Теорія категорії І курс магістратура, 2 семестр

3 березня 2024 р.

0.1 Основні означення

Definition 0.1.1 Категорія C складається з наступних компонент:

- із набору **об'єктів**; об'єкти позначають за x, y, z, \ldots , а набір позначають за Ob(C);
- із набору **морфізмів із** x в y C(x,y) для всіх $x,y\in C$; морфізми позначають за $\alpha,\beta,\gamma,\ldots$ Позначення $\alpha\colon x\to y$ або $x\stackrel{\alpha}{\to} y$ означають α морфізм із x в y; ми називаємо x джерелом та y ціллю;
- кожний об'єкт x має **тотожний морфізм** 1_x : $x \to x$;
- для кожних морфізмів $\alpha \colon x \to y, \ \beta \colon y \to z$ існуватиме **композиція морфізмів** $\beta \alpha \colon x \to z.$ При цьому всьому зобов'язані виконуватися такі аксіоми:
- 1) для всіх морфізмів $\alpha \colon x \to y$ виконано $1_y \circ \alpha = \alpha \circ 1_x = \alpha;$
- 2) для кожних трьох морфізмів $\alpha \colon w \to x, \beta \colon x \to y, \gamma \colon y \to z$ виконується асоціативність композиції, тобто $\alpha(\beta\gamma) = (\alpha\beta)\gamma$.

Remark 0.1.2 Морфізми ще часто називають **стрілочками**.

Remark 0.1.3 Морфізм 1_x для кожного об'єкта x – єдиний.

Example 0.1.4 Розглянемо **Set** – це буде категорія, яка складається з наступного:

- $\operatorname{Ob}(\mathbf{Set}) \operatorname{набір} \operatorname{всіх} \operatorname{множин};$
- Hom(Set) набір всіх функцій;
- тотожне відображення $1_X \colon X \to X$ задається як $x \mapsto x$;
- композиція між $f\colon X\to Y$ та $g\colon Y\to Z$ задається $g\circ f$ таким чином: $x\mapsto f(x)\mapsto g(f(x)).$ Ясно, що всі ці дві аксіоми виконані.

Важливо, що $Ob(\mathbf{Set})$ – це саме <u>набір</u> всіх множин, а не множина всіх множин. Тому що парадокс Рассела стверджує, що не існує множини, елементи яких будуть множинами.

До речі, $\mathbf{Set}(X,Y)$ – набір всіх відображень $f\colon X\to Y$ – буде, насправді, <u>множиною</u>. Відображення між двома множинами – це просто підмножина декартового добутку $X\times Y$. Коли ми беремо дві довільні множини X,Y, то звідси $X\times Y$ теж буде множиною.

Example 0.1.5 Розглянемо стисло ще приклади категорій:

Категорія	Об'єкти	Морфізми
\mathbf{Grp}	групи	гомоморфізми груп
${f Ab}$	абелеві групи	гомоморфізми груп
\mathbf{Rng}	кільця	гомоморфізми кілець
Ring	кільця з одиницею	гомоморфізм кілець, що зберігають одиницю
$_R{f Mod}$	R-модуль	R-лінійне відображення
\mathbf{Top}	топологічні простори	неперервній відображення
\mathbf{Met}	метричні простори	неперервні відображення
\mathbf{Man}	гладкі многовиди	гладкі відображення

Example 0.1.6 Можна представити категорію за допомогою графів. Категорія **0** буде взагалі порожньо виглядати. Категоріїя **1**, категорія **2**, категорія **3** виглядають таким чином:

Так само ε категорії $4,5,\ldots$

Example 0.1.7 Розглянемо моноїд M. Ми можемо утворити категорію \mathcal{M} , яка містить єдиний об'єкт — це моноїд.

Example 0.1.8 Розглянемо так званий посет (P, \prec) (partially ordered set). Скажемо, що $\mathrm{Ob}(P) = P$ та P(i,j) – це будуть тільки ті стрілки, для яких $i \prec j$. Композиція тут існує, оскільки \prec є транзитивним відношенням. Також існує тотожне відображення, оскільки \prec є рефлексивним відношенням.

Навіть не обов'язково тут вимагати, щоб для (P, \prec) відношення \prec було антисиметричним.

Definition 0.1.9 Категорія C називається дискретною, якщо

$$C(x,y) = \begin{cases} \emptyset, & x \neq y \\ \{1_x\}, & x = y \end{cases}$$

Тобто існують лише стрілки $x \to x$, і тільки тотожні.

Definition 0.1.10 Категорія D називається підкатегорією C, якщо

набір об'єктів D міститься в наборі об'єктів C

набір стрілок $x \to y$ в D міститься в наборі стрілок $x \to y$ в C для довільних об'єктів x,y із D композиція двох морфізмів в D задається так само, як і в C

Definition 0.1.11 Підкатегорія D категорії C називається **повною**, якщо

набір стрілок x, y в D збігається з набором стрілок x, y в C, для довільних об'єктів x, y із D

Example 0.1.12 Зокрема маємо кілька прикладів:

- 1) категорія **Ab** буде повною підкатегорією **Grp**;
- 2) категорія **FinSet** буде повною підкатегорією **Set**.

Definition 0.1.13 Категорія C називається малою, якщо

класи
$$Ob(C)$$
, $Hom(C)$ – множини.

Інакше категорія C називатиметься **великою**.

Категорія C називається **локально малою**, якщо

для кожних двох об'єктів x, y клас C(x, y) – множина

Example 0.1.14 Зокрема **Set**, **Grp** – великі категорії, але локально малі.

Definition 0.1.15 Категорія C називається конкретною, якщо

об'єктами категорії будуть множини, а морфізмі – відображення між множинами, що зберігає "структуру".

Example 0.1.16 Зокрема категорія **Grp** – конкретна. Проте категорія **HTop** (тут все як в категорії **Top**, просто беруться гомотопічні відображення) – не конкретна.

0.2 Узагальнення ін'єкції та сюр'єкції

0.2.1 Мономорфізм

Definition 0.2.1 Задано C – категорія.

Морфізм $\alpha \colon x \to y$ називається мономорфізмом (monic), якщо

$$\alpha \beta_1 = \alpha \beta_2 \implies \beta_1 = \beta_2$$

Тобто морфізм – мономорфізм, якщо можна завжди скоротити зліва.

$$z \xrightarrow{\beta_2} x \xrightarrow{\alpha} y$$

Часто мономорфізми позначають як $\alpha \colon x \rightarrowtail y$.

Theorem 0.2.2 У конкретній категорії кожний ін'єктивний морфізм — мономорфізм.

Proof.

Нехай C — конкретна категорія та $\alpha: X \to Y$ — ін'єктивний морфізм. Нехай $\beta_1, \beta_2: Z \to X$ — морфізми C та припустимо, що $\alpha\beta_1 = \alpha\beta_2$. Для всіх $z \in Z$ ми маємо $\alpha(\beta_1(z)) = \alpha\beta_1(z) = \alpha\beta_2(z) = \alpha(\beta_2(z))$, тому за ін'єктивністю, $\beta_1(z) = \beta_2(z)$. Отже, $\beta_1 = \beta_2$, тобто α — мономорфізм.

Remark 0.2.3 Зворотне твердження не працює.

Example 0.2.4 Розглянемо повну категорію **Div** підкатегорії **Grp**. Тут абелева група з категорії **Div** називається **подільною**, якщо $\forall a \in A, \forall n \in \mathbb{Z} \setminus \{0\} : \exists b \in A : a = nb$.

Оберемо об'єкти $\mathbb{Q}, \mathbb{Q}/\mathbb{Z}$ із нашої категорії **Div** та гомоморфізм $\alpha \colon \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$, який є сюр'єктивним. Даний морфізм не ін'єктивний, оскільки $\ker \alpha = \mathbb{Z}$. Стверджується, що α – мономорфізм.

Нехай $\beta_1,\beta_2\colon A\to \mathbb{Q}$ — морфізми в **Div** та припустимо, що $\beta_1\neq\beta_2$. Тоді існує елемент $a\in A$, для якого $\beta_1(a)-\beta_2(a)\neq 0$. Ліворуч раціональне число, тож $\beta_1(a)-\beta_2(a)=\frac{r}{s}$ для деяких $r,s\in \mathbb{Z}$ та $r\neq 0,s\neq 0$. Оскільки A — подільна група, то існує для елемента $a\in A$ та n=2r існує $b\in A$, для якого a=nb. Тоді $\beta_1(nb)-\beta_2(nb)=n\beta_1(b)-n\beta_2(b)=\frac{r}{s}$.

Отже, $\beta_1(b) - \beta_2(b) = \frac{1}{2s} \notin \mathbb{Z}$, а тому звідси $\alpha\beta_1 \neq \alpha\beta_2$.

Theorem 0.2.5 У категоріях **Set**, **Top**, **Grp**, **Rng** морфізм ін'єктивний ← морфізм – мономорфізм.

Proof.

Ми вже знаємо, що ін'єктивний морфізм – мономорфізм. Залишилося довести зворотний бік для цих категоріях.

(Set). Нехай $\alpha\colon X\to Y$ — мономорфізм. Оберемо $x_1,x_2\in X$ та припустимо, що $\alpha(x_1)=\alpha(x_2)$. Покладемо $z=0\in\mathbb{Z}$ та покладемо $Z=\{z\}$ (хоча тут може бути будь-який сінглтон), визначимо $\beta_1,\beta_2\colon Z\to X$ як $\beta_1(z)=x_1,\beta_2(z)=x_2$. Тоді $\alpha(\beta_1(z))=\alpha(\beta_1(z))=\alpha(x_1)=\alpha(x_2)=\alpha(\beta_2(z))=\alpha\beta_2(z)$. За монічністю, звідси $\beta_1=\beta_2$, тобто $x_1=\beta_1(z)=\beta_2(z)=x_2$. Таким чином, α — ін'єктивний.

(**Top**). Насправді, все аналогічно, тільки є деякі зауваження. На множину Z треба задати дискретну топологію (єдина можлива топологія для неї). Відображення β_1, β_2 будуть уже неперервними через дискретність Z.

(**Grp**). Нехай $\alpha \colon G \to H$ – мономорфізм. Розглянемо $\beta_1, \beta_2 \colon \ker \alpha \to G$ – перший буде вкладенням, другий буде тривіальним. Тоді $\alpha\beta_1 = \alpha\beta_2$. Дійсно,

$$\alpha\beta_1(g) = \alpha(g) \stackrel{g \in \ker \alpha}{=} e = \alpha(e) = \alpha\beta_2(g).$$

За монічністю, звідси $\beta_1=\beta_2$, тобто β_1 – тривіальне вкладення. Отже, $\ker\alpha=\{e\}$, а це означає ін'єктивніть α .

(Rng). Таке саме доведення.

0.2.2 Розщеплений мономорфізм

Definition 0.2.6 Задано C – категорія.

Морфізм $\alpha \colon x \to y$ називається розщепленим мономорфізмом (split monic), якщо

$$\exists \beta \colon y \to x : \beta \alpha = 1_x$$

Морфізм – розщеплений мономорфізм, тобто даний морфізм має лівий оборотний.

$$\int_{1_{x}} x \xrightarrow{\alpha} y$$

Theorem 0.2.7 Кожний розщеплений мономорфізм – мономорфізм.

Proof.

Нехай $\alpha \colon x \to y$ — розщеплений мономорфізм в категорії, тобто існує морфізм $\beta \colon y \to x$, для якого $\beta \alpha = 1_x$. Нехай $\beta_1, \beta_2 \colon z \to x$ будуть морфізмами та припустимо, що $\alpha \beta_1 = \alpha \beta_2$. Тоді $\beta_1 = 1_x \beta_1 = \beta \alpha \beta_1 = \beta \alpha \beta_2 = 1_x \beta_2 = \beta_2$.

Theorem 0.2.8 У конкретній категорії кожний розщеплений мономорфізм – ін'єктивний морфізм.

Proof.

Нехай C – конкретна категорія та $\alpha\colon X\to Y$ – розщеплений мономорфізм, тобто існує морфізм $\beta\colon Y\to X$, для якого $\beta\alpha=1_X$. Припустимо $\alpha(x_1)=\alpha(x_2)$. Тоді

$$x_1 = 1_X(x_1) = \beta \alpha(x_1) = \beta(\alpha(x_1)) = \beta(\alpha(x_2)) = \beta \alpha(x_2) = 1_X(x_2) = x_2.$$

Remark 0.2.9 Зворотне твердження не працює.

Example 0.2.10 Розглянемо категорію **Grp**. Вкладення $\alpha \colon 2\mathbb{Z} \to \mathbb{Z}$ – ін'єктивний гомоморфізм. Але це не буде розщепленим мономорфізмом.

!Припустимо, що все ж таки він розщеплений мономорфізм, тобто існує гомоморфізм β : $\mathbb{Z} \to 2\mathbb{Z}$, для якого $\beta\alpha = 1_{2\mathbb{Z}}$. Тоді $2\beta(1) = \beta(2) = \beta(\alpha(2)) = \beta\alpha(2) = 2$, тобто $\beta(1) = 1$, але це суперечність! Просто тому що β відображає на $2\mathbb{Z}$.

Можна аналогічні міркування провести для категорії **Rng**.

Example 0.2.11 Розглянемо категорію **Top**. Оберемо тотожне відображення $\alpha \colon \mathbb{R} \to \mathbb{R}$, де область визначення має дискретну топологія, а область значень – стандартну. Тоді α – ін'єктивний, але не розщеплений мономорфізм.

!Припустимо, що існує морфізм β : $\mathbb{R} \to \mathbb{R}$, для якого $\beta \alpha = 1_{\mathbb{R}}$. Тоді $\beta = \beta 1_{\mathbb{R}} = \beta \alpha = 1_{\mathbb{R}}$, однак множина $\{0\}$ відкрита в \mathbb{R} з дискретною топологією, але $\beta^{-1}\{0\} = \{0\}$ не відкрита в стандартній топології. Це суперечність! Тому що β – неперервне відображення.

Theorem 0.2.12 Задано $\alpha \colon X \to Y$ – морфізм в категорії **Set**.

$$lpha$$
 — розщеплений мономорфізм $\iff egin{cases} lpha - \mathrm{i} \mathrm{i} \mathrm{f} \mathrm{c} \mathrm{k} \mathrm{T} \mathrm{u} \mathrm{B} \mathrm{H} \mathrm{u} \mathrm{u} \\ X = \emptyset \implies Y = \emptyset \end{cases}$.

Proof.

 \implies Дано: α — розщеплений мономорфізм. Оскільки **Set** — конкретна категорія, то звідси α — ін'єктивний.

Тепер нехай $X = \emptyset$. Тоді за умовою, існує $\beta \colon Y \to X$, для якого $\beta \alpha = 1_X = 1_\emptyset$. Тоді оскільки β — функція, то $Y = \emptyset$.

 \leftarrow Дано: α – ін'єктивний та $X = \emptyset \implies Y = \emptyset$.

Нехай $X \neq \emptyset$, тобто існує елемент $x_0 \in X$. Оскільки α – ін'єктивний, то $\alpha \colon X \to \operatorname{Im} \alpha$, буде задавати бієкцію, тож для кожного $y \in \operatorname{Im} \alpha$ існує єдиний елемент $\beta(y) \in X$, для якого $\alpha(\beta(y)) = y$. Це визначає функцію $\beta \colon \operatorname{Im} \alpha \to X$, що розширюється до функції $\beta \colon Y \to X$, якщо покласти $\beta(y) = x_0, y \notin \operatorname{Im} \alpha$. Для $x \in X$ ми маємо $\beta\alpha(x) = \beta(\alpha(x)) = x = 1_X(x)$.

Нехай
$$X=\emptyset$$
, тоді $Y=\emptyset$ та порожня функція $\beta\colon Y\to X$ задовольняє $\beta\alpha=1_X$.

Отже, в конкретній категорії маємо таку діаграму:

розщеплений мономорфізм \implies ін ективний \implies мономорфізм

Приклади нам показали, що жодні два терміни не збігаються загалом.

У більш загальних категоріям *ін'єктивність* більше не визначена, бо ми там оперуємо множинами. Але якщо слово *ін'єктивний* видалити, то діаграма залишається справедливою.

У повній підкатегорії Set, що містить всі непорожні множини, всі ці три терміни збігаються.

0.2.3 Епіморфізм

Definition 0.2.13 Задано C – категорія.

Морфізм $\alpha: x \to y$ називається **епіморфізмом** (**еріс**), якщо

$$\beta_1 \alpha = \beta_2 \alpha \implies \beta_1 = \beta_2$$

Тобто морфізм – епіморфізм, якщо можна завжди скоротити справа (дуальне означення мономорфізма).

$$x \xrightarrow{\alpha} y \xrightarrow{\beta_1} z$$

Часто епіморфізми позначають як $\alpha \colon x \twoheadrightarrow y$.

Theorem 0.2.14 У конкретній категорії кожний сюр'єктивний морфізм – епіморфізм.

Proof.

Нехай C – конкретна категорія та $\alpha\colon X\to Y$ – сюр'єктивний морфізм. Нехай $\beta_1,\beta_2\colon Y\to Z$ – морфізми C та припустимо, що $\beta_1 \alpha = \beta_2 \alpha$. Оберемо $y \in Y$. Оскільки α – сюр'єктивне, то $y = \alpha(x)$ для деякого $x \in X$. Тоді маємо $\beta_1(y) = \beta_1(\alpha(x)) = \beta_1\alpha(x) = \beta_2\alpha(x) = \beta_2(\alpha(x)) = \beta_2(y)$. Отже, $\beta_1 = \beta_2$.

Remark 0.2.15 Зворотне твердження не працює.

Example 0.2.16 Розглянемо категорію \mathbf{Rng} та оберемо вкладення $\alpha \colon \mathbb{Z} \to \mathbb{Q}$, яке не є сюр'єктивним. Але доведемо, що α – епіморфізм.

Нехай $\beta_1,\beta_2:\mathbb{Q}\to\mathbb{R}$ – морфізми з Rng та припустимо, що $\beta_1\alpha=\beta_2\alpha$. Тоді $\beta_1(n)=\beta_2(n)$ для будь-якого цілого $n\in\mathbb{Z}$. При $n\neq 0$ ми маємо

$$\beta_1(n^{-1}) = \beta_1(n^{-1} \cdot 1) = \beta_1(n^{-1})\beta_1(1) = \beta_1(n^{-1})\beta_2(1) = \beta_1(n^{-1})\beta_2(n)\beta_2(n^{-1}) = \beta_1(n^{-1})\beta_1(n)\beta_2(n^{-1}) = \beta_1(1)\beta_2(n^{-1}) = \beta_2(1)\beta_2(n^{-1}) = \beta_2(1)\beta_2($$

$$\beta_1(1)\beta_2(n^{-1}) = \beta_2(1)\beta_2(n^{-1}) = \beta_2(1 \cdot n^{-1}) = \beta_2(n^{-1}).$$
 Таким чином, для $m, n \in \mathbb{Z}$ при $n \neq 0$ ми маємо наступне: $\beta_1\left(\frac{m}{n}\right) = \beta_1(m)\beta_1(n^{-1}) = \beta_2(m)\beta_2(n^{-1}) = \beta_2(m)\beta_2(n^{-1}) = \beta_2\left(\frac{m}{n}\right).$ Отже. $\beta_1 = \beta_2$.

Theorem 0.2.17 У категоріях **Set**, **Top**, **Grp** морфізм сюр'єктивний \iff морфізм – епіморфізм.

Proof.

Ми вже знаємо, що сюр'єктивний морфізм – епіморфізм. Залишилося довести зворотний бік для цих категоріях.

(Set). Нехай $\alpha \colon X \to Y$ — епіморфізм морфізм. Нехай $\beta_1 \colon Y \to \{0,1\}$ буде характеристичною функцією для $\operatorname{Im} \alpha$ та нехай $\beta_2 \colon Y \to \{0,1\}$ буде стало дорівнювати 1. Тоді $\beta_1 \alpha = \beta_2 \alpha$, тому за епічністю, $\beta_1 = \beta_2$. Із цього випливає, що $\operatorname{Im} \alpha = Y$, що доводить сюр'єктивність α .

(**Top**). Проводиться те саме доведення, як з Set. Тільки треба $\alpha \colon X \to Y$ брати уже неперервне відображення, а на просторі $\{0,1\}$ задати недискретну топологію, щоб β_1,β_2 стали неерервними.

(Grp). Нехай $\alpha \colon G \to H$ – гомоморфізм груп та припустимо, що це – не сюр'єктивний. Звідси випливає, що $[H: {\rm Im}\, \alpha] > 1.$ Ми тоді доведемо, що α – не епіморфізм.

Випадок $[H:\operatorname{Im}\alpha]=2$. Нехай $\beta_1\colon H\to H/_{\operatorname{Im}\alpha}$ – канонічний гомоморфізм та $\beta_2\colon H\to H/_{\operatorname{Im}\alpha}$ – тривіальний гомоморфізм. Тоді $\beta_1 \alpha = \beta_2 \alpha$, але при цьому $\beta_1 \neq q\beta_2$, оскільки ${\rm Im}\, \alpha \neq H$. Тобто в даному випадку α – не епіморфізм.

Випадок $[H:\operatorname{Im}\alpha]>2$. Тоді існують два різних правих суміжних класи $K_1=\operatorname{Im}\alpha\cdot h_1$ та $K_2=$ $\operatorname{Im} \alpha \cdot h_2$, причому $K_1, K_2 \neq \operatorname{Im} \alpha$. Покладемо $b = h_1^{-1}h_2$ та зауважимо, що $K_1b = K_2$, а звідси $K_2b^{-1} = K_1$. Позначимо S_H за групу симетрії на H та оберемо бієкцію $\sigma \in S_H$, що задана формулою

$$\sigma(h) = \begin{cases} hb, & h \in K_1, \\ hb^{-1}, & h \in K_2,. \text{ Можна зауважити, що } \sigma^2 = 1_H \text{ та } \sigma(kh) = k\sigma(h) \text{ для всіх } k \in \operatorname{Im} \alpha, h \in H. \\ h, & \operatorname{ihakme} \end{cases}$$

Для $h \in H$ нехай λ_h буде елементом S_H , що заданий формулою $\lambda_h(x) = hx(x \in H)$. Тоді звідси отримаємо $\sigma \lambda_k = \lambda_k \sigma$ для всіх $k \in \operatorname{Im} \alpha$.

Визначимо $\beta_1,\beta_2\colon H\to S_H$ як $\beta_1(h)=\lambda_k$ та $\beta_2(h)=\sigma\lambda_k\sigma$. Ці два відображення справдлі задають гомоморфізм груп. Для $k \in \text{Im } \alpha$ ми маємо

 $β_2(k) = σλ_kσ = λ_kσ^2 = λ_k = β_1(k)$, a тому $β_1α = β_2α$. Із іншого боку, $β_2(h_1)(e) = σλ_{h_1}σ(e) = σλ_{h_2}σ(e)$ $\sigma(h_1) = h_2 \neq h_1 = \lambda_{h_1}(e) = \beta_1(h_1)(e)$. Тож звідси $\beta_1 \neq \beta_2$. Тобто і в цьому випадку α — не епіморфізм.

0.2.4 Розщеплений епіморфізм

Definition 0.2.18 Задано C – категорія.

Морфізм $\alpha: x \to y$ називається **розщепленим епіморфізмом**, якщо

$$\exists \beta \colon y \to x : \alpha \beta = 1_y$$

Морфізм – розщеплений епіморфізм, тобто даний морфізм має правий оборотний (дуальне означення розщепленого мономорфізма). Такий морфізм інколи ще називають ретракцією.

$$x \stackrel{\leftarrow}{\longleftrightarrow} y$$

Theorem 0.2.19 Кожний розщеплений епіморфізм – епіморфізм.

Proof.

Нехай $\alpha: x \to y$ — розщеплений епіморфізм в категорії, тобто існує морфізм $\beta: y \to x$, для якого $\alpha\beta = 1_1$. Нехай $\beta_1, \beta_2: y \to z$ будуть морфізмами та припустимо, що $\beta_1\alpha = \beta_2\alpha$. Тоді $\beta_1 = \beta_1 1_y = \beta_1 \alpha\beta = \beta_2 \alpha\beta = \beta_2 1_y = \beta_2$.

Theorem 0.2.20 У конкретній категорії кожний розщеплений епіморфізм – сюр'єктивний морфізм.

Proof.

Нехай C — конкретна категорія та $\alpha\colon X\to Y$ — розщеплений епіморфізм, тобто існує морфізм $\beta\colon Y\to X$, для якого $\alpha\beta=1_Y$. Нехай $y\in Y$, тоді покладемо $x=\beta(y)$. Звідси $\alpha(x)=\alpha(\beta(y))=\alpha\beta(y)=1_Y(y)=y$.

Remark 0.2.21 Зворотне твердження не працює.

Example 0.2.22 Розглянемо категорію **Grp** та визначимо морфізм $\alpha \colon \mathbb{Z}_4 \to \mathbb{Z}_2$, визначений як $\alpha(0) = \alpha(2) = 0$ та $\alpha(1) = \alpha(3) = 1$. Це буде сюр'єктивний гомоморфізм. Оскільки $1 \in \mathbb{Z}_2$ має порядок 2, то будь-який гомоморфізм $\beta \colon \mathbb{Z}_2 \to \mathbb{Z}_4$ зобов'язаний відображати 1 на 0 або 2. Таким чином, $\alpha\beta \neq 1_{\mathbb{Z}_2}$. Отже, α — не розщеплений епіморфізм.

Можна аналогічні міркування провести для категорії **Rng**.

Example 0.2.23 Розглянемо категорію **Top**. Маємо $\alpha \colon \mathbb{R} \to \mathbb{R}$ – тотожне відображення; у першого – дискретна топологія, у другого – стандартна. Тоді α – сюр'єктивний морфізм, але аналогічним чином можна довести, що це не епічний морфізм (як це було з епічним мономорфізмом).

Theorem 0.2.24 У категорії Set морфізм – розщеплений епіморфізм 👄 морфізм сюр'єктивний.

Proof.

Залишилося довести у зворотний бік.

 \sqsubseteq Дано: $\alpha: X \to Y$ – сюр'єктивний морфізм. Тобто для кожного $y \in Y$ знайдеться $\beta(y) \in X$, для якого $\alpha(\beta(y)) = y$, а це визначає функцію $\beta: Y \to X$, яка задовольняє $\alpha\beta = 1_Y$. Отже, α – розщеплений епіморфізм.

Отже, в конкретній категорії маємо таку діаграму:

розщеплений епіморфізм $\implies сюр'єктивний \implies$ епіморфізм

Приклади нам показали, що жодні два терміни не збігаються загалом.

У більш загальних категоріям *сюр'єктивність* більше не визначена, бо ми там оперуємо множинами. Але якщо слово *сюр'єктивний* видалити, то діаграма залишається справедливою. У категорії **Set** всі ці три терміни збігаються.

0.2.5 Біморфізми та ізоморфізми

Definition 0.2.25 Задано C – категорія.

Морфізм $\alpha \colon x \to y$ називається **біморфізмом**, якщо

 α – одночасно мономорфізм та епіморфізм

Морфізм $\alpha \colon x \to y$ називається **ізоморфізмом**, якщо

$$\exists \beta \colon y \to x : \beta \alpha = 1_x \qquad \alpha \beta = 1_y$$

Remark 0.2.26 Якщо α – ізоморфізм, то морфізм β в означенні – єдиний та позначається за α^{-1} .

Definition 0.2.27 Задано C – категорія.

Об'єкти x, y називаються **ізоморфними**, якщо

$$\exists \alpha \colon x \to y$$
 – ізоморфізм

Позначення: $x \cong y$ (це справді відношення еквівалентності).

Theorem 0.2.28 Морфізм — ізоморфізм \iff морфізм — розщеплений мономорфізм та розщеплений епіморфізм.

Proof.

 \Rightarrow митт ϵ во виплива ϵ з означення.

 \sqsubseteq Дано: α – розщеплений мономорфізм та розщеплений епіморфізм. Тобто існують морфізми $\beta, \gamma \colon y \to x$, для яких $\beta \alpha = 1_x$, $\alpha \gamma = 1_y$. Але тоді $\beta = \beta 1_y = \beta \alpha \gamma = 1_x \gamma = \gamma$. Отже, α – ізоморфізм.

Тепер ми маємо ось таку діаграму. Італік позначений лише для конкретних категорій.

Theorem 0.2.29 У категорії **Set**, **Grp** біморфізм, бієкція, ізоморфізм – це одне й те саме.

Proof

(Set). Нехай $\alpha\colon X\to Y$ — біморфізм. Зважаючи на діаграму вище, достатньо довести, що α — ізоморфізм. Оскільки α — мономорфізм та епіморфізм, то в даній категорії α — ін'єктивний та сюр'єктивний, тобто бієктивний. Значить, існує морфізм α^{-1} , для якого $\alpha^{-1}\alpha=1_X$, $\alpha\alpha^{-1}=1_Y$, що й доводить ізоморфність.

(**Grp**). Насправді, аналогічно. Але треба окремо пересвідчитися, що якщо α – гомоморфізм, то α^{-1} буде ним також.

Remark 0.2.30 Що по інших категоріях, які не потрапили в цю теорему.

 (\mathbf{Rng}) . Зауважимо, що $\mathbb{Z} \hookrightarrow \mathbb{Q}$ буде біморфізмом, але не бієкцією.

 (\mathbf{Top}) . Тотожне відображення $R \to R$, з дискретною та стандартною топологією відповідно, буде бієкцією, але не ізоморфізмом (тобто гомеоморфізмом в даному випадку).

0.3 Ініціальні та термінальні об'єкти

Definition 0.3.1 Задано C – категорія та $c \in C$ – об'єкт. Об'єкт c називається ініціальним, якщо

$$\forall x \in C : \exists ! \alpha \colon c \to x$$

Об'єкт c називається **термінальним**, якщо

$$\forall x \in C : \exists ! \beta : x \to c$$

Example 0.3.2 Зокрема в категорії **Set**, **Top** ініціальним об'єктом буде \emptyset ; термінальним об'єктом буде $\{x\}$ (будь-який сінглтон).

Example 0.3.3 У категоріях **Grp**, **Rng**, $_R$ **Mod** ініціальним та термінальним об'єктом одночасно буде $\{e\}$, де e – нейтральний елемент.

Example 0.3.4 У категорії **Ring** ініціальним об'єктом буде кільце \mathbb{Z} , а термінальним об'єктом буде тривіальне кільце $\{0\}$.

Theorem 0.3.5 Задано C – категорія, $c_1, c_2 \in C$ – обидва ініціальні. Тоді $c_1 \cong c_2$.

Proof.

За умовою, c_1 – ініціальний, тоді для об'єкта c_1 існує єдиний морфізм $\alpha\colon c_1\to c_2$. Аналогічно, c_2 – ініціальний, тоді для об'єкта c_1 існує єдиний морфізм $\beta\colon c_2\to c_1$. Розглянемо композицію $\beta\alpha\colon c_1\to c_1$ – такий морфізм буде єдиним в силу єдиності α,β . У категорії точно існує морфізм $1_{c_1}\colon c_1\to c_1$ – отже, в силу єдиності такого морфізму, $\beta\alpha=1_{c_1}$. Аналогічно доводиться, що $\alpha\beta=1_{c_2}$. Значить, $\alpha\colon c_1\to c_2$ буде ізоморфізмом.

Theorem 0.3.6 Задано C – категорія, $d_1, d_2 \in C$ – обидва термінальні. Тоді $d_1 \cong d_2$. Вправа: довести.

0.4 Добуток

Definition 0.4.1 Задано C – категорія та $X_1, X_2 \in C$ – об'єкти.

Добутком X_1, X_2 називають об'єкт $X \in C$, що оснащений парою морфізмів $\pi_1 \colon X \to X_1$ та $\pi_2 \colon X \to X_2$, що є так званими **проєктивними морфізмами**, які задовольняють такій умові:

$$\forall Y \in C, \forall f_1 \colon Y \to X_1, f_2 \colon Y \to X_2 \colon \exists! f \colon Y \to X \colon$$
$$f_1 = \pi_1 f \qquad f_2 = \pi_2 f$$

Позначення: $X = X_1 \times X_2$.

Remark 0.4.2 Аналогічним чином можна визначити в категорії C добуток $X_i, i \in I$ (деякої сім'ї об'єктів).

Позначення
$$X = \prod_{i \in I} X_i$$
.

Example 0.4.3 Будемо в категорії **Set**. Розглянемо сім'ю множин $\{X_i, i \in I\}$. Добутком цієї сім'ї множин є множина всіх функцій $f \colon I \to \bigcup_{i \in I} X_i$ таких, що $f(i) \in X_i$ для всіх $i \in I$. Це можна записати таким чином:

$$P = \prod_{i \in I} X_i = \left\{ f \colon I \to \bigcup_{i \in I} X_i \mid f(i) \in X_i, \forall i \in I \right\}$$

Для кожного $i \in I$ визначимо проєкцію $\pi_i \colon P \to X_i$ таким чином: $\pi_i(f) = f(i)$. Доведемо, що пара $(P, \{\pi_i\})$ буде утворювати добуток сім'ї $\{X_i\}$ (у категоріальному сенсі).

Proof.

Нехай Y — об'єкт з морфізмами $\alpha_i\colon Y\to X_i$. Хочемо знайти єдиний морфізм $\gamma\colon Y\to P$, щоб $\alpha_i=\pi_i\gamma$. Покладемо $\gamma\colon Y\to P$ таким чином: $\forall y\in Y\colon \gamma(y)$ буде функцією $I\to\bigcup_{i\in I}X_i$, причому

 $\forall i \in I : \gamma(y)_i = \alpha_i(y)$. Тоді $\pi_i \gamma(y) = \pi_i(\gamma(y)) = \gamma(y)_i = \alpha_i(y)$, тобто звідси $\pi_i \gamma = \alpha_i$ для всіх $i \in I$. !Припустимо, що існує функція $\gamma' : Y \to P$, для якої $\pi_i \gamma' = \alpha_i$. Тобто для кожного $y \in Y$ та кожного $i \in I$ виконано $\gamma'(y)(i) = \alpha_i(x)$. Але тоді

$$\gamma'(y)(i) = \pi_i(\gamma'(y)) = \pi_i\gamma'(y) = \alpha_i(y) = \gamma(y)(i)$$
. Суперечність!

Example 0.4.4 Будемо в категорії **Grp**. Насправді, все так само робиться, як в категорії **Set**, ось тільки кожний X_i тепер буде групою. Визначаємо декартів добуток P — це буде група зі покомпонентним множенням: (fg)(i) = f(i)g(i). Це ще називають (зовнішнім) прямим добутком груп. Проєктивні відображення π_i будуть гомоморфізмами. Далі все те саме.

Для категорій $\mathbf{Rng}_{,R}\mathbf{Mod}$ аналогічно все.

Example 0.4.5 Залишилася категорія **Тор**.

0.5 Кодобуток

Definition 0.5.1 Задано C – категорія та $X_1, X_2 \in C$ – об'єкти.

Кодобутком X_1, X_2 називають об'єкт $X \in C$, що оснащений парою морфізмів $i_1 \colon X_1 \to X$ та $i_2 \colon X_2 \to X$, що є так званими **морфізмами вкладень**, які задовольняють такій умові:

$$\forall Y \in C, \forall f_1 \colon X_1 \to Y, f_2 \colon X_2 \to Y \colon \exists ! f \colon X \to Y \colon$$
$$f_1 = f \imath_1 \qquad f_2 = f \imath_2$$

Позначення: $X = X_1 \sqcup X_2$.

Remark 0.5.2 Аналогічним чином можна визначити в категорії C кодобуток $X_i, i \in I$ (деякої сім'ї об'єктів).

Позначення $X = \coprod_{i \in I} X_i$.

Example 0.5.3 Будемо в категорії **Set**. Розглянемо сім'ю множин $\{X_i, i \in I\}$ (якусь довільну). Визначимо множину Q ось так: $Q = \bigsqcup_i X_i'$, де в цьому випадку $X_i' = \{(x,i) \mid x \in X_i\}$ для всіх i.

Причому варто зауважити, що X_i' дійсно неперетинні, а також $X_i'\cong X_i$. Визначимо відображення $\imath_i\colon X_i\to Q$ таким чином: $\imath_i(x)=(x,i)$.

Доведемо, що пара $(Q, \{i_i\})$ буде утворювати кодобуток сім'ї $\{X_i\}$ (у категоріальному сенсі).

Proof.

Створімо нову категорію $\mathbf{D}_{\mathrm{copr}}$, яка функціонує ось таким чином:

об'єктами будуть пари $(X, \{\alpha_i\})$, де X – об'єкт категорії **Set** та $\alpha_i \colon X_i \to X$ – відображення; морфізмом між $(X, \{\alpha_i\})$ та $(Y, \{\beta_j\})$ буде відображення $\gamma \colon X \to Y$, для якого $\gamma \circ \alpha_i = \beta_i$, причому це для всіх i. Це дозволяє для всіх i зробити діаграму комутативною.

Так ось, нам треба довести, що наша визначена пара $(Q, \{i_i\})$ буде ініціальним об'єктом.

Нехай $(X, \{\alpha_i\})$ – будь-який об'єкт $\mathbf{D}_{\text{сорт}}$. Визначимо відображення $\gamma \colon Q \to X$ ось таким чином: $\gamma((x,i)) = \alpha_i(x)$. Зауважимо, що для всіх i та всіх $x \in X$ ми маємо, що $\gamma \circ \iota_i(x) = \gamma((x,i)) = \alpha_i(x)$.

Значить, γ буде морфізмом між цими двома об'єктами. Доведемо, що такий морфізм єдиний. Оберемо морфізм γ' , який діє між двома об'єктами, тобто $(Q, \{i_i\})$ та $(X, \{\alpha_i\})$. Тоді раз це морфізм, то справедлива рівність $\gamma' \circ i_i = \alpha_i$ для всіх i. Проте з іншого боку, $\alpha_i(x) = \gamma((x,i))$. Значить, $\gamma((x,i)) = \alpha_i(x) = \gamma' \circ i_i(x) = \gamma'((x,i))$.

Example 0.5.4 Будемо в категорії **Top**. Як і в категорії **Set**, розглянемо сім'ю множин $\{X_i, i \in I\}$ (тільки тут вже топологічні простори). Визначимо множину Q так само, як було вище. На ній задається така топологія: U – відкрита в $Q \iff \imath_i^{-1}(U)$ – відкрита в X_i для всіх i. Тоді всі функції $\imath_i \colon X_i \to Q$, як було визначено вище, будуть неперервними. Далі аналогічним чином доводимо, що пара $(Q, \{\imath_i\})$ утворює кодобуток.