CLAIMS:

5

20

1. A compound having the general formula I:

$$R_2$$
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8

1

wherein

R1, R2, R3, R4, R5, are each independently selected from H, halogen, NO₂, CN, C₁₋₆alkyl, CF₃, aryl, heteroaryl, cylcoalkyl, cycloheteroalkyl, OCF₃, OR18, SR18, OC₁₋₆alkyl, OC₂₋₆alkylNR18R19, Oaryl, Oheteroaryl, Ocycloalkyl, Ocycloheteroalkyl, OC₁₋₆alkylaryl, OC₁₋₆alkylheteroaryl, OC₁₋₆alkylcycloalkyl, OC₁₋₆cycloheteroalkyl, CO₂R18, C₁₋₆alkylCO₂R18, CONR18R19, C₁₋₆alkylCONR18R19, NR18R19, NR20C₁₋₆alkylNR18R19,

 C_{1-6} alkylCONR18R19, NR18R19, C_{1-6} alkylNR18R19, NR20 C_{1-6} alkylNR18R19, C $_{1-6}$ alkylNR20 C_{1-6} alkylNR18R19, NR18COR19, C_{1-6} alkylNR20CONR18R19, NR20CONR18R19, C_{1-6} alkylNR18SO $_2$ R19, NR18SO $_2$ R19;

R18, R19 are each independently selected from H, C_{1-4} alkyl, C_{1-4} alkyl cycloheteroalkyl, aryl, heteroaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl heteroaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR21;

R20, R21 are each independently selected from H, C_{1.4}alkyl;

R6 is selected from H, C₁₋₄alkyl,

25 R7 is selected from H, C₁₋₄alkyl, SH, CN;

R8 is selected from OR9, NR9R10;

15

25

R9, R10 are each independently selected from H, $C_{1.4}$ alkyl, $C_{1.4}$ alkyl CO_2 H, $C_{1.4}$ alkyl cycloheteroalkyl, aryl, heteroaryl, $C_{1.4}$ alkyl aryl, $C_{1.4}$ alkyl heteroaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR11;

R11 is selected from H, C₁₄alkyl.

2. A compound according to claim 1 wherein

R1, R2, R3, R4 and R5 are each independently selected from H, OH, OC₁₋₄alkyl, OC₁₋₄alkylaryl, C₁₋₄alkyl, halogen;

R6 is selected from H, C14alkyl,

10 R7 is selected from H, C₁₋₄alkyl, SH, CN;

R8 is selected from OH, NR9R10;

R9, R10 are each independently selected from H, C_{1-4} alkyl, C_{1-4} alkyl CO_2 H.

3. A compound having the general formula II:

$$R_2$$
 R_{11}
 R_{12}
 R_{12}
 R_{13}
 R_{14}
 R_{15}
 R_{10}
 R_{10}
 R_{10}
 R_{10}

20 II

wherein

R1, R2, R3, R4, R5, R6, R7, R8, R9, and R10 are each independently selected from H, halogen, NO $_2$, CN, C $_{1-6}$ alkyl, CF $_3$, aryl, heteroaryl, cylcoalkyl, cycloheteroalkyl, OCF $_3$, OR18, SR18, OC $_{1-6}$ alkyl, OC $_{2-6}$ alkylNR18R19, Oaryl, Oheteroaryl, Ocycloalkyl, Ocycloheteroalkyl, OC $_{1-6}$ alkylaryl, OC $_{1-6}$ alkylheteroaryl,

10

15

20

OC₁₋₆alkylcycloalkyl, OC₁₋₆cycloheteroalkyl, CO₂R18, C₁₋₆alkylCO₂R18, CONR18R19, C₁₋₆alkylCONR18R19, NR18R19, C₁₋₆alkylNR18R19, NR20C₁₋₆alkylNR18R19, C₁₋₆alkylNR18R19, NR18COR19, C₁₋₆alkylNR18COR19, C₁₋₆alkylNR18COR19, NR20CONR18R19, NR20CONR18R19, C₁₋₆alkylNR18SO₂R19, NR18SO₂R19;

R18, R19 are each independently selected from H, C_{1-4} alkyl, C_{1-4} alkyl cycloheteroalkyl, aryl, heteroaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl heteroaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR21;

R20, R21 are each independently selected from H, C_{1.4}alkyl;

R11, R12 are each independently selected from H, C_{1.4}alkyl, halogen, OC_{1.4}alkyl.

4. A compound according to claim 3 wherein

R1, R2, R3, R4, R5, R6, R7, R8, R10 are each independently selected from H, C_{1-4} alkyl, OC_{1-4} alkyl, CO_2 H, CN;

R11, R12 are each independently selected from H, C_{1-4} alkyl.

5. A compound having the general formula III:

wherein

R1, R2, R3, R4, R5 and R6 are each independently selected from H, halogen, NO₂, CN, C₁₋₆alkyl, CF₃, aryl, heteroaryl, cylcoalkyl, cycloheteroalkyl, OCF₃, OR18, SR18, OC₁₋₆alkyl, OC₂₋₆alkylNR18R19, Oaryl, Oheteroaryl, Ocycloalkyl, Ocycloheteroalkyl, OC₁₋₆alkylaryl, OC₁₋₆alkylheteroaryl, OC₁₋₆alkylcycloalkyl, OC₁₋₆cycloheteroalkyl, CO₂R18, C₁₋₆alkylCO₂R18, CONR18R19, C₁₋₆alkylCONR18R19, NR18R19, C₁₋₆alkylNR18R19, NR20C₁₋₆alkylNR18R19, C₁₋₆alkylNR20C₁₋₆alkylNR18R19, NR18COR19, C₁₋₆alkylNR20CONR18R19, NR20CONR18R19, C₁₋₆alkylNR20CONR18R19, NR20CONR18R19, C₁₋₆alkylNR18SO₂R19, NR18SO₂R19;

10

5

R18, R19 are each independently selected from H, C_{1-4} alkyl, C_{1-4} alkyl cycloheteroalkyl, aryl, heteroaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl heteroaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR21;

R20, R21 are each independently selected from H, C_{1.4}alkyl;

15

20

R7 is selected from H, C₁₋₆alkyl, CF₃, aryl, heteroaryl, cylcoalkyl, cycloheteroalkyl, CO₂R18, C₁₋₄alkylCO₂R18, CONR18R19, C₁₋₄alkylCONR18R19, NR18R19, C₁₋₆alkylNR18R19, NR20C₁₋₄alkylNR18R19, C₁₋₆alkylNR20C₁₋₄alkylNR18R19, NR18COR19, C₁₋₆alkylNR20CONR18R19, NR20CONR18R19, C₁₋₆alkylNR18SO₂R19, NR18SO₂R19 wherein R18, R19 are as defined above.

6. A compound according to claim 5 wherein

R1, R2, R3, R4, R5, and R6 are each independently selected from H, halogen, OH, OC_{1-4} alkyl, C_{1-4} alkyl;

R7 is selected from H, C1-4alkyl, C1-4alkylCO2H.

25 7. The compound of formula V:

- 8. A pharmaceutical composition comprising
 - (a) one or more compounds according to any one of claims 1 to 7;
 - (b) a pharmaceutically acceptable diluent.
- 9. A method for treating an autoimmune disease involving Fc receptor activity

 comprising administering to a subject in need of treatment with one or more compounds according to any one of claims 1 to 7 or a composition according to claim 8.
 - 10. A method according to claim 10 wherein the autoimmune disease is selected from the group consisting of rheumatoid arthritis, immune thrombocytopenia purpura, systemic lupus erythematosus and Crohn's disease.
 - 11. A method for obtaining a compound which modulates Fc receptor activity, the method comprising:
 - (a) providing or designing one or more compounds having structural characteristics to fit in the groove of the FcyRIIa structure; and
- 15 (b) screening the one or more compounds for modulating activity on the Fc receptor.
 - 12. A method according to claim 11 wherein step (a) comprises functionalising the one or more compounds with one or more substituent groups.
- A method according to claim 11 or claim 12 wherein the compounds are screened
 by a FcγRIIa dependent platelet activation assay and/or aggregation assay where
 platelets are activated using heat aggregated human immunoglobulin G as an
 immune complex.
 - 13. A compound which modulates Fc receptor activity obtained by the method of any one of claims 11 to 13.
- 25 14. A method for treating an autoimmune disease involving Fc receptor activity comprising administering to a subject in need of treatment with a compound having the general formula IV:

20

25

$$R_2$$
 R_3
 R_4
 R_5

IV

wherein

R1, R2, R3, R4, R5 and R6 re each independently selected from H, halogen, NO₂,

CN, C₁₋₆alkyl, CF₃, aryl, heteroaryl, cylcoalkyl, cycloheteroalkyl, OCF₃, OR18, SR18,

OC₁₋₆alkyl, OC₂₋₆alkylNR18R19, Oaryl, Oheteroaryl, Ocycloalkyl,

Ocycloheteroalkyl, OC₁₋₆alkylaryl, OC₁₋₆alkylheteroaryl, OC₁₋₆alkylcycloalkyl,

OC₁₋₆cycloheteroalkyl, CO₂R18, C₁₋₆alkylCO₂R18, CONR18R19,

C₁₋₆alkylCONR18R19, NR18R19, C₁₋₆alkylNR18R19, NR20C₁₋₆alkylNR18R19,

C₁₋₆alkylNR20C₁₋₆alkylNR18R19, NR18COR19, C₁₋₆alkylNR18COR19,

C₁₋₆alkylNR20CONR18R19, NR20CONR18R19, C₁₋₆alkylNR18SO₂R19,

NR18SO₂R19;

R18, R19 are each independently selected from H, C₁₋₄ alkyl, C₁₋₄ alkyl cycloheteroalkyl, aryl, heteroaryl, C₁₋₄ alkyl aryl, C₁₋₄ alkyl heteroaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR21;

R20, R21 are each independently selected from H, C_{1.4}alkyl.

15. A method according to claim 14 wherein

R1, R2, R3, R4 are each independently selected from H, halogen, NO $_2$, OC $_{1-4}$ alkyl, C $_{1-4}$ alkyl

R5 is selected from H, Cl, OC₁₋₄alkyl, OC₁₋₄alkylaryl, O C₃₋₆cycloalkyl;

R6 is selected from CO_2H , $CONR_7R_8$;

R7, R8 are each independently selected from H, 5-tetrazole.