

Redes de Flujo: Edmonds-Karp

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Algoritmo Edmonds-Karp

Es Ford-Fulkerson...

Con un único cambio: calcular el camino de aumento de longitud mínima

Su complejidad es fuertemente polinómica

A diferencia de Ford-Fulkerson que es pseudo polinomica (depende de las capacidades)

Publicado por

Dinic (1970): "Algorithm for solution of a problem of maximum flow in a network with power estimation"

Edmonds y Karp (1972): "Theoretical improvements in algorithmic efficiency for network flow problems"

Pseudocódigo

```
Inicialmente f(e) = 0 Para todo e en G

Mientras haya un canino s-t en Gf

Sea P un camino s-t simple en Gf de longitud mínima (obtenido por BFS)
    f' = augment(f , P)

Actualizar f para ser f'

Update Gf para ser Gf'

Retornar f
```


Idea

"Cuanto mayor longitud tiene el camino de aumento

Más probable que el bottleneck encontrado sea menor"

Progresivamente

se van consumiendo los caminos de menor longitud

Llamaremos:

DIST_f(u,v) a la longitud del menor camino de u a v en el grafo residual G_f

Afirmamos

A.1 Para todos los vértices de V – {s,t}

DIST_f(s,v) se incrementa de forma monótona luego de cada aumento de flujo

A.2 Para la red de flujo G=(V,E) con s y t como fuente y sumidero

El número total de aumentos de flujo del algoritmo es O(VE)

A.1 Incremento monótono de distancia de vértices

Sea

f el flujo antes del aumento y f' el posterior

v vértice de V – {s,t} tal que $DIST_f'(s,v)$ decrementó $\rightarrow DIST_f'(s,v) < DIST_f(s,v)$

 $P = s ... \rightarrow u \rightarrow v el camino mínimo de sa v en <math>G_f$

Entonces

 $DIST_{f}'(s,v) = DIST_{f}'(s,u) + 1$ y el eje (u,v) está en G_{f}'

Por como elegimos v, la distancia de u a s no puede disminuir

 $DIST_f'(s,u) \ge DIST_f(s,u)$

A.1 Incremento monótono ... (cont.)

Afirmamos

Que el eje (u,v) NO está en G_f

Si estuviese

 $DIST_f(s,v) \le DIST_f(s,u) + 1$ (designaldad triangular)

≤ DIST_f'(s,u) +1 (por que el camino mínimo no disminuye en f')

= DIST_f'(s,v) (por la relación entre (s,u) y (s,v))

Que contradice

 $DIST_{f}(s,v) < DIST_{f}(s,v)$

A.1 Incremento monótono ... (cont.)

Como podemos tener $(u,v) \notin E_f$ y $(u,v) \in E_f$?

El camino de aumento debe haber incrementado el flujo de v a u

El algoritmo utiliza para aumento el camino de longitud mínima

Por lo tanto el camino de s → u contenía a (v,u) como último eje

Entonces

$$\begin{split} DIST_f(s,v) &= DIST_f(s,u) - 1 \\ &\leq DIST_f(s,u) - 1 \text{ (por que el camino mínimo no disminuye en f')} \\ &= DIST_f(s,v) - 2 \text{ (por la relación entre (s,u) y (s,v))} \end{split}$$

Que contradice

 $DIST_{f}(s,v) < DIST_{f}(s,v) \rightarrow Por lo tanto no existe un posible vértice v (c.q.d)$

A.2 Total de aumentos de flujo es O(VE)

Si el eje (u,v) en el grafo residual G_f es cuello de botella en el camino de aumento p

El eje desaparecerá del grafo residual

(siempre existe al menos 1 cuello de botella por camino de aumento)

Cuando (u,v) es cuello de botella

 $DIST_f(s,v) = DIST_f(s,u) + 1$

El eje (u,v) solo podrá reaparecer

Si (v,u) aparece en un camino de aumento posterior

A.2 Total de aumentos de flujo es O(VE) (cont.)

Si llamamos f' al flujo en el que aparece (v,u)

 $DIST_f(s,u) = DIST_f(s,v) + 1$

Como se produce el incremento monótono de las distancias

$$DIST_f(s,u) \ge DIST_f(s,v) +1$$

 $\ge DIST_f(s,u) +2$

Por lo tanto

desde el momento que (u,v) es cuello de botella a la vez que (v,u) lo es, la distancia de s a u DECREMENTA al menos en 2.

A.2 Total de aumentos de flujo es O(VE) (cont.)

La distancia de s a u

Es inicialmente al menos 0

Los vértices intermedios entre s y u pueden V – {s,t,u}

La distancia máxima por lo tanto puede ser V-2

Por lo que una vez que (u,v) es crítico

Podrá volver a serlo (|V|-2)/2 veces mas (en total |V|/2 veces)

Como existen |E| pares de vértices que pueden tener ejes entre ellos

El número total de ejes críticos durante la total ejecución es O(VE) (c.q.d)

Complejidad

Como

Cada iteración de Ford-Fulkerson se puede implementar en O(E)

Y

La cantidad total de iteraciones esta dada por la cantidad de caminos de aumento y es O(VE)

La complejidad temporal es

 $O(E_2V)$

Presentación realizada en Mayo de 2020