#### Algorytmy Grafowe

dr hab. Bożena Woźna-Szcześniak, prof. UJD

Uniwersytet Jana Długosza w Częstochowie b.wozna@ujd.edu.pl

Wykład 5 i 6

#### Spis treści

Sortowanie Topologiczne

Badanie acykliczności

# Sortowanie Topologiczne - sformułowanie problemu

- Wejście: Acykliczny graf skierowany G = (V, E), tzw. DAG (ang. directed acyclic graph).
- Wyjście: Liniowy porządek wierzchołków z V taki, że jeśli graf G zawiera krawędź (u, v), to w tym porządku wierzchołek u występuje przed wierzchołkiem v.

Wierzchołki w każdym grafie acyklicznym skierowanym można posortować topologicznie na jeden lub więcej sposobów:

• 7,5,3,11,8,2,9,10



Wierzchołki w każdym grafie acyklicznym skierowanym można posortować topologicznie na jeden lub więcej sposobów:

- 7,5,3,11,8,2,9,10
- 7.5.11.2.3.10.8.9



Wierzchołki w każdym grafie acyklicznym skierowanym można posortować topologicznie na jeden lub więcej sposobów:

- 7,5,3,11,8,2,9,10
- 7,5,11,2,3,10,8,9
- 3,7,8,5,11,10,9,2



Wierzchołki w każdym grafie acyklicznym skierowanym można posortować topologicznie na jeden lub więcej sposobów:

- 7,5,3,11,8,2,9,10
- 7,5,11,2,3,10,8,9
- 3,7,8,5,11,10,9,2
- 5,7,11,2,3,8,9,10



# Algorytm DFS - graf G=(V,E) reprezentowany przez listy sąsiedztwa

```
VISIT(G, u)
                                    1: time = time + 1
DFS(G = (V, E)):
 1: for each vertex u \in V do
                                    2: d[u] = time
                                    3: color[u] = GRAY
    color[u] = WHITE
                                    4: for each v \in Adj[u] do
 3: end for
                                         if color[v] == WHITE then
 4. time = 0
                                           VISIT(G, v)
 5: for each vertex u \in V do
                                    7: end if
   if color[u] == WHITE then
                                    8: end for
 7: VISIT(G, u)
                                    9: color[u] = RED
   end if
                                    10: time = time + 1
 9: end for
                                   11: f[u] = time
```

# Algorytm sortowania topologicznego bazujący na DFS

#### TOPOLOGICAL-SORT(G)

- Wykonaj algorytm DFS(G) na wejściowym DAG-u G = (V, E), (reprezentowanym przez listy sąsiedztwa) w celu obliczenia czasów przetworzenia f[v] dla wszystkich wierzchołków v.
- Wypisz wierzchołki w porządku malejącym ze względu na ich "czas przetworzenia", umieszczony w tablicy f.
- Złożoność:  $\Theta(|V| + |E|)$  ponieważ DFS można wykonać w czasie  $\Theta(|V| + |E|)$ .



time = 0

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| W | W | W | W | W | W | W | W | W | W | W | W | W | W |

|                       | A | В | С | D | E | F | G | Н | I | J | K | L | М | N |
|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v]                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| <i>d</i> [ <i>v</i> ] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |



time = 1

|   |   |   |   |   |   |   |   |   |   |   |   |   | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | W | W | W | W | W | W | W | W | W | W |

|                       | Α | В | С | D | Е | F | G | Н | I | J | K | L | М | N |
|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v]                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| <i>d</i> [ <i>v</i> ] | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |



time = 2

|   |   |   |   |   |   |   |   |   |   |   |   |   | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | G | W | W | W | W | W | W | W | W | W |

|      | Α | В | С | D | E | F | G | Н | ı | J | K | L | М | Ν |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |



time = 3

|   |   |   |   |   |   |   |   |   |   |   |   |   | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | G | W | W | G | W | W | W | W | W | W |

|                       | Α | В | С | D | E | F | G | Н | ı | J | K | L | М | N |
|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v]                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| <i>d</i> [ <i>v</i> ] | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |



time = 4

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | G | W | W | R | W | W | W | W | W | W |

|                       | Α | В | С | D | E | F | G | Н | ı | J | K | L | М | N |
|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v]                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| <i>d</i> [ <i>v</i> ] | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |



time = 5

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | W | W | R | W | W | W | W | W | W |

|                       | Α | В | С | D | E | F | G | Н | ı | J | K | L | М | N |
|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v]                  | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| <i>d</i> [ <i>v</i> ] | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |



time = 6

|   |   | С |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | W | W | W | W | W | W |

|                       | Α | В | С | D | E | F | G | Н | ı | J | K | L | М | N |
|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v]                  | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| <i>d</i> [ <i>v</i> ] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |



time = 7

|   |   | С |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | G | W | W | W | W | W |

|      | Α | В | С | D | E | F | G | Н | I | J | K | L | М | Ν |
|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 0 | 0 | 0 | 0 | 0 |



time = 8

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | W | W | W | W | W |

|     |           | Α | В | С | D | E | F | G | Н | I | J | K | L | М | N |
|-----|-----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v | /]        | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0 | 0 | 0 | 0 | 0 |
| d[ı | <u>v]</u> | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 0 | 0 | 0 | 0 | 0 |



time = 9

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | W | W | W | G | W |

|                       | Α | В | С | D | E | F | G | Н | ı | J | K | L | М | N |
|-----------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| f[v]                  | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0 | 0 | 0 | 0 | 0 |
| <i>d</i> [ <i>v</i> ] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 0 | 0 | 0 | 9 | 0 |



time = 10

| Α | В | С | D | Е | F | G | Н | ı | J | K | L | М | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | G | W | W | G | W |

|                       | Α | В | С | D | E | F | G | Н | I | J  | K | L | М | N |
|-----------------------|---|---|---|---|---|---|---|---|---|----|---|---|---|---|
| f[v]                  | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0  | 0 | 0 | 0 | 0 |
| <i>d</i> [ <i>v</i> ] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 0 | 0 | 9 | 0 |



time = 11

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | G | G | W | G | W |

|      | Α | В | С | D | Е | F | G | Н | I | J  | K  | L | М | N |
|------|---|---|---|---|---|---|---|---|---|----|----|---|---|---|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0  | 0  | 0 | 0 | 0 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 11 | 0 | 9 | 0 |



time = 12

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | G | G | W | G | G |

|      | Α | В | С | D | E | F | G | Н | I | J  | K  | L | М | N  |
|------|---|---|---|---|---|---|---|---|---|----|----|---|---|----|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0  | 0  | 0 | 0 | 0  |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 11 | 0 | 9 | 12 |



time = 13

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | G | G | W | G | R |

|      | Α | В | С | D | Е | F | G | Н | ı | J  | K  | L | М | N  |
|------|---|---|---|---|---|---|---|---|---|----|----|---|---|----|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0  | 0  | 0 | 0 | 13 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 11 | 0 | 9 | 12 |



time = 14

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | G | R | W | G | R |

|      | Α | В | С | D | Е | F | G | Н | ı | J  | K  | L | М | N  |
|------|---|---|---|---|---|---|---|---|---|----|----|---|---|----|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0  | 14 | 0 | 0 | 13 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 11 | 0 | 9 | 12 |



time = 15

|   | В |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | G | R | G | G | R |

|      | Α | В | С | D | E | F | G | Н | ı | J  | K  | L  | М | N  |
|------|---|---|---|---|---|---|---|---|---|----|----|----|---|----|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0  | 14 | 0  | 0 | 13 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 11 | 15 | 9 | 12 |



time = 16

|   |   |   |   |   |   |   | G |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Ī | G | W | W | W | R | G | W | R | R | G | R | R | G | R |

|      | Α | В | С | D | E | F | G | Н | ı | J  | K  | L  | М | N  |
|------|---|---|---|---|---|---|---|---|---|----|----|----|---|----|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 0  | 14 | 16 | 0 | 13 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 11 | 15 | 9 | 12 |



time = 17

| Α |   |   |   |   |   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | R | R | R | G | R |

|      | Α | В | С | D | E | F | G | Н | ı | J  | K  | L  | М | N  |
|------|---|---|---|---|---|---|---|---|---|----|----|----|---|----|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 17 | 14 | 16 | 0 | 13 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 11 | 15 | 9 | 12 |



time = 18

| Α | В | С | D | E | F | G | Н | I | J | K | L | М | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| G | W | W | W | R | G | W | R | R | R | R | R | R | R |

|      | Α | В | С | D | E | F | G | Н |   | J  | K  | L  | М  | N  |
|------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|
| f[v] | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6 | 0 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |



time = 19

| - 1 |   | В |   |   | l . | l |   |   |   |   | l . |   |   |   |
|-----|---|---|---|---|-----|---|---|---|---|---|-----|---|---|---|
|     | G | W | W | W | R   | R | W | R | R | R | R   | R | R | R |

|      | Α | В | С | D | Е | F  | G | Н | ı | J  | K  | L  | М  | Ν  |
|------|---|---|---|---|---|----|---|---|---|----|----|----|----|----|
| f[v] | 0 | 0 | 0 | 0 | 5 | 19 | 0 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| d[v] | 1 | 0 | 0 | 0 | 2 | 6  | 0 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |



time = 20

| Α | В | С | D | E | F | G | Н | I | J | K | L | М | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| F | W | W | W | R | R | W | R | R | R | R | R | R | R |

|      | A  | В | С | D | Е | F  | G | Н | ı | J  | K  | L  | М  | Ν  |
|------|----|---|---|---|---|----|---|---|---|----|----|----|----|----|
| f[v] | 20 | 0 | 0 | 0 | 5 | 19 | 0 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| d[v] | 1  | 0 | 0 | 0 | 2 | 6  | 0 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |



time = 21

|   |   |   |   | D | l . | l |   |   |   | l . |   | l . |   |   |
|---|---|---|---|---|-----|---|---|---|---|-----|---|-----|---|---|
| Ī | R | G | W | W | R   | R | W | R | R | R   | R | R   | R | R |

|                       | Α  | В  | С | D | Е | F  | G | Н |   | J  | K  | L  | М  | N  |
|-----------------------|----|----|---|---|---|----|---|---|---|----|----|----|----|----|
| f[v]                  | 20 | 0  | 0 | 0 | 5 | 19 | 0 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| <i>d</i> [ <i>v</i> ] | 1  | 21 | 0 | 0 | 2 | 6  | 0 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |



time = 22

|   |   |   |   |   |   | G |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| R | G | G | W | R | R | W | R | R | R | R | R | R | R |

|                       | Α  | В  | С  | D | E | F  | G | Н | ı | J  | K  | L  | М  | N  |
|-----------------------|----|----|----|---|---|----|---|---|---|----|----|----|----|----|
| f[v]                  | 20 | 0  | 0  | 0 | 5 | 19 | 0 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| <i>d</i> [ <i>v</i> ] | 1  | 21 | 22 | 0 | 2 | 6  | 0 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |



Tabela: Parametr color. W - oznacza WHITE, G - GRAY, R - RED

|                       | Α  | В  | С  | D | Е | F  | G  | Н |   | J  | K  | L  | М  | N  |
|-----------------------|----|----|----|---|---|----|----|---|---|----|----|----|----|----|
| f[v]                  | 20 | 0  | 0  | 0 | 5 | 19 | 0  | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| <i>d</i> [ <i>v</i> ] | 1  | 21 | 22 | 0 | 2 | 6  | 23 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |



Tabela: Parametr color. W - oznacza WHITE, G - GRAY, R - RED

|                       | Α  | В  | С  | D | Е | F  | G  | Н |   | J  | K  | L  | М  | N  |
|-----------------------|----|----|----|---|---|----|----|---|---|----|----|----|----|----|
| f[v]                  | 20 | 0  | 0  | 0 | 5 | 19 | 24 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| <i>d</i> [ <i>v</i> ] | 1  | 21 | 22 | 0 | 2 | 6  | 23 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |



Tabela: Parametr color. W - oznacza WHITE, G - GRAY, R - RED

|                       | Α  | В  | С  | D | Е | F  | G  | Н |   | J  | K  | L  | М  | N  |
|-----------------------|----|----|----|---|---|----|----|---|---|----|----|----|----|----|
| f[v]                  | 20 | 0  | 25 | 0 | 5 | 19 | 24 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| <i>d</i> [ <i>v</i> ] | 1  | 21 | 22 | 0 | 2 | 6  | 23 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |



time = 26

|   |   |   | D |   |   |   |   |   |   |   |   |   |   |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| R | R | R | W | R | R | R | R | R | R | R | R | R | R |  |

|      | Α  | В  | С  | D | Е | F  | G  | Н |   | J  | K  | L  | М  | N  |
|------|----|----|----|---|---|----|----|---|---|----|----|----|----|----|
| f[v] | 20 | 26 | 25 | 0 | 5 | 19 | 24 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| d[v] | 1  | 21 | 22 | 0 | 2 | 6  | 23 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |

### Sortowanie topologiczne - przykład



time = 27

|   |   |   |   | l |   |   | l . |   |   | l . |   | M |   | 1 |
|---|---|---|---|---|---|---|-----|---|---|-----|---|---|---|---|
| R | R | R | G | R | R | R | R   | R | R | R   | R | R | R | 1 |

Tabela: Parametr color. W - oznacza WHITE, G - GRAY, R - RED

|                       | Α  | В  | С  | D  | Е | F  | G  | Н | ı | J  | K  | L  | М  | N  |
|-----------------------|----|----|----|----|---|----|----|---|---|----|----|----|----|----|
| f[v]                  | 20 | 26 | 25 | 0  | 5 | 19 | 24 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| <i>d</i> [ <i>v</i> ] | 1  | 21 | 22 | 27 | 2 | 6  | 23 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |

### Sortowanie topologiczne - przykład



time = 28

|   | l . |   |   |   | l . |   |   | l . | l . |   | l |   | N |
|---|-----|---|---|---|-----|---|---|-----|-----|---|---|---|---|
| R | R   | R | R | R | R   | R | R | R   | R   | R | R | R | R |

Tabela: Parametr color. W - oznacza WHITE, G - GRAY, R - RED

|                       | Α  | В  | С  | D  | Е | F  | G  | Н | ı | J  | K  | L  | М  | N  |
|-----------------------|----|----|----|----|---|----|----|---|---|----|----|----|----|----|
| f[v]                  | 20 | 26 | 25 | 28 | 5 | 19 | 24 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |
| <i>d</i> [ <i>v</i> ] | 1  | 21 | 22 | 27 | 2 | 6  | 23 | 3 | 7 | 10 | 11 | 15 | 9  | 12 |

## Sortowanie topologiczne - przykład

Wynikowe sortowanie topologiczne:

DBCGAFMJLKNIEH

**Zauważ, że** wierzchołki do listy wchodzą w porządku malejącym ze względu na "końcowy czas przetwarzania" ich listy sąsiadów - tj. czas umieszczony w etykiecie f[u]:

| Α  |    |    |    |   |    |    |   |   |    |    |    |    |    |
|----|----|----|----|---|----|----|---|---|----|----|----|----|----|
| 20 | 26 | 25 | 28 | 5 | 19 | 24 | 4 | 8 | 17 | 14 | 16 | 18 | 13 |

### Sortowanie topologiczne. Reprezentacja macierzowa

#### Badanie nieodwiedzonego wierzchołka

```
// zwraca nieodwiedzony wierzchołek przyległy do a
// zwraca -1, jeżeli takiego wierzchołka nie ma
int getUnVisitedVertex(Vertex a, BoolVector visited)
for (b = 0; b < n; b=b+1) do
 if (edge[a][b] == true // jest krawędź
     and visited[b] == false) // b nie były odwiedzony
     then return b;
 endif
endfor
return -1;
```

## Sortowanie topologiczne. Reprezentacja macierzowa

```
topological DFS(DAG G) {
  BoolVector visited = [n]:
  //końcowy czas przetworzenia wierzchołków
  int fin[n];
  time = 0:
  for (k = 0; k < n; k=k+1) do
  visited[k] = false;
   fin[k] = 0:
  endfor
  for (k = 0; k < n; k=k+1) do
    if (visited[k] == false)
       G.topological_visit(k, time, visited, fin);
   endif
  endfor
  for (k = 0; k < n; k=k+1) do
     idx = max(fin,n); // wyszukuje maksymalny w tablicy
    displayVertex(idx);
    fin[idx] = -1;
  endfor
```

## Sortowanie topologiczne. Reprezentacja macierzowa

```
topological_visit(int a, int time,
                  BoolVector visited, int fin[])
 visited[a] = true;
  c = getUnVisitedVertex(a, visited);
  while (c != -1) do
     if (visited [c] == false)
        topological_visit(G,c,time,visited,fin);
     endif
     c = getUnVisitedVertex(a, visited);
  endwhile
  time = time+1;
  fin[a] = time;
```

## Działanie algorytmu - Przykład

|   | Α | В | С | D | E | F | G | Н | I | J | K | L | М | N |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Α | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| В | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| С | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| D | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Е | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| F | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| G | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Н | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| I | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| J | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 |
| K | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| L | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| М | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| N | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

# Działanie algorytmu - Przykład I



|         | Α | В | С | D | E | F | G | Н |   | J | K  | L  | М  | N  |
|---------|---|---|---|---|---|---|---|---|---|---|----|----|----|----|
| Nr. v   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| visited | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  |
| fin     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  |

# Działanie algorytmu - Przykład II

 $\mathbf{0}$  time = 0: visited[0] == 0 ? true; topological\_visit(0,time,visited,fin) visited[0] = 1; c = getUnVisitedVertex(0, visited) = 4;//(0->4) visited[4] == 0 ? true; topological\_visit(4,time,visited,fin); visited[4] = 1;  $\circ$  c = getUnVisitedVertex(4, visited) = 7;// (4->7)  $\mathbf{0}$  visited[7] == 0 ? true; topological\_visit(7,time,visited,fin); visited[7] = 1;

# Działanie algorytmu - Przykład III

- $\bullet$  time = time + 1 = 1; fin[7] = 1;
- c = getUnVisitedVertex(4, visited) = -1
- **1** time = time + 1 = 2; fin[4] = 2;
- $oldsymbol{o}$  c = getUnVisitedVertex(0, visited) = 5;// (0->5)
- visited[5] == 0 ? true;
- 0 topological\_visit(5,time,visited,fin);
- visited[5] = 1;
- c = getUnVisitedVertex(5, visited) = 8;//(5->8)
- 2 visited[8] == 0 ? true;
- topological\_visit(8, time, visited, fin);
- visited[8] = 1;

# Działanie algorytmu - Przykład IV

- c = getUnVisitedVertex(8, visited) = -1;
- $oldsymbol{o}$  c = getUnVisitedVertex(5, visited) = 12;// (5->12)
- visited[12] == 0 ? true;
- opological\_visit(12, time, visited, fin);
- visited[12] = 1;
- $\circ$  c = getUnVisitedVertex(12, visited) = 9; //(12->9)
- visited[9] == 0 ? true;
- 50 topological\_visit(9, time, visited, fin);

  10 topological\_visit(9, time, visited, fin);

  11 topological\_visit(9, time, visited, fin);

  12 topological\_visit(9, time, visited, fin);

  13 topological\_visit(9, time, visited, fin);

  14 topological\_visit(9, time, visited, fin);

  15 topological\_visit(9, time, visited, fin);

  16 topological\_visit(9, time, visited, fin);

  16 topological\_visit(9, time, visited, fin);

  17 topological\_visit(9, time, visited, fin);

  18 topological\_v
- visited[9] = 1;
- c = getUnVisitedVertex(9, visited) = 10; //(9->10)
- visited[10] == 0 ? true;

# Działanie algorytmu - Przykład V

10 topological visit(10, time, visited, fin); visited[10] = 1;  $\circ$  c = getUnVisitedVertex(10, visited) = 13; //(10->13) $\bullet$  visited[13] == 0 ? true; 4 topological visit(13, time, visited, fin); visited[13] = 1; c = getUnVisitedVertex(13, visited) = -1;4: time = time + 1 = 4; fin[13] = 4; c = getUnVisitedVertex(10, visited) = -1;46 time = time + 1 = 5; fin[10] = 5;  $\sigma = getUnVisitedVertex(9, visited) = 11; //(9->11)$ **49** *visited*[11] == 0 ? true;

# Działanie algorytmu - Przykład VI

49 topological visit(11, time, visited, fin); visited[11] = 1;  $oldsymbol{0}$  c = getUnVisitedVertex(11, visited) = -1;time = time + 1 = 6; fin[11] = 6;  $\circ$  c = getUnVisitedVertex(9, visited) = -1; **4** time = time + 1 = 7; fin[9] = 7; c = getUnVisitedVertex(12, visited) = -1;60 time = time + 1 = 8; fin[12] = 8; c = getUnVisitedVertex(5, visited) = -1;68 time = time + 1 = 9; fin[5] = 9;  $\circ$  c = getUnVisitedVertex(0, visited) = -1; 0 time = time + 1 = 10; fin[0] = 10;

# Działanie algorytmu - Przykład VII

- visited[1] == 0 ? true;
- topological\_visit(1,time,visited,fin)
- visited[1] = 1;
- $oldsymbol{G}$  c = getUnVisitedVertex(1, visited) = 2;// (1->2)
- visited[2] == 0 ? true;
- 60 topological\_visit(2,time,visited,fin)
- visited[2] = 1;
- c = getUnVisitedVertex(2, visited) = 6;//(2->6)
- visited[6] == 0? true;
- topological\_visit(6,time,visited,fin)
- visited[6] = 1;
- c = getUnVisitedVertex(6, visited) = -1;

# Działanie algorytmu - Przykład VIII

- interpoons time = time + 1 = 11; fin[6] = 11;
- G = getUnVisitedVertex(2, visited) = -1;
- 0 time = time + 1 = 12; fin[2] = 12;
- c = getUnVisitedVertex(1, visited) = -1;
- varphi time = time + 1 = 13; fin[2] = 11;

|       | Α  | В  | С  | D  | E | F | G  | Н |   | J | K  | L  | M  | N  |
|-------|----|----|----|----|---|---|----|---|---|---|----|----|----|----|
| Nr. v | 0  | 1  | 2  | 3  | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| fin   | 10 | 13 | 12 | 14 | 2 | 9 | 11 | 1 | 3 | 7 | 5  | 6  | 8  | 4  |

#### Wynikowe sortowanie topologiczne:

DBCGAFMJLKNIEH

## Sortowanie topologiczne - wersja nierekurencyjna

#### Metoda usuwania wierzchołków o stopniu wejściowym równym zero

- Wykorzystywana własność: jeśli graf jest acyklicznym grafem skierowanym, to posiada przynajmniej jeden wierzchołek o stopniu wejściowym równym zero.
- Idea: Dopóki graf posiada wierzchołki o stopniu wejściowym zero, znajdujemy taki wierzchołek, usuwamy go z grafu wraz ze wszystkimi wychodzącymi z niego krawędziami i umieszczamy go na liście wierzchołków posortowanych topologicznie.
- Jeśli w grafie pozostaną jakieś wierzchołki, to graf posiada cykle i sortowania topologicznego nie można wykonać.
- Złożoność: O(|V| + |E|)

# Sortowanie topologiczne - Metoda usuwania wierzchołków I

- G = (V, E) acykliczny graf skierowany, tzw DAG
- G reprezentowany jest przez listy sąsiedztwa, tj. G.Adj(v) oznacza listę sąsiadów w wierzchołka v w grafie G.
- Rozmiar V jest n.
- Wierzchołki ponumerowane są od 0 do n-1.
- in\_degree(v) stopień wejściowy wierzchołka v ∈ V
- order kolejka, która będzie zawierać wynikowy porządek topologiczny, jeśli istnieje.

# Sortowanie topologiczne - Metoda usuwania wierzchołków II

```
TopologicalSort(DAG G) {
Queue Q, Order;
count = 0;
 int indegree [n];
 for (v = 0; v < n; v = v+1)
     indegree[v] = in_degree(v);
 endfor
 //wstaw do kolejki Q wszystkie wierzchołki
 //ze stopniem wejsciowym = 0
 for (v = 0; v < n; v++)
    if (indegree[v] == 0) then Q.EnQueue(v);
 endfor
 while (not Q.Empty()) do
```

# Sortowanie topologiczne - Metoda usuwania wierzchołków III

```
v = Q.DeQueue();
  Order. EnQueue (v);
   count = count + 1;
   forall(w in G.Adj(v))
     indegree[w] = indegree[w]-1;
     if (indegree[w] == 0) then Q.EnQueue(w);
  endforall
endwhile
// Istnieje cykl w grafie.
 if (count != n) then Order = null;
else return Order;
```



- indegree[1] = 0, indegree[2] = 0, indegree[3] = 3, indegree[4] = 1, indegree[5] = 1.
- $\bigcirc$   $Q = \{1,2\}$  // Dopóki kolejka nie jest pusta





- order pusta; count = 0
- indegree[1] = 0, indegree[2] = 0, indegree[3] = 3, indegree[4] = 1, indegree[5] = 1.
- $Q = \{1, 2\}$  // Dopóki kolejka nie jest pusta
  - $v = 1; Q = \{2\};$
  - order = {1};
  - ount = 1;
  - Wrawędź (1,3); indegree[3] = 2;



- indegree[1] = 0, indegree[2] = 0, indegree[3] = 3, indegree[4] = 1, indegree[5] = 1.
- $Q = \{1, 2\}$  // Dopóki kolejka nie jest pusta
  - $v = 1; Q = \{2\};$
  - order = {1};

  - 4 Krawędź (1,3); indegree[3] = 2;
  - **6** v = 2;  $Q = \{\}$ ;
  - **3** order =  $\{1, 2\}$ ;
  - o count = 2;
  - 8 Krawędź (2,3); indegree[3] = 1;



- indegree[1] = 0, indegree[2] = 0, indegree[3] = 3, indegree[4] = 1, indegree[5] = 1.
- $\bigcirc$   $Q = \{1,2\}$  // Dopóki kolejka nie jest pusta
  - $v = 1; Q = \{2\};$
  - order = {1};
  - ount = 1;
  - Wrawędź (1,3); indegree[3] = 2;
  - **6** V = 2;  $Q = \{\}$ ;
  - **3** order =  $\{1, 2\}$ ;
  - count = 2;
  - Krawędź (2,3); indegree[3] = 1;
- Q = {} jest pusta. Wychodzimy w WHILE
- **6** count = 2,  $n = 5 \Rightarrow$  w grafie jest cykl.











- indegree[1] = 0, indegree[2] = 0, indegree[3] = 2, indegree[4] = 1, indegree[5] = 2.
- $\bigcirc$   $Q = \{1,2\}$  // Dopóki kolejka nie jest pusta
  - $v = 1; Q = \{2\}; order = \{1\}; count = 1;$
  - Krawędź (1,3); indegree[3] = 1;



- order pusta; count = 0
- indegree[1] = 0, indegree[2] = 0, indegree[3] = 2, indegree[4] = 1, indegree[5] = 2.



$$v = 1; Q = \{2\}; order = \{1\}; count = 1;$$

**3** 
$$v = 2$$
;  $Q = \{\}$ ; order =  $\{1, 2\}$ ; count = 2;

$$V = 2, \ C = \{\}, \ Older = \{1, 2\}, \ Count = 2,$$

$$C = \{\}, \ Older = \{1, 2\}, \ Count = 2,$$





- order pusta; count = 0
- indegree[1] = 0, indegree[2] = 0, indegree[3] = 2, indegree[4] = 1, indegree[5] = 2.
- $Q = \{1, 2\}$  // Dopóki kolejka nie jest pusta
  - $v = 1; Q = \{2\}; order = \{1\}; count = 1;$
  - Krawędź (1,3); indegree[3] = 1;
  - **3** v = 2;  $Q = \{\}$ ; order =  $\{1, 2\}$ ; count = 2;
  - **4** Krawędź (2,3); *indegree*[3] = 0;  $Q = \{3\}$ ;
  - **5** v = 3;  $Q = \{\}$ ; order =  $\{1, 2, 3\}$ ; count = 3;
  - **6** Krawędź (3,4); *indegree*[4] = 0;  $Q = \{4\}$ ;

  - Nrawedź (3,5); indegree[5] = 1;  $Q = \{4\}$ ;

- order pusta; count = 0
- indegree[1] = 0, indegree[2] = 0, indegree[3] = 2, indegree[4] = 1, indegree[5] = 2.
- $Q = \{1, 2\}$  // Dopóki kolejka nie jest pusta
  - $v = 1; Q = \{2\}; order = \{1\}; count = 1;$
  - 2 Krawedź (1,3); indegree[3] = 1;
  - **3** v = 2;  $Q = \{\}$ ; order =  $\{1, 2\}$ ; count = 2;
  - **4** Krawędź (2,3); *indegree*[3] = 0;  $Q = \{3\}$ ;
  - **5** v = 3;  $Q = \{\}$ ; order =  $\{1, 2, 3\}$ ; count = 3;
  - **6** Krawedź (3, 4); indegree [4] = 0;  $Q = \{4\}$ ;
  - Nrawedź (3,5); indegree[5] = 1;  $Q = \{4\}$ ;
  - 8 v = 4;  $Q = \{\}$ ; order =  $\{1, 2, 3, 4\}$ ; count = 4;

  - **9** Krawedź (4,5); indegree[5] = 0;  $Q = \{5\}$ ;



- order pusta; count = 0
- indegree[1] = 0, indegree[2] = 0, indegree[3] = 2, indegree[4] = 1, indegree[5] = 2.
- Q count = n //  $Q = \{1,2\}$  // Dopóki kolejka nie jest pusta
  - $v = 1; Q = \{2\}; order = \{1\}; count = 1;$
  - Krawędź (1,3); indegree[3] = 1;
  - **3** v = 2;  $Q = \{\}$ ; order =  $\{1, 2\}$ ; count = 2;
  - **4** Krawędź (2,3); *indegree*[3] = 0;  $Q = \{3\}$ ;
  - **5** v = 3;  $Q = \{\}$ ; order =  $\{1, 2, 3\}$ ; count = 3;
  - **6** Krawędź (3,4); *indegree*[4] = 0;  $Q = \{4\}$ ;
  - **?** Krawędź (3,5); *indegree*[5] = 1;  $Q = \{4\}$ ;
  - **3** v = 4;  $Q = \{\}$ ; order =  $\{1, 2, 3, 4\}$ ; count = 4;
  - $V = 4, Q = \{ \}, \text{ order } = \{ 1, 2, 0, 4 \}, \text{ count } = 4$   $Q \text{ (4.5): indegree}[5] \quad Q \text{ (5):}$
  - **9** Krawędź (4,5); *indegree*[5] = 0;  $Q = \{5\}$ ;
  - $v = 5; Q = \{\}; order = \{1, 2, 3, 4, 5\}; count = 5;$

TRUE

Porządek to-

1.2.3.4.5.

pologiczny:



Sortowanie topologiczne: 1, 2, 3, 4, 5