P.PORTO		Tipo de Prova Teste 2	Ano letivo 2018/2019	Data 29-05-2019
	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Segurança Informática de Redes d Licenciatura em Engenharia Informática	e Computadores	Hora 15:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: ____

Observações:

Responda às questões que se seguem na folha do enunciado da prova.

Nas perguntas assinaladas com solar recorra ao software para evitar os cálculos morosos. Nos restantes exercícios não são admitidas justificações obtidas com o software.

Submeta no moodle um ficheiro com os cálculos que efetue no solationes.

Questão	1	2	3	4	5	6	TOTAL
Cotação	3,0	3,0	5,5	2,0	2,0	4,5	31

 A empresa *PC-You* dá assistência nos seus clientes com instalações localizadas em cada um dos 11 Concelhos da Região do Tâmega e Sousa, denominados por:

Concelhos	Vértice
Amarante	Α
Baião	В
Castelo de Paiva	CP
Celorico de Basto	СВ
Cinfães	С
Felgueiras	F
Lousada	L
Marco de Canaveses	MC
Paços de Ferreira	PF
Penafiel	Р
Resende	R

Os concelhos estão ligados por estradas ilustradas no grafo ao lado. Para atender os clientes o mais rapidamente possível ele precisa de visitar cada concelho uma única vez e no fim voltar a sua sede em A/B/P/R.

1.1. [1,5] Indique um possível circuito para responder a esta situação e classifique-o.

Temos que ter um circuito de Hamilton, por exemplo

A/CB/F/L/PF/P/MC/CP/C/R/B/A B/A/CB/F/L/PF/P/MC/CP/C/R/B

P/MC/CP/C/R/B/A/CB/F/L/PF/P

R/B/A/CB/F/L/PF/P/MC/CP/C/R

1.2. [1,5] Por questões de manutenção a estrada que liga A a CB/L a PF/B a R/CB a F está interdita. Ainda é possível efetuar um circuito que passe por todos os concelhos? Justifique.

Não. Porque o circuito deixa de ser um circuito de Hamilton, já que fica com um vértice de grau 1

ESTG-PR05-Mod013V2 Página 1 de 7

		Tipo de Prova Teste 2	Ano letivo 2018/2019	Data 29-05-2019
P.PORTO	CHDCDVVO	Curso Licenciatura em Segurança Informática de Redes de Licenciatura em Engenharia Informática	e Computadores	Hora 15:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: __ Nome: _

2. Considere a árvore:

2.2. [1,5] Desenhe uma subárvore com raiz em b/d/i

ESTG-PR05-Mod013V2 Página 2 de7

P.PORTO		Tipo de Prova Teste 2	Ano letivo 2018/2019	Data 29-05-2019
		Curso Licenciatura em Segurança Informática de Redes de Licenciatura em Engenharia Informática	e Computadores	Hora 15:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: __

3. Considere a= 205 e b= 95. Determine:

	Α	b
V1		
	<mark>205</mark>	<mark>95</mark>
<mark>V2</mark>	<mark>234</mark>	<mark>48</mark>
<mark>V3</mark>	<mark>210</mark>	<mark>75</mark>
<mark>V4</mark>	<mark>235</mark>	<mark>75</mark>
	210	68
	235	80

3.1. o mdc(a,b).

V1: mdc(205,95)	V2: mdc(234,48)
Temos que:	Temos que:
$205 = 95 \times 2 + 15,95 = 15 \times 6 + 5 e 15 = 5 \times 3 + 0$	$234 = 48 \times 4 + 42, 48 = 42 \times 1 + 6 e$
Portanto,	$42 = 6 \times 7 + 0$
mdc(205,95) = mdc(95,15) = mdc(15,5) = 5	Portanto,
	mdc(234,48) = mdc(48,42) = mdc(42,6) = 6
V3: mdc(210,75)	V4: mdc(235,75)
Temos que:	Temos que:
$210 = 75 \times 2 + 60,75 = 60 \times 1 + 15 e 60 = 15 \times 4 + 0$	$235 = 75 \times 3 + 10,75 = 10 \times 7 + 5 e$
Portanto,	$10 = 5 \times 2 + 0$
mdc(210,75) = mdc(75,60) = mdc(60,15) = 15	Portanto,
	mdc(235,75) = mdc(75,10) = mdc(10,5) = 5

3.2. usando o Algoritmo de Euclides, os inteiros s e t (coeficientes de Bézout) tais que mdc(a,b) = $a \times s + b \times t$..

	·
V1:	V2:
Pretende-se determinar s e t tais que	Pretende-se determinar s e t tais que
$mdc(205,95) = 5 = 205 \times s + 95 \times t.$	$mdc(234,48) = 6 = 234 \times s + 48 \times t.$
Temos que:	
$5 = 95 - 15 \times 6 = 95 - (205 - 95 \times 2) \times 6$	Temos que:
$= 95 - 6 \times 205 + 95 \times 12$	$6 = 48 - 42 \times 1 = 48 - (234 - 48 \times 4) \times 1$
$= 95 \times 13 - 6 \times 205$	$= 5 \times 48 - 234$
Logo, os coeficientes de Bézout são:	Logo, os coeficientes de Bézout são:
s = -6 e t = 13.	s = -1 e t = 5.
V3:	V4:
Pretende-se determinar s e t tais que	Pretende-se determinar s e t tais que
$mdc(210,75) = 15 = 210 \times s + 75 \times t.$	$mdc(235,75) = 5 = 235 \times s + 75 \times t.$
Temos que:	Temos que:
$15 = 75 - 60 = 75 - (210 - 95 \times 2) \times 6 = 3 \times 75 -$	$5 = 75 - 10 \times 7 = 75 - 7 \times (235 - 75 \times 3)$
1 × 210	$=22\times75-7\times235$
Logo, os coeficientes de Bézout são:	Logo, os coeficientes de Bézout são:
s = -1 e t = 3.	s = -7 e t = 22.

3.3. se possível, o inverso de a mod b.

Como mdc(a,b)≠1 os números a e b não são primos entre si, portanto não é possível calcular o inverso de a módulo b.

ESTG-PR05-Mod013V2 Página 3 de7

		Tipo de Prova Teste 2	Ano letivo 2018/2019	Data 29-05-2019
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Segurança Informática de Redes de Licenciatura em Engenharia Informática	e Computadores	Hora 15:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____ Nome: ___

 $6x \equiv 3 \bmod 11, 5x \equiv 4 \bmod 11.$

$V1: 10x \equiv 2 \mod 11$	$V2: 9x \equiv 3 \bmod 11$
mdc(10,11) = 1, logo existe inverso de 10 modulo 11.	mdc(9,11) = 1, logo existe inverso de 9 modulo 11.
Pelo algoritmo da divisão	Pelo algoritmo da divisão
$11 = 1 \times 10 + 1 \Leftrightarrow 1 = 11 - 1 \times 10$, logo (-1) é inverso	$11 = 9 \times 1 + 2 \Leftrightarrow 2 = 11 - 9$
de 10 modulo 11, então	$9 = 2 \times 4 + 1 \Longleftrightarrow 1 = 9 - 2 \times 4$
$10x \equiv 2 \mod 11 \Leftrightarrow (-1).10x \equiv (-1).2 \mod 11$	$1 = 9 - 2 \times 4 = 9 - (11 - 9) \times 4 = 5 \times 9 - 4 \times$
$\Leftrightarrow x \equiv -2 \bmod 11 \Leftrightarrow x \equiv 9$	11, logo 5 é inverso de 9 modulo 2, então
Então $x = 9 + 11k, k \in \mathbb{Z}$.	$9x \equiv 3 \bmod 11 \Leftrightarrow 5 \times 9x \equiv 5 \times 3 \bmod 11 \Leftrightarrow x$
	≡ 4
	Então $x = 4 + 11$ k, $k \in \mathbb{Z}$.
$V3: 8x \equiv 4 \bmod 11$	$V4:7x \equiv 2 \bmod 11$
mdc(8,11) = mdc(3,2) = 1, logo existe inverso de 8	mdc(7,11) = mdc(4,3) = 1, logo existe inverso de 7
modulo 11.	modulo 11.
Pelo algoritmo da divisão	Pelo algoritmo da divisão
$11 = 8 \times 1 + 3 \Leftrightarrow 3 = 11 - 8$	$11 = 7 \times 1 + 4 \Leftrightarrow 4 = 11 - 7$
$8 = 3 \times 2 + 2 \Leftrightarrow 2 = 8 - 3 \times 4$	$7 = 4 \times 1 + 3 \Leftrightarrow 3 = 7 - 1 \times 4$
$3 = 2 \times 1 + 1 \Leftrightarrow 1 = 3 - 2 \times 1$	$4 = 3 \times 1 + 1 \Leftrightarrow 1 = 3 - 2 \times 1$
$1 = 3 - 2 \times 1 = 3 - (8 - 3 \times 2) = 3 \times 3 - 8 = 3 \times$	$1 = 4 - 3 \times 1 = 4 - (7 - 4 \times 1) = 4 \times 2 - 7 =$
$(11 - 8 \times 1) - 8 = 3 \times 11 - 4 \times 8$, logo (-4) é inverso	$(11-7\times1)\times2-7=2\times11-3\times7$, logo (-3) é
de 8 modulo 11, então	inverso de 7 modulo 11, então
$8x \equiv 4 \mod 11 \Leftrightarrow (-4) \times 8x \equiv (-4).4 \mod 11 \Leftrightarrow x$	$7x \equiv 2 \mod 11 \Leftrightarrow (-3) \times 7x \equiv (-3) \times 2 \mod 11$
$\equiv -16 \mod 11 \Leftrightarrow x \equiv 6$	$\Leftrightarrow x \equiv -6 \bmod 11 \Leftrightarrow x \equiv 5$
Então $x = 6 + 11$ k, $k \in \mathbb{Z}$.	Então $x = 5 + 11$ k, $k \in \mathbb{Z}$.

ax=b mod 11	a	inverso de	a b	inv a *b	x=inv(a)*b	mod 11
$10x \equiv 2 \mod 11$	10	10	2	20	9	
$9x \equiv 3 \mod 11$.	9	5	3	15	4	
$8x \equiv 4 \mod 11$	8	7	4	28	6	
$7x \equiv 2 \mod 11$	7	8	2	16	5	
$6x \equiv 3 \mod 11$,	6	2	3	6	6	
$5x \equiv 4 \mod 11$	5	9	4	36	3	

5. scient Escreva a sequência de números pseudo-aleatórios gerada por

V1: $x_{n+1} = (5x_n + 7) \mod 13$, com raíz $x_0 = 4$. $V2,V4: x_{n+1} = (6x_n + 2) \mod 13$, com raíz $x_0 = 1$. V3: $x_{n+1} = (7x_n + 2) \mod 13$, com raíz $x_0 = 2$. $x_{n+1} = (5x_n + 7) \mod 13$, com raíz $x_0 = 3$. $x_{n+1} = (6x_n + 2) \mod 13$, com raíz $x_0 = 4$.

 $x_{n+1} = (7x_n + 2) \mod 13$, com raíz $x_0 = 5$.

ESTG-PR05-Mod013V2 Página 4 de7

P.PORTO		Tipo de Prova Teste 2	Ano letivo 2018/2019	Data 29-05-2019
	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Segurança Informática de Redes do Licenciatura em Engenharia Informática	e Computadores	Hora 15:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

							.,	.0.05
N.º de aluno:		Nome:						
	V1	V2,V4	V3					
a	5	6	7	5	6	7		
b	7	2	2	7	2	2		
m	13	13	13	13	13	13		
x_0	4	1	2	3	4	5		
	1	8	3	9	0	11		
	12	11	10	0	2	1		
	2	3	7	7	1	9		
	4	7	12	3	8	0		
	1	5	8	9	11	2		
	12	6	6	0	3	3		
	2	12	5	7	7	10		
	4	9	11	3	5	7		
	1	4	1	9	6	12		
	12	0	9	0	12	8		
	2	2	0	7	9	6		
	4	1	2	3	4	5		

6. solution Considere a função de encriptação V1: $f(n) = (15n + 1) \mod 29$. Considere a inda que:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _ # @ O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

 $V1: f(n) = (15n + 1) \bmod 29.$

 $V2: f(n) = (10n + 1) \bmod 29$

 $V3: f(n) = (22n + 1) \bmod 29$

 $V4: f(n) = (6n + 1) \bmod 29$

 $f(n) = (11n + 1) \mod 29$

 $f(n) = (25n + 1) \mod 29$

6.1. Encripte a mensagem "WIKI", "HASH", "LIKE", "WORD", "SPAM", "BLOB".

5.1						f(n)=	f(n)=an+b mod 29							
Encr	ipte					а	b							
W	1	K	-1		v1	15	1	M	F	G	F	20%		
22	8	10	8	20%				12	5	6	5	60%		
Н	Α	S	Н		v2	10	1	N	В	Н	N	20%		
7	0	18	7	20%				13	1	7	13	60%		
L	1	K	Ε		v3	22	1	L	D	S	С	20%		
11	8	10	4	20%				11	3	18	2	60%		
W	0	R	D		v4	6	1	R	#	Q	Т	20%		
22	14	17	3	20%				17	27	16	19	60%		
S	Р	Α	М		v5	11	1	Z	V	В	R	20%		
18	15	0	12	20%				25	21	1	17	60%		
В	L	0	В		v6	25	1	_	Р	D	_	20%		
1	11	14	1	20%				26	15	3	26	60%		

ESTG-PR05-Mod013V2 Página 5 de7

		Tipo de Prova Teste 2	Ano letivo 2018/2019	Data 29-05-2019	
P.PORTO	CHREDING	Curso Licenciatura em Segurança Informática de Redes de Licenciatura em Engenharia Informática	e Computadores	Hora 15:10	
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas	

N.º de aluno: Nome:

6.2. Escreva a função de desencriptação f^{-1} .

$V1: f(n) = (15n + 1) \bmod 29.$

Como mdc(15,29)=1 os números 15 e 29 são primos entre si, portanto é possível calcular o inverso de 15 módulo 29.

Pelo algoritmo da divisão temos que

$$29 = 1 \times 15 + 14$$
 e $15 = 14 \times 1 + 1$

Donde,

$$1 = 15 - 1 \times 14 = 15 - 29 + 15 \Leftrightarrow$$

 $1 = 2 \times 15 - 29 \times 1$

Portanto, x = 2 é o inverso de 15 módulo 29.

$$f(p) = (15p + 1) \mod 29 \iff c = (15p + 1) \mod 29$$

$$\iff c - 1 = 15p \mod 29 \iff$$

$$15p = (c - 1) \mod 29 \iff$$

$$2 \times 15p = 2(c - 1) \mod 29 \iff$$

$$p = 2(c - 1) \mod 29$$

$$Logo, f^{-1}(p) = 2(p - 1) \mod 29 = (2p + 27) \mod 29$$

$V3: f(n) = (22n + 1) \bmod 29$

Como mdc(22,29)=1 os números 22 e 29 são primos entre si, portanto é possível calcular o inverso de 22 módulo 29.

Pelo algoritmo da divisão temos que

$$29 = 1 \times 21 + 7$$
 e $22 = 7 \times 3 + 1$

Donde,

$$1 = 22 - 7 \times 3 = 22 - (29 - 22) \times 3$$
$$= 22 - 29 \times 3 + 22 \times 3$$
$$= 4 \times 22 - 29 \times 3$$

Portanto, x = 4 é o inverso de 22 módulo 29.

$$f(p) = (22p + 1) \mod 29 \iff c = (22p + 1) \mod 29$$
$$\iff c - 1 = 22p \mod 29 \iff$$
$$22p = (c - 1) \mod 29 \iff$$
$$4 \times 22p = 4(c - 1) \mod 29 \iff$$
$$p = 4(c - 1) \mod 29$$

Logo, $f^{-1}(p) = 4(p-1) \mod 29 = (4p+25) \mod 29$

$V2: f(n) = (10n + 1) \bmod 29$

Como mdc(10,29)=1 os números 10 e 29 são primos entre si, portanto é possível calcular o inverso de 10 módulo 29.

Pelo algoritmo da divisão temos que

$$29 = 2 \times 10 + 9$$
 e $10 = 1 \times 9 + 1$

Donde,

$$1 = 10 - 1 \times 9 = 10 - 29 + 2 \times 10 \Leftrightarrow 1$$
$$= 3 \times 10 - 29 \times 1$$

Portanto.

x = 3 é o inverso de 10 módulo 29.

$$f(p) = (10p + 1) \mod 29 \iff c = (10p + 1) \mod 29$$

$$\iff c - 1 = 10p \mod 29$$

$$\iff 10p = (c - 1) \mod 29 \iff 3 \times 10p$$

$$= 3(c - 1) \mod 29 \iff 1 \times p$$

$$= 3(c - 1) \mod 29$$

$$\iff p = 3(c - 1) \mod 29 = 3(c + 28) \mod 29$$

$$\text{Logo, } f^{-1}(p) = 3(p - 1) \mod 29$$

$$= 43(p + 28) \mod 29$$

$V4: f(n) = (6n + 1) \mod 29$

Como mdc(6,29) = 1 os números 6 e 29 são primos entre si, portanto é possível calcular o inverso de 6 módulo 29.

Pelo algoritmo da divisão temos que

$$29 = 6 \times 4 + 5$$
 e $6 = 5 \times 1 + 1$

Donde,

$$1 = 6 - 5 \times 1 = 6 - (29 - 6 \times 4)$$
$$= 6 - 29 + 6 \times 4$$
$$= 6 \times 5 - 29$$

Portanto, x = 5 é o inverso de 6 módulo 29.

$$f(p) = (6p + 1) \mod 29 \iff c = (6p + 1) \mod 29$$

$$\iff c - 1 = 6p \mod 29 \iff$$

$$6p = (c - 1) \mod 29 \iff$$

$$5 \times 6p = 5(c - 1) \mod 29 \iff$$

$$p = 5(c - 1) \mod 29$$

$$Logo, f^{-1}(p) = 5(p - 1) \mod 29 = (5p + 24) \mod 29$$

ESTG-PR05-Mod013V2 Página 6 de7

		Tipo de Prova Teste 2	Ano letivo 2018/2019	Data 29-05-2019
P.PORTO	ESCOLA SUPERIOR DE TECNOLOGIA	Curso Licenciatura em Segurança Informática de Redes de Licenciatura em Engenharia Informática	e Computadores	Hora 15:10
	E GESTÃO	Unidade Curricular Matemática Discreta		Duração 1,5 horas

N.º de aluno: _____Nome: _____

6.3. Desencripte a mensagem "FIZ", "BWO", "DUB", "NDU", "CTG", "TDQ".

		F	 		5.2 f(n)=an+b mod 29						
					Desencripte				а	b	
I	0	Т		F	or.ip	.c 		Z	2		
8	14	19			5		8	25			
Α	F	K		В		W		0	3	28	
0	5	10			1		22	14			
1	М	0		D		U		В	4	28	
8	12	14			3		20	1			
С	K	1	10%	N		D		U	5	28	
2	10	8	40%		13		3	20			
1	S	A		С		Т		G	8	28	
8	<mark>18</mark>	<mark>0</mark>			2		19	6			
K	0	S		Т		D		Q	7	28	
10	14	18			19		3	16			

ESTG-PR05-Mod013V2 Página 7 de7