(a)	Express $4x^2 - 12x + 13$ in the form $(2x + a)^2 + b$, where a and b are constants.	[2]
		•••••
		•••••
		•••••
		•••••
		•••••
	function f is defined by $f(x) = 4x^2 - 12x + 13$ for $p < x < q$, where p and q are constants. ction g is defined by $g(x) = 3x + 1$ for $x < 8$.	The
(b)	Given that it is possible to form the composite function gf , find the least possible value of q the greatest possible value of q .	anc [3]
		•••••
		•••••

(c)	Find an expression for $gf(x)$.	[1]
The	function h is defined by $h(x) = 4x^2 + 12x + 12$ for $x \neq 0$	
THE	function h is defined by $h(x) = 4x^2 - 12x + 13$ for $x < 0$.	
(d)	Find an expression for $h^{-1}(x)$.	[3]

.....