Transfer Learning/CNN Project

Transfer Learning Dog Breed Classification

Connor Kordes - JCK160130 Nathan Tompkins - NAT180002 University of Texas at Dallas CS 4372

Transfer Learning Dog Breed Classification	1
History Plots and Models	2
Model 1:	2
Model 2	3
Model 3	4
Model 4	5
Model 5	6
Model 6	7
Sample Predictions of Model 1	8
Hyperparameter Tuning	10

History Plots and Models

In all of the below imagenet2 is the base_model with include_top set to false.

Model 1:

```
model = tf.keras.Sequential()
model.add(tf.keras.layers.RandomFlip('horizontal'))
model.add(tf.keras.layers.RandomRotation(0.2))
model.add(rescale)
model.add(base_model)
model.add(global_average_layer)
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(120, activation='softmax'))
```



```
model = tf.keras.Sequential()
model.add(tf.keras.layers.RandomFlip('horizontal'))
model.add(tf.keras.layers.RandomRotation(0.2))
model.add(rescale)
model.add(base model)
model.add(global average layer)
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(1000, activation='relu'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(500, activation='relu'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(120, activation='softmax'))
```



```
model = tf.keras.Sequential()
model.add(tf.keras.layers.RandomFlip('horizontal'))
model.add(tf.keras.layers.RandomRotation(0.2))
model.add(rescale)
model.add(base_model)
model.add(global_average_layer)
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(1000, activation='sigmoid'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(500, activation='relu'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(120, activation='softmax'))
```



```
model = tf.keras.Sequential()
model.add(tf.keras.layers.RandomFlip('horizontal'))
model.add(tf.keras.layers.RandomRotation(0.2))
model.add(rescale)
model.add(base_model)
model.add(global_average_layer)
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(1000, activation='sigmoid'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(1000, activation='sigmoid'))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dropout(0.2))
model.add(tf.keras.layers.Dense(120, activation='softmax'))
```


Sample Predictions of Model 1

n02092002-Scottish_deerhound 52% (n02092002-Scottish_deerhound)

n02091244-Ibizan_hound 98% (n02091244-Ibizan_hound)

n02086079-Pekinese 90% (n02086079-Pekinese)

n02107908-Appenzeller 88% (n02107908-Appenzeller)

n02093647-Bedlington_terrier 38% (n02093647-Bedlington_terrier)

n02112706-Brabancon_griffon 98% (n02112706-Brabancon_griffon)

n02113978-Mexican_hairless 95% (n02113978-Mexican_hairless)

n02097130-giant_schnauzer 71% (n02097130-giant_schnauzer)

Hyperparameter Tuning

Model	Accuracy
Model 1: ImageNet Global Average Layer Dropout .2 Dense 120 Softmax	Train: 0.7414 Test: 0.8350
Model 2: • ImageNet • Global Average Layer • Dropout .2 • Dense 1000 RELU • Dropout .2 • Dense 120 Softmax	Train: 0.7735 Test: 0.8292
Model 3: • ImageNet • Global Average Layer • Dropout .2 • Dense 1000 Sigmoid • Dropout .2 • Dense 120 Softmax	Train: 0.7359 Test: 0.8348
Model 4: • ImageNet • Global Average Layer • Dropout .2 • Dense 1000 RELU • Dropout .2 • Dense 500 RELU • Dropout .2 • Dense 120 Softmax	Train: 0.7397 Test: 0.8275
Model 5 ImageNet Global Average Layer Dropout .2 Dense 1000 Sigmoid Dropout .2 Dense 500 RELU Dropout .2 Dense 120 Softmax	Train: .7059 Test: .8161

Model 6

ImageNet
GlobalAverageLayer
Dropout .2
Dense 1000 Sigmoid
Dropout .2
Dense 1000 Sigmoid
Dropout .2
Dense 1000 Sigmoid
Dropout .2
Dense 120 Softmax