Weather Station

Presented by Group 3 - SE1856

- Nguyễn Đức Hùng SE171325
- Nguyễn Bá Đạt SE171259
- Hà Gia Khánh SE171330
- Nguyễn Phúc Lộc SE171328

Outline

I. INTRODUCTION

II. MAIN PROPOSAL

III. RESULTS AND DISCUSSION

IV. CONCLUSION

Introduction

The global interconnectivity facilitated by high-speed Internet and IoT technology has transformative implications for various industries. IoT enables communication between humans and electronic devices, leading to advancements in transportation, energy utilization, logistics, and healthcare

Project Goals

This project aims to develop a simple weather station using different technologies, allowing users to access real-time weather information from anywhere via an internet connection.

MAIN PROPOSAL

- A. Components and peripheral devices
- B. System models and block diagram
- C. Programming Flowchart
- D. Software programming

A. Components and peripheral devices

- Module Lora RF433 SX1278 RA-01 (02 modules)
- KIT WiFi NodeMcu ESP8266 CH340
- Dust sensor GP2Y1014AU PM2.5
- Temperature Humidity Sensor DHT11
- Rain Water Sensor

B. System models and block diagram

Sender Start Setup: Lora, DHT11, Rain Sensor, Dust Sensor Read DHT11, Dust Sensor, Read Rain Sensor False Check Data True Send Data (Lora 1) Delay

Flowchart

D. Software programming

Sender:

```
include <LoRa.h>
include "DHT.h"
define LORA SS PIN 10
define LORA RST PIN 9
define LORA DI0 PIN 2
define analogPin A0
define measurePin A1
nt ledPower = 4;
 nst int DHTPIN = 7;
 nst int DHTTYPE = DHT11;
HT dht(DHTPIN, DHTTYPE);
oid setup() {
erial.begin(9600);
hile (!Serial);
inMode(ledPower,OUTPUT);
ht.begin();
erial.println("LoRa Sender");
oRa.setPins(LORA SS PIN, LORA RST PIN, LORA DI0 PIN);
f (!LoRa.begin(433E6)) {
erial.println("Starting LoRa failed!");
hile (1);
erial.println("LoRa init successful.");
oRa.setTxPower(20);
```

Code for Sender

Receiver:

```
nclude <LoRa.h>
  define BLYNK PRINT Serial
 define BLYNK_TEMPLATE_ID "IMPL6ttdmKlos"
 define BLYNK_TEMPLATE_NAME "project IOT"

define BLYNK_AUTH_TOKEN "n4tbnNACySMz04S46m3m_prYlCjawrNh"
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
 har auth[] = "n4tbnNACySMz04S46m3m_prYlCjawrNh";
  nar ssid[] = "FPTU Student";
  nar pass[] = "12345678";
 define SS D8
 define RST D4
 define DIO0 D1
 oid setup() {
Serial.begin(9600);
while (!Serial);
Blynk.begin(auth, ssid, pass);
Serial.println("Receiver Host");
LoRa.setPins(SS,RST,DIO0);
if (!LoRa.begin(433E6)) {
Serial.println("Starting LoRa failed!");
while (1);
Serial.println("LoRa init successful.");
LoRa.setTxPower(20);
```

Code for Receiver

Arduino	Lora Sender	DHT11	Dust Sensor	Rain Water Sensor
GND	GND	GND	LED-GND S- GND	GND
10	NSS			
11	MOSI			
12	MISO			
13	SCK			
3.3V	3.3V			
9	RESET			
2	DIOO			
5V		VCC	V-LED VCC	VCC
7.		DATA	100.00	
4		1247.72.303	LED	
AO			Vo	
3				D0

Fig. 3. Interfacing between Arduino Uno and its components (pin-to-pin)

ESP8266	Lora Receiver		
GND	GND		
D8	NSS		
D7	MOSI		
D6	MISO		
D5	SCK		
3V	3.3V		
D0	RESET		
D1	DIOO		

Fig. 4. Interfacing between ESP8266 and its components (pin-to-pin)

RESULTS & CONCLUSIONS

- A. Prototype Implementation
- **B.** Experimental Results
- C. Conclusions & Future work

A. Prototype Implementation

Find the necessary hardware components, including Arduino, dust sensor, temperature humidity sensor, rain water sensor, LoRa module and ESP8266.

B. Experimental Results

Information about the sensor's measured data is sent and displayed visually on the web. It reports temperature and humidity, rain, and dust to help us have a proper view of the weather.

Project Demo

Conclusions & Future work

The IoT project aims to collect real-time environmental conditions, temperature and humidity, dust, rain using sensors and wireless communication through radio frequency modules. The collected data is then transmitted to Blynk, where it can be presented. It showcases the potential of IoT in collecting and visualizing environmental data, benefiting various applications such as agriculture and public safety.

