

SAR Test Report

Product Name: Tablet PC

Model No. : TC979, Le Pan II

FCC ID : ZDRTC979

Applicant: Matsunichi Digital Development (Shenzhen) Co., Ltd

Address: F/2, Matsunichi Building, No.9996, Shennan Boulevard,

Nanshan District, Shenzhen, China

Date of Receipt : 11/11/2011

Date of Test : 13/11/2011

Issued Date : 15/11/2011

Report No. : 11BS037R-HP-US-P03V01

Report Version: V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: 15/11/2011

Report No.: 11BS037R-HP-US-P03V01

QuieTek

Product Name : Tablet PC

Applicant : Matsunichi Digital Development (Shenzhen) Co., Ltd

Address : F/22, Matsunichi Building, No.9996, Shennan Boulevard,

Nanshan District, Shenzhen, China

Manufacturer : Matsunichi Digital Development (Shenzhen) Co., Ltd

Address : No.5, KeJi Road, PingShan Industrial Estate, PingShan

New District, Shenzhen, China

Model No. : TC979, Le Pan II

FCC ID : ZDRTC979

Brand Name : Le Pan EUT Voltage : DC 5V

Applicable Standard : FCC Oet65 Supplement C June 2001

IEEE Std. 1528-2003,47CFR § 2.1093

Test Result : Max. SAR Measurement (1g)

0.527W/kg

Performed Location : Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng

Hi-Tech Development Zone., Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By : Alice Wi

(Engineering ADM: Alice Ni)

Reviewed By :

(Engineering Supervisor: Robin Wu)

Approved By : Marlinchen

(Engineering Manager: Marlin Chen)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

FCC, NVLAP

Norway : Nemko, DNV

Japan : VCCI

USA

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://www.quietek.com/tw/ctg/cts/accreditations.htm
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

LinKou Testing Laboratory:

Suzhou (China) Testing Laboratory:

TABLE OF CONTENTS

Description	Page
1. General Information	6
1.1. EUT Description	6
1.2. Test Environment	7
2. SAR Measurement System	8
2.1. DASY5 System Description	8
2.1.1. Applications	9
2.1.2. Area Scans	9
2.1.3. Zoom Scan (Cube Scan Averaging)	9
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	9
2.2. DASY5 E-Field Probe	
2.2.1. Isotropic E-Field Probe Specification	10
2.3. Boundary Detection Unit and Probe Mounting Device	11
2.4. DATA Acquisition Electronics (DAE) and Measurement	Server11
2.5. Robot	12
2.6. Light Beam Unit	12
2.7. Device Holder	
2.8. SAM Twin Phantom	13
3. Tissue Simulating Liquid	14
3.1. The composition of the tissue simulating liquid	14
3.2. Tissue Calibration Result	15
3.3. Tissue Dielectric Parameters for Head and Body Phanto	oms16
4. SAR Measurement Procedure	17
4.1. SAR System Validation	17
4.1.1. Validation Dipoles	17
4.1.2. Validation Result	18
4.2. SAR Measurement Procedure	19
5. SAR Exposure Limits	20
6. Test Equipment List	21
7. Measurement Uncertainty	23
8. Conducted Power Measurement	24
9. Test Results	25

9.1.	SAR Test Results Summary	25
Append	dix A. SAR System Validation Data	27
Append	dix B. SAR measurement Data	27
Append	dix C. Test Setup Photographs & EUT Photographs	37
Append	dix D. Probe Calibration Data	42
Append	dix E. Dipole Calibration Data	49
Append	dix F. DAE Calibration Data	58

1. General Information

1.1. EUT Description

Product Name	Tablet PC	
Model No.	TC979, Le Pan II	
Hardware Version	TC979_V0.2	
Software Version	TC979 3.2 HTK75.User.V109	
Device Category	Portable	
Wi-Fi		
Frequency Range	802.11b/g/n(20MHz): 2412 - 2462 MHz	
Channel Number	802.11b/g/n(20MHz): 11	
Type of Modulation	802.11b: DSSS; 802.11g/n: OFDM	
Data Rate	802.11b: 1/2/5.5/11 Mbps	
	802.11g: 6/9/12/18/24/36/48/54 Mbps	
	802.11n: up to 65 Mbps	
Antenna Type	Internal	
Peak Antenna Gain	-5.76dBi	
Bluetooth		
Bluetooth Frequency	2402~2480MHz	
Type of modulation	FHSS	
Data Rate	1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps (8DPSK)	
Max. Output Power	802.11b: 18.59dBm	
(Average)	802.11g: 18.16dBm	
	802.11n(20MHz): 17.99dBm	
Battery	Rated Voltage and Capacitance: 3.7V, 6800mAh	
Adapter	Input: AC 100-240V 50/60Hz	
	Output: 5V	

1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4	
Construction	Symmetrical design with triangular core Built-in shield charges PEEK enclosure material (resistant to orga DGBE)	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	/
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	
Application	High precision dosimetric measurements in any e (e.g., very strong gradient fields). Only probe compliance testing for frequencies up to 6 GHz with 30%.	which enables

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT (% Weight)	2450MHz Body
Water	73.2
Salt	0.04
Sugar	0.00
HEC	0.00
Preventol	0.00
DGBE	26.7

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue Simulant Measurement					
Frequency		Dielectric Parameters		Tissue Temp.	
[MHz]	Description	ε _r	σ [s/m]	[°C]	
2450MHz	Reference result	52.7	1.95	N/A	
	± 5% window	50.07 to 55.34	1.85 to 2.05	IN/A	
	13-11-2011	52.10	2.01	21.0	

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	Head		Во	dy
(MHz)	٤ _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	51.5	30.4	3.6

4.1.2. Validation Result

System Performance Check at 2450MHz for Body

Validation Dipole: D2450V2, SN: 839

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	51.6 46.44 to 56.76	24.2 21.78 to 26.62	N/A
	13-11-2011	50.00	22.92	21.0

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	only once
Controller	Stäubli	SP1	S-0034	only once
Dipole Validation Kits	Speag	D2450V2	839	2012.03.12
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data	Speag	DAE4	1220	2012.12.03
Acquisition Electronic				
E-Field Probe	Speag	EX3DV4	3710	2012.02.25
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio Communication Tester	R&S	CMU 200	117088	2012.04.29
Vector Network	Agilent	E5071C	MY48367267	2012.04.10
Signal Generator	Agilent	E4438C	MY49070163	2012.04.23
Power Meter	Anritsu	ML2495A	0905006	2012.01.12
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2012.01.12

Note: Per KDB 450824 D02 requirements for dipole calibration, QuieTek Lab has adopted two years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement (Show below);
- 4. Impedance is within 5Ω of calibrated measurement (Show below).

Impedance Plot for D2450V2

2450 Body

Calibrated impedance: 50.0 Ω ; Measured impedance: 50.36 Ω (within 5Ω)

Calibrated return loss: -40.8 dB; Measured impedance: -42.22 dB (within 20%)

7. Measurement Uncertainty

		DASY	5 Unc	ertain	tv			
Measurement uncertainty					•	/ 10 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System						•		
Probe Calibration	±6.5%	N	1	1	1	±6.5%	±6.5%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	8
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	8
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related		•	-	•	•			
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		•	-	•	•			
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. F. O0/	Б	ro.	0.64	0.42	.4.00/	14.20/	8
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	
Liquid Conductivity	12.50/	N	1	0.64	0.43	±1.6%	±1.1%	8
(meas.)	±2.5%	IN	<u>'</u>	0.04	0.43	±1.076	±1.170	~
Liquid Permittivity	±5.0%	R	√3	0.6	0.49	±1.7%	±1.4%	∞
(target)	±0.070	1	V.3	0.0	0.70	±1.7 /0	±1.7/0	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
(meas.)	12.070			0.0	0.10	1.570	±1.2/0	
Combined Std. Uncertainty				±11.3%	±11.0%	387		
Expanded STD Uncertainty					±22.5%	±22.1%		

8. Conducted Power Measurement

Wi-Fi output power

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Average Power (dBm)	
802.11b		01	2412	18.59	
	11	06	2437	18.24	
		11	2462	17.55	
		01	2412	18.16	
802.11g	54	06	2437	17.39	
		11	2462	17.10	
		01	2412	17.99	
802.11n(20MHz)	65	06	2437	17.71	
		11	2462	17.14	

9. Test Results

9.1. SAR Test Results Summary

9.1.1. Test position and configuration

Body SAR was performed with the device configured in the positions according to IEEE1528. SAR test was performed with the device 0mm (touch) from the phantom for the worst case due to antenna position. Test Position: bottom, primary landscape, secondary landscape, secondary portrait. Please refer to the test photograph for details.

9.1.2. Referenced Documents

FCC KDB 248227 D01 and KDB 447498 D01

9.1.3. Test Result

SAR MEASUREMENT								
Ambient Temperature (°C) : 21.5 ±2				Relative Humidity (%): 52				
Liquid Temperature (°C) : 21.0 ±2				Depth of Liquid (cm):>15				
Product: Tablet PC								
Test Mode: 802.11b								
Test Position Body	Antenna Position	Frequency		Average	Power Drift	SAR 1g	Limit	
		Channel	MHz	Power (dBm)	(<±0.2)	(W/kg)	(W/kg)	
Bottom	Fixed	1	2412	18.59	0.130	0.527	1.6	
Bottom	Fixed	6	2437	18.24	0.136	0.494	1.6	
Bottom	Fixed	11	2462	17.55	-0.093	0.452	1.6	
Primary landscape	Fixed	6	2437	18.24	0.149	0.013	1.6	
Secondary landscape	Fixed	6	2437	18.24	0.128	0.008	1.6	
Secondary portrait	Fixed	6	2437	18.24	-0.129	0.120	1.6	
Test Mode: 802.11g								
Bottom	Fixed	6	2437	17.39	-0.083	0.357	1.6	
Test Mode: 802.11n(20MHz)								
Bottom	Fixed	6	2437	17.71	-0.047	0.346	1.6	
	•	•	•		•			

Appendix A. SAR System Validation Data

Date/Time: 13-11-2011

Test Laboratory: QuieTek Lab System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 2.01$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=250mW

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 03/12/2010

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 2450MHz/Area Scan (7x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 14 mW/g

Configuration/Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm, Reference Value = 84.2 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 25.6 W/kg

SAR(1 g) = 12.5 mW/g; SAR(10 g) = 5.73 mW/g Maximum value of SAR (measured) = 14.4 mW/g

0 dB = 14.4 mW/g

Appendix B. SAR measurement Data

Date/Time: 13-11-2011

Test Laboratory: QuieTek Lab 802.11b 2412MHz-Bottom **DUT: Table PC; Type: TC979**

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.2$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1220; Calibrated: 03/12/2010

• Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Low-Bottom/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.280 mW/g

Configuration/802.11b Low-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.04 V/m; Power Drift = 0.130 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.527 mW/g; SAR(10 g) = 0.191 mW/g Maximum value of SAR (measured) = 0.581 mW/g

0 dB = 0.581 mW/g

Z-Axis Plot

Test Laboratory: QuieTek Lab 802.11b 2437MHz-Bottom

DUT: Table PC; Type: TC979

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid-Bottom/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.477 mW/g

Configuration/802.11b Mid-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.55 V/m; Power Drift = 0.136 dB

Peak SAR (extrapolated) = 1.3 W/kg

SAR(1 g) = 0.494 mW/g; SAR(10 g) = 0.180 mW/g Maximum value of SAR (measured) = 0.552 mW/g

0 dB = 0.552 mW/g

Test Laboratory: QuieTek Lab 802.11b 2462MHz-Bottom

DUT: Table PC; Type: TC979

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.03$ mho/m; $\epsilon r = 52$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b High-Bottom/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.143 mW/g

Configuration/802.11b High-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.39 V/m; Power Drift = -0.093 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.452 mW/g; SAR(10 g) = 0.164 mW/g Maximum value of SAR (measured) = 0.574 mW/g

0 dB = 0.574 mW/g

Test Laboratory: QuieTek Lab

802.11b 2437MHz-Primary Landscape

DUT: Table PC; Type: TC979

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid-Primary Landscape/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm, Maximum value of SAR (measured) = 0.014 mW/g

Configuration/802.11b Mid-Primary Landscape/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.82 V/m; Power Drift = 0.149 dB
Peak SAR (extrapolated) = 0.030 W/kg

SAR(1 g) = 0.013 mW/g; SAR(10 g) = 0.005 mW/g Maximum value of SAR (measured) = 0.015 mW/g

0 dB = 0.015 mW/g

Test Laboratory: QuieTek Lab

802.11b 2437MHz-Secondary Landscape

DUT: Table PC; Type: TC979

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid-Secondary Landscape/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm, Maximum value of SAR (measured) = 0.008 mW/g

Configuration/802.11b Mid-Secondary Landscape/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 1.77 V/m; Power Drift = 0.128 dB Peak SAR (extrapolated) = 0.032 W/kg

SAR(1 g) = 0.008 mW/g; SAR(10 g) = 0.003 mW/g Maximum value of SAR (measured) = 0.007 mW/g

0 dB = 0.007 mW/g

Test Laboratory: QuieTek Lab

802.11b 2437MHz-Secondary Portrait

DUT: Table PC; Type: TC979

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid-Secondary Portrait/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm, Maximum value of SAR (measured) = 0.058 mW/g

Configuration/802.11b Mid-Secondary Portrait/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.15 V/m; Power Drift = -0.129 dB
Peak SAR (extrapolated) = 0.234 W/kg

SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.056 mW/g Maximum value of SAR (measured) = 0.134 mW/g

0 dB = 0.134 mW/g

Test Laboratory: QuieTek Lab 802.11g 2437MHz-Bottom

DUT: Table PC; Type: TC979

Communication System: Wi-Fi; Communication System Band: 802.11g; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g Mid-Bottom/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (measured) = 0.167 mW/g

Configuration/802.11g Mid-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 9.34 V/m; Power Drift = -0.083 dB

Peak SAR (extrapolated) = 0.894 W/kg

SAR(1 g) = 0.357 mW/g; SAR(10 g) = 0.130 mW/g Maximum value of SAR (measured) = 0.409 mW/g

0 dB = 0.409 mW/g

Test Laboratory: QuieTek Lab 802.11n(20MHz) 2437MHz-Bottom

DUT: Table PC; Type: TC979

Communication System: Wi-Fi; Communication System Band: 802.11n(20MHz); Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon r = 52.1$; $\rho = 1000$ kg/m³; Phantom

section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3710; ConvF(3.702, 4.126, 4.265); Calibrated: 25/02/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 03/12/2010
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Mid-Bottom/Area Scan (7x9x1): Measurement grid: dx=20mm, dy=20mm, Maximum value of SAR (measured) = 0.157 mW/g

Configuration/802.11n(20MHz) Mid-Bottom/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 8.46 V/m; Power Drift = -0.047 dB

Peak SAR (extrapolated) = 0.887 W/kg

SAR(1 g) = 0.346 mW/g; SAR(10 g) = 0.127 mW/g Maximum value of SAR (measured) = 0.364 mW/g

0 dB = 0.364 mW/g

Appendix C. Test Setup Photographs & EUT Photographs

Antenna to Antenna/User Separation Distances

Test Setup Photographs

Bottom Touch

Primary landscape Touch

Secondary landscape Touch

Secondary portrait Touch

Depth of the liquid in the phantom – Zoom in

Note: The position used in the measurements were according to IEEE 1528 - 2003

EUT Photographs

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

Appendix D. Probe Calibration Data

国家无线电监测中心检测中心 The State Radio monitoring center Testing Center

校准证书

Calibration Certificate

器具名称

电场探头 E-Field Probe

Instrument-

型号/规格 Type/ModelEX3DV4

生产厂家

Schmid & Partner Engineering AG

Manufacturer

SN:3710

出厂编号 Serial No-

客户名称

客户地址

快特电波科技 (苏州) 有限公司

Name of Client-

苏州工业园区娄葑高新技术开发区宏业路 99 号

Address of Client-

2011.2.25

校准日期 Calibration Date-

所有的校准工作都是在屏蔽实验室中完成:环境温度 (22±3) ℃ 湿度<70%

All calibrations have been conducted in the closed laboratory facility: environment

temperature (22±3) °C and humidity<70%

Approved by

地址:北京市西城区北礼士路80号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China

电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第1页 共7页

证书编号 Certificate No.SRTC2011-CAL002-001

校准规范 Reference documents of the measurement(Code, Name)

SRMC3003-V2.0.0 比吸收率 (SAR) 测试系统校准规范

校准环境及地点 Place and environmental condition of the measurement

温度 Temperature

23.2°C

湿度 Humidity 32.5 %

地点 Location SRTC room 226

主要校准设备	型号	序列号	校准日期	校准有效期至	
Primary Calibration Equipment	Model/Type	ID#	Cal Date	Scheduled	
used				Calibration	
功率计 Power meter	E4417A	SN: MY45101004	2010.8	2011.8	
功率传感器 Power sensor	E9300B	SN: MY41496001	2010.8	2011.8	
功率传感器 Power sensor	E9300B	SN: MY41496003	2010.8	2011.8	
参考 DAE Reference DAE	DAE4	SN: 720	2011.1	2012.1	
信号源 Signal generator	SML03	SN:103514	2010.8	2011.8	
网络分析仪 Network analyzer	8714ET	SN:US40372083	2010.8	2011.8	
次要校准设备	型号	序列号			
Secondary Calibration Equipment	Model/Type	ID#			
波导 Waveguide	WGLS R9	SN:1006			
波导 Waveguide	WGLS R14	SN:1003			
波导 Waveguide	WGLS R22	SN:1006			

今後三 1

地址:北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第2页 共7页

证书编号 Certificate No.SRTC2011-CAL002-001

注:

1. 所使用的校准系统和计量标准可溯源到国家基准或标准。

测量和置信区间的不确定度都是证书的一部分,并将在以下内容中给出。

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

2. 除非拥有本实验室的书面许可,否则不得复制该校准证书。

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

3. 我中心仅对加盖"国家无线电监测中心检验中心"章的完整证书负责

SRTC is responsible for the whole of certificate only with stamp of SRTC.

4. 本证书的校准结果仅对所校准的计量器具有效

The calibration results would be valid only for the items calibration.

5. 本证书中英文两种语言表达,准确含义以中文为准。

The certification is written by Chinese and English. Exact meaning should be explained only on Chinese version.

A

地址:北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第 3 页 共 7 页 证书编号 Certificate No.SRTC2011-CAL002-001

备注

Glossary

TSL

模拟组织液 tissue simulating liquid

NORMx, y, z

自由空间灵敏度 sensitivity in free space

ConvF

模拟组织液中的灵敏度/自由空间的灵敏度 sensitivity in TSL/NORM x, y, z

DCP

二极管压缩点 diode compression point

角度φ

沿探头轴向旋转 φ rotation around probe axis

角度θ

沿探头法平面中的一个轴旋转 θ ,例如 θ =0,代表垂直于探头轴向

 θ rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., $\theta=0$ is normal to probe axis

本校准证书中使用的方法参考如下标准

Calibration is preformed according to the Following Standards

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in Human Head from Wireless Communication Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) Federal Communication Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

地址: 北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第4页 共7页

证书编号 Certificate No.SRTC2011-CAL002-001

方法及参数介绍

Methods Applied and Interpretation of Parameters

- · NORMx, y, z: NORMx, y, z 是中间变量,其不确定度不影响 TSL 中电场强度的不确定性。 NORM x, y, z are only intermediate valve, i.e., the uncertainties of NORM x, y, z does not effect the E²-field uncertainty inside TSL (see below ConvF)
- NORM(f)x, y, z= NORMx, y, z*频率响应。在 DASY4.2 以后的版本中,这项工作由软件完成,频率响应的不确定度包含在 ConvF 的不确定度中。
 NORM(f) x, y, z= NORM x, y, z*frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software version later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP 是与探头的线性度相关的参数,其测试是基于功率扫描的方法进行的,另外 DCP 既不依赖于频率也不依赖于介质。 DCP x, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF 和边界效应: 当频率大于 800MHz 时,利用平坦模型中的电场或是波导中的人工电场进行测试。我们也利用相同的配置来得到边界效应的相关参数 (alpha, depth)。DASY 软件的这项功能可以用来补偿测试中发生的边界效应,使在边界附近测试的时候能够更加准确。而ConvFx,y,z=NORMx, y, z*ConvF。DASY4.4 以后的版本允许的频率扩展范围为±50MHz 到±100MHz。

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Stand for $f \le 800 \text{MHz}$) and inside waveguide using analytical field distributions based on power measurement for $f \ge 800 \text{MHz}$. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given .These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{MHz}$ to $\pm 100 \text{ MHz}$.

• 各向同向性: 探头暴露在平板天线和一个平面模型产生的电场中,这个电场的梯度较低。 Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

地址: 北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

证书编号 Certificate No.SRTC2011-CAL002-001

第5页共7页

测试条件

Measurement Conditions

DASY 版本 DASY Version	DSAY 5	V52.2.0.163
模型 Phantom	Flat phantom	

探头敏感度参数

Probe Sensitivity Parameters

	数值 Value	单位 Unit
X轴	1.00	$\mu V / (V / m)^2$
Y轴	1.00	$\mu V/(V/m)^2$
Z轴	1.00	$\mu V/(V/m)^2$

1. 二极管压缩点

Diode Compression Point

	数值 Value	单位 Unit	不确定度 Uncertainty (k = 2)
X轴	98.60	mV	10.82%
Y轴	97.38	mV	10.82%
Z轴	99.74	mV	10.82%

2. 转换因子: 头部 TSL

Probe Conversion Factors: Head Tissue Liquid

频率(MHz) Frequency	频率范围 Validity (MHz)	介电常数 Permittivit	导电率 Conductivity	Alpha	Depth	ConvF2		y/	不确定度 Uncertainty (k = 2)
850	±100	41.56	0.9106	0.395	0.882	3.843	4.303	4.435	13.02%
900	±100	41.24	0.9487	0.337	0.974	3.913	4.377	4.502	13.02%
1800	±100	39.21	1.348	0.156	1.648	3.784	4.193	4.328	13.02%
1900	±100	38.75	1.450	0.178	1.515	3.609	4.015	4.146	13.02%
2450	±100	38.23	1.982	0.126	1.725	3.214	3.653	3.661	13.02%

地址: 北京市西城区北礼士路 80 号 Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China 电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第6页 共7页 证书编号 Certificate No.SRTC2011-CAL002-001

3. 转换因子: 腰部 TSL

Probe Conversion Factors: Body Tissue Liquid

频率(MHz) Frequency	频率范围 Validity (MHz)	介电常数 Permittivit	导电率 Conductivity	Alpha	Depth	ConvF2	76 75	el.	不确定度 Uncertainty (k = 2)
850	±100	55.36	1.004	0.459	0.807	4.438	4.985	5.123	13.02%
900	±100	54.48	1.055	0.378	0.863	4.530	5.101	5.229	13.02%
1800	±100	52.83	1.501	0.152	1.732	4.333	4.832	4.991	13.02%
1900	±100	52.43	1.615	0.183	1.491	4.193	4.677	4.833	13.02%
2450	±100	52.95	1.911	0.137	1.758	3.702	4.126	4.265	13.02%

4. 各向同向性

Probe Isotropy

	数值 Value	单位 Unit	不确定度 Uncertainty (k = 2)
轴向各向同向性 Axial Isotropy	0.157	dB	10.18%
球面各向同向性 Spherical Isotropy	0.125	dB	10.18%

校准员 A A Checked by

地址:北京市西城区北礼士路80号

Add: No.80 Bei Lishi Road, Xi Cheng District Beijing 100037, P.R. China

电话 Tel: +86-10-68009202 68009203 传真 Fax: +86-10-68009205 68009195

第7页 共7页 证书编号 Certificate No.SRTC2011-CAL002-001

Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek (Auden)

Certificate No: D2450V2-839 Mar10

Dbject	D2450V2 - SN: 83	39	
Calibration procedure(s)	QA CAL-05.v7 Calibration proces	dure for dipole validation kits	
Calibration date:	March 12, 2010		
All calibrations have been condu	cted in the closed laborator	y facility: environment temperature (22 ± 3)°(C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
Personal according and profit or and constraints			
Primary Standards Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10 Oct-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Scheduled Calibration Oct-10 Oct-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Scheduled Calibration Oct-10 Oct-10 Mar-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11 In house check: Oct-10 Signature
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-839_Mar10

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-839_Mar10

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 mW / g
SAR normalized	normalized to 1W	24.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10 Page 3 of 9

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10 Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω - 0.6 j Ω	
Return Loss	- 29.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.0 \Omega + 0.9 j\Omega$	
Return Loss	- 40.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

Certificate No: D2450V2-839_Mar10

Page 5 of 9

DASY5 Validation Report for Head TSL

Date/Time: 12.03.2010 13:24:52

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.81$ mho/m; $\varepsilon_r = 40.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.1 V/m; Power Drift = 0.060 dB Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.11 mW/gMaximum value of SAR (measured) = 16.5 mW/g

0 dB = 16.5 mW/g

Certificate No: D2450V2-839_Mar10

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body

Date/Time: 12.03.2010 15:25:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Body/d=10mm, Pin250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = -0.0047 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/gMaximum value of SAR (measured) = 17.2 mW/g

Certificate No: D2450V2-839_Mar10 Page 8 of 9

Impedance Measurement Plot for Body TSL

Appendix F. DAE Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Quietek (Auden)

Certificate No: DAE4-1220_Dec10

Accreditation No.: SCS 108

CALIBRATION C	ERTIFICATE		
Object	DAE4 - SD 000 D04 BJ - SN: 1220		
Calibration procedure(s)	QA CAL-06.v22 Calibration proced	dure for the data acquisitio	n electronics (DAE)
Calibration date:	December 3, 2010)	
The measurements and the unce	rtainties with confidence pro	inal standards, which realize the phy obability are given on the following p or facility: environment temperature (pages and are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	28-Sep-10 (No:10376)	Sep-11
Secondary Standards Calibrator Box V1.1	ID # SE UMS 006 AB 1004	Check Date (in house) 07-Jun-10 (in house check)	Scheduled Check In house check: Jun-11
	Name	Function	Signature
	(ACITIC)		
Calibrated by:	Eric Hainfeld	Technician	
Calibrated by: Approved by:	HARDE REPORTED AND	Technician R&D Director	1,N. Kleuw

Certificate No: DAE4-1220_Dec10

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Glossary

DAE data acquisition electronics

Multilateral Agreement for the recognition of calibration certificates

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1220 Dec10 Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV , full range = -100...+300 mV

Low Range: 1LSB = 61nV , full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	405.229 ± 0.1% (k=2)	404.950 ± 0.1% (k=2)	404.184 ± 0.1% (k=2)
Low Range	3.97007 ± 0.7% (k=2)	3.98601 ± 0.7% (k=2)	3.99287 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	177.5 ° ± 1 °
---	---------------

Appendix

1. DC Voltage Linearity

High Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	200002.4	1.22	0.00
Channel X + Input	20001.01	0.91	0.00
Channel X - Input	-19997.57	2.63	-0.01
Channel Y + Input	200008.1	-2.52	-0.00
Channel Y + Input	19998.92	-1.38	-0.01
Channel Y - Input	-20001.39	-1.29	0.01
Channel Z + Input	200011.1	1,59	0.00
Channel Z + Input	19998.31	-1.89	-0.01
Channel Z - Input	-20000.79	-0.99	0.00

Low Range	Reading (μV)	Difference (μV)	Error (%)
Channel X + Input	1999.8	-0.22	-0.01
Channel X + Input	199.68	-0.32	-0.16
Channel X - Input	-200.45	-0.25	0.12
Channel Y + Input	1999.6	-0.27	-0.01
Channel Y + Input	199.03	-1.07	-0.54
Channel Y - Input	-200.66	-0.76	0.38
Channel Z + Input	2000.0	-0.04	-0.00
Channel Z + Input	198.94	-1.26	-0.63
Channel Z - Input	-201.36	-1.46	0.73

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	10.60	8.62
	- 200	-7.59	-9.45
Channel Y	200	-9.68	-9.86
	- 200	9.01	8.51
Channel Z	200	12.06	12.10
	- 200	-13.84	-14.49

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.85	-0.96
Channel Y	200	1.60	-	3.41
Channel Z	200	2.29	-1.66	21

Certificate No: DAE4-1220_Dec10

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15905	14404
Channel Y	16020	13780
Channel Z	15698	14978

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.06	-1.34	1.46	0.43
Channel Y	-0.85	-2.00	0.10	0.32
Channel Z	-0.99	-2.44	0.46	0.44

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1220_Dec10