Zusammenfassung Funktionalanalysis

Notation. Sei im Folgenden $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Definition. Ein Prä-Hilbertraum ist ein K-Vektorraum mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$.

Definition. Sei V ein K-Vektorraum. Eine **Fréchet-Metrik** ist eine Funktion $\rho: V \to \mathbb{R}_{>0}$, sodass für $x, y \in V$ gilt:

- \bullet $\rho(x) = 0 \iff x = 0$
- $\rho(x+y) < \rho(x) + \rho(y)$

Definition. Sei (X, d) ein metrischer Raum und $A_1, A_2 \subset X$. Dann

$$dist(A_1, A_2) := \inf\{d(x, y) \mid x \in A_1, y \in A_2\}$$

Abstand zwischen A_1 und A_2 .

Definition. Ein topologischer Raum ist ein paar (X, τ) , wobei X eine Menge und $\tau \subset \mathcal{P}(X)$ ein System von offenen Mengen, sodass gilt:

- $\emptyset \in \tau$
- $\begin{array}{l} \bullet \ \ \tilde{\tau} \subset \tau \implies \bigcup_{U \in \tilde{\tau}} U \in \tau \\ \\ \bullet \ \ U_1, U_2 \in \tau \implies U_1 \cap U_2 \in \tau \end{array}$

Definition. Ein topologischer Raum (X, τ) heißt Haussdorff-Raum, wenn das Trennungsaxiom

$$\forall x_1, x_2 \in X : \exists U_1, U_2 \in \tau : x_1 \in U_1 \land x_2 \in U_2 \land U_1 \cap U_2 = \emptyset$$

erfüllt ist.

Definition. Sei (X, τ) ein topologischer Raum. Eine Menge $A \subset X$ heißt abgeschlossen, falls $X \setminus A \in \tau$, also das Komplement offen ist.

Definition. Sei (X, τ) ein topologischer Raum und $A \subset X$. Dann

$$A^{\circ} := \{ x \in X \mid \exists U \in \tau \text{ mit } x \in U \text{ und } U \subset A \}$$
$$\overline{A} := \{ x \in X \mid \forall U \in \tau \text{ mit } x \in U \text{ gilt } U \cap A \neq \emptyset \}$$

Abschluss bzw. Inneres von A.

Definition. Ist (X,τ) ein topologischer Raum und $A\subset X$, dann ist auch (A, τ_A) ein topologischer Raum mit der Relativtopologie $\tau_A := \{ U \cap A \mid U \in \tau \}.$

Definition. Sei (X, τ) ein topologischer Raum. Eine Teilmenge $A \subset X$ heißt dicht in X, falls $\overline{A} = X$.

Definition. Ein topologischer Raum (X, τ) heißt separabel, falls X eine abzählbare dichte Teilmenge enthält. Eine Teilmenge $A \subset X$ heißt separabel, falls (A, τ_A) separabel ist.

Definition. Seien τ_1, τ_2 zwei Topologien auf einer Menge X. Dann heißt τ_2 stärker (oder feiner) als τ_1 bzw. τ_1 schwächer (oder gröber) als τ_2 , falls $\tau_1 \subset \tau_2$.

Definition. Seien d_1 und d_2 Metriken auf einer Menge X und τ_1 und τ_2 die induzierten Topologien. Dann heißt d_1 stärker als d_2 , falls τ_1 stärker ist als τ_2 .

Satz. Sind $\|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf dem K-Vektorraum X. Dann gilt:

- $\|\cdot\|_2$ ist stärker als $\|\cdot\|_1 \iff \exists C > 0 : \forall x \in X : \|x\|_1 < C\|x\|_2$
- $\|\cdot\|_1$ und $\|\cdot\|_2$ sind äquivalent $\iff \exists c, c > 0 : \forall x \in X :$ $c||x||_1 \le ||x||_2 \le C||x||_1$

Definition. Die p-Norm auf dem \mathbb{K}^n ist definiert als

$$||x||_p := \left(\sum_{i=1}^n |x_j|^p\right)^{\frac{1}{p}} \text{ für } 1 \le p < \infty$$

$$||x||_{\infty} := ||x||_m ax := \max_{1 \le i \le n} |x_i|.$$

Alle p-Normen sind zueinander äguivalent.

Definition. Seien $S \subset X$ eine Menge, (X, τ_X) und (Y, τ_Y) Hausdorff-Räume sowie $x_0 \in S$. Eine Funktion $f: S \to Y$ heißt **stetig** in x_0 , falls gilt:

$$\forall V \in \tau_Y : f(x_0) \in V \implies \exists U \in \tau_X \text{ mit } x_0 \in U \land f(U \cap S) \subset V$$

Ist X=S, so heißt $f:X\to Y$ stetige Abbildung, falls f stetig in allen Punkten $x_0 \in X$ ist, d. h. $V \in \tau_Y \implies f^{-1}(V) \in \tau_X$.

Bemerkung. In metrischen Räumen ist diese Definition äquivalent zur üblichen Folgendefinition.

Definition. Sei (X,d) ein metrischer Raum. Eine Folge $(x_k)_{k\in\mathbb{N}}$ heißt Cauchy-Folge, falls $d(x_k, x_l) \xrightarrow{k, l \to \infty} 0$. Ein Punkt $x \in X$ heißt **Häufungspunkt** der Folge, falls es eine Teilfolge $(x_{k_i})_{i\in\mathbb{N}}$ gibt $mit x_{k_i} - x \xrightarrow{i \to \infty} 0$

Definition. Ein metrischer Raum (X, d) heißt vollständig, falls jede Cauchy-Folge in X einen Häufungspunkt besitzt.

Definition. Ein normierter K-Vektorraum heißt Banachraum. falls er vollständig bzgl. der induzierten Metrik ist. Ein Banachraum heißt Banach-Algebra, falls er eine Algebra ist mit $||x \cdot y||_X \le ||x||_x \cdot ||y||_X$.

Definition. Ein Hilbertraum ist ein Prähilbertraum, der vollständig bzgl. der vom Skalarprodukt induzierten Norm ist.