DenseNet-Summary

1. ABSTRACT:-

- for L layers, it has L(L+1)/2 connections
- Alleviate vanishing gradients
- Strengthen feature propagation
- Encourage feature reuse
- Decrease the number of parameters

2. INTRODUCTION:-

- As CNNs become increasingly deep, they introduce a new research problem of vanishing gradients
- This problem is addressed by ResNet, highway networks using identity mapping
- Many such papers like stochastic depth, fractalnet share a common characteristic "they create short paths from early layers to later layers"
- In this architecture, they distill this insight into a simple connectivity pattern-> maximize information flow between layers
- 1 th layer has 1 inputs, and its feature maps are passed onto L-l layers.

• Requires less parameters:-

- Resnet can be viewed as an algo which takes a
 previous state and writes to subsequent states but also
 storing information which needs to be passed down.
- Studies say that many layers are redundant and can be randomly dropped while training
- DenseNet clearly differntiates information that is added and that is passed down, and doesnt need extra layers
- DenseNet layers are very narrow(around 12 filters per layer)

• Improved gradient flow and flow of information:-

- Each layer has a direct access to the gradients from the loss function and original input signal
- Regularizing effect

3. DENSENET:-

- Input image- X₀, network of L layers, each implementing a non-linear transformation H_I(.) where I indexes the layer
- **H**_I(.) can be a composite function of operations such as batch normalization, ReLU, Pooling, Conv

• ResNet:-

- $\circ X_{l} = H_{l}(X_{l-1}) + X_{l-1}$
- An advantage of resnet is gradient flow can go directly through identity mapping, from later layers to previous layers.
- But, Identity function and output H_I are combined by summation, which impedes with the information flow

• DenseNet:-

- $X_1 = H_1([X_0, X_1, X_{2,...}, X_{l-1}])$
- Composite function:- H_I(.) as a composite function of BN -> ReLU -> 3x3 conv2d
- Pooling layers:- concatenation of layers is only feasible for same size feature maps,so the network is divided into densely-connected blocks,and pooling is done between them.
- Transition layer:- BN-> 1x1 conv ->2x2 avgpool2d

Growth rate:-

- if k₀ input no.of channels, and each function produces k feature maps, then Ith layer has k₀+k*(I-1) feature maps.
- DenseNet can have very narrow networks(i.e eg k=12) while other layers have wider networks.
- Because the information flow obtained by wide networks can be achieved using narrow networks as we already concatenate previous layers

Bottleneck layers:-

- 1x1 conv is introduced before every 3x3 conv to reduce input feature maps,improving computational efficiency
- BN->ReLU->Conv(1x1)->BN->ReLU->Conv(3x3)

Compression:-

- o If a block generates m feature-maps,we let transition layer generate $[\theta m]$ feature maps,where $0 \le \theta \le 1$
- DenseNet-C :- θ < 1
- \circ DenseNet-BC:- both bottlenet and transition layers $\theta < 1$ are used

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264
Convolution	112 × 112	7×7 conv, stride 2			
Pooling	56 × 56	3×3 max pool, stride 2			
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \times 6 \end{bmatrix}$
(1)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 0}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{3}$
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$			
(1)	28×28	2×2 average pool, stride 2			
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 12$
(2)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	
Transition Layer	28×28	$1 \times 1 \text{ conv}$			
(2)	14×14	2×2 average pool, stride 2			
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 24 \end{bmatrix}$	$1 \times 32 + 1$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 64$
(3)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$
Transition Layer	14 × 14	$1 \times 1 \text{ conv}$			
(3)	7 × 7	2×2 average pool, stride 2			
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 48 \end{bmatrix}$
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{46}$
Classification	1 × 1	7×7 global average pool			
Layer		1000D fully-connected, softmax			

• Implementation details:-

- DenseNet used in our experiments has three dense blocks that each has an equal number of layers(except ImageNet)
- Before entering the first dense block, a convolution with 16 (or twice the growth rate for DenseNet-BC) output channels is performed on the input images
- For 3x3 conv-> zeropadded one pixel
- 1x1 conv-> 2x2 avg pool as transition layer(between two contiguous denseblocks)
- At the end ,global avg pool,followed by softmax classifier

4. DISCUSSION:-

- Model Compactness:-
 - As a result of input concatenation, the feature-maps learned by any of the DenseNet layers can be accessed by all subsequent layers. This encourages feature reuse making compact models.
- Implicit deep supervision:-
 - Each layer gets extra supervision from the loss function through the shorter connections.