대단원 마무리 문제

Ⅰ. 수와 식

01 (4)

02 ②

03 (4)

04 (5)

05 ⑤

06 ②

07 (5)

08 3

09 x^3y^5z

10 $-\frac{4}{3}xy^2z$

11 (4)

- **12** ①
- 13 -3x+4
- 14 $17x^2 + 3x$

15 ③

- **16** 3a+2b
- **17** 2.3462를 *x*라고 하면

$$x = 2.3462462462 \cdots$$

-(1)
- **●** ②
-(2)
- $10000x = 23462.462462462 \cdots$

①의 양변에 10, 10000을 각각 곱하면

 $10x = 23.462462462 \cdots$

- (3)
- ③에서 ②를 변끼리 빼면
- 9990x = 23439**●** 4

● (F)

514~516쪽

단계	채점기준	
P	순환소수를 x 로 놓기	
4	소수점 아래의 부분이 같은 두 식의 차 구하기	50 %
(E)	순환소수를 기약분수로 나타내기	40 %

18
$$\left(-\frac{2}{3}ab^2\right)^2 \times 2b^2 \div ab^2$$

$$=\frac{4}{9}a^{2}b^{4}\times 2b^{2}\times \frac{1}{ab^{2}}$$

$$=\frac{8}{9}a^2b^6 \times \frac{1}{ab^2}$$

$$=\frac{8}{9}ab^4$$

● ②

위의 식에 $a=9, b=-\frac{1}{2}$ 을 대입하면

$$\frac{8}{9} \times 9 \times \left(-\frac{1}{2}\right)^4 = 8 \times \frac{1}{16} = \frac{1}{2}$$

$$\frac{1}{2}$$

단계	채점기준	배점
P	주어진 식을 계산하기	60 %
<u>U</u>	식의 값 구하기	40 %

19 (마름모의 넓이)=
$$\frac{1}{2} \times 2x^2y \times 4xy^2$$

$$=4x^{3}y^{3}$$

● ②

(사다리꼴의 넓이)=
$$\frac{1}{2} \times (2x^2y+3x^2y) \times 2xy^2$$

= $\frac{1}{2} \times 5x^2y \times 2xy^2$
= $5x^3y^3$

따라서 사다리꼴의 넓이는 마름모의 넓이의 $\frac{5}{4}$ 배이다. \P

단계	채점기준	
P	마름모의 넓이 구하기	40 %
4	사다리꼴의 넓이 구하기	40 %
(4)	사다리꼴의 넓이가 마름모의 넓이의 몇 배인지 구하기	20 %

Ⅲ. 일차부등식과 연립일차방정식

01 4

02 ⑤

03 ②

04 ⑤

05 - 3

06 3

07 ①

08 - 4

09 x > 4

10 3.4

11 ①

12 ③

13 ①, ⑤

14 4

15 ③

- 16 ⑤
- 17 어른: 40명, 청소년: 60명
- 18 주어진 식의 양변에 6을 곱하면

15x+9+6a>18-2ax

- 이항하여 정리하면 (2a+15)x>9-6a
- 이때 부등식의 해가 x > -1이므로

2a+15>0

따라서
$$x > \frac{9-6a}{2a+15}$$
이므로

● ②

$$\frac{9-6a}{2a+15} = -1$$
, $a=6$

4 (4)

단계	채점기준	배점
P	일차부등식 풀기	60 %
(<i>a</i> 의 값 구하기	40 %

19 여립방정식을 만족시키는 y의 값이 x의 값의 3배이므로

$$y=3x$$

y=3x를 2x+y=10에 대입하면

$$2x+3x=10, 5x=10$$

따라서
$$x=2, y=6$$

◆ ②

x=2, y=6 을 4x+ay=1에 대입하면

8+6a=1, 6a=-7

따라서 $a=-\frac{7}{6}$

4 (4)

단	계	채점기준	배점
6	7D	연립방정식의 해 구하기	50 %
Œ	Đ	a의 값 구하기	50 %

20 짧은 줄의 길이를 x cm, 긴 줄의 길이를 y cm라고 하면

$$\begin{cases} x+y=90 & \cdots & 1 \\ y=2x+6 & \cdots & 2 \end{cases}$$

y=3x+6 ②

②를 ①에 대입하면

$$x+(3x+6)=90, 4x=84, x=21$$

x=21을 @에 대입하면

$$y = 3 \times 21 + 6 = 69$$

■ (4)

따라서 짧은 줄의 길이는 21 cm이고, 긴 줄의 길이는 69 cm이다.

단계	채점기준	배점
?	연립방정식 세우기	40 %
4	연립방정식의 해 구하기	40 %
(E)	짧은 줄과 긴 줄의 길이 구하기	20 %

Ⅲ. 함수 520~522쪽

01	ㄱ, ㄴ, ㄹ	02	1)
03	(5)	04	4
05	3	06	(5)
07	(5)	08	4
09	y=x+1	10	4
11	- 9	12	a = -2, b = 8
13	(5)	14	(5)
15	$1 \le a \le 3$	16	$\frac{4}{2}$

17 점 P가 점 A를 출발한 지 x초 후의 \overline{AP} 의 길이는

$$2x$$
 cm $\triangle APC$ 의 넓이는 $\frac{1}{2} \times \overline{AP} \times \overline{BC}$ 이므로 $y = \frac{1}{2} \times 2x \times 10 = 10x$

따라서 x와 y 사이의 관계식은

y=10x

4 (4)

단계	채점기준	배점
②	x 초 후의 $\overline{\mathrm{AP}}$ 의 길이 구하기	30 %
<u></u>	x와 y 사이의 관계식 구하기	70 %

18 연립방정식 $\begin{cases} x+2y=2\\ x+y=3 \end{cases}$ 의 해는

x=4, y=-1

즉, 두 일차방정식 x+2y=2와 x+y=3의 그래프의 교점 의 좌표는

(4, -1)

● ②

따라서 일차방정식 x+ay=6의 그래프가 점 (4, -1)을

$$4+a\times(-1)=6$$
, $a=-2$

● U

단계	채점기준	배점
?	두 일차방정식 $x+2y=2$ 와 $x+y=3$ 의 그래프의 교점의 좌표 구하기	50 %
4	a의 값 구하기	50 %

Ⅳ. 도형의 성질

523~525쪽

02 55° 01 4 **04** 26 cm² **03** 3 cm

05 46°

06 ②

07 80°

08 2

09 14 cm²

10 정사각형

11 ③

12 ②

13 24

14 ③

15 ⑤

◆ ②

16 △ABC에서 $\overline{AB} = \overline{AC}$ 이므로

$$\angle ABC = \angle ACB = \frac{1}{2} \times (180^{\circ} - 48^{\circ}) = 66^{\circ}$$

따라서
$$\angle DBC = \frac{1}{2} \times 66^{\circ} = 33^{\circ}$$

◀ ②

∠ACE=180°-66°=114°이므로

$$\angle DCE = \frac{1}{2} \times 114^{\circ} = 57^{\circ}$$

△BCD에서

 $33^{\circ}+\angle D=57^{\circ}$

따라서 ∠D=24°

● ①

4 4

단계	채점기준	배점
7	∠DBC의 크기 구하기	30 %
4	∠DCE의 크기 구하기	30 %
(E)	∠D의 크기 구하기	40 %

17 점 I가 △ABC의 내심이므로

 $\angle A = 2 \angle BAD = 2 \times 30^{\circ} = 60^{\circ}$

4 6

OB와 OC를 각각 그으면

 $\triangle OAB에서 \overline{OA} = \overline{OB}$ 이므로

$$\angle OBA = \angle OAB = 40^{\circ}$$

또 ∠OCA=∠OAC=20°이므로

$$\angle OBC + \angle OCB = 60^{\circ}$$

따라서 ∠BOC=120°

그런데 \triangle OBC에서 $\overline{OB} = \overline{OC}$ 이므로

$$\angle OBC = \angle OCB = \frac{1}{2} \times (180^{\circ} - 120^{\circ}) = 30^{\circ}$$

 \triangle ACE=20°+30°=50°

■ (L)

따라서 △ACE에서

$$\angle AEC = 180^{\circ} - (20^{\circ} + 50^{\circ}) = 110^{\circ}$$

◀ (□)

단계	채점기준	배점
%	∠A의 크기 구하기	30 %
4	∠ACE의 크기 구하기	40 %
(E)	∠AEC의 크기 구하기	30 %

18 ∠EBC=∠*a*라고 하면

$$\angle ABC = 3 \angle a$$
, $\angle BAF = 90^{\circ} - 2 \angle a$

 $3 \angle a + (90^{\circ} - 2 \angle a) + 68^{\circ} = 180^{\circ}$ 이므로

$$\angle a = 22^{\circ}$$

즉. ∠ABC=3×22°=66°이므로

$$\angle BCD = 180^{\circ} - 66^{\circ} = 114^{\circ}$$
 ◀ ④

단계	채점기준	배점
P	∠EBC의 크기 구하기	50 %
<u>U</u>	∠BCD의 크기 구하기	50 %

V. 도형의 닮음과 피타고라스 정리

01 ③

02 (1) 5:3 (2) 6 cm (3) 45°

03 4

04 ④

05 \overline{BC} , \overline{DC} , 4

06 ⑤

07 5

08 12

09 12 cm

10 $\frac{34}{3}$

11 ③

3 12 12 cm

13 9 cm

14 ①

15 26

16 100 cm²

15 20

17 384 cm²

18 $8\pi \text{ cm}^2$

19 ∠EBF=∠DBC (접은 각)

∠DBC=∠EDF (엇각)

이므로 ∠EBF=∠EDF

즉, △EBD는 이등변삼각형이다.

이때 $\overline{\mathrm{EF}} \perp \overline{\mathrm{BD}}$ 이므로

$$\overline{BF} = \overline{DF} = \frac{1}{2} \times 10 = 5 \text{ (cm)}$$

◆ ②

△EBF와 △DBC에서

$$\angle EBF = \angle DBC, \angle EFB = \angle DCB$$

이므로 △EBF∽△DBC

◀ 4

따라서 $\overline{\mathrm{BF}}:\overline{\mathrm{BC}}{=}\overline{\mathrm{EF}}:\overline{\mathrm{DC}}$ 에서

 $5:8=\overline{\mathrm{EF}}:6,\ 8\overline{\mathrm{EF}}=30$

따라서
$$\overline{EF} = \frac{15}{4}$$
 cm

◀ (0

단계	채점기준				
%	BF의 길이 구하기				
4	△EBF∽△DBC임을 보이기				
(F)	EF의 길이 구하기				

20 직각삼각형 ABC에서 피타고라스 정리에 의하여

$$15^2 + \overline{AC}^2 = 17^2$$
, $\overline{AC}^2 = 64$

그런데 $8^2 = 64$ 이고 $\overline{AC} > 0$ 이므로

$$\overline{AC} = 8 \text{ cm}$$

● ②

 $\overline{\mathrm{AB}},\,\overline{\mathrm{AC}},\,\overline{\mathrm{BC}}$ 를 지름으로 하는 반원의 넓이를 각각

 S_1 , S_2 , S_3 이라고 하면

$$S_1 = \frac{1}{2} \times \pi \times \left(\frac{1}{2}\overline{AB}\right)^2 = \frac{\pi}{8} \times \overline{AB}^2$$

$$S_2 = \frac{1}{2} \times \pi \times \left(\frac{1}{2}\overline{AC}\right)^2 = \frac{\pi}{8} \times \overline{AC}^2$$

$$S_3 = \frac{1}{2} \times \pi \times \left(\frac{1}{2}\overline{BC}\right)^2 = \frac{\pi}{8} \times \overline{BC}^2$$

이때
$$\overline{AB}^2 + \overline{AC}^2 = \overline{BC}^2$$
이므로 $S_1 + S_2 = S_3$

따라서

(어두운 부분의 넓이)=
$$\triangle ABC + S_1 + S_2 + S_3$$
$$= \triangle ABC$$
$$= \frac{1}{2} \times 15 \times 8$$
$$= 60 (cm^2)$$

ĺ	단계	채점기준			
	P	AC의 길이 구하기			
	(L)	세 반원의 넓이 사이의 관계 알기			
	(어두운 부분의 넓이 구하기	30 %		

Ⅵ. 확률 529~531쪽

01	4	02 ③
03	4	04 ④
05	(5)	06 10
07	$\frac{1}{5}$	08 ①
09	$\frac{1}{3}$	10 ⑤
11	4	12 ①
13	3	14 $\frac{8}{9}$
15	5	16 $\frac{1}{8}$

17 ⑤

18 각 지폐의 장수에 따른 금액은 다음과 같다.

10000원 5000원

1 → 5000원

2 → 10000원

0 → 10000원

1 → 15000원

2 → 20000원

2 → 20000원

2 → 25000원

2 → 30000원

따라서 지불할 수 있는 금액은

5000원, 10000원, 15000원, 20000원, 25000원, 30000원 의 6가지이다. ◀ ④

단계	채점기준				
2	지폐의 장수에 따른 금액 구하기				
<u></u>	지불할 수 있는 금액이 몇 가지인지 구하기	20 %			

19 주사위 한 개를 두 번 던져 나오는 모든 경우의 수는

 $6 \times 6 = 36$

직선 x+2y-6=0 위의 점의 좌표를 구하면

\boldsymbol{x}	•••	1	2	3	4	5	6	•••
y		$\frac{5}{2}$	2	$\frac{3}{2}$	1	$\frac{1}{2}$	0	•••

즉, x좌표와 y좌표가 모두 6 이하의 자연수인 점은 (2, 2),

(4, 1)의 2개이다.

따라서 구하는 확률은 $\frac{2}{36} = \frac{1}{18}$

단계	채점기준			
(?1)	모든 경우의 수 구하기	20 %		
<u>u</u>	직선 $x+2y-6=0$ 위의 점 중 x 좌표와 y 좌표가 모두 6 이하의 자연수인 점 구하기	60 %		
(확률 구하기	20 %		

20 정현이가 기수를 이길 확률이 $\frac{2}{5}$ 이므로 정현이가 기수에게 3 확률은

$$1 - \frac{2}{5} = \frac{3}{5}$$

배드민턴 경기를 두 번 할 때, 정현이가 기수를 한 번만 이기는 경우는 다음의 두 가지이다.

- (i) 첫 번째 경기는 이기고 두 번째 경기는 지는 경우
- (ii) 첫 번째 경기는 지고 두 번째 경기는 이기는 경우 ◀ ④
- (i)과 (ii)에서 구하는 확률은

$$\frac{2}{5} \times \frac{3}{5} + \frac{3}{5} \times \frac{2}{5} = \frac{12}{25}$$

단계	채점기준					
P	정현이가 질 확률 구하기	30 %				
4	정현이가 한 번만 이기는 경우 구하기	30 %				
(확률 구하기	40 %				

● ②

● □