Normal Forms

SWEN304/SWEN439

Lecturer: Dr Hui Ma

Engineering and Computer Science

Normalization

- Normalization is used to design a set of relation schemas that is optimal from the point of view of database updating
- Normalization starts from a universal relation schema
- There are six normal forms, of which only three are based on functional dependencies
- Normal forms define to which extent we should normalize
- The Synthesis algorithm and the Decomposition algorithm represent the formal normalization methods
- Readings from the textbook:
 - Chapter 15: 15.1-15.5,
 - Chapter 16: 16.1 -16.3

Normal Forms

 Normalization is a procedure that transforms a universal relation schema (*U*, *F*) into a set of relation schemas

$$S = \{N_i(R_i, K_i) \mid i = 1,..., n\}$$

- The goal of the normalization is to avoid update anomalies by achieving a specified normal form
- There are six (vertical) normal forms defined in the theory of the relational data model
- These are: first, second, third, Boyce—Codd, fourth, and fifth normal form
- The second, third and Boyce—Codd normal form are based on functional dependencies

First Normal Form

- A relation schema is in first normal form (1NF) if the domain of its each attribute has only atomic values
 - No relation schema attribute is allowed to be composite or multi-valued
- Example:
 - Student (StID, StName, {CourId, CoName, Grade})
 (*¬1NF*)
- Very often, the term "normalized relation" means "at least in the first normal form"
- From now on, if not otherwise noted, we shall consider only relation schemas that are at least in the first normal form

Second Normal Form

- A relation schema R is in second normal form (2NF) if no non-prime attribute in R is partially functionally dependent on any relation schema R key
- Example:

```
Grades (\{StID, StName, CourId, Grade\},

\{StID \rightarrow StName, StID + CourId \rightarrow Grade\})

K(Grades) = StID + CourId
```

- is not in 2NF, but in 1NF
- Since
 - Grade, StName are non-prime attributes:
 - Grade is not partially (is fully) depended on the key
 - but StName is partially depended on the key
- A second normal form relation still exhibits update anomalies

Third Normal Form

- A relation schema N(R, F) with a set of keys K(N) is in **third normal form** (3NF) if for each non-trivial functional dependency $X \rightarrow A$ holds in F, **either** X is a superkey of N, **or** A is a prime attribute of N
- X is a superkey of N: X is a superset of a key of N
- Formally 3NF can be defined by:

$$(\forall f: X \rightarrow A \in F)(A \in X \lor X \rightarrow R \in F \lor (\exists Y \in K(N))(A \in Y))$$

- Relation schemas being in the third but not in Boyce—
 Codd normal form still exhibit some update anomalies
- Recall: a prime attribute is a relation schema attribute that belongs to any of the keys

Another Definition of the Third Normal Form

According to Codd's original definition:

A relation schema is in **third normal form (3NF)** if it is in 2NF, *and* no non-prime attribute is **transitively** functionally dependent on any relation schema key

- A functional dependency $X \rightarrow A$ in a relation schema N is a **transitive dependency** if there is a set Y that is neither a candidate key nor a subset of any key of N, and both $X \rightarrow Y$ and $Y \rightarrow A$ hold
- It can be proven that the two definitions given are equivalent

Third Normal Form – Examples (1)

The relation schema

```
Lecturer ({LecId, LeName, CourId, CoName},

{LecId\rightarrowLeName, LecId\rightarrowCourId, LecId\rightarrowCoName,

CourId\rightarrowCoName}),

K(Lecturer) = LecId
```

- It is in 2NF but not in 3NF,
- since FD CourId → CoName holds in F, but neither CourId is a super key nor CoName is a prime attribute

Third Normal Form – Examples (2)

The relation schema

Lecturer ({LecId, LeName, CourId}, {LecId \rightarrow LeName, LecId \rightarrow CourId}), K(Lecturer) = LecId

- Is satisfies 3NF,
- since all FDs in F have the LHS as a key

The relation schema

$$N(\{A, B, C\}, \{A \rightarrow B, B \rightarrow A, B \rightarrow C\}), K = \{A, B\},$$

- Is it in 3NF?
- Why?

Third Normal Form – Examples (3)

- Given $N(\{A, B, C\}, \{AB \rightarrow C, C \rightarrow B\})$, is N in 3NF?
 - We first need to determine minimal keys of N

Boyce-Codd Normal Form

- The Boyce-Codd normal form is the highest NF that is based on FDs
- The relation schema (R, F) is in Boyce-Codd Normal Form (BCNF), if the left-hand side of each non-trivial functional dependency in F contains a relation schema key
- Formally

$$(\forall f: X \rightarrow A \in F)(A \in X \vee X \rightarrow R \in F^+)$$

Boyce-Codd Normal Form Examples (1)

- Employee={e_no, e_name, salary, child}
 with F = {e_no → e_name, e_no → salary}
 - Employee is not in BCNF wrt F
 - since
 - the FD e_no → e_name is not trivial, and
 - e_no is not a superkey for Employee wrt F:
 e_no+ = {e_no, e_name, salary}

Boyce-Codd Normal Form Examples (2)

- INFO({e_no, e_name, salary}, {e_no → e_name, e_no → salary})
 - INFO is in BCNF wrt F
 - since
 - Both no trivial FDs e_no → e_name, e_no → salary have LHS as super key
 - e_no is a superkey for INFO wrt F:
 e_no+ = {e_no, e_name, salary}
- What about
 - INFO({e_no, e_name, salary}, {e_no → e_name, e_name → salary})?
 - $N(\{A, B, C\}, \{AB \rightarrow C, C \rightarrow B\}),$
 - Is it in BCNF wrt F?
 - Why?

Normal Form of a Set of Relation Schemas

The normal form of a relation schema set

$$S = \{N_1(R_1, C_1), ..., N_n(R_n, C_n)\}$$

is determined by the normal form of the relation schema being in the lowest normal form

Example:

$$S = \{N_1(\{A, B\}, \{A \rightarrow B\}),$$

 $N_2(\{B, C, D, E\}, \{BC \rightarrow D, C \rightarrow E\})\}$

- Due to N_2 , S is in 1NF, even though N_1 is in BCNF
- Note: when considering normal forms, the set of constraints C is, often, considered as containing only functional dependencies

Normal Form Examples (1)

- let R = CZS and $= \{Z \rightarrow C, CS \rightarrow Z\}$
 - determine minimal keys
 - Which normal form is it in?

- now take R = ABCD and $= \{A \rightarrow B, B \rightarrow C, CD \rightarrow A, AC \rightarrow D\}$
 - determine minimal keys
 - Which normal form is it in?

Normal Form Examples (2)

- For R = CZS and $F = \{Z \rightarrow C, CS \rightarrow Z\}$
 - We discover that the minimal keys are ZS and CS
 - Hence all attributes are prime and R is in 3NF
- For R = ABCD and $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow A, AC \rightarrow D\}$
 - We discover that the minimal keys are A, BD and CD
 - Hence again all attributes are prime and R is in 3NF

In both cases we did not have BCNF

- Of six normal forms defined in theory, only first four have significance in the practice
- Of these four only three are based on functional dependencies (2NF, 3NF, and BCNF)
- The first, second and (partly) third normal form suffer from update anomalies
- A set of BCNF relation schemas is (practically) free of update anomalies, and represents a possible goal of normalization
- The fact that a relation schema key functionally defines all relation schema attributes is crucial for understanding normal forms