2018 Fall Data Compression Homework #1

EE 248583 **106368002** 張昌祺 Justin, Chang-Qi Zhang

Advisor: 電子所 高立人 副教授 justin840727@gmail.com Due Date: November 12 2018

Problem 1 Entropy

Let X be a random variable with an alphabet $H = \{1, 2, 3, 4, 5\}$. Please determine H(X) for the following three cases of probability mass function p(i) = prob[X = i]. (15%)

(a)
$$P(1) = P(2) = 1/2$$
:

Ans

$$\begin{split} H(X) &= -(P(1)\log_2 P(1) + P(2)\log_2 P(2)) \\ &= -(0.5\log_2(0.5) + 0.5\log_2(0.5)) \\ &= -(-0.5 - 0.5) \\ &= 1 \ bits/symbol \end{split}$$

(b)
$$P(i) = 1/4$$
, for $i = 1, 2, 3$, and $p(4) = p(5) = 1/8$:

Ans

$$\begin{split} H(X) &= -(3 \times P(1) \log_2 P(1) + P(4) \log_2 P(4) + P(5) \log_2 P(5)) \\ &= -(3 \times 0.25 \log_2 (0.25) + 2 \times 0.125 \log_2 (0.125)) \\ &= -(-1.5 - 0.75) \\ &= 2.25 \ bits/symbol \end{split}$$

(c)
$$P(i) = 2^{-i}$$
, for $i = 1, 2, 3, 4$, and $p(5) = 1/16$:

Ans

$$\begin{split} H(X) &= -(\sum_{i=1}^4 2^{-i} \log_2 2^{-i} + \frac{1}{16} \log_2 \frac{1}{16}) \\ &= -(0.5 \times (-1) + 0.25 \times (-2) + 0.125 \times (-3) + 0.0625 \times (-4) + 0.0625 \times (-4)) \\ &= 1.875 \ bits/symbol \end{split}$$

Problem 2 Huffman Code

Design a Huffman code C for the source in Problem 1. (15%)

(a) Specify your codewords for individual pmf model in Problem 1.

Ans

(b) Compute the expected codeword length and compare with the entropy for your codes in (a).

Ans

(c) Design a code with minimum codeword length variance for the pmf model in Problem 1.(b)

Ans

Problem 3 Empirical Distribution C++

Empirical distribution. In the case a probability model is not known, it can be estimated from empirical data. Let's say the alphabet is $H = \{1, 2, 3, ..., m\}$. Given a set of observations of length N, the empirical distribution is given by $p = total\ number\ of\ symbol\ 1/N,\ for\ i = 1, 2, 3, ..., m$. Please determine the empirical distribution for **santaclaus.txt**, which is an ASCII file with only lower-cased English letters (i.e., $a \sim z$), space and CR (carriage return), totally 28 symbols. The file can be found on the class web site. Compute the entropy. (14%)

Ans

Problem 4 Huffman Code Encode C++

Write a program that designs a Huffman code for the given distribution in Problem 3. (14 Ans

Problem 5 Adaptive Huffman Tree

Let X be a random variable with an alphabet H, i.e., the 26 lower-case letters. Use adaptive Huffman tree to find the binary code for the sequence **a a b b a**. (24%)

You are asked to use the following 5bits fixed-length binary code as the initial codewords for the 26 letters. That is

a: 00000

b: 00001

:

z: 11001

Note: Show the Huffman tree during your coding process.

Δng

Problem 6 Golomb Encoding and Decoding.

(a) Find the Golomb code of n=21 when m=4.

Ans

(b) Find the Golomb code of n=14 when m=4.

Ans

(c) Find the Golomb code of n=21 when m=5.

Ans

(d) Find the Golomb code of n=14 when m=5.

Ans

(e) A two-integer sequence is encoded by Golomb code with m=4 to get the bitstream 11101111000. What's the decoded two-integer sequence?

Ans

(f) A two-integer sequence is encoded by Golomb code with m=5 to get the bitstream 11101111000 (the same bitstream as that in (e)). What's the decoded two-integer sequence?

Hint: The unary code for a positive integer q is simply q 1s followed by a 0.

Ans