Universidad Nacional de San Agustín

Data bases

UMTG: a toolset to automatically generate system test cases from use case specifications

MSc. Vicente Machaca Arceda

Content

UMTG

Definition Workflow Results

UMTG

UMTG, a toolset that generates executable system test cases by exploiting the behavioural information implicitly described in use case specifications [1].

UMTG generates OCL constraints for:

- Use case preconditions.
- Postconditions.
- Conditional steps.

UMTG History

- Automatic Generation of System Test Cases from Use Case Specifications [2].
- UMTG: a toolset to automatically generate system test cases from use case specifications [1].
- Automated generation of constraints from use case specifications to support system testing [3].
- Automatic Generation of Acceptance Test Cases from Use Case Specifications: an NLP-based Approach [4]

Table: Examples of OCL constraints.

Constraint	OCL Equivalent		
The age of a person is not	context Person inv: self.age >=0		
negative			
A Person has 2 parents at	context Person inv: self.parents-		
max	>size()<=2		
The system sets the oc-	BodySense.allinstances()->forAll(
cupancy status to empty	i i.occupancyStatus = Occu-		
	pancy::Empty)		

UMTG

Workflow

Workflow RUCM use cases

UCS-1 BoSe III RUCM - SIMF	ID	[RUCM]	0
☐ 1 UCS: BodySense III AUI ☐ 1.1 Use Case: Identify	8224	1 UCS: BodySense III AUDI MLB evo - Normal operation	
1.1.1 Brief Descripti	8225	1.1 Use Case: Identify Initial Occupancy Status of a Seat	
1.1.3 Primary Actor 8226 1.1		1.1.1 Brief Description	
- 1.1.4 Secondary Ac	8227	The system identifies the initial occupancy status for airbag control.	
⊕ 1.1.5 Dependency	8228	1.1.2 Precondition	
1.1.6 Generalization	8229	The system has been initialized.	
⊕ 1.1.7 Basic Flow	8741	1.1.3 Primary Actor	
⊕ 1.1.8 Specific Alterr ⊕ 1.1.9 Bounded Alter	8742	IgnitionResetButton	
1.2 Use Case: Self Dia	8743	1.1.4 Secondary Actors	
1.3 Use Case: Classify	8744	AirbagControlUnit, SeatSensor	
	8745	1.1.5 Dependency	
- 1.3.3 Primary Actor	8746	INCLUDE USE CASE Self Diagnosis, INCLUDE USE CASE Classify Occupancy Status	
1.3.4 Secondary Ac	8747	1.1.6 Generalization	
- 1.3.6 Generalization	8748	N/A	
- 1.3.7 Basic Flow	8238	1.1.7 Basic Flow	
-2. The system s	8239	The system REQUESTS weight FROM the SeatSensor.	
- 3. The system V	8240	2. INCLUDE USE CASE Self Diagnosis.	
-5. The system V	8241	3. INCLUDE USE CASE Classify Occupancy Status.	
- 6. The system s	8739 8243	4. The system VALIDATES THAT no error is detected. 5. The system SENDS the occupant class TO AirbagControlUnit.	
⊕ 1.3.8 Specific Alterr	8246		
1.3.9 Specific Alter	8257	1.1.8 Specific Alternative Flow	

Figure: RUCM Use Case Specification in IBM DOORS.

Workflow OCL constraints

Figure: OCL constraints generated by UMTG.

Workflow Abstract test cases

```
# CoveredModulePath = /FSE-Demo/Use Case Specifications/UCS-1 BoSe III RUCM - SIMPLIFIED
!# CoveredFlowID = 8238, 8579, 8516
# The system has been initialized.
# The system REQUESTS weight FROM the SeatSensor.
# The system sets MeasurementDeviceError to not detected.
# The system REOUESTS TemperatureSensorStatus FROM the TemperatureSensor.
# [TRUE] The system VALIDATES THAT the TemperatureSensor is valid.
# The system REQUESTS SeatStatus FROM the SeatSensor.
# [TRUE] The system VALIDATES THAT the SeatSensor is valid.
# Postcondition: There is no MeasurementDeviceError detected.
# The system REQUESTS temperature FROM the TemperatureSensor.
# The system sets TemperatureError to not detected.
# [TRUE] The system VALIDATES THAT the temperature is between 0 and 45 c.
# [TRUE] The system VALIDATES THAT the seat is not empty.
# [TRUE] The system VALIDATES THAT the weight on seat is above 20 kg.
# The system sets occupant class to adult.
# Postcondition: The adult occupant class has been derived.
# [TRUE] The system VALIDATES THAT no error is detected.
# The system SENDS the occupant class TO AirbagControlUnit.
# Postcondition: The occupant class has been sent to AirbagControlUnit.
<SFT>
          BodySenseSystem.initialized = True
<INPUT> SeatSensor.weight = 64
<INPUT> TemperatureSensor,TemperatureSensorStatus = HWStatus Valid
<INPUT> SeatSensor.SeatStatus = HWStatus Valid
<CHECK> There is no MeasurementDeviceError detected
```

Figure: Abstract test cases.

Workflow Mapping table

Figure: Mapping table.

Workflow Test case

Edit View Insert	Link Ana	lysis Table Too	ols User UMTG Help		
48	8 9 3	gk 1892 an	એ લું લું 💕		
Develop View	All leve	» * * * *			
lew Test	ID	New Test Descript	ion	Input Values	Expected Va
1 Definitions For Proje			e system VALIDATES THAT no error is detected. ends the error occupant class to AirbagControlUnit.		
2 Test Cases			: The error occupant class to Airbagcontrolonic.		
⊕ 2.1 Test Case - 0 ⊕ 2.2 Test Case - 1		Postcondition	: The error occupant classes has been sent to Airbagcontrolonit.		
⊞ 2.3 Test Case - 2	TCC9	CET Dod	ConceCustom initialized - True		
# 2.4 Test Case - 3	546	<set> BodySenseSystem.initialized = True</set>			
2.5 Test Case - 4	TCC9	Reset Power		Time=INIT TIME	
⊕ 2.6 Test Case - 5	547	Reset Fower		Time=INIT TIME	
■ 2.7 Test Case - 6	347	l			
2.8 Test Case - 7	TCC9	<input/>	SeatSensor.weight = 29		
	548	CINFO1>	SeatSenson.weight = 29		
		Set BUS		Channel =	
	549	Sec DOS		{RELAY SEAT W	
	313	l		EIGHT)	
		l		Value = {29}	
	TCC9	<input/>	TemperatureSensor.temperature = 48	value = (E5)	
	550	Califf Oil	remperatures ensortemperature = 40		
		Set BUS		Channel =	
	551	occ bos		{RELAY TEMPER	
				ATURE)	
				Value = {48}	
	TCC9	<check></check>	The TemperatureRangeError has been detected	(,	
	552				
	TCC9	Reset Power		T = {-f	
	553			TIME STD DET	
				STARTUP)	

Figure: Test case.

Results

Table: Case study details.

Attribute	Detail
Use case specifications	06
Steps by each use case	25 - 50
Alternative flows by each use case	6 - 13

UMTG covers a total of **100 scenarios**, while manually written test cases cover **80 scenarios**.

References I

- [1] C. Wang, F. Pastore, A. Goknil, L. C. Briand, and Z. Iqbal, "Umtg: a toolset to automatically generate system test cases from use case specifications," in *Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering*, 2015, pp. 942–945.
- [2] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, "Automatic generation of system test cases from use case specifications," in Proceedings of the 2015 international symposium on software testing and analysis, 2015, pp. 385–396.
- [3] C. Wang, F. Pastore, and L. Briand, "Automated generation of constraints from use case specifications to support system testing," in 2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST). IEEE, 2018, pp. 23–33.

References II

[4] C. Wang, F. Pastore, A. Goknil, and L. Briand, "Automatic generation of acceptance test cases from use case specifications: an nlp-based approach," *IEEE Transactions on Software Engineering*, 2020.

