Diskrete Wahrscheinlichkeitstheorie (SS 2013)

Hin.Ti's zu HA Blatt 7

Die folgenden Hinweise und Tipps zu Hausaufgaben sind für die Bearbeitung nicht notwendig, möglicherweise aber hilfreich. Man sollte zunächst versuchen, die Hausaufgaben ohne Hilfestellung zu lösen.

- ad HA 7.1: Aus der gegebenen W'keitsverteilung errechnet man sofort Erwartungswert und Varianz. Klar ist auch, dass $\Pr[N > 119] = 0$ gilt. Für k = 119 richtige Antworten würde Prof. Evilsparza durchaus die Note 3.7 geben. Für das gesuchte k gilt aber sicher k < 119.
 - (a) Betrachten Sie die rechte Seite der Markov-Ungleichung als Funktion von δ und beobachten Sie den Verlauf für größer werdendes δ .
 - Für die Anwendung der Chebyshev-Ungleichung überlegt man zunächst die Gültigkeit von $\Pr[N \mathbb{E}[N] \geq \delta] + \Pr[\mathbb{E}[N] N \geq \delta] = \Pr[|N \mathbb{E}[N]| \geq \delta]$. Die Bestimmungsgleichung für δ ergibt sich aus der rechten Seite der Chebyshev-Ungleichung durch Gleichsetzung mit 0.1.
 - Bei der Nutzung der Chernoff-Ungleichung ergibt sich δ aus der rechten Seite der Chernoff-Ungleichung durch Gleichsetzung mit 0.1.
 - (b) Aus der Symmetrie der Binomialverteilung für $p=\frac{1}{2}$ folgt unmittelbar $\Pr[X \geq \frac{n}{2} + \delta] = \Pr[X \leq \frac{n}{2} \delta]$. Begründung?
 - (c) Das gesuchte k ist kleiner als 75.
 - (d) Natürlich bleibt immer noch die direkte Aufsummierung der Wahrscheinlichkeiten $\Pr[N=i]$ für $i=k,\ldots,N$ und Test der Schrankenbedingung für k.

ad HA 7.2:

Das Thema wird in der Literatur u.a. unter der Bezeichnung "Mischung von Verteilungen" behandelt. Siehe auch Schickinger/Steger, Diskrete Strukturen Band 2, 2001: Satz 1.98.

ad HA 7.3:

Siehe die gegebenen Hinweise auf vorausgegangene Aufgaben.