Orders

Alon Gurny

April 21, 2025

Contents

1	Preorders	2
2	Linear Orders	4
3	General Hausdorff Rank	6
4	ω -Hausdorff rank	8
5	WO-Hausdorff rank	10
6	Decidability of the rank	11
7	Everything Better	16

1 Preorders

Definition 1.1 (Preorder). A relation \leq is a preorder if it is reflexive and transitive.

Definition 1.2 (Property of preorders). A property **P** of preorders is a class of preorders which is closed under isomorphism.

Definition 1.3. A property \mathbf{P} of preorders is monotone if for every preorder M, $M \in \mathbf{P}$ implies that every suborder of M is in \mathbf{P} .

Definition 1.4. A property **P** of preorders is an additive property if for every preorders M_1 and M_2 , $M_1 + M_2 \in \mathbf{P}$ iff $M_1, M_2 \in \mathbf{P}$, i.e., if $\mathbf{P} + \mathbf{P} = \mathbf{P}$.

Definition 1.5. Let M be a preorder.

Then M^* is the dual - the reverse preorder of M.

Definition 1.6 (Sum of preorders). Let I be a preorder, and let $\{M_i\}_{i\in I}$ be a family of preorders.

The sum $M = \sum_{i \in I} M_i$ is defined as follows:

The domain is $M = \biguplus_{i \in I} M_i$ (a disjoint union).

Let \leq_i be the preorder on M_i .

The order is defined as follows:

$$x \le y \iff \begin{cases} \exists i \in I. \\ x, y \in M_i \land x \le i \end{cases} \\ \exists i, j \in I. \\ x \in M_i \land y \in M_j \land i < j \end{cases}$$

If I = 2, we define $M_1 + M_2 := \sum_{i \in 2} M_i$.

Lemma 1.7. Let I be a preorder, and let $\{M_i\}_{i\in I}$ be a family of preorders. Then $M = \sum_{i\in I} M_i$ is a preorder.

Proof. Reflexivity is clear.

For transitivity, suppose $x \leq y$ and $y \leq z$.

Suppose $x \in M_i$, $y \in M_j$, $z \in M_k$.

Then $i \leq j$ and $j \leq k$, so $i \leq k$. If i = k, then necessarily i = j = k, and so $x \leq_i y$ and $y \leq_i z$, so $x \leq_i z$, so $x \leq z$, as required.

Otherwise, i < k, and thus $x \le z$, as required.

Definition 1.8. Let P_1 and P_2 be properties of preorders.

Then we define

$$\mathbf{P}_1 + \mathbf{P}_2 := \{ M_1 + M_2 : M_1 \in \mathbf{P}_1 \land M_2 \in \mathbf{P}_2 \}$$

Definition 1.9. Let **P** and **Q** be a property of preorders.

Then we define

$$\sum_{\mathbf{P}}^{\mathbf{Q}} := \left\{ \sum_{i \in I} M_i : I \in \mathbf{P} \land \forall i \in I. M_i \in \mathbf{Q} \right\}$$

Furthermore, if $\mathbf{P} = \{I\}$ is a singleton, we define $\sum_{I}^{\mathbf{Q}} := \sum_{\mathbf{P}} \mathbf{Q}$.

Definition 1.10 (Kleene plus). Let ${\bf P}$ be a property of preorders. We define its Kleene plus as the smallest property of preorders \mathbf{P}^+ which contains \mathbf{P} and is closed under finite sums. That is, $1^+ = \{1, 2, ...\}$, and $\mathbf{P}^+ = \sum_{1^+}^{\mathbf{P}}$.

2 Linear Orders

Definition 2.1. Let M be a linear order.

A set $A \subseteq M$ is left cofinal in M if for every $x \in M$, there exists $y \in A$ such that y < x.

A set $A \subseteq M$ is right cofinal in M if for every $x \in M$, there exists $y \in A$ such that x < y.

A set $A \subseteq M$ is bi-directionally cofinal in M if it is both left and right cofinal.

Lemma 2.2. Let \mathbf{P} be an additive property of linear orders. Then $1 \in \mathbf{P}$.

Note 2.3. The above lemma is false if we do not restrict ourselves to linear

For example, $(1 \uplus 1)^+$ is a property of preorders which is additive, but does not contain 1.

Proof. Let $M \in \mathbf{P}$ be any linear order.

Let
$$x \in M$$
. Then, $M = \{y \in M : y < x\} + \{x\} + y \in M : y > x$.
We conclude that $\{x\} \in \mathbf{P}$, thus $1 \in \mathbf{P}$.

Corollary 2.4. Let P be an additive property of linear orders.

Let M be a linear order.

Let $x, y \in M$ be any two points in a linear order M. Then the following are equivalent:

- 1. $(x,y) \in \mathbf{P}$.
- 2. $(x, y] \in \mathbf{P}$.
- 3. $[x,y) \in \mathbf{P}$.
- 4. $[x, y] \in \mathbf{P}$.

Definition 2.5. Let **P** be a property of linear orders.

We define $\mathcal{B}[\mathbf{P}]$ to be the class of linear orders M such that for every $x, y \in M$, the bounded subinterval [x, y] is in \mathbf{P} .

Definition 2.6. A property **P** of linear orders is a star property if for every linear orders M, and every family $\mathcal{F} \subseteq \mathbf{P}$ of subintervals of M such that $J_1 \cap J_2 \neq \emptyset$ for every $J_1, J_2 \in \mathcal{F}$, we have that $\bigcup \mathcal{F} \in \mathbf{P}$.

Lemma 2.7 (Star Lemma). Let \mathbf{P} be an additive property of linear orders. Then the property $\mathcal{B}[\mathbf{P}]$ is a star property.

Proof. Let M be a linear order, and let $\mathcal{F} \subseteq \mathcal{B}[\mathbf{P}]$ be a family of subintervals of M.

Let $[x, y] \subseteq \bigcup \mathcal{F}$ be any bounded subinterval. We need to prove it is in **P**. Suppose $x \in J_1$ and $y \in J_2$ for $J_1, J_2 \in \mathcal{F}$.

Since $J_1 \cap J_2 \neq \emptyset$, we can take $z \in J_1 \cap J_2$.

Then $[x, z] \subseteq J_1$ and $[z, y] \subseteq J_2$, and thus by $\mathcal{B}[\mathbf{P}]$, [x, z], $[z, y] \in \mathbf{P}$. However, \mathbf{P} is additive. Since [x, y] is either the sum or difference of [x, z] and [z, y], we have that $[x, y] \in \mathbf{P}$.

Lemma 2.8. Let P be a star property.

Then for every linear order M, and every point $x \in M$, there exists a largest subinterval $J \subseteq M$ such that $J \in \mathbf{P}$.

Equivalently, we can define a convex equivalence relation $\sim_{\mathbf{P}}$ on M such that $x \sim_{\mathbf{P}} y$ iff $[x, y] \in \mathbf{P}$.

That is, $x \sim_{\mathbf{P}} y$ iff x and y are in the same largest **P**-subinterval.

Proof. Let $J \subseteq M$ be the union of all $\mathcal{B}[\mathbf{P}]$ -subintervals containing x. All such subintervals intersect at x.

Therefore, by the star lemma, J is in $\mathcal{B}[\mathbf{P}]$, and by definition J is the largest \mathbf{P} -subinterval containing x.

Thus we can define the equivalence relation $\sim_{\mathbf{P}}$ as above.

Definition 2.9. A property **P** of linear orders is good if it is monotone, additive and $\omega^* + \omega \in \mathbf{P}$.

Definition 2.10. Let I be a linear order labeled with colors $\vec{C} = \{C_k\}_{k=1}^m$. Let $\gamma: I \to \vec{C}$ be the coloring function.

Let $\vec{M} = \{M_k\}_{k=1}^m$ be a family of labeled linear orders. Then,

$$\sum_{I} \left[\vec{C} \leftarrow \vec{M} \right] := \sum_{i \in I} M_{\gamma(i)}$$

Lemma 2.11 (Associativity of sum). Let \mathbf{P}_1 , \mathbf{P}_2 and \mathbf{P}_3 be properties. Then $\sum_{\mathbf{P}_1} \sum_{\mathbf{P}_2} \mathbf{P}_3 = \sum_{\sum_{\mathbf{P}_1} \mathbf{P}_2} \mathbf{P}_3$.

Proof. It follows directly from the associativity of the sum operation on linear orders. Actually, it generalizes to any algebraic equation which holds on linear orders. \Box

Lemma 2.12 (Union-associativity of sum). Let \mathcal{P} be a family of properties.

Let **Q** be a property.

Then
$$\sum_{\mathbf{l} \mid \mathcal{P}} \mathbf{Q} = \bigcup_{\mathbf{P} \in \mathcal{P}} \sum_{\mathbf{P}} \mathbf{Q}$$
.

Proof. This is obvious from the definition of the sum operation. \Box

Definition 2.13. Let $\beta \geq \omega$ be a limit ordinal.

We define
$$\Gamma_{\beta} := \{ \gamma : \gamma \subseteq \beta^* + \beta \}^+$$
.

Example 2.14.

$$\Gamma_{\omega} = \left\{1, \omega, \omega^*\right\}^+$$

Observation 2.15. Let $\beta \geq \omega$ be a limit ordinal.

Then Γ_{β} is a good property of linear orders.

General Hausdorff Rank 3

Definition 3.1. Let **Q** be a good property of linear orders. We define a property $\mathbf{Q}^{<\alpha}$ for every ordinal $\alpha > 0$ as follows:

- For $\alpha = 1$, $\mathbf{Q}^{<1} = \{1\}$.
- For $1 < \alpha = \gamma + 1$,

$$\mathbf{Q}^{<\alpha} = \sum_{\mathbf{Q}} \mathbf{Q}^{<\gamma}$$

• For α a limit ordinal,

$$\mathbf{Q}^{<\alpha} = \bigcup_{\beta < \alpha} \mathbf{Q}^{<\beta}$$

We define further $\mathbf{Q}^{\leq \alpha} = \mathbf{Q}^{<\alpha+1}$ and $\mathbf{Q}^{=\alpha} = \mathbf{Q}^{\leq \alpha} - \mathbf{Q}^{<\alpha}$. We call such an α , if it exists, the **Q**-rank of a linear order M.

Observations 3.2. Let $\alpha, \beta > 0$ be ordinals.

Let **Q** be a good property.

We claim the following without proof:

- $\mathbf{Q}^{\leq 1} = \mathbf{Q}$.
- $\mathbf{Q}^{<\alpha}$ is a good property iff $\alpha > 1$.
- $\mathbf{Q}^{<\alpha} \subseteq \mathbf{Q}^{<\beta}$ iff $\alpha < \beta$.

Lemma 3.3. Let $\alpha > 0$, $\delta \geq 0$ be ordinals. Let **Q** be a good property. Then,

$$\mathbf{Q}^{<\alpha+\delta} = \sum_{\mathbf{Q}^{<1+\delta}} \mathbf{Q}^{<\alpha}$$

Proof. We prove by induction on $\delta \geq 0$.

For $\delta = 0$, we need to show that $\mathbf{Q}^{<\alpha} = \sum_{1} \mathbf{Q}^{<\alpha}$, which is obviously true. For $\delta = \varepsilon + 1$, we have $\mathbf{Q}^{<\alpha+\delta} = \mathbf{Q}^{<\alpha+\varepsilon+1} = \sum_{\mathbf{Q}} \mathbf{Q}^{<\alpha+\varepsilon}$.

By the induction hypothesis, $\mathbf{Q}^{<\alpha+\varepsilon} = \sum_{\mathbf{Q}^{<1+\varepsilon}} \mathbf{Q}^{<\alpha}$, and thus we get

$$\mathbf{Q}^{<\alpha+\delta} = \sum_{\mathbf{Q}} \sum_{\mathbf{Q}^{<1+\varepsilon}} \mathbf{Q}^{<\alpha}$$

By associativity,

$$\mathbf{Q}^{<\alpha+\delta} = \sum_{\sum_{\mathbf{Q}} \mathbf{Q}^{<1+\varepsilon}} \mathbf{Q}^{<\alpha} = \sum_{\mathbf{Q}^{<1+\varepsilon+1}} \mathbf{Q}^{<\alpha} = \sum_{\mathbf{Q}^{<1+\delta}} \mathbf{Q}^{<\alpha}$$

For $\delta > 0$ a limit ordinal, note that $\alpha + \delta = \sup_{\varepsilon < \delta} \alpha + \varepsilon$, and $1 + \delta = \delta$ since δ is infinite.

Then,

$$\mathbf{Q}^{<\alpha+\delta} = \bigcup_{\varepsilon < \delta} \mathbf{Q}^{<\alpha+\varepsilon} = \bigcup_{\varepsilon < \delta} \sum_{\mathbf{Q}^{<1+\varepsilon}} \mathbf{Q}^{<\alpha} = \sum_{\bigcup_{\varepsilon < \delta} \mathbf{Q}^{<1+\varepsilon}} \mathbf{Q}^{<\alpha} = \sum_{\mathbf{Q}^{<1+\delta}} \mathbf{Q}^{<\alpha}$$

where the second equality follows by the induction hypothesis.

Lemma 3.4. Let $\alpha > 0$ be an ordinal.

Let **Q** be a good property.

Then over countable linear orders, $\mathcal{B}[\mathbf{Q}^{<\alpha}] \subseteq \mathbf{Q}^{\leq \alpha}$.

Proof. Let $M \in \mathcal{B}[\mathbf{Q}^{<\alpha}]$ be a countable linear order.

Since M is countable, there exists some $I \subseteq \omega^* + \omega$ and an I-sequence

Since M is countable, under exists some $I \subseteq \mathbf{W}$ and an I sequence $\{x_k\}_{k \in I} \subseteq M$, which is bi-directionally cofinal in M.

That is, $M = \sum_{k \in I} [x_k, x_{k+1})$.

Since $I \subseteq \omega^* + \omega \in \mathbf{Q}$, and since the rank of every interval $[x_k, x_{k+1})$ is $< \alpha$, $M \in \sum_{\mathbf{Q}} \mathbf{Q}^{<\alpha} = \mathbf{Q}^{\leq \alpha}$.

7

ω -Hausdorff rank

Lemma 4.1. Let $\alpha > 0$ be an ordinal.

Let M be a countable linear order.

Then $M \in \Gamma_{\omega}^{\leq \alpha}$ iff M is a finite sum of $\mathcal{B}[\Gamma_{\omega}^{<\alpha}]$ -subintervals.

Proof. From the previous lemma, it is clear that if M is a finite sum of $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ subintervals, then $M \in \Gamma_{\overline{\omega}}^{\leq \alpha}$, since the rank bound is preserved under finite

Conversely, suppose $M \in \Gamma_{\omega}^{\leq \alpha}$.

If $M = \sum_{i \in I} M_i$ for some M_i of Hausdorff rank $< \alpha$ for $I \in \Gamma_{\omega}$, take $x, y \in M$. Then let $x \in M_{i_1}$ and $y \in M_{i_2}$.

Then $[x,y] \subseteq \sum_{i \in [i_1,i_2]} M_i$. But the distance between i_1 and i_2 is at most 1, so $\sum_{i \in [i_1,i_2]} M_i$ is a finite sum of $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ -subintervals.

So we have proven that each interval which is a Γ_{ω} -sum of linear orders of ω -rank $< \alpha$ is in $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$.

But generally, M is a finite sum of such $\omega^* + \omega$ -sums, so it is a finite sums of $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ -subintervals.

Definitions 4.2. Let $\alpha > 0$ be an ordinal.

Let M be a linear order.

We define:

1.
$$\mathcal{L}_{\alpha} := \{ M \in \mathcal{B} \left[\Gamma_{\omega}^{<\alpha} \right] : 1 + M \in \mathcal{B} \left[\Gamma_{\omega}^{<\alpha} \right] \}$$

2.
$$\mathcal{R}_{\alpha} := \{ M \in \mathcal{B} \left[\Gamma_{\omega}^{<\alpha} \right] : M + 1 \in \mathcal{B} \left[\Gamma_{\omega}^{<\alpha} \right] \}$$

And then:

1.
$$S^1_{\alpha} := L_{\alpha} \cap R_{\alpha}$$

2.
$$S_{\alpha}^{\omega} := L_{\alpha} \setminus R_{\alpha}$$

3.
$$\mathcal{S}_{\alpha}^{\omega^*} := R_{\alpha} \setminus L_{\alpha}$$

4.
$$S_{\alpha}^{\omega^*+\omega} := B_{\alpha} \setminus (L_{\alpha} \cup R_{\alpha})$$

In particular, by the definition,

$$\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right] = \mathcal{S}_{\alpha}^{1} \uplus \mathcal{S}_{\alpha}^{\omega} \uplus \mathcal{S}_{\alpha}^{\omega^{*}} \uplus \mathcal{S}_{\alpha}^{\omega^{*}+\omega}$$

Let $M \in \mathcal{B}[\Gamma_{\omega}^{<\alpha}]$.

We define the α -shape of M to be the $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ for which $M \in$ \mathcal{S}^s_{α} .

Lemma 4.3.

$$\mathcal{S}^1_\alpha = \Gamma^{<\alpha}_\omega$$

Proof. (\supseteq) Let $M \in \Gamma_{\omega}^{<\alpha}$. Since $\Gamma_{\omega}^{<\alpha}$ is additive, 1+M and M+1 are also in $\Gamma_{\omega}^{<\alpha}$. Therefore, $M \in \mathcal{L}_{\alpha} \cap \mathcal{R}_{\alpha} = \mathcal{S}_{\alpha}^{1}$. (\subseteq) Let $M \in \mathcal{S}_{\alpha}^{1}$. Then $M \in \mathcal{L}_{\alpha}$ and $M \in \mathcal{R}_{\alpha}$, so $1+M, M+1 \in \mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$. By lemma 2.7, $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ is a star property. So $1+M+1 \in \mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$. Since it

is by itself an interval, it is in $\Gamma_{\omega}^{<\alpha}$. By monotonicity, $M \in \Gamma_{\omega}^{<\alpha}$.

Corollary 4.4. Let $\alpha > 0$, $\delta \geq 0$ be ordinals.

Then,

$$\mathcal{S}^1_{\alpha+\delta} = \sum_{\mathcal{S}^1_{1+\delta}} \Gamma^{<\alpha}_{\omega}$$

Proof.

$$\mathcal{S}^1_{\alpha+\delta} = \Gamma^{<\alpha+\delta}_\omega$$

Lemma 4.5. Let $\alpha > 0$ be an ordinal. Let $s \in \{\omega, \omega^*, \omega^* + \omega\}$. Suppose that $\alpha = \sup_{i \in s} (\alpha_i + 1)$ for ordinals $\alpha_i > 0$ for all $i \in s$.

Then, we have the following:

$$\mathcal{S}^s_\alpha = \sum_{i \in s} \Gamma^{<\alpha_i}_\omega$$

Proof.

Corollary 4.6. Let $\alpha > 0$, $\delta \geq 0$ be ordinals.

Let $s \in \{\omega, \omega^*, \omega^* + \omega\}$ Then,

$$\mathcal{S}^s_{\alpha+\delta} = \sum_{\mathcal{S}^s_{1+\delta}} \Gamma^{<\alpha}_{\omega}$$

Proof. Suppose that $\delta = \sup_{i \in s} (\delta_i + 1)$.

Then $\alpha + \delta = \sup_{i \in s} (\alpha_i + 1 + \delta_i)$.

$$\mathcal{S}^s_{\alpha+\delta} = \sum_{i \in s} \mathcal{S}^s_{\alpha+\delta_i} = \sum_{i \in s} \sum_{\Gamma^{<1+\delta_i}_{\omega}} \Gamma^{<\alpha}_{\omega} = \sum_{\sum_{i \in s} \Gamma^{<1+\delta_i}_{\omega}} \Gamma^{<\alpha}_{\omega} = \sum_{\mathcal{S}^s_{1+\delta}} \Gamma^{<\alpha}_{\omega}$$

5 WO-Hausdorff rank

TBC.

Decidability of the rank 6

Definition 6.1. A property **P** of linear orders is if $type_n[P]$ is computable as a function of n.

Theorem 6.2 (Decomposition theorem). There exists a computable translation \mathcal{T} from MSO formulae $\varphi\left(\vec{X}\right)$,

such that for any $M = \sum_{i \in I}^{\prime} M_i$, and formula φ , if n is the quantifier-depth of φ , then

$$M, \vec{X} \models \varphi \iff I, \Pi \models \mathcal{T}\varphi$$

where $\Pi(i) = \mathbf{type}_n[M_i]$.

Corollary 6.3. Let ${f P}$ be a property of linear orders labeled with colors $\vec{C}=$ ${C_k}_{k=1}^m$. $Let {\mathbf{Q}_k}_{k=1}^m$ be a family of (possibly labeled) properties.

We can compute the type $\operatorname{type}_n\left[\sum_{\mathbf{P}}\left[\vec{C}\leftarrow\vec{\mathbf{Q}}\right]\right]$ from the types $\operatorname{type}_n\left[\mathbf{P}\right]$ and type_n $[\mathbf{Q}_k]$ for all k.

Proof. Let τ be an *n*-type of the appropriate signature.

Assume we have
$$\mathbf{type}_n[\mathbf{P}]$$
 and $\mathbf{type}_n[\mathbf{Q}_k]$ for all k .

Definition 6.4. Let $\kappa \geq 0$ be an ordinal.

Let **op** be a κ -ary operation on linear orders.

Suppose that **op** is invariant under \equiv_n , for some $n \in \mathbb{N}$.

Then we extend **op** to a partial operation on types as follows:

$$\mathbf{op}\left(\{\mathbf{type}_n\left[M_i\right]\}_{i\in\kappa}\right):=\mathbf{type}_n\left[\mathbf{op}\left(\{M_i\}_{i\in\kappa}\right)\right]$$

This is well defined because of the invariance. Furthermore, we can extend it to a partial operation on sets of types in the obvious way.

Lemma 6.5. There exists a global computable function $h: \mathbb{N} \to \mathbb{N}$ such that the following holds.

Let \mathbf{P} be a property of linear orders. Let $\{\mathbf{Q}_i\}_{i=1}^k$ be a finite set of properties of linear orders. Let $\{C_i\}_{i=1}^k$ be a finite set of colors.

Then $\mathbf{type}_n \left[\sum_{\mathbf{P}} \left[\vec{C} \leftarrow \vec{\mathbf{Q}} \right] \right]$ is a computable function of $\mathbf{type}_{h(n)}[\mathbf{P}]$ and $\mathbf{type}_{n}\left[\vec{\mathbf{Q}}\right] = \left\{\mathbf{type}_{n}\left[\mathbf{Q}_{i}\right]\right\}_{i=1}^{k}.$

Proof.
$$\Box$$

Lemma 6.6. Let **Q** be a good property of linear orders.

There exists a computable function $f_{\mathbf{Q}} = f : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, and all $a \in \mathbb{N}$ such that $a \geq f(n)$, $\mathbf{type}_n \left[\mathbf{Q}^{\leq a} \right] = \mathbf{type}_n \left[\mathbf{Q}^{\leq f(n)} \right]$.

Equivalently, every linear order of finite rank is n-equivalent to some linear order of rank $\leq f(n)$.

Proof. Since there are only finitely many n-types, and the ω -sequence

$$\left\{ \mathbf{type}_n \left[\mathbf{Q}^{\leq k} \right] \right\}_{k \in \omega}$$

is monotone, there must be some k where the sequence stabilizes.

This point k is computable as a function of n, because $\mathbf{type}_n\left[\mathbf{Q}^{\leq k}\right]$ is computable for every finite k.

Lemma 6.7. There exist global computable functions $a, b : \mathbb{N} \to \mathbb{N}$ such that for all $n, c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 \geq a(n)$ and $c_1 \equiv c_2 \mod b(n)$,

$$\mathbf{type}_n \left[\mathbf{Q}^{=c_1} \right] = \mathbf{type}_n \left[\mathbf{Q}^{=c_2} \right]$$

Equivalently, the sequence $\{\mathbf{type}_n [\mathbf{Q}^k]\}_{k\in\omega}$ is ultimately periodic for all $n\in\mathbb{N}$. Furthermore, the starting point and the period itself can be computed as a function of n.

Proof. Let $n \in \mathbb{N}$.

Since there are only finitely many sets of n-types, there exist (and can be computed) some a(n) > f(n), a(n) + b(n) such that

$$\mathbf{type}_n \left[\mathbf{Q}^{=a(n)} \right] = \mathbf{type}_n \left[\mathbf{Q}^{=a(n)+b(n)} \right]$$

holds for every s.

We shall prove by induction that for all $c \geq a(n)$,

$$\mathbf{type}_{n}\left[\mathbf{Q}^{=c}\right] = \mathbf{type}_{n}\left[\mathbf{Q}^{=c+b(n)}\right]$$

This will complete the proof.

The base case c = a(n) has been proven in the beginning.

Suppose the induction hypothesis holds for c.

Let M be of rank c+1.

Write $M = \sum_{i \in I} M_i$ where $M_i \in \Gamma_{\omega}^{< c+1}$, and $M_i \in \Gamma_{\omega}^{=c}$ infinitely many times

By the induction hypothesis, if $M_i \in \Gamma^{=c}_{\omega}$, we can find $N_i \equiv_n M_i$ with $N_i \in \Gamma^{=c+b(n)}_{\omega}$. Setting $N_i := M_i$ for all other i, we conclude that $N := \sum_{i \in I} N_i$ is n-equivalent to M.

However, clearly $N \in \Gamma_{\omega}^{=c+b(n)+1}$. So overall,

$$\mathbf{type}_n\left[\mathbf{Q}^{=c+1}\right] \subseteq \mathbf{type}_n\left[\mathbf{Q}^{=c+b(n)+1}\right]$$

Conversely, suppose M is of rank c+b(n)+1. Write $M=\sum_{i\in I}M_i$ where $M_i\in\Gamma_\omega^{< c+b(n)+1}$, and $M_i\in\Gamma_\omega^{=c+b(n)}$ infinitely many times.

By the induction hypothesis, we can find for all i such that $M_i \in \Gamma_{\omega}^{=c+b(n)}$ some $N_i \equiv_n M_i$ with $N_i \in \Gamma_{\omega}^{=c}$. Furthermore, since $c \geq a(n) > f(n)$, we can find $N_i \equiv_n M_i$ with $N_i \in \Gamma_{\omega}^{\leq f(n) < c}$ for all other i.

We conclude that $N:=\sum_{i\in I}N_i$ is n-equivalent to M. However, clearly $N\in\Gamma^{=c+1}_\omega.$ So overall,

$$\mathbf{type}_n \left[\mathbf{Q}^{=c+b(n)+1} \right] \subseteq \mathbf{type}_n \left[\mathbf{Q}^{=c+1} \right]$$

So we have proven the induction step, and the lemma follows. \Box

Corollary 6.8. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Let $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be a shape.

Then there exists a computable function b(n) such that for all $c_1, c_2 \in \mathbb{N}$ such that $c_1, c_2 > a(n)$ and $c_1 \equiv c_2 \mod b(n)$, we have

$$\mathbf{type}_n\left[\mathcal{S}^s_{c_1}
ight] = \mathbf{type}_n\left[\mathcal{S}^s_{c_2}
ight]$$

Proof. For s=1, it follows from lemma 6.6, since $\mathcal{S}_c^1=\mathbf{Q}^{< c}=\mathbf{Q}^{\le c-1}$ by lemma 4.3. and $c>a(n)\geq f(n)$ so $c-1\geq f(n)$ for $c\in\{c_1,c_2\}$.

For $s \in \{\omega, \omega^*, \omega^* + \omega\}$, it follows easily from lemma 4.5 and lemma 6.7. \square

Lemma 6.9. Let $n \in \mathbb{N}$, and let $\alpha \geq \omega$ be an ordinal.

Let $s \in \{1, \omega, \omega^*, \omega^* + \omega\}$ be a shape.

$$\mathbf{type}_n \left[\mathcal{S}^s_{\alpha} \right] = \bigcup_{c < b(n)} \mathcal{S}^s_{a(n) + c}$$

In particular, $\mathbf{type}_n[S^s_{\alpha}]$ can be computed, and is independent of the choice $\alpha \geq \omega$.

Proof. Draft:

Definition 6.10. Let $\alpha \geq \omega$ be an ordinal.

Let M be a linear order and $x \in M$.

We define the convex equivalence relation:

$$\sim_{\alpha}:=\sim_{\mathcal{B}[\Gamma_{\omega}^{\leq \alpha}]}$$

and $[x]_{\alpha} := [x]_{\mathcal{B}\left[\Gamma_{\omega}^{\leq \alpha}\right]}$ (that is, $[x]_{\alpha}$ is the largest $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ -subinterval containing x in M).

We define $\sigma_{\alpha}(M)$ as the α -shape of M.

Lemma 6.11. The property $\cdot \in \Gamma_{\omega}^{=\alpha}$ is expressible over intervals in $MSO[\sim_{\alpha}, \sigma_{\alpha}]$

Proof. It is equivalent to being a sum of \sim_{α} -subintervals, of which at least one has $\sigma_{\alpha} \neq 1$.

Theorem 6.12. There is an oracle reduction from SAT for $MSO[\sim_{\alpha}, \sigma_{\alpha}]$, to SAT for MSO.

Proof. By the decomposition theorem, there exists a translation, that given an $\mathbf{MSO}[\sim_{\alpha}, \sigma_{\alpha}]$ formula φ of quantifier-depth n. outputs an \mathbf{MSO} formula $\psi(\Pi)$ such that...

Let φ be an $\mathbf{MSO}[\sim_{\alpha}, \sigma_{\alpha}]$ formula, and let n be the quantifier-depth of φ . WLOG, assume that φ is a sentence.

First, let us calculate the sets:

$$T_s := \mathbf{type}_n \left[\mathcal{S}_{\alpha}^s \right]$$

for every shape s.

Now we create the formulae:

$$\theta_s(\Pi,\Xi) := \left\{ i : \bigvee_{\tau \in S_s} \Xi(\Pi(i)) = s \right\}$$

$$L(\Pi,\Xi) := \theta_{\omega}(\Pi,\Xi) \vee \theta_{\omega^* + \omega}(\Pi,\Xi)$$

$$R(\Pi, \Xi) := \theta_{\omega^*}(\Pi, \Xi) \vee \theta_{\omega^* + \omega}(\Pi, \Xi)$$

We create the formula $\chi(\Pi,\Xi)$ as follows:

$$\chi := \Pi = domain(\Xi) \land \forall i, i'.i' = i+1 \implies i \in R(\Pi, \Xi) \lor i' \in L(\Pi, \Xi)$$

Now we claim that φ is satisfiable in $\mathbf{MSO}[\sim_{\alpha}, \sigma_{\alpha}]$ iff $\psi \wedge \chi$ is satisfiable in \mathbf{MSO} .

If φ is satisfiable, then there exists a model M of φ .

Let $M=\sum_{i\in I}M_i$ be the decomposition of M where $I=\sim_{\alpha}$ and M_i are the \sim_{α} -equivalence classes.

By the decomposition theorem, Ψ holds in $I, \Pi := \mathbf{type}_n[\cdot]$.

We claim that χ holds in $I, \Pi := \mathbf{type}_n[\cdot]$.

It follows from the star property of \sim_{α} that the constraint holds.

Conversely, suppose $\psi \wedge \chi$ is satisfiable in **MSO**.

Let $I, \Pi := T$ be a model of $\psi \wedge \chi$.

Let us take a model M_i with the appropriate type. Now define $M:=\sum_{i\in I}M_i$.

We claim that each M_i is a maximum $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ -subinterval of M.

Suppose $[M_i, M_j]$ is a $\mathcal{B}[\Gamma_{\omega}^{<\alpha}]$ -subinterval of M.

In particular, it has a rank, so it is scattered. So in particular, $[i,j] \subseteq I$ is a scattered interval.

If i = j we are done. Otherwise, let i', j' be such that $i \le i' < j' \le j$, and j' = i' + 1. But it cannot be the case by the constraint.

Theorem 6.13. Suppose $\alpha_k > \alpha_{k-1} > \ldots > \alpha_0 > 0$ are ordinals.

Then there is an oracle reduction from SAT for $MSO[\sim_{\alpha_k}, \sigma_{\alpha_k}, \ldots, \sim_{\alpha_0}, \sigma_{\alpha_0}],$

to SAT for
$$MSO[\sim_{\delta_{k-1}}, \sigma_{\delta_{k-1}}, \ldots, \sim_{\delta_0}, \sigma_{\delta_0}].$$

where $\alpha_0 + \delta_i = \alpha_{i+1}$ for $0 \le i < k$.

Proof. By the decomposition theorem, there exists a translation, that given an $\mathbf{MSO}[\sim_{\alpha_k}, \sigma_{\alpha_k}, \ldots, \sim_{\alpha_0}, \sigma_{\alpha_0}]$ formula φ of quantifier-depth n. outputs an \mathbf{MSO} formula $\psi(\Pi)$ such that...

Let φ be an $\mathbf{MSO}[\sim_{\alpha_k}, \sigma_{\alpha_k}, \dots, \sim_{\alpha_0}, \sigma_{\alpha_0}]$ formula, and let n be the quantifier-depth of φ .

WLOG, assume that φ is a sentence.

First, let us calculate the sets $\mathbf{type}_n \left[\Gamma_{\omega}^{<\alpha}\right]$, and

Now we create the formulae:

$$\theta_s(\Pi,\Xi) := \left\{ i : \bigvee_{\tau \in S_s} \Xi(\Pi(i)) = s \right\}$$

$$L(\Pi,\Xi) := \theta_{\omega}(\Pi,\Xi) \vee \theta_{\omega^*+\omega}(\Pi,\Xi)$$

$$R(\Pi,\Xi) := \theta_{\omega^*}(\Pi,\Xi) \vee \theta_{\omega^*+\omega}(\Pi,\Xi)$$

We create the formula $\chi(\Pi,\Xi)$ as follows:

$$\chi := \Pi = domain(\Xi) \land \forall i, i'.i' = i+1 \implies i \in R(\Pi, \Xi) \lor i' \in L(\Pi, \Xi)$$

Now we claim that φ is satisfiable in $\mathbf{MSO}[\sim_{\alpha}, \sigma_{\alpha}]$ iff $\psi \wedge \chi$ is satisfiable in \mathbf{MSO} .

If φ is satisfiable, then there exists a model M of φ .

Let $M = \sum_{i \in I} M_i$ be the decomposition of M where $I = \sim_{\alpha}$ and M_i are the \sim_{α} -equivalence classes.

By the decomposition theorem, Ψ holds in $I, \Pi := \mathbf{type}_n[\cdot]$.

We claim that χ holds in $I, \Pi := \mathbf{type}_n[\cdot]$.

It follows from the star property of \sim_{α} that the constraint holds.

Conversely, suppose $\psi \wedge \chi$ is satisfiable in **MSO**.

Let $I, \Pi := T$ be a model of $\psi \wedge \chi$.

Let us take a model M_i with the appropriate type. Now define $M:=\sum_{i\in I}M_i$.

We claim that each M_i is a maximum $\mathcal{B}\left[\Gamma_{\omega}^{<\alpha}\right]$ -subinterval of M.

Suppose $[M_i, M_j]$ is a $\mathcal{B}[\Gamma_{\omega}^{<\alpha}]$ -subinterval of M.

In particular, it has a rank, so it is scattered. So in particular, $[i,j] \subseteq I$ is a scattered interval.

If i = j we are done. Otherwise, let i', j' be such that $i \le i' < j' \le j$, and j' = i' + 1. But it cannot be the case by the constraint.

7 Everything Better

Theorem 7.1. Let C be a computable property of labeled linear orders, such that C is closed under taking subintervals, projections and inverse-projections (i.e., of one of the colors), and all finite-sums and C-sums.

Let $\mathbf{P}_1, \dots, \mathbf{P}_k \subseteq \mathcal{C}$ be computable properties of labeled linear orders.

Let $\mathbf{MSO}[P_1, \ldots, P_k]$ be monadic second order logic of order over \mathcal{C} , with P_1, \ldots, P_k as monadic predicates whose semantics are: $P_i(X)$ holds iff X is a subinterval which satisfies \mathbf{P}_i .

Given ϕ a formula of $\mathbf{MSO}[P_1, \dots, P_k]$ (possibly with free variables) we define

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models \phi \}$$

(Note that M above may be a labeled linear order.) Then \mathcal{C}_{ϕ} is a computable property of linear orders.

Proof. By structural induction on ϕ .

Suppose ϕ is an atomic formula. If ϕ is of the form $X \subseteq Y$ or $X \leq Y$,

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models \phi \}$$

and thus,

$$\mathbf{type}_n \left[\mathcal{C}_{\phi} \right] = \left\{ \tau \in \mathbf{type}_n \left[\mathcal{C} \right] : \tau \models \phi \right\}$$

which is computable since $\mathbf{type}_n[\mathcal{C}]$ is computable, and we can then compute whether $\tau \models \phi$ for each $\tau \in \mathbf{type}_n[\mathcal{C}]$.

If ϕ is of the form $P_i(X)$, then

$$\mathcal{C}_{\phi} = \{ M \in \mathcal{C} : M \models P_i(X) \}$$

and thus.

$$\mathbf{type}_n\left[\mathcal{C}_{\phi}\right] = \mathbf{type}_n\left[\mathbf{P}_i\right]$$

which is computable since \mathbf{P}_i is computable.

If $\phi = \neg \phi_1$, then

$$\mathcal{C}_{\phi} = \mathcal{C} \setminus \mathcal{C}_{\phi_1}$$