Query processing Lecture 5 2ID35, Spring 2015

George Fletcher

Faculteit Wiskunde & Informatica Technische Universiteit Eindhoven

6 May 2015

Where we've been

Last time

- hash-based indexing
- join indexes
- models of indexing

Where we're headed

Today's agenda

Evaluation of relational operators

- Employee(EID, EName, ECity)
- Company(CID, CName, CCity)
- WorksFor(EID, CID, Salary)

- Employee(EID, EName, ECity)
- Company(CID, CName, CCity)
- WorksFor(EID, CID, Salary)

```
SELECT E.EName
FROM Employee E, WorksFor W
WHERE E.EID = W.EID AND W.Salary > 5000
```

- Employee(EID, EName, ECity)
- Company(CID, CName, CCity)
- WorksFor(EID, CID, Salary)

```
SELECT E.EName
FROM Employee E, WorksFor W
WHERE E.EID = W.EID AND W.Salary > 5000
```

$$\pi_{E.ename}(\sigma_{W.salary>5000}(E \bowtie_{E.eid=W.eid} W))$$

The life of a query: evaluation

 A physical query plan is what the evaluation engine executes (i.e., interprets)

- ► A physical query plan is what the evaluation engine executes (i.e., interprets)
- A plan is a tree of physical operators
 - i.e., operators which access and manipulate physical data
- Each physical operator consumes a relation and outputs a relation

- ► A physical query plan is what the evaluation engine executes (i.e., interprets)
- A plan is a tree of physical operators
 - i.e., operators which access and manipulate physical data
- Each physical operator consumes a relation and outputs a relation
- (logical) RA operations may be mapped to multiple (physical) operators
 - and, there are often multiple mappings to choose from

The life of a query: pipelining

- pipelining: read, process, propagate
 - the opposite is to materialize intermediate results
 - in practice, materialization becomes necessary (due to "blocking" operators, such as sorting)

The life of a query: pipelining

- pipelining: read, process, propagate
 - the opposite is to materialize intermediate results
 - in practice, materialization becomes necessary (due to "blocking" operators, such as sorting)
- benefits of pipelining
 - no buffering
 - faster evaluation (since no I/O)
 - better resource utilization (more in-memory ops)

The life of a query: pipelining

- pipelining: read, process, propagate
 - the opposite is to materialize intermediate results
 - ▶ in practice, materialization becomes necessary (due to "blocking" operators, such as sorting)
- benefits of pipelining
 - no buffering
 - faster evaluation (since no I/O)
 - better resource utilization (more in-memory ops)
- hence, pipeline is simulated through the operator interface: open(), getNext(), close()
 - push model (buffering in calling operator)
 - pull model (buffering in called operator)
 - streams model (buffering in the connections)
- pull (demand-driven) model is common

 Optimizer is responsible for coming up with good physical plan

The life of a query: evaluation

Today: For each relational operation, how can we efficiently implement it?

i.e., for each RA operation, what are some possible physical operators?

$$\sigma_{\theta}(R)$$
 $\pi_{A_1,...,A_n}(R)$
 $R \cup S$ $R - S$
 $R \cap S$ $R \times S$

Query evaluation

Three common techniques

▶ iteration (scan): examine all tuples in a table or index

Query evaluation

Three common techniques

- iteration (scan): examine all tuples in a table or index
- partitioning: of tuples on a sort key, and applying operations on buckets.
 - Sorting and hashing are commonly used partitioning techniques

Query evaluation

Three common techniques

- iteration (scan): examine all tuples in a table or index
- partitioning: of tuples on a sort key, and applying operations on buckets.
 - Sorting and hashing are commonly used partitioning techniques
- indexing: if a selection or join condition is specified, use available index to inspect just those tuples satisfying the condition

A method of retrieving tuples.

A method of retrieving tuples. Either:

▶ a file scan, or

A method of retrieving tuples. Either:

- ▶ a file scan, or
- ▶ an index plus a matching selection condition C
 - a hash index matches C if there is a term "att = val" in C for each attribute in the index's search key
 - e.g., hash index on (e.ecity, e.eid) can be used for $\sigma_{E.ecity=Delft \land E.eid=1234}(E)$ but not for $\sigma_{E.ecity=Delft}(E)$

A method of retrieving tuples. Either:

- ▶ a file scan, or
- ▶ an index plus a matching selection condition C
 - a hash index matches C if there is a term "att = val" in C for each attribute in the index's search key
 - e.g., hash index on (e.ecity, e.eid) can be used for $\sigma_{E.ecity=Delft \land E.eid=1234}(E)$ but not for $\sigma_{E.ecity=Delft}(E)$
 - ▶ a tree index matches C if there is a term "att θ val" for each attribute in a prefix of the index's search key $(\theta \in \{<, \leq, =, \geq, >, \neq\})$
 - e.g., B+tree on (e.ecity, e.eid) can be used for $\sigma_{E.ecity=Delft}(E)$ and $\sigma_{E.ecity=Delft}(E)$, but not for $\sigma_{E.eid=1234}(E)$

Selectivity of an access path

- number of (index and data) pages retrieved
- "most selective" means retrieves fewest pages
 - cf. the notion of access overhead from last lecture

Suppose the employee relation E occupies $B_E = 1000$ pages and has $T_E = 10,000$ tuples.

Suppose the employee relation E occupies $B_E = 1000$ pages and has $T_E = 10,000$ tuples.

To evaluate $\sigma_{ecity=Eindhoven}(E)$, we can

► scan *E* (i.e., 1000 I/Os), or

Suppose the employee relation E occupies $B_E = 1000$ pages and has $T_E = 10,000$ tuples.

To evaluate $\sigma_{ecity=Eindhoven}(E)$, we can

- ▶ scan E (i.e., 1000 I/Os), or
- use index if available
 - if clustering, then great

Suppose the employee relation E occupies $B_E = 1000$ pages and has $T_E = 10,000$ tuples.

To evaluate $\sigma_{ecity=Eindhoven}(E)$, we can

- ▶ scan E (i.e., 1000 I/Os), or
- use index if available
 - if clustering, then great
 - if non-clustering, then potentially worse than scan (i.e., worst case is 10,000 I/Os)

 $\sigma_{\mathsf{att}\ \theta\ \mathsf{val}}(R)$

```
\sigma_{att \theta val}(R)
```

- no index, unsorted data
 - iteration (i.e., full file scan)
 - \triangleright $\mathcal{O}(B_R)$

```
\sigma_{att \theta val}(R)
```

- no index, unsorted data
 - iteration (i.e., full file scan)
 - \triangleright $\mathcal{O}(B_R)$
- no index, sorted data
 - binary search
 - $\mathcal{O}(\log B_R)$

```
\sigma_{att \theta val}(R)
```

- no index, unsorted data
 - iteration (i.e., full file scan)
 - \triangleright $\mathcal{O}(B_R)$
- no index, sorted data
 - binary search
 - $\triangleright \mathcal{O}(\log B_R)$
- ▶ B+tree
 - clustered, and θ is not =, then best choice
 - unclustered, then need an estimate of selectivity of att θ val

```
\sigma_{att \theta val}(R)
```

- no index, unsorted data
 - iteration (i.e., full file scan)
 - \triangleright $\mathcal{O}(B_R)$
- no index, sorted data
 - binary search
 - $\triangleright \mathcal{O}(\log B_R)$
- B+tree
 - ightharpoonup clustered, and θ is not =, then best choice
 - unclustered, then need an estimate of selectivity of att θ val
- ▶ Hash index, with equality selection $(\theta \text{ is } =)$
 - best choice

SELECT DISTINCT Salary FROM WorksFor WHERE CID = 1234

$$\pi_{salary}(\sigma_{cid=1234}(W))$$

$$\pi_{A_1,\ldots,A_n}(R)$$

 without duplicate elimination, scan or index (clustered/unclustered doesn't matter)

$$\pi_{A_1,\ldots,A_n}(R)$$

- without duplicate elimination, scan or index (clustered/unclustered doesn't matter)
- with duplicate elimination
 - remove unwanted attributes
 - eliminate any duplicates produced

Two basic approaches to duplicate elimination

- sort-based: scan R producing projected tuples, sort result, and scan and eliminate adjacent duplicates
 - $\triangleright \mathcal{O}(B_R \log B_R)$

Two basic approaches to duplicate elimination

- sort-based: scan R producing projected tuples, sort result, and scan and eliminate adjacent duplicates
 - $\triangleright \mathcal{O}(B_R \log B_R)$
- hash-based: take N buffer pages
 - ▶ partition each page of R at a time into N-1 buckets, writing them out as they fill up. (diff buckets implies not duplicates)

Two basic approaches to duplicate elimination

- ► sort-based: scan *R* producing projected tuples, sort result, and scan and eliminate adjacent duplicates
 - $\triangleright \mathcal{O}(B_R \log B_R)$
- hash-based: take N buffer pages
 - partition each page of R at a time into N-1 buckets, writing them out as they fill up. (diff buckets implies not duplicates)
 - read in each bucket and rehash in-memory with new hash function (collision implies duplicate)
 - write out resulting hash table after reading whole bucket

requires
$$N > B_R/N$$

```
SELECT CID
FROM Company
WHERE CCity = Eindhoven
UNION
SELECT CID
FROM WorksFor
WHERE Salary > 5000
```

 $R \cup S$

$R \cup S$

- sort based
 - ▶ Sort R and S on all fields
 - scan results in parallel and merge, eliminating duplicates

$R \cup S$

- sort based
 - Sort R and S on all fields
 - scan results in parallel and merge, eliminating duplicates
- hash based
 - Partition both R and S, using h₁
 - for each partition block P
 - build in-memory hash table for S_P using new h_2
 - \triangleright scan R_P . For each tuple, probe hash table for S_P . If tuple is already in table, discard, otherwise insert.
 - write out table and clear for next partition

```
SELECT CID
FROM Company
WHERE CCity = Eindhoven
EXCEPT
SELECT CID
FROM WorksFor
WHERE Salary > 5000
```

R-S

$$R-S$$

- sort based
 - Sort R and S on all fields
 - scan results in parallel, eliminating duplicates and tuples appearing in S

$$R-S$$

- sort based
 - ▶ Sort R and S on all fields
 - scan results in parallel, eliminating duplicates and tuples appearing in S
- hash based
 - Partition both R and S, using h₁
 - for each partition block P
 - build in-memory hash table for S_P using new h_2
 - ▶ scan R_P . For each tuple, probe hash table for S_P . If tuple is not in table, write it out.
 - clear for next partition

SELECT E.EName FROM Employee E, WorksFor W WHERE E.EID = W.EID AND W.Salary > 5000

$$\pi_{E.ename}(\sigma_{W.salary>5000}(E \bowtie_{E.eid=W.eid} W))$$

```
SELECT E.EName
FROM Employee E, WorksFor W
WHERE E.EID = W.EID AND W.Salary > 5000
```

$$\pi_{E.ename}(\sigma_{W.salary>5000}(E \bowtie_{E.eid=W.eid} W))$$

- quite expensive, yet very common
 - e.g., due to table normalization
- intensively studied

- quite expensive, yet very common
 - e.g., due to table normalization
- intensively studied
- ▶ also, note that \cap (i.e., the INTERSECT operation in SQL) and \times are special cases of \bowtie

- n.b. choosing physical plan for a single join is different from choosing the order in which joins should be evaluated in the overall plan
 - ▶ in fact, the order in which joins are evaluated affects the choice of join algorithm
 - these two issues are very interrelated
- semantically, $R \bowtie S = S \bowtie R$
 - ▶ however, for physical join $cost(R \bowtie S) \neq cost(S \bowtie R)$

- n.b. choosing physical plan for a single join is different from choosing the order in which joins should be evaluated in the overall plan
 - ▶ in fact, the order in which joins are evaluated affects the choice of join algorithm
 - these two issues are very interrelated
- semantically, $R \bowtie S = S \bowtie R$
 - ▶ however, for physical join $cost(R \bowtie S) \neq cost(S \bowtie R)$
- three main factors in determining cost:
 - input cardinalities T_R , T_S and number of pages B_R , B_S
 - selectivity factor of the join predicate
 - ▶ i.e., the ratio $\frac{|R \bowtie S|}{|R \times S|}$
 - available memory in buffer

four classes of join algorithms:

- iteration-based
- order-based
- partition-based
- special index-based

Nested-loops join

- ▶ simple, matching the semantics of ⋈
- most flexible, for non-equi joins

- for each tuple $r \in R$
 - for each tuple $s \in S$
 - if $r \bowtie s$, then add (r, s) to result

- ► Call *R* the outer relation and *S* the inner relation
- One scan over the outer relation
- ► For each tuple in the outer relation, one scan over the inner relation

- ► Call *R* the outer relation and *S* the inner relation
- One scan over the outer relation
- ► For each tuple in the outer relation, one scan over the inner relation
- if relations are not clustered, then $cost(R \bowtie S) = \mathcal{O}(T_R + T_R \cdot T_S)$

- ► Call *R* the outer relation and *S* the inner relation
- One scan over the outer relation
- ► For each tuple in the outer relation, one scan over the inner relation
- if relations are not clustered, then $cost(R \bowtie S) = \mathcal{O}(T_R + T_R \cdot T_S)$
 - ▶ Suppose $T_R = T_S = 10,000$. Then $cost(R \bowtie S) = 10000 + 100,000,000 = 100,010,000 \text{ I/Os!}$
 - ▶ if 15ms per I/O, then this is 417 hours (i.e., over 17 days)!

Simple nested-loops join, $R \bowtie S$

• if relations are clustered, then $cost(R \bowtie S) = \mathcal{O}(B_R + B_R \cdot B_S)$

- if relations are clustered, then $cost(R \bowtie S) = \mathcal{O}(B_R + B_R \cdot B_S)$
 - ▶ Suppose $B_R = B_S = 1000$. Then $cost(R \bowtie S) = 1000 + 1,000,000 = 1,001,000$ I/Os!
 - this is still 4.17 hours!

- We didn't make use of our buffer pool in simple nested-loop join
- as we saw with sorting, extra working space can have a non-trivial impact on cost

- We didn't make use of our buffer pool in simple nested-loop join
- as we saw with sorting, extra working space can have a non-trivial impact on cost
- suppose the outer relation fits in the buffer, with at least two free pages left
 - then, we can put the outer relation in the buffer, and read the inner relation one page at a time

- We didn't make use of our buffer pool in simple nested-loop join
- as we saw with sorting, extra working space can have a non-trivial impact on cost
- suppose the outer relation fits in the buffer, with at least two free pages left
 - then, we can put the outer relation in the buffer, and read the inner relation one page at a time
 - this costs us $\mathcal{O}(B_R + B_S)$, very nice!

- We didn't make use of our buffer pool in simple nested-loop join
- as we saw with sorting, extra working space can have a non-trivial impact on cost
- suppose the outer relation fits in the buffer, with at least two free pages left
 - then, we can put the outer relation in the buffer, and read the inner relation one page at a time
 - this costs us $\mathcal{O}(B_R + B_S)$, very nice!
 - for our running example, $cost(R \bowtie S) = 1000 + 1000 = 2000 \text{ I/Os}$

- We didn't make use of our buffer pool in simple nested-loop join
- as we saw with sorting, extra working space can have a non-trivial impact on cost
- suppose the outer relation fits in the buffer, with at least two free pages left
 - then, we can put the outer relation in the buffer, and read the inner relation one page at a time
 - this costs us $\mathcal{O}(B_R + B_S)$, very nice!
 - for our running example, $cost(R \bowtie S) = 1000 + 1000 = 2000 \text{ I/Os}$
 - ▶ and at 15ms per I/O, this takes 30 seconds!

Block nested-loops join, $R \bowtie S$

▶ now, what if we have N free buffer pages, and $B_R > N$?

- ▶ now, what if we have N free buffer pages, and $B_R > N$?
- we can scan in $\lceil \frac{B_R}{N-2} \rceil$ blocks of size N-2 of R, and compare S against each block

- for each block of N-2 pages of R
 - for each page of S
 - for all r in the current R-block and s in the current S-page such that $r \bowtie s$, add (r, s) to result

Block nested-loops join, $R \bowtie S$

- for each block of N-2 pages of R
 - for each page of S
 - for all r in the current R-block and s in the current S-page such that $r \bowtie s$, add (r, s) to result

$$cost(R \bowtie S) = \mathcal{O}(B_R + \lceil \frac{B_R}{N-2} \rceil \cdot B_S) \text{ I/Os}$$

Block nested-loops join, $R \bowtie S$

- for each block of N-2 pages of R
 - for each page of S
 - for all r in the current R-block and s in the current S-page such that $r \bowtie s$, add (r, s) to result

$$cost(R \bowtie S) = \mathcal{O}(B_R + \lceil \frac{B_R}{N-2} \rceil \cdot B_S) \text{ I/Os}$$

so, for our running example, if N = 102, then $cost(R \bowtie S) = 1000 + 1000 \cdot \lceil \frac{1000}{100} \rceil = 11000$ I/Os

Block nested-loops join, $R \bowtie S$

- for each block of N-2 pages of R
 - for each page of S
 - for all r in the current R-block and s in the current S-page such that $r \bowtie s$, add (r,s) to result

$$cost(R \bowtie S) = \mathcal{O}(B_R + \lceil \frac{B_R}{N-2} \rceil \cdot B_S) \text{ I/Os}$$

- so, for our running example, if N=102, then $cost(R\bowtie S)=1000+1000\cdot\lceil\frac{1000}{100}\rceil=11000$ I/Os
- ▶ and at 15ms per I/O, this takes 2.75 minutes!

Block nested-loops join, $R \bowtie S$

- the inner relation is scanned a number of times which is dependent on the size of the outer relation
- so, the outer should be chosen to be the smaller of the two!

Index nested-loops join, $R \bowtie S$

- what if we have an index available on the inner relation, on the join attribute?
- then, we can proceed just as simple nested-loops, except we use the index in the inner loop to perform predicate eval

Index nested-loops join, $R \bowtie S$

- what if we have an index available on the inner relation, on the join attribute?
- then, we can proceed just as simple nested-loops, except we use the index in the inner loop to perform predicate eval
- ▶ in the worst case, this costs $B_R + T_R \cdot I_S$, for average index access cost I_S on S
 - ▶ i.e., 3 or 4 I/Os for a B+tree, and 2 or 3 I/Os for a hash index
- ▶ if the outer relation is small, then this can lead to significant I/O savings

Order-based M

- clean, simple idea:
 - ▶ sort R and S
 - scan together, and merge results
- key idea: there are groups in the sorted relations with the same value for the join attribute

Order-based ⋈

Merge-join

Order-based ⋈

- Cost?
 - sort R costs $2B_R \log B_R$
 - sort S costs $2B_S \log B_S$
 - merge is linear scan: $B_R + B_S$

Order-based M

- Cost?
 - ▶ sort R costs $2B_R \log B_R$
 - sort S costs $2B_S \log B_S$
 - merge is linear scan: $B_R + B_S$
- ▶ so $cost(R \bowtie S)$ is the sum of these costs

Order-based ⋈

- Cost?
 - sort R costs $2B_R \log B_R$
 - sort S costs $2B_S \log B_S$
 - merge is linear scan: $B_R + B_S$
- ▶ so $cost(R \bowtie S)$ is the sum of these costs
- ▶ in our running example, we have 10,000 I/Os, which takes 2.5 minutes (about the same as block nested loops)

- partition-based
- key idea: using the same hash function,
 - ▶ partition R and S into m blocks $\{R_1, \ldots, R_m\}$ $\{S_1, \ldots, S_m\}$ such that each partition block fits in memory
 - ▶ tuples in R_i will only join with tuples in S_i

- partition-based
- key idea: using the same hash function,
 - ▶ partition R and S into m blocks $\{R_1, \ldots, R_m\}$ $\{S_1, \ldots, S_m\}$ such that each partition block fits in memory
 - ▶ tuples in *R_i* will only join with tuples in *S_i*
 - ▶ then, for every R_i , load it in memory, scan S_i , and produce join results (just like block nested loops)

Hash partitioning of R and S

Hash join $R \bowtie S$: using the same hash function,

- ▶ partition R and S into m blocks $\{R_1, \ldots, R_m\}$ $\{S_1, \ldots, S_m\}$ such that each partition block fits in memory
 - ▶ tuples in R_i will only join with tuples in S_i
- ▶ then, for every R_i , load it in memory, scan S_i , and produce join results (just like block nested loops)

Exercise. Suppose

$$R = \{(14, x), (135, y), (40, x), (10, z)\},\$$

$$S = \{(3, p), (10, q), (14, r), (10, s)\},\$$

$$h(x) = x\%5,$$

and you have four buffer slots each of which can hold two tuples. Illustrate the steps of computing $R \bowtie_{R.1=S.1} S$ with hash join using h.

Hash join $R \bowtie S$: using the same hash function,

- ▶ partition R and S into m blocks $\{R_1, \ldots, R_m\}$ $\{S_1, \ldots, S_m\}$ such that each partition block fits in memory
 - ▶ tuples in R_i will only join with tuples in S_i
- ▶ then, for every R_i , load it in memory, scan S_i , and produce join results (just like block nested loops)

Exercise. Suppose

$$R = \{(14, x), (135, y), (40, x), (10, z)\},\$$

$$S = \{(3, p), (10, q), (14, r), (10, s)\},\$$

$$h(x) = x\%5,$$

and you have four buffer slots each of which can hold two tuples. Illustrate the steps of computing $R\bowtie_{R.1=S.1} S$ with hash join using h.

What would happen if you had only three slots?

- Cost?
 - $2(B_R + B_S)$ I/Os to build partitions
 - $(B_R + B_S)$ I/Os for probing and matching

- ▶ Cost?
 - $2(B_R + B_S)$ I/Os to build partitions
 - $(B_R + B_S)$ I/Os for probing and matching
- ▶ $cost(R \bowtie S)$ is the sum of these costs

- Cost?
 - $2(B_R + B_S)$ I/Os to build partitions
 - $(B_R + B_S)$ I/Os for probing and matching
- ▶ $cost(R \bowtie S)$ is the sum of these costs
- ▶ in our running example, we have 6,000 I/Os, which takes 1.5 minutes (about the same as block nested loops and sort-merge algorithms)

Using special datastructures for \bowtie

Recall the join index from last lecture

▶ Binary relation $\{(r_i, s_j), ...\}$ over tuple surrogates in R and S, such that $r_i \bowtie s_j$

Using special datastructures for ⋈

Recall the join index from last lecture

▶ Binary relation $\{(r_i, s_j), ...\}$ over tuple surrogates in R and S, such that $r_i \bowtie s_j$

Algorithm:

- ▶ Scan join index, to find matching tuples (r_i, s_i)
- retrieve matching tuples
- add tuples to result

Using special datastructures for ⋈

Cost of $R \bowtie S$ with join index:

- if R and S are clustered on join attributes, then at worst we have $AccessCost + B_R + T_R \cdot \log B_S$ I/Os
- if R and S are not clustered on join attributes, then at worst we have $AccessCost + T_R + T_R \cdot \log B_S$ I/Os

Using special datastructures for \bowtie

Cost of $R \bowtie S$ with join index:

- if R and S are clustered on join attributes, then at worst we have $AccessCost + B_R + T_R \cdot \log B_S$ I/Os
- if R and S are not clustered on join attributes, then at worst we have $AccessCost + T_R + T_R \cdot \log B_S$ I/Os

In our running example, we have $1000+10000\cdot 10=101,000 \text{ I/Os}$

Using special datastructures for ⋈

Cost of $R \bowtie S$ with join index:

- if R and S are clustered on join attributes, then at worst we have $AccessCost + B_R + T_R \cdot \log B_S$ I/Os
- if R and S are not clustered on join attributes, then at worst we have $AccessCost + T_R + T_R \cdot \log B_S$ I/Os

In our running example, we have $1000+10000\cdot 10=101,000\ \text{I/Os}$

Best suited for highly selective predicates ...

The join operation \bowtie

- All join algorithms work on equi-join predicates
 - only nested loops and join-index algorithms work for non equi-join predicates
 - fortunately, equi-join is the most common join type

The join operation \bowtie

- All join algorithms work on equi-join predicates
 - only nested loops and join-index algorithms work for non equi-join predicates
 - fortunately, equi-join is the most common join type
- Join is most optimized physical operator
 - Four classes: iteration, order, partition, special datastructures

The join operation \bowtie

- All join algorithms work on equi-join predicates
 - only nested loops and join-index algorithms work for non equi-join predicates
 - fortunately, equi-join is the most common join type
- Join is most optimized physical operator
 - ► Four classes: iteration, order, partition, special datastructures
- Figuring out the best join algorithm for a particular pair of relations (in the context of a larger query plan) is the job of the query optimizer
 - important choice, since we are talking about seconds vs. days!

Wrap up

- Query processing
 - Evaluating selections, projections, and binary ops
 - Evaluating joins

Wrap up

- Query processing
 - Evaluating selections, projections, and binary ops
 - Evaluating joins
- Next lecture: Data statistics & Views

Image credits

Our textbook (Silberschatz et al., 2006)