決定性公理の無矛盾性

YasudaYasutomo

2020年2月24日

決定性公理の無矛盾性証明をする.無限個の Woodin 基数とそれらより大きい可測基数の存在を仮定したとき $\mathrm{AD}^{L(\mathbb{R})}$ が成立することを示す.tree production lemma については [1] を参考にしている. $\mathbb{R}^\#$ については [6] を参考にすると良い.

1 Symmetric extension

M を ZFC の内部モデル, $\alpha \in M$ を順序数とする. $(M, \operatorname{Coll}(\omega, <\alpha))$ -generic G に対して,

$$\tau = \bigcup \{ \mathbb{R} \cap M[G \cap \operatorname{Coll}(\omega, < \beta)] \mid \beta < \alpha \}$$

と定義する. このとき $N_G=M(\tau)$ と表すことにする. 内部モデル N が M の $\operatorname{Coll}(\omega,<\alpha)$ による symmetric extension であるとは次を満たすことをいう.

- $M \subseteq N$
- ある M の generic extension において $N \equiv_M N_G$ を満たす. ただし G は $(M, \operatorname{Coll}(\omega, < \alpha))$ -generic.

次は symmetric extension の十分条件を与える.

補題 1.1. M を ZFC の内部モデルとし, δ を M において強極限的とする. $\tau \subseteq \mathbb{R}$ が次の条件を満たすと仮定する.

- 1. 任意の $x \in \tau$ に対してある半順序 $\mathbb{P} \in M_{\delta}$ と (M, \mathbb{P}) -generic g が存在して $x \in M[g]$ を満たす.
- 2. 任意の $x, y \in \tau$ に対して $\mathbb{R} \cap M(x, y) \subseteq \tau$ を満たす.
- 3. $\delta = \sup \{ \omega_1^{M[x]} \mid x \in \tau \}$

このとき $\mathbb{R} \cap M(\tau) = \tau$ かつ $M(\tau)$ は M の $\operatorname{Coll}(\omega, < \lambda)$ による symmetric extension となる.

証明. $\mathbb P$ をある $\alpha < \delta$ と $x \in \tau$ が存在して M[x] において $(M, \operatorname{Coll}(\omega, < \alpha))$ -generic となるような g 全体の集合とする. 順序は包含によって定める. このとき $\mathbb P \in M(\tau)$ となる. δ は強極限的であり条件 3 より $\mathbb P$ は空でない. $G_{\mathbb P}$ を $(M(\tau), \mathbb P)$ -generic とし, $H = \bigcup G_{\mathbb P}$ とする.

主張. H は $(M, \operatorname{Coll}(\omega, < \delta))$ -generic.

 $D \in M$ を $\operatorname{Coll}(\omega, < \delta)$ -稠密とする. $g \in \mathbb{P}$ を $(M, \operatorname{Coll}(\omega, < \eta))$ -generic とする. $\{p \cap \operatorname{Coll}(\omega, < \eta) \mid p \in D\}$ は $\operatorname{Coll}(\omega, < \eta)$ -稠密より $\eta' < \delta$ と $p \in D \cap \operatorname{Coll}(\omega, < \eta')$ を $p \cap \operatorname{Coll}(\omega, < \eta) \in g$ となるように取る. $2^{\eta'} < \delta$ より $y \in \tau$ と $(M, \operatorname{Coll}(\omega, < \eta'))$ -generic $g' \in M[y]$ を g の拡張で $p \in g'$ を満たすように取る. $G_{\mathbb{P}}$ の

genericity より良い. ⊢ claim.

 $\mathbb{R}^{M(\tau)} \subseteq \tau$ と条件 3 より各 $\alpha < \delta$ において $H \cap \operatorname{Coll}(\omega, <\alpha) \in M(\tau)$ が成立することから

$$\bigcup \{ \mathbb{R} \cap M[H \cap \operatorname{Coll}(\omega, <\alpha)] \mid \alpha < \delta \} \subseteq \tau$$

が成立する.

主張. 任意の $x \in \tau$ に対してある $\alpha < \delta$ が存在して $x \in M[H \cap \operatorname{Coll}(\omega, <\alpha)]$ が成立する.

 $M(\tau)$ で作業する. $x \in \tau$ を任意に取る. $D = \{g \in \mathbb{P} \mid x \in M[g]\}$ が \mathbb{P} -稠密であることを言えば良い. $g \in \mathbb{P} \cap M[y]$ を $(M,\operatorname{Coll}(\omega,<\eta))$ -generic とする. $x \notin M[g]$ として良い. このときある x はある $\mathbb{Q} \in (M[g])_{\delta}$ での拡大に属す. 条件 3 より $z \in \tau$ を M[z] において $2^{|\mathbb{Q}|}$ が可算かつ $x,y \in M[z]$ を満たすように取る. このとき M[z] において $(M,\operatorname{Coll}(\omega,<2^{|\mathbb{Q}|}))$ -generic g' を g の拡張で $x \in M[g']$ を満たすように取れる. \exists claim.

よって示された.

補題 1.2. $\xi \in ON$, δ を Woodin 基数, κ を極限順序数とし, $\xi < \delta < \kappa$ とする. 任意の可算な $Y \prec V_{\kappa}$ で $\xi, \delta \in Y$ を満たすものに対してある可算な $Y' \prec V_{\kappa}$ が存在して次を満たす.

- \bullet $Y \subset Y'$
- $Y' \cap V_{\mathcal{E}} = Y \cap V_{\mathcal{E}}$
- 任意の $\mathbb{Q}_{<\delta}$ -前稠密な $D \in Y'$ に対して, ある $d \in D \cap Y'$ が存在して $Y' \cap (\cup d) \in d$ を満たす. *1 \square

Woodin 基数の極限でない Woodin 基数を後続 Woodin 基数と呼ぶことにする.

補題 1.3. δ を limit of Woodin とする. a を可算な $X \prec V_{\delta+1}$ で次を満たすもの全体の集合とする.

• ある $\gamma < \delta$ が存在して、全ての後続 Woodin 基数 $\lambda \in (\gamma, \delta) \cap X$ に対して X は X に属する全ての $\mathbb{Q}_{<\lambda}$ -前稠密集合を capture する.

このとき任意の $Z \in \mathbb{Q}_{<\delta}$ に対して $a_Z = \{X \in a \mid Z \in X \land X \cap (\cup Z) \in Z\}$ は stationary.

証明. $Z \in \mathbb{Q}_{<\delta}$ と $F: V_{\delta+1}^{<\omega} \to V_{\delta+1}$ を任意に取る. 可算な $Y \prec V_{\delta+2}$ を $H, Z \in Y, Y \cap (\cup Z) \in Z,$ $Y \cap V_{\delta+1} \in a$ を満たすように構成すれば良い. 到達不能基数 $\gamma < \delta$ を $Z \in \mathbb{Q}_{<\gamma}$ を満たすように取る. W を (γ, δ) に属す後続 Woodin 基数全体とする. $V_{\delta+\omega}$ の可算初等部分モデルの族 $\langle Y_{\alpha} \mid \alpha < \omega_1 \rangle$ と $\langle \eta_{\alpha} \mid \alpha < \omega \rangle \in W^{\omega_1}$ を各 $\alpha < \omega_1$ に対して次を満たすように構成する.

- $\{Z, H, \gamma\} \subseteq Y_0, Y_0 \cap (\cup Z) \in Z$
- $Y_0 \subseteq Y_\alpha$, $Y_0 \cap V_\gamma = Y_\alpha \cap V_\gamma$
- η_{α} は $Y_{\alpha} \cap W$ の α 番目の元となる.
- 任意の $\beta \in (\alpha, \omega_1)$ に対して, $\xi = \gamma \cup \sup(W \cap \eta_\alpha)$ とすると $Y_\beta \cap V_\xi = Y_\alpha \cap V_\xi$ を満たす.
- λ を $Y_{\alpha}\cap W$ の最初の α 個の元のうちの一つとすると, Y_{α} は Y_{α} に属する全ての \mathbb{Q}_{λ} -前稠密部分集合を capture する.

 Y_0 は Z の stationarity より取れる.極限順序数のときは和集合を取る.後続順序数のときは補題 1.2 を用い

^{*1} 後半部分を Y' captures D という.

て可算な $Y_{\alpha+1} \prec V_{\delta+\omega}$ を次を満たすように取れば良い.

- $Y_{\alpha} \subseteq Y_{\alpha+1}$
- $Y_{\alpha} \cap V_{\gamma \cup \sup(W \cap \eta_{\alpha})} = Y_{\alpha+1} \cap V_{\gamma \cup \sup(W \cap \eta_{\alpha})}$
- $Y_{\alpha+1}$ は $Y_{\alpha+1}$ に属する任意の $\mathbb{Q}_{\leq \eta_{\alpha}}$ -前稠密部分集合を capture している.

構成より $\langle Y_{\alpha} \mid \alpha < \omega_1 \rangle$ と $\langle \eta_{\alpha} \mid \alpha < \omega \rangle$ は条件を満たすことは良い.このときある $\alpha < \omega_1$ が存在して $Y_{\alpha} \cap V_{\delta+1} \in a$ となることを示す.もし存在すれば $Y = Y_{\alpha} \cap V_{\delta+2}$ が求める Y となる.このような α が存在しないと仮定して矛盾を導く.このとき $Y^* = \bigcup_{\alpha < \omega_1} Y_{\alpha}$ とすると後続 Woodin 基数 $\lambda \in (\gamma, \delta) \cap Y^*$ を任意の $\alpha < \omega_1$ に対して λ は $Y_{\alpha} \cap W$ の最初の α 個に属さないように取れる. λ をこのようなもので最小とする. $\lambda \in Y_{\alpha'}$ とする.このとき構成より $Y^* \cap W \cap \lambda$ の順序型は ω_1 となっている. ω_1 は正則より $\alpha < \alpha'$ を $Y_{\alpha} \cap W \cap \lambda$ が $Y^* \cap W \cap \lambda$ の最初の α 個からなるように取れる.このとき $\lambda = \eta_{\alpha}$ となり矛盾.

次が重要である.

定理 1.4. δ を limit of Woodin, κ を可測基数, $\delta < \kappa$ とする. このとき V の generic extension のおいてある $(V, \operatorname{Coll}(\omega, < \delta))$ -generic H が存在して

$$\mathbb{R}^* = \bigcup \{ \mathbb{R} \cap V[H \cap \operatorname{Coll}(\omega, <\alpha)] \mid \alpha < \delta \}$$

としたとき、初等埋め込み $j: L(\mathbb{R}^V) \to L(\mathbb{R}^*)$ が存在する.

証明. a を補題 1.3 のものとする. $(V, \mathbb{P}_{<\kappa})$ -generic G を $a \in G$ を満たすように取る. $j: V \to (M, E) \subseteq V[G]$ を generic embedding とする. * $^2\kappa$ は可測基数より $j(\kappa) = \kappa$ が成立する. Normality と genericity よりある $\gamma_G < \lambda$ と a' を $X \in a$ で次を満たすもの全体の集合とすると $a' \in G$ となる.

- $\gamma_G \in X$
- 全ての後続 Woodin 基数 $\lambda \in (\gamma_G, \delta) \cap X$ に対して X は X に属する全ての \mathbb{Q}_{λ} -前稠密集合を capture する.

W を (γ_G, δ) に属す後続 Woodin 基数全体の集合とする。各 $\xi \in W$ に対して $G_\xi = G \cap \mathbb{Q}_{<\xi}$ とすると $a' \in G$ より G_ξ は $(V, \mathbb{Q}_{<\xi})$ -generic となる。よって各 $\xi \in W$ に対して $j_\xi \colon V \to M_\xi \subseteq V[G_\xi]$ を generic embedding とする。これは整礎となる。 $k_\xi \colon M_\xi \to (M, E)$ を factor map とすると $j = k_\xi \circ j_\xi$ を満たす。また各 $\xi_0 < \xi_1 \in W$ に対して $j_{\xi_0,\xi_1} \colon M_{\xi_0} \to M_{\xi_1}$ を $j_{\xi_0,\xi_1}([f]_{G_{\xi_0}}) = [f]_{G_{\xi_1}}$ と定義する。 (M^*,E^*) を $\langle M_{\xi_0},j_{\xi_0,\xi_1} \mid \xi_0,\xi_1 \in W,\xi_0 < \xi_1 \rangle$ の direct limit とする。 次のような図式となっている。

 $^{*^2}$ このとき (M, E) は整礎とは限らないことに注意.

今 $\mathbb{R}^{M^*} = \bigcup \{ \mathbb{R}^{M_{\xi}} \mid \xi \in W \}$ となっている。また各 $\xi \in W$ について $\mathbb{R}^{M_{\xi}} = \mathbb{R}^{V[G \cap V_{\xi}]}$ を満たすことから 補題 1.1 より $V(\mathbb{R}^{M^*})$ は V の $\operatorname{Coll}(\omega, < \delta)$ による symmetric extension となる。 $(V, \operatorname{Coll}(\omega, < \delta))$ -generic H を $\mathbb{R}^{M^*} = \bigcup \{ \mathbb{R} \cap V[H \cap \operatorname{Coll}(\omega, < \alpha)] \mid \alpha < \delta \}$ を満たすように取る。 $j^*(\kappa) = \kappa$ より初等埋め込み $j^* \upharpoonright_{L_{\kappa}(\mathbb{R}^V)} : L_{\kappa}(\mathbb{R}^V) \to L_{\kappa}(\mathbb{R}^{M^*})$ を得る。Lévy-Solovay の定理より κ は V[H] でも可測基数であるから $(\mathbb{R}^{M^*})^\# \in V[H]$ を満たす。また κ は limit of completely Jónsson より κ の下に cofinally many に $j^*(\gamma) = \gamma$ を満たす completely Jónsson が存在する。よって $(\mathbb{R}^V)^\# \subseteq (\mathbb{R}^{M^*})^\#$ が成立する。

系 1.5. δ を limit of Woodin, κ を可測基数, $\delta < \kappa$ とする. $\mathbb{P} \in V_{\delta}$ を半順序とする. (V, \mathbb{P}) -generic G に対して $(\mathbb{R}^{\#})^{V} = (\mathbb{R}^{\#})^{V[G]} \cap V$ が成立する.

2 Consistency of Axiom of Determinacy

tree production lemma を用いて十分に巨大基数が存在するとき $\mathbb{R}^{\#}$ が universally Baireness を持つことを示す. $L(\mathbb{R})$ 内の実数の集合は全て $\mathbb{R}^{\#}$ に Wadge reducible であることから $L(\mathbb{R})$ 内の実数の集合の tree representation を得る.

 φ を論理式とし a をパラメタとする.ここで a は特に限定しない. $X \prec_n V$ を十分な初等性を持った可算初等部分構造で $\kappa, a \in X$ とする. $^{*3}\pi$: $X \simeq N$ を推移的崩壊とする.このとき X が (φ, a, κ) -generically correct であると任意の半順序 $\mathbb{P} \in H^N_{\pi(\kappa)}$ と (N, \mathbb{P}) -generic $g \in V$ と任意の $x \in N[g] \cap \mathbb{R}$ に対して次が成立するときのことをいう.

$$N[g] \models \varphi[x, \pi(a)] \Leftrightarrow V \models \varphi[x, a]$$

補題 **2.1.** $\varphi(v_0,v_1)$ を論理式, a をパラメタ, κ を無限基数とする. 推移的な M と σ は次を満たすとする.

- $H_{\kappa} \cup {\kappa} \subseteq M$
- $\sigma: M \to V$ は十分な初等性を持ち, $a \in \operatorname{ran}(\sigma)$ かつ $\operatorname{cp}(\sigma) > \kappa$ を満たす.

a を可算な $X \prec M$ で σ " X が (φ, a, κ) -generically correct となるもの全体の集合とし, a が $\mathcal{P}_{\omega_1}(M)$ の club を含むと仮定する. このときある木 T, U が存在して任意の $\mathbb{P} \in H_{\kappa}$ と (V, \mathbb{P}) -generic G に対して,

$$V[G] \models p[T] = \{x \in \mathbb{R}^{V[G]} \mid \varphi[x, a]\} \land p[U] = \{x \in \mathbb{R}^{V[G]} \mid \neg \varphi[x, a]\}$$

が成立する.

証明. $F: M^{<\omega} \to M$ を $X \in \mathcal{P}_{\omega_1}(M)$ に対して $F"X^{<\omega} \subseteq X$ ならば $X \prec M$ かつ $\sigma"X$ が (φ, a, κ) -generically correct となるように取る. $\sigma(a^*) = a$ とする. $\omega^{<\omega}$ の標準的な数え上げ $\langle r_n \mid n \in \omega \rangle$ を固定する. $\omega \times M \times H_{\kappa}$ 上の木T を次の満たす (s,t,u) 全体の集合とする.

- 1. $s \in \omega^{<\omega}$
- 2. $t \in M^{<\omega}$
- 3. 2m+2 < lh(s) ならば $t(2m+2) = F(t \circ r_m)$ を満たす.
- 4. $\ln(s) > 0$ ならば $t(0) = \mathbb{P} \in H_{\kappa}$ は半順序となる.
- 5. 2m+3 < lh(s) ならば t(2m+3) = u(m) を満たす.

^{*3} これは reflection で十分大きい fragment を取ってくれば良い.

- 6. $\{u(m) \mid u < \mathrm{lh}(s)\}$ は共通の拡大を持つ $\mathbb P$ の部分集合となる.
- 7. 2m+2 < lh(s) かつ t(m) が \mathbb{P} -稠密部分集合ならば $u(2m+2) \in t(m)$ を満たす.
- 8. lh(s) > 1 ならば t(1) は \mathbb{P} -name で $u(0) \Vdash t(1)$: $\omega \to \omega$ を満たす.
- 9. 2m+3 < lh(s) ならば $u(2m+3) \Vdash t(1)(m) = s(m)$ を満たす.
- 10. $\ln(s) > 1$ ならば $u(1) \Vdash \varphi[t(1), \check{a^*}]$ を満たす.

 $\omega \times M \times H_{\kappa}$ 上の木 U を $\neg \varphi[t(1), \check{a^*}]$ に変えて同様に定義する.

主張. 次が成立する.

- 1. $p[T] \subseteq \{x \in \mathbb{R} \mid \varphi[x, a]\}$
- 2. $p[U] \subseteq \{x \in \mathbb{R} \mid \neg \varphi[x, a]\}$

 $x \in p[T]$ を任意に取る. $(x,f,g) \in [T]$ とし $X = \operatorname{ran}(f)$ とする. このとき T の定義の 3 より $F"X^{<\omega} \subseteq X$ を満たす. よって $X \prec M$ かつ $\sigma"X$ が (φ,a,κ) -generically correct となる. 構成より半順序 $\mathbb{P} \in X \cap H_{\kappa}$ と (X,\mathbb{P}) -generic G と \mathbb{P} -name $\tau \in X$ を次を満たすように取れる.

- ある $p \in G$ が存在して $p \Vdash \dot{\tau}$: $\omega \to \omega$ を満たす.
- 全ての $n \in \omega$ に対してある $p_n \in G$ が存在して $p_n \Vdash \dot{\tau}(n) = x(n)$ を満たす.
- ある $p \in G$ が存在して $p \Vdash \varphi[\dot{\tau}, \check{a^*}]$ を満たす.

 σ は十分に初等的であるから σ " X もこれらを満たす. σ " X が (φ, a, κ) -generically correct より $V \models \varphi[x, a]$ となる. U に関しても同様. \dashv claim.

半順序 $\mathbb{P} \in H_{\kappa}$ を任意に取る. G を (V,\mathbb{P}) -generic とする.

主張. 次が成立する.

- 1. 任意の $x \in \mathbb{R}^{V[G]}$ に対して $V[G] \models \varphi[x,a]$ ならば $x \in p[T]^{V[G]}$ が成立する.
- 2. 任意の $x \in \mathbb{R}^{V[G]}$ に対して $V[G] \models \neg \varphi[x,a]$ ならば $x \in p[U]^{V[G]}$ が成立する.

T と U の構成に沿って path をうまく取れば良い. \dashv claim.

絶対性からTとUは求めるものとなる. よって示された.

無限基数 κ について G が V 上の $< \kappa$ -generic であるとはある半順序 $\mathbb P$ で $|\mathbb P| < \kappa$ であるものが存在して, G は $(V,\mathbb P)$ -generic であるときのことをいう.

定理 2.2 (Tree production lemma, Woodin). $\varphi(v_0, v_1)$ を論理式, a をパラメタ, δ を Woodin 基数とする. 次が成立すると仮定する.

1. G を V 上の < δ -generic, H を V[G] 上の < δ ⁺-generic とするとき任意の $x \in \mathbb{R} \cap V[G]$ に対して次が成立する.

$$V[G] \models \varphi[x, a] \Leftrightarrow V[G][H] \models \varphi[x, a]$$

2. G を $(V, \mathbb{Q}_{<\delta})$ -generic, $j: V \to M \subseteq V[G]$ を generic embedding とする. このとき任意の $x \in \mathbb{R} \cap V[G]$ に対して次が成立する.

$$V[G] \models \varphi[x, a] \Leftrightarrow M \models \varphi[x, j(a)]$$

このときある木 T, U が存在して V 上の $< \delta$ -generic G に対して,

$$V[G] \models p[T] = \{x \in \mathbb{R}^{V[G]} \mid \varphi[x, a]\} \land p[U] = \{x \in \mathbb{R}^{V[G]} \mid \neg \varphi[x, a]\}$$

が成立する. 特に $\{x \in \mathbb{R} \mid \varphi[x,a]\}$ は δ-universally Baire となる.

証明. 各 $\kappa < \delta$ に対して T_{κ} , U_{κ} を V 上の $< \kappa$ -generic に対して定理の主張が成立するように構成すれば良い. $\kappa < \delta$ を任意に取る. 推移的な M, σ , a^* を次を満たすように取る.

- $H_{\kappa^+} \subseteq M$
- $|M| < \delta$
- $\sigma: M \to V$ は十分な初等性を持ち $a = \sigma(a^*)$ かつ $\sigma \upharpoonright_{\kappa^+} = \mathrm{id}$ を満たす.

 $a\subseteq\mathcal{P}_{\omega_1}(M)$ を可算な $X\prec M$ で σ " X が (φ,a,κ) -generically correct となるような全体の集合とする. 補題 2.1 より a が club を含むことを言えばよい. $(\mathcal{P}_{\omega_1}(M)\setminus a)\in\mathbb{Q}_{<\delta}$ と仮定して矛盾を導く. $(V,\mathbb{Q}_{<\delta})$ -generi G を $(\mathcal{P}_{\omega_1}(M)\setminus a)\in G$ となるように取る. $j\colon V\to N\subseteq V[G]$ を generic embedding とする. $j^*M\in j(\mathcal{P}_{\omega_1}(M)\setminus a)$ かつ $j^*M\prec j(M)$ より $j(\sigma)$ " j^*M は N において $(\varphi,j(a),j(\kappa))$ -generically correct でない. $j(\sigma)$ " j^*M の推移的崩壊は M であるから,M 上の $<\kappa$ -generic $g\in N$ を任意にとり $x\in\mathbb{R}\cap M[g]$ としたとき,

$$M[g] \models \varphi[x, a^*] \Leftrightarrow V[g] \models \varphi[x, a]$$
$$\Leftrightarrow V[G] \models \varphi[x, a]$$
$$\Leftrightarrow N \models \varphi[x, j(a)]$$

が成立する. よって $j(\sigma)$ "j"M は N において $(\varphi, j(a), j(\kappa))$ -generically correct となりこれは矛盾.

定理 **2.3.** δ を limit of Woodin, κ を可測基数, $\delta < \kappa$ とする. このとき $\mathbb{R}^{\#}$ は δ -universally Baire となる.

証明. Tree production lemma を用いる. $\varphi(v_0) \equiv v_0 \in \mathbb{R}^\#$ を考える. これは系 1.5 から Woodin 基数 $\delta' < \delta$ に対して Tree production lemma の条件を満たす. よって $\mathbb{R}^\#$ は δ -universally Baire となる.

系 2.4. δ を limit of Woodin, κ を可測基数, $\delta < \kappa$ とする. このとき $L(\mathbb{R})$ 内の全ての実数の集合は $<\delta$ -weakly homogeneously Suslin となる.

よって次を得る.

定理 2.5 (Martin-Steel-Woodin). 無限個の Woodin 基数とそれらより大きい可測基数の存在を仮定する. このとき $L(\mathbb{R})$ において AD が成立する.

この巨大基数の仮定は弱めることができる. Woodin によって次の無矛盾等価性が示されている.

定理 2.6 (Woodin). 次は無矛盾等価.

- 1. ZF + AD
- 2. $ZFC + \omega$ 個の Woodin 基数の存在

参考文献

- [1] John R. Steel, The Derived Model Theorem, 2008.
- [2] P. Larson, The stationary tower, University Lecture Series, American Mathematical Society, 2004.
- [3] Akihiro Kanamori, The higher infinite, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994.
- [4] W. Hugh Woodin, Supercompact cardinals, sets of reals, and weakly homogeneous trees, Proc. Nat. Acad. Sci. USA 85, 6587-6591.
- [5] D.A. Martin and J.R. Steel, A Proof of Projective Determinacy, Journal of the American Mathematical Society bf 2 (1989), 71-125.
- [6] Solovay R.M. The independence of DC from AD. In: Kechris A.S., Moschovakis Y.N. (eds) Cabal Seminar 76 - 77. Lecture Notes in Mathematics, vol 689. Springer, Berlin, Heidelberg, 1978.
- [7] van Wesep R. Wadge degrees and descriptive set theory. In: Kechris A.S., Moschovakis Y.N. (eds) Cabal Seminar 76-77. Lecture Notes in Mathematics, vol 689. Springer, Berlin, Heidelberg, 1978.