No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose of gaining credits towards an NCEA qualification.

91262

Level 2 Mathematics and Statistics, 2017 91262 Apply calculus methods in solving problems

KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

2.00 p.m. Friday 24 November 2017 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence	
Apply calculus methods in solving problems.	Apply calculus methods, using relational thinking, in solving problems.	Apply calculus methods, using extended abstract thinking, in solving problems.	

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Formulae Sheet L2-MATHF.

Show ALL working.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

You must show the use of calculus in answering all questions in this paper.

Check that this booklet has pages 2–12 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Excellence **TOTAL**

QUESTION ONE

ASSESSOR'S

A function f is given by $f(x) = x^5 + 3x^2 - 7x + 2$. (a)

Find the gradient of the graph of the function at the point where x = 1.

$$5(x) = 5x^4 + 6x - 7$$

$$5'(1) = 5(1^4) + 6(1) - 7$$

$$M = 4$$

(b) Find the equation of the tangent to the graph of the function

$$f(x) = 6 + 14x - 2x^3$$

at the point (2,18) on the graph.

$$f'(x) = 14 - 6x^2$$
 $y - y_1 = M(x - x_1)$

$$f'(2) = 14 - 6(2^2)$$
 $y - 18 = -10(x - 2)$

$$=-10$$
 $y-18=-10x+20$

u	=	-10x+38
J		

The movement of an object is recorded from the time it passes a fixed point. (c)

After t seconds it has a speed $v \text{ m s}^{-1}$, which can be modelled by the function

$$v(t) = 0.5t^2 - 2t + 1$$

Use calculus to find how long it takes to reach an acceleration of 2.8 m s⁻².

$$a(t) = b t - 2$$

t = 4.8 seconds //

A tangent to the graph of the function $f(x) = 3x^2 - 4x$ has a gradient of 2, and passes through the point (5,a), where a is a constant.

Find the value of *a*.

$$5'(x)=6x-4$$
 $y-y_1=M(x-x_1)$
 $2=6x-4$ $y+1=2(x+1)$
 $6=6x$ $y+1=2x-2$

$$\frac{z=1}{5(1)=3(1)^2-4(1)}$$

$$\frac{y=2x-8}{4=2(5)-3}$$

$$\frac{f(1) = 3(1)^{2} - 4(1)}{y = 2(5) - 3}$$

$$= -1$$

$$y = 7$$

$$f'(x) = 0$$

$$5(x) = 0$$

$$5(x) = 0$$

The function $f(x) = x^3 + ax^2 + bx + 2$ has turning points when x = -1 and x = 3. (e)

Find the values of a and b.

 $f(x) = x^3 - 3x^2 + 9x + 2$

(a) The diagram below shows the graph of the function y = f(x)

Sketch the graph of the gradient function y = f'(x) on the axes below. Both sets of axes have the same scale.

If you need to redraw this graph, use the grid on page 11.

(b)	The graph of a	function $f(x) =$	$=2x^3+bx^2-2$	has a turning poin	nt when $x = -1$.
-----	----------------	-------------------	----------------	--------------------	--------------------

Find the value of b.

$$f'(x) = 6x^2 + 2bx$$

$$0 = 6(-1)^2 + 2b(-1)$$

(c) Use calculus to show that the line y = 15x - 12is a tangent to the graph of the function $f(x) = 4x^2 - x + 4$.

 $y-y_1=m(x-x_1)$

$$y-y_1=m(x-x_1)$$

$$5!(x) = 8x - 1$$

S(x) = 8x - 1 Sub x = 2, and y = 18 and m = 15

15 = 8(x-1) y-18 = 15(x-2)

16 = 8x y - 18 = 15x - 30

$$\propto = 2$$

 $\alpha = 2 \qquad y = 15x - 12$

:. Tangent at x=2

· y=15x-12 is a tangent

$$f(2) = 4(2)^2 - 2 + 4$$

 $f(2) = 4(2)^2 - 2 + 4$ to the graph of the function

 $f(x) = 4x^2 - x + 44$ at the

point (2, 18)

- .. y-ordinate is 18
- Use calculus to find the value of k if the line y = 6x + k is a tangent to the graph of the (d) function $f(x) = x^2 + 2x - 1$.

 $f'(x) = 2x + 2 \qquad f(2) = 2^2 + 20x - 1$

$$6 = 2x + 2$$

There is more space for your answer on the following page. (e) Use calculus to prove that the graph of the function

$$y = x^3(3-x)$$

has a local maximum when $x = \frac{9}{4}$

Justify that the turning point is a local maximum.

a de

$$y = 3x^3 - x^4 \qquad y = 3(\frac{\pi}{4})^3 - \pi(\frac{\pi}{4})^4$$

$$\frac{dy}{dx} = 9x^2 - 4x^3 \qquad = \frac{2187}{256}$$

 $0 = 9x^2 - 4x^3$

x= 4,0,0

		1		,		·		
	Region	220	x=0	0 x x < 2	$x = \frac{a}{4}$	×> 4))
٠	Test	x=-1	x=0	x=1	x= 9/4	x=3	·)
-	f(x)	13	0	5	0	-27		,
	Gradien	+ /		/				

The graph of the function $y=x^3(3-x)$ has a ten local maximum at $(4, \frac{2187}{236})$. It is a local maximum within the domain x > 0 because when x > 0 or x < 0 the gradient is increasing and when x > 0 the gradient is decreasing.

E8

ASSESSOR'S USE ONLY

QUESTION THREE

ASSESSOR'S USE ONLY

(a) The gradient graph of a function f(x) is given by

$$f'(x) = 6x^2 - 2x + 4$$

The point (1,3) lies on the graph.

Find the equation of the function f(x).

$$f(x) = \frac{6}{241}x^{241} - \frac{2}{141}x^{141} + 4x + C'$$

$$= 32 \times 2x^3 - x^2 + 4x + c$$

$$3 = 2(1^3) - (1^2) + 4(1) + C$$

$$c=-2$$

$$5(x) = 2x^3 - x^2 + 4x - 2$$

The point (0,0) is on the graph of the function y = f(x).

On the axes below sketch the function f(x).

Both sets of axes have the same scale.

If you need to redraw this graph, use the grid on page 11.

(c) An object can move in either direction on a straight track and has a constant acceleration of -4 cm s⁻².

A fixed point P is marked on the track.

When a recording of the object's motion begins, the object:

- is 12 cm from P₄ & A/6 C=12
- is moving away from P, and
- has a velocity of 6 cm s. c=6
- (i) Using calculus, find the speed of the object 5 seconds after its motion began being recorded.

$$a(t) = -4$$
 $v(t) = -4t + c$

when $t = 0$, $v = 6$
 $v(t) = -4t + 6$
 $v(5) = -4(5) + 6$
 $v(5) = -4(5) + 6$

V(t) = C(ii) What is the maximum distance of the object from the point P?

Justify that this is the maximum distance.

$s(t) = \frac{-4}{111}t^{1+1} + 6t + c$	$s(1.5) = -2(1.5^2) + 6(1.5) + 12$	
$= -2t^2 + 6t + C$	=-2(2.25)+6(1.5)+17	
When t=0, s=12	= 16.5 M	
$() = -2t^2 + 6t + 12$: The maximum distance of	
<u> </u>	the object from point Pis	
u(t) = -4t +6	16.5 m. it is the maximum	
0=-4+6	distance because when its	
4t=6	derivative was equated to 0,	
t=1.5 seconds	lit was determined that the ma	χ.
	distance was reached at 1.5 sec	ands,
	which, when substituted into	
	the As(t) equation, gave 165 m)
	Question Three continues on the following page.	

(d) Find the maximum volume of an open box (i.e. a box with a base and sides, but no lid) that can be made from a rectangular piece of cardboard measuring 20 cm by 30 cm, by removing the corner squares and folding along the dotted lines.

ASSESSOR'S USE ONLY

Justify that this is the maximum volume

nk V abstitute

(press

priginal

'st

$$A = 2A_3 + 2A_2 + A_1$$

quate to 0 =
$$2(20-2x \times x) + 2(30-2x \times x) + (30-2x)(20-2x)$$

cick to = $2(20x-2x^2) + 2(30x-2x^2) + (600-60x-40x+4x^2)$

$$= 40x - 4x^2 + 60x - 4x^2 + 600 - 100x + 4x^2$$

$$=-4x^2+60$$
 ?

V = (30-2x)(20-2x)x	Reg	Axcx1	\hat{x}_{i}	RICKLX	22	2>X
$= 16(600-100) \times + 400^{2}) \times$	Test	a=0	x=x,	x=5	$x=x_1$	2-14
$=600x-100x^2+4x^3$	f(x)	600	0	-100	0	187
$V' = 600 - 200x + 12x^2$	Grad.	/				/
0=600-200x+12x2		7	<u>~</u>			
Bas Below	V= 6	00×-	100-	x2+L	tx3	
0-50-50 x+172	V(3.	(۱۲) ت	600(2	5.92) -	-100(3	.92)2
$-50 = \frac{50}{347} x^{2}$ $-150 = \frac{50}{50013} x^{3}$			+4(3.			
$x = -b \pm \sqrt{b^2 - 4ac}$	= 1056.305895					
20	$= 1056.31 \text{cm}^3$					
$-(-200) + \sqrt{(-200)^2 - 4(600)(12)}$,			_	
2×12		Maxi	mum	volur	ne of-	the
200 ± 14000-28800 24	ope	n box	is (0	756.3	slom³.	
200) ± N11200	. •				olume	
$\alpha_1 = 12,74291885$					r-ordin	ate
x,= 3.923747815					ivalue	
					shape	

Subject: Mathe		Mathe	ematics	Standard:	91262	Total score:	23		
Q		ade ore	Annotation						
			1(a) Correct derivative	e and gradier	nt.				
1			1(b) Correct gradient and equation for tangent.						
			1(c) Correct a(t) equa	ition and subs	stitution to find t at a	a = 2.8.			
	E	E8	1(d) Correct derivative and solving to get $x = 1$, $y = -1$. Correct tangent equation and solution at $x = 5$ to obtain a.						
			1(e) Correct derivative with simultaneous equations	uations corre					
			2(a) Correct slope an	d x intercept.					
		= Ω	2(b) Correct derivative	e and f'(x) = 0	solved to find b.				
2	E8		2(c) Correct f'(x) equations tangent passing throu						
2		_0	2(d) f'(x) = 6 and interaction and used to find k.	rsecting point	of tangent found.	Γangent equation	formed		
		2(e) Correct deriva slope either side of					gated		
			3(a) Correct anti-diffe	rentiation of f	'(x) and f(x) obtaine	ed for (1,3).			
	E7		3(b) Correct shape, (0,0) intersect with max and min points at x in	points at x interce	ercepts.				
		E7 3(c)(ii) Co Insufficie 3(d) Corr situation.	3(c)(i) Correct equation for v and speed at t=5s found.						
3			3(c)(ii) Correct t= 1.5s Insufficient justificatio						
			3(d) Correct equation situation. A max determined points, the maximum situation and the situation of the sit	rmine by inve	stigating the rate o				