

Rigid-Body Velocity and Robot Kinematics

Yuzhe Qin

Review: Homogenous Transformation

General Rigid-body Motion:

•
$$T^{4\times4} = \begin{bmatrix} R & p \\ 0_{1\times3} & 1 \end{bmatrix}$$
, where $R \in SO(3), p \in R^3$

T represent position and orientation in a single matrix

•
$$\tilde{p} \triangleq \begin{bmatrix} p \\ 1 \end{bmatrix} \in R^4$$

• $T\tilde{p}$ change reference frame of p

Review: Physical Interpretation

- Rotation (axis-angle):
 - Any rotation in R^3 is equivalent to rotation about a fixed axis $\widehat{\omega} \in R^3$ through an positive angle θ
 - Rotation: $\{\widehat{\omega}, \theta\}$
- General Rigid-Body Motion (screw motion):
 - Any rigid body motion SE(3) in R^3 is equivalent to rotating about a fixed axis $\widehat{\omega} \in R^3$ through an positive angle θ while also translating along axis for d. This axis pass through point $q \in R^3$
 - Homogenous Transformation: $\{\widehat{\omega}, \theta, q\}$

Topics

- Exponential Coordinate of SE(3)
- Rigid-Body Velocity
- Robot Kinematics
- Case study: Hand-Eye Calibration

Recall: the Lie Algebra of SO(3)

- Exponential coordinate:
 - $\widehat{\omega}\theta \in \mathbb{R}^3$
- Skew-symmetric Matrix:
 - $[\widehat{\omega}]\theta \in so(3)$
- Rotation matrix:
 - $R = e^{\widehat{\omega}\theta} \in SO(3)$
- Interpretation:
 - Axis-angle

Goal: The Lie Algebra of SE(3)

- Exponential coordinate:
 - $\widehat{\omega}\theta \in \mathbb{R}^3$
- Skew-symmetric Matrix:
 - $[\widehat{\omega}]\theta \in so(3)$
- Rotation matrix:

•
$$R = e^{\widehat{\omega}\theta} \in SO(3)$$

- Interpretation:
 - Axis-angle

- Exponential coordinate:
 - $\hat{\xi}\theta \in R^6$
- *se*(3) matrix:
 - $[\hat{\xi}]\theta \in se(3)$
- Homogenous transformation matrix:

•
$$T = e^{\hat{\xi}\theta} \in SE(3)$$

- Interpretation:
 - Screw motion

Recall: Find so(3) via ODE

- Consider a point q in body frame. At time t = 0, the position is q_0 . Rotate q with **unit angular velocity** around axis $\widehat{\omega}$:
 - $v = \widehat{\omega} \times r$
 - $\dot{q}(t) = \widehat{\omega} \times q(t) = [\widehat{\omega}]q(t)$
 - $q(t) = e^{[\widehat{\omega}]t}q_0$
 - Since $\theta(t) = t$

$$p(\theta) = e^{[\widehat{\omega}]\theta} p_0$$

• $[\widehat{\omega}] \in so(3)$

Find se(3) via ODE of Screw Motion

• Consider a point p in body frame. Rotate p with **unit** angular velocity around fixed axis $\widehat{\omega}$, q is any point on this axis, the linear velocity along axis $\widehat{\omega}$ is v_{ω} :

•
$$\dot{p}(t) = \hat{\omega} \times (p(t) - q) + v_{\omega} = [\hat{\omega}]p(t) - \hat{\omega} \times q + v_{\omega}$$

•
$$A \triangleq \begin{bmatrix} \widehat{\omega} \end{bmatrix} - \begin{bmatrix} \widehat{\omega} \end{bmatrix} q + v_{\omega} \end{bmatrix} \triangleq \begin{bmatrix} \widehat{\omega} \end{bmatrix} v \end{bmatrix}, \ \widetilde{p}(t) = e^{At}\widetilde{p}_0$$

• Since $\theta(t) = t$

$$\tilde{p}\left(\theta\right) = e^{A\theta}\tilde{p}_0$$

• For matrix A, $e^{A\theta} \in SE(3)$

$$A \in se(3)$$

Exponential Coordinate of SE(3)

- For rotation, define $[\widehat{\omega}]\theta \in so(3)$
- For homogenous transformation, $\hat{\xi}\theta = \begin{bmatrix} \hat{\omega} \\ v \end{bmatrix}\theta \in R^6$:

$$se(3) \triangleq \{ \begin{bmatrix} \hat{\xi} \end{bmatrix} \theta = \begin{bmatrix} \widehat{\omega} \end{bmatrix} \quad v \\ 0 \quad 0 \end{bmatrix} \theta : [\omega] \theta \in so(3) \}$$

- Recall: $\widehat{\omega}\theta$ is the exponential coordinate of 3D rotation
- Similarly, $\hat{\xi}\theta \in R^6$ is the **exponential coordinate** of SE(3)
- $\hat{\xi}$ is the **direction of motion**, which is also called **Unit Twist**

Exponential Mapping of se(3)

•
$$\hat{\xi} = \begin{bmatrix} \widehat{\omega} \\ v \end{bmatrix}, e^{[\widehat{\xi}]\theta} \in SE(3)$$

$$e^{\left[\hat{\xi}\right]\theta} = I + \left[\hat{\xi}\right] + \frac{1 - \cos\theta}{\theta^2} \left[\hat{\xi}\right]^2 + \frac{\theta - \sin\theta}{\theta^3} \left[\hat{\xi}\right]^3$$

- This formula has **different form** compared to $e^{[\widehat{\omega}]\theta}$ for rotation
- Similarly, a log function exists uniquely: $SE(3) \rightarrow se(3)$
- Note that $\hat{\xi}$ means that the **first three value** has norm one, in another word $\hat{\omega}$ is a unit vector, **no guarantee for** v

Example: $\hat{\xi}\theta$ to SE(3)

- Given $\hat{\xi}_{sb}^s \theta = [\pi, 0, 0, 0, \pi, 0]^T$, superscript: $\{s\}$ frame
- 1. Find $\hat{\xi}_{sb}^s = [1,0,0,0,1,0]^T$, $\theta = \pi$
- 2. Find rotation matrix by $\widehat{\omega} = [1,0,0]^T$
- 3. Find screw axis $(\widehat{\omega}, q)$ by $\mathbf{v} = -\widehat{\omega} \times q + v_{\omega}$

$$v_{\omega} = [0,0,0]^T, -\widehat{\omega} \times q = [0,1,0]^T$$

 $q = [0,0,1]^T$

4. Find origin after transformation

Example: $\hat{\xi}\theta$ to SE(3)

• Given $\hat{\xi}_{sb}^s \theta = [\pi, 0, 0, 0, \pi, 0]^T$, superscript: $\{s\}$ frame

1.
$$q = [0,0,1]^T$$
, $\widehat{\omega} = [1,0,0]^T$, $v_{\omega} = [0,0,0]^T$

2. Recall screw motion

$$T_{sb} = \begin{bmatrix} 1 & 0 & 0 & ? \\ 0 & -1 & 0 & ? \\ 0 & 0 & -1 & ? \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: $\hat{\xi}\theta$ to SE(3)

• Given $\hat{\xi}_{sb}^s \theta = [\pi, 0, 0, 0, \pi, 0]^T$, superscript: $\{s\}$ frame

1.
$$q = [0,0,1]^T$$
, $\widehat{\omega} = [1,0,0]^T$, $v_{\omega} = [0,0,0]^T$

2. Recall screw motion

$$T_{sb} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Same result using exponential mapping-

Example: SE(3) to $\hat{\xi}\theta$

Given SE(3), find screw motion and twist

$$T_{02} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: SE(3) to $\hat{\xi}\theta$

Given SE(3), find screw motion and twist

$$T_{02} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Consider rotation only (Inverse Rodrigues):
 - $tr(R) = -1 \Rightarrow \theta = \pi$
 - $\widehat{\omega} = \frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{33} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

Example: SE(3) to $\hat{\xi}\theta$

Given SE(3), find screw motion and twist

$$T_{02} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \widehat{\omega} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

• Find screw axis
$$q = \left[0, \frac{1}{2}, 0\right]^T$$

• Since
$$v\theta = -\omega \times q + v_{\omega}\theta = \left[\frac{\pi}{2}, 0, 1\right]^{T}$$

• Find
$$\hat{\xi}\theta = \left[0,0,\pi,\frac{\pi}{2},0,1\right]^T$$

Comparison: SO(3) and SE(3)

- Exponential coordinate:
 - $\widehat{\omega}\theta \in \mathbb{R}^3$
- Skew-symmetric Matrix:
 - $[\widehat{\omega}]\theta \in so(3)$
- Rotation matrix:

•
$$R = e^{\widehat{\omega}\theta} \in SO(3)$$

- Interpretation:
 - Axis-angle

- Exponential coordinate:
 - $\hat{\xi}\theta \in R^6$
- *se*(3) matrix:
 - $[\hat{\xi}]\theta \in se(3)$
- Homogenous transformation matrix:

•
$$T = e^{\hat{\xi}\theta} \in SE(3)$$

- Interpretation:
 - Screw motion

Topics

- Exponential Coordinate of SE(3)
- Rigid-Body Velocity
- Robot Kinematics
- Case study: Hand-Eye Calibration

Angular Velocity from SO(3)

Question: for moving frame R(t), find angular velocity ω at any time t

Consider a point q fixed on a moving frame $\{b\}$:

- Fact 1, change reference frame:
 - $q_s(t) = R_{sb}(t)q_b \rightarrow \dot{q}_s(t) = \dot{R}_{sb}(t)q_b$
 - $\dot{q}_s(t) = \dot{R}_{sb}(t)R_{sb}^T(t)R_{sb}(t)q_b = \dot{R}_{sb}(t)R_{sb}^T(t)q_s(t)$
- Fact 2, physical interpretation:
 - $\dot{q}_s(t) = [\omega(t)]q_s(t) = [\omega(t)]q_s(t)$

Angular Velocity from SO(3)

Question: for moving frame R(t), find angular velocity ω at any time t

- Fact 1:
 - $q_s(t) = R_{sb}(t)q_b \rightarrow \dot{q}_s(t) = \dot{R}_{sb}(t)q_b$
 - $\dot{q}_s(t) = \dot{R}_{sb}(t)R_{sb}^{-1}(t)R_{sb}(t)q_b = \dot{R}_{sb}(t)R_{sb}^{-1}(t)q_s(t)$
- Fact 2, physical interpretation:
 - $\dot{q}_s(t) = [\omega(t)]q_s(t)$
- For any q and ω $[\omega(t)]q_s(t) = \dot{R}_{sb}(t)R_{sb}^{-1}(t)q_s(t)$:

$$[\omega(t)] = \dot{R}_{sb}(t)R_{sb}^{-1}(t)$$

Angular Velocity of Rigid-Body

$$[\omega(t)] = \dot{R}_{sb}(t)R_{sb}^{-1}(t)$$

- Why $\dot{R}_{sb}(t)R_{sb}(t)$ can represent angular velocity?
- $\dot{R}_{sb}(t)R_{sb}(t)$ is a skew-symmetric matrix:

•
$$R(t)R^{T}(t) = I \xrightarrow{derivative} \dot{R}(t)R^{T}(t) + R(t)\dot{R}^{T}(t) = 0$$

•
$$\dot{R}(t)R^{T}(t) = -R(t)\dot{R}^{T}(t) = -\left(\dot{R}(t)R^{T}(t)\right)^{T}$$

• $R(t)\dot{R}^{T}(t) \in so(3)$, which is a skew-symmetric matrix

General Velocity of Rigid-Body

Velocity of general motion can be represented as **twist**:

Similarly,
$$[\xi] = \dot{T}(t) T^{-1}(t), T \in SE(3)$$

Question: the velocity is represented in which frame?

- Consider $\xi_{sb}^s = \dot{T}_{sb}^{} T_{sb}^{-1}$, which is called **Spatial Twist**
 - Velocity of frame {b} observed in frame {s}, using the coordinate system of {s} (superscript) to represent velocity

What is a Twist?

- Unit twist is the direction of motion:
 - $\hat{\xi}\theta$ can representation SE(3) motion
- Twist is the velocity of general rigid-body motion:
 - ξ contains angular velocity and "linear velocity"
 - ξt can representation SE(3) motion

Change Frame of Twist

How to change the reference frame of a twist

•
$$[\xi_{12}^s] = T_{12} [\xi_{12}^b] T_{12}^{-1}$$

physical interpretation?

Adjoint Matrix

Adjoint matrix is used to change the reference frame of twist

• Adjoint matrix:
$$[Ad_T] \triangleq \begin{bmatrix} R & 0 \\ \lceil p \rceil R & R \end{bmatrix} \in R^{6 \times 6}$$

•
$$\xi_{12}^s = [Ad_{T_{sb}}]\xi_{12}^b = \begin{bmatrix} R_{sb}\omega_{12}^b \\ [p_{sb}]R_{sb}\omega_{12}^b + R_{sb}v_{12}^b \end{bmatrix}$$

• Where
$$T_{sb}=\begin{bmatrix}R_{sb}&p_{sb}\\0&1\end{bmatrix}$$
, $\xi_{12}^b=\begin{bmatrix}\omega_{12}^b\\v_{12}^b\end{bmatrix}$

• Equivalently, $[\xi_{12}^s] = T_{sb}[\xi_{12}^b]T_{sb}^{-1}$

Example: General Rigid-Body Velocity

Given the motion of rigid-body

•
$$T_{BA}(t) = \begin{bmatrix} cos\theta(t) & -sin\theta(t) & 0 & -l_2sin\theta(t) \\ sin\theta(t) & cos\theta(t) & 0 & l_1 + l_2cos\theta(t) \\ 0 & 0 & 1 & l_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- What is the spatial twist?
- What is the body twist?

Example: General Rigid-Body Velocity

$$T_{BA}(t) = \begin{bmatrix} cos\theta(t) & -sin\theta(t) & 0 & -l_2sin\theta(t) \\ sin\theta(t) & cos\theta(t) & 0 & l_1 + l_2cos\theta(t) \\ 0 & 0 & 1 & l_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$[\xi_{AB}^A] = \dot{T}T^{-1}, \xi_{AB}^A = []$$

•
$$\xi^{B}_{AB} = T^{-1}\dot{T} =$$

Topics

- Exponential Coordinate of SE(3)
- Rigid-Body Velocity
- Robot Kinematics
- Case study: Hand-Eye Calibration

Robot Kinematics

Kinematics:

 Motion of bodies including spatial relationship of different objects and their velocity. Kinematics does not consider how to achieve motion via force

Link and Joint

Link:

Links are the rigid-body connected in sequence

Joint:

 Joints are the movable components of a robot/object that cause relative motion between adjacent links

Two Common Joint Type

Joint:

Revolute/Hinge/Rotational joint

Prismatic/Translational joint

Forward Kinematics

Robot Forward Kinematics:

- Calculate the position and orientation of a robot link (often end-effector) given its joint variables $\theta = (\theta_1, \theta_2, \dots, \theta_n)$
- Before calculation, we need to assign a frame at each robot link

Example: Forward Kinematics

Robot forward kinematics calculation:

- Represent the motion of each joint in SE(3)
- Simply multiply each matrix

$$T_{01} = Rot(\hat{z}, \theta_1) \begin{bmatrix} cos\theta_1 & sin\theta_1 & 0 & 0 \\ sin\theta_1 & cos\theta_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \text{ similarly } T_{12}, T_{23}, T_{34}$$

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

$$T_{04} = T_{01}T_{12}T_{23}T_{34}$$

D-H Parameters

Frame assignment in 3D space is not trivial

Can we find a unique way to assign frames?

- Denavit-Hartenberg (D-H) Parameters:
 - Applying a set of rules which specify the position and orientation of frames attached to each link of the robot

D-H Parameters

- Denavit-Hartenberg (D-H) Parameters:
 - Redundancy of link relative pose, no need to use 6-DoF SE(3) representation
 - Link offset d_i : translate along z_{i-1}
 - Link length a_i : translate along x_i
 - Twist angle θ_i : rotate along x_i
- No need to understand these parameters in this course
- D-H parameters can represent robot kinematics model

Example: D-H Table

7 DOF spherical

i	α_{i}	a _i	d _i	θ_{i}
1	π/2	0	-D1	q1
2	π/2	0	0	q2
3	π/2	0	-(D2 + D3)	q3
4	π/2	0	-e2	q4
5	π/2	0	-(D4 + D5)	q5
6	π/2	0	0	q6
7	π	0	-(D6 + D7)	q7

Jacobian

• Recall: In algebra course, Jacobian of a function $x = f(\theta)$ can be defined as, where $x \in R^m$, $\theta \in R^n$:

$$J(\theta) \triangleq \left[\frac{\partial f}{\partial \theta}(\theta)\right] = \left[\frac{\partial f_i}{\partial \theta_i}\right] \in R^{m \times n}$$

• Jacobian can relate the derivative of two variable together, if both x and θ is the function of another variable t

$$\dot{x} = \left[\frac{\partial f}{\partial \theta} (\theta) \right] \frac{d\theta}{dt} = J(\theta) \dot{\theta}$$

Geometric Jacobian

Question: where will robot end-effector move given velocity of each joint?

- Velocity for a SE(3) pose can be represented as twist ξ
- Geometric Jacobian $J(\theta)$:

$$\xi = \begin{bmatrix} \omega \\ v \end{bmatrix} = J(\theta)\dot{\theta}$$
, where $J(\theta) \in R^{6 \times n}$, n is robot DoF

• The i-th column of $J(\theta)$ is the twist when the robot is moving about the i-th joint at unit speed $\dot{\theta_i}=1$ while all other joints stay static

Geometric Jacobian Calculation

Question: how to compute Geometric Jacobian?

- Using forward kinematics: $T_{sb}(\theta) = f(\theta)$
- General velocity: $[\xi_{sb}^s] = \dot{T}_{sb}T_{sb}^{-1}$, where $\dot{T}_{sb} = \frac{\partial T_{sb}}{\partial t} = g(\dot{\theta})$
- Compute each column of geometric Jacobian $J(\theta)$:

Let
$$\dot{\theta}_i = 1$$
 and $\dot{\theta}_j = 0$ for $j \neq i$

i-th column of $J(\theta)$ will be $\frac{\partial T_{Sb}}{\partial \dot{\theta}} T_{Sb}^{-1}$

Inverse Kinematics

Inverse Kinematics (IK):

- Given the forward kinematics $T(\theta)$ and the target pose $T_{\text{target}} \in SE(3)$, find solutions θ that satisfy $T(\theta) = T_{target}$
- Analytical solution of IK for robot with more than 3-DoF is very complex:
 - For a 6-DoF robot, you will need a several pages to write down the formula
- If you need analytical solution, just use libraries:
 - IKFast, IKBT

Numerical Solution of IK

Numerical IK, a root finding problem

- Inverse kinematics can be viewed as finding roots of a nonlinear equation with SE(3) constrain
- Standard root-finding algorithm can be adapted for $T(\theta) = \xi^b$, e.g. Newton-Raphason method
- TBD

$$J(\theta^i) = \frac{\partial f}{\partial \theta}|_{\theta^i}$$

$$\Delta \theta = J^{\dot{+}}(\theta^i) \Delta \xi$$

Kinematic Singularity

Question: is it possible to move end-effector to any direction $\hat{\xi}$ for a robot with $DoF \ge 6$

- The pseudo inverse $J^{+}(\theta)$ map link twist back to joint velocity
- Kinematic singularity:
 - A robot configuration where the robot's end-effector loses the ability to move in one direction instantaneously
- Mathematically, $J(\theta)$ rank deficiency leads to kinematic singularity
- Kinematic singularity does not mean that there exists a configuration that is not accessible

Topics

- Exponential Coordinate of SE(3)
- Rigid-Body Velocity
- Robot Kinematics
- Case study: Hand-Eye Calibration

Vision-based Robotic Planning

- Visual perception comes from camera/lidar, the position and orientation is captured in sensor frame
 - E.g., point cloud in camera frame
- Moving signal is command in robot frame
 - E.g., move the robot hand left in robot base frame

Hand-eye Calibration computes the transformation from camera to robot

Settings of Hand-eye Calibration

- There are two kinds of problem for hand-eye calibration
- Eye-in-hand (camera mounted on hand):

Eye-to-hand (camera not fixed with hand):

Hand-Eye Transformation Equation

Take eye-in-hand (e.g. camera fixed to hand) as example

- Goal: transformation from camera to hand T_{hc}
- Denote: space frame (robot base) $\{s\}$, camera $\{c\}$, hand $\{h\}$, and marker (auxiliary object) $\{m\}$

$$T_{sh}T_{hc}T_{cm} = T_{sm}$$

Hand-Eye Transformation Equation

Take eye-in-hand (e.g. camera fixed to hand) as example

Assume we can get the pose of marker in camera frame

Capture Calibration Data

To solve the hand-eye transformation equation, we need to prepare multiple pairs of T_{sh} and T_{cm}

- Repeat the following steps for n-times:
 - 1. Move the robot hand to a target pose, where camera can see the marker
 - 2. Capture the T_{sh}^i for i-th pose of hand to base, often calculated by forward kinematics
 - 3. Capture the T_{cm}^{i} for i-th pose of marker to camera, calculated by a marker-specific algorithm

AX=XB for Hand-Eye Calibration

• The pose from marker to spatial frame T_{sm} is fixed

$$T_{sh}^{i} T_{hc} T_{cm}^{i} = T_{sm} = T_{sh}^{i+1} T_{hc} T_{cm}^{i+1}$$
$$(T_{sh}^{i+1})^{-1} T_{sh}^{i} T_{hc} = T_{hc} T_{cm}^{i+1} (T_{cm}^{i})^{-1}$$

- Now we get a AX = XB type function with constraints
 - $A = (T_{sh}^{i+1})^{-1}T_{sh}^{i}$ and $B = T_{cm}^{i+1}(T_{cm}^{i})^{-1}$ are all known

• It is common to use multiple pairs of data for the equation. Actually, **at least three pairs** are necessary in order for a unique solution.

Solving AX=XB

Note that the $X \in SE(3)$, which is a constrain to this equation

- Two mainstream to solve this equation
 - 1. Determine first rotation and then translation¹
 - 2. Determine rotation and translation simultaneously²
- To solve the equation more precisely:
 - Poses of hand are chosen follow some solver-specific guidelines
 - More data

Markers for Hand-eye Calibration

- Checkerboard is a most common visual marker in robotics:
 - Checkerboard pose can be easily solved using standard method like PnP

 As long as we have method to estimate its pose, anything can be a marker