Computação Distribuída

Odorico Machado Mendizabal

Universidade Federal de Santa Catarina – UFSC Departamento de Informática e Estatística – INE

Gestão da Composição do Grupo (Group Membership)

Comunicação em Grupo

- Diversidade de sistemas distribuídos baseados em grupo
 - Computação em nuvem
 - Serviços replicados
 - Bancos de Dados Distribuídos

- Grupos dinâmicos
 - Entrada e saída de participantes
 - Processos falhos (por colapso ou parada)

Gestão de Composição de Grupo (Group Membership)

- Criação e manutenção de um histórico coerente da evolução da composição do grupo
 - Considera eventos como entrada (join), saída (exit) e detecção/suspeita de falhas de processos

Considera a ordem entre eventos para estabelecer uma visão uniforme

do estado do grupo

Gestão de Composição de Grupo (Group Membership)

Lista de participantes

- Lista completa "o tempo todo" (consistência forte)
 - Protocolo implementa sincronismo virtual
 - Ex. sistemas de missão crítica
- Lista "quase completa" (consistência fraca)
 - Protocolo de disseminação (gossip protocols)
 - Admite particionamento e visões diferentes coexistindo em instante de tempo
 - Eventualmente uma visão única pode ser reestabelecida (group mergining)
 - Ex. Chat, sistemas de reservas, transações bancárias
- Outras abordagens (consistência não é importante)
 - Lista parcial com uso de aleatoriedade

- Processo falho (pj)
- Deteção de falha / suspeita de falha pelo processo pk
- Disseminação da informação sobre processo falho
- Atualização da visão do grupo

Detectores de falhas distribuídos

Detector de **Falhas**

Impossível alcançar ambos, Completeness e Accuracy. Se fosse possível, seria também possível resolver consenso

Propriedades

Completeness: cada falha é detectada por processos corretos

Accuracy: um processo correto não faz detecções errôneas (falso positivo)

T. Chandra, S. Toueg. Unreliable failure detectors for reliable distributed systems Journal of ACM, 1996

Detectores de falhas distribuídos

Detector de Falhas

Propriedades

Completeness: cada falha é detectada por processos corretos

Accuracy: um processo correto não faz detecções errôneas (falso positivo)

Na prática:

completeness pode ser alcançada Accuracy pode ser alcançada parcialmente ou assumidas garantia com certa probabilidade

Detecção baseada em heartbeats

Detectores de falhas distribuídos

Detector de **Falhas**

Propriedades

Completeness: cada falha é detectada por processos corretos

Accuracy: um processo correto não faz detecções errôneas (falso positivo)

Na prática:

completeness pode ser alcançada Accuracy pode ser alcançada parcialmente ou assumidas garantia com certa probabilidade

falhou

Detecção baseada em heartbeats

V é uma sequência de visões com composições de participantes do grupo

Cada visão v é composta por um identificador v. id e uma lista v. membros

Operações

- join(pi) autoriza o processo pi a solicitar a entrada no grupo
- exit(pi) autoriza o processo pi a solicitar a saída do grupo
- install(v) o processo em execução instala a visão v e passa a assumir os membros em v.membros como a composição do grupo

Propriedades

Integridade: Se um processo pi instala uma visão v, então pi ∈ v. Dessa maneira, uma visão só é instalada pelos seus membros

Visão Inicial: Existe uma primeira visão cujos membros são prédefinidos

Ordem total: O conjunto de visões instaladas pelos processos é totalmente ordenado

Acordo: Se um processo correto instala a visão v, então todo processo correto também instala v

Justiça: A transição de uma visão v para uma visão subsequente v' deve ser habilitada por uma operação join, Leave (exit) ou suspeita/ocorrência de falha

Gestão de composição do grupo com componente primária

- Existência de uma única visão a cada instante

Gestão de composição do grupo com componentes particionáveis

 Admite a coexistência de diferentes visões do grupo em um determinado instante

Referências

- Parte destes slides são baseadas em material de aula dos livros:
- Coulouris, George; Dollimore, Jean; Kindberg, Tim; Blair, Gordon. Sistemas Distribuídos: Conceitos e Projetos. Bookman; 5ª edição. 2013.
- Tanenbaum, Andrew S.; Van Steen, Maarten. Sistemas Distribuídos: Princípios e Paradigmas. 2007. Pearson Universidades; 2ª edição.
- Veríssimo, P.; Rodrigues, L. Distributed Systems for System Architects. Springer; 1ª edição. 2001.
- Greve, F. Protocolos Fundamentais para o Desenvolvimento de Aplicações Robustas. Minicurso SBRC, 2005.

Imagens e clip arts diversos: https://www.gratispng.com/