text1r — calculate 1D radial texture

November 13, 2014

This library calculates ³He-B texture in a 1D cylindrically symmetric geometry. Code and ideas came from ROTA programs (by J.Kopu, S.Autti, ...). Interfaces for C, F, F90, Matlab, and Octave languages are available.

Energy terms

Sum of following energies is minimized:

Gradient energy:

$$F_G = \lambda_{G1} \int_V \frac{\partial R_{\alpha i}}{\partial r_i} \frac{\partial R_{\alpha j}}{\partial r_j} + \lambda_{G2} \int_V \frac{\partial R_{\alpha j}}{\partial r_i} \frac{\partial R_{\alpha j}}{\partial r_i}$$

Magnetic energy in a uniform field H along z axis:

$$F_{DH} = -a \int_{V} (\mathbf{n} \cdot \mathbf{H})^2 = -aH^2 \int_{V} \sin^2 \beta_N$$

Spin-orbit energy for arbitrary distribution of precessing magnetization Ψ :

$$F = \frac{8}{5} \frac{\chi \Omega_B^2}{\gamma^2} \sin^2 \frac{\beta_L}{2} \sin^2 \frac{\beta_M}{2} = 15\lambda_D \sin^2 \beta_M \sin^2 \frac{\beta_M}{2}, \quad \left(\sin^2 \frac{\beta_L}{2} = \frac{5}{8} \sin^2 \beta_N\right)$$

Superflow energy for arbitrary distribution of counterflow $v_s - v_n$:

$$F_{HV} = -\lambda_{HV} \int_{V} [\mathbf{H} \cdot R \cdot (\mathbf{v_s} - \mathbf{v_n})]^2$$

Vortex energy for arbitrary distribution of vortex density Ω_v and polarization $\mathbf{l_v}$:

$$F = \frac{1}{5} \frac{\lambda}{\Omega} \int_{V} \Omega_{v} [\mathbf{H} \cdot R \cdot \mathbf{l_{v}}]^{2}$$

Surface energy:

$$F_{SH} = -d \int_{S} [\mathbf{H} \cdot R \cdot \mathbf{s}]^{2} d^{2}r$$

$$F_{SG} = (2\lambda_{G2} + \lambda_{SG}) \int_{S} s_{j} R_{\alpha j} \frac{\partial R_{\alpha i}}{\partial r_{i}} d^{2}r$$

Note:

- Surface terms are not clear. d is calculated in GL approximation.
- No information about λ/Ω (only counterflow part is known which is impotant at high temperatures).
- Dipole energy is assumed to be constant, $\theta = \cos^{-1}(-1/4)$.

Usage

General

To keep parameters and results we use a global data structure with following fields:

```
-- number of points
n
     -- r grid [cm]
rr()
an() -- azimuthal angle of n vector [deg]
bn()
     -- polar angle of n vector [deg]
      -- Cell radius [cm]
      -- Magnetic field [G]
      -- Textural dipole-field parameter a [erg/(cm3 G2)]
      -- Textural parameter lambda_g1 [erg/cm]
lg1
      -- Textural parameter lambda_g2 [erg/cm]
      -- Textural parameter lambda_HV [erg/(cm3 G2) 1/(cm/s)2]
lhv
      -- Textural parameter lambda_SG [???]
ld
      -- Textural parameter lambda_D [erg/cm3]
lo
      -- Textural parameter lambda/omega [s/rad]
      -- Textural surface parameter d [erg/(cm2 G2)]
vr(), vz(), vf() -- velocity profile
lr(), lz(), lf() -- vortex polarization
      -- vortex dencity
apsi() -- magnon wavefunction amplitude
energy -- final energy after minimization
       -- error code after minimization
```

Following functions are provided to calculate texture:

- text1r_init(ttc, p, nu0, r, n, itype) Initialize data structure. Textural parameters are set according to temperature ttc (T/Tc) and pressure p (bar) using libhe3 library. λ/Ω parameter is set to zero (no theory). Magnetic field is set from nu0 Larmor frequency. Vortex and counterflow distributions are set to zero. Initial distributions for α_N and β_N are set according to itype parameter: 0 means usual flare-out texture, 1 means texture with 90-degree peak, 2 and more means larger rotation of n vector.
- text1r_set_vortex_cluster(dat, omega, omega_v) Set counterflow and vortex profiles for central vortex cluster. Here omega is a rotation velocity of the container and omega_v is rotation velocity of the cluster.
- text1r_set_vortex_uniform(dat, omega, omega_v) Set counterflow and vortex profiles for uniform vortex cluster. Here omega is a rotation velocity of the container and omega_v is rotation velocity of the cluster.
- text1r_set_vortex_twisted(dat, omega, kr) Set counterflow and vortex profiles for twisted vortex cluster.
- text1r_minimize(msglev) Vary α_N and β_N to find energy minimum. Parameter msglev is used to control verbosity level. To turn off all messages use -3.
- text1r_print(filename) Print all data to a file.

 Additional matlab functions are provided to deal with magnon condensates (see below).

Fortran

Examples of Fortran 77 and Fortran 90 programs can be found in examples folder.

Simple usage:

```
include '../text1r.fh'
call text1r_init(ttc, p, nu0, r, n, itype)
text_lo=5D0;
call text1r_set_vortex_cluster(omega, omega_v);
call text1r_minimize(msglev)
call text1r_print('result.dat')
```

Data is arranged as a common block text1r_pars with fields text_n, text_rr, text_an etc.

\mathbf{C}

Example of C program can be found in examples folder.

Simple usage:

```
#include "text1r.h"
...
text1r_init_(&ttc, &p, &nu0, &r, &n, &itype);
text1r_pars_.lo=5;
text1r_set_vortex_cluster_(&omega, &omega_v);
text1r_minimize_(&msglev);
text1r_print_(fname, strlen(fname));
```

You should include text1r.h header file. Data is arranged as a global structure text1r_pars_ with fields n, rr, an etc. Usual way of calling Fortran functions from a C program is used.

Matlab/Octave

MEX-files for Matlab and Octave can be found in matlab folder. Example of matlab script can be found in examples folder.

Simple usage:

```
dat = text1r_init(ttc, p, nu0, r, n, itype);
dat = text1r_set_vortex_cluster(dat, omega, omega_v);
dat.lo = 5;
dat = text1r_minimize(dat, msglev);
```

- additional dat parameter is used to keep all texture data. It is a matlab structure with fields n, rr, an etc.
- ullet n and itype parameters in text1r_init can be omitted. Default values: MAXN and 0.
- msglev parameter in text1r_minimize can be omitted. Default value is -3/

Additional matlab functions

...

Restrictions and TODO list

Maximal number of points is hardcoded into the library. You can increase it by changing MAXN
parameter in make_inc script and recompiling everything.

- Minimization of energy as a function α_N and β_N parameters is not stable near $\beta_N = 0$ (because α_N is not defined there). This causes problems at high temperature, or high cell radius, or high magnetic field (large ξ_H limit). TODO: use $n_x/(1+n_z)$ and $n_y/(1+n_z)$ as minimization parameters.
- TODO: include dipolar energy, vary also θ angle (or something like $n_i/\cos\theta$).
- TODO: Include eigenvalue solver for magnon wave function, include non-uniform magnetic field...

Technical details

Program structure

- esurf and ebulk subroutines calculate surface and bulk energy and its derivatives as a function of texture (α and β) and texture gradients ($\partial \alpha/\partial r$, $\partial \beta/\partial r$ etc.). Texture can be represented in various forms (α , β , or \mathbf{n} , or \mathbf{R}_{ij}).
- egrad subroutine calculates total energy as integral of bulk energy over volume plus integral of surface energy over surface and its derivatives as a function of texture and texture gradients at the whole grid.
- mfunc is a wrapper for egrad. Texture is represented as 1-d array suitable for minimization (see below).
- x2text and text2x subroutines convert two representations of the texture.
- minimize subroutine does minimization.

Texture representation for minimization

We don't want to minimize directly $F(n_r, n_z, n_f)$ because additional condition $n_i n_i = 1$ should be taken into account. We also don't want to minimize $F(\alpha, \beta)$ because if $\beta = 0$ then α is not defined.

One possibility is to use a projection of the **n** sphere into a plane z=0 from a z=-1, r=0 point:

$$u = \frac{n_r}{1+n_z}, \qquad v = \frac{n_f}{1+n_z}.$$

$$n_z = \frac{1-u^2-v^2}{1+u^2+v^2}, \qquad n_r = \frac{2u}{1+u^2+v^2}, \qquad n_f = \frac{2v}{1+u^2+v^2},$$

$$u = -\frac{\sin\beta\cos\alpha}{1+\cos\beta}, \qquad v = \frac{\sin\beta\sin\alpha}{1+\cos\beta}.$$

$$a = \cos\frac{1-u^2-v^2}{1+u^2+v^2}, \qquad b = \pi - \tan\frac{v}{u}$$
We need
$$\frac{\partial E}{\partial u} = \frac{\partial E}{\partial \alpha}\frac{\partial a}{\partial u} + \frac{\partial E}{\partial \beta}\frac{\partial b}{\partial u}$$

$$\frac{\partial E}{\partial v} = \frac{\partial E}{\partial \alpha}\frac{\partial a}{\partial v} + \frac{\partial E}{\partial \beta}\frac{\partial b}{\partial v}$$

$$\frac{\partial a}{\partial u} = -2\sin\beta\cos\alpha/\sin\alpha/(1+\sin\alpha^2)(1+\cos\beta)$$

$$\frac{\partial a}{\partial v} = 2\sin\beta\sin\alpha/\sin\alpha/(1+\sin\alpha^2)(1+\cos\beta)$$