On the Maturity of Parallel Applications for Asymmetric Multi-Core Processors

1. Introduction

The future of parallel computing is highly restricted by energy efficiency AMCs have been mainly deployed for the mobile market. Mobile processors are also utilized in HPC platforms aiming to energy savings

Like in other heterogeneous systems, load balancing and scheduling are fundamental challenges that must be addressed to effectively exploit all the resources in AMC platforms

In this paper, we evaluate several execution models on an AMC using the PARSEC benchmark suite

To overcome this matter, we consider two possible solutions at the OS and runtime levels to exploit AMCs effectively. The first solution delegates scheduling to the OS. We evaluate the built-in heterogeneity-aware OS scheduler currently used in existing mobile platforms that automatically assigns threads to different core types based on CPU utilization.

The second solution is to transfer the responsibility to the runtime system so it dynamically schedules work to different core types based on work progress and core availability. We evaluate the impact of using an inherently load-balanced execution model such that of task-based programming models. Recent examples

This paper provides the first to our knowledge comprehensive evaluation of representative parallel applications on a real AMC platform: the Odroid-XU3 development board with ARM big.LITTLE architecture. We analyze the effectiveness of the aforementioned scheduling solutions in terms of performance, power and energy. We show why parallel applications are not ready to run on AMCs and how OS and runtime schedulers can overcome these issues depending on the application characteristics. Further we point out in which aspects the built-in OS scheduler falls short to effectively utilize the AMC. Finally, we show how the runtime system approach overcomes these issues, and improves the OS and static threading approaches by 13% and 23% respectively.

The rest of this document is organized as follows: Section 2 describes the evaluated AMC processor, while Section 3 provides information on scheduling at the OS and runtime system levels. Section 4 describes the experimental framework. Section 5 shows the performance and energy results and associated insights. Finally, Section 6 discusses related work and Section 7 concludes this work.

Figure 1: Samsung Exynos 5422 processor with ARM big.LITTLE architecture.

2. The ARM big.LITTLE Architecture

The ARM big.LITTLE

The little cores in a big.LITTLE system are designed targeting energy efficiency. Current implementations have relatively short pipelines with up to dual-issue in-order execution. L1 caches are split for instructions and data and can be dimensioned according to the target domain from 8 to 64 KB in size

In this work, we use of one of the commercially available development boards featuring a big.LITTLE architecture: the Hardkernel Odroid-XU3 development board. As shown in Figure 1, the Odroid-XU3 includes an 8-core Samsung Exynos 5422 chip with four ARM Cortex-A15 cores and four Cortex-A7 cores. The four Cortex-A15 share a 2 MB 16-way 64-byte-cache-line L2 cache, while the Cortex-A7 cores share a 512 KB L2 cache. A single memory controller provides access to 2 GB of LPDDR3 RAM with dual 32-bit channels at 1866 MT/s. The reason we use this platform instead of the more up-to-date Juno platform

The Cortex-A7 cores in this SoC support dual-issue of instructions and their pipeline length is between 8 and 10 stages. The L1 instruction cache is 32KB two-way set associative, with virtually indexed and physically tagged cache-lines that can hold up to 8 instructions. The core supports instruction prefetch by predicting the outcome of branches; the prefetch unit can fetch up to a maximum of four instructions per cycle. The L1 data cache is four-way set associative with physically-indexed and physically-tagged cache lines and uses a pseudo-random replacement policy

The Cortex-A15 cores in this SoC support triple-issue of instructions and their pipeline length is between 15 and 24 stages

3. Scheduling in Asymmetric Multi-Cores

Scheduling a set of processes on an AMC system is more challenging than the traditional process scheduling on SMCs. An efficient OS scheduler has to take into account the different characteristics of the cores and act accordingly

3.1. Cluster Switching and In-Kernel Switch

In the Cluster Switching (CS) approach In the In-Kernel Switch (IKS) approach

3.2. Global Task Scheduling

The Global Task Scheduling (GTS)

The key benefit of GTS is that it can use all the cores simultaneously, providing higher peak performance and more flexibility to manage the workload. In GTS tasks are directly migrated to cores without needing the intervention of the cpufreq daemon, reducing response time and minimizing the overhead of context switches. As a consequence, Samsung reported 20% improvement in performance over CS for mobile benchmarks

3.3. Dynamic Scheduling in the Runtime

Current programming models for shared memory systems such as OpenMP rely on a runtime system to manage the execution of the parallel application. In this work, we make use of two types of programming models: loop- and task-based. Loop-based scheduling distributes the iterations of a loop among the threads available in the system, following a traditional *fork-join* model. OpenMP supports loop-based scheduling through its *parallel for* directives. This clause implies a barrier synchronization at the end of the loop¹, and supports either static or dynamic loop scheduling.

With static loop scheduling, the iterations of a loop are divided to as many chunks as the number of cores. Then, every core executes the assigned chunk, leading to a low-overhead static scheduling. In addition, OpenMP supports dynamic loop scheduling. It generates more chunks than cores, and assigns them to the available cores at runtime. This is more suitable to asymmetric multicore systems where the cores are not similar and a static iteration assignment would cause load imbalance.

Recent advances in programming models recover the use of task-based programming models to simplify parallel programming of multi-cores

To evaluate this approach we make use of OpenMP tasking support

Table 1: Benchmarks used from the PARSEC benchmark suite and their measured performance ratio between big and little cores

Benchmark	Description	Input	Parallelization	Perf ratio
blackscholes	Calculates the prices of a portfolio analytically with the Black-Scholes partial differential equation.	10,000,000 options	data-parallel	2.18
bodytrack	Computer vision application which tracks a 3D pose of a marker-less human body with multiple cameras through an image sequence.		pipeline	4.16
canneal	Simulated cache-aware annealing to optimize routing cost of a chip design.		unstructured	1.73
dedup	Compresses a data stream with a combination of global compression and local compression in order to achieve high compression ratios.	351 MB data	pipeline	2.67
facesim	Takes a model of a human face and a time sequence of muscle activation and computes a visually realistic animation of the modeled face.	100 frames, 372,126 tetrahedra	data-parallel	3.40
ferret	Content-based similarity search of feature-rich data (audio, images, video, etc.)	_ / <u>-</u> / /	pipeline	3.59
fluidanimate	Extended Smoothed Particle Hydrody- namics method to simulate an incom- pressible fluid for interactive anima- tions.	500 frames, 500,000 particles	data-parallel	3.32
streamcluster	Solves the online clustering problem.	200K points per block, 5 block	data-parallel	3.48
swaptions	Intel RMS workload; uses the Heath- Jarrow-Morton framework to price a portfolio of swaptions.	128 swaptions, 1 million simulations	data-parallel	2.78

4. Experimental Methodology

4.1. Metrics

All the experiments in this paper are performed on the Hardkernel Odroid XU3 described in Section 2. To avoid machine overheating, we make use of the cpufreq driver to set big cores at 1.6GHz and little cores at 800MHz.

We evaluate seven configurations with different numbers of *little* (L) and *big* (B) cores, denoted L+B. For each configuration and benchmark, we report the average performance of five executions in the application parallel region. Then, we report the application speedup over its execution time on one little core. Equation 1 shows the formula to compute this speedup.

$$Speedup(L, B, method) = \frac{Exec. time(1, 0, method)}{Exec. time(L, B, method)}$$
(1)

In this platform, there are four separated current sensors to measure, in real time, the power consumption of the A15 cluster, the A7 cluster, the GPU and DRAM. To gather power and energy measurements, a background daemon reads the machine power sensors periodically during the application execution

¹unless specified otherwise with the nowait clause

with negligible overhead. Sensors are read at their refresh rate, every 270ms, and the values of A7 and A15 clusters' sensors are collected. With the help of timestamps, we correlate the power measurements with the application parallel region in a *post-mortem* process². The reported power consumption is the average power tracked during five executions of each configuration, considering the application parallel region only. We then report average power in Watts along the execution.

Finally, in terms of energy and Energy Delay Product (EDP), we report the total energy and EDP of the benchmarks region of interest normalized to the run on four little cores with static threading. Equations 2 and 3 show the formulas for these calculations.

$$Normalized \ Energy(L, B, method) = \frac{Energy(L, B, method)}{Energy(4, 0, static-threading)} \tag{2}$$

Normalized EDP(L, B, method) =
$$\frac{\text{EDP(L, B, method)}}{\text{EDP(4, 0, static-threading)}}$$
 (3)

4.2. Applications

With the prevalence of many-core processors and the increasing relevance of application domains that do not belong to the traditional HPC field, comes the need for programs representative of current and future parallel workloads. The PARSEC benchmark suite

Table 1 describes the benchmarks included in the study along with their respective inputs, parallelization strategy and performance ratio between big and little cores per application. We are using native inputs, which are real input sets for native execution, except for dedup, as the entire input file of 672 MB and the intermediate data structures do not fit in the memory system of our platform. Instead, we reduce the size of the input file to 351 MB.

The original codes make use of the pthreads parallelization model for all the selected benchmarks. The taskified applications follow the same parallelization strategy implemented with OpenMP 4.0 task annotations. The task-based implementation is done following two basic ideas: i) remove barriers where possible, by adding explicit data-dependencies; and ii) remove application-specific load balancing mechanisms, such as application-specific pools of threads implemented in pthreads and delegate this responsibility to the runtime.

When running on the big.LITTLE processor, each benchmark exhibits different performance ratios between big and little cores. These ratios tell us how many times faster a big core is compared to a little core. We measure the performance ratio of each application by executing it first on one big core and then on one little core, which corresponds to Speedup(0, 1, task-based) in Equation 1. Table 1 also includes the observed performance ratio for each application. Bodytrack is the application that benefits the most from running on the

 $^{^2}$ The parallel region duration is several orders of magnitude longer than the reading frequency of power sensors

Figure 2: Ideal speedup over 1 little core according to Equation 4. Numbers at the bottom of

Figure 3: Execution time speedup over 1 little core for systems that consist of 4 cores in total with 0, 2 and 4 big cores. Different schedulers at the application ($static\ threading$), OS (GTS) and runtime (task-based) levels are considered.

big core with a performance ratio of $4.16\times$. The out-of-order execution of the big core together with an increased number of in-flight instructions significantly improves the performance of this application. In contrast, canneal is the benchmark with the lowest performance ratio, $1.73\times$, as this is a memory-intensive benchmark that does not benefit as much from the extra computation power of the big core. In general, performance ratios are above $2.5\times$ for seven out of nine benchmarks, reaching $3.03\times$ on average.

Taking into account these performance ratios, we can estimate the ideal speedup of the platform for each workload assuming a perfect parallelization strategy. Equation 4 shows the equation for the ideal speedup over 1 little core computation according to the number of big (B) and little (L) cores.

$$Ideal\ speedup(workload,\ B,\ L) = B \times Perf_ratio(workload) + L \tag{4}$$

Figure 2 shows the ideal speedup of the system for each application for the varying numbers of cores. This speedup assumes that the applications are fully parallel with no barriers or other synchronization points. Thus, these speedups are an upper bound of the achievable application performance.

Figure 4: Average power measurements on a 4-core system with 0, 2, and 4 big cores.

Figure 5: Normalized energy consumption and average EDP on a 4-core system with 0, 2, and 4 big cores. Static threading on 4 little cores is the baseline in both cases.

5. Evaluation

We measure execution time, power, energy and EDP of nine applications from the PARSEC benchmark suite

5.1. Exploiting Parallelism in AMCs

This section examines the opportunities and challenges that current AMCs offer to emerging parallel applications. With this objective, we first evaluate a system with a constant number of four cores, changing the level of asymmetry to evaluate the characteristics of each configuration. In these experiments, all applications run with the original parallelization strategy that relies on the user to balance the application ($Static\ threading$). We also evaluate the OS-based dynamic scheduling (GTS) and the task-based runtime dynamic scheduling (Task-based) for the same applications. The system configurations evaluated in this section are: i) Four little cores (0+4); ii) Two big and two little cores (2+2); and iii) Four big cores (4+0)

For these configurations, Figure 3 shows the speedup of the PARSEC benchmarks with respect to running on a single little core. Figure 4 reports the average power dissipated on the evaluated platform. Finally, Figure 5 shows the total energy consumed per application for the same configurations. Energy results are normalized to the energy measured with four little cores (higher values imply higher energy consumptions). Average EDP results are also included in this figure.

Focusing on the average performance results, we notice that all approaches perform similarly for the homogeneous configurations. Specifically, applications obtain the best performance on the configuration $4+\theta$, with an average speedup of $9.5\times$ over one little core. When using four little cores, an average speedup of $3.8\times$ is reached for all approaches. This shows that all the approaches are

Figure 6: Average results when running on 4 to 8 cores with 4 of them big. Speedup is over 1 little core. Static threading on 4 little cores is the baseline of energy consumption and EDP

effective for this core count. In the configuration 2+2, Static threading slightly improves performance (5.0× speedup), while GTS and Task-based reach significantly higher speedups: $5.9\times$ and $6.8\times$, respectively.

Contrarily, in terms of power and energy, the most efficient configuration is running with four little cores, as the performance ratio between the different cores is inversely proportional to the power ratio

Finally, in terms of EDP using the four big cores is the optimal, as the performance improvements compensate the increase in total energy. In configuration 2+2, Task-based achieves the same EDP results as in 0+4, but with 81% better performance. For the asymmetric configuration, Task-based achieves the best performance-energy combination since its dynamic scheduling is effectively utilizing the little cores.

Next, we focus on the obtained results per benchmark. For applications with an extensive use of barriers (blackscholes, facesim, fluidanimate, streamcluster and swaptions) or with a memory intensive pattern (canneal), the extra computational power offered by the big cores in configuration 2+2 is not exploited. As a result with *Static threading* performance is only slightly improved by 1% on average when moving from 0+4 to the 2+2 configuration. This slight improvement comes at the cost of much more power and energy consumption (79% and 77% respectively). These results are explained three-fold: i) load is distributed homogeneously among threads in some applications; ii) extensive usage of barriers force big cores to wait until little cores reach the barrier; and iii) high miss rates in the last-level cache cause frequent pipeline stalls and prevent to fully exploit the computational power of big cores. To alleviate these problems, the programmer should develop more advanced parallelization strategies that could benefit from AMCs, as performed in the remaining applications, or rely on dynamic scheduling at OS or runtime levels.

The three remaining applications are parallelized using a pipeline model (bodytrack, dedup, and ferret) with queues for the data-exchange between pipeline stages and application-specific load balancing mechanisms designed by the programmer. As a result, *Static scheduling* with these applications benefits from the extra computational power of the big cores in the configuration 2+2. These mechanisms are not needed in the *Task-based* code; in this approach the code of the application is simplified and the runtime automatically allows the overlapping of the different pipeline stages. Thus, on the asymmetric configuration, *Task-based* further improves the obtained performance, reaching

Figure 7: Speedup over 1 little core when running on 4 to 8 cores and 4 of them are big

Figure 8: Average power when running on 4 to 8 cores and 4 of them are big

a 13% average improvement over *GTS*. Clearly, these applications benefit in performance by the increased number of big cores, while power and energy are increasing since the big cores are effectively utilized.

Generally, relying on the programmer to statically schedule asymmetric configurations does not report good results, as it is very hard to predict the system's behaviour at application-level. Only applications that implement advanced features with user-level schedulers and load balancing techniques, can benefit from asymmetry, at the cost of programmability effort. Relying on the OS scheduler is a suitable alternative without code modifications, but relying on the runtime to dynamically schedule tasks on the asymmetric processor achieves much better performance, power and energy results.

5.2. Adding Little Cores to an SMC

In the following experiments, we explore if an application running on a symmetric multi-core (SMC) with big cores can benefit from adding small cores that help in its execution. Having more computational resources increases the ideal speedup a parallel application can reach, but it also introduces challenges at application, runtime and OS level. Thus, we examine how many small cores have to be added to the system to compensate the cons of having to deal with AMCs.

To evaluate this scenario, we explore configurations 4+0, 4+1, 4+2, 4+3 and 4+4. In these experiments, the number of big cores remains constant (four), while the number of little cores increases from 0 to 4. First we focus on the average results of speedup, power, energy and EDP, shown in Figure 6.

The speedup chart of Figure 6 shows that *Static threading* does not benefit from adding little cores to the system. In fact, this approach brings an average 6% slowdown when adding four little cores for execution (4+4). This is a result of the static thread scheduling; because the same amount of work is assigned to each core, when the big cores finish the execution of their part, they become

idle and under-utilized. GTS achieves a limited speedup of 8% with the addition of four little cores to the 4+0 configuration. The addition of a single little core brings a 22% slowdown (from 4+0 to 4+1) and requires three additional little cores to reach the performance of the symmetric configuration (4+3). Finally, the *Task-based* approach always benefits from the extra computational power as the runtime automatically deals with load imbalance. Performance improvements keep growing with the additional little cores, reaching an average improvement of 15% over the symmetric configuration when 4 extra cores are added.

The power chart of Figure 6 shows oppositional benefits among the three approaches. We can see that *Static threading* and *GTS* benefit from asymmetry, effectively reducing average power consumption. *Static threading* reduces power consumption when moving from the 4+0 to the 4+4 system by 23% while *GTS* does so by 6.2%. On the other hand, the *task-based* approach keeps the big cores busy for most of the time so it maintains the average power nearly constant.

The reduction in power, results to reduced average energy in the case of *Static threading* in configuration 4+4, as shown on the energy chart of Figure 6. As discussed in Section 5.1, little cores are more energy efficient than big cores, at the cost of reduced performance. In all the approaches, at least two extra little cores are needed to reduce energy. In configuration 4+4, energy is reduced by 14% for *Static threading*, 15% for *GTS*, and 16% for *Task-based*. Consequently, we can state that asymmetry reduces overall energy consumption.

To see the impact on both performance and energy efficiency we plot the average EDP on the rightmost chart of Figure 6. In this chart the lower values are the better. The *task-based* approach is the one that has the best performance-energy combination for the asymmetric configurations since it maintains the lowest EDP for all cases. *Static threading* manages to reduce the average EDP by 6% while *GTS* and *task based* approaches do so by 24% and 36% respectively.

Figure 7 shows a more detailed exploration of the performance results. As Table 1 shows, the applications with barrier synchronization are blackscholes, facesim, fluidanimate, streamcluster and swaptions. For these applications the most efficient system configuration with the *Static threading* approach is the 4+0. Little cores increase execution time due to load imbalance effects. Since the big cores reach barriers earlier, power is reduced for these applications, as shown in Figure 8. Energy reduction is less significant with a few extra little cores as the performance degradation is higher, but as the number of little cores increases, energy is reduced.

Applications with more advanced load balancing techniques like pipelined parallelism (bodytrack, dedup and ferret), benefit of the asymmetric hardware and balance the load among all the cores. As a result, performance improves as we increase the number of little cores. In the case of bodytrack, GTS reduces performance by 15% when adding four little cores. We attribute this to the cost of the thread migration from one core to the other in contrast to the *Static threading* approach that does not add such overheads. In the case of dedup, results show more variability. This benchmark is very I/O intensive and, depending on the type of core that executes these I/O operations, performance

drastically changes. In order to deal with this problem, a smarter dynamic scheduling mechanism would be required. Finally, canneal does not scale according to its ideal speedup reported on Figure 2 as it has a memory intensive pattern that limits performance.

Figure 8 shows the average power. The barrier-synchronized applications (blackscholes, facesim, fluidanimate, streamcluster and swaptions) reduce power because of their imbalance; since big cores have long idle times with the *Static threading* approach, they do not spend the same power as *GTS* and *Task-based*. For pipeline-parallel applications, both bodytrack and ferret maintain nearly the same power levels among the configurations for each scheduling approach. Dedup is an exception, as the results highly depend on the core that executes the aforementioned I/O operations. Yet, the effect of the lower power for *Static threading* is observed in all the benchmarks and is because the big cores are under-utilized.

This section proves that adding little cores to an SMC with big cores presents significant challenges for the application, OS and runtime developers. Little cores increase load imbalance and can degrade performance as a result. Relying on the programmer to deal with this asymmetry is complex, but a dynamic OS scheduler such as GTS helps in mitigating these problems, providing an average performance increase of 10%. However, the optimal performance results are obtained with the Task-based approach, as they improve static threading by 23% on average. In terms of power and energy, the AMC provides significant benefits, although the SMC with little cores remains the most energy-efficient configuration. The answer to the question of which system configuration provides the best power-performance balance, can be found on the average EDP chart of Figures 5 and 6, and is the use of the entire 8-core system with the $Task\ based$ approach.

5.3. Programming Models for AMCs

As we saw in the previous section, current implementations of parallel applications are not ready to fully take advantage of an AMC system. Applications that are statically threaded using the low-level pthreads library usually suffer from load imbalance since their implementations assume that the work has to be equally distributed among the available cores. Implementing advanced load balancing schemes, such as work pools, in pthreads requires a significant development effort.

As an alternative, many parallel applications are implemented using loop-based scheduling with the OpenMP parallel for directives. In this case, the runtime library is in charge of scheduling work to the available threads in the system, either statically or dynamically, as described in Section 3.3.

We compare these solutions to the task-based approach evaluated in the previous sections. Figure 9 shows the results obtained from running blackscholes, bodytrack, fluidanimate and swaptions on all the scheduling models: static threading, static loop scheduling, dynamic loop scheduling and task-based scheduling. We chose these applications as they are the only ones implemented using the OpenMP loop directives.

Figure 9: Speedup over 1 little core when running on 4 to 8 cores and 4 of them are big. Four different programming models are considered: Static threading using pthreads, parallel loops with static scheduling (loop static), parallel loops with dynamic scheduling (loop dynamic), and a task-based solution with dynamic scheduling (task-based).

Looking at the average results in Figure 9, we can observe that the task-based solution achieves the best results when the system is asymmetric. Task-based improves the static threading by up to 59% on 5 cores, while dynamic loop scheduling improves by up to 54%. The OpenMP version with static scheduling reaches an average 26% improvement over the static-threading approach with pthreads.

Taking a closer look to the results we observe that for bodytrack, an application with sophisticated parallelization techniques, static-threading achieves better results than loop-static. This is because the static-threading implementation contains specific parallelization techniques that cannot be completely expressed using the loop-static method. The loop-dynamic method improves performance for bodytrack by up to 4% due to the runtime decisions of the iteration execution, but the optimal solution is offered by the task-based approach that achieves up to 16% improvement over static-threading, due to the flexibility in expressing irregular parallelization strategies.

Blackscholes, fluidanimate and swaptions, consist of independent tasks and are a good fit for loop parallelism. The first observation is that both applications benefit from the loop-static approach on an SMC with 4 big cores. Moreover, the task-based approach is still the optimal for blackscholes and fluidanimate, reaching up to 83% improvement over static threading for 5 cores, while for swaptions loop-dynamic is the most appropriate, improving the baseline by up to $2.6\times$. The difference in the benefits of these applications relies on the task granularity; blackscholes consists of 6400 tasks that are about a hundred times smaller than each one of the 128 tasks of swaptions. This shows that loop-dynamic is more efficient on coarse-grained applications. Finally, fluidanimate, that is also a fine-grained application that consists of 128 500 tasks, also benefits from the task-based approach. For this benchmark, static and dynamic loop scheduling achieve similar performance; this is due to the limited parallelism per parallel region, as the loop-based implementation consists of multiple barriers

between small parallel regions, fact that diminishes the effect of dynamic vs static scheduling.

6. Related Work

There has been a lot of studies on AMC systems. Some works focus on the system design, while other works explore the challenges that appear in efficiently utilizing such a heterogeneous system. Kumar et al

Process scheduling on AMCs is one of the most challenging topics in this area of study. Bias scheduling

Similar to OS scheduling approaches there have been many task scheduling approaches that are directed for utilizing AMCs. The Levelized Min Time

All these works reflect the remarkable research that is taking place on AMCs. However we consider that their experimental evaluation is limited for three main reasons: i) The evaluation is done through a simulator or emulation of an AMC

This paper includes a unique evaluation of performance, power and energy on a real AMC of real parallel applications. This paper also reflects the impact of using different big and little core counts which is not present in previous works

7. Conclusions

In this extensive evaluation of highly parallel applications on an ARM big.LITTLE AMC system we showed that current implementations of parallel applications using pthreads are not ready to fully utilize an AMC. Implementing highly sophisticated parallelization strategies such as parallel pipelines (ferret) to exploit AMCs at the application level requires a significant programming effort and is not applicable to all workloads. The built-in GTS heterogeneity-aware OS scheduler only partially mitigates the slowdown of static threading when using both big and little cores. Both dynamically-scheduled loop- and task-based versions achieve higher performance with increased utilization which results in increased power. This leads to similar energy consumption as static threading and GTS, which ends up with better results in EDP.

Overall, GTS and static threading are not suitable solutions to run intensive multithreaded applications on AMCs. Dynamic scheduling is essential to distribute the load across different core types. A loop-based implementation with dynamic scheduling is appropriate when the parallel work granularity is large and the potential imbalance at the tail of the loop is insignificant compared to the overall parallel region duration. A task-based implementation with inter-task dependencies allows removing barriers, which is the preferred solution, especially when the granularity of parallel regions is small.