Review of Probability Econometrics

Péter Elek

- Events
- Rules of probability (axioms)
- Conditional probability
- Independence of events
- Bayes's rule
- See e.g., Cunningham 2.1-2.6.

Random Variables (r.v.)

- Informal definition: a variable whose value is determined by the outcome of a random experiment
- Notation: X = r.v., x = realized value
- Example: flipping a coin 10 times and counting the number of heads
- Types: discrete and continuous
 - Discrete: e.g., coin toss
 - Continuous: e.g., uniform distribution on [0,1]

Probability Distribution of Discrete Random Variables

- Probability distribution: $Pr(X = x_i) = p_i$, with $\sum p_i = 1$
 - Die: Pr(X = i) = 1/6 (i = 1, ..., 6)
 - Coin: Pr(X = heads) = Pr(X = tails) = 1/2

Cumulative Distribution Function (CDF)

- $F(x) = \Pr(X \leq x)$
- Properties:
 - $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
 - Non-decreasing
 - Pr(X > a) = 1 F(a)
 - $Pr(a < X \le b) = F(b) F(a)$

Probability Density Function (PDF) of Continuous Random Variables

- PDF: f(x) = F'(x)
- $Pr(a < X \le b) = \int_a^b f(x) dx$
- Note: Pr(X = x) = 0, but f(x) indicates "typical" values: $\Pr(x < X \le x + dx) \approx f(x)dx$
- Properties:
 - $f(x) \geq 0$
 - $\int_{-\infty}^{\infty} f(x) dx = 1$

$N(\mu, \sigma^2)$ Normal PDF: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$

- Conditional distribution of Y given X = x: $f_{Y|X}(y|x)$ (continuous) or $Pr(Y = y_i|X = x_i)$ (discrete)
- X and Y are independent if the conditional distribution does not depend on the other variable

Expected Value

- Discrete: $E(X) = \sum p_i x_i$
- Continuous: $E(X) = \int x f(x) dx$
- Properties:
 - \bullet E(c) = c
 - E(aX + b) = aE(X) + b
 - $E(a_1X_1 + \cdots + a_kX_k) = a_1E(X_1) + \cdots + a_kE(X_k)$
- Minimizes mean squared deviation: b = E(X) minimizes $E[(X b)^2]$

Variance and Standard Deviation

- $Var(X) = E[(X E(X))^2] = E(X^2) (E(X))^2$
- Standard deviation: $\sigma_X = \sqrt{Var(X)}$
- Properties:
 - $Var(aX + b) = a^2 Var(X)$
 - $\sigma_{aX\perp b} = |a|\sigma_X$
 - Var(c) = 0
- Let $E(X) = \mu$ and $Var(X) = \sigma^2$. Then $Z = \frac{X \mu}{\sigma}$ is the standardized r.v., for which E(Z) = 0 and $\sigma(Z) = 1$.

Covariance and Correlation

- Covariance: Cov(X, Y) = E[(X E(X))(Y E(Y))] = E(XY) E(X)E(Y)
- Correlation: $Corr(X, Y) = Cov(X, Y)/(\sigma_X \sigma_Y)$
- Properties:

Random Variables and Distributions

- -1 < Corr(X, Y) < 1
- independence $\implies Cov(X, Y) = 0$ (but the converse is not necessarily true)
- $Cov(aX + b. cY + d) = ac \cdot Cov(X, Y)$
- $Corr(aX + b, cY + d) = sign(ac) \cdot Corr(X, Y)$ (invariant to scaling)

Variance of Linear Combinations

- $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y) + 2abCov(X, Y)$
- If uncorrelated: $Var(aX + bY) = a^2 Var(X) + b^2 Var(Y)$

Conditional Expectation

Random Variables and Distributions

- E(Y|X=x): expected value of Y given X=x
- Discrete: $E(Y|X=x) = \sum y_j \Pr(Y=y_j|X=x)$
- Continuous: $E(Y|X=x) = \int y f_{Y|X}(y|x) dy$
- Example: X = education, Y = monthly wage, E(Y|X = university) > E(Y|X = 8th grade)
- Notation: E(Y|X) is the r.v. that takes the value E(Y|X=x) if X=x.

- Many variables in real life (e.g., male or female height) are approximately normally distributed
- Many estimators are approximately normal in large samples
- Derived distributions: lognormal, χ^2 , t, F distributions

Properties of Normal Distribution

- $X \sim N(\mu, \sigma^2) \implies aX + b \sim N(a\mu + b, (|a|\sigma)^2)$
- Standardization: $(X \mu)/\sigma \sim N(0, 1)$ (standard normal distribution)
- Sum of independent normals: $X + Y \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

- $\Phi(z)$: CDF of N(0, 1)
- $\Pr(\mathbf{a} < \mathbf{X} \le \mathbf{b}) = \Phi((\mathbf{b} \mu)/\sigma) \Phi((\mathbf{a} \mu)/\sigma)$
- Example: $\Pr(|(X \mu)/\sigma| \le 1.96) = 0.95$

Exercise

Suppose that the heights of men (m) and women (w) are normally distributed with $\mu_m = 176$, $\mu_w = 164$, $\sigma = 7$.

- Find the probability that a randomly selected woman is taller than 176 cm.
- Find the probability that a randomly selected woman is taller than a randomly selected man.
- If spouses' heights have a correlation of 0.3, then find the probability that the wife is taller than the husband.

Material

- Cunningham 2.1-2.10
- Wooldridge Appendix B (excl. χ^2 , t, F distribution)