Todays schedule

Monday 13 February: Genetic diversity

Genetic diversity in great apes

- Variation in quantitative characters (phenotypes)
- Variation at the chromosomal level
- Variation at single genes
- Variation in DNA sequences

13¹⁵-14⁰⁰ (L) Genetic diversity: From phenotype over chromosomes and genes to DNA (HRS)

14¹⁵-16⁰⁰ (E) Exercise in estimating nucleotide diversity (Patricia Pečnerová, HRS)

Preparation

Read N&S Chapter 3

Recommended background reading:

See <u>Prado-Martinez et al. (2013)</u> for a comprehensive great ape paper

Why is genetic variation important?

Darwin's theory for natural selection

Tendency for geometric growth

Variation Inheritance

There is no evolution without genetic variation

Genetic diversity: from phenotype over chromosomes, genes to DNA Variation in quantitative characters (phenotypes)

- Variation at the chromosomal level
- Variation at single genes
 - Polymorphism
 - Gene diversity
 - Enzyme electrophoresis
- Variation in DNA sequences
 - Exercise:

Quantify nucleotide diversity on

chromosome 22 in humans and chimpanzees

Characters

Qualitative characters

genes have large effect on phenotype one or few genes affect the trait (major genes)

Quantitative characters

genes have small effect on phenotype

many genes affect the trait

(polygenic characters)

(minor genes or polygenes)

How is the trait inherited?

- A. Autosomal dominant
- B. Autosomal recessive
- C. Sex-linked dominant
- D. Sex-linked recessive

Nilsson-Ehle (1910)

Ρ

 $R_1R_1R_2R_2 \times r_1r_1r_2r_2$

Kernel color in wheat

 F_1

 $R_1r_1R_2r_2$

Simple model:

Two independent genes that interact additively

	R_1R_1	$R_1 r_1$	r_1r_1
R_2R_2	4	3	2
$R_2 r_2$	3	2	1
r_2r_2	2	1	0

Nilsson-Ehle (1910)
Kernel color in wheat
Two unlinked genes
Qualitative and quantitative
characters do **not** differ
genetically

Examples

Mice *Drosophila*

Important parameters

Average \overline{x} Variance $V_x = s^2$ (Phenotypic)

How much do environment and genes influence a trait?

Components of the phenotypic variance

 V_P : phenotypic variance (which we can estimate directly)

 V_G : genetic variance

 V_F : environmental variance

$$V_P = V_G + V_E$$

"Broad sense" heritability

$$h_B^2 = \frac{V_G}{V_P}$$

"Narrow sense" heritability

$$h_N^2 = \frac{\mathbf{V}_A}{\mathbf{V}_P}$$

(Will be described later)

 $h_N^2 = \frac{V_A}{V_B}$ Additive contributions of alleles within loci

$$0 \le h^2 \le 1$$

11.0 +

Estimating the heritability h_N^2

the land the

Darwin's finches

"Narrow sense" heritability

$$h_N^2 = \frac{V_A}{V_P}$$
$$= 0.9$$

• 1978

Heritability for different traits in *Drosophila*

Category	Heritability	125/
Morphology	0.46	
Behavior	0.30	
Physiology	0.33	
Life history	0.26	

The genetic variation for quantitative characters is very high

Chromosomal variation

Primates

Human Chimpanzee Gorilla Orangutang

Which chromosomal mutation has occurred?

Fusion

Fission

Which chromosomal mutation has occurred?

Fission

Common ancestor had one set of chromosomes

Requires 3 mutations

Which chromosomal mutation has occurred?

Fusion

two set of chromosomes

Requires 1 mutation Most parsimonious

Karyotype of Chinese and Indian muntjac

Muntiacus reevesii (2N = 46)

Muntiacus muntiacus (2N = 8)

Chromosomal variation

Extensive variation

Difficult to study and quantify
Very variable among taxonomic groups

Important for reproductive isolation among species.

Variation in single genes

- Polymorphism
 - a) More than two alleles present in a population
 - b) p(rare allele) > 0.01
- Gene diversity
 - p(individual is heterozygous)
 - (measured as observed or expected according to HW)
- Which is most affected by the sample size?

Polymorphism and gene diversity

Locus	A_1A_1	A_1A_2	A_2A_2	Number
1	100	0	0	100
2	81	18	1	100
Locus	Polyn	norphis	sm	Observed gene diversity
1	no			0
2	yes			0.18

Polymorphism and gene diversity

Expected gene diversity: Estimation for multiallelic (a) locus:

(assuming HW)

Gene diversity:

$$H = 1 - \sum_{i=1}^{3} p_i^2$$

First estimates in natural populations (allozymes)

Lewontin & Hubby (1966)

Drosophila H = 0.12

Harris (1966) Humans H = 0.10

Conclusion

- High variation
- Remember, only ~ 1/3 of variation is observed
- Very few species with H = 0 like the polar bear

Does this mean that the polar bear carries no genetic variation?

Single nucleotide polymorphisms (SNP)

1 every few hundred bp, mutation rate* ≈ 10⁻⁹

TGCATT**G**CGTAGGC TGCATT**C**CGTAGGC

Short indels (=insertion/deletion)

1 every few kb, mutation rate v. variable

TGCATT---TAGGC TGCATT**CCG**TAGGC

Microsatellite (STR§) repeat number

1 every few kb, mutation rate ≤ 10⁻³

TGCTCATCATCAGC TGCTCATCA----GC

Minisatellites

1 every few kb, mutation rate ≤ 10⁻¹

^{*}Mutation rates are measured per unit per generation or per year §STR: Simple tandem repeats

Variation in DNA sequences Microsatellites [Short Tandem Repeats (STR)]

2, 3, 4...9 base pairs copies Variation in copy number Few to 100s of copies Neutral?

TGCTCATCATCACC
TGCTCATCA-----GC

Very abundant in most eukaryotic species

Advantages

Codominant
High mutation rate
Highly variable

Microsatellites

Bo T. Simonsen Head of Forensic Genetics

Variation in DNA sequences Microsatellites

Gene diversity in 181 human populations $(H = 1 - \sum p_i^2)$

Diversity decreases with distance from Africa

Sequence 1 AAAGGTCTAG

Sequence 2 AAAGGTCTAT

Sequence 3 AAAAGGCTAT

Sequence 4 AAAAGGCTAT

How much variation do we expect? How do we quantify the variation?

Haplotype diversity

Pairwise differences

Segregating sites

Expected nucleotide diversity

```
Sequence 1 AAAGGTCTAG Sequence 2 AAAAGGCTAT Haplotype diversity (H = 1 - \sum p_i^2) Sequence 4 AAAAGGCTAT
```

Count of haplotypes: 3 (seq 3 = seq 4)

Frequencies:

Haplotype 1: $p_1 = \frac{1}{4}$

Haplotype 2: $p_2 = \frac{1}{4}$

Haplotype 3: $p_3 = \frac{1}{2}$

Haplotype diversity = $1 - (\frac{1}{4})^2 - (\frac{1}{4})^2 - (\frac{1}{2})^2 = 0.625$ Is haplotype diversity a useful measure?

Haplotype: A sequence that differs from other homologous₃₅ sequences in at least one position

Expectations from the infinite-site model

Every mutation hits a new base position:

Constant population size (N)

Neutral variation

Expected nucleotide diversity:

$$\Theta = 4N\mu$$
, $2N\mu$

where

N =population size

 μ = mutation rate

(per base per generation)

Most Recent Common Ancestor $t_{MRCA}(2) = 2N$

Sequence 1 Sequence 2 AAAGGTCTAT Sequence 3 AAAAGGCTAT

Sequence 4

Segregating Sites (S)

AAAGGTCTAG

AAAAGGCTAT

0001010001

Watterson's estimator of θ

$$\widehat{\theta}_w = \frac{S}{\sum_{k=1}^{n-1} \frac{1}{k}}$$

n number of sequences

 $\theta_{\text{W}} = 3/(1/1 + 1/2 + 1/3)/10 = 0.16$

10: length of sequence

Sequence 1 AAAGGTCTAG
Sequence 2 AAAGGTCTAT
Sequence 3 AAAAGGCTAT
Sequence 4 AAAAGGCTAT

Tajima's estimator of θ

$$E[\pi] = \frac{\sum_{i < j} d_{ij}}{n(n-1)/2}$$

Pairwise nucleotide differences

n number of sequences 4

$$\theta_T = (1+3+3+2+2+0)/(4(4-1)/2 \times 10) = 0.18$$

Nucleotide diversity: (Total number of differences) / ((Number of pairwise comparisons) x (Length of sequence))

Sequence 1 AAAGGTCTAG
Sequence 2 AAAGGTCTAT
Sequence 3 AAAAGGCTAT
Sequence 4 AAAAGGCTAT
$$p(\text{base 1}) \quad 111\frac{1}{2}1\frac{1}{2}111\frac{1}{4}$$

$$q(\text{base 2}) \quad 000\frac{1}{2}0\frac{1}{2}000\frac{3}{4}$$

$$2pq \quad 000\frac{1}{2}0\frac{1}{2}000\frac{3}{8}$$

Expected nucleotide diversity

$$p^2 + 2pq + q^2 = 1$$

$$2pq = 1 - p^2 - q^2$$

Expected nucleotide diversity

$$\pi = (0 + 0 + 0 + \frac{1}{2} + 0 + \frac{1}{2} + 0 + 0 + 0 + \frac{3}{8})/10$$

$$= 0.14$$

Do we expect the same diversity among and along chromosomes?

$$\mu = \text{neutral mutation rate}$$

= $f_n \times \mu_T$

where

 f_n = fraction of all mutations that are neutral μ_T = Total mutation rate

Do we expect the same diversity among and along chromosomes?

Nucleotide diversity in humans ≈ 0.001

Variation in DNA sequences Generally very high diversity in most species.

Variation in natural populations Conclusions

Quantitative characters

Genetic variance (heritability)

Single genes

Gene diversity

Microsatellites

Gene diversity

DNA sequences

Nucleotide diversity

The genetic variation is very high.

