Bài 1. Hàm số lượng giác

A. Lý thuyết

I. Định nghĩa

1. Hàm số sin và hàm số côsin

a) Hàm số sin

- Quy tắc đặt tương ứng mỗi số thực x với số thực sinx

$$\sin: \ \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = \sin x$$

được gọi là hàm số sin, kí hiệu là $y = \sin x$.

Tập xác định của hàm số sin là \mathbb{R} .

b) Hàm số côsin

- Quy tắc đặt tương ứng mỗi số thực x với số thực cosx:

$$\cos \colon \ \mathbb{R} \to \mathbb{R}$$
$$x \mapsto y = \cos x$$

được gọi là hàm số côsin, kí hiệu là y = cosx.

Tập xác định của hàm số côsin là \mathbb{R} .

2. Hàm số tang và hàm số côtang

a) Hàm số tang

Hàm số tang là hàm số được xác định bởi công thức: $y = \frac{\sin x}{\cos x}$ ($\cos x \neq 0$)

Kí hiệu là y = tanx.

Vì $\cos x \neq 0$ khi và chỉ khi $x \neq \frac{\pi}{2} + k\pi$ $(k \in \mathbb{Z})$ nên tập xác định của hàm số $y = \tan x$ là $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$.

b) Hàm số côtang

Hàm số côtang là hàm số được xác định bởi công thức: $y = \frac{\cos x}{\sin x}$ ($\sin x \neq 0$)

Kí hiệu là $y = \cot x$.

Vì $\sin x \neq 0$ khi và chỉ khi $x \neq k\pi$ $(k \in \mathbb{Z})$ nên tập xác định của hàm số $y = \cot x$ là $D = \mathbb{R} \setminus \{k\pi; k \in \mathbb{Z}\}.$

- Nhận xét:

Hàm số $y = \sin x$ là hàm số lẻ, hàm số $y = \cos x$ là hàm số chẵn. Từ đó, suy ra các hàm số $y = \tan x$ và $y = \cot x$ là những hàm số lẻ.

II. Tính tuần hoàn của hàm số lượng giác

- Số $T=2\pi$ là số dương nhỏ nhất thỏa mãn đẳng thức: $\sin(x+T)=\sin x$; $\forall x\in\mathbb{R}$.
- Hàm số $y = \sin x$ thỏa mãn đẳng thức trên được gọi là hàm số tuần hoàn với chu kì 2π .
- Tương tự; hàm số y = $\cos x$ là hàm số tuần hoàn với chu kì 2π .
- Các hàm số $y = \tan x$ và $y = \cot x$ cũng là những hàm số tuần hoàn, với chu kì π .

III. Sự biến thiên và đồ thị của hàm số lượng giác.

1. Hàm số $y = \sin x$.

Từ định nghĩa ta thấy hàm số $y = \sin x$:

+ Xác định với mọi $x \in \mathbb{R} \ và - 1 \le sinx \le 1$.

- + Là hàm số lẻ.
- + Là hàm số tuần hoàn với chu kì 2π .

Sau đây, ta sẽ khảo sát sự biến thiên của hàm số $y = \sin x$.

a) Sự biến thiên và đồ thị hàm số $y = \sin x$ trên đoạn $[0; \pi]$.

Hàm số y = sinx đồng biến trên
$$\left[0; \frac{\pi}{2}\right]$$
 và nghịch biến trên $\left[\frac{\pi}{2}; \pi\right]$.

Bảng biến thiên:

Đồ thị của hàm số $y = \sin x$ trên đoạn $[0; \pi]$ đi qua các điểm (0; 0); $(x_1; \sin x_1)$; $(x_2; \sin x_2)$; $(x_3; \sin x_3)$; $(x_4; \sin x_4)$; $(\pi; 0)$.

- Chú ý:

Vì $y = \sin x$ là hàm số lẻ nên lấy đối xứng đồ thị hàm số trên đoạn $[0; \pi]$ qua gốc tọa độ O, ta được đồ thị hàm số trên đoạn $[-\pi; 0]$.

Đồ thị hàm số $y = \sin x$ trên đoạn $[-\pi; \pi]$ được biểu diễn như hình vẽ dưới đây:

b) Đồ thị hàm số $y = \sin x$ trên \mathbb{R} .

Hàm số $y = \sin x$ là hàm số tuần hoàn với chu kì 2π nên với mọi x ta có:

$$\sin (x+k2\pi)=\sin x; k\in \mathbb{Z}$$
.

Do đó, muốn có đồ thị hàm số $y = \sin x$ trên toàn bộ tập xác định \mathbb{R} , ta tịnh tiến liên tiếp đồ thị hàm số trên đoạn $[-\pi;\pi]$ theo các vecto $\vec{v} = (2\pi;0)$ và $-\vec{v} = (-2\pi;0)$, nghĩa là tịnh tiến song song với trục hoành từng đoạn có độ dài 2π . Dưới đây là đồ thị hàm số $y = \sin x$ trên \mathbb{R} :

c) Tập giá trị của hàm số $y = \sin x$

Tập giá trị của hàm số này là [-1; 1].

2. Hàm số $y = \cos x$.

Từ định nghĩa ta thấy hàm số y = cosx:

- + Xác định với mọi $x \in \mathbb{R}$ và $-1 \le \cos x \le 1$.
- + Là hàm số chẵn.
- + Là hàm số tuần hoàn với chu kì 2π .

Với mọi
$$x \in \mathbb{R}$$
 ta có: $\sin\left(x + \frac{\pi}{2}\right) = \cos x$.

Từ đó, bằng cách tịnh tiến đồ thị hàm số $y = \sin x$ theo vecto $\vec{u} = \left(\frac{-\pi}{2}; 0\right)$ (sang trái một đoạn có độ dài bằng $\frac{\pi}{2}$, song song với trục hoành), ta được đồ thị hàm số $y = \cos x$.

- + Hàm số y = $\cos x$ đồng biến trên đoạn $[-\pi; 0]$ và nghịch biến trên đoạn $[0; \pi]$.
- + Bảng biến thiên:

х	$-\pi$	0	π
$y = \cos x$	-1	<i>></i> 1	- 1

- + Tập giá trị của hàm số $y = \cos x$ là [-1; 1].
- + Đồ thị của các hàm số $y = \cos x$; $y = \sin x$ được gọi chung là các đường hình sin.

3. Hàm số y = tanx.

Từ định nghĩa hàm số $y = \tan x$:

- $+ \text{ C\'o tập xác định: } D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; \, k \in \mathbb{Z} \right\}.$
- + Là hàm số lẻ.
- + Là hàm số tuần hoàn với chu kì π .

a) Sự biến thiên và đồ thị hàm số y = tanx trên nửa khoảng $\left[0; \frac{\pi}{2}\right]$

+ Hàm số y = tanx đồng biến trên nửa khoảng $\left[0; \frac{\pi}{2}\right]$.

+ Bảng biến thiên:

х	$0 \qquad \qquad \frac{\pi}{4}$	$\frac{\pi}{2}$
$y = \tan x$	0	+8

+ Bảng giá trị:

X	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	
y = tanx	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	••••

Đồ thị hàm số y = tanx trên nửa khoảng $\left[0; \frac{\pi}{2}\right]$ đi qua các điểm tìm được.

b) Đồ thị hàm số $y = \tan x$ trên D.

Vì y = tanx là hàm số lẻ nên đồ thị hàm số có tâm đối xứng là gốc tọa độ O. Lấy đối xứng qua tâm O đồ thị hàm số y = tanx trên nửa khoảng $\left[0;\frac{\pi}{2}\right]$, ta được đồ thị hàm số trên nửa khoảng $\left[\frac{-\pi}{2};0\right]$.

Từ đó, ta được đồ thị hàm số y = tanx trên khoảng $\left(\frac{-\pi}{2}; \frac{\pi}{2}\right)$.

- Vì hàm số y=tanx tuần hoàn với chu kì π nên tịnh tiến đồ thị hàm số trên khoảng $\left(\frac{-\pi}{2};\frac{\pi}{2}\right)$ song song với trục hoành từng đoạn có độ dài π , ta được đồ thị hàm số y

= tanx trên D.

+ Tập giá trị của hàm số $y = \tan x$ là $(-\infty; +\infty)$.

4. Hàm số $y = \cot x$

Hàm số $y = \cot x$:

- + Có tập xác định là $D = \mathbb{R} \setminus \left\{ k\pi; k \in \mathbb{Z} \right\}$.
- + Là hàm số lẻ.
- + Là hàm số tuần hoàn với chu kì π .

a) Sự biến thiên của hàm số $y = \cot x$ trên khoảng $(0; \pi)$.

Hàm số $y = \cot x$ nghịch biến trên khoàn $(0; \pi)$.

Bảng biến thiên:

х	0	$\frac{\pi}{2}$ π
$y = \cot x$	+∞	0 $-\infty$

Hình biểu diễn của hàm số $y = \cot x$ trên khoảng $(0; \pi)$.

b) Đồ thị hàm số $y = \cot x$ trên D.

Đồ thị hàm số $y = \cot x$ trên D được biểu diễn như hình sau:

Tập giá trị của hàm số $y = \cot x$ là $(-\infty; +\infty)$.

B. Bài tập tự luyện

Bài 1. Tìm tập xác định của các hàm số sau:

a)
$$y = \frac{2 + \sin 2x}{\cos x}$$
;

b)
$$y = \tan\left(x + \frac{\pi}{3}\right)$$
;

c)
$$y = \cot\left(\frac{\pi}{4} - x\right)$$
.

Lời giải:

a) Điều kiện: $\cos x \neq 0$

$$\Leftrightarrow x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$$

Do đó, tập xác định của hàm số đã cho là: $D = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi; k \in \mathbb{Z} \right\}$.

b) Điều kiện:
$$\cos\left(x + \frac{\pi}{3}\right) \neq 0$$

$$\Leftrightarrow x + \frac{\pi}{3} \neq \frac{\pi}{2} + k\pi; \ k \in \mathbb{Z} \Leftrightarrow x \neq \frac{\pi}{6} + k\pi; \ k \in \mathbb{Z}$$

Do đó, tập xác định của hàm số đã cho là: $D = \mathbb{R} \setminus \left\{ \frac{\pi}{6} + k\pi; k \in \mathbb{Z} \right\}$.

c) Điều kiện:
$$\sin\left(\frac{\pi}{4} - x\right) \neq 0$$

$$\Longleftrightarrow \frac{\pi}{4} - x \neq k\pi; \ k \in \mathbb{Z} \Longleftrightarrow x \neq \frac{\pi}{4} - k\pi; \ k \in \mathbb{Z} \ .$$

Do đó, tập xác định của hàm số đã cho là: $D = \mathbb{R} \setminus \left\{ \frac{\pi}{4} - k\pi; k \in \mathbb{Z} \right\}$.

Bài 2. Chứng minh rằng: hàm số $y = \sin 2x + 2\sin x$ là hàm số lẻ.

Lời giải:

Tập xác định: $D = \mathbb{R}$.

Với mọi $x \in D \Rightarrow -x \in D$.

Ta có: $f(x) = \sin 2x + 2\sin x$

 $Van f(-x) = \sin(-2x) + 2\sin(-x) = -\sin(2x) - 2\sin(x) = -(\sin(2x) + 2\sin(x))$

Suy ra: f(-x) = -f(x).

Do đó, hàm số $y = \sin 2x + 2\sin x$ là hàm số lẻ. (đpcm).

Bài 3. Tìm giá trị lớn nhất; nhỏ nhất của các hàm số.

- a) $y = 2\sin x 3$;
- b) $y = \sin^2 x 4\sin x + 3$.

Lời giải:

Với mọi x ta có: $-1 \le \sin x \le 1$

Suy ra: $-2 \le 2\sin x \le 2$.

Do đó; $-2-3 \le 2\sin x - 3 \le 2-3$

 $hay - 5 \le 2 \sin x - 3 \le -1.$

Vậy giá trị lớn nhất của hàm số là -1 và giá trị nhỏ nhất của hàm số là -5.

b) Ta có: $\sin^2 x - 4\sin x + 3 = (\sin x - 2)^2 - 1$.

 $Vi-1 \le sinx \le 1 \ n\hat{e}n-3 \le sinx-2 \le -1$

 $\Rightarrow 1 \le (\sin x - 2)^2 \le 9$

 $\Rightarrow 1 - 1 \le (\sin x - 2)^2 - 1 \le 9 - 1$

hay $0 \le \sin^2 x - 4\sin x + 3 \le 8$.

Vậy giá trị lớn nhất của hàm số đã cho là 8 và giá trị nhỏ nhất của hàm số đã cho là 0.

Bài 4. Dựa vào đồ thị hàm số $y = \sin x$, tìm các khoảng giá trị của x để hàm số đó nhận giá trị dương.

Lời giải:

Đồ thị hàm số y = sinx:

+ Ta xét trên khoảng ($-\pi$; π):

Để hàm số nhận giá trị dương tức là $\sin x > 0$.

Dựa vào đồ thị suy ra: $x \in (0; \pi)$.

+ Xét trên tập xác định:

Vì tính tuần hoàn với chu kì là 2π , suy ra hàm số $y = \sin x$ nhận giá trị dương khi $x \in (k2\pi; \pi + k2\pi); k \in \mathbb{Z}$.