### Статистический анализ занятости населения

Источник данных: http://www.economicswebinstitute.org/data/wagesmicrodata.xls

Описание: выборка состоит из 534 наблюдений по 11 переменным [зарплата, сфера занятости, рабочий сектор, членство в профсоюзе, количество лет обучения, рабочий стаж, возраст, пол, брачный статус, раса, место жительства] и представляет собой данные, собранные по американской переписи населения 1985 гола.

*Гипотеза* (1): влияет ли членство в профсоюзе на размер зарплаты?

Н0: з/п у членов профсоюза и у людей, не состоящих в профсоюзе, равны.

Н1: 3/п у членов профсоюза выше чем у людей, не состоящих в профсоюзе.

Проверка на нормальность выборки, расщепленной по членству в профсоюзе, дает отрицательный результат. Гипотеза Н0 о том, что выборка распределена нормально отвергается на уровне значимости меньше 0,001 по критерию Шапиро-Уилка и по критерию Колмогорова-Смирнова для тех, кто не состоит в профсоюзе и на уровне значимости 0,018 (<0,05) для тех, кто состоит в профсоюзе.

Tests of Normality<sup>b</sup>

| ·                | Kolm      | nogorov-Smir | nov <sup>a</sup> | Shapiro-Wilk |     |      |  |
|------------------|-----------|--------------|------------------|--------------|-----|------|--|
| Union_<br>member | Statistic | df           | Sig.             | Statistic    | df  | Sig. |  |
| No               | ,142      | 438          | ,000             | ,839         | 438 | ,000 |  |
| Yes              | ,101      | 96           | ,018             | ,930         | 96  | ,000 |  |

Для проверки гипотез воспользуемся критерием Манна-Уитни (для 2-х независимых выборок по членству в профсоюзе), который не требует проверки на нормальность. В нашем случае объем выборки большой, тогда критерий Манна-Уитни сводит распределение выборки к нормальному распределению, а некоторой неточностью по сравнению с t-критерием Стьюдента (используется для выборки, распределенной нормально) можно пренебречь. Выясняется, что гипотеза о том, что з/п у членов профсоюза и у людей, не состоящих в профсоюзе, равны, отвергается на уровне значимости меньшем 0,001 (сравнивая с односторонней значимостью для больших выборок). Следовательно, принимаем гипотезу Н1.

Test Statistics<sup>a</sup>

|                        | Wage    |
|------------------------|---------|
| Mann-Whitney U         | 1,378E4 |
| Wilcoxon W             | 1,099E5 |
| z                      | -5,292  |
| Asymp. Sig. (2-tailed) | ,000    |
| Asymp. Sig. (1-tailed) | ,000    |

a. Grouping Variable: Union\_member

<u>Вывод (1):</u>  $3/\pi$  у членов профсоюза в среднем выше чем у людей, не состоящих в профсоюзе.

Гипотеза (2): существует ли связь между тем, в какой сфере занят работник, и рабочим сектором? Н0: связь между тем, в какой сфере занят работник, и рабочим сектором отсутствует. Н1: связь между тем, в какой сфере занят работник, и рабочим сектором существует.

Для проверки гипотез воспользуемся таблицей сопряженности, составленной для данных с номинальными шкалами.

Sector \* Occupation Crosstabulation

|        |             |                |            | Occupation |          |         |       |       |       |  |
|--------|-------------|----------------|------------|------------|----------|---------|-------|-------|-------|--|
|        |             |                | Management | Sales      | Clerical | Service | Prof  | Other | Total |  |
| Sector | Other       | Count          | 49         | 34         | 88       | 81      | 91    | 68    | 411   |  |
|        |             | Expected Count | 42,3       | 29,2       | 74,7     | 63,9    | 80,8  | 120,1 | 411,0 |  |
|        | Manufacture | Count          | 6          | 4          | 7        | 2       | 12    | 68    | 99    |  |
|        |             | Expected Count | 10,2       | 7,0        | 18,0     | 15,4    | 19,5  | 28,9  | 99,0  |  |
|        | Consruction | Count          | 0          | 0          | 2        | 0       | 2     | 20    | 24    |  |
|        |             | Expected Count | 2,5        | 1,7        | 4,4      | 3,7     | 4,7   | 7,0   | 24,0  |  |
| Total  |             | Count          | 55         | 38         | 97       | 83      | 105   | 156   | 534   |  |
|        |             | Expected Count | 55,0       | 38,0       | 97,0     | 83,0    | 105,0 | 156,0 | 534,0 |  |

Воспользуемся критериями Фи и Крамера для оценки меры тесноты связи. Мы отвергаем гипотезу Н0 о том, что связь между тем, в какой сфере занят работник, и рабочим сектором отсутствует на уровне значимости меньше 0,001 (по обоим критериям). Следовательно, гипотеза Н1 принимается.

**Symmetric Measures** 

| Cynmetric medeares |            |       |              |  |  |
|--------------------|------------|-------|--------------|--|--|
|                    |            | Value | Approx. Sig. |  |  |
| Nominal by Nominal | -<br>Phi   | ,520  | ,000         |  |  |
|                    | Cramer's V | ,368  | ,000         |  |  |
| N of Valid Cases   |            | 534   |              |  |  |

Bывод (2): связь между тем, в какой сфере занят работник, и рабочим сектором существует.

Гипотеза (3): существует ли связь между зарплатой, количеством лет обучения и рабочим стажем? Н0: связь между зарплатой и количеством лет обучения (рабочим стажем) отсутствует. Н1: связь между зарплатой и количеством лет обучения (рабочим стажем) существует.

Воспользуемся ранговым коэффициентом корреляции Кендалла, поскольку он не требует проверки на нормальность, не чувствителен к выбросам и применим для больших выборок. В обоих случаях (для образования и стажа) мы отвергаем нулевую гипотезу. Кроме того, статистическая достоверность выявленной связи подтверждается на уровне значимости 0,01 (отвергаем гипотезу об отсутствии связи).

### Correlations

|                 | _         |                         | Wage   | Education |
|-----------------|-----------|-------------------------|--------|-----------|
| Kendall's tau_b | Wage      | Correlation Coefficient | 1,000  | ,282**    |
|                 |           | Sig. (2-tailed)         |        | ,000      |
|                 |           | N                       | 534    | 534       |
|                 | Education | Correlation Coefficient | ,282** | 1,000     |
|                 |           | Sig. (2-tailed)         | ,000   |           |
|                 |           | N                       | 534    | 534       |

<sup>\*\*.</sup> Correlation is significant at the 0.01 level (2-tailed).

### **Correlations**

|                 | -          | -                       | Wage               | Experience         |
|-----------------|------------|-------------------------|--------------------|--------------------|
| Kendall's tau_b | Wage       | Correlation Coefficient | 1,000              | ,117 <sup>**</sup> |
|                 |            | Sig. (2-tailed)         |                    | ,000               |
|                 |            | N                       | 534                | 534                |
|                 | Experience | Correlation Coefficient | ,117 <sup>**</sup> | 1,000              |
|                 |            | Sig. (2-tailed)         | ,000               |                    |
|                 |            | N                       | 534                | 534                |

<sup>\*\*.</sup> Correlation is significant at the 0.01 level (2-tailed).

<u>Вывод (3):</u> связь между зарплатой и количеством лет обучения (рабочим стажем) существует (на уровне значимости 0,01).

Гипотеза (4): существует ли связь между зарплатой, расой и брачным статусом?

Н0: раса и брачный статус не имеют эффекта взаимодействия на з/п.

Н1: раса и брачный статус имеют эффект взаимодействия на з/п.

Н0: 3/п не зависит от расовой принадлежности.

Н1: з/п зависит от расовой принадлежности.

Н0: з/п не зависит от брачного статуса.

Н1: 3/п зависит от брачного статуса.

Сперва проверим выборку на нормальность. Гипотеза о том, что выборка распределена нормально, отвергается.

**Tests of Normality** 

|      | -        | Kolmogorov-Smirnov <sup>a</sup> |     |      | Shapiro-Wilk |     |      |
|------|----------|---------------------------------|-----|------|--------------|-----|------|
|      | Race     | Statistic                       | df  | Sig. | Statistic    | df  | Sig. |
| Wage | Other    | ,124                            | 67  | ,012 | ,909         | 67  | ,000 |
|      | Hispanic | ,234                            | 27  | ,001 | ,635         | 27  | ,000 |
|      | White    | ,117                            | 440 | ,000 | ,872         | 440 | ,000 |

a. Lilliefors Significance Correction

**Tests of Normality** 

|      | Marital_statu | Kolmogorov-Smirnov <sup>a</sup> |     |       | Shapiro-Wilk |     |      |
|------|---------------|---------------------------------|-----|-------|--------------|-----|------|
|      | S             | Statistic                       | df  | Sig.  | Statistic    | df  | Sig. |
| Wage | Unmarried     | ,171                            | 184 | ,000, | ,776         | 184 | ,000 |
|      | Married       | ,103                            | 350 | ,000  | ,907         | 350 | ,000 |

a. Lilliefors Significance Correction

Однако необходимо проверить выборку на то, что стандартная ошибка выборки равна между зависимыми переменными, и то, что дисперсии для разных групп гомогенны. Это позволит нам говорить о том, что ошибки, отличающие распределения от нормальных, идентичны, и мы можем ими пренебречь в дальнейшем анализе. По критерию Ливеня нулевая гипотеза о том, что дисперсии для каждой из групп статистически достоверно не различаются, принимается (0,675>0,05). Кроме того, по критерию Шеффе (на гомогенность) нулевая гипотеза о том, что дисперсии по группам гомогенны, принимается (0,122>0,05).

#### Wage

### Scheffe

|          |     | Subset |
|----------|-----|--------|
| Race     | N   | 1      |
| Hispanic | 27  | 7,28   |
| Other    | 67  | 8,06   |
| White    | 440 | 9,28   |
| Sig.     |     | ,122   |

Means for groups in homogeneous subsets are displayed.

Based on observed means.

The error term is Mean Square(Error) = 26,085.

# Levene's Test of Equality of Error Variances<sup>a</sup>

Dependent Variable:Wage

| F    | df1 | df2 | Sig. |
|------|-----|-----|------|
| ,633 | 5   | 528 | ,675 |

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept + Marital\_status + Race + Marital\_status \* Race

## Выводы (4):

Таким образом, есть возможность применения двухфакторного дисперсионного анализа.

- Отвергаем гипотезу о том, что ни один из факторов модели не влияет на  $3/\pi$  (0,041<0,05).
- Принимаем гипотезу Н0 о том, что з/п не зависит от брачного статуса (0,294>0,05).
- Мы можем принять на уровне значимости не меньшем, чем 0,063 гипотезу Н1 о том, что з/п зависит от расовой принадлежности (0,062<0,063).
- Принимаем гипотезу Н0 о том, что раса и брачный статус не имеют эффекта взаимодействия на з/п (0,939>0,05) (что подтверждается на графике средних).

### **Tests of Between-Subjects Effects**

### Dependent Variable:Wage

| Source                | Type III Sum of Squares | df  | Mean Square | F       | Sig. |
|-----------------------|-------------------------|-----|-------------|---------|------|
| Corrected Model       | 303,984 <sup>a</sup>    | 5   | 60,797      | 2,331   | ,041 |
| Intercept             | 10415,090               | 1   | 10415,090   | 399,280 | ,000 |
| Marital_status        | 28,750                  | 1   | 28,750      | 1,102   | ,294 |
| Race                  | 145,411                 | 2   | 72,706      | 2,787   | ,062 |
| Marital_status * Race | 3,307                   | 2   | 1,653       | ,063    | ,939 |
| Error                 | 13772,715               | 528 | 26,085      |         |      |
| Total                 | 57562,308               | 534 |             |         |      |
| Corrected Total       | 14076,699               | 533 |             |         |      |

a. R Squared = ,022 (Adjusted R Squared = ,012)

# Estimated Marginal Means of Wage



Проводя множественные сравнения, обнаруживается, что средние в группах при попарном сравнении значимо не различаются (принимается нулевая гипотеза о равенстве средних). Однако из полученных данных можно сделать вывод о том, что связь между «испанской» (латиноамериканской) и «белой» (европейской) расой статистически более значима (при уровне значимости 0,15 и ниже), чем при других попарных сравнениях.

### **Multiple Comparisons**

Wage Scheffe

|          | _        | Mean Difference    |            |      | 85% Confide | ence Interval |
|----------|----------|--------------------|------------|------|-------------|---------------|
| (I) Race | (J) Race | (I-J)              | Std. Error | Sig. | Lower Bound | Upper Bound   |
| Other    | Hispanic | ,78                | 1,164      | ,801 | -1,50       | 3,05          |
|          | White    | -1,22              | ,670       | ,192 | -2,53       | ,09           |
| Hispanic | Other    | -,78               | 1,164      | ,801 | -3,05       | 1,50          |
|          | White    | -1,99 <sup>*</sup> | 1,013      | ,145 | -3,97       | -,02          |
| White    | Other    | 1,22               | ,670       | ,192 | -,09        | 2,53          |
|          | Hispanic | 1,99 <sup>*</sup>  | 1,013      | ,145 | ,02         | 3,97          |

Based on observed means.

The error term is Mean Square(Error) = 26,085.

<sup>\*.</sup> The mean difference is significant at the ,15 level.