Data 8 Connector: Sports Analytics

Review - 02/06/18

Course stuff

- → OH stuff: after class 2-4 in Evans 458. Don't be afraid! Let me know if this time doesn't work
- → Homework: coming tonight or tomorrow. 2 weeks Goal is enough time to have 2 OH sessions
- → Project groups: Issues? Without a group? Talk project ideas or datasets?
- → Other stuff
 - Materials on Piazza
 - ♦ HW1 solutions on Piazza
 - ◆ Pythagorean Expectation notebook online

Recap

Pythagorean Expectation

Last week: Pythagorean Expectation

Pythagorean Win Pct =
$$\frac{(\text{Runs Scored / Runs Allowed})^2}{1 + (\text{Runs Scored / Runs Allowed})^2}$$

- → An empirical relationship between runs and wins
- → Works for basketball too!
- → The exponent defines a feature of the sport (the sensitivity to scoring ratio)

Runs per Win

Runs and Wins

- → Higher run scoring means more runs needed to win
- → Runs per Win over time from FanGraphs:

Classic Stats

Classical Baseball Stats

Batting Average

$$BA = \frac{H}{AB}$$

On-Base Percentage

$$OBP = \frac{H + BB + HBP}{AB + BB + HBP + SF} \approx \frac{H + BB + HBP}{PA}$$

Slugging Percentage

$$SLG = \frac{(1 \times 1B) + (2 \times 2B) + (3 \times 3B) + (4 \times HR)}{AB}$$

Classic Stats

Main idea: measure intuitive ideas offensive performance

Higher BA, OBP, SLG is good: you're getting on and hitting for power

Core features

- → Rate stats: count up a total (like hits) and divide by opportunities (like ABs)
- → You can treat events equally (BA, OBP) or weight by bases (SLG)
- → You can include walks (OBP)
- → But definitely don't consider context (a single is a single, a HR is a HR)

We ignore R and RBI from here on (too context dependent, and not rate stats)

Classic Stats

So how do they actually relate to run scoring?

- → To explore that, we'll return to Lahman dataset
- → We'll look at total run scoring as it directly relates to the metrics, i.e. scatter plots

The classic stats did some simple things: "total good events" over "opportunities"

Similar ideas exist in basketball, the most noticeable is Field Goal%

$$FG \% = \frac{Field Goals}{Field Goals Attempts}$$

These are considered "advanced stats" but they're very close to what we know

Effective Field Goal%

Effective FG
$$\% = \frac{\text{Field Goals} + \frac{1}{2} \cdot 3\text{-pt Field Goals}}{\text{Field Goals Attempts}}$$

True Shooting%

True Shooting
$$\% = \frac{\text{Total Points}}{2(\text{Field Goals Attempts} + .44 \cdot \text{Free Throw Attempts})}$$

"Totals" over "opportunities"

FG% is makes per attempts from the floor

eFG% is points per field goal attempt: your efficiency from the floor (ignores FTs!)

True Shooting% incorporates FTs: Total points per possessions used

→ Why .44? FTs typically come in pairs so .5 · FTs is approximately the number of possessions used that ended in 2 FT shots. .44 accounts for flagrants, technicals, And-1s, and 3pt fouls.

Field Goal Pct	
1. Clint Capela · HOU	.656
2. DeAndre Jordan · LAC	.653
3. Steven Adams • OKC	.634
4. Enes Kanter • NYK	.607
5. John Collins • ATL	.591
6. John Henson • MIL	.589
7. Taj Gibson • MIN	.574
8. Jonas Valanciunas • TOR	.569
9. Hassan Whiteside • MIA	.554
10. Andre Drummond • DET	.552
11. Julius Randle · LAL	.551
12. Derrick Favors • UTA	.550
13. Dwight Howard • CHO	.547
14. Giannis Antetokounmpo · MIL	.544
15. LeBron James · CLE	.542
Karl-Anthony Towns • MIN	.542
17. Anthony Davis · NOP	.542
18. Domantas Sabonis · IND	.538
19. Marcin Gortat • WAS	.537
20. Ben Simmons • PHI	.526

Effective Field Goal Pct		
1. Clint Capela · HOU	.656	
2. DeAndre Jordan · LAC	.653	
3. Steven Adams • OKC	.634	
4. Joe Ingles • UTA	.615	
5. Stephen Curry • GSW	.615	
6. Enes Kanter • NYK	.607	
7. E'Twaun Moore • NOP	.604	
8. John Collins • ATL	.599	
9. Karl-Anthony Towns • MIN	.595	
10. Klay Thompson • GSW	.593	
11. Joe Harris • BRK	.592	
12. John Henson • MIL	.589	
13. Jonas Valanciunas · TOR	.589	
14. LeBron James • CLE	.588	
15. Trey Lyles • DEN	.587	
16. Kevin Durant • GSW	.585	
17. Taj Gibson • MIN	.581	
18. Al Horford • BOS	.578	
19. Gary Harris • DEN	.578	
20. Kelly Olynyk • MIA	.573	

True Shooting Pct	
1. Stephen Curry · GSW	.673
2. Clint Capela · HOU	.661
3. DeAndre Jordan · LAC	.656
4. Mike Scott • WAS	.645
5. Enes Kanter • NYK	.641
6. Steven Adams • OKC	.640
7. Darius Miller · NOP	.639
Karl-Anthony Towns · MIN	.639
9. Kyle Korver • CLE	.637
10. Jonas Valanciunas • TOR	.635
11. Kevin Durant • GSW	.634
12. John Collins • ATL	.632
13. Marvin Williams • CHO	.624
14. Joe Ingles • UTA	.623
15. LeBron James • CLE	.621
16. Montrezi Harrell • LAC	.621
17. Anthony Davis · NOP	.620
18. James Harden • HOU	.619
19. Nikola Mirotic • TOT	.614
20. Giannis Antetokounmpo • MIL	.613
Kevin Love • CLE	.613

TS% can change our view of a player's performance a lot

- → FG% loves big men: short shots
 DeAndre Jordan 2016-17: #2 all time in FG% and eFG%, #18 all time in TS%
- → eFG% boosts up 3pt shooters
- → James Harden finally in the top 20 for TS%
- → Makes sense: an attacking player getting a lot of FTs
 - ♦ Inherently shoots tough shots so FG% is going to be low
 - ◆ But if the player earns fouls and scores from the line, that needs to count That's a good use of a possession! (this is like counting a walk)

And how do they relate to scoring? (FG%, eFG%, TS% in order)

Not too bad, of course TS% is obviously the best!