Instance Segmentation with Mask R-CNN

Al Computer Vision Project, Al Innovation Square 2020.03.23 – 2020.04.10

JIHUN KIM YUJIN NAM YOONSUNG LEE

1. Mask R-CNN

- 1-1. What's Mask R-CNN?
- 1-2. Problem

2. Modified Mask R-CNN

- 2-1. What's the difference with original Mask R-CNN?
- 2-2. Specified Architecture

3. Conclusion

BBOX Classification

Can SeparateCannot Segment

Segmentation Classification

Cannot Separate
Can Segment

SegmentationIn BboxClassification

Faster R-CNN FCN

Head Architecture

Faster R-CNN + Binary Mask Prediction + FCN + Rol Align

How to use Mask R-CNN?

ResNet101(backbone) + FPN(Binary Masking)

COCO Dataset

How it works?

How it works?

1-2. Problem

Head Architecture

Al Innovation Square

Modified U-Net


```
def build_unet_mask_graph(rois, feature_maps, image_meta,
                         pool_size, num_classes, train_bn=True):
   x = PyramidROIAlign([pool_size, pool_size],
                       name="roi_align_mask")([rois, image_meta] + feature_maps)
   x = BatchNorm()(x)
   x = KL.Conv2D(256, (3, 3), padding='same', name='layer12', activation='relu', kernel_initializer='he_normal')(x)
   x = BatchNorm()(x)
   skip_connection = x # for skip connection
   x = KL.Maxpooling2D()(x)
   # Bottleneck
   x = BatchNorm()(x)
   x = BatchNorm()(x)
   x = BatchNorm()(x)
```

```
x = KL.UpSampling2D()(x)
x = KL.Concatenate(axis=-1)([x, skip_connection])
x = BatchNorm()(x)
x = BatchNorm()(x)
x = KL.UpSampling2D()(x)
x = BatchNorm()(x)
x = BatchNorm()(x)
```

Al Innovation Square

2-2. Specified Architecture

Modified Head Architecture

3. Conclusion

Paper Review

↓

Build an Architecture

 \downarrow

Train CoCo dataset

 \downarrow

Transfer learning with iMaterialist dataset

Dataset: iMaterialist (Fashion) 2019 at FGVC6 (19GB)

GPU: GeForce RTX 2080 Ti

CUDA Toolkit 9.0

Anaconda (python3.7)

numpy scipy Pillow cython matplotlib scikit-image tensorflow>=1.3.0

keras>=2.0.8

opency-python

h5py

imgaug

IPython[all]

Q & A