Algorytmy wyszukiwania i sortowania i sortowania oraz ich zastosowanie. Algorytmy wyszukiwania i sortowania są podstawowymi elementami w programowaniu, które znajdują szerokie zastosowanie w rozwią kolejne operacje na tych danych. Wprowadzenie Algorytmy wyszukiwania	ązywaniu problemów komputerowych. Wyszukiwanie pozwala na znalezienie określonego elementu w zbiorze danych, natomiast sortowanie umożliwia uporządkowanie danych według określonych kryteriów, co często przyspiesza
 Liniowe (sekwencyjne) Binarne Jakie algorytmy wyszukiwania zawiera Python? Algorytmy sortowania Proste algorytmy sortowania Sortowanie bąbelkowe (Bubble Sort) 	
 Sortowanie przez wybieranie (Selection Sort) Zaawansowane algorytmy sortowania Sortowanie szybkie (Quick Sort) Sortowanie przez scalanie (Merge Sort) TimSort Dlaczego algorytmy wyszukiwania i sortowania są ważne? 1. Efektywność - dobrze dobrany algorytm znacząco skraca czas wykonania operacji bazy danych 	
 bazy danych systemy plików aplikacje webowe 2. Praktyczne zastosowania: przetwarzanie danych analiza informacji optymalizacja AI grafika komputerowa 3. Podstawa dla bardziej złożonych algorytmów - wiele z zaawansowanych algorytmów stosuje te algorytmy jako elementy składowe 	
Przykłady problemów, które rozwiązują algorytmy: • Jak znaleźć najtańszy produkt w sklepie internetowym? - wyszukiwanie minimum • Jak posortować listę nazwisk w porządku alfabetycznym? - sortowanie alfabetyczne • Jak efektywnie odnaleźć dany rekord w dużej bazie danych? - wyszukiwanie binarne	
 Algorytmy wyszukiwania Pod wbudowanymi funkcjami wyszukiwania w Pythonie kryją się różne algorytmy, które zostały zoptymalizowane dla wydajności w okr Ogólny zarys wyszukiwania liniowego (sekwencyjnego) Algorytm wyszukiwania liniowego polega na przeglądaniu wszystkich elementów listy jeden po drugim, od początku do końca, w celu z 1. Znajdziemy szukany element (algorytm zwraca jego indeks). 2. Przejdziemy całą listę, nie znajdując elementu (algorytm zwraca wartość wskazującą, że element nie został znaleziony). 	
Algorytm wyszukiwania liniowego nazywa się również sekwencyjnym, ponieważ działa w sposób sekwencyjny przetwarza elementy ko Kroki algorytmu 1. Rozpocznij od pierwszego elementu. 2. Porównaj bieżący element z poszukiwanym. • Jeśli elementy są równe, zwróć indeks bieżącego elementu. • Jeśli nie są równe, przejdź do następnego elementu. 3. Jeśli przejdziesz całą listę i nie znajdziesz elementu, zwróć odpowiednią wartość (np1 lub komunikat "nie znaleziono").	lekcji jeden po drugim, w ustalonej kolejności (zwykle od początku do końca).
Uwaga! Algorytm wyszukiwania liniowego jest prosty i skuteczny dla niewielkich lub niesortowanych list, ale staje się nieefektywny dla [23]: lista = [10, 20, 30, 40, 50] szukany_element = 30	
<pre>[25]: def wyszukiwanie_liniowe(lista, szukany): for indeks, element in enumerate(lista): if element == szukany: return indeks return -1</pre>	10 20 30 40 50
<pre>indeks = wyszukiwanie_liniowe(lista, szukany_element) if indeks != -1: print(f"Element {szukany_element} znaleziono na indeksie {indeks}.") else: print(f"Element {szukany_element} nie został znaleziony.") Element 30 znaleziono na indeksie 2. Ogólny zarys wyszukiwania binarnego Algorytm stosowany do znajdowania elementu w posortowanej liście. Zamiast przeglądać każdy element z kolei (jak w wyszukiwaniu li</pre>	liniowym), algorytm dzieli listę na pół przy każdym kroku, eliminując połowę możliwych wyników. Dzięki temu złożoność czasowa jest znacznie niższa niż w przypadku wyszukiwania liniowego.
 Kroki algorytmu 1. Warunek wstępny: Lista musi być posortowana. 2. Ustal indeksy: lewy - początek listy (indeks 0). prawy - koniec listy (indeks n-1). 3. Znajdź środkowy element: Oblicz indeks środka: srodek = (lewy + prawy) // 2. 4. Porównaj środkowy element z poszukiwanym: 	
 Jeśli jest równy, zwróć jego indeks. Jeśli poszukiwany element jest mniejszy, przeszukuj lewą połowę (ustaw prawy = srodek - 1). Jeśli jest większy, przeszukuj prawą połowę (ustaw lewy = srodek + 1). 5. Powtarzaj kroki 3-4, aż znajdziesz element lub przeszukiwany zakres stanie się pusty (lewy > prawy). Uwaga, jeśli lista nie jest posortowana, algorytm zwróci błędne wyniki lub nie znajdzie elementu. Dlatego sortowanie jest koniecznym karonie jest koniecznym karo	krokiem przed zastosowaniem wyszukiwania binarnego.
	1 1 3 5 9 11 13 2 1 3 5 9 11 13 3 1 3 5 9 11 13
	4 1 3 5 9 11 13 5 1 3 5 9 11 13 6 1 3 5 9 11 13
<pre>[42]: def wyszukiwanie_binarne(lista, szukany): lewy, prawy = 0, len(lista) - 1 while lewy <= prawy: srodek = (lewy + prawy) // 2 if lista[srodek] == szukany: return srodek elif lista[srodek] < szukany: lewy = srodek + 1</pre>	
<pre>else:</pre>	
 1.1. Wyszukiwanie w listach Wyszukiwanie w listach w Pythonie zazwyczaj opiera się na wyszukiwaniu liniowym: in i index() - implementowane jako iteracyjne przeglądanie elementów listy od początku do końca. Algorytm: Rozpocznij od pierwszego elementu. Porównuj każdy element z poszukiwanym. 	
 3. Zatrzymaj się, gdy znajdziesz element lub dojdziesz do końca listy. Złożoność czasowa tego algorytmu to O(n), gdzie n to liczba elementów w liście. 1.2. Wyszukiwanie w słownikach Słowniki w Pythonie wykorzystują tablice mieszające (hash tables): Algorytm: 1. Klucz jest przekształcany za pomocą funkcji mieszającej (hash ()). 	
 2. Wynik funkcji określa miejsce w tablicy, gdzie dane są przechowywane. 3. Odczyt jest bezpośredni (czas stały O(1)), o ile nie wystąpi konflikt. 4. W przypadku konfliktów (dwa różne klucze mają ten sam wynik funkcji mieszającej), Python stosuje rozwiązania takie jak listy Złożoność czasowa: Średnio O(1) dla wyszukiwania klucza. W najgorszym przypadku O(n), jeśli wystąpią liczne konflikty. Wyszukiwanie w wartościach (np. x in slownik.values()) wymaga przeglądania całej kolekcji i ma złożoność O(n). 	y łańcuchowe (chaining).
 1.3. Wyszukiwanie w zbiorach Zbiory (set) w Pythonie również wykorzystują tablice mieszające, działając na podobnych zasadach jak słowniki: Operacje takie jak x in zbior są zoptymalizowane do średniego czasu O(1). Konflikty mieszania są obsługiwane podobnie jak w słownikach. 1.4. Wyszukiwanie binarne (bisect) Moduł bisect opiera się na algorytmie wyszukiwania binarnego, który wymaga posortowanej listy: 	
 Algorytm: Porównaj poszukiwany element ze środkowym elementem listy. Jeśli element jest mniejszy, szukaj w lewej połowie; jeśli większy, szukaj w prawej połowie. Powtarzaj, aż znajdziesz element lub lista zostanie podzielona do pustego zbioru. Złożoność czasowa to O(logn). Funkcje bisect_left i bisect_right precyzują, czy należy zwrócić pierwsze czy ostatnie wystąpienie elementu.	
 1.5. Wyszukiwanie w ciągach znaków a) in oraz find() Te operacje korzystają z optymalizowanych wersji wyszukiwania podciągu: Python używa algorytmu Knutha-Morrisa-Pratta (KMP) i podobnych metod opartych na automatach skończonych. Algorytm KMP: Tworzy się tablicę "przesunięć" na podstawie wzorca (podciągu). Przy porównywaniu ciągu i wzorca przeskakuje się pewne elementy, jeśli wystąpi niezgodność, dzięki tablicy przesunięć. To zpocznie rodukuje liezbo porównoś w porówność w porówność w porówność. 	
 2. Przy porownywaniu ciągu i wzorca przeskakuje się pewne elementy, jesti wystąpi niezgodność, dzięki tablicy przesunięć. 3. To znacznie redukuje liczbę porównań w porównaniu z naiwnym podejściem. Złożoność czasowa: Tworzenie tablicy przesunięć: O(m), gdzie m to długość wzorca. Wyszukiwanie O(n + m), gdzie n to długość ciągu, a m długość wzorca. Algorytm KMP Knuth-Morris-Pratt (KMP) to algorytm wyszukiwania wzorca w tekście, który eliminuje konieczność powtarzania porównań już sprawdzenia. 1. Budowa tablicy LPS (Longest Prefix Suffix) 	zonych znaków. Dzięki temu działa szybciej niż klasyczne (naiwne) podejście.
Tablica LPS zawiera dla każdego znaku wzorca długość najdłuższego prefiksu, który jest równocześnie sufiksem dla fragmentu wzorca • prefiks - to początkowa część ciągu znaków • sufiks - to końcowa część ciągu znaków Jeśli mamy określony wzorzec przykładowo ciag znaków ABABC, prefiksy i sufiksy dla tego wzorca wyglądają następująco: • fragment ABA - prefiksy ['A', 'AB'], sufiksy ['A', 'BA'] • najdłuższy sufkis, który jest również prefiksem A	a kończącego się na tym znaku.
 Tablica LPS jest stosowana aby: wyeliminować powtarzające się porównania zastosować wiedzę o strukturze wzorca zoptymalizować czas wyszukiwania Budowanie tablicy LPS 1. Pierwszym krokiem jest stworzenie tablicy o długości wzorca, wypełnionej zerami. Dla podanego wcześniej przykładu wygląda to to zoptymalizować presidentalne i przykładu wygląda to to zoptymalizować presidentalne i przykładu wygląda to zoptymalizować przykładu wygląda to zoptymalizować przykładu wygląda to zoptymalizować presidentalne i przykładu wygląda to zoptymalizować przyk	tak: [0, 0, 0, 0, 0]
 Jeżeli się zgadzają, zwiększamy długość prefiksu i zapisujemy ją w tablicy LPS Jeżeli nie, cofamy się do wcześniejszego dopasowania tablicy LPS 	wzorca. Każda wartość w tablicy wskazuje, jak daleko można przesunąć wzorzec po niezgodności podczas wyszukiwania, bez konieczności porównywania znaków od początku. Indeks (i) Fragment wzorca Prefiksy Sufiksy LPS[i] O A [] [] 0 1 AB ["A"] ["B"] 0
1. Indeks 0 (A) . Nie ma prefiksu, który byłby sufiksem – wartość (LPS[0] = 0).	1 AB ["A"] ["B"] 0 2 ABA ["A", "AB"] ["A", "BA"] 1 3 ABAB ["A", "ABA"] ["B", "ABA"] 2 4 ABABA ["A", "ABA"] ["A", "BAB"] 3 5 ABABAC ["A", "ABA"] ["C", "AC", "BAC"] 0
2. Indeks 1 (AB). Nie ma wspólnego prefiksu i sufiksu – wartość (LPS[1] = 0). 3. Indeks 2 (ABA). Najdłuższy prefiks to A, który jest jednocześnie sufiksem – wartość (LPS[2] = 1). 4. Indeks 3 (ABAB). Najdłuższy prefiks to AB, który jest jednocześnie sufiksem – wartość (LPS[3] = 2). 5. Indeks 4 (ABABA). Najdłuższy prefiks to ABA, który jest jednocześnie sufiksem – wartość (LPS[4] = 3). 6. Indeks 5 (ABABAC). Brak wspólnego prefiksu i sufiksu – wartość (LPS[5] = 0). [52]: def oblicz_lps (wzorzec): m = len (wzorzec) lps = [0] * m dlugosc = 0 i = 1	
<pre>i = 1 while i < m: if wzorzec[i] == wzorzec[dlugosc]: dlugosc += 1 lps[i] = dlugosc i += 1 else: if dlugosc != 0: dlugosc = lps[dlugosc - 1] else: lps[i] = 0 i += 1</pre>	
return lps [54]: oblicz_lps (wzorzec) [54]: [0, 0, 1, 2, 3, 0] 2. Wyszukiwanie wzorca w tekście Po zbudowaniu tablicy LPS przeszukujemy tekst: • Porównujemy wzorzec z tekstem znak po znaku.	
 Jeśli napotykamy niezgodność: ■ Zamiast przesuwać wzorzec na sam początek, używamy tablicy LPS, aby przeskoczyć część wzorca, która już pasowała. [84]: tekst = "ABABABABAC" Dane wejściowe: Tekst (T): ABABABABAC Wzorzec (P): ABABAC Tablica LPS: [0, 0, 1, 2, 3, 0] 	
Inicjalizacja: 1. Indeksy: • i = 0 - indeks w tekście. • j = 0 - indeks w wzorcu. 2. Rozpoczynamy porównywanie od początku wzorca i tekstu. Krok 1. Porównanie pierwszego znaku wzorca z tekstem	
• ($T[i]=T[0]=A$), ($P[j]=P[0]=A$). • Znaki pasują. • Zwiększamy oba indeksy: • ($i=1$), ($j=1$). Krok 2. Porównanie drugiego znaku wzorca z tekstem • ($T[i]=T[1]=B$), ($P[j]=P[1]=B$).	
 Znaki pasują. Zwiększamy oba indeksy: (i = 2), (j = 2). Krok 3. Porównanie trzeciego znaku wzorca z tekstem (T[i] = T[2] = A), (P[j] = P[2] = A). Znaki pasują. Zwiekszamy oba indeksy: Zwiekszamy oba indeksy: 	
• Zwiększamy oba indeksy:	
Krok 5. Porównanie piątego znaku wzorca z tekstem $ \bullet \ (T[i] = T[4] = A \), \ (P[j] = P[4] = A \). \\ \bullet \ Znaki pasują. \\ \bullet \ Zwiększamy oba indeksy: \\ \bullet \ (i=5), \ (j=5). $ Krok 6. Porównanie szóstego znaku wzorca z tekstem $ \bullet \ (T[i] = T[5] = B \), \ (P[j] = P[5] = C \). $	
 Niezgodność! ■ Zamiast zaczynać od początku wzorca, korzystamy z tablicy LPS: (j = LPS[j - 1] = LPS[4] = 3). ■ To oznacza, że końcowe ABA we wzorcu jest również jego prefiksem. Przesuwamy wzorzec tak, aby ABA pasowało do tek Krok 7. Kontynuacja po przesunięciu wzorca (i) pozostaje bez zmian: (i = 5). Porównujemy wzorzec od pozycji (j = 3). 	«stu.
1. Porównanie: $ (T[i] = T[5] = B \text{), } (P[j] = P[3] = B \text{).} $ • Znaki pasują. $ (i = 6), (j = 4). $ 2. Porównanie: $ (T[i] = T[6] = A \text{), } (P[j] = P[4] = A \text{).} $ • Znaki pasują.	
• ($i=7$), ($j=5$). 3. Porównanie: • ($T[i]=T[7]=B$), ($P[j]=P[5]=C$). • Niezgodność! • Korzystamy z tablicy LPS: • ($j=LPS[4]=3$). Krok 8. Kolejne przesunięcie wzorca	
1. (i) pozostaje bez zmian: ($i=7$). 2. Porównujemy od ($j=3$). 3. Porównanie: • ($T[i]=T[7]=B$), ($P[j]=P[3]=B$). • Znaki pasują. • ($i=8$), ($j=4$). 4. Porównanie:	
• ($T[i] = T[8] = A$), ($P[j] = P[4] = A$). • Znaki pasują. • ($i = 9$), ($j = 5$). 5. Porównanie: • ($T[i] = T[9] = C$), ($P[j] = P[5] = C$). • Znaki pasują. • ($i = 10$), ($j = 6$).	
Krok 9. Dopasowanie zakończone • ($j=6$), co oznacza, że cały wzorzec został dopasowany. • Pozycja początkowa dopasowania w tekście: • ($i-j=10-6=4$). [87]: def kmp(tekst, wzorzec): $n=len(tekst)$ $m=len(wzorzec)$	
<pre>i</pre>	
<pre>j = lps[j - 1] elif i < n and tekst[i] != wzorzec[j]: if j != 0: j = lps[j - 1] else: i += 1</pre> [89]: kmp(tekst, wzorzec) Wzorzec znaleziono na indeksie 4 b) startswith() i endswith()	
Metody te są zoptymalizowane do szybkich operacji na początku i końcu ciągów. Pod spodem wykonują sprawdzenie porównawcze be Zestawienie algorytmów w Python	Struktura danych Operacja Algorytm Złożoność czasowa Lista in , index () Wyszukiwanie liniowe $O(n)$ Słownik in , get () Tablica mieszająca $O(1)$
Źródła informacji Informacje o algorytmach wbudowanych w Pythonie pochodzą z następujących źródeł i dokumentacji:	Zbiór in Tablica mieszająca $O(1)$ Posortowana lista bisect Wyszukiwanie binarne $O(logn)$ Ciąg znaków in , find() , index() Knuth-Morris-Pratt (KMP) $O(n+m)$
 Dokumentacja języka Python: Wyszukiwanie w strukturach danych Python Data Structures Moduł bisect Bisect module documentation Operacje na ciągach znaków String methods Algorytm KMP Knuth-Morris-Pratt 2. Algorytmy sortowania	
Algorytmy sortowania to podstawowe narzędzia umożliwiające uporządkowanie danych w określonym porządku (np. rosnącym lub mal 1.1. Sortowanie bąbelkowe Sortowanie bąbelkowe polega na wielokrotnym porównywaniu sąsiednich elementów w liście i zamianie ich miejscami, jeśli są w niewł Kroki algorytmu 1. Rozpocznij od pierwszego elementu. 2. Porównaj bieżący element z następnym.	alejącym). W Pythonie wiele z tych algorytmów zostało zaimplementowanych i zoptymalizowanych w bibliotece standardowej, ale warto znać podstawowe techniki, które kryją się za tymi funkcjami.
 Jeśli są w złej kolejności, zamień je miejscami. 3. Przejdź do następnej pary elementów i powtórz krok 2. 4. Po zakończeniu jednego przebiegu sprawdź, czy wystąpiły zamiany: Jeśli nie, lista jest posortowana. Jeśli tak, rozpocznij kolejny przebieg. 5. Powtarzaj kroki 1–4, aż lista będzie posortowana. Uwaga! Sortowanie bąbelkowe jest bardzo nieefektywne dla dużych zbiorów danych ze względu na swoją złożoność czasową O(n²). 	
 Sortowanie przez wstawianie Sortowanie przez wstawianie działa w sposób podobny do układania kart w ręku. Każdy element jest pobierany z nieposortowanej częk Kroki algorytmu Rozpocznij od drugiego elementu (pierwszy element jest traktowany jako posortowany). Pobierz bieżący element i znajdź jego miejsce w posortowanej części listy. Przesuń elementy większe od bieżącego w prawo, aby zrobić miejsce na wstawienie. 	ęści i wstawiany w odpowiednie miejsce w części posortowanej.
 4. Wstaw bieżący element w odpowiednie miejsce. 5. Powtarzaj kroki 2–4 dla każdego kolejnego elementu. Uwaga! Złożoność czasowa wynosi O(n²) w przypadku najgorszego scenariusza. 1.3. Sortowanie szybkie (quicksort) Quicksort to jeden z najszybszych algorytmów sortowania ogólnego przeznaczenia. Działa na zasadzie "dziel i zwyciężaj", dzieląc listę 	ę na mniejsze podlisty i sortując je niezależnie.
Kroki algorytmu 1. Wybierz element z listy jako tzw. pivot (np. pierwszy, ostatni, lub losowy element). 2. Podziel listę na trzy części: • Elementy mniejsze od pivotu. • Pivot. • Elementy większe od pivotu. 3. Rekurencyjnie zastosuj quicksort na podlistach mniejszych i większych. 4. Połącz posortowane podlisty i pivot w jedną całość.	
Uwaga! Quicksort jest bardzo efektywny ze średnią złożonością czasową $O(n \log n)$, ale w najgorszym przypadku może działać w cz 1.4. Algorytm TimSort (sorted () oraz .sort () na listach) TimSort to hybrydowy algorytm sortowania używany jako domyślny wbudowany mechanizm sortowania w Pythonie (oraz w Javie). Zos 1.4.1. Główne cechy TimSort	zasie $O(n^2)$ (np. gdy pivot jest źle dobrany). stał zaprojektowany jako połączenie sortowania przez wstawianie i sortowania przez scalanie, aby optymalizować wydajność na rzeczywistych danych, które często zawierają częściowo posortowane sekwencje.
 Algorytm dzieli dane na "runy" – podlisty, które są już posortowane lub można je szybko posortować. Dla małych runów używane jest sortowanie przez wstawianie. Posortowane runy są łączone w większe runy przy użyciu sortowania przez scalanie. 1.4.2. Kroki algorytmu TimSort Podział danych na runy: Algorytm przeszukuje dane, aby zidentyfikować naturalnie posortowane fragmenty (rosnące lub malejące). Dla fragmentów malejących kolejność jest odwracana, aby uzyskać runy w porządku rosnącym. Jeśli run jest zbyt krótki, zostaje rozszerzony za pomocą sortowania przez wstawianie, aby osiągnąć minimalny rozmiar (dom 	nyślnie 32 w Pythonie).
<pre>• Jeśli run jest zbyt krótki, zostaje rozszerzony za pomocą sortowania przez wstawianie, aby osiągnąć minimalny rozmiar (dom []: def znajdz_run(tablica, poczatek, n): koniec = poczatek + 1 if koniec == n: return koniec if tablica[koniec] < tablica[poczatek]: while koniec < n and tablica[koniec] < tablica[koniec - 1]:</pre>	
<pre>while koniec < n and tablica[koniec] >= tablica[koniec - 1]: koniec += 1 return koniec 2. Sortowanie runów: • Mniejsze runy są sortowane za pomocą sortowania przez wstawianie. []: def sortowanie_przez_wstawianie(tablica, lewy, prawy): for i in range(lewy + 1, prawy + 1):</pre>	
	nierówne).
<pre> • Algorytm utrzymuje równowagę między rozmiarami runów, aby uniknąć nieefektywności (np. jeśli runy są zbyt małe lub zbyt r []: def scal(tablica, lewy, srodek, prawy): lewa_podlista = tablica[lewy:srodek + 1] prawa_podlista = tablica[srodek + 1:prawy + 1] i, j, k = 0, 0, lewy while i < len(lewa_podlista) and j < len(prawa_podlista): if lewa_podlista[i] <= prawa_podlista[j]: tablica[k] = lewa_podlista[i] i += 1 else: </pre>	
<pre>else: tablica[k] = prawa_podlista[j] j += 1 k += 1 while i < len(lewa_podlista): tablica[k] = lewa_podlista[i] i += 1 k += 1 while j < len(prawa_podlista): tablica[k] = prawa_podlista[j]</pre>	
<pre>tablica[k] = prawa_podlista[j]</pre>	
<pre>while poczatek < n: koniec = znajdz_run(tablica, poczatek, n) if koniec - poczatek < RUN: sortowanie_przez_wstawianie(tablica, poczatek, min(poczatek + RUN - 1, n - 1)) koniec = min(poczatek + RUN, n) runy.append((poczatek, koniec - 1)) poczatek = koniec while len(runy) > 1: nowe_runy = [] for i in range(0, len(runy) - 1, 2):</pre>	
<pre>for i in range(0, len(runy) - 1, 2): lewy, srodek = runy[i] _, prawy = runy[i + 1] scal(tablica, lewy, srodek, prawy) nowe_runy.append((lewy, prawy)) if len(runy) % 2 == 1: nowe_runy.append(runy[-1]) runy = nowe_runy</pre> 1.4.3. Zalety TimSort • Algorytm został zaprojektowany z myślą o danych częściowo posortowanych, które często występują w praktyce.	
 Algorytm został zaprojektowany z myślą o danych częściowo posortowanych, które często występują w praktyce. TimSort jest stabilny, co oznacza, że elementy o tej samej wartości zachowują pierwotną kolejność. Złożoność czasowa: Średnia i najlepsza: O(n log n). Najgorsza: O(n log n), dzięki starannej konstrukcji algorytmu. Scalanie odbywa się w sposób zoptymalizowany pod kątem pamięci. Źródło informacji Wyjaśnienie TimSort, jego działania oraz implementacji. GeeksforGeeks 	
 Wyjaśnienie TimSort, jego działania oraz implementacji. GeeksforGeeks Historia, działanie i zastosowania algorytmu TimSort. Wikipedia Zbiór algorytmów sortujących, ich opis i złożoność. eduinf.waw.pl Wykład o zaawansowanych algorytmach sortowania, w tym TimSort. Uniwersytet Wrocławski Proste wyjaśnienie podstawowych algorytmów sortowania. Daniel Jeziorski Analiza i szczegóły dotyczące TimSort, połączenia sortowania przez scalanie i wstawianie. Kirupa 	
 Analiza i szczegóły dotyczące TimSort, połączenia sortowania przez scalanie i wstawianie. Kirupa Film opisujący szczegóły działania TimSort. YouTube Przykłady i wyjaśnienia algorytmów sortowania. Uniwersytet Morski Zadania do realizacji Uwaga! W zadaniach 1 - 6 proszę nie korzystać z wbudowanych mechanizmów sortowania i wyszukiwania. 	
<pre>Funkcja mierząca czas wykonywania import time def zmierz_czas_sortowania(func, lista): start = time.time() func() koniec = time.time()</pre>	
 Algorytmy wyszukiwania Zmodyfikuj funkcję wyszukiwania liniowego tak, aby zwracała wszystkie indeksy wystąpień szukanego elementu. Przetestuj działanie wyszukiwania binarnego na posortowanych i niesortowanych listach. Wyjaśnij różnice w wynikach w formie koncepta. 	omentarza. ntuj wyszukiwanie liniowe i zmierz czas działania obu algorytmów. Nazwiska należy zaimportować z pliku nazwiska_posortowane.txt i zapisać je do listy.
 Algorytmy sortowania Napisz funkcję implementującą sortowanie bąbelkowe. Porównaj jej działanie na małej (np. 10 elementów) i dużej (np. 1000 elementów). Przetestuj algorytm sortowania przez wstawianie na liście częściowo posortowanej i całkowicie losowej. Porównaj czas działania w def generuj_liste(rozmiar, zakres): return [random.randint(0, zakres) for _ in range(rozmiar)] Napisz funkcję implementującą algorytm sortowania szybkiego. Użyj pierwszego elementu jako pivotu. 	
	binarnego.
10. Przygotuj listy o rożnych strukturach (np. losowe, częściowo posortowane, odwrotnie posortowane) i zbadaj, jak rożne algorytmy s 11. Przygotuj grę, w której gracze muszą ręcznie uporządkować listę liczb według określonego algorytmu (np. bąbelkowego). Sprawd:	