ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

PROF ME MARCO IKURO HISATOMI

Livro didático

Fonte: Tangon, Leonardo Guimarães, 2016

Unidade 1 Fundamentos de Sistemas Computacionais	. 7
Seção 1.1 - Conceitos básicos de arquitetura	. 9
e organização de computadores	
Seção 1.2 - Desenvolvimento histórico	21
Seção 1.3 - A estrutura básica de um computador	33
Seção 1.4 - A hierarquia de níveis de computador	45
Unidade 2 Componetes básicos de um computador	61
Seção 2.1 - Unidade central de processamento (CPU)	63
Seção 2.2 - Memória principal	75
Seção 2.3 - Memória secundária	. 89
Seção 2.4 - Dispositivos de entrada e saída	103
Unidade 3 Sistemas numéricos: conceitos, simbologia e representação de base numérica	121
de base numérica	
de base numérica	123
de base numérica	123
de base numérica	123 135 147
de base numérica	123 135 147
de base numérica	123 135 147 161
de base numérica	123 135 147 161
de base numérica	123 135 147 161 175
de base numérica	123 135 147 161 175 177 193 203
de base numérica	123 135 147 161 175 177 193 203

Conteúdo Programático

Unidade 4 | Álgebra Booleana e Lógica Digital

- ► Seção 4.1 Introdução à álgebra booleana
- ► Seção 4.2 Expressões lógicas
- ► Seção 4.3 Portas lógicas
- ► Seção 4.4 Introdução a circuitos

Conteúdo Programático

- ▶ Unidade 3 Sistemas numéricos: conceitos, simbologia e representação de base numérica
- Sistemas numéricos: conceitos, simbologia e representação de base numérica
- Conversão entre bases numéricas: decimal
- Conversão entre bases numéricas: binário
- Conversão entre bases numéricas: octal

Situação Geradora de Aprendizagem

NÚMEROS BINÁRIOS TRABALHADOS PELO PROCESSADOR

Contextualizando

- ► Considere que você faz parte de um time de desenvolvimento de hardware de uma empresa LOGIC que necessita de construir um circuito de lógica
- Após adquirir o conhecimento desta aula, você vai compreender como funciona o sistema de esteira de um caixa de supermercado: rolando até que um produto fique em frente ao sensor.

Contextualizando

- Aprenderemos operações lógicas básicas conhecidas como NOT, AND e OR.
- Criar as tabelas verdade para cada caso. Essas tabelas demonstram logicamente o que está entrando de informação e qual será o resultado de saída, sempre verdadeiro ou falso.

INTRODUÇÃO À ÁLGEBRA BOOLEANA

Contextualizando

- No estado "fechado" o interruptor permitirá que a corrente elétrica passe através do ponto, permitindo, assim, que uma lâmpada seja acesa, por exemplo. Já no estado "aberto" não se permite a passagem da corrente elétrica pelo ponto, fazendo com que a lâmpada fique desligada.
- Você deverá usar para o estado "fechado" o valor 1 e para o estado "aberto" o valor 0.
- ▶ George Boole é considerado um dos fundadores da ciência da computação, mesmo não existindo computadores em seus dias (1815 – 1864)

Contextualizando

- ► (SHANNON,1938) sugeriu que a já conhecida álgebra booleana poderia ser usada para resolver problemas relativos a projeto de circuitos de comutação de relés.
- ▶ Relés Um dispositivo eletromecânico, formado por um magneto móvel, que se deslocava unindo dois contatos metálicos, como uma chave.
- ► Circuitos de Comutação É um processo onde se pode interligar dois ou mais processos entre si, neste caso, utilizando-se dos relés, que nada mais é que uma chave.

Símbolo

- É Como em qualquer uso de álgebra convencional, a álgebra booleana utiliza-se de variáveis e operações lógicas. Essa variável pode ter o valor lógico 1 (verdadeiro) ou 0 (falso).
- Cada variável pode assumir um único valor, sendo ele: 1 ou 0, verdadeiro ou falso, true ou false, sim ou não, aberto ou fechado, aceso ou apagado, entre outros.
- As operações lógicas básicas são: AND (E), OR (OU) e NOT

(NÃO)

Tabela 4.1 – Simbologia de Operações Lógicas.

Operações Lógicas Básicas	AND (E)	OR (OU)	NOT (NÃO)
Simbologia utilizada na matemática	•	+	,
Simbologia utilizada em computação	^	V	! OU -

Exemplo

A = Ana viaja

B = Ana brinca

- A \wedge B \rightarrow Ana viaja **e** Ana brinca
- A ∨ B → Ana Viaja ou Ana Brinca
- !A → Ana não viaja

A partir das 3 operações lógicas temos:

- AND → Produto Lógico
- OR → Soma Lógica
- Not → Negação

Tabela verdade AND

Nessa tabela usamos a proposições $\mathbf{p} \wedge \mathbf{q}$. Para que $\mathbf{p} \wedge \mathbf{q}$ sejam verdadeiras, as duas proposições tem de ser verdadeiras (STALLINGS, 2003).

Tabela 4.2 – Tabela-verdade AND.

р	Q	p∧q
0	0	0
0	1	0
1	0	0
1	1	1

Tabela verdade

Se usarmos fechado e aberto para $\mathbf{p} \wedge \mathbf{q}$.

p	q	pΛq
Aberto	Aberto	Aberto
Aberto	Fechado	Aberto
Fechado	Aberto	Aberto
Fechado	Fechado	Fechado

Exemplo

- x = 3
- **y** = 5
- A expressão $(x = 4) \land (y=5)$ é verdadeira (1) ou falsa (0)?

(x = 4)	(y=5)	$(x = 4) \land (y=5)$
Falsa	Verdadeira	Falsa

- ► Temos: (falsa) ∧ (verdadeira)
- ► Logo o valor para $(x = 4) \land (y=5) = falsa$

Tabela verdade **OR**

Nessa tabela usamos a proposições **p** V **q**.

Para que **p** V **q** seja verdadeira basta que uma delas seja verdadeira para (STALLINGS, 2003).

Tabela 4.3 – Tabela-verdade OR.

р	q	p∨q
0	0	0
0	1	1
1	0	1
1	1	1

Exemplo

- k = azul
- w = verde
- A expressão (k = vermelho) v (w=verde) é verdadeira (1) ou falsa (0)?

(k = vermelho)	(w=verde)	(k = vermelho) v (w=verde)
Falsa	Verdadeira	

- Temos: (falsa) V (verdadeira)
- Logo o valor para p V q =

Exemplo

- k = azul
- w = verde
- A expressão (k = vermelho) v (w=verde) é verdadeira (1) ou falsa (0)?

(k = vermelho)	(w=verde)	(k = vermelho) ∧ (w=verde)
Falsa	Verdadeira	Verdadeira

- Temos: (falsa) V (verdadeira)
- Logo o valor para p V q = verdadeira

Tabela verdade **NOT**

Nessa tabela usamos a proposições **p** e **!p**. Como podemos ver em:

Tabela 4.4 – Tabela-verdad	de NOT.	
	р	!p
	0	1
	1	0

Exemplo

p = 65

Qual é o valor de !p?

Temos !p =

Tabela verdade NAND

Equivale a uma porta lógica AND seguida de NOT \rightarrow (p \land q)!

Tabela 4.5 – Tabela-verdade NAND.

р	q	p ∧ q!
0	0	1
0	1	1
1	0	1
1	1	0

Tabela verdade NAND

Se usarmos fechado e aberto para (p ∧ q)!

p	q	(b \ d)i
Aberto	Aberto	
Aberto	Fechado	
Fechado	Aberto	
Fechado	Fechado	

Tabela verdade NAND

Se usarmos fechado e aberto para (p ∧ q)!

p	q	(b \ d);
Aberto	Aberto	Fechado
Aberto	Fechado	Fechado
Fechado	Aberto	Fechado
Fechado	Fechado	Aberto

Tabela verdade NOR

Equivale a uma porta lógica OR seguida de NOT \rightarrow (p v q)!

Tabela 4.6 – Tabela-verdade NOR.

р	q	p∨q!
0	0	1
0	1	0
1	0	0
1	1	0

Tabela verdade NOR

Se usarmos fechado e aberto para (p v q)!

р	q	(p v q)!
Aberto	Aberto	Fechado
Aberto	Fechado	Aberto
Fechado	Aberto	Aberto
Fechado	Fechado	Aberto

Tabela verdade XOR

Conhecida como OU EXCLUSIVO (\bigoplus). Ela compara dois valores e, se o resultado for diferente, mostra como saída o valor $1 \rightarrow p \oplus q$.

Somente terá resultado como verdadeiro quando os

valores de p e q tiverem resultado diferente entre eles.

Tabela 4.7 – Tabela-verdade XOR.

р	Q	p ⊕ q
0	0	0
0	1	1
1	0	1
1	1	0

Tabela verdade XNOR

É a negação de XOR \rightarrow (p \bigoplus q)!.

Somente terá resultado como verdadeiro quando os valores de p e q tiverem resultado iguais entre eles.

Tabela 4.8 – Tabela-verdade XNOR.

р	Q	p ⊕ q!
0	0	1
0	1	0
1	0	0
1	1	1

CIRCUITO

Desafio 1 circuito

Agora que você já conhece os conceitos e passos para a elaboração de uma PCI simples, para criar a PCI é necessário "confeccionar" seu diagrama do circuito de um interruptor.

A Expressão que representa a imagem é:

AND ou OR?

Desenvolvendo circuito

Tabela 4.9 – Tabela-verdade OR para estado do interruptor.

Estado de p	Estado de q	Estado de p∨q ■	Estado do interruptor
0	0	0	
0	1	1	-
1	0	1	
1	1	1	-

Desenvolvendo circuito

Tabela 4.9 – Tabela-verdade OR para estado do interruptor.

Estado de p	Estado de q	Estado de p∨q ■	Estado do interruptor
0	0	0	Desligado
0	1	1	Ligado
1	0	1	Ligado
1	1	1	Ligado

Desafio 2 circuito

Agora que você já conhece os conceitos e passos para a elaboração de uma PCI simples, para criar a PCI é necessário "confeccionar" seu diagrama do circuito de um interruptor.

A Expressão que representa a imagem é:

AND ou OR?

Desenvolvendo circuito

Tabela 4.10 – Tabela-verdade AND para estado do interruptor

Estado de p	Estado de q	Estado de p∧q ■	Estado do interruptor
0	0	0	
0	1	0	_
1	0	0	-
1	1	1	_

Desenvolvendo circuito

Tabela 4.10 – Tabela-verdade AND para estado do interruptor

Estado de p	Estado de q	Estado de p∧q ■	Estado do interruptor
0	0	0	Desligado
0	1	0	Desligado
1	0	0	Desligado
1	1	1	Ligado

CONVERSÃO ENTRE BASES NUMÉRICAS: DECIMAL

Fundamento para conversão

Conversão de decimal para binário

Para isso temos de seguir alguns passos:

- a. Fazer a divisão sucessiva por 2 até que o quociente chegue em
 0.
- b. O quociente só recebe o número inteiro caso o resultado der uma fração.

Exemplo: Se o quociente for 4,5, utiliza-se somente o 4.

- c. Os restos sempre serão 0 ou 1 (uma dica é verificar se o dividendo é par ou ímpar. Se for par, retornará sempre 0 e, se for ímpar, retornará sempre 1).
- d. Quando o quociente chegar a 0, pegam-se os restos de baixo para cima, da direita para a esquerda.

Conversão de decimal para binário: exemplo

Conversão de decimal para binário: exemplo

Vídeo: Decimal em Binário

https://www.youtube.com/watch?v=mttrG_kbHN4>

Vídeo: Binário em Decimal

https://www.youtube.com/watch?v=zToihF2FE9I>

CONVERSÃO ENTRE BASES NUMÉRICAS: DECIMAL

Exercícios

Exercícios

RECAPITULANDO

► Conversão de bases numéricas.