Introdução ao Pandas: DataFrames e Séries

1. DataFrame

1.2 O que é um DataFrame?

Um **DataFrame** é uma <u>estrutura de dados</u> do Pandas que funciona como uma **tabela**. Ele tem linhas e colunas, e cada coluna pode ter um tipo diferente de dado (números, textos, datas, etc.). Pense nele como uma planilha do Excel, onde você organiza seus dados para análises.

1.2 Características principais:

- Objeto: O DataFrame é um objeto que faz parte do Pandas, que facilita a manipulação de dados
- Facilidade de Manipulação: Com ele, você pode fazer diversas operações, como:
 - Gerar gráficos
 - o Filtrar linhas ou colunas (slicing)
 - o Limpar e preparar dados para análise

1.3 Exemplo de Criação de um DataFrame:

```
# Criando um DataFrame a partir de um dicionário
dados = {
   'Nome': ['João', 'Maria', 'Pedro'],
   'Idade': [25, 30, 22],
   'Cidade': ['Lisboa', 'Porto', 'Braga']
}
df = pd.DataFrame(dados)
print(df)
```

1.4 Resultado da Tabela no Terminal:

Nome	Idade	Cidade
João	25	Lisboa
Maria	30	Porto
Pedro	22	Braga

2. Operações Comuns com DataFrames

2.1 Slicing: Selecionar Partes do DataFrame

Você pode selecionar partes de um DataFrame, como colunas ou linhas, utilizando o slicing.

Exemplo - Selecionando apenas a coluna "Nome":

nomes = df['Nome']

print(nomes)

Resultado no Terminal:

- 0 João
- 1 Maria
- 2 Pedro

Name: Nome, dtype: object

3. Importação de Bibliotecas

Para começar a trabalhar com **DataFrames** e **Séries**, é necessário importar as bibliotecas que serão usadas.

import pandas as pd # Para trabalhar com DataFrames e Séries

import numpy as np # Para trabalhar com arrays numéricos e funções matemáticas

4. Séries

4.1 O que é uma Série?

Uma **Série** no Pandas é como uma **coluna de uma tabela**. Ela é uma lista de dados com um rótulo (ou índice) para cada valor, assim como em uma tabela onde cada linha tem um identificador.

- **Dados**: Conteúdo da Série (números, textos, etc.).
- **Índice**: O rótulo que identifica cada elemento.

Exemplo de Criação de uma Série:

```
# Criando uma Série com Pandas
idades = pd.Series([25, 30, 22], index=['João', 'Maria', 'Pedro'])
print(idades)
```

Resultado no Terminal

João 25

Maria 30

Pedro 22

dtype: int64

Explicação

- A Série tem os valores [25, 30, 22].
- O índice ou rótulo é ['João', 'Maria', 'Pedro'].

4.2 Operações com Séries

• Acessar dados de uma Série usando o índice:

```
idade_maria = idades['Maria']
print(idade_maria)
```

- Resultado: 30
- Fazer operações matemáticas nas Séries:

```
# Somando 1 em todas as idades
idades += 1
print(idades)
```

Resultado:

João 26

Maria 31

Pedro 23

dtype: int64

5. Estruturar Dados com Séries

Exemplo de Criação de uma Série com Valores Ausentes:

```
# Criando uma série com valores e NaN
series = pd.Series([7, 4, 2, np.nan, 6, 9])
print(series)
```

Resultado no Terminal:

- 0 7.0
- 1 4.0
- 2 2.0
- 3 NaN
- 4 6.0
- 5 9.0

dtype: float64

- NaN: Representa valores ausentes ou nulos.
- A Série é de tipo float64, pois contém números decimais.

6. Trabalhar com Datas

Para gerar uma sequência de datas, usamos o método pd.date_range(). Isso é especialmente útil para séries temporais.

Exemplo de Geração de Datas:

```
# Gerando uma sequência de 6 datas a partir de 1º de janeiro de 2024 datas = pd.date_range('2024-01-01', periods=6) print(datas)
```

Resultado no Terminal:

```
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04', '2024-01-05', '2024-01-06'], dtype='datetime64[ns]', freq='D')
```

- pd.date_range(): Cria uma sequência de datas.
- periods=6: Define o número de datas consecutivas.

7. Gerar Dados Aleatórios

Agora vamos criar um **DataFrame** com dados aleatórios. Usamos a função np.random.randn() para gerar uma matriz de números aleatórios com 6 linhas e 4 colunas.

Exemplo de Criação de DataFrame com Dados Aleatórios:

Criando um DataFrame com dados aleatórios

df = pd.DataFrame(np.random.randn(6, 4), index=datas, columns=list("ABCD"))

print(df)

Resultado no Terminal (exemplo de tabela com números aleatórios):

A B C D

2024-01-01 0.578161 0.296047 -1.178161 1.422147

2024-01-02 -0.865874 0.239582 -0.464167 0.112958

2024-01-03 -0.347586 -0.146395 -1.031576 0.935436

2024-01-04 0.792681 -0.245680 0.474913 0.267528

2024-01-05 0.295413 1.475845 -0.203665 0.707858

2024-01-06 -0.316275 0.491142 -0.489128 0.118413

- np.random.randn(6, 4): Gera uma matriz de números aleatórios com 6 linhas e 4 colunas.
- index=datas: Define o índice do DataFrame como as datas geradas.
- columns=list("ABCD"): Nomeia as colunas como 'A', 'B', 'C', 'D'.

8. Verificar Tipos de Dados

Para verificar os tipos de dados de cada coluna em um DataFrame no Pandas, você pode utilizar o método dtypes. Isso retornará uma série com o nome de cada coluna e seu respectivo tipo de dados. Veja um exemplo simples:

```
import pandas as pd
import numpy as np
# Criando um DataFrame de exemplo
data = {
  'Name': ['Alice', 'Bob', 'Charlie'],
  'Age': [20, 21, 22],
  'Grade': [85.5, 90.2, 95.1],
  'Passed': [True, False, True]
}
df = pd.DataFrame(data)
# Verificando os tipos de dados de cada coluna
print("Tipos de dados de cada coluna:")
print(df.dtypes)
Isso produzirá uma saída com os tipos de dados de cada coluna, como:
Name
          object
```

Age int64

Grade float64

Passed bool

dtype: object

Esses tipos de dados podem incluir:

int64: números inteiros

• float64: números decimais

• object: geralmente utilizado para strings (textos)

• bool: valores booleanos (True ou False)

Se precisar de uma visão mais detalhada sobre os dados, como contagem de valores nulos e não nulos por tipo, você pode usar o método info():

```
print(df.info())
```

A saída mostrará informações detalhadas sobre o DataFrame, como:

```
<class 'pandas.core.frame.DataFrame'>
```

Index: 3 entries, Alice to Charlie

Data columns (total 4 columns):

Column Non-Null Count Dtype

--- ----- -----

- 0 Age 3 non-null int64
- 1 Grade 3 non-null float64
- 2 Passed 3 non-null bool
- 3 Name 3 non-null object

dtypes: float64(1), int64(1), object(1), bool(1)

memory usage: 204.0 bytes

Essa saída fornece uma visão completa sobre os dados, incluindo o uso de memória e informações sobre valores nulos.

9. Verificar Linhas e Colunas em um DataFrame

Para verificar o número de linhas e colunas em um DataFrame usando o Pandas, você pode usar o atributo shape. Aqui está um exemplo rápido:

```
# Importando Bibliotecas
import pandas as pd
import numpy as np

# Gerando uma sequência de datas
datas = pd.date_range('2024-04-04', periods=60, freq='D')

# Criando um DataFrame com números aleatórios
df = pd.DataFrame(np.random.randn(60, 5), index=datas, columns=list("ABCDE"))

# Verificando a forma do DataFrame
print("Número de linhas e colunas:")
print(df.shape) # Saída: (60, 5)
```

Explicação

- 1. **Importando Bibliotecas**: Importamos as bibliotecas necessárias, pandas e numpy.
- 2. **Gerando Datas**: Criamos uma faixa de 60 datas diárias começando em 4 de abril de 2024.

- 3. **Criando o DataFrame**: Um DataFrame é criado com 60 linhas e 5 colunas, preenchido com números aleatórios.
- 4. **Verificando a Forma**: O atributo shape retorna uma tupla que indica o número de linhas e colunas, que neste caso é (60, 5).

Saída

A saída de df.shape será:

scss

Copiar código

(60, 5)

Isso significa que o DataFrame tem 60 linhas e 5 colunas.

10. Adicionar Colunas

Adicionar colunas a um DataFrame no Pandas é uma tarefa simples. Você pode fazer isso atribuindo um novo valor a uma nova coluna ou usando métodos como assign(). Veja alguns exemplos:

10.1. Adicionando uma Coluna com um Valor Fixo

Você pode adicionar uma coluna ao DataFrame com um valor fixo para todas as linhas:

import pandas as pd

```
# Criando um DataFrame de exemplo
data = {
   'Name': ['Alice', 'Bob', 'Charlie'],
   'Age': [20, 21, 22]
}
df = pd.DataFrame(data)
# Adicionando uma nova coluna 'City' com um valor fixo
```

```
df['City'] = 'Unknown'
print("DataFrame após adicionar a coluna 'City':")
print(df)
```

Saída:

```
Name Age City
0 Alice 20 Unknown
1 Bob 21 Unknown
2 Charlie 22 Unknown
```

10.2. Adicionando uma Coluna com uma Lista de Valores

Se você tiver uma lista de valores, pode usá-la para adicionar uma nova coluna:

```
# Adicionando uma nova coluna 'Grade' com valores diferentes df['Grade'] = [85.5, 90.2, 95.1]

print("\nDataFrame após adicionar a coluna 'Grade':")
print(df)
```

Saída:

```
Name Age City Grade
0 Alice 20 Unknown 85.5
1 Bob 21 Unknown 90.2
2 Charlie 22 Unknown 95.1
```

10.3. Usando o Método assign()

Você também pode usar o método assign() para adicionar uma nova coluna de forma mais funcional:

```
# Usando o método assign para adicionar a coluna 'Passed' df = df.assign(Passed=[True, False, True])

print("\nDataFrame após usar assign para adicionar a coluna 'Passed':")
print(df)
```

Saída:

```
Name Age City Grade Passed
O Alice 20 Unknown 85.5 True
Dob 21 Unknown 90.2 False
Charlie 22 Unknown 95.1 True
```

11. Operações entre Colunas

As operações entre colunas de um DataFrame no Pandas permitem realizar cálculos e manipulações de dados de maneira eficiente. Você pode somar, subtrair, multiplicar e dividir colunas, além de aplicar funções mais complexas. Vamos ver alguns exemplos práticos:

11.1. Soma de Colunas

Você pode somar duas ou mais colunas e armazenar o resultado em uma nova coluna.

```
import pandas as pd

# Criando um DataFrame de exemplo
data = {
    'Math': [85, 90, 95],
    'English': [80, 85, 90]
}

df = pd.DataFrame(data)

# Somando as colunas 'Math' e 'English' para criar uma nova coluna 'Total'
df['Total'] = df['Math'] + df['English']

print("DataFrame após somar as colunas:")
print(df)
```

Saída:

```
Math English Total 0 85 80 165
```

```
1 90 85 175
2 95 90 185
```

11.2. Subtração de Colunas

Você pode subtrair os valores de uma coluna a partir de outra:

```
# Subtraindo a coluna 'English' da coluna 'Math' df['Difference'] = df['Math'] - df['English']

print("\nDataFrame após subtrair as colunas:")
print(df)
```

Saída:

Ν	∕lath	English	Total	Difference
0	85	80	165	5
1	90	85	175	5
2	95	90	185	5

11.3. Multiplicação de Colunas

Você pode multiplicar duas colunas para obter um produto:

```
# Multiplicando as colunas 'Math' e 'English'
df['Product'] = df['Math'] * df['English']
print("\nDataFrame após multiplicar as colunas:")
print(df)
```

Saída:

N	lath	English	Total	Difference	e Product
0	85	80	165	5 6	800
1	90	85	175	5 7	7650
2	95	90	185	5 8	3550

11.4. Divisão de Colunas

Você pode dividir uma coluna pela outra:

```
# Dividindo a coluna 'Math' pela coluna 'English' df['Division'] = df['Math'] / df['English'] print("\nDataFrame após dividir as colunas:") print(df)
```

Saída:

Λ	/lath	English	Total	Differer	nce Pro	duct Division
0	85	80	165	5	6800	1.0625
1	90	85	175	5	7650	1.0588
2	95	90	185	5	8550	1.0556

11.5. Aplicando Funções

Você também pode aplicar funções a colunas usando o método apply(). Por exemplo, vamos calcular a média das notas:

```
# Calculando a média das notas
df['Average'] = df[['Math', 'English']].mean(axis=1)
print("\nDataFrame após calcular a média das notas:")
print(df)
```

Saída:

	Math	English	Total	Difference	e Produ	uct	Divisio	on	Average
0	85	80	165	5 6	0088	1.0	0625	82	.5
1	90	85	175	5 7	7650	1.0	0588	87	.5
2	95	90	185	5 8	3550	1.0	0556	92	.5

12. Editar Valores

Editar valores em um DataFrame do Pandas é uma tarefa comum e essencial para a manipulação de dados. Você pode alterar valores específicos, atualizar uma coluna inteira, ou aplicar condições para modificar os dados. Vamos explorar algumas abordagens para editar valores em um DataFrame.

12.1. Editando Valores Específicos

Para editar um valor específico em um DataFrame, você pode usar o método .loc[] ou .iloc[].

12.2. Usando o Método .iloc[]

O método .loc[] é utilizado para acessar um grupo de linhas e colunas pelo rótulo.

```
import pandas as pd

# Criando um DataFrame de exemplo
data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [20, 21, 22],
    'Grade': [85.5, 90.2, 95.1]
}

df = pd.DataFrame(data)

# Editando a idade de Bob
df.loc['Bob', 'Age'] = 44

print("DataFrame após editar a idade de Bob:")
print(df)
```

Saída:

```
Name Age Grade
0 Alice 20 85.5
1 Bob 44 90.2
2 Charlie 22 95.1
```

12.3. Usando o Método .iloc[]

O método .iloc[] é utilizado para acessar um grupo de linhas e colunas pelo índice posicional. Isso é útil quando você deseja acessar linhas e colunas com base na sua posição numérica.

```
# Editando a idade de Charlie usando .iloc[] df.iloc[2, 1] = 23 # 2 é o índice da linha de Charlie, 1 é o índice da coluna 'Age'
```

print("\nDataFrame após editar a idade de Charlie usando .iloc[]:")
print(df)

Saída:

Name Age Grade
0 Alice 20 85.5
1 Bob 22 90.2
2 Charlie 23 95.1

12.4. loc x iloc

- O método .loc[] é útil quando você precisa acessar ou modificar dados com <u>base nos</u> <u>rótulos</u> das linhas e colunas. Por exemplo, df.loc[df['Name'] == 'Bob', 'Age'] = 22 altera a idade de Bob para 22.
- O método .iloc[] é útil quando você precisa acessar ou modificar dados com <u>base nas</u> <u>posições numéricas</u> das linhas e colunas. Por exemplo, df.iloc[2, 1] = 23 altera a idade de Charlie para 23, utilizando o índice posicional.

Ambos os métodos são essenciais para manipulação de dados em um DataFrame e podem ser utilizados conforme a necessidade da análise.

12.5. Perguntas e Respostas sobre Índices em Pandas

Os índices começam a contar por zero?

• Sim, em Pandas, os índices começam a contar a partir de zero. Isso significa que o primeiro elemento tem o índice 0, o segundo tem o índice 1, e assim por diante.

O index pode ser referência em iloc?

Não, o método .iloc[] utiliza a posição numérica dos índices e não os rótulos dos índices. Portanto, ao usar .iloc[], você deve fornecer um número inteiro correspondente à posição da linha, enquanto que .loc[] permite acessar os dados usando os rótulos do índice.

O índice label é considerado um valor?

 Sim, o índice label é considerado um valor no contexto do acesso e modificação de dados. Ele identifica de forma única uma linha específica no DataFrame, permitindo que você acesse ou altere dados diretamente usando esses rótulos.

12.5. Atualizando uma Coluna Inteira

Se você quiser atualizar todos os valores de uma coluna, pode fazer isso atribuindo um novo valor diretamente.

```
# Atualizando todas as notas para adicionar 5 pontos df['Grade'] += 5
print("\nDataFrame após atualizar as notas:")
print(df)
```

Saída:

```
Name Age Grade
0 Alice 20 90.5
1 Bob 22 95.2
2 Charlie 22 100.1
```

12.6. Usando Condições para Editar Valores

Você pode usar condições para editar valores em um DataFrame. Por exemplo, vamos definir um novo valor para as notas abaixo de 90.

```
# Definindo as notas abaixo de 90 como 'Reprovado' df.loc[df['Grade'] < 90, 'Grade'] = 'Reprovado' print("\nDataFrame após aplicar condição nas notas:") print(df)
```

Saída:

```
Name Age Grade
0 Alice 20 Reprovado
1 Bob 22 95.2
2 Charlie 22 100.1
```

12.7. Editando Valores com Funções

Você também pode aplicar funções para modificar valores em uma coluna. Por exemplo, vamos usar uma função para aumentar a idade em 1 ano.

```
# Aumentando a idade de todos em 1 ano df['Age'] = df['Age'].apply(lambda x: x + 1) print("\nDataFrame após aumentar a idade em 1 ano:") print(df)
```

Saída:

```
Name Age Grade
0 Alice 21 Reprovado
1 Bob 23 95.2
2 Charlie 23 100.1
```

12.8 Aviso de Incompatibilidade de Tipo de Dados no Pandas

Ao trabalhar com o Pandas, você pode encontrar a seguinte mensagem de aviso:

FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a future version of pandas. Value 'Accept' has dtype incompatible with int64, please explicitly cast to a compatible dtype first.

O que isso significa?

Esse aviso indica que você está tentando atribuir um valor de tipo incompatível a uma coluna do DataFrame. No seu caso, você está tentando atribuir a string "Accept" a elementos da coluna 'Grade', que contém valores do tipo int64 (números inteiros). Essa operação não é permitida em versões futuras do Pandas, e seu código poderá falhar.

Como resolver?

Para evitar esse aviso e garantir que seu código funcione corretamente nas futuras versões do Pandas, você pode seguir uma das abordagens abaixo:

Converter a coluna para um tipo de dados compatível: Se você deseja misturar números e strings na coluna, pode converter a coluna 'Grade' para o tipo object, que pode armazenar tanto valores numéricos quanto strings:

```
df['Grade'] = df['Grade'].astype(object)

df.loc[df['Grade'] > 90, 'Grade'] = "Accept"

1.
```

Usar uma nova coluna: Se a coluna 'Grade' deve permanecer apenas com valores numéricos, considere criar uma nova coluna para armazenar os valores de aceitação.

Por exemplo:

```
df['Status'] = "Not Accept"

df.loc[df['Grade'] > 90, 'Status'] = "Accept"
```

13 Visualizando Dataframes

A visualização de Data Frames é uma parte essencial da análise de dados, pois permite que você obtenha uma visão rápida dos dados que está manipulando. O Pandas oferece métodos simples para visualizar as primeiras e as últimas linhas de um DataFrame.

13.1. Visualizar as Primeiras X Linhas

O método .head(x) é usado para exibir as primeiras x linhas de um DataFrame. Se você não especificar um valor, o padrão será 5.

```
import pandas as pd
```

```
# Criando um DataFrame de exemplo
data = {
    'Name': ['Alice', 'Bob', 'Charlie', 'David', 'Eva', 'Frank'],
    'Age': [20, 21, 22, 23, 24, 25],
    'Grade': [85.5, 90.2, 95.1, 88.5, 92.3, 89.0]
}
df = pd.DataFrame(data)

# Visualizando as primeiras 3 linhas do DataFrame
print("Primeiras 3 linhas do DataFrame:")
print(df.head(3))
```

Saída:

```
Name Age Grade
0 Alice 20 85.5
1 Bob 21 90.2
2 Charlie 22 95.1
```

13.2. Visualizar as Últimas X Linhas

O método .tail(x) é utilizado para exibir as últimas x linhas de um DataFrame. Assim como no método .head(), se você não especificar um valor, o padrão será 5.

```
# Visualizando as últimas 2 linhas do DataFrame print("\nÚltimas 2 linhas do DataFrame:") print(df.tail(2))
```

Saída:

```
Name Age Grade
4 Eva 24 92.3
5 Frank 25 89.0
```

13.3 Obter Nome das Colunas

Para obter os nomes das colunas de um DataFrame no Pandas, você pode usar o atributo .columns. Isso retorna um objeto do tipo Index, que contém os nomes das colunas.

```
import pandas as pd

# Criando um DataFrame de exemplo
data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [20, 21, 22],
    'Grade': [85.5, 90.2, 95.1]
}

df = pd.DataFrame(data)

# Obtendo os nomes das colunas
colunas = df.columns
print("Nomes das colunas:")
```

```
print(colunas)
```

Saída:

```
Nomes das colunas:
Index(['Name', 'Age', 'Grade'], dtype='object')
```

13.4 Obter Apenas Números

Para obter apenas os valores numéricos de um DataFrame, você pode usar o método .to_numpy(), que converte o DataFrame em um array NumPy. Isso é útil quando você deseja trabalhar apenas com os dados numéricos sem a estrutura de DataFrame.

```
# Obtendo apenas os valores numéricos como um array NumPy
numeros = df[['Age', 'Grade']].to_numpy()
print("\nValores numéricos como array NumPy:")
print(numeros)
```

Saída:

Valores numéricos como array NumPy:

[[20. 85.5]

[21. 90.2]

[22. 95.1]]

13.5. Inverter Linhas em Colunas

Para inverter linhas em colunas, você pode usar o método .T (transposição) do DataFrame. Isso transforma as linhas em colunas e vice-versa.

```
# Invertendo linhas em colunas
df_transposto = df.T
print("\nDataFrame transposto (linhas em colunas):")
print(df_transposto)
```

Saída:

```
0 1 2
Name Alice Bob Charlie
```

```
Age 20 21 22
Grade 85.5 90.2 95.1
```

14. Combinar DataFrames

Combinar DataFrames é uma tarefa comum no Pandas, e você pode fazer isso de várias maneiras, sendo a concatenação uma das mais simples. Vamos explorar como concatenar DataFrames e definir chaves.

14.1. Concatenar DataFrames

Para concatenar Data Frames, você pode usar a função pd.concat(). Abaixo, você verá um exemplo básico:

```
import pandas as pd

# Criando DataFrames de exemplo
df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})
df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})

# Concatenando os DataFrames
result = pd.concat([df1, df2])

print("DataFrame Concatenado:")
print(result)
```

Saída:

```
A B
0 1 3
1 2 4
0 5 7
1 6 8
```

Neste exemplo, os dois DataFrames (df1 e df2) foram concatenados verticalmente.

14.2. Transformar em Objeto tipo DataFrame

Você pode transformar o resultado da concatenação em um novo DataFrame. A função pd.concat() já retorna um DataFrame, mas você pode armazená-lo em uma nova variável, como fizemos acima com result.

14.3. Definir Chaves

Se você quiser adicionar uma chave para identificar a origem de cada DataFrame na concatenação, pode usar o parâmetro keys:

```
# Concatenando com chaves
result_with_keys = pd.concat([df1, df2], keys=['df1', 'df2'])
print("\nDataFrame Concatenado com Chaves:")
print(result_with_keys)
```

Saída:

```
A B df1 0 1 3 1 2 4 df2 0 5 7 1 6 8
```

Neste exemplo, as chaves 'df1' e 'df2' foram adicionadas, permitindo identificar facilmente a origem de cada linha no DataFrame resultante.

Resumo

- Concatenar: Use pd.concat([list_of_dataframes]) para combinar DataFrames.
- Transformar em DataFrame: O resultado da concatenação é um DataFrame.
- Definir Chaves: Use o parâmetro keys para adicionar identificadores ao resultado da concatenação.

14.4 Obter elementos de determinado grupo

Para obter elementos de um determinado grupo em um DataFrame concatenado com chaves, você pode usar o método .loc[] ou selecionar diretamente os grupos pela chave definida durante a concatenação.

```
Usando .loc[] para acessar o grupo "df1":

# Acessando o grupo 'df1'

df1_group = result_with_keys.loc['df1']
print("\nElementos do grupo 'df1':")
print(df1_group)
```

Resultado:

```
A B
0 A0 B0
1 A1 B1
2 A2 B2
```

Usando .loc[] para acessar o grupo "df2":

```
# Acessando o grupo 'df2'
df2_group = result_with_keys.loc['df2']
print("\nElementos do grupo 'df2':")
print(df2_group)
```

Resultado:

```
A B
0 A3 B3
1 A4 B4
2 A5 B5
```

Explicação:

• result_with_keys.loc['df1']: Retorna todas as linhas pertencentes ao grupo 'df1', que foi definido durante a concatenação.

 result_with_keys.loc['df2']: Da mesma forma, retorna as linhas do grupo 'df2'.

14.5 Obter Elementos por Chave

Para acessar elementos de um DataFrame concatenado com chaves, você pode usar o método .loc[]. As chaves são definidas durante a concatenação e permitem segmentar os dados com facilidade.

```
Exemplo de Concatenar DataFrames com Chaveso
```

```
import pandas as pd

# Criando dois DataFrames de exemplo

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']})

df2 = pd.DataFrame({'A': ['A3', 'A4', 'A5'], 'B': ['B3', 'B4', 'B5']})

# Concatenando e definindo chaves

result_with_keys = pd.concat([df1, df2], keys=['df1', 'df2'])

print("DataFrame concatenado com chaves:")

print(result_with_keys)
```

Acessando Elementos por Chave

Acessar o grupo 'df1':

```
df1_group = result_with_keys.loc['df1']
print("\nElementos do grupo 'df1':")
print(df1_group)
```

Acessar o grupo 'df2':

```
df2_group = result_with_keys.loc['df2']
print("\nElementos do grupo 'df2':")
print(df2_group)
```

Resultado Esperado

DataFrame concatenado com chaves:

```
В
          Α
df1 0
            B0
        Α0
    1
            B1
        Α1
    2
        A2
            B2
df2 0
        A3
            B3
    1
            B4
        A4
    2
        Α5
            B5
Elementos do grupo 'df1':
    Α
        В
0
   Α0
       B0
   Α1
       B1
   A2
       B2
Elementos do grupo 'df2':
    Α
        В
0
   А3
       B3
   Α4
       B4
  Α5
      B5
```

Explicação

- Chaves Definidas: As chaves 'df1' e 'df2' foram definidas na concatenação, permitindo acesso fácil aos grupos.
- .loc[]: O método .loc[] é utilizado para acessar os elementos correspondentes a uma chave específica no DataFrame.

CÓDIGO

import pandas as pd

'Grade': [85, 90, 95]

```
import numpy as np

# Creating the data dictionary
data = {
    'Student Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [20, 21, 22],
```

```
}
# Creating the DataFrame
df = pd.DataFrame(data)
# Creating the Series with indices corresponding to the student names
city series = pd.Series(['Lisbon', 'Porto', 'Braga'], index=['Alice', 'Bob', 'Charlie'])
# Setting "Student Name" as the index of the DataFrame and using inplace=True to replace last
Dataframe for the new one
df.set index('Student Name', inplace=True)
# Adding the Series to the DataFrame as a new column
df['City'] = city_series
# Acessing data from a Serie
ageAlice = df.loc['Alice', 'Age']
# Operations using series
ages = df['Age']
# Creating serie with missing values
series = pd.Series([7, 4, 2, np.nan, 6, 9])
# Generating sequence of dates
dates = pd.date range('2024-01-01', periods=7)
# Generating random date
randomDf = pd.DataFrame(np.random.randn(7, 4), index=dates, columns=list("ABCD")) # 7
rowns and 4 columns
# Checking data types
print(df.dtypes)
# Checking data types with more details
print(df.info())
# Checking rows and columns
print(df.shape)
# Add Columns
df['Gender'] = "Unkonown"
# Add Columns using value list
```

```
# Adding columns using assign() method
df = df.assign(Passed=[True, False, True])
# Operations between Columns
df['Grade * Age'] = df['Grade'] * df['Age']
# Editing specific values using loc
df.loc['Alice', 'Id'] = 33
# Editing specific values using iloc
df.iloc[2, 4] = 33 # Remember that the index starts at ZERO
# Updating an entire column
df['Grade'] = 100
# FutureWarning: Setting an item of incompatible dtype is deprecated and will raise an error in a
future version of pandas.
# Value 'Accept' has dtype incompatible with int64, please explicitly cast to a compatible dtype
first.
# Using conditions to edit values
df['Status'] = df.loc[df['Grade'] > 90, 'Grade']= "Accept"
# Editing values with functions
df['Age'] = df['Age'].apply(lambda x:x +1)
# Viewing the first few lines
print(df.head(2))
# Viewing the last few lines
print(df.tail(2))
# Get column name
print("\nColumn name")
print(df.columns)
# Get only numbers
numbers = df[['Age','Id']].to_numpy()
print(numbers)
# Flipping columns to rows
dfTranspor = df.T
```

df['Id'] = [1, 2, 3]

```
# Combine Data Frames
```

df1 = pd.DataFrame({'A': [1, 2], 'B': [3, 4]})

df2 = pd.DataFrame({'A': [5, 6], 'B': [7, 8]})

resulConcat = pd.concat([df1, df2])

Combining using keys

resultWithKeys = pd.concat([df1, df2], keys=['df1', 'df2'])

Getting elements of a group

df1Group = resultWithKeys.loc['df1']

df2Group = resultWithKeys.loc['df2']

Getting elements of a group for keys

Merge

Merge de Dados

cadastro b = pd.DataFrame(cadastro b, columns = ['ld', 'Nome', 'ldade', 'CEP'])

INNER JOIN

}

Interseção entre duas tabelas.

```
pd.merge(tabela 1, tabela 2, on=[PK], how="merge type")
```

Exemplo

Encontrar clientes que frequentam as duas lojas.

Escolher Colunas

Trocar Nomes de Colunas

FULL JOIN

Junta todos os dados.

Juntar com Duplicatas

loja =	oja = pd.concat([cadastro_a, cadastro_b],ignore					
	Id	Nome	Idade	СЕР		
0	AA2930	Victor	20	00092-029		
1	BB4563	Amanda	35	11111-111		
2	CC2139	Bruna	40	22222-888		
3	DE2521	Carlos	54	00000-999		
4	GT3462	Ricardo	30	88888-111		
5	HH1158	Maria	27	77777-666		
6	CC2930	Marcos	19	00092-029		
7	EF4563	Patrícia	30	11111-111		
8	DD2139	Ericka	22	22222-888		
9	GT3462	Ricardo	30	00000-999		
10	HH1158	Maria	27	88888-111		

Remover Duplicatas

singleClients = lojas.drop_duplicates(subset=['ld'])

subset

Coluna utilizada como referência, assim gera um subconjunto que **não aceita duplicatas**.

	Id	Nome	Idade	СЕР
0	AA2930	Victor	20	00092-029
1	BB4563	Amanda	35	11111-111
2	CC2139	Bruna	40	22222-888
3	DE2521	Carlos	54	00000-999
4	GT3462	Ricardo	30	88888-111
5	HH1158	Maria	27	77777-666
6	CC2930	Marcos	19	00092-029
7	EF4563	Patrícia	30	11111-111
8	DD2139	Ericka	22	22222-888

LEFT JOIN

Todos os dados da **primeira** tabela e a interseção entre elas.

Exemplo

Pegar clientes que **fizeram compra** e estão **cadastrados** na Loja A Loja A

Compra

Left Join

pd.merge(cadastro_a, compras, on=['ld'], how='left')

	Id	Nome	Idade	СЕР	Data	Valor
0	AA2930	Victor	20	00092-029	2019-01-01	200.0
1	AA2930	Victor	20	00092-029	2019-03-15	25.0
2	BB4563	Amanda	35	11111-111	NaN	NaN
3	CC2139	Bruna	40	22222-888	2019-01-30	40.0
4	DE2521	Carlos	54	00000-999	NaN	NaN
5	GT3462	Ricardo	30	88888-111	NaN	NaN
6	HH1158	Maria	27	77777-666	2019-04-03	50.0
7	HH1158	Maria	27	77777-666	2019-04-04	500.0

NaN

Não fizeram compra.

RIGHT JOIN

Todos os dados da **segunda** tabela e a interseção entre elas.

OUTER

Juntar Dataframes e atribuir a apenas um.

Outer
outer = pd.merge(cadastro_a, cadastro_b, on=['ld'], how='outer')
outer

	Id	Nome_x	Idade_x	CEP_x	Nome_y	Idade_y	CEP_y
0	AA2930	Victor	20.0	00092-029	NaN	NaN	NaN
1	BB4563	Amanda	35.0	11111-111	NaN	NaN	NaN
2	CC2139	Bruna	40.0	22222-888	NaN	NaN	NaN
3	DE2521	Carlos	54.0	00000-999	NaN	NaN	NaN
4	GT3462	Ricardo	30.0	88888-111	Ricardo	30.0	00000-999
5	HH1158	Maria	27.0	77777-666	Maria	27.0	88888-111
6	CC2930	NaN	NaN	NaN	Marcos	19.0	00092-029
7	EF4563	NaN	NaN	NaN	Patrícia	30.0	11111-111
8	DD2139	NaN	NaN	NaN	Ericka	22.0	22222-888

Indicator

Argumento que mostra quais elementos estão disponíveis em ambas as tabelas.

cadastro_a								
	Id	Nome	Idade	СЕР				
0	AA2930	Victor	20	00092-029				
1	BB4563	Amanda	35	11111-111				
2	CC2139	Bruna	40	22222-888				
3	DE2521	Carlos	54	00000-999				
4	GT3462	Ricardo	30	88888-111				
5	HH1158	Maria	27	77777-666				

cad	lastro_b			
	Id	Nome	Idade	СЕР
0	CC2930	Marcos	19	00092-029
1	EF4563	Patrícia	30	11111-111
2	DD2139	Ericka	22	22222-888
3	GT3462	Ricardo	30	00000-999
4	HH1158	Maria	27	88888-111

Outer
outer = pd.merge(cadastro_a, cadastro_b, on=['ld'], how='outer', indicator=True)
outer

	Id	Nome_x	Idade_x	CEP_x	Nome_y	Idade_y	CEP_y	_merge
0	AA2930	Victor	20.0	00092-029	NaN	NaN	NaN	left_only
1	BB4563	Amanda	35.0	11111-111	NaN	NaN	NaN	left_only
2	CC2139	Bruna	40.0	22222-888	NaN	NaN	NaN	left_only
3	DE2521	Carlos	54.0	00000-999	NaN	NaN	NaN	left_only
4	GT3462	Ricardo	30.0	88888-111	Ricardo	30.0	00000-999	both
5	HH1158	Maria	27.0	77777-666	Maria	27.0	88888-111	both
6	CC2930	NaN	NaN	NaN	Marcos	19.0	00092-029	right_only
7	EF4563	NaN	NaN	NaN	Patrícia	30.0	11111-111	right_only
8	DD2139	NaN	NaN	NaN	Ericka	22.0	22222-888	right_only

Group By

Faz a estatística descritiva por grupos, ou seja, uma coluna que tenha **valores repetidos** pode ser agrupada conforme esses valores, enquanto uma coluna, a seguir, que contenha **quantidades**, pode ser **calculada e agrupada** conforme valores da primeira coluna.

```
df = pd.DataFrame({
    'A': ['verdadeiro', 'falso', 'verdadeiro', 'falso', 'verdadeiro', 'falso', 'falso',],
    'B': ['um', 'um', 'dois', 'tres', 'dois', 'dois', 'um', 'tres'],
    'C': np.random.randn(8),
```


Uma Coluna

Duas Colunas

df.groupby(['A','B']).sum()

Indexações

Indexação

Muito útil para trabalhar com vetores, arrays, listas, tuplas.

Vetores

Multi Index

Aparentemente, faz combinações com todos os resultados possíveis.

Levels

Valores únicos para a estrutura de Array.

Codes

São a indexação de localização, ou seja, a posição dos índices na estrutura de dados.

Multi Index com Produto Cartesiano

Produto Cartesiano

Basicamente são todas as combinações possíveis em um plano cartesiano. Para entender melhor, faça uma **multiplicação distributiva** entre os elementos das arrays.

Reshaping de Dados

Reshaping de Dados

Reorganização de dados, transformar dados à maneira que possibilite uma análise mais precisa.

```
datas = pd.date_range('20240404', periods=6)
df = pd.DataFrame(np.random.randn(6, 4), index=datas, columns=['Var_A', 'Var_B', 'Var_C', 'Var_D'])
df
```

	Var_A	Var_B	Var_C	Var_D
2024-04-04	0.268976	-0.815647	1.839551	0.228990
2024-04-05	0.544691	-0.888098	-0.199232	0.177273
2024-04-06	0.789130	0.056554	0.448310	0.403587
2024-04-07	-0.701470	0.686439	1.461771	-0.074972
2024-04-08	-0.866254	1.040389	-0.280291	-0.557860
2024-04-09	-1.338732	0.485034	0.877773	1.697296

Transposed

Atributo que Inverte linhas para colunas e colunas para linhas.

dftTrans	dftTransposed= df.T										
dftTrans	posed										
	2024-04-04	2024-04-05	2024-04-06	2024-04-07	2024-04-08	2024-04-09					
Var_A	0.268976	0.544691	0.789130	-0.701470	-0.866254	-1.338732					
Var_B	-0.815647	-0.888098	0.056554	0.686439	1.040389	0.485034					
Var_C	1.839551	-0.199232	0.448310	1.461771	-0.280291	0.877773					
Var_D	0.228990	0.177273	0.403587	-0.074972	-0.557860	1.697296					

Shape

Atributo que todo Dataframe tem, ele verifica o número de Linhas e Colunas.

Values

Atributo que permite extrair valores do Dataframe.

	2024-04-04	2024-04-05	2024-04-06	2024-04-07	2024-04-08	2024-04-09
Var_A	-0.043038	0.777544	-0.053062	0.390784	0.935827	0.865199
Var_B	1.569261	-1.387027	-1.587814	0.558133	0.276006	-0.423601
Var_C	0.010883	0.634325	-0.384465	1.589187	0.445612	-0.014063
Var_D	-1.508182	0.701169	-0.057362	-1.919886	0.029332	0.066220

dftTransposed.values

```
array([[-0.04303816, 0.77754435, -0.05306217, 0.39078388, 0.93582726, 0.86519887],
[ 1.56926068, -1.38702676, -1.58781373, 0.55813267, 0.2760056, -0.42360071],
[ 0.01088287, 0.63432527, -0.3844647, 1.5891867, 0.44561167, -0.01406273],
[ -1.50818236, 0.7011694, -0.05736214, -1.91988589, 0.02933159, 0.06621983]])
```

Size

Atributo que calcula o tamanho do Dataframe.

```
dftTransposed.size
```

24

Reshape

Método que permite reorganizar o Dataframe. Sempre atente-se para o número de linhas e colunas, de modo que seja conforme o números de elementos do Dataframe.

```
v.reshape((2, 12))

array([[-0.04303816, 0.77754435, -0.05306217, 0.39078388, 0.93582726, 0.86519887, 1.56926068, -1.38702676, -1.58781373, 0.55813267, 0.2760056, -0.42360071],

[ 0.01088287, 0.63432527, -0.3844647, 1.5891867, 0.44561167, -0.01406273, -1.50818236, 0.7011694, -0.05736214, -1.91988589, 0.02933159, 0.06621983]])
```

Função Pivot

Função utilizada para manipular, modificar tabelas.

Método Range

Serve para gerar uma sequência de números. Utiliza-se com **for** para iterar sobre uma sequência de números.

```
range(12)

range(0, 12)

for i in range(12):

print(i)

0

1

2

3

4

5

6

7

8

9

10

11
```

Método Choice

Pega uma lista e escolhe um elemento de forma aleatória.

```
Pessoa = ['George', 'Victor', 'Lucas']
np.random.choice(Pessoa)
```

Método Pivot

Serve para transformar a tabela, agrupar dados por categorias e torná-la dinâmica e interativa.

	Dia	Nome	Gasto
0	2019-01-01	Lucas	64.34
1	2019-01-02	Victor	36.36
2	2019-01-03	Victor	14.93
3	2019-01-04	George	45.59
4	2019-01-05	Victor	94.20
5	2019-01-06	Lucas	30.36
6	2019-01-07	Lucas	7.13
7	2019-01-08	Victor	20.21
8	2019-01-09	Lucas	14.42
9	2019-01-10	Victor	74.69
10	2019-01-11	Victor	21.17
11	2019-01-12	George	41.67

Index

Coluna referência da tabela.

Columns

Define quais são os **valores** da <u>tabela antiga</u> que serão usados como **colunas** para organizar os **valores** da <u>tabela nova</u>.

Values

Define os novos valores que serão reorganizados na nova tabela.

df.pivot(index='Dia', columns='Nome', values='Gasto')

Nome	George	Lucas	Victor
Dia			
2019-01-01	NaN	64.34	NaN
2019-01-02	NaN	NaN	36.36
2019-01-03	NaN	NaN	14.93
2019-01-04	45.59	NaN	NaN
2019-01-05	NaN	NaN	94.20
2019-01-06	NaN	30.36	NaN
2019-01-07	NaN	7.13	NaN
2019-01-08	NaN	NaN	20.21
2019-01-09	NaN	14.42	NaN
2019-01-10	NaN	NaN	74.69
2019-01-11	NaN	NaN	21.17
2019-01-12	41.67	NaN	NaN

Função Pivot Table

Pivot x Pivot Table

```
Carros = [7, 4, 3, 2, 8]

dias = pd.date_range('20190101', '20190101', periods=5)

vendedor = ['George', 'Vagner', 'Pedro', 'Vagner', 'George']

df = pd.DataFrame({'Vendas': Carros, 'Data': dias, 'Vendedor': vendedor})

df
```

Pivot

A função Pivot não aceita valores duplicados como index.

	Vendas	Data	Vendedor
0	7	2019-01-01	George
1	4	2019-01-01	Vagner
2	3	2019-01-01	Pedro
3	2	2019-01-01	Vagner
4	8	2019-01-01	George

pd.pivot(df, index='Data', columns='Vendedor', values='Vendas')

Pivot Table

A função **Pivot Table** aceita esses valores duplicados no **index**.

É o **tipo de agregamento** padrão da função Pivot Table, que no caso acima é a média.

Trocar o Tipo de Agregamento

aggfunc

Parâmetro da função Pivot Table

pd.pivot_table(df, index='Data', columns='Vendedor', values='Vendas', aggfunc='sum')

Vendedor George Pedro Vagner

Data

2019-01-01 15 3 6

Stack e Unstack de Dados

Stack significa **empilhar** os valores, basicamente pega todas as colunas e empilha em uma **única coluna**. **Ajuda a visualizar** melhor alguns tipos de Dataframe.

read

Método que lê um data frame:

df = p	df = pd.read_csv("https://cdncontribute.geeksforgeeks.org/wp-content/uploads/nba.csv")								
	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
453	Shelvin Mack	Utah Jazz	8.0	PG	26.0	6-3	203.0	Butler	2433333.0
454	Raul Neto	Utah Jazz	25.0	PG	24.0	6-1	179.0	NaN	900000.0
455	Tibor Pleiss	Utah Jazz	21.0	С	26.0	7-3	256.0	NaN	2900000.0
456	Jeff Withey	Utah Jazz	24.0	С	26.0	7-0	231.0	Kansas	947276.0
457	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

head

Método que lê as **primeiras linhas** de um Dataframe:

stack

Método que empilha os dados em apenas uma coluna.

```
stack_df = df.stack()
stack_df
0
                   Avery Bradley
     Name
                  Boston Celtics
      Team
     Number
                              0.0
     Position
                               PG
                             25.0
      Age
456 Age
                             26.0
     Height
                              7-0
     Weight
                           231.0
     College
                          Kansas
     Salary
                        947276.0
Length: 4018, dtype: object
```

unstack

Método que reverte o método stack.

```
udf = stack_df.unstack()
udf
```

	Name	Team	Number	Position	Age	Height	Weight	College	Salary
0	Avery Bradley	Boston Celtics	0.0	PG	25.0	6-2	180.0	Texas	7730337.0
1	Jae Crowder	Boston Celtics	99.0	SF	25.0	6-6	235.0	Marquette	6796117.0
2	John Holland	Boston Celtics	30.0	SG	27.0	6-5	205.0	Boston University	NaN
3	R.J. Hunter	Boston Celtics	28.0	SG	22.0	6-5	185.0	Georgia State	1148640.0
4	Jonas Jerebko	Boston Celtics	8.0	PF	29.0	6-10	231.0	NaN	5000000.0
452	Trey Lyles	Utah Jazz	41.0	PF	20.0	6-10	234.0	Kentucky	2239800.0
453	Shelvin Mack	Utah Jazz	8.0	PG	26.0	6-3	203.0	Butler	2433333.0
454	Raul Neto	Utah Jazz	25.0	PG	24.0	6-1	179.0	NaN	900000.0
455	Tibor Pleiss	Utah Jazz	21.0	С	26.0	7-3	256.0	NaN	2900000.0
456	Jeff Withey	Utah Jazz	24.0	С	26.0	7-0	231.0	Kansas	947276.0

Método Melt

Basicamente, faz um tipo de fundição, reformatação dos dados.

```
df = pd.DataFrame(
{
    'A': {0: 'a', 1: 'b', 2: 'c'},
    'B': {0: 1, 1: 3, 2: 5},
    'C': {0: 2, 1: 4, 2: 6}
}

df
```

id_vars

Parâmetro que define a **referência**, **index** da tabela. É a referência para **combinações** possíveis, ou seja, todas as combinações são feitas em volta dessa referência.

values_vars

Parâmetro que define os valores da tabela.

Uma Coluna

pd.melt(df, id_vars=['A'], value_vars=['B'])

Duas Colunas

pd.melt(df, id_vars=['A'], value_vars=['B', 'C'])

var_name

Customiza colunas.

pd.melt(df, id_vars=['A'], value_vars=['B', 'C'], var_name='VarTeste')

pd.melt(df, id_vars=['A'], value_vars=['B', 'C'], var_name='VarTeste', value_name='Nome do Valor')

Exemplo Real

```
data = {
  'localizacao': ['CidadeA', 'CidadeB'],
  'temperatura': ['Prevista', 'Atual'],
  'set-2019': [30, 32],
  'out-2019': [45, 43],
  'nov-2019': [24, 22]
df = pd.DataFrame(data, columns=['localizacao', 'temperatura', 'set-2019', 'out-2019', 'nov-2019'])
df
    localizacao temperatura set-2019 out-2019 nov-2019
0
         CidadeA
                         Prevista
                                          30
                                                       45
                                                                  24
         CidadeB
                                                                  22
                            Atual
                                           32
                                                       43
```

```
df2 = pd.melt(df, id_vars=['localizacao', 'temperatura'], var_name='Date', value_name='Valor')
df2
```

	localizacao	temperatura	Date	Valor
0	CidadeA	Prevista	set-2019	30
1	CidadeB	Atual	set-2019	32
2	CidadeA	Prevista	out-2019	45
3	CidadeB	Atual	out-2019	43
4	CidadeA	Prevista	nov-2019	24
5	CidadeB	Atual	nov-2019	22

Seleção de Linhas e Colunas

Seleção de Linhas e Colunas

Selecionar uma Coluna

```
data = pd.date_range('20240404', periods = 600, freq='D')

df = pd.DataFrame(np.random.randn(600, 5), index=data, columns=list('ABCDE'))
```

	А	В	С	D	E
2024-04-04	-0.119895	-0.632230	-0.445982	-0.156526	1.828210
2024-04-05	-1.904037	0.724080	0.943096	-0.183600	-1.951417
2024-04-06	0.114000	-0.082972	-1.027746	0.134998	0.870852
2024-04-07	0.833892	0.009063	-1.595851	0.067835	-0.425049
2024-04-08	-0.700873	0.637205	0.059915	-1.699029	1.200475
2025-11-20	0.568745	0.643103	-0.437746	-0.254525	-0.102751
2025-11-21	-0.509273	0.186878	-1.115354	-0.265476	0.102002
2025-11-22	-0.218401	-0.893301	0.506854	0.482486	-0.655852
2025-11-23	1.687144	-0.903900	-0.783969	-0.041586	1.053660
2025-11-24	0.929284	-0.176268	-1.858874	0.402894	-0.172809
600 rows × 5	columns				

Selecionar Todas as Linhas de Colunas Específicas

df.loc[:, ['B', 'C', 'D']]

					4
	А	В	C	D	E
2024-04-04	-0.119895	-0.632230	-0.445982	-0.156526	1.828210
2024-04-05	-1.904037	0.724080	0.943096	-0.183600	-1.951417
2024-04-06	0.114000	-0.082972	-1.027746	0.134998	0.870852
2024-04-07	0.833892	0.009063	-1.595851	0.067835	-0.425049
2024-04-08	-0.700873	0.637205	0.059915	-1.699029	1.200475
2025-11-20	0.568745	0.643103	0.437746	-0.254525	-0.102751
2025-11-21	-0.509273	0.186878	-1.115354	-0.265476	0.102002
2025-11-22	-0.218401	-0.893301	0.506854	0.482486	-0.655852
2025-11-23	1.687144	-0.903900	-0.783969	-0.041586	1.053660
2025-11-24	0.929284	-0.176268	-1.858874	0.402894	-0.172809
600 rows × 5	columns		1		

Selecionar Intervalo de Linhas

Lembrando que a **indexação** começa em **zero**

-	•				
	А	В	С	D	E
2024-04-04	-0.119895	-0.632230	-0.445982	-0.156526	1.828210
2024-04-05	-1.904037	0.724080	0.943096	-0.183600	-1.951417
2024-04-06	0.114000	-0.082972	-1.027746	0.134998	0.870852
2024-04-07	0.833892	0.009063	-1.595851	0.067835	-0.425049
2024-04-08	-0.700873	0.637205	0.059915	-1.699029	1.200475

df[1:5]

	А	В	С	D	E
2024-04-05	-1.904037	0.724080	0.943096	-0.183600	-1.951417
2024-04-06	0.114000	-0.082972	-1.027746	0.134998	0.870852
2024-04-07	0.833892	0.009063	-1.595851	0.067835	-0.425049
2024-04-08	-0.700873	0.637205	0.059915	-1.699029	1.200475

Selecionar por Intervalo de Datas

Select for Dates

df.loc['20240404': '20241017']

	А	В	С	D	E
2024-04-04	-0.119895	-0.632230	-0.445982	-0.156526	1.828210
2024-04-05	-1.904037	0.724080	0.943096	-0.183600	-1.951417
2024-04-06	0.114000	-0.082972	-1.027746	0.134998	0.870852
2024-04-07	0.833892	0.009063	-1.595851	0.067835	-0.425049
2024-04-08	-0.700873	0.637205	0.059915	-1.699029	1.200475
2024-10-13	0.937643	-2.365223	-0.831370	1.172778	0.371069
2024-10-14	0.960666	-0.690932	-0.504381	0.461184	0.147977
2024-10-15	0.272189	0.417760	-0.955876	-1.497914	-0.143574
2024-10-16	-1.412115	-0.540509	0.577998	0.630402	0.448853
2024-10-17	-0.858036	1.549097	1.570871	0.942870	-0.636240

Selecionar Colunas Específicas por Intervalo de Datas

Select for Dates of some Columns

df.loc['20240404': '20241017', ['A', 'C', 'E']]

	Α	С	E
2024-04-04	-0.119895	-0.445982	1.828210
2024-04-05	-1.904037	0.943096	-1.951417
2024-04-06	0.114000	-1.027746	0.870852
2024-04-07	0.833892	-1.595851	-0.425049
2024-04-08	-0.700873	0.059915	1.200475
2024-10-13	0.937643	-0.831370	0.371069
2024-10-14	0.960666	-0.504381	0.147977
2024-10-15	0.272189	-0.955876	-0.143574
2024-10-16	-1.412115	0.577998	0.448853
2024-10-17	-0.858036	1.570871	-0.636240

Obter Valores de Uma Linha

	A	В	С	D	E
2024-04-04	-1.195046	-1.594711	-1.010437	0.986140	0.191065
2024-04-05	-0.068435	-0.237879	0.717221	0.632073	-1.771705
2024-04-06	-1.159017	0.522043	0.632084	-0.661912	-0.236849
2024-04-07	-0.897142	-0.290861	0.606141	-1.248135	-0.951267
2024-04-08	-1.135759	0.067661	0.907841	0.185759	-1.483362
2025-11-20	-0.896075	-0.190532	-0.273760	0.651769	-0.598784
2025-11-21	0.112284	0.915047	-0.822601	0.208620	-0.673778
2025-11-22	0.897002	0.919017	0.054211	-1.940484	2.582923
2025-11-23	-2.663626	0.387104	-1.051128	0.459156	1.413099
2025-11-24	-0.471499	-0.213823	-1.039168	1.024273	-1.010700
600 rows × 5	columns				

df.iloc[1] -0.068435 -0.237879 0.717221 0.632073 -1.771705 Name: 2024-04-05 00:00:00, dtype: float64

Obter Valores Selecionando Células

	Α	В	С	D	E
2024-04-04	-1.195046	-1.594711	-1.010437	0.986140	0.191065
2024-04-05	-0.068435	-0.237879	0.717221	0.632073	-1.771705
2024-04-06	-1.159017	0.522043	0.632084	-0.661912	-0.236849
2024-04-07	-0.897142	-0.290861	0.606141	-1.248135	-0.951267
2024-04-08	-1.135759	0.067661	0.907841	0.185759	-1.483362
2025-11-20	-0.896075	-0.190532	-0.273760	0.651769	-0.598784
2025-11-21	0.112284	0.915047	-0.822601	0.208620	-0.673778
2025-11-22	0.897002	0.919017	0.054211	-1.940484	2.582923
2025-11-23	-2.663626	0.387104	-1.051128	0.459156	1.413099
2025-11-24	-0.471499	-0.213823	-1.039168	1.024273	-1.010700
600 rows × 5	columns				

df.iloc[2:4, 0:2]

2024-04-06 -1.159017 0.522043 **2024-04-07** -0.897142 -0.290861

Obter Posições Específicas de um Dataframe

8-4-4-PB

	Α	В	С	D	E
2024-04-04	-1.195046	-1.594711	-1.010437	0.986140	0.191065
2024-04-05	-0.068435	-0.237879	0.717221	0.632073	-1.771705
2024-04-06	-1.159017	0.522043	0.632084	-0.661912	-0.236849
2024-04-07	-0.897142	-0.290861	0.606141	-1.248135	-0.951267
2024-04-08	-1.135759	0.067661	0.907841	0.185759	-1.483362
2024-04-09	-1.504186	-0.066096	-0.187158	1.771984	0.647943
2024-04-10	1.215140	-1.183943	0.647133	-1.655093	-1.182784
2024-04-11	-0.292092	-0.935341	-1.126067	-0.119163	1.060261
2024-04-12	-1.037691	-1.159713	-0.502351	-0.106402	-1.442331
2024-04-13	-1.807584	0.024583	0.411324	1.749290	0.470552

Get specific positions

df.iloc[[1, 5, 6], [0, 3]]

	Α	D
2024-04-05	-0.068435	0.632073
2024-04-09	-1.504186	1.771984
2024-04-10	1.215140	-1.655093

Obter valores de intervalo de linhas e todas as colunas

Get row interval and all columns df.iloc[1:3, :]

	А	В	С	D	Ε
2024-04-05	-0.068435	-0.237879	0.717221	0.632073	-1.771705
2024-04-06	-1.159017	0.522043	0.632084	-0.661912	-0.236849

Filtros Booleanos

Outra Forma de Obter Dados por Coluna

Condição para todo o DF

```
# All DF just Positive Values
df[df > 0]
```

	А	В	С	D	E
2024-04-04	NaN	NaN	NaN	0.986140	0.191065
2024-04-05	NaN	NaN	0.717221	0.632073	NaN
2024-04-06	NaN	0.522043	0.632084	NaN	NaN
2024-04-07	NaN	NaN	0.606141	NaN	NaN
2024-04-08	NaN	0.067661	0.907841	0.185759	NaN
2025-11-20	NaN	NaN	NaN	0.651769	NaN
2025-11-21	0.112284	0.915047	NaN	0.208620	NaN
2025-11-22	0.897002	0.919017	0.054211	NaN	2.582923
2025-11-23	NaN	0.387104	NaN	0.459156	1.413099
2025-11-24	NaN	NaN	NaN	1.024273	NaN

Condição Por Coluna

Todas as Colunas por Resultado

Serão selecionadas **todas as linhas** de **todo o Dataframe** que atendam a condição:

Condition for Column
df[df.A > 0]

	А	В	С	D	E
2024-04-10	1.215140	1.183943	0.647133	-1.655093	-1.182784
2024-04-14	1.423161	1.323452	-0.128855	1.042204	-0.607324
2024-04-17	0.015708	0.526147	0.654818	-0.715164	-2.354937
2024-04-20	0.349436	0.434188	1.783528	-1.175023	-0.892859
2024-04-22	2.026695	-0.538293	-1.464009	-0.736399	0.405315
2025-11-17	0.027370	-0.881654	-0.523321	0.308872	1.059784
2025-11-18	1.135881	-0.114435	-0.319849	1.288983	-1.136965
2025-11-19	0.445291	0.785876	-0.451441	-0.434800	-0.543921
2025-11-21	0.112284	0.915047	-0.822601	0.208620	-0.673778
2025-11-22	0.897002	0.919017	0.054211	-1.940484	2.582923

Limpeza de Dados

Data Wrangling

Estudo relacionado com a **Limpeza e Estruturação** de Dados. Depois de efetuar a limpeza necessária, é necessário que haja a estruturação adequada para serem efuetuadas as análises.

Big Data

É um grande volume de dados que não pode ser processado por métodos tradicionais devido à sua quantidade, variedade e velocidade. Forma de obtenção de dados fundamentada em 4 V's:

Volume

Volume grande de dados.

Velocidade

Gerados em uma velocidade alta.

Variedade

Diversos tipos de dados.

Veracidade

Qualidade e confiabilidade dos dados.

IOT

Internet of Things, plataformas que estão relacionadas a internet.

Entender os Dados

- Saber o Objetivo,
- Transformar em estruturas adequadas para análise,
- Salvar Arquivos e
- Separar Diretórios.

Fluxo Completo

Dado -> Estrutura -> Arquivo

Pipeline

É uma sequência de passos que os dados seguem desde a coleta até a análise. Ele pode incluir a extração dos dados, limpeza, transformação, carregamento e análise. Cada etapa do pipeline prepara os dados para a próxima, garantindo que sejam processados de forma eficiente e organizada.

Sumarizando Dados

Entender como estão estruturados os dados obtidos.

Descobrir Tipos de Dados em um Data Frame

Somente é possível realizar uma boa limpeza e estruturação, depois de identificar os tipos de dados.

dtype

df.dtypes

Var_A float64
Var_A float64
Var_C float64
Var_D float64
dtype: object

Sumarização

Resumir os dados.

describe()

É feito apenas em dados numéricos.

A C D count 4.0 4 4.0 4.0 mean 1.0 2013-01-02 00:00:00 1.0 3.0 min 1.0 2013-01-02 00:00:00 1.0 3.0 25% 1.0 2013-01-02 00:00:00 1.0 3.0 1.0 2013-01-02 00:00:00 1.0 3.0 50% 75% 1.0 2013-01-02 00:00:00 1.0 3.0 1.0 2013-01-02 00:00:00 1.0 3.0 max std 0.0 NaN 0.0 0.0

Count

Contagem do Número de Linhas.

Mean

Média.

Min

Valor mínimo.

25%, 50%, 75%

Estatística Descritiva que da inúmeras ideias quanto ao estado dos dados em cada parte do Dataframe. Como por exemplo: Assimetria, média, etc.

Max

Valor Máximo.

Std

Desvio Padrão

**REFAZER Reindexação

7:00

Dados Missing - NaN

datas = pd.date_range('20190101', periods = 60, freq="D")

df = pd.DataFrame(np.random.randn(60, 5), index=datas, columns=list('ABCDE'))

df

	А	В	С	D	E
2019-01-01	-0.169796	-0.477856	0.024719	0.021465	-1.407112
2019-01-02	1.865727	0.739576	-1.892937	-0.004724	-0.187821
2019-01-03	-0.219678	-1.072485	0.517266	-1.611939	0.491082
2019-01-04	0.347446	-0.821685	1.591727	-0.915793	-0.102149

df['F'] = df.A[df.A > 0]

Corrigindo

Há maneiras de corrigir isso.

Remover Linhas NaN

Dropna

Método para **remover valores NaN**, mas também remove as **linhas**.

df2 = df.co df2	ру()						
	А	В	С	D	E	F	
2019-01-01	-0.169796	-0.477856	0.024719	0.021465	-1.407112	NaN	
2019-01-02	1.865727	0.739576	-1.892937	-0.004724	-0.187821	1.865727	0
2019-01-03	-0.219678	-1.072485	0.517266	-1.611939	0.491082	NaN	- ,
2019-01-04	0.347446	-0.821685	1.591727	-0.915793	-0.102149	0.347446	ן ו
2019-01-05	0.368275	0.457689	-0.640344	-0.400149	-1.354794	0.368275	
2019-01-06	-0.725896	-0 039305	2 287562	0 578945	-0 053486	NaN	
2019-01-07	-0 286739	-0.797215	1.449312	1.236864	-1.662811	NaN	
2019-01-08	0.452812	-0.847263	0.159311	0.851509	-1.757498	0.452812	3
2019-01-09	-1.610690	-0.790924	0.018338	0.791481	-0.471551	NaN	

Substituir NaN pela Média

fillna

Método que preenche com um valor os NaN's

outra forma

Dados Únicos

Duplicatas

Verificar se há dados repetidos em um Data Frame

```
df2 = pd.DataFrame({
    'A': 1.,
    'B': pd.Timestamp('20130102'),
    'C': pd.Series(1, index=list(range(4)), dtype='float32'),
    'D': np.array([3] * 4, dtype='int32'),
    'E': pd.Categorical(["test", "train", "test", "train"]),
    'F': 'Python',
    'G': [2, 2, 4, 4],
    'H': [np.nan, 2, 4, np.nan]
})
```

		Α	В	С	D	E	F	G	Н
ı	0	1.0	2013-01-02	1.0	3	test	Python	2	NaN
	1	1.0	2013-01-02	1.0	3	train	Python	2	2.0
	2	1.0	2013-01-02	1.0	3	test	Python	4	4.0
	3	1.0	2013-01-02	1.0	3	train	Python	4	NaN

nunique(axis, dropna) ou ()

Contar valores distintos por **coluna**.

axis

Busca as linhas, ou seja, os indices.

0

Valor default.

dropna

True

Valor **default**, <u>Não</u> conta o NaN

False

Conta o NaN

Importando e Exportando

Tipos de Arquivos

txt

Arquivo imples, tipo texto. Geralmente utilizado para dados não estruturados.

CSV

Comma Separated Values, Valores Separados por Vírgulas, mais comum.

xlsx

Arquivos Excel.

Repositório de Dados Gratuitos

UCI Machine Learning Repository

Abrindo Arquivos de Dados Externos