最適化プログラム解説

T. Watanabe

Index

- [0]ルーチン使用方法
 - 1.ルーチン使用例
 - 2.最適化設定
- [1]パターンファイル読込、データ成形
 - 1.パターンファイル書式
 - 2.データ読込
- [2]パターンデータと木を用いた検索
 - 1.パスカル木
 - 2.2分木
 - 3.近傍検索(1要素だけ反転)
- [3]線形性仮定での検索
 - 1.線形仮定による次階試行ベクトル選択
- [4]今後の方向性

[0]ルーチン使用方法

```
[0].1ルーチン使用例
import sgsearch as sgs としてそのメンバ関数pascalを使って
①極値を見出したい関数をfunc
   (望小設定のみですので最大値を求める場合は正負を反転してください)
②上下限をupperx,lowerx(パラメータ数分のnumpyの配列,16変数まで対応)
③追跡したい峰候補の数をCands
で渡せば峰候補の関数値とその際のパラメータ値をsgsのメンバ変数
min_value[]、min_position[]から取り出せます。
使用例
import sgsearch as sgs
import numpy as np
import sqsearch as sqs
import math as mathf
def objectFunc(x):
 x=x.reshape(-1,1)
                                                                目的関数
 A = x[0] : B = x[1] : C = x[2] : D = x[3]
 return (-mathf.exp(-1.*((A+1.)**2 + (B-1.)**2 + (C+1.)**2 + (D-1.)**2))
    - mathf.exp(-1.*((A-1.)**2 + (B+1.)**2 + (C-1.)**2 + (D+1.)**2)) )
sgs.pascal(func=objectFunc,lowerx=np.array([-2., -2., -2., -2.]),
                                                                目的関数と
     upperx=np.array([2., 2., 2., 2.]),Cands=2,pattern="cross")
                                                                上下限等を渡して
print(sgs.min_value[0]);print(sgs.max_position[0])
                                                                峰探索、結果取出
print(sgs.min_value[1]);print(sgs.max_position[1])
objecctFuncは(1,-1,1,-1)、(-1,1,-1,1)近辺で極小値-1、-1を取る関数で、実際それに近い結果が返ってくる
```

[0]ルーチン使用方法

```
[0].1最適化設定
pascal(func,upperx,lowerx,depth=40,linearmode start=21,
pattern="all",Cands=1)
オプション設定の内容(上記はデフォルト値)
func:最適化したい関数
・depth:パターンファイル使用、深さ
• linearmode_start:
  パターンファイルによる検索から線形性を仮定した検索に切替
  (変動幅が小さくなり線形性が高くなれば、こちらの方が少ない試行数で済む)
pattern:パターンファイル選択(下記の6つから選択可能)
  seed (離散sin関数状,最大10試行,2項目網羅)
  cross1 (cross演算1回,最大22試行,3項目網羅)
  multi1(multi演算1回,最大58試行,3項目網羅)
  cross1 multi1(cross演算1回、multi演算1回、最大222試行,4項目網羅)
  cross1_multi1_cross1(cross演算1回、multi演算1回、cross演算1回、最大2016試行)
  cross1_multi2(cross演算1回、multi演算2回、最大7584試行)
  all(2のパラメータ数乗全て、最大65536試行)
 Cands:追跡する最適ノード候補の数
```

[1]パターンファイル読込、成形

[1].1パターンファイル書式

0,1を16個並べた文字列データを1行に1つだけ配置 seedは2項網羅cross1はseedに演算①を1回適用,multi1は演算②を1回適用 allは000000000000000から1111111111111111まで全パターン [1].2データ読込

all、その他のパターンファイルとも頭から要素数分(以降N)の文字列を切り取り 重複分をマージしたあとnumpyの要素数Nの整数型変数として保持

All

All

cross1(3項目網羅)

(AII以外は 切り取った単位で 重複が発生するので マージする)

[2]パターンデータと木を用いた検索

[2].パスカル木

上下限値を探索階数で等間隔に分けた地点(以下ノードと呼ぶ)をパターンデータの0,1に基づいて増減移動

2次元でのイメージ図

いくつかのテスト関数でうまく最適パラメータに移動することを確認

[2]パターンデータと木を用いた検索

[2].2分木のノード群上をパターンデータの0,1に基づいて移動前の階で移動した半分の長さを1/2倍したベクトル分移動した点で再度試行を行う。これを繰り返す。 (今後繰り返し回数の事を[階]とよぶ。)

2次元でのイメージ図

汎用性が低いので後回し。(前回のはモーフィング用に作成の8変数固定バージョン)

[3]線形性仮定での検索

[3].1 線形仮定による次階試行ベクトル選択

N階

(1,1,-1,-1,1,1,-1,-1)

N階でスコアが上がった ベクトル方向について 目的関数が線形に近ければ 同じ方向でまたスコアが上が ると推測(2匹目のドジョウ?) それでN+1階ではそのベクト ルと各因子1つずつずらした ベクトルを試行

● 試行する点

N階のベストが (1,1,-1,-1,1,1,-1,-1) なら

(1,1,-1,-1,1,1,-1,1)

(1,1,-1,-1,1,1,-1)

(1,1,-1,-1,1,-1,-1)

(1,1,-1,-1,-1,1,-1,-1)

(1,1,-1,1,1,1,-1,-1)

(1,1,1,-1,1,1,-1,-1)

(1,-1,-1,-1,1,1,-1,-1)

(-1,1,-1,-1,1,1,-1,-1)を試行

前回モーフィングでうまく機能したがテスト関数でもうまく機能することを確認

[4]今後の方針

[4].2 今後の方針

- •Freecad or Openscadモデルのパラメータとリンクさせstl作成から一貫して通すこともできる形にしたい。
- ・自動的にいくつかのメッシュ単体をサンプル点、中間ノードとして (ニューラルネットワーク、ベイジリアンネットワークといったライブラリが適用できそう) その物理値によりパラメータを分離評価できるようにしたい。

(分離評価により少数の施行だけでパラメータをどちらに振るか判別可能)

[2].2 n項目中3項目の組み合わせの網羅パターンの生成方法① 2項目網羅パターンから任意の2つを選びそれぞれの桁に下記表の演算を施した パターンを作成する。

演算①

	0	1
0	0	1
1	1	0

証明

2項目網羅である3項目間に(0,0,1)という組み合わせが形成できなかったとする。 この場合2項目は網羅していることから(0,0,1)から1項目だけ異なる (1,0,1)(0,1,1)が存在することになり

それでこれらに演算①が施されるとされるとそれが(0,0,1)となる。

2項目網羅である3項目間に(0,1,1)という組み合わせが形成できなかった場合は対称性より(1,0,0)が存在しないことになり上記と同様の議論と演算①で(0,1,1)が形成される。

この演算で3項目の網羅が確保されることがわかる。

[2].3 n項目中3項目の組み合わせの網羅パターンの生成方法② 2項目網羅パターンから任意の2つを選びそれぞれの桁に下記の演算②、③を施した パターンを作成する。

演算(2)

	0	1
0	0	1
1	1	1

演算③

	0	1
0	0	0
1	0	1

証明

2項目網羅である3項目間に(0,0,1)という組み合わせが形成できなかったとする。

この場合2項目は網羅していることから(0,1,1),(1,0,1)が存在することになる。

それで(0,1,1)(1,0,1)に演算③を行うとそれが(0,0,1)が生成される。

2項目網羅である3項目間に(0,1,1)という組み合わせが形成できなかった場合は

上記と同様の議論と演算②で(0,1,1)が形成される。

この演算で3項目の網羅が確保されることがわかる。

[1].1 ベイズ最適化の理論概要 (https://qiita.com/marshi/items/51b82a7b990d51bd98cdより引用)

- ①未知の関数に対し最初ランダムに試行(赤点)する。
- ②①を通る滑らかな曲線(青線。複数選択肢がある模様、)とガウス過程を想定した関数枠(青領域)を見出す。

[1].1 ベイズ最適化の理論概要

- ③関数枠を参考に極小値を取りそうと思われる点を試行する。
- ④①~③により最適値を見出す。

(機械学習のパラメータ最適化(4~10因子あたり)ではかなりメジャーな様子)

[1].2 ベイズ最適化の例(OPENCAE関西片山様作成 T字管モデル) https://qiita.com/TatsuyaKatayama/items/afbc6667ca66775d6937より引用 T字菅モデル(OpenFoamのTutorialより作成)

outlet1,2の流速を一定とし、最小のinlet圧力となる形状を求める

メッシュ作成後p0~p3に 変動をかけて モーフィング形状を作成 (右例では p0:(-1,1)、p1(-1,-1) p2:(1,1)、p3(1,-1))

以後p0~p3のx,y座標を パラメータとしますが その幅は-1~1です。

[1].2 前ページのモデルに(計250試行)

峰①(スコア4.167)

上記2つがスコアの良い峰近傍と目される結果となった

[2].1 3項目網羅①2階分試行(計28試行)

2階

1階

00000000	10000.0
11111111	71.70794359999992
00001111	702.3295141000003
11110000	1669.5241276000002
00110011	1674.9678220999995
11001100	691.4603001
01010101	10000.0
10101010	206.11907040000017
00111100	244.93639039999994
11000011	10000.0
01011010	4128.285608099998
10100101	12 81017559999996
01100110	34.45323809999995
10011001	10000.0

	00000000	10000.0
	11111111	10000.0
I	00001111	10000.0
	11110000	10000.0
	00110011	173.85340939999986
	11001100	102.9531384000001
	01010101	6.060708099999989
	10101010	10000.0
	00111100	10.6287304
	11000011	15.830222500000017
	01011010	57.546999999999926
	10100101	10000.0
	01100110	3.529013600000003
•	10011001	10000.0

0はマイナス方向移動(1階なら-0.5、2階なら-0.25) 1はプラス方向移動(1階なら0.5、2階なら0.25) 左から順にp0~p3のx,yに対応

この段階で ベイズ最適化よりも 良いスコアを発見できた。

[2].2 3項目網羅②2階試行(計64試行)

00000000	10000.0
11111111	71.70794359999
00001111	702.3295141000
11110000	1669.524127600
00110011	1674.967822099
11001100	691.4603001
01010101	10000.0
10101010	206.1190704000
00000011	10000.0
11111100	454.9172400000
00000101	232.1282025000
11111010	141.1647499999
00001010	10000.0
11110101	77.91781360000
00001100	67.84238960000
11110011	160.6131360999
00010001	10000.0
11101110	71.6841581
00100010	242.0003300999
11011101	10000.0
00110000	97.92050999999
11001111	10000.0
01000100	10000.0
10111011	10000.0
01010000	723.3837999999
10101111	10000.0
10001000	11.43855160000
01110111	1111.576506899
10100000	10000.0
01011111	2181.0189225
11000000	10000.0
00111111	1056.207059600

LE HSA I 2 (H)	0 .H>417/
00000000	138.01805639999998
11111111	31.957057599999978
00001111	59.16927759999993
11110000	279.5568025
00110011	391.08573889999985
11001100	686.4683689000001
01010101	22.447246100000008
10101010	198.99212839999984
00000011	203.01991639999997
11111100	232.12197560000007
00000101	9.900260899999987
11111010	24.3255081
00001010	105.39308559999995
11110101	54.88802439999996
00001100	53.98880089999997
11110011	59.74273290000004
00010001	213.5886225000001
11101110	189.04304000000002
00100010	10.2670400999999997
11011101	18.82442040000001
00110000	12.76818810000001
11001111	30.73052959999998
01000100	253.67555610000016
10111011	329.1617696
01010000	19.22707240000002
10101111	17.20978999999997
10001000	158.15429960000014
01110111	85.42567960000014
10100000	308.40492439999997
01011111	228.3557601
11000000	652.0665600000002
00111111	253.23046999999985

こちらでは良い値を見つけられなかった。 (最高でスコア9.900) その他ポイントも含め探った感じではこのモデルは非線形性が強く 1階は全て(2^8)実施するくらいの難物

[2].3 1階全パターン試行(計256試行)

	•
00000000	10000.0
00000001	313.0818116000
00000010	810.3402369000
00000011	10000.0
00000100	10000.0
00000101	232.1282025000
00000110	378.1807836000
00000111	694.6644826
00001000	365.9504721000
00001001	858.5475108999
00001010	10000.0
00001011	1517.7844129
00001100	67.84238960000
00001101	10000.0
00001110	399.6833683999
00001111	702.3295141000
00010000	3.253550137599
00010001	10000.0
00010010	2677.6778969
00010011	3397.017915600
00010100	10000.0
00010101	2.3450634496e+
00010110	1060.952222499
00010111	1680.6417441
00011000	2298.033264100
00011001	3730.293834399
_00011010	3454.4879744
_00011011	4544.674433600
00011100	10000.0
00011101	10000.0
_00011110	1357.398776100
_00011111	1818.618209999
00100000	10000.0
_00100001	10000.0
00100010	242.0003300999
00100011	664.4092943999
_00100100	4.2883029
00100101	107 3067613999
00100110	137.8523856000
00100111	434.2638465000
00101000	88.62023009999
00101001	10000.0
00101010	10000.0
00101011	924.0113236000
00101100	12.07622000000
00101101	246.4591380999
00101110	10000.0
00101111	438.8245520999
00110000	97.92050999999
_00110001	10000.0

00110010	1047.812252899
00110011	1674.967822099
00110100	37.35907359999
00110101	282.8247335999
00110110	471.0549129000
00110111	959.3414995999
00111000	10000.0
00111001	10000.0
00111010	10000.0
00111011	2490.549660099
00111100	244.9363903999
00111101	10000.0
00111110	774.2504736
00111111	1056.207059600
01000000	9.779331599999
01000001	10000.0
01000010	614.1269829
01000011	1097.7946164
01000100	10000.0
01000101	194.5347025000
01000110	307.0913400999
01000111	813.5157409000
01001000	120.5605603999
01001001	10000.0
01001010	1053.034068900
01001011	1445.85584
01001100	6.408672500000
01001101	10000.0
01001110	391.6087361000
01001111	740.5087341000
_01010000	723.3837999999
01010001	10000.0
01010010	3601.004980100
01010011	4329.985920399
01010100	10000.0
_01010101	10000.0
01010110	1608.289776099
01010111	2423.113282399
01011000	2552.766162499
01011001	10000.0
01011010	4128.285608099
01011011	5176.347567600
01011100	10000.0
01011101	10000.0
01011110	1766.322122500
01011111	2181.0189225
01100000	462.3147899999
01100001	39.85662810000
01100010	57.73968040000
01100011	478.4560115999

01100100	339.5487023999
01100101	14.69106639999
01100110	34.45323809999
01100111	396.8358800000
01101000	14.55096760000
01101001	256.3353788999
01101010	447.9184775999
01101011	793.8059604000
01101100	10000.0
01101101	121.6278956000
01101110	155.4712235999
01101111	369.5795203999
01110000	10000.0
01110001	289.1946001000
01110010	590.1251415999
01110011	1674.2596921
01110100	168.0399600000
01110101	50.40203560000
01110110	290.3259000999
01110111	1111.576506899
_01111000	347.4697881000
01111001	1462.178640899
01111010	10000.0
01111011	2625.124503599
01111100_	42.7387584
01111101	10000.0
01111110	886.7064528999
01111111	1026.574367600
10000000	102.8986908999
10000001	183.0076183999
10000010_	106.6268003999
10000011	593.5814775999
10000100	149.3398929000
10000101	10000.0
10000110	10000.0
10000111	10000.0
10001000	11.43855160000
10001001 10001010	368.2485228999 257.9352703999
10001010	795.3616299999
10001011	10000.0
10001100	98.37365239999
10001101	38.66251000000
10001110	10000.0
10010000	10000.0
10010001	10000.0
10010010	10000.0
10010011	10000.0
10010100	6.716979999999
10010101	10000.0

[2].3 1階全パターン試行(計256試行)

_	
_10010110	10000.0
10010111	840.6357064000
10011000	10000.0
_10011001	10000.0
10011010	10000.0
10011011	10000.0
10011100	90.82836160000
_10011101	831.8647524999
_10011110	10000.0
10011111	10000.0
10100000	10000.0
_10100001	66.90415000000
10100010	10000.0
10100011	10000.0
10100100	215.3630899999
10100101	12.81017559999
10100110	10000.0
10100111	179.6975999999
10101000	24.57518609999
10101001	196.0981099999
10101010	206.1190704000
10101011	511.1046255999
10101100	107.4524428999
10101101	47.83564690000
10101110	10000.0
10101111	10000.0
_10110000	60.37997839999
_10110001	254.9991364000
_10110010	68.81615559999
_10110011	661.9925649000
_10110100	10000.0
_10110101	10000.0
_10110110	40.59760560000
_10110111	422.7906788999
10111000	10000.0
10111001	787.2709943999
10111010	547.1552100000
10111011	10000.0
10111100	8.622316400000
_10111101	339.8503556000
_10111110	175.7235303999
_10111111	10000.0
_11000000	10000.0
_11000001	10000.0
11000010	10000.0
11000011	10000.0
11000100	10000.0
11000101	10000.0
11000110	54.99638160000
_11000111	142.7643180999

11001000 339.8523120996	-	-
11001001 98.65455239995 11001010 10000.0 11001101 10000.0 11001101 10000.0 11001101 10000.0 110100101 10000.0 110100101 10000.0 110100101 10000.0 110100101 10000.0 11010101 10000.0 11010101 10000.0 11010101 10000.0 11010101 10000.0 11010101 10000.0 110110101 10000.0 11011010 10000.0 11011010 10000.0 11011010 10000.0 11011010 10000.0 11011010 10000.0 11011010 10000.0 11011010 10000.0 11011101 10000.0 11011101 10000.0 11011101 10000.0 11011101 10000.0 11011101 10000.0 11011101 10000.0 110000.0 110000.0 110000.0 1100000 110000.0 11000000 11000000 11000000 110000000 110000000 110000000 110000000 110000000 110000000 110000000 1100000000	11001000	339.8523120999
11001011	11001001	
11001011	11001010	95.71815959999
11001100		
11001101	11001100	
11001110		
11001111		
11010000		
11010001		
11010010		
11010011		
11010100		
11010101		
11010110		
11010111		
11011000		
11011001		
11011010		
11011011		
11011100		
11011101		
1101111		_
1101111		
11100000 10000.0 11100001 75.59516609995 11100010 306.8939449000 11100101 10000.0 11100101 119.3533584000 11100110 10000.0 11100111 27.68885689995 11101001 9.372858899995 11101001 10000.0 1110101 10000.0 1110101 10000.0 11101101 10000.0 11101101 10000.0 11101101 10000.0 11101101 10000.0 11101101 10000.0 11101101 10000.0 11101101 10000.0 11101101 10000.0 11101101 71.6841581 1110110 71.6841581 1110010 321.5334560995 11110011 160.6131360995 11110101 179.91781360000 11110110 177.91781360000 11110110 197.1004016 11110111 129.9867584 111110010 325.7030184		
11100001		
11100010 306.8939449000 11100011 10000.0 11100100 10000.0 11100101 119.3533584000 11100110 10000.0 11100111 27.68885689995 11101000 653.2265224995 11101001 9.372858899995 11101001 10000.0 11101101 10000.0 11101101 10000.0 11101110 71.6841581 11101111 10000.0 11110101 169.524127600 11110010 321.5334560995 11110011 160.6131360995 11110101 177.91781360000 11110110 197.1004016 11110111 199.9867584 111110010 325.7030184		
11100011 10000.0 11100101 10000.0 11100101 119.3533584000 11100110 10000.0 11100111 27.68885689999 11101000 653.2265224999 11101001 10000.0 11101011 10000.0 11101100 10000.0 11101101 10000.0 11101101 10000.0 11101101 10000.0 11101101 10000.0 11100101 1669.524127600 11110001 23.1432024 11110010 1388.9576361 1111010 77.9178136000 11110110 197.1004016 11110111 129.9867584 11110100 325.7030184		
11100100 10000.0 11100101 119.3533584000 11100110 10000.0 11100111 27.68885689999 11101000 653.2265224999 11101001 10000.0 1110110 10000.0 1110110 10000.0 1110110 10000.0 1110111 10000.0 1110111 10000.0 1110111 10000.0 1110111 10000.0 1110111 10000.0 1110111 10000.0 1110011 1669.524127600 11110010 321.5334560999 11110010 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11110000 325.7030184		
11100101 119.3533584000 11100110 10000.0 11100111 27.68885689999 11101000 653.2265224999 11101001 9.372858899999 11101001 10000.0 1110110 10000.0 1110110 71.6841581 1110111 10000.0 11110111 10000.0 11110110 321.5334560999 11110010 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111001 325.7030184		_
11100110 10000.0 11100111 27.68885689999 11101000 653.2265224999 11101001 9.372858899999 11101010 10000.0 1110110 10000.0 1110110 10000.0 1110110 71.6841581 1110111 10000.0 11110111 10000.0 11110010 1669.524127600 11110010 321.5334560999 11110011 160.6131360999 1111010 1388.9576361 1111010 177.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184		
11100111 27.68885689999 11101000 653.2265224999 11101001 9.372858899999 11101010 10000.0 1110101 10000.0 11101101 10000.0 11101110 71.6841581 1110111 10000.0 11110110 169.524127600 11110001 23.1432024 11110010 321.5334560999 11110010 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184		
11101000 653.2265224998 11101001 9.372858899998 11101010 10000.0 11101101 10000.0 11101101 10000.0 1110111 10000.0 1110111 10000.0 1110111 10000.0 11110001 23.1432024 11110010 321.5334560998 11110011 160.6131360998 1111010 1388.9576361 1111010 197.1004016 11110111 129.9867584 11111000 325.7030184	_11100110	10000.0
11101001 9.372858899999 11101010 10000.0 11101101 10000.0 11101101 10000.0 11101101 71.6841581 11101111 10000.0 11110101 1669.524127600 11110010 321.5334560999 11110011 160.6131360999 1111010 1388.9576361 1111010 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184	_11100111	
11101010	_11101000_	
11101011 10000.0 11101100 10000.0 11101101 10000.0 11101110 71.6841581 11101111 10000.0 11110000 1669.524127600 11110001 23.1432024 11110010 321.5334560995 11110010 1388.9576361 11110100 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184		9.372858899999
11101100 10000.0 11101101 10000.0 11101110 71.6841581 11101111 10000.0 11110000 1669.524127600 11110010 23.1432024 11110010 321.5334560999 11110011 160.6131360999 11110100 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184	11101010	10000.0
11101101	11101011	10000.0
11101110	11101100	10000.0
11101111 10000.0 11110000 1669.524127600 11110001 23.1432024 11110010 321.5334560999 11110011 160.6131360999 11110100 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184	11101101	10000.0
11110000 1669.524127600 11110001 23.1432024 11110010 321.5334560999 11110011 160.6131360999 11110100 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184	11101110	71.6841581
11110000 1669.524127600 11110001 23.1432024 11110010 321.5334560999 11110011 160.6131360999 11110100 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184	11101111	10000.0
11110001 23.1432024 11110010 321.5334560999 11110011 160.6131360999 11110100 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184		1669.524127600
11110010 321.5334560998 11110011 160.6131360998 11110100 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184		
11110011 160.6131360999 11110100 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184	11110010	
11110100 1388.9576361 11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184		
11110101 77.91781360000 11110110 197.1004016 11110111 129.9867584 11111000 325.7030184		
11110110 197.1004016 11110111 129.9867584 11111000 325.7030184		
11110111 129.9867584 11111000 325.7030184		
11111000 325.7030184		
_ 1 1 1 1 1 1 0 0 1 1 0 0 0 0 . 0		
		10000.0

11111010	141.1647499999
11111011	792.5301625
11111100	454.9172400000
11111101	10000.0
11111110	10000.0
11111111	71.70794359999

ベストスコアの00100100 に対し次ページの線形仮定の 探索をかける

[2].4 線形仮定による次階試行ベクトル選択

N階 (1,1,-1,-1,1,1,-1,-1)

N階でスコアが上がった ベクトル方向について 目的関数が線形に近ければ 同じ方向でまたスコアが上が ると推測(2匹目のドジョウ?) それでN+1階ではそのベクト ルと各因子1つずつずらした ベクトルを試行

N階のベストが (1,1,-1,-1,1,1,-1,-1) なら (1,1,-1,-1,1,1,-1,1) (1,1,-1,-1,1,1,1,-1) (1,1,-1,-1,1,-1,-1,-1) (1,1,-1,-1,1,1,1,-1,-1) (1,1,-1,1,1,1,1,-1,-1)

(1,1,1,-1,1,1,-1,-1) (1,1,1,-1,1,1,-1,-1) (1,-1,-1,-1,1,1,-1,-1) (-1,1,-1,-1,1,1,-1,-1)を試行

階が降りるに従い線形に近づく可能性が高いので前の階のベクトルと同じ向き をまず試行しあとは各因子1つづつ反転させた物を試行する。

[5]載せたい手法

[5].1 さしあたり載せたい機能

- -2分木以外にパスカル木選択もできるようにする。
- パラメータ数として8と16まで対応できるようにする。
- ・パラメータを2グループにわけてそれぞれ別の目標関数を追跡できるようにする。
- -2,3,4,5項目網羅くらいまでのパターンファイルを選択できるようにする。

[5].2 将来

- ・Freecad or Openscadモデルのパラメータとリンクさせstl作成から一貫して 通すこともできる形にしたい。
- ・目標関数の分割というより、自動的にいくつかのメッシュ単体をサンプル点、中間ノードとして (私も勉強中ですがpythonの機械学習系ライブラリにそういった物がありそうです)
- その物理値によりパラメータを分離評価できるようにしたい。
 - (分離評価により少数の施行だけでパラメータをどちらに振るか判別可能)

[2].5 1階全試行のベストノードに対する[2].4適用(+9)試行)

これまでのベストスコアを大きく更新する峰を発見

[2].6 まとめ

・本問題に対しては自分の手法の長所が生きにくい (目標関数が分離しにくい、8パラメータすべて寄与度が高そう)であったが ベイズ最適化よりも少数でより良いポイントを見出したり、 未発見の峰を見つけることができ同等以上のパフォーマンスとなった。 ただしOpenFoamの計算が成立しないポイントが相応数あり ベイズ最適化の真価が発揮できない可能性もあったのでこれの解決策も調査する。 (自分の手法は計算が成立しないポイントが多くても相応に使える事もわかった)

[3]今後の方針

[3].1 網羅パタ―ン作成

2項目網羅のラベル名とパラメータ列(ベクトル)からn項目網羅を自動生成する プログラムを作成したのでさしあたり8因子と16因子の生成段階ごとの ファイルを用意する。

[3].2 ルーチン汎用化

複数の子ノード自動作成と線形過程部分はまだ自動化出来ていないので作成する。 今回比較対象のベイズ最適化についてgpyoptというライブラリを使いましたが これに似たインターフェースで上下限値設定をできるように作って 公開しようと考えております。

[3].3目標関数分割対応(2翼モデルでの例示) 野村様に作って頂いた右のモデルで 14変数まで設定可能なのと 目的関数分割に対応しているので

これでテストして例示とする予定。

ベイズ最適化検証

[X].ベイズ最適化検証

・人間の肺の付加圧力(m・H2O)と膨張容積(L)は4パラメータのシグモイド関数で表せることがわかっている。

それで疑似的にパラメータを決めて測定結果を作り、(A=0.5 B=3 C=18 D=5) ベイズ最適化で測定結果x=10,15,20,25からパラメータの逆算を試みたところ 300試行で0.528、2.758、17.492、4.608となり上下限幅に対し±5~10%ぐらいの誤差 (こちらにはまだ自分の最適化を適用していないので今後確認する)

膨張容積=f(x)=A+B/(1+exp(-(x-C)/D

評価するスコアは試行した赤点と真値(青線と黄線との交点)との差の2乗の足し合わせ。 ベイズ最適化を適用するにあたり上下限の設定はA[-1,1],B[1,5],C[15,30],D[2,10]とした。

前回報告分Index

[1]SGS(Selectible Grid Search、名前変えました)法の概要

- 1.SGS法の狙い(p.3)
- 2.SGS法の適用例(p.4)

[2]網羅パターンの生成方法

- 1.n項目中2項目の組み合わせの網羅パターンの生成方法(p.5)
- 2.n項目中3項目の組み合わせの網羅パターンの生成方法①(p.7)
- 3.n項目中3項目の組み合わせの網羅パターンの生成方法②(p.9)
- 4.n項目中4項目の組み合わせの網羅パターンの生成方法(p.13)
- 5.n項目中5項目以上の組み合わせの網羅パターンの生成方針(p.13)

[3]連続変数の最適条件検索

- 1.連続変数への網羅パターンの適用方法概要(p.14)
- 2.線形代数を仮定しての最適な因子変動探索 (p.16)
- 3.目的関数分割 (p.17)

[4]現在進行中の活動(p.18)

- 1.効果検証
- 2.最適化ルーチンの汎用化

[1]SGS法の概要

[1].1 SGS法の狙い

①.n個の0,1因子に対しに対し任意のk因子間の組み合わせを網羅する パターンを作成する。

```
パターン1:0<mark>1</mark>01□0100
パターン2:0001□0100
パターン3:0101□0100
:
パターンm:1000□01010
2因子網羅(どの2列を選択しても(0,0),(0,1),(1,0)(1,1)が存在する)
```

②.①とフラクタルの概念を活用し連続量の因子で非線形、交互作用がある目的関数に対しても因子数に対し線形相当のオーダー内で停留点に漸近する。

[1]SGS法の概要

[1].2 SGS法の適用例

- ①ソフトのテストパターン作成(前ページの①参照)
- ②電子回路の素子の特性値について設計値からの ばらつきに対する変動を良く行われるモンテカルロ法と違い乱数に頼らず 明確にk素子間のパターンを網羅して確認できる。

K個間の素子の特性値のばらつきの 組み合わせを網羅して不具合発生の リスクが無いか確認

③翼形状の各種寸法をどのようにすれば空気抵抗等の特性が良くなるか検索する。

各寸法の組み合わせを網羅しつつ 最適な設計値を検索

[2].1 n項目中2項目の組み合わせの網羅パターンの生成方法以下簡略のためnは2の累乗とする (2の累乗に該当しない数はそれよりも大きい2の累乗でパターン生成) ここで因子に0から2^i-1の2進数を割り振り それぞれの桁(と0,1を反転させた物)をパターンとすれば任意の2つの因子について(0,0)(0,1)(1,0)(1,1)が少なくとも1回は出現する証明 (0,0)(1,1)はオール0,オール1の時に全項目について発生する。 (0,1)(1,0)は同一の数で無い限り2進表記した際に異なる桁が少なくとも1つ存在するのでそこで形成される。

例(8因子)

		10進	10進表記(因子に0から7の番号を割り付けたもの)									
		0	1	2	3	4	5	6	7			
2	1桁	0	1	0	1	0	1	0	1			
2 進 表記	2桁	0	0	1	1	0	0	1	1			
	3桁	0	0	0	0	1	1	1	1			
順	4桁	0	0	0	0	0	0	0	0			
2	1桁	1	0	1	0	1	0	1	0			
2 進 表 記	2桁	1	1	0	0	1	1	0	0			
	3桁	1	1	1	1	0	0	0	0			
反	4桁	1	1	1	1	1	1	1	1			

表の8行分のパターンにより任意の2因子間で(0,0)(0,1)(1,0)(1,1)が網羅されている。 試行のオーダーはlog n 回路での例示 (付番順に表の値の0を青、1を赤として表示)

上記4つとそれの赤、青反転の 8つ用意すればどの2素子間でも (赤、赤)、(赤、青)、(青、赤)、(青、青)が存在する

例(16因子)

						10進	表記(因	子に0	から15	の番号	を割り	付けた	もの)				
		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
2 ¥#	1桁	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
進表記	2桁	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	3桁	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
順	4桁	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	5桁	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1桁	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0
進表記	2桁	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
	3桁	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
反	4桁	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	5桁	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

8因子に比べ2パターンだけ増える要領となる。

[2].2 n項目中3項目の組み合わせの網羅パターンの生成方法① 2項目網羅パターンから任意の2つを選びそれぞれの桁に下記表の演算を施した パターンを作成する。

演算①

	0	1
0	0	1
1	1	0

証明

2項目網羅である3項目間に(0,0,1)という組み合わせが形成できなかったとする。 この場合2項目は網羅していることから(0,0,1)から1項目だけ異なる

(1,0,1)(0,1,1)が存在することになり

それでこれらに演算①が施されるとされるとそれが(0,0,1)となる。

2項目網羅である3項目間に(0,1,1)という組み合わせが形成できなかった場合は対称性より(1,0,0)が存在しないことになり上記と同様の議論と演算①で(0,1,1)が形成される。

この演算で3項目の網羅が確保されることがわかる。

例(8因子)、演算① (赤字:3項目網羅で新規に出現したパターン)

		2項目網羅パターン									
		00000000	00001111	00110011	01010101	11111111	11110000	11001100	10101010		
	00000000	00000000	00001111	00110011	01010101	11111111	11110000	11001100	10101010		
	00001111	-	00000000	00111100	01011010	11110000	11111111	11000011	10100101		
	00110011	-	-	00000000	01100110	11001100	11000011	11111111	10011001		
2項目網羅 パタ ー ン	01010101	-	-	-	00000000	10101010	10100101	10011001	11111111		
	11111111	-	-	-	-	00000000	00001111	00110011	01010101		
	11110000	-	-	-	-	-	00000000	00111100	01011010		
	11001100	-	-	-	-	-	-	00000000	01100110		
	10101010	-	-	-	-	-	-	-	00000000		

赤字が3項目網羅で新規に出現したものであり6である(2項目網羅は8) 試行のオーダーは(log n)^2

(ただし数学者の友人曰く、もっとオーダーが少ないアルゴリズムがある可能性があるとのこと。現在探索中)

[2].3 n項目中3項目の組み合わせの網羅パターンの生成方法② 2項目網羅パターンから任意の2つを選びそれぞれの桁に下記の演算②、③を施した パターンを作成する。

演算②

	0	1
0	0	1
1	1	1

演算③

	0	1
0	0	0
1	0	1

証明

2項目網羅である3項目間に(0,0,1)という組み合わせが形成できなかったとする。この場合2項目は網羅していることから(0,1,1),(1,0,1)が存在することになる。

それで(0,1,1)(1,0,1)に演算③を行うとそれが(0,0,1)が生成される。

2項目網羅である3項目間に(0,1,1)という組み合わせが形成できなかった場合は

上記と同様の議論と演算②で(0,1,1)が形成される。

この演算で3項目の網羅が確保されることがわかる。

例(8因子)、演算② (赤字:3項目網羅で新規に出現したパターン)

			2項目網羅パターン									
		00000000	00001111	00110011	01010101	11111111	11110000	11001100	10101010			
	00000000	00000000	00001111	00110011	01010101	11111111	11110000	11001100	10101010			
	00001111	-	00001111	00111111	01011111	11111111	11111111	11001111	10101111			
	00110011	-	-	00110011	01110111	11111111	11110011	11111111	10111011			
2項目網羅 パタ ー ン	01010101	-	-	-	01010101	11111111	11110101	11011101	11111111			
	11111111	-	-	-	-	11111111	11111111	11111111	11111111			
	11110000	-	-	-	-	-	11110000	11111100	11111010			
	11001100	-	-	-	-	-	-	11001100	11101110			
	10101010	-	-	-	-	-	-	-	10101010			

例(8因子)、演算③ (赤字:3項目網羅で新規に出現したパターン)

		2項目網羅パターン									
		00000000	00001111	00110011	01010101	11111111	11110000	11001100	10101010		
	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000		
	00001111	-	00001111	00000011	00000101	00001111	00000000	00001100	00001010		
0-7 7 49 99	00110011	-	-	00110011	00010001	00110011	00110000	00000000	00100010		
2項目網羅 パターン 	01010101	-	-	-	01010101	01010101	01010000	01000100	00000000		
	11111111	-	-	-	-	11111111	00001111	11001100	10101010		
	11110000	-	-	-	-	-	11110000	11000000	10100000		
	11001100	-	-	-	-	-	-	11001100	10001000		
	10101010	-	-	-	-	-	-	-	10101010		

演算②、③で3項目網羅として新しく24必要となり演算①より必要なパターン数は多くなるが3項目網羅を再び②、③にかければ4項目網羅以上のパターンを作成していける。(つまり繰り返せば全ての8ビットパターン(総数2^8)をつくれる。)

[2].4 n項目中4項目の組み合わせの網羅パターンの生成方法 3項目網羅パターンから任意の2つを選び演算②、③を施す。

証明

- ・3項目網羅内にある4項目間に(0,0,0,1)という組み合わせが形成できなかったとするこの場合3項目は網羅していることから(0,0,1,1),(0,1,0,1)が存在することになる。それで(0,0,1,1),(0,1,0,1)に演算②を行うと(0,0,0,1)が生成される。
 ・3項目網羅内に(0,0,1,1)というパターンが形成できなかったとするこの場合3項目は網羅していることから(0,0,0,1),(0,0,1,0)が存在することになる。それで(0,0,0,1),(0,0,1,0)に演算③を行うと(0,0,1,1)が生成される。
- [2].5 n項目中5項目以上の組み合わせの網羅パターンの生成方法 k-1項目網羅パターンから任意の2つを選び演算②、③を施せば 4項目網羅と同じ要領でk項目網羅作成できる。 (つまり繰り返せば全ての2ⁿビットパターンをつくれる。)

[3].1 連続変数への網羅パターンの適用方法概要 [2]で作成した網羅パターンを活用し連続量の因子に対する最適条件検索を 以下の手順で行う。

前提

n個の連続量の因子(機械寸法、素子の特性値等)の 上限値、下限値をそれぞれ1,-1とする(中央値が0)。 手順①

[2]で作成したk項目網羅のパターンの1を1/2、0を-1/2に対応させてシミュレーションや実験を試行する。

(k項目の組み合わせを網羅していることによりk因子間の交互作用を どこかのパターンに取り込める。)

(因子数n全項目相当の最適値検索を行う場合はk項目間網羅の施行数をn(or 2n)を超えるまで進め線形代数と仮定(後ページに記載)して各々の因子が1/2,-1/2どちらが好ましいか推測できる。)

手順②

①で試行した各点に対し用意したパターンの長さを1/2倍したベクトル分移動した点で再度試行を行う。これを繰り返す。

(今後繰り返し回数の事を[階]とよぶ。)

目標関数が非線形でも各設計因子による変化が微分可能であるならばどこかの階以降で目標関数の変異が線形に近づくのでそれを見極める。

例:4因子に対し2パターン(1,1,0,0),(1,0,0,1)とそれらの逆を使用した場合

試行回数を減らす時はある階で目標関数の値が悪かった点を次の階で試行しない。

[3].2 線形代数を仮定しての最適な因子変動探索

ある階において項目数のn以上のパターンを実施した後、そのパターンからn個抽出し 線形に振る舞うと仮定して目的関数の変動量から各々の因子の係数(c)を解く。 それでその階で改めて正係数の因子には1、負係数の因子には-1をあてがい 再度試行する

(階が進むに従い変動は線形に近づくと思われるが階が少ないうちは nより多くのパターンを施行し、線形代数を複数解いて係数の正負が揺れる 因子についていくつか拾い0,1両方施行)

例:8因子に対する3項目間網羅結果使用

パターン (3項目網羅で先頭が0の16個)	試行結果 (前階の値を 引いたもの)
(0,0,0,0,0,0,0) (0,0,0,1,1,1,1) (0,0,1,1,0,0,1,1) (0,1,0,1,0,1,0,1) (0,0,0,1,0,1,0,1) • • • • • • • • • • • • • • • • •	y1 y2 y3 y4 y5 y16

 $c=M^{(-1)*y}$

8パターン

選択

:係数ベクトル

M^(-1):パターンの逆行列

(1は1/2、0は-1/2に置き換え)

:試行結果ベクトル

[3].3 目的関数の分割

因子をその位置等で2や4のグループに分け、その近辺のエリアで 目的関数を分割設定しそれぞれのエリア独立で探索していく。

目的関数の分離性があれば近辺の因子のみで評価できる。 (上の例の場合、仮に縦 or 横棒で区切ったエリアで分離できれば4因子間変動のみで評価できる、さらに縦、横双方で区切れれば2因子間変動のみで探索できる)

分割した際に本手法のスタートに用意したk項目網羅パターンが生きてくる要領 (分割できたエリア内の因子間でも当然k項目網羅がされているので 因子間の網羅率が高い)

[4]現在進行中の活動

[4].1 効果検証

野村様に2翼モデルの作成と8パラメータ2階分(約2の16乗)の流体シミュレーションを実施して頂きました。

[4].2 最適化ルーチンの汎用化 BlockMeshについて(1)パラメータ指定(2)Mesh作成(3)SImpleFoam実行を繰り返せるプログラムは作れました。

0