

SEQUENCE LISTING

<110> De Buyl, Eric
Lahaye, Andree
Ledoux, Pierre
Detroz, Rene

<120> Xylanase, Microorganisms Producing it,
DNA Molecules, Methods for Preparing this Xylanase and Uses
of the Latter

<130> GC450-D1-US

<140> US 09/909,207
<141> 2001-07-19

<150> US 08/470,953
<151> 1995-06-06

<150> BE 09500448
<151> 1995-05-17

<150> BE 09400706
<151> 1994-07-26

<160> 29

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 663
<212> DNA
<213> Bacillus sp.

<400> 1

caaatcgta	ccgacaattc	cattggcaac	cacgatggct	atgattatga	attttgaaaa	60
gatagcggtg	gctctgggac	aatgattctc	aatcatggcg	gtacgttcag	tgcggatgg	120
aacaatgtta	acaacatatt	attccgtaaa	ggtaaaaaat	tcaatgaaac	acaaacacac	180
caacaagtgt	gtaacatgtc	cataaactac	ggagccaact	tccaaacccaa	tggtaatgcg	240
tatttatgcg	tctatggttg	gactgttgcac	cctcttgcg	aatattatat	tgtcgacagt	300
tggggcaact	ggcgtccacc	aggagcaacg	cctaagggga	ccatcaactgt	tgatggagga	360
acatatgata	tctacgagac	tcttagagtc	aatcaaccct	ccattaaggg	gattgccaca	420
tttaaacaat	attggagtgt	tcgaagatcg	aaacgcacga	gtggcacgt	ttctgtcagc	480
aaccacttta	gagcgtggga	aaacttaggg	atgaatatgg	ggaaaatgt	tgaagtgcgc	540
cttactgtat	aaggctatca	aagttagcgga	agtgctaatg	tatatacgaa	tacactaaga	600
attnacggta	accctctctc	aactattatgt	aatgacgaga	gcataacttt	ggataaaaaac	660
aat						663

<210> 2
<211> 663
<212> DNA
<213> Bacillus sp.

<220>
<221> CDS
<222> (1)...(663)

<221> mat_peptide
<222> (1)...(663)

<400> 2
caa atc gtc acc gac aat tcc att ggc aac cac gat ggc tat gat tat 48
Gln Ile Val Thr Asp Asn Ser Ile Gly Asn His Asp Gly Tyr Asp Tyr
1 5 10 15

gaa ttt tgg aaa gat agc ggt ggc tct ggg aca atg att ctc aat cat 96
Glu Phe Trp Lys Asp Ser Gly Gly Ser Gly Thr Met Ile Leu Asn His
20 25 30

ggc ggt acg ttc agt gcc caa tgg aac aat gtt aac aac ata tta ttc 144
Gly Gly Thr Phe Ser Ala Gln Trp Asn Asn Val Asn Asn Ile Leu Phe
35 40 45

cgt aaa ggt aaa aaa ttc aat gaa aca caa aca cac caa caa gtt ggt 192
Arg Lys Gly Lys Lys Phe Asn Glu Thr Gln Thr His Gln Gln Val Gly
50 55 60

aac atg tcc ata aac tac gga gcc aac ttc caa cca aat ggt aat gcg 240
Asn Met Ser Ile Asn Tyr Gly Ala Asn Phe Gln Pro Asn Gly Asn Ala
65 70 75 80

tat tta tgc gtc tat ggt tgg act gtt gac cct ctt gtc gaa tat tat 288
Tyr Leu Cys Val Tyr Gly Trp Thr Val Asp Pro Leu Val Glu Tyr Tyr
85 90 95

att gtc gac agt tgg ggc aac tgg cgt cca cca gga gca acg cct aag 336
Ile Val Asp Ser Trp Gly Asn Trp Arg Pro Pro Gly Ala Thr Pro Lys
100 105 110

ggg acc atc act gtt gat gga gga aca tat gat atc tac gag act ctt 384
Gly Thr Ile Thr Val Asp Gly Gly Thr Tyr Asp Ile Tyr Glu Thr Leu
115 120 125

aga gtc aat caa ccc tcc att aag ggg att gcc aca ttt aaa caa tat 432
Arg Val Asn Gln Pro Ser Ile Lys Gly Ile Ala Thr Phe Lys Gln Tyr
130 135 140

tgg agt gtt cga aga tcg aaa cgc acg agt ggc acg att tct gtc agc 480
Trp Ser Val Arg Arg Ser Lys Arg Thr Ser Gly Thr Ile Ser Val Ser
145 150 155 160

aac cac ttt aga gcg tgg gaa aac tta ggg atg aat atg ggg aaa atg 528
Asn His Phe Arg Ala Trp Glu Asn Leu Gly Met Asn Met Gly Lys Met
165 170 175

tat gaa gtc gcg ctt act gta gaa ggc tat caa agt agc gga agt gct 576
Tyr Glu Val Ala Leu Thr Val Glu Gly Tyr Gln Ser Ser Gly Ser Ala
180 185 190

aat gta tat agc aat aca cta aga att aac ggt aac cct ctc tca act 624
Asn Val Tyr Ser Asn Thr Leu Arg Ile Asn Gly Asn Pro Leu Ser Thr
195 200 205

att agt aat gac gag agc ata act ttg gat aaa aac aat
Ile Ser Asn Asp Glu Ser Ile Thr Leu Asp Lys Asn Asn
210 215 220

663

<210> 3
<211> 221
<212> PRT
<213> Bacillus sp.

<400> 3
Gln Ile Val Thr Asp Asn Ser Ile Gly Asn His Asp Gly Tyr Asp Tyr
1 5 10 15
Glu Phe Trp Lys Asp Ser Gly Gly Ser Gly Thr Met Ile Leu Asn His
20 25 30
Gly Gly Thr Phe Ser Ala Gln Trp Asn Asn Val Asn Asn Ile Leu Phe
35 40 45
Arg Lys Gly Lys Lys Phe Asn Glu Thr Gln Thr His Gln Gln Val Gly
50 55 60
Asn Met Ser Ile Asn Tyr Gly Ala Asn Phe Gln Pro Asn Gly Asn Ala
65 70 75 80
Tyr Leu Cys Val Tyr Gly Trp Thr Val Asp Pro Leu Val Glu Tyr Tyr
85 90 95
Ile Val Asp Ser Trp Gly Asn Trp Arg Pro Pro Gly Ala Thr Pro Lys
100 105 110
Gly Thr Ile Thr Val Asp Gly Gly Thr Tyr Asp Ile Tyr Glu Thr Leu
115 120 125
Arg Val Asn Gln Pro Ser Ile Lys Gly Ile Ala Thr Phe Lys Gln Tyr
130 135 140
Trp Ser Val Arg Arg Ser Lys Arg Thr Ser Gly Thr Ile Ser Val Ser
145 150 155 160
Asn His Phe Arg Ala Trp Glu Asn Leu Gly Met Asn Met Gly Lys Met
165 170 175
Tyr Glu Val Ala Leu Thr Val Glu Gly Tyr Gln Ser Ser Gly Ser Ala
180 185 190
Asn Val Tyr Ser Asn Thr Leu Arg Ile Asn Gly Asn Pro Leu Ser Thr
195 200 205
Ile Ser Asn Asp Glu Ser Ile Thr Leu Asp Lys Asn Asn
210 215 220

<210> 4
<211> 744
<212> DNA
<213> Bacillus sp.

<400> 4
atgagacaaa agaaattgac gttgattta gccttttag tttgtttgc actaaccta
cctgcagaaa taattcaggc acaaatacgac accgacaatt ccattggca ccacgatggc
tatgattatg aattttgaa agatagcggt ggctctggga caatgattct caatcatggc
ggtacggtca gtgccaatg gaacaatgtt aacaacatat tattccgtaa agtaaaaaaaa
ttcaatgaaa cacaacacaca ccaacaagtt ggtaacatgt ccataaaacta cggagccaac
ttccaaccaa atggtaatgc gtatattatgc gtctatgggt ggactgttga ccctttgtc
gaatattata ttgtcgacag ttggggcaac tggcgtccac caggagcaac gcctaagggg
accatcactg ttgatggagg aacatatgtt atctacgaga ctcttagagt caatcaaccc
tccattaagg ggattgccac attaaacaa tattggagtg ttcaagatc gaaacgcacg
agtggcacga ttctgtcag caaccacttt agagcgtggg aaaacttagg gatgaatatg
ggaaaaatgt atgaagtgc gcttactgtt aaaggctatc aaagtagcgg aagtgtaat
60
120
180
240
300
360
420
480
540
600
660

gtatatacgca atacactaag aatatacggt aaccctctct caactattag taatgacgag	720
agcataacctt tggataaaaa caat	744
<210> 5	
<211> 744	
<212> DNA	
<213> Bacillus sp.	
<220>	
<221> CDS	
<222> (1)...(744)	
<221> mat_peptide	
<222> (1)...(744)	
<221> sig_peptide	
<222> (82)...(744)	
<400> 5	
atg aga caa aag aaa ttg acg ttg att tta gcc ttt tta gtt tgt ttt	48
Met Arg Gln Lys Lys Leu Thr Leu Ile Leu Ala Phe Leu Val Cys Phe	
1 5 10 15	
gca cta acc tta cct gca gaa ata att cag gca caa atc gtc acc gac	96
Ala Leu Thr Leu Pro Ala Glu Ile Ile Gln Ala Gln Ile Val Thr Asp	
20 25 30	
aat tcc att ggc aac cac gat ggc tat gat tat gaa ttt tgg aaa gat	144
Asn Ser Ile Gly Asn His Asp Gly Tyr Asp Tyr Glu Phe Trp Lys Asp	
35 40 45	
agc ggt ggc tct ggg aca atg att ctc aat cat ggc ggt acg ttc agt	192
Ser Gly Ser Gly Thr Met Ile Leu Asn His Gly Gly Thr Phe Ser	
50 55 60	
gcc caa tgg aac aat gtt aac aac ata tta ttc cgt aaa ggt aaa aaa	240
Ala Gln Trp Asn Asn Val Asn Asn Ile Leu Phe Arg Lys Gly Lys Lys	
65 70 75 80	
ttc aat gaa aca caa aca cac caa gtt ggt aac atg tcc ata aac	288
Phe Asn Glu Thr Gln Thr His Gln Gln Val Gly Asn Met Ser Ile Asn	
85 90 95	
tac gga gcc aac ttc caa cca aat ggt aat gcg tat tta tgc gtc tat	336
Tyr Gly Ala Asn Phe Gln Pro Asn Gly Asn Ala Tyr Leu Cys Val Tyr	
100 105 110	
ggt tgg act gtt gac cct ctt gtc gaa tat tat att gtc gac agt tgg	384
Gly Trp Thr Val Asp Pro Leu Val Glu Tyr Tyr Ile Val Asp Ser Trp	
115 120 125	
ggc aac tgg cgt cca cca gga gca acg cct aag ggg acc atc act gtt	432
Gly Asn Trp Arg Pro Pro Gly Ala Thr Pro Lys Gly Thr Ile Thr Val	
130 135 140	
gat gga gga aca tat gat atc tac gag act ctt aga gtc aat caa ccc	480
Asp Gly Gly Thr Tyr Asp Ile Tyr Glu Thr Leu Arg Val Asn Gln Pro	

145	150	155	160	
tcc att aag ggg att gcc aca ttt aaa caa tat tgg agt gtt cga aga				528
Ser Ile Lys Gly Ile Ala Thr Phe Lys Gln Tyr Trp Ser Val Arg Arg				
165	170	175		
tcg aaa cgc acg agt ggc acg att tct gtc agc aac cac ttt aga gcg				576
Ser Lys Arg Thr Ser Gly Thr Ile Ser Val Ser Asn His Phe Arg Ala				
180	185	190		
tgg gaa aac tta ggg atg aat atg ggg aaa atg tat gaa gtc gcg ctt				624
Trp Glu Asn Leu Gly Met Asn Met Gly Lys Met Tyr Glu Val Ala Leu				
195	200	205		
act gta gaa ggc tat caa agt agc gga agt gct aat gta tat agc aat				672
Thr Val Glu Gly Tyr Gln Ser Ser Gly Ser Ala Asn Val Tyr Ser Asn				
210	215	220		
aca cta aga att aac ggt aac cct ctc tca act att agt aat gac gag				720
Thr Leu Arg Ile Asn Gly Asn Pro Leu Ser Thr Ile Ser Asn Asp Glu				
225	230	235	240	
agc ata act ttg gat aaa aac aat				744
Ser Ile Thr Leu Asp Lys Asn Asn				
245				

<210> 6
 <211> 248
 <212> PRT
 <213> Bacillus sp.

<400> 6
 Met Arg Gln Lys Lys Leu Thr Leu Ile Leu Ala Phe Leu Val Cys Phe
 1 5 10 15
 Ala Leu Thr Leu Pro Ala Glu Ile Ile Gln Ala Gln Ile Val Thr Asp
 20 25 30
 Asn Ser Ile Gly Asn His Asp Gly Tyr Asp Tyr Glu Phe Trp Lys Asp
 35 40 45
 Ser Gly Gly Ser Gly Thr Met Ile Leu Asn His Gly Gly Thr Phe Ser
 50 55 60
 Ala Gln Trp Asn Asn Val Asn Asn Ile Leu Phe Arg Lys Gly Lys Lys
 65 70 75 80
 Phe Asn Glu Thr Gln Thr His Gln Gln Val Gly Asn Met Ser Ile Asn
 85 90 95
 Tyr Gly Ala Asn Phe Gln Pro Asn Gly Asn Ala Tyr Leu Cys Val Tyr
 100 105 110
 Gly Trp Thr Val Asp Pro Leu Val Glu Tyr Tyr Ile Val Asp Ser Trp
 115 120 125
 Gly Asn Trp Arg Pro Pro Gly Ala Thr Pro Lys Gly Thr Ile Thr Val
 130 135 140
 Asp Gly Gly Thr Tyr Asp Ile Tyr Glu Thr Leu Arg Val Asn Gln Pro
 145 150 155 160
 Ser Ile Lys Gly Ile Ala Thr Phe Lys Gln Tyr Trp Ser Val Arg Arg
 165 170 175
 Ser Lys Arg Thr Ser Gly Thr Ile Ser Val Ser Asn His Phe Arg Ala
 180 185 190

Trp Glu Asn Leu Gly Met Asn Met Gly Met Tyr Glu Val Ala Leu
195 200 205
Thr Val Glu Gly Tyr Gln Ser Ser Gly Ser Ala Asn Val Tyr Ser Asn
210 215 220
Thr Leu Arg Ile Asn Gly Asn Pro Leu Ser Thr Ile Ser Asn Asp Glu
225 230 235 240
Ser Ile Thr Leu Asp Lys Asn Asn
245

<210> 7
<211> 81
<212> DNA
<213> Bacillus sp.

<400> 7
atgagacaaa agaaattgac gttgattta gccttttag tttgtttgc actaacctta 60
cctgcagaaa taattcaggc a 81

<210> 8
<211> 81
<212> DNA
<213> Bacillus sp.

<220>
<221> CDS
<222> (1)...(81)

<221> sig_peptide
<222> (1)...(81)

<400> 8
atg aga caa aag aaa ttg acg ttg att tta gcc ttt tta gtt tgt ttt 48
Met Arg Gln Lys Lys Leu Thr Leu Ile Leu Ala Phe Leu Val Cys Phe
1 5 10 15

gca cta acc tta cct gca gaa ata att cag gca 81
Ala Leu Thr Leu Pro Ala Glu Ile Ile Gln Ala
20 25

<210> 9
<211> 27
<212> PRT
<213> Bacillus sp.

<400> 9
Met Arg Gln Lys Lys Leu Thr Leu Ile Leu Ala Phe Leu Val Cys Phe
1 5 10 15
Ala Leu Thr Leu Pro Ala Glu Ile Ile Gln Ala
20 25

<210> 10
<211> 1513
<212> DNA
<213> Bacillus sp.

<400> 10

aaattgaatt	gtgtatatct	aatgataacg	acaaatcg	tc actgtttta	aactaatctc	60
aaaccaatac	ttcttattt	aacgctaacc	acttgc	aatcacaag	aacattctt	120
ataggaactt	tcccatttgc	aagacgataa	aaaatcttt	tcccctattt	tatcttatcg	180
ccttgatcg	tttaatttgt	aaactttattt	tttagttacg	tgatgttccc	tcattcatac	240
cattaatcac	agttAACGCT	agagtcatct	ttttcggtt	ctcaaaaata	cctgaagaac	300
atttatgtca	tatTTCTCA	cgccgctcca	taatgaaata	tatatactct	tttatacata	360
ttaagtaat	tagtatatac	ttgcgttatac	aaaatgtgag	ataatcta	tgatcaaaca	420
agcagctatc	caaaaaacac	tgatgttgc	ctcttAAAGA	agtgtcacta	tctatgaaaa	480
gataattatc	cagTTTCAA	atttggaaata	gtgtgtatgg	aatagttga	atgtcaactg	540
ctgtgaaagg	agggttaggt	gtaccgtaga	cttcattacc	aaaaattagt	tgtaaaaaaaa	600
ttaaaaggag	gaatgcctaa	tgagacaaaa	gaaattgacg	ttgattttag	ccttttagt	660
ttgttttgc	ctaaccctac	ctgcagaaat	aattcaggca	caaatcg	ccgacaattc	720
cattggcaac	cacgatggct	atgattatga	atttggaaa	gatagcggt	gctctggac	780
aatgattctc	aatcatggcg	gtacgttac	tgcccaatgg	aacaatgtt	acaacatatt	840
attccgtaaa	gttaaaaaat	tcaatgaaac	acaaacacac	caacaagt	gtaacatgtc	900
cataaaactac	ggagCCAAct	tccaaaccaa	tggtatgc	tatttgc	tctatggtt	960
gactgttgc	cctcttgc	aatattat	tgtcgacagt	tggggcaact	ggcg	1020
aggagcaacg	cctaaggg	ccatcactgt	tgatggagga	acatatgata	tctacgagac	1080
tcttagagtc	aatcaaccct	ccattaaggg	gattgccaca	tttaaacaat	attggagtgt	1140
tcgaagatcg	aaacgcacga	gtggcacgat	ttctgtc	aaccacttta	gagcgtgg	1200
aaacttaggg	atgaatatgg	ggaaaatgt	tgaagtgc	cttactgt	aaggctatca	1260
aagtagcgga	agtgtcaatg	tatatacgaa	tacactaaga	attaacggta	accctctc	1320
aactattatg	aatgacgaga	gcataactt	ggataaaaaac	aattaaaaat	ccttatctc	1380
ttcggttgc	ttctcattat	tttcaaataa	cctccgg	ggatctttc	caacgggagg	1440
ttttatttgg	aaggtaagt	atagtatact	ccgattccat	ccagaggaat	gcttgaaaaca	1500
cctccgtcac	tag					1513

<210> 11
<211> 1513
<212> DNA
<213> Bacillus sp.

<220>
<221> CDS
<222> (620) ... (1363)

<221> mat_peptide
<222> (701) ... (1363)

<221> sig_peptide
<222> (620) ... (700)

<400> 11

aaattgaatt	gtgtatatct	aatgataacg	acaaatcg	tc actgtttta	aactaatctc	60
aaaccaatac	ttcttattt	aacgctaacc	acttgc	aatcacaag	aacattctt	120
ataggaactt	tcccatttgc	aagacgataa	aaaatcttt	tcccctattt	tatcttatcg	180
ccttgatcg	tttaatttgt	aaactttattt	tttagttacg	tgatgttccc	tcattcatac	240
cattaatcac	agttAACGCT	agagtcatct	ttttcggtt	ctcaaaaata	cctgaagaac	300
atttatgtca	tatTTCTCA	cgccgctcca	taatgaaata	tatatactct	tttatacata	360
ttaagtaat	tagtatatac	ttgcgttatac	aaaatgtgag	ataatcta	tgatcaaaca	420
agcagctatc	caaaaaacac	tgatgttgc	ctcttAAAGA	agtgtcacta	tctatgaaaa	480
gataattatc	cagTTTCAA	atttggaaata	gtgtgtatgg	aatagttga	atgtcaactg	540
ctgtgaaagg	agggttaggt	gtaccgtaga	cttcattacc	aaaaattagt	tgtaaaaaaaa	600
ttaaaaggag	gaatgcctaa	atg aga caa aag aaa ttg acg ttg att tta	gcc			652

Met Arg Gln Lys Lys Leu Thr Leu Ile Leu Ala

1

5

10

ttt tta gtt tgt ttt gca cta acc tta cct gca gaa ata att cag gca Phe Leu Val Cys Phe Ala Leu Thr Leu Pro Ala Glu Ile Ile Gln Ala	15 20 25	700
caa atc gtc acc gac aat tcc att ggc aac cac gat ggc tat gat tat Gln Ile Val Thr Asp Asn Ser Ile Gly Asn His Asp Gly Tyr Asp Tyr	30 35 40	748
gaa ttt tgg aaa gat agc ggt ggc tct ggg aca atg att ctc aat cat Glu Phe Trp Lys Asp Ser Gly Gly Ser Gly Thr Met Ile Leu Asn His	45 50 55	796
ggc ggt acg ttc agt gcc caa tgg aac aat gtt aac aac ata tta ttc Gly Gly Thr Phe Ser Ala Gln Trp Asn Asn Val Asn Asn Ile Leu Phe	60 65 70 75	844
cgt aaa ggt aaa aaa ttc aat gaa aca caa aca cac caa caa gtt ggt Arg Lys Gly Lys Lys Phe Asn Glu Thr Gln Thr His Gln Gln Val Gly	80 85 90	892
aac atg tcc ata aac tac gga gcc aac ttc caa cca aat ggt aat gcg Asn Met Ser Ile Asn Tyr Gly Ala Asn Phe Gln Pro Asn Gly Asn Ala	95 100 105	940
tat tta tgc gtc tat ggt tgg act gtt gac cct ctt gtc gaa tat tat Tyr Leu Cys Val Tyr Gly Trp Thr Val Asp Pro Leu Val Glu Tyr Tyr	110 115 120	988
att gtc gac agt tgg ggc aac tgg cgt cca cca gga gca acg cct aag Ile Val Asp Ser Trp Gly Asn Trp Arg Pro Pro Gly Ala Thr Pro Lys	125 130 135	1036
ggg acc atc act gtt gat gga gga aca tat gat atc tac gag act ctt Gly Thr Ile Thr Val Asp Gly Gly Thr Tyr Asp Ile Tyr Glu Thr Leu	140 145 150 155	1084
aga gtc aat caa ccc tcc att aag ggg att gcc aca ttt aaa caa tat Arg Val Asn Gln Pro Ser Ile Lys Gly Ile Ala Thr Phe Lys Gln Tyr	160 165 170	1132
tgg agt gtt cga aga tcg aaa cgc acg agt ggc acg att tct gtc agc Trp Ser Val Arg Arg Ser Lys Arg Thr Ser Gly Thr Ile Ser Val Ser	175 180 185	1180
aac cac ttt aga gcg tgg gaa aac tta ggg atg aat atg ggg aaa atg Asn His Phe Arg Ala Trp Glu Asn Leu Gly Met Asn Met Gly Lys Met	190 195 200	1228
tat gaa gtc gcg ctt act gta gaa ggc tat caa agt agc gga agt gct Tyr Glu Val Ala Leu Thr Val Glu Gly Tyr Gln Ser Ser Gly Ser Ala	205 210 215	1276
aat gta tat agc aat aca cta aga att aac ggt aac cct ctc tca act Asn Val Tyr Ser Asn Thr Leu Arg Ile Asn Gly Asn Pro Leu Ser Thr	220 225 230 235	1324
att agt aat gac gag agc ata act ttg gat aaa aac aat taaaaatcct		1373

Ile Ser Asn Asp Glu Ser Ile Thr Leu Asp Lys Asn Asn
240 245

tatcttttc gggtcagttc tcattatttt caaataacct cccgggttggaa tctttccaa 1433
cgggagggtt tattggaaag gttaagtata gtataactccg attccatcca gaggaatgct 1493
tgaaacacct ccgtcactag 1513

<210> 12
<211> 619
<212> DNA
<213> *Bacillus* sp.

<400> 12
aaattgaatt gtgtatatct aatgataacg acaaatcgac actgtttta aactaatctc 60
aaaccaatac ttcttttattt aacgctaacc acttgcatac ttatcacaag aacattctt 120
ataggaactt tcccatttgc aagacgataa aaaatcttt tcccctattt tatcttatcg 180
ccttgatcggtttaatttgt aaactttattt ttagtttacg tgatgttccc tcattcatac 240
catthaatcac agttaacgct agagtcatct ttttcggtt ctcaaaaata cctgaagaac 300
atttatgtca tattttctca cgccgctcca taatggaata tatatactct tttatacata 360
ttaagtaaat tagtatatac ttgcgttatac aaaatgtgag ataatactat tgatcaaaca 420
agcagctatc caaaaaacac tgatgttgac ctcttaaaga agtgtcacta tctatgaaaa 480
gataattatc cagtttcaaa atttggaaata gtgtgtatgg aatagtttga atgtaactg 540
ctgtgaaagg aggtaggta gtaccgtaga cttcattacc aaaaattagt tgtaaaaaaa 600
ttaaaaaggag gaatgccta 619

<210> 13
<211> 150
<212> DNA
<213> *Bacillus* sp.

<400> 13
taaaaaatcct tatcttttc gggtcagttc tcattatttt caaataacct cccgggttggaa 60
tctttccaa cgggagggtt tattggaaag gttaagtata gtataactccg attccatcca 120
gaggaatgct tgaaacacct ccgtcactag 150

<210> 14
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 14
ccccctacg tagcggccgc cccggccggt aacctaggaa gtcagcgccc tgcacc 56

<210> 15
<211> 56
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 15
ccccctacg taggccgggg cggccgcgggt tacctaggac ctcgtatac gcctat 56

<210> 16
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 16
acgaggaaag atgctgttct tgtaaatgag t 31

<210> 17
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 17
taccttgtct acaaacc 19

<210> 18
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 18
cggtcgcgc atacacta 18

<210> 19
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 19
ccccccccc gtaacctgca ttaatgaatc ggccaa 36

<210> 20
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 20
ccccccccc gttaccgtat ttattaactt ctcctagta 39

<210> 21
<211> 50

<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 21
ccccctcta gattaattaa ccaagcttgg gatccgtcga cctgcagatc 50

<210> 22
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 22
ccccctgaa atcagctgga ctaaaaggga tgcaatttc 39

<210> 23
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 23
ccccccgtcg accgcatgcg ccggcacagc 30

<210> 24
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 24
ccccccgcat gcgcaaatcg tcaccgacaa ttccattgg 39

<210> 25
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide

<400> 25
taccttgtct acaaaccac 19

<210> 26
<211> 185
<212> DNA
<213> Bacillus pumilus

```

<220>
<221> misc_feature
<222> (1)...(185)
<223> n = A,T,C or G

<400> 26
tcatgttaact cgccttgate tatttcattt gtatcaaagg atttatacac aaacaagaga      60
catccatgcc gggtaaaagc agtatcggtt catctaacag agaaggncgt catgaaagga      120
ggtgatgggt tttcatctt agggatgaca gaacaatacg gatgaaaaaa ggagagggat      180
ggaaa      185

<210> 27
<211> 81
<212> DNA
<213> Bacillus pumilus

<400> 27
atgaatttga aaagatttag gctgttgtt gtgatgtgta ttggatttgt gctgacactg      60
acggctgtgc cggctcatgc g      81

<210> 28
<211> 81
<212> DNA
<213> Bacillus pumilus

<220>
<221> CDS
<222> (1)...(81)

<400> 28
atg aat ttg aaa aga ttg agg ctg ttg ttt gtg atg tgt att gga ttt      48
Met Asn Leu Lys Arg Leu Arg Leu Leu Phe Val Met Cys Ile Gly Phe
   1          5           10           15

gtg ctg aca ctg acg gct gtg ccg gct cat gcg      81
Val Leu Thr Leu Thr Ala Val Pro Ala His Ala
   20          25

<210> 29
<211> 27
<212> PRT
<213> Bacillus pumilus

<400> 29
Met Asn Leu Lys Arg Leu Arg Leu Leu Phe Val Met Cys Ile Gly Phe
   1          5           10           15
Val Leu Thr Leu Thr Ala Val Pro Ala His Ala
   20          25

```