# Лабораторная работа на тему: Резонанс напряжений в последовательном контуре

Рябов Олег Балушкин Петр Группа Б04-302

29 октября 2024 г.



# Содержание

#### 1 Введение

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазовочастотных характеристик, а также определение основных параметров контура

В работе используются: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

#### 2 Схема установки

Последовательный контур подключен к источнику напряжения, на который подается сигнал с генератора.  $R_L$  и  $R_C$  - активные сопротивления катушки и конденсатора. Напряжения снимаются вольтметрами 1 и 2 со всей цепи и с конденсатора соответственно.



Рис. 1: Схема установки

## Краткая теория

Импеданс последовательного контура:

$$Z = Z_R + Z_C + Z_L = R + \frac{1}{iwC} + iwL$$

Ток в цепи:

$$I = \frac{\varepsilon}{Z} = \frac{\varepsilon}{R + \frac{1}{iwC} + iwL}$$

С учетом характеристик цепи:  $w_0^2 = \frac{1}{LC}, \ \delta = \frac{R}{2L}$  получаем напряжения на всех элементах:

$$U_C = IZ_C = \frac{\varepsilon}{R + \frac{1}{iwC} + iwL} \cdot \frac{1}{iwC} = \frac{\varepsilon}{1 - w^2LC + iwCR} = \frac{\varepsilon w_0^2}{w_0^2 - w^2 + 2i\delta w}$$
$$U_L = IZ_L = \frac{\varepsilon w^2}{w^2 - w_0^2 - 2i\delta w}$$

$$U_R = IR = \frac{\varepsilon 2i\delta w}{w_0^2 - w^2 + 2i\delta w}$$

Если контур обладает хорошей добротностью  $Q = \frac{w_0}{2\delta}$ , то резонансная частота  $w_{\text{pes}} \approx w_0$ , на которой в Q раз увеличивается напряжение на конденсаторе и катушке:

$$U_C = -i\varepsilon \frac{w_0}{2\delta} = -i\varepsilon Q, \quad U_L = i\varepsilon \frac{w_0}{2\delta} = i\varepsilon Q, \quad U_R = \varepsilon$$

Напряжения на катушке и конденсаторе находятся в противофазе, и всё напряжение источника находится на активном сопротивлении.

Добротность можно также измерить по амплитудно-частотной характеристике:

$$Q = \frac{w_0}{2\Delta w}$$

где  $2\Delta w$  - ширина резонансной кривой на уровне  $U=\frac{U_{\mathrm{pes}}}{\sqrt{2}}.$ 

## 3 Ход работы

Технические данные:

| напряжение на генераторе | Напряжение 1 | Напряжение 2 | частота      | емксть   | емкость      |
|--------------------------|--------------|--------------|--------------|----------|--------------|
| 1.120000                 | 0.200000     | 5.052000     | 32200.000000 | 1.000000 | 0.000000     |
| 1.120000                 | 0.200000     | 4.486000     | 27840.000000 | 2.000000 | 0.000000     |
| 1.120000                 | 0.200000     | 3.877000     | 23270.000000 | 3.000000 | 0.000000     |
| 1.120000                 | 0.200000     | 3.585000     | 21160.000000 | 4.000000 | 0.000000     |
| 1.120000                 | 0.200000     | 3.330000     | 19460.000000 | 5.000000 | 0.000000     |
| 1.120000                 | 0.200000     | 3.366000     | 19630.000000 | 6.000000 | 0.000000     |
| 1.120000                 | 0.200000     | 2.797000     | 15830.000000 | 7.000000 | -9252.000000 |
|                          |              |              |              |          |              |

Таблица 1: Измерение резонансных частот и характеристик контура

| напряжение на генераторе | Напряжение 1 | Напряжение 2 | частота      | емксть   | емкость      |
|--------------------------|--------------|--------------|--------------|----------|--------------|
| 1.120000                 | 1.000000     | 18.030000    | 32020.000000 | 1.000000 | 0.000000     |
| 1.120000                 | 1.000000     | 15.785000    | 27630.000000 | 2.000000 | 0.000000     |
| 1.120000                 | 1.000000     | 13.209000    | 23200.000000 | 3.000000 | 0.000000     |
| 1.120000                 | 1.000000     | 12.063000    | 21100.000000 | 4.000000 | 0.000000     |
| 1.120000                 | 1.000000     | 11.191000    | 19300.000000 | 5.000000 | 0.000000     |
| 1.120000                 | 1.000000     | 11.219000    | 19570.000000 | 6.000000 | 0.000000     |
| 1.120000                 | 1.000000     | 9.144000     | 15720.000000 | 7.000000 | -9252.000000 |
|                          |              |              |              |          |              |

Таблица 2: Измерение резонансных частот и характеристик контура

| напряжение на генераторе | Напряжение 1 | Напряжение 2 | частота       | емксть   | емкость  |    |
|--------------------------|--------------|--------------|---------------|----------|----------|----|
| 1.120000                 | 0.500000     | 12.003000    | 32000.0000000 | 1.000000 | 0.000000 |    |
| 1.120000                 | 0.500000     | 10.720000    | 27640.000000  | 2.000000 | 0.000000 |    |
| 1.120000                 | 0.500000     | 9.313000     | 23090.000000  | 3.000000 | 0.000000 |    |
| 1.120000                 | 0.500000     | 8.608000     | 21.030000     | 4.000000 | 0.000000 | 99 |
| 1.120000                 | 0.500000     | 8.018000     | 19.330000     | 5.000000 | 0.000000 | 99 |
| 1.120000                 | 0.500000     | 8.088000     | 19.520000     | 6.000000 | 0.000000 | 81 |

Таблица 3: Измерение резонансных частот и характеристик контура

Относительный вклад активных потерь на конденсаторах:  $\frac{R_{S_{max}}}{R_{\Sigma}} \le 2,4\%$ , среднее значение 1,8%. Также полученные данные имеют систематическую погрешность ввиду погрешности вольтметра  $\varepsilon_{U_C} = \le 3\%$  и погрешности измерения резонансной частоты, примем её за  $\varepsilon_f = 1\%$ . Тогда получаем следующие относительные систематические погрешности для полученных величин:

Также были сняты данные для амплитудно-частотной и фазо-частотной характеристик для емкостей  $C_1$  и  $C_2$ . Для AЧХ получился следующий график:

| L  | Q  | ρ  | $R_{\Sigma}$ | $R_{S_{max}}$ | $R_L$ | I         |
|----|----|----|--------------|---------------|-------|-----------|
| 2% | 3% | 1% | 3,2%         | 1%            | 6%    | $3,\!2\%$ |

Таблица 4: Относительные систематические погрешности величин



Рис. 2: АЧХ для емкостей  $C_1$  (справа) и  $C_2$ (слева)

Видно, что большей емкости отвечает кривая с большей шириной (так как добротность ниже). Измерим добротности с помощью ширины резонансной кривой на графике в относительном масштабе. Получились следующие значения:

Рассчитаем также добротность по ФЧХ: измерим ширину кривой, которая ограничивается значениями  $\frac{\Delta \varphi}{\pi}$  от 0,25 до 0,75, получим следующие значения добротностей:

Построим теперь график зависимость  $R_L(\nu)$ .

Значения отклоняются от среднего достаточно сильно, прослеживается почти линейная зависимость от частоты. Из возможных причин можно выделить влияние скин-эффекта, из-за которого ток вытесняется на поверхность проводника и течет по меньшему сечению.



Рис. 3: АЧХ в относительном масштабе



Рис. 4: ФЧХ в относительном масштабе

| n | $C$ , н $\Phi$ | $\frac{2\Delta\nu}{\nu_0}$ | Q     |
|---|----------------|----------------------------|-------|
| 2 | 33,2           | 0,045                      | 22,12 |
| 1 | 24.8           | 0,039                      | 25.27 |

Таблица 5: Расчет добротности по ширине АЧХ

| n | $C$ , н $\Phi$ | $\frac{2\Delta\nu}{\nu_0}$ | Q     |
|---|----------------|----------------------------|-------|
| 2 | 33,2           | 0,043                      | 23,26 |
| 1 | 24.8           | 0,036                      | 25.45 |

Таблица 6: Расчет добротности по ширине ФЧХ

#### Выводы

В данной лабораторной работе был исследован резонанс напряжений в последовательном контуре и вычислены добротности контуров с различными значениями емкости несколькими способами. Так как получившиеся ФЧХ и АЧХ не очень точны ввиду небольшого числа точек и их неравномерности, то погрешность при расчете добротности через ширину резонансных кривых достаточно велика. В любом случае, это явно не лучший способ измерять добротность контура, гораздо точнее измерение по формулам через параметры контура.

Было замечено, что активное сопротивление  $R_L$  катушки не является постоянным и линейно растет с частотой. Объяснение этому, скорее всего, кроется в скин-эффекте.



Рис. 5: Зависимость  $R_L(\nu)$