Lab 6: Change (Pre-Post Test)

Wednesday Bushong
3/24/2017

Today's lab will be short and sweet:)

Overview of Pre-Post Test Analyses

In a repeated measures design, instead of having only one observation per subject, you have 2 or more. This is indeed the norm in cognitive psychology! Today we'll just be tackling the case where we have a pre-test and post-test value. We have 2 options for how we want to analyze change between a pre- and post-test:

- Analyze straight change: Here, we compute the change in the dependent variable between time A and time B.
- Analyze residual change: Here, we predict the value at time B from the value at time A. If this is positive, it means there was positive change over time; if negative, negative over time. If there's an effect of the independent variable, then

We also have a choice for whether we want to use regression or ANOVA – if we're using an ANOVA, we'll want to include an error term for participant.

The Data

Females and males had 'handicap' scores taken at two times. We're interested in whether gender affects the timecourse of these values.

```
# Load libraries & data
library(foreign)
library(tidyr)
library(ggplot2)

# data
d <- read.spss("data.sav", to.data.frame = TRUE)</pre>
```

re-encoding from CP1252

```
# what does the data look like?
summary(d)
```

```
bgender
                   bhndicap
                                     fhndicap
##
                                                        change
##
   Female:51
                Min.
                       :0.7143
                                  Min.
                                         :0.7143
                                                    Min.
                                                           :-1.07143
   Male:49
                1st Qu.:1.9286
                                  1st Qu.:1.9286
                                                    1st Qu.:-0.21429
##
##
                Median :2.2857
                                  Median :2.2857
                                                    Median: 0.00000
##
                Mean
                       :2.3086
                                  Mean
                                        :2.3651
                                                    Mean
                                                           : 0.05651
##
                3rd Qu.:2.6786
                                  3rd Qu.:2.8036
                                                    3rd Qu.: 0.35714
                        :4.2143
##
                Max.
                                  Max.
                                         :5.2000
                                                    Max.
                                                           : 3.05714
```

head(d)

```
## bgender bhndicap fhndicap change
## 1 Female 2.214286 2.285714 0.07142857

## 2 Female 1.357143 1.357143 0.00000000

## 3 Female 1.714286 2.400000 0.68571429

## 4 Female 1.428571 1.785714 0.35714286

## 5 Female 3.000000 2.642857 -0.35714286

## 6 Female 3.071429 3.000000 -0.07142857

## label participants
d$participant <- as.factor(1:nrow(d))
```

There's already a change score that has been computed for us in the data. Let's make sure that these are the right values:

```
all(d$change == d$fhndicap - d$bhndicap) # all function tells you if this statement returns all TRUEs
## [1] TRUE
```

First, Some Plotting

We can visualize the straight change scores or the scores over time.

```
p.change <- ggplot(d, aes(x = bgender, y = change)) +
   stat_summary(fun.data = mean_cl_boot, geom = "pointrange")
p.change</pre>
```


Straight Change

Super easy: just predict change scores from gender! We can either predict straight change, or predict value from the time * gender interaction.

```
m <- aov(change ~ bgender + Error(participant), d) # Error(participant) adds in the within-subject erro
summary(m)
##
## Error: participant
            Df Sum Sq Mean Sq F value Pr(>F)
## bgender
             1 2.505 2.5048
                                8.602 0.00418 **
## Residuals 98 28.536 0.2912
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# equivalent to:
m.int <- aov(value ~ bgender * time + Error(participant), d.gathered)</pre>
summary(m.int)
##
## Error: participant
            Df Sum Sq Mean Sq F value Pr(>F)
                 4.34
                       4.337
                               5.859 0.0173 *
## bgender
```

```
## Residuals 98 72.54 0.740
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Error: Within
##
               Df Sum Sq Mean Sq F value Pr(>F)
                1 0.160 0.1596
                                  1.096 0.29761
## bgender:time 1 1.252 1.2524
                                  8.602 0.00418 **
## Residuals
               98 14.268 0.1456
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
m2 <- lm(change ~ bgender, d)
summary(m2)
##
## Call:
## lm(formula = change ~ bgender, data = d)
## Residuals:
##
      Min
               1Q Median
                              3Q
                                     Max
## -1.2831 -0.2831 -0.0379 0.2884 2.8455
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.21164
                         0.07556
                                   2.801 0.00614 **
## bgenderMale -0.31659
                          0.10795 -2.933 0.00418 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.5396 on 98 degrees of freedom
## Multiple R-squared: 0.08069,
                                  Adjusted R-squared: 0.07131
## F-statistic: 8.602 on 1 and 98 DF, p-value: 0.004181
```

Residual Change

For a residual change analysis, we predict scores at the second time point (fhndicap) from the first time point & our independent variable, gender.

```
m3 <- aov(fhndicap ~ bhndicap + bgender, d)
summary(m3)
              Df Sum Sq Mean Sq F value
                                          Pr(>F)
## bhndicap
               1 24.339 24.339
                                89.48 1.97e-15 ***
## bgender
               1 3.006
                          3.006
                                  11.05 0.00125 **
## Residuals
              97 26.383
                          0.272
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
m4 <- lm(fhndicap ~ bhndicap + bgender, d)
summary(m4)
```

```
##
## Call:
## lm(formula = fhndicap ~ bhndicap + bgender, data = d)
## Residuals:
##
       \mathtt{Min}
                 1Q Median
                                   3Q
                                           Max
## -1.25347 -0.28313 -0.05844 0.24707 2.79031
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 0.77557
                          0.21330
                                  3.636 0.000446 ***
                                   9.038 1.6e-14 ***
## bhndicap
               0.76259
                          0.08437
## bgenderMale -0.34895
                          0.10496 -3.325 0.001250 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5215 on 97 degrees of freedom
## Multiple R-squared: 0.509, Adjusted R-squared: 0.4988
## F-statistic: 50.27 on 2 and 97 DF, p-value: 1.046e-15
```