Quantum Computing

A brief introduction

John Manferdelli JohnManferdelli@hotmail.com

© 2021-2025, John L. Manferdelli.

This material is provided without warranty of any kind including, without limitation, warranty of non-infringement or suitability for any purpose. This material is not guaranteed to be error free and is intended for instructional use only.

Beam splitters and QM

I can safely say that no one understands Quantum Mechanics - Feynman

Photon source emits stream of photons.

P(photon arrives at Detector 1)= .5

P(photon arrives at Detector 2)= .5

So far, so good

Beam splitters and QM

Mach-Zender Interferometer

Photon source emits stream of photons.

P(photon arrives at Detector 1)= 0

P(photon arrives at Detector 2)= 1

According to QM

Analysis

Beam splitter causes the photon to go into superposition:

$$\alpha_1|0>+\alpha_2|1>$$
, $|\alpha_1|^2=\frac{1}{2}$, $|\alpha_2|^2=\frac{1}{2}$. $|0>$ state is right, $|1>$ is up. $|0>=\binom{1}{0}$, $|1>=\binom{0}{1}$.

Beam splitter acts on incoming state via the matrix $\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$.

In experiment 1, if all photons leave source in state $\binom{1}{0}$, after the splitter they are in state $\frac{1}{\sqrt{2}}\binom{1}{i}$. So, they arrive at detector 1 with probability $\frac{1}{2}$ and detector 2 with probability $\frac{1}{2}$.

However, going through another beam splitter, in experiment 2, yields the output state:

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ i \end{pmatrix}.$$

So, they always arrive at detector 2.

Postulates

- 1. State of a system is a unit vector over $\mathbb C$ in Hilbert space $(\mathcal H)$ of dimension 2^n
 - A qubit is a quantum system, with n=1 . A one qubit system is in general state $|\psi>=a|0>+b|1>$, $a\bar{a}+b\bar{b}=1$
- 2. A system, with state, $|\psi(t)>$, evolves according to a unitary operator, namely, $U(|\psi(0)>)$
 - U is unitary if (x, y) = (Ux, Uy). Note $U\overline{U^T} = I$
 - Example is a Hamiltonian: $H(t)|\psi(t)>=\mathrm{i}\hbar\frac{d|\psi(t)>|}{dt}$
 - $|\varphi(t_2)\rangle = e^{-i\hbar H(t_2 t_1)} |\varphi(t_1)\rangle$
- 3. Each observable is represented by a Hermitian operator, \hat{Q} , the expectation value of \hat{Q} is $<\psi|\hat{Q}\psi>$. The outcome of a measurement of the operator is an eigenvalue of the operator. The probability of getting a particular eigenvalue, λ , is the square of the λ -component of $|\psi>$

Postulates

- 4. Two physical systems \mathcal{H}_1 and \mathcal{H}_2 can be treated as a single system, $\mathcal{H}_1 \otimes \mathcal{H}_2$. If \mathcal{H}_1 is in state, $|\psi_1>$ and \mathcal{H}_2 is in state, $|\psi_2>$, the joint state is $|\psi_1>$ $\otimes |\psi_2>$
- 5. Given an orthonormal basis $\mathcal{B}=\{\varphi_i\}$, one can perform a von-Neuman measurement \mathcal{H}_A on $|\psi>=\sum_i \alpha_i |\varphi_i>$ that outputs i with probability $|\alpha_i|^2$. It is projective. Further, if $|\psi>=\sum_i \alpha_i |\varphi_i>|\gamma_i>\mathcal{H}_A\otimes\mathcal{H}_B$ measurement yields i with probability $|\alpha_i|^2$ and leaves state in $|\varphi_i>|\gamma_i>$. $M=\sum m_i P_i=\sum m_i \ |i>< i|$

Linear Algebra

- <u>Dirac Notation</u>: Element in Hilbert space of dimension 2^n is represented by n-entry symbol. $|000 \dots 00> \leftrightarrow (1,0,\dots,0)^T, |000 \dots 01> \leftrightarrow (0,1,\dots,0)^T, \dots, |111 \dots 1> \leftrightarrow (0,0,\dots,1)^T$ where column vectors have 2^n coordinates.
- Notation: $|0\rangle \otimes |0\rangle \otimes ... \otimes |0\rangle = |000...0\rangle$
- A is normal if $A\bar{A}^T = \bar{A}^T A$
- Spectral Theorem: If T is a normal operator in the Hilbert space \mathcal{H} , there is an orthonormal basis v_i ; each is an eigenvector of T. For every such , there is a unitary matrix, P, $T = P\Lambda P^*$, and Λ is diagonal.
- Dual basis
- Inner product: $(v_1, v_2, ..., v_n) \cdot (w_1, w_2, ..., w_n) = \sum_{i=0}^n \overline{v_i} w_i$
- Outer product: $(|\psi\rangle\langle\phi|)|\gamma\rangle = |\psi\rangle\langle\langle\phi|\gamma\rangle$
- Theorem: Every linear operator can be written as $T = T_{m,n} |b_m> < b_n|$,
- $T_{m,n} = \langle b_m | T | b_n \rangle$

Linear Algebra (continued)

$$\begin{array}{l} \underline{\text{Tensor product}} \colon \text{If } |\varphi_i> = {\alpha_0 \choose \alpha_1} \text{ is a basis for } \mathcal{H}_1 \text{ and } |\phi_i> = {\beta_0 \choose \beta_1} \text{ is a basis for } \mathcal{H}_2 \text{ ,} \\ |\varphi_i> \otimes |\phi_i> \text{ is a basis for } \mathcal{H}_1 \otimes \mathcal{H}_2 \text{ .} & {\alpha_0 \choose \alpha_1} \otimes {\beta_0 \choose \beta_1} = (\alpha_0\beta_0,\alpha_0\beta_1,\alpha_1\beta_0,\alpha_1\beta_1)^T \text{ .} \\ & a_{11}B \quad \dots \quad a_{1n}B \\ A \otimes B = \quad \dots \quad \dots \quad \dots \\ & a_{n1}B \quad \dots \quad a_{nn}B \\ \underline{\text{Schmidt decomposition}} \colon \text{If } |\psi> \in \mathcal{H}_1 \otimes \mathcal{H}_2 \text{, there is an orthonormal basis } |\varphi_i> \\ \text{for } \mathcal{H}_1 \text{ and an orthonormal basis } |\phi_i> \text{ for } \mathcal{H}_2 \text{ and } p_i \geq 0 \text{ such that } |\psi> = \sum_i \sqrt{p_i} \, |\varphi_i> |\phi_i> \end{aligned}$$

Eigenvector: $T|\psi\rangle = c|\psi\rangle$

 $Tr(A) = \langle b_n | A | b_n \rangle$

More notation

$$A \otimes B = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}, \ x \otimes y = (x_1y_1, x_1y_2, \dots, x_ny_n)^T$$

$$|v> = (v_1, v_2, \dots, v_n)^T, < w| = (w_1, w_2, \dots, w_n) \text{ then }$$

$$|v>< w| = \begin{array}{cccc} v_1\overline{w_1} & v_1\overline{w_2} & \dots & v_1\overline{w_n} \\ \dots & \dots & \dots & \dots \\ v_n\overline{w_1} & v_n\overline{w_2} & \dots & v_n\overline{w_n} \end{array} \text{, so } I = \sum |\mathrm{i}>< i| \text{ and } M = \sum M_{ij}|\mathrm{i}>< j|$$

Pauli matricies

-
$$\sigma_0 = I$$
, $\sigma_1 = X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\sigma_2 = Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$, $\sigma_3 = Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
- $[X, Y] = iZ$, $[Y, Z] = iX$, $[Z, X] = iY$

•
$$|+> = \frac{1}{\sqrt{2}}(|0>+|1>), |-> = \frac{1}{\sqrt{2}}(|0>-|1>), |i> = \frac{1}{\sqrt{2}}(|0>+i|1>), |-i> = \frac{1}{\sqrt{2}}(|0>-i|1>)$$

Mixed states and density

- For pure states, $|\psi>$, density is $\rho=|\psi><\psi|$
- Mixed states: $\{(p_1,|\psi_1>),(p_2,|\psi_2>),...,(p_n,|\psi_n>)\}$, where the probability that the system is in pure state $|\psi_i>$ is p_i and $\sum p_i=1$
- Density operator for mixed state is $\sum p_i |\psi_i> <\psi_i|$
- Bloch Sphere
 - Pure state in general position is $|\psi\rangle = \cos\left(\frac{\theta}{2}\right) \left|0\rangle\right| + e^{i\varphi} \sin\left(\frac{\theta}{2}\right) \left|1\rangle$.
 - For mixed state $|\psi_i> = p_i(\alpha_{X,i},\alpha_{Y,i},\alpha_{Z,i})$ on interior of Block sphere
 - $\rho = \sum p_i |\psi_i> <\psi_i|$ evolves as $\rho = \sum p_i |U|\psi_i> <\psi_i|U^{\dagger}$
 - $\rho = \frac{1}{2}I + \alpha_X X + \alpha_Y Y + \alpha_Z Z$
- $P(|0>) = \langle 0|\psi \rangle \langle \psi|0 \rangle = Tr \langle 0|\psi \rangle \langle \psi|0 \rangle = Tr(|0>\langle 0||\psi \rangle \langle \psi|)$

Mixed states and density

- Partial trace: Consider composite system *AB*.
 - $\rho^A = Tr_B(\rho^{AB})$
 - $Tr_B(|a_1> < a_2| \otimes < b_1|) < b_2|) = |a_1> < a_2| Tr(|b_1> < b_2|) = |a_1> < a_2| < b_2|b_1>$
 - Example

•
$$\rho = \frac{1}{2}(|00><00|+|00><11|+|11><00|+|11><11|)$$

$$= \frac{1}{2}Tr(|0><0|\otimes|0>$$

$$<0|+|0><1|\otimes|0><1|+|1><0|\otimes|1><0|+|1><1|\otimes|1><1|)$$

$$= \frac{1}{2}(|0><0|+|1><1|)$$

Circuits and gates

- <u>Universal gate set</u>: A gate set is universal if $\forall n>0$, any n-bit unitary operator can be approximated to arbitrary accuracy by a quantum circuit from this set
- An entangling gate is on that for an input product state $|\alpha > |\beta >$, the output state is not a product state (e.g.-CNOT).
 - Example: $|\psi>=\frac{1}{\sqrt{2}}(|00>+|11>)$
- <u>Theorem:</u> A set of states with an entangling 2-qubit gate together with all 1-qubit gates is universal.
- Theorem: If U is a 1-qubit gate, $U = e^{ix}R_z(\beta)R_y(\gamma)R_z(\delta)$

Gates and states

- General position on Bloch sphere: $|\psi\rangle = \cos\left(\frac{\theta}{2}\right) \left|0\rangle + e^{i\varphi}\sin\left(\frac{\theta}{2}\right)\right|1\rangle$
- Measurement: $I = \sum |i> < i|$, $M = \sum m_i P_i$, M is Hermitian, $P_i = |i> < i|$.
- <u>Controlled gates</u>:
 - $-c U|0 > |\psi > = |0 > |\psi >$
 - $-c-U|1>|\psi>=|1>U|\psi>$

Common gates

Pauli gates

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Note: $X^2 = Y^2 = Z^2 = I$

Rotation

$$R_X(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{iX\theta} \end{pmatrix} = \begin{pmatrix} e^{-iX^{\theta}/2} & 0 \\ 0 & e^{iX^{\theta}/2} \end{pmatrix}$$

2 qubit gate

$$CNOT(|xy>) = |x, x \oplus y>$$

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix}$$

• If
$$A^2 = 1$$
, $e^{i\theta X} = I\cos(\theta) + iX\sin(\theta)$

Hadamard

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

$$H^{\otimes n}(|0000\dots 0>) = \tfrac{1}{\sqrt{2}}(|0>+|1>) \otimes \tfrac{1}{\sqrt{2}}(|0>+|1>) \otimes \dots \otimes \tfrac{1}{\sqrt{2}}(|0>+|1>)$$

Measurement in alternate basis

- Computational basis is $|i\rangle$. $U|\varphi_i\rangle = |j\rangle$
- Suppose we want to measure $|\psi\rangle$ with respect to basis $B=\{|\varphi_i\rangle\}$
- $|\psi\rangle = \sum \alpha_i |\varphi_i\rangle$
- To measure wrt $B = \{|\varphi_j>\}$, Project $|\psi>$ onto $|\varphi_j><\varphi_j|$
- $(Tr(|\psi\rangle < \psi||\varphi_j\rangle < \varphi_j|) = Tr(<\varphi_j|\psi\rangle < \psi|\varphi_j\rangle) = \alpha_j^2$
- $\rho = |\psi > < \psi|$ is density operator for the pure state $|\psi >$.
- $\rho = \sum p_i |\psi_i> <\psi_i|$ is the density operator for mixed states $\{(p_i,|\psi_i>)\}$

Converting to Bell Basis

- Computational basis is |i>, $U|\varphi_j>=|j>$
- $|\beta_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), |\beta_{01}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$
- $|\beta_{10}\rangle = \frac{1}{\sqrt{2}}(|00\rangle |11\rangle), |\beta_{11}\rangle = \frac{1}{\sqrt{2}}(|01\rangle |10\rangle)$

- $|\varphi_1> = |00>$
- $|\varphi_2\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)|0\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |10\rangle)|$
- $|\varphi_3> = |\beta_{00}>$

Changing Measurement Basis

• Suppose $|\varphi_i>$ is a basis and our measurement basis is |i>, $U|\varphi_i>=|i>$

Superoperator and mixed states

$$|
ho_{in}>$$

$$\qquad \qquad \qquad \qquad \qquad \qquad \sum A_i
ho_{in} \overline{A_i}^T$$
 $|0000>$ Garbage

- $\rho = |\psi> <\psi|$, $U|\psi>$ has density $\rho = U|\psi> <\psi|\overline{U}^T> = U\rho U^\dagger$
- $<0|\psi><\psi|0>=<0|\rho|0>=P(|0>)$
- $\rho = \sum_i p_i |\psi_i > < \psi_i|$
- $\bullet \quad Tr(A) = < b_n |A| b_n >$
- $\rho_{in} \to \rho_{out} = Tr_b(U(\rho_{in} \otimes |000 ... > < 000 ... 0 | U^{\dagger})$
- $\rho_{in} \rightarrow \sum A_i \rho_{in} A_i^{\dagger}$, where A_i are Kraus operators with $\sum A_i^{\dagger} A_i = I$

No Cloning Theorem

- Qubits can't be copied
- Proof

Suppose they can be. Then there is an operator, U, such that for any state $|\varphi>$, $U(|\varphi>|0>)=|\varphi>|\varphi>$. Now let $|\psi>$ and $|\phi>$ be non-orthogonal, different pure states.

$$(|\psi > |0 >, |\phi > |0 >) = \langle \psi | \phi > \langle 0 | 0 > = \langle \psi | \phi >.$$

Since U is unitary,

$$<\psi|\phi> = (|\psi>|0>, |\phi>|0>) = (U|\psi>|0>, U|\phi>|0>) = (|\psi>|\psi>, |\phi>|0>) = (|\psi>|\psi>, |\phi>|\phi>) = (|\psi>|\phi>^2)$$
. So, $<\psi|\phi> = 1$. This is a contradiction.

No checkpointing

Parity Circuit

Superdense coding

- Alice and Bob share $|\beta_{00}\rangle$, Alice has first bit, Bob second bit
- Alice performs one of I, X, Y, Z producing $I \otimes I$ (to send 00), $X \otimes I$ (to send 01), $Y \otimes I$ (to send 10) or $Z \otimes I$ (to send 11).
- Bob measures joint state qubit measurement
- Can be used to teleport $|\psi>$:

-
$$I \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

- $X \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|01\rangle + |10\rangle)$
- $Z \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$

$$-X \otimes I := \frac{\sqrt{1}}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{\sqrt{1}}{\sqrt{2}} (|01\rangle + |10\rangle)$$

$$-Z \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|00\rangle - |11\rangle)$$

-
$$ZX \otimes I := \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \rightarrow \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$$

Deutch

- Problem: Determine f(0) + f(1) in one measurement
- $U_f|x>|y>=|x>|y\oplus f(x)>$
- If f(0) + f(1) = 1, $|\psi_3\rangle = (-1)^{f(0)} |1\rangle \frac{|0\rangle |1\rangle}{\sqrt{2}}$
- If f(0) + f(1) = 0, $|\psi_3\rangle = (-1)^{f(0)} |0\rangle \frac{|0\rangle |1\rangle}{\sqrt{2}}$

Deutch-Josza

- Problem: $f: \{0,1\}^n \to \{0,1\}$, which is either constant or balanced.
- Which is it?
- Put $U_f|x>|y>=|x>|y\oplus f(x)>$, x is an n-bit quantity

DJ

•
$$|\varphi_0> = |0>^{\otimes n} \frac{|0>-|1>}{\sqrt{2}}$$

•
$$|\varphi_1\rangle = \frac{1}{\sqrt{2^n}} \sum_{x} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

•
$$|\varphi_2\rangle = \frac{1}{\sqrt{2^n}} \sum_{x} (-1)^{f(x)} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

•
$$|\varphi_3\rangle = \frac{1}{2^n} \sum_{x} \sum_{z} |(-1)^{f(x)+x \cdot z} z\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

Simon

- $f: \{0,1\}^n \to X, \exists \vec{s} = s_1, s_2, ..., s_n: f(x) = f(y) \text{ iff } x = y \text{ or } x = y + \vec{s}$
- U_f : $|x > |b > = |x > |b \oplus f(x) >$
- $H^{\otimes n}(|x\rangle) = \frac{1}{\sqrt{2^n}} \sum_{z} (-1)^{x \cdot z} |z\rangle$
 - 1. i = 1
 - 2. Prepare $\frac{1}{\sqrt{2^n}}\sum_x |x>|0>$
 - 3. Apply U_f to get $\frac{1}{\sqrt{2^n}}\sum_{x}|x>|f(x)>$
 - 4. Measure second bit
 - 5. Apply $H^{\otimes n}$ to first register
 - 6. Measure first register to get w_i
 - 7. If $din(w_i) \neq n-1$, go to 2
 - 8. Output s: $w^t s^t = 0$

Phase kick back

•
$$CNOT\left(\frac{|0>+|1>}{\sqrt{2}}\frac{|0>-|1>}{\sqrt{2}}\right) = \frac{|0>-|1>}{\sqrt{2}}\frac{|0>-|1>}{\sqrt{2}}$$

Phase Estimation

- Phase estimation problem: Given $|\psi>=rac{1}{\sqrt{2^n}}\sum_y e^{2\pi i\omega y}|y>$, estimate ω
- Theorem: $\frac{x}{2^n} \le \omega \le \frac{x+1}{2^n}$ with probability $\ge \frac{8}{\pi^2}$
- $e^{2\pi i 2^k \cdot x_1 x_2 \cdot \cdot \cdot} = e^{2\pi i (x_{k+1} x_{k+2} \cdot \cdot \cdot)}$
- Suppose $\omega = x_1$, $|\psi\rangle = \frac{1}{\sqrt{2}} \sum_{|y\rangle} e^{2\pi i \omega |y\rangle} = \frac{1}{\sqrt{2}} (|0\rangle + (-1)^{x_1}|1\rangle$ and $H(|\psi\rangle) = |x_1\rangle$
- In general, $H^{\otimes n}(|x>) = \frac{1}{\sqrt{2^n}} \sum_{y} (-1)^{x \cdot y} |y>$ and $H^{\otimes n}(H^{\otimes n}(|x>)) = |x>$
- So, $|\psi\rangle = \frac{1}{\sqrt{2^n}} \sum_{|y\rangle} e^{2\pi i \omega y} |y\rangle = \frac{1}{\sqrt{2}} (\left|0\rangle + e^{2\pi i 2^{n-1} \omega}\right| 1\rangle) \otimes \frac{1}{\sqrt{2}} (\left|0\rangle + e^{2\pi i 2^{n-2} \omega}\right| 1\rangle) \otimes \cdots \otimes \frac{1}{\sqrt{2}} (\left|0\rangle + e^{2\pi i \omega}\right| 1\rangle)$
- Denote $R_n = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i 2^{-n}} \end{pmatrix}$

Quantum Fourier Transform

•
$$H^{\otimes n}(|x\rangle) = \frac{1}{\sqrt{2^n}} \sum_{y} (-1)^{x \cdot y} |y\rangle$$

•
$$H^{\otimes n}(H^{\otimes n}(|x>)) = |x>$$

•
$$QFT_m(|x>) = \frac{1}{\sqrt{m}} \sum_{y=0}^{m-1} e^{2\pi i/m(x\cdot y)} |y>$$

•
$$QFT_m^{-1}(|x>) = \frac{1}{\sqrt{m}} \sum_{y=0}^{m-1} e^{-2\pi i/m(x\cdot y)} |y>$$

Quantum Fourier Circuit

Eigenvalue Estimation

• Suppose $|\psi>$ is an eigenstate of a unitary operator, U, so U $|\psi>=\exp(2\pi i\phi)|\psi>$. $|\phi>=.x_1x_2...x_n$ (a binary expansion)

Eigenvalue Estimation

- $U|\psi> = \exp(2\pi i\phi) |\psi>$, so $U^{2^j}|\psi> = \exp(2\pi i\phi 2^j) |\psi>$.
- Applying QFT_n^{-1} to ξ , gives $< x_n$, $x_{n-1}, \dots, x_1 >$, where $|\phi>=.x_1x_2\dots x_n|$
- Measure χ to get ϕ
- $\frac{y}{2^n}$ is a good estimate for $\phi = \frac{j}{r}$

31

Factorization using order finding (Shor)

- Suppose N = pq and $a^r = 1 \pmod{N}$ then $r = 0 \pmod{\varphi(pq)}$
- If r is even, say, r = 2s, $(a^s + 1)(a^s 1) = 0 \pmod{pq}$.
- There is a good chance $p|(a^s-1)$ but $(q,(a^s-1))=1$.
- Then $((a^s 1), N) = p$. Voila!
- Note that $|v_t>=\frac{1}{r}\sum_{k=0}^{r-1}\exp(-\frac{2\pi ikt}{r})|k(mod\ N)>$ is an eigenvalue of $U_x(k)=|xk\ (mod\ N)>$.
- In Shor, $|1> = \frac{1}{\sqrt{r}} \sum |v_t>$.
- Applying QFT^{-1} to control gives phase of eigenvalues
- Measurement of target gives $|\frac{s}{r}>$ with $\Pr(|y>)=\frac{1}{2^{2n}}|\frac{1-r^{2^n}}{1-r}|^2$, where $r=\exp(-2\pi i(\frac{y}{2^n}-\phi))$

Order Finding

<u>Problem</u>: Given $a, N \in \mathbb{Z}$ with (a, N) = 1, find $r: a^r \pmod{N} = 1$

- 1. Choose $n: 2^n \ge 2r^2$
- 2. Initialize control register $|000...0> = |0>^{\otimes 2n}$
- 3. Initialize target register to = $|000 \dots 01\rangle = |000 \dots 0\rangle = |0\rangle^{\otimes 2n} \otimes |1\rangle$
- 4. Apply QFT to control register
- 5. Apply $c U_a^{x}$ to control and target register
- 6. Apply QFT^{-1} to control register
- 7. Measure CR to get estimate of $\frac{x_1}{2^n}$ of multiple of $\frac{1}{r}$
- 8. Use continued fraction to get c_1 , r_1 : $\left|\frac{x_1}{2^n} \frac{c_1}{r_1}\right| \le 2^{-(n-1)/2}$
- 9. Repeat 1-8 to get c_2 , 2: $\left|\frac{x_2}{2^n} \frac{c_2}{r_2}\right| \le 2^{-(n-1)/2}$, if none, FAIL
- 10. Compute $r = LCM(r_1, r_2)$ and $a^r \pmod{N}$
- 11. If $a^r \pmod{N} = 1$, output r, otherwise FAIL

Order Finding

- Order finding has quantum complexity $O(\lg(N)^2 \lg(\lg(N))) \lg(\lg(\lg(N)))$
- Classical complexity is $\exp(O(\sqrt{\lg(N)} \lg(\lg(N))))$

Discrete log

- Suppose $a = b^x \pmod{p}$, b has known order. We want $r: b^r = 1 \pmod{p}$
- Put $U_a(|x>) = |ax \pmod{p} > \text{and } U_b(|x>) = |bx \pmod{p} >$.
- Consider the circuit below. $|1>=\frac{1}{\sqrt{r}}\sum |v_t>$. Below, $t=xy^{-1}$

Discrete log

- Measuring first control register gives $|\frac{k}{r}>$
- Measuring first control register gives $|\frac{kt}{r}>$

- Quantum complexity is $O(\lg(p)^2 \lg(\lg(p)) \lg(\lg(\lg(p)))$
- Best known classical requires $\exp(O(\sqrt{\lg(p)\lg(\lg(p))}))$

Error Correction

- Unlike classical error correction, the no cloning theorem restricts codes
- $|0>|E>\rightarrow \beta_1|0>|E_1>+\beta_2|1>|E_2>$
- $|1>|E>\rightarrow \beta_3|0>|E_3>+\beta_4|1>|E_4>$
- $|\psi>=\alpha_0|0>+\alpha_1|1>\to \alpha_0\beta_1|0>|E_1>+\alpha_0\beta_2|1>|E_2>+\alpha_1\beta_3|0>|E_3>+\alpha_1\beta_4|1>|E_4>$
- $|\psi\rangle = \frac{1}{2} |\psi\rangle (\beta_1|E_1\rangle + \beta_3|E_3\rangle) + \frac{1}{2} \langle Z|\psi\rangle (\beta_1|E_1\rangle \beta_3|E_3\rangle) + \frac{1}{2} \langle X|\psi\rangle (\beta_2|E_2\rangle + \beta_4|E_4\rangle) + \frac{1}{2} \langle XZ|\psi\rangle (\beta_2|E_2\rangle + \beta_4|E_4\rangle)$

Error Correction

- $\rho = U_{err} | \psi \rangle \langle E | \overline{U_{err}}^T$
- $|\psi_{enc}\rangle = U_{enc}|\psi\rangle |000...\rangle$
- $\mathcal{E}_0 = I \otimes I \otimes I, \mathcal{E}_1 = X \otimes I \otimes I$
- $\mathcal{E}_2 = I \otimes X \otimes I, \mathcal{E}_3 = I \otimes I \otimes X$
- $\rho: |\psi> <\psi| \to (1-p)|\psi> <\psi| + pX|\psi> <\psi|X>$
- $\frac{1}{\sqrt{2}}(|000>+|100>) \rightarrow \frac{1}{\sqrt{2}}(|000>+|111>) \neq \frac{1}{\sqrt{2}}(|0>+|1>) \otimes^3$
- 3-bit code, Shor 9-bit code

Amplitude Amplification

- $|\psi\rangle = A |00..0\rangle = \sum_{x} \alpha_{x} |x\rangle |junk(x)\rangle$
- $|\psi\rangle = \sum_{x,aood} \alpha_x |x\rangle |junk(x)\rangle + \sum_{x,bad} \alpha_x |x\rangle |junk(x)\rangle$
- $|\psi_{good}\rangle = \sum_{x,good} \alpha_x |x\rangle |junk(x)\rangle$
- $|\psi_{bad}\rangle = \sum_{x,bad} \alpha_x |x\rangle |junk(x)\rangle$
- $|\psi\rangle = \sqrt{p_{good}} |\psi_{good}\rangle + \sqrt{p_{bad}} |\psi_{bad}\rangle = \sin(\theta) |\psi_{good}\rangle + \cos(\theta) |\psi_{bad}\rangle$
- $p_{good} = \sin(\theta)^2$

Grover

Search

Input:
$$U_f$$
: $f: \{0,1\}^n \to \{0,1\}$

$$f(a) = 1, f(x) = 0, x \neq a$$

$$|\psi_{good} > = w$$

$$|\psi_{bad} > = \frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x>$$

Grover

- 1. Initialize n-qubits |0000...0>.
- 2. Apply $H^{\otimes n}$ to get $\frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}|x|$
- 3. Apply Grover $G \frac{\pi}{4\sqrt{n}}$ times
- 4. Measure output

Search

Input:
$$U_f$$
: $f: \{0,1\}^n \to \{0,1\}$
 $f(a) = 1, f(x) = 0, x \neq a$

$$|\psi_{good}\rangle = \mathbf{w}$$

$$|\psi_{bad}\rangle = \frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x\rangle$$

Algorithm G

- 1. Apply U_f
- 2. Apply $H^{\otimes n}$
- 3. Apply $U_{0^{\perp}}$
- 4. Apply $H^{\otimes n}$

Algorithm $U_{0^{\perp}}$

$$\begin{array}{l} U_{0^{\perp}} \colon |\mathbf{x}> \longrightarrow -|x>, x \neq 0 \\ U_{0^{\perp}} \colon |0> \longrightarrow 0|x> \end{array}$$

End

Thermo

•
$$Z = \sum_{i} e^{-\beta E_{i}}, \beta = \frac{1}{kT}, \langle E \rangle = \frac{\partial (\ln(Z))}{\partial \beta}$$

• String:
$$dU = \frac{1}{2}\mu\omega^2 y^2 dx$$
, $P(t) = Z = F\frac{\partial\psi}{\partial t}$, $v_{\varphi} = \frac{\omega}{k}$, $Z = \frac{T}{v_{\varphi}}$, $\frac{T}{\mu} = \omega^2$

•
$$I = I_0(\frac{\sin(\beta/2)}{\beta/2})^2$$
, $P_R = \frac{P_T G_R G_T \lambda^2}{(4\pi R)^2}$

- $\Delta Q + \Delta W = \Delta E$, ΔQ heat in, ΔW work on
- $W = Q(1 \frac{T}{T_0}), e = (1 \frac{T_C}{T_H}), S = k \ln(\Omega)\Omega$
- $c_v = \frac{3}{2}R$

•
$$I(\lambda) = \frac{2\pi hc^2}{\lambda^5 (\exp(\frac{hc}{k\lambda T}) - 1)}$$

EM

•
$$E_n = \frac{-13.6}{n^2}$$
, $a_0 = \epsilon_0 \frac{h^2}{\pi m e^2}$, $d_n = \frac{(2m)^{3/2} V E^{3/2}}{3\pi h^3}$, $g(E) = \frac{(2m)^{3/2} V}{2\pi h^2} \sqrt{E}$
• $\nabla \cdot j = -\frac{\partial \rho}{\partial t}$, $\nabla \cdot E = \frac{\rho}{\epsilon_0}$, $\nabla \times E = -\frac{\partial B}{\partial t}$, $\nabla \times B = 0$, $c^2 \nabla \times B = \frac{j}{\epsilon_0} + \frac{\partial E}{\partial t}$

•
$$c^2 = \frac{1}{\epsilon_0 \mu_0}$$
, $I = \sigma T^4$, $D = \epsilon E$, $B = \mu H$

• Solution to $\nabla^2 \psi - \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = -s$, $\psi(t) = \frac{1}{4\pi} \frac{S(t - \frac{t}{c})}{r}$, $S(t) = \int s(t) dV$

•
$$\phi(1,t) = \int \frac{\rho(2,t-\frac{r}{c})}{4\pi\epsilon_0 r_{12}} dV, A(1,t) = \int \frac{\rho(2,t-\frac{r}{c})}{4\pi c^2 \epsilon_0 r_{12}} dV$$

•
$$\nabla \phi = E + \frac{\partial A}{\partial t}$$
, $S = \epsilon_0 c^2 E \times B$

• Oscillating dipole:
$$\psi = \frac{dz}{4\pi\epsilon_0} \left[\frac{q(t-\frac{r}{c})}{r^3} + \frac{I(t-\frac{r}{c})}{r^2c} \right]$$

•
$$x' = \gamma(c - ut), t' = \gamma(t - \frac{ux}{c^2}), E^2 + (pc)^2 = (m_0c^2)^2$$

- $|\psi\rangle = \sum_i \alpha_i |\lambda_i\rangle$ is the state of a system, the $|\lambda_i\rangle$ is a complete set of orthonormal vectors which are eigenvectors
- $\langle L \rangle = \sum_{i} P(\lambda_i) \lambda_i$ is the expected value
- $< L > = < \psi | L | \psi > = \sum_i \overline{\alpha_i} \alpha_i < \lambda_i | \lambda_i >, \alpha_i \in \mathbb{C}$
- If φ , ψ are states in a continuous variable, $<\varphi|\psi>=\int_{-\infty}^{\infty}\bar{\varphi}\psi\;dx$
- $I = \sum_{i} |i| < i|$, $Tr(L) = \sum_{i} < i|L|i| >$
- Density: $< L> = Tr \; (\rho L)$ for states prepared with probability p_i

- Observables: $M|\lambda>=\lambda|\lambda>$, λ is the observed value, M is projective and Hermitian
- The rules
 - 1. Observables are represented by linear operators. States are vectors
 - 2. Results of measurements are eigenvalues
 - Distinguishable states correspond to orthogonal eigenvalues
 - 4. If $|\psi\rangle$ is a state and and L is an observable, $P(\lambda_i) = \langle \psi | \lambda_i \rangle \langle \lambda_i | \psi \rangle$
 - 5. Evolution of states governed by a Unitary operator

- $|\psi\rangle = \sum_i \alpha_i |\lambda_i\rangle$ is the state of a system, the $|\lambda_i\rangle$ is a complete set of orthonormal vectors which are eigenvectors
- $\langle L \rangle = \sum_{i} P(\lambda_i) \lambda_i$ is the expected value
- $\langle L \rangle = \langle \psi | L | \psi \rangle = \sum_i \overline{\alpha_i} \alpha_i \langle \lambda_i | \lambda_i \rangle, \alpha_i \in \mathbb{C}$
- If φ, ψ are states in a continuous variable, $\langle \varphi | \psi \rangle = \int_{-\infty}^{\infty} \overline{\varphi} \psi \ dx$
- State is a unit vector: $|\psi\rangle = \cos(\frac{\theta}{2})|0\rangle + e^{i\varphi}\sin(\frac{\theta}{2})|1\rangle$
- $I = \sum_{i} |i| < i|$, $Tr(L) = \sum_{i} < i|L|i| >$
- Density: $\langle L \rangle = Tr (\rho L)$ for states prepared with probability p_i
- Spin field: $H = \sigma \cdot B$

•
$$\langle \dot{\sigma}_z \rangle = \frac{i\omega}{2} \langle [\sigma_z, \sigma_z] \rangle, \langle \dot{\sigma}_y \rangle = -\omega \langle \sigma_x \rangle$$

•
$$<\dot{\sigma}_{x}>=\frac{-i}{\hbar}<[\sigma_{x},H]>, <\dot{\sigma}_{y}>=\frac{-i}{\hbar}<[\sigma_{y},H]>, <\dot{\sigma}_{z}>=\frac{-i}{\hbar}<[\sigma_{z},H]>$$

- $|\psi\rangle = \sum_i \alpha_i |\lambda_i\rangle$ is the state of a system, the $|\lambda_i\rangle$ is a complete set of orthonormal vectors which are eigenvectors
- $\langle L \rangle = \sum_{i} P(\lambda_i) \lambda_i$ is the expected value
- $\langle L \rangle = \langle \psi | L | \psi \rangle = \sum_i \overline{\alpha_i} \alpha_i \langle \lambda_i | \lambda_i \rangle, \alpha_i \in \mathbb{C}$
- If φ, ψ are states in a continuous variable, $\langle \varphi | \psi \rangle = \int_{-\infty}^{\infty} \bar{\varphi} \psi \ dx$
- $I = \sum_{i} |i| < i|$, $Tr(L) = \sum_{i} < i|L|i| > i$
- $I = \int |x| < x | dx$
- $\psi_G(x) = \frac{1}{\sqrt{2\pi}} \exp(i\frac{px}{\hbar}), \tilde{\psi}(p) = \langle p|x \rangle = \int dx \langle p|\psi \rangle \langle x|\psi \rangle$
- Product state: $|sing> = \frac{1}{\sqrt{2}} (|ud> |du>)$
- $\int FG' = -\int GF'$

- Density: $\langle L \rangle = Tr(\rho L)$ for states prepared with probability p_i
- If $< L> = p_{\psi} < \psi | L | \psi> + p_{\varphi} < \varphi | L | \varphi>$, the density operator is
- $P = p_{\psi} | \psi \rangle \langle \psi | p_{\varphi} | \varphi \rangle \langle \varphi |$
- $P_{a,a'} = \overline{\psi(a)}\psi(a')\sum_b \overline{\phi(b)}\,\phi(b)$
- $<\psi|L|\psi>=\sum_{a,a',b,b'}\bar{\psi}_{a',b'}L_{a',a}\psi_{a,b}$
- $\psi(x,t) = \exp\left(i\frac{px \frac{p^2t}{2m}}{h}\right), \langle X|\psi \rangle = \frac{1}{\sqrt{2\pi}}\int dx \exp(i\frac{px}{h})\overline{\psi}(x)$
- Composite: $\varphi \in H^A$, $\psi \in H^B$, $\varphi \otimes \psi \in H^{AB}$
- Dynamics:
 - $\langle v \rangle = \frac{d}{dt} \langle \psi | X | \psi \rangle$,
 - $\frac{d}{dt} < P > = \frac{i}{\hbar} [V, P], [V, P] = i\hbar \frac{dV}{dt}$

Evolution and Schrodinger

- Unitary evolution: $U^{\perp}(t)U(t) = I$
- $|\psi(t)> = U(t)|\psi(0)>$
- $U(\epsilon) = (I + \frac{i}{\hbar} \epsilon H) |\psi(0)>$, so
- $\frac{|\psi(\epsilon)\rangle |\psi(0)\rangle}{\epsilon} = -\frac{i}{\hbar}H|\psi(0)\rangle$, or, $\frac{\partial|\psi(t)\rangle}{\partial t} = -\frac{i}{\hbar}H|\psi(t)\rangle$
- $\frac{d}{dt} < \psi | L | \psi > = < \dot{\psi} | L | \psi > + < \psi | L | \dot{\psi} > =$ $\frac{i}{\hbar} (< \psi | HL | \psi > -(< \psi | LH | \psi >) = \frac{i}{\hbar} < \psi | [H, L] | \psi >$
- This gives conservation of energy since [H] = 0

Miscellaneous (Susskind)

- Standard method:
 - 1. Get *H*
 - 2. Prepare $|\psi(0)>$
 - 3. Find $H|E_j>=E_j|E_j>$

4.
$$\alpha_j(0) = \langle E_j | \psi(0) \rangle, \ \alpha_j(t) = \alpha_j(0) \exp(-i\frac{E_j t}{\hbar})$$

5.
$$|\psi(t)\rangle = \sum_{j} \alpha_{j}(t) |E_{j}\rangle$$

6.
$$P_{\lambda}(t) = \langle \lambda | \psi(t) \rangle^2$$

Correlation and means

$$-\Delta A^2 = \sum_a (A - \bar{A})^2 P(a) = |\langle A^2 | \psi \rangle|^2$$

$$- (\Delta A)(\Delta B) \ge \frac{1}{2} |\langle \psi | [A, B] | \psi \rangle^2$$

$$- C(A, B) = \langle AB \rangle - \langle A \rangle \langle B \rangle$$

-
$$C(\sigma_x, \tau_x)$$
= -1

• Position: $X\psi = x\psi$, Momentum: $P = -\frac{i}{\hbar} \frac{\partial}{\partial x}$

Spin

•
$$|u\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, |d\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

•
$$|r> = \frac{1}{\sqrt{2}}(|u>+|d>, |l> = \frac{1}{\sqrt{2}}(|u>-|d>$$

•
$$|i\rangle = \frac{1}{\sqrt{2}}(|u\rangle + i|d\rangle, |o\rangle = \frac{1}{\sqrt{2}}(|u\rangle - i|d\rangle$$

• Pauli matricies:
$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$

•
$$\sigma_n = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

•
$$\lambda_1 = 1$$
, $|\lambda_1 > = \begin{pmatrix} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2}) \end{pmatrix}$, $\lambda_2 = -1$, $|\lambda_2 > = \begin{pmatrix} -\sin(\frac{\theta}{2}) \\ \cos(\frac{\theta}{2}) \end{pmatrix}$

Harmonic Oscillator, etc

- $< p|x> = \frac{1}{\sqrt{2\pi}} \exp(-i\frac{px}{\hbar})$
- $\psi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(i\frac{px}{\hbar}) \tilde{\psi}(p) dp = \frac{1}{\sqrt{2\pi}} \int dp < x |p> < p|\psi>$,
- $\widetilde{\psi}(p) = \frac{1}{\sqrt{2\pi}} \int \exp\left(-i\frac{px}{\hbar}\right) \psi(x) dx$
- $H = \frac{1}{2}\dot{X}^2 + \frac{1}{2}\omega^2 x^2 = \frac{P^2 + w^2 x^2}{2} = \frac{1}{2}(P + i\omega X)(P i\omega X) \omega^2[X, P]$
- Ground state: $\psi(x) = \exp(\frac{\omega}{2\hbar}x^2)$, $E_0 = \frac{\omega\hbar}{2}$
- $a^- = \frac{i}{\sqrt{2\omega\hbar}}(P i\omega X), a^+ = \frac{-i}{\sqrt{2\omega\hbar}}(P + i\omega X)$
- $[a^-, a^+] = 1$. If $N = a^+ a^-$, $H = \omega \hbar (N + \frac{1}{2})$, N | n > = n | n >,
- $a^+|n> = |n+1>$
- Particle in box: $E_n = \frac{n^2 h^2}{8mL^2}$, $\psi_n = C sin(\frac{n\pi x}{L})$

Hidden subgroup

• $S \le G$, f(x) = f(y) iff x + S = y + S

Hidden subgroup

• $S \le G$, f(x) = f(y) iff x + S = y + S