

Rethinking fine-tuning to mitigate feature distortion

Aditi Raghunathan

Large-scale pretraining

Diverse (typically unlabeled) data

Pretrained model

Specialize to narrow distribution

Robustness to distribution shifts

A core challenge for reliable machine learning in the wild

Train

Pedestrians using a crosswalk

Deploy

Important pedestrians

Distribution shifts are everywhere

Satellite remote sensing (different regions)

Tumor detection (new hospitals)

Wildlife conservation (different forests)

Sim-to-real

Christie et al. 2017, Beery et al. 2021, Bandi et al. 2018, Koh et al. 2021, Peng et al. 2018

The generalization challenge

The promise of large-scale pretraining

More data generally helps

The generalization problem revisited

Diverse (typically unlabeled) data

Step one: pretraining unlabeled) data

Pretrained model

Step two: adaptation Specialize to narrow distribution

Supervision during adaptation is still coming from limited data

The generalization challenge revisited

How to retain information beyond the limited data used for adaptation?

The "art" of neural network training

• What parameters to update (model family)

• Loss function

• Optimization hyperparameters

• What parameters to update (model family)

• Loss function

• Optimization hyperparameters

Linear probing vs (full) fine-tuning

Pretraining

Fine-tuning

Linear probing

Pop quiz!

Dataset: BREEDS Living-17

Task: classify into animal categories

Train distribution: one subset of ImageNet hierarchy tree with animal category as root

Pretrained model: MoCo-V2, which has seen *unlabeled* ImageNet images (including various types of animals)

Train

Test

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear probing	96.5%	?
Fine-tuning	97.1%	

Does linear probing do better than scratch OOD?

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear probing	96.5%	82.2%
Fine-tuning	97.1%	

Does linear probing do better than scratch OOD?

Yes!

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear probing	96.5%	82.2%
Fine-tuning	97.1%	?

Does fine-tuning do better than linear probing OOD?

Living-17	ID	OOD
Scratch	92.4%	58.2%
Linear probing	96.5%	82.2%
Fine-tuning	97.1%	77.7 %

Does fine-tuning do better than linear probing OOD?

No!

Dataset: CIFAR 10.1

Task: classify into CIFAR-10 categories

Train distribution: original CIFAR-10 dataset

Test distribution: recent near-replication of the pipeline

Pretrained model: MoCo-V2, which has seen *unlabeled* ImageNet images

Pop quiz: CIFAR10.1

Living-17	ID	OOD
Linear probing	91.8%	82.7
Fine-tuning	97.3%	?

Does linear probing do better than fine-tuning OOD?

Pop quiz: CIFAR10.1

Living-17	ID	OOD
Linear probing	91.8%	82.7
Fine-tuning	97.3%	92.3%

Does linear probing do better than fine-tuning OOD?

No!

Linear probing vs fine-tuning summary

Pretraining

Fine-tuning

Linear probing

Which method does better?

Linear probing vs fine-tuning summary

	ID	OOD
Linear probing	82.9%	
Fine-tuning	85.1%	

Averaged over 10 datasets

Common wisdom is fine-tuning works better than linear probing

Linear probing vs fine-tuning summary

	ID	OOD
Linear probing	82.9%	66.2%
Fine-tuning	85.1%	59.3%

Averaged over 10 datasets

LP performs better than FT OOD on 8 out of 10 datasets

Pretrained Features

Pretrained Features

Features for OOD examples change less

Pretrained Features

Pretrained Features

Features for OOD examples change less

Pretrained Features

Features for OOD examples change less

Pretrained Features

Fine-tuning: features for ID examples change in sync with the linear head

Linear probing: freezes pretrained features

Key takeaway

A larger change in parameters can **distort** pretrained features

How to retain information beyond the limited data used for adaptation?

Best of both worlds

Why does FT do better ID?

Training data may not be linearly separable in the space of pre-trained features i.e. imperfect pre-trained features

Why does FT do worse OOD?

Features can change a lot to accommodate a randomly initialized head

Can we refine features without distorting them too much?

Method to achieve best of both worlds

Idea: modify pre-trained features only as necessary

Step 1: Linear probe

Step 2: Fine-tune

Method to achieve best of both worlds

Idea: modify pre-trained features only as necessary

Step 1: Linear probe

Step 2: Fine-tune

LP-FT method

Can prove that LP-FT dominates both LP and FT under the simple setting of perfect features

Improving fine-tuning

	ID	OOD
Linear probing	82.9%	66.2%
Fine-tuning	85.1%	59.3%
LP-FT	85.7%	68.9%

+10% over fine-tuning!

LP-FT obtains better than the best of both worlds

The "art" of neural network training

• What parameters to update (model family)

• Loss function

• Optimization hyperparameters

The loss function

Contrastive pretraining

Standard finetuning

Can we reduce distortion?

Revisiting the fine-tuning loss function

Fine-tune like you pretrain

Same pretraining loss can reduce distortion and improve robustness

Full finetuning LP-FT

L2-sp (baseline) — FLYP (ours)

Fine-tune like you pretrain

Also see gains in few-shot learning

	PatchCamelyon	SST2
Zero shot	56.5%	60.5%
FT	63.1%	61.1%
LP-FT	62.7%	60.9%
FLYP	66.9%	61.3%

Summary

• Pretrained models give large improvements in accuracy, but how we fine-tune them is key

• General principle: minimize distortion while fine-tuning

- Two simple ways to do that
 - LP-FT (only change features once the head is trained)
 - FLYP (keep the fine-tuning loss identical to the pretraining loss)

Thanks!

Ananya Kumar

Sachin Goyal

Robbie Jones

Sankalp Garg

Tengyu Ma

Zico Kolter

Percy Liang

Apple

Google

Schmidt Futures

Open Philanthropy