Probabilités - Chapitre 1

Abdallah K

5 Variables Aléatoires

Variable aléatoire

Une variable aléatoire est une fonction d'un espace d'échantillonnage S dans l'ensemble des nombres réels.

Si S est l'espace d'échantillonnage et X une variable aléatoire, alors :

$$X:S\to\mathbb{R}$$

Exemples de variables aléatoires

Expérience	Variable aléatoire
Lancer deux dés	X = somme des nombres
Lancer une pièce 25 fois	X = nombre de faces dans 25 lancers
Appliquer différentes quantités d'engrais à des plants	X = rendement/acre
de maïs	
Sondage d'opinion (50 personnes)	X = nombre de "oui"

Fonction de probabilité induite

Soit $S = \{s_1, \ldots, s_n\}$ un espace d'échantillonnage avec une fonction de probabilité P, et X une variable aléatoire de range $\mathcal{X} = \{x_1, \ldots, x_m\}$. La fonction de probabilité induite P_X sur \mathcal{X} est définie par :

$$P_X(X = x_i) = P(\{s_j \in S : X(s_j) = x_i\})$$

On note simplement $P(X = x_i)$ plutôt que $P_X(X = x_i)$.

Exemple 1.4.3 : Trois lancers de pièce-Il

Considérons l'expérience de lancer une pièce équilibrée trois fois. Soit X le nombre de faces obtenues.

La fonction de probabilité induite sur $\mathcal{X} = \{0, 1, 2, 3\}$ est :

$$\begin{array}{c|ccccc} x & 0 & 1 & 2 & 3 \\ \hline P(X=x) & \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \end{array}$$

1

Par exemple : $P(X = 1) = P(\{HTT, THT, TTH\}) = \frac{3}{8}$.

Exemple 1.4.4 : Distribution d'une variable aléatoire

Soit S l'ensemble des 2^{50} chaînes de 50 bits (0 et 1), X= nombre de 1, et $\mathcal{X}=\{0,1,2,\ldots,50\}$. Si chaque chaîne est équiprobable :

$$P(X=27) = \frac{\text{nombre de chaînes avec 27 uns}}{\text{nombre total de chaînes}} = \frac{\binom{50}{27}}{2^{50}}$$

En général, pour tout $i \in \mathcal{X}$:

$$P(X = i) = \frac{\binom{50}{i}}{2^{50}}$$

6 Fonctions de Répartition

Fonction de répartition (cdf)

La fonction de répartition cumulative d'une variable aléatoire X, notée $F_X(x)$, est définie par :

$$F_X(x) = P(X \le x)$$
, pour tout $x \in \mathbb{R}$

Théorème 1.5.3 : Conditions pour une fonction de répartition

Une fonction F(x) est une fonction de répartition si et seulement si :

- $\lim_{x\to-\infty} F(x) = 0$ et $\lim_{x\to\infty} F(x) = 1$
- \bullet F(x) est une fonction non décroissante de x
- F(x) est continue à droite : $\lim_{x\to x_0^+} F(x) = F(x_0)$

Exemple 1.5.4: Lancer jusqu'à obtenir face

Supposons qu'on lance une pièce jusqu'à obtenir face. Soit X le nombre de lancers nécessaires, avec p la probabilité d'obtenir face.

$$P(X = x) = (1 - p)^{x-1}p, \quad x = 1, 2, \dots$$

La fonction de répartition est :

$$F_X(x) = P(X \le x) = \sum_{i=1}^{x} (1-p)^{i-1}p = 1 - (1-p)^x, \quad x = 1, 2, \dots$$

Fonction de répartition géométrique, p = 0.3

Exemple 1.5.5 : Fonction de répartition continue

La fonction de répartition logistique :

$$F_X(x) = \frac{1}{1 + e^{-x}}$$

est continue et satisfait les conditions du théorème 1.5.3.

Preuve:

- $\lim_{x \to -\infty} F_X(x) = 0$ car $\lim_{x \to -\infty} e^{-x} = \infty$
- $\lim_{x\to\infty} F_X(x) = 1 \text{ car } \lim_{x\to\infty} e^{-x} = 0$
- $\frac{d}{dx}F_X(x) = \frac{e^{-x}}{(1+e^{-x})^2} > 0$, donc F_X est croissante

Exemple 1.5.6 : Fonction de répartition avec sauts

Si on modifie la fonction logistique pour $0 < \epsilon < 1$:

$$F_Y(y) = \begin{cases} \frac{1-\epsilon}{1+e^{-y}} & \text{si } y < 0\\ \epsilon + \frac{(1-\epsilon)}{1+e^{-y}} & \text{si } y \ge 0 \end{cases}$$

Alors F_Y a un saut de hauteur ϵ en y=0 et est continue ailleurs.

Variables aléatoires continues et discrètes

- $\bullet\,$ Une variable aléatoire X est ${\bf continue}$ si $F_X(x)$ est une fonction continue de x
- Une variable aléatoire X est **discrète** si $F_X(x)$ est une fonction en escalier de x

Variables aléatoires identiquement distribuées

Les variables aléatoires X et Y sont identiquement distribuées si pour tout ensemble $A \in \mathcal{B}^1$ (tribu borélienne) :

$$P(X \in A) = P(Y \in A)$$

Cela équivaut à $F_X(x) = F_Y(x)$ pour tout x.

Exemple 1.5.9 : Variables identiquement distribuées

Dans l'expérience de lancer une pièce trois fois :

- \bullet X = nombre de faces observées
- \bullet Y = nombre de piles observées

Les distributions de X et Y sont identiques :

$$P(X = k) = P(Y = k)$$
 pour $k = 0, 1, 2, 3$

mais $X(s) \neq Y(s)$ pour tout point d'échantillon s.

7 Fonctions de Densité et de Masse

Fonction de masse (pmf)

La fonction de masse d'une variable aléatoire discrète X est donnée par :

$$f_X(x) = P(X = x)$$
 pour tout x

Exemple 1.6.2 : Probabilités géométriques (pmf)

Pour la distribution géométrique :

$$f_X(x) = P(X = x) = \begin{cases} (1-p)^{x-1}p & \text{pour } x = 1, 2, \dots \\ 0 & \text{sinon} \end{cases}$$

On peut calculer les probabilités d'intervalles :

$$P(a \le X \le b) = \sum_{k=a}^{b} f_X(k) = \sum_{k=a}^{b} (1-p)^{k-1} p$$

En particulier:

$$P(X \le b) = \sum_{k=1}^{b} f_X(k) = F_X(b)$$

Fonction de densité (pdf)

La fonction de densité d'une variable aléatoire continue X est la fonction $f_X(x)$ qui satisfait :

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
 pour tout x

Si $f_X(x)$ est continue, alors :

$$\frac{d}{dx}F_X(x) = f_X(x)$$

Théorème 1.6.5 : Conditions pour une pdf/pmf

Une fonction $f_X(x)$ est une pdf (ou pmf) d'une variable aléatoire X si et seulement si :

- $f_X(x) \ge 0$ pour tout x
- $\sum_{x} f_X(x) = 1$ (pmf) ou $\int_{-\infty}^{\infty} f_X(x) dx = 1$ (pdf)

Exemple 1.6.4 : Probabilités logistiques

Pour la distribution logistique avec $F_X(x) = \frac{1}{1 + e^{-x}}$, la densité est :

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{e^{-x}}{(1 + e^{-x})^2}$$

Les probabilités d'intervalles se calculent par :

$$P(a < X < b) = F_X(b) - F_X(a) = \int_a^b f_X(x) dx$$

Notation et conventions

 \bullet On utilise des lettres majuscules pour les variables aléatoires : X,Y,Z

ullet Les valeurs réalisées sont notées en minuscules : x,y,z

• $X \sim F_X(x)$ signifie "X suit la distribution $F_X(x)$ "

• $X \sim f_X(x)$ signifie "X a pour densité/masse $f_X(x)$ "

• $X \sim Y$ signifie que X et Y ont la même distribution

• Pour les variables continues : P(X = x) = 0 pour tout x

Calcul des probabilités

• Cas discret : $P(a \le X \le b) = \sum_{k=a}^{b} f_X(k)$

• Cas continu : $P(a \le X \le b) = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$

• Pour les variables continues, les inégalités strictes et larges sont équivalentes :

$$P(a < X < b) = P(a \le X \le b)$$

8 Lois de Probabilité Usuelles

Lois Discrètes Usuelles

Nom	Notation	$\mathbf{PMF}\ P(X=k)$	Interprétation
Bernoulli	$\mathcal{B}(p)$	$p^k(1-p)^{1-k}$	Succès/échec (1 essai)
		k = 0, 1	Ex: Pile ou Face
Binomiale	$\mathcal{B}(n,p)$	$\binom{n}{k} p^k (1-p)^{n-k}$	Nombre de succès en n essais
		$k = 0, 1, \dots, n$	Ex: Nombre de faces en n lancers
Poisson	$\mathcal{P}(\lambda)$	$\frac{\lambda^k e^{-\lambda}}{k!}$	Nombre d'événements rares
		$k=0,1,2,\dots$	Ex: Nombre d'appels/heure
Géométrique	$\mathcal{G}(p)$	$(1-p)^{k-1}p$	Nombre d'essais jusqu'au 1er succès
		$k=1,2,\ldots$	Ex: Lancers jusqu'à la 1ère face
Binomiale Négative	$\mathcal{BN}(r,p)$	$\binom{k-1}{r-1} p^r (1-p)^{k-r}$	Nombre d'essais jusqu'au r^e succès
		$\vec{k} = r, r + 1, \dots$	Ex: Lancers jusqu'à la 3ème face

Lois Continues Usuelles

Nom	Notation	PDF $f_X(x)$	Interprétation
Uniforme	$\mathcal{U}(a,b)$	$\frac{1}{b-a}$	Équiprobabilité sur $[a, b]$
		$x \in [a, b]$	Ex: Point aléatoire sur un segment
Exponentielle	$\mathcal{E}(\lambda)$	$\lambda e^{-\lambda x}$	Temps entre événements rares
		$x \ge 0$	Ex: Durée de vie d'un composant
Normale	$\mathcal{N}(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	Phénomènes naturels, erreurs
		$x \in \mathbb{R}$	Ex: Taille, QI, mesures
Gamma	$\Gamma(\alpha,\beta)$	$\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$	Temps jusqu'au k^e événement
		x > 0	Généralisation de l'exponentielle
Beta	$\mathcal{B}(\alpha,\beta)$	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)}$	Proportion, probabilité
		$x \in [0, 1]$	Ex: Taux de succès inconnu

Relations entre Lois

- Bernoulli \to Binomiale : $\sum_{i=1}^{n} X_i \sim \mathcal{B}(n, p)$ si $X_i \sim \mathcal{B}(p)$ i.i.d.
- Exponentielle \to Gamma : $\sum_{i=1}^{n} X_i \sim \Gamma(n,\lambda)$ si $X_i \sim \mathcal{E}(\lambda)$ i.i.d.
- Binomiale \rightarrow Poisson : $\mathcal{B}(n,p) \xrightarrow[n \to \infty]{np=\lambda} \mathcal{P}(\lambda)$
- Gamma \rightarrow Normale : $\Gamma(\alpha, \beta) \xrightarrow[\alpha \rightarrow \infty]{} \mathcal{N}(\alpha/\beta, \alpha/\beta^2)$

Exemple d'Application des Lois

Loi Binomiale : Sur 10 questions à choix multiple (4 options), probabilité d'avoir au moins 7 bonnes réponses en répondant au hasard :

$$X \sim \mathcal{B}(10, 0.25), \quad P(X \ge 7) = \sum_{k=7}^{10} {10 \choose k} (0.25)^k (0.75)^{10-k}$$

Loi Exponentielle : Durée de vie moyenne d'une ampoule = 1000 heures, probabilité qu'elle dure plus de 1500 heures :

$$X \sim \mathcal{E}(1/1000), \quad P(X > 1500) = e^{-1500/1000} = e^{-1.5} \approx 0.223$$

Loi Normale : Taille moyenne des hommes = 175 cm, écart-type = 7 cm, probabilité qu'un homme mesure entre 170 et 180 cm :

$$X \sim \mathcal{N}(175, 49), \quad P(170 \le X \le 180) = \Phi\left(\frac{180 - 175}{7}\right) - \Phi\left(\frac{170 - 175}{7}\right)$$

7

Choix de la Loi Appropriée

- Comptage d'événements : Poisson (événements rares), Binomiale (succès/échecs)
- Temps d'attente : Exponentielle (1 événement), Gamma (k événements)
- Mesures physiques : Normale (phénomènes naturels)
- Proportions : Beta (probabilités inconnues)
- Données bornées : Uniforme (équiprobabilité)