

Inhaltsverzeichnis

1. Betriebssysteme / Software	3
2. Datenbanken	
3. Programmiersprachen	
4. Softwareentwicklung	
5. Web- und Netzwerkprogrammierung / Datensicherheit	
6. Referenzlisten	

VORBEREITUNG - Aufgabenstellung

Name:						

Zulässige Hilfsmittel: Referenzlisten: SQL , Java

1. Betriebssysteme / Software

Frage 1 OS: Be	griffe
1. Aufgabe	Geben Sie eine Definition/Erklärung/Beispiel der folgenden Begriffe:
1. Ereigi 2. Sema	nis- und Sperrsynchronisation aphore
Antwort(en):	
Ereignis- und S	Sperrsynchronisation:
Semaphore:	

Frage 2 OS: Semaphore

Semaphore-Variablen werden u.a. für den Eintritt/Austritt in/aus einem kritischen Abschnitt verwendet.

Sie bestehen aus einem Zähler und einer Warteschlange:

```
struct sema{
    int sema_count;
    queue sema_queue;
};
```

Aufgabe 1: Zeigen Sie den Pseudo-code, um in den kritischen Abschnitt zu gelangen.

Aufgabe 2: Zeigen Sie den Pseudo-code, um den kritischen Abschnitt zu verlassen.

Ant	two	rt	1:		
Pas	ssie	re	n/	W	ait:

Antwort 2: Verlassen/Notify:

Frage 3 OS: FIFO threadsafe

Aufgabe 1: Gegeben ist der Lückentext unten und das UML-Diagramm. Ersetzen Sie die Lücken, sodass der FIFO-Speicher threadsafe wird.

Beschreibung: threadsafe Fifo als Ringbu

threadsafe Fifo als Ringbuffer-Speicher

Fifo() erzeugt das ArrayList-Objekt und initialisiert die Member-Variablen

dequeue() liefert das oberste Object-Element vom Fifo

enqueue() legt ein Object-Element in den Fifo

isFull() liefert true, wenn der Fifo voll ist. Sonst false.

isEmpty() liefert true, wenn der Fifo leer ist. Sonst false.

Der Fifo muss threadsafe implementiert werden. D.h. die notwendige Sperr- und Ereignis-Synchronisation ist zu implementieren.

```
Antwort(en):
class FIFO {
     private ArrayList<Object> queue;
     private int size, begin, end;
     public FIFO(int size){
          this.size = size+1;
          this.queue = new
          begin = 0; end = 0;
     }
                     public _____ dequeue(){
          while (isEmpty())
                try {_____}catch(InterruptedException ex){};
           Object value = queue.remove(______);
           end++;
           end%=size;
          return value;
     }
                            _____ public boolean isEmpty(){
           if(begin == end){
                return
           }
```



```
return _____;
    }
                          ____ public boolean isFull(){
         if(end == (begin+1)%size){
              return _____;
         return _____;
    }
                   _____ public void enqueue(int item){
         while(this.isFull())
              try {_____}catch(InterruptedException _ex){};
         queue.add(begin,item);
         begin++;
         begin%=size;
    }
}
```


2. Datenbanken

Frage 4 DB: Check

1. Aufgabe: Wahr oder falsch?

Nr	Frage	WAHR	FALSCH
1	Zwischen 2 Entitäts-Typen können mehrere Beziehungen bestehen	0	0
2	Referentielle Integrität wird bei SQL mit der CHECK-Klausel realisiert	0	0
3	Ein Superschlüssel ist minimal	0	0
4	Die Attribute eines Fremdschlüssels dürfen unter keinerlei Umständen den Wert NULL annehmen	0	0
5	Inkonsistenz bedeutet, dass Informationen doppelt gespeichert werden	0	0
6	Mit der DEFAULT-Klausel wird in SQL dynamische Integrität garantiert.	0	0
7	Ein 'unique foreign key' modelliert eine 1:1 Beziehung	0	0
8	Erst die 2. Normalform führt den Begriff Schlüssel ein.	0	0

Frage 5 DB: Entity-Relationship-Diagramm

1. **Aufgabe:** Erstellen Sie aus den folgenden Angaben ein ER-Diagramm

Entity-Typ	Attribute
Angestellter	Nummer, Name, Gehalt
Abteilung	Nummer, Name
Projekt	Nummer, Beschreibung

Relationship-Typ
leiten (2x)
gehören zu
arbeiten an
sind Teilprojekte von
vertreten

Geben Sie für die folg. Beziehungen den Komplexitätsgrad an:

- 1. Jeder Angestellte gehört zu genau einer Abteilung
- 2. Jede Abteilung wird von genau einem Angestellten geleitet.
- 3. Zu einer Abteilung gehört mindestens ein Angestellter.
- 4. Ein Angestellter leitet höchstens eine Abteilung.
- 5. Jeder Angestellte arbeitet an mehreren Projekten
- 6. An einem Projekt arbeiten mehrere Angestellte.
- 7. Ein Projekt ist ein Teilprojekt von einem oder keinem anderen Projekt.
- 8. Ein Projekt kann beliebig viele Teilprojekte haben.
- 9. Ein Angestellter leitet mehrere Projekte
- 10. Ein Projekt wird von genau einem Angestellten geleitet.
- 11. Jeder Angestellte hat genau einen Stellvertreter.
- 12. Jeder Angestellte ist Stellvertreter von genau einem anderen Angestellten.

HTBL UVA	VORBEREITUNG – RDP – Fachspezifische Softwaretechnik	Seite 8 von 43
Antwort(en):		

Frage 6 DB: SQL I

Gegeben:

Assistenten: {Persnr, Name, Chef}

Professoren: {Persnr, Name}

Es gilt:

- 1. Für jeden Professor arbeiten mehrere Assistenten
- 2. Jeder Assistent arbeitet für genau einen Professor.
- 3. Es kann nicht sein, dass ein Assistent für keinen Professor arbeitet.

1. Aufgabe:

Erstellen Sie die notwendigen SQL-Anweisungen:

- 1. Zeigen Sie die create table Anweisungen zum Erzeugen der notwendigen Tabellen.
- 2. Zeigen Sie (in SQL) die Festlegung der Primär- und Fremdschlüssel.
- 3. Wenn ein Professor gekündigt(gelöscht) wird, sollen auch alle seine Assistenten gelöscht werden.
- 4. Es darf kein Assistenten gespeichert werden, der noch keinen Chef hat.

2.	Δ	ufc	ıa	be:
_	_	uiv	14	

eige die select-Anweisung, 1. um alle Assistenten aufzulisten (Assistenten.Persnr, Assistenten.Name und Professoren.Name), die für den Professor 'Sokrates' arbeiten.
ntwort(en):
. Aufgabe:
. Aufgabe:

Frage 7 DB: is_uni

Gegeben seien die folgenden Relationen einer Universitätsdatenbank:

Studenten: [MatrNr, Name, Semester]

Professoren: [PersNr, Name] Vorlesungen: [VorlNr, Titel] hoeren: [MatrNr, VorINr]

1. Aufgabe: group by

Welche Studenten (matrnr, name, anzahl_der_VL) besuchen wieviele Vorlesungen? Absteigend sortiert nach anzahlVL.

2. Aufgabe:

Schüler haben bei bestimmten Vorlesungen Fehlstunden.

- 1.) Zeige dies in einem ER-Diagramm.
- 2.) Erstelle die View Fehlstunden mit folgenden Inhalten: {Schülername, SummeFehlstunden}. Es sollen also pro Schüler die gesamten Fehlstunden aufgezeigt werden.

3. Aufgabe: Ein Schüler ist pro Vorlesung ein sogenannter Sprecher. 1.) Zeige dies in einem ER-Diagramm. 2.) Liste alle Vorlesungen, bei denen der Schüler "Max Mustermann" Sprecher ist.
Antwort(en):
1. Aufgabe:
2. Aufgabe: 1.)

■ [™] ■HTBL <i>u</i> VA
Calabura

VORBEREITUNG – RDP – Fachspezifische Softwaretechnik

Seite **11** von **43**

2. Aufgabe: 2.)	
R. Aufgaho:	
B. Aufgabe:	
B. Aufgabe:	
-7	

Frage 8 DB: Normalformen I

Gegeben sind folg. Funktionale Abhängigkeiten a,b => c,d e,g,h => f,j a,c => b,d p,q => r,s e,f,g => h,i s => t

f,g => j g,h => i

1. Aufgabe:

Welche/s der folgenden Schematas könnte das Ergebnis der Normalisierung von R(s,q,t,u) sein ?

1. Das Schema $R1(\underline{s}, \underline{q}) R2(\underline{s}, \underline{t}) R3(\underline{q}, \underline{u})$

q

=>

u

- 2. Das Schema R1(\underline{s} ,q) R2(\underline{q} ,t) R3(\underline{t} ,u)
- 3. Das Schema R1(\underline{s} , \underline{q}) R2(\underline{s} ,t) R3(\underline{q} ,u)
- 4. Das Schema R1(<u>s, q</u>,t) R2(<u>s, q</u>,u)
- 5. Das Schema $R(\underline{s}, \underline{q}, t, u)$

Antwort(en):

Frage 9 DB: Normalformen II

Gegeben sei das Relationenschema

 $R = \{A, B, C, D, E, \underline{F}\}$

mit den funktionalen Abhängigkeiten

BC -> C

C -> AD

D -> CE

E->BC

F -> D

Fist der Schlüssel und alle Attribute A bis F sind einelementig

Aufgabe 1:

R ist in der 1. Normalform. Ist R auch in der 2. Normalform? Begründen Sie ihre Antwort.

Aufgabe 2:

Warum ist R nicht in der 3. Normalform?

Antwort(en):

Aufgabe 1:

Aufgabe 2:

Frage 10 DB: Normalform PKW

Für eine Autovermietung wurde ein ER-Diagramm erstellt und von einem Mitarbeiter wurde dieses dann in die folgenden Tabellen übertragen.

1. Aufgabe:

Prüfen Sie die Qualität dieser Vorlage und gehen Sie dabei auf die Begriffe:

Normalformen, Anomalien, Redundanzfreiheit, Funktionale Abhängigkeit, Minimalität des Schlüssels ein.

Kunden

<u>Knr</u>	Name	Straße	PLZ	Ort	Geb_Datum
100	Mustermann	Waldweg 9	1234	Wien	12.12.1970
101	Musterfrau	Wiesenweg 9	4321	Linz	10.11.1997

PKW

Kenn- zeichen	Erst- zulassung	Klima- anlage	Modell- name	Leistung	Länge	Hersteller- name	Hersteller-adresse
W-123 AB	10.09.2002	Ja	Opel-Clio	78	390	Opel	4444, Opel-Str. 7
L-123 BB	11.06.2005	Nein	Opel-Clio	88	490	Opel	4444, Opel-Str. 7

Ausleihe

Kenn- zeichen	<u>Knr</u>	Ausleihtag	Modell- name	Start_km	Rueckgabe- tag	Ende_km
W-123- AB	100	18.03.2010	Opel-Clio	95000	20.03.2010	96500
L-123 BB	101	12.02.2010	Opel-Clio	44500	12.03.2010	55000

Antwort(en):

Aufgabe 1:

Programmiersprachen

Frage 11 PROG-C: Pointer und Array

```
1. ZEIGER u. Arrays: Gegeben sei:
   int a[5]; int *pa; int x;
   a[0] liege an der Speicherstelle 1000
   a[1] liege an der Speicherstelle 1002
   a[2] liege an der Speicherstelle 1004
1.1. Aufgabe: Wie sieht das Speicherbild nach den folgenden Anweisungen aus ?
   Tragen Sie die Werte in das Speicherbild1 unten ein.
   pa= &a[0];
   for (i=0;i < 5; i++) {
     *pa= i+100;
     pa++;
   }
               1004 1006 1008 1010 1012 (= Adressen dez.)
   1000
         1002
               a[2]
                     a[3]
   a[0]
         a[1]
                           a[4]
                                  pa
                                        X
                                              (= Variablennamen)
  |-----|----|-----|
                                             | (= Inhalt)
  Abb: Speicherbild1
1.2. Aufgabe: Gegeben sind die Werte aus dem obigen Speicherbild1.
   Wie sieht das Speicherbild dann nach den folgenden Anweisungen aus ?
   Tragen Sie die Werte in das Speicherbild2 unten ein.
   pa= a;
   x=*pa;
   a[0] = *(pa+1);
   pa++;
   a[1] = *pa+1;
   1000
         1002 1004 1006 1008 1010 1012 (= Adressen dez.)
   a[0]
         a[1] a[2] a[3] a[4]
                                  pa x
                                              (= Variablennamen)
  |-----|----|-----|
                                             (= Inhalt)
  |-----|----|-----|
  Abb: Speicherbild2
Antwort(en):
Bitte oben einsetzen
```


Frage 12 PROG-C: Speicherklassen

Aufgabe: Was gibt das folgende Programm aus?

```
2.Datei:
1.Datei:
                                                              3.Datei:
int i=1;
                                  static int i=10;
                                                              extern int i;
                                  int first(){
                                                              int fu(){
int main(){
 int i,j;
                                    i+=1;
                                                                return i;
  i=fu();
                                    return i;
                                  }
 for (j=1;j<2;j++)
                                  int next(){
    printf("%i%i", i,j);
                                    i-=1;
    printf("%i", first());
                                    return i;
    printf("%i", next());
    printf("%i", last(i+j));
                                  int last(int i){
                                    static int j=5;
}
                                    j++;
                                    return i+j ;
```

Antwort(en):

Frage 13 PROG-C: maxi

Gegeben sei folgender Funktionsprotoyp:

?????? find maxi(int *arr, int anzahl, ???? maxi);

- Der Funktion wird ein Array und dessen Anzahl der Elemente übergeben.
- Im Parameter *maxi* soll von der Funktion find_maxi() das Maximum an die aufrufende Funktion übergeben werden.(=Call by Referenz)
- Die Funktion soll auch die Adresse des Arrayelementes, das das Maximum enthält mittles return zurückgeben.

Aufgabe: Programmieren Sie find_maxi() und ersetzen Sie die Fragezeichen

	find_maxi(int*	arr, int	anzahl,	 maxi){
}				

Frage 14 PROG-C: Ausgabe

```
1. Aufgabe: Was gibt das folgende Programm aus? (Gib die ersten 5 Ausgabenwerte an)
int main(){
   int f[500]; //Felddeklaration
   int i,j;
   for (i=1;i<500;i++)
      f[i]=i; //Feld füllen
   j=2;
  while(j<250){
      for(i=2*j;i<500;i=i+j)
         f[i]=0;
      j++;
      while(f[j]==0)
         j++;
   for(i=2;i<500;i++)
      if(f[i])
         printf("%i,",i);
   printf("\n");
   return 0;
Antwort(en):
```

Frage 15 PROG-C: Stack

```
Gegeben ist der folg. Programmcode für einen Stack:
Datei: doubleStack.h
/**
 * @brief to init the internal values of Module Stack
 * sets stackpointer to 0 and uses a static double Array with 1024 Elements
 * @param void
 * @return void
 */
void init(void);
/**
 * @brief puts a value on top of stack
 * if stack is already full an error message is written to stderr
 * @param value The value to be pushed on top of stack
 * @return void
 */
void push(double value);
/**
```



```
\star @brief return the element on top of stack
 * if stack is empty an error message is written to stderr
 * @param void
 * @return the element on top of stack
double top(void);
/**
* @brief delete the element on top of stack
* if stack is already empty an error message is written to stderr
 * @param void
* @return void
 */
void pop(void);
```

Aufgabe:

Erstellen Sie die Datei doubleStack.c

Antworten:

Frage 16 PROG-C++: out

1. Aufgabe: Ergänzen Sie das folgende Programm (beachten Sie die Hinweise) und 2. **Aufgabe**: geben Sie die genaue Ausgabe an. #include <iostream> std; // HINWEIS 1: Globale Variablen int x = 255, y = 254; // HINWEIS 2: Ausgabe von x und y als Hexadezimal- und dann als Dezimalzahl // HINWEIS 3: x und y dürfen in der Funktion nicht geändert werden void out(_____ int x, ____ int y = -1){ cout x << " " x << endl; if (y >= 0) { cout _____ y << " " ____ y << endl;} cout << endl;</pre> } // HINWEIS 4: Der Funktionsaufruf wird durch den Programmcode inline ersetzt void out() { cout << x << endl << endl; }</pre> // HINWEIS 5: a und b werden getauscht void swap(_____ a, ____ b) { int h = a; a = b; b = h; } int main(){ // HINWEIS 6: Lokale Variablen int x=127, y=128; cout << "Ausqabe:"<< endl;</pre> out(); out(x); out(::x, y); swap(x, y); out(::x, y); return 0; Antwort(en): 1. Aufgabe: Bitte oben die Lücken ausfüllen. 2. Aufgabe: Ausgabe:

Frage 17 PROG-C++: polygon Gegeben ist die Klassenhierarchie: **CPolygon** CTriangle CRectangle 1. Aufgabe: Füllen Sie die Lücken im Programm unten aus, sodass die Klasse CPolygon eine abstrakte Klasse wird und die Ausgabe des Programmes lautet: 20 10 2. Aufgabe: Beantworten Sie die folgenden Fragen: 1. Frage: Reine virtuelle Methoden müssen von der jeweilgen o Klasse, in der sie deklariert werden implementiert werden. o Unterklasse oder 2. Frage: Der Destruktur der Basis-Klasse muss virtuell sein, weil _____ class CPolygon { int width, height; public: void set values (int a, int b) { width=a; height=b; } void printarea (void) { cout << this->area() << endl; }</pre> **}**; class CRectangle: public CPolygon { public: int area (void) { return (width * height); } }; class CTriangle: public CPolygon { public: int area (void) { return (width * height / 2); } **}**; int main () { CPolygon * ppoly1 = new CRectangle(); CPolygon * ppoly2 = new Ctriangle(); ppoly1->set_values (4,5); ppoly2->set_values (4,5); ppoly1->printarea(); ppoly2->printarea(); delete ppoly1;

Antwort(en):

delete ppoly2; return 0;

Oben bitte direkt ausfüllen.

Frage 18 PROG-C++: cipher

```
Gegeben ist die Klasse Cipher:
class Cipher {
public:
       string encrypt(string s, int key);
       string decrypt(string s, int key);
      virtual char encrypt(char ch, int key)=0;
      virtual char decrypt(char ch, int key)=0;
};
Die Klasse XORSubstitution als Unterklasse von Cipher:
Bei der XOR Substitution wird der Code jedes Zeichens durch XOR mit dem Key verküpft.
Sehen Sie hier die Verwendung der Klasse:
      string palinText="Hallo, Welt!";
      int key= 15;
      Cipher* cipher = new XORSubstitution();
      string cryptText = cipher->encrypt(plainText, key);
   1. Aufgabe: Programmieren Sie die CPP-Klassen Cipher.cpp und XORSubstitution, die von
      Cipher (siehe oben) abgeleitet ist, indem Sie die folgenden Dateien programmieren:
```

- - 1. Die Datei cipher.cpp
 - 2. Die Datei xorsubstitution.h
 - 3. Die Datei xorsubstitution.cpp

Antwort(en):

\mathbf{n}	D > + 4		nho	LODDI
.,	11416		.,	
	-	<i>.</i>	$\rho \cdots \sigma$	r.cpp:

Die Datei xorsubstitution.h:

Die Datei xorsubstitution.cpp:

Frage 19 PROG-C++: mystring

Gegeben ist das folgende Programm, bei dem Sie 2 Problemfälle analysieren und lösen sollen.

```
Hier zunächst das Programm:
#include <iostream>
#include <cstring>
using namespace std;
class MyString{
      private:
            char* s;
            int size;
      public:
            MyString(const char* s){
                  this->size= strlen(s);
                  this->s= new char[size+1];
                  strcpy(this->s, s);
            friend ostream& operator<<(ostream& o, const MyString& e){</pre>
                   o << e.s;
                  return o;
            }
};
//globs
MyString sglobal1("SGLOBAL1");
MyString sglobal2("SGLOBAL2");
void dowhat(void){
     // PROBLEM1:
      MyString slocal1(sglobal1);
      cout << "slocal1= " << slocal1 << endl;</pre>
     // PROBLEM2:
      sglobal2= slocal1;
}
int main(){
      dowhat();
      cout << "sglobal1= " <<sglobal1 << endl;</pre>
      cout << "sglobal2= " <<sglobal2 << endl;</pre>
      return 0;
}
```

- 2. **Aufgabe 1:** Programmieren Sie den Destruktor.
- 3. Aufgabe 2: PROBLEM1
 - Warum passiert hier ein Fehler?
 - 2. Lösen Sie das Problem, indem Sie die notwendige Member-Funktion programmieren.
- 4. Aufgabe 3: PROBLEM2
 - 1. Warum passiert hier ein Fehler?
 - 2. Lösen Sie das Problem, indem Sie die notwendige Member-Funktion programmieren.

Antwort(en):

LITEL WA
■HTBL <i>u</i> VA
Salzbura

VORBEREITUNG – RDP – Fachspezifische Softwaretechnik

Seite 22 von 43

Aufgabe 1:			
Aufgabe 2:			
Aufgabe 3:			

Frage 20 PROG-C++: Matrix

```
Aufgabe 1: Programmieren Sie die Klasse Matrix, sodass folgendes funktioniert:
      #include "matrix.h"
      #include <iostream>
      using namespace std;
      int main(){
            Matrix a(3,3); // 3x3 double Werte mit 0.0 initialisiert
            Matrix b(3,3);
            Matrix c(3,3);
            for (int i=0; i<3; i++)
                  for (int j=0; j<3; j++)
                        a(i,j) = 1.0;
            for (int i=0; i<3; i++)
                  for (int j=0; j<3; j++)
                        b(i,j) = 2.0;
            c=a+b;
            return 0;
      }
```

Antwort(en):

Frage 21 PROG-C++: EAN

Programmieren in C++ - Prüfziffernberechnung

Zur Kennzeichnung von Waren verwendet man den sogenannten EAN-Code (Europäische Artikel-Nummerierung mit 13 Ziffern). Bei Büchern ist die ISBN-Nummer üblich. Bei der letzten Ziffer der Nummer handelt es sich um eine sog. Prüfziffer, sodass z.B. einfache Eingabefehler erkannt werden können. Die Prüfziffer berechnet sich aus den übrigen 12 Ziffern.

ISBN-13

Zur Berechnung der Prüfziffer bei der ISBN-13 werden alle zwölf Ziffern der noch unvollständigen ISBN addiert, wobei die Ziffern mit gerader Position (also die 2., 4. usw.) dreifachen Wert erhalten. (Beispiel: Eine 5 an 6. Stelle fließt als 15 in die Addition ein.)

Von dem Ergebnis der Addition der 12 Ziffern wird die letzte Stelle ('Einer-Stelle') bestimmt, die dann von 10 subtrahiert werden muß. (Beispiel: Wenn das Additionsergebnis 124 ist, ist die 'Einer-Stelle' also 4. Diese Zahl wird dann von 10 subtrahiert. Dieses Ergebnis ist dann wiederum die Prüfziffer der ISBN-13. In diesem Beispiel also: 10 - 4 = 6. Die Prüfziffer ist 6.)

Ist das Endergebnis der Addition der ersten 12 Ziffern indessen 10, so ist die Prüfziffer 0.

```
Formel zur Berechnung der Prüfziffer: z_{13} = 10 - (\sum_{i=1}^{n=12} z_i \cdot 3^{(i+1) \mod 2}) \mod 10
```

Das (i+1)mod 2 sorgt für die wechselnde Gewichtung von 1 und 3.

```
Beispiel: Berechne die Prüfziffer
```

978-3-7657-2781-?

Berechnung:

```
9+8+7+5+2+8 + 3*(7+3+6+7+7+1) = 39 + 3*31 = 39 + 93 = 132
132 \mod 10 = 2
10 - 2 \mod 10 = 8 d.h. Die Prüfziffer ist 8
```

Aufgabe:

Erstellen Sie das Programm prueffziffer.cpp (siehe unten), das die Korrektheit der angegebenen ISBN-Nummer berechnen soll.

Ein Beispiel für die Verwendung:

```
int main(){
      string isbn= string("978-3-89771-040-5");
      string isValid;
      cout << "ISBN: " << isbn << endl;</pre>
      isValid= Pruefziffer::isValid_ISBN(isbn) ? " true" : " false";
      cout << "Pruefziffer ist " << isValid << endl;</pre>
      return 0;
```

Antwort: pruefziffer.cpp (Ersetzen Sie die Fragezeichen mit dem richtigen CPP-Sourcecode.)

```
class Pruefziffer{
public:
```

- * Gibt an, ob die Prüfziffer der ISBN-Nummer gültig ist.
- * verwendet: calcPruefziffer_ISBN(string nummerISBN)
- * @param string nummerISBN: Die ISBN Nummer (inkl. '-')
- * @return bool: true, wenn die errechnete Prüfziffer


```
gleich der letzten Ziffer der ISBN Nummer ist
       */
      static bool isValid_ISBN(string nummerISBN) {
                  ??????????
      }
      /**
       * Berechnet aus der ISBN-13 Nummer die Prüfziffer
       * @param string nummerISBN: Die ISBN Nummer (inkl. '-')
      * @return char: errechnete Prüfziffer */
      static char calcPruefziffer_ISBN(string nummerISBN) {
            ???????????
            // löscht alle '-' Zeichen
            string nummer= getDigitsOnly(nummerISBN);
            // berechnet die Prüfziffer und gibt diese zurück
            ???????????
      }
private:
      // lokale Hilfsfunktion
      // gibt einen string, der nur aus Ziffern besteht zurück
      static string getDigitsOnly(string nummer) {
                  ??????????
      }
};
Hinweis:
int isdigit(int);
```


4. Softwareentwicklung

Frage 22 SENG: UML-Personen

Gegeben ist ein UML Diagramm.

Aufgabe 1:

Es sollen noch Programmierer hinzugefügt werden. Programmierer werden -wie Arbeiter- entlohnt und erhalten für ihren jeweiligen LinesOfCode einen Zusatz.

- a) Fügen Sie die Klasse Programmierer in das UML-Diagramm.
- b) Erstellen Sie die Klasse Programmierer in der Sprache C++.

Aufgabe 2:

Es soll nun die Klasse Firma erstellt werden, die alle Arbeiter, Verkäufer, ... speichert und das monatliche Gehaltsaufkommen (double gesamtGehalt()) errechnen lässt.

- a) Fügen Sie die Klasse Firma in das UML-Diagramm.
- b) Erstellen Sie für die Klasse Firma in der Sprache C++ nur die Header-Datei: firma.h

Aufgabe 3:

Erklären Sie die Begriffe Polymorphismus und spätes Binden.

Antwort	(en):
Aufgabe	1:

HTBL UVA	VORBEREITUNG – RDP – Fachspezifische Softwaretechnik	Seite 27 von 43
Aufgabe 2:		
Aufgabe 3:		

Frage 23 SENG: Rekursion I

Die Fibonacci-Folge $(f_0, f_1,...)$ ist durch das Bildungsgesetz $f_n = f_{n-1} + f_{n-2} \text{ für } n \ge 2$ mit den Anfangswerten

$$f_0 = 0 \text{ und } f_1 = 1$$

definiert. Das bedeutet in Worten:

- a) Für die beiden ersten Zahlen werden die Werte 0 und 1 vorgegeben.
- b) Jede weitere Zahl ist die Summe ihrer beiden Vorgänger.

Daraus ergibt sich die Folge zu:

Aufgabe 1:

Schreiben Sie ein Programm, mit dem Namen Fibonacci, mit dem die ersten n Zahlen der

ibonacci-Folge ausgegeben werden. Die einzelnen Zahlen sollen in einer Zeile ausgegeben werden. Is Trennzeichen (Delimiter) sollte ein Beistrich-Zeichen verwendet werden.				
Antwort(en):				

Frage 24 SENG: Rekursion II

```
Geben ist folgende Funktion (Setzen Sie für den ersten Aufruf x > y > 0 voraus)
long methodeZ(long x, long y) {
      if (x \ge y)
             return (x+methodeZ(x-1,y));
      else
             return 0;
}
Aufgabe 1: Was lässt sich mit dieser Funktion berechnen?
Aufgabe 2: Wie lässt sich das Ergebnis mit Hilfe einer Schleife ermitteln?
Aufgabe 3: Wo in der Informatik verwendet man die Methode der Rekursion?
Antwort(en):
Aufgabe 1:
Aufgabe 2:
Aufgabe 3:
```


Frage 25 SENG: quicksort

```
Aufgabe 1:
Im folg. Algorithmus sind 4 Fehler eingebaut. Korrigieren Sie diese.
Quelle: https://de.wikipedia.org/wiki/Quicksort
funktion quicksort(links, rechts)
       wiederhole solange links < rechts dann
           teiler:= teile(links, rechts)
           quicksort(links, teiler+1)
           quicksort(teiler-1, rechts)
       ende
ende
funktion teile(links, rechts)
       i:= links
       // Starte mit j links vom Pivotelement
       j:= rechts - 1
       pivot:= daten[rechts]
       wiederhole
           // Suche von links ein Element, das größer als das
            // Pivotelement ist
           wiederhole solange daten[i] <= pivot und i < rechts</pre>
               i := i + 1
           ende
           // Suche von rechts ein Element, das kleiner als das
            // Pivotelem. ist
           wiederhole solange daten[j] <= pivot und j > links
                j:= j - 1
           ende
           falls i < j dann
               tausche daten[i] mit daten[j]
       solange i < j // solange i an j nicht vorbeigelaufen ist
       // Tausche Pivotelem.(daten[rechts]) mit endgült. Position
      // (daten[i])
       falls daten[i] > pivot dann
               tausche daten[i] mit daten[rechts]
       ende
       // gib die Position des Pivotelements zurück
       antworte i
 ende
Antwort(en):
```


Frage 26 SENG: Performance Sort

Aufgabe 1:

Sortieralgorithmen spielen in der Informationsverarbeitung eine wesentliche Rolle.

- 1. Beschreiben Sie in diesem Zusammenhang die Arbeitsweise des **Quicksort**-Algorithmus.
- 2. Stellen Sie einen Vergleich mit dem Bubblesort-Algorithmus an.
- 3. Wenn die zu sortierenden Datenmenge bereits sortiert sein sollte, welcher Algorithmus ist dann schneller?

Antwort(en):		

Frage 27 SENG: Search

Aufgabe 1:

Aufgabe 2:		

Frage 28 Listen I

```
Gegeben sind folg. Datenstrukturen:
typedef struct {char* data; SLIST* next;} SLIST;
typedef struct {SLIST* first; int len; SLIST* last;} SLIST_HEADER;
Aufgabe 1: Um den Text des 2. Listenknotens auszugeben:
      void printIt(SLIST HEADER* aList){
            printf("Text= %s", _
      }
Aufgabe 2: Gesucht ist die Funktion, die den längsten Text in der Liste ausgibt.
            void printLongest(SLIST_HEADER* aList) {????????????????????????????
Antwort(en):
Aufgabe 1: oben eintragen
Aufgabe 2:
void printLongest(SLIST_HEADER* aList) {
}
```


Frage 29 Bäume I

```
Gegeben ist folg. rekursive Funktion.

Aufgabe 1: Gesucht ist die iterative Version, also kein rekursiver Aufruf mehr.

BinSearchTree* search (int key, BinSearchTree* root){
    if (root == NULL)
        return NULL;
    else if (key == root->key)
        return root;
    else if (key < root->key)
        return search (key, root->Left);
    else
        return search (key, root->Right);
}

Antwort(en):

Aufgabe 1:
```

Frage 30 Bäume II

Folgende Ausgabe wurde durch postorder() in einem binären Baum erzeugt. 1 $2/3*4*5+$
Aufgabe 1: Zeichnen Sie den Baum
Aufgabe 2 : Vervollständigen Sie folg. Programm: void postorder(BNODE* ptr){??????????}
Antwort(en):
Aufgabe1:

Aufgabe2: void postorder(BNODE* ptr){		
}		

Frage 31 Bäume III

Gegeben sei die Datenstruktur: typedef struct tree {int data; struct tree* left; struct tree* right;} TREE;				
Aufgabe 1: Ausgehend von einem beliebigen Knoten in einem binären Suchbaum, geht man 1 Knoten nach links und dann immer nach rechts bis zum Blatt. Um welchen Knoten handelt es sich bei diesem Blatt in Bezug auf den Ausgangsknoten?				
Antwort:				
Aufgabe 2: Erstellen Sie die Funktion sum(), um die Werte aller Knoten eines binären Suchbaumes aufzusummieren.				
int sum(TREE* tree){				
if (){				


```
return _____ + tree->data + ____;
}

Aufgabe 3: Welche Funktion gibt einen binären Suchbaum sortiert aus?
o inorder
o postorder
o preorder

Antwort(en):
oben eingeben
```

Frage 32 SENG: Singleton (+)

```
Aufgabe 1: Füllen Sie die Lücken im folg. Programm.
class Singleton {
     Singleton() {} // you cannot create an object
     Singleton(const ______) {} // you cannot make a copy
     // you cannot make a copy by assign-operator
     Singleton& operator=(const ?????????) { return *this; }
     ~Singleton() {}
     static Singleton& getInstance(){
              _____ Singleton instance;
           return ____;
     }
     void log(int level, string msg){
           time t second;
           struct tm *atime;
           char sTime[80];
           time(&second);
           atime= localtime(&second);
           strftime(sTime, 80, "%c", atime);
           cout << sTime << ":" <<level << ":" << msg<<endl;</pre>
     }
};
int main() {
     // create the one and only one singleton object.
     // its created within getInstance(), that returns
     // reference to the singleton object
     Singleton logger= Singleton::getInstance();
```



```
// Addresses are all the same, because of there is
// only one and only one singleton object

cout << "\ndemonstration of singleton pattern: " << endl;
cout << " 3 addresses should have the same value:" <<endl;
cout << " "<< hex << &logger << endl;
cout << " "<< hex << &singleton::getInstance() << endl;
cout << " "<< hex << &singleton::getInstance() << endl;
// you can use/reference the singleton object
Singleton::getInstance().log(0, "this is my first log entry");
logger.log(1, "here is my second log entry");
return 0;
}</pre>
```

Antwort(en):

Lücken bitte oben ausfüllen.

Frage 33 SENG: Observer (+)

Aufgabe 1:

Gegeben ist das oben befindliche Klassendiagramm. Gesucht sind folgende Teilaufgaben:

- 1. Erklären Sie das Observer-Pattern
- 2. Implementierung in C++ (Pseudocode)
- 3. Wo wird dieses Pattern gerne eingesetzt?

Antwort(en):

W	■HTBL UVA	VORBEREITUNG – RDP – Fachspezifische Softwaretechnik			Seite 37 von 43
5.	Web- un	d Netzwerkni	rogrammierun	g / Datensicherheit	
O .	WCD- un	id NCtZWCIKPI		g / Daterisierierier	
_					
Frage	e 34 NW-PR	ROG: Socket-API	[
Aufg	abe 3: Weld	che Funktion wird	wo verwendet?		
			o serverside		
	accept:	o clientside	o serverside	o bothside o bothside	
	listen:	o clientside	o serverside o serverside	o bothside	
	send:	o clientside	o serverside	o bothside	
	recv:	o clientside	o serverside	o bothside	
	close:	o clientside	o serverside	o bothside	
Frage	e 35 NW-PR	OG: Socket-API	I II		
Aufa	a he1: Bean	tworten Sie die h	ier gestellten Frage	en:	
Frag		folgende Begriffe _ <- ICMP	den 7 Schichten de	es OSI-Modells zu	
		_ <- Three-Way-F	Handshake/TCP		
		_ <- htons()	,		
		_ <- IP-Adresse			
		_ <- FTP			
		_ <- Port-Adresse _ <- Big Endian (e Byte-Reihenfolge)		
		_ = 3 =(,		

Frage 2: Welche Komponenten enthält die Socket-Adress Struktur?

Frage 3: Wie heisst	die Struktur zur Namensauflösung?	
Frage 4: Welche Ko	mponenten enthält sie?	
_	ıktionen zur (DNS) Namensauflösung	
	die IP-Adresse von localhost?	
	e die Funktionen in die richtige Reihenfolge: cket(), accept(),write(),read(),close()	
Client: 1.)	2.)	
	4.)	
5.)	6.)	
Server:	2.)	
	4.)	
5.)	6.)	
Frage 8: Welche Fu	nktion fehlt oben?	
Frage 9: wahr ode int sd= socket(AF_II o wahr o falsch	r falsch NET,SOCK_STREAM,0);	
int ret= read(sd, bu o wahr o falsch	sizeof(buf));	
read() ist blockieren o wahr o falsch	d	
wähle: accept() liefe o connection o well-known		

Frage 10: Sie lesen von einem Socket. Wie erkennen sie, dass der Partner die Verbindung beendet hat?
Frage 11: Geben Sie die 7 Schichten des OSI-Modelles an.
Frage 12: Die Eigenschaften von TCP:
Frage 13: RFC ist die Abkürzung für
Frage 14: Erklären Sie die folg. Begriffe und geben Sie je ein Beispiel a) http-header
b) html-header
Frage 15: Das http-Protokoll ist in einem sogenanntenDokument spezifiziert.
Frage 16: Das http-Protokoll ist ein zustandsloses Protokoll. Das bedeutet, dass
Frage 17: Das http-Protokoll befindet sich im ISO/OSI-Schichten Modell im Layer
Frage 18: Beim http-Protokoll trennt eine Leerzeile
Frage 19: Gegeben: char buf[512], filename[512]; strcpy(buf, "GET /index.html HTTP/1.1\r\n"); Gesucht: Zeigen Sie den C-Programmcode um in das Array filename den Dateinamen index.html zu bringen. (Der Dateiname index.html ist hier beliebig gewählt)


```
Frage 20: Gegeben:
      typedef uint32_t in_addr_t;
      struct in_addr { in_addr_t s_addr; };
      in_addr_t inet_addr(const char *cp);
      char *inet_ntoa(struct in_addr in);
      uint32_t htonl(uint32_t hostlong);
       uint16_t htons(uint16_t hostshort);
       uint32_t ntohl(uint32_t netlong);
       uint16_t ntohs(uint16_t netshort);
      char buf[512];
      strcpy (buf, "172.16.48.122");
Gesucht: Zeigen Sie den C-Programmcode:
      Die IP-Adresse in buf soll in die Variable curr im sog. Host-Format
      gespeichert werden.
      unsigned long curr= _
Frage 21: Gegeben:
      typedef uint32_t in_addr_t;
      struct in_addr { in_addr_t s_addr; };
      in addr tinet addr(const char *cp);
      char *inet_ntoa(struct in_addr in);
       uint32_t htonl(uint32_t hostlong);
       uint16_t htons(uint16_t hostshort);
      uint32_t ntohl(uint32_t netlong);
       uint16_t ntohs(uint16_t netshort);
      char buf[512];
      strcpy (buf, "172.16.48.122");
Gesucht: Zeigen Sie den C-Programmcode:
       Die Varible unsigned long curr; hält eine IP-Adresse im sog. Host-Format.
      Wie lautet der C-Programmcode, um diese IP-Adresse als Nummernnotation
      auf die Konsole auszugeben. (zB: 127.0.0.1)
```

Frage 22: Die struct sockaddr_in hat folg. Komponenten:

Frage 23: http verwendet den Port und https verwendet den Port				
Frage 24: Gegeben sind Auszüge aus C-Programmen, die das Socket-API nutzen. Füllen Sie die richtigen Funktionsnamen bzw. Parameternamen ein.				
Auszug:				
int sd, ld; struct sockaddr_in name; char buf[MSGSIZE];				
Id = socket ();				
<pre>name.sin_family = AF_INET; name.sin_port = htons(0); name.sin_addr.s_addr= INADDR_ANY;</pre>				
(ld, (struct sockaddr*)&name, sizeof (name));				
Auszug:				
(ld, 5);				
(.a, 5)//				
while (){				
sd= accept (ld, &addr, &addrlen);				
nbytes= read ();				
fp= fopen(buf, "rt");				
while (fgets()){				
write ();				
} fclose ();				
close ();				
Auszug: name.sin_family = AF_INET; name.sin_port = htons(80); name.sin_addr.s_addr= inet_addr("172.16.48.122");				
(sd, (struct sockaddr*)&name, sizeof(name));				

Frage 36 NW-PROG: SSL/Zertifikate

- 1. Aufgabe: Erklären Sie die folgenden Begriffe:
 - 1. PRIVATE_KEY,
 - 2. ECHTHEIT(=AUTHENTIZITÄT),
 - 3. ECHTHEIT des PUB-Keys,

4.	DIGITALE ZERTIFIKATE
5.	SERVER-ZERTIFIKAT
6.	SELF-Signed Zertifikate
7	CA

6. SELF-Signed Zertifikate 7. CA 8. CSR 9. Signieren	
2. Aufgabe: 1. Ein Zertifikat beinhaltet u.a. folgendes: 1 2 3	
 Man signiert, um den Sicherheits-Dienst Verschüsselung oder o Echtheit zu garantieren. 	
 ☑ Frage: Woran erkannt man, dass es sich um ein selbst-signiertes Zertifikat handelt? □ Antwort: o stimmt o stimmt nicht Da Subject: (zertifizierter Gegenstand) und Issuer: (Zertifikats-Aussteller) identisch sind, 	
handelt es sich um ein selbst-signiertes Zertifikat .	
☐ Antwort: o stimmt o stimmt nicht Im Bereich X509v3 Basic Constraints: ist anhand von CA: TRUE auch erkennbar, dass es sie um ein CA-Zertifikat handelt.	ch
☑ Frage : Wie kann nun der Browser erkennen, ob das Server-Zertifiktat (also der public-key) wirklich vom Server stammt? (=Echtheit)	
□ Antwort:: o stimmt o stimmt nicht Die CA installiert ihr eigenes CA-Stamm-Zertifikat (also seinen eigenen public-key) beim Browser.	
☑ Frage: Wie kann ein Browser feststellen, dass das Server-Zertifikat wirklich von der jeweilgen CA signiert wurde?	
□ Antwort: o stimmt o stimmt nicht Es wird der public-key der CA verwendet. Er 'passt' zum private-key der CA, der ja für da Signieren des Server-Zertifikates verwendet wurde.	15
Antworten: Aufgabe 1: Erklären Sie die folgenden Begriffe:	

PRIVATE_KEY,

- 2. ECHTHEIT(=AUTHENTIZITÄT),
- 3. ECHTHEIT des PUB-Keys,
- 4. DIGITALE ZERTIFIKATE,
- 5. SERVER-ZERTIFIKAT
- 6. SELF-Signed Zertifikate
- 7. CA
- 8. CSR
- 9. Signieren

Die Antworten für die anderen Aufgaben tragen Sie bitte oben direkt ein.

Frage 37 NW-PROG: Diffie-Hellman

Bei der symmetrischen Verschlüsselung kann der Algorithmus von Diffie-Hellman verwendet werden, der ein sogenanntes Trustcenter verwendet. Dieses speichert N (Modulo genannt und ist prim) und G (Generator genannt). Sowohl der Sender -im Beispiel oft Alice genannt- ,als auch der Empfänger – oft Bob genannt – lesen diese Werte. Diffie-Hellman ist deswegen interessant, weil der Schlüssel für die symmetrische Verschlüsselung nicht übertragen werden muss.

Gegeben seien die folgenden Abkürzungen, die Sie in den folgenden Lückentext eintragen:

→ Trustcenter **G** → Generator тc → Modulo (prim) N **BPK** → Bob's Public Key BSN → Bobs Secret Number → Alice's Public Key ASN → Alice's Secret Number APK → symm. Key f. Encryption → the modulo Operator → the message (plainText) С → the message (cryptText) C=encrypt(M,KEY) M=decrypt(C,KEY)

VORBEREITUNG – RDP – Fachspezifische Softwaretechnik

Seite 44 von 43

Aufgabe 1:

Given: use the following values to calculate APK, BPK, symKey.

Alice and Bob use n = 13 and g = 2. Alice uses ASN = 5. Bob uses BSN = 8.

Question 1: Alice: Question 2: Alice:

Show the calculation of APK Show the calculation of symKey

APK= _____ symKey= _____

Question 3: Bob: Question 4: Bob:

Show the calculation of BPK Show the calculation of symKey

symKey= _____ BPK= _____

6. Referenzlisten

```
CREATE TABLE TabellenName (Spaltel Datentyp Constraint, ...);
ALTER TABLE TabellenName ADD CONSTRAINT ConstraintName
      FOREIGN KEY Name
      REFERENCES TabellenName(SpaltenName,...) ON ???????????????;;
CREATE INDEX IndexName ON TabellenName(Spaltenname, ...);
SELECT Spalten FROM Tabellen WHERE Join-Bedingung [AND OR einfache Bedingung ]
   ORDER BY Spalten;
SELECT Spalte1, SUM(Spalte2) FROM Tabellen GROUP BY Spalte1 HAVING Bedingung;
DROP TABLE Tabelle;
INSERT INTO Tabelle (Spalten) VALUES (Werte);
UPDATE Tabelle SET Spalte= Wert WHERE Bedingung;
DELETE FROM Tabelle WHERE Bedingung;
Java ArrayList:
import java.util.ArrayList
void add(int index, E element)
            Inserts the specified element at the specified position in this list.
E
      get(int index)
            Returns the element at the specified position in this list.
E
      remove(int index)
            Removes the element at the specified position in this list.
```


Aufgabenverzeichnis

Frage 1 OS: Begriffe	3
Frage 2 OS: Semaphore	
Frage 3 OS: FIFO threadsafe	5
Frage 4 DB: Check	
Frage 5 DB: Entity-Relationship-Diagramm	
Frage 6 DB: SQL I	9
Frage 7 DB: is_uni	
Frage 8 DB: Normalformen I	
Frage 9 DB: Normalformen II	
Frage 10 DB: Normalform PKW	13
Frage 11 PROG-C: Pointer und Array	14
Frage 12 PROG-C: Speicherklassen	15
Frage 13 PROG-C: maxi	
Frage 14 PROG-C: Ausgabe	
Frage 15 PROG-C: Stack	
Frage 16 PROG-C++: out	
Frage 17 PROG-C++: polygon	
Frage 18 PROG-C++: cipher	
Frage 19 PROG-C++: mystring	
Frage 20 PROG-C++: Matrix	
Frage 21 PROG-C++: EAN	
Frage 22 SENG: UML-Personen	26
Frage 23 SENG: Rekursion I	
Frage 24 SENG: Rekursion II	29
Frage 25 SENG: quicksort	
Frage 26 SENG: Performance Sort	
Frage 27 SENG:Search	31
Frage 28 Listen I	32
Frage 29 Bäume I	33
Frage 30 Bäume II	33
Frage 31 Bäume III	
Frage 32 SENG: Singleton (+)	35
Frage 33 SENG: Observer (+)	
Frage 34 NW-PROG: Socket-API I	
Frage 35 NW-PROG: Socket-API II	
Frage 36 NW-PROG: SSL/Zertifikate	41
Frage 37 NW-PROG: Diffie-Hellman	43