电气精品教材丛书

"十三五"江苏省高等学校重点教材工业和信息化部"十四五"规划教材

电力电子技术 · Power Electronics

第7章 缓冲电路

■影响电力电子器件/装置可靠性的因素

■ 改善开/关过程电压电流变化曲线

■ 从而改善开关管的

开通/关断损耗 di/dt, du/dt 电流/电压尖锋

■提高变换器的可靠性

- 7.1 开关管的开通和关断特性
- 7.2 直流变换器的基本缓冲电路
- 7.3 直流变换器的无损缓冲电路

- 开通: 当开关管从截止状态变为导通状态
- 关断: 开关管从导通状态变为截止状态
- 直流变换器的工作原理分析,假设开关管是理想器件,开通时间 和关断时间均为零
- ■开关管开通和关断过程是需要时间的,开通时,开关管的电压和

电流都有一个变化过程

■ 以BUCK电路,分析开关管的开通和关断特性

- 模态1 $[t_0$ 时刻之前]: Q管关断稳态过程
- *Q* 截止, *D*_{FW} 导通
- 电感电流 i₁ 线性下降
- 功率管电压 u_{ce} 为 U_{in}
- 二极管电容电压为零

南京 四牌楼2号 http://ee.seu.edu.cn

(EI)

- \blacksquare 模态2 $[t_0, t_1]$: Q管电流上升/D电流下降过程
- 开通 Q,集电极电流 i_c 开始上升
- 由于 i_c 小于 i_{Lf} , D_{EW} 依然导通,二极管电流下降
- 二极管与功率管电流之和为ire
- Q 电压 u_{ce} 为 U_{in}
- t_1 时刻, $i_{\rm c}$ 上升到 $i_{\rm Lf}$

开关模态2

東南大學電氣工程學院

开关管的主要波形

南京 四牌楼2号 http://ee.seu.edu.cn

- 模态3 $[t_1, t_3]$: D_{FW} 反向恢复过程
- D_{FW} 反向恢复,电流 i_D 为负,结电容 C_D 被充电
- i_D 在 t_2 时刻达到负向最大值,而后开始减小,并在 t_3 时刻减小到零, D_{FW} 反向恢复过程结束
- $i_c = i_{Lf} i_D$,开通尖峰
- D_{FW} 电压从0上升到 U_{in} , u_{ce} 从 U_{in} 下降到 0
- *t*₃时刻, *Q* 完成开通

开关模态3

東南大學電氣工程學院

开关管的主要波形

- 模态 $4[t_3, t_4]$: Q稳态导通过程
- t_3 时刻之后,Q导通, D_{FW} 关断
- 滤波电感电压为 $U_{\rm in}$ - $U_{\rm o}$
- 功率管电压uce为零
- 二极管电压为 $U_{\rm in}$

开关管的主要波形

- 模态 $5[t_4, t_6]$: Q管关断电压上升过程
- 关断 Q, i。开始下降
- D_{FW} 结电容 C_{D} 放电,电流为 $i_{\text{D}} = i_{\text{Lf}} i_{\text{c}}$
- D_{FW} 电压 u_D 开始下降
- Q电压uce开始上升
- t_6 时刻, C_D 电荷释放完毕
- u_D 下降到0, u_{ce} 上升到 U_{in}

开关模态5

東南大學電氣工程學院

开关管的主要波形

- 模态 $6[t_6, t_7]$: Q管电流下降至零,完成关断
- i_c 继续下降,由于 i_c 小于 i_{Lf} , D_{FW} 开始导通
- 二极管与功率管电流之和为i_{Lf}
- t_7 时刻, i_c 下降到零, i_D 增大到 i_{Lf}
- Q 完成关断过程

开关管的开通和关断特性

- 开关管的开通与关断过程, *i*_c与*u*_{ce} 存在交叠区, 产生开关损耗,包括开通损耗和关断损耗
- 每个开关周期内的开关损耗是恒定的,随着开 关频率的提高,总的开关损耗也呈比例增大
- 开关管开通时, 电流上升快, di/dt 很大; 开关管关断时, 电压上升很快, du/dt 很大
- 硬开关方式,会产生很大的电磁干扰

- 7.1 开关管的开通和关断特性
- 7.2 直流变换器的基本缓冲电路
- 7.3 直流变换器的无损缓冲电路

7.2 直流变换器的基本缓冲电路

7.2.1 RCD缓冲电路

7.2.2 RLD缓冲电路

有关断

缓冲

- 为了减小开关管的关断损耗,可以减小开关管关断时电压电流交 叠区的电压大小
- ■可通过加入一个缓冲电路以降低开关管两端电压的上升率来实现

南京 四牌楼2号 http://ee.seu.edu.cn

- 通过并联电容,可降低开关管两端电压变化
- \blacksquare 在开关管截止 C_s 电压为 U_{in} ,开关管开通时 C_s 直接被短路,会导致 i_c 存在很大电流尖峰,为减小这个电流尖峰,在 C_s 串联电阻 R_s
- $但R_s$ 会削弱 C_s 的作用,使得开关管关断时电压上升速度变快
- 在 R_s 上并联一个二极管 D_s ,构成RCD缓冲电路

■开关管关断时

- *D*_s导通
- 电容C。直接并联在开关管两端
- 减缓开关管两端电压的上升率
- ■开关管开通时
- *D*。关断
- 电容 C_s 通过串联电阻 R_s 放电
- 减缓了开关管的电流尖峰

RCD缓冲电路工作模态分析1

- 模态1 $[t_0$ 时刻之前]: Q管关断稳态过程
- *Q* 截止, *D*_{FW}导通
- 电感电流 i_{If} 线性下降
- 功率管电压 u_{ce} 为 U_{in}
- 缓冲电容 $C_{\rm s}$ 电压 $u_{\rm Cs}$ 为 $U_{\rm in}$
- 二极管电容电压为零

开关模态1

東南大學電氣工程學院

加入RCD缓冲电路后开关管的主要波形

南京 四牌楼2号 http://ee.seu.edu.cn

- 模态2 $[t_0, t_1]$: Q管电流上升/D电流下降过程
- 开通 Q, 集电极电流 i_c开始上升
- 由于 i_c 小于 i_{Lf} , D_{FW} 依然导通,二极管电流下降
- 二极管与功率管电流之和为 i_{Lf}
- Q 电压 u_{ce} 仍然为 U_{in}
- t_1 时刻, i_c 上升到 i_{Lf}

开关模态2

東南大學電氣工程學院

- 模态3 $[t_1, t_3]$: D_{FW} 反向恢复过程
- D_{FW} 反向恢复,结电容 C_D 被充电,电流 i_D 为负
- C_D 电压上升, u_{ce} 开始下降, C_s 通过 R_s 放电
- $i_{c} = i_{Lf} + i_{D} + i_{Cs} (C_{s}$ 放电电流)
- t_2 之后, i_D 反向减小, u_{DFW} 从0至 U_{in} , u_{ce} 从 U_{in} 至0
- t_3 时刻, D_{EW} 完成反向恢复,Q完成开通过程

加入RCD缓冲电路后开关管的主要波形

- 模态 $4[t_3, t_4]$: C_s 继续放电过程
- t_3 时刻之后, Q导通, D_{FW} 关断
- Cs继续通过 R_s 和Q放电,其电压在 t_4 时刻至零
- $i_c = i_{Lf} + i_{Cs}$ (Cs放电电流)
- 功率管电压 u_{ce} 为零,二极管电压为 U_{in}
- 滤波电感电压为 $U_{in}-U_{o}$

开关模态4

東南大學電氣工程學院

- 模态 $5[t_4, t_5]$: Q管稳态导通过程
- t4 时刻之后,缓冲电路停止工作
- *Q*导通, *D*_{FW}关断
- 滤波电感电压为 $U_{\rm in}$ - $U_{\rm o}$
- 功率管电压 u_{ce} 为零, C_{s} 电压为零
- 二极管电压为 $U_{\rm in}$

开关模态5 東南大學電氣工程學院

- 模态6 $[t_5, t_7]$: Q管关断过程
- 关断 Q, i。开始下降
- D_{FW} 结电容 C_{D} 放电,而 C_{S} 充电, $i_{\text{D}}+i_{\text{C}}+i_{\text{CS}}=i_{\text{Lf}}$
- D_{FW} 电压 u_D 开始下降
- C_s 限制 u_{ce} 上升, u_{ce} 缓慢上升
- t_7 时刻, i_{CS} 下降至零,Q管完成关断过程

开关模态6

東南大學電氣工程學院

开关管的主要波形

南京 四牌楼2号 http://ee.seu.edu.cn

- 模态7 $[t_7, t_8]$: Q管电压上升到 U_{in} 过程
- C_s 继续充电,而 C_D 继续放电
- t_8 时刻, C_s 电压上升到 $U_{\rm in}$, $C_{\rm D}$ 电压下降到零
- i_{Lf} 通过 D_{FW} 续流, $i_{\mathrm{Lf}} = i_{\mathrm{D}} + i_{\mathrm{CS}}$
- t_8 时刻之后, D_{FW} 导通,缓冲电路停止工作

加入RCD缓冲电路后开关管的主要波形

- Q关断过程中, C_s 限制了 u_{ce} 的上升率, i_c 与 u_{ce} 的交叠区中 u_{ce} 较低,大大减小Q关断损耗
- C_s 存储能量主要消耗在 R_s 上,RCD缓冲电路是有损耗

未加缓冲电路

加入缓冲电路

关断缓冲电路参数设计

■ 电容 C_S 设计:

- 缓冲电容大, uce上升慢, 有助于减小关断损耗
- 缓冲电容大,缓冲电容能量损耗大
- 应折衷选取, u_{ce} 上升到 U_{in} 的时间为开关管电流下降时间3~5 倍

$$T_{\text{rise}} = C_{\text{s}} U_{\text{in}} / I_{\text{o}} = (3 \sim 5) t_{\text{f}}$$

- 电容值设计: $C_s = (3 \sim 5) \frac{I_o}{U_{in}} t_f$
- 应选等效电感较小的薄膜电容或金属膜电容
- 缓冲电容承受的最高电压为 $U_{\rm in}$,电压定额按照 $(1.5~2)U_{\rm in}$ 选取

■ 电阻R。设计:

• 开关管导通时,缓冲电容电压应下降到零

$$(3 \sim 5)\tau_{\rm RC} < T_{\rm on}$$
 $\tau_{\rm RC} = R_{\rm s}C_{\rm s}$

- 缓冲电阻最大值为: $R_s < \frac{T_{on}}{(3 \sim 5)C_s}$
- 尽量按照最大值选取,以减小开关管开通时电流尖峰
- 缓冲电阻消耗的功率为: $P_{\text{loss_Rs}} = \frac{1}{2} C_{\text{s}} U_{\text{in}}^2 f_{\text{s}}$
- 选择等效电感较小金属膜电阻或者碳膜电阻
- 存在较大功率消耗,还应选择功率较大电阻

关断缓冲电路参数设计

■ 缓冲二极管D_s设计:

- 缓冲二极管承受的电压应力为 $U_{\rm in}$
- 如果忽略续流二极管 D_{FW} 反向恢复,开关管关断时缓冲二极管流过最大电流 近似为 I_0 ,流过时间约为 $(3\sim5)t_{\rm f}$
- 缓冲二极管电流有效值: $I_{\text{Ds_rms}} = I_{\text{o}} \sqrt{(3 \sim 5)t_{\text{f}} / T_{\text{s}}}$
- 应选用快恢复二极管,按照其电压应力和电流有效值选取

另一种RCD缓冲电路设计

- 关断时在 2 两端等效并联电容延缓电压变化
- 同时将等效电容放于D两端延缓Q管关断电压变化
- ■衍生出第二种RCD缓冲电路
- ■特别注意二极管方向

工作原理?

RCD缓冲电路并联在开关管上

RCD缓冲电路并联在续流二极管上

25

■ 开关管Q关断过程:

- 关断前: Q稳态导通, D_{FW} 截止, C_{S} 电压为 U_{i} (上正下负)
- 关断瞬间,Q电流下降, D_s 会导通,弥补Q电流减小量
- 由于 C_s 作用,续流二极管 D_{FW} 电压从 U_{in} 缓慢下降到零,Q 电压 u_{ce} 从零慢慢上升到 U_{in} ,因此减小Q关断损耗
- 注意: 当 C_S 上电压减小到零时, D_{FW} 方会导通续流

另一种RCD缓冲电路工作原理

■ 当开关管 ② 导通时:

- 导通前: Q关断, D_{FW} 稳态续流, C_{S} 上电荷为零
- 输入电压通过缓冲电阻Rs给缓冲电容Cs充电
- Q电流除了电感电流分量外,还有 C_S 的充电电流
- 当 C_S 电压上升到 U_{in} 时,充电过程结束

7.2 直流变换器的基本缓冲电路

7.2.1 RCD缓冲电路

7.2.2 RLD缓冲电路

2 5

■ 提出问题: 关断过程? 开通过程?

■解决方案:关断缓冲电路RCD;开通缓冲电路?

开通/关断过程的对偶性:

关断 → 开通 ; 电压 → 电流

开通缓冲电路设计

- ■与"关断缓冲"对偶:
- 目的 - 限制d*i_c*/d*t*
- 电路 - 由串联电感
- 原理 - 1) di_c /dt 限制; 2) L_s储能释放

RLD缓冲电路

开通缓冲电路设计

- 缓冲电路工作原理:
- Q off: 稳态时, $i_{Ls}=0$, $i_{DFW}=i_{L}$
- Q导通瞬态,开关转换时 i_{Lf} 不变, $i_{Ls}=i_{Lf}$ i_{DFW}
- 由于L。与Q的串联限制了i。的增长速度,起到了开通缓冲的作用

开通缓冲电路设计

■ 缓冲电路工作原理:

- Q on:开通稳态时, $i_c=i_{Ls}$
- Q关断瞬态: i_{Ls} 经过 D_s 、 R_s 流通,则增大Q关断电压
- R_s与能量消耗相关,与L_s电流下降时间和附加电压大小有关

