1

Quiz

1. What is the difference between weak and strong normalisation?

Answer: weak normalisation means that all terms can be reduced to a normal form. Strong normalisation (aka termination) means that there is no infinite reduction. Put differently, if we define a finished reduction sequence starting in s as either a finite sequence $s \Rightarrow s_1 \Rightarrow s_2 \Rightarrow \ldots \Rightarrow s_n$ with $n \geq 0$ and s_n a normal form, or an infinite sequence $s \Rightarrow s_1 \Rightarrow s_2 \Rightarrow \ldots$, then:

Weak normalisation: for all terms s, there exists a finished reduction sequence starting in s that is finite

Strong normalisation: for all terms s, all finished reduction sequences starting in s are finite

2. What is the difference between local confluence and general confluence?

Answer: local confluence means that if $s \Rightarrow t$ and $s \Rightarrow q$ then there is some u such that both $t \Rightarrow^* u$ and $q \Rightarrow^* u$. General confluence means that if $s \Rightarrow^* t$ and $s \Rightarrow^* q$ then there is some u such that both $t \Rightarrow^* u$ and $q \Rightarrow^* u$. Put differently:

Local confluence: If s reduces to both t and q in **one step**, then t and q can be reduced to the same term.

Confluence: If s reduces to both t and q in an arbitrary number of steps, then t and q can be reduced to the same term.

3. Use the lexicographic path ordering (by hand) to prove termination of:

$$\begin{array}{ccc} f(g(x),g(b)) & \Rightarrow & f(x,x) \\ g(a) & \Rightarrow & b \\ b & \Rightarrow & a \end{array}$$

Answer: note that the third rule forces us to choose $b \triangleright a$, and therefore the second rule forces us to choose $g \triangleright b$. So we choose $g \triangleright b \triangleright a$; it turns out not to matter how f falls in the precedence. We end up with the following derivation:

- (a) f(g(x), g(b)) > f(x, x) by (lex), (3d), (3e), (3e)
- (b) g(a) > b by (copy) since g > b
- (c) $b \succ a$ by (copy) since $b \triangleright a$
- (d) $g(x) \succ x$ by (sub) since $x \succeq x$
- (e) $f(g(x), g(b)) \succ x$ by (sub), 3d
- 4. What properties should a relation \succ satisfy to be a reduction order?

Answer: it should be **stable** and **monotonic**. That is:

```
stable If s \succ t and \sigma is a substitution, then also s\sigma \succ t\sigma.

monotonic If s_i \succ t_i then f(s_1, \ldots, s_i, \ldots, s_n) \succ f(s_1, \ldots, t_i, \ldots, s_n).
```