나무+클라스러형위상구조를 가지는 무선수감부망에서 에네르기최량화에 대한 한가지 방법

김원철, 리영찬

최근 무선수감부망연구에서는 나무+클라스터형위상구조를 가지는 망에 대한 연구결과들[2, 3]이 발표되였다. 그러나 나무+클라스터위상구조형무선수감부망에서의 에네르기소비최량화에 대하여 언급되것은 없다.

론문에서는 클라스터머리부와 기지국사이 다중도약통신을 나무구조로 해결하는 나무+클라스터위상구조형무선수감부망에서의 에네르기최량화문제를 해결하기 위한 한가지 방법을 제기하였다.

1. 에네르기소비최소화방법

나무+클라스터위상구조형의 최량구축방법은 본질상 최량나무형과 최량클라스터형방법의 결합이다.

일반적으로 30개미만의 마디를 가지는 무선수감부망에서는 경로화방법을 리용하고 30~100개정도의 마디를 가지는 무선수감부망에서는 나무구축방법을, 100개이상의 마디를 가지는 무선수감부망에서는 클라스터화방법을 리용하여 위상을 구축하는것이 합리적이다.

그리면 1 000개이상의 마디를 가지는 무선수감부망에서는 어떻게 망위상을 구축하겠는가 하는 문제가 제기되다.

먼저 식 (1)을 리용하여 클라스터머리부마디로 될 최량확률을 계산한다. 매 마디 j는 다음의 확률로 클라스터머리부로 된다.

$$T_{j} = \begin{cases} \frac{P}{1 - P[r \operatorname{mod}(1/p)]}, & j \in G \\ 0, & j \notin G \end{cases}$$
 (1)

여기서 P는 클라스터머리부로 선택될 확률, r는 현재순환수, G는 클라스터머리부마디후보모임이다.

클라스터머리부후보모임 G에는 현재의 순환 r에서 클라스터머리부로 선택되지 않았던 마디들만이 속한다. 식 (1)은 매 순환에서 매 마디들은 단 한번밖에 클라스터머리부로 선출되지 못하며 우연적으로 동등한 확률로 클라스터머리부로 된다는것을 보여준다.

식 (1)에 기초하여 클라스터개수

$$N_{cl} = N P_{opt} \tag{2}$$

를 계산한다. 여기서 P_{ont} 는 클라스터머리부마디로 될 최량확률이다.

 N_{cl} 이 100미만이라면($N \ll 2$ 000) 클라스터머리부들을 1개의 마디로 보고 이러한 마디로부터 최대수명나무를 구축한다. 즉 N_{cl} 개의 클라스터머리부들을 마디로 하면서 통보문교환과 파케트손실을 고려하는 최대수명나무[1]를 구축하여 클라스터머리부-기지국사

이 통신을 보장한다.

이러한 위상구조구축방법을 리용할 때 전체 에네르기는 다음과 같다.

$$E_{\stackrel{*}{=}} = E_f + E_d + E_c + E_{cl} \tag{3}$$

여기서 E_f 는 초기클라스에서 클라스터형성에 필요한 에네르기, E_d 는 클라스터형성후 자료 송수신에네르기, E_c 는 자료집합 및 계산에 필요한 에네르기, E_c 은 클라스터머리부-클라스터머리부(혹은 기지국)사이 통신에 소비되는 에네르기이다.

식 (3)에 기초하여 클라스터를 구축하여야 한다. 또한 클라스터머리부로 이루어지는 나무(이것을 편리상 클라스터머리부-나무라고 한다.)의 적응과 클라스터적응에 대한 단 계로 명백히 할 필요가 있다.

재클라스터화가 진행되지 않으면 클라스터머리부-나무의 적응은 통보문교환과 파케트손실을 고려한 최대수명나무구축과 그 적응방법을 리용하여 진행될수 있지만 일단 재클라스터화가 진행되면 클라스터머리부-나무의 성원마디들이 변하기때문에 마디들의 잔여에네르기를 고려하여 새로운 클라스터머리부-나무를 구축해야 한다. 그리고 기지국이가지고있는 클라스터머리부-나무의 마디들에 대한 정보 역시 갱신해야 한다.

이러한 새로운 클라스터머리부-나무구축은 우연등방향나무인 초기나무로부터 시작 하여 근사알고리듬을 리용하여 생성할수 있다.

2. 모의와 결과분석

각이한 위상구조구축방법에서의 망수명을 비교하면 그림과 같고 이때 모의평가파라메터는 표와 같다.

그림에서 보는바와 같이 망수명은 마디수가 늘어남에 따라 비교적 완만하게 감소한다. 그 리유는 마디수가 늘어날수록 마디에서 기지국까지 평균도약수가 커져 통신에네르기소비가 증대되기때문이다.

표. 모이평가파라메터

<u>т. тыолшышы</u>	
파라메터	값
망크기	100×100m
마디수	100~400
자료길이(n)	4 000 bit (500 B)
E_{init}	50 nJ/bit
자료집합에네르기(E_{DA})	50 nJ/bit
전송에네르기 $(arepsilon_{ m l})$	10 pJ/bit/m^2
증폭에네르기 (ε_2)	$0.0013 \text{ pJ/bit/m}^4$
초기에네르기(<i>E_{init}</i>)	0.5 J

그림. 각이한 위상구조구축방법에서의 망수명

1-data1(제안방법), 2-MITT, 3-LOCAL-OPT, 4-PEDAP, 5-PEDAP-AP, 6-MLDGA, 7-MNL

맺 는 말

제안한 방법은 기타 모든 위상구조구축방법들에 비하여 보다 긴 수명을 가진다. 론문에서 제안한 방법과 수명이 거의 같은것은 MITT뿐이다. MITT는 최대로 $\Omega(\log n/\log\log n)$ 의 근사비를 가지는 나무구축방법으로서 거의나 대역최량나무를 출력하지만 그 계산량이 제안방법에 비해 훨씬 크다.

참고문 헌

- [1] 김원철; 과학원통보, 2, 19, 주체106(2017).
- [2] D. Xia, N. Vlajic; IEEE Journal on Selected Areas in Communications, 1825, 2006.
- [3] J. Chang, L. Tassiulas; In Proceedings of IEEE Infocom., 3, 1, 22, 2010.

주체107(2018)년 11월 5일 원고접수

A Method for Energy Optimization in Wireless Sensor Network with Tree+Cluster Topology

Kim Won Chol, Ri Yong Chan

In this paper we proposed a method to minimize energy consumption in wireless sensor network with tree+cluster topology, which supported multihop communication between cluster header and base station by tree structure.

Key words: wireless sensor network, maximum lifetime tree