

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информатика и системы управления
КАФЕДРА	Программное обеспечение ЭВМ и информационные технологии

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

Название предмета: Типы и структуры данных

Студент: Варламова Екатерина Алексеевна

Группа: ИУ7-31Б

I. Описание условия задачи

Смоделировать операцию деления целого числа длиной до 30 десятичных цифр на действительное число в форме \pm m.n E \pm K, где суммарная длина мантиссы (m+n) - до 30 значащих цифр, а величина порядка K - до 5 цифр. Результат выдать в форме \pm 0.m1 E \pm K1, где m1 - до 30 значащих цифр, а K1 - до 5 цифр. Программа должна осуществлять ввод чисел и выдавать либо верный результат в указанном формате (при корректных данных), либо сообщение о невозможности произвести счет.

II. Техническое задание

1. Описание исходных данных

Вводится 2 числа: целое и вещественное. При этом первое введённое число считается делимым, а второе – делителем.

Формат ввода:

Для действительных чисел допускается ввод в обычном формате (например, 0.025, +.0123, -.78), а также с указанием порядка (например, 1.9e-67, 23.Е78). Не допускается постановка пробелов между любыми двумя символами в числе и использование запятой вместо точки.

Для целых чисел допускается ввод числа (любые символы, кроме цифр, приведут к ошибке) и его знака.

Ограничения:

- длина целого числа больше 0 и не превышает 30;
- длина мантиссы вещественного числа больше 0 и не превышает 30;
- порядок вещественных чисел находится в диапазоне: [-99999; 99999];

2. Описание результата программы

При корректных данных будет выдан результат деления двух введённых чисел. В ином случае будет выдано сообщение об ошибке (например, о делении на ноль, о неверном формате данных).

Формат вывода:

<знак>0.<мантисса>Е<знак порядка><порядок>

При этом знак у порядка и у мантиссы выводится только тогда, когда имеет значение "-".

Ограничения:

ошибке.

- длина мантиссы результата не превышает 30. Если результат деления не может быть записан в 30 значащих цифр, то он округляется;
- порядок результата находится в диапазоне: [-99999; 99999]. Если порядок результата превышает максимальное значение, выводится слово "infinity". Если порядок результата меньше минимального значения, выводится "0".

3. Описание задачи, реализуемой программой

Программа выполняет деление целого числа на вещественное с учётом ограничений, описанных выше. Результат деления нормализуется и выводится строго в указанном выше формате. При некорректных данных выводится сообщение об ошибке.

4. Способ обращения к программе

Способ обращения к программе - консольный. Дальнейшие инструкции будут выведены после запуска.

5. Описание возможных аварийных ситуаций и ошибок пользователя

- совершение операции не имеет смысл (деление на 0);
- входные данные выходят за рамки ограничений;
- входные данные являются бессмысленными с точки зрения задания; Во всех указанных случаях программа завершится корректно и сообщит об

III. Описание внутренних структур данных

Для контроля ввода пользователя используется статический массив символьного типа; длина массива = 40 разрядов, из которых 2 разряда отведены под знаки мантиссы и порядка, 30 на мантиссу, 5 на порядок, 1 на

точку, 1 на букву Е/е и 1 на завершающий си-строку ноль. При попытке ввода строки большей длины, программа выдает сообщение об ошибке, поскольку очевидно, что формат входных данных точно не будет корректным. После обработки введённых данных корректная информация записывается в описанную ниже структуру.

Представление вещественного числа организовано структурой, в качестве полей которой выступают:

- 1. знак мантиссы как переменная символьного типа;
- 2. мантисса в виде статического массива коротких целых; длина массива = 61, так как при делении «в столбик» двух чисел, мантисса которых содержит максимальное количество (30) десятичных разрядов, мантисса делимого расширится (дополнится нулями) ещё максимум на 31 разряд (30 из которых составят мантиссу результата, а 1 разряд необходим для округления);
- 3. длина мантиссы в виде короткого целого;
- 4. порядок как целое знаковое число;

Описание структуры на языке С выглядит следующим образом:

```
typedef struct
{
    char mant_sign;
    short mantissa[61];
    size_t mant_len;
    long deg;
} number;
```

При выборе структуры данных, лучше всего подходящей под хранение мантиссы, мы прежде всего руководствовались тем, чтобы максимально приблизиться по размеру занимаемой памяти к представлению чисел в стандартных типах данных. Именно поэтому массив является наиболее предпочтительным вариантом хранения.

IV. Описание алгоритма

- 1. Вся информация, введённая пользователем, помещается в массив символьного типа. Этот массив обрабатывается таким образом, чтобы выделить мантиссу, определить порядок и знак. Если обработка прошла успешно, информация помещается в структуру, иначе выдается ошибка о неверном формате входных данных.
- 2. Проверяется деление на ноль: если мантисса вещественного числа содержит только нули, то выдается сообщение о соответствующей ошибке.
- 3. В случае необходимости делимое дополняется нулями и уменьшается порядок результата;
- 4. Осуществляется операция деления с помощью алгоритма «в столбик». Следующая последовательность действий повторяется до тех пор, пока в мантиссе результата есть место или до тех пор, пока размер массива с делимым позволяет дописывать нули:
 - вычитание делителя из части делимого до тех пор, пока возможно, и подсчёт количества успешных вычитаний (для этого используется имитация вычитания в столбик);
 - запись количества вычитаний в мантиссу результата (не учитывая незначащие нули);
 - если в делимом больше нет цифр, а остаток от деления есть, то к делимому дописывается ноль и уменьшается порядок результата;
- 5. Определяется знак результата и его порядок, в случае необходимости округляется мантисса (с учётом циклического переноса).

Данный алгоритм является предпочтительным при выбранной структуре данных, ведь массив в первую очередь обеспечивает удобное и быстрое обращение к составляющим его элементам, что очень полезно при вычислениях «в столбик».

V. Тестирование

Позитивные тесты:

Входные данные	Описание теста	Результат
(делимое, затем		_
делитель)		
120	делитель представлен	0.1875E1
64	целым числом	
145	делитель имеет вид:	-0.116E-20
0125e25	0 <num>E<degree></degree></num>	
+12345	делимое имеет вид:	0.823E103
15e-100	+ <num>, а делитель</num>	
	<num>E<degree></degree></num>	
2	при делении произошло	infinity
2e-99999	переполнение (степень	
	результата превысила	
	максимальное значение)	
-123456789012345	мантисса делимого	0.123456789012345
678901234567890	максимально возможная по	67890123456789E15
-1	длине	
128	обычный тест	-0.2E1
64e+2		
-2	при делении достигнут	0
+200e+99999	машинный ноль (степень	
	результата ниже	
	минимального значения)	
1	деление, при котором	0.16666666666666
6.e0	требуется округление	66666666666667E0
	(только последняя цифра	
	увеличивается)	
7	деление, при котором	0.3286384976525821
213	требуется округление	5962441314554E-1
	(причем последняя цифра	
	мантиссы 9, а следующая	
	больше 5, поэтому	
	происходит перенос).	
9999999999999	при округлении	0.5E30
9999999999999	происходит циклический	
	перенос	
2		

Негативные тесты:

Входные данные	Описание теста	Результат
(делимое, затем		
делитель)		
123456789012345	длина делимого превысила	Incorrect format of
6789012345678901	максимальное значение;	number
1.2		
126!	делимое задано	Incorrect format of
12e-66	некорректно;	number
123456789012345	длина делителя превысила	Incorrect format of
678901234567890	максимальное значение;	number
123456789012345		
678901234567890.1		
23	деление на число, мантисса	Zero division
0.e-90	которого не содержит чисел,	
	отличных от нуля;	
123455	делитель задан некорректно;	Incorrect format of
1t-25		number
45	порядок делителя меньше	Incorrect format of
60e-100000	минимально возможного;	number
45	порядок делителя	Incorrect format of
0.046e100000	превышает максимально	number
	возможный	
	пустой файл	String is empty or too
		large
45	отсутствует второе число.	String is empty or too
		large
1457	порядок у делителя задан	Incorrect format of
12e-78t	неверно	number
145E+2	задан порядок у делимого	Incorrect format of
12e-78	<u>-</u>	number
145.778	Вместо целого числа задано	Incorrect format of
12e-78	вещественное	number

VI. Выводы по проделанной работе

В результате проделанной работы установилась возможность совершать арифметические операции над числами, размер которых выходит за пределы разрядной сетки.

VII. Ответы на вопросы

- 1. Для беззнаковых целых диапазон возможных значений: $[0; 2^{64}$ -1], то есть $[0; 18\ 446\ 744\ 073\ 709\ 551\ 615].$
- 2. Точность представления чисел определяется размером мантиссы. Максимальный размер мантиссы вещественных чисел составляет 52 двоичных разряда (это 16 десятичных разрядов).
- 3. Стандартные операции над числами: сложение (вычитание), умножение, деление, сравнение.
- 4. Если обрабатываемые числа превышают возможный диапазон представления чисел в ПК, программист может использовать массив для хранения мантиссы и целое знаковое число для порядка.
- 5. Осуществить операции над числами, выходящими за рамки машинного представления, можно с помощью представления этих чисел в виде массива и написания собственных функций над массивами, которые имитируют стандартные операции над числами.