Convergence, Intégration, Probabilités

Séance 4 - Construction de l'intégrale, espaces L^p , interversion limite-intégrale

CentraleSupélec

Cursus ingénieur

26 septembre 2019

Retours amphi 3

- Support amphi 3 disponible en versions vierge et annotée sur edunao
- Enregistrement vidéo de l'amphi 3 disponible sur la web tv
- Problème de positionnement du micro
- Questions d'ordre mathématique sur daskit/cip19-20 (même espace anglophone/francophone)
- Support amphi 4 vierge disponible dès à présent sur edunao

Rappels de la séance précédente

- ► Notion de tribu, espace mesurable
- Notion de mesure, espace mesuré
- Cas particuliers des espaces de probabilités
- Notion de fonctions mesurables
- Notion de fonctions étagées

Programme

Intégrale d'une fonction étagée réelle positive

Intégrale des fonctions mesurables positives

Fonctions μ -intégrables

Théorème de convergence dominée

Espace L^p

Programme

Intégrale d'une fonction étagée réelle positive

Intégrale des fonctions mesurables positives

Fonctions μ -intégrables

Théorème de convergence dominée

Espace L^p

Intégrale d'une fonction étagée positive l

Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré.

Définition 4.1 (Intégrale d'une fonction étagée réelle positive)

Soit $\varphi = \sum_{i=1}^{N} \alpha_i \mathbf{1}_{A_i}$ une fonction étagée, positive, i.e. $\varphi : \Omega \to \mathbb{R}_+$, avec $\forall i \in \{1, \dots, N\}$, $\alpha_i \in \mathbb{R}_+$ et les $(A_i)_{i \in \{1, \dots, N\}}$ forment une partition mesurable de Ω . On définit l'intégrale de φ par rapport à la mesure μ par

$$\int_{\Omega} \varphi \, d\mu = \sum_{i=1}^{N} \alpha_i \mu(A_i).$$

Intégrale d'une fonction étagée positive II

Propriétés de l'intégrale d'une fonction étagée I

Proposition 4.2 (Propriétés élémentaires)

Soient φ et ψ deux fonctions étagées réelles positives sur $(\Omega, \mathcal{T}, \mu)$.

- (a) $\int_{\Omega} (\varphi + \psi) d\mu = \int_{\Omega} \varphi d\mu + \int_{\Omega} \psi d\mu$.
- (b) $\forall \lambda \geq 0, \int_{\Omega} \lambda \varphi \, d\mu = \lambda \int_{\Omega} \varphi \, d\mu.$
- (c) $\varphi \leq \psi \Longrightarrow \int_{\Omega} \varphi \, d\mu \leq \int_{\Omega} \psi \, d\mu$.

Propriétés de l'intégrale d'une fonction étagée II

Programme

Intégrale d'une fonction étagée réelle positive

Intégrale des fonctions mesurables positives

Fonctions μ -intégrables

Théorème de convergence dominée

Espace L^p

Intégrale d'une fonction mesurable positive

Définition 4.3 (Intégrale d'une fonction mesurable positive)

Soit $f:(\Omega,\mathcal{T})\to (\overline{\mathbb{R}}_+,\mathcal{B}(\overline{\mathbb{R}}_+))$ une fonction mesurable, à valeurs réelles positives, éventuellement infinies. On définit l'intégrale de f par rapport à la mesure μ par

$$\int_{\Omega} f \ d\mu = \sup \left\{ \int_{\Omega} \varphi \ d\mu : \varphi \ \text{fonction \'etag\'ee positive}, \varphi \leq f \right\}.$$

Proposition 4.4 (Propriétés)

Soit
$$f, g: (\Omega, \mathcal{T}) \to (\overline{\mathbb{R}}_+, \mathcal{B}(\overline{\mathbb{R}}_+))$$
.

- (a) $\int_{\Omega} f d\mu \geq 0$;
- (b) $f \leq g \Longrightarrow \int_{\Omega} f \ d\mu \leq \int_{\Omega} g \ d\mu$.

Théorème de convergence monotone I

Théorème 4.5 (Théorème de convergence monotone)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite croissante de fonctions mesurables sur (Ω, \mathcal{T}) à valeurs dans $\overline{\mathbb{R}}_+$. Alors $\lim_n f_n$ est une fonction mesurable sur (Ω, \mathcal{T}) à valeurs dans $\overline{\mathbb{R}}_+$ et

$$\int_{\Omega} \lim_{n} f_{n} d\mu = \lim_{n} \int_{\Omega} f_{n} d\mu.$$

Théorème de convergence monotone II

Lemme 4.6 (Lemme de démonstration)

Soit φ une fonction étagée à valeurs dans $\overline{\mathbb{R}}_+$. Soit $(E_n)_{n\in\mathbb{N}}$ une suite croissante de parties mesurables de Ω , vérifiant $\Omega = \bigcup_{n\in\mathbb{N}} E_n$. Alors, $\lim_n \int_{\Omega} \varphi \mathbf{1}_{E_n} d\mu = \int_{\Omega} \varphi d\mu$.

Théorème de convergence monotone III

Proposition 4.7 (Propriétés élémentaires)

Soient f et g deux fonctions mesurables sur (Ω, \mathcal{T}) à valeurs dans $\overline{\mathbb{R}}_+$.

(a)
$$\int_{\Omega} (f+g) d\mu = \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$$
.

(b)
$$\forall \lambda \geq 0, \int_{\Omega} \lambda f \ d\mu = \lambda \int_{\Omega} f \ d\mu.$$

Définition 4.8 (Propriétés vraies presque-partout)

Une propriété P(x) est dite vraie μ -presque partout (noté μ -p.p.) s'il existe un ensemble $N \in \mathcal{T}$ tel que $\mu(N) = 0$ et P(x) est vraie pour tout $x \in \Omega \setminus N$.

Proposition 4.9 (Propriétés (suite))

Soient f et g deux fonctions mesurables sur (Ω, \mathcal{T}) à valeurs dans $\overline{\mathbb{R}}_+$.

(a)
$$\int_{\Omega} f d\mu = 0 \iff f = 0 \ \mu - p.p.$$

(b)
$$f = g \ \mu - p.p. \Longrightarrow \int_{\Omega} f \ d\mu = \int_{\Omega} g \ d\mu.$$

Proposition 4.10 (Propriétés (suite))

Soit f une fonction mesurable sur (Ω, \mathcal{T}) à valeurs dans $\overline{\mathbb{R}}_+$.

(a)
$$\forall a > 0, \mu(\{x \in \Omega : f(x) \ge a\}) \le \frac{1}{a} \int_{\Omega} f \, d\mu$$
;

(b)
$$\int_{\Omega} f d\mu < \infty \Longrightarrow f < \infty \ \mu - p.p.$$

► TD Exercice IV.2 (Inégalité de Markov)

Exemple de l'intégration sur $(\mathbb{N}, \mathcal{P}(\mathbb{N}), Card)$

► TD Exercice IV.1

Programme

Intégrale d'une fonction étagée réelle positive

Intégrale des fonctions mesurables positives

Fonctions μ -intégrables

Théorème de convergence dominée

Espace I^p

Intégrale d'une fonction μ -intégrable

Définition 4.11 (Fonction μ -intégrable)

Une fonction $f:(\Omega,\mathcal{T})\to (\mathbb{R},\mathcal{B}(\mathbb{R}))$ mesurable est dite μ -intégrable (ou s'il n'y a pas d'ambiguïté intégrable), si $\int_{\Omega}|f|\,d\mu<+\infty$. On note $\mathcal{L}^1(\Omega,\mathcal{T},\mu)$ l'ensemble des fonctions μ -intégrables.

Définition 4.12 (Intégrale d'une fonction $\mathcal{L}^1(\Omega, \mathcal{T}, \mu)$)

Soit f une fonction de $\mathcal{L}^1(\Omega, \mathcal{T}, \mu)$. Alors f^+ et f^- sont des fonctions mesurables positives, et on définit l'intégrale de f par rapport à μ par

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f^+ \, d\mu - \int_{\Omega} f^- \, d\mu.$$

Propriétés de l'intégrale des fonctions $\mathcal{L}^1(\Omega, \mathcal{T}, \mu)$

Proposition 4.13 (Propriétés élémentaires)

Soient f et g deux fonctions de $\mathcal{L}^1(\Omega, \mathcal{T}, \mu)$.

- (a) (linéarité) $\int_{\Omega} (\lambda f + g) d\mu = \lambda \int_{\Omega} f d\mu + \int_{\Omega} g d\mu$.
- (b) (croissance) $f \leq g \Longrightarrow \int_{\Omega} f \ d\mu \leq \int_{\Omega} g \ d\mu$.
- (c) $f = g \ \mu p.p. \Longrightarrow \int_{\Omega} f \ d\mu = \int_{\Omega} g \ d\mu.$
- (d) (inégalité triangulaire) $\left| \int_{\Omega} f \ d\mu \right| \leq \int_{\Omega} |f| \ d\mu$.
 - $ightharpoonup \mathcal{L}^1(\Omega,\mathcal{T},\mu)$ est un \mathbb{R} -espace vectoriel.
 - $f \to \int_{\Omega} f \, d\mu$ est une forme linéaire sur $\mathcal{L}^1(\Omega, \mathcal{T}, \mu)$.

Propriétés de l'intégrale des fonctions $\mathcal{L}^1(\Omega, \mathcal{T}, \mu)$

Programme

Intégrale d'une fonction étagée réelle positive

Intégrale des fonctions mesurables positives

Fonctions μ -intégrables

Théorème de convergence dominée

Espace L^p

Lemme de Fatou

Proposition 4.14 (Lemme de Fatou)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions mesurables sur (Ω, \mathcal{T}) à valeurs dans \mathbb{R}_+ . Alors : $0 \le \int_{\Omega} \liminf_n f_n d\mu \le \liminf_n \int_{\Omega} f_n d\mu \le +\infty$.

Théorème de convergence dominée I

Théorème 4.15 (Théorème de convergence dominée)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de $\mathcal{L}^1(\Omega,\mathcal{T},\mu)$. Si :

- (i) la suite $(f_n)_{n\in\mathbb{N}}$ converge $\mu-p.p.$ vers une fonction $f:\Omega\to\mathbb{R}$ mesurable ;
- (ii) il existe une fonction $g:\Omega\to\mathbb{R}_+$ mesurable telle que $\int_\Omega g\ d\mu<\infty$ et $\forall n\in\mathbb{N}, |f_n|\leq g\ \mu-p.p.$;

Alors
$$f \in \mathcal{L}^1(\Omega, \mathcal{T}, \mu)$$
 et $\int_{\Omega} f \ d\mu = \lim_n \int_{\Omega} f_n \ d\mu$.

On a de plus
$$\lim_{n} \int_{\Omega} |f_n - f| d\mu = 0.$$

Théorème de convergence dominée II

Théorème de convergence dominée III

Programme

Intégrale d'une fonction étagée réelle positive

Intégrale des fonctions mesurables positives

Fonctions μ -intégrables

Théorème de convergence dominée

Espace L^p

Espaces \mathcal{L}^p

Soit $(\Omega, \mathcal{T}, \mu)$ un espace mesuré. Pour $p \geq 1$, on définit l'ensemble des fonctions mesurables sur Ω et à valeurs dans \mathbb{R} dont la p-ième puissance est μ -intégrable :

$$\mathcal{L}^p(\Omega,\mathcal{T},\mu) = \left\{ f: (\Omega,\mathcal{T}) \to (\mathbb{R},\mathcal{B}(\mathbb{R})) \text{ mesurables } : \int_{\Omega} |f|^p d\mu < +\infty \right\}.$$

Proposition 4.16 (Structure)

 $\mathcal{L}^p(\Omega, \mathcal{T}, \mu)$ est un \mathbb{R} -espace vectoriel.

Application $\|\cdot\|_p$

Pour une fonction f mesurable, on définit $\|\cdot\|_p$ à valeurs dans $\overline{\mathbb{R}}_+$ par :

$$||f||_p = \left(\int_{\Omega} |f|^p d\mu\right)^{\frac{1}{p}}.$$

Proposition 4.17 (Inégalité de Hölder)

Soient p et q deux exposants conjugués, i.e. deux réels de $]1,+\infty[$ tels que $\frac{1}{p}+\frac{1}{q}=1$.

(a) Soient deux fonctions f et g mesurables positives. Alors :

$$0 \le \|fg\|_1 \le \|f\|_p \|g\|_q \le +\infty.$$

- (b) Soient deux fonctions $f \in \mathcal{L}^p(\Omega, \mathcal{T}, \mu)$ et $g \in \mathcal{L}^q(\Omega, \mathcal{T}, \mu)$. Alors $fg \in \mathcal{L}^1(\Omega, \mathcal{T}, \mu)$ et $\|fg\|_1 \leq \|f\|_p \|g\|_q$.
 - Démonstration TD Exercice IV.4

Inégalité de Minkowski

Définition 4.18 (Inégalité de Minkowski)

Soit $p \in [1, +\infty[$. Soient f et g deux fonctions de $\mathcal{L}^p(\Omega, \mathcal{T}, \mu)$. Alors

$$||f+g||_p \leq ||f||_p + ||g||_p.$$

Semi-norme

Proposition 4.19 (Espace vectoriel semi-normé)

L'application $\|\cdot\|_p$ est une semi-norme sur l'espace $\mathcal{L}^p(\Omega, \mathcal{T}, \mu)$.

• On définit sur $\mathcal{L}^p(\Omega, \mathcal{T}, \mu)$ la relation R par :

$$fRg \iff ||f - g||_p = 0.$$

- R est une relation d'équivalence, et deux fonctions appartiennent à la même classe d'équivalence si et seulement elles sont égales μ – p.p..
- On note $L^p(\Omega, \mathcal{T}, \mu)$ l'espace quotient de $\mathcal{L}^p(\Omega, \mathcal{T}, \mu)$ par R.

Proposition 4.20 (Espace vectoriel normé)

L'application $\|\cdot\|_p$ est une norme sur $L^p(\Omega, \mathcal{T}, \mu)$.

Cas p = 2: l'espace de Hilbert $L^2(\Omega, \mathcal{F}, \mu)$

Pour $f: \Omega \to \mathbb{R}$ mesurable,

$$f \in L^2(\Omega, \mathcal{T}, \mu) \Leftrightarrow \|f\|_2 = \left(\int |f|^2 d\mu\right)^{1/2} < +\infty.$$

L'application

$$L^2(\Omega, \mathcal{T}, \mu) \times L^2(\Omega, \mathcal{T}, \mu) \rightarrow \mathbb{R}$$

$$(f, g) \mapsto \langle f, g \rangle = \int f g. d\mu$$

définit un produit scalaire, pour lequel $\|\cdot\|_2$ est la norme associée. L'espace $L^2(\Omega, \mathcal{T}, \mu)$ muni du produit scalaire $\langle\cdot,\cdot\rangle$ est un espace de Hilbert.

En général $L^2(\Omega, \mathcal{T}, \mu) \not\subset L^1(\Omega, \mathcal{T}, \mu)$ sauf si $\mu(\Omega) < +\infty$.