De Giorgi-Nash-Moser Theory

89hao

January 10, 2020

Abstract

This is a learning note about the De Giorgi-Nash-Moser theory, the reference book is Qing Han and Fanghua Lin's $Elliptic\ Partial\ Differential\ Equations$

The main task of this note is to prove the following theorem:

Theorem 1 Suppose $a_{ij} \in L^{\infty}(B_1)$ and $c \in L^q(B_1)$ for some $q > \frac{n}{2}$ satisfy the following assumptions

$$a_{ij}(x)\xi_{i}\xi_{j} \geq \lambda \left|\xi\right|^{2} \text{ for any } x \in B_{1} \text{ and } \left|a_{ij}\right|_{L^{\infty}} + \|c\|_{L^{q}} \leq \Lambda$$

for some positive constants λ and Λ . Suppose that $u \in H^1(B_1)$ is a subsolution in the following sense

$$\int_{B_1} a_{ij} D_i u D_j \varphi + c u \varphi \leq \int_{B_1} f \varphi \text{ for any } \varphi \in H^1_0(B_1) \text{ and } \varphi \geq 0 \text{ in } B_1.$$

If $f \in L^q(B_1)$, then $u^+ \in L^\infty_{loc}(B_1)$. Moreover, there holds for any $\theta \in (0,1)$ and any p > 0

$$\sup_{B_{\theta}} u^{+} \leq C \left\{ \frac{1}{(1-\theta)^{\frac{n}{p}}} \|u^{+}\|_{L^{p}(B_{1})} + \|f\|_{L^{q}(B_{1})} \right\}$$

where $C = C(n, \lambda, \Lambda, p, q)$ is a positive constant.

1 Moser's Method

Think about the following undergraduate level question: **Question** Let $f \in C[0,1]$, then what is the value of

$$\lim_{\gamma \to \infty} \left| \int_0^1 |f(x)|^{\gamma} \, \mathrm{d}x \right|^{\frac{1}{\gamma}} = ?$$

The answer is $\sup_{0 \le x \le 1} |f(x)| = ||f||_{L^{\infty}}$. This is exatly the way we transform $||u^+||_{L^p}$ to $\sup u^+$ in the proof of the above theorem. To make things more understanding, we assume f = 0. In this simplified version, We first establish the inequality

$$\left(\int_{B_r} |u^+|^{\gamma\chi}\right)^{\frac{1}{\chi}} \le C \int_{B_R} |u^+|^{\gamma},$$

where $\chi > 1$ and $\gamma \geq 2$, r < R. Then we use this inequality to iterate, the iterating step makes $\chi \to \infty$, then the left side would be more and more likely to the suprimum norm of u^+ just as the question. Hence we can get the following inequality by doing this iteration:

$$\sup_{B_{\frac{1}{2}}} u^+ \le C \|u^+\|_{L^2(B_1)}.$$

Thus the case f=0 and p=2 can be proved. The proof under the condition of $f\neq 0$ needs to be modified slightly. Then the general case that p=2 can be proved easily by using the above special case.

According to the above discussion, we want to establish the inequality like this:

$$||u^+||_{L^{\gamma\chi}(B_r)} \le C||u^+||_{L^{\gamma}(B_R)}$$

for some constant C and r < R. This inequality estimate the $L^{\gamma\chi}$ -norm by the weaker L^{γ} -norm. As a trade-off, we have to make r < R, via certain test function.

For some k > 0 and m > 0, set $\overline{u} = u^+ + k$ and

$$\overline{u}_m = \begin{cases} \overline{u} & \text{if } u \le m \\ k + m & \text{if } u \ge m \end{cases}$$

The point is that \overline{u}_m is still an element of $H^1(B_1)$, but bounded below by k and from above by (k+m). Then we have $D\overline{u}_m = 0$ whenever u < 0 or u > m and $\overline{u}_m \leq \overline{u}$. Set the test function

$$\phi = \eta^2 \left(\overline{u}_m^{\beta} \overline{u} - k^{\beta+1} \right) \in H_0^1(B_1)$$

for some $\beta \geq 0$ and some nonnegative function $\eta \in C_0^1(B_1)$. The function η is a cut-off function to be chosen later on (remember the trade-off r < R?). ϕ is an element of $H_0^1(B_1)$ because \overline{u}_m is bounded. Direct calculation yields

$$\begin{split} D\phi = &\beta\eta^2\overline{u}_m^{\beta-1}D\overline{u}_m\overline{u} + D\overline{u}\eta^2\overline{u}_m^{\beta} + 2\eta D\eta\left(\overline{u}_m^{\beta} - k^{\beta+1}\right) \\ = &\eta^2\overline{u}_m^{\beta}\left(\beta D\overline{u}_m + D\overline{u}\right) + 2\eta D\eta\left(\overline{u}_m^{\beta}\overline{u} - k^{\beta+1}\right). \end{split}$$

where we used the fact that $\overline{u} = \overline{u}_m$ whenever $D\overline{u}_m \neq 0$. Then we have

$$\int a_{ij} D_i u D_j \phi = \int a_{ij} D_i \overline{u} \left(\beta D_j \overline{u}_m + D_j \overline{u} \right) \eta^2 \overline{u}_m^{\beta} + 2 \int a_{ij} D_i \overline{u} D_j \eta \left(\overline{u}_m^{\beta} \overline{u} - k^{\beta + 1} \right)
\geq \lambda \beta \int \eta^2 \overline{u}_m^{\beta} \left| D \overline{u}_m \right|^2 + \lambda \int \eta^2 \overline{u}_m^{\beta} \left| D \overline{u} \right|^2 - \Lambda \int \left| D \overline{u} \right| \left| D \eta \right| \overline{u}_m^{\beta} \overline{u} \eta
\geq \lambda \beta \int \eta^2 \overline{u}_m^{\beta} \left| D \overline{u}_m \right|^2 + \frac{\lambda}{2} \int \eta^2 \overline{u}_m^{\beta} \left| D \overline{u} \right|^2 - \frac{2\Lambda^2}{\lambda} \int \left| D \eta \right|^2 \overline{u}_m^{\beta} \overline{u}^2.$$

Hence we obtain by noting $\overline{u} \geq k$

$$\beta \int \eta^{2} \overline{u}_{m}^{\beta} |D\overline{u}_{m}|^{2} + \int \eta^{2} \overline{u}_{m}^{\beta} |D\overline{u}|^{2}$$

$$\leq C \left\{ \int |D\eta|^{2} \overline{u}_{m}^{\beta} \overline{u}^{2} + \int \left(|c| \eta^{2} \overline{u}_{m}^{\beta} \overline{u}^{2} + |f| \eta^{2} \overline{u}_{m}^{\beta} \overline{u} \right) \right\}$$

$$\leq C \left\{ \int |D\eta|^{2} \overline{u}_{m}^{\beta} \overline{u}^{2} + \int c_{0} \eta^{2} \overline{u}_{m}^{\beta} \overline{u}^{2} \right\}$$

where c_0 is defined as

$$c_0 = |c| + \frac{|f|}{k}.$$

Choose $k = ||f||_{L^q}$ if f is not identically zero. Otherwise choose arbitrary k > 0 and eventually let $k \to 0^+$. By assumption we have

$$||c_0||_{L^q} \leq \Lambda + 1.$$

Set $w = \overline{u}_m^{\frac{\beta}{2}} \overline{u}$. Then

$$|Dw| = \overline{u}_m^{\frac{\beta}{2}} \left(\frac{\beta}{2} \cdot D\overline{u}_m + D\overline{u} \right),$$

therefore

$$\begin{aligned} \left| Dw \right|^2 &= \overline{u}_m^\beta \left| \frac{\beta}{2} D\overline{u}_m + D\overline{u} \right|^2 \\ &= \overline{u}_m^\beta \left(\frac{\beta^2}{4} \left| D\overline{u}_m \right|^2 + \beta D\overline{u}_m D\overline{u} + \left| D\overline{u} \right|^2 \right) \\ &= \overline{u}_m^\beta \left(\beta \left(\frac{\beta}{4} + 1 \right) \left| D\overline{u}_m \right|^2 + \left| D\overline{u} \right|^2 \right) \\ &\leq \overline{u}_m^\beta \left(\beta + 1 \right) \left(\beta \left| D\overline{u}_m \right|^2 + \left| D\overline{u} \right|^2 \right). \end{aligned}$$

Therefore we have

$$\int |Dw|^2 \eta^2 \le C \left((1+\beta) \int w^2 |D\eta|^2 + (1+\beta) \int c_0 w^2 \eta^2 \right)$$

and so

$$\int |D(w\eta)|^{2} \le 2 \int (|D\eta|^{2} w^{2} + |Dw|^{2} \eta^{2})$$

$$\le C \left((1+\beta) \int w^{2} |D\eta|^{2} + (1+\beta) \int c_{0} w^{2} \eta^{2} \right).$$

C in different lines may not identical. Hölder inequality implies

$$\int c_0 w^2 \eta^2 \le \left(\int c_0^q \right)^{\frac{1}{q}} \left(\int (\eta w)^{\frac{2q}{q-1}} \right)^{1-\frac{1}{q}} \le (\Lambda+1) \left(\int (\eta w)^{\frac{2q}{q-1}} \right)^{1-\frac{1}{q}}.$$

By interpolation inequality and Sobolev inequality and Sobolev's inequality with $2^* = \frac{2n}{n-2} > \frac{2q}{q-1} > 2$ if $q > \frac{n}{2}$, we have

$$\begin{aligned} \|\eta w\|_{L^{\frac{2q}{q-1}}} &\leq \varepsilon \|\eta w\|_{L^{2^*}} + C(n,q)\varepsilon^{-\frac{n}{2q-n}} \|\eta w\|_{L^2} \\ &\leq \varepsilon \|D(\eta w)\|_{L^2} + C(n,q)\varepsilon^{-\frac{n}{2q-n}} \|\eta w\|_{L^2} \end{aligned}$$

for any small $\varepsilon > 0$. (What we do in this inequality is to split c_0 and $w^2\eta^2$.If c = f = 0, then the operation here would not be needed and the proof can be simpler.) Therefore we obtain

$$\int |D(w\eta)|^{2} \le C \left((1+\beta) \int w^{2} |D\eta|^{2} + (1+\beta)^{\frac{2q}{2q-n}} \int w^{2} \eta^{2} \right)$$

and in particular

$$\int |D(w\eta)|^2 \le C(1+\beta)^{\alpha} \int \left(|D\eta|^2 + \eta^2\right) w^2$$

where α is a positive number depending only on n and q. From the Sobolev inequality, with $\chi = n/(n-2) > 1$ for n > 2 and any fixed $\chi > 2$ for n = 2, we get

$$\left(\int |\eta w|^{2\chi}\right)^{\frac{1}{chi}} \le C(1+\beta)^{\alpha} \int \left(|D\eta|^2 + \eta^2\right) w^2.$$

Choose the cut-off function η as follows. For any $0 < r < R \le 1$ set $\eta \in C_0^1(B_R)$ with the property

$$\eta \equiv 1 \text{ in } B_r \text{ and } |D\eta| \le \frac{2}{R-r}.$$

Then we obtain

$$\left(\int_{B_r} w^{2\chi}\right)^{\frac{1}{\chi}} \leq \frac{(1+\beta)^{\alpha}}{(R-r)^2} \int_{B_R} w^2.$$

Since by definition of $w = \overline{u}_m^{\beta} \overline{u}$, we have

$$\left(\int_{B_r} \overline{u}^{2\chi} \overline{u}_m^{\beta\chi}\right)^{\frac{1}{\chi}} \leq C \frac{(1+\beta)^{\alpha}}{(R-r)^2} \int_{B_R} \overline{u}^2 \overline{u}_m^{\beta}.$$

Set $\gamma = \beta + 2 \ge 2$. Then we obtain

$$\left(\int_{B_r} \overline{u}_m^{\gamma\chi}\right)^{\frac{1}{\chi}} \le C \frac{(\gamma - 1)^{\alpha}}{(R - r)^2} \int_{B_R} \overline{u}^{\gamma}$$

provided the integral in the right-hand side is bounded. By letting $m \to \infty$ we obtain

$$\|\overline{u}\|_{L^{\gamma\chi}(B_r)} \le \left(C\frac{(\gamma-1)^{\alpha}}{(R-r)^2}\right)^{\frac{1}{\gamma}} \|\overline{u}\|_{L^{\gamma}(B_R)}$$

provided $\|\overline{u}\|_{L^{\gamma}(B_R)} < \infty$, where $C = C(n, q, \lambda, \Lambda)$ is a positive constant independent of γ .

Then we do the iteration, taking successively the values $\gamma = 2, 2\chi, 2\chi^2, \cdots$. Define, for all $i = 1, 2, \cdots$,

$$\gamma_i = 2\chi^i \text{ and } r_i = 2 + \frac{1}{2^{i-1}}.$$

For any $i \geq 0$, $\gamma_{i+1} = \chi \gamma_i$, $r_i - r_{i+1} = \frac{1}{2^{i+2}}$, we have

$$\|\overline{u}\|_{L^{\gamma_{i+1}}(B_{r_{i+1}})} \leq C\left(n, q, \lambda, \Lambda\right)^{\frac{1}{\gamma_{i}}} \|\overline{u}\|_{L^{\gamma_{i}}\left(B_{r_{i}}\right)},$$

that is,

$$\|\overline{u}\|_{L^{\gamma_{i+1}}(B_{r_{i+1}})} \le C^{\frac{i}{\chi^i}} \|\overline{u}\|_{L^{\gamma_i}(B_{r_i})}.$$

Hence by iteration we obtain

$$\|\overline{u}\|_{L^{\gamma_{i+1}}(B_{r_{i+1}})} \le C^{\sum_{j=1}^{i} \frac{j}{\chi^{j}}} \|\overline{u}\|_{L^{2}(B_{1})}$$

 $in\ particular$

$$\|\overline{u}\|_{L^{\gamma_{i+1}}\left(B_{\frac{1}{2}}\right)} \le C^{\sum_{j=1}^{i} \frac{j}{\chi^{j}}} \|\overline{u}\|_{L^{2}(B_{1})}$$

Letting $i \to \infty$ and using Fatou's Lemma we get

$$\sup_{B_{\frac{1}{2}}} \overline{u} \le C \|\overline{u}\|_{L^2(B_1)},$$

hence

$$\sup_{B_{\frac{1}{2}}} u^{+} \le C \left(\|u^{+}\|_{L^{2}(B_{1})} + k \right).$$

Since $k = ||f||_{L^q}$, we finish the proof for p = 2.