Statistical_Quality_Control_Part2

Tuesday, June 11, 2024 5:57 PM

- i) Does not yield a Quantitative Value
- (ii) We can use \overline{X} & R charts, but item has five dimensions for which we must maintain $2 \times 5 = 10$ charts. So it becomes cumbersome to maintain 10 charts.
- iii) We can maintain \overline{X} and R charts, for reasons of convenience & difficulty in measurement we use the ρ -chart.
 - ·Using the p-chart is quick & with time we measure dimensions of an item.
 - ·With Go-Nogo gage we can check maybe 50-100 or more items
- With respect to second reason we won't have detailed information on items

 Non-defective
- Go-Nogo gage:

· Binomial Distribution

r = Number of occurences

These distributions are identical

N = Sample size

p = proportion (or proportion defective)

$$\nabla_{\rho} = \sqrt{\frac{\rho(1-\rho)}{n}} \qquad \qquad \nabla_{n\rho} = n \sqrt{\frac{\rho(1-\rho)}{n}} = \sqrt{n\rho(1-\rho)}$$

$$M_{\rho} = \rho$$

$$M_{n\rho} = n\rho$$

'So, we need to maintain one chart only:

· Approximating Binomial distribution by Normal distribution

- > because Normal distribution has good properties (Table) we can use
- *Exact match is not required

· n is decided upon but where does "p" come from?

Similar to \overline{X} & R charts:

1 - Aimed - at - values

2 - Estimated - values - We favour this method

• Estimated - Values <u>Sample</u> #	method	(large) e.g. N = 100	
Sample #	Somple size	ρ,	$ \rho_i = \frac{\Gamma_i}{\Omega} $
1	n —	Ρ,	
2	n n :	ρ_{2}	The rest is similar to X and R charts
3	n	$ ho_{_3}$	
:	;	:	Conclusion to p-chart
25	n	P ₁₅	1

· Control Chart for Defect (called c-chart)

We cannot call this sheet of glass defective.

· A sheet of glass can have infinite number of scratches or cracks

So we treat a sheet of glass as a sample size of linfinity