Introduction to Digital Design

- The Digital Abstraction
- Number Systems
- Logic Gates
- Beneath the Digital Abstraction

Chap 1

The Digital Abstraction

- The Three -Y's
 - Hierarchy
 - » A system divided into modules and submodules
 - Modularity
 - » Having well-defined functions and interfaces
 - Regularity
 - » Encouraging uniformity, so modules can be easily reused
- Positive voltage is commonly used to represent '1' and zero volt to represent '0'

Number Systems

- Decimal Numbers
- Binary Numbers
- Hexadecimals Numbers

$$2ED_{16} = 2 \times 16^{2} + E \times 16^{1} + D \times 16^{0} = 749_{10}$$
two two hundred sixteens ones fifty six's

• Decimal to Binary Conversion

Method 1: Find the largest power of 2 that fits, subtract and repeat

$$53_{10}$$
 32×1
 $53-32 = 21$ 16×1
 $21-16 = 5$ 4×1
 $5-4 = 1$ 1×1

= 110101₂

Method 2: Repeatedly divide by 2, remainder goes in next most significant bit

$$53_{10} =$$
 $53/2 = 26 R1$ $26/2 = 13 R0$ $13/2 = 6 R1$ $6/2 = 3 R0$ $3/2 = 1 R1$ $1/2 = 0 R1$ = 110101₂

Binary Values and Range

N-digit decimal number

- How many values? 10^N
- Range? $[0, 10^N 1]$
- Example: 3-digit decimal number:
 - $10^3 = 1000$ possible values
 - Range: [0, 999]

N-bit binary number

- How many values? 2^N
- Range: [0, $2^N 1$]
- Example: 3-digit binary number:
 - 2³ = 8 possible values
 - Range: $[0, 7] = [000_2 \text{ to } 111_2]$

Hex Digit	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Hexadecimal to Binary Conversion

- Hexadecimal to binary conversion:
 - Convert 4AF₁₆ (also written 0x4AF) to binary
 - 0100 1010 1111₂
- Hexadecimal to decimal conversion:
 - Convert 4AF₁₆ to decimal
 - $-16^2 \times 4 + 16^1 \times 10 + 16^0 \times 15 = 1199_{10}$

• Byte, Word, MSB, LSB

Estimating Powers of Two

•
$$2^{10} = 1 \text{ kilo}$$
 $\approx 1000 (1024)$

•
$$2^{20} = 1 \text{ mega} \approx 1 \text{ million } (1,048,576)$$

•
$$2^{30} = 1$$
 giga ≈ 1 billion (1,073,741,824)

• What is the value of 2²⁴?

$$2^4 \times 2^{20} \approx 16$$
 million

 How many values can a 32-bit variable represent?

$$2^2 \times 2^{30} \approx 4$$
 billion

Binary Addition

• Overflow

» when result is too big to fit in the available number of bits

- Signed Binary Numbers
 - Sign and Magnitude
 - 1 sign bit, N-1 magnitude bits
 - Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0

$$A: \{a_{N-1}, a_{N-2}, \dots a_2, a_1, a_0\}$$

Negative number: sign bit = 1

$$A = (-1)^{a_{N-1}} \sum_{i=0}^{N-2} a_i \, 2^i$$

• Example, 4-bit sign/mag representations of ± 6:

• Range of an *N*-bit sign/magnitude number:

$$[-(2^{N-1}-1), 2^{N-1}-1]$$

Problems:

Addition doesn't work, for example -6 + 6:

1110

+ 0110

10100 (wrong!)

• Two representations of 0 (± 0):

1000

0000

- Two's Complement

• msb has value of -2^{N-1}

as value of -2^{N-1}

$$A = a_{N-1}(-2^{N-1}) + \sum_{i=0}^{N-2} a_i \ 2^i$$

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000
- The most significant bit still indicates the sign (1 = negative, 0 = positive)
- Range of an *N*-bit two's complement number:

$$[-(2^{N-1}), 2^{N-1}-1]$$

- » Taking the Two's Complement
- » Two's Complement Addition
 - Add 6 + (-6) using two's complement numbers

• Add -2 + 3 using two's complement numbers

- "Taking the Two's complement" flips the sign of a two's complement number
- Method:
 - 1. Invert the bits
 - 2. Add 1
- Example: Flip the sign of $3_{10} = 0011_2$
 - 1. 1100
 - 2. + 1
 - $1101 = -3_{10}$

Sign-Extension

- Sign bit copied to msb's
- Number value is same
- Example 1:
 - 4-bit representation of 3 = 0011
 - 8-bit sign-extended value: 00000011
- Example 2:
 - 4-bit representation of -5 = 1011
 - 8-bit sign-extended value: 11111011
- Number System Comparison

Number System	Range
Unsigned	$[0, 2^N-1]$
Sign/Magnitude	$[-(2^{N-1}-1), 2^{N-1}-1]$
Two's Complement	$[-2^{N-1}, 2^{N-1}-1]$

Logic Gates

NOT

$$Y = \overline{A}$$

BUF

$$Y = A$$

AND

$$Y = AB$$

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

OR

$$Y = A + B$$

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

XOR

$$Y = A \oplus B$$

NAND

$$Y = \overline{AB}$$

NOR

$$Y = \overline{A + B}$$

$$Y = \overline{A \oplus B}$$

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

• Multiple-Input Logic Gates

NOR3

$$Y = \overline{A + B + C}$$

Α	В	С	Υ
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

AND3

$$Y = ABC$$

Α	В	С	Υ
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Beneath the Digital Abstraction

- Logic levels
 - Discrete voltages represent 1 and 0
 - For example:
 - -0 = ground (GND) or 0 volts
 - $-1 = V_{DD}$ or 5 volts
 - What about 4.99 volts? Is that a 0 or a 1?
 - What about 3.2 volts?
- What is Noise?

- Anything that degrades the signal
 - E.g., resistance, power supply noise, coupling to neighboring wires, etc.
- Example: a gate (driver) outputs 5 V but, because of resistance in a long wire, receiver gets 4.5 V

• Noise Margins

High Noise Margin: $NM_H = V_{OH} - V_{IH}$

Low Noise Margin: $NM_L = V_{IL} - V_{OL}$

• DC Transfer Characteristics

• V_{DD} Scaling

- In 1970's and 1980's, $V_{DD} = 5 \text{ V}$
- V_{DD} has dropped
 - Avoid frying tiny transistors
 - Save power
- 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, ...
 - Be careful connecting chips with different supply voltages

Logic Family	V _{DD}	V _{IL}	V _{IH}	V _{OL}	V _{OH}
TTL	5 (4.75 - 5.25)	0.8	2.0	0.4	2.4
CMOS	5 (4.5 - 6)	1.35	3.15	0.33	3.84
LVTTL	3.3 (3 - 3.6)	0.8	2.0	0.4	2.4
LVCMOS	3.3 (3 - 3.6)	0.9	1.8	0.36	2.7

• Transistors

- Logic gates built from transistors
- 3-ported voltage-controlled switch
 - 2 ports connected depending on voltage of 3rd
 - d and s are connected (ON) when g is 1

g — [

g = 0 g = 1 $d \qquad d \qquad \downarrow \qquad OFF \qquad ON$ $s \qquad s$

- Transistors built from silicon, a semiconductor
- Pure silicon is a poor conductor (no free charges)
- Doped silicon is a good conductor (free charges)
 - n-type (free negative charges, electrons)
 - p-type (free positive charges, holes)

• nMOS Transistors

Gate = 0

OFF (no connection between source and drain)

Gate = 1

ON (channel between source and drain)

• pMOS Transistors

pMOS transistor is opposite

- **ON** when **Gate = 0**
- OFF when Gate = 1

• Gate Implementation

- nMOS: pass good 0's, so connect source to GND
- pMOS: pass good 1's, so connect source to V_{DD}

\boldsymbol{A}	P1	N1	Y
0	ON	OFF	1
1	OFF	ON	0

• Gate Simulation

- 50 nm CMOS
- $-V_{DD} = 1V$
- 2 parameters : L (long) W (Width)
 - $L_n = 50 \text{ nm}, W_n = 500 \text{ nm}$
 - $L_p = 50 \text{ nm}, W_p = 2 W_n$
- Transfer Characteristics:

- Switching Characteristics

- NAND

NAND

 $Y = \overline{AB}$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

\boldsymbol{A}	B	P1	P2	N1	N2	Y
0	0	ON	ON	OFF	OFF	1
0	1	ON	OFF	OFF	ON	1
1	0	OFF	ON	ON	OFF	1
1	1	OFF	OFF	ON	ON	0

• AND

- NOR

• Transmission Gates

- nMOS pass 1's poorly
- pMOS pass 0's poorly
- Transmission gate is a better switch
 - passes both 0 and 1 well
- When *EN* = 1, the switch is ON:
 - -EN = 0 and A is connected to B
- When *EN* = 0, the switch is OFF:
 - A is not connected to B

• Pseudo-nMOS Gates

- Replace pull-up network with weak pMOS transistor that is always on
- pMOS transistor: pulls output HIGH only when nMOS network not pulling it LOW

• Power Consumption

- Dynamic power consumption
- Static power consumption
- Power to charge transistor gate capacitances
 - Energy required to charge a capacitance, C, to V_{DD} is CV_{DD}^2
 - Circuit running at frequency f: transistors switch
 (from 1 to 0 or vice versa) at that frequency
 - Capacitor is charged f/2 times per second (discharging from 1 to 0 is free)
- Dynamic power consumption:

$$P_{dynamic} = \frac{1}{2}CV_{DD}^2 f$$

- Power consumed when no gates are switching
- Caused by the quiescent supply current, I_{DD}
 (also called the leakage current)
- Static power consumption:

$$P_{static} = I_{DD}V_{DD}$$

• Estimate the power consumption of a wireless handheld computer

$$-V_{DD} = 1.2 \text{ V}$$

$$- C = 20 \text{ nF}$$

$$-f=1$$
 GHz

$$-I_{DD} = 20 \text{ mA}$$

$$P = \frac{1}{2}CV_{DD}^{2}f + I_{DD}V_{DD}$$

$$= \frac{1}{2}(20 \text{ nF})(1.2 \text{ V})^{2}(1 \text{ GHz}) + (20 \text{ mA})(1.2 \text{ V})$$

$$= (14.4 + 0.024) \text{ W} \approx 14.4 \text{ W}$$