30. Сравнение оценок. Понятие эффективной оценки.

Сравнение оценок

Функцией среднеквадратичного отклонения оценки θ^* называется $\delta_{\theta^*}(\theta) = E(\theta^* - \theta)^2$; ($D\theta^* < \infty$).

Говорят, что θ^* не хуже (в среднеквадратичном смысле), чем θ^{**} , если $\forall \theta: \, \delta_{\theta^*}(\theta) \leq \delta_{\theta^{**}}(\theta).$

Однако наилучшей оценки не существует:

Теорема 4. В классе всех возможных оценок наилучшей в смысле среднеквадратического подхода оценки не существует.

Доказательство теоремы 4. Пусть, напротив, θ^* — наилучшая, то есть для любой другой оценки θ_1^* , при любом $\theta \in \Theta$ выполнено

$$\mathsf{E}_{\theta} (\theta^* - \theta)^2 \leqslant \mathsf{E}_{\theta} (\theta_1^* - \theta)^2$$
.

Пусть θ_1 — произвольная точка Θ . Рассмотрим статистику $\theta_1^* \equiv \theta_1$. Тогда

$$\mathsf{E}_{\theta}\,(\theta^*-\theta)^2\leqslant \mathsf{E}_{\theta}\,(\theta_1-\theta)^2$$
 при любом $\,\,\,\theta\in\Theta.$

В частности, при $\theta=\theta_1$ получим $\mathsf{E}_{\theta_1}(\theta^*-\theta_1)^2\leqslant \mathsf{E}_{\theta_1}(\theta_1-\theta_1)^2=0$. Поэтому $\mathsf{E}_{\theta_1}(\theta^*-\theta_1)^2=0$. Но, поскольку θ_1 произвольно, при любом $\theta\in\Theta$ выполняется $\mathsf{E}_{\theta}(\theta^*-\theta)^2=0$. А это возможно только если $\theta^*\equiv\theta$ (оценка в точности отгадывает неизвестный параметр), т. е. для вырожденной с точки зрения математической статистики задачи.

Вырожденными являются, например, следующие задачи:

- * для выборки из \mathbf{I}_{θ} , $\theta \in \mathbb{R}$, выполнено тождество $X_1 \equiv \theta$;
- * для выборки из $U_{\theta,\theta+1}$, $\theta \in \mathbf{Z}$, выполнено тождество $[X_1] \equiv \theta$.

Опишем доказательство словами:

какую бы оценку мы не взяли, наша будет не хуже. На каждое возможное значение θ будем брать оценку, равную θ (по сути, такая оценка очень плохая, так как никак не берет в расчет выборку и только "угадывает" θ). Тогда мы получим много парабол (так как матожидание величины, которая не включает выборку - сама эта величина). А наша оценка должна будет их всех огибать, то есть будет нулевой.

Параболы для некоторых θ которые мы берем - зеленые, $E(\theta^* - \theta)^2$ - зеленая линия.

Такая оценка будет вырожденной, так как угадать со 100% вероятностью можно только в том случае, если вариант только один, что указано в нижней записи из скрина методички.

Но если все таки хотим получить что-то в той или иной мере наилучшее, то есть эффективные оценки в некотором классе.

Эффективная оценка в классе несмещенных

Оценка называется **эффективной** если она наилучшая в среднеквадратичном смысле среди всех **несмещенных** оценок.

Такое требование позволяет нам избавиться от вырожденных "угадывающих" оценок, которыми мы пользовались при доказательстве предыдущей теоремы.