

Contrôle continu de mécanique du solide

Les robots parallèles à câbles sont une nouvelle structure de robots apparus au début des années 2000 et encore en développement actif. Dans ce système, la plate-forme est déplacée et orientée par rapport à une référence fixe dans toutes les directions de l'espace par l'enroulement ou le déroulement de plusieurs câbles Cette structure permet à la plate-forme d'atteindre une grande zone de travail avec, en tenant compte de l'inévitable déformation des câbles, une très grande précision dans le positionnement comme dans l'orientation.

Torseur associé à l'action de la charge :

$$\left\{ \mathcal{T}_{(g \to ch)} \right\} = \begin{cases} \overrightarrow{R_{g \to pr}} = -Mg.\overrightarrow{y_0} \\ \overrightarrow{M_{G_{g \to ch}}} = \overrightarrow{0} \end{cases}$$

Position des différentes bases mobiles par rapport à la base fixe :

La plate-forme est de dimensions $2\ell \times 2h$ selon respectivement $\overrightarrow{x_4}$ et $\overrightarrow{y_4}$.

Le centre géométrique G de la plate-forme est donc situé à une distance $\pm \ell$ (selon $\overrightarrow{x_4}$) et $\pm h$ (selon $\overrightarrow{y_4}$) des quatre coins M_1 à M_4 .

Pour trouver la relation entre les quatre longueurs λ_1 à λ_4 , la géométrie des éléments (longueurs L et H pour le portique et longueurs ℓ et ℓ pour la plate-forme) et les paramètres ℓ et ℓ définissant la position du centre géométrique ℓ et l'orientation de la plate-forme dans le plan médian, il est nécessaire de déterminer les équations issues des fermetures géométriques sur les boucles formées par les câbles et la structure du portique.

- 1) Exprimer les vecteurs $\overrightarrow{CM_1}$, $\overrightarrow{CM_2}$, $\overrightarrow{M_1M_3}$, $\overrightarrow{M_2M_4}$, $\overrightarrow{M_3D}$, $\overrightarrow{M_4D}$, \overrightarrow{CD} dans la base $\overrightarrow{x_0}$, $\overrightarrow{y_0}$
- **2)** Exprimer les vecteurs $\overrightarrow{GM_1}$, $\overrightarrow{GM_2}$, $\overrightarrow{GM_3}$, $\overrightarrow{GM_4}$ dans la base $\overrightarrow{x_4}$, $\overrightarrow{y_4}$ puis dans la base $\overrightarrow{x_0}$, $\overrightarrow{y_0}$

Relations entre longueurs des câbles et angles d'inclinaison des câbles et de la plate-forme

3) En projetant la fermeture vectorielle $\overrightarrow{CM_1} + \overrightarrow{M_1M_3} + \overrightarrow{M_3D} = \overrightarrow{CD}$ sur les directions $\overrightarrow{x_0}$ et $\overrightarrow{y_0}$ en déduire deux équations scalaires entre les longueurs L, ℓ , λ_1 et λ_3 et les angles α_1 , α_3 et β .

Remarque

En projetant les autres fermetures vectorielles associées aux câbles, soit $\overrightarrow{CM_2} + \overrightarrow{M_2M_4} + \overrightarrow{M_4D} = \overrightarrow{CD}$, $\overrightarrow{CM_1} + \overrightarrow{M_1M_2} = \overrightarrow{CM_2}$ et $\overrightarrow{DM_3} + \overrightarrow{M_3M_4} = \overrightarrow{DM_4}$ sur les directions $\overrightarrow{x_0}$ et $\overrightarrow{y_0}$ il serait possible d'obtenir six autres équations scalaires reliant les longueurs $\lambda 1$ à $\lambda 4$ des câbles, leurs inclinaisons $\alpha 1$ à $\alpha 4$, les dimensions $\Delta 1$ du portique et ℓ ou ℓ de la plate-forme et l'angle β

Relations entre longueurs des câbles et altitude de la plate-forme

4) En projetant la relation vectorielle $\overrightarrow{AG} = \overrightarrow{AC} + \overrightarrow{CM_1} + \overrightarrow{M_1G}$ sur les directions $\overrightarrow{x_0}$ et $\overrightarrow{y_0}$, déterminer les expressions des coordonnées x et y du centre géométrique G en fonction des longueurs λ_1 , ℓ , h et H et des angles α_1 et β . En déduire l'expression de la longueur λ_1 du câble équivalent (1) sous la forme :

$$\lambda_1 = \sqrt{(x - f_1(\beta))^2 + (y - f_2(\beta))^2}$$

où les deux fonctions f_1 et f_2 sont à exprimer en fonction de l'angle β et des longueurs constantes ℓ , h et H.

<u>Torseur résultant de $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$, $\overrightarrow{F_4}$ </u>

Les torseurs associés aux actions $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$, $\overrightarrow{F_4}$ s'écrivent : $\{\mathcal{T}_{(F_i)}\}$ = $\left\{\frac{\overrightarrow{F_i} = F_i.\overrightarrow{u_i}}{M_{M_i}(F_i)} = \overrightarrow{\mathbf{0}}\right\}$

- **5)** Calculer les produits vectoriels $\overrightarrow{x_4} \wedge \overrightarrow{u_1}$; $\overrightarrow{y_4} \wedge \overrightarrow{u_1}$; $\overrightarrow{x_4} \wedge \overrightarrow{u_2}$; $\overrightarrow{y_4} \wedge \overrightarrow{u_2}$; $\overrightarrow{x_4} \wedge \overrightarrow{u_3}$; $\overrightarrow{y_4} \wedge \overrightarrow{u_3}$; $\overrightarrow{y_4} \wedge \overrightarrow{u_4}$; $\overrightarrow{y_4} \wedge \overrightarrow{u_4}$ Exprimer les torseurs associés aux actions $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$, $\overrightarrow{F_4}$ en G
- **6)** Exprimer le torseur résultant $\{T_{(R)}\}$ de $\overrightarrow{F_1}$, $\overrightarrow{F_2}$, $\overrightarrow{F_3}$, $\overrightarrow{F_4}$ en G