

1. S využitím Laplaceovej transformácie nájdite analytické riešenie rovnice $y(0)=3,\ \dot{y}(0)=2$ a u(t)=0. [6b]

$$\ddot{y}(t) + 5\dot{y}(t) + 4y(t) = u(t)$$

2. Sústavu rovníc

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -a_0 x_1(t) - a_1 x_2(t) + b_0 u(t)
y(t) = x_1(t)$$

prepíšte do maticového tvaru (definujte stavový vektor x(t), maticu A a vektory b a c):

$$\dot{x}(t) = Ax(t) + bu(t)$$
$$y(t) = c^{\mathsf{T}}x(t)$$

- 3. Aký je rád systému v úlohe číslo 2 ak vstupnou veličinou je u(t) a výstupnou veličinou je y(t)? [1b]
- 4. Definujte prenosovú funkciu dynamického systému. [2b]
- 5. Pre dynamický systém opísaný pomocou prenosovej funkcie nájdite zodpovedajúcu diferenciálnu rovnicu. [3b]

$$G(s) = \frac{b_1 s}{s^2 + a_1 s + a_0}$$

6. Vysvetlite pojem prevodová charakteristika.

[3b]

[2b]

7. Uvažujte lineárny uzavretý regulačný obvod ako je znázornené na obr.:

Odvoď
te prenosovú funkciu definovanú pomerom L-obrazov signálov
 $\frac{E(s)}{W(s)}.$

uzavretým regulačným obvodom.

L-obrazov signálov $\frac{\Sigma(s)}{W(s)}$. [5b] 8. Vysvetlite pojem *preregulovanie* v súvislosti s klasickým

9. Nakreslite blokovú schému PID regulátora. [3b]

10. Uvažujte klasický lineárny URO (bez poruchového signálu), kde $G_R(s)=r_0+\frac{r_{-1}}{s}$ a $G_S(s)=\frac{b_0}{s}$,

pričom $b_0 > 0$.

(a) Odvoďte prenosovú funkciu URO. [5b]

(b) Stanovte konkrétne podmienky, ktoré ak budú splnené, tak URO bude stabilný. [2b]

(c) Určte veľkosť trvalej regulačnej odchýlky ak $w(t) = 1. \eqno(5b)$

Tabuľka Laplaceových obrazov:

f(t)	$\mathcal{L}\{f(t)\}$	$f(t)$ $\mathcal{L}{f(t)}$	
$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$s^n F(s) - s^{(n-1)} f(0) \cdots - s^0 \frac{\mathrm{d}^{(n-1)}}{\mathrm{d}t^{(n-1)}} \left(f(0) \right)$	1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$	$\delta(t)$	1