

Design and Analysis of Algorithms I

Probability Review

Part II

Topics Covered

- Conditional probability
- Independence of events and random variables
 See also:
- Lehman-Leighton notes (free PDF)
- Wikibook on Discrete Probability

Concept #1 – Sample Spaces

Sample Space Ω : "all possible outcomes" [in algorithms, Ω is usually finite]

Also : each outcome $i \in \Omega$ has a probability p(i) >= 0

$$\underline{\text{Constraint}:}\ \sum_{i\in\Omega}p(i)=1$$

An event is a subset $\,S\subseteq\Omega\,$

The probability of an event S is $\sum_{i \in S} p(i)$

Concept #6 – Conditional Probability

 $Let \ X,Y\subseteq \Omega \ be \ events.$

$$Then \ Pr[X|Y] = \frac{Pr[X \cap Y]}{Pr[\mathbf{Y}]}$$
 ("X given Y")

Suppose you roll two fair dice. What is the probability that at least one die is a 1, given that the sum of the two dice is 7?

X = at least one die is a 1
Y = sum of two dice = 7
= {(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}
=>
$$X \cap Y = \{(1,6),(6,1)\}$$

 $Pr[X|Y] = \frac{Pr[X \cap Y]}{Pr[Y]} = \frac{(2/36)}{(6/36)} = \frac{1}{3}$

Concept #7 – Independence (of Events)

<u>Definition</u>: Events $X,Y\subseteq\Omega$ are independent if (and only if) $Pr[X\cap Y]=Pr[X]\cdot Pr[Y]$

You check : this holds if and only if $Pr[X \mid Y] = Pr[X]$ $<==> Pr[Y \mid X] = Pr[Y]$

<u>WARNING</u>: can be a very subtle concept. (intuition is often incorrect!)

Independence (of Random Variables)

<u>Definition</u>: random variables A, B (both defined on Ω) are independent if and only if the events Pr[A=1], Pr[B=b] are independent for all a,b. [<==> Pr[A=a and B = b] = Pr[A=a]*

<u>Claim</u>: if A,B are independent, then E[AB] = E[A]*E[B]

Tim Roughgarden

Example

Let $X_1, X_2 \in \{0,1\}$ be random, and $X_3 = X_1 \oplus X_2$

formally : $\Omega = \{000, 101, 011, 110\}$, each equally likely.

<u>Claim</u>: X₁ and X₃ are independent random variables (you check)

<u>Claim</u>: X_1X_3 and X_2 are not independent random variables.

Proof : suffices to show that
$$E[X_1X_2X_3] \neq E[X_1X_3]E[X_2] \qquad \text{Since X}_1 \text{ and X}_3 \\ = 0 \qquad \qquad = \text{E[X1]E[X3]} = \text{1/4}$$

Tim Roughgarden