A CONVEXITY THEOREM FOR CERTAIN GROUPS OF TRANSFORMATIONS

By
I. I. Hirschman, Jr. (1)
in Saint Louis, Mo., U.S.A.

1. If $f(x) \in L^p(0, 2\pi)$ and if $c_n = (2\pi)^{-1} \int_0^{2\pi} f(x) e^{-inx} dx$ then we write $f(x) \sim \sum_{-\infty}^{\infty} c_n e^{inx}$. Let $\{\lambda_n\}_{n=-\infty}^{\infty}$ be a set of real constants and consider the group of transformations

$$\Lambda(\sigma) f(x) \sim \sum_{-\infty}^{\infty} e^{\lambda_n \sigma} c_n e^{inx} \qquad (-\infty < \sigma < \infty).$$

The object of this paper is to establish the following "convexity" theorem.

Theorem 1. Suppose that for every function $g \in L^p(0, 2\pi)$ and $h \in L^q(0, 2\pi)$ we have

$$\|\Lambda(i\tau)g\|_{p} \leq A(\tau)\|g\|_{p}, \|\Lambda(i\tau)h\|_{q} \leq A(\tau)\|h\|_{q},$$

where for every a>0

$$\log A(\tau) = O(e^{a|\tau|}) \qquad \tau \to \pm \infty.$$

Then if $0 < \Theta < 1$, and if $\sigma = \sigma_1 \Theta$, $\frac{1}{n} = (1 - \Theta) \frac{1}{p} + \Theta \frac{1}{q}$, we have $\| \Lambda(\sigma) f \|_n \leq B \| f \|_p^{1-\Theta} \| \Lambda(\sigma_1) f \|_q^{\Theta},$

where B depends upon $\{\lambda_n\}$, σ_1 , p, q, and Θ , but not upon f.

2. We need some results from the theory of harmonic majoration. Let us define

(1)
$$\omega(x, y) = \frac{\frac{1}{2} \tan \frac{\pi x}{2}}{\left[\tan^2 \frac{\pi x}{2} + \tanh^2 \frac{\pi y}{2} \right] \cosh^2 \frac{\pi y}{2}}.$$

^{1.} John Simon Guggenheim Memorial Fellow. Work supported in part by the U.S. Office of Ordnance Research under Contract DA-23-072-ORD-392.

If $a_1(t)$, $a_2(t)$ are such that

$$\int_{-\infty}^{\infty} |a_i(t)| e^{-\pi|t|} dt < \infty \qquad (i=1, 2),$$

then the formula

(2)
$$u(x, y) = \int_{-\infty}^{\infty} \omega(x, y-t) a_1(t) dt + \int_{-\infty}^{\infty} \omega(1-x, y-t) a_2(t) dt$$

defines u(x, y) as a harmonic function in the strip $0 < x < 1, -\infty < y < \infty$, and if $a_1(y)$ or $a_2(y)$ is continuous at y_0 then

$$u(x, y) \rightarrow a_1(y_0)$$
 as $x \rightarrow 0+$, $y \rightarrow y_0$ or $u(x, y) \rightarrow a_2(y_0)$ as $x \rightarrow 1-$, $y \rightarrow y_0$.

This formula is entirely analogous to the Poisson representation of a function harmonic in the unit circle in terms of its boundary values.

We recall the principle of harmonic majoration. Let D be a domain with compact closure \overline{D} . If f(z) is analytic in D and u(z) is harmonic in D and if for every $z_0 \in \overline{D} - D$

$$\overline{\lim_{z\to z_0}}\log|f(z)|-u(z)\leq 0,$$

then for $z \in D$

$$\log |f(z)| \leq u(z).$$

See [3; pp. 37-45].

Lemma 1. Let f(z) be analytic in the strip

$$0 \le x \le 1, -\infty < y < \infty$$

and let

$$\log M(r) = O(e^{a|r|}) \quad r \to \pm \infty \quad (a < \pi)$$

where M(r) = 1. u. b. |f(z)| for $0 \le x \le 1$, y = r. If $\log |f(iy)| \le a_1(y)$, $\log |f(1+iy)| \le a_2(y)$ for $-\infty < y < \infty$, then

$$\log |f(\Theta)| \leq \int_{-\infty}^{\infty} \omega(\Theta, y) \alpha_1(y) dy + \int_{-\infty}^{\infty} \omega(1-\Theta, y) \alpha_2(y) dy.$$

It is assumed that $\alpha_1(y)$ and $\alpha_2(y)$ are continuous. Let D_T be the rectangle 0 < x < 1, -T < y < T. Choose a', $a < a' < \pi$, and $\varepsilon > 0$ and consider

$$\log |f(z)| - \int_{-T}^{T} \omega(x, y-t) \alpha_1(t) dt - \int_{-T}^{T} \omega(1-x, y-t) \alpha_2(t) dt$$

$$- \varepsilon \cosh a'y \cos a' \left(x - \frac{1}{2}\right).$$

If T is sufficiently large then this will be negative on the boundary of D_T , and therefore, by the principle of harmonic majoration, negative in D_T . Letting T increase without limit and using Fatou's lemma we find that

$$\log |f(z)| \leq \int_{-\infty}^{\infty} \omega(x, y-t) \alpha_1(t) dt + \int_{-\infty}^{\infty} \omega(1-x, y-t) \alpha_2(t) dt + \varepsilon \cosh a'y \cos a' \left(x - \frac{1}{2}\right).$$

Since & is arbitrary

$$\log |f(z)| \leq \int_{-\infty}^{\infty} \omega(x, y-t) \alpha_1(t) dt + \int_{-\infty}^{\infty} \omega(1-x, y-t) \alpha_2(t) dt.$$

If we set $z = \Theta$ we obtain our desired result.

We now proceed to the demonstration of Theorem 1. It is to be noted that $\|\Lambda(i\tau)g\|_2 \le \|g\|_2$ for every $g \in L^2$. Thus our assumption concerning $\Lambda(i\tau)$ is "reasonable". However it is not satisfied in general.

Theorem 1 is essentially a variant of the Riesz-Thorin convexity theorem and its proof proceeds along almost identical lines. See [4] and [5].

Let g(x), $0 \le x \le 2\pi$, be a step function constant on the intervals I_N , N=1, 2, ..., M, so that

$$g(x) = \exp(a_N + ib_N)$$
 $x \in I_N$.

We suppose $||g(x)||_{n'} \le 1$ where $\frac{1}{n'} + \frac{1}{n} = 1$. Let w = u + iv be a complex variable. We set

$$g(x, w) = \exp \left[a_N \left\{ (1 - \overline{w}) \frac{n'}{p'} + \overline{w} \frac{n'}{q'} \right\} + ib_N \right] \quad x \in I_N.$$

Here
$$\frac{1}{q'} + \frac{1}{q} = 1$$
, $\frac{1}{p'} + \frac{1}{p} = 1$. Note that

$$g(x, \Theta) \equiv g(x),$$

and that

(3)
$$\|g(x, 0+iv)\|_{p'} \leq 1$$
, $\|g(x, 1+iv)\|_{q'} \leq 1$ $(-\infty < v < \infty)$.

Let

$$[\Lambda(s) f(x)]_{\mu} = \sum_{-\mu}^{\mu} \left(1 - \frac{|\nu|}{\mu + 1}\right) e^{\lambda_{\nu} s} c_{\nu} e^{i\nu x}$$

be the Fejér sum of order μ of the formal Fourier series $\Lambda(s) f(x)$. We define

$$T_{\mu}(w) = \int_{0}^{2\pi} [\Lambda(\sigma_{1} w) f(x)]_{\mu} \overline{g(x, w)} dx.$$

Note that

(4)
$$T_{\mu}(\Theta) = \int_{0}^{2\pi} [\Lambda(\sigma) f(x)]_{\mu} \overline{g(x)} dx.$$

We have

$$T_{\mu}(w) = \sum_{\nu=-\mu}^{\mu} \sum_{N=1}^{M} c_{\nu} \left(1 - \frac{|\nu|}{\mu+1} \right) \exp \left[\lambda_{\nu} \sigma_{1} w + a_{N} \left\{ (1-w) \frac{n'}{p'} + \frac{n'}{q'} \right\} - i b_{N} \right] \int_{I_{N}} e^{i\nu x} dx.$$

It is evident from this that $T_{\mu}(w)$ is an entire function bounded in every vertical strip. We have

$$T_{\mu}(0+iv) = \int_{0}^{2\pi} [\Lambda(i\sigma_{1}v) f(x)]_{\mu} \overline{g(x,iv)} dx.$$

Using Hölder's inequality and (3) we find that

$$|T_{\mu}(0+iv)| \leq A(\sigma_1 v) ||f||_{p}.$$

In exactly the same way we find that

(6)
$$|T_{\mu}(1+iv)| = \left| \int_{0}^{2\pi} [\Lambda(\sigma_{1}+i\sigma_{1}v)f(x)]_{\mu} \overline{g(x, 1+iv)} dx \right|$$

$$= \left| \int_{0}^{2\pi} [\Lambda(i\sigma_{1}v)\{\Lambda(\sigma_{1})f(x)\}]_{\mu} \overline{g(x, 1+iv)} dx \right|$$

$$\leq A(\sigma_{1}v) ||\Lambda(\sigma_{1})f||_{q}.$$

By Lemma 1 we have

$$\begin{split} \log | \mathbf{T}_{\mu}(\Theta) | & \leq \int_{-\infty}^{\infty} \log \left[A(\sigma_{1} v) \| f \|_{p} \right] \omega(\Theta, v) dv \\ & + \int_{-\infty}^{\infty} \log \left[A(\sigma_{1} v) \| \Lambda(\sigma_{1}) f \|_{q} \right] \omega(1 - \Theta, v) dv \,. \end{split}$$

Using the relations

$$\int_{-\infty}^{\infty} \omega(\Theta, v) dv = (1 - \Theta), \int_{-\infty}^{\infty} \omega(1 - \Theta, v) dv = \Theta$$

and using (5) and (6) we obtain

(7)
$$\left| \int_{0}^{1} [\Lambda(\sigma) f(x)]_{\mu} \overline{g(x)} dx \right| \leq B \|f\|_{p}^{1-\theta} \|\Lambda(\sigma_{1}) f\|_{q}^{\theta},$$

where

$$\log B = \int_{-\infty}^{\infty} \log A(\sigma_1 v) [\omega(\Theta, v) + \omega(1-\Theta, v)] dv.$$

Since (7) holds for every step function g(x) with $||g(x)||_{n'} \le 1$ it implies that $||[\Lambda(\sigma)f(x)]_{\mu}||_{n} \le B ||f||_{p}^{1-\theta} ||\Lambda(\sigma_{1})f||_{q}^{\theta}.$

Finally since this is true for every μ it implies, if n > 1, that $\Lambda(\sigma) f(x)$ is the Fourier series of a function in $L^n(0, 2\pi)$ and that

$$\| \Lambda(\sigma) f(x) \|_{n} \leq B \| f \|_{p}^{1-\theta} \| \Lambda(\sigma_{1}) f \|_{q}^{\theta};$$

if n = 1, in which case p = q = 1, we must verify in addition to (8), that (9) $\| \Lambda(\sigma) [f\mu_1(x) - f\mu_2] \|_1 \le B \| f\mu_1 - f\mu_2\|_1^{1-\theta} \| \Lambda(\sigma_1) [f\mu_1 - f\mu_2] \|_1^{\theta}$, where

$$f_{\mu} \sim \sum_{-\mu}^{\mu} \left(1 - \frac{|\nu|}{\mu+1}\right) c_{\nu} e^{i\nu x}$$
.

This is done in exactly the same way. Inequality (9) implies that

$$\lim_{\mu_1, \mu_2 \to \infty} \| \Lambda(\sigma) [f_{\mu_1}(x) - f_{\mu_2}(x)] \|_1 = 0$$

and thus that $\Lambda(\sigma) f(x)$ is the Fourier series of a function in $L^1(0, 2\pi)$, etc.. See [6; pp. 78–88].

3. Let f(z), $z = \rho e^{i\varphi}$ be analytic for $\rho_1 \le \rho \le \rho_2$. We set

$$\mathbf{M}_{r}(f,\rho) = \left[\frac{1}{2\pi} \int_{0}^{2\pi} |f(\rho e^{i\varphi})|^{r} d\varphi\right]^{1/r}.$$

Theorem 2. If f(z), $z=\rho e^{i\varphi}$ is analytic and single valued for $\rho_1 \le \rho \le \rho_2$ and if

$$\log \rho_0 = (1 - \Theta) \log \rho_1 + \Theta \log \rho_2,$$

$$\frac{1}{n} = (1 - \Theta) \frac{1}{p} + \Theta \frac{1}{q}, \quad (0 < \Theta < 1)$$

$$(1 \le p, q \le \infty)$$

then

$$\mathbf{M}_n(f, \rho_0) \leq \mathbf{M}_p(f, \rho_1)^{1-\theta} \mathbf{M}_q(f, \rho_2)^{\theta}.$$

Let $\lambda_n = n \ (-\infty < n < \infty)$. We have

$$\Lambda(i\tau) f(x) \sim \sum_{-\infty}^{\infty} c_n e^{in\tau} e^{inx} \sim f(x+\tau)$$
.

Thus

$$\|\Lambda(i\tau)f(x)\|_r \leq \|f(x)\|_r \quad 1 \leq r \leq \infty.$$

Applying Theorem 1 and setting $\log \rho = \sigma$ we obtain the above result.

This result is known for n = p = q. Prof. A. Beurling tells me that he has long been in possession of a proof of the general case, although he has never published it.

If $f(x) \in L^r(0, 2\pi)$ and if $c_0 = 0$ then the fractional integral of f(x) of order σ is given by the formula

$$f_{o}(x) = \sum_{-\infty}^{\infty} \frac{c^{n}}{(in)^{\sigma}} e^{inx}.$$

Here $(in)^{\sigma}$ is taken as $|n|^{\sigma} \exp(i\pi\sigma \operatorname{sgn} n/2)$.

Theorem 3. If 1 < p, $q < \infty$ and if

$$\sigma_1 = \sigma\Theta, \quad \frac{1}{n} = (1-\Theta)\frac{1}{b} + \Theta\frac{1}{a}, \quad (0 < \Theta < 1)$$

then

$$||f_{\sigma}(x)||_{n} \leq A ||f(x)||_{p}^{1-\theta} ||f_{\sigma_{1}}(x)||_{q}^{\theta},$$

where A depends only upon p, q, σ_1 and Θ but not upon f. We need the following result. Let $\{\mu_n\}_{-\infty}^{\infty}$ be a sequence of complex constants, and consider the transformation M defined by

$$Mf(x) \sim \sum_{-\infty}^{\infty} \mu_n c_n e^{inx}$$
.

Marcinkiewicz [2] has shown that if

(1)
$$|\mu_{n}| \leq A \quad n = 0, \pm 1, \pm 2, \dots,$$

$$\sum_{n=1}^{2^{m+1}} |\mu_{n} - \mu_{n+1}| \leq A, \quad \sum_{n=1}^{2^{m}} |\mu_{n} - \mu_{n+1}| \leq A \quad m = 0, 1, \dots,$$

then

$$||Mf(x)||_{r} \leq AB ||f(x)||_{r} \quad 1 < r < \infty,$$

where B is a constant which depends only upon r.

Let $\lambda_n^{(1)} = 0$ for $-\infty < n \le 0$ and let $\lambda_n^{(1)} = -\log|n|$ for $1 \le n < \infty$. Similarly let $\lambda_n^{(2)} = 0$ for $0 \le n < \infty$ and let $\lambda_n^{(2)} = -\log|n|$ for $-\infty < n \le -1$. It follows from the result above that if $1 < r < \infty$ then

$$\| \Lambda^{(1)}(i\tau) f(x) \|_r \le A(\tau) \| f(x) \|_r, \| \Lambda^{(2)}(i\tau) f(x) \|_r \le A(\tau) \| f(x) \|_r,$$

where

$$A(\tau) = O(|\tau|) \quad \tau \to \pm \infty.$$

Thus Theorem 1 is applicable to $\Lambda^{(1)}(\sigma)$ and $\Lambda^{(2)}(\sigma)$.

We may assume that $||f(x)||_p$ and $||f_{\sigma_1}(x)||_q$ are finite. By Riesz's theorem on conjugate functions if

$$f^{(1)}(x) = \sum_{1}^{\infty} c_n e^{inx}, \quad f^{(2)}(x) = \sum_{-\infty}^{-1} c_n e^{inx},$$

then

$$|| f^{(i)}(x) ||_{p} \le A || f(x) ||_{p} \quad i = 1, 2,$$

 $|| f^{(i)}_{\sigma_{1}}(x) ||_{q} \le A || f_{\sigma_{1}}(x) ||_{q} \quad i = 1, 2,$

where A is a constant depending only on p and q. We have

$$f_{\alpha}^{(1)}(x) = e^{-i\pi\alpha/2} \Lambda^{(1)}(\alpha) f^{(1)}(x),$$

$$f_{\alpha}^{(2)}(x) = e^{+i\pi\alpha/2} \Lambda^{(2)}(\alpha) f^{(2)}(x).$$

Hence

$$|| f_{\sigma}^{(i)}(x) ||_{n} \le A || f^{(i)}(x) ||_{p}^{1-\theta} || f_{\sigma_{1}}^{(i)}(x) ||_{q}^{\theta} \quad i = 1, 2,$$

where A is (another) constant depending only on p, q, σ_1 , and Θ . Since

$$||f_{\sigma}(x)||_{n} \leq ||f_{\sigma}^{(1)}(x)||_{n} + ||f_{\sigma}^{(2)}(x)||_{n},$$

we obtain our desired result.

Convexity theorems for $n = p = q = \infty$ have been given by Kolmogoroff and Bang, see [1].

4. We shall give here an abstract form of our principal theorem. Let (S, μ) be a measure space. We write, as is usual, L'(S) for the set of all complex valued functions for which

$$||f||_r = \left[\int\limits_{c} |f(x)|^r d\mu(x)\right]^{1/r}$$

is finite. We restrict ourselves to $1 < r < \infty$. If $\frac{1}{r} + \frac{1}{r'} = 1$ then $L^r(S)$ and $L^{r'}(S)$ are conjugate Banach spaces; when $f \in L^r(S)$, $g \in L^{r'}(S)$ we set

$$(f,g) = \int_{S} f(x) \overline{g(x)} d\mu(x).$$

Let **A** be a directed set and let $\{M_{\alpha}\}_{\alpha \in \mathbb{A}}$ be a set of linear transformations each of which carries $L^{r}(S)$ into $L^{r}(S)$ for every r, (2) and such that:

- 1. $||M_{\alpha}f||_{r} \leq A(r)||f||_{r} \quad \alpha \in \mathbf{A}, \ 1 < r < \infty, \ f \in L^{r}(S);$
- 2. $\lim_{\alpha \in \mathbb{R}} || f M_{\alpha} f ||_{r} = 0 \quad 1 < r < \infty, \ f \in L^{r}(S);$
- 3. $M_{\alpha}M_{\beta}=M_{\beta}M_{\alpha}$;
- 4. $(M_{\alpha}f, g) = (f, M_{\alpha}g) \ f \in L^{r}(S), g \in L^{r'}(S)$.

A transformation Λ is said to be associated with $\{M_{\alpha}\}_{\alpha \in \mathbb{A}}$ if it maps a subset $\mathbf{D}(\Lambda)$ of $\bigcup_{1 < r < \infty} L^{r}(S)$ into $\bigcup_{1 < r < \infty} L^{r}(S)$ and is such that:

- 5. $f, g \in L^r(S) \cap \mathbf{D}(\Lambda)$ implies that $af + bg \in L^r(S) \cap \mathbf{D}(\Lambda)$ and that $\Lambda(af + bg) = a\Lambda(f) + b\Lambda(g)$, a and b being complex constants;
 - 6. $M_{\alpha}L^{r}(S) \subset \mathbf{D}(\Lambda)$, $\Lambda M_{\alpha}L^{r}(S) \subset L^{r}(S)$ for $a \in \mathbf{A}$, $1 < r < \infty$;
 - 7. $M_{\alpha} \Lambda f = \Lambda M_{\alpha} f$, $f \in \mathbf{D}(\Lambda)$;
- 8. $f \in L^s(S)$, $F \in L^s(S)$, and $\lim_{\alpha \in \mathbf{Z}} ||F \Lambda M_{\alpha} f||_s = 0$, imply that $f \in \mathbf{D}(\Lambda)$ and $\Lambda f = F$.

^{2.} We assume of course that if $f \in L^p(S)$ and $L^q(S)$ then $M\alpha f$ is the same regardless of which space f is thought of as belonging to.

Lemma 2. Let Λ be associated with $\{M_{\alpha}\}_{\alpha \in \mathbb{R}}$ and let $f \in L^{r}(S)$. If

where M is independent of α , then $f \in \mathbf{D}(\Lambda)$ and $\|\Lambda f\|_s \leq M$.

By the theory of weak compactness (1) implies that the directed sequence $\Lambda M_{\alpha} f$ has at least one weak limit point F, $||F||_s \leq M$, in $L^s(S)$. In particular if $g_i \in L^s(S)$, i = 1, ..., n, and thus, β being fixed, $M_{\beta} g_i \in L^{s'}(S)$, i = 1, ..., n, and if $\varepsilon > 0$ is given then there exists $\alpha_0 \in \mathbf{A}$ such that

$$|(F-\Lambda M_{\alpha}f, M_{\beta}g_i)| \leq \varepsilon \quad i=1,...,n, \quad \alpha > \alpha_0.$$

Using assumptions 4, 7, and 3 we have

$$(F - \Lambda M_{\alpha} f, M_{\beta} g_i) = (M_{\beta} F - M_{\alpha} \Lambda M_{\beta} f, g_i).$$

Thus $M_{\beta}F$ is a week limit point in $L^{s}(S)$ of the directed sequence $M_{\alpha} \wedge M_{\beta}f$. By assumptions 2 and 6, $M_{\alpha} \wedge M_{\beta}f$ converges strongly to $\wedge M_{\beta}f$. The strong and weak limits must coincide and thus $M_{\beta}F = \wedge M_{\beta}f$. Appealing to assumptions 2 and 8 we see that $f \in \mathbf{D}(\Lambda)$ and that $\wedge f = F$.

Let $\Lambda(s)$, $s = \sigma + i\tau$ be a family of mappings associated with $\{M_{\alpha}\}_{\alpha \in \mathbb{A}}$. We make the following assumptions:

- 9. $f \in \mathbf{D}(\Lambda(s_2))$, $\Lambda(s_2) f \in \mathbf{D}(\Lambda(s_1))$ implies $f \in \mathbf{D}(\Lambda(s_1 + s_2))$ and $\Lambda(s_1) [\Lambda(s_2) f] = \Lambda(s_1 + s_2) f$;
- 10. $(\Lambda(s) M_{\alpha} f, g)$ is for every $f \in L^{r}(S)$, $g \in L^{r}(S)$, and α an entire function of s bounded in every finite vertical strip;
- 11. $\mathbf{D}(\Lambda(i\tau)) \supset L^r(S)$, $1 < r < \infty$, and $\|\Lambda(i\tau)f\|_r \le A(r,\tau) \|f\|_r$ where $\log A(r,\tau) = O(e^{a|\tau|})$ as $\tau \to \pm \infty$, for every a > 0.

Theorem 4. Under the above assumptions if $0 < \Theta < 1$,

$$1 < p, \ q < \infty, \ \text{and if} \ \sigma = \sigma_1 \Theta, \ \frac{1}{n} = (1 - \Theta) \frac{1}{p} + \Theta \frac{1}{q}, \ \text{then}$$

$$\| \Lambda(\sigma) f \|_n \le B \| f \|_p^{1-\theta} \| \Lambda(\sigma_1) f \|_q^{\theta}.$$

Let I_N , N=1, ..., M, be disjoint sets of finite measure in S and let

$$g(x) = \exp(a_N + ib_N)$$
 $x \in I_N$
= 0 $x \notin \bigcup_{N=1}^M I_N$.

We suppose that $||g(x)||_{n'} = 1$. Let w = u + iv be a complex variable and let

$$g(x, w) = \exp \left[a_N \left\{ (1 - \overline{w}) \frac{n'}{p'} + \overline{w} \frac{n'}{q'} \right\} + ib_N \right] \qquad x \in I_N$$

$$= 0 \qquad \qquad x \notin \bigcup_{N=1}^M I_N.$$

Consider

$$T_{\alpha}(w) = \int_{S} \left[\Lambda(\sigma_{1} w) M_{\alpha} f \right] \overline{g(w, x)} d\mu(x).$$

Note that

$$T_{\alpha}(\Theta) = \int_{S} \left[\Lambda(\sigma) M_{\alpha} f \right] \overline{g(x)} d\mu(x).$$

Now if $g_N(x) = 1$ for $x \in I_N$ and 0 for $x \notin I_N$ then

$$T_{\alpha}(w) = \sum_{N=1}^{M} (\Lambda(\sigma_1 w) M_{\alpha} f, g_N) \exp \left[a_N \left\{ (1-w) \frac{n'}{p'} + w \frac{n'}{q'} \right\} - ib_N \right].$$

Thus $T_{\alpha}(w)$ is an entire function of w bounded in every finite vertical strip. Arguing just as in the proof of Theorem 1 we find that

$$T_{\alpha}(\Theta) \leq B \|f\|_{p}^{1-\theta} \|\Lambda(\sigma_{1})f\|_{q}^{\theta}$$

where B is independent of f. Since g is an arbitrary step function such that $||g||_{n'} = 1$ this implies that

$$\| \Lambda (\sigma) M_{\alpha} f \|_{\mathbf{n}} \leq B \| f \|_{\mathbf{p}}^{1-\theta} \| \Lambda (\sigma_1) f \|_{\mathbf{q}}^{\theta},$$

where B is independent of f. Appealing to Lemma 2 we see that $f \in \mathbf{D}(\Lambda(\sigma))$ and that $\|\Lambda(\sigma)f\|_{p} \leq B\|f\|_{p}^{1-\theta}\|\Lambda(\sigma_{1})f\|_{q}^{\theta}$.

Washington University and

The Institute for Advanced Study

REFERENCES

- 1. T. Bang, Une inégalité de Kolmogoroff et les fonctions presque-périodiques, Danske Vid. Selsk. Math. Fys. Medd. 19, no. 4 (1941), 28 pp.
- 2. J. Marcinkiewicz, Sur les multiplicateurs des séries de Fourier, Studia Math. vol. 8 (1939), pp. 78-91.
 - 3. R. Nevanlinna, Eindeutige Analytische Funktionen, Berlin, 1936.
- 4. M. Riesz, Sur les maxima des formes billinéaires et sur les fonctionnelles linéaires, Acta Math. vol. 49 (1926), pp. 465-497.
- 5. G. Thorin, Convexity theorems generalizing those of M. Riesz and Hadamard with some applications, Comm. Sem. Math. Univ. Lund, vol. 9 (1948), pp. 1-58.
 - 6. A. Zygmund, Trigonometrical Series, Warsaw-Lwow, 1936.