Chapter 14

Introduction to the Use of Bayesian Methods for Reliability Data

William Q. Meeker and Luis A. Escobar Iowa State University and Louisiana State University

Copyright 1998-2001 W. Q. Meeker and L. A. Escobar. Based on the authors' text *Statistical Methods for Reliability Data*, John Wiley & Sons Inc. 1998.

July 18, 2002 12h 26min

Introduction to the Use of Bayesian Methods for Reliability Data Chapter 14 Objectives

- Describe the use of Bayesian statistical methods to combine **prior** information with data to make inferences.
- Explain the relationship between Bayesian methods and likelihood methods used in earlier chapters.
- Discuss sources of prior information.
- Describe useful computing methods for Bayesian methods.
- Illustrate Bayesian methods for estimating reliability.
- Illustrate Bayesian methods for prediction.
- Compare Bayesian and likelihood methods under different assumptions about prior information.
- Explain the dangers of using wishful thinking or expectations as prior information.

Introduction

- Bayes methods augment likelihood with prior information.
- A probability distribution is used to describe our **prior** beliefs about a parameter or set of parameters.
- Sources of prior information:

Subjective Bayes: prior information subjective.

Empirical Bayes: prior information from past data.

Bayesian methods are closely related to likelihood methods.

Bayes Method for Inference

Updating Prior Information Using Bayes Theorem

Bayes Theorem provides a mechanism for combining *prior* information with sample data to make inferences on model parameters.

For a vector parameter θ the procedure is as follows:

- Prior information on θ is expressed in terms of a pdf $f(\theta)$.
- We observe some data which for the specified model has likelihood $L(\mathsf{DATA}|\theta) \equiv L(\theta; \mathsf{DATA})$.
- Using Bayes Theorem, the conditional distribution of θ given the data (also known as the **posterior** of θ) is

$$f(\theta|\mathsf{DATA}) = \frac{L(\mathsf{DATA}|\theta)f(\theta)}{\int L(\mathsf{DATA}|\theta)f(\theta)d\theta} = \frac{R(\theta)f(\theta)}{\int R(\theta)f(\theta)d\theta}$$

where $R(\theta) = L(\theta)/L(\widehat{\theta})$ is the relative likelihood and the multiple integral is computed over the region $f(\theta) > 0$.

Some Comments on on Posterior Distributions

• The posterior $f(\theta|DATA)$ is function of the prior, the model, and the data.

• In general, it is impossible to compute the multiple integral $\int L(\mathsf{DATA}|\boldsymbol{\theta})f(\boldsymbol{\theta})d\boldsymbol{\theta}$ in closed form.

 New statistical and numerical methods that take advantage of modern computing power are facilitating the computation of the posterior.

Differences Between Bayesian and Frequentist Inference

- Nuisance parameters
 - ► Bayes methods use marginals.
 - ► Large-sample likelihood theory suggest maximization.
- There are not important differences in large samples.
- Interpretation
 - ▶ Bayes methods justified in terms of probabilities.
 - ► Frequentist methods justified on repeated sampling and asymptotic theory.

Sources of Prior Information

- Informative
 - ► Past data
 - ► Expert knowledge
- Non-informative (or approximately non-informative)
 - ► Uniform over range of parameter (or function of parameter)
 - ► Other vague or diffuse priors

Proper Prior Distributions

Any positive function defined on the parameter space that integrates to a finite value (usually 1).

• Uniform prior: $f(\theta) = 1/(b-a)$ for $a \le \theta \le b$. This prior does not express strong preference for specific values of θ in the interval.

• Examples of non-uniform prior distributions:

- \blacktriangleright Normal with mean at a and and standard deviation b.
- ▶ Beta between specified a and b with specified shape parameters (allows for a more general shape).
- ▶ Isosceles triangle with base (range between) a and b.

For a positive parameter θ , may want to specify the prior in terms of $\log(\theta)$.

Improper Prior Distributions

Positive function $f(\theta)$ over parameter space for which

$$\int f(\theta)d\theta = \infty,$$

- **Uniform** in an interval of infinite length: $f(\theta) = c$ for all θ .
- For a positive parameter θ the corresponding choice is $f[\log(\theta)] = c$ and $f(\theta) = (c/\theta), \ \theta > 0$.

To use an improper prior, one must have

$$\int f(\theta) L(\theta|\mathsf{DATA}) d\theta < \infty$$

(a condition on the form of the likelihood and the DATA).

• These prior distributions can be made to be proper by specification of a finite interval for θ and choosing c such that the total probability is 1.

Effect of Using Vague (or Diffuse) Prior Distributions

ullet For a uniform prior $f(\theta)$ (possibly improper) across all possible values of θ

$$f(\theta|\mathsf{DATA}) = \frac{R(\theta)f(\theta)}{\int R(\theta)f(\theta)d\theta} = \frac{R(\theta)}{\int R(\theta)d\theta}$$

which indicates that the posterior $f(\theta|DATA)$ is proportional to the likelihood.

- The posterior is approximately proportional to the likelihood for a proper (finite range) uniform if the range is large enough so that $R(\theta) \approx 0$ where $f(\theta) = 0$.
- Other diffuse priors also result in a posterior that is approximately proportional to the likelihood if $R(\theta)$ is large relative to $f(\theta)$.

Eliciting or Specifying a Prior Distribution

- The elicitation of a meaningful joint prior distribution for vector parameters may be difficult
 - ► The marginals may not completely determine the joint distribution.
 - ► Difficult to express/elicit dependences among parameters through a joint distribution.
 - ► The standard parameterization may not have practical meaning.
- General approach: choose an appropriate parameterization in which the priors for the parameters are approximately independent.

Expert Opinion and Eliciting Prior Information

- Identify parameters that, from past experience (or data), can be specified approximately independently (e.g., for high reliability applications a small quantile and the Weibull shape parameter).
- Determine for which parameters there is useful informative prior information.
- For parameters for which there in **no** useful informative prior information, determine the form and range of the vague prior (e.g., uniform over a wide interval).
- For parameters for which there is useful informative prior information, specify the form and range of the distribution (e.g., lognormal with 99.7% content between two specified points).

Example of Eliciting Prior Information: Bearing-Cage Time to Fracture Distribution

With appropriate questioning, engineers provided the following information:

- Time to fracture data can often be described by a Weibull distribution.
- From previous similar studies involving heavily censored data, (μ, σ) tend to be correlated (making it difficult to specify a joint prior for them).
- For small p (near the proportion failing in previous studies), (t_p, σ) are approximately independent (which allows for specification of approximately independent priors).

Example of Eliciting Prior Information: Bearing-Cage Fracture Field Data (Continued)

- Based on experience with previous products of the same material and knowledge of the failure mechanism, there is strong prior information about the Weibull shape parameter.
- The engineers did not have strong prior information on possible values for the distribution quantiles.
- For the Weibull shape parameter $\log(\sigma) \sim \text{NOR}(a_0, b_0)$, where a_0 and b_0 are obtained from the specification of two quantiles $\sigma_{\gamma/2}$ and $\sigma_{(1-\gamma/2)}$ of the prior distribution for σ . Then

$$a_0 = \log \left[\sqrt{\sigma_{\gamma/2} \times \sigma_{(1-\gamma/2)}} \right], \quad b_0 = \log \left[\sqrt{\sigma_{(1-\gamma/2)}/\sigma_{\gamma/2}} \right] / z_{(1-\gamma/2)}$$

• Uncertainty in the Weibull .01 quantile will be described by UNIFORM[log(a_1), log(b_1)] distribution where $a_1 = 100$ and $b_1 = 5000$ (wide range—not very informative).

Prior pdfs for $\log(\sigma)$ and σ when $\sigma_{.005} = .2, \sigma_{.995} = .5$

Prior pdfs for $log(t_{.01})$ and $t_{.01}$ when $a_1 = 100, b_1 = 5000$

Joint Lognormal-Uniform Prior Distributions

• The prior for $\log(\sigma)$ is normal

$$f[\log(\sigma)] = \frac{1}{b_0} \phi_{\text{nor}} \left[\frac{\log(\sigma) - a_0}{b_0} \right], \quad \sigma > 0.$$

The corresponding density for σ is $f(\sigma) = (1/\sigma)f[\log(\sigma)]$.

ullet The prior for $\log(t_p)$ is uniform

$$f[\log(t_p)] = \frac{1}{\log(b_1/a_1)}, \quad a_1 \le t_p \le b_1.$$

The corresponding density for t_p is $f(t_p) = (1/t_p)f[\log(t_p)]$.

ullet Consequently, the joint prior distribution for (t_p,σ) is

$$f(t_p, \sigma) = \frac{f[\log(t_p)]}{t_p} \frac{f[\log(\sigma)]}{\sigma} \quad a_1 \le t_p \le b_1, \ \sigma > 0.$$

Joint Prior Distribution for (μ, σ)

• The transformation $\mu = \log(t_p) - \Phi_{\text{SeV}}^{-1}(p)\sigma, \sigma = \sigma$ yields the prior for (μ, σ)

$$f(\mu, \sigma) = \frac{f[\log(t_p)]}{t_p} \times \frac{f[\log(\sigma)]}{\sigma} \times t_p$$

$$= f[\log(t_p)] \times \frac{f[\log(\sigma)]}{\sigma}$$

$$= \frac{1}{\log(b_1/a_1)} \times \frac{\phi_{\text{nor}} \{[\log(\sigma) - a_0]/b_0\}}{\sigma b_0}$$

where $\log(a_1) - \Phi_{\text{sev}}^{-1}(p)\sigma \le \mu \le \log(b_1) - \Phi_{\text{sev}}^{-1}(p)\sigma, \ \sigma > 0.$

• The region in which $f(\mu, \sigma) > 0$ is South-West to North-East oriented because $Cov(\mu, \sigma) = -\Phi_{sev}^{-1}(p)Var(\sigma) > 0$.

Joint Posterior Distribution for (μ, σ)

The likelihood is

$$L(\mu, \sigma) = \prod_{i=1}^{2003} \left\{ \frac{1}{\sigma t_i} \phi_{\text{SeV}} \left[\frac{\log(t_i) - \mu}{\sigma} \right] \right\}^{\delta_i} \times \left\{ 1 - \Phi_{\text{SeV}} \left[\frac{\log(t_i) - \mu}{\sigma} \right] \right\}^{1 - \delta_i}$$

where δ_i indicates whether the observation i is a failure or a right censored observation.

• The posterior distribution is

$$f(\mu, \sigma | \mathsf{DATA}) = \frac{L(\mu, \sigma) f(\mu, \sigma)}{\int \int L(v, w) f(v, w) dv dw} = \frac{R(\mu, \sigma) f(\mu, \sigma)}{\int \int R(v, w) f(v, w) dv dw}.$$

Methods to Compute the Posterior

• Numerical integration: to obtain the posterior, one needs to evaluate the integral $f(\theta|DATA) = \int R(\theta)f(\theta)d\theta$ over the region on which $f(\theta) > 0$.

In general there is not a closed form for the integral and the computation has to done numerically using fixed quadrature or adaptive integration algorithms.

• **Simulation methods**: the posterior can be approximated using Monte Carlo simulation resampling methods.

Computing the Posterior Using Simulation

Using simulation, one can draw a sample from the posterior using only the likelihood and the prior. The procedure for a general parameter θ and prior distribution $f(\theta)$ is as follows:

- Let θ_i , i = 1, ..., M be a random sample from $f(\theta)$.
- The *i*th observation, θ_i , is retained with probability $R(\theta_i)$.

Then if U_i is a random observation from a uniform (0,1), $oldsymbol{ heta}_i$ is retained if

$$U_i \leq R(\boldsymbol{\theta}_i).$$

• It can be shown that the retained observations, say $\theta_1^{\star}, \dots \theta_{M^{\star}}^{\star}$ $(M^{\star} \leq M)$ are observations from the posterior $f(\theta | \mathsf{DATA})$.

Simulated Joint Prior for $t_{.01}$ and σ

Simulated Joint and Marginal Prior Distributions for μ and σ

Sampling from the Prior

The joint prior for $\theta = (\mu, \sigma)$, is generated as follows:

ullet Use the inverse cdf method (see Chapter 4) to obtain a pseudorandom sample for t_p , say

$$(t_p)_i = a_1 \times b_1^{U_{1i}}, \quad i = 1, \dots, M$$

where U_{11}, \ldots, U_{1M} are a pseudorandom sample from a uniform (0,1).

ullet Similarly, obtain a pseudorandom sample for σ , say

$$\sigma_i = \exp\left[a_0 + b_0 \Phi_{\mathsf{nor}}^{-1}(U_{2i})\right]$$

where U_{21}, \ldots, U_{2M} are another independent pseudorandom sample from a uniform (0,1).

• Then $\theta_i = (\mu_i, \sigma_i)$ with $\mu_i = \log[(t_p)_i] - \Phi_{\text{sev}}^{-1}(p)\sigma_i$ is a pseudorandom sample from the (μ, σ) prior.

Simulated Joint Prior Distribution with μ and σ Relative Likelihood

Joint Posterior for μ and σ

Joint Posterior and Marginals for μ and σ for the Bearing Cage Data

Comments on Computing Posteriors Using Resampling

The number of observations M^* from the posterior is random with an expected value of

$$\mathsf{E}(M^{\star}) = M \int f(\boldsymbol{\theta}) R(\boldsymbol{\theta}) d\boldsymbol{\theta}$$

Consequently,

- When the prior and the data do not agree well, $M^{\star} << M$ otherwise and a larger prior sample will be required.
- Can add to the posterior by sequentially filtering groups of prior points until a sufficient number is available in the posterior.

Posterior and Marginal Posterior Distributions for the Model Parameters

• Inferences on individual parameters are obtained by using the marginal posterior distribution of the parameter of interest. The marginal posterior of θ_i is

$$f[\theta_j|\mathsf{DATA}] = \int f(\theta|\mathsf{DATA})d\theta'.$$

where θ' is the subset of the parameters excluding θ_j .

- Using the general resampling method described above, one gets a sample for the posterior for θ , say $\theta_i^* = (\mu_i^*, \sigma_i^*)$, $i = 1, \ldots, M^*$.
- Inferences for μ or σ alone are based on the corresponding **marginal** distributions μ_i^{\star} and σ_i^{\star} , respectively.

Posterior and Marginal Posterior Distributions for the Functions of Model Parameters

- Inferences on a scalar function of the parameters $g(\theta)$ are obtained by using the marginal posterior distribution of the functions of the parameters of interest, $f[g(\theta)|DATA]$.
- Using the simulation method, inferences are based on the simulated posterior marginal distributions. For example:
 - ► The marginal posterior distribution of $f(t_p|DATA)$ for inference on quantiles is obtained from the empirical distribution of $\mu_i^* + \Phi_{\text{SeV}}^{-1}(p)\sigma_i^*$.
 - ► The marginal posterior distribution of $f[F(t_e)|\text{DATA}]$ for inference for failure probabilities at t_e is obtained from the empirical distribution of $\Phi_{\text{SeV}}\left[\frac{\log(t_e)-\mu_i^{\star}}{\sigma_i^{\star}}\right]$.

Simulated Marginal Posterior Distributions for $t_{.05}$ and $t_{.10}$

Simulated Marginal Posterior Distributions for F(2000) and F(5000)

Bayes Point Estimation

Bayesian inference for θ and functions of the parameters $g(\theta)$ are entirely based on their posterior distributions $f(\theta|\mathsf{DATA})$ and $f[g(\theta)|\mathsf{DATA}]$.

Point Estimation:

• If $g(\theta)$ is a scalar, a common Bayesian estimate of $g(\theta)$ is its posterior mean, which is given by

$$\widehat{g}(\theta) = \mathsf{E}[g(\theta)|\mathsf{DATA}] = \int g(\theta)f(\theta|\mathsf{DATA})d\theta.$$

In particular, for the ith component of θ , $\widehat{\theta}_i$ is the posterior mean of θ_i . This estimate is the Bayes estimate that minimizes the square error loss.

• Other possible choices to estimate $g(\theta)$ include (a) the posterior mode, which is very similar to the ML estimate and (b) the posterior median.

One-Sided Bayes Confidence Bounds

• A $100(1-\alpha)\%$ Bayes lower confidence bound (or credible bound) for a scalar function $g(\theta)$ is value g satisfying

$$\int_{\underline{g}}^{\infty} f[g(\theta)|\mathsf{DATA}] dg(\theta) = 1 - \alpha$$

• A $100(1-\alpha)\%$ Bayes upper confidence bound (or credible bound) for a scalar function $g(\theta)$ is value \tilde{g} satisfying

$$\int_{-\infty}^{\tilde{g}} f[g(\boldsymbol{\theta})|\mathsf{DATA}] dg(\boldsymbol{\theta}) = 1 - \alpha$$

Two-Sided Bayes Confidence Intervals

• A $100(1-\alpha)$ % Bayes confidence interval (or credible interval) for a scalar function $g(\theta)$ is any interval $[g, \ \ \widetilde{g}]$ satisfying

$$\int_{\underline{g}}^{\widetilde{g}} f[g(\pmb{\theta})|\mathsf{DATA}] dg(\pmb{\theta}) = 1 - \alpha \tag{1}$$

 • The interval $[\underline{g}, \quad \widetilde{g}]$ can be chosen in different ways

- - ▶ Combining two $100(1-\alpha/2)$ % intervals puts equal probability in each tail (preferable when there is more concern for being incorrect in one direction than the other).
 - ▶ A $100(1-\alpha)$ % Highest Posterior Density (HPD) confidence interval chooses $[g, \quad \tilde{g}]$ to consist of all values of g with f(g|DATA) > c where c is chosen such that (1) holds. HPD intervals are similar to likelihood-based confidence intervals. Also, when $f[g(\theta)|\mathsf{DATA}]$ is unimodal the HPD is the narrowest Bayes interval.

Bayesian Joint Confidence Regions

The same procedure generalizes to confidence regions for vector functions $g(\theta)$ of θ .

• A $100(1-\alpha)\%$ Bayes confidence region (or credible region) for a vector valued function $g(\theta)$ is defined as

$$CR_B = \{g(\theta)|f[g|DATA] \ge c\}$$

where c is chosen such that

$$\int_{\mathsf{CR}_{\mathsf{B}}} f[g(\theta)|\mathsf{DATA}) dg(\theta) = 1 - \alpha$$

ullet In this case the presentation of the confidence region is difficult when ullet has more than 2 components.

Bayes Versus Likelihood

• Summary table or plots to compare the Likelihood versus the Bayes Methods to compare confidence intervals for μ , σ , and $t_{.1}$ for the Bearing-cage data example.

Prediction of Future Events

- Future events can be predicted by using the Bayes predictive distribution.
- ullet If X [with pdf $f(\cdot|oldsymbol{ heta})$] represents a future random variable
 - \blacktriangleright the posterior predictive pdf of X is

$$f(x|\text{DATA}) = \int f(x|\theta)f(\theta|\text{DATA})d\theta$$

= $\mathbb{E}_{\theta|\text{DATA}}[f(x|\theta)]$

 \blacktriangleright the posterior predictive cdf of X is

$$F(x|\mathsf{DATA}) = \int_{-\infty}^{x} f(u|\theta) du = \int F(x|\theta) f(\theta|\mathsf{DATA}) d\theta$$

= $\mathsf{E}_{\theta|\mathsf{DATA}}[F(x|\theta)]$

where the expectations are computed with respect to the posterior distribution of θ .

Approximating Predictive Distributions

• f(x|DATA) can be approximated by the average of the posterior pdfs $f(x|\theta_i^*)$. Then

$$f(x|\text{DATA}) \approx \frac{1}{M^{\star}} \sum_{i=1}^{M^{\star}} f(x|\boldsymbol{\theta}_{i}^{\star}).$$

• Similarly, $F(x|\mathsf{DATA})$ can be approximated by the average of the the posterior cdfs $F(x|\boldsymbol{\theta}_i^{\star})$. Then

$$F(x|\mathsf{DATA}) \approx \frac{1}{M^{\star}} \sum_{i=1}^{M^{\star}} F(x|\boldsymbol{\theta}_{i}^{\star}).$$

• A two-sided $100(1-\alpha)\%$ Bayesian prediction interval for a new observation is given by the $\alpha/2$ and $(1-\alpha/2)$ quantiles of $F(x|\mathsf{DATA})$.

Location-Scale Based Prediction Problems

Here we consider prediction problems when log(T) has a location-scale distribution.

ullet Predicting a future value of T. In this case, X=T and x=t, then

$$f(t|\boldsymbol{\theta}) = \frac{1}{\sigma t}\phi(\zeta), \quad F(t|\boldsymbol{\theta}) = \Phi(\zeta)$$

where $\zeta = [\log(t) - \mu]/\sigma$.

• Thus, for the Bearing-cage fracture data, approximations of the predictive pdf and cdf for a **new** observation are:

$$f(t|\mathsf{DATA}) \approx \frac{1}{M^\star} \sum_{i=1}^{M^\star} \frac{1}{\sigma_i^{\star} t} \phi_{\mathsf{SeV}}(\zeta_i^{\star})$$

$$F(t|\mathsf{DATA}) ~pprox ~rac{1}{M^\star} \sum_{i=1}^{M^\star} \Phi_{\mathsf{SeV}}(\zeta_i^\star)$$

where $\zeta_i^* = [\log(t) - \mu_i^*]/\sigma_i^*$.

Prediction of an Order Statistic

Here we consider prediction of the kth order statistic in a future sample of size m from the distribution of T when log(T) has a location-scale distribution.

• In this case, $X=T_{(k)}$ and $x=t_{(k)}$, then

$$f[t_{(k)}|\theta] = \frac{m!}{(k-1)! (m-k)!} \times [\Phi(\zeta)]^{k-1} \times \frac{1}{\sigma t_{(k)}} \phi(\zeta)$$
$$\times [1 - \Phi(\zeta)]^{m-k}$$
$$F[t_{(k)}|\theta] = \sum_{j=k}^{m} \frac{m!}{j! (m-j)!} [\Phi(\zeta)]^{j} \times [1 - \Phi(\zeta)]^{m-j}$$

where $\zeta = [\log(t_{(k)}) - \mu]/\sigma$.

Predicting the 1st Order Statistic

When k=1 (predicting the 1st order statistic), the formulas simplify to

Predictive pdf

$$f[t_{(1)}|\theta] = m \times [\Phi(\zeta)]^{m-1} \times \frac{1}{\sigma t_{(1)}} \phi(\zeta) \times [1 - \Phi(\zeta)]^{m-1}$$

Predictive cdf

$$F[t_{(1)}|\theta] = 1 - [1 - \Phi(\zeta)]^m$$

where $\zeta = [\log(t_{(1)}) - \mu]/\sigma$.

Predicting the 1st Order Statistic for the Bearing-Cage Fracture Data

For the Bearing-cage fracture data:

 An approximation for the predictive pdf for the 1st order statistic is

$$f[t_{(1)}|\mathsf{DATA}] \approx \frac{1}{M^{\star}} \sum_{i=1}^{M^{\star}} \left\{ m \times \frac{1}{\sigma_{i}^{\star} t} \phi\left(\zeta_{i}^{\star}\right) \times \left[1 - \Phi\left(\zeta_{i}^{\star}\right)\right]^{m-1} \right\}$$

The corresponding predictive cdf is

$$F[t_{(k)}|\mathsf{DATA}] \approx \frac{1}{M^{\star}} \sum_{i=1}^{M^{\star}} \left\{ 1 - \left[1 - \Phi\left(\zeta_{i}^{\star}\right)\right]^{m} \right\}$$

where $\zeta_i^{\star} = [\log(t) - \mu_i^{\star}]/\sigma_i^{\star}$.

Predicting a New Observation

- $F(t|\mathsf{DATA})$ can be approximated by the average of the posterior probabilities $F(t|\theta_i^*), \ i=1,\ldots,M^*$.
- Similarly, $f(t|\mathsf{DATA})$ can be approximated by the average of the posterior densities $f(t|\theta_i^*), i=1,\ldots,M^*$.
- In particular for the Bearing-cage fracture data, an approximation for the predictive pdf and cdf are

$$f(t|\mathsf{DATA}) \ pprox \ rac{1}{M^\star} \sum_{i=1}^{M^\star} rac{1}{\sigma_i^\star t} \phi_\mathsf{SeV} \left[rac{\mathsf{log}(t) - \mu_i^\star}{\sigma_i^\star}
ight] \ F(t|\mathsf{DATA}) \ pprox \ rac{1}{M^\star} \sum_{i=1}^{M^\star} \Phi_\mathsf{SeV} \left[rac{\mathsf{log}(t) - \mu_i^\star}{\sigma_i^\star}
ight].$$

• A $100(1-\alpha)\%$ Bayesian prediction interval for a new observation is given by the percentiles of this distribution.

Predictive Density and Prediction Intervals for a Future Observation from the Bearing Cage Population

Caution on the Use of Prior Information

- In many applications, engineers really have useful, indisputable prior information. In such cases, the information should be integrated into the analysis.
- We must beware of the use of **wishful thinking** as prior information. The potential for generating seriously misleading conclusions is high.
- As with other inferential methods, when using Bayesian methods, it is important to do sensitivity analyses with respect to uncertain inputs to ones model (including the inputted prior information)