Asignatura: Ficheros y Bases de Datos.

Titulación: Ingeniería Informática

Fecha: 05/06/2020

Nombre y Apellidos: Jorge Rodríguez Fraile

DNI o pasaporte: 02592368S

Ejercicio:

2.1)

1.

$$d_i = \frac{util}{volumen} = \frac{230}{269} = 85,5\%$$

2.

$$T_c = \left\lfloor \frac{(E_C - info)*(1 - ELD)}{volumen} \right\rfloor = \left\lfloor \frac{(8192 - 200)*(1 - 0, 1)}{269} \right\rfloor = 26 \frac{regs}{cubo}$$

$$N = \left\lceil \frac{regs}{T_c} \right\rceil = \left\lceil \frac{3 * 10^5}{26} \right\rceil = 11539 \ cubos$$

3.

$$d_r = \frac{regs*util}{N*E_c} = \frac{3*10^5*230}{11539*8192} = 73\%$$

4.

 $d_o = Al \ tratarse \ de \ una \ organizacion \ serial, sera \ practicamente \ 100\%.$

5.

Se mantiene igual, ya que la densidad ideal es a nivel de registro, 85.5%

6.

$$0.75 = \frac{3*10^5}{N*26}$$
; $N = \frac{3*10^5}{0.75*26}$ = 15385 cubos

7.

$$d_r = \frac{regs * util}{N * E_c} = \frac{3 * 10^5 * 230}{15385 * 8192} = 73\%$$

2.2)

O₀ es serial no consecutivo sin índices.

$$C(O_0, P_1) = \frac{N+1}{2} + 1 = \frac{11999+1}{2} + 1 = 6001 * 4 = 24004 acc. blq$$

$$C(O_0, P_2) = N = 11999 * 4 = 47996 \ acc. \ blg$$

$$C(O_0, P) = 0.1 * 47996 + 0.9 * 24004 = 26403.2 \ acc. \ blq$$

Organización direccionada (O₁) por CD=mac sobre N=16384, tasa de desbordamiento de 0,1% (312 registros desbordados)

N' = r' = 16384 cubos por el encadenamiento a cubo

$$C(O_1, P_1) = 1 + T_{desb} * \frac{N' + 1}{2} + 1 = 1 + 0.001 * 1 + 1 = 2.001 * 4 = 8 acc. blq$$

$$C(O_1, P_2) = N + N' = (16384 + 16384) * 4 = 131072 \ acc. \ blq$$

$$C(O_1, P) = 0.1 * 65584 + 0.9 * 8 = 13114,4 \ acc. blq$$

2.3)

I1, árbol B

Entradas: 311950

$$m * T_{puntero} + k * (T_{entrada} + T_{puntero}) \le T_{nodo}; m = k + 1$$

$$(k+1)*7+k*(6+7) \le 2048; k = \left\lfloor \frac{2048-7}{20} \right\rfloor = 102$$

$$m = k + 1 = 102 + 1 = 103$$

$$k_{min} = \left| \frac{k}{2} \right| = \left| \frac{102}{2} \right| = 51$$
; $m_{min} = k_{min} + 1 = 52$

nivel	#nodos	#entradas	acumulado
1	1	1	1
2	2	2*52= 104	104+1= 105
3	2*103= 106	5512	5617
4	5618	292136	297753<311950
5	297754	15483208	15780961>311950

El árbol tiene 4 niveles. $n_1 = 4$

I2, árbol B+

Entradas: 62390

$$m * T_{puntero} + (m-1) * (T_{clave}) \le T_{nodo}$$

$$m * 7 + (m - 1) * (2) \le 2048; m = \left\lfloor \frac{2048 + 2}{9} \right\rfloor = 227$$

$$m_{min} = \left| \frac{m+1}{2} \right| = \left| \frac{228}{2} \right| = 114$$

$$T_{puntero} + k * \left(T_{entrada} + marca + n_{regs} * T_{puntero} \right) \leq T_{nodo}$$

$$7 + k * (2 + 1 + 5 + 7) \le 2048; k = \left\lfloor \frac{2048 - 7}{15} \right\rfloor = 136$$

$$k_{min} = \left\lfloor \frac{k+1}{2} \right\rfloor = \left\lfloor \frac{136+1}{2} \right\rfloor = 68$$

nodos por nivel	nodos u hojas
#hojas = nodos(n)	62390/68= 17
#nodos(n-1)	917/114= 8
#nodos(n-2)	8/114= 1

El árbol tiene n-2=1 niveles. $n_2 = 3$

O2: serial no consecutivo con estos dos índices

$$C(O_2, P_1) = (n_1 - 1) + 1 + 1 + n_2 = 4 - 1 + 4 + 4 + 3 = 14 \ acc. \ blq$$

 $C(O_2, P_2) = (n_2 - 1) + k = (3 - 1) + 5 * 4 = 22 \ acc. \ blq$
 $C(O_2, P) = 0.1 * 22 + 0.9 * 14 = 14.8 \ acc. \ blq$