Routing Protocol for LLNs (RPL)

Kaushal K | Cdac, Pune | Jun 2022

Agenda

- Introduction
- Network Stack
- Directory Structure
- Cooja Simulator
- Hands On Excersice

Introduction

- Distance Vector IPv6 routing protocol for LLNs
- It constructs a Directed Acyclic Graph (DAG) to minimize path costs
- It defines a new IPv6 option to be added just after the main header called RPL Option
- RPL option adds routing information with each datagram that a router forwards

Features

- To bind the subnet together with a common prefix and to route within that subnet
- RPL uses IPv6 Neighbour Discovery (ND), Prefix Information Option and Route Information Option
- RPL node often combines Host and Router behaviors
 - As a host it will process Route information options
 - As a router, it may advertise the information in ND Router Advertisement (RA) message

Terminology

- Directed Acyclic Graph A path-oriented connection of edges/nodes in such a way that no cycles exists. Each node has a direction Forward or Backward
- DAG root A DAG root is a node within DAG with not outgoing edge i.e. sink of DAG; at least one root must be there
- Destination Oriented DAG: single root DAGs
- DODAG root root of DAG of DODAG

Terminology

- Rank Position relative to other nodes with respect to DODAG root.
 Increases in Down direction and decreases in Up direction
- Objective Function (OF) Compute the ranks in DODAG
- RPL Instance It is a set of one or more DODAGs
- DODAGID- identifier of DODAG root. It is unique within RPL instance

Terminology

- DODAG Information Object (DIO)
 - The DODAG Information Object carries information that allows a node to discover a RPL Instance, learn its configuration parameters, select a DODAG parent and maintain DODAG
- Destination Advertisement Object (DAO)
 - The Destination Advertisement Object (DAO) is used to propagate destination information
 Upward along the DODAG
- DODAG Information Solicitation (DIS)
 - The DODAG Information Solicitation (DIS) message may be used to solicit a DODAG Information Object from a RPL node
 - A node may use DIS to probe its neighborhood for nearby DODAGs

RPL identifiers

- Its uses four values to identify and maintain a topology
 - RPLInstanceId
 - DODAGID
 - DODAGVersionNumber
 - Rank

Ranks

- A parent of a node within a DODAG is one of the immediate successors of the node on a path towards the DODAG root
- A DODAG parent's Rank is lower than the node's

Rank Comparison

- It is thought of fixed point number
- MinHopRankIncrease is the minimum increase in Rank between a node and any of its DODAG parents
- It creates a trade-off between hop cost precision and maximum number of hops a network can support
- A large value allows precise characterization of a given hop's effect on Rank but not many supported
- Uses function like DAGRank(rank) = floor(rank/MinHopRankIncrease)

Rank Relationships

- DAGRank(M) is less than DAGRank(N)
- DAGRank(M) is equal to DAGRank(N)
- DAGRank(M) is greater than DAGRank(N)

RPL Security

- Unsecure Mode
 - Messages sent without additional mechanism but Link Layer has option to use security
- Preinstalled Mode
 - Nodes joining RPL instance has preinstalled keys to generate secure messages
- Authenticated Mode
 - o An authenticated RPL instance allows other nodes to join using preinstalled keys as leaf node

Trickle Timers

- RPL uses a slow process to construct and maintain a routing topology
- If routing inconsistencies detected, then RPL temporarily increases beacon rate to quickly resolve that
- This dynamic rate control operation is governed by the use of dynamic timers called as "Trickle" (RFC 6206)

Format of RPL Option

IPv6 Hop-By-Hop Options header immediately follows RPL Option

RPL Option

- Option Type
 - Define by IANA as 0x63
- Opt Data Len
 - The length of option header
- Down
 - 1-bit flag indicating whether the packet is expected to progress Up or Down. A router sets the 'O' flag when the packet is expected to progress Down (using DAO routes), and clears it when forwarding toward the DODAG root
- Rank Error
 - A Rank error is detected when there is a mismatch in the relative Ranks and the direction as indicated in the 'O' bit.

RPL Option

- Forwarding Error
 - indicating that this node cannot forward the packet further towards the destination.
- RPL Instance ID
 - 8-bit field indicating the DODAG instance along which the packet is sent
- Sender Rank
 - 16-bit field set to zero by the source and to DAGRank(rank) by a router that forwards inside the RPL network

Router Behaviour

- Router must use IPv6-in-IPv6 tunneling to send data frames
- Tunneling ensures delivered datagram remains unchanged and errors are sent back to the source
- Tunnel Exit points is the RPL router for which the original packet is destined to
- Single Tunnels
- Multiple Tunnels

Security Aspects

- DAG Inconsistency Attacks
 - Using Down and SenderRank field, an attacker can trick routers to start Trickle timer more often
- Destination Advertisement Object (DAO) Inconsistency Attacks
 - In Storing mode, RPL routers maintain Downward routing state, which is cleaned by Forwarding-Error flag
 - To avoid use MAX_RPL_OPTION_FORWARD_ERRORS to discard state per hour.
 Recommended value 20
 - In Non-storing mode, only LBR maintains Downward routing state, so no Option- involved

Modes of Operation (MOP)

- The different modes of operation refer to the different ways downward routing is done
- Storing Mode
 - For storing mode, routing tables are stored on each node, which can impose a significant memory footprint in large networks and be hard to maintain consistently
- Non-Storing Mode
 - For non-storing mode, IPv6 source routing is employed, which means that nodes do not have to store routing tables for nodes below them in the DODAG

Topology Formation

After enough probing, the node will select a neighbor as preferred parent. This is according to the selected Objective Function and metric.

DAG Advertisement

When a node starts running as DAG root, it will advertise the DAG with DODAG Information Object (DIO).

DIO transmissions follow a Trickle timer

DAG Joining

Parent Selection

Poisoning

Nodes willing to join a network will transmit periodic DIS (DODAG Information Solicitation) to trigger Trickle reset at neighboring nodes, and increase their chances to hear a DIO

When a node finds no more suitable preferred parent, it will start poisoning, i.e., advertise an infinite rank to let its sub-DAG know it no longer is a valid parent.

It will then leave the network after a delay

Root Registration

Once a preferred parent is chosen, a node will then register itself through a DAO (Destination Advertisement Object)

DAO-ACK confirms

RPL Border Router

 Border routers are routers that can be found at the edge of a network. Their function is to connect one network to another

Thank You