ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Департамент прикладной математики

ОТЧЕТ К ЛАБОРАТОРНОЙ РАБОТЕ 2 по дисциплине «Алгоритмизация и программирование»

Работу выполнила студентка группы БПМ 173	дата, подпись	_ М.В. Самоделкина
Работу проверил	дата, подпись	_ С.А. Булгаков

Содержание

Постановка задачи		3	
1	Основная часть		4
	1.1	Общая идея решения задачи	4
	1.2	Структура и принципы действия	4
	1.3	Процедура получения исполняемых программных модулей	4
	1.4	Результаты тестирования	5
Пј	рилох	кение А	6
	Task	x6.cpp	6

Постановка задачи

Использовать классы thread, mutex (или более подходящий подкласс), lock_guard / unique_lock, condition_variable, atomic, future и async при решении заданий (в зависимости от условий задания). Программа дуэль: есть секундант (отдельный поток), отсчитывающий время, и есть два дуэлянта (еще два потока), получающих сигнал о выстреле независимо (параллельно), реализовать выстрелы: первого стрелка — «первый», второго — «второй» и реализовать механизм в соответствии с вариантом 18 (3): один стрелок реагирует мгновенно, стреляет с задержкой, второй наоборот, реализовать таймеры или иной механизм иллюстрирующий эти задержки.

1 Основная часть

1.1 Общая идея решения задачи

Для решения задачи были использованы классы thread, condition_variable и mutex $(unique_lock)$.

1.2 Структура и принципы действия

Программа содержит глобальные переменные *mutex lock*, *condition_variable cv* и *bool ready*.

В начале программы инициализируется генератор случайных чисел с помощью функций *srand* и *time*. Далее создаются 3 новых объекта потока: секундант (*sec*) и два дуэлянта (d1 и d2), и связываются с потоком выполнения, новый поток выполнения вызывает, соответственно, функции *go*, *threadFunction1* и *threadFunction2*.

Функция *go* для защиты от одновременного доступа нескольких потоков создает экземпляр класса *unique_lock*, который принимает не захваченный *mutex lock* в конструкторе. Далее выводится сообщение о готовности, с помощью метода *sleep_for* имитируется задержка секунданта перед стартом, глобальная переменная *ready* меняет свое значение на *true* и подается сигнал для старта. После чего *condition_variable cv* уведомляет все ожидающие потоки.

Функция threadFunction1 принимает сигнал от cv мгновенно выводит сообщение о получении сигнала, имитирует задержку с помощью метода $sleep_for$ и выводит сообщение о выстреле.

Функция threadFunction2 принимает сигнал от cv имитирует задержку перед получением сигнала с помощью метода $sleep_for$ и выводит сообщение о получении сигнала и выстреле.

1.3 Процедура получения исполняемых программных модулей

Программный код был скомпилирован с среде *Visual Studio 2017*. Код программы содержится в одном исходном файле. Для ускоренной компиляции программы используются предварительно откомпилированные заголовки "pch.h". Помимо этого никаких дополнительных ключей не добавлялось, использовались ключи, которые добавляются по умолчанию.

1.4 Результаты тестирования

Тестирование программы представлено в файле "Task6.cpp" в функции Main(). Ожидаемый вывод функции:

Ready..
Go!
Pushkin react
Dantes react
Dantes shoot
Pushkin shoot

Приложение А

полный код программы

A.1 - Task6.cpp

```
#include "pch.h"
#include <iostream>
#include <thread>
#include <mutex>
#include <chrono>
#include <ctime>
std::mutex lock;
std::condition_variable cv;
bool ready = false;
void threadFunction1()
{
        {
                 std::unique lock < std::mutex > lck(lock);
                 while (!ready) cv.wait(1ck);
        std::cout << "Pushkin react \n";
        std::this thread::sleep for(
                 std::chrono::seconds(rand() % 10));
        std::cout << "Pushkin_shoot\n";
}
void threadFunction2()
{
        {
                 std::unique lock < std::mutex > lck(lock);
                 while (!ready) cv.wait(lck);
        std::this_thread::sleep_for(
```

```
std::chrono::seconds(rand() % 10));
        std::cout << "Dantes_react\nDantes_shoot\n";
}
void go() {
        std::unique_lock < std::mutex > lck(lock);
        std::cout << "Ready.." << std::endl;
        std::this thread::sleep for (
                 std::chrono::seconds(rand() % 10));
        ready = true;
        std::cout << "Go!" << std::endl;
        cv.notify all();
}
int main()
{
        srand((unsigned int)time(NULL));
        std::thread d1(threadFunction1);
        std::thread d2(threadFunction2);
        std::thread sec(go);
        sec.join();
        d1.join();
        d2.join();
        return 0;
}
```