Lecture 11: Object Detection and Image Segmentation

Logistics

Programming Assignment 2 has been released at https://course.cse.ust.hk/comp4471/programs/index.html

Image Classification: A core task in Computer Vision

This image by Nikita is licensed under CC-BY 2.0

(assume given a set of possible labels) {dog, cat, truck, plane, ...}

Computer Vision Tasks

Classification

CAT

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

This image is CC0 public domain

Semantic Segmentation

Classification

CAT

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

Semantic Segmentation: The Problem

GRASS, CAT, TREE, SKY, ...

Paired training data: for each training image, each pixel is labeled with a semantic category.

At test time, classify each pixel of a new image.

Impossible to classify without context

Q: how do we include context?

Q: how do we model this?

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Problem: Very inefficient! Not reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

Full image

An intuitive idea: encode the entire image with conv net, and do semantic segmentation on top.

Problem: classification architectures often reduce feature spatial sizes to go deeper, but semantic segmentation requires the output size to be the same as input size.

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!

Design a network with only convolutional layers without downsampling operators to make predictions for pixels all at once!

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Design network as a bunch of convolutional layers, with **Downsampling: Upsampling:** downsampling and upsampling inside the network! Pooling, strided ??? convolution Med-res: Med-res: $D_{2} \times H/4 \times W/4$ $D_{2} \times H/4 \times W/4$ Low-res: $D_3 x H/4 x W/4$ Input: High-res: CxHxWHigh-res: Predictions: $3 \times H \times W$

D₄ x H/2 x W/2

 $H \times W$

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

 $D_1 \times H/2 \times W/2$

In-Network upsampling: "Unpooling"

Nearest Neighbor

			1	1	1	2	2
	1	2		1	1	2	2
3	3	4		3	3	4	4
				3	3	4	4

Input: 2 x 2 Output: 4 x 4

"Bed of Nails"

Input: 2 x 2

Output: 4 x 4

0

0

0

0

In-Network upsampling: "Max Unpooling"

Max Pooling

Remember which element was max!

1	2	6	3
3	5	2	1
1	2	2	1

5 6 8

Rest of the network

Input: 4 x 4

Output: 2 x 2

Corresponding pairs of downsampling and upsampling layers

Max Unpooling

Use positions from pooling layer

1	2	
3	4	

0	1	0	0	
0	0	0	0	
3	0	0	4	

0

0

0

Input: 2 x 2

Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4

Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4

Output: 2 x 2

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Filter moves 2 pixels in the input for every one pixel in the output

Stride gives ratio between movement in input and output

We can interpret strided convolution as "learnable downsampling".

3 x 3 **transposed** convolution, stride 2 pad 1

Input: 2 x 2

Output: 4 x 4

3 x 3 transposed convolution, stride 2 pad 1

3 x 3 **transposed** convolution, stride 2 pad 1

Q: Why is it called transposed convolution?

Learnable Upsampling: 1D Example

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Convolution as Matrix Multiplication (1D Example)

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=2, padding=1

Convolution as Matrix Multiplication (1D Example)

We can express convolution in terms of a matrix multiplication

$$\vec{x} * \vec{a} = X\vec{a}$$

$$\begin{bmatrix} x & y & z & 0 & 0 & 0 \\ 0 & 0 & x & y & z & 0 \end{bmatrix} \begin{bmatrix} 0 \\ a \\ b \\ c \\ d \\ 0 \end{bmatrix} = \begin{bmatrix} ay + bz \\ bx + cy + dz \end{bmatrix}$$

Example: 1D conv, kernel size=3, stride=2, padding=1

Transposed convolution multiplies by the transpose of the same matrix:

$$\vec{x} *^T \vec{a} = X^T \vec{a}$$

$$\begin{bmatrix} x & 0 \\ y & 0 \\ z & x \\ 0 & y \\ 0 & z \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} ax \\ ay \\ az + bx \\ by \\ bz \\ 0 \end{bmatrix}$$

Example: 1D transposed conv, kernel size=3, stride=2, padding=0

Downsampling: Pooling, strided convolution

Input: 3 x H x W

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

High-res: D₁ x H/2 x W/2

High-res: D₁ x H/2 x W/2

Upsampling: Unpooling or strided transposed convolution

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Semantic Segmentation: Summary

Semantic Segmentation

Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels

Object Detection

Classification

CAT

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

Object Detection

Classification

CAT

No spatial extent

Semantic Segmentation

GRASS, CAT, TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

Object Detection: Single Object

(Classification + Localization)

Object Detection: Single Object

Object Detection: Single Object Correct label: Cat (Classification + Localization) **Class Scores Softmax** Cat: 0.9 Fully Connected: Dog: 0.05 Loss 4096 to 1000 Car: 0.01 Multitask Loss Max pooling **Fully Vector:** This image is CC0 public domain Connected: 4096 Box 4096 to 4 Coordinates --> L2 Loss (x, y, w, h)

Treat localization as a regression problem!

Correct box: (x', y', w', h')

CAT: (x, y, w, h)

DOG: (x, y, w, h) DOG: (x, y, w, h) CAT: (x, y, w, h)

DUCK: (x, y, w, h) DUCK: (x, y, w, h)

. . . .

Each image needs a different number of outputs!

CAT: (x, y, w, h) 4 numbers

DOG: (x, y, w, h)

DOG: (x, y, w, h) CAT: (x, y, w, h)

12 numbers

DUCK: (x, y, w, h) Many

DUCK: (x, y, w, h) numbers!

. . . .

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? NO Background? YES

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? YES Cat? NO Background? NO

Max pooling

Apply a CNN to many different crops of the

Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Q: What's the problem with this approach?

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background

Dog? NO Cat? YES Background? NO

Problem: Need to apply CNN to huge number of locations, scales, and aspect ratios, very computationally expensive!

Region Proposals: Selective Search

- Find "blobby" image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 2000 region proposals in a few seconds on CPU

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Regions of Interest (RoI) from a proposal method (~2k)

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Warped image regions (224x224 pixels)

Regions of Interest (RoI) from a proposal method (~2k)

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Girshick et al, "Rich feature hierarchies for accurate object detection and

Input image

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014.

Classify regions with **SVMs**

Forward each region through ConvNet

Problem: Very slow! Need to do ~2k independent forward passes for each image!

Regions of Interest

(RoI) from a proposal

method (~2k)

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation". CVPR 2014.

Predict "corrections" to the RoI: 4 numbers: (dx, dy, dw, dh)

Classify regions with SVMs

Forward each region through ConvNet

Warped image regions (224x224 pixels)

Regions of Interest (RoI) from a proposal method (~2k)

Problem: Very slow! Need to do ~2k independent forward passes for each image!

Idea: Pass the image through convnet before cropping! Crop the conv feature instead!

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation". CVPR 2014.

Cropping Features: Rol Pool

Cropping Features: Rol Pool

Q: how do we resize the 512 x 5 x 4 region to, e.g., a 512 x 2 x 2 tensor?.

Cropping Features: Rol Pool "Snap" to grid cells Project proposal onto features **CNN** Input Image Image features: C x H x W (e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Divide into 2x2 grid of (roughly) equal subregions

Q: how do we resize the 512 x 5 x 4 region to, e.g., a 512 x 2 x 2 tensor?.

Cropping Features: Rol Pool "Snap" to grid cells Project proposal onto features CNN Input Image Image features: C x H x W

(e.g. 512 x 20 x 15)

Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Region features always the same size even if input regions have different sizes!

Girshick, "Fast R-CNN", ICCV 2015.

(e.g. 3 x 640 x 480)

Cropping Features: Rol Pool "Snap" to grid cells Project proposal onto features CNN Input Image Image features: C x H x W (e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Divide into 2x2 grid of (roughly) equal subregions

Max-pool within each subregion

Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7)

Region features always the same size even if input regions have different sizes!

Problem: Region features slightly misaligned

Cropping Features: Rol Align

Cropping Features: Rol Align

Sample at regular points in each subregion using bilinear interpolation

He et al, "Mask R-CNN", ICCV 2017

Cropping Features: Rol Align

No "snapping"! Project proposal onto features CNN Input Image Image features: C x H x W (e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Sample at regular points in each subregion using bilinear interpolation

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid cells:

Cropping Features: Rol Align

No "snapping"! Project proposal onto features CNN Input Image Image features: C x H x W

(e.g. 3 x 640 x 480)

(e.g. 512 x 20 x 15)

$$f_{xy} = \sum_{i,j=1}^{2} f_{i,j} \max(0, 1 - |x - x_i|) \max(0, 1 - |y - y_j|)$$

Sample at regular points in each subregion using bilinear interpolation

Feature f_{xy} for point (x, y) is a linear combination of features at its four neighboring grid cells:

$$|x_i|) \max(0, 1 - |y - y_j|)$$

He et al, "Mask R-CNN", ICCV 2017

Cropping Features: Rol Align

bilinear interpolation No "snapping"! Project proposal onto features Max-pool within each subregion CNN Region features (here 512 x 2 x 2; In practice e.g 512 x 7 x 7) Input Image Image features: C x H x W (e.g. 3 x 640 x 480) (e.g. 512 x 20 x 15)

Sample at regular points

in each subregion using

He et al, "Mask R-CNN", ICCV 2017

R-CNN vs Fast R-CNN

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014 Girshick, "Fast R-CNN", ICCV 2015

R-CNN vs Fast R-CNN

Girshick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014. He et al, "Spatial pyramid pooling in deep convolutional networks for visual recognition", ECCV 2014 Girshick, "Fast R-CNN", ICCV 2015

Faster R-CNN: Make CNN do proposals!

Insert Region Proposal **Network (RPN)** to predict proposals from features

Otherwise same as Fast R-CNN: Crop features for each proposal, classify each one

Classification Bounding-box regression loss Classification Bounding-box Rol pooling regression loss proposals Region Proposal Network feature map CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015 Figure copyright 2015, Ross Girshick; reproduced with permission

loss

Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 20 x 15)

Imagine an **anchor box** of fixed size at each point in the feature map

Imagine an **anchor box** of fixed size at each point in the feature map

CNN

Input Image (e.g. 3 x 640 x 480)

Image features (e.g. 512 x 20 x 15)

Imagine an **anchor box** of fixed size at each point in the feature map

For positive boxes, also predict a corrections from the anchor to the ground-truth box (regress 4 numbers per pixel)

In practice use K different anchor boxes of different size / scale at each point

In practice use K different anchor boxes of different size / scale at each point

Make CNN do proposals!

Classification loss

Jointly train with 4 losses:

RPN classify object / not object

- 2. RPN regress box coordinates
- 3. Final classification score (object classes)
- 4. Final box coordinates

Classification Bounding-box regression loss loss Bounding-box Rol pooling regression loss proposals Region Proposal Network feature map CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015 Figure copyright 2015, Ross Girshick; reproduced with permission

Make CNN do proposals!

Make CNN do proposals!

Glossing over many details:

 Ignore overlapping proposals with non-max suppression

Classification

loss

- How are anchors determined?
- How do we sample positive / negative samples for training the RPN?
- How to parameterize bounding box regression?

Classification Bounding-box regression loss Bounding-box Rol pooling regression loss proposals Region Proposal Network feature map CNN

Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015 Figure copyright 2015, Ross Girshick; reproduced with permission

Make CNN do proposals!

Faster R-CNN is a Two-stage object detector

loss

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

Make CNN do proposals!

Do we really need the second stage?

Classification loss Bounding-box regression loss

Faster R-CNN is a loss

Two-stage object detector

Classification loss

Bounding-pox regression oss Rol pooling

First stage: Run once per image

- Backbone network
- Region proposal network

Second stage: Run once per region

- Crop features: Rol pool / align
- Predict object class
- Prediction bbox offset

Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Input image 3 x H x W

Redmon et al, "You Only Look Once: Unified, Real-Time Object Detection", CVPR 2016 Liu et al, "SSD: Single-Shot MultiBox Detector", ECCV 2016 Lin et al, "Focal Loss for Dense Object Detection", ICCV 2017

Divide image into grid 7 x 7

Image a set of **base boxes** centered at each grid cell Here B = 3

Within each grid cell:

- Regress from each of the B base boxes to a final box with 5 numbers:
 (dx, dy, dh, dw, confidence)
- Predict scores for each of C classes (including background as a class)
- Looks a lot like RPN, but category-specific!

Output: $7 \times 7 \times (5 * B + C)$

Object Detection: Lots of variables ...

Backbone Network

VGG16

ResNet-101

Inception V2

Inception V3

Inception

ResNet

MobileNet

"Meta-Architecture"

Two-stage: Faster R-CNN Single-stage: YOLO / SSD

Hybrid: R-FCN

Image Size

Region Proposals

. . .

Takeaways

Faster R-CNN is slower but more accurate

SSD is much faster but not as accurate

Bigger / Deeper backbones work better

Huang et al, "Speed/accuracy trade-offs for modern convolutional object detectors", CVPR 2017

R-FCN: Dai et al, "R-FCN: Object Detection via Region-based Fully Convolutional Networks", NIPS 2016 Inception-V2: Ioffe and Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", ICML 2015 Inception V3: Szegedy et al, "Rethinking the Inception Architecture for Computer Vision", arXiv 2016 Inception ResNet: Szegedy et al, "Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning", arXiv 2016 MobileNet: Howard et al, "Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv 2017

Object Detection: Lots of variables ...

Backbone Network

VGG16

ResNet-101

Inception V2

Inception V3

Inception

ResNet

MobileNet

"Meta-Architecture"

Two-stage: Faster R-CNN Single-stage: YOLO / SSD

Hybrid: R-FCN

Image Size

Region Proposals

. . .

Takeaways

Faster R-CNN is slower but more accurate

SSD is much faster but not as accurate

Bigger / Deeper backbones work better

Huang et al, "Speed/accuracy trade-offs for modern convolutional object detectors", CVPR 2017 Zou et al, "Object Detection in 20 Years: A Survey", arXiv 2019

R-FCN: Dai et al, "R-FCN: Object Detection via Region-based Fully Convolutional Networks", NIPS 2016 Inception-V2: Ioffe and Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", ICML 2015 Inception V3: Szegedy et al, "Rethinking the Inception Architecture for Computer Vision", arXiv 2016 Inception ResNet: Szegedy et al, "Inception-V4, Inception-ResNet and the Impact of Residual Connections on Learning", arXiv 2016 MobileNet: Howard et al, "Efficient Convolutional Neural Networks for Mobile Vision Applications", arXiv 2017

Instance Segmentation

Classification

Semantic Segmentation

Object Detection

Instance Segmentation

CAT

GRASS, CAT, TREE, SKY DOG, DOG,

DOG, DOG, CAT

No spatial extent

No objects, just pixels

Multiple Object

Object Detection: Faster R-CNN

Object Detection

DOG, DOG, CAT

Instance Segmentation: Classification Bounding-box **Mask Prediction** regression loss loss Mask R-CNN Classification Bounding-box Rol pooling regression loss OSS Add a small mask proposals network that operates Instance on each Rol and Segmentation Region Proposal Network predicts a 28x28 binary mask feature map CNN DOG, DOG, CAT

C x 28 x 28

Mask R-CNN: Very Good Results!

Mask R-CNN Also does pose

Open Source Frameworks

Lots of good implementations on GitHub!

TensorFlow Detection API:

https://github.com/tensorflow/models/tree/master/research/object_detection Faster RCNN, SSD, RFCN, Mask R-CNN, ...

Detectron2 (PyTorch)

https://github.com/facebookresearch/detectron2

Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ...

Finetune on your own dataset with pre-trained models

Beyond 2D Object Detection...

Object Detection + Captioning = Dense Captioning

Johnson, Karpathy, and Fei-Fei, "DenseCap: Fully Convolutional Localization Networks for Dense Captioning", CVPR 2016 Figure copyright IEEE, 2016. Reproduced for educational purposes.

Dense Video Captioning

Ranjay Krishna et al., "Dense-Captioning Events in Videos", ICCV 2017 Figure copyright IEEE, 2017. Reproduced with permission.

Objects + Relationships = Scene Graphs

108,077 Images

5.4 Million Region Descriptions

1.7 Million Visual Question Answers

3.8 Million Object Instances

2.8 Million Attributes

2.3 Million Relationships

Everything Mapped to Wordnet Synsets

VISUALGENOME

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen et al. "Visual genome: Connecting language and vision using crowdsourced dense image annotations." International Journal of Computer Vision 123, no. 1 (2017): 32-73.

Scene Graph Prediction

Xu, Zhu, Choy, and Fei-Fei, "Scene Graph Generation by Iterative Message Passing", CVPR 2017 Figure copyright IEEE, 2018. Reproduced for educational purposes.

3D Object Detection

2D Object Detection: 2D bounding box (x, y, w, h)

3D Object Detection: 3D oriented bounding box (x, y, z, w, h, l, r, p, y)

Simplified bbox: no roll & pitch

Much harder problem than 2D object detection!

3D Object Detection: Simple Camera Model

A point on the image plane corresponds to a **ray** in the 3D space

A 2D bounding box on an image is a **frustrum** in the 3D space

Localize an object in 3D: The object can be anywhere in the camera viewing frustrum!

3D Object Detection: Monocular Camera

2D candidate boxes

- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.

3D Shape Prediction: Mesh R-CNN

Recap: Lots of computer vision tasks!

Classification

CAT

No spatial extent

Semantic Segmentation

TREE, SKY

No objects, just pixels

Object Detection

DOG, DOG, CAT

Instance Segmentation

DOG, DOG, CAT

Multiple Object

This image is CC0 public domain

Next time: Visualizing and Understanding