Algèbre linéaire et bilinéaire

Table des matières

Rappels d'algèbre linéaire	2
1.1. Espaces vectoriels · · · · · · · · · · · · · · · · · · ·	 2
1.2. Famille libre, famille génératrice et bases	 2
1.3. Applications linéaires · · · · · · · · · · · · · · · · · · ·	3
1.4. Matrice d'une application linéaire · · · · · · · · · · · · · · · · · · ·	 4
1.5. Déterminant d'une matrice · · · · · · · · · · · · · · · · · · ·	 4
Diagonalisation	5
Polynôme caractéristique	5
Trigonalisation	6
Polynôme d'endomorphisme	6
5.1. Décomposition des noyaux · · · · · · · · · · · · · · · · · · ·	 6
5.2. Théorème de Cayley-Hamilton	 6
5.3. Polynôme minimal \cdots	 7
Réduction d'endomorphisme	7
6.1. Décomposition de Dunford · · · · · · · · · · · · · · · · · · ·	7
6.2. Réduction de Jordan · · · · · · · · · · · · · · · · · · ·	 7
Formes bilinéaires	9
7.1. Ecriture dans une base	 9
7.2. Dualité · · · · · · · · · · · · · · · · · · ·	9
7.3. Forme bilinéaire symétrique et forme quadratique $\cdots \cdots \cdots$	 9
7.4. Forme quadratique définie	10
7.5. Réduction d'une forme quadratique · · · · · · · · · · · · · · · · · · ·	 10
7.6. Invariants d'une forme quadratique	 11
Espaces euclidiens	12
8.1. Norme d'un vecteur	 12
8.2. Orthogonalité, base orthogonale et base orthonormée $\cdots \cdots \cdots \cdots$	 12
8.3. Le groupe orthogonal $\cdots \cdots \cdots$	13
8.4. Polynômes orthogonaux · · · · · · · · · · · · · · · · · · ·	14
8.5. Endomorphismes symétriques · · · · · · · · · · · · · · · · · · ·	 14

1. Rappels d'algèbre linéaire

1.1. Espaces vectoriels

Définition 1.1. Soit \mathbb{K} un corps commutatif. On appelle *espace vectoriel sur* \mathbb{K} , ou \mathbb{K} -*espace vectoriel*, un ensemble E muni de deux lois

- une loi de composition interne $+: E \times E \to E$, telle que le couple (E, +) forme un groupe commutatif,
- et d'une loi de composition externe $\cdot : \mathbb{K} \times E \to E$, vérifiant les propriétés suivantes
 - (1) la loi · est distributive à droite, $\forall a, b \in \mathbb{K}, \forall x \in E, (a+b) \cdot x = a \cdot x + b \cdot x$,
 - (2) la loi · est distributive à gauche, $\forall a \in \mathbb{K}, \forall x, y \in E, a \cdot (x + y) = a \cdot x + a \cdot y$,
 - (3) la loi \cdot est associative mixte, $\forall a, b \in \mathbb{K}, \forall x \in E, a \cdot (b \cdot x) = (ab) \cdot x$,
 - (4) le neutre de \mathbb{K} est neutre à gauche pour \cdot , $\forall x \in E, 1 \cdot x = x$.

Définition 1.2. Soit E un \mathbb{K} -espace vectoriel et F un sous-ensemble de E. On dit que F est un *sous-espace vectoriel de* E, s'il est non-vide et stable par combinaisons linéaires.

Proposition 1.3. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. Alors $F \cap G$ est un sous-espace vectoriel.

Définition 1.4. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. On définit la somme de F et G par

$$F + G := \{x + y \mid x \in F, y \in G\}.$$

Proposition 1.5. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. Alors F + G est un sous-espace vectoriel.

Définition 1.6. Soit E un \mathbb{K} -espace vectoriel et $x_1, ..., x_n \in E$. On appelle sous-espace vectoriel engendré par $x_1, ..., x_n$, l'ensemble des combinaisons linéaires de $x_1, ..., x_n$, noté

$$Vect(x_1, ..., x_n) := \{a_1 \cdot x_1 + ... + a_n \cdot x_n \mid a_1, ..., a_n \in \mathbb{K}\}.$$

Définition 1.7. Soit E un \mathbb{K} -espace vectoriel et $(E_k)_{1 \le k \le n}$ une famille de sous-espaces vectoriels de E. On dit qu'ils sont en *somme directe* si

$$\forall (x_1, ..., x_n) \in E_1 \times ... \times E_n, \sum_{k=1}^n x_k = 0 \Rightarrow \forall 1 \le k \le n, x_k = 0$$

dans ce cas, on notera $E_1 \oplus ... \oplus E_n := E_1 + ... + E_n$.

Remarque 1.8. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. Alors F et G sont en somme directe si $F \cap G = \{0\}$.

1.2. Famille libre, famille génératrice et bases

Définition 1.9. Soit E un \mathbb{K} -espace vectoriel et $x_1, ..., x_n \in E$. On dit que $(x_1, ..., x_n)$ est une *famille libre* si les droites $(\mathbb{K}x_k)_{1 \le k \le n}$ sont en somme directe, c'est-à-dire

$$\forall a_1,...,a_n \in \mathbb{K}, a_1 \cdot x_1 + ... + a_n \cdot x_n = 0 \Rightarrow \forall 1 \le k \le n, a_k = 0.$$

Définition 1.10. Soit E un \mathbb{K} -espace vectoriel et $x_1,...,x_n \in E$. On dit que $(x_1,...,x_n)$ est une *famille génératrice* si $\text{Vect}(x_1,...,x_n) = E$, c'est-à-dire

$$\forall x \in E, \exists a_1, ..., a_n \in \mathbb{K}, a_1 \cdot x_1 + ... + a_1 \cdot x_n = x.$$

Définition 1.11. Soit E un \mathbb{K} -espace vectoriel et $x_1, ..., x_n \in E$. On dit que $(x_1, ..., x_n)$ est une *base* si elle est libre et génératrice, c'est-à-dire

$$\forall x \in E, \exists ! a_1, ..., a_n \in \mathbb{K}, a_1 \cdot x_1 + ... + a_1 \cdot x_n = x.$$

Théorème 1.12. Soit E un \mathbb{K} -espace vectoriel, et $(x_1, ..., x_n)$ et $(x_1, ..., x_m)$ deux bases de E. Alors elles ont le même nombre d'éléments n = m.

Définition 1.13. Soit E un \mathbb{K} -espace vectoriel. On appelle dimension de E, notée dim(E), le nombre d'éléments dans une base de E.

Théorème 1.14. (de la base incomplète) Soit E un \mathbb{K} -espace vectoriel de dimension finie et $(x_1,...,x_m)$ une famille libre de E. Alors il existe $x_{m+1},...,x_n \in E$, tels que $(x_1,...,x_n)$ soit une base de E.

Proposition 1.15. Soit E un \mathbb{K} -espace vectoriel de dimension n et $\mathcal{E} = (e_1, ..., e_n)$ une famille d'éléments de E. Alors les énoncés suivants sont équivalents

- (1) \mathcal{E} est une base de E,
- (2) \mathcal{E} est une famille libre de E,
- (3) \mathcal{E} est une famille génératrice de E.

Théorème 1.16. Soit E un \mathbb{K} -espace vectoriel, et F et G deux sous-espaces vectoriels de E. Alors

$$\dim(F) + \dim(G) = \dim(F + G) + \dim(F \cap G).$$

Notation 1.17. Soit E un \mathbb{K} -espace vectoriel, $x \in E$, et $\mathcal{E} = (e_1, ..., e_n)$ et $\mathcal{F} = (f_1, ..., f_n)$ deux bases de E.

- On note $[x]_{\mathcal{E}}$ les coordonnées de x dans la base \mathcal{E} .
- On note $\mathcal{P}_{\mathcal{E}}^{\mathcal{F}} := ([f_1]_{\mathcal{E}} \cdots [f_n]_{\mathcal{E}})$ la matrice de passage de la base \mathcal{E} à la base F.

Alors les coordonnées de x dans les bases \mathcal{E} et \mathcal{F} sont liées par

$$[x]_{\mathcal{E}} = \mathcal{P}_{\mathcal{E}}^{\mathcal{F}}[x]_{\mathcal{F}}$$

ce qui entraîne

$$\mathcal{P}_{\mathcal{F}}^{\mathcal{E}} = \left(\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}\right)^{-1}.$$

1.3. Applications linéaires

Définition 1.18. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u: E \to F$ une application. On dit que u est *linéaire*, si elle vérifie

$$\forall a,b \in \mathbb{K}, \forall x,y \in E, u(a \cdot x + b \cdot y) = a \cdot u(x) + b \cdot u(y).$$

Si E = F, on dit que u est un endomorphisme.

Notation 1.19. Soit E et F deux \mathbb{K} -espaces vectoriels. On note $\mathcal{L}(E,F)$ l'ensemble des applications linéaires de E dans F. Si E=F, on note $\mathcal{L}(E):=\mathcal{L}(E,E)$.

Définition 1.20. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u: E \to F$ une application linéaire.

- On appelle *image* de u l'ensemble $im(u) := \{u(x) \mid x \in E\}$.
- On appelle *noyau* de *u* l'ensemble $\ker(u) := \{x \in E | u(x) = 0\}.$

Proposition 1.21. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u: E \to F$ une application linéaire. Alors $\ker(u)$ et $\operatorname{im}(u)$ sont des espaces vectoriels.

Définition 1.22. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u: E \to F$ une application linéaire. On appelle rang de u, noté rg(u), la dimension de rang de r

Théorème 1.23. (du rang) Soit E et F deux \mathbb{K} -espaces vectoriels, et $u: E \to F$ une application linéaire. Alors

$$\dim(E) = \dim(\operatorname{im}(u)) + \dim(\ker(u)).$$

Corollaire 1.24. Soit E et F deux \mathbb{K} -espaces vectoriels, et $u: E \to F$ une application linéaire. Alors les énoncés suivants sont équivalents

- (1) u est bijective,
- (2) u est injective,
- (3) u est surjective.

1.4. Matrice d'une application linéaire

Définition 1.25. Soit E et F deux \mathbb{K} -espaces vectoriels, $\mathcal{E} = (e_1, ..., e_n)$ une base de E et \mathcal{F} une base de F, et $u: E \to F$ une application linéaire. On appelle *matrice de u* dans les bases \mathcal{E} et \mathcal{F} , la matrice

$$[u]_{\mathcal{E}}^{\mathcal{F}} := ([u(e_1)]_{\mathcal{F}} \cdots [u(e_n)]_{\mathcal{F}}).$$

 $\mathrm{Si}\, E = F, \, \mathrm{on} \,\, \mathrm{notera} \,\, [u]_{\mathcal{E}}^{\mathcal{F}}, \, \mathrm{et} \,\, \mathrm{on} \,\, \mathrm{remarque} \,\, \mathcal{P}_{\mathcal{E}}^{\mathcal{F}} = [\mathrm{id}]_{\mathcal{F}}^{\mathcal{E}}.$

Proposition 1.26. Soit E, F et G trois \mathbb{K} -espaces vectoriels, E, \mathcal{F} et G des bases respectives de E, F et G, et G et G

$$[v\circ u]_{\mathcal{E}}^{\mathcal{G}}=[v]_{\mathcal{F}}^{\mathcal{G}}[u]_{\mathcal{E}}^{\mathcal{F}}.$$

Corollaire 1.27. Soit E un \mathbb{K} -espace vectoriel, \mathcal{E} et \mathcal{F} deux bases de E, et $u: E \to E$ un endomorphisme sur E. Alors

$$[u]_{\mathcal{F}} = \mathcal{P}_{\mathcal{F}}^{\mathcal{E}}[u]_{\mathcal{E}}\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}.$$

1.5. Déterminant d'une matrice

Définition 1.28. Soit M une matrice carrée de taille n. On appelle déterminant de M, le nombre

$$\det(M) := \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) m_{1,\sigma(1)} \dots m_{n,\sigma(n)}.$$

Proposition 1.29. Soit *A* et *B* deux matrices carrées de même taille. Alors

$$det(AB) = det(A) det(B)$$
.

Corollaire 1.30. Soit *P* une matrice inversible. Alors

$$\det(P^{-1}) = \det(P)^{-1}$$

et si M est une matrice carrée de même taille, on a

$$\det(P^{-1}AP) = \det(A).$$

Corollaire 1.31. Soit E un \mathbb{K} -espace vectoriel, \mathcal{E} et \mathcal{F} deux bases de E, et $u:E\to E$ un endomorphisme sur E. Alors

$$\det([u]_{\mathcal{E}}) = \det([u]_{\mathcal{F}}).$$

Définition 1.32. Soit E un \mathbb{K} -espace vectoriel et $u: E \to E$ un endomorphisme sur E. On appelle *déterminant* de u, noté $\det(u)$, le déterminant de la matrice de u dans une base de E.

Proposition 1.33. Soit E un \mathbb{K} -espace vectoriel et $u: E \to E$ un endomorphisme sur E. Alors u est inversible si et seulement si son déterminant est non-nul.

Proposition 1.34. Soit *M* une matrice carrée de la forme

$$\left(\frac{A \mid C}{0 \mid B}\right)$$

où A et B sont des blocs carrés. Alors

$$det(M) = det(A) det(B)$$
.

2. Diagonalisation

Définition 2.1. Soit E un \mathbb{K} -espace vectoriel, F un sous-espace vectoriel de E et $u \in \mathcal{L}(E)$ un endomorphisme. On dit que F est stable par u si $u(F) \subset F$, dans ce cas on note $u_F := u|_F^F \in \mathcal{L}(F)$ l'endomorphisme induit.

Définition 2.2. Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ un endomorphisme et $\lambda \in \mathbb{K}$. On dit que λ est une *valeur propre* de u s'il existe $x \in E \setminus \{0\}$ tel que $u(x) = \lambda x$, on dit que x est un *vecteur propre* associé à λ .

Définition 2.3. Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ un endomorphisme et $\lambda \in \mathbb{K}$ une valeur propre de u. On appelle *espace propre* associé à λ , l'ensemble

$$E_{\lambda}(u) := \ker(u - \lambda id).$$

Théorème 2.4. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. Alors les espaces propres de u sont en somme directe.

Corollaire 2.5. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme. Alors u a au plus n valeurs propres.

Définition 2.6. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme. On appelle *spectre* de u, noté $\sigma(u)$, l'ensemble des valeurs propres de

Définition 2.7. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. On dit que u est diagonalisable si E est la somme directe des espaces propres de u.

Proposition 2.8. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. Alors u est diagonalisable si et seulement si il existe une base \mathcal{E} de E telle que $[u]_{\mathcal{E}}$ est diagonale.

Théorème 2.9. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme. Alors si u admet n valeurs propres distinctes, u est diagonalisable.

Définition 2.10. Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée. On étend toutes les définitions précédentes à M en l'associant à $u_M : \mathbb{K}^n \to \mathbb{K}^n; X \mapsto MX$.

3. Polynôme caractéristique

Définition 3.1. Soit $M \in \mathcal{M}_n(\mathbb{K})$ une matrice carrée. On appelle *polynôme caractéristique*, le polynôme $\chi_M := \det(XI_n - M)$.

Lemme 3.2. Soit $M, N \in \mathcal{M}_n(\mathbb{K})$ deux matrices carrées. Alors si M et N sont semblables, elles ont le même polynôme caractéristique.

Définition 3.3. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. On étend la définition de *polynôme caractéristique* en lui associant la matrice de u dans une base de E.

Proposition 3.4. Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ un endomorphisme, et $\lambda \in \mathbb{K}$. Alors λ est une valeur propre de u si et seulement si $\chi_u(\lambda) = 0$.

Proposition 3.5. Soit E un \mathbb{K} -espace vectoriel, F un sous-espace vectoriel de E et $u \in \mathcal{L}(E)$ un endomorphisme. Alors si F est stable par u, le polynôme χ_{u_F} divise χ_u .

Proposition 3.6. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme nilpotent. Alors $\chi_u = X^n$

Théorème 3.7. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme. Alors u est diagonalisable si et seulement si son polynôme caractéristique est scindé et si la multiplicité de chaque valeur propre en tant que racine est égale à la dimension de son espace propre associé, c'est-à-dire

$$\chi_u = \prod_{\lambda \in \sigma(u)} (X - \lambda)^{\dim(E_{\lambda}(u))}.$$

4. Trigonalisation

Définition 4.1. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. On dit que u est *trigonalisable* s'il existe une base \mathcal{E} de E telle que $[u]_{\mathcal{E}}$ est triangulaire supérieure.

Théorème 4.2. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. Alors u est trigonalisable si et seulement si χ_u est scindé.

Corollaire 4.3. Tout endomorphisme sur un \mathbb{C} -espace vectoriel est trigonalisable.

5. Polynôme d'endomorphisme

Définition 5.1. Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ un endomorphisme et $P = \sum_{k=0}^{n} a_k X^k$ un polynôme. On note

$$P(u) \coloneqq \sum_{k=0}^{n} a_k u^k.$$

Proposition 5.2. Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ un endomorphisme et P, Q deux polynômes. Alors P(u) + Q(u) = (P + Q)(u) et $P(u) \circ Q(u) = (PQ)(u) = (QP)(u)$.

Proposition 5.3. Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ un endomorphisme et P un polynôme. Alors si P(u) = 0, les valeurs propres de u sont racines de P.

5.1. Décomposition des noyaux

Théorème 5.4. (Lemme des noyaux) Soit E un \mathbb{K} -espace vectoriel, $u \in \mathcal{L}(E)$ un endomorphisme et $(P_i)_{1 \le i \le n}$ une famille de polynômes deux à deux premiers entre eux. Alors

$$\ker((P_1...P_n)(u)) = \bigoplus_{i=1}^n \ker(P_i(u))$$

Théorème 5.5. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. Alors u est diagonalisable si et seulement s'il existe un polynôme P simplement scindé tel que P(u) = 0.

Corollaire 5.6. Soit E un \mathbb{K} -espace vectoriel, F un sous-espace vectoriel de E et $u \in \mathcal{L}(E)$ un endomorphisme diagonalisable. Alors si F est stable par u, u_F est diagonalisable.

5.2. Théorème de Cayley-Hamilton

Définition 5.7. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. On appelle *polynômes* annulateurs de u l'ensemble

$$I_u := \{ P \in \mathbb{K}[X] \mid P(u) = 0 \}.$$

Proposition 5.8. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. Alors I_u est un idéal de $\mathbb{K}[X]$, c'est-à-dire qu'il vérifie les propriétés suivantes

- (1) $0 \in I_u$,
- (2) $\forall P, Q \in I_u, P + Q \in I_u$,
- (3) $\forall P \in I_u, Q \in \mathbb{K}[X], PQ \in I_u$.

Théorème 5.9. (de Cayley-Hamilton) Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme. Alors $\chi_u(u) = 0$.

5.3. Polynôme minimal

Définition 5.10. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. On appelle *polynôme minimal* de u, noté μ_u , le polynôme unitaire non-nul de degré minimal dans I_u .

Proposition 5.11. Soit E un \mathbb{K} -espace vectoriel et $u \in \mathcal{L}(E)$ un endomorphisme. Alors le polynôme minimal de u divise tout élément de I_u .

Théorème 5.12. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme. Alors u est diagonalisable si et seulement si son polynôme minimal est simplement scindé.

6. Réduction d'endomorphisme

6.1. Décomposition de Dunford

Lemme 6.1. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u, v \in \mathcal{L}(E)$ deux endomorphismes diagonalisables. Alors si u et v commutent, il existe une base \mathcal{E} de E telle que $[u]_{\mathcal{E}}$ et $[v]_{\mathcal{E}}$ soient diagonales. On dit que u et v sont *codiagonalisables*.

Définition 6.2. Soit E un \mathbb{K} -espace vectoriel de dimension $n, u \in \mathcal{L}(E)$ un endomorphisme, $\lambda \in \mathbb{K}$ une valeur propre de u et n_{λ} sa multiplicité en tant que racine. On appelle *sous-espace caractéristique* associé à λ l'ensemble

$$N_{\lambda}(u) := \ker((u - \lambda \operatorname{id})^{n_{\lambda}}).$$

Proposition 6.3. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme de polynôme caractéristique scindé. Alors

$$E = \bigoplus_{\lambda \in \sigma(u)} N_{\lambda}(u).$$

Théorème 6.4. (Décomposition de Dunford) Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme de polynôme caractéristique scindé. Alors il existe $d, v \in \mathcal{L}(E)$ tels que u = d + v vérifiant les propriétés suivantes

- d est diagonalisable,
- v est nilpotent,
- d et v commutent.

6.2. Réduction de Jordan

Proposition 6.5. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme. Alors il existe un unique $r \in \mathbb{N}$ tel que

$$\{0\} = \ker(u^0) \subsetneq \ker(u) \subsetneq \dots \subsetneq \ker(u^r) = \ker(u^{r+1}) = \dots$$

Définition 6.6. Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme. On appelle *indice* de u l'entier vérifiant la Proposition 6.5.

Remarque 6.7. L'indice de u est aussi

- le plus petit $r \in \mathbb{N}$ vérifiant $\ker(u^r) = \ker(u^{r+1})$,
- si u est nilpotent, le plus petit $r \in \mathbb{N}$ vérifiant $u^r = 0$,
- le nombre $r \in \mathbb{N}$ vérifiant $E = \operatorname{im}(u^r) \oplus \ker(u^r)$ et

$$E = \operatorname{im}(u^0) \supseteq \operatorname{im}(u) \supseteq \dots \supseteq \operatorname{im}(u^r) = \operatorname{im}(u^{r+1}) = \dots$$

Théorème 6.8. Soit E un \mathbb{K} -espace vectoriel de dimension $n, u \in \mathcal{L}(E)$ un endomorphisme de polynôme caractéristique scindé et $\lambda \in \mathbb{K}$ une valeur propre de u. Alors la multiplicité de λ en tant que racine est donnée par l'indice de l'endomorphisme $u - \lambda$ id.

Définition 6.9. Soit $\lambda \in \mathbb{K}$ et $k \in \mathbb{N}$. On appelle *bloc de Jordan* la matrice de la forme

$$J_k(\lambda) := \begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \lambda & 1 \\ 0 & \cdots & \cdots & 0 & \lambda \end{pmatrix}.$$

Soit $\lambda_1,...,\lambda_r \in \mathbb{K}$ et $k_1,...,k_r \in \mathbb{N}$. On appelle matrice de Jordan la matrice de la forme

$$J := \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{k_2}(\lambda_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{k_r}(\lambda_r) \end{pmatrix}.$$

Théorème 6.10. (Réduction de Jordan d'un endomorphisme nilpotent) Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme nilpotent. Alors il existe une base E de E et des entiers $k_1, ..., k_r \in \mathbb{N}$ tels que

$$[u]_{\mathcal{E}} = \begin{pmatrix} J_{k_1}(0) & 0 & \cdots & 0 \\ 0 & J_{k_2}(0) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{k_r}(0) \end{pmatrix}.$$

Théorème 6.11. (Réduction de Jordan d'un endomorphisme) Soit E un \mathbb{K} -espace vectoriel de dimension n et $u \in \mathcal{L}(E)$ un endomorphisme de polynôme caractéristique simplement scindé. Alors il existe une base \mathcal{E} de E, des nombres $\lambda_1,...,\lambda_r \in \mathbb{K}$ et $k_1,...,k_r \in \mathbb{N}$ tels que

$$[u]_{\mathcal{E}} = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \cdots & 0 \\ 0 & J_{k_2}(\lambda_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{k_r}(\lambda_r) \end{pmatrix}.$$

7. Formes bilinéaires

Définition 7.1. Soit E un \mathbb{K} -espace vectoriel et $\Phi : E \times E \to E$ une application. On dit que Φ est une *forme bilinéaire*, si pour tout $x \in E$, les applications $y \mapsto \Phi(x, y)$ et $y \mapsto \Phi(y, x)$ sont linéaires.

7.1. Ecriture dans une base

Définition 7.2. Soit E un \mathbb{K} -espace vectoriel, $\mathcal{E} = (e_1, ..., e_n)$ une base de E et $\Phi : E \times E \to E$ une forme bilinéaire. On appelle *matrice* de Φ dans la base \mathcal{E} , la matrice

$$[\Phi]_{\mathcal{E}} := (\Phi(e_i, e_j))_{1 \le i, j \le n}.$$

Proposition 7.3. Soit E un \mathbb{K} -espace vectoriel, $\mathcal{E} = (e_1, ..., e_n)$ une base de E et $\Phi : E \times E \to E$ une forme bilinéaire. Alors par bilinéarité

$$\forall x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in E, \Phi(x, y) = \sum_{1 \leq i, j \leq n} x_i y_j \Phi \left(e_i, e_j \right) = [x]_{\mathcal{E}}^{\mathsf{T}} [\Phi]_{\mathcal{E}} [y]_{\mathcal{E}}.$$

Proposition 7.4. Soit E un \mathbb{K} -espace vectoriel, \mathcal{E} et \mathcal{F} deux bases de E, et $\Phi: E \times E \to E$ une forme bilinéaire. Alors

$$[\Phi]_{\mathcal{F}} = \mathcal{P}_{\mathcal{E}}^{\mathcal{F}^{\mathsf{T}}}[\Phi]_{\mathcal{E}}\mathcal{P}_{\mathcal{E}}^{\mathcal{F}}.$$

7.2. Dualité

Définition 7.5. Soit E un \mathbb{K} -espace vectoriel de dimension n. On appelle dual de E, noté E^* , l'ensemble des formes linéaires sur E. Si $\mathcal{E} = (e_1, ..., e_n)$ est une base de E, on appelle $base\ duale$, la famille $\mathcal{E}^* = (e_1^*, ..., e_n^*)$ telle que

$$\forall i, j \in \{1, ..., n\}, e_i^*(e_j) \coloneqq \delta_{i,j} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ sinon} \end{cases}.$$

Proposition 7.6. Soit E un \mathbb{K} -espace vectoriel de dimension n. Soit $u:E\to\mathbb{K}$ une forme linéaire, alors

$$u = \sum_{i=1}^{n} u(e_i)e_i^*$$

Soit f un élément de E, alors

$$f = \sum_{i=1}^{n} e_i^*(f)e_i.$$

Définition 7.7. Soit E un \mathbb{K} -espace vectoriel et $\mathcal{F} = (f_1, ..., f_n)$ une base de E^* . On appelle *base antéduale*, l'unique base $\mathcal{E} = (e_1, ..., e_n)$ de E telle que $\mathcal{E}^* = \mathcal{F}$.

Définition 7.8. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire. On appelle application linéaire associée à Φ , l'application

$$u_{\Phi}: E \to E^*; x \mapsto (y \mapsto \Phi(x, y)).$$

7.3. Forme bilinéaire symétrique et forme quadratique

Définition 7.9. Soit E un \mathbb{K} -espace vectoriel et $\Phi : E \times E \to \mathbb{K}$ une forme bilinéaire. On dit que Φ est *symétrique*, si

$$\forall (x, y) \in E \times E, \Phi(x, y) = \Phi(y, x).$$

Définition 7.10. Soit E un \mathbb{K} -espace vectoriel et $Q: E \to \mathbb{K}$ une application. On dit que Q est une *forme quadratique*, s'il existe une forme bilinéaire symétrique $\Phi: E \times E \to \mathbb{K}$ telle que

$$\forall x \in E, Q(x) = \Phi(x, x)$$

dans ce cas, on dit que Q est la forme quadratique associée à Φ .

Proposition 7.11. (Formule de polarisation) Soit E un \mathbb{K} -espace vectoriel, $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire et $Q: E \to \mathbb{K}$ la forme quadratique associée à Φ . Alors

$$\forall (x,y) \in E \times E, \Phi(x,y) = \frac{1}{2}(Q(x+y) - Q(x) - Q(y)) = \frac{1}{4}(Q(x+y) - Q(x-y)).$$

Remarque 7.12. Soit E un \mathbb{K} -espace vectoriel et $Q: E \to \mathbb{K}$ une forme quadratique. Alors d'après la Proposition 7.11, Q détermine une forme bilinéaire symétrique, on l'appelle *forme polaire associée* à Q.

Remarque 7.13. Soit E un \mathbb{K} -espace vectoriel et $\Phi : E \times E \to \mathbb{K}$ une forme bilinéaire symétrique. Alors sa matrice dans la base canonique est symétrique.

7.4. Forme quadratique définie

Définition 7.14. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire symétrique. On dit que Φ est *non-dégénérée* si

$$\forall x \in E, (\forall y \in E, \Phi(x, y) = 0) \Rightarrow x = 0.$$

Définition 7.15. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire symétrique. On dit que Φ est *définie* si

$$\forall x \in E, \Phi(x, x) = 0 \Rightarrow x = 0.$$

Proposition 7.16. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire symétrique. Alors si Φ est définie, elle est non-dégénérée.

Définition 7.17. Soit E un \mathbb{K} -espace vectoriel et $\Phi : E \times E \to \mathbb{K}$ une forme bilinéaire symétrique définie.

• On dit que Φ est définie positive si

$$\forall x \in E \setminus \{0\}, \Phi(x, x) > 0.$$

- On dit que Φ est définie négative si

$$\forall x \in E \setminus \{0\}, \Phi(x, x) < 0.$$

Proposition 7.18. Soit E un \mathbb{K} -espace vectoriel et $\Phi: E \times E \to \mathbb{K}$ une forme bilinéaire symétrique définie. Alors Q est soit définie positive, soit définie négative.

Remarque 7.19. On étend toutes les énoncés précédents aux formes quadratiques avec leur forme polaire associée.

7.5. Réduction d'une forme quadratique

Théorème 7.20. Soit E un \mathbb{K} -espace vectoriel de dimension n et $Q: E \to \mathbb{K}$ une forme quadratique. Alors il existe des formes linéaires indépendantes $f_1, ..., f_m$ sur E et des éléments non-nuls $a_1, ..., a_m \in \mathbb{K}$ tels que

$$\forall x \in E, Q(x) = a_1 f_1(x)^2 + ... + a_m f_m(x)^2.$$

Démonstration. On applique l'algorithme de réduction de Gauss.

Remarque 7.21. La famille de formes linéaires indépendantes qui intervient dans le Théorème 7.20 n'est pas nécessairement unique.

7.6. Invariants d'une forme quadratique

Théorème 7.22. (d'inertie de Sylvester) Soit E un \mathbb{K} -espace vectoriel de dimension n et $Q: E \to \mathbb{K}$ une forme quadratique. Alors le nombre m de formes linéaires indépendantes qui interviennent dans une décomposition de Q est égal au rang de la forme polaire de Q.

Théorème 7.23. (d'inertie de Sylvester dans \mathbb{R}) Soit E un \mathbb{R} -espace vectoriel de dimension n et Q: $E \to \mathbb{R}$ une forme quadratique. Soit

$$Q = a_1 f_1^2 + \dots + a_s f_s^2 - a_{s+1} f_{s+1}^2 - \dots - a_{s+t} f_{s+t}^2$$

une décomposition de Q en sommes de carrés telle que $\forall i \in \{1,...,s+t\}, a_i > 0$. Alors les nombres s et t ne dépendent que de Q.

Définition 7.24. Soit E un \mathbb{K} -espace vectoriel de dimension n et $Q: E \to \mathbb{K}$ une forme quadratique. On appelle *signature* de Q, le couple (s,t) du Théorème 7.23.

8. Espaces euclidiens

Définition 8.1. Soit E un \mathbb{R} -espace vectoriel. On appelle *produit scalaire* sur E, noté $a \cdot b$, une forme bilinéaire symétrique définie positive. Si E est de dimension finie, on appelle espace euclidien le couple $(E, a \cdot b)$.

Définition 8.2. Soit $(E, a \cdot b)$ un espace euclidien. On appelle norme associée au produit scalaire, l'application $\|\cdot\|: E \to \mathbb{R}_+; x \mapsto \sqrt{a \cdot b}$.

8.1. Norme d'un vecteur

Théorème 8.3. (Inégalité de Cauchy-Schwarz) Soit $(E, a \cdot b)$ un espace euclidien. Alors

$$\forall x, y \in E, |a \cdot b| \le ||x|| ||y||$$

avec égalité si et seulement si les deux éléments sont liés.

Proposition 8.4. Soit $(E, a \cdot b)$ un espace euclidien. Alors l'application $\|\cdot\|$ est une norme.

8.2. Orthogonalité, base orthogonale et base orthonormée

Définition 8.5. Soit $(E, a \cdot b)$ un espace euclidien et $x, y \in E$. On dit que x et y sont *orthogonaux*, noté $x \perp y$, si $a \cdot b = 0$.

Définition 8.6. Soit $(E, a \cdot b)$ un espace euclidien et F un sous-ensemble de E. On appelle *ortho*gonal de F, noté F^{\perp} , l'ensemble

$$F^{\perp} := \{ x \in E \mid \forall y \in F, a \cdot b = 0 \}.$$

Notation 8.7. Soit $(E, a \cdot b)$ un espace euclidien et $x \in E$. On note $x^{\perp} := \{x\}^{\perp}$.

Proposition 8.8. Soit $(E, a \cdot b)$ un espace euclidien et F un sous-ensemble de E. Alors F^{\perp} est un sous-espace vectoriel de E.

Proposition 8.9. Soit $(E, a \cdot b)$ un espace euclidien et $x, y \in E$. Alors

$$x \perp y \Leftrightarrow ||x + y||^2 = ||x||^2 + ||y||^2 \Leftrightarrow ||x - y||^2 = ||x||^2 + ||y||^2.$$

Proposition 8.10. Soit $(E, a \cdot b)$ un espace euclidien et $x \in E \setminus \{0\}$. Alors $\text{Vect}(x)^{\perp} = x^{\perp}$ et

$$E = \text{Vect}(x) \oplus x^{\perp}$$
.

Définition 8.11. Soit $(E, a \cdot b)$ un espace euclidien et $\mathcal{E} = (e_1, ..., e_n)$ une base de E.

• On dit que \mathcal{E} est *orthogonale* si elle vérifie

$$\forall i, j \in \{1, ..., n\}, i \neq j \Rightarrow a \cdot b = 0.$$

• On dit que \mathcal{E} est *orthonormée* si elle vérifie

$$\forall i, j \in \{1, ..., n\}, a \cdot b = \delta_{i, i}.$$

Remarque 8.12. Soit $(E, a \cdot b)$ un espace euclidien et $\mathcal{E} = (e_1, ..., e_n)$ une base orthogonale de E. Alors la famille $\left(\frac{e_1}{\|e_1\|}, ..., \frac{e_n}{\|e_n\|}\right)$ est une base orthonormée de E.

Théorème 8.13. Soit $(E, a \cdot b)$ un espace euclidien. Alors il existe une base orthonormée de E.

Proposition 8.14. Soit $(E, a \cdot b)$ un espace euclidien et F un sous-espace vectoriel de E. Alors

- (1) $E = F \oplus F^{\perp}$,
- (2) $\dim(F^{\perp}) = \dim(E) \dim(F)$, (3) $(F^{\perp})^{\perp} = F$.

Théorème 8.15. (Procédé d'orthogonalisation de Gram-Schmidt) Soit $(E, a \cdot b)$ un espace euclidien et $(e_1, ..., e_n)$ une base de E. Alors il existe une base orthonormée $(f_1, ..., f_n)$ de E telle que

$$\forall k \in \{1, ..., n\}, \text{Vect}(e_1, ..., e_k) = \text{Vect}(f_1, ..., f_k).$$

 $D\'{e}monstration$. On raisonne par récurrence sur le cardinal k de la famille.

- Pour k=1, on pose $f_1:=\frac{\overline{e}_1}{\|e_1\|}$.
- Pour k > 1, supposons qu'il existe une famille orthonormée $(f_1, ..., f_{k-1})$ telle que

$$Vect(e_1, ..., e_{k-1}) = Vect(f_1, ..., f_{k-1})$$

alors on pose $f_k' \coloneqq e_k - \sum_{i=1}^{k-1} a \cdot b f_i$. Soit $j \in \{1, ..., k-1\}$, alors

$$a \cdot b = a \cdot b$$

et par bilinéarité du produit scalaire

$$a \cdot b = a \cdot b - \sum_{i=1}^{k-1} a \cdot ba \cdot b$$
$$= a \cdot b - \sum_{i=1}^{k-1} a \cdot b\delta_{i,j}$$
$$= a \cdot b - a \cdot b = 0.$$

Enfin on pose $f_k \coloneqq \frac{f_k'}{\|f_k'\|}$, donc la famille $(f_1,...,f_k)$ est orthonormée et vérifie l'égalité.

8.3. Le groupe orthogonal

Définition 8.16. Soit $A \in GL_n(\mathbb{R})$ une matrice inversible. On dit que A est *orthogonale* si $A^T = A^{-1}$. On appelle *groupe orthogonal*, le sous-groupe

$$O_n(\mathbb{R}) \coloneqq \big\{ A \in \operatorname{GL}_n(\mathbb{R}) \mid AA^{\operatorname{T}} = A^{\operatorname{T}}A = I_n \big\}.$$

Remarque 8.17. Soit $A \in O_n(\mathbb{R})$ une matrice orthogonale. Alors on remarque que $\det(A) = \pm 1$, on appelle *groupe spécial orthogonal*, le sous-groupe

$$SO_n(\mathbb{R}) := O_n(\mathbb{R}) \cap \det^{-1}(1).$$

Définition 8.18. Soit $(E, a \cdot b)$ un espace euclidien et $f \in \mathcal{L}(E)$ un endomorphisme. On dit que f est un *endomorphisme orthogonal* si

$$\forall x, y \in E, a \cdot b = a \cdot b.$$

On appelle $groupe\ orthogonal$, noté O(E), le sous-groupe des endomorphismes orthogonaux.

Proposition 8.19. Soit $(E, a \cdot b)$ un espace euclidien et $f \in \mathcal{L}(E)$ un endomorphisme. Alors les énoncés suivants sont équivalents

- (1) f est orthogonal.
- (2) Soit $x \in E$, alors ||f(x)|| = ||x||.
- (3) Soit \mathcal{E} une base orthonormée de E, alors $[f]_{\mathcal{E}} \in O_n(\mathbb{R})$.
- (4) Il existe \mathcal{E} une base orthonormée de E, telle que $[f]_{\mathcal{E}} \in O_n(\mathbb{R})$.

Remarque 8.20. Soit $(E, a \cdot b)$ un espace euclidien et $f \in \mathcal{L}(E)$ un endomorphisme orthogonal. Alors on remarque que $\det(f) = \pm 1$, on appelle *groupe spécial orthogonal* le sous-groupe

$$SO(E) := O(E) \cap \det^{-1}(1)$$
.

8.4. Polynômes orthogonaux

Proposition 8.21. Soit [a,b] un intervalle fermé de \mathbb{R} et $w:[a,b] \to R_+ \setminus \{0\}$. Alors la forme bilinéaire symétrique définie par

$$\forall P, Q \in \mathbb{R}[X], a \cdot b \coloneqq \int_{a}^{b} P(t)Q(t)w(t) dt$$

est un produit scalaire.

Démonstration. Soit $P \in \mathbb{R}[X]$, alors P^2w est continue et positive, de plus

$$a \cdot b = 0 \Rightarrow \int_{a}^{b} P^{2}(t)w(t) = 0$$
$$\Rightarrow \forall t \in [a, b], P^{2}(t)w(t) = 0$$
$$\Rightarrow \forall t \in [a, b], P(t) = 0$$
$$\Rightarrow P = 0$$

donc $a \cdot b$ est un produit scalaire.

Définition 8.22. Soit $a \cdot b$ un produit scalaire sur $\mathbb{R}[X]$. On appelle *famille de polynômes orthogonaux*, une famille $(P_n)_{n \in \mathbb{N}}$ de polynômes qui vérifie

П

$$\begin{cases} \forall i, j \in \mathbb{N}, i \neq j \Rightarrow a \cdot b = 0 \\ \forall n \in \mathbb{N}, \deg(P_n) = n \end{cases}$$

Proposition 8.23. Soit $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ deux familles de polynômes orthogonaux. Soit $n\in\mathbb{N}$, alors P_n et Q_n sont colinéaires.

Démonstration. P_n et Q_n appartiennent à la même droite $\mathbb{R}_n[X] \cap \mathbb{R}_n[X]^{\perp}$.

Définition 8.24. Soit $n \in \mathbb{N}$ et $p_n \in \mathcal{L}(\mathbb{R}_n[X])$ la projection orthogonale sur $\mathbb{R}_{n-1}[X]$. On pose l'application $T_n : \mathbb{R}_{n-1}[X] \to \mathbb{R}_{n-1}[X]$; $P \mapsto p_n(XP)$.

Proposition 8.25. Soit $(P_n)_{n\in\mathbb{N}}$ une famille de polynômes orthogonaux. Soit $n\in\mathbb{N}$, alors T_n est symétrique et son spectre est de cardinal n. Soit λ une valeur propre de T_n , alors λ est racine de P_n et l'espace propre associé est la droite engendrée par le quotient de P_n par $X-\lambda$.

Démonstration. Soit $P, Q \in \mathbb{R}_{n-1}[X]$, alors

$$a \cdot b = a \cdot b$$

$$= a \cdot b$$

$$= a \cdot b$$

$$= a \cdot b = a \cdot b$$

donc T_n est symétrique.

8.5. Endomorphismes symétriques

Notation 8.26. Soit $(E, a \cdot b)$ un espace euclidien et $u \in \mathcal{L}(E)$ un endomorphisme. On note θ_u : $E \to E^*$, l'application définie par

$$\forall y \in E, \theta_u(y) \coloneqq x \mapsto a \cdot b.$$

Définition 8.27. Soit $(E, a \cdot b)$ un espace euclidien et $u \in \mathcal{L}(E)$ un endomorphisme. On appelle application transposée (ou adjoint) de u, l'application définie par $u^* := \theta_{\mathrm{id}}^{-1} \circ \theta_u$.

Proposition 8.28. Soit $(E, a \cdot b)$ un espace euclidien et $u \in \mathcal{L}(E)$ un endomorphisme. Alors

$$\forall x, y \in E, a \cdot b = a \cdot b.$$

Soit \mathcal{E} une base orthonormée de E, on a $[u^*]_{\mathcal{E}} = [u]_{\mathcal{E}}^T$.

Démonstration. Soit $x, y \in E$. Alors

$$a \cdot b = \theta_{id}(u^*(y))(x) = (\theta_{id} \circ u^*)(y)(x) = \theta_u(y)(x) = a \cdot b.$$

Définition 8.29. Soit $(E, a \cdot b)$ un espace euclidien et $u \in \mathcal{L}(E)$ un endomorphisme. On dit que u est *symétrique* (ou *auto-adjoint*), si $u^* = u$.

Proposition 8.30. Soit $(E, a \cdot b)$ un espace euclidien et $u \in \mathcal{L}(E)$ un endomorphisme. Alors u est symétrique si et seulement si sa matrice dans une base orthonormée de E est symétrique.

Proposition 8.31. Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique. Alors toutes les valeurs propres complexes de M sont réelles.

 $D\acute{e}monstration$. Soit $\lambda \in \mathbb{C}$ une valeur propre de M et X un vecteur propre associé. On a $MX = \lambda X$, en passant au conjugué $M\overline{X} = \overline{\lambda}\overline{X}$, et en passant à la transposée $\overline{X}^TM = \overline{\lambda}\overline{X}^T$. En multipliant par X on obtient

$$\lambda \overline{X}^{\mathrm{T}} X = \overline{X}^{\mathrm{T}} (MX) = \left(\overline{X}^{\mathrm{T}} M \right) X = \overline{\lambda} \, \overline{X}^{\mathrm{T}} X$$

or $\overline{X}^T X > 0$, on en déduit que $\lambda = \overline{\lambda}$ est un nombre réel.

Théorème 8.32. Soit $(E, a \cdot b)$ un espace euclidien et $u \in \mathcal{L}(E)$ un endomorphisme. Alors u est diagonalisable dans une base orthonormée de E.

Théorème 8.33. Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique. Alors il existe une matrice orthogonale P telle que P^TMP soit diagonale.

Corollaire 8.34. Soit $(E, a \cdot b)$ un espace euclidien, Q une forme quadratique définie positive sur E et $\lambda_1 \leq ... \leq \lambda_n$ ses valeurs propres ordonnées. Alors

$$\forall x \in E, \lambda_1 ||x||^2 \le Q(x) \le \lambda_n ||x||^2$$

et ces inégalités sont optimales.