CXL、GenZ、CCIX架构以及未来的PM、内存和SSD形态

原创 唐僧 huangliang 企业存储技术 2021-05-17 01:15

收录于话题

#服务器 65 #Optane (傲腾)、非易失内存 29 #会议/技术资料分享、解读 32

目录

- 为什么要扩展内存/IO带宽:跟不上CPU计算核心发展
- 先行者Gen-Z:不得不向Intel CXL低头?
- 350ns缓存一致性协议:在PCIe上超越NVMe的性能
- Form Factor: EDSFF用于内存扩展的价值
- 非易失内存:从NVDIMM到CXL定义的NV-XMM

上周的一个技术会议,我听到有位演讲人的相当一部分ppt内容,与我在《数据中心NVMe SSD和EDSFF前瞻:来自Intel、HPE、Dell & SNIA等》中引用的图片恰好来自同一份资料。而在周末聚会时,另一位前同事也认为该文章挺有帮助。这里不敢说英雄所见略同,毕竟那两位同仁都是在专业的SSD厂商,只能说明我对技术资料的价值还有点判断力吧。偶尔熬夜写东西分享出来,对大家有帮助就没白忙活:)

今天要讨论的主题,参考资料主要来自SNIA技术会议2021 Persistent Memory +Computational Storage Summit (文末会列出下载链接)的一场分享 《Futureof Persistent Memory, DRAM and SSD Form Factors Aligned with New SystemArchitectures》,演讲者是SMARTModular Technologies的产品市场总监ArthurSainio——就是那家主要做"非常规"内存和SSD模组的厂商。

还是继续展望持久内存(PM)、内存和SSD形态的方向,不过前面一篇主要围绕物理尺寸,而这次则是重点针对架构和接口协议。

为什么要扩展内存/IO带宽: 跟不上CPU计算核心发展

Large Datasets Need Memory that Scales

点开图片可放大显示,以下同

如上图,左半边显示从2012-2019年,服务器CPU核心(从8核到64核)增长了8倍,而Pin针脚数量(从LGA-2011到4094/4189)和内存通道数(从4到8)仅增长了2倍,PCle lane(从40到64,如果是AMD则按照双路中每CPU支持来算)甚至不到2倍。可以看出I/O跟不上计算密度的增长。

右边是通过计算得出的平均每核心DRAM内存带宽,以及每核心PCle带宽,都是呈不断下降趋势。

上面这张图信息量不小。在CPU左侧的"内存控制器 / 内部ASIC",除了可以提供 JEDEC标准化DDR内存接口之外;还有IBM 2019年之前就在Power平台上使用的 OpenCAPI——具备缓存一致性(Cache Coherence)支持的OMI(开放内存接口)。

CPU右侧的物理连接是PCIe。具体到2022年PCIe 5.0服务器发布的时候,除了用于NAND/SCM SSD的传统NVMe协议之外,CXL和CCIX预计也会出现在x86平台。通过这2种协议连接的"内存控制器 / 外部ASIC",同样支持缓存一致性。

下半部分,则是通过外部Bridge/Switch芯片连接的池化内存 / 加速器,这一块则是Gen-Z和CXL 2.0的天下。

先行者Gen-Z:不得不向Intel CXL低头?

在讨论CXL之前有必要简单回顾一下Gen-Z,包括我之前写过2篇中的《*Gen-Z互连(下):第一步25-100GB/s、PCI-SIG的反应*》,比如"复用PCIe pin"等,可以把Gen-Z看成CXL的先行者。

如果用Gen-Z Fabric直连SCM(存储级内存)或者GPU / FPGA加速器模块,需要在CPU一端提供Gen-Z Logic的支持。Intel仍占据80%以上的服务器市场,由于他们在该联盟中缺席,八卦一点地说:Gen-Z就有点"玩不下去"了。

等到Intel开始推广CXL的时候,Gen-Z只好说"大哥我错了,CPU直连那块我不碰了"。于是大家就看到,现在只剩下右边通过Gen-Z Switch互连的部分。

Representative CXL Usages

上图是CLX的3种典型用例:

- Caching Device / Accelerators:加速器上的缓存,比如智能网卡、计算型存储器;
- Accelerators with Memory: 带有内存的加速器,比如GPGPU、深度学习计算卡;
- Memory Bufffer: 用于内存带宽、容量扩展,以及连接持久内存。

具体的用到的协议包括CXL.io、CXL.cache和CXL.memory三种,在这里就不展开了。

Data Center: Looking Outside in: Scope of CXL 2.0 over CXL 1.1 \(\bar{Z} \) + SUMMI 1 2021 \(\bar{Z} \) COMPUTATIONAL STORAGE

CXL 2.0规范引入了Switch, 这样就能实现在机架/机箱内部的跨多节点互连, 支持资源池化。

以我的技术水平看上图有些难度。从协议的角度,CXL RP(Root Port)与PCIe RP应该是处于同一层级,目前来看CXL底下也是PCIe 5.0物理层。

350ns缓存一致性协议:在PCle上超越NVMe的性能

Form Factor Migration

这里显示的(PCIe存储设备)**Form Factor迁移**:从M.2到E1.S(SFF-TA-1006)提高了性能和热插拔;从U.2到E3(SFF-TA-1009)和E1.L增加了内存扩展能力(由于CXL等的缓存一致性支持),至于还有存储/模块密度的提高,不是这里讨论的重点。

上图列出的是**带宽性能**。最左边的DDR DIMM内存是用并行总线直连,单个模组容量可达数百GB,当前和未来一代分别是DDR4@3200和DDR5@4800。

** Source(s): https://www.tomshardware.com/news/ddr5-6400-ram-benchmarks-major-performance-gains-ddr4

中间是串行连接(包括PCIe连接,从Gen4到Gen5都是多lane)模组,存储密度在数百GB到TB级别。其中包括E1.S单通道(x4)、E1.S双通道(x8)、E3.S / AIC(最多x16)以及OpenCAPI DDIMM(Differential内存,由于串行总线所以是差分信号)。

最右边是网络连接的存储介质,当前是用RDMA,未来除了Gen-Z,NVMe-oF还有不确定性。

接着对比**延时**。使用DRAM介质直连CPU的内存和NVDIMM不到100ns(后文中更进一步列出20ns);通过PCIe串行连接的缓存一致性协议CXL(XMM、NV-XMM模组和AIC)、CCIX可以达到350ns延时;OpenCAPI的DDIMM也只有40ns;而Gen-Z这样经过外部Switch/网络连接的在800ns水平。

Initial MySQL results: 2X workload performance

这里插一张图——某服务器厂商研发的一台原型机。已经被AMD收购的Xilinx,其VersalACAP(号称FPGA之后的新一代计算平台)卡插在AMD服务器的PCIe插槽上,实现了通过CCIX连接到DDR4控制器。这里的带宽,x8 CCIX相当于PCIe Gen4的16Gbps——或者x4 @ 32Gbps (PCIe Gen5) 也就是16GB/s全双工。

AMD也在CXL组织中,但是借助赛灵思的力量在CCIX上留一手我觉得也不错。此外,CCIX早就是ARM平台上的常客了,印象中多路CPU间互连就是用的这个吧。

Connecting to the Memory Bus

Intel's Approach for Optane PMem

再插一张图: Intel_Optane Pmem (傲腾持久内存) 的延时,即通过PMDK API 访问也是350ns。从此处也可以侧面看出,在PCIe上那些新的缓存一致性协议的价值。

注:NVMe的延时达到10μs以内就很不错了,即使是用户态的SPDK访问。毕竟还是块设备。

Form Factor: EDSFF用于内存扩展的价值

Form Factor包含的不只是物理尺寸,还有pin引脚数量和定义。

在DDR4 DIMM的288pin中,64条用于64bit并行总线(加上ECC校验实际上是 72条)。

基于串行连接的PCIe部分,E1.S x4是在56pin中的16pin差分信号传输数据 (PCle每个lane双向共使用4pin);以此类推,E1.S x8就是84pin中的32pin; E3.S x16是140pin中的64pin。

OpenCAPI看来也会使用E3.S x8,不过它只需要输入12V电压,而不像PCIe那样 还有3.3Vaux。

Bandwidth per core = 5.3GB/s (higher even with more CPU cores)

具体到整个服务器系统的内存带宽,这张ppt左边的取值来源可能有点问题?双插槽64核CPU可以对应现在的AMD EPYC,而12个DDR4通道内存控制器目前x86还没有这么多的(会不会是ARM呢,毕竟也在CXL董事会里面)。

右边举例的意思是,当未来2022年CPU达到96核,除了DDR5内存速率更高(2x12通道总带宽768GB/s)之外,还会有CXL用于补充连接内存(252GB/s)。这样平均每核心带宽甚至可以比当前这一代更高点。

当**E1.S**和**E1.L**用于内存加速和扩展时,单个模组可以做到64-128GBDDR4或DDR5,除了当前的NVMe协议之外,还有CXL、CCIX和Gen-Z(我对后两者用在Intel平台上直连CPU不太看好)。相对于传统DIMM上插槽内存的价值,可以把一些固定功能如:加密、压缩或者Key-Value语义卸载到内存模组,来改进性能。

E3.S and E3.L for Memory Expansion

Feature	Description
Host Interface	Data: PCle x16 Sideband: SMBus (I2C) Wake-up, Low-power (PWRDIS),
Memory	Up to 256GB with DDR4 or DDR5 * Non-volatile persistent memory feature could be support on this form-factor using back-up and restore functionality like in NVDIMM-N.
Protocols	NVMe, CXL, CCIX, Gen-Z
Power	 2 profiles 25W (thin) and 40W (thick) Bus powered: 12V (main), 3.3V Aux Supports low power modes (CLKREQ#, PWRDIS signaling)
Targeted Use Cases Memory Expansion	Targeted for 2U Server Enables 4TB – 8 TB of Memory expansion with 16 E3.S modules in single server particular butter throughput than direct cracked DDA DIMM:

当**E3.S**和**E3.L**用于内存扩展时,单个模组可以做到256GB DDR4或DDR5,其实我想在上图中脑补加上一个三星最近宣布的CXL标准DDR5内存(如下图)。在这个尺寸上可以像NVDIMM-N那样使用备份(到闪存)和恢复功能,来支持非易失持久内存。

在**2U服务器**上,可以使用16个E3.S模组来扩展4TB-8TB内存,达到比直连DDR4 DIMM更好的吞吐。

OpenCAPI High Bandwidth Memory - DDIMM

Feature	Description
Host Interface	OpenCAPI
Memory	• Up to 256GB
Protocols	OMI – Open Memory Interface The memory bus is defined with one read port and one write port per channel, each having eight unidirectional differential lanes
Performance	DDR4-3200 Latency 40ns Data throughput rate of 25.6GB/s with 8 lanes The DDIMM/OMI approach delivers up to 4TB of memory on a server at about 320GB/second or 512GB at up to 650GB/s sustained rates.
Targeted Use Cases	Targeted for servers High bandwidth, low concerns for memory, accelerators will, storage file of the devices like ASICs.

OpenCAPI是用于哪家服务器一看上图就清楚吧。OMI是一种高带宽低延时、串行连接的内存总线,读和写接口各有8对单向的差分信号,DDR4-3200数据带宽25.6GB/s。

除了支持内存之外,理论上还可以用于网卡、存储(SSD?)、ASIC等加速器。我记得Power9可以<u>将OpenCAPI重定义为NVLINK</u>来连接GPU。

非易失内存:从NVDIMM到CXL定义的NV-XMM

NVDIMM for Persistent Memory

Key Features of DDR4 and DDR5 NVDIMM-N

- · Operation like DRAM
- Fast recovery from system power loss
- · Software overhead can be eliminated

Feature	Description
Host Interface	• DDR
Memory	• DDR4 16GB, 32GB • DDR5 32GB, 64GB
Protocol	JEDEC Compliant DDR4 / DDR5
Features	Throughput of 25.6GB/s (DDR4) Latency ~20ns AES 256 bit Encryption
Targeted Use Cases	All Flash Arrays, Storage Servers, HPC, Al Training Servers Needed for very low latency tiering, caching, write killer in the checkpointing Needed for Al/ML algorithm processing

传统的**NVDIMM-N**最大的优势就是像内存一样访问,消除了软件上的开销,它的延时可以达到约20ns。比如在全闪存阵列和存储服务器中用于Cache、写缓冲、元数据存储,以及数据库等的checkpoint创建。

CXL-based NVDIMM (NV-XMM)

基于CXL的NVDIMM被称为NV-XMM,它像NVDIMM一样在模组上配备了闪存,支持掉电备份数据。

大家还记得<u>Dell EMC PowerStore全闪存阵列</u>上,NVMe(U.2)接口的<u>NVRAM</u> <u>写缓存盘</u>吗?NV-XMM有个同样的好处就是支持双端口,能让双控制器同时访问,这是DIMM形态NVRAM不具备的。另外就是未来的PCIe 5.0 x16接口,理论带宽可达当前PCIe 3.0 U.2 NVMe SSD的大约16倍。

图中横坐标为年份,纵坐标是对CPU的依赖性

简单总结一下。从时间点上来看,本文讨论的未来持久内存、DRAM和SSD的形态,新协议CXL、CCIX预计会伴随DDR5、PCIe 5.0,在新一代Intel Sapphire Rapids以及AMD服务器平台上出现; OpenCAPI也可能过渡到DDR5; 而Gen-Z 恐怕要等到2025年了...

2021 Persistent Memory + Computational Storage Summit 会议 & 参考资料打包分享

链接: https://pan.baidu.com/s/14RVFMMBjSfCdpfTEmxNJdA

提取码: exy8

SNIA官网链接 https://www.snia.org/pm-summit (含视频, 需翻墙)

扩展阅读:《企业存储技术》文章分类索引(微信公众号专辑)》

注:本文只代表作者个人观点,与任何组织机构无关,如有错误和不足之处欢迎在留言中批评指正。进一步交流技术,可以加我的微信/QQ:490834312。如果您想在这个公众号上分享自己的技术干货,也欢迎联系我:)

企业存储技术

关注服务器、存储、图形工作站等方面技术。 313篇原创内容

公众号

尊重知识,转载时请保留全文,并包括本行及如下二维码。感谢您的阅读和支持!《企业存储技术》微信公众号: HL Storage

长按二维码可直接识别关注

历史文章汇总: http://www.toutiao.com/c/user/5821930387/ http://www.zhihu.com/column/huangliang

点击下方"阅读原文", 查看更多历史文章

 $\downarrow\downarrow\downarrow\downarrow$

收录于话题 #服务器 65

AMD EPYC Genoa '7004': 若DDR5换 冷板式液冷标准化: PowerEdge 15G服 OMI, CXL.mem服务器内存池化 务器散热杂谈

阅读原文 阅读 4198 文章已于2021/05/17修改

分享 收藏 赞 27 在看 26

写下你的留言

精选留言

Chiηαχing

cpu内存通道的每个通道pin睡独立的72个?

● 企业存储技术(作者)是啊,这还只是数据引脚

消 游侠

intel第四代 xeon scalable 4477针