

Plano de Ensino

- Sistemas de Numeração
- Arquitetura de Computadores
- Linguagem de Máquina
- Microcontroladores

Livro-Texto

- Livro-Texto:
 - » PEREIRA, Fabio. Microcontroladores PIC - Técnicas avançadas. 4ª ed. São Paulo: Erica, 2006.
- Bibliografia Complementar:
 - » GIMENEZ, S.P.. Microcontroladores 8051. 2^a ed. São Paulo: Pearson Education, 2005.

4. Hier. de Memória - Memória Cache

- Cache, em inglês: lugar seguro para esconder ou guardar algo.
- Nome usado para designar o nível de memória entre o processador e a memória principal.
- Este nome foi usado pela máquina que introduziu pioneiramente (no início dos anos 1960) este nível de memória (entre a memória principal e o processador)
- Cache explora o princípio da localidade.

4. Hier. de Memória - Memória Cache

- Assumamos as seguintes características de um sistema de memória extremamente simples:
 - » O processador sempre requisita uma única palavra.
 - » Existe apenas um nível de memória cache (L1).
 - » Os blocos de L1 são constituídos por somente uma palavra.

4. Hier. de Memória - Memória Cache

■ Fazendo referência ao dado x_n.

depois
X ₄
x ₁
X _{n-2}
X _{n-1}
x ₂
X _n
X ₃

- » Como saber se uma informação está na cache?
- » Caso ela esteja, como encontrá-la?

4. Hier. de Memória - Memória Cache

- Mapeamento Direto →
 - » Para cada palavra na cache, atribuir um endereço com base no endereço da palavra na memória principal.
 - » A maioria das caches que usa mapeamento direto o faz usando o seguinte processo:
 - Os caches atuais estão organizados em linhas de 64 bytes (512 bits), no nosso exemplo temos uma cache de 1 palavra ou 1 byte (8 bits).
 - Portanto um cache de memória L2 de 64KB, por exemplo, será dividido em 65536 linhas.
 - 64 * 1024 bytes = 65536 bytes
 - 65536 bytes / 1 byte = 65536 linhas

Linha 1
Linha 2
Linha 3
Linha 4
Linha 65534
Linha 65535
Linha 65536

L2 de 64KB

4. Hier. de Memória - Memória Cache

- O cache com mapeamento direto é a maneira mais simples de se criar um cache de memória.
- A memória RAM é dividida no mesmo número de linhas que existem dentro do cache de memória.
 - » No nosso exemplo, um micro com 1 GB de memória RAM seria dividido em blocos de 64 KB.

4. Hier. de Memória – Memória Cache

•			para leitura. ós inicialização da máquir	Anhanguera
Índice	Bit	Tag	Informação	
000	0			
001	0			
010	0			
011	0			
100	0			
101	0			
110	0			
111	0			
	U			

4. Hier.	4. Hier. de Memória – Memória Cache							
» Tr	 » (2) Referência ao endereço 10110: falta. » Tratamento da falta: buscar no nível inferior (neste exemplo, a memória principal) o bloco com endereço 10110. 							
	Índice	Bit	Tag	Informação				
	000	0						
	001	0						
	010	0						
	011	0						
	100	0						
	101	0						
	110	1	10	Memória (10110)				
	111	0						

» (3) Referência	ao ende	ereço 1101	0: falta.	Anhanguer
	Índice	Bit	Tag	Informação	
	000	0			
	001	0			
	010	0			
	011	0			
	100	0			
	101	0			
	110	1	10	Memória 10110	
	111	0			

Anhanguera 4. Hier. de Memória - Memória Cache » (3) Referência ao endereço 11010: falta. » Tratamento da falta: buscar no nível inferior (neste exemplo, a memória principal) o bloco com endereço 11010. Índice Bit Tag Informação 000 0 1 11 Memória (11010) 1 10 Memória (10110)

4. Hier.	4. Hier. de Memória – Memória Cache						
» (4)) Referência	ao ende	ereço 1000	0: falta.			
	Índice	Bit	Tag	Informação			
	000	0					
	001	0					
	010	1	11	Memória (11010)			
	011	0					
	100	0					
	101	0					
	110	1	10	Memória (10110)			
	111	0					

4. H	lier.	de Memó	ria – I	Memória	Cache	<u>Anhanguera</u>		
	 » (4) Referência ao endereço 10000: falta. » Tratamento da falta: buscar no nível inferior (neste exemplo, a memória principal) o bloco com endereço 10000. 							
		Índice	Bit	Tag	Informação			
		000	1	10	Memória (10000)			
		001	0					
		010	1	11	Memória (11010)			
		011	0					
		100	0					
		101	0					
		110	1	10	Memória (10110)			
		111	0					

4. Hier. de Memória - Memória Cache Anhanguera » (5) Referência ao endereço 00011: falta. Índice Bit Tag 000 1 10 Memória (10000) 001 0 010 1 11 Memória (11010) 011 0 0 100 101 0 110 1 10 Memória (10110) 111 0

4. Hier. de Memória - Memória Cache » (5) Referência ao endereço 00011: falta. » Tratamento da falta: buscar no nível inferior (neste exemplo, a memória principal) o bloco com endereço 00011. Índice Bit Tag Informação 1 10 Memória (10000) 001 0 1 11 010 Memória (11010) 011 Memória (00011) 0 100 101 0 1 10 Memória (10110) 110 111 0

4. Hier	4. Hier. de Memória – Memória Cache						
» (6) Referência	ao ende	ereço 1001	0: falta.			
	Índice	Bit	Tag	Informação			
	000	1	10	Memória (10000)			
	001	0					
	010	1	11	Memória (11010)			
	011	1	00	Memória (00011)			
	100	0					
	101	0					
	110	1	10	Memória (10110)			
	111	0					

4. Hier. de Memória - Memória Cache

- » (6) Referência ao endereço 10010: falta.
- » Tratamento da falta: buscar no nível inferior (neste exemplo, a memória principal) o bloco com endereço 10010, sobrescrevendo o valor inicial.

Índice	Bit	Tag	Informação
000	1	10	Memória (10000)
001	0		
010	1	10	Memória (10010)
011	1	00	Memória (00011)
100	0		
101	0		
110	1	10	Memória (10110)
111	0		

4. Hier. de Memória - Número de Bits da Cache

- O número de entradas em uma cache deve ser potência de dois.
- O número total de bits necessários à implementação de uma cache é função do tamanho da cache e do tamanho da memória principal (tamanho do endereço).

Índice	Bit	Tag	Informação

4. Hier. de Memória - Número de Bits da Cache

- Uma memória principal com endereços de 32 bits referenciando bytes.
- Uma cache mapeada diretamente com 2ⁿ palavras e blocos de uma palavra.
- Então:
 - » Tamanho dos tags = 32-(n+2) bits, onde 2 bits são usados para o deslocamento e n para o índice.
 - » Portanto, o número total de bits em uma cache mapeada diretamente é:
 - 2ⁿ x (tamanho do bloco + tamanho do tag + tamanho do campo de validade)
 - Tamanho da cache em questão será 2ⁿ x (32+(32-n-2)+1) = 2ⁿ x (63-n).

Г	20 = 1
ı	$2^1 = 2$
	$2^2 = 4$
	$2^3 = 8$
	$2^4 = 16$
	$2^5 = 32$
	$2^6 = 64$
	$2^7 = 128$
	$2^8 = 256$
	$2^9 = 512$
	$2^{10} = 1.024$
	$2^{11} = 2.048$
	$2^{12} = 4.096$
	$2^{13} = 8.192$
	$2^{14} = 16.384$
	$2^{15} = 32.768$
	$2^{16} = 65.536$
	$2^{17} = 131.072$
	$2^{18} = 262.144$
	219 = 524 288

220 = 1.048.576

4. Hier. de Memória – Número de Bits da Cache	
 Exemplo 1: quantos bits são necessários para implementar uma cache mapeada diretamente com 64KB entradas, e blocos de uma palavra, ligada a uma memória cujo endereço tem 32 bits? 	
■ Solução:	
 » 64 KB=64 Kpalavras = 2¹⁶ palavras » Cada bloco tem 32 bits de informação mais o campo do tag = 32 – 16 – 2 bits, mais o bit de validade 	
 Portanto, o tamanho da cache é 2¹⁶ x (32+(32-16-2)+1) = 2¹⁶ x 47 = 3008 x 2¹⁰ = 3008 Kbits 	
_ X(sz.(sz.(sz.)) = _ X.II = \$5555 XZ = 5555 XB.15	
	-
4. Hier. de Memória – Número de Bits da Cache	
 Exemplo 2: quantos bits s\u00e3o necess\u00e1rios para implementar uma cache mapeada diretamente com 	
256KB entradas, e blocos de uma palavra, ligada a uma memória cujo endereço tem 64 bits?	
Solução:	
 » 256 KB = 256 Kpalavras = 218 palavras » Cada bloco tem 64 bits de informação mais o campo do 	-
tag = 64 - 18 - 2 bits, mais o bit de validade	
» Portanto, o tamanho da cache é » 2 ¹⁸ x (64+(64-18-2)+1) = 2 ¹⁸ x 109 = 2 ¹⁰ x 2 ⁸ x 109 =	
2 ¹⁰ x 256 x 109 = 27904 Kbits ou 27,25 Mbits	
A	
4. Hier. de Memória – Bloco de Controle	
O Bloco de Controle é responsável em detectar um acerto (hit) ou processar a falta (fail); neste último caso	-
buscando os dados na memória principal ou em outra	
cache imediatamente abaixo na hierarquia. Se a cache informar um acerto:	
Se a cache mormai um acerto. O processamento segue como se a informação tivesse sido obtida na memória principal.	

4. Hier.	de	Memó	ria –	Bloco	de	Contr	ole

- Anhanguera
- Se a cache informar uma falta:
 - » O processador deve ser parado (congelando o conteúdo de todos os registradores).
 - » Um controlador separado ajuda no tratamento das faltas geradas no acesso à cache, comandando a busca da informação (bloco) na memória principal ou na cache de próximo nível.
 - » Uma vez que o dado tenha sido obtido, a execução é reiniciada no ciclo que gerou a falta no acesso a cache.
 - » O processamento de uma falta na cache cria uma parada no processamento similar às paradas do pipeline: todos os registradores temporários e visíveis ao programador são congelados, enquanto a informação é transferida da memória.

4.	Hier.	de	Memória	 Bloco de 	e Controle

- Se a cache informar falta de instruções:
 - » Se o acesso a uma instrução resultar em falta, então o conteúdo do IR não é válido (uma vez que o PC é incrementado no primeiro ciclo de relógio, tanto na versão multiciclo quanto na versão pipeline).
 - » É necessário comandar uma leitura no nível inferior da hierarquia da memória, usando o PC (no caso pipeline, recursos extras de HW serão necessários: subtrator ou deslocador).
 - » Instruir a memória para realizar a leitura e esperar a resposta (uma leitura demora muitos ciclos) e então escrever a palavra (instrução) na cache.

4. Hier. de Memória - Bloco de Controle

- Se a cache informar falta de dados:
 - » Os passos para o tratamento de faltas no acesso a dados (cache de dados) são essencialmente os mesmos que os usados no tratamento de uma falta de instrução.
 - » Também é necessário parar o processador até que o dado necessário esteja disponível na cache.

4. Hier. de Memória - Bloco de Controle

- Resumo: se a cache informar falta de instruções ou dados:
 - 1. Enviar à memória o valor original do PC.
 - Comandar uma leitura da unidade de memória e esperar o resultado.
 - Escrever o resultado da leitura na entrada da cache, escrevendo também nessa entrada, no campo tag, os bits de mais alta ordem do endereço, e setando o bit de validade.
 - Reiniciar a execução da instrução a partir do passo número 1, gerando uma nova busca da instrução na cache (mas desta vez, com a certeza de que ela será encontrada).

4. Hier. de Memória - Write-Through

- Suponha que na execução de uma instrução o dado seja escrito somente na cache de dados. Isto causará uma inconsistência: após, a escrita na cache, a memória principal terá um valor diferente daquele que foi escrito na cache.
- No esquema write-through não há a necessidade de se considerar se uma escrita gera uma falta ou um acerto na cache. Basta escrever a palavra na cache; e replicar sempre o valor para os níveis de memória inferiores na hierarquia.
 - » O esquema write-through não favorece o desempenho.
 - » Qualquer escrita na cache faz com que a memória principal seja escrita também.

4. Hier. de Memória - Write-Through com Buffer

- Buffer de escrita armazena o dado enquanto este aguarda para ser escrito na memória.
- Após escrever o dado na cache e no buffer de escrita, o processador pode continuar a execução das instruções.
- Se o buffer de escrita estiver cheio quando o processador tiver que executar uma instrução de escrita, o processador precisa parar, até que haja posição disponível no buffer, descarregando este buffer de escrita para a memória.
 - » Se a velocidade da memória para completar as escritas for menor que a taxa à qual o processador está gerando as escritas, nenhum buffer (por maior que seja) conseguirá resolver o problema.

4. Hier. de Memória - Write-Back

- No esquema write-back, quando ocorre uma escrita, o novo valor é escrito apenas no bloco da cache. Tal bloco somente será escrito na memória principal quando ele tiver que ser substituído na cache.
- O esquema pode aumentar bastante o desempenho, principalmente quando o processador puder gerar escritas tão rapidamente quanto estas puderem ser tratadas pela memória principal.

