> U.D. noutación

Computació

DFF

Fauiva

DFA — NF.

λ-FA

Equivalence NFA $-\lambda$ -FA

Finite Automata

U.D. Computación

DSIC - UPV

Deterministic Finite Automaton (DFA)

Finite Automata

> U.D. noutación

DFA

NFA Equivalence DFA — NFA

λ-FA

 λ -FA Equivalence NFA - λ -FA

Deterministic Finite Automaton (DFA)

A Deterministic Finite Automaton (*DFA*) is the following 5-tuple: $A = (Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states.
- Σ is a finite set of symbols called alphabet
- $\delta: Q \times \Sigma \rightarrow Q$ is a partial function called *transition* function.
- \blacksquare $q_0 \in Q$ is the *initial state*.
- $F \subseteq Q$ is the set of final states.

When the transition function is total the automaton is called *complete*.

Automata Representation:

Transition table

Finite Automata

> ט.ט. omputación

DFA

NFA Equivalence

DFA — NFA

λ-**ԻΑ** Equivalence *NFA* — λ-FA |Q| rows and $|\Sigma|$ columns. (i,j) is the state $\delta(q_i,a_j)$ where q_i is the *i*th element of Q and a_i the *j*th element of Σ .

Example

Let $A = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_0, q_1\})$ where δ is defined as follows:

$$\delta(q_0, a) = q_0$$
 $\delta(q_1, a) = q_2$ $\delta(q_2, a) = q_2$
 $\delta(q_0, b) = q_1$ $\delta(q_1, b) = q_1$ $\delta(q_2, b) = q_2$

Its transition table is:

	а	b
q_0	q_0	q_1
q_1	q_2	q_1
q_2	q_2	q_2

Automata Representation:

Transition diagram

Finite Automata

> ט.ט. mputaciór

DFA

NFA Equivalence DFA — NFA

λ-FA

Is a labeled directed graph, where:

- Its number of nodes (vertices) is |Q|. Every node corresponds to a state.
- $\forall q_i, q_j \in Q, \forall a_k \in \Sigma$, if $\delta(q_i, a_k) = q_j$ there is an arc (arrow) that goes from state q_i to state q_j labeled with a_k .
- The initial state has an input arrow coming from nowhere.
- The final states are drawn with a double circle.

Automata representation

Finite Automata

> U.D. mputacián

DFA

Equivalence

λ-FA

Equivalence

Example

The transition diagram of the previous example is:

Extension of δ to strings

Finite Automata

U.D. omputación

DFA

NFA Equivalence

DFA — NFA

Equivalence NFA $-\lambda$ -FA

The function $\hat{\delta}: Q \times \Sigma^* \to Q$ is defined as follows: $\forall q \in Q, x \in \Sigma^*, a \in \Sigma$

- $\hat{\delta}(q,\lambda) = q$
- $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$

As $\hat{\delta}(q, a) = \hat{\delta}(q, \lambda a) = \delta(\hat{\delta}(q, \lambda), a) = \delta(q, a)$, in the sequel, we will write δ instead of $\hat{\delta}$.

Language acepted by a DFA

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be a *DFA*, and let $x \in \Sigma^*$. A string x is accepted by A when $\delta(q_0, x) \in F$.
- The *language accepted* by the *DFA A* is defined as:

$$L(A) = \{x \in \Sigma^* | \delta(q_0, x) \in F\}$$

U.D.

putació

DFA

Equivalence

DFA — NFA

λ-FA

Equivalence NFA $-\lambda$ -FA

U.D.

Computa

DFA

1417

DFA — NF

λ-FA

Equivalence NFA $-\lambda$ -FA

$$\rightarrow \bigcirc$$

$$\longrightarrow \bigcirc \stackrel{a,b}{\longrightarrow} \bigcirc$$

$$\rightarrow$$
 a,b

U.D.

DFA

Fauiva

. PFA — NFA

λ-FA

Equivalence NFA $-\lambda$ -FA

U.D.

Computació

DFA

Foundate

PFA — NFA

λ-FA

Equivalence NFA $-\lambda$ -FA

> ט.ט. mputación

mputaciór

DFA

Equivalence

DFA — NFA

λ-FA

Equivalence NFA — λ-FA

U.D.

mputación

DFA

NFA

quivalence DFA — NFA

λ-FA

Equivalence NFA - λ -FA

Non Deterministic Finite Automata (NFA)

Finite Automata

U.D. omputació:

DF

NFA Equivalence

DFA — NFA

Equivalence $NFA - \lambda$ -FA

Non Deterministic Finite Automata (NFA)

A Non Deterministic Finite Automata (*NFA*) is a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$, where:

- Q, Σ , $q_0 \in \mathbb{Q}$, y $F \subseteq \mathbb{Q}$ are the same as in the definition of DFA's
- The transition function is now the partial function $\delta: Q \times \Sigma \rightarrow 2^Q$.

NFA Representation

Finite Automata

> U.D. nputación

DFA

NFA Equivalence

DFA — NFA

λ-FA Equivalence Example

Let $A = (\{q_0, q_1, q_2\}, \{a, b, c\}, \delta, q_0, \{q_0, q_1, q_2\})$ where the transition function is defined as:

$$\delta(q_0, a) = \{q_0, q_1, q_2\}$$
 $\delta(q_1, a) = \emptyset$ $\delta(q_2, a) = \emptyset$ $\delta(q_0, b) = \{q_1, q_2\}$ $\delta(q_1, b) = \{q_1, q_2\}$ $\delta(q_2, b) = \emptyset$ $\delta(q_0, c) = \{q_2\}$ $\delta(q_1, c) = \{q_2\}$ $\delta(q_2, c) = \{q_2\}$

Its transition table is:

	а	b	С
q_0	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$ $\{q_1, q_2\}$	{ q ₂ }
q_1	Ø	$\{q_1, q_2\}$	$\{q_2\}$ $\{q_2\}$
q_2	Ø	Ø	{ q ₂ }

NFA Representation

Finite Automata

> U.D. omputaciór

DFA

NFA Equivalence

DFA — NFA

λ-FA

Equivalence NFA — λ-FA

Example

Transition diagram for this automaton:

Extension of δ to strings

Finite Automata

U.D.

DFA

NFA
Equivalence
DFA — NFA

DFA — NFA λ-**FA**

Equivalence

The function $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ is defined as follows: $\forall q \in Q, x \in \Sigma^*, a \in \Sigma$:

- lacksquare $\hat{\delta}(q, xa) = \bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)$

As $\hat{\delta}(q, a) = \bigcup_{p \in \hat{\delta}(q, \lambda)} \delta(p, a) = \bigcup_{p \in \{q\}} \delta(p, a) = \delta(q, a)$, in the sequel we will use δ instead of $\hat{\delta}$.

Language accepted by a NFA

Let $A = (Q, \Sigma, \delta, q_0, F)$ a *NFA*, the *language accepted* by the NFA A is defined as

$$L(A) = \{x \in \Sigma^* | \delta(q_0, x) \cap F \neq \emptyset\}$$

Finite Automata

> U.D. mputació:

Computaci

NFA

Equivalence

\-FA

Equivalence

Finite Automata

> U.D. mputació

Computac

NFA

Equivalence DFA — NFA

\-FA

Equivalence NFA — λ-FA

Finite Automata

> ט.ט. omputació

NFA Faulvale

DFA — NFA

λ-FA

Equivalence NFA — λ-FA

Automata

Finite Automata

U.D. omputació

DFA

Equivalence

DFA — NFA

λ-**ԻΑ** Equivaler

Finite

Equivalence *DFA* – *NFA*

Finite Automata

U.D. mputaciór

DF/

Equivalence

λ-FA

Equivalence $NFA = \lambda$ -FA

- Every *DFA* is a particular instance of a *NFA*.
- The way to obtain an equivalent *DFA* from a *NFA* is based in the fact that the power set (set of subsets) of a finite set is also finte and thus:
 - The states of the *DFA* are subsets of the set of states of the *NFA*.
 - The transition function of a symbol acts between set of states.

Equivalence *DFA* – *NFA*

Finite Automata

Extension of the transition function to set of states. $\delta' \cdot 2^{Q} \times \Sigma \rightarrow 2^{Q}$.

$$\forall P \subseteq Q \quad \delta'(P, a) = \bigcup_{p \in P} \delta(p, a)$$

- Extension of the transition function to set of states and strings. $\delta'': 2^Q \times \Sigma^* \to 2^Q$:
 - $\blacksquare \forall P \subseteq Q \quad \delta''(P,\lambda) = P$
 - $\blacksquare \forall P \subset Q, x \in \Sigma^*, a \in \Sigma \quad \delta''(P, xa) = \delta'(\delta''(P, x), a)$

Equivalence *DFA – NFA*

Finite Automata

U.D.

DFA

Equivalence

DFA — NFA

λ-FA Equivalence

Equivalence DFA - NFA

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a *NFA* such that L = L(A). We define a *DFA* $A' = (Q', \Sigma, \delta', q'_0, F')$ as:

- $\mathbb{Q}'=2^{\mathbb{Q}}, q_0'=\{q_0\},\$
- $\blacksquare F' = \{q' \in Q' | q' \cap F \neq \emptyset\},\$
- The transition function δ' is defined as the extension of the function δ to set of states.
- The automaton A' so defined is a *DFA*, as its transition function is $\delta': Q' \times \Sigma \rightarrow Q'$.
- It can be proved that L(A') = L.

Example

Finite

U.D.

DFA

Equivalence

DFA — NF

\-FA

Equivalence

	а	b	С
$\{q_0\}$	$\{q_0, q_1, q_2\}\$ $\{q_0, q_1, q_2\}\$	$\{q_1, q_2\}$	$\{q_2\}$
$\{q_0, q_1, q_2\}$	$\{q_0, q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_2\}$
$\{q_1, q_2\}$	Ø	$\{q_1, q_2\}$	$\{q_{2}\}$
$\{q_2\}$	Ø	Ø	$\{q_2\}$

Example

Finite Automata

U.D.

nputaciór

DF

Equivolono

DFA — NF≉

λ-FA

Equivalence NFA — λ-FA

Finite Automata with empty moves (λ -FA)

Finite Automata

 λ -FA

Finite Automata with empty moves (λ -FA)

A Finite Automata with empty moves ($FA\lambda$) is a 5-tuple $A = (Q, \Sigma, \delta, q_0, F)$, where:

- \blacksquare Q, Σ , $q_0 \in Q$, y $F \subseteq Q$ are the same as in the definition of DFAs.
- \bullet $\delta: \mathbb{Q} \times (\Sigma \cup \{\lambda\}) \to 2^{\mathbb{Q}}$ is the transition function, (also a partial function).

Representation

Finite Automata

> ט.ט. mputaciór

DFA

Equivalence

DFA — NFA

DFA — NFA

Equivalen

Ejemplo

Let $A = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \delta, q_0, \{q_0\})$ where the transition function is:

	0	1	λ
q_0	Ø	Ø	$\{q_1\}$
q_1	Ø	$\{q_3\}$	$\{q_2\}$
q_2	$\{q_1\}$	$\{q_2\}$	Ø
q_3	Ø	{ q ₃ }	$\{q_0\}$

Representation

Finite Automata

U.D.

DEA

NFA Fauivalence

DFA — NFA

 λ -FA

Equivalence

Example

Transition diagram:

Extension of the transition function to strings

Finite Automata

U.D.

DF

NFA Equivalence

DFA — NFA
λ-FA

A-FA Equivalence

λ -closure

- Let $q \in Q$, $\lambda clausure(q) = \{q\} \cup \{q'|q' \text{ can be reached from } q \text{ through ways labeled with } \lambda\}$.
- Let $P \subseteq Q$, $\lambda closure(P) = \bigcup_{p \in P} \lambda closure(p)$.

Extension to strings

 $\forall q \in Q, x \in \Sigma^*, a \in \Sigma$:

- $lacksquare \hat{\delta}(q,\lambda) = \lambda closure(q)$
- $lacksquare{\delta}(q, xa) = \lambda closure\left(\bigcup_{p \in \hat{\delta}(q, x)} \delta(p, a)\right)$

Example

Finite Automata

U.D.

NIEA

Equivalence

۱-FA

Equivalence

λ – closure

- $\lambda closure(q_0) = \{q_0, q_1, q_2\}$
- $\lambda closure(q_1) = \{q_1, q_2\}$

Example

Finite Automata

 λ -FA

Calculus of $\hat{\delta}(q_0, 01)$

$$\begin{split} \hat{\delta}(q_0,01) &= \lambda - \textit{closure}(\bigcup_{p \in \hat{\delta}(q_0,0)} \delta(p,1)) \quad \text{(1)} \\ \hat{\delta}(q_0,0) &= \lambda - \textit{closure}(\bigcup_{p \in \hat{\delta}(q_0,\lambda)} \delta(p,0)) \quad \text{(2)} \\ \hat{\delta}(q_0,\lambda) &= \lambda - \textit{closure}(q_0) = \{q_0,q_1,q_2\}. \\ \text{Substituting in (2):} \\ \hat{\delta}(q_0,0) &= \lambda - \textit{closure}(\bigcup_{p \in \{q_0,q_1,q_2\}} \delta(p,0)) = \\ \lambda - \textit{closure}(\emptyset \cup \emptyset \cup \{q_1\}) = \lambda - \textit{closure}(\{q_1\}) = \{q_1,q_2\}. \\ \text{Substituting in (1):} \\ \hat{\delta}(q_0,01) &= \lambda - \textit{closure}(\bigcup_{p \in \{q_1,q_2\}} \delta(p,1)) = \\ \lambda - \textit{closure}(\{q_2\} \cup \{q_3\}) = \lambda - \textit{closure}(\{q_2,q_3\}) = \\ \{q_0,q_1,q_2,q_3\}. \end{split}$$

U.D. mputación

DF

Equivalence

DFA — NFA **λ-FΔ**

Equivalence NFA $-\lambda$ -FA

In a λ -FA, $\hat{\delta}(q, a)$ and $\delta(q, a)$ are not necessarily equal and the same happens to $\hat{\delta}(q, \lambda)$ and $\delta(q, \lambda)$. we have to distinguish between δ and $\hat{\delta}$.

Language accepted by a λ -FA

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a $FA\lambda$, we define the Language accepted by the $FA\lambda$ A as

$$L(A) = \{x \in \Sigma^* | \hat{\delta}(q_0, x) \cap F \neq \emptyset\}.$$

Equivalence $NFA - \lambda$ -FA

Finite Automata

Every NFA can be seen as a $FA\lambda$ in which $\forall q \in Q \quad \lambda - closure(q) = \{q\}.$

Equivalence NFA - FAλ

Let $A = (Q, \Sigma, \delta, q_0, F)$ be a $AF\lambda$. We define a NFA $A' = (Q, \Sigma, \delta', q_0, F')$ where:

$$F' = \left\{ egin{array}{ll} F \cup \{q_0\} & ext{if} & \lambda - \mathit{closure}(q_0) \cap F
eq \emptyset \\ F & ext{otherwise} \end{array}
ight.$$

The function δ' is defined as:

$$\forall q \in Q, a \in \Sigma \quad \delta'(q, a) = \hat{\delta}(q, a).$$

Example

Finite Automata

U.D.

DFA

Equivalence

DFA — NF

A-FA
Equivalence

λ – closures

- $\lambda closure(q_0) = \{q_0, q_1, q_2\}$
- $\lambda closure(q_1) = \{q_1, q_2\}$
- λ closure(q_3) = { q_0, q_1, q_2, q_3 }

Example

Finite Automata

U.D.

DE/

NFA Equivalence

 λ -FA

Equivalence

$$\begin{array}{c|cccc} \textbf{0} & \textbf{1} \\ \hline q_0 & \{q_1, q_2\} & \{q_0, q_1, q_2, q_3\} \\ q_1 & \{q_1, q_2\} & \{q_0, q_1, q_2, q_3\} \\ q_2 & \{q_1, q_2\} & \{q_2\} \\ q_3 & \{q_1, q_2\} & \{q_0, q_1, q_2, q_3\} \\ \end{array}$$

The set of final states $F = \{q_0\}$ contains the initial state, and thus F' = F.