

What is Blockchain Technology?

The Bitcoin Background

Blockchain Platforms

Consensus Models

Use Cases

© 2016 Persistent Systems

3

What is Blockchain Technology?

- Blockchain is a shared replicated immutable "ledger" available to all participants in the blockchain network.
- Blockchain technology enables participating entities to create and append to the blockchain with distributed consensus.
- Brings together a confluence of known concepts
 - Distributed systems (Distributed Consensus, Fault Tolerance, Replication)
 - · Cryptography (Merkle hashes, Signing, Proof-of-Work, Double-spend)
 - Networking (P2P networks, Distributed Hash Tables)
 - Databases (Transaction Processing, Consistency, Linearization)

© 2016 Persistent Systems

What is Blockchain Technology?

The Bitcoin Background

Blockchain Platforms

Consensus Models

Use Cases

© 2016 Persistent Systems

Mining and Proof of Work

- Rotate through the nonce and hash, till the combination of current block header, previous block hash and nonce, when hashed produces a hash value less than the current "Difficulty" level set by the network.
- Bitcoin node producing the winning hash gets to append the block to the blockchain and earns a mining reward (25 BTC)

© 2016 Persistent Systems

Source: "Bitcoin: A Peer-to-Peer Electronic Cash System" Nakamoto

Blockchain – Technology Powering Bitcoin

- Is independent of the Bitcoin cryptocurrency.
- Can be used for other kinds of applications.
- Some compelling scenarios
 - No trusted intermediary.
 - Applications that span organizational boundaries.
 - Multiple parties writing into the blockchain.
 - · High degree of auditability and tracking.

© 2016 Persistent Systems

1

Types of blockchains

- Permissioned versus Permissionless Who can advance the ledger? (e.g., Bitcoin versus Multichain)
- Smart contract chains Allow for existence and execution of complex business logic into entities called smart contracts. (e.g., Ethereum, OBC)
- Anchored chains Operate independently but periodically place anchors into another public blockchain, such as Bitcoin. (e.g., Factom)
- Side chains Operate independently but have a two way peg to the main chain that allows for interoperability with the main chain. (e.g., Thunder)

© 2016 Persistent Systems

Blockchain Platforms

- Bitcoin based platforms
- FinTech platforms
- Smart Contract Platforms
- Consortium Platforms
- Sidechain/Anchored Platforms

© 2016 Persistent Systems

1

Bitcoin based Platforms

- Add application based meta-data into Bitcoin transactions.
- Transactions are submitted like regular Bitcoin transactions and are mined by Bitcoin nodes.
- Most platforms used Bitcoins as the native token albeit some exceptions.
- Platforms allow for custom asset management, such as smart property, reward points, coupons, financial instruments, currencies, etc.
- Some notable platforms are ColoredCoins, Coinprism, CoinSpark, ChromaWay and Omni.

© 2016 Persistent Systems

FinTech Platforms

- Platforms focus on specializing for financial applications, such as netting and settlement, stocks and derivatives trade, payments and foreign exchange, etc.
- Have the largest backing and investment.
- Have specialized needs in terms of handling volume of transactions, transaction confirmation times, protecting information and transaction confidentiality, etc.
- Some notable platforms are Chain, Ripple, BitShares, NXT, Stellar and SETL.

© 2016 Persistent Systems

19

Smart Contract Platforms

- Allow creating "smart contracts" on the blockchain autonomous agents capable of enforcing rules without any central party.
- Coding of smart contracts can be done in a Turing-complete language provided by the platform.
- Inputs consumed by the smart contract and outputs produced can be verified by nodes participating in the blockchain network.
- Complex apps catering to wide range of domains can be built using such platforms.
- Notable examples of smart contract platforms are Ethereum and IBM's Open Blockchain.

© 2016 Persistent Systems

Consortium Platforms

- Goal of these platforms is to allow a group of business entities to write applications using a shared ledger.
- Each entity is usually known and a permissioned group of entities run validating nodes that validate transactions and advance the state of the ledger.
- Wasteful computation such as Proof of Work is usually eliminated in such platforms because of known participants.
- Byzantine Fault Tolerant Consensus is generally used in such platforms to validate transactions.
- Notable platforms are IBM's OpenBlockchain, MultiChain, BlockStack and OpenChain.

© 2016 Persistent Systems

2

Sidechain/Anchored Chain Platforms

- Sidechains are independent blockchains but connected via a two way peg to another publicly available blockchain, such as Bitcoin.
- Sidechain may have a different property that is crucial for the application, such as faster settlement, support for smart contract, etc.
- Anchored chains periodically place an anchor into the metadata field of another blockchain to make the root hash publicly visible and verifiable.
- Notable platforms are Thunder, Rootstock and Factom.

© 2016 Persistent Systems

What is Blockchain Technology?

The Bitcoin Background

Blockchain Platforms

Consensus Models

Use Cases

© 2016 Persistent Systems

2:

Consensus Models

- Permissionless blockchains
- Proof-of-Work (e.g., Bitcoin, Ethereum)
 - Proof-of-Stake (e.g., BitShares, NXT)
 - Quorum based Byzantine Fault Tolerance (e.g., Ripple, Stellar)
- Permissioned blockchains
 - Practical Byzantine Fault Tolerance (e.g., OBC)
 - Proof of Elapsed Time (e.g., IntelLedger)

© 2016 Persistent Systems

Proof-of-Work (PoW) Consensus

- Each computer solves a proof of work puzzle to produce the winning hash.
- The only way to get to the winning hash is by brute-forcing.
- Winning chain is the chain with the longest PoW.
- Pros
 - Works well in a permissionless setting with trustless participants.
 - Eventual consistency is guaranteed despite temporary forks in the chain.
- Cons
 - · Energy is wasted in hashing operations.
 - Susceptible to 51% attack especially from mining pools.
 - Cannot scale easily because of the time needed to solve PoW puzzles.

© 2016 Persistent Systems

Ethereum PoW Consensus Model

- Uses Ethhash A ASIC resistant PoW algorithm.
- A new block is added about every 17 seconds or so.
- Algorithm requires choosing of subsets of a fixed resource (the DAG) dependent on a nonce and the block header.
- The DAG (few GB of data) needs a while to generate and therefore should be stored for efficient computation.
- Verification can be done with smaller CPU and low memory.
- DAG changes every 30000 blocks.

© 2016 Persistent Systems

Byzantine Fault Tolerant Consensus

- Can achieve consensus when a fraction of the network is acting Byzantine.
- Used by permissioned blockchain systems where number of replicas are limited.
- Different variations exist (BFT, PBFT, Sieve, etc).
- Pros
 - Tolerates Byzantine faults and still able to achieve consensus.
 - Scalable compared to PoW with small number of replicas.
- Cons
 - Scalability is questionable when a large number of replicas are present. (Studies exist for around 20)
 - · Need to know the number of nodes in advance.

© 2016 Persistent Systems

© 2016 Persistent Systems

27

PoW versus BFT Consensus

	PoW consensus	BFT consensus
Node identity	open,	permissioned, nodes need
management	entirely decentralized	to know IDs of all other nodes
Consensus finality	no	yes
Scalability	excellent	limited, not well explored
(no. of nodes)	(thousands of nodes)	(tested only up to $n \leq 20$ nodes)
Scalability	excellent	excellent
(no. of clients)	(thousands of clients)	(thousands of clients)
Performance	limited	excellent
(throughput)	(due to possible of chain forks)	(tens of thousands tx/sec)
Performance	high latency	excellent
(latency)	(due to multi-block confirmations)	(matches network latency)
Power	very poor	good
consumption	(PoW wastes energy)	
Tolerated power	≤ 25% computing power	$\leq 33\%$ voting power
of an adversary		
Network synchrony	physical clock timestamps	none for consensus safety
assumptions	(e.g., for block validity)	(synchrony needed for liveness)
Correctness	no	yes
proofs		

Source: NetSec 2015 Paper

28

What is Blockchain Technology?

The Bitcoin Background

Blockchain Platforms

Consensus Models

Use Cases

© 2016 Persistent Systems

29

UC-1: The Cross-Border Payment Problem

- Retail payments across borders is imperfect
 - Businesses/consumers across borders incur high charges.
 - Long settlement times exposing businesses/consumers to fluctuations in the currency exchange rate.
 - Makes smaller payments infeasible because of added costs.
- We show a global wallet implementation using the Ripple network.
 - Allows users to load wallet in local currency.
 - Spend globally anywhere in the world.

© 2016 Persistent Systems

UC-1: Cross-Border Payments using Ripple PERSISTENT

- Ripple is a Blockchain-based payment protocol.
 - · Provides cross-border multi-currency settlement rail.
 - Real time (~6 secs) settlement.
- All transactions are recorded in the public Ripple Consensus Ledger (RCL).
- When new transactions are to be added to the ledger, the Ripple network executes a distributed consensus protocol to reach agreement.

© 2016 Persistent Systems

UC-2: Smart Device Mgmt using Ethereum

- Smart devices can interact via the Blockchain
 - Manage themselves (via smart contract)
 - · Interact with other devices
 - Lead to smarter self-managing entities building, cities and country.
- Smart device self-service request without human intervention.
- All interaction on the Blockchain, which forms the single source of truth.
- Smart contracts can execute and respective state change is logged on the Blockchain for auditing, invoice generation, tracking orders and payment.

© 2016 Persistent Systems

UC-4: E-Governance using Factom

- Blockchain based data publishing platform.
- Ideal for 3Ps applications

- Proof-of-Existence, Proof-of-Process, Proof-of-Audit
- Helps users to build and use custom chains.
- Chain entries and collected into folders and periodic hashes are anchored into the Bitcoin Blockchain.
- Factom servers store intermediate data hashes and chain information.

- Uses Factoids as its internal cryptocurrency to pay the network.
- No mining Factom based consensus for adding Entries to the **Blockchain**.

© 2016 Persistent Systems

UC-4: E-Governance Use Case

- · Availing Government services is a source of frustration in developing countries
 - No SLAs
 - · Corrupt insiders soliciting bribes
 - Lack of overall governance.
- Blockchain can help by making the process auditable and transparent.

© 2016 Persistent Systems

UC-5: Rewards Alliance using IBM OBC

 IBM Open Blockchain allows for building a private permissioned custom blockchains.

- Has support for smart contracts called chaincode.
- Has a Registration Authority that allows for unique identification of all entities interacting with the blockchain.
- Supports private and confidential contracts.
- Allows for modularity in plugging in the desired consensus algorithm that can be run by all validating peers.

© 2016 Persistent Systems

Thank You

sid_chatterjee@persistent.com

© 2016 Persistent Systems