

Advanced Deep Learning -Introduction to Explainable Artificial Intelligence (XAI)

XAI methods & metrics

STASSIN Sédrick

Professor: MAHMOUDI Sidi Ahmed

Training

Testing

INTRODUCTION

High result

Is that enough?

INTRODUCTION

Black Box problem of deep neural networks

Trustworthy AI systems must be considered:

- Lawful Operating within the limits of law
- **Ethical** Fair models that do not discriminate
- Robust Delivering <u>reliable</u> results in all considered situations

Explainable Artificial Intelligence

INTRODUCTION

How does this system work?

Can I trust this AI model?

Under what circumstances?

How to evaluate this explainability ?

EXplainable Artificial Intelligence (XAI)

XAI in computer vision - Images applied to CNN

• Most used - attribution-based methods = *saliency methods*

CONTENTS

O2
Background
XAI Taxonomy

03
Explainability and
Bias Detection

A. XAI MethodsB. Covid-19 Use Case

04
Intro to XAI Evaluation

05 Conclusion

BACKGROUND

XAI Taxonomy

XAI Taxonomy

Model Taxonomy

XAI Taxonomy

Method Taxonomy

Taxonomy:

- Conceptual
- Result-based
- Function-based

FACES SAND LOOK LOOK LOOK

XAI Taxonomy

Selected Method Taxonomy

EXPLAINABILITY AND BIAS DETECTION

03а

XAI Methods

Covid-19 Use Case

Saliency methods

Gradient-based methods:

[Smilkov et al., 2017] [Sundarajan et al., 2017] ...

 Use the gradient (e.g. back-propagated) to picture the derivative of the model output w.r.t the input image.

CAM-based methods:

[Selvaraju et al., 2017] [Wang et al., 2020] ...

 Produce a weighted sum of the activations from a convolutional layer

Perturbation-based methods:

[Petsiuk et al., 2018] ...

 Study the output model response to small changes in the input.

[Simonyan et al., 2013]

Neural Network
Backpropagation

- Gradient : vecteur ayant deux caractéristiques : direction et magnitude
- Il indique la direction de la croissance maximale de la fonction de perte
- L'algorithme de descente de gradient fait un pas dans le sens inverse afin de réduire la perte aussi rapidement que possible.

Université de Mons

Sidi Ahmed Mahmoudi

Cours IA. Chapitre 5

Loss function

POLYTECH MONS

Formula

Loss function

$$R^{c} = \frac{\partial \mathcal{L}_{c}(x)}{\partial x}$$
 Relevance of class c Input

SmoothGrad: Add *Gaussian noise* to *n* samples of the image - Compute gradients - Average

Integrated Gradients: Create **n** images - ranging linearly from a **baseline image** to the **input image** - Average the gradients 13

[Bach et al., 2015]

Conservation property

What has been received by a neuron must be redistributed to the lower layer in equal amount

j k Consecutive layers

 R_j R_k Neuron relevances

 a_j Neuron j activation

 w_{jk} Weight between neuron $\emph{ extit{j}}$ and $\emph{ extit{k}}$

$$R_j = \sum_k rac{a_j w_{jk}}{\sum_{0,j} a_j w_{jk}} R_k$$

Occlusion

[Zeiler and Fergus, 2014]

Main steps

- Choose an image, a size of square
- For all possible positions of the square in the image
 - Occlude
 - Compute score

Pixels are important if the class score drops significantly

(a) Input Image

True Label: Pomeranian

Perturbation-based Methods

Local Interpretable Model-agnostic Explanation (LIME)

[Ribero et al., 2016]

Principles

- Fit a linear model to *n* perturbed samples of an image
 - Predicted by the complex model
 - With distances as weights
- The linear model using the *m* best features provides a locally faithful explanation for the image

CAM-based Methods

Class Activation Mapping (CAM)

[Zhou et al. 2016]

$$R^c = \sum_{n=1}^{N} w_{n,c} A_n$$

CAM-based Methods

Grad-Class Activation Mapping (Grad-CAM)

[Selvaraju et al., 2017]

Main differences

- Generalization to multiple dense layers
 - **Gradient** w.r.t feature a. maps of the last convolutional layer
- Not constrained to models with GAP
 - **GAP** is used to obtain neuron importance weights
- **ReLU** activation to only keep positive contributions

$$R^c = \left(\sum_{n=1}^N w_{n,c} A_n\right)$$

linear combination

gradients via backprop

Multiple dense

Australian

terrier

Problem

Covid-19 Image Classication

Dataset

2621 training (90%) — 284 testing (10%) 3 classes

Models

VGG16 – VGG19 – ResNet50 – DenseNet121 – DenseNet201

Analysis

1- XAI on predicted class2- Model comparison

Image distribution among existing classes

03b COVID-19 CLASSIFICATION

XAI: Method comparison - Predicted class

DenseNet121 explanation for a Covid-19 x-ray image

- Gradients + Occlusion: noisy results
- <u>Best visual results:</u> LRP (Preset) + LIME + GradCAM
 - → Letter Detection?

Model bias?

COVID-19 CLASSIFICATION XAI: Model Comparison

Models

DenseNet20

ResNet50

VGG16

(a) Covid-19 Image

(b) Normal Image

(b) Normal Image

(c) Viral Pneumonia Image

(c) Viral Pneumonia Image

XAI can guide model selection

VGG-16 seems less

Every model uses

zones out of

interest

reliant

Normal Images: **Detection towards** the head?

(a) Covid-19 Image

(a) Covid-19 Image

(b) Normal Image

(c) Viral Pneumonia Image

(a) Covid-19 Image

(b) Normal Image

(c) Viral Pneumonia Image

03b COVID-19 CLASSIFICATION

Visual comparison between 9 images by class

Biases due to:

- Camera positioning
- Arm positioning and patient characteristic

COVID-19 CLASSIFICATION

CT-Scan Images classification XAI: Method comparison - Predicted class

Dataset - Model

- 349 Covid-19 CT
- 297 Normal CT

VGG-16 Classification

89% test accuracy

Lung Segmentation preprocessing

- 233 Covid-19 CT
- 293 Normal CT

VGG-16 Classification

Unsegmented Covid-19 image

Segmented

Covid image

(b) Integrated Gradients

(b) Integrated Gradients

(c) LRP **PresetAFlat**

(c) LRP PresetAFlat

LIME Proxy Model

LIME Proxy Model

Biases

Focus outside lungs (integrated)

Top right Corner Bias

Focus inside lungs (integrated)

No apparent bias

Unsegmented and Segmented Covid-19 CT Scan explained with two VGG-16 model

XAI helps to verify the model learning

INTRODUCTION - EVALUATION OF EXPLAINABILITY METHODS

Evaluation of Explainability Methods

Faithfulness metrics:

[Bhatt et al., 2020] [Petsiuk et al., 2018] ...

Measure how explanations follow the **predictive** behavior of the model

Small perturbation \rightarrow Is the saliency map stable?

Robustness metrics:

[Yeh et al., 2019] ...

Measure the **stability** of explanations with respect to small input perturbations

Randomization metrics:

[Sixt et al., 2020] ...

→ Is the saliency map modified?

Measure change in saliency map as a function of parameter randomization

Complexity metrics:

[Chalasani et al., 2020] ...

Measure explanation conciseness

Localization metrics:

[Zhang et al., 2018] ...

Measure whether explanations fit into the delimitation of a region of interest (e.g. bounding-boxes)

ADL - Intro to XAI

XAI is a **valuable tool** to:

- Detect biases
- Guide model selection
- Understand the bias source
- Verify the model learning

XAI methods can be evaluated:

- Visually (subjective!)
- Through metrics (properties!)

Gradient-based Methods

Gradients

[Simonyan et al., 2013]

Interpretation

"Which pixels need to be changed the least to affect the class score the most"

Gradient-based Methods

SmoothGrad - Integrated Gradients

[Smilkov et al., 2017]

[Sundarajan et al., 2017]

SmoothGrad

"Removing noise by adding noise

- Image x class c n samples noise parameters
- Add *Gaussian noise* to *n* samples of the image
- Calculate the gradient of the class for each noisy image
- Average the gradients

$\hat{M}_c(x) = rac{1}{n} \sum_1^n M_cig(x + \mathcal{N}ig(0, \sigma^2ig)ig) \ igsqcup_{M_c(x)} = \partial S_c(x)/\partial x$

Integrated Gradients

"Path from baseline to input"

- Image x baseline x' number of steps n
- Create n images ranging linearly from the baseline to the input image
- Calculate the gradient for each image
- Average all calculated gradients, and multiply by (input-baseline)

$$ext{IntegratedGrads}_{i}(x) ::= \left(x_{i} - x_{i}'
ight) imes \int_{lpha = 0}^{1} rac{\partial F(x' + lpha imes (x - x'))}{\partial x_{i}} dlpha$$

04 Evaluation of Explainability Methods

Detected biases - Summary

Dataset		Samples	Classes	Biases
Covid-19: X-ray [30]		2,621	3	Letters; Artefacts; Camera Positioning; Arm Positioning; Patient Characteristic (children)
Covid-19:	CT Scan [143]	646 / 556	2	Out of lung detection
ChestXRay2017 [64] 5,8		5,856	2	Letters; Artefacts; Camera Positioning; Arm Positioning; Patient Characteristic (children)
ChestX-ray14 [134] 112,		112,120	14	Letters; Artefacts; Horizontal Lines; Vertical Lines; Rotation;

 Models alone, without XAI cannot be trusted based on predictions

Table 4.2: Summary of biases detected in each dataset

