LTTI.00.032 – Machine Learning in Synthetic Biology

≈Looking for function

≈Looking for function

Speech Recognition

```
f( )= "How are you"
```

≈Looking for function

Speech Recognition

$$f($$
)= "How are you"

• Image Recognition

≈Looking for function

• Speech Recognition

$$f($$
 $)=$ "How are you"

• Image Recognition

Playing Go

• Regression: The function outputs a scalar.

• Regression: The function outputs a scalar.

• Regression: The function outputs a scalar.

• Regression: The function outputs a scalar.

Structured learning

• Create something with structure (image, document, sound)

```
Training data: \{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}
```

Testing data: $\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

Testing data:
$$\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$$

Speech Recognition

x: *****

 \hat{y} : phoneme

Image Recognition

 \hat{y} : soup

Speaker Recognition

x: ******

 \hat{y} : John (speaker)

Machine Translation

x: 痛みを知れ

ŷ:了解痛苦吧

Training data:
$$\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$$

Testing data: $\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$

Use $y = f_{\theta^*}(x)$ to label the testing data

Training data: $\{(x^1, \hat{y}^1), (x^2, \hat{y}^2), ..., (x^N, \hat{y}^N)\}$

Training:

Testing data: $\{x^{N+1}, x^{N+2}, \dots, x^{N+M}\}$

Use $y = f_{\theta^*}(x)$ to label the testing data

ML in SB

Basics of deep learning

Training Set

Cagri Ozcinar, PhD

Basics of deep learning

Training Set

The number of epochs defines the number of times that the learning algorithm will work through the entire training dataset.

Basics of deep learning

An example neural network

f

X: Input: 784 values (28x28)

Y= Output: 10 values

An example neural network

Input: 784 values (28x28)

Output: 10 values

Training Results: Terrible!

Training Results: Terrible!

Network Prediction: Terrible!

Training Results We Want

Network Predictions We Want

How to get there

Each neuron has its own weight

Now we have a fully-connected layer

Layer 1 Layer 2 Layer 3

Fully-connected Layers

- Rectified Linear Unit (ReLU). The most used activation function.
- Sigmoid. It is especially used for models where we have to predict the probability.
- Hyperbolic tangent activation function (Tanh).

Rectified Linear Unit (ReLU)

Sigmoid

Hyperbolic tangent activation function (Tanh)

• Any given layer, we assign one activation function to all of the neurons in that layer.

Softmax

More generalized logistic activation function which is used for multiclass activation

Softmax

Loss functions

Gradient Decent

• Learning from mistakes

Gradient Decent

Gradient Decent

