PROYECTO FINAL SIMULADOR DE MRI

Fecha de Entrega Parte I: Viernes 03 de Diciembre de 2021 a las 11:30. Fecha de Entrega Parte II: Lunes 20 de Diciembre de 2021 a las 23:59.

El objetivo de esta tarea es experimentar los conceptos vistos en el curso usando simuladores de MRI libres.

Objetivo parte I: Conocer varios simuladores de MRI y experimentar sus características con respecto a instalación, usabilidad y funcionalidades.

Objetivo parte II: Entender cómo dichos simuladores son usados para estudiar las secuencias básicas y rápidas vistas en clases.

En la presente tarea tienen que usar dos simuladores de MRI para las secuencias básicas de *Spin y Gradiente Eco* usando los simuladores libres JEMRIS y Koma. Adicionalmente, se pedirá que para la parte I que instalen el simulador MRiLab.

Método de Evaluación: Este proyecto será evaluado en dos partes, las cuales tienen la siguiente ponderación: Parte I (25%) y Parte II (75%).

Parte II

La parte II del proyecto estará enfocada solamente en el uso de los paquetes de simulación de MRI: JEMRIS y Koma. Esta tarea, será realizada en parejas. El alumno 1 debe simular Gradient Echo y el alumno 2 Spin Echo. ¡Lea todo el enunciado antes de comenzar a hacer la tarea!

Debe entregar un reporte donde para cada pregunta explique: (i) Qué hizo; (ii) Los resultados obtenidos; y (iii) Qué aprendió.

Se le entregará un fantoma numérico que contiene información de las propiedades T1, T2, Densidad Protónica (M0) y $\Delta B0$:

Figura 1. fantoma.mat

El fantoma tiene Nx = Ny = 128 pixeles. La resolución de píxel es $\Delta x = \Delta y = 2$ mm. Este fantoma estará en formato .mat para JEMRIS y en formato .phantom para Koma.

I) Preguntas teóricas (4 pts.)

- **(1 pto.)** Suponga un pulso "Hard" de duración T=1 ms, ¿Cuál deberá ser su magnitud de campo B1, para generar un flip-angle de 90°?
- (1 pto.) Dada una adquisición EPI, cuál debe ser la magnitud de los gradientes de codificación en frecuencia G_x y fase G_y para una adquisición con FOV = 25.6 cm? Suponga que el tiempo entre muestras es de $\Delta t = 4 \mu s$, Nx = Ny = 101, y gradiente máximo G_{max} = 30 mT/m. Utilice la siguiente fórmula $G_i = \frac{2\pi}{\gamma \cdot \Delta t \cdot FOV_i}$. Donde i = x ó y.
- **(1 pto.)** ¿Cuánto tiempo debe durar encendido el gradiente en dirección de frecuencia τ_x y fase τ_y suponiendo la misma amplitud de gradiente?
- (1 pto.) ¿Cuánto tiempo debe pasar entre el bloque RF y la adquisición EPI para que el TE = 50 ms?
- **(1 pto.)** Para una secuencia de Spi Echo se tendrán bloques RF90-D1-RF180-D2-EPI. ¿Cuáles deben ser los delays D1 y D2 para tener mismo TE = 50 ms? Use que $\tau_{RF180} = 1 \text{ } ms$

II) (Alumno1) Gradient Echo (5 pto.)

Simule la secuencia de Gradient Echo con lectura EPI usando los valores estimados en la parte anterior.

- **(2 ptos.)** Usando la interfaz de secuencias de JEMRIS (con <u>JEMRIS seq</u> para **generar la secuencia desde cero**). Grafique la secuencia diseñada y muestre la imagen simulada (con JEMRIS sim).
- **(2 ptos.)** Usando el framework de programación en Julia de Koma (como en la ayudantía). Grafique la secuencia diseñada y muestre la imagen simulada.
- (1 ptos.) Compare los resultados obtenidos.

III) (Alumno 2) Spin Echo (5 pto.)

Simule la secuencia de Spin Echo con lectura EPI usando los valores estimados en la parte anterior.

- **(2 ptos.)** Usando la interfaz de secuencias de JEMRIS (con <u>JEMRIS</u> <u>seq</u> para **generar la secuencia desde cero**). Grafique la secuencia diseñada y muestre la imagen simulada (con JEMRIS sim).
- **(2 ptos.)** Usando el framework de programación en Julia de Koma (como en la ayudantía). Grafique la secuencia diseñada y muestre la imagen simulada.
- (1 ptos.) Compare los resultados obtenidos.

IV) Artefactos de off-resonance (9 pto.)

- **(1 ptos.)** Modifique los fantomas entregados y genera cuatro fantomas nuevos con mapas de offresonance de:
 - $\circ \Delta f_1(x) = \mathbf{0},$

 - $\circ \quad \Delta f_3(x) = 1.0 \cdot \Delta f_0(x),$
 - $\circ \quad \Delta f_4(x) = 2.0 \cdot \Delta f_0(x).$

En JEMRIS el off-resonance es representado por una propiedad de nombre DB [rad/s]. Por otro lado, en Koma es una propiedad llamada Δw también en [rad/s].

- (3 ptos.) (Alumno 1) Simula los fantoma en JEMRIS y Koma usando la secuencia diseñada en el punto anterior, es decir, Gradient Echo con adquisición EPI. Presenta tus resultados como una tabla de imágenes con dos filas (cada simulador) y cuatro columnas (cada off-resonance).
- **(3 ptos.) (Alumno 2)** Simula los fantoma en JEMRIS y Koma usando la secuencia diseñada en el punto anterior, es decir, **Spin Echo** con adquisición EPI. Presenta tus resultados como una tabla de imágenes con dos filas (cada simulador) y cuatro columnas (cada off-resonance).
- (2 ptos.) ¿Cómo modificarías la secuencia para que sea menos sensible al off-resonance? Investigue.

V) Artefactos de movimiento (9 pto.)

- **(1 ptos.)** Modifique los fantomas entregados y genera cuatro fantomas nuevos con mapas de desplazamiento $(\vec{x}(t) = \vec{x}_0 + \Delta \vec{u}(\vec{x},t))$ de:
 - \circ $\Delta \overrightarrow{u_1}(\overrightarrow{x},t) = \mathbf{0},$
 - $\circ \quad \Delta \overrightarrow{u_2}(\vec{x},t) = (0.25 \ m/s \ \cdot \ t) \cdot \hat{x},$
 - $\circ \quad \Delta \overrightarrow{u_3}(\overrightarrow{x},t) = (0.50 \ m/s \ \cdot \ t) \cdot \widehat{x},$

Para JEMRIS el movimiento se agrega utilizando una variable V de 1x7 en el diálogo de simulación (MotionTrajectory variable), donde V=(t [ms], dux [mm], 0, 0, 0, 0, 0). La variable t en este caso sería la cantidad de tiempo que toma en moverse dux. Por otro lado, en Koma el fantoma tiene la propiedad $\Delta ux(x,y,z,t)$ que es una función que describe el desplazamiento en x en [m].

• (3 ptos.) (Alumno 1) Simula los fantoma en JEMRIS y Koma usando la secuencia diseñada en el

- punto anterior, es decir, **Gradient Echo** con adquisición EPI. Presenta tus resultados como una tabla de imágenes con dos filas (cada simulador) y cuatro columnas (cada nivel de movimiento).
- **(3 ptos.) (Alumno 2)** Simula los fantoma en JEMRIS y Koma usando la secuencia diseñada en el punto anterior, es decir, **Spin Echo** con adquisición EPI. Presenta tus resultados como una tabla de imágenes con dos filas (cada simulador) y cuatro columnas (cada nivel de movimiento).
- (2 ptos.) ¿Cómo modificarías la secuencia para que sea menos sensible al movimiento? Investigue.

ADEMÁS DEL INFORME DEBE ENTREGAR ESTAS PÁGINAS DE FORMA INDIVIDUAL A: cncastillo@uc.cl, rmcoronado@uc.cl y asdibiase@uc.cl.

Información básica: (0.5 pto.)

① ② Totalmente En desacuerdo en desacuerdo	3 Neutral	4 De acuerdo	⑤ Totalmente de acuerdo
	Totalmente En desacuerdo	Totalmente En desacuerdo Neutral	Totalmente En desacuerdo Neutral De acuerdo

Implementación de las secuencias (0.5 pto.)

		Me pare ramaciói		_	ncias	Tiempo programación (hh:mm:ss)	Comentarios o complicaciones
JEMRIS	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo		
Koma	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo		

Ayuda a la comprensión de las secuencias (0.5 pto.)

	El simulador me ayudó a entender el funcionamiento de estas secuencias					Comentarios o complicaciones
JEMRIS	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	Totalmente de acuerdo	
Koma	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo	

Artefactos de off-resonance (0.5 pto.)

	Fue simple modificar el off-resonance en la simulación					Tiempo programación (hh:mm:ss)	Comentarios o complicaciones
JEMRIS	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo		
Koma	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo		

Ayuda a la comprensión de las secuencias (0.5 pto.)

	El simulador me ayudó a entender el efecto del off-resonance en estás secuencias	Comentarios o complicaciones
JEMRIS	1 2 3 4 5 Totalmente En desacuerdo Neutral De acuerdo Totalmente en desacuerdo de acuerdo	
Koma	1 2 3 4 5 Totalmente En desacuerdo Neutral De acuerdo Totalmente de acuerdo de acuerdo	

Artefactos de movimiento (0.5 pto.)

	Fue simple modificar el movimiento en la simulación					Tiempo programación (hh:mm:ss)	Comentarios o complicaciones
JEMRIS	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo		
Koma	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo		

Ayuda a la comprensión de las secuencias (0.5 pto.)

	El simulador me ayudó a entender el efecto de movimiento en estás secuencias	Comentarios o complicaciones
JEMRIS	1 2 3 4 5 Totalmente En desacuerdo Neutral De acuerdo Totalmente de acuerdo de acuerdo	
Koma	Totalmente En desacuerdo Neutral De acuerdo Totalmente de acuerdo	

Resumen de tiempos de simulación, por favor correr en el mismo PC todos los experimentos:

(1 pto.)

	GE (mm:ss)	SE (mm:ss)	GE+dF (mm:ss)	SE+dF (mm:ss)	GE+Mov (mm:ss)	SE+Mov (mm:ss)
JEMRIS						
Koma						

Apreciación personal (0.5 pto.)

		e softwar uencias				Comentarios o complicaciones
JEMRIS	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo	
Koma	Totalmente en desacuerdo	2 En desacuerdo	3 Neutral	4 De acuerdo	5 Totalmente de acuerdo	

(0.5 pto.)

	¿Qué crees que le falta a cada simulador?
JEMRIS	
Koma	

(0.5)	pto.)

	¿Qué simulador recomendarías a un compañero? Y por qué.
JEMRIS	
Koma	