

Nonlocal translationally invariant nuclear density

Michael Gennari

TRIUMF – Co-op from University of Waterloo

In collaboration with

Petr Navrátil, Angelo Calci, and Matteo Vorabbi

No-core shell model (NCSM)

- NCSM is an ab initio approach to solve the many-body Schrödinger equation for bound states (narrow resonances) starting from high-precision NN+NNN interactions
- Uses large (but finite!) expansions in HO many-body basis states

$$\Psi^{A} = \sum_{N=0}^{Nmax} \sum_{i} c_{Ni} \Phi_{Ni}^{A}$$

 Translational invariance of the internal wave function is preserved when single-particle Slater Determinant (SD) basis is used with N_{max} truncation

$$\langle \vec{r}_1 \cdots \vec{r}_A \vec{\sigma}_1 \cdots \vec{\sigma}_A \vec{\tau}_1 \cdots \vec{\tau}_A | A \lambda J M \rangle_{SD} = \langle \vec{\xi}_1 \cdots \vec{\xi}_{A-1} \vec{\sigma}_1 \cdots \vec{\sigma}_A \vec{\tau}_1 \cdots \vec{\tau}_A | A \lambda J M \rangle \varphi_{000} (\vec{\xi}_0)$$

No-core shell model (NCSM)

- NCSM is an ab initio approach to solve the many-body Schrödinger equation for bound states (narrow resonances) starting from high-precision NN+NNN interactions
- Uses large (but finite!) expansions in HO many-body basis states

$$\Psi^{A} = \sum_{N=0}^{Nmax} \sum_{i} c_{Ni} \Phi_{Ni}^{A}$$

 Translational invariance of the internal wave function is preserved when single-particle Slater Determinant (SD) basis is used with N_{max} truncation

$$\langle \vec{r}_1 \cdots \vec{r}_A \vec{\sigma}_1 \cdots \vec{\sigma}_A \vec{\tau}_1 \cdots \vec{\tau}_A | A \lambda J M \rangle_{SD} = \langle \vec{\xi}_1 \cdots \vec{\xi}_{A-1} \vec{\sigma}_1 \cdots \vec{\sigma}_A \vec{\tau}_1 \cdots \vec{\tau}_A | A \lambda J M \rangle \varphi_{000} (\vec{\xi}_0)$$

Coordinate form of the density

Nonlocal translationally invariant density

arXiv:1712.02879; Phys. Rev. C, in press.

$$\begin{split} \langle A\lambda_{f}J_{f}M_{f} \big| \rho_{op} \big(\vec{r} - \vec{R}, \vec{r}' - \vec{R}\big) \big| A\lambda_{i}J_{i}M_{i} \rangle \\ &= \Big(\frac{A}{A-1}\Big)^{\frac{3}{2}} \sum \frac{1}{\hat{J}_{f}} \big(J_{i}M_{i}Kk \big| J_{f}M_{f}\big) \, \Big(Y_{l}^{*} \, \Big(\vec{r} - \vec{R}\big) Y_{l'}^{*} \, \Big(\vec{r'} - \vec{R}\big)\Big)_{k}^{(K)} \\ &\times R_{n,l} \left(\sqrt{\frac{A}{A-1}} \big| \vec{r} - \vec{R} \big| \right) R_{n',l'} \left(\sqrt{\frac{A}{A-1}} \big| \vec{r}' - \vec{R} \big| \right) \\ &\times (M^{K})_{n,l,n',l',n_{1},l_{1},n_{2},l_{2}}^{-1} (-1)^{l_{1}+l_{2}+K+j_{2}-\frac{1}{2}} \, \widehat{J}_{1} \, \widehat{J}_{2} \, \widehat{K} \, \begin{cases} j_{1} & j_{2} & K \\ l_{2} & l_{1} & 1/2 \end{cases} \\ &\times \frac{(-1)}{\widehat{K}} S_{D} \langle A\lambda_{f}J_{f} \, \Big\| \big(a_{n_{1}l_{1}j_{1}}^{\dagger} \, \widetilde{a}_{n_{2}l_{2}j_{2}} \big)^{(K)} \, \Big\| \, A\lambda_{i}J_{i} \rangle_{SD} \end{split}$$

Coordinate form of the density

Nonlocal translationally invariant density

- arXiv:1712.02879; Phys. Rev. C, in press.

Normalization

$$\int d\vec{x} \langle A\lambda JM | \rho_{op}^{phys}(\vec{x}) | A\lambda JM \rangle = A$$

$$\begin{split} \langle A\lambda_{f}J_{f}M_{f} \big| \rho_{op} \big(\vec{r} - \vec{R}, \vec{r}' - \vec{R}\big) \big| A\lambda_{i}J_{i}M_{i} \rangle \\ &= \Big(\frac{A}{A-1}\Big)^{\frac{3}{2}} \sum \frac{1}{\hat{J}_{f}} \big(J_{i}M_{i}Kk \big| J_{f}M_{f}\big) \left(Y_{l}^{*} \left(\vec{r} - \vec{R}\right)Y_{l'}^{*} \left(\vec{r}' - \vec{R}\right)\right)_{k}^{(K)} \\ &\times R_{n,l} \left(\sqrt{\frac{A}{A-1}} \big| \vec{r} - \vec{R} \big| \right) R_{n',l'} \left(\sqrt{\frac{A}{A-1}} \big| \vec{r}' - \vec{R} \big| \right) \\ &\times (M^{K})_{n,l,n',l',n_{1},l_{1},n_{2},l_{2}}^{-1} (-1)^{l_{1}+l_{2}+K+j_{2}-\frac{1}{2}} \widehat{J_{1}} \widehat{J_{2}} \widehat{K} \begin{Bmatrix} j_{1} & j_{2} & K \\ l_{2} & l_{1} & 1/2 \end{Bmatrix} \\ &\times \frac{(-1)}{\hat{K}} S_{D} \langle A\lambda_{f}J_{f} \, \Big\| \left(a_{n_{1}l_{1}j_{1}}^{\dagger} \tilde{a}_{n_{2}l_{2}j_{2}}\right)^{(K)} \Big\| A\lambda_{i} J_{i} \rangle_{SD} \end{split}$$

All angular dependence factorized out for plotting

NN and 3N interactions – N⁴LO(500)+3NInl

NN systematic from LO to N⁴LO

- D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev. C 91, 014002 (2015)
- D. R. Entem, R. Machleidt, and Y. Nosyk, arXiv:1703.05454

3N at N²LO

Navrátil, 650 MeV local cut-off and 500 MeV non-local cut-off

Density of ground state ^{4,6}He, ¹²C, ¹⁶O with NN-N⁴LO(500)+3NInI

Applications to optical potentials

 We can achieve an additional step towards consistent optical potential calculations by using the nonlocal density

$$U(\vec{q}, \vec{K}) = \sum_{N=n,p} \int d\vec{P} \ \eta(\vec{q}, \vec{K}, \vec{P}) t_{pN}(\vec{q}, \vec{K}, \vec{P}) \rho_N(\vec{q}, \vec{P})$$

Applications to optical potentials

Applications to density functional theory

 Kinetic density (and other related densities) is a DFT quantity we are capable of calculating from ab initio wavefunctions according to

$$\tau_T(\vec{r}) = \left(\overrightarrow{\nabla} \cdot \overrightarrow{\nabla}' \, \rho_T(\vec{r}, \vec{r}') \right) |_{\vec{r} = \vec{r}'}$$

$$\frac{d}{dr}R_{n,l}(r) = \frac{l}{r}R_{n,l}(r) - \frac{1}{b} \left[\sqrt{n + l + \frac{3}{2}} \cdot R_{n,l+1}(r) + \sqrt{n} \cdot R_{n-1,l+1}(r) \right]$$

 Effects of COM removal should be amplified in DFT quantities such as the kinetic density, due to the application of gradients on the nonlocal density

Kinetic density

Conclusions and outlook

Conclusions

- We observed significant differences in the nuclear density of light systems when the COM was removed
- We can now use the more general, nonlocal density for optical potentials of nuclear reactions and *ab initio* calculations in DFT
- More details on some of these results can be found in arXiv:1712.02879; Phys. Rev. C, in press.

Outlook

- We are now pursuing the use of these densities in calculations with natural orbitals (arxiv:1605.04976), reducing basis sizes and improving convergence
- We will attempt to extend this to the translationally invariant one-body nuclear density matrix and further cut down basis sizes

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

