平成27年度 東京工業大学ロボット技術研究会 回路講習会③

日時: 平成27年5月21日(木) 18:00~19:30

場所:S221

講義担当者:けり @Ryokeri14

♡第3回 全内容

- 2. デジタル回路入門
- 3. デジタル出力
- 4. <u>デジタル出力同士をつないで 15.汎用ロジックIC</u> はいけない
- 5. デジタル出力端子を使う
- 6. デジタル入力
- 7. スイッチとデジタル入力
- 8. スイッチのチャタリング
- 9. 遅延回路
- 10. 論理回路とは
- 11. 代表的な論理回路「AND」 [OR][NOT]

- 宿題(マルチバイブレータ)の 12.その他の論理回路「NAND」
 - 13.なぜ「その他」なのか
 - 14.論理回路を使う

 - 16.ICにつけるパスコンの存在
 - 17.モーター
 - 18.モーターの種類
 - 19.モーターを動かす
 - 20.PWM制御
 - 21. Hブリッジ回路
 - 22. Hブリッジ回路の注意①デッド タイム

- 23. Hブリッジ回路の注意②FETの
- 24. 回路修正後のモーター駆動表
- 25.モーター駆動ロジック回路
- 26. モータードライバICとは
- 27. モータードライバIC:TA7291P
- 28. サーボモーター
- 29. シリアル通信
- 30.シリアル通信の種類
- 31. シリアル通信のやり方
- 32. 宿題(加算器)

- 1. <u>宿題の解説</u>
- 2. デジタル回路入門
- 3. <u>論理回路</u>
- 4. モーター
- 5. <u>PWM制御</u>
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

目次に戻る

※クリックするとそのページにジャンプします.

- 1. 宿題の解説
- 2. デジタル回路入門
- 3. <u>論理回路</u>
- 4. モーター
- 5. <u>PWM制御</u>
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

1. マルチバイブレータ

目次に戻る

※クリックするとそのページにジャンプします.

宿題の解説

• 周期T[s]は

T = log2(C1xR3+C2xR2) [s]

• よって、右の回路の場合は

 $T = 0.69 \times 0.0001 \times 22000 \times 2$

= 3 [s]

となるはず.

• 点滅の仕組みは、難しいので、知りたい人は個人的に聞きに来てください.

- 1. 宿題の解説
- 2. デジタル回路入門
- 3. 論理回路
- 4. モーター
- 5. PWM制御
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

目次に戻る

- 1. デジタル回路入門
- 2. デジタル出力
- 3. デジタル入力
- 4. スイッチとデジタル入力
- 5. スイッチのチャタリング
- 6. 遅延回路

*クリックするとそのページにジャンプします.

デジタル回路入門

デジタル回路はOと1からなる.

● 電気的には、OがGND電位で、1がVCC電位を指すことが多い、

• マイコンの中身はデジタル回路でできている.

デジタル出力

• デジタル出力は0, 1の出力であるが, 電子回路では0をGND電位, 1を VCC電位として使うことが多い.

デジタル出力は「電流を流す」、「流さない」ではなく、端子が「VCCに接続される」、「GNDに接続される」ということを表す。

● デジタル出力端子を使わないとき、その端子には何もつながなくてよい。

デジタル出力同士をつないではいけない

• デジタル出力端子は、GNDにもVCCにもつながり得る.

- 2つのデジタル出力ピンを直でつなぐと, ショートする恐れがある.
 - →マイコンが壊れる

- デジタル出力端子を電源端子につなぐのもNG.
 - →マイコンが壊れる

デジタル出力端子を使う

- デジタル出力端子の最大電流は 20mA程度である(ものによって違う)
 →LED数個ならば光る.
- モーターなどの大電流を要するものは 動かない。
 - →トランジスタ, FETを使おう.

デジタル入力

- デジタル入力端子はピンの電圧が0Vか5Vかを読み取る.
- デジタル入力端子に何もつながないとどうなるか?
 - 電圧が安定しない.
 - それでもOVか5Vかを読み取ろうとする.
 - 読み取り結果がOVだったり5Vだったりまちまち.
 - マイコンに負担がかかる.
 - マイコンが熱くなる.
 - 最悪, マイコンが壊れる.
- デジタル入力端子を使わないときはVCCまたはGNDにつないでおこう.

スイッチ と デジタル入力 ①

- スイッチを押すと、INPUTはVCCにつながる.
 - →いい感じに思える
- スイッチを押していないとき、INPUTはなにもつながれていない
 - →デジタル入力がオープン状態
 - →誤作動
- つまり、これはダメな例

スイッチ と デジタル入力 ②

- 次にこんな回路を考える.
- スイッチを押している間GND
- スイッチをはなすとVCC
 - →いい感じに思える
- では、スイッチを押している途中は?
 - 微小時間だがオープン状態になる.
 - たとえ微小でも、誤作動につながる.
- つまり、これもダメな例

スイッチ と デジタル入力 ③

- 10k程度の大きめの抵抗でVCCかGNDに つないでおく.
- スイッチを押す前はGND
- スイッチを押したらVCC →これでOK
- VCCにつなぐ抵抗をプルアップ抵抗, GNDにつなぐ抵抗をプルダウン抵抗という.
- これは電子工作でとても重要なことなので 覚えておこう.

スイッチのチャタリング

• チャタリングとは

- 人間がスイッチを1回だけ押したと思っても、実際はスイッチのバウンドにより何回も 押されていることがある.
- マイコンは非常に

 敏感だから、

 それをしっかり数えてしまう。

• チャタリングの対策

- ハードウェアで対策→コンデンサと抵抗を使って遅延回路を組む.
- ソフトウェアで対策→数ミリ秒時間に余裕をもってスイッチのデータを読む。

遅延回路

• コンデンサが充放電されるまで、状態を維持する回路

- 1. 宿題の解説
- 2. デジタル回路入門
- 3. 論理回路
- 4. モーター
- 5. PWM制御
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

目次に戻る

- 1. 論理回路とは
- 2. 代表的な論理回路 「AND」「OR」「NOT」
- 3. その他の論理回路 「NAND」「NOR」「XOR」
- 4. なぜ、「その他」なのか
- 5. 論理回路を使う
- 6. 汎用ロジックIC 74HCxx
- 7. ICにつけるパスコンの存在

論理(ロジック)回路とは

• デジタル回路はOと1から構成されている.

• 論理回路はその最小単位.

• 論理回路を組み合わせることでデジタル回路を構成できる.

代表的な論理回路「AND」「OR」「NOT」

AND回路

	OR回路				
A	7				
В					

	NOT回路	
X	+>0-	Υ

入力A	入力B	出力Y
0	0	0
0	1	0
1	0	0
1	1	1

入力A	入力B	出力Y
0	0	0
0	1	1
1	0	1
1	1	1

入力X	出力Y
0	1
1	0

その他の論理回路「NAND」「NOR」「XOR」

NAND回路

入力A	入力B	出力Y
0	0	1
0	1	1
1	0	1
1	1	\circ

NOR回路

入力A	入力B	出力Y
0	0	1
0	1	0
1	0	0
1	1	0

XOR回路

入力A	入力B	出力Y
0	0	0
0	1	1
1	0	1
1	1	0

なぜ「その他」なのか

- 同様に、「NOR」「XOR」も「AND」「OR」「NOT」だけで作れる
- さらに言うと、「NAND」だけもしくは「NOR」だけですべての 論理回路を組むことができる.

論理回路を使う

1bit半加算器

入力A	入力B	出力S	出力C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

汎用ロジックIC 型番: 74HCxx

論理回路	ICの型番	論理回路の入数
AND回路	74HC08	4
OR回路	74HC32	4
NOT回路	74HC04	6
NAND回路	74HC00	4
NOR回路	74HC02	4
XOR回路	74HC86	4

ひとつのICの中に同じ論理回路がいくつか入っている

- IC(マイコンも)の電源には、必ずパスコン(バイパスコンデンサ)をつける.
- コンデンサの種類はセラミックコンデンサで、容量は0.1uF.
- ICは出力をコントロールする. その時, パスコンがないと電気が足りなく なって高速な反応ができなくなり, 誤作動してしまう.
- できるだけICの近くにパスコンをつけた方が効果が大きい。
- とにかく、ICの電源には、パスコンをつけよう.

- 1. 宿題の解説
- 2. デジタル回路入門
- 3. <u>論理回路</u>
- 4. モーター
- 5. <u>PWM制御</u>
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

目次に戻る

- 1. モーターとは
- 2. モーターの種類
- 3. モーターを動かす

※クリックするとそのページにジャンプします.

モーターとは

• 電気エネルギーを運動エネルギーに変える.

- 大きな電流が流れる.
 - マイコンに直接つなげない
 - →FETかモータードライバICを使う.

- ギアを使って減速する.
 - トルク(力)を大きくする.

モーターの種類

- DCモーター と ACモーター
- ブラシモーター と ブラシレスモーター
- ステッピングモーター
- ・サーボモーター
- 振動モーター

DCブラシモーター

振動モーター

ステッピングモーター

モーターを動かす

• これだけでもモーターは回る.

- モーターは1方向にしか回らない.
 - 進んだら戻れない...
 - →あとで双方向回転回路を解説

- 1. <u>宿題の解説</u>
- 2. デジタル回路入門
- 3. <u>論理回路</u>
- 4. モーター
- 5. <u>PWM制御</u>
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

1. PWM制御とは

2. PWM制御

目次に戻る

PWM制御とは

- PWMとは
 - Pulse Width Modulation の略. 日本語訳は「パルス幅変調」.
 - パルス波とは、Oと1のみのデジタルな波のこと

- なにに使うのか
 - モーターの速さを調節する.
 - LEDの明るさを調節する.

PWM制御

- モーターなどの駆動にパルス波を出力して、電流を断続的に流す。
- こうすることで、 <mark>相対的</mark>に電流を与えてる時間が減るから、 モーターはゆっくりと回る.
- モーターがカクカク動きそうだが、周波数を大きくすればなめらかになる。

PWM制御

• パルス波のHighの割合をデューティ比(Duty比)という.

- 1. 宿題の解説
- 2. デジタル回路入門
- 3. 論理回路
- 4. モーター
- 5. PWM制御
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

- 1. Hブリッジ回路
- 2. Hブリッジの注意①
- 3. Hブリッジの注意②
- 4. 回路修正後のモーター駆動表
- 5. モーター駆動ロジック回路

目次に戻る

Hブリッジ回路

• 双方向回転回路

Α	В	С	D	モーター	回路図
0	0	1	1	正転	1
1	1	0	0	逆転	
0	0	0	0	ブレーキ	2
1	1	1	1	ブレーキ	
0	1	X	X	禁止(貫通電流)	3
X	X	0	1	禁止(貫通電流)	
	その	の他		フリー	

- A,B,C,Dに電位を与える.
- 禁止のように操作すると、燃える.

Hブリッジの注意①

- 絶対に貫通電流を流してはいけない. 一瞬で壊れる!
- ロジック回路で0→1や1→0になるのに少し時間がかかる.

Hブリッジの注意①の対策

- デッドタイム(両方OFFの時間)を生成する
 - ソフトウェアでデットタイムを生成
 - ハードウェアでデットタイムを生成

Hブリッジの注意②

• モーターが12Vで, 入力ロジックが5Vの場合, 5Vをつないでも12Vの半分以下なので, LOWと認識されてしまう. →誤作動

- モーターの電圧とロジックの電圧が違うと、スイッチングができない。
 - →部品を少し足して回路を変える.

Hブリッジの注意②の対策

回路修正後のモーター駆動表

• 実装するときはしっかりOと1を確認しよう.

マイコンの電源が入っていない状態で禁止 パターンにならないことも確認しておくこと.

Α	В	С	D	モーター
1	0	0	1	正転
0	1	1	0	逆転
1	0	1	0	ブレーキ
0	1	0	1	ブレーキ
1	1	X	X	禁止
X	X	1	1	禁止
その他				フリー

モーター駆動ロジック回路

- Hブリッジの駆動表をロジック 回路で表す.
- これは先ほどの電圧修正前の Hブリッジ用であることに注意 する.(一般のHブリッジ)
- PWM端子にはパルス波を送る

DRI A	DRI B	モーター
0	0	フリー
0	1	正転
1	0	逆転
1	1	ブレーキ

第3回 目次

- 1. 宿題の解説
- 2. デジタル回路入門
- 3. 論理回路
- 4. モーター
- 5. PWM制御
- 6. Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

- 1. モータードライバICとは
- 2. モータードライバIC TA7291P
- 3. TA7291を使う上で
- 4. サーボモーター

目次に戻る

モータードライバICとは

- Hブリッジ回路や駆動ロジック回路を組むのは結構大変.
- →それらの回路をまとめたICが存在する
- → それがモータードライバIC

- 定格電流:1A (ピーク2A) 定格を守ろう.
- 1つのICにHブリッジ, 駆動ロジック, 保護回路が入っている.

ピン	ピン名	役割
7	Vcc	ロジック電源+
8	Vs	モーター電源+
4	Vref	Vsにプルアップ
1	GND	共通グラウンド
5	IN1	ロジック入力1
6	IN2	ロジック入力2
2	OUT1	モーター出力1
10	OUT2	モーター出力2
3,9	NC	何もつながない

TA7291P

- 入力ロジックと出力の関係
- ∞はハイインピーダンス → フリー回転

入力		出	カ	モード
IN1	IN2	OUT1	OUT2	L 1
0	0	8	8	ストップ
1	0	Н	L	CW / CCW
0	1	L	Н	CCW / CW
1	1	L	Ĺ	ブレーキ

TA7291Pを使う上で

- TA7291Pは定格1Aである.
- →普通の小型DCモーターをまわすのに適切な電流
- →大きなロボットの動力源には、電力が足りない.

→ やっぱり, Hブリッジを自分で作ろう.

小型DCモーター

サーボモーター

- 角度を自由に制御できるモーター.
 - ロボットの腕, 舵に使う
- 回転し続けて使うわけではなく、ある角度にとめながら使うことが多い、
- +/-90度くらいしか回らないものが多い
- 周期20msくらいのパルス波を送ることで角度を制御 → Duty比が角度に

第3回 目次

- 1. 宿題の解説
- 2. デジタル回路入門
- 3. 論理回路
- 4. モーター
- 5. PWM制御
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

1. シリアル通信とは

2.シリアル通信の種類

3.シリアル通信のやり方

目次に戻る

シリアル通信とは

- 2つのマイコンなどの間でデータを送受信すること。
- シリアル通信とは、通信の総称で、シリアル通信の中にいろいろな種類がある。
 - 例: UART, I2C(I2C), SPI などがある.
 - 上のようにちゃんとした名前がなくても、マイコンの通信ならばシリアル通信と呼べる.
- ・実際の使い道
 - マイコンからパソコンに逐次データを送って、正常に動作しているか確認する。
 - センサICから読み取ったデータを、マイコンに送る。
 - マイコン親機が、マイコン子機を操る.

シリアル通信の種類

- UART(ユーアート)
 - 最もよく使われているシリアル通信. 主にパソコンとマイコンの間の通信に使われる.
- SPI(エスピーアイ)
 - 高速の通信が可能. マイコンとICや, マイコン同士で使われる.
- I2C, I2C(アイツーシー, アイスケアードシー)
 - マイコンとICの間で使われる. 通信線の数が少ないのが特長.

シリアル通信のやり方

- 一般的なシリアル通信は、マイコンの機能として存在する.
 - 自分でパルス波を作って送信するのではなく, 送りたいデータを送信するプログラムを書けば, **自動で送信**してくれる.

• そんなに難しく考える必要はない.

第3回 目次

- 1. <u>宿題の解説</u>
- 2. デジタル回路入門
- 3. <u>論理回路</u>
- 4. モーター
- 5. <u>PWM制御</u>
- **6.** Hブリッジ回路
- 7. <u>モータードライバ</u>
- 8. シリアル通信
- 9. 宿題

1. 加算器を作ろう

目次に戻る

宿題

半加算器→

- 1bit半加算回路を作ってみよう. 入力はタクトスイッチ, 出力はLED.
- 提出などはありません. 自分で確認してみてね.
- ブレッドボードを使おう. 入力のプルダウン抵抗を忘れずに.
- 余裕のある人は、1bit全加算器を作ってみよう。
 - 全加算器と半加算器の違いを考えよう.

↓全加算器

A 74HC04 2 74HC08 3 74HC08 5 74HC08 6 7

52