(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 24 October 2002 (24.10.2002)

PCT.

C12N

(10) International Publication Number WO 02/083872 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US02/12405

(22) International Filing Date: 17 April 2002 (17.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/837,306 17 April 2001 (17.04.2001) US 10/000,516 24 October 2001 (24.10.2001) US 10/045,674 25 October 2001 (25.10.2001) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 10/045,674 (CON) Filed on 25 October 2001 (25.10.2001)

(71) Applicants and (72) Inventors: LADNER, Robert, C. [US/US]; 3827 Green

Valley Road, Ijamsville, MD 21754 (US). COHEN, Edward, H. [US/US]; 55 Hill Road Apt. 200, Belmont, MA 02478 (US). NASTRI, Horacio, G. [AR/US]; 18 Pennsylvania Avenue, Newton, MA 02464 (US). ROOKEY, Kristin, L. [US/US]; 14 Hancock Street, Revere, MA 02151 (US). HOET, Rene [NL/NL]; Churchillaan, 32, NL-6226 CZ Maastricht (NL). HOOGENBOOM, Hendricus, R., J., M. [NL/NL]; Hertogsingel 46, NL-6214 AE Maastricht (NL).

- (74) Agents: HALEY, James, F. et al.; Fish & Neave, 1251 Avenue of the Americas, New York, NY 10020 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: NOVEL METHODS OF CONSTRUCTING LIBRARIES COMPRISING DISPLAYED AND/OR EXPRESSED MEMBERS OF A DIVERSE FAMILY OF PEPTIDES, POLYPEPTIDES OR PROTEINS AND THE NOVEL LIBRARIES

AMPLIFY VH GENES WITHOUT

(57) Abstract: Methods useful in constructing libraries that collectively display and/or express members of diverse families of peptides, polypeptides or proteins and the libraries produced using those methods. Methods of screening those libraries and the peptides, polypeptides or proteins identified by such screens.

02/083872 A2

WO 02/083872 A2

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

NOVEL METHODS OF CONSTRUCTING LIBRARIES COMPRISING DISPLAYED AND/OR EXPRESSED MEMBERS OF A DIVERSE FAMILY OF PEPTIDES, POLYPEPTIDES OR PROTEINS AND THE NOVEL LIBRARIES

- This application is a continuation-in-part of United States provisional application 60/198,069, filed April 17, 2000, a continuation-in-part of United States patent application 09/837,306, filed on April 17, 2001, a continuation-in-part of PCT application
- 10 PCT/US01/12454, filed on April 17, 2001, a continuation-in-part of United States application 10/000,516, filed on October 24, 2001 and a continuation-in-part of United States application 10/045,674, filed on October 25, 2001. All of the
- 15 earlier applications are specifically incorporated by reference herein.

The present invention relates to libraries of genetic packages that display and/or express a member of a diverse family of peptides, polypeptides or 20 proteins and collectively display and/or express at least a portion of the diversity of the family. In an alternative embodiment, the invention relates to libraries that include a member of a diverse family of peptides, polypeptides or proteins and collectively comprise at least a portion of the diversity of the family. In a preferred embodiment, the displayed and/or expressed polypeptides are human Fabs.

- 2 -

More specifically, the invention is directed to the methods of cleaving single-stranded nucleic acids at chosen locations, the cleaved nucleic acids encoding, at least in part, the peptides, polypeptides or proteins displayed on the genetic packages of, and/or expressed in, the libraries of the invention. In a preferred embodiment, the genetic packages are filamentous phage or phagemids or yeast.

The present invention further relates to vectors for displaying and/or expressing a diverse family of peptides, polypeptides or proteins.

The present invention further relates to methods of screening the libraries of the invention and to the peptides, polypeptides and proteins identified by such screening.

BACKGROUND OF THE INVENTION

It is now common practice in the art to prepare libraries of genetic packages that display, express or comprise a member of a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least a portion of the diversity of the family. In many common libraries, the peptides, polypeptides or proteins are related to antibodies. Often, they are Fabs or single chain antibodies.

In general, the DNAs that encode members of the families to be displayed and/or expressed must be amplified before they are cloned and used to display and/or express the desired member. Such amplification typically makes use of forward and backward primers.

- 3 -

Such primers can be complementary to sequences native to the DNA to be amplified or complementary to oligonucleotides attached at the 5' or 3' ends of that DNA. Primers that are complementary to sequences native to the DNA to be amplified are disadvantaged in that they bias the members of the families to be displayed. Only those members that contain a sequence in the native DNA that is substantially complementary to the primer will be amplified. Those that do not will be absent from the family. For those members that are amplified, any diversity within the primer region will be suppressed.

For example, in European patent 368,684 B1, the primer that is used is at the 5' end of the V_H

15 region of an antibody gene. It anneals to a sequence region in the native DNA that is said to be "sufficiently well conserved" within a single species. Such primer will bias the members amplified to those having this "conserved" region. Any diversity within this region is extinguished.

It is generally accepted that human antibody genes arise through a process that involves a combinatorial selection of V and J or V, D, and J followed by somatic mutations. Although most diversity occurs in the Complementary Determining Regions (CDRs), diversity also occurs in the more conserved Framework Regions (FRs) and at least some of this diversity confers or enhances specific binding to antigens (Ag). As a consequence, libraries should contain as much of the CDR and FR diversity as possible.

To clone the amplified DNAs of the peptides, polypeptides or proteins that they encode for display on a genetic package and/or for expression, the DNAs

- 4 -

must be cleaved to produce appropriate ends for ligation to a vector. Such cleavage is generally effected using restriction endonuclease recognition sites carried on the primers. When the primers are at the 5' end of DNA produced from reverse transcription of RNA, such restriction leaves deleterious 5' untranslated regions in the amplified DNA. These regions interfere with expression of the cloned genes and thus the display of the peptides, polypeptides and proteins coded for by them.

SUMMARY OF THE INVENTION

It is an object of this invention to provide novel methods for constructing libraries that display, express or comprise a member of a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least a portion of the diversity of the family. These methods are not biased toward DNAs that contain native sequences that are complementary to the primers used for amplification.

They also enable any sequences that may be deleterious to expression to be removed from the amplified DNA before cloning and displaying and/or expressing.

It is another object of this invention to provide a method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:

30

(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement

5

25

30

- 5 -

in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and

(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed

at a temperature sufficient to maintain the nucleic
acid in substantially single-stranded form, the
oligonucleotide being functionally complementary to the
nucleic acid over a large enough region to allow the
two strands to associate such that cleavage may occur

at the chosen temperature and at the desired location,
and the cleavage being carried out using a restriction
endonuclease that is active at the chosen temperature.

It is a further object of this invention to provide an alternative method for cleaving single20 stranded nucleic acid sequences at a desired location, the method comprising the steps of:

(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and

(ii) cleaving the nucleic acid solely at the cleavage site formed by the

- 6 -

complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

the contacting and the cleaving steps being performed

at a temperature sufficient to maintain the nucleic
acid in substantially single-stranded form, the
oligonucleotide being functionally complementary to the
nucleic acid over a large enough region to allow the
two strands to associate such that cleavage may occur

at the chosen temperature and at the desired location,
and the cleavage being carried out using a restriction
endonuclease that is active at the chosen temperature.

In an alternative embodiment of this object of the invention, the restriction endonuclease

15 recognition site is not initially located in the double-stranded part of the oligonucleotide. Instead, it is part of an amplification primer, which primer is complementary to the double-stranded region of the oligonucleotide. On amplification of the DNA-partially double-stranded combination, the restriction endonuclease recognition site carried on the primer becomes part of the DNA. It can then be used to cleave the DNA.

Preferably, the restriction endonuclease
25 recognition site is that of a Type II-S restriction
endonuclease whose cleavage site is located at a known
distance from its recognition site.

It is another object of the present invention to provide a method of capturing DNA molecules that

30 comprise a member of a diverse family of DNAs and collectively comprise at least a portion of the diversity of the family. These DNA molecules in

- 7 -

single-stranded form have been cleaved by one of the methods of this invention. This method involves ligating the individual single-stranded DNA members of the family to a partially duplex DNA complex. The method comprises the steps of:

10

15

20

25

(i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper reading frame for expression and containing a restriction endonuclease recognition site 5' of those sequences; and

(ii) cleaving the partially doublestranded oligonucleotide sequence solely at the restriction endonuclease cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide.

As before, in this object of the invention, the restriction endonuclease recognition site need not be located in the double-stranded portion of the oligonucleotide. Instead, it can be introduced on amplification with an amplification primer that is used to amplify the DNA-partially double-stranded oligonucleotide combination.

- 8 -

It is another object of this invention to prepare libraries, that display, express or comprise a diverse family of peptides, polypeptides or proteins and collectively display, express or comprise at least part of the diversity of the family, using the methods and DNAs described above.

It is an object of this invention to screen those libraries to identify useful peptides, polypeptides and proteins and to use those substances in human therapy.

Additional objects of the invention are reflected in claims 1-116. Each of these claims is specifically incorporated by reference in this specification.

15 <u>BRIEF DESCRIPTION OF THE DRAWINGS</u>

- FIG. 1 is a schematic of various methods that may be employed to amplify VH genes without using primers specific for VH sequences.
- FIG. 2 is a schematic of various methods that may be employed to amplify VL genes without using primers specific for VL sequences.
 - FIG. 3 is a schematic of RACE amplification of antibody heavy and light chains.
- FIG. 4 depicts gel analysis of amplification products obtained after the primary PCR reaction from 4 different patient samples.
 - FIG. 5 depicts gel analysis of cleaved kappa DNA from Example 2.
- FIG. 6 depicts gel analysis of extendercleaved kappa DNA from Example 2.

- 9 -

FIG. 7 depicts gel analysis of the PCR product from the extender-kappa amplification from Example 2.

FIG. 8 depicts gel analysis of purified PCR product from the extender-kappa amplification from Example 2.

FIG. 9 depicts gel analysis of cleaved and ligated kappa light chains from Example 2.

 $\,$ FIG. 10 is a schematic of the design for CDR1 $\,$ 10 $\,$ and CDR2 synthetic diversity.

FIG. 11 is a schemaitc of the cloning schedule for construction of the heavy chain repertoire.

FIG. 12 is a schematic of the cleavage and 15 ligation of the antibody light chain.

FIG. 13 depicts gel analysis of cleaved and ligated lambda light chains from Example 4.

FIG. 14 is a schematic of the cleavage and ligation of the antibody heavy chain.

20 FIG. 15 depicts gel analysis of cleaved and ligated lambda light chains from Example 5.

FIG. 16 is a schematic of a phage display vector.

FIG. 17 is a schematic of a Fab cassette.

25 FIG. 18 is a schematic of a process for incorporating fixed FR1 residues in an antibody lambda sequence.

FIG. 19 is a schematic of a process for incorporating fixed FR1 residues in an antibody kappa sequence.

30

FIG. 20 is a schematic of a process for incorporating fixed FR1 residues in an antibody heavy chain sequence.

- 10 -

TERMS

In this application, the following terms and abbreviations are used:

Sense strand

The upper strand of ds DNA as usually written. In the sense strand, 5'-ATG-3' codes for

5

10

15

25

Met.

Antisense strand The lower strand of ds DNA as

usually written. In the antisense strand, 3'-TAC-5' would correspond to a Met

codon in the sense strand.

Forward primer A "forward" primer is complementary to a part of the

sense strand and primes for synthesis of a new antisense-strand molecule. "Forward primer" and "lower-strand

primer" are equivalent.

20 Backward primer is

complementary to a part of the antisense strand and primes for synthesis of a new sensestrand molecule. "Backward primer" and "top-strand

primer" are equivalent.

- 11 -

their position in a vector or gene as their position within

a gene by codon and base. For example, "89.1" is the first

Bases are specified either by

base of codon 89, 89.2 is the

second base of codon 89.

Sv Streptavidin

Ap Ampicillin

10 ap^R A gene conferring ampicillin

resistance.

RERS Restriction endonuclease

recognition site

RE Restriction endonuclease -

15 cleaves preferentially at RERS

URE Universal restriction

endonuclease

Functionally

Bases

5

complementary Two sequences are sufficiently

20 complementary so as to anneal

under the chosen conditions.

AA Amino acid

PCR Polymerization chain reaction

- 12 -

GLGs Germline genes

5

25

Ab Antibody: an immunoglobin.

The term also covers any protein having a binding domain which is homologous to

an immunoglobin binding domain. A few examples of antibodies within this

immunoglobin isotypes and the Fab, F(ab¹)₂, scfv, Fv, dAb and

Fd fragments.

Two chain molecule comprising

an Ab light chain and part of

definition are, inter alia,

a heavy-chain.

scFv A single-chain Ab comprising

either VH::linker::VL or

VL::linker::VH

w.t. Wild type

20 HC Heavy chain

LC Light chain

VK A variable domain of a Kappa

light chain.

VH A variable domain of a heavy

chain.

- 13 -

VL

A variable domain of a lambda light chain.

In this application when it is said that nucleic acids are cleaved solely at the cleavage site of a restriction endonuclease, it should be understood that minor cleavage may occur at random, e.g., at non-specific sites other than the specific cleavage site that is characteristic of the restriction endonuclease. The skilled worker will recognize that such non-specific, random cleavage is the usual occurrence. Accordingly, "solely at the cleavage site" of a restriction endonuclease means that cleavage occurs preferentially at the site characteristic of that endonuclease.

15 As used in this application and claims, the term "cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide" includes cleavage sites formed by the single-stranded portion of the partially double20 stranded ologonucleotide duplexing with the single-stranded DNA, cleavage sites in the double-stranded portion of the partially double-stranded oligonucleotide, and cleavage sites introduced by the amplification primer used to amplify the single25 stranded DNA-partially double-stranded oligonucleotide combination.

In the two methods of this invention for preparing single-stranded nucleic acid sequences, the first of those cleavage sites is preferred. In the methods of this invention for capturing diversity and cloning a family of diverse nucleic acid sequences, the latter two cleavage sites are preferred.

- 14 -

In this application, all references referred to are specifically incorporated by reference.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The nucleic acid sequences that are useful in

the methods of this invention, i.e., those that encode
at least in part the individual peptides, polypeptides
and proteins displayed, or expressed in or comprising
the libraries of this invention, may be native,
synthetic or a combination thereof. They may be mRNA,

DNA or cDNA. In the preferred embodiment, the nucleic
acids encode antibodies. Most preferably, they encode
Fabs.

The nucleic acids useful in this invention may be naturally diverse, synthetic diversity may be introduced into those naturally diverse members, or the diversity may be entirely synthetic. For example, synthetic diversity can be introduced into one or more CDRs of antibody genes. Preferably, it is introduced into CDR1 and CDR2 of immunoglobulins. Preferably, natural diversity is captured in the CDR3 regions of the immunoglogin genes of this invention from B cells. Most preferably, the nucleic acids of this invention comprise a population of immunoglobin genes that comprise synthetic diversity in at least one, and more preferably both of the CDR1 and CDR2 and diversity in CDR3 captured from B cells.

Synthetic diversity may be created, for example, through the use of TRIM technology (U.S. 5,869,644). TRIM technology allows control over exactly which amino-acid types are allowed at variegated positions and in what proportions. In TRIM technology, codons to be diversified are synthesized

using mixtures of trinucleotides. This allows any set of amino acid types to be included in any proportion.

Another alternative that may be used to generate diversified DNA is mixed oligonucleotide

5 synthesis. With TRIM technology, one could allow Ala and Trp. With mixed oligonucleotide synthesis, a mixture that included Ala and Trp would also necessarily include Ser and Gly. The amino-acid types allowed at the variegated positions are picked with

10 reference to the structure of antibodies, or other peptides, polypeptides or proteins of the family, the observed diversity in germline genes, the observed somatic mutations frequently observed, and the desired areas and types of variegation.

In a preferred embodiment of this invention, 15 the nucleic acid sequences for at least one CDR or other region of the peptides, polypeptides or proteins of the family are cDNAs produced by reverse transcription from mRNA. More preferably, the mRNAs 20 are obtained from peripheral blood cells, bone marrow cells, spleen cells or lymph node cells (such as B-lymphocytes or plasma cells) that express members of naturally diverse sets of related genes. More preferable, the mRNAs encode a diverse family of 25 antibodies. Most preferably, the mRNAs are obtained from patients suffering from at least one autoimmune disorder or cancer. Preferably, mRNAs containing a high diversity of autoimmune diseases, such as systemic lupus erythematosus, systemic sclerosis, rheumatoid 30 arthritis, antiphospholipid syndrome and vasculitis are used.

In a preferred embodiment of this invention, the cDNAs are produced from the mRNAs using reverse

- 16 -

transcription. In this preferred embodiment, the mRNAs are separated from the cell and degraded using standard methods, such that only the full length (i.e., capped) mRNAs remain. The cap is then removed and reverse transcription used to produce the cDNAs.

The reverse transcription of the first (antisense) strand can be done in any manner with any suitable primer. See, e.g., HJ de Haard et al., Journal of Biological Chemistry, 274(26):18218-30 (1999). 10 In the preferred embodiment of this invention where the mRNAs encode antibodies, primers that are complementary to the constant regions of antibody genes may be used. Those primers are useful because they do not generate bias toward subclasses of antibodies. 15 another embodiment, poly-dT primers may be used (and may be preferred for the heavy-chain genes). Alternatively, sequences complementary to the primer may be attached to the termini of the antisense strand.

In one preferred embodiment of this 20 invention, the reverse transcriptase primer may be biotinylated, thus allowing the cDNA product to be immobilized on streptavidin (Sv) beads. Immobilization can also be effected using a primer labeled at the 5' end with one of a) free amine group, b) thiol, c) 25 carboxylic acid, or d) another group not found in DNA that can react to form a strong bond to a known partner on an insoluble medium. If, for example, a free amine (preferably primary amine) is provided at the 5' end of a DNA primer, this amine can be reacted with carboxylic 30 acid groups on a polymer bead using standard amideforming chemistry. If such preferred immobilization is used during reverse transcription, the top strand RNA is degraded using well-known enzymes, such as a

- 17 -

combination of RNAseH and RNAseA, either before or after immobilization.

The nucleic acid sequences useful in the methods of this invention are generally amplified

5 before being used to display and/or express the peptides, polypeptides or proteins that they encode. Prior to amplification, the single-stranded DNAs may be cleaved using either of the methods described before. Alternatively, the single-stranded DNAs may be amplified and then cleaved using one of those methods.

Any of the well known methods for amplifying nucleic acid sequences may be used for such amplification. Methods that maximize, and do not bias, diversity are preferred. In a preferred embodiment of this invention where the nucleic acid sequences are derived from antibody genes, the present invention preferably utilizes primers in the constant regions of

the heavy and light chain genes and primers to a synthetic sequence that are attached at the 5' end of the sense strand. Priming at such synthetic sequence avoids the use of sequences within the variable regions of the antibody genes. Those variable region priming sites generate bias against V genes that are either of rare subclasses or that have been mutated at the

25 priming sites. This bias is partly due to suppression of diversity within the primer region and partly due to lack of priming when many mutations are present in the region complementary to the primer. The methods disclosed in this invention have the advantage of not biasing the population of amplified antibody genes for

30 biasing the population of amplified antibody genes for particular V gene types.

The synthetic sequences may be attached to the 5' end of the DNA strand by various methods well

- 18 -

known for ligating DNA sequences together. RT CapExtention is one preferred method.

In RT CapExtention (derived from Smart PCR(TM)), a short overlap (5'-...GGG-3' in the upper-strand primer (USP-GGG) complements 3'-CCC....5' in the lower strand) and reverse transcriptases are used so that the reverse complement of the upper-strand primer is attached to the lower strand.

FIGs. 1 and 2 show schematics to amplify VH 10 and VL genes using RT CapExtention. FIG. 1 shows a schematic of the amplification of VH genes. FIG. 1, Panel A shows a primer specific to the poly-dT region of the 3' UTR priming synthesis of the first, lower strand. Primers that bind in the constant region are 15 also suitable. Panel B shows the lower strand extended at its 3' end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3' terminal CCCs and extending the 20 reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5' biotinylated synthetic top-strand primer that replicates the 5' end of the synthetic primer of panel 25 C and a bottom-strand primer complementary to part of the constant domain. Panel E shows immobilized doublestranded (ds) cDNA obtained by using a 5'-biotinylated top-strand primer.

FIG. 2 shows a similar schematic for

30 amplification of VL genes. FIG. 2, Panel A shows a
primer specific to the constant region at or near the
3' end priming synthesis of the first, lower strand.
Primers that bind in the poly-dT region are also

- 19 -

suitable. Panel B shows the lower strand extended at its 3' end by three Cs that are not complementary to the mRNA. Panel C shows the result of annealing a synthetic top-strand primer ending in three GGGs that hybridize to the 3' terminal CCCs and extending the reverse transcription extending the lower strand by the reverse complement of the synthetic primer sequence. Panel D shows the result of PCR amplification using a 5' biotinylated synthetic top-strand primer that replicates the 5' end of the synthetic primer of panel C and a bottom-strand primer complementary to part of the constant domain. The bottom-strand primer also contains a useful restriction endonuclease site, such as AscI. Panel E shows immobilized ds cDNA obtained by using a 5'-biotinylated top-strand primer.

In FIGs. 1 and 2, each V gene consists of a 5' untranslated region (UTR) and a secretion signal, followed by the variable region, followed by a constant region, followed by a 3' untranslated region (which 20 typically ends in poly-A). An initial primer for reverse transcription may be complementary to the constant region or to the poly A segment of the 3'-UTR. For human heavy-chain genes, a primer of 15 T is preferred. Reverse transcriptases attach several C 25 residues to the 3' end of the newly synthesized DNA. RT CapExtention exploits this feature. The reverse transcription reaction is first run with only a lowerstrand primer. After about 1 hour, a primer ending in GGG (USP-GGG) and more RTase are added. This causes 30 the lower-strand cDNA to be extended by the reverse complement of the USP-GGG up to the final GGG. Using one primer identical to part of the attached synthetic sequence and a second primer complementary to a region

- 20 -

of known sequence at the 3' end of the sense strand, all the V genes are amplified irrespective of their V gene subclass.

In another preferred embodiment, synthetic sequences may be added by Rapid Amplification of cDNA Ends (RACE) (see Frohman, M.A., Dush, M.K., & Martin, G.R. (1988) Proc. Natl. Acad. Sci. USA (85): 8998-9002).

FIG. 1 shows a schematic of RACE 10 amplification of antibody heavy and light chains. First, mRNA is selected by treating total or poly(A+) RNA with calf intestinal phosphatase (CIP) to remove the 5'-phosphate from all molecules that have them such as ribosomal RNA, fragmented mRNA, tRNA and genomic Full length mRNA (containing a protective 7methyl cap structure) is uneffected. The RNA is then treated with tobacco acid pyrophosphatase (TAP) to remove the cap structure from full length mRNAs leaving a 5'-monophosphate group. Next, a synthetic RNA 20 adaptor is ligated to the RNA population, only molecules which have a 5-phosphate (uncapped, full length mRNAs) will accept the adaptor. Reverse trascriptase reactions using an oligodT primer, and nested PCR (using one adaptor primer (located in the 5'

In a preferred embodiment of this invention, the upper strand or lower strand primer may be also biotinylated or labeled at the 5' end with one of a)

30 free amino group, b) thiol, c) carboxylic acid and d) another group not found in DNA that can react to form a strong bond to a known partner as an insoluble medium. These can then be used to immobilize the labeled strand

25 synthetic adaptor) and one primer for the gene) are

then used to amplify the desired transcript.

- 21 -

after amplification. The immobilized DNA can be either single or double-stranded.

After amplification (using e.g., RT CapExtension or RACE), the DNAs of this invention are rendered single-stranded. For example, the strands can be separated by using a biotinylated primer, capturing the biotinylated product on streptavidin beads, denaturing the DNA, and washing away the complementary strand. Depending on which end of the captured DNA is wanted, one will choose to immobilize either the upper (sense) strand or the lower (antisense) strand.

To prepare the single-stranded amplified DNAs for cloning into genetic packages so as to effect display of, or for expression of, the peptides,

15 polypeptides or proteins encoded, at least in part, by those DNAs, they must be manipulated to provide ends suitable for cloning and display and/or expression. In particular, any 5' untranslated regions and mammalian signal sequences must be removed and replaced, in

20 frame, by a suitable signal sequence that functions in the display or expression host. Additionally, parts of the variable domains (in antibody genes) may be removed and replaced by synthetic segments containing synthetic diversity. The diversity of other gene families may

25 likewise be expanded with synthetic diversity.

According to the methods of this invention, there are two ways to manipulate the single-stranded DNAs for display and/or expression. The first method comprises the steps of:

30 (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the

5

10

20

- 22 -

region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and

(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the 15 nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

In this first method, short oligonucleotides are annealed to the single-stranded DNA so that restriction endonuclease recognition sites formed within the now locally double-stranded regions of the DNA can be cleaved. In particular, a recognition site 25 that occurs at the same position in a substantial fraction of the single-stranded DNAs is identical.

For antibody genes, this can be done using a catalog of germline sequences. See, e.g., "http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.htm 30 1." Updates can be obtained from this site under the heading "Amino acid and nucleotide sequence alignments." For other families, similar comparisons

PCT/US02/12405 WO 02/083872

exist and may be used to select appropriate regions for cleavage and to maintain diversity.

For example, Table 1 depicts the DNA sequences of the FR3 regions of the 51 known human VH 5 germline genes. In this region, the genes contain restriction endonuclease recognition sites shown in Table 2. Restriction endonucleases that cleave a large fraction of germline genes at the same site are preferred over endonucleases that cut at a variety of 10 sites. Furthermore, it is preferred that there be only one site for the restriction endonucleases within the region to which the short oligonucleotide binds on the single-stranded DNA, e.g., about 10 bases on either side of the restriction endonuclease recognition site.

An enzyme that cleaves downstream in FR3 is also more preferable because it captures fewer mutations in the framework. This may be advantageous is some cases. However, it is well known that framework mutations exist and confer and enhance 20 antibody binding. The present invention, by choice of appropriate restriction site, allows all or part of FR3 diversity to be captured. Hence, the method also allows extensive diversity to be captured.

15

Finally, in the methods of this invention 25 restriction endonucleases that are active between about 37°C and about 75°C are used. Preferably, restriction endonucleases that are active between about 45°C and about 75°C may be used. More preferably, enzymes that are active above 50°C, and most preferably active about 30 55°C, are used. Such temperatures maintain the nucleic acid sequence to be cleaved in substantially singlestranded form.

- 24 -

Enzymes shown in Table 2 that cut many of the heavy chain FR3 germline genes at a single position include: MaeIII(2404), Tsp45I(2104), HphI(4405), BsaJI(23065), AluI(23047), BlpI(21048), DdeI(29058), BglII(10061), MslI(44072), BsiEI(23074), EaeI(23074), EagI(23074), HaeIII(25075), Bst4CI(51086), HpyCH4III(51086), HinfI(3802), MlyI(1802), PleI(1802), MnlI(31067), HpyCH4V(21044), BsmAI(16011), BpmI(19012), XmnI(12030), and SacI(11051). (The notation used 0 means, for example, that BsmAI cuts 16 of the FR3 germline genes with a restriction endonuclease recognition site beginning at base 11 of FR3.)

the preferred restriction endonucleases are: Bst4CI (or TaaI or HpyCH4III), BlpI, HpyCH4V, and MslI. Because ACNGT (the restriction endonuclease recognition site for Bst4CI, TaaI, and HpyCH4III) is found at a consistent site in all the human FR3 germline genes, one of those enzymes is the most preferred for capture of heavy chain CDR3 diversity. BlpI and HpyCH4V are complementary. BlpI cuts most members of the VH1 and VH4 families while HpyCH4V cuts most members of the VH3, VH5, VH6, and VH7 families. Neither enzyme cuts VH2s, but this is a very small family, containing only three members. Thus, these enzymes may also be used in preferred embodiments of the methods of this invention.

The restriction endonucleases HpyCH4III,

Bst4CI, and TaaI all recognize 5'-ACnGT-3' and cut

upper strand DNA after n and lower strand DNA before

30 the base complementary to n. This is the most

preferred restriction endonuclease recognition site for

this method on human heavy chains because it is found

in all germline genes. Furthermore, the restriction

- 25 -

endonuclease recognition region (ACnGT) matches the second and third bases of a tyrosine codon (tay) and the following cysteine codon (tay) as shown in Table 3. These codons are highly conserved, especially the 5 cysteine in mature antibody genes.

Table 4 E shows the distinct oligonucleotides of length 22 (except the last one which is of length 20) bases. Table 5 C shows the analysis of 1617 actual heavy chain antibody genes. Of these, 1511 have the 10 site and match one of the candidate oligonucleotides to within 4 mismatches. Eight oligonucleotides account for most of the matches and are given in Table 4 F.1. The 8 oligonucleotides are very similar so that it is likely that satisfactory cleavage will be achieved with 15 only one oligonucleotide (such as H43.77.97.1-02#1) by adjusting temperature, pH, salinity, and the like. One or two oligonucleotides may likewise suffice whenever the germline gene sequences differ very little and especially if they differ very little close to the 20 restriction endonuclease recognition region to be cleaved. Table 5 D shows a repeat analysis of 1617 actual heavy chain antibody genes using only the 8 chosen oligonucleotides. This shows that 1463 of the sequences match at least one of the oligonucleotides to 25 within 4 mismatches and have the site as expected. Only 7 sequences have a second HpyCH4III restriction endonuclease recognition region in this region.

Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human heavy chains.

Cleavage in FR1 allows capture of the entire CDR diversity of the heavy chain.

- 26 -

The germline genes for human heavy chain FR1 are shown in Table 6. Table 7 shows the restriction endonuclease recognition sites found in human germline genes FR1s. The preferred sites are BsgI (GTGCAG; 39@4), 5 BsoFI (GCngc; 43@6, 11@9, 2@3, 1@12), TseI (Gcwgc; 4306, 1109, 203, 1012), MspA1I (CMGckg; 4607, 201), PvuII (CAGctg; 4607, 201), AluI (AGct; 4808202), DdeI (Ctnag; 22052, 9048), HphI(tcacc; 22080), BssKI(Nccngg; 35039, 2040), 10 BsaJI (Ccnngg; 32040, 2041), BstNI (CCwqq; 33040), ScrFI (CCngg; 35040, 2041), EcoO109I (RGgnccy; 22046, 11043), Sau96I (Ggncc; 23047, 11044), AvaII (Ggwcc; 23047, 4044), PpuMI (RGgwccy; 22046, 4043), BsmFI (gtccc; 20048), HinfI (Gantc; 34016, 21056, 21077), 15 TfiI(21077), MlyI(GAGTC;34016), MlyI(gactc;21056), and AlwNI (CAGnnnctg; 22068). The more preferred sites are MspAI and PvuII. MspAI and PvuII have 46 sites at 7-12 and 2 at 1-6. To avoid cleavage at both sites, oligonucleotides are used that do not fully cover the 20 site at 1-6. Thus, the DNA will not be cleaved at that site. We have shown that DNA that extends 3, 4, or 5

Another illustration of choosing an appropriate restriction endonuclease recognition site involves cleavage in FR1 of human kappa light chains. Table 8 shows the human kappa FR1 germline genes and Table 9 shows restriction endonuclease recognition sites that are found in a substantial number of human kappa FR1 germline genes at consistent locations. Of the restriction endonuclease recognition sites listed, BsmAI and Pf1FI are the most preferred enzymes. BsmAI sites are found at base 18 in 35 of 40 germline genes.

bases beyond a PvuII-site can be cleaved efficiently.

- 27 -

Pf1FI sites are found in 35 of 40 germline genes at base 12.

Another example of choosing an appropriate restriction endonuclease recognition site involves

5 cleavage in FR1 of the human lambda light chain. Table 10 shows the 31 known human lambda FR1 germline gene sequences. Table 11 shows restriction endonuclease recognition sites found in human lambda FR1 germline genes. HinfI and DdeI are the most preferred

10 restriction endonucleases for cutting human lambda chains in FR1.

After the appropriate site or sites for cleavage are chosen, one or more short oligonucleotides are prepared so as to functionally complement, alone or in combination, the chosen recognition site. The oligonucleotides also include sequences that flank the recognition site in the majority of the amplified genes. This flanking region allows the sequence to anneal to the single-stranded DNA sufficiently to allow cleavage by the restriction endonuclease specific for the site chosen.

The actual length and sequence of the oligonucleotide depends on the recognition site and the conditions to be used for contacting and cleavage. The length must be sufficient so that the oligonucleotide is functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location.

Typically, the oligonucleotides of this preferred method of the invention are about 17 to about 30 nucleotides in length. Below about 17 bases, annealing is too weak and above 30 bases there can be a

- 28 -

loss of specificity. A preferred length is 18 to 24 bases.

Oligonucleotides of this length need not be identical complements of the germline genes. Rather, a few mismatches taken may be tolerated. Preferably, however, no more than 1-3 mismatches are allowed. Such mismatches do not adversely affect annealing of the oligonucleotide to the single-stranded DNA. Hence, the two DNAs are said to be functionally complementary.

The second method to manipulate the singlestranded DNAs of this invention for display and/or expression comprises the steps of:

15

20

25

(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and

(ii) cleaving the nucleic acid solely at the cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur

at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

As explained above, the cleavage site may be formed by the single-stranded portion of the partially double-stranded oligonucleotide duplexing with the single-stranded DNA, the cleavage site may be carried in the double-stranded portion of the partially double-stranded oligonucleotide, or the cleavage site may be introduced by the amplification primer used to amplify the single-stranded DNA-partially double-stranded oligonucleotide combination. In this embodiment, the first is preferred. And, the restriction endonuclease recognition site may be located in either the double-stranded portion of the oligonucleotide or introduced by the amplification primer, which is complementary to that double-stranded region, as used to amplify the combination.

Preferably, the restriction endonuclease site 20 is that of a Type II-S restriction endonuclease, whose cleavage site is located at a known distance from its recognition site.

This second method, preferably, employs
Universal Restriction Endonucleases ("URE"). UREs are
partially double-stranded oligonucleotides. The
single-stranded portion or overlap of the URE consists
of a DNA adapter that is functionally complementary to
the sequence to be cleaved in the single-stranded DNA.
The double-stranded portion consists of a restriction
endonuclease recognition site, preferably type II-S.

The URE method of this invention is specific and precise and can tolerate some (e.g., 1-3) mismatches in the complementary regions, *i.e.*, it is

- 30 -

functionally complementary to that region. Further, conditions under which the URE is used can be adjusted so that most of the genes that are amplified can be cut, reducing bias in the library produced from those 5 genes.

The sequence of the single-stranded DNA adapter or overlap portion of the URE typically consists of about 14-22 bases. However, longer or shorter adapters may be used. The size depends on the 10 ability of the adapter to associate with its functional complement in the single-stranded DNA and the temperature used for contacting the URE and the singlestranded DNA at the temperature used for cleaving the DNA with the restriction enzyme. The adapter must be 15 functionally complementary to the single-stranded DNA over a large enough region to allow the two strands to associate such that the cleavage may occur at the chosen temperature and at the desired location. prefer singe-stranded or overlap portions of 14-17 20 bases in length, and more preferably 18-20 bases in length.

The site chosen for cleavage using the URE is preferably one that is substantially conserved in the family of amplified DNAs. As compared to the first cleavage method of this invention, these sites do not need to be endonuclease recognition sites. However, like the first method, the sites chosen can be synthetic rather than existing in the native DNA. Such sites may be chosen by references to the sequences of known antibodies or other families of genes. For example, the sequences of many germline genes are reported at http://www.mrc-cpe.cam.ac.uk/imt-doc/restricted/ok.html. For example, one preferred

site occurs near the end of FR3 -- codon 89 through the second base of codon 93. CDR3 begins at codon 95.

The sequences of 79 human heavy-chain genes are also available at

5 http://www.ncbi.nlm.nih.gov/entre2/nucleotide.html.

This site can be used to identify appropriate sequences for URE cleavage according to the methods of this invention. See, e.g., Table 12B.

Most preferably, one or more sequences are
identified using these sites or other available
sequence information. These sequences together are
present in a substantial fraction of the amplified
DNAs. For example, multiple sequences could be used to
allow for known diversity in germline genes or for
frequent somatic mutations. Synthetic degenerate
sequences could also be used. Preferably, a
sequence(s) that occurs in at least 65% of genes
examined with no more than 2-3 mismatches is chosen

URE single-stranded adapters or overlaps are
then made to be complementary to the chosen regions.
Conditions for using the UREs are determined
empirically. These conditions should allow cleavage of
DNA that contains the functionally complementary
sequences with no more than 2 or 3 mismatches but that
do not allow cleavage of DNA lacking such sequences.

As described above, the double-stranded portion of the URE includes an endonuclease recognition site, preferably a Type II-S recognition site. Any enzyme that is active at a temperature necessary to 30 maintain the single-stranded DNA substantially in that form and to allow the single-stranded DNA adapter portion of the URE to anneal long enough to the single-

- 32 -

stranded DNA to permit cleavage at the desired site may be used.

The preferred Type II-S enzymes for use in the URE methods of this invention provide asymmetrical cleavage of the single-stranded DNA. Among these are the enzymes listed in Table 13. The most preferred Type II-S enzyme is FokI.

When the preferred FokI containing URE is used, several conditions are preferably used to effect 10 cleavage:

15

20

- 1) Excess of the URE over target DNA should be present to activate the enzyme. URE present only in equimolar amounts to the target DNA would yield poor cleavage of ssDNA because the amount of active enzyme available would be limiting.
 - 2) An activator may be used to activate part of the FokI enzyme to dimerize without causing cleavage. Examples of appropriate activators are shown in Table 14.
 - 3) The cleavage reaction is performed at a temperature between 45°-75°C, preferably above 50°C and most preferably above 55°C.

The UREs used in the prior art contained a

25 14-base single-stranded segment, a 10-base stem
(containing a FokI site), followed by the palindrome of
the 10-base stem. While such UREs may be used in the
methods of this invention, the preferred UREs of this
invention also include a segment of three to eight

30 bases (a loop) between the FokI restriction
endonuclease recognition site containing segments. In
the preferred embodiment, the stem (containing the FokI

PCT/US02/12405 WO 02/083872

site) and its palindrome are also longer than 10 bases. Preferably, they are 10-14 bases in length. Examples of these "lollipop" URE adapters are shown in Table 15.

One example of using a URE to cleave an 5 single-stranded DNA involves the FR3 region of human heavy chain. Table 16 shows an analysis of 840 fulllength mature human heavy chains with the URE recognition sequences shown. The vast majority (718/840=0.85) will be recognized with 2 or fewer 10 mismatches using five UREs (VHS881-1.1, VHS881-1.2, VHS881-2.1, VHS881-4.1, and VHS881-9.1). Each has a 20-base adaptor sequence to complement the germline gene, a ten-base stem segment containing a FokI site, a five base loop, and the reverse complement of the first 15 stem segment. Annealing those adapters, alone or in combination, to single-stranded antisense heavy chain DNA and treating with FokI in the presence of, e.g., the activator FOKIact, will lead to cleavage of the antisense strand at the position indicated.

20

Another example of using a URE(s) to cleave a single-stranded DNA involves the FR1 region of the human Kappa light chains. Table 17 shows an analysis of 182 full-length human kappa chains for matching by the four 19-base probe sequences shown. Ninety-six 25 percent of the sequences match one of the probes with 2 or fewer mismatches. The URE adapters shown in Table 17 are for cleavage of the sense strand of kappa chains. Thus, the adaptor sequences are the reverse complement of the germline gene sequences. The URE 30 consists of a ten-base stem, a five base loop, the reverse complement of the stem and the complementation The loop shown here is TTGTT, but other sequences could be used. Its function is to interrupt

the palindrome of the stems so that formation of a lollypop monomer is favored over dimerization. Table 17 also shows where the sense strand is cleaved.

Another example of using a URE to cleave a

5 single-stranded DNA involves the human lambda light
chain. Table 18 shows analysis of 128 human lambda
light chains for matching the four 19-base probes
shown. With three or fewer mismatches, 88 of 128 (69%)
of the chains match one of the probes. Table 18 also
10 shows URE adapters corresponding to these probes.
Annealing these adapters to upper-strand ssDNA of
lambda chains and treatment with FokI in the presence
of FOKIact at a temperature at or above 45°C will lead
to specific and precise cleavage of the chains.

15 The conditions under which the short oligonucleotide sequences of the first method and the UREs of the second method are contacted with the single-stranded DNAs may be empirically determined. The conditions must be such that the single-stranded 20 DNA remains in substantially single-stranded form. More particularly, the conditions must be such that the single-stranded DNA does not form loops that may interfere with its association with the oligonucleotide sequence or the URE or that may themselves provide 25 sites for cleavage by the chosen restriction endonuclease.

The effectiveness and specificity of short oligonucleotides (first method) and UREs (second method) can be adjusted by controlling the

30 concentrations of the URE adapters/oligonucleotides and substrate DNA, the temperature, the pH, the concentration of metal ions, the ionic strength, the concentration of chaotropes (such as urea and

- 35 -

formamide), the concentration of the restriction endonuclease(e.g., FokI), and the time of the digestion. These conditions can be optimized with synthetic oligonucleotides having: 1) target germline gene sequences, 2) mutated target gene sequences, or 3) somewhat related non-target sequences. The goal is to cleave most of the target sequences and minimal amounts of non-targets.

In accordance with this invention, the

single-stranded DNA is maintained in substantially that
form using a temperature between about 37°C and about
75°C. Preferably, a temperature between about 45°C and
about 75°C is used. More preferably, a temperature
between 50°C and 60°C, most preferably between 55°C and
60°C, is used. These temperatures are employed both
when contacting the DNA with the oligonucleotide or URE
and when cleaving the DNA using the methods of this
invention.

The two cleavage methods of this invention

20 have several advantages. The first method allows the individual members of the family of single-stranded DNAs to be cleaved preferentially at one substantially conserved endonuclease recognition site. The method also does not require an endonuclease recognition site to be built into the reverse transcription or amplification primers. Any native or synthetic site in the family can be used.

The second method has both of these advantages. In addition, the preferred URE method

30 allows the single-stranded DNAs to be cleaved at positions where no endonuclease recognition site naturally occurs or has been synthetically constructed.

- 36 -

Most importantly, both cleavage methods permit the use of 5' and 3' primers so as to maximize diversity and then cleavage to remove unwanted or deleterious sequences before cloning, display and/or 5 expression.

After cleavage of the amplified DNAs using one of the methods of this invention, the DNA is prepared for cloning, display and/or expression. is done by using a partially duplexed synthetic DNA 10 adapter, whose terminal sequence is based on the specific cleavage site at which the amplified DNA has been cleaved.

The synthetic DNA is designed such that when it is ligated to the cleaved single-stranded DNA in proper reading frame so that the desired peptide, polypeptide or protein can be displayed on the surface of the genetic package and/or expressed. Preferably, the double-stranded portion of the adapter comprises the sequence of several codons that encode the amino acid sequence characteristic of the family of peptides, polypeptides or proteins up to the cleavage site. human heavy chains, the amino acids of the 3-23framework are preferably used to provide the sequences required for expression of the cleaved DNA.

Preferably, the double-stranded portion of the adapter is about 12 to 100 bases in length. More preferably, about 20 to 100 bases are used. double-standard region of the adapter also preferably contains at least one endonuclease recognition site 30 useful for cloning the DNA into a suitable display and/or expression vector (or a recipient vector used to archive the diversity). This endonuclease restriction site may be native to the germline gene sequences used

25

to extend the DNA sequence. It may be also constructed using degenerate sequences to the native germline gene sequences. Or, it may be wholly synthetic.

The single-stranded portion of the adapter is complementary to the region of the cleavage in the single-stranded DNA. The overlap can be from about 2 bases up to about 15 bases. The longer the overlap, the more efficient the ligation is likely to be. A preferred length for the overlap is 7 to 10. This allows some mismatches in the region so that diversity in this region may be captured.

The single-stranded region or overlap of the partially duplexed adapter is advantageous because it allows DNA cleaved at the chosen site, but not other fragments to be captured. Such fragments would contaminate the library with genes encoding sequences that will not fold into proper antibodies and are likely to be non-specifically sticky.

One illustration of the use of a partially
duplexed adaptor in the methods of this invention
involves ligating such adaptor to a human FR3 region
that has been cleaved, as described above, at 5'-ACnGT3' using HpyCH4III, Bst4CI or TaaI.

Table 4 F.2 shows the bottom strand of the

double-stranded portion of the adaptor for ligation to
the cleaved bottom-strand DNA. Since the HpyCH4IIISite is so far to the right (as shown in Table 3), a
sequence that includes the AflII-site as well as the
XbaI site can be added. This bottom strand portion of
the partially-duplexed adaptor, H43.XAExt,
incorporates both XbaI and AflII-sites. The top strand
of the double-stranded portion of the adaptor has
neither site (due to planned mismatches in the segments

- 38 -

opposite the XbaI and AflII-Sites of H43.XAExt), but will anneal very tightly to H43.XAExt. H43AExt contains only the AflII-site and is to be used with the top strands H43.ABr1 and H43.ABr2 (which have intentional alterations to destroy the AflII-site).

After ligation, the desired, captured DNA can be PCR amplified again, if desired, using in the preferred embodiment a primer to the downstream constant region of the antibody gene and a primer to part of the double-standard region of the adapter. The primers may also carry restriction endonuclease sites for use in cloning the amplified DNA.

After ligation, and perhaps amplification, of the partially double-stranded adapter to the singlestranded amplified DNA, the composite DNA is cleaved at chosen 5' and 3' endonuclease recognition sites.

The cleavage sites useful for cloning depend on the phage or phagemid or other vectors into which the cassette will be inserted and the available sites in the antibody genes. Table 19 provides restriction endonuclease data for 75 human light chains. Table 20 shows corresponding data for 79 human heavy chains. In each Table, the endonucleases are ordered by increasing frequency of cutting. In these Tables, Nch is the number of chains cut by the enzyme and Ns is the number of sites (some chains have more than one site).

20

25

From this analysis, SfiI, NotI, AflII, ApaLI, and AscI are very suitable. SfiI and NotI are preferably used in pCES1 to insert the heavy-chain display segment. ApaLI and AscI are preferably used in pCES1 to insert the light-chain display segment.

BstEII-sites occur in 97% of germ-line JH genes. In rearranged V genes, only 54/79 (68%) of

PCT/US02/12405 WO 02/083872

- 39 -

heavy-chain genes contain a BstEII-Site and 7/61 of Thus, 47/79 (59%) contain a these contain two sites. single BstEII-Site. An alternative to using BstEII is to cleave via UREs at the end of JH and ligate to a 5 synthetic oligonucleotide that encodes part of CH1.

One example of preparing a family of DNA sequences using the methods of this invention involves capturing human CDR 3 diversity. As described above, mRNAs from various autoimmune patients are reverse 10 transcribed into lower strand cDNA. After the top strand RNA is degraded, the lower strand is immobilized and a short oligonucleotide used to cleave the cDNA upstream of CDR3. A partially duplexed synthetic DNA adapter is then annealed to the DNA and the DNA is 15 amplified using a primer to the adapter and a primer to the constant region (after FR4). The DNA is then cleaved using BstEII (in FR4) and a restriction endonuclease appropriate to the partially doublestranded adapter (e.g., XbaI and AflII (in FR3)). DNA is then ligated into a synthetic VH skeleton such as 3-23.

20

One example of preparing a single-stranded DNA that was cleaved using the URE method involves the human Kappa chain. The cleavage site in the sense 25 strand of this chain is depicted in Table 17. oligonucleotide kapextURE is annealed to the oligonucleotides (kaBR01UR, kaBR02UR, kaBR03UR, and kaBR04UR) to form a partially duplex DNA. This DNA is then ligated to the cleaved soluble kappa chains. The 30 ligation product is then amplified using primers kapextUREPCR and CKForeAsc (which inserts a AscI site after the end of C kappa). This product is then cleaved with ApaLI and AscI and ligated to similarly

- 40 -

cut recipient vector.

Another example involves the cleavage of lambda light chains, illustrated in Table 18. After cleavage, an extender (ON_LamEx133) and four bridge oligonucleotides (ON_LamB1-133, ON_LamB2-133, ON_LamB3-133, and ON_LamB4-133) are annealed to form a partially duplex DNA. That DNA is ligated to the cleaved lambda-chain sense strands. After ligation, the DNA is amplified with ON_Lam133PCR and a forward primer specific to the lambda constant domain, such as CL2ForeAsc or CL7ForeAsc (Table 130).

In human heavy chains, one can cleave almost all genes in FR4 (downstream, i.e., toward the 3' end of the sense strand, of CDR3) at a BstEII-Site that

15 occurs at a constant position in a very large fraction of human heavy-chain V genes. One then needs a site in FR3, if only CDR3 diversity is to be captured, in FR2, if CDR2 and CDR3 diversity is wanted, or in FR1, if all the CDR diversity is wanted. These sites are

20 preferably inserted as part of the partially double-stranded adaptor.

The preferred process of this invention is to provide recipient vectors (e.g., for display and/or expression) having sites that allow cloning of either light or heavy chains. Such vectors are well known and widely used in the art. A preferred phage display vector in accordance with this invention is phage MALIA3. This displays in gene III. The sequence of the phage MALIA3 is shown in Table 21A (annotated) and Table 21B (condensed).

The DNA encoding the selected regions of the light or heavy chains can be transferred to the vectors using endonucleases that cut either light or heavy

chains only very rarely. For example, light chains may be captured with ApaLI and AscI. Heavy-chain genes are preferably cloned into a recipient vector having SfiI, NcoI, XbaI, AflII, BstEII, ApaI, and NotI sites. The light chains are preferably moved into the library as ApaLI-AscI fragments. The heavy chains are preferably moved into the library as SfiI-NotI fragments.

Most preferably, the display is had on the surface of a derivative of M13 phage. The most

10 preferred vector contains all the genes of M13, an antibiotic resistance gene, and the display cassette. The preferred vector is provided with restriction sites that allow introduction and excision of members of the diverse family of genes, as cassettes. The preferred vector is stable against rearrangement under the growth conditions used to amplify phage.

In another embodiment of this invention, the diversity captured by the methods of the present invention may be displayed and/or expressed in a 20 phagemid vector (e.g., pCES1) that displays and/or expresses the peptide, polypeptide or protein. Such vectors may also be used to store the diversity for subsequent display and/or expression using other vectors or phage.

In another embodiment of this invention, the diversity captured by the methods of the present invention may be displayed and/or expressed in a yeast vector.

In another embodiment, the mode of display

30 may be through a short linker to anchor domains -- one
possible anchor comprising the final portion of M13 III

("IIIstump") and a second possible anchor being the
full length III mature protein.

- 42 -

The IIIstump fragment contains enough of M13
III to assemble into phage but not the domains involved in mediating infectivity. Because the w.t. III proteins are present the phage is unlikely to delete

5 the antibody genes and phage that do delete these segments receive only a very small growth advantage. For each of the anchor domains, the DNA encodes the w.t. AA sequence, but differs from the w.t. DNA sequence to a very high extent. This will greatly

10 reduce the potential for homologous recombination between the anchor and the w.t. gene that is also present (see Example 6).

Most preferably, the present invention uses a complete phage carrying an antibiotic-resistance gene

(such as an ampicillin-resistance gene) and the display cassette. Because the w.t. iii and possibly viii genes are present, the w.t. proteins are also present. The display cassette is transcribed from a regulatable promoter (e.g., P_{Lacz}). Use of a regulatable promoter allows control of the ratio of the fusion display gene to the corresponding w.t. coat protein. This ratio determines the average number of copies of the display fusion per phage (or phagemid) particle.

Another aspect of the invention is a method of displaying peptides, polypeptides or proteins (and particularly Fabs) on filamentous phage. In the most preferred embodiment this method displays FABs and comprises:

a) obtaining a cassette capturing a diversity of
 30 segments of DNA encoding the elements:

P_{reg}::RBS1::SS1::VL::CL::stop::RBS2::SS2::VH::CH1:: linker::anchor::stop::,

where P_{reg} is a regulatable promoter, RBS1 is a first ribosome binding site, SS1 is a signal sequence operable in the host strain, VL is a member of a 5 diverse set of light-chain variable regions, CL is a light-chain constant region, stop is one or more stop codons, RBS2 is a second ribosome binding site, SS2 is a second signal sequence operable in the host strain, VH is a member of a diverse set of heavy-chain variable 10 regions, CH1 is an antibody heavy-chain first constant domain, linker is a sequence of amino acids of one to about 50 residues, anchor is a protein that will assemble into the filamentous phage particle and stop is a second example of one or more stop codons; and 15 positioning that cassette within the phage genome to maximize the viability of the phage and to minimize the potential for deletion of the cassette or parts thereof.

The DNA encoding the anchor protein in the above preferred cassette should be designed to encode the same (or a closely related) amino acid sequence as is found in one of the coat proteins of the phage, but with a distinct DNA sequence. This is to prevent unwanted homologous recombination with the w.t. gene. In addition, the cassette should be placed in the intergenic region. The positioning and orientation of the display cassette can influence the behavior of the phage.

In one embodiment of the invention, a transcription terminator may be placed after the second stop of the display cassette above (e.g., Trp). This will reduce interaction between the display cassette

- 44 -

and other genes in the phage antibody display vector.

In another embodiment of the methods of this invention, the phage or phagemid can display and/or express proteins other than Fab, by replacing the Fab portions indicated above, with other protein genes.

Various hosts can be used the display and/or expression aspect of this invention. Such hosts are well known in the art. In the preferred embodiment, where Fabs are being displayed and/or expressed, the preferred host should grow at 30°C and be RecA (to reduce unwanted genetic recombination) and EndA (to make recovery of RF DNA easier). It is also preferred that the host strain be easily transformed by electroporation.

15 XL1-Blue MRF' satisfies most of these preferences, but does not grow well at 30°C. XL1-Blue MRF' does grow slowly at 38°C and thus is an acceptable host. TG-1 is also an acceptable host although it is RecA' and EndA'. XL1-Blue MRF' is more preferred for the intermediate host used to accumulate diversity prior to final construction of the library.

After display and/or expression, the libraries of this invention may be screened using well known and conventionally used techniques. The selected peptides, polypeptides or proteins may then be used to treat disease. Generally, the peptides, polypeptides or proteins for use in therapy or in pharmaceutical compositions are produced by isolating the DNA encoding the desired peptide, polypeptide or protein from the member of the library selected. That DNA is then used in conventional methods to produce the peptide, polypeptides or protein it encodes in appropriate host cells, preferably mammalian host cells, e.g., CHO

- 45 -

cells. After isolation, the peptide, polypeptide or protein is used alone or with pharmaceutically acceptable compositions in therapy to treat disease.

EXAMPLES

5 Example 1: RACE amplification of heavy and light chain antibody repertoires from autoimmune patients.

Total RNA was isolated from individual blood samples (50 ml) of 11 patients using a RNAzolTM kit (CINNA/Biotecx), as described by the manufacturer. The patients were diagnosed as follows:

- 1. SLE and phospholipid syndrome
- 2. limited systemic sclerosis
- 3. SLE and Sjogren syndrome
- 4. Limited Systemic sclerosis
- 15 5. Reumatoid Arthritis with active vasculitis
 - 6. Limited systemic sclerosis and Sjogren Syndrome
 - 7. Reumatoid Artritis and (not active) vasculitis
 - 8. SLE and Sjogren syndrome
 - 9. SLE
- 20 10. SLE and (active) glomerulonephritis
 - 11. Polyarthritis/ Raynauds Phenomen

From these 11 samples of total RNA, Poly-A+ RNA was isolated using Promega PolyATtract® mRNA Isolation kit (Promega).

250 ng of each poly-A+ RNA sample was used to amplify antibody heavy and light chains with the GeneRAacerTM kit (Invitrogen cat no. L1500-01). A schematic overview of the RACE procedure is shown in

- 46 -

FIG. 3.

Using the general protocol of the GeneRAacer™ kit, an RNA adaptor was ligated to the 5'end of all mRNAs. Next, a reverse transcriptase reaction was performed in the presence of oligo(dT15) specific primer under conditions described by the manufacturer in the GeneRAacer™ kit.

1/5 of the cDNA from the reverse transcriptase reaction was used in a 20 ul PCR

10 reaction. For amplification of the heavy chain IgM repertoire, a forward primer based on the CH1 chain of IgM [HuCmFOR] and a backward primer based on the ligated synthetic adaptor sequence [5'A] were used. (See Table 22)

- 15 For amplification of the kappa and lambda light chains, a forward primer that contains the 3' coding-end of the cDNA [HuCkFor and HuCLFor2+HuCLfor7] and a backward primer based on the ligated synthetic adapter sequence [5'A] was used (See Table 22).
- 20 Specific amplification products after 30 cycles of primary PCR were obtained.

FIG. 4 shows the amplification products obtained after the primary PCR reaction from 4 different patient samples. 8 ul primary PCR product from 4 different patients was analyzed on a agarose gel [labeled 1,2, 3 and 4]. For the heavy chain, a product of approximately 950 nt is obtained while for the kappa and lambda light chains the product is approximately 850 nt. M1-2 are molecular weight markers.

PCR products were also analyzed by DNA sequencing [10 clones from the lambda, kappa or heavy chain repertoires]. All sequenced antibody genes recovered contained the full coding sequence as well as

the 5' leader sequence and the V gene diversity was the expected diversity (compared to literature data).

50 ng of all samples from all 11 individual amplified samples were mixed for heavy, lambda light or 5 kappa light chains and used in secondary PCR reactions.

In all secondary PCRs approximately 1 ng template DNA from the primary PCR mixture was used in multiple 50 ul PCR reactions [25 cycles].

For the heavy chain, a nested biotinylated

10 forward primer [HuCm-Nested] was used, and a nested

5'end backward primer located in the synthetic

adapter-sequence [5'NA] was used. The 5'end

lower-strand of the heavy chain was biotinylated.

For the light chains, a 5'end biotinylated

15 nested primer in the synthetic adapter was used [5'NA]

in combination with a 3'end primer in the constant

region of Ckappa and Clambda, extended with a sequence

coding for the AscI restriction site [kappa:

HuCkForAscI, Lambda: HuCL2-FOR-ASC + HuCL7-FOR-ASC].

20 [5'end Top strand DNA was biotinylated]. After gel-analysis the secondary PCR products were pooled and purified with Promega Wizzard PCR cleanup.

Approximately 25 ug biotinylated heavy chain, lambda and kappa light chain DNA was isolated from the 11 patients.

Example 2: Capturing kappa chains with BsmAI.

A repertoire of human-kappa chain mRNAs was prepared using the RACE method of Example 1 from a collection of patients having various autoimmune diseases.

- 48 -

This Example followed the protocol of Example 1. Approximately 2 micrograms (ug) of human kappachain (Igkappa) gene RACE material with biotin attached to 5'-end of upper strand was immobilized as in Example 1 on 200 microliters (µL) of Seradyn magnetic beads. The lower strand was removed by washing the DNA with 2 aliquots 200 μL of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 200 uL of 10 10 mM Tris (pH 7.5) 100 mM NaCl. The short oligonucleotides shown in Table 23 were added in 40 fold molar excess in 100 µL of NEB buffer 2 (50 mM NaCl, 10 mM Tris-HCl, 10 mM MgCl₂, 1 mM dithiothreitol pH 7.9) to the dry beads. The mixture was incubated at 15 95°C for 5 minutes then cooled down to 55°C over 30 minutes. Excess oligonucleotide was washed away with 2 washes of NEB buffer 3 (100 mM NaCl, 50 mM Tris-HCl, 10 $mM MgCl_{2}$, 1 mM dithiothreitol pH 7.9). Ten units of BsmAI (NEB) were added in NEB buffer 3 and incubated 20 for 1 h at 55°C. The cleaved downstream DNA was collected and purified over a Qiagen PCR purification column (FIGs. 5 and 6).

FIG. 5 shows an analysis of digested kappa single-stranded DNA. Approximately 151.5 pmol of adapter was annealed to 3.79 pmol of immobilized kappa single-stranded DNA followed by digestion with 15 U of BsmAI. The supernatant containing the desired DNA was removed and analyzed by 5% polyacrylamide gel along with the remaining beads which contained uncleaved full length kappa DNA. 189 pmol of cleaved single-stranded DNA was purified for further analysis. Five percent of the original full length ssDNA remained on the beads.

- 49 -

FIG. 6 shows an analysis of the extender - cleaved kappa ligation. 180 pmol of pre-annealed bridge/extender was ligated to 1.8 pmol of BsmAI digested single-stranded DNA. The ligated DNA was purified by Qiagen PCR purification column and analyzed on a 5% polyacrylamide gel. Results indicated that the ligation of extender to single-stranded DNA was 95% efficient.

A partially double-stranded adaptor was

10 prepared using the oligonucleotide shown in Table 23.

The adaptor was added to the single-stranded DNA in 100 fold molar excess along with 1000 units of T4 DNA ligase and incubated overnight at 16°C. The excess oligonucleotide was removed with a Qiagen PCR purification column. The ligated material was amplified by PCR using the primers kapPCRt1 and kapfor shown in Table 23 for 10 cycles with the program shown in Table 24.

The soluble PCR product was run on a gel and showed a band of approximately 700 n, as expected (FIGs. 7 and 8). The DNA was cleaved with enzymes ApaLI and AscI, gel purified, and ligated to similarly cleaved vector pCES1.

FIG. 7 shows an analysis of the PCR product
25 from the extender-kappa amplification. Ligated
extender-kappa single-stranded DNA was amplified with
primers specific to the extender and to the constant
region of the light chain. Two different template
concentrations, 10 ng versus 50 ng, were used as
30 template and 13 cycles were used to generate
approximately 1.5 ug of dsDNA as shown by 0.8% agarose
gel analysis.

- 50 -

FIG. 8 shows an analysis of the purified PCR product from the extender-kappa amplification.

Approximately 5 ug of PCR amplified extender-kappa double-stranded DNA was run out on a 0.8% agarose gel, cut out, and extracted with a GFX gel purification column. By gel analysis, 3.5 ug of double-stranded DNA was prepared.

The assay for capturing kappa chains with BsmAl was repeated and produced similar results.

10 FIG 9A shows the DNA after it was cleaved and collected and purified over a Qiagen PCR purification column.
FIG. 9B shows the partially double-stranded adaptor ligated to the single-stranded DNA. This ligated material was then amplified (FIG. 9C). The gel showed 15 a band of approximately 700 n.

Table 25 shows the DNA sequence of a kappa light chain captured by this procedure. Table 26 shows a second sequence captured by this procedure. The closest bridge sequence was complementary to the sequence 5'-agccacc-3', but the sequence captured reads 5'-Tgccacc-3', showing that some mismatch in the overlapped region is tolerated.

Example 3: Construction of Synthetic CDR1 and CDR2 Diversity in V-3-23 VH Framework.

25 Synthetic diversity in Complementary
Determinant Region (CDR) 1 and 2 was created in the 323 VH framework in a two step process: first, a vector
containing the 3-23 VH framework was constructed; and
then, a synthetic CDR 1 and 2 was assembled and cloned
30 into this vector.

- 51 -

For construction of the 3-23 VH framework, 8 oligonucleotides and two PCR primers (long oligonucleotides - TOPFR1A, BOTFR1B, BOTFR2, BOTFR3, F06, BOTFR4, ON-vgC1, and ON-vgC2 and primers - SFPRMET and 5 BOTPCRPRIM, shown in Table 27) that overlap were designed based on the Genebank sequence of 3-23 VH framework region. The design incorporated at least one useful restriction site in each framework region, as shown in Table 27. In Table 27, the segments that were synthesized are shown as bold, the overlapping regions are underscored, and the PCR priming regions at each end are underscored.

A mixture of these 8 oligos was combined at a final concentration of 2.5uM in a 20ul PCR reaction.

The PCR mixture contained 200uM dNTPs, 2.5mM MgCl₂,

0.02U Pfu Turbo™ DNA Polymerase, 1U Qiagen HotStart Taq

DNA Polymerase, and 1X Qiagen PCR buffer. The PCR

program consisted of 10 cycles of 94°C for 30s, 55°C for 30s, and 72°C for 30s.

20 The assembled 3-23 VH DNA sequence was then amplified, using 2.5ul of a 10-fold dilution from the initial PCR in 100ul PCR reaction. The PCR reaction contained 200uM dNTPs, 2.5mM MgCl₂, 0.02U Pfu TurboTM DNA Polymerase, 1U Qiagen HotStart Tag DNA Polymerase, 1X Qiagen PCR Buffer and 2 outside primers (SFPRMET and BOTPCRPRIM) at a concentration of luM. The PCR program consisted of 23 cycles at 94°C for 30s, 55°C for 30s, and 72°C for 60s. The 3-23 VH DNA sequence was digested and cloned into pCES1 (phagemid vector) using 30 the SfiI and BstEII restriction endonuclease sites. All restriction enzymes mentioned herein were supplied by New England BioLabs, Beverly, MA and used as per the manufacturer's instructions.

- 52 -

Stuffer sequences (shown in Table 28 and Table 29) were introduced into pCES1 to replace CDR1/CDR2 sequences (900 bases between *Bsp*EI and *Xba*I RE sites) and CDR3 sequences (358 bases between *Afl*II and *Bst*EII) prior to cloning the CDR1/CDR2 diversity. This new vector was termed pCES5 and its sequence is given in Table 29.

Having stuffers in place of the CDRs avoids the risk that a parental sequence would be over
represented in the library. The stuffer sequences are fragments from the penicillase gene of *E. coli*. The CDR1-2 stuffer contains restriction sites for *BglII*, *Bsu36I*, *BclI*, *XcmI*, *MluI*, *PvuII*, *HpaI*, and *HincII*, the underscored sites being unique within the vector pCES5.

The stuffer that replaces CDR3 contains the unique

restriction endonuclease site RsrII.

A schematic representation of the design for CDR1 and CDR2 synthetic diversity is shown FIG. 10.

The design was based on the presence of mutations in DP47/3-23 and related germline genes. Diversity was designed to be introduced at the positions within CDR1 and CDR2 indicated by the numbers in FIG. 10. The diversity at each position was chosen to be one of the three following schemes: 1 = ADEFGHIKLMNPQRSTVWY; 2 = YRWVGS; 3 = PS, in which letters encode equimolar mixes of the indicated amino acids.

For the construction of the CDR1 and CDR2 diversity, 4 overlapping oligonucleotides (ON-vgC1, ON_Br12, ON_CD2Xba, and ON-vgC2, shown in Table 27 and 30 Table 30) encoding CDR1/2, plus flanking regions, were designed. A mixture of these 4 oligos was combined at a final concentration of 2.5uM in a 40ul PCR reaction. Two of the 4 oligos contained variegated sequences

- 53 -

positioned at the CDR1 and the CDR2. The PCR mixture contained 200uM dNTPs, 2.5U Pwo DNA Polymerase (Roche), and 1X Pwo PCR buffer with 2mM MgSO₄. The PCR program consisted of 10 cycles at 94°C for 30s, 60°C for 30s, and 72°C for 60s. This assembled CDR1/2 DNA sequence was amplified, using 2.5ul of the mixture in 100ul PCR reaction. The PCR reaction contained 200uM dNTPs, 2.5U Pwo DNA Polymerase, 1X Pwo PCR Buffer with 2mM MgSO₄ and 2 outside primers at a concentration of 1uM. The PCR program consisted of 10 cycles at 94°C for 30s, 60°C for 30s, and 72°C for 60s. These variegated sequences were digested and cloned into the 3-23 VH framework in place of the CDR1/2 stuffer.

We obtained approximately 7 X 10⁷ independent transformants. CDR3 diversity either from donor populations or from synthetic DNA can be cloned into the vector containing synthetic CDR1 and CDR 2 diversity.

A schematic representation of this procedure
is shown in FIG. 11. A sequence encoding the FRregions of the human V3-23 gene segment and CDR regions
with synthetic diversity was made by oligonucleotide
assembly and cloning via BspE1 and Xba1 sites into a
vector that complements the FR1 and FR3 regions. Into
this library of synthetic VH segments, the
complementary VH-CDR3 sequence (top right) was cloned
via Xba1 an BstE11 sites. The resulting cloned CH
genes contain a combination of designed synthetic
diversity and natural diversity (see FIG. 11).

- 54 -

Example 4: Cleavage and ligation of the lambda light chains with Hinfl.

A schematic of the cleavage and ligation of antibody light chains is shown in FIGs. 12A and 12B.

5 Approximately 2 ug of biotinylated human Lambda DNA prepared as described in Example 1 was immobilized on 200 ul Seradyn magnetic beads. The lower strand was removed by incubation of the DNA with 200 ul of 0.1 M NaOH (pH=13) for 3 minutes, the supernatant was removed and an additional washing of 30 seconds with 200 ul of 0.1 M NaOH was performed. Supernatant was removed and the beads were neutralized with 200 ul of 10 mM Tris (pH=7.5), 100 mM NaCl. 2 additional washes with 200 ul NEB2 buffer 2, containing 10 mM Tris (pH=7.9), 50 mM NaCl, 10 mM MgCl2 and 1 mM dithiothreitol, were performed. After immobilization, the amount of ssDNA was estimated on a 5% PAGE-UREA gel.

About 0.8 ug ssDNA was recovered and incubated in 100 ul NEB2 buffer 2 containing 80 molar 20 fold excess of an equimolar mix of ON_Lam1aB7, ON_Lam2aB7, ON_Lam31B7 and ON_Lam3rB7 [each oligo in 20 fold molar excess] (see Table 31).

The mixture was incubated at 95° C for 5 minutes and then slowly cooled down to 50° C over a 25 period of 30 minutes. Excess of oligonucleotide was washed away with 2 washes of 200 ul of NEB buffer 2. 4 U/ug of Hinf I was added and incubated for 1 hour at 50° C. Beads were mixed every 10 minutes.

After incubation the sample was purified over a Qiagen PCR purification column and was subsequently analysed on a 5% PAGE-urea gel (see FIG. 13A, cleavage was more than 70% efficient).

A schematic of the ligation of the cleaved light chains is shown in FIG. 12B. A mix of bridge/extender pairs was prepared from the Brg/Ext oligo's listed in Table 31 (total molar excess 100 fold) in 1000 U of T4 DNA Ligase (NEB) and incubated overnight at 16° C. After ligation of the DNA, the excess oligonucleotide was removed with a Qiagen PCR purification column and ligation was checked on a Urea-PAGE gel (see FIG. 13B; ligation was more than 95% efficient).

Multiple PCRs were performed containing 10 ng of the ligated material in an 50 ul PCR reaction using 25 pMol ON lamPlePCR and 25 pmol of an equimolar mix of Hu-CL2AscI/HuCL7AscI primer (see Example 1).

PCR was performed at 60° C for 15 cycles using Pfu polymerase. About 1 ug of dsDNA was recovered per PCR (see FIG. 13C) and cleaved with ApaL1 and AscI for cloning the lambda light chains in pCES2.

Example 5: Capture of human heavy-chain CDR3 20 population.

A schematic of the cleavage and ligation of antibody light chains is shown in FIGs. 14A and 14B.

Approximately 3 ug of human heavy-chain (IgM)

25 gene RACE material with biotin attached to 5'-end of lower strand was immobilized on 300 uL of Seradyn magnetic beads. The upper strand was removed by washing the DNA with 2 aliquots 300 uL of 0.1 M NaOH (pH 13) for 3 minutes for the first aliquot followed by 30 seconds for the second aliquot. The beads were neutralized with 300 uL of 10 mM Tris (pH 7.5) 100 mM NaCl. The REdaptors (oligonucleotides used to make

single-stranded DNA locally double-stranded) shown in Table 32 were added in 30 fold molar excess in 200 uL of NEB buffer 4 (50 mM Potasium Acetate, 20 mM Tris-Acetate, 10 mM Magnesuim Acetate, 1 mM

- 5 dithiothreitol pH 7.9) to the dry beads. The REadaptors were incubated with the single-stranded DNA at 80 °C for 5 minutes then cooled down to 55 °C over 30 minutes. Excess REdaptors were washed away with 2 washes of NEB buffer 4. Fifteen units of HpyCH4III
- 10 (NEB) were added in NEB buffer 4 and incubated for 1 hour at 55 °C. The cleaved downstream DNA remaining on the beads was removed from the beads using a Qiagen Nucleotide removal column (see FIG. 15).

The Bridge/Extender pairs shown in Table 33

15 were added in 25 molar excess along with 1200 units of

T4 DNA ligase and incubated overnight at 16 °C. Excess

Bridge/Extender was removed with a Qiagen PCR

purification column. The ligated material was

amplified by PCR using primers H43.XAExtPCR2 and

20 Hucumnest shown in Table 34 for 10 cycles with the

program shown in Table 35.

The soluble PCR product was run on a gel and showed a band of approximately 500 n, as expected (see FIG. 15B). The DNA was cleaved with enzymes *SfiI* and 25 *NotI*, gel purified, and ligated to similarly cleaved vector PCES1.

Example 6: Description of Phage Display Vector CJRA05, a member of the library built in vector DY3F7.

Table 36 contains an annotated DNA sequence
30 of a member of the library, CJRA05, see FIG. 16. Table
36 is to be read as follows: on each line everything

that follows an exclamation mark "!" is a comment. All occurrences of A, C, G, and T before "!" are the DNA sequence. Case is used only to show that certain bases constitute special features, such as restriction sites, ribosome binding sites, and the like, which are labeled below the DNA. CJRA05 is a derivative of phage DY3F7, obtained by cloning an ApaLI to NotI fragment into these sites in DY3F31. DY3F31 is like DY3F7 except that the light chain and heavy chain genes have been replaced by "stuffer" DNA that does not code for any antibody. DY3F7 contains an antibody that binds streptavidin, but did not come from the present library.

The phage genes start with gene ii and

15 continue with genes x, v, vii, ix, viii, iii, vi, i,
and iv. Gene iii has been slightly modified in that
eight codons have been inserted between the signal
sequence and the mature protein and the final amino
acids of the signal sequence have been altered. This
20 allows restriction enzyme recognition sites EagI and
XbaI to be present. Following gene iv is the phage
origin of replication (ori). After ori is bla which
confers resistance to ampicillin (ApR). The phage
genes and bla are transcribed in the same sense.

- 25 After bla, is the Fab cassette (illustrated in FIG. 17) comprising:
 - a) PlacZ promoter,
 - b) A first Ribosome Binding Site (RBS1),
 - c) The signal sequence form M13 iii,
- 30 d) An ApaLI RERS,

WO 02/083872

- e) A light chain (a kappa L20::JK1 shortened by one codon at the V-J boundary in this case),
- f) An AscI RERS,

- g) A second Ribosome Binding Site (RBS2),
- h) A signal sequence, preferably PelB, which contains,
- i) An SfiI RERS,
- 5 j) A synthetic 3-23 V region with diversity in CDR1 and CDR2,
 - k) A captured CDR3,
 - 1) A partially synthetic J region (FR4 after BstEII),
 - m) CH1,
- 10 n) A NotI RERS,
 - o) A His6 tag,
 - p) A cMyc tag,
 - q) An amber codon,
 - r) An anchor DNA that encodes the same amino-acid
- 15 sequence as codons 273 to 424 of M13 iii (as shown in Table 37).
 - s) Two stop codons,
 - t) An AvrII RERS, and
 - u) A trp terminator.
- The anchor (item r) encodes the same amino-acid sequence as do codons 273 to 424 of M13 iii but the DNA is approximately as different as possible from the wild-type DNA sequence. In Table 36, the III' stump runs from base 8997 to base 9455. Below the
- DNA, as comments, are the differences with wild-type iii for the comparable codons with "!W.T" at the ends of these lines. Note that Met and Trp have only a single codon and must be left as is. These AA types are rare. Ser codons can be changed at all three base,
- 30 while Leu and Arg codons can be changed at two.

In most cases, one base change can be introduced per codon. This has three advantages: 1) recombination with the wild-type gene carried elsewhere

on the phage is less likely, 2) new restriction sites can be introduced, facilitating construction; and 3) sequencing primers that bind in only one of the two regions can be designed.

The fragment of M13 III shown in CJRA05 is the preferred length for the anchor segment.

Alternative longer or shorter anchor segments defined by reference to whole mature III protein may also be utilized.

The sequence of M13 III consists of the following elements: Signal Sequence::Domain 1
(D1)::Linker 1 (L1)::Domain 2 (D2)::Linker 2
(L2)::Domain 3 (D3)::Transmembrane Segment (TM)::
Intracellular anchor (IC) (see Table 38).

The pIII anchor (also known as trpIII)

preferably consists of D2::L2::D3::TM::IC. Another

embodiment for the pIII anchor consists of

D2'::L2::D3::TM::IC (where D2' comprises the last 21 residues of D2 with the first 109 residues deleted). A

20 further embodiment of the pIII anchor consists of

D2'(C>S)::L2::D3::TM::IC (where D2'(C>S) is D2' with the single C converted to S), and d) D3::TM::IC.

Table 38 shows a gene fragment comprising the NotI site, His6 tag, cMyc tag, an amber codon, a

25 recombinant enterokinase cleavage site, and the whole of mature M13 III protein. The DNA used to encode this sequence is intentionally very different from the DNA of wild-type gene iii as shown by the lines denoted "W.T." containing the w.t. bases where these differ from this gene. III is divided into domains denoted "domain 1", "linker 1", "domain 2", "linker 2", "domain 3", "transmembrane segment", and "intracellular anchor".

Alternative preferred anchor segments (defined by reference to the sequence of Table 38) include:

codons 1-29 joined to codons 104-435, deleting 5 domain 1 and retaining linker 1 to the end;

codons 1-38 joined to codons 104-435, deleting domain land retaining the rEK cleavage site plus linker 1 to the end from III;

codons 1-29 joined to codons 236-435, deleting
10 domain 1, linker 1, and most of domain 2 and retaining
linker 2 to the end;

codons 1-38 joined to codons 236-435, deleting _ domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end and the rEK cleavage site;

codons 1-29 joined to codons 236-435 and changing codon 240 to Ser(e.g., agc), deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end; and

codons 1-38 joined to codons 236-435 and changing 20 codon 240 to Ser(e.g., agc), deleting domain 1, linker 1, and most of domain 2 and retaining linker 2 to the end and the rEK cleavage site.

 $\label{thm:constructs} \mbox{ would most readily be made by } \\ \mbox{methods similar to those of Wang and Wilkinson}$

- 25 (<u>Biotechniques</u> 2001: 31(4)722-724) in which PCR is used to copy the vector except the part to be deleted and matching restriction sites are introduced or retained at either end of the part to be kept. Table 39 shows the oligonucleotides to be used in deleting parts of
- 30 the III anchor segment. The DNA shown in Table 38 has an NheI site before the DINDDRMA recombinant enterokinase cleavage site (rEKCS). If NheI is used in the deletion process with this DNA, the rEKCS site

- 61 -

would be lost. This site could be quite useful in cleaving Fabs from the phage and might facilitate capture of very high-afffinity antibodies. One could mutagenize this sequence so that the NheI site would follow the rEKCS site, an Ala Ser amino-acid sequence is already present. Alternatively, one could use SphI for the deletions. This would involve a slight change in amino acid sequence but would be of no consequence.

Example 7: Selection of antigen binders from an enriched library of human antibodies using phage vector DY3F31.

In this example the human antibody library used is described in de Haard et al., (<u>Journal of Biological Chemistry</u>, 274 (26): 18218-30 (1999). This library, consisting of a large non-immune human Fab phagemid library, was first enriched on antigen, either on streptavidin or on phenyl-oxazolone (phOx). The methods for this are well known in the art. Two preselected Fab libraries, the first one selected once on immobilized phOx-BSA (R1-ox) and the second one selected twice on streptavidin (R2-strep), were chosen for recloning.

These enriched repertoires of phage antibodies, in which only a very low percentage have 25 binding activity to the antigen used in selection, were confirmed by screening clones in an ELISA for antigen binding. The selected Fab genes were transferred from the phagemid vector of this library to the DY3F31 vector via ApaL1-Not1 restriction sites.

30 DNA from the DY3F31 phage vector was pretreated with ATP dependent DNAse to remove

chromosomal DNA and then digested with ApaL1 and Not1.

An extra digestion with AscI was performed in between to prevent self-ligation of the vector. The ApaL1/NotI Fab fragment from the preselected libraries was subsequently ligated to the vector DNA and transformed into competent XL1-blue MRF' cells.

Libraries were made using vector:insert ratios of 1:2 for phOx-library and 1:3 for STREP library, and using 100 ng ligated DNA per 50 µl of electroporation-competent cells (electroporation conditions: one shock of 1700 V, 1 hour recovery of cells in rich SOC medium, plating on amplicillin-containing agar plates).

This transformation resulted in a library size of 1.6 x 10^6 for R1-ox in DY3F31 and 2.1 x 10^6 for R2-strep in DY3F31. Sixteen colonies from each library were screened for insert, and all showed the correct size insert (± 1400 bp) (for both libraries).

Phage was prepared from these Fab libraries
as follows. A representative sample of the library was
inoculated in medium with ampicillin and glucose, and
at OD 0.5, the medium exchanged for ampicillin and 1 mM
IPTG. After overnight growth at 37 °C, phage was
harvested from the supernatant by PEG-NaCl
precipitation. Phage was used for selection on antigen.

R1-ox was selected on phOx-BSA coated by passive adsorption onto immunotubes and R2-strep on streptavidin coated paramagnetic beads (Dynal, Norway), in procedures described in de Haard et. al. and Marks et. al., <u>Journal of Molecular Biology</u>, 222(3): 581-97 (1991). Phage titers and enrichments are given in

Table 40.

- 63 -

Clones from these selected libraries, dubbed R2-ox and R3-strep respectively, were screened for binding to their antigens in ELISA. 44 clones from each selection were picked randomly and screened as 5 phage or soluble Fab for binding in ELISA. For the libraries in DY3F31, clones were first grown in 2TY-2% glucose-50 µg/ml AMP to an OD600 of approximately 0.5, and then grown overnight in 2TY-50 μ g/ml AMP +/- 1mM IPTG. Induction with IPTG may result in the production 10 of both phage-Fab and soluble Fab. Therefore the (same) clones were also grown without IPTG. Table 41 shows the results of an ELISA screening of the resulting supernatant, either for the detection of phage particles with antigen binding (Anti-M13 HRP = anti-phage antibody), or for the detection of human Fabs, be it on phage or as soluble fragments, either with using the anti-myc antibody 9E10 which detects the myc-tag that every Fab carries at the C-terminal end of the heavy chain followed by a HRP-labeled 20 rabbit-anti-Mouse serum (column 9E10/RAM-HRP), or with anti-light chain reagent followed by a HRP-labeled goat-anti-rabbit antiserum(anti-CK/CL Gar-HRP).

The results shows that in both cases antigen-binders are identified in the library, with as 25 Fabs on phage or with the anti-Fab reagents (Table 41). IPTG induction yields an increase in the number of positives. Also it can be seen that for the phOx-clones, the phage ELISA yields more positives than the soluble Fab ELISA, most likely due to the avid binding of phage. Twenty four of the ELISA-positive clones were screened using PCR of the Fab-insert from the vector, followed by digestion with BstNI. This yielded 17 different patterns for the phOx-binding

- 64 -

Fab's in 23 samples that were correctly analyzed, and 6 out of 24 for the streptavidin binding clones. Thus, the data from the selection and screening from this pre-enriched non-immune Fab library show that the DY3F31 vector is suitable for display and selection of Fab fragments, and provides both soluble Fab and Fab on phage for screening experiments after selection.

Example 8: Selection of Phage-antibody libraries on streptavidin magnetic beads.

The following example describes a selection in which one first depletes a sample of the library of binders to streptavidin and optionally of binders to a non-target (i.e., a molecule other than the target that one does not want the selected Fab to bind). It is hypothesized that one has a molecule, termed a "competitive ligand", which binds the target and that an antibody which binds at the same site would be

For this procedure Streptavidin Magnetic

20 Beads (Dynal) were blocked once with blocking solution
(2% Marvel Milk, PBS (pH 7.4), 0.01% Tween-20
("2%MPBST")) for 60 minutes at room temperature and
then washed five times with 2%MPBST. 450 µL of beads
were blocked for each depletion and subsequent
25 selection set.

especially useful.

30

Per selection, 6.25 μL of biotinylated depletion target (1 mg/mL stock in PBST) was added to 0.250 mL of washed, blocked beads (from step 1). The target was allowed to bind overnight, with tumbling, at 4°C. The next day, the beads are washed 5 times with PBST.

Per selection, 0.010 mL of biotinylated target antigen (1 mg/mL stock in PBST) was added to 0.100 mL of blocked and washed beads (from step 1). The antigen was allowed to bind overnight, with tumbling, at 4°C. The next day, the beads were washed 5 times with PBST.

In round 1, 2 X 10¹² up to 10¹³ plaque forming units (pfu) per selection were blocked against non-specific binding by adding to 0.500 mL of 2%MPBS (=2%MPBST without Tween) for 1 hr at RT (tumble). In later rounds, 1011 pfu per selection were blocked as done in round 1.

Each phage pool was incubated with 50 μL of depletion target beads (final wash supernatant removed just before use) on a Labquake rotator for 10 min at room temperature. After incubation, the phage supernatant was removed and incubated with another 50 μL of depletion target beads. This was repeated 3 more times using depletion target beads and twice using blocked streptavidin beads for a total of 7 rounds of depletion, so each phage pool required 350 μL of depletion beads.

A small sample of each depleted library pool was taken for titering. Each library pool was added to 0.100 mL of target beads (final wash supernatant was removed just before use) and allowed to incubate for 2 hours at room temperature (tumble).

Beads were then washed as rapidly as possible (e.g.,3 minutes total) with 5 X 0.500 mL PBST and then 30 2X with PBS. Phage still bound to beads after the washing were eluted once with 0.250 mL of competitive ligand (\sim 1 $\mu\mu$ M) in PBST for 1 hour at room temperature on a Labquake rotator. The eluate was removed, mixed

with 0.500 mL Minimal A salts solution and saved. For a second selection, 0.500 mL 100 mM TEA was used for elution for 10 min at RT, then neutralized in a mix of 0.250 mL of 1 M Tris, pH 7.4 + 0.500 mL Min A salts.

After the first selection elution, the beads can be eluted again with 0.300 mL of non-biotinylated target (1 mg/mL) for 1 hr at RT on a Labquake rotator. Eluted phage are added to 0.450 mL Minimal A salts.

Three eluates (competitor from 1st selection, 10 target from 1st selection and neutralized TEA elution from 2nd selection) were kept separate and a small aliquot taken from each for titering. 0.500 mL Minimal A salts were added to the remaining bead aliquots after competitor and target elution and after TEA elution.

Take a small aliquot from each was taken for tittering.

Each elution and each set of eluted beads was mixed with 2X YT and an aliquot (e.g., 1 mL with 1. E 10/mL) of XL1-Blue MRF' E. coli cells (or other F' cell line) which had been chilled on ice after having been grown to mid-logarithmic phase, starved and concentrated (see procedure below - "Mid-Log prep of XL-1 blue MRF' cells for infection").

After approximately 30 minutes at room temperature, the phage/cell mixtures were spread onto 25 Bio-Assay Dishes (243 X 243 X 18 mm, Nalge Nunc) containing 2XYT, 1mM IPTG agar. The plates were incubated overnight at 30°C. The next day, each amplified phage culture was harvested from its respective plate. The plate was flooded with 35 mL TBS or LB, and cells were scraped from the plate. The resuspended cells were transferred to a centrifuge bottle. An additional 20 mL TBS or LB was used to remove any cells from the plate and pooled with the

- 67 -

cells in the centrifuge bottle. The cells were centrifuged out, and phage in the supernatant was recovered by PEG precipitation. Over the next day, the amplified phage preps were titered.

In the first round, two selections yielded five amplified eluates. These amplified eluates were panned for 2-3 more additional rounds of selection using ~1. E 12 input phage/round. For each additional round, the depletion and target beads were prepared the night before the round was initiated.

For the elution steps in subsequent rounds, all elutions up to the elution step from which the amplified elution came from were done, and the previous elutions were treated as washes. For the bead infection amplified phage, for example, the competitive ligand and target elutions were done and then tossed as washes (see below). Then the beads were used to infect E. coli. Two pools, therefore, yielded a total of 5 final elutions at the end of the selection.

1st selection set

- A. Ligand amplified elution: elute w/ ligand for 1 hr, keep as elution
- 25 B. Target amplified elution: elute w/ ligand for 1 hr, toss as wash elute w/ target for 1 hr, keep as elution
- C. Bead infect. amp. elution: elute w/
 ligand for 1 hr, toss as wash elute w/ target
 for 1 hr, toss as wash elute w/ cell
 infection, keep as elution

- 68 -

2nd selection set

5

A. TEA amplified elution; elute w/ TEA 10min, keep as elution

B. Bead infect. amp. elution; elute w/ TEA 10min, toss as wash elute w/ cell infection, keep as elution

Mid-log prep of XL1 blue MRF' cells for infection (based on Barbas et al. Phage Display manual procedure)

Culture XL1 blue MRF' in NZCYM (12.5 mg/mL tet) at 37°C and 250 rpm overnight. Started a 500 mL culture in 2 liter flask by diluting cells 1/50 in NZCYM/tet (10 mL overnight culture added) and incubated at 37°C at 250 rpm until OD600 of 0.45 (1.5-2 hrs) was reached. Shaking was reduced to 100 rpm for 10 min.

- When OD600 reached between 0.55-0.65, cells were transferred to 2 x 250 mL centrifuge bottles, centrifuged at 600 g for 15 min at 4°C. Supernatant was poured off. Residual liquid was removed with a pipette.
- The pellets were gently resuspended (not pipetting up and down) in the original volume of 1 X Minimal A salts at room temp. The resuspended cells were transferred back into 2-liter flask, shaken at 100 rpm for 45 min at 37°C. This process was performed in order to starve the cells and restore pili. The cells were transferred to 2 x 250 mL centrifuge bottles, and centrifuged as earlier.

The cells were gently resuspended in ice cold Minimal A salts (5 mL per 500 mL original culture).

- 69 -

The cells were put on ice for use in infections as soon as possible.

The phage eluates were brought up to 7.5 mL with 2XYT medium and 2.5 mL of cells were added. Beads were brought up to 3 mL with 2XYT and 1 mL of cells were added. Incubated at 37oC for 30 min. The cells were plated on 2XYT, 1 mM IPTG agar large NUNC plates and incubated for 18 hr at 30°C.

Example 9: Incorporation of synthetic region in FR1/3 10 region.

Described below are examples for incorporating of fixed residues in antibody sequences for light chain kappa and lambda genes, and for heavy chains. The experimental conditions and oligonucleotides used for the examples below have been described in previous examples (e.g., Examples 3 & 4).

The process for incorporating fixed FR1
residues in an antibody lambda sequence consists of 3
steps (see FIG. 18): (1) annealing of single-stranded

DNA material encoding VL genes to a partially
complementary oligonucleotide mix (indicated with Ext
and Bridge), to anneal in this example to the region
encoding residues 5-7 of the FR1 of the lambda genes
(indicated with X..X; within the lambda genes the

overlap may sometimes not be perfect); (2) ligation of
this complex; (3) PCR of the ligated material with the
indicated primer ('PCRpr') and for example one primer
based within the VL gene. In this process the first few
residues of all lambda genes will be encoded by the
sequences present in the oligonucleotides (Ext., Bridge

or PCRpr). After the PCR, the lambda genes can be cloned using the indicated restriction site for ApaLI.

The process for incorporating fixed FR1 residues in an antibody kappa sequence (FIG. 19) 5 consists of 3 steps : (1) annealing of single-stranded DNA material encoding VK genes to a partially complementary oligonucleotide mix (indicated with Ext and Bri), to anneal in this example to the region encoding residues 8-10 of the FR1 of the kappa genes 10 (indicated with X..X; within the kappa genes the overlap may sometimes not be perfect); (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer ('PCRpr') and for example one primer based within the VK gene. In this process the first few 15 (8) residues of all kappa genes will be encode by the sequences present in the oligonucleotides (Ext., Bridge or PCRpr.). After the PCR, the kappa genes can be cloned using the indicated restriction site for ApaLI.

The process of incorporating fixed FR3 20 residues in a antibody heavy chain sequence (FIG. 20) consists of 3 steps: (1) annealing of single-stranded DNA material encoding part of the VH genes (for example encoding FR3, CDR3 and FR4 regions) to a partially complementary oligonucleotide mix (indicated with Ext 25 and Bridge), to anneal in this example to the region encoding residues 92-94 (within the FR3 region) of VH genes (indicated with X..X; within the VH genes the overlap may sometimes not be perfect); (2) ligation of this complex; (3) PCR of the ligated material with the indicated primer ('PCRpr') and for example one primer based within the VH gene (such as in the FR4 region). In this process certain residues of all VH genes will be encoded by the sequences present in the

- 71 -

oligonucleotides used here, in particular from PCRpr (for residues 70-73), or from Ext/Bridge oligonucleotides (residues 74-91). After the PCR, the partial VH genes can be cloned using the indicated restriction site for XbaI.

It will be understood that the foregoing is only illustrative of the principles of this invention and that various modifications can be made by those skilled in the art without departing from the scope of and sprit of the invention.

Table 1: Human GLG FR3 sequences

- 72 -

```
! VH1
       66 67 68 69 70 71 72 73 74 75 76 77 78 79
       agg gtc acc atg acc agg gac acg tcc atc agc aca gcc tac atg
 5
    ! 81 82 82a 82b 82c 83 84 85 86 87 88 89 90 91
       gag ctg agc agg ctg aga tct gac gac acg gcc gtg tat tac tgt
       93 94
               95
       gcg aga ga ! 1-02# 1
       aga gtc acc att acc agg gac aca tcc gcg agc aca gcc tac atg
10
       gag ctg agc agc ctg aga tct gaa gac acg gct gtg tat tac tgt
       gcg aga ga ! 1-03# 2
       aga gtc acc atg acc agg aac acc tcc ata agc aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
       gcg aga gg ! 1-08# 3
15
       aga gtc acc atg acc aca gac aca tcc acg agc aca gcc tac atg
       gag ctg agg agc ctg aga tct gac gac acg gcc gtg tat tac tgt
       gcg aga ga ! 1-18# 4
       aga gtc acc atg acc gag gac aca tct aca gac aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
20
       gca aca ga ! 1-24# 5
       aga gtc acc att acc agg gac agg tct atg agc aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac aca gcc atg tat tac tgt
       gca aga ta ! 1-45# 6
       aga gtc acc atg acc agg gac acg tcc acg agc aca gtc tac atg
25
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
       gcg aga ga ! 1-46# 7
       aga gtc acc att acc agg gac atg tcc aca agc aca gcc tac atg
       gag ctg agc agc ctg aga tcc gag gac acg gcc gtg tat tac tgt
       gcg gca ga ! 1-58# 8
30
       aga gtc acg att acc gcg gac gaa tcc acg agc aca gcc tac atg
       gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
```

gag ctg agc ctg aga tct gag gac acg gcc gtg tat tac tgt
gcg aga ga ! 1-e# 10
aga gtc acc ata acc gcg gac acg tct aca gac aca gcc tac atg
gag ctg agc agc ctg aga tct gag gac acg gcc gtg tat tac tgt
gca aca ga ! 1-f# 11

aga gtc acg att acc gcg gac aaa tcc acg agc aca gcc tac atg

gcg aga ga ! 1-69# 9

- 73 -

! VH2 agg ctc acc atc acc aag gac acc tcc aaa aac cag gtg gtc ctt aca atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt gca cac aga c! 2-05# 12 5 agg ctc acc atc tcc aag gac acc tcc aaa agc cag gtg gtc ctt acc atg acc aac atg gac cct gtg gac aca gcc aca tat tac tgt gca cgg ata c! 2-26# 13 agg ctc acc atc tcc aag gac acc tcc aaa aac cag gtg gtc ctt aca atg acc aac atg gac cct gtg gac aca gcc acg tat tac tgt 10 gca cgg ata c! 2-70# 14 ! VH3 cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt gcg aga ga ! 3-07# 15 15 cga ttc acc atc tcc aga gac aac gcc aag aac tcc ctg tat ctg caa atg aac agt ctg aga gct gag gac acg gcc.ttg tat tac tgt gca aaa gat a! 3-09#16 cga ttc acc atc tcc agg gac aac gcc aag aac tca ctg tat ctg caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tgt 20 gcg aga ga ! 3-11# 17 cga ttc acc atc tcc aga gaa aat gcc aag aac tcc ttg tat ctt caa atg aac agc ctg aga gcc ggg gac acg gct gtg tat tac tgt gca aga ga ! 3-13# 18 aga ttc acc atc tca aga gat gat tca aaa aac acg ctg tat ctg 25 caa atg aac agc ctg aaa acc gag gac aca gcc gtg tat tac tgt acc aca ga ! 3-15# 19 cga ttc acc atc tcc aga gac aac gcc aag aac tcc ctg tat ctg caa atg aac agt ctg aga gcc gag gac acg gcc ttg tat cac tgt gcg aga ga ! 3-20# 20 30 cga ttc acc atc tcc aga gac aac gcc aag aac tca ctg tat ctg caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt gcg aga ga ! 3-21# 21 cgg ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg caa atg aac agc ctg aga gcc gag gac acg gcc gta tat tac tgt 35 gcg aaa ga ! 3-23# 22 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt gcg aaa ga ! 3-30# 23 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctq 40 caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt gcg aga ga ! 3303# 24

ega tte ace ate tee aga gae aat tee aag aac acg etg tat etg caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt gcg aaa ga ! 3305# 25 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctg 5 caa atg aac agc ctg aga gcc gag gac acg gct gtg tat tac tgt gcg aga ga ! 3-33# 26 cga ttc acc atc tcc aga gac aac agc aaa aac tcc ctg tat ctg caa atg aac agt ctg aga act gag gac acc gcc ttg tat tac tgt gca aaa gat a! 3-43#27 10 cga ttc acc atc tcc aga gac aat gcc aag aac tca ctq tat ctq caa atg aac agc ctg aga gac gag gac acg gct gtg tat tac tgt gcg aga ga ! 3-48# 28 aga ttc acc atc tca aga gat ggt tcc aaa agc atc gcc tat ctg caa atg aac agc ctg aaa acc gag gac aca gcc gtg tat tac tgt 15 act aga ga ! 3-49# 29 cga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt caa atg aac agc ctg aga gcc gag gac acg gcc gtg tat tac tqt gcg aga ga ! 3-53# 30 aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt 20 caa atg ggc agc ctg aga gct gag gac atg gct gtg tat tac tgt gcg aga ga ! 3-64# 31 aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg tat ctt caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tqt gcg aga ga ! 3-66# 32 25 aga ttc acc atc tca aga gat gat tca aag aac tca ctg tat ctg caa atg aac agc ctg aaa acc gag gac acg gcc gtg tat tac tgt gct aga ga ! 3-72# 33 agg ttc acc atc tcc aga gat gat tca aag aac acg gcg tat ctg caa atg aac agc ctg aaa acc gag gac acg gcc gtg tat tac tgt 30 act aga ca ! 3-73# 34 cga ttc acc atc tcc aga gac aac gcc aag aac acg ctg tat ctg caa atg aac agt ctg aga gcc gag gac acg gct gtg tat tac tgt gca aga ga ! 3-74# 35 aga ttc acc atc tcc aga gac aat tcc aag aac acg ctg cat ctt 35 caa atg aac agc ctg aga gct gag gac acg gct gtg tat tac tgt aag aaa ga ! 3-d# 36 ! VH4 cga gtc acc ata tca gta gac aag tcc aag aac cag ttc tcc ctg aag ctg agc tct gtg acc gcc gcg gac acg gcc gtg tat tac tgt 40 gcg aga ga ! 4-04# 37 cga gtc acc atg tca gta gac acq tcc aaq aac caq ttc tcc ctq

aag ctg agc tct gtg acc gcc gtg gac acg gcc gtg tat tac tgt gcg aga aa ! 4-28# 38 cga gtt acc ata tca gta gac acg tct aag aac cag ttc tcc ctg aag ctg agc tot gtg act gcc gcg gac acg gcc gtg tat tac tgt 5 gcg aga ga ! 4301# 39 cga gtc acc ata tca gta gac agg tcc aag aac cag ttc tcc ctg aaq ctq aqc tct qtg acc gcc gcg gac acg gcc gtg tat tac tgt gcc aga ga ! 4302# 40 cga gtt acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg 10 aag ctg agc tct gtg act gcc gca gac acg gcc gtg tat tac tgt gcc aga ga ! 4304# 41 cga gtt acc ata tca gta gac acg tct aag aac cag ttc tcc ctg aag ctg agc tct gtg act gcc gcg gac acg gcc gtg tat tac tgt gcg aga ga ! 4-31# 42 15 cqa qtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg aag ctg agc tct gtg acc gcc gcg gac acg gct gtg tat tac tgt gcg aga ga ! 4-34# 43 eqa qte ace ata tee qta qae acq tee aag aac cag tte tee etg aag ctg age tet gtg ace gee gea gae acg get gtg tat tae tgt 20 gcg aga ca ! 4-39# 44 cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg aag ctg agc tct gtg acc gct gcg gac acg gcc gtg tat tac tgt gcg aga ga ! 4-59# 45 cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg 25 aag ctg agc tct gtg acc gct gcg gac acg gcc gtg tat tac tgt gcg aga ga ! 4-61# 46 cga gtc acc ata tca gta gac acg tcc aag aac cag ttc tcc ctg aag ctg agc tct gtg acc gcc gca gac acg gcc gtg tat tac tgt gcg aga ga ! 4-b# 47 30 ! VH5 cag gtc acc atc tca gcc gac aag tcc atc agc acc gcc tac ctg cag tgg agc agc ctg aag gcc tcg gac acc gcc atg tat tac tgt gcg aga ca ! 5-51# 48 cac gtc acc atc tca gct gac aag tcc atc agc act gcc tac ctg 35 cag tgg age age etg aag gee teg gae ace gee atg tat tae tgt gcg aga ! 5-a# 49 ! VH6 cga ata acc atc aac cca gac aca tcc aag aac cag ttc tcc ctg cag ctg aac tct gtg act ccc gag gac acg gct gtg tat tac tgt 40 gca aga ga ! 6-1# 50 ! VH7

- 76 -

cgg ttt gtc ttc tcc ttg gac acc tct gtc agc acg gca tat ctg cag atc tgc agc cta aag gct gag gac act gcc gtg tat tac tgt gcg aga ga ! 74.1# 51

. .

PCT/US02/12405

WO 02/083872

- 77 -

Table 2: Enzymes that either cut 15 or more human GLGs or have 5+-base recognition in FR3

Typical entry: #sites REname Recognition GLGid#:base# GLGid#:base# GLGid#:base#..... 5 2 BstEII Ggtnacc 1: 3 48: 3 There are 2 hits at base# 3 10 MaeIII gtnac 36 1: 4 2: 3: 4 4: 4 5: 4 6: 4 7: 8: 9: 10: 11: 37: 37: 58 39: 58 38: 58 39: 40: 4 38: 4 40: 58 41: 41: 58 42: 42: 58 43: 4 15 45: 58 46: 43: 58 44: 44: 58 45: 4 47: 58 49: 4 46: 58 47: 48: 50: 58 There are 24 hits at base# 4 Tsp45I gtsac 33 20 1: 2: 3: 4: 5: 6: 7: 4 8: 4 9: 10: 4 11: 4 37: 4 4 37: 58 38: 58 39: 58 40: 4 40: 58 38: 4 41: 58 42: 58 43: 4 43: 58 44: 4 44: 58 45: 4 45: 58 46: 4 46: 58 47: 4 47: 58 25 49: 4 50: 58 48: 4 There are 21 hits at base# HphI tcacc 45 5 2: 5 3: 5 4: 5 5: 5 6: 30 7: 5 8: 5 11: 5 12: 5 12: 11 13: 5 14: 15: 5 16: 5 17: 5 18: 19: 5 20: 5 22: 21: 5 5 23: 5 24: 5 25: 5 26: 5 27: 5 28: 5 29: 5 30: 5 31: 5 32: 5 33: 5 34: 5 35: 36: 5 5 37: 5 35 38: 5 40: 5 43: 5 44: 5 45: 5 46: 5 47: 5 48: 5 49: There are 44 hits at base# 5

- 78 **-**

```
NlaIII CATG
                                     26
       1: 9
                1: 42
                          2: 42
                                   3: 9
                                            3: 42
                                                      4: 9
       4: 42
                5: 9
                          5: 42
                                   6: 42
                                            6: 78
                                                      7: 9
       7: 42
                8: 21
                         8: 42
                                   9: 42
                                           10: 42
                                                     11: 42
 5
      12: 57
               13: 48
                         13: 57
                                  14: 57
                                           31: 72
                                                     38: 9
      48: 78
               49: 78
      There are 11 hits at base# 42
                  1 hits at base# 48 Could cause raggedness.
      There are
10
    BsaJI Ccnngg
                                     37
       1: 14
                2: 14
                         5: 14
                                   6: 14
                                            7: 14
                                                     8: 14
       8: 65
                9: 14
                        10: 14
                                  11: 14
                                           12: 14
                                                    13: 14
      14: 14
               15: 65
                        17: 14
                                  17: 65
                                           18: 65
                                                    19: 65
      20: 65
               21: 65
                        22: 65
                                  26: 65
                                           29: 65
                                                    30: 65
15
      33: 65
               34: 65
                        35: 65
                                  37: 65
                                           38: 65
                                                    39: 65
      40: 65
               42: 65
                        43: 65
                                  48: 65
                                           49: 65
                                                    50: 65
      51: 14
      There are 23 hits at base# 65
      There are 14 hits at base# 14
20
    AluI AGct
                                     42
       1: 47
                2: 47
                         3: 47
                                   4: 47
                                            5: 47
                                                     6: 47
       7: 47
                8: 47
                         9: 47
                                 10: 47
                                           11: 47
                                                    16: 63
      23: 63
               24: 63
                        25: 63
                                  31: 63
                                           32: 63
                                                    36: 63
25
     37: 47
               37: 52
                        38: 47
                                 38: 52
                                           39: 47
                                                    39: 52
     40: 47
              40: 52
                        41: 47
                                 41: 52
                                           42: 47
                                                    42: 52
     43: 47
               43: 52
                        44: 47
                                 44: 52
                                           45: 47
                                                    45: 52
     46: 47
              46: 52
                        47: 47
                                 47: 52
                                           49: 15
                                                    50: 47
     There are 23 hits at base# 47
    There are 11 hits at base# 52 Only 5 bases from 47
30
    BlpI GCtnagc
                                    21
      1: 48
                2: 48
                         3: 48
                                  5: 48
                                            6: 48
                                                     7: 48
      8: 48
                9: 48
                        10: 48
                                 11: 48
                                           37: 48
                                                    38: 48
35
     39: 48
               40: 48
                        41: 48
                                 42: 48
                                           43: 48
                                                    44: 48
     45: 48
               46: 48
                        47: 48
     There are 21 hits at base# 48
```

PCT/US02/12405

- 79 -

```
19
    MwoI GCNNNNnngc
                                  22: 36
                                            23: 36
                                                      24: 36
      1: 48
                2: 28
                         19: 36
                                            39: 67
      25: 36
                         35: 36
                                  37: 67
                                                      40: 67
               26: 36
      41: 67
               42: 67
                         43: 67
                                  44: 67
                                            45: 67
                                                      46: 67
 5
     47: 67
      There are 10 hits at base# 67
      There are
                  7 hits at base# 36
                                      71
    DdeI Ctnag
                                   2: 58
                                                       3: 58
10
       1: 49
                1: 58
                          2: 49
                                             3: 49
                                             5: 58
       3: 65
                4: 49
                          4: 58
                                    5: 49
                                                       5: 65
                <u>6: 58</u>
       6: 49
                          6: 65
                                   7: 49
                                             7: 58
                                                      7: 65
       8: 49
                                   <u>9: 58</u>
                                                      10: 49
                                             9: 65
                8: 58
                          9: 49
                                  11: 58
                                                      15: 58
               10: 65
                         11: 49
                                            11: 65
      10: 58
15
                         17: 58
                                  18: 58
                                            20: 58
                                                      21: 58
      16: 58
               16: 65
                         23: 65
                                  24: 58
                                                      25: 58
      22: 58
               23: 58
                                            24: 65
     <u> 25: 65</u>
               26: 58
                         27: 58
                                  27: 65
                                            28: 58
                                                      30: 58
      31: 58
               31: 65
                         32: 58
                                  32: 65
                                            35: 58
                                                      36: 58
                                  39: 26
                                            39: 49
                                                      40: 49
     <u>36: 65</u>
               37: 49
                         38: 49
20
                                                      45: 49
      41: 49
               42: 26
                         42: 49
                                  43: 49
                                            44: 49
      46: 49
                47: 49
                         48: 12
                                  49: 12
                                            51: 65
      There are 29 hits at base# 58
      There are 22 hits at base# 49 Only nine base from 58
      There are 16 hits at base# 65 Only seven bases from 58
25
    BglII Agatct
                                      11
                          3: 61
       1: 61
                                    4: 61
                                             5: 61
                                                       6: 61
                2: 61
       7: 61
                 9: 61
                         10: 61
                                  11: 61
                                            51: 47
      There are 10 hits at base# 61
30
     BstYI Rgatcy
                                      12
       1: 61
                 2: 61
                          3: 61
                                    4: 61
                                             5: 61
                                                       6: 61
       7: 61
                8: 61
                          9: 61
                                  10: 61
                                            11: 61
                                                      51: 47
      There are 11 hits at base# 61
35
```

Hpy188I TCNga

- 80 -

17

```
1: 64
                2: 64
                          3: 64
                                   4: 64
                                            5: 64
                                                      6: 64
       7: 64
                8: 64
                          9: 64
                                  10: 64
                                           11: 64
                                                     16: 57
      20: 57
               27: 57
                         35: 57
                                  48: 67
                                           49: 67
 5
      There are 11 hits at base# 64
      There are
                 4 hits at base# 57
      There are
                  2 hits at base# 67 Could be ragged.
     MslI CAYNNnnRTG
                                     44
10
       1: 72
                2: 72
                         3: 72
                                   4: 72
                                            5: 72
                                                      6: 72
       7: 72
                8: 72
                         9: 72
                                  10: 72
                                           11: 72
                                                     15: 72
      17: 72
               18: 72
                        19: 72
                                  21: 72
                                           23: 72
                                                     24: 72
      25: 72
               26: 72
                         28: 72
                                  29: 72
                                           30: 72
                                                     31: 72
      32: 72
               33: 72
                         34: 72
                                  35: 72
                                           36: 72
                                                     37: 72
15
      38: 72
               39: 72
                         40: 72
                                  41: 72
                                           42: 72
                                                     43: 72
      44: 72
                         46: 72
               45: 72
                                  47: 72
                                           48: 72
                                                     49: 72
      50: 72
               51: 72
      There are 44 hits at base# 72
20 BsiEI CGRYcg
                                     23
       1: 74
                3: 74
                         4: 74
                                            7: 74
                                   5: 74
                                                      8: 74
               10: 74
       9: 74
                        11: 74
                                  17: 74
                                           22: 74
                                                    30: 74
      33: 74
               34: 74
                        37: 74
                                  38: 74
                                           39: 74
                                                     40: 74
      41: 74
               42: 74
                        45: 74
                                  46: 74
                                           47: 74
      There are 23 hits at base# 74
25
     Eael Yggccr
                                     23
       1: 74
                3: 74
                         4: 74
                                   5: 74
                                            7: 74
                                                     8: 74
       9: 74
               10: 74
                        11: 74
                                  17: 74
                                           22: 74
                                                    30: 74
30
      33: 74
                        37: 74
               34: 74
                                  38: 74
                                           39: 74
                                                    40: 74
               42: 74
                        45: 74
                                  46: 74
                                           47: 74
      There are 23 hits at base# 74
    Eagl Cggccg
                                     23
35
      1: 74
                3: 74
                         4: 74
                                  5: 74
                                            7: 74
                                                     8: 74
      9: 74
              10: 74
                        11: 74
                                 17: 74
                                           22: 74
                                                    30: 74
     33: 74
              34: 74
                        37: 74
                                 38: 74
                                           39: 74
                                                    40: 74
     41: 74
              42: 74
                        45: 74
                                 46: 74
                                           47: 74
     There are 23 hits at base# 74
```

- 81 -

```
27
    HaeIII GGcc
                      4: 75
                                5: 75
                                        7: 75
                                                8: 75
      1: 75
              3: 75
                               16: 75
                                       17: 75
                                                 20: 75
      9: 75
             10: 75
                      11: 75
 5
                       33: 75
                                34: 75
                                        37: 75
                                                 38: 75
     22: 75
              30: 75
     39: 75
              40: 75
                       41: 75
                                42: 75
                                        45: 75
                                                 46: 75
     47: 75
              48: 63
                       49: 63
     There are 25 hits at base# 75
10 Bst4CI ACNgt 65°C
                      63 Sites There is a third isoschismer
      1: 86
               2: 86
                        3: 86
                                4: 86
                                         5: 86
                                                  6: 86
      7: 34
               7: 86
                      8: 86
                                9: 86
                                       10: 86
                                                11: 86
     12: 86
             13: 86
                      14: 86
                              15: 36
                                       15: 86
                                                16: 53
     16: 86
             17: 36
                      17: 86
                              18: 86
                                       19: 86
                                                20: 53
15
                              22: 0
                                       22: 86
                                                23: 86
     20: 86
             21: 36
                      21: 86
                                       27: 86
                                                28: 36
     24: 86
              25: 86
                      26: 86
                               27: 53
     28: 86
             29: 86
                      30: 86
                               31: 86
                                        32: 86
                                                 33: 36
     33: 86
             34: 86
                      35: 53
                               35: 86
                                        36: 86
                                                 37: 86
     38: 86
              39: 86
                       40: 86
                                41: 86
                                        42: 86
                                                 43: 86
20
     44: 86
                                47: 86
                                        48: 86
                                                 49: 86
              45: 86
                       46: 86
     50: 86
              51: 0
                       51: 86
     There are 51 hits at base# 86 All the other sites are well away
    HpyCH4III ACNgt
                                  63
25
      1: 86
               2: 86
                       3: 86
                                4: 86
                                         5: 86
                                                  6: 86
      7: 34
               7: 86
                       8: 86
                                9: 86
                                       10: 86
                                                 11: 86
     12: 86
              13: 86
                      14: 86
                              15: 36
                                       15: 86
                                                 16: 53
     16: 86
              17: 36
                      17: 86
                               18: 86
                                        19: 86
                                                 20: 53
     20: 86
              21: 36
                      21: 86
                                22: 0
                                        22: 86
                                                 23: 86
30
     24: 86
              25: 86
                      26: 86
                              ·27: 53
                                        27: 86
                                                 28: 36
     28: 86
              29: 86
                      30: 86
                               31: 86
                                        32: 86
                                                 33: 36
     33: 86
              34: 86
                      35: 53
                               35: 86
                                        36: 86
                                                 37: 86
     38: 86
              39: 86
                       40: 86
                                41: 86
                                        42: 86
                                                 43: 86
     44: 86
              45: 86
                       46: 86
                                47: 86
                                        48: 86
                                                 49: 86
35
     50: 86
              51: 0
                       51: 86
     There are 51 hits at base# 86
```

- 82 -

```
HinfI Ganto
                                   43
       2: 2
               3: 2
                        4: 2
                                 5: 2
                                          6: 2
                                                   7: 2
       8:
               9:
                   2
                        9: 22
                                10: 2
                                         11:
                                              2
                                                  15:
                                                       2
      16:
               17:
                       18:
                            2
                                19:
                                     2
                                         19: 22
                                                  20:
                                                       2
 5
      21: 2
               23:
                   2
                       24:
                            2
                                25:
                                     2
                                         26:
                                                  27: 2
      28:
          2
               29:
                   2
                       30:
                                31: 2
                            2
                                         32:
                                              2
                                                  33: 2
      33: 22
               34: 22
                       35:
                            2
                                36:
                                                  38: 2
                                     2
                                         37:
                                              2
      40: 2
               43: 2
                            2
                        44:
                                45: 2
                                         46:
                                                  47: 2
      50: 60
10
      There are 38 hits at base# 2
     MlyI GAGTCNNNNn
                                   18
       2: 2
               3: 2
                        4: 2
                                 5: 2
                                          6: 2
                                                   7; 2
       8: 2
               9: 2 10: 2
                                11: 2
                                         37: 2
                                                  38: 2
15
      40: 2
              43: 2
                       44: 2
                                45: 2
                                         46: 2
                                                  47:
      There are 18 hits at base# 2
     PleI gagtc
                                   18
       2:
               3: 2
                        4: 2
                                 5: 2
                                          6: 2
                                                   7: 2
20
       8:
          2
               9:
                   2
                       10: 2
                                11: 2
                                         37: 2
                                                  38: 2
      40: 2
              43: 2
                       44: 2
                                45: 2
                                         46: 2
                                                  47: 2
      There are 18 hits at base# 2
    Acil Ccgc
                                   24
      2: 26
                       10: 14
               9: 14
                                11: 14
                                         27: 74
                                                 37:_62
25
    37: 65
              38: 62
                       39: 65
                                40: 62
                                         40: 65
                                                  41: 65
     42: 65
                       43: 65
              <u>43: 62</u>
                                44: 62
                                         44: 65
                                                  45: 62
     46: 62
              47: 62
                       47: 65
                                48: 35
                                         48: 74
                                                  49: 74
     There are
                 8 hits at base# 62
     There are
                 8 hits at base# 65
30
     There are
                 3 hits at base# 14
     There are
                 3 hits at base# 74
     There are
                1 hits at base# 26
     There are
                 1 hits at base# 35
    -"- Gcgg
                                   11
35
      8: 91
               9: 16
                     10: 16
                                11: 16
                                        37: 67
                                                 39: 67
     40: 67
              42: 67
                       43: 67
                                45: 67
                                         46: 67
     There are
               7 hits at base# 67
     There are 3 hits at base# 16
     There are 1 hits at base# 91
```

- 83 -

	BsiH	KAI	GWGCW	2				20				
	2:	30	4:	30	6:	30			9:	30	10:	30
	12:	89	13:	89	14:	89	37:	51	38:	51	39:	51
5	40:	51	41:	51	42:	51	43:	51	44:	51	45:	51
	46:	51	47:	51								
	The	re a	re 1	l h	its at	bas	se# 51					
	Bsp1	2861	GDGC	ic				20				
10	2:	30	4:	30	6:	30	7:	30	9:	30	10:	30
	12:	89	13:	89	14:	89	37:	51	38:	51	39:	51
	40:	51	41:	51	42:	51	43:	51	44:	51	45:	51
	46:	51	47:	51								
	The	re a	re 1	l h	its at	bas	se# 51					
15												
	HgiA	I GW	GCWc				:	20				
	2:	30	4:	30	6:	30	7:	30	9:	30	10:	30
	12:	89	13:	89	14:	89	37:	51	38:	51	39:	51
	40:	51	41:	51	42:	51	43:	51	44:	51	45:	51
20	46:	51	47:	51								
	The	re a	re l	l h	its at	bas	se# 51					
	BsoF	I GC	ngc					26				
	2:	53	3:	53	5:	53	6:	53	7:	53	8:	53
25	8:	91	9:	53	10:	53	11:	53	31:	53	36:	36
	37:	64	39:	64	40:	64	41:	64	42:	64	43:	64
	44:	64	45:	64	46:	64	47:	64	48:	53	49:	53
	50:	45	51:	53								
	The	re a	re 1	3 h:	its at	bas	se# 53					
30	The	re a	re 10) h:	its at	bas	se# 64					
	TseI	Gcw	gc				:	17				
	2:	53	3:	53	5:	53	6:	53	7:	53	8:	53
	9:	53	10:	53	11:	53	31:	53	36:	36	45:	64
	46:	64	48:	53	49:	53	50:	45	51:	53		
35	The	re a	re 13	3 h:	its at	bas	se# 53					

- 84 -

```
MnlI gagg
                                  34
      3: 67
                              5: 16
                                       5: 67
              3: 95
                     4: 51
                                               6: 67
      7: 67
              8: 67
                       9: 67
                               10: 67
                                        11: 67
                                                15: 67
     16: 67
             17: 67
                      19: 67
                               20: 67
                                        21: 67
                                                22: 67
             24: 67
                      25: 67
 5
     23: 67
                               26: 67
                                        27: 67
                                                28: 67
     29: 67
             30: 67
                      31: 67
                               32: 67
                                        33: 67
                                                34: 67
     35: 67
              36: 67
                       50: 67
                               51: 67
     There are 31 hits at base# 67
10 HpyCH4V TGca
                                  34
      5: 90
               6: 90
                     11: 90
                               12: 90
                                       13: 90
                                                14: 90
     15: 44
              16: 44
                      16: 90
                                        18: 90
                               17: 44
                                                .19: 44
     20: 44
             21: 44
                     22: 44
                               23: 44
                                                25: 44
                                        24: 44
     26: 44
             27: 44
                     27: 90
                               28: 44
                                        29: 44
                                                33: 44
15
     34: 44
             35: 44
                     35: 90
                               36: 38
                                        48: 44
                                                49: 44
     50: 44
              50: 90
                      51: 44
                               51: 52
     There are 21 hits at base# 44
     There are
               1 hits at base# 52
20 AccI GTmkac
                                  13 5-base recognition
      7: 37
             11: 24
                     37: 16
                               38: 16
                                        39: 16
                                                 40: 16
     41: 16
              42: 16
                     43: 16
                               44: 16
                                        45: 16
                                                 46: 16
     47: 16
     There are 11 hits at base# 16
25
    SacII CCGCgg
                                   8
                                       6-base recognition
      9: 14
              10: 14
                     11: 14 37: 65
                                        39: 65
                                                 40: 65
     42: 65
              43: 65
                5 hits at base# 65
     There are
30
     There are 3 hits at base# 14
    TfiI Gawtc
                                  24
      9: 22
              15: 2
                      16: 2
                               17: 2
                                        18: 2
                                                19: 2
     19: 22
              20: 2
                           2
                       21:
                               23:
                                    2
                                        24: 2
                                                 25: 2
35
     26: 2
              27:
                       28: 2
                               29: 2
                   2
                                        30: 2
                                                 31: 2
     32: 2
              33: 2
                       33: 22
                               34: 22
                                        35: 2
                                                 36: 2
     There are 20 hits at base# 2
```

- 85 -

```
BsmAI Nnnnnngagac
                                 19
                      20: 11
                               21: 11
                                      22: 11
                                                23: 11
             16: 11
     15: 11
                                       28: 11
                                                28: 56
     24: 11
            25: 11
                      26: 11
                               27: 11
     30: 11
            31: 11
                      32: 11
                               35: 11
                                       36: 11
                                                44: 87
    48: 87
     There are 16 hits at base# 11
                                 19
    BpmI ctccag
             16: 12
                     17: 12
                               18: 12
                                       20: 12
                                                21: 12
     15: 12
10
     22: 12
             23: 12
                      24: 12
                               25: 12
                                       26: 12
                                                27: 12
     28: 12
             30: 12
                      31: 12
                               32: 12
                                       34: 12
                                                35: 12
     36: 12
     There are 19 hits at base# 12
15 XmnI GAANNnnttc
                                 12
     37: 30
            38: 30
                     39: 30
                               40: 30
                                      41: 30
                                               42: 30
     43: 30
            44: 30
                     45: 30
                               46: 30
                                       47: 30
                                                50: 30
     There are 12 hits at base# 30
20 BsrI NCcagt
                                 12
                               40: 32
                                               42: 32
     37: 32
              38: 32
                      39: 32
                                       41: 32
     43: 32
              44: 32 45: 32
                               46: 32
                                       47: 32
                                                50: 32
     There are 12 hits at base# 32
25 BanII GRGCYc
                                 11
     37: 51
            38: 51 39: 51
                             40: 51
                                      41: 51
                                               42: 51
     43: 51
             44: 51
                     45: 51
                               46: 51
                                       47: 51
     There are 11 hits at base# 51
30 Ecl136I GAGctc
                                 11
                                                42: 51
     37: 51
             38: 51
                     39: 51
                             40: 51
                                      41: 51
     43: 51
              44: 51
                      45: 51
                                       47: 51
                               46: 51
     There are 11 hits at base# 51
35 SacI GAGCTC
                                 11
     37: 51
              38: 51 39: 51
                             40: 51
                                      41: 51
                                               42: 51
     43: 51
             44: 51
                               46: 51
                                       47: 51
                     45: 51
     There are 11 hits at base# 51
```

Table 3: Synthetic 3-23 FR3 of human heavy chains showning positions of possible cleavage sites

```
! Sites engineered into the synthetic gene are shown in upper case
     DNA
     ! with the RE name between vertical bars (as in | XbaI |).
    ! RERSs frequently found in GLGs are shown below the synthetic
     sequence
     ! with the name to the right (as in gtn ac=MaeIII(24), indicating
     ! 24 of the 51 GLGs contain the site).
10
     !
                                                          |---FR3---
                                                           89 90 (codon #
     in
                                                            R F
15
     synthetic 3-23)
                                                          |cgc|ttc| 6
     ! Allowed DNA
                                                          |cgn|tty|
                                                          |agr|
                                                            ga ntc =
20 HinfI(38)
                                                            ga gtc =
     PleI(18)
                                                            ga wtc =
     TfiI(20)
25
                                                               gtn ac =
     MaeIII(24)
     ţ
                                                               gts ac =
     Tsp45I(21)
                                                                tc acc =
30
    HphI(44)
              91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
                            D N S K
                                           N T L Y L Q
35
            |act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg| 51
     !allowed|acn|ath|tcn|cgn|gay|aay|tcn|aar|aay|acn|ttr|tay|ttr|car|atg|
                    lagylagri
                                  |agy|
                                                 |ctn| |ctn|
     •
                         galgac = BsmAI(16)
                                                              ag ct =
    AluI(23)
40
                  citcc ag = BpmI(19)
                                                               g ctn agc =
    BlpI(21)
```

- 87 -

```
g aan nnn ttc = XmnI(12)
    !
                  | XbaI |
                                                       tg ca = HpyCH4V(21)
    !
    1
           ---FR3----->|
 5 !
           106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
             N S L R A E D T A V Y Y C A K
           |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa| 96
    !allowed|aay|ten|ttr|cgn|gcn|gar|gay|acn|gcn|gtn|tay|tay|tgy|gcn|aar|
               |agy|ctn|agr|
                                     1
10
                       | cc nng g = BsaJI(23)
                                                  ac ngt = Bst4CI(51)
                      aga tct = BglII(10) |
                                                   ac ngt = HpyCH4III(51)
                      Rga tcY = BstYI(11)
                                                   ac ngt = TaaI(51)
                                          - 1
                                   c ayn nnn rtc = MslI(44)
                                     cg ryc g = BsiEI(23)
15
                       1
                                     yg gcc r = EaeI(23)
                                     cg \ gcc \ g = EagI(23)
    !
                                      !g gcc = HaeIII(25)
                             gag g = MnlI(31)
                  |AflII |
                                      | PstI |
```

- 88 -

Table 4: REdaptors, Extenders, and Bridges used for Cleavage and Capture of Human Heavy Chains in FR3.

A: HpyCH4V Probes of actual human HC genes

!HpyCH4V in FR3 of human HC, bases 35-56; only those with TGca site 5 TGca;10,

	RE	recognition:tgca			of	len	gth 4 is expected at
	10						
	1				6-	-1	agttctccctgcagctgaactc
	2	!	3-11,3-07,	3-21,3-72,	3-4	18	cactgtatctgcaaatgaacag
10	3	1		3-09,3-43,	3-2	20	ccctgtatctgcaaatgaacag
	4				5-5	51	ccgcctacctgcagtggagcag
	5	3-15, 3-30, 3-30).5,3-30.3,	3-74,3-23,	3-3	33	cgctgtatctgcaaatgaacag
	6	;		7	7-4.	. 1	cggcatatctgcagatctgcag
	7	•			3-7	73	cggcgtatctgcaaatgaacag
15	8	1			5-	-a	ctgcctacctgcagtggagcag
	9				3-4	9	tcgcctatctgcaaatgaacag

B: HpyCH4V REdaptors, Extenders, and Bridges

B.1 REdaptors

! Cutting HC lower strand:

20 ! TmKeller for 100 mM NaCl, zero formamide

	! Edapters for cle	eavage	$T_{\mathtt{m}}^{\ W}$	T_m^{K}
	(ON_HCFR36-1)	<pre>5'-agttctcccTGCAgctgaactc-3'</pre>	68.0	64.5
	(ON_HCFR36-1A)	<pre>5'-ttctcccTGCAgctgaactc-3'</pre>	62.0	62.5
	(ON_HCFR36-1B)	5'-ttctcccTGCAgctgaac-3'	56.0	59.9
25	(ON_HCFR33-15)	<pre>5'-cgctgtatcTGCAaatgaacag-3'</pre>	64.0	60.8
	(ON_HCFR33-15A)	5'-ctgtatcTGCAaatgaacag-3'	56.0	56.3
	(ON_HCFR33-15B)	5'-ctgtatcTGCAaatgaac-3'	50.0	53.1
	(ON_HCFR33-11)	5'-cactgtatcTGCAaatgaacag-3'	62.0	58.9
	(ON_HCFR35-51)	<pre>5'-ccgcctaccTGCAgtggagcag-3'</pre>	74.0	70.1
30	!			

B.2 Segment of synthetic 3-23 gene into which captured CDR3 is to be cloned

```
HpyCH4V
    !
                         AflII...
        .. ..
    !
        Ttg caG atg aac agc TtA agG . . .
         .......
 5 !
      B.3 Extender and Bridges
    ! Extender (bottom strand):
    (ON_HCHpyEx01) 5'-cAAgTAgAgAgTATTcTTAgAgTTgTcTCTAgAcTTAgTgAAgcg-3'
10 ! ON_HCHpyEx01 is the reverse complement of
    ! 5'-cgCttcacTaag tcT aga gac aaC tcT aag aaT acT ctC taC Ttg -3'
    ! Bridges (top strand, 9-base overlap):
15 (ON_HCHpyBr016-1) 5'-cgCttcacTaag tcT aga gac aaC tcT aag-
                     aaT acT ctC taC Ttg CAgctgaac-3' {3'-term C is
    blocked}
    ! 3-15 et al. + 3-11
20 (ON HCHpyBr023-15) 5'-cgCttcacTaag tcT aga gac aaC tcT aag-
                      aaT acT ctC taC Ttg CAaatgaac-3' [3'-term C is
    blocked}
    1
    ! 5-51
25 (ON HCHpyBr045-51) 5'-cgCttcacTaag tcT aga gac aaC tcT aag-
                      aaT acT ctC taC Ttg CAgtggagc-3' (3'-term C is
    blocked}
    ! PCR primer (top strand)
30 !
     (ON HCHpyPCR) 5'-cgCttcacTaag tcT aga gac-3'
    C: BlpI Probes from human HC GLGs
                 1-58,1-03,1-08,1-69,1-24,1-45,1-46,1-f,1-e
35
    acatggaGCTGAGCagcctgag
                                                  1-02
    acatggaGCTGAGCaggctgag
```

- 90 -

```
3
                                                           1-18
     acatggagctgaggagcctgag
                                                       5-51,5-a
     acctgcagtggagcagcctgaa
 5
                                            3-15, 3-73, 3-49, 3-72
     atctgcaaatgaacagcctgaa
                  3303, 3-33, 3-07, 3-11, 3-30, 3-21, 3-23, 3305, 3-48
     atctgcaaatgaacagcctgag
                                            3-20, 3-74, 3-09, 3-43
     atctgcaaatgaacagtctgag
                                                          74.1
     atctgcagatctgcagcctaaa
                                            3-66, 3-13, 3-53, 3-d
     atcttcaaatgaacagcctgag
15
                                                          3-64
     atcttcaaatgggcagcctgag
       11 4301,4-28,4302,4-04,4304,4-31,4-34,4-39,4-59,4-61,4-b
     ccctgaaGCTGAGCtctgtgac
       12
                                                            6-1
20
    ccctgcagctgaactctgtgac
       13
                                                     2-70,2-05
     tccttacaatgaccaacatgga
       14
                                                          2-26
     tccttaccatgaccaacatgga
25 D: BlpI REdaptors, Extenders, and Bridges
       D.1 REdaptors
                                                                   T_m^{W}
                                                                                T_mK
     (BlpF3HC1-58) 5'-ac atg gaG CTG AGC agc ctg ag-3'
                                                                   70
                                                                               66.
30
     (BlpF3HC6-1)
                       5'-cc ctg aag ctg agc tct gtg ac-3'
                                                                   70
                                                                               66.
                                                                               4
     ! BlpF3HC6-1 matches 4-30.1, not 6-1.
       D.2 Segment of synthetic 3-23 gene into which captured CDR3 is to
     be cloned
35
    !
     BlpI
                            XbaI...
     . . . . . .
```

- 91 -

```
!D323* cgCttcacTaag TCT AGA gac aaC tcT aag aaT acT ctC taC Ttg
    caG atg aac
    !
                          AflII...
                        ag<u>C TTA AG</u>G
 5
      D.3 Extender and Bridges
     ! Bridges
     (BlpF3Br1) 5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG-
                       taC Ttg caG Ctg a GC agc ctg-3'
    (BlpF3Br2) 5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG-
                       taC Ttg caG Ctg algc tct gtg-3'
    !
                                         | lower strand is cut here
    ! Extender
     (BlpF3Ext) 5'-TcAgcTgcAAgTAcAAAgTATTTTTAcTgTTATcT<u>cTAqA</u>cTgAgTqAAgcq-
15 31
    ! BlpF3Ext is the reverse complement of:
    ! 5'-cgCttcacTcag tcT aga gaT aaC AGT aaA aaT acT TtG taC Ttg caG
    Ctg a-3'
20
   (BlpF3PCR) 5'-cgCttcacTcag tcT aga gaT aaC-3'
```

E: HpyCH4III Distinct GLG sequences surrounding site, bases 77-98 1 102#1,118#4,146#7,169#9,1e#10,311#17,353#30,404#37,4301 ccgtgtattactgtgcgagaga 103#2,307#15,321#21,3303#24,333#26,348#28,364#31,366#32 25 ctgtgtattactgtgcgagaga 108#3 ccgtgtattactgtgcgagagg 124#5,1f#11 ccgtgtattactgtgcaacaga 30 145#6 ccatgtattactgtgcaagata 158#8 ccgtgtattactgtgcggcaga 205#12 35 ccacatattactgtgcacacag 226#13

ccacatattactgtgcacggat

PCT/US02/12405

	9								270#14	
	ccacgtattactgtgcacggat									
	10						3	09#16	,343#27	
_	ccttgtattactgtgcaaaaga									
5	11					31	3#18,	374#3	5,61#50	
	ctgtgtattactgtgcaagaga 12								315#19	
	ccgtgtattactgtaccacaga								313#19	
	13								320#20	
10	ccttgtatcactgtgcgagaga									
	14								323#22	
	ccgtatattactgtgcgaaaga									
	15						33	0#23,	3305#25	
15	ctgtgtattactgtgcgaaaga								340830	
13	16 ccgtgtattactgtactagaga								349#29	
	17								372#33	
	ccgtgtattactgtgctagaga		_	_						-
	18								373#34	
20	ccgtgtattactgtactagaca									
	19								3d#36	
	ctgtgtattactgtaagaaaga								420#20	
	20								428#38	
25	ccgtgtattactgtgcgagaaa 21						430	2#40.	4304#41	
	ccgtgtattactgtgccagaga									
	22								439#44	
	ctgtgtattactgtgcgagaca									
2.0	23								551#48	
30	ccatgtattactgtgcgagaca									
	24								5a#49	
	ccatgtattactgtgcgaga									
	F: HpyCH4III REdapt	ors, Ex	cenc	iers,	, and	ı bri	lages	3		
	F.1 REdaptors	٠								
35	! ONs for cleavage	of HC(1	ower.) ir	r FR3	(bas	ses 7	77-97	7)	
	! For cleavage with							[
	! cleavage is in lo	wer cha	in b	efoi	ce ba	se 8	38.			
	!	77	788	888	888	889	999	999	9	
	1	78	901	234	567	890	123	456	7	T_m^{H}
40	T _m ^K									
	(H43.77.97.1-02#1)	5'-cc	gtq	tat	tAC	TGT	gcq	aga	g-3'	6462.6
		5'-c₩								6260.6
		5'-cc								6462.6
	(H43.77.97.323#22)		-							6058.7
45										
40	(H43.77.97.330#23)	5'-c₹	geg	cat	Lac	Lgt	geg	ada	y~3.	6058.7

(H43.77.97.439#44)	5'-c體 gtg	tat ta	ac tgt	gcg a	ga g -3'	6260.6
(H43.77.97.551#48)	5'-cc 🎘tg	tat ta	ac tgt	gcg a	ga 📴-3'	6260.6
(H43.77.97.5a#49)	5'-cc atg	tat t	AC TGT	gcg a	ga 🖁-3'	5858.3

F.2 Extender and Bridges

5 ! XbaI and AflII sites in bridges are bunged (H43.XABr1) 5'-ggtgtagtga-

|TCT|AGt|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-|aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat| tgt gcg aga-3' (H43.XABr2) 5'-ggtgtagtga-

10 · |TCT|AGt|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg||aac|agC|TTt|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat| tgt gcg aaa-3'
(H43.XAExt) 5'-ATAgTAgAcT gcAgTgTccT cAgcccTTAA gcTgTTcATc
TgcAAgTAgA-

qAqTATTCTT AgAgTTgTcT cTAgATcAcT AcAcc-3'

- 15 !H43.XAExt is the reverse complement of
 - ! 5'-ggtgtagtga-
 - ! |TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-
 - ! |aac|agC|TTA|AGq|qct|qaq|qac|aCT|GCA|Gtc|tac|tat -3'

(H43.XAPCR) 5'-ggtgtagtga | TCT|AGA|gac|aac-3'

|aac|agC|TTt|AGq|qct|qaq|qac|aCT|GCA|Gtc|tac|tat tgt gcg aga-3' (H43.ABr2) 5'-ggtgtagtga-

|aac|agC|TTt|AGq|qct|qaq|qac|aCT|GCA|Gtc|tac|tat tgt gcg aaa-3'

- 25 (H43.AExt) 5'-ATAGTAGACTGCAGTGTCCTCAGCCCTTAAGCTGTTTCACTACACC-3' !(H43.AExt) is the reverse complement of 5'-ggtgtagtga-
 - ! |aac|agC|TTA|AGq|qct|qaq|qac|aCT|GCA|Gtc|tac|tat -3'

(H43.APCR) 5'-ggtgtagtga |aac|agC|TTA|AGg|gct|g-3'

Table 5: Analysis of frequency of matching REdaptors in actual V genes A: HpyCH4V in HC at bases 35-56

			ź	mbe:	r of	Number of mismatches	atch	es	:	:	:	:	:	Number		
·	Id	Id Ntot	0	4	2	М	4	5	9	7	8	6	2	0 1 2 3 4 5 6 7 8 9 10 Cut	Id	Probe
5	1	510	Ŋ	11	274	11 274 92	61	25	22	11	-	ო	Ŋ	443	6-1	agtteteceTGCAgetgaacte
	8	192	54	42	32	24	15	N	ო	10	ო	н	9	167	3-11	cactgtatcTGCAaatgaacag
	m	28	19	7	17	9	S.		0		0	7	0	54	3-09	ccctgtatcTGCAaatgaacag
	4	267	42	33	O	œ	Φ	82	43	22	&	Ħ	н	100	5-51	ccgcctaccTGCAgtggagcag
	ιΩ	250	111	59	41	24	7	Ω.	-	0	0	8	0	242	3-15	cgctgtatcTGCAaatgaacag
10	9	7	0	7	0	7	0	0	0	0	0	잭	0	m	7-4.1	cggcatatcTGCAgatctgcag
	7	7	0	8	7	0	0	7	-	0	0	0	0	4	3-73	cggcgtatcTGCAaatgaacag
	ω	26	10	4	ч	ю	-	7	Н	ო	7	0	0	19	5-a	ctgcctaccTGCAgtggagcag
	თ	21	ω	2	ю	7	9	٦	0	0	0	0	0	20	3-49	tegectateTGCAaatgaacag
		1338	249	162	379	249 162 379 149 103 120	103	120	71	47	13	23	12	12 1052		
15			249	411	249 411 790 939	939	—	1162	-	1280	Н	1316				
							042		233	1042 1233 1293 1338	293	-	338			

dotted probe	agttctccc TGCA gctgaactc	cac.g.ataaag	ccc.g.ataaag
Probe	agtteteceTGCAgetgaacte agttetece TGCA getgaacte	cactgtatcTGCAaatgaacag cac.g.ataaag	ccctgtatcTGCAaatgaacag ccc.g.ataaag
Id	6-1	3-11	3-09
			20

			acatggaGCTGAGCagcctgag	acatgga gctgagc aggctgag	acatggagctgaggagcctgag	acctgcagtggagcagcctgaa	atctgcaaatgaacagcctgaa
			acatç	acatç	acatç	acctç	atctc
	s s	Name	1-58	1-02	1-18	5-51	3-15
ccgcatgg.ag c.c.g.ataaag c.gca.ataaag c.gcg.ataaag ctgcatgg.ag	fewer mismatches) 0 1 48 fewer mismatches)	Ncut	119	12	0	7	0
	004 misi 0 48 misi	ھ	0	1	0	0	0
	ewer ewer	,	4	0	0	7	0
696. .996. .996. 696.	or fewer ted or fewer	9	ਜ		0	7	0
	only h 4 te xpec	5	Ø	0	0	7	-
а в ф да да в в в в в в в в в в в в в в в в в	ite wit d si une wit	4	ø	0	7	თ	ო
gtgg aatg aatg gtgg	RE s ases s ases s and sases s	ო	13	0	9	10	17
rreca rreca rreca rreca	tted ily c inexp inexp icted ily c	2	11	0	7	16	10
tacc tatc tatc tatc	sxpec an u expe expe sx on:	-	16	-	ω	32	11
ccgcctaccTGCAgtggagcag cgctgtatcTGCAaatgaacag cggcatatcTGCAgatctgcag cggcgtatcTGCAaatgaacag ctgcctaccTGCAgtggagcag tcgcctatcTGCAaatgaacag	the expected RE site only (Counts only cases with 4 or only an unexpected site both expected and unexpected (Counts only cases with 4 or no sites	0	73	11	17	50	13
	4 4 4	n HC Ntot	133	14	34	120	55
5-51 3-15 7-4.1 3-73 5-a 3-49	Seqs Seqs Seqs	B: Bipl in HC Id Nto	п	7	m	4	2
Ŋ	10		15				

		103											
tccttaccatgaccaacatgga	2-26	0	0	0	0	0	0	0	0	7	0	2	14
tccttacaatgaccaacatgga	2-70	0	0	0	0	0	7	7	7	00	15	28	13
ccctgcagctgaactctgtgac	6-1	н	0	г	ო	1	П	0	7	ო	9	16	12
ccctgaagctgagctctgtgac	4301	467	н	4	4	10	21	38	81	78	249	486	11
atcttcaaatgggcagcctgag	3-64	0	0	0	0	0	0	0	-	0	7	7	10
atcttcaaatgaacagcctgag	3-66	0	0	0	0	0	0	Н	7	7	18	23	თ
atctgcagatctgcagcctaaa	74.1	0	0	0	0	0	0	7	0	8	0	က	ω
atctgcaaatgaacagtctgag	3-20	0	0	0	0	ო	-	12	25	16	25	82	7
atctgcaaatgaacagcctgag	3303	0	0	н	0	т	9	41 15	41	88	186	340	9

	Name	Full sequence	Dot mode	
	1-58	acatggaGCTGAGCagcctgag	acatggaGCTGAGCagcctgag	
	1-02	acatgga gctgagc aggctgag	6	
	1-18	acatggagctgaggagcctgag	6	
ഗ	5-51	acctgcagtggagcagcctgaa	cctga	
	3-15	atctgcaaatgaacagcctgaa	.tcc.aaaa	
	3-30.3	atctgcaaatgaacagcctgag	.tcc.aaa	
	3-20	atctgcaaatgaacagtctgag	.tcc.aaat	
	7-4.1	atctgcagatctgcagcctaaa	.tcca.cta.a	
10	3-66	atcttcaaatgaacagcctgag	.tc.tc.aaa	
	3-64	atcttcaaatgggcagcctgag	.tc.tc.aag	
	4-30.1	ccctgaagctgagctctgtgac	c.catctgc	
	6-1	ccctgcagctgaactctgtgac	c.cca.tctgc	
	2-70	tccttacaatgaccaacatgga	t.c.tacaaca.aga	
15	2-26	tccttaccatgaccaacatgga	t.c.taccaca.aga	
	Segs with the	h the expected RE site only	ly 597 (counting sequences with 4 or fewer mismatches)	smatches)
	Segs with	h only an unexpected site	2	
	Segs wit	with both expected and unexpected	ected 2	
	Seqs wit	Seqs with no sites	989	

n HC	
Ť	
-	
C	
7	
- 63	
-	
٠	
- 5	
٧.	
Ξ,	
C	
4	
بت	
~	
щ	
=	
_	
4	
I	
7	
Z	
pyCH4III, Bsr4CI,	•
-	•
工	
C	
_	

In scoring whether the RE site of interest is present, only ONs that have 4 or fewer mismatches are counted.

Number of sequences..... 1617

•	Id	Ntot	0	-	2	6	4	5	9	7	8	Ncut		acngt	acnqt
	п	244	78	95	43	18	10	н	7	0	0	241	102#1,1	ccgtgtattACTGTgcgagaga	ccgtgtattactgtgcgagaga
	2	457	69	150	115	99	34	11	6 0	ო	4	434	103#2,3	ctgtgtattactgtgcgagaga	
	ო	173	52	45	36	22	14	ю	0	0	1 1	169	108#3	ccgtgtattactgtgcgagagg	Ď
ა	4	16	0	ო	7	8	-	ø	0	7	_	00	124#5,1	ccgtgtattactgtgcaacaga	a. C
	S	4	0	0	н	0	-	1	0	1	0	7	145#6	ccatgtattactgtgcaagata	aat.
	9	15	н	0	٦	0	9	4	7	1	н	æ	158#8	ccgtgtattactgtgcggcaga	····gc····
	7	23	4	æ	S	8	7		-	0	0	21	205#12	ccacatattactgtgcacacag	acaacacag
	œ	თ	н	н		0	e	7	-	0	0	9	226#13	ccacatattactgtgcacggat	acaac.gat
0.	თ	7	н	ო	7	-	0	0	т	0	0	9	270#14	ccacgtattactgtgcacggat	acac.gat
	10	23	7	က	2	2	7	-	0	0	0	22	309#16,	ccttgtattactgtgcaaaaga	. t
	11	35	S	10	7	9	က	ო	0	-	0	31	313#18,	ctgtgtattactgtgcaagaga	
	12	18	8	က	7	7	9	1	0	7	0	15	315#19	ccgtgtattactgtaccacaga	
	13	ო	Т	7	0	0	0	0	0	0	0	က	320#20	ccttgtatcactgtgcgagaga	. tc
ഹ	14	111	29	23	28	22	8	4	8	н	0	110	323#22	ccgtatattactgtgcgaaaga	a
	15	75	21	25	13	O	-	4	7	0	0	69	330#23,	otgtgtattactgtgcgaaaga	
	16	14	2	7	7	m	0	က	7	1	0	თ	349#29	ccgtgtattactgtactagaga	מי
	17	7	0	0	-	0	0	-	0	0	0	-	372#33	ccgtgtattactgtgctagaga	:
	18	ч	0	0	-	0	0	0	0	٥	0	н	373#34	ccgtgtattactgtactagaca	a.tc.
0.	19	7	0	0	0	0	0	0	0	0	7	0	3d#36	ctgtgtattactgtaagaaaga	.taaa
	20	34	4	6	6	4	ß	٣	0	0	0	31	428#38	ccgtgtattactgtgcgagaaa	eg
	21	17	s	4	7	7	ო	-	0	0	0	16	4302#40	ccgtgtattactgtgccagaga	
	22	75	15	17	24	7	10	ri	ન	0	0	73	439#44	ctgtgtattactgtgcgagaca	.t
	23	40	14	15	4	S	н	0	н	0	0	39	551#48	ccatgtattactgtgcgagaca	a
່ເນັ	24	213	26	56	9	42	20	7	2	0	0	204	5a#49	ccatgtattactgtgcgagaAA	aAA

Group 337 471 363 218 130 58 23 11 6

Cumulative 337 808 1171 1389 1519 1577 1600 1611 1617

Seqs with the expected RE site only......1511

Seqs with only an unexpected site....... 0

Seqs with both expected and unexpected... 8

ស

- 101 -

Table 5D:

	Ana	alysis	rep	eate	d us	ing	only	8 b	est	REda	ptor	s						
	Id	Ntot	0	1	2	3	4	5	6	7	8+							
5	1	301	78	101	54	32	16	9	10	1	0	281	102#	1				
	cc	gtgtati	tact	gtgc	:gaga	ga												
	2	493	69	155	125	73	37	14	11	3	6	459	103#	2				
	ct	gtgtati	tact	gtgc	gaga	ga												
	3	189	52	45	38	23	18	5	4	1	3	176	108#	3				
10	CC	gtgtati	tact	gtgc	gaga	gg												
	4	127	29	23	28	24	10	6	5	2	0.	114	323#	22				
	cc	gtatati	tact	gtgo	gaaa	ga												
	5	78	21	25	14	11	1	4	2	0	0	72	330#	23				
	ct	gtgtat	tact	gtgc	gaaa	ga	6	79	15	17	25	8	11	1	2	0	0	76
15	439	9#44	cto	gtgta	ttac	tgt	gcgag	aca										
	7	43	14	15	5	5	3	0	1	0	0	42	551#	48				
	CC	atgtat	tact	gtgo	gaga	ca												
	8	307	26	63	72	51	38	24	14	13	6	250	5a#4	9				
	CC	atgtat	tact	tgtgo	gaga													
20	1	102#	1	ccg	ıtgta	ttad	ctgtg	cgag	jaga	ccg	tgta	ttaci	gtgc	gaga	aga	•		
	2	103#3	2	cto	jtgta	ttad	ctgtg	cgag	jaga	.t.	• • • •	• • • •	• • • • •	• • •	• • •			
	3	108#	3	ccg	gtgta	ttad	ctgtg	cgag	jagg	• • •	• • • •	• • • •			g			
	4	323#	22	ccc	tata	ttad	ctgtg	cgaa	aga	• • •	.a	• • • •		a	• • •			
	5	330#	23	cto	rtgta	ttad	ctgtg	cgaa	aga	.t.	• • • •		• • • • •	a	• • •			
25	6	439#	44	cto	rtgta	ttad	ctgtg	cgag	jaca	.t.	• • • •	• • • •	• • • • •	• • • •	.c.			
	7	551#	48	CC	tgta	ttac	ctgtg	cgag	jaca	a	• • • •			• • •	.с.			
	8	5a#4	9	CCa	tgta	ttad	ctgtg	cgag	JaAA	a	• • • •	• • • •	• • • • •	• • • •	. AA			
														٠				
		eqs wi			_					-		463 /	/ 161	7				
		eqs wi		_								0						
30		eqs wi			•				-			7						
	S	eqs wi	th r	no si	tes.	• • • •		• • • •	• • • •	• • • •	• • •	0						

- 102 -

Table 6: Human HC GLG FR1 Sequences

VH Exon - Nucleotide sequence alignment

		_				•															
	VH1																				
_	1-02											GTG	AAG	AAG	CCT	GGG	GCC	TCA	GTG	AAG	GTC
5		TCC	TGC	AAG	GCT	TCT	GGA	TAC	ACC	TTC	ACC										
	1-03	cag	gtC	cag	ctT	gtg	cag	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcc	tca	gtg	aag	gtT
		tcc	tgc	aag	gct	tct	gga	tac	acc	ttc	acT										
	1-08	cag	gtg	cag	ctg	gtg	cag	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcc	tca	gtg	aag	gtc
			-	-	-				acc												
10	1-18	cag	gtT	cag	ctg	gtg	cag	tct	ggA	gct	gag	gtg	aag	aag	cct	ggg	gcc	tca	gtg	aag	gtc
		tcc	tgc	aag	gct	tct	ggT	tac	acc	ttT	acc										
	1-24	cag	gtC	cag	ctg	gtA	cag	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcc	tca	gtg	aag	gtc
		tcc	tgc	aag	gTt	tcC	gga.	tac	acc	Ctc	acT										
	1-45	cag	Atg	cag	ctg	gtg	cag	tct	ggg	gct	gag	gtg	aag	aag	Act	ggg	Tcc	tca	gtg	aag	gtT
15		tcc	tgc	aag	gct	tcC	gga	tac	acc	ttc	acc										
	1-46	cag	gtg	cag	ctg	gtg	cag	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcc	tca	gtg	aag	gtT
		tcc	tgc	aag	gcA	tct	gga	tac	acc	ttc	acc										
	1-58	caA	Atg	cag	ctg	gtg	cag	tct	ggg	Cct	gag	gtg	aag	aag	cct	ggg	Acc	tca	gtg	aag	gtc
		tcc	tgc	aag	gct	tct	gga	tTc	acc	ttT	аст										
20	1-69	cag	gtg	cag	ctg	gtg	cag	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	Tcc	tcG	gtg	aag	gtc
		tcc	tgc	aag	gct	tct	gga	GGc	acc	ttc	aGc										
	1-е	cag	gtg	cag	ctg	gtg	cag	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	TCC	tcG	gtg	aag	gtc
			-	_	_				acc										•		
0.5	1-f	Gag	gtC	cag	ctg	gtA	cag	tct	ggg	gct	gag	gtg	aag	aag	cct	ggg	gcT	Aca	gtg	aaA	Atc
25		tcc	tgc	aag	gTt	tct	gga	tac	acc	ttc	acc										
	VH2																				
	2-05											CTG	GTG	AAA	CCC	ACA	CAG	ACC	CTC	ACG	CTG
						•			TCA												
20	2-26											ctg	gtg	aaa	ccc	aca	Gag	acc	ctc	acg	ctg
30									tca												
	2-70											ctg	gtg	aaa	ccc	aca	cag	acc	ctc	acA	ctg
		acc	tgc	acc	ttc	tct	ggg	ttc	tça	ctc	agc										
	VH3																				
2 E	3-07											TTG	GTC	CAG	CCT	GGG	GGG	TCC	CTG	AGA	CTC
35									ACC												
	3-09											ttg	gtA	cag	cct	ggC	Agg	tcc	ctg	aga	ctc
	2								acc												
	3-11											ttg	gtc	Aag	cct	ggA	ggg	tcc	ctg	aga	ctc
40	2 4 4								acc												
40	3-13											ttg	gtA	cag	cct	ggg	ggg	tcc	ctg	aga	ctc
	2 4-		_	-	-				acc		-										
	3-15											ttg	gtA	Aag	cct	ggg	ggg	tcc	ctT	aga	ctc
		tcc	tgt	gca	gcc	tct	gga	ttc	acT	ttC	agt										

- 103 -

	3-20	gag	gtg	cag	ctg	gtg	gag	tct	ggg	gga	ggT	Gtg	gtA	cGg	cct	ggg	ggg	tcc	ctg	aga	ctc
				gca																	
	3-21	gag	gtg	cag	ctg	gtg	gag	tct	ggg	gga	ggc	Ctg	gtc	Aag	cct	ggg	ggg	tcc	ctg	aga	ctc
				gca																	
5												ttg	gtA	cag	cct	ggg	ggg	tcc	ctg	aga	ctc
				gca																	
												Gtg	gtc	cag	cct	ggg	Agg	tcc	ctg	aga	ctc
				gca													•				
	3-30.3											Gtg	gtc	cag	CCT	ggg	Agg	ECC	ctg	aga	CLC
10				gca								C+~	at a	020	cct		Daa.	tcc	cta	aga	ctc
	3-30.5											GLG	gic	cay	CCC	999	ngg	ttt	ccg	agu	
	2 22			gca								Gta	gtc	can	cct	aaa	Agg	tcc	cta	aga	ctc
	3-33			gca								deg	gcc	cug		999			,	-,-	
15	3-43											Gta	gtA	caq	cct	aaa	aaa	tcc	ctq	aga	ctc
13	3-43	_		gca								9	J			,,,	,,,		-	-	
	3-48											ttg	gtA	cag	cct	ggg	ggg	tcc	ctg	aga	ctc
	3 10			gca								-	-	_							
	3-49											ttg	gtA	cag	ссА	ggg	Cgg	tcc	ctg	aga	ctc
20				Aca																	
	3-53											ttg	Atc	cag	cct	ggg	ggg	tcc	ctg	aga	ctc
		tcc	tgt	gca	gcc	tct	ggG	ttc	acc	GtC	agt										
	3-64	gag	gtg	cag	ctg	gtg	gag	tct	ggg	gga	ggc	ttg	gtc	cag	cct	ggg	ggg	tcc	ctg	aga	ctc
				gca																	
25	3-66	gag	gtg	cag	ctg	gtg	gag	tct	ggg	gga	ggc	ttg	gtc	cag	cct	ggg	ggg	tcc	ctg	aga	ctc
				gca																	
	3-72												gtc	cag	cct	ggA	ggg	tcc	ctg	aga	CEC
				gca											4-					- 7 -	ata
20	3-73												gtc	cag	CCL	999	999	LCC	crg	ana	CCC
30	2 74			gca									gtT	cag	cct	aaa	aaa	tcc	cta	aga	ctc
	3-74			gca									ger	cag		999	999		ccy	-9-	
	3-d												gtA	cag	cct	aaa	aaa	tcc	cta	aga	ctc
	3-u			gca									90	,		333	,,,		•		
35	VH4		cyc	geu	900		995		400	-	-90										
J 0	4-04	CAG	GTG	CAG	CTG	CAG	GAG	TCG	GGC	CCA	GGA	CTG	GTG	AAG	ССТ	TCG	GGG	ACC	CTG	TCC	СТС
	- • •			GCT																	
	4-28												gtg	aag	cct	tcg	gAC	acc	ctg	tcc	ctc
				gct																	
40	4-30.1												gto	aag	cct	tcA	CAg	acc	ctg	tcc	ctc
				Act																	
	4-30.2	cag	Ctg	cag	ctg	caç	gag	tc	ggc	Tca	a gga	cto	gto	aag	cct	tcA	CAg	acc	ctg	tcc	ctc
		acc	tgc	gct	gtc	tct	ggt	ggc	tcc	atc	ago										

- 104 -

	4-30.4	cag	gtg	cag	ctg	cag	gag	tcg	ggc	cca	gga	ctg	gtg	aag	cct	tcA	CAg	acc	ctg	tcc	ct
		acc	tgc	Act	gtc	tct	ggt	ggc	tcc	atc	agc										
	4-31	cag	gtg	cag	ctg	cag	gag	tcg	ggc	cca	gga	ctg	gtg	aag	cct	tcA	CAg	acc	ctg	tcc	cto
		acc	tgc	Act	gtc	tct	ggt	ggc	tcc	atc	agc										
5	4-34	cag	gtg	cag	ctA	cag	Cag	tGg	ggc	Gca	gga	ctg	Ttg	aag	cct	tcg	gAg	acc	ctg	tcc	cto
		acc	tgc	gct	gtc	tAt	ggt	ggG	tcc	Ttc	agT										
	4-39	cag	Ctg	cag	ctg	cag	gag	tcg	ggc	cca	gga	ctg	gtg	aag	cct	tcg	gAg	acc	ctg	tcc	cto
		acc	tgc	Act	gtc	tct	ggt	ggc	tcc	atc	agc										
	4-59	cag	gtg	cag	ctg	cag	gag	tcg	ggc	cca	gga	ctg	gtg	aag	cct	tcg	gAg	acc	ctg	tcc	cto
10		acc	tgc	Act	gtc	tct	ggt	ggc	tcc	atc	agT										
	4-61	cag	gtg	cag	ctg	cag	gag	tcg	ggc	cca	gga	ctg	gtg	aag	cct	tcg	gAg	acc	ctg	tcc	cto
		acc	tgc	Act	gtc	tct	ggt	ggc	tcc	Gtc	agc										
	4-b	cag	gtg	cag	ctg	cag	gag	tcg	ggc	cca	gga	ctg	gtg	aag	cct	tcg	gAg	acc	ctg	tcc	cto
		acc	tgc	gct	gtc	tct	ggt	TAC	tcc	atc	agc										
15	VH5				_															_	
	5-51	GAG										GTG	AAA	AAG	CCC	GGG	GAG	TCT	CTG	AAG	ATO
		TCC	TGT	AAG	GGT	TCT	GGA	TAC	AGC	TTT	ACC										
	5-a	gaA	gtg	cag	ctg	gtg	cag	tct	gga	gca	gag	gtg	aaa	aag	ccc	ggg	gag	tct	ctg	aGg	ato
0.0		tcc	tgt	aag	ggt	tct	gga	tac	agc	ttt	acc										
20	VH6																				
	6-1											CTG	GTG	AAG	CCC	TCG	CAG	ACC	CTC	TCA	CTC
	_	ACC	TGT	GCC	ATC	TCC	GGG	GAC	AGT	GTC	TCT										
	VH7																				
0.5	7-4.1	CAG										TTG	AAG	AAG	CCT	GGG	GCC	TCA	GTG	AAG	GTI
25		TCC	TGC	AAG	GCT	TCT	GGA	TAC	ACC	TTC	ACT						7				

TCC TGC AAG GCT TCT GGA TAC ACC TTC ACT

- 105 -

```
Table 7: RERS sites in Human HC GLG FR1s where there are at least 20 GLGs cut
                                       71 (cuts 16/14 bases to right)
    BsgI GTGCAG
                                                     4: 13
                                            3: 13
                                  3: 4
      1: 4
               1: 13
                         2: 13
                                                   · 9: 13
      6: 13
                                  8: 13
                                            9:
                7: 4
                         7: 13
                                           16:
                                                4
                                                    16: 65
                        15:
                                 15: 65
 5
     10: 4
               10: 13
                                                    19: 65
                        18:
                                 18: 65
                                           19:
     17: 4
               17: 65
                             4
     20: 4
               20: 65
                        21:
                             4
                                 21: 65
                                           22: 4
                                                    22: 65
                                                    25: 65
     23: 4
               23: 65
                        24:
                                 24: 65
                                           25: 4
                                                    28: 65
                                 27: 65
                                           28:
     26:
               26: 65
                        27:
                            4
                                  31:
                                       4
                                           31: 65
                                                    32: 4
10
     29: 4
               30:
                        30: 65
                                           34: 65
                                                    35: 4
                        33: 65
                                  34: 4
     32: 65
               33: 4
                                                    39: 4
                        36: 65
                                  37:
                                           38: 4
     35: 65
               36: 4
                                  45: 4
                                           46: 4
                                                    47: 4
     41: 4
               42: 4
                        43: 4
               48: 13
                        49:
                             4
                                  49: 13
                                           51: 4
     48: 4
     There are 39 hits at base# 4
15
     There are 21 hits at base# 65
                                      9
     -"- ctgcac
                                  39: 63
                                           41: 63
                                                    42: 63
     12: 63
               13: 63
                        14: 63
20
      44: 63
               45: 63
                        46: 63
     BbvI GCAGC
                                     65
                                   7: 6
                                            8: 6
                                                     9:
                                                        6
      1: 6
                3: 6
                         6: 6
                                           16: 67
                                                    17:
                                                         6
     10: 6
               15:
                    6
                        15: 67
                                  16:
                                                    20:
                                                         6
                        18: 67
                                  19:
                                           19: 67
      17: 67
               18:
                    6
                                       6
25
                                                    23: 6
                                           22: 67
      20: 67
               21:
                        21: 67
                                  22:
      23: 67
               24:
                        24: 67
                                  25:
                                       6
                                           25: 67
                                                    26: 6
                    6
                        27: 67
                                  28: 6
                                           28: 67
                                                     29: 6
      26: 67
               27:
                                                     32: 67
      30:
               30: 67
                        31:
                                  31: 67
                                           32:
      33:
               33: 67
                        34:
                                  34: 67
                                           35:
                                                6
                                                    35: 67
                                                     40: 6
30
      36: 6
               36: 67
                        37:
                                  38: 6
                                           39: 6
                              6
      41:
               42:
                        43:
                                  44: 6
                                           45:
                                                6
                                                     46: 6
           6
                              6
      47:
               48:
                        49:
                                  50: 12
                                           51: 6
                    6
      There are 43 hits at base# 6 Bolded sites very near sites
                                      listed below
35
      There are 21 hits at base# 67
     -"-
          gctgc
                                     13
      37:
           9
                              9
                                  40:
                                       3
                                           40: 9
                                                     41: 9
               38:
                    9
                        39:
                                                     47: 9
      42:
                                  45:
                                           46:
               44:
                        44:
```

- 106 -

50: 9 There are 11 hits at base# 9

							_						
_	BsoFl		_					18	_	_	0	_	
5	1:	6	3:	6	6:	6	7:	6	8:	6	9:	6	
	10:	6	15:	6	15:	67	16:	6	16:	67	17:	6	
	17:	67	18:	6	18:	67	19:	6	19:	67	20:	6	
	20:	67	21:	6	21:	67	22:	6	22:	67	23:	6	
	23:	67	24:	6	24:	67	25:	6	25:	67	26:	6	
10	26:	67	27:	6	27:	67	28:	6	28:	67	29:	6	
	30:	6	30:	67	31:	6	31:	67	32:	6	32:	67	
	33:	6	33:	67	34:	6	34:	67	35:	6	35:	67	
	36:	6	36:	67	<u> 37:</u>	6	37:	9	<u>38:</u>	6	38:	9	
	39:	6	39:	9	<u>40:</u>	3	40:	6	40:	9	41:	6	
15	41:	9 -	42:	6	42:	. 9.	43:	6	44:	3	44:	6	_
	44:	9	<u>45:</u>	6	45:	9	46:	6	46:	9	<u> 47:</u>	6	_
	47:	9	48:	6	49:	6	50:	9	50:	12	51:	6	
	The	re ar	e 43	hit	s at	bas	e# 6	The	se oft	en	occur	toge	ether.
	The	re ar	e 11	hit	s at	bas	e# 9						
20	The	re ar	e 2		s at								
20		re ar re ar		hit	s at	bas							
20				hit	s at	bas	e# 3						
20	The		e 21	hit	s at	bas	e# 3 e# 67	78					
20	The	re ar	e 21	hit	s at	bas	e# 3 e# 67	78 6	8:	6	9:	6	
20	The	re ar Gcwg	e 21	hit hit	s at	bas	e# 3 e# 67		8: 16:	6 67	9: 17:	6 6	
	Ther TseI 1:	re ar Gcwg 6	e 21 c 3:	hit hit	s at s at	bas bas	e# 3 e# 67	6					
	Ther TseI 1: 10:	re ar Gcwg 6 6	e 21 c 3: 15:	hit hit	s at s at 6: 15:	bas bas	e# 3 e# 67 7: 16:	6 6	16:	67	17:	6	
	Ther TseI 1: 10: 17:	GCWG 6 6 6	c 3: 15: 18:	hit hit 6	s at s at 6: 15:	bas bas 6 67	e# 3 e# 67 7: 16: 19:	6 6 6	16: 19:	67 67	17: 20:	6 6	
	TseI 1: 10: 17: 20:	Gcwg 6 6 6 67	e 21 c 3: 15: 18: 21:	6 6 6 6	6: 15: 18: 21:	bas bas 6 67 67	e# 3 e# 67 7: 16: 19: 22:	6 6 6	16: 19: 22:	67 67 67	17: 20: 23:	6 6 6	
	TseI 1: 10: 17: 20: 23:	Gcwg 6 6 67 67	3: 15: 18: 21: 24:	6 6 6 6	6: 15: 18: 21:	bas bas 6 67 67 67	e# 3 e# 67 7: 16: 19: 22: 25:	6 6 6 6	16: 19: 22: 25:	67 67 67 67	17: 20: 23: 26:	6 6 6	
25	TseI 1: 10: 17: 20: 23: 26:	Gcwg 6 6 67 67 67	re 21 rc 3: 15: 18: 21: 24: 27:	hit hit 6 6 6 6 6 6 6	6: 15: 18: 21: 24: 27:	bas bas 6 67 67 67 67	e# 3 e# 67 7: 16: 19: 22: 25: 28:	6 6 6 6 6 6	16: 19: 22: 25: 28:	67 67 67 67	17: 20: 23: 26: 29:	6 6 6 6	
25	TseI 1: 10: 17: 20: 23: 26: 30:	Gcwg 6 6 67 67 67 67	3: 15: 18: 21: 24: 27: 30:	6 6 6 6 6 6	6: 15: 18: 21: 24: 27: 31:	bas bas 6 67 67 67 67	e# 3 e# 67 7: 16: 19: 22: 25: 28: 31:	6 6 6 6 6 6	16: 19: 22: 25: 28: 32: 35:	67 67 67 67 67	17: 20: 23: 26: 29: 32: 35:	6 6 6 6 6	
25	TseI 1: 10: 17: 20: 23: 26: 30: 33:	Gcwg 6 6 67 67 67 67	3: 15: 18: 21: 24: 27: 30: 33:	6 6 6 6 6 6 6 6	6: 15: 18: 21: 24: 27: 31:	bas bas 6 67 67 67 67 67 6	e# 3 e# 67 7: 16: 19: 22: 25: 28: 31: 34:	6 6 6 6 6 67	16: 19: 22: 25: 28: 32:	67 67 67 67 67 6	17: 20: 23: 26: 29: 32:	6 6 6 6 67 67	
25	TseI 1: 10: 17: 20: 23: 26: 30: 33: 36:	Gcwg 6 6 67 67 67 67 6	3: 15: 18: 21: 24: 27: 30: 33:	6 6 6 6 6 6 6 6 7 67	6: 15: 18: 21: 24: 27: 31: 34: 37:	6 67 67 67 67 67 6 6	e# 3 e# 67 7: 16: 19: 22: 25: 28: 31: 34: 37:	6 6 6 6 6 67 67	16: 19: 22: 25: 28: 32: 35: 38: 40:	67 67 67 67 67 6 6	17: 20: 23: 26: 29: 32: 35: 38:	6 6 6 6 67 67 9	
25	TseI 1: 10: 17: 20: 23: 26: 30: 33: 36: 39:	Gcwg 6 6 67 67 67 66 6	3: 15: 18: 21: 24: 27: 30: 33: 36: 39:	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6: 15: 18: 21: 24: 27: 31: 34:	bas bas 6 67 67 67 67 67 6 6	e# 3 e# 67 7: 16: 19: 22: 25: 28: 31: 34: 37:	6 6 6 6 67 67 9	16: 19: 22: 25: 28: 32: 35: 38:	67 67 67 67 6 6 6 6	17: 20: 23: 26: 29: 32: 35: 38:	6 6 6 6 67 67 9	 -

There are 43 hits at base# 6 Often together.

51: 6

<u>47: 9</u> 48: 6 49: 6 <u>50: 9 50: 12</u>

There are 11 hits at base# 9

There are 2 hits at base# 3
There are 1 hits at base# 12
There are 21 hits at base# 67

```
48
 5
    MspAlI CMGckg
                                            6: 7
                                                     7: 7
       1: 7
                3:
                   7
                         4: 7
                                  5: 7
       8:
                9:
                    7
                        10:
                            7
                                 11:
                                      7
                                           15:
                                                    16:
                                      7
                                           21:
                                                    22:
                                                         7
      17:
               18:
                    7
                        19:
                                  20:
                                      7
                                           27:
                                                    28:
                                                        7
      23:
          7
               24:
                    7
                        25: 7
                                 26:
                                           33:
                                                7
                                                    34:
                                                        7
                    7
                        31:
                            7
                                  32:
10
      29: 7
               30:
      35:
               36:
                   7
                        37:
                             7
                                  38:
                                           39:
                                                7
                                                    40:
          7
                                                7
                                                    45:
                                                        7
                             7
     40: 7
                    7
                        42:
                                  44:
                                           44:
               41:
               47: 7
                        48:
                                  49:
                                           50:
                                                    51: 7
      46:
          7
      There are 46 hits at base# 7
15
     PvuII CAGctg
                                     48
       1:
           7
                3:
                   7
                         4: 7
                                  5:
                                      7
                                            6:
                                                7
                                                     7:
                                                        7
       8:
           7
                9:
                    7
                        10: 7
                                  11:
                                      7
                                           15:
                                                    16:
                                                         7
      17:
          7
               18:
                    7
                        19: 7
                                  20:
                                      7
                                           21:
                                                7
                                                    22:
20
                                           27:
                                                    28: 7
      23:
           7
               24:
                    7
                        25: 7
                                  26:
                                      7
                                                7
      29:
           7
               30:
                    7
                        31: 7
                                  32:
                                       7
                                           33:
                                                7
                                                    34: 7
                                                7
      35:
          7
               36:
                    7
                        37:
                                  38:
                                       7
                                           39:
                                                    40:
                                                         1
                                                    45: 7
                                                7
     40: 7
               41:
                    7
                        42:
                             7
                                  44:
                                           44:
                    7
                             7
                                      7
                                           50:
                                               7
                                                    51: 7
      46:
           7
               47:
                        48:
                                  49:
25
      There are 46 hits at base#
                  2 hits at base#
      There are
     AluI AGct
                                     54
       1:
           8
                2:
                    8
                          3: 8
                                   4: 8
                                            4: 24
                                                     5:
                                                        8
30
       6:
                7:
                                   9: 8
                                           10:
                                                     11:
           8
                    8
                         8:
                              8
                                                    20:
      15:
           8
               16:
                    8
                        17:
                              8
                                  18: 8
                                           19:
                                                8
                                                          8
      21:
                                  24: 8
                                           25:
                                                    26:
           8
               22:
                    8
                        23: 8
      27:
                                           30:
                                                     31:
                                                          8
           8
               28:
                    8
                        29:
                              8
                                  29: 69
                                                8
      32:
           8
               33: 8
                        34:
                             8
                                  35: 8
                                           36:
                                                8
                                                     37:
                                                          8
35
      38:
                                                     42:
                                                          8
           8
               39:
                    8
                        40: 2
                                  40: 8
                                           41:
      43:
           8
               44: 2
                        44: 8
                                  45: 8
                                           46: 8
                                                     47:
                                                          8
```

49: 82

50: 8

51: 8

48:

8

48: 82

49: 8

```
There are 48 hits at base# 8
      There are
                  2 hits at base#
     DdeI Ctnag
                                     48
 5
       1: 26
                1: 48
                          2: 26
                                   2: 48
                                             3: 26
                                                      3: 48
       4: 26
                4: 48
                          5: 26
                                   5: 48
                                             6: 26
                                                      6: 48
       7: 26
                7: 48
                         8: 26
                                   8: 48
                                             9: 26
                                                     10: 26
      11: 26
               12: 85
                        13: 85
                                  14: 85
                                           15: 52
                                                     16: 52
      17: 52
               18: 52
                        19: 52
                                  20: 52
                                           21: 52
                                                     22: 52
10
      23: 52
               24: 52
                        25: 52
                                  26: 52
                                           27: 52
                                                     28: 52
      29: 52
               30: 52
                         31: 52
                                  32: 52
                                            33: 52
                                                     35: 30
      35: 52
               36: 52
                         40: 24
                                  49: 52
                                            51: 26
                                                     51: 48
     There are 22 hits at base# 52 52 and 48 never together.
      There are 9 hits at base# 48
15
      There are 12 hits at base# 26 26 and 24 never together.
     HphI tcacc
                                     42
       1: 86
                3: 86
                          6: 86
                                   7: 86
                                            8: 80
                                                     11: 86
      12: 5
               13: 5
                         14: 5
                                  15: 80
                                           16: 80
                                                     17: 80
20
      18: 80
               20: 80
                         21: 80
                                  22: 80
                                           23: 80
                                                     24: 80
      25: 80
               26: 80
                        27: 80
                                  28: 80
                                           29: 80
                                                     30: 80
      31: 80
               32: 80
                                           35: 80
                         33: 80
                                  34: 80
                                                     36: 80
      37: 59
               38: 59
                         39: 59
                                  40: 59
                                           41: 59
                                                     42: 59
      43: 59
               44: 59
                         45: 59
                                  46: 59
                                            47: 59
                                                     50: 59
25
      There are 22 hits at base# 80 80 and 86 never together
      There are
                  5 hits at base# 86
      There are 12 hits at base# 59
     BssKI Nccngg
                                     50
30
       1: 39
                2: 39
                         3: 39
                                   4: 39
                                            5: 39
                                                      7: 39
       8: 39
                9: 39
                        10: 39
                                  11: 39
                                           15: 39
                                                     16: 39
      17: 39
               18: 39
                        19: 39
                                  20: 39
                                           21: 29
                                                     21: 39
     22: 39
               23: 39
                        24: 39
                                  25: 39
                                           26: 39
                                                     27: 39
     28: 39
               29: 39
                        30: 39
                                  31: 39
                                           32: 39
                                                     33: 39
35
     34: 39
                        35: 39
               35: 19
                                  36: 39
                                           37: 24
                                                     38: 24
     39: 24
               41: 24
                        42: 24
                                  44: 24
                                           45: 24
                                                     46: 24
     47: 24
               <u>48: 39</u>
                        48: 40
                                  49: 39
                                           49: 40
                                                     50: 24
     50: 73
               51: 39
```

There are 35 hits at base# 39 39 and 40 together twice.

- 109 -

There are 2 hits at base# 40

	BsaJI	Con	ngg				4	17					
	1:	40	2:	40	3:	40	4:	40	5:	40	7:	40	
5	8:	40	9:	40	9:	47	10:	40	10:	47	11:	40	
	15:	40	18:	40	19:	40	20:	40	21:	40	22:	40	
	23:	40	24:	40	25:	40	26:	40	27:	40	28:	40	
	29:	40	30:	40	31:	40	32:	40	34:	40	35:	20	
	35:	40	36:	40	37:	24	38:	24	39:	24	41:	24	
10	42:	24	44:	24	45:	24	46:	24	47:	24	48:	40	_
	48:	41	<u> 49:</u>	40	49:	41	50:	74	51:	40			
	Ther	e ar	e 32	hi?	ts at	bas	se# 40	40	and 41	l to	ogether	tw:	ice
	Ther	e ar	e 2	hi ?	ts at	bas	se# 41						
	Ther	e ar	e 9) hi	ts at	bas	se# 24						
15	Ther	e ar	e 2	hi s	ts at	bas	se# 47						
	BstN]	CCw	gg				4	44					
	PspG1	CCW	gg										
	ScrF	(\$M.	Hpall	() C	Cwgg								
20	1:	40	2:	40	3:	40	4:	40	5:	40	7:	40	
	8:	40	9:	40	10:	40	11:	40	15:	40	16:	40	
	17:	40	18:	40	19:	40	20:	40	21:	30	21:	40	
	22:	40	23:	40	24:	40	25:	40	26:	40	27:	40	
	28:	40	29:	40	30:	40	31:	40	32:	40	33:	40	
25	34:	40	35:	40	36:	40	37:	25	38:	25	39:	25	
	41:	25	42:	25	44:	25	45:	25	46:	25	47:	25	
	50:	25	51:	40									
	Thei	ce ar	e 33	3 hi	its at	bas	se# 40						
30	ScrF	CCn	gg				!	50					
	1:	40	2:	40	3:	40	4:	40	5:	40	7:	40	
	8:	40	9:	40	10:	40	11:	40	15:	40	16:	40	
	17:	40	18:	40	19:	40	20:	40	21:	30	21:	40	
	22:	40	23:	40	24:	40	25:	40	26:	40	27:	40	
35	28:	40	29:	40	30:	40	31:	40	32:	40	33:	40	
	34:	40	35:	20	35:	40	36:	40	37:	25	38:	25	
	39:	25	41:	25	42:	25	44:	25	45:	25	46:	25	

- 110 -

```
47: 25
              48: 40
                       48: 41 49: 40
                                         49: 41
                                                    50: 25
      50: 74
               51: 40
      There are 35 hits at base# 40
                  2 hits at base# 41
      There are
 5
     EcoO109I RGgnccy
                                    34
                2: 43
       1: 43
                         3: 43
                                  4: 43
                                           5: 43
                                                     6: 43
       7: 43
                8: 43
                         9: 43
                                 10: 43
                                          15: 46
                                                   16: 46
      17: 46
              18: 46
                       19: 46
                                 20: 46
                                          21: 46
                                                    22: 46
10
     23: 46
               24: 46
                        25: 46
                                 26: 46
                                           27: 46
                                                    28: 46
      30: 46
               31: 46
                        32: 46
                                 33: 46
                                           34: 46
                                                    35: 46
      36: 46
               37: 46
                        43: 79
                                 51: 43
      There are 22 hits at base# 46 46 and 43 never together
      There are 11 hits at base# 43
15
    NlaIV GGNncc
                                    71
       1: 43
                2: 43
                         3: 43
                                  4: 43
                                           5: 43
                                                     6: 43
       7: 43.
                8: 43
                         9: 43
                                  9: 79
                                          10: 43
                                                   10: 79
     15: 46
              15: 47
                        16: 47
                                 17: 46
                                          17: 47
                                                    18: 46
     18: 47
               19: 46
                        19: 47
                                 20: 46
                                          20: 47
                                                    21: 46
20
    21: 47
               22: 46
                        22: 47
                                 23: 47
                                           24: 47
                                                    25: 47
      26: 47
               27: 46
                        27: 47
                                 28: 46
                                          28: 47
                                                    29: 47
      30: 46
               30: 47
                        31: 46
                                 31: 47
                                          32: 46
                                                    32: 47
      33: 46
               33: 47
                        34: 46
                                 34: 47
                                          35: 46
                                                    35: 47
     36: 46
               36: 47
                        37: 21
                                 37: 46
                                          37: 47
                                                    37: 79
25
      38: 21
               39: 21
                        39: 79
                                 40: 79
                                          41: 21
                                                    41: 79
      42: 21
               42: 79
                        43: 79
                                 44: 21
                                           44: 79
                                                    45: 21
      45: 79
               46: 21
                        46: 79
                                 47: 21
                                          51: 43
      There are 23 hits at base# 47 46 & 47 often together
     There are 17 hits at base# 46
                                         There are 11 hits at base# 43
30
   Sau96I Ggncc
                                    70
       1: 44
                2: 3
                         2: 44
                                  3: 44
                                           4: 44
                                                     5: 3
                                                              5: 44
                                                                       6: 44
      7: 44
                8: 22
                         8: 44
                                  9: 44
                                          10: 44
                                                    11: 3
                                                             12: 22
                                                                      13: 22
     14: 22
               15: 33
                        15: 47
                                 16: 47
                                          17: 47
                                                    18: 47
                                                             19: 47
                                                                      20: 47
     21: 47
               22: 47
                        23: 33
                                 23: 47
                                          24: 33
                                                    24: 47
                                                             25: 33
                                                                      25: 47
35
     26: 33
               26: 47
                        27: 47
                                 28: 47
                                          29: 47
                                                    30: 47
                                                             31: 33
                                                                      31: 47
     32: 33
               32: 47
                        33: 33
                                 33: 47
                                          34: 33
                                                    34: 47
                                                             35: 47
                                                                      36: 47
     37: 21
               37: 22
                        37: 47
                                 38: 21
                                          38: 22
                                                    39: 21
                                                             39: 22
                                                                      41: 21
      41: 22
               42: 21
                        42: 22
                                 43: 80
                                          44: 21
                                                    44: 22
                                                             45: 21
                                                                      45: 22
     46: 21
               46: 22
                        47: 21
                                 47: 22
                                          50: 22
                                                    51: 44
```

- 111 -

```
There are 23 hits at base# 47 These do not occur together.
     There are 11 hits at base# 44
     There are 14 hits at base# 22 These do occur together.
                  9 hits at base# 21
     There are
5
                                    22
    BsmAI GTCTCNnnnn
                                  5: 58
                                            8: 58
                                                     9: 58
      1: 58
                3: 58
                         4: 58
     10: 58
                        36: 18
                                 37: 70
                                           38: 70
                                                    39: 70
               13: 70
                                           45: 70
                                                    46: 70
     40: 70
               41: 70
                        42: 70
                                 44: 70
               48: 48
                        49: 48
                                 50: 85
10
     47: 70
     There are 11 hits at base# 70
                                     27
    -"-
           Nnnnnngagac
                                 17: 48
                                           18: 48
                                                    20: 48
               15: 48
                        16: 48
     13: 40
                                                    26: 48
15
     21: 48
               22: 48
                        23: 48
                                 24: 48
                                           25: 48
     27: 48
               28: 48
                        29: 48
                                  30: 10
                                           30: 48
                                                    31: 48
                                           43: 40
                                                    44: 40
     32: 48
                        35: 48
                                  36: 48
               33: 48
      45: 40
               46: 40
                        47: 40
     There are 20 hits at base# 48
20
     AvaII Ggwcc
                                     44
     Sau96I($M.HaeIII) Ggwcc
                                     44
                                                    10: 44
       2: 3
               5: 3
                         6: 44
                                   8: 44
                                            9: 44
                                                    15: 47
                                  14: 22
                                           15: 33
      11: 3
               12: 22
                        13: 22
25
      16: 47
               17: 47
                        18: 47
                                  19: 47
                                           20: 47
                                                    21: 47
                                           24: 47
                                                    25: 33
      22: 47
               23: 33
                        23: 47
                                  24: 33
                                                    29: 47
      25: 47
               26: 33
                        26: 47
                                  27: 47
                                           28: 47
      30: 47
               31: 33
                        31: 47
                                  32: 33
                                           32: 47
                                                    33: 33
      33: 47
               34: 33
                        34: 47
                                  35: 47
                                           36: 47
                                                     37: 47
30
      43: 80
               50: 22
      There are 23 hits at base# 47 44 & 47 never together
                  4 hits at base# 44
      There are
                                     27
     PpuMI RGgwccy
                                                     16: 46
35
       6: 43
                8: 43
                         9: 43
                                  10: 43
                                           15: 46
      17: 46
               18: 46
                        19: 46
                                  20: 46
                                           21: 46
                                                     22: 46
      23: 46
                                  26: 46
                                           27: 46
                                                     28: 46
               24: 46
                        25: 46
```

- 112 -

```
30: 46
               31: 46
                        32: 46
                                           34: 46
                                                    35: 46
                                  33: 46
     36: 46
               37: 46
                        43: 79
     There are 22 hits at base# 46 43 and 46 never occur together.
                  4 hits at base# 43
     There are
 5
    BsmFI GGGAC
       8: 43
               37: 46
                        50: 77
     -"-
           gtccc
                                     33
     15: 48
               16: 48
                                   1: 0
                                            1: 0
                        17: 48
                                                    20: 48
10
     21: 48
               22: 48
                        23: 48
                                  24: 48
                                           25: 48
                                                    26: 48
      27: 48
               28: 48
                        29: 48
                                  30: 48
                                           31: 48
                                                    32: 48
     33: 48
               34: 48
                        35: 48
                                  36: 48
                                           37: 54
                                                     38: 54
      39: 54
               40: 54
                        41: 54
                                  42: 54
                                           43: 54
                                                     44: 54
      45: 54
               46: 54
                        47: 54
15
      There are 20 hits at base# 48
      There are 11 hits at base# 54
     HinfI Gantc
                                     80
       8: 77
               12: 16
                        13: 16
                                  14: 16
                                           15: 16
                                                    15: 56
20
     15: 77
               16: 16
                        16: 56
                                  16: 77
                                           17: 16
                                                    17: 56
      17: 77
               18: 16
                        18: 56
                                  18: 77
                                           19: 16
                                                    19: 56
      19: 77
               20: 16
                        20: 56
                                  20: 77
                                           21: 16
                                                    21: 56
      21: 77
               22: 16
                        22: 56
                                  22: 77
                                           23: 16
                                                    23: 56
      23: 77
               24: 16
                        24: 56
                                  24: 77
                                           25: 16
                                                    25: 56
25
      25: 77
               26: 16
                        26: 56
                                  26: 77
                                           27: 16
                                                    27: 26
      27: 56
               27: 77
                        28: 16
                                  28: 56
                                           28: 77
                                                    29: 16
      29: 56
               29: 77
                        30: 56
                                  31: 16
                                           31: 56
                                                    31: 77
      32: 16
               32: 56
                        32: 77
                                  33: 16
                                           33: 56
                                                    33: 77
      34: 16
               35: 16
                        35: 56
                                  35: 77
                                           36: 16
                                                    36: 26
30
      36: 56
               36: 77
                        37: 16
                                  38: 16
                                           39: 16
                                                     40: 16
      41: 16
               42: 16
                         44: 16
                                  45: 16
                                           46: 16
                                                     47: 16
      48: 46
               49: 46
      There are 34 hits at base# 16
35
    TfiI Gawtc
                                     21
       8: 77
               15: 77
                        16: 77
                                  17: 77
                                           18: 77
                                                    19: 77
     20: 77
               21: 77
                        22: 77
                                  23: 77
                                           24: 77
                                                    25: 77
     26: 77
               27: 77
                        28: 77
                                  29: 77
                                           31: 77
                                                    32: 77
```

PCT/US02/12405 WO 02/083872

- 113 -

33: 77 35: 77 36: 77 There are 21 hits at base# 77

	MlyI	GAGT	2				3	38				
5	12:	16	13:	16	14:	16	15:	16	16:	16	17:	16
	18:	16	19:	16	20:	16	21:	16	22:	16	23:	16
	24:	16	25:	16	26:	16	27:	16	27:	26	28:	16
	29:	16	31:	16	32:	16	33:	16	34:	16	35:	16
	36:	16	36:	26	37:	16	38:	16	39:	16	40:	16
10	41:	16	42:	16	44:	16	45:	16	46:	16	47:	16
	48:	46	49:	46								
	The	re ar	e 34	1 hits	s at	base	16					
	-"-	GACT						21				
15	15:			56						56	20:	
	21:				23:		24:		25:		26:	
	27:	56	28:		29:		30:	56	31:	56	32:	56
	33:			56								
	The	re ar	e 2:	l hit	s at	base	# 56					
20												
		gagt						38				
	12:		13:				15:		16:		17:	16
	18:		19:		20:		21:			16	23:	16
0.5	24:		25:		26:		27:		27:		28:	
25	29:				32:		33:		34:		35:	
	36:		36:		37:		38:		39:		40:	
	41:				44:	16	45:	16	46:	16	47:	16
	48:		49:									
20		re ar		4 hit	s at	base		0.1				
30		gact		5.6		5.6		21	10.	5.0	20.	E C
		56		56	•				19:		20:	
	21:		22:		23:		24:		25:		26:	
	27:		28:			56	30:	56	31:	56	32:	36
25	33:		35:		36:		# E <i>E</i>					
35		re ar			s at	985Q		26				
		I CAG		•	, ,	CO.		26 60	10.	60	20.	60
	15:	68	16:	68	1/:	PR	T8:	80	19:	68	20:	80

- 114 -

 21:
 68
 22:
 68
 23:
 68
 24:
 68
 25:
 68
 26:
 68

 27:
 68
 28:
 68
 29:
 68
 30:
 68
 31:
 68
 32:
 68

 33:
 68
 34:
 68
 35:
 68
 36:
 68
 39:
 46
 40:
 46

 41:
 46
 42:
 46

5 There are 22 hits at base# 68

- 115 -

	Ta	ble	8: Ka	арра	FR1 (GLGs								
	!	1	2	3	4	5	6	7	8	9	10	11	12	
		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
	!	13	14	15	16	17	18	19	20	21	22	23		
5		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	012
		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	02
		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	018
10		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	08
		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	A20
		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
15		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	A30
		AAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCT	GCC	ATG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGT	!	L14
		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCA	CTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGT	!	L1
20		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCA	CTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGT	!	L15
		GCC	ATC	CAG	TTG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	L4
		GCC	ATC	CAG	TTG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
25		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	L18
		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCT	TCC	GTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGT	!	L5
		GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCT	TCT	GTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGT	!	L19
30		GAC	ATC	CAG	TTG	ACC	CAG	TCT	CCA	TCC	TTC	CTG	TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	L8
													TCT	
		GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	L23
		GCC	ATC	CGG	ATG	ACC	CAG	TCT	CCA	TCC	TCA	TTC	TCT	
35		GCA	TCT	ACA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGT	!	L9

- 116 -

	GTC	ATC	TGG	ATG	ACC	CAG	TCT	CCA	TCC	TTA	CTC	TCT	
	GCA	TCT	ACA	GGA	GAC	AGA	GTC	ACC	ATC	AGT	TGT	!	L24
	GCC	ATC	CAG	ATG	ACC	CAG	TCT	CCA	TCC	TCC	CTG	TCT	
	GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	L11
5	GAC	ATC	CAG	ATG	ACC	CAG	TCT	CCT	TCC	ACC	CTG	TCT	
	GCA	TCT	GTA	GGA	GAC	AGA	GTC	ACC	ATC	ACT	TGC	!	L12
	GAT	ATT	GTG	ATG	ACC	CAG	ACT	CCA	CTC	TCC	CTG	CCC	
	GTC	ACC	CCT	GGA	GAG	CCG	GCC	TCC	ATC	TCC	TGC	!	011
	GAT	ATT	GTG	ATG	ACC	CAG	ACT	CCA	CTC	TCC	CTG	CCC	
10	GTC	ACC	CCT	GGA	GAG	CCG	GCC	TCC	ATC	TCC	TGC	!	01
	GAT	GTT	GTG	ATG	ACT	CAG	TCT	CCA	CTC	TCC	CTG	CCC	
	GTC	ACC	CTT	GGA	CAG	CCG	GCC	TCC	ATC	TCC	TGC	!	A17
	GAT	GTT	GŢG	ATG	ACT	CAG	TCT	CCA	CTC	TCC	CTG	CCC	
	GTC	ACC	CTT	GGA	CAG	CCG	GCC	TCC	ATC	TCC	TGC	!	A1
15	GAT	ATT	GTG	ATG	ACC	CAG	ACT	CCA	CTC	TCT	CTG	TCC	
	GTC	ACC	CCT	GGA	CAG	CCG	GCC	TCC	ATC	TCC	TGC	!	A18
	GAT	ATT	GTG	ATG	ACC	CAG	ACT	CCA	CTC	TCT	CTG	TCC	
	GTC	ACC	CCT	GGA	CAG	CCG	GCC	TCC	ATC	TCC	TGC	!	A2
	GAT	ATT	GTG	ATG	ACT	CAG	TCT	CCA	CTC	TCC	CTG	CCC	
20	GTC	ACC	CCT	GGA	GAG	CCG	GCC	TCC	ATC	TCC	TGC	!	A19
	GAT	ATT	GTG	ATG	ACT	CAG	TCT	CCA	CTC	TCC	CTG	CCC	
	GTC	ACC	CCT	GGA	GAG	CCG	GCC	TCC	ATC	TCC	TGC	!	A 3
	GAT	ATT	GTG	ATG	ACC	CAG	ACT	CCA	CTC	TCC	TCA	CCT	
	GTC	ACC	CTT	GGA	CAG	CCG	GCC	TCC	ATC	TCC	TGC	!	A23
25	GAA	ATT	GTG	TTG	ACG	CAG	TCT	CCA	GGC	ACC	CTG	TCT	
	TTG	TCT	CCA	GGG	GAA	AGA	GCC	ACC	CTC	TCC	TGC	!	A27
						CAG							
	TTG	TCT	CCA	GGG	GAA	AGA	GCC	ACC	CTC	TCC	TGC	!	A11
	GAA	ATA	GTG	ATG	ACG	CAG	TCT	CCA	GCC	ACC	CTG	TCT	
30	GTG	TCT	CCA	GGG	GAA	AGA	GCC	ACC	CTC	TCC	TGC	!	L2
	GAA	ATA	GTG	ATG	ACG	CAG	TCT	CCA	GCC	ACC	CTG	TCT	
	GTG	TCT	CCA	GGG	GAA	AGA	GCC	ACC	CTC	TCC	TGC	!	L16
	GAA	ATT	GTG	TTG	ACA	CAG	TCT	CCA	GCC	ACC	CTG	TCT	
	TTG	TCT	CCA	GGG	GAA	AGA	GCC	ACC	CTC	TCC	TGC	!	L6
35	GAA	ATT	GTG	TTG	ACA	CAG	TCT	CCA	GCC	ACC	CTG	TCT ·	

PCT/US02/12405

- 117 -

	TTG	TCT	CCA	GGG	GAA	AGA	GCC	ACC	CTC	TCC	TGC	:	L20
	GAA	ATT	GTA	ATG	ACA	CAG	TCT	CCA	GCC	ACC	CTG	TCT	
	TTG	TCT	CCA	GGG	GAA.	AGA	GCC	ACC	CTC	TCC	TGC	!	L25
	GAC	ATC	GTG	ATG	ACC	CAG	TCT	CCA	GAC	TCC	CTG	GCT	
5	GTG	TCT	CTG	GGC	GAG	AGG	GCC	ACC	ATC	AAC	TGC	!	В3
	GAA	ACG	ACA	CTC	ACG	CAG	TCT	CCA	GCA	TTC	ATG	TCA	
	GCG	ACT	CCA	GGA	GAC	AAA	GTC	AAC	ATC	TCC	TGC	!	B2
	GAA	ATT	GTG	CTG	ACT	CAG	TCT	CCA	GAC	TTT	CAG	TCT	
	GTG	ACT	CCA	AAG	GAG	AAA	GTC	ACC	ATC	ACC	TGC	!	A26
10	GAA	ATT	GTG	CTG	ACT	CAG	TCT	CCA	GAC	TTT	CAG	TCT	
	GTG	ACT	CCA	AAG	GAG	AAA	GTC	ACC	ATC	ACC	TGC	!	A10
	GAT	GTT	GTG	ATG	ACA	CAG	TCT	CCA	GCT	TTC	CTC	TCT	
	CTC	ΔСΨ	CCA	GGG	GAG	AAA	GTC	ACC	ATC	ACC	TGC	!	A14

Table 9 RERS sites found in Human Kappa FR1 GLGs

	MslI	Foki > <>	PAFI	Bsrl	BsmAI	Mnil	HpyCH 4V
VKJ							
012 1-69	3	3 23	12 49	15	18 47	26	36
O2 101-169	103	103 123	112 149	115	118 147	126	136
O18 201-269	203	203 223	212 249	215	218 247	226	236
O8 301-369	303	303 323	312 349	315	318 347	326	336
A20 401-469	403	403 423	412 449	415	418 447	426	436
A30 501-569	503	503 523	512 549	515	518 547	526	536
L14 601-669	603	603	612 649	615	618 647	•	636
L1 701-769	703	703 723	712 749	715	718 747	726	736
1.15 801-869	803	803 823	812 849	815	818 847	826	836
1.4 901-969		903 923	912 949	906 915	918 947	926	936
L18 1001-1069		1003	1012 1049	1006 1015	1018 1047	1026	1036
L5 1101-1169	1103	•	1112 1149	1115	1118 1147	•	1136
L19 1201-1269	1203	1203	1212 1249	1215	1218 1247	4	1236
1.8 1301-1369	•	1303 1323	1312 1349	1306 1315	1318 1347	•	1336
L23 1401-1469	1403	1403 1408	1412 1449	1415	1418 1447	•	1436
L9 1501-1569	1503	1503 1508 1523	1512 1549	1515	1518 1547	1526	1536

	MslI	FokI	PAFI	Bsrl	BsmAI	Malí	НруСН
		-> <-					;
L24 1601-1669	1603	1608 1623	1612 1649	1615	1618 1647		1636
L11 1701-1769	1703	1703 1723	1712 1749	1715	1718 1747	1726	1736
L12 1801-1869	1803	1803	1812 1849	1815	1818 1847		1836
VKII							
O11 1901-1969	1	•	•	•	•	1956	-
O1 2001-2069	•			1		2056	-
A17 2101-2169	•	-	2112	•	2118	2156	•
A1 2201-2269	•	-	2212	•	2218	2256	•
A18 2301-2369	•	•	•	•	•	2356	
A2 2401-2469			•	•	•	2456	
A19 2501-2569		-	2512	•	2518	2556	•
A3 2601-2669	•	•	2612	•	2618	2656	
A23 2701-2769	•	•	•	•	•	2729 2756	
VKIII							
A27 2801-2869	•	•	2812	•	2818 2839	2860	,
A11 2901-2969		•	2912	•	2918 2939	2960	•
1.2 3001-3069	•	4	3012	•	3018 3039	3060	
L16 3101-3169	•	6	3112	•	3118 3139	3160	•

	MslI	Fokl	PØFI	BsrI	BsmAI	Mull	НруСН
		. ^> ^-			-		4V
L6 3201-3269			3212	•	3218 3239	3260	
L20 3301-3369		•	3312	•	3318'3339	3360	
1.25 3401-3469		•	3412	•	3418 3439	3460	
VKIV							
B3 3501-3569	3503	¢	3512	3515	3518 3539	3551<	
VKV							
B2 3601-3669		•	3649	•	3618 3647		
VKVI							
A26 3701-3769		•	3712		3718		,
A10 3801-3869	•	•	3812	•	3818		
A14 3901-3969		•	3912		3918	3930>	

Table 9 RERS sites found in Human Kappa FR1 GLGs, continued

	SfaNI	Sfc1	Hinfl	MlyI	Maelll	Hphi	Hpall
				÷ ^	Tsp45I same	xx38 xx56 xx62	Msp1
					sites		xx06 xx52
VKI							
012 1-69	37	41	53	53	55	56	
O2 101-169	137	141	153	153	155	156	•
O18 201-269	237	241	253	253	255	256	•
O8 301-369	337	341	353	353	355	356	•
A20 401-469	437	14	453	453	455	456	
A30 501-569	537	541	553	553	555	556	•
L14 601-669	637	641	653	653	655	959	
L1 701-769	737	741	753	753	755	756	•
L15 801-869	837	841	853	853	855	856	
L4 901-969	937	941	953	953	955	956	
L18 1001-1069	1037	1041	1053	1053	1055	1056	-
L5 1101-1169	1137	1141	1153	1153	1155	1156	·
L19 1201-1269	1237	1241	1253	1253	1255	1256	,
L8 1301-1369	1337	1341	1353	1353	1355	1356	
L23 1401-1469	1437	1441	1453	1453	1455	1456	1406
L9 1501-1569	1537	1541	1553	1553	1555	1556	1506

	SfaNI	Sfc1	Hinfl	MlyI	MacIII	HphI	Hpall
				> ^ ^	Tsp451 same	xx38 xx56 xx62	MspI
					sites		xx06 xx52
L24 1601-1669	1637	1641	1653	1653	1655	1656	
1,11 1701-1769	1737	1741	1753	1753	1755	1756	
L12 1801-1869	1837	1841	1853	1853	1855	1856	
VKII							
O11 1901-1969			1918	1918	1937	1938	1952
O1 2001-2069		-	2018	2018	2037	2038	2052
A17 2101-2169			2112	2112	2137	2138	2152
A1 2201-2269	•	•	2212	2212	2237	2238	2252
A18 2301-2369	•	•	2318	2318	2337	2338	2352
A2 2401-2469		•	2418	2418	2437	2438	2452
A19 2501-2569	•	•	2512	2512	2537	2538	2552
A3 2601-2669		4	2612	2612	2637	2638	2652
A23 2701-2769	•	-	2718	2718	2737	2731* 2738*	•
VKIII							
A27 2801-2869	•	•	-	-			•
A11 2901-2969	•	•		•			1
L2 3001-3069	•	•		•			•

	SfaNi	SfcI	Hinfl	MlyI	MaeIII	HphI	Hpall
				** ^- ^-	Tsp451 same	xx38 xx56 xx62	MspI
					sites		xx06 xx52
L16 3101-3169		•	•	-			•
1.6 3201-3269	•	•	-	-			
L20 3301-3369	•	•	•	-			,
1.25 3401-3469	•	•	-	-			•
VKIV							
B3 3501-3569	•	•	3525	3525			1
VKV							
B2 3601-3669	•		3639	3639			•
VKVI							
A26 3701-3769	•	•	3712 3739	3712 3739	3737 3755	3756 3762	•
A10 3801-3869	•		3812 3839	3812 3839	3837 3855	3856 3862	•
A14 3901-3969	1		6868	3939	3937 3955	3956 3962	•

Table 9 RERS sites found in Human Kappa FR1, continued

	Bsall	BssKI (NstN)	Boml	BsrFI	Haelli	Tsn5091
	xx29 xx42 xx43	xx22 xx30 xx43	xx20 xx41 xx44	Cac81		
			· ^- ^-	Nael		
				NgoMIV		
VKI						
012 1-69	•	-	•			
O2 101-169	-		•	•		•
O18 201-269	•	-	•			,
O8 301-369	•	•	•	•		•
A20 401-469	-	•	•	•		4
A30 501-569	•	•		,	•	ı
L14 601-669	•	-		•	-	•
L1 701-769	•	-	•	•		•
L15 801-869	•	1	•	•	•	•
L4 901-969	•	-	•	•		•
L18 1001-1069	•		•	•	-	•
L5 1101-1169	•	•	•	•	•	•
L19 1201-1269		-	•	•	-	
L8 1301-1369	•	•		•	•	
L23 1401-1469	4		•	•	-	•

	Bsall	Baski (Nath)	Boml	BsrFI	HaeIII	Tsp5091
	xx29 xx42 xx43	xx22 xx30 xx43	xx20 xx41 xx44			
			?	Nacl		
				NgoMIV		
L9 1501-1569	1	•	ŧ	•	•	
124 1601-1669		•	4	•		•
L11 1701-1769			-	4	•	•
L12 1801-1869		_	•	٠		
VKII						
O11 1901-1969	1942	1943	1944	1951	1954	ı
O1 2001-2069	2042	2043	2044	2051	2054	•
A17 2101-2169	2142	•	-	2151	2154	•
A1 2201-2269	2242	•	•	2251	2254	•
A18 2301-2369	2342	2343		2351	2354	
A2 2401-2469	2442	2443		2451	2454	•
A19 2501-2569	2542	2543	2544	2551	2554	•
A3 2601-2669	2642	2643	2644	2651	2654	•
A23 2701-2769	2742	•	•	2751	2754	-
VKIII						
A27 2801-2869	2843	2822 2843	2820 2841	•	•	2803
A11 2901-2969	2943	2943	2920 2941	•		2903

	Bsajl	BssKI (NstNI)	BpmI	BsrFI	Haelli	Tsp5091
	xx29 xx42 xx43	xx22 xx30 xx43	xx20 xx41 xx44	Cac81		
			> ^-	Nacl		
				NgoMIV		
1.2 3001-3069	3043	3043	3041	•	_	
L16 3101-3169	3143	3143	3120 3141	•	-	
L6 3201-3269	3243	3243	3220 3241			3203
1.20 3301-3369	3343	3343	3320 3341	•	-	3303
L25 3401-3469	3443	3443	3420 3441	,	8	3403
VKIV						
B3 3501-3569	3529	3530	3520	•	3554	
VKV						
B2 3601-3669		3643	3620 3641	•	•	
VKVI						
A26 3701-3769		1	3720	•		3703
A10 3801-3869		ı	3820	-	•	3803
A14 3901-3969	3943	3943	3920 3941			,

PCT/US02/12405

- 127 -

Table 10 Lambda FR1 GLG sequences

	! VL1												
		CAG	TCT	GTG	CTG	ACT	CAG	CCA	CCC	TCG	GTG	TCT	GAA
		GCC	CCC	AGG	CAG	AGG	GTC	ACC	ATC	TCC	TGT	!	la
5		cag	tct	gtg	ctg	acG	cag	ccG	ccc	tcA	gtg	tct	gGG
		gcc	ccA	Ggg	cag	agg	gtc	acc	atc	tcc	tgC	!	1e
		cag	tct	gtg	ctg	act	cag	cca	ccc	tcA	gCg	tct	gGG
		Acc	ccc	Ggg	cag	agg	gtc	acc	atc	tcT	tgt	!	1c
		cag	tct	gtg	ctg	act	cag	cca	ccc	tcA	gCg	tct	gGG
10		Acc	ccc	Ggg	cag	agg	gtc	acc	atc	tcT	tgt	!	1g
		cag	tct	gtg	Ttg	acG	cag	ccG	ccc	tcA	gtg	tct	gCG
		gcc	ccA	GgA	cag	aAg	gtc	acc	atc	tcc	tgC	!	1b
	! VL2												
		CAG	TCT	GCC	CTG	ACT	CAG	CCT	CCC	TCC	GCG	TCC	GGG
15		TCT	CCT	GGA	CAG	TCA	GTC	ACC	ATC	TCC	TGC	!	2c
		cag	tct	gcc	ctg	act	cag	cct	cGc	tcA	gTg	tcc	ggg
		tct	cct	gga	cag	tca	gtc	acc	atc	tcc	tgc	! 2	e
		cag	tct	gcc	ctg	act	cag	cct	Gcc	tcc	gTg	tcT	ggg
		tct	cct	gga	cag	tcG	Atc	acc	atc	tcc	tgc	!	2a2
20		cag	tct	gcc	ctg	act	cag	cct	ccc	tcc	gTg	tcc	ggg
		tct	cct	gga	cag	tca	gtc	acc	atc	tcc	tgc	!	2d
		cag	tct	gcc	ctg	act	cag	cct	Gcc	tcc	gTg	tcT	ggg
		tct	cct	gga	cag	tcG	Atc	acc	atc	tcc	tgc	!	2b2
	! VL3												
25		TCC	TAT	GAG	CTG	ACT	CAG	CCA	CCC	TCA	GTG	TCC	GTG
		TCC	CCA	GGA	CAG	ACA	GCC	AGC	ATC	ACC	TGC	!	3r
		tcc	tat	gag	ctg	act	cag	cca	cTc	tca	gtg	tcA	gtg
		Gcc	cTG	gga	cag	acG	gcc	agG	atT	acc	tgT	!	3ј
		tcc	tat	gag	ctg	acA	cag	cca	ccc	tcG	gtg	tcA	gtg
30		tcc	cca	gga	caA	acG	gcc	agG	atc	acc	tgc	! 3	p
		tcc	tat	gag	ctg	acA	cag	cca	ccc	tcG	gtg	tcA	gtg
		tcc	cTa	gga	cag	aTG	gcc	agG	atc	acc	tgc	!	3a
		tcT	tCt	gag	ctg	act	cag	GAC	ccT	GcT	gtg	tcT	gtg
		Gcc	TTG	gga	cag	aca	gTc	agG	atc	acA	tgc	. !	31

- 128 -

		*** *** **	W		tas ata tal ata
				_	tca gtg tcA gtg
				_	acc tgT ! 3h
			_		tcG gtg tcA gtg
_					acc tgc ! 3e
5				_	tcG gtg tcA gtg
		_			acc tgc ! 3m
		_			tca gtg tcA gtg
		tcT ccG g	ga cag aca	gcc agG atc	acc tgc ! V2-19
	VL4				
10		CTG CCT G	TG CTG ACT	CAG CCC CCG	TCT GCA TCT GCC
		TTG CTG G	GA GCC TCG	ATC AAG CTC	ACC TGC ! 4c
		cAg cct g	tg ctg act	caA TcA TcC	tct gcC tct gcT
		- tCC-ctg g	ga Tcc tcg	Gtc aag ctc	acc tgc ! 4a
		cAg cTt g	tg ctg act	caA TcG ccC	tct gcC tct gcc
15		tCC ctg g	ga gcc tcg	Gtc aag ctc	acc tgc ! 4b
	! VL5				
		CAG CCT G	TG CTG ACT	CAG CCA CCT	TCC TCC TCC GCA
		TCT CCT G	GA GAA TCC	GCC AGA CTC	ACC TGC ! 5e
		cag Gct g	tg ctg act	cag ccG Gct	tcc CTc tcT gca
20		tct cct g	ga gCa tcA	gcc agT ctc	acc tgc ! 5c
		cag cct g	tg ctg act	cag cca Tct	tcc CAT tcT gca
		tct Tct g	ga gCa tcA	gTc aga ctc	acc tgc ! 5b
	! VL6				
		AAT TTT A	TG CTG ACT	CAG CCC CAC	TCT GTG TCG GAG
25		TCT CCG G	GG AAG ACG	GTA ACC ATC	TCC TGC ! 6a
	! VL7				
		CAG ACT G	TG GTG ACT	CAG GAG CCC	TCA CTG ACT GTG
		TCC CCA G	GA GGG ACA	GTC ACT CTC	ACC TGT ! 7a
		cag Gct g	tg gtg act	cag gag ccc	tca ctg act gtg
30		tcc cca g	ga ggg aca	gtc act ctc	acc tgt ! 7b
	! VL8				
		CAG ACT G	TG GTG ACC	CAG GAG CCA	TCG TTC TCA GTG
		TCC CCT G	GA GGG ACA	GTC ACA CTC	ACT TGT ! 8a

- 129 -

! VL9

CAG CCT GTG CTG ACT CAG CCA CCT TCT GCA TCA GCC

TCC CTG GGA GCC TCG GTC ACA CTC ACC TGC ! 9a

! VL10

5 CAG GCA GGG CTG ACT CAG CCA CCC TCG GTG TCC AAG

GGC TTG AGA CAG ACC GCC ACA CTC ACC TGC ! 10a

- 130 -

```
Table 11 RERSs found in human lambda FR1 GLGs
    ! There are 31 lambda GLGs
                                  25
   MlyI NnnnnGACTC
                               6: 6
                                       7: 6
                                                8: 6
      1:
         6
              3: 6
                       4: 6
5
     9: 6
             10: 6
                      11: 6
                               12: 6
                                       15: 6
                                                16: 6
             21: 6
                      22:
                               23:
                                   6
                                       23: 50
                                                24:
    20:
         6
                           6
                               27: 6
                                       28: 6
                                                30: 6
    25: 6
             25: 50
                      26: 6
     31: 6
    There are 23 hits at base# 6
10
    -"- GAGTCNNNNn
                                   1
    26: 34
    MwoI GCNNNNnngc
                                  20
                       3: 9
15
     1: 9
              2: 9
                             4: 9
                                       11: 9
                                                11: 56
                               16: 9
     12: 9
             13: 9
                      14: 9
                                        17: 9
                                                18: 9
     19: 9
             20: 9
                      23: 9
                               24: 9
                                        25: 9
                                                26: 9
     30: 9
             31: 9
     There are 19 hits at base# 9
20 HinfI Ganto
                                  27
      1: 12
              3: 12
                       4: 12
                                6: 12
                                       7: 12
                                                8: 12
      9: 12
             10: 12
                      11: 12
                               12: 12
                                        15: 12
                                                16: 12
     20: 12
             21: 12
                      22: 12
                               23: 12
                                        23: 46
                                                23: 56
     24: 12
             25: 12
                      25: 56
                               26: 12
                                        26: 34
                                                27: 12
25
     28: 12
             30: 12
                      31: 12
     There are 23 hits at base# 12
    PleI gactc
                                  25
      1: 12
             3: 12
                       4: 12
                               6: 12
                                        7: 12
                                                 8: 12
      9: 12
              10: 12
                               12: 12
                      11: 12
                                        15: 12
                                                16: 12
30
     20: 12
             21: 12
                      22: 12
                               23: 12
                                        23: 56
                                                24: 12
     25: 12
             25: 56
                      26: 12
                               27: 12
                                        28: 12
                                                30: 12
     31: 12
     There are 23 hits at base# 12
35 -"- gagtc
                                   1
```

- 131 -

26: 34

```
32
   DdeI Ctnag
                   3: 14
                            3: 24
     1: 14
            2: 24
                                    4: 14
                                             4: 24
 5
    5: 24
                    7: 14
                            7: 24
            6: 14
                                     8: 14
                                             9: 14
    10: 14 11: 14
                    11: 24
                            12: 14
                                    12: 24
                                             15: 5
    15: 14
           16: 14
                    16: 24
                           19: 24
                                    20: 14
                                             23: 14
    24: 14 25: 14
                    26: 14 27: 14
                                     28: 14
                                             29: 30
    30: 14 31: 14
10
    There are 21 hits at base# 14
                               38
   BsaJI Ccnngg
                   2: 39
                           2: 40
                                    3: 39
                                             3: 40
     1: 23
            1: 40
     4: 39
            4: 40
                   5: 39
                            11: 39 12: 38
                                             12: 39
15
    13: 23 13: 39
                   14: 23
                            14: 39 15: 38
                                             16: 39
                                             21: 39
    17: 23
           17: 39
                    18: 23
                            18: 39 21: 38
    21: 47 22: 38
                    22: 39
                           22: 47
                                    26: 40
                                             27: 39
    28: 39 29: 14
                    29: 39
                            30: 38
                                    30: 39
                                             30: 47
            31: 32
    31: 23
20
    There are 17 hits at base# 39
    There are 5 hits at base# 38
    There are 5 hits at base# 40 Makes cleavage ragged.
   MnlI cctc
                               35
                                             6: 19
     1: 23
            2: 23
                   3: 23
                           4: 23
                                   5: 23
25
    6: 23
            7: 19
                   8: 23
                           9: 19 9: 23
                                             10: 23
    11: 23 13: 23 14: 23
                           16: 23 17: 23
                                             18: 23
                           21: 29 21: 47
    19: 23
           20: 47
                    21: 23
                                             22: 23
                    22: 47 23: 26
                                    23: 29
    22: 29
            22: 35
                                             24: 27
                            30: 47
                                    31: 23
    27: 23
            28: 23
                    30: 35
    There are 21 hits at base# 23
30
    There are 3 hits at base# 19
    There are 3 hits at base# 29
    There are 1 hits at base# 26
    There are 1 hits at base# 27 These could make cleavage ragged.
35 -"- gagg
                                7
```

- 132 **-**

```
1: 48
               2: 48
                       3: 48
                                4: 48
                                        27: 44
                                                 28: 44
     29: 44
    BssKI Nccngg
                                  39
 5
     1: 40
               2: 39
                     3: 39
                                3: 40
                                        4: 39
                                                 4: 40
      5: 39
               6: 31
                      6: 39
                               7: 31
                                        7: 39
                                                 8: 39
      9: 31
               9: 39
                      10: 39
                               11: 39
                                       12: 38
                                                 12: 52
     13: 39
                               16: 39
           13: 52
                      14: 52
                                        16: 52
                                                 17: 39
     17: 52
              18: 39
                      18: 52
                               19: 39
                                        19: 52
                                                 21: 38
10
     22: 38
            23: 39
                      24: 39
                               26: 39
                                        27: 39
                                                 28: 39
     29: 14
              29: 39
                      30: 38
     There are 21 hits at base# 39
     There are 4 hits at base# 38
     There are 3 hits at base# 31
15
     There are 3 hits at base# 40 Ragged
    BstNI CCwgg
                                  30
      1: 41
               2: 40
                     5: 40
                                6: 40
                                      7: 40
                                                 8: 40
      9: 40
            10: 40
                      11: 40
                               12: 39
                                        12: 53
                                                 13: 40
20
     13: 53
            14: 53
                      16: 40
                               16: 53
                                      17: 40
                                                 17: 53
     18: 40
              18: 53
                      19: 53
                               21: 39
                                        22: 39
                                                 23: 40
     24: 40
             27: 40
                      28: 40
                               29: 15
                                        29: 40
                                                 30: 39
     There are 17 hits at base# 40
     There are 7 hits at base# 53
25
     There are 4 hits at base# 39
     There are 1 hits at base# 41 Ragged
    PspGI ccwgg ...
                                  30
      1: 41
              2: 40
                      5: 40
                                6: 40
                                      7: 40
                                                 8: 40
30
     9: 40
             10: 40
                      11: 40
                               12: 39
                                       12: 53
                                                13: 40
     13: 53
            14: 53
                      16: 40
                               16: 53
                                       17: 40
                                                17: 53
     18: 40
            18: 53
                      19: 53
                               21: 39
                                                23: 40
                                       22: 39
     24: 40
             27: 40
                      28: 40
                               29: 15
                                       29: 40
                                                30: 39
     There are 17 hits at base# 40
35
     There are 7 hits at base# 53
```

PCT/US02/12405 WO 02/083872

- 133 -

There are 4 hits at base# 39 There are 1 hits at base# 41

	ScrF	I CCn	ıgg				:	39				
5	1:	41	2:	40	3:	40	3:	41	4:	40	4:	41
	5:	40	6:	32	6:	40	7:	32	7:	40	8:	40
	9:	32	9:	40	10:	40	11:	40	12:	39	12:	53
	13:	40	13:	53	14:	53	16:	40	16:	53	17:	40
	17:	53	18:	40	18:	53	19:	40	19:	53	21:	39
10	22:	39	23:	40	24:	40	26:	40	27:	40	28:	40
	29:	15	29:	40	30:	39						
	The	re ar	e 21	l hi	its at	bas	se# 40					
	The	re ar	e 4	hi	its at	bas	se# 39					
	The	re ar	e :	h t	its at	bas	se# 41					
15												
	MaeI	II gt	nac				:	16				
	1:	52	2:	52	3:	52	4:	52	5:	52	6:	52
	7:	52	9:	52	26:	52	27:	10	27:	52	28:	10
	28:	52	29:	10	29:	52	30:	52				
20	The	re ar	e 13	3 h	its at	bas	se# 52					
	Tsp4	5I gt	sac				:	15				
	1:	52	2:	52	3:	52	4:	52	5:	52	. 6:	52
	7:	52	9:	52	27:	10	27:	52	28:	10	28:	52
25	29:	10	29:	52	30:	52						
	The	re ar	e 12	hi	its at	bas	se# 52					
			**									
	HphI	tcac	c				2	26				
	1:	53	2:	53	3:	53	4:	53	5:	53	6:	53
30	7:	53	8:	53	9:	53	10:	53	11:	59	13:	59
	14:	59	17:	59	18:	59	19:	59	20:	59	21:	59
	22:	59	23:	59	24:	59	25:	59	27:	59	28:	59
	30:	59	31:	59								
	The	re ar	e 16	5 hi	its at	bas	se# 59					

- 134 -

There are 10 hits at base# 53

BspMI ACCTGCNNNNn 14

11: 61 13: 61 14: 61 17: 61 18: 61 19: 61

5 20: 61 21: 61 22: 61 23: 61 24: 61 25: 61

30: 61 31: 61

There are 14 hits at base# 61 Goes into CDR1

WO 02/083872 PCT/US02/12405

- 135 -

Table 12: Matches to URE FR3 adapters in 79 human HC.

A. List of Heavy-chains genes sampled

					commence of the
	AF008566	AF103367	HSA235674	HSU94417	S83240
	AF035043	AF103368	HSA235673	HSU94418	SABVH369
5	AF103026	AF103369	HSA240559	HSU96389	SADEIGVH
	af103033	AF103370	HSCB201	HSU96391	SAH2IGVH
	AF103061	af103371	HSIGGVHC	HSU96392	SDA3IGVH
	Af103072	AF103372	HSU44791	HSU96395	SIGVHTTD
	af103078	AF158381	HSU44793	HSZ93849	SUK4IGVH
10	AF103099	E05213	HSU82771	HSZ93850	
	AF103102	E05886	HSU82949	HSZ93851	
	AF103103	E05887	HSU82950	HSZ93853	
	AF103174	HSA235661	HSU82952	HSZ93855	
	AF103186	HSA235664	HSU82961	HSZ93857	
15	af103187	HSA235660	HSU86522	HSZ93860	
	AF103195	HSA235659	HSU86523	HSZ93863	
	af103277	HSA235678	HSU92452	MCOMFRAA	
	af103286	HSA235677	HSU94412	MCOMFRVA	
	AF103309	HSA235676	HSU94415	S82745	
20	af103343	HSA235675	HSU94416	S82764	

Table 12B. Testing all distinct GLGs from bases 89.1 to 93.2 of the heavy variable domain

	Id	Nb	0	1	2	3	4		SEQ ID
	NO:								
25	1	38	15	11	10	0	2	Seq1 gtgtattactgtgc	25
	2	19	7	6	4	2	0	Seq2 gtAtattactgtgc	26
	3	1	0	0	1	0	0	Seq3 gtgtattactgtAA	27
	4	7	1	5	1	0	0	Seq4 gtgtattactgtAc	: 28
	5	0	0	0	0	0	0	Seq5 Ttgtattactgtgc	: 29
30	6	0	0	0	0	0	0	Seq6 TtgtatCactgtgc	: 30
	7	3	1	0	1	1	0	Seq7 ACAtattactgtgc	31
	8	2	0	2	0	0	0	Seq8 ACgtattactgtgc	32
	9	9	2	2	4	1_	0	Seg9 ATgtattactgtgc	33
	Group		26	26	21	4	2		
35	Cumulative		26	52	73	77	79		

Table 12C Most important URE recognition seqs in FR3 Heavy

1 VHSzyl GTGtattactgtgc (ON_SHC103) (SEQ ID NO:25)
2 VHSzy2 GTAtattactgtgc (ON_SHC323) (SEQ ID NO:26)
3 VHSzy4 GTGtattactgtac (ON_SHC349) (SEQ ID NO:28)
40 4 VHSzy9 ATGtattactgtgc (ON_SHC5a) (SEQ ID NO:33)

- 136 -

			N	umb	er	of	mis	sma	tches	3		
	Id	Best	0	1	2	3	4	5				
5	1	39	15	11	10	1	2	0	Seq1	gtgtattactgtgc	(SEQ	ID NO:25)
	2									gtAtattactgtgc		
	3	7	1	5	1	0	0	0	Seq4	gtgtattactgtAc	(SEQ	ID NO:28)
	4	11	2	4	4	1	0	0	Seq9	ATgtattactgtgc	(SEQ	ID NO:33)
	Group				20							·
10	Cumula	tive	25	51	71	76	78					

One sequence has five mismatches with sequences 2, 4, and 9; it is scored as best for 2.

Id is the number of the adapter.

Best is the number of sequence for which the identified

15 adapter was the best available.

The rest of the table shows how well the sequences match the adapters. For example, there are 10 sequences that match VHSzyl(Id=1) with 2 mismatches and are worse for all other adapters. In this sample, 90% come within 2 bases of one of the four adapters.

PCT/US02/12405 WO 02/083872

- 137 -

Table 13

The following list of enzymes was taken from http://rebase.neb.com/cgi-bin/asymmlist.

I have removed the enzymes that a) cut within the recognition, b) cut on 5 both sides of the recognition, or c) have fewer than 2 bases between recognition and closest cut site.

REBASE Enzymes 04/13/2001

10	Type II res	striction enzymes with asymme	etric recognition	sequences:
	Enzymes	Recognition Sequence	Isoschizomers	Suppliers
	AarI	CACCTGCNNNN^NNNN	_	У
	AceIII	CAGCTCNNNNNNN^NNNN		-
	Bbr7I	GAAGACNNNNNNN^NNNN	_	_
15	BbvI	GCAGCNNNNNNNNNNNNN		У
	BbvII	GAAGACNN^NNNN		4
	Bce83I	CTTGAGNNNNNNNNNNNNNNNNNNN	_	_
	BceAI	ACGGCNNNNNNNNNNNNNN	-	у
	BcefI	ACGGCNNNNNNNNNNNN	_	-
20	BciVI	GTATCCNNNNN N^	BfuI	У
	BfiI	ACTGGGNNNN N^	BmrI	y
	BinI	GGATCNNNN^N		-
	BscAI	$GCATCNNNN^N\overline{N}$	_	-
	BseRI	GAGGAGNNNNNNNN NN^	_	у
25	BsmFI	GGGACNNNNNNNNNNNNN	BspLU11III	y
	BspMI ·	ACCTGCNNNN^NNNN —	Acc36I	ÿ
	EciI	GGCGGANNNNNNNNN NN^	_	ӱ́
	Eco57I	CTGAAGNNNNNNNNNNNNNN NN^	BspKT5I	y y
	FauI	CCCGCNNNN^NN	BstFZ438I	y y
30	FokI	$GGATGNNNNNNN\overline{N}N^{N}NNNN$	BstPZ418I	у
	GsuI	CTGGAGNNNNNNNNNNNNNNNNNNNNNNNN	-	y
	HgaI	GACGCNNNNN^NNNNN -	_	y
	HphI	GGTGANNNNNN N^	AsuHPI	У
	MboII	GAAGANNNNNN N^	_	ÿ
35	MlyI	GAGTCNNNNN^	SchI	У
	MmeI	TCCRACNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	N^	
	MnlI	CCTCNNNNNN N^	-	У
	PleI	$GAGTCNNNN^{\overline{N}}$	PpsI	У
	RleAI	CCCACANNNNNNNNN NNN^		_
40	SfaNI	GCATCNNNNN^NNNN	BspST5I	У
	SspD5I	GGTGANNNNNNN^		<u>-</u>
	Sth132I	CCCGNNNN^NNNN	_	-
	StsI	GGATGNNNNNNNNNN^NNNN	_	_
	TaqII	GACCGANNNNNNNN NN^, CACCC	ANNNNNNNN NN^	
45	Tth111II	CAARCANNNNNNNNN NN^	-	-
	UbaPI	CGAACG	-	-

The notation is ^ means cut the upper strand and _ means cut the lower strand. If the upper and lower strand are cut at the same place, then only ^ appears.

|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt gcg ag-3' ||TCT||AGA||gac||aac||tct||aag||aat||act||ctc||tac||ttg||cag||atg||-||aac||agC||TTA||AGg||gct||gag||gac||aCT||GCA||Gtc||tac||tat||tgt Acg ag-3' TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|-|aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|t-3' (VHEx881) 5'-AATAGTAGAC TGCAGTGTCC TCAGCCCTTA AGCTGTTCAT CTGCAAGTAG-AGABABTAG-ABABTTGT TAGAGTTGTC TCTAGACTTA GTGAAGCG-3' ! note that VHEx881 is the reverse complement of the ON below Synthetic 3-23 as in Table 206 (VH881PCR) 5'-cgCttcacTaag|ICT|AGA|gac|aac -3' 5'-cAcatccgTg TTgTT cacggalgTg-3' Aflii... [RC] 5'-cgCttcacTaag-5'-cgCttcacTaag-5'-cgCttcacTaag-Scab..... XbaI... (VHBA881) (VHBB881) (FOKJact) വ 10 15

Table 14

PCT/US02/12405

```
Table 15: Use of Fokl as "Universal Restriction Enzyme"
     FokI - for dsDNA, | represents sites of cleavage
                                sites of cleavage
          5'-cacGGATGtg--nnnnnnnnnnnnnn-3'(SEQ ID NO:15)
 5
          3'-gtgCCTACac--nnnnnnnnnnnnnnn-5'(SEQ ID NO:16)
                RECOG
                NITion of FokI
     Case I
                5'-...gtg|tatt-actgtgc..Substrate....-3' (SEQ ID NO:17)
10
                   3'-cac-ataa|tgacacg-
                                        gtGTAGGcac\
                                    5'- caCATCCgtg/(SEQ ID NO:18)
     Case II
                5'-...gtgtatt|agac-tgc..Substrate....-3'(SEQ ID NO:19)
15
                    _cacataa-tctg|acg-5'
          /gtgCCTAC<u>ac</u>
          \cacGGATGtg-3'(SEQ ID NO:20)
     Case III (Case I rotated 180 degrees)
          /gtgCCTACac-5'
20
          \cacGGATGtg-
                      gtqtctt|acag-tcc-3' Adapter (SEQ ID NO:21)
                3'-...cacagaa-tgtc|agg..substrate....-5'(SEQ ID NO:22)
     Case IV (Case II rotated 180 degrees)
                                    3'- gtGTAGGcac\
                                                     (SEQ ID NO:23)
25
                                      _<u>ca</u>CATCCgtg/
                   5'-gag|tctc-actgage
      Substrate 3'-...ctc-agag|tgactcg...-5'(SEQ ID NO:24)
     Improved FokI adapters
     FokI - for dsDNA, | represents sites of cleavage
30
    Case I
     Stem 11, loop 5, stem 11, recognition 17
                5'-...catgtg|tatt-actgtgc..Substrate....-3'
                   3'-gtacac-ataaltgacacq-
                                          <u>qt</u>GTAGGcacG
35
                                      5'- caCATCCgtgc
```

```
Case II
     Stem 10, loop 5, stem 10, recognition 18
                    5'-...gtgtatt|agac-tgctgcc..Substrate....-3'
                       <u>cacataa</u>-tetg|acgacgg-5'
 5
           T gtgCCTACac
           C cacGGATGtg-3'
     Case III (Case I rotated 180 degrees)
     Stem 11, loop 5, stem 11, recognition 20
10
          r T<sub>1</sub> TgtgCCTACac-5'
          G AcacGGATGtq
                       gtgtctt|acag-tccattctg-3' Adapter
                   3'-...cacagaa-tgtc|aggtaagac..substrate....-5'
15
    Case IV (Case II rotated 180 degrees)
     Stem 11, loop 4, stem 11, recognition 17
                                       3'- gtGTAGGcacc T
                                        CaCATCCgtgg T
20
                   5'-atcgag|<u>tctc-actgagc</u>
     Substrate 3'-...tagctc-agag|tgactcg...-5'
    BseRI
                                    | sites of cleavage
          5'-cacGAGGAGnnnnnnnnnnnnnn-3'
25
          3'-gtgctcctcnnnnnnnnnnnnnn-5'
                RECOG
                NITion of BseRI
    Stem 11, loop 5, stem 11, recognition 19
               3'-....gaacat|cg-ttaagccagta....5'
30
                         cttgta-gc|aattcggtcat-3'
             GCTGAGGAGTC-J
            cgactcctcag-5' An adapter for BseRI to cleave the substrate above.
        LT-
```

Table 16 Human heavy chains bases 88.1 to 94.2

Number of sequences.....

		Num	Number	of M	Mismatchers	cher		:	:		Probe	
PI	Ntot	0	7	2	m	4	က	و	7	Nаme	Sequence	Dot form
7	364	152	97	97	56	7	4	2	0	VHS881-1.1	gctgtgtattactgtgcgag	getgtgtattactgtgcgag
7	265	150	9	33	13	2	4	0	0	VHS881-1.2	gccatattactatacaaa	
ო	96	14	34	16	10	S	7	თ	-	VHS881-2.1	gccgtatattactgtgcgag	0.00
4	20	0	ო	4	თ	7	7	0	0	VHS881-4.1	gecatattaetataegaa	0
2	95	25	36	18	11	2	2	0	7	VHS881-9.1	gccatgtactgtgggg	CO CO
	840	341	230	147	69	21	19	11	2			
		341	571	718	787	8 808	827 8	838 8	840			
			88	88 89 90	91	91 92 93	94	95	ndon	Codon number as in Table 195	n Table 195	
		_	Reco	anit	Becomition)	E 6	Stem 1000	Control of the contro	
(VHS8	(VHS881-1.1)) 5'-(gctg	Itgta	5'-gctgtgtat tact-gtgcgag	t-gt	gcga		ACATO	TTall	cacqqatqtq-3'	
(VHS8	(VHS881-1.2)	_	gccg	ıtğta	5'-gccgtgtat tact-gtgcgag	:t-gt	gcga		PCATC	TIGIT	cAcggATgTg-3'	
(VHSB	(VHS881-2.1)	_	gccg	jtata	5'-gccgtatat tact-gtgcgag	t-gt:	gcga		ACATC	TTGTT	cAcggATgTg-3	
(VHS8	(VHS881-4.1)		ნაან	ıtgta	5'-gccgtgtat tact-gtacgag	t-gt	acga		ACATC	TIGIT	cac <u>ggalg</u> rg-3'	
8 C H A B	(VHS881-9.1)	_	dcca	tata	5'-gccatgtat tact-gtgcgag	;t-qt - qt	acda	- 4	ACAT.	g Trgrr	cAcggATgTg-3'	
						- -	sice of		substrate	rate cleavage	Ψ.	
(FOK	(FOKlact) S'-cA <u>cATcc</u> gTg TTgTT cAc <u>ggATg</u> Tg-3'	ACATC	g Ta	TTgI	T cAc	ERAT.	Tg-3,					
WHE	281) 5' A A	ATA TA	, 080	Tack	L	7. A 2.	Tar.	4 1		T of and A of A		
1	APAPTA	TTCTT	Agar	2 ToTr	181 C	2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	TA oT	1 A 8 C 1	7 7 6	(*************************************		
f note th	woley VHFV881 is the respect of the transfer of the ON below.	881 %	0	55-	malem	80.00	4.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) io i			•
	IRCI 5'-coCHCacTago-	CHEST	330-	3	m prom	5) 		3			
_	Scale de S		P									***
. _	Synth	Synthetic 3-23 as in Table 206	3 as in	Table	206							
	ĹΩ	TCT AGA gac aac tct aag aat act ctc tac ttg cag atg	gac ;	aac tct	aagla	at act	ctc	clttg	cag at	- 6		
	XbaI		-	-	5		•	-	5	5		
	aac	aac agC TTA AGg gct gag gac aCT GCA Gtc tac tat t-3'	TA A	Gglgc	t gag	zac aC	TIGG	A Gr	: tac t	at t-3'		

| Afill...
| VHBA881| 5-cgCttcacTaag| TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|| aac|agCTTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt gcg ag-3'
| VHBB881| 5'-cgCttcacTaag| TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|| aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgt Acg ag-3'
| VH881PCR| 5'-cgCttcacTaag|TCT|AGA|gac|acT|GCA|Gtc|tac|tat|tgt Acg ag-3'

2

0-A17) S'-cAcATccgTg TTgTT cAcggATgTg ggAgAgTggAgAcTgAgTc-3' [RC] 5'-gactcagtctccactctcc cA<u>cATccg</u>Tg AAcAA cAc<u>ggATg</u>Tg-3' 5'-cAcATccgTg TTgTT cAcggATgTg ggAggATggAgAcTgggTc-3' 5'-cAcATccgTg TTgTT cAcggATgTg ggTggcTggAgAcTgcgTc-3' 5'-cAcATccgTg TTgTT cAcggATgTg ggTgccTggAgAcTgcgTc-3' 0 0 SK12O12 gacccagtctccatcctcc gacccagtctccatcctcc [RC] 5'-gacgcagtetecaggcace cAcATccgTg AAcAA cAcgcATeTg-3' Recognition...... Stem..... loop. Stem..... [RC] 5'-gacgcagtetecagccace cAcATccgTg AAcAA cAcggATgTg-3' [RC] 5'-gacccagtetecatectee cAcATeegTg AAcAA cAeggATgTg-3' gacgcagtctccaggcacc ...g.......gg.a.. O SK12A11 gacgcagtctccagccacc ...g.......g..a.. Sequence...... Dot Form..... 1 SK12A17 gactcagtctccactctcc ...t.......ct.... Stem..... Loop. Stem..... Recognition...... Stem..... Loop. Stem..... Recognition...... Recognition...... Stem..... loop. Stem..... Stem..... Loop. Stem..... Recognition..... Recognition Stem loop. Stem Stem..... Loop, Stem..... Recognition..... Recognition Stem loop. Stem FokI. Fokl. SK12A27 97 147 175 178 181 181 182 FokI. FokI. Fokľ. Table 17: Kappa, bases 12-30 97 50 28 3 8 (SzKB1230-A11) (SzKB1230-A27) (SzKB1230-012) (SzKB1230-A17) 7 21 18 URE adapters: 6 ID Ntot 84 各 25 30 10 15 20 S

5'-gac cca gtc | tcc a-tc ctc c-3' | Site of cleavage in substrate What happens in the upper strand: (SzKB1230-O12*) ഹ

FokI.

FokI.

5'-gac gca gtc | tcc a-gg cac c-3' 5'-gac tca gtc | tcc a-ct ctc c-3' (SzKB1230-A17*) (SzKB1230-A27*)

5'-gac gca gtc | tcc a-gc cac c-3' (SzKB1230-A11*)

5'-ccTctactctTgTcAcAgTqcAcAA gAc ATc cAg-3' !sense strand

Scab.....ApaLI.

(kapextURE)

10

(kapextUREPCR) 5'-ccTctactctTgTcAcA<u>gTg</u>-3' Scab.....

5'-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcca-tcctc-3' ON above is R.C. of this one 5'-ggAggATggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3' 5'-ggAgAgTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3' [RC] (kaBRO2UR) (kaBR01UR) 15

5'-ccTctactctTgTcAcAgTqcAcAA gAc ATc cAg tcca-ct ctc c-3' ON above is R.C. 5'-ggTgccTggA cTggATgTcT TgTgcAcTgT gAcAAgAgTA gAgg-3' [RC] (kaBR03UR)

of this one

5'-ccTctactctTgTcAcA<u>gTgcAc</u>AA gAc ATc cAg tcca-gg cac c-3' ON above is R.C. of this one 5'-ggTggcTggA cTggATgTcT TgTgcAcTgT gAcAAAgAgTA gAgg-3' [RC] (kaBR04UR)

5'-ccTctactctTgTcAcAgTgcAcAA gAc ATc cAg tcca-gc cac c-3' ON above is R.C. of this one Scab......ApaLI.

```
What happens in the top strand:
```

```
site of cleavage in the upper strand
      (VL133-2a2*) 5'-g tct cct g | ga cag tcg atc
      (VL133-3l*) 5'-g gcc ttg g | ga cag aca gtc
      (VL133-2c*) 5'-g tct cct g | ga cag tca gtc
      (VL133-1c*) 5'-g gcc cca g | gg cag agg gtc
10
      ! The following Extenders and Bridges all encode the AA sequence of 2a2 for codons 1-15
      (ON_LamEx133) 5'-ccTcTgAcTgAgT gcA cAg -
15
             2 3 4 5 6 7 8 9 10 11 12
             AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
             13 14 15
             tcC ccG g! 2a2
20
      (ON_LamB1-133) [RC] 5'-ccTcTgAcTgAgT gcA cAg --
             2 3 4 5 6 7 8 9 10 11 12
             AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
25
             13 14 15
             tcC ccG g ga cag tcg at-3'! 2a2 N.B. the actual seq is the
                                 reverse complement of the
                                 one shown.
30
      (ON_LamB2-133) [RC] 5'-ccTcTgAcTgAgT gcA cAg -
             2 3 4 5 6 7 8 9 10 11 12
             AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
35
      į
             13 14 15
             tcC ccG g ga cag aca gt-3'! 31 N.B. the actual seq is the
                                 reverse complement of the
                                 one shown.
40
      (ON_LamB3-133) [RC] 5'-ccTcTgAcTgAgT gcA cAg -
             2 3 4 5 6 7 8 9 10 11 12
45
            AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-
             13 14 15
            tcC ccG g ga cag tca gt -3'! 2c N.B. the actual seq is the
                                reverse complement of the
50
                                one shown.
      !(ON_LamB4-133) [RC] 5'-ccTcTgAcTgAgT gcA cAg -
```

PCT/US02/12405

- 147 -

!
! 2 3 4 5 6 7 8 9 10 11 12
AGt gcT TtA acC caA ccG gcT AGT gtT AGC ggT-s
!
5 ! 13 14 15
tcC ccG g gg cag agg gt-3' ! 1c N.B. the actual seq is the reverse complement of the one shown.
!
10 (ON_Lam133PCR) 5'-ccTcTgAcTgAgT gcA cAg AGt gc-3'

	Table 19:	Cleavage of 75	human li	ght	chains.
	Enzyme		Nch	Ns_	Planned location of site
	AfeI	AGCgct	0	0	
	AflII	Cttaag	0	0	HC FR3
5	AgeI	Accggt	0	0	
	AscI	GGcgcgcc	0	0	After LC
	BglII	Agatct	0	0	
	BsiWI	Cgtacg	0	0	
	BspDI	ATcgat	0	0	
10	BssHII	Gcgcgc	0	0	
	BstBI	TTcgaa	ō	ō	
	DraIII	CACNNNgtg	ŏ	ŏ	
	EagI	Cggccg	ŏ	ŏ	
	FseI	GGCCGGcc	ŏ	ŏ	
15	FspI	TGCgca	ő	ő	
	HpaI	GTTaac	ŏ	Ö	
	MfeI	Caattg	ŏ	-	HC FR1
	MluI	Acgcgt	Ö	Ö	no eri
	Ncol	Ccatgg	ő	-	Unarra chain siemal
20	NheI		0		Heavy chain signal
20		Gctagc	_		HC/anchor linker
	NotI	GCggccgc	0	0	In linker after HC
	NruI	TCGcga	0	0	
	PacI	TTAATtaa	0	0	
25	PmeI	GTTTaaac	0	0	•
25	PmlI	CACgtg	0	0	
	PvuI	CGATcg	0	0	
	SacII	CCGCgg	0	0	
	Sali	Gtcgac	0	0	
20	SfiI	GGCCNNNNnggcc	0	0	Heavy Chain signal
30	SgfI	GCGATcgc	0	0	
	SnaBI	TACgta	0	0	
	StuI	AGGcct	0	0	
	XbaI	Tctaga	0		HC FR3
25	AatII	GACGTC	1	1	
35	AclI	AAcgtt	1	1	
	AseI	ATtaat	1	1	
	BsmI	GAATGCN	1	1	
	BspEI	Tccgga	1	1	HC FR1
	BstXI	CCANNNNntgg	1	1	HC FR2
40	DrdI	GACNNNNnngtc	1	1	
	HindIII	Aagctt	1	1	
	PciI	Acatgt	1	1	
	SapI	gaagagc	1	1	
	Scal	AGTact	1	1	
45	SexAI	Accwggt	1	1	
	SpeI	Actagt	1	1	
	TliI	Ctcgag	1	1	
	XhoI	Ctcgag	1	1	
	BcgI	cgannnnnntgc	2	2	
50	BlpI	GCtnagc	2	2	
	BssSI	Ctcgtg	2	2	
	BstAPI	GCANNNNntgc	2	2	
	EspI	GCtnagc	2	2	
_	KasI	Ggcgcc	2	2	
55	PflMI	CCANNNNntgg	2	2	
	XmnI	GAANNnnttc	2	2	
	ApaLI	Gtgcac	3	3	LC signal seq
					-

The second second second

	NaeI	GCCggc	3	3	
	NgoMI	Gccggc	3	3	
	PvuII	CAGctg	3	3	
_	RsrII	CGgwccg	3	3	
5	BsrBI	GAGcgg	4	4	
	BsrDI	GCAATGNNn	4	4	
	BstZ17I	GTAtac	4	4	
	EcoRI	Gaattc	4	4	
	SphI	GCATGC	4	4	
10	SspI	AATatt	4	4	
	AccI	GTmkac	5	5	
	BclI	Tgatca	5	5	
	BsmBI	Nnnnngagacg	5	5	
	BsrGI	Tgtaca	5	5	
15	DraI	TTTaaa	6	6	
	NdeI	CAtatg	6	6	HC FR4
	SwaI	ATTTaaat	6	6	
	BamHI	Ggatcc	7	7	
	SacI	GAGCTc	7	7	
20	BciVI	GTATCCNNNNNN	8	8	
	BsaBI	GATNNnnatc	8	8	
	NsiI	ATGCAt	8	8	
	Bsp120I	Gggccc	9	9	CH1
	ApaI	GGGCCc	9	9	CH1
25	PspOOMI	Gggccc	9	9	
	BspHI	Tcatga	9	11	
	EcoRV	GATatc	9	9	
	AhdI	GACNNNnngtc	11	11	
	BbsI	GAAGAC	11	14	
30	PsiI	TTAtaa	12	12	
	BsaI	GGTCTCNnnnn	13	15	
	XmaI	Cccggg	13	14	
	AvaI	Cycgrg	14	16	
	BglI	GCCNNNNnggc	14	17	
35	AlwNI	CAGNNNctg	16	16	
	BspMI	ACCTGC	17	19	
	XcmI	CCANNNNNnnntgg	17	26	
	BstEII	Ggtnacc	19	22	HC FR4
	Sse8387I	CCTGCAgg	20	20	
40	AvrII	Cctagg	22	22	
	HincII	GTYrac	22	22	
	BsgI	GTGCAG	27	29	
	MscI	TGGcca	30	34	
	BseRI	NNnnnnnnnctcctc	32	35	
45	Bsu36I	CCtnagg	35	37	
	PstI	CTGCAg	35	40	
	EciI	nnnnnnnntccgcc	38	40	
	PpuMI	RGgwccy	41	50	
	StyI	Ccwwgg	44	73	
50	Eco0109I	RGgnccy	46	70	
	Acc65I	Ggtacc	50	51	
	KpnI	GGTACc	50	51	
	BpmI	ctccag	53	82	
	AvaII	Ggwcc	71	124	

^{*} cleavage occurs in the top strand after the last upper-case base. For REs that cut palindromic sequences, the lower strand is cut at the symmetrical site.

Table 20: Cleavage of 79 human heavy chains

	Enzyme	Recognition	Nch	Ns	Planned location of site
	AfeI	AGCgct	0	0	
_	AflII	Cttaag	0	0	HC FR3
5	AscI	GGcgcgcc	0	0	After LC
	BsiWI	Cgtacg	0	0	
	BspDI	ATcgat	0	0	
	BssHII	Gcgcgc	0	0	
1.0	FseI	GGCCGGcc	0	0	
10	HpaI	GTTaac	0	0	
	NheI	Gctagc	0	0	HC Linker
	NotI	GCggccgc	0	0	In linker, HC/anchor
	NruI	TCGcga	0	0	
1.	NsiI	ATGCAt	0	0	
15	PacI	TTAATtaa	0	0	
	PciI	Acatgt	0	0	
	PmeI	GTTTaaac	0	0	•
	PvuI	CGATcg	0	0	
0.0	RsrII	CGgwccg	0	0	
20	SapI	gaagagc	0	0	
	Sfil	GGCCNNNNnggcc	0	0	HC signal seq
	SgfI	GCGATcgc	0	0	
	SwaI		- 0	0	
25	AclI	AAcgtt	1	1	
25	AgeI	Accggt	1	1	
	AseI	ATtaat	1	1	
	AvrII	Cctagg	1	1	•
	BsmI	GAATGCN	1	1	
20	BsrBI	GAGcgg	1	1	
30	BsrDI	GCAATGNNn	1	1	
	DraI	TTTaaa	1	1	
	FspI	TGCgca	1	1	
	HindIII	Aagctt	1	1	
35	MfeI	Caattg	1		HC FR1
33	NaeI	GCCggc	1	1	
	NgoMI	Gccggc	1	1	
	SpeI	Actagt	1	1	
	Acc65I	Ggtacc	2	2	
40	BstBI	TTcgaa	2	2	
40	KpnI	GGTACC	2	2	
	MluI	Acgcgt	2	2	
	NcoI	Ccatgg	2	2	In HC signal seq
	NdeI	CAtatg	2	2	HC FR4
45	PmlI	CACgtg	2	2	
40	XcmI	CCANNNNnnnntgg	2	2	
	BcgI	cgannnnnntgc	3	3	
	BclI	Tgatca	3	3	
	BglI	GCCNNNNnggc	3	3 3	
50	BsaBI	GATNNnnatc	3	3	
50	BsrGI	Tgtaca	3	3	
	SnaBI	TACgta	3	3	
	Sse8387I	CCTGCAgg	3	3	20.01. 2.4
	ApaLI	Gtgcac	4	4	LC Signal/FR1
55	BspHI	Tcatga	4	4	
55	BssSI	Ctcgtg	4	4	
	PsiI	TTAtaa	4	5	

	SphI	GCATGc	4	4				
	AhdI	GACNNNnngtc	5					
	BspEI	Tccgga	5					
	MscI	TGGcca	5			•		
5	SacI	GAGCTc	5	5				
3	Scal		5	5				
	SexAI	Accwggt	5	6				
	SspI	AATatt	5	5				
	TliI	Ctcgag	5	5				
10	XhoI	• •	5	5				
10		Ctcgag	7	8				
	BbsI BstAPI	GAAGAC	7					
	BstZ17I	GCANNNNntgc	7					
		GTAtac	7					
15	EcoRV							
13	EcoRI	Gaattc	8					
	BlpI	GCtnagc	9	9				
	Bsu36I	CCtnagg	9	9				
	DraIII	CACNNNgtg	9					
20	EspI	GCtnagc	9					
20	StuI	AGGcct	9					
	XbaI	Totaga	9					
	Bsp120I	Gggccc	10					
	ApaI	GGGCCc	10					
	PspOOMI	Gggccc	10					
25	BciVI	GTATCCNNNNNN	11					
	SalI	Gtcgac	11					
	DrdI	GACNNNnngtc	12					
	KasI	Ggcgcc	12					
	XmaI	Cccggg	12					
30	BglII	Agatct	14	14				
	HincII	GTYrac	16					
		Ggatcc	17	17				
	PflMI	CCANNNNntgg	17	18				
	BsmBI	Nnnnngagacg	18	21				
35	BstXI	CCANNNNntgg	18	19	HC FR2			
	XmrI	GAANNnnttc	18	18				
	SacII	CCGCgg	19	19				
	PstI	CTGCAg	20	24				
	PvuII	CAGctg	20	22				
40	AvaI	Cycgrg	21	24				
	EagI	Cggccg	21	22				
	AatII	GACGTC	22	22				
	BspMI	ACCTGC	27	33				
	AccI	GTmkac	30	43				
45	StyI	Ccwwgg	36	49				
	AlwNI	CAGNNNctg	38	44				
	BsaI	GGTCTCNnnnn	38	44				
	PpuMI	RGgwccy	43	46				
	BsgI	GTGCAG	44	54				
50	BseRI	NNnnnnnnnctcctc	48	60	•			
	Ecil	nnnnnnnntccgcc	52	57				
	BstEII	Ggtnacc	54		HC Fr4,	47/79	have	one
	Eco01091	RGgnccy	54	86	,			
	BpmI	ctccag		121				
55	AvaII	Ggwcc		140				
		-						

- 152 -

```
Table 21: MALIA3, annotated
    ! MALIA3 9532 bases
         I aat got act act att agt aga att gat god acc ttt tea got <u>o</u>go god
         gene ii continued
        49 cca aat gaa aat ata gct aaa cag gtt att gac cat ttg cga aat gta
        97 tct aat ggt caa act aaa tct act cgt tcg cag aat tgg gaa tca act
       145 gtt aca tgg aat gaa act tcc aga cac cgt act tta gtt gca tat tta
       193 aaa cat gtt gag cta cag cac cag att cag caa tta agc tct aag cca
10
       241 tcc gca aaa atg acc tct tat caa aag gag caa tta aag gta ctc tct
       289 aat cct gac ctg ttg gag ttt gct tcc ggt ctg gtt cgc ttt gaa gct
       337 cga att aaa acg cga tat ttg aag tct ttc ggg ctt cct ctt aat ctt
       385 tit gat gca atc cgc ttt gct tct gac tat aat agt cag ggt aaa gac
       433 ctg att ttt gat tta tgg tca ttc tcg ttt tct gaa ctg ttt aaa gca
15
       481 ttt gag ggg gat tca ATG aat att tat gac gat tcc gca gta ttg gac
               RBS?..... Start gene x, ii continues
       529 gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act tct
       577 ttt gca aaa gcc tct cgc tat ttt ggt ttt tat cgt cgt ctg gta aac
       625 gag ggt tat gat agt gtt gct ctt act atg cct cgt aat toc ttt tgg
20
       673 cgt tat gta tct gca tta gtt gaa tgt ggt att cct aaa tct caa ctg
       721 atg aat ctt tct acc tgt aat aat gtt gtt ccg tta gtt cgt ttt att
       769 aac gta gat ttt tct tcc caa cgt cct gac tgg tat aat gag cca gtt
       817 ctt aaa_atc gca TAA
                            End X & II
25
       832 ggtaattca ca
                            E5
                                                010
       843 ATG att aaa gtt gaa att aaa cca tct caa gcc caa ttt act act cgt
           Start gene V
30
                                            P25
       891 tct ggt gtt tct cgt cag ggc aag cct tat tca ctg aat gag cag ctt
                                        E40
35
        939 tgt tac gtt gat ttg ggt aat gaa tat ccg gtt ctt gtc aag att act
                                    A55
                                                        L60
        987 ctt gat gaa ggt cag cca gcc tat gcg cct ggt cTG TAC Acc gtt cat
                                                         BsrGI...
40
                                V70
       1035 ctg tcc tct ttc aaa gtt ggt cag ttc ggt tcc ctt atg att gac cgt
                            P85
                                    K87 end of V
       1083 ctg cgc ctc gtt ccg gct aag TAA C
45
       1108 ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg
           Start gene VII
       1150 ata caa atc tcc gtt gta ctt tgt ttc gcg ctt ggt ata atc
50
                              VII and IX overlap.
                              .... $2 V3 L4 V5
       1192 gct ggg ggt caa agA TGA gt gtt tta gtg tat tct ttc gcc tct ttc gtt
                                End VII
55
                              |start IX
           L13
                   W15
                                        G20
       1242 tta ggt tgg tgc ctt cgt agt ggc att acg tat ttt acc cgt tta atg gaa
```

- 153 -

```
1293 act tcc tc
            .... stop of IX, IX and VIII overlap by four bases
      1301 ATG aaa aag tot tta qte etc aaa gee tot gta gee gtt get ace etc
 5
           Start signal sequence of viii.
      1349 gtt ccg atg ctg tct ttc gct gct gag ggt gac gat ccc gca aaa gcg
                                      mature VIII --->
10
      1397 gcc ttt aac tcc ctg caa gcc tca gcg acc gaa tat atc ggt tat gcg
      1445 tgg gcg atg gtt gtt gtc att
      1466 gtc ggc gca act atc ggt atc aag ctg ttt aag
      1499 aaa ttc acc tcg aaa gca ! 1515
            ..... -35 ..
15
              agc tga taaaccgat acaattaaag gctccttttg
                          ..... -10
      1552 gagccttttt ttttGGAGAt ttt ! S.D. underlined
20
                <-----> III signal sequence ----->
                M K K L L F A I P L V
      1575 caac GTG aaa aaa tta tta ttc gca att cct tta gtt ! 1611
25
               PFYSHS
      1612 gtt cct ttc tat tct cac aGT gcA Cag tCT
                                   ApaLI...
    1
      1642
               GTC GTG ACG CAG CCG CCC TCA GTG TCT GGG GCC CCA GGG CAG
30
               AGG GTC ACC ATC TCC TGC ACT GGG AGC AGC TCC AAC ATC GGG GCA
                BstEII...
               GGT TAT GAT GTA CAC TGG TAC CAG CAG CTT CCA GGA ACA GCC CCC AAA
      1729
      1777
               CTC CTC ATC TAT GGT AAC AGC AAT CGG CCC TCA GGG GTC CCT GAC CGA .
               TTC TCT GGC TCC AAG TCT GGC ACC TCA GCC TCC CTG GCC ATC ACT
      1825
35
      1870
               GGG CTC CAG GCT GAG GAT GAG GCT GAT TAT
      1900
               TAC TGC CAG TCC TAT GAC AGC AGC CTG AGT
               GGC CTT TAT GTC TTC GGA ACT GGG ACC AAG GTC ACC GTC
      1930
                                                    BstEII...
      1969
               CTA GGT CAG CCC AAG GCC AAC CCC ACT GTC ACT
               CTG TTC CCG CCC TCC TCT GAG GAG CTC CAA GCC AAC AAG GCC ACA CTA
40
      2002
               GTG TGT CTG ATC AGT GAC TTC TAC CCG GGA GCT GTG ACA GTG GCC TGG AAG GCA GAT AGC AGC CCC GTC AAG GCG GGA GTG GAG ACC ACC ACA CCC
      2050
      2098
               TCC AAA CAA AGC AAC AAG TAC GCG GCC AGC AGC TAT CTG AGC CTG
      2146
               ACG CCT GAG CAG TGG AAG TCC CAC AGA AGC TAC AGC TGC CAG GTC ACG
      2194
45
               CAT GAA GGG AGC ACC GTG GAG AAG ACA GTG GCC CCT ACA GAA TGT TCA
      2242
               TAA TAA ACCG CCTCCACCGG GCGCGCCAAT TCTATTTCAA GGAGACAGTC ATA
      2290
    !
                                    AscI....
               PelB signal-----
50
               M K Y L L P T A A A G L L L
               ATG AAA TAC CTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC
               16 17 18 19 20
                                      21 22
                      Q P
                  Α
                              Α
                                      M
                                          Α
55
              gcG GCC cag ccG GCC
      2388
                                      atq qcc
                SfiI.....
                       NgoMI...(1/2)
                              NcoI.....
```

```
FR1 (DP47/V3-23) -----
                                23 24 25 26 27 28 29 30
                                E V Q L L E S G
5
     2409
                                gaa|gtt|CAA|TTG|tta|gag|tctlggt|
                                      | MfeI |
              -----FR1-----
           31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 G G L V Q P G G S L R L S C A
10
     2433 |ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct|
          15
          |gct|TCC|GGA|ttc|act|ttc|tct|tCG|TAC|Gct|atg|tct|tgg|gtt|cgC|
            | BspEI |
                                 | BsiWI|
                                                         |BstXI.
           ------>|...CDR2.....
           61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Q A P G K G L E W V S A I S G
20
     2523 |CAa|gct|ccT|GGt|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt|
      ...BstXI
25
         .....CDR2.....
                     76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 S G G S T Y Y A D S V K G R F
     2568 | tct|ggt|ggc|agt|act|tac|tat|gct|gac|tcc|gtt|aaa|ggt|cgc|ttc|
30
           ·----FR3-----
           91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
           TISRDNSKNTLYLQM
     2613
          |act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg|
35
                | XbaI |
          ---FR3-----
          106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
           N S L R A E D T A V Y Y C A K
40
     2658
          |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|
               |AflII |
                                 | PstI |
          121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
45
           D Y E G T G Y A F D I W G Q G
     2703 | igac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|caa|ggt|
                                        | NdeI | (1/4)
          -----FR4---->|
50
          136 137 138 139 140 141 142
           TMVTVSS
         |act|atG|GTC|ACC|gtc|tct|agt
              | BstEII |
   ! From BstEII onwards, pV323 is same as pCES1, except as noted.
55
   ! BstEII sites may occur in light chains; not likely to be unique in final
   ! vector.
```

5	143 144 145 146 147 148 149 150 151 152 A S T K G P S V F P 2769 gcc tcc acc aaG GGC CCa tcg GTC TTC ccc Bsp120I. BbsI(2/2) ApaI
10	153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 L A P S S K S T S G G T A A L 2799 ctg gca ccC TCC TCc aag agc acc tct ggg ggc aca gcg gcc ctg BseRI(2/2)
15	168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 G C L V K D Y F P E P V T V S 2844 ggc tgc ctg GTC AAG GAC TAC TTC CCc gaA CCG GTg acg gtg tcg AgeI
20	183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 W N S G A L T S G V H T F P A 2889 tgg aac tca GGC GCC ctg acc agc ggc gtc cac acc ttc ccg gct KasI(1/4)
25	198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 V L Q S S G L Y S L S S V V T 2934 gtc cta cag tCt agc GGa ctc tac tcc ctc agc agc gta gtg acc (Bsu36I)(knocked out)
30	213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 V P S S S L G T Q T Y I C N V 2979 gtg ccC tCt tct agc tTG Ggc acc cag acc tac atc tgc aac gtg (BstXI)N.B. destruction of BstXI & BpmI sites.
35	228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 N H K P S N T K V D K K V E P 3024 aat cac aag ccc agc aac acc aag gtg gac aag aaa gtt gag ccc ! 243 244 245
40	! K S C A A A H H H H H S A 3069 aaa tot tgt GCG GCC GCt cat cac cat cat cac tot gct ! NotI! ! ! E Q K L I S E E D L N G A A
45	3111 gaa caa aaa ctc atc tca gaa gag gat ctg aat ggt gcc gca ! ! ! ! D I N D D R M A S G A 3153 GAT ATC aac gat gat cgt atg gct AGC ggc gcc
50	rEK cleavage site NheI KasI EcoRV Domain 1
55	3183 gct gaa act gtt gaa agt tgt tta gca ! ! ! K P H T E I S F 3210 aaa ccc cat aca gaa aat tca ttt
60	! ! T N V W K D D K T 3234 aCT AAC GTC TGG AAA GAC GAC AAA ACt

- 156 -

!	3261	L tta	D gat	R cgt	Y tac	A gct	N aac	Y tat	E gag	G ggt	C tgt	L ctg		N AAT	A GCt	T aca	G ggc	V gtt
5 !	3312	V gta	V gtt	C tgt	T act	G ggț	D GAC	E GAA	T ACT	Q CAG	C TGT	Y TAC	G GGT	T ACA	W TGG	V GTT	P cct	I att
10	3363	G ggg	L ctt	A gct	I atc	P cct	E gaa	N aat										
! !	L1 1:	E	G	G ggt	G ggc	S tct	E gag	G ggt	G ggc	G ggt	S tct							
15 !	3414	E gag	G ggt	g ggc	G ggt	S tct	E gag	G ggt	G ggc	G ggt	T act							
20 !	Dom: 3444 3495 3546	aaa cct	cct	cct gac	ggc	act GAG	tat GAG	ccg	cct	ggt	act	gag	caa	aac	ccc	gct	aat	cct
25	3597 3645 3693	gtt	act	caa	ggc	act	agg gac	ccc	gtt	aaa	act	tat	tac	cag	tac	act ttC	cct	
30	3741 3789	Al	wNI	-				• •			-	_			-	tgt		
35	3834 sta 3846 3858 3870 3900 3930	rt Li ggt ggt gag gag	ggt ggc ggc ggt ggt	ggt ggc ggt ggc	tet tet gge gge	tct	gag	gga	ggc									
40	Doma 3945	S	G		F ttt		Y tat		K aag	M atg				N aat	K aag	G 999	A gct	
45	3993	M atg	T acc	E gaa	N aat	A gcc	D gat	E gaa	N aac	A gcg	L cta	Q cag	S tct	D gac	A gct	K aaa	G ggc	
! !	4041		ctt	-	tct	gtc	-	act	gat	tac		gct	gct	atc	_			
50 !	4089				_				-				-					
55 !	4137	F ttt S	A gct P	G ggc L	S tct M	N aat N	S tcc N	Q caa F	M atg R	A gct O	Q caa Y	V gtc L	G ggt P	D gac S	G ggt L	_	N aat O	
•	4185										-		_		_	_		

- 157 -

and the second

! !	4233	S tca	V	E	C	R	P	F +++	V	F	S	A	G	K	P CCa	Y tat	E
5 !		F	s	I	D	С	D	к	I	N	L	F	R				guu
! !	4281		CCL	acc	yac	tyt	yac	aaa					End		ain :		
10	4317		V gtc rt ti		gcg		ctt		_	V gtt		T acc	F ttt	M atg	Y tat	V gta	
!	4365	S	T	F	A	N	I	L									
15	4303	R	acy N	к	gcc E	s	ala	ccy									
	4386		aat acell					! st	op o	of i	ii						
20	4404	tc		P2 cca ct V			L5 ttg	G ggt				L10 tta		R cgt	F ttc	L ctc	
!	4451	ttc				act	ttg	ttc	ggc	tat	ctg	ctt	act	ttt	ctt	aaa	aag
25	4499 4547	ggc att	ttc ggg	ggt ctt	aag aac	ata tca	gct att	att ctt	gct gtg	att ggt	tca tat	ttg ctc	ttt tct	ctt gat	gct att	ctt agc	att gct
	4595 4643	aat	gcg	ctt	ccc	tgt	ttt	tat	gtt	att	ctc	tct	gta	aag	gct	gct	att
			агг	FFF	aac	arr	aaa		ааа		(11)	LCI	тат	1 1 (1	uat	CUU	
30 !	4031 !	ttc	att		-	gtt 42 \			aaa ?5	acc	gii	tet	tat L1	10	gac		gac 13
30 !	4739	aaa		t A	Ml I	42 \	/3 tt ta	I	F5				L	LO		G:	13
30 ! ! 35 !		aaa end	TAA H VI 15	t A	Ml I	A2 V	/3 tt ta	ıt ti	?5 ct gi		ct g		L	LO		G:	13
! !		aaa end 14 K aag	TAA d VI 15 T acg	t AT St 16 L ctc	M1 A FG go cart 17 V gtt	A2 Vet gt gene 18 S agc	/3 tt ta e I 19 V gtt	20 G ggt	21 K aag	ta ao 22 I att	23 Q cag	gc aa 24 D gat	Li aa tt 25 K aaa	26 I att	gc to 27 V gta	G: 28 A gct	13
! !	4739 4785	aaa end 14 K aag 29 G	TAA i VI 15 T acg 30 C	t AS St 16 L ctc 31 K	M1 ATG got art 17 V gtt 32	A2 Not general Sage A33 A	/3 tt ta = I 19 V gtt 34 T	20 G ggt 35 N	21 K aag 36 L	22 I att 37 D	23 Q cag 38 L	gc aa 24 D gat 39 R	L1 aa tt 25 K aaa 40 L	26 I att	gc to 27 V gta 42 N	GCt gg 28 A gct 43 L	13
35	4739 !	aaa end 14 K aag 29 G ggg	TAA i VI 15 T acg 30 C tgc	16 L ctc 31 K aaa	M1 A FG go cart 17 V gtt 32 I ata	A2 Vect gt general S S agc A gca 48	/3 tt ta e I 19 V gtt 34 T act	20 G ggt 35 N aat	21 K aag 36 L ctt	22 I att 37 D gat	23 Q cag 38 L tta	gc aa 24 D gat 39 R agg	25 K aaa 40 L ctt	26 I att 41 Q caa	gc to 27 V gta 42 N aac	28 A gct 43 L ctc	13
35	4739 4785	aaa end 14 K aag 29 G ggg	TAA i VI 15 T acg 30 C tgc 45	16 L ctc 31 K aaa 46 V	M1 A FG go tart 17 V gtt 32 I ata 47 G	A2 Vect gt general S S agc A gca 48 R	/3 tt ta e I 19 V gtt 34 T act 49 F	20 G ggt 35 N aat	21 K aag 36 L ctt	22 I att 37 D gat 52	23 Q cag 38 L tta 53	gc aa 24 D gat 39 R agg 54 R	25 K aaa 40 L ctt 55	26 I att 41 Q caa 56 L	gc to 27 V gta 42 N aac 57 R	28 A gct 43 L ctc	13
35	4739 4785 4830	aaa end 14 K aag 29 G ggg 44 P	TAA i VI 15 T acg 30 C tgc 45	t AT St 16 L ctc 31 K aaa 46 V gtc	M1 ATG ggart 17 V gtt 32 I ata 47 G ggg	A2 Not general Sago A3 A gca A8 R agg	/3 tt ta tt 19 V gtt 34 T act 49 F ttc	20 G ggt 35 N aat 50 A	21 K aag 36 L ctt 51 K aaa	22 I att 37 D gat 52 T acg	23 Q cag 38 L tta 53 P	gc aa 24 D gat 39 R agg 54 R cgc	25 K aaa 40 L ctt 55 V gtt	26 I att 41 Q caa 56 L	gc to 27 V gta 42 N aac 57 R aga	28 A gct 43 L ctc 58 I ata	13
35	4739 4785 4830	aaa end 14 K aag 29 G ggg 44 P ccg 59 P	TAA 1 VI 15 T acg 30 C tgc 45 Q caa 60 D gat	t AS St 16 L ctc 31 K aaa 46 V gtc 61 K aag	M1 ATG gg art 17 V gtt 32 I ata 47 G gg 62 P cct	A2 Not generally generally age as a 33 A gea agg 63 S tet	/3 19 V gtt 34 T act 49 F ttc 64 I ata	20 G ggt 35 N aat 50 A gct 65 S tct	21 K aag 36 L ctt 51 K aaa 66 D gat	22 I att 37 D gat 52 T acg 67 L	23 Q cag 38 L tta 53 P cct 68 L	24 D gat 39 R agg 54 R cgc 69 A	25 K aaa 40 L ctt 55 V gtt 70 I att	26 I att 41 Q caa 56 L ctt 71 G ggg	gc to 27 V gta 42 N aac 57 R aga 72 R cgc	28 A gct 43 L ctc 58 I ata 73 G	13
35 ! 40 ! 45 !	4739 4785 4830 4875 4920	aaa end 14 K aag 29 G ggg 44 P ccg 59 P ccg	TAA 1 VI 15 T acg 30 C tgc 45 Q caa 60 D gat 75	16 L ctc 31 K aaa 46 V gtc 61 K aag 76 S	M1 ATG gg cart 17 V gtt 32 I ata 47 G gg g 62 P cct 77 Y	A2 Not generally generally age as a 33 A a gea agg 63 S tet 78 D	/3 tt ta 19 V gtt 34 T act 49 ttc 64 I ata 79	20 G ggt 355 N aat 50 A gct 65 S tct 80 N	21 K aag 36 L ctt 51 aaa 66 D gat K	22 I att 37 D gat 52 T acg 67 L ttg 82 N	23 Q Cag 38 L tta 53 P cct 68 L ctt 83 G	24 D gat 39 R agg 54 Cgc 69 A gct 84 L	25 K aaa 40 L ctt 55 V gtt 70 I att 85 L	26 I att 41 Q caa 56 L ctt 71 G ggg 86 V	27 V gta 42 N aac 57 R aga 72 R cgc 87 L	28 A gct 43 L ctc 58 I ata 73 G ggt	13
35 ! 40 ! 45 !	4739 4785 4830 4875	aaa end 14 K aag 29 G ggg 44 P ccg 59 P ccg	TAA 1 VI 15 T acg 30 C tgc 45 Q caa 60 D gat 75	16 L ctc 31 K aaa 46 V gtc 61 K aag 76 S	M1 ATG gg cart 17 V gtt 32 I ata 47 G gg g 62 P cct 77 Y	A2 Not generally generally age as a 33 A a gea agg 63 S tet 78 D	/3 tt ta ta 19 V gtt 34 T act 49 ttc 64 I ata 79 gaa	20 G ggt 355 N aat 50 A gct 65 S tct 80 N	21 K aag 36 L ctt 51 Aaa 66 D gat 81 Aaa	22 I att 37 D gat 52 T acg 67 L ttg 82 N	23 Q Cag 38 L tta 53 P cct 68 L ctt 83 G	24 D gat 39 R agg 54 Cgc 69 A cgc L ttg	25 K aaa 40 L ctt 55 V gtt 70 I att 85 L ctt	26 I att Q caa 56 L ctt 71 G ggg 86 V gtt	27 V gta 42 N aac 57 R aga 72 R cgc 87 L	28 A gct 43 L ctc 58 I ata 73 Gggt 88 D gat	13

	! !	R	Q	2	I	I	D	Ŵ	F	L	Н	Α	R	K	· T.	118 -G
_	5055 !													aaa	tta	gga
5	!	W	D	Ι	Ι	F	L	V	0	D	L	S	T	v	Ð	133 K
	5100 !													gtt	gat	aaa
10	! !	Q	Α	R	S	Α	L	Α	E	Н	V	V	Y	C	R	148 R
	5145 !						tta	gct	gaa			gtt	tat	tgt	cgt	cgt
	!!	L	D	R	I	T	L	P	F	V	G	Т	T.	Y	S	163 L
15	5190 !	ctg	gac	aga	att	act	tta	cct	ttt	gtc	ggt	act	tta	tat	tct	ctt
	! !	164 I	165 T	166 G	167 S	168 K	169 M	170 P	171 L	172 P		174 L	175 H	176 V		
20	5235 !								ctg	cct	aaa	tta	cat	gtt	ggc	gtt
-)	! !	179 V	180 K	181 Y	182 G	183 D	184 S	185 Q	186 L	187 S			190 V		192 R	193 W
	5280 !	gtt	aaa	tat	ggc	gat	tct	caa	tta	agc	cct	act	gtt	gag	cgt	tgg
25	! !	194 L	195 Y	196 T	197 G	198 K	199 N	200 L	201 Y	202 N		204 Y	205 D	206 T	207 K	208 O
	5325 !	ctt	tat	act	ggt	aag	aat		tat	aac	gca	tat	gat	act	aaa	cag
30	! !	209 A	210 F	211 S	212 S	213 N	214 Y	215 D	216 S	217 G	218 V	219 Y				
	5370 !	gct	ttt	tct			tat	gat	tcc	ggt	gtt	tat	tct	tat	tta	acg
	! !	224 P	225 Y	226 L	227 S	228 H	229 G	230 R	231 Y	232 F	233 K	234	235 L	236 N	237 L	238 G
35	5415 !	cct	tat	tta			ggt	cgg	tat	ttc	aaa	cca	tta	aat	tta	ggt
!	! !	239 0	240 K	241 M	242 K	243 L	244 T	245 K	246 I	247 Y	248 L		250 K	251 F	252 S	
40	5460 !							aaa	ata	tat	ttg	aaa	aag	ttt	tct	R cgc
!	!	254 V	255 L	256 C	257 L	258 A	259 I			262 A		264 A		266 T		
	5505								ttt	gca	tca	gca	ttt	aca	Y tat	S agt
45 !		269 Y	270 I	271 T	272 0	273 P	274 K									
!	5550	tat							gag	gtt	aaa	aag	gta	V gtc	tct	cag
50 !		284 T	285 Y	286 D	287 F	288 D	289 K	290 F	291	292 I	293	294				
!	5595							ttc	act	att	gac	tct	tct	Q cag	cgt	L ctt
!		299 N	300 T.	301 S	302 V	303	304	305								
55 .	5640		cta	agc	tat	cgc	tat	gtt	F ttc	K aag	D gat	S tct	K aag	G gga	K aaa	
į																PacI

- 159 -

```
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
                          D
                              D
                                  L
                                          K
                                              Q
                                                  G
                                                       Y
                                                           S
                                                                L
                                      0
       5685 ATT AAt agc gac gat tta cag aag caa ggt tat tca ctc aca tat
 5
            329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
            i I
                      L
                          C T V S
                                           I K
                                                   K
                                                        G
                                                           N
                                                                       M1 K
           iv
       5730
             att gat tta tgt act gtt tcc att aaa aaa ggt aat tca aAT Gaa
10
                                                                      Start IV
               344 345 346 347 348 349
                I V K C N .End of I
L3 L N5 V I7 N F V10
15
               att gtt aaa tgt aat TAA T TTT GTT
      IV continued....
       5800 ttc ttg atg ttt gtt tca tca tct tct ttt gct cag gta att gaa atg
       5848 aat aat tog cot otg ogo gat tit gta act tog tat toa aag caa toa
       5896 qgc gaa tee gtt att gtt tet eee gat gta aaa ggt aet gtt aet gta
20
       5944 tat tea tet gae gtt aaa eet gaa aat eta ege aat tte ttt att tet
       5992 gtt tta cgt gct aat aat ttt gat atg gtt ggt tca att cct tcc ata
       6040 att cag aag tat aat cca aac aat cag gat tat att gat gaa ttg cca
       6088 tca tct gat aat cag gaa tat gat gat aat tcc gct cct tct ggt ggt
       6136 ttc ttt gtt ccg caa aat gat aat gtt act caa act ttt aaa att aat
       6184 aac gtt cgg gca aag gat tta ata cga gtt gtc gaa ttg ttt gta aag
25
       6232 tot aat act tot aaa too toa aat gta tta tot att gac ggc tot aat
       6280 cta tta gtt gtt TCT gca cct aaa gat att tta gat aac ctt cct caa
                             ApaLI removed
       6328 ttc ctt tct act gtt gat ttg cca act gac cag ata ttg att gag ggt
       6376 ttg ata ttt gag gtt cag caa ggt gat gct tta gat ttt tca ttt gct
30
       6424 gct ggc tct cag cgt ggc act gtt gca ggc ggt gtt aat act gac cgc
       6472 etc ace tet gtt tta tet tet get ggt ggt teg tte ggt att ttt aat
       6520 ggc gat gtt tta ggg cta tca gtt cgc gca tta aag act aat agc cat
       6568 toa aaa ata ttg tot gtg coa ogt att ott acg ott toa ggt cag aag 6616 ggt tot ato tot gtT GGC CAg aat gto cot ttt att act ggt cgt gtg
35
                               MscI
       6664 act ggt gaa tct gcc aat gta aat aat cca ttt cag acg att gag cgt
       6712 caa aat gta ggt att tcc atg agc gtt ttt cct gtt gca atg gct ggc
       6760 ggt aat att gtt ctg gat att acc agc aag gcc gat agt ttg agt tct
40
       6808 tet act cag gea agt gat gtt att act aat caa aga agt att get aca 6856 acg gtt aat ttg egt gat gga cag act ett tta ete ggt gge ete act
       6904 gat tat aaa aac act tot caa gat tot ggc gta ccg tto ctg tot aaa
       6952 atc cet tta atc ggc ctc ctg ttt agc tcc cgc tct gat tcc aac gag
       7000 gaa agc acg tta tac gtg ctc gtc aaa gca acc ata gta cgc gcc ctg
45
       7048 TAG cggcgcatt
            End IV
       7060 aagegeggeg ggtgtggtgg ttaegegeag egtgaeeget acaettgeea gegeeetage
       7120 georgetect ttegetttet tecetteett tetegeraeg tteGCCGGCt tteccegtea
                                                             NgoMI
50
      7180 agetetaaat egggggetee etttagggtt eegatttagt getttaegge acetegaece
       7240 caaaaaactt gatttgggtg atggttCACG TAGTGggcca tcgccctgat agacggtttt
                                         DraIII
      7300 tegecetttG ACGTTGGAGT Ceaegttett taatagtgga etettgttee aaactggaac
                     DrdI
55
      7360 aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga
      7420 accaccatca aacaggattt tcgcctgctg gggcaaacca gcgtggaccg cttgctgcaa
       7480 ctctctcagg gccaggcggt gaagggcaat CAGCTGttgc cCGTCTCact ggtgaaaaga
                                               PvuII.
                                                           BsmBI.
      7540 aaaaccaccc tGGATCC AAGCTT
60
                        BamHI
                                 HindIII (뇌)
```

```
Insert carrying bla gene
      7563
              gcaggtg gcacttttcg gggaaatgtg cgcggaaccc
      7600 ctatttgttt atttttctaa atacattcaa atatGTATCC gctcatgaga caataaccct
                                                 BciVI
 5
      7660 gataaatgct tcaataatat tgaaaaAGGA AGAgt
                                        RBS.?...
           Start bla gene
      7695 ATG agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg gca ttt
      7746 tgc ctt cct gtt ttt gct cac cca gaa acg ctg gtg aaa gta aaa gat gct
10
      7797 gaa gat cag ttg ggC gCA CGA Gtg ggt tac atc gaa ctg gat ctc aac agc
                                 BssSI...
                            ApaLI removed
      7848 ggt aag atc ctt gag agt ttt cgc ccc gaa gaa cgt ttt cca atg atg agc
      7899 act ttt aaa gtt ctg cta tgt cat aca cta tta tcc cgt att gac gcc ggg
15
      7950 caa gaG CAA CTC GGT CGc cgg gcg cgg tat tot cag aat gac ttg gtt gAG
                 BcqI
                                                                             ScaI
      8001 TAC Toa coa gto aca gaa aag cat ott acg gat ggo atg aca gta aga gaa
           Scal
      8052 tta tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta ctt
20
      8103 ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg cac aac atg
                    PvuI
      8154 ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa gcc
      8205 ata cca aac gac gag cgt gac acc acg atg cct gta gca atg cca aca acg
      8256 tTG CGC Aaa cta tta act ggc gaa cta ctt act cta gct tcc cgg caa caa
25
      8307 tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg cgc tcg
      8358 GCC ctt ccG GCt ggc tgg ttt att gct gat aaa tct gga gcc ggt gag cgt
           Ball
30
      8409 gGG TCT Cgc ggt atc att gca gca ctg ggg cca gat ggt aag ccc tcc cgt
            BsaI
      8460 atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa cga aat
                                  AhdI
      8511 aga cag atc gct gag ata ggt gcc tca ctg att aag cat tgg TAA ctgt
35
      8560 cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa
      8620 ggatctaggt gaagateett tttgataate teatgaceaa aateeettaa egtgagtttt
      8680 cgttccactg tacgtaagac cccc
      8704 AAGCTT
                    GTCGAC tgaa tggcgaatgg cgctttgcct
40
           HindIII SalI..
            (2/2)
                    HincII
      8740 ggtttccggc accagaagcg gtgccggaaa gctggctgga gtgcgatctt
      8790 CCTGAGG
45
           Bsu36I
                ccgat actgtcgtcg tcccctcaaa ctggcagatg
      8832 cacggttacg atgegeeeat etacaceaac gtaacetate ceattacggt caateegeeg
      8892 tttgttccca cggagaatcc gacgggttgt tactcgctca catttaatgt tgatgaaagc
      8952 tggctacagg aaggccagac gcgaattatt tttgatggcg ttcctattgg ttaaaaaatg
50
      9012 agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaATTTAAA
      9072 Tatttgctta tacaatcttc ctgtttttgg ggcttttctg attatcaacc GGGGTAcat
      9131 ATG att gac atg cta gtt tta cga tta ccg ttc atc gat tct ctt gtt tgc
55
           Start gene II
      9182 tcc aga ctc tca ggc aat gac ctg ata qcc ttt qtA GAT CTc tca aaa ata
                                                          BalII...
      9233 gct acc ctc tcc ggc atg aat tta tca gct aga acg gtt gaa tat cat att
```

- 161 -

9284 gat ggt gat ttg act gtc tcc ggc ctt tct cac cct ttt gaa tct tta cct
9335 aca cat tac tca ggc att gca ttt aaa ata tat gag ggt tct aaa aat ttt
9386 tat cct tgc gtt gaa ata aag gct tct ccc gca aaa gta tta cag ggt cat
9437 aat gtt ttt ggt aca acc gat tta gct tta tgc tct gag gct tta ttg ctt
9488 aat ttt gct aat tct ttg cct tgc ctg tat gat tta ttg gat gtt ! 9532
! gene II continues

Table 21B:	Sequence	ο£	MALIA3,	condensed	
LOCUS	MALIA3		9532		CIRCULAR
ORIGIN					

	OKIGIN						
	1	ААТССТАСТА	C	አ ለምምርልምር <i>ር</i> ር	ACCTTTTCAG	CHCCCCCCC	ጸአ <i>ከመ</i> ሶአ.አአአመ
5	61	ATAGCTAAAC	ACCTTATTCA	CCATTTCCCA	AATGTATCTA	A TO CO CO CO A A C	MANI CANAMI
•	121	CGTTCGCAGA	ATTCCCAATC	ADCTCTTACA	TGGAATGAAA	CTTCCACACA	CCCTACTORNA
	181	GTTGCATATT	TAAAACATGT	TCACCTACAC	CACCAGATTC	ACCA ATTA AC	CTCTALITA
	241	TCCGCAAAAA	TCACCTCTTA	TCAAAAGGAG	CAATTAAAGG	TACTOTOTA A	TCCTCACCTC
	361	TCTTTCGGGC	TTCCTCTTAA	TCTTTTTCAT	GCAATCCGCT	THETETETAA	CTATAATA
10	421	CAGGGTAAAG	ACCTCATTT	TCTTTTTTTCC	TCATTCTCGT	TIGGIIGIGA	CTATAATAGT
	481	TTTGAGGGGG	ATTCAATCAA	TATTTATCAC	GATTCCGCAG	TATTCIGAACI	TATCCACTC
	541	AAACATTTTA	CTATTACCCC	CTCTGGCAAA	ACTTCTTTTG	CANANCCCTC	TAICCAGICI
	601	GGTTTTTATC	GTCGTCTGGT	AAACGAGGGT	TATGATAGTG	TTTCTTTTAC	TANCCOMOCH
	661	AATTCCTTTT	GGCGTTATGT	ATCTCCATTA	GTTGAATGTG	CTATTCCTTA	ATCTCAACTC
15	721	ATGAATCTTT	CTACCTGTAA	TAATCTTCTT	CCGTTAGTTC	CTTTTTATTA	CCTACATTO
	781	TCTTCCCAAC	GTCCTGACTG	CTATABTCAC	CCAGTTCTTA	ANATOCONTA	CGIAGAIIII
	841	CAATGATTAA	ACTTCAAATT	AAACCATCTC	AAGCCCAATT	TACTACTCC	TCTCCTCTTTT
	901	CTCGTCAGGG	CAACCCTTAT	TCACTGAATG	AGCAGCTTTG	THOTACTOR	TUTGGTGTTT
	961	AATATCCGGT	TCTTCTCAAG	ATTACTOTATE	ATGAAGGTCA	CCCACCCTAT	CCCCCTCCTC
20	1021	TGTACACCGT	TCATCTGTCC	TCTTTCAAAC	TTGGTCAGTT	CCCTTCCCTT	ATCATTCACC
	1081	GTCTGCGCCT	CGTTCCGGCT	AAGTAACATG	GAGCAGGTCG	CCCATTCCCA	CACAAMMAAA
	1141	CAGGCGATGA	TACAAATCTC	CCTTCTACTT	TGTTTCGCGC	TTCCTATAAT	CCCTCCCCCT
	1201	CAAAGATGAG	TGTTTTAGTG	TATTCTTTC	CCTCTTTCGT	TTTTTCCTTCC	TCCCTTCCTA
	1261	GTGGCATTAC	GTATTTTACC	CGTTTAATCC	AAACTTCCTC	ATCANANACT	CTTTTACTCCTT
25	1321	CAAAGCCTCT	GTAGCCGTTG	СТАСССТССТ	TCCGATGCTG	TCTTTCCCTC	CTCACCCTCA
	1381	CGATCCCGCA	AAAGCGGCCT	TTAACTCCCT	GCAAGCCTCA	CCCACCCAAT	ATATCCCTTA
	1441	TGCGTGGGCG	ATGGTTGTTG	TCATTCTCGG	CGCAACTATC	CCTATCAACC	TOTOTALOGIIA
	1501	ATTCACCTCG	AAAGCAAGCT	GATAAACCGA	TACAATTAAA	CCCTCCTTTT	CCACCCTTTT
	1561	TTTTTGGAGA	TTTTCAACGT	CADADATTA	TTATTCGCAA	TTCCTTTACT	TOTTCOTTC
30	1621	TATTCTCACA	GTGCACAGTC	TGTCGTGACG	CAGCCGCCCT	CACTCTCTCC	GCCCCAGGG
	1681	CAGAGGGTCA	CCATCTCCTG	CACTGGGAGC	AGCTCCAACA	TCGGGGCAGG	TTATCATCTA
	1741	CACTGGTACC	AGCAGCTTCC	AGGAACAGCC	CCCAAACTCC	TCATCTATCC	TARCACCAAT
	1801	CGGCCCTCAG	GGGTCCCTGA	CCGATTCTCT	GGCTCCAAGT	CTGGCACCTC	ACCCTCCCTC
	1861	GCCATCACTG	GGCTCCAGGC	TGAGGATGAG	GCTGATTATT	ACTGCCAGTC	CTATGACAGC
35	1921	AGCCTGAGTG	GCCTTTATGT	CTTCGGAACT	GGGACCAAGG	TCACCGTCCT	AGGTCAGCCC
	1981	AAGGCCAACC	CCACTGTCAC	TCTGTTCCCG	CCCTCCTCTG	AGGAGCTCCA	AGCCAACAAG
	2041	GCCACACTAG	TGTGTCTGAT	CAGTGACTTC	TACCCGGGAG	CTGTGACAGT	GGCCTGGAAG
	2101	GCAGATAGCA	GCCCCGTCAA	GGCGGGAGTG	GAGACCACCA	CACCCTCCAA	ACAAAGCAAC
	2161	AACAAGTACG	CGGCCAGCAG	CTATCTGAGC	CTGACGCCTG	AGCAGTGGAA	GTCCCACAGA
40	2221	AGCTACAGCT	GCCAGGTCAC	GCATGAAGGG	AGCACCGTGG	AGAAGACAGT	GGCCCCTACA
	2281	GAATGTTCAT	AATAAACCGC	CTCCACCGGG	CGCGCCAATT	CTATTTCAAG	GAGACAGTCA
	2341	TAATGAAATA	CCTATTGCCT	ACGGCAGCCG	CTGGATTGTT	ATTACTCGCG	GCCCAGCCGG
	2401	CCATGGCCGA	AGTTCAATTG	TTAGAGTCTG	GTGGCGGTCT	TGTTCAGCCT	GGTGGTTCTT
	2461	TACGTCTTTC	TTGCGCTGCT	TCCGGATTCA	CTTTCTCTTC	GTACGCTATG	TCTTGGGTTC
45	2521	GCCAAGCTCC	TGGTAAAGGT	TTGGAGTGGG	TTTCTGCTAT	CTCTGGTTCT	GGTGGCAGTA
	2581	CTTACTATGC	TGACTCCGTT	AAAGGTCGCT	TCACTATCTC	TAGAGACAAC	TCTAAGAATA
	2641	CTCTCTACTT	GCAGATGAAC	AGCTTAAGGG	CTGAGGACAC	TGCAGTCTAC	TATTGCGCTA
	2701	AAGACTATGA	AGGTACTGGT	TATGCTTTCG	ACATATGGGG	TCAAGGTACT	ATGGTCACCG
	2761				TCTTCCCCCT		
50	2821	CCTCTGGGGG	CACAGCGGCC	CTGGGCTGCC	TGGTCAAGGA	CTACTTCCCC	GAACCGGTGA
	2881	CGGTGTCGTG	GAACTCAGGC	GCCCTGACCA	GCGGCGTCCA	CACCTTCCCG	GCTGTCCTAC
	2941	AGTCTAGCGG	ACTCTACTCC	CTCAGCAGCG	TAGTGACCGT	GCCCTCTTCT	AGCTTGGGCA
	3001	CCCAGACCTA	CATCTGCAAC	GTGAATCACA	AGCCCAGCAA	CACCAAGGTG	GACAAGAAAG
	3061	TTGAGCCCAA	ATCTTGTGCG	GCCGCTCATC	ACCACCATCA	TCACTCTGCT	GAACAAAAAC
55	3121	TCATCTCAGA	AGAGGATCTG	AATGGTGCCG	CAGATATCAA	CGATGATCGT	ATGGCTGGCG
	3181	CCGCTGAAAC	TGTTGAAAGT	TGTTTAGCAA	AACCCCATAC	AGAAAATTCA	TTTACTAACG
	3241	TCTGGAAAGA	CGACAAAACT	TTAGATCGTT	ACGCTAACTA	TGAGGGTTGT	CTGTGGAATG
						- · · - -	

	3301	СТАСАССССТ	TGTAGTTTGT	DCTCCTCDCC	AAACTCACTC	TTACCCTACA	ጥ ርርርጥጥርርጥአ
	3361		TATCCCTGAA				
	3421		GGGTGGCGGT				
	3481	ATACTTATAT	CAACCCTCTC	GACGGCACTT	ATCCGCCTGG	TACTGAGCAA	AACCCCGCTA
5	3541	ATCCTAATCC	TTCTCTTGAG	GAGTCTCAGC	CTCTTAATAC	TTTCATGTTT	CAGAATAATA
-	3601		TAGGCAGGGG				
	3661		AACTTATTAC				
	3721		TAAATTCAGA				
	3781		TCAAGGCCAA				
10	3841		TGGTTCTGGT				
	3901	AGGGTGGCGG	CTCTGAGGGA	GGCGGTTCCG	GTGGTGGCTC	TGGTTCCGGT	GATTTTGATT
	3961	ATGAAAAGAT	GGCAAACGCT	AATAAGGGGG	CTATGACCGA	AAATGCCGAT	GAAAACGCGC
	4021	TACAGTCTGA	CGCTAAAGGC	AAACTTGATT	CTGTCGCTAC	TGATTACGGT	GCTGCTATCG
	4081		TGGTGACGTT				
15	4141		TTCCCAAATG				
13							
	4201		ATATTTACCT				
	4261		ACCATATGAA				
	4321	TCTTTGCGTT	TCTTTTATAT	GTTGCCACCT	TTATGTATGT	ATTTTCTACG	TTTGCTAACA
	4381	TACTGCGTAA	TAAGGAGTCT	TAATCATGCC	AGTTCTTTTG	GGTATTCCGT	TATTATTGCG
20	4441	TTTCCTCGGT	TTCCTTCTGG	TAACTTTGTT	CGGCTATCTG	CTTACTTTTC	TTAAAAAGGG
	4501		ATAGCTATTG				
	4561		GGTTATCTCT				
	4621		ATTCTCCCGT				
0.5	4681		TTCATTTTTG				
25	4741		TGTTTATTTT				
	4801		TCAGGATAAA				
	4861		CCTCCCGCAA				
	4921	CGGATAAGCC	TTCTATATCT	GATTTGCTTG	CTATTGGGCG	CGGTAATGAT	TCCTACGATG
	4981	AAAATAAAA	CGGCTTGCTT	GTTCTCGATG	AGTGCGGTAC	TTGGTTTAAT	ACCCGTTCTT
30	5041	GGAATGATAA	GGAAAGACAG	CCGATTATTG	ATTGGTTTCT	ACATGCTCGT	AAATTAGGAT
	5101		TTTTCTTGTT	•			
	5161		TGTTGTTTAT				
	5221		TCTTATTACT				
~ ~	5281		CGATTCTCAA				
35	5341		CGCATATGAT				
	5401		AACGCCTTAT				
	5461	AGAAGATGAA	ATTAACTAAA	ATATATTTGA	AAAAGTTTTC	TCGCGTTCTT	TGTCTTGCGA
	5521		ATCAGCATTT				
	5581		TCAGACCTAT				
40	5641		TCGCTATGTT				
. 0	5701		AGGTTATTCA				
	5761		TGAAATTGTT				
	5821		CTCAGGTAAT				
	5881	TATTCAAAGC	AATCAGGCGA	ATCCGTTATT	GTTTCTCCCG	ATGTAAAAGG	TACTGTTACT
45	5941	GTATATTCAT	CTGACGTTAA	ACCTGAAAAT	CTACGCAATT	TCTTTATTTC	TGTTTTACGT
	6001	GCTAATAATT	TTGATATGGT	TGGTTCAATT	CCTTCCATAA	TTCAGAAGTA	TAATCCAAAC
	6061	AATCAGGATT	ATATTGATGA	ATTGCCATCA	TCTGATAATC	AGGAATATGA	TGATAATTCC
	6121		GTGGTTTCTT				
EΛ	6181		GGGCAAAGGA				
50	6241		CAAATGTATT				
	6301		TAGATAACCT				
	6361		AGGGTTTGAT				
	6421	GCTGCTGGCT	CTCAGCGTGG	CACTGTTGCA	GGCGGTGTTA	ATACTGACCG	CCTCACCTCT
	6481		CTGCTGGTGG				
55	6541		TAAAGACTAA				
-	6601		AGAAGGGTTC				
			AATCTGCCAA				
	6661						
	6721	GGTATTTCCA	TGAGCGTTTT	TCCTGTTGCA	ATGGCTGGCG	GTAATATTGT	TCTGGATATT

	6781	ACCAGCAAGG	CCGATAGTTT	GAGTTCTTCT	ACTCAGGCAA	GTGATGTTAT	TACTAATCAA
	6841	AGAAGTATTG	CTACAACGGT	TAATTTGCGT	GATGGACAGA	CTCTTTTACT	CGGTGGCCTC
	6901	ACTGATTATA	AAAACACTTC	TCAAGATTCT	GGCGTACCGT	TCCTGTCTAA	AATCCCTTTA
	6961	ATCGGCCTCC	TGTTTAGCTC	CCGCTCTGAT	TCCAACGAGG	AAAGCACGTT	ATACGTGCTC
5	7021	GTCAAAGCAA	CCATAGTACG	CGCCCTGTAG	CGGCGCATTA	AGCGCGGCGG	GTGTGGTGGT
	7081	TACGCGCAGC	GTGACCGCTA-	CACTTGCCAG	CGCCCTAGCG	CCCGCTCCTT	TCGCTTTCTT
	7141	CCCTTCCTTT	CTCGCCACGT	TCGCCGGCTT	TCCCCGTCAA	GCTCTAAATC	GGGGGCTCCC
	7201	TTTAGGGTTC	CGATTTAGTG	CTTTACGGCA	CCTCGACCCC	AAAAAACTTG	ATTTGGGTGA
	7261	TGGTTCACGT	AGTGGGCCAT	CGCCCTGATA	GACGGTTTTT	CGCCCTTTGA	CGTTGGAGTC
10	7321	CACGTTCTTT	AATAGTGGAC	TCTTGTTCCA	AACTGGAACA	ACACTCAACC	CTATCTCGG
	7381	CTATTCTTTT	GATTTATAAG	GGATTTTGCC	GATTTCGGAA	CCACCATCAA	ACACCATTTT
	7441	CGCCTGCTGG	GGCAAACCAG	CGTGGACCGC	TTGCTGCAAC	TCTCTCAGGG	CCACCCCCTC
	7501	AAGGGCAATC	AGCTGTTGCC	CGTCTCACTG	GTGAAAAGAA	DDDCTCTCT	CCAGGCGG1G
	7561	TTGCAGGTGG	CACTTTTCGG	GGAAATGTGC	GCGGAACCCC	TATTTCTTTA	TTTTTTCTAGC
15	7621	TACATTCAAA	TATGTATCCG	CTCATGAGAC	AATAACCCTG	ΔΤΔΔΔΤΩΓΤΑ	CANTANTATE
	7681	GAAAAAGGAA	GAGTATGAGT	ATTCAACATT	TCCGTGTCGC	CCTTATTCCC	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
	7741	CATTTTGCCT	TCCTGTTTTT	GCTCACCCAG	AAACGCTGGT	CADACTADAA	CATCCTCAAC
	7801	ATCAGTTGGG	CGCACGAGTG	GGTTACATCG	AACTGGATCT	CAACACCCCT	NACATCCTTTC
	7861	AGAGTTTTCG	CCCCGAAGAA	CGTTTTCCAA	TGATGAGCAC	TTTTAAAACTT	CTCCTATCTC
20	7921	ATACACTATT	ATCCCGTATT	GACGCCGGGC	AAGAGCAACT	CCCTCCCCC	CCCCCCTATT
	7981	CTCAGAATGA	CTTGGTTGAG	TACTCACCAG	TCACAGAAAA	GCATCTTACC	CATCCCATCA
	8041	CAGTAAGAGA	ATTATGCAGT	GCTGCCATAA	CCATGAGTGA	TAACACTGCG	CCCAACTTAC
	8101	TTCTGACAAC	GATCGGAGGA	CCGAAGGAGC	TAACCGCTTT	TTTGCACAAC	ATCCCCCATC
	8161	ATGTAACTCG	CCTTGATCGT	TGGGAACCGG	ACCTCAATCA	ACCCATACCA	ALGGGGGAIC
25	8221	GTGACACCAC	GATGCCTGTA	GCAATGCCAA	CAACGTTGCG	ATTATOO A A A	ACTOCCOARC
	8281	TACTTACTCT	AGCTTCCCGG	CAACAATTAA	TAGACTGGAT	GGAGGCGGAT	ADAGTTCCAC
	8341	GACCACTTCT	GCGCTCGGCC	CTTCCGGCTG	GCTGGTTTAT	TCCTCATAAA	TOTOCAG
	8401	GTGAGCGTGG	GTCTCGCGGT	ATCATTGCAG	CACTGGGGCC	ACATCCTAAC	CCCTCCCCTA
	8461	TCGTAGTTAT	CTACACGACG	GGGAGTCAGG	CAACTATGGA	TCDACCADAT	ACACACATCC
30	8521	CTGAGATAGG	TGCCTCACTG	ATTAAGCATT	GGTAACTGTC	ACACCAACTT	TACTCATATA
	8581	TACTTTAGAT	TGATTTAAAA	CTTCATTTTT	AATTTAAAAG	GATCTACCTC	ADCATCATATA
	8641	TTGATAATCT	CATGACCAAA	ATCCCTTAAC	GTGAGTTTTC	CTTCCACTCT	ACCTANCACC
	8701	CCCAAGCTTG	TCGACTGAAT	GGCGAATGGC	GCTTTGCCTG	GTTTCCGGCA	CCAGAAGCGG
	8761	TGCCGGAAAG	CTGGCTGGAG	TGCGATCTTC	CTGAGGCCGA	TACTGTCGTC	CTCCCCTCAA
35	8821	ACTGGCAGAT	GCACGGTTAC	GATGCGCCCA	TCTACACCAA	ССТАВССТВТ	CCCATTACGG
	8881	TCAATCCGCC	GTTTGTTCCC	ACGGAGAATC	CGACGGGTTG	TTACTCGCTC	ACATTTAATC
	8941	TTGATGAAAG	CTGGCTACAG	GAAGGCCAGA	CGCGAATTAT	TTTTCATCCC	CTTCCTATTC
	9001	GTTAAAAAAT	GAGCTGATTT	AACAAAAATT	TAACGCGAAT	ασασαστητ	TATTAACCTT
	9061	TACAATTTAA	ATATTTGCTT	ATACAATCTT	CCTGTTTTTG	CCCCTTTTCT	CATTATCATC
40	9121	CGGGGTACAT	ATGATTGACA	TGCTAGTTTT	ACGATTACCG	TTCATCCATT	CTCTTCTTTC
	9181	CTCCAGACTC	TCAGGCAATG	ACCTGATAGC	СТТТСТАСАТ	CTCTCDAAAA	TACCTACCCT
	9241	CTCCGGCATG	AATTTATCAG	CTAGAACGGT	ТСААТАТСАТ	ATTGATGGTC	ATTTCACTO
	9301	CTCCGGCCTT	TCTCACCCTT	TTGAATCTTT	ACCTACACAT	TACTCAGGCA	TTCCATTTA
	9361	AATATATGAG	GGTTCTAAAA	ATTTTTATCC	TTGCGTTGDA	ΔΤΔΔΔΕΕΓΤΤ	CTCCCCCDDD
45	9421	AGTATTACAG	GGTCATAATG	TTTTTGGTAC	AACCGATTTA	CCTTTATCCT	CTCACCCTTTT
	9481	ATTGCTTAAT	TTTGCTAATT	CTTTGCCTTG	ССТСТАТСАТ	TTATTCCATC	TT TT
					CATOTUTOUT	TIME	4.4

tion:
.4
يد
ice
끕
i.
겁
am
ы
RACE
æ
in
σ
used
ä
Ø
mer
Ĕ
Ľ.
O,
ä
~
ø
Table
ľa
_

Heavy chain

5'-TGG AAG AGG CAC GTT CTT TTC TTT-3' 5' CTT TTC TTT GTT GCC GTT GGG GTG-3'	5'-ACA CTC TCC CCT GTT GAA GCT CTT-3' 3 CGC GCC TTA TTA ACA CTC TCC CCT GTT GAA GCT CTT-3'
HuCµ-FOR (1st PCR) 5'-TGG AA HuCµ-Nested (2nd PCR) 5' CTT TT	 Kappa light chain HuckFor (1st PCR) HuckForAsci(2nd PCR) 5'-ACC GCC TCC ACC GGG CGC GCC TTA TTA ACA CTC TCC ACC GGG CGC GCC TTA TTA ACA CTC TCC TCC TCC TCC TCC T
	ഗ

5'-TGA ACA TTC TGT AGG GGC CAC TG-3' 5'-AGA GCA TTC TGC AGG GGC CAC TG-3'	5'-ACC GCC TCC ACC GGG CGC GCC TTA TTA TGA ACA TTC	5'-ACC GCC TCC ACC GGG CGC GCC TTA TTA AGA GCA TTC TGC AGG GGC CAC TG-3'
Lambda Iight chain HuClambdaFor (1st PCR) HuCL2-FOR HuCL7-FOR	HuClambdaForAscI (2nd PCR) HuCL2-FOR-ASC	HuCL7-FOR-ASC
10	15	

GeneRacer 5' Primers provided with the kit (Invitrogen)
5'A 1st PCR
5'NA 2nd pCR
5'NA 2nd pCR 20

Table 23: ONs used in Capture of kappa light chains using CJ method and BsmAI

All ONs are written 5' to 3'.

	qqqAqqATqqAqTc	gagAgaTagAgAcTagaTc	gagaalaabaAcTaAaTc	daaTaccTaaAaAcTacaTc	adaTaacTaababcTacTo	
REdapters (6)	ON_20SK15012	ON_20SK15L12	ON_20SK15A17	ON_20SK15A27	ON 20SK15A11	ON_20SK15B3 gggAgTcTggAgAcTgggTc

Bridges (6)

10

kapbril012 gggAggATggAgAcTgggTcATcTggATGTGTGCACTGTGACAgAgg kapbril112 gggAAgATggAgAcTgggTcATcTggATGTTTGTGCACTGTGACAgAgg kapbril117 gggAgAgAGTggAGACTgggTcATcTTggATGTCTTGTGCACTGTGACAGAgg kapbrilA27 gggTgcCTggAGAGTGggTcATcTggATGTCTTGTGCACTGTGACAGAgg kapbrilA11 gggTggcTggAgACTgggTcATcTggATGTCTTGTGCACTGTGACAGAgg kapbrilA11 gggTggCTggAgACTgggTcATcTTgATGTTGTGCACTGTGACAGAgg

Extender (5' biotinylated)

kapext1bio ccTcTgTcAcAgTgcAcAAgAcATccAgATgAccAgTcTcc

Primers

kaPCRt1 ccTcTgTcAcAgTgcAcAAgAc

kapfor

5'-aca cte tee cet gtt gaa get ett-3'

ഹ

15

50 ng 1x 4U 200 μM each 300 nM 300 nM

Table 24: PCR program for amplification of kappa DNA

95°C 5 minutes 95°C 15 seconds 65°C 30 seconds 5 72°C 1 minute 72°C 7 minutes 4°C hold

Reagents (100 ul reaction):
Template
10 10x turbo PCR buffer
turbo Pfu
dNTPs
kaPCRt1
kapfor

10

Table 25: h3401-h2 captured Via CJ with BsmAI
! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
! S A Q D I Q M T Q S P A T L S
aGT GCA Caa gac atc cag atg acc cag tct cca gcc acc ctg tct
! ApaLI... a gcc acc ! L25,L6,L20,L2,L16,A11
! Extender......Bridge...

! 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 ! V S P G E R A T L S C R A S Q gtg tct cca ggg gaa agg gcc acc ctc tcc tgc agg gcc agt cag

! 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
! S V S N N L A W Y Q Q K P G Q agt gtt agt aac aac tta gcc tgg tac cag cag aaa cct ggc cag

15
! 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
! V P R L L I Y G A S T R A T D
gtt ccc agg ctc ctc atc tat ggt gca tcc acc agg gcc act gat

- 20 ! 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 ! I P A R F S G S G S G T D F T atc cca gcc agg ttc agt ggc agt ggg tct ggg aca gac ttc act
- ! 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 25 ! L T I S R L E P E D F A V Y Y ctc acc atc agc aga ctg gag cct gaa gat ttt gca gtg tat tac

! 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 ! C Q R Y G S S P G W T F G Q G 30 tgt cag cgg tat ggt agc tca ccg ggg tgg acg ttc ggc caa ggg

! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 ! T K V E I K R T V A A P S V F acc aag gtg gaa atc aaa cga act gtg gct gca cca tct gtc ttc

35
! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
! I F P P S D E Q L K S G T A S
atc ttc ccg cca tct gat gag cag ttg aaa tct gga act gcc tct

- ! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 ! V V C L L N N F Y P R E A K V gtt gtg tgc ctg ctg aat aac ttc tat ccc aga gag gcc aaa gta
- ! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 ! Q W K V D N A L Q S G N S Q E cag tgg aag gtg gat aac gcc ctc caa tcg ggt aac tcc cag gag

! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 ! S V T E Q D S K D S T Y S L S agt gtc aca gag cag gac agc aag gac agc acc tac agc ctc agc

- ! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 ! S T L T L S K A D Y E K H K V agc acc ctg acg ctg agc aaa gca gac tac gag aaa cac aaa gtc
- 9 ! 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
 1 Y A C E V T H Q G L S S P V T
 1 tac gcc tgc gaa gtc acc cat cag ggc ctg agc tcg cct gtc aca
- ! 211 212 213 214 215 216 217 218 219 220 221 222 223 10 ! K S F N K G E C K G E F A aag agc ttc aac aaa gga gag tgt aag ggc gaa ttc gc.....

Table 26: h3401-d8 KAPPA captured with CJ and BsmAI

! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
! S A Q D I Q M T Q S P A T L S

5 aGT GCA Caa gae atc cag atg acc cag tet ect gcc acc ctg tct
! ApaLl...Extender......a gcc acc ! L25,L6,L20,L2,L16,A11
! A GCC ACC CTG TCT ! L2

! 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10 ! V S P G E R A T L S C R A S Q
gtg tct cca ggt gaa aga gcc acc ctc tcc tgc agg gcc agt cag
! GTG TCT CCA GGG GAA AGA GCC ACC CTC TCC TGC ! L2

! 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
! N L L S N L A W Y Q Q K P G Q aat ctt ctc agc aac tta gcc tgg tac cag cag aaa cct ggc cag

! 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ! A P R L L I Y G A S T G A I G 20 get ecc agg etc etc atc tat ggt get tec acc ggg gec att ggt

! 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
 ! I P A R F S G S G S G T E F T atc cca gcc agg ttc agt ggc agt ggg tct ggg aca gag ttc act

25
! 76 77 78 79 80 81 82 83 84 85 86 87 88 89.90
! L T I S S L Q S E D F A V Y F
ctc acc atc agc agc ctg cag tct gaa gat ttt gca gtg tat ttc

30 ! 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 ! C Q Q Y G T S P P T F G G G T tgt cag cag tat ggt acc tca ccg ccc act ttc ggc gga ggg acc

! 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 ! K V E I K R T V A A P S V F I aag gtg gag atc aaa cga act gtg gct gca cca tct gtc ttc atc

! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 ! F P P S D E Q L K S G T A S V 40 ttc ccg cca tct gat gag cag ttg aaa tct gga act gcc tct gtt

! 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 ! V C P L N N F Y P R E A K V Q gtg tgc ccg ctg aat aac ttc tat ccc aga gag gcc aaa gta cag

45
! 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
! W K V D N A L Q S G N S Q E S
tgg aag gtg gat aac gcc ctc caa tcg ggt aac tcc cag gag agt

! 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
 ! V T E Q D N K D S T Y S L S S gtc aca gag cag gac aac aag gac agc acc tac agc ctc agc agc

- 171 -

- ! 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 ! T L T L S K V D Y E K H E V Y acc ctg acg ctg agc aaa gta gac tac gag aaa cac gaa gtc tac
- 91 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
 A C E V T H Q G L S S P V T K gcc tgc gaa gtc acc cat cag ggc ctt agc tcg ccc gtc acg aag
- ! 211 212 213 214 215 216 217 218 219 220 221 222 223 10 ! S F N R G E C K K E F V agc ttc aac agg gga gag tgt aag aaa gaa ttc gtt t

```
Table 27: V3-23 VH framework with variegated codons shown
                        17 18 19 20 21 22
                        AQPAMA
 5
              5'-ctg tet gaa cG GCC eag eeG GCC atg gee 29
              3'-gac aga ctt gc cgg gtc ggc cgg tac cgg
                Scab.....Sfil....
                          NgoMI...
                              NcoI....
10
                        FR1(DP47/V3-23)---
                        23 24 25 26 27 28 29 30
                        EVQLLESG
                        gaa|gtt|CAA|TTG|tta|gag|tct|ggt| 53
                        ctt|caa|gtt|aac|aat|ctc|aga|cca|
15
                           | MfeI |
                  -FR1-
          31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
20
           GGLVQPGGSLRLSCA
          |ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta|cgt|ctt|tct|tgc|gct| 98
          |ccg|cca|gaa|caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|
          Sites to be varied---> *** ***
25
          ---FR1----->|...CDR1.....|---FR2-----
          46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
           ASGFTFSSYAMSWVR
          |get|TCC|GGA|ttc|act|ttc|tct|tCG|TAC|Gct|atg|tct|tgg|gtt|cgC| 143
          |cga|agg|cct|aag|tga|aag|aga|agc|atg|cga|tac|aga|cc|caa|gcg|
30
            BspEI
                           |BsiWI
                     Sites to be varies-> ***
                       ----->|...CDR2......
          61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
35
           Q A P G K G L E W V S A I S G
          |CAa|gct|ccT|GGt|aaa|ggt|ttg|gag|tgg|gtt|tct|gct|atc|tct|ggt| 188
          |gtt|cga|gga|cca|ttt|cca|aac|ctc|acc|caa|aga|cga|tag|aga|cca|
        ...BstXI
40
                *** ***
         76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
           SGGSTYYADSVKGRF
          |tct|ggt|ggc|agt|act|tac|tat|gct|gac|tcc|gtt|aaa|ggt|cgc|ttc| 233
45
          |aga|cca|ccg|tca|tga|atg|ata|cga|ctg|agg|caa|ttt|cca|gcg|aag|
           91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
           TISRDNSKNTLYLQM
50
          |act|atc|TCT|AGA|gac|aac|tct|aag|aat|act|ctc|tac|ttg|cag|atg| 278
          |tga|tag|aga|tct|ctg|ttg|aga|ttc|tta|tga|gag|atg|aac|gtc|tac|
             | Xbal |
55
          106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
          NSLRAEDTAVYYCAK
         |aac|agC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tat|tgc|gct|aaa| 323
          |ttg|tcg|aat|tcc|cga|ctc|ctg|tga|cgt|cag|atg|ata|acg|cga|ttt|
```

```
|AfIII |
                              | Pstl |
      !
           ......CDR3......|----FR4---
            121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  5
            DYEGTGYAFDIWGQG
           |gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|caa|ggt| 368
           |ctg|ata|ctt|cca|tga|cca|ata|cga|aag|ctg|tat|acc|cca|gtt|cca|
                                 | Ndel |
10
                  -----FR4----->
            136 137 138 139 140 141 142
            TMVTVSS
           |act|atG|GTC|ACC|gtc|tct|agt-
                                         389
           |tga|tac|cag|tgg|cag|aga|tca-
15
               | BstEII |
                      143 144 145 146 147 148 149 150 151 152
       1
       !
                      ASTKGPSVFP
                     gcc tcc acc aaG GGC CCa tcg GTC TTC ccc-3' 419
20
                     cgg agg tgg ttc ccg ggt agc cag aag ggg-5'
                              Bsp120I. Bbs1...(2/2)
       1
                              Apal....
       !
       (SFPRMET) 5'-ctg tct gaa cG GCC cag ccG-3'
       (TOPFRIA) 5'-ctg tct gaa cG GCC cag ccG GCC atg gcc-
              gaalgtt|CAA|TTG|tta|gag|tct|ggt|-
25
              |ggc|ggt|ctt|gtt|cag|cct|ggt|ggt|tct|tta-3'
       (BOTFR1B)
                          3'-caa|gtc|gga|cca|cca|aga|aat|gca|gaa|aga|acg|cga|-
              |cga|agg|cct|aag|tga|aag-5' ! bottom strand
       (BOTFR2) 3'-acc|caa|gcg|-
30
              |gtt|cga|gga|cca|ttt|cca|aac|ctc|acc|caa|aga|-5' ! bottom strand
       (BOTFR3) 3'- a|cga|ctg|agg|caa|ttt|cca|gcg|aag|-
              |tga|tag|aga|tct|ctg|ttg|aga|ttc|tta|tga|gag|atg|aac|gtc|tac|-
            ittg|tcg|aat|tcc|cga|ctc|ctg|tga-5'
                5'-gC|TTA|AGg|gct|gag|gac|aCT|GCA|Gtc|tac|tat|tgc|gct|aaa|-
35
           |gac|tat|gaa|ggt|act|ggt|tat|gct|ttc|gaC|ATA|TGg|ggt|c-3'
       (BOTFR4) 3'-cga|aag|ctg|tat|acc|cca|gtt|cca|-
              |tga|tac|cag|tgg|cag|aga|tca-
                egg agg tgg ttc ccg ggt agc cag aag ggg-5'! bottom strand
                            3'-gg ttc ccg ggt agc cag aag ggg-5'
       (BOTPRCPRIM)
40
       ! CDR1 diversity
       (ON-vgC1) 5'-lgct|TCC|GGA|ttc|act|tte|tct|<1>|TAC|<1>|atg|<1>|
                              CDR1.....6859
45
               itgglgttlcgC|CAalgctlccT|GG-3'
       !<1> stands for an equimolar mix of {ADEFGHIKLMNPQRSTVWY}; no C
                          (this is not a sequence)
50
      ! CDR2 diversity
       (ON-vgC2) 5'-ggt|ttg|gag|tgg|gtt|tct|<2>|atc|<2>|<3>|-
                             CDR2.....
                |tct|ggt|ggc|<1>|act|<1>|tat|gct|gac|tcc|gtt|aaa|gg-3'
55
       ! <1> is an equimolar mixture of {ADEFGHIKLMNPQRSTVWY}; no C
       ! <2> is an equimolar mixture of {YRWVGS}; no ACDEFHIKLMNPQT
```

- 174 -

! <3> is an equimolar mixture of {PS}; no ACDEFGHIKLMNQRTVWY

Table 28: Stuffer used in VH

361 GATAAGTGGT ACAGCGCCAG TGGCTACGAA ACAACCCAGG ACGGCCCAAC TGGTTCGCTG GAAGAAACGC GTCATCAGGC GGAGTATCAA AACCGTGGAA CAGAAAACGA TATGATTGTT AATATAAGTG TTGGAGCAAA AATTTTGTAT GAGGCGGTGC AGGGAGACAA ATCACCAATC GAAGATACCT GGGAGACTCT TTCCAAACGC TATGGCAATA ATGTGAGTAA CTGGAAAACA TACGAAAATT TTGGCCGTAA GTCGCTCTGG TTAACGAAGC AGGATGTGGA GGCGCATAAG 781 AGTGGGTTTA TTGCTCCCGA TGGAACAGTT GATAAGCACT ATGAAGATCA GCTGAAAATG 181 TCTGGTTTGA CACAGAGCGA TCCGCGTCGT CAGTTGGTAG AAACATTAAC ACGTTGGGAT 241 GGCATCAATT TGCTTAATGA TGATGGTAAA ACCTGGCAGC AGCCAGGCTC TGCCATCCTG CCACAGGCGG TTGATCTGTT TGCTGGGAAA CCACAGCAGG AGGTTGTTT GGCTGCGCTG TTCTCACCAA CGACAAGCGA TCGTCCTGTG CTTGCCTGGG ATGTGGTCGC ACCCGGTCAG CCTGCAATGG CCTTAACGTT CCGGGCAAAT AATTTCTTTG GTGTACCGCA GGCCGCAGCG 61 GACCGACTGC TTGAGCAAAA GCCACGCTTA ACTGCTGATC AGGCATGGGA TGTTATTCGC 121 CAAACCAGTC GTCAGGATCT TAACCTGAGG CTTTTTTAC CTACTCTGCA AGCAGCGACA 301 AACGTTTGGC TGACCAGTAT GTTGAAGCGT ACCGTAGTGG CTGCCGTACC TATGCCATTI TCCGGAGCTT CAGATCTGTT TGCCTTTTTG TGGGGTGGTG CAGATCGCGT TACGGAGATC 601 421 481 661 721 841 541

10

S

Table 29: DNA sequence of pCES\$

```
pCES5 6680 bases = pCes4 with stuffers in CDR1-2 and CDR3 2000.12.13
                                                                                    Avril Cctagg
BsmFi Nnnnnnnnnnnnngtccc
                                                                                                                                                                                       PshAl GACNNnngte Sacl GAGCTe
                                                                                                                                             Kpnl GGTACc
Nsil ATGCAt
                                                                                  lAcc651 Ggtacc Afel AGCgct AvrII Cctagg
1BsaBl GATNNnnatc BsiWI Cgtacg BsmFI Nnnnnn
1BsrGI Tgtaca BstAPI GCANNNNngc BstBl TTcgaa
1BstZ171 GTAtac BtrI CACgtg Ecl136I GAGctc
1EcoRV GATatc Fsel GGCCGGcc KpnI GGTACc
                                                                                                                                                                                                             Sse8387I CCTGCAgg Stul AGGcct Xmal Cccggg
                                          ! Useful REs (cut MAnoLI fewer than 3 times) 2000.06.05
                                                                                                                                                                            Pmll CACgtg
                                                                                                                                                                                                                                                                                                                                                                                                                                                             1703
3 43 148 1156
                                                                                                                                                                                                       Shfi CCTGCAgg
                                                                                                                                                                            Pmel GTTTaaac
                                                                                                                                                                                                                                                                                               Enzymes that cut more than 3 times.
                                                                                                                                                                                                                                                                                                                                                                                                    Enzymes that cut from 1 to 3 times.
                                                                                                                                                                                                                                                                                                                                                                          2
                                                                                                                                                             Nrul TCGcga
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             65
                                                                                                                                                                                                                                                                                                                                                                                                                                                 12
                                                                                                                                                                                                                                                                                                                                         iBsrFI Rccggy 5
IEarl CTCTTCNnnn
IFaul nNNNNNGCGGG
                                                                                                                                                                                                                                                                                                            AlwNI CAGNNNctg
                                                                                                                                                                                                                                                                                                                                                                                                                              EcoO1091 RGgnccy
                                                                                                                                             EcoRV GATate
                                                                                                                                                                                          PpuMI RGgwccy
                                                                                                                                                                                                                        Sgfl GCGATege
Sphl GCATGe
                                                                                                                                                                                                                                                                                                                                                                                                                                                             i-"- Cacgag
BspHl Tcatga
Aatll GACGTc
                                                                                                                                                                          Paci TTAATtaa
                              Ngene = 6680
                                                                                                                                                                                                                                                    Swal ATTTagat
                                                                                                                                                                                                      SacII CCGCgg
                                                                       Non-cutters
                                                                                                                                                                                                                                                                                                                                                                                                                                              BssSI Ctcgtg
                                                                                                                                                                                                                                                                                                                             Bsgl ctgcac
                                                                                                                                                                                                                                                                                   cutters
                                         ഹ
                                                                                                                10
                                                                                                                                                                                       15
                                                                                                                                                                                                                                                                20
                                                                                                                                                                                                                                                                                                                                       25
                                                                                                                                                                                                                                                                                                                                                                                                                 30
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       35
```

1998 2054 3689 5896 3 2233 3943 3991 2235 2321 3 1768 6197 6579 763 5946 3 864 2771 5952 140 1667 616 3598 5926 319 2347 6137 1 2328 2 3460 916 983 2649 4307 868 1 2648 2580 2580 2347 Abdl GACNNNnngtc Eam 11051 GACNNNnngtc IDrdI GACNNNNnngtc BciVI GTATCCNNNNN !ApaLl Gtgcac !BspMI Nnnnnnngcaggt IFspl TGCgca IBgil GCCNNNNnggc IBpml CTGGAG Prull CAGctg -"- ctccag
Bsal GGTCTCNnnnn Aval Cycgrg BsiHKAI GWGCWc Begl geannnnnteg HgiAI GWGCWc Eco57I CTGAAG SgrAI CRccggyg Agel Accest Ascl GGcgcgcc Hincll GTYrac BssHII Gegege Pvul CGATcg HindIII Aagctt Pstl CTGCAg Accl GTmkac cttcag Scal AGTact Sapl gaagage BlpI GCtnage Espl GCtnago Xhol Ctcgag Sall Gregae Tiil Ctcgag **Bbsi** gtette 10 15 Ŋ 25 20 30 35

4209 4209 4492 6319 2 4188 6625 2781 4205 4472 2781 3553 5712 2781 3553 5712 2 2776 6349 1 2770 4278 4226 4209 4507 2861 2781 3527 3767 2956 -"- GAGGAGNNNNNNNNN XcmI CCANNNNnnnntgg BseRI NNnnnnnnctcctc !Kasl Ggcgcc 2 !BstX! CCANNNNNntgg !Not! GCggccgc Sfil GGCCNNNnnggcc BsmBI CGTCTCNnnnn EcoNI CCTNNnnnagg Tth 1111 GACNnngtc -"- Nnnnnngagacg iNael GCCggc iNgoMIV Gccggc Bsu36I CCtnagg PspOMI Gggccc BstEII Ggtnacc ."- GAATGCN Bsp1201 Gggccc !Miul Acgegt !Hpal GTTaac |Affil Cttaag RsrII CGgweeg Banll GRGCYc Apal GGGCCc BspEI Tccgga Deal Corygg Nhel Gctage Styl Ccwwgg Xbal Tctaga Btgl Ccrygg **BglII** Agatet Mfel Caattg **Bcll Tgatca** 35 വ 10 15 20 30

Eagl Cggccg	ggg cCTCGTC lssSl.(1/2) CGTC aggtgge	Aatll. 121 tctaaataca ttcaaatatG TATCCgctca tgagacaata accctgataa atgcttcaat BciVI(1 of 2) 181 aatattgaaa aaggaagagt Base # 201 to 1061 = ApR gene from pUC119 with some RE sites removed	1	1	1 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 1 V K D A E D Q L G A R V G Y I 291 gta aaa gat gct gaa gat cag ttg ggt gcc cga gtg ggt tac atc	i 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 i E L D L N S G K I L E S F R P 336 gaa ctg gat ctc aac agc ggt aag atc ctt gag agt ttt cgc ccc	i 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 i E E R F P M M S T F K V L C 381 gaa cgt ttt cca atg atg agc act ttt aaa gtt ctg cta tgt
ro	10	15	20	25	C	2	35

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 G A V L S R I D A G Q E Q L G 8gc gcg gta tta tcc cgt att gac gcc ggg caa gaG CAa ctc ggT BcgI	91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 R R I H Y S Q N D L V E Y S P CGc cgc ata cac tat tct cag aat gac ttg gtt gAG TAC Tca cca Scal	106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 V T E K H L T D G M T V R E L gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa tta	121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 C S A A I T M S D N T A A N L 1gc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta	136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 L L T T I G G P K E L T A F L ctt ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg Pvul (1/2)	151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 H N M G D H V T R L D R W E P cac aac atg ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg	166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 E L N E A I P N D E R D T T M gag ctg aat gaa gcc ata cca aac gac gag cgt gac acc acg atg	181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 PVAMATTLRKLLTGE cct gta GCA ATG gca aca acg tTG CGC Aaa cta tta act ggc gaa BsrDi(1/2) Fspl(1/2)
426	91 17 R 471 C	\$16	561	909	159	969	741
r)	10)	20	25	30	8. 2.

 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 L L T L A S R Q Q L I D W M E 786 cta ctt act cta gct tcc cgg caa caa tta ata gac tgg atg gag 	i 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 i A D K V A G P L L R S A L P A 831 gcg gat aaa gtt gca gga cca ctt ctg cgc tcg gcc ctt ccg gct	226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 G W F I A D K S G A G E R G S 876 ggc tgg ttt att gct gat aaa tCT GGA Gcc ggt gag cgt gGG TCT BpmI(1/2) BsaI	i 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 ! R G I I A A L G P D G K P S R 921 Cgc ggt atC ATT GCa gca ctg ggg cca gat ggt aag ccc tcc cgt ! Bsal BsrDl(2/2)	256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 1	271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 R N R Q I A E I G A S L I K H 1011 cga aat aga cag atc gct gag ata ggt gcc tca ctg att aag cat	1 286 287 1 W . 1056 tgg taa ctgtcagac caagtttact 1062 ctgaatact ttagattgat ttaaaacttc attittaatt taaaaggatc taggtgaaga	1141 tectititga taateteaig accaaaatee ettaaegiga gittiegite eaetgagegt 1201 cagaeccegt agaaaagate aaaggateit ettgagatee tittitietg egegtaatet 1261 getgettgea aacaaaaaaa ecaecgetae eageggtggt tigtitgeeg gateaagage 1321 taceaactei titteegaag giaaetgget teageagage geagataeca aataetgiee 1381 tietagtgita geegtagitta ggeeaccact teaagaacte tgiageaceg ectacataec
	ഗ	10	15	20	25	30	35

eggetegtat gitigtigga attgtgageg gataacaatt teacaCAGGA AACAGCTATG ttaccgeett tgagtgaget gataccgete gecgeageeg aacgaecgag egeagegagt cagtgagega ggaagegGAA GAGCgeecaa tacgeaaace geeteteeee gegegttgge cgtgcataca geccagettg gagegaacga ectacacega actgagatae etacagegtg ageattgaga aagegecacg etteecgaag ggagaaagge ggacagGTAT CCggtaageg Cag gtc caa CTG CAG GTC GAC CTC GAG atc aaa gcagggtcgg aacaggagag cgCACGAGgg agcttccagg gggaaacgcc tggtatcttt acgcaatTAA TGTgagttag ctcactcatt aggcacccca ggcTTTACAc tttatgcttc cgattcatta atgCAGCTGg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca ggitggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt gggggggggg cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt getggcettt tgctcACATG Ttettteetg egitateece tgattetgtg gataacegta regetetget aateetgtta eeagtggetg etgecagtgg egataagteg tgtettaeeg atagteetgt egggtttege eacetetgae ttgagegteg attttgtga tgetegteag ACcatgatta cgCCAAGCTT TGGagccttt tttttggaga ttttcaac 20 21 22 23 24 25 26 27 28 29 30 QVDLEIK gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat M13Rev_seq_primer PLVVPFY End of FR4 BciVI.. (2 of 2) Xhol... ... Acci...(1/2) 0 V Q L BspMI... Pstl... BssSI.(2/2) MKKLLF Pvull.(1/3) tct cac aGT GCA PfIMI Linker. Hind3. signal::linker::CLight 16 17 18 19 ApaLl.... 12345 SHSA 2269 1741 2161 1891 186 2041 2101 1561 621 1921 801 1861 10 15 25 S 20 30 35

VL-CL(kappa) segments can be cloned in as ApaLI-AscI fragments, <----AGC aga gca gac tac gag aga cac aga GTC TAC gcc tgc gaa gtc 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 acc cat cag ggc ctg agt tcA CCG GTg aca aag agc ttc aac agg gac age aag gac age ace tac age cte age age ace etg acG CTG cgt gga act gtg gct gca cca tct GTC TTC atc ttc ccg cca tct Bbsl...(1/2) aac gcc ctc caa teg ggt aac tec cag gag agt gte aca gag cag 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 D S K D S T Y S L S S T L T L aat aac tte tat eec aga gag gee aaa gta cag tgg aag gtg gat 2404 gat gag cag itg aaa ict gga act gcc ict git gig igc cig cig 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 R G T V A A P S V F I F P P S 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 D E Q L K S G T A S V V C L L 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 N A L Q S G N S Q E S V T E Q 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 ! Vlight domains could be cloned in as ApaLI-Xhol fragments. NNFYPREAKVQWKVD SKADYEKHKVYACEV THQGLSSPVTKSFNR Hincll.(1/2) Accl...(2/2) Agel....(1/2) ...Espl.... 2584 2539 2449 2629 2359 2494 15 25 10 20 30 35 ß

teagatgaag gecaaaaatt ggeaggagtg gaeacageag geagegaaae aageactgae iccagategt caatcaggee atgateegeg attaceegtt cetggtaegg gaaaatggga tracgetasa tecegegeat gggatggtaa agaggtggeg tetttgetgg eetggaetea 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 DYFPEPVTVSWNSGA catcaactgg tactatgctg atgtaaacgg caatattggt tatgttcata ctggtgctta ang age ace tet ggg gge aca geg gee etg gge ege etg gte aag gac tac ttc ccc gaa ccg gtg acg gtg tcg tgg aac tca ggc gcc ciggaaaggg ctattgcctt tigaaatgaa ccctaaggig tataacccc ag gee tee ace aag gge cea teg gte tte eee etg gea eee tee tee KSTSGGTAALGCLVK ASTKGPSVFPLAPSS gtc tca agc gg caa cat tet eea aac tga eeagaega cacaaaegge 3806 |aaclagC|TTA|AG t ctg age att CGG TCC G aa GCTAGC ctgcggcttc NSLSISIS qhspt. 106 107 108 109 GIGTCIACCI 17 18 19 20 | Xbal Afill -FR3---BstEII 4288 3932 4052 4182 3834 3992 4164 4243 വ 10 15 20 25 30

1 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 1 L T S G V H T F P A V L Q S S 4333 ctg acc agc ggc gtc cac acc ttc ccg gct gtc cta cag tcc tca	1 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 1 G L Y S L S S V V T V P S S S 4378 gga ctc tac tcc ctc agc agc gta gtg acc gtg ccc tcc agc agc	: 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 ! L G T Q T Y I C N V N H K P S 4423 ttg ggc acc cag acc tac atc tgc aac gtg aat cac aag ccc agc	1 226 227 228 229 230 231 232 233 234 235 236 237 238 1 N T K V D K K V E P K S C 4468 age acc aag gig gac aaG AAA GTT GAG CCC AAA TCT TGT ON-TQHCforw	Poly His linker 139 140 141 142 143 144 145 146 147 148 149 150 A A A H H H H H G A A 4507 GCG GCC GCa cat cat cat cac ac ggg gcc gca Not1l Eagl	151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 1 E Q K L I S E E D L N G A A . 4543 gaa caa aaa ctc atc tca gaa gag gat ctg aat ggg gcc gca tag	Mature III.——————————————————————————————————	: 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 TNVWKDDKTLDRYAN 4633 act aac gtc tgg aaa gac gac aaa act tta gat cgt tac gct aac
	ഗ	10	15	20	25	30	35

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 Y E G C L W N A T G V V V C T 4678 tat gag ggc tgt ctg tgG AAT GCt aca ggc gtt gtg gtt tgt act Bsml 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 G D E T Q C Y G T W V P I G L 4723 ggt gac gaa act cag tgt tac ggt aca tgg gtt cct att ggg ctt	226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 A I P E N E G G G S E G G G S 4768 gct atc cct gaa aat gag ggt ggt tgc tct gag ggt ggc ggt tct	241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 E G G G S E G G G T K P P E Y 4813 gag ggt ggc ggt tgg ggt ggc act aaa cct cct gag tac	256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 G D T P I P G Y T Y I N P L D 4858 ggt gat aca cet att eeg gge tat act tat ate aac eet ete gae	271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 G T Y P P G T E Q N P A N P N 4903 ggc act tat ccg cct ggt act gag caa aac ccc gct aat cct aat	286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 PSLESQPLNTFMFQ 4948 ccl tcl ctl GAG GAG tcl cag ccl ctl aat act ttc atg ttt cag BseRI(2/2)	301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 N N R F R N R Q G A L T V Y T 4993 aat aat agg ttc cga aat agg cag ggt gca tta act gtt tat acg	316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 G T V T Q G T D P V K T Y Y Q 5038 ggc act git act caa ggc act gac ccc git aaa act tat tac cag
1 196 1 Y 4678 tr 5 2111 1 G 4723 g	10 ! 226 ! A ! 4768 B	15 ; 241 15 ; E 4813 g	256 1 G 20 4858 B	1 271 1 G 1 G 4903 g	4948	4993	35 i 316 i G 5038 g

451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 L D S V A T D Y G A A I D G F 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 DFAGSNSQMAQVGDG 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 I G D V S G L A N G N G A T G 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 5443 cit gai tot gic got act gat tac ggt got got ATC GAT ggt tic BspDI... 5668 aaa cCA TAT Gaa ttt tct att gat tgt gac aaa ata aac tta ttc 5533 gat ttt get gge tet aat tee caa atg get caa gte ggt gae ggt 5488 att ggt gac git icc ggc cit gct aai ggt aai ggt gct act ggi 5623 ttg cct cag tcg gtt gaa tgt cgc cct tat gtc ttt ggc gct ggt 5758 gta tit tcg acg tit gct aac ata ctg cgt aat aag gag tct taa 5578 gat aat tea eet tta atg aat aat tte egt eaa tat tta eet tet DNSPLMNNFRQYLPS 5713 cgt ggt gtc tit gcg tit ctt tia tat gtt gcc acc tit atg tat LPQSVECRPYVFGAG RGVFAFLLYVATFMY KPYEFSIDCDKINLF VFSTFANILRNKES ß 10 15 20 25 30

CGGCgaacgt ggcgagaaag gaagggaaga aagcgaaagg agcgggcgct aggggcgctgg Geoettecea acagiTGCGC Ageotgaatg gegaatGGCG CCtgatgegg tattitetee (3/3) Fspl... (2/2) Kasl...(2/2) aciggoegi egittiacaa egiegigaci gggaaaacco iggogitace caacitaate gecitgeage acateceect ttegecagei ggegtaatag egaagaggee egeacGATC acaagagicc actattaaag aacgtggact ccaacgtcaa agggcgaaaa accgtctaic aggggcgatgg ccCACtacGT Gaaccaicac ccaaatcaag ttttttgggg tcgaggtgcc Dralli.... anateceTTA TAAntenana gantageceg agatagggtt gagtgttgtt ceagtttgga catagitaag ccagcccega caccegecaa caccegetga egegecetga egggettgte igetecegge atecgettae agacaagetg igacegtete egggagetge atgigteaga caagigiage ggicaegeig egegiaacea ceaeaceege egegiiaai gegeegeiae 6291 gtaaagcact aaatcggaac cctaaaggga gccccgatt tagagcttga cggggaaaGC agggcgcgta ctatggttgc tttgacgggt gcagtctcag tacaatctgc tctgatgccg tracgoator grgoggraft toacacogoa tataaaftgt aaaagstaat atttigitaa aattogogt aaattitigt taaatoagot cattititaa oosataggoo gaaatoggoa NgoMIV.. ggttttcacc gicatcaccg agacgcgcga taa GAATTC ..NgoMIV.(2/2) Psil... ...Pvul... (3/3) EcoRI. 571 5812 6111 6351 5931 588 6171 6231 6531 6591 6651 6471 15 10 20 25 S

PCT/US02/12405

- 192 -

Table 30: Oligonucleotides used to clone CDR1/2 diversity

All sequences are 5' to 3'.

1) ON_CD1Bsp, 30 bases

5

A c c T c A c T g g c T T c c g g A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T T c A c T T T c T c T 10 19 20 21 22 23 24 25 26 27 28 29 30

2) ON_Br12, 42 bases

A g A A A c c c A c T c c A A A c c
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T T T A c c A g g A g c T T g g c g 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

20 A A c c c A 37 38 39 40 41 42

3) ON_CD2Xba, 51 bases

25 g g A A g g c A g T g A T c T A g A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

g A T A g T g A A g c g A c c T T T 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

30

A A c g g A g T c A g c A T A 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

35 4) ON BotXba, 23 bases

g g A A g g c A g T g A T c T A g A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

40 g A T A g 19 20 21 22 23

Table 31: Bridge/Extender Oligonucleotides

	ON LamlaB7(rc)		20-
	ON Lam2aB7(rc)	GCCCTGACTCAGCCTGCCTC.	20
	ON Lam31B7 (rc)		20
5	ON Lam3rB7(rc)		20
_	ON LamHflcBrg(rc)	CCTCGACAGCGAAGTGCACAGAGCGTCTTGACTCAGCC	38
	ON LamHflcExt	CCTCGACAGCGAAGTGCACAGAGCGTCTTG	30
	ON LamHf2b2Brg(rc)	CCTCGACAGCGAAGTGCACAGAGCGCTTTGACTCAGCC	38
	ON LamHf2b2Ext	CCTCGACAGCGAAGTGCACAGAGCGCTTTG	30
10	ON LamHf2dBrg(rc)	CCTCGACAGCTAAGTGCACAGAGCGCTTTGACTCAGCC	38
_	ON LamHf2dExt	CCTCGACAGCGAAGTGCACAGAGCGCTTTG	30
	ON LamHf31Brg(rc)	CCTCGACAGCGAAGTGCACAGAGCGAATTGACTCAGCC	38
	ON LamHf31Ext	CCTCGACAGCGAAGTGCACAGAGCGAATTG	30
	ON LamHf3rBrg(rc)	CCTCGACAGCGAAGTGCACAGTACGAATTGACTCAGCC	38
15	ON LamHf3rExt	CCTCGACAGCGAAGTGCACAGTACGAATTG	30
	ON lamPlePCR	CCTCGACAGCGAAGTGCACAG	21
	Consensus		

- 194 -

Table 32: Oligonucleotides used to make SSDNA locally double-stranded

Adapters (8)
H43HF3.1?02#1 5'-cc gtg tat tac tgt gcg aga g-3'

5'-ct gtg tat tac tgt gcg aga g-3'
H43.77.97.323#22 5'-cc gtg tat tac tgt gcg aga g-3'
H43.77.97.330#23 5'-cc gtg tat tac tgt gcg aga g-3'
H43.77.97.439#44 5'-cc gtg tat tac tgt gcg aga g-3'
H43.77.97.551#48 5'-cc gtg tat tac tgt gcg aga g-3'

- -

.

PCT/US02/12405

- 195 -

Table 33: Bridge/extender pairs

Bridges (2)

H43.XABr1

5 5'ggtgtagtgaTCTAGtgacaactctaagaatactctctacttgcagatgaacagCTTtAGggctgaggacaCTGCAGtctactattgtgcgaga-3'

H43.XABr2

5'ggtgtagtgaTCTAGtgacaactctaagaatactctctacttgcagatgaacagCTTtAGgg ctgaggacaCTGCAGtctactattgtgcgaaa-3'

Extender

H43.XAExt

5'ATAgTAgAcTgcAgTgTccTcAgcccTTAAgcTgTTcATcTgcAAgTAgAgAgTATTcTTAg

15 AgTTgTcTcTAgATcActAcc-3'

- 196 -

Table 34: PCR primers

Primers
H43.XAPCR2 gactgggTgTAgTgATcTAg
Hucmnest cttttctttgttgccgttggggtg

WO 02/083872 PCT/US02/12405

- 197 -

and the second

Table 35: PCR program for amplification of heavy chain CDR3 DNA

95 degrees C 5 minutes

95 degrees C 20 seconds
5 60 degrees C 30 seconds repeat 20x
72 degrees C 1 minute

72 degrees C 7 minutes

Reagents (100 ul reaction):

10 Template 5ul ligation mix

10x PCR buffer 1x Taq 5U

4 degrees C hold

 dNTPs
 200 uM each

 MgCl2
 2mM

 15 H43.XAPCR2-biotin
 400 nM

Hucmnest 200 nM

```
! Table 36: Annotated sequence of CJR DY3F7(CJR-A05) 10251 bases
     ! Non-cutters
 5 !BclI Tgatca
                           BsiWI Cgtacg
                                                 BssSI Cacgag . .
     !BstZ17I GTAtac
                          BtrI CACgtg
                                                 EcoRV GATatc
     !FseI GGCCGGcc
                          HpaI GTTaac
                                                 MluI Acgcgt
                                              PpuMI RGgwccy
SexAI Accwggt
SphI GCATGc
     !PmeI GTTTaaac
                           PmlI CACgtg
     !RsrII CGgwccg
                           SapI GCTCTTC
    !SgfI GCGATcgc
                          SgrAI CRccggyg
     !StuI AGGcct
                          XmaI Cccggg
     ! cutters
15 ! Enzymes that cut from 1 to 4 times and other features
     !End of genes II and X
                                           829
     !Start gene V
!BsrGI Tgtaca
                                          843
                                    1
                                         1021
20
    !BspMI Nnnnnnnngcaggt
                                    3
                                         1104
                                               5997 9183
     !-"- ACCTGCNNNNn
                                         2281
     !End of gene V
                                         1106
     !Start gene VII
!BsaBI GATNNnnatc
                                         1108
                                 2
                                         1149 3967
25 !Start gene IX
                                         1208
     !End gene VII
                                         1211
     !SnaBĪ TACgta
                                    2
                                         1268 7133
     !BspHI Tcatga
                                    3
                                         1299
                                               6085 7093
     !Start gene VIII
                                         1301
30 !End gene IX
                                         1304
     !End gene VIII
                                         1522
     !Start gene III
                                         1578
     !EagI Cggccg
                                         1630 8905
!XbaI Tctaga
35 !KasI Ggcgcc
                                    2
                                         1643 8436
                                         1650 8724 9039 9120
1769 9065
                                    4
     !BsmI GAATGCN
                                    2
     !BseRI GAGGAGNNNNNNNNN
                                    2
                                         2031 8516
     !-"- NNnnnnnnnctcctc
                                    2
                                         7603 8623
     !AlwNI CAGNNNctg
                                         2210 8072 8182
40
   !BspDI ATcgat
                                    2
                                         2520
                                               9883
     !NdeI CAtatg
                                         2716
                                               3796 9847
     !End gene III
                                         2846
     !Start gene VI
                                         2848
     !AfeI AGCgct
                                   1
                                         3032
45
     !End gene VI
                                         3187
     !Start gene I
                                         3189
     !Earl CTCTTCNnnn
                                    2
                                         4067
                                              9274
     !-"- Nnnnngaagag
                                    2
                                         6126 8953
    !PacI TTAATtaa
                                         4125
50
    !Start gene IV
                                         4213
     !End gene I
                                         4235
     !BsmFI Nnnnnnnnnnnnnnngtccc
                                    2
                                         5068
                                               9515
    !MscI TGGcca
                                    3
                                         5073
                                               7597
                                                     9160
    !PsiI TTAtaa
                                    2
                                         5349 5837
55 !End gene IV
                                         5493
     !Start ori
                                         5494
    !NgoMIV Gccggc
                                    3
                                         5606 8213 9315
    !BanII GRGCYc
                                    4
                                         5636 8080 8606 8889
    !DraIII CACNNNgtg
                                         5709
                                    1
60 !DrdI GACNNNNnngtc
                                         5752
    !AvaI Cycgrg
                                    2
                                         5818 7240
```

WO 02/083872 PCT/US02/12405

- 199 -

	!PvuII CAGctg	1	5953		
	!BsmBI CGTCTCNnnnn	3	5964	8585	9271
	!End ori region		5993		
	!BamHI Ggatcc	1	5994		
5	!HindIII Aagctt	3	6000	7147	7384
	BCIVI GTATCCNNNNNN	1	6077		
	!Start bla		6138		
	!Eco57I CTGAAG	2	6238	7716	
	!SpeI Actagt	1	6257		
10	BcgI gcannnnntcg!	1	6398		
	!ScaI AGTact	1	6442		
	!PvuI CGATcg	1	6553		
	!FspI TGCgca	1	6700		
	BglI GCCNNNNnggc	3	6801	8208	8976
15	BsaI GGTCTCNnnnn	1	6853		
	!AhdI GACNNNnngtc	1	6920		
	!Eam1105I GACNNNnngtc	1	6920		
	!End bla	•	6998	0040	
20	!AccI GTmkac	2	7153	8048	
20	!HincII GTYrac	1 1	7153 7153		
	!SalI Gtcgac	1	7240		
	!XhoI Ctcgag !Start Plac2 region	1	7246		
	!End PlacZ region		7381		
25	!PflMI CCANNNNntqq	1	7382		
23	!RBS1	1	7405		
	!start Ml3-iii signal seq fo	r LC	7418		
	!ApaLI Gtgcac	1	7470		
	!end M13-iii signal seq		7471		
30	!Start light chain kappa L20	:JK1	7472		
	!PflFI GACNnngtc	3	7489	8705	9099
	!SbfI CCTGCAgg	1	7542		
	!PstI CTGCAg	1	7543		
25	KpnI GGTACc	1	7581		
35	!XcmI CCANNNNnnnntgg	2	7585		
	!NsiI ATGCAt	2	7626	9503	
	!BsgI ctgcac	1 2	7809	0616	
	!BbsI gtcttc !BlpI GCtnagc	1	7820 8017	8616	
40	!EspI GCthage	1	8017		
10	!EcoOl09I RGqnccy	2	8073	8605	
	!Ecl136I GAGCtc	1	8080	0003	
	!SacI GAGCTc	ī	8080		
	!End light chain	-	8122		
45	!AscI GGcgcgcc	1	8126		
	!BssHII Gcgcgc	1	8127		
	!RBS2		8147		
	!Sfil GGCCNNNNnggcc	1	8207		
	!NcoI Ccatgg !Start 3-23, FR1	1	8218		
50	!Start 3-23, FR1		8226		
	!MfeI Caattg	1	8232		
	!BspEI Tccgga	1	8298		
	!Start CDR1		8316		
e e	!Statt FR2	_	8331	00	
55	!BstXI CCANNNNntgg	2	8339	8812	
	!EcoNI CCTNNnnnagg	2	8346	8675	
	!Start FR3	2	8373	1643	
	!XbaI Tctaga	2 1	8436 8480	1043	
60	!AflII Cttaag !Start CDR3	1	8520		
	!AatII GACGTc	1	8556		
		-	0000		

```
!Start FR4
                                             8562
      !PshAI GACNNnngtc
                                            8573
                                                   9231
      !BstEII Ggtnacc
                                             8579
      !Start CH1
                                             8595
     !ApaI GGGCCc
                                             8606
      !Bsp120I Gggccc
                                       1
                                             8606
      !PspOMI Gggccc
                                             8606
      !AgeI Accggt
                                             8699
      !Bsu36I CCtnagg
                                     2
                                             8770
                                                   9509
10
    !End of CH1
                                             8903
      !NotI GCggccgc
                                     1
                                             8904
      !Start His6 tag
                                             8913
      !Start cMyc tag
      !Amber codon
                                            8982
15 !NheI Gctagc
                                            8985
                                       1
      !Start M13 III Domain 3
                                             8997
      !NruI TCGcga
                                             9106
      !BstBI TTcgaa
                                             9197
      !EcoRI Gaattc
                                             9200
     !XcmI CCANNNNnnnntgg
20
                                     1
1
1
                                             9215
      !BstAPI GCANNNntgc
                                             9337
      !SacII CCGCgg
                                             9365
     !End IIIstump anchor
!AvrII Cctagg
                                            9455
                                            9462
25
    !trp terminator
                                            9470
     !SwaI ATTTaaat
                                            9784
     !Start gene II
                                             9850
     BglII Agatct!
                                            9936
30
         1 aat gct act act att agt aga att gat gcc acc ttt tca gct cgc gcc
           gene ii continued
         49 cca aat gaa aat ata gct aaa cag gtt att gac cat ttg cga aat gta 97 tct aat ggt caa act aaa tct act cgt tcg cag aat tgg gaa tca act
        145 gtt aTa tgg aat gaa act tcc aga cac cgt act tta gtt gca tat tta
35
        193 aaa cat gtt gag cta cag caT TaT att cag caa tta agc tct aag cca
        241 too goa aaa atg acc tot tat caa aag gag caa tta aag gta oto tot
        289 aat cct gac ctg ttg gag ttt gct tcc ggt ctg gtt cgc ttt gaa gct 337 cga att aaa acg cga tat ttg aag tct ttc ggg ctt cct ctt aat ctt
        385 ttt gat gca atc cgc ttt gct tct gac tat aat agt cag ggt aaa gac
40
        433 ctg att ttt gat tta tgg tca ttc tcg ttt tct gaa ctg ttt aaa gca
481 ttt gag ggg gat tca ATG aat att tat gac gat tcc gca gta ttg gac
                                  Start gene x, ii continues
        529 gct atc cag tct aaa cat ttt act att acc ccc tct ggc aaa act tct
        577 ttt gca aaa gcc tct cgc tat ttt ggt ttt tat cgt cgt ctg gta aac
45
        625 gag ggt tat gat agt gtt gct ctt act atg cct cgt aat tcc ttt tgg
        673 cgt tat gta tct gca tta gtt gaa tgt ggt att cct aaa tct caa ctg
        721 atg aat ctt tct acc tgt aat aat gtt gtt ccg tta gtt cgt ttt att
        769 aac gta gat ttt tot toe caa egt oot gae tgg tat aat gag cea gtt
        817 ctt aaa atc gca TAA
50
                              End X & II
        832 ggtaattca ca
                                                   Q10
        843 ATG att aaa gtt gaa att aaa cca tct caa gcc caa ttt act act cgt
55
            Start gene V
                     S20
                                              P25
        891 tct ggt gtt tct cgt cag ggc aag cct tat tca ctg aat gag cag ctt
60
                                           E40
        939 tgt tac gtt gat ttg ggt aat gaa tat ccg gtt ctt gtc aag att act
```

!	160								
!	987 ctt gat gaa ggt cag cca gcc tat gcg cct ggt cTG TAC Acc gtt cat								
5	L65 V70 S75 R80 1035 ctg tcc tct ttc aaa gtt ggt cag ttc ggt tcc ctt atg att gac cgt								
!	P85 K87 end of V 1083 ctg cgc ctc gtt ccg gct aag TAA C								
10 !	! 1108 ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg ! Start gene VII								
15	! 1150 ata caa atc tcc gtt gta ctt tgt ttc gcg ctt ggt ata atc !								
:	L65								
20	T.13 W15 G20 T25 E29								
25	į ·								
	1301 ATG aaa aag tet tta gte ete aaa gee tet gta gee gtt get ace ete								
30	mature VIII>								
25	1445 tgg gcg atg gtt gtt gtc att								
	987 ctt gat gaa ggt cag cca gcc tat gcg cct ggt cTG TAC Acc gtt cat BsrGI 1035 ctg tcc tct ttc aaa gtt ggt cag ttc ggt tcc ctt atg att gac cgt 1083 ctg cgc ctc gtt ccg gct aag TAA C 1108 ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg 1150 ata caa atc tcc gtt gta ctt tgt ttc gcg ctt ggt ata atc 1192 gct ggg ggt caa agA TCA gt gtt tta gtg tat tct ttT gcc tct ttc gtt 1192 gct ggg ggt caa agA TCA gt gtt tta gtg tat tct ttT gcc tct ttc gtt 1192 gct ggg ggt caa agA TCA gt gtt tta gtg tat tct ttT gcc tct ttc gtt 11150 ata caa atc tcc gtt gag ggt gac gat acc gtt tta gtg tat tct ttT gcc tct ttc gtt 1192 gct ggg ggt caa agA TCA gt gtt tta gtg tat tct ttT gcc tct ttc gtt 1193								
40									
	1083 ctg egc ctc gtt ccg gt aag TAA C 1108 ATG gag cag gtc gcg gat ttc gac aca att tat cag gcg atg Start gene VII 1150 ata caa atc tcc gtt gta ctt tgt ttc gcg ctt ggt ata atc VII and IX overlap. S2 V3 L4 V5 1192 gct ggg ggt caa agA TGA gt gtt tta gtg tat tct ttT gcc tct ttc gtt End VII Start IX C20 T25 E29 1242 tta ggt tgg tgc ctt cgt agt ggc att acg tat tta acc cgt tta atg gaa 1293 act tcc tc stop of IX, IX and VIII overlap by four bases 1301 ATG aaa aag tct tta gtc ctc aaa gcc tct gta gcc gtt gct acc ctc Start signal sequence of viii. 1349 gtt ccg atg ctg tct tc gct gct gag ggt gac gat ccc gca aaa gcg 1397 gcc ttt aac tcc ctg caa gcc tca gcg acc gaa tat atc ggt tat gcg 1445 tgg gcg atg gtt gtt gtc att 1466 gtc ggc gca act atc ggt atc aag ctg ttt aag 1532 bases 1499-1539 are probable promoter for iii 1499 aaa ttc acc tcg aaa gca! 1515								
45	M K K L L F A I P L V V P F 1574 caac GTG aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc ! 1620								
	! Y S G A A E S H L D G A 1620 tat tct ggc gCG GCC Gaa tca caT CTA GAc ggc gcc								
	! Domain 1! Domain 1! A E T V E S C L A								
55	!								
60									

```
BsmI...
              V
                     T G
                 C
                            D E
                                    T Q C
      1785 gta gtt tgt act ggt GAC GAA ACT CAG TGT TAC GGT ACA TGG GTT cct att
 5
              L
                  Α
                      Ι
                             Ε
      1836 ggg ctt gct atc cct gaa aat
      I.1 linker -----
10
           E G G G S E G G S
      1857 gag ggt ggt ggc tct gag ggt ggc ggt tct
           E G G G
                         S
                             E G G
      1887 gag ggt ggc ggt tct gag ggt ggc ggt act
15
      1917 aaa oot oot gag tac ggt gat aca oot att oog ggo tat act tat atc aac
      1968 cet etc gae gge act tat eeg eet ggt act gag caa aac eec get aat eet
      2019 aat cct tot ctt GAG GAG tot cag cot ott aat act tto atg ttt cag aat
20
                         BseRI..
      2070 aat agg ttc cga aat agg cag ggg gca tta act gtt tat acg ggc act
      2118 gtt act caa ggc act gac ccc gtt aaa act tat tac cag tac act cct
      2166 gta tca tca aaa gcc atg tat gac gct tac tgg aac ggt aaa ttC AGA
25
      2214 GAC TGc gct ttc cat tct ggc ttt aat gaG gat TTa ttT gtt tgt gaa
           AlwNI
      2262 tat caa ggc caa tcg tct gac ctg cct caa cct cct gtc aat gct
      2307 ggc ggc ggc tct
30
    ! start L2 -----
                           _______
      2319 ggt ggt tct
      2331 ggt ggc ggc tct
      2343 gag ggt ggt ggc tct gag gga ggc ggt tcc
      2373 ggt ggt ggc tct ggt ! end L2
35
      Many published sequences of M13-derived phage have a longer linker
      than shown here by repeats of the EGGGS motif two more times.
      Domain 3 -----
40
           S G D F D Y E K M A N A N K G A
      2388 tee ggt gat ttt gat tat gaa aag atg gea aac get aat aag ggg get
                      N
                         Α
                             D
                                 E
                                    N
                                           L
                                        Α
                                               0
                                                   S
                                                       D
      2436 atg acc gaa aat gcc gat gaa aac gcg cta cag tct gac gct aaa ggc
45
                          ٧
                                 Т
                                     D
                                        Y
                                            G
                                               Α
                                                   Α
                                                       М
                                                           D
      2484 aaa ett gat tet gte get aet gat tae ggt get get ate gat ggt tte
                      V
                                L
                                    Α
                                        N
                                           G
                                               N
                                                       Α
50
      2532 att ggt gac gtt too ggo ott got aat ggt aat ggt got act ggt gat
                         N
                                 Q M A O
      2580 ttt gct ggc tct aat tcc caa atg gct caa gtc ggt gac ggt gat aat
55
                      М
                          N
                             N
                                 F
                                     R
                                        Q
                                           Y
                                               L
                                                   Ρ
                                                       S
                                                           L
      2628 tca cct tta atg aat aat ttc cgt caa tat tta cct tcc ctc cct caa
                      C
                          R
                                 F
                                     v
                                        F
                                            G
                                               Α
                                                   G
                                                       K
      2676 tcg gtt gaa tgt cgc cct ttt gtc ttt Ggc gct ggt aaa cca tat gaa
60
           F
                          С
                  Ι
                      D
                              D
                                 K
```

- 203 -

!	2724	ttt	tct	att	gat	tgt	gac	aaa	ata	aac	tta	ttc		Doma	ain :	3	
5 !	2760			F ttt cansi			ctt			V gtt		T acc	F ttt	M atg	Y tat	V g ta	
10 !	2808	R	N	к	E	s											
<u> </u>	2829	_		aag lula:				! st	top (of i	ii						
15 !	2847	tc			gtt	L ctt					L tta				F ttc		G15 ggt
20	2894 2942 2990 3038	ggc att	ttc ggg	ggt ctt	aag aac	ata tca	gct att	att ctt	gct gtg	att ggt	tca tat	ttg ctc	ttt tct	ctt gat	gct att	ctt agc	att gct
25 !	3086 3134	aat	gcg	ctt	ccc	tgt	ttt	tat	gtt	att	ctc	tct	gta	aag	gct	gct	att
!	3182		AAT IV E	t A	rG go	A2 Net gt gene	t ta		F5 ct g ¹	ta ad	et ge	jc aa		LO cago	gc to	GI et gg	
30 !	3228	K aag	T acg	L ctc	V gtt	S agc	V gtt	G ggt		I att	Q cag	D gat	K aaa	I att	V gta		
: !	3273	G ggg	C tgc	K aaa	I ata	A gca	T act	N aat	L ctt	D gat	L tta	R agg	L ctt	Q caa	N aac	L ctc	
35 ! !	3318	.P ccg	Q caa	V gtc	999	R agg	F ttc	A gct	K aaa	T acg	P cct	R cgc	V gtt	L ctt	R aga	I ata	
40	3363	P ccg	D gat	K aag	P cct	S tct	I ata	S tct	D gat	L ttg	L ctt	A gct	I att	ggg G	R cgc	G ggt	
	3408	N aat	D gat	S tcc	Y tac	D gat	E gaa	N aat	K aaa	N aac	G ggc	L ttg	L ctt	V gtt	L ctc	D gat	
45 !	3453	E gag	C tgc	G ggt	T act	W tgg	F ttt	N aat	T acc	R cgt	S tct	W tgg	N aat	D gat	K aag	E gaa	
50 !	3498	R aga	_	P ccg													
!	3543			I att								S tct		V gtt		K aaa	
55	3588	Q cag	A gcg	R cgt	S tct		L tta		E gaa		V gtt		_	C tgt		R cgt	
!!	3633	L ctg	D gac	R aga						V gtc	-	T act	L tta	Y tat	-	_	
60 !	3678	I att		G ggc	S tcg	K aaa	M atg			P cct		L tta	Н cat	V gtt			

```
VKYGDSQL
                                         S
                                             P
                                                 T
      3723 gtt aaa tat ggc gat tct caa tta agc cct act gtt gag cgt tgg
 5
                   T
                       G
                           ĸ
                               Ñ
                                  Ľ
                                       Ÿ
                                           Ñ
                                              A
                                                  Ÿ
      3768 ctt tat act ggt aag aat ttg tat aac gca tat gat act aaa cag
                                  D S
                                             v
                   S
                              Y
                                         G
                          N
                                                 Υ
      3813 gct ttt tct agt aat tat gat tcc ggt gtt tat tct tat tta acq
10
                   L
                       S
                           н
                               G
                                   R
                                      Y
                                           F
                                              K
                                                  Р
                                                      L
                                                          N
      3858 cct tat tta tca cac ggt cgg tat ttc aaa cca tta aat tta ggt
                                             L
                   М
                       K
                               Т
                           L
                                  K
                                      Ι
                                           Y
                                                  К
                                                      K
15
      3903 cag aag atg aaa tta act aaa ata tat ttg aaa aag ttt tct cgc
                   CLA
                              Ι
                                 G F
                                         Α
                                             S A
      3948 gtt ctt tgt ctt gcg att gga ttt gca tca gca ttt aca tat agt
20
                           P
                               K
                                  P
                                      E
                                          V
                                             K
                                                  K
                                                      V
                                                          V
                                                             S
      3993 tat ata acc caa cct aag ccg gag gtt aaa aag gta gtc tct cag
                               K
      4038 acc tat gat tit gat aaa tic act att gac tot tot cag cgt oft
25
                              Y V F
                                           K
                                                  S
      4083 aat cta agc tat cgc tat gtt ttc aag gat tct aag gga aaa TTA
                                                                 PacI
30
                          D L Q K Q G
                      D
                                                 Y
      4128 ATT AAt agc gac gat tta cag aag caa ggt tat tca ctc aca tat
          PacI
          i I
                         С
                             Т
                                     S
                                         Ι
35
                                                                 M1 K
      4173 att gat tta tgt act gtt tcc att aaa aaa ggt aat tca aAT Gaa
                                                                Start IV
              I V K C N .End of I
L3 L N5 V I7 N F V10
40
          iv
      4218
              att gtt aaa tgt aat TAA T TTT GTT
    ! IV continued....
      4243 ttc ttg atg ttt gtt tca tca tct tct ttt gct cag gta att gaa atg
      4291 aat aat tog oot otg ogo gat tit gta act tgg tat toa aag caa toa
45
      4339 ggc gaa tcc gtt att gtt tct ccc gat gta aaa ggt act gtt act gta
      4387 tat tca tct gac gtt aaa cct gaa aat cta cgc aat ttc ttt att tct
      4435 gtt tta cgt gcA aat aat ttt gat atg gtA ggt tcT aAC cct tcc atT
      4483 att cag aag tat aat cca aac aat cag gat tat att gat gaa ttg cca
      4531 tea tet gat aat eag gaa tat gat gat aat tee get eet tet ggt ggt
50
      4579 ttc ttt gtt ccg caa aat gat aat gtt act caa act ttt aaa att aat
      4627 aac gtt cgg gca aag gat tta ata cga gtt gtc gaa ttg ttt gta aag
      4675 tot aat act tot aaa too toa aat gta tta tot att gac ggc tot aat
      4723 cta tta gtt gtt agt gcT cct aaa gat att tta gat aac ctt cct caa
      4771 ttc ctt tcA act gtt gat ttg cca act gac cag ata ttg att gag ggt
55
      4819 ttg ata ttt gag gtt cag caa ggt gat gct tta gat ttt tca ttt gct
      4867 gct ggc tct cag cgt ggc act gtt gca ggc ggt gtt aat act gac cgc
      4915 ctc acc tct gtt tta tct tct gct ggt ggt tcg ttc ggt att ttt aat
      4963 ggc gat gtt tta ggg cta tca gtt cgc gca tta aag act aat agc cat
      5011 tca aaa ata ttg tct gtg cca cgt att ctt acg ctt tca ggt cag aag
60
      5059 ggt tot atc tot gtT GGC CAg aat gtc cot ttt att act ggt cgt gtg
                            MscI....
```

- 205 -

```
5107 act ggt gaa tot goo aat gta aat coa ttt cag acg att gag cgt
      5155 caa aat gta ggt att tcc atg agc gtt ttt cct gtt gca atg gct ggc
      5203 ggt aat att gtt ctg gat att acc agc aag gcc gat agt ttg agt tct
      5251 tct act cag gca agt gat gtt att act aat caa aga agt att gct aca
 5
      5299 acg gtt aat ttg cgt gat gga cag act ctt tta ctc ggt ggc ctc act
      5347 gat tat aaa aac act tct caG gat tct ggc gta ccg ttc ctg tct aaa
       5395 atc cct tta atc ggc ctc ctg ttt agc tcc cgc tct gat tcT aac gag
      5443 qaa agc acg tta tac gtg ctc gtc aaa gca acc ata gta cgc gcc ctg
      5491 TAG cggcgcatt
10
           End IV
      5503 aagegeggeg ggtgtggtgg ttaegegeag egtgaeeget acaettgeea gegeeetage
       5563 georgetect thogether tecetheeth tetegeracy theGCCGGCt thereeghea
                                                           NgoMI.
      5623 agetetaaat egggggetee etttagggtt eegatttagt getttaegge acetegacee
15
      5683 caaaaaactt gatttgggtg atggttCACG TAGTGggcca tcgccctgat agacggtttt
                                       DraIII....
      5743 tegecetttG ACGTTGGAGT Ceaegttett taatagtgga etettgttee aaactggaae
                    DrdI.....
       5803 aacactcaac cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga
      5863 accaccatca aacaggattt togootgotg gggcaaacca gogtggacog cttgctgcaa
20
      5923 ctctctcagg gccaggcggt gaagggcaat CAGCTGttgc cCGTCTCact ggtgaaaaga
                                            PvuII.
                                                         BSmRT.
      5983 aaaaccaccc tGGATCC AAGCTT
                       BamHI
                               HindIII (1/2)
25
                       Insert carrying bla gene
              gcaggtg gcacttttcg gggaaatgtg cgcggaaccc
       6043 ctatttett atttttctaa atacattcaa atatGTATCC gctcatgaga caataaccct
                                                 BciVI
       6103 gataaatgct tcaataatat tgaaaaAGGA AGAgt
30
                                       RBS.?...
           Start bla gene
       6138 ATG agt att caa cat ttc cgt gtc gcc ctt att ccc ttt ttt gcg gca ttt
       6189 tgc ctt cct gtt ttt gct cac cca gaa acg ctg gtg aaa gta aaa gat gct
       6240 gaa gat cag ttg ggC gcA CTA GTg ggt tac atc gaa ctg gat ctc aac agc
35
                                  SpeI...
                            ApaLI & BssSI Removed
       6291 ggt aag atc ctt gag agt ttt cgc ccc gaa gaa cgt ttt cca atg atg agc
       6342 act ttt aaa gtt ctg cta tgt GGC GcG Gta tta tcc cgt att gac gcc ggg
       6393 caa gaG CAA CTC GGT CGc cgC ATA cAC tat tct cag aat gac ttg gtt gAG
40 . .
                 BcgI.....
                                                                             Scal
       6444 TAC Tca cca gtc aca gaa aag cat ctt acg gat ggc atg aca gta aga gaa
      6495 tta tgc agt gct gcc ata acc atg agt gat aac act gcg gcc aac tta ctt
       6546 ctg aca aCG ATC Gga gga ccg aag gag cta acc gct ttt ttg cac aac atg
45
                    PvuI....
       6597 ggg gat cat gta act cgc ctt gat cgt tgg gaa ccg gag ctg aat gaa gcc
      6648 ata cca aac gac gag cgt gac acc acg atg cct gta gca atg Gca aca acg
      6699 tTG CGC Aaa cta tta act ggc gaa cta ctt act cta gct tcc cgg caa caa
            FspI....
50
       6750 tta ata gac tgg atg gag gcg gat aaa gtt gca gga cca ctt ctg cgc tcg
       6801 GCC ctt ccG GCt ggc tgg ttt att gct gat aaa tct gga gcc ggt gag cgt
           BglI.....
      6852 gGG TCT Cgc ggt atc att gca gca ctg ggg cca gat ggt aag ccc tcc cgt
55
            BsaI....
      6903 atc gta gtt atc tac acG ACg ggg aGT Cag gca act atg gat gaa cga aat
                                  AhdI..
      6954 aga cag atc gct gag ata ggt gcc tca ctg att aag cat tgg TAA ctgt
60
      7003 cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa
      7063 ggatctaggt gaagatcett tttgataate teatgaceaa aateeettaa egtgagtttt
```

. 7

- 206 -

```
7123 cgttccactg tacgtaagac cccc
       7147 AAGCTT
                     GTCGAC tgaa tggcgaatgg cgctttgcct
            HindIII SalI..
            (2/2)
                     HincII
 5
       7183 ggtttccggc accagaagcg gtgccggaaa gctggctgga gtgcgatctt ---
      Start of Fab-display cassette, the Fab DSR-A05, selected for
      binding to a protein antigen.
10
       7233 CCTGACG CTCGAG
            xBsu36I XhoI..
      PlacZ promoter is in the following block
15
       7246
                                       cgcaacgc aattaatgtg agttagctca
       7274
               ctcattaggc accccaggct ttacacttta tgcttccggc tcgtatgttg
       7324
               tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca
       7374
               tgattacgCC AagcttTGGa gcctttttt tggagatttt caac
                       PflMI.....
20
                          Hind3. (there are 3)
       Gene iii signal sequence:
                                        7
                                            8
                                                 9
                                                    10
                                                            12
                1
                    2
                        3
                            4
                                    6
                                                       11
                                                                13
                                                                    14
                                                                        15
                                                 ₽
                M
                    K
                        K
                            L
                               L
                                    F
                                        Α
                                            Τ
                                                    L
                                                        V
                                                             v
       7418
               gtg aaa aaa tta tta ttc qca att cct tta gtt gtt cct ttc faf
25
               16
                  17
                       18
                                   Start light chain (L20:JK1)
                S
                    Н
                        S
                            Α
                               Q
                                   DIQ
                                               M T
               tct cac aGT GCA Caa gac atc cag atg acc cag tct cca gcc
       7463
                        ApaLI...
30
                        Sequence supplied by extender.....
       7505
                    acc ctg tct ttg
35
                        G
                                R
                                        Т
                                                 S
       7517
               tot cca ggg gaa aga gcc acc ctc tcc tgc agg gcc agt cag Ggt
                                                 Q
       7562
               gtt agc agc tac tta gcc tgg tac cag cag aaa cct ggc cag gct
40
                           L
                                Ι
                                    \mathbf{Y} \cdot \mathbf{D}
                                           Α
                                                 S
                                                    S
       7607
               ccc agg ctc ctc atc tat gAt gca tcc aAc agg gcc act ggc atc
                                    G
                                        S
                                S
                                            G
                                                 Р
                                                     G
                                                         Т
                                                             D
45
       7652
               cca gCc agg ttc agt ggc agt ggg Cct ggg aca gac ttc act ctc
                                    E
                                            E.
                                                 n
       7697
               acc atc agc agC ctA gag cct gaa gat ttt gca gtT tat tac tgt
50
                                        P
                                            W T
                                                    F
                                    H
                                                        G
      7742
               cag cag CGt aAc tgg cat ccg tgg ACG TTC GGC CAA GGG ACC AAG
                            K
                                R
                                    Т
                                        v
                                            Α
                                                Α
                                                     Ρ
       7787
               gtg gaa atc aaa cga act gtg qCT GCA Cca tct gtc ttc atc ttc
55
                                            BsqI...
                            D
                                Ε
                                    Q
                                        L
                                            K
                                                 S
                                                    G
                                                         Т
                                                             Α
                                                                 S
       7832
               ccg cca tct gat gag cag ttg aaa tct gga act gcc tct gtt gtg
60
                                           P
                                                R
                                                    E
                                                        Α
      7877
               tgc ctg ctg aat aac ttc tat ccc aga gag gcc aaa gta cag tgg
```

	! ! 7922				N aac			Q caa	S tcg			S tcc		E gag		V gtc	
5	! 7967	T aca	E gag	R cgg	D gac	S agc	K aag	D gac	S agc	T acc	Y tac	S agc		S agc	S agc	T acc	
10	8012 !	L ctg				K aaa	A gca	D gac	Y tac	E gag	K aaa	Н cac	K aaa		tac		
15	! 8057 !	C tgc			T acc		Q cag	G ggc	L ctG Sa	S AGC acI.	TCg	P ccc	V gtc	T aca	K aag	S agc	
13	! ! 8102 !	F ttc	N aac	R agg	G gga	E gag	C tgt	taa	taa								
20	8126 ! !	AscI RBS2.															
PelB signal sequence(22 codons)> 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15																	
25	!	M	ĸ	Y	L	L	P	T	Α	Α	Α	G	L	L	L	L	
25	8160 !	atg	aaa	tac	cta	ttg	cct	acg	gca	gcc	gct	gga	ttg	tta	tta	ctc	
30	! ! ! ! 8205	16 A	17 A	18 Q	19 P	20 A	21 M	22 A	Star 23 E gaa	24 V	25 Q	26 L	27 L	28 E	29 S	G	
!	!				• • • • •				gaa	gee	Mfe		cca	gag		ggc	
	! !					Nco	οI	•									
35	! 1	31 G	32 G	33 L	34 V		36 P	37 G			40		42	43		45	
JJ ;	8250								G ggt	S tct		R cgt	L ctt	S tct	C tgc	A gct	
!	! !	8	R1					>	CDR	L			>	FR2-		>	
40	! !	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	
40 :	8295	A gct	S TCC		F ttc	T act	F ttc	S tct	T act	Y tac		M atg	R cgt	W tgg	V gtt	R cgC	
!			BspE													BstX	Γ.,
45 !	!															·>	
40 !		61 Q	Α	P	64 G	K	G	L	E	69 W	V	71 S	72 Y	73 I	74 A	75 P	
1	8340 BstXI.	CAa	gct	CCT	GGt	aaa	ggt	ttg	gag	tgg	gtt	tct	tat	atc	gct	cct	
50 !		CDR 76							83							> 90	
!	9305	S.	G	G	D	T	Α	Y	Α	D	S	V	K	G	R	F	
. !	8385	tCt	ggt						gct								
55 !		91 T	92 I	93 S	94 R	95 D	96 N	97 S	98 K	99 N	100 T	101 L	102 Y	103 L		105 M	
;	8430	-	_						n aag						Q caq		
!				XbaI													
60				սարբ	,1,200	. ~y		acI									
!												-FR3				>	

! ! 5 !	106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 N S L R A E D T A V Y Y C A R 8475
10	! CDR3> FR4> ! 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 ! R L D G Y I S Y Y Y G M D V W 8520 agg ctc gat ggc tat att tcc tac tac tac ggt atg GAC GTC tgg ! AatII
15	! 136 137 138 139 140 141 142 143 144 145 ! G Q G T T V T V S S 8565 ggc caa ggg acc acG GTC ACC gtc tca agc ! BstEII
20	CH1 of IgG1> A S T K G P S V F P L A P S S 8595 gcc tcc acc aag ggc cca tcg gtc ttc ccc ctg gca ccc tcc tcc K S T S G G T A A L G C L V K
25	K S T S G G T A A L G C L V K 8640 aag agc acc tct ggg ggc aca gcg gcc ctg ggc tgc ctg gtc aag ! D Y F P E P V T V S W N S G A 8685 gac tac ttc ccc gaa ccg gtg acg gtg tcg tgg aac tca ggc gcc
30	L T S G V H T F P A V L Q S S 8730 ctg acc agc ggc gtc cac acc ttc ccg gct gtc cta cag tCC TCA Bsu361
35	! G L Y S L S S V V T V P S S S 8775 GGa ctc tac tcc ctc agc agc gta gtg acc gtg ccc tcc agc agc ! Bsu361 ! C N V N H K P S
40	8820 ttg ggc acc cag acc tac atc tgc aac gtg aat cac aag ccc agc N T K V D K K V E P K S C A A 8865 aac acc aag gtg gac aag aaa gtt gag ccc aaa tct tgt GCG GCC NotI
45	! ! A H H H H H G A A E Q K L I 8910 GCa cat cat cac cat cac ggg gcc gca gaa caa aaa ctc atc !NotI H6 tag Myc-Tag
50	! S E E D L N G A A q A S S A 8955 tca gaa gag gat ctg aat ggg gcc gca tag GCT AGC tct gct ! Myc-Tag
	! ! III'stump
55	! Domain 3 of III!
	! S G D F D Y E K M A N A N K G A 8997 agt ggc gac ttc gac tac gag aaa atg gct aat gcc aac aaa GGC GCC ! tcc t t t t t a g a c t t g g t !W.T
60	KasI(2/4) MTENADENALQSDAK, G

- 209 -

!	9045 atG ACT GAG AAC GCT GAC GAG aat gct ttg caa agc gat gcc aag ggt c a t c t a c g c a g tct c t a c !W.T.
! ! 5 !	K L D S V A T D Y G A A I D G F 9093 aag tta gac agc gTC GCG Acc gac tat GGC GCC gcc ATC GAc ggc ttt a c t t t c t t c !W.T. NruI KasI(3/4)
10	I G D V S G L A N G N G A T G D 9141 atc ggc gat gtc agt ggt tTG GCC Aac ggc aac gga gcc acc gga gac t t c t tcc c c t t t t t t t t t t t
15	F A G S N S Q M A Q V G D G D N 9189 ttc GCA GGT tcG AAT TCt cag atg gcC CAG GTT GGA GAT GGg gac aac t t c t c a t a c t c t t !W.T. BspMI (2/2) XcmI
20 !	SPLMNNFRQYLPSLPQ 9237 agt ccg ctt atg aac aac ttt aga cag tac ctt ccg tct ctt ccg cag tca tta t c c t a tta t c c t a!W.T.
25 !	S V E C R P F V F S A G K P Y E 9285 agt gtc gag tgc cgt cca ttc gtt ttc tct gcc ggc aag cct tac gag tcg t cg t
30 ! !	F S I D C D K I N L F R 9333 ttc aGC Atc gac TGC gat aag atc aat ctt ttC CGC t tct t t t c a a c t a c t !W.T. BstAPI End Domain 3
35	G V F A F L L Y V A T F M Y V F 9369 GGc gtt ttc gct ttc ttg cta tac gtc gct act ttc atg tac gtt ttc! t c t g t c t t a t !W.T.! start transmembrane segment
40	S T F A N I L R N K E S 9417 aGC ACT TTC GCC AAT ATT TTA Cgc aac aaa gaa agc tct g t t c a c g t t g g tct !W.T. Intracellular anchor.
45	! 9453 tag tga tct CCT AGG ! AvrII
50	9468 aag ccc gcc taa tga gcg ggc ttt ttt ttt ct ggt ! Trp terminator !
55	! End Fab cassette ! 9503 ATGCAT CCTGAGG ccgat actgtcgtcg tcccctcaaa ctggcagatg ! NsiI Bsu36I.(3/3) 9551 cacggttacg atgcgccat ctacaccaac gtgacctatc ccattacggt caatccgccg 9611 tttgttcca cggagaatcc gacgggttgt tactcgctca catttaatgt tgatgaaagc 9671 tggctacagg aaggccagac gcgaattatt tttgatggcg ttcctattgg ttaaaaaatg 9731 agctgattta acaaaaattt aaTgcgaatt ttaacaaaat attaacgttt acaATTTAAA
60	SwaI 9791 Tatttgctta tacaatcttc ctgtttttgg ggcttttctg attatcaacc GGGGTAcat 9850 ATG att gac atg cta gtt tta cga tta ccg ttc atc gat tct ctt gtt tgc

PCT/US02/12405

WO 02/083872

- 210 -

```
Start gene II
      9901 tee aga ete tea gge aat gae etg ata gee ttt gtA GAT CTe tea aaa ata
                                                            BglII...
      9952 gct acc ctc tcc ggc atT aat tta tca gct aga acg gtt gaa tat cat att
     10003 gat ggt gat ttg act gtc tcc ggc ctt tct cac cct ttt gaa tet tta cct
     10054 aca cat tac tca ggc att gca ttt aaa ata tat gag ggt tct aaa aat ttt 10105 tat cct tgc gtt gaa ata aag gct tct ccc gca aaa gta tta cag ggt cat
     10156 aat gtt tit ggt aca acc gat tta gct tta tgc tct gag gct tta tig ctt
     10207 aat itt gct aat tct ttg cct tgc ctg tat gat tta ttg gat gtt !
10 ! gene II continues
    !----- End of Table -----
```

- 211 -

!	! Table 37: DNA seq of w.t. M13 gene iii															
: ! 5 !	1579		i äaa	aaa					I att	9 P c cct	L tta		gtt	-	14 F	15 Y Lat
10	1624 Signa							V gtt	23 E gaa	24 S agt	25 C tgt	26 L tta	27 A gca	28 K aaa	29 P ccc	Н
15	1669		32 E gaa in 1		34 S tca	35 F ttt	36 T act	N	38 V gtc	39 W tgg	40 K aaa	41 D gac	D	K	44 T act	L
20	1714	_	-		-	N aac	Y tat	52 E gag		_	55 L ctg	W tgG	57 N AAT		T	60 G ggc
25 !	1759	61 V gtt	62 V	63 V gtt	-64 C	65 T	66 G	67 D	68 E	69 T	70 Q cag	71 C tgt	Y	73 G ggt	74 T aca	W
30 !	1804		cct							84 E gaa						90 S tct
35	1849		-	G ggc	G	95 S tct	96 E gag	97 G ggt	98 G ggc	G	S	E	G	G		T
40	1894	K aaa	P	P cct	E	Y	G	Ð	T	P	I	P	G	Y	119 T act	Y
45 !	1939	I atc	N aac	p cct	L ctc	D gac	G ggc	T act	Y taT E	P	P CCt	G	T	E	134 Q caa	N
50	1984	136 P	137 A qct	138 N aat	139 P cct	140 N aat	141 P	S tct	143 L	E GAG	E GAG	S	Q	P	149 L ctt	N
55										Bsel		1.63	160	1.63	1.64	165
! !	2029	T act	F ttc	M	F ttt	Q cag	N	N	R	F	R	N	R	Q	164 G ggg	Α
60 !		166	167	168	169	170	171	172	173	174	175	176	177	178	179	180

!	2074		act	V gtt	tat	T acg	ggc	T act	V gtt	T act	Q caa	G ggc	T act	D gac	P CCC	V gtt
5 !	2119	K aaa	T act	183 Y tat	Y tac	Q	Y	T	P	V	S	S	K	Α	M	Y
10 !	2164	D gac	A gct	198 Y tac	W tgg	N aac	G ggt	K aaa	F ttC	R AGa	D	C TGc	Α	F	Н	S
15	2209	211 G	212 F	213 N	214 E gaG	215 D	216 P CCa	217 F	218 V	C	E	Y	Q	G	Q	s
20				2 228				232	233		235		237	238	239	240
25 !	2254	S tct	D gac	L	P cct	Q caa	P cct	P cct	V qtc	N aat	A qct	G ggc	G ggc	G ggc	S tct	G ggt
30 !	2299	G ggt	G ggt	243 S tct 2	G ggt	G	G	S	E	G	G	G	S	E	G	G
35	2344 !	G ggt	s		G	G	G	S	E	G	G	G	S	G	G	G
40	2389 Linke:	S tct	G ggt		G	D gat	F ttt	D gat	Y	E	K	M	Α	N	A	N
45	2434 !	K aag	G ggg	288 A gct 3	M	T	E	N	Α	D	Ε	N	Α	L	Q	S
50	! ! 2479 !	D gac	A gct	303 K aaa 3	G ggc	K aaa	L	D	S	V	Α	T	D	Y	G	Α
55	! ! 2524 !	A gct	I atc	318 D gat 3	G ggt	F	I	G	D	V	s	G	L	Α	N	G
60	! ! ! 2569 !	N aat	G ggt	333 A gct 3	T act	G ggt	D	F	Α	G	S	N	S	Q	M	Α

WO 02/083872 PCT/US02/12405

- 213 -

!	2614	Q caa	V gtc	348 G ggt 3	D gac	G ggt	D gat	N aat	S	P	L	M	N	N	F	R
5 ! !	2659	361 Q	362 Y	363 L	364 P	365 S	366 L	367 P	Q	S	V	E	С	R	P	F
10 !	2704	376 V	377 F	3 378 S agc	379 A	380 G	381 K	382 P	383 Y	384 E	F	S	I	D	С	D
15 ! !	! ! ! 2749	391 K	392 I	3 393 N	394 L	395 F	396 R	397 G	398 V	399 F	400 A	401 F	402 L	403 L	404 Y	V
20 !		Doma 406 A	ain 407 T	3 408 F	409 M	410 Y	> 411 V	Trai	413 S	mbrai 414 T	ne s 415 F	egmei 416 A	417 N	418 I	419 L	420 R
25 !	2794 ! !	Tra:	nsme 422	ttt mbra: 423 E	ne s 424	egme 425	gta nt	ttt 	tct	acg	ttt 	gct 	aac	ata 	ctg >	cgt ICA-
30	2839 ! !	aat	aag		tct >	taa							lar a	anch	or 	

```
Whole mature III anchor M13-III
   Table 38:
              derived anchor with recoded DNA
              1
                 2
                     3
   1
              A A A
5
             GCG gcc gca
        1
             NotI....
                    6 7 8 9 10 11 12 13 14 15 16 17
H H H H G A A E Q K L I
10
                Н
             cat cat cac cat cac ggg gcc gca gaa caa aaa ctc atc
       10
             18 19 20 21 22 23 24 25 26 27 28 29
              S E E D L N G A A
                                                Α
             tca gaa gag gat ctg aat ggg gcc gca Tag GCT AGC
15
       52
                                                NheI...
           30 31 32 33 34 35 36
                                     37 38 39
            DINDDRM
                                     A S
                                    gct tct act
20
           GAT ATC aac gat gat cgt atg
      (ON G37bot) [RC] 5'-c aac gat gat cgt atg gcG CAt Gct gcc gag aca g-3'
           EcoRV..
           Enterokinase cleavage site.
      Start mature III (recoded) Domain 1 ---->
25
                40 41 42 43
A E T V
                |gcC|gaG|acA|gtC|
      118
                  t a t t! W.T.
30
           44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
E S C L A K P H T E N S F T N
           |gaa|TCC|tgC|CTG|GCC|AaG|ccT|caC|acT|gaG|aat|AGT|ttC|aCA|Aat|
                                                tca t t c ! W.T.
               agt tta a a c t a a
35
                       MscI...
           59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 V W K D D K T L D R Y A N Y E
      175 |gtg|TGG|aaG|gaT|gaT|aaG|acC|CtT|gAT|CGA|TaT|gcC|aaT|taC|gaA|
                                           tctctg!W.T.
40
                  accatta
                                       BspDI...
           74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
G C L W N A T G V V V C T G D
      220 |ggC|tgC|TtA|tgg|aat|gcC|ACC|GGC|GtC|gtT|gtC|TGC|ACG|ggC|gaT|
45
                             ta tatt t c!W.T.
            ttcg
                              SgrAI.....
                                               BsqI....
           89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
E T Q C Y G T W V P I G L A I
50
      265 | gaG|acA|caA|tgC|taT|ggC|ACG|TGg|gtG|ccG|atA|gGC|TTA|GCC|atA|
            at g t c t a t t t g c t t c ! W.T.
                              PmlI....
        Domain 1----> Linker 1---->
55
           104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
           PENEGGGSEGGSEG
       310 |ccG|qaG|aaC|qaA|ggC|ggC|ggT|AGC|gaA|ggC|ggT|ggC|AGC|gaA|ggC|
            tatgttctctgtcttctgt!W.T.
60
           Linker 1----->
```

1 / 17 m

```
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
         GGSEGGTKPPEYGD
     355 |ggT|GGA|TCC|gaA|ggA|ggT|ggA|acC|aaG|ccG|ccG|gaA|taT|ggC|gaC|
          ctt g t c t t a t t g c t t! W.T.
5
           BamHI..(2/2)
         134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
               IPGYTYINPLDGT
     400 | acT|ccG|atA|CCT|GGT|taC|acC|taC|atT|aaT|ccG|TtA|gaT|ggA|acC|
10
         att g c t t t c c t c c c t ! W.T.
         149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
     15
         T G t t t g a c c t t t t ttct! W.T.
                                                HindIII...
         164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
20
         LEESQPLNTFMFQNN
     490 | TTA | gaA | gaA | AGC | caA | ccG | TtA | aaC | acC | ttT | atg | ttC | caA | aaC | aaC |
         ct G Gtct g tct t t c t g t t! W.T.
    HindIII.
25
         179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
         R F R N R Q G A L T V Y T G T
     535 |CgT|ttT|AgG|aaC|CgT|caA|gGT|GCT|CtT|acC|gTG|TAC|AcT|ggA|acC|
         ag ccatag g g at a t t g c t! W.T.
                           HgiAI...
                                       BsrGI...
30
         194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
         580 | gtC|acC|caG|GGT|ACC|gaT|ccT|gtC|aaG|acC|taC|taT|caA|taT|acC|
          ttactcctattcgct!W.T.
35
                  KpnI...
         209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
         P V S S K A M Y D A Y W N G K
     625 |ccG|gtC|TCG|AGt|aaG|gcT|atg|taC|gaT|gcC|taT|tgg|aaT|ggC|aaG|
40
          t a atca a c
                             tctc
                                            c t a!W.T.
          BsaI....
             XhoI...
         224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
45
         F R D C A F H S G F N E D P F
     670 | ttT|CgT|gaT|tgT|gcC|ttT|caC|AGC|ggT|ttC|aaC|gaa|gac|CCt|ttT|
          CAa C c t c ttct c t t G
         239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
50
         V C E Y Q G Q S S D L P Q P P
     715 |gtC|tgC|gaG|taC|caG|ggT|caG|AGT|AGC|gaT|TtA|ccG|caG|ccA|CCG|
         ttatac at cgtct ccg tatt! W.T.
    DrdI....
55
     Domain 2----> Linker 2---->
          254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
          V N A G G G S G G G S G G S
         |GTT|AAC|gcG|ggT|ggT|ggT|AGC|ggC|ggA|ggC|AGC|ggC|ggT|ggT|AGC|
          cttccctcttttcttcctt%.T.
60
         HpaI...
```

```
HincII.
        Linker 2----> Domain 3-->
        269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
         E G G G S E G G G S -G
     805 | gaA|ggC|ggA|ggT|AGC|gaA|ggA|ggT|ggC|AGC|ggA|ggC|ggT|AGC|ggC|
         g t t c tct g t c t tct g t c tct t ! W.T.
         ----->
        284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
10
         S G D F D Y E K M A N A N K G
     850 | AGT|ggC|gac|ttc|gac|tac|gag|aaa|atg|gct|aat|gcc|aac|aaa|GGC|
        tect t t t t a g a c t t g g! W.T.
15
         299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
         A M T E N A D E N A L Q S D A
     895 |GCC|atg|act|gag|aac|gct|gac|gaG|AAT|GCA|ctg|caa|agt|gat|gCC|
         t cat ctacgagtct ct! W.T.
                              BsmI....
20
        940 | AAG | GGt | aag | tta | gac | agc | gTC | GCc | Aca | gac | tat | ggT | GCt | gcc | atc |
         acact ttct t t t c
25
         329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
         985 |gac|ggc|ttt|atc|ggc|gat|gtc|agt|ggt|ctg|gct|aac|ggc|aac|gga|
30
                                       t t t t ! W.T.
         t t c t t c ttcc cct
         344 345 346 347 348 349 350 351 352 353
         A T G D F A G S N S
    1030 |gcc|acc|gga|gac|ttc|GCA|GGT|tcG|AAT|TCt|
35
         tttttct c! W.T.
                           BstBI...
                              EcoRI...
                       BspMI..
40
         354 355 356 357 358 359 360 361 362 363
         Q M A Q V G D G D N
    1060 cag atg gcC CAG GTT GGA GAT GGg gac aac
               tactctt!W.T.
45
                XcmI.....
        364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        S P L M N N F R Q Y L P S L P Q
    1090 agt ccg ctt atg aac aac ttt aga cag tac ctt ccg tct ctt ccg cag
        tcatta t t c c t a t t a t c c t a! W.T.
50
        380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        SVECRPFVFSAGKPYE
    1138 agt qtc qag tqc cqt cca ttc qtt ttc tct qcc qgc aag cct tac gag
        tcg tatcttctagcttaata! W.T.
55
        Domain 3---->
        396 397 398 399 400 401 402 403 404 405 406 407
        F S I D C D K I N L F R
    1186 ttc aGC Atc gac TGC gat aag atc aat ctt ttC CGC
60
        ttct t t c a a c t a t
```

- 217 -

```
BstAPI.....
                                               SacII...
          transmembrane segment---->
     408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 G V F A F L L Y V A T F M Y V F 1222 GGc gtt ttc gct ttc ttg cta tac gtc gct act ttc atg tac gtt ttc
5
          to tig totta tito c tila t! W.T.
          424 425 426 427 428 429 430 431 432 433 434 435
     10
                                    R N K E S
                                    Cgc aac aaa gaa agc
                                    t t g g tct! W.T.
       tct g t t c acg
                                    Intracellular anchor.
15
     1306 tag tga tct CCT AGG
                           AvrII..
     1321 aag ccc gcc taa tga gcg ggc ttt ttt ttt ct ggt
    ! | Trp terminator
20
    ! End Fab cassette
    !----- End of Table -----
```

```
Table 39: ONs to make deletions in III
    ! ONs for use with NheI
    N
                                       5'-c qTT qAT ATc qcT Agc cTA-Tgc-3'
    (ON_G29bot)
    22
    ! this is the reverse complement of 5'-gca tag gct agc gat atc aac g-3'
                                                  NheI... scab.....
    (ON G104top) 5'-glata|ggc|tta|gcT|aGC|ccg|gag|aac|gaa|gg-3'
                                                                             ţ
10
                    Scab......NheI... 104 105 106 107 108
    (ON G236top) 5'-c|ttt|cac|agc|ggt|ttc|GCT|AGC|gac|cct|ttt|gtc|tgc-3'
    37
                                         NheI... 236 237 238 239 240
    (ON G236tCS) 5'-c|ttt|cac|agc|ggt|ttc|GCT|AGC|gac|cct|ttt|gtc|Agc-
15
                                         NheI... 236 237 238 239 240
                                                                             ļ
                    gag|tac|cag|ggt|c-3'
    50
    ! ONs for use with SphI G CAT Gc
                      5'-gAc TgT cTc ggc Agc ATg cgc cAT Acg ATc ATc gTT g-3' !
20
    (ON X37bot)
    37
                                  D R
                                          M
                                              A H A
                            N D
    !(ON X37bot)=[RC] 5'-c aac gat gat cgt atg gcG CAt Gct gcc gag aca gtc-3'
                                                SphI....Scab.....
     (ON X104top) 5'-g|gtG ccg|ata|ggc|ttG|CAT|GCa|ccg|gag|aac|gaa|gg-3'
25
    36
                    Scab......SphI.... 104 105 106 107 108
     (ON_X236top) 5'-c|ttt|cac|agc|ggt|ttG|CaT|gCa|gac|cct|ttt|gtc|tgc-3'
                                        SphI.... 236 237 238 239 240
30
     (ON_X236tCS) 5'-c|ttt|cac|agc|ggt|ttG|CaT|gCa|gac|cct|ttt|gtc|Agc-
                                          NheI... 236 237 238 239 240
                                                                             1
                    gag|tac|cag|ggt|c-3'
```

PCT/US02/12405

Table 40: Phage titers and enrichments of a selections with a DY3F31-based human Fab library

	Input (total cfu)	Output (total cfu)	Output/input ratio
R1-ox selected on phOx-BSA	4,5 x 10 ¹²	3,4 x 10 ⁵	7,5 x 10 ⁻⁸
R2-Strep selected on Strep-beads	9,2 x 10 ¹²	3 x 10 ⁸	3,3 x 10 ⁻⁵

Table 41: Frequency of ELISA positives in DY3F31-based Fab libraries

	Anti-M13 HRP	9E10/RAM- HRP	Anti-CK/CL Gar-HRP
R2-ox (with IPTG induction)	18/44	10/44	10/44
R2-ox (without IPTG)	13/44	ND	ND
R3-strep (with IPTG)	39/44	38/44	36/44
R3-strep (without IPTG)	33/44	ND	ND

- 221 -

We claim:

15

1. A method for cleaving single-stranded nucleic acid sequences at a desired location, the method comprising the steps of:

(i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and

(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed
at a temperature sufficient to maintain the nucleic
acid in substantially single-stranded form, the
oligonucleotide being functionally complementary to the
nucleic acid over a large enough region to allow the
two strands to associate such that cleavage may occur
at the chosen temperature and at the desired location,
and the cleavage being carried out using a restriction
endonuclease that is active at the chosen temperature.

A method for cleaving single-stranded nucleic acid sequences at a desired location, the
 method comprising the steps of:

5

10

- 222 -

(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and

(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

3. In a method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the improvement being characterized in that the displayed peptide, polypeptide or protein is encoded at least in part by a nucleic acid that has been cleaved

PCT/US02/12405 WO 02/083872

- 223 -

at a desired location by a method comprising the steps of:

5

10

15

25

- (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
- (ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the 20 oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

In a method for displaying a member of a 4. diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the 30 family, the improvement being characterized in that the displayed peptide, polypeptide or protein is encoded by

- 224 -

a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by

5

10

15

- (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
- (ii) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

5. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the method comprising the steps of:

- 225 -

(i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;

- (ii) rendering the nucleic acids single-5 stranded;
 - (iii) cleaving the single-stranded nucleic
 acids at a desired location by a method comprising the
 steps of:
- (a) contacting the nucleic acid with a

 single-stranded oligonucleotide, the
 oligonucleotide being functionally
 complementary to the nucleic acid in the
 region in which cleavage is desired and
 including a sequence that with its complement
 in the nucleic acid forms a restriction
 endonuclease recognition site that on
 restriction results in cleavage of the
 nucleic acid at the desired location; and
- (b) cleaving the nucleic acid solely at
 the recognition site formed by the
 complementation of the nucleic acid and the
 oligonucleotide;

25

30

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature; and

200

- (iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at 5 least a portion of the diversity of the family.
- 6. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a portion of the diversity of the family, the method comprising the steps of:
 - (i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;
- (ii) rendering the nucleic acids single15 stranded;

20

25

- (iii) cleaving the single-stranded nucleic
 acids at a desired location by a method comprising the
 steps of:
 - (a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
 - (b) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

5

10

- 227 -

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and

(iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.

- 7. In a method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the improvement being characterized in that the expressed peptide, polypeptide or protein is encoded at least in part by a nucleic acid that has been cleaved at a desired location by a method comprising the steps of:
- 25 (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on

5

- 228 -

restriction results in cleavage of the nucleic acid at the desired location; and

(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

- 8. In a method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the improvement being characterized in that the expressed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by
- (i) contacting the nucleic acid with a

 partially double-stranded oligonucleotide,
 the single-stranded region of the
 oligonucleotide being functionally
 complementary to the nucleic acid in the
 region in which cleavage is desired, and the
 double-stranded region of the oligonucleotide

WO 02/083872

5

having a restriction endonuclease recognition site; and

(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic

10 acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location,

15 and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

- 9. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a part of the diversity of the family, the method comprising the steps of:
 - (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
- (ii) rendering the nucleic acids singlestranded;
 - (iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
- 30 (a) contacting the nucleic acid with a single-stranded oligonucleotide, the

5

10

15

20

- 230 -

oligonucleotide being functionally complementary to the nucleic acid in—the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and

(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature; and

(iv) expressing a member of the family of 25 peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.

10. A method for expressing a member of a 30 diverse family of peptides, polypeptides or proteins and collectively expressing at least a portion of the 15

25

30

diversity of the family, the method comprising the steps of:

- (i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse5 family;
 - (ii) rendering the nucleic acids singlestranded;
- (iii) cleaving the single-stranded nucleic
 acids at a desired location by a method comprising the
 10 steps of:
 - (a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and
- 20 (b) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;
 - the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a

- 232 -

cleavage endonuclease that is active at the chosen temperature; and

- (iv) expressing a member of the family of peptides, polypeptides or proteins coded, at least in 5 part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
- 11. A library comprising a collection of genetic packages that display a member of a diverse 10 family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family, the library being produced using the methods of claims 3, 4, 5 or 6.
- 12. A library comprising a collection of
 15 genetic packages that display a member of a diverse
 family of peptides, polypeptides or proteins and that
 collectively display at least a portion of the family,
 the displayed peptides, polypeptides or proteins being
 encoded by DNA sequences comprising at least in part
 20 sequences produced by cleaving single-stranded nucleic
 acid sequences at a desired location by a method
 comprising the steps of:
- (i) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on

5

15

- 233 -

restriction results in cleavage of the nucleic acid at the desired location; and

(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the 10 oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

- 13. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and that collectively display at least a portion of the 20 diversity of the family of the displayed peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by a method comprising the steps of:
- 25 (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the 30 region in which cleavage is desired, and the double-stranded region of the oligonucleotide

5

- 234 -

having a restriction endonuclease recognition site; and

(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic

10 acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location,

15 and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

- 14. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a 20 portion of the diversity of the family, the library being produced using the methods of claims 7, 8, 9 or 10.
- 15. A library comprising a collection of members of a diverse family of peptides, polypeptides
 25 or proteins and collectively comprising at least a portion of diversity of the family, the peptides, polypeptides or proteins being encoded by DNA sequences comprising at least in part sequences produced by cleaving single-stranded nucleic acid sequences at a desired location by a method comprising the steps of:

5

10

- 235 -

(i) contacting the nucleic acid with a single-stranded oligonucleotide, the—oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and

(ii) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

16. A library comprising a collection of
25 members of a diverse family of peptides, polypeptides
or proteins and collectively comprising at least a
portion of the diversity of the family, the peptides,
polypeptides or proteins being encoded by DNA sequences
comprising at least in part sequences produced by
30 cleaving single-stranded nucleic acid sequences at a
desired location by a method comprising the steps of:

5

- 236 -

(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired, and the double-stranded region of the oligonucleotide having a restriction endonuclease recognition site; and

(ii) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site formed by the complementation of the nucleic acid and the single-stranded region of the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

- 25 17. A library of claims 11, 12 or 13 wherein the genetic packages are selected from the group of phage, phagemid or yeast.
 - 18. A library of claims 17 wherein the genetic packages are selected are phage or phagemid.
- 30 19. The methods or libraries according claims 2, 4, 6, 8, 10, 13 or 16 wherein in the

- 237 -

restriction endonuclease recognition site is for a Type II-S restriction endonuclease.

- 20. The methods or libraries according to claims 1 to 19, wherein the nucleic acid is cDNA.
- 5 21. The methods or libraries according to any one of claims 1 to 20, wherein the nucleic acids encode at least a portion of an immunoglobulin.
- 22. The methods or libraries according to claim 21, wherein the immunoglobulin comprises a Fab or 10 single chain Fv.
 - 23. The methods or libraries according to claim 21 or 22, wherein the immunoglobulin comprises at least portion of a heavy chain.
- 24. The method or libraries according to claim 23, wherein the heavy chain is IgM, IgG, IgA, IgE or IgD.
 - 25. The methods or libraries according to claim 23 or 24, wherein at least a portion of the heavy chain is human.
- 26. The methods or libraries according to claim 21 or 22, wherein the immunoglobulin comprises at least a portion of FR1.
- 27. The methods or libraries according to claim 26, wherein at least a portion of the FR1 is human.

- 238 -

- 28. The methods or libraries according to claim 21 or 22, wherein the immunoglobulin comprises at least a portion of a light chain.
- 5 29. The methods or libraries according to claim 28, wherein at least a portion of the light chain is human.
- 30. The methods or libraries according to any one of claims 1 to 16, wherein the nucleic acid sequences are at least in part derived from patients suffering from at least one autoimmune disease and/or cancer.
- 31. The methods or libraries according to claim 30, wherein the autoimmune disease is selected from the group comprising lupus, erythematosus, systemic sclerosis, rheumatoid arthritis, antiphosolipid syndrome or vasculitis.
- 32. The methods or libraries according to claim 30, wherein the nucleic acids are at least in part isolated from the group comprising peripheral blood cells, bone marrow cells spleen cells or lymph node cells.
- 33. The methods according to claim 5, 6, 9 or 10 further comprising at least one nucleic acid
 25 amplification step between one or more of steps (i) and (ii), steps (ii) and (iii) or between steps (iii) and (iv).

- 34. The method according to claim 33, wherein amplification primers for the amplification step are functionally complementary to a constant region of the nucleic acids.
- 5 35. The method according to claim 34, wherein the constant region is genetically constant in the nucleic acids.
- 36. The method according to claim 35, wherein the genetically constant region is a part of the genome of immunoglobulin genes selected from the group of IgM, IgG, IgA, IgE or IgD.
 - 37. The method according to claim 34, wherein the constant region is exogenous to the nucleic acids.
- 38. The methods according to claim 33, wherein the amplification step uses geneRACE.
 - 39. The methods or libraries according to any one of claims 1 to 16, wherein the chosen temperature is between 37°C and 75°C
- 20 40. The methods or libraries according to claim 39, wherein the chosen temperature is between 45°C and 75°C.
- 41. The methods or libraries according to claim 40, wherein the chosen temperature is between 25 50°C and 60°C.

- 240 -

- 42. The methods or libraries according to claim 41, wherein the chosen temperature is between 55°C and 60°C .
- 43. The methods or libraries according to 5 claim 1, 3, 5, 7, 9, 12 or 15, wherein the length of the single-stranded oligonucleotide is between 17 and 30 bases.
- 44. The methods or libraries according to claim 43, wherein the length of the single-stranded oligonucleotide is between 18 and 24 bases.
- 45. The methods or libraries according to claim 1, 3, 5, 7, 9, 12 or 15, wherein the restriction endonuclease is selected from the group comprising MaeIII, Tsp45I, HphI, BsaJI, AluI, BlpI, DdeI, BglII, 15 MslI, BsiEI, EaeI, EagI, HaeIII, Bst4CI, HpyCH4III, HinfI, MlyI, PleI, MnlI, HpyCH4V, BsmAI, BpmI, XmnI, or SacI.
- 46. The methods or libraries according to claim 45, wherein the restriction endonuclease is selected from the group comprising Bst4CI, TaaI, HpyCH4III, BlpI, HpyCH4V or MsII.
- 47. The methods or libraries according to claim 2, 4, 6, 8, 10, 13 or 16, wherein the length of the single-stranded region of the partially double25 stranded oligonucleotide is between 14 and 22 bases.
 - 48. The methods or libraries according to claim 47, wherein the length of the single-stranded

region of the partially double-stranded oligonucleotide is between 14 and 17 bases.

- 49. The methods or libraries according to claim 47, wherein the length of the single-stranded 5 region of the oligonucleotide is between 18 and 20 bases.
- 50. The methods or libraries according to claim 2, 4, 6, 8, 10, 13 or 16, wherein the length of the double-stranded region of the partially double-stranded oligonucleotide is between 10 and 14 base pairs formed by a stem and its palindrome.
- 51. The methods or libraries according to claim 50 wherein, the partially double-stranded oligonucleotide comprises a loop of 3 to 8 bases
 15 between the stem and the palindrome.
- 52. The methods or libraries according to claim 19 wherein the Type II-S restriction endonuclease is selected from the group comprising AarICAC, AceIII, Bbr7I, BbvI, BbvII, Bce83I, BceAI, BcefI, BciVI, BfiI, 20 BinI, BscAI, BseRI, BsmFI, BspMI, EciI, Eco57I, FauI, FokI, GsuI, HgaI, HphI, MboII, MlyI, MmeI, MnlI, PleI, RleAI, SfaNI, SspD5I, Sth132I, StsI, TaqII, Tth111II, or UbaPI.
- 53. The methods or libraries according to claim 52, wherein the Type II-S restriction endonuclease is FokI.

- 242 -

54. A method for preparing single-stranded nucleic acids, the method comprising the steps-of:

5

10

15

20

(i) contacting a single-stranded nucleic acid sequence that has been cleaved with a restriction endonuclease with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the region that remains after cleavage, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into proper and original reading frame for expression and containing a restriction endonuclease recognition site 5' of those sequences; and

(ii) cleaving the partially doublestranded oligonucleotide sequence solely at the restriction endonuclease recognition site contained within the double-stranded region of the partially double-stranded oligonucleotide.

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic

25 acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location,

30 and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

- 55. The method according to claim 54, wherein the length of the single-stranded portfon of the partially double-stranded oligonucleotide is between 2 and 15 bases.
- 5 56. The method according to claim 55, wherein the length of the single-stranded portion of the partially double-stranded oligonucleotide is between 7 and 10 bases.
- 57. The method according to claim 54,

 10 wherein the length of the double-stranded portion of
 the partially double-stranded oligonucleotide is
 between 12 and 100 base pairs.
- 58. The method according to claim 57, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 20 and 100 base pairs.
- 59. A method for preparing a library comprising a collection of genetic packages that display a member of a diverse family of peptides,
 20 polypeptides or proteins and that collectively display at least a portion of the family comprising the steps:
 - (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
- 25 (ii) rendering the nucleic acids singlestranded;
 - (iii) cleaving the single-stranded nucleic
 acids at a desired location by a method comprising the
 steps of:

5

10

15

20

25

- 244 -

(a) contacting the nucleic acid with a single-stranded oligonucleotide, theoligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and

(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature;

(iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequences necessary to return the sequences that remain after cleavage into

proper and original reading frame for display and containing a restriction endonuclease recognition site 5' of those sequences that is different from the restriction site used in step (iii); and

5 (v) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide;

the contacting and the cleaving steps being

performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to

associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and

- (vi) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
- 25 60. A method for preparing a library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the family comprising the steps:
- (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;

- 246 -

(ii) rendering the nucleic acids singlestranded;

(iii) cleaving the single-stranded nucleic
acids at a desired location by a method comprising the
5 steps of:

10

15

20

25

- (a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
- (b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;
- the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature;
- (iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the singlestranded region of the oligonucleotide being

- 247 -

functionally complementary to the nucleic acids in the region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequence necessary to return the sequences that remain after cleavage into proper and original reading frame for expression and containing a restriction endonuclease recognition site 5' of those sequences that is different from the restriction site used in step (iii); and

(v) cleaving the nucleic acid solely at the restriction endonuclease recognition cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide;

15

20

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and

- (vi) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.
- 30 61. The methods according to claim 59 or 60, further comprising at least one nucleic acid amplification step between one or more of steps (i) and

- 248 -

(ii), steps (ii) and (iii), steps (iii) and (iv) and steps (iv) and (v).

- 62. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family, the library being produced using the methods of claims 59 or 61.
- 63. A library comprising a collection of
 10 members of a diverse family of peptides, polypeptides
 or proteins and collectively comprise at least a
 portion of the diversity of the family, the library
 being produced using the methods of claims 60 or 61.
- 64. The methods and libraries according to any one of claim 59 to 63, wherein the members of the library encode immunoglobulins.
- 65. The method and libraries according to claim 64, wherein the double-stranded region of the oligonucleotide encodes at least a part of a framework 20 sequence of an immunoglobulin.
 - 66. The method and libraries according to claim 65, wherein the framework sequence comprises framework 1 of an antibody.
- 67. The method and libraries according to claim 66, wherein the framework sequence comprises framework 1 of a variable domain of a light chain.

- 249 -

- 68. The method and libraries according to claim 66, wherein the framework sequence comprises framework 1 of a variable domain of a heavy chain.
- 69. The method and libraries according to 5 claim 65, wherein the framework sequence comprises framework 3 of an antibody.
 - 70. The method and libraries according to claim 69, wherein the framework sequence comprises framework 3 of a variable domain of a light chain.
- 71. The method and libraries according to claim 69, wherein the framework sequence is framework 3 of a variable domain of a heavy chain.
- 72. The method and libraries according to claim 66, wherein the 5' primer is complementary to a region outside framework 1.
 - 73. The method according to claim 61, wherein amplification primers for the amplification step are functionally complementary to a constant region of the nucleic acids.
- 74. The method according to claim 73, wherein the constant region is genetically constant in the nucleic acids.
- 75. The method according to claim 74, wherein the genetically constant region is part of the genome of immunoglobulin genes selected from the group of IgM, IgG, IgA, IgE or IgD.

- 250 -

- 76. The method according to claim 73; wherein the constant region is exogenous to the nucleic acids.
- 77. The methods according to claim 61,5 wherein the amplification step uses geneRACE™.

78. A vector comprising:

- (i) a DNA sequence encoding an antibody variable region linked to a version of PIII anchor which does not mediate infection of phage particles; and
 - (ii) wild-type gene III.
- 79. The vector according to claim 78, wherein the DNA encodes a Fab.
- 80. The vector according to claim 78, 15 wherein the DNA encodes heavy chain VHCH1.
 - 81. The vector according to claim 80, wherein the heavy chain VHCH1 is linked to trpIII.
 - 82. The vector according to claim 78, wherein the DNA encodes light chain VLCL.
- 20 83. The vector according to claim 82, wherein the light chain VLCL is linked to trpIII.
 - 84. The vector according to claim 78, wherein the DNA encodes scFv.

- 251 **-**

- 85. The vector according to claim 84, wherein the scFv is VL-VH.
- $86. \;$ The vector according to claim 84, wherein the scFv is VH-VL.
- 5 87. The vector according to claim 78, wherein the DNA sequence encoding an antibody variable region linked to a version of PIII anchor further comprises an inducible promoter.
- 88. The vector according to claim 87,

 10 wherein the inducible promoter regulates expression of
 the DNA sequence encoding an antibody variable region
 linked to a version of PIII anchor.
- 89. The vector according to claim 78, wherein the DNA sequence encoding an antibody variable region linked to a version of PIII anchor further comprises an amber stop codon.
- 90. The vector according to claim 89, wherein the DNA encoding the amber stop codon is located between the antibody variable region and the 20 version of pIII.
 - 91. The vector according to any one of claims 78 to 90 wherein the vector is phage or phagemid.
- 92. A method for producing a population of immunoglobulin genes that comprises steps of:

- 252 -

- (i) introducing synthetic diversity into at least one of CDR1 or CDR2 of those genes; and
- (ii) combining the diversity from step (i) with CDR3 diversity captured from B cells.
- 93. The method according to claim 92, wherein synthetic diversity is introduced into both CDR1 and CDR2.
- 10 94. A method for producing a library of immunoglobulin genes that comprises

- (i) introducing synthetic diversity into at least one of CDR1 or CDR2 of those genes; and
- 15 (ii) combining the diversity from step (i) with CDR3 diversity captured from B cells.
- 95. The method according to claim 94, wherein synthetic diversity is introduced into both 20 CDR1 and CDR2.
 - 96. A library of immunoglobulins that comprise members with at least one variable domain in which at least one of CDR1 and CDR2 contain synthetic diversity and CDR3 diversity is captured from B cells.
- 25 97. A library according to claim 96, where both CDR1 and CDR2 contain synthetic diversity.

- 253 -

98. The vector according to claim 78, wherein the version of PIII anchor is characterized by a wild type amino acid sequence and is encoded by a non-wild type degenerate DNA sequence to a very high 5 extent.

- 99. In a method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a part of the diversity of the family, the improvement being characterized in that the displayed peptide, polypeptide or protein is encoded by a DNA sequence comprising a nucleic acid that has been cleaved at a desired location by
- (i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5' terminal and

20

25

30

(ii) cleaving the nucleic acid solely at a restriction endonuclease cleavage site located in the double-stranded region of the oligonucleotide or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

- 100. A method for displaying a member of a diverse family of peptides, polypeptides or proteins on the surface of a genetic package and collectively displaying at least a portion of the diversity of the family, the method comprising the steps of:
- (i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse family;
 - (ii) rendering the nucleic acids singlestranded;
- 20 (iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:

25

- (a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5' terminal region; and
- (b) cleaving the nucleic acid solely at a restriction endonuclease cleavage site located in the double-stranded region of the oligonucleotide or amplifying the nucleic

5

10

15

- 255 -

acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and

(iv) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.

101. In a method for expressing a member of a
25 diverse family of peptides, polypeptides or proteins
and collectively expressing at least a part of the
diversity of the family, the improvement being
characterized in that the expressed peptide,
polypeptide or protein is encoded by a DNA sequence
30 comprising a nucleic acid that has been cleaved at a
desired location by

5

10

15

- 256 **-**

(i) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5' terminal region; and

(ii) cleaving the nucleic acid solely at the restriction endonuclease cleavage site located in the double-stranded region of the oligonucleotide or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic 20 acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, 25 and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature.

102. A method for expressing a member of a diverse family of peptides, polypeptides or proteins and collectively expressing at least a portion of the

- 257 -

diversity of the family, the method comprising the steps of:

- (i) preparing a collection of nucleic acids that code, at least in part, for members of the diverse5 family;
 - (ii) rendering the nucleic acids singlestranded;
- (iii) cleaving the single-stranded nucleic
 acids at a desired location by a method comprising the
 10 steps of:

15

20

25

30

- (a) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the nucleic acid at its 5' terminal region; and
 - (b) cleaving the nucleic acid solely at a restriction endonuclease cleavage site located in the double-stranded region of the nucleotide; or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large

- 258 -

enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and

(iv) expressing a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.

5

- 103. A method for preparing a library comprising a collection of genetic packages that display a member of a diverse family of peptides,
 15 polypeptides or proteins and that collectively display at least a portion of the family comprising the steps:
 - (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
 - (ii) rendering the nucleic acids singlestranded;
 - (iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:
- 25

 (a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on

5

10

15

- 259 -

restriction results in cleavage of the nucleic acid at the desired location; and

(b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature;

- (iv) contacting the nucleic acid with a partially double-stranded oligonucleotide, the single20 stranded region of the oligonucleotide being functionally complementary to the nucleic acids in the 5' terminal region that remains after the cleavage in step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequences
 25 necessary to return the sequences that remain after cleavage into proper and original reading frame for display; and
- (v) cleaving the nucleic acid solely at a restriction endonuclease cleavage site contained within 30 the double-stranded region of the partially doublestranded oligonucleotide, the site being different from that used in step (iii) or amplifying the nucleic acid using a primer at least in part functionally

complementary to at least a part of the double-stranded region of the oligonucleotide, the primer also-introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and

10

- (vi) displaying a member of the family of peptides, polypeptides or proteins coded, at least in part, by the cleaved nucleic acids on the surface of the genetic package and collectively displaying at least a portion of the diversity of the family.
- 104. A method for preparing a library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprising at least a portion of the family comprising the steps:
 - (i) preparing a collection of nucleic acids that code at least in part for members of the diverse family;
- 30 (ii) rendering the nucleic acids singlestranded;

- 261 -

(iii) cleaving the single-stranded nucleic acids at a desired location by a method comprising the steps of:

5

10

20

25

- (a) contacting the nucleic acid with a single-stranded oligonucleotide, the oligonucleotide being functionally complementary to the nucleic acid in the region in which cleavage is desired and including a sequence that with its complement in the nucleic acid forms a restriction endonuclease recognition site that on restriction results in cleavage of the nucleic acid at the desired location; and
- (b) cleaving the nucleic acid solely at the recognition site formed by the complementation of the nucleic acid and the oligonucleotide;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the cleavage being carried out using a restriction endonuclease that is active at the chosen temperature;

(iv) contacting the nucleic acid with a

30 partially double-stranded oligonucleotide, the singlestranded region of the oligonucleotide being
functionally complementary to the nucleic acids in the
5' terminal region that remains after the cleavage in

- 262 -

step (iii) has been effected, and the double-stranded region of the oligonucleotide including any sequence necessary to return the sequences that remain after cleavage into proper and original reading frame for expression; and

(v) cleaving the nucleic acid solely at a restriction endonuclease cleavage site contained within the double-stranded region of the partially double-stranded oligonucleotide, the site being different from that used in step (iii) or amplifying the nucleic acid using a primer at least in part functionally complementary to at least a part of the double-stranded region of the oligonucleotide, the primer introducing on amplification an endonuclease cleavage site and cleaving the amplified nucleic acid sequence solely at that site;

the contacting and the cleaving steps being performed at a temperature sufficient to maintain the nucleic acid in substantially single-stranded form, the oligonucleotide being functionally complementary to the nucleic acid over a large enough region to allow the two strands to associate such that cleavage may occur at the chosen temperature and at the desired location, and the restriction being carried out using a cleavage endonuclease that is active at the chosen temperature; and

20

25

(vi) expressing a member of the family of peptides, polypeptides or proteins coded, at least in 30 part, by the cleaved nucleic acids and collectively expressing at least a portion of the diversity of the family.

- 263 -

105. A library of immunoglobins comprising members having at least one variable domain in which one or both of the CDR 1 and CDR 2 have synthetic diversity and the CDR 3 has diversity captured from 5 B-Cells.

106. The library according to claim 104, wherein a first variable domain has synthetic diversity in CDR 1 and CDR 2 and has diversity in CDR 3 captured from B-cells and a second variable domain has diversity captured from B-cells.

107. The library according to claim 104 or 105, wherein the variable domain is selected from the group of VH or VL.

10

20

25

30

108. A method for cleaving a nucleic acid sequence at a desired location, the method comprising the steps of:

(i) contacting a single-stranded nucleic acid sequence with a partially double-stranded oligonucleotide, the single-stranded region of the oligonucleotide being functionally complementary to the 5' terminal region of the nucleic acid sequence, the double-stranded region of the oligonucleotide including any sequences necessary to return the sequence in the single-stranded nucleic acid sequence into proper and original reading frame for expression; and

(ii) cleaving the partially doublestranded oligonucleotide-single-stranded nucleic acid combination solely at a

- 264 -

restriction endonuclease cleavage site contained within the double-stranded-oligonucleotide or amplifying the combination using a primer at least in part functionally complementary to at least part of the double-stranded region of the oligonucleotide, the primer introducing during amplification an endonuclease cleavage site and cleaving the amplified sequence solely at the site.

10 109. The method according to claim 108, wherein the length of the single-stranded portion of the partially double-stranded oligonucleotide is between 2 and 15 bases.

5

110. The method according to claim 109,
15 wherein the length of the single-stranded portion of
the partially double-stranded oligonucleotide is
between 7 and 10 bases.

111. The method according to claim 108, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 12 and 100 base pairs.

112. The method according to claim 111, wherein the length of the double-stranded portion of the partially double-stranded oligonucleotide is between 20 and 100 base pairs.

113. The methods according to any one of claims 99 to 104 and 108, further comprising at least

- 265 -

one nucleic acid amplification step between one or more of steps (i) and (ii), steps (ii) and (iii), steps (iii) and (iv) and steps (iv) and (v).

- 114. A library comprising a collection of genetic packages that display a member of a diverse family of peptides, polypeptides or proteins and collectively display at least a portion of the diversity of the family, the library being produced using the methods of claims 99, 100, 103 or 113.
- 115. A library comprising a collection of members of a diverse family of peptides, polypeptides or proteins and collectively comprise at least a portion of the diversity of the family, the library being produced using the methods of claims 101, 102, 104 or 113.
 - 116. The methods and libraries according to any one of claims 99 to 104 or 113, wherein the members of the library encode immunoglobulins.

mRNA 1ST STRAND DNA **MRNA** mRNA 1ST STRAND DNA IMMOBÎLIZABLE ds cDNA dsDNA MANAMANAMANA MANNAMANAMANA Managaran dan mananan dan mana **|UTR::SIGNAL| VARIABLE | CONSTANT** CAPTURE ON STREPTAVIDIN BEADS REVERSE TRANSCRIPTION REVERSE TRANSCRIPTION AMPLIFY VH GENES WITHOUT USING VH SEQUENCES SMART PCR 999 * ۵ , w ပ œ

AMPLIFY VL GENES WITHOUT USING VL SEQUENCES

RACE non-biased antibody V-gene amplification

FIG. 4

1, 2, 3 and 4 are patient samples

் gare 3 Gel analysis of PCR product from extender-kappa amplification Approx. 75ng/5μl → 15ng/μl

- 1 100bp
- 2 LDM
- 3 50ng template
- 4 10ng template
 5 ssDNA unligated
 6 negative control
- 7 LDM
- 8 100bp

FIG. 5

1 2

Gel purified PCR product from extender-kappa amplification Concentration: ± 35ng/µl

- 1 LDM
- 2 1µl purif.

FIG. 6

1 2 3 4 5 6 7

Gel-analysis of digested κ-ssDNA

1μl digested ssDNA ≈ 8ng ssDNA Total volume of 50μl = 400ng ssDNA

- → 400ng ssDNA available for ligation of the bridge-extenders
- 1 100bp
- 2 LDM
- 3 1µl ssDNA pure
- 4 4µl beads after dig.
- 5 8µl beads after dig.
- 6-LDM
- 7 100bp

FIG. 7

Gel analysis of extender – cleaved kappa ligation 20ng/5µl cluted material → 4ng/µl

- 1- 100bp 2 LDM

- 3 Ligationmix, 4µl 4 Unligated ssDNA
- 5-LDM

Cleavage and ligation Kappa light chains

2 I.2 3 S G G

Ligation of cleaved light chains

FIG. 12B

Figure 3: Cleavage and ligation lambda light chains

FIG. 13

CJ cleavage heavy chain

Ligation heavy chain CDR3 diversity

FIG. 14B

Cleavage and ligation Heavy Chain

B) PCR

A) HpyCH4III cleavage

527 皿

400 H

500 bp

1 = NEB 100bp ladder

1 = Cleaved DNA eluted from PN column 2 = Beads after Hpy CH4III digestion

3 = Supernatant after cleavage 4 = Mspl digest of pBR322

- 2 = 5ul/100ul PCR product 20 cycles; sample A
- 3 = 5ul/100ul PCR product 20 cycles; sample B
- 4 = no template

FIG. 16

FIG. 17

20/22

1. Annealing

2. Ligati

PCRpr.: 5'CCTCGACAGCGAAGTGCA CAG-3'

5'CCTCGACAGCGAAGTGCA CAG AGC GTC TTG 3'GCAGCTGTCGCTT<u>CACGT</u> GTC TCG CAG AAC -ApaLI-

AA-VL

FIG. 1

PCRpr.: 5'-CCTCTCTCACA GTGCA CAA GAC-3'

1. Annealing

5.-XXX-XXX X-VL..

2. Ligation

GGT AGG AGG G-5 Ext : 5'-CCTCTGTCACA GIGCA CAA GAC ATC CAG ATG ACC CAG TCT CC VI

S

Ó

5'-GAC TGG GTG TAG TCA TCT AG-3'

3'-XXX XXX XXX-VH

22/22

1. Annealing

WO 02/083872 PCT/US02/12405

1

SEQUENCE LISTING

```
<110> LADNER, ROBERT C.
      COHEN, EDWARD H.
      NASTRI, HORACIO G.
      ROOKEY, KRISTIN L.
      HOET, RENE
      HOOGENBOOM, HENDRICUS R. J. M.
<120> NOVEL METHODS OF CONSTRUCTING LIBRARIES COMPRISING
      DISPLAYED AND/OR EXPRESSED MEMBERS OF A DIVERSE FAMILY
      OF PEPTIDES, POLYPEPTIDES OR PROTEINS AND THE NOVEL
      LIBRARIES
<130> DYAX/002 CIP2
<140> 10/045,674
<141> 2001-10-25
<150> 06/198,069
<151> 2000-04-17
<150> 09/837,306
<151> 2001-04-17
<160> 635
<170> PatentIn Ver. 2.1
<210> 1
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 1
                                                                   17
catgtgtatt actgtgc
<210> 2
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 2
cacatecgtg cttettgeac ggatgtggea cagtaataca catg
                                                                   44
<210> 3
```

<211> 18

WO 02/083872

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gtgta	3 ttaga ctgctgcc .	18
<210><211><211><212><213>	43	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ggcag	4 cagtc taatacacca catccgtgtt cttcacggat gtg	43
<210><211><211><212><213>	47	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> cacat	5 ccgtg tttgttacac ggatgtggtg tcttacagtc cattctg	47
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> cagaat	6 tggac tgtaagacac	20
<210> <211> <212> <213>	43	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	

<400>	7	
atcgag	stoto actgagocac atcogtggtt ttocacggat gtg	43
<210>	8	
<211>	17	
<212>	DNA	
	Artificial Sequence	
72137	Altificial bequence .	
<220>		
	Description of Artificial Company Comthatia	
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
	-	
<400>		
gctcag	gtgag actcgat	17
<210>	9	
<211>	24	
<212>		
•	Artificial Sequence	
\213/	Artificial Sequence	
-220>		
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<220>		
<221>	modified base	
<222>	$(10)\ldots(2\overline{4})$	
	A, T, C, G, other or unknown	
	, o, o, o, o., o., o., o., o., o., o., o	
<400>	9 .	
	ggagn nnnnnnnnn nnnn	24
cacga	,	
-2105	10	
<210>		
<211>	•	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	10	
	cgaat tgctacaag	19
atyacc	Jane tyccacaay	1,
Z2105	11	
<210>		
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	

WO 02/083872

```
<400> 11
gactcctcag cttcttgctg aggagtcctt gtagcaattc ggtcat
                                                                  46
<210> 12
<211> 6
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: 6 His tag
<400> 12
His His His His His
 1
            5
<210> 13
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(10)
<223> A, T, C, G, other or unknown
<400> 13
gtctcnnnnn
                                                                 10
<210> 14
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 14
nnnnnngaga c
                                                                 11
<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence
```

<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<222>	modified base (11)(24) A, T, C, G, other or unknown	
<400> cacgga	15 atgtg nnnnnnnnn nnnn	24
<210> <211> <212> <213>	24	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<222>	modified_base (1)(14) A, T, C, G, other or unknown	
<400>		24
11111111111	nnnnn nnnncacatc cgtg	24
<210> <211> <212> <213>	14 .	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gtgtat	17 ttact gtgc	14
<210> <211> <212> <213>	34	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	-
<400>	18	34

<210> 19 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Syntoligonucleotide	hetic
<400> 19 gtgtattaga ctgc	14
<210> 20 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synt oligonucleotide	hetic
<400> 20 gcagtctaat acaccacatc cgtgcacgga tgtg	34
<210> 21 <211> 34 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synt oligonucleotide	hetic
<400> 21 cacatccgtg cacggatgtg gtgtcttaca gtcc	34
<210> 22 <211> 14 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthologonal Sequence Sequence Synthologonal Sequence Synthologonal Sequence Synthologonal Sequence Synthologonal Sequence Synthologonal Sequence Sequence Synthologonal Sequence Synthologonal Sequence Sequ	hetic
<400> 22 ggactgtaag acac	. 14
<210> 23 <211> 34 <212> DNA <213> Artificial Seguence	

<220> <223>	Description of Artificial Se	equence:	Synthetic		
<400> gagtc	23 tcact gagccacatc cgtgcacgga t	tgtg		3	4
<210><211><211><212><213>	14				
<220> <223>	Description of Artificial Se	equence:	Synthetic		
<400> gctca	24 gtgag actc			14	4
<210><211><211><212><213>	14				
<220> <223>	Description of Artificial Se	equence:	Synthetic		
<400> gtgta	25 ttact gtgc			. 14	4
<210><211><211><212><213>	14				
<220> <223>	Description of Artificial Se	equence:	Synthetic	-	
<400> gtata	26 ttact gtgc			14	4
<210><211><211><212><213>	14		·		
<220> <223>	Description of Artificial Se	equence:	Synthetic		
<400> gtgta	27 ttact gtaa			14	4

<210> <211> <212> <213>	14	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gtgtai	28 ttact gtac	14
<210> <211> <212> <213>	14	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ttgta	29 ttact gtgc	14
<210> <211> <212> <213>	14	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ttgta	30 tcact gtgc	14
<210> <211> <212> <213>	14	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> acatat	31 ttact gtgc	14
<210><211><211><212><213>	14	

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 32
                                                                   14
acgtattact gtgc
<210> 33
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 33
                                                                   14
atgtattact gtgc
<210> 34
<211> 101
<212> DNA
<213> Homo sapiens
<400> 34
agggtcacca tgaccaggga cacgtccatc agcacagcct acatgabcga gctgagcagg 60
ctgagatctg acgacacggc cgtgtattac tgtgcgagag a
<210> 35
<211> 98
<212> DNA
<213> Homo sapiens
agagtcacca ttaccaggga cacatccgcg agcacagcct acatggagct gagcagcctg 60
agatctgaag acacggctgt gtattactgt gcgagaga
<210> 36
<211> 98
<212> DNA
<213> Homo sapiens
<400> 36
agagtcacca tgaccaggaa cacctccata agcacagcct acatggagct gagcagcctg 60
agatctgagg acacggccgt gtattactgt gcgagagg
<210> 37
<211> 98
<212> DNA
<213> Homo sapiens
```

```
<400> 37
agagtcacca tgaccacaga cacatccacg agcacagcct acatggagct gaggagcctg 60
agatctgacg acacggccgt gtattactgt gcgagaga
<210> 38
<211> 98
<212> DNA
<213> Homo sapiens
<400> 38
agagtcacca tgaccgagga cacatctaca gacacagcct acatggagct gagcagcctg 60
agatctgagg acacggccgt gtattactgt gcaacaga
<210> 39
<211> 98
<212> DNA
<213> Homo sapiens
<400> 39
agagtcacca ttaccaggga caggtctatg agcacagcct acatggagct gagcagcctg 60
agatctgagg acacagccat gtattactgt gcaaqata
<210> 40
<211> 98
<212> DNA
<213> Homo sapiens
<400> 40
agagtcacca tgaccaggga cacgtccacg agcacagtct acatggagct gagcagcctg 60
agatctgagg acacggccgt gtattactgt gcgagaga
<210> 41
<211> 98
<212> DNA
<213> Homo sapiens
<400> 41
agagtcacca ttaccaggga catgtccaca agcacagcct acatggagct gagcagcctg 60
agatccgagg acacggccgt gtattactgt gcggcaga
<210> 42
<211> 98
<212> DNA
<213> Homo sapiens
<400> 42
agagtcacga ttaccgcgga cgaatccacg agcacagcct acatggagct gagcagcctg 60
agatetgagg acaeggeegt gtattactgt gegagaga
<210> 43
<211> 98
```

```
<212> DNA
<213> Homo sapiens
<400> 43
agagtcacga ttaccgcgga caaatccacg agcacagcct acatggagct gagcagcctg 60
agatetgagg acaeggeegt gtattactgt gegagaga
<210> 44
<211> 98
<212> DNA
<213> Homo sapiens
<400> 44
agagtcacca taaccgcgga cacgtctaca gacacagcct acatggagct gagcagcctg 60
agatctgagg acacggccgt gtattactgt gcaacaga
                                                                   98
<210> 45
<211> 100
<212> DNA
<213> Homo sapiens
<400> 45
aggeteacea teaceaagga eacetecaaa aaceaggtgg teettacaat gaceaacatg 60
gaccetgtgg acacagceae atattactgt gcacacagae
                                                                   100
<210> 46
<211> 100 -
<212> DNA
<213> Homo sapiens
<400> 46
aggeteacea tetecaagga cacetecaaa agecaggtgg teettaceat gaccaacatg 60
                                                                   100
gaccctgtgg acacagccac atattactgt gcacggatac
<210> 47
<211> 100
<212> DNA
<213> Homo sapiens
<400> 47
aggeteacea tetecaagga cacetecaaa aaceaggtgg teettacaat gaceaacatg 60
                                                                   100
gaccetgtgg acacagceae gtattactgt geacggatae
<210> 48
<211> 98
<212> DNA
<213> Homo sapiens
<400> 48
cgattcacca tctccagaga caacgccaag aactcactgt atctgcaaat gaacagcctg 60
                                                                   98
agageegagg acaeggetgt gtattactgt gegagaga
```

WO 02/083872 PCT/US02/12405

```
<210> 49
<211> 100
<212> DNA
<213> Homo sapiens
<400> 49
cgattcacca tctccagaga caacgccaag aactccctgt atctgcaaat gaacagtctg 60
agagctgagg acacggcctt gtattactgt gcaaaagata
<210> 50
<211> 98
<212> DNA
<213> Homo sapiens
<400> 50
cgattcacca tctccaggga caacgccaag aactcactgt atctgcaaat gaacagcctg 60
agagccgagg acacggccgt gtattactgt gcgagaga
<210> 51
<211> 98
<212> DNA
<213> Homo sapiens
<400> 51
cgattcacca totocagaga aaatgccaag aactcottgt atottcaaat gaacagcotg 60
                                                                   98
agagccgggg acacggctgt gtattactgt gcaagaga
<210> 52
<211> 98
<212> DNA
<213> Homo sapiens
<400> 52
agattcacca totcaagaga tgattcaaaa aacacgotgt atotgcaaat gaacagootg 60
                                                                   98
aaaaccgagg acacagccgt gtattactgt accacaga
<210> 53
<211> 98
<212> DNA
<213> Homo sapiens
<400> 53
cgattcacca tctccagaga caacgccaag aactccctgt atctgcaaat gaacagtctg 60
                                                                   98
agagccgagg acacggcctt gtatcactgt gcgagaga
<210> 54
<211> 98
<212> DNA
<213> Homo sapiens
<400> 54
cgattcacca tctccagaga caacgccaag aactcactgt atctgcaaat gaacagcctg 60
agagccgagg acacggctgt gtattactgt gcgagaga
                                                                   98
```

```
<210> 55
<211> 98
<212> DNA
<213> Homo sapiens
cggttcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
                                                                   98
agagccgagg acacggccgt atattactgt gcgaaaga
<210> 56
<211> 98
<212> DNA
<213> Homo sapiens
<400> 56
cgattcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagctgagg acacggctgt gtattactgt gcgaaaga
<210> 57
<211> 98
<212> DNA
<213> Homo sapiens
<400> 57
cgattcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagctgagg acacggctgt gtattactgt gcgagaga
<210> 58
<211> 98
<212> DNA
<213> Homo sapiens
<400> 58
cqattcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagctgagg acacggctgt gtattactgt gcgaaaga
<210> 59
<211> 98
<212> DNA
<213> Homo sapiens
<400> 59
cgattcacca tctccagaga caattccaag aacacgctgt atctgcaaat gaacagcctg 60
agagccgagg acacggctgt gtattactgt gcgagaga
<210> 60
<211> 100
<212> DNA
<213> Homo sapiens
```

```
<400> 60
cgattcacca tctccagaga caacagcaaa aactccctgt atctgcaaat gaacagtctg 60
agaactgagg acaccgcctt gtattactgt gcaaaagata
<210> 61
<211> 98
<212> DNA
<213> Homo sapiens
<400> 61
cgattcacca tctccagaga caatgccaag aactcactgt atctgcaaat gaacagcctg 60
agagacgagg acacggctgt gtattactgt gcgagaga
<210> 62
<211> 98
<212> DNA
<213> Homo sapiens
<400> 62
agattcacca tctcaagaga tggttccaaa agcatcgcct atctgcaaat gaacagcctg 60
                                                                   98
aaaaccgagg acacagccgt gtattactgt actagaga
<210> 63
<211> 98
<212> DNA
<213> Homo sapiens
<400> 63
cgattcacca tctccagaga caattccaag aacacgctgt atcttcaaat gaacagcctg 60
agagccgagg acacggccgt gtattactgt gcgagaga
<210> 64
<211> 98
<212> DNA
<213> Homo sapiens
<400> 64
agattcacca totocagaga caattccaag aacacgotgt atottcaaat gggcagootg 60
agagctgagg acatggctgt gtattactgt gcgagaga
<210> 65
<211> 98
<212> DNA
<213> Homo sapiens
<400> 65
agattcacca totocagaga caattccaag aacacgotgt atottcaaat gaacagootg 60
agagctgagg acacggctgt gtattactgt gcgagaga
<210> 66
<211> 98
```

```
<212> DNA
<213> Homo sapiens
<400> 66
agattcacca totcaagaga tgattcaaag aactcactgt atotgcaaat gaacagcotg 60
aaaaccgagg acacggccgt gtattactgt gctagaga
<210> 67
<211> 98
<212> DNA
<213> Homo sapiens
<400> 67
aggttcacca tctccagaga tgattcaaag aacacggcgt atctgcaaat gaacagcctg 60
aaaaccgagg acacggccgt gtattactgt actagaca
                                                                   98
<210> 68
<211> 98
<212> DNA
<213> Homo sapiens
<400> 68
cgattcacca tctccagaga caacgccaag aacacgctgt atctgcaaat gaacagtctg 60
agagccgagg acacggctgt gtattactgt gcaagaga
<210> 69
<211> 98
<212> DNA
<213> Homo sapiens
<400> 69
agattcacca totocagaga caattccaag aacacgotgo atottcaaat gaacagootg 60
agagctgagg acacggctgt gtattactgt aagaaaga
<210> 70
<211> 98
<212> DNA
<213> Homo sapiens
<400> 70
cgagtcacca tatcagtaga caagtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgcgg acacggccgt gtattactgt gcgagaga
<210> 71.
<211> 98
<212> DNA
<213> Homo sapiens
<400> 71
cgagtcacca tgtcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgtgg acacggccgt gtattactgt gcgagaaa
```

```
<210> 72
<211> 98
<212> DNA
<213> Homo sapiens
<400> 72
cgagttacca tatcagtaga cacgtctaag aaccagttct ccctgaagct gagctctgtg 60
actgccgcgg acacggccgt gtattactgt gcgagaga
<210> 73
<211> 98
<212> DNA
<213> Homo sapiens
<400> 73
cgagtcacca tatcagtaga caggtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgcgg acacggccgt gtattactgt gccagaga
<210> 74
<211> 98
<212> DNA
<213> Homo sapiens
<400> 74
cgagttacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
actgccgcag acacggccgt gtattactgt gccagaga
<210> 75
<211> 98
<212> DNA
<213> Homo sapiens
<400> 75
cgagttacca tatcagtaga cacgtctaag aaccagttct ccctgaagct gagctctgtg 60
actgccgcgg acacggccgt gtattactgt gcgagaga
<210> 76
<211> 98
<212> DNA
<213> Homo sapiens
<400> 76
cgagtcacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgcgg acacggctgt gtattactgt gcgagaga
                                                                    98
<210> 77
<211> 98
<212> DNA
<213> Homo sapiens
<400> 77
cgagtcacca tatccgtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgcag acacggctgt gtattactgt gcgagaca
                                                                    98
```

The second of th

```
<210> 78
<211> 98
<212> DNA
<213> Homo sapiens
<400> 78
cgagtcacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgctgcgg acacggccgt gtattactgt gcgagaga
<210> 79
<211> 98
<212> DNA
<213> Homo sapiens
<400> 79
cqaqtcacca tatcaqtaga cacqtccaag aaccagttct ccctgaagct gagctctgtg 60
accgctgcgg acacggccgt gtattactgt gcgagaga
<210> 80
<211> 98
<212> DNA
<213> Homo sapiens
<400> 80
cgagtcacca tatcagtaga cacgtccaag aaccagttct ccctgaagct gagctctgtg 60
accgccgcag acacggccgt gtattactgt gcgagaga
<210> 81
<211> 98
<212> DNA
<213> Homo sapiens
caggicacca totcagooga caagiccato agoaccgcot acctgcagig gagcagooig 60
aaggcctcgg acaccgccat gtattactgt gcgagaca
<210> 82
<211> 96
<212> DNA
<213> Homo sapiens
<400> 82
cacgtcacca totcagotga caagtccatc agcactgcct acctgcagtg gagcagoctg 60
aaggcctcgg acaccgccat gtattactgt gcgaga
<210> 83
<211> 98
<212> DNA
<213> Homo sapiens
```

PCT/US02/12405

```
<400> 83
cgaataacca tcaacccaga cacatccaag aaccagttct ccctgcagct gaactctgtg 60
actcccgagg acacggctgt gtattactgt gcaagaga
<210> 84
 <211> 98
 <212> DNA
 <213> Homo sapiens
 <400> 84
 cggtttgtct tctccttgga cacctctgtc agcacggcat atctgcagat ctgcagccta 60
 aaggctgagg acactgccgt gtattactgt gcgagaga
 <210> 85
 <211> 11
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (3)..(9)
 <223> A, T, C, G, other or unknown
 <400> 85
                                                                    11
 gcnnnnnng c
 <210> 86
 <211> 10
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (4) .. (7)
 <223> A, T, C, G, other or unknown
 <400> 86
                                                                    1:0
 caynnnnrtg
 <210> 87
 <211> 11
 <212> DNA
<213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
```

WO 02/083872 PCT/US02/12405

19

oligonucleotide

FR3 nucleotide sequence

```
<220>
<221> modified base
<222> (6)..(11)
<223> A, T, C, G, other or unknown
<400> 87
                                                                   11
gagtcnnnnn n
<210> 88
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1) . . (6)
<223> A, T, C, G, other or unknown
<400> 88
                                                                   11
nnnnnngaga c
<210> 89
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 89
                                                                   10
gaannnnttc
<210> 90
<211> 90
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic 3-23
```

1 200 0

```
<220>
<221> CDS
<222> (1)..(90)
<220>
<221> modified_base
<222> (3)
<223> A, T, C or G
<220>
<221> modified_base
<222> (9)
<223> A, T, C or G
<220>
<221> modified base
<222> (12)
<223> A, T, C or G
<220>
<221> modified_base
<222> (21)
<223> A, T, C or G
<220>
<221> modified_base
<222> (30)
<223> A, T, C or G
<220>
<221> modified_base
<222> (36)
<223> A, T, C or G
<220>
<221> modified_base
<222> (51)
<223> A, T, C or G
<220>
<221> modified_base
<222> (57)
<223> A, T, C or G
<220>
<221> modified_base
<222> (60)
<223> A, T, C or G
<220>
<221> modified base
<222> (69)
<223> A, T, C or G
<220>
<221> modified_base
<222> (72)
<223> A, T, C or G
```

```
<220>
<221> modified_base
<222> (75)
<223> A, T, C or G
<220>
<221> modified_base
<222> (78)
<223> A, T, C or G
<220>
<221> modified base
<222> (87)
<223> A, T, C or G
<400> 90
acn ath wsn mgn gay aay wsn aar aay acn ytn tay ttn car atg aay
Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn
                                     10
wsn ttr mgn gcn gar gay acn gcn gtn tay tay tgy gcn aar
                                                                   90
Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys
                                 25
             20
<210> 91
<211> 30
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic 3-23
      FR3 protein sequence
<400> 91
Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn
Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys
             20
                                 25
<210> 92
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 92
                                                                   22
agttctccct gcagctgaac tc
```

<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic probe	
<400> cactg	h - h - h	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic probe	
<400> ccctg!		22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic probe	
<400> ccgcct		22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic probe	
<400> cgctgt		22
<210> <211> <212> <213>	22	
<220>.		

<223>	Description of Artificial probe	Sequence:	Synthetic		
<400> cggca1	97 catct gcagatctgc ag				22
<210><211><211><212>	22 DNA				
<220>	Artificial Sequence Description of Artificial	Sequence:	Synthetic		
<400>	probe 98				
cggcg	catct gcaaatgaac ag				22
<210> <211> <212> <213>	22				
<220> <223>	Description of Artificial a	Sequence:	Synthetic		
<400> ctgcc	99 tacct gcagtggagc ag				22
<210><211><211><212>	22				
	Artificial Sequence				
<220> <223>	Description of Artificial probe	Sequence:	Synthetic		
<400> tcgcci	100 catct gcaaatgaac ag				22
<210> <211> <212> <213>	63				
<220> <223>	Description of Artificial : oligonucleotide	Sequence:	Synthetic		
<400> cgctto agg	101 cacta agtctagaga caactctaag	aatactctc	t acttgcagat	gaacagctta	60 63

<210> <211> <212> <213>	45	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> caagt	102 agaga gtattottag agttgtotot agaottagtg aagog	45
<210><211><212>	54	
<213>	Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>	-	
cgctt	cacta agtotagaga caactotaag aatactotot acttgcagot gaac	54
<210> <211> <212> <213>	54	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
cgctte	cacta agtotagaga caactotaag aatactotot acttgcaaat gaac	54
<210><211><211><212><213>	54	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400>		
cgctto	cacta agtetagaga caactetaag aatactetet acttgcagtg gage	54
<210><211><211><212><213>	21	

<220> <223>	Description of Artificial S	equence:	Primer
<400> cgctto	106 cacta agtotagaga c		· · -· 21
<210> <211> <212>	22 DNA		
	Artificial Sequence		
<220> <223>	Description of Artificial Sprobe	equence:	Synthetic
<400> acatg	107 gaget gageageetg ag		22
<210><211><211><212><213>	22		
<220> <223>	Description of Artificial S probe	equence:	Synthetic
<400>	108 gagct gagcaggctg ag		22
acacg			
<210> <211> <212> <213>	22		
<220> <223>	Description of Artificial S probe	equence:	Synthetic
<400> acatg	109 gaget gaggageetg ag		22
<210><211><211><212><213>	22		
· <220>	Description of Artificial S probe	equence:	Synthetic
<400> acctg	110 cagtg gagcagcctg aa		22

·<210>	111		
<211>	22		
<212>	DNA		
	Artificial Sequence		
<220>			
12237	Description of Artificial Sequence: Synthetic		
	probe		

<400>			
atctg	caaat gaacagcctg aa		22
<210>	112		
<211>	22		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
	Description of Artificial Commence Complete		
12237	Description of Artificial Sequence: Synthetic		
	probe		
< 400>	110		
<400>			
atctg	caaat gaacagootg ag		22
<210>			
<211>	22		
<212>	DNA		
<213>	Artificial Sequence		
	•		
<220>		•	
<223>	Description of Artificial Sequence: Synthetic		
	probe		
	P1000		
<400>	113		
acceg	caaat gaacagtctg ag		22
4210 5	114		
<210>			
<211>			
<212>			
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial Sequence: Synthetic		
	probe		
<400>	114		
	agat ctgcagccta aa		2.2
- 9			22
<210>	115		
<211>			
<211>			
	DNA Artificial Sequence		
/517	ALLIIICIAI Sequence		

WO 02/083872 PCT/US02/12405

<220> <223>	Description of Artificial Sequen	nce: Synthetic
<400>		
atctto	caaat gaacageetg ag	22
<210>	116	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequent probe	nce: Synthetic
<400>	116	
atctto	caaat gggcagcctg ag	22
<210>		
<211>		
<212>		
(213)	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequen probe	nce: Synthetic
<400>	117	
ccctga	aagct gagctctgtg ac	22
<210>	118	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequen	nce: Synthetic
	probe	
<400>		0.0
ccctg	caget gaactetgtg ac	22
<210>	119	
<211>	•	•
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequent probe	nce: Synthetic

<400> 119 tecttacaat gaccaacatg ga	22
<210> 120 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic probe	
<400> 120 tccttaccat gaccaacatg ga .	22
<210> 121 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 121 acatggagct gagcagcctg ag	22
<210> 122 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 122 ccctgaagct gagctctgtg ac	22
<210> 123 <211> 54 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 123 cgcttcacta agtctagaga caactctaag aatactctct acttgcagat gaac	54
<210> 124 <211> 60	

WO 02/083872 PCT/US02/12405

```
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 124
cgcttcactc agtctagaga taacagtaaa aatactttgt acttgcagct gagcagcctg 60
<210> 125
<211> 60
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 125
cgcttcactc agtctagaga taacagtaaa aatactttgt acttgcagct gagctctgtg 60
<210> 126
<211> 52
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 126
tcagctgcaa gtacaaagta tttttactgt tatctctaga ctgagtgaag cg
                                                                   52
<210> 127
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 127
cgcttcactc agtctagaga taac
                                                                   24
<210> 128
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

<400>	128	
ccgtgt	atta ctgtgcgaga ga	22
<210>	120	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		22
ctgtgt	atta ctgtgcgaga ga	22
<210>		
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
\LLJ,	oligonucleotide	
	·	
<400>	130	
ccgtgt	catta ctgtgcgaga gg	22
<210>	131	
<211>		
<212>		
	Artificial Sequence	
12157	metricular bequeñoe	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	131	
	tatta ctgtgcaaca ga	22
ccg cg.	sacca orgregoadou gu	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		•
	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	132	
ccatgt	atta ctgtgcaaga ta	22

<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthe oligonucleotide	tic
<400> ccgtgi	133 catta ctgtgcggca ga	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthe oligonucleotide	tic
<400> ccacat	134 catta ctgtgcacac ag	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthe oligonucleotide	tic
<400> ccacat	135 catta ctgtgcacgg at	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthe oligonucleotide	tic
<400> ccacgt	136 catta ctgtgcacgg at	. 22
<210> <211> <212> <213>	22	

<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide</pre>	
<400> 137 ccttgtatta ctgtgcaaaa ga	
<210> 138 <211> 22 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 138	
ctgtgtatta ctgtgcaaga ga <210> 139	22
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 139	
ccgtgtatta ctgtaccaca ga	22
•	
<210> 140	
<211> 22	
<212> DNA <213> Artificial Sequence	
in cittoral bequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 140	
ccttgtatca ctgtgcgaga ga	22.
<210> 141	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 141	
ccgtatatta ctgtgcgaaa ga	22

WO 02/083872 PCT/US02/12405

<210> <211> <212> <213>	22		
<220> <223>	Description of Artificial Sequençe: oligonucleotide	Synthetic	
<400> ctgtgt	142 catta ctgtgcgaaa ga	2.	2
<210> <211> <212> <213>	22		
<220> <223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400> ccgtgt	143 catta ctgtactaga ga	. 2.	2
<210> <211> <212> <213>	22		
<220> <223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400> ccgtgt	144 catta ctgtgctaga ga	2	2
<210> <211> <212> <213>	22		
<220> <223>	Description of Artificial Sequence: oligonucleotide	Synthetic .	
<400>		•	2
ccgtgt	atta ctgtactaga ca	2.	2
<210><211><211><212><213>	22		

<220>				
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400>	-			
	tatta ctgtaagaaa ga			22
orgrg.	Jarra Olycadydda yd			22
<210>		•		
<211>				
<212>				
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400>	147			
ccgtgt	tatta ctgtgcgaga aa			22
<210>	148	•		
<211>	22		- +	-
<212>	DNA			
<213>	Artificial Sequence			
<220>				
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400>	148	•		
ccgtgt	tatta ctgtgccaga ga			22
<210>				
<211>				
<212>				
(213)	Artificial Sequence			
<220>				
<223>	Description of Artificial	Sequence:	Synthetic	
	oligonucleotide			
<400>				
ctgtgt	atta ctgtgcgaga ca			22
<210×	150			
<210> <211>	22			•
<211>				
	Artificial Sequence			
	orangeme			
<220>	B	_	_	
<223>	Description of Artificial	Sequence:	Synthetic	

<400> 150 ccatgtatta ctgtgcgaga ca	22
<210> 151 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 151 ccatgtatta ctgtgcgaga	20
<210> 152 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 152 ccgtgtatta ctgtgcgaga g	21
<210> 153 <211> 21 <212> DNA . <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide</pre>	
<400> 153 ctgtgtatta ctgtgcgaga g	21
<210> 154 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	•
<400> 154 ccgtgtatta ctgtgcgaga g	21
<210> T55	

<212> <213>	DNA Artificial Sequence			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> ccgta	•			21
<210><211><211><212>	21			
	Artificial Sequence			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400>	156 tatta ctgtgcgaaa g			21
			•	2.1
<210><211>				
<211>				
	Artificial Sequence			
<220>				
<223>	Description of Artificial : oligonucleotide	Sequence:	Synthetic	
<400>	157			
ctgtg	tatta ctgtgcgaga c			21
<210>	158			
<211>				
<212>				
<213>	Artificial Sequence			
<220>	Paradiski osa a sisa sa	_		
<223>	Description of Artificial Soligonucleotide	Sequence:	Synthetic	
<400>				
ccatgi	tatta ctgtgcgaga c			21
				·
<210> <211>				
<211>				
	Artificial Sequence			
<220>				
	Description of Artificial Soligonucleotide	Sequence:	Synthetic	

```
<400> 159
                                                                   20
ccatgtatta ctgtgcgaga
<210> 160
<211> 94
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 160
ggtgtagtga tctagtgaca actctaagaa tactctctac ttgcagatga acagctttag 60
ggctgaggac actgcagtct actattgtgc gaga
<210> 161
<211> 94
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 161
ggtgtagtga tctagtgaca actctaagaa tactctctac ttgcagatga acagctttag 60
ggctgaggac actgcagtct actattgtgc gaaa
<210> 162
<211> 85
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<400> 162
atagtagact gcagtgtcct cagcccttaa gctgttcatc tgcaagtaga gagtattctt 60
agagttgtct ctagatcact acacc
<210> 163
<211> 22
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<400> 163
                                                                   22
ggtgtagtga tctagagaca ac
```

<210> <211> <212>	55 DNA			
<213>	Artificial Sequence			
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide			
<400> ggtgta	164 agtga aacagettta gggetgagga caetgeagte taetattgtg	cgaga	55	5
<210> <211> <212> <213>	55			
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide			
<400> ggtgta	165 agtga aacagcttta gggctgagga cactgcagtc tactattgtg	cgaaa	55	ò
<210> <211> <212> <213>	46			
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide			
<400> atagta	166 agact gcagtgteet cageeettaa getgttteae tacace		46	ò
<210><211><211><212><213>	46			
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide			
<400>			4.0	-
331910	gtga aacagcttaa gggctgagga cactgcagtc tactat		46	F
<210> <211> <212>	26 DNA			
<2135	Artificial Company			

<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide</pre>	
<400> 168 ggtgtagtga aacagcttaa gggctg	26
<210> 169 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic probe	
<400> 169 agttctccct gcagctgaac tc	22
<210> 170 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic probe	
<400> 170 cactgtatct gcaaatgaac ag	22
<210> 171 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic probe	
<400> 171 ccctgtatct gcaaatgaac ag	22
<210> 172 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic	

<400> 172 ccgcctacct gcagtggagc ag	22
<210> 173 <211> 22 <212> DNA <213> Artificial Sequence	<u> </u>
<220> <223> Description of Artificial Sequence: Synthetic probe	
<400> 173 cgctgtatct gcaaatgaac ag	22
<210> 174 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic probe	
<400> 174 cggcatatet geagatetge ag	22
<210> 175 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic probe	
<400> 175 cggcgtatct gcaaatgaac ag	22
<210> 176 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic probe	•
<400> 176 ctgcctacct gcagtggagc ag	22
<210> 177 · · · · · · · · · · · · · · · · · ·	

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic probe	
<400> tcgcc	177 tatct gcaaatgaac ag	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> acatg	178 gaget gageageetg ag	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> acatg	179 gaget gageaggetg ag	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> acatgo	180 gagct gaggagcctg ag	22
<210><211><211><212><213>	22	
	Description of Artificial Sequence: Synthetic	

<400> acctg	181 cagtg gagcagcctg aa		22
<210> <211> <212> <213>	22	 .	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide		
<400> atctgo	182 caaat gaacageetg aa		22
<210><211><211><212><213>	22		
	Description of Artificial Sequence: Synthetic oligonucleotide		
<400> atctgo	183 caaat gaacagcctg ag		22
<210> <211> <212> <213>	22 .		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide		
<400> atctgo	184 caaat gaacagtotg ag		22
<210><211><211><212><213>	22		
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide		
<400> atctgc	185 agat ctgcagccta aa		22

PCT/US02/12405

<210> <211> <212> <213>	22			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> atctto	186 aaat gaacagootg ag	•		22
<210> <211> <212> <213>	22			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> atctto	187 caaat gggcagcctg ag			22
<210> <211> <212> <213>	22			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> ccctga	188 aagct gagctctgtg ac			22
<210> <211> <212> <213>	22			
<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic	
<400> ccctg	189 caget gaactetgtg ac			22
<210> <211> <212> <213>	22			

<220> <223>	Description of Artificial Second oligonucleotide	quence:	Synthetic	
<400> tcctt	· 190 acaat gaccaacatg ga			 22
<210><211><211><212><213>	- 22			
<220>		quence:	Synthetic	
<400> tcctt	191 accat gaccaacatg ga			22
<210><211><212><212><213>	22	-		
<220> <223>	Description of Artificial Second Coligonucleotide	quence:	Synthetic	
<400> ccgtg	192 tatta ctgtgcgaga ga			22
<210><211><211><212><213>	22			
<220> <223>	Description of Artificial Seconic oligonucleotide	Juence:	Synthetic	
<400> ctgtg	193 tatta ctgtgcgaga ga			22
<210> <211> <212> <213>	22			
<220> <223>	Description of Artificial Sequence oligonucleotide	quence: :	Synthetic	
<400> ccgtgi	194 tatta ctgtgcgaga gg	-		22

<210>		
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
	•	
<400>	195	
ccatat	atta ctgtgcaaca ga	22
3 . 3		
<210>	196	
<211>		
<212>		
	Artificial Sequence	
\213/	Altificial Sequence	
4000s		
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		
ccatg	atta ctgtgcaaga ta	22
<210>	197	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
1210		
<220>		
	Description of Artificial Sequence: Synthetic	
\2237	oligonucleotide	
	oligonucleocide	
<400>		
		22
ccgtgi	catta ctgtgcggca ga	22
<210>		•
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	•
<400>	198	
ccacat	tatta ctgtgcacac ag	22
	•	
<210>	199	
<211>		
<212>		
	Artificial Sequence	
ヘムエンノ	Utitities acquence	

<220> <223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	199				
	tatta ctgtgcacgg at				22
ccaca	acca digigladgy at				26
<210>	200				
<211>	22				
<212>					
<213>	Artificial Sequence				
<220>					
<223>	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	200				
ccacgi	atta ctgtgcacgg at				22
-					
<210>					
<211>					
<212>	-				
\213/	Artificial Sequence				
<220>					
	Description of Artificial oligonucleotide	Sequence:	Synthetic		
<400>	201				
	atta ctgtgcaaaa ga				22
	•				
<210×	202				
<210> <211>					
<211>					
	Artificial Sequence				
12137	Artificial Sequence				
<220>					
<223>	Description of Artificial	Sequence:	Synthetic		
	oligonucleotide		-		
<400>					
cegegt	atta ctgtgcaaga ga				22
<210>	203				
<211>	*-				
<212>	DNA				
<213>	Artificial Sequence				
<220>				•	
<223>	Description of Artificial	Sequence:	Synthetic		

<400> 203 ccgtgtatta ctgtaccaca ga	22
<210> 204 <211> 22 <212> DNA <213> Artificial Sequence	· · · · ·
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 204 ccttgtatca ctgtgcgaga ga	22
<210> 205 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 205 ccgtatatta ctgtgcgaaa ga	22
<210> 206 <211> 22 <212> DNA . <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	·
<400> 206 ctgtgtatta ctgtgcgaaa ga	22
<210> 207 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	•
<400> 207 ccgtgtatta ctgtactaga ga	22
<210> 208 <211> 22	

<212> <213>	DNA Artificial Sequence	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ccgtgt	208 tatta ctgtgctaga ga	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ccgtgi	209 tatta ctgtactaga ca	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ctgtg	210 tatta ctgtaagaaa ga	22
<210><211><212><213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ccgtgf	211 tatta ctgtgcgaga aa	22
<210> <211> <212> <213>	22	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	

<400> 212 ccgtgtatta ctgtgccaga ga	22
<210> 213 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 213 ctgtgtatta ctgtgcgaga ca	22
<210> 214 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 214 ccatgtatta ctgtgcgaga ca	22
<210> 215 <211> 22 . <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 215 ccatgtatta ctgtgcgaga aa	22
<210> 216 <211> 90 <212> DNA <213> Homo sapiens	
<400> 216 caggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctggggcctc agtgaaggtc tcctgcaagg cttctggata caccttcacc	60 90
<210> 217 <211> 90 <212> DNA <213> Homo sapiens	

<400> 217						
caggtccagc	ttgtgcagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtt	
tcctgcaagg	cttctggata	caccttcact				90
<210> 218						
<211> 90						
<212> DNA						
<213> Homo	sapiens					
<400> 218						
caggtgcagc	tggtgcagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	cttctggata	caccttcacc				90
,						
<210> 219						
<211> 90						
<212> DNA						
<213> Homo	sapiens					
<400> 219						
	tggtgcagtc	tggagctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
	cttctggtta					90
<210> 220						
<211> 90						
<212> DNA						
<213> Homo	sapiens					
<400> 220						
	tggtacagtc	tggggctgag	gtgaagaagc	ctggggcctc	agtgaaggtc	60
tcctgcaagg	tttccggata	caccctcact	3 3 3 3	55555	-5-555	90
					-	
<210> 221						
<211> 90						
<212> DNA						
<213> Homo	sapiens					
<400> 221						
	tggtgcagtc	tggggctgag	gtgaagaaga	ctagatecte	agtgaaggtt	60
tcctgcaagg	cttccggata	caccttcacc	3 3 3 3			90
<210> 222						
<211> 90						
<212> DNA						
<213> Homo	sapiens		•			
<400> 222						
	tggtgcagtc	tggggctgag	gtgaagaagc	ctaggacete	agtgaaggt+	60
tcctgcaagg	catctggata	caccttcacc		. 55555000	- 3-355-0	90
<210> 223						
<211> 90						

```
<212> DNA
  <213> Homo sapiens
  <400> 223
  caaatgcagc tggtgcagtc tgggcctgag gtgaagaagc ctgggacctc agtgaaggtc 60
  tcctgcaagg cttctggatt cacctttact
  <210> 224
  <211> 90
  <212> DNA
  <213> Homo sapiens
  <400> 224
  caggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtc 60
                                                                    90
  tcctqcaagg cttctggagg caccttcagc
  <210> 225
  <211> 90
  <212> DNA
  <213> Homo sapiens
  <400> 225
  caggtgcagc tggtgcagtc tggggctgag gtgaagaagc ctgggtcctc ggtgaaggtc 60
                                                                    90
  tcctgcaagg cttctggagg caccttcagc
  <210> 226
  <211> 90
  <212> DNA
  <213> Homo sapiens
  <400> 226
  gaggtccagc tggtacagtc tggggctgag gtgaagaagc ctggggctac agtgaaaatc 60
  tcctgcaagg tttctggata caccttcacc
  <210> 227
  <211> 90
  <212> DNA
  <213> Homo sapiens
  <400> 227
  cagatcacct tgaaggagtc tggtcctacg ctggtgaaac ccacacagac cctcacgctg 60
                                                                    90
  acctgcacct tctctgggtt ctcactcagc
  <210> 228
  <211> 90
  <212> DNA
  <213> Homo sapiens
 <400> 228
 caggtcacct tgaaggagtc tggtcctgtg ctggtgaaac ccacagagac cctcacgctg 60
                                                                    90
 acctgcaccg tctctgggtt ctcactcagc
```

```
<210> 229
<211> 90
<212> DNA
<213> Homo sapiens
<400> 229
caggicacct tgaaggagic tggicctgcg ctggigaaac ccacacagac cctcacactg 60
acctgcacct tctctgggtt ctcactcagc
<210> 230
<211> 90
<212> DNA
<213> Homo sapiens
<400> 230
gaggtgcagc tggtggagtc tgggggaggc ttggtccagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt cacctttagt
<210> 231
<211> 90
<212> DNA
<213> Homo sapiens
<400> 231
gaagtgcagc tggtggagtc tgggggaggc ttggtacagc ctggcaggtc cctgagactc 60
tcctgtgcag cctctggatt cacctttgat
                                                                   90
<210> 232
<211> 90
<212> DNA
<213> Homo sapiens
<400> 232
caggtgcagc tggtggagtc tgggggaggc ttggtcaagc ctggagggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 233
<211> 90
<212> DNA
<213> Homo sapiens
<400> 233
gaggtgcagc tggtggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
                                                                   90
<210> 234
<211> 90
<212> DNA
<213> Homo sapiens
gaggtgcagc tggtggagtc tgggggaggc ttggtaaagc ctggggggtc ccttagactc 60
tcctgtgcag cctctggatt cactttcagt
```

```
<210> 235
<211> 90
<212> DNA
<213> Homo sapiens
<400> 235
gaggtgcagc tggtggagtc tgggggaggt gtggtacggc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt cacctttgat
<210> 236
<211> 90
<212> DNA
<213> Homo sapiens
<400> 236
gaggtgcagc tggtggagtc tgggggaggc ctggtcaagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 237
<211> 90
<212> DNA
<213> Homo sapiens
<400> 237
gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgagactc 60
tcctgtgcag cctctggatt cacctttagc
<210> 238
<211> 90
<212> DNA
<213> Homo sapiens
<400> 238
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
tcctgtgcag cctctggatt caccttcagt
<210> 239
<211> 90
<212> DNA
<213> Homo sapiens
<400> 239
caggtgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60
                                                                    90
tcctgtgcag cctctggatt caccttcagt
<210> 240
<211> 90
<212> DNA
<213> Homo sapiens
```

<400> 240 caggtgcagc tcctgtgcag	tggtggagtc cctctggatt	tgggggaggc caccttcagt	gtggtccagc	ctgggaggtc	cctgagactc	60 90
<210> 241 <211> 90 <212> DNA <213> Homo	sapiens				<u>-</u> .	
<400> 241 caggtgcagc	tggtggagtc	tgggggaggc caccttcagt	gtggtccagc	ctgggaggtc	cctgagactc	60 90
<210> 242 <211> 90 <212> DNA <213> Homo	sapiens					
<400> 242 gaagtgcagc tcctgtgcag	tggtggagtc cctctggatt	tgggggagtc cacctttgat	gtggtacagc	ctggggggtc	cctgagactc	60 90
<210> 243 <211> 90 <212> DNA <213> Homo	sapiens					
<400> 243 gaggtgcagc tcctgtgcag	tggtggagtc cctctggatt	tgggggaggc caccttcagt	ttggtacagc	ctggggggtc	cctgagactc	60 90
<210> 244 <211> 90 <212> DNA <213> Homo	sapiens					
<400> 244 gaggtgcagc tcctgtacag	tggtggagtc cttctggatt	tgggggaggc cacctttggt	ttggtacagc	cagggcggtc	cctgagactc	60 90
<210> 245 <211> 90 <212> DNA <213> Homo	sapiens					
<400> 245 gaggtgcagc tcctgtgcag	tggtggagac cctctgggtt	tggaggaggc caccgtcagt	ttgatccagc	ctggggggtc	cctgagactc	60 90
<210> 246 <211> 90 <212> DNA						

<213> Homo	sapiens					
	tggtggagtc cctctggatt		ttggtccagc	ctggggggtc	cctgagactc	60 90
<210> 247 <211> 90 <212> DNA <213> Homo	sapiens		·			
<400> 247 gaggtgcagc			ttggtccagc	ctggggggtc	cctgagactc	60 90
<210> 248 <211> 90 <212> DNA						
<213> Homo	sapiens					
	tggtggagtc cctctggatt		ttggtccagc	ctggagggtc	cctgagactc	60 90
<210> 249 <211> 90 <212> DNA <213> Homo	sapiens					
<400> 249				·		
gaggtgcagc tcctgtgcag	tggtggagtc cctctgggtt	tgggggaggc caccttcagt	ttggtccagc	ctggggggtc	cctgaaactc	90
<210> 250 <211> 90 <212> DNA <213> Homo	sapiens					•
	tggtggagtc cctctggatt		ttagttcagc	ctggggggtc	cctgagactc	60 90
<210> 251 <211> 90 <212> DNA <213> Homo	sapiens			·		
<400> 251	taataasata	trangaeate	ttaatacaac	ctagggggtc	cctgagactc	60
	cctctggatt		Liggiacage	ccyyyyyycc	congagaere	90

```
<210> 252
<211> 90
<212> DNA
<213> Homo sapiens
<400> 252
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggggac cctgtccctc 60
acctgcgctg tctctggtgg ctccatcagc
<210> 253
<211> 90
<212> DNA
<213> Homo sapiens
<400> 253
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggacac cctgtccctc 60
acctgcgctg tctctggtta ctccatcagc
<210> 254
<211> 90
<212> DNA
<213> Homo sapiens
<400> 254
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagc
                                                                   90
<210> 255
<211> 90
<212> DNA
<213> Homo sapiens
<400> 255
cagctgcagc tgcaggagtc cggctcagga ctggtgaagc cttcacagac cctgtccctc 60
acctgcgctg tctctggtgg ctccatcagc
                                                                   90
<210> 256
<211> 90
<212> DNA
<213> Homo sapiens
<400> 256
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagc
                                                                   90
<210> 257
<211> 90
<212> DNA
<213> Homo sapiens
<400> 257
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcacagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagc
```

```
<210> 258
<211> 90
<212> DNA
<213> Homo sapiens
<400> 258
caggtgcagc tacagcagtg gggcgcagga ctgttgaagc cttcggagac cctgtccctc 60
acctgcgctg tctatggtgg gtccttcagt
                                                                   90
<210> 259
<211> 90
<212> DNA
<213> Homo sapiens
<400> 259
cagctgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagc
<210> 260
<211> 90
<212> DNA
<213> Homo sapiens
<400> 260
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60
acctgcactg tctctggtgg ctccatcagt
<210> 261
<211> 90
<212> DNA
<213> Homo sapiens
<400> 261
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60
acctgcactg tctctggtgg ctccgtcagc
<210> 262
<211> 90
<212> DNA
<213> Homo sapiens
<400> 262
caggtgcagc tgcaggagtc gggcccagga ctggtgaagc cttcggagac cctgtccctc 60
acctgcgctg tctctggtta ctccatcagc
<210> 263
<211> 90
<212> DNA
<213> Homo sapiens
```

```
<400> 263
gaggtgcagc tggtgcagtc tggagcagag gtgaaaaagc ccggggagtc tctqaagatc 60
tcctgtaagg gttctggata cagctttacc
<210> 264
<211> 90
<212> DNA
<213> Homo sapiens
<400> 264
gaagtgcagc tggtgcagtc tggagcagag gtgaaaaagc ccggggagtc tctgaggatc 60
tcctgtaagg gttctggata cagctttacc
<210> 265
<211> 90
<212> DNA
<213> Homo sapiens
<400> 265
caggtacagc tgcagcagtc aggtccagga ctggtgaagc cctcgcagac cctctcactc 60
acctgtgcca tctccgggga cagtgtctct
<210> 266
<211> 90
<212> DNA
<213> Homo sapiens
<400> 266
caggtgcagc tggtgcaatc tgggtctgag ttgaagaagc ctggggcctc agtgaaggtt 60
tcctgcaagg cttctggata caccttcact
<210> 267
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 267
ccgtgtatta ctgtgcgaga ga
                                                                   22
<210> 268
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

<400> 268 ctgtgtatta ctgtgcgaga ga	22
<210> 269 <211> 22 <212> DNA <213> Artificial Sequence	- .
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 269 ccgtgtatta ctgtgcgaga gg	22
<210> 270 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 270 ccgtatatta ctgtgcgaaa ga	22
<210> 271 <211> 22 <212> DNA . <213> Artificial Sequence	
<220> _ <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 271 ctgtgtatta ctgtgcgaaa ga	22
<210> 272 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	٠
<400> 272 ctgtgtatta ctgtgcgaga ca	22
<210> 273 <211> 22	

<212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 273 ccatgtatta ctgtgcgaga ca	22
<210> 274 <211> 22 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 274 ccatgtatta ctgtgcgaga aa	22
<210> 275 <211> 69 <212> DNA <213> Homo sapiens	
<400> 275 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacatcacttgc	c 60 69
<210> 276 <211> 69 <212> DNA <213> Homo sapiens	
<400> 276 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacatcacttgc	c 60 69
<210> 277 <211> 69 <212> DNA <213> Homo sapiens	
<400> 277 gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacatcacttgc	c 60 69
<210> 278 <211> 69 <212> DNA	

<400> 278 gacatccaga atcacttgc	tgacccagtc	tccatcctcc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 279 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 279 gacatccaga atcacttgc	tgacccagtc	tccatcctcc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 280 <211> 69 <212> DNA <213> Homo	sapiens					
	00,2000					
<400> 280 gacatccaga atcacttgc	tgacccagtc	tccatcctcc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 281 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 281 aacatccaga atcacttgt	tgacccagtc	tccatctgcc	atgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 282 <211> 69 <212> DNA						
<213> Homo	sapiens					
<400> 282 gacatccaga atcacttgt	tgacccagtc	tccatcctca	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 283 <211> 69 <212> DNA	aaniana					
<213> Homo	sabreus					
<400> 283 gacatccaga atcacttgt	tgacccagtc	tccatcctca	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 284 <211> 69						

<212> DNA <213> Homo	sapiens					
<400> 284 gccatccagt atcacttgc	tgacccagtc	tccatcctcc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 285 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 285 gccatccagt atcacttgc	tgacccagtc	tccatcctcc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 286 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 286 gacatccaga atcacttgt	tgacccagtc	tccatcttcc	gtgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 287 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 287 gacatccaga atcacttgt	tgacccagtc	tccatcttct	gtgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 288 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 288 gacatccagt atcacttgc	tgacccagtc	tccatccttc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69
<210> 289 <211> 69 <212> DNA <213> Homo	sapiens					•
<400> 289 gccatccgga atcacttgc	tgacccagtc	tccattctcc	ctgtctgcat	ctgtaggaga	cagagtcacc	60 69

PCT/US02/12405

```
<210> 290
<211> 69
<212> DNA
<213> Homo sapiens
<400> 290
gccatccgga tgacccagtc tccatcctca ttctctgcat ctacaggaga cagagtcacc 60
atcacttgt
<210> 291
<211> 69
<212> DNA
<213> Homo sapiens
<400> 291
qtcatctgga tgacccagtc tccatcctta ctctctgcat ctacaggaga cagagtcacc 60
atcagttgt
<210> 292
<211> 69
<212> DNA
<213> Homo sapiens
<400> 292
gccatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga cagagtcacc 60
                                                                   69
atcacttgc
<210> 293
<211> 69
<212> DNA
<213> Homo sapiens
<400> 293
gacatccaga tgacccagtc tccttccacc ctgtctgcat ctgtaggaga cagagtcacc 60
                                                                    69
atcacttgc
<210> 294
<211> 69
<212> DNA
<213> Homo sapiens
<400> 294
gatattgtga tgacccagac tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
                                                                   69
atctcctgc
<210> 295
<211> 69
<212> DNA
<213> Homo sapiens
<400> 295
gatattgtga tgacccagac tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
                                                                    69
atctcctgc
```

```
<210> 296
<211> 69
<212> DNA
<213> Homo sapiens
<400> 296
gatgttgtga tgactcagtc tccactctcc ctgcccgtca cccttggaca gccggcctcc 60
atctcctgc
<210> 297
<211> 69
<212> DNA
<213> Homo sapiens
gatgttgtga tgactcagtc tocactotcc ctgcccgtca cccttggaca gccggcctcc 60
atctcctgc
<210> 298
<211> 69
<212> DNA
<213> Homo sapiens
<400> 298
gatattgtga tgacccagac tccactctct ctgtccgtca cccctggaca gccggcctcc 60
atctcctgc
<210> 299
<211> 69
<212> DNA
<213> Homo sapiens
<400> 299
gatattgtga tgacccagac tccactctct ctgtccgtca cccctggaca gccggcctcc 60
atctcctgc
<210> 300
<211> 69
<212> DNA
<213> Homo sapiens
<400> 300
gatattgtga tgactcagtc tccactctcc ctgcccgtca cccctggaga gccggcctcc 60
atctcctgc
                                                                   69
<210> 301
<211> 69
<212> DNA
<213> Homo sapiens
```

gatattgtga atctcctgc	tgactcagtc	tccactctcc	ctgcccgtca	cccctggaga	gccggcctcc	60 69
<210> 302 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 302 gatattgtga atctcctgc	tgacccagac	tccactctcc	tcacctgtca	cccttggaca	gccggcctcc	60 69
<210> 303 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 303 gaaattgtgt ctctcctgc	tgacgcagtc	tccaggcacc	ctgtctttgt	ctccagggga	aagagccacc	60 69
<210> 304 <211> 69 <212> DNA <213> Homo	eanione					
<400> 304		tccagccacc	ctgtctttgt	ctccagggga	aagagccacc	60 69
<210> 305 <211> 69 <212> DNA						
<213> Homo <400> 305				·		
gaaatagtga ctctcctgc	tgacgcagtc	tccagccacc	ctgtctgtgt	ctccagggga	aagagccacc	69
<210> 306 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 306		tccagccacc	ctgtctgtgt	ctccagggga	aagagccacc	60 69
<210> 307						

<212> DNA <213> Homo	sapiens					
<400> 307 gaaattgtgt ctctcctgc	tgacacagtc	tocagocaco	ctgtctttgt	ctccagggga	aagagccacc	60 69
<210> 308 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 308 gaaattgtgt ctctcctgc	tgacacagtc	tccagccacc	ctgtctttgt	ctccagggga	aagagccacc	60 69
<210> 309 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 309 gaaattgtaa ctctcctgc	tgacacagtc	tecagecace	ctgtctttgt	ctccagggga	aagagccacc	60 69
<210> 310 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 310 gacatcgtga atcaactgc	tgacccagtc	tccagactcc	ctggctgtgt	ctctgggcga	gagggccacc	60 69
<210> 311 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 311 gaaacgacac atctcctgc	tcacgcagtc	tccagcattc	atgtcagcga	ctccaggaga	caaagtcaac	60 69
<210> 312 <211> 69 <212> DNA <213> Homo	sapiens					
<400> 312 gaaattgtgc atcacctgc	tgactcagtc	tccagacttt	cagtctgtga	ctccaaagga	gaaagtcacc	60 69

		-				
<210> 313 <211> 69 <212> DNA						
<213> Homo	sapiens					
<400> 313 gaaattgtgc atcacctgc	tgactcagtc	tccagacttt	cagtctgtga	ctccaaagga	gaaagtcacc	60 69
<210> 314 <211> 69 <212> DNA						
<213> Homo	sapiens					
<400> 314 gatgttgtga atcacctgc	tgacacagtc	tccagctttc	ctctctgtga	ctccagggga	gaaagtcacc	60 69
<210> 315 <211> 66 <212> DNA						
<213> Homo	sapiens					
<400> 315 cagtctgtgc tcctgt	tgactcagcc	accctcggtg	tctgaagccc	ccaggcagag	ggtcaccatc	60 66
<210> 316 <211> 66 <212> DNA						
<213> Homo	sapiens					
<400> 316 cagtctgtgc tcctgc	tgacgcagcc	gccctcagtg	tctggggccc	cagggcagag	ggtcaccatc	60 66
<210> 317 <211> 66 <212> DNA						
<213> Homo	sapiens					
<400> 317 cagtctgtgc tcttgt	tgactcagcc	accctcagcg	tctgggaccc	ccgggcagag	ggtcaccatc	66
<210> 318 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 318	• -					
cagtctgtgc tcttgt	tgactcagcc	accctcagcg	tctgggaccc	ccgggcagag	ggtcaccatc	60 60

```
<210> 319
<211> 66
<212> DNA
<213> Homo sapiens
<400> 319
cagtetgtgt tgacgcagec geceteagtg tetgeggeec caggacagaa ggteaceate 60
tcctgc
<210> 320
<211> 66
<212> DNA
<213> Homo sapiens
<400> 320
cagtotgooc tgactcagco tocotcogcg tocgggtoto otggacagto agtoaccato 60
tcctgc
<210> 321
<211> 66
<212> DNA
<213> Homo sapiens
<400> 321
cagtetgeec tgacteagec tegeteagtg teegggtete etggacagte agteaceate 60
tcctgc
<210> 322
<211> 66
<212> DNA
<213> Homo sapiens
<400> 322
cagtetgeec tgacteagec tgeeteegtg tetgggtete etggacagte gateaceate 60
tcctgc
                                                                   66
<210> 323
<211> 66
<212> DNA
<213> Homo sapiens
cagtetgeee tgacteagee teeeteegtg teegggtete etggacagte agteaceate 60
tcctgc
<210> 324
<211> 66
<212> DNA
<213> Homo sapiens
<400> 324
```

cagtctgccc tcctgc	tgactcagcc	tgcctccgtg	tctgggtctc	ctggacagtc	gatcaccatc	60 66
<210> 325 <211> 66 <212> DNA <213> Homo	sapiens				. ,	
<400> 325 tcctatgagc acctgc	tgactcagcc	acceteagtg	tccgtgtccc	caggacagac	agccagcatc	60 66
<210> 326 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 326 tcctatgagc acctgt	tgactcagcc	actctcagtg	tcagtggccc	tgggacagac	ggccaggatt	60 66
<210> 327 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 327 tcctatgagc acctgc	tgacacagcc	accctcggtg	tcagtgtccc	caggacaaac	ggccaggatc	60 66
<210> 328 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 328 tcctatgagc acctgc	tgacacagcc	accctcggtg	tcagtgtccc	taggacagat	ggccaggatc	60 66
<210> 329 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 329 tcttctgagc acatgc	tgactcagga	ccctgctgtg	tctgtggcct	tgggacagac	agtcaggatc	60 66
<210> 330 <211> 66 <212> DNA <213> Homo	sapiens					

<400> 330 tcctatgtgc acctgt	tgactcagcc	accctcagtg	tcagtggccc	caggaaagac	ggccaggatt	60 66
<210> 331 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 331 tcctatgagc acctgc	tgacacagct	acceteggtg	tcagtgtccc	caggacagac	agccaggatc	60 66
<210> 332 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 332 tcctatgagc acctgc	tgatgcagcc -	accctcggtg	tcagtgtccc	caggacagac	ggccaggatc	60 66
<210> 333 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 333 tcctatgagc acctgc	tgacacagcc	atcctcagtg	tcagtgtctc	cgggacagac	agccaggatc	60 66
<210> 334 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 334		cccgtctgca	tetgeettge	tgggagcctc	gatcaagctc	60 66
<210> 335 <211> 66 <212> DNA <213> Homo	sanjens					
<400> 335	•	atcctctgcc	tctgcttccc	tgggatcctc	ggtcaagctc	60 66
<210> 336						

PCT/US02/12405

<212> DNA <213> Homo	sapiens					
<400> 336 cagcttgtgc acctgc	tgactcaatc	gccctctgcc	tctgcctccc	tgggagcctc	ggtcaagctc	60 66
<210> 337 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 337 cagcctgtgc acctgc	tgactcagcc	accttcctcc	tccgcatctc	ctggagaatc	cgccagactc	60 66
<210> 338 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 338 caggctgtgc acctgc	tgactcagcc	ggcttccctc	tctgcatctc	ctggagcatc	agccagtctc	60 66
<210> 339 <211> 66 <212> DNA <213> Homo	sapiens					
<400> 339 cagcctgtgc acctgc	tgactcagcc	atcttcccat	tctgcatctt	ctggagcatc	agtcagactc	60 66
<210> 340 <211> 66 <212> DNA <213> Homo	caniens					
<400> 340		ccactctgtg	tcggagtctc	cggggaagac	ggtaaccatc	60 66
<210> 341 <211> 66 <212> DNA	anniana	·				
<213> Homo <400> 341 cagactgtgg		gccctcacta	actgtgtccc	caggagggac	agtcactctc	60
acctgt	- ,	Jy	-9-9	33 333	•	66

```
<210> 342
<211> 66
<212> DNA
<213> Homo sapiens
<400> 342
caggetgtgg tgactcagga gecetcactg actgtgteec caggagggae agteactete 60
acctgt
<210> 343
<211> 66
<212> DNA
<213> Homo sapiens
<400> 343
cagactgtgg tgacccagga gccatcgttc tcagtgtccc ctggagggac agtcacactc 60
acttgt
<210> 344
<211> 66
<212> DNA
<213> Homo sapiens
<400> 344
cagootgtgc tgactcagcc accttotgca tcagootccc tgggagcotc ggtcacactc 60
acctgc
<210> 345
<211> 66
<212> DNA
<213> Homo sapiens
<400> 345
caggcaggc tgactcagcc acceteggtg tecaaggget tgagacagae egecacaete 60
acctgc
<210> 346
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 346
nnnnnngact c
                                                                   11
```

```
<210> 347
<211> 11
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6) .. (11)
<223> A, T, C, G, other or unknown
<400> 347
                                                                   11
gagtcnnnnn n
<210> 348
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (3)..(9)
<223> A, T, C, G, other or unknown
<400> 348
                                                                   11
gennnnnnng e
<210> 349
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 349
                                                                    11
acctgcnnnn n
<210> 350
<211> 25
<212> DNA
<213> Artificial Sequence
```

WO 02/083872

74

PCT/US02/12405

<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> cacato	350 ccgtg ttgttcacgg atgtg	25
<210> <211> <212> <213>	88	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
	351 Lagac tgcagtgtcc tcagccctta agctgttcat ctgcaagtag agagtattct Ltgtc tctagactta gtgaagcg	60 88
<210> <211> <212> <213>	88	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
	352 cacta agtctagaga caactctaag aatactctct acttgcagat gaacagctta tgagg acactgcagt ctactatt	60 88
<210> <211> <212> <213>	95	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
	353 cacta agtotagaga caactotaag aatactotot acttgoagat gaacagotta tgagg acactgoagt otactattgt gogag	60 95
<210><211><211><212><213>	95	

	Description of Artificial Sequence: Synthetic oligonucleotide	
	354 agtotagaga caactotaag aatactotot acttgcagat gaacagotTa gagg acactgcagt ctactattgt acgag	60 95
<210><211><211><212><213>	24	
	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> cgcttc	355 cacta agtotagaga caac	24
<210> <211> <212> <213>	15	
	Description of Artificial Sequence: Synthetic oligonucleotide	
<222>	modified_base (8)(15) A, T, C, G, other or unknown	
<400> cacctg	356 gennn nnnnn	15
<210> <211> <212> <213>	17	
	Description of Artificial Sequence: Synthetic oligonucleotide	
<222>	modified_base (7)(17) A, T, C, G, other or unknown	•
<400>		17

```
<210> 358
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 358
gaagacnnnn nnnnnnn
                                                                   17
<210> 359
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(17)
<223> A, T, C, G, other or unknown
<400> 359
gcagcnnnnn nnnnnnn
                                                                   17
<210> 360
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide ·
<220>
<221> modified_base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 360
gaagacnnnn nn
                                                                   12
<210> 361
<211> 22
<212> DNA
<213> Artificial Sequence
```

77

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(22)
<223> A, T, C, G, other or unknown
<400> 361
cttgagnnnn nnnnnnnnnn nn
                                                                   22
<210> 362
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(19)
<223> A, T, C, G, other or unknown
<400> 362
                                                                   19
acggcnnnnn nnnnnnnn
<210> 363
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(18)
<223> A, T, C, G, other or unknown
<400> 363
acggcnnnnn nnnnnnnn
                                                                   18
<210> 364
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
```

oligonucleotide

```
<220>
<221> modified base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 364
gtatccnnnn nn
                                                                   12
<210> 365
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide ·
<220>
<221> modified base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 365
actgggnnnn n
                                                                   11
<210> 366
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(10)
<223> A, T, C, G, other or unknown
<400> 366
ggatcnnnnn
                                                                   10
<210> 367
<211> 11
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(11)
```

```
<223> A, T, C, G, other or unknown
<400> 367
                                                                   11
gcatcnnnnn n
<210> 368
<211> 16
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (7)..(16)
<223> A, T, C, G, other or unknown
<400> 368
                                                                   16
gaggagnnnn nnnnnn
<210> 369
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (6)..(19)
<223> A, T, C, G, other or unknown
<400> 369
gggacnnnn nnnnnnnn
                                                                   19
<210> 370
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(14)
<223> A, T, C, G, other or unknown
<400> 370
acctgcnnnn nnnn
                                                                   14
```

```
<210> 371
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 371
ggcggannnn nnnnnnn
                                                                   17
<210> 372
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(22)
<223> A, T, C, G, other or unknown
<400> 372
ctgaagnnnn nnnnnnnnn nn
                                                                   22
<210> 373
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(11)
<223> A, T, C, G, other or unknown
<400> 373
cccgcnnnnn n
                                                                   11
<210> 374
<211> 18
```

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6) .. (18)
<223> A, T, C, G, other or unknown
<400> 374
                                                                   18
ggatgnnnnn nnnnnnnn
<210> 375
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7) .. (22)
<223> A, T, C, G, other or unknown
<400> 375
ctggagnnnn nnnnnnnnnn nn
                                                                   22
<210> 376
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base .
<222> (6)..(15)
<223> A, T, C, G, other or unknown
<400> 376
                                                                   15
gacgcnnnnn nnnnn
<210> 377
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(13)
<223> A, T, C, G, other or unknown
<400> 377
ggtgannnnn nnn
                                                                   13
<210> 378
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(13)
<223> A, T, C, G, other or unknown
<400> 378
gaagannnnn nnn
                                                                   13
<210> 379
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(10)
<223> A, T, C, G, other or unknown
<400> 379
gagtcnnnnn
                                                                   10
<210> 380
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

```
<220>
<221> modified base
<222> (7)..(26)
<223> A, T, C, G, other or unknown
<400> 380
                                                                   26
tccracnnnn nnnnnnnnn nnnnnn
<210> 381
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (5) .. (11)
<223> A, T, C, G, other or unknown
<400> 381
                                                                   11
cctcnnnnn n
<210> 382
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(10)
<223> A, T, C, G, other or unknown
<400> 382
                                                                   10
gagtcnnnnn
<210> 383
<211> 18
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(18)
<223> A, T, C, G, other or unknown
```

```
<400> 383
cccacannnn nnnnnnnn
                                                                   18
<210> 384
<211> 14
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(14)
<223> A, T, C, G, other or unknown
<400> 384
                                                                   14
gcatcnnnnn nnnn
<210> 385
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (6)..(13)
<223> A, T, C, G, other or unknown
<400> 385
ggtgannnnn nnn
                                                                   13
<210> 386
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (5)..(12)
<223> A, T, C, G, other or unknown
<400> 386
cccgnnnnnn nn
                                                                   12
```

```
<210> 387
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (6)..(19)
<223> A, T, C, G, other or unknown
<400> 387
ggatgnnnn nnnnnnnn
                                                                   19
<210> 388
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(17)
<223> A, T, C, G, other or unknown
<400> 388
gaccgannnn nnnnnnn
                                                                   17
<210> 389
<211> 17
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(17)
<223> A, T, C, G, other or unknown '
<400> 389
                                                                   17
cacccannnn nnnnnnn
<210> 390
<211> 17
<212> DNA
```

```
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified base
 <222> (7)..(17)
 <223> A, T, C, G, other or unknown
<400> 390
caarcannnn nnnnnnn
                                                                    17
<210> 391
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 391
gctgtgtatt actgtgcgag
                                                                   20
<210> 392
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 392
gccgtgtatt actgtgcgag
                                                                   20
<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      probe
<400> 393
gccgtatatt actgtgcgag
                                                                   20
<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence
```

<220> <223>	Description of Artificial Sequence: Synthetic probe	
<400>	394	
	gtatt actgtacgag	20
	•	
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
(223)	probe	
	p. 0.00	
<400>	395	
gccate	gtatt actgtgcgag	20
<210>		
<211>		
<212>		
(213)	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
	•	
<400>	396	
cacato	ccgtg ttgttcacgg atgtg	25
40105	207	
<210><211>		
<211>		
	Artificial Sequence	
12107	Military Degreeoc	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		
_	tagac tgcagtgtcc tcagccctta agctgttcat ctgcaagtag agagtattct	
Layagi	ctgtc tctagactta gtgaagcg	88
<210>	398	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic oligonucleotide	

<400> 398 cgcttcacta agtctagaga caactctaag aatactctct acttgcagat gaacagct agggctgagg acactgcagt ctactattgt gcgag	ta 60 95
<210> 399 <211> 24 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 399 cgcttcacta agtctagaga caac	24
<210> 400 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 400 cacatccgtg ttgttcacgg atgtgggagg atggagactg ggtc	44
<210> 401 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 401 cacatccgtg ttgttcacgg atgtgggaga gtggagactg agtc	44
<210> 402 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	•
<400> 402 cacatccgtg ttgttcacgg atgtgggtgc ctggagactg cgtc	44
<210> 403	

PCT/US02/12405

<212> DNA	
<213> Artificial Sequence	
<u>.</u>	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide	
<400> 403	
cacatcogtg ttgttcacgg atgtgggtgg ctggagactg cgtc	44
·	
<210> 404	
<211> 34	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide	
<400> 404	
cctctactct tgtcacagtg cacaagacat ccag	34
<210> 405	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
2005 December of Butificial Commence Complete	
SZZDZ DESCRIPTION OF ARTIFICIAL SEQUENCE: SYNTHETIC	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
oligonucleotide	
oligonucleotide <400> 405	••
oligonucleotide	20
oligonucleotide <400> 405	20
oligonucleotide <400> 405	20
oligonucleotide <400> 405 cctctactct tgtcacagtg	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220>	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220>	20
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	20
<pre>oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406</pre>	
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	20
<pre>oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406</pre>	
<pre>oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406</pre>	
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406 ggaggatgga ctggatgtct tgtgcactgt gacaagagta gagg	
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406 ggaggatgga ctggatgtct tgtgcactgt gacaagagta gagg <210> 407	
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406 ggaggatgga ctggatgtct tgtgcactgt gacaagagta gagg <210> 407 <211> 44	
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406 ggaggatgga ctggatgtct tgtgcactgt gacaagagta gagg <210> 407 <211> 44 <212> DNA	
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406 ggaggatgga ctggatgtct tgtgcactgt gacaagagta gagg <210> 407 <211> 44	
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406 ggaggatgga ctggatgtct tgtgcactgt gacaagagta gagg <210> 407 <211> 44 <212> DNA <213> Artificial Sequence	
oligonucleotide <400> 405 cctctactct tgtcacagtg <210> 406 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 406 ggaggatgga ctggatgtct tgtgcactgt gacaagagta gagg <210> 407 <211> 44 <212> DNA	

oligonucleotide

<400> 407 ggagagtgga ctggatgtct tgtgcactgt gacaagagta gagg	44
<210> 408 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 408 ggtgcctgga ctggatgtct tgtgcactgt gacaagagta gagg	44
<210> 409 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 409 ggtggctgga ctggatgtct tgtgcactgt gacaagagta gagg	44
<210> 410 . <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 410 cacatccgtg ttgttcacgg atgtggatcg actgtccagg agac	44
<210> 411 <211> 44 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 411 cacatccgtg ttgttcacgg atgtggactg tctgtcccaa ggcc	. 44

<210> 412 <211> 44 <212> DNA	
<213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 412 cacatccgtg ttgttcacgg atgtggactg actgtccagg agac	44
<210> 413 <211> 44 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide</pre>	
<400> 413 cacatcogtg ttgttcacgg atgtggaccc tetgccetgg ggcc	44
<210> 414 <211> 59 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 414 cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gttcccc	egg 59
<210> 415 <211> 69 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 415 cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gttccccacagtcgat	cggg 60 69
<210> 416 <211> 69 <212> DNA <213> Artificial Sequence	

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 416
cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gttccccggg 60
acagacagt
                                                                    69
<210> 417
<211> 69
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 417
cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gttccccggg 60
acagtcagt
<210> 418
<211> 70
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 418
cctctgactg agtgcacaga gtgctttaac ccaaccggct agtgttagcg gtstccccgg 60
ggcagagggt
<210> 419
<211> 24
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 419
cctctgactg agtgcacaga gtgc
                                                                   24
<210> 420
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
```

```
<220>
<221> modified base
<222> (5)..(9)
<223> A, T, C, G, other or unknown
<400> 420
                                                                   13
ggccnnnnng gcc
<210> 421
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 421
                                                                   15
ccannnnnn nntgg
<210> 422
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 422
                                                                   12
cgannnnnnt gc
<210> 423
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
```

```
<223> A, T, C, G, other or unknown
<400> 423
gccnnnnngg c
                                                                    11
<210> 424
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 424
gatnnnnatc
                                                                    10
<210> 425
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 425
                                                                    11
gacnnnnngt c
<210> 426
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 426
gcannnnntg c
                                                                    11
```

PCT/US02/12405

95

```
<210> 427
<211> 12
 <212> DNA
<213> Artificial Sequence
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (7)..(12)
 <223> A, T, C, G, other or unknown
 <400> 427
                                                                    12
 gtatconnnn nn
 <210> 428
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (4)..(9)
 <223> A, T, G, G, other or unknown
 <400> 428
                                                                    12
 gacnnnnnng tc
 <210> 429
· <211> 11
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (4) .. (8)
 <223> A, T, C, G, other or unknown
 <400> 429
 ccannnnntg g
                                                                    11
 <210> 430
```

<211> 12

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1) .. (6)
<223> A, T, C, G, other or unknown
<400> 430
nnnnnngaga cg
                                                                    12
<210> 431
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     -oligonucleotide
<220>
<221> modified base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 431
ccannnnnnt gg
                                                                    12
<210> 432
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4) .. (7)
<223> A, T, C, G, other or unknown
<400> 432
gaannnnttc
                                                                    10
<210> 433
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 433
                                                                   11
ggtctcnnnn n
<210> 434
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(10)
<223> A, T, C, G, other or unknown
<400> 434
                                                                   16
nnnnnnnn ctcctc
<210> 435
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(9)
<223> A, T, C, G, other or unknown
<400> 435
                                                                   15
nnnnnnnnt ccgcc
<210> 436
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
<220>
```

WO 02/083872

```
<221> modified_base
<222> (5)..(9)
<223> A, T, C, G, other or unknown
<400> 436
ggccnnnnng gcc
<210> 437
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 437
ccannnnnnt gg
                                                                   12
<210> 438
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 438
gacnnnnnng to
                                                                   12
<210> 439
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
```

```
<400> 439
                                                                   12
cgannnnnnt gc
<210> 440
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 440
                                                                   11
gcannnnntg c
<210> 441
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 441
                                                                   11
ccannnnntg g
<210> 442
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 442
                                                                   10
gaannnnttc
```

```
<210> 443
<211> 12
 <212> DNA
<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
      oligonucleotide
 <220>
<221> modified base
<222> (1) .. (6)
 <223> A, T, C, G, other or unknown
 <400> 443
 nnnnnngaga cg
                                                                    12
 <210> 444
 <211> 12
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified base
 <222> (7)..(12)
 <223> A, T, C, G, other or unknown
 <400> 444
 gtatccnnnn nn
                                                                    12
 <210> 445
 <211> 11
 <212> DNA
<<213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: Synthetic
       oligonucleotide
 <220>
 <221> modified_base
 <222> (4)..(8)
 <223> A, T. C, G, other or unknown
<400> 445
gacnnnnngt c
                                                                    11
<210> 446
<211> 11
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 446
ggtctcnnnn n
                                                                   11
<210> 447
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 447
                                                                   11
gccnnnnngg c
<210> 448
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 448
ccannnnnn nntgg
                                                                   15
<210> 449
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
```

```
<220>
<221> modified_base
<222> (1)..(10)
<223> A, T, C, G, other or unknown
<400> 449
nnnnnnnn ctcctc
                                                                  16
<210> 450
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(9)
<223> A, T, C, G, other or unknown
<400> 450
nnnnnnnnt ccgcc
                                                                  15
<210> 451
<211> 9532
<212> DNA
<213> Unknown Organism
<223> Description of Unknown Organism: MALIA3 nucleotide
     sequence
<220>
<221> CDS
<222> (1579)..(1638)
<220>
<221> CDS
<222> (2343)..(3443)
<220>
<221> CDS
<222> (3945)..(4400)
<220>
<221> CDS
<222> (4406)..(4450)
<220>
<221> CDS
<222> (4746)..(5789)
<400> 451
```

aatgctacta	ctattagtag	aattgatgcc	accttttcag	ctcgcgcccc	aaatgaaaat	60
atagctaaac	aggttattga	ccatttgcga	aatgtatcta	atggtcaaac	taaatctact	120
cgttcgcaga	attgggaatc	aactgttaca	tggaatgaaa	cttccagaca	ccgtacttta	180
gttgcatatt	taaaacatgt	tgagctacag	caccagattc	agcaattaag	ctctaagcca	240
tccgcaaaaa	tgacctctta	tcaaaaggag	caattaaagg	tactctctaa	tcctgacctg	300
ttggagtttg	cttccggtct	ggttcgcttt	gaagctcgaa	ttaaaacgcg	atatttgaag	360
tctttcgggc	ttcctcttaa	tctttttgat	gcaatccgct	ttgcttctga	ctataatagt	420
cagggtaaag	acctgatttt	tgatttatgg	tcattctcgt	tttctgaact	gtttaaagca	480
tttgaggggg	attcaatgaa	tatttatgac	gattccgcag	tattggacgc	tatccagtct	540
aaacatttta	ctattacccc	ctctggcaaa	acttcttttg	caaaagcctc	tcgctatttt	600
ggtttttatc	gtcgtctggt	aaacgagggt	tatgatagtg	ttgctcttac	tatgcctcgt	660
aattcctttt	ggcgttatgt	atctgcatta	gttgaatgtg	gtattcctaa	atctcaactg	720
atgaatcttt	ctacctgtaa	taatgttgtt	ccgttagttc	gttttattaa	cgtagatttt	780
tcttcccaac	gtcctgactg	gtataatgag	ccagttctta	aaatcgcata	aggtaattca	840
caatgattaa	agttgaaatt	aaaccatctc	aagcccaatt	tactactcgt	tctggtgttt	900
ctcgtcaggg	caagccttat	tcactgaatg	agcagctttg	ttacgttgat	ttgggtaatg	960
aatatccggt	tcttgtcaag	attactcttg	atgaaggtca	gccagcctat	gcgcctggtc	1020
tgtacaccgt	tcatctgtcc	tctttcaaag	ttggtcagtt	cggttccctt	atgattgacc	1080
gtctgcgcct	cgttccggct	aagtaacatg	gagcaggtcg	cggatttcga	cacaatttat	1140
caggcgatga	tacaaatctc	cgttgtactt	tgtttcgcgc	ttggtataat	cgctgggggt	1200
caaagatgag	tgttttagtg	tattctttcg	cctctttcgt	tttaggttgg	tgccttcgta	1260
gtggcattac	gtattttacc	cgtttaatgg	aaacttcctc	atgaaaaagt	ctttagtcct	1320
caaagcctct	gtagccgttg	ctaccctcgt	tccgatgctg	tctttcgctg	ctgagggtga	1380
cgatcccgca	aaagcggcct	ttaactccct	gcaagcctca	gcgaccgaat	atatcggtta	1440
tgcgtgggcg	atggttgttg	tcattgtcgg	cgcaactatc	ggtatcaagc	tgtttaagaa	1500
attcacctcg	aaagcaagct	gataaaccga	tacaattaaa	ggctcctttt	ggagcctttt	1560
tttttggaga	ttttcaac g M	tg aaa aaa et Lys Lys 1	tta tta ttc Leu Leu Phe 5	gca att cc Ala Ile Pr	t tta gtt o Leu Val 10	1611

gtt cct ttc tat tct cac agt gca cag tctgtcgtga cgcagccgcc Val Pro Phe Tyr Ser His Ser Ala Gln

15 20 ctcagtgtct ggggccccag ggcagagggt caccatctcc tgcactggga gcagctccaa 1718 categgggea ggttatgatg tacaetggta ecageagett ceaggaacag cececaaact 1778 cctcatctat ggtaacagca atcggccctc aggggtccct gaccgattct ctggctccaa 1838 gtctggcacc tcagcctccc tggccatcac tgggctccag gctgaggatg aggctgatta 1898 ttactgccag tcctatgaca gcagcctgag tggcctttat gtcttcggaa ctgggaccaa 1958 ggtcaccgtc ctaggtcagc ccaaggccaa ccccactgtc actctgttcc cgccctcctc 2018 tqaqqaqctc caaqccaaca aggccacact agtgtgtctg atcagtgact tctacccggg 2078 agctgtgaca gtggcctgga aggcagatag cagccccgtc aaggcgggag tggagaccac 2138 cacaccetee aaacaaagca acaacaagta egeggecage agetatetga geetgaegee 2198 tgagcagtgg aagtcccaca gaagctacag ctgccaggtc acgcatgaag ggagcaccgt 2258 ggagaagaca gtggccccta cagaatgttc ataataaacc gcctccaccg ggcgcgccaa 2318 ttctatttca aggagacagt cata atg aaa tac cta ttg cct acg gca gcc Met Lys Tyr Leu Leu Pro Thr Ala Ala 2417 get gga ttg tta tta etc geg gee cag eeg gee atg gee gaa gtt caa Ala Gly Leu Leu Leu Ala Ala Gln Pro Ala Met Ala Glu Val Gln ttg tta gag tct ggt ggc ggt ctt gtt cag cct ggt ggt tct tta cgt 2465 Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg ctt tet tgc get get tee gga tte act tte tet teg tae get atg tet 2513 Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Ser Tyr Ala Met Ser 65 2561 tgg gtt cgc caa gct cct ggt aaa ggt ttg gag tgg gtt tct gct atc Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val Ser Ala Ile tot ggt tot ggt ggc agt act tac tat gct gac toc gtt aaa ggt cgc Ser Gly Ser Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys Gly Arg 100 2657 ttc act atc tct aga gac aac tct aag aat act ctc tac ttg cag atg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met 120 115 aac agc tta agg gct gag gac act gca gtc tac tat tgc gct aaa gac 2705 Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys Ala Lys Asp tat gaa ggt act ggt tat gct ttc gac ata tgg ggt caa ggt act atg 2753 Tyr Glu Gly Thr Gly Tyr Ala Phe Asp Ile Trp Gly Gln Gly Thr Met

									105							
			145					150					155			
gtc Val	acc Thr	gtc Val 160	tct Ser	agt Ser	gcc Ala	tcc Ser	acc Thr 165	aag Lys	ggc Gly	cca Pro	tcg Ser	gtc Val 170	ttc Phe	ccc Pro	ctg Leu	2801
gca Ala	ccc Pro 175	tcc Ser	tcc Ser	aag Lys	agc Ser	acc Thr 180	tct Ser	G1y ggg	ggc Gly	aca Thr	gcg Ala 185	gcc Ala	ctg Leu	ggc Gly	tgc Cys	2849
ctg Leu 190	gtc Val	aag Lys	gac Asp	tac Tyr	ttc Phe 195	ccc Pro	gaa Glu	ccg Pro	gtg Val	acg Thr 200	gtg Val	tcg Ser	tgg Trp	aac Asn	tca Ser 205	2897
ggc Gly	gcc Ala	ctg Leu	acc Thr	agc Ser 210	ggc Gly	gtc Val	cac His	acc Thr	ttc Phe 215	ccg Pro	gct Ala	gtc Val	cta Leu	cag Gln 220	tct Ser	2945
agc Ser	gga Gly	ctc Leu	tac Tyr 225	tcc Ser	ctc Leu	agc Ser	agc Ser	gta Val 230	gtg Val	acc Thr	gtg Val	ccc Pro	tct Ser 235	tct Ser	agc Ser	2993
ttg Leu	ggc Gly	acc Thr 240	cag Gln	acc Thr	tac Tyr	atc Ile	tgc Cys 245	aac Asn	gtg Val	aat Asn	cac His	aag Lys 250	ccc Pro	agc Ser	aac . Asn	3041
acc Thr	aag Lys 255	gtg Val	gac Asp	aag Lys	aaa Lys	gtt Val 260	gag Glu	ccc Pro	aaa Lys	tct Ser	tgt Cys 265	gcg Ala	gcc Ala	gct Ala	cat His	3089
cac His 270	cac His	cat His	cat His	cac His	tct Ser 275	gct Ala	gaa Glu	caa Gln	aaa Lys	ctc Leu 280	atc Ile	tca Ser	gaa Glu	gag Glu	gat Asp 285	3137
ctg Leu	aat Asn	ggt Gly	gcc Ala	gca Ala 290	gat Asp	atc Ile	aac Asn	gat Asp	gat Asp 295	cgt Arg	atg Met	gct Ala	ggc Gly	gcc Ala 300	gct Ala	3185
gaa Glu	act Thr	gtt Val	gaa Glu 305	agt Ser	tgt Cys	tta Leu	gca Ala	aaa Lys 310	ccc Pro	cat His	aca Thr	gaa Glu	aat Asn 315	tca Ser	ttt Phe	3233
act Thr	aac Asn	gtc Val 320	tgg Trp	aaa Lys	gac Asp	gac Asp	aaa Lys 325	act Thr	tta Leu	gat Asp	cgt Arg	tac Tyr 330	gct Ala	aac Asn	tat Tyr	3281
gag Glu	ggt Gly 335	Cys	ctg Leu	tgg Trp	aat Asn	gct Ala 340	aca Thr	ggc Gly	gtt Val	gta Val	gtt Val 345	tgt Cys	act Thr	ggt Gly	gac Asp	3329
gaa Glu 350	act Thr	cag Gln	tgt Cys	tac Tyr	ggt Gly 355	aca Thr	tgg Trp	gtt Val	cct Pro	att Ile 360	GJ À aaa	ctt Leu	gct Ala	atc Ile	cct Pro 365	3377
gaa Glu	aat Asn	gag Glu	ggt Gly	ggt Gly 370	ggc Gly	tct Ser	gag Glu	ggt Gly	ggc Gly 375	ggt Gly	tct Ser	gag Glu	ggt Gly	ggc Gly 380	Gly	3425

tct Ser	gag Glu	ggt Gly	ggc Gly 385	Gly	act Thr	aaa	cctc	ctg	agta	cggt	ga t	acac	ctat	t		3473
ccg	ggct	ata	ctta	tatc	aa c	cctc	togad	gg	cact	tatc	cgc	ctgg	tac	tgag	caaaac	3533
ccc	gcta	atc	ctaa	tcct	tc t	cttg	agga	g tc	tcag	cctc	tta	atac	ttt	catg	tttcag	3593
aat	aata	ggt	tccg	aaata	ag g	cagg	gggca	a tt	aacţ	gttt	ata	cggg	cac	tgtt	actcaa	3653
ggc	actg	acc	ccgt	taaaa	ac t	tatt	acca	j ta	cact	cctg	tat	catc	aaa	agcc	atgtat	3713
gac	gctt	act	ggaa	cggta	aa a	ttca	gagad	t tg	cgct	ttcc	att	ctgg	ctt	taat	gaagat	3773
cca	ttcg	ttt ·	gtga	atato	ca a	ggcc	aatc	g tc	tgac	ctgc	ctc	aacc	tcc	tgtc	aatgct	3833
ggc	ggcg	gct	ctgg	tggt	gg t	tctg	gtggd	gg	ctct	gagg	gtg	gtgg	ctc	tgag	ggtggc	3893
ggt	tctg	agg	gtgg	cggc	tc t	gagg	gaggo	gg	ttcc	ggtg	gtg	gctc	tgg		c ggt c Gly	3950
gat Asp 390	ttt Phe	gat Asp	tat Tyr	gaa Glu	aag Lys 395	atg Met	gca Ala	aac Asn	gct Ala	aat Asn 400	aag Lys	ggg Gly	gct Ala	atg Met	acc Thr 405	3998
gaa Glu	aat Asn	gcc Ala	gat Asp	gaa Glu 410	aac Asn	gcg Ala	cta Leu	cag Gln	tct Ser 415	gac Asp	gct Ala	aaa Lys	ggc Gly	aaa Lys 420	ctt Leu	4046
gat Asp	tct Ser	gtc Val	gct Ala 425	act Thr	gat Asp	tac Tyr	ggt Gly	gct Ala 430	gct Ala	atc Ile	gat Asp	ggt Gly	ttc Phe 435	att Ile	ggt Gly	4094
gac Asp	gtt Val	tcc Ser 440	Gly	ctt Leu	gct Ala	aat Asn	ggt Gly 445	aat Asn	ggt Gly	gct Ala	act Thr	ggt Gly 450	gat Asp	ttt Phe	gct Ala	4142
ggc Gly	tct Ser 455	aat Asn	tcc Ser	caa Gln	atg Met	gct Ala 460	caa Gln	gtc Val	ggt Gly	gac Asp	ggt Gly 465	gat Asp	aat Asn	tca Ser	cct Pro	4190
tta Leu 470	atg Met	aat Asn	aat Asn	ttc Phe	cgt Arg 475	caa Gln	tat Tyr	tta Leu	cct Pro	tcc Ser 480	ctc Leu	cct Pro	caa Gln	tcg Ser	gtt Val 485	4238
gaa Glu	tgt Cys	cgc Arg	cct Pro	ttt Phe 490	gtc Val	ttt Phe	agc Ser	gct Ala	ggt Gly 495	aaa Lys	cca Pro	tat Tyr	gaa Glu	ttt Phe 500	tct Ser	4286
att Ile	gat Asp	tgt Cys	gac Asp 505	aaa Lys	ata Ile	aac Asn	tta Leu	ttc Phe 510	cgt Arg	ggt Gly	gtc Val	ttt Phe	gcg Ala 515	ttt Phe	ctt Leu	4334
tta Leu	tat Tyr	gtt Val 520	gcc Ala	acc Thr	ttt Phe	atg Met	tat Tyr 525	gta Val	ttt Phe	tct Ser	acg Thr	ttt Phe 530	gct Ala	aac Asn	ata Ile	4382
cta	cat	aat	aan	aaa	tot	+==1	·c =+	a 01	~+	-+		. ~ ~.				4422

Leu Arg Asn Lys Glu Ser Met Pro Val Leu Leu Gly Ile Pro Leu 535 540 545	
tta ttg cgt ttc ctc ggt ttccttctgg taactttgtt cggctatctg Leu Leu Arg Phe Leu Gly 550	4480
cttacttttc ttaaaaaggg cttcggtaag atagctattg ctatttcatt gtttcttgct	4540
cttattattg ggcttaactc aattcttgtg ggttatctct ctgatattag cgctcaatta	4600
ccctctgact ttgttcaggg tgttcagtta attctcccgt ctaatgcgct tccctgtttt	4660
tatgttattc tctctgtaaa ggctgctatt ttcatttttg acgttaaaca aaaaatcgtt	4720
tcttatttgg attgggataa ataat atg gct gtt tat ttt gta act ggc aaa Met Ala Val Tyr Phe Val Thr Gly Lys 555 560	4772
tta ggc tct gga aag acg ctc gtt agc gtt ggt aag att cag gat aaa Leu Gly Ser Gly Lys Thr Leu Val Ser Val Gly Lys Ile Gln Asp Lys 565 570 575	4820
att gta gct ggg tgc aaa ata gca act aat ctt gat tta agg ctt caa Ile Val Ala Gly Cys Lys Ile Ala Thr Asn Leu Asp Leu Arg Leu Gln 580 585 590 595	4868
aac ctc ccg caa gtc ggg agg ttc gct aaa acg cct cgc gtt ctt aga Asn Leu Pro Gln Val Gly Arg Phe Ala Lys Thr Pro Arg Val Leu Arg 600 605 610	4916
ata ccg gat aag cct tct ata tct gat ttg ctt gct att ggg cgc ggt Ile Pro Asp Lys Pro Ser Ile Ser Asp Leu Leu Ala Ile Gly Arg Gly 615 620 625	4964
aat gat tcc tac gat gaa aat aaa aac ggc ttg ctt gtt ctc gat gag Asn Asp Ser Tyr Asp Glu Asn Lys Asn Gly Leu Leu Val Leu Asp Glu 630 635 640	5012
tgc ggt act tgg ttt aat acc cgt tct tgg aat gat aag gaa aga cag Cys Gly Thr Trp Phe Asn Thr Arg Ser Trp Asn Asp Lys Glu Arg Gln 645 650 655	5060
ccg att att gat tgg ttt cta cat gct cgt aaa tta gga tgg gat att Pro Ile Ile Asp Trp Phe Leu His Ala Arg Lys Leu Gly Trp Asp Ile 660 665 670 675	5108
att ttt ctt gtt cag gac tta tct att gtt gat aaa cag gcg cgt tct Ile Phe Leu Val Gln Asp Leu Ser Ile Val Asp Lys Gln Ala Arg Ser 680 685 690	5156
gca tta gct gaa cat gtt gtt tat tgt cgt ctg gac aga att act Ala Leu Ala Glu His Val Val Tyr Cys Arg Arg Leu Asp Arg Ile Thr 695 700 705	5204
tta cct ttt gtc ggt act tta tat tct ctt att act ggc tcg aaa atg Leu Pro Phe Val Gly Thr Leu Tyr Ser Leu Ile Thr Gly Ser Lys Met 710 715 720	5252

cct Pro	ctg Leu 725	cct Pro	aaa Lys	tta Leu	cat His	gtt Val 730	ggc Gly	gtt Val	gtt Val	aaa Lys	tat Tyr 735	ggc Gly	gat Asp	tct Ser	caa Gln	5300
tta Leu 740	agc Ser	cct Pro	act Thr	Val	gag Glu 745	cgt Arg	tgg Trp	ctt Leu	tat Tyr	act Thr 750	ggt Gly	aag Lys	aat Asn	ttg Leu	tat Tyr 755	5348
aac Asn	gca Ala	tat Tyr	gat Asp	act Thr 760	aaa Lys	cag Gln	gct Ala	ttt Phe	tct Ser 765	agt Ser	aat Asn	tat Tyr	gat Asp	tcc Ser 770	ggt Gly	5396
gtt Val	tat	tct Ser	tat Tyr 775	tta Leu	acg Thr	cct Pro	tat Tyr	tta Leu 780	tca Ser	cac His	ggt Gly	cgg Arg	tat Tyr 785	ttc Phe	aaa Lys	5444
cca Pro	tta Leu	aat Asn 790	tta Leu	ggt Gly	cag Gln	aag Lys	atg Met 795	aaa Lys	tta Leu	act Thr	aaa Lys	ata Ile 800	tat Tyr	ttg Leu	aaa Lys	5492
aag Lys	ttt Phe 805	tct Ser	cgc Arg	gtt Val	ctt Leu	tgt Cys 810	ctt Leu	gcg Ala	att Ile	gga Gly	ttt Phe 815	gca Ala	tca Ser	gca Ala	ttt Phe	5540 -
	Tyr													gta Val		5588
tct Ser	cag Gln	acc Thr	tat Tyr	gat Asp 840	ttt Phe	gat Asp	aaa Lys	ttc Phe	act Thr 845	att Ile	gac Asp	tct Ser	tct Ser	cag Gln 850	cgt Arg	5636
				Tyr										aaa Lys		5684
att Ile	aat Asn	agc Ser 870	Asp	gat Asp	tta Leu	cag Gln	aag Lys 875	caa Gln	ggt Gly	tat Tyr	tca Ser	ctc Leu 880	aca Thr	tat Tyr	att Ile	5732
gat Asp	tta Leu 885	Cys	act Thr	gtt Val	tcc Ser	att Ile 890	Lys	aaa Lys	ggt Gly	aat Asn	tca Ser 895	Asn	gaa Glu	att Ile	gtt Val	5780
	Cys			tttt	gtt	ttct	tgat	gt t	tgtt	tcat	c at	cttc	tttt			5829
gct	cagg	taa	ttga	aatg	aa t	aatt	cgcc	t ct	gcgc	gatt	ttg	taac	ttg	gtat	tcaaag	5889
caa	tcag	gcg	aatc	cgtt	at t	gttt	ctcc	c ga	tgta	aaag	gta	ctgt	tac	tgta	tatṛca	5949
tct	gacg	tta	aacc	tgaa	aa t	ctac	gcaa	t tt	cttt	attt	ctg	tttt	acg	tgct	aataat	6009
ttt	gata	tgg	ttgg	ttca	at t	cctt	ccat	a at	tcag	aagt	ata	atco	aaa	caat	caggat	6069
tat	attg	atg	aatt	gcca	tc a	tctg	ataa	t ca	ggaa	tatg	atg	ataa	ttc	cgct	ccttct	6129

ggtggtttct ttgttccgca aaatgataat gttactcaaa cttttaaaat taataacgtt 6189 cgggcaaagg atttaatacg agttgtcgaa ttgtttgtaa agtctaatac ttctaaatcc 6249 tcaaatgtat tatctattga cggctctaat ctattagttg tttctgcacc taaagatatt 6309 ttagataacc ttcctcaatt cctttctact gttgatttgc caactgacca gatattgatt 6369 gagggtttga tatttgaggt tcagcaaggt gatgctttag atttttcatt tgctgctggc 6429 tctcagcgtg gcactgttgc aggcggtgtt aatactgacc gcctcacctc tgttttatct 6489 tctgctggtg gttcgttcgg tatttttaat ggcgatgttt tagggctatc agttcgcgca 6549 ttaaagacta atagccattc aaaaatattg tctgtgccac gtattcttac gctttcaggt 6609 cagaagggtt ctatctctgt tggccagaat gtccctttta ttactggtcg tgtgactggt 6669 gaatotgoca atgtaaataa tooatttoag acgattgago gtoaaaatgt aggtatttoo 6729 atgagcgttt ttcctgttgc aatggctggc ggtaatattg ttctggatat taccagcaag 6789 gccgatagtt tgagttcttc tactcaggca agtgatgtta ttactaatca aagaagtatt 6849 gctacaacgg ttaatttgcg tgatggacag actcttttac tcggtggcct cactgattat 6909 aaaaacactt ctcaagattc tggcgtaccg ttcctgtcta aaatcccttt aatcggcctc 6969 ctgtttagct cccgctctga ttccaacgag gaaagcacgt tatacgtgct cgtcaaagca 7029 accatagtac gcgccctgta gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag 7089 cgtgaccgct acacttgcca gcgccctagc gcccgctcct ttcgctttct tcccttcctt 7149 totogocacg ttogocggot ttococgtoa agototaaat ogggggotoc otttagggtt 7209 ccgatttagt gctttacggc acctcgaccc caaaaaactt gatttgggtg atggttcacg 7269 tagtgggcca tegecetgat agaeggtttt tegecetttg aegttggagt ceaegttett 7329 taatagtgga ctcttgttcc aaactggaac aacactcaac cctatctcgg gctattcttt 7389 tgatttataa gggattttgc cgatttcgga accaccatca aacaggattt tcgcctgctg 7449 gggcaaacca gcgtggaccg cttgctgcaa ctctctcagg gccaggcggt gaagggcaat 7509 cagctgttgc ccgtctcact ggtgaaaaga aaaaccaccc tggatccaag cttgcaggtg 7569 gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt atttttctaa atacattcaa 7629 atatgtatcc gctcatgaga caataaccct gataaatgct tcaataatat tgaaaaagga 7689 agagtatgag tattcaacat ttccgtgtcg cccttattcc cttttttgcg gcattttgcc 7749 ttcctgtttt tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg 7809 gcgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt gagagttttc 7869

						_
gccccgaaga	acgttttcca	atgatgagca	cttttaaagt	tctgctatgt	catacactat	7929
tatcccgtat	tgacgccggg	caagagcaac	teggtegeeg	ggcgcggtat	tctcagaatg	7989
acttggttga	gtactcacca	gtcacagaaa	agcatcttac	ggatggcatg	acagtaagag	8049
aattatgcag	tgctgccata	accatgagtg	ataacactgc	ggccaactta	cttctgacaa	8109
cgatcggagg	accgaaggag	ctaaccgctt	ttttgcacaa	catgggggat	catgtaactc	8169
gccttgatcg	ttgggaaccg	gagctgaatg	aagccatacc	aaacgacgag	cgtgacacca	8229
cgatgcctgt	agcaatgcca	acaacgttgc	gcaaactatt	aactggcgaa	ctacttactc	8289
tagcttcccg	gcaacaatta	atagactgga	tggaggcgga	taaagttgca	ggaccacttc	8349
tgcgctcggc	ccttccggct	ggctggttta	ttgctgataa	atctggagcc	ggtgagcgtg	8409
ggtctcgcgg	tatcattgca	gcactggggc	cagatggtaa	gccctcccgt	atcgtagtta	8469
tctacacgac	ggggagtcag	gcaactatgg	atgaacgaaa	tagacagatc	gctgagatag	8529
gtgcctcact	gattaagcat	tggtaactgt	cagaccaagt	ttactcatat	atactttaga	8589
ttgatttaaa	acttcatttt	taatttaaaa	ggatctaggt	gaagatcctt	tttgataatc	8649
tcatgaccaa	aatcccttaa	cgtgagtttt	cgttccactg	tacgtaagac	ccccaagctt	8709
gtcgactgaa	tggcgaatgg	cgctttgcct	ggtttccggc	accagaagcg	gtgccggaaa	8769
gctggctgga	gtgcgatctt	cctgaggccg	atactgtcgt	cgtcccctca	aactggcaga	8829
tgcacggtta	cgatgcgccc	atctacacca	acgtaaccta	tcccattacg	gtcaatccgc	8889
cgtttgttcc	cacggagaat	ccgacgggtt	gttactcgct	cacatttaat	gttgatgaaa	8949
gctggctaca	ggaaggccag	acgcgaatta	tttttgatgg	cgttcctatt	ggttaaaaaa	9009
tgagctgatt	taacaaaaat	ttaacgcgaa	ttttaacaaa	atattaacgt	ttacaattta	9069
aatatttgct	tatacaatct	tcctgttttt	ggggcttttc	tgattatcaa	ccggggtaca	9129
tatgattgac	atgctagttt	tacgattacc	gttcatcgat	tctcttgttt	gctccagact	9189
ctcaggcaat	gacctgatag	cctttgtaga	tctctcaaaa	atagctaccc	tctccggcat	9249
gaatttatca	gctagaacgg	ttgaatatca	tattgatggt	gatttgactg	tctccggcct	9309
ttctcaccct	tttgaatctt	tacctacaca	ttactcaggc	attgcattta	aaatatatga	9369
gggttctaaa	aatttttatc	cttgcgttga	aataaaggct	tctcccgcaa	aagtattaca	9429
gggtcataat	gtttttggta	caaccgattt	agctttatgc	tctgaggctt	tattgcttaa	9489
ttttgctaat	tctttgcctt	gcctgtatga	tttattggat	gtt		9532

```
<210> 452
<211> 20
<212> PRT
<213> Unknown Organism
<223> Description of Unknown Organism: MALIA3 peptide
     sequence
<400> 452
Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser
His Ser Ala Gln
<210> 453
<211> 367
<212> PRT
<213> Unknown Organism
<223> Description of Unknown Organism: MALIA3 protein
      sequence
<400> 453
Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala
 Ala Gln Pro Ala Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly Gly
             20
 Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
 Phe Thr Phe Ser Ser Tyr Ala Met Ser Trp Val Arg Gln Ala Pro Gly
 Lys Gly Leu Glu Trp Val Ser Ala Ile Ser Gly Ser Gly Gly Ser Thr
                      70
 Tyr Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
 Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
                                 105
 Thr Ala Val Tyr Tyr Cys Ala Lys Asp Tyr Glu Gly Thr Gly Tyr Ala
 Phe Asp Ile Trp Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser
 Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr
                                         155
 145
 Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro
```

				165					170					175	
Glu	Pro	Val	Thr 180	Val	Ser	Trp	Asn	Ser 185	Gly	Ala	Leu	Thr	Ser 190	Gly	Val
His	Thr	Phe 195	Pro	Ala	Val	Leu	Gln 200	Ser	Ser	Gly	Leu	Tyr 205	Ser	Leu	Ser
Ser	Val 210	Val	Thr	Val	Pro	Ser 215	Ser	Ser	Leu	Gly	Thr 220	Gln	Thr	Tyr	Ile
Cys 225	Asn	Val	Asn	His	Lys 230	Pro	Ser	Asn	Thr	Lys 235	Val	Asp	Lys	Lys	Val 240
Glu	Pro	Lys	Ser	Cys 245	Ala	Ala	Ala	His	His 250	His	His	His	His	Ser 255	Ala
Glu	Gln	Lys	Leu 260	Ile	Ser	Glu	Glu	Asp 265	Leu	Asn	Gly	Ala	Ala 270	Asp	Ile
Asn	Asp	Asp 275	Arg	Met	Ala	Gly	Ala 280	Ala	Glu	Thr	Val	Glu 285	Ser	Cys	Leu
Ala	Lys 290	Pro	His	Thr	Glu	Asn 295	Ser	Phe	Thr	Asn	Val 300	Trp	Lys	Asp	Asp
Lys 305	Thr	Leu	Asp	Arg	Tyr 310	Ala	Asn	Tyr	Glu	Gly 315	Суѕ	Leu	Trp	Asn	Ala 320
Thr	Gly	Val	Val	Val 325	Cys	Thr	Gly	Asp	Glu 330	Thr	Gln	Cys	Tyr	Gly 335	Thr
Trp	Val	Pro	Ile 340	Gly	Leu	Ala	Ile	Pro 345	Glu	Asn	Glu	Gly	Gly 350	Gly	Ser
Glu	Gly	Gly 355	Gly	Ser	Glu	Gly	Gly 360	Gly	Ser	Glu	Gly	.Gly 365	Gly	Thr	
<21 <21	0> 4 1> 1 2> P 3> U	52 RT	wn O	rgan	ism										
<22 <22	3> D	escr eque	-	on o	f Un	know	n Or	gani	sm:	MALI	А3 р	rote	in		
			Phe	Asp 5		Glu	Lys	Met	Ala 10		Ala	Asn	Lys	Gly 15	Ala
Met	Thr	Glu	Asn 20		Asp	Glu	Asn	Ala 25	Leu	Gln	Ser	Asp	Ala 30	Lys	Gly
Lys	Leu	Asp 35		Val	Ala	Thr	Asp 40		Gly	Ala	Ala	Ile 45		Gly	Phe

Ile Gly Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp 50 60

Phe Ala Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn 65 70 75 80

Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln 85 90 95

Ser Val Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu 100 105 110

Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala 115 120 125

Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala 130 135 140

Asn Ile Leu Arg Asn Lys Glu Ser 145

<210> 455

<211> 15

<212> PRT

<213> Unknown Organism

<220>

<223> Description of Unknown Organism: MALIA3 peptide
 sequence

<400> 455

Met Pro Val Leu Leu Gly Ile Pro Leu Leu Leu Arg Phe Leu Gly 1 5 10 15

<210> 456

<211> 348

<212> PRT

<213> Unknown Organism

<220>

<223> Description of Unknown Organism: MALIA3 protein sequence

<400> 456

Met Ala Val Tyr Phe Val Thr Gly Lys Leu Gly Ser Gly Lys Thr Leu 1 5 10 15

Val Ser Val Gly Lys Ile Gln Asp Lys Ile Val Ala Gly Cys Lys Ile

Ala Thr Asn Leu Asp Leu Arg Leu Gln Asn Leu Pro Gln Val Gly Arg

Phe Ala Lys Thr Pro Arg Val Leu Arg Ile Pro Asp Lys Pro Ser Ile 50 55 60

114

Ser Asp Leu Leu Ala Ile Gly Arg Gly Asn Asp Ser Tyr Asp Glu Asn Lys Asn Gly Leu Leu Val Leu Asp Glu Cys Gly Thr Trp Phe Asn Thr Arg Ser Trp Asn Asp Lys Glu Arg Gln Pro Ile Ile Asp Trp Phe Leu His Ala Arg Lys Leu Gly Trp Asp Ile Ile Phe Leu Val Gln Asp Leu 120 Ser Ile Val Asp Lys Gln Ala Arg Ser Ala Leu Ala Glu His Val Val Tyr Cys Arg Arg Leu Asp Arg Ile Thr Leu Pro Phe Val Gly Thr Leu Tyr Ser Leu Ile Thr Gly Ser Lys Met Pro Leu Pro Lys Leu His Val Gly Val Val Lys Tyr Gly Asp Ser Gln Leu Ser Pro Thr Val Glu Arg Trp Leu Tyr Thr Gly Lys Asn Leu Tyr Asn Ala Tyr Asp Thr Lys Gln Ala Phe Ser Ser Asn Tyr Asp Ser Gly Val Tyr Ser Tyr Leu Thr Pro Tyr Leu Ser His Gly Arg Tyr Phe Lys Pro Leu Asn Leu Gly Gln Lys Met Lys Leu Thr Lys Ile Tyr Leu Lys Lys Phe Ser Arg Val Leu Cys Leu Ala Ile Gly Phe Ala Ser Ala Phe Thr Tyr Ser Tyr Ile Thr Gln Pro Lys Pro Glu Val Lys Lys Val Val Ser Gln Thr Tyr Asp Phe Asp Lys Phe Thr Ile Asp Ser Ser Gln Arg Leu Asn Leu Ser Tyr Arg Tyr 300 Val Phe Lys Asp Ser Lys Gly Lys Leu Ile Asn Ser Asp Asp Leu Gln Lys Gln Gly Tyr Ser Leu Thr Tyr Ile Asp Leu Cys Thr Val Ser Ile 330 335 Lys Lys Gly Asn Ser Asn Glu Ile Val Lys Cys Asn 345

<210> 457

<211> 24

<212> DNA

115

<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 457	
tggaagaggc acgttctttt cttt	24
<210> 458	
<211> 24	
<212> DNA <213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 458	
cttttctttg ttgccgttgg ggtg	24
<210> 459	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 459	
acactetece etgitgaage tett	24
<210> 460	
<211> 51	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Primer	
<400> 460 accgcctcca ccgggcgcgc cttattaaca ctctcccctg ttgaagctct t	51
accyclical coggeoge constraint commission cognition	
<210> 461	
<211> 23 <212> DNA	
<213> Artificial Sequence	•
<pre><220> <223> Description of Artificial Sequence: Primer</pre>	
72207 Description of Artificial Sequence, framer	
<400> 461	2.7
tgaacattct gtaggggcca ctg	23

<210> 462

```
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 462
                                                                   23
agagcattct gcaggggcca ctg
<210> 463
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
accgcctcca ccgggcgcgc cttattatga acattctgta ggggccactg
                                                                   50
<210> 464
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
accgcctcca ccgggcgcgc cttattaaga gcattctgca ggggccactg
                                                                   50
<210> 465
<211> 23
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 465
cgactggagc acgaggacac tga
                                                                   23
<210> 466
<211> 26-
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 466
ggacactgac atggactgaa ggagta
                                                                   26
```

PCT/US02/12405

<210> <211> <212> <213>	20	
	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gggagg	467 gatgg agactgggtc	20
<210> <211> <212> <213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gggaaq	468 gatgg agactgggtc	20
<210> <211> <212> <213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gggaga	469 agtgg agactgagtc	20
<210><211><211><212><213>	20	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gggtg	470 cctgg agactgcgtc	20
<210><211><211><212><213>	20	

<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 471	
gggtggctgg agactgcgtc	20
<210> 472	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 472	
gggaggatgg agactgggtc atctggatgt cttgtgcact gtgacagagg	50
<210> 473	
<211> 50	
<212> DNA -	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 473	
gggaagatgg agactgggtc atctggatgt cttgtgcact gtgacagagg .	50
<210> 474	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 474	
gggagagtgg agactgggtc atctggatgt cttgtgcact gtgacagagg	50
<210> 475	
<211> 50	•
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 475	
gggtgcctgg agactgggtc atctggatgt cttgtgcact gtgacagagg	50

<210> <211> <212> <213>	50	
<220> <223>	Description of Artificial Sequençe: Synthetic oligonucleotide	
<400> gggtg	476 gctgg agactgggtc atctggatgt cttgtgcact gtgacagagg	50
<210><211><211><212><213>	50	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gggag	477 totgg agactgggto atotggatgt ottgtgcact gtgacagagg	50
<210> <211> <212> <213>	42	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> cctct	478 gtcac agtgcacaag acatccagat gacccagtct cc	42
<210><211><211><212><213>	22	
<220> <223>	Description of Artificial Sequence: Primer	
<400> cctct	479 gtcac agtgcacaag ac	22
<210><211><211><212><213>	24	

<220 <223	> > De	scri	ptic	n of	Art	ific	ial	Sequ	ience	: Pr	imer					
-	> 48 toto		tgtt	gaag	jc to	:tt										24
<211 <212)> 48 .> 66 !> DN 3> Ho	8 A	sapie	ens					,							
)> > CD !> (1		(668)													
agt)> 48 gca Ala	caa														48
	cca Pro															96
agt Ser	aac Asn	aac Asn 35	tta Leu	gcc Ala	tgg Trp	tac Tyr	cag Gln 40	cag Gln	aaa Lys	cct Pro	ggc Gly	cag Gln 45	gtt Val	ccc Pro	agg Arg	144
ctc Leu	ctc Leu 50	atc Ile	tat Tyr	ggt Gly	gca Ala	tcc Ser 55	acc Thr	agg Arg	gcc Ala	act Thr	gat Asp 60	atc Ile	cca Pro	gcc Ala	agg Arg	192
ttc Phe 65	agt Ser	ggc Gly	agt Ser	ggg Gly	tct Ser 70	ggg Gly	aca Thr	gac Asp	ttc Phe	act Thr 75	ctc Leu	acc Thr	atc Ile	agc Ser	aga Arg 80	240
ctg Leu	gag Glu	cct Pro	gaa Glu	gat Asp 85	ttt Phe	gca Ala	gtg Val	Tyr	tac Tyr 90	tgt Cys	cag Gln	cgg Arg	tat Tyr	ggt Gly 95	agc Ser	288
	ccg Pro			_						-		_				336
	gtg Val															384
ttg Leu	aaa Lys 130	tct Ser	gga Gly	act Thr	gcc Ala	tct Ser 135	gtt Val	gtg Val	tgc Cys	ctg Leu	ctg Leu 140	aat Asn	aac Asn	ttc Phe	tat Tyr	432
	aga Arg					Gln										480
gat	aac	tcc	cao	gag	agt	atc	aca	gag	cad	gac	aqc	aaσ	qac	agc	acc	528

Gly	Asn	Ser	Gln	Glu 165	Ser	Val	Thr	Glu	Gln 170	Asp	Ser	Lys	Asp	Ser 175	Thr	
tac Tyr	agc Ser	ctc Leu	agc Ser 180	agc Ser	acc Thr	ctg Leu	acg Thr	ctg Leu 185	agc Ser	aaa Lys	gca Ala	gac Asp	tac Tyr 190	gag Glu	aaa Lys	576
cac His	aaa Lys	gtc Val 195	tac Tyr	gcc Ala	tgc Cys	gaa Glu	gtc Val 200	acc Thr	cat His	cag Gln	ggc Gly	ctg Leu 205	agc Ser	tcg Ser	cct Pro	624
gtc Val	aca Thr 210	aag Lys	agc Ser	ttc Phe	aac Asn	aaa Lys 215	gga Gly	gag Glu	tgt Cys	aag Lys	ggc Gly 220	gaa Glu	ttc Phe	gc Ala		668
<21:	0> 41 1> 2: 2> P1 3> Ho	23	sapi	ens												
<40 Ser 1	0> 4 Ala	82 Gln	Asp	Ile 5	Gln	Met	Thr	Gln	Ser 10	Pro	Ala	Thr	Leu	Ser 15	Val	
Ser	Pro	Gly	Glu 20		Ala	Thr	Leu	Ser 25	Cys	Arg	Ala	Ser	Gln 30	Ser	Val	
Ser	Asn	Asn 35		Ala	Trp	Tyr	Gln 40	Gln	Lys	Pro	Gly	Gln 45	Val	Pro	Arg	
Leu	Leu 50		Tyr	Gly	Ala	Ser 55	Thr	Arg	Ala	Thr	Asp 60	Ile	Pro	Ala	Arg	
Phe 65		Gly	Ser	Gly	Ser 70	Gly	Thr	Asp	Phe	Thr 75	Leu	Thr	Ile	Ser	Arg 80	
Leu	Glu	Pro	Glu	Asp 85		Ala	Val	Tyr	Tyr 90	Суз	Gln	Arg	Tyr	Gly 95	Ser	
Ser	Pro	Gly	7 Trp		Phe	Gly	Gln	Gly 105	Thr	Lys	Val	Glu	Ile 110	Lys	Arg	
Thr	· Val	. Ala		Pro	Ser	· Val	Phe 120		Phe	Pro	Pro	Ser 125	Asp	Glu	Gln	
Leu	Lys 130		Gly	/ Thi	Ala	Ser 135	Val	. Val	Cys	Leu	140	Asn	. Asn	Phe	Tyr	
Pro 145		g Glu	ı Ala	a Lys	5 Val		Trp	Lys	val	Asp 155	Asr	Ala	Leu	ı Glm	Ser 160	
Gly	/ Ası	s Sei	c Gli	n Glu 16		: Val	. Thr	Glu	1 Glr 170	n Ası	Sei	Lys	Asp	Ser 175	Thr	
Ту	: Sei	r Lei	18:		r Thi	: Lei	Thi	Leu 185	ı Sei	c Ly:	s Ala	a Asp	190	c Glu	l Lys	

His Ly		al T 95	'yr I	Ala (Cys (Glu '	/al 200	Thr	His	Gln	Gly	Leu \$ 205	Ser :	Ser 1	Pro	
Val Th	nr L 10	ys S	Ger 1	Phe I	Asn 1	Lys (215	Gly	Glu	Cys	Lys	Gly 220	Glu I	Phe i	Ala		
<210> <211> <212> <213> <220>	13 DNA Art	ific					<i>z</i> _ 1	Sogu			mthe	tic				
<223>	Des oli	gon	ptio ucle	n of otid	Art e	1110	ıaı	sequ	ience	:. Jy	11.0116					
<400> agcca			ct													13
<210> <211> <212> <213>	700 DN2	0 A	apie	ens											-	
<220> <221> <222>	CD		(699)													
<400> agt q Ser <i>F</i> 1	rca (caa	gac Asp	atc Ile 5	cag Gln	atg Met	acc Thr	cag Gln	tct Ser 10	cct Pro	gcc Ala	acc Thr	ctg Leu	tct Ser 15	gtg Val	48
tct o	cca Pro	ggt Gly	gaa Glu 20	aga Arg	gcc Ala	acc Thr	ctc Leu	tcc Ser 25	Cys	agg Arg	gcc Ala	agt Ser	cag Gln 30	gtg Val	tct Ser	96
cca (999 Gly	gaa Glu 35	aga Arg	gcc Ala	acc Thr	ctc Leu	tcc Ser 40	Cys	aat Asn	ctt Leu	ctc Leu	agc Ser 45	aac Asn	tta Leu	gcc Ala	144
tgg '	tac Tyr 50	cag Gln	cag Gln	aaa Lys	cct Pro	ggc Gly 55	cag Gln	gct Ala	ccc Pro	agg Arg	ctc Leu 60	Leu	atc Ile	tat Tyr	ggt Gly	192
gct Ala: 65	tcc Ser	acc Thr	ggg Gly	gcc Ala	att Ile 70	Gly	ato	cca Pro	gcc Ala	agg Arg 75	Phe	agt Ser	ggc	agt Ser	80 GJA GGG	240
tct Ser	Gly ggg	aca Thr	gag Glu	ttc Phe 85	Thr	ctc Leu	acc Thi	ato	ago Ser 90	Ser	ctg Leu	cag Gln	tct Ser	gaa Glu 95	Asp	288
ttt Phe	gca Ala	gtg Val	tat Tyr 100	Phe	tgt Cys	cag Gln	Gl	tat n Tyr 105	: Gl3	aco Thi	tca Ser	ccg Pro	Pro	Thr	ttc Phe	336

The second secon	2.7
ggc gga ggg acc aag gtg gag atc aaa cga act gtg gct gca cca tc Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Se 115 120 125	384
gtc ttc atc ttc ccg cca tct gat gag cag ttg aaa tct gga act gc Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Al 130 135 140	432
tct gtt gtg tgc ccg ctg aat aac ttc tat ccc aga gag gcc aaa gt Ser Val Val Cys Pro Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Va 145 150 155 16	l
cag tgg aag gtg gat aac gcc ctc caa tcg ggt aac tcc cag gag ag Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Se 165 170 175	528
gtc aca gag cag gac aac aag gac agc acc tac agc ctc agc acc val Thr Glu Gln Asp Asn Lys Asp Ser Thr Tyr Ser Leu Ser Ser Th 180 185 190	576 r
ctg acg ctg agc aaa gta gac tac gag aaa cac gaa gtc tac gcc tg Leu Thr Leu Ser Lys Val Asp Tyr Glu Lys His Glu Val Tyr Ala Cy 195 200 205	c 624 s
gaa gtc acc cat cag ggc ctt agc tcg ccc gtc acg aag agc ttc aa Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe As 210 215 220	c 672
agg gga gag tgt aag aaa gaa ttc gtt t Arg Gly Glu Cys Lys Glu Phe Val 225 230	700
<210> 485 <211> 233 <212> PRT <213> Homo sapiens	
<211> 233 <212> PRT <213> Homo sapiens <400> 485	,
<211> 233 <212> PRT <213> Homo sapiens	1
<211> 233 <212> PRT <213> Homo sapiens <400> 485 Ser Ala Gln Asp Ile Gln Met Thr Gln Ser Pro Ala Thr Leu Ser Va	
<pre><211> 233 <212> PRT <213> Homo sapiens <400> 485 Ser Ala Gln Asp Ile Gln Met Thr Gln Ser Pro Ala Thr Leu Ser Va</pre>	r
<pre><211> 233 <212> PRT <213> Homo sapiens </pre> <pre><400> 485 Ser Ala Gln Asp Ile Gln Met Thr Gln Ser Pro Ala Thr Leu Ser Va</pre>	r
<pre><211> 233 <212> PRT <213> Homo sapiens <400> 485 Ser Ala Gln Asp Ile Gln Met Thr Gln Ser Pro Ala Thr Leu Ser Va</pre>	r a y ·
<pre><211> 233 <212> PRT <213> Homo sapiens <400> 485 Ser Ala Gln Asp Ile Gln Met Thr Gln Ser Pro Ala Thr Leu Ser Va</pre>	r a y . y 0

The second of th

						•										
			100					105					110			
Gly	Gly	Gly 115	Thr	Lys	Val	Glu	Ile 120	Lys	Arg	Thr	Val	Ala 125	Ala	Pro	Ser	
Val	Phe 130	Ile	Phe	Pro	Pro	Ser 135	Asp	Glu	Gln	Leu	Lys 140	Ser	Gly	Thr	Ala	
Ser 145	Val	Val	Cys	Pro	Leu 150	Asn	Asn	Phe	Tyŗ	Pro 155	Arg	Glu	Ala	Lys	Val 160	
Gln	Trp	Lys	Val	Asp 165	Asn	Ala	Leu	Gln	Ser 170	Gly	Asn	Ser	Gln	Glu 175	Ser	
Val	Thr	Glu	Gln 180	Asp	Asn	Lys	Asp	Ser 185	Thr	Tyr	Ser	Leu	Ser 190	Ser	Thr	
Leu	Thr	Leu 195	Ser	Lys	Val	Asp	Tyr 200	Glu	Lys	His	Glu	Val 205	Tyr	Ala	Cys	
Glu	Val 210		His	Gln	Gly	Leu 215	Ser	Ser	Pro	Val	Thr 220	Lys	Ser	Phe	Asn	
Arg 225	Gly	Glu	Cys	Lys	Lys 230	Glu	Phe	Val								
<21 <21 <22 <22 <22 <22 <22	0> 3> D V 0> 1> C 2> (19 NA rtif Descr 'H nu	ipti cleo	tide	f Ar	tifi		Seq	uenc	e: S	ynth	etic	3-2	3		
	0> 4		g gc Al	c ca a Gl 1	g cc n Pr	g gc o Al	c at a Me	g gc t Al 5	c ga a Gl	a gt u Va	t ca 1 Gl	n Le	g tt u Le 0	a ga u Gl	g tct u Ser	50
ggt Gly	Gly	ggt Gly	ctt Leu	gtt Val	cag Gln	Pro 20	Gly	ggt Gly	tct Ser	tta Leu	cgt Arg 25	Leu	tct Ser	tgc Cys	gct Ala	98
gct Ala 30	Ser	gga Gly	tto Phe	act Thr	ttc Phe 35	Ser	tcg Ser	tac Tyr	gct Ala	ato Met	: Sea	tgg Trp	gtt Val	cgc Arg	caa Gln 45	140
gct Ala	cct Pro	ggt Gly	aaa Lys	ggt Gly 50	Leu	gag Glu	tgg Trp	g gtt Val	tct Ser 55	: Ala	ato 11e	tct Ser	ggt Gly	tct Ser 60	ggt Gly	19

Gly	agt Ser	act Thr	tac Tyr 65	tat Tyr	gct Ala	gac Asp	tcc Ser	gtt Val 70	aaa Lys	ggt Gly	cgc Arg	ttc Phe	act Thr 75	atc Ile	tct Ser	242
aga Arg	gac Asp	aac Asn 80	tct Ser	aag Lys	aat Asn	act Thr	ctc Leu 85	tac Tyr	ttg Leu	cag Gln	atg Met	aac Asn 90	agc Ser	tta Leu	agg_ Arg	290
gct Ala	gag Glu 95	gac Asp	act Thr	gca Ala	gtc Val	tac Tyr 100	tat Tyr	tgc Cys	gcț Ala	aaa Lys	gac Asp 105	tat Tyr	gaa Glu	ggt Gly	act Thr	338
ggt Gly 110	tat Tyr	gct Ala	ttc Phe	gác Asp	ata Ile 115	tgg Trp	ggt Gly	caa Gln	ggt Gly	act Thr 120	atg Met	gtc Val	acc Thr	gtc Val	tct Ser 125	386
agt Ser	gcc Ala	tcc Ser	acc Thr	aag Lys 130	ggc Gly	cca Pro	tcg Ser	gtc Val	ttc Phe 135	ccc Pro						419
<210> 487 <211> 136 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic 3-23 VH protein sequence																
	V	H pro	otei	n se	quen	ce										
<400 Ala 1)> 4				-		Val	Gln		Leu					Gly	
Ala 1)> 4 Gln	87	Ala	Met 5	Ala	Glu			Leu 10	Leu	Glu	Ser	Gly	Gly 15		
Ala 1 Leu)> 4 Gln Val	87 Pro	Ala Pro 20	Met 5 Gly	Ala Gly	Glu Ser	Leu	Arg 25	Leu 10 Leu	Leu Ser	Glu Cys	Ser	Gly Ala 30	Gly 15 Ser	Gly	
Ala 1 Leu Phe	O> 4 Gln Val	87 Pro Gln Phe 35 Leu	Ala Pro 20 Ser	Met 5 Gly Ser	Ala Gly Tyr	Glu Ser Ala	Leu Met 40	Arg 25 Ser	Leu 10 Leu Trp	Leu Ser Val	Glu Cys Arg	Ser Ala Gln 45 Gly	Gly Ala 30 Ala	Gly 15 Ser Pro	Gly	
Ala 1 Leu Phe	O> 4 Gln Val Thr Gly 50	87 Pro Gln Phe 35 Leu	Ala Pro 20 Ser	Met 5 Gly Ser Trp	Ala Gly Tyr	Glu Ser Ala Ser 55 Lys	Leu Met 40	Arg 25 Ser Ile	Leu 10 Leu Trp	Leu Ser Val	Glu Cys Arg Ser 60	Ser Ala Gln 45 Gly	Gly Ala 30 Ala Gly	Gly 15 Ser Pro	Gly	
Ala 1 Leu Phe Lys Tyr 65	O> 4 Gln Val Thr Gly 50	87 Pro Gln Phe 35 Leu	Ala Pro 20 Ser Glu Asp	Met 5 Gly Ser Trp	Alaa Gly Tyr Val Val Tor	Glu Ser Ala Ser 55 Lys	Leu Met 40 Ala Gly	Arg 25 Ser Ile Arg	Leu 10 Leu Trp Ser	Leu Ser Val Gly Thr 75	Glu Cys Arg Ser 60	Ser Ala Gln 45 Gly Ser	Gly Ala 30 Ala Gly Arg	Gly 15 Ser Pro Ser	Gly Gly Thr Asn 80 Asp	
Ala 1 Leu Phe Lys Tyr 65 Ser	O> 4 Gln Val Thr Gly 50 Tyr	87 Pro Gln Phe 35 Leu Ala	Ala Pro 20 Ser Glu Asp	Met 5 Gly Ser Trp Ser Leu 85	Ala Gly Tyr Val Val Tyr	Glu Ser Ala Ser 55 Lys	Met 40 Ala Gly	Arg 25 Ser Ile Arg	Leu 10 Leu Trp Ser Phe Asn 90	Leu Ser Val Glý Thr 75	Glu Cys Arg Ser 60 Ile	Ser Ala Gln 45 Gly Ser	Gly Ala 30 Ala Gly Arg	Gly 15 Ser Pro Ser Asp Glu 95	Gly Gly Thr Asn 80 Asp	
Ala 1 Leu Phe Lys Tyr 65 Ser	O> 4 Gln Val Thr Gly 50 Tyr Lys	87 Pro Gln Phe 35 Leu Ala Asn	Ala Pro 20 Ser Glu Asp Thr Tyrr 100	Met 5 Gly Ser Trp Ser Leu 85	Ala Gly Tyr Val Val 70 Tyr	Glu Ser Ala Ser 55 Lys Leu	Leu Met 40 Ala Gly Gln	Arg 25 Ser Ile Arg Met	Leu 10 Leu Trp Ser Phe Asn 90	Leu Ser Val Gly Thr 75 Ser	Glu Cys Arg Ser 60 Ile Leu Gly	Ser Ala Gln 45 Gly Ser Arg	Gly Ala 30 Ala Gly Arg Ala Gly 110	Gly 15 Ser Pro Ser Asp Glu 95	Gly Gly Thr Asn 80 Asp	

<210>	488	
<211>	20	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Primer	
<400>	488	
ctatct	gaac ggcccagccg	20
	-3	
<210>	489	
<211>	83	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		
	gaac ggcccagccg gccatggccg aagttcaatt gttagagtct ggtggcggtc	60
ttgttc	cagec tggtggttet tta	83
<210>		
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
<220>	· ·	
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>	•	
gaaagt	cgaat ccggaagcag cgcaagaaag acgtaaagaa ccaccaggct gaac	54
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Synthetic	
.250	oligonucleotide	
<400>	491	
	ccac tccaaacctt taccaggage ttggcgaacc ca	42
-90000	commone caseayyaya ceyyuyaaca ta	74
<210>	492	
<211>		
<212>		
	Artificial Sequence	

PCT/US02/12405

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 492
agtgtcctca gcccttaagc tgttcatctg caagtagaga gtattcttag agttgtctct 60
agagatagtg aagcgacctt taacggagtc agca
<210> 493
<211> 81
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 493
gcttaagggc tgaggacact gcagtctact attgcgctaa agactatgaa ggtactggtt 60
atgctttcga catatggggt c
<210> 494
<211> 72
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
ggggaagacc gatgggccct tggtggaggc actagagacg gtgaccatag taccttgacc 60
tatgtcgaaa gc
<210> 495
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
ggggaagacc gatgggccct tgg
                                                                   23
<210> 496
<211> 56
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
```

```
<220>
<221> modified_base
<222> (22)..(24)
<223> A, T, C, G, other or unknown
<220>
<221> modified base
<222> (28)..(30)
<223> A, T, C, G, other or unknown
<220>
<221> modified_base
<222> (34)..(36)
<223> A, T, C, G, other or unknown
<223> nnn codes for any amino acid but Cys
<400> 496
getteeggat teaetttete tnnntaennn atgnnntggg ttegecaage teetgg
                                                                   56
<210> 497
<211> 68
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (19)..(21)
<223> A, T, C or G
<220>
<221> modified base
<222> (25)..(30)
<223> A, T, C or G
<220>
<221> modified_base
<222> (40)..(42)
<223> A, T, C or G
<220>
<221> modified base
<222> (46)..(48)
<223> A, T, C or G
<400> 497
ggtttggagt gggtttctnn natcnnnnnn tctggtggcn nnactnnnta tgctgactcc 60
gttaaagg
```

<210> 498

```
<211> 912
<212> DNA
<213> Escherichia coli
<400> 498
tccggagctt cagatotgtt tgcctttttg tggggtggtg cagatogcgt tacggagate 60
gaccgactgc ttgagcaaaa gccacgctta actgctgatc aggcatggga tgttattcgc 120
caaaccagtc gtcaggatct taacctgagg ctttttttac ctactctgca agcagcgaca 180
tctggtttga cacagagcga tccgcgtcgt cagttggtag aaacattaac acgttgggat 240
ggcatcaatt tgcttaatga tgatggtaaa acctggcagc agccaggctc tgccatcctg 300
aacgtttggc tgaccagtat gttgaagcgt accgtagtgg ctgccgtacc tatgccattt 360
gataagtggt acagcgccag tggctacgaa acaacccagg acggcccaac tggttcgctg 420
aatataagtg ttggagcaaa aattttgtat gaggcggtgc agggagacaa atcaccaatc 480
ccacaggcgg ttgatctgtt tgctgggaaa ccacagcagg aggttgtgtt ggctgcgctq 540
gaagatacct gggagactct ttccaaacgc tatggcaata atgtgagtaa ctggaaaaca 600
cctgcaatgg ccttaacgtt ccgggcaaat aatttctttg gtgtaccgca ggccgcagcg 660
gaagaaacgc gtcatcaggc ggagtatcaa aaccgtggaa cagaaaacga tatgattqtt 720
ttctcaccaa cgacaagcga tcgtcctgtg cttgcctggg atgtggtcgc acccggtcag 780
agtgggttta ttgctcccga tggaacagtt gataagcact atgaagatca gctgaaaatg 840
tacgaaaatt ttggccgtaa gtcgctctgg ttaacgaagc aggatgtgga ggcgcataag 900
gagtcgtcta ga
<210> 499
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 499
gatnnnnatc
                                                                   10
<210> 500
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(15)
<223> A, T, C, G, other or unknown
<400> 500
nnnnnnnnn nnnnngtccc
                                                                   20
```

```
<210> 501
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 501
gcannnnntg c
                                                                   11
<210> 502
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 502
gacnnnngtc
                                                                   10
<210> 503
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1),.(7)
<223> A, T, C, G, other or unknown
<400> 503
nnnnnngcg gg
                                                                   12
<210> 504
<211> 12
<212> DNA
```

```
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 504
gtatconnnn nn
                                                                   12
<210> 505
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 505
                                                                   12
gcannnnnnt cg
<210> 506
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 506
gccnnnnngg c
                                                                   1.1
<210> 507
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
```

```
oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 507
                                                                    11
ggtctcnnnn n
<210> 508
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(11)
<223> A, T, C, G, other or unknown
<400> 508
gacnnnnngt c
                                                                    11
<210> 509
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4) .. (8)
<223> A, T, C, G, other or unknown
<400> 509
gacnnnnngt c
                                                                    11
<210> 510
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
```

```
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 510
                                                                   12
gacnnnnnng to
<210> 511
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
    . oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 511
                                                                   11
ccannnnntg g
<210> 512
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(9)
<223> A, T, C, G, other or unknown
<400> 512
                                                                   15
nnnnnnnng caggt
<210> 513
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 513
```

acctgcnnnn n	11
<210> 514 <211> 13 <212> DNA <213> Artificial Sequence	
<pre><220> <223> Description of Artificial Sequence: Synthetic oligonucleotide</pre>	
<pre><220> <221> modified_base <222> (5)(9) <223> A, T, C, G, other or unknown</pre>	
<400> 514 ggccnnnnng gcc	13
<210> 515 <211> 15 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<220> <221> modified_base <222> (4)(12) <223> A, T, C, G, other or unknown	
<400> 515 ccannnnnn nntgg	15
<210> 516 <211> 11 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<220> <221> modified_base <222> (7)(11) <223> A, T, C, G, other or unknown	
<400> 516 cgtctcnnnn n	11
<210> 517	

135

```
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> modified_base
<222> (1)..(6)
<223> A, T, C, G, other or unknown
<400> 517
                                                                   12
nnnnngaga cg
<210> 518
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1)..(10)
<223> A, T, C, G, other or unknown
<400> 518
nnnnnnnn ctcctc
                                                                   16
<210> 519
<211> 16
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(16)
<223> A, T, C, G, other or unknown
<400> 519
                                                                   16
gaggagnnnn nnnnnn
<210> 520
<211> 11
<212> DNA
```

<213> Artificial Sequence

```
<220>
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
                                                       <221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 520
cctnnnnnag g
                                                                  11
<210> 521
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 521
ccannnnnnt gg
                                                                  12
<210> 522
<211> 6680
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Vector pCES5
     nucleotide sequence
<220>
<221> CDS
<222> (201)..(1058)
<220>
<221> CDS
<222> (2269)..(2682)
<220>
<221> CDS
<222> (2723)..(2866)
<220>
<221> CDS
<222> (3767)..(3850)
<220>
<221> CDS
```

<222> (4198)..(5799)

<400> 522 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt														60		
cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt															120	
tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat															180	
aatattgaaa aaggaagagt atg agt att caa cat ttc cgt gtc gcc ctt att Met Ser Ile Gln His Phe Arg Val Ala Leu Ile $1 \qquad \qquad 5 \qquad \qquad 10$ ccc ttt ttt gcg gca ttt tgc ctt cct gtt ttt gct cac cca gaa acg															233	
ccc Pro	ttt Phe	ttt Phe	gcg Ala 15	gca Ala	ttt Phe	tgc Cys	ctt Leu	cct Pro 20	gtt Val	ttt Phe	gct Ala	cac His	cca Pro 25	gaa Glu	acg Thr	281
ctg Leu	gtg Val	aaa Lys 30	gta Val	aaa Lys	gat Asp	gct Ala	gaa Glu 35	gat Asp	cag Gln	ttg Leu	ggt Gly	gcc Ala 40	cga Arg	gtg Val	ggt Gly	329
tac Tyr	atc Ile 45	gaa Glu	ctg Leu	gat Asp	ctc Leu	aac Asn 50	agc Ser	ggt Gly	aag Lys	atc Ile	ctt Leu 55	gag Glu	agt Ser	ttt Phe	cgc Arg	377
ccc Pro 60	gaa Glu	gaa Glu	cgt Arg	ttt Phe	cca Pro 65	atg Met	atg Met	agc Ser	act Thr	ttt Phe 70	aaa Lys	gtt Val	ctg Leu	cta Leu	tgt Cys 75	425
ggc Gly	gcg Ala	gta Val	tta Leu	tcc Ser 80	cgt Arg	att Ile	gac Asp	gcc Ala	ggg Gly 85	caa Gln	gag Glu	caa Gln	ctc Leu	ggt Gly 90	cgc Arg	473
cgc Arg	ata Ile	cac His	tat Tyr 95	tct Ser	cag Gln	aat Asn	gac Asp	ttg Leu 100	gtt Val	gag Glu	tac Tyr	tca Ser	cca Pro 105	gtc Val	aca Thr	521
gaa Glu	aag Lys	cat His 110	ctt Leu	acg Thr	gat Asp	ggc Gly	atg Met 115	aca Thr	gta Val	aga Arg	gaa Glu	tta Leu 120	tgc Cys	agt Ser	gct Ala	569
gcc Ala	ata Ile 125	acc Thr	atg Met	agt Ser	gat Asp	aac Asn 130	act Thr	gcg Ala	gcc Ala	aac Asn	tta Leu 135	ctt Leu	ctg Leu	aca Thr	acg Thr	617
		gga Gly														
cat His	gta Val	act Thr	cgc Arg	ctt Leu 160	gat Asp	cgt Arg	tgg Trp	gaa Glu	ccg Pro 165	gag Glu	ctg Leu	aat Asn	gaa Glu	gcc Ala 170	ata Ile	713
cca Pro	aac Asn	gac Asp	gag Glu 175	cgt Arg	gac Asp	acc Thr	acg Thr	atg Met 180	cct Pro	gta Val	gca Ala	atg Met	gca Ala 185	aca Thr	acg Thr	761
tta	cac	222	cta	tta	act	aac	caa	cta	ctt	act	cta	act	tee	caa	caa	809

Leu	Arg	Lys 190	Leu	Leu	Thr	Gly	Glu 195	Leu	Leu	Thr	Leu	Ala 200	Ser	Arg	Gln	
														ctt Leu		857
														gga Gly		905
														gat Asp 250		953
														gca Ala		1001
atg Met	gat Asp	gaa Glu 270	cga Arg	aat Asn	aga Arg	cag Gln	atc Ile 275	gct Ala	gag Glu	ata Ile	ggt Gly	gcc Ala 280	tca Ser	ctg Leu	att Ile	1049
_	cat His 285		taa	ctgt	cag (acca	agtti	ta c	tcata	atata	a cti	ttag	attg			1098
att	taaa	act	tcat	tttt	aa t	ttaa	aagga	a tc	tagg	tgaa	gate	cctt	ttt	gata	atctca	1158
tga	ccaa	aat	ccct	taac	gt g	agtt	ttcg	t to	cact	gagc	gtc	agac	ccc	gtag	aaaaga	1218
tca	aagg	atc	ttct	tgag	at c	cttt	tttt	c tg	cgcg	taat	ctg	ctgc	ttg	caaa	caaaaa	1278
aac	cacc	gct	acca	gcgg	tg g	tttg	tttg	c cg	gatc	aaga	gct	acca	act	cttt	ttccga	1338
agg	taac	tgg	cttc	agca	ga g	cgca	gata	c ca	aata	ctgt	cct	tcta	gtg	tagc	cgtagt	1398
tag	gcca	сса	cttc	aaga	ac t	ctgt	agca	c cg	ccta	cata	cct	cgct	ctg	ctaa	tcctgt	1458
tac	cagt	ggc	tgct	gcca	gt g	gcga	taag	t cg	tgtc	ttac	cgg	gttg	gac	tcaa	gacgat	1518
agt	tacc	gga	taag	gcgc	ag c	ggtc	gggc	t ga	acgg	gggg	ttc	gtgc	ata	cago	ccagct	1578
tgg	agcg.	aac	gacc	taca	cc g	aact	gaga	t ac	ctac	agcg	tga	gcat	tga	gaaa	gcgcca	1638
cgc	ttcc	cga	aggg.	agaa	ag g	cgga	cagg	t at	ccgg	taag	cgg	cagg	gtc	ggaa	caggag	1698
agc	gcac	gag	ggag	cttc	ca g	gggg	aaac	g cc	tggt	atct	tta	tagt	cct	gtcg	ggtttc	1758
gcc	acct	ctg	actt	gagc	gt c	gatt	tttg	t ga	tgct	cgtc	agg	gggg	cgg	agcc	tatgga	1818
aaa	acgc	cag	caac	gcgg	cc t	tttt	acgg	t tc	ctgg	cctt	ttg	ctgg	cct	tttg	ctcaca	1878
tgt	tctt	tcc	tgcg	ttat	cc c	ctga	ttct	g tg	gata	accg	tat	tacc	gcc	tttg	agtgag	1938
ctg	atac	cgc	tcgc	cgca	gc c	gaac	gacc	g ag	cgca	gcga	gtc	agtg	agc	gagg	aagcgg	1998
aao	agcg	ccc	aata	соса	aa c	cacc	tata	c cc	acac	atta	acc	gatt	cat	taat	gcaget	2058

ggcacgacag gtttccc	gac tggaaagcgg	gcagtgagcg caacgcaa	tt aatgtgagtt 2118										
agctcactca ttaggca	cc caggetttac	actttatgct tccggctc	gt atgttgtgtg 2178										
gaattgtgag cggataacaa tttcacacag gaaacagcta tgaccatgat tacgccaagc													
tttggagcct ttttttt		gtg aaa aaa tta tta Met Lys Lys Leu Leu 290											
cct tta gtt gtt cc Pro Leu Val Val Pro 295	ttc tat tct c Phe Tyr Ser H 300	ac agt gca cag gtc lis Ser Ala Gln Val 305	caa ctg cag 2340 Gln Leu Gln 310										
gtc gac ctc gag atc Val Asp Leu Glu Il 31	Lys Arg Gly T	ct gtg gct gca cca Chr Val Ala Ala Pro 320	tct gtc ttc 2388 Ser Val Phe 325										
atc ttc ccg cca tc Ile Phe Pro Pro Se 330	. Asp Glu Gln L	etg aaa tot gga act eu Lys Ser Gly Thr 35	gcc tct gtt 2436 Ala Ser Val 340										
gtg tgc ctg ctg aa Val Cys Leu Leu As 345	aac ttc tat c Asn Phe Tyr F 350	cc aga gag gcc aaa Pro Arg Glu Ala Lys 355	gta cag tgg 2484 Val Gln Trp										
		gt aac tcc cag gag Bly Asn Ser Gln Glu 370											
gag cag gac agc aa Glu Gln Asp Ser Ly 375	g gac agc acc t s Asp Ser Thr T 380	ac agc ctc agc agc Cyr Ser Leu Ser Ser 385	acc ctg acg 2580 Thr Leu Thr 390										
ctg agc aaa gca ga Leu Ser Lys Ala As 39	Tyr Glu Lys H	eac aaa gtc tac gcc His Lys Val Tyr Ala 400	tgc gaa gtc 2628 Cys Glu Val 405										
acc cat cag ggc ct Thr His Gln Gly Le 410	ı Ser Ser Pro V	gtg aca aag agc ttc Val Thr Lys Ser Phe 115	aac agg gga 2676 Asn Arg Gly 420										
gag tgt taataaggcg Glu Cys	cgccaattct att	tcaagga gacagtcata	atg aaa tac 2731 Met Lys Tyr 425										
cta ttg cct acg gc Leu Leu Pro Thr Al 430	a gcc gct gga t a Ala Ala Gly I 435	tg tta tta ctc gcg Leu Leu Leu Ala 440	gcc cag ccg 2779 Ala Gln Pro .										
		gag tot ggt ggc ggt Slu Ser Gly Gly Gly 455											
	•	gc gct gct tcc gga Cys Ala Ala Ser Gly 470	gcttcagatc 2876										

tgtttgcctt tttgtggggt ggtgcagatc gcgttacgga gatcgaccga ctgcttgagc 29	936
aaaagccacg cttaactgct gatcaggcat gggatgttat tcgccaaacc agtcgtcagg 29	996
atottaacot gaggottttt ttacetacte tgcaagcage gacatetggt ttgacacaga 30	056
gcgatccgcg tcgtcagttg gtagaaacat taacacgttg ggatggcatc aatttgctta 33	116
atgatgatgg taaaacctgg cagcagccag gctctgccat cctgaacgtt tggctgacca 33	176
gtatgttgaa gcgtaccgta gtggctgccg tacctatgcc atttgataag tggtacagcg 32	236
ccagtggcta cgaaacaacc caggacggcc caactggttc gctgaatata agtgttggag 32	296
caaaaatttt gtatgaggeg gtgcagggag acaaatcacc aatcccacag geggttgate 33	356
tgtttgctgg gaaaccacag caggaggttg tgttggctgc gctggaagat acctgggaga 34	416
ctctttccaa acgctatggc aataatgtga gtaactggaa aacacctgca atggccttaa 34	476
cgttccgggc aaataatttc tttggtgtac cgcaggccgc agcggaagaa acgcgtcatc 35	536
aggeggagta teaaaacegt ggaacagaaa acgatatgat tgttttetea ecaacgacaa 35	596
gegategice tgtgcttgcc tgggatgtgg tegcaecegg teagagtggg titattgete 36	656
ccgatggaac agttgataag cactatgaag atcagctgaa aatgtacgaa aattttggcc 37	716
gtaagtcgct ctggttaacg aagcaggatg tggaggcgca taaggagtcg tct aga 3° Ser Arg	772
gac aac tct aag aat act ctc tac ttg cag atg aac agc tta agt ctg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Ser Leu 475 480 485 490	820
agc att cgg tcc ggg caa cat tct cca aac tgaccagacg acacaaacgg Ser Ile Arg Ser Gly Gln His Ser Pro Asn 495 500	870
cttacgctaa atcccgcgca tgggatggta aagaggtggc gtctttgctg gcctggactc 39	930
atcagatgaa ggccaaaaat tggcaggagt ggacacagca ggcagcgaaa caagcactga 3	990
ccatcaactg gtactatgct gatgtaaacg gcaatattgg ttatgttcat actggtgctt 40	050
atccagatcg tcaatcaggc catgatccgc gattacccgt tcctggtacg ggaaaatggg 43	110
actggaaagg gctattgcct tttgaaatga accctaaggt gtataacccc cagaagctag 4	170
cetgeggett eggteacegt eteaage gee tee ace aag gge eea teg gte tte 42 Ala Ser Thr Lys Gly Pro Ser Val Phe 505	224
ccc ctg gca ccc tcc tcc aag agc acc tct ggg ggc aca gcg gcc ctg Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 510 515 520 525	272

						-										
ggc Gly	tgc Cys	ctg Leu	gtc Val	aag Lys 530	gac Asp	tac Tyr	ttc Pḥe	ccc Pro	gaa Glu 535	ccg Pro	gtg Val	acg Thr	gtg Val	tcg Ser 540	tgg Trp	4320
aac Asn	tca Ser	ggc Gly	gcc Ala 545	ctg Leu	acc Thr	agc Ser	ggc Gly	gtc Val 550	cac His	acc Thr	ttc Phe	ccg Pro	gct Ala 555	gtc Val	cta Leu	4368
							ctc Leu 565									4416
agc Ser	agc Ser 575	ttg Leu	ggc Gly	acc Thr	cag Gln	acc Thr 580	tac Tyr	atc Ile	tgc Cys	aac Asn	gtg Val 585	aat Asn	cac His	aag Lys	ccc Pro	4464
agc Ser 590	aac Asn	acc Thr	aag Lys	gtg Val	gac Asp 595	aag Lys	aaa Lys	gtt Val	gag Glu	ccc Pro 600	aaa Lys	tct Ser	tgt Cys	gcg Ala	gcc Ala 605	4512
gca Ala	cat His	cat His	cat His	cac His 610	cat His	cac His	G] À gād	gcc Ala	gca Ala 615	gaa Glu	caa Gln	aaa Lys	ctc Leu	atc Ile 620	tca Ser	4560
				aat Asn			gca Ala	tag					tgt. Cys			4608
							ttt Phe									4656
act Thr	tta Leu	gat Asp 655	cgt Arg	tac Tyr	gct Ala	aac Asn	tat Tyr 660	gag Glu	ggc Gly	tgt Cys	ctg Leu	tgg Trp 665	aat Asn	gct Ala	aca Thr	4704
ggc Gly	gtt Val 670	gtg Val	gtt Val	tgt Cys	act Thr	ggt Gly 675	gac Asp	gaa Glu	act Thr	cag Gln	tgt Cys 680	tac Tyr	ggt Gly	aca Thr	tgg Trp	4752
							cct Pro									4800
			_				ggt Gly	_				~ 1		-		4848
cct Pro	gag Glu	tac Tyr	ggt Gly 720	gat Asp	aca Thr	cct Pro	att Ile	ccg Pro 725	ggc	tat Tyr	act Thr	tat Tyr	atc Ile 730	aac Asn	cct Pro	4896
							ggt Gly 740									4944
							cag Gln									4992

						•										
	750					755					760					
aat Asn 765	aat Asn	agg Arg	ttc Phe	cga Arg	aat Asn 770	agg Arg	cag Gln	ggt Gly	gca Ala	tta Leu 775	act Thr	gtt Val	tat Tyr	acg Thr	ggc Gly 780	5040
act Thr	gtt Val	act Thr	caa Gln	ggc Gly 785	act Thr	gac Asp	ccc Pro	gtt Val	aaa Lys 790	act Thr	tat Tyr	tac Tyr	cag Gln	tac Tyr 795	act Thr	5088
cct Pro	gta Val	tca Ser	tca Ser 800	aaa Lys	gcc Ala	atg Met	tat Tyr	gac Asp 805	gct Ala	tac Tyr	tgg Trp	aac Asn	ggt Gly 810	aaa Lys	ttc Phe	5136
aga Arg	gac Asp	tgc Cys 815	gct Ala	ttc Phe	cat His	tct Ser	ggc Gly 820	ttt Phe	aat Asn	gag Glu	gat Asp	cca Pro 825	ttc Phe	gtt Val	tgt Cys	5184
gaa Glu	tat Tyr 830	caa Gln	ggc Gly	caa Gln	tcg Ser	tct Ser 835	gac Asp	ctg Leu	cct Pro	caa Gln	cct Pro 840	cct Pro	gtc Val	aat Asn	gct Ala	5232
ggc Gly 845	ggc Gly	ggc Gly	tct Ser	ggt Gly	ggt Gly 850	ggt Gly	tct Ser	ggt Gly	ggc Gly	ggc Gly 855	tct Ser	gag Glu	ggt Gly	ggc Gly	ggc Gly 860	5280
tct Ser	gag Glu	ggt Gly	ggc Gly	ggt Gly 865	tct Ser	gag Glu	ggt Gly	ggc Gly	ggc Gly 870	tct Ser	gag Glu	ggt Gly	ggc Gly	ggt Gly 875	tcc Ser	5328
ggt Gly	ggc Gly	ggc Gly	tcc Ser 880	ggt Gly	tcc Ser	ggt Gly	gat Asp	ttt Phe 885	gat Asp	tat Tyr	gaa Glu	aaa Lys	atg Met 890	gca Ala	aac Asn	5376
gct Ala	aat Asn	aag Lys 895	ggg Gly	gct Ala	atg Met	acc Thr	gaa Glu 900	aat Asn	gcc Ala	gat Asp	gaa Glu	aac Asn 905	gcg Ala	cta Leu	cag Gln	5424
tct Ser	gac Asp 910	gct Ala	aaa Lys	ggc Gly	aaa Lys	ctt Leu 915	gat Asp	tct Ser	gtc Val	gct Ala	act Thr 920	gat Asp	tac Tyr	ggt Gly	gct Ala	5472
gct Ala 925	atc Ile	gat Asp	ggt Gly	ttc Phe	att Ile 930	ggt Gly	gac Asp	gtt Val	tcc Ser	ggc Gly 935	ctt Leu	gct Ala	aat Asn	ggt Gly	aat Asn 940	5520
ggt Gly	gct Ala	act Thr	ggt Gly	gat Asp 945	ttt Phe	gct Ala	ggc Gly	tct Ser	aat Asn 950	tcc Ser	caa Gln	atg Met	gct Ala	caa Gln 955	gtc Val	5568
ggt Gly	gac Asp	ggt Gly	gat Asp 960	aat Asn	tca Ser	cct Pro	tta Leu	atg Met 965	aat Asn	aat Asn	ttc Phe	cgt Arg	caa Gln 970	tat Tyr	tta Leu	5616
cct Pro	tct Ser	ttg Leu 975	cct Pro	cag Gln	tcg Ser	gtt Val	gaa Glu 980	tgt Cys	cgc Arg	cct Pro	tat Tyr	gtc Val 985	ttt Phe	ggc Gly	gct Ala	5664

143

ggt aaa cca tat gaa ttt tct att gat tgt gac aaa ata aac tta ttc Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe 990 995 cgt ggt gtc ttt gcg ttt ctt tta tat gtt gcc acc ttt atg tat gta 5760 Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val 1005 1010 1015 5809 ttt tcg acg ttt gct aac ata ctg cgt aat aag gag tct taataagaat Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys Glu Ser 1025 . tcactggccg tcgttttaca acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat 5869 cgccttgcag cacatecece tttegecage tggcgtaata gcgaagagge ccgcaccgat 5929 egecetteee aacagttgeg cageetgaat ggegaatgge geetgatgeg gtatttete 5989 cttacgcatc tgtgcggtat ttcacaccgc atataaattg taaacgttaa tattttgtta 6049 aaattcgcgt taaatttttg ttaaatcagc tcattttta accaataggc cgaaatcggc 6109 aaaatccctt ataaatcaaa agaatagccc gagatagggt tgagtgttgt tccagtttgg 6169 aacaagagtc cactattaaa gaacgtggac tccaacgtca aagggcgaaa aaccgtctat 6229 cagggcgatg gcccactacg tqaaccatca cccaaatcaa gttttttggg gtcgaggtgc 6289 cgtaaagcac taaatcggaa ccctaaaggg agcccccgat ttagagcttg acggggaaag 6349 ccqqcqaacq tqqcqaqaaa qqaaqqqaaq aaaqcqaaaq qaqcqqgqcqc tagggcqctg 6409 gcaagtgtag cggtcacgct gcgcgtaacc accacacccg ccgcgcttaa tgcgccgcta 6469 cagggcgcgt actatggttg ctttgacggg tgcagtctca gtacaatctg ctctgatgcc 6529 gcatagttaa gccagccccg acacccgcca acacccgctg acgcgccctg acgggcttgt 6589 ctgctcccgg catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag 6649 6680 aggttttcac cgtcatcacc gaaacgcgcg a <210> 523 <211> 286 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Vector pCES5 protein sequence <400> 523 Met Ser Ile Gln His Phe Arg Val Ala Leu Ile Pro Phe Phe Ala Ala

Phe Cys Leu Pro Val Phe Ala His Pro Glu Thr Leu Val Lys Val Lys

25

Asp	Ala	Glu	Asp	Gln	Leu	Gly	Ala	Arg	Val	Gly	Tyr	Ile	Glu	Leu	Asp
		35					40					45			

- Leu Asn Ser Gly Lys Ile Leu Glu Ser Phe Arg Pro Glu Glu Arg Phe
 50 60
- Pro Met Met Ser Thr Phe Lys Val Leu Cys Gly Ala Val Leu Ser 65 70 75 80
- Arg Ile Asp Ala Gly Gln Glu Gln Leu Gly Arg Arg Ile His Tyr Ser 85 90 95
- Gln Asn Asp Leu Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr 100 105 110
- Asp Gly Met Thr Val Arg Glu Leu Cys Ser Ala Ala Ile Thr Met Ser 115 120 125
- Asp Asn Thr Ala Ala Asn Leu Leu Thr Thr Ile Gly Gly Pro Lys 130 140
- Glu Leu Thr Ala Phe Leu His Asn Met Gly Asp His Val Thr Arg Leu 145 150 155 160
- Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg 165 170 175
- Asp Thr Thr Met Pro Val Ala Met Ala Thr Thr Leu Arg Lys Leu Leu 180 185 190
- Thr Gly Glu Leu Leu Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp
 195 · 200 205
- Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro 210 225 220
- Ala Gly Trp Phe Ile Ala Asp Lys Ser Gly Ala Gly Glu Arg Gly Ser 225 230 235 240
- Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp Gly Lys Pro Ser Arg Ile 245 250 255
- Val Val Ile Tyr Thr Thr Gly Ser Gln Ala Thr Met Asp Glu Arg Asn 260 265 270
- Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys His Trp 275 280 285
- <210> 524
- <211> 138
- <212> PRT
- <213> Artificial Sequence
- <220>
- <223> Description of Artificial Sequence: Vector pCES5 protein sequence

PCT/US02/12405 WO 02/083872

145

<400> 524 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser 10 His Ser Ala Gln Val Gln Leu Gln Val Asp Leu Glu Ile Lys Arg Gly Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 120 Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 130 135 <210> 525 <211> 48 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: Vector pCES5 protein sequence <400> 525 Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Leu Ala 10 Ala Gln Pro Ala Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly 40 <210> 526 <211> 28

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Vector pCES5

protein sequence

<400> 526

Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Leu Ser Ile Arg Ser Gly Gln His Ser Pro Asn 20 25

<210> 527

<211> 533

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Vector pCES5 protein sequence

<400> 527

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Ser Ser Lys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys-Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80

Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95

Lys Val Glu Pro Lys Ser Cys Ala Ala Ala His His His His His 100 105 110

Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala 115 120 125

Ala Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu Asn Ser Phe 130 135 140

Thr Asn Val Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr 145 150 155 160

Glu Gly Cys Leu Trp Asn Ala Thr Gly Val Val Cys Thr Gly Asp 165 170 175

Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu Ala Ile Pro 180 185 190

Glu Asn Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly 195 200 205

Ser	Glu 210	Gly	Gly	Gly	Thr	Lys 215	Pro	Pro	Glu	Tyr	Gly 220	Asp	Thr	Pro	Ile
Pro 225	Gly	Tyr	Thr	Tyr	Ile 230	Asn	Pro	Leu	Asp	Gly 235	Thr	Tyr	Pro	Pro	Gly 240
Thr	Glu	Gln	Asn	Pro 245	Ala	Asn	Pro	Asn	Pro 250	Ser	Leu	Glu	Glu	Ser 255	Gln
Pro	Leu	Asn	Thr 260	Phe	Met	Phe	Gln	Asn 265	Asn	Arg	Phe	Arg	Asn 270	Arg	Gln
Gly	Ala	Leu 275	Thr	Val	Tyr	Thr	Gly 280	Thr	Val	Thr	Gln	Gly 285	Thr	Asp	Pro
Val	Lys 290	Thr	Tyr	Tyr	Gln	Tyr 295	Thr	Pro	Val	Ser	Ser 300	Lys	Ala	Met	Tyr
Asp 305	Ala	Tyr	Trp	Asn	Gly 310	Lys	Phe	Arg	Asp	Cys 315	Ala	Phe	His	Ser	Gly 320
Phe	Asn	Glu	Asp	Pro 325	Phe	Val	Cys	Glu	Tyr 330	Gln	Gly	Gln	Ser	Ser 335	Asp
Leu	Pro	Gln	Pro 340	Pro	Val	Asn	Ala	Gly 345	Gly	Gly	Ser	Gly	Gly 350	Gly	Ser
Gly	Gly	Gly 355	Ser	Glu	Gly	Gly	Gly 360	Ser	Glu	Gly	Gly	Gly 365	Ser	Glu	Gly
Gly	Gly 370	Ser	Glu ·	Gly	Gly	Gly 375	Ser	Gly	Gly	Gly	Ser 380	Gly	Ser	Gly	Asp
Phe 385	Asp	Tyr	Glu	Lys	Met 390	Ala	Asn	Ala	Asn	Lys 395	Gly	Ala	Met	Thr	Glu 400
Asn	Ala	Asp	Glu	Asn 405	Ala	Leu	Gln	Ser	Asp 410	Ala	Lys	Gly	Lys	Leu 415	Asp
Ser	Val	Ala	Thr 420	Asp	Tyr	Gly	Ala	Ala 425	Ile	Asp	Gly	Phe	Ile 430	Gly	Asp
Val	Ser	Gly 435	Leu	Ala	Asn	Gly	Asn 440	Gly	Ala	Thr	Gly	Asp 445	Phe	Ala	Gly
Ser	Asn 450	Ser	Gln	Met	Ala	Gln 455	Val	Gly	Asp	Gly	Asp 460	Asn	Ser	Pro	Leu
Met 465	Asn	Asn	Phe	Arg	Gln 470	Tyr	Leu	Pro	Ser	Leu 475	Pro	Gln	Ser	Val	Glu 480
Cys	Arg	Pro	Tyr	Val 485	Phe	Gly	Ala	Gly	Lys 490	Pro	Tyr	Glu	Phe	Ser 495	Ile
Asp	Cys	Asp	Lys 500	Ile	Asn	Leu	Phe	Arg 505	Gly	Val	Phe	Ala	Phe 510	Leu	Leu

```
Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu
        515
                            520
Arg Asn Lys Glu Ser
    530
<210> 528
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
    oligonucleotide
<400> 528
acctcactgg cttccggatt cactttctct
                                                                   30
<210> 529
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
agaaacccac tccaaacctt taccaggagc ttggcgaacc ca
                                                                   42
<210> 530
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
ggaaggcagt gatctagaga tagtgaagcg acctttaacg gagtcagcat a
                                                                   51
<210> 531
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 531
ggaaggcagt gatctagaga tag
                                                                   23
```

<210> 532 <211> 20 <212> DNA <213> Artificial Sequence	<u>.</u> .
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 532 gtgctgactc agccaccctc	20
<210> 533 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 533 gccctgactc agcctgcctc	20
<210> 534 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 534 gagetgaete aggaeeetge	20
<210> 535 <211> 20 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 535 gagetgaete agecaecete	20
<210> 536 <211> 38 <212> DNA <213> Artificial Sequence	

<220>	December 5 2 1 1 5 1 1 2 5		
<223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400>	536		
cctcga	cagc gaagtgcaca gagcgtcttg actcagcc	· · · · · · · · · · · · · · · · · · ·	38
<210>	537		
<211>	•		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial Sequence:	Synthetic	
	oligonucleotide		
<400>			
cctcga	cage gaagtgeaca gagegtettg		30
<210>	5.38		
<211>			
<212>		-	
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400>	•		
	cage gaagtgeaca gagegetttg acteagee		38
<210>			
<211>	•		
<212>	DNA Artificial Sequence		
	Artificial Sequence		
<220>	December of Bubistata Communication		
~2237	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400>	539		
cctcga	cage gaagtgeaca gagegetttg		30
<210>			
<211>			•
<212>	Artificial Sequence		
<220>	Description of Artificial Com-	County and a	
~~~>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400>	540		
cctcga	cage taagtgeaca gagegetttg acteagee		38

<210> <211> <212> <213>	30		
<220> <223>	Description of Artificial Sequence: Synthetoligonucleotide	cic	
<400> cctcga	541 acagc gaagtgeaca gagegetttg	30	)
<210> <211> <212> <213>	38		
<220> <223>	Description of Artificial Sequence: Synthet oligonucleotide	ic	
<400> cctcga	542 acagc gaagtgcaca gagcgaattg actcagcc	38	ţ
<210> <211> <212> <213>	30		
<220> <223>	Description of Artificial Sequence: Synthet oligonucleotide	cic	
<400> cctcga	543 acago gaagtgoaca gagogaattg	30	)
<210> <211> <212> <213>	38		
<220> <223>	Description of Artificial Sequence: Synthet oligonucleotide	ic .	
<400> cctcga	544 acage gaagtgeaca gtaegaattg acteagee	38	}
<210><211><211><212><213>	30		

<220> <223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400> cctcga	545 acagc gaagtgcaca gtacgaattg		30
<210><211><211><212><213>	21		
<220> <223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400> cctcga	546 acagc gaagtgcaca g	2	21
<210> <211> <212> <213>	21 _		
<220> <223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400> ccgtg	547 tatta ctgtgcgaga g	2	21
<210><211><211><212><213>	21		
<220> <223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400> ctgtg	548 tatta ctgtgcgaga g	;	21
<210> <211> <212> <213>	21		•
<220> <223>	Description of Artificial Sequence: oligonucleotide	Synthetic	
<400>	549		

ccgtatatta ctgtgcgaaa g	21
<210> 550 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 550 ctgtgtatta ctgtgcgaaa g	21
<210> 551 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 551 ctgtgtatta ctgtgcgaga c	21
<210> 552 <211> 21 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 552 ccatgtatta ctgtgcgaga c	21
<210> 553 <211> 94 <212> DNA <213> Artificial Sequence	
<220> <223> Description of Artificial Sequence: Synthetic oligonucleotide	
<400> 553 ggtgtagtga tctagtgaca actctaagaa tactctctac ttgcagatga acagctttag ggctgaggac actgcagtct actattgtgc gaga	60 94
<210> 554 <211> 94	

```
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<400> 554
ggtgtagtga tctagtgaca actctaagaa tactctctac ttgcagatga acagctttag 60
ggctgaggac actgcagtct actattgtgc gaaa
<210> 555
<211> 85
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 555
atagtagact gcagtgtcct cagcccttaa gctgttcatc tgcaaqtaqa qaqtattctt 60
agagttgtct ctagatcact acacc
                                                                   85
<210> 556
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 556
                                                                   20
gactgggtgt agtgatctag
<210> 557
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 557
cttttctttg ttgccgttgg ggtg
                                                                   24
<210> 558
<211> 15
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
```

```
<220>
<221> modified base
<222> (1) .. (9)
<223> A, T, C, G, other or unknown
<400> 558
                                                                   15
nnnnnnnng caggt
<210> 559
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 559
acctgcnnnn n
                                                                   11
<210> 560
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 560
                                                                   10
gatnnnnatc
<210> 561
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(16)
```

```
<223> A, T, C, G, other or unknown
<400> 561
gaggagnnnn nnnnnn
                                                                    16
<210> 562
<211> 16
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(10)
<223> A, T, C, G, other or unknown
<400> 562
nnnnnnnn ctcctc
                                                                    16
<210> 563
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(10)
<223> A, T, C, G, other or unknown
<400> 563
ctcttcnnnn
                                                                    10
<210> 564
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (1) .. (5)
<223> A, T, C, G, other or unknown
<400> 564
nnnnngaaga g
                                                                    11
```

```
<210> 565
<211> 20
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (1)..(15)
<223> A, T, C, G, other or unknown
<400> 565
nnnnnnnnn nnnnngtccc
                                                                    20
<210> 566
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 566
                                                                    12
gacnnnnnng to
<210> 567
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7) ... (11)
<223> A, T, C, G, other or unknown
<400> 567
cgtctcnnnn n
                                                                    11
<210> 568
<211> 12
```

```
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (7)..(12)
<223> A, T, C, G, other or unknown
<400> 568
gtatccnnnn nn
                                                                   12
<210> 569
<211> 12
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
<400> 569
gcannnnnnt cg
                                                                   12
<210> 570
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 570
gccnnnnngg c
                                                                   11
<210> 571
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(11)
<223> A, T, C, G, other or unknown
<400> 571
ggtctcnnnn n
                                                                   11
<210> 572
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 572
                                                                   11
gacnnnnngt c
<210> 573
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 573
gacnnnnngt c
                                                                   11
<210> 574
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
```

```
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 574
ccannnnntg g
<210> 575
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 575
ccannnnnn nntgg
                                                                   15
<210> 576
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (5)..(9)
<223> A, T, C, G, other or unknown
<400> 576
ggccnnnnng gcc
                                                                   13
<210> 577
<211> 12
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4)..(9)
<223> A, T, C, G, other or unknown
```

```
<400> 577
                                                                    12
ccannnnnnt gg
<210> 578
<211> 11
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4) .. (8)
<223> A, T, C, G, other or unknown
<400> 578
                                                                    11
cctnnnnnag g
<210> 579
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (4) . . (7)
<223> A, T, C, G, other or unknown
<400> 579
                                                                    10
gacnnnngtc
<210> 580
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(12)
<223> A, T, C, G, other or unknown
<400> 580
                                                                    15
ccannnnnn nntgg
```

WO 02/083872

```
<210> 581
<211> 11
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(8)
<223> A, T, C, G, other or unknown
<400> 581
gcannnnntg c
                                                                   11
<210> 582
<211> 10251
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CJRA05
      nucleotide sequence
<220>
<221> CDS
<222> (1578)..(1916)
<220>
<221> CDS
<222> (2388)..(2843)
<220>
<221> CDS
<222> (2849)..(2893)
<220>
<221> CDS
<222> (3189)..(4232)
<220>
<221> CDS
<222> (7418)..(8119)
<220>
<221> CDS
<222> (8160)..(9452)
<400> 582
aatgctacta ctattagtag aattgatgcc accttttcag ctcgcgcccc aaatgaaaat 60
atagctaaac aggttattga ccatttgcga aatgtatcta atggtcaaac taaatctact 120
cgttcgcaga attgggaatc aactgttata tggaatgaaa cttccagaca ccgtacttta 180
```

gttgcatatt ta	aaacatgt	tgagctacag	cattatattc	agcaattaag	ctctaagcca	240
tccgcaaaaa tg	acctctta	tcaaaaggag	caattaaagg	tactctctaa	tcctgacctg	300
ttggagtttg ct	tccggtct	ggttcgcttt	gaagctcgaa	ttaaaacgcg	atatttgaag	360
totttcgggc tt	cctcttaa	tctttttgat	gcaatccgct	ttgcttctga	ctataatagt	420
cagggtaaag ac	ctgatttt	tgatttatgg	tcattctcgt	tttctgaact	gtttaaagca	480
tttgaggggg at	tcaatgaa	tatttatgac	gattccgcag	tattggacgc	tatccagtct	540
aaacatttta ct	attacccc	ctctggcaaa	acttcttttg	caaaagcctc	tcgctatttt	600
ggtttttatcigt	cgtctggt	aaacgagggt	tatgatagtg	ttgctcttac	tatgcctcgt	660
aattcctttt gg	cgttatgt	atctgcatta	gttgaatgtg	gtattcctaa	atctcaactg	720
atgaatcttt ct	acctgtaa	taatgttgtt	ccgttagttc	gttttattaa	cgtagatttt	780
tcttcccaac gt	cctgactg	gtataatgag	ccagttctta	aaatcgcata	aggtaattca	840
caatgattaa ag	ttgaaatt	aaaccatctc	aagcccaatt	tactactcgt	tctggtgttt	900
ctcgtcaggg ca	agccttat	tcactgaatg	agcagctttg	ttacgttgat	ttgggtaatg	960
aatatccggt tc	ttgtcaag	attactcttg	atgaaggtca	gccagcctat	gcgcctggtc	1020
tgtacaccgt tc	atctgtcc	tctttcaaag	ttggtcagtt	cggttccctt	atgattgacc	1080
gtctgcgcct cg	ttccggct	aagtaacatg	gagcaggtcg	cggatttcga	cacaatttat	1140
caggcgatga ta	caaatctc	cgttgtactt	tgtttcgcgc	ttggtataat	cgctgggggt	1200
caaagatgag tg	ttttagtg	tattcttttg	cctctttcgt	tttaggttgg	tgccttcgta	1260
gtggcattac gt	attttacc	cgtttaatgg	aaacttcctc	atgaaaaagt	ctttagtcct	1320
caaagcctct gt	agccgttg	ctaccctcgt	tccgatgctg	tctttcgctg	ctgagggtga	1380
cgatcccgca aa	agcggcct	ttaactccct	gcaagcctca	gcgaccgaat	atatcggtta	1440
tgcgtgggcg at	ggttgttg	tcattgtcgg	cgcaactatc	ggtatcaagc	tgtttaagaa	1500
attcacctcg aa	agcaagct	gataaaccga	tacaattaaa	ggctcctttt	ggagcctttt	1560
ttttggagat tt	tcaac gtg Met 1	Lys Lys Le	ta tta ttc que la	gca att cct Ala Ile Pro	tta gtt Leu Val 10	1610
gtt cct ttc t Val Pro Phe T	at tct gg yr Ser Gl 15	c gcg gcc g y Ala Ala (	gaa tca cat Glu Ser His 20	cta gac ggo Leu Asp Gly 25	y Ala Ala	1658
gaa act gtt g Glu Thr Val G 30	aa agt tg lu Ser Cy	t tta gca a s Leu Ala 1 35	aaa tcc cat Lys Ser His	aca gaa aat Thr Glu Asi 40	t tca ttt n Ser Phe	1706

act aac of Thr Asn 1	gtc tgg Val Trp	aaa gac Lys Asp	gac aaa Asp Ly: 50	a act Thr	tta Leu	gat Asp	cgt Arg 55	tac Tyr	gct Ala	aac Asn	tat Tyr	1754
gag ggc : Glu Gly (	tgt ctg Cys Leu	tgg aat Trp Asn 65	gct aca Ala Thi	a ggc Gly	gtt Val	gta Val 70	gtt Val	tgt Cys	act Thr	ggt Glý	gac Asp 75	1802
gaa act ( Glu Thr (	cag tgt Gln Cys	tac ggt Tyr Gly 80	aca tgg Thr Tr	g gtt Val	ccț Pro 85	att Ile	ggg Gly	ctt Leu	gct Ala	atc Ile 90	cct Pro	1850
gaa aat ( Glu Asn (	gag ggt Glu Gly 95	ggt ggc Gly Gly	tct gag Ser Glu	ggt Gly 100	ggc Gly	ggt Gly	tct Ser	gag Glu	ggt Gly 105	ggc Gly	ggt Gly	1898
tct gag ( Ser Glu (	ggt ggc Gly Gly 110	ggt act Gly Thr	aaaccto	ctg a	agtac	ggtg	ga ta	caco	ctati	t		1946
ccgggcta	ta cttat	atcaa c	cctctcga	c gg	cactt	atc	cgcc	tggt	ac t	tgago	caaaac	2006
cccgctaa	tc ctaat	cette to	cttgagga	g tc	cago	ctc	ttaa	tact	tt d	catgt	ttcag	2066
aataatag	gt tccga	aatag g	caggggg	a tta	aactg	ttt	atac	gggd	cac 1	tgtta	actcaa	2126
ggcactgad	cc ccgtt	aaaac t	tattacca	g tad	cacto	ctg	tato	atca	aa a	agcca	atgtat	2186
gacgcttad	ct ggaad	ggtaa a	ttcagaga	c tgo	gctt	tcc	atto	tggc	tt 1	taato	gaggat	2246
ttatttgti	tt gtgaa	tatca a	gccaato	g tct	tgacc	tgc	ctca	acct	cc t	gtca	atgct	2306
ggcggcgg	ct ctggt	ggtgg ti	ctggtgg	ic ggo	ctctg	agg	gtgg	tggo	tc t	gagg	gaggc	2366
ggttccggt	tg gtggd	tctgg t	tcc ggt Ser Gly 115	Asp								2417
aac gct a Asn Ala A 125	aat aag Asn Lys	ggg gct Gly Ala	atg acc Met Thr 130	gaa Glu	aat Asn	gcc Ala	gat Asp 135	gaa Glu	aac Asn	gcg Ala	cta Leu	2465
cag tot o Gln Ser # 140	gac gct Asp Ala	aaa ggc Lys Gly 145	aaa ctt Lys Leu	gat Asp	Ser	gtc Val 150	gct Ala	act Thr	gat Asp	tac Tyr	ggt Gly 155	2513
gct gct a Ala Ala 1	Ile Asp	ggt ttc Gly Phe 160	att ggt Ile Gly	gac Asp	gtt Val 165	tcc Ser	ggc Gly	ctt Leu	gct Ala	aat Asn 170	ggt Gly	2561
aat ggt g Asn Gly <i>F</i>	gct act Ala Thr 175	ggt gat Gly Asp	ttt gct Phe Ala	ggc Gly 180	tct Ser	aat Asn	tcc Ser	caa Gln	atg Met 185	gct Ala	caa Gln	2609
gtc ggt g Val Gly A 1	gac ggt Asp Gly 190	gat aat Asp Asn	tca cct Ser Pro 195	tta Leu	atg . Met .	aat Asn	Asn	ttc Phe 200	cgt Arg	caa Gln	tat Tyr	2657

	•		
tta cct tcc ctc Leu Pro Ser Leu 205	cct caa tcg gtt gaa tg Pro Gln Ser Val Glu Cy 210	t cgc cct ttt gtc ttt ggc s Arg Pro Phe Val Phe Gly 215	2705
gct ggt aaa cca Ala Gly Lys Pro 220	tat gaa ttt tct att ga Tyr Glu Phe Ser Ile As 225	t tgt gac aaa ata aac tta p Cys Asp Lys Ile Asn Leu 230 235	2753
Phe Arg Gly Val	ttt gcg ttt ctt tta ta Phe Ala Phe Leu Leu Ty 240 24	r Val Ala Thr Phe Met Tyr	2801
gta ttt tct acg Val Phe Ser Thr 255	ttt gct aac ata ctg cg Phe Ala Asn Ile Leu Ar 260	t aat aag gag tot taato atg g Asn Lys Glu Ser Met 265	2851
cca gtt ctt ttg Pro Val Leu Leu 270	ggt att ccg tta tta tt Gly Ile Pro Leu Leu Le 275	g cgt ttc ctc ggt u Arg Phe Leu Gly 280	2893
ttccttctgg taact	ttgtt cggctatctg cttac	ttttc ttaaaaaggg cttcggtaag	2953
atagctattg ctatt	tcatt gtttcttgct cttat	tattg ggcttaactc aattcttgtg	3013
ggttatctct ctgat	attag cgctcaatta ccctc	tgact ttgttcaggg tgttcagtta	3073
attctcccgt ctaat	gcgct tccctgtttt tatgt	tattc tctctgtaaa ggctgctatt	3133
ttcatttttg acgtt	aaaca aaaaatcgtt tctta	tttgg attgggataa ataat atg Met	3191
gct gtt tat ttt Ala Val Tyr Phe 285	gta act ggc aaa tta gg Val Thr Gly Lys Leu Gl 290	c tct gga aag acg ctc gtt y Ser Gly Lys Thr Leu Val 295	3239
		a gct ggg tgc aaa ata gca l Ala Gly Cys Lys Ile Ala 310	3287
		c ccg caa gtc ggg agg ttc u Pro Gln Val Gly Arg Phe 325	3335
		g gat aag cct tct ata tct o Asp Lys Pro Ser Ile Ser 340 345	3383
Asp Leu Leu Ala	att ggg cgc ggt aat ga	t too tao gat gaa aat aaa p Ser Tyr Asp Glu Asn Lys	3431
Asp Leu Leu Ala	att ggg cgc ggt aat ga Ile Gly Arg Gly Asn As 350 35	t too tao gat gaa aat aaa p Ser Tyr Asp Glu Asn Lys 5 360	3431

-	-			gga Gly		-					-	-	-			3575
				cag Gln											tat Tyr 425	3623
-	_	-	_	gac Asp 430	_						-					3671
				ggc Gly												3719
_	-			ggc Gly	_				-			_		-		3767
				aag Lys		-			-		_			-	-	3815
		_		tat Tyr	-			-					_			3863
				cgg Arg 510									_	_	_	3911
				ata Ile		-		_			-	-		_		3959
				gca Ala		_				-						4007
				aaa Lys												4055
				tct Ser												4103
				aag Lys 590												4151
				ctc Leu				-		_		_				4199
aaa	ggt	aat	tca	aat	gaa	att	gtt	aaa	tgt	aat	taa	tttt	gtt	ttct	tgatgt	4252

Lys Gly Asn Ser Asn Glu Ile Val Lys Cys Asn 620 625

ttgtttcatc atcttctttt gctcaggtaa ttgaaatgaa taattcgcct ctgcgcgatt 4312 ttgtaacttg gtattcaaag caatcaggcg aatccgttat tgtttctccc gatgtaaaag 4372 gtactgttac tgtatattca tctgacgtta aacctgaaaa tctacgcaat ttctttattt 4432 ctgttttacg tgcaaataat tttgatatgg taggttctaa cccttccatt attcagaagt 4492 ataatccaaa caatcaggat tatattgatg aattgccatc atctgataat caggaatatg 4552 atgataattc cgctccttct ggtggtttct ttgttccgca aaatgataat gttactcaaa 4612 cttttaaaat taataacgtt cgggcaaagg atttaatacg agttgtcgaa ttgtttgtaa 4672 agtotaatac ttotaaatco toaaatgtat tatotattga oggototaat otattagttg 4732 ttagtgctcc taaagatatt ttagataacc ttcctcaatt cctttcaact gttgatttgc 4792 caactgacca gatattgatt gagggtttga tatttgaggt tcagcaaggt gatgctttag 4852 atttttcatt tgctgctggc tctcagcgtg gcactgttgc aggcggtgtt aatactgacc 4912 qcctcacctc tgttttatct tctgctggtg gttcgttcgg tatttttaat ggcgatgttt 4972 tagggctatc agttcgcgca ttaaagacta atagccattc aaaaatattg tctgtgccac 5032 gtattcttac gctttcaggt cagaagggtt ctatctctgt tggccagaat gtccctttta 5092 ttactggtcg tgtgactggt gaatctgcca atgtaaataa tccatttcag acgattgagc 5152 gtcaaaatgt aggtatttcc atgagcgttt ttcctgttgc aatggctggc ggtaatattg 5212 ttctggatat taccagcaag gccgatagtt tgagttcttc tactcaggca agtgatgtta 5272 ttactaatca aagaagtatt gctacaacgg ttaatttgcg tgatggacag actcttttac 5332 toggtggcct cactgattat aaaaacactt ctcaggattc tggcgtaccg ttcctgtcta 5392 aaatcccttt aatcggcctc ctgtttagct cccgctctga ttctaacgag gaaagcacgt 5452 tatacgtgct cgtcaaagca accatagtac gcgccctgta gcggcgcatt aagcgcggcg 5512 qqtqtqqtqq ttacqcqcaq cqtqaccqct acacttgcca gcgccctagc gcccgctcct 5572 ttcgctttct tcccttcctt tctcgccacg ttcgccggct ttccccgtca agctctaaat 5632 cgggggctcc ctttagggtt ccgatttagt gctttacggc acctcgaccc caaaaaactt 5692 gatttgggtg atggttcacg tagtgggcca tcgccctgat agacggtttt tcgccctttg 5752 acqttqqaqt ccacqttctt taatagtgga ctcttgttcc aaactggaac aacactcaac 5812 cctatctcgg gctattcttt tgatttataa gggattttgc cgatttcgga accaccatca 5872 aacaggattt tcgcctgctg gggcaaacca gcgtggaccg cttgctgcaa ctctctcagg 5932

gccaggcggt gaagggcaat cagctgttgc ccgtctcact ggtgaaaaga aaaaccaccc 5992	
tggatccaag cttgcaggtg gcacttttcg gggaaatgtg cgcggaaccc ctatttgttt 6052	
atttttctaa atacattcaa atatgtatcc gctcatgaga caataaccct gataaatgct 6112	
tcaataatat tgaaaaagga agagtatgag tattcaacat ttccgtgtcg cccttattcc 6172	
cttttttgcg gcattttgcc ttcctgtttt tgctcaccca gaaacgctgg tgaaagtaaa 6232	
agatgctgaa gatcagttgg gcgcactagt gggttacatc gaactggatc tcaacagcgg 6292	
taagatcctt gagagttttc gccccgaaga acgttttcca atgatgagca cttttaaagt 6352	
totgotatgt ggcgcggtat tatcccgtat tgacgccggg caagagcaac tcggtcgccg 6412	
catacactat totcagaatg acttggttga gtactcacca gtcacagaaa agcatottac 6472	
ggatggcatg acagtaagag aattatgcag tgctgccata accatgagtg ataacactgc 6532	
ggccaactta cttctgacaa cgatcggagg accgaaggag ctaaccgctt ttttgcacaa 6592	
catgggggat catgtaactc gccttgatcg ttgggaaccg gagctgaatg aagccatacc 6652	
aaacgacgag cgtgacacca cgatgcctgt agcaatggca acaacgttgc gcaaactatt 6712	
aactggcgaa ctacttactc tagcttcccg gcaacaatta atagactgga tggaggcgga 6772	
taaagttgca ggaccacttc tgcgctcggc ccttccggct ggctggttta ttgctgataa 6832	
atctggagcc ggtgagcgtg ggtctcgcgg tatcattgca gcactggggc cagatggtaa 6892	
gccctcccgt atcgtagtta tctacacgac ggggagtcag gcaactatgg atgaacgaaa 6952	
tagacagatc gctgagatag gtgcctcact gattaagcat tggtaactgt cagaccaagt 7012	
ttactcatat atactttaga ttgatttaaa acttcatttt taatttaaaa ggatctaggt 7072	
gaagateett titgataate teatgaceaa aateeettaa egtgagtitt egtteeaetg 7132	
tacgtaagac ccccaagctt gtcgactgaa tggcgaatgg cgctttgcct ggtttccggc 7192	
accagaagcg gtgccggaaa gctggctgga gtgcgatctt cctgacgctc gagcgcaacg 7252	
caattaatgt gagttagete acteattagg caceecagge tttacaettt atgetteegg 7312	
ctcgtatgtt gtgtggaatt gtgagcggat aacaatttca cacaggaaac agctatgacc 7372	
atgattacgc caagctttgg agccttttt ttggagattt tcaac gtg aaa aaa tta 7429 Met Lys Lys Leu 630	
tta ttc gca att cct tta gtt gtt cct ttc tat tct cac agt gca caa 7477 Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser His Ser Ala Gln 635 640 645	
gac atc cag atg acc cag tet cca gec acc etg tet ttg tet eca ggg 7525	٠

Asp I	le 550	Gln	Met	Thr	Gln	Ser 655	Pro	Ala	Thr	Leu	Ser 660	Leu	Ser	Pro	Gly	
gaa a Glu A 665																7573
tta g Leu A	gcc	tgg Trp	tac Tyr	cag Gln 685	cag Gln	aaa Lys	cct Pro	ggc Gly	cag Glņ 690	gct Ala	ccc Pro	agg Arg	ctc Leu	ctc Leu 695	atc Ile	7621
tat q Tyr A	jat Asp	gca Ala	tcc Ser 700	aac Asn	agg Arg	gcc Ala	act Thr	ggc Gly 705	atc Ile	cca Pro	gcc Ala	agg Arg	ttc Phe 710	agt Ser	ggc Gly	7669
agt g Ser G																7717
gaa g Glu <i>F</i>	gat Asp 730	ttt Phe	gca Ala	gtt Val	tat Tyr	tac Tyr 735	tgt Cys	cag Gln	cag Gln	cgt Arg	aac Asn 740	tgg Trp	cat His	ccg Pro	tgg Trp	7765
acg t Thr F 745																7813
cca t Pro S	tct Ser	gtc Val	ttc Phe	atc Ile 765	ttc Phe	ccg Pro	cca Pro	tct Ser	gat Asp 770	gag Glu	cag Gln	ttg Leu	aaa Lys	tct Ser 775	gga Gly	7861
act o																7909
aaa q Lys V																7957
gag a Glu s	agt Ser 810	gtc Val	aca Thr	gag Glu	cgg Arg	gac Asp 815	agc Ser	aag Lys	gac Asp	agc Ser	acc Thr 820	tac Tyr	agc Ser	ctc Leu	agc Ser	8005
agc a Ser 1 825																8053
gcc t Ala (																8101
ttc a						taat	caag	gcg (	egeca	aatto	ct at	ttca	aagga	a		8149
gacaç	gtca			Lys :					Chr /		gcc q Ala <i>l</i>			Leu 1		8198

tta ctc gcg gcc Leu Leu Ala Ala					
ggt ggc ggt ctt Gly Gly Gly Leu 895					
gct tcc gga ttc Ala Ser Gly Phe 910					
gct cct ggt aaa Ala Pro Gly Lys 925					
ggc gat act gct Gly Asp Thr Ala 940					
aga gac aac tct Arg Asp Asn Ser	-	•		_	
gct gag gac act Ala Glu Asp Thr 975	gca gtc tac Ala Val Tyr	tat tgt gcg Tyr Cys Ala 980	agg agg ctc Arg Arg Leu	gat ggc Asp Gly 985	tat 8534 Tyr
att tcc tac tac Ile Ser Tyr Tyr 990					
acc gtc tca agc Thr Val Ser Ser 1005					
ccc tcc tcc aag Pro Ser Ser Lys 1020	agc acc tct Ser Thr Ser 1025	Gly Gly Thr	gcg gcc ctg Ala Ala Leu 1030	Gly Cys	ctg 8678 Leu .035
gtc aag gac tac Val Lys Asp Tyr	ttc ccc gaa Phe Pro Glu 1040	ccg gtg acg Pro Val Thr 1045	gtg tcg tgg Val Ser Trp	aac tca Asn Ser 1050	ggc 8726 Gly
gcc ctg acc agc Ala Leu Thr Ser 1055			Ala Val Leu		
gga ctc tac tcc Gly Leu Tyr Ser 1070	Leu Ser Ser	gta gtg acc Val Val Thr 1075	gtg ccc tcc Val Pro Ser 1080	agc agc Ser Ser	ttg 8822 Leu
ggc acc cag acc Gly Thr Gln Thr 1085	tac atc tgc Tyr Ile Cys 1090	aac gtg aat Asn Val Asn	cac aag ccc His Lys Pro 1095	agc aac Ser Asn	acc 8870 Thr
aag gtg gac aag	aaa gtt gag	ccc aaa tct	tgt gcg gcc	gca cat	cat 8918

Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Ala Ala Ala His His 1100 1105 1110 1115	
cat cac cat cac ggg gcc gca gaa caa aaa ctc atc tca gaa gag gat His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp 1120 1125 1130	
ctg aat ggg gcc gca tag gct agc tct gct wsy ggy gay tty gay tay  100 9014  1135 9014  1145	
gar aar atg gct aaw gcy aay aar ggs gcy atg acy gar aay gcy gay 9062 Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp 1150 1155 1160	
gar aay gck ytr car wsy gay gcy aar ggy aar ytw gay wsy gtc gck 9110 Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala 1165 1170 1175	
acy gay tay ggy gcy gcc atc gay ggy tty aty ggy gay gtc wsy ggy Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly 1180 1185 1190 1195	
ytk gcy aay ggy aay ggy gcy acy ggw gay tty gcw ggy tck aat tcy 9206 Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser . 1200 1205 1210	
Car atg gcy car gty ggw gay ggk gay aay wsw cck ytw atg aay aay 9254 Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn 1215 1220 1225	
tty mgw car tay ytw cck tcy cty cck car wsk gty gar tgy cgy ccw 9302 Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro 1230 1235 1240	
tty gty tty wsy gcy ggy aar ccw tay gar tty wsy aty gay tgy gay  Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp  1245 1250 1255	
aar atm aay ytw tty cgy ggy gty tty gck tty ytk yta tay gty gcy Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala 1260 1265 1270 1275	
acy tty atg tay gtw tty wsy ack tty gcy aay atw ytr cgy aay aar 9446 Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys 1280 1285 1290	
gar wsy tagtgatete etaggaagee egeetaatga gegggetttt tttttetggt 9502 Glu Ser	
atgcatcctg aggccgatac tgtcgtcgtc ccctcaaact ggcagatgca cggttacgat 9562	
gcgcccatct acaccaacgt gacctatccc attacggtca atccgccgtt tgttcccacg 9622	
gagaatccga cgggttgtta ctcgctcaca tttaatgttg atgaaagctg gctacaggaa 9682	
ggccagacgc gaattatttt tgatggcgtt cctattggtt aaaaaatgag ctgatttaac 9742	

172

aaaaatttaa tgcgaatttt aacaaaatat taacgtttac aatttaaata tttgcttata 9802
caatcttcct gtttttgggg cttttctgat tatcaaccgg ggtacatatg attgacatgc 9862
tagttttacg attaccgttc atcgattctc ttgtttgctc cagactetca ggcaatgacc 9922
tgatagcctt tgtagatctc tcaaaaatag ctaccctctc cggcattaat ttatcagcta 9982
gaacggttga atatcatatt gatggtgatt tgactgtctc cggcctttct cacccttttg 10042
aatctttacc tacacattac tcaggcattg catttaaaat atatgagggt tctaaaaatt 10102
tttatccttg cgttgaaata aaggcttctc ccgcaaaagt attacagggt cataatgttt 10162
ttggtacaac cgatttagct ttatgctctg aggctttatt gcttaatttt gctaattctt 10222
tgccttgcct gtatgattta ttggatgtt

<210> 583

<211> 113

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CJRA05 protein sequence

<400> 583

Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser 1 5 10 15

Gly Ala Ala Glu Ser His Leu Asp Gly Ala Ala Glu Thr Val Glu Ser 20 25 30

Cys Leu Ala Lys Ser His Thr Glu Asn Ser Phe Thr Asn Val Trp Lys 35 40 45

Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys Leu Trp 50 60

Asn Ala Thr Gly Val Val Cys Thr Gly Asp Glu Thr Gln Cys Tyr
65 70 75 80

Gly Thr Trp Val Pro Ile Gly Leu Ala Ile Pro Glu Asn Glu Gly Gly 85 90 95

Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly 100 105 110

Thr

<210> 584

<211> 152

<212> PRT

<213> Artificial Sequence

173

<220> <223> Description of Artificial Sequence: CJRA05 protein sequence <400> 584 Ser Gly Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro Phe Val Phe Gly Ala Gly Lys Pro Tyr Glu 105 Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala 135 140 Asn Ile Leu Arg Asn Lys Glu Ser <210> 585 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: CJRA05 peptide sequence Met Pro Val Leu Leu Gly Ile Pro Leu Leu Arg Phe Leu Gly <210> 586 <211> 348 <212> PRT <213> Artificial Sequence

<223> Description of Artificial Sequence: CJRA05

<220>

## protein sequence

	< 400	)> 58	86													
1	Met 1	Ala	Val	Tyr	Phe 5	Val	Thr	Gly	Lys	Leu 10	Gly	Ser	Gly	Lys	Thr 15	Leu
•	Val	Ser	Val	Gly 20	Lys	Ile	Gln	Asp	Lys 25	Ile	Val	Ala	Gly	Cys 30	Lys	Ile
	Ala	Thr	Asn 35	Leu	Asp	Leu	Arg	Leu 40	Gln	Asn	Leu	Pro	Gln 45	Val	Gly	Arg
	Phe	Ala 50	Lys	Thr	Pro	Arg	Val 55	Leu	Arg	Ile	Pro	Asp 60	Lys	Pro	Ser	Ile
	Ser 65	Asp	Leu	Leu	Ala	11e 70	Gly	Arg	Gly	Asn	Asp 75	Ser	Tyr	Asp	Glu	Asn 80
	Lys	Asn	Gly	Leu	Leu 85	Val	Leu	Asp	Glu	Cys 90	Gly	Thr	Trp	Phe	Asn 95	Thr
	Arg	Ser	Trp	Asn 100	Asp	Lys	Glu	Arg	Gln 105	Pro	Ile	Ile	Asp	Trp 110	Phe	Leu
	His	Ala	Arg 115	Lys	Leu	Gly	Trp	Asp 120	Ile	Ile	Phe	Leu	Val 125	Gln	Asp	Leu
	Ser	Ile 130	Val	Asp	Lys	Gln	Ala 135	Arg	Ser	Ala	Leu	Ala 140	Glu	His	Val	Val
	Tyr 145	Cys	Arg	Arg	Leu	Asp 150	Arg	Ile	Thr	Leu	Pro 155	Phe	Val	Gly	Thr	Leu 160
	Tyr	Ser	Leu	Ile	Thr 165	Gly	Ser	Lys	Met	Pro 170	Leu	Pro	Lys	Leu	His 175	Val
•	Gly	Val	Val	Lys 180	Tyr	Gly	Asp	Ser	Gln 185	Leu	Ser	Pro	Thr	Val 190	Glu	Arg
•	Trp	Leu	Tyr 195	Thr	Gly	Lys	Asn	Leu 200	Tyr	Asn	Ala	Tyr	Asp 205	Thr	Lys	Gln
i	Ala	Phe 210	Ser	Ser	Asn	Tyr	Asp 215	Ser	Gly	Val	Tyr	Ser 220	Tyr	Leu	Thr	Pro
	Tyr 225	Leu	Ser	His	Gly	Arg 230	Tyr	Phe	Lys	Pro	Leu 235	Asn	Leu	Gly	Gln	Lys 240
ì	Met	Lys	Leu	Thr	Lys 245	Ile	Tyr	Leu	Lys	Lys 250	Phe	Ser	Arg	Val	Leu 255	Cys
]	Leu	Ala	Ile	Gly 260	Phe	Ala	Ser	Ala	Phe 265	Thr	Tyr	Ser	Tyr	Ile 270	Thr	Gln
1	Pro	Lys	Pro 275	Glu	Val	Lys	Lys	Val 280	Val	Ser	Gln	Thr	Tyr 285	Asp	Phe	Asp
1	Lys	Phe	Thr	Ile	Asp	Ser	Ser	Gln	Arg	Leu	Asn	Leu	Ser	Tyr	Arg	Tyr

175

290 295 300 Val Phe Lys Asp Ser Lys Gly Lys Leu Ile Asn Ser Asp Asp Leu Gln Lys Gln Gly Tyr Ser Leu Thr Tyr Ile Asp Leu Cys Thr Val Ser Ile Lys Lys Gly Asn Ser Asn Glu Ile Val Lys Cys Asn <210> 587 <211> 234 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: CJRA05 protein sequence <400> 587 Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser 10 His Ser Ala Gln Asp Ile Gln Met Thr Gln Ser Pro Ala Thr Leu Ser Leu Ser Pro Gly Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Gly Val Ser Ser Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile Tyr Asp Ala Ser Asn Arg Ala Thr Gly Ile Pro Ala Arg Phe Ser Gly Ser Gly Pro Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glu Pro Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Arg Asn 105 Trp His Pro Trp Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 120 Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 135 Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 155 Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 170 Gly Asn Ser Gln Glu Ser Val Thr Glu Arg Asp Ser Lys Asp Ser Thr 180 185

176

Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 195 200 205

His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 210 225 220

Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230

<210> 588

<211> 431

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: CJRA05 protein sequence

<400> 588

Met Lys Tyr Leu Leu Pro Thr Ala Ala Ala Gly Leu Leu Leu Ala 1 5 10 15

Ala Gln Pro Ala Met Ala Glu Val Gln Leu Leu Glu Ser Gly Gly 20 25 30

Leu Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly 35 40 45

Phe Thr Phe Ser Thr Tyr Glu Met Arg Trp Val Arg Gln Ala Pro Gly 50 60

Lys Gly Leu Glu Trp Val Ser Tyr Ile Ala Pro Ser Gly Gly Asp Thr 65 70 75 80

Ala Tyr Ala Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn 85 90 95

Ser Lys Asn Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp 100 105 110

Thr Ala Val Tyr Tyr Cys Ala Arg Arg Leu Asp Gly Tyr Ile Ser Tyr 115 120 125

Tyr Tyr Gly Met Asp Val Trp Gly Gln Gly Thr Thr Val Thr Val Ser 130 135 140

Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu Gly Cys Leu Val Lys Asp 165 170 175

Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr 180 185 190

Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr 195 200 205

Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln 215 Thr Tyr Ile Cys Asn Val Asn His Lys Pro Ser Asn Thr Lys Val Asp 230 Lys Lys Val Glu Pro Lys Ser Cys Ala Ala Ala His His His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala Gln Ala Ser Ser Ala Ser Gly Asp Phe Asp Tyr Glu Lys Met 280 Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp Glu Asn Ala 295 Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala Thr Asp Tyr 315 Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly Leu Ala Asn 330 Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser Gln Met Ala 345 Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro Phe Val Phe . 380 Ser Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys Glu Ser 420 <210> 589 <211> 5 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Illustrative

<400> 589

Glu Gly Gly Gly Ser

```
<210> 590
<211> 1275
<212> DNA
<213> Unknown Organism
<220>
<221> CDS
<222> (1)..(1272)
<220>
<223> Description of Unknown Organism: M13 nucleotide
      sequence
<400> 590
gtg aaa aaa tta tta ttc gca att cct tta gtt gtt cct ttc tat tct
                                                                   48
Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser
                                     10
cac tcc qct qaa act gtt gaa agt tgt tta gca aaa ccc cat aca gaa
His Ser Ala Glu Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu
aat toa ttt act aac gto tgg aaa gac gac aaa act tta gat cgt tac
Asn Ser Phe Thr Asn Val Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr
                                                                   192
gct aac tat gag ggt tgt ctg tgg aat gct aca ggc gtt gta gtt tgt
Ala Asn Tyr Glu Gly Cys Leu Trp Asn Ala Thr Gly Val Val Val Cys
                         55
act ggt gac gaa act cag tgt tac ggt aca tgg gtt cct att ggg ctt
Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu
                     70
gct atc cct gaa aat gag ggt ggt ggc tct gag ggt ggc ggt tct gag
                                                                   288
Ala Ile Pro Glu Asn Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu
                 85
                                                                   336
ggt ggc ggt tct gag ggt ggc ggt act aaa cct cct gag tac ggt gat
Gly Gly Gly Ser Glu Gly Gly Gly Thr Lys Pro Pro Glu Tyr Gly Asp
                                 105
            100
aca cct att ccg ggc tat act tat atc aac cct ctc gac ggc act tat
                                                                   384
Thr Pro Ile Pro Gly Tyr Thr Tyr Ile Asn Pro Leu Asp Gly Thr Tyr
ccg cct ggt act gag caa aac ccc gct aat cct aat cct tct ctt gag
                                                                   432
Pro Pro Gly Thr Glu Gln Asn Pro Ala Asn Pro Asn Pro Ser Leu Glu
                        135
                                                                   480
gag tot cag cot ott aat act tto atg ttt cag aat aat agg tto oga
Glu Ser Gln Pro Leu Asn Thr Phe Met Phe Gln Asn Asn Arg Phe Arg
                    150
                                        155
aat agg cag ggg gca tta act gtt tat acg ggc act gtt act caa ggc
                                                                   528
Asn Arg Gln Gly Ala Leu Thr Val Tyr Thr Gly Thr Val Thr Gln Gly
                165
```

						•										
act Thr	gac Asp	ccc Pro	gtt Val 180	aaa Lys	act Thr	tat Tyr	tac Tyr	cag Gln 185	tac Tyr	act Thr	cct Pro	gta Val	tca Ser 190	tca Ser	aaa Lys	576
gcc Ala	atg Met	tat Tyr 195	gac Asp	gct Ala	tac Tyr	tgg Trp	aac Asn 200	ggt Gly	aaa Lys	ttc Phe	aga Arg	gac Asp 205	tgc Cys	gct Àlá	ttc Phe	624
cat His	tct Ser 210	ggc Gly	ttt Phe	aat Asn	gag Glu	gat Asp 215	cca Pro	ttc Phe	gtt Val	tgt Cys	gaa Glu 220	tat Tyr	caa Gln	ggc Gly	caa Gln	672
	tct Ser															720
ggt Gly	ggt Gly	tct Ser	ggt Gly	ggc Gly 245	ggc Gly	tct Ser	gag Glu	ggt Gly	ggt Gly 250	ggc Gly	tct Ser	gag Glu	ggt Gly	ggc Gly 255	ggt Gly	768
tct Ser	gag Glu	ggt Gly	ggc Gly 260	ggc Gly	tct Ser	gag Glu	gga Gly	ggc Gly 265	ggt Gly	tcc Ser	ggt Gly	ggt Gly	ggc Gly 270	tct Ser	ggt Gly	816
	ggt Gly															864
atg Met	acc Thr 290	gaa Glu	aat Asn	gcc Ala	gat Asp	gaa Glu 295	aac Asn	gcg Ala	cta Leu	cag Gln	tct Ser 300	gac Asp	gct Ala	aaa Lys	ggc Gly	912
	ctt Leu															960
att Ile	ggt Gly	gac Asp	gtt Val	tcc Ser 325	ggc Gly	ctt Leu	gct Ala	aat Asn	ggt Gly 330	aat Asn	ggt Gly	gct Ala	act Thr	ggt Gly 335	gat Asp	1008
	gct Ala															1056
	cct Pro															1104
	gtt Val 370															1152
	tct Ser															1200
	ctt Leu															1248

180

405 410 415

aac ata ctg cgt aat aag gag tct taa Asn Ile Leu Arg Asn Lys Glu Ser 420 1275

<210> 591

<211> 424

<212> PRT

<213> Unknown Organism

<220>

<223> Description of Unknown Organism: M13 protein sequence

<400> 591

. Met Lys Lys Leu Leu Phe Ala Ile Pro Leu Val Val Pro Phe Tyr Ser

1 5 10 15

His Ser Ala Glu Thr Val Glu Ser Cys Leu Ala Lys Pro His Thr Glu 20 25 30

Asn Ser Phe Thr Asn Val Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr 35 40 45

Ala Asn Tyr Glu Gly Cys Leu Trp Asn Ala Thr Gly Val Val Cys 50 60

Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu 65 70 75 80

Ala Ile Pro Glu Asn Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu 85 90 95

Gly Gly Gly Ser Glu Gly Gly Gly Thr Lys Pro Pro Glu Tyr Gly Asp 100 105 110

Thr Pro Ile Pro Gly Tyr Thr Tyr Ile Asn Pro Leu Asp Gly Thr Tyr 115 120 125

Pro Pro Gly Thr Glu Gln Asn Pro Ala Asn Pro Asn Pro Ser Leu Glu 130 135 140

Glu Ser Gln Pro Leu Asn Thr Phe Met Phe Gln Asn Asn Arg Phe Arg 145 150 155 160

Asn Arg Gln Gly Ala Leu Thr Val Tyr Thr Gly Thr Val Thr Gln Gly 165 170 175

Thr Asp Pro Val Lys Thr Tyr Tyr Gln Tyr Thr Pro Val Ser Ser Lys 180 185 190

Ala Met Tyr Asp Ala Tyr Trp Asn Gly Lys Phe Arg Asp Cys Ala Phe 195 200 205

His Ser Gly Phe Asn Glu Asp Pro Phe Val Cys Glu Tyr Gln Gly Gln 210 215 220

181

Ser Ser Asp Leu Pro Gln Pro Pro Val Asn Ala Gly Gly Ser Gly 230 Gly Gly Ser Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Ger Glu Gly Gly Gly Ser Gly Gly Ser Gly 265 Ser Gly Asp Phe Asp Tyr Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly 295 Lys Leu Asp Ser Val Ala Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe 310 · Ile Gly Asp Val Ser Gly Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp 325 330 Phe Ala Gly Ser Asn Ser Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln 360 Ser Val Glu Cys Arg Pro Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu 375 Phe Ser Ile Asp Cys Asp Lys Ile Asn Leu Phe Arg Gly Val Phe Ala 390 395 Phe Leu Leu Tyr Val Ala Thr Phe Met Tyr Val Phe Ser Thr Phe Ala 410 Asn Ile Leu Arg Asn Lys Glu Ser 420 <210> 592 <211> 35 <212> DNA <213> Artificial Sequence <223> Description of Artificial Sequence: Synthetic oligonucleotide <400> 592 35 caacgatgat cgtatggcgc atgctgccga gacag

<210> 593 <211> 1355

<212> DNA

<213> Artificial Sequence

<220> <223> Description of Artificial Sequence: M13-III nucleotide sequence																
<221	<220> <221> CDS <222> (1)(1305)															
gcg		gca				cac His										48
						aat Asn										96
gat Asp	gat Asp	cgt Arg	atg Met 35	gct Ala	tct Ser	act Thr	gcy Ala	gar Glu 40	acw Thr	gty Val	gaa Glu	wsy Ser	tgy Cys 45	ytr Leu	gcm Ala	144
						wsw Ser										192
acy Thr	ytw Leu 65	gat Asp	cgw Arg	tay Tyr	gcy Ala	aay Asn 70	tay Tyr	gar Glu	ggy Gly	tgy Cys	ytr Leu 75	tgg Trp	aat Asn	gcy Ala	acm Thr	240
						Gly ggy										288
						atm Ile										336
ggy Gly	Gly	GJ À GG À	wsy Ser 115	gar Glu	ggy Gly	ggy Gly	ggw Gly	tcy Ser 120	gar Glu	ggw Gly	ggy Gly	ggw Gly	acy Thr 125	aar Lys	cck Pro	384
cck Pro	gar Glu	tay Tyr 130	ggy Gly	gay Asp	acw Thr	cck Pro	atw Ile 135	cck Pro	ggy Gly	tay Tyr	acy Thr	tay Tyr 140	aty Ile	aay Asn	cck Pro	432
ytm Leu	gay Asp 145	Gly	acy Thr	tay Tyr	cck Pro	cck Pro 150	ggy Gly	acy Thr	gar Glu	car Gln	aay Asn 155	ccy Pro	gcy Ala	aay Asn	cck Pro	480
	Pro					wsy Ser										528
															ggm Gly	576

acy Thr	gty Val	acy Thr	car Gln 195	Gly ggy	acy Thr	gay Asp	ccy Pro	gty Val 200	aar Lys	acy Thr	tay Tyr	tay Tyr	car Gln 205	tay Tyr	acy Thr	624
cck Pro	gtm Val	tcr Ser 210	wsw Ser	aar Lys	gcy Ala	atg Met	tay Tyr 215	gay Asp	gcy Ala	tay Tyr	tgg Trp	aay Asn 220	ggy ggy	aar Lys	tty Phe	672
mgw Arg	gay Asp 225	tgy Cys	gcy Ala	tty Phe	cay His	wsy Ser 230	ggy Gly	tty Phe	aay Asn	gar Glu	gay Asp 235	ccw Pro	tty Phe	gty Val	tgy Cys	720
gar Glu 240	tay Tyr	car Gln	gly ggy	car Gln	wsk Ser 245	wsy Ser	gay Asp	ytr Leu	cck Pro	car Gln 250	ccw Pro	cck Pro	gty Val	aay Asn	gck Ala 255	768
G] À Gàà	ggy Gly	GJ Y GG Y	wsy Ser	ggy Gly 260	ggw Gly	ggy Gly	wsy Ser	Gly ggy	ggy Gly 265	G1y Ggy	wsy Ser	gar Glu	G17 G37	ggw Gly 270	G] À Gà	816
wsy Ser	gar Glu	ggw Gly	ggy Gly 275	ggy Gly	wsy Ser	ggr Gly	Gly ggy	337 Gly 280	wsy Ser	ggy Gly	wsy Ser	GJ y	gay Asp 285	tty Phe	gay Asp	864
tay Tyr	gar Glu	aar Lys 290	atg Met	gcw Ala	aay Asn	gcy Ala	aay Asn 295	aar Lys	ggs Gly	gcy Ala	atg Met	acy Thr 300	gar Glu	aay Asn	gcy Ala	912
gay Asp	gar Glu 305	aay Asn	gcr Ala	ctr Leu	car Gln	wst Ser 310	gay Asp	gcy Ala	aar Lys	G] À	aar Lys 315	ytw Leu	gay Asp	wsy Ser	gtc Val	960
gcy Ala 320	acw Thr	gay Asp	tay Tyr	ggt Gly	gct Ala 325	gcy Ala	atc Ile	gay Asp	GJ À GG À	tty Phe 330	aty Ile	ggy Gly	gay Asp	gty Val	wsy Ser 335	1008
ggy Gly	ctk Leu	gct Ala	aay Asn	ggy Gly 340	aay Asn	ggw Gly	gcy Ala	acy Thr	ggw Gly 345	gay Asp	tty Phe	gcw Ala	Gly	tck Ser 350	Asn	1056
tcy Ser	car Gln	atg Met	gcy Ala 355	Gln	gty Val	ggw Gly	gay Asp	ggk Gly 360	gay Asp	aay Asn	wsw Ser	cck Pro	ytw Leu 365	atg Met	aay Asn	1104
aay Asn	tty Phe	mgw Arg 370	car Gln	tay Tyr	ytw Leu	cck Pro	ser 375	Leu	cck Pro	car Gln	wsk Ser	gty Val 380	Glu	tgy Cys	cgy Arg	1152
ccw Pro	tty Phe 385	Val	tty Phe	wsy Ser	gcy	390 390	Lys	ccw Pro	tay Tyr	gar Glu	tty Phe 395	Ser	aty	gay Asp	tgy Cys	1200
gay Asp 400	Lys	atm Ile	aay Asn	ytw Leu	Phe 405	Arg	Gly	gty Val	tty Phe	gck Ala 410	Phe	ytk Leu	yta Leu	tay Tyr	gty Val 415	1248
gcy Ala	acy Thr	tty Phe	atg Met	tay Tyr	gtw Val	tty Phe	wsy Ser	ack Thr	tty Phe	gcy Ala	aay Asn	atw	ytr Leu	cgy Arg	aay Asn	1296

184

420 425 430 aar gar wsy tagtgatctc ctaggaagcc cgcctaatga gcgggctttt 1345 Lys Glu Ser tttttctggt 1355 <210> 594 <211> 434 <212> PRT <213> Artificial Sequence <220> <223> Description of Artificial Sequence: M13-III protein sequence <400> 594 Ala Ala His His His His His Gly Ala Ala Glu Gln Lys Leu Ile Ser Glu Glu Asp Leu Asn Gly Ala Ala Ala Ser Asp Ile Asn Asp Asp Arg Met Ala Ser Thr Ala Glu Thr Val Glu Ser Cys Leu Ala Lys 40 Pro His Thr Glu Asn Ser Phe Thr Asn Val Trp Lys Asp Asp Lys Thr Leu Asp Arg Tyr Ala Asn Tyr Glu Gly Cys Leu Trp Asn Ala Thr Gly Val Val Val Cys Thr Gly Asp Glu Thr Gln Cys Tyr Gly Thr Trp Val Pro Ile Gly Leu Ala Ile Pro Glu Asn Glu Gly Gly Ser Glu Gly .Gly Gly Ser Glu Gly Gly Gly Ser Glu Gly Gly Thr Lys Pro Pro Glu Tyr Gly Asp Thr Pro Ile Pro Gly Tyr Thr Tyr Ile Asn Pro Leu Asp Gly Thr Tyr Pro Pro Gly Thr Glu Gln Asn Pro Ala Asn Pro Asn 155 Pro Ser Leu Glu Glu Ser Gln Pro Leu Asn Thr Phe Met Phe Gln Asn Asn Arg Phe Arg Asn Arg Gln Gly Ala Leu Thr Val Tyr Thr Gly Thr

Val Thr Gln Gly Thr Asp Pro Val Lys Thr Tyr Tyr Gln Tyr Thr Pro 195 200 205

185

Val Ser Ser Lys Ala Met Tyr Asp Ala Tyr Trp Asn Gly Lys Phe Arg 210 215 220 Asp Cys Ala Phe His Ser Gly Phe Asn Glu Asp Pro Phe Val Cys Glu

225 230 235 . . . 240__

Tyr Gln Gly Gln Ser Ser Asp Leu Pro Gln Pro Pro Val Asn Ala Gly
245 250 255

Gly Gly Ser Gly Gly Gly Ser Gly Gly Ser Glu Gly Gly Ser 260 265 270

Glu Gly Gly Ser Gly Gly Gly Ser Gly Ser Gly Asp Phe Asp Tyr 275 280 285

Glu Lys Met Ala Asn Ala Asn Lys Gly Ala Met Thr Glu Asn Ala Asp 290 295 300

Glu Asn Ala Leu Gln Ser Asp Ala Lys Gly Lys Leu Asp Ser Val Ala 305 310 315 320

Thr Asp Tyr Gly Ala Ala Ile Asp Gly Phe Ile Gly Asp Val Ser Gly 325 330 335

Leu Ala Asn Gly Asn Gly Ala Thr Gly Asp Phe Ala Gly Ser Asn Ser 340 345 350

Gln Met Ala Gln Val Gly Asp Gly Asp Asn Ser Pro Leu Met Asn Asn 355 360 365

Phe Arg Gln Tyr Leu Pro Ser Leu Pro Gln Ser Val Glu Cys Arg Pro 370 375 380

Phe Val Phe Ser Ala Gly Lys Pro Tyr Glu Phe Ser Ile Asp Cys Asp 385 390 395 400

Lys Ile Asn Leu Phe Arg Gly Val Phe Ala Phe Leu Leu Tyr Val Ala 405 410 415

Thr Phe Met Tyr Val Phe Ser Thr Phe Ala Asn Ile Leu Arg Asn Lys 420 425 430

Glu Ser

<210> 595

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 595 cgttgatatc gctagcctat gc

<210> <211> <212> <213>	30	
	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gatagg	596 octta gctagcccgg agaacgaagg	30
<210> <211> <212> <213>	37	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ctttca	597 acago ggtttogota gogacoottt tgtotgo	37
<210> <211> <212> <213>	50	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> ctttca	598 acago ggtttogota gogaccottt tgtcagogag taccagggto	50
<210> <211> <212> <213>	37	
<220> <223>	Description of Artificial Sequence: Synthetic oligonucleotide	
<400> gactgt	599 cctcg gcagcatgcg ccatacgatc atcgttg	37
<210> <211> <212> <213>	37	
<220>		

```
<223> Description of Artificial Sequence: Synthetic
     oligonucleotide
<220>
<221> CDS
<222> (2)..(25)
<400> 600
                                                                   37
c aac gat gat cgt atg gcg cat gct gccgagacag tc
 Asn Asp Asp Arg Met Ala His Ala
                   5
<210> 601
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 601
Asn Asp Asp Arg Met Ala His Ala
<210> 602
<211> 37
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 602
                                                                   37
ctttcacagc ggtttgcatg cagacccttt tgtctgc
<210> 603
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 603
                                                                   50
ctttcacagc ggtttgcatg cagacccttt tgtcagcgag taccagggtc
<210> 604
<211> 7
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Illustrative
     peptide
<400> 604
Tyr Ala Asp Ser Val Lys Gly
<210> 605
<211> 21
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Primer
<400> 605
                                                                   21
cctcgacagc gaagtgcaca g
<210> 606
<211> 38
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 606
                                                                   38
ggctgagtca agacgctctg tgcacttcgc tgtcgagg
<210> 607
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Illustrative
      peptide
<400> 607
Gln Ser Ala Leu Thr Gln Pro
<210> 608
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Primer
<400> 608
                                                                   22
cctctgtcac agtgcacaag ac
```

189

```
<210> 609
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
                                                                     42
cctctgtcac agtgcacaag acatccagat gacccagtct cc
<210> 610
<211> 50
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
                                                                     50
gggaggatgg agactgggtc gtctggatgt cttgtgcact gtgacagagg
<210> 611
<211> 11
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Illustrative
       peptide
Gln Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
 <210> 612
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <223> Description of Artificial Sequence: Primer
 <400> 612
                                                                      20
 gactgggtgt agtgatctag
 <210> 613
 <211> 28
 <212> DNA
```

<213> Artificial Sequence

190

WO 02/083872

```
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 613
                                                                   28
ggtgtagtga tcttctagtg acaactct
<210> 614
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 614
Val Ser Ser Arg Asp Asn
 1
<210> 615
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> CDS
<222> (1)..(15)
<400> 615
                                                                    15
tac tat tgt gcg aaa
Tyr Tyr Cys Ala Lys
<210> 616
<211> 5
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 616
Tyr Tyr Cys Ala Lys
<210> 617
<211> 36
```

191

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 617
                                                                   36
ggtgccgata ggcttgcatg caccggagaa cgaagg
<210> 618
<211> 95
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 618
cgcttcacta agtctagaga caactctaag aatactctct acttgcagat gaacagctta 60
agggctgagg acactgcagt ctactattgt acgag
<210> 619
<211> 10
<212> DNA
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified base
<222> (4)..(7)
<223> A, T, C, G, other or unknown
<400> 619
                                                                    10
gatnnnnatc
<210> 620
<211> 10
<212> PRT
<213> Unknown Organism
<223> Description of Unknown Organism: MALIA3-derived
      peptide
Met Lys Leu Leu Asn Val Ile Asn Phe Val
                   5
  1
```

<210> 621

15

192

```
<211> 29
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: CJRA05-derived
     peptide
<400> 621
Met Ser Val Leu Val Tyr Ser Phe Ala Ser Phe Val Leu Gly Trp Cys
Leu Arg Ser Gly Ile Thr Tyr Phe Thr Arg Leu Met Glu
<210> 622
<211> 15
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Illustrative
      nucleotide sequence
<400> 622
tttttttt tttt
<210> 623
 <211> 87
 <212> PRT
 <213> Unknown Organism
 <220>
 <223> Description of Unknown Organism: MALIA3-derived
       peptide
 <400> 623
 Met Ile Lys Val Glu Ile Lys Pro Ser Gln Ala Gln Phe Thr Thr Arg
 Ser Gly Val Ser Arg Gln Gly Lys Pro Tyr Ser Leu Asn Glu Gln Leu
 Cys Tyr Val Asp Leu Gly Asn Glu Tyr Pro Val Leu Val Lys Ile Thr
                              40
 Leu Asp Glu Gly Gln Pro Ala Tyr Ala Pro Gly Leu Tyr Thr Val His
                          55
 Leu Ser Ser Phe Lys Val Gly Gln Phe Gly Ser Leu Met Ile Asp Arg
```

Leu Arg Leu Val Pro Ala Lys

10

```
<210> 624
<211> 29
<212> PRT
<213> Unknown Organism
<220>
<223> Description of Unknown Organism: MALIA3-derived
      peptide
<400> 624
Met Ser Val Leu Val Tyr Ser Phe Ala Ser Phe Val Leu Gly Trp Cys
Leu Arg Ser Gly Ile Thr Tyr Phe Thr Arg Leu Met Glu
<210> 625
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<220>
<221> modified_base
<222> (7)..(10)
<223> A, T, C, G, other or unknown
<400> 625
ctcttcnnnn
<210> 626
<211> 87
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: CJRA05-derived
       peptide
 <400> 626
 Met Ile Lys Val Glu Ile Lys Pro Ser Gln Ala Gln Phe Thr Thr Arg
 Ser Gly Val Ser Arg Gln Gly Lys Pro Tyr Ser Leu Asn Glu Gln Leu
 Cys Tyr Val Asp Leu Gly Asn Glu Tyr Pro Val Leu Val Lys Ile Thr
 Leu Asp Glu Gly Gln Pro Ala Tyr Ala Pro Gly Leu Tyr Thr Val His
 Leu Ser Ser Phe Lys Val Gly Gln Phe Gly Ser Leu Met Ile Asp Arg
```

```
75
                                                              80
                     70
 65
Leu Arg Leu Val Pro Ala Lys
                 85
<210> 627
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: CJRA05-derived
    peptide
<400> 627
Met Lys Leu Leu Asn Val Ile Asn Phe Val
<210> 628
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 628
                                                                   19
gacccagtct ccatcctcc
<210> 629
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide
<400> 629
                                                                    19
gactcagtct ccactctcc
<210> 630
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
 <223> Description of Artificial Sequence: Synthetic
      oligonucleotide
 <400> 630
                                                                    19
 gacgcagtct ccaggcacc
```

195

WO 02/083872

210>	631	
211>		
212>		
:213>	Artificial Sequence	
(220>	Description of Artificial Sequence: Synthetic	
(223>	oligonucleotide	
	oligonucieotide .	
<400>	631	
	gtct ccagccacc	19
, ,		
<210>		
<211>		
<212>	Artificial Sequence	
<213>	Artificial Sequence	
<220>	•	
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		19
gtctc	ctgga cagtcgatc	
<210>	633	
<211>		
<212>		
<213>	Artificial Sequence	
<220>	Description of Artificial Sequence: Synthetic	
<223>	oligonucleotide	
	Oligonacicociac	
<400>	633	
ggcct	tggga cagacagtc	19
<210>		
<211><212>		
	Artificial Sequence	
\Z1J/	Altilitial bodomos	
<220>		
<223>	Description of Artificial Sequence: Synthetic	
	oligonucleotide	
<400>		19
gtctc	ctgga cagtcagtc	-
<210>	635	
<211>		
<212>	DNA	
<213>	Artificial Sequence	

196

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide

<400> 635 ggccccaggg cagagggtc

## This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

## IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)