PRODUCTION OF SILICON CARBIDE SEMICONDUCTOR SUBSTRATE

Patent number:

JP2000001398

Publication date:

2000-01-07

Inventor:

ASAI RYUICHI

Applicant: Classification:

FUJI ELECTRIC CO LTD

C30B25/02; C30B29/36; H01L21/205; C30B25/02; C30B29/10;

H01L21/02; (IPC1-7): C30B29/36; C30B25/02; H01L21/205

- european:

- international:

Application number: JP19980160338 19980609 Priority number(s): JP19980160338 19980609

Report a data error here

Abstract of JP2000001398

PROBLEM TO BE SOLVED: To improve the crystallinity of an epitaxial layer and to enhance the characteristics of a silicon carbide semiconductor device by growing the epitaxial layer on a silicon carbide substrate in an atmosphere contg. added gaseous hydrogen chloride. SOLUTION: The amt. of hydrogen chloride added is preferably 0.1-1.0% by volume. The substrate comprises 4H-SiC or 6H-SiC. The growth surface is a (001) Si face, a (000-1) carbon face or a face having an offset angle of several degrees from the Si or carbon face. When a mirror-polished 4H-SiC single crystal is used as a substrate and growth is carried out using a face polished at 8 deg. tilt angle from a (0001) Si face toward <1, 1, -2, 0> direction at 1,500 deg.C, etch pit density decreases in the case of 0.1-0.8% concn. of hydrogen chloride and decreases remarkably in the case of 0.2-0.6%. The concn. of hydrogen chloride is preferably 0.5-1% at 1,450 deg.C and 0.1-0.3% at 1,550 deg.C.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK USPTUI

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-1398

(P2000-1398A)

(43)公開日 平成12年1月7日(2000.1.7)

(51) Int.Cl.7		酸別記号	FΙ			テーマコート*(参考)
C 3 0 B	29/36		C30B	29/36	Α	4G051
	25/02			25/02		4G077
H01L	21/205		H01L	21/205		5 F O 4 5

審査請求 未請求 請求項の数5 OL (全 4 頁)

(21)出願番号	特願平10-160338	(71)出願人 000005234			
		富士電機株式会社			
(22)出顧日	平成10年6月9日(1998.6.9)	神奈川県川崎市川崎区田辺新田1番1号			
		(72)発明者 浅井 隆一			
		神奈川県川崎市川崎区田辺新田1番1号			
		富士電機株式会社内			
	·	(74)代理人 100088339			
		弁理士 篠部 正治			
		Fターム(参考) 40051 BB02 BB12 BC03			
		4CO77 AAO3 ABO2 BEO8 DBO4 DBO7			
		EAO6 EC10 ED05 ED06 HA12			
		5F045 AB06 AC01 AC13 AD18 AF02			
		AF03 AF13 BB12 BB16 DA67			
		EE12			

(54) 【発明の名称】 炭化けい素半導体基板の製造方法

(57)【要約】

【課題】炭化けい素基板の製造方法において、エピタキシャル成長条件を吟味し、キャリア移動度等の素子特性を向上させる。

【解決手段】エピタキシャル成長時に、体積比で0.2 ~0.6%の塩酸ガスを加え、1450~1550℃で、エピタキシャル層を成長する。

【特許請求の範囲】

【請求項1】炭化けい素基板上に炭化けい素エピタキシ ャル層を成長させる炭化けい素半導体基板の製造方法に おいて、塩化水素ガスを添加した雰囲気中でエピタキシ ャル層を成長することを特徴とする炭化けい素半導体基 板の製造方法。

【請求項2】塩化水素の添加量を体積比で0.1~1% とすることを特徴とする請求項1記載の炭化けい素半導 体基板の製造方法。

【請求項3】塩化水素の添加量を体積比で0.2~0. 6%とすることを特徴とする請求項1記載の炭化けい素 半導体基板の製造方法。

【請求項4】炭化けい素サブストレートが、4H-Si Cまたは6H-SiCであることを特徴とする請求項 l ないし3のいずれかに記載の炭化けい素半導体基板の製 造方法。

【請求項5】炭化けい素サブストレートの表面が(00 01)Si面、(000-1)炭素面またはそれらの面 から数度のオフセット角を持つ面であることを特徴とす る請求項4記載の炭化けい素半導体基板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体素子を形成 する炭化けい素基板の製造方法に関する。

[0002]

【従来技術】髙周波、大電力の制御を目的として、シリ コン (以下Si と記す)を用いた電力用半導体素子 (以 下パワーデバイスと称する)では、各種の工夫により高 性能化が進められている。しかし、パワーデバイスは高 温や放射線等の存在下で使用されることもあり、そのよ うな条件下ではSiのパワーデバイスは使用できないこ とがある。

【0003】また、Siのパワーデバイスより更に高性 能のものを求める声に対して、新しい材料の適用が検討 されている。本発明でとりあげる炭化けい素(以下Si Cと記す) は広い禁制帯幅 (4H-SiCで3.26e Ⅴ、6H-SiCで3.02eV)をもつため、高温で の電気伝導度の制御性や耐放射線性に優れ、またSiよ り約1桁高い絶縁破壊電圧をもつため、高耐圧素子への 適用が可能である。さらに、SiCはSiの約2倍の電 40 子飽和ドリフト速度をもつので、髙周波大電力制御にも 適する。

【0004】しかし、SiCの優れた物性をパワーデバ イスに応用するためには、Siのプロセス技術並みに洗 練された要素技術が必要となる。すなわち、SiC基板 の表面を鏡面に仕上げた後、SiC薄膜をエピタキシャ ル成長させ、或いはドナーやアクセプターをドーピング したり、金属膜や酸化膜を形成する等の工程条件の最適 化が必要である。

キャリア密度をもち、かつ結晶性のよい薄膜を得ること が重要である。従来、SiCのエピタキシャル成長は、 モノシラン、プロパンを反応ガスとして、約1500℃ でおこなわれていた。従来、Siのエピタキシャル成長 においては、原料ガスに塩素を含むシランガス (例えば SiC1、)を用いることは知られていた。これに対 し、SiC上のエピタキシャル成長においては、立方晶 の3C-SiCを成膜する原料ガスとしてSiCl, H ,等を用いた報告[例えば、E.niemann et al. Inst. P 10 hys. Conf. Ser. No.142, pp.165-168 参照] や、シリ コンサブストレート上への3C-SiCのヘテロエピタ キシャル成長のために塩素を含む炭化水素(例えばCH ,C1)を用いる出願[特開平4-124815号]が あるだけで、六方晶の4Hまたは6H-SiCの薄膜成 長についてはそのような例もなく、塩化水素を添加する ことは知られていなかった。

【0006】また、六方晶の4 Hまたは6 H-SiCの 薄膜成長に関して、薄膜成長前の基板の表面処理に塩化 水素を用いた例がある[例えば、A.A.Burk, Jr., L.B.Ro 20 wland, J. Crystal Growth, vol.167, pp.586-595,(199 **の参照]。との処理により成長層表面のモホロジーが制** 御できるとされている。また同様の基板処理により基板 /成長層界面のアルミの意図しないドーピングを抑制で きることが報告されている [A.A.Burk,]r., L.B.Row]an d, Appl.Phys.Lett, vol.68, pp.382-384 1996.]. [0007]

【発明が解決しようとする課題】優れた特性のSiC半 導体素子とするためには、SiC薄膜のエピタキシャル 成長においても、一層良質のエピタキシャル層すなわ ち、意図したキャリア密度をもち、かつ結晶欠陥密度が 低く結晶性のよい薄膜を得ることが課題である。 [0008]

【課題を解決するための手段】発明者はエピタキシャル 成長時に塩化水素を添加する実験をおこなった結果、塩 化水素添加が有効であることを見いだした。上記課題解 決のため本発明は、炭化けい素基板上に炭化けい素エビ タキシャル層を成長させる炭化けい素半導体基板の製造 方法において、塩化水素を添加した雰囲気中でエピタキ シャル層を成長するものとする。

【0009】そのようにすれば、基板表面の清浄化がお こなわれ、結晶欠陥であるエッチピット密度が減少し、 例えば、キャリア移動度などエピタキシャル層の膜質が 向上する。特に、塩化水素の添加量を体積比で0.1~ 0.8%、更に望ましくは0.2~0.6%とするのが よい。

【0010】0.2~0.6%の濃度範囲においては、 一層効果が顕著になる。炭化けい素サブストレートが 4H-SiCまたは6H-SiCであるものとする。4 H‐SiCまたは6H‐SiCは、広い禁制帯幅を有す 【0005】エピタキシャル成長においては、意図した 50 る高温用半導体素子等に適する結晶であり、実施例に示 3

したように塩化水素ガスの添加により、結晶性の改善が 見られた。

【0011】炭化けい素サブストレートの表面は(00 01) Si面、(000-1) 炭素面またはそれらの面 から数度のオフセット角を持つ面であるものとする。そ のような結晶面は、平滑な面が得られ、エピタキシャル 成長に適する面である。

[0012]

【発明の実施の形態】以下本発明のためにおこなった実 験および実施例について説明する。

[実験1]エピタキシャル成長前のサブストレート(以 下基板と呼ぶ)としては鏡面研磨された4 H-SiC単 結晶を用い、(0001) Si面から〈1、1、-2、 0〉方向に8度傾けて研磨した面を使用した。

【0013】先ず、基板をダイサーにより5mm角のチ ップに切り分け、有機溶剤と酸による洗浄をした後、エ ッチングするSi面を上にして、基板をSiCで被覆し た黒鉛のサセプタに載せる。基板を載せたサセプタを石 英反応管内に挿入し、1 P a 以下の真空にひく。次に気 相エッチングをおこなう。気相エッチングは、水素と塩 20 化水素をそれぞれ毎分1し、10mLの流量で混ぜた混 合ガスを流しながら1350℃で5分間加熱した。サセ ブタの加熱法は高周波誘導加熱である。

【0014】続いてSiC薄膜をエピタキシャル成長す る。水素(H、)、モノシラン(SiH、)、プロパン (C, H,)、塩化水素 (HC1) をそれぞれ毎分3 L、0.3mL、0.25mL、3~30mLの流量比 率で混合したものを反応管内に導入した。この状態で1 500℃で2時間加熱した。すると基板上に4H型のS iC薄膜がエピタキシャル成長する。薄膜のキャリア密 30 でなく、4H−SiCの(000−1)C面や6H−S 度は5×101°cm-1であった。

【0015】成長した膜の転位密度を評価するために、 水酸化カリウム (KOH) によるエッチングをおこなっ た。このエッチングは、ニッケル(Ni)坩堝内で40 ○℃に加熱した水酸化カリウムに試料を30秒間浸漬す る方法を用いた。欠陥密度の計数はSEM観察によっ た。図1は、エビタキシャル成長時の塩化水素濃度[H $C1/(H_2 + SiH_4 + C_3 H_8 + HC1)] & Si$ C薄膜中のエッチピット密度との関係を示す特性図であ る。この図から塩化水素濃度が0.1から0.8%でエ 40 ッチピット密度が減少し、特に0.2から0.6%のと き、顕著に減少し塩化水素を添加しない場合より約一桁 低減できることがわかる。

【0016】エッチピットは、エピタキシャル層中の線

状欠陥である転位の位置にできるのであり、結晶性の良 否を反映するともに、電気的にはキャリアのトラップに なるとされている。図2は、発明者らが実験したエッチ ピット密度とキャリアの移動度との関係を示す特性図で ある。エッチピット密度が多いほど、移動度が急速に低 下している。これから、エッチピット密度を一桁減らせ は、移動度をほぼ2倍にできることがわかる。なお、移 動度の評価法としては、van der Pauw 法を用いた。す なわち、試料のエピタキシャル層上の四隅に、金属マス 10 クを使ったスパッタ法によりニッケル (Ni) 電極を形 成する。電極の直径は200μm、厚さは400 nmで ある。この後、整流性を除きオーミックな接触とするた めアルゴン (Ar) 雰囲気中で1050℃、5分間のア ニールをおこなった。

【0017】従って、図1、2から、成長するエピタキ シャル層の結晶性は、塩化水素濃度が0.1~0.8 %、更に望ましくは0.2~0.6%含まれるとき改善 されるので、そのような条件でエピタキシャル成長をお こなうのが良いと結論づけられる。これは、エピタキシ ャル成長時に、表面の清浄化およびエッチングが十分に 行われるためと考えられる。また、シリコン半導体にお いて見られる金属不純物のゲッタリング作用もあるかも しれない。

【0018】上記実施例では1500℃のエッチング条 件における結果のみを記したが、1450から1550 °Cの範囲において同様の実験をおこない、1450°Cで は塩化水素濃度を0.5~1%、1550℃では濃度を 0.1~0.3%とするとよいことがわかった。また成 長面についても4H-SiCの(0001)Si面だけ iCのSi、C面、またはそれらの面から微小角度で傾 斜した面にも適用できる。

[0019]

【発明の効果】以上説明したように本発明によれば、S iC半導体基板のエピタキシャル成長時に、体積比で 0.1~1.0%の塩化水素を添加し、1450~15 50℃で成長することによって、成長するエピタキシャ ル層の結晶性を改善し、SiC半導体素子の特性を向上 させることができる。

【図面の簡単な説明】

【図1】エピタキシャル成長時HC1濃度とエッチピッ ト密度の関係を示す特性図

【図2】エッチピット密度と移動度との関係を示す特性

