This homework is due at 11 PM on Wednesday, October 18, 2023.

1. Symmetric Matrices

Recall that $\mathbb{R}^{n \times n}$ can be thought of as the vector space of all $n \times n$ matrices. As a vector space, $\mathbb{R}^{n \times n}$ has dimension n^2 . Let $\mathbb{S}^n \subseteq \mathbb{R}^{n \times n}$ denote the set of symmetric matrices $n \times n$ matrices. Let $\mathbb{S}^n_+ \subseteq \mathbb{S}^n$ denote the set of positive semidefinite $n \times n$ matrices. Let $\mathbb{S}^n_{++} \subseteq \mathbb{S}^n_+$ denote the set of positive definite $n \times n$ matrices.

- (a) Show that \mathbb{S}^n is a subspace of $\mathbb{R}^{n \times n}$ of dimension $\binom{n+1}{2}$.
- (b) Show that \mathbb{S}^n_+ is a convex subset of $\mathbb{R}^{n \times n}$.
- (c) Show that the affine hull of \mathbb{S}^n_+ is \mathbb{S}^n .

Recall that the affine hull of a subset A of a vector space V is the smallest subspace of V that contains A. It can be characterized as the set of all linear combinations of the form $\sum_{i=1}^k \theta_i \vec{x}_i$, where $k \geq 1$ is arbitrary, $\vec{x}_1, \ldots, \vec{x}_k$ are vectors in A, and $\theta_1, \ldots, \theta_k$ are arbitrary real numbers satisfying $\sum_{i=1}^k \theta_i = 1$. Note that, in contrast to the definition of the convex hull of A, the θ_i are allowed to be negative.

HINT: Every symmetric matrix is conjugate to a diagonal matrix by an orthogonal change of basis.

- (d) Show that \mathbb{S}_{++}^n is a convex subset of $\mathbb{R}^{n\times n}$.
- (e) Show that \mathbb{S}^n_{++} is the relative interior of \mathbb{S}^n_+ . For this problem, to define distances in $\mathbb{R}^{n\times n}$, it does not matter whether you use the Frobenius norm or the induced 2-norm, but use the induced 2-norm.
 - Recall that the relative interior of a subset A of a vector space V is the interior of A when A is viewed as a subset of its affine hull.
- (f) Show that if n > 1 then the interior of \mathbb{S}^n_+ is empty. Here again, to define distances in $\mathbb{R}^{n \times n}$, it does not matter whether you use the Frobenius norm or the induced 2-norm, but use the induced 2-norm.

2. Distance between polytopes as a quadratic program

Let $\vec{p}^{(1)},\ldots,\vec{p}^{(r)}$ and $\vec{q}^{(1)},\ldots,\vec{q}^{(s)}$ be vectors in \mathbb{R}^d , where $r,s\geq 1$. Let \mathcal{P} denote the polytope defined as the convex hull of $\{\vec{p}^{(1)},\ldots,\vec{p}^{(r)}\}$, and \mathcal{Q} the polytope defined as the convex hull of $\{\vec{q}^{(1)},\ldots,\vec{q}^{(s)}\}$. Thus every point in \mathcal{P} can be written as $\sum_{i=1}^r x_i \vec{p}^{(i)}$ for some $x_i\geq 0, 1\leq i\leq r$ such that $\sum_{i=1}^r x_i=1$, and every point in \mathcal{Q} can be written as $\sum_{j=1}^s x_{r+j} \vec{q}^{(j)}$ for some $x_j\geq 0, r+1\leq j\leq r+s$ such that $\sum_{j=r+1}^{r+s} x_j=1$. Let us define n=r+s.

Define the matrix $C \in \mathbb{R}^{d \times n}$ whose *i*-th column is $\vec{p}^{(i)}$, $1 \le i \le r$ and whose r + j-th column is $-\vec{q}^{(j)}$, $1 \le j \le s$.

Pose the problem of finding the minimum squared ℓ_2 distance between points in \mathcal{P} and points in \mathcal{Q} as a quadratic program with objective function $\|C\vec{x}\|_2^2$, viewed as a function on \mathbb{R}^n .

NOTE: A quadratic program is a convex optimization problem where the objective function is a quadratic function and the constraints are linear equalities and inequalities. Recall that a quadratic convex function on \mathbb{R}^n is one of the form $\vec{x}^T H \vec{x} + \vec{a}^T \vec{x} + \vec{b}$ where $b \in \mathbb{R}$, $\vec{a} \in \mathbb{R}^n$, and H is a positive semidefinite matrix in $\mathbb{R}^{n \times n}$ (i.e. $H \in \mathbb{S}^n_+$).