# STAT 426 Final Project

Jefferson Mathews & Sam DerMatoian

## Introduction

- Dr A. Leach tested the effects of a drug on 50 children with a history of otitis media in the Northern Territory of Australia. The children were randomized to the drug or the a placebo, and also to receive active encouragement to comply with taking the drug-. (R Documentation)
- According to the Mayo Clinic, Otitis Media is an infection of the middle ear, which is the air-filled space behind the eardrum. It also notes that these infections are more common in children than adults. Additionally, it notes that infections can go away without treatment over time.

References: <a href="https://www.mayoclinic.org/diseases-conditions/ear-infections/symptoms-causes/syc-20351616">https://www.mayoclinic.org/diseases-conditions/ear-infections/symptoms-causes/syc-20351616</a> <a href="https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/bacteria.html">https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/bacteria.html</a>

## Introduction (cont.)

- We seek to answer three questions from this analysis:
- Is the treatment effective?
- How do they behave over time?
- Any compliance effect?

# **Initial Data Analysis**

|         | Bacteria Absent | Bacteria Present |
|---------|-----------------|------------------|
| Active  | 12              | 84               |
| Placebo | 31              | 93               |

|         | Bacteria Absent | Bacteria Present |
|---------|-----------------|------------------|
| Week 0  | 5               | 45               |
| Week 2  | 4               | 40               |
| Week 4  | 11              | 31               |
| Week 6  | 11              | 29               |
| Week 11 | 12              | 32               |

|                    | Bacteria Absent | Bacteria Present |
|--------------------|-----------------|------------------|
| High<br>Compliance | 24              | 74               |
| Low<br>Compliance  | 19              | 103              |

|         | Bacteria Absent Bacteria |    |
|---------|--------------------------|----|
| Placebo | 12                       | 84 |
| Drug    | 18                       | 44 |
| Drug+   | 13                       | 49 |

Note: When checking for NA values, there were none

# Initial Data Analysis (cont.)









## Initial Data Analysis (cont.)

# Number of observations for each patient

| X01 | X02 | X03 | X04 | X05 | X06 | X07 | X08 | X09 | X10 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 4   | 4   | 5   | 5   | 5   | 4   | 5   | 5   | 5   | 2   |
| X11 | X12 | X13 | X14 | X15 | X16 | X17 | X18 | X19 | X20 |
| 5   | 5   | 5   | 3   | 5   | 5   | 5   | 5   | 5   | 4   |
| X21 | Y01 | Y02 | Y03 | Y04 | Y05 | Y06 | Y07 | Y08 | Y09 |
| 5   | 5   | 5   | 5   | 4   | 3   | 4   | 5   | 4   | 4   |
| Y10 | Y11 | Y12 | Y13 | Y14 | Z01 | Z02 | Z03 | Z05 | Z06 |
| 5   | 5   | 2   | 4   | 3   | 3   | 5   | 5   | 5   | 2   |
| Z07 | Z09 | Z10 | Z11 | Z14 | Z15 | Z19 | Z20 | Z24 | Z26 |
| 5   | 4   | 5   | 5   | 5   | 3   | 5   | 4   | 5   | 5   |

## Methods

The variables in the original dataset were changed in name and format for easier modeling. The changes were as follows:

| Old Variable Name | New Variable Name |  |
|-------------------|-------------------|--|
| у                 | Bacteria_Present  |  |
| ар                | Drug_Used         |  |
| hilo              | High_Compliance   |  |

| Old Format | New Format |
|------------|------------|
| y/n        | 0/1        |
| а/р        | 0/1        |
| hi/lo      | 0/1        |

The Week variable was treated as a continuous variable due to the sporadic time intervals the dataset was in. The other variables were stored as binary variables.

The trt variable, which combines High\_Compliance and Drug\_Used wasn't changed, but was treated as a factor variable with levels 0, 1, 2

## **Explanation of Model Methods**

The Generalized Linear Model helps to answer the research questions by modeling the presence of bacteria as a function of time(Week), the treatment, and compliance. Due to the trt predictor's collinearity, it was left out and ID was also left out due to its irrelevance in the GLM model. The model was built as an additive model and the compliance predictor was dropped from the final model because it wasn't significant

The Generalized Linear Mixed Model was built in a similar way to the GLM, but it used the ID predictor as a random effect variable. This gave a random intercept to each ID instead of one intercept for the whole model. The analysis of the data showed this may be required for an accurate model, so it was taken into account.

## Interaction

Interaction in the model was checked by multiplying trt and week. Compliance and Drug Use were checked as well against each other and week. None of these interactions provided any significant predictors and all models with interaction terms had poor AIC values, deviance values, and predictive strength.

Therefore interaction was not required to answer any of the research questions

### Results

GLM model with the lowest AIC (210.95) used just week and Drug\_Used.

GLMM model with lowest AIC(206.4) used Week and Drug\_Used with a random effect of Patient ID

#### **GLM Model**

| Variable  | Coefficient |  |
|-----------|-------------|--|
| Week      | -0.11479    |  |
| Drug Used | -0.89034    |  |

#### **GLMM Model**

| Variable                         | Coefficient | Variance |
|----------------------------------|-------------|----------|
| Week                             | -0.14439    |          |
| Drug Used                        | -1.07565    |          |
| Patient ID<br>(Random<br>effect) |             | 1.401    |

# Residual Analysis



# Fitted Values vs Predictor Boxplots



## Summary

The GLMM model is preferred based the results of the random effects and the comparison of the AIC values of the two models.

Time did have an impact on the presence, the probability of the bacteria being there decreased with time. This corresponds to the knowledge discovered in the beginning of presentation that these infections go away with time.

The drug did have an impact according to both models, so taking it may have helped the infection go away

Compliance had no impact either was, so there was most likely no compliance effect

## R Code

library(MASS) library(ggplot2) bacteria1 = bacteria

#### \*\*Initial Data Analysis\*\*

bacteria1\$y<-ifelse(bacteria1\$y=="y",1,0)
bacteria1\$ap<-ifelse(bacteria1\$ap=="a",1,0)
bacteria1\$hilo<-ifelse(bacteria1\$hilo=="hi",1,0)
colnames(bacteria1) = c("Bacteria\_Present", "Drug\_Used", "High\_Compliance", "Week", "ID", "trt")
bacteria1

#### summary(bacteria1)

hist(bacteria1\$Bacteria\_Present, main = "Histogram of Bacteria Present", xlab = "Bacteria Present") hist(bacteria1\$Drug\_Used, main = "Histogram of Drug Used", xlab = "Drug Used") hist(bacteria1\$High\_Compliance, main = "Histogram of High Compliance", xlab = "High Compliance") hist(bacteria1\$Week, main = "Histogram of Week", xlab = "Week")

#### summary(bacteria1\$ID)

bact\_drug\_tab = table(bacteria1\$Drug\_Used, bacteria1\$Bacteria) colnames(bact\_drug\_tab) = c("No Bacteria", "Bacteria") rownames(bact\_drug\_tab) = c("Active", "Placebo") bact\_drug\_tab

bact\_comp\_tab = table(bacteria1\$High\_Compliance, bacteria1\$Bacteria) colnames(bact\_comp\_tab) = c("No Bacteria", "Bacteria") rownames(bact\_comp\_tab) = c("High Compliance", "Low Compliance") bact\_comp\_tab

bact\_week\_tab = table(bacteria1\$Week, bacteria1\$Bacteria)
colnames(bact\_week\_tab) = c("No Bacteria", "Bacteria")
rownames(bact\_week\_tab) = c("Week 0", "Week 2", "Week 4", "Week 6", "Week 11")
bact\_week\_tab

bact\_trt\_tab = table(bacteria1\$trt, bacteria1\$Bacteria)
colnames(bact\_trt\_tab) = c("No Bacteria", "Bacteria")
bact\_trt\_tab

which(is.na(bacteria1))

#### \*\*Modeling\*\*

glm\_mod = glm(Bacteria\_Present ~ Week + High\_Compliance + Drug\_Used, family = binomial, data = bacteria1) summary(glm\_mod)

glm\_mod1 = glm(Bacteria\_Present ~ Week + Drug\_Used, family = binomial, data = bacteria1) summary(glm\_mod1) ##Best GLM model

glm\_mod2 = glm(Bacteria\_Present ~ factor(Week) + High\_Compliance + Drug\_Used, family = binomial, data = bacteria1) summary(glm\_mod2)

glm\_mod3 = glm(Bacteria\_Present ~ factor(Week) \* trt, family = binomial, data = bacteria1) summary(glm mod3)

library(lme4)
glmm\_mod = glmer(Bacteria\_Present ~ Week + High\_Compliance + Drug\_Used +(1 | ID), data = bacteria1, family = binomial)
summary(glmm\_mod)

glmm\_mod2 = glmer(Bacteria\_Present ~ factor(Week)+ High\_Compliance + Drug\_Used +(1 | ID) , data = bacteria1, family = binomial) summary(glmm\_mod2)

 $\label{eq:glmm_mod3} $$ glmer(Bacteria\_Present \sim factor(Week) + Drug\_Used + (1 \mid ID) \;, $$ data = bacteria1, family = binomial) $$ summary(glmm_mod3)$ 

glmm\_mod4 = glmer(Bacteria\_Present ~ Week + Drug\_Used + (1 | ID) , data = bacteria1, family = binomial) summary(glmm\_mod4) ##Selected model

## R Code (cont.)

#### \*\*Model Analysis\*\*

```
ggplot(bacteria1, aes(x = factor(bacteria1$Week), y = glm mod1$fitted.values)) +
 geom boxplot() +
 labs(title = "GLM Model", x = "Week", y = "Fitted Values")
ggplot(bacteria1, aes(x = factor(bacteria1$Drug Used), y =
glm mod1$fitted.values)) +
 geom boxplot() +
 labs(title = "GLM Model", x = "Drug Used", y = "Fitted Values")
ggplot(bacteria1, aes(x = factor(bacteria1$High Compliance), y =
glm mod1$fitted.values)) +
 geom boxplot() +
 labs(title = "GLM Model", x = "High Compliance", y = "Fitted Values")
ggplot(bacteria1, aes(x = factor(bacteria1$Week), y = fitted.values(glmm mod4))) +
 geom boxplot() +
 labs(title = "GLMM Model", x = "Week", y = "Fitted Values")
ggplot(bacteria1, aes(x = factor(bacteria1$Drug Used), y =
fitted.values(glmm mod4))) +
 geom boxplot() +
 labs(title = "GLMM Model", x = "Drug Used", y = "Fitted Values")
```

```
ggplot(bacteria1, aes(x = factor(bacteria1$High_Compliance), y =
fitted.values(glmm_mod4))) +
geom_boxplot() +
labs(title = "GLMM Model", x = "High Compliance", y = "Fitted Values")

ggplot(mapping = aes(x = fitted.values(glmm_mod4), y = resid(glmm_mod4))) +
geom_point(alpha = 0.1) +
geom_line(y = 0) +
labs(x = "Fitted Values", y = "Residuals", title = "GLMM Fitted vs. Residuals")

ggplot(mapping = aes(x = fitted.values(glm_mod1), y = resid(glm_mod1))) +
geom_point(alpha = 0.1) +
geom_line(y = 0)+
labs(x = "Fitted Values", y = "Residuals", title = "GLM Fitted vs. Residuals")
```