PARTIE 1: généralités

Soit E un \mathbb{R} -espace vectoriel non trivial. On notera id l'application identité de E et \mathbb{O} l'application nulle.

On considère un endomorphisme f de E vérifiant :

$$f^2 = \frac{1}{2} (f + id)$$
 (*)

- 1. L'ensemble des endomorphismes de E vérifiant (*) est-il un sous espace vectoriel de $\mathcal{L}(E)$?
- **2.** Déterminer toutes les homothéties de E vérifiant la relation (*).

On supposera désormais que f n'est pas une homothétie.

- **3.** Montrer que f est inversible, et exprimer f^{-1} à l'aide de f.
- **4.** Démontrer que $E = \ker\left(f + \frac{1}{2}\operatorname{id}\right) \oplus \ker\left(f \operatorname{id}\right)$, en précisant la décomposition d'un vecteur x de E.
- **5.** On note $p = \frac{2}{3} \left(f + \frac{1}{2} \operatorname{id} \right)$ et $q = -\frac{2}{3} \left(f \operatorname{id} \right)$
 - a) Montrer que p et q sont deux projecteurs dont on donnera les éléments caractéristiques à l'aide de f.
 - b) Retrouver à l'aide de p et q le résultat de la question 4.
 - c) Exprimer f en fonction de p et q, puis montrer que $\forall n \in \mathbb{N}$, f^n est une combinaison linéaire de p et q que l'on explicitera.
 - d) Montrer que la relation précédente reste vraie pour $n \in \mathbb{Z}$.
- **6.** a) Montrer que $\ker \left(f + \frac{1}{2} \operatorname{id} \right) \neq E$ et $\ker \left(f \operatorname{id} \right) \neq E$
 - b) En déduire que $\ker\left(f+\frac{1}{2}\operatorname{id}\right)\neq\{0_E\}$ et $\ker\left(f-\operatorname{id}\right)\neq\{0_E\}$.
 - c) Soit $\lambda \in \mathbb{R}$. Montrer que si l'équation $f(x) = \lambda x$ admet une solution $x \in E$ non nulle, alors $\lambda^2 \frac{\lambda}{2} \frac{1}{2} = 0$. En déduire les valeurs possibles de λ .
 - d) Réciproquement, montrer que pour ces valeurs de λ , l'équation $f(x) = \lambda x$ admet des solutions non nulles.

PARTIE 2: applications

1. Application 1 : on considère $E = \mathbb{R}^3$, et f l'endomorphisme de E associé à la matrice

$$A = \frac{1}{2} \left(\begin{array}{rrr} 0 & 3 & 1 \\ 1 & 2 & 1 \\ -1 & -3 & -2 \end{array} \right)$$

a) Montrer que f vérifie la relation (*).

b) Pour
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in E$$
, calculer $X_1 \in \ker \left(f + \frac{1}{2} \operatorname{id} \right) = F$ et $X_2 \in \ker \left(f - \operatorname{id} \right) = G$ tels que $X = X_1 + X_2$

- c) Calculer les éléments caractéristiques (on donnera une base de chacun) du projecteur sur F parallèlement à G et du projecteur sur G parallèlement à F.
- d) Calculer A^n pour $n \in \mathbb{Z}$.

PCSI 1 2019/2020

2. Application 2 : on considère l'ensemble E des fonctions f de classe C^{∞} sur $]0, +\infty[$ vérifiant l'équation différentielle :

$$2x^{2}y''(x) + xy'(x) - y(x) = 0 \quad (\mathcal{E})$$

Si $f \in E$, on définit la fonction $\varphi(f)$ sur $]0, +\infty[$ par

$$\forall x > 0, \ \varphi(f)(x) = xf'(x)$$

- a) Montrer que E est un sous-espace vectoriel de $C^{\infty}(]0,+\infty[\,,\mathbb{R})$ et que φ est linéaire.
- b) Démontrer que φ est un endomorphisme de E.
- c) Montrer que φ vérifie la relation (*) de la partie 1.
- d) Résoudre sur $]0, +\infty[$ les équations différentielles :

$$xy'(x) - y(x) = 0$$
 (\mathcal{E}_1) et $xy'(x) + \frac{1}{2}y(x) = 0$ (\mathcal{E}_2)

- e) On note f_1 et f_2 les solutions de (\mathcal{E}_1) et (\mathcal{E}_2) vérifiant f_1 $(1) = f_2$ (1) = 1. Ecrire les ensembles $\ker (\varphi \mathrm{id})$ et $\ker \left(f + \frac{1}{2} \mathrm{id} \right)$ à l'aide de f_1 et f_2
- f) En déduire la dimension et une base de E. Donner alors la forme générale des solutions de (\mathcal{E}) .