# Organic Computing Übung 3

#### Stefan Rudolph

Lehrstuhl für Organic Computing Institut für Informatik Universität Augsburg

19. Juni 2015





#### Überblick

#### Heute

- Organisatorisches
- Schwarmverhalten
- Gruppenarbeit

#### Kontakt

- stefan.rudolph@informatik.uni-augsburg.de
- Sprechstunde nach Vereinbarung per Email





### Organisatorisches

- Am 3.7. Vorstellung des Konzepts für Semesteraufgabe
  - 5 Minuten
  - Folien bis Freitag 26.6. an Johannes schicken.
- Abgabe des Spielers
  - Mittwoch, der 10.7.2015, 12 Uhr
- Organic Computing Starcraft Micro Al Champion 2015
  - Turnier wird am 17.7.2015 stattfinden





#### Schwarmverhalten Ein Beispiel



Figure: Eine Vogelschwarm.



- Verhalten studiert
  - 1986
  - Craig Reynolds
  - Boids (siehe hier)
- Verwendung in Filmen
  - 1987: Stanley and Stella in: Breaking the Ice

https://www.youtube.com/watch?v=3bTqWsVqyzE

1992: Batman Returns

https://www.youtube.com/watch?v=jCVwdeAobYc

- Heute
  - Immer noch aktuelles Forschungsfeld
  - Kommerzielle Anwendung





Regeln nach Reynolds

- Drei lokale Regeln
  - Kohäsion
  - Separation
  - Alignment
- Kräfte werden gewichtet
- Summe ergibt Richtung





- Zusammenhalt
- Bewege dich in Richtung des Mittelpunkts derer, die du in deinem Umfeld siehst.



Figure: Kohäsion.





Separation

- Absonderung
- Bewege dich weg, sobald dir jemand zu nahe kommt.



Figure: Separation.





#### Alignment

- Ausrichtung
- Bewege dich in etwa in dieselbe Richtung wie deine Nachbarn.



Figure: Alignment.





Sonstiges

- Bezug zu OC
  - Lokale Informationen/Aktionen
  - Selbst-organisiertes System
  - Emergenz
  - Naturanalogie
- Termini
  - Englisch: Boiding
  - Swarming für Fische/Insekten
  - Flocking für Vögel
  - Platooning für Züge







Figure 5. Column formation.



Figure 6. Finding the best column area.



Figure 8. Finding the best line area.





## Adaption für Starcraft Regeln

- Drei Regeln für gewünschtes Verhalten
- Regel 1: Move towards enemy position.

  - p<sub>h</sub> ist die n\u00e4chste feindliche Einheit.
  - p<sub>c</sub> ist die Position der Einheit selbst.





## Adaption für Starcraft Regeln

- Regel 3: Move towards centroid of a specific column.
  - Finde die Spalte mit dem höchsten

$$\max_{s \in S_j} \left( \frac{|S_j|}{||\rho_c + \Delta_{coh}(s)||} \right)$$

- $|S_i|$  ist die Anzahl der Einheiten Spalte j.
- $\Delta_{coh}(s)$  ist der Kohäsionsvektor noch Reynolds.
- Bewege dich in Richtung des Mittelpunkts dieser Spalte
- Regel 4: Move towards centroid of a specific row.
  - Genauso wie Regel 3, aber mit Spalten
- Möglicherweise Separation hinzufügen
  - Regel 2, 3, 4





## Adaption für Starcraft

Weiteres

- Optimierung der Parameter
  - Viele Parameter (siehe Tabelle 1)
  - Finden von guten Parametern durch Genetischen Algorithmus
- Papier ist häufig recht unspezifisch
  - Fehlende Informationen selbst erarbeiten
  - durch Nachdenken
  - und ausprobieren



