

Application No.: 10/635,864
Response dated October 18, 2006
Reply to Office Action of: July 20, 2006
- 2 - of 8

RECEIVED
CENTRAL FAX CENTER
OCT 18 2006

AMENDMENTS TO THE CLAIMS

A list of claims follows, including those to be amended:

1. (Currently Amended) A bimodal polyethylene comprising ethylene derived units and units derived from at least one of a C₄ to C₁₂ olefin; wherein the polyethylene has a density of from 0.940 to 0.970 g/cm³; an I₂₁/I₂ of 80 or more; a residual zirconium or hafnium metal content; a Mw/Mn of from 20 to 60; and wherein the polyethylene comprises a high molecular weight component and a low molecular weight component, the high molecular weight component present from 40 to 60 weight percent based on the total polyethylene, and wherein the high molecular weight component has a weight average molecular weight Mw of greater than 100,000 a.m.u, wherein said bimodal polyethylene comprises a nitrogen containing ligand detectable by High Resolution Mass Spectroscopy (HRMS).
2. (Original) The bimodal polyethylene of Claim 1, possessing an I₂ of 0.5 g/ 10 min or less.
3. (Original) The bimodal polyethylene of Claim 1, wherein the weight average molecular weight Mw of the high molecular weight component is greater than 150,000 a.m.u.
4. (Original) The bimodal polyethylene of Claim 1, wherein the weight average molecular weight Mw of the high molecular weight component is greater than 200,000 a.m.u.
5. (Previously Presented) The bimodal polyethylene of Claim 1, wherein the zirconium or hafnium metal residuals content is 1.5 ppm to 5.0 ppm.

Application No.: 10/635,864

Response dated October 18, 2006

Reply to Office Action of: July 20, 2006

- 3 - of 8

6. (Original) The bimodal polyethylene of Claim 1, wherein the value of I_{21}/I_2 is greater than 90.
7. (Original) The bimodal polyethylene of Claim 1, possessing a notch tensile test result of greater than 150 hours at 3.0MPa.
8. (Original) The bimodal polyethylene of Claim 1, wherein a pipe with carbon black formed from the polyethylene is able to withstand at least 50 years at an ambient temperature of 20°C, using water as the internal test medium and either water or air as the outside environment (Hydrostatic (hoop) stress as measured by ISO TR 9080).
9. (Original) The bimodal polyethylene of Claim 1, wherein a pipe with carbon black formed from the polyethylene possesses a predicted S-4 T_c for 110mm pipe of less than -5°C (ISO DIS 13477/ASTM F1589).
10. (Original) The bimodal polyethylene of Claim 1, wherein a pipe with carbon black formed from the polyethylene possesses a predicted S-4 T_c for 110mm pipe of less than -15°C (ISO DIS 13477/ASTM F1589).
11. (Original) The bimodal polyethylene of Claim 1, wherein when formed into a 0.5mil (13μ) film possesses an MD Tear of between about 5 g/mil and 25 g/mil.
12. (Original) The bimodal polyethylene of Claim 1, wherein when formed into a 0.5mil (13μ) film possesses an MD Tear of between about 15 g/mil and 25 g/mil.
13. (Original) The bimodal polyethylene of Claim 1 formed in a single reactor by contacting olefins and a catalyst composition comprising a Group 15 containing compound and a bulky ligand metallocene catalyst compound; wherein the Group 15 containing metal compound is represented by the formulae:

Application No.: 10/635,864
 Response dated October 18, 2006
 Reply to Office Action of: July 20, 2006
 - 4 - of 8

or

wherein M is a Group 4, 5 or 6 metal;
 each X is independently a leaving group;
 y is 0 or 1;
 n is the oxidation state of M;
 m is the formal charge of the ligand comprising the YZL or YZL' groups;
 L is a Group 15 or 16 element;
 L' is a Group 15 or 16 element or Group 14 containing group;
 Y is a Group 15 element;
 Z is a Group 15 element;
 R¹ and R² are independently a C₁ to C₂₀ hydrocarbon group, a heteroatom containing group having up to twenty carbon atoms, silicon, germanium, tin, lead, or phosphorus; wherein R¹ and R² may be interconnected to each other;

Application No.: 10/635,864

Response dated October 18, 2006

Reply to Office Action of: July 20, 2006

- 5 - of 8

R³ is absent or a hydrocarbon group, hydrogen, a halogen, a heteroatom containing group;

R⁴ and R⁵ are independently an alkyl group, an aryl group, substituted aryl group, a cyclic alkyl group, a substituted cyclic alkyl group, a cyclic arylalkyl group, a substituted cyclic arylalkyl group or multiple ring system; wherein R⁴ and R⁵ may be interconnected to each other;

R⁶ and R⁷ are independently absent, or hydrogen, an alkyl group, halogen, heteroatom or a hydrocarbyl group; and

R⁸ is absent, or is hydrogen, a Group 14 atom containing group, a halogen, a heteroatom containing group.

14. (Previously Presented) The bimodal polyethylene of Claim 1, wherein the zirconium or hafnium metal residuals content is 1.6 ppm to 5.0 ppm.
15. (Previously Presented) The bimodal polyethylene of Claim 1, wherein the zirconium or hafnium metal residuals content is 1.8 ppm to 5.0 ppm.
16. (Previously Presented) The bimodal polyethylene of Claim 1, wherein the zirconium or hafnium metal residuals content is 2.0 ppm to 5.0 ppm.
17. Cancelled
18. (Previously Presented) The bimodal polyethylene of Claim 1, wherein the zirconium or hafnium metal residuals content is 1.6 ppm to 2.0 ppm.
19. Cancelled.
20. (New) A bimodal polyethylene consisting of ethylene derived units and units derived from at least one of a C₄ to C₁₂ olefin; wherein the polyethylene consists of a density of from 0.940 to 0.970 g/cm³; an I₂₁/I₂ of 80 or more; a residual

Application No.: 10/635,864

Response dated October 18, 2006

Reply to Office Action of: July 20, 2006

- 6 - of 8

zirconium or hafnium metal content; a Mw/Mn of from 20 to 80; and wherein the polyethylene consists of a high molecular weight component and a low molecular weight component, the high molecular weight component present from 40 to 60 weight percent based on the total polyethylene, and wherein the high molecular weight component has a weight average molecular weight Mw of greater than 100,000 a.m.u., wherein said bimodal polyethylene consists of a nitrogen containing ligand detectable by High Resolution Mass Spectroscopy (HRMS).