Tareas de segundo parcial-Topología

Alumnos:

Arturo Rodriguez Contreras - 2132880

Jonathan Raymundo Torres Cardenas - 1949731

Praxedis Jimenes Ruvalcaba

Erial Raymán Mantanavan Traviña - 1057050

Erick Román Montemayor Treviño - 1957959

Alexis Noe Mora Leyva - 1956093

Everardo Flores Rivera - 2127301

25 de mayo de 2025

1 Sea $f, g: X \to Y$ funciones continuas y Y bajo la top. del orden. Sea $h(x) = \min\{f(x), g(x)\}$. Demostrar que h es continua en X

La topología del orden en Y tiene como base los conjuntos abiertos de la forma:

$$(a,b), (-\infty,b), (a,\infty).$$

Queremos probar que h es continua. Sea $a \in Y$, consideremos un abierto básico $U = (a, \infty) \subset Y$. Queremos ver que $h^{-1}(U) \subset X$ es abierto.

observamos que La función $h(x) = \min\{f(x), g(x)\}$ puede reescribirse como:

$$h(x) > a \iff \min\{f(x), g(x)\} > a \iff f(x) > a \text{ y } g(x) > a.$$

Es decir:

$$h^{-1}((a,\infty)) = f^{-1}((a,\infty)) \cap g^{-1}((a,\infty)).$$

Como f y g son continuas y (a,∞) es abierto en Y, las preimágenes $f^{-1}((a,\infty))$ y $g^{-1}((a,\infty))$

son abiertas en X. La intersección de abiertos es abierta, por lo tanto:

$$h^{-1}((a,\infty))$$
 es abierto en X.

Un razonamiento análogo muestra que:

$$h^{-1}((-\infty,b)) = f^{-1}((-\infty,b)) \cup g^{-1}((-\infty,b)),$$

lo cual también es abierto, ya que la unión de abiertos es abierta, y para los casos (a,b) se pueden omitir pues es una combinación de intersecciones y uniones de los casos anteriores Dado que la preimagen por h de cualquier conjunto abierto básico de Y es abierta en X, se concluye que h es continua.

2 Sea $f: X \to Y$ una función abierta. Si $S \subset Y$ y C cerrado en X tal que $f^{-1}(S) \subset C$, entonces existe K cerrado en Y tal que $S \subset K$ y $f^{-1}(K) \subset C$ El conjunto que buscamos es $K = \overline{S}$. Esto pues:

$$f^{-1}(S) \subset f^{-1}(\overline{S}) \subset \overline{f^{-1}(S)} \subset f^{-1}(C) \tag{1}$$

Solo falta mostrar que $f^{-1}(\overline{S}) \subset \overline{f^{-1}(S)}$ Demostraremos que si $f(x) \in \overline{S} \Rightarrow x \in \overline{f^{-1}(S)}$. Para ello sea V_x un entorno de x, entonces $f(V_x)$ es un entorno de f(x) que interseca a S (pues $f(x) \in \overline{S}$) en un punto $y^* = f(y), y \in V_x, y \in S$, así, ahora como el entorno de x era arbitrario, $x \in \overline{f^{-1}(S)}$ y acabamos la prueba.

3 Caso 2 de ejemplo clase del 12/03/2025 Considere $(c,d) \cap [a,b] = (c,b]$, entonces queremos ver que $h^{-1}[(c,b]]$ es abierto, pero de hecho:

$$h^{-1}[(c,b]] = (\frac{c-a}{b-a}, 1] = [0,1] \cap (\frac{c-a}{b-a}, 2)$$
(2)

El cual es de hecho un abierto en la topología del subespacio, que era lo que queríamos demostrar.

 $\mathbf{4} \quad \textit{Ver que } h^{-1} = g \textit{ es continua en } [a,b]$

Note que g queda definida como $g(x)=\frac{x-a}{b-a}$ e igual manera tomaremos la topología del

subespacio, así que tome (c,d) básico de la topolgía euclidiana y $(c,d) \cap [0,1]$ básico de la topologia del subespacio. Ahora, queremos ver que $h[(c,d) \cap [0,1]]$ es de hecho abierto. Si $(c,d) \cap [0,1] = (c,1] \Rightarrow h[(c,1]] = (a+(b-a)c,b] = [a,b] \cap (a+(b-a)c,b+1)$ abierto bajo la topología del subespacio. Por otro lado, si $(c,d) \cap [0,1] = [a,d) \Rightarrow h[[a,d)] = [a,a+(b-a)d) = [a,b] \cap (a-1,a+(b-a)d)$ abierto bajo la topología del subespacio. Así, $g=h^{-1}$ es continua (y h un homeomorfismo).

- 5 Demostrar que la relación entre esp. top. $X \sim Y$ es de equivalencia
 - 1. Reflexividad: $f: X \to X$ definida por f(x) = x es un homeomorfismo, por tanto $X \sim X$.
 - 2. Simetria: $f: X \to Y$ homeomorfismo, entonces $f^{-1}: Y \to X$ es un homeomorfismo, esto es, $Y \sim X$.
 - 3. Transitividad: $f: X \to Y, g: Y \to Z$ homeomorfismos, por teorema de composición de funciones, $g \circ f$ y $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$ son continuas, esto es, $g \circ f: X \to Z$ es un homeomorfismo y $X \sim Z$.
- **6** Demostrar que si $f(\overline{A}) = \overline{f(A)}$ para cada $A \subset X$ y ademas es biyectiva entonces f es un homeomorfismo

Por teorema, basta probar que f es continua y cerrada.

P.D. f es cerrada.

Sea $F \subset X$ cerrado. Entonces $\overline{F} = F$. Aplicamos la hipótesis:

$$f(F) = f(\overline{F}) = \overline{f(F)}.$$

Esto implica que f(F) es cerrado en Y, pues es igual a su clausura. Así, la imagen por f de cualquier cerrado en X es cerrado en Y, lo que implica que f es cerrada.

Por último, note que de la hipótesis se sigue que $f(\overline{A}) \subset \overline{f(A)}$ y del teorema de equivalencia de continuidad, f es continua.

7 Demostrar que $X \times Y \sim Y \times X$, extenderlo a caso finito utilizando cualquier permutación. Sea $f: X \times Y \to Y \times X$ definida por f(x,y) = (y,x). Es claro que f es biyectiva, veamos que es un homeomorfismo. Sea $A = V \times U$ un basico de $Y \times X$, tenemo que $f^{-1}(V \times U) = U \times V$ es abierto en $X \times Y$. Con un argumento similar obtenemos que f^{-1} es continua, por tanto f es un homeomorfismo.

Ahora demostraremos que si $\sigma \in S_n$ es una permutación, entonces $\prod_{k=1}^n X_k \sim \prod_{k=1}^n X_{\sigma(k)}$. Recordemos que toda permutación se puede escribir como una composición de transposiciones de la forma $\pi(k) = k$ si k < i o k > i+1 y $\pi(i) = i+1$, $\pi(i+1) = i$. Por lo primero demostrado, y del hecho que la relación de homeomorfismo es de equivalencia, tenemos que $\sigma = \pi_1 \circ ... \circ \pi_m$,

$$\prod_{k=1}^{n} X_k \sim \prod_{k=1}^{n} X_{\pi_1(k)} \sim \prod_{k=1}^{n} X_{(\pi_1 \circ \pi_2)(k)} \sim \dots \sim \prod_{k=1}^{n} X_{\sigma(k)}$$

8 Demostrar que $\mathcal{B} = \{\prod_{\alpha \in J} U_{\alpha} : U_{\alpha} \in \tau_{\alpha}\}$ es una base para la topología del producto y se le conoce como la topología por cajas.

Sean $A = \prod_{\alpha \in J} U_{\alpha}, B = \prod_{\alpha \in J} V_{\alpha}$. Como $A \cap B = \prod_{\alpha \in J} U_{\alpha} \cap V_{\alpha} = C \in \mathcal{B}$, entonces \mathcal{B} es base.

9 Verificar que si $A_{\alpha} \subset X_{\alpha}$, entonces $\prod_{\alpha \in J} int(A_{\alpha}) = int(\prod_{\alpha \in J} A_{\alpha})$ en la topologia por cajas. El resultado es en general falso. Tomemos \mathbb{R}^{ω} , $A_n = (-1/n, 1/n)$. Es facil ver que $\prod int(A_n) - \prod_{\alpha \in J} A_{\alpha}$, pero si $U = \prod_{i=1}^m U_{n_i} \times \prod_{n \neq n_i} \mathbb{R} \subset \prod_{\alpha \in J} A_{\alpha}$, entonces $x_{n_i} \in U_{n_i} \cap A_{n_i}$ y $x_n = 1$ si $n \neq n_i$, cumple que $(x_n) \in U$, pero $(x_n) \notin \prod_{\alpha \in J} A_{\alpha}$.

10 Verificar si las β -esima proyecciones son abiertas y/o cerradas en ambas topologias Sea $U = \prod_{\alpha \in J} U_{\alpha}$ y note que $\pi_{\beta}(U) = U_{\beta}$, por lo que si U es abierto en la top. por cajas o producto, en ambos casos $\pi_{\beta}(U)$ es abierto en X_{β} . Ademas, de la igualdad $\overline{U} = \prod_{\alpha \in J} \overline{U_{\alpha}}$, que se cumple en ambas topologias, se sigue que $\pi_{\beta}(U) = \overline{U_{\beta}}$ es cerrado, es decir, π_{β} es un mapeo abierto y cerrado.

11 Sea $f: X \to Y$, X, Y espacios metricos. Demostrar que f es continua en X si y solo si $\forall \epsilon > 0 \ \exists \delta > 0 : f(B_{d_x}(x, \delta)) \subset B_{d_y}(f(x), \epsilon) \forall x \in X$

Del teorema de equivalencia para continuidad, f es continua si, y sólo si para cada basico $V = B_{d_Y}(f(x), \epsilon)$ existe un basico $U = B_{d_X}(x, \delta)$ tal que $f(U) \subset V$, esto es, $f(B_{d_X}(x, \delta)) \subset B_{d_Y}(f(x), \epsilon)$.

Supongamos que f es continua Sea $x \in X$ y $\epsilon > 0$. Entonces el conjunto $B_{d_Y}(f(x), \epsilon) \subset Y$ es abierto. Como f es continua, la preimagen $f^{-1}(B_{d_Y}(f(x), \epsilon)) \subset X$ es abierta. Además,

 $x \in f^{-1}(B_{d_Y}(f(x), \epsilon))$, ya que $f(x) \in B_{d_Y}(f(x), \epsilon)$.

Entonces, como $f^{-1}(B_{d_Y}(f(x), \epsilon))$ es un abierto que contiene a x, por definición de la topología métrica, existe $\delta > 0$ tal que:

$$B_{d_X}(x,\delta) \subset f^{-1}(B_{d_Y}(f(x),\epsilon)).$$

Aplicando f

$$f(B_{d_X}(x,\delta)) \subset B_{d_Y}(f(x),\epsilon).$$

lo cual es a lo que queremos llegar

Supongamos que:

$$\forall x \in X, \ \forall \epsilon > 0, \ \exists \delta > 0 : f(B_{d_X}(x,\delta)) \subset B_{d_Y}(f(x),\epsilon).$$

Queremos probar que f es continua. Sea $V \subset Y$ un abierto

P.D. $f^{-1}(V)$ es abierto en X.

Sea $x \in f^{-1}(V)$, entonces $f(x) \in V$, y como V es abierto, existe $\epsilon > 0$ tal que:

$$B_{dv}(f(x), \epsilon) \subset V$$
.

Por hipótesis, existe $\delta > 0$ tal que:

$$f(B_{d_X}(x,\delta)) \subset B_{d_Y}(f(x),\epsilon) \subset V.$$

Entonces:

$$B_{d_X}(x,\delta) \subset f^{-1}(V).$$

Por lo tanto, $f^{-1}(V)$ es abierto, por lo que queda demostrado el ejercicio

12 Demostrar que la métrica uniforme ρ es métrica.

Por definición, $\rho((x_n), (y_n)) = \sup \{\overline{d}(x_n, y_n)\}$, donde $\overline{d}(x, y) \leq 1$ para cada $x, y \in \mathbb{R}$, por lo que ρ está bien definida. Es claro que $\rho((x_n), (x_n)) = 0$, además, $(x_n) \neq (y_n)$ implica que existe un natural m con $\rho((x_n), (y_n)) >= \overline{d}(x_m, y_m) > 0$. Por tanto, $\rho((x_n), (y_n)) = 0$, si y sólo si

 $(x_n)=(y_n)$. La simetria se hereda de la metrica acotada, $\rho((x_n),(y_n))=\sup\{\overline{d}(x_n,y_n)\}=\sup\{\overline{d}(y_n,x_n)\}=\rho((y_n),(x_n))$. Finalmente, veamos la desigualdad triangular.

$$\rho((x_n), (y_n)) \le \sup \{\overline{d}(x_n, z_n) + \overline{d}(z_n, y_n)\}$$

$$\le \sup \{\overline{d}(x_n, z_n)\} + \sup \{\overline{d}(z_n, y_n)\}$$

$$= \rho((x_n), (z_n)) + \rho((z_n), (y_n)).$$

13 Sea $A = \{(x_n)_{n \in \mathbb{N}} \in \mathbb{R}^\omega : \exists N \in \mathbb{N} : x_n = 0; n \geq N \}$ Hallar \overline{A} en top. uniforme

Sea X el conjunto de todas las sucesiones en \mathbb{R} que convergen a 0, mostraremos que este conjunto es la cerradura de A. Para ello primero mostraremos que X es de hecho cerrado con la topología uniforme, sea $y \notin X$, esto es, para todo $\epsilon > 0$ existe una sub sucesión de componentes de y tal que $\forall k > N \in \mathbb{Z}^+$, $|y_{n_k}| \ge \epsilon$ Sea $z \in B_{\overline{\rho}}(y, \frac{\epsilon}{2})$, entonces z es tal que $|z_{n_k}| > |y_{n_k}| - \frac{\epsilon}{2} \ge \frac{\epsilon}{2}$, es decir, $B_{\overline{\rho}}(y, \frac{\epsilon}{2})$ no interseca a X. Así entonces:

$$A \subset \overline{A} \subset \overline{X} = X \tag{3}$$

Ahora, para todo $x \in X$ y $\epsilon > 0$, existe un $N \in \mathbb{Z}^+$ tal que $|x_n| < \frac{\epsilon}{2}$, así de hecho $y = (y_1, ..., y_N, 0, 0, ...) \in B(x, \epsilon) \cap A$, siendo así $X = \overline{A}$

14 Sea A del ejercicio anterior, hallar \overline{A} en top. cajas

Veamos que $A = \overline{A}$. Sea $(x_n) \notin A$, luego existe una sucesión extrictamente creciente de naturales (n_k) tal que $x_{n_k} \neq 0$ para cada $k \in \mathbb{N}$. Como \mathbb{R} es T_1 , existen vecindades abiertas U_{n_k} de x_{n_k} que no contienen al 0. Tomemos $U = \prod_{k=1}^{\infty} U_{n_k} \times \prod_{n \neq n_k} \mathbb{R}$. Es facil ver que $(x_n) \in U$. Ahora sea $(y_n) \in A \cap U$, por definición existe N tal que n > N entonces $y_n = 0$, pero al ser $n_k \to \infty$, para algun k se cumple que $n_k > N$ y $y_{n_k} \in U_{n_k}$, contradiciendo el hecho que $0 \notin U_{n_k}$. Por tanto $A \cap U = \emptyset$ y $A = \overline{A}$.

15 Demostrar que $f^{-1}(Fr_Y(B)) \subset Fr_X(f^{-1}(B))$

La frontera se pueden escribir como:

$$\operatorname{Fr}_Y(B) = \overline{B} \cap \overline{Y - B}$$
 y $\operatorname{Fr}_X(f^{-1}(B)) = \overline{f^{-1}(B)} \cap \overline{X - f^{-1}(B)}$

Sea $x \in f^{-1}(\operatorname{Fr}_Y(B))$. Entonces:

$$f(x) \in \operatorname{Fr}_Y(B) = \overline{B} \cap \overline{Y - B} \Rightarrow f(x) \in \overline{B} \quad \text{y} \quad f(x) \in \overline{Y - B}$$

Aplicando la propiedad de clasura:

$$x \in f^{-1}(\overline{B}) \subset \overline{f^{-1}(B)}$$
 y $x \in f^{-1}(\overline{Y-B}) \subset \overline{f^{-1}(Y-B)}$

Pero como:

$$f^{-1}(Y-B) = X - f^{-1}(B) \Rightarrow \overline{f^{-1}(Y-B)} = \overline{X - f^{-1}(B)}$$

Entonces:

$$x \in \overline{f^{-1}(B)} \cap \overline{X - f^{-1}(B)} = \operatorname{Fr}_X(f^{-1}(B))$$

Por lo tanto:

$$f^{-1}(\operatorname{Fr}_Y(B)) \subset \operatorname{Fr}_X(f^{-1}(B))$$

16 Sea $h: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ definida por: $h((x_n)_{n \in \mathbb{N}}) = (a_n x_n + b_n)_{n \in \mathbb{N}}$. Ver si h es homeomorfismo en \mathbb{R}^{ω} bajo top. cajas

Si $a_m = 0$ para algun $m \in \mathbb{N}$, dado (x_n) , definimos (y_n) por $y_n = x_n$ si $n \neq m$, $y_m = x_m + 1$. Es claro que $(x_n) \neq (y_n)$, pero $h((x_n)) = h((y_n))$, por lo que h no es biyectiva y por tanto, no puede ser homeomorfismo. Supongamos entonces que $a_n \neq 0$ para cada $n \in \mathbb{N}$. Observe que $h^{-1}((x_n)) = (\frac{x_n - b_n}{a_n})$ es la función inversa de h. Tanto h como h^{-1} son de la forma $f((x_n)) = (c_n x_n + d_n)$, por lo que basta probar que esta función es continua en la topología por cajas. Sea $p_n((x_n)) = c_n x + d_n$, es facil ver que es continua para cada $n \in \mathbb{N}$, y sea $U = \prod_{i=1}^m U_{n_i} \times \prod_{n \neq n_i} \mathbb{R}$ un abierto en \mathbb{R}^ω , $f^{-1}(U) = \bigcap_{i=1}^m p_{n_i}^{-1}(U_{n_i})$ es una intersección finita de abiertos, por lo que es abierta y f es continua. Por tanto, h es un homeomorfismo.