Calculabilité TP5

Y. Deville C-H. Bertrand Van Ouytsel - V. Coppé - A. Gerniers N. Golenvaux - M. Parmentier

Mars 2021

1. Un transformateur de programmes est toujours une fonction calculable.

Réponse : Faux

Un transformateur de programme peut être vu comme une fonction $f:\mathbb{N}\to\mathbb{N}$. Or, il existe certaines fonctions totales qui ne sont pas calculables.

Remarque : même si on impose la condition qu'un transformateur de programme doit être injectif, la réponse ne change pas. Voici un exemple de fonction injective non calculable :

$$f(x) = \begin{cases} 2x \text{ si halt}(x, x) = 1\\ 2x + 1 \text{ si halt}(x, x) = 0 \end{cases}$$

2. En vous aidant du théorème S-m-n, déterminer s'il existe une fonction totale calculable $f: \mathbb{N} \to \mathbb{N}$ telle que pour tout $x \in \mathbb{N}$, on a : $\mathrm{dom}(\varphi_{f(x)}) = \{y \in \mathbb{N} \mid \exists z \in \mathbb{N} : y = z^x\}$.

Indice : considérez la fonction ci-dessous.

$$f(x,y) = \begin{cases} \text{le plus petit } z \in \mathbb{N} \text{ tel que } y = z^x & \text{si un tel } z \text{ existe} \\ \text{non défini} & \text{sinon} \end{cases}$$

Réponse : Vrai

Selon S-m-n, $\exists g$ tot. calc. tel que $\forall x,y$:

$$\varphi_k(x,y) = \varphi_{g(k,x)}(y) = \begin{cases} z \,|\, y = z^x & \text{si z existe} \\ \bot & \text{sinon} \end{cases}$$

$$y \in \text{dom}(\varphi_{g(k,x)}(y)) \iff \exists z \in \mathbb{N} : y = z^x$$

3. Quel est le sens intuitif de l'affirmation suivante?

Il existe une fonction calculable $f:\mathbb{N}\to\mathbb{N}$ telle que, pour tout $x\in\mathbb{N}$, si φ_x est la fonction caractéristique d'un ensemble $A_x\subseteq\mathbb{N}$, alors $\varphi_{f(x)}$ est la fonction caractéristique de $\overline{A_x}$.

- (a) Il existe une fonction calculable qui permet de décider si le complémentaire d'un ensemble récursif est aussi un ensemble récursif.
- (b) Si on désigne les ensembles récursifs par un indice de leur fonction caractéristique, alors l'opération de passage au complémentaire est calculable.
- (c) L'indice de n'importe quelle fonction calculable est soit l'indice d'une fonction caractéristique d'un ensemble A, soit l'indice d'une fonction caractéristique du complémentaire de A.

Réponse: (b)

4. L'affirmation suivante est-elle vraie?

Il existe une fonction fonction calculable $f:\mathbb{N}\to\mathbb{N}$ telle que, pour tout $x\in\mathbb{N}$, si φ_x peut être vue comme la fonction caractéristique d'un ensemble $A_x\subseteq\mathbb{N}$ (autrement dit : si l'image de φ_x est $\{0,1\}$), alors $\varphi_{f(x)}$ est la fonction caractéristique de $\overline{A_x}$.

Indice : considérez la fonction ci-dessous.

$$f(i,x) = \max\{0, 1 - \varphi_i(x)\}\$$

Réponse : Vrai

$$\varphi_k(i,x) = \max\left\{0,1-\varphi_i(x)\right\}$$
 permet de décider $x\in\overline{A_i}.$

Par S-m-n, $\exists g$ tot. calc. tel que :

$$\varphi_k(i,x) = \varphi_{q(k,i)}(x)$$

5. La réciproque du théorème du point fixe est-elle vraie?

Autrement dit : si on a $n\in\mathbb{N}$ et $f:\mathbb{N}\to\mathbb{N}$ une fonction totale, le fait qu'il existe un $k\in\mathbb{N}$ tel que $\varphi_k=\varphi_{f(k)}$ implique-t-il que f est calculable?

Réponse : Faux

Soit la fonction totale
$$f(k) = \begin{cases} k & \text{si } k \in K \\ 0 & \text{sinon} \end{cases}$$

Soit $P_k(x) \equiv [\text{return } x]$

Comme $\varphi_k(k)$ se termine, $k \in K$ et donc $\varphi_{f(k)} = \varphi_k$. Pourtant f n'est pas calculable sinon K serait récursif.

Question 1 du TP

Question: The S property is defined as follows:

$$\forall k \; \exists S \; \text{total} \; \& \; \text{computable} \; : \; \varphi_k(x,y) = \varphi_{S(x)}(y)$$

Prove that the S property is a particular case of S-m-n (i.e. prove that S-m-n implies S for m=n=1).

Question 1 du TP

Question : The S property is defined as follows :

$$\forall k \; \exists S \; \text{total \& computable} \; : \; \varphi_k(x,y) = \varphi_{S(x)}(y)$$

Prove that the S property is a particular case of S-m-n (i.e. prove that S-m-n implies S for m=n=1).

Réponse :

- Par S-m-n, $\exists S$ tot. calc. $\forall k : \varphi_k(x,y) = \varphi_{S(k,x)}(y)$
- $lackbox{\ }$ Ce qui implique $\forall k\ \exists S$ tot. calc. : $\varphi_k(x,y)=\varphi_{S(k,x)}(y)$
- $S(k,x) = \varphi_S(k,x) = \varphi_S(x) = \varphi_{k'}(x) = S''(x)$ (on renomme S'(S,k) en k')
- ▶ En conclusion, $\forall k \; \exists S'' \; \text{tot. calc.} \; : \; \varphi_k(x,y) = \varphi_{S''(x)}(y)$
- ► S est donc bien un cas particulier de S-m-n.

Question 2 du TP

Question: Using the fixed point theorem, show that there exists a program P_n such that P_n terminates only for input n. (Hint: use the function g(n,x)=1 if $x=n,\perp$ otherwise together with the S property.)

Question 2 du TP

Question: Using the fixed point theorem, show that there exists a program P_n such that P_n terminates only for input n. (Hint: use the function g(n,x)=1 if x=n, \bot otherwise together with the S property)

Réponse : Soit $g(n,x) = \begin{cases} 1 & \text{si } n = x \\ \bot & \text{sinon} \end{cases}$ qui est calculable

- lacksquare Par S, $\exists S$ tot. calc. : $\varphi_g(n,x)=\varphi_{S(n)}(x)$
- ▶ Par le point fixe, $\exists n : \varphi_n = \varphi_{S(n)}$
- $ightharpoonup \Longrightarrow \exists n : \varphi_n(x) = \varphi_{S(n)}(x) = \varphi_g(n,x)$
- ▶ Vu que g est calculable, P_n existe

Question 3 du TP

Question: Using the fixed point theorem, show that there exists a program P_n that always outputs n (i.e. that prints its source code).

Question 3 du TP

Question: Using the fixed point theorem, show that there exists a program P_n that always outputs n (i.e. that prints its source code).

Réponse : Soit g(n,x) = n qui est calculable

- lacksquare Par S, $\exists S$ tot. calc. : $\varphi_g(n,x)=\varphi_{S(n)}(x)$
- ▶ Par le point fixe, $\exists n : \varphi_n = \varphi_{S(n)}$
- $ightharpoonup \implies \exists n : \varphi_n(x) = \varphi_{S(n)}(x) = \varphi_g(n, x)$
- ▶ Vu que g est calculable, P_n existe

Question 4 du TP

Question : Prove Rice's theorem using the fixed point theorem. (Hint : define the function f(x)=i if $x\in A$, j if $x\in \overline{A}$, with $i\in \overline{A}$ and $j\in A$)

Question 4 du TP

Question : Prove Rice's theorem using the fixed point theorem. (Hint : define the function f(x)=i if $x\in A$, j if $x\in \overline{A}$, with $i\in \overline{A}$ and $j\in A$)

Réponse : Soient $i \in A$ et $j \in \overline{A}$, on définit $f(x) = \begin{cases} j & \text{si } x \in A \\ i & \text{si } x \in \overline{A} \end{cases}$ En supposant que A est récursif, on a f qui est totale et

calculable. De plus, on sait que $A \neq \emptyset \neq \overline{A}$.

Par le point fixe, $\exists k : \varphi_k = \varphi_{f(k)}$. On a 2 cas :

- ightharpoonup Si $k \in A$, alors $\varphi_k = \varphi_j$
- ightharpoonup Si $k \in \overline{A}$, alors $\varphi_k = \varphi_i$

On a donc bien $\exists i \in A, \exists j \in \overline{A}$ tel que $\varphi_i = \varphi_j$

Question 5 du TP

Question : Prove that $K=\{n\in\mathbb{N}\mid \varphi_n(n)\neq \bot\}$ is not recursive using the fixed point theorem.

Question 5 du TP

Question : Prove that $K = \{n \in \mathbb{N} \mid \varphi_n(n) \neq \bot\}$ is not recursive using the fixed point theorem.

Réponse : Supposons K récursif.

Soient les fonctions calculables $\varphi_i(x) = x$ et $\varphi_i(x) = \bot$.

On définit $f(x) = \begin{cases} j & \text{si } x \in K \\ i & \text{si } x \in \overline{K} \end{cases}$ qui est totale et calculable

Par le point fixe, $\exists k : \varphi_k = \varphi_{f(k)}$:

- ▶ si $k \in K \Longrightarrow \varphi_k(k) \neq \bot$ et f(k) = j $\Longrightarrow \varphi_k(k) = \varphi_{f(k)}(k) = \varphi_j(k) = \bot$
- ▶ si $k \notin K \Longrightarrow \varphi_k(k) = \bot$ et f(k) = i $\Longrightarrow \varphi_k(k) = \varphi_{f(k)}(k) = \varphi_i(k) = k$

Contradiction dans les 2 cas! K n'est pas récursif!

Challenge

Question : Show that, for any computable total function f, there exist an infinity of k's such that $\varphi_k = \varphi_{f(k)}$.

(Hint: Show that if it was not the case, we could find a computable total function that would not satisfy the fixed point theorem.)