My name and student number: Joseph Siu, 1010085701.

Sanchit Manchanda, Sepehr Jafari.

m

Question 1

For $n \in \mathbb{Z}^+$, let [n] denote the set $\{i \in \mathbb{Z}^+ \mid i \leq n\}$.

For each $n \in \mathbb{Z}^+$, each function $f: [n] \to \{0,1\}$, and each non-empty subset $I \subseteq [n]$, define the restriction of f to I to be the function $f|_{I}: I \to \{0,1\}$ where, for each $x \in I$,

$$f|_{\tau}(x) = f(x).$$

Give a well-structured informal proof using double induction that, for each $k \in \mathbb{Z}^+$, each $n \in \mathbb{Z}^+$, and each subset F of functions from [n] to $\{0,1\}$, if $n \geq k$ and

$$|F| > \sum_{i=0}^{k-1} \binom{n}{i},$$

then there exists a subset $I \subseteq [n]$ with |I| = k such that $\{f|_I : f \in F\}$ is the set of all functions from I to $\{0,1\}$.

You may use the following fact, known as Pascal's Identity, without proof.

Lemma:
$$\forall k \in \mathbb{Z}^+ . \forall n \in \mathbb{Z}^+ . \left[\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \right]$$
.

2

Lemma 1

For all $n \in \mathbb{Z}^+$, for all $k \in \mathbb{Z}^+$, if $n \geq k$, then

$$\sum_{i=0}^{k-1} \binom{n}{i} \ge 2^k - 1.$$

Ø

Proof of Lemma 1 by double induction.

For all $n \in \mathbb{Z}^+$, for all $k \in \mathbb{Z}^+$, define the predicates P(n), and Q(n,k) as follows:

$$Q(n,k) = "n \ge k \text{ IMPLIES } \sum_{i=0}^{k-1} {n \choose i} \ge 2^k - 1";$$

 $P(n) = "\forall k \in \mathbb{Z}^+.Q(n,k)".$

We will prove $\forall n \in \mathbb{Z}^+.P(n)$ by double induction.

Base Case: Consider n = 1.

Let $k \in \mathbb{Z}^+$ be arbitrary;

Case 1. 1 = k.

In this case we have that $\sum_{i=0}^{1-1} {1 \choose i} = {1 \choose 0} = 1 \ge 2^1 - 1 = 1$. Thus, Q(1,k) holds. For Case 1, we have shown Q(1,k).

Case 2. 1 < k.

In this case since n < k, the implication of Q(1,k) is vacuously true. Thus, Q(1,k)holds.

For Case 2, we have shown Q(1, k).

For all cases, we have shown Q(1, k).

Since $k \in \mathbb{Z}^+$ was arbitrary, we have shown P(1).

Let $n \in \mathbb{Z}^+$ be arbitrary;

Assume P(n);

Base Case: Since $\sum_{i=0}^{1-1} {n+1 \choose i} = {n+1 \choose 0} = 1 \ge 2^1 - 1 = 1$, we have Q(n+1,1). Let $k \in \mathbb{Z}^+$ be arbitrary;

Assume Q(n+1,k);

Case 1. n + 1 < k + 1.

In this case, since n+1 < k+1, the implication of Q(n+1, k+1)is vacuously true. Thus, Q(n+1, k+1) holds.

For Case 1, we have shown Q(n+1, k+1).

Case 2. $n+1 \ge k+1$.

First by Lemma we have $\sum_{i=0}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i} = {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose 0} = {n+1 \choose 0} = {n+1 \choose 0} + {n+1 \choose 0} = {n+1 \choose 0} = {n+1 \choose 0} = {n+1 \choose 0} + {n+1 \choose 0} = {n+1$ $\sum_{i=1}^{k} \binom{n}{i} + \binom{n}{i-1} = 1 + \sum_{i=1}^{k} \binom{n}{i} + \sum_{i=1}^{k} \binom{n}{i-1} = \binom{n}{0} + \sum_{i=1}^{k} \binom{n}{i} + \sum_{i=1}^{k} \binom{n}{i} = 1 + \sum_{i=1}^{k} \binom{n}{i} + \sum_{i=1}^{k} \binom{n}{i} = 1 + \sum_{i=1}^$

Since we assumed P(n), by specialization we have $\sum_{i=0}^{k} {n \choose i} \geq 2^{k+1}$ 1 and $\sum_{i=0}^{k-1} {n \choose i} \ge 2^k - 1$. Thus, we have $\sum_{i=0}^k {n+1 \choose i} = \sum_{i=0}^k {n \choose i} + \sum_{i=0}^{k-1} {n \choose i} \ge 2^{k+1} - 1 + 2^k - 1 \ge 2^{k+1} - 1$ since $2^k \ge 1$ for all $k \in \mathbb{N}$.

For Case 2, we have shown Q(n+1, k+1).

For all cases, we have shown Q(n+1, k+1).

By induction, we have shown $\forall k \in \mathbb{Z}^+$. Q(n+1,k). Thus, we have shown P(n+1).

Therefore, by induction $\forall n \in \mathbb{Z}^+.P(n)$ holds.

Erat Dem∎

Proof of Question 1 by double induction.

For all $k \in \mathbb{Z}^+$, for all $n \in \mathbb{Z}^+$, for all F as a subset of functions from [n] to $\{0,1\}$, define the predicates P(k), Q(n,k), R(n,k,F) as follows:

R(n,k,F) =

"
$$\left[\left(n \ge k \text{ AND } |F| > \sum_{i=0}^{k-1} \binom{n}{i} \right) \text{ IMPLIES } \left(\exists I \subseteq [n]. (|I| = k) \text{ AND } \left\{ f \big|_I : f \in F \right\} = \{0, 1\}^I \right) \right].$$
"

 $Q(n,k) = \forall F \subseteq \{0,1\}^{[n]}.R(n,k,F)$

 $P(k) = "\forall n \in \mathbb{Z}^+.Q(n,k)".$

We will prove $\forall k \in \mathbb{Z}^+.P(k)$ by double induction.

Base Case:

Consider k = 1, n = 1.

Let $F \subseteq \{0,1\}^{[1]}$ be arbitrary;

Case 1. $|F| \le 1$.

Since $|F| \leq 1 = \sum_{i=0}^{1-1} {1 \choose i}$, the implication of R(1,1,F) is vacuously true.

For Case 1, we have shown R(1,1,F).

Case 2. |F| > 1.

Since $F \subseteq \{0,1\}^{[1]}$, $|F| \ge 2$, and $|\{0,1\}^{[1]}| = 2$, it follows that $F = \{0,1\}^{[1]}$. Now, let $F = \{f_1, f_2\}$ for some functions $f_1, f_2 : [1] \to \{0, 1\}$. By picking I = [1], we have |I| = 1, and $\{f|_I : f \in F\} = F = \{0, 1\}^{[1]} = \{0, 1\}^I$.

For Case 2, we have shown R(1,1,F).

For all cases, we have shown R(1,1,F), thus we conclude R(1,1,F).

Since F was arbitrary, we have shown Q(1,1).

Let $n \in \mathbb{Z}^+$ be arbitrary;

Assume Q(n,1);

Let $F \subseteq \{0,1\}^{[n+1]}$ be arbitrary;

Case 1. $|F| \leq \sum_{i=0}^{1-1} {n+1 \choose i}$.

The implication of R(n+1,1,F) is vacuously true.

For Case 1 we have shown R(n+1,1,F).

Case 2. $|F| > \sum_{i=0}^{1-1} {n+1 \choose i}$. Since $|F| > \sum_{i=0}^{1-1} {n+1 \choose i} = 1$, we have $|F| \ge 2$. This implies there exists two distinct functions, namely $\exists f \in F. \exists f' \in F$. $\{f\}. (\exists z \in [n+1]. f(z) \neq f'(z)). \text{ Let } g \in F, g' \in F - \{g\}, \text{ and } z \in [n+1]$ be such instances, then by constructing $I = \{z\} \subseteq [n+1]$, we have |I| = 1and $\{f|_I : f \in F\} = \{0,1\}^I$.

For Case 2 we have that R(n+1,1,F).

For all cases, we have shown R(n+1,1,F), thus we conclude R(n+1,1,F).

Since F was arbitrary, we have shown Q(n+1,1).

By induction, we have shown $\forall n \in \mathbb{Z}^+.Q(n,1)$. Thus, we have shown P(1).

Let $k \in \mathbb{Z}^+$ be arbitrary;

Assume P(k);

Base Case:

Let $F \subseteq \{0,1\}^{[1]}$ be arbitrary;

Since 1 < k + 1, this shows the implication of R(1, k + 1, F) is vacuously true.

Since F was arbitrary, we have shown Q(1, k + 1).

Let $n \in \mathbb{Z}^+$ be arbitrary;

Assume Q(n, k+1);

Let $F \subseteq \{0,1\}^{[n+1]}$ be arbitrary;

Case 1. $|F| \leq \sum_{i=0}^{k} {n+1 \choose i}$.

The implication of R(n+1, k+1, F) is vacuously true.

For Case 1 we have shown that R(n+1, k+1, F).

Case 2. $|F| > \sum_{i=0}^{k} {n+1 \choose i}$.

By Lemma this implies

$$|F| > \sum_{i=0}^{k} {n+1 \choose i}$$

$$= {n+1 \choose 0} + \sum_{i=1}^{k} {n+1 \choose i}$$

$$= 1 + \sum_{i=1}^{k} {n \choose i} + {n \choose i-1}$$

$$= {n \choose 0} + \sum_{i=1}^{k} {n \choose i} + \sum_{i=1}^{k} {n \choose i-1}$$

$$= \sum_{i=0}^{k} {n \choose i} + \sum_{i=1}^{k} {n \choose i-1}$$

$$= \sum_{i=0}^{k} {n \choose i} + \sum_{i=0}^{k-1} {n \choose i}$$

Subcase (1): If
$$|\{f|_{[n]}: f \in F\}| > \sum_{i=0}^{k} {n \choose i}$$
:

By Specialization of assumption Q(n, k+1) this implies there exists a subset $I \subseteq [n]$ such that |I| = k + 1 and $\{f|_I : f \in A\}$ F = {0,1} I by assumption Q(n, k + 1).

For subcase 2.1 we have shown that R(n+1, k+1, F).

Subcase (2): If $\left|\left\{f\right|_{[n]}: f \in F\right\}\right| \leq \sum_{i=0}^{k} {n \choose i}$:

By multipling both sides we have $-\left|\left\{f\right|_{[n]}:f\in F\right\}\right|\geq$

$$-\sum_{i=0}^{k} \binom{n}{i}$$

Add this inequality to the previous inequality at Case 2, we have $|F| - \left| \left\{ f \Big|_{[n]} : f \in F \right\} \right| > \sum_{i=0}^k \binom{n}{i} + \sum_{i=0}^{k-1} \binom{n}{i} - \sum_{i=0}^k \binom{n}{i} + \sum_{i=0}^{k-1} \binom{n}{i} - \sum_{i=0}^k \binom{n}{i} + \sum_{i=0}^k$ $\sum_{i=0}^{k} \binom{n}{i} = \sum_{i=0}^{k-1} \binom{n}{i}.$

By Lemma 1 and above, since $|F| - \left| \left\{ f \big|_{[n]} : f \in F \right\} \right| \ge$ $\sum_{i=0}^{k-1} {n \choose i} + 1 \ge 2^k$, thus this means there are two disjoint subsets $I_1, I_2 \subseteq F$ such that $|\{f|_{[n]} : f \in I_1\}| = |\{f|_{[n]} : f \in I_1\}|$ $|I_2| = 2^k$ and $\{f|_{[n]}: f \in I_1\} = \{f|_{[n]}: f \in I_2\}$ so that the cardinality of F can decrease at least 2^k when we are restricting the domains of the functions in F to [n].

Now, since $\{f|_{[n]}: f \in I_1\} \subseteq \{f|_{[n]}: f \in F\}$ and $|\{f|_{[n]}: f \in F\}$ $|I_1| = 2^k$, this implies $|\{f|_{[n]} : f \in F\}| \ge 2^k \ge \sum_{i=0}^{k-1} {n \choose i} + 1$ 1, hence by specialization of the assumption P(k) we have Q(n,k), hence $\exists I' \subseteq [n].|I'| = k$ AND $\{(f|_{[n]})|_{\mathcal{U}}: f \in F\} =$ $\{0,1\}^{I'}$.

By constructing $I = I' \cup \{n+1\}$, since $\{f|_I : f \in F\} \subseteq \{0,1\}^I$ which implies $|\{f|_I : f \in F\}| \le |\{0,1\}^I|$ (there exists an injection), and $|\{f|_I: f \in F\}| \ge 2 \cdot 2^k = 2^{k+1} = |\{0,1\}^I|$ by our disjoint I_1, I_2 (the cardinality of $\{f|_I : f \in F\}$ is at least $\{0,1\}^I$). Since both sets are finite, so they must have the same number of elements. Moreover, because of $\{f|_I: f\in F\}\subseteq \{0,1\}^I$, this also shows they are equal as sets. Hence, |I| = k + 1 and $\{f|_I : f \in F\} = \{0, 1\}^I$.

Since we have constructed such I, for subcase 2.2 we have shown that R(n+1, k+1, F).

For Case 2, we have shown that R(n+1, k+1, F).

For all cases We have shown that R(n+1, k+1, F). Thus, we conclude R(n+1, k+1, F).

Since F was arbitrary, we have shown Q(n+1, k+1).

By induction, we have shown $\forall n \in \mathbb{Z}^+.Q(n,k+1)$. Thus, we have shown P(k+1).

By induction, we have shown $\forall k \in \mathbb{Z}^+.P(k)$.

Erat Dem∎

Question 2

A cyclic shift of a sequence $\{s_i\}_{i=1}^n$ is a sequence $\{s_i'\}_{i=1}^n$ such that, for some $k \in [n]$ and for all $1 \le i \le n$, the i'th term of this sequence is $s'_i = s_{((i+k-1) \mod n)+1}$.

For example, the sequence 3,4,5,1,2 is a cyclic shift of the sequence 1,2,3,4,5, where k=2.

The prefix sums of a sequence $\{s_i\}_{i=1}^n$ of numbers are the numbers $\sum_{i=1}^m s_i$ for $1 \leq m \leq n$. For example, the prefix sums of the sequence 1,2,3,4,5 are the numbers 1,3,6,10, and 15.

For all $n \in \mathbb{Z}^+$, let OE_n denote the set of finite sequence $\{r_i\}_{i=1}^{2n}$ of integers such that

• $r_i > 0$ if i is odd,

- $r_i < 0$ if i is even, and
- $\bullet \sum_{i=1}^{2n} r_i \ge 0.$

Using the well-ordering principle, give a well-structured informal proof that, for all $n \in \mathbb{Z}^+$ and all sequences $r \in OE_n$, there is a cyclic shift of r all of whose prefix sums are non-negative.

Lemma 2

For any $n \in \mathbb{Z}^+$. For any $r = \{r_i\}_{i=1}^{2n} \in OE_n$. Let CS(r) denote the set of all cyclic shift of r, then for any $r' = \{r'_i\}_{i=1}^{2n} \in CS(r)$, we have $\sum_{i=1}^{2n} r_i = \sum_{i=1}^{2n} r'_i$.

```
Proof of Lemma 2.
```

Let $n \in \mathbb{Z}^+$ be arbitrary;

Let $r = \{r_i\}_{i=1}^{2n} \in OE_n$ be arbitrary;

Let $r' \in CS(r)$ be arbitrary;

By definition of CS(r), we have $\exists k \in [2n]. \forall i \in [2n]. r'_i = r_{((i+k-1) \mod 2n)+1}$.

We first show the function $f:[2n] \to [2n]$ defined by $f(i) = ((i+k-1) \mod 2n) + 1$ is a bijective function.

To this end, we show that f is injective.

Assume f(i) = f(j) for some $i, j \in [2n]$.

Then, we have $((i + k - 1) \mod 2n) + 1 = ((j + k - 1) \mod 2n) + 1$;

By cancellation, we have $(i + k - 1) \mod 2n = (j + k - 1) \mod 2n$;

This implies i + k - 1 = j + k - 1 + 2nm for some $m \in \mathbb{Z}$;

By cancellation, we have i = j + 2nm;

To obtain a contradiction, assume $m \neq 0$.

Then, we have $i = j + 2nm \ge j + 2n$ or $i = j + 2nm \le j - 2n$.

Case 1. If $i = j + 2nm \ge j + 2n$, then we have $i = j + 2nm \ge j + 2n$. This implies $i-j \geq 2n$. However, since $i,j \in [2n]$, we notice $1 \le i \le 2n$ and $1 \le j \le 2n$, so $i - j \le 2n - 1 < 2n$. This is a contradiction.

Case 2. If $i = j + 2nm \le j - 2n$, then we have $i = j + 2nm \le j - 2n$. This implies $i-j \leq -2n$. However, since $i,j \in [2n]$, we notice $1 \le i \le 2n$ and $1 \le j \le 2n$, so $i - j \ge 1 - 2n > -2n$. This is a contradiction.

For all cases contradiction occured.

Hence, by contradiction we have shown m=0. This implies i=j.

Hence, by definition of injective, we have shown f is injective.

Now, we show that f is surjective.

Let $y \in [2n]$ be arbitrary.

Case 1. If y = 1, then we have f(-k+1+2n) = (((-k+1+2n+k-1)) + ((-k+1+2n+k-1)) +

1) mod (2n) + 1 = ((2n) mod (2n) + 1 = 0 + 1 = 1.

For Case 1 all $y \in [2n]$ can be achieved by f.

Case 2. If $y \neq 1$, that is, y > 1.

Subcase (1): If $y \ge k$, then we have $y - k \in [2n]$, and f(y - k) = $((y-k+k-1) \bmod 2n) + 1 = ((y-1) \bmod 2n) + 1 = y-1+1 = y.$ For this subcase y can be achieved by f.

Subcase (2): If y < k, then we have 1 - 2n < y - k < 0 and so $1 \le y - k + 2n < 2n$ and $y - k + 2n \in [2n]$, and f(y - k + 2n) = ((y - k + 2n)) $k+2n+k-1 \mod 2n +1 = ((y+2n-1) \mod 2n) +1 = y-1+1 = y$ For this subcase y can be achieved by f.

Since for all subcases of Case 2 y can be achieved by f, this shows for Case

2 all $y \in [2n]$ can be achieved by f.

For all cases, y can be achieved by f.

Since y was arbitrary, we have shown f is surjective by definition.

Since f is both injective and surjective, we have shown f is bijective. Hence $\sum_{i=1}^{2n} r_i = \sum_{i=1}^{2n} r_{f(i)} = \sum_{i=1}^{2n} r_i'$ since addition is commutative and f is

Since $r' \in \mathrm{CS}(r)$ was arbitrary, we have shown $\forall r' \in \mathrm{CS}(r)$. $\sum_{i=1}^{2n} r_i = \sum_{i=1}^{2n} r_i'$. Since $r \in \mathrm{OE}_n$ was arbitrary, we have shown $\forall r \in \mathrm{OE}_n . \forall r' \in \mathrm{CS}(r)$. $\sum_{i=1}^{2n} r_i = \sum_{i=1}^{2n} r_i'$. Since $n \in \mathbb{Z}^+$ was arbitrary, we have shown $\forall n \in \mathbb{Z}^+ . \forall r \in \mathrm{OE}_n . \forall r' \in \mathrm{CS}(r)$. $\sum_{i=1}^{2n} r_i = \sum_{i=1}^{2n} r_i'$.

Proof of Question 2 by Well Ordering.

For $n \in \mathbb{Z}^+$, let P(n) denote the statement " $\forall r \in OE_n . \exists r' \in CS(r) . \forall m \in \mathbb{Z}^+ . 1 \leq m \leq 2n . \sum_{i=1}^m r_i' \geq n$ 0". We will show $\forall n \in \mathbb{Z}^+.P(n)$ by well ordering.

To obtain a contradiction assume $\exists n \in \mathbb{Z}^+.NOT(P(n))$, that is, there exists $n \in \mathbb{Z}^+$, and exists a sequence $r \in OE_n$ such that there is no cyclic shift of r all of whose prefix sums are

Namely, for all sequences $r = \{r_i\}_{i=1}^{2n}$, let CS(r) denote the set of all cyclic shift of r, then $\exists n \in \mathbb{Z}^+. \text{NOT}(P(n)) =$

$$\exists n \in \mathbb{Z}^+. \exists r = \{r_i\}_{i=1}^{2n} \in OE_n. \forall \{r_i'\}_{i=1}^{2n} \in CS(r). \exists m \in \mathbb{Z}^+. 1 \le m \le 2n \text{ AND } \sum_{i=1}^m r_i' < 0.$$

Let $C=\{2n\in\mathbb{Z}^+\mid\exists r=\{r_i\}_{i=1}^{2n}\in\mathrm{OE}_n.\forall\{r_i'\}_{i=1}^{2n}\in\mathrm{CS}(r).\exists m\in\mathbb{Z}^+.1\leq m\leq 2n\ \mathrm{AND}\ \sum_{i=1}^mr_i'<0\}.$ Then, $C\neq\varnothing$ by our assumption.

Since N has a well ordering and $\mathbb{Z}^+ \subseteq \mathbb{N}$, this implies \mathbb{Z}^+ has a well ordering, so there exists a smallest element $2n_0 \in C$.

Let $2n_0 \in C$ be such smallest element.

To obtain a contradiction, assume $n_0 = 1$;

Then, for all sequences $r \in OE_n$, consider $r \in CS(r)$;

By specialization in the condition of C, let $m \in \mathbb{Z}^+$ be such that $1 \leq m \leq 2n_0 =$ 2 AND $\sum_{i=1}^{m} r_i < 0$. Then, we show there is no such m exists using 2 cases:

Case 1. m = 1.

Since $r_1 > 0$ by definition of $r \in OE_n$, we have $\sum_{i=1}^1 r_i = r_1 > 0$, hence contradiction.

Case 2. m=2. Since $\sum_{i=1}^2 r_i = \sum_{i=1}^{2n_0} r_i \ge 0$ by definition of $r \in OE_n$, and we have $\sum_{i=1}^m r_i = \sum_{i=1}^2 r_i < 0$, hence contradiction.

Since for all cases we have reached a contradiction, we conclude this is a contradiction.

Since $n_0 = 1$ is a contradiction, we have shown that $n_0 \neq 1$. That is, $n_0 \geq 2$.

Let $r_0 = \{r_i\}_{i=1}^{2n_0} \in OE_{n_0}$ be such that for all $\{r'_i\}_{i=1}^{2n_0} \in CS(r_0)$, there exists $m \in \mathbb{Z}^+$ such that $1 \le m \le 2n_0$ and $\sum_{i=1}^m r_i' < 0$.

Let $\{r'_i\}_{i=1}^{2n_0} \in \mathrm{CS}(r_0)$ be arbitrary such that $r'_i > 0$ for $i \in [2n_0]$ and i is odd. Then by specialization of the condition of C, we have $\exists m \in \mathbb{Z}^+.1 \leq m \leq 2n_0$ AND $\sum_{i=1}^m r_i' < 0$. Define $C' = \{ m \in \mathbb{Z}^+ \mid 1 \le m \le 2n_0 \text{ AND } \sum_{i=1}^m r_i' < 0 \}.$

Then, $C' \neq \emptyset$ by our assumption.

Let $m_0 \in C'$ be such that m_0 is the smallest element of C'.

To obtain a contradiction, assume m_0 is odd;

Then, by our assumption, we have $r_{m_0} > 0$.

Case 1. $m_0 = 1$.

Since $r_1 > 0$, we have $\sum_{i=1}^{m_0} r_i = r_1 > 0$.

This is contradicting the definition of m_0 having negative prefix sum.

Case 2. $m_0 > 1$.

Since $\sum_{i=1}^{m_0} r_i' < 0$ and $r_{m_0} > 0$, we have $\sum_{i=1}^{m_0-1} r_i < 0$.

This is contradicting the definition of m_0 being the smallest such m_0 .

For all cases contradiction occured.

Thus, by contradiction, m_0 must be even.

To obtain a contradiction, assume $m_0 = 2n_0$;

Then, we have $\sum_{i=1}^{2n_0} r'_i < 0$.

However, by definition of $r_0 \in OE_{n_0}$, we have $\sum_{i=1}^{2n_0} r_i \ge 0$.

By Lemma 2, this is a contradiction.

We conclude $m_0 \neq 2n_0$. That is, $m_0 \leq 2n_0 - 1$.

Since $m_0 + 1 \le 2n_0$, we have $2n_0 - m_0 \ge 1$. Hence, define a sequence $\{s_i\}_{i=1}^{2n_0 - m_0}$ such that $s_i = r_{i+m_0}$ for all $i \in [2n_0 - m_0]$, here $2n_0 - m_0$ is even since both $2n_0$ and m_0 are even;

Then, since we assumed n_0 is the smallest element of C, this implies $2n_0 - m_0 \notin C$. That is, there exists a cyclic shift of s all of whose prefix sums are non-negative. Namely, $\exists s' = \{s'_i\}_{i=1}^{2n_0 - m_0} \in CS(s). \forall m \in \mathbb{Z}^+. 1 \le m \le 2n_0 - m_0 \implies \sum_{i=1}^m s'_i \ge n_0 \le 2n_0 - m_0 \implies \sum_{i=1}^m s'_i \ge n_0 \le 2n_0 - m_0 \implies \sum_{i=1}^m s'_i \ge n_0 \le 2n_0 - n_0 = n_0 \le 2n_0 - n_0 = n_0 \le 2n_0 - n_0 \le 2n_0 - n_0 \le 2n_0 - n_0 = n_0 \le 2n_0 - n_0 \le$

Consider the sequence $t = \{t_i\}_{i=1}^{2n_0} = \{s_i'\}_{i=1}^{2n_0-m_0} \circ \{r_i'\}_{i=1}^{m_0}$. Since $t \in CS(r_0)$ by our construction of s' and s, this implies there exists $m_1 \in \mathbb{Z}^+.1 \leq m_1 \leq$ $2n_0 \text{ AND } \sum_{i=1}^{m_1} t_i < 0.$

Since by definition of $r_0 \in OE_{n_0}$ and Lemma 2, we have $\sum_{i=1}^{2n_0} t_i \geq 0$. Moreover, by our construction of s' and s, we have $\sum_{i=1}^{p} t'_i \geq 0$ for all $p \in [2n_0 - m_0]$. Also, by definition of m_0 , we have $\sum_{i=m_0+1}^{q} t_i \geq 0$ for all $q \in [2n_0 - 1] - [m_0]$.

Combining these 2 inequalities, we have $\sum_{i=1}^{p'} t_i \geq 0$ for all $p' \in [2n_0 - 1]$.

Combining with $\sum_{i=1}^{2n_0} t_i \ge 0$ we have $\forall q' \in [2n_0]$. $\sum_{i=1}^{q'} t_i \ge 0$. This contradicts our definition of C and constuction of r_0 where $\forall r' = \{r'_i\}_{i=1}^{2n_0} \in \mathrm{CS}(r_0). \exists m \in \mathbb{CS}(r_0)$. $\mathbb{Z}^{+}.1 \le m \le 2n_0 \text{ AND } \sum_{i=1}^{m} r'_i < 0.$

Therefore, we conclude $\forall n \in \mathbb{Z}^+.P(n)$. That is, for all $n \in \mathbb{Z}^+$ and all sequences $r \in OE_n$, there is a cyclic shift of r all of whose prefix sums are non-negative.