

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-3

@LEVEL#

SELECTE JUN 1 1 1980

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

PRODUCTS DIVISION

80 5 23 009

DUE FILE COPY.

L' Electro-Optical Products Division TT-80-20-06-ADD 6 SINGLE-MODE BEND EVALUATIONS. Addendum, Addendum to the Final Report Contract No 0173-78-C-0196 Prepared for: Naval Research Laboratory Washington, D.C. 20375 Prepared by: ITT Electro-Optical Products Division 7635 Plantation Road, N.W. Roanoke, Virginia 24019 Approved by: F. R. McDevitt, Director В Fiber Optics R&D and DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited Roanoke, Virginia_

189750 NW 80 5 23 009

TABLE OF CONTENTS

<u>PARAGRAPH</u>	TITLE	PAGE
1.0	INTRODUCTION	1-1
2.0 2.1 2.1.1 2.1.2 2.2	SINGLE-MODE FIBER BEND LOSS STUDY Evaluation of the Bend Loss Monitor Coupler Double Wind Mandrel Method of Evaluation	2-1 2-1 2-3 2-3 2-3
3 O	PESHITS OF THE EVALUATIONS	3-1

RE: Distribution Statement Unlimited per Mr. T. Giallorenzi, NRL/Code 5570

ACCESSION for	
NTIS	White Section
DDC	Buff Section 🗖
UNANNOUNCED	
JUSTIFICATION	
DISTRIBUTION/	AVAILABILITY CODES
Dist. AVAIL.	and for SPECIAL
	1

_Roanoke, Virginia___

LIST OF ILLUSTRATIONS

FIGURE	TITLE	PAGE
2-1	Bend Loss Measurement Station	2 - 2
2-2	Monitoring Coupler	2 - 4
2-3	Monitoring Coupler Housing	2 - 5
2 - 4	Single-Mode Fiber Bending Loss Test	
	Apparatus	2-6
3-1	EMT-21182a - 1-cm Mandrel - 0.63282 μm	3 - 4
3-2	EMT-21182a - 2-cm Mandrel - 0.63282 μm	3 - 5
3 - 3	EMT-21182a - 1-cm Mandrel - 0.84 µm	3-6
3 - 4	EMT-21182a - 2-cm Mandrel - 0.84 μm	3-7
3 - 5	EM-20413 - 1-cm Mandrel - 0.63282 um	3-8
3-6	EM-20413 - 2-cm Mandrel - 0.63282 µm	3-9
3 - 7	EM-20413 - 1-cm Mandrel - 0.84 µm	3-10
3-8	EM-20413 - 2-cm Mandrel - 0.84 µm	3-11
3-9	EM-20588 - 1-cm Mandrel - 0.63282 µm	3-12
3-10	EM-20588 - 2-cm Mandrel - 0.63282 µm	3-13
3-11	EM-20588 - 1-cm Mandrel - 0.84 µm	3-14
3-12	EM-20588 - 2-cm Mandrel - 0.84 µm	3-15
3-13	EM-20495 - 1-cm Mandrel - 0.63282 μm	3-16
3-14	EM-20495 - 2-cm Mandrel - 0.63282 µm	3-17
3-15	EM-20495 - 1-cm Mandrel - 0.84 um	3-18
3-16	EM-20495 - 2-cm Mandrel - 0.84 um	3-19

LIST OF TABLES

TABLE		TITLE	PAGE
3-1	Experimental	Results	3-3

__ Roanoke, Virginia _____

1.0 INTRODUCTION

This test is designed to find the bend-induced losses of four fibers. Three of these fibers are of the high numerical aperture (NA) design, and one fiber is of the low NA design.

Roanoke, Virginia

2.0 SINGLE-MODE FIBER BEND LOSS STUDY This test evaluates the bend-induced losses within a single-mode fiber at 0.63282 μm from a helium neon laser and at 0.84 μm from a gallium aluminum arsenide laser. Three of the fibers used in the tests were made in the earlier section of this contract. A low NA fiber for use

in this experiment was supplied by ITT EOPD.

2.1 Evaluation of the Bend Loss

The bend loss was evaluated using the equipment in Figure

2-1. This design makes use of a monitor coupler to
improve measurement accuracy. The monitor coupler

provides a signal which is directly proportional to
the power in the fiber and can, therefore, be used as
a reference. A transimpedance amplifier provides amplification of the signal for recording.

The throughput power is detected by means of a photovoltaic detector with a fixed load. Both the throughput signal and the amplified monitor signal are recorded by means of a printing data logger.

Roanoke, Virginia_

302 13274

Figure 2-1. Bend Loss Measurement Station.

2.1.1 Monitor Coupler

The monitor coupler used in this series of tests is shown in Figure 2-2 and the detector housing with completed coupler installed is shown in Figure 2-3. The detector collects the radiation emitted from the fiber providing an output signal to the amplifier. The monitor power was required to linearly track the output power within 5% as the output power is varied from 100% to 25%.

2.1.2 Double Wind Mandrel

The double wind mandrel is shown in Figure 2-4. It is designed so that when the fiber is wound onto the mandrel, it winds in both directions. Two mandrel sizes, 1 cm and 2 cm, were used in this test. It is worth noting that mandrels of this design provide six transition regions. Four transition regions occur when the fiber winds onto or off the mandrel and two when the fiber is wound around the 5-cm diameter disk shown at the center of the mandrel.

2.2 Method of Evaluation

In these tests the fiber is wound onto the mandrel with 5, 30, 100, 200, and 300 turns. An unwound measurement

Roanoke, Virginia_

Figure 2-2. Monitoring Coupler.

Figure 2-3. Monitoring Coupler Housing.

- Contract of the Contract of

Figure 2-4. Single-Mode Fiber Bending Loss Test Apparatus.

is also made. The tap power and the output power are measured at each stage using the data logger. A minimum of 10 samples was taken. These measurements were performed on both mandrels at both wavelengths on all four fibers.

.Roanoke, Virginia_

3.0 RESULTS OF THE EVALUATIONS

In the experiment the loss is evaluated according to the ratio of the throughput signal to the tap signal. This ratio is

$$r = \frac{V_{through}}{V_{tap}} = \frac{P_{through}}{P_{tap}} \frac{R_1 R_L}{R_2 R_f}$$
 (3-1)

where $P_{through}$ and P_{tap} are the throughput and monitor coupler powers, R_1 and R_2 are the responsivities of the throughput power and monitor power detectors respectively, R_L is the load resistor on the throughput power detector and R_f is the feedback resistor on the transimpedance amplifier in the monitor circuit.

Thus the induced loss is

Y = 10 log
$$\frac{r_t}{r_0}$$
 = -10 log $\left(\frac{p_{th(t)}}{p_{th(0)}} \cdot \frac{p_{tap(0)}}{p_{tap(t)}}\right)$ (3-2)

where the subscript t indicates the number of turns and the subscript o is zero turns. This technique allows the loss compensated for the effects of injection conditions to be expressed.

The two components of the loss can now be expressed as

Initial loss = -10
$$\log_{10} \left(\frac{r_5}{r_0} \right)$$
 in dB (3-3)

Final loss = -10
$$\log_{10} \left(\frac{r_{300}}{r_{30}} \right) \times \frac{1}{270}$$
 in dB/turn (3-4)

The negative sign is included so that positive loss is attenuation and negative loss is gain.

In practice the standard experimental error due to amplifier drift and various noise sources is approximately 3%. Thus, it is possible to obtain negative loss answers on very resistant fibers. The results of this experiment are summarized in Table 3-1 and plotted as

Percent variation =
$$100 \left(\frac{r_t}{r_0}\right)$$
 (3-5)

on semilog paper in Figures 3-1 through 3-16 inclusive.

Roanoke, Virginia_

Table 3-1. Experimental Results.

Fiber Number	NA	Mandrel Size	0.63282 μm Initial Loss	0.63282 µm Per Turn Loss	Initial Loss	Per Turn Loss
EMT 21182a	0.10	1 cm	9.95 dB	0.45 dB/turn ¹	19.32 dB	$0.065 \text{ dB/turm}^{1}$
		2 cm	-0.05	0.002	13.4	0.147^{2}
EM 20413	0.15	1 cm	0.35	0.023	19.1	0.034
		2 cm	-0.10	0	1.06	0.09
EM-20588	0.20	1 cm	0.047	0.0002	-0.008	0.003
		2 cm	90.0	0.0005	0.028	0.0002
EM-20495	0.20	1 cm	0.27	-0.0001	-0.02	-0.0002
		2 cm	-0.044	-0.0005	0.002	-0.00024

 $^{1}\mathrm{Number}$ found using 30 turns and 5 turns

 $^2\mathrm{Number}$ found using 100 turns and 5 turns

Figure 3-1. EMT-21182a - 1-cm Mandrel - 0.63282 μm .

EMT-21182a - 2-сm Mandrel - 0.63282 µm. Figure 3-2.

Figure 3-3. EMT-21182a - 1-cm Mandrel - 0.84 μm .

Figure 3-4. EMT-21182a - 2-cm Mandrel - 0.84 μm .

Figure 3-5. EM-20413 - 1-cm Mandrel - 0.63282 µm.

Figure 3-6. EM-20413 - 2-cm Mandrel - 0.63282 μm.

Figure 3-7. EM-20413 - 1-cm Mandrel - 0.84 μm .

The state of the s

Figure 3-8. EM-20413 - 2-cm Mandrel - 0.84 µm.

Figure 3-9. EM-20588 - 1-cm Mandrel - 0.63282 μm_{\star}

Figure 3-10. EM-20588 - 2-cm Mandrel - 0.63282 µm.

PERCENT TRANSMISSION

Of the second second

Figure 3-11. EM-20588 - 1-cm Mandrel - 0.84 µm.

Figure 3-12. EM-20588 - 2-cm Mandrel - 0.84 µm.

A STATE OF THE PARTY STATE OF

Figure 3-13. EM-20495 - 1-cm Mandrel - 0.63282 µm.

Figure 3-14. EM-20495 - 2-cm Mandrel - 0.63282 µm.

Figure 3-15. EM-20495 - 1-сm Mandrel - 0.84 µm.

Figure 3-16. EM-20495 - 2-cm Mandrel - 0.84 µm.

