(NATURAL SCIENCE)

Vol. 63 No. 6 JUCHE106 (2017).

논벼전사활성화계통들에서 잎형질과 수확구성요소아이 관계

김소영, 도기완

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《우리 나라이 기후품투조건에서 수확고가 높으면서도 비료를 적게 요구하고 생육기일 이 짧으며 가물과 비바람, 병충해를 비롯한 여러가지 피해에 잘 견디는 품종을 얻어내야 함 LIEI.»

효모전사활성화체계인 GAL4/UAS에 의한 전사활성화는 유전자들의 기능해석을 위한 도 구로 리용[3, 4]되고있을뿐아니라 농작물의 새품종육종에도 리용할수 있다.[1, 2]

우리는 GAL4/UAS체계에 의하여 얻어진 논벼(Oryza sativa L.)전사활성화계통 GPTs(T6) 들의 수확구성요소에 미치는 잎형질발현특성에 대한 연구를 하였다.

재료 및 방법

선발계통들로서는 효모전사활성화인자 6×UAS-mp를 삽입시킨 논벼계통 〈PT-2〉(T4대) 의 종자에 효모전사활성화인자 GAL4/vp16과 진공삼투에 의한 Agrobacterium법으로 형질전 환시켜 선발한 논벼계통 〈GPT-22〉(T。대), 〈GPT-344〉(T。대)를, 대조로서는 효모전사활성화인 자 6×UAS-mp가 삽입된 논벼계통 〈PT-2〉(T7대)를 리용하였다.

잎에서 엽록소합량측정은 잎색도측정기(《SY-S02》)를 리용하였다.

측정값들은 통계분석프로그람 Statistica 5.5를 리용하여 t검정(p<0.05)법으로 비교분석하 였다.

결과 및 론의

1) 선발계통들의 자라기특성

씨를 뿌린 다음 7일 지나 한주일 간격으로 선 발계통들의 키자라기특성을 본 결과는 그림 1과 같다.

그림 1에서 보는바와 같이 선발계통들인 〈GPT-22〉, 〈GPT-344〉의 키에서는 차이가 없었 다.(p<0.05)

다음으로 선발계통들의 잎수, 아지수증가특 성을 보았다.(그림 2)

그림 2에서 보는바와 같이 선발계통들은 대

그림 1. 선발계통들의 키자라기특성 $1 - \langle PT-2 \rangle$, $2 - \langle GPT-22 \rangle$, $3 - \langle GPT-344 \rangle$

그림 2. 선발계통들의 잎수, 아지수증가특성 1-〈PT-2〉, 2-〈GPT-22〉, 3-〈GPT-344〉

조계통에 비하여 4일시기에 1호아지의 출 현률이 더 빨랐으며 이러한 속도의 차이 는 모기르는 전기간 유지되였다. 그리고 선 발계통들에서 최고아지치는 시기는 7월 8~10일로서 9대(잎수는 13.5매)였고 이삭 아지림계기인 7월 20일까지 7대로서 이삭 아지비률이 95%였지만 대조계통에서는 최 고아지치는 시기가 7월 15일이였으며 이 때 아지수는 7대(잎수는 13.7매)였고 이삭 아지림계기인 7월 21일에 아지수는 6대 로서 이삭아지비률이 90%였다. 잎수를 보

면 7월 24일경에 선발계통들에서 $15\sim16$ 매인 포기수가 대조계통보다 높은 경향성을 보여주었다.

2) 선발계통들의 생리적특성

먼저 선발계통들의 꽃피기특성을 본 결과는 표 1과 같다.

표 기. 게임글시아의 돗피기국은											
꽃 핀률*/%											
계통	기통 7월 8월										
	27일	28일	29일	30일	31일	1일	2일	3일	4일	5일	6일
⟨PT-2⟩			1.1	5.6	25.1	45.8	68.7	77.1	86.0	92.7	97.8
⟨GPT-22⟩	0.6	1.3	4.3	17.9	60.9	82.6	93.2	97.4	98.7		
⟨GPT-344⟩	1.3	5.9	15.5	40.2	84.1	93.3	99.6				

표 1. 계통들사이의 꽃피기특성

표 1에서 보는바와 같이 첫 꽃피기는 선발계통들에서 7월 27일로서 대조계통에 비하여 3일정도 빨랐으며 꽃핀률이 70%정도 되는 시기도 3~4일정도 빨랐다.

최고아지치는 시기에 잎면적과 잎색도를 측정하였다.(표 2)

立 つ	치고아지치는	1171	이머저	이쌔ㄷ이	스하증	いしくして	아스아이	고나비
## 2		ハノノ	윤면적.	끈엑도와	구획우	UI의당	끌구۲F이	쓴[게

 계통			잎색도	이삭당 알수					
계중	14잎	13잎	12잎	11잎	10잎	9잎	총	/SPAD	/알
⟨PT-2⟩	_	32.7	27.7	20.7	12.1	7.2	83.9	58.9	146.5
〈GPT-22〉	34.7	34.9	30.7	23.8	14.3	_	129.2	60.1	148.3
⟨GPT-344⟩	33.4	32.8	28.7	23	13.8	_	131.8	59.6	157.1

씨뿌린 날자 4월 8일, 모낸 날자 5월 25일, 잎면적측정날자 7월 10일, 수확날자 10월 6일, 120포기/평

표 2에서 보는바와 같이 계통들사이에 잎색도에서는 차이가 없었다. 그러나 잎면적에서는 선발계통들에서 대조계통에 비하여 유의성있게 더 넓었다. 최고아지치는 시기에 살아있는 잎수가 5매로서 계통들사이에 차이가 없었지만 잎차례에서 선발계통들에서는 14번째 잎이, 대조계통에서는 13번째 잎까지 나왔다. 이 시기의 잎면적과 수확후 해당 이삭의 이삭당 알수를 비교한 결과 선발계통들에서 대조계통에 비하여 그 값이 높은 경향성을 보여주었다.(p<0.05)

^{*} 전체 포기수에 대한 꽃핀 포기수의 백분률

다음으로 여무는 시기에 잎면적과 잎색도를 측정하였다.(표 3)

 구분 -			잎면	잎색도	천알질량	이삭당 여문			
一个七	16잎	15잎	14잎	13잎	12잎	총	/SPAD	/g	알수/알
⟨PT-2⟩	_	44.8	39.8	30.5	29.1	144.7	23.2	34.2	127
〈GPT-22〉	59.2	44.9	40.1	35.8	_	179.9	22.9	35.2	122
⟨GPT-344⟩	49.8	43.8	38.9.	30.6	_	163.1	22.1	34.3	139

표 3. 여무는 시기 잎면적, 잎색도와 수확후 천알질량, 여문알수와의 관계

씨뿌린 날자 4월 8일, 모낸 날자 5월 25일, 잎면적측정날자 8월 30일, 수확날자 10월 6일, 120포기/평

표 3에서 보는바와 같이 여무는 시기에 받을잎의 잎색도에서는 계통들사이에 차이가 인정되지 않았다. 그러나 잎면적에서는 선발계통들에서 대조계통에 비하여 유의성있게 더 넓었는데 특히 〈GPT-22〉계통에서는 받을잎면적이 〈GPT-344〉계통과 대조계통에 비해 더 넓었다. 이 시기의 잎면적과 수확후 해당 이삭의 천알질량, 이삭당 여문알수를 비교한 결과 선발계통들에서 대조계통에 비해 여문알수가 더 많은 경향성을 나타냈으며 특히 〈GPT-22〉에서는 다른 계통들에 비해 천알질량이 1g정도 더 무거웠다.(p<0.05)

맺 는 말

선발계통들은 대조계통에 비하여 꽃피기가 2~3일정도 빨랐다.

선발계통들은 대조계통에 비하여 엽록소함량에서는 차이가 없었지만 잎면적에서 최고 아지치는 시기에는 50cm^2 , 여무는 시기에는 20cm^2 정도 높았다.

참 고 문 헌

- [1] 김일성종합대학학보(자연과학), 58, 7, 139, 주체101(2012).
- [2] J. E. Sheehy et al.; Field Crops Research, 71, 77, 2001.
- [3] Yunhe Jiang et al.; Biotechnology Advances, 30, 1059, 2012.
- [4] Zhu Kai-chwan et al.; China Biotechnology, 31, 1, 81, 2011.

주체106(2017)년 2월 5일 원고접수

Relation between Leaf Characteristics and Yield Component in Rice Transactivation Systems

Kim So Yong, To Ki Wan

Rice transactivation lines, flowering was $2\sim3$ days earlier than in control line, and there were no differences in amount of chlorophyll but they had more wide leaf areas per tiller.

Key words: transactivation, GAL4, UAS