1 / 1 point

1 / 1 point

1 / 1 point

1 / 1 point

TOTAL POINTS 5

1. Let two matrices be

 $A = \begin{bmatrix} 1 & -4 \\ -2 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & 3 \\ 5 & 8 \end{bmatrix}$

What is A + B?

✓ Correct

To add two matrices, add them element-wise.

Let x =

What is 2 * x?

- $\bigcirc [10 \quad 10 \quad 4 \quad 14]$
- 14

✓ Correct

To multiply the vector x by 2, take each element of x and multiply that element by 2.

3. Let u be a 3-dimensional vector, where specifically

What is u^{T} ?

- $\bigcirc [8 \ 1 \ 2]$

✓ Correct

4. Let u and v be 3-dimensional vectors, where specifically

and

What is $u^T v$?

(Hint: u^T is a

1x3 dimensional matrix, and v can also be seen as a 3x1

matrix. The answer you want can be obtained by taking

the matrix product of u^T and v.) Do not add brackets to your answer.

✓ Correct

5. Let A and B be 3x3 (square) matrices. Which of the following

must necessarily hold true? Check all that apply.

1 / 1 point

If C = A * B, then C is a 3x3 matrix.

✓ Correct

Since A and B are both 3x3 matrices, their product is 3x3. More generally, if A were an $m \times n$. matrix, and B a $n \times o$ matrix, then C would be $m \times o$. (In our example, m = n = o = 3.)

If B is the 3x3 identity matrix, then A*B=B*A

✓ Correct

Even though matrix multiplication is not commutative in general ($A*B \neq B*A$ for general matrices A,B), for the special case where B=I, we have A*B=A*I=A, and also B*A=I*A=A. So, A*B=IB*A.