	Several pro	10 fo	PBW shee	rem.	
2	Notation. Also true for inf. dim.				
	Jundim Lie alg/K. Char K=	≠2,3 ₍			
	Tensor algebra of of,	T~	^ { X ∞ ··· · ∞ Xm:	xi697 Tw=	TT
	I ideal of Tgen by xoy-yox		: T -> T/T		η <u> </u>
	J ideal of T gen by $\chi \otimes y - y \otimes \chi - [\chi,$		· 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1		
	S Symmetric algebra of of		$m = \sigma(Tm)$, S= \P.S	m, Sm=#ST
	U universel enveloping alg of of	, U,	~=元(Tm)	MEN	, SWI 150
			lm/ /Um-i====================================	$G = \bigoplus_{\mathbf{w} \in \mathbf{N}} G$	M
T	The universal enveloping algebra				
		e me		21 - 2 0 1/	> NO.
	Def- The universal enveloping algebra		is a pair l	U, 1), where U	15 an aus aug
	with 1, i : of > 21 is a Lie alg	nomon (ass alg induc	les a Lie alg Stru	toure) and
	For any ass alg A with 1 and	Lão ala A	mom 5:05-	> A there exis	es a runique
	alg homom p: U-> A St. og 5	\wedge	nuntes.		
			,		
	Existènce of Mog): Consider the	two sided is	teal) \(\tag{\alpha}	generated by	X&Y-Y&X-124)
	Define $U = T(g)/J$, then it is	plain to ?	show that 2	1 sortisfies the	universal proport
	Uniqueness of 2kgs: If (21, T), (21				
	ī _2l				
	I! \$\psi, \$\psi' \frac{1}{2} \psi' \frac{1}{2} \		By rungueness	0 4 (1) 15 (1)	(\$ = idu
	Thus Ucz) renigne up to isom.				
	. PBW Theorem				
	Defore Pri: TM The Under Gm= 7	Um/Um-1.	then $\phi = \oplus$	Am = T=OTM	→ GM=G
	· # is a surjective alg homo proc	duct in G	is induced by pro	duct in T.	- TUNY
	of. $\forall x \in T^P$, $y \in T^2$, $\phi(x) \phi(y) = \phi$	$(x) \phi_{\underline{q}}(y)$	= \$\p_{p+q}(xy) =	\$ (Xy)	
	Um Um, there exists to TM	12my 28	元(分)=5.(Otherwise SEUm.).	


```
III. Proof of PBW Ahm (Jacobson)
125, 5 increasing \ span U:
           Induce on m: 375=27, les) span Um
          If m=0, it is trivial.
                                                                                                                                                                          Felt & Smith St. W(elt) = umil 25)
          Suppose it holds for M.
           Lot XI Ellm+1 Um, Note that w surj > w/sm+1:5m+1 G m+1 surj.
             \Rightarrow \exists \Sigma_i, \ i \in [1,K], \ l(\Sigma) = w+1 \ \text{if} \ \omega(\Sigma_i Z_{\Sigma_i}) = u_{m+1}(\chi_{\Sigma}).
          Then \mu_{m+1}(\chi_{\Sigma} - \Sigma \chi_{\Sigma_{\widetilde{i}}}) = \omega(\tilde{\Sigma}_{\Sigma_{\widetilde{i}}}) - \tilde{\Sigma}_{\widetilde{i}} \phi(\chi_{\Sigma_{\widetilde{i}}}) = \omega(\tilde{\Sigma}_{\Sigma_{\widetilde{i}}}) - \tilde{\Sigma}_{\omega}(z_{\Sigma_{\widetilde{i}}}) = 0
            \Rightarrow \chi_{\Sigma} = \Sigma \chi_{\Sigma_i} + \chi_{\Sigma'}, where \ell(\Sigma_{\overline{\iota}}) = m+1, \chi_{\Sigma'} \in \mathcal{U}_m
1 X=: I increasing I linearly independent:
         Idea: Construct rep P_1 \circ g \to gl(S) st. the action X_i on Z_{\Sigma} is similar to X_i acts on X_{\Sigma} spanned by Z_{\Sigma}.
    • Defore the action of x_i on z_z recursively on l(\Sigma).
                        0. \chi_{\bar{\tau}} = 2_{\bar{\tau}}
                   1. \chi_{t} z_{j} = \begin{cases} z_{(i,j)} \\ z_{(j,i)} + \sum_{k} C_{ij}^{k} z_{k}, j < i \end{cases}
\chi_{t} z_{j} = \begin{cases} z_{(i,j)} \\ z_{(j,i)} + \sum_{k} C_{ij}^{k} z_{k}, j < i \end{cases}
\chi_{t} z_{j} = \begin{cases} z_{(i,j)} \\ z_{(j,i)} + \sum_{k} C_{ij}^{k} z_{k}, j < i \end{cases}
\chi_{t} z_{j} = \begin{cases} z_{(i,j)} \\ z_{(j,i)} + \sum_{k} C_{ij}^{k} z_{k}, j < i \end{cases}
                        2. For increasing seg \Sigma, l(\Sigma) = m, let \Sigma = (5, \Sigma'),
                                       \chi_{\tau} 2_{\underline{\Sigma}} = \int_{\Sigma}^{\Sigma} (\hat{\iota}_{i}, \underline{\Sigma}) \qquad , \hat{\iota} \leq \hat{J}
                                                                       分がたるナーラのながるシーノうくえ
                                      Note that \pi_{k} Z_{\Sigma'} and \chi_{\bar{i}} Z_{\bar{\Sigma}'} are well-defined (l(\Sigma') = w-1).
                                    For Mi(XiZz), we can define it recursively, since 1 is the minimal index.
    · Now cheek it a well-defined rep:
         T. B.A.
   · If \( \sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sum_{\sym_{\sum_{\sym_{\sym_{\sum_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_{\sym_
```

Since Zz is a basis of V, G== o for all I.

Sm_wgmgm IV. Proof of PBW thm (Bourbaki) It suffices to show wish is sinjective, i.e. \\ seS^m, w(s) = 0 > otis) \sil that is, $\forall x \in T^{n}, \phi_{n}(x) = 0 \Rightarrow x \in I$ that is, Htelm, THEUm, => #6I Construct a rep P: of -> gl(S) the same as the rep above. Then, by runiversal property of U, f can be extend to a rep of U->gl(S). Consider &: TT 21 = gliv) Lewina Lot ρ be the repatione, $\ell(x_i) Z_{\Sigma} = Z(\hat{\imath}, \hat{\imath})$ and $S_m : \int \Sigma$ has length m. Pf. Show it by induction on the bength Σ and the index $\tilde{\iota}$. If $\Sigma=0$ or 1, it is trivial. Suppose this holds for $(l(\Sigma)< M$, all χ_j) and (leti=m, χ_j with j < i). Then for any $\Sigma = (k, \Sigma')$ with $le \Sigma_j = m$, $\forall i \leq k \quad , \quad \chi_i \cdot Z_{\Sigma} = Z_{(i, \Sigma)};$ 7 1>K, X: Z= = XxXiZz+[Xt,Xx]Zz by hype $\textcircled{D} = \chi_k Z_{(i,\Sigma')} + \sum_{(i,\Sigma')} Z_{(i,\Sigma')}$ mod Sm-1 by hypo $\emptyset = 2(k,i,i) = 2(i,k,i)$ Let $f \in T^m$ and $\pi(t) \in \mathcal{U}_{m-1}$. Denote $f = \mathbb{Z} = \mathbb{Z} = f$ or some $\mathbb{Z} = f$ length m. Since $\pi(t) \in \mathcal{U}_{m-1}$, there exists $f' \in T^{m-1} = f$. $\pi(t) = \pi(t')$

By lemma above, $\hat{f}(f)$ $Z_{\phi} = \sum \lambda_i \hat{f}(\chi_{\Sigma_i}) \cdot Z_{\phi} = \sum \lambda_i Z_{\Sigma_i}$ mod S_m But $\hat{f}(f)$ $Z_{\phi} = \hat{f}(f) \cdot Z_{\phi} = \hat{f}(f) \cdot Z_{\phi} = 0$ mod S_m Hence, it means $\sigma(f) = \sum \lambda_i Z_{\Sigma_i} = 0$, that is, $f(f) = f(f) = \sum \lambda_i Z_{\Sigma_i} = 0$.

V. Proof of PBW Ahm (Zelmanov) [for dim Lie alg]

Def Let $A = \langle x \mid R \rangle$ be a fin presentation of an ax alg. X has an order with minimal alphabet relation. Denote the sets of all word by $x^* = \{x_1 \dots x_K \in K(X): Xi \in X\}$.

For any JEKKXX, J=2, W,+"++2KWK, where WieX*, Let Wy be the maxi word

w.r.t the lexi order. Then call wy the leading monomial of J, denoted by J.
Runk. For $A=\langle XIR \rangle$, if $J\in R$, then $J=\omega_j=\frac{\int di}{i\neq j}\omega_i$. Thus J can be written as a linear comb of smaller words in A .
Def A word W6X is reducible if it contains some J, JoR, as a subword i.e.
$\omega = \omega' \mathcal{J} \omega'' . \omega', \omega'' \in X^*$. Otherwise, ω is called irreducible.
Prop Insolucibles span A
Pf. From the Remark above, it is easy to show this by induction on the order.
Def Given words $v \otimes w \in X^*$, we say v , w admit a composition if 1°. the end of one of words is the beginning of the other.
2° One of these words is a subword of the other.
Def Let J, 96FXX>. The coef at J, g resp are equal to 1, Suppose that J, g admit
a composition, i.e.
or Ty
The element $(f,g)_{\omega} = fu - vg$ (or $ufv - g$) is called the composition of $f \& g$. w.r.t the word ω .
Thm. $A = K \times X R$, irreducibles are a basis of $A \iff For any two relations f, g \in R that admit a composition, all their compositions (f, g)_W reduce to O$
that admit a composition, all their compositions (j, g) we reduce to 0
Pf. ">" If there exists one reduction not 0, then it is a nontrivial linear comb of irreducible words. Since $f,g\in\mathbb{R}$, $(f,g)_{\omega}=0$ in A. Thus, this linear comb =0.
"E" Claim that I JE id(R) [6], the leading monomial J is reducible.
If this holds, every montrivial linear combination of irreducibles g, girreducible.
⇒9¢icl(R), that is, all irreducibles in A are linearly independent. By Rink above, they are a basis.

So it suffices to show the claim: Dente JE id(R)(To) by IdoUt tivi, where DIEK, UI, VIEX, TIER MOJ. Note that UtTIVI = UITIVI (Ui, Vi are monomials) Let $\omega = \max\{ \overline{u_{\tau} \overline{u_{\tau}} v_{\tau} : i\}$. If ω occurs in one summand. Then $\overline{J} = \omega$, which is reducible; if ω occurs more than once we prove it by induction on the order of ω .

Quite difficult and a more detailed discussion is needed. $\pm x$. $A = \langle x, y | y^2 x - xyx \rangle$. I x<y. then y2x does not admit a comp with itself. Thus, then works. 2 x>y. Then w = xyxyx', and Irreducibles. $(-xyx+y^2x) - xyx+y^2x)_{\omega} = y^2xyx - xy^3x = y^4x - xy^3x$ 2 Cij Xr Thus, irreducibles are not linearly independent! Cor. The universal enveloping alg U= KXXI, Xz, ..., Xn | xixj-xjxi-Ixi, xj]> of Step 1. The set Ris closed w.r.t compositions: Consider relations J= x, xj-xjxi-[xi,xj] K<j<v 9 = Xj Xx - Xx Xj - [Xj, Xx] $\omega = \chi_{\bar{i}} \chi_{\bar{k}} \chi_{\kappa}$ $(J,g)_{\omega} = -\chi_j \chi_{\omega} \chi_{\kappa} - [\chi_i, \chi_j] \chi_{\kappa} + \chi_i \chi_{\kappa} \chi_j + \chi_{\omega} [\chi_j, \chi_{\kappa}]$ $=-\chi_{j}\left(\chi_{k}\chi_{\bar{c}}+L\chi_{\bar{c}},\chi_{k}\right)-\bar{\chi}_{\bar{c}},\chi_{j}\chi_{k}+(\chi_{k}\chi_{\bar{c}}+\bar{\chi}_{\bar{c}},\chi_{k})\chi_{j}+\chi_{\bar{c}}L\chi_{j},\chi_{k}$ $= -(x_k x_j + [x_j, x_k])x_i - x_j[x_i, x_k] - [x_i, x_j]x_k + x_k(x_j x_i + [x_i, x_j]) +$ [Xi, Xk] Xj + Xt [Xj, Xk] $= -L\chi_{j}, \chi_{k}]\chi_{i} + \chi_{i}[\chi_{j}, \chi_{k}] - \chi_{j}[\chi_{i}, \chi_{k}] + [\chi_{i}, \chi_{k}]\chi_{j} - [\chi_{i}, \chi_{j}]\chi_{k} + \chi_{k}[\chi_{i}, \chi_{j}]$ = $[\chi_i, [\chi_j, \chi_k]] + [\chi_j, [\chi_k, \chi_t]] + [\chi_k, [\chi_i, \chi_j]]$ Step 2. All irreducibles are xi... xim, melN*, vis...sim & 1 Note that for any relation f, say $f = x_{\bar{i}}x_{j} - x_{j}x_{\bar{i}} - \bar{z}x_{\bar{i}}, x_{j}\bar{z}$, i < j, the leading monomial $J = \chi_j \chi_i$. Thus, a word in χ^* is reducible if it has a $\chi_j \chi_i$ as subword where 5 zi. Then our claim follows.