Corrigé du DS 3

Exerice 1 : extrait de CCINP MP 2020 maths 2

1. Pour tout $k \in \mathbb{N}^*$, $\frac{1}{k}I_n \in GL_n(\mathbb{R})$ et $\frac{1}{k}I_n \xrightarrow[k \to +\infty]{} 0_n \notin GL_n(\mathbb{R})$.

Donc, par caractérisation séquentielle des fermés :

$$\int \operatorname{GL}_n(\mathbb{R})$$
 n'est pas un fermé de $\mathcal{M}_n(\mathbb{R})$.

2. L'application det est continue de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} et $GL_n(\mathbb{R}) = \det^{-1}(\mathbb{R}^*)$ et \mathbb{R}^* est un ouvert de \mathbb{R} , donc :

$$\left\{ \text{ GL}_n(\mathbb{R}) \text{ est un ouvert de } \mathcal{M}_n(\mathbb{R}). \right.$$

3. L'ensemble $\operatorname{Sp}_{\mathbb{R}}(M) \cap]0$; $+\infty[$ est fini car la matrice M a au plus n valeurs propres. On distingue deux cas :

premier cas: $\operatorname{Sp}_{\mathbb{R}}(M) \cap]0; +\infty[=\emptyset, \text{ on pose alors } \rho=1$

deuxième cas : $\operatorname{Sp}_{\mathbb{R}}(M) \cap]0$; $+\infty[\neq \emptyset, \operatorname{donc} \operatorname{Sp}_{\mathbb{R}}(M) \cap]0$; $+\infty[$ est une partie finie non vide de]0; $+\infty[$ et a un plus petit élément, on note ρ ce plus petit élément.

Dans tous les cas, pour tout $\lambda \in]0$; $\rho[, \lambda \notin \operatorname{Sp}_{\mathbb{R}}(M) \text{ donc } M - \lambda I_n \in \operatorname{GL}_n(\mathbb{R}).$ On a montré que :

$$\exists \rho > 0, \forall \lambda \in]0; \rho[, M - \lambda I_n \in GL_n(\mathbb{R}).$$

Soit $M \in \mathcal{M}_n(\mathbb{R})$ et $\rho > 0$ tel que $\forall \lambda \in]0$; $\rho[, M - \lambda I_n \in GL_n(\mathbb{R})$. Or $\frac{1}{k} \xrightarrow[k \to +\infty]{} 0$, donc à partir d'un certain rang n_0 , $0 < \frac{1}{k} < \rho$. Donc : $\forall k \geqslant n_o, M - \frac{1}{k}I_n \in GL_n(\mathbb{R})$ et $M - \frac{1}{k}I_n \xrightarrow[k \to +\infty]{} M$.

Donc, par caractérisation séquentielle :

l'ensemble
$$\mathrm{GL}_n(\mathbb{R})$$
 est dense dans $\mathcal{M}_n(\mathbb{R})$.

4. Soit A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$.

Par densité de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$, il existe une suite $(A_k)_{k\in\mathbb{N}}\in (GL_n(\mathbb{R}))^{\mathbb{N}}$ telle que $A_k \xrightarrow[k\to+\infty]{} A$.

De plus pour tout $k \in \mathbb{N}$, $A_k B = (A_k B) A_k A_k^{-1} = A_k (B A_k) A_k^{-1}$, donc $A_k B$ et $B A_k$ sont semblables et on le même polynôme caractéristique. Soit $x \in \mathbb{R}, \forall k \in \mathbb{N}, \det(x I_n - A_k B) = \det(x I_n - B A_k)$.

Or : par continuité du produit matriciel et de l'application déterminant, $\det(xI_n - A_k B) \xrightarrow[k \to +\infty]{} \det(xI_n - AB)$

et $\det(xI_n - BA_k) \xrightarrow[l]{l} \det(xI_n - BA)$.

Donc, par unicité de la limite, pour tout $x \in \mathbb{R}$, $\det(xI_n - AB) = \det(xI_n - BA)$. Donc :

AB et BA ont le même polynôme caractéristique.

On remarque que : $AB=0_2$, donc le polynôme minimal de AB est X, mais $BA\neq 0_2$, donc son polynôme minimal n'est pas X ($BA=B\neq 0_2$ et $B^2=0_2$, donc $\mu_B=X^2$).

Donc:

 \overline{AB} et \overline{BA} n'ont pas toujours le même polynôme minimal.

5. L'application det est continue de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R} et pour $M \in \mathcal{M}_n(\mathbb{R}), M \in GL_n(\mathbb{R}) \Leftrightarrow \det M \in \mathbb{R}^*$.

Donc : $\det(GL_n(\mathbb{R})) = \mathbb{R}^*$, or \mathbb{R}^* n'est pas connexe par arcs (ce n'est pas un intervalle) donc par contraposée du résultat rappelé dans l'énoncé,

 $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

Problème: CCINP MP 2020 maths 1

D'après le corrigé par Hugues Blanchard et Simon Billouet.

Partie 1 : Développement ternaire

- 1. Montrons que ℓ^{∞} est un sous-espace vectoriel de l'espace vectoriel des suites réelles $\mathbb{R}^{\mathbb{N}}$:
- On a tout d'abord $\ell^{\infty} \subset \mathbb{R}^{\mathbb{N}}$;
- La suite nulle étant bornée, elle appartient bien à ℓ^{∞} ;
- Si $u = (u_n)_{n \in \mathbb{N}^*}$ et $v = (v_n)_{n \in \mathbb{N}^*}$ sont deux suites de ℓ^{∞} , bornées respectivement par M_u et M_v et λ, μ deux réels, l'inégalité triangulaire nous apprend que, pour tout $n \in \mathbb{N}$:

$$|\lambda u_n + \mu v_n| \leqslant |\lambda| M_u + |\mu| M_v$$

ce qui montre que $\lambda u + \mu v$ est bornée, donc dans ℓ^{∞} .

Ainsi, par caractérisation des sous-espaces vectoriels, ℓ^{∞} est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$, donc un espace vectoriel réel.

Montrons maintenant que $u \mapsto ||u||$ est une norme sur ℓ^{∞} :

• Caractère bien défini : si $u \in \ell^{\infty}$,

$$\{|u_n|, n \in \mathbb{N}^*\}$$

est une partie non vide (elle contient $|u_1|$) et majorée (puisque u est bornée) de \mathbb{R} , donc par propriété de la borne supérieure, ||u|| existe.

• Séparation : si $u \in \ell^{\infty}$ est telle que ||u|| = 0, cela veut dire que $\sup_{n \in \mathbb{N}^*} |u_n| = 0$, donc que 0 majore tous les $|u_n|$, qui sont des nombres positifs. On a donc :

$$\forall n \in \mathbb{N}^*, \quad |u_n| = 0$$

et par suite, u est la suite nulle.

• Inégalité triangulaire : soit $u, v \in \ell^{\infty}$. On a alors, pour tout $n \in \mathbb{N}^*$:

$$|u_n + v_n| \le |u_n| + |v_n| \le ||u|| + ||v||$$

donc la quantité ||u|| + ||v|| est un majorant de tous les nombres $|u_n + v_n|$, et elle est donc plus grande que le plus petit desdits majorants, à savoir ||u + v||. On a donc bien :

$$||u + v|| \le ||u|| + ||v||$$

• Homogénéité : soit $\lambda \in \mathbb{R}$ et $u \in \ell^{\infty}$. Si $\lambda = 0$, on a $\|\lambda u\| = 0 = 0 \|u\|$. Supposons maintenant $\lambda \neq 0$. On a alors, pour tout $n \in \mathbb{N}^*$:

$$|\lambda u_n| = |\lambda||u_n| \leqslant |\lambda| \, ||u||$$

De ce fait, $\|\lambda u\| \le |\lambda| \|u\|$. Par ailleurs, on a $u = \frac{1}{\lambda}(\lambda u)$, donc :

$$||u|| = \left\| \frac{1}{\lambda} (\lambda u) \right\| \leqslant \frac{1}{|\lambda|} ||\lambda u||$$

et donc

$$\|\lambda u\| \leqslant \lambda \|u\|$$

On conclut donc à l'égalité

$$\|\lambda u\| = |\lambda| \|u\|$$

ce qui conclut la preuve.

2. Soit $u=(u_n)_{n\in\mathbb{N}^*}\in\ell^\infty$, bornée par M. Alors, on a

$$0 \leqslant \frac{|u_n|}{3^n} \leqslant \frac{M}{3^n}$$

par croissances comparées. Or, $\frac{M}{3^n}$ est le terme général d'une série convergente (série géométrique de raison dans]0;1[); par comparaison de séries à termes positifs, la série de terme général u_n converge donc absolument, donc converge.

3. Montrons tout d'abord que σ est bien une forme linéaire sur ℓ^{∞} . σ est bien à valeurs dans \mathbb{R} . Par ailleurs, soit $u = (u_n)_{n \in \mathbb{N}^*}, v = (v_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$ et $\lambda, \mu \in \mathbb{R}$. On a alors

$$\sigma(\lambda u + \mu v) = \sum_{n=1}^{+\infty} \frac{(\lambda u_n + \mu v_n)}{3^n} = \lambda \left(\sum_{n=1}^{+\infty} \frac{u_n}{3^n}\right) + \mu \left(\sum_{n=1}^{+\infty} \frac{v_n}{3^n}\right) = \lambda \sigma(u) + \mu \sigma(v)$$

par linéarité de la somme d'une série (notons que cette égalité est justifiée par le fait que toutes les séries qui interviennent convergent bien d'après la question précédente). Ainsi, σ est linéaire, et σ est donc bien une forme linéaire.

Montrons maintenant que σ est continue. Soit $u=(u_n)_{n\in\mathbb{N}^*}\in\ell^\infty$. Soit $N\in\mathbb{N}^*$. Alors :

$$\|\sum_{n=1}^{N} \frac{u_n}{3^n}\| \leqslant \sum_{n=1}^{N} \frac{|u_n|}{3^n} \leqslant \left(\sum_{n=1}^{N} \frac{1}{3^n}\right) \|u\|$$

Le terme de gauche de cette inégalité converge vers $\|\sigma(u)\|$, celui de droite converge également car la série de terme général $\frac{1}{3^n}$ converge, pour les mêmes raisons qu'à la question 2. Par conséquent, on peut passer à la limite lorsque $N \to +\infty$, et :

$$\|\sigma(u)\| \leqslant \left(\sum_{n=1}^{+\infty} \frac{1}{3^n}\right) \|u\|$$

et d'après une caractérisation de la continuité des applications linéaires, cela montre que σ est une forme linéaire continue sur ℓ^{∞} .

4. Soit $t=(t_n)_{n\in\mathbb{N}^*}\in T$. Notamment, pour tout $n\in\mathbb{N}^*, 0\leqslant \frac{t_n}{3^n}\leqslant \frac{2}{3^n}$, donc

$$0 \leqslant \sigma(t) \leqslant \sum_{n=1}^{+\infty} \frac{2}{3^n}$$

et cette dernière somme de série vaut 1 car, pour $N \in \mathbb{N}^*$,

$$\sum_{n=1}^{N} \frac{2}{3^n} = 2 \frac{1 - 3^{-N}}{2} \to 1$$

Donc $\sigma(t) \in [0;1]$.

5. On a

$$\sigma(\tau) = \frac{\tau_1}{3^1} = \frac{1}{3}$$

et

$$\sigma(\tau') = \sum_{n=2}^{+\infty} \frac{2}{3^n} = \sum_{n=1}^{+\infty} \frac{2}{3^n} - \frac{2}{3} = \frac{1}{3}$$

Notamment, l'application σ n'est pas injective sur T.

6. Il s'agit de montrer que t(x) est à valeurs dans $\{0,1,2\}$. Notons que pour tout $n \in \mathbb{N}^*, t_n(x)$ est un entier relatif comme différence d'entiers relatifs. Par ailleurs, pour $n \in \mathbb{N}^*$, on a

$$3^n x - 1 < \lfloor 3^n x \rfloor \leqslant 3^n x$$

 $_{
m et}$

$$3^{n-1}x - 1 < |3^{n-1}x| \le 3^{n-1}x$$

d'où (à chaque fois on somme une inégalité large et une inégalité stricte, donc on a bien une inégalité stricte)

$$3^{n}x - 1 - 3(3^{n-1}x) = -1 < t_{n}(x) < 3^{n}x - 3(3^{n-1}x - 1) = 3$$

Et puisque $t_n(x)$ est entier, on a bien $t_n(x) \in \{0,1,2\}$. Donc $t(x) \in T$.

7. Tout d'abord, $y_n - x_n = \frac{1}{3^n} \to 0$. De plus, pour $n \ge 2$,

$$x_n - x_{n-1} = \frac{\lfloor 3^n x \rfloor}{3^n} - \frac{\lfloor 3^{n-1} x \rfloor}{3^{n-1}} = \frac{t_n(x)}{3^n} \geqslant 0$$

donc $(x_n)_{n\in\mathbb{N}^*}$ est croissante, et, pour $n\geqslant 2$,

$$y_n - y_{n-1} = \frac{t_n(x)}{3^n} + \frac{1}{3^n} - \frac{1}{3^{n-1}} = \frac{t_n(x) - 2}{3^n} \le 0$$

donc $(y_n)_{n\in\mathbb{N}^*}$ est décroissante. Ainsi, les suites $(x_n)_{n\in\mathbb{N}^*}$ et $(y_n)_{n\in\mathbb{N}^*}$ sont adjacentes. Puisqu'on a l'encadrement, valable pour tout $n\in\mathbb{N}^*$:

$$3^n x - 1 \leqslant |3^n x| \leqslant 3^n x$$

on a donc

$$1 - \frac{1}{3^n} \leqslant x_n \leqslant 1$$

et par théorème d'encadrement, $(x_n)_{n\in\mathbb{N}^*}$ converge donc vers x, et $(y_n)_{n\in\mathbb{N}^*}$ de même puisque $(x_n)_{n\in\mathbb{N}^*}$ et $(y_n)_{n\in\mathbb{N}^*}$ sont adjacentes. Par ailleurs, pour $N\in\mathbb{N}^*$:

$$\sum_{n=1}^{N} \frac{t_n(x)}{3^n} = \frac{t_1(x)}{3} + \sum_{n=1}^{N} \frac{t_{n+1}(x)}{3^{n+1}}$$

$$= \frac{\lfloor 3x \rfloor}{3} - \lfloor x \rfloor + \sum_{n=1}^{N} (x_{n+1} - x_n)$$

$$= x_1 - 0 + x_{N+1} - x_1$$

$$= x_{N+1}$$

En faisant tendre N vers $+\infty$, on obtient donc :

$$\sum_{n=1}^{+\infty} \frac{t_n(x)}{3^n} = x$$

8. En appliquant la formule donnée par l'énoncé :

(Notons ici qu'il y a un problème de précision : les flottants ont une précision maximale, et l'entier peut quant à lui être arbitrairement grand. La fonction proposée ne peut structurellement qu'être une approximation de la représentation ternaire.)

```
def flotVersTern(n,x):
    T=[]
    for k in range(1,n+1):
        T.append(int(3**k*x)-3*int(3**(k-1)*x))
    return T
```

9. Il suffit ici de calculer la somme $\sum_{n=1}^{+\infty} \frac{t_n(x)}{3^n}$ sachant que les derniers termes sont nuls :

def ternVersFlot(L):
 x=0
 for k in range(len(L)):
 x+=L[k]/3**(k+1)
 return x

10. C'est un simple test :

```
def ajout(L):
     s=0
     for k in L:
          s+=k
     if s\%2 == 0:
          L.append(-1)
     else:
          L.append(-2)
     return L
    De même pour verif:
def verif(L):
     s=0
     for k in range(len(L)-1):
          s+=L[k]
     if s\%2==0 and L[-1]==-1:
          return True
     if s\%2==1 and L[-1]==-2:
          return True
    return False
    On pouvait aussi remarquer que c'est correct si la somme de tous les termes est impaire :
 def verif(L):
     if L[-1]!=-1 and L[-1]!=-2:
          return False
    return sum(L)%2==1
    Partie 2 : Étude d'une fonction définie par une série
11. Notons f_n: \begin{bmatrix} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1+\sin(nx)}{2n} \end{bmatrix}.
```

Les f_n sont de classe \mathcal{C}^1 comme composition, somme et quotient de fonctions de classe \mathcal{C}^1 .

Comme sin varie entre -1 et 1, $||f_n||_{\infty} = \frac{2}{3^n}$. Par ailleurs, $\sum_{n\geqslant 1} \frac{2}{3^n}$ converge (c'est une

série géométrique de raison $\frac{1}{3}).$ Donc $\sum_{n\geqslant 1}f_n$ converge normalement, donc simplement,

sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, $f'_n(x) = \frac{n\cos(nx)}{3^n}$ donc $||f||_{\infty} = \frac{n}{3^n}$. Or, $\frac{n}{3^n} = o\left(\left(\frac{1}{n^2}\right)\right)$ par croissance comparée. Comme $\sum_{n\geqslant 1}\frac{1}{n^2}$ est une série positive et convergente (c'est une série de Rie-

mann d'exposant strictement plus grand que 1), par comparaison, $\sum_{n\geqslant 1}\frac{n}{3^n}$ converge.

Donc $\sum_{n\geq 1} f'_n$ converge normalement, donc uniformément, sur \mathbb{R} .

D'après le théorème de dérivation d'une série, φ est donc bien définie sur \mathbb{R} et est de classe \mathcal{C}^1 .

12. Notons que, pour tout $x \in \mathbb{R}$:

$$\left| \frac{e^{inx}}{3^n} \right| \leqslant \frac{1}{3^n}$$

De même que dans la question 2, la série de fonctions $x \mapsto \sum_{n\geqslant 1} \frac{e^{\imath nx}}{3^n}$ converge donc simplement. Notamment, sa partie imaginaire converge simplement. Soit maintenant $x\in\mathbb{R}$ (fixé pour le reste de la question) :

$$\operatorname{Im}\left(\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n}\right) = \sum_{n=1}^{+\infty} \operatorname{Im}\left(\frac{e^{inx}}{3^n}\right) = \sum_{n=1}^{+\infty} \frac{\sin(nx)}{3^n}$$

D'autre part, par le même calcul qu'à la question 4,

$$\sum_{n=1}^{+\infty} \frac{1}{3^n} = \frac{1}{2}$$

On obtient donc bien

$$\varphi(x) = \sum_{n=1}^{+\infty} \frac{1}{3^n} + \sum_{n=1}^{+\infty} \frac{\sin(nx)}{3^n} = \frac{1}{2} + \operatorname{Im}\left(\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n}\right)$$

Enfin, par somme d'une série géométrique convergente et de raison différente de 1 :

$$\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n} = \frac{e^{ix}}{3\left(1 - \frac{e^{ix}}{3}\right)} = \frac{e^{ix}\left(1 - \frac{e^{-ix}}{3}\right)}{3\left(\left(1 - \frac{\cos(x)}{3}\right)^2 + \frac{\sin^2(x)}{9}\right)} = \frac{3e^{ix} - 1}{10 - 6\cos(x)}$$

On obtient donc:

$$\forall x \in \mathbb{R}, \quad \varphi(x) = \frac{1}{2} + \frac{3\sin(x)}{10 - 6\cos(x)}$$

13. La question 11 nous a permis de vérifier le théorème de dérivation d'une série de fonctions terme à terme. Ainsi, pour tout $x \in \mathbb{R}$:

$$\varphi'(x) = \sum_{n=1}^{+\infty} \frac{n \cos(nx)}{3^n}$$

D'autre part, en dérivant à vue l'expression obtenue à la question précédente, on trouve que, pour $x \in \mathbb{R}$:

$$\varphi'(x) = \frac{3\cos(x)(10 - 6\cos(x)) - 3\sin(x)6\sin(x)}{(10 - 6\cos(x))^2} = \frac{-18 + 30\cos(x)}{(10 - 6\cos(x))^2}$$

On en déduit donc que, pour $x \in \mathbb{R}$:

$$\sum_{n=1}^{+\infty} \frac{n\cos(nx)}{3^n} = \frac{-18 + 30\cos(x)}{(10 - 6\cos(x))^2}$$

14. On a montré en question 11 que $\sum_{n\geq 1} f_n$ converge normalement sur \mathbb{R} . Cette sé-

rie converge donc uniformément. Par ailleurs, les f_n , étant de classe \mathcal{C}^1 sur \mathbb{R} , sont notamment continues sur $[0,\pi]$. Par théorème d'intégration d'une série terme à terme :

$$\int_0^{\pi} \left(\sum_{n=1}^{+\infty} f_n(x) \right) dx = \sum_{n=1}^{+\infty} \left(\int_0^{\pi} f_n(x) dx \right)$$

donc

$$\int_0^{\pi} \left(\sum_{n=1}^{+\infty} f_n(x) \right) dx = \sum_{n=1}^{+\infty} \left[\frac{x}{3^n} - \frac{\cos(nx)}{n3^n} \right]_0^{\pi} = \sum_{n=1}^{+\infty} \left(\frac{\pi}{3^n} + \frac{(-1)^{n-1} + 1}{n3^n} \right)$$

Or, $\sum_{n=1}^{+\infty} \frac{\pi}{3^n} = \pi \sum_{n=1}^{+\infty} \frac{1}{3^n} = \frac{\pi}{2}$ d'après la question 12, donc :

$$\int_0^{\pi} \frac{\sin(x)}{10 - 6\cos(x)} dx = \int_0^{\pi} \frac{\varphi(x) - \frac{1}{2}}{3} dx = \frac{1}{3} \int_0^{\pi} \varphi(x) dx - \frac{\pi}{6} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} + 1}{n3^{n+1}}$$

Enfin, par développement en série entière, on a, pour tout $x \in]-1,1[$, $\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n$, donc

$$\int_0^{\pi} \frac{\sin(x)}{10 - 6\cos(x)} \, \mathrm{d}x = \frac{1}{3} \left(\ln\left(1 + \frac{1}{3}\right) - \ln\left(1 - \frac{1}{3}\right) \right) = \frac{1}{3} \ln(2)$$

15. Avec le changement de variable (licite, car de classe C^1 $u = \cos(x)$ et $du = -\sin(x) dx$), on obtient que

$$\int_0^{\pi} \frac{\sin(x)}{10 - 6\cos(x)} dx = \int_1^{-1} \frac{-1}{10 - 6u} du = \left[\frac{1}{6}\ln(10 - 6u)\right]_1^{-1} = \frac{1}{3}\ln(2)$$

Partie 3 : Développements ternaires aléatoires

Partie 4: Fonction de Cantor-Lebesgue

16. On a :

$$\forall x \in [0,1], f_0(x) = x$$

D'où l'on déduit que :

$$\begin{cases} \forall x \in \left[0, \frac{1}{3}\right], \ f_1(x) = \frac{3}{2}x \\ \forall x \in \left[\frac{1}{3}, \frac{2}{3}\right], \ f_1(x) = \frac{1}{2} \\ \forall x \in \left[\frac{2}{3}, 1\right], \ f_1(x) = \frac{3}{2}x - \frac{1}{2} \end{cases}$$

puis que

$$\begin{cases} \forall x \in \left[0, \frac{1}{9}\right], \ f_2(x) = \frac{9}{4}x \\ \forall x \in \left]\frac{1}{9}, \frac{2}{9}\right[, \ f_2(x) = \frac{1}{4} \\ \forall x \in \left[\frac{2}{9}, \frac{1}{3}\right], \ f_2(x) = \frac{9}{4}x - \frac{1}{4} \\ \forall x \in \left[\frac{1}{3}, \frac{2}{3}\right], \ f_2(x) = \frac{1}{2} \\ \forall x \in \left[\frac{2}{3}, \frac{7}{9}\right], \ f_2(x) = \frac{9}{4}x - 1 \\ \forall x \in \left[\frac{7}{9}, \frac{8}{9}\right], \ f_2(x) = \frac{3}{4} \\ \forall x \in \left[\frac{8}{9}, 1\right], \ f_2(x) = \frac{9}{4}x - \frac{5}{4} \end{cases}$$

On en déduit les graphiques respectifs de f_0, f_1 et f_2 :

17. Le programme se déduit directement de la définition :

def cantor(n,x):
 if n == 0:
 return x
 if x <= 1 / 3:
 return cantor(n - 1, 3 * x) / 2
 if x >= 2 / 3:
 return cantor(n - 1, 3 * x - 2) / 2 + 1 / 2
 return 1 / 2

18. Montrons que la propriété :

$$\mathcal{P}(n): \forall x \in [0,1], |f_{n+1}(x) - f_n(x)| \leqslant \frac{1}{3 \times 2^{n+1}}$$

est vraie pour tout $n \ge 0$.

• Tout d'abord :

• Si $x \in [0; \frac{1}{3}]$, alors

$$|f_1(x) - f_0(x)| = \frac{x}{2} \leqslant \frac{1}{6}$$

• Si $x \in]\frac{1}{3}; \frac{2}{3}[$, alors $|f_1(x) - f_0(x)| = |x - \frac{1}{2}|$. Si $x \ge \frac{1}{2}$, on a donc

$$|f_1(x) - f_0(x)| = x - \frac{1}{2} \leqslant \frac{2}{3} - \frac{1}{2} = \frac{1}{6}$$

D'autre part, si $x < \frac{1}{2}$, on a

$$|f_1(x) - f_0(x)| = \frac{1}{2} - x \le \frac{1}{2} - \frac{1}{3} = \frac{1}{6}$$

• Si $x \in \left[\frac{2}{3}; 1\right]$, alors

$$|f_1(x) - f_0(x)| = \left| \frac{1}{2} + \frac{3x - 2}{2} - x \right| = \frac{1}{2}|x - 1| = \frac{1}{2}(1 - x) \leqslant \frac{1}{2}\left(1 - \frac{2}{3}\right) = \frac{1}{6}$$

donc $\mathcal{P}(0)$ est vraie.

- Soit $n \in \mathbb{N}$; supposons $\mathcal{P}(n)$ vraie. Alors:
 - Si $x \in [0; \frac{1}{3}]$, alors

$$|f_{n+2}(x) - f_{n+1}(x)| = \frac{1}{2}|f_{n+1}(3x) - f_n(3x)| \leqslant \frac{1}{2} \frac{1}{3 \times 2^{n+1}} = \frac{1}{3 \times 2^{n+2}}$$

• Si $x \in \frac{1}{3}$; $\frac{2}{3}$ [, alors

$$|f_{n+2}(x) - f_{n+1}(x)| = 0$$

• Si $x \in \left[\frac{2}{3}; 1\right]$, alors

$$|f_{n+2}(x) - f_{n+1}(x)| = \frac{1}{2}|f_{n+1}(3x - 2) - f_n(3x - 2)| \le \frac{1}{2} \frac{1}{3 \times 2^{n+1}} = \frac{1}{3 \times 2^{n+2}}$$

donc $\mathcal{P}(n+1)$ est vraie.

- Conclusion : d'après le principe de récurrence, on a bien : $\forall n \in \mathbb{N}, \mathcal{P}(n)$.
- 19. La série de terme général $\frac{1}{3\times 2^n}$ converge en tant que série géométrique de raison dans $]0\,;1[$. D'après la question précédente, la série de fonctions $\sum (f_{n+1}-f_n)$ converge donc normalement sur [0,1], donc uniformément sur [0,1]. Par lien suite-série, la suite de fonctions $(f_n-f_0)_{n\in\mathbb{N}}$ converge donc uniformément sur [0,1], et il en va donc de même pour $(f_n)_{n\in\mathbb{N}}$.
- **20.** Montrons que la propriété $\mathcal{P}(n)$: f_n est continue et croissante sur [0,1], $f_n(0) = 0$ et $f_n(1) = 1$ est vraie pour tout $n \in \mathbb{N}$.

- $\mathcal{P}(0)$ est vraie car $f_0 = \text{Id}$ qui est bien continue, croissante sur [0,1], et vaut bien 0 en 0 et 1 en 1.
- soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$. Alors f_{n+1} est continue sur $[0; \frac{1}{3}],]\frac{1}{3}; \frac{2}{3}[$ et $[\frac{2}{3}; 1]$ comme somme, quotient et composition de fonctions continues. Par ailleurs,

$$f_{n+1}\left(\frac{1}{3}\right) = \lim_{x \to \frac{1}{3}^{-}} f_{n+1}(x) = \lim_{x \to \frac{1}{3}^{-}} \frac{f_n(3x)}{2} = \frac{f_n(1)}{2} = \frac{1}{2} = \lim_{x \to \frac{1}{3}^{+}} f_{n+1}(x)$$

donc f_{n+1} est continue en $\frac{1}{3}$. On montre de la même manière que f_{n+1} est continue en $\frac{2}{3}$. Donc f_{n+1} est continue sur [0,1].

Comme composée de fonctions croissantes, f_{n+1} est également croissante sur chacun des intervalles $[0;\frac{1}{3}]$ et $[\frac{2}{3};1]$, et elle est constante donc croissante sur $[\frac{1}{3};\frac{2}{3}]$. Comme cette croissance a lieu sur chaque intervalle fermé, on peut « recoller » cette croissance sur tout [0,1]:

par exemple si $x \in [0; \frac{1}{3}]$ et $y \in [\frac{2}{3}; 1]$, on a $f_{n+1}(x) \leqslant f_{n+1}(\frac{1}{3}) \leqslant f_{n+1}(\frac{2}{3}) \leqslant f_{n+1}(y)$.

Enfin, $f_{n+1}(0) = \frac{f_n(3\times 0)}{2} = 0$ et $f_{n+1}(1) = \frac{1}{2} + \frac{f_n(3\times 1-2)}{2} = 1$.

• Conclusion : par principe de récurrence, $\mathcal{P}(n)$ est donc vraie pour tout $n \in \mathbb{N}$.

Puisque pour tout $n \in \mathbb{N}$ et pour tout $x \in [0, 1]$, on a

$$0 \leqslant f_n(x) \leqslant 1$$

En passant à la limite en n, on trouve que pour tout $x \in [0,1]$:

$$0 \leqslant f(x) \leqslant 1$$

La fonction f est donc bien à valeurs dans [0,1]. Par ailleurs, si $0 \le x \le y \le 1$, on a pour tout $n \in \mathbb{N}$:

$$f_n(x) \leqslant f_n(y)$$

et là encore, en passant à la limite en n, on obtient

$$f(x) \leqslant f(y)$$

La fonction f est donc croissante, et en passant à la limite dans les égalités $f_n(0) = 0$ et $f_n(1) = 1$, on obtient f(0) = 0 et f(1) = 1. Puisque f est la limite uniforme d'une suite de fonctions continues sur [0,1], elle est elle-même continue sur [0,1]. Enfin, d'après le théorème des valeurs intermédiaires, f([0;1]) est un intervalle contenant f(0) = 0 et f(1) = 1, donc il contient [0;1], et f est donc surjective.