Završni ispit iz Teorije grafova 15. 6. 2021.

1. (5 bodova) Neka je G kocka dimenzije 2021, dakle graf Q_{2021} . Odredite $\chi(G)$ i $\chi'(G)$.

Rješenje

Kocka je bipartitan graf. Zato je $\chi(G)=2$. Kocka je regularan graf stupnja 2021. Dakle, $\Delta=2021$. Po Königovom teoremu je $\chi'(G)=2021$.

2. **(5 bodova)** Koliki je minimalan broj boja potreban da bi se obojale strane ikosaedra? Dokažite svoju tvrdnju.

Rješenje

Najlakše je rješavati dualni zadatak, tražiti kromatski broj dodeka
edra. Dodeka
edar je regularan stupnja 3, pa je po Brooksovom teorem
u $\chi(G) \leq 3$. S druge strane, dodeka
edar ima peterokute, pa je $\chi(G) \geq 3$. Dakle, kromatski broj dodeka
edra je 3.

3. (5 bodova) Bez pozivanja na Vizingov teorem dokažite da je kromatski indeks potpunog grafa s parnim brojem vrhova $n \ (n \ge 2)$ jednak n-1.

Rješenje

Kako je K_n (n-1)-regularan, sigurno je $\chi'(K_n) \ge n-1$. Da je $\chi'(K_n) \le n-1$ dokazuje se eksplicitnom konstrukcijom nekog bojanja sn-1 bojom (jedna konstrukcija dana je i u nastavnim materijalima).

4. (5 bodova) Kada za graf kažemo da je usmjeriv? Iskažite tvrdnju koja karakterizira usmjerive grafove. Za koje vrijednosti parametara r i s je potpuni bipartitni graf $K_{r,s}$ usmjeriv?

Rješenje

Graf je usmjeriv ako se njegovi bridovi mogu orijentirati tako da je dobiveni digraf jako povezan. Graf je usmjeriv onda i samo onda ako je svaki njegov brid sadržan u nekom ciklusu. $K_{r,s}$ je usmjeriv za sve $r, s \geq 2$.

5. (5 bodova) Postoji li turnir sa 6 vrhova koji nema ciklus duljine 4?

Riešenie

Postoji. Za to pokazati najlakše je konstruirati jedan takav. Npr., neka je jedan vrh izvor, jedan ponor, a preostala 4 ne čine ciklus.

6. (5 bodova) Neka je P_n lanac s n vrhova. Uz koje uvjete na parametar n u tom lancu postoje potpuna sparivanja? Koliko takvih sparivanja ima?

Rješenje

Materijali, 11. tjedan (Potpuna sparivanja). Ako je n paran, ima 1 potpuno sparivanje, a ako je n neparan, ima ih $\frac{n+1}{2}$.

7. (5 bodova) Dokažite da Mengerov teorem povlači Hallov teorem.

Rješenje

Materijali, 12. tjedan (Protoci u mrežama).

8. (5 bodova) Nađite maksimalni protok u mreži na slici. Nađite barem jedan rez minimalnog kapaciteta u zadanoj mreži.

Rješenje

Maksimalni protok ima vrijednost 11. Rez se sastoji od 5 bridova kapaciteta 1, 2, 3, 2, 3.

Ispit se piše 120 minuta. Nije dozvoljena upotreba šalabahtera i kalkulatora. Sretno!