Dinamica Non Lineare.

Edoardo Gabrielli

15 marzo 2021

Indice

1	Intr	roduzione ai Sistemi Dinamici	
	1	Soluzioni stazionarie di SD	•
	2	Stabilità delle soluzioni	Ç
	3	Studio della stabilità mediante linearizzazione	14

Capitolo 1

Introduzione ai Sistemi Dinamici

1 Soluzioni stazionarie di SD

1.1 Sistema dinamico a tempo continuo

Definizione 1.1.1: (Stato stazionario o Soluzione Stazionaria per SD autonomo). Preso il sistema dinamico:

$$\frac{d\boldsymbol{x}}{dt} = F(\boldsymbol{x}) \qquad F: U \to \mathbb{R}^n; F \in C^r \ (r \ge 1); \ \boldsymbol{x} \in \mathbb{R}^n$$

Uno stato $\mathbf{x}_s \in \mathbb{R}^n$ si dice stazionario se è soluzione del SD e vale che $F(\mathbf{x}_s) = 0$.

La definizione non è valida nel caso di sistemi non autonomi.

Esempio 1.1.1: (Sistema non autonomo non ha sol. Stazionarie) Prendiamo il seguente:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x + t\\ x(0) = x_0 \end{cases}$$

In questo caso la soluzione è dipendente dal tempo (in modo indipendente da $t-t_0$):

$$x(t) = e^{-t}(x_0 + 1) + t - 1$$

Quindi non può esistere la soluzione stazionaria in questo caso: non esiste una soluzione che annulli la F al variare di t.

Vediamo adesso un esempio molto esplicativo per il Phase Portrait e per le soluzioni stazionarie.

Esempio 1.1.2: (Sistema non lineare con parametro)

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + ax^3 \equiv F(x)$$

Le soluzioni stazionarie devono rispettare la seguente equazione:

$$-x_s + ax_s^3 = 0 \implies \begin{cases} x_s = 0 & \forall a \in \mathbb{R} \\ x_s = \pm 1/\sqrt{a} & \forall a > 0 \end{cases}$$

Si vede che al variare del parametro di controllo a compaiono o scompaiono multipli punti fissi, questa è una peculiarità dei sistemi non lineari che approfondiremo in seguito.

1) a = 0. In questo caso il sistema è lineare:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x$$

Vogliamo classificare l'unica soluzione stazionaria in $x_s = 0$. Applicando una perturbazione a questa soluzione il sistema torna a stazionarietà o inizia una evoluzione diversa?

Per rispondere a questa domanda si può prendere delle condizioni iniziali a destra ed a sinistra dell'unico punto fisso come in figura 1.1: x_0^+, x_0^- .

Si può subito notare che in x_0^+ si ha F(x) negativa, quindi il punto tenderà ad avvicinarsi all'origine, viceversa per x_0^- . La soluzione stazionaria è quindi stabile.

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + ax^3$$

Le orbite hanno lo stesso comportamento del caso analizzato in precedenza, qui però si ha un avvicinamento all'origine non lineare per via del termine cubico (figura 1.2).

Le direzioni sono tracciate sempre valutando il segno di F(x), notiamo subito che il punto nell'origine attrae la dinamica (è ancora stabile) mentre le altre due soluzioni stazionare non

Figura 1.1: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a=0.

Figura 1.2: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a < 0, in arancio il punto fisso.

Figura 1.3: Caratterizzare la dinamica prendendo delle condizioni iniziali vicine al punto fisso nel caso a > 0, in arancione le 3 soluzioni stazionarie.

godono della stessa proprietà.

Ponendo un punto nei pressi di $x_s = \pm 1/\sqrt{a}$ il SD tenderà a divergere o ad avvicinarsi a x = 0, queste soluzioni sono quindi stazionarie ma instabili.

L'esempio precedente mostra che per risolvere il sistema e determinare la dinamica non è sempre necessario trovare la soluzione analitica, è possibile determinare i punti fissi e valutarne la stabilità.

In questo modo si ottiene il quadro complessivo dell'evoluzione del sistema (possiamo disegnare una approssimazione del Phase Portrait). Questo tipo di approccio è stato inventato da un grande esperto di sistemi dinamici: Henry Poicaré.

1.2 Interpretazione fisica: Gradient Dynamical System

Quando è possibile esprimere il SD (a tempo continuo, autonomo) nel seguente modo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}) = -\frac{\mathrm{d}V(\boldsymbol{x})}{\mathrm{d}t}$$

Allora il sistema si presta ad una interpretazione intuitivamente semplice: $V(\boldsymbol{x})$ rappresenta il potenziale in cui il corpo che compie la traiettoria $\boldsymbol{x}(t)$ si trova immerso.

Riprendendo l'esempio unidimensionale visto sopra:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -x + ax^3 = -\frac{\mathrm{d}V(x)}{\mathrm{d}t}$$

Possiamo integrare per ottenere il potenziale:

$$V(x) = \frac{x^2}{2} - \frac{a}{4}x^4$$

Tale potenziale gode delle seguenti proprietà:

- è simmetrico V(x) = V(-x).
- $\lim_{x \to \pm \infty} V(x) = -\infty$.
- Si annulla in $(0, \pm \sqrt{2/a})$ se a > 0, altrimenti si annulla solo nell'origine.

Per a > 0 il potenziale assume la forma a doppio monte in figura 1.4, negli altri due casi invece si ha un paraboloide con minimo in x = 0: l'unica soluzione stazionaria.

Figura 1.4: Andamento del potenziale per l'esempio sopra nel caso a>0, i punti arancioni corrispondono alle 3 soluzioni stazionarie.

Esempio 1.2.1: (Punti fissi dell'oscillatore di Duffling) Analizziamo la seguente equazione differenziale:

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + k \frac{\mathrm{d}x}{\mathrm{d}t} + \alpha x + \beta x^3 = A\cos(\omega t)$$

Valutiamo il sistema nel caso semplificato:

$$A = 0$$
 $\alpha = 1$ $\beta = -1$ $k > 0$

Selezionare l'ultimo parametro nel dominio positivo (k > 0) significa dire che il sistema presenta dissipazione.

Conduciamo il SD ad un sistema di equazioni differenziali del primo ordine:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y \equiv F_1(x, y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -ky - x + x^3 \equiv F_2(x, y) \end{cases}$$

Possiamo ricavare i punti fissi richiedendo l'annullamento di $F = (F_1, F_2)$:

$$\begin{cases} y = 0 \\ -ky - x + x^3 = 0 \end{cases}$$

Prendendo il caso semplice in cui k=0, è immediato trovare i seguenti punti fissi:

$$V_{1s} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 $V_{2s} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $V_{3s} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$

Lo studio della stabilità di questi punti non è scontato. Si deve considerare le direzioni di tutte le orbite in x e in y a destra e sinistra di ogni punto fisso.

Esercizio 1.2.1: (Stati Stazioari)

Trovare gli stati stazionari dei seguenti SD a tempo continuo autonomi:

• 1)
$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - \epsilon x \frac{\mathrm{d}x}{\mathrm{d}t} + x = 0$$

• 2)
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x + x^3\\ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y \end{cases}$$

• 3)
$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -y - \mu x - x^2 \end{cases}$$

1.3 Stati Stazionari di SD a tempo discreto autonomo

Definizione 1.3.1: (Stato Stazionario SD a tempo discreto). Data la mappa $\mathbf{x}_{k+1} = G(\mathbf{x}_k)$ con $G: U \subset \mathbb{R}^n \to \mathbb{R}^n$ $e \ \mathbf{x}_k \in U$. Una soluzione \mathbf{x}_s si dice stazionaria se:

$$\boldsymbol{x}_s = G(\boldsymbol{x}_s)$$

Questo in termini di risposta del sistema implica che l'input deve essere uguale all'output.

Esempio 1.3.1: (Mappa logistica)

Prendiamo la solita mappa logistica:

$$x_{k+1} = \mu x_k (1 - x_k)$$
 $x_k \in [0, 1]; \ \mu \in [0, 4]$

La richiesta di stato stazionario si traduce in:

$$x_s = G(x_s) \implies x_s = \mu x_s (1 - x_s)$$

Risolvendo l'equazione si trovano i candidati:

$$x_{s_1} = 0$$
$$x_{s_2} = \frac{\mu - 1}{\mu}.$$

Visto che la dinamica è definita tra 0 e 1 la condizione di esistenza del punto fisso x_{s_2} è $\mu>1.$

Esercizio 1.3.1: (Punto fisso della mappa logistica)

Dimostrare che per $0 \le \mu \le 1$ esiste solo uno stato stazionario.

Suggerimento: utilizzare l'espressione

$$\frac{\mathrm{d}y}{\mathrm{d}t} = \mu - 2\mu x$$

con $y = \mu x(1-x)$ e fare uso della geometria analitica.

Esempio 1.3.2: (Stati stazionari della Mappa di Henon)

$$\begin{cases} x_{n+1} = 1 + y_n - \alpha x_n^2 \\ y_{n+1} = \beta x_n \end{cases}$$

Cerchiamo uno stato stazionari $\boldsymbol{V}_s = \begin{pmatrix} x_s \\ y_s \end{pmatrix}$ tale che:

$$V_s = G(V_s)$$

Quindi serve che:

$$\begin{cases} x_s = 1 + y_s - \alpha x_s^2 \\ y_s = \beta x_s \end{cases} \implies \begin{cases} x_s = 1 + \beta x_s - \alpha x_s^2 \\ y_s = \beta x_s \end{cases} \begin{cases} \alpha x_s^2 + x_s (1 - \beta) - 1 = 0 \\ y_s = \beta x_s \end{cases}$$

Cercando soluzioni reali la condizione di esistenza per la prima equazione è:

$$(1-\beta)^2 + 4\alpha \ge 0 \implies \alpha \ge \frac{-(1-\beta)^2}{4}$$

Scegliendo valori per il quale la mappa presenta un comportamento complesso:

$$\alpha=1.4,\ \beta=0.3$$

Abbiamo che la condizione di esistenza è rispettata. Le soluzioni stazionarie della mappa sono:

$$\boldsymbol{V}_{s_1} = \begin{pmatrix} \frac{-(1-\beta) + \sqrt{(1-\beta)^2 + 4\alpha}}{2\alpha} \\ \beta x_s \end{pmatrix} \quad \boldsymbol{V}_{s_1} = \begin{pmatrix} \frac{-(1-\beta) - \sqrt{(1-\beta)^2 + 4\alpha}}{2\alpha} \\ \beta x_s \end{pmatrix}$$

Esercizio 1.3.2: (Punti stazionari di Mappe ricorsive) Determinare gli stati stazionari delle seguenti mappe ricorsive:

1.

$$\begin{cases} x_{k+1} = x_k \\ y_{k+1} = x_k + y_k \end{cases}$$

2.

$$\begin{cases} x_{k+1} = x_k^2 \\ y_{k+1} = x_k + y_k \end{cases}$$

2 Stabilità delle soluzioni

Quando si parla di stabilità di un sistema si intende la stabilità rispetto ad una perturbazione esterna, osservandone il comportamento dopo la perturbazione.

Inoltre si parla di stabilità sempre in un contesto asintotico: serve che il sistema sia definito in $t \to \infty$. Alcuni teoremi che ci garantisce l'esistenza della soluzione asintotica per sistemi non autonomi sono i seguenti.

Teorema 2.0.1: (<u>Bounded Global Existence</u>). Preso un sistema dinamico:

$$\begin{cases} \frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \\ \mathbf{x}(0) = \mathbf{x}_0 \end{cases}$$

$$\in \mathbb{R}^n \ F : \mathbb{R}^n \to \mathbb{R}^n$$

Se valgono le seguenti condizioni:

- 1. $F \ \hat{e} \ localmente \ Lipschitziana: \ (\forall \ \boldsymbol{y}: \ |F(\boldsymbol{x}) F(\boldsymbol{y})| \le k(\boldsymbol{x}) |\boldsymbol{x} F(\boldsymbol{y$
- 2. $F \in limitata: \exists M > 0: |F(x)| < M$.

Allora la soluzione dell'IVP è globalmente definita.

Teorema 2.0.2: (Esistenza Globale della soluzione). Se F è globalmente Lipshitziana $(k(\mathbf{x}) = k \text{ indipendente da } \mathbf{x})$ allora la soluzione è globalmente definita.

Definizione 2.0.1: (Stabilità secondo Lyapunov). Dato il sistema dinamico a tempo continuo autonomo: $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}), \ \mathbf{x} \in \mathbb{R}^n, \ F: \mathbb{R}^n \to \mathbb{R}^n \ e \ sia \ \mathbf{x}_p(t) \ una \ soluzione \ dell'IVP.$

Diciamo che $x_p(t)$ è stabile secondo Lyapunov se

$$\forall \ \epsilon > 0 \quad \exists \ \delta(\epsilon) > 0 :$$

$$se \ ||\boldsymbol{x}(0) - \boldsymbol{x}_p(0)|| < \delta(\epsilon) \implies ||\boldsymbol{x}(t) - \boldsymbol{x}_p(t)|| < \epsilon \quad \forall \ t > 0$$

Con x(t) soluzione dell'IVP.

Definizione 2.0.2: (Stabilità asintotitca). Nelle stesse ipotesi della precedente definizione diciamo che $\mathbf{x}_p(t)$ (soluzione di riferimento) è asintoticamente stabile se è:

- 1. Stabile secondo Lyapunov.
- 2. $\lim_{t\to\infty} ||\boldsymbol{x}(t) \boldsymbol{x}_p(t)|| = 0.$

Figura 1.5: Concettualmente la soluzione e stabile se tutte le altre soluzioni con diverse condizioni iniziali nel suo intorno rimangono nel tubo di flusso nel tempo.

Figura 1.6: Concettualmente se la soluzione è asintotica allora tutte le soluzioni nell'intorno cadono in essa per $t \to \infty$.

Esempio 2.0.1: (Sistema stabile ma non stabile asintoticamente)

$$\begin{cases} \frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = 0\\ \boldsymbol{x}(0) = \boldsymbol{x}_0 \end{cases}$$

La soluzione è banalmente: $\boldsymbol{x}_p = \boldsymbol{x}_0$. Questa soluzione è stabile secondo Lyapunov:

Presa un'altra soluzione x tale che $x(0) = x_0$.

$$\epsilon > 0 \quad ||\boldsymbol{x}_p(t) - \boldsymbol{x}(t)|| = ||\boldsymbol{x}_0 - \boldsymbol{y}_0|| < \epsilon$$

Allora basta prendere $\delta(\epsilon) = \epsilon$.

Notiamo che questa soluzione non è asintoticamente stabile, le due soluzioni restano sempre distanti nel tempo.

2.1 Stabilità a tempo discreto

La cosa particolare della seconda definizione è che condizione 2) non basta per dire che una soluzione sia stabile anche secondo Lyapunov.

Definizione 2.1.1: (Stabilità per SD a tempo discreto autonomi secondo Lyapunov). Data la mappa

$$\boldsymbol{x}_{k+1} = G(\boldsymbol{x}_k) \ con \boldsymbol{x}_k \in \mathbb{R}^n \ e \ G : \mathbb{R}^n \to \mathbb{R}^n.$$

Diciamo che un orbita 1 $\{u_k\}$ è stabile secondo Lyapunov se

$$\forall \epsilon > 0 \ \exists \delta(\epsilon) > 0 :$$

Per ogni altra orbita V_k per la quale vale che:

$$||\boldsymbol{V}_m - \boldsymbol{u}_m|| < \delta(\epsilon), \ m \in \mathbb{N} \implies ||\boldsymbol{V}_K - \boldsymbol{u}_K|| < \epsilon \quad \forall K > m$$

Definizione 2.1.2: (Stabilità asintotica di SD a tempo discreto). Nelle stesse ipotesi della definizione precedente, diciamo che l'orbita $\{u_k\}$ è asintoticamente stabile se:

- 1. è stabile secondo Lyapunov.
- 2. $\lim_{k\to\infty} ||V_k u_k|| = 0$ per ogni altra orbita V_k nell'intorno $\delta(\epsilon)$.

Figura 1.7: L'idea è che una soluzione che si trovi ad un certo punto a meno di $\delta(\epsilon)$ di distanza da x_s nel tempo iniziale non è in grado di uscire dalla bolla di raggio ϵ .

 $\{u_k\}$ Inteso come insieme di valori

2.2 Stabilità secondo Lyapunov di stati stazionari di SD a tempo continuo

Sia $\frac{d\mathbf{x}}{dt} = F(\mathbf{x})$ con \mathbf{x}_s stazionario ($F(\mathbf{x}_s) = 0$). Ricordiamo che lo stato stazionario è anch'esso una soluzione.

Definizione 2.2.1: (Stabilità di stato stazionario secondo Lyapunov). Si dice che x_s è stabile secondo Lyapunov se

$$\forall \epsilon > 0 \exists \ \delta(\epsilon) > 0:$$

$$se \ ||x_0 - x_s|| < \delta(\epsilon) \implies ||x(t) - x_s|| < \epsilon$$

Definizione 2.2.2: (Stabilità asintotica di stato stazionario). Nelle stesse ipotesi della definizione precedente diciamo che x_s è asintoticamente stabile se

- 1. x_s è stabile secondo Lyapunov.
- 2. $\lim_{t\to\infty} ||\boldsymbol{x}(t) \boldsymbol{x}_s|| = 0.$

Esercizio 2.2.1: (Oscillatore armonico) Dato il sistema dinamico a tempo continuo

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = y\\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x \end{cases}$$

Dimostrare che $V_s = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ è stabile secondo Lyapunov e dire se tale soluzione è asintoticamente stabile.

Esempio 2.2.1: (Vinograd)

In un articolo di Vinograd del 1957 (ineguality of the method of deterministic experiments for the study of nonlinear diff. equations) è stato dimostrato che il seguente sistema:

$$\begin{cases} \frac{dx}{dt} = x^{2}(y-x) + y^{5} = F_{1}(x,y) \\ \frac{dy}{dt} = y^{2}(y-2x) = F_{2}(x,y) \end{cases}$$

Che l'unico stato stazionario è ${\pmb V}_s=\begin{pmatrix} 0\\0 \end{pmatrix}$ (per casa) e che ${\pmb V}_s$ è tale che:

$$\lim_{t \to \infty} ||\boldsymbol{V}(t) - \boldsymbol{V}_s|| = 0$$

Quindi lo stato stazionario è asintoticamente stabile ma non è stabile secondo Lyapunov.

Esercizio 2.2.2: (Stabilità soluzione) Dato il SD $\frac{d\mathbf{x}}{dt} = F(\mathbf{x})$ con $\mathbf{x} \in \mathbb{R}^n$ e $F : \mathbb{R}^n \to \mathbb{R}^n$. Assumiamo che $\exists \alpha, \beta$ con $(\beta > 0)$:

$$F(\boldsymbol{x}) \cdot \boldsymbol{x} \le \alpha |\boldsymbol{x}|^2 + \beta$$

- Dimostrare che le soluzioni sono globalmente definite.
- Dimostrare, nel caso $\alpha < 0$, che esiste r (raggio di una palla in \mathbb{R}^n) e T tali per cui se t > T allora |x(t)| < r.
- Determinare r.

2.3 Esempi sulla stabilità secondo Lyapunov di soluzioni di ODE

Esempio 2.3.1: (1)

Prendiamo il campo vettoriale definito come:

$$\begin{cases} \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = -a^2 x & a \in \mathbb{R}, a \neq 0 \\ x(0) = x_0 \end{cases}$$

La soluzione dell'IVP è: $x_p(t) = x_0 e^{-a^2 t}$. Abbiamo inoltre lo stato stazionario nullo: $x_s = 0$.

Dimostriamo che la soluzione stazionaria è stabile secondo Lyapunov, ovvero che:

$$\forall \epsilon > 0 \text{ (assegnato)}: |x(t) - x(s)| < \epsilon$$

$$|x(t) - x_s| = |x_0 e^{-a^2 t} - 0| = e^{-a^2 t} |x_0| \le |x_0|$$

Basta allora prendere $\delta(\epsilon) = \epsilon$:

$$\implies \forall x_0: |x_0| < \delta(\epsilon) \rightarrow |x(t) - x_s| < \epsilon$$

Quindi la soluzione è stabile secondo Lyapunov. Inoltre:

$$|x(t) - x_s| = \left| x_0 e^{-a^2 t} \right| \to 0 \text{ con } t \to \infty$$

Allora x_s è anche asintoticamente stabile.

Esercizio 2.3.1: (2)

Prendiamo il campo vettoriale non autonomo²:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -tx$$

Dimostrare (per casa) che $x(t) = x_0 \exp\left(-\frac{1}{2}(t^2 - t_0^2)\right)$ soddisfa l'IVP:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -tx\\ x(t_0) = x_0 \end{cases}$$

Dimostriamo adesso che la soluzione di riferimento:

$$x_p(t) = x_p \exp\left(-\frac{1}{2}(t^2 - t_0^2)\right)$$

è stabile secondo Lyapunov.

$$|x(t) - x_p(t)| = \left| x_0 e^{-1/2(t^2 - t_0^2)} - x_p e^{-1/2(t^2 - t_0^2)} \right|$$

Se $t \ge t_0 \implies \exp(-\frac{1}{2}(t^2 - t_0^2)) < 1$ Quindi:

$$|x(t) - x_p(t)| \le |x_0 - x_p| < \epsilon \implies \delta(\epsilon) = \epsilon$$

La soluzione è anche asintoticamente stabile.

$$\lim_{t \to \infty} |x(t) - x_p(t)| = 0$$

Esempio 2.3.2: (3)

Dato il campo vettoriale in \mathbb{R}^2 :

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = x - 10y = F_1(x, y) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = 10x - y = F_2(x, y) \end{cases}$$

L'unico stato stazionario è dato da:

$$\begin{cases} x + 10y = 0 \\ 10x - y = 0 \end{cases} \implies \mathbf{V}_s P \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Per casa trovare la generica soluzione dell'IVP con

$$x(0) = x_0, \quad y(0) = y_0$$

Verificare che la soluzione è:

$$x(t) = e^{-t} \left[x_0 \cos(10t) - y_0 \sin(10t) \right]$$

$$y(t) = e^{-t} \left[x_0 \sin(10t) + y_0 \cos(10t) \right].$$

Vogliamo dimostrare che \boldsymbol{V}_s è stabile secondo Lyapunov.

$$\begin{split} |\boldsymbol{V}(t) - \boldsymbol{V}_s| = & e^{-t} \left[x_0^2 \cos^2(10t) + \right. \\ & + y_0^2 \sin^2(10t) - 2x_0 y_0 \sin(10t) \cos(10t) + \\ & + x_0^2 \sin^2(10t) + y_0^2 \cos^2(10t) + \\ & + 2x_0 y_0 \sin(10t) \cos(10t) \right] = \\ & = e^{-t} \left[x_0^2 + y_0^2 \right]^{1/2}. \end{split}$$

Visto che stiamo considerando t > 0 allora:

$$|V(t) - V_s| < \epsilon \text{ se } \delta(\epsilon) = \epsilon \text{ e } \left[x_0^2 + y_0^2\right]^{1/2} < \epsilon$$

Quindi V_s è stabile secondo Lyapunov.

Osserviamo anche che V_s è anche asintoticamente stabile:

$$\lim_{t \to \infty} |\boldsymbol{V}(t) - \boldsymbol{V}_s| = 0$$

La definizione di stabilità secondo Lyapunov ha una utilità concettuale poiché ci da una idea di quello che è un punto stabile, a livello applicativo non è banale dimostrare la stabilità: in moltissimi casi nemmeno conosciamo le soluzioni!

Quello che è possibile fare è sviluppare una teoria sui SD a tempo continuo (e discreto) che ci consente di testare la definizione di Lyapunov in modo diretto.

3 Studio della stabilità mediante linearizzazione

Prendiamo il sistema dinamico autonomo a tempo continuo:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = F(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^n, \quad F : \mathbb{R}^n \to \mathbb{R}^n, \quad F \in C^r, \ r \ge 2$$

Supponiamo che le soluzioni esistano globalmente.

Figura: Se l'orbita è stabile allora y(t) è confinata ad un tubo di flusso

La soluzione allora è definita dalla somma della soluzione imperturbata e del disturbo.

$$\boldsymbol{x(t)} = \boldsymbol{x}_p(t) + \boldsymbol{y}(t)$$
 con $|\boldsymbol{y}(t)| \ll 1$

Quindi possiamo dire che:

$$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = \frac{\mathrm{d}\boldsymbol{x}_p}{\mathrm{d}t} + \frac{\mathrm{d}\boldsymbol{t}}{\mathrm{d}t} = F(\boldsymbol{x}_p + \boldsymbol{y}_p)$$

Figura 1.8: Perturbazione (y(t)) della soluzione $x_p(t)$.

Definizione 3.0.1: (Funzione differenziabilie). Sia $F: I \to J$ con $I \subset \mathbb{R}^n$, $J \subset \mathbb{R}^n$. I è un aperto e $\mathbf{x}_0 \in I$. Si dice che F è differenziabile in \mathbf{x}_0 se $\exists DF(\mathbf{x}_0) \in L(\mathbb{R}^n, \mathbb{R}^n)$ (spazio delle applicazioni lineari) tale che:

$$\lim_{|\boldsymbol{h}|\to 0} \frac{|F(\boldsymbol{x}_0 + \boldsymbol{h}) - F(\boldsymbol{x}_0) - DF(\boldsymbol{x}_0)\boldsymbol{h}|}{|\boldsymbol{h}|} = 0$$

Teorema 3.0.1: (Sullo Jacobiano). Sia $F: I \to J$, $I \subset \mathbb{R}^n$, $J \subset \mathbb{R}^n$, supponiamo I aperto.

Se F è differenziabile in x_0 allora:

- 1. esistono le derivate parziali: $\frac{\partial F_I}{\partial x_J}\Big|_{x_0}$ con $i, J = 1, 2, \dots n$.
- 2. $\forall \mathbf{h} \in I \text{ si ha che:}$

$$[DF(\boldsymbol{x}_0)\boldsymbol{h}]|_i = \sum_{J=1}^n \frac{\partial F_i}{\partial x_J} h_J, \qquad [DF(x_0)]|_{i,J} = \frac{\partial F_i}{\partial X_J}$$

Esercizio 3.0.1: (Calcolo di DF)

Presa la mappa:

$$F = \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} x_1 - x_2^2 \\ x_1 x_2 - x_2 \end{pmatrix}$$

Calcolare $DF(\boldsymbol{V}_0)$ nel punto $\boldsymbol{V}_0 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Tornando alla nostra linearizzazione:

$$\frac{\mathrm{d}\boldsymbol{x}_p(t)}{\mathrm{d}t} + \frac{\mathrm{d}\boldsymbol{y}(t)}{\mathrm{d}t} = F(\boldsymbol{x}_p(t) + \boldsymbol{y}(t)) \simeq F(\boldsymbol{x}_p(t)) + DF(\boldsymbol{x}_p(t))\boldsymbol{y} + O(\boldsymbol{y})$$

Quindi eliminando l'identità nella precedente equazione ci si riduce alla sola dinamica della perturbazione:

$$\frac{\mathrm{d}\boldsymbol{y}(t)}{\mathrm{d}t} = DF(\boldsymbol{x}_p(t))\boldsymbol{y} \equiv J(\boldsymbol{x}_p)\boldsymbol{y}$$

Questo campo vettoriale ha una soluzione soluzione stazionaria:

$$m{y}_s = egin{pmatrix} 0 \\ dots \\ 0 \end{pmatrix}$$

L'unica cosa da tenere a mente è che $J(\boldsymbol{x}_p(t))$ potrebbe dipendere dal tempo (se $\boldsymbol{x}_p(t)$ non è una soluzione stazionaria il sistema non

è autonomo). Per adesso ci limitiamo a considerare le soluzioni $\boldsymbol{x}_p(t)$ stazionarie: \boldsymbol{x}_s :

$$\frac{\mathrm{d} \boldsymbol{y}}{\mathrm{d} t} = J(\boldsymbol{x}_s) \boldsymbol{y}$$
 $J(\boldsymbol{x}_s)$: matrice costante

Teorema 3.0.2: (Stabilità delle soluzioni stazionarie). Dato $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \ con \ \mathbf{x} \in \mathbb{R}^n, \ F : \mathbb{R}^n \to \mathbb{R}^n, \ F \in C^r, \ r \geq 2 \ e \ sia \ \mathbf{x}_s \ tale \ che \ F(\mathbf{x}_s) = 0.$

Se tutti gli autovalori di $J(x_s)$ hanno parte reale negativa allora x_s è asintoticamente stabile.

Teniamo presente che la stabilità espressa dal teorema è stabile, se si può dimostrare anche che la condizione vale anche per intorni arbitrari allora possiamo decretare anche la stabilità globale.

Potrei utilizzare lo stesso approccio per un sistema non autonomo? Potrei trovare gli autovalori della matrice J non autonoma.

Se trovo autovalori con parte reale minore di zero potrei concludere la stabilità del sistema? **NO**.

Esempio 3.0.1: (Il teorema non funziona per sistemi non autonomi)

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = A(t) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Con:

$$A(t) = \begin{pmatrix} -1 + \frac{3}{2}\cos^2 t & 1 - \frac{3}{2}\sin t\cos t \\ -1 - 3\sin t\cos t & -1 + \frac{3}{2}\sin^2 t \end{pmatrix}$$

Prendendo il vettore nullo avrei uno stato stazionario per il sistema. Cerchiamo gli autovalori della matrice A:

$$\det(A(t) - \Lambda \mathbb{I}) = (-1 + \frac{3}{2}\cos^2 t - \Lambda)(-1 + \frac{3}{2}\sin^2 t - \Lambda) + (1 + \frac{3}{2}\sin t \cos t)(1 - \frac{3}{2}\sin t \cos t) = 0.$$

Dalla equazione secolare si ottiene:

$$\Lambda^2 + \frac{\Lambda}{2} + \frac{1}{2} = 0 \implies \Delta = \frac{1}{4} - 2 = -\frac{7}{4} < 0$$

Quindi abbiamo autovalori complessi coniugati (CC):

$$\Lambda_{12} = \frac{-1 \pm i\sqrt{\frac{7}{4}}}{4} \implies \operatorname{Re}(\Lambda_{12}) = -\frac{1}{4}$$

Applicando alla lettera il teorema la soluzione stazionaria deve essere stabile. Se consideriamo invece:

$$x_1(t) = e^{t/2} \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix}$$
 $x_1(t) = e^{-t} \begin{pmatrix} \sin t \\ \cos t \end{pmatrix}$

Si scopre che queste due sono soluzioni indipendenti (per casa). Quindi prendendo queste due soluzioni per descrivere la soluzione del sistema dinamico e ponendoci in un intorno della soluzione stazionaria si vede che una direzione non è stabile (x_1) , mentre una direzione è stabile x_2 . Il fatto che la soluzione in x_1 diverga rende il punto $V_0 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ instabile.

Questo dimostra che quando la matrice Jacobiana non è autonoma il teorema non si applica.

Esempio 3.0.2: (Sistema autonomo)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -y + x(x^2 + y^2) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y(x^2 + y^2) \end{cases} = \begin{pmatrix} F_1(x, y) \\ F_2(x, y) \end{pmatrix}$$

L'unico stato stazionario in questo caso è il vettore $\boldsymbol{V}_s=(0,0).$ Per determinare la stabilità come prima cosa dobbiamo calcolare la generica matrice J:

$$J(\mathbf{V}) = \begin{pmatrix} 3x^2 + y^2 & -1 + 2xy \\ 1 + 2xy & x^2 + 3y^2 \end{pmatrix} \Big|_{\mathbf{V} = \mathbf{V}_s} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Gli autovalori di questa matrice sono dati dalla equazione secolare:

$$\Lambda^2 + 1 = 0 \implies \Lambda_{12} = \pm i$$

Quindi la parte reale è nulla...

Notiamo che la sola parte lineare di questo sistema rappresenta un oscillatore armonico, l'unico punto fisso dell'oscillatore armonico (l'origine) è stabile secondo Lyapunov. In realtà questa conclusione è errata: lo stato stazionario non è stabile.

Dobbiamo allora stare attenti al fatto che quando qualcuno degli autovalori ha una parte reale nulla c'è bisogno di molta cautela nella interpretazione dei risultati.

Possiamo dimostrare l'instabilità di tale punto fisso sfruttando la simmetria del termine non lineare:

$$x(t) = r(t)\cos(\theta(t))$$

$$y(t) = r(t)\sin(\theta(t)).$$

$$\begin{split} \cos\,x^2 + y^2 &= r^2. \\ \frac{\mathrm{d}x(t)}{\mathrm{d}t} &= \frac{\mathrm{d}r}{\mathrm{d}t}\cos(\theta) - r\sin\theta\frac{\mathrm{d}\theta}{\mathrm{d}t} \\ \frac{\mathrm{d}y}{\mathrm{d}t} &= \frac{\mathrm{d}r}{\mathrm{d}t}\sin\theta + r\cos\theta\frac{\mathrm{d}\theta}{\mathrm{d}t}. \end{split}$$

Mettendo nelle equazioni del moto:

$$-r\sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{\mathrm{d}r}{\mathrm{d}t}\cos\theta = -r(t)\sin\theta + r\cos\theta r^2$$
$$r\cos\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + \frac{\mathrm{d}r}{\mathrm{d}t}\sin\theta = r\cos\theta + r\sin\theta r^2$$

Moltiplicando la prima equazione per il seno di θ e la seconda per il coseno di θ e sottraendo membro a membro le equazioni:

$$r\frac{\mathrm{d}\theta}{\mathrm{d}t} = r \implies \frac{\mathrm{d}\theta}{\mathrm{d}t} = 1 \implies \theta(t) = t + \theta_0$$

Per casa: moltiplicare la la prima equazione per $\cos\theta$ e la seconda per $\sin\theta$ e sommarle. Si ottiene che:

$$\frac{\mathrm{d}r}{\mathrm{d}t} = r^3$$

Quindi il sistema dinamico di partenza si è ridotto a:

$$\begin{cases} \frac{\mathrm{d}r}{\mathrm{d}t} = r^3\\ \frac{\mathrm{d}\theta}{\mathrm{d}t} = 1 \end{cases}$$

Abbiamo un sistema dinamico definito in un manifold:

$$S^1 \times R^+ \cup \{0\}$$

L'equazione interessante è la prima: questa ci dice che il sistema evolve sempre verso $r \to \infty$ per qualsiasi intorno del punto fisso. Quindi lo stato stazionario non è stabile.

Definizione 3.0.2: (Soluzione stazionaria iperbolica). Dato il seguente campo vettoriale: $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \text{ con } \mathbf{x} \in \mathbb{R}^n, F : \mathbb{R}^n \to \mathbb{R}^n$ e \mathbf{x}_s tale che $F(\mathbf{x}_s) = 0$.

Diciamo che x_s è una soluzione stazionaria iperbolica se nessuno degli autovalori di $J(x_s)$ ha parte reale nulla.

Definizione 3.0.3: (Soluzione stazionaria non iperbolica). Dato il seguente campo vettoriale: $\frac{d\mathbf{x}}{dt} = F(\mathbf{x}) \ con \ \mathbf{x} \in \mathbb{R}^n, \ F : \mathbb{R}^n \to \mathbb{R}^n$ e \mathbf{x}_s tale che $F(\mathbf{x}_s) = 0$.

Diciamo che x_s è una soluzione stazionaria non iperbolica se non è iperbolica...