

MATRIX REPRESENTATION OF VECTORS

- Let $\{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle\}$ be the basis.
- $|\psi\rangle = |v_1\rangle c_1 + |v_2\rangle c_2 + \dots + |v_n\rangle c_n$ $c_k = \langle v_k | \psi \rangle$

9편 참조

MATRIX REPRESENTATION OF VECTORS

- Let $\{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle\}$ be the basis.
- $|\psi\rangle = |v_1\rangle c_1 + |v_2\rangle c_2 + \dots + |v_n\rangle c_n$ $c_k = \langle v_k | \psi \rangle$

$$|\psi\rangle \doteq \begin{bmatrix} c_1 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}$$

MATRIX REPRESENTATION OF OPERATORS

• Let $\{|v_1\rangle, |v_2\rangle, \cdots, |v_n\rangle, \}$ be the basis.

$$\hat{A} = \sum_{ij} |v_i\rangle A_{ij}\langle v_j|, \quad A_{ij} = \langle v_i|\hat{A}|v_j\rangle$$

9편 참조

9편 참조

Matrix Representation of Operators

- Let $\big\{\,|\,v_1\rangle,\,|\,v_2\rangle,\,\cdots,\,|\,v_n\rangle,\,\big\}$ be the basis.

$$\hat{A} = \sum_{ij} |v_i\rangle A_{ij}\langle v_j|, \quad A_{ij} = \langle v_i|\hat{A}|v_j\rangle$$

$$\hat{A} \doteq \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

9편 참조

감사합니다!