Cuarto ejercicio, espacios de hausdorff

Topología 1 (010-2020)

Jhonny Lanzuisi, 15 10759

1 Enunciado¹

Sean A un cojunto de indices y $X_{\alpha}(\alpha \in A)$ una familia de espacio topológicos. Demuestre que si los X_{α} son espacios de hausdorff entonces el productoo

$$\prod_{\alpha \in A} X_{\alpha}$$

es un espacio de Hausdorff tanto en la topología caja como en la topología producto.

1.1 Solución

Tomemos dos puntos x, y distintos en $\prod X_{\alpha}$. Basta con construir un entorno de x que no contenga a y (tanto en la topología caja como en la producto) y el resultado buscado se obtendrá entonces haciendo un argumento simétrico para y.

Como x y y son distintos, existe al menos un índice β en A tal que $x_{\beta} \neq y_{\beta}$. Como X_{β} es un espacio de Hausdorff, existe un entorno U (tanto en la topología producto como en la caja) en X_{β} de x_{β} que no intersectan a y_{β} .

Consideremos la famila de conjuntos U_{α} dada por

$$U_{\alpha} = \begin{cases} U & \text{si } \alpha = \beta, \\ X_{\alpha} & \text{si } \alpha \neq \beta. \end{cases}$$

Notemos que cada U_α es abierto en X_α y tomemos el producto

$$W = \prod_{\alpha \in A} U_{\alpha}.$$

Evidentemente $W \subset \prod X_{\alpha}$. También, como $x_{\beta} \in U$ (por la forma en que se eligió W) y $x_{\alpha} \in X_{\alpha}$ para $\alpha \neq \beta$, se sigue que $x \in W$. Por ser W un producto de cojuntos abiertos se sigue que es abierto en la topología caja, como además todos menos una cantidad finita de los W_{α} son iguales a los X_{α} se tiene que W también es abierto en la topología producto.

Entonces, sin importar cual de las dos topologías tomemos (la caja o la producto) el cojunto W será un entorno del punto x. Solo queda por ver que este entorno no intersecta al punto y. Esto último podemos verlo medianto un argumento por contradicción.

Supongamos que $y \in W$. Entonces se tiene que $y_{\alpha} \in U_{\alpha}$ para cada $\alpha \in A$. Pero esto implica, en particular, que $y_{\beta} \in U$. Lo cual es una contradicción.

Hemos obtenido entonces que W es un entorno de x que no contiene a y. De manera similar pude construirse un entorno V de y que no contenga a x y queda demostrado que $\prod X_{\alpha}$ es un espacio de Hausdorff.

Índice general

Enunciado 1

Solución 1

Referencias 2

Resumen

Cuarto ejercico del curso de: Espacios de Hausdorff y topología producto.

1. En [1]: Capítulo 2, §19, ejercicio 3 Topología 1 2

Referencias

[1] J. R. Munkres. Topology. Pearson, Harlow, 2. ed edición, 2014. ISBN: 978-1-292-02362-5 (véase página 1).