~ Flow, Prality, and bames ~

From Last Time

· Residual networks

Argmenting path alg

· D(E.F+), D(E2V) augs

· Integer caps = Integer Solutions

Max Flow = Min cut

maximum flow & minimum cut

Now: maximum flow = minimum ext

max flow = alg frow = minimum cut = max flow = max flow = min cut

CH = all vertices connected to S

Claim: For edges crossing out f(1)=((e)

For any rage (u,v) VES, U &S, f(1) = 0

CONTENATION of FLOW: frow realming T = capacity of the cot

int max flow = max matching

Strangins

pm and mixed L choosing randomly sam mon given stration YOW player. max z χ_1 $\begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$ 7 = 3 X1 - 2 X2 $X_1 + Y_2 = 1$ $Z \leq -X_1 + X_2$ $\chi_1 \geq 0, \chi_2 \geq 0$ optimal strat: chook wixed strat that maximins payoff even it other player knows the strangy $3X_{1}-2X_{2}=-Y_{1}+X_{2}=|Y_{7}|$ UX1 = 3 X2 $-\chi_{\parallel}$ X1 = 3 X2 - 4 row player expected value = + grarann DUEL LPS! column player NAIN M $W \geq 3y_1 - y_2 \qquad \qquad y_1 + y_2 = 1$ $3y_1 - y_2 = -2y_1 + y_2 = (\frac{1}{2})$ $W \ge -2y_1 + y_2$ $y_1 \ge 0$ → y₁ = 2/7 , y₂ = 5/7 y₂ ≥ 0 column playor expected value grarante = 47

* Valve of game to now player = 47