sine basis 05

p-values adjusted for search volume

Statistics:

set-	level	cluster-level				peak-level					mm mm mm		
р	С	p_{FWE-c}	<i>g</i> corrFDR-c	orr E	p _{uncorr}	p_{FWE-c}	g corrFDR-co	T orr	$(Z_{_{\equiv}})$	$p_{ m uncorr}$			
		1.000 1.000 1.000 1.000 1.000	0.789 0.789 0.789 0.789	8	0.387 0.611 0.387 0.789 0.611 0.686	1.000 1.000 1.000 1.000 1.000	0.934 0.960 0.980 0.980 0.980 0.980	2.67 2.64 2.56 2.56 2.54 2.51	2.66 2.63 2.55 2.55 2.53 2.50	0.004 0.004 0.005 0.005 0.006	44 -14 32 -4 42 -4	-28 44 -78 -10 -46 -22 56 22 24 46 -30 8	
		1.000 1.000 1.000 1.000	0.789 0.789 0.789 0.789 0.789	2 1 2 1	0.686 0.789 0.686 0.789 0.789	1.000 1.000 1.000 1.000	0.980 0.980 0.980 0.980 0.980	2.51 2.50 2.48 2.44 2.44	2.50 2.49 2.47 2.44 2.43	0.006 0.006 0.007 0.007 0.008	18 -10 48 -14 46	12 70 8 72 -38 56 52 24 -36 54	
		1.000 1.000 1.000 1.000	0.789 0.789 0.789 0.789 0.789	1 2 1 4	0.789 0.686 0.789 0.550 0.789	1.000 1.000 1.000 1.000	0.980 0.980 0.980 0.980 0.980	2.43 2.43 2.42 2.42 2.41	2.42 2.42 2.41 2.41 2.41	0.008 0.008 0.008 0.008 0.008	-34 44 -60 34 2	2 -42 30 20 12 18 2 -32 -16 72	
		1.000 1.000 1.000 1.000 1.000	0.789 0.789 0.789 0.789 0.789 0.789	1 1 2 1 2	0.686 0.789 0.789 0.686 0.789 0.686	1.000 1.000 1.000 1.000 1.000	0.980 0.980 0.980 0.980 0.980 0.980	2.40 2.40 2.40 2.40 2.39 2.39	2.40 2.40 2.39 2.39 2.39 2.38	0.008 0.008 0.008 0.008 0.008 0.009	-52 28 36 10 6 22	10 -30 -74 -12 -2 -48 4 52 -82 50 18 32	