

Control Engineering (CEN4B)

CEN4B v20 planning

Fontys

Hogescholen

Week	Inhoud	Studiemateriaal	Huiswerk uit het
Week	Innoun	Similar in	boek (end of chapter
			exercises)
1	Bode en Nyquistdiagrammen, 1 ^e en 2 ^e orde basissystemen:	6.1 Frequency Response	6.3 - 6.5
•	Bode en Nyquist tekenregels. Omzetten van een naar de andere. Alle	6.3 Nyquist Stability Criterion	6.19 a-b-c
	beeldverbanden van 1e 2e order systemen. 'Nyquist Stability' is buiten	4.3.1 t/m 4.3.4 Basissystemen	
	de scope!	3.3 Effect of Pole Locations	
2	Terugkoppeling en stabiliteit in het s-domein:	3.6.2 Stability of LTI Systems	6.24
	Principe van terugkoppeling; stabiliteitsonderzoek in s-domein.	6.4 Stability Margins	6.30
	Stabiliteitsonderzoek in ω-domein; fasemarge, versterkingsmarge, ook	5.1 Root Locus of a Basic Feedback	6.31
	in Nyquist; invloed terugkoppeling op pn-beeld;		0.31
	1 1 1 1 1	System 5.2 Carillating for Detarmining	5 2 4/1 5 7
3	Terugkoppeling en stabiliteit in het ω-domein; poolbanen:	5.2 Guidelines for Determining a Root Locus	5.3 t/m 5.7 5.12 5.13
	constructieregels poolbanen	5.3 Selected Illustrative Root Loci	3.12 3.13
4	Ontwerpcriteria voor geregelde systemen:	3.3 Effect of Pole Locations	3.25 3.27
7	Inleiding, ontwerperiteria in het t- en s-domein, settlingtime, doorschot,	3.4 Time Domain Specifications	3.34
	offset	3.4 Time Domain Specifications	3.34
5	Ontwerpcriteria voor geregelde systemen vervolg	6.6 Closed-Loop Frequency	6.43
3	Ontwerpen van geregelde systemen:	Response	0.43
	Ontwerperiteria in ω -domein, fase- en versterkingsmarge, bandbreedte;	5.4, 5.5 Design Using Dynamic	
	kwalitatieve beschouwing van de invloed van P-, I- en D-actie.	Compensation (except 5.4.3)	
6	Ontwerpen van geregelde systemen vervolg:	6.7 Compensation	6.46
	Invloed van regelacties in t-, s- en ω-domein, praktische instelregels	or compensation	6.54
			0.51
7	Oefenen:		
	Oefentoets		
	Fontys Hogescholen, Engi	neering	2

Huiswerk

- Huiswerk via Socrative, niet verplicht.
- De uitwerkingen en de vragen worden niet gedeeld of online gezet, kom dus naar de les.
- Correlatie tussen "Readiness-%" en "Tentamenresultaat" = M4A: +30% M4B: +60%

ILLADINESS			
PERCENTAGE			
_	tentamenr	READINESS-	
~	esultaat 🚽	PERCENTAGE	
43,2	100		tentamenr
11,4	79		
32,8	73		esultaat 📲
11,4	70	30,0	89
23,5	69	76,4	81
0,0	68	50,0	81
0,0	60	45,6	81
17,4	58	39,6	75
14,2	54	27,8	75
23,9	53	22,0	69
0,0	51	12,6	69
10,8	49	12,6	69
11,3	45	2,8	69
0,0	44	0,0	65,0
44,2	43	16,6	64
14,2	38	24,0	61
18,5	34	64,4	60
5,8	34	27,6	59
0,0	30		
5,8	29	25,2	59
13,3	26	0,0	55
11,3	26	18,6	50
0,0	26	6,6	50
26,8	19	5,8	44
23,4	19	0,0	41
11,4	19	26,8	38
5,3	16	0,0	38,0
8,6	15	0,0	31
14,2	13	0,0	26
22,7	10	13,4	10
7,1	10		
0,0	10		3

READINESS-

VAKBOEK

Het officiële Boek: Feedback Control of Dynamic Systems, Franklin

ICE3->CEN4A->CEN4B->ACE7->OBS7

'->2e differentiatie

Geadviseerd Boek: Regeltechniek voor het HBO, 5e druk Schrage, Van Daal, Stroeken, Van der Pol en Thomasse

Youtube

Brian Douglas

https://www.youtube.com/user/ControlLectures/

Mededelingen: Practicumopstelling

Nog te bepalen aan de hand van RIVM besluit

Mededelingen: CEN4A Tentamen

CEN4A Tentamen:

Nog te bepalen aan de hand van RIVM besluit

Regeltechniek in de industrie

- Robot Arms voor assamblage bedrijven
- Autonomous vehicles
- Path planning voor 3D printers
- Industriële automatisering
- Waffer stage van ASML
- Motor control

Gereedschappen in Freq. Domein (Chapter 6.1 en 6.3)

- Bodediagrammen
- Polaire Figuur (Nyquist Diagram)

logescholen

$$H(s) = \frac{U_o(s)}{U_i(s)} = \frac{1}{sR_1C_1 + 1}$$
$$s = \lambda + j\omega\big|_{\lambda=0}$$

$$H(s) = \frac{U_o(s)}{U_i(s)} = \frac{\frac{1}{j\omega C_1}}{R_1 + \frac{1}{j\omega C_1}} = \frac{1}{j\omega R_1 C_1 + 1}$$

$$H(s) = \frac{U_o(s)}{U_i(s)} = \frac{\overline{j\omega C_1}}{R_1 + \frac{1}{j\omega C_1}} = \frac{1}{j\omega R_1 C_1 + 1}$$

Bode amplitude- en fasediagram

$$H(j\omega)$$

$$u_1(t)=A1.\sin(\omega t)$$

$$u_2(t)=A2.\sin(\omega t+\varphi)$$

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}}$$

$$\varphi = -\arctan(\omega RC) = -\arctan(\omega \tau)$$

als functie van ω (log)

amplitudediagram: $20\log|H(j\omega)| = 20\log(A2/A1) dB$

fasediagram:

$$\varphi = arg\{H(j\omega)\}$$

$$\frac{\omega}{\text{kantelfrequentie}} \rightarrow \frac{1}{\tau} = \frac{1}{RC} \begin{bmatrix} \frac{1}{2}\sqrt{2} \\ 0 \end{bmatrix} -20\log|H(j\omega)| \quad \varphi$$

Bode amplitude- en fasediagram

Fontys

 $\tau = 0.5 \text{ sec}$

Polaire figuur (= Nyquist-diagram)

Hogescholen

$$H(j\omega)=Re\{H(j\omega)\}+j.Im\{H(j\omega)\}$$

=x+j.y = r.e $^{j\phi}$
met: r = $|H(j\omega)|$ en ϕ = arg $\{H(j\omega)\}$

De <u>polaire figuur</u> is een afbeelding van $H(j\omega)$ in het complexe vlak als functie van ω !

ω	$ H(j\omega) $	$20\log H(j\omega) $	φ	
0	1	0	0	
$\frac{1}{RC}$	$\frac{1}{2}\sqrt{2}$	-3	-45°	
∞	0	-∞	-90°	

Bij fysische processen treden slechts 6 essentieel verschillende kenmerken op. Deze karakteriseren de zogenaamde basissystemen.

Basissystemen

- Constante factor
- Integrator (zuiver onzuiver)
- Differentiator (zuiver onzuiver)
- Eerste-ordesysteem
- Tweede-ordesysteem
- Looptijd

De constante factor

Mathematisch mod el

$$y(t) = kx(t)$$

S-domein

$$Y(s) = kX(s)$$

 $j\omega$ domein

$$Y(j\omega) = kX(j\omega)$$

$$H(i\omega) = k$$

$$|H(j\omega)| = k$$
 en $\varphi = 0$

$$20\log|H(j\omega)| = 20\log K$$

ta	abel			
	ω	$ H(j\omega) $	$20\log H(j\omega) $	igg arphi
-	0	k	20log k	0
	∞	k	20log k	$ _{0}$

De constante factor

Zuivere integrator

Hogescholen

Mathematisch mod el

$$y(t) = \int x(t)dt$$

S-domein

$$Y(s) = \frac{X(s)}{s}$$

 $j\omega$ domein

$$Y(j\omega) = \frac{1}{j\omega}X(j\omega)$$

$$H(j\omega) = \frac{1}{j\omega}$$

$$|H(j\omega)| = \frac{1}{\omega}$$
 en $\varphi = -90^{\circ}$

$$20\log |H(j\omega)| = -20\log \omega$$

ω	$ H(j\omega) $	$20\log H(j\omega) $	$\mid arphi \mid$
0	∞	$+\infty$	-90°
1	1	0	-90°
∞	0	$-\infty$	-90°

Zuivere integrator

Zuivere differentiator

Hogescholen

Mathematisch mod el

$$y(t) = \frac{dx(t)}{dt}$$

S-domein

$$Y(s) = sX(s)$$

 $j\omega$ domein

$$Y(j\omega) = j\omega X(j\omega)$$

$$H(j\omega) = j\omega$$

$$|H(j\omega)| = \omega$$
 en $\varphi = 90^{\circ}$

$$20\log|H(j\omega)| = 20\log\omega$$

ω	$ H(j\omega) $	$20\log H(j\omega) $	φ
0	0	-∞	90°
1	1	0	90°
∞	$+\infty$	$+\infty$	90°

Zuivere differentiator

Onzuivere integrator

eerste-ordesysteem

 \dot{T}

Opzuivere integrator = eerste-ordesysteem

Hogescholen

Mathematisch mod el

$$\tau_{i} \frac{dy(t)}{dt} + y(t) = x(t)$$

S-domein

$$Y(s) = \frac{X(s)}{\tau_i s + 1}$$

ω	$ H(j\omega) $	$20\log H(j\omega) $	$\mid \hspace{0.1cm} \varphi \hspace{0.1cm} \mid$
0	1	0	0°
$1/ au_{ m i}$	$\frac{1}{2}\sqrt{2}$	-3	-45°
∞	0	$-\infty$	-90°

 $j\omega$ domein

$$Y(j\omega) = \frac{1}{1 + j\omega\tau_i}X(j\omega)$$
 geeft $H(j\omega) = \frac{1}{1 + j\omega\tau_i}$

$$20\log |H(j\omega)| = \frac{1}{\sqrt{1 + (\omega \tau_i)^2}}$$
 en $\varphi = 0 - \arctan \omega \tau_i$

Onzuivere differentiator

Hogescholen

Onzuivere differentiator

Hogescholen

Mathematisch mod el

$$y(t) = \tau_{d} \frac{dx(t)}{dt} + x(t)$$

S-domein

$$Y(s) = (s \tau_d + 1)X(s)$$

 $j\omega$ domein

$$Y(j\omega) = (j\omega\tau_d + 1)X(j\omega)$$

$$H(j\omega) = (j\omega\tau_d + 1)$$

$$20\log |H(j\omega)| = 20\log \sqrt{(\omega\tau_d)^2 + 1}$$

$$\varphi = \arctan \omega \tau_{d}$$

$$\begin{array}{c|cccc} \omega & |H(j\omega)| & 20\log|H(j\omega)| & \varphi \\ \hline 0 & 1 & 0 & 0^{\circ} \\ \hline \frac{1}{\tau_{\rm d}} & \sqrt{2} & +3 & 45^{\circ} \\ \hline \infty & +\infty & +\infty & 90^{\circ} \\ \hline \end{array}$$

Onzuivere differentiator Bode en Nyquist diagram

ω	$ H(j\omega) $	$20\log H(j\omega) $	ϕ
0	1	0	0°
$\frac{1}{\tau}$	$\sqrt{2}$	+3	45°
$ au_{ m d}$	$+\infty$	+∞	90°

$$H(j\omega) = (j\omega\tau_d + 1)$$

Bodediagram cascadeschakeling

$$\begin{split} H(j\omega) &= H_1(j\omega).H_2(j\omega) = r_1 e^{-j |\phi_1|}. \; r_2 e^{-j |\phi_2|} \\ H(j\omega) &= r.e^{-j |\phi|} = r_1.r_2 \; .e^{-j |(\phi_1 + |\phi_2)|} \\ 20log|H(j\omega)| &= 20log|H_1(j\omega)|.|H_2(j\omega)| = \\ 20log|H_1(j\omega)| &+ 20log|H_2(j\omega)| = \\ |H_1(j\omega)|_{dB} + |H_2(j\omega)|_{dB} \quad \text{(OPTELLEN)} \\ en: \end{split}$$

$$\phi = \arg\{H(j\omega)\} = \arg\{H_1(j\omega).H_2(j\omega)\} =$$

$$\arg\{H_1(j\omega)\} + \arg\{H_2(j\omega)\} = \phi_1 + \phi_2 \quad \text{(OPTELLEN)}$$

Bodediagram cascadeschakeling

Oefenopgave 1

Teken de benaderde Bodediagrammen van $H1(j\omega)$, $H2(j\omega)$ en $H(j\omega)=H1(j\omega)$ ' $H2(j\omega)$

A)
$$H1(j\omega)=10$$
 en $H2(j\omega)=1/j\omega$

B)
$$H1(j\omega)=1+j\omega$$
 en $H2(j\omega)=-0.5$

A) $H1(j\omega)=10$ en $H2(j\omega)=1/j\omega$

Bodediagram

B) $H1(j\omega)=1+j\omega$ en $H2(j\omega)=-0.5$

Bodediagram

Tweede-orde normaalvorm Fontys

(Chapter 3.3)

Hogescholen

$$H(s) = \frac{1}{LCs^{2} + RCs + 1}$$

$$normaalvorm$$

$$H(s) = \frac{{\omega_0}^2}{s^2 + 2\beta\omega_0 s + {\omega_0}^2}$$

 β = relatieve dempingsfactor

3 situaties: $\beta > 1$ overkritische demping

 $\beta = 1$ kritische demping

β <1 onder kritische demping

Tweede-orde normaalvorm

$$H(s) = \frac{{\omega_0}^2}{s^2 + 2\beta\omega_0 s + {\omega_0}^2}$$

- β Relatieve dempingsfactor
- ω_0 Ongedempte eigenfrequentie (ongedempte natuurlijke frequentie).

$$\omega_g = \omega_0 \sqrt{1 - \beta^2}$$

Gedempte eigenfrequentie; zichtbaar in stapresponsie

$$\omega_r = \omega_0 \sqrt{1 - 2\beta^2}$$

Resonantie frequentie = frequentie waarbij de opslingering optreedt; zichtbaar in het bodediagram

weede orde en demping

 $karakteristieke\ vergelijking \rightarrow s^2 + 2\beta\omega_0 s + \omega_0^2 = 0$

 $D > 0 \rightarrow 2$ separate 1^e orde systemen;

overkritische demping

 $D = 0 \rightarrow 2$ samenvallende 1^e orde systemen;

kritische demping

 $D < 0 \rightarrow 2$ complexe oplossingen dus opslingering;

onderkritische demping

Tweede orde en demping

$$H(s) = \frac{\omega_0^2}{s^2 + 2\beta\omega_0 s + \omega_0^2}$$

 $\beta>1$; overkritische demping

=> 2 reele ongelijke polen

 β = 1; kritische demping

=> 2 reele gelijke polen

β =0; 2 zuiver complexe polen; => ongedempte hoekfrequentie ofwel oscillatie $0 < \beta < 1$; onder kritische demping

=> 2 toegevoegd complexe polen

weede orde pn-beeld en Bode

 $A(\omega)_{dB}$ 50

= 0.005

Mathematisch model: y(t)=x(t-Tv)

s-domein: $Y(s)=e^{-sTv} \cdot X(s)$

jω-domein: $Y(jω) = e^{-jωTv} \cdot X(jω)$

 $H(j\omega)=e^{-j\omega Tv} |H(j\omega)|=1 (0 dB) \phi=-\omega Tv$

$$Delay_T(s) = e^{-sT}$$

$$|e^{j\omega T}| = 1, \qquad \angle \left(e^{-j\omega T}\right) = -\omega T.$$

polaire figuur

Bode fasediagram

$\omega = \frac{\pi}{T_v} \int_{-1}^{\infty} ds$	$\omega = \frac{3\pi}{2T_v}$ $\omega = 0 = \frac{2\pi}{2T_v}$	
T _v -1 -0,5	$\omega = \frac{\pi}{2T_{\nu}}$	Яe

ω	φ =-ωΤν
0	0
1/T _v	1
$0.5\pi T_v$	π/2
π/T_v	π
1,5π/T _v	3π/2
2π/T _v	2π

Zelfstudiemateriaal/ Achtergrondinformatie

• Vanaf deze slide.

Complexe getallen

- Modulus (amplitude)
- Argument (fase)

$$20.\log|H(j\omega)| =$$

$$= 20.\log \sqrt{\text{Re}\{H(j\omega)\}^2 + \text{Im}\{H(j\omega)\}^2}$$

$$\varphi = Arg\{H(j\omega)\} = \arctan \frac{\operatorname{Im}\{H(j\omega)\}}{\operatorname{Re}\{H(j\omega)\}}$$

Amplitude en Fasedraaiing

$$H(j\omega) = \frac{1}{j\omega R_1 C_1 + 1}$$

$$|H(j\omega)| = \frac{1}{\sqrt{\text{Re}\{H(j\omega)\}^2 + \text{Im}\{H(j\omega)\}^2}} = \frac{1}{\sqrt{(\omega R_1 C_1)^2 + 1^2}}$$

$$\varphi = Arg\{H(j\omega)\} = 1 - \arctan\frac{\operatorname{Im}\{H(j\omega)\}}{\operatorname{Re}\{H(j\omega)\}} = 0 - \arctan\omega R_1 C_1$$

Belangrijke punten

- $\bullet \omega \rightarrow 0$
- $\bullet \omega \rightarrow \infty$
- \bullet ω = kantelfrequenties
- $Fase = \left(\frac{90}{20}\right) * (helling van de amplitude)$

Town	Magnitude	Phase
Term	Magnitude	Phase K>0: 0°
Constant: K	20log ₁₀ (K)	K<0: ±180°
Pole at Origin		2.00
	-20 dB/decade passing through 0 dB at ω=1	-90°
(Integrator) $\frac{1}{s}$		
Zero at Origin	+20 dB/decade passing through 0 dB at ω=1	+90°
(5:6)	(Mirror image, around x axis, of Integrator)	(Mirror image, around x axis, of Integrator about)
(Differentiator) s	(
Real Pole	1. Draw law fraguency asymptote at 0 dB	1. Draw law fraguency asymptote at 08
1	Draw low frequency asymptote at 0 dB Draw high frequency asymptote at -20 dB/decade	Draw low frequency asymptote at 0° Draw high frequency asymptote at -90°
$\frac{s}{\omega_0}+1$	3. Connect lines at ω ₀ .	3. Connect with a straight line from 0.1·ω ₀ to 10·ω ₀
ω_0		
D		
Real Zero	Draw low frequency asymptote at 0 dB	Draw low frequency asymptote at 0°
s , 1	Draw high frequency asymptote at +20 dB/decade Connect lines at 4.2.	
$\frac{s}{\omega_0}+1$	3. Connect lines at ω ₀ .	3. Connect with a straight line from 0.1⋅ω ₀ to 10⋅ω ₀
	(Mirror image, around x-axis, of Real Pole)	(Mirror image, around x-axis, of Real Pole about 0°)
Underdamped Poles	, , , , , , , , , , , , , , , , , , , ,	
		1. Draw low frequency asymptote at 0°
(Complex conjugate poles)	Draw low frequency asymptote at 0 dB	2. Draw high frequency asymptote at -180°
1	 Draw high frequency asymptote at -40 dB/decade If ζ<0.5, then draw peak at ω₀ with amplitude 	Connect with straight line from
		ω_0 , , , ,
$\overline{\left(\frac{s}{\omega_0}\right)^2 + 2\zeta\left(\frac{s}{\omega_0}\right) + 1}$	H(jω ₀) =-20·log ₁₀ (2ζ), else don't draw peak 4. Connect lines	$\omega = \frac{\omega_0}{10^{\zeta}} \text{ to } \omega_0 \cdot 10^{\zeta}$
$0 < \zeta < 1$	4. Connect lines	10
0 < \(\zeta < 1 \)		You can also look in a textbook for examples
Underdamped Zeros		
	1. Draw law fraguanay accomptate at 0 dD	Draw low frequency asymptote at 0°
(Complex conjugate zeros)	Draw low frequency asymptote at 0 dB Draw high frequency asymptote at +40 dB/decade	Draw high frequency asymptote at +180° Connect with straight line from
	3. If ζ<0.5, then draw peak at ω ₀ with amplitude	5. Connect with straight line horn
$(s)^2$	$ H(j\omega_0) =+20 \cdot \log_{10}(2\zeta)$, else don't draw peak	$\omega = \frac{\omega_0}{10^{\zeta}} \text{ to } \omega_0 \cdot 10^{\zeta}$
$\left(rac{s}{\omega_0} ight)^2 + 2\zeta\left(rac{s}{\omega_0} ight) + 1$	4. Connect lines	$\omega = \frac{10^{\zeta}}{10^{\zeta}}$
		Version also look in a tauth and for account
$0<\zeta<1$	(Mirror image, around x-axis, of Underdamped Pole)	You can also look in a textbook for examples. (Mirror image, around y axis, of Underdamped Pole)
		(Mirror image, around x-axis, of Underdamped Pole)

The amplitude story

$$C = a + bi$$

$$= a + bj$$
 $H = c + dj$

$$Re(C) = a$$

$$Re(H) = c$$

$$Im(C) = b$$

$$Im(H) = d$$

$$|C| = \sqrt{a^2 + b^2}$$

$$|\mathbf{H}| = \sqrt{c^2 + d^2}$$

$$CH = ac + bcj + adj - bd$$

$$Re(CH) = ac - bd$$

$$Im(CH) = bc + ad$$

$$|CH| = \sqrt{(a^2 + b^2)(c^2 + d^2)}$$

$$|C \cdot H| = |C| \cdot |H|$$

The phase story

$$C = |C| \cdot [\cos(\varphi) + j \sin(\varphi)] \qquad H = |H| \cdot [\cos(\psi) + j \sin(\psi)]$$

$$C \cdot H = |C| \cdot |H| \cdot [\cos(\varphi) + j \sin(\varphi)] \cdot [\cos(\psi) + j \sin(\psi)]$$

$$= |C \cdot H| \cdot [(\cos(\varphi)\cos(\psi) - \sin(\varphi)\sin(\psi)) + \dots$$

... j
$$(\cos(\varphi) \sin(\psi) + \sin(\varphi)\cos(\psi))$$
]
= $|C \cdot H| \cdot [\cos(\varphi + \psi) + j \sin(\varphi + \psi)]$
 $\varphi = \angle C$ $\angle (C \cdot H) = \angle C + \angle H$

