Név:			Jegy:									
A számításelmélet alapjai 1 – mintavizsga 0-23: elégtelen(1), 24-32: elégséges(2), 33-41: közepes(3), 42-50: $jo(4)$, 51-60: $jeles(5)$												
1. Igaz	vagy hamis? (Írjuk az I=igaz, H=hamis betűk egyikét a négyzetb	e.)	(20x1	pont)								
è	Legyen V tetszőleges ábécé és $L\subseteq V^*$ tetszőleges nyelv. Ekkor L^3 $ \{a,aa\}^2 =4$	$B = \{uuu \mid u\}$	$\in L\}.$									
	Az $(ab)^*$ és az a^*b^* reguláris kifejezések ugyanazt a nyelvet írják le	e.										
<u> </u>	Minden h homomorfizmusra $h(\varepsilon) = \varepsilon$.											
厚	Minden 2-típusú nyelv leírható reguláris kifejezéssel.											
Þ	Minden ballineáris grammatika egyben lineáris grammatika is.											
-	Ha a $G=(N,T,P,S)$ grammatika 3-as normálformájú, akkor min alakja $A\to aB(A,B\in N,a\in T)$ vagy $A\to a(A\in N,a\in T).$	nden egyes :	szabály	yának								
 	Ha a $G=(N,T,P,S)$ grammatika minden egyes szabályának a $Na\in T$) vagy $A\to a(A\in N,a\in T)$, akkor G 3-as normálformájú	lakja $A \to 1$	aB(A	$,B\in$								
F	Legyen $A=(Q,T,\delta,Q_0,F)$ tetszőleges nemdeterminisztikus vé megadható olyan A' determinisztikus véges automata, amelyre $L(0,T,\delta,Q_0,F)$			Ekkor ül.								
	Ha $L\text{-nek}$ véges sok páronként különböző maradéknyelve van, akk	or reguláris										
	Tegyük fel, hogy egy $A=(Q,\{a,b\},\delta,q_0,F)$ véges determinisztikus állapotra $\delta(r,a)=r$ és $\delta(r,b)=s$. Ekkor $L(A,r)=\{a\}L(A,r)\cup\{a\}$		an az í	$r \in F$								
	A 2-típusú grammatikák elérhető nemterminálisai aktívak.											
	Minden Chomsky normálformájú grammatika környezetfüggő gram	mmatika is	egyber	1.								
	A reguláris nyelvek zártak a tükörkép (megfordítás) műveletre.											
	Legyen $A=(Z,Q,T,\delta,z_0,q_0,F)$ tetszőleges veremautomata. Ekko	or $N(A)$ 1-t	ípusú 1	nyelv.								
	Legyen $A=(Z,Q,T,\delta,z_0,q_0,F)$ egy veremautomata. Ekkor a (z szerinti egylépéses redukció hatására a verem eggyel több betűt előtte ($z\in Z,q\in Q$).											
	Legyen $A=(Z,Q,T,\delta,z_0,q_0,F)$ tetszőleges veremautomata. Ekk determinisztikus veremautomata, amelyre $L(A')=L(A)$ teljesül.	or megadha	ató oly	an A'								
	Legyen $G=(N,T,P,S)$ egy tetszőleges környezetfüggetlen gram zetési fában egy 2-gyerekes, A címkéjű csúcsnak a baloldali gyerakkor az $A\to BC$ szabály P -beli.											
	Minden Kuroda normálformájú grammatika hossznemcsökkentő g	rammatika	is egyl	oen.								
	Bármely környezetfüggő grammatika 0-típusú nyelvet generál.											

		NEPTUN:
2.	Adju	ık meg a választ! Indoklás nem kell. (10x2 pont)
	(a)	$\emptyset^0 = \dots$
		Legyen $G=(N,T,P,S)$ egy grammatika és $u,v\in (N\cup T)^*$. Definiálja, hogy mit jelent az, hogy v u -ból egy lépésben levezethető. $(u\Rightarrow_A v)$
	(c)	Legyenek $G_1 = (\{A\}, \{a, b\}, \{A \to abA \mid b\}, A)$ és $G_2 = (\{B\}, \{a, b\}, \{B \to baB \mid b\}, B)$ reguláris grammatikák. Adjunk meg egy $L(G_1)L(G_2)$ -t generáló reguláris grammatikát a zártsági tételben tanult konstrukció alapján (a kezdőszimbólumát is mondjuk meg!):
	(d)	Legyen $A=(Q,T,\delta,Q_0,F)$ egy nemdeterminisztikus véges automata. Adja meg a δ állapot-átmenet függvényének definícióját!
	(e)	Legyen A egy véges nemdeterminisztikus automata 4 állapottal, melyek közül 3 elfogadó. A tanult konstrukció szerint létezik olyan A -val ekvivalens A' determinisztikus automata, melynek állapothalmaza A állapothalmazának hatványhalmaza. Mekkora méretű ebben a konstrukcióban A' elfogadó állapothalmaza?
	(f)	Tekintsük az alábbi grammatikát. (S a kezdőszimbólum, a, b a terminálisok)
	()	$S \to SA \mid CX, A \to \varepsilon \mid XY, B \to AA, C \to AX, X \to a, Y \to b$
		Mi lesz a Chomsky normálformára alakítás algoritmusának ε -mentesítési lépése során a szabályrendszer átalakításához meghatározandó U halmaz?
	(g)	Tegyük fel, hogy a CYK algoritmus egy bemenetére a
		$H_{33} = \{A, C\}, H_{44} = \{B\}, H_{55} = \emptyset \text{ valamint a } H_{34} = \{B\}, H_{45} = \{C\}$
		értékeket már ismerjük. Tegyük fel továbbá, hogy a G grammatika azon szabályai, amelyek csak A,B,C -t tartalmaznak a jobboldalukon a következők:
		$S \to CA BC, D \to AC, E \to AC BB.$
		Ekkor $H_{35} = \dots$
	(h)	Adjuk meg azt a veremautomata szabályt, amelyik egy ε átmenet hatására kitörli a veremből a b szimbólumot és a q állapotból az r állapotba lép.
	(i)	Egy $G=(N,T,P,S)$ környezetfüggetlen grammatika aktív nemterminálisainak definíciója:
	(j)	Egy $A=(Z,Q,T,\delta,z_0,q_0,F)$ veremautomata által üres veremmel elfogadott $N(A)$ nyelv definíciója:

NEPTUN:												
NEPIUN:	 	•			•		•	•	•	•	 	

3. (4+6+6+4 pont)

(a) Legyen G=(N,T,P,S) egy 3-típusú grammatika. Ismertesse a zártsági tételben tanultak alapján egy $L(G)^*$ -t generáló 3-típusú grammatika konstrukcióját!

(b) Ismertesse, hogy hogyan készíthető egy 3-as normálformájú G=(N,T,P,S) grammatikához L(G)-t leíró reguláris kifejezés ($E_{i,j}^k$ halmazok rekurzív konstrukciója).

(c) Mutassa be a környezetfüggetlen grammatikák láncmentesítési eljárását. (H(A) halmazok és algoritmikus előállításuk, valamint a grammatika átalakítása.)

(d) Mondja ki a Nagy Bar Hillel Lemmát!