Locality-sensitive hashing

2IMM20 - Foundations of data mining TU Eindhoven, Quartile 3, 2017-2018

Anne Driemel

Overview of this lecture

- Nearest-Neighbor rule
- Locality sensitive hashing
- Cosine distance
- Euclidean distance
- Jaccard Similarity
- Minhashing
- Banding
- Amplification

Nearest-Neighbor-rule: Search among all labelled input elements for the one that minimizes a distance function (i.e., the *nearest neighbor*) and use this label as an estimator.

This induces a Voronoi partition with exponential growth in complexity

Can we use a random partition instead?

Nearest-Neighbor-rule: Search among all labelled input elements for the one that minimizes a distance function (i.e., the *nearest neighbor*) and use this label as an estimator.

This induces a Voronoi partition with exponential growth in complexity

Can we use a random partition instead?

Nearest-Neighbor-rule: Search among all labelled input elements for the one that minimizes a distance function (i.e., the *nearest neighbor*) and use this label as an estimator.

This induces a Voronoi partition with exponential growth in complexity

Can we use a random partition instead?

input

hash table

Definition:

A family of hash functions H is called (d_1, d_2, p_1, p_2) -locality-sensitive if for $\mathbf{p}, \mathbf{q} \in \mathbb{R}^d$:

- (a) if $d(\mathbf{p}, \mathbf{q}) \le d_1$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \ge p_1$
- (b) if $d(\mathbf{p}, \mathbf{q}) \ge d_2$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \le p_2$

In general, we want $d_1 < d_2$ and $p_1 > p_2$

Definition:

A family of hash functions H is called (d_1, d_2, p_1, p_2) -locality-sensitive if for $\mathbf{p}, \mathbf{q} \in \mathbb{R}^d$:

- (a) if $d(\mathbf{p}, \mathbf{q}) \le d_1$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \ge p_1$
- (b) if $d(\mathbf{p}, \mathbf{q}) \ge d_2$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \le p_2$

In general, we want $d_1 < d_2$ and $p_1 > p_2$

Definition:

A family of hash functions H is called (d_1, d_2, p_1, p_2) -locality-sensitive if for $\mathbf{p}, \mathbf{q} \in \mathbb{R}^d$:

- (a) if $d(\mathbf{p}, \mathbf{q}) \le d_1$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \ge p_1$
- (b) if $d(\mathbf{p}, \mathbf{q}) \ge d_2$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \le p_2$

In general, we want $d_1 < d_2$ and $p_1 > p_2$

Commonly used distance functions

Euclidean distance:

$$d(\mathbf{p}, \mathbf{q}) := \|\mathbf{p} - \mathbf{q}\|$$

Arccos distance:

$$d(\mathbf{p}, \mathbf{q}) := \arccos\left(\frac{\langle \mathbf{p}, \mathbf{q} \rangle}{\|\mathbf{p}\| \|\mathbf{q}\|}\right)$$

ullet randomly sample a hyperplane by choosing a normal vector u

- ullet randomly sample a hyperplane by choosing a normal vector u
- to hash ${\bf p}$ compute the sign of $\langle {\bf p},u \rangle$ to find the side of the hyperplane thay ${\bf p}$ lies on

- ullet randomly sample a hyperplane by choosing a normal vector u
- to hash ${\bf p}$ compute the sign of $\langle {\bf p},u \rangle$ to find the side of the hyperplane thay ${\bf p}$ lies on
- $h(\mathbf{p}) = \operatorname{sign}(\langle \mathbf{p}, u \rangle)$

Claim:

For any p, q, it holds that

$$\Pr[h(\mathbf{p}) = h(\mathbf{q})] = \frac{2\pi - \alpha}{2\pi}$$

where
$$\alpha = \arccos\left(\frac{\langle \mathbf{p}, \mathbf{q} \rangle}{\|\mathbf{p}\| \|\mathbf{q}\|}\right)$$
.

Claim:

For any p, q, it holds that

$$\Pr[h(\mathbf{p}) = h(\mathbf{q})] = \frac{2\pi - \alpha}{2\pi}$$

where $\alpha = \arccos\left(\frac{\langle \mathbf{p}, \mathbf{q} \rangle}{\|\mathbf{p}\| \|\mathbf{q}\|}\right)$.

ullet randomly sample a unit vector u

- ullet randomly sample a unit vector u
- project onto u by computing the dot product $\langle \mathbf{p}, u \rangle$

- ullet randomly sample a unit vector u
- project onto u by computing the dot product $\langle \mathbf{p}, u \rangle$

- ullet randomly sample a unit vector u
- project onto u by computing the dot product $\langle \mathbf{p}, u \rangle$

- randomly sample a unit vector u
- project onto u by computing the dot product $\langle \mathbf{p}, u \rangle$
- ullet create bins of size γ in ${\rm I\!R}^1$ with random shift in $[0,\gamma)$

- ullet randomly sample a unit vector u
- project onto u by computing the dot product $\langle \mathbf{p}, u \rangle$
- \bullet create bins of size γ in ${\rm I\!R}^1$ with random shift in $[0,\gamma)$
- $h(\mathbf{p}) = \text{index of the bin that } \mathbf{p} \text{ is projected into}$

Claim:

This hashing scheme is $(\frac{\gamma}{2}, 2\gamma, \frac{1}{2}, \frac{1}{3})$ -locality-sensitive, that is:

(a) if
$$\|\mathbf{p} - \mathbf{q}\| \le \frac{\gamma}{2}$$
 then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \ge \frac{1}{2}$, and

(b) if
$$\|\mathbf{p} - \mathbf{q}\| \ge 2\gamma$$
 then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \le \frac{1}{3}$

Claim:

This hashing scheme is $(\frac{\gamma}{2}, 2\gamma, \frac{1}{2}, \frac{1}{3})$ -locality-sensitive, that is:

- (a) if $\|\mathbf{p} \mathbf{q}\| \le \frac{\gamma}{2}$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \ge \frac{1}{2}$, and
- (b) if $\|\mathbf{p} \mathbf{q}\| \ge 2\gamma$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \le \frac{1}{3}$

Claim:

This hashing scheme is $(\frac{\gamma}{2}, 2\gamma, \frac{1}{2}, \frac{1}{3})$ -locality-sensitive, that is:

- (a) if $\|\mathbf{p} \mathbf{q}\| \le \frac{\gamma}{2}$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \ge \frac{1}{2}$, and
- (b) if $\|\mathbf{p} \mathbf{q}\| \ge 2\gamma$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \le \frac{1}{3}$

(Continued)

Proof of (a) "near points have higher collision probability"

The probability of separation is

$$\Pr[h(\mathbf{p}) \neq h(\mathbf{q})] = \frac{|\mathbf{p}' - \mathbf{q}'|}{\gamma}$$

(Continued)

Proof of (a) "near points have higher collision probability"

The probability of separation is

$$\Pr[h(\mathbf{p}) \neq h(\mathbf{q})] = \frac{|\mathbf{p}' - \mathbf{q}'|}{\gamma}$$
$$= \frac{\|\mathbf{p} - \mathbf{q}\| |\cos \alpha|}{\gamma}$$

(Continued)

Proof of (a) "near points have higher collision probability"

The probability of separation is

$$\Pr[h(\mathbf{p}) \neq h(\mathbf{q})] = \frac{|\mathbf{p}' - \mathbf{q}'|}{\gamma}$$

$$= \frac{\|\mathbf{p} - \mathbf{q}\| |\cos \alpha|}{\gamma}$$

$$\leq \frac{\|\mathbf{p} - \mathbf{q}\|}{\gamma} \quad \text{(since } |\cos \alpha| \leq 1\text{)}$$

(Continued)

Proof of (a) "near points have higher collision probability"

The probability of separation is

$$\Pr\left[h(\mathbf{p}) \neq h(\mathbf{q})\right] = \frac{|\mathbf{p}' - \mathbf{q}'|}{\gamma}$$

$$= \frac{\|\mathbf{p} - \mathbf{q}\| |\cos \alpha|}{\gamma}$$

$$\leq \frac{\|\mathbf{p} - \mathbf{q}\|}{\gamma} \quad \text{(since } |\cos \alpha| \leq 1\text{)}$$

$$\leq \frac{\gamma/2}{\gamma} = \frac{1}{2}$$

(Continued)

Proof of (b) "far points have lower collision probability"

If
$$h(\mathbf{p}) = h(\mathbf{q})$$
 then
$$\gamma \ge |\mathbf{p}' - \mathbf{q}'|$$

(Continued)

Proof of (b) "far points have lower collision probability"

If
$$h(\mathbf{p}) = h(\mathbf{q})$$
 then

$$\gamma \ge |\mathbf{p}' - \mathbf{q}'| = ||\mathbf{p} - \mathbf{q}|| \cos \alpha|$$

(Continued)

Proof of (b) "far points have lower collision probability"

If
$$h(\mathbf{p}) = h(\mathbf{q})$$
 then

$$\gamma \ge |\mathbf{p'} - \mathbf{q'}| = \|\mathbf{p} - \mathbf{q}\| |\cos \alpha| \ge 2\gamma |\cos \alpha|$$

(Continued)

Proof of (b) "far points have lower collision probability"

If
$$h(\mathbf{p}) = h(\mathbf{q})$$
 then

$$\gamma \ge |\mathbf{p'} - \mathbf{q'}| = \|\mathbf{p} - \mathbf{q}\| |\cos \alpha| \ge 2\gamma |\cos \alpha|$$

This implies

$$|\cos \alpha| \le \frac{1}{2}$$

(Continued)

Proof of (b) "far points have lower collision probability"

If $h(\mathbf{p}) = h(\mathbf{q})$ then

$$\gamma \ge |\mathbf{p'} - \mathbf{q'}| = \|\mathbf{p} - \mathbf{q}\| |\cos \alpha| \ge 2\gamma |\cos \alpha|$$

This implies

$$|\cos \alpha| \le \frac{1}{2}$$

Since α is uniformly random in $(0,\pi)$, we have

(Continued)

Proof of (b) "far points have lower collision probability"

If
$$h(\mathbf{p}) = h(\mathbf{q})$$
 then

$$\gamma \ge |\mathbf{p'} - \mathbf{q'}| = \|\mathbf{p} - \mathbf{q}\| |\cos \alpha| \ge 2\gamma |\cos \alpha|$$

This implies

$$|\cos \alpha| \le \frac{1}{2}$$

Since α is uniformly random in $(0,\pi)$, we have

Caveat: This argument only works for $\mathbf{p}, \mathbf{q} \in \mathbb{R}^2$

Locality-sensitive hashing

Definition:

A family of hash functions H is called (d_1, d_2, p_1, p_2) -locality-sensitive if for $\mathbf{p}, \mathbf{q} \in \mathbb{R}^d$:

- (a) if $d(\mathbf{p}, \mathbf{q}) \leq d_1$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \geq p_1$
- (b) if $d(\mathbf{p}, \mathbf{q}) \ge d_2$ then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \le p_2$

In general, we want $d_1 < d_2$ and $p_1 > p_2$

We saw

- $(\frac{\gamma}{2}, 2\gamma, \frac{1}{2}, \frac{1}{3})$ -locality-sensitive hashing scheme for the Euclidean distance
- $-(\alpha_1,\alpha_2,\frac{2\pi-\alpha_1}{2\pi},\frac{2\pi-\alpha_2}{2\pi})$ -locality-sensitive hashing scheme for the Arccos distance

Locality-sensitive hashing

Definition:

A family of hash functions H is called (d_1, d_2, p_1, p_2) -locality-sensitive if for $\mathbf{p}, \mathbf{q} \in \mathbb{R}^d$:

(a) if
$$d(\mathbf{p}, \mathbf{q}) \leq d_1$$
 then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \geq p_1$

(b) if
$$d(\mathbf{p}, \mathbf{q}) \ge d_2$$
 then $\Pr[h(\mathbf{p}) = h(\mathbf{q})] \le p_2$

In general, we want $d_1 < d_2$ and $p_1 > p_2$

We saw

- $(\frac{\gamma}{2}, 2\gamma, \frac{1}{2}, \frac{1}{3})$ -locality-sensitive hashing scheme for the Euclidean distance
- $-(\alpha_1,\alpha_2,\frac{2\pi-\alpha_1}{2\pi},\frac{2\pi-\alpha_2}{2\pi})$ -locality-sensitive hashing scheme for the Arccos distance

What about other distance measures?

Jaccard Similarity

Similarity function to compare sets.

- words in a document
- products in a shopping basket
- movies liked by a person

Definition:

$$sim_{\mathcal{J}}(S,T) := \frac{|S \cap T|}{|S \cup T|}$$

Jaccard Similarity

We represent the sets $S, T \subseteq U$ using indicator vectors.

Example

- Given set of documents D_1, \ldots, D_n .
- Let S_i be the set of words contained in D_i
- Indicator vector for S_i is a (0,1)-vector over the dictionary U

Minhashing for estimating the Jaccard similarity Characteristic matrix with indicator vectors as columns

	S_1	S_2	S_3	S_4
	-1	0	0	-1
a	1	0	0	1
b	0	0	1	0
c	0	1	0	1
d	1	0	1	1
e	0	0	1	0

Minhashing for estimating the Jaccard similarity Characteristic matrix with indicator vectors as columns

	S_1	S_2	S_3	S_4		S_1	S_2	S_3	S_4
a	1	0	0	1		0	0	1	0
b	0	0	1	0	ig randomly $ig $ a	1	0	0	1
c	0	1	0	1	permute $\rangle c$	0	1	0	1
d	1	0	1	1	rows / e	0	0	1	0
e	0	0	1	0		1	0	1	1

Minhashing for estimating the Jaccard similarity Characteristic matrix with indicator vectors as columns

	S_1	S_2	S_3	S_4		S_1	S_2	S_3	S_4
$egin{array}{c} a \\ b \\ c \\ d \\ e \end{array}$	1 0 0 1 0	0 0 1 0 0	0 1 0 1 1	1 0 1 1 0	$\begin{array}{c c} & & \\ & b \\ & a \\ & permute \\ & c \\ & e \\ & d \\ \end{array}$	0 1 0 0 1	0 0 1 0 0	1 0 0 1 1	0 1 1 0 1

Minhash $h(S_i)$ is the index of first row from the top which has a 1

Minhashing for estimating the Jaccard similarity Characteristic matrix with indicator vectors as columns

	S_1	S_2	S_3	S_4		S_1	S_2	S_3	S_4
$egin{array}{c} a \\ b \\ c \\ d \\ e \end{array}$	1 0 0 1 0	0 0 1 0 0	0 1 0 1 1	1 0 1 1 0	$\begin{array}{c c} & & \\ & b \\ & a \\ & permute \\ & c \\ & rows \\ & e \\ & d \\ \end{array}$	0 1 0 0 1	0 0 1 0 0	1 0 0 1 1	0 1 1 0 1

Minhash $h(S_i)$ is the index of first row from the top which has a 1

laim: $\Pr\left[h(S_i) = h(S_j)\right] = \text{sim}_{\mathcal{J}}(S_i, S_j)$

 $\Pr\left[h(S_i) = h(S_j)\right] = \operatorname{sim}_{\mathcal{J}}(S_i, S_j)$ Claim:

	S_1	S_2	S_3	S_4
b	0	0	1	0
a	1	0	0	1
c	0	1	0	1
e	0	0	1	0
d	1	0	1	1

Claim: $\Pr[h(S_i) = h(S_j)] = \sin_{\mathcal{J}}(S_i, S_j)$

Is it true for S_1 and S_2 ?

	S_1	S_2	S_3	S_4
b	0	0	1	0
a	1	0	0	1
c	0	1	0	1
e	0	0	1	0
d	1	0	1	1

Claim:
$$\Pr[h(S_i) = h(S_j)] = \sin_{\mathcal{J}}(S_i, S_j)$$

Is it true for S_1 and S_2 ? $\sin_{\mathcal{J}}(S_1, S_2) = 0$ $\Pr\left[h(S_1) = h(S_2)\right] = 0$

	S_1	S_2	S_3	S_4
b	0	0	1	0
a	1	0	0	1
c	0	1	0	1
e	0	0	1	0
d	1	0	1	1

Claim:
$$\Pr[h(S_i) = h(S_j)] = \text{sim}_{\mathcal{J}}(S_i, S_j)$$

Is it true for S_1 and S_2 ? $sim_{\mathcal{J}}(S_1, S_2) = 0$ $\Pr[h(S_1) = h(S_2)] = 0$ Is it true for S_3 and S_4 ?

	S_1	S_2	S_3	S_4
b	0	0	1	0
a	1	0	0	1
c	0	1	0	1
e	0	0	1	0
d	1	0	1	1

Claim:
$$\Pr[h(S_i) = h(S_j)] = \text{sim}_{\mathcal{J}}(S_i, S_j)$$

Is it true for S_1 and S_2 ?

$$sim_{\mathcal{J}}(S_1, S_2) = 0$$

$$\Pr[h(S_1) = h(S_2)] = 0$$

Is it true for S_3 and S_4 ?

$$sim_{\mathcal{J}}(S_3, S_4) = \frac{1}{5}$$

$$\Pr[h(S_3) = h(S_4)] = \frac{1}{5}$$

	S_1	S_2	S_3	S_4
b	0	0	1	0
a	1	0	0	1
c	0	1	0	1
e	0	0	1	0
d	1	0	1	1

Claim: $\Pr[h(S_i) = h(S_j)] = \text{sim}_{\mathcal{J}}(S_i, S_j)$

Is it true for S_1 and S_2 ?

$$sim_{\mathcal{J}}(S_1, S_2) = 0$$

$$\Pr[h(S_1) = h(S_2)] = 0$$

Is it true for S_3 and S_4 ?

$$sim_{\mathcal{J}}(S_3, S_4) = \frac{1}{5}$$

$$\Pr[h(S_3) = h(S_4)] = \frac{1}{5}$$

	S_1	S_2	S_3	S_4
b	0	0	1	0
a	1	0	0	1
c	0	1	0	1
e	0	0	1	0
d	1	0	1	1

Proof:

 $x := |S_i \cap S_j|$ (i.e., number of (1,1) rows)

Claim: $\Pr[h(S_i) = h(S_j)] = \text{sim}_{\mathcal{J}}(S_i, S_j)$

Is it true for S_1 and S_2 ?

$$sim_{\mathcal{J}}(S_1, S_2) = 0$$

$$\Pr[h(S_1) = h(S_2)] = 0$$

Is it true for S_3 and S_4 ?

$$sim_{\mathcal{J}}(S_3, S_4) = \frac{1}{5}$$

$$\Pr[h(S_3) = h(S_4)] = \frac{1}{5}$$

	S_1	S_2	S_3	S_4
b	0	0	1	0
a	1	0	0	1
c	0	1	0	1
e	0	0	1	0
d	1	0	1	1

Proof:

 $x := |S_i \cap S_j|$ (i.e., number of (1,1) rows)

 $y := |S_i \cup S_j| - |S_i \cap S_j|$ (i.e., number of (0,1) and (1,0) rows)

Claim: $\Pr[h(S_i) = h(S_j)] = \text{sim}_{\mathcal{J}}(S_i, S_j)$

Is it true for S_1 and S_2 ?

$$sim_{\mathcal{J}}(S_1, S_2) = 0$$

$$\Pr[h(S_1) = h(S_2)] = 0$$

Is it true for S_3 and S_4 ?

$$sim_{\mathcal{J}}(S_3, S_4) = \frac{1}{5}$$

$$\Pr[h(S_3) = h(S_4)] = \frac{1}{5}$$

	S_1	S_2	S_3	S_4
b	0	0	1	0
a	1	0	0	1
c	0	1	0	1
e	0	0	1	0
d	1	0	1	1

Proof:

 $x := |S_i \cap S_j|$ (i.e., number of (1,1) rows)

 $y := |S_i \cup S_j| - |S_i \cap S_j|$ (i.e., number of (0,1) and (1,0) rows)

$$sim_{\mathcal{J}}(S_i, S_j) = \frac{x}{x+y} = Pr\left[h(S_i) = h(S_j)\right]$$

Now repeat and create hash functions h_1, h_2, \ldots, h_m

	S_1	S_2	S_3	S_4	h_1	h_2	• • •
0	1	0	0	1	1	1	
1	0		1		_	$\overset{-}{4}$	
2	0	1	0	1	3	2	
3	1	0	1	1	4	0	
4	0	0	1	0	0	3	

For each set we obtain a **minhash signature**:

$$S_1$$
 S_2 S_3 S_4

 $h_1:$

 $h_2:$

Now repeat and create hash functions h_1, h_2, \ldots, h_m

	S_1	S_2	S_3	S_4	h_1	h_2	•••
0	1	0	0	1	1	1	:
1	0	_0_	1	0	2	4	
2	0	1	0	1	3	2	
3	1	0	1	1	4	0	
4	0	0	1	0	0	3	

Now repeat and create hash functions h_1, h_2, \ldots, h_m

	S_1	S_2	S_3	S_4	h_1	h_2	•••
0	1	0	0	1	1	1	:
1	0	_0_	1	0	2	4	
2	0	1	0	1	3	2	
3	1	0	1	1	4	0	
4	0	0	1	0	0	3	

	S_1	S_2	S_3	S_4
$h_1:$	1	3	0	1
$h_2:$				
•				

Now repeat and create hash functions h_1, h_2, \ldots, h_m

	S_1	S_2	S_3	S_4	h_1	h_2	• • •
0	1	0	0	1	1	1	:
1	0	0	1	0	2	4	
2	0	1	_0_	_1_	3	2	
3	1	0	1	1	4	0	
4	0	0	1	0	0	3	

	S_1	S_2	S_3	S_4
$h_1:$	1	3	0	1
$h_2:$				
:				

Now repeat and create hash functions h_1, h_2, \ldots, h_m

	S_1	S_2	S_3	S_4	h_1	h_2	• • •
0	1	0	0	1	1	1	:
1	0	0	1	0	2	4	
2	0	1	0	_1_	3	2	
3	1	0	1	1	4	0	
4	0	0	1	0	0	3	

	S_1	S_2	S_3	S_4
$h_1:$	_ 1	3	0	1
$h_2:$	0	2	0	0
:				

Now repeat and create hash functions h_1, h_2, \ldots, h_m

	S_1	S_2	S_3	S_4	h_1	h_2	• • •
0	1	0	0	1	1	1	:
1	0	0	1	0	2	4	
2	0	1	0	1	3	2	
3	1	0	1	1	4	0	
4	0	0	1	0	0	3	

	S_1	S_2	S_3	S_4	
					minhash signature
$h_1:$	1	3	0	1	of S_2 is $(3,2)$
$h_2:$	0	2	0	0	
:					

Divide the rows of the signature matrix into bands of size k

Divide the rows of the signature matrix into bands of size k If S_i and S_j have equal minhash signature within some band, we consider them as **candidates**

If S_i and S_j have equal minhash signature within some band, we consider them as candidates

If S_i and S_j have equal minhash signature within some band, we consider them as **candidates**

Let
$$s = sim_{\mathcal{J}}(S_i, S_j)$$

Event	Probability
They agree in all rows of a particular band:	
They do not agree in a particular band:	
They do not agree in any of the bands:	
They become candidates:	

If S_i and S_j have equal minhash signature within some band, we consider them as **candidates**

Let
$$s = sim_{\mathcal{J}}(S_i, S_j)$$

Event	Probability
They agree in all rows of a particular band:	s^k
They do not agree in a particular band:	
They do not agree in any of the bands:	
They become candidates:	

If S_i and S_j have equal minhash signature within some band, we consider them as **candidates**

Let
$$s = sim_{\mathcal{J}}(S_i, S_j)$$

Event	Probability
They agree in all rows of a particular band:	s^k
They do not agree in a particular band:	$1-s^k$
They do not agree in any of the bands:	
They become candidates:	

If S_i and S_j have equal minhash signature within some band, we consider them as **candidates**

Let
$$s = sim_{\mathcal{J}}(S_i, S_j)$$

Event	Probability
They agree in all rows of a particular band:	s^k
They do not agree in a particular band:	$1-s^k$
They do not agree in any of the bands:	$(1-s^k)^L$
They become candidates:	

If S_i and S_j have equal minhash signature within some band, we consider them as **candidates**

Let
$$s = sim_{\mathcal{J}}(S_i, S_j)$$

Event	Probability
They agree in all rows of a particular band:	s^k
They do not agree in a particular band:	$1-s^k$
They do not agree in any of the bands:	$(1-s^k)^L$
They become candidates:	$1 - (1 - s^k)^L$

Amplification of an LSH

In general, this process is called **amplification** (we "amplify" the success probabilities)

Let H be a (d_1, d_2, p_1, p_2) -sensitive family of hash functions

AND-construction:

$$g(\mathbf{p}) = g(\mathbf{q})$$
 if and only if $h_i(\mathbf{p}) = h_i(\mathbf{q})$ for all $1 \le i \le r$ yields a (d_1, d_2, p_1^r, p_2^r) -sensitive family

OR-construction:

$$g(\mathbf{p})=g(\mathbf{q})$$
 if and only if $h_i(\mathbf{p})=h_i(\mathbf{q})$ for some $1\leq i\leq L$ yields a $(d_1,d_2,1-(1-p_1)^L,1-(1-p_2)^L)$ -sensitive family

Summary

- Nearest-Neighbor rule
- Locality sensitive hashing
- Cosine distance
- Euclidean distance
- Jaccard Similarity
- Minhashing
- Banding
- Amplification

References

- Lescovec, Rajaraman, and Ullman Mining of Massive Datasets
- Sariel Har-Peled, Piotr Indyk, Rajeev Motwani "Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality" Theory of Computing 8(2012),pp. 321-350
- Alexandr Andoni, Nearest Neighbor Search: the Old, the New, and the Impossible (Dissertation) 2009,