Signali i sustavi - Zadaci za vježbu

X. tjedan

VARIJABLE STANJA

1. Vremenski kontinuirani LTI sustav dan je Slikom 1. Nađite model s varijablama stanja $x_1(t)$ i $x_2(t)$ kako su odabrane na slici (matrice A, B, C i D).

2. Zadan je vremenski diskretan LTI sustav prema slici 2. Nađite model s varijablama stanja ovog sustava (matrice A, B,C i D). Ulaz u sustav je u(n), stanja su $x_1(n)$ i $x_2(n)$, dok su izlazi $y_1(n)$ i $y_2(n)$.

3. Audio oscilator je sustav koji proizvodi sinusoidalni signal dane frekvencije ω . Ovaj sustav je moguće prikazati pomoću modela s varijablama stanja:

$$A = \begin{bmatrix} \cos(\omega) & -\sin(\omega) \\ \sin(\omega) & \cos(\omega) \end{bmatrix}, \ B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \ D=0.$$

- a. Matematičkom indukcijom dokažite: $A^n = \begin{bmatrix} \cos n\omega & -\sin n\omega \\ \sin n\omega & \cos n\omega \end{bmatrix}$.
- b. Nađite odziv stanja nepobuđenog sustava, te odziv nepobuđenog sustava, ako je početno stanje $x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
- c. Nađite impulsni odziv mirnog sustava.

- 4. Dana je matrica A vremenski diskretnog SISO LTI sustava $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, te vektor $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Pretpostavite da je $x(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Nađite ulaznu sekvencu u(0), u(1) takve da je stanje u drugom koraku $x(2) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
- 5. Dana je matrica A vremenski diskretnog SISO sustava $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Nađite A^n , te odziv stanja nepobuđenog sustava, ukoliko su početna stanja:

$$a. \quad x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$b. \quad x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$c. \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- 6. Zadan je LTI sustav opisan matricama $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ i $D = \begin{bmatrix} 0 \end{bmatrix}$. Koliko iznosi odziv nepobuđenog sustava za $n \ge 0$ uz početne uvjete $x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$?
- 7. Zadan je LTI sustav opisan matricama $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$ i $D = \begin{bmatrix} 1 \end{bmatrix}$. Ukoliko su početni uvjeti $x(0) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ pronađite prve dvije vrijednosti u(0) i u(1) ulaznog signala tako da se sustav u koraku dva nađe u stanju $x(2) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

KONVOLUCIJA

- 8. Odziv diskretnog LTI sustava na jediničnu stepenicu je $y(n)=(n+1)\mu(n)$. Odredite impulsni odziv ovog sustava. Kolika je vrijednost imulsnog odziva u n=5?
- 9. Zadan je vremenski diskretan LTI sustav impulsnim odzivom:

$$h(n) = \begin{cases} 1, & n = 0, 1 \\ 0, & \text{inace} \end{cases}$$

Nađite ulazno – izlaznu relaciju (jednadžbu diferencija) za ovaj sustav.

10. Nađite odziv diskretnog sustava na pobudu $u(n) = \alpha^n \mu(n)$, ako je poznat impulsni odziv sustava $h(n) = \beta^n \mu(n)$.

11. Dokažite svojstva konvolucije vremenski kontinuiranog sustava:

a.
$$u(t) * \delta(t) = u(t)$$

b.
$$u(t) * \delta(t - t_0) = u(t - t_0)$$

c.
$$u(t) * \mu(t) = \int_{-\infty}^{t} u(\tau) d\tau$$

c.
$$u(t) * \mu(t) = \int_{-\infty}^{t} u(\tau) d\tau$$

d.
$$u(t) * \mu(t - t_0) = \int_{-\infty}^{t - t_0} u(\tau) d\tau$$

12. Nađite odziv kontinuiranog sustava na pobudu $u(t) = \begin{cases} 1, & 0 < t \le 3 \\ 0, & \text{inace} \end{cases}$, ako je impulsni odziv

$$h(t) = \begin{cases} 1, & 0 < t \le 2 \\ 0, & \text{inace} \end{cases}.$$

- 13. Korištenjem konvolucijske sumacije odredite odziv diskretnog sustava zadanog impulsnim odzivom $h(n) = 4\delta(n) + 3\delta(n-1) + 2\delta(n-2) + \delta(n-3)$. Sustav je pobuđen s $u(n) = \delta(n) + \delta(n-1).$
- 14. Izračunajte izlaz y(t) za dani vremenski kontinuirani LTI sustav čiji su impulsni odziv h(t) i ulaz u(t) dani s

$$h(t) = e^{-at} \mu(t)$$

$$u(t) = e^{at} \mu(-t), \ a > 0.$$

15. Zadan je diskretni signal $f: Z \to R$ kao $f(n) = \begin{cases} 1, & n = 0, 1, 2 \\ 0, & \text{inače} \end{cases}$. Promatramo signal q(n) koji je definiran kao konvolucija q(n)=f(n)*f(n). Koliko iznosi q(3)?