Tarea

Matrices

Curso Álgebra Lineal

Pregunta 1

Consideremos las matrices

$$A = \begin{pmatrix} 0 & 1 & -2 \\ 2 & 3 & -1 \\ 1 & -1 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & -1 & 2 & 1 \\ 2 & -2 & 2 & -2 \\ -1 & 2 & 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 2 \\ 0 \\ 1 \\ -4 \end{pmatrix}$$

Realizad las operaciones siguientes:

- A ⋅ B
- \bullet $B \cdot C$
- B
- $B^t \cdot A$
- $C^t \cdot B^t$

Pregunta 2

Escribid la matriz de orden 3×4 que tiene por entrada (i, j) el elemento

$$a_{ij} = \frac{(-1)^{i+j}}{i+j}$$

Pregunta 3

Escribid la matriz de orden $(n+1) \times (n+1)$ que tiene por entrada (i,j) el elemento

$$a_{ij} = \begin{cases} 0 & \text{si } i > j \\ 1 & \text{si } i = j \\ k^{j-i} & \text{si } i > j \end{cases}$$

donde k es un número real cualquiera.

Pregunta 4

Dada la matriz

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

1

hallad todas las matrices cuadradas de orden 2, X, tales que AX = 0

Pregunta 5

Considerad las matrices

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & -1 \\ 0 & 0 \end{pmatrix}$$

Demostrad que

$$(A+B)^2 \neq A^2 + 2AB + B^2$$

pero que en cambio

$$(A+B)^3 = A^3 + 3A^2B + 3AB^2 + B^3$$

Pregunta 6

Hallad las matrices A y B tales que cumplan las dos ecuaciones:

$$4A + 2B = \begin{pmatrix} 3 & 4 & 2 \\ 2 & 1 & 8 \end{pmatrix}$$

$$3A + B = \begin{pmatrix} \frac{3}{2} & 1 & 0\\ 2 & \frac{1}{2} & 5 \end{pmatrix}$$

Pregunta 7

Sean $a, b, c \in \mathbb{R}$ y $A \in \mathcal{M}_3(\mathbb{R})$ dada por

$$A = \begin{pmatrix} a & a+b & a-c \\ a-b & b & b-c \\ a+b-2 & c-b & c \end{pmatrix}$$

 λ Qué tienen que valer los parámetros para que A sea?

- Triangular superior
- Triangular inferior
- Simétrica

Pregunta 8

Dada la matriz

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Calculad el valor de $A + A^2 + \cdots + A^n$

para todo valor $n \ge 1$

Pregunta 9

Sea A una matriz cuadrada de orden $n, A \in \mathcal{M}_n(\mathbb{K})$. Decimos que B es una raíz cuadrada de A si $B^2 = A$

- Halla tres raices cuadradas diferentes de I_2 (Matriz identidad de orden 2)
- Demuestra que la matriz $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ no tiene raíces cuadradas.

Pregunta 10

Halla todas las matrices con coeficientes en \mathbb{R} que conmutan con la matriz

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Pregunta 11

Halla las potencias n-ésimas de las matrices

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Pregunta 12

Sean $A, B \in \mathcal{M}_n(\mathbb{R})$ dos matrices tales que A es simétrica y B es antisimétrica.

Demostrad que AB+BA es antisimétrica y que AB-BA es simétrica

Pregunta 13

Sea A una matriz cuadrada de orden n. Demostrad que

- $A + A^t$ es simétrica
- $A A^t$ es antisimétrica
- A se puede poner siempre como suma de una matriz simétrica y una antisimétrica

Pregunta 14

Sean A y B matrices cuadradas de orden n de modo que B es simétrica. Demostrad que

- AA^t es simétrica
- ABA^t es simétrica
- Si A es antisimétrica, entonces A^2 es simétrica
- Si $A^2 = 0$, entonces $A(A + I_n)^i = A \quad \forall i = 0, 1, 2, \dots$

Pregunta 15

Una matriz $A \in \mathcal{M}_n(\mathbb{R})$ se llama estocástica si

- Todos sus coeficientes son no negativos, es decir $a_{ij} \geq 0$ para todo $i, j = 1, 2, \dots, n$
- La suma de los coeficientes de cada fila vale 1, es decir

$$\sum_{i=1}^{n} a_{ij} = 1 \quad \forall i = 1, \dots, n$$

Diremos que una matriz es doblemente estocástica si además la suma de los coeficientes de cada columna también vale 1, es decir, si $\sum_{i=1}^{n} a_{ij} = 1 \quad \forall j = 1, \dots, n$

- Da un ejemplo de matriz $A \in \mathcal{M}_4(\mathbb{R})$ estocástica
- Da un ejemplo de matriz $A \in \mathcal{M}_4(\mathbb{R})$ doblemente estocástica
- Da un ejemplo de matriz estocástica y simétrica

Pregunta 16

Consideremos la matriz

$$A = \begin{pmatrix} 0 & a & a^2 & a^3 \\ 0 & 0 & a & a^2 \\ 0 & 0 & 0 & a \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

A partir de ella definimos la matriz B como

$$B = A - \frac{1}{2}A^2 + \frac{1}{3}A^3 - \frac{1}{4}A^4 + \cdots$$

Demostrad que es este sumatorio solamente hay un número finito de términos no nulos y calculad B. Demostrad también que el sumatorio

$$B + \frac{1}{2!}B^2 + \frac{1}{3!}B^3 + \frac{1}{41}B^4 + \cdots$$

solamente tiene un número finito de términos no nulos y que su suma vale A