TUTORIAL ANSWERS SUPERPOSITION

Question 1

 $x = \frac{\lambda D}{a}$, increase D, distance from slits to the screen. (Ans: C)

Question 2

If amplitude reduces by ½, intensity will reduce by ¼. (Ans: D)

Question 3

- a.) $[(1 \times 10^{-3}) / 300] \sin \theta_1 = (1)(530 \times 10^{-9})$, $\theta_1 = 9.1^{\circ}$ $[(1 \times 10^{-3}) / 300] \sin \theta_2 = (2)(530 \times 10^{-9})$, $\theta_2 = 18.5^{\circ}$ $\theta_2 - \theta_1 = 9.4^{\circ}$
- b.) $[(1 \times 10^{-3}) / 300] \sin 90^{\circ} = (n)(530 \times 10^{-9})$, $n = 6.28 = 6th \ order$.
- c.) 6 + 6 + 1 at center = **13 bright fringes**

Question 4

$$x = \frac{\lambda D}{a}$$

$$x = 4.52 \times 10^{-3} \text{ m}$$

Question 5

$$x = \frac{\lambda D}{a}$$

$$x = 3.19 \times 10^{-3} \text{ m}$$

$$\lambda = \frac{ax}{D}$$

$$\lambda = 5.2 \times 10^{-7} \text{ m}$$

Question 6

d
$$\sin 45^\circ$$
 = (3) λ
d $\sin 90^\circ$ = (n) λ , since d & λ is the same, thus
n = 3 / $\sin 45^\circ$ = 4.24
n = 4

Question 7

(Ans: D)

Question 8

$$a = \frac{\lambda D}{x}$$

 $a = 1.77 \times 10^{-2} \text{ m}$

Question 9

$$x = 4.8 \text{ mm} / 4$$

 $x = 1.2 \text{ mm}$
 $a = \frac{\lambda D}{x}$
 $a = 3.93 \times 10^{-4} \text{ m}$

Question 10

They will have constant phase difference. (Ans: B)

Remember, constant phase difference does not mean the waves have to be in-phase!

Question 11

a.) If we assumed the waveform is a sine wave, then for S_1 upon reaching 3 m, it would be a negative max. displacement (amplitude). On the other hand, for S_2 upon reaching 5 m, it would be a positive max. displacement (amplitude).

So the resultant amplitude will be ZERO.

b.) If the wavelength is 2 m, then S₁ and S₂ will reach point P in-phase.

So the resultant amplitude will be 2A.

Question 12

For dark fringe / destructive interference, this condition must be true $\lambda/2$, $3\lambda/2$, $5\lambda/2$, $7\lambda/2$, ... $(n+\frac{1}{2})\lambda$ OR π , 3π , 5π , 7π , 9π , ... $(2n+1)\pi$ rad (Ans: D)

Question 13

(Ans: B)

Question 14

(Ans: D)

Question 15

100 mm – 80 mm = 20 mm Path difference = 20 mm Wavelength = 40 mm Phase difference = $\frac{20}{40}$ x $(2\pi) = \pi$ rad / 90°

Question 16

$$v = f\lambda$$

1st harmonic would give $\lambda = 4L$
300 = f(4 x 0.6)
 $f_{1st} = 125 Hz$

$v = f\lambda$ 3^{rd} harmonic would give $\lambda = 4L / 3$ $300 = f(4 \times 0.6 / 3)$ $f_{3rd} = 375 \text{ Hz}$

Question 17

$$v = f\lambda$$
, $\lambda = 4L$
 $f = v/4L$
Now, $\lambda = 2L$
 $f_{new} = v/2L = 2(v/4L)$
 $f_{new} = 2f$ (Ans: D)

Question 18

$$v = f\lambda$$
, $\lambda = 1.5 \times 2 = 3.0 \text{ cm}$
 $f = v/\lambda = 3 \times 10^8/3.0 \times 10^{-2}$
 $f = 1 \times 10^{10} \text{ Hz}$

Question 19

(Ans: E)

Question 20

```
Longest wavelength, \lambda_1 = 2L = 2.0 m 2^{nd} longest wavelength, \lambda_2 = L = 1.0 m 3^{rd} longest wavelength, \lambda_3 = 2L/3 = 0.67 m (Ans: E)
```

Question 21

There will be a total of 21 nodes, which means there are 20 loops. 2 loops will be equal to a wavelength, λ . So there are 10 λ . So, $\lambda = 1.9 / 10 = 0.19$ m v = f $\lambda = (2500)(0.19)$, v = 475 ms⁻¹

Question 22

$$f_1 = v/\lambda$$
, $\lambda = 2L$ $f_2 = v/\lambda$, $\lambda = L$ $f_1 = v/2L$ $f_2 = v/L$ So $f_2 / f_1 = (v/L) / (v/2L) = 2$ $v = f\lambda = f_2L$

Question 23

(Ans: C)

(Ans: C)

Question 24

(Ans: D)

Question 25

- a.) Use Pythagoras theorem, $AP^2 = (810 \text{ m})^2 + (514 \text{ m} - 70 \text{ m})^2$ AP = 0.9237 m = 923.7 mm
- b.) Number of wavelengths = 923.7 m / 30 m = **30.8**
- c.) Use Pythagoras theorem to find BP, $BP^2 = (810 \text{ m})^2 + (514 \text{ m} + 70 \text{ m})^2$ AP = 0.9986 m = 998.6 mm

Path Difference = 0.9986 - 0.9237 = 0.0749 = 0.075 m n = P.D / λ = 0.075 / 0.030

n = 2.5 (this is destructive interference). So ZERO intensity will be received by the detector.

d.) Constructive interference / maxima occur at $n\lambda$, where n is any whole integer.

This case the largest value for n is 2.

So there will be 2 maxima detected as detector moves from P to Q.