TEA013 Matemática Aplicada II Curso de Engenharia Ambiental

Departamento de Engenharia Ambiental, UFPR

F, 20 Dez 2024

Prof. Nelson Luís Dias

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

 ${f 1}$ [20] **Sem utilizar frações parciais**, encontre a transformada de Laplace inversa

$$\mathcal{L}^{-1}\left\{\frac{s}{(s-3)(s^2+1)}\right\}.$$

SOLUÇÃO DA QUESTÃO:

A expressão acima é o produto de duas transformadas de Laplace conhecidas:

$$\mathcal{L}\left\{e^{3t}\right\} = \frac{1}{s-3},$$

$$\mathcal{L}\left\{\cos(t)\right\} = \frac{s}{s^2+1}.$$

Pelo Teorema da Convolução,

$$\mathcal{L}\{[f * g](t)\} = \overline{f}(s)\overline{g}(s),$$

$$= \frac{1}{s-3} \times \frac{s}{s^2+1} \Rightarrow$$

$$\mathcal{L}^{-1}\left\{\frac{s}{(s-3)(s^2+1)}\right\} = e^{3t} * \cos(t)$$

$$= \int_{\tau=0}^{t} e^{3(t-\tau)} \cos(\tau) d\tau$$

$$= \operatorname{Re}\left[e^{3t} \int_{\tau=0}^{t} e^{-3\tau} e^{i\tau} d\tau\right] = \operatorname{Re}\left[e^{3t} \int_{\tau=0}^{t} e^{(i-3)\tau} d\tau\right]$$

$$= \operatorname{Re}\left[e^{3t} \frac{1}{i-3} \int_{\tau=0}^{t} e^{(i-3)\tau} d(i-3)\tau\right]$$

$$= \operatorname{Re}\left\{\frac{e^{3t}}{i-3} e^{(i-3)\tau}\Big|_{\tau=0}^{t}\right\} = \operatorname{Re}\left\{\frac{e^{3t}}{i-3} \left[e^{(i-3)t} - 1\right]\right\}$$

$$= \operatorname{Re}\left\{\frac{1}{i-3} \left[e^{it} - e^{3t}\right]\right\} = \operatorname{Re}\left\{\frac{-i-3}{10} \left[e^{it} - e^{3t}\right]\right\}$$

$$= \frac{1}{10} \operatorname{Re}\left\{-ie^{it} + ie^{3t} - 3e^{it} + 3e^{3t}\right\}$$

$$= \frac{1}{10} \left[\operatorname{sen}(t) + 0 - 3\cos(t) + 3e^{3t}\right] \blacksquare$$

$$\int_{-\infty}^{x} H(\xi - a) \cos(\xi) \,\mathrm{d}\xi$$

onde H(x) é a função de Heaviside.

SOLUÇÃO DA QUESTÃO:

$$\int_{-\infty}^{x} \underbrace{H(\xi - a)}_{u} \underbrace{\cos(\xi) \, \mathrm{d}\xi}_{\mathrm{d}v} = H(\xi - a) \operatorname{sen}(\xi) \Big|_{-\infty}^{x} - \int_{-\infty}^{x} \operatorname{sen}(\xi) \delta(\xi - a) \, \mathrm{d}\xi$$
$$= H(x - a) \operatorname{sen}(x) - H(x - a) \operatorname{sen}(a)$$
$$= H(x - a) [\operatorname{sen}(x) - \operatorname{sen}(a)] \blacksquare$$

 ${f 3}$ [20] Aplique a designaldade de Schwarz para dois vetores ${m u}, {m v}$ do ${\mathbb R}^3$ tais que

$$u = (x, y, z),$$
 onde $x^2 + y^2 + z^2 = 1,$
 $v = (1, 2, 3),$

utilizando o produto escalar padrão. Simplifique ao máximo.

SOLUÇÃO DA QUESTÃO:

$$(u \cdot v)^{2} \le (u \cdot u)(v \cdot v)$$
$$(x + 2y + 3z)^{2} \le (x^{2} + y^{2} + z^{2})(1 + 4 + 9)$$
$$(x + 2y + 3z)^{2} \le 14 \blacksquare$$

$$f(x) = e^{-x}, \qquad 0 \le x \le 1.$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{\frac{2ni\pi x}{L}};$$

$$c_n = \frac{1}{L} \int_a^b e^{-\frac{2ni\pi x}{L}} f(x) dx;$$

$$a = 0,$$

$$b = 1,$$

$$L = b - a = 1;$$

$$c_n = \int_0^1 e^{-x} e^{-2ni\pi x} dx$$

$$= -\frac{1}{e} \frac{(e - 1)(2i\pi n - 1)}{4\pi^2 n^2 + 1} \blacksquare$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} - x^2 y = f(x), \qquad y(0) = 1.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}y}{\mathrm{d}\xi} - \xi^2 y = f(\xi),$$

$$G(x,\xi) \frac{\mathrm{d}y}{\mathrm{d}\xi} - G(x,\xi)\xi^2 y = G(x,\xi)f(\xi),$$

$$\int_0^\infty G(x,\xi) \frac{\mathrm{d}y}{\mathrm{d}\xi} \, \mathrm{d}\xi - \int_0^\infty G(x,\xi)\xi^2 y \, \mathrm{d}\xi = \int_0^\infty G(x,\xi)f(\xi) \, \mathrm{d}\xi,$$

$$[G(x,\xi)y(\xi)]_0^\infty - \int_0^\infty y \frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} - \int_0^\infty G(x,\xi)\xi^2 y \, \mathrm{d}\xi = \int_0^\infty G(x,\xi)f(\xi) \, \mathrm{d}\xi,$$

$$[G(x,\infty)y(\infty) - G(x,0)y(0)] - \int_0^\infty y \frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} - \int_0^\infty G(x,\xi)\xi^2 y \, \mathrm{d}\xi = \int_0^\infty G(x,\xi)f(\xi) \, \mathrm{d}\xi,$$

faça

$$G(x,\infty) = 0; \Longrightarrow$$

$$-G(x,0) + \int_{\xi=0}^{\infty} \left[-\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} - \xi^2 G(x,\xi) \right] y(\xi) \, \mathrm{d}\xi = \int_0^{\infty} G(x,\xi) f(\xi) \, \mathrm{d}\xi.$$

A equação diferencial em G é

$$-\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} - \xi^2 G(x,\xi) y(\xi) = \delta(\xi - x),$$

$$\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} + \xi^2 G(x,\xi) y(\xi) = -\delta(\xi - x),$$

$$G(x,\xi) = u(x,\xi) v(x,\xi),$$

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + v\frac{\mathrm{d}u}{\mathrm{d}\xi} + \xi^2 uv = -\delta(\xi - x),$$

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}\xi} + \xi^2 v\right] + v\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\delta(\xi - x),$$

$$\frac{\mathrm{d}v}{v} = -\xi^2 \,\mathrm{d}\xi,$$

$$\int_{v(x,0)}^{v(x,\xi)} \frac{\mathrm{d}v}{v} = -\int_{\eta=0}^{\xi} \eta^2 \,\mathrm{d}\eta$$

$$\ln\left(\frac{v(x,\xi)}{v(x,0)}\right) = -\frac{\xi^3}{3}$$

$$v(x,\xi) = v(x,0) \exp\left(-\frac{\xi^3}{3}\right);$$

$$v(x,0) \exp\left(-\frac{\xi^3}{3}\right) \frac{\mathrm{d}u}{\mathrm{d}\xi} = -\delta(\xi - x),$$

$$\frac{\mathrm{d}u}{\mathrm{d}\eta} = -\frac{1}{v(x,0)} \exp\left(\frac{\eta^3}{3}\right) \delta(\eta - x),$$

$$\int_{u(x,0)}^{u(x,\xi)} \mathrm{d}u = -\int_{\eta=0}^{\xi} \frac{1}{v(x,0)} \exp\left(\frac{\eta^3}{3}\right) \delta(\eta - x) \,\mathrm{d}\eta,$$

$$u(x,\xi) = u(x,0) - \frac{1}{v(x,0)} H(\xi - x) \exp\left(\frac{x^3}{3}\right).$$

Obtemos, para $G(x, \xi)$,

$$G(x,\xi) = u(x,\xi)v(x,\xi)$$

$$= \left[u(x,0) - \frac{1}{v(x,0)} H(\xi - x) \exp\left(\frac{x^3}{3}\right) \right] v(x,0) \exp\left(-\frac{\xi^3}{3}\right)$$

$$= G(x,0) \exp\left(-\frac{\xi^3}{3}\right) - H(\xi - x) \exp\left(\frac{x^3}{3}\right) \exp\left(-\frac{\xi^3}{3}\right)$$

$$= \exp\left(-\frac{\xi^3}{3}\right) \left[G(x,0) - H(\xi - x) \exp\left(\frac{x^3}{3}\right) \right].$$

Mas

$$G(x, \infty) = 0,$$

$$G(x, 0) - \exp\left(\frac{x^3}{3}\right) = 0,$$

$$G(x, 0) = \exp\left(\frac{x^3}{3}\right);$$

finalmente,

$$G(x,\xi) = [1 - H(\xi - x)] \exp\left(\frac{x^3}{3}\right) \exp\left(-\frac{\xi^3}{3}\right) \blacksquare$$