

Numerical - The resultant of two forces is ION and its is inclined at 60° to one of the forces whose magnifule is 5N Delemine the magnitude and direction of the other force

Soft
$$A = P = 5N$$

$$OB = K = 60^{\circ}$$

$$OC = R = 10N$$

$$P = \frac{R \sin \beta}{\sin(\kappa + \beta)}$$
 $\Theta = \frac{R \sin \kappa}{\sin(\kappa + \beta)}$

$$9n\beta = 0.866 \cos \beta$$

 $tan\beta = 0.866 = \beta \cdot tan^{2} (0.5773) = 30^{\circ}$
 $tan\beta = 0.866 = \beta \cdot tan^{2} (0.5773) = 30^{\circ}$

$$Q = \frac{\text{Sin}(K+B)}{\text{Sin}(60+B)^{2}} = \frac{10 \times 0.866 - 8.66 \text{ N}}{\text{Sin}(60+B)^{2}}$$

Resultant, $R = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2}$

and its Indination o to x-oxis is given by

Numerical

Determine the resultant both in magnitude and direction, of the four forces acting on the body as shown in the figure given below

Inclination of force 3.9 km with $0x' = tan^{+}(\frac{1}{2}) = 26.56$ Inclination of force 3.9 km with $0x = tan^{+}(\frac{12}{5}) = 67.28$

A Pi=3KN

Homezuntal Component Vextical Component Fy 3 (2130" 3 Sin 30"

No Se Se JA

-2-24 (05 36 56

2-24 Sin 26-56"

- 2 Cos 60°

- 9 Sin60

gue Pa y

Fy Fy 3.9 Cox 67-28" -3-9 Sin 67-28"

Pu= 3.9 KN

14(1)

Magnitude of the resultant force is $R = \int (\Sigma f_X)^2 + (\Sigma f_Y)^2 = \int (1.094)^2 + (-2.83)^2$ $R = \int (1.197 + 8.009) = 3.034 \text{ keV}$

and the Inclination of resultant with the horizontal in $K = \tan^{-1} \left(\frac{\sum F_{k}}{\sum F_{k}} \right)$

$$K = \tan^{-1}\left(\frac{-2.83}{1-0.94}\right) = 68.86^{\circ}$$
 $K = 68.86^{\circ}$