

IN THE CLAIMS

The status of the claims is noted below.

1. (Currently Amended) Stereo demultiplexer receiving a frequency demodulated stereo-multiplex signal ($m(t)$) which comprises at least a stereo-difference signal ($m_d(t)$), a stereo-sum signal ($m_s(t)$) and a pilot carrier, comprising a PLL-circuit to recover the pilot carrier and/or or at least one harmonic thereof to perform an amplitude demodulation, wherein said PLL-circuit receives the sampling rate decimated stereo-sum signal ($m_s(t)$) as input signal, which is sampling rate decimated by a decimation factor of D.

2. (Previously Presented) Stereo demultiplexer according to claim 1, wherein said sampling rate decimated stereo-sum signal ($m_s(t)$) is further sampling rate decimated by a decimation factor of E before said PLL-circuit receives it as input signal.

3. (Currently Amended) Stereo demultiplexer receiving a frequency demodulated stereo-multiplex signal ($m(t)$) which comprises at least a stereo-difference signal ($m_d(t)$), a stereo-sum signal ($m_s(t)$) and a pilot carrier, comprising a PLL-circuit to recover the pilot carrier and/or or at least one harmonic thereof to perform an amplitude demodulation, wherein said PLL-circuit receives the sampling rate decimated stereo-sum signal ($m_s(t)$) as input signal, which is sampling rate decimated by a decimation factor of D,

wherein said PLL-circuit outputs a recovered pilot carrier which is interpolated so that it has a sampling rate equal to that of the frequency demodulated stereo-multiplex signal.

4 (Previously Presented) Stereo demultiplexer according to claim 3, wherein that D-1 or (E·D)-1 interpolated pilot carrier values ($y(k/D+1), \dots, y(k/D+(D-1))$) and one calculated pilot carrier value ($y(k/D)$) are alternately output.

5. (Previously Presented) Stereo demultiplexer according to claim 4, wherein said interpolation within the PLL-circuit is performed on basis of a prediction starting at said calculated pilot carrier value.

6. (Previously Presented) Stereo demultiplexer according to claim 5, including

- a PLL within the PLL-circuit which outputs a phase signal, and
- a first sine calculation unit which outputs said one calculated pilot carrier value ($y(k/D)$) on the basis of said phase signal.

7. (Previously Presented) Stereo demultiplexer according to claim 6, including

- second to Dth or (E·D)th sine calculation units each of which outputs one of said D-1 or (E·D)-1 interpolated pilot carrier values ($y(k/D+1), \dots, y(k/D+(D-1))$) on basis of said phase signal and a respective added phase shift value.

8. (Currently Amended) Stereo demultiplexer according to claim 6, including

- a third multiplexer which multiplies said phase signal with a factor of 2 before it is input to said first sine calculation unit and/or or a respective second to Dth or (E·D)th sine calculation unit via a respective second to Dth or (E·D)th adder which adds said respective phase shift value so that the 2nd harmonic of the pilot carrier is generated.

9. (Previously Presented) Stereo demultiplexer according to claim 6, wherein said PLL comprises

- a first multiplier receiving samples of the stereo-sum signal ($x(k)$) as multiplicand at a first input,
- a filter receiving the output signal of said first multiplier,
- a second multiplier multiplying said output signal of said filter with a PLL gain (PLL_loop_gain),
 - a first adder receiving said output signal of said second multiplier at a first input as a first summand, a constant representing the product of the pilot carrier frequency (ω_{pil}) and the sampling period at a second input as a second summand, and a delayed phase signal which is the output signal of said first adder at a third input as a third summand,
 - a delay element receiving said phase signal of said first adder and supplying said delayed phase signal to said third input of said first adder, and
 - a cosine calculation unit receiving the phase signal of said first adder and supplying its output signal as multiplier to a second input of said first multiplier.

10. (New) Stereo demultiplexer receiving a frequency demodulated stereo-multiplex signal ($m(t)$) which comprises at least a stereo-difference signal ($m_d(t)$), a stereo-sum signal ($m_s(t)$) and a pilot carrier, comprising a PLL-circuit to recover the pilot carrier and at least one harmonic thereof to perform an amplitude demodulation, wherein said PLL-circuit receives the sampling rate decimated stereo-sum signal ($m_s(t)$) as input signal, which is sampling rate decimated by a decimation factor of D.

11. (New) Stereo demultiplexer according to claim 10, wherein said sampling rate decimated stereo-sum signal ($m_s(t)$) is further sampling rate decimated by a decimation factor of E before said PLL-circuit receives it as input signal.

12. (New) Stereo demultiplexer receiving a frequency demodulated stereo-multiplex signal ($m(t)$) which comprises at least a stereo-difference signal ($m_d(t)$), a stereo-sum signal ($m_s(t)$) and a pilot carrier, comprising a PLL-circuit to recover the pilot carrier and at least one harmonic thereof to perform an amplitude demodulation, wherein said PLL-circuit receives the sampling rate decimated stereo-sum signal ($m_s(t)$) as input signal, which is sampling rate decimated by a decimation factor of D,

wherein said PLL-circuit outputs a recovered pilot carrier which is interpolated so that it has a sampling rate equal to that of the frequency demodulated stereo-multiplex signal.

13. (New) Stereo demultiplexer according to claim 12, wherein that D-1 or (E·D)-1 interpolated pilot carrier values ($y(k/D+1), \dots, y(k/D+(D-1))$) and one calculated pilot carrier value ($y(k/D)$) are alternately output.

14. (New) Stereo demultiplexer according to claim 13, wherein said interpolation within the PLL-circuit is performed on basis of a prediction starting at said calculated pilot carrier value.

15. (New) Stereo demultiplexer according to claim 14, including

- a PLL within the PLL-circuit which outputs a phase signal, and
- a first sine calculation unit which outputs said one calculated pilot carrier value ($y(k/D)$) on the basis of said phase signal.

16. (New) Stereo demultiplexer according to claim 15, including

- second to Dth or (E·D)th sine calculation units each of which outputs one of said D-1 or (E·D)-1 interpolated pilot carrier values (y(k/D+1), ..., y(k/D+(D-1))) on basis of said phase signal and a respective added phase shift value.

17. (New) Stereo demultiplexer according to claim 15, including

- a third multiplexer which multiplies said phase signal with a factor of 2 before it is input to said first sine calculation unit and a respective second to Dth or (E·D)th sine calculation unit via a respective second to Dth or (E·D)th adder which adds said respective phase shift value so that the 2nd harmonic of the pilot carrier is generated.

18. (New) Stereo demultiplexer according to claim 15, including

- a third multiplexer which multiplies said phase signal with a factor of 2 before it is input to said first sine calculation unit or a respective second to Dth or (E·D)th sine calculation unit via a respective second to Dth or (E·D)th adder which adds said respective phase shift value so that the 2nd harmonic of the pilot carrier is generated.

19. (New) Stereo demultiplexer according to claim 15, wherein said PLL comprises

- a first multiplier receiving samples of the stereo-sum signal (x(k)) as multiplicand at a first input,

- a filter receiving the output signal of said first multiplier,

- a second multiplier multiplying said output signal of said filter with a PLL gain (PLL_loop_gain),

- a first adder receiving said output signal of said second multiplier at a first input as a first summand, a constant representing the product of the pilot carrier frequency (ω_{pil}) and the sampling period at a second input as a second summand, and a delayed phase signal which is the output signal of said first adder at a third input as a third summand,

- a delay element receiving said phase signal of said first adder and supplying said delayed phase signal to said third input of said first adder, and

- a cosine calculation unit receiving the phase signal of said first adder and supplying its output signal as multiplier to a second input of said first multiplier.

20. (New) Stereo demultiplexer according to claim 6, including

- a third multiplexer which multiplies said phase signal with a factor of 2 before it is input to said first sine calculation unit and a respective second to Dth or (E·D)th sine calculation unit via a respective second to Dth or (E·D)th adder which adds said respective phase shift value so that the 2nd harmonic of the pilot carrier is generated.