

STRONGER 3SUM-INDEXING LOWER BOUNDS

[LARSEN, CHUNG] SODA23'

AUTHORS

Eldon Chung

Kasper Green Larsen

AGENDA

- X Introduction & History
- X Reachability Oracles in the Butterfly Graph
- X Blocked Lopsided Set Disjointness
- X Non-Adaptive DS
- X Non-Adaptive 2-Bit-Probe DS

INTRODUCTION & HISTORY

3SUM PROBLEM

- X Input: A, B, C \subseteq G(+), IGI~poly(n)
 - |A|=|B|=|C|=n
- X Goal: determine whether there is a triple (a, b, c) \in AxBxC s.t. a + b = c

KNOWN RESULTS

- X Trivial: O(n) Space, O(n^2) time
- X Best: $O(n^2(loglogn)^{O(1)}/log^2n)$ time
- X Conjecture: no solution in $O(n^{2-\Omega(1)})$ time

3SUM-INDEXING

- X Input: $A_1, A_2 \subseteq G(+)$ each of size n
- X Pre-Process: 5 memory cells of w bits
- X Query: element z
 - \circ $a_1 + a_2 = z$
 - accessing at most T memory cells

X Adaptive vs. Non-Adaptive

CONJECTURES

X Conj1: T=O(1)
$$\rightarrow$$
 S= $\widetilde{\Omega}(n^2)$

- **X** Conj2: S*T= $\widetilde{\Omega}(n^2)$
- X Conj3: $T = O(n^{1-\delta}) \rightarrow S = \widetilde{\Omega}(n^2)$

THE STRONG 3SUM-INDEXING CONJECTURE IS FALSE

- X Inversion functions "hammer" [Fiat, Naor]
- **X** Solving KSUM-Indexing (0 < δ < 1)
 - \circ Space: $O(n^{k-1-\delta/3})$ words
 - \circ Query Time: $O(n^{\delta})$
- **X** K=3, δ =0.75 -> S= O($n^{1.75}$), T= O($n^{0.75}$)
- X Adaptive

GOLOVNEY ET AL. STOC20

- X Theorem 1: 3SUM-Indexing query time $\Omega(\log n/\log(Sw/n))$
 - \circ T=O(1) -> S= $\Omega(n^{1+\Omega(1)})$
- **X** Abelian group of size $O(n^2)$
- X Non-Adaptive, cell-probe DS

THIS PAPER

- X Adaptive DS time lower bound
 - $\circ \ \mathsf{T} = \Omega(\log n / \log(Sw/n))$
 - Also for small universe
- X Tighter non-adaptive time lower bound

$$\circ T = \Omega(\min \left\{ log |G| / \log \left(\frac{Sw}{n} \right), n/w \right\})$$

- X Non-Adaptive 2bit-probe space lower bound
 - \circ S = $\Omega(|G|)$

REACHABILITY ORACLES IN THE BUTTERFLY GRAPH

THEOREM2

- X 3SUM-Indexing adaptive cell-probe DS
 - $\circ |G| = O(n^2)$
 - $\circ \ w = \Omega(logn)$
- **X** Query time $T = \Omega(\log n/\log(Sw/n))$

BUTTERFLY GRAPH

Sink nodes

REACHABILITY ORACLES

- X Input: $BG_{B,d}$ (E, V), E` \subseteq E
- X Pre-Process: E`into S memory cells of size w
- X Query: is there exists a path < s, t > in $BG_{B,d}$ (E`, V)

REDUCTION INTERNALS

X From E', s, t to A_1, A_2, z **X** $A_1: \langle k | e_k(i,j) \in E` | v_i[d-1], ..., v_i[k], 0, ..., 0 | 0, ..., 0, v_j[k], ..., v_j[0] | 0, 0 \rangle$ **X** $A_2: \langle -k | 0 | 0, ..., 0, X, ..., X | X, ..., X, 0, ..., 0 | X, X \rangle$

 $X z_{s,t}: \langle 0 | 0 | v_s[d-1], ..., v_s[0] | v_t[d-1], ..., v_t[0] | X, X \rangle$

$$|A_1| = |E| = dB^{d+1} = |A_2| = n$$

$$|G| \sim 3d(2B+1)^{2d+2} \le (dB^{d+1})^2 \le n^2$$

REDUCTION ANALYSIS

- X Lemma1: $BG_{B.d}$, $N = dB^d$, using S words of w bits
 - $\circ B = \Omega(w^2), \log B = \Omega(\log(Sd/N))$
 - $\overline{r} \circ \overline{r} = \Omega(d)$
- X Theorem 2: 3SUM-Indexing, $|G| = O(n^2)$
 - $OB = Sw^2/n$
 - $\circ T = \Omega(\log n/\log B) = \Omega(\log n/\log(Sw/n))$

Blocked Lopsided Set Disjointness

THEOREM3

X 3SUM-Indexing adaptive cell-probe DS

$$\circ |G| = O(n^{1+\delta})$$

$$\circ \ w = \Omega(logn)$$

X Query time
$$T = \Omega(\log n/\log(Sw/n))$$

BLOCKED LSD

- **X** Alice: $X \subseteq [N]x[B]$, contains exactly one element for every 1,...,N
- **X** Bob: $Y \subseteq [N]x[B]$
- **X** Goal: determine whether $X \cap Y = \emptyset$
 - Minimizing communication complexity

[N]x[B]

REDUCTION INTERNALS #1

REDUCTION INTERNALS #2

$$X \quad Y \rightarrow A \quad \langle i \mid 0, \dots, j, \dots, 0 \rangle \quad |A| \sim NB$$

$$X \quad Y \rightarrow B \quad \langle 0 \mid *, \dots, 0, \dots, * \rangle \quad |B| \sim B^{l}$$

$$X \quad X \rightarrow C_{i} \quad \langle i \mid j_{1}, \dots, j_{l} \rangle \quad |C_{i}| \sim l$$

[N]x[B]

REDUCTION ANALYSIS [BOB]

- X <u>Lemma2</u>: Blocked LSD communication
 - Alice $\alpha N log B$ or Bob $N B^{1-O(\alpha)}$
- X Reminder: Bob sends T * N/l * w bits
 - $B = w^4, \alpha = 0.5, l \ge 1, w = O(\log n)$
 - O ...
 - \circ $T = \Omega(logn)$

REDUCTION ANALYSIS [ALICE]

- X Lemma2: Blocked LSD communication
 - \circ Alice $\alpha Nlog B$ or Bob $NB^{1-O(\alpha)}$
- **X** Reminder: Alice sends $Tlog \binom{S}{N/l}$ bits

$$\circ B = w^4, \alpha = 0.5, l = \varepsilon \frac{logn}{logw} \ge 1, n = NB$$

- 0 ...
- $\overline{T} = \Omega(logn/log(Sw/n))$

REDUCTION ANALYSIS [UNIVERSE]

X We must ensure

- $\circ |G| = O(n^{1+\delta})$
- $\circ |A|, |B|, |C| \leq n$
- $X |G| \sim N * B^l, |B| \sim B^l \rightarrow B^l \leq n^{\delta}$
 - \circ Choose small enough ϵ

NON-ADAPTIVE DS

THEOREM4

X 3SUM-Indexing non-adaptive cell-probe DS

$$\circ$$
 $|G| = \omega(n^2)$

$$\circ \ w = \Omega(logn)$$

X Query time
$$T = \Omega(\min \{log | G | / log (\frac{Sw}{n}), n/w\})$$

COUNTING

- **X** Consider subsets of $\Delta = n/2w$ memory cells
- X There is a set of Δ memory cells answering at least

$$|G|\binom{S-T}{\Delta-T}/\binom{S}{\Delta} \ge |G|(\frac{\Delta-T}{S})^T$$
 queries

COUNTING

$$X \ge |G|(\frac{\Delta - T}{S})^T$$
 queries

$$X T > \Delta/2 \rightarrow \Omega(n/w)$$

X
$$T \le \Delta/2 \rightarrow |G|^{1-o(1)} > n \rightarrow \text{special set } Q, |Q| = n$$

Counting $\lfloor \log |G| / \log(Sw/n) \rfloor$

- X Can subset of $\Delta = n/2w$ cells answer more than n queries?
 - Yes, but always?
- X Lemma3: there exists an input distribution over inputs A_1 , A_2 s.t. all events in Q are fully independent
 - $0 \ \forall q \in Q: Pr_{(A_1,A_2)\sim D}[q \in (A_1 + A_2)] = 1/2$
- X n/2 bits vs. n bits of entropy

LEMMA3

- X Lemma3: $|G| = \omega(n^2)$. For $Q \subseteq G$, $|Q| \le n$ there exists an input distribution A_1 , A_2 s.t. all events are fully independent
 - $Q: Pr_{(A_1, A_2) \sim D}[q \in (A_1 + A_2)] = 1/2$
- **X** $D = \{ \forall P \subseteq Q : (A_1^P, A_2^P) | P \subseteq A_1^P + A_2^P, (Q \backslash P) \cap (A_1^P + A_2^P) = \emptyset \}$ $\circ |G| = \omega(n^2) \text{ limitation}$
- **X** Given set of queries $S \subseteq Q$, |S| = r, how many sets P there are which satisfies $S? 2^{n-r}$
 - $|D| = 2^n$

NON-ADAPTIVE 2-BIT-PROBE DS

THEOREM5

X 3SUM-Indexing non-adaptive cell-probe DS

$$\circ$$
 $T=2$

$$\circ w = 1$$

X Space Complexity
$$S = \Omega(|G|)$$

2-BIT-PROBE GRAPH

- X Build cell-probe graph
 - \circ Nodes: one for each memory cell \rightarrow \circ \circ
 - \circ Edges: one for each query $g \rightarrow |G|$
 - Logic functions f_g : COPY, CONST, AND, XOR
- X There is at least one function of $\Omega(|G|)$ single edges
- X Lemma4: for a graph with n nodes, average degree > 2 and girth r: $n \ge 2(d-2)^{r/2-2}$
 - \circ r = O(logn)

COPY TYPE

- **X** $\Omega(|G|)$ single COPY edges, o(|G|) nodes
 - There is a dominant node with $\omega(1)$ COPY edges
- X By Lemma3, more than 2 yields a contradiction

AND TYPE

- X By Lemma4, there is a cycle of O(logn) length using only AND edges
- $oldsymbol{X}$ There is a query f_1 which force the inputs to be fixed

XOR TYPE

X By Lemma4, there is a cycle of O(logn) length using only XOR edges

$$X f_5 = f_6 \oplus f_1 \oplus f_9$$

CONCLUSION

- X Using Hammers!
 - Non-trivial reductions
 - Inversion Functions
- X 3SUM-Indexing as a static DS lower bound
 - Direct impact on various core algorithms & DS
- X A combinatorial approach
- **X** Can we make things better?
 - More efficient Block LSD reduction
 - Using the access graph method (T-bit-probe)

Any questions?

Link to the paper: https://arxiv.org/abs/2203.09334