

Homework Set 4

Dynamics: equations of motion

Revision: 13-Feb-2020

4.1 An old friend

Consider the system of Figure 4.1.

Figure 4.1: Two-mass lumped-model

4.1.1 Building equations of motion

- 1. Determine kinetic energy, potential energy, and dissipation function of the system.
- 2. Use Lagrange's equation to construct the equations of motion.
- 3. Use Hamilton's equation to construct the equations of motion.

4.1.2 Control

Let's control the system from Figure 4.1, where $m_1 = m_2 = 1 \text{ kg}$, $k_1 = 20 \text{ N/m}$, $k_2 = 10 \text{ N/m}$, $c_1 = 0.4 \text{ Ns/m}$, and $c_2 = 0.2 \text{ Ns/m}$. The input to the system is the force f_2 , and the output is x_2 .

1. Determine a state-space representation of the system.

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}u \tag{4.1}$$

$$y = \mathbf{Cz} + Du \tag{4.2}$$

Be clear on your choice of state-variables.

- 2. Determine if the system is controllable and observable. Hint: it should be or else we need to change the input and/or the output. Build the controllability matrix C_M and the observability matrix O_M . Check the rank of each using the following methods
 - (a) the determinant

- (b) the singular value decomposition
- (c) the eigenvalues
- (d) a built-in rank function.¹
- 3. If we want the closed-loop response to have a settle time less than 2s, pick some desired poles as well as poles for the observer.
- 4. Design a state feedback controller. Test and verify.
- 5. Design a state observer.
- 6. Test the observer-based controller on system performance for a step input with (reasonable) random initial conditions.
- 7. Experimental Bonus: Let's imagine that this vibrating control system is isolated and where energy is at a premium. For example, a robotic space vehicle. The goal now is reduce the total energy needed to go from rest to a unit-step reference. The energy used to actuate the input is $\int u \, dx_2$. If we assume that both pushing and pulling consume energy (there is no recovery), then we can track the energy usage z_u as

$$z_{u} = \int |u(t)| \, \mathrm{d}x_{2}(t) = \int \left| u(t) \frac{\mathrm{d}x_{2}}{\mathrm{d}t} \right| \, \mathrm{d}t = \int |u(t)\dot{x}_{2}(t)| \, \mathrm{d}t$$
 (4.3)

$$\dot{z}_u = |u\dot{x}_2| \tag{4.4}$$

Augment the set of equations we are integrating to include (4.4), and calculate the total energy used for a particular choice of the closed-loop poles. Modify your choice of where the closed-loop poles are placed to lower the value of $z_u(t_{\rm end})$, while maintaining the other performance goals.

 $^{^1\}mathrm{The\ rank\ function\ in\ Matlab}$ is part of its base https://www.mathworks.com/help/matlab/ref/rank.html, and Julia has one in its standard library LinearAlgebra https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.rank

4.2 An old enemy

Consider the system of Figure 4.2. These are all models that share similar dynamics, and have been used in a variety of mechanisms over the past century. Using Lagrange's equation, determine the equation of motion of the system in Figure 4.2b. Assume the rod of length L is uniform, and has mass m.

(c) A centrifugal governor. Image from *Discoveries & Inventions of the Nineteenth Century* by R. Routledge, 13th edition, published 1900.

Figure 4.2: The greatest dynamics problem in the universe \P .

4.3 Simplified car model

Consider the rigid bar shown in Figure 4.3, which can rotate (pitch) about the \hat{k} direction and translate (bounce) along the \hat{j} direction. We can assume the motion to be small enough that the spring/damper forces remain vertical. The motion is described by the generalized coordinates y and θ at the center of gravity of the beam. The coordinates are not measured from the equilibrium position, but when the forces in the springs are zero. This model provides a good an interesting representation for describing certain types of motions of motorcycles, automobiles, and other vehicles.

- 1. Determine the equations of motion in terms of y and θ .
- 2. Determine the equilibrium equations for the system, and the conditions if the car is to be horizontal at rest.
- 3. Determine the linear equations of motion about equilibrium.
- 4. Bonus: determine the natural frequencies.

Figure 4.3: Rigid body in the plane constrained by springs and dampers

4.4 Pendulum Absorber

Consider the pendulum attached to a cart, as depicted in Figure 4.4.

- 1. Use Newton's Laws to derive the equations of motion.
- 2. Use Lagrange's equation to derive the equations of motion.
- 3. Compare the equations from the previous two steps, and show they are equivalent.
- 4. Use Hamilton's equation to derive a set of first-order equations of motion.

Figure 4.4: Pendulum absorber

4.5 Airfoil

An airfoil section to be tested in a wind tunnel is supported by a linear spring k and a torsional spring k_t , as shown in Figure 4.5. The center of gravity of the section is a distance l ahead of the point of support. Assume that the spring k remains vertical.

- 1. Using Lagrange's equation, determine the equations of motion.
- 2. Using Hamilton's equation, determine the equations of motion.

Figure 4.5: Elastically mounted airfoil

4.6 Rolling pendulum

Determine the equations of motion of the system in Figure 4.6. Assume that the length of the pendulum is L.

Figure 4.6: Rolling pendulum

4.7 Rotating pendulum of doom

Consider the rotary pendulum in Figure 4.7. Here, $\Omega = \Omega(t)$ is the variable angular velocity of frame. This frame has a rotary inertia J_G about the Z axis. Assume there is an input torque T(t) acting on the frame (same direction as Ω). The deformed length of the spring is L = L(t), in the x-z plane. The unstretched length of the spring is L_0 . The mass of point P is m_p . Derive the equations of motion for this system.

Figure 4.7: A rotary elastic pendulum

4.8 The double pendulum

The double-pendulum shown in Figure 4.8 is a classic problem in the study of chaos. The parameters of this system are $\{g, m_1, m_2, l_1, l_2\}$.

- 1. Derive equations of motion for this system. Use θ_1 and θ_2 as the generalized coordinates.
- 2. Derive the equation of motion in terms of the x-y locations of the centers of mass using the Udwadia-Kalaba equation.

Figure 4.8: A planar lumped-mass ideal double-pendulum.