Question 1

Let $F = \mathbb{Q}(\eta)$, where $\eta = \cos(2\pi/7) + i\sin(2\pi/7) \in \mathbb{C}$. Assume that E/F is a Galois extension of degree 7. Show that there exists $\alpha \in E$ such that $\alpha^7 \in F$ and $E = F(\alpha)$.

Solution: As $\eta = e^{i2\pi/7}$, then let $\mu = \{\eta, \eta^2, \dots, \eta^6, 1\}$. It is easy to check that μ is a set of solutions of $x^7 - 1$. As $F = \mathbb{Q}(\eta)$, then $\mu \in F$.

Now, assuming that E/F is galois of degree 7, then $Gal(E/F) \simeq \mathbb{Z}/7\mathbb{Z}$ as it is the only group with order 7. As a kummer extension, E/F is cyclic of order 7 if and only it is a splitting field of $x^7 - a$ for some $a \in F$. Therefore, there exists a root of $x^7 - a$, say α in the field E such that $\alpha^7 = a \in F$.

Then, consider that the set of all roots of $x^7 - a$ is $\{\alpha, \alpha\eta, \cdots, \alpha\eta^6\}$. Thus, $E = F(\alpha)$ as $\eta \in F$.

Question 2

Let G be a finite group. Prove that there exists a polynomial f over a field F such that $Gal(f) \simeq G$.

Solution: Let G be a finite group of order n, then there is an embedding of G to S_n , ie. G is isomorphic to a subgroup of S_n . If there is a galois field extension E/F such that $Gal(E/F) \simeq S_n$, then by the galois correspondence, there must be a field extension E/K/F such that $Gal(E/K) \simeq G$. Since E/K is normal, then E must be a splitting field of some f over field K. Hence, it is left to find a galois field extension E/F such that $Gal(E/F) \simeq S_n$.

Let x_1, x_2, \ldots, x_n be n variables and let

$$s_1 = x_1 + x_2 + \dots + x_n$$

$$s_2 = x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n$$

$$\dots$$

$$s_n = x_1 \cdot x_2 \cdot \dots \cdot x_n$$

Then, notice that

$$(x-x_1)(x-x_2)\cdots(x-x_n) = x^n - s_1x^{n-1} + \cdots \pm s_n$$

is a polynomial in $\mathbb{Q}(s_1, s_2, \dots, s_n)[x]$ So, $\mathbb{Q}(x_1, x_2, \dots, x_n)$ is the splitting field of f over $\mathbb{Q}(s_1, s_2, \dots, s_n)$, and as x_i are distinct, $E = \mathbb{Q}(x_1, x_2, \dots, x_n)$ is galois over $F = \mathbb{Q}(s_1, s_2, \dots, s_n)$.

Let $\sigma \in S_n$ be any permutation on the set of roots, then σ is an automorphism of E that fixes F as every s_i is fixed by a permutation of roots. Moreover, $\operatorname{Gal}(E/F) < S_n$ since the degree of f is n. Thus, it must be the case that $\operatorname{Gal}(E/F) \simeq S_n$, which finishes the proof.

Question 3

Let p be a prime integer and let H be a subgroup of S_p containing a p-cycle and a transposition. Prove that $H = S_p$.

Solution: To avoid using confusing notation, the cycle notation which was normall (1, 2, ..., n) be be written as $[1 \ 2 \ \cdots \ n]$ instead.

Without loss of generality, let the given transposition shuffles 1 and 2 and let $\bar{\sigma}$ be the p cycle. Then, there is some q < p such that $\bar{\sigma}^q(1) = 2$. Then, let $\sigma = \bar{\sigma}^q$

Now, as p is a prime, gcd(q, p) = 1, therefore, σ is of order p, which means that σ is also a p-cycle.

Then, $\sigma[1\ 2]\sigma^{-1}$ is a transposition that shuffles $\sigma(1)$ and $\sigma(2)$. Now, as $\sigma(1)=2$, then it maps 2 to $\sigma(2)$. By this construction, it is possible to create n transpositions, which are

$$[\sigma^{p-1}(2)\ 2], [2\ \sigma(2)], \dots, [\sigma^{p-2}(2)\ \sigma^{p-1}(2)]$$

Since σ is cyclic, then it is of degree p-1, thus listed transpositions are pairwise distinct.

Write $(n)^{\sigma}$ instead $\sigma^{n}(2)$ for $0 \leq n < m < p$ for brevity, so that the constructed transposition are

$$[(0)^{\sigma} (1)^{\sigma}], [(1)^{\sigma} (2)^{\sigma}], \dots, [(p-2)^{\sigma} (p-1)^{\sigma}], [(p-1)^{\sigma} (0)^{\sigma}]$$

Then, let [a, b] be an arbitrary transposition in S_p , then $a = \sigma^n(2)$ and $b = \sigma^m(2)$. for some n and m. Assume without loss of generality that $0 \le n < m < p$. Thus, $a = (n)^{\sigma}$ and $b = (m)^{\sigma}$.

Then,

$$[(n)^{\sigma} \cdots (m)^{\sigma}] = [(n)^{\sigma} (n+1)^{\sigma}][(n+1)^{\sigma} (n+2)^{\sigma}] \cdots [(m-1)^{\sigma} (m)^{\sigma}]$$

And

$$[(n)^{\sigma} (m)^{\sigma}] = [(n)^{\sigma} \cdots (m)^{\sigma}][(m-1)^{\sigma} (m)^{\sigma}][(n)^{\sigma} \cdots (m)^{\sigma}]^{-1}$$

Thus, all transpositions are generated by a transposition and a p-cycle. Now, as all transpositions are the generator of symmetric group as a cycle

$$[a_1 \ a_2 \ \cdots \ a_k] = [a_1 \ a_2][a_2 \ a_3] \cdots [a_{k-1} \ a_k]$$

then, a transposition and a p-cycle generate S_p .

Question 4

Let f be a polynomial of degree 3 over \mathbb{Q} . Prove that if $Gal(f) = \mathbb{Z}/3\mathbb{Z}$, then f has exactly three real roots.

Solution: Notice that f can have a maximum of 3 roots. As when x approaches ∞ , f(x) approaches ∞ and as x approaches $-\infty$, then f(x) approaches ∞ , then f(x) must cross the x-axis at least once. This means that x has at least one real root.

Assuming for contradiction that f has a non-real complex root. Then, there must be at least 2 non-real complex roots, otherwise, the product of all roots, which is the constant term in the minimal polynomial will be non-real, thus non-rational.

First, assuming that f is irreducible, then f contain exactly 2 non-real complex roots, which must be x and \bar{x} , a complex and its complex conjugation. As f is irreducible, then $\operatorname{Gal}(f)$ acts on the roots transitively, therefore, $\operatorname{Gal}(f) \simeq S_3$ since a transposition and a cycle generate the symmetric group.

Then, if f is reducible, then $f(x) = m(x-a)(x^2-bx-c)$ such that x^2-bx-c has no real roots Therefore $Gal(f) = Gal(x^2-bx-c)$ is of degree 2.

So, the same conclusion that $Gal(f) \neq \mathbb{Z}/3\mathbb{Z}$ is reached, thus the statement holds by contraposition.

Question 5

Determine Gal(f) of $f(x) = x^3 + 4x + 2$ over \mathbb{Q}

Solution: Firstly, the polynomial f(x) is irreducible by the eisenstein criterion with p=2. Therefore, the group $G=\mathrm{Gal}(f)$ must acts transitively on the set of 3 roots. Thus $G\simeq A_3$ or $G\simeq S_3$.

Consider that the discriminant of the polynomial is $-4(4^3) - 27(2^2) = -364$ is not a square, then G is not a subgroup of A_3 . Thus, $G \simeq S_3$.

Question 6

Let f be a polynomial of degree 3 over \mathbb{Q} . Find all possible Gal(f).

Solution: If f is irreducible, then $G = \operatorname{Gal}(f)$ acts transitively. Thus G is a transitive subgroup of S_3 . In this case, either $G \simeq S_3$ or $G \simeq A_3$. It can also be shown that $G \simeq A_3$ if and only if the discriminant, D(f), is a square.

Otherwise, f is reducible. If f is a product of one linear and one irreducible quadratic, then the galois group G must isomorphic to S_2 , as it is the product of the group of the linear polynomial, which is $\{e\}$, and the group of the quadratic part, which is S_2 , as it is the only transitive subgroup of S_2 .

Lastly, if f is a product of three linear polynomials, then all roots are a member of F, which is that $G \simeq \{e\}$.

To show that all of the cases are possible, consider

$$Gal(x^3-2) \simeq S_3$$

as it is irreducible by eisenstein and have non-squared discriminant.

$$Gal(x^3 - 3x + 1) \simeq A_3$$

as $x^3 - x + 1$ is irreducible over \mathbb{F}_2 , so it $x^3 - 3x + 1$ is irreducible over \mathbb{Q} . Moreover, the discriminant is $D(x^3 - 3x + 1) = -4 \cdot (-3)^3 - 27 \cdot 1^2 = 81 = 9^2$ is a square.

$$Gal(x^3 - 1) \simeq \mathbb{Z}/2\mathbb{Z}$$

as the splitting field of $x^3 - 1$ is of degree $\phi(3) = 2$ over \mathbb{Q} .

$$Gal(x^3 - x) \simeq \{e\}$$

as $x^3 - x = x(x-1)(x+1)$.

Question 7

Let $f \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4 with $Gal(f) = S_4$. Show that there is no nontrivial intermediate field between $\mathbb{Q}(\alpha)$ and \mathbb{Q} where α is a root of f.

Solution: Let E be the splitting field of f over \mathbb{Q} . Let $\alpha_1, \ldots, \alpha_4$ be roots of f such that $\alpha = \alpha_1$ then $G = \operatorname{Gal}(E/\mathbb{Q}(\alpha))$ is a subgroup of S_4 that fixes α_1 and only α_1 . This implies that G must be a transitive subgroup of S_4 , which is either S_3 or A_3 .

If $G \simeq S_3$, then there is no other proper subgroup of S_4 that contains S_3 , thus, there is no nontrivial intermediate subfield by the galois correspondence theorem. This is true because if there is proper subgroup of S_4 containing S_3 , then it must have order 12 as 6 | 12 and 12 | 24 is the only number satisfying this properties. However, the only group of order 12 in S_4 is A_4 , and A_5 is not contained by A_4 .

If $G \simeq A_3$, then G is cyclic, thus $\mathbb{Q}(\alpha)$ must be a splitting field of $x^3 - a$ for some $a \in \mathbb{Q}$. So, $\mathbb{Q}(\alpha)$ must be galois over \mathbb{Q} . However, as A_3 is not a normal subgroup of S_4 , $\mathbb{Q}(\alpha)/\mathbb{Q}$ cannot be normal. This yield a contradiction.

Question 8

Prove the following statements.

- a. If L/F is a radical extension and $\sigma: L \to K$ is a field homomorphism, then $\sigma(L)/\sigma(F)$ is a radical extension
- b. Let $K/L_i/F$ be fields with $1 \leq i \leq m$. If each L_i/F is a radical extension, then $L_1 \cdots L_m/F$ is a radical extension

Solution:

a. If L/F is a radical extension, then assume WLOG that it is an n-radical for some n. Then,

$$F \subset F(\alpha_1) \subset \cdots \subset F(\alpha_1, \ldots, \alpha_m) = L$$

where $\alpha_i^n \in F(\alpha_1, \dots, \alpha_{i-1})$ and for i > 1 and $\alpha_1^n \in F$. As σ is a field homomorphism, then for any field E and β

$$\sigma(E(\beta)) = \sigma(E)(\sigma(\beta))$$

which means

$$\sigma(F) \subset \sigma(F)(\sigma(\alpha_1)) \subset \cdots \subset \sigma(F)(\sigma(\alpha_1), \ldots, \sigma(\alpha_m)) = \sigma(L)$$

From here, $\sigma(\alpha_1)^n = \sigma(\alpha_1^n) \in \sigma(F)$ since $\alpha_1 \in F$. Moreover, for all i > 1, $\sigma(\alpha_i)^n = \sigma(\alpha_i^n) \in \sigma(F(\alpha_1, \dots, \alpha_{i-1}))$ by similar logic.

Thus, $\sigma(L)/\sigma(F)$ is a radical extension.

b. Firstly, consider when m=2. Since L_2 is radical, then let L_2 be k radical, without loss of generality. So, $L_2=F(\alpha_1,\ldots,\alpha_m)$ for $\alpha_i\in L_2$, such that there are chains

$$F \subset F(\alpha_1) \subset \cdots \subset F(\alpha_1, \ldots, \alpha_n) = L_2$$

with $\alpha_1^k \in F$ and for i > 1, $\alpha_i^k \in F(\alpha_1, \dots, \alpha_{i-1})$.

As

$$L_1L_2 = L_1(\beta_1, \dots, \beta_m)$$

by definition. Then, consider a chain

$$L_1 \subset L_1(\alpha_1) \subset \cdots \subset L_1(\alpha_1, \ldots, \alpha_n) = L_1 L_2$$

then, $\alpha_1^k \in F \subset L_1$ and for i > 1, $\alpha_i^k \in F(\alpha_1, \dots, \alpha_{i-1}) \subset L_1(\alpha_1, \dots, \alpha_{i-1})$. Thus, L_1L_2 is k-radical over L_1 .

As L_1L_2/L_1 and L_1/F are both radical, then by the transitivity, L_1L_2/F is also radical. Hence, the statement is proved for m=2.

Now, for m>2, assume for induction that $L_1L_2\cdots L_{m-1}$ is radical over F under the given condition. Then, let $K_1=L_1L_2\cdots L_{m-1}$ and $K_2=L_m$ so that the conditions for the case m=2 are satisfied. By the proof, K_1K_2 is radical. However, as $K_1K_2=L_1\cdots L_m$, then $L_1\cdots L_m$ is radical over F. Hence, the statement was proven by induction.

Question 9

Show that the polynomial $f(x) = 2x^5 - 5x^4 + 5$ over $\mathbb Q$ is not solvable by radicals.

Solution: Notice that $f'(x) = 10x^4 - 20x^3$ has just two solutions, which are x = 0 and x = 2. It can be checked that f(0) = 5 > 0 and f(2) = -11 < 0. With f(x) being a degree 5 polynomial, as $x \to \infty$, f(x) approaches ∞ and as $x \to -\infty$, f(x) approaches $-\infty$. This means that the graph of f(x) must intercept the x-axis exactly 3 times by the intermediate value theorem.

Since f(x) has 5 roots and exactly 3 are real roots, then f(x) has exactly 2 non-real complex roots. Moreover, f(x) is irreducible by the eisenstein criterion at p = 5. Thus G = Gal(f) is a transitive subgroup of S_5 . With the presence of transposition automorphism that map the complex root to its conjugate, and the fact that G is a transitive subgroup thus contain a 5-cycle, the only possibility is that $G \simeq S_5$ as a transposition and 5-cycle generates S_5 .

As S_5 is not solvable, f is not solvable by radicals according to the galois theorem.

Question 10

Determine Gal(f) of $f(x) = x^4 + 4x^2 + 2$ over \mathbb{Q} .

Solution: Let E be a splitting field of f over \mathbb{Q} and consider that

$$f(x) = x^4 + 4x^2 + 2 = \left(x^2 + 2 - \sqrt{2}\right)\left(x^2 + 2 + \sqrt{2}\right)$$
$$= \left(x - \sqrt{2 - \sqrt{2}}\right)\left(x + \sqrt{2 - \sqrt{2}}\right)\left(x - \sqrt{2 + \sqrt{2}}\right)\left(x + \sqrt{2 + \sqrt{2}}\right)$$

Let $\alpha_1 = \sqrt{2 - \sqrt{2}}$, $\alpha_2 = -\sqrt{2 - \sqrt{2}}$, $\alpha_3 = \sqrt{2 + \sqrt{2}}$, $\alpha_4 = -\sqrt{2 + \sqrt{2}}$ be the four roots of f.

And let

$$\beta_1 = \alpha_1 \alpha_2 + \alpha_3 \alpha_4 = (-(2 - \sqrt{2})) + (-(2 + \sqrt{2})) = -4$$

$$\beta_2 = \alpha_1 \alpha_3 + \alpha_2 \alpha_4 = (\sqrt{2}) + (\sqrt{2}) = 2\sqrt{2}$$

$$\beta_3 = \alpha_1 \alpha_4 + \alpha_2 \alpha_3 = (-\sqrt{2}) + (-\sqrt{2}) = -2\sqrt{2}$$

Thus, $K = F(\beta_1, \beta_2, \beta_3)$ is galois over \mathbb{Q} and let $G = \operatorname{Gal}(f)$ so that $K = E^{G \cap V}$. As K/\mathbb{Q} and E/\mathbb{Q} are galois, then

$$m = \frac{|G|}{|G \cap V|} = [K : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$$

Then, notice that f is reducible over K as shown above, therefore, $G \simeq \mathbb{Z}/4\mathbb{Z}$.