

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет	Радиоэлектронные системы и комплексы		
Кафедра	Технологии приборостроения (РЛ-6)		
	отчет по		
	Тема: Разработка прогр	раммы испытаний	
Студент	Филимонов Степан Владиславович		
_	фамили	ия, имя, отчество	
Группа	РЛ 6- 91		
Студент		Филимонов С.В.	
	подпись, дата	фамилия, и.о.	
Руководитель		доцент, Синавчиан С.Н.	
	подпись, дата	должность, фамилия, и.о.	
Оценка			

Оглавление

1 Основные сведения	3
2 Структура и состав испытаний прибора	5
3 Объем испытаний	6
4 Условия, режимы, порядок, место проведения, виды и этапы испытан	ий7
5 Анализ механической прочности	7
6 Модель в сборке	12
7 Термический анализ	12
Приложение А	14
Приложение Б	20
Приложение Г	23
Список используемых источников	26

1 Основные сведения

1.1 Описание объекта испытаний

В качестве объекта испытаний в настоящей работе рассмотрена «Нагрузочная плата измерения напряжения и температуры плат питания», в дальнейшем НПИНиТПП или slave-устройство. Испытуемая плата питания в дальнейшем обозначается ПП. Данное изделие представляет собой нагрузку с АЦП, для измерения напряжения с нагрузки и датчик температуры с измерением окружающей среды. Плата собственной разработки, построенная STM32F334C8T6, вокруг микроконтроллера В дальнейшем MK. температурном датчике ТМР-100 и дублирующем внутреннем температурном сенсоре понижения напряжения микроконтроллера, исполнено операционных усилителях ОР284, в дальнейшем просто ОУ. Считанные данные передаются на master устройство через интерфейс RS-232

Рис. 1 – Рендер НПИНиТПП

Особенности:

- Уникальная конструкция;
- Размер по ширине соответствует размеру ПП.
- Цементновые резисторы на нагрузке.
- Низкая стоимость

1.2 Принцип работы

Для описания принципа работы прибора рассмотрим его электрическую принципиальную схему:

Рис. 2 – Принципиальная электрическая схема НПИНиТПП

На вход схемы, через разъем RS-232 подается +5V для питания схемы, +16V и -16V для ОУ. Через разъемы X1-X3 подключается ПП, после резисторы R91, R92, R93 выполняют роль нагрузки, мощности 2.5,2.5,2.5 Вт соответственно (обозначение начинается с 9 потому что игра слов nine — нагрузка, первая буква н и п). После нагрузки установлена схема понижения напряжения и развязки сигнала, и после пониженный до 2.5 V сигнал приходит на АЦП МК. На МК происходит считывание сигнала с АЦП и температурных датчиков и передача по шине RS232 master устройству. Данная плата позволяет провести температурные испытания ПП в диапазоне от -40 до +50. Данный диапазон выбран исходя из режимов работы ОУ, из документации в ОУ.

1.3 Описание конструкции прибора

Плата устанавливается через стойки для печатной платы в открытый стенд. Иного корпуса не предусматривается.

Размер платы 90,2х76,5 мм, изготовлена из текстолита FR-4, толщина меди 0.035 мм. Крепится в открытый стенд на винты M2.5

1.4 Описание воздействующих на объект испытаний факторов.

Основные факторы, воздействующие на НПИНиТПП: внешние механические факторы и температурные факторы.

Воздействие перечисленных факторов и методы испытаний восприимчивости и стойкости к ним описываются государственными стандартами и отраслевыми стандартами ракетостроения.

Наиболее опасными из перечисленных факторов являются: температурные факторы — так как температурные условия будут регулярно изменятся и это может привести к его выходу из строя.

1.5 Условия эксплуатации

Устройство будет находится внутри в термокамере КТХ-80 и измерять напряжение с ПП и температуру в камере, передавай измеренные значения в плату master. Диапазон температур в камере будет от -40 до +50.

По ГОСТ 21552 — 84 НПИНиТПП относится к 5-ой группе по таблице 1, в части взаимодействия климатических факторов. У термокамеры КТХ-80 колебания внутри камеры «незначительные» по пункту 3.17 ГОСТ 30631-99 исходя из документации к камере и журнала лабораторных испытаний(в виду секретности прикреплен к отчету быть не может), но все же колебания внутри помещения есть. Тогда slave-плата относится к группе М38 по таблице 1 ГОСТ 30631-99, так как в лаборатории присутствует «незначительный» источник вибраций, а само устройство размещается внутри термокамеры.

2 Структура и состав испытаний прибора

Цель проведения испытаний – оценка эксплуатационных характеристик блока, проверка и подтверждение работоспособности блока в условиях, соответствующих данным эксплуатационным требованиями.

2.1 Термокамера

Прибор будет выполнять свои функции в различных тепловых диапазонах находясь в термокамере КТХ-80(см. таблицу характеристик). Основной упор испытаний устройства будет направлен на проверку возможности платы выполнять свои функции в предельных температурных условиях.

Таблица 1 – Характеристики КТХ-80

Внутренний	Внутренний	Внутренний	Внутренний	Диапазон
объем, Л	размер Ш,	размер В,	размер Г, мм	температур
	MM	MM		
80	400	500	400	-80 °C +160 °C

2.2 Вибростенд

Так же так как плата является лабораторной, то необходимо провести частотные испытания, чтобы исключить помехи на низких частотах.

Для этих испытаний будет использоваться вибростенд F500-120M SPA601.

2.3 Акселерометр

Для фиксации частоты колебаний будет использоваться датчик акселерометр A11C100, китайского производства.

3 Объем испытаний

3.1 Объем и последовательность квалификационных испытаний представлен в таблице 2.

Таблица 2 – Объём и последовательность квалификационных испытаний.

№, п/п.	Наименование проверок	Норма, допуск	Методика испытаний
1	Проверка на соответствие конструкторской документации и комплектности	В соотв. к документации на устройство	A.1.
2	Критерий годности	Проверка выполнения правильно измеренных значений при заданных входных данных	A.2.
3	Испытания на удары одиночного действия	При пиковом ударном ускорении $30 \frac{M}{c^2}$ и длительностью действия ударного ускорения $2-20 \frac{M}{c}$ Соотв. ГОСТ 30631-99, табл. Б.1	A.3.
4	Случайная вибрация (ШСВ)	В диапазоне частот 0,5-100 Гц(в двух направлениях), максимальной амплитуде ускорения 1,1 $\frac{M}{c^2}$ Соотв. ГОСТ 30631-99, табл. Б.1	A.4.
5	Испытание на работоспособность при пониженной температуре	$T_{\text{пониж}} = -35 ^{\circ}\text{C}$ $T_{\text{предел}} = -80 ^{\circ}\text{C}$	A.5.

6	Испытание на работоспособность при повышенной температуре	$T_{\text{пониж}} = +45 ^{\circ}\text{C}$ $T_{\text{предел}} = +160 ^{\circ}\text{C}$	A.6.
7	Испытания на работоспособность при повышенной влажности воздуха	До 95% при 25°C Соотв. ГОСТ 21552 – 84	A.7.

Такие границы для испытания камеры выбраны для перестраховки, в случае если плату «забудут» извлечь из термокамеры. Или если произойдут иные события влекущие за собой нахождение платы после завершения испытаний.

4 Условия, режимы, порядок, место проведения, виды и этапы испытаний

- 4.1 Порядок проведения испытаний в соответствии с пунктом 3 из ГОСТ 21552 84 и в пределах требований методик испытаний настоящей программы.
- 4.2 Общие требования безопасности при проведении испытаний по ГОСТ 12.3.019 и ГОСТ 25861.
- 4.3 Все испытания проводят в нормальных климатических условиях (НКУ), установленных в ГОСТ 21552 84, или в условиях воздействия испытательных режимов.

Нормальные климатические условия характеризуются следующими значениями:

- температура воздуха от 15 до 35 °C;
- относительная влажность воздуха от 45 до 75%;
- атмосферное давление от $8,6 \cdot 104$ Па до $10,6 \cdot 104$ Па (от 645 до 795 мм рт.ст.).
- 4.5. Испытания на внешние механические воздействия проводятся согласно требованиям ГОСТ 30630.1.2-99.
- 4.6. Испытательное оборудование должно соответствовать требованиям ГОСТ Р 8.568-2017.

5 Анализ механической прочности

5.1 Моделирование механических воздействий на печатную плату

Для проведения анализа механической прочности конструкции была разработана 3D-модель печатной платы для прибора.

Как уже говорилось ранее, печатная плата с помощью винтов устанавливается на жесткое основание. Для моделирования механической прочности прибора, мы будем исследовать влияние механических воздействий именно на это основание с уже установленной и прочно соединенной с ним печатной платой. Это упрощение возможно ввиду того, что механическая прочность применяемого для основания материала велика, а его толщина на порядок больше, чем толщина платы. Кроме того, по отдельности, без этого основания, плата не эксплуатируется, поэтому отдельное их моделирование абсолютно нецелесообразно

В ходе анализа в эту модель по необходимости можно вносить изменения, например, перемещать компоненты, либо менять точки закрепления.

Важный шаг при проектировании – это расчет механических воздействий.

Частота собственных колебаний печатной платы рассчитывается пол следующей формуле:

$$f_0 = \frac{\pi}{2a^2} \left(1 + \frac{a^2}{b^2} \right) \sqrt{\left(\frac{D}{M} \right) ab},$$

где a, b – длина и ширина печатной платы, D – цилиндрическая жёсткость, M – масса печатной платы с установленными элементами.

Цилиндрическая жесткость вычисляется по формуле:

$$D = \frac{Eh^3}{12(1-\nu^2)}$$

где E — модуль упругости, h - толщина печатной платы, ν — коэффициент Пуассона.

Входными данными для нашего расчета являются:

$$a=91$$
 мм; $b=73$ мм; $h=1$ мм; $M=0,1$ кг $E=2\cdot 10^9 \frac{\rm K\Gamma C}{\rm cm^2}$; $\nu=0,35$

Тогда

$$D = 0.19 \implies f_0 = 355.23 \ \Gamma$$
ц

Для упрощения моделирования исходная модель была упрощена, для корректной возможности проведения испытаний, не требуя высокого затрата ресурсов машины

Рис. 10 – Модель печатной платы

На рисунке 5 приведена сетка созданная для печатной платы

Рис. 11 – Сетка печатной платы

Рис. 12 – Точки крепления печатной платы

На рис. 6 и в табл. 4 приведены результаты моделирования печатной платы на поиск резонансных частот. В табл. 3 приведены численные значения основных резонансных частот.

Рис. 13 – Частотный анализ конструкции печатной платы

Таблица 3 — Результаты частотного анализа печатной платы.

Номер режима	Резонансная частота, Гц
1	965,47
2	1037,86
3	1149,73
4	1225,97
5	1402,01

5.2 Критерии стойкости.

В качестве критерия стойкости к нагрузкам выбраны запасы безопасности по пределу текучести и пределу прочности материалов.

$$\eta_T = \frac{\sigma_T}{K \cdot \sigma_{max}} - 1$$
, $\eta_B = \frac{\sigma_B}{K \cdot \sigma_{max}} - 1$,

где η_T — запас безопасности по пределу текучести, η_B — запас безопасности по пределу прочности, σ_T — значение напряжения для предела текучести, σ_B — значение напряжения для предела прочности, σ_{max} — максимальное расчётное напряжение по Губеру-Мизесу, K=2 — коэффициент безопасности.

6 Модель в сборке

6.1 Структура

Плата будет использоваться в открытом стенде, установленном в термокамере, готовый корпус отсутствует.

7 Термический анализ

Основная, рассеиваемая прибором мощность, сосредоточена на резисторах R_{9x}, выделяющем мощность до 5 Вт.

Значение теплопроводности материалов, использованных в конструкции Блока, даны в таблице 6.

Таблица 4 – Теплопроводность материалов Блока.

Наименование материала	Теплопроводность, Вт/мК
MCU	0,26
DRB-9	2,3
Цементные резисторы	13
Стеклотекстолит СТАП-2-35-1 - 0,018	0,64

Расчет температурного состояния ПП был выполнен при температуре - от -80 °C до +160 °C. Результаты расчета представлены на рисунке 9, 10 и в таблице 7.

Рисунок 14 — Результаты теплового моделирования при T=160 Градусов Цельсия(433 K).

Рисунок 15 — Результаты теплового моделирования при T = -80 Градусов Цельсия(193 К).

Таблица 5 – Результаты теплового моделирования.

Элемент	Кол-во на ПП, шт.	Максимальная рассеиваемая мощность, Вт	Температурный диапазон при моделировании, °C
R91, R92, R93	3	2,5	-80160
MCU	1	0,5	-80160
DRB-9	2	1	-80160

Приложение А.

(обязательное)

Методики испытаний (проверок)

А.1. Проверка на соответствие конструкторской документации и комплектности.

Цель проверки: удостовериться в соответствии испытываемого изделия конструкторской документации и комплектности изделия.

Проверка на соответствие конструкторской документации и комплектности проводится внешним осмотром и сличением Блока с комплектом конструкторских документов согласно ГОСТ 21552 — 84, стандартами и другой нормативной документацией, измерением размеров инструментов, указанных в приложении или обеспечивающим требуемую точность измерений, не имеющим истекшего срока поверки.

Проверка соответствия требованиям комплектности Блока проводится сличением с комплектностью, указанной в таблице 1 настоящей программы, оценкой правильности оформления эксплуатационной документации, состоянием пломб на изделии.

Блок считают выдержавшим проверку, если оно соответствует требованиям, приведенным в комплекте конструкторских документов ГОСТ 21552 — 84, стандартам и другой нормативной документацией и его комплектность соответствует таблице 1 настоящей программы.

А.2. Критерий годности.

Цель проверки: удостовериться в работоспособности испытываемого изделия.

Устройство считается годным, если на выходе резисторов R_{13} , R_{14} , R_{15} выходные напряжения равны 2.5 [B].

А.З. Испытания на удары одиночного действия.

Цель стендовых испытаний на вибрацию до установки оборудования на воздушном судне — подтвердить соответствие технических характеристик оборудования характеристикам, изложенным в нормативно-технической документации (НТД) на это оборудование во время и/или после воздействия вибрации с уровнями, заданными для соответствующей категории.

Испытания на воздействия вибрации проводят в соответствии с ГОСТ 30631-99, табл. Б.1 на вибростенде в трёх взаимно перпендикулярных направлениях в режимах, установленных в ГОСТ Р 8.568-2017. Описание выбранного вибростенда, переходное устройство и схема лабораторного стенда приведены в приложении В.

А.3.1. Испытание на вибропрочность.

Порядок действий.

- 3.1.2. Установить Блок на вибростенд в приспособление, имитирующее установку изделия в термокамере.
- 3.1.2. Подвергнуть Блок воздействию вибрации на одной из частот, находящихся в диапазоне от 0,5 до $100 \, \Gamma$ ц, при амплитуде виброускорения 1,1 м/с2 (0,12g) в течение 15 мин.
- 3.1.3. Снять Блок с платформы вибростенда и извлечь из приспособления.
 - 3.1.4. Провести внешний осмотр изделия.
- 3.1.5. Провести контрольную проверку работоспособности Блока согласно методике А.2.
- 3.1.6. Установить Блок на вибростенд в приспособление, имитирующее установку изделия в термокамере.
- 3.1.7. Подвергнуть Блок воздействию вибрации на одной из частот, находящихся в диапазоне от 100 до 0,5 Гц, при амплитуде виброускорения 1,1 м/с2 (0,12g) в течение 15 мин.
- 3.1.8. Снять Блок с платформы вибростенда и извлечь из приспособления.
 - 3.1.9. Провести внешний осмотр изделия.
- 3.1.10. Провести контрольную проверку работоспособности Блока согласно методике A.2.

Блок считают выдержавшим испытание, если после проведения испытания изделие сохраняет работоспособность и при внешнем осмотре не обнаружено механических повреждений, нарушений покрытий и ослабления крепления его (Блока) составных частей.

А.3.2. Испытание на воздействие синусоидальной вибрации.

Испытание на воздействие синусоидальной вибрации проводят на вибростенде методом качающейся частоты.

Порядок действий.

- 3.2.1. Установить Блок на вибростенд в приспособление, имитирующее установку изделия в термокамере.
- 3.2.2. Подвергнуть Блок воздействию вибрации, изменяя ее в одном направлении от верхней частоты диапазона 100 Гц к нижней 0,5 Гц с выдержкой на крайней нижней частоте каждого поддиапазона. Деление диапазона частот на поддиапазоны взять из ГОСТ 30631-99, табл. Б.1.

В пределах каждого поддиапазона частот производят плавное изменение частоты продолжительностью не менее 1 мин. При этом на частотах выше 25 Гц поддерживают амплитуду виброускорения 30 м/с2 (3g), а на частотах ниже 25 Гц поддерживают амплитуду виброперемещения 2,0 мм.

Продолжительность воздействия вибрации в каждом поддиапазоне 30 мин (10 ч в каждом положении испытуемого изделия) при испытаниях на 30 однокомпонентных вертикальных или горизонтальных стендах. Общая продолжительность воздействия по трем осям 30 ч.

- 3.2.3. Снять Блок с платформы вибростенда и извлечь из приспособления.
 - 3.2.4. Провести внешний осмотр изделия.
- 3.2.5. Провести контрольную проверку работоспособности Блока согласно методике А.2.
- 3.2.6. Установить Блок на вибростенд в приспособление, имитирующее установку изделия в термокамере.
- 3.2.7. Подвергнуть Блок воздействию вибрации, изменяя ее в одном направлении от нижней частоты диапазона 0,5 Гц к верхней 100 Гц с выдержкой на крайней нижней частоте каждого поддиапазона. Деление диапазона частот на поддиапазоны взять из ГОСТ 30631-99, табл. Б.1.

В пределах каждого поддиапазона частот производят плавное изменение частоты продолжительностью не менее 1 мин. При этом на частотах выше 25 Гц поддерживают амплитуду виброускорения 30 м/с2 (3g), а на частотах ниже 25 Гц поддерживают амплитуду виброперемещения 2,0 мм.

Продолжительность воздействия вибрации в каждом поддиапазоне 30 мин (10 ч в каждом положении испытуемого изделия) при испытаниях на 30

однокомпонентных вертикальных или горизонтальных стендах. Общая продолжительность воздействия по трем осям 30 ч.

3.2.8. Снять Блок с платформы вибростенда и извлечь из приспособления.

3.2.9. Провести внешний осмотр изделия.

3.2.10. Провести контрольную проверку работоспособности Блока согласно методике A.2.

Плата считается выдержавшим испытание, если после проведения испытания изделие сохраняет работоспособность и при внешнем осмотре не обнаружено механических повреждений, нарушений покрытий и ослабления крепления его (Блока) составных частей.

А.4. Случайная вибрация (ШСВ).

Цель стендовых испытаний на вибрацию до установки оборудования на воздушном судне — подтвердить соответствие технических характеристик оборудования характеристикам, изложенным в нормативно-технической документации (НТД) на это оборудование во время и/или после воздействия вибрации с уровнями, заданными для соответствующей категории.

Испытания на воздействия вибрации проводят в соответствии с ГОСТ 30631-99 на вибростенде в трёх взаимно перпендикулярных направлениях в режимах, установленных. Описание выбранного вибростенда, переходное устройство и схема лабораторного стенда приведены в приложении В.

4.1. Испытание на виброустойчивость.

Порядок действий.

- 4.1.1. Установить плату на вибростенд в приспособление, имитирующее установку изделия в термокамеру.
- 4.1.2. Подвергнуть плату воздействию вибрации, плавно изменяя частоту вибрации в направлении от нижней частоты 0,5 Гц до верхней 100 Гц и обратно со скоростью не более одной октавы в минуту.

Продолжительность испытаний по каждой оси не менее 15 мин.

- 4.1.3. Снять плату с платформы вибростенда и извлечь из приспособления.
 - 4.1.4. Провести внешний осмотр изделия.

- 4.1.5. Провести контрольную проверку работоспособности.
- 4.1.6. Установить плату на вибростенд в приспособление, имитирующее установку изделия термокамеру.
- 4.1.7. Подвергнуть плату воздействию вибрации, плавно изменяя частоту вибрации в направлении от верхней частоты 100 Гц до нижней 0,5 Гц и обратно со скоростью не более одной октавы в минуту.

Продолжительность испытаний по каждой оси не менее 15 мин.

- 4.1.8. Снять плату с платформы вибростенда и извлечь из приспособления.
 - 4.1.9. Провести внешний осмотр изделия.
 - 4.1.10. Провести контрольную проверку работоспособности.

Плата считается выдержавшим испытание, если после проведения испытания изделие сохраняет работоспособность и при внешнем осмотре не обнаружено механических повреждений, нарушений покрытий и ослабления крепления его (Блока) составных частей.

А.5. Испытание на работоспособность при пониженной температуре.

Цель стендовых испытаний на воздействие температуры окружающей среды до установки оборудования на воздушном судне — подтвердить соответствие технических характеристик оборудования характеристикам, изложенным в нормативно-технической документации (НТД) на это оборудование во время и/или после воздействия температуры с уровнями, заданными для соответствующей категории.

Испытание на воздействие температуры окружающей среды проводят согласно ГОСТ 21552 — 84 в камере тепла и холода в режимах, установленной документацией.

Порядок действий.

- 5.1. Установить Блок в термокамеру.
- 5.2. Понизить температуру в камере до -85 °C и экспонировать Блок в течение 4 ч.
 - 5.3. Проверить работоспособность.
 - 5.4. Выключить установку и извлечь из камеры.

Блок считают выдержавшим испытание, если после проведения испытания изделие сохраняет работоспособность и при внешнем осмотре не обнаружено механических повреждений, нарушений покрытий его (Блока) составных частей.

А.б. Испытание на работоспособность при повышенной температуре.

Цель стендовых испытаний на воздействие температуры окружающей среды до установки оборудования на воздушном судне — подтвердить соответствие технических характеристик оборудования характеристикам, изложенным в нормативно-технической документации (НТД) на это оборудование во время и/или после воздействия температуры с уровнями, заданными для соответствующей категории.

Испытание на воздействие температуры окружающей среды проводят согласно $\Gamma OCT~21552-84$ в камере тепла и холода в режимах, установленной документацией.

Порядок действий.

- 6.1. Установить Блок в термокамеру.
- 6.2. Повысить температуру в камере до 160 °C и экспонировать Блок в течение 4 ч.
 - 6.3. Проверить работоспособность.
 - 6.4. Выключить установку и извлечь из камеры.

Блок считают выдержавшим испытание, если после проведения испытания изделие сохраняет работоспособность и при внешнем осмотре не обнаружено механических повреждений, нарушений покрытий его (Блока) составных частей.

А.7. Испытания на работоспособность при повышенной влажности воздуха

Цель стендовых испытаний на воздействие повышенной влажности на работоспособность — подтвердить соответствие технических характеристик оборудования характеристикам, изложенным в нормативно-технической документации (НТД) на это оборудование во время и/или после воздействия влажности с уровнями, заданными для соответствующей категории.

Испытание на воздействие электромагнитных помех проводят согласно ГОСТ 21552 — 84 в безэховой камере с использованием системе испытаний (СИ) на устойчивость к влажности в режимах, установленных в ГОСТ.

Порядок действий.

- 7.1. Разместить Блок и СИ в безэховой камере.
- 7.2. Включить Блок.
- 7.3. Установить влажность до 95 % при температуре 35 градусов.
- 7.4. Проверить работоспособность.
- 7.5 Выключить и извлечь блок и СИ из безэховой камеры.

Блок считают выдержавшим испытание, если во время и после проведения испытания Блок сохраняет работоспособность.

Приложение В

Дли проведения испытнаний на воздействия вибрации был выбран вибростенд F500-120M SPA601. Внешний вид выбранной виброустановки приведён на рисунке В.1. Характеристики виброустановки приведены в таблице В.1.

Примечания: 1. Для длительного срока службы используйте вибростенд на уровне 80-85% от максимальной вынуждающей силы. 2. Возможность расширения нижней границы частотного диапазона до DC.

3. Sonic Dynamics оставляетза собой права на изменения параметров оборудования.

Рисунок В.1 – Внешний вид виброустановки F500-120M SPA601.

Таблица В.1 – Технические характеристики виброустановки F500-120M SPA601

Номинальная вынуждающая сила, синусоидальная вибрация Н	7, 500
Номинальная вынуждающая сила, широкополосная случайная вибрация, СКЗ, Н	350
Номинальная вынуждающая сила, "классический удар", Н	1000
Нижний предел диапазона частот, Гц	7
Верхний предел диапазона частот, Гц	5000
Частота основного резонанса не менее, Гц	4000
Номинальное значение воспроизводимого виброперемещения (синус), амплитуда, мм, ±	10
Номинальное значение воспроизводимого виброперемещения (синус), ВЫБОР	Пик-Пик
Номинальное значение воспроизводимой виброскорости (синус), м/с	1,2
Номинальное значение воспроизводимого виброускорения (синус), g	30
Масса максимальной нагрузки, кг	20
Приведенная масса подвижной системы вибростенда, кг	1,7
Размер стола (диаметр или ДХШ), мм	120
Тип электропитания	от усилителя мощности
Габаритные размеры (ДхШхВ), мм	400x365x470
	95

Рабочий диапазон выбранного вибростенда позволяет проводить испытания на воздействия вибрации в рабочем диапазоне Блока.

Рис. В.2 – Схема переходного устройства вибростенда.

Рис. В.3 – Характеристики переходного устройства

Переходное устройство выполнено из стали 10 ГОСТ 1050-2013, путем фрезеровки заготовки. На предприятии предпочитают изготавливать переходные устройства путем фрезеровки заготовок, не отходил от традиций. В основании ПУ расположены 7 отверстий для крепления с вибростендом болтами М6. Так же стоит отметить, что центр масс близок к нулевым координатам. Чертёж переходного устройства, а также процесс установки ПУ в вибростенд и крепления ПП в ПУ приведены в приложении Г.

Расчёт резонансных частот ПУ приведён в таблице В.2 и на рисунке В.3.

Таблица В.2 – Резонансные частоты ПУ.

Номер режима	Резонансная частота, Гц
1	1512,56
2	1643,87
3	1734,23
4	1861,09
5	1950,82

Рисунок В.4 — Расчёт резонансных частот ΠY .

Структурная схема испытаний представлена на рис. В.5.

Рис. В.5 – Структурная схема лабораторного стенда

Приложение Г.

Рисунок Г.1 – Чертёж переходного устройства.

Рисунок $\Gamma.2$ – Порядок установки ПП на вибростенд через ПУ.

Список используемых источников

- 1. С.Н. Синавчиан, Н.В. Федоркова, М.А. Синельщикова. «Испытания радиоэлектронных средств на механические и климатические» М.: Изд-во МГТУ им.Н.Э.Баумана, 2015. 36 с.
- 2. ГОСТ 21552 84 « Общие технические требования, приемка, методы испытаний, маркировка, упаковка, транспортирование и хранение»
- 3. ГОСТ 30631-99 «Общие требования к машинам, приборам и другие технические изделиям в части стойкости к механическим внешним воздействующим факторам при эксплуатации»