## Отчёт по лабораторной работе №1

Развертывание виртуальной машины

Тукаев Тимур Ильшатович

# Содержание

| 1 | Цель работы                    | 4  |
|---|--------------------------------|----|
| 2 | Выполнение лабораторной работы | 5  |
| 3 | Вывод                          | 12 |
| 4 | Контрольные вопросы            | 13 |

# **List of Figures**

| 2.1  | Создание новой виртуальной машины |
|------|-----------------------------------|
| 2.2  | Конфигурация жёсткого диска       |
| 2.3  | Конфигурация жёсткого диска       |
| 2.4  | Конфигурация жёсткого диска       |
| 2.5  | Конфигурация жёсткого диска       |
| 2.6  | Конфигурация системы              |
| 2.7  | Установка языка                   |
| 2.8  | Параметры установки               |
| 2.9  | Этап установки                    |
|      | Создание пользователя             |
| 2.11 | Команда dmesg                     |
|      | Команда dmesg                     |

### 1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов

#### 2 Выполнение лабораторной работы

Создаю виртуальную машину



Figure 2.1: Создание новой виртуальной машины

Задаю конфигурацию жёсткого диска — VDI, динамический виртуальный диск.



Figure 2.2: Конфигурация жёсткого диска



Figure 2.3: Конфигурация жёсткого диска



Figure 2.4: Конфигурация жёсткого диска



Figure 2.5: Конфигурация жёсткого диска

Добавляю новый привод оптических дисков и выбираю образ



Figure 2.6: Конфигурация системы

Запускаю виртуальную машину и выбираю установку системы на жёсткий диск. Устанавливаю язык для интерфейса и раскладки клавиатуры



Figure 2.7: Установка языка

Указываю параметры установки



Figure 2.8: Параметры установки



Figure 2.9: Этап установки

#### Создаю пользователя



Figure 2.10: Создание пользователя

Захожу в созданную учётную запись.

Информация по машине.

- 1. Версия ядра Linux (Linux version).
- 2. Частота процессора (Detected Mhz processor).
- 3. Модель процессора (СРИО).
- 4. Объем доступной оперативной памяти (Memory available).
- 5. Тип обнаруженного гипервизора (Hypervisor detected).

```
ttukaev@fedora:~
                                                                                   Q =
     6.152983] SELinux: policy capability nnp_nosuid_transition=1
6.152984] SELinux: policy capability genfs_seclabel_symlinks=1
6.152985] SELinux: policy capability ioctl_skip_cloexec=0
     6.318634] systemd[1]: Successfully loaded SELi
                                                                    policy in 280.062ms.
    12.668043] 11:20:55.156377 main
                                                OS Product:
    12.806018] 11:20:55.293441 main
                                                 OS Product:
    12.806389] 11:20:55.294401 main
                                                 OS Product:
    12.842843] 11:20:55.331162 main
                                                OS Product:
    90.298860] 11:22:13.758221 main
                                                 OS Product:
    92.836648] 11:22:16.287891 main
                                                OS Product:
    92.856743] 11:22:16.308026 main
                                                 OS Product:
    92.868138] 11:22:16.319438 main
                                                 OS Product:
     aev@fedora:~$ dmesg | grep Mem
0.081064] Memory: 3951484K/4193848K available (18432K kernel code, 3276K rw
data, 14436K rodata, 4508K init, 17396K bss, 242104K reserved, 0K cma-reserved)

[ 0.253939] x86/mm: Memory block size: 128MB

[ 2.121522] systemd[1]: memstrack.service - Memstrack Anylazing Service was
                                                              strack Anylazing Service was s
kipped because no trigger condition checks were met.
     9.079778] systemd[1]: Listening on systemd-oomd.socket - Userspace Out-Of-
  ory (00M) Killer Socket.
        @fedora:~$ dmesg | grep MHz
      0.000009] tsc: Detected 2599.998 MHz processor
      3.256118] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:4a:63:48
        @fedora:~$
```

Figure 2.11: Команда dmesg

- 6. Тип файловой системы корневого раздела.
- 7. Последовательность монтирования файловых систем

```
Файловая система 1К-блоков Использовано Доступно Использовано% Смонтировано в
                40891392
                             4302920 36377896
                               0 4096
0 1997412
devtmpfs
tmpfs
                  1997412
                                                           0% /dev/shm
tmpfs
                   798968
                                        794364
tmpfs
                  1997416
                                                           1% /tmp
/dev/sda3
                 40891392
                               4302920 36377896
                                                          11% /home
/dev/sda2
                   996780
                                                          23% /boot
tmpfs
                   399480
                                         399288
                                                            1% /run/user/1000
```

Figure 2.12: Команда dmesg

# 3 Вывод

Мы приобрели практические навыки установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

#### 4 Контрольные вопросы

- 1. Какую информацию содержит учётная запись пользователя?
- входное имя пользователя (Login Name);
- пароль (Password);
- внутренний идентификатор пользователя (User ID);
- идентификатор группы (Group ID);
- анкетные данные пользователя (General Information);
- домашний каталог (Home Dir);
- указатель на программную оболочку (Shell).
- 2. Укажите команды терминала и приведите примеры:
- для получения справки по команде man;
- для перемещения по файловой системе cd;
- для просмотра содержимого каталога ls;
- для определения объёма каталога ls -l;
- для создания / удаления каталогов / файлов touch, mkdir, rm, rmdir;
- для задания определённых прав на файл / каталог chmod;
- для просмотра истории команд history.
- 3. Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система (англ. file system) — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании.

FAT. Числа в FAT12, FAT16 и FAT32 обозначают количество бит, используемых для перечисления блока файловой системы. FAT32 является фактическим стандартом и устанавливается на большинстве видов сменных носителей по умолчанию. Одной из особенностей этой версии ФС является возможность применения не только на современных моделях компьютеров, но и в устаревших устройствах и консолях, снабженных разъемом USB. Пространство FAT32 логически разделено на три сопредельные области: зарезервированный сектор для служебных структур; табличная форма указателей; непосредственная зона записи содержимого файлов.

Стандарт NTFS разработан с целью устранения недостатков, присущих более ранним версиям ФС. Впервые он был реализован в Windows NT в 1995 году, и в настоящее время является основной файловой системой для Windows. Система NTFS расширила допустимый предел размера файлов до шестнадцати гигабайт, поддерживает разделы диска до 16 Эб (эксабайт, 1018 байт). Использование системы шифрования Encryption File System (метод «прозрачного шифрования») осуществляет разграничение доступа к данным для различных пользователей, предотвращает несанкционированный доступ к содержимому файла. Файловая система позволяет использовать расширенные имена файлов, включая поддержку многоязычности в стандарте юникода UTF, в том числе в формате кириллицы. Встроенное приложение проверки жесткого диска или внешнего накопителя на ошибки файловой системы chkdsk повышает надежность работы харда, но отрицательно влияет на производительность.

Ext2, Ext3, Ext4 или Extended Filesystem – стандартная файловая система, первоначально разработанная еще для Minix. Содержит максимальное количество функций и является наиболее стабильной в связи с редкими изменениями кодовой базы. Начиная с ext3 в системе используется функция журналирования. Сегодня версия ext4 присутствует во всех дистрибутивах Linux.

XFS рассчитана на файлы большого размера, поддерживает диски до 2 терабайт. Преимуществом системы является высокая скорость работы с большими файлами, отложенное выделение места, увеличение разделов на лету, незначительный размер служебной информации. К недостаткам относится невозможность уменьшения размера, сложность восстановления данных и риск потери файлов при аварийном отключении питания.

- 4. Как посмотреть, какие файловые системы подмонтированы в ОС? командой du.
- 5. Как удалить зависший процесс?

командой kill.