FR2758329

ACCESSION NUMBER: 1998-390319 [34] WPIDS

DOC. NO. CPI: C1998-118103

TITLE: New imidazole-4-butane-boronic acid derivatives - used as

thrombin inhibitors and antithrombotic agents.

DERWENT CLASS: B03

INVENTOR(S): BELLEVERGUE, P; BOURBIER, J C; GALTIER, D; LASSALLE, G;

MALLART, S; MARTIN, V

PATENT ASSIGNEE(S): (SYNO) SYNTHELABO

COUNTRY COUNT: 1
PATENT INFORMATION:

PATENT NO KIND DATE WEEK LA PG

FR 2758329 A1 19980717 (199834)* 34 <--

APPLICATION DETAILS:

PATENT NO KIND APPLICATION DATE

FR 2758329 A1 FR 1997-379 19970116

PRIORITY APPLN. INFO: FR 1997-379 19970116

AB FR 2758329 A UPAB: 19980826

Imidazole-4-butane-boronic acid derivatives of formula (I), in the form of pure enantiomers or enantiomer mixtures, and their acid addition salts are new. R1 = 1-4C alkyl, 3-8C cycloalkyl, phenyl (optionally substituted by halo, 1-5C alkyl, CF3, CN, COOMe or NHCOMe), phenyl-(1-4C)alkyl (optionally ring-substituted as for phenyl) or thienyl; R2, R'2 = H or 1-4C alkyl; R3 = H, COR4, COOR5, CONHR6, SO2R6, SO2NR7R8 or aralkyl, e.g. pyridinyl-(1-4C)alkyl or thienyl-(1-4C)alkyl; R4 = 1-4C alkyl; R5 = 1-4C alkyl or phenyl-(1-4C)alkyl; R6 = 1-5C alkyl, phenyl or phenyl-(1-5C)alkyl; R7, R8 = H or 1-4C alkyl; or NR7R8 = morpholino; X = O, S, CH2, SO2 or NR1; Y = H or 1-6C alkyl.

USE - (I) are thrombin inhibitors and antithrombotic agents. They are useful for treating all types of clinical indications related to thrombosis or thrombotic complications. Daily dose is 1-1000 mg, orally or parenterally. Dwg.0/0

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

(11) N° d publicati n :

(à n'utiliser que pour les commandes de reproduction) 2 758 329

(21) N° d'enr gistrement national :

97 00379

(51) Int Cl⁵: C 07 F 5/02, A 61 K 33/22

(12)

DEMANDE DE BREVET D'INVENTION

A1

(22) Date de dépôt : 16.01.97.

(30**)** Priorité :

(71) Demandeur(s) : SYNTHELABO SOCIETE ANONYME

(43) Date de la mise à disposition du public de la demande: 17.07.98 Bulletin 98/29.

Liste des documents cités dans le rapport de recherche préliminaire : Se reporter à la fin du présent fascicule.

(60) Références à d'autres documents nationaux apparentés:

(7) Inventeur(s): LASSALLE GILBERT, BELLEVERGUE PATRICE, MALLART SERGIO, BOURBIER JEAN CLAUDE, GALTIER DANIEL et MARTIN VALERIE.

(73) Titulaire(s) : .

(74) Mandataire :

DERIVES D'IMIDAZOLE-4-BUTANE BORONIQUE, LEUR PREPARATION ET LEUR UTILISATION EN THERAPEUTIQUE.

(57) Composés de formule (I):

dans laquelle R; est un groupe (C,-C_a) alkyle droit ou ramifié, cyclo (C_a-C_a) alkyle, phényle éventuellement substitué phényl (C,-C_a) alkyle éventuellement substitué ou thiényle, R_a et R'_a sont chacun indépendamment l'un de l'autre nyie, H₂ et H₂ sont chacun independamment i'un de l'autre un atome d'hydrogène ou un groupe (C,-C₂) alkyle, R₃ est un atome d'hydrogène, un groupe -COR₃ (R₃ étant un groupe (C,-C₄) alkyle), un groupe -COOR₃ (R₄ étant choisi parmi les groupes (C,-C₄) alkyle et phényl (C,-C₄) alkyle), un groupe -CONHR₃ un groupe -SO₂R₃ (R₄ étant choisi parmi les groupes (C,-C₃) alkyle, phényle et phényl (C,-C₄) alkyle), un groupe -SO₂NR₃R₄ (R₇ et R₈ étant chacun indépendamment l'un de l'autre un atome d'hydrogène ou un

groupe (C,-C,) alkyle ou formant avec l'atome d'azote qui les porte un groupe morpholine), un groupe arylalkyle, X est un atome d'oxygène ou de soufre, un groupe -CH₂-, -SO₂- ou -NR₃- et Y est un atome d'hydrogène, un groupe (C, -C₂) alkyle droit ou ramifié.

Application en thérapeutique.§.

La présente invention a pour objet des dérivés d'imidazole-4butane boronique, leur préparation et leur utilisation en thérapeutique.

5 Les composés selon l'invention répondent à la formule (I)

dans laquelle

10

R₁ représente soit un groupe (C_1-C_4) alkyle droit ou ramifié, soit un groupe $\operatorname{cyclo}(C_3-C_8)$ alkyle, soit un groupe phényle éventuellement substitué par un atome d'halogène, un groupe (C_1-C_5) alkyle droit ou ramifié, un groupe trifluorométhyle, un groupe cyano, un groupe méthoxycarbonyle ou un groupe

acétylamino, soit un groupe phényl (C_1-C_4) alkyle dont le noyau phényle est éventuellement substitué comme ci-dessus, soit un groupe thiényle,

 R_2 et R'_2 représentent chacun indépendamment l'un de l'autre un atome d'hydrogène ou un groupe (C_1-C_4) alkyle,

R₃ représente soit un atome d'hydrogène, soit un groupe $-COR_4$ où R₄ est un groupe (C_1-C_4) alkyle, soit un groupe $-COOR_5$ où R₅ est choisi parmi les groupes (C_1-C_4) alkyle et phényl (C_1-C_4) alkyle, soit un groupe $-CONHR_6$, soit un groupe $-SO_2R_6$ où R₆ est choisi parmi les groupes (C_1-C_5) alkyle, phényle et

phényl (C_1-C_4) alkyle, soit un groupe $-SO_2NR_7R_8$ où R_7 et R_8 sont chacun indépendamment l'un de l'autre un atome d'hydrogène ou un groupe (C_1-C_4) alkyle ou forment avec l'atome d'azote qui les porte un groupe morpholine, soit un groupe arylalkyle comme par exemple un groupe pyridinyl (C_1-C_4) alkyle ou

35 thiényl(C₁-C₄)alkyle et

X représente soit un atome d'oxygène ou de soufre, soit un groupe $-CH_2-$, $-SO_2-$ ou $-NR_1-$ où R_1 est tel que défini ci-dessus et

Y représente soit un atome d'hydrogène, soit un groupe

 (C_1-C_6) alkyle droit ou ramifié, ainsi que leurs sels d'addition à des acides pharmaceutiquement acceptables.

5 Les composés de l'invention peuvent exister sous forme de racémates ou d'énantiomères purs ou de mélange d'énantiomères. Toutes ces formes font partie de l'invention.

Selon l'invention les composés de formule (I) peuvent être 10 synthétisés selon le schéma 1.

On fait réagir un composé de formule (II) dans laquelle R représente soit un groupe nitro, soit un groupe -NHR $_3$ où R $_3$ représente un groupe -COR $_4$ (R $_4$ étant un groupe (C $_1$ -C $_4$)alky-le), un groupe -COOR $_5$ (R $_5$ étant choisi parmi les groupes

- 15 (C_1-C_4) alkyle et phényl (C_1-C_4) alkyle), un groupe $-\text{CONHR}_6$, un groupe $-\text{SO}_2\text{R}_6$ $(R_6$ étant choisi parmi les groupes (C_1-C_5) alkyle, phényle et phényl (C_1-C_4) alkyle), un groupe $-\text{SO}_2\text{NR}_7\text{R}_8$ $(R_7$ et R_8 étant chacun indépendamment l'un de l'autre un atome d'hydrogène ou un groupe (C_1-C_4) alkyle ou formant avec
- 20 l'atome d'azote qui les porte un groupe morpholine), un groupe arylalkyle comme par exemple un groupe pyridinyl(C₁-C₄)alkyle ou thiényl(C₁-C₄)alkyle et R₁, X et Y sont tels que définis précédemment avec du N-hydroxysuccinimide en présence d'un agent couplant comme par exemple le
- 25 1,3-dicyclohexylcarbodiimide et on obtient un composé de formule (III) que l'on condense avec un composé de formule (IV) dans laquelle R₃ et R₄ représentent ensemble le résidu d'un composé dihydroxylé comme par exemple le butane-2,3-diol, le 2,3-diméthylbutane-2,3-diol ou le
- $(1\alpha, 3\alpha, 5\alpha)$ -2,6,6-triméthylbicyclo[3.1.1]heptane-2,3-diol [(+)- α -pinanediol], et R₂, R'₂ sont tels que définis précédemment, en présence d'une base comme par exemple la triéthylamine et on obtient un composé intermédiaire que l'on traite par de l'acide phénylboronique pour obtenir un composé
- 35 de formule (Ia) qui correspond à un composé de formule (I) dans laquelle R ne représente pas un groupe amino.

Lorsque X représente un groupe $-SO_2$ -, les composés de formule (I) dans laquelle R_3 représente un atome d'hydrogène peuvent

$$\begin{array}{c|c}
R_1 \\
X \\
CH_3 \\
N \\
H \\
OH
\end{array}$$

$$\begin{array}{c|c}
R_2 \\
N \\
N \\
H
\end{array}$$

$$\begin{array}{c|c}
N \\
R'_2 \\
N \\
H
\end{array}$$

$$\begin{array}{c|c}
OH \\
OH
\end{array}$$

être synthétisés selon le schéma l à partir du composé de formule (II) correspondant dans lequel R représente un groupe -NHR3 où R3 est un atome d'hydrogène.

Pour obtenir des composés de formule (Ib) dans laquelle R₃
5 est un atome d'hydrogène, on peut soumettre le composé de formule (Ia) correspondant dans lequel R représente un groupe nitro ou dans lequel R₃ représente un groupe -COOCH₂C₆H₅ à une hydrogénation dans des conditions classiques connues de l'homme du métier.

10

Les composés de départ sont disponibles dans le commerce ou décrits dans la littérature ou peuvent être préparés selon des méthodes qui y sont décrites ou qui sont connues de l'homme du métier.

15 Ainsi certains composés de formule (IV) sont décrits dans la demande de brevet européen EP 0677525.

Les exemples suivants illustrent la préparation de certains composés conformément à l'invention.

20 Les microanalyses élémentaires et les spectres IR et RMN confirment la structure des composés obtenus.

Le rapport (x:y) représente le rapport (acide:base).

Exemple 1 (composé n° 19)

- chlorhydrate de (R)-N-[borono[3-(1H-imidazol-4-yl)propyl]
 méthyl]-6-méthyl-2-oxo-3-[[(phénylméthoxy)carbonyl]amino]-4(phénylméthyl)-1,2-dihydropyridine-1-acétamide (1:1)

A une solution de 106,4 g (1,4 mmoles) de glycine dans 1,4 l d'une solution aqueuse d'hydroxyde de sodium 1 N, on ajoute par portions à la température ambiante 178,7 g (1,4 mmoles) de 4-hydroxy-6-méthyl-2H-pyran-2-one. On porte le mélange à la température de reflux pendant 1 heure, on refroidit le milieu réactionnel et on l'acidifie par 500 ml d'acide chlorhydrique 3 N. On concentre alors le milieu réactionnel à

mi-volume, on filtre le précipité, on le lave à l'eau froide et on le sèche à l'étuve.

On obtient 175 g de produit sous forme d'un solide blanc. Point de fusion = 240 °C

5

1.1.2. acide 4-hydroxy-6-méthyl-3-nitro-2-oxo-1,2-dihydro-pyridine-1-acétique

On met en suspension 31,2 g (0,17 mole) d'acide 4-hydroxy-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétique dans 255 ml

- d'acide acétique, on ajoute à la température ambiante 24 ml d'une solution aqueuse d'acide nitrique à 68 % et on porte le mélange à 80 °C dans un bain d'huile. On refroidit le milieu réactionnel, on évapore le solvant et on reprend le résidu dans 2 fois 100 ml d'eau. On évapore à sec et on reprend le
- résidu par 2 fois 100 ml de toluène. On recristallise le produit dans l'isopropanol et on sèche à l'étuve. On obtient 27,2 g de produit sous forme de cristaux jaunes. Rendement = 70 %

Point de fusion = 205 °C

20

1.1.3. 4-hydroxy-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétate de méthyle

On sature 250 ml de méthanol par un courant d'acide chlorhydrique gazeux et on introduit par portions 25 g (0,11 mole)

d'acide 4-hydroxy-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétique. On porte le mélange à la température de reflux pendant 4 heures puis on filtre le précipité et on le sèche à l'étuve.

On obtient 23 g de produit sous forme de cristaux jaunes.

30 Rendement = 85 %

Point de fusion = 187 °C

- 1.1.4. 6-méthyl-3-nitro-2-oxo-4-[[(trifluorométhyl)sulfonyl] oxy]-1,2-dihydropyridine-1-acétate de méthyle
- A 26,9 g (0,11 mole) de 4-hydroxy-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétate de méthyle en suspension dans 500 ml de dichlorométhane, on ajoute 17,4 ml de triéthylamine et on refroidit le mélange à 70 °C. On ajoute alors goutte à goutte 20 ml (0,12 mole) d'anhydride triflurométhanesulfo-

nique, on agite le milieu réactionnel pendant 1 heure à la température ambiante puis on le lave successivement par 200 ml d'eau et 100 ml d'une solution d'acide chlorhydrique 1 N glacée. On sèche la phase organique sur sulfate de magnésium et on évapore à sec. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane:méthanol (98:2) puis on précipite le produit dans l'éther.

On obtient 40,8 g de produit sous forme de cristaux jaunes. 10 Point de fusion = 68-70 °C

1.1.5. 6-méthyl-3-nitro-2-oxo-4-(phénylméthyl)-1,2-dihydro-pyridine-1-acétate de méthyle

A 2 g (30,6 mmoles) de zinc en suspension dans 50 ml de 15 tétrahydrofurane, on ajoute à la température ambiante 200 μ1 de chlorotriméthylsilane, on laisse le mélange sous agitation pendant 0,5 heure à la température ambiante puis on le refroidit à 0 °C. On ajoute alors goutte à goutte 4,5 q (26,3 mmoles) de bromure de phénylméthyle en solution dans 20 ml de tétrahydrofurane puis on laisse le milieu réactionnel sous agitation pendant 2 heures à cette température. Ensuite on transfert le mélange dans un ballon tricol contenant 2,24 g (25 mmoles) de cyanure de cuivre et 2,12 g (50 mmoles) de chlorure de lithium à - 10 °C, on agite à cette température pendant 5 minutes puis on refroidt le mélange à - 70 °C. On ajoute alors goutte à goutte 7,3 g (19,5 mmoles) de 6-méthyl-3-nitro-2-oxo-4-[[(trifluorométhyl) sulfonylloxyl-1,2-dihydropyridine-1-acétate de méthyle en solution dans 50 ml de tétrahydrofurane, on laisse la température du milieu réactionnel revenir à 0 °C et on maintient l'agitation pendant 1 heure à cette température. On verse alors le mélange sur 100 ml d'une solution d'acide chlorhydrique 1 N et on ajoute 200 ml de dichlorométhane. On filtre le précipité, on laisse décanter le filtrat et on extrait la phase aqueuse avec du dichlorométhane. On rassemble les phases organiques, on les sèche sur sulfate de

sextrait la phase aqueuse avec du dichlorométhane. On rassemble les phases organiques, on les sèche sur sulfate de magnésium et on évapore à sec. On purifie le résidu par chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane:méthanol (98:2).

On obtient 5,3 g de produit sous forme de cristaux jaunes que l'on recristallise dans l'éthanol

Rendement = 86 %

Point de fusion = 146-147 °C

5

1.1.6. 3-amino-6-méthyl-2-oxo-4-(phénylméthyl)-1,2-dihydro-pyridine-1-acétate de méthyle

On place dans une fiole de Parr 10 g (31,6 mmoles) de 6-méthyl-3-nitro-2-oxo-4-(phénylméthyl)-1,2-dihydropyridine-

- 10 1-acétate de méthyle et on ajoute 150 ml de méthanol. On introduit ensuite 1 g de palladium sur charbon à 10 % et on hydrogène à 0,28 MPa (40 psi) à la température ambiante pendant 2 heures. On filtre sur célite et on évapore le solvant à sec.
- 15 On obtient 9 g de produit que l'on recristallise dans
 l'éthanol sous forme d'un solide blanc.
 Rendement = 99 %
 Point de fusion = 135 °C
- 20 1.1.7. acide 6-méthyl-2-oxo-3-[[(phénylméthoxy)carbonyl] amino]-4-(phénylméthyl)-1,2-dihydropyridine-1-acétique

A une solution de 2,11 g (7,4 mmoles) de 3-amino-6-méthyl-2-oxo-4-(phénylméthyl)-1,2-dihydropyridine-1-acétate de méthyle en solution dans 50 ml de tétrahydrofurane, on ajoute 1,17 g (11 mmoles) de carbonate de sodium puis goutte à goutte 1,4 ml (8,4 mmoles) de chloroformate de phénylméthyle et on laisse le mélange sous agitation pendant une nuit à la température ambiante. On évapore, on reprend le résidu par 30 ml de dichlorométhane et on lave successivement par 20 ml d'eau et 20 ml d'une solution aqueuse saturée de chlorure de sodium. On sèche sous vide et on évapore à sec.

On obtient 3 g de produit que l'on utilise tel quel dans

35 Rendement = 97 %

l'étape suivante.

On met le produit obtenu en solution dans 20 ml d'un mélange eau:tétrahydrofurane (1:1), on ajoute 320 mg (7,62 mmoles) d'hydroxyde de lithium monohydraté et on laisse sous agitation pendant 3 heures à la température ambiante. On évapore le solvant, on acidifie la phase aqueuse à pH = 1 avec une solution aqueuse d'acide chlorhydrique 1 N et on l'extrait par 2 fois 50 ml de dichlorométhane. On lave avec 20 ml d'une solution saturée en chlorure de sodium, on sèche sur sulfate de magnésium et on évapore à sec.

On obtient 2,25 g de produit sous forme de poudre blanche que l'on recristallise dans l'isopropanol.

Rendement = 75 %

Point de fusion = 158-160 °C

10

- 1.2. chlorhydrate de (R)-N-[borono[3-(1H-imidazol-4-yl) propyl]méthyl]-6-méthyl-2-oxo-3-[[(phénylméthoxy) carbonyl]amino]-4-(phénylméthyl)-1,2-dihydropyridine-1-acétamide (1:1)
- On dissout 812 mg (2 mmoles) d'acide 6-méthyl-2-oxo-3-[[(phénylméthoxy)carbonyl]amino]-4-(phénylméthyl)-1,2dihydropyridine-1-acétique dans un mélange de 50 ml d'acétate d'éthyle et 32 ml de dichlorométhane puis on ajoute successivement 253 mg (2,2 mmoles) de N-hydroxysuccinimide et
- 20 453 mg (2,2 mmoles) de 1,3-dicyclohexylcarbodiimide. On laisse le milieu réactionnel sous agitation pendant 2,5 heures à la température ambiante et on évapore le solvant. On reprend le résidu par 20 ml d'éther, on filtre et on lave avec 20 ml d'éther. On reprend le précipité par 50 ml de dichlorométhane, on refroidit à 30 °C et on ajoute 1,2 g
 - (2,9 mmoles) de chlorhydrate de $[3aS-2(R),3a\alpha,4\beta,6\beta,7a\alpha]]\alpha$ [3a,5,5-triméthylhexahydro-4,6-méthano-1,3,2-benzodioxaborol-2-yl)-1H-imidazole-4-butanamine et 1,08 ml (7,75 mmoles) de triéthylamine. On laisse le milieu réactionnel pendant
- 30 12 heures sous agitation à la température ambiante, on évapore le solvant et on reprend le résidu par 100 ml d'acétate d'éthyle. On lave successivement par 50 ml d'une solution saturée d'hydrogénocarbonate de sodium, 50 ml d'une solution saturée de chlorure de sodium, on sèche sur sulfate de sodium et on évapore.
 - On obtient 550 mg de produit sous forme d'une mousse à laquelle on ajoute 30 ml d'une solution d'acide chlorhydrique 0,1 N dans l'isopropanol et on évapore. On reprend le résidu

par 30 ml d'eau, on ajoute 30 ml d'éther et 1,22 g
(10 mmoles) d'acide phénylboronique et on laisse le mélange
pendant 3 heures sous agitation. On récupère la phase
aqueuse, on la lave trois fois avec de l'éther et on évapore.

5 On purifie le résidu par chromatographie sur colonne RP 18 en
éluant par un gradient acide chlorhydrique 0,01 N:acétonitri-

- on purifie le residu par chromatographie sur colonne RP 18 en éluant par un gradient acide chlorhydrique 0,01 N:acétonitri-le (95:5 à 50:50) en 2 heures. On rassemble les fractions, on évapore, on reprend le produit dans 10 ml d'eau et on lyophylise.
- On obtient 510 mg de produit sous forme d'un solide amorphe. Rendement = 42 %

 Point de fusion = 162 °C (fusion avec décomposition) $\left[\alpha\right]_{D}^{20} = -18 ° (c = 0,2 ; méthanol)$
- 15 Exemple 2 (composé n° 6)
 chlorhydrate de (R)-3-amino-N-[borono[3-(1H-imidazol-4-yl)
 propyl]méthyl]-6-méthyl-2-oxo-4-(phénylméthyl)-1,2-dihydropy ridine-1-acétamide (2:1)
- On place 1,02 g (1,7 mmoles) de chlorhydrate de (R)-N-[borono [3-(1H-imidazol-4-yl)propyl]méthyl]-6-méthyl-2-oxo-3-[[(phé-nylméthoxy)carbonyl]amino]-4-(phénylméthyl)-1,2-dihydropyridine-1-acétamide (1:1) dans un mélange de 30 ml d'eau et de 20 ml d'éthanol, on ajuste le pH du mélange à 4 avec 140 mg d'acétate de sodium et on ajoute 130 mg de palladium sur

charbon à 10 %. On hydrogène pendant 1,5 heures à 0,21 MPa (30 psi) pendant 20 °C, on filtre sur célite et on évapore.

On purifie le résidu par chromatographie sur colonne phase inverse en éluant par un gradient acide chlorhydrique

30 0,01 N:acétonitrile (95:5 à 50:50) en 2 heures.
 On obtient 410 mg de produit après lyophylisation.
 Rendement = 48 %

Point de fusion = 180 °C $[\alpha]_D^{20}$ = -29 ° (c = 0,2; méthanol)

35

Exemple 3 (composé nº 13)

chlorhydrate de (R)-N-[borono[3-(1H-imidazol-4-yl)propyl] méthyl]-3-[(méthoxycarbonyl)amino]-6-méthyl-2-oxo-4-phénoxy-1,2-dihydropyridine-1-acétamide (1:1)

5

30

- 3.1. acide 3-[(méthoxycarbonyl)amino]-4-phénoxy-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétique
- 3.1.1. 6-méthyl-3-nitro-2-oxo-4-phénoxy-1,2-dihydropyridine-1-acétate de méthyle
- 10 A une suspension de 0,58 g (14,5 mmoles) d'hydrure de sodium dans le tétrahydrofurane, on ajoute goutte à goutte 1,38 g (14,7 mmoles) de phénol en solution dans 20 ml de tétrahydrofurane. On laisse le mélange pendant 0,5 heure à la température ambiante, on le refroidit à 70 °C et on ajoute goutte
- à goutte 5,24 g (14 mmoles) de 6-méthyl-3-nitro-2-oxo-4-[[(trifluorométhyl)sulfonyl]oxy]-1,2-dihydropyridine-1acétate de méthyle en solution dans 20 ml de tétrahydrofurane. On laisse la température du milieu réactionnel revenir à 0 °C et on agite à cette température pendant 1 heure. On
- verse le mélange sur 20 ml d'une solution aqueuse d'acide chlorhydrique 1 N et on extrait par 2 fois 200 ml de dichlorométhane. On lave avec 100 ml d'une solution saturée en chlorure de sodium, on sèche sur sulfate de magnésium et on évapore. On recristallise le produit dans le méthanol.
- On obtient 3,8 g de produit sous forme de cristaux jaunes. Rendement = 85 %

Point de fusion = 239 °C

3.1.2. 3-amino-6-méthyl-2-oxo-4-phénoxy-1,2-dihydropyridinel-acétate de méthyle

On hydrogène 3,3 g (10,4 mmoles) de 6-méthyl-3-nitro-2-oxo-4-phénoxy-1,2-dihydropyridine-1-acétate de méthyle selon la méthode décrite à l'exemple 1.1.6.

On obtient 2,9 g de produit que l'on recristallise dans

35 l'éthanol sous forme d'un solide blanc.

Point de fusion = 105-106 °C

- 3.1.3. acide 3-[(méthoxycarbonyl)amino]-4-phénoxy-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétique
- a) 3-[(méthoxycarbonyl)amino]-6-méthyl-2-oxo-4-phénoxy-1,2-dihydropyridine-1-acétate de méthyle
- On prépare ce composé à partir de 3-amino-6-méthyl-2-oxo-4phénoxy-1,2-dihydropyridine-1-acétate de méthyle et de chloroformate de méthyle dans les conditions de l'exemple 1.1.7.

On utilise le produit obtenu tel quel dans l'étape suivante.

10

b) acide 3-[(méthoxycarbonyl)amino]-4-phénoxy-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétique
 On hydrolyse 2 g de 3-[(méthoxycarbonyl)amino]-4-phénoxy-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétate de méthyle dans
 les conditions de l'exemple 1.1.7.
 On obtient 1,7 g de produit.

Rendement = 88 %

Point de fusion = 170 °C

3.2. chlorhydrate de (R)-N-[borono[3-(1H-imidazol-4-yl)] 20 propyl]méthyl]-3-[(méthoxycarbonyl)amino]-6-méthyl-2oxo-4-phénoxy-1,2-dihydropyridine-1-acétamide (1:1) On place 1 g (3 mmoles) d'acide 3-[(méthoxycarbonyl)amino]-4phénoxy-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétique dans un mélange de 82 ml d'acétate d'éthyle et 55 ml de dichlorométhane et on ajoute successivement 380 mg (3,3 mmoles) de N-hydroxysuccinimide et 681 mg (3,3 mmoles) de 1,3-dicyclohexylcarbodiimide. On laisse le mélange sous agitation pendant 4,5 heures à la température ambiante et on évapore 30 les solvants. On reprend le résidu par 40 ml d'éther et on filtre l'insoluble que l'on reprend dans 40 ml de dichlorométhane. On ajoute alors 1,52 g (4,5 mmoles) de chlorhydrate de y-(4,4,5,5-tétraméthyl-4,5-dihydro-1,3,2dioxaborol-2-yl)-1H-imidazole-4-butanamine, on refroidit le mélange à - 20 °C et on ajoute 1,67 ml (12 mmoles) de triéthylamine. On laisse le mélange pendant 72 heures à la température ambiante puis on procède selon la méthode décrite

en 1.2. Finalement on ajoute 1,8 g (15 mmoles) d'acide

phénylboronique et on laisse le mélange pendant 3 heures sous

agitation. On récupère la phase aqueuse, on la lave trois fois avec de l'éther et on évapore. On purifie le résidu par chromatographie sur colonne phase inverse en éluant par un gradient acétonitrile:adie chlorhydrique (5:95 à 50:50) en 2 5 heures.

On obtient après lyophylisation 190 mg de produit.

Rendement = 16 %

Point de fusion = 117 °C (fusion avec décomposition) $[\alpha]_D^{20} = -24$ ° (c = 0,2 ; méthanol)

10

Exemple 4 (composé n° 12)

chlorhydrate de (R)-3-amino-N-[borono[3-(1H-imidazol-4-yl) propyl]méthyl]-6-méthyl-2-oxo-4-(phénylsulfonyl)-1,2-dihydropyridine-1-acétamide (2:1)

15

- 4.1. acide 3-amino-6-méthyl-2-oxo-4-(phénylsulfonyl)-1,2-dihydropyridine-1-acétique
- 4.1.1. 6-méthyl-3-nitro-2-oxo-4-(phénylsulfonyl)-1,2-dihydropyridine-1-acétate de méthyle
- A 2,38 g (14,5 mmoles) de benzènesulfinate de sodium en suspension dans 100 ml de tétrahydrofurane, on ajoute goutte à goutte 5,24 g (14 mmoles) de 6-méthyl-3-nitro-2-oxo-4-[[(trifluorométhyl)sulfonyl]oxy]-1,2-dihydropyridine-1-acétate de méthyle en solution dans 50 ml de tétrahydrofurane
- et on laisse le mélange pendant 3 heures à la température ambiante. On évapore le solvant, on reprend le résidu par 200 ml de dichlorométhane et on lave par 50 ml d'une solution aqueuse d'acide chlorhydrique 1 N. On recueille la phase organique, on la sèche sur sulfate de magnésium et on

30 évapore.

On obtient 4,7 g de produit qui recristallise dans un mélange éthanol:eau.

Rendement = 92 %

Point de fusion = 142-143 °C

35

4.1.2. 3-amino-6-méthyl-2-oxo-4-(phénylsulfonyl)-1,2-dihydropyridine-1-acétate de méthyle

On hydrogène 2,18 g (5,95 mmoles) de 6-méthyl-3-nitro-2-oxo-4-(phénylsulfonyl)-1,2-dihydropyridine-1-acétate de méthyle

dans les conditions décrites dans l'exemple 1.6. On obtient 2 g de produit sous forme d'un solide blanc que l'on utilise tel quel dans l'étape suivante.

5 4.1.3. acide 3-amino-6-méthyl-2-oxo-4-(phénylsulfonyl)-1,2-dihydropyridine-1-acétique

A 1,6 g (4,76 mmoles) de 3-amino-6-méthyl-2-oxo-4-(phénylsul-fonyl)-1,2-dihydropyridine-1-acétate de méthyle on ajoute 5,7 ml d'une solution aqueuse d'hydroxyde de sodium 1 N et

- 5,7 ml d'éthanol. On introduit alors 1,5 ml de dichlorométhane et on laisse le mélange sous agitation pendant 2 heures à la température ambiante. On concentre le milieu réactionnel sous vide et on ajoute 8 ml d'eau et 5,8 ml d'une solution aqueuse d'acide chlorhydrique 1 N. On filtre le précipité, on
- 15 le rince à l'eau et on le sèche sous vide.
 On obtient 1,39 g de produit sous forme d'une poudre jaune pâle.

Rendement = 91 %
Point de fusion = 203 °C

20

4.2. chlorhydrate de (R)-3-amino-N-[borono[3-(1H-imidazol-4-yl)propyl]méthyl]-6-méthyl-2-oxo-4-(phénylsulfonyl)1,2-dihydropyridine-1-acétamide (2:1)

On prépare le produit à partir de 800 mg (2,48 mmoles)

25 d'acide 3-amino-6-méthyl-2-oxo-4-(phénylsulfonyl)-1,2dihydropyridine-1-acétique et de 1,16 mg (2,97 mmoles) de
chlorhydrate de [3aS-2(R),3aα,4β,6β, 7aα]]α-[3a,5,5triméthylhexahydro-4,6-méthano-1,3,2-benzodioxaborol-2-yl)1H-imidazole-4-butanamine selon le mode opératoire décrit à

30 l'exemple 1.2.

On obtient 180 mg de produit.

Rendement = 10 %

Point de fusion = 198-203 °C (fusion avec décomposition) $[\alpha]_D^{20} = -17$ ° (c = 0,2; méthanol)

35

```
Exemple 5 (composé n° 8)
```

chlorhydrate de (R)-3-amino-N-[borono[3-(1H-imidazol-4-yl) propyl]méthyl]-6-méthyl-2-oxo-4-[[4-(trifluorométhyl)phényl]-méthyl]-1,2-dihydropyridine-1-acétamide (2:1)

5

- 5.1. acide 6-méthyl-3-nitro-2-oxo-4-[[4-(trifluorométhyl) phényl]méthyl]-1,2-dihydropyridine-1-acétique
- 5.1.1. 6-méthyl-3-nitro-2-oxo-4-[[4-(trifluorométhyl)phényl] méthyl]-1,2-dihydropyridine-1-acétate de méthyle
- On prépare ce composé à partir de 5,58 g (14,9 mmoles) de 6-méthyl-3-nitro-2-oxo-4-[[(trifluorométhyl)sulfonyl]oxy]-1,2-dihydropyridine-1-acétate de méthyle et de 5 g (20,9 mmoles) de bromure de [4-(trifluorométhyl)phényl] méthyle selon la méthode décrite dans l'exemple 1.5.
- On obtient 5,55 g de produit sous forme de cristaux jaunes.

 Rendement = 97 %

Point de fusion = 155 °C

5.1.2. acide 6-méthyl-3-nitro-2-oxo-4-[[4-(trifluorométhyl) phényl]méthyl]-1,2-dihydropyridine-1-acétique

On met en suspension 1,67 g (4,35 mmoles) de 6-méthyl-3nitro-2-oxo-4-[[4-(trifluorométhyl)phényl]méthyl]-1,2dihydropyridine-1-acétate de méthyle dans 5 ml d'éthanol. On
ajoute 5,2 ml d'une solution aqueuse d'hydroxyde de sodium

1 N et on laisse le mélange pendant 4 heures à la température ambiante. On acidifie le milieu réactionnel avec 5,5 ml d'une solution aqueuse d'acide chlorhydrique 1 N, on filtre le

On obtient 1,52 g de produit.

précipité, on le lave et on le sèche.

- 30 Rendement = 94 %
 Point de fusion = 224 °C
- 5.2. chlorhydrate de (R)-3-amino-N-[borono[3-(1H-imidazol-4-yl)propyl]méthyl]-6-méthyl-2-oxo-4-[[4-(trifluoro-méthyl)phényl]méthyl]-1,2-dihydropyridine-1-acétamide (2:1)

On réalise le couplage à partir de 1,45 g (3,92 mmoles) d'acide 6-méthyl-3-nitro-2-oxo-4-[[4-(trifluorométhyl) phényl]méthyl]-1,2-dihydropyridine-1-acétique et de 2,38 g

(7,05 mmoles) de chlorhydrate de γ-(4,4,5,5-tétraméthyl-4,5-dihydro-1,3,2-dioxaborol-2-yl)-1H-imidazole-4-butanamine selon le mode opératoire décrit à l'exemple 1.2. On obtient 1,5 g de produit que l'on hydrogène pendant 6 heures dans 120 ml d'eau à 20 °C sous une pression de 0,28 MPa (40 psi) en présence de 225 mg de palladium sur charbon à 10 %. On filtre sur célite, on évapore et on purifie le résidu par chromatographie sur colonne phase inverse en éluant par un gradient acétonitrile:acide chlorhydrique 0,01 N (0:100 à 30:70).

On obtient après lyophylisation 65 mg de produit.

Point de fusion = 150 °C (fusion avec décomposition) $[\alpha]_D^{20} = -18.5$ ° (c = 0.2; méthanol)

15

Exemple 6 (composé nº 10)

Rendement = 4 %

chlorhydrate de (R)-4-[[4-(acétylamino)phényl]méthyl]-3-amino-N-[borono[3-(1H-imidazol-4-yl)propyl]méthyl]-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétamide (2:1)

20

- 6.1. acide 4-[[4-(acétylamino)phényl]méthyl]-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétique
- 6.1.1. 4-[[4-(acétylamino)phényl]méthyl]-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétate de méthyle

25

On le prépare à partir de 7,3 g (27 mmoles) de N-acétyl-N-[4-(bromométhyl)phényl]acétamide et de 4 g (13,4 mmoles) de 6-méthyl-3-nitro-2-oxo-4-[[(trifluorométhyl)sulfonyl] oxy]-1,2-dihydropyridine-1-acétate de méthyle. On traite le produit brut par de l'ammoniac.

On obtient 2,1 g de produit sous forme de cristaux jaunes. Rendement = 53 %

Point de fusion = 215 °C

35 6.1.2. acide 4-[[4-(acétylamino)phényl]méthyl]-6-méthyl-3nitro-2-oxo-1,2-dihydropyridine-1-acétique
On le prépare à partir de 2,35 g (6,29 mmoles) de 4-[[4(acétylamino)phényl]méthyl]-6-méthyl-3-nitro-2-oxo-1,2dihydropyridine-1-acétate de méthyle selon la méthode décrite

dans l'exemple 5.
On obtient 1,5 g de produit sous forme d'un solide jaune.
Rendement = 66 %

5 6.2. chlorhydrate de (R)-4-[[4-(acétylamino)phényl]méthyl]-3-amino-N-[borono[3-(1H-imidazol-4-yl)propyl]méthyl]-6méthyl-2-oxo-1,2-dihydropyridine-1-acétamide (2:1) On prépare ce produit selon la méthode décrite dans l'exemple 5 à partir de 1,3 g d'acide 4-[[4-(acétylamino)phényl]

10 méthyl]-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétique
On obtient après lyophylisation 82 mg de produit.

Rendement = 4 %

Point de fusion = 175 °C (décomposition) $[\alpha]_D^{20} = -15$ ° (c = 0,2; méthanol)

15

Exemple 7 (composé n° 9)

chlorhydrate de (R)-3-amino-N-[borono[3-(1H-imidazol-4-yl)propyl]méthyl]-4-[[4-(méthoxycarbonyl)phényl]méthyl]-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétamide (2:1)

20

- 7.1. acide 3-amino-4-[[4-(méthoxycarbonyl)phényl]méthyl]-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétique
- 7.1.1. 4-hydroxy-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétate de phénylméthyle
- On met en suspension 0,5 g (2,19 mmoles) d'acide 4-hydroxy-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétique dans 5 ml de dichlorométhane, on ajoute 250 μ l (2,41 mmoles) d'alcool benzylique et 0,5 g (2,45 mmoles) de 1,3-dicyclohexylcarbodiimide en solution dans 5 ml de dichlorométhane. On laisse le
- mélange pendant 3 heures sous agitation à la température ambiante, on dilue avec 20 ml de dichlorométhane, on filtre et on évapore. On recristallise le résidu dans l'éthanol. On obtient 0,57 g de produit.

Rendement = 82 %

- 35 Point de fusion = 146-147 °C
 - 7.1.2. 6-méthyl-3-nitro-2-oxo-4-[[(trifluorométhyl)sulfonyl]
 oxy]-1,2-dihydropyridine-1-acétate de phénylméthyle
 On le prépare à partir de 8 g (25,2 mmoles) de 4-hydroxy-6-

méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétate de phénylméthyle et d'anhydride triflurométhanesulfonique selon la méthode décrite dans l'exemple 1.1.4.

On obtient 9,5 g de produit sous forme d'un solide beige.

- 5 Point de fusion = 115-118 °C
 - 7.1.3 4-[[4-(méthoxycarbonyl)phényl]méthyl]-6-méthyl-3nitro-2-oxo-1,2-dihydropyridine-1-acétate de
 phénylméthyle
- On le prépare à partir de 6,6 g (14,6 mmoles) de 6-méthyl-3nitro-2-oxo-4-[[(trifluorométhyl)sulfonyl]oxy]-1,2-dihydropyridine-1-acétate de phénylméthyle et de 4,58 g (20 mmoles) de bromure de (4-méthoxycarbonyl)phénylméthyle selon la méthode décrite dans l'exemple 1.1.5, l'addition du composé zincique
- 15 intermédiaire se faisant à 30 °C.

 On obtient 4,5 g de produit sous forme d'une poudre jaune que l'on utilise telle quelle dans l'étape suivante.

 Rendement = 68 %
- 7.1.4. acide 3-amino-4-[[4-(méthoxycarbonyl)phényl]méthyl]-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétique
 On hydrogène 3,7 g (8,2 mmoles) de 4-[[4-(méthoxycarbonyl)phényl]méthyl]-6-méthyl-3-nitro-2-oxo-1,2-dihydropyridine-1-acétate de phénylméthyle dans les conditions décrites dans

On obtient 2,25 g de produit que l'on recristallise dans l'éthanol.

Rendement = 83 %

25 l'exemple 2.

Point de fusion = 178-180 °C

30

7.2. acide 4-[[4-(méthoxycarbonyl)phényl]méthyl]-6-méthyl-2-oxo-3-[[(phénylméthoxy)carbonyl]amino]-1,2-dihydropyridine-1-acétique

On dissout 1,75 g (5,3 mmoles) d'acide 3-amino-4-[[4-

(méthoxycarbonyl)phényl]méthyl]-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétique dans un mélange de 26 ml de dioxane et de 26 ml d'eau, on ajoute 0,74 ml (5,30 mmoles) de triéthylamine puis 1,82 g (6,36 mmoles) de dibenzyldicarbonate et on laisse le mélange sous agitation pendant

24 heures à la température ambiante. On ajoute 1,2 g (4,19 mmoles) de dibenzyldicarbonate et on poursuit l'agitation pendant 8 heures à la température ambiante. On concentre le milieu réactionnel à froid, on ajoute 0,8 ml

- d'acide chlorhydrique 1 N et on filtre. On recueille le précipité et on le purifie par chromatographie sur colonne de gel de silice en éluant par un mélange dichlorométhane:méthanol (95:5) contenant 0,5 % de triéthylamine. On recueille les fractions, on les évapore, on reprend le résidu par 10 ml
- 10 d'eau et on acidifie à pH = 1. On filtre le précipité, on le lave à l'eau et on le sèche.

On obtient 0,7 g de produit sous forme de poudre blanche. Rendement = 28 %

Point de fusion = 100 °C

15

- 7.3. chlorhydrate de (R)-3-amino-N-[borono[3-(1H-imidazol-4-yl)propyl]méthyl]-4-[[4-(méthoxycarbonyl)phé-nyl]méthyl]-6-méthyl-2-oxo-1,2-dihydropyridine-1-acétamide (2:1)
- On prépare le produit à partir de l'acide 4-[[4-(méthoxycar-bonyl)phényl]méthyl]-6-méthyl-2-oxo-3-[[(phénylméthoxy)carbo-nyl]amino]-1,2-dihydropyridine-1-acétique selon la méthode décrite dans l'exemple 5.

On obtient 112 mg de produit.

25 Rendement = 14 %

Point de fusion = 182-185 °C $[\alpha]_{D}^{20} = -16.5$ ° (c = 0,2; méthanol)

		(I)	
R ₂ N +1	X CH ₃	R ₃ HN	50 =

Tableau

		T		
Point de fusion (°C)	190 (d)	190 (d)		
[\alpha] \frac{20}{D} (\circ\)	€'9 -	- 4,		
Sel	HCl (1:1)	HCl (1:1)		
Ā	н-	H.		
х	-CH ₂ H	-0-		
R ₃	- СООСН3	- сосн3		
R′2	н-	н-		
R ₂	н-	н-		
R_1	-CH(CH ₃) ₂	<u> </u>		
°N	н	73		

			7			
Point de fusion (°C)	120 (d)	158 (d)	185-190 (d)	180	160 (d)	150
[\alpha] \frac{20}{D} (\circ\circ\circ\circ\circ\circ\circ\cir	6.	+ 16,5	+ 34	- 29	- 26	- 18,5
Sel	HCl (1:1)	ı	ı	HCl (2:1)	HC1 (2:1)	HC1 (2:1)
7	#	н-	н-	H-	н	ж.
×	-CH ₂ -	-0-	٠	-CH2-	-сн2-	-CH ₂ -
R ₃		н-	н-	Н-	щ-	н-
R′2	Н-	н-	н-	н-	. н	н-
R ₂	Н-	н-	н-	Ξ	Щ.	Н-
R ₁						F
o Z	т	4	2	٥	7	80

	R ₁	R ₂	R′2	R ₃	×	¥	Sel	[α] ²⁰ (°)	Point de fusion (°C)
	COOCH	н.	ж.	H -	-CH ₂ -	н-	HCl (2:1)	- 16,5	182-185 (d)
5	NHCOCH,	Н-	Н	Н-	-CH ₂ -	н-	HCl (2:1)	- 15	175 (d)
I		Н-	н-	Н-	-CH ₂ -	н-	HC1 (2:1)	- 16	200
l	\	н-	н-	Н-	- SO ₂ -	H	HCl (2:1)	- 17	198-203 (d)
į		н.	н-	-соосн3	-0-	Ή.	HCl (1:1)	- 24	117 (d)

_			T				Т
Point de fusion (°C)	165(d)	243-245	240 (d)	(p) 56-06	120 (d)	162 (d)	185 (d)
[\alpha] \frac{20}{D} (\circ\)	- 2,5	-18,5	n.d.	ю,	- 11,5	- 18	- 10
Sel	HC1 (1:1)	HCl (1:1)	HCl (1:1)	HCl (1:1)	HC1 (1:1)	HCl (1:1)	HC1 (1:1)
¥	ж,	н-	н-	Н-	Н-	н-	н-
×	-0-	_ເ	٠ ن	-CH2-	-CH ₂ -	-CH ₂ -	-CH2-
R ₃		-соосн		-сосн3	-COOCH3		-CONH (CH ₂) ₃ CH ₃
R' 2	н-	н-	н-	н-	н-	н-	Н-
R ₂	н-	н-	н-	н-	н-	н-	-Н
R_1							\\
° Z	14	15	16	17	18	19	20

			Т		η		
Point de fusion (°C)	193-195 (d)	195 (d)	160 (d)	201 (d)	175 (d)	70-75	195 (d)
[\alpha]_{D}^{20} (°)	- 11	9 -	- 23,5	- 21	- 18	- 12	- 2
Sel	HCl (1:1)	HCl (1:1)	HCl (1:1)	HC1 (1:1)	HC1 (1:1)	HCl (1:1)	HC1 (1:1)
7	# -	# '	н-	н-	Н.	#-	н -
×	-CH2-	-CH2-	-CH2-	- CH ₂ -	-CH2-	-CH2-	-CH2-
R ₃	HN O	O=	- SO ₂ CH ₃	-SO ₂ CH ₂ CH ₃	- SO ₂ (CH ₂) ₃ CH ₃	- sos	Son-
R'2	н-	н-	Н-	н-	Н-	н-	н-
R2	н-	н-	н-	н-	н-	Н-	н-
R ₁						· \	
° Z	21	22	23	24	25	26	27

Point de fusion (°C)	195 (d)	74	98-102	185 (d)	88 (d)
$\left[\alpha\right]_{D}^{20}$ (°)	8	- 19,37	- 12,5	- 19	- 17,5
Sel	HCl (1:1)	HCl (2:1)	HCl (2:1)	HCl (1:1)	HCl (1:1)
7	Н-	# -	Н.	н-	H-
×	- CH ₂ -	-CH ₂ -	- CH ₂ -	-802-	-CH ₂ -
. R ₃	 N SO ₂	Z Z	__\S_\)	-соосн3	-соосн3
R′2	н-	-Н	н-	н-	н-
R2	Н-	н-	н-	н-	н_
R ₁					(ia,—(
° N	28	29	30	31	32

	T			·	
Point de fusion (°C)	140	> 200	130 (d)	150 (d)	85
[a] ²⁰ (°)	- 14,5	- 12	+	- 17	-20,5
Sel	HCl (1:1)	HC1 (1:1)	HCl (1:1)	HCl (1:1)	HC1 (1:1)
7	н	н-	Н.	Η.	# -
×	-CH2-	-CH ₂ -	٠	-CH ₂ -	-CH ₂ -
R ₃		-соосн	-COOCH3	-соосн ₃	
R'2	Н-	Н-	н-	н-	Н-
R ₂	н-	н-	н-	Н-	н,
R ₁	C (CH ₃)	Z-()			
° Z	33	34	35	36	37

Notes:

27, dans la colonne " $\{\alpha\}_D^{20}$ " : c = 0,2 ; méthanol sauf pour les composés 11, 14, 18, 26, 34 et 36 (c = 0,2 ; eau), pour le composé 1 (c = 0,13 ; eau), pour le composé 3 (c = 0,1 eau), pour le composé 29 (c = 0,19 ; méthanol), pour le composé 35 (c = 2,1 ; méthanol) n.d. correspond à un $\left[\alpha\right]_D^{20}$ non mesuré

dans la colonne "Point de fusion" (d) correspond à une fusion avec décomposition dans la colonne "Sel" : HCl représente un chlorhydrate

Les composés de l'invention ont fait l'objet d'études pharmacologiques qui ont mis en évidence leurs propriétés antithrombotiques et leur intérêt comme substances à activité thérapeutique.

5

1. <u>Détermination des constantes d'inhibition (Ki) vis à vis</u> de la thrombine

Sur une microplaque de 96 puits, on dépose dans chaque puits 25 μ l d'une solution de composé à tester (on étudie 7

10 concentrations), 50 μl d'une solution de substrat chromogène (on étudie 2 concentrations ; S2238 Chromogénix™) en solution dans du tampon Tris à pH 7,5 (Tris 50 mM, NaCl 100 mM et BSA 0,1 %) et finalement 25 μl d'une solution de thrombine à 300 U/ml. On suit la libération de 4-nitroaniline à 405 nm à

l'aide d'un lecteur de plaques. On détermine le K_i par la méthode de Dixon. Les composés de l'invention sont des inhibiteurs de la thrombine et leur K_i est compris entre 0,001 et 100 μM .

20 2. <u>Coagulation du plasma de rat par la thrombine humaine</u> <u>ex-vivo</u>

On traite des rats mâles CD pesant 150 à 200 g avec le composé à tester ou avec le véhicule, par voie i.v., orale ou sous-cutanée. Ensuite on anesthésie les animaux au Nembutal[™]

25 (60 mg/kg; 0,1 ml/kg), on prélève le sang sur du citrate trisodique à 3,8% (1 vol/9 vol de sang) au niveau du sinus rétro-orbital et on prépare le plasma par centrifugation à 3600 g pendant 15 minutes à la température ambiante. On incube alors à 37 °C, 200 μl de plasma avec 200 μl d'une

30 solution de thrombine humaine, la concentration finale en thrombine humaine étant de 0,75 unités NIH/ml et on note le temps de coagulation. L'effet anticoagulant est exprimé par la dose qui augmente le temps de coagulation de 100 %.

Ils inhibent la coagulation du plasma de rat à des doses de

35 0,01 à 5 mg/kg i.v. Ils sont également actifs par les voies orale et sous-cutanée.

Les composés de l'invention peuvent être utiles dans toutes les indications cliniques liées à la thrombose ou dans celles

où des complications thrombotiques pourraient intervenir.

A cet effet ils peuvent être présentés sous toutes formes appropriées à l'administration orale, parentérale ou intraveineuse, telles que comprimés, dragées, gélules, capsules, suspensions ou solutions buvables ou injectables, etc. en association avec des excipients convenables. Toutes ces formes sont dosées pour permettre une administration de 1 à 1000 mg par jour et par patient, en une ou plusieurs doses.

Revendications

1. Composés de formule (I)

5

10

dans laquelle

 R_1 représente soit un groupe (C_1-C_4) alkyle droit ou ramifié, soit un groupe cyclo (C_3-C_8) alkyle, soit un groupe phényle éventuellement substitué par un atome d'halogène, un groupe (C_1-C_5) alkyle droit ou ramifié, un groupe trifluorométhyle, un groupe cyano, un groupe méthoxycarbonyle ou un groupe acétylamino, soit un groupe phényl (C_1-C_4) alkyle dont le noyau phényle est éventuellement substitué comme ci-dessus, soit un groupe thiényle,

 R_2 et R'_2 représentent chacun indépendamment l'un de l'autre un atome d'hydrogène ou un groupe (C_1-C_4) alkyle,

 R_3 représente soit un atome d'hydrogène, soit un groupe $-COR_4$ où R_4 est un groupe (C_1-C_4) alkyle, soit un groupe $-COOR_5$ où R_5 est choisi parmi les groupes (C_1-C_4) alkyle et phényl (C_1-C_4) alkyle, soit un groupe $-CONHR_6$, soit un groupe $-SO_2R_6$ où R_6 est choisi parmi les groupes (C_1-C_5) alkyle, phényle et phényl (C_1-C_4) alkyle, soit un groupe $-SO_2NR_7R_8$ où R_7 et R_8 sont chacun indépendamment l'un de l'autre un atome d'hydrogène ou un groupe (C_1-C_4) alkyle ou forment avec l'atome d'azote qui les porte un groupe morpholine, soit un groupe arylalkyle comme par exemple un groupe pyridinyl (C_1-C_4) alkyle ou thiényl (C_1-C_4) alkyle et

X représente soit un atome d'oxygène ou de soufre, soit un 35 groupe - CH_2 -, - SO_2 - ou - NR_1 - où R_1 est tel que défini ci-dessus et

Y représente soit un atome d'hydrogène, soit un groupe (C_1-C_6) alkyle droit ou ramifié,

sous forme de racémates ou d'énantiomères purs ou de mélange

d'énantiomères,

ainsi que leurs sels d'addition à des acides pharmaceutiquement acceptables.

5 2. Procédé de préparation des composés de formule (Ia) selon la revendication 1

15

10

dans laquelle R₁, R₂, R'₂, X et Y sont tels que définis dans la revendication 1 et R est tel que défini dans la revendication 1 mais est différent d'un groupe amino, procédé caractérisé en ce que l'on fait réagir un composé de formule (II)

$$\begin{array}{c}
R_1 \\
X \\
CH_3 \\
R \\
O COOH
\end{array}$$
(II)

25

dans laquelle R représente soit un groupe nitro, soit un groupe -NHR $_3$ où R $_3$ représente un groupe -COR $_4$, (R $_4$ étant un 30 groupe (C $_1$ -C $_4$) alkyle), un groupe -COOR $_5$ (R $_5$ étant choisi parmi les groupes (C $_1$ -C $_4$) alkyle et phényl (C $_1$ -C $_4$) alkyle), un groupe -CONHR $_6$, un groupe -SO $_2$ R $_6$ (R $_6$ étant choisi parmi les groupes (C $_1$ -C $_5$) alkyle, phényle et phényl (C $_1$ -C $_4$) alkyle), un groupe -SO $_2$ NR $_7$ R $_8$ (R $_7$ et R $_8$ étant chacun indépendamment l'un de l'autre un atome d'hydrogène ou un groupe (C $_1$ -C $_4$) alkyle ou formant avec l'atome d'azote un groupe morpholine), un groupe arylalkyle comme par exemple un groupe pyridinyl (C $_1$ -C $_4$) alkyle ou thiényl (C $_1$ -C $_4$) alkyle et R $_1$, X et Y sont tels que définis dans la revendication 1 avec du N-hydroxysuccinimide en

présence d'un agent couplant et on obtient un composé de formule (III)

 $\begin{array}{c|c}
R_1 \\
X \\
CH_3 \\
R \\
0 \\
N \\
Y \\
0 \\
O \\
N
\end{array}$ (III)

que l'on condense avec un composé de formule (IV)

dans laquelle R₃ et R₄ représentent ensemble le résidu d'un composé dihydroxylé et R₂, R'₂ sont tels que définis dans la revendication 1, en présence d'une base et on obtient un composé intermédiaire que l'on traite par de l'acide phénylboronique.

3. Procédé de préparation des composés de formule (Ib)

30

dans laquelle R₁, R₂, R'₂, X et Y sont tels que définis dans

la revendication 1, procédé caractérisé en ce que l'on soumet le composé de formule (Ia) correspondant dans lequel R représente un groupe nitro ou dans lequel R_3 représente un groupe -COOCH $_2$ C $_6$ H $_5$ à une hydrogénation.

5

- 4. Médicament caractérisé en ce qu'il contient un composé selon la revendication 1.
- Composition pharmaceutique caractérisée en ce qu'elle
 contient un composé selon la revendication 1 en association avec tout excipient pharmaceutiquement acceptable.

INSTITUT NATIONAL

RAPPORT DE RECHERCHE PRELIMINAIRE

No d'enregistrement national

de la

1

PROPRIETE INDUSTRIELLE

établi sur la base des dernières revendications déposées avant le commencement de la recherche FA 537815 FR 9700379

		MME PERTINENTS	concernees	
atégorie —	Citation du document avec indication, des parties pertinentes	en cas de besoin,	de la demande examinée	
١	EP 0 677 531 A (SYNTHELAB * le document en entier *	0)	1-5	
,	WO 96 13266 A (PROSCRIPT, * le document en entier *	INC.)	1-5	
	FR 2 701 951 A (ADIR ET C	0.)	1-5	
				DOMAINES TECHNIQUES RECHERCHES (Int.CL.6)
				C07K A61K
				NOIR
	•			
į				
	Date	d'achévement de la recherche		Examinates
		15 septembre 1997	Bes	lier, L
X : parti Y : parti	ATEGORIE DES DOCUMENTS CITES culièrement pertinent à lui seul culièrement pertinent en combinaison avec un e document de la même catégorie nent à l'encontre d'au moins une revendication	T : théorie ou princip E : document de brev à la date de dépôt de dépôt ou qu'à t D : cité dans la dema	et bénéficiant d'u et qui n'a été pi une date postérie	ane date antérieure ublié qu'à cette date