

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Динамические системы и модели биологии»

Студент 315 группы К.Ю. Егоров

Научный руководитель д.ф.-м.н., профессор А. С. Братусь

Содержание

1	Исс	ледование одномерной дискретной системы	3
	1.1	Формулировка задачи	3
	1.2	Поиск неподвижных точек	
	1.3	Исследование неподвижных точек на устойчивость	
	1.4	Построение бифуркационной диаграммы	
	1.5	Исследование существования циклов длины 2 и 3	
	1.6	Показатель Ляпунова	
2	Исследование двумерной дискретной системы		17
	2.1	Формулировка задачи	17
	2.2	Поиск неподвижных точек	17
	2.3	Исследование неподвижных точек на устойчивость	17
	2.4	Бифуркация Неймарка-Сакера	19
3	Исследование непрерывной системы		21
	3.1	Формулировка задачи	21
	3.2	Биологическая интерпретация системы	21
	3.3	Переход к безразмерным параметрам	22
	3.4	Поиск неподвижных точек	
	3.5	Исследование неподвижных точек на устойчивость	
	3.6	Бифуркация Андронова-Хопфа	
	3.7	Интерпретация результатов	

1 Исследование одномерной дискретной системы

1.1 Формулировка задачи

Рассматривается одномерная динамическая система с дискретным временем

$$u_{t+1} = ru_t^2 e^{-u_t}, \ u_t > 0, \ \forall t = 0, 1, 2, \dots$$
 (1)

при положительных значениях параметра r.

В рамках задачи для системы 1 требуется:

- 1. найти неподвижные точки;
- 2. исследовать на устойчивость найденные неподвижные точки в зависимости от параметра r;
- 3. исследовать вопрос существования циклов длины 2 и 3;
- 4. построить бифуркационную диаграмму в соответствующем случае;
- 5. построить график зависимости показателя Ляпунова от значения параметра r.

1.2 Поиск неподвижных точек

Определение 1.1 Пусть задано отображение $f: \mathbb{R} \to \mathbb{R}$. Неподвижной точкой системы $u_{t+1} = f(u_t)$ называется точка u^* такая, что $u^* = f(u^*)$. [1, стр. 82]

Для системы 1 отображение f имеет вид $f(u) = ru^2e^{-u}$. Поэтому неподвижными точками системы 1 будут решения уравнения

$$u^* = r(u^*)^2 e^{-u^*}. (2)$$

Найдем его корни:

$$r(u^*)^2 e^{-u^*} - u^* = 0 \iff u^* (ru^* e^{-u^*} - 1) = 0 \iff \begin{bmatrix} u^* = 0 \\ u^* e^{-u^*} = \frac{1}{r} \end{bmatrix}$$

Найдем решения второго уравнения получившейся совокупности.

$$u^* e^{-u^*} = \frac{1}{r} \tag{3}$$

Для этого рассмотрим левую часть равенства

$$g(u) = ue^{-u}.$$

Функция g(u) — непрерывно дифференцируема в \mathbb{R}_+ и имеет производную

$$g'(u) = e^{-u} - ue^{-u} = e^{-u}(1 - u).$$

Производная g'(u) принимает положительные значения при $u \in (-\infty, 1)$, отрицательные значения — при $u \in (1, +\infty)$ и равна нулю при u = 1. Из этого следует, что u = 1 — точка глобального максимума функции g(u). $g(1) = \frac{1}{e}$. (Рис. 1)

Получается, что уравнение 3 при 0 < r < e не имеет решений; при r = e имеет единственное решение $u^* = 1$ и при r > 0 имеет два корня u_1^* и u_2^* , причем $u_1^* \in (0,1)$, а $u_2^* \in (1,+\infty)$. В последнем случае посчитать решения аналитически не представляется возможным. (Рис. 2)

Подведем итог. Система 1 в зависимости от параметра r имеет следующие неподвижные точки:

1. 0 < r < e:

$$u^* = 0.$$

2. r = e:

$$u_1^* = 0, \ u_2^* = 1.$$

3. r > e:

$$u_1^* = 0, \ u_2^* \in (0,1), \ u_3^* \in (1,+\infty).$$

Рис. 1: Поведение функции g(u) на рассматриваемом промежутке

Рис. 2: Количество корней уравнения $u^*e^{-u^*}=\frac{1}{r}$

1.3 Исследование неподвижных точек на устойчивость

Для начала определим все нужные нам понятия. Пусть задана система

$$u_{t+1} = f(u_t), \quad f: \mathbb{R} \to \mathbb{R}, \quad t = 0, 1, 2, \dots$$
 (4)

Определение 1.2 Множество точек u_t , $t=0,1,2,\ldots$ называется траекторией (или орбитой) системы, порожденной отображением f. [1, cmp. 82]

Определение 1.3 Неподвижная точка u^* системы 4 называется устойчивой по Ляпунову, если для любого $\varepsilon > 0$, существует такое $\delta = \delta(\varepsilon) > 0$, что для любых начальных данных u_0 из δ -окрестности точки u^* вся траектория системы u_t , $t = 0, 1, 2, \ldots$ содержится в ε -окрестности точки u^* . Если, кроме того, $\lim_{t \to \infty} f(u_t) = u^*$, то точка u^* называется асимптотически устойчивой. [1, стр. 82]

Замечание. Ассимптотически устойчивые неподвижные точки иногда называют *аттракторами*, а неустойчивые неподвижные точки — *репеллерами*. [1, стр. 83]

Теорема 1 Задана система 4. Пусть f — непрерывно дифференцируемая функция, u^* — неподсижная точка системы 4. Тогда

- 1. если $|f'_{u}(u^{*})| < 1$, то u^{*} асимптотически устойчива;
- 2. если $|f_{u}'(u^{*})| > 1$, то u^{*} неустойчива;
- 3. если же $|f'_u(u^*)| = 1$, то про устойчивость точки u^* ничего сказать нельзя.

[1, cmp. 83]

Итак, перейдем к исследованию на устойчивость неподвижных точек системы 1. Напомним, что она имеет следующий вид

$$u_{t+1} = ru_t^2 e^{-u_t}, \ u_t > 0, \ \forall t = 0, 1, 2, \dots$$

Для данной системы функция $f(u) = ru^2e^{-u}$ непрерывно дифференцируемая на всей области определения $(u \geqslant 0)$ системы 1, следовательно, можно применить теорему 1. Найдем производную функции f.

$$f'_{u}(u) = r(2ue^{-u} - u^{2}e^{-u}) = rue^{-u}(2 - u)$$
(5)

Видно, что для $u^* = 0$, неподвижной точки, существующей при всех значения параметра, $|f'_u(u^*)| = 0$ для любого r > 0. Значит, u^* является аттрактором.

Исследуем на устойчивость остальные неподвижные точки. Напомним, что они являются решением уравнения 3

$$u^* e^{-u^*} = \frac{1}{r}.$$

Поэтому мы можем преобразовать производную 5

$$f_u'(u^*) = r\frac{1}{r}(2 - u^*) = 2 - u^*.$$
(6)

Получается, что

- 1. $|f'_u(u^*)| > 1$ при $u^* \in (1,3)$;
- 2. $|f_u'(u^*)| < 1$ при $u^* \in (0,1) \cup (3,+\infty)$;
- 3. $|f'_u(u^*)| = 1$ при $u^* \in \{1, 3\}$.

При r=e есть только одна неподвижная точка $u^*=1$, и сделать вывод о ее устойчивости методами линейного анализа не представляется возможным. При r>e, появляются две неподвижные точки $0< u_1^*<1$ и $u_2^*>1$. u_1^* всегда неустойчива, при этом u_2^* неустойчива при $e< r< \frac{e^3}{3}$, асимптотически устойчива при $r>\frac{e^3}{3}$. При $r=\frac{e^3}{3}$ об устойчивости точки u_2^* ничего сказать нельзя. Посмотреть на это можно на нижеприведенных графиках.

Рис. 3: Орбита системы 1 при $r=2, u_0=1, 5.$

Рис. 4: Орбита системы 1 при $r=3,\,u_0=0,5.$

Рис. 5: Орбита системы 1 при $r=5,\ u_0=0,75.$

Рис. 6: Орбита системы 1 при $r = \frac{e^3}{3} + 1, u_0 = 3.$

1.4 Построение бифуркационной диаграммы

Определение 1.4 Динамическая система $u \mapsto f(u)$ называется топологически эквивалентной в области $U \subseteq X$ динамической системе $v \mapsto g(v)$ в областе $V \subseteq X$, если существует гомеоморфизм $h: X \to X, \ h(U) = V,$ отображающий орбиты первой системы в U на орбиты второй системы в V, сохраняя ориентацию во времени. [1, стр. 396]

Замечание. Фазовые портреты эквивалентных систем также называются топологически эквивалентными.

Определение 1.5 Появление топологически неэквивалентных фазовых портретов при изменении параметров динамической системы называется бифуркацией. [1, стр. 25]

Замечание. Таким образом, бифуркация — это изменение топологического типа системы, когда параметры проходят через некоторые бифуркационные (критические) значения. [1, стр. 25]

Определение 1.6 Бифуркационной диаграммой динамической системы называется разбиение пространства параметров на максимальные связные подмножества, которые определяются соотношениями топологической эквивалентности и рассматриваются вместе с фазовыми портретами для каждого элемента разбиения. [1, стр. 27]

Бифуркационная диаграмма одномерной динамической системы с одним параметром r может быть представлена на плоскости (u,r). Фазовые портреты в данном случае — это сечения бифуркационной диаграммы при r = const.

Рассмотрим алгоритм построения бифуркационной диаграммы:

- 1. Возьмем достаточно мелкое разбиение (выбран шаг $\Delta_r = 0.01$) выбранного отрезка параметра r.
- 2. Для каждого значения параметра из разбиения:
 - (а) Прогоним первые n (взято n=1000) значений u_t системы при некотором u_0 (взято $u_0=4$), чтобы траектория сошлась к некоторому *постоянному* состоянию, например, предельной точке или циклу (определение цикла будет дано позднее).
 - (b) Посчитаем следующие m (взято m=100) значений u_t , которые и будут зафиксированны (изображены на координатной плоскости как точки (r,u_t)) как фазовые портреты при фиксированных значениях параметра r.
- 3. Изобразив полученные m точек на плоскости для каждого значения параметра из разбиения, получим бифуркационную диаграмму системы.

Рис. 7: Бифуркационная диаграмма для системы 1. Начальное приближение $u_0=4$. $1\leqslant r\leqslant 21$.

1.5 Исследование существования циклов длины 2 и 3

Определение 1.7 Пусть дана система $u_{t+1} = f(u_t)$. Множество точек u_1, u_2, \ldots, u_k , являющиеся траекторией системы, образуют цикл, если

$$u_2 = f(u_1), u_3 = f(u_2), \dots, u_k = f(u_{k-1}), u_1 = f(u_k).$$

[1, cmp. 87]

Замечание. Любая неподвижная точка цикла является неподвижной точкой отображения $f^{(k)}(u) = \underbrace{f(f(\dots f(f(u))\dots))}_{l}.$

Определение 1.8 Будем говорить, что все натуральные числа упорядочены по Шарковскому, если

$$3 \succ 5 \succ 7 \succ \ldots \succ$$
 все нечетные числа, кроме 1 $\succ 2 \cdot 3 \succ 2 \cdot 5 \succ 2 \cdot 7 \succ \ldots \succ$ все нечетные числа, умноженные на 2 , кроме 1 $\succ 2^2 \cdot 3 \succ 2^2 \cdot 5 \succ 2^2 \cdot 7 \succ \ldots \succ$ все нечетные числа, умноженные на 2^2 , кроме 1 $\succ 2^3 \cdot 3 \succ 2^3 \cdot 5 \succ 2^3 \cdot 7 \succ \ldots \succ$ все нечетные числа, умноженные на 2^3 , кроме 1 $\succ \ldots \succ$ $\cdots \succ 2^3 \succ 2^2 \succ 2 \succ 1$.

[1, cmp. 88]

Теорема 2 (Шарковского) Пусть $f : \mathbb{R} \to \mathbb{R}$ — непрерывное отображение, и пусть f имеет цикл длины k. Тогда f имеет цикл длины m для всех таких m, что $k \succ m$ в указанном выше порядке. [1, стр. 89]

Замечание. Из теоремы непосредственно следует, что:

- 1. если отображение имеет цикл длины 3, то существует цикл любой длины (xaoc);
- 2. если отображение не имеет цикла длины 2, то оно не имеет никаких циклов.

3амечание. Из определения 1.7 следует, что для нахождения цикла длины k нужно найти решение системы

$$\begin{cases} f^{(k)}(u) = u \\ \frac{df^{(k)}(u)}{du} = 1. \end{cases}$$

По бифуркационной диаграмме наглядно видно, что при r равном, например, 7 в системе возникает цикл длины 2. Вообще говоря, по диаграмме нельзя формулировать строгих утверждений, так как она построена с учётом погрешностей вычислений, но она позволяет нам существенно сократить подозрительную область изменения параметра, в которой возникает цикл нужной нам длины. Поэтому для нахождения цикла длины 2 функции $f(u) = ru^2e^{-u}$ системы 1 при $7 \leqslant r \leqslant 8$ решим систему

$$\begin{cases} f^{(2)}(u) = u \\ \frac{df^{(2)}(u)}{du} = 1. \end{cases}$$

Рис. 8: Поиск цикла длины 2 при r = 7, 5.

Рассмотрим значения параметра r=7,5. Из рисунка 8 видно, что имеются три потенциальные точки (точки пересечения графиков, близкие к нулю), которые могут образовать цикл. Возьмем за начальное приближение одну из этих точек (Рис. 9). Видно, что траектория стремится к циклу. Действительно, выбрав $u_0 \approx 2,164$, отчетливо прослеживается цикл длины 2 (Рис. 10).

Теперь можно задаться вопросом существования цикла длины 3. Из бифуркационной диаграммы видно, что если цикл длины 3 существует, то искать его лучше при $13, 5 \le r \le 13, 6$. Аналогично рассуждениям для цикла длины два, цикл длины 3 можно получить при r=13, 6 при начальном приближении $u_0=1, 9$ (Puc. 11).

Рис. 9: Траектория при начальном приближении $u_0=2,5.\ r=7,5.$

Рис. 10: Траектория при начальном приближении $u_0=2,164.\ r=7,5.$

Рис. 11: Траектория при начальном приближении $u_0=1,9.\ r=13,6.$

1.6 Показатель Ляпунова

Рассмотрим гладкое отображение $u_{t+1} = f(u_t)$. Пусть имеются две траектории этой системы $\{u_i\}_{i=1}^{\infty}$ и $\{u_i'\}_{i=1}^{\infty}$, порожденные достаточно близкими начальными точками u_0 , u_0' . Чтобы определить расстояние между этими двумя орбитами, для начала определим расстояние между точками u_1 и u_1' :

$$u_1 - u_1' = f(u_0) - f(u_0') = f'(u_0)(u_0 - u_0') + o(|u_0 - u_0'|).$$

Если $|f'(u_0)| < 1$, то в линейном приближении расстояние между двумя точками u_1 и u'_1 будет меньше, чем расстояние между начальными точками орбит u_0 и u'_0 . Тогда если $|f'(u_{k-1})| < 1$ (> 1), то расстояние между точками будет уменьшаться (увеличиваться). Так как производная в точке u_t функции f(u) как больше, так и меньше единицы в зависимости от значения t, то есстественно считать за меру близости некоторую среднюю величину, высчитываемую по всем возможным значениям t. Такая величина называется числом или показателем Ляпупова. [1, стр. 93]

Определение 1.9 Пусть $f: \mathbb{R} \to \mathbb{R}$ — гладкое отображение. Числом Ляпунова траектории $\{u_i\}_{i=1}^{\infty}$ называется величина

$$l(u_0) = \lim_{n \to \infty} (|f'(u_0)| \cdot |f'(u_1)| \cdot \ldots \cdot |f'(u_n)|)^{\frac{1}{n}}.$$

[1, cmp. 94]

Определение 1.10 Показателем Ляпунова траектории $\{u_i\}_{i=1}^{\infty}$ называется величина

$$h(u_0) = \ln(l(u_0)) = \lim_{n \to \infty} \frac{\ln|f'(u_0)| + \ln|f'(u_1)| + \dots + \ln|f'(u_n)|}{n},$$

если этот предел существует. [1, стр. 94]

Рис. 12: Показатель ляпунова при начальном приближении приближении $u_0 = 4$.

2 Исследование двумерной дискретной системы

2.1 Формулировка задачи

Рассматривается двумерная динамическая система с дискретным временем

$$u_{t+1} = ru_t^2 e^{-u_{t-1}}, \ u_t > 0, \ \forall t = 0, 1, 2, \dots$$
 (7)

при положительных значениях параметра r.

В рамках задачи для системы 7 требуется:

- 1. найти неподвижные точки;
- 2. исследовать на устойчивость найденные неподвижные точки в зависимости от параметра r;
- 3. исследовать вопрос возникновения бифуркации Неймарка-Сакера, построить инвариантную кривую в соответствующем случае.

2.2 Поиск неподвижных точек

Определение 2.1 Точка $u^* \in \mathbb{R}$ называется неподвижной точкой системы $u_{t+1} = f(u_t, u_{t-1}), u_t \in \mathbb{R}, f : \mathbb{R}^2 \to \mathbb{R},$ если $u^* = f(u^*, u^*).$

Для поиска неподвижных точек необходимо решить уравнение

$$u^* = r(u^*)^2 e^{-u^*},$$

которое полностью совпадает с уравнением 2, рассмотренным ранее. Поэтому запишем вывод из предыдущего пункта:

1. 0 < r < e:

$$u^* = 0.$$

2. r = e:

$$u_1^* = 0, \ u_2^* = 1.$$

3. r > e:

$$u_1^* = 0, \ u_2^* \in (0,1), \ u_3^* \in (1,+\infty).$$

2.3 Исследование неподвижных точек на устойчивость

Рассмотрим динамическую систему 7. Пусть $v_t = u_{t-1}$, тогда

$$\begin{cases}
 u_{t+1} = ru_t^2 e^{-v_t}, \ r > 0, \ u_t > 0, \ v_t > 0 \\
 v_{t+1} = u_t.
\end{cases}$$
(8)

Теорема 3 Пусть дана динамическая система с дискретным временем $u_{t+1} = f(u_t)$, $u_t \in \mathbb{R}^n$, $t \in \mathbb{N}$, f — гладкое отображение, $\mathbb{R}^n \to \mathbb{R}^n$. Тогда неподвижная точка u^* асимптотически устойчива, если все собственные значения $\lambda_1, \lambda_2, \ldots, \lambda_n$ матрицы Якоби функции f(u) в точке u^* удовлетворяют условию $|\lambda_i| < 1$, $i = 1, 2, \ldots, n$. Если модуль хотя бы одного собственного значения больше единицы, то u^* неустойчива.

Чтобы воспользоваться теоремой 3, выпишем матрицу Якоби системы 8:

$$J(u,v) = \begin{pmatrix} \frac{\partial f_1}{\partial u} & \frac{\partial f_1}{\partial v} \\ \frac{\partial f_2}{\partial u} & \frac{\partial f_2}{\partial w} \end{pmatrix} = \begin{pmatrix} 2rue^{-v} & -ru^2e^{-v} \\ 1 & 0 \end{pmatrix}.$$

Рассмотрим точку $u^* = 0$.

$$J(u^*) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Матрица Якоби имеет одно собственное значение $\lambda_{1,2}=0$. Очевидно, что эта точка асимптотически устойчива, причем для любого значения r.

Рассмотрим r = e и неподвижную точку $u^* = 1$.

$$J(u^*) = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$

Матрица Якоби имеет одно собственное значение $\lambda_{1,2}=1$. Поэтому об устойчивости этой точки ничего сказать нельзя.

Рассмотрим r>e и неподвижные точки $u_1^*\in(0,1)$ и $u_2^*\in(1,+\infty)$. Так как эти точки удовлетворяют соотношению $u^*e^{-u^*}=\frac{1}{r}$, характеристический многочлен матрицы Якоби принимает вид

$$|J(u^*) - \lambda I| = -\lambda(2 - \lambda) + u = \lambda^2 - 2\lambda + u.$$

В таком случае,

$$\lambda_{1,2} = \frac{2 \pm \sqrt{4 - 4u}}{2} = 1 \pm \sqrt{1 - u}.$$

Получается, что u_1^* и u_2^* неустойчивы.

Рис. 13: Орбита системы 7 при $r=2,\ u_0=u_1=1.$

Рис. 14: Орбита системы 7 при $r = e + \frac{1}{10}, \ u_0 = u_1 = 1.$

2.4 Бифуркация Неймарка-Сакера

Определение 2.2 Бифуркация положения равновесия в системе 7, соответствующая появлению мультипликаторов $|\lambda_1|=|\lambda_2|=1,\ \lambda_1=\overline{\lambda_2},\$ называется бифуркацией Неймарка-Сакера или дискретной бифуркацией Хопфа. [1, стр. 252]

Из предыдущего пункта мы получили, что при $r=e,\ u^*=1$ возникает бифуркация Неймарка-Сакера. При r>e в окрестности $u^*=1$ появляются две неустойчивые неподвижные точки. При r<e неподвижной точки не сущствует в принципе.

Рис. 15: Поведение системы 7 в окрестности точки (1,1) при $r=e+\frac{1}{10}.$

Рис. 16: Поведение системы 7 в окрестности точки (1,1) при $r=e-\frac{1}{10}.$

3 Исследование непрерывной системы

3.1 Формулировка задачи

Исследовать нелинейную динамику следующей системы на плоскости:

$$\begin{cases} \dot{x} = rx(b - \ln x) - bxy \\ \dot{y} = -cy + \frac{dxy}{N+y} \end{cases}, \tag{9}$$

где $b,\ c,\ d,\ N$ — положительные параметры и $(x,y)\in\mathbb{R}^2_+.$ Необходимо:

- 1. дать биологическую интерпретацию характеристик системы;
- 2. ввести новые безразмерные переменные, максимально уменьшив число входящих параметров, выбрать два свободных параметра;
- 3. найти неподвижные точки системы и исследовать их характер в зависимости от значений параметров, представить результаты исследования в виде параметрического портрета системы;
- 4. для каждой характерной области параметрического портрета построить фазовый портрет, дать характеристику поведения системы в каждом из этих случаев;
- 5. исследовать возможность возникновения предельного цикла. В положительном случае найти соответствующее первое ляпуновское число, исследовать характер предельного цикла (устойчивый, неустойчивый, полуустойчивый);
- 6. дать биологическую интерпретацию полученным результатам.

3.2 Биологическая интерпретация системы

Система 9 подходит под описание модели «хищник-жертва», которую в общем случае можно описать как

$$\begin{cases} \dot{u} = A(u) - B(u, v) \\ \dot{v} = -C(v) + D(u, v), \end{cases}$$

где

u, v — численность жертв и хищников соответственно,

A(u) — функция, описывающая размножение жертв в отсутствии хищников,

C(v) — функция, описывающая вымирание хищников при отсутствии жертв,

B(u,v) — выедание жертв хищниками,

D(u,v) — эффективность поедания жертв хищниками. [1, стр. 137]

В случае системы 9 в функцию $A(x) = rx(b - \ln x)$ введен член, ограничивающий рост популяции жертв, максимально возможное число которых задаётся параметром b и составляет e^b . Такая модель учитывает внутривидовую конкуренцию среди жертв.

Функция C(y)=cy — линейная. Это говорит о том, что хищники в рамках модели не конкурируют за ресурсы, отличные от жертв (например, за территорию). Такая модель может описывать взаимодействие популяций при небольшом количестве хищников. Параметр отвечает за продолжительность жизни хищников: чем он больше, тем быстрее хищники умирают.

Рассмотрим функцию B(x,y) = bxy. Для интерпретации системы можно ввести *тро-фическую функцию* $B(x,\cdot)$, которая показывает зависимость выедания жертвы при фиксированном числе хищников. В нашем случае трофическая функция линейна, что говорит об отсутствии насыщения хищников, а также отсутствии конкуренции за добычу.

3.3 Переход к безразмерным параметрам

Для системы 9 сделаем стандартную замену переменных

$$x(t) = Ru(t), \ y(t) = Qv(t). \ t = T\tau,$$

где $R,\ Q,\ T$ — положительные параметры, которые мы выразим позже. Подставим в систему:

$$\begin{cases} \frac{du}{d\tau} = T \left[ru(\tau) \left(b - \ln(Ru(\tau)) \right) - bQu(\tau)v(\tau) \right] \\ \frac{dv}{d\tau} = T \left[-cv(\tau) + \frac{dRu(\tau)v(\tau)}{N + Qv(\tau)} \right] \end{cases}$$

Теперь положим $R=\frac{de^b}{c},\; Q=e^b,\; T=\frac{1}{c}$ и после тривиальных преобразований получим

$$\begin{cases} e^{b} \frac{du}{d\tau} = u(\tau) \left(-\frac{r}{c} \ln u(\tau) - \frac{bde^{b}}{c^{2}} v(\tau) \right) \\ \frac{dv}{d\tau} = v(\tau) \left(-1 + \frac{u(\tau)}{\frac{Nc}{de^{b}} + v(\tau)} \right). \end{cases}$$

Обозначим $\alpha=\frac{r}{c},\ \beta=\frac{bde^b}{c^2},\ \gamma=\frac{Nc}{de^b}.$ Тогда система преобразуется к виду:

$$\begin{cases} \frac{du}{d\tau} = u(\tau) \left(-\alpha \ln u(\tau) - \beta v(\tau) \right) \\ \frac{dv}{d\tau} = v(\tau) \left(-1 + \frac{u(\tau)}{\gamma + v(\tau)} \right), \end{cases}$$
(10)

где α , β , $\gamma > 0$.

Замечание. В силу ограниченности максимально возможной популяции жертв, как было сказанно ранее $x(t) \leq e^b$. Переходя к новой переменной $u(\tau)$, получаем соотношение:

$$x(t) = e^b u(t) \leqslant e^b \implies u(\tau) \leqslant 1.$$

3.4 Поиск неподвижных точек

Определение 3.1 Точка $u_0 \in U \subseteq \mathbb{R}^n$ называется неподвижной точкой динамической системы $\dot{u} = f(u), \ f: U \to \mathbb{R}^n, \ ecnu \ f(u_0) = 0. \ [1, \ cmp. \ 20]$

Найдем неподвижные точки итоговой системы 10. Для этого решим следующую систему:

$$\begin{cases} u(\tau) \left(-\alpha \ln u(\tau) - \beta v(\tau) \right) = 0 \\ v(\tau) \left(-1 + \frac{u(\tau)}{\gamma + v(\tau)} \right) = 0. \end{cases}$$

Исходя из вида полученной системы уравнений легко обнаружить неподвижные точки A(0, 0) и B(1, 0). Найдем в общем случае остальные неподвижные точки, исходя из предположения, что $u(\tau) \neq 0$ и $v(\tau) \neq 0$:

$$\begin{cases} -\alpha \ln u(\tau) - \beta v(\tau) = 0 \\ -1 + \frac{u(\tau)}{\gamma + v(\tau)} = 0. \end{cases} \implies \begin{cases} u(\tau) = e^{-\frac{\beta}{\alpha}v(\tau)} \\ u(\tau) = v(\tau) + \gamma. \end{cases}$$

Полученная система не решается аналитически для произвольных положительных значениях параметров α , β и γ . В рамках задачи разрешено фиксировать значения параметров, если их больше двух. Зафиксируем значение параметра $\gamma=1$. В таком случае у последней системы не будет существовать решений, и дальнейшие рассуждения будут приведены для неподвижных точек A и B.

3.5 Исследование неподвижных точек на устойчивость

Пусть задана динамическая система с непрерывным временем

$$\dot{u} = f(u), \ u \in U \subseteq \mathbb{R}^n, \ f: U \to \mathbb{R}^n.$$
 (11)

Пусть u^* — неподвижная точка системы 11, $J(u^*)$ — матрица Якоби функции f(u) в точке u^* . n_+ , n_0 , n_- — количество собственных значений матрицы $J(u^*)$, учитывая кратность, с положительной, нулевой и отрицательной вещественной частью соответственно.

Определение 3.2 Положение равновесия u^* динамической системы 11 называется гиперболическим, если $n_0 = 0$ (не существует собственных значений, расположенных на мнимой оси). Гиперболическое положение равновесия называется гиперболическим седлом, если $n_+ \cdot n_- \neq 0$.

Теорема 4 (А. М. Ляпунов, А. Пуанкаре) Пусть u^* — гиперболическое положение равновесия системы 11. Пусть n_+ , n_- — число собственных значений $J(u^*)$ с положительной и отрицательной вещественной частью соответственно. Тогда, если $n_+=0$, то положение равновесия u^* асимптотически устойчиво, если $n_+>0$, то неустойчиво. [1, стр. 107]

Воспользуемся теоремой Ляпунова–Пуанкаре. Для этого выпишем матрицу Якоби изучаемой системы 10, предварительно зафиксировав параметр $\gamma = 1$.

$$J = \begin{pmatrix} -\alpha \ln u - \alpha - \beta v & -\beta u \\ \frac{v}{1+v} & -1 + \frac{u}{(1+v)^2} \end{pmatrix}$$

Рассмотрим значения якобиана в найденных ранее неподвижных точках A(0, 0) и B(1, 0). Ввиду наличия логарифмического слагаемого значение якобиана в точке A не определено. Рассмотрим значение якобиана в некоторой точке $A_{\varepsilon}(\varepsilon, 0)$:

$$J(A_{\varepsilon}) = \begin{pmatrix} -\alpha \ln \varepsilon & -\beta \varepsilon \\ 0 & -1 + \varepsilon \end{pmatrix}$$

Получаем собственные значения $\lambda_1 = -\alpha - \ln \varepsilon$ и $\lambda_2 = -1 + \varepsilon$. Устремляя ε к нулю, получаем, что $\lambda_1 > 0$, а $\lambda_2 < 0$. Значит точка A является седлом.

Рассмотрим теперь значение якобиана в точке B:

$$J(B) = \begin{pmatrix} -\alpha & -\beta \\ 0 & 0 \end{pmatrix}$$

Собственными значениями матрицы J(B) являются $\lambda_1 = -\alpha < 0$ и $\lambda_2 = 0$. Данное положение равновесия является устойчивым. Но при этом для данной точки характерна бифуркация «седло-узел», возникающая при прохождении парамером γ значения 1.

Рис. 17: Фазовый портрет системы 10. $\alpha = \beta = \gamma = 1$.

На Рис. 19 так же видно появление узловой точки при $\gamma < 1$, которую мы не будем рассматривать в силу фиксации параметра γ . Приводить параметрический портрет системы не имеет смысла, так как в нашем случае есть только одно состояние.

3.6 Бифуркация Андронова-Хопфа

Определение 3.3 Замкнутую траеторию $\varphi(t)$ системы 11 будем называть предельным циклом, если в окрестности этой траектории нет других замкнутых орбит. [1, cmp. 182]

Определение 3.4 Бифукрация положения равновесия, соответствующая появлению сопряженных чисто мнимых собственных чисел, называется бифуркацией Пуанкаре—Андронова—Хопфа или бифуркацией рождения цикла. [1, стр. 192]

Как было замечено ранее, в изучаемой системе 10 все собственные значения матрицы Якоби действительны и в ней не могут появиться чисто мнимые собственные значения ни при каких значениях параметров. Это говорит о невозможности возникновения бифуркации Андронова—Хопфа.

Рис. 18: Изменение состояния системы при $\gamma < 1$.

Рис. 19: Изменение состояния системы при $\gamma > 1$.

3.7 Интерпретация результатов

Если посмотреть на полученные фазовые портреты системы 10 можно провести следующую интерпретацию результатов. В частности мы видим, что при $\gamma \geqslant 1$ популяция хищников полностью погибает. В противном случае может возникнуть устойчивая ситуация, при которой количество хищников и количество жертв на протяжении времени будут оставаться почти неизменными.

Список литературы

[1] А. С. Братусь, А. С. Новожилов, А. П. Платонов. Динамические системы и модели биологии. М.: ФИЗМАТЛИТ, 2010.