# Secretory Landscape Along Hematopoiesis

Nathan Lewis Lab
Hsuan-lin Her (Charlene)
BISB year 1

# Part I: Single Cell Analysis

#### **Dataset and work flow**

|             |        | Human hem<br>cell (CD34+ | natopoietic stem<br>-)                                    | Human hematopoietic stem cell (LIN-)    | Mouse stromal cell (wolock et. al)                                                                                    | Mouse stromal cell<br>(Tihonova et.al)                                                  |              |
|-------------|--------|--------------------------|-----------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|
| FACs        |        | CD34+<br>(haematopo      | D34+ LIN-<br>aematopoietic stem cells) (to later lineage) |                                         | long bones, followed<br>by sorting viable CD45-<br>Ter119-(non-hematopoietic)<br>and<br>CD31-(non-endothelial) cells. | CD45lowTER119low(non-<br>hematopoietic)tdTomato+<br>cells(endothelial) were<br>isolated |              |
| Technology  |        | Drop-seq                 |                                                           | Drop-seq                                | Drop-seq                                                                                                              |                                                                                         |              |
| Summary sta | ats    |                          |                                                           |                                         |                                                                                                                       |                                                                                         |              |
|             | Cell 1 | Cell 2                   |                                                           | lter cells                              | Log normalize                                                                                                         | Map to hu                                                                               | man          |
| Gene 1      | 5      | 2                        | 1.                                                        | Transcript per cell (arbitrary          | <ol> <li>Total transcript<br/>per cell (exclude</li> </ol>                                                            | ' <u> </u>                                                                              | nom          |
| Gene 2 8    | 8      | 1                        | -                                                         | threshold)                              | highly                                                                                                                | ·                                                                                       | Informatics) |
|             |        |                          | 2.                                                        | 2%<br>mitochondrial<br>transcript (25%) | expressed genes > 5%) 2. Log * Pitfall: "compositional data"                                                          |                                                                                         |              |

# Visualization, clustering, trajectory inference and pseudotime

Highly variable gene PCA (n=40) Neighborhood (for each bin of 1. UMAP mean expression, graph 2. Force-directed layout select dispersion z-3. (PAGA) score > 2)1. Louvain Min mean = 2. Leiden 0.0125 1. PAGA (branch detection) Max mean = 32. Diffusion pseudotime Min dispersion = 3. pdt 0.5

## **Trajectory Inference**











#### Labelling cluster: Hematopoietic cells

louvain\_anno



# Part II: Secretome

#### Fisher Exact test



#### Are secretory protein important?



(75)(63)(72)(75)(77)(64)(66)

(79) (75)

(77) (70)

0.04

#### Are secretory proteins important





#### Cell2cell workflow

|        | Blood<br>Cluster 1 | Blood<br>Cluster 2 |
|--------|--------------------|--------------------|
| Gene 1 | 23.4               | 3.5                |
| Gene 2 | 32.5               | 9.62               |

|        | Stroma<br>Cluster 1 | Stroma<br>Cluster 2 |
|--------|---------------------|---------------------|
| Gene 1 | 39.2                | 2.5                 |
| Gene 2 | 5.4                 | 77.2                |

| Gene percentile                       |    | <b>b1</b> | b2 | <b>s1</b> | <b>s2</b> |
|---------------------------------------|----|-----------|----|-----------|-----------|
| · · · · · · · · · · · · · · · · · · · | g1 | 1         | 0  | 0         | 1         |
| 75%, 90% *                            | g2 | 1         | 0  | 0         | 1         |

Average\* expression profile per cluster Cross dataset: normalized expression profile\*

|        | Ligand | Receptor |
|--------|--------|----------|
| Gene 1 |        |          |
| Gene 2 |        |          |

#### Interaction between blood cells





### 

Interleukin-10 signaling

Cluster 12



Signaling by Receptor Tyrosine Kinase





Cluster 12 all partners

Part III:
Secretory
Machinery

#### Method

Differential expression analysis

- 1. t-test
- 2. Not filter for fold

| Module           | Subsystem              |
|------------------|------------------------|
| Capacity Control | ERAD                   |
|                  | UPR                    |
| Folding          | Protein folding        |
|                  | Translocation          |
| Glycosylation    | ER glycosylation       |
|                  | Golgi glycosylation    |
| Trafficking      | COPI                   |
|                  | COPII                  |
|                  | Post-Golgi trafficking |
|                  | Trafficking regulation |

Feizi's reconstruction



Lewis lab's glycosylation



