Math 231 A. Worksheet 7.

1. We consider the famous "Bell Curve," defined by $y=e^{-x^2}$. In particular, we will try to determine the area under the curve (from $-\infty$ to ∞). By symmetry, this area is $2\int_0^\infty e^{-x^2}\,dx$. Remember that there is no elementary way to express the antiderivative $\int e^{-x^2}\,dx$.

- (a) Use a simple comparison to prove that the integral $I = \int_0^\infty e^{-x^2} dx$ converges.
- (b) Write $I = I_1 + I_2$, where $I_1 = \int_0^4 e^{-x^2} dx$ and $I_2 = \int_4^\infty e^{-x^2} dx$. Estimate I_1 using Simpson's rule with n = 8. Keep six decimal places of accuracy in your calculations.

- (c) Notice that $e^{-x^2} \le e^{-4x}$ if $x \ge 4$. Use this fact to show that $I_2 \le 0.0000001$.
- (d) Make an educated guess as to the area under the Bell Curve. Hint: You have approximated I to high accuracy. Do you recognize the value of I? I^2 ? $2I^2$? etc.?

We work with the arclength differential $ds = \sqrt{(dx)^2 + (dy)^2}$ and the formula $S = \int ds$. See your lecture notes from Wednesday. This formula must be correctly interpreted in each case to produce an expression which is ready to be evaluated.

- **2.** The curve $y = x^3$ between the points (1, 1) and (2, 8) is shown.
- a) Indicate the meaning of the arclength differential ds on the curve.
- b) Set up but do not evaluate an integral with respect to x for the length. All quantities involved must refer to x.

c) Set up but do not evaluate an integral with respect to y which represents the length. All quantities involved must refer to y.

3. Find the length of the curve $y = \ln(\cos x)$, $0 \le x \le \pi/3$.