QHCC

Generated by Doxygen 1.12.0

1 /	A baseline for machine-learning-based hepatocellular carcinoma diagnosis using multi-modal clinical data-QHCC	1
	1.1 The example codes about how to use the QHCC dataset for machine learning tasks	1
	1.2 Dependencies	1
	1.3 Extracting radiomics features	1
	1.4 Experiments on TNM staging	1
2 I	Namespace Index	3
	2.1 Namespace List	3
3 I	Namespace Documentation	5
	3.1 demo_QHCC_XGBoost Namespace Reference	5
	3.1.1 Detailed Description	5
	3.2 extract_QHCC_radiomics_features Namespace Reference	5
	3.2.1 Detailed Description	6
	3.2.2 Variable Documentation	6
	3.2.2.1 radiomics data	6

Chapter 1

A baseline for machine-learning-based hepatocellular carcinoma diagnosis using multi-modal clinical data—QHCC

1.1 The example codes about how to use the QHCC dataset for machine learning tasks

1.2 Dependencies

- Python-3.8.8
- numpy-1.21.5
- · pandas-1.4.2
- sklearn-1.1.2
- · xgboost-2.1.3
- · pyradiomics-3.0.1
- SimpleITK-2.4.0

1.3 Extracting radiomics features

Download the data and modify the folder path in extract_QHCC_radiomics_features.py accordingly. $python\ extract_QHCC_radiomics_features.py$

1.4 Experiments on TNM staging

python demo_QHCC_XGBoost.py

Cross-Validation Results on different combinations of input data:

| Data type | Redcap data || Lab data || Redcap + Lab data || Null ||

A baseline for machine-learning-based hepatocellular carcinoma diagnosis using multi-modal clinical data-QHCC

	AC	С	AU	С	ACC		AUC		ACC		AUC		ACC		AUC	
CT	0.88	±	0.90	±	0.51	±	0.68	±	0.83	±	0.90	±	0.55	±	0.64	±
	0.04		0.06		0.08		0.08		0.07		0.02		0.08		0.06	
MRI	0.83	±	0.88	±	0.49	±	0.65	±	0.89	±	0.93	±	0.51	±	0.57	±
	0.12		0.09		0.06		0.10		0.05		0.03		0.10		0.08	
CT + MRI	0.88	±	0.90	±	0.55	±	0.69	±	0.86	±	0.92	±	0.54	±	0.60	±
	0.05		0.07		0.04		0.09		0.03		0.02		0.09		0.03	
Null	0.82	±	0.88	±	0.48	±	0.50	±	0.85	±	0.90	±	Null		Null	
	0.12		0.12		0.06		0.06		0.07		0.04					

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

demo_QHCC_XGBoost	
The demo file for doing classification on QHCC datasets	5
extract_QHCC_radiomics_features	
Extracting radiomics features from medical images with given masks	5

4 Namespace Index

Chapter 3

Namespace Documentation

3.1 demo_QHCC_XGBoost Namespace Reference

The demo file for doing classification on QHCC datasets.

3.1.1 Detailed Description

The demo file for doing classification on QHCC datasets.

Version

v1.1

3.2 extract_QHCC_radiomics_features Namespace Reference

Extracting radiomics features from medical images with given masks.

Variables

```
extractor = featureextractor.RadiomicsFeatureExtractor()
    Initialize the PyRadiomics feature extractor.
str mri_dir = "./data/L1_files"
    File paths: MRI image and Mask file directories.
str mask_dir = "./data/L1_files_mask"
mri_files = sorted([f for f in os.listdir(mri_dir) if f.endswith(".nii")])
    Get lists of MRI and Mask files default file format: ".nii".
mask_files = sorted([f for f in os.listdir(mask_dir) if f.endswith(".nii")])
radiomics_data = pd.DataFrame()
    Initialize a DataFrame to store the features.
mri_path = os.path.join(mri_dir, mri_file)
    Batch processing.
mask_path = os.path.join(mask_dir, mask_file)
```

image = sitk.ReadImage(mri_path)

Load MRI image and Mask.

- **mask** = sitk.ReadImage(mask_path)
- temp_mri_path = os.path.join(mri_dir, f"temp_{mri_file}")

Save the adjusted MRI image.

• **features** = extractor.execute(temp_mri_path, mask_path)

Extract features.

• dict flat_features = {key: value for key, value in features.items()}

Flatten features and convert them to a DataFrame row Use the filename as the ID.

- feature_row = pd.DataFrame([flat_features], index=[mri_file.split('.')[0]])
- str output_path = "radiomics_features.csv"

Save Radiomics features to CSV.

index

3.2.1 Detailed Description

Extracting radiomics features from medical images with given masks.

Version

v1.0

3.2.2 Variable Documentation

3.2.2.1 radiomics data

```
extract_QHCC_radiomics_features.radiomics_data = pd.DataFrame()
```

Initialize a DataFrame to store the features.

Add to the main DataFrame.