Project 5: Due next Wed, April 26

http://www.mathcs.emory.edu/~eugene/cs325/p5/

Questions?

More:

http://yann.lecun.com/exdb/mnist/

• Even more on image classification:

www.image-net.org/

Extra Credit (Optional) Project: AlGym

- https://gym.openai.com/envs/Pong-v0
- https://gym.openai.com/docs
- Mission: "solve" Pong (on average, play with positive score): +10
 - Win consistently at least 5 games: +5
 - Win on average 3 games: +3
- Starting files: p5aigym.zip (in resources on Piazza)

Final: Monday, May 1, 8am

5/1/2017, Monday

8:00AM - 10:30AM

MCS W301

- Closed book, closed notes.
- + 1 Sheet of Notes
- + Calculator (optional)

Optional Review Session

Tuesday, April 25, 11:30AM-12:45pm.

Room: TBA

Al: What is possible? (2017)

Al 2017: Object Recognition

https://cloud.google.com/vision/

You can has it, too:

http://www.pyimagesearch.com/2016/06/20/detecting-cats-in-images-with-opency/

Object Detection Approach 1: HOG + SVM

Features and Generalization

Features and Generalization

Image HoG

Training

- Round 1
 - Training set =
 - Positive examples: from labeling
 - Negative examples: random patches
 - → preliminary SVM
- Round 2 ("bootstrapping" or "mining hard negatives")
 - Training set =
 - Positive examples: from labeling
 - Negative examples: patches that have score >= -1

State-of-the-art Results

sofa sofa bottle bottle cat cat

[Girschik, Felzenszwalb, McAll

State-of-the-art Results

person person car car horse horse

[Girschik, Felzenszwalb, McAll

Object Detection Approach 2: Deep Learning

How Many Computers to Identify a Cat?

"Google Brain"
[Le, Ng, Dean, et al,

Perceptron

Two-Layer Neural Network

N-Layer Neural Network

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best n∈
 - If no neighbors better than (
 - Neighbors = small perturbat
- Property
 - Many local optima

--> How to find a good local optimum?

Auto-Encoder (Crude Idea Sketch)

Training Procedure: Stacked Auto-Encoder

Auto-encoder

– Layer 1 = "compressed" version of input layer

Stacked Auto-encoder

- For every image, make a compressed image (= layer 1 response to image)
- Learn Layer 2 by using compressed images as input, and as output to be predicted
- Repeat similarly for Layer 3, 4, etc.

Some details left out

 Typically in between layers responses get agglomerated from several neurons ("pooling" / "complex cells")

Final Result: Trained Neural Network

Final Result: Trained Neural Network

Al 2017: "data" Understanding

Watson Health, Law:

https://www.youtube.com/watch?v=yV 6sd32oW0

• JPMorgan: loan agreements:

https://www.bloomberg.com/news/articles/2017-02-28/jpmorgan-marshals-an-army-of-developers-to-automate-high-finance

Music?
 https://www.youtube.com/watch?v=LSHZ b05W7o

Al 2017: Robotics 1

Uber self-driving car:

https://www.youtube.com/watch?v=OKJK3 XIGD4

https://www.youtube.com/results?q=self+driving+car+crash&sp=Egl IBA%253D%253D

Hotel receptionist:

https://www.youtube.com/watch?v=GuXRyUiew88

Legged Locomotion

Quadruped

- Low-level control problem: moving a foot into a new location → search with successor function ~ moving the motors
- High-level control problem: where should we place the feet?

[Kolter, Abbeel & Ng, 2008]

Experimental setup

Demonstrate path across the "training terrain"

- Run appr e reward function
- Receive "testing terrain"---height map.

Apprenticeship Learning

- Goal: learn reward function from expert demonstration
- Assume $R(s) = w \cdot f(s)$
- Get expert demonstrations $\mathbf{s} = (s_0, s_1, \dots s_n)$
- Guess initial policy π_0
- Repeat:
 - Find w which make the expert better the $\{\pi_0, \pi_1, \dots, \pi_{i-1}\}$ $w_i \leftarrow \operatorname{distinguish}(\pi^*, \{\pi_0, \pi_1, \dots, \pi_{i-1}\})$
 - Solve MDP for new weights w:

$$\pi_i \leftarrow \text{solve}\left(MDP(w_i)\right)$$

[VIDEO: quad initial.wmv]

[VIDEO: quad initial.wmv]

Al 2017: Humanoid Robots

- Boston Dynamics: https://www.youtube.com/watch?v=rVlhMGQgDkY
- Fedor 1: https://www.youtube.com/watch?v=oke01g1-H0s
- Fedor 2: https://www.youtube.com/watch?v=gZauGhfv-1w

What can go wrong

 https://nlpers.blogspot.com/2016/11/bias-in-mland-teaching-ai.html

What to Study Next

Applications:

- Robotics: ?
- Natural Language Processing: CS571
- Information Retrieval and Web Search: CS572

Techniques:

- Machine Learning (CS534): Every semester
- "Deep" Learning: Spring 2018? (requires ML + AI)

Summer 2017 -

- Openings in IR Lab for internships in:
 - Automated (Web) Question Answering
- Web search ranking, presentation:
 - Measure attention on pages, images with behavior and visual saliency

- (Web-scale) social media analysis:
- More info:
 - http://ir.mathcs.emory.edu/
 - Email: eugene@mathcs.emory.edu

Fall 2017: Al++

- Will teach AI again in Spring 2017
- Planned changes:
 - Add more intro exercises + labs on Python programming
 - Add final (team) project (AlGym? MindCraft?)
 - **≻Other suggestions?**

The End.

Good luck on your finals preparation

➤ Please help with evaluations. The written comments will help me design a better course for Fall 2017!