INTEGRATOR USING IC741 OP-AMP

Objective

To study the operation of the Integrator using op-amp and trace the output wave forms for sine and square wave inputs.

THEORY

A circuit in which the output voltage is the integration of the input voltage is called an integrator.

$$V_o = -\frac{1}{R_1 C_F} \int V_{in} dt$$

In the practical integrator shown in Figure 1, to reduce the error voltage at the output, a resistor R_F is connected across the feedback capacitor C_F . Thus, R_F limits the low-frequency gain and hence minimizes the variations in the output voltage.

The frequency response of the integrator is shown in Figure 2. f_b is the frequency at which the gain is 0 dB and is given by:

$$f_b = 1/2\pi R_1 C_F$$

In this figure there is some relative operating frequency, and for frequencies from f to f_a the gain R_F/R_1 is constant. However, after f_a the gain decreases at a rate of 20 dB/decade. In other words, between fa and f_b the circuit of fig. 2.1 acts as an integrator. The gain limiting frequency f_a is given by

$$f_a=1/2\pi R_F C_F$$

Normally $f_a < f_b$. From the above equation, we can calculate R_F by assuming $f_a \& C_F$. This is very important frequency. It tells us where the useful integration range starts.

- If fin < fa circuit acts like a simple inverting amplifier and no integration results,
- If fin = fa integration takes place with only 50% accuracy results,
- If fin = 10fa integration takes place with 99% accuracy results.

In the circuit diagram of Integrator, the values are calculated by assuming f_a as 50 Hz. Hence the input frequency is to be taken as 500Hz to get 99% accuracy results. Integrator has wide applications in

- 1. Analog computers used for solving differential equations in simulation arrangements.
- 2. A/D Converters.
- 3. Signal wave shaping.
- 4. Function Generators.

Equipment:

- 1. Oscilloscope
- 2. AC Function Generator
- 3. Digital Multimeter

Components:

- 1. Resistors: $10k\Omega$, $22k\Omega$
- 2. Capacitor 0.1µF
- 3. Op-amp 741

PROCEDURE:

- 1. Connect the components/equipment as shown in the circuit diagram Figure 3.
- 2. Switch ON the power supply.
- 3. Apply sine wave at the input terminals of the circuit using function Generator.
- 4. Connect channel-1 of CRO at the input terminals and channel-2 at the output terminals.
- 5. Observe the output of the circuit on the CRO which is a cosine wave (900 phase shifted from the sine wave input) and note down the position, the amplitude and the time period of Vin & Vo.
- 6. Now apply the square wave as input signal.

- 7. Observe the output of the circuit on the CRO which is a triangular wave and note down the position, the amplitude and the time period of Vin & Vo.
- 8. Plot the output voltages corresponding to sine and square wave inputs as shown in the Figure 4 below.

