Final Exam Review

PN Junction

Space Change Xpo NA= Xno Na W= [ZEVO (TANTO)] Xpo= WND NA+NO Xno = WNA E. = BNAXPO Black W= [2 (V0-V4) (tx + tx)]/2 forward

[(V0+Vr) " "]/2 reverse

$$D/\mu = kT/q$$
 Einstein Relation

$$L = [D\tau]^{1/2}$$
 Diffusion Length

applications Rectifiers - Large gap, low doping, A large (Rosmall), L small Switching doides - Very short Tr. To (but lower gain) Breake down Dide Vor Vor (abrupt junction) (Degenerate)

Schottky Barriers

2.
$$\Phi_{M} = E_{vac} - E_{F}^{metal}$$
 stays the same after contact.

3.
$$\chi = E_{vac} - E_C$$
 stays the same at interface.

4.
$$E_C - E_F$$
 stays the same in the SC bulk

5. Line up
$$E_F^{SC}$$
 with E_F^{metal} .

6. Curve
$$E_C - E_F$$
 to connect E_C^{surface} and E_C^{bulk}

8. Schottky barrier
$$\Phi_{SB} = E_C^{surface} - E_F^{metal}$$
.

9. n-type band bending
$$qV_B = \Phi_{SB} - (E_C - E_F)$$

10.
$$(E_C - E_F) = (E_C - E_i) - (E_F - E_i)$$

11.
$$n = n_i e^{(E_F - E_i)}$$

Heterojunctions

- 1. Align SC Fermi levels with bands flat.
- 2. Find x=0 based on N1 vs N2 doping.
- 3. N-type bends up. P-type bends down.
- 4. Insert ΔE_C and ΔE_V .
- 5. Use 2/3 1/3 Rule.
- 6. Connect E_{c} 's . Connect E_{v} 's.
- 7. Keep each band gap constant.
- 8. No notch for longer connection.

Examples

JFET

VGD is (-)
regative bias to G

MOSFET

Depletion Fritzevortage to metal

$$P = n_{i}e^{\left(\frac{E_{i}-E_{i}}{E_{i}}\right)/let}$$

$$P = n_{i}e^{\left(\frac{E_{i}-E_{i}}{E_{i}}\right)/let}$$

$$P = q(N_{d}-N_{d}+P-N)$$

$$Q_{m} = Q_{s} = qN_{e}V-Q_{n}$$

$$V = V_{i}+Q_{s}$$

$$V = V_{i}+Q_{s}$$

$$V = \frac{Q_{s}}{C_{i}} = \frac{Q_{s}}{C_{i}}$$

$$V = \frac{Q_{s}}{C_{i}} =$$

$$W_{m} = \begin{bmatrix} 2^{2} \in s & \text{ket ln} (Na/ni) \end{bmatrix}^{2}$$

$$V_{T} = -\frac{G}{G}d + 2G = Ci$$

$$C_{i} = \frac{C}{G}i$$

Real MOS Transistors Øm = Φm·Ø ±0 VFB = Øms - Qi
C; OF = KT In Na Whie Do [Eagle]/2 Whie Color of Na Whie Color of Na White Do Na $C_i = \frac{C_i}{A}$ Go= -gNaWm Cd = Es Cmin = Lild Ci+Cd VT = \$ -91 -91 +2\$ F

BY=X Current Transfer Ratio Base-to-rollector arrent amplification factor (gain)

Hope X~1

know how to calculate DPE and DBC. You need it For IE, Ic, and IB.

"on" _ lower E-B barrier, Cis reverse: Sweepout Cay MAUS

Sech y ~ 1Ctnh y ~1/y

Csch y $\sim 1/y$

Tanh y -

P-n-P coupled dides 4 options: VES VCB Normal FR Inverted R F Cutoff R R Saturation F F TEP = BADP (emitter - collector)

12 DR=-R Vosco Vesto Vesto Vesto VEB>0 Qp = $\Delta P = \frac{Wb}{2} \cdot g A$ Consider the properties of the proper Current = charge replaced persecond = gA APE WS **Charge Control Approximation** Traveit time across the base often limits high Frequency.

Transit time across the base often limits high frequency.

B= $\frac{2L_p^2}{W_b^2} = \frac{2DpTp}{W_b^2} = \frac{2DpTp}{W_b^2}$

comonly draw as

Early Effect (base narrowing)

