Dissertation Lab Notebook

S. Kevin McNeill

Need to calculate the diameter of a $1/2 \ lb$ hemispherical charge of TNT.

```
from pint import UnitRegistry
import numpy as np
u = UnitRegistry()
u.auto_reduce_dimensions = True
```

The density of cast TNT ranges between $1.5\ g/cc$ and $1.6\ g/cc$ [1] The weight of explosives to be used in the tests is $1/2\ lb$. Therefore, the the volume of explosives required is,

```
density_TNT = 1.5*u.gram / u.cubic_centimeter
weight_TNT = 0.5*u.pound
volume_TNT = weight_TNT / density_TNT
print(volume_TNT.to_compact())
```

151.19745666666668 cubic_centimeter

The density of bulk PETN ranges between $800\ kg/m^3$ and $900\ kg/m^3$ [2] The weight of explosives to be used in the tests is $1/2\ lb$. Therefore, the the volume of explosives required is,

```
density_PETN = 850*u.kilogram / u.meter**3
weight_PETN = 0.5*u.pound
volume_PETN = (weight_PETN /
density_PETN).to('cubic_centimeters')
print(volume_PETN)
```

266.8190411764706 cubic_centimeter

The density of Dyno AP is $1.5\ g/cc$ [3] The weight of explosives to be used in the tests is $1/2\ lb$. Therefore, the the volume of explosives required is,

```
density_dynoap = 1.5*u.gram / u.cubic_centimeter
weight_dynoap = 0.5*u.pound
volume_dynoap = weight_dynoap / density_dynoap
print(volume_dynoap.to_compact())
```

151.19745666666668 cubic_centimeter

The formula for a hemisphere is $V=rac{2}{3}\pi r^3$. Therefore, the $r=\sqrt[3]{rac{3}{2\pi}V}$.

```
r_TNT = (3/(2*np.pi)*volume_TNT)**(1/3)
r_PETN = (3/(2*np.pi)*volume_PETN)**(1/3)
r_dynoap = (3/(2*np.pi)*volume_dynoap)**(1/3)
print('The radius of the mold for TNT is {:.3f}'.format(r_TNT.to(u.millimeter)))
print('The radius of the mold for PETN is
{:.3f}'.format(r_PETN.to(u.millimeter)))
print('The radius of the mold for DynoAP is
{:.3f}'.format(r_dynoap.to(u.millimeter)))
```

The radius of the mold for TNT is 41.639 millimeter The radius of the mold for PETN is 50.318 millimeter The radius of the mold for DynoAP is 41.639 millimeter

Bibliography

- 1. LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Stimulants, June 1985, Page 19-134
- 2. Eurenco. (2020). Pentrite (PETN). Retrieved March 25, 2020, from http://www.eurenco.com/wp-content/uploads/2013/07/PETN.pdf
- 3. Dyno Nobel. (2020). Technical Information Properties DYNO ® AP Small Diameter Detonator Sensitive Emulsion. Salt Lake City, UT. Retrieved from www.dynonobel.com

Empty markdown cell, double click me to add content.