

Cálculo II Ingeniería Civil

Prof. Víctor Aros Quinán

Segundo Semestre 2021

Clase Nº10: Cálculo II Funciones Logaritmo, Exponencial e Hiperbólicas

Función Logaritmo Natural

Consideremos la siguiente función definida a través de una integral:

$$F(x) := \int_1^x \frac{1}{t} dt , \text{ para } x > 0$$

notar que F es derivable y además

$$F'(x) = y \quad F''(x) =$$

Luego, F es estrictamente creciente (e inyectiva) y su gráfica es cóncava hacia abajo.

Función Logaritmo natural

Además, F(1) = 0 y se puede probar que:

$$\lim_{x \to \infty} F(x) = +\infty \qquad \text{y} \qquad \lim_{x \to 0} F(x) = -\infty$$

Lo cual nos dice que el recorrido de F es todo \mathbb{R} , o sea, F es sobreyectiva.

Función Logaritmo natural

Definición

La función $F(x) = \int_1^x \frac{1}{t} dt$, con x > 0 recibe el nombre **logaritmo natural** y se denota por $\ln(x)$ y está definida por:

$$\ln: (0, +\infty) \to \mathbb{R}$$
$$x \mapsto \ln(x) = \int_{1}^{x} \frac{1}{t} dt$$

Observación: De lo anterior sigue que

$$\frac{d}{dx}[\ln(x)] = \frac{1}{x}$$

Función Logaritmo natural

De la definición anterior tenemos que si x > 1, geométricamente la función logaritmo natural puede verse como el área bajo la hipérbola $f(t) = \frac{1}{t}$, que va desde t = 1 hasta t = x, esto es:

Propiedades logaritmo natural

De la definición anterior, se pueden desprender las siguientes propiedades del logaritmo natural.

Sean $a, b \in \mathbb{R}^+$ y $r \in \mathbb{R}$, entonces:

- 1. $\ln(ab) = \ln(a) + \ln(b)$
- 2. $\ln\left(\frac{1}{b}\right) = -\ln(b)$
 - 3. $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$
 - 4. $\ln(a^r) = r \ln(a)$

Observación: Para la función ln(x) es de suma importancia la preimágen del 1, ya que es el único numero real x tal que $\ln(x) = 1$. Dicho número se denota por e y se puede probar que es un número irracional ($e \approx 2,7183...$)

La función

$$\ln:(0,+\infty)\to\mathbb{R}$$

es biyectiva, luego posee una función inversa, que corresponde a la denominada función exponencial natural y se denota por $\exp(x)$. Así,

$$\exp(x) = y \Leftrightarrow \ln(y) = x$$

que además cumple:

$$\exp(\ln(x)) = x$$
 y $\ln(\exp(x)) = x$

Observación: Si $r \in \mathbb{R}$, por Teorema 4.3 tenemos que:

$$\ln(e^r) = r \ln(e) = r$$

y por tanto, $\exp(r) = e^r, \forall r \in \mathbb{R}.$

Definición

La función **exponencial natural** está definida por:

$$\exp: \mathbb{R} \to (0, +\infty)$$

 $x \mapsto \exp(x) = e^x$

Dada la definición anterior de la función exponencial natural, podemos deducir las siguientes propiedades las cuales se cumplen para todo $b, c \in \mathbb{R}$:

- $1. e^{b+c} = e^b e^c$
- $2. \left(e^b\right)^c = e^{bc}$
- 3. $e^0 = 1$
- 4. $e^{-b} = \frac{1}{e^b}$
- $5. e^{b-c} = \frac{e^b}{e^c}$

Conocida la gráfica de $\ln(x)$ se puede obtener la gráfica de la función $\exp(x)$, por simetría con respecto a la recta y=x, esto es:

Sabemos que para a>0

$$a^x = e^{\ln(a^x)} = e^{x\ln(a)}$$

Luego, como $e^{x \ln(a)}$ está bien definida cualquiera sea $x \in \mathbb{R}$, podemos definir la **función exponencial de base** a por

$$a^x := e^{x \ln(a)}, \ \forall x \in \mathbb{R}$$

Notar que $a^0 = 1$ y $a^x > 0$, $\forall x \in \mathbb{R}$.

Teorema

Sean a>0 y $b,c\in\mathbb{R}.$ Dado esto se pueden definir las leyes de los exponentes:

- $1. \ a^{b+c} = a^b \cdot a^c$
- 2. $a^{-b} = \frac{1}{a^b}$
- 3. $(a^b)^c = a^{bc}$

Notar que:

$$\frac{d}{dx}(a^x) = \qquad \qquad \text{y} \quad \frac{d^2}{dx^2}(a^x) =$$

De lo anterior sigue que:

1. Si 0 < a < 1, entonces:

$$\ln(a) < 0 \implies \frac{d}{dx}(a^x) < 0$$

Luego, $f(x) = a^x \text{ con } 0 < a < 1 \text{ es estrictamente}$

2. Si a > 1, entonces:

$$\ln(a) > 0 \implies \frac{d}{dx}(a^x) > 0$$

Luego, $f(x) = a^x \text{ con } a > 1 \text{ es estrictamente}$

3. Claramente si a=1 la función es

Ahora bien, como $\frac{d^2}{dx^2}(a^x) = (\ln(a))^2 a^x > 0$ se deduce que la gráfica de la función a^x con a > 0 es cóncava hacia arriba sobre todo \mathbb{R} .

14/29

Como en este curso nos interesan las integrales, recordemos que como $\frac{d}{dx}a^x = \ln(a) \ a^x$

$$\frac{d}{dx}a^x = \ln(a) \ a^x$$

$$\int a^x \, dx = \frac{a^x}{\ln(a)} + C$$

Ejemplos: Calcule las siguientes integrales.

(a)
$$\int_{1}^{\pi} 2^{x} dx$$

(b)
$$\int 5^{4-x} dx$$

Función Logaritmo en Base a > 0

Se puede mostrar que la función exponencial en base a

$$\mathbb{R} \to]0, +\infty[\ , \ x \mapsto a^x$$

es biyectiva. Luego, su inversa es la función **logaritmo en base** a dada por:

$$\log_a:]0, +\infty[\to \mathbb{R} , x \mapsto \log_a x]$$

Observación: ¿Cómo derivar e integrar la expresión $\log_a(x)$?

Por la propiedad del cambio de base, se tiene:

$$\log_a(x) = \frac{\ln(x)}{\ln(a)}$$

Por tanto,

$$\frac{d}{dx}\log_a(x) =$$

Función Logaritmo en Base a > 0

Ahora bien, en el caso de la integral se deduce que

$$\int \log_a(x) \ dx = \int \frac{\ln(x)}{\ln(a)} \ dx =$$

Ejemplos: Calcule las siguientes integrales.

(a)
$$\int_1^3 \log_5(x) \ dx$$

(b)
$$\int x \log_3(x) dx$$

Propiedades de $\log_a b$

De la definición anterior, se pueden desprender las siguientes propiedades del logaritmo.

Sean $a, b, c \in \mathbb{R}^+$ y $r \in \mathbb{R}$. Las siguientes con ciertas:

1.
$$\log_a(bc) = \log_a(b) + \log_a(c)$$

$$2. \log_a \left(\frac{1}{b}\right) = -\log_a(b)$$

3.
$$\log_a \left(\frac{b}{c}\right) = \log_a(b) - \log_a(c)$$

$$4. \log_a(b^r) = r \log_a(b)$$

A continuación, analizaremos una clase especial de funciones exponenciales llamadas funciones hiperbólicas.

Consideremos las siguientes funciones $f, g : \mathbb{R} \to \mathbb{R}$, dadas por:

$$f(x) = \frac{e^x + e^{-x}}{2}$$
 y $g(x) = \frac{e^x - e^{-x}}{2}$

Notemos que:

$$\left(\frac{e^x + e^{-x}}{2}\right)^2 - \left(\frac{e^x - e^{-x}}{2}\right)^2 = 1$$

es decir, las funciones anteriores satisfacen la ecuación de la hipérbola

$$x^2 - y^2 = 1$$

4□ > 4□ > 4≡ > 4≡ > 90°

Por tal razón las funciones definidas recientemente reciben el nombre de funciones hiperbólicas y las denotaremos como sigue:

$$\cosh : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \cosh(x) = \frac{e^x + e^{-x}}{2}$$

У

$$\sinh: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \sinh(x) = \frac{e^x - e^{-x}}{2}$$

Observación: Las expresiones $\sinh(x)$, $\cosh(x)$ reciben el nombre de seno hiperbólico y coseno hiperbólico, respectivamente.

September 23, 2021

Notar que las funciones definidas recientemente satisfacen propiedades muy similares a las funciones trigonometricas $\sin(x)$ y $\cos(x)$, de ahí el nombre.

Propiedades

- 1. Identidad Fundamental: $\cosh(x)^2 \sinh(x)^2 = 1$
- 2. $\sinh(0) = 0 \text{ y } \cosh(0) = 1$
- 3. $\frac{d}{dx}\cosh(x) = \sinh(x)$ y $\frac{d}{dx}\sinh(x) = \cosh(x)$, $\forall x \in \mathbb{R}$.
- 4. La función cosh es par, es decir, $\cosh(-x) = \cosh(x)$, mientras que sinh es impar, osea, $\sinh(-x) = -\sinh(x)$.

Seno hiperbólico

Como $\frac{d}{dx}\sinh(x)=\cosh(x)>0\Rightarrow \sinh(x)$ es estrictamente creciente. Además, notamos que:

$$x < 0 \Rightarrow \sinh(x) < 0$$
$$x > 0 \Rightarrow \sinh(x) > 0$$

Así, como $\frac{d^2}{dx^2}\sinh(x)=\sinh(x)$, luego su gráfica es cóncava hacia abajo para x<0 y cóncava hacia arriba cuando x>0.

Coseno Hiperbólico

Similarmente, para $\cosh(x)$ se tiene

$$\frac{d}{dx}\cosh(x) = \sinh(x)$$

Y así su gráfica es decreciente para x < 0 y creciente para x > 0.

Luego, como $\frac{d^2}{dx^2}\cosh(x) = \cosh(x) > 0 \Rightarrow$ gráfica es cóncava hacia arriba.

Aplicación de Funciones Hiperbólicas

La aplicación mas famosa es el uso del coseno hiperbólico para describir la forma de un cable colgante. Se puede demostrar que si un cable pesado y flexible (como los que se usan para las líneas telefónica o eléctricas) se tiende entre dos puntos a la misma altura, entonces el cable toma la forma de una curva con ecuación

$$y = c + a \cosh\left(\frac{x}{a}\right)$$

que se denomina **catenaria**.

Aplicación de Funciones Hiperbólicas

Inspirados en la catenaria (en particular en una catenaria invertida), en 1947 el arquitecto estadounidense de Eero Saarinen y el ingeniero alemán Hannskarl Bandel diseñaron el denominado Arco Gateway, o la Puerta hacia el Oeste (San Luis - EE.UU).

Al igual que en el caso de las funciones trigonométricas, definimos otras 4 funciones hiperbólicas en términos de $\sinh(x)$ y $\cosh(x)$:

$$\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$$
 $\coth(x) = \frac{\cosh(x)}{\sinh(x)}$

$$\operatorname{sech}(x) = \frac{1}{\cosh(x)} \quad \operatorname{csch}(x) = \frac{1}{\sinh(x)}$$

Identidades Hiperbólicas

Algunas identidades hiperbólicas importantes son las siguientes:

- $1. \tanh^2(x) + \operatorname{sech}^2(x) = 1$
- 2. $\coth^2(x) \operatorname{csch}^2(x) = 1$
- 3. $\sinh(x \pm y) = \sinh(x)\cosh(y) \pm \cosh(x)\sinh(y)$
- 4. $\cosh(x \pm y) = \cosh(x)\cosh(y) \pm \sinh(x)\sinh(y)$
- 5. $\tanh(x \pm y) = \frac{\tanh(x) \pm \tanh(y)}{1 \pm \tanh(x) \tanh(y)}$

Ejercicio: Demostrar dichas propiedades.

Se pueden definir hiperbólicas inversas, como sigue:

$$\operatorname{arcsenh}(x) = \ln\left(x + \sqrt{x^2 + 1}\right), \ x \in \mathbb{R}$$
$$\operatorname{arcosh}(x) = \ln\left(x + \sqrt{x^2 - 1}\right), \ x \ge 1$$
$$\operatorname{arctanh}(x) = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right), \ -1 < x < 1$$

Dado lo anterior, podemos calcular sus derivadas las cuales están dadas por:

$$\frac{d}{dx}\operatorname{arcsenh}(x) = \frac{1}{\sqrt{x^2 + 1}}$$
$$\frac{d}{dx}\operatorname{arcosh}(x) = \frac{1}{\sqrt{x^2 - 1}}$$
$$\frac{d}{dx}\operatorname{arctanh}(x) = \frac{1}{1 - x^2}$$

Luego, podemos definir las siguientes integrales indefinidas:

$$\int \frac{1}{\sqrt{x^2 + 1}} dx = \operatorname{arcsenh}(x) + C$$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{arcsenh}(x) + C$$

$$\int \frac{1}{1 - x^2} dx = \operatorname{arctanh}(x) + C$$