

SCA100T Series

Inclinometer

FFATURES

- 2-axis inclination measurement (X and Y)
- Available ranges ± 0.5 g (± 30 °), ± 1.0 g (± 90 °)
- Over damped frequency response by Sensing Element (-3 dB @ 8...28 Hz)
- 0.003 ° resolution (10 Hz BW, analog output)
- Advanced internal and external connection failure detection
- Digitally activated electrostatic sensing element self test
- · Continuous memory parity check
- Single +5 V supply; ratiometric voltage output
- Serial Peripheral Interface (SPI) compatible
- Internal temperature sensor, accessible via SPI
- Lead-free reflow solderable lead-free component

BENEFITS

- Excellent reliability and stability over time and temperature
- Instrumentation grade performance
- · High resolution and low noise
- Wide temperature range
- · Outstanding overload and shock durability

APPLICATIONS

- 2-axis platform levelling
- Inclination based position measurement
- Tilt measurement with cross-axis compensation
- 360 ° vertical orientation measurement

ELECTRICAL	CHARACTER	ISTICS			
Parameter	Condition	Min	Тур.	Max	Units
Supply voltage Vdd ⁽¹		4.75	5.0	5.25	٧
Current consumption	Vdd = 5 V; No load		4	5	mA
Analogue output load	Vout to Vdd or Vss	10			kOhm
				20	nF
Digital output load	@ 500 kHz clock			1	nF
SPI clock frequency				500	kHz
AD conversion time			150		μS
Data transfer time	@500 kHz clock		38		μs

Parameter	Condition	SCA100T-D01 (±30°)	SCA100T-D02 (±90°)	Units
Measuring range ⁽²	Nominal	±30	±90	0
		±0.5	±1	g
Measuring direction (3	Mounting plane horizontal	Dual axis inclination	Dual axis inclination	
	Mounting plane vertical	Orthogonal rotation	Orthogonal rotation	
Zero point (4	Mounting position	Vdd/2	Vdd/2	V
Sensitivity	@ room temperature	4 ^(5a)	2 ^{(5b}	V/g
Offset calibration accuracy (6a, 13	@ room temperature	±2	±4	mg
Offset temperature dependency (6b, 13	070 °	±5	±5	mg
	-2585 °C	±10	±10	mg
	-40125 °C	±15	±15	mg
Sensitivity calibration accuracy (7a, 13	@ room temperature	±0.5	±0.5	%
Sensitivity temperature error (7b, 13	-4085 °C	-11	-11	%
	85125 °C	-2.51	-2.51	%
Typical non-linearity ⁽⁸	Over measuring range	±2	±10	mg
Cross-axis sensitivity (11	@ room temperature	4	4	%
Frequency response -3 dB (LP) (9	@ room temperature	828	828	Hz
Ratiometric error (10	Vdd = 4.755.25 V	±2	±2	%
Output noise density (12	From DC100 Hz	15	15	μg/√Hz
Digital output resolution	FS	11	11	Bits
Long term stability (14	@ steady temp	0.25	T.B.D	mg

Note 1	For maximum accuracy the supply voltage should be 5 \pm 0.05 V. 100 nF supply filtering capacitor	Note 8	From straight line through sensitivity calibration point.
	is recommended.	Note 9	The output has true DC (0 Hz) response.
Note 2	The measuring range is limited by sensitivity, offset and supply voltage rails of the device.		The ratiometric error is specified as: $RE = 100\% \text{ y}$ $\frac{5.00V}{Vx}$
Note 3	Measuring directions in parallel to mounting plane, arrows showing positive acceleration direction	Note 10	
Note 4	Offset specified as Voffset = Vout(0 g) [V]. See note 12.		Vout(@5V)
Note 5a	Sensitivity specified as Vsens = {Vout(+0.5 g) - Vout(-0.5 g)}/1 [V/g]. See note 12.		
Note 5b	Sensitivity specified as Vsens = {Vout(+1 g) - Vout(-1 g)}/2 [V/g]. See note 12.	Note 11	The cross-axis sensitivity determines how much inclination / acceleration, perpendicular to
Note 6a	Offset calibration error specified as Offset_Calib_error = {Vout(0 g) - Vdd/2} / Vsens [g].		the measuring axis, couples to the output. The total crossaxis sensitivity is the geometric
Note 6b	Offset temperature error specified as Offset Error @ temp. = {Vout @ temp Vout @ room temp.}		sum of the sensitivities of the two axis which are perpendicular to the measuring axis.
	/ Vsens [g].	Note 12	In addition, supply voltage noise couples to the output due to the ratiometric nature of the
Note 7a	Sensitivity calibration error specified as Sensitivity_calibr_error = { Vsens - Vsens_nom} /		accelerometer.
	Vsens_nom x 100 % [%] Vsens_nom = nominal sensitivity.	Note 13	Factory calibration value.
Note 7b	Sensitivity temperature error specified as Sensitivity error @ temp = { [Vsens @ temp -Vsens	Note 14	Power continuously connected.
	@ room temp] / Vsens @ room temp x 100 % [%].		

MEASURING DIRECTIONS

ABSOLUTE MAXIMUM RATINGS		
Parameter	Value	Unit
Acceleration (powered or non-powered)	20 000	g
Supply voltage	-0.3 V to +5.5 V	V
Voltage at input/output pins	-0.3 V to (Vdd+0.3 V)	V
Temperature range	-55125	°C

ELECTRICAL CONNECTION

Pin#	Pin Name	1/0	Connection
1	SCK	Input	Serial clock
2	Ext_C_1	Input	X axis external capacitor input (Ch 1)
3	MISO	Output	Master in slave out; data output
4	MOSI	Input	Master out slave in; data input
5	Out_2	Output	Y axis Output (Ch 2)
6	GND	Power	round (GND)
7	CSB	Input	Chip select (active low)
8	Ext_C_2	Input	Y axis external capacitor input (Ch 2)
9	ST_2	Input	Self test input for Y axis (Ch 2)
10	ST_1 / Test_in	Input	Self test input for X axis (Ch 1)
11	Out_1	Output	X axis output (Ch 1)
12	VDD	Power	Positive supply voltage (VDD)

If the SPI interface is not used SCK (pin1), MISO (pin3), MOSI (pin4) and CSB (pin7) must be left floating.

Self test can be activated applying logic "1" (positive supply voltage level) to ST pin (pin 9 and 10). If ST feature is not used pins 9 and 10 must be left floating or connected to GND.

RECOMMENDED CIRCUIT

DIMENSIONS

PCB PAD LAYOUTS

The part weights under 1.2 g. The size is appr. (w x h x l) 9 x 5 x 16 mm. Pin pitch is standard 100 mils.

Acceleration in the direction of the arrow will increase the output voltage.

VTI Technologies Oy Myllynkivenkuja 6 P.O. Box 27 FI-O1621 Vantaa Finland Tel. +358 9 879 181 Fax +358 9 879 18791 sales@vti.fi VTI Technologies Oy Frankfurt Branch Rennbahnstr. 72-74 D-60528 Frankfurt am Main Germany Tel. +49 69 6786 880 Fax +49 69 6786 8829 sales.de@vti.fi

VTI Technologies, Inc. One Park Lane Blvd. Suite 804 - East Tower Dearborn, MI 48126 USA Tel. +1 313 425 0850 Fax +1 313 425 0860 sales@vtitechnologies.com

