# Egzamin z Matematyki 1 (WISGiE/OZE, termin pierwszy)

05/02/2021



#### Zadanie 1 (0 - 10 pkt.)

**OZE:** Oblicz pochodne: 
$$\left(\frac{5}{x^3} - \frac{4}{\sqrt[4]{x^7}}\right)'$$
,  $\left(\frac{\sin x}{\ln x}\right)'$ ,  $\left(\operatorname{tg}(3x) \cdot e^{x^3}\right)'$ .

**IŚ:** Oblicz pochodną  $z''_{xy}$  jeśli  $z = y \sin(xy)$ .



#### Zadanie 2 (0 - 10 pkt.)

**OZE:** Wyznacz przedziały monotoniczności i ekstrema lokalne funkcji:  $y = 6x^4 + 8x^3 - 3x^2 - 6x$ .

**IŚ:** Wyznacz ekstrema lokalne funkcji  $z = -2x^2 + xy - y^3 + x$ .

# Zadanie 3 (0 - 10 pkt.)

**OZE:** (a) Zapisz liczbę  $z = \frac{2-5i}{5+2i} + i^{28}$  w postaci a + bi, gdzie a, b – liczby rzeczywiste.

(b) Rozwiąż równanie  $z^2 - 6z + 13 = 0$  w dziedzinie zespolonej.

**IŚ**: Oblicz  $\iint_D (2x + y) dx dy$ , gdzie D – trójąt ABC, gdzie A(0,0), (1,1), C(1,3).



### Zadanie 4 (0 - 10 pkt.)

**OZE:** Oblicz całkę:  $\int \frac{7x-1}{x^2-x-6} dx$ .

**IŚ**: Oblicz  $\iint_D \frac{dxdy}{x^2+y^2}$  przechodząc do współrzędnych biegunowych, gdzie D:  $x^2+y^2\geqslant 1$ ,  $x^2+y^2\leqslant 9$ ,  $y\geqslant x$ ,  $y\geqslant -x$ .

### Zadanie 5 (0 - 10 pkt.)

**OZE:** Wyznacz pole obszaru ograniczonego liniami  $y = x^2 - 2x$ , y = x - 2. Wykonaj rysunek!

**IŚ:** Rozwiąż równanie różniczkowe  $\frac{y'}{x^3} - 4y^2 = 0$ , uwzględniając warunek początkowy y(1) = 2.

#### Zadanie 6 (0 - 10 pkt.)

**OZE:** Rozwiąż układ równań metodą Gaussa eliminacji:

$$\begin{cases} x + 2x - z = -1 \\ 2x + 3y - z = 0 \\ -3x + 2y + z = -1 \end{cases}$$

**IŚ:** Rozwiąż równanie różniczkowe  $y'' - 6y' + 9y = 4e^{3x}$ .



### Zadanie 7 (0 - 20 pkt.)

**OZE:** W oparciu o definicję oblicz pochodną podanej funkcji  $f(x) = 2x^2 - 3x + 1$  w punkcie  $x_0 = 1$ . Zapisz równanie stycznej do wykresu funkcji w punkcie  $(x_0, f(x_0))$ , naszkicuj poglądowy wykres funkcji oraz stycznej.

**IŚ:** Wyznacz odległość punktu P(1, -1, 4) od płaszczyzny 2x - 2y - z + 1 = 0 (wyznaczając minimum pewnej funkcji dwóch zmiennych).



# Zadanie 8 (0 - 20 pkt.)

**OZE:** W oparciu o rachunek całkowy wyznacz położenie środka ciężkości obszaru ograniczonego liniami  $y=x^2$ , y=2x, jeśli wiadomo, że pole obszaru wynosi  $S=\frac{4}{3}$ .

**IŚ:** W oparciu o całki podwójne wyznacz położenie środka ciężkości obszaru D:  $x^2 + y^2 \le 1$ ,  $y \ge 0$ ,  $x \le 0$ .

