19. Домогенни координами. Безкрайни елементи.

Kека K = 0 \vec{e}_1 \vec{e}_2 е афинна координатна систена в равкина голава всияка правад в гима спрямо K уравнение g: ax + by + c = 0, $a^2 + b^2 \neq 0$.

Спедовогтелно наредената ненялева трогіка реалии тисла [а, ь, с] определя еднознатно правата. Наритаме я трогіка хомогенни координати на правата д.

Ясно е, се всижа права има безброгі много мрогіки хомоченни координами, като две мрогіки [α_1 , b_1 , c_1] и [α_2 , b_2 , c_2] са хомоченни координати на една и съща права мотно шогава, когамо съществува реално тисло λ , $\lambda \neq 0$, такова те

 $a_2 = \chi a_1, b_2 = \chi b_1 \quad u \quad c_2 = \chi c_1, \quad a_i^2 + b_i^2 \neq 0, i = 1/2.$

Нека Мо е произволна тотка в г. Тогава Мо се определья еднознатно от кои да е две преситанци се в нея разлитни

прави. Ако $M_0(x_0, y_0)$ и g(a, b, c) е произволна права (x_0, y_0, t) се нарика права (x_0, y_0, t) се нарика пройка (x_0, y_0, t) се нарика (x_0, y_0, t) се нарика (x_0, y_0, t) се нарика (x_0, y_0, t) има (x_0, y_0, t) има (x_0, y_0, t) има (x_0, y_0, t) (x_0, y_0, t)

на всички прави от снопа, успоредни на д прави. Репакцията колинеарнот на вектори" е репация на еквивалентност, тъй като са изпълнени:

> 1. $\vec{p} \parallel \vec{p}$, 2. $\vec{p} \parallel \vec{q} = \vec{q} \parallel \vec{p}$, 3. $\vec{p} \parallel \vec{q}$, $\vec{q} \parallel \vec{z} = \vec{p} \parallel \vec{z}$.

Следователно, под дейетвието на тази релация мнончествого от ненулевите вектори се разбива на непреситамум се класове на еквивалентност. Всеки таков клас наригаме безкрайна тогка Mp. Ако $\vec{\beta}(p_1, p_2)$ трямо K, то на Mp придаваме хомогенни координати Mp ($p_1, p_2, 0$). Обратно, всеяка наредена тройка $(p_1, p_2, 0) + (0,0,0)$ придава координати на тогно една безкрайна тогка. Вве ненулеви наредени тройки $(p_1, p_2, 0)$ и $(q_1, q_2, 0)$ са координати на една и съща безкрайна тогка тогно тогова, кога то съществува $\lambda \neq 0$, такова се $q_1 = \lambda p_1$ и $q_2 = \lambda p_2$.

Свир така, репацията усторедност на прови определя разбиване на мноенеството от прави в равнината, т.е. мноенеството
от прави се разбива на непреситани се касове на еквиванняност като всека права попада в точно един текто клас. Така се
е уместно всеки такъв клас да наретен безкрайна точка, мнушдентна с всека права от съответния сноп. Всъщност всяка
безкрайна точка "поена" направлението, зададено от дожно права.
Мноенеството от вситки безкрайни
точки наригане безкрайната права на
равнината и безкрайни с ил ими
прато с иг
мноенеството от всичкихи
крайни и безкрайни точки, крайни
прави и безкрайната права се нарыта
различена равнена.

Така, по естемивен натин, безхрайната тотка на прива g[a,b,e] придобива хомогенни координати ng(-b,a,o) - координатите и удевлетворх всит хомогенното уравнение на g: ax+by+ct=0. — a.(-b)+b.a+c.o=0.Хомогенните координати на как да е безкрайна тотка $u(p_1,p_2,o)$ удовлетворх ват линей кото уравнение 0. $p_1+0.$ $p_2+p.0=0.$ Средователно безкрайнита трава и на равнината и мине да се отише с уравнението u: t=0и на и придаване хомогенки координати u: t=0Уда от белеши, че нуревата тройка u: t=0За от белеши, че нуревата тройка u: t=0нати нито на тотка, нито на права в разеширената равнина.

Нека спромо K=0е, ег вравниката правата д е с хомогенни координати д : [а, b, с] и в разлипирената равника M_1 и M_2 са две разлитни тоски от g = 7 Vanke $\begin{pmatrix} x_1, y_1, t_1 \end{pmatrix} = 2$, където $\begin{pmatrix} x_1, y_1, t_1 \end{pmatrix}$ и $\begin{pmatrix} x_2, y_1, t_2 \end{pmatrix}$ са етомвенино хомогенните координати на тоските M_1 и M_2 . Тогава, ако $M(x_1, y_1, t_1)$ е мроизволна моска от мравата g, то координатите на M се польтават като некумева инейна комбинация на координатите на M_1 и M_2 . Това се форричира в следното M_1 тоска M_2 с хомогенни координати $M(x_1, y_1, t_2)$ е инимденина с правата $g = M_1 M_2$, $M_1(x_1, y_1, t_2)$, j=1,2. $M_1 \neq M_2$

τοιμο τοιαβα, κοιαιπο $x=1x_1+μx_2; y_2=λy_1+μy_2, t_2=λt_1+μt_2,$

Doxazerercinbo. Hera g=M1M2, g e e xomorenun rogodinaru
g[a,b,c] u M2g. Toraba cucmenama

(7, M) ERXR (10,0).

Параметрични уравнения на права в разлицыената равнина.

(1) $|ax_1+by_1+ct_1=0$ лима кекилево решекие [a,b,c]+[0,0], $ax_2+by_2+ct_2=0$ което е изпълнено мотно шогава, когато детериннантега на тогли мнагна голигенна система Δ е нула (2) $\Delta = \begin{vmatrix} x_1 & y_1 & t_1 \\ x_2 & y_2 & t_2 \end{vmatrix} = 0$ - мотно шогава, когато (2) $\Delta = \begin{vmatrix} x_1 & y_1 & t_1 \\ x_2 & y_2 & t_2 \end{vmatrix} = 0$ - мотно шогава, (2) $\Delta = 0$ минейно зависин от останалите - примерно третими ред е минейна конбликалиця на търги и втори ред, а минено (3) $(x,y,t)=\lambda(x,y_1,t_1)+\mu(x_2,y_2,t_2)$, $(\lambda_1y_1)+(0,0)$. Обратно, ако е изпълнено (3), то (2) $\Delta = 0$. Следователно минейнама ханогенна система (1) ина ненълево решение (a,b,c] и ванъките ѝ решения са от вида (1) ина ненълево решение (2a,b,c] и ванъчите ѝ решения са от вида (1) ина ненълево решение (2a,b,c] и ванъчите ѝ решения са от вида (1) ина ненълево решение (2a,b,c] и ванъчите ѝ решения са от вида (1) ина ненълево решение (1) ина ненълево решение (2a,b,c] и ванъчите и протородионалност, (1) и ма (1) (1) (1) (1) (1) (1) (2) (2) (3) (3) (3) (3) (3) (3) (4)

Така правата д описване с таранетричните уравновия $x = \lambda x_1 + \mu y_1$ $y = \lambda x_2 + \mu y_2$; $(\lambda, \mu) \in \mathbb{R} \times \mathbb{R} \setminus (0, 0)$. $y = \lambda x_2 + \mu y_2$; $(\lambda, \mu) \in \mathbb{R} \times \mathbb{R} \setminus (0, 0)$. $y = \lambda x_1 + \mu y_2$; $(\lambda, \mu) \in \mathbb{R} \times \mathbb{R} \setminus (0, 0)$. $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$; $(\lambda, \mu) \in \mathbb{R} \times \mathbb{R} \setminus (0, 0)$. $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_2 + \mu y_2$ $y = \lambda x_1 + \mu y_2$ $y = \lambda x_2 +$

```
Примери 1. М-крайна интка, M(V3,1) - нехоногенните коор. динати на м. Тогава хомогенните координати на м. са (V3,1,1), както гі (2V3,2,2), (3,03,03) мін. ... (3V3,1,1), V1+0. От хомогенните координати на дадена крайна тогка едначнати на польтаване хотогенните гі координати ... (2V3,2,2) \Rightarrow (V3,1) (3,03,03) \Rightarrow (V3,1) ... (2V3,2,2) \Rightarrow (V3,2,2) \Rightarrow
```

ортого не пното на M_g на правление. M_g е тоела на правлението на весктор, копинеарен с травата g - P_g (-b, a), a M_g е g везкрайната g ид за дадена от снота успоредни прави, g пертендикалярния на g.

4. равнение на g = M_g M_g :
4. M_g M_g