Discussion of

Gradualism in Monetary Policy: A Time-Consistency Problem?

Jeremy C. Stein and Adi Sunderam

Ryan Chahrour

Boston College

November 12, 2015

General insight: multiplicity in communication styles

General insight: multiplicity in communication styles

• Less responsive to state \Rightarrow low κ

General insight: multiplicity in communication styles

- Less responsive to state \Rightarrow low κ
- More responsive to state \Rightarrow high κ

General insight: multiplicity in communication styles

- Less responsive to state \Rightarrow low κ
- More responsive to state \Rightarrow high κ

 \hookrightarrow Same information transmission

 ${\sf Ex\ post\ tradeoff\ in\ objective}\ +\ {\sf discretion}$

Ex post tradeoff in objective + discretion

$$L = (i^* - i)^2 + \theta(\Delta i^{\infty})^2$$

$$L = (i^* - i)^2 + \theta(\Delta i^{\infty})^2$$

$$L = (i^* - i)^2 + \theta(\Delta i)^2$$

$$L = (i^* - i^{\infty})^2 + \theta(\Delta i^{\infty})^2$$

$$L = (i^* - i^{\infty})^2 + \theta(\Delta i)^2$$
 ??

$$L = (i^* - i)^2 + \theta(\Delta i^{\infty})^2$$

$$L = (i^* - i)^2 + \theta(\Delta i^{\infty})^2$$

Time consistency problem relies on wedge between real and financial effects of policy

 $\hookrightarrow i^*$ is exogenous to information

$$L = (i^* - i)^2 + \theta(\Delta i^{\infty})^2$$

Time consistency problem relies on wedge between real and financial effects of policy

 \hookrightarrow i^* is exogenous to information

• In R.E. theory?

$$L = (i^* - i)^2 + \theta(\Delta i^{\infty})^2$$

Time consistency problem relies on wedge between real and financial effects of policy

 $\hookrightarrow i^*$ is exogenous to information

- In R.E. theory?
 - \hookrightarrow Kartik (2015), Tang (2015), Wiederholt (2015), Kohlhas (2014)

$$L = (i^* - i)^2 + \theta(\Delta i^{\infty})^2$$

Time consistency problem relies on wedge between real and financial effects of policy

 $\hookrightarrow i^*$ is exogenous to information

- In R.E. theory?
 - \hookrightarrow Kartik (2015), Tang (2015), Wiederholt (2015), Kohlhas (2014)
- In data?

Theory

$$\pi_t = \kappa y_t + \beta \tilde{E}_t[\pi_{t+1}]$$

$$y_t = \tilde{E}_t[y_{t+1}] - \frac{1}{\sigma} \tilde{E}_t[i_t - \pi_{t+1} - r_t]$$

$$\Delta i_t = \kappa(r_t - i_{t-1}) + u_t$$

$$\pi_t = \kappa y_t + \beta \tilde{E}_t[\pi_{t+1}]$$

$$y_t = \tilde{E}_t[y_{t+1}] - \frac{1}{\sigma} \tilde{E}_t[i_t - \pi_{t+1} - r_t]$$

$$\Delta i_t = \kappa(r_t - i_{t-1}) + u_t$$

ullet Exogenous rule \Rightarrow indeterminacy

$$\begin{aligned} \pi_t &= \kappa y_t + \beta \tilde{E}_t[\pi_{t+1}] \\ y_t &= \tilde{E}_t[y_{t+1}] - \frac{1}{\sigma} \tilde{E}_t[i_t - \pi_{t+1} - r_t] \\ i_t &= \phi \pi_t \end{aligned}$$

Exogenous rule ⇒ indeterminacy

$$\begin{split} \pi_t &= \kappa y_t + \beta \tilde{E}_t[\pi_{t+1}] \\ y_t &= \tilde{E}_t[y_{t+1}] - \frac{1}{\sigma} \tilde{E}_t[i_t - \pi_{t+1} - r_t] \\ i_t &= \phi \pi_t \end{split}$$

- Exogenous rule ⇒ indeterminacy
- ullet ϕ is informativeness parameter: $\phi=\infty$ like $\kappa=1$

$$\begin{split} \pi_t &= \kappa y_t + \beta \tilde{E}_t[\pi_{t+1}] \\ y_t &= \tilde{E}_t[y_{t+1}] - \frac{1}{\sigma} \tilde{E}_t[i_t - \pi_{t+1} - r_t] \\ i_t &= \phi \pi_t \end{split}$$

- Exogenous rule ⇒ indeterminacy
- ullet ϕ is informativeness parameter: $\phi=\infty$ like $\kappa=1$
- Assume flex prices

$$\begin{split} \pi_t &= \kappa y_t + \beta \tilde{E}_t[\pi_{t+1}] \\ y_t &= \tilde{E}_t[y_{t+1}] - \frac{1}{\sigma} \tilde{E}_t[i_t - \pi_{t+1} - r_t] \\ i_t &= \phi \pi_t \end{split}$$

- Exogenous rule ⇒ indeterminacy
- ullet ϕ is informativeness parameter: $\phi=\infty$ like $\kappa=1$
- Assume flex prices

$$i_t = \tilde{\mathcal{E}}_t \left[\pi_{t+1} + r_t \right]$$
$$i_t = \phi \pi_t$$

- Exogenous rule ⇒ indeterminacy
- ϕ is informativeness parameter: $\phi = \infty$ like $\kappa = 1$
- Assume flex prices

$$i_t = \tilde{\mathcal{E}}_t \left[\pi_{t+1} + r_t \right]$$
$$i_t = \phi \pi_t$$

- Exogenous rule ⇒ indeterminacy
- ϕ is informativeness parameter: $\phi = \infty$ like $\kappa = 1$
- Assume flex prices

$$L = \pi^2 + \theta (\Delta \text{NPV of expected future rates})^2$$

Loss is

$$L = \pi^2 + \theta (\Delta NPV \text{ of expected future rates})^2$$

Suppose \tilde{E}_t is full information.

Loss is

$$L = \pi^2 + \theta (\Delta NPV \text{ of expected future rates})^2$$

Suppose \tilde{E}_t is full information.

Without commitment, cheating today cannot affect path of future rates or their expectation.

Loss is

$$L = \pi^2 + \theta (\Delta NPV \text{ of expected future rates})^2$$

Suppose \tilde{E}_t is full information.

Without commitment, cheating today cannot affect path of future rates or their expectation.

 \hookrightarrow always incentive to raise ϕ .

Loss is

$$L=\pi^2+\theta(\Delta {\sf NPV} \ {\sf of} \ {\sf future} \ {\sf expected} \ {\sf rates})^2$$

Loss is

$$L = \pi^2 + \theta (\Delta NPV \text{ of future expected rates})^2$$

Suppose \tilde{E}_t is based on observed interest rate.

Loss is

$$L = \pi^2 + \theta(\Delta NPV \text{ of future expected rates})^2$$

Suppose \tilde{E}_t is based on observed interest rate.

Without commitment, cheating today affects \underline{both} inflation and expectations.

Loss is

$$L = \pi^2 + \theta(\Delta NPV \text{ of future expected rates})^2$$

Suppose \tilde{E}_t is based on observed interest rate.

Without commitment, cheating today affects \underline{both} inflation and expectations.

• Conjecture 1: offsetting effects lead to finite equilibrium alpha.

Loss is

$$L = \pi^2 + \theta(\Delta NPV \text{ of future expected rates})^2$$

Suppose \tilde{E}_t is based on observed interest rate.

Without commitment, cheating today affects <u>both</u> inflation and expectations.

- Conjecture 1: offsetting effects lead to finite equilibrium alpha.
- Conjecture 2: relation to commitment value is ambiguous

Data

Disconnect in the Data?

Table 5. Response of Asset Prices to Target and Path Factors

Table 3. Response of Asset 1 fices to Target and 1 ath Factors											
	One Factor			Two Factors							
	Constant (std. err.)	Target Factor (std. err.)	\mathbb{R}^2	Constant (std. err.)	Target Factor (std. err.)	Path Factor (std. err.)	\mathbb{R}^2				
MP Surprise	-0.021*** (0.003)	1.000*** (0.047)	.91	-0.021*** (0.003)	1.000*** (0.048)	0.001 (0.026)	.91				
One-Year-Ahead Eurodollar Future	-0.018*** (0.006)	0.555*** (0.076)	.36	-0.017*** (0.001)	0.551*** (0.017)	0.551*** (0.014)	.98				
S&P 500	-0.008 (0.041)	-4.283*** (1.083)	.37	-0.008 (0.040)	-4.283*** (1.144)	-0.966 (0.594)	.40				
$Two\text{-} Year\ Note$	$^{-0.011^{**}}_{(0.005)}$	0.485*** (0.080)	.41	-0.011*** (0.002)	0.482*** (0.032)	0.411*** (0.023)	.94				
Five-Year Note	$-0.006 \\ (0.005)$	0.279*** (0.078)	.19	-0.006** (0.002)	0.276*** (0.044)	0.369*** (0.035)	.80				
${\it Ten-Year\ Note}$	$-0.004 \\ (0.004)$	0.130** (0.059)	.08	-0.004* (0.002)	0.128*** (0.039)	0.283*** (0.025)	.74				
Five-Year Forward Rate Five Years Ahead	0.001 (0.003)	-0.098^{**} (0.049)	.06	0.001 (0.003)	-0.099** (0.047)	0.157*** (0.028)	.34				

Note: Sample is all monetary policy announcements from July 1991–December 2004 (January 1990–December 2004 for S&P 500). Target factor and path factor are defined in the main text. Heteroskedasticity-consistent standard errors reported in parentheses. *, ***, and *** denote significance at 10 percent, 5 percent, and 1 percent, respectively. See text for details.

Source: Gürkaynak, Sack, Swanson (IJCB, 2005)

Disconnect in the Data?

Table.. The Effect of Conventional Target and Path Surprises on the S&P500 Index.
Intraday Regressions, Scheduled FOMC Meetings, 1994–2008

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
			m . p. opm	TARGET		m + p opm	TARGET
		m. n. orm	TARGET	&PATH	m.n.orm	TARGET	&PATH
		TARGET	&PATH	WFI	TARGET	&PATH	WFI
VARIABLES	TARGET	&PATH	WFI	DAILY	&PATH	WFI	DAILY
		(1-year)	(1-year)	(1-year)	(2-years)	(2-years)	(2-years)
Target	-2.71***	-2.39**	-2.62**	-1.18	-2.63**	-2.71**	-1.04
raigei	(-2.71)	(-2.22)	(-2.15)	(-0.54)	(-2.50)	(-2.34)	(-0.49)
MICI	(-2./1)	(-2.22)			(-2.30)		
WFI			-0.06	0.05		-0.06	0.04
			(-0.49)	(0.24)		(-0.52)	(0.23)
Target*WFI			0.89	6.67		0.59	6.11
			(0.23)	(1.05)		(0.16)	(1.01)
Path		-1.08	-0.15	0.90	-0.47	0.38	0.80
		(-1.27)	(-0.15)	(0.51)	(-0.62)	(0.49)	(0.45)
Path*WFI		,	-3.25**	-6.47***	, ,	-3.46**	-6.36***
			(-2.01)	(-3.06)		(-2.34)	(-3.01)
Constant	-0.04	-0.05	-0.02	0.23	-0.04	-0.02	0.23
	(-0.78)	(-0.85)	(-0.28)	(1.60)	(-0.83)	(-0.24)	(1.60)
Observations	109	109	109	109	109	109	109
R-squared	0.07	0.09	0.13	0.06	0.07	0.12	0.06

Notes: Heteroskedasticity-robust r-statistics in parentheses. **** p<0.01, *** p<0.05, ** p<0.1. All regressions except (8) use intraday data, whereas regression (8) uses daily returns and intraday surprises. WFI is the wait-for-it period immediately before a reversal. Target refers to the target rate surprise captured by federal funds futures, and Path refers to the path surprise captured by the four-quarter-ahead euro-dollar futures. Further details are in the text. (1-year) and (2-years) in the column titles refer to path surprises generated using one-year-ahead and two-year-ahead euro-dollar futures.

Source: Ozdagli 2015 "The Final Countdown: Effects of Monetary Policy during Wait-for-it and Reversal Periods"