VLSI Circuit Optimization

Thomas Jagielski and Navi Boyalakuntla

Resources Used

- Brad Minch Discrete Math Presentation
 - Unless otherwise specified, all visuals from this source
- Static CMOS Design Presentation ZALAM
- Optimum Gate Ordering of CMOS Logic Gates Using Euler Path Approach Some Insights and Explanations - Kuntal Roy

These resources and our paper can be found at the following link:

https://tinyurl.com/tga wukd

Overview/Goal

Looking at logic graphs created from the schematic, we can order transistors in an optimized way.

Why Do We Want to Optimize the Layout?

- Smaller package size
 - Less chip area
 - More circuits on a single silicon wafer
- Less chemicals being used
- Optimally shared diffusion strip
 - As the number of diffusion breaks being used increases, so does the layout area

Note: Diffusion strip refers to the doped semiconductive material (often silicon in CMOS applications). This is what creates a transistor.

Optimized vs Not Optimized

From: https://www.vlsisystemdesign.com/art-of-layout-eulers-path-and-stick-diagram-part-3/

Logic Gates

And Gate

If A AND B are true, then Q is true.

Or Gate

If A **OR** B are true, then Q is true.

MOS Transistors

<u>Transistor</u> - Semiconductor based device which (for our application) is being used as an electrical signal based switch

NMOS Transistor

PMOS Transistor

Representing Logic with Transistors

Transistor AND gate

Transistor OR gate

Remember: NMOS transistor

Representing Logic with Transistors

Transistor NAND gate

Transistor NOR gate

Remember: PMOS transistor

CMOS Gate Structure

Circuits to Logic Graphs

Pull-Up Network Logic Graph (PUN)

Pull-Down Network Logic Graph (PDN)

Transistors are edges and nodes (Vcc, Gnd, and output) are the vertices

Bringing it Together

Schematic of Z = A'B'+C'

Combined Logic Graph - Edges are the same on both PUN and PDN graphs

Consistent Euler Path

An Euler path is consistent if it goes through the PUN and PDN with the same ordering of transistors (edges)

CMOS Transistor

Source:

http://www.globaltcad.com/en/showcase/example-gallery/cmos-logic/o2-single-mos-transistor.html

PMOS Transistor

NMOS Transistor

Stick Diagram of Z = A'B'+C'

A layout that does not take into account design rules

Euler Path to Layout

Consistent (same transistor ordering)
Euler Paths through the PUN and PDN logic graphs.

The optimal ordering of inputs is the order of the Euler path.

In this case, it is A-B-C.

Where Our Code Comes Into Play

We wrote a graph algorithm that goes through and finds all consistent Euler paths for an input adjacency matrix of the PUN and PDN.

INPUT

```
## CREATE THE ADJACENCY MATRICIES ##
PDN = [[0,1,0],[1,0,2],[0,2,0]]
PUN = [[0,1,1],[1,0,1],[1,1,0]]

## CREATE THE EDGE - TRANSISTOR LETTER REFERENCE ##
PDNlabel = {"1-0":"C","1-2":"A","2-1":"B"}
PUNlabel = {"0-1":"A","1-2":"B","2-0":"C"}
```

OUTPUT

```
thomas@thomas-Latitude-5491:~/Documents$ python euler_circuit.py
["['C', 'A', 'B']", "['A', 'B', 'C']"]
thomas@thomas-Latitude-5491:~/Documents$
```

Conclusion

An interesting application of discrete math is using graphs to optimize transistor ordering such that the area it takes up is minimized. To do this, we:

- 1. Create PUN and PDN logic graphs from schematic
 - a. Combine logic graphs to simplify the visual if desired
- 2. Find a consistent Euler path through logic graphs (using code)
- 3. Make stick diagram with the transistor ordering indicated from Euler path
- 4. Apply design rules on the stick diagram to make layout

Note:

- 1. Euler paths do not exist for all expressions.
- 2. Different forms of the same expression may affect whether or not an Euler path exists.
- . Euler paths are not unique.