A Compact ENDF (ACE) Format Specification

Jeremy Lloyd Conlin (editor)¹, Forrest B. Brown², and Brian K. Kiedrowski^{2,3}

¹Los Alamos National Laboratory, Nuclear Data Team ²Los Alamos National Laboratory, MCNP Team ³University of Michigan, Department of Nuclear Engineering and Radiological Sciences

Contents

1	Introduction	4
	1.1 Types of ACE-Formatted Data	4
	1.2 Classes of ACE-Formatted Data	
	1.3 ACE Libraries	
2	ACE Tables	6
-	2.1 ACE Header	_
	2.1.1 IZAW Array	
	·	
	2.1.2 W. III ay	
	2.1.3 JXS Array	
	2.2 The XSS Array	8
3	Unique ACE Table Identifier	10
	3.1 ZAID	10
	3.2 SZAID	
4	Continuous-Energy and Discrete Neutron Transport Tables	11
	4.1 NXS Array	12
	4.2 JXS Array	
	4.3 Format of Individual Data Blocks	
	4.3.1 ESZ Block	
	4 3 2 NU Block	14

		4.3.3 MTR & MTRP Blocks	15			
		4.3.4 LQR Block	16			
		4.3.5 TYR Block	16			
		4.3.6 LSIG & LSIGP Block	17			
		4.3.7 SIG Block	18			
		4.3.8 LAND Block	18			
		4.3.9 AND Block	19			
		4.3.10 LDLW Block	20			
		4.3.11 DLW Block	20			
		4.3.12 GPD Block	21			
		4.3.13 MTRP Block	21			
		4.3.14 SIGP Block	21			
		4.3.15 LANDP Block	21			
		4.3.16 ANDP Block	22			
		4.3.17 LDLWP Block	22			
		4.3.18 DLWP Block	22			
		4.3.19 YP Block	22			
		4.3.20 FIS Block	23			
		4.3.21 UNR Block	23			
5	Neu	tron Dosimetry	24			
	5.1	NXS Array	24			
	5.2	JXS Array	24			
6	The		25			
	6.1	NXS Array	25			
	6.2	JXS Array	25			
7	Con	tinuous-Energy Photon	26			
	7.1	NXS Array	26			
	7.2	JXS Array				
L	ist o	f Tables				
	1	Variables in the Legacy Opening part of the ACE Header	7			
	2	Variables in the Legacy Opening part of the ACE Header	7			
	3	• • • •	י 12			
	$\frac{3}{4}$	·	13			
	5	·	13 14			
	5 6		$14 \\ 14$			
	7		$14 \\ 15$			
	8		15 15			
	9		16			
	9 10					
	T U	MTR & MTRP Block				

11	LQR Block	16				
12	TYR Block	17				
13	LSIG & LSIGP Block	17				
14	SIG Block	18				
15	Cross section array for the <i>i</i> -th reaction	18				
16	LAND Block	19				
17	AND Block	19				
18	Angular distribution array for the <i>i</i> -th reaction	19				
19	Format for the 32 equiprobable bin distribution	20				
20	Format for the tabulated angular distribution	20				
21	LDLW Block	20				
22	DLW Block. (continued)	21				
22	DLW Block	21				
23	GPD Block	21				
24	MTRP Block	21				
25	SIGP Block	21				
26	LANDP Block	22				
27	ANDP Block	22				
28	LDLWP Block	22				
29	DLWP Block	22				
30	YP Block	23				
31	FIS Block	23				
32	UNR Block	23				
33	NXS array element definitions for neutron dosimetry ACE Table	24				
34	JXS array element definitions for neutron dosimtry ACE Table	24				
35	NXS array element definitions for thermal scattering ACE Table	25				
36	JXS array element definitions for thermal scattering ACE Table	25				
37	NXS array element definitions for NXS ACE Table	26				
38	JXS array element definitions for JXS ACE Table	26				
Todo	list					
Don't fo	orget the 2.0.1 Header Opening	6				
	iis	7				
verify correctness						
provide reference						
This needs to be done						
Does NXS[15] apply to every type of data, or just fast tables?						
Fix Table ?? so that the third column isn't so have						

1 Introduction

The ACE format consists of two *types* and many *classes* of data. The data are kept in an ACE Table. The term ACE Table and ACE file are often used interchangeably.

1.1 Types of ACE-Formatted Data

There are two types of ACE-formatted data; simply called Type 1 and Type 2.

- **Type 1** Standard formatted tables. These tables contain ASCII text and are machine independent; they are readable on every machine.
- Type 2 Standard unformatted tables. These tables are binary and can be generated from the Type 1 files. They are more compact and faster to read than the Type 1 ACE Tables but are machine/platform dependent; they are not readable on every machine

Traditionally Type 2 ACE files were more commonly used because they were smaller in size and faster to read. However due to the fact that they are not portable across machines and platforms they have fallen out of fashion.

1.2 Classes of ACE-Formatted Data

There are many classes of ACE-formatted data:

- 1. continuous-energy neutron (see Section 4),
- 2. discrete-reaction neutron,
- 3. neutron dosimetry (see Section 5),
- 4. $S(\alpha, \beta)$ thermal (see Section 6),
- 5. continuous-energy photoatomic (see Section 7),
- 6. continuous-energy electron interaction,
- 7. continuous-energy photonuclear interaction,
- 8. multigroup-energy neutron, and
- 9. multigroup-energy photoatomic.

Each of these classes of data are described later in this document.

An ACE Table is an entity that contains evaluation-dependent data about one of the many classes of data for a specific material—an target isotope, isomer, or element. For a given ZAID, the data contained on a Type 1 and Type 2 tables are identical. Simulations run with one type of data should produce identical results as those run with the other type of data.

1.3 ACE Libraries

A collection of ACE data tables that derive from a single set of evaluation files are typically grouped together in a "library"—not to be confused from the evaluation library from which they derive. Multiple ACE data tables can concatenated into the same logical file on the computer, although this has fallen somewhat out of fashion due to the large amount of data on each ACE table derived from modern evaluation files. Applications

that use ACE-formatted data should produce the same results regardless of whether the tables are contained in one logical file on the computer or spread across many.

2 ACE Tables

An ACE Table consists of a Header followed by an array (XSS) containing the actual data. The Header and XSS array are the same regardless of whether the ACE Table is Type 1 or Type 2. Each line in a Type 1 ACE Table is 80 characters or less.

2.1 ACE Header

The first section of an ACE Table is the Header. The ACE Header contains metadata¹ about the ACE Table. The Header consists of four parts:

- 1. Opening,
- 2. IZAW array,
- 3. NXS array, and
- 4. JXS array.

An example of an ACE Table Header (from ¹H in the ENDf71x library) is given in Figure 1 with each part highlighted a different color.

1	1001.80c	0.999167	2.5301	E-08 12/17/	12			
2	H1 ENDF71x	(jlconlin)	Ref.	see jlconlin	(ref	09/10/2012	10:00:53)	mat 125
3	0	0.	0	0.	0	0.	0	0.
4	0	0.	0	0.	0	0.	0	0.
5	0	0.	0	0.	0	0.	0	0.
6	0	0.	0	0.	0	0.	0	0.
7	17969	1001	590	3	0	1	1	0
8	0	1	1	0	0	0	0	0
9	1	0	2951	2954	2957	2960	2963	4352
10	4353	5644	5644	5644	6234	6235	6236	6244
11	6245	6245	6246	16721	0	16722	0	0
12	0	0	0	0	0	16723	16724	16725

Figure 1: Header example. The (Legacy) Opening (lines 1–2) is in red, the IZAW array (lines 3–6) is in blue, the NXS array (lines 7–8) is in teal, and the JXS array (lines 9–12) is in violet.

Legacy Header Opening There are two slightly different formats for the Header Opening. The most common one found is called here the Legacy Opening and is the one demonstrated in the Header example in Figure 1.

The Legacy Opening consists of several variables given over two 80-character lines. The variables and the Fortran format for reading the variable is given in Table 1

2.0.1 Header Opening

Don't forget the 2.0.1 Header Opening

¹data about the data

Line	Variable	Format	Description
1	HZ	A10	ZAID (see Section 3.1)
1	AW	E12.0	atomic weight ratio
1	TZ	E12.0	temperature
1	_	1 X	(blank space)
1	HD	A10	processing date
2	HK	A70	descriptive string
2	$_{\mathrm{HM}}$	A10	10-character material identifier

Table 1: Variables in the Legacy Opening part of the ACE Header.

Line	Variable	Format	Description
1	VERS	A10	version format string
1	HZ	A24	SZAID (see Section 3.2)
1	SRC	???	evaluation source
2	AW	E12.0	atomic weight ratio
2	TZ	E12.0	temperature
2	_	1 X	(blank space)
2	HD	A10	processing date
2	N	I10	number of comment lines to follow
3-(N+2)		A70	comment lines

Table 2: Variables in the 2.0.1 Opening part of the ACE Header.

There is a limitation to the number of unique ZA IDs for a given ZA; 100 different IDs, in fact, for each class of ACE Table. To overcome this limitation, a new Header Opening was developed in 2013and updated a few years later to correct some errors.

check this

```
2.0.0 1001.710nc ENDFB-VII.1

0.999167 2.5301E-08 12/17/12 3

The next two lines are the first two lines of 'old-style' ACE.

1001.80c 0.999167 2.5301E-08 12/17/12

H1 ENDF71x (jlconlin) Ref. see jlconlin (ref 09/10/2012 10:00:53) mat 125
```

Figure 2: Header Opening example. The Legacy Opening is shown in blue while the 2.0.1 Opening consists of the red and the blue portions.

Note that a Legacy Header Opening can be contained in the comment section of the 2.0.1 Header Opening. This was designed explicitly to allow backwards compatibility while application codes were modified to be able to handle. An example of this is shown in Figure 1. Codes that cannot read the 2.0.1 Header can be told (typically via an

verify correctness xsdirentry) to start reading the ACE Table several lines after the beginning of the 2.0.1 Header.

provide reference

Following the Opening of the Header are three arrays, IZAW, NXS, and JXS respectively. They are each described below. Immediately following the JXS array is the XSSarray.

2.1.1 IZAW Array

The IZAW array follows on the lines immediately following the Header. It consists of 16 pairs of ZA's (IZ) and atomic weight ratios (AW). The IZ entries are still needed for $S(\alpha, \beta)$ Tables to indicate for which isotope(s) the scattering data are appropriate.

The 16 pairs of numbers are spread over 4 lines. The Fortran format for reading/writing the numbers on one line is: 4(I7,F11.0).

2.1.2 NXS Array

The NXS array comes on the 2 lines after the IZAW array. The NXS array has 16 integer elements; 8 on each line. The Fortran format for reading/writing the numbers on each line is: 819. The first element of the NXS array indicates how many numbers are in the XSS array. The remainder of the NXS array elements (usually) indicate how many of different pieces of data there is.

2.1.3 JXS Array

The JXS array comes on the 4 lines after the NXS array. The JXS array has 32 integer elements; 8 on each line. The Fortran format for reading/writing the numbers on each line is: 819. The JXS array contains indices to the XSS array where difference pieces of data begins.

The specific definition of the elements of the NXS and JXS arrays are dependent on the class of data in the Table and are defined in the section of this document that describes each class of data.² Note that not all elements of the arrays are (currently) being used, allowing for future expansion.

2.2 The XSS Array

After the ACE Header comes the XSS array. It is typically *very* large with hundreds of thousands of elements. It is broken up into blocks with the blocks being dependent on the class of data that is contained in the table. The description and definition of each of these blocks can be found in the descriptions later in this document.

The data is written with 4 floating-point numbers on each 80-character line. All data in the XSS array can be read using the Fortran format: 4E20.0 for each line.

²See, for example, Table 3 and Table 4.

```
2.0.0
              1001.710nc
                                       ENDFB-VII.1
  0.999167 2.5301E-08 12/17/12
                                    3
_3 \hspace{-0.5mm} \mid The next two lines are the first two lines of 'old-style' ACE.
    1001.80c
                 0.999167 2.5301E-08
                                        12/17/12
  H1 ENDF71x (jlconlin) Ref. see jlconlin (ref 09/10/2012 10:00:53)
                                                                             mat 125
  1.000000000E-11
                      1.03125000000E-11
                                                               1.09375000000E-11
                                           1.06250000000E-11
  1.1250000000E-11
                       1.15625000000E-11
                                           1.18750000000E-11
                                                                1.21875000000E-11
  1.2500000000E-11
                       1.28125000000E-11
                                           1.31250000000E-11
                                                                1.34375000000E-11
  1.3750000000E-11
                       1.43750000000E-11
                                           1.5000000000E-11
                                                                1.5625000000E-11
10
  1.6250000000E-11
                       1.6875000000E-11
                                           1.7500000000E-11
                                                                1.8125000000E-11
  1.8750000000E-11
                       1.9375000000E-11
                                           2.000000000E-11
                                                                2.09375000000E-11
  2.1875000000E-11
                       2.28125000000E-11
                                           2.3750000000E-11
                                                                2.46875000000E-11
  2.56250000000E-11
                       2.65625000000E-11
                                           2.7500000000E-11
                                                                2.84375000000E-11
  2.9375000000E-11
                       3.03125000000E-11
                                           3.1250000000E-11
                                                                3.21875000000E-11
  3.3125000000E-11
                       3.40625000000E-11
                                           3.5000000000E-11
                                                                3.59375000000E-11
```

Figure 3: ACE Header with beginning of XSS array for ¹H from the ENDF71x library. Note this uses the 2.0.1 Header with backwards compatibility with the Legacy Header.

3 Unique ACE Table Identifier

This needs to be done.

Each ACE Table needs to have an identifier to uniquely distinguish the data that is contained in the Table.

3.1 **ZAID**

3.2 SZAID

With the introduction of the 2.0.1 ACE Header, the identifier was modified to better specify the metastable state of the material as well as expand the available space for identifiers.

The new identifier is referred to as a SZAID³.

³pronounced "ess-ZAID"

4 Continuous-Energy and Discrete Neutron Transport Tables

The format of individual blocks found on neutron transport tables is identical for continuousenergy and discrete-reaction ACE Tables; the format for both are described in this section. The blocks of data are:

- 1. **ESZ Block**—contains the main energy gid for the Table and the total, absorption, and elastic cross sections as wella s the average heating numbers. The ESZ Block block always exists. See Section 4.3.1.
- 2. **NU Block**—contains prompt, delayed and/or total $\overline{\nu}$ as a function of incident neutron energy. The **NU** Block exists only for fissionable isotopes; that is, if $JXS(2) \neq 0$. See Section 4.3.2.
- 3. MTR Block—contains a list of ENDF MT numbers for all neutron reactions other than elastic scattering. The MTR Block exists for all isotopes that have reactions other than elastic scattering; that is, all isotopes with NXS(4) \neq 0. See Section 4.3.3.
- 4. LQR Block—contains a list of kinematic Q-values for all neutron reactions other than elastic scattering. The LTR Block exists if NXS(4) \neq 0. See Section 4.3.4.
- 5. **TYR Block**—contains information about the type of reaction for all neutron reactions other than elastic scattering. Information for each reaction includes the number of secondary neutrons and whether secondary neutron angular distributions are in the laboratory or center-of-masssystem. The TYR Block exists if NXS(4) \neq 0. See Section 4.3.5.
- 6. **LSIG Block**—contains a list of cross section locators for all neutron reacitons other than elastic scattering. The LSIG Block exists if NXS(4) \neq 0. See Section 4.3.6
- 7. SIG Block—contains cross sections for all reactions other than elastic scattering. The SIG Block exists if NXS(4) \neq 0. See Section 4.3.7.
- 8. **LAND Block**—contains a list of angular-distribution locators for all reactions producing secondary neutrons. The LAND Block always exists. See Section 4.3.8.
- 9. AND Block—contains list angular distributions for all reactions producing secondary neutrons. The AND Block always exists. See Section 4.3.9.
- 10. **LDLW Block**—contains a list of energy distributions for all reactions producing secondary neutrons except for elastic scattering. The LDLW Block exists if NXS(5)≠ 0. See Section 4.3.10.
- 11. **DLW Block**—contains energy distributions for all reactions producing secondary neutrons except for elastic scattering. The DLW Block exists if NXS(5) \neq 0. See Section 4.3.11.
- 12. **GPD Block**—contains the total photon production cross section tabulated on the ESZ energy grid and a $30 \times$ matrix of secondary photon energies. The GPD Block exists only for those older evaluations that provide coupled neutron/photon information; that is, if $JXS(12) \neq 0$. See Section 4.3.12.
- 13. MTRP Block—contains a list of MT numbers for all photon production reactions. The term "photon production reaction" is used for any information describing a specific neutron-in, photon-out reaction. The MTR Block exists if NXS(6) \neq 6. See

- Section 4.3.3.
- 14. **LSIGP Block**—contains a list of cross section locators for all photon production reactions. The LSIGP Block exists if NXS(6) \neq 0. See Section 4.3.6.
- 15. **SIGP Block**—contains cross sections for all photon production reactions. The SIGP Block exists if NXS(6) \neq 0. See Section 4.3.14.
- 16. **LANDP Block**—contains a list of angular-distribution locators for all photon production reactions. The LANDP Block exist if NXS(6) \neq 0. See Section 4.3.15
- 17. **ANDP Block**—contains photon angular distributions for all photon production reactions. The ANDP Block exists if NXS(6) \neq 0. See Section 4.3.16.
- 18. **LDLWP Block**—contains a list of energy-distribution locators for all photon production reactions. The LDLWP Block exists if NXS(6) \neq 0. See Section 4.3.17.
- 19. **DLWP Block**—contains photon energy distributions for all photon production reactions. The DLWP Block exists if NXS(6) \neq 0. See Section 4.3.18.
- 20. **YP Block**—contains a list of MT identifiers of neutron reaction cross sections required as photon production yield multipliers. The YP Block exists if NXS(6) \neq 0. See Section 4.3.19.
- 21. **FIS Block**—contains the total fission cross section tabulated on the ESZ energy grid. The FIS Block exists if $JXS(21) \neq 0$. See Section 4.3.20.
- 22. **UNR Block**—contains the unresolved resonance range probability tables. The UNR Block exists if $JXS(23) \neq 0$. See Section 4.3.21.

4.1 NXS Array

Table 3: NXS array element definitions for NXS ACE Table.

Element	Name	Description
1	_	Length of second block of data (XSS array)
2	ZA	1000*Z+A
3	NES	Number of energies
4	NTR	Number of reactions excluding elastic scattering
5	NR	Number of reactions having secondary neutrons excluding elastic scattering
6	NTRP	Number of photon production reactions
8	NPCR	Number of delayed neutron precurser families
15	NT	Number of PIKMT reaction
16		0=normal photon production
		-1=do not produce photons

Does NXS[15] apply to every type of data, or just fast tables?

4.2 JXS Array

Table 4: JXS array element definitions for JXS ACE Table.

Element	Name	Location Description	
1	ESZ	Energy table	
2	NU	Fission ν data	
3	MTR	MT array	
4	LQR	Q-value array	
5	TYR	Reaction type array	
6	LSIG	Table of cross section locators	
7	SIG	Cross sections	
8	LAND	Table of angular distribution locators	
9	AND	Angular distributions	
10	LDLW	Table of energy distribution locators	
11	DLW	Energy distributions	
12	GPD	Photon production data	
13	MTRP	Photon production MT array	
14	LSIGP	Table of photon production cross section locators	
15	SIGP	Photon production cross sections	
16	LANDP	Table of photon production angular distribution locators	
17	ANDP	Photon production angular distributions	
18	LDLWP	Table of photon production energy distribution locators	
19	DLWP	Photon production energy distributions	
20	YP	Table of yield multipliers	
21	FIS	Total fission cross section	
22	END	Last word of this table	
23	LUNR	Probability tables	
24	DNU	Delayed $\overline{\nu}$ data	
25	BDD	Basic delayed data (λ 's, probabilities)	
26	DNEDL	Table of energy distribution locators	
27	DNED	Energy distributions	
32	• • •		
32	_		

4.3 Format of Individual Data Blocks

4.3.1 ESZ Block

The format of the ${\sf ESZ}$ Block is given in Table 5.

Table 5: ESZ Block..

Location in XSS	Parameter	Description
S_{ESZ}	$E(l), l = 1, \dots, N_E$	Energies
$S_{\sf ESZ}+N_E$	$\sigma_t(l), l = 1, \dots, N_E$	Total cross section
$S_{ESZ}+2N_E$	$\sigma_s(l), l=1,\ldots,N_E$	Total absorption cross section
$S_{ESZ}+3N_E$	$\sigma_{el}(l), l = 1, \dots, N_E$	Elastic cross section
$S_{\sf ESZ}+4N_E$	$H_{el}(l), l=1,\ldots,N_E$	Average Heating numbers

Note: S_{ESZ} is index of the XSS array where the ESZ Block starts, JXS(1), and N_E is the number of energy energy points, NXS(3).

4.3.2 NU Block

There are four possibilities for the NU Block:

- 1. No NU Block. This happens when JXS(2)=0.
- 2. Either prompt or total $\overline{\nu}$ is given (but not both). The NU array begins at location XSS(KNU) where KNU=JXS(2).
- 3. Both prompt and total $\overline{\nu}$ are given. The prompt NU array begins at XSS(KNU) where KNU=JXS(2); the total NU array begins at XSS(KNU) where KNU = JXS(2) + ABS(XSS(JXS(2)))+1
- 4. Delayed $\overline{\nu}$ is given. The delayed $\overline{\nu}$ array begins at XSS(KNU) where KNU=JXS(24). Delayed $\overline{\nu}$ must be given in form b described below.

The format of the NU Block has two forms (if it exists); polynomial (see Table 6) and tabulated (see Table 7). The format is specified by the LNU flag located in the XSS array at index KNU where KNU is defined above.

Table 6: NU Block—Polynomial function form...

Location in XSS	Parameter	Description
$\begin{array}{c} KNU \\ KNU + 1 \\ KNU + 2 \end{array}$	N_C $C(l), l = 1, \dots, N_C$	Polynomial function flag Number of coefficients Coefficients

When using the polynomial function form of the NU array, $\bar{\nu}$ is reconstructed as

$$\overline{\nu}(E) = \sum_{l=1}^{N_C} C(l)E^{l-1},$$
(1)

where the energy, E, is given in MeV.

Table 7: NU Block—Tabulated form..

Location in XSS	Parameter	Description
KNU	$LNU{=}2$	Tabulated data flag
$KNU{+}1$	N_R	Number of interpolation regions
$KNU{+}2$	$NBT(l), l = 1, \dots, N_R$	ENDF interpolation parameters
$KNU{+}2{+}N_R$	$INT(l), l = 1, \dots, N_R$	ENDF interpolation scheme [†]
$KNU{+}2{+}2N_R$	N_E	Number of energies
$KNU{+}3{+}2N_R$	$E(l), l = 1, \dots, N_E$	Tabulated energy points
$KNU {+} 3 {+} 2N_R + N_E$	$\overline{\nu}(l), l=1,\ldots,N_E$	Tabulated $\overline{\nu}$ values

[†] If $N_R = 0$, NBT and INT are omitted and linear-linear interpolation is assumed.

If delayed neutron data exist (when JXS(24)>0), the precursor distribution format is given as in Table 8. The decay constant for the first group DEC_1 is given at XSS(JXS(25)). The precursor distribution immediately follows as described in Table 8. The indices (locators) of the XSS array where each precursor distribution begins (S_{DNU}) can found using the format described in Section 4.3.17 and Section 4.3.18, where LED=JXS(26) and NMT=NXS(8).

Table 8: Delayed $\overline{\nu}$ precursor distribution.

Location in XSS	Parameter	Description
S_{DNU}	DEC_i	Decay constant for the i -th group
$S_{DNU}{+}1$	N_R	Number of interpolation regions
$S_{KNU}{+}2$	$NBT(l), l = 1, \dots, N_R$	ENDF interpolation parameters
$S_{KNU} {+} 2 {+} N_R$	$INT(l), l = 1, \dots, N_R$	ENDF interpolation scheme [†]
$S_{DNU} {+} 2 {+} 2 N_R$	N_E	Number of energies
$S_{DNU}{+}3{+}2N_R$	$E(l), l = 1, \dots, N_E$	Tabulated energy points
$S_{DNU} + 3 + 2N_R + N_E$	$P(l), l = 1, \dots, N_E$	Corresponding probabilities

[†] If $N_R = 0$, NBT and INT are omitted and linear-linear interpolation is assumed.

Note: S_{DNU} is the index of the XSS array where the delayed $\overline{\nu}$ precursor distribution begins; the first one is at $S_{DNU}=JXS(25)$.

4.3.3 MTR & MTRP Blocks

The format of the MTR Block (for incident neutron reactions) and MTRP Block (for photon production reactions) is given in Table 10. The starting index depends on whether it is the MTR Block or MTRP Block and are given in Table 9.

Block	LMT	NMT
MTR	JXS(3)	NXS(4)
MTRP	JXS(13)	NXS(6)

Table 9: LMT and NMT values for the MTR Block and MTR Block.

Table 10: MTR & MTRP Block..

Location in XSS	Parameter	Description
LMT LMT+1	MT_1 MT_2	First ENDF Reaction available Second sENDF Reaction available
$\dots \\ LMT + NMT + 1$	MT_{NMT}	Last ENDF reaction available

[†] If $N_R = 0$, NBT and INT are omitted and linear-linear interpolation is assumed.

For the MTR Block, $MT_1, ..., MT_{NMT}$ are standard ENDF MTnumbers; that is, MT=16=(n, 2n); MT=17=(n, 3n); etc. For a complete listing of MT numbers, see [1, Appendix B].

For the MTRP Block, the MT numbers are somewhat arbitrary. To understand the scheme used for numbering the photon production MTs, it is necessary to realize that in the ENDF format, more than one photon can be produced by a particular neutron reaction that is itself specified by a single MT. Each of these photons is produced with an individual energy-dependent cross section. For example, MT102 (radiatiive capture) might be responsible for 40 photons, each with its own cross section, angular distribution, and energy distribution. We need 40 photon MTs to represent the data; the MTs are numbered 1002001, 1002002, ..., 1002040. Therefore, if ENDF MT N is responsible for M photons, we shall number the photon MTs 1000*N+1, 1000*N+2, ..., 1000*N+M.

4.3.4 LQR Block

The format of the LQR Block, containing the reaction-specific Q-values, is given in Table 11. The index at the start of the LQR Block, S_{LQR} =JXS(4). The number of reactions, NMT, is the same through the ACE Table, NMT=NXS(4).

Table 11: LQR Block..

Location in XSS	Parameter	Description
$S_{LQR} \ S_{LQR}{+1}$	Q_1 Q_2	Q -value for reaction MT_1 Q -value for reaction MT_2
$S_{LQR} + NMT$ -1	Q_{NMT}	Q -value for reaction MT_NMT

4.3.5 TYR Block

The format of the TYR Block is given in T6ble 12. The index at the start of the TYR Block, $S_{\text{TYR}} = JXS(5)$. The number of reactions, NMT, is the same through the ACE Table, NMT=NXS(4).

Table 12: TYR Block..

Location in XSS	Parameter	Description
$S_{TYR} \\ S_{TYR} + 1$	$TY_1 \\ TY_2$	Neutron release for reaction MT_1 Neutron release for reaction MT_2
$S_{TYR} + NMT - 1$	TY_{NMT}	Neutron release for reaction MT_{NMT}

The possible values of TY are ± 1 , ± 2 , ± 3 , ± 4 , ± 19 , 0, and integers greater than 100 in absolute value; the sign indicates the system for scattering: negative=center-of-mass, positive=Lab. Thus if $\mathsf{TY}_i = +3$, three neutrons are released for reaction MT_i and the data on the cross section tables used to determine the exiting neutrons' angles are given in the Lab frame of reference. $\mathsf{TY} = 19$ indicates fission. The number of secondary neutrons released is determined from the fission $\overline{\nu}$ data found in the NU Block. $\mathsf{TY}_i = 0$ indicates absorption (ENDF reactions $\mathsf{MT} > 100$); no neutrons are released. $\|\mathsf{TY}_i\| > 100$ signifies reactions other than fission that have energy-dependent neutron multiplicities. The number of secondary neutrons released is determined from the yield data found in the DLW Block. The MT_i s are given in the MTR Block.

4.3.6 LSIG & LSIGP Block

The LSIG Block and LSIGP Block gives the locators for cross section array for each reaction MT. A locator is a *relative* index in the XSS array where some piece of data. In this case, the data is the cross section values. The format of the LSIG Block (for incident neutron cross sections) and LSIGP Block (for photon production cross sections) is given in Table 13. The format for the incident neutron cross section arrays is given in Section 4.3.7. The format for the photon production cross sections is given in Section 4.3.14.

All locators are relative to JXS(7) for the LSIG Block or JXS(15) for the LSIGP Block. That is, LXS=JXS(7) for the LSIG Block and LXS=JXS(15) for the LSIGP Block. So the actual cross section data begins at the index LOCA+LXS. The MTs are given in the MTR Block and the MTRP Block for the LSIG Block and the LSIGP Block respectively. LOCA_i must be monotonically increasing.

Table 13: LSIG & LSIGP Block..

Location in XSS	Parameter	Description
LXS LXS+1	$LOCA_1 = 1$ $LOCA_2$	Location of cross sections for reaction MT_1 Location of cross sections for reaction MT_2
\dots LXS $+$ NMT- 1	LOCA _{NMT}	Location of cross sections for reaction MT_{NMT}

4.3.7 SIG Block

The SIG Block contains the incident neutron cross section data. (The photon production cross section is in the SIGP Block.) The format of the SIG Block is given in Table 14. The cross section data begins at the index specified by the locator from the LSIG Block; the format for which is given in Table 15.

Table 14: SIG Block..

Location in XSS	Parameter	Description
$\begin{array}{c} LXS + LOCA_1 - 1 \\ LXS + LOCA_2 - 1 \end{array}$		Cross section array for reaction MT_1 Cross section array for reaction MT_2
		Cross section array for reaction MT_{NMT}

Note: The number of cross section arrays NMT=NXS(4).

The LOCA_i values are given in the LSIG Block and are all relative to JXS(7). The energy grid, E(K) is given in the ESZ Block. The energy grid index IE_i corresponds to the first energy in the grid at which a cross section is given. The MT_is are defined in the MTR Block.

Table 15: Cross section array for the *i*-th reaction..

Location in XSS	Parameter	Description
$LXS + LOCA_i$ -1 $LXS + LOCA_i$	$IE_i \ NE_i$	Energy grid index for reaction MT_i Number of consecutive entries for MT_i
$LXS + LOCA_i {+} 1$	$\sigma_i[E(K)]$ for $K = IE_i, \dots, IE_i + NE_i - 1$	Cross section for reaction MT_i

4.3.8 LAND Block

The LAND Block contains locators for the angular distributions for all reactions producing secondary neutrons. The LAND Block always exists and begins at $S_{LAND}=JXS(8)$. All locators (LOCB) are relative JXS(9); that is, the angular distribution begins at JXS(9) + LOCB_i. The LOCB_i locators must be monotonically increasing. The format of the LAND Block is given in Table 16.

Fix Table ?? so that the third column isn't so huge.

Table 16: LAND Block..

Location in XSS	Parameter	Description
$S_{LAND} + 1$	$\begin{aligned} LOCB_1 &= 1 \\ LOCB_2 \end{aligned}$	Location of angular distribution data for elastic scattering reaction Location of angular distribution data for reaction MT_1
$S_{LAND} + NMT$	LOCB _{NMT}	Location of angular distribution data for reaction MT_NMT

Note: S_{LAND} =JXS(8) and NMT=NXS(5) is the number of reactions (excluding elastic scattering).

4.3.9 AND Block

The AND Block contains angular distribution data for all reactions that produce secondary neutrons. The format of the AND Block is given in Table 17. The angular distribution data begins at the index specified by the locator LOCB from the LAND Block. If $LOCB_i = 0$ (given in the LAND Block), no angular distribution data are given for reaction i and isotropic scattering is assumed in either the Lab or center-of-mass system. The choice of Lab or center-of-mass system depends upon the value for reaction i in the TYR Block. If $LOCB_i = -1$ no angular distribution data are given for reaction i in the AND Block. The angular distribution data are specified through law=44 in the DLW Block.

Table 17: AND Block..

Location in XSS	Parameter	Description
$\begin{array}{c} JXS(9) + LOCB_1 - 1 \\ JXS(9) + LOCB_2 - 1 \\ JXS(9) + LOCB_NMT - 1 \end{array}$		Angular distribution array for elastic scattering Angular distribution array for reaction MT_1 Angular distribution array for MT_{NMT}

Note: The format for the angular distribution of the *i*-th array is given in Table 18.

Table 18: Angular distribution array for the *i*-th reaction..

Location in XSS	Parameter	Description
$\mathtt{JXS}(9) + \mathtt{LOCB}_i - 1$	N_E	Number of energies at which angular distributions are tabu
$\mathtt{JXS}(9)\!+\!LOCB_i$	$E(l), l=1,\ldots,N_E$	Energy grid
${\tt JXS(9)}\!+\!{\tt LOCB}_i+N_E$	$L_C(l), l = 1, \ldots, N_E$	Location of tables associated with energies $E(l)$

Note that the angular distribution arrays (Table 18) contains additional locators, L_C ; the sign of these locators is a flag:

- if $L_C(l) > 0$, then $L_C(l)$ points to a 32 equiprobable bin distribution (see Table 19);
- if $L_C(l) < 0$, then $L_C(l)$ points to a tabulated angular distribution (see Table 20);
- if $L_C(l) = 0$, then distribution is isotropic and no further data is needed.

Table 19: Format for the 32 equiprobable bin distribution..

Location in XSS	Parameter	Description
$-JXS(9)\!+\! L_C(l) -1$	$P(1,K), K = 1, \dots, 33$	32 equiprobable cosine bins for scattering at energy $E(1)$.

Table 20: Format for the tabulated angular distribution..

Location in XSS	Parameter	Description
$LDAT_l + 1$	JJ	Interpolation flag [†]
$LDAT_l + 2$	N_P	Number of points in the distribution
$LDAT_l + 3$	$CS_{\mathrm{out}}(j), j=1,\ldots,N_P$	Cosine scattering angular grid
$LDAT_l + 4$	$PDF(j), j = 1, \dots, N_P$	Probability density function
$LDAT_l + 5$	$CDF(j), j = 1, \ldots, N_P$	Cumulative density function

[†] 0 histogram interpolation

 $Note: \mathsf{LDAT}_l = \mathsf{JXS}(9) + |L_C(l)| - 1$

4.3.10 LDLW Block

The format of the LDLW Block is given in Table 21.

Table 21: LDLW Block..

Location in XSS	Parameter	Description

4.3.11 DLW Block

The format of the DLW Block is given in Table 22.

Continued on next page

¹ linear-linear interpolation

Table 22: DLW Block. (continued)

Location in XSS Parameter Description

Table 22: DLW Block..

Location in XSS Parameter Description

4.3.12 GPD Block

The format of the GPD Block is given in Table 23.

Table 23: GPD Block..

Location in XSS Parameter Description

4.3.13 MTRP Block

The format of the MTRP Block is given in Table 24.

Table 24: MTRP Block..

Location in XSS Parameter Description

4.3.14 SIGP Block

The format of the SIGP Block is given in Table 25.

Table 25: SIGP Block..

Location in XSS Parameter Description

4.3.15 LANDP Block

The format of the LANDP Block is given in Table 26.

Table 26: LANDP Block..

Location in XSS	Parameter	Description

4.3.16 ANDP Block

The format of the ANDP Block is given in Table 27.

Table 27: ANDP Block..

Location in XSS	Parameter	Description

4.3.17 LDLWP Block

The format of the LDLWP Block is given in Table 28.

Table 28: LDLWP Block..

Location in XSS	Parameter	Description	

4.3.18 DLWP Block

The format of the DLWP Block is given in Table 29.

Table 29: DLWP Block..

Location in XSS	Parameter	Description

4.3.19 YP Block

The format of the YP Block is given in Table 30.

Table 30: YP Block..

Location in XSS	Parameter	Description

4.3.20 FIS Block

The format of the FIS Block is given in Table 31.

Table 31: FIS Block..

Location in XSS	Parameter	Description

4.3.21 UNR Block

The format of the UNR Block is given in Table 32.

Table 32: UNR Block..

Location in XSS	Parameter	Description

Element	Name	Description
1		Length of second block of data (XSS array)
2	ZA	1000 * Z + A
3		
4	NTR	Number of reactions
16		

Table 33: NXS array element definitions for neutron dosimetry ACE Table.

Element	Name	Location Description
1	LONE	First word of table
2		
3	MTR	MT array
6	LSIG	Table of cross section locators
7	SIGD	Cross sections
22	END	Last word of this table
32		

Table 34: JXS array element definitions for neutron dosimtry ACE Table.

5 Neutron Dosimetry

- 5.1 NXS Array
- 5.2 JXS Array

Element	Name	Description
1	_	Length of second block of data (XSS array)
2	IDPNI	Inelastic scattering mode
3	NIL	Inelastic dimensioning parameter
4	NIEB	Number of inelastic exiting energies
5	IDPNC	Elastic scattering mode
6	NCL	Elastic dimensioning parameter
7	IFENG	Secondary energy mode
16		

Table 35: NXS array element definitions for thermal scattering ACE Table.

Element	Name	Location Description
1	ITIE	Inelastic energy table
2	ITIX	Inelastic cross sections
3	ITXE	Inelastic energy/angle distributions
4	ITCX	Elastic cross sections
5	ITCA	Elastic angular distributions
32		

Table 36: JXS array element definitions for thermal scattering ACE Table.

- 6 Thermal Scattering $S(\alpha, \beta)$
- 6.1 NXS Array
- 6.2 JXS Array

7 Continuous-Energy Photon

7.1 NXS Array

Table 37: ${\sf NXS}$ array element definitions for ${\sf NXS}$ ACE Table.

Element	Name	Description
	Z NES NFLC NSH	Length of second block of data (XSS array) Atomic number Number of energies Length of the flourescence data divided by 4 Number of electron shells
16	···	

7.2 JXS Array

Table 38: JXS array element definitions for JXS ACE Table.

Element	Name	Location Description
1	ESZG	Energy table
2	JINC	Incoherent form factors
3	JCOH	Coherent form factors
4	JFLO	Fluorescence data
5	LHNM	Heating numbers
6	LNEPS	Number of electrons per shell
7	LBEPS	Binding energy per shell
8	LPIPS	Probability of interaction per shell
9	LSWD	Array of offsets to the shell-wise data
10	SWD	Shell-wise data in PDF and CDF form
32	_	

References

[1] A. Trkov, M. Herman, and D. A. Brown. *ENDF-6 Formats Manual: Data Formats and Procedures for the Evaluated Nuclear Data Files.* Tech. rep. BNL-90365-2009 Rev.2. National Nuclear Data Center, Brookhaven National Laboratory, Dec. 2011.