# Quantitative Proteomics and Flux Analysis using <sup>15</sup>N labelling: Studies of the Unicellular Alga Ostreococcus tauri

Sarah F Martin

Kinetic Parameter Facility
Centre for Systems Biology at Edinburgh





#### **Overview**

- Introduction: metabolic labelling
- Experimental model and considerations
- Analysis platform and validation
- A time course analysis
- Summary and future work





#### **Overview**

- Introduction: metabolic labelling
- Experimental model and considerations
- Analysis platform and validation
- A time course analysis
- Summary and future work



## Introduction: labelling

Classically used as a quantification strategy in liquid chromatography coupled mass spectrometry (LC-MS):

- Two cultures labelled in vivo can be pooled
- Reduces technical variability
- Enables relative quantitative comparisons in one LC-MS run



## Example: NDVGDTIK, 2+, C<sub>35</sub>O<sub>15</sub>H<sub>60</sub>N<sub>10</sub>







## SILAC: NDVGDTIK, (+6Da), 2+







## <sup>15</sup>N: NDVGDTIK, 2+, $C_{35}O_{15}H_{60}N_{10}$





## Introduction: labelling

- Metabolic labelling is a powerful tool: it introduces information on
  - amino acid synthesis and sourcing
  - protein assembly and turnover kinetics
- Nitrogen and Carbon assimilation are topical research themes:
  - nitrogen fertilizers and food security
  - carbon assimilation and bio-fuel production





#### **Overview**

- Introduction: metabolic labelling
- Experimental model and considerations
- Analysis platform and validation
- A time course analysis
- Summary and future work



## Experimental model: Ostreococcus tauri

- Smallest free-living Eukaryote (Courties, *Nature* 1994)
- Ideal plant model for LC-MS analysis:
  - simple model of a very complex kingdom
  - key position at base of green lineage of plants
  - single "evening" division per day in culture
     (Farinas, PlantMolBiol 2006; Moulager, PlantPhysiol 2007)
  - no cellular differentiation
  - easy organelle fractionation
  - fully sequenced compact genome:
     8,166 genes in 12.56Mb (Derelle, PNAS 2006)
- Utilized in studies of circadian rhythms, oceanic phytoplankton, photosynthesis, pesticide and industrial waste impact





Henderson, PLOS 2, 749 (2007)



## **Experimental considerations**

- growth in <sup>14</sup>N (L) and <sup>15</sup>N (H) media
- perturbation by centrifugation and media changes
- co-elution of labelled peptides on LC column







## **Experimental considerations**

- growth in <sup>14</sup>N (L) and <sup>15</sup>N (H) media
- perturbation by centrifugation and media changes
- co-elution of labelled peptides on LC column
- partial labelling due to reagent purity





## <sup>15</sup>N: NDVGDTIK, 2+, 96% labelled

L peak: 6864706 H peak: 5578583





## <sup>15</sup>N: NDVGDTIK, 2+, 96% labelled

% <sup>15</sup>N: 96

L intensity factor: 11000000 H intensity factor: 11000000

1.0





## 96% labelling: a little theory

 how does the H/L peak ratio of a 1:1 mix depend on peptide length and composition?

 a closer look at selected "extreme" peptides composed of:

- arginine R  $C_6OH_{12}N_4$  N/C = 0.67 N rich

- tyrosine Y  $C_9O_2H_9N$  N/C = 0.11 N poor



## 96% labelling: arginine R C<sub>6</sub>OH<sub>12</sub>N<sub>4</sub>

Peak ratio (96%:100%) vs peptide length

#Carbons vs #Nitrogens



N richness leads to an underestimate of the H/L ratio



## 96% labelling: tyrosine Y C<sub>9</sub>O<sub>2</sub>H<sub>9</sub>N



C>>N leads to an overestimate of the H/L ratio in longer peptides





## 96% labelling: serine S

### $C_3O_2H_5N$





## 96% labelling: what about real peptides?





#### **Overview**

- Introduction: metabolic labelling
- Experimental model and considerations
- Analysis platform and validation
- A time course analysis
- Summary and future work





## **Analysis platform**

partial labelling of NDVGDTIK, 2+: %15N varied, intensity constant







## **Data analysis**

- batch peptide peak extraction over labelling range
- data averaging over retention time range
- fitting process returns
  - % of <sup>15</sup>N labelling



intensities of L and H species

enables processing at system scale

|   | Α              | В      | С   | D      | Е      | F         | G    | Н           |             | J    |
|---|----------------|--------|-----|--------|--------|-----------|------|-------------|-------------|------|
| 1 | Sequence       | Charge | ppm | RT1    | RT2    | MZXMLfile | 15N% | Intensity L | Intensity H | H/L  |
| 2 | NDVGDTIK       | 2      | 5   | 1920.6 | 1938.6 | L_H.mzxml | 95.5 | 2214361     | 2454361     | 1.11 |
| 3 | IGLFGGAGVGK    | 2      | 5   | 3910.2 | 3928.2 | L_H.mzxml | 94   | 15496041    | 18536041    | 1.20 |
| 4 | FVQAGSEVSALLGR | 2      | 5   | 4294.2 | 4312.2 | L_H.mzxml | 92   | 3828918     | 3908918     | 1.02 |
| 5 | VGLTALTMAEYFR  | 2      | 5   | 5124   | 5142   | L_H.mzxml | 94.5 | 5178335     | 5348335     | 1.03 |
| 6 | NHGIHFR        | 2      | 5   | 2094.6 | 2112.6 | L_H.mzxml | 93   | 1913464     | 1923464     | 1.01 |
| 7 | AMHAVIDR       | 2      | 5   | 2216.4 | 2234.4 | L_H.mzxml | 94   | 4478322     | 4858322     | 1.08 |
| 8 | FLFVAEAIYK     | 2      | 5   | 5544.6 | 5562.6 | L_H.mzxml | 93   | 238015      | 228015      | 0.96 |





#### **Overview**

- Introduction: metabolic labelling
- Experimental model and considerations
- Analysis platform and validation
- A time course analysis
- Summary and future work



## Time course analysis

- Swap media H->L, L->H
  - spin 6-day L and H O.tauri cultures, filter supernatants,
     exchange H→L and L→H, re-suspend, replace in incubator
- Sample over 7 days
  - spin, wash, lyse and digest 50ml per time point
  - LC-MS analysis on LTQ-Orbitrap XL







## **AtpB**

#### **ITQIIGPVIDAVFSPNK**







## **AtpB**

#### **VGLTALTMAEYFR**







## %<sup>15</sup>N labelling and H/L ratio over time







#### **Histone H2B**

#### **AMSIMNSFINDIFEK**







CSBE

#### **Histone H2A**

#### **AMSIMNSFINDIFEK**







CSBE

## Nitrogen incorporation



<sup>15</sup>N nitrogen atoms per peptide

% <sup>15</sup>N nitrogen atoms per peptide



#### **Overview**

- Introduction: metabolic labelling
- Experimental model and considerations
- Analysis platform and validation
- A time course analysis
- Summary and future work



## **Summary and future work**

We have developed a novel analysis platform to quantify partial metabolic labelling of peptides

This enables the robust analysis of

- comparative experiments when the heavy state is labelled to less than 100%
- dynamics of protein turnover
- de novo synthesis of amino acids
- incorporation rates and distributions of nitrogen (and carbon) in the proteome
- Further development, expansion and de-bugging
- Software release
- Amino acid level analysis





## **Acknowledgements**

Shanti Munagapati – summer student, Perl programmer

Thierry Le Bihan – PI

Eliane Chirnside – technician, O.tauri culture expert

Lorraine Kerr – manager for experiments at KPF

Brian Halligan – ZoomQuant, Medical College Wisconsin









