IN4344 Advanced Algorithms Lecture 5 – LP Relaxations and Branch & Bound

Yuki Murakami

Delft University of Technology

September 20, 2023

Previous lecture: Simplex

- Simplex solves an LP by pivoting from one BFS to another, in a two phase process.
 - ▶ Feasibility tested in phase 1.
 - Optimality tested in phase 2.
- In a maximization problem, one reaches an optimum when the coefficients of objective function (reduced cost) is non-positive.
- Problem is unbounded if entering basic variable has all non-positive coefficients in constraint rows.

Recall that our original motivation was to solve ILPs!

LP-relaxation

An ILP:

min
$$z_{IP} = c^{\mathsf{T}} x$$

s.t. $Ax = b$
 $x \ge 0$
 $x \in \mathbb{Z}^n$

The LP-relaxation:

min
$$z_{LP} = c^{\mathsf{T}} x$$

s.t. $Ax = b$
 $x \ge 0$

Observation

$$z_{LP}^* \leq z_{IP}^*$$

 $z_{IP}^* \le z_{IP}^*$ Similarly for MILP

How good is the lower bound that the LP-relaxation gives us?

Definition

The **integrality gap** of an ILP is the worst-case value of

$$\frac{z_{IP}^*}{z_{LP}^*} \ge 1$$

Solving (M)ILPs in general

In some cases we can prove that the integrality gap is equal to one, and that the LP-solution is integral! We discuss this next week. In general though, the integrality gap is > 1.

In general (M)ILPs are NP-hard, so we cannot expect to find polynomial time algorithms for them.

The known algorithms are "enumerative", they (implicitly) enumerate feasible solutions until proven optimality.

The most commonly used algorithm for (M)ILPs is **Branch & Bound**. This algorithm is implemented in all academic and commercial software.

Branch & Bound

Suppose we want to solve the following ILP.

How do we start?

First solve the **LP-relaxation**.

We can do this with the **Simplex** method.

 x_2

All objective coefficients are integer, so $\mathbf{z}_{\mathsf{IP}}^* \leq \mathbf{8}$.

- So we have an **upper bound** on z_{IP}^* , $\overline{z} = 8$.
- In the optimal solution of the LP-relaxation, $x_2 = \frac{15}{4} = 3\frac{3}{4}$,
- but in the ILP x_2 should be integral, so $x_2 \le 3$ or $x_2 \ge 4$.
- Hence we branch into two subproblems:

Solve the LP-relaxation for subproblem 1:

Subproblem 1:

In Subproblem 1, the variable x_1 is not integral. Create two new subproblems at Subproblem 1 by introducing

 $x_1 \le 1$ and $x_1 \ge 2$ respectively.

$$\bar{z} = 8$$
 $\underline{z} = -\infty$

Subproblem 2:

Subproblem 2:

Notice, the solution to Subproblem 2 is integral!!! So we now also have a feasible solution to our problem.

We now need to update the globally valid lower bound \underline{z} to $\underline{z} = 7$.

Since we have solved Subproblem 2 to optimality (the solution is integral!), we do not need to search further below Subproblem 2. We can prune the search tree under node 2 due to optimality of node 2.

$$\bar{z} = 8$$
 $\underline{z} = -$

But, we still have unexplored subproblems left. Consider Subproblem 3.

$$\bar{z} = 8$$
 $\underline{z} = \frac{\infty}{7}$

Subproblem 3:

Subproblem 3:

Since $\bar{z}^3 \leq \underline{z}$ we will never find a feasible solution below Subproblem 3 with better value than 7, so we can **prune** the tree under node 3 **due to bound**.

We still have one subproblem left to investigate.

Subproblem 4:

max
$$z = x_1 + 2x_2$$

s.t. $2x_1 + 2x_2 \le 9$
 $-x_1 + x_2 \le 3$
 $x_2 \ge 4$
 $x_1, x_2 \ge 0$

Subproblem 4:

Subproblem 4:

Since Subproblem 4 has an infeasible LP-relaxation, there is no hope to find a feasible integer solution in this branch of the tree, so we can prune the tree under node 4 due to infeasibility.

This is the search tree.

Optimal solution:

Since all leaves of the tree have been pruned, the problem has been solved. we have maintained the value \underline{z} of the best solution found, which is $\underline{z}=7$, corresponding to the integer solution:

$$x^* = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$
, with value $z^* = 7$.

Optimal solution:

Summary Branch & Bound method (for a max-problem):

- Solve LP-relaxations of subproblems (starting with the original problem).
 - ► The optimal value of the LP-relaxation is an **upper bound** on the optimal value of the subproblem.
 - If the optimal solution is integral, then the optimal value is a lower bound <u>z</u> on the optimal value of the original ILP. If an integer solution is found that is better than the current best integer solution update <u>z</u>!
- If we can't prune a subproblem, we branch on a variable that is not yet integral.

Min-problems are handled similarly but **lower** bounds become **upper** bounds and vice versa.

When can we prune a node (in a max-problem)?

- The LP-relaxation has no feasible solution.
 Prune by infeasibility. (See subproblem 4)
- The optimal solution to the LP-relaxation is integral. Prune by optimality. (See subproblem 2).
 - ▶ If the value of the integral solution found is larger than \underline{z} , also **update the lower bound** \underline{z} .
- The upper bound \(\bar{z}^k\) in node \(k\) is smaller than or equal to the current lower bound \(\bar{z}\).
 Prune by bound. (See Subproblem 3).

Implementation aspects

• Which B&B node do we consider next?

- (a) **Depth-first search**: go down the tree as fast as possible, hoping to find an integral solution and hence an upper/lower bound (min/max). Notice that re-optimizing is very simple, since one adds one more constraint to the previous subproblem. **Dual simplex!**
- (b) **Best-node-first**: choose a node with best value of the LP-relaxation.
- (c) Use (a) until an integral solution has been found and then (b).

On which variable should we branch?

- ► Simple rule: choose a variable with fractional part closest to $\frac{1}{2}$.
- ▶ More advanced rule: "Pseudocost branching" (see next slide).

There are many advanced variable- and node selection rules!

Pseudocost branching (min-problem)

Objective gain per unit change in variable j at node N^i in: "downward" branch:

$$P_j^{i-} = rac{z_{LP}^{i-} - z_{LP}^i}{f_j^{i-}}$$
 where $f_j^{i-} = \hat{x}_j^i - \lfloor \hat{x}_j^i
floor$

"upward" branch:

$$P_j^{i+} = rac{z_{LP}^{i+} - z_{LP}^i}{f_j^{i+}}$$
 where $f_j^{i+} = \lceil \hat{x}_j^i
ceil - \hat{x}_j^i$

If an LP-relaxation is infeasible we set $z_{LP} = +\infty$.

Pseudocost branching (min-problem)

• At a branch point N^i , we decide to branch on variable x_j by looking at the historical performance of branching on x_j in other nodes explored before.

We now want to calculate the average performance in the upward, resp. downward branches, and then weigh these together to determine a so-called variable score. It involves a bit of notation that is easier to read than to see on a slide.

See pdf-file for more details!

CUTTING PLANES

Cutting Planes

- Cutting planes are constraints that can be added to an LP-relaxation of a (M)ILP without cutting away any integral points.
- Cutting planes are often used in combination with Branch & Bound to strengthen the LP-relaxations so as to increase the chances of pruning.

Consider an ILP:

$$z_{IP} = \min_{\substack{c \in Ax \leq b \\ x \geq 0 \\ \mathbf{x} \in \mathbb{Z}^{\mathbf{n}}}} \mathbf{c}^{\mathsf{T}} x$$

The optimal value of the **LP-relaxation** gives a **lower bound** on the optimal value of the ILP.

We can try to **improve** this lower bound by adding **cutting planes** to the LP-relaxation.

 $\mathbf{P} = \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$ is the corresponding **polyhedron** and

 $S = P \cap \mathbb{Z}^n$ the set of **feasible solutions** of the ILP.

Definition

A polyhedron Q is a **formulation** for S if $Q \cap \mathbb{Z}^n = S$.

So P is **one** formulation for S, but there exist **infinitely many** formulations for S!

Definition

An inequality $a^Tx \le b$ is **valid** for S if $a^Tx \le b$ for all $x \in S$.

Adding a valid inequality $a^Tx \le b$ to P gives a formulation P' for S which is at least as strong, i.e., $P' \subseteq P$.

Question

Question

What is the strongest possible formulation of *S*?

The **convex hull** of S: the smallest convex set containing all points in S.

In general, we cannot find the convex hull of S in polynomial time, so we try to approximate it.

Gomory's Cutting Planes

Consider the following ILP.

$$z_{IP} = \min -4 x_1 + x_2$$
s.t. $7 x_1 -2 x_2 \le 14$ (1)
$$x_2 \le 3$$
 (2)
$$2 x_1 -2 x_2 \le 3$$
 (3)
$$x_1, x_2 \ge 0$$

$$x_1, x_2 \in \mathbb{Z}$$

The **optimal tableau** of the LP-relaxation:

basis	\bar{b}	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃
	20/7	1	0	1/7	2/7	0
<i>x</i> ₂	3	0	1	0	1	0
<i>s</i> ₃	20/7 3 23/7	0	0	-2/7	10/7	1
-z	59/7	0	0	4/7	1/7	0

Definition

Let $a \in \mathbb{R}$.

- $\lfloor a \rfloor$ is the largest integer $n \in \mathbb{Z}$ with $n \leq a$ (round down).
- We call |a| the **integral part** of a
- and a |a| the fractional part of a.

Observe that for the fractional part of a holds that

$$0 \le a - |a| < 1$$
.

Be careful when a is negative!

For example if $a=-4\frac{1}{4}$ then the **integral part** is $\lfloor a \rfloor = -5$ and the **fractional part** is $a-\lfloor a \rfloor = \frac{3}{4}$.

For example, the first row of the Simplex tableau is:

$$x_1 + \frac{1}{7}s_1 + \frac{2}{7}s_2 = 2\frac{6}{7}$$

Split each coefficient a into the **integral** part $\lfloor a \rfloor$ and the **fractional** part $a - \lfloor a \rfloor$.

$$1x_1 + (0 + \frac{1}{7})s_1 + (0 + \frac{2}{7})s_2 = 2 + \frac{6}{7}$$

Bring all **integral** parts to the **left** and the **fractional** parts to the **right**.

$$x_1 - 2 = \frac{6}{7} - \frac{1}{7}s_1 - \frac{2}{7}s_2$$

Since the left-hand side is integral in all feasible solutions, the **right-hand side** should also be **integral**.

The right-hand side $\frac{6}{7} - \frac{1}{7}s_1 - \frac{2}{7}s_2$ should be integral.

Since $\frac{6}{7} < 1$ and $s_1, s_2 \ge 0$, the only possible values for the right-hand side are $0, -1, -2, \ldots$, so:

$$\frac{6}{7} - \frac{1}{7}s_1 - \frac{2}{7}s_2 \leq 0$$

Rewrite:

$$-\frac{1}{7}s_1 - \frac{2}{7}s_2 \leq -\frac{6}{7}$$

(or

$$-s_1-2s_2\leq -6)$$

This is a Gomory cut or Gomory cutting plane.

The Gomory cut expressed in the original variables, is: $x_1 \le 2$:

The yellow part of the polyhedron has been cut off.

To solve the new LP-relaxation algorithmically, add a slack variable to the Gomory cut as it was derived:

$$-\frac{1}{7}s_1 - \frac{2}{7}s_2 + s_4 = -\frac{6}{7}$$

and add the row to the **current Simplex tableau** of the LP relaxation: (Notice: The Gomory cut is "automatically" expressed in non-basic variables!)

basis	\bar{b}	x ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	s ₄
	20/7	1	0	1/7	2/7	0	0
<i>x</i> ₂	3	0	1	0	1	0	0
<i>s</i> ₃	23/7	0	0	-2/7	10/7	1	0
S ₄	20/7 3 23/7 -6/7	0	0	-1/7	-2/7	0	1
-z	59/7	0	0	4/7	1/7	0	0

basis	\bar{b}	<i>x</i> ₁	<i>X</i> ₂	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
<i>x</i> ₁	20/7	1	0	1/7	2/7	0	0
<i>x</i> ₂	3	0	1	0	1	0	0
<i>s</i> ₃	23/7	0	0	-2/7	10/7	1	0
<i>S</i> ₄	-6/7	0	0	1/7 0 -2/7 -1/7	-2/7	0	1
	59/7	0	0	4/7	1/7	0	0

The solution remains dual feasible but is no longer primal feasible.

Apply the **dual Simplex method**. s_4 is the leaving basis variable.

Determine the entering basis variable:

$$\min\left\{\left|\frac{\bar{c}_{s_1}}{\bar{a}_{4,s_1}}\right|,\;\left|\frac{\bar{c}_{s_2}}{\bar{a}_{4,s_2}}\right|\right\}=\min\left\{\left|\frac{4/7}{-1/7}\right|,\left|\frac{1/7}{-2/7}\right|\right\}=\left|\frac{1/7}{-2/7}\right|$$

So s_2 enters the basis.

Apply row operations:

basis	\bar{b}	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	<i>S</i> ₄
	2	1	0	0	0	0	1
<i>x</i> ₂	0	0	1	-1/2	0	0	7/2
<i>s</i> ₃	-1	0	0	-1	0	1	5
s ₂	3	0	0	s ₁ 0 -1/2 -1 1/2 1/2	1	0	-7/2
-z	8	0	0	1/2	0	0	1/2

New dual pivot:

basis	\bar{b}	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	<i>S</i> ₄
	2	1	0	0	0	0	1
<i>x</i> ₂	0	0	1	-1/2	0	0	7/2
<i>s</i> ₃	-1	0	0	-1	0	1	5
<i>s</i> ₂	3	0	0	1/2	1	0	-7/2
	8	0	0	s_1 0 -1/2 -1 1/2 1/2	0	0	1/2

Now s_1 enters the basis for s_3 .

basis	\bar{b}	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s ₃ 0 -1/2 -1 1/2 1/2	<i>S</i> ₄
	2	1	0	0	0	0	1
x_2	1/2	0	1	0	0	-1/2	1
s_1	1	0	0	1	0	-1	-5
<i>s</i> ₂	5/2	0	0	0	1	1/2	-1
-z	15/2	0	0	0	0	1/2	3

The current solution, $x_{LP} = \begin{bmatrix} 2 \\ 1/2 \end{bmatrix}$, is dual and primal feasible, and hence optimal.

The optimal solution of the LP-relaxation after adding the Gomory cut $(x_{LP} = (3, 1/2))$.

The objective value increased from $z_{LP}=-59/7=-8.42857...$ to $z_{LP}=-15/2=-7.5.$

Since the LP-relaxation improved, we are more likely to being able to prune by bound (or optimality) in B&B.

Final remarks

- We can formulate a Gomory cut for each row of the Simplex tableau, including the objective function row.
- We can add all these to the Simplex tableau simultaneously.
- In practice, Branch & Bound is combined with Cutting Planes.

To Do

Solve exercises: 13.1 (you may solve all subproblems graphically), 14.1