I have put the term $2\chi_{-}(u_{-}-u_{+})W_{+}$ into the right hand side (into \mathcal{R}_{+}) of equation $W'_{+}-2u_{+}W_{+}=\mathcal{R}_{+}$, based on our estimate $(1 < \eta < 2)$,

$$W_{+} \sim (T_{\infty} - t)^{-\eta}, \quad \mathcal{R}_{+} \sim (T_{\infty} - t)^{-(\eta + 1)}$$

So for $\chi_{-}(u_{-}-u_{+})W_{+}$ to be small we want

$$|\chi_{-}(u_{-}-u_{+})(T_{\infty}-t)|_{\infty}$$

to be small.

I know that $(u_- - u_+)(t) = o(\frac{1}{T_{\infty} - t})$ as $t \to t_*$ since $u_+(t)$ is the leading order in the asymptotics of u_- , however I think this only hold true for t near the gluing point t_* , for t on the far left, for example when t = 0, comparing $u_-(t)$ and $u_+(t)$ gives

$$u_{-}(0) = \varepsilon^{\frac{1}{3}} u_{R}(-\varepsilon^{-\frac{2}{3}}\delta) \sim -\sqrt{\delta}$$

and

$$u_{+}(0) \sim T_{\infty}^{-1} = (\varepsilon^{-1}\delta + \varepsilon^{-\frac{1}{3}}\Omega_{0})^{-1}$$

which is of different order in ε ,