EARNINGS-BASED BORROWING CONSTRAINTS AND PECUNIARY EXTERNALITIES

Thomas Drechsel Seho Kim (University of Maryland)

Federal Reserve Board October 18, 2021

MOTIVATION

- ▶ US firms face two types of credit constraints: asset-based and earnings-based
 - Liquidation value of physical assets vs. borrower's current EBITDA limit debt access
 - ▶ Direct micro evidence: 80% of corporate debt is earnings-based (Lian and Ma, 2020)
 - ► Consequences for business cycle dynamics (Drechsel, 2020)

MOTIVATION

- US firms face two types of credit constraints: asset-based and earnings-based
 - Liquidation value of physical assets vs. borrower's current EBITDA limit debt access
 - ▶ Direct micro evidence: 80% of corporate debt is earnings-based (Lian and Ma, 2020)
 - Consequences for business cycle dynamics (Drechsel, 2020)
- Limited understanding of normative implications of earnings-based constraints
 - ► This paper provides a theoretical treatment
 - Structural model with (constrained) efficiency characterization
 - Implications for macroprudential policy

PREVIEW OF FINDINGS

- Asset-based constraint: firms over-borrow in decentralized equilibrium
 - Echoes existing insights of the literature, e.g. Dávila and Korinek (2018)
 - lacktriangle Higher asset price relaxes constraint ightarrow not internalized
- Earnings-based constraint: firms under-borrow in decentralized equilibrium
 - lacktriangle Higher input price (wage) tightens constraint ightarrow not internalized
- ▶ Interest coverage constraint: 'mixture' of earnings- and asset-based constraint

PREVIEW OF INTUITION

- ▶ Borrowing today reduces borrower's net worth tomorrow (all else equal)
- Suppose the fact borrower net worth is lower tomorrow . . .
 - ...lowers the price of physical capital
 - ...lowers wages

PREVIEW OF INTUITION

- Borrowing today reduces borrower's net worth tomorrow (all else equal)
- Suppose the fact borrower net worth is lower tomorrow . . .
 - ...lowers the price of physical capital
 - ...lowers wages
- Lower price of physical capital tomorrow makes asset-based constraint tighter
 - lacktriangle Not internalized by asset-based borrower today ightarrow borrows "too much"

PREVIEW OF INTUITION

- Borrowing today reduces borrower's net worth tomorrow (all else equal)
- Suppose the fact borrower net worth is lower tomorrow . . .
 - ...lowers the price of physical capital
 - ...lowers wages
- Lower price of physical capital tomorrow makes asset-based constraint tighter
 - lacktriangle Not internalized by asset-based borrower today ightarrow borrows "too much"
- Lower wage tomorrow makes earnings-based constraint looser
 - ▶ Not internalized by earnings-based borrower today → borrows "too little"

PREVIEW OF EXTENSIONS

- Working capital
- Wage rigidity
- ► Small open economy
- ► Output vs. input prices

RELATED LITERATURE

Pecuniary externalities with financial frictions:

Lorenzoni (2008), Bianchi (2011), Benigno, Chen, Otrok, Rebucci, and Young (2013), Bianchi (2016), Dávila and Korinek (2018), Ottonello, Perez, and Varraso (2019),...

- lacktriangle Variety of credit constraints o subtleties in their policy implications
- Aggregate demand externalities:

Farhi and Werning (2016), Korinek and Simsek (2016), Schmitt-Grohé and Uribe (2016)

- ▶ Pecuniary externalities working through input prices in financial constraints
- Empirical background of credit constraints:

Lian and Ma (2020), Drechsel (2020), Greenwald (2019),...

► Normative implications of asset-based and earnings-based constraints

PLAN FOR REST OF THE TALK

- 1. Main intuition
- 2. Empirical evidence
- 3. The model
 - A. Setting
 - B. Efficiency analysis
 - C. Model restrictions and main results
- 4. Extensions and discussion
- 5. Conclusion

MAIN INTUITION

Consider a generic financial constraint:

$$\Phi(x', \boldsymbol{z}, \widetilde{\boldsymbol{z}}) \geq 0$$

- ightharpoonup x': financial asset position (x' < 0: borrowing)
- z: endogenous variables chosen by the agent
- ightharpoonup \widetilde{z} : endogenous or exogenous variables taken as given by the agent (e.g., prices)
- Source of inefficiency:
 - ightharpoonup Agents do not internalize that their choices move (future) prices in \widetilde{z}
 - → pecuniary externality

MAIN INTUITION

- The direction of how choices (x') move prices (\tilde{z}) , and therefore the constraint (Φ) matters for the normative implications
- ▶ There are financial constraints in which prices other than that of collateral enter
- ▶ Those prices may have the opposite effect on credit constraints

MAIN INTUITION: ASSET-BASED CONSTRAINT

- Asset-based collateral constraint:
 - ightharpoonup z=k' , $\widetilde{z}=q$, and $\Phi(x',z,\widetilde{z})=x'+\phi qk'\geq 0 \Rightarrow -x'\leq \phi qk'$
 - ightharpoonup q=q(X,K): market price of capital as a function of the aggregate state variables
 - Aggregate states are net worth and capital
- lacktriangle Suppose q depends positively on aggregate borrower net worth X
 - If more borrowing today:
 - \Rightarrow Future aggregate borrower net worth \downarrow
 - \Rightarrow Future price of capital \downarrow
 - ⇒ Tightening of future borrowing limit
- Agents do not internalize this effect, over-borrow relative to the social optimum

MAIN INTUITION: EARNINGS-BASED CONSTRAINT

- Earnings-based constraint:

 - ightharpoonup w = w(X,K): market wage as a function of the aggregate state variables
- lacktriangle Suppose w increases with aggregate borrower net worth $X\dots$
 - If more borrowing today:
 - \Rightarrow Future aggregate borrower net worth \downarrow
 - \Rightarrow Future wage \downarrow
 - ⇒ Loosening of future borrowing limit
- Agents do not internalize this effect, under-borrow relative to the social optimum

EMPIRICAL EVIDENCE

- ▶ Mounting microeconomic evidence in favor of $-x' \leq \widetilde{\phi}(y w\ell)$
- Earnings-based borrowing constraints can arise through:
 - Debt covenants: legal provisions in loan contracts
 - Credit ratings, bankruptcy procedures, . . .
- ▶ Lian and Ma (2020): 80% of corporate debt earnings-based
- ▶ Drechsel (2020): earnings-based constraints matter for business cycle dynamics
- ► Caglio, Darst, and Kalemli-Özcan (2021) shows that earnings-based are prevalent for private small and medium-sized companies (SMEs)

EMPIRICAL EVIDENCE: LOAN COVENANTS

Covenant type	Median	Mean	Freq. (%)
Max Debt to EBITDA	3.75	4.60	60.5
Min EBITDA to Interest	2.50	2.56	46.7
Min EBITDA to Fixed Charge	1.25	1.42	22.1
Max. Leverage ratio	0.60	0.64	21.3
Max. Capex	20M	194M	15.1
Net Worth	126M	3.2B	11.5
	Max Debt to EBITDA Min EBITDA to Interest Min EBITDA to Fixed Charge Max. Leverage ratio Max. Capex	Max Debt to EBITDA 3.75 Min EBITDA to Interest 2.50 Min EBITDA to Fixed Charge 1.25 Max. Leverage ratio 0.60 Max. Capex 20M	Max Debt to EBITDA3.754.60Min EBITDA to Interest2.502.56Min EBITDA to Fixed Charge1.251.42Max. Leverage ratio0.600.64Max. Capex20M194M

EBITDA is earnings before interest, taxes, depreciation and amortization

- Covenants based on earnings very prevalent
- Covenants bind frequently with large economic effects (see e.g. Chodorow-Reich and Falato, 2021)

BUSINESS CYCLE CONSEQUENCES (DRECHSEL, 2020)

► Aggregate debt response consistent with earnings-based constraint, not with collateral constraint

BUSINESS CYCLE CONSEQUENCES (DRECHSEL, 2020)

➤ Split of debt response across borrower types consistent with model prediction across alternative constraints

THE LITERATURE IN ONE TABLE

	Asset-based	Earnings-based		
Study		Debt-to-Earnings	Interest coverage	
Lian and Ma (2020)	Prevalence: 20%	Prevalence: 80%		
	(classification procedure; several data sources, including hand-collected data) Strong sensitivity of corporate borrowing to changes in EBITDA; low sensitivity of corporate borrowing to changes in real estate values (regression analysis, natural experiment based on accounting rule change) Financial amplification (fire sale) effects Financial amplification dynamics mitigated			
	(Structural model)			
Drechsel (2020)	>61% of loan debt has earnings-related covenants			
	(Dealscan)			
	Model response of debt to investment	Model response of debt to investment		
	shocks \neq empirical response	$shocks = empirical\ response$		
		data, Compustat-Dealscan)		
	Markups countercyclical	Markups procyclical		
	(New Keynesian model, macro data)			
Greenwald (2019)		Most firms with interest coverage	> 80% of firms which have any loan	
		covenants	covenants	
	(Compustat-Dealscan)			
	Weak response to monetary policy	Weak response to monetary policy	Strong response to monetary policy	
	State dependence based on level of interest rats			
		(Structural model, Compustat-Dealscan)		

SETTING

- ▶ Build on structure Dávila and Korinek (2018) + labor market
- ▶ Three period model (t = 0, 1, 2)
- ▶ The state of nature, $\theta \in \Omega$, is revealed at date 1
- ightharpoonup Two types of agents: borrowers (b) and lenders (l)
- Both agents produce, consume and supply labor
- Borrowers face credit constraints

AGENTS' PROBLEM

▶ Agent $i \in \{b, l\}$ maximizes

$$U^i = \mathbb{E}_0 \left[\sum_{t=0}^2 \beta^t u^i(c_t^i, \ell_{st}^i) \right]$$

subject to budget constraints

$$\begin{split} c_0^i + h^i(k_1^i) + \int_{\theta \in \Theta} m_1^\theta x_1^{i,\theta} d\theta &= e_0^i \\ c_1^{i,\theta} + q^\theta \Delta k_2^{i,\theta} + m_2^\theta x_2^{i,\theta} &= e_1^{i,\theta} + x_1^{i,\theta} + F^i(k_1^i, \ell_{d1}^{i,\theta}) - w_1^\theta \ell_{d1}^{i,\theta} + w_1^\theta \ell_{s1}^{i,\theta}, \quad \forall \theta \\ c_2^{i,\theta} &= e_2^{i,\theta} + x_2^{i,\theta} + F^i(k_2^{i,\theta}, \ell_{d2}^{i,\theta}) - w_2^\theta \ell_{d2}^{i,\theta} + w_2^\theta \ell_{s2}^{i,\theta}, \quad \forall \theta \end{split}$$

and financial constraints

$$\begin{split} & \Phi_1^b(x_1^b, k_1^b) \geq 0 \\ & \Phi_2^{b,\theta}(x_2^{b,\theta}, k_1^b, k_2^{b,\theta}, \{\ell_{dt}^{b,\theta}, \ell_{st}^{b,\theta}\}_{t=1}^2; q^\theta, w_1^\theta, w_2^\theta, m_2^\theta) \geq 0, \ \forall \theta \end{split}$$

FINANCIAL CONSTRAINT

▶ Main constraint of interest: period-1 financial constraint

$$\Phi_2^{b,\theta}(x_2^{b,\theta},k_1^b,k_2^{b,\theta},\{\ell_{dt}^{b,\theta},\ell_{st}^{b,\theta}\}_{t=1}^2;q^\theta,w_1^\theta,w_2^\theta,m_2^\theta)\geq 0,\;\forall\theta$$

- General formulation in which all model variables can enter
- Includes:
 - Asset-based constraint: $-x_2^{b,\theta} \le \phi q^{\theta} k_2^{b,\theta}$
 - $\blacktriangleright \ \ \text{Earnings-based constraint:} \ \ -x_2^{b,\theta} \leq \widetilde{\phi}(F^b(k_1^b,\ell_{d1}^{b,\theta}) w_1^\theta \ell_{d1}^{b,\theta})$
 - $\qquad \qquad \textbf{Interest coverage constraint: } -x_2^{b,\theta} \leq \hat{\phi} \frac{F^b(k_2^{b,\theta},\ell_{d2}^{b,\theta}) w_2^{\theta}\ell_{d2}^{b,\theta}}{i_2^{\theta}}$

SOLVING THE MODEL

- Decentralized equilibrium (backward induction)
 - ▶ Date 2: purely intra-temporal consumption, labor supply and demand
 - ▶ Date 1: express welfare as a function of state variables

$$V^{i,\theta}(n_1^{i,\theta}, k_1^i; N_1^{\theta}, K_1) = \max_{\{c_1^{i,\theta}, c_2^{i,\theta}, k_2^{i,\theta}, k_2^{i,\theta}, \ell_{dt}^{i,\theta}, \ell_{st}^{i,\theta}\}} \left\{ u^i(c_1^{i,\theta}, \ell_{s1}^{i,\theta}) + \beta u^i(c_2^{i,\theta}, \ell_{s2}^{i,\theta}) \right\}$$

- s.t. period 1 and 2 budget constraint and period 1 financial constraint
 - ▶ net worth: $n_1^{i,\theta} \equiv e_1^{i,\theta} + x_1^{i,\theta}$
 - Prices are functions of only aggregate states
 - \blacktriangleright In equilibrium, $n_1^{i,\theta}=N_1^{i,\theta}$, $k_1^i=K_1^i$

SUFFICIENT STATISTICS

- Following Dávila and Korinek (2018), "sufficient statistics" approach
- ▶ The effect of changes in $N_1^{j,\theta}$ on $V^{i,\theta}$:

$$V_{N_1^j}^{i,\theta} \equiv \frac{dV^{i,\theta}(\cdot)}{dN_1^{j,\theta}} = \lambda_1^{i,\theta} \mathcal{D}_{1N^j}^{i,\theta} + \lambda_2^{i,\theta} \mathcal{D}_{2N^j}^{i,\theta} + \kappa_2^{i,\theta} \mathcal{C}_{N^j}^{i,\theta}$$

- ▶ Welfare changes that are not internalized by the agents, work through prices
- ightharpoonup Distinguish between distributive effects (\mathcal{D}) and constraint effects (\mathcal{C})

SUFFICIENT STATISTICS

$$V_{N_1^j}^{i,\theta} \equiv \frac{dV^{i,\theta}(\cdot)}{dN_1^{j,\theta}} = \lambda_1^{i,\theta} \mathcal{D}_{1N^j}^{i,\theta} + \lambda_2^{i,\theta} \mathcal{D}_{2N^j}^{i,\theta} + \kappa_2^{i,\theta} \mathcal{C}_{N^j}^{i,\theta}$$

Distributive effects:

- Changes in prices that benefit one agent, and make other agent worse off
- Zero-sum
- Not our focus

SUFFICIENT STATISTICS

$$V_{N_1^j}^{i,\theta} \equiv \frac{dV^{i,\theta}(\cdot)}{dN_1^{j,\theta}} = \lambda_1^{i,\theta} \mathcal{D}_{1N^j}^{i,\theta} + \lambda_2^{i,\theta} \mathcal{D}_{2N^j}^{i,\theta} + \kappa_2^{i,\theta} \mathcal{C}_{N^j}^{i,\theta}$$

Constraint effects: changes in prices that affect tightness of credit constraints

$$\mathcal{C}_{Nj}^{b,\theta} \equiv \frac{\partial \Phi_{2}^{b,\theta}}{\partial q^{\theta}} \frac{\partial q^{\theta}}{\partial N_{1}^{j,\theta}} + \frac{\partial \Phi_{2}^{b,\theta}}{\partial m_{2}^{\theta}} \frac{\partial m_{2}^{\theta}}{\partial N_{1}^{j,\theta}} + \frac{\partial \Phi_{2}^{b,\theta}}{\partial w_{1}^{\theta}} \frac{\partial w_{1}^{\theta}}{\partial N_{1}^{j,\theta}} + \frac{\partial \Phi_{2}^{b,\theta}}{\partial w_{2}^{\theta}} \frac{\partial w_{2}^{\theta}}{\partial N_{1}^{j,\theta}} \\
\mathcal{C}_{Nj}^{l,\theta} = 0$$

 $(\kappa_2^{i, heta}$ is Lagrange multiplier on the financial constraint)

OTHER EFFECTS

- ▶ In the same vein, can study effects coming from $\frac{dV^{i,\theta}(\cdot)}{dK_1^{j,\theta}}$
- ▶ We focus on over-/under-borrowing rather than over-/under-investing
- ▶ Bound by "anything goes" result of Dávila and Korinek (2018)

CONSTRAINED EFFICIENT ALLOCATION

- ▶ Planner internalizes distributive and constraint effects of borrowing decision
- ▶ Chooses allocations in t = 0 subject to:
 - 1. The same t=0 constraints as the private agents
 - 2. The optimal behavior of private agents in periods t=1,2
- lacktriangle Corresponds to problem of constrained Ramsey planner who can levy t=0 taxes

SOCIAL PLANNER PROBLEM

$$\max \sum_{i} \alpha^{i} \{ u^{i}(C_{0}^{i}) + \beta \mathbb{E}_{0}[V^{i,\theta}(N_{1}^{i,\theta}, K_{1}^{i}; N^{\theta}, K_{1})] \}$$

subject to t = 0 resource and credit constraints

$$\sum_{i} [C_0^i + h^i(K_1^i) - e_0^i] \le 0$$
$$\sum_{i} X_1^{i,\theta} = 0, \ \forall \theta$$
$$\Phi_1^i(X_1^i, K_1^i) \ge 0, \ \forall i$$

IMPLEMENTATION OF CONSTRAINED EFFICIENT ALLOCATION

▶ **Proposition:** A decentralized equilibrium with the following corrective taxes replicates the constrained efficient allocation

$$\tau_x^{i,\theta} = -\Delta MRS_{01}^{ij,\theta} \mathcal{D}_{1N^i}^{i,\theta} - \Delta MRS_{02}^{ij,\theta} \mathcal{D}_{2N^i}^{i,\theta} - \tilde{\kappa}_2^{b,\theta} \mathcal{C}_{N^i}^{b,\theta}, \ \forall i,\theta$$

- $ightharpoonup au_x^{i, heta} > 0$: taxes on saving \Rightarrow under-borrowing in decentralized equilibrium
- ightharpoonup $ilde{\kappa}_2^{b, heta}$: shadow price on credit constraint

HOW TO PROCEED WITH EFFICIENCY ANALYSIS

- lacktriangle For specific financial constraints $\Phi_2^{b, heta}$, find $\mathcal{C}_{N^i}^{b, heta}$
- ▶ Given sign of $\mathcal{C}_{N^i}^{b,\theta}$, determine sign of $\tau_x^{i,\theta}$
 - If $\tau_x^{i,\theta} < 0$: planner corrects 'over-borrowing'
 - If $\tau_x^{i,\theta} > 0$: planner corrects 'under-borrowing'
- ► For first step, need to specialize model further

ADDITIONAL MODEL RESTRICTIONS

Condition for collateral constraints:

$$\frac{\partial q^{\theta}}{\partial N_1^{i,\theta}} \ge 0, \ \forall i$$

- **▶** Argument:
 - Capital supply is fixed
 - \Rightarrow an increase in resources will increase the demand for capital
 - ⇒ upward pressure on capital price

ADDITIONAL MODEL RESTRICTIONS

Condition for earnings-based constraints:

$$\frac{\partial w_1^{\theta}}{\partial N_1^{i,\theta}} \ge 0, \ \forall i$$

Argument:

- ► Higher net worth loosens credit constraint
 - \Rightarrow Effective cost of hiring labor \downarrow , so labor demand increases
- ► Higher net worth increases consumption
 - ⇒ (Under standard preference) Demand for leisure ↑, so labor supply decreases

ADDITIONAL MODEL RESTRICTIONS

Condition for interest coverage constraints:

$$\frac{\partial m_2^{\theta}}{\partial N_1^{i,\theta}} \ge 0, \ \forall i$$
$$\frac{\partial w_2^{\theta}}{\partial N_1^{i,\theta}} \ge 0, \ \forall i$$

$$\frac{\partial w_2^{\theta}}{\partial N_1^{i,\theta}} \ge 0, \ \forall i$$

Argument:

- ► Higher net worth increases incentive to save more to smooth consumption
 - ⇒ Price of debt (= inverse of interest rate) increase (tends to move in the same way with the price of capital due to no-arbitrage restriction)
- Direct analogy to the argument for the period 1 wage

MAIN RESULTS

Collateral constraint:

$$\Phi_2^{b,\theta}(\cdot) = x_2^{b,\theta} + \phi q^{\theta} k_2^{b,\theta} \ge 0$$

- ▶ **Proposition:** There is an **over-borrowing** effect through constraint externalities
- Proof:
 - $\qquad \qquad -\tilde{\kappa}_2^{b,\theta}\mathcal{C}_{N^i}^{b,\theta} = -\tilde{\kappa}_2^{b,\theta}\frac{\partial \Phi_2^{b,\theta}}{\partial q^\theta}\frac{\partial q^\theta}{\partial N_1^{i,\theta}} \leq 0 \Rightarrow \text{subsidize saving (= penalize borrowing)}$

MAIN RESULTS

Earnings-based constraint:

$$\Phi_2^{b,\theta}(\cdot) = x_2^{b,\theta} + \widetilde{\phi}(F^b(k_1^b,\ell_{d1}^{b,\theta}) - w_1^{\theta}\ell_{d1}^{b,\theta}) \ge 0$$

- ▶ **Proposition:** There is an **under-borrowing** effect through constraint externalities
- ► Proof:
 - $\qquad \qquad -\tilde{\kappa}_2^{b,\theta}\mathcal{C}_{N^i}^{b,\theta} = -\tilde{\kappa}_2^{b,\theta}\frac{\partial \Phi_2^{b,\theta}}{\partial w_1^{\theta}}\frac{\partial w_1^{\theta}}{\partial N_1^{i,\theta}} \geq 0 \Rightarrow \text{penalize saving (= subsidize borrowing)}$

MAIN RESULTS

Interest coverage constraint:

$$\Phi_2^{b,\theta}(\cdot) = x_2^{b,\theta} + \hat{\phi} \frac{F^b(k_2^{b,\theta}, \ell_{d2}^{b,\theta}) - w_2^{\theta} \ell_{d2}^{b,\theta}}{i_2^{\theta}} \ge 0$$

- Proposition: There is an ambiguous effect through constraint externalities
- Proof:
 - $-\tilde{\kappa}_2^{b,\theta} \mathcal{C}_{N^i}^{b,\theta} = -\tilde{\kappa}_2^{b,\theta} \left(\frac{\partial \Phi_2^{b,\theta}}{\partial w_2^{\theta}} \frac{\partial w_2^{\theta}}{\partial N_i^{i,\theta}} + \frac{\partial \Phi_2^{b,\theta}}{\partial l_2^{\theta}} \frac{\partial l_2^{\theta}}{\partial N_i^{i,\theta}} \right) \lesssim 0$
 - ▶ This constraint is "mixture" of earnings-based and asset-based constraint
 - lacktriangle Why? 1/i co-moves with q through no-arbitrage condition

SUMMARY OF FINDINGS

- ► Asset-based constraint: agents **over-borrow** in decentralized equilibrium
 - Echoes existing insights of the literature, e.g. Dávila and Korinek (2018)
 - lacktriangle Higher asset price relaxes constraint ightarrow not internalized
- Earnings-based constraint: agents under-borrow in decentralized equilibrium
 - lacktriangle Higher input price (wage) tightens constraint ightarrow not internalized
- ▶ Interest coverage constraint: 'mixture' of earnings- and asset-based constraint

WORKING CAPITAL

- ► Several authors propose models with working capital and collateral constraints
 - ► See e.g. Bianchi and Mendoza (2010), Jermann and Quadrini (2012), Bianchi (2016)
- Suppose wage bill financed with an intraperiod loan $x_{wc} = -\psi w \ell$

$$-(x' - \psi w \ell) \le \widetilde{\phi}(F(k, \ell) - w\ell) \Rightarrow -x' \le -(\widetilde{\phi}F(k, \ell) - (\widetilde{\phi} + \psi)w\ell)$$

 $ightharpoonup \widetilde{\phi} + \psi > \widetilde{\phi}$: more pronounced under-borrowing effect

STICKY WAGES

- ► Sticky wage rule: $w = \chi w^* + (1 \chi)w_{-1}, 0 < \chi < 1$
 - w^* : flexible component, w_{-1} : previous period's wage

$$-x' \le \widetilde{\phi}(F(k,\ell) - w\ell) \Rightarrow -x' \le -(\widetilde{\phi}F(k,\ell) - \widetilde{\phi}\chi)w^*\ell - \widetilde{\phi}(1-\chi)w_{-1}\ell$$

- $lackbox{}\widetilde{\phi}\chi<\widetilde{\phi}$: less pronounced under-borrowing effect
- Good sense of the wage determination process matters for macroprudential policy

SMALL OPEN ECONOMY

- ➤ Several papers on welfare consequences of borrowing constraints in small open economies (see e.g. Bianchi, 2011)
- ► We focus on an endogenous interest rate because the background on earnings-based constraints is largely provided for the U.S.
- Microeconomic evidence on the specific forms of constraints is thinner for emerging economies, but would be very welcome
- Note that a fixed interest rates would make interest coverage constraint inherit the consequences of the earnings-based constraint (no 'mixture' result)

OUTPUT VS. INPUT PRICES

- In our real model, w denotes relative price
- But what if final goods price is not equal to 1?
- Need multi-good environment to think about meaningful output price variation
 - 1. Monopolistically competitive firms environment
 - Prices are choice variables, so firms internalize how price affects the constraint
 - However, firms would not internalize how their individual choices affect aggregate inflation, which could affect nominal debt limits
 - 2. Perfectly competitive firms environment
 - ► Effects on relative prices between different goods not internalized? (Fazio (2021))

CONCLUSION

- ► Whether debt is backed by collateral or linked to firms' earnings has sharply different implications for macroprudential policy
- ► The pecuniary externality through wages in earnings-based constraints prescribes that a regulatory authority should, if anything, encourage firms to borrow
- ► Our analysis highlights the importance of a proper understanding of the microeconomic details behind which constraints matter in which markets
 - Asset-based borrowing: mortgage markets, repo markets, . . .
 - Earnings-based borrowing: corporate credit markets

REFERENCES

- Benigno, G., H. Chen, C. Otrok, A. Rebucci, and E. R. Young (2013): "Financial crises and macro-prudential policies," *Journal of International Economics*, 89, 453–470.
- BIANCHI, J. (2011): "Overborrowing and Systemic Externalities in the Business Cycle," American Economic Review, 101, 3400-3426.
- ——— (2016): "Efficient Bailouts?" American Economic Review, 106, 3607-59.
- BIANCHI, J. AND E. G. MENDOZA (2010): "Overborrowing, Financial Crises and 'Macro-prudential' Taxes," Working Paper 16091, NBER.
- CAGLIO, C. R., R. M. DARST, AND S. KALEMLI-ÖZCAN (2021): "Risk-Taking and Monetary Policy Transmission: Evidence from Loans to SMEs and Large Firms." Tech. rep., National Bureau of Economic Research.
- CHODOROW-REICH, G. AND A. FALATO (2021): "The Loan Covenant Channel: How Bank Health Transmits to the Real Economy," The Journal of Finance, n/a.
- DÁVILA, E. AND A. KORINEK (2018): "Pecuniary Externalities in Economies with Financial Frictions," The Review of Economic Studies, 85, 352–395.
- DRECHSEL, T. (2020): "Earnings-based borrowing constraints and macroeconomic fluctuations," Working paper.
- FARHI, E. AND I. WERNING (2016): "A Theory of Macroprudential Policies in the Presence of Nominal Rigidities," Econometrica, 84, 1645-1704.
- FAZIO, M. (2021): "Financial Stabilisation Policies in a Credit Crunch: Zombie Firms and the Effective Lower Bound," Working paper, London School of Economics
- GREENWALD, D. (2019): "Firm debt covenants and the macroeconomy: The interest coverage channel," Working paper.
- JERMANN, U. AND V. QUADRINI (2012): "Macroeconomic Effects of Financial Shocks," American Economic Review, 102, 238-71.
- KORINEK, A. AND A. SIMSEK (2016): "Liquidity Trap and Excessive Leverage," American Economic Review, 106, 699-738.
- LIAN, C. AND Y. MA (2020): "Anatomy of Corporate Borrowing Constraints*," The Quarterly Journal of Economics, 136, 229-291.
- LORENZONI, G. (2008): "Inefficient Credit Booms," The Review of Economic Studies, 75, 809-833.
- OTTONELLO, P., D. J. PEREZ, AND P. VARRASO (2019): "Are Collateral-Constraint Models Ready for Macroprudential Policy Design?" Unpublished Manuscript.
- SCHMITT-GROHÉ, S. AND M. URIBE (2016): "Downward Nominal Wage Rigidity, Currency Pegs, and Involuntary Unemployment," Journal of Political Economy, 124, 1466–1514.