What do you learn from context?

Probing for sentence structure in contextualized word representations.

Review by Gong Qiong

Outline

- Abstract
- Introduction
- Edge Probing
- Experiment Design
- Results and Analysis
- Discussion

Abstract

- Contextualized representation models such as ELMo and BERT have recently achieved state-of-the-art results on a diverse array of downstream NLP tasks.
- Building on recent token-level probing work, we introduce a novel edge probing task design and construct a broad suite of sub-sentence tasks derived from the traditional structured NLP pipeline.

Abstract

- We probe word-level contextual representations from four recent models and investigate how they encode sentence structure across a range of syntactic, semantic, local, and long-range phenomena.
- We find that existing models trained on language modeling and translation produce strong representations for syntactic phenomena, but only offer comparably small improvements on semantic tasks over a non-contextual baseline.

Introduction

Introduction - 2 Qs

What do you learn from context

Syntactic or Semantic?

Local or Long-range?

What do you learn from context?

Edge probing - model architecture

Edge probing

- Represent a sentence as a list of tokens
 - $T = [t_0, t_1, ..., t_n]$
- Input a labeled edge as $\{s^{(1)}, s^{(2)}, L\}$
 - $s^{(1)} = [i^{(1)}, j^{(1)}]$
 - $s^{(2)} = [i^{(2)}, j^{(2)}]$, optional (as Coreference), omitted for unary edges (as POS tagging)
 - *L*: a set of one or more targets from a task-specific label set.
- Predict L as multi-label classification
 - Uniform metric: binary F1 score

Common architecture

Edge probing - model architecture

Edge probing

Separate projections

• Why? -> Different regulations can be extracted from different parts $(s^{(1)}, s^{(2)})$

Self-Attention Pooling

- 1. Calculate a weight.
- 2. Compute a weighted span representations.
- Why? -> Strengthen the model so that it can perform better, making the result more obvious and prominent.

• MLP: 2 layers

Experiment Design

NLP Tasks

- Syntactic tasks
 - Part-of-speech tagging (POS)
 - Constituent labeling
 - Dependency labeling
 - Named entity labeling
 - Semantic role labeling (SRL) core roles
- Semantic tasks
 - Semantic proto-role (SPR)
 - Semantic role labeling (SRL) non-core roles
 - Coreference (OntoNote + Winograd-style)
 - Relation Classification (Rel.)

Various!

NLP Tasks - example

POS The important thing about Disney is that it is a global [brand] ₁ . \rightarrow NN (Noun) Constit. The important thing about Disney is that it [is a global brand] ₁ . \rightarrow VP (Verb Phrase) Depend. [Atmosphere] ₁ is always [fun] ₂ \rightarrow nsubj (nominal subject) Entities The important thing about [Disney] ₁ is that it is a global brand. \rightarrow Organization SRL [The important thing about Disney] ₂ [is] ₁ that it is a global brand. \rightarrow Arg1 (Agent) SPR [It] ₁ [endorsed] ₂ the White House strategy \rightarrow {awareness, existed_after,} Coref. The important thing about [Disney] ₁ is that [it] ₂ is a global brand. \rightarrow True
Depend. [Atmosphere] ₁ is always [fun] ₂ \rightarrow nsubj (nominal subject) Entities The important thing about [Disney] ₁ is that it is a global brand. \rightarrow Organization SRL [The important thing about Disney] ₂ [is] ₁ that it is a global brand. \rightarrow Arg1 (Agent) SPR [It] ₁ [endorsed] ₂ the White House strategy \rightarrow {awareness, existed_after,}
Entities The important thing about [Disney] ₁ is that it is a global brand. \rightarrow Organization SRL [The important thing about Disney] ₂ [is] ₁ that it is a global brand. \rightarrow Arg1 (Agent) SPR [It] ₁ [endorsed] ₂ the White House strategy \rightarrow {awareness, existed_after,}
SRL [The important thing about Disney] ₂ [is] ₁ that it is a global brand. \rightarrow Arg1 (Agent) SPR [It] ₁ [endorsed] ₂ the White House strategy \rightarrow {awareness, existed_after,}
SPR [It] ₁ [endorsed] ₂ the White House strategy \rightarrow {awareness, existed_after,}
Coref. ^O The important thing about [Disney] ₁ is that [it] ₂ is a global brand. \rightarrow True
Coref. ^W [Characters] ₂ entertain audiences because [they] ₁ want people to be happy. \rightarrow True Characters entertain [audiences] ₂ because [they] ₁ want people to be happy. \rightarrow False
Rel. The [burst] ₁ has been caused by water hammer [pressure] ₂ . \rightarrow Cause-Effect(e_2, e_1)

Table 1: Example sentence, spans, and target label for each task. O = OntoNotes, W = Winograd.

Contextualized Representation Models

Model	Training objective/task	Structure	Training Corpus	Usage	
CoVe	Machine Translation	Two-layer biLSTM	WMT2017: 7 million sentences from web crawl, news, and government proceedings	Top-level activation, concatenated with Glove vectors. (300*2+300 dims)	
ELMo	Language	Two-layer bidirectional LSTM over a context-independent character CNN layer	Billion Word Benchmark	Standard usage	
GPT	Modeling	12-layer Transformer as a left-to-right language model	Toronto Books Corpus	Do not fine-tune, cat(as CoVe) /mix(as ELMo)	
BERT	Masked Language Modeling (MLM) & Next Sentence Prediction (NSP)	Deep Transformer (12/24-layer)	Toronto Books Corpus & English Wikipedia		

Baselines

Lexical Baselines

- Contextualized vs Non-contextualized
- CoVe vs 300 dims GloVe
- ELMo vs context-independent character-CNN of ELMo
- GPT&BERT vs subword embeddings

Randomized ELMo

Random orthonormal matrices: Invalidate the information of ELMo.

Word-Level CNN

CNN: See tokens around the center word.

- CoVe, ELMo, GPT, BERT
 - the large gains: mostly syntactic
 - the small gains: mostly semantic
- SRL (core roles) > SRL (non-core roles)
- mix > cat
- Large improvement of BERT on Winograd-style coreference
- GPT trained on BWB ≈ GPT trained on Books Corpus

	CoVe			ELMo			GPT		
	Lex.	Full	Abs. Δ	Lex.	Full	Abs. Δ	Lex.	cat	mix
Part-of-Speech	85.7	94.0	8.4	90.4	96.7	6.3	88.2	94.9	95.0
Constituents	56.1	81.6	25.4	69.1	84.6	15.4	65.1	81.3	84.6
Dependencies	75.0	83.6	8.6	80.4	93.9	13.6	77.7	92.1	94.1
Entities	88.4	90.3	1.9	92.0	95.6	3.5	88.6	92.9	92.5
SRL (all)	59.7	80.4	20.7	74.1	90.1	16.0	67.7	86.0	89.7
Core roles	56.2	81.0	24.7	73.6	92.6	19.0	65.1	88.0	92.0
Non-core roles	67.7	<i>78.8</i>	11.1	75.4	<i>84.1</i>	8.8	73.9	81.3	<i>84.1</i>
OntoNotes coref.	72.9	79.2	6.3	75.3	84.0	8.7	71.8	83.6	86.3
SPR1	73.7	77.1	3.4	80.1	84.8	4.7	79.2	83.5	83.1
SPR2	76.6	80.2	3.6	82.1	83.1	1.0	82.2	83.8	83.5
Winograd coref.	52.1	54.3	2.2	54.3	53.5	-0.8	51.7	52.6	53.8
Rel. (SemEval)	51.0	60.6	9.6	55.7	77.8	22.1	58.2	81.3	81.0
Macro Average	69.1	78.1	9.0	75.4	84.4	9.1	73.0	83.2	84.4

		BEI	CT-base	<u> </u>	BERT-large				
	F1 Score			Abs. Δ	F1 Score			Abs. Δ	
	Lex.	cat	mix	ELMo	Lex.	cat	mix	(base)	ELMo
Part-of-Speech	88.4	97.0	96.7	0.0	88.1	96.5	96.9	0.2	0.2
Constituents	68.4	83.7	86.7	2.1	69.0	80.1	87.0	0.4	2.5
Dependencies	80.1	93.0	95.1	1.1	80.2	91.5	95.4	0.3	1.4
Entities	90.9	96.1	96.2	0.6	91.8	96.2	96.5	0.3	0.9
SRL (all)	75.4	89.4	91.3	1.2	76.5	88.2	92.3	1.0	2.2
Core roles	74.9	91.4	93.6	1.0	76.3	89.9	94.6	1.0	2.0
Non-core roles	76.4	84.7	85.9	1.8	76.9	84.1	86.9	1.0	2.8
OntoNotes coref.	74.9	88.7	90.2	6.3	75.7	89.6	91.4	1.2	7.4
SPR1	79.2	84.7	86.1	1.3	79.6	85.1	85.8	-0.3	1.0
SPR2	81.7	83.0	83.8	0.7	81.6	83.2	84.1	0.3	1.0
Winograd coref.	54.3	53.6	54.9	1.4	53.0	53.8	61.4	6.5	7.8
Rel. (SemEval)	57.4	78.3	82.0	4.2	56.2	77.6	82.4	0.5	4.6
Macro Average	75.1	84.8	86.3	1.9	75.2	84.2	87.3	1.028	2.9

DEDT laws

DEDT bess

- Word-Level CNN closes most of the gap on syntactic tasks.
 - Local information
- The gap between Word-Level and full model is large still on semantic tasks.
 - Long-range information
- Full model > Orthonormal encoder > Lexical baseline
 - A flaw: Why so weird on Winograd coref.?

- Full ELMo holds up better, dropping only 7 F1 score from d=0 to d=8
 - The pre-trained encoder does encode useful long-distance dependencies.

Results and Analysis - summary

- Syntactic or Semantic? -> Syntactic > Semantic
- Local or Long-range? -> Local & Long-range
- Different layer, different info.
- Well-designed architecture
- Deep model does well on difficult semantic task

Discussion

What can we learn from that? & What should we do in the future?

Discussion

- Existing representation models encode more syntactic than semantic info.
 - Bright future: To capture semantic context information
- BERT(-base) outperforms GPT, average 1.6-1.9 F1 score
 - Novel effective training objectives
 - Baidu-ERNIE: 'xxx is one of the top universities in the world.'
- No common sense -> Using knowledgebase
 - Learn semantics and common sense

References

- Tenney I, Xia P, Chen B, et al. What do you learn from context? Probing for sentence structure in contextualized word representations[J]. 2018.
- McCann B, Bradbury J, Xiong C, et al. Learned in translation: Contextualized word vectors[C]//Advances in Neural Information Processing Systems. 2017: 6294-6305.
- Peters M E, Neumann M, lyyer M, et al. Deep contextualized word representations[J]. arXiv preprint arXiv:1802.05365, 2018.
- Radford A, Narasimhan K, Salimans T, et al. Improving language understanding by generative pretraining[J]. URL https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf, 2018.
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding