Régulation d'un mélangeur

Le système à étudier est le suivant :

Deux produits sont mélangés :

- Le produit N°1 de débit Q₁ ajustable et de concentration C₁ constante
- Le produit N°2 de débit Q₂ constant et de concentration C₂ constante

On va chercher à asservir la concentration C en commandant le débit Q_1 . Un capteur donne une information en tension X de la concentration C du mélange. Le modèle de la boucle est le suivant :

1 - Etude de la boucle sans régulateur

Pour cette question : R(p) = 1

Pour la boucle précédente, tracer les lieux de Bode asymptotiques de la boucle ouverte : $\frac{X}{E}$

En supposant confondues courbe et asymptotes, déterminer la pulsation de passage par 0dB En déduire la marge de phase M_ϕ

La boucle fermée est-elle stable ?

2 - Etude du régulateur

Pour réaliser la correction de la boucle, on va utiliser un automate programmable proposant un régulateur de type PID.

La notice n'indique pas la fonction de transfert mais la relation temporelle entre la commande U_1 et la variable d'écart ϵ . Cette relation est la suivante :

$$U_1 = G\varepsilon(1 + \frac{t}{T_i} + \theta.e^{-\frac{t}{T_D/\theta}})$$
 [relation (1)]

2.1 – Lorsqu'on applique, à t=0, un échelon de position d'amplitude ϵ_0 à l'entrée du régulateur, la réponse indicielle U_1 est la suivante :

Donner les expressions de U_M et de la pente "a" en fonction de $G,\,\epsilon_0,\,\theta$ et T_i

2.2 - La réponse indicielle du régulateur à un échelon d'amplitude ε_0 est :

$$U_1 = G\varepsilon_0(1 + \frac{t}{T_i} + \theta.e^{-\frac{t}{T_D/\theta}})$$

De cette relation, déduire la fonction de transfert en p du régulateur $\frac{U_1}{\varepsilon}(p)$

[relation (2)]

En supposant que le coefficient " θ " est choisi suffisamment grand (≥ 10), négliger la constante de temps $\frac{T_D}{\theta}$ et mettre la relation (2) sous la forme : $K_P + \frac{K_i}{p} + K_D p$

Exprimer K_P, K_i et K_D en fonction de G, T_i et T_D

2.3 - Mettre la représentation "série" du régulateur :
$$\frac{U_1}{\varepsilon} = G'\left(\frac{1+T'_i p}{T'_i p}\right)(1+T'_D p)$$
 sous la

forme :
$$K_P + \frac{K_i}{p} + K_D p$$

Exprimer K_P, K_i et K_D en fonction de G', T'_i et T'_D

3 - Etude de la boucle corrigée

Pour améliorer le fonctionnement de la boucle de régulation de concentration, on place le régulateur : $R(p) = \frac{U_1}{\varepsilon}$ en sortie de l'additionneur-soustracteur.

3.1 - On propose de choisir :

G' = 1

 $T'_i = 20s$

 $T'_D = 1s$

Expliquer le choix des constantes de temps.

Dans ces conditions, tracer les lieux de Bode asymptotiques en boucle ouverte corrigée. En supposant confondues courbe et asymptotes, déterminer la pulsation de passage par 0dB En déduire la marge de phase M_{ϕ} .

Choisir la valeur numérique de G' de façon à ce que la marge de phase soit de l'ordre de 80° à 90° . Expliquer la valeur choisie.

- **3.2** Déduire des résultats précédents les valeurs numériques de K_P , K_i et K_D Quelles sont finalement les valeurs de G, T_i et T_D ?
- **3.3** Calculer la fonction de transfert en boucle fermée corrigée : $\frac{C}{E}(p)$. Quelles sont les valeurs numériques de son gain statique et de son amortissement ?
- **3.4** Si la consigne varie de 4,5 Volts à 5 Volts, donner l'allure de la tension X (préciser les valeurs de ses régimes permanents initial et final). En déduire l'allure de la concentration C et de la variable d'écart ε (préciser leurs valeurs initiales et finales).

ANNEXE

Forme standard d'une fonction passe-bas d'ordre 2 :

$$\frac{S}{E} = \frac{K}{\frac{p^{2}}{\omega_{o}^{2}} + \frac{2Z}{\omega_{0}}p + 1}$$

Table de transformées de LAPLACE

F(p)	$f(t), t \ge 0, f(0) = 0$			
1	$\delta(t)$ = impulsion de Dirac			
$\frac{1}{p}$	u(t) = échelon unitaire de position			
$ \frac{p}{\frac{1}{p^2}} $	t.u(t) = rampe unitaire			
$\frac{1}{p^n}$	$\frac{t^{n-1}}{n-1}$			
$\frac{e^{-\tau p}}{p}$	$u(t - \tau) = \text{\'echelon unitaire de position retard\'e}$ de τ			
$\frac{1-e^{-\tau p}}{p}$	$u(t)$ - $u(t$ - $\tau)$ = impulsion rectangulaire unitaire de largeur τ			
$\frac{1}{1+\tau p}$	$\frac{e^{-\frac{1}{\tau}}}{\tau}$			
$\frac{1}{p(1+\tau p)}$	$1-e^{-\frac{t}{\epsilon}}$			
$\frac{1}{p^2(1+\tau p)}$	$\frac{1-e^{-\frac{t}{\tau}}}{\tau(\frac{t}{\tau}-1+e^{-\frac{t}{\tau}})}$			

F(p)	f(t), t≥0, f(0)=0
$\frac{1}{(1+\tau p)(1+\tau' p)}$	$(\frac{1}{\tau - \tau'})(e^{-\frac{t}{\tau}} - e^{-\frac{t}{\tau'}})$
$= \frac{1}{\frac{p^2}{\omega_0^2} + \frac{2Z}{\omega_0}p + 1} avec Z > 1$	
$\frac{1}{p(1+\tau p)(1+\tau' p)}$	$1 - \left(\frac{\tau}{\tau - \tau'}\right)e^{-\frac{t}{\tau}} + \left(\frac{\tau'}{\tau - \tau'}\right)e^{-\frac{t}{\tau'}}$
$= \frac{1}{p(\frac{p^2}{\omega_0^2} + \frac{2Z}{\omega_0}p + 1)} avec \ Z > 1$	
$\frac{1}{\frac{p^2}{\omega_0^2} + \frac{2Z}{\omega_0}p + 1} pour \ Z < 1$	$\left(\frac{\omega_0 e^{-z\omega_0 t}}{\sqrt{1-Z^2}}\right) \sin(\omega_0 \sqrt{1-Z^2} t)$
$\frac{1}{p(\frac{p^2}{\omega_0^2} + \frac{2Z}{\omega_0}p + 1)} pour \ Z < 1$	$A e^{-Z\omega_0 t} \sin(\omega_0 \sqrt{1 - Z^2} t + \varphi)$ $A vec : A = 1 - \frac{1}{\omega_0^2 \sqrt{1 - Z^2}}$
	$\varphi = Arc \cos Z$