APELLIDOS	Y	NOMBRE:
------------------	---	---------

SISTEMAS ELECTRÓNICOS DIGITALES 2º-CONTROL-CURSO 15-16

NOTAS IMPORTANTES:

- El único resultado válido será la que se indique en la casilla de solución.
- La resolución de las cuestiones sin una mínima explicación escrita de los pasos seguidos para la obtención de los resultados, producirá penalización en la calificación, considerándose no valida la respuesta.
- La resolución de las cuestiones se realizara en el mismo examen.
- La fecha de publicación de las calificaciones y de la revisión estará dentro de los márgenes establecidos según normativa.
- La puntuación del ejercicio se indica en cada parte.

TIEMPO MÁXIMO PARA REALIZAR TODO EL EJERCICIO: 90 MINUTOS. Cuestión 1

(10%)

Indique de forma conceptual el método para realizar la conversión de Digital a Analógico (D/A).

APELLIDOS Y NOMBRE:	
<u>Cuestión 2</u> Distinga las formas en que se puede realizar una función combinacional con un CPLD y con u	(10%) n FPGA.

APELLIDOS Y NOMBRE:	
Cuestión 3	(10%)
Describa brevemente la estructura del bloque de E/S de los CPLD Coolrunner™ de Xilinx.	

APELLIDOS Y	Y	NOMBRE:

<u>Cuestión 4</u> (20%)

Se desea digitalizar una señal de audio. Para ello utilizaremos un conversor A/D sigma-delta. La amplitud máxima de la señal a la entrada de dicho convertidor es de +- 5 voltios. Se requiere que la precisión en la digitalización del audio sea igual o mejor que 0,2 milivoltios. Se pide:

- 4.1.- Indicar el número efectivo de bits de convertidor.
- 4.2- Hallar su relación señal a ruido.
- 4.3- Si se utiliza un convertidor de aproximaciones sucesivas, halle la máxima frecuencia de la señal de entrada al convertidor, si su reloj es de 1 MHz. Indique si es posible digitalizar audio con él como se pretende.

APELLIDOS	Y	NOMBRE:

 $\underline{\text{Cuesti\'on 5}} \tag{20\%}$

Módulos IP:

- 1. ¿Qué es un módulo IP?
- 2. ¿Qué tipos existen y qué ventajas/inconvenientes tiene cada uno de ellos?
- 3. ¿En qué consiste el diseño basado en IP?

APELLIDOS	Y	NOMBRE:

 $\underline{\text{Cuesti\'on 6}} \tag{30\%}$

Desarrollar la descripción en VHDL sintetizable de un monoestable no redisparable con un periodo de temporización configurable y las siguientes E/S:

RESET_N	Е	Reset negado asíncrono. Termina la temporización y pone Q = '0'
CLK	Е	Reloj.
DELAY[70]	Е	Valor de la temporización medido en ciclos de CLK.
TRIGGER_N	Е	Disparo síncrono negado. El monoestable se disparará cuando esta señal esté a '0' en el flanco activo de CLK siempre que no haya ya una temporización en curso.
Q	S	Estado de reposo: '0'; permanece a '1' tras el disparo DELAY ciclos de reloj.

