Homework 4 Solutions

Ch 12: 1, 2, 9, 22 - 26, 60, 63

1. 2×2 matrices over \mathbb{Z}_2 is finite and non-commutative. Since

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
while
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

 2×2 matrices with entries from $2\mathbb{Z}$ would be an example of infinite, non-commutative with no unit.

2. Consider $R = 2\mathbb{Z}_{10} = \{0, 2, 4, 6, 8\}$. 6 is unity since $(5+1)(2m) = 10m + 2m = 2m \mod 10$ (or by inspection if you prefer). To see that each element is a unit, check $2 \cdot 8 = 6 \mod 10$, $4 \cdot 4 = 6 \mod 10$.

9. This is sort of a standard type of result you should expect. If $R = \bigcap R_i$ then we need to show closure under operations, but this is trivial since each R_i is closed.

22. Let $u, v \in U(R)$, then $(u \cdot v) \cdot (v^{-1} \cdot u^{-1}) = (u(vv^{-1})u^{-1}) = u1u^{-1} = uu^{-1} = 1$, so $v^{-1}u^{-1} = (uv)^{-1}$ and thus uv is a unit if u and v are such. The rest is even simpler.

23. Determine $U(\mathbb{Z}[i])$ we need (a+bi)(c+di)=1 so (ac-bd)=1 while (ad+bc)=0. The only units are ± 1 and $\pm i$ are units. That these are the only units can be seen thus

$$(a+bi)^{-1} = \frac{a-bi}{a^2+b^2}$$

so $a+bi \in \mathbb{Z}[i]$ iff $\frac{a}{a^2+b^2}, \frac{b}{a^2+b^2} \in \mathbb{Z}$, for this we must have $a=\pm 1$ and b=0 or $b=\pm 1$ and a=0.

24. Show that $U(R_1 \times R_2 \times \cdots \times R_n) = U(R_1) \times U(R_2) \times \cdots \times U(R_n)$.

It would suffice to consider n=2 and use induction. Suppose $(r,s) \in U(R_1 \times R_2)$ so there is (r',s') such that (r,s)(r',s')=(1,1), but then $(r,s) \in U(R_1) \times U(R_2)$. Essentially the same argument works in the other direction.

25. Determine $U(\mathbb{Z}[x])$. Let $p = a + p_1(x)x$ and $q = b + q_1(x)x$ then $pq = (ab + (aq_1(x) + bp_1(x))x + p_1(x)q_1(x)x^2 = 1$ iff $(a,b) = \pm (1,1)$. So $U(\mathbb{Z}[x]) = U(\mathbb{Z})$.

26. Determine $U(\mathbb{R}[x])$. This is like the above, the only $f \in \mathbb{R}[x]$ with a multiplicative inverse is $f = a \in \mathbb{R}^* = U(\mathbb{R})$. So $U(\mathbb{R}[x]) = U(\mathbb{R})$.

60. Show that $4x^2 + 6x + 3$ is a unit in $\mathbb{Z}_8[x]$.

 $(4x^2 + 6x + 3)(2x + 3) = 8x^3 + 12x^2 + 6x + 12x^2 + 18x + 9 = 8x^2 + 24x^2 + 24x + 9 \mod 8 = 1$

1

63. $A \in M_2(\mathbb{Z})$ We know $\det(AB) = \det(A) \det(B)$ and so if AB = I, then $\det(A) \det(B) = 1$ and as $\det(A), \det(B) \in \mathbb{Z}$ it must be that $\det(A) = \pm 1$.

Ch 13: 7, 12, 17, 30, 43, 49, 51, 56, 57, 64

7. Let R be a finite commutative ring with unity. Show that every $r \in R$ is either a unit or a 0-divisor.

Suppose r is not a zero-divisor. Consider the map $s \mapsto rs$. If rs = rs', then rs - rs' = r(s - s') = 0. If $s \neq s'$ for any $s, s' \in R$, then r is a 0-divisor. Else, the map is 1-1 and hence onto, so rs = 1 for some s. (A counting argument.)

Any time you have an integral domain that is not a field you have non-zero-divisor non-unit elements, like 2 in \mathbb{Z} .

Note This shows that every finite integral domain is a field!

12. In \mathbb{Z}_7 give interpretations for 1/2, -2/3, $\sqrt{-3}$, and -1/6.

 $2 \cdot 4 = 1 \mod 7$ so $4 = 1/2 \mod 7$.

 $1/3 = 5 \mod 7$ since $3 \cdot 5 = 15 = 1 \mod 7$ and so $2/3 = 10 = 3 \mod 7$ and this makes sense as $3 \cdot 3 = 9 = 2 \mod 7$ and so $-2/3 = -3 = 4 \mod 7$.

 $-3 = 4 \mod 7$ so $2 = \sqrt{-3} \mod 7$, that is, $2^2 = 4 = -3 \mod 7$. What about $-2 = 5 \mod 7$? $(-2)^2 = 5^2 = 25 = 4 \mod 7$, do yes, 2 and -2 both satisfy $x^2 = -3$.

1/6 = 6 since $6 \cdot 6 = 1 \mod 7$ and so $-1/6 = -6 = 1 \mod 7$.

All pretty strange:)

17. In an integral domain if $a_1 a_2 \cdots a_n = 0$, then for some $i, a_i = 0$. So if $r^n = 0$, then r = 0.

30. $\mathbb{Q}[\sqrt{d}]$ is a field for d an integer. Closure under addition and multiplication are obvious and

$$a + b\sqrt{d} \cdot \frac{a - b\sqrt{d}}{a^2 - b^2 \cdot d} = 1$$

SO

$$(a+b\sqrt{d})^{-1} = \frac{a}{a^2 - b^2 \cdot d} - \frac{b}{a^2 - b^2 \cdot d}\sqrt{d}$$

43. Show that $\mathbb{Z}_7[\sqrt{3}]$ is a field. The additive group part is clear essentially being isomorphic to $\mathbb{Z}_7 \times \mathbb{Z}_7$.

The multiplication is $(a + b\sqrt{3})(c + d\sqrt{3}) = (ac + 3bd) + (ad + bc)\sqrt{3}$. This will satisfy all the rules except possibly having inverses, so consider

$$1 = (a + b\sqrt{3}) \left(\frac{a - b\sqrt{3}}{(a + b\sqrt{3})(a - b\sqrt{3})} \right)$$

This will be true if $\mathbb{Z}_7[\sqrt{3}]$ is a field. So the proposed inverse of $a + b\sqrt{3}$ is

$$\left(\frac{a}{a^2 - 3b^2}\right) - \left(\frac{b}{a^2 - 3b^2}\right)\sqrt{3}$$

For this to work we need that $a^2 - 3b^2 \neq 0$ in \mathbb{Z}_7 when a and b are not both 0.

Suppose $a^2 = 3b^2 \mod 7$. In this case we would have $3 = (a/b)^2$, so we can't have $a^2 = 3b^2$ unless 3 is a square in \mathbb{Z}_7 .

We can just check that $m^2 \mod 7 \neq 3$ for $m = 0, 1, \dots, 6$.

This indicates what is needed in general, $\mathbb{Z}_p[\sqrt{k}]$ is a field provided that k is not a square in \mathbb{Z}_p .

49. Let x_1, \ldots, x_n belong to a ring with prime characteristic p. First notice $(x+y)^p = x^p + \binom{p}{1}x^{p-1}y + \binom{p}{2}x^{p-2}y^2 + \cdots + \binom{p}{p-1}xy^{p-1} + y^p$. All of the middle terms have a factor of p and hence become 0. Thus $(x+y)^p = x^p + y^p$. Now then $(x+y)^{p^2} = ((x+y)^p)^p = (x^p + y^p)^p = (x^p)^p + (y^p)^p = x^{p^2} + y^{p^2}$, etc. By induction on m, $(x+y)^{p^m} = x^{p^m} + y^{p^m}$.

Now
$$((x_1 + x_2) + x_3)^{p^m} = (x_1 + x_2)^{p^m} + x_3^{p^m} = x_1^{p^m} + x_2^{p^m} + x_3^{p^m}$$
. So by induction on k ,
$$(x_1 + \dots + x_k)^{p^m} = x_1^{p^m} + \dots + x_k^{p^m}$$

Questions Where did we use p is prime? Where did we use commutativity?

This shows we need the "prime" assumption: In \mathbb{Z}_4 we have $(1+1)^4 = 2^4 = 0 \neq (1^4+1^4) = 2$.

What about the commutativity issue? Consider $M_2(\mathbb{Z}_2)$. Let $x = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ and $y = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, then

$$x^{2} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

$$y^{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$x^{2} + y^{2} = I + I = O$$

$$x + y = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$(x + y)^{2} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

So $x^2 + y^2 \neq (x + y)^2$.

51. Let F be a finite field of character p (we know p is a prime). What we need to see is the $|F| = p^m$ for some m. Suppose $q \mid |F|$ for some $q \neq p$, then there is a $g \in F$ with |g| = q, that is $qg = g + g + \cdots + g = 0$, but then $g \cdot (q \cdot 1) = 0$ and so $q \cdot 1 = 0$, but then $p \mid q$. So $|F| = p^m$ for some m.

56. Find all solutions to $x^2 - x + 2$ over $\mathbb{Z}_3[i]$.

We do have $x^2 - x + 2 = x^2 + 2x - 1 = (x+1)^2 - 2 = (x+1)^2 + 1$ so $x = 1 \pm i$. So x = -1 - i = 2 + 2i and x = -1 + i = 2 + i are the two roots.

57. Consider $x^2 - 5x + 6 = (x - 2)(x - 3) = 0$ Find all solutions in \mathbb{Z}_7 , \mathbb{Z}_8 , \mathbb{Z}_{12} , and \mathbb{Z}_{14} .

 \mathbb{Z}_7 is a field so x=2 and x=3 mod 7 is the only solution.

In \mathbb{Z}_8 , notice that (x-2)(x-3)=(x+6)(x+5) so we have

So in \mathbb{Z}_8 we have 2, 3 as roots.

 $\mathbb{Z}_{12} \simeq \mathbb{Z}_4 \times \mathbb{Z}_3$ so we can solve these separately. In \mathbb{Z}_3 we have $x^2 - 5x + 6 = x^2 + x = (x)(x+1) = (x)(x-2)$ in \mathbb{Z}_3 so x=0 and x=2 in \mathbb{Z}_3 . In \mathbb{Z}_4 we have $x^2 - 5x + 6 = x^2 + 3x + 2 = (x+2)(x+1)$ so x=-2, x=-1, that is x=2 and x=3. Thus the solutions are (2,0), (2,2), (3,0), (3,2), these correspond to (2,0), (2,2), (3,0), (3,2

 $\mathbb{Z}_{14} \simeq \mathbb{Z}_2 \times \mathbb{Z}_7$ and in \mathbb{Z}_2 $x^2 - 5x + 6 = x^2 + x = (x)(x+1) = (x)(x-1)$ so we have 0, 1 for roots and in \mathbb{Z}_7 we have 2 and 3 so we have (0,2), (0,3), (1,2), and (1,3) which corresponds to 2, 3, 9, 10.

64. In a finite field F with |F| = n, $|F^*| = n - 1$ and $x^{|F^*|} = 1$ for all $x \in F^*$. (Since in any group G, $g^{|G|} = e$.)