Q1. a Write out a truth table for the Boolean function

$$f(a,b,c) = (a \land b \land \neg c) \lor (a \land \neg b \land c) \lor (\neg a \land \neg b \land c),$$

then decide how many

- i input combinations, and
- ii outputs where f(a, b, c) = 1

exist in it.

b Consider the Boolean function

$$f(a,b,c,d) = \neg a \wedge b \wedge \neg c \wedge d.$$

Which of the following assignments

- i a = 0, b = 0, c = 0 and d = 1,
- ii a = 0, b = 1, c = 0and d = 1,
- iii a = 1, b = 1, c = 1 and d = 1,
- iv a = 0, b = 0, c = 1 and d = 0.

produces the output f(a, b, c, d) = 1?

c Which of the following Boolean expressions

- i $(a \lor b \lor d) \land (\neg c \lor d)$,
- ii $(a \wedge b \wedge d) \vee (\neg c \wedge d)$,
- iii $(a \lor b \lor d) \lor (\neg c \lor d)$.

is in Sum-of-Products (SoP) standard form?

d Identify **each** equivalence that is correct:

- i $a \lor 1 \equiv a$.
- ii $a \oplus 1 \equiv \neg a$.
- iii $a \wedge 1 \equiv a$.
- iv $\neg (a \land b) \equiv \neg a \lor \neg b$.

e Identify **each** equivalence that is correct:

- i $\neg \neg a \equiv a$.
- ii $\neg (a \land b) \equiv \neg a \lor \neg b$.
- iii $\neg a \wedge b \equiv a \wedge \neg b$.
- iv $\neg a \equiv a \oplus a$.

Q2. a The OR form of the null axiom is $x \lor 1 \equiv 1$. Which of the following options

- i $x \wedge 1 \equiv 1$,
- ii $x \wedge 0 \equiv 0$,
- iii $x \lor 0 \equiv 0$,
- iv $x \wedge x \equiv x$,

is the dual of this axiom?

b Given the Boolean equation

$$f = \neg a \land \neg b \lor \neg c \lor \neg d \lor \neg e$$
,

which of the following

- i $\neg f = a \lor b \lor c \lor d \lor e$,
- ii $\neg f = a \land b \land c \land d \land e$,

iii
$$\neg f = a \land b \land (c \lor d \lor e),$$

iv
$$\neg f = a \land b \lor \neg c \lor \neg d \lor \neg e$$
,

$$\mathbf{v} - \mathbf{f} = (a \lor b) \land c \land d \land e$$

is correct?

- c If we write the de Morgan axiom in English, which of the following
 - i NOR is equivalent to AND if each input to AND is complemented,
 - ii NAND is equivalent to OR if each input to OR is complemented,
 - iii AND is equivalent to NOR if each input to NOR is complemented, or
 - iv NOR is equivalent to NAND if each input to NAND is complemented.

describes the correct equivalence?

Q3. a Identify which **one** of these Boolean expressions

i
$$c \lor d \lor e$$

ii
$$\neg c \land \neg d \land \neg e$$

iii
$$\neg a \land \neg b$$

iv
$$\neg a \land \neg b \land \neg c \land \neg d \land \neg e$$

is the correct result of simplifying

$$(\neg(a \lor b) \land \neg(c \lor d \lor e)) \lor \neg(a \lor b).$$

b If you simplify the Boolean expression

$$(a \lor b \lor c) \land \neg (d \lor e) \lor (a \lor b \lor c) \land (d \lor e)$$

into a form that contains the fewest operators possible, which of the following options

i
$$a \lor b \lor c$$
,

ii
$$\neg a \land \neg b \land \neg c$$
,

iii
$$d \lor e$$
,

iv
$$\neg d \land \neg e$$
,

v none of the above

do you end up with and why?

c If you simplify the Boolean expression

$$a \wedge c \vee c \wedge (\neg a \vee a \wedge b)$$

into a form that contains the fewest operators possible, which of the following options

i
$$(b \wedge c) \vee c$$
,

ii
$$c \lor (a \land b \land c)$$
,

iii
$$a \wedge c$$
,

iv
$$a \lor (b \land c)$$
,

v none of the above

do you end up with and why?

d Consider the Boolean expression

$$a \wedge b \vee a \wedge b \wedge c \vee a \wedge b \wedge c \wedge d \vee a \wedge b \wedge c \wedge d \wedge e \vee a \wedge b \wedge c \wedge d \wedge e \wedge f$$
.

Which of the following simplifications

i
$$a \wedge b \wedge c \wedge d \wedge e \wedge f$$
,

- ii $a \wedge b \vee c \wedge d \vee e \wedge f$,
- iii $a \lor b \lor c \lor d \lor e \lor f$,
- iv $a \wedge b$,
- $v c \wedge d$,
- vi $e \wedge f$,
- vii $a \lor b \land (c \lor d \land (e \lor f))$
- viii $((a \lor b) \land c) \lor d \land e \lor f$

is correct?

- e Given the options
 - i 1,
 - ii 2,
 - iii 3,
 - iv 4,

decide which is the least number of operator required to compute the same result as

$$f(a,b,c) = (a \wedge b) \vee a \wedge (a \vee c) \vee b \wedge (a \vee c).$$

Show how you arrived at your decision.

f Prove that

$$(\neg x \wedge y) \vee (\neg y \wedge x) \vee (\neg x \wedge \neg y) \ \equiv \ \neg x \vee \neg y.$$

g Prove that

$$(x \wedge y) \vee (y \wedge z \wedge (y \vee z)) \equiv y \wedge (x \vee z).$$