Cmpe-300

Ahmet Hacıoğlu

November 2023

1 Introduction

$\mathbf{Q4}$

I disprove $f(n) \in \Theta(\log(n))$ via contradiction. Assume $f(n) \in \Theta(\log(n))$.

Let $n = 2^{2^k}$ where $k \ge 0$.

Therefore,

$$f(2^{2^k}) = f(2^{2^{k-1}}) + 1$$
$$f(2^{2^{k-1}}) = f(2^{2^{k-2}}) + 1$$

:

$$f(2^{2^1}) = f(2^{2^{k-k}}) + 1$$

Using backward substitution:

$$f(2^{2^k}) = f(2) + k$$

$$f(2^{2^k}) = 1 + k$$

Now, since we assume $f(n) \in \Theta(\log(n))$, so there exist positive constants c_1 , c_2 , and n_0 such that $c_1 \log n \le f(n) \le c_2 \log n$ for $n \ge n_0$.

Consider the left part:

$$c_1 \log n \le f(n)$$

$$c_1 \log(2^{2^k}) \le f(2^{2^k})$$

$$c_1 \cdot 2^k \log 2 \le k+1$$

If we take the limit:

$$\lim_{k\to\infty}\frac{k+1}{c_1\cdot 2^k\log 2}=\lim_{k\to\infty}\frac{1}{c_1\cdot 2^k(\log 2)^2}=0$$

So, the denominator grows faster than the numerator. Thus, we cannot find positive constants c_1 and n_0 such that this inequality(left part) is satisfied. Therefore, $f(n) \notin \Theta(\log(n))$.