R Operators

R - Operators

Advertisements

An operator is a symbol that tells the compiler to perform specific mathematical or logical manipulations. R language is rich in built-in operators and provides following types of operators.

Types of Operators

We have the following types of operators in R programming -

- Arithmetic Operators
- Relational Operators
- Logical Operators
- Assignment Operators
- Miscellaneous Operators

Arithmetic Operators

Following table shows the arithmetic operators supported by R language. The operators act on each element of the vector.

Operator	Description	Example
+	Adds two vectors	<pre>v <- c(2,5.5,6) t <- c(8,3,4)print(v+t) it produces the following result - [1] 10.0 8.5 10.0</pre>
-	Subtracts second vector from the first	<pre>v <- c(2,5.5,6) t <- c(8,3,4)print(v-t) it produces the following result - [1] -6.0 2.5 2.0</pre>

*	Multiplies both vectors	<pre>v <- c(2,5.5,6) t <- c(8,3,4)print(v*t) it produces the following result - [1] 16.0 16.5 24.0</pre>
1	Divide the first vector with the second	<pre>v <- c(2,5.5,6) t <- c(8,3,4)print(v/t) When we execute the above code, it produces the following result - [1] 0.250000 1.833333 1.500000</pre>
%%	Give the remainder of the first vector with the second	<pre>v <- c(2,5.5,6) t <- c(8,3,4)print(v\text{%\text{w}t}) it produces the following result - [1] 2.0 2.5 2.0</pre>
%/%	The result of division of first vector with second (quotient)	<pre>v <- c(2,5.5,6) t <- c(8,3,4)print(v%/%t) it produces the following result - [1] 0 1 1</pre>
۸	The first vector raised to the exponent of second vector	<pre>v <- c(2,5.5,6) t <- c(8,3,4)print(v^t) it produces the following result - [1] 256.000 166.375 1296.000</pre>

Relational Operators

Following table shows the relational operators supported by R language. Each element of the first vector is compared with the corresponding element of the second vector. The result of comparison is a Boolean value.

Operator	Description	Example
>	Checks if each element of the first vector is greater than the corresponding element of the second vector.	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9)print(v) it produces the following result - [1] FALSE TRUE FALSE FALSE

<	Checks if each element of the first vector is less than the corresponding element of the second vector.	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9)print(v < t) it produces the following result - [1] TRUE FALSE TRUE FALSE
==	Checks if each element of the first vector is equal to the corresponding element of the second vector.	<pre>v <- c(2,5.5,6,9) t <- c(8,2.5,14,9)print(v == t) it produces the following result - [1] FALSE FALSE FALSE TRUE</pre>
<=	Checks if each element of the first vector is less than or equal to the corresponding element of the second vector.	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9)print(v<=t it produces the following result - [1] TRUE FALSE TRUE TRUE
>=	Checks if each element of the first vector is greater than or equal to the corresponding element of the second vector.	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9)print(v>=t it produces the following result - [1] FALSE TRUE FALSE TRUE
!=	Checks if each element of the first vector is unequal to the corresponding element of the second vector.	v <- c(2,5.5,6,9) t <- c(8,2.5,14,9)print(v!=t it produces the following result - [1] TRUE TRUE TRUE FALSE

Logical Operators

Following table shows the logical operators supported by R language. It is applicable only to vectors of type logical, numeric or complex. All numbers greater than 1 are considered as logical value TRUE.

Each element of the first vector is compared with the corresponding element of the second vector. The result of comparison is a Boolean value.

Operator	Description	Example
&	It is called Element-wise Logical AND operator. It combines each element of the first vector with the corresponding element of the second vector and gives a output TRUE if both the elements are TRUE.	<pre>v <- c(3,1,TRUE,2+3i) t <- c(4,1,FALSE,2+3i)print(v) it produces the following result - [1] TRUE TRUE FALSE TRUE</pre>
I	It is called Element-wise Logical OR operator. It combines each element of the first vector with the corresponding element of the second vector and gives a output TRUE if one the elements is TRUE.	<pre>v <- c(3,0,TRUE,2+2i) t <- c(4,0,FALSE,2+3i)print(v) it produces the following result - [1] TRUE FALSE TRUE TRUE</pre>
!	It is called Logical NOT operator. Takes each element of the vector and gives the opposite logical value.	v <- c(3,0,TRUE,2+2i)print(!v it produces the following result — [1] FALSE TRUE FALSE FALSE

The logical operator && and || considers only the first element of the vectors and give a vector of single element as output.

Operator	Description	Example
&&	Called Logical AND operator. Takes first element of both the vectors and gives the TRUE only if both are TRUE.	v <- c(3,0,TRUE,2+2i) t <- c(1,3,TRUE,2+3i)print(v& it produces the following result - [1] TRUE
II	Called Logical OR operator. Takes first element of both the vectors and gives the TRUE if one of them is TRUE.	<pre>v <- c(0,0,TRUE,2+2i) t <- c(0,3,TRUE,2+3i)print(v it produces the following result - [1] FALSE</pre>

Assignment Operators

These operators are used to assign values to vectors.

|--|

<- or = or <<-	Called Left Assignment	v1 <- c(3,1,TRUE,2+3i) v2 <<- c(3,1,TRUE,2+3i) v3 = c(3,1,TRUE,2+3i)print(v1)print(v2)print(v3) it produces the following result - [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i
-> or ->>	Called Right Assignment	c(3,1,TRUE,2+3i)-> v1 c(3,1,TRUE,2+3i)->> v2 print(v1)print(v2) it produces the following result - [1] 3+0i 1+0i 1+0i 2+3i [1] 3+0i 1+0i 1+0i 2+3i

Miscellaneous Operators

These operators are used to for specific purpose and not general mathematical or logical computation.

Operator	Description	Example
:	Colon operator. It creates the series of numbers in sequence for a vector.	<pre>v <-2:8print(v) it produces the following result - [1] 2 3 4 5 6 7 8</pre>
%in%	This operator is used to identify if an element belongs to a vector.	v1 <-8 v2 <-12 t <-1:10print(v1 %in% t)print(v2 %in% t) it produces the following result - [1] TRUE [1] FALSE
%*%	This operator is used to multiply a matrix with its transpose.	<pre>M = matrix(c(2,6,5,1,10,4), nrow =2,ncol =3,byrow = TRUE) t = M %*% t(M)print(t) it produces the following result -</pre>