image in ->(some function) -> image out
Computer Vision: understanding the contents of an image

Image Processing Computer Vision process image data generate another image generate symbolic data

TOOLS, LIBRARY, FRAMEWORK

NVIDIA DEEP LEARNING SDK and CUDA

LET'S CODE...

The Jupyter Notebook is a web-based interactive computing platform that allows users to author data- and code-driven narratives that combine live code, equations, narrative text, visualizations, interactive dashboards and other media.

AI vs MACHINE LEARNING vs DEEP LEARNING

AI (technique to enable machine to mimic humans) is super-set of ML

ML (program machines to learn and improve with experience) and ML is the super-set of DL.

DL (achieve great power and flexibility by learning to represent the data as nested hierarchy of concepts, i.e, more depth features with multiple processing layers, hence "deep").

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

MACHINE LEARNING IN 7 STEPS

Color (nm)	Alcohol %	Beer or Wine?
610	5	Beer
599	13	Wine
693	14	Wine

- 1. Problem Statement
- 2. Data Preparation
- 3. Choosing a **model**
- 4. Training
- 5. Evaluation / Validation
- 6. Hyperparameter tuning
- 7. Prediction/**Testing**

DEEP LEARNING

- Based on Concept on Artificial Neural Networks
- "The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning." Ian GoodFellow

LET'S CODE

Deep Learning

What society thinks I do

What my friends think I do

What other computer scientists think I do

What mathematicians think I do

What I think I do

In [1]:
import keras
Using TensorFlow backend.

What I actually do

DEEP LEARNING WITH IMAGES

Classification Instance **Object Detection** Classification + Localization Segmentation CAT, DOG, DUCK CAT, DOG, DUCK CAT CAT

Single object

Multiple objects

IMAGE CLASSIFICATION

Dataset

- Images
- Classes

FEATURE EXTRACTION

HOG: Histogram of Oriented Gradients

• SIFT: Scale Invariant Feature Transform

• SURF: Speeded-Up Robust Feature

CNN: Convolution Neural Network

CONVOLUTION NEURAL NETWORK

OBJECT DETECTION

Dataset

- Images
- Bounding Boxes(x,y,w,h)
- Classes

Region Proposal
Network, providing a number of regions which are then passed to common DL based classification architectures.

With the need of real time object detection, many one-step object detection architectures have been proposed, like YOLO, YOLOv2, YOLOv3, SSD, RetinaNet etc. which try to combine the detection and classification step.

SEGMENTATION

Dataset

- Images
- Coordinates[list of (x,y)]
- Classes

Segmentation Masks

The mask branch is CNN that takes the positive regions selected by the ROI classifier and generates masks for them.

The generated masks are low resolution: 28x28 pixels. But they are soft masks, represented by float numbers, so they hold more details than binary masks.

FACE RECOGNITION

Dataset

- Images
- Classes

Facebook automatically tags people in your photos that you have tagged before. I'm not sure if this is helpful or creepy! :P

Algorithm:

- Face Detection
- Face Alignment
- DeepNet Model to extract features

 Pass the centered face image through a neural

 network that knows how to measure features of the
 face. Save those 128 measurements.
- Testing new face: Extract 128 measurements and find the most similar match

STYLE TRANSFER

- Problem Statement
 - Given:
 - Content Image
 - Style Image
 - Result:
 - Stylized Image
- Algorithm
 - Feature Extraction of Content (A)
 - Feature Extraction of Style (B)
 - Merge Features(A+B)

IMAGE GENERATION

IMAGE ANALYTICS

- 1. Problem Statement
- 2. Data Preparation
- Choosing model(s)
 - a. Training
 - b. Evaluation / Validation
 - c. Hyperparameter tuning
 - d. Prediction/**Testing**
- 4. Combine Results
- 5. Presentation

INTERESTING LINKS

- https://setosa.io/ev/image-kernels/
- https://www.youtube.com/watch?v=nKW8Ndu7Mjw
- https://towardsdatascience.com/gentle-dive-into-math-behind-convolutional-neural-networks-79a07dd44cf9
- https://www.thispersondoesnotexist.com/
- https://playground.tensorflow.org/
- https://reiinakano.com/arbitrary-image-stylization-tfjs/
- https://blog.insightdatascience.com/generating-custom-photo-realistic-face s-using-ai-d170b1b59255
- https://engineering.matterport.com/splash-of-color-instance-segmentation-w ith-mask-r-cnn-and-tensorflow-7c761e238b46
- https://github.com/ageitgey/face recognition
- https://medium.com/@manivannan_data/how-to-train-yolov2-to-detect-custom-o bjects-9010df784f36

