

monomorphisms of category of sets

Canonical name MonomorphismsOfCategoryOfSets

Date of creation 2013-03-22 16:42:41 Last modified on 2013-03-22 16:42:41

Owner rspuzio (6075) Last modified by rspuzio (6075)

Numerical id 7

Author rspuzio (6075) Entry type Theorem Classification msc 18-00 **Theorem 1.** Every monomorphism in the category of sets is an injection.

Proof. Assume $f: A \to B$ is a monomorphism. Then, by definition of monomorphism, given any two maps $g, h: C \to A$, if $f \circ g = f \circ h$, then g = h. Suppose x and y are two elements of A such that f(x) = f(y). Let C be a set with one element, let g be the map which sends this one element to x and let h be the map which sends this one element to y. Because f(x) = f(y), we have $f \circ g = f \circ h$. Since f is a monomorphism, g = h, so x = y. This implies that f is injective.

Theorem 2. Every injection is a split monomorphism.

Proof. Assume $f: A \to B$ is injection. If A is empty, the result is trivial, so we assume that A is not empty; let z be an element of A. Set

$$g = \{ (f(x), x) \mid x \in A \} \cup \{ (x, z) \mid x \in B \land (\forall y \in A) x \neq f(y) \}$$

We claim that g is a function from B into A. Suppose that x is an element of B. If $x \neq f(y)$ for any $y \in A$, then we have exactly one element of g with x as the first element, namely (x, z). If x = f(y) for some $y \in A$, then we the pair (x, y) with x as first element; were there another pair with x as first element, then we would have $(f(x_1), x_1) = (f(x_2), x_2)$ but, as f is an injection, $f(x_1) = f(x_2)$ would imply $x_1 = x_2$, so this would not be a distinct pair. Hence g is a function. Furthermore, by construction $g \circ f(x) = x$ for all $x \in A$, so f is a split monomorphism.

Note that the second theorem is stronger than a simple converse to the first theorem — it states that an injection is not just a monomorphism, but that it is actually a split monomorphism. In particular, this means that, in the category of sets, all monomorphisms are actually split monomorphisms.