	Assignment #1	
osides and Downsides of Al-Based Mosquito Detection via Audio		
psides:		
on-Intrusive & Privacy-Friendly: Only detects mosquito wingbeat frequencies, not images o	r human voices.	
ccurate Species Identification: AI can distinguish virus-carrying mosquitoes from harmless of	ones.	
ost-Effective & Scalable: Uses inexpensive microphones, works in all lighting conditions, ar	nd allows remote monitoring.	
Continuous 24/7 Detection: Functions at night when mosquitoes are most active.		
Downsides:		
Noise Interference: Background sounds (fans, rain, voices) can disrupt detection.		
imited Range: Sensors must be close to mosquitoes for accurate results.		
otential Misclassification: Some insect sounds overlap, requiring refined AI models.		
ata & Power Challenges: Needs reliable power and network for real-time monitoring.		
rivacy Considerations:		
ters out human voices, processes audio locally to avoid cloud risks.		
ses encryption and follows privacy laws like GDPR.		
	Assignment #2	
-	·	
Feature	Microcontroller	Single-Board Computer (SBC)
Definition	A compact integrated circuit designed for specific control tasks.	A fully functional computer on a single board with CPU, RAM, and storage
Processing Power	Low-power, limited processing capability.	Higher processing power, capable of running full OS.
	Typically does not run an OS (bare-metal programming or real-time OS).	Runs a full OS like Linux or Windows.
Operating System	Very low, can run on batteries for long periods.	Higher power consumption, often requires a dedicated power supply.
Power Consumption		More complex, capable of multitasking.
Power Consumption Complexity	Simple, designed for single-purpose tasks.	
Power Consumption Complexity Cost	Simple, designed for single-purpose tasks. Generally cheaper (a few dollars).	More expensive (can range from \$30 to \$100+).
Power Consumption Complexity		

Power Efficiency: Microcontrollers consume significantly less power, making them ideal for battery-powered applications.

Real-Time Performance: They provide deterministic real-time performance, crucial for applications like motor control and industrial automation.

Reasons to Use an SBC Over a Microcontroller

Reasons to Use an SBC Over a Microcontroller

Higher Processing Power: Suitable for tasks requiring multitasking, such as running web servers or Al applications.

Better Connectivity & Expandability: Supports peripherals like USB devices, displays, and networking options, making it ideal for applications requiring user interaction.

Security	SSL/TLS, Username/Password	SSL/TLS	SSL/TL:	
Message Persistence	Yes (QoS 1 & 2)	Yes (Durable Queues)	No	
Transmission Speed	Very Low Fast	Medium Medium	High Slow	
Protocol Type Power Consumption	Publisher-Subscriber	Message Queue Medium	Request-Res	
Criteria	MQTT	AMQP	HTTP/HT	_
	Assignment #4			
rduino Uno				
ED				
0kΩ Resistor (for voltage divider)				
LDR (Light Dependent Resistor)				
Hardware components:				
Example: Automatic Light System Using LDR and LED				
Units & Measurement Range: Voltage (typically 2-3V) and current (usually 10-20mA).				
Analog or Digital: Digital – It operates in an ON/OFF state controlled by a microcontroller.				
Hardware & Electronics: LEDs are made of semiconductor diodes that emit light when cur				
Function: The LED is an output device that emits light when powered. It is used as a simp	le actuator to indicate changes in environmental conditions.			
Units & Measurement Range: The LDR outputs resistance values (Onms, Ω), typically ran Actuator: LED (Light Emitting Diode)	ging from a few number 12 (bright light) to over Tivit2 (darkness).			
Analog or Digital: Analog – It provides a continuous range of values. Jnits & Measurement Range: The LDR outputs resistance values (Ohms, Ω), typically rar	ging from a faw hundred O (hright light) to over 1MO (darkness)			
Hardware & Electronics: LDR is made of semiconductor materials that change resistance	based on light exposure.			
unction: An LDR is a light sensor that measures ambient light intensity. When light levels				
Sensor: Light Dependent Resistor (LDR)				
Research on Sensors and Actuators				
	Assignment #3			