	1.1 Data This data set contains socioeconomic and health information of different countries. The dataset can be found in kaggle: https://www.kaggle.com/rohan0301/unsupervised-learning-on-country-data . The metadata as below: Column Name Descritption
	Income Net income per person Inflation The measurement of the annual growth rate of the Total GDP life_expec The average number of years a new born child would live if the current mortality patterns are to remain total_fer The number of children that would be born to each woman if the current age-fertility rates remain gdpp The GDP per capita. Calculated as the Total GDP divided by the total population 1.2 Objective This analysis is to categories the countries to determine which countries need more aid. 2. Explorative Data Analysis
[2]:	<pre>## import the library and dataset import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline data=pd.read_csv("data/Country-data.csv") 2.1 The columns and datatypes ## the size of data data.shape</pre>
[4]:	<pre>(167, 10) ## the name of each column data.columns.tolist() ['country', 'child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp']</pre>
[6]:	<pre>## datatype data.info() <class 'pandas.core.frame.dataframe'=""> RangeIndex: 167 entries, 0 to 166 Data columns (total 10 columns): # Colum</class></pre>
[6]:	child_mortexportshealthimportsincomeinflationlife_expectotal_fergdppcount167.000000167.000000167.000000167.000000167.000000167.000000167.000000167.000000mean38.27006041.1089766.81568946.89021517144.6886237.78183270.5556892.94796412964.155689std40.32893127.4120102.74683724.20958919278.06769810.5707048.8931721.51384818328.704809min2.6000000.1090001.8100000.065900609.000000-4.21000032.1000001.150000231.00000025%8.25000023.8000004.92000030.2000003355.0000001.81000065.3000001.7950001330.00000050%19.30000035.0000006.32000043.3000009960.0000005.39000073.1000002.4100004660.00000075%62.10000051.3500008.60000058.75000022800.00000010.75000076.8000003.88000014050.000000max208.000000200.00000017.900000174.000000125000.000000104.00000082.8000007.490000105000.000000
[7]: [8]:	<pre>data['imports'] = data['imports'] * data['gdpp'] / 100 data['exports'] = data['exports'] * data['gdpp'] / 100 ## The numeric data numeric_columns = [x for x in data.columns if x! = 'country']</pre> numeric_columns
	<pre>['child_mort', 'exports', 'health', 'imports', 'income', 'inflation', 'life_expec', 'total_fer', 'gdpp'] ## The skewness of numeric data skew_columns = data[numeric_columns].skew().sort_values(ascending=False) skew_columns exports 6.720171 imports 6.618500 inflation 5.154049</pre>
11]: 11]:	health 2.526029 income 2.231480 gdpp 2.218051 child_mort 1.450774 total_fer 0.967092 life_expec -0.970996 dtype: float64 skew_columns = skew_columns.loc[skew_columns.abs() > 1] skew_columns exports 6.720171 imports 6.618500 inflation 5.154049 health 2.526029 income 2.231480 gdpp 2.218051 child mort 1.450774
	<pre>dtype: float64 # Perform log transform on skewed columns, for inflation we need to do it separately for col in skew_columns.index.tolist(): if col=='inflation': data[col] = np.log1p(data[col]-data[col].min()) data[col] = np.log1p(data[col]) 2.3 Feature scaling from sklearn.preprocessing import StandardScaler sc = StandardScaler() data[numeric_columns] = sc.fit_transform(data[numeric_columns])</pre>
13]: 14]:	country child_mort exports health imports income inflation life_expec total_fer gdpp 0 Afghanistan 1.278012 -1.744584 -1.210000 -1.261882 -1.413035 0.547657 -1.619092 1.902882 -1.460301 1 Albania -0.239708 -0.186626 -0.088390 -0.006310 0.071660 -0.075628 0.647866 -0.859973 -0.122835 2 Algeria 0.198464 0.021291 -0.310450 -0.217929 0.285240 1.056361 0.670423 -0.038404 -0.064916 3 Angola 1.531191 0.150499 -0.683244 -0.170672 -0.353257 1.381207 -1.179234 2.128151 -0.221309 ## the pairplot of the transformed and scaled data sns.set_context('notebook') sns.pairplot(data[numeric_columns]);
	Ff check is there ha value
15]:	data.isna().sum() country 0 child_mort 0 exports 0 health 0 imports 0 income 0 inflation 0 life_expec 0 total_fer 0 gdpp 0 dtype: int64
	<pre>3.1 K-Means models We cannot determine how many cluster are there. We would fit K-Means models with cluster values ranging from 1 to 10 from sklearn.cluster import KMeans # Create and fit a range of models km_list = list() for clust in range(1,11): km = KMeans(n_clusters=clust, random_state=10) km = km.fit(data[numeric_columns]) km_list.append(pd.Series({'clusters': clust,</pre>
22]:	<pre>'model': km})) plot_data = (pd.concat(km_list, axis=1)</pre>
221.	From the elbow method, we found that cluster the data into 3 groups may be good.
	<pre># We build a model with 3 clusters from sklearn.cluster import AgglomerativeClustering ag = AgglomerativeClustering(n_clusters=3, linkage='ward', compute_full_tree=True) ag = ag.fit(data[numeric_columns]) data['agglom'] = ag.fit_predict(data[numeric_columns]) ## comparing the result pd.crosstab(data.kmeans, data.agglom)</pre>
28]:	<pre>kmeans 0 70 1 0 1 6 0 41 2 10 39 0 Create the dendrogram from agglomerative clustering. from scipy.cluster import hierarchy Z = hierarchy.linkage(ag.children_, method='ward') fig, ax = plt.subplots(figsize=(15,5))</pre>
	<pre>den = hierarchy.dendrogram(Z, orientation='top',</pre>
39]:	3.3 Density-Based Spatial Clustering of Applications with Noise. ## we compute the euclidian distance between every two records from scipy.spatial.distance import cdist all_distance=pd.DataFrame(cdist(data[numeric_columns], data[numeric_columns], 'euclid'))
41]: 42]:	We would like to determine the optimal eps. We can calculate the distance from each point to its closest neighbour using the NearestNeighbors. from sklearn.neighbors import NearestNeighbors neigh = NearestNeighbors(n_neighbors=3) nbrs = neigh.fit(data[numeric_columns]) distances, indices = nbrs.kneighbors(data[numeric_columns]) # we sort and plot results. distances = np.sort(distances, axis=0) distances = distances[:,1]
42]:	<pre>plt.plot(distances) [<matplotlib.lines.line2d 0x19560c18="" at="">] 3.5 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 -</matplotlib.lines.line2d></pre>
11]: 12]: 12]:	<pre>from sklearn.cluster import DBSCAN dbscan=DBSCAN(eps=1.1, min_samples=5).fit(data[numeric_columns])</pre>
14]: 14]:	<pre>1, 1, -1, 0, 1, 1, -1, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 1, -1, 1, 1, 0, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 1, 0, 1, -1, 0, -1, 1, 1, -1, -1, 1, 1, -1, 1, 2, 1, 1, 1, 1, 0, 1, -1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, -1], dtype=int64) ## number of cluster len(set(dbscan.labels_))-(1 if -1 in dbscan.labels_ else 0)</pre>
12]: 13]:	<pre>PCAmod = PCA(n_components=2) reduced_data=pd.DataFrame(PCAmod.fit_transform(data[numeric_columns]), columns=["PC1", "PC2"]) ## Reduce the dimension to 2 reduced_data</pre>
	1 0.457792 0.099568 2 -0.115430 -1.092748 3 -2.279633 -1.295628 4 1.873019 0.421531 162 -1.101959 0.676816 163 0.790962 -2.254905 164 -0.890625 -0.476336 165 -2.448294 -1.094781 166 -3.167094 -0.530944 167 rows × 2 columns
24]:	## plot the data after dimension reduction fig, ax=plt.subplots() ax.scatter(reduced_data.PC1, reduced_data.PC2) ax.set_xlim(-6,6) ax.set_ylim(-4,8) ax.set(xlabel='Principle component 1', ylabel='Principle component 2'); 8 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10
26]: 81]:	4.2 plot the data after dimension reduction with K-means labels
81]:	<pre>sns.scatterplot(data=reduced_data, x='PC1', y='PC2', hue='kmeans', legend=False, palette=['green', nge', 'brown']) <matplotlib.axessubplots.axessubplot 0x17a85e10="" at=""></matplotlib.axessubplots.axessubplot></pre>
16]: 24]: 24]:	## the index of cluster marked as brown mask=data.kmeans==2 country_list1=data.country[mask].tolist() country_list1
	'Cameroon', 'Central African Republic', 'Chad', 'Comoros', 'Congo, Dem. Rep.', "Cote d'Ivoire", 'Eritrea', 'Gambia', 'Guinea-Bissau', 'Haiti', 'India', 'Kenya', 'Kyrgyz Republic', 'Lao', 'Lesotho',
	'Liberia', 'Madagascar', 'Malawi', 'Mali', 'Mozambique', 'Myanmar', 'Nepal', 'Niger', 'Pakistan', 'Rwanda', 'Senegal', 'Sierra Leone', 'Tajikistan', 'Tanzania', 'Togo', 'Uganda', 'Uzbekistan',
83]:	<pre>4.3 plot the data after dimension reduction with agglomerative labels ## create the column for cluster reduced_data['agglom']=data['agglom'] import seaborn as sns sns.scatterplot(data=reduced_data, x='PC1', y='PC2', hue='agglom', legend=False, palette=['green', nge', 'brown']) <matplotlib.axessubplots.axessubplot 0x17a85c50="" at=""></matplotlib.axessubplots.axessubplot></pre>
25]:	## the index of cluster marked as orange mask=data.agglom==1
25] :	<pre>mask=data.agglom==1 country_list2=data.country[mask].tolist() country_list2 ['Afghanistan', 'Bangladesh', 'Benin', 'Burkina Faso', 'Burundi', 'Cambodia', 'Cameroon', 'Central African Republic', 'Chad', 'Comgo, Dem. Rep.', "Cote d'Ivoire", 'Eritrea', 'Gambia',</pre>
	'Gambia', 'Guinea-Bissau', 'Haiti', 'India', 'Kenya', 'Kyrgyz Republic', 'Lao', 'Liberia', 'Madagascar', 'Malawi', 'Malawi', 'Mali', 'Mozambique', 'Myanmar', 'Nepal', 'Niger',
	'Pakistan', 'Rwanda', 'Senegal', 'Sierra Leone', 'Tajikistan', 'Tanzania', 'Togo', 'Uganda', 'Uzbekistan', 'Zambia'] 4.4 plot the data after dimension reduction with DBSCAN labels reduced_data['dbscan']=dbscan.labels_
15]:	
	0 - -2 - -
26]: 26]:	5. Result As we can see that K-Mean and Agglomerative clustering generate very similar result. We generate two lists of country that may be clustered as un-development. We can find common country in these two lists which may be the countries need most help. list(set(country_list1).intersection(country_list2))

