Lecture 1

Rings:

Definition 0.1. A ring R is an abelian group (R, +) together with multiplication

$$R \times R \mapsto R$$
$$(r,s) \mapsto r \cdot s$$

such that

- **1.** $r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3$ for all $r_1, r_2, r_3 \in R$. In other words, multiplication is associative.
- **2.** $r_1 \cdot (r_2 + r_3) = r_1 \cdot r_2 + r_1 \cdot r_3$ for all $r_1, r_2, r_3 \in R$. That is, \cdot distributes over +.
- **3.** There is an element $1 \in R$ such that $1 \cdot r = r \cdot 1 = r$ for all $r \in R$. This is multiplicative identity.
- Remark. The multiplication is not assumed to be commutative. If it is, we say R is a commutative ring.
 - The above definition (including 3) is sometimes called *ring with identity*. An object which satisfies all of these except 3 is sometimes called a *rng* (pronounced "rung").

Example 0.1. 1. The integers \mathbb{Z} with the usual addition and multiplication.

2. For any $n \in \mathbb{N}$, $n \ge 1$, $\mathbb{Z}/n\mathbb{Z}$ is a ring under the operations

$$+ : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \mapsto \mathbb{Z}/n\mathbb{Z}$$

$$(\overline{a}, \overline{b}) \mapsto \overline{a + b}$$

$$\times : \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z} \mapsto \mathbb{Z}/n\mathbb{Z}$$

$$(\overline{a}, \overline{b}) \mapsto \overline{ab}$$

- **3.** $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are all rings (in fact they are fields).
- **4.** The set of $n \times n$ matrices with entries in a ring R.
- **5.** R[x], the ring of all polynomials with coefficients in a ring R

6. Let G be an abelian group, and let

$$R = \{ \text{all group homomorphisms } G \to G \}$$

Define, for all $\phi, \psi \in R$, for all $g \in G$,

$$(\phi + \psi)(g) = \phi(g) + \psi(g)$$
$$(\phi \cdot \psi(g) = \phi(\psi(g))$$

 $1 = \mathrm{Id}_G$.

Exercise: Check that R is a ring.

7. Let X be any set, and let $R = \mathcal{P}(X)$, the power set of X. Define, for all $E, F \in R$,

$$E + F = E \triangle F$$
$$E \cdot F = E \cap F$$

1 = X Exercise: Check R is a (commutative) ring.

Definition 0.2. Let R and S be rings. A <u>ring homomorphism</u> is a map $f: R \to S$ such that for all $r_1, r_2 \in R$,

$$f(r+s) = f(r) + f(s)$$
$$f(r \cdot s) = f(r) \cdot f(s)$$
$$f(1_R) = 1_S$$

Example 0.2. The quotient map $\phi: \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ given by $a \mapsto \overline{a}$ is a ring homomorphism.

Let R be a ring.

Definition 0.3. A subset $S \subseteq R$ is a <u>subring</u> if S is an additive subgroup of R, is closed under multiplication, and contains $\overline{1}$.

Definition 0.4. 1. A subset $I \subseteq R$ is a <u>left ideal</u> of R if I is an additive subgroup of R such that $R \cdot I \subseteq I$, i.e. for all $r \in R, s \in I$, $rs \in I$.

A subset $I \subseteq R$ is a right ideal of R if I is an additive subgroup of R such that $I \cdot R \subseteq I$, i.e. for all $s \in I, r \in R$, $sr \in I$.

An <u>ideal</u> is both a left and right ideal (a "two-sided" ideal).

2. Suppose I is an ideal. Then the quotient

$$R/I \stackrel{\mathrm{def}}{=} \{ \overline{r} = r + I : r \in R \}$$

inherits an addition and multiplication from R:

$$(r+I) + (r'+I) = (r+r'+I)$$

 $(r+I) \cdot (r'+I) = (r \cdot r'+I)$

making it a ring with identity 1+I. This is called the <u>quotient ring</u> or <u>residue class</u>. Note that the quotient map

$$\pi: R \to R/I$$
$$r \mapsto \overline{r} = r + I$$

is a ring homomorphism.

Two Exercises:

1. ("Correspondence Theorem")

Let R be a ring, $I \subseteq R$ an ideal, and $\phi : R \to R/I$ the quotient map. Then there is a bijective orderpreserving correspondence between $\{J \subset R, J \text{ is an ideal, } I \subseteq J \subseteq R\}$ and ideals of R/I, which sends J to $\overline{J} = \phi(J) = (I+J)/I$.

2. ("First Isomorphism Theorem")

Let $\phi: R \to S$ be a ring homomorphism. Then

- $\ker(\phi) = \{r \in R : \phi(R) = 1_S\} \subset R$ is an ideal of R.
- $\operatorname{Im}(\phi) = \{ s \in S : \exists r \in Rs.t.s = \phi(r) \}$ is an ideal of S.
- ϕ induces a ring isomorphism (i.e. a bijective ring homomorphism whose inverse is also a ring homomorphism)

$$R/\ker(\phi) \to \operatorname{Im}(\phi)$$

given by

$$\overline{r} \mapsto \phi(r)$$

Lecture 2, 1/11/23

Definition 0.5. 1. A <u>zero divisor</u> in a ring R is an element $x \in R$ such that there exists a $y \in R, y \neq 0$, such that xy = yx = 0.

Examples:

 $\overline{2} \in \mathbb{Z}/6\mathbb{Z}$ is a zero divisor. 0 is always a zero divisor unless $R = \{0\}$.

- **2.** A nonzero commutative ring R without nonzero zero divisors is called an <u>integral domain</u>. Examples: \mathbb{Z} , all polynomial rings, $\mathbb{Z}/p\mathbb{Z}$ where p is prime are all integral domains.
- 3. An element $r \in R$ is <u>nilpotent</u> if $r^n = 0$ for some n > 0. Note: r nilpotent $\implies r$ a zero divisor. The converse is false (e.g. $\overline{2} \in \mathbb{Z}/6\mathbb{Z}$)
- **4.** An element $R \in R$ is <u>a unit</u> (or <u>invertible</u>) if there exists an $s \in R$ such that rs = sr = 1.

Examples: $\overline{5} \in \mathbb{Z}/6\mathbb{Z}$. A matrix $A \in M_{n \times n}(R)$ with entries in a ring R is a unit in the matrix ring if and only if $\det(A)$ is a unit in R.

Note that R^{\times} , denoting the units, is a multiplicative group.

- **5.** Let $x \in R$ The multiples $r \cdot x$ (or $x \cdot r$) form a left (or right) ideal, denoted \underline{Rx} (or \underline{xR}). If R is commutative, we write (x) for Rx = xR.
- **6.** A <u>field</u> is a nonzero commutative ring R in which every nonzero element is a unit. Note: Since being a unit implies <u>not</u> being a zero divisor, all fields are integral domains. The converse does not hold, and \mathbb{Z} is a witness to its failure.

Proposition 1. Let R be a nonzero commutative ring. Then the following are equivalent:

- **1.** R is a field.
- **2.** The only ideals are $\{0\}$ and R.
- **3.** Every ring homomorphism $R \to S$ with $S \neq \{0\}$ is injective
- $Proof.1 \rightarrow 2$ Suppose R is a field. Let I be a nonzero ideal. Then there exists $x \in I$ nonzero. Since R is a field, x is a unit. Thus $R = (x) \subseteq I$. So I = R.
- $2 \to 3$ For $S \neq \{0\}$, let $\phi : R \to S$ be a ring homomorphism. Then $\ker(\phi) \subseteq R$ is a proper ideal (since $\phi(1) = 1 \neq 0$). By 2, $\ker(\phi) = \{0\}$, so ϕ is injective.

 $3 \to 1$ Let $x \in R$ be nonzero. We want to show that X is a unit. Consider the quotient map $\phi: R \to R/(x)$. Notice $\ker(\phi) = (x) \neq \{0\}$, i.e. ϕ is not injective. By $3, R/(x) \cong \{0\}$, so (x) = R, i.e. $x \in R^{\times}$.

Definition 0.6. Let R be a commutative ring.

1. An ideal I is a prime ideal if it is a proper ideal and for all $r, s \in R$, $rs \in I$ if and only if $r \in I$, $s \in I$, or both.

Note $p \in \mathbb{N}$ is prime if and only if for all $a, b \in \mathbb{Z}$, $p \mid ab$ implies $p \mid a, p \mid b$, or both.

Equivalently, $ab \in (p)$ implies $a \in (p), b \in (p)$, or both.

2. An ideal $I \subset R$ is a <u>maximal ideal</u> if I is proper and, if J is an ideal such that $I \subset J \subset R$, then J = I or J = R.

Proposition 2. Let R be a commutative ring and I a proper ideal. Then R/I is an integral domin if and only if I is a prime ideal.

Proof. =>

Let $r, s \in R$ such that $rs \in I$. We want to show that $r \in I$ or $s \in I$. Then the elements $\overline{r}, \overline{s} \in R/I$ are such that $\overline{r} \cdot \overline{s} = \overline{rs} = \overline{0}$. Since R/I is an integral domain, either $\overline{r} = \overline{0}$ or $\overline{s} = \overline{0}$, or both. In other words, either $r \in I$, or $s \in I$.

 $\leq =$

Since $I \neq R$, the ring R/I is nonzero. Choose $\overline{r}, \overline{s} \in R/I$ such that $\overline{r} \cdot \overline{s} = \overline{0}$. We want to show that either $\overline{r} = \overline{0}, \overline{s} = \overline{0}$, or both. Since $\overline{rs} = \overline{r} \cdot \overline{s} = \overline{0}$, $rs \in I$. Since I is a prime ideal, either $r \in I$ or $s \in I$, or both. So $\overline{r} = \overline{0}, \overline{s} = \overline{0}$, or both. Thus, R/I is an integral domain.

Lecture 3, 1/13/23

Proposition 3. Let R be a nonzero commutative ring, and $I \subset R$ a proper ideal. Then R/I is a field if and only if I is a maximal ideal.

Proof. =>

Suppose that $J \subset R$ is an ideal with $I \subset J \subset R$. Suppose that these inclusions are strict i.e. $I \subsetneq J \subsetneq R$. Let $X \in J \setminus I$, so $\overline{x} \neq \overline{0} \in R/I$. Then by assumption there

exists $\overline{y} \in R/I$ such that $\overline{x} \cdot \overline{y} = \overline{1} \in R/I$. So, $1 - xy \in I \subset J$. But $x \in J$ and J is an ideal, so $xy \in J$. So, $1 \in J$, so J = R.

<=

Let $\overline{x} \neq \overline{0} \in R/I$ for some $x \notin I$. Consider $J = \underbrace{\{a + rx \mid a \in I, r \in R\}}_{I+(x)}$. Then we see

that J is an ideal of R containing I, i.e. $I \subset J$. Further, $X \neq J$ because $x \in J \setminus I$. By maximality, we must conclude that J = R.

In particular, 1 = a + rx for some elements $a \in I, r \in R$. So in R/I, $\overline{1} = \overline{a + rx} = \overline{a} + \overline{rx}$. $a \in I$ though, so $\overline{1} = \overline{rx}$, so \overline{x} is indeed a unit of R/I.

Corollary 0.1. In a nonzero commutative ring R, all maximal ideals are prime ideals.

Proof. Fields are integral domains

Remark. The converse is <u>not</u> true. \mathbb{Z} is an integral domain with prime ideal (0), but this ideal is not maximal, as $\mathbb{Z}/(0) \cong \mathbb{Z}$ is not a field!

For another counterexample, let $R = \mathbb{Z}[x]$, and consider the ideal $I = \{$ all polynomials with constant term equal to $0\} = (x)$. This ideal is prime, since $R/I \cong \mathbb{Z}$ via $\overline{f(x)} \mapsto f(0)$ is an integral domain. But this ideal is not maximal, because \mathbb{Z} is not a field.

Note: I is strictly contained in the ideal of polynomials with even constant term, which is a strict subset of $R = \mathbb{Z}[x]$.

The existence of maximal ideals

Definition 0.7. A partial ordering on a set A is a relation \leq satisfying

- **1.** $x \leq x$ for all $x \in A$
- **2.** $x \le y, y \le x \implies x = y \text{ for all } x, y \in A$
- **3.** If $x \le y$ and $y \le z$, then $x \le z$.

Remark. This definition does <u>not</u> necessitate that all elements x, y are comparable. Definition 0.8. Let (A, \leq) be a partially ordered set.

• Let $B \subset A$ and $x \in A$. We say x is an <u>upper bound</u> for B if $y \leq x$ for all $y \in B$.

• A subset $B \subset A$ is called a <u>chain</u> if \leq is a <u>total ordering</u> on B (that is, all elements of B are comparable to all other elements of B)

Lemma 1. (Zorn's Lemma)

Let A be a nonempty partially ordered set in which every chain has an upper bound. Then A has a <u>maximal element</u>, i.e. an element $x \in A$ such that for all $y \in A$, y cannot be compared to x, or $y \le x$.

Proof. This is actually equivalent to the axiom of choice!

Theorem 0.2. Let R be a nonzero commutative ring, and let $I \subset R$ be a proper ideal. Then there exists a maximal ideal $J \subset R$ containing I.

Proof. Consider the <u>poset</u> (Partially Ordered SET) A consisting of all proper ideals containing I, partially ordered by inclusion. Then:

- $A \neq \emptyset$, since $I \in A$
- If $a_{\lambda\lambda\in\Lambda}$ is a chain in A, then $\cup_{\lambda\in\Lambda}a_{\lambda}\in A$ gives an upper bound for the chain. Note: In general, the union of ideals is <u>not</u> an ideal. However, this is an increasing union of ideals, which does give an ideal.

By Zorn's lemma, there exists a maximal element of A, which will be a maximal ideal containing I.

Corollary 0.3. Let R be a nonzero commutative ring. Then R contains some maximal ideal.

Proof. Take I = (0) in the previous proposition.

Lecture 4, 1/18/23

From now on:

All rings R will be assumed to be commutative with 1.

Definition 0.9. • Let $A_1, \ldots, A_t \subset R$ be ideals, then their <u>sum</u> is the ideal

$$A_1 + \dots + A_t \stackrel{\text{def}}{=} \{a_1 + \dots + a_t \mid a_i \in A_i\}$$

This is the smallest ideal containing A_i for all i.

• If $x_1, \ldots, x_t \in R$, the ideal generated by them

$$(x_1, \dots, x_t) \stackrel{\text{def}}{=} \{ \sum_{i=1}^t r_i x_i \mid r_i \in R \}$$
$$= (x_1) + \dots + (x_t)$$

• More generally, if $\{x_i\}_{i\in I}\subset R$ is some collection of elements of R, the ideal they generate is

$$\sum_{i \in I} (x_i) \stackrel{\text{def}}{=} \{ \text{all finite linear combinations of elements of } \{x_i\}_{i \in I} \}$$

• If $A, B \subset R$ are ideals, then their product is the ideal

$$AB \stackrel{\text{def}}{=} \{ \sum_{i=1}^{n} a_i b_i \mid a_i \in A, b_i \in B, n < \infty \}$$

this is the ideal generated by $\{ab \mid a \in A, b \in B\}$. Note $A \cap B \subseteq AB$, with equality if A + B = R

Example 0.3. Let $R = \mathbb{Z}$. Then $(a) + (b) = (\gcd(a, b)), (a) \cap (b) = (\operatorname{lcm}(a, b))$. When a, b are coprime, then $(a) + (b) = (1) = \mathbb{Z}$, and $(a) \cap (b) = (ab)$.

Definition 0.10. A ring R with exactly 1 maximal ideal \mathfrak{M} is called a <u>local ring</u> (often denoted (R, \mathfrak{M})).

Example 0.4. • $(\mathbb{R}, \{0\})$ is a local ring (in fact any field is) with maximal ideal $\{0\}$

• $(\mathbb{Z}/(p^n), p\mathbb{Z}/(p^n))$ is a local ring for any prime p and n > 0

Lemma 2. Let R be a ring and $\mathfrak{M} \subsetneq R$ a proper ideal such that every $x \in R \setminus \mathfrak{M}$ is a unit. Then $R(R,\mathfrak{M})$ is a local ring.

Proof. We want to show that \mathfrak{M} is a maximal ideal of R, and is the unique such maximal ideal.

Let $I \subseteq R$ be a proper ideal. If it contained a unit, then I = R, which by hypothesis is not true. So, I contains no units. So, it must exist entirely within \mathfrak{M} . So, \mathfrak{M} is a unique maximal ideal.

Proposition 4. Let R be a ring and $\mathfrak{M} \subset R$ a maximal ideal. Then (R, \mathfrak{M}) is a local ring if and only if every $x \in 1 + \mathfrak{M}$ is a unit in R.

Note: $1 + \mathfrak{M} = \{1 + y \mid y \in \mathfrak{M}\} \subset R \text{ is closed under multiplication.}$

Proof. =>

Suppose (R, \mathfrak{M}) is a local ring, and suppose for the sake of contradiction that $x \in 1 + \mathfrak{M}$ is NOT a unit. Note $x = 1 + y, y \in \mathfrak{M}$. By hypothesis, (1 + y) is a proper ideal in R, because 1 + y is not a unit.

So $(1+y) \subset \mathfrak{M}$. In particular, $1+y \in \mathfrak{M}$. But $y \in \mathfrak{M}$, so $1 \in \mathfrak{M}$. Oopsy! Contradiction. So, we have proven one direction.

 $\leq =$

Let $x \in R \setminus \mathfrak{M}$. Since \mathcal{M} is maximal, $\mathfrak{M} + (x) = R$. So, 1 = y + rx for some $y \in \mathfrak{M}, r \in R$. Thus $rx = 1 - y \in \mathfrak{M}$, so rx is a unit by hypothesis, meaning there is a z such that (rx)z = 1 = x(rz), so x is a unit.

By the lemma, this shows (R, \mathfrak{M}) is a local ring.

Definition 0.11. Let R be a ring. Then the <u>nilradical</u> is defined as

$$\mathcal{N} \stackrel{\text{def}}{=} \{ \text{all nilpotent elements of } R \}$$

Proposition 5. The nilradical is an ideal, and the quotient ring R/N has no nonzero nilpotent elements.

Proof. If $x \in \mathcal{N}$, then clearly $rx \in \mathcal{N}$ for any $r \in R$. Suppose $x, y \in \mathcal{N}$. Then for some $n, m, x^n = y^m = 0$. Then, by the binomial theorem,

$$(x-y)^{n+m} = \sum_{i=0}^{n+m} x^{i} (-y)^{n+m-i} \binom{n+m}{i}$$

for all i, at least one of x^i, y^{n+m-i} is zero. So, this sum is zero, so $(x-y) \in \mathcal{N}$. Now, suppose $\overline{x} \in R/\mathcal{M}$. We want to show that $\overline{x} = 0$. Then $\overline{x}^n = 0$ for some n, so $x^n \in \mathcal{N}$ for some n. But then x^n is nilpotent, so x is nilpotent. So, $\overline{x} = 0$.

Proposition 6. The nilradical of R is the intersection of all prime ideals of R.

Proof. Let $x \in \mathcal{N}$. Then $x^n = 0 \in \mathscr{P}$ for any prime ideal $\mathscr{P} \subset R$. So, $x \in \mathscr{P}$, so \mathcal{N} is contained in the intersection. We will do the other inclusion next time.

Lecture 5, 1/20/23

We will continue the proof. Suppose $f \notin \mathcal{N}$. We wish to show that $f \notin \mathcal{P}$ for some prime ideal \mathcal{P} .

Let $\Sigma = \{ \text{ideals } I \subset R \mid f^n \notin I \text{ for all } n > 0 \}.$

Then $\Sigma \neq \emptyset$, as it contains 0 by hypothesis. Further, we can check that any chain has an upper bound (exercise).

By Zorn's Lemma, there exists a maximal $\mathscr{P} \in \Sigma$.

It remains to show \mathcal{P} is a prime ideal.

Suppose that $x, y \notin \mathscr{P}$. Then $\mathscr{P} \subsetneq \mathscr{P} + (x)$ and $\mathscr{P} \subsetneq \mathscr{P} + (y)$. But by maximality of \mathscr{P} , $\mathscr{P} + (x)$, $\mathscr{P} + (y) \notin \Sigma$. So, for some $n, m, f^n \in \mathscr{P} + (x), f^m \in \mathscr{P} + (y)$. So,

$$f^{n+m} \in (\mathscr{P} + (x))(\mathscr{P} + (y)) \subset \mathscr{P} + (xy)$$

Thus $\mathscr{P} + (xy) \not\in \Sigma$. But $\mathscr{P} \in \Sigma$, so we are forced to conclude $(xy) \not\in \Sigma$, so $xy \not\in \mathscr{P}$.

Definition 0.12. We say that the ideals $I, J \subset R$ are coprime if I + J = R.

Example 0.5. $(m), (n) \in \mathbb{Z}$ are coprime iff gcd(m, n) = 1, since (m) + (n) = (d), where d = gcd(m, n).

Definition 0.13. Let R_1, \ldots, R_m be rings. Their direct product is defined as

$$R_1 \times \cdots \times R_n = \{(x_1, \dots, x_n) \mid x_i \in R\}$$

forms a ring with addition and multiplication defined component-wise.

Theorem 0.4. (Chinese Remainder Theorem)

Let I_1, \ldots, I_n be ideals in a ring R, which are pairwise coprime. Then

(i)
$$I_1 \cdots I_n = I_1 \cap \cdots \cap I_n$$

(ii) The map $\phi: R \to R/I_n \times \cdots R/I_n$ given by

$$x \mapsto (x \pmod{I}_1, \dots, x \pmod{I}_n)$$

induces a ring isomorphism

$$\frac{R}{I_1 \cdots I_m} \cong \frac{R}{I_1} \times \cdots \times \frac{R}{I_n}$$

Proof. (i) We will use induction on $n \geq 2$. For the base case, we know that $I_1 \cdot I_2 \subseteq I_1 \cap I_2$. Conversely, suppose $y \in I_1 \cap I_2$. Since $I_1 + I_2 = R$, we can write

 $1 = x_1 + x_2$, with $x_i \in I_i$. So

$$y = y \cdot 1$$

$$= y \cdot (x_1 + x_2)$$

$$= \underbrace{y}_{\in I_2} \cdot \underbrace{x_1}_{\in I_1} + \underbrace{y}_{\in I_1} \cdot \underbrace{x_2}_{\in I_2}$$

$$\in I_1 \cdot I_2$$

Now suppose n > 2 and we have $I_1 \cdots I_{n-1} = I_1 \cap \cdots \cap I_{n-1}$.

Let $J = I_1 \cdots I_n$. By hypothesis, for $i = 1, \dots, n-1$, we have $I_i + I_n = R$, so $1 = \underbrace{x_i}_{\in I_i} + \underbrace{y_i}_{\in I_n}$

So $J \ni x_1 \cdots x_{n-1} = (1 - y_1) \cdots (1 - y_{n-1}) = (1 - \text{some element in } I_n) \equiv 1 \pmod{I_n}$

<u>Notation:</u> We write $x \equiv y \pmod{I}$ if $x - y \in I$ for some $x, y \in R$, $I \subset R$.

Thus we have 1 = (element of J) + (element of $I_m)$, so $R = J + I_n$, so J and I_n are coprime.

By the base case, we have

$$\underbrace{J \cdot I_n}_{=I_1 \cdots I_{n-1} \cdot I_n} = \underbrace{J \cap I_n}_{=(I_1 \cap \cdots \cap I_{n-1}) \cap_n}$$

We have thus proven part (i).

(ii) $\phi: R \to \frac{R}{I_1} \times \cdots \times \frac{R}{I_m}$ is clearly a ring homomorphism, since every component of ϕ is.

To show ϕ is surjective, we will show that there exists some $x \in R$ such that $\phi(x) = (1, 0, \dots, 0)$.

A similar argument would show that there exists $x_i \in R$ such that $\phi(x_i) =$

 $\underbrace{(0,\ldots,\underbrace{1}_{i\text{th slot}},\ldots,0)}_{\text{oth slot}} \text{ and then given any } r = (\overline{r}_1,\ldots,\overline{r}_m) \in \frac{R}{I_1} \times \cdots \times \frac{R}{I_n}, \text{ we have }$

$$\phi\left(\sum_{i=1}^{n} r_i x_i\right) = \sum_{i=1}^{n} \overline{r}_i \phi(x_i) = \sum_{i=1}^{n} \overline{r}_i e_i = (\overline{r}_1, \dots, \overline{r}_m) = r$$

So we will now show surjectivity. For $i=2,\ldots,n$, we have $I_1+I_i=R$, so $1=\underbrace{u_i}_{\in I_i}+\underbrace{v_i}_{\in I_i}$.

Then

$$x \stackrel{\text{def}}{=} v_2 \cdots v_n = (1 - u_2) \cdots (1 - u_n) \equiv \begin{cases} 1 \pmod{I}_1 \\ 0 \pmod{I}_i, i \ge 2 \end{cases}$$

So $\phi(x) = (1, 0, ..., 0) \in \frac{R}{I_1} \times \cdots \times \frac{R}{I_n}$. Thus we have shown surjectivity of ϕ . Finally,

$$\ker(\phi) = \{x \in R \mid x \pmod{I}_i \equiv 0 \forall i\}$$
$$= \{x \in R \mid x \in I_i \forall i\}$$
$$= \bigcap_{i=1}^n I_i = I_1 \cdots I_n$$

So by the first isomorphism theorem for rings (exercise), ϕ induces the claimed isomorphism.

This completes the proof.

Lecture 6, 1/23/23

Extension and contraction of ideals

Definition 0.14. Let $f: R \to S$ be a ring homomorphism, and $I \subset R$ and $J \subset S$ be ideals.

• The contraction of J is the ideal

$$J^c = f^{-1}(J) \subset R.$$

• The extension of I is the ideal generated by f(I):

$$I^{e} = (f(I)) = \{ \sum_{i=1}^{n} s_{i} f(x_{i}) \mid n \in \mathbb{N}, s_{i} \in S, x_{i} \in I \} \subset S$$

Remark. 1. If $I \subset R$ is an ideal, then $f(I) \subset S$ is not necessarily an ideal. For example, consider the inclusion $f: \mathbb{Z} \hookrightarrow \mathbb{Q}$, then $f(\underbrace{n}) = n\mathbb{Z} \subset \mathbb{Q}$ is not an ideal.

2. If $J \subset S$ is a prime ideal, then so is $J^c \subset R$: indeed, the composition

$$R \xrightarrow{f} S \xrightarrow{\phi} S/J$$

has the kernel $f^{-1}(J) = J^c$, so it induces an injection

$$R/J^c \hookrightarrow S/J$$

S/J is an integral domain, so R/J^c must be as well

- **3.** If $I \subset R$ is a prime ideal, then $I^e \subset J$ is <u>not</u> necessarily a prime ideal. For example, consider $f : \mathbb{Z} \hookrightarrow \mathbb{Q}$ and $I = \underbrace{p}$, we have $I^e = (p\mathbb{Z}) = \mathbb{Q}$, so is not prime.
- **4.** Any ring homomorphism $f: R \to S$ can be factored as

$$R \xrightarrow{\phi} f(R) \xrightarrow{\iota} S$$

Note that by first isomorphism theorem, $f(R) \cong R/\ker(f)$.

- For ϕ , we know that there is a bijection between the prime ideals in R containing $\ker(f)$ and the prime ideals in f(R) by the correspondence theorem.
- For the inclusion map, the situation is more complicated.

Example 0.6. Consider $\mathbb{Z} \hookrightarrow \mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$. Then a prime ideal $(p) \subset \mathbb{Z}$ may or may not stay prime in $\mathbb{Z}[i]$.

- (i) If $p \equiv 1 \pmod{4}$, then $(p)^e$ is the product of two prime ideals in $\mathbb{Z}[i]$ (e.g $(5)^e = (2+i)(2-i)$).
- (ii) If $p \equiv 3 \pmod{4}$, then $(p)^e$ is a prime ideal in $\mathbb{Z}[i]$.
- (iii) $(2)^e = (1+i)^2$, the square of a prime ideal in $\mathbb{Z}[i]$.

Proposition 7. Let $f: R \to S$ be a ring homomorphism, and $I \subset R, J \subset S$ ideals. Then:

- **1.** $I \subset (I^e)^c$ and $J \supset (J^c)^e$.
- **2.** $I^e = I^{ece}$ and similarly $J = J^{cec}$.
- **3.** Let $C = \{ contracted \ ideals \ (from \ S) \ in \ R \}$ and $E = \{ extended \ ideals \ (from \ R) \ in \ S \}$. Then we have

$$C = \{I \subset R \mid I^{ec} = I\}$$

$$E = \{J \subset S \mid J^{ce} = J\}$$

$$|C| = |E|$$

The last line says that C, E are in bijection, with $C \to E$ acting by $I \mapsto I^e$, and $E \to C$ acting by $J \mapsto J^c$.

- Proof. 1. We have $I \ni x \in f^{-1}(f(x))$ so $I \subset I^{ec}$. On the other hand, let $y \in J^{ce}$. We can write $y = \sum_i s_i f(x_i)$, $s_i \in S$, $x_i \in J^c = f^{-1}(J)$. So $J^{ce} \subset J$.
- **2.** Immediate from part (1): $I \subset I^{ec} \implies I^e \subset I^{ece} = (I^e)^{ce} \subset I^e$, so $I^e = I^{ece}$. A similar argument gives $J^c = J^{cec}$.
- **3.** Suppose $I \in C$ is a contracted ideal. Then $I = J^c$ for some ideal $J \subset S$. Then $I^{ec} = J^{cec} = J^c = I$, so $C \subset \{I \subset R \mid I^{ec} = I\}$. Conversely, every ideal in $\{I \subset R \mid I^{ec} = I\}$ is a contracted ideal, so we get equality.

Similarly, we see that $E = \{J \subset S \mid J^{ec} = J\}$

Lecture 7, 1/25/23

Ring of fractions and localization

<u>Motivation:</u> Recall how we construct \mathbb{Q} from \mathbb{Z} . We take all ordered pairs $(a, s), a, s \in \mathbb{Z}, s \neq 0$, and set up the equivalence relation $(a, s) \sim (b, t)$ if at = sb. Then $\mathbb{Q} \stackrel{\text{def}}{=} \{$ all such equivalence classes $\}$

Definition 0.15. Let R be a commutative ring with 1. A <u>multiplicative set $S \subseteq R$ </u> is a subset of R which contains 1 and is closed under multiplication. That is, $1 \in S$, and $s, t \in S \implies st \in S$.

Example 0.7.

- **1.** If $\mathfrak{p} \subset R$ is a prime ideal, then $S = R \setminus \mathfrak{p}$ is a multiplicative sets.
- **2.** If R is an integral domain then $S = R \setminus \{0\}$ is a multiplicative set.
- **3.** For any $f \in R$, $S = \{1, f, f^2, \dots\}$ is a multiplicative set.

Let $S \subset R$ be a multiplicative set, and define the relation

$$(a,s) \sim (\ell,t) \iff (at-sb)u = 0$$

for some $u \in S$.

Exercise: Show that this is indeed an equivalence relation.

Definition 0.16. Let $\frac{a}{s}$ denote the equivalence class of $(a, s) \in R \times S$. Then

$$S^{-1}R \stackrel{\text{def}}{=} \left\{ \frac{a}{s} \mid (a,b) \in R \times S \right\}$$

with addition and multiplication defined by

$$\frac{a}{s} + \frac{\ell}{t} \stackrel{\text{def}}{=} \frac{at + s\ell}{st}$$
$$\frac{a}{s} \cdot \frac{\ell}{t} \stackrel{\text{def}}{=} \frac{a\ell}{st}$$

We say that $S^{-1}R$ is the ring of fractions of R with respect to S, or alternatively the localization of R at S.

Note: We have a ring homomorphism $f: R \to S^{-1}R$ acting by

$$r \mapsto \frac{r}{1}$$

such that f(s) is a unit in $S^{-1}R$ for all $s \in S$, since $\frac{1}{s} \in S^{-1}R$, and $\frac{1}{s} = 1$.

Proposition 8. (Universal property of $S^{-1}R$)

Let $g: R \to R'$ be a ring homomorphism such that g(s) is a unit in R' for all $s \in S$. Then there exists a unique ring homomorphism $h: S^{-1}R \to R'$ such that the diagram

$$R \xrightarrow{g} R'$$

$$f \downarrow \qquad \exists !h$$

$$S^{-1}R$$

commutes.

Proof. Suppose first that such h exists. Then for any $r \in R$,

$$h(\frac{r}{1}) = h(f(r)) = g(r)$$

so for any $s \in S$,

$$h(\frac{1}{s}) = h((\frac{s}{1})^{-1}) = h(\frac{s}{1})^{-1} = h(f(s))^{-1} = g(s)^{-1}$$

So for $\frac{r}{s} \in S^{-1}R$, we must have

$$h(\frac{r}{s}) = h(\frac{r}{1})h(\frac{1}{s}) = g(r)g(s)^{-1}$$

To prove the existence of h, set $h(\frac{r}{s}) \stackrel{\text{def}}{=} g(r)g(s)^{-1}$. Then h will be a ring homomorphism satisfying $g = h \circ f$, so long as h is well-defined, so we will check that now.

Suppose $\frac{r}{s} = \frac{r'}{s'}$. Then by definition (rs' - r's)u = 0 for some $u \in S$. So (g(r)g(s') - g(r')g(s))g(u) = g(0) = 0. $g(u) \in (R')^{\times}$, so is not a zero divisor, so g(r)g(s') - g(r')g(s) = 0, so $g(r)g(s)^{-1} = g(r')g(s')^{-1}$.

Example 0.8. Let $\mathfrak{p} \subset R$ be a prime ideal, and $S = R \setminus \mathfrak{p}$ (a multiplicative set). Then we write $R_{\mathfrak{p}}$ for $S^{-1}R$, and call it the localization of R at \mathfrak{p} .

Note: The set ${}_{\mathfrak{p}}R_{\mathfrak{p}} \stackrel{\text{def}}{=} \{ \frac{a}{s} \mid a \in \mathfrak{p}, s \in S \} \subset R_{\mathfrak{p}} \text{ is a proper ideal in } R_{\mathfrak{p}}, \text{ and }$

$$\frac{a}{s} \not\in_{\mathfrak{p}} R_{\mathfrak{p}} \implies a \not\in \mathfrak{p}$$

So $\frac{s}{a} \in R_{\mathfrak{p}}$, so $\frac{a}{s}$ is a unit in $R_{\mathfrak{p}}$.

So $R_{\mathfrak{p}}$ is a local ring, with $\mathfrak{p}R_{\mathfrak{p}}$ the unique maximal ideal by a lemma from lecture 4.

Example 0.9. If $R = \mathbb{Z}$, $\mathfrak{p} = (p)$ with p a prime, then $\mathbb{Z}_{(p)} = \{\frac{a}{s} \mid p \nmid s\} \subset \mathbb{Q}$

8, 1/27/23

Proposition 9. Let $S \subset R$ be a multiplicative subset of a ring R, and $f: R \to S^{-1}R$ the corresponding localization, sending r to $\frac{1}{r}$. Then

- (i) Every ideal in $S^{-1}R$ is extended.
- (ii) An ideal $I \subset R$ is contracted iff for all $s \in S$, $\overline{s} \in \frac{R}{I}$ is NOT a zero divisor.
- (iii) We have a bijection between the prime ideals in $S^{-1}R$ and the prime ideals of R which are disjoint from S. This bijection is given by extension and contraction.
- *Proof.* (i) Let $J \subset S^{-1}R$ be an ideal. We want to show that J is extended, so it is enough to show $J \subset J^{ce}$.

Pick $\frac{r}{s} \in J$. Then $\frac{r}{1} = \frac{s}{1} \cdot \frac{r}{s} \in J$, so $r \in f^{-1}(J) = J^c$. We can then write $\frac{r}{s} = \frac{1}{s} \cdot \frac{r}{1} \in J^{ce}$.

(ii) Let $I \subset R$ be an ideal. It is enough to show

$$(I^{ec} \subset I) \iff \forall s \in S, \overline{s} \in \frac{R}{I} \text{ is not a zero divisor}$$

Let $x \in I^{ec} = f^{-1}(I^e)$. Then

$$f(x) \in I^e = \{\text{all finite linear combinations } \sum_{i} \frac{r_i}{s_i} \overbrace{f(x_i)}^{=\frac{x_i}{1}} \mid r_i \in R, s_i \in S, x_i \in I\}$$

$$= \{\frac{r}{s} \mid r \in I, s \in S\}$$

$$\stackrel{\text{def}}{=} S^{-1}I$$

So $\frac{x}{1} = \frac{r}{s}$ for some $r \in I, s \in S$, so (xs - r)u = 0 for some $u \in S$, so $x \underbrace{su}_{\in S} = \underbrace{ru}_{\in I}$. So $\overline{x} \cdot \overline{su} = \overline{0} \in \frac{R}{I}$.

<u>Note:</u> If $su \in I$, then $\frac{su}{1}$ is a unit in I^e . So $I^e = S^{-1}R$, so $I^{ec} = R$.

If $\overline{su} \neq \overline{0} \in \frac{R}{I}$ (i.e. $su \notin I$) then by hypothesis on elements in $S, \overline{x} = 0 \in \frac{R}{I}$, i.e. $x \in I$, so $I^{ec} \subset I$.

Now for the converse.

Suppose there exists $s \in S$ such that $\overline{s} \in \frac{R}{I}$ is a zero divisor. We want to show that I is not contracted, i.e. there exists an $x \in I^{ec} \setminus I$.

By hypothesis, there exists $\overline{x} \neq \overline{0} \in \frac{R}{I}$ (i.e. $x \notin I$) such that $\overline{x} \cdot \overline{s} = \overline{0} \in \frac{R}{I}$. So xs = y for some $y \in I$, so $\frac{x}{1} = \frac{y}{s} \in S^{-1}I = I^e$. So $x \in f^{-1}(I^e) = I^{ec}$.

(iii) Suppose $\mathfrak{q} \subset S^{-1}R$ is a prime ideal. Then, by part (i), $\mathfrak{q} = S^{-1}\mathfrak{p} = \mathfrak{p}^e$ for some ideal $\mathfrak{p} \subset R$. So $\mathfrak{q}^c = \mathfrak{p}^{ec} \supset \mathfrak{p}$.

Claim. $\mathfrak{p}^{ec} \subset \mathfrak{p}$.

Proof. Indeed, we have $\mathfrak{p} \cap S = \emptyset$, since $s \in \mathfrak{p} \cap S$ implies $1 = \frac{s}{s} \in S^{-1}\mathfrak{p} = \mathfrak{q}$, so $s \notin \mathfrak{p}$ for all $s \in S$. So, $\overline{s} \neq \overline{0} \in \frac{R}{\mathfrak{p}}$ for all $s \in S$.

So \overline{s} is not a zero divisor in $\frac{R}{\mathfrak{p}}$ (because it's an integral domain), so $\mathfrak{p}^{ec} \subset \mathfrak{p}$, as shown in proof of part (ii).

Thus $\mathfrak{q} = S^{-1}\mathfrak{p}, \mathfrak{p} = \mathfrak{q}^c$, and $\mathfrak{p} \cap S = \emptyset$, so we get an injection

{prime ideals $\mathfrak{p} \subset R$ with $\mathfrak{p} \cap S = \emptyset$ } \longleftrightarrow {prime ideals in $S^{-1}R$ }

given by

$$\mathfrak{g} = S^{-1}\mathfrak{p} \mapsto \mathfrak{q}^c = \mathfrak{p}$$

Conversely, let $\mathfrak{p} \subset R$ be a prime ideal with $\mathfrak{p} \cap S = \emptyset$ (we want to show that $\mathfrak{p}^e = S^{-1}\mathfrak{p}$ is a prime ideal in $S^{-1}R$).

Let $\overline{S} = \{\overline{s} \in \frac{R}{\mathfrak{p}} \mid s \in S\} \subset \frac{R}{\mathfrak{p}}$. This is a multiplicative subset. Then the ring homomorphism $S^{-1}R \to \overline{S}^{-1}(\frac{R}{\mathfrak{p}})$ given by $\frac{r}{s} \mapsto \frac{\overline{r}}{\overline{s}}$ induces an isomorphism

$$\frac{S^{-1}R}{S^{-1}\mathfrak{p}} \to \overline{S}^{-1}(\frac{R}{\mathfrak{p}})$$

So we are done if we can show that $\overline{S}^{-1}(\frac{R}{\mathfrak{p}})$ is an integral domain.

But this follows from

- $\mathfrak{p} \cap S = \emptyset$, so $S^{-1}\mathfrak{p} \subsetneq S^{-1}R$, so $\overline{S}^{-1}(\frac{R}{\mathfrak{p}}) \neq (0)$
- $\overline{S}^{-1}(\frac{R}{\mathfrak{p}}) \hookrightarrow$ field of fractions of the integral domain $\frac{R}{\mathfrak{p}}$ (see next remark).

This concludes the proof.

Remark. Suppose R is an integral domain. Then $S = R \setminus \{0\}$ is a multiplicative set. We call $S^{-1}R$ the field of fractions of R.

- **1.** $S^{-1}R$ is a field, since $\frac{r}{s} \neq 0 \in S^{-1}R$, so $r \neq 0$, i.e. $r \in S$, so $\frac{s}{r} \in S^{-1}R$, so $\frac{r}{s}$ is a unit in $S^{-1}R$.
- **2.** The map $f: R \to S^{-1}R$, $r \mapsto \frac{r}{1}$, is injective.

Lecture 9, 1/30/23

Definition 0.17. Let R be a commutative ring with identity. An Abelian group M is called an R-module if there is a function $R: M \times M \to M$, with $(r, m) \mapsto r \cdot m$, such that, for all $r_1, r_2, r \in R, m_1, m_2, m \in M$,

- 1. $r \cdot (m_1 + m_2) = r \cdot m_1 + r \cdot m_2$
- **2.** $(r_1 + r_2) \cdot m = r_1 \cdot m + r_2 \cdot m$
- 3. $(r_1r_2) \cdot m = r_1 \cdot (r_2 \cdot m)$
- **4.** $1 \cdot m = m$.

Example 0.10. Let R be as above.

1. R is an R-module via the map given by multiplication.

- **2.** Let I be an ideal. I is an R-module, again via multiplication.
- **3.** If V is a vector space over a field F, then V is an F-module.
- 4. Let G be an Abelian group. Then G is a \mathbb{Z} -module via the multiplication

$$n \cdot g = \begin{cases} g + \dots + g \text{ (}n \text{ times)} & n > 0 \\ e & n = 0 \\ (-g) + \dots + (-g) \text{ (}|n| \text{ times)} & n < 0 \end{cases}$$

5. let V be a vector space over a field F and let $\theta: V \to V$ be an F-linear map. Then we can regard V as an F[x]-module via $F[x] \times V \to V$, where

$$(\sum a_i x_i, v) \mapsto \sum_i a_i \theta^i(v)$$

Proposition 10. Let M be an R-module. Then

- 1. $0 \cdot m = 0 = r \cdot 0$
- **2.** $-r \cdot m = r \cdot (-m) = -(r \cdot m)$.

Proof. Immediate

Remark. If M is an R-module, then $\operatorname{Ann}_R(M) = \{r \in R \mid r \cdot m = 0 \forall m \in M\} \subset R$ is an ideal of R, called the annihilator of M, and M is naturall an $R/\operatorname{Ann}_R(M)$ -module via $R/\operatorname{Ann}_R(M) \times M \to M$ by $(\overline{r}, m) \mapsto r \cdot m$.

Definition 0.18. Let M be an R-module. A subgroup N of the additive group of M is called a submodule if for all $r \in R, n \in N$, we have $r \cdot n \in N$.

Proposition 11. A subset $N \subseteq M$ is a submodule if it satisfies

- 1. $N \neq \emptyset$
- **2.** $n_1, n_2 \in N \implies n_1 + n_2 \in N$
- **3.** For all $r \in R, n \in N, r \cdot n \in N$

Proof. Exercise

Example 0.11. 1. If R is a commutative ringregarded as an R-module, then $\{R$ -submodules of $R\} = \{\text{ideals of } R\}$.

- **2.** If V is a vector space over a field F, then $\{$ submodules of $V\}$ = $\{$ subspaces of $V\}$.
- **3.** If G is an Abelian group regarded as a \mathbb{Z} -module, then $\{\mathbb{Z}$ -submodules of $G\}$ = $\{\text{subgroups of } G\}$.
- **4.** If V is a vector space over a field F with endomorphism $\theta: V \to V$ (i.e. V is an F[x]-module), then $\{F[x]$ -submodule of $V = \{\theta$ -invariant subspace $W \subseteq V\}$

Definition 0.19. Let M, N be R-modules. A group homomorphism $\theta: M \to N$ is called a module homomorphism (or R-homomorphism) if $\theta(r \cdot m) = r \cdot \theta(m)$ for all $r \in R, m \in M$.

Notation: $\operatorname{Hom}_R(M, N) = \{ \text{ All } R\text{-homomorphisms } \theta : M \to N \}.$

 $\operatorname{Hom}_R(M,N)$ is an R-module, where $R \times \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M,N)$ is defined by

$$(r,\theta) \mapsto \{r \cdot \theta : m \to r[\theta(m)]\}$$

Example 0.12.

- **1.** If V, W are F-vector spaces, then $\{F$ -homomorphisms $\theta : V \to W\} = \{F$ -linear maps $V \to W\}$.
- **2.** If G, H are groups, then $\{\mathbb{Z}\text{-homomorphisms }\theta: G \to H\} = \{\text{group homomorphisms }\theta: G \to H\}.$

Proposition 12. If $\theta: M \to N$ is an R-homomorphism, then

- **1.** $\operatorname{Im}(\theta) = \theta(M) \subseteq N$ is an R-module.
- **2.** $\ker(\theta) = \theta^{-1}(\{0\}) \subseteq M$ is an R-module

Proof. Immediate.

Definition 0.20. If $N \subseteq M$ is a submodule, then the quotient Abelian group $M/N = \{\overline{m} = m + N \mid m \in M\}$ can be made into an R-module via $R \times M/N \to M/N$ defined by $(r, \overline{m}) \to \overline{r \cdot m}$. We say M/N is a quotient module. The quotient map $\theta: M \to M/N$ where $\theta(m) = \overline{m}$ is then an R-homomorphism.

Theorem 0.5. (1st isomorphism theorem)

If $\theta: M \to N$ is an R-module homomorphism, then θ induces an R-module isomorphism $M/\ker(\theta) \cong \operatorname{Im}(\theta)$.

Proof. Exercise

Lecture 10, 2/1/23

Definition 0.21. Let M be an R-module an $A \subseteq M$ then the smallest submodule of M generated by A is $\langle A \rangle = \bigcap_{A \subseteq N \subseteq M} N \equiv_{\text{exercise}} \{\text{all finite linear combinations } \sum_i \lambda_i a_i \mid \lambda_i \in R, a_i \in A\}.$

Definition 0.22. An R-module M is finitely generated if it's of the forem $M = \langle A \rangle$ for some finite $A \subseteq M$.

Definition 0.23. An R-module M is free with basis $A \subseteq M$ is

- 1. $M = \langle A \rangle$
- **2.** $\sum_{i} \lambda_{i} a_{i} = 0$ with distinct $\lambda_{i} \in R$, $a_{i} \in A \implies \lambda_{i} = 0$ for all i (linearly independent). In other words, every $m \in N$ can be uniquely written in the form $m = \sum_{i} \lambda_{i} a_{i}$ with $\lambda_{i} \in R$, $a_{i} \in A$ distinct.

Example 0.13.

- **1.** R is a free R-module with basis $\{1\}$.
- **2.** Similarly, R^n is a free R-module with basis $\{e_i \mid 1 \leq i \leq n\}$, where e_i is the standard vector with a 1 in the ith spot.
- **3.** More generally, for any set A, the module $R^{(A)} = \{\text{all functions } f : A \to R \text{ with } f(a) = 0 \text{ for all but finitely many } a\}$ is free with basis $\{\delta_a\}_{a \in A}$, where $\delta_a : A \to R$ is defined by $\delta_a(m) = \begin{cases} 1 & m = a \\ 0 & \text{otherwise} \end{cases}$

Remark. An R-module M is free with basis A if and only if $M \cong R^{(A)}$. Example 0.14.

- 1. If F is a field, then every finitely generated F-module is free.
- **2.** \mathbb{Z}_2 is <u>not</u> a free \mathbb{Z} -modulek since \mathbb{Z}_2 is generated by 1, but we have $1 = 1 \cdot 1 = 3 \cdot 1 \in \mathbb{Z}_2$.

Remark. Suppose M is a free R-module with basis $A \subseteq M$. Let N be another R-module. Then any function $f: A \to N$ extends uniquely to an R-homomorphism $\varphi: M \to N$ where $f\varphi(\sum_i \lambda_i a_i) = \sum_i \lambda_i f(a_i)$. Note $\varphi(a) = f(a)$ for all $a \in A$.

Proposition 13. Suppose we have the diagram of R-modules and R-homomorphisms θ, ϕ , where free R-module and ϕ is surjective. Then there exists an R-homomorphism

 $\psi:L \to N$ such that $\theta=\phi\circ\psi$. In other words, there is a ψ making this diagram commute:

$$\begin{array}{ccc}
 & L \\
 & \downarrow^{\theta} \\
N & \xrightarrow{\downarrow} N
\end{array}$$

Proof. Let A be a basis for L. Since ϕ is injective, for $a \in A$, there exists $n_a \in N$ such that $\phi(n_a) = \theta(a)$. Then by the preceding remark, $f: A \to N$ defined by $f(a) = n_a$ can be extended uniquely to an R-homomorphism $\psi: L \to N$ by $\sum_i \lambda_i a_i \mapsto \sum_i \lambda_i n_{a_i}$.

By construction, for any $m = \sum_{i} \lambda_i a_i \in L$,

$$\theta(m) = \theta(\sum_{i} \lambda_{i} a_{i})$$

$$= \sum_{i} \lambda_{i} \theta(a_{i})$$

$$= \sum_{i} \lambda_{i} \phi(n_{a_{i}})$$

$$= \sum_{i} \lambda_{i} (\phi \circ \psi)(a_{i})$$

$$= (\phi \circ \psi)(\sum_{i} \lambda_{i} a_{i})$$

$$= (\phi \circ \psi(m))$$

Thus $\phi \circ \psi = \theta$.

Remark. The result of prop 1 doesn't necessarily hold if L is not free, e.g. consider the following \mathbb{Z} -modules

$$\mathbb{Z}_{2}$$

$$\mathbb{Z} \xrightarrow[n \to \overline{n}]{} \mathbb{Z}_{2}$$

Suppose $\psi : \mathbb{Z}_2 \to \mathbb{Z}$ is a \mathbb{Z} -linear map. Let $n = \psi(1) \in \mathbb{Z}$. Then $2n = 2\psi(1) = \psi(2 \cdot 1) = \psi(\overline{0}) = 0 \in \mathbb{Z} \implies n = 0$. Thus $\psi = 0$, so $\phi \circ \psi \neq \mathrm{Id}$.

Proposition 14. Let M be an R-module. Then there exists a free L-module L such that $M \cong L/K$ for some submodule $K \subseteq L$. In other words, every module is a quotient of a free module.

Proof. Take $A \subseteq M$ to be a generating set for M, i.e. $M = \langle A \rangle$. Consider the free R-module $R^{(A)}$ and let $\theta : L \to M$ be the unique R-linear extension of the inclusion $A \hookrightarrow M$. Then θ is surjective, since A generates M. By the 1st isomorphism theorem, $L/\ker(\theta) \cong M$.

Lecture 11, 2/3/23

Definition 0.24. A sequence of R-modules and R-homomorphisms

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

is called exact at M_i if $Im(f_{i-1}) = \ker(f_i)$, and called exact if it's exact at M_i for all i. In particular,

- 1. $(0) \longrightarrow M' \stackrel{f}{\longrightarrow} M$ is exact $\iff f$ injective.
- **2.** $M \xrightarrow{g} M' \longrightarrow 0$ is exact $\iff g$ surjective.
- **3.** $0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$ is exact iff
 - (i) f injective
 - (ii) g surjective
 - (iii) Im(f) = ker(g)

Such an exact sequence is called a short exact sequence.

Example 0.15. If $f: M \to N$ is an R-homomorphism, then

$$0 \longrightarrow \ker(f) \stackrel{\iota}{\longrightarrow} M \stackrel{f}{\longrightarrow} \operatorname{Im}(f) \longrightarrow 0$$

is a short exact sequence.

Remark. Any exact sequence $\cdots \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$ can be decomposed into short exact sequences

Proposition 15. Let Hom be a left-exact functor.

1. Let $0 \longrightarrow N' \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} N'' \longrightarrow 0$ be an exact sequence. Then for any R-module M, the sequence

$$0 \longrightarrow N' \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} N''$$

is exact, with $\overline{f}(\phi) = f \circ \phi, \overline{g}(\psi) = g \circ \psi$.

2. Let $M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ be an exact sequence. Then for any R-module N, the sequence

$$0 \longrightarrow \operatorname{Hom}_R(M'', N) \stackrel{\overline{g}}{\longrightarrow} \operatorname{Hom}_R(M, N) \stackrel{\overline{f}}{\longrightarrow} \operatorname{Hom}_R(M, N'')$$

is also exact.

Proof. We will prove 1.

Suppose $0 \longrightarrow N' \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} N''$ is exact.

We first show \overline{f} is injective. Suppose $\phi \in \text{Hom}(M, N')$ such that $f \circ \phi = \overline{f}(\phi) = 0$. Then $\text{Im}(\phi) \subseteq \text{ker}(f) = 0$, so $\theta = 0$.

We now show $\operatorname{Im}(f) = \ker(g)$. Let $\phi \in \operatorname{Hom}_R(M, N')$. Then $(\overline{f} \circ \overline{g})(\phi) = g \circ f \circ \phi = 0 \circ \phi = 0$ (because $\ker(g) \subseteq \operatorname{Im}(f)$, so $\overline{g} \circ \overline{f} = 0$, i.e. $\operatorname{Im}(\overline{f}) \subseteq \ker(\overline{g})$.

Conversely, let $\psi \in \ker(\overline{g})$. Then $g \circ \psi = 0$, so $\operatorname{Im}(\psi) \subseteq \ker(g) = \operatorname{Im}(f)$ by exactness.

$$M \ni m$$

$$\downarrow^{\psi}$$

$$N' \xrightarrow{k \ f} N \ni \psi(m) = f(n')$$

There exists a unique n' such that $f(n') = \psi(m)$ by exactness. Now define $\phi: M \to N'$ by $\phi(m) = n'$. Then

- ϕ is well-defined
- ϕ is R-linear, since so are ψ and f
- ϕ satisfies $f \circ \phi = \psi$ by construction

Thus $\psi = \overline{f}(\phi)$, i.e. $\psi \in \text{Im}(\overline{f})$. This concludes the proof of 1. The proof of 2 is similar.

Remark. In the context of part 1 of the proposition, suppose $0 \longrightarrow N' \stackrel{f}{\longrightarrow} N \stackrel{g}{\longrightarrow} N''$ is exact, as well as that g is surjective. Then for general R-modules M we (obviously) have

$$0 \longrightarrow \operatorname{Hom}_R(M, N') \stackrel{\overline{f}}{\longrightarrow} N \stackrel{g}{\longrightarrow} N'' \longrightarrow 0$$

is exact, but \overline{g} is not necessarily surjective.

Example 0.16. For $M = \mathbb{Z}_2$ and $(N \xrightarrow{g} N'') = {\mathbb{Z}_2 \choose n \mapsto \overline{n}}$, last time we say that $(\mathrm{Id} : \mathbb{Z}_2 \to \mathbb{Z}_2) \notin \mathrm{Im}(\overline{g})$.

$$\mathbb{Z}_2$$

$$\downarrow^{\mathrm{Id}}$$

$$\mathbb{Z} \xrightarrow{g} \mathbb{Z}_2$$

Similarly, in the context of part 2 of the proposition,

 $0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$ exact does not imply $\overline{f}: \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M',N)$ surjective for general R-modules.

Lecture 12, 2/6/23

Lecture 13, 2/8/23

On $\operatorname{Hom}_R(-,N)$

Recall: If N is an R-module and

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

is an exact sequence, then the sequence

$$\operatorname{Hom}_R(M'', N) \xrightarrow{\overline{g}} \operatorname{Hom}_R(M, N) \xrightarrow{\overline{f}} \operatorname{Hom}_R(M', N)$$

is exact. However, f injective does <u>not</u> imply \overline{f} is surjective for general N.

Definition 0.25. An R-module is called <u>injective</u> if it satisfies any of the three equivalent (we prove they are equivalent next) conditions:

(i) For every such diagram of R-modules and R-homs,

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M$$

$$\downarrow^{\phi}$$

$$Q$$

with f injective, there is a $\psi:M\to Q,$ that makes the following diagram commute

$$0 \longrightarrow M' \xrightarrow{f} M$$

$$\downarrow^{\phi}_{\exists \psi}$$

- (ii) For every injective R-homomorphism $f:M'\to M$, the induced map $\overline{f}:\operatorname{Hom}_R(M,Q)\to\operatorname{Hom}_R(M',Q),\ \psi\mapsto\psi\circ f$ is surjective.
- (iii) Every short exact sequence

$$0 \longrightarrow Q \stackrel{\alpha}{\longrightarrow} M \longrightarrow N \longrightarrow 0$$

splits on the left. That is, there is a $\beta:M\to A$ such that $\beta\circ\alpha=\mathrm{Id}_Q$ (So $M\cong Q\oplus N$)

Theorem 0.6. These three conditions are indeed equivalent.

Proof. Exercise

Lemma 3. (Baer's Criterion)

Let Q be an R-module. If for all ideals $I \subset R$ every R-homomorphism $\phi: I \to Q$ extends to an R-homomorphism $\psi: R \to Q$,

Then Q is an injective R-module.

Proof. Consider a diagram of R-modules and R-homomorphisms

$$0 \longrightarrow M' \xrightarrow{f} M$$

$$\downarrow \qquad \qquad Q$$

If f is an injection, then $M' \cong f(M')$. We want to show that there exists $\psi : M \to Q$ such that $\phi = \psi \circ f$. Without loss of generality, assume $M' \subseteq M$ and $f = \iota$.

Consider the set $\mathcal{A} = \{\text{all } R\text{-submodules } N \text{ of } M \text{ with } M' \subset N \subset M, \text{ such that there exists an } R\text{-homomorphism } \phi_N : N \to Q \text{ with } \phi_N|_{M'} = \phi\}.$

We order the set as follows. We say $N_1 \leq N_2$ if $N_1 \subset N_2$ and $\phi_{N_2}|_{N_1} = \phi_{N_1}$. Because $M' \in \mathcal{A}, \mathcal{A} \neq \emptyset$. Further, it is clear that every chain in \mathcal{A} has an upper bound. By Zorn's lemma, there exists some maximal element N in \mathcal{A} . If N = M, we're

done. So for the sake of contradiction, suppose $N \subsetneq M$ is a proper submodule. Let $m \in$

 $M \setminus N$, and consider the ideal $I = \{r \in R \mid rm \in N\} \subset R$. By hypothesis, the R-homomorphism $\phi_M : I \to Q, r \mapsto \phi_N(rm)$ extends to an R-homomorphism $\psi_m : R \to Q$:

Note that $\operatorname{Ann}_R(m) = \{r \in R \mid rm = 0\} \subset \ker \phi_m \subset \ker \psi_m$. So ψ_m factors as

and we have $\psi'_m|_{Rm\cap N} = \phi_N|_{Rm\cap N}$ by definition. So we can extend ϕ_N to

$$\phi_{N'}: N' \stackrel{\text{def}}{=} N + Rm \to Q$$

$$n + r \mapsto \phi_N(n) + \psi'_m(rm)$$

but $N' \supseteq N$, contradicting maximality of N.

Definition 0.26. Let G be an Abelian group. G is said to be <u>divisible</u> if for any $n \in \mathbb{Z} \setminus \{0\}$, the map $g \mapsto ng$ is surjective.

Proposition 16. Let G be an Abelian group (= \mathbb{Z} -module). Then G is an injective \mathbb{Z} -module if and only if G is divisible.

Proof. Suppose G is an injective \mathbb{Z} -module. Let $n \in \mathbb{Z} \setminus \{0\}, g \in G$, and consider

$$\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{g \mapsto n \cdot g} \mathbb{Z} \\
1 \mapsto g \downarrow & & \psi \\
G & & & \end{array}$$

Then there exists $\psi: \mathbb{Z} \to G$ such that $\phi = \psi \circ f$. So

$$g = \phi(1)$$

$$= \psi(f(1))$$

$$= \psi(n)$$

$$= n \cdot \underbrace{\psi(1)}_{\in G}$$

Now suppose G is divisible. By Baer's lemma, to check G is injective in \mathbb{Z} -mod, it is enough to show that for all ideals $I=(n)\subset\mathbb{Z}$ and $\phi:I\to G$, the map ϕ extends to \mathbb{Z} :

The case n=0 is trivial. So suppose $n\neq 0$. Let $g=\phi(n)$. Then $g=n\cdot g'$ for some $g'\in G$.

The \mathbb{Z} -linear map $\psi : \mathbb{Z} \to G$ defined by $1 \mapsto g'$ extends phi.

Example 0.17. $\mathbb{R}, \mathbb{Q}, \mathbb{Q}/\mathbb{Z}$ are all injective \mathbb{Z} -modules since they are divisible.

Lecture 14, 2/10/23

Localization of modules

Let R be a commutative ring with 1, $S \subset R$ a multiplicative subset, and M an Rmodule.

Define the relation \sim on $M \times S$ by $(m,s) \sim (m',s') \iff t(s'm-sm')=0$ for some $t \in S$, and let $\frac{m}{s}$ =equivalence class of (m, s). Then $S^{-1}M = \{\frac{m}{s} \mid m \in M, s \in S\}$ becomes an $S^{-1}R$ -module via

$$\frac{m}{s} + \frac{m'}{s'} \stackrel{\text{def}}{=} \frac{s'm + sm'}{ss'}$$
$$\frac{r}{t} \cdot \frac{m}{s} \stackrel{\text{def}}{=} \frac{rm}{st}$$

If $f: M \to N$ is an R-homomorphism, then $S^{-1}f: S^{-1}M \to S^{-1}N$ given by $\frac{m}{s} \mapsto \frac{f(m)}{s}$ is a $S^{-1}R$ homomorphism.

Proposition 17. If $M' \xrightarrow{f} M \xrightarrow{g} M''$ is a R-mod exact sequence, then

$$S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M$$

is an $S^{-1}R$ -mod exact sequence. That is, localization is an exact functor.

Proof. We need to show $\text{Im}(S^{-1}f) = \text{ker}(S^{-1}g)$. We have Im(f) = ker(g), so $g \circ f = 0$. So $S^{-1}(g \circ f) = 0$. So $\operatorname{Im}(S^{-1}f) \subseteq \ker(S^{-1}g)$. Conversely, let $\frac{m}{s} \in \ker(S^{-1}g)$. So $=(S^{-1}g)\circ(S^{-1}f)$ $\tfrac{g(m)}{s}=0\in S^{-1}M''.$

So for some $t \in S$, $t \cdot g(m) = 0 \in M''$. So $tm \in \ker(g) = \operatorname{im}(f)$, so tm = f(m') for some $m' \in M'$.

Therefore $\frac{m}{s} = \frac{tm}{ts} = \frac{f(m')}{ts} \in \text{Im}(S^{-1}f).$

Corollary 0.7. If $N \subset M$ is an R-submodule, then $S^{-1}N \subset S^{-1}M$ is an $S^{-1}R$ submodule, and $\frac{(S^{-1}M)}{(S^{-1}N)} \cong S^{-1}(\frac{M}{N})$

Proof. Apply the proposition to the short exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$$

Indeed, this tells us

$$0 \longrightarrow S^{-1}N \longrightarrow S^{-1}M \longrightarrow S^{-1}\frac{M}{N} \longrightarrow 0$$

is exact.

Notation: If $S = R \setminus \mathfrak{p}$ with $\mathfrak{p} \subset R$ a prime ideal, we often use $f_{\mathfrak{p}}, M_{\mathfrak{p}}$ to denote $S^{-1}f, S^{-1}M$.

Proposition 18. Let M be an R-module. Then the following are equivalent:

- (i) M = 0.
- (ii) $M_{\mathfrak{p}} = 0$ for all prime ideals $\mathfrak{p} \subset R$.
- (iii) $M_{\mathfrak{m}} = 0$ for all maximal ideals $\mathfrak{m} \subset R$,

Proof. Clearly $(i) \implies (ii)$, and $(ii) \implies (iii)$, as maximal ideals are prime. The only thing to check is $(iii) \implies (i)$.

Suppose (iii) holds, and for the sake of contradiction that $M \neq 0$. Let $x \neq 0 \in M$.

Then $I = \operatorname{Ann}_R(x) \stackrel{\text{def}}{=} \{r \in R \mid rx = 0\} \subset R \text{ is a proper ideal, so } I \subset \mathfrak{m} \text{ for some maximal ideal } \mathfrak{m}.$

Then $\frac{x}{1} = 0 \in M_{\mathfrak{m}} \implies t \cdot x = 0$ for some $t \in R \setminus \mathfrak{m} \subset R \setminus I$.

But this means that $t \in I!!$ Contradiction.

Corollary 0.8. Let $f: M \to N$ be an isomorphism. Then the following are equivalent:

- (i) f is injective.
- (ii) $f_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective for all prime ideals $\mathfrak{p} \subset R$.
- (iii) $f_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is injective for all maximal ideals $\mathfrak{m} \subset R$.

Moreover, the same holds with "injective" replaced by "surjective" everywhere.

Proof. $(i) \implies (ii)$

If f is injective, then the sequence

$$0 \longrightarrow M \stackrel{f}{\longrightarrow} N$$

is exact, so by the proposition, the sequence

$$0 \longrightarrow M_{\mathfrak{p}} \stackrel{f_{\mathfrak{p}}}{\longrightarrow} N_{\mathfrak{p}}$$

is exact for all prime ideals $\mathfrak{p} \subset R$. So $f_{\mathfrak{p}}$ is injective.

$$(ii) \implies (iii)$$

Maximal ideals are prime.

$$(iii) \implies (i)$$

Suppose (iii) holds, and let $K = \ker(f)$. So we have the exact sequence

$$0 \longrightarrow K \longrightarrow M \stackrel{f}{\longrightarrow} N$$

Then by the proposition, we have an exact sequence

$$0 \longrightarrow K_{\mathfrak{m}} \longrightarrow M_{\mathfrak{m}} \xrightarrow{f_{\mathfrak{m}}} N_{\mathfrak{m}}$$

So
$$K_{\mathfrak{m}} \cong \underbrace{\ker(f_{\mathfrak{m}})}_{0 \text{ by } (iii)}$$

So by a previous proposition, K = 0, so f is injective.

Motivation for next topic

<u>Recall:</u> An R-module M is <u>finitely generated</u> (fg) if there exist $f_1, \ldots, f_r \in M$ such that

$$M = (f_1, \dots, f_r) = \{ \sum_{i=1}^r a_i f_i \mid a_i \in R \}$$

Note: For general rings R, a submodule of a finitely generated module <u>need not</u> be finitely generated itself.

For instance, let $R = \mathbb{Z}[x_1, x_2, x_3, \dots]$ be the polynomial ring in countably-many variable seen as an R-module. This is finitely generated (e.g. by 1), but the ideal $I = (x_1, x_2, x_3, \dots)$ is not finitely generated.

Lecture 15, 2/13/23

Definition 0.27. Let R be a commutative ring with 1.

- An R-module M is a Noetherian R-module if every submodule M is finitely generated.
- We say R is a Noetherian ring if R is Noetherian as an R-module (iff every ideal is finitely generated).

Example 0.18. 1. If F is a field, then F is a Noetherian ring and an F-module V is Noetherian iff $\dim_F V < \infty$.

2. If R is a PID, then R is a Noetherian ring and an R-module M is Noetherian iff it's finitely generated.

Proposition 19. If an R-module M is Noetherian, then any submodule and any quotient of M is Noetherian.

Proof. For submodules, this is clear by definition.

For quotients, let M/N be a quotient of M and $L \subset M/N$ a submodule.

Let $\phi: M \to M/N$ by $\phi(m) = m + N$.

Since M is Noetherian, we can write $\phi^{-1}(L) = (a_1, \ldots, a_r)$ for some $a_1, \ldots, a_r \in M$.

We claim $(\phi(a_1), \ldots, \phi(a_r))$ generated L.

Indeed, $\phi(a_i) = a_i + N$, since $\phi(\phi^{-1}(L)) \subset L$.

Thus $\{\overline{a_1}, \dots, \overline{a_r}\} \subset L$.

Conversely, let $\lambda \in L$.

Then $\lambda = \overline{a} = a + N$ for some $a \in \phi^{-1}(L)$.

Thus $a = \sum_{i=1}^{r} r_i \phi(a_i)$.

Thus $L \subset (\phi(a_i), \ldots, \phi(a_r))$.

Definition 0.28. We say that an R-module M satisfies the ascending chain condition (ACC) if any ascending chain of submodules of M $\overline{N_1} \subset N_2 \subset N_3 \subset \cdots$ stabilizes, i.e. there exists $r \geq 1$ such that $N_r = N_{r+1} = \cdots$.

Theorem 0.9. M is a Noetherian R-module iff M satisfies the ACC.

Proof. =>

Let $N_1 \subset N_2 \subset \cdots$ be a chain of submodules of M.

Let $N = \bigcup_{i \geq 1} N_I$, and notes that N is a submodule of M. Then N is finitely generated, i.e. $N = (a_1, \ldots, a_k)$ for some k. Then for some r sufficiently large, $a_i \in N_r$ for $1 \leq i \leq k$. This implies that $(a_1, \ldots, a_k) \subset N_r \subset N$, so after the rth step, N_i stabilizes.

 $\leq=$

Let $N \subset M$ be a submodule.

Without loss of generality, assume N is infinite. Choose a sequence of distinct points $(a_i) \in N$.

Note $(a_1) \subset (a_1, a_2) \subset (a_1, a_2, a_3) \subset \cdots$

By the ACC, there exists r such that $(a_1, \ldots, a_r) = (a_1, \ldots, a_r, a_{r+1}) = (a_1, \ldots, a_r, a_{r+1}, a_{r+2}) \cdots$. So (a_1, \ldots, a_r) generates N.

Proposition 20. Let M be an R-module and $N \subset M$ a submodule. If N and M/N are Noetherian R-modules, then so is M.

Proof. Let $L_1 \subset L_2 \subset \cdots$ be an ascending chain of submodules of M.

Then $L_1 \cap N \subset L_2 \cap N \subset \cdots$ is an ascending chain of submodules of N and $\phi(L_1) \subset \phi(L_2) \subset \cdots$ is an ascending chain of submodules of M/N, where ϕ is the canonical projection.

Since N, M/N are Notherian, by previous proposition we have r such that $L_1 \cap N = L_{r+1} \cap N = \cdots$ and $\phi(L_r) = \phi(L_{r+1}) = \cdots$.

We claim that $L_r = L_{r+1} = \cdots$.

It is enough to show $L_{r+1} \subset L_r$. Choose $m \in L_{r+1}$.

Then $\phi(m) \in \phi(L_{r+1}) = \phi(L_r)$.

So $m + N \in \phi(L_r)$.

Thus m + N = y + N for some $y \in L_r = L_{r+1}$.

This implies that m = y + n for some $n \in N$.

Note $n = m - y \in N \cap L_{r+1} = N + L_r$.

Thus $m = n + y \in L_r$.

Corollary 0.10. If M and N are Noetherian modules, then so is their direct sum $M \oplus N$.

Proof. Clear from previous, since M is a submodule of $M \oplus N$ and N is a quotient of $M \oplus N$.

Proposition 21. If R is a Noetherian ring and M is a finitely generated R-module, then M is a Noetherian R-module.

Proof. Suppose $M = (a_1, \ldots, a_n)$.

Then $\phi: \mathbb{R}^n \to M$ by $\phi(c_i) = a_i$ is a sufjective R-homomorphism inducing $\mathbb{R}^n / \ker(\phi) \cong M$. Then \mathbb{R}^n is a Noetherian R-module by previous proposition.

Lecture 16, 2/22/23

Existence and uniqueness of tensor products.

Given R-modules M and N, we define their tensor product to be a pair $(M \otimes_R N, g)$, with $M \otimes_R N$ an R-module, and $g: M \times N \to M \otimes_R N$ an R-bilinear map, satisfying the universal property:

For any R-module P and R-bilinear $f: M \times N \to P$, there exists a unique R-linear map $f': M \otimes_R N \to P$ such that $f = f \circ g$. That is, there is an f' making the

following diagram commute:

$$M \times N \xrightarrow{f} P$$

$$\downarrow g \qquad \exists! f'$$

$$M \otimes_R N$$

Last time:

We constructed $M \otimes_R N = R^{(M \times N)}/\langle A \rangle$, where A is the submodule generated by all R-bilinear relations in $R^{(M \times N)}$.

Then $q: R^{(M\times N)} \to M \otimes_R N$ is the projection.

Remark. $M \otimes_R N$ is generated by the elements of the form $m \otimes n$, $(m \in M, n \in N)$, subject to the relations

$$(m_1 + m_2) \otimes n = m_1 \otimes n + m_2 \otimes n$$

$$m \otimes (n_1 + n_2) = m \otimes n_1 + m \otimes n_2$$

$$(rm) \otimes n = m \otimes (rn) = r(m \otimes n)$$

It can be easily checked that indeed g = q are bilinear, and indeed $(M \otimes_R N, g)$ satisfies the universal property.

Example 0.19.

1. $(\mathbb{Z}/3\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) = 0$. It is enough to show $a \otimes b = 0$ for all $a \in \mathbb{Z}/3\mathbb{Z}, b \in \mathbb{Z}/2\mathbb{Z}$, and this follows from

$$a \otimes b = 3(a \otimes b) - 2(a \otimes b)$$

$$= \underbrace{(3a)}_{=0} \otimes b - a \otimes \underbrace{(2b)}_{=0}$$

$$= 0$$

2. Let $I, J \subset R$ be ideals. Then

$$(R/I) \otimes_R (R/J) = R/(I+J)$$

In particular, $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = \mathbb{Z}/d\mathbb{Z}$, where $d = \gcd(m, n)$.

We check this by showing that R/(I+J) along with the map β (given below) satisfies the same universal property as $(R/I) \otimes (R/J)$.

Define the map $\beta: R/I \times R/J \to R/(I+J)$ by $(r+I,s+J) \mapsto rs+I+J$. This is certainly R-bilinear.

Given any R-module P and R-bilinear $f: R/I \times R/J \to P$, we need an R-linear $f': R/(I+J) \to P$ such that

$$R/I \times R/J \xrightarrow{f} P$$

$$\beta \downarrow \qquad \qquad f'$$

$$R/(I+J)$$

commutes. We have f(r+I, s+J) = rsf(1+I, 1+J) by R-bilinearity, and $\beta(r+I, s+J) = rs+I+J = rs(1+I+J)$.

Any such f' must send 1 + I + J to f(1 + I, 1 + J), and this uniquely determines the R-linear map $f': R/(I+J) \to P$, $t+I+J \mapsto tf(1+I,1+J)$, so $f=f' \circ \beta$.

Properties of the tensor product:

Proposition 22. Let L, M, N, M_1, M_2 be R-modules. Then:

- (a) $R \otimes_R M \cong M$
- (b) $M \otimes_R N \cong N \otimes_R M$
- (c) $(L \otimes_R M) \otimes_R N \cong L \otimes_R (M \otimes_R N)$
- (d) $(M_1 \oplus M_2) \otimes_R N \cong (M_1 \otimes_R N) \oplus (M_2 \otimes_R N)$

Proof. All these are shown using the universal property. We will prove (a). We want to produce an R-bilinear map from $R \times M \to M$. The map given by the ring action, $\beta(r,m) = r \cdot m$ is R-bilinear, and given any R-bilinear map $R \times M \to P$,

$$R \times M \xrightarrow{f} P$$

$$\downarrow \qquad \qquad M$$

f(r,m) = rf(1,m), and $\beta(r,m) = r \cdot m$. So if we define $f': M \to P$ by $m \mapsto f(1,m)$, this is the unique R-linear map satisfying $f = f' \circ \beta$. So $R \otimes_R M \cong M$.

Lecture 12, 2/27/23

If $f: M \to N$ and $g: M' \to N'$ are R-homs, we define $f \otimes g: M \otimes M' \to N \otimes N$ by $\sum_i x_i \otimes y_i \mapsto \sum_i f(x_i) \otimes g(y_i)$.

Proposition 23. (\otimes is a right exact functor)

Suppose $M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ be an R-module exact sequence. Then for any R-module N, the sequence

$$M' \otimes N \xrightarrow{f \otimes \operatorname{Id}_n} M \otimes N \xrightarrow{g \otimes \operatorname{Id}_N} M'' \otimes N \longrightarrow 0$$

is also exact.

Claim. There is a natural R-module isomorphism

$$\operatorname{Hom}_R(M \otimes_R N, P) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$$

Proof. Indeed, for a map $f: M \otimes_R N \to P$, consider the map defined by $m \mapsto (n \mapsto f(m,n))$. The naturality of this is a classical exercise, and I did it for 236 homework.

We will now prove the proposition.

Proof. Let P be any R-module. By left-exactness of Hom, if

$$M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$$

is exact, then

$$0 \longrightarrow \operatorname{Hom}_R(M'', \operatorname{Hom}_R(N, P)) \stackrel{\overline{g}}{\longrightarrow} \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P)) \stackrel{\overline{f}}{\longrightarrow} \operatorname{Hom}_R(M', \operatorname{Hom}_R(N, P))$$

is exact. By the claim,

$$0 \longrightarrow \operatorname{Hom}_R(M'' \otimes_R, P) \xrightarrow{\overline{g \otimes \operatorname{Id}_N}} \operatorname{Hom}_R(M \otimes N, P) \xrightarrow{\overline{f \otimes \operatorname{Id}_N}} \operatorname{Hom}_R(M' \otimes N, P)$$

Note that above we really are using the fact that the correspondence between $\operatorname{Hom}_R(M \otimes_R N, P)$ and $\operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$ is not just a set isomorphism, but is indeed natural.

Remark.

1. The natural iso for any R-modules M, N, P,

$$\operatorname{Hom}_R(M \otimes N, P) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P))$$

means that \otimes and Hom are adjoint functors.

2. If

$$0 \longrightarrow M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0$$

is exact, then for an arbitrary R-module N, the sequence

$$0 \longrightarrow M' \otimes N \xrightarrow{f \otimes \operatorname{Id}_N} M \otimes N \xrightarrow{g \otimes \operatorname{Id}_N} M'' \otimes N \longrightarrow 0$$

is <u>not</u> necessarily exact (the problem is $f \otimes \operatorname{Id}_N$ is not necessarily injective).

Example 0.20. Consider the following \mathbb{Z} -module exact sequence:

$$0 \longrightarrow \mathbb{Z} \stackrel{f}{\longrightarrow} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

where f is given by $n \mapsto 2n$, and take $N = \mathbb{Z}/2\mathbb{Z}$. Then applying $- \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$ we get

$$0 \longrightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \xrightarrow{f \otimes 1} \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

But $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z}$, so this is the sequence

$$0 \longrightarrow \mathbb{Z}/2\mathbb{Z} \xrightarrow{f \otimes 1} \mathbb{Z}/2\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

where $f \otimes \text{Id}$ is <u>not</u> injective, as $f : \overline{n} \mapsto 2\overline{n} = \overline{2n} = 0$.

Definition 0.29. We say that an R-module M is $\underline{\text{flat}}$ (over R) if for any R-module exact sequence

$$\cdot \longrightarrow M_{i-1} \xrightarrow{f_{i-1}} M_i \xrightarrow{f_i} M_{i+1} \longrightarrow \cdots$$

the sequence

$$\cdots \longrightarrow M_{i-1} \otimes_R N \xrightarrow{f_{i-1} \otimes \operatorname{Id}_N} M_i \otimes_R N \xrightarrow{f_i \otimes \operatorname{Id}_n} M_{i+1} \otimes_R N \longrightarrow \cdots$$

is also exact.

Proposition 24. Let N be an R-module. Then the following are equivalent:

1. N is flat over R.

- **2.** If $0 \longrightarrow M' \xrightarrow{f} M \xrightarrow{g} M'' \longrightarrow 0$ is a short exact sequence, then so is $0 \longrightarrow M' \otimes_R N \xrightarrow{f \otimes_R \operatorname{Id}_N} M \otimes_R N \xrightarrow{g \otimes_R \operatorname{Id}_N} M'' \otimes_R N \longrightarrow 0$.
- **3.** If $f: M' \to M$ is an injective R-homomorphism (with M, M' arbitrary R-modules), then $f \otimes_R \operatorname{Id}_N : M' \otimes_R N \to M \otimes_R N$ is also injective.
- **4.** If $f: M' \to M$ is an injective R-homomorphism, with M', M finitely generated, then $f \otimes_R \operatorname{Id}_N : M' \otimes_R N \to M \otimes_R N$ is also injective.

Proof.

$$(1) \implies (2)$$

This is clear.

$$(2) \implies (1)$$

Any exact sequence can be split into short exact ones.

$$(2) \iff (3)$$

Previous proposition.

$$(3) \implies (4)$$

Clear.

$$(4) \implies (3)$$

Suppose $f: M' \to M$ is injective R-homomorphism with M, M' arbitrary, and let $u \in \ker(f \otimes \operatorname{Id}_N)$. We want to show u = 0.

Write $n = \sum_{i=1}^r x_i \otimes y_i$, with $x_i \in M', y_i \in N$, and consider the restrictions

$$M' \stackrel{f}{\longleftarrow} M$$

$$\uparrow \qquad \uparrow$$

$$M'_0 \stackrel{f_0}{\longleftarrow} M_0$$

With
$$M_0' \stackrel{\text{def}}{=} (x_1, \dots, x_r), M_0 \stackrel{\text{def}}{=} (f(x_1), \dots, f(x_n)).$$

Then f_0 is an injection between finitely generated R-modules, so by (4), $f_0 \otimes_R \operatorname{Id} : M'_0 \otimes_R N \to M_0 \otimes_R N$ is injective.

Since $0 = (f \otimes \operatorname{Id})(u) = \sum_{i=1}^r f(x_i) \otimes y_i = \sum_{i=1}^r f_0(x_i) \otimes y_i$, since $x_i \in M'_0$. So this equals $(f_0 \otimes \operatorname{Id})(u)$. This shows u = 0, so $f \otimes \operatorname{Id}$ is injective.

Lecture 13, 3/1/23

Recall: An R-module N is <u>flat</u> over R if for any injective R-homomorphism $g: M' \hookrightarrow M$, the map $g \otimes_R \operatorname{Id}: M' \otimes_R N \to M \otimes_R N$ is also injective.

Example 0.21. Any free R-module is R-flat.

Indeed, if $N \cong \mathbb{R}^n$ (the case of infinite is similar) and $g: M' \hookrightarrow M$ is an injective R-homomorphism, then

$$g \otimes_R \operatorname{Id} : \underbrace{M' \otimes_R M}_{\cong \bigoplus_{i=1}^n (M' \otimes_R R) \cong M' \oplus \cdots \oplus M'} \to M \otimes_R N$$

Similarly, $M \otimes_R N \cong M \oplus \cdots \oplus M$. As an exercise, verify $(g, \ldots, g) : M' \oplus \cdots \oplus M' \to M \oplus \cdots \oplus M$ is also injective.

Restriction and extension of scalars

Definition 0.30.

Let $f: R \to R'$ be a ring homomorphism.

- **1.** If N is an R'-homomorphism, then N becomes an R-module via $R \times N \to N$ given by $(r, n) \mapsto f(r)m$. This is called <u>the restriction of scalars</u> of N (from R to R').
- **2.** If M is an R-module, then define $M_{R'} \stackrel{\text{def}}{=} M \otimes_R R'$, viewing R' as an R-module via f. This is an R-module via $R' \times M_{R'} \to M_{R'}$, defined by $(a, m \otimes r') \mapsto m \otimes (ar')$. This is called the extension of scalars of N (from R' to R).

Proposition 25. Let $f: R \to R'$ be a ring homomorphism, M an R-module, and N, P R'-modules.

Then $M \otimes_R (N \otimes_{R'} P) \cong (M \otimes_R N) \otimes_{R'} P$ as R-module, and also as R'-modules.

Proof. Exercise (cf proof of "associativity" of \otimes in lecture 17)

Corollary 0.11. Let $f: R \to R'$ be a ring homomorphism, and M an R-module. Then if M is R-flat, then $M_{R'}$ is R'-flat.

Proof. Let $g: N' \hookrightarrow N$ be an injective R'-homomorphism. Then it is an injective R-homomorphism. Because M is R-flat, $g \otimes_R \operatorname{Id}: N' \otimes_R M \to N \otimes_R M$ is also injective. Now, we write $N' \otimes_R M = (N' \otimes_{R'} R') \otimes_R M = N' \otimes_{R'} M_{R'}$, and $N \otimes_R M = (N \otimes_{R'} R') \otimes_R M = N \otimes_{R'} M_{R'}$. So $M_{R'}$ is R'-flat.

In other words, flatness is preserved by extension of scalars.

Note: For arbitrary ring homomorphism $f: R \to R'$, $M_{R'}$ is R'-flat DOES NOT imply that M is R-flat.

Example 0.22. Take $f: \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$, $n \mapsto \overline{n}$ the projection, and $M = \mathbb{Z}/2\mathbb{Z}$ viewed as a \mathbb{Z} -module. Then $M_{R'} = (\mathbb{Z}/2\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$, which is flat over R' because it is free over R'. But the original module is <u>not</u> flat over \mathbb{Z} , as we saw last time.

Flatness and localization

Proposition 26. Let $S \subset R$ be a multiplicative subset and M an R-module. Then $(S^{-1}R) \otimes_R M \cong S^{-1}M$ as $S^{-1}R$ -modules.

Proof. Consider the following R-bilinear map $\beta: S^{-1}R \times M \to S^{-1}M$, $(\frac{a}{s}, m) \to \frac{am}{s}$. If $f: S^{-1}R \times M \to N$ is any R-bilinear map, with N any R-module, then by bilinearity, $f(\frac{a}{s}, m) = a(\frac{1}{s}, m)$. We want to find a map f' making the diagram commute:

$$S^{-1}R \times M \xrightarrow{f} N$$

$$\beta \downarrow \qquad \exists f'?$$

$$S^{-1}M$$

Indeed, $f': \frac{m}{s} \mapsto f(\frac{1}{s}, m)$ is the unique R-linear map making the diagram commute. By the universal property of $S^{-1}R \otimes_R M$, this implies $(S^{-1}R) \otimes_R M \cong S^{-1}M$, $\frac{a}{s} \otimes m \mapsto \frac{am}{s}$, and the isomorphism is clearly $S^{-1}R$ -linear.

Corollary 0.12. ("Localizations are flat")

For any multiplicative set $S \subset R$, $S^{-1}R$ is a flat R-module, (viewing $S^{-1}R$ as an R-module via $f: R \to S^{-1}R, r \mapsto \frac{r}{1}$).

Proof. If $N \subset M$ is any R-submodule, then $S^{-1}N \subset S^{-1}M$ is an $S^{-1}R$ -submodule. By previous proposition, $S^{-1}N = (S^{-1}R) \otimes_R N$, and $S^{-1}M = (S^{-1}R) \otimes_R M$. So $S^{-1}R$ is a flat R-module.

Proposition 27. ("Flatness is a local property"). Let M be an R-module. Then the following are equivalent:

- 1. M is R-flat
- **2.** $M_{\mathfrak{p}}$ is flat for all prime ideals $\mathfrak{p} \subset R$
- **3.** $M_{\mathfrak{m}}$ is $R_{\mathfrak{m}}$ -flat for all maximal ideals $\mathfrak{m} \subset R$

Lecture 14, 3/8/23

Next: Structure theorem for finitely generated modules over a PID.

- Recall that an integral domain R is a principal ideal domain if every ideal in R is principle, i.e. I = (a) for some $a \in R$.
- An integral domain R is a Euclidean domain if there is a function $N: R \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ such that for all $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that q = qb + r, with either r = 0 or N(r) < N(b).

Example 0.23. \mathbb{Z} , F[t], with F a field, are PIDs, even Euclidean domains.

Lemma 4. If R is a Euclidean domain, then R is a PID.

Proof. Exercise

We'll give the proof of the structure theorem only for finitely generated modules over a Euclidean domain.

Lemma 5. Let R be a Noetherian ring, and M a finitely generated R-module. Then there exists an R-module exact sequence

$$R^n \xrightarrow{f} R^m \xrightarrow{g} M \longrightarrow 0$$

for some $m, n \geq 0$. In particular, $M \cong \frac{R^m}{f(R^n)}$

Proof. Let $\{v_1, \ldots, v_m\}$ be a generating set for M, and define the R-linear map g:

$$R^m \to M$$
 by $\begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \mapsto \sum_{j=1}^m x_j v_j$.

Then $\operatorname{Im}(g) = M$, so the sequence $R^m \xrightarrow{g} M \longrightarrow 0$ is exact.

Let $K \stackrel{\text{def}}{=} \ker(g) \subset R^m$. Since R^m is a Noetherian R-module, K is finitely generated.

Let $\{w_1,\ldots,w_n\}$ be a generating set for K, and define the R-linear map $f:R^n\to$

$$R^m f: R^n \to K \subset R^m \text{ by } \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \mapsto \sum_{i=1}^m y_i w_i.$$

Them $\operatorname{Im}(f) = K(= \ker g)$, so

$$R^n \xrightarrow{f} R^m \xrightarrow{g} M \longrightarrow 0$$

is exact.

Remark.

- 1. A description of M as in Lemma 1 is called a <u>presentation of M</u>. It corresponds to a choice of:
 - (i) A set of generators $\{v_1, \ldots, v_m\}$ of M
 - (ii) A set of generators $\{w_1, \ldots, w_n\}$ of the set of all linear <u>relations</u> among the v_i 's.
- **2.** The map $f: \mathbb{R}^n \to \mathbb{R}^m$ corresponds to left multiplication by an $m \times n$ matrix $A \in M_{m \times n}(r)$, called a presentation matrix for M.

A has: a row for every generator v_j , and a column for every chosen generator of the relations among the v_j 's.

An important fact (to be exploited) is that the same modules can have different presentation matrices.

Lemma 6. Suppose $A \in M_{m \times n}(R)$ is a presentation matrix for M (so in particular $M \cong \frac{R^m}{Ar^n}$, and let A' be obtained from A by any of the following:

- (i) $A' = QAP^{-1}$, with $Q \in GL_m(R)$, $P \in GL_n(R)$.
- (ii) $A' = (A \text{ with a column } \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \text{ deleted)}$
- (iii) Suppose A has a jth column equal to $\begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$, with 1 in the ith spot.

Then A' = (A with ith row and jth column deleted)

Then A' (of size $p \times q$, say) is also a presentation matrix for M, and $M \cong R^p/A'R^q$ Proof.

- (i) From Linear Algebra, we know that that $A'=QAP^{-1}$ corresponds to a change of bases, so $M\cong R^m/AR^n\cong R^m/A'R^n$
- (ii) A column $\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^m$ in A corresponds to the relation $0v_1 + \cdots + 0v_m = 0$, so it can be omitted from A.
- (iii) A column $\begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$ with a 1 in the *i*th row corresponds to the relation $0v_1 + \cdots + 1v_i + \cdots + 1v_i$

Example 0.24.

• Suppose $M \cong \mathbb{Z}^2 / \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \mathbb{Z}^2$, so M is generated by two elements, v_1, v_2 , with relations $v_1 + 2v_2 = 0$ and $2v_1 - v_2 = 0$.

Then by (1) $\frac{\mathbb{Z}}{\begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix} \mathbb{Z}^2} \cong \frac{\mathbb{Z}^2}{\begin{pmatrix} 1 & 2 \\ 0 & -5 \end{pmatrix} \mathbb{Z}^2}$. This says M is generated by v_1', v_2' , with $v_1' + 0v_2' = 0$, $2v_1' - fv_2' = 0$ So $5v_2' = 0$.

By (3), this module is isomorphic to $\frac{\mathbb{Z}}{5\mathbb{Z}}$

• Similarly, if $N \cong \frac{\mathbb{Z}^2}{\begin{pmatrix} 2 & 4 \\ 4 & 8 \end{pmatrix} \mathbb{Z}^2}$ then $\frac{\mathbb{Z}^2}{\begin{pmatrix} 2 & 4 \\ 4 & 8 \end{pmatrix} \mathbb{Z}^2} \cong \frac{\mathbb{Z}^2}{\begin{pmatrix} 2 & 4 \\ 0 & 0 \end{pmatrix} \mathbb{Z}^2} \cong \frac{\mathbb{Z}^2}{\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \mathbb{Z}^2}$, so N is generated by v_1, v_2 , with relations $2v_1 + 0v_2 = 0$, $0v_1 + 0v_2 = 0$, so is isomorphic by (2) to $\frac{\mathbb{Z}^2}{\begin{pmatrix} 2 \\ 0 \end{pmatrix} \mathbb{Z}} \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}$