Problem Of The Day 2022

1. (27 Jun) If y varies inversely as x and can be represented by the equation $y = (m-1)x^{m^2-2}$, find the value of constant m.

Solution:

$$y = (m-1)x^{m^2-2} = \frac{k}{x}$$

$$k = (m-1)x^{m^2-1}$$

$$= (m-1)x^{(m+1)(m-1)} \ (x \neq 0)$$

By definition, $y \neq 0$ as well, hence

$$(m-1)x^{(m+1)(m-1)} \neq 0$$
$$\therefore m \neq 1$$

2. **(28 Jun)** Which of the following is a possible plot of y = x + m and $y = \frac{m}{x}$ on the same axes? (The graphs are not drawn to scale.)

Figure 1: y = x + m and $y = \frac{m}{x}$.

Solution: B.

- The straight line should be increasing, since the coefficient of *x* is positive. **C** and **D** are eliminated.
- If m > 0, the y-intercept of the straight line could not be negative. **A** is eliminated, since the hyperbola in the same graph shows that m > 0.

1

3. **(29 Jun)** Given that points $A(-2, y_1)$, $B(-1, y_2)$, $C(1, y_3)$ are all on the graph of $y = -\frac{1}{x}$, arrange y_1 , y_2 and y_3 in ascending order.

Solution: $y_3 < y_1 < y_2$.

Subst. x = -2 into $y = -\frac{1}{x}$:

$$y_1 = -\frac{1}{-2}$$
$$= \frac{1}{2}$$

Subst. x = -1 into $y = -\frac{1}{x}$:

$$y_2 = -\frac{1}{-1}$$
$$= 1$$

Subst x = 1 into $y = -\frac{1}{x}$:

$$y_3 = -\frac{1}{1}$$
$$= -1$$

4. (**30 Jun**) Given that points (x_1, y_1) , (x_2, y_2) and (x_3, y_3) are all on the graph of $y = \frac{3}{x}$, also $x_1 < x_2 < 0 < x_3$, arrange y_1 , y_2 and y_3 in ascending order.

Solution: $y_2 < y_1 < y_3$.

- $y_3 > 0$ since $x_3 > 0$. Hence, y_3 is the greatest.
- $0 > x_2 > x_1$, hence $y_2 < y_1 < 0$.