Sistemas Operacionais

Escalonamento

Parte 1

Prof. Otávio Gomes

RecapitulandoSistema Operacional

- Oferece **serviços** de tratamento de interrupções e exceções; gerenciamento de arquivos, memória e dispositivos; suporte à rede; proteção e segurança.
- Realiza abstração e gerência de recursos limitados.
- Com relação ao tipo de tarefas, podemos classificá-los em:
 - Monotarefa
 - •Multitarefa (Multiprogramação):
 - •Em lote (Batch)
 - Tempo Compartilhado (Time-sharing)
 - •Tempo-Real

RecapitulandoSistema Operacional Multitarefa

• Possui diversos processos que **competem pela CPU**. Surge, assim, a necessidade de alguma entidade para escalonar a CPU entre os processos.

Recapitulando Processos

- É uma instância de um programa em execução;
- Pode ser executado em primeiro ou em segundo plano (daemon);
- Pode ser orientado à CPU ou à operações de E/S;
- Possui espaço de endereçamento de memória reservado;
- Possui um Bloco de Controle de Processo (PCB)
 que mantém informações relacionadas a seu contexto.

Recapitulando

Sistema Operacional Multitarefa

Possui diversos processos que competem pelo uso da CPU.

- Despachante (Dispatcher): módulo que realiza o armazenamento e recuperação dos contextos dos processos e atualiza os PCBs.
- **Escalonador** (*Scheduler*): módulo que controla a mudança de estado dos processos, definindo o próximo processo a ser executado.

Troca de contexto

- Também conhecido como **chaveamento** ou **mudança** de contexto é o processo computacional de armazenar e restaurar o estado (contexto) de uma CPU de forma que múltiplos processos possam compartilhar uma única instância de CPU.
- Este processo garante que quando o contexto anterior armazenado for restaurado, o ponto de execução voltará ao mesmo estado que foi deixado durante o armazenamento.
- A mudança de contexto leva a uma **sobrecarga** de tempo:
 - •É preciso salvar as informações do processo que está deixando/entrando a/na CPU em seu PCB (Bloco de Controle de Processos).
 - •Salvar o conteúdo dos registradores.

Troca de contexto

Despacho e Escalonamento

Sistema Operacional Multitarefa

- **Despachante** (*Dispatcher*): módulo que realiza o armazenamento e recuperação dos contextos dos processos e atualiza os PCBs.
 - Armazena e recupera o contexto;
 - Atualiza as informações no PCB;
 - •Processo relativamente rápido (0,1ms).

- **Escalonador** (*Scheduler*): módulo que controla a mudança de estado dos processos, definindo o próximo processo a ser executado.
 - •Escolhe a próxima tarefa a receber o processador;
 - •Parte mais demorada.

EscalonamentoSistema Operacional Multitarefa

- Quando o Escalonador é chamado?
 - •Quando um novo processo é criado:
 - •Por quem ele foi criado? Qual a prioridade deste processo?
 - •Quando um processo cria outro, qual executar? Pai ou filho?
 - •Um processo chegou ao **fim** e um processo pronto deve ser executado:
 - •É necessário definir quem será o próximo da fila.
 - •Quando um processo é **bloqueado** (dependência de E/S) e outro deve ser executado.

EscalonamentoSistema Operacional Multitarefa

- Quando ocorre uma resposta de E/S, o escalonador deve:
 - •Executar o processo que estava esperando este evento?
 - •Continuar executando o processo que já estava sendo executado?
 - •Executar um terceiro processo que esteja pronto para ser executado?

Escalonamento de processos

- Deve possuir um algoritmo que se preocupe com 5 regras:
 - Justiça Todos processos devem ter acesso a CPU (tempo de espera)
 - Eficiência buscar a máxima utilização da CPU
 - Minimizar o Tempo de Resposta
 - **Turnaround** Minimiza os usuários *batch*. Tempo para conclusão do processo (alocação + fila + execução CPU + execução E/S)
 - *Throughput* Maximizar o número de *jobs* processados

A partir da finalização da execução de um processo ou de sua parcela de tempo (*quantum*), qual será o novo processo a ser executado?

Um novo processo criado? Um processo que criou outro processo (filho)? Um processo que está pronto há mais tempo?

Como esta escolha pode ser feita?

Escalonamento de processos

• Com relação ao escalonamento da CPU, pode ser classificado em:

•Não-preemptivo:

- •Implementação mais simples do escalonador.
- Processo utiliza o processador durante o tempo que quiser.
- •O processo deixa/libera a CPU nas seguintes condições:
 - •Término da execução; ou
 - •Solicitação de operação de E/S (voluntário).

Escalonamento de processos

• Com relação ao escalonamento da CPU, pode ser classificado em:

•Preemptivo:

- Escalonador mais complexo.
- Processo utiliza o processador durante uma parcela de tempo definida (time-sharing).
- •Compartilhamento da CPU é garantido. Periodicamente o escalonador interrompe o processo em execução e muda-o para o estado "pronto".
- •O processo deixa/libera a CPU nas seguintes condições:
 - •Término da execução; ou
 - •Solicitação de operação de E/S; ou
 - •Término do quantum.

Qual o próximo processo a ser enviado à CPU?

top -	19:00	9:06 up	7:47	7, 1 use	er, loa	ad aver	age	: 0.65	, O.57	7, 0.51	
Tasks	: 198	total,	2 1	running,	196 sle	eeping,	-	0 stop	ped,	Ø zombie	
%Cpu((s): 12	2.6 us,	0.6	sy, 0.0	9 ni, 80	6.8 id,	0	.0 wa,	0.0	hi, 0.0 s	si, 0.0 st
MiB M	1em :	11894.0	tota	al, 15 1	L1.5 fro	ee, 5 7	763	.0 use	d, 4	4619.4 buf1	f/cache
MiB S	wap:	0.0	tota	al,	0.0 fr	ee,	Θ	.0 use	d. :	5 706.3 avai	il Mem
PID	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	COMMAND
2844	root	20	8	4169800	1.9g	152908	R	46.8	16.4	126:45.88	Web Content
2758	root	20	Θ	2560304	462792	162424	s	5.6	3.8	49:01.37	firefox-esr
1383	root	20	Θ	521120	113500	82664	s	θ.3	0.9	12:35.23	Xorg
2494	root	20	Θ	6347740	1.6g	37592	s	0.3	13.7	31:22.93	java
3036	root	20	Θ	625936	50372	31888	s	0.3	0.4	0:34.02	gnome-terminal
11209	root	-51		17868	3504	3028	R	0.3	0.0	0:00.03	top
1	root	20	Θ	202592	8988	6760	s	0.0	0.1	0:17.10	systemd
2	root?	20	Θ	Θ	Θ	Θ	s	Θ.Θ	Θ.Θ	0:00.02	kthreadd
3	root	θ	-20	θ	Θ	Θ	1	0.0	0.0	0:00.00	rcu gp
5	root	Θ	-20	Θ	Θ	Θ	1	0.0	Θ.Θ	0:00.48	kworker/0:0H
7	root	θ	-20	Θ	Θ	Θ	1	Θ.Θ	0.0	0:00.00	mm percpu wq
8	root	20	Θ	Θ	Θ	Θ	s	0.0	0.0	0:00.35	ksoftirqd/0

	•			Activity Mo	nitor (All F	rocesses)			
8	⊕ ⇔ ∨		CPU	Memory	Energy	Disk	Network	Q 8	Search
rocess	Name	Byte	s Written	Bytes Read	Kind	PID	User		
	kernel_task		108.9 MB	22.1 M	B 64 bit	. 0	root		
⊕ i	Tunes		9.6 MB	608.3 M	B 64 bit	630	John		
2	Activity Monitor		60 KB	1.5 M	B 64 bit	577	John		
	coreaudiod		324 KB	3.4 M	B 64 bit	243	_coreaudiod		
١	WindowServer		0 bytes	20.8 M	B 64 bit	101	_windowserver		
	sysmond		0 bytes	48 K	B 64 bit	165	root		
- 1	aunchd		122.2 MB	29.2 M	B 64 bit	: 1	root		
	airportd		1.2 MB	1.2 M	B 64 bit	31	root		
-	SystemUIServer		0 bytes	3.5 M	B 64 bit	241	John		
S I	Finder		344 KB	25.0 M	B 64 bit	242	John		
	powerd		132 KB	2.1 M	B 64 bit	28	root		
	coreduetd		5.2 MB	5.5 M	B 64 bit	43	root		
	notifyd		0 bytes	56 K	B 64 bit	73	root		
	cfprefsd		2.8 MB	2.5 M	B 64 bit	218	John		
	cfprefsd		2.2 MB	516 K	B 64 bit	78	root		
	configd		12 KB	3.6 M	B 64 bit	27	root		
	opendirectoryd		32 KB	9.0 M	B 64 bit	47	root		
	mds		9.0 MB	63.2 M	B 64 bit		root		
ı	UserEventAgent		60 KB	456 K	B 64 bit	214	John		
- 1	aunchservicesd		0 bytes	756 K	B 64 bit	52	root		
	mds_stores		43.6 MB	128.6 M	B 64 bit	144	root		
	ſ	Reads in:	93.387		10 \$		Data read:	2.82 GB	
		Writes out:	34,076	-			Data written:	731.7 MB	
		Reads in/sec:	04,070	-			Data read/sec:	0 bytes	
		Writes out/sec:	0	-			Data written/sec:	0 bytes	

Processos

- Podem ser descritos como:
 - •I/O-bound: gastam mais tempo fazendo E/S do que computação.
 - •CPU-bound: Gastam mais tempo com computação.
- Podemos classificá-los por:
 - •Uso de recursos: temos os processos convencionais e os de tempo real (de sistema).
 - •No Linux, os processos de tempo real recebem prioridade entre 1 e 99, enquanto os processos convencionais recebem prioridade entre 100 e 139 (padrão 120).

•<u>Tipo de execução:</u> temos os **interativos**, **em série** ou **tempo real**.

top - 19:00:06 up 7:47, 1 user, load average: 0.65, 0.57, 0.51 Tasks: 198 total, 2 running, 196 sleeping, 0 stopped, 0 zombie %Cpu(s): 12.6 us, 0.6 sy, 0.0 ni, 86.8 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st MiB Mem : 11894.0 total, 1511.5 free, 5763.0 used, 4619.4 buff/cache MiB Swap: 0.0 total, 0.0 free, 0.0 used. 5706.3 avail Mem

1.9a 152908 R 46.8

SHF S %CPU %MEM

TIME+ COMMAND

16.4 126:45.88 Web Content

RES

VIRT

0 4169800

2758 root												
2494 root	2758	root	20	8	2560304	462792	162424	S	5.6	3.8	49:01.37	firefox-esr
3030 root 20	1383	root	20	8	521120	113500	82664	S	0.3	0.9	12:35.23	Xorg
11209 root	2494	root	20	8	6347740	1.6g	37592	S	0.3	13.7	31:22.93	java
1 root	3030	root	20	8	625936	50372	31888	S	0.3	0.4	0:34.02	gnome-terminal-
2 root	11209	root	-51	0	17868	3504	3028	R.	0.3	0.0	0:00.03	top
3 root	1	root	20	0	202592	8988	6760	S	Θ.Θ	0.1	0:17.10	systemd
5 root	2	root	20	8	Θ	Θ	6	S	0.0	0.0	0:00.02	kthreadd
7 root	3	root	0	-20	8	Θ	6	I	0.0	0.0	0:00.00	rcu_gp
8 root	5	root	Θ	-20	Θ	6	(I	0.0	0.0	0:00.48	kworker/0:0H
9 root	7	root	0	-20	8	Θ	6	I	0.0	0.0	0:00.00	mm_percpu_wq
10 root	8	root	20	0	9	Θ	6	S	Θ.Θ	0.0	0:00.35	ksoftirqd/0
11 root	9	root	20	Θ	Θ	Θ	C	I	0.0	0.0	0:12.91	rcu sched
12 root	10	root	20	0	9	Θ	6	I	Θ.Θ	0.0	0:00.00	rcu_bh
13 root	11	root	rt	Θ	θ	Θ	6	s	0.0	0.0	0:00.01	migration/Θ
14 root	12	root	rt	Θ	8	Θ	E	S	0.0	0.0	0:00.08	watchdog/0
15 root	13	root	20	0	9	Θ	6	S	0.0	0.0	0:00.00	cpuhp/0
16 root	1.4	root	26	Θ	Θ	Θ	6	S	0.0	0.0	0:00.00	cpuhp/1
17 root	15	root	rt	Θ	9	Θ	6	S	0.0	0.0	0:00.09	watchdog/1
19 root	16	root	rt	0	ө	Θ	6	S	Θ.Θ	0.0	0:00.00	migration/1
20 root	17	root	20	Θ	8	Θ	(S	0.0	0.0	0:00.71	ksoftirqd/1
21 root	19	root	0	-20	9	Θ	6	I	Θ.Θ	0.0	0:00.00	kworker/1:0H
22 root rt 0 0 0 5 0.0 0.0 0:00.01 migration/2 23 root 20 0 0 0 5 0.0 0.0 0:00.38 ksoftirqd/2 25 root 0 -20 0 0 1 0.0 0.0 0:00.00 kworker/2:0H 26 root 20 0 0 0 5 0.0 0.0 0:00.00 cpuhp/3 27 root rt 0 0 0 5 0.0 0.0 0:00.08 watchdog/3 28 root rt 0 0 0 5 0.0 0.0 0:00.01 migration/3 29 root 20 0 0 0 5 0.0 0.0 0:00.31 ksoftirqd/3	20	root	26	8	Θ	Θ	6	S	Θ.Θ	0.0	0:00.00	cpuhp/2
23 root 20 0 0 0 5 0.0 0.0 0:00.38 ksoftirqd/2 25 root 0 -20 0 0 0 0.0 0:00.00 kworker/2:0H 26 root 20 0 0 0 0 0.0 0:00.00 cpuhp/3 27 root rt 0 0 0 0 0.0 0:00.08 watchdog/3 28 root rt 0 0 0 5 0.0 0.0 0:00.01 migration/3 29 root 20 0 0 0 0.0 0:00.31 ksoftirqd/3	21	root	rt	Θ	Θ	Θ	(S	0.0	0.0	0:00.09	watchdog/2
25 root	22	root	rt	0	8	Θ	6	s	Θ.Θ	0.0		
26 root 20 0 0 0 5 0.0 0.0 0:00.00 cpuhp/3 27 root rt 0 0 0 5 0.0 0.0 0:00.08 watchdog/3 28 root rt 0 0 0 5 0.0 0.0 0:00.01 migration/3 29 root 20 0 0 0 5 0.0 0.0 0:00.31 ksoftirqd/3	23	root	20	Θ	Θ	Θ	6	S	0.0	0.0	0:00.38	ksoftirqd/2
27 root rt 0 0 (S 0.0 0.0 0:00.08 watchdog/3 28 root rt 0 0 (S 0.0 0.0 0:00.01 migration/3 29 root 20 0 0 (S 0.0 0.0 0:00.31 ksoftirqd/3	25	root	0	-20	9	Θ	6	I	0.0	0.0	0:00.00	kworker/2:0H
28 root rt 0 0 (S 0.0 0.0 0:00.01 migration/3 29 root 20 0 0 (S 0.0 0.0 0:00.31 ksoftirqd/3	26	root	20	8	Θ	Θ	6	S	Θ.Θ	0.0	0:00.00	cpuhp/3
29 root	27	root	rt	8	Θ	Θ	6	S	0.0	0.0	0:00.08	watchdog/3
	28	root	rt	8	8	Θ	(S	0.0	0.0		
31 root 0 -20 0 0 1 0.0 0.0 0:00.00 kworker/3:0H	29	root	26	Θ	θ	Θ	6	S	0.0	0.0	0:00.31	ksoftirqd/3
	31	root	8	-26	Θ	Θ	6	Ι	0.0	0.0	0:00.00	kworker/3:0H

S - Em sérieI - InterativosR - Tempo real

PID USER

2844 root

PR

20

NI

- Sistemas Batch
- Sistemas Interativos
- Sistemas Tempo Real

Sistemas Batch

Sistemas Batch

• Refere-se a um processamento de dados que ocorre através de um lote de tarefas enfileiradas, de modo que o sistema operacional só processa a próxima tarefa após o término completo da tarefa anterior.

- Estão relacionados ao tempo de *job.*
 - 1. FCFS (*First-Come, First-Served*)
 - 2. SJF (Shortest Job First)
 - 3. Priority-based Scheduling
 - 4. SRTN (Shortest Remaining-Time Next)

Algoritmo de Escalonamento Sistemas Batch

1) FCFS (First-Come, First-Served)

- Não-preemptivo;
- Processos são executados na CPU seguindo a ordem de requisição;
- Fácil de entender e programar (FIFO);
- Processos só são interrompidos por uma solicitação de E/S;
- Desvantagem:
 - Ineficiente quando há processos que demoram na sua execução.

Sistemas Batch

1) FCFS (First-Come, First-Served)

Sistemas Batch

1) FCFS (First-Come, First-Served)

Process	Arrival Time	Execute Time	Service Time
P0	0	5	0
P1	1	3	5
P2	2	8	8
P3	3	6	16

Sistemas Batch

1) FCFS (First-Come, First-Served)

Process	Arrival Time	Execute Time	Service Time
P0	0	5	0
P1	1	3	5
P2	2	8	8
P3	3	6	16

Processo	Tempo de espera
P0	0 - 0 = 0
P1	5 - 1 = 4
P2	8 - 2 = 6
P3	16 - 3 = 13

Tempo médio de espera: (0+4+6+13) / 4 = 5,75

turnaround time

Turnaround Time

• Em sistemas operacionais é o tempo que o S.O. gasta para organizar os processos entre si: requisitar recursos, criar o lote de execução, decidir qual processo vai ser executado.

• Em suma, é o tempo total contado desde a submissão do processo até sua conclusão. Leva em consideração o tempo de espera.

Algoritmo de Escalonamento Sistemas Batch

2) SJF (Shortest Job First) ou SJN (Shortest Job Next)

- Não-preemptivo;
- Menor processo da lista é executado primeiro;
- Deve-se prever o tempo de execução do processo;
- Menor turnaround (médio);
- Desvantagens:
 - Todos os jobs precisam ser conhecidos de antemão;
 - Se muitos *jobs* curtos começarem a chegar, os longos podem demorar a ser executados (<u>possibilidade de inanição</u> *starvation*).

Sistemas Batch

2) SJF (Shortest Job First) ou SJN (Shortest Job Next)

Process	Arrival Time	Execute Time	Service Time
PO	0	5	0
P1	1	3	5
P2	2	8	14
P3	3	6	8

P0

Sistemas Batch

2) SJF (Shortest Job First) ou SJN (Shortest Job Next)

Process	Arrival Time	Execute Time	Service Time
PO	0	5	0
P1	1	3	5
P2	2	8	14
P3	3	6	8

P0

Processo	Tempo de espera
P0	0 - 0 = 0
P1	5 - 1 = 4
P2	14 - 2 = 12
P3	8 - 3 = 5

Tempo médio de espera: (0+4+12+5) / 4 = 5,25

Sistemas Batch

2) SJF (Shortest Job First) ou SJN (Shortest Job Next)

PID	Arrival	Burst	Completion	Turnaround	Waiting
	Time	Time	Time	Time	Time
P1	0	6	9	9	3
P2	0	8	24	24	16
Р3	0	7	16	16	9
P4	0	3	3	3	0

Sistemas Batch

2) SJF (Shortest Job First) ou SJN (Shortest Job Next)

PID	Arrival	Burst	Completion	Turnaround	Waiting
	Time	Time	Time	Time	Time
P1	0	6	9	9	3
P2	0	8	24	24	16
Р3	0	7	16	16	9
P4	0	3	3	3	0

Algoritmo de Escalonamento Sistemas Batch

3) Priority-based Scheduling

- Não-preemptivo;
- Cada processo recebe um nível de prioridade;
- Processos com a mesma prioridade são executados de acordo com sua chegada na fila (FCFS / FIFO);
- A prioridade pode ser definida de acordo com requisitos de memória, de tempo ou necessidade de outros recursos.

Sistemas Batch

3) Priority-based Scheduling

Process	Arrival Time	Execute Time	Service Time
PO	0	5	0
P1	1	3	11
P2	2	8	14
P3	3	6	5

Sistemas Batch

3) Priority-based Scheduling

Process	Arrival Time	Execute Time	Service Time
PO	0	5	0
P1	1	3	11
P2	2	8	14
P3	3	6	5

Processo	Tempo de espera		
PO	0 - 0 = 0		
P1	11 - 1 = 10		
P2	14 - 2 = 12		
Р3	5 - 3 = 2		

Tempo médio de espera: (0+10+12+2) / 4 = 6

Sistemas Batch

- Preemptivo (quantum);
- Versão preemptiva do SJF (Shortest Job First);
- Processos com menor tempo são executados primeiro.

Sistemas Batch

PID	Arrival Time	Burst Time	Completion time	Turn Around time (CT-AT)	Waiting Time (TAT-BT)
sP1	0	7	19	19	12
P2	1	5	13	12	7
Р3	2	3	6	4	1
P4	3	1	4	1	0
P5	4	2	9	5	3
P6	5	1	7	2	1

Sistemas Batch

PID	Arrival Time	Burst Time	Completion time	Turn Around time (CT-AT)	Waiting Time (TAT-BT)
sP1	0	7	19	19	12
P2	1	5	13	12	7
Р3	2	3	6	4	1
P4	3	1	4	1	0
P5	4	2	9	5	3
P6	5	1	7	2	1

P1	P2	P3	P4	P3	P6	P5	P2	P1	
0	1	2 3	4	. 6	5 7	7 9	1	.3	19

Sistemas Batch

- Vantagens:
 - Aumento da vazão com a execução de um maior número de processos em menos tempo;
 - Processos de rajadas (*bursts*) curtas são finalizados rapidamente.
- Desvantagens:
 - Não é possível prever o tempo exato de execução de todos os processos.
 - Processos longos terão sua execução postergada, criando a possibilidade de inanição.

Bibliografia

biblioteca virtual.

 TANENBAUM, Andrew S; BOS, Herbert. Sistemas operacionais modernos. 4a ed. São Paulo: Pearson Education do Brasil, 2016.
 Capítulo 2.

https://plataforma.bvirtual.com.br/Acervo/Publicacao/1233

• DEITEL, H.M; DEITEL, P.J; CHOFFNES,D.R. Sistemas Operacionais. 3a ed. São Paulo: Pearson Prentice Hall, 2005. **Capítulo 8.**

https://plataforma.bvirtual.com.br/Acervo/Publicacao/315

Sistemas Operacionais

Prof. Otávio Gomes

otavio.gomes@unifei.edu.br

