

MATEMATIKAI ÉS INFORMATIKAI INTÉZET

Mesterséges intelligencia számítógépes játékokban

Készítette

Herbák Marcell

Programtervező Informatikus BSc

Témavezető

Dr. Kovásznai Gergely

Egyetemi docens

Tartalomjegyzék

1.	Bevezetés			
	1.1.	Játék ismertetése	3	
		1.1.1. Játék ötlete	3	
		1.1.2. Játék szabályok	4	
2.	Mes	terséges intelligencia	6	
	2.1.	Története	6	
	2.2.	Minimax algoritmus	7	
		2.2.1. Minimax alfa-béta vágással	8	
3.	Technológiák			
	3.1.	Játékmotor	9	
	3.2.	Grafikus szerkesztő	9	
4.	Implementáció			
	4.1.	Játék megvalósítása	11	
		4.1.1. Megjelenítés	11	
		4.1.2. Állapottér	11	
		4.1.3. Operátor	11	
		4.1.4. Operátorok felépítése	11	
		4.1.5. Operátor generálás	11	
		4.1.6. Minimax	11	
		4.1.7. Minimax alfa-béta vágással	11	
		4.1.8. Heurisztika	11	
5.	Tesz	telés	12	
Összegzés				
Tro	Irodalomiegyzék			

Bevezetés

1.1. Játék ismertetése

1.1. ábra. Persona 3 Reload

1.1.1. Játék ötlete

Szakdolgozatom programjaként egy olyan játékot szerettem volna készíteni, amely nem csak jól implementálható, hanem amivel szabadidőmet is szívesen töltöm. Választásom végül is egy körökre osztott stratégiai játék elkészítésére esett. Ötletadónak, az általam kedvelt videójáték szériát, a Persona játékokat választottam. Az első Persona játék közel 30 éve jelent meg a Shin Megami Tensei szériának spin–off-jaként, így a játékok működésben és történetben bár eltérőek a modern megjelenésektől, legfrissebb jelenleg a 2024-ben kiadott (1.1 ábra) Persona 3 Reload, a játék fő mechanikája nem változott: a játékos karakterei csatába kerülnek egy fix számú, hasonló képességű ellenfelekkel

szembe. Ezekben a játékokban, különleges képességekkel rendelkező, úgynevezett Personákkal harcolnak a különböző szereplők.[1, 2]

Bár a modern játékokban nem alkalmazzák már, a Revelations: Persona harcrendszere (1.2 ábra) rendelkezett mezőkre felbontott csatatérrel, amelyeknél még a támadásoknak volt egy bizonyos maximális távolsága. Ezek alapján szerettem volna egy olyan játékteret készíteni, ahol a játékosnak nem csak a támadásának a távolságát kell figyelembe vennie, hanem a helyét is a csatatéren. [3, 4]

1.2. ábra. Revelations: Persona

1.1.2. Játék szabályok

A játék egy fixált méretű, négyzetekből álló, 7x10 nagyságú tábla. A játékot kettő játékos tudja játszani, melyből a szakdolgozatomban az egyik játékos a mesterséges intelligencia lesz. Mindegyik játékos rendelkezik karakterekkel, amelynek kezdő mennyisége a játék indítása előtt kiválasztható. Mindkét játékos rendelkezik minimum 1, maximum pedig 3 karakterrel. A karakterek mennyisége játékosonként eltérő lehet, nem szükséges mindkét játékosnak ugyanazzal a karakter mennyiséggel kezdenie. Az egyik játékos karakterei (több karakter esetén függőlegesen egy mező kihagyással) a 2. oszlopban, a másik játékos karakterei pedig a 9. oszlopban kezdenek. A táblán léteznek akadályozó mezők, amelyekre a játékosok nem léphetnek, illetve nem támadhatják meg.

A játék során a játékosok egymás után jönnek, egy körben az összes karakterükkel végre kell hajtaniuk egy interakciót. Ez a két interakció lehet:

- Lépés
- Támadás

Lépés során a karakterükkel egy mezőt léphetnek a négy irány közül valamelyik irányba: fel, le, balra vagy jobbra. A játékos karaktere nem léphet olyan mezőre, amelyen már áll egy másik saját karakter, egy ellenfél karakter vagy egy akadály. Támadás során a játékos egy mezőn belül támadhat négy irány közül valamelyik irányba. A játékos karaktere nem támadhatja meg a saját karakterét, illetve nem támadhat üres vagy akadály mezőt. A karakterek rendelkeznek életerővel, minden karakter a játék kezdésekor 10 életerőponttal kezd. Támadás során a megtámadott karakter elveszít 1 életerő pontot. Amennyiben a játékos minden karakterére végrehajtott egy interakciót, a játékos átadja a körét a másik játékosnak.

Egy karakter, amennyiben elveszíti összes életerejét, eltűnik a tábláról, mezője felszabadul, illetve innentől kezdve azzal nem tud a játékos interakciót végrehajtani és nem hozhatja vissza.

A játékos célja, hogy ellenfele összes karakterét eltüntesse a tábláról. A játékot az a játékos nyeri, akinek marad legalább 1 karaktere a táblán, legalább 1 életerővel.

Mesterséges intelligencia

2.1. Története

A mesterséges intelligencia története az 1930-as években vett rohamos lépéstempót Alan Turing és John McCarthy munkásságával.

2.1. ábra. Alan Turing

ALAN TURING (1912–1954) az 1930-as évek elején megalkotta a Turing-gépet Kurt GÖDEL (1906–1978) munkássága alapján, amely a modern számítógépek elméleti alapját képezte. 1950-ben publikálta a "Computing Machinery and Intelligence" című tanulmányát, amelyben felvetette a gépek gondolkodási képességének kérdését, és bevezette a híres Turing-tesztet, amely azt vizsgálja, hogy egy gép képes-e emberihez hasonló intelligens viselkedésre. [5, 6]

John McCarthy (1927—2011) amerikai számítástechnikai és kognitív tudós volt, akit a mesterséges intelligencia egyik alapítójaként tartanak számon. Ő alkotta meg a "mesterséges intelligencia" (artificial intelligence) kifejezést az 1956-os Dartmouth Konferencián, amelyet ő szervezett, és amelyet az MI hivatalos születésnapjaként tartanak számon. McCarthy 1958-ban kifejlesztette a Lisp programozási nyelvet, amely a mesterséges intelligencia-kutatás egyik legfontosabb eszközévé vált. Emellett jelentős hatással volt az ALGOL nyelv tervezésére, népszerűsítette az időosztásos rendszereket, és feltalálta a szemétgyűjtést (garbage collection).

2.2. ábra. John McCarthy

McCarthy munkássága jelentős hatással volt a mesterséges intelligencia fejlődésére. Az 1960-as és 1970-es években az MI-kutatás optimizmusa után nehéz időszak jött, amikor a fejlődés lelassult a korlátozott számítási kapacitás és a finanszírozási problémák miatt. Azonban McCarthy és kortársai kitartása hozzájárult ahhoz, hogy az MI napjainkban az egyik legdinamikusabban fejlődő területté váljon. Az utóbbi évtizedekben a gépi tanulás, a neurális hálózatok és a mélytanulás forradalmasították az MI-t, amely ma már számos területen, például az orvostudományban, az iparban és az önvezető autókban is kulcsszerepet játszik. [7]

2.2. Minimax algoritmus

A minimax elv olyan alkalmazott döntési szabály a játékelméletben, ami szerint azt a lehetőséget kell választani, ami minimalizálja a maximális veszteséget. Ezt az elvet felhasználhatjuk a kétfős zéróösszegű játékoknál, ami magába foglalja a két játékos szimultán döntéseit és a felváltva tett lépéseit is. [8]

Formális definíció szerint a következőképpen tudjuk felírni a számítást:

$$\overline{v_i} = \min_{a_{-i}} \max_{a_i} v_i(a_i, a_{-i})$$

A minimax érték azt fejezi ki, hogy egy játékos legrosszabb esetben mekkora értéket érhet el, ha a többi játékos a számára legkedvezőtlenebb stratégiát követi. Másképpen megfogalmazva, ez az a legnagyobb érték, amelyet a játékos garantáltan megszerezhet, ha ismeri a többi játékos lépéseit.

Egy kétszemélyes játékban az egyik játékos a maximalizáló, aki a saját pontszámának maximalizálására törekszik, míg a másik a minimalizáló, aki a maximalizáló pontszámának minimalizálására törekszik. Az algoritmus úgy működik, hogy kiértékeli az összes lehetséges lépést mindkét játékos számára, előrejelzi az ellenfél válaszait, és kiválasztja az optimális lépést annak érdekében, hogy a lehető legjobb eredményt biztosítsa. [9]

2.2.1. Minimax alfa-béta vágással

Technológiák

3.1. Játékmotor

A szakdolgozatom megvalósításához a Unity-t (korábban Unity3D) használom. A Unity egy világszerte ismert és használt videójáték-motor, amelyet a Unity Technologies fejleszt 2005 óta. A motor támogat több különböző platformot, például PC, videójáték konzolok és okostelefonok. Különösen kedvelik a kezdő játékfejlesztők a letisztult felülete és egyszerű használata miatt. Választásom azért esett a Unity-re, mert a szkriptekhez natívan támogatja a C# nyelvet. A szakdolgozatomban a Unity-nek a 2022.3.32f1-es verzióját használom.

3.2. Grafikus szerkesztő

A szakdolgozatomat a Unity-be beépített színeken és objektumokon kívül, általam készített pixelábrákat használok a karakterek képeként, amelyekhez a Paint.NET szoftvert használtam. A Paint.NET egy szabad licenszű, rasztergrafikus alkalmazás, amelyet a dotPDN fejleszt. A szakdolgozatom készítésekor 5.1.2 verzióját használtam a szoftvernek.

3.1.ábra. Paint. NET felülete

Implementáció

- 4.1. Játék megvalósítása
- 4.1.1. Megjelenítés
- 4.1.2. Állapottér
- 4.1.3. Operátor
- 4.1.4. Operátorok felépítése
- 4.1.5. Operátor generálás
- 4.1.6. Minimax
- 4.1.7. Minimax alfa-béta vágással
- 4.1.8. Heurisztika

Tesztelés

Összegzés

Irodalomjegyzék

- [1] WIKIPÉDIA: Persona (series) https://en.wikipedia.org/wiki/Persona_(series), Megtekintés dátuma: 2025.03.19.
- [2] WIKIPÉDIA: Persona 3 Reload https://en.wikipedia.org/wiki/Persona_3_Reload, Megtekintés dátuma: 2025.03.19.
- [3] WIKIPÉDIA: Revelations: Persona https://en.wikipedia.org/wiki/Revelations:_Persona, Megtekintés dátuma: 2025.03.19.
- [4] YOUTUBE: Persona: Mastering the Formation System https://www.youtube.com/watch?v=t_FPK84jcbE, Megtekintés dátuma: 2025.03.19.
- [5] WIKIPÉDIA: Alan Turing https://en.wikipedia.org/wiki/Alan_Turing, Megtekintés dátuma: 2025.03.19.
- [6] WIKIPÉDIA: Computing Machinery and Intelligence https://en.wikipedia.org/wiki/Computing_Machinery_and_Intelligence, Megtekintés dátuma: 2025.03.19.
- [7] WIKIPÉDIA: John McCarthy (computer scientist) https://en.wikipedia.org/wiki/John_McCarthy_(computer_scientist), Megtekintés dátuma: 2025.03.19.
- [8] Wikipédia: Minimax https://en.wikipedia.org/wiki/Minimax, Megtekintés dátuma: 2025.03.19.
- [9] GEEKSFORGEEKS: Mini-Max Algorithm in Artificial Intelligence https://www.geeksforgeeks.org/mini-max-algorithm-in-artificial-intelligence/,
 Megtekintés dátuma: 2025.03.19.

Nyilatkozat

Alulírott Herbák Marcell, büntetőjogi felelősségem tudatában kijelentem, hogy az általam benyújtott, című szakdolgozat önálló szellemi termékem. Amennyiben mások munkáját felhasználtam, azokra megfelelően hivatkozom, beleértve a nyomtatott és az internetes forrásokat is.

Tudomásul veszem, hogy a szakdolgozat elektronikus példánya a védés után az Eszterházy Károly Katolikus Egyetem könyvtárába kerül elhelyezésre, ahol a könyvtár olvasói hozzájuthatnak.

Eger, 2025. március 8.

aláírás