1 Basic Definitions and Examples

- 1.1 Genera
- 1.2 Riemann-Roch
- 1.3 Riemann-Hurwitz

2 Hyperelliptic Curves

Definition 2.0.1. A curve C is hyperelliptic if there exists a degree two map $f: C \to \mathbb{P}^1$.

Lemma 2.0.2. A curve C is hyperelliptic iff Ω_C^1 is not very ample.

Proof. (DO THIS)

Proposition 2.0.3. Plane curves with g > 1 cannot be hyperelliptic.

Proof. Let $\iota: C \hookrightarrow \mathbb{P}^2$ be a plane curve. Then $\Omega^1_C = \iota^* \mathcal{O}_{\mathbb{P}^2}(d-3)$ where d is the degree of C. Since g > 1 we must have d > 3 and thus $\mathcal{O}_{\mathbb{P}^2}(d-3)$ is very ample defining the Veronese embedding $v: \mathbb{P}^2 \to \mathbb{P}^N$ s.t. $\mathcal{O}_{\mathbb{P}^2}(d-3) = v^* \mathcal{O}_{\mathbb{P}^N}(1)$. Then $v \circ \iota: C \to \mathbb{P}^N$ is an embedding such that $(v \circ \iota)^* \mathcal{O}_{\mathbb{P}^N}(1) = \Omega^1_C$. Thus Ω^1_C is very ample so C cannot be hyperelliptic.

Lemma 2.0.4. Let C have a \mathfrak{g}_2^1 then C is either hyperelliptic or rational.

Proof. Let D be a \mathfrak{g}_2^1 then |D| defines a rational map $C \longrightarrow \mathbb{P}^1$ of degree two. Suppose P were a basepoint of |D| then dim |D - P| = 1 which implies that C is rational because there is a rational degree one map $C \longrightarrow \mathbb{P}^1$.

Proposition 2.0.5. Any genus 2 curve is hyperelliptic.

Proof. Consider the canonical divisor K_X which has deg $K_X = 2g - 2 = 2$ and dim $|K_X| = g - 1 = 1$ and thus gives a \mathfrak{g}_2^1 .

3 Tangent Space

Definition 3.0.1. Let X be a scheme and $x \in X$ a point. Then we define:

- (a) the geometric tangent space $T_x X = \operatorname{Spec}\left(\operatorname{Sym}_{\kappa(x)}\left(\mathfrak{m}_x/\mathfrak{m}_x^2\right)\right)$
- (b) the projectiveized tangent space $\mathbb{P}(T_x X) = \operatorname{Proj}\left(\operatorname{Sym}_{\kappa(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2)\right)$
- (c) the geometric tangent cone $C_x X = \operatorname{Spec} \left(\operatorname{\mathbf{gr}}_{\mathfrak{m}_x} (\mathcal{O}_{X,x}) \right)$ where,

$$\mathbf{gr}_{\mathfrak{m}_x}\left(\mathcal{O}_{X,x}
ight) = igoplus_{n=0}^{\infty} \mathfrak{m}_x^n/\mathfrak{m}_x^{n+1}$$

(d) the projectiveized tangent cone $\mathbb{P}(C_x X) = \operatorname{Proj}(\mathbf{gr}_{\mathfrak{m}_x}(\mathcal{O}_{X,x})).$

Remark. In particular, blowing up X at the sheaf of ideals \mathscr{I}_x (defined as the subsheaf of \mathcal{O}_X where evaluation in $\kappa(x)$ gives zero) gives the following,

$$ilde{X} = \mathbf{Proj}_X \left(igoplus_{n=0}^\infty \mathscr{I}_x^n
ight)$$

Choose an affine open neighborhood $x \in \operatorname{Spec}(A) = U \subset X$ then we see $\mathscr{I}_x|_U = \widetilde{\mathfrak{p}} \subset A$ is the prime corresponding to $x \in \operatorname{Spec}(A)$ and $\mathfrak{m}_x = \mathfrak{p}A_{\mathfrak{p}}$. Therefore, restricting $\pi : \widetilde{X} \to X$ over U gives,

$$\operatorname{Proj}\left(\bigoplus_{n=0}^{\infty} \mathfrak{p}^n\right) \to \operatorname{Spec}\left(A\right)$$

and,

$$\mathrm{Bl}_{\mathfrak{p}}\left(A\right) = \bigoplus_{n=0}^{\infty} \mathfrak{p}^n$$

is the blowup algebra which is a graded A-algebra. Consider the fiber over x,

$$\operatorname{Proj}\left(\operatorname{Bl}_{\mathfrak{p}}\left(A\right)/\mathfrak{p}\operatorname{Bl}_{\mathfrak{p}}\left(A\right)\right) \to \operatorname{Spec}\left(\kappa(x)\right)$$

where we see,

$$\mathrm{Bl}_{\mathfrak{p}}\left(A\right)/\mathfrak{p}\mathrm{Bl}_{\mathfrak{p}}\left(A\right) = \bigoplus_{n=0}^{\infty} \mathfrak{p}^{n} = \mathbf{gr}_{\mathfrak{p}}\left(A\right)$$

and therefore $\tilde{X}_x \to \operatorname{Spec}(\kappa(x))$ is $\operatorname{Proj}(\operatorname{\mathbf{gr}}_{\mathfrak{p}}(A)) \to \operatorname{Spec}(\kappa(x))$. In particular, the tangent cone is the fiber over x in the blowup.

Remark. The exact same construction shows that given a ring A and ideal $I \subset A$ the blowup $\operatorname{Proj}(\operatorname{Bl}_I(A)) \to \operatorname{Spec}(A)$ where,

$$\mathrm{Bl}_{I}\left(A\right) = \bigoplus_{n=0}^{\infty} I^{n}$$

is the blowup algebra, has fiber over the closed subscheme V(I) equal to,

$$\operatorname{Proj}\left(\operatorname{\mathbf{gr}}_{I}(A)\right) \to \operatorname{Spec}\left(A/I\right)$$

which is the projectized tangent cone of I.

Remark. We can generalize this further. For a sheaf of ideals $\mathscr{I} \subset \mathcal{O}_X$ we can form the blowup,

$$\tilde{X} = \mathbf{Proj}_X \left(\bigoplus_{n=0}^{\infty} \mathscr{I}^n \right) \to X$$

Restricting to the closed subscheme $Z = V(\mathcal{I}) \subset X$ we find,

$$\mathbf{Proj}_{Z}\left(igoplus_{n=0}^{\infty}\mathscr{I}^{n}/\mathscr{I}^{n+1}
ight)
ightarrow Z$$

but notice that the graded algebra,

$$(\mathcal{O}_X/\mathscr{I}) \otimes_{\mathcal{O}_X} \bigoplus_{n=0}^{\infty} \mathscr{I}^n = \bigoplus_{n=0}^{\infty} \mathscr{I}^n/\mathscr{I}^{n+1} = \bigoplus_{n=0} (\mathscr{I}/\mathscr{I}^2)^{\otimes n}/K = \operatorname{Sym}_{\mathcal{O}_Z} \left(\mathscr{I}/\mathscr{I}^2 \right)$$

and $\mathcal{C}_{Z/X} = \mathscr{I}/\mathscr{I}^2$ is the conormal bundle (sheaf) so we find a pullback diagram,

$$\mathbb{P}(\mathcal{C}_{Z/X}) \longrightarrow \tilde{X} \\
\downarrow \qquad \qquad \downarrow^{\pi} \\
Z \longrightarrow X$$

and thus $\tilde{X} \to X$ is a projective bundle over Z and an isomorphism over $X \setminus Z$. We call $\mathbb{P}(\mathcal{C}_{Z/X})$ the projectiveized tangent cone of Z.

Proposition 3.0.2. If $x \in X$ is a regular point then $C_xX = T_xX$.

Proof. When $\mathcal{O}_{X,x}$ is regular then $\mathbf{gr}_{\mathfrak{m}_x}(\mathcal{O}_{X,x}) \cong \kappa(x)[x_1,\ldots,x_r]$ where $x_1,\ldots,x_r \in \mathfrak{m}_x$ are a basis of $\mathfrak{m}_x/\mathfrak{m}_x^2$ as a $\kappa(x)$ -vectorspace. Therefore, $\mathbf{gr}_{\mathfrak{m}_x}(\mathcal{O}_{X,x}) = \operatorname{Sym}_{\kappa(x)}(\mathfrak{m}_x/\mathfrak{m}_x^2)$ as graded rings and thus $C_x X = T_x X$ as well as the projective versons.

Proposition 3.0.3. Let X be finite type over k and $x \in X$ be a closed point. There is a canonical map,

$$\widehat{T_x X} \leftarrow \operatorname{Spec}\left(\widehat{\mathcal{O}_{X,x}}\right) \to \operatorname{Spec}\left(\mathcal{O}_{X,x}\right) \to X$$

which is an isomorphism exactly when $x \in X$ is regular.

Proof. By the Cohen structure theorem $\widehat{\mathcal{O}_{X,x}} = k[[x_1,\ldots,x_r]]/I$ where $x_1,\ldots,x_r \in \mathfrak{m}_x$ are a basis of $\mathfrak{m}_x/\mathfrak{m}_x^2$ and I=(0) exactly when $x \in X$ is regular proving that the canonical map $T_xX \to \operatorname{Spec}\left(\widehat{\mathcal{O}_{X,x}}\right)$ is

4 Formal Schemes

Definition 4.0.1. Let A be a ring and $I \subset A$ an ideal. Then the completion of A along I is,

$$\hat{A} = \varprojlim_{n} A/I^{n}$$

Furthermore, for any A-module M we can complete M along I to get,

$$\hat{M} = \varprojlim_{n} M/I^{n}M = \varprojlim_{n} (M \otimes_{A} A/I^{n}) = M \otimes_{A} \hat{A}$$

Proposition 4.0.2. Let A be a ring and $I \subset A$ an ideal and M an A-module. Then \hat{M} satisfies the following universal property. Any map $\varphi: M \to N$ to a complete A-module N factors uniquely as $M \to \hat{M} \xrightarrow{\tilde{\varphi}} N$.

Proof. The kernel of $M \to N/I^nN$ contains I^nM and thus factors as $M \to M/I^nM \to N/I^nN$. Taking inverse limits gives $M \to \hat{M} \to N$. Uniqueness follows from the fact that a map $\hat{M} \to M$ is determined completely by $\hat{M} \to M/I^nM \to N/I^nN$.

Lemma 4.0.3. Let A be a ring and $I \subset A$ an ideal. Then the units of \hat{A} are exactly those elements which map to units under $\hat{A} \to A/I$.

Proof. Suppose that $u \in \hat{A}$ is a unit. Then clearly its image under $\hat{A} \to A/I$ is a unit. Conversely, suppose that $u \mapsto u_1 \in A/I$ is a unit. Then there exists $v_1 \in A/I$ s.t. $u_1v_1 = 1$ so lifting v_1 we get $u_2\tilde{v}_1 = 1 + r$ for $r \in I$ so we can take $ru_2\tilde{v}_1 = r + r^2 = r$ and thus $u_2(\tilde{v}_1 - r\tilde{v}_1) = 1$. Write $v_2 = \tilde{v}_1 - r\tilde{v}_1$ and we lift to see $u_3\tilde{v}_2 = 1 + r'$ for $r' \in I^2$ etc giving by induction an element $v \in \hat{A}$ such that uv = 1 in each A/I^n and thus in \hat{A} .

Lemma 4.0.4. Let $\mathfrak{m} \subset A$ be a maximal ideal. Then $\hat{A} = \widehat{A}_{\mathfrak{m}}$ is local.

Proof. Consider,

$$\widehat{A}_{\mathfrak{m}} = \varprojlim_{n} (A_{\mathfrak{m}}/\mathfrak{m}^{n}A_{\mathfrak{m}}) = \varprojlim_{n} (A/\mathfrak{m}^{n})_{\mathfrak{m}}$$

However, since A/\mathfrak{m}^n is local with maximal ideal \mathfrak{m} we see that $(A/\mathfrak{m}^n)_{\mathfrak{m}} = A/\mathfrak{m}^n$ and thus,

$$\widehat{A}_{\mathfrak{m}} = \varprojlim_{n} (A/\mathfrak{m}^{n})_{\mathfrak{m}} = \varprojlim_{n} A/\mathfrak{m}^{n} = \widehat{A}$$

Remark. Localization does not, in general, behave nicely with completion. For example, let $A = \mathbb{Z}_p[x]$ and $\mathfrak{p} = (x)$. Then $\hat{A}_{\mathfrak{p}} = \mathbb{Q}_px = \mathbb{Q}_p[[x]]$. However, $\hat{A} = \mathbb{Z}_p[[x]]$ and $\hat{A}_{\hat{\mathfrak{p}}} = \mathbb{Z}_p[[x]]_{(x)}$ which is a proper subring of $\mathbb{Q}_p[[x]]$ because it does not contain $1 + p^{-1}x + p^{-2}x^2 + \cdots$ and is this, in particular, not complete.

Lemma 4.0.5. Suppose that (A, \mathfrak{m}) is a local ring. Then $\operatorname{Spec}(\hat{A}) \to \operatorname{Spec}(A)$ is a homeomorphism.

(THIS IS TOTALLY FALSE IMPLIES A IS UNABRANCH AT LEAST)

Proof. The units in \hat{A} are everything except the preimage of zero under $\hat{A} \to A/\mathfrak{m} = \kappa$. Therefore $\hat{\mathfrak{m}} = \mathfrak{m}\hat{A}$ is the unique maximal ideal of \hat{A} making A local. I claim that $\mathfrak{p} \mapsto \mathfrak{p}\hat{A}$ is an inverse to $\operatorname{Spec}(\hat{A}) \to \operatorname{Spec}(A)$. (DO THIS!!)

Example 4.0.6. Consider $X = \operatorname{Spec}(k[x,y]/(y^2 - x^2(x-1))) \subset \mathbb{A}^2_k$. Take p = (x,y). We know X is connected and thus $\mathcal{O}_{X,p} = A_{\mathfrak{p}}$ has a unique minimal prime. However,

$$\widehat{\mathcal{O}_{X,p}} = \widehat{A} = k[[x,y]]/(y^2 - x^2(x+1)) \cong k[[x,y]]/(x^2 - y^2) = k[[x,y]]/((y-x)(x+y)) \cong k[[u]] \times k[[v]]$$
 which has two minimal primes (branches).

5 Multiplicity of a Point

Definition 5.0.1. Let X be a curve and $x \in X$ a point. Then the multiplicity m(x) is defined as:

$$m(x) = \lim_{n \to \infty} \dim_{\kappa(x)} \left(\mathfrak{m}_x^n / \mathfrak{m}_x^{n+1} \right)$$