# R Programming - Lecture Notes

*Kyun-Seop Bae* 2017-03-31

## Contents

| Pr           | reface                      | 9  |  |  |  |  |  |  |  |  |
|--------------|-----------------------------|----|--|--|--|--|--|--|--|--|
|              | Teaching Assistant          | 10 |  |  |  |  |  |  |  |  |
|              | FAQ                         | 10 |  |  |  |  |  |  |  |  |
| 1            | Graphics                    | 13 |  |  |  |  |  |  |  |  |
|              | 1.1 Introduction            | 13 |  |  |  |  |  |  |  |  |
|              | 1.2 상위수준 그림 함수              | 13 |  |  |  |  |  |  |  |  |
|              | 1.3 하위수준 그림 함수              | 31 |  |  |  |  |  |  |  |  |
|              | 1.4 그림 출력하기                 | 34 |  |  |  |  |  |  |  |  |
| 2            | Data Import / Export        | 37 |  |  |  |  |  |  |  |  |
|              | 2.1 Read.csv                | 37 |  |  |  |  |  |  |  |  |
|              | 2.2 Theoph 데이타              | 37 |  |  |  |  |  |  |  |  |
|              | 2.3 lattice                 | 40 |  |  |  |  |  |  |  |  |
|              | 2.4 Subseting and write.csv | 43 |  |  |  |  |  |  |  |  |
| $\mathbf{A}$ | As-is R Files               | 51 |  |  |  |  |  |  |  |  |
|              | A.1 Lecture 3               | 51 |  |  |  |  |  |  |  |  |
|              | A.2 Lecture 4               | 57 |  |  |  |  |  |  |  |  |
| В            | 3 Using Coursera            |    |  |  |  |  |  |  |  |  |
| $\mathbf{C}$ | C R Tips                    |    |  |  |  |  |  |  |  |  |
| D            | Acknowledgement             | 63 |  |  |  |  |  |  |  |  |

4 CONTENTS

## List of Tables

6 LIST OF TABLES

# List of Figures

| 1 | Creative Commons | License  |      |      |      |      |       |       |   |      |   | ( |
|---|------------------|----------|------|------|------|------|-------|-------|---|------|---|---|
| 1 | Cicative Commons | License. | <br> | <br> | <br> | <br> | <br>• | <br>• | • | <br> | • | ٠ |

## Preface

안녕하십니까?

2017년 1학기 울산대학교 의학과 대학원 수업 R Programming 과목 담당교수 배균섭입니다.

R은 http://cran.r-project.org 에서 다운로드받아 설치할 수 있습니다. 역시 같은 사이트에서 Manual 이 나와 있으니 참고하시기 바랍니다. 구글에서 'R Programming pdf'와 같은 키워드로 검색하시면 많은 자료를 보실 수 있습니다.

첨부한 R.stx 파일은 AcroEdit이라는 editor에서 사용할 syntax highlighting용 구문 파일입니다. http://www.acrosoft.pe.kr 에서 다운로드 받아 설치하시기 바랍니다. AcroEdit대신 notepad++를 선호하시는 분은 그대로 사용하셔도 됩니다.

저는 RStudio, tinnR 등을 이용해서 강의하지 않습니다만, 필요하신 분은 쓰셔도 괜찮습니다. 향후 R package 작성을 위해서는 MiKTeX와 Rtools를 설치하십시오.

추가로 말씀드리자면, http://www.coursera.org 에 많은 R 강좌가 개설되어 있습니다. Specialization course로 들어가면 유로이지만, (Specialization course는 여러 개의 과목이 합쳐져 있는 것입니다.) 개별 과목을 검색해서 들어가면, 무료로도 볼 수 있습니다. (대신 시험을 칠 수 없거나, certificate를 받을 수 없습니다.)

좋은 강좌가 많으니 많이 활용하시기 바립니다.

강의 장소에 불편함이 많은 것으로 생각되어, 다음과 같이 Skype 모임을 개설하였습니다. 사정상 원거리에서 오시기 불편한 분들은 활용하시기 바랍니다. 출석은 화면을 캡쳐하거나 휴대폰으로 찍은 뒤 sec@acp.kr, shan@acp.kr로 보내주시면 출석으로 인정해 드립니다.

Skype 모임 참가 https://meet.lync.com/uucp-acp/ksbae/SKGJ3BNQ

2017년 3월, 배균섭 배상

The online version of this book is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Figure 1: Creative Commons License

#### Teaching Assistant

안녕하십니까? 서울아산병원 임상약리학과 전공의 한성필입니다. 수업과 관련된 여러 제반 업무를 담당하고 있습니다. 언제든 의문사항 있으면 r@acr.kr 로 전체 메일 보내시거나 교수님 k@acr.kr 혹은 제 개인 메일 shan@acp.kr 로 연락해 주십시오.

교수님께서 세우신 방침에 따라 수업시간에 출석을 부르지 않을 예정입니다. 수강하시는 화면(Skype)을 휴대폰으로 사진 찍으시거나 강의실의 스크린을 사진으로 촬영하셔서 sec@acp.kr / shan@acp.kr 로 동시에 보내주시면 됩니다. 가급적 "2017-03-31 한성필 출석" 과 같은 식의 제목을 유지해 주시면 처리하는데 큰 도움이 될 것 같습니다.

#### 출석 체크를 위해 전체메일을 사용하지 말아주십시오!

아울러 수업 중에 사용한 코드/스크립트를 사용하여 R의 패키지인 bookdown을 사용해 웹복을 제작 중에 있습니다. (Xie, 2016) 여러분이 읽고 있는 이 책 자체가 R 코드의 일종인 Rmarkdown의 결과물이라고 보시면 됩니다. Github 저장소가 있으니 소스 코드를 보실 수 있습니다. 누구나 소스를 편집하여 Pull Request를 요청할 수 있으므로 혹시 Github를 사용하셔서 웹복의 질을 높이고자 하시는 수강생 선생님들께서는 도움을 주십시오. 혹은 웹북의 각 페이지 아래쪽에 Disqus 창을 달아놓았으므로, 궁금한 점을 메모로 남겨주셔도 좋습니다.

감사합니다.

2017년 3월, 한성필 올림

#### **FAQ**

Q. 미국학회 참석으로 수업시간이 귀국행 비행기 기내에 있을거같아 출석이 안될것 같습니다. 방법이 있을지요?

결석 사유서를 제출해 주시면 출석 처리 하겠습니다. 대학원 홈페이지 참고 바랍니다. 이 링크로 들어가시면 가장 위에 있습니다. (결석사유서.hwp) 참고로 수업 영상은 녹화하여 Youtube에 비공개 링크를 만들 예정이라서 추후에 관련 영상을 시청할 수 있을 것 같습니다. 결석사유서를 제출한다고 100% 출석이 인정되는 것은 아닙니다. 이것이 기본적으로는 offline 강의이기 때문에 강의시간에 강의실에 있든지, 또는 온라인으로 접속해 있어야 합니다. 출석사유서를 제출하거나, 추후 동영상시청을 해서 그 증거 (사진)을 제출하는 경우에 감점을 줄여드릴 수 있습니다. 예를 들어, 결석시에는 2점 감점인데, 결석사유서를 제출하면 1점만 감점한다는지, 동영상을 보면 0.5점만 감점한다는지 하는 것입니다. 결석 사유서 제출 시 출석 처리 원칙에 대한 설명을 드리오니. 참고하시길 바랍니다.

- Q. 스카이프를 한번도 안써봐서 이참에 사용법을 배우고있는데, 수업시작시에 상대방을 어떻게 검색해서 들어가면 될지 알려주시면 감사하겠습니다.
- Q. 온라인 수강시 접속하는 스카이프 주소는 무엇인지요?

https://meet.lync.com/uucp-acp/ksbae/SKGJ3BNQ

Chrome 등 웹브라우저에서 위 주소를 입력하면 직접 대화방으로 연결됩니다. (검색할 필요 없습니다.) 처음 설치시에는 Add-on이 설치될 수 있습니다. MacOS Sierra, Win7, Win10에서 Chrome,

Internet Explorer 등을 사용하여 테스트해 보았고 모두 잘 동작하였습니다. 대부분의 경우 Skype For Business 계정이 없을 것으로 생각되는데 따로 로그인할 필요 없습니다.

수업 시작 30분 전부터 대화방을 개설해 놓도록 하겠습니다.

https://groups.google.com/a/acr.kr/d/msg/r/nUkrE37W2kQ/waG-FkM\_BgAJ 교수님께서 처음 보낸 메일을 참고해 주십시오.

- Q. 앞으로 수업은 지난 첫수업처럼 계속 온라인 수강이 가능한 것인가요? 네, 계속 온라인으로 가능합니다.
  - Q. 저도 웹캠을 설치하여야 하여야 하나요?

설치할 필요 없습니다. 오히려 수강자의 웹캠의 전원을 꺼두시길 권고드립니다.

- Q. 수강전 온라인 강의 테스트 해볼 수 있나요?
- 수업 시작 30분 전부터 대화방을 개설하여 놓도록 하겠습니다.
- Q. 과제물이 있다고 들었는데 언제 assign하게 되는지요? 과제물은 빨라야 5주차 이후에 나갑니다.
  - Q. Coursera 강의를 듣고 증명서를 내면 출석을 얼마나 커버할 수 있을런지요?

Coursera는 출석 커버보다는 grade를 올려 주기 위한 것입니다. 출석은 Skype로 커버해야 합니다. 출석의 성적 반영비율은 25%이지만, 규정상 4회 이상 결석이면 성적이 나갈 수 없습니다.

Q. 첫 수업 때, certification 관련 말씀을 하셨는데, 정확히 coursera 사이트에서 어떤 것을 듣고, 제출을 해야하는지 궁금합니다. (비슷한 내용이 많아, 어떤것을 들어야하는지 헷갈립니다.)

Coursera는 꼭 어느 것을 들어야 하는 것은 아니고, R programming과 관련된 것이라면 자유로이 골라서 들으면 됩니다. 대표적인 두 가지만 들자면 다음과 같습니다.

- https://www.coursera.org/learn/r-programming
- https://www.coursera.org/learn/r-programming-environment

## Chapter 1

## Graphics

2017-03-22 임형석 교수님 강의

R을 사용해 그림 그리는 방법에 대해 알아보겠습니다.

#### 1.1 Introduction

- 상위수준 그림 함수는 그림을 생성한다.
- 하위수준 그림 함수는 기존의 그림에 그림을 추가한다.

#### 1.2 상위수준 그림 함수

#### 1.2.1 상위수준 그림 함수의 주요 인자 (arguments)

• main : 제목

xlab/ylab : x축 및 y축 레이블
 xlim/ylim : x축 및 y축 범위

col : 색깔lty : 선 모양pch : 점 모양

• cex : 그림 성분의 크기

lwd : 선 굵기type : 그림 타입

dta <- read.csv("PK.csv")
head(dta)</pre>

## ID TIME AMT DV MDV ## 1 1 0.00 0 0.00 0

```
## 2 1 0.00
               4 0.00
                         1
     1 0.33
               0 9.40
                         0
     1 0.66
               0 13.71
                         0
    1 1.00
               0 16.52
                         0
## 6 1 1.50
               0 29.36
                         0
str(dta)
```

```
## 'data.frame': 456 obs. of 5 variables:
## $ ID : num 1 1 1 1 1 1 1 1 1 1 1 ...
## $ TIME: num 0 0 0.33 0.66 1 1.5 2 3 4 6 ...
## $ AMT : num 0 4 0 0 0 0 0 0 0 0 ...
## $ DV : num 0 0 9.4 13.7 16.5 ...
## $ MDV : num 0 1 0 0 0 0 0 0 0 ...
```

#### 1.2.2 scatter plot

```
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0])
```



```
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], log="y")
```

```
## Warning in xy.coords(x, y, xlabel, ylabel, log): 86 y
## values <= 0 omitted from logarithmic plot</pre>
```



plot(dta\$TIME[dta\$MDV==0], log(dta\$DV[dta\$MDV==0]))



```
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0]
    , xlab="Time (hr)", ylab="Concentration (ng/mL)"
    , type="o", pch=2, col=1, main="PK time-course of Drug X"
    , xlim =c(-2,218), ylim=c(0,80))
```

#### PK time-course of Drug X



## PK time-course of Drug X



## 1.2.3 Histogram

```
d.demog <- read.csv("DEMOG.csv")
hist(d.demog$HT)</pre>
```

## Histogram of d.demog\$HT



hist(d.demog\$HT, breaks=10)
hist(d.demog\$HT, nclass=10)

## Histogram of d.demog\$HT



#### 1.2.3.1 with density line

```
hist (d.demog$HT, probability=TRUE, breaks=10)
lines(density(d.demog$HT))
```

### Histogram of d.demog\$HT



```
hist (d.demog$HT, probability=TRUE, breaks=9, xaxt="n"
    , main="Histogram for Height", xlab="Height (cm)", ylab="Probability (%)")
axis(1, at=seq(min(d.demog$HT), max(d.demog$HT), 3))
lines(density(d.demog$HT))
```

#### **Histogram for Height**



```
hist (d.demog$HT, probability=TRUE, breaks=9, xaxt="n"
    , main="Histogram for Height", xlab="Height (cm)", ylab="Probability (%)"
    , col = "lightblue", border = "pink")
axis(1, at=seq(min(d.demog$HT), max(d.demog$HT), 3))
lines(density(d.demog$HT))
```

### **Histogram for Height**



#### 1.2.4 Box-Whisker Plot







```
boxplot(d.demog$WT ~ d.demog$SEX
    , names=c("Male","Female"), ylab="AGE, year", ylim=c(min(d.demog$WT)-2, max(d.demog$WT)+2)
    , col=c("lightblue", "salmon"), width=c(0.6, 1))
```



-varwidth: if varwidth is TRUE, the boxes are drawn with widths proportional to the square-roots of the number of observations in the groups.

```
boxplot(d.demog$WT ~ d.demog$SEX
    , names=c("Male","Female"), ylab="AGE, year", ylim=c(min(d.demog$WT)-2, max(d.demog$WT)+2)
    , col=c("lightblue", "salmon")
    , varwidth=TRUE)
```



#### 1.2.5 Bar Plot

```
barplot(d.demog$HT)
```



VADCaciis

| ## |       | Rural | Male | Rural | Female | Urban | Male | Urban | Female |
|----|-------|-------|------|-------|--------|-------|------|-------|--------|
| ## | 50-54 |       | 11.7 |       | 8.7    |       | 15.4 |       | 8.4    |
| ## | 55-59 |       | 18.1 |       | 11.7   |       | 24.3 |       | 13.6   |
| ## | 60-64 |       | 26.9 |       | 20.3   |       | 37.0 |       | 19.3   |
| ## | 65-69 |       | 41.0 |       | 30.9   |       | 54.6 |       | 35.1   |
| ## | 70-74 |       | 66.0 |       | 54.3   |       | 71.1 |       | 50.0   |

barplot(VADeaths, border = "dark blue")



barplot(VADeaths, col = rainbow(20))



barplot(VADeaths, col = heat.colors(8))





barplot(VADeaths, col = gray.colors(4), log="x")



barplot(VADeaths, col = gray.colors(4), log="y")



barplot(VADeaths, col = gray.colors(4), log="xy")



#### 1.2.6 pie chart

```
drug.X.market <- c(0.12, 0.29, 0.32, 0.22, 0.11, 0.28)
names(drug.X.market) <- c("South Korea", "China", "USA", "Japan", "Austria", "EU")
pie(drug.X.market)</pre>
```



#### 1.2.7 matplot 함수

#### 1.2.7.1 matrix와 column 사이의 그림

```
pct.95 <- read.csv("pct95.csv")
matplot(pct.95[,1], pct.95[,2:ncol(pct.95)], pch=1)</pre>
```



matplot(pct.95[,1], pct.95[,2:ncol(pct.95)], pch=1, col=c(1,2,1), type="l", lty=1, lwd=c(1,2,1))



#### 1.2.8 Scatter plot matrices (pairs plots)



#### 1.2.8.1 add a loess smoother, type

```
pairs(d.demog, panel = panel.smooth)
```



```
panel.cor <- function(x, y, digits=2, prefix="", cex.cor)
{
    usr <- par("usr"); on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r = (cor(x, y))
    txt <- format(c(r, 0.123456789), digits=digits)[1]
    txt <- paste(prefix, txt, sep="")
    if(missing(cex.cor)) cex <- 1.5
    text(0.5, 0.5, txt, cex = 1.5)
}

pairs(d.demog, lower.panel=panel.smooth, upper.panel=panel.cor)</pre>
```

1.3. 하위수준 그림 함수



### 1.3 하위수준 그림 함수

points : 점추가lines : 선 추가

abline : 기준선 추가mtext : 텍스트 추가

legend : 설명 (legend) 추가
polygon : polygon 추가

#### 1.3.1 점, 선, 설명 추가 하기 {add}

```
plot(pct.95$TIME, pct.95$PCT50, main="PK of Drug X"
    , type="l", xlab="Time (h)", ylab="Concentration (ng/ml)"
    , ylim=range(0,80), lty=1, col="red", lwd=2)
```

#### **PK of Drug X**



## PK of Drug X



### 1.3.2 polygon 함수

```
plot(c(1, 10), c(1, 6), type = "n")
polygon(c(2,8,8,2), c(5,4,3,2), col="lightgreen")
```





#### 1.4 그림 출력하기

#### 1.4.1 pdf graphics devices

1.4. 그림 출력하기 35

## 2

#### 1.4.2 PNG graphics devices

## pdf ## 2

## Chapter 2

## Data Import / Export

2017-03-29 배균섭 교수님 강의 이번 시간에는 자료를 불러오고 조작을 가한 뒤 저장하는 방법에 대해 알아보겠습니다.

#### 2.1 Read.csv

```
setwd("D:/Rt")
dir()
mydata = read.csv("MyData2017.csv", as.is=TRUE)
```

### 2.2 Theoph 데이타

R에 기본적으로 들어있는 약동학 자료에 대해 살펴보겠습니다.

#### Theoph

```
##
      Subject Wt Dose Time conc
            1 79.6 4.02 0.00 0.74
## 2
            1 79.6 4.02 0.25 2.84
            1 79.6 4.02 0.57 6.57
           1 79.6 4.02 1.12 10.50
            1 79.6 4.02 2.02 9.66
            1 79.6 4.02 3.82 8.58
## 6
            1 79.6 4.02 5.10 8.36
           1 79.6 4.02 7.03 7.47
            1 79.6 4.02 9.05 6.89
## 10
           1 79.6 4.02 12.12 5.94
           1 79.6 4.02 24.37 3.28
## 11
```

```
## 12
             2 72.4 4.40 0.00 0.00
## 13
             2 72.4 4.40
                           0.27
                                 1.72
## 14
             2 72.4 4.40
                           0.52
                                 7.91
## 15
             2 72.4 4.40
                           1.00
                                 8.31
             2 72.4 4.40
## 16
                          1.92
                                 8.33
## 17
             2 72.4 4.40
                           3.50
                                 6.85
## 18
             2 72.4 4.40
                           5.02
                                 6.08
## 19
             2 72.4 4.40
                          7.03
             2 72.4 4.40 9.00
                                 4.55
## 20
## 21
             2 72.4 4.40 12.00
             2 72.4 4.40 24.30
## 22
                                 0.90
## 23
             3 70.5 4.53
                           0.00
## 24
             3 70.5 4.53
                           0.27
                                 4.40
## 25
             3 70.5 4.53
                           0.58
                                 6.90
## 26
             3 70.5 4.53
                          1.02
                                 8.20
             3 70.5 4.53
                           2.02
## 27
                                 7.80
## 28
             3 70.5 4.53
                           3.62
                                 7.50
             3 70.5 4.53
                           5.08
##
  29
                                 6.20
## 30
             3 70.5 4.53
                          7.07
                                 5.30
## 31
             3 70.5 4.53
                         9.00
                                 4.90
             3 70.5 4.53 12.15
## 32
                                 3.70
             3 70.5 4.53 24.17
## 33
                                 1.05
## 34
             4 72.7 4.40
                           0.00
                                 0.00
             4 72.7 4.40
## 35
                           0.35
                                 1.89
## 36
             4 72.7 4.40
                           0.60
                                 4.60
             4 72.7 4.40
## 37
                          1.07
                                 8.60
             4 72.7 4.40
                           2.13
                           3.50
## 39
             4 72.7 4.40
                                 7.54
             4 72.7 4.40
                           5.02
                                 6.88
             4 72.7 4.40
                          7.02
## 41
                                 5.78
## 42
             4 72.7 4.40
                          9.02
             4 72.7 4.40 11.98
## 43
                                 4.19
## 44
             4 72.7 4.40 24.65
## 45
             5 54.6 5.86
                         0.00
                                 0.00
                          0.30
## 46
             5 54.6 5.86
                                 2.02
             5 54.6 5.86
                           0.52 5.63
## 47
             5 54.6 5.86
                          1.00 11.40
## 48
             5 54.6 5.86
                           2.02
## 49
                                 9.33
## 50
             5 54.6 5.86
                          3.50
                                 8.74
## 51
             5 54.6 5.86
                          5.02
                                 7.56
## 52
             5 54.6 5.86
                         7.02
                                 7.09
## 53
             5 54.6 5.86
                          9.10
             5 54.6 5.86 12.00
## 54
                                 4.37
             5 54.6 5.86 24.35
             6 80.0 4.00 0.00
                                0.00
## 56
```

| ## | 57  | 6  | 80.0 | 4.00 | 0.27  | 1.29 |
|----|-----|----|------|------|-------|------|
| ## | 58  | 6  | 80.0 | 4.00 | 0.58  | 3.08 |
| ## | 59  | 6  | 80.0 | 4.00 | 1.15  | 6.44 |
| ## | 60  | 6  | 80.0 | 4.00 | 2.03  | 6.32 |
| ## | 61  | 6  | 80.0 | 4.00 | 3.57  | 5.53 |
| ## | 62  | 6  | 80.0 | 4.00 | 5.00  | 4.94 |
| ## | 63  | 6  | 80.0 | 4.00 | 7.00  | 4.02 |
| ## | 64  | 6  | 80.0 | 4.00 | 9.22  | 3.46 |
| ## | 65  | 6  | 80.0 | 4.00 | 12.10 | 2.78 |
| ## | 66  | 6  | 80.0 | 4.00 | 23.85 | 0.92 |
| ## | 67  | 7  | 64.6 | 4.95 | 0.00  | 0.15 |
| ## | 68  | 7  | 64.6 | 4.95 | 0.25  | 0.85 |
| ## | 69  | 7  | 64.6 | 4.95 | 0.50  | 2.35 |
| ## | 70  | 7  | 64.6 | 4.95 | 1.02  | 5.02 |
| ## | 71  | 7  | 64.6 | 4.95 | 2.02  | 6.58 |
| ## | 72  | 7  | 64.6 | 4.95 | 3.48  | 7.09 |
| ## | 73  | 7  | 64.6 | 4.95 | 5.00  | 6.66 |
| ## | 74  | 7  | 64.6 | 4.95 | 6.98  | 5.25 |
| ## | 75  | 7  | 64.6 | 4.95 | 9.00  | 4.39 |
| ## | 76  | 7  | 64.6 | 4.95 | 12.05 | 3.53 |
| ## | 77  | 7  | 64.6 | 4.95 | 24.22 | 1.15 |
| ## | 78  | 8  | 70.5 | 4.53 | 0.00  | 0.00 |
| ## | 79  | 8  | 70.5 | 4.53 | 0.25  | 3.05 |
| ## | 80  | 8  | 70.5 | 4.53 | 0.52  | 3.05 |
| ## | 81  | 8  | 70.5 | 4.53 | 0.98  | 7.31 |
| ## | 82  | 8  | 70.5 | 4.53 | 2.02  | 7.56 |
| ## | 83  | 8  | 70.5 | 4.53 | 3.53  | 6.59 |
| ## | 84  | 8  | 70.5 | 4.53 | 5.05  | 5.88 |
| ## | 85  | 8  | 70.5 | 4.53 | 7.15  | 4.73 |
| ## | 86  | 8  | 70.5 | 4.53 | 9.07  | 4.57 |
| ## | 87  | 8  | 70.5 | 4.53 | 12.10 | 3.00 |
| ## | 88  | 8  | 70.5 | 4.53 | 24.12 | 1.25 |
| ## | 89  | 9  | 86.4 | 3.10 | 0.00  | 0.00 |
| ## | 90  | 9  | 86.4 | 3.10 | 0.30  | 7.37 |
| ## | 91  | 9  | 86.4 | 3.10 | 0.63  | 9.03 |
| ## | 92  | 9  | 86.4 | 3.10 | 1.05  | 7.14 |
| ## | 93  | 9  | 86.4 | 3.10 | 2.02  | 6.33 |
| ## | 94  | 9  | 86.4 | 3.10 | 3.53  | 5.66 |
| ## | 95  | 9  | 86.4 | 3.10 | 5.02  | 5.67 |
| ## | 96  | 9  | 86.4 | 3.10 | 7.17  | 4.24 |
| ## | 97  | 9  | 86.4 | 3.10 | 8.80  | 4.11 |
| ## | 98  | 9  | 86.4 | 3.10 | 11.60 | 3.16 |
| ## | 99  | 9  | 86.4 | 3.10 | 24.43 | 1.12 |
| ## | 100 | 10 | 58.2 | 5.50 | 0.00  | 0.24 |
| ## | 101 | 10 | 58.2 | 5.50 | 0.37  | 2.89 |
|    |     |    |      |      |       |      |

```
## 102
           10 58.2 5.50 0.77 5.22
## 103
           10 58.2 5.50 1.02 6.41
## 104
           10 58.2 5.50 2.05 7.83
## 105
           10 58.2 5.50 3.55 10.21
           10 58.2 5.50 5.05 9.18
## 106
## 107
           10 58.2 5.50 7.08 8.02
           10 58.2 5.50 9.38 7.14
## 108
## 109
           10 58.2 5.50 12.10 5.68
## 110
           10 58.2 5.50 23.70 2.42
## 111
           11 65.0 4.92 0.00 0.00
           11 65.0 4.92 0.25 4.86
## 112
## 113
           11 65.0 4.92 0.50 7.24
## 114
           11 65.0 4.92 0.98 8.00
## 115
           11 65.0 4.92 1.98 6.81
## 116
           11 65.0 4.92 3.60 5.87
## 117
           11 65.0 4.92 5.02 5.22
## 118
           11 65.0 4.92 7.03 4.45
           11 65.0 4.92 9.03 3.62
## 119
## 120
           11 65.0 4.92 12.12 2.69
## 121
           11 65.0 4.92 24.08 0.86
## 122
           12 60.5 5.30 0.00 0.00
## 123
           12 60.5 5.30 0.25 1.25
## 124
           12 60.5 5.30 0.50 3.96
## 125
           12 60.5 5.30 1.00 7.82
## 126
           12 60.5 5.30 2.00 9.72
## 127
           12 60.5 5.30 3.52 9.75
## 128
           12 60.5 5.30 5.07 8.57
           12 60.5 5.30 7.07 6.59
## 129
## 130
           12 60.5 5.30 9.03 6.11
           12 60.5 5.30 12.05 4.57
## 131
## 132
           12 60.5 5.30 24.15 1.17
```

R console에서 ?Theoph를 타이핑 치면 좀 더 자세한 정보를 얻을 수 있습니다.

#### 2.3 lattice

lattice 패키지를 불러온 뒤 그림을 그려보겠습니다. (Sarkar, 2017)

```
library(lattice) # trellis

xyplot(conc ~ Time | Subject, data=Theoph)
```

2.3. LATTICE 41



xyplot(conc ~ Time | Subject, data=Theoph, type="b")



```
Theoph[,"ID"] = as.numeric(as.character(Theoph[,"Subject"]))

xyplot(conc ~ Time | ID, data=Theoph, type="b")
```





### 2.4 Subseting and write.csv

자료를 편집하고, subset을 만들고 각각을 파일로 저장하는 방법에 대해 알아보겠습니다.

```
IDs = sort(unique(Theoph[,"ID"])) ; IDs

## [1] 1 2 3 4 5 6 7 8 9 10 11 12

nID = length(IDs) ; nID

## [1] 12

demog = unique(Theoph[,c("ID","Wt")])
colnames(demog) = c("ID", "BWT")
write.csv(demog, "1-demog.csv", row.names=FALSE, quote=FALSE, na="")

DV = Theoph[,c("ID","Time", "conc")]
colnames(DV) = c("ID", "TIME", "DV")
write.csv(DV, "3-DV.csv", row.names=FALSE, quote=FALSE, na="")

adm = cbind(IDs, rep(0, nID), rep(320, nID))
colnames(adm) = c("ID", "TIME", "AMT")
write.csv(adm, "2-adm.csv", row.names=FALSE, quote=FALSE, na="")
```

```
demog = read.csv("1-demog.csv", as.is=TRUE)
adm = read.csv("2-adm.csv", as.is=TRUE)
dv = read.csv("3-dv.csv", as.is=TRUE)

AdmDv = merge(adm, dv, by=intersect(colnames(adm), colnames(dv)), all=TRUE)
AdmDv
```

```
##
      ID TIME AMT
                     DV
       1 0.00 320 0.74
## 1
## 2
       1 0.25 NA 2.84
## 3
       1 0.57 NA 6.57
## 4
       1 1.12 NA 10.50
## 5
       1 2.02 NA 9.66
## 6
       1 3.82 NA 8.58
       1 5.10 NA 8.36
## 8
       1 7.03 NA 7.47
## 9
       1 9.05 NA 6.89
## 10
       1 12.12 NA 5.94
## 11
       1 24.37 NA 3.28
## 12
       2 0.00 320 0.00
       2 0.27 NA 1.72
## 13
## 14
       2 0.52 NA 7.91
       2 1.00 NA 8.31
## 15
## 16
       2 1.92 NA 8.33
       2 3.50 NA 6.85
## 17
## 18
       2 5.02 NA 6.08
## 19
       2 7.03 NA 5.40
       2 9.00 NA 4.55
## 20
## 21
       2 12.00 NA 3.01
## 22
       2 24.30 NA 0.90
## 23
       3 0.00 320 0.00
## 24
       3 0.27 NA 4.40
## 25
       3 0.58 NA 6.90
       3 1.02 NA 8.20
## 27
       3 2.02 NA 7.80
## 28
       3 3.62 NA 7.50
## 29
       3 5.08 NA 6.20
## 30
       3 7.07 NA 5.30
## 31
       3 9.00 NA 4.90
## 32
       3 12.15 NA 3.70
## 33
       3 24.17 NA 1.05
## 34
       4 0.00 320 0.00
## 35
       4 0.35 NA 1.89
## 36
       4 0.60 NA 4.60
```

```
## 37
       4 1.07 NA 8.60
## 38
         2.13
                NA
                   8.38
## 39
       4 3.50
                NA
                   7.54
       4 5.02
                NA
                    6.88
                   5.78
## 41
       4 7.02
               NA
       4 9.02
                NA
                    5.33
## 43
       4 11.98
               NA
                   4.19
       4 24.65
                NA
                   1.15
## 45
       5 0.00 320
                    0.00
## 46
       5 0.30
                NA
                   2.02
## 47
       5 0.52
               NA 5.63
         1.00
                NA 11.40
## 49
       5 2.02 NA 9.33
                   8.74
## 50
       5 3.50
                NA
## 51
       5 5.02
                NA
                    7.56
## 52
                   7.09
         7.02
                NA
## 53
       5 9.10
                NA
                    5.90
       5 12.00
                    4.37
## 54
                NA
## 55
       5 24.35
                NA
                   1.57
## 56
       6 0.00 320
                    0.00
## 57
       6 0.27
                NA
                    1.29
       6 0.58
## 58
                NA
                    3.08
## 59
       6 1.15
                NA
                    6.44
       6 2.03
                    6.32
## 60
                NA
## 61
       6 3.57
                NA
                    5.53
       6 5.00
                    4.94
## 62
               NA
       6 7.00
                NA
                    4.02
       6 9.22
                    3.46
## 64
                NA
       6 12.10
                NA
                    2.78
       6 23.85
               NA
                    0.92
## 66
       7 0.00 320
                    0.15
## 68
       7 0.25
                NA
                    0.85
## 69
       7 0.50
                NA
                    2.35
## 70
       7 1.02
                NA
                   5.02
       7 2.02 NA
                   6.58
## 71
       7 3.48
                NA
                   7.09
## 72
       7 5.00
                   6.66
## 73
                NA
## 74
          6.98
                NA 5.25
       7 9.00
## 75
                NA
                   4.39
## 76
       7 12.05
                NA
                   3.53
       7 24.22
## 77
               NA
                   1.15
       8 0.00 320
                    0.00
       8 0.25
## 79
                NA
                   3.05
       8 0.52
                NA
                    3.05
## 81
       8 0.98 NA
                   7.31
```

```
## 82
       8 2.02 NA 7.56
## 83
       8 3.53 NA 6.59
## 84
       8 5.05 NA 5.88
## 85
       8 7.15 NA 4.73
       8 9.07 NA 4.57
## 86
## 87
       8 12.10 NA 3.00
## 88
       8 24.12 NA 1.25
## 89
       9 0.00 320
                   0.00
## 90
       9 0.30 NA 7.37
## 91
       9 0.63
               NA 9.03
       9 1.05 NA 7.14
## 92
## 93
       9 2.02 NA
                  6.33
## 94
       9 3.53 NA 5.66
## 95
       9 5.02 NA 5.67
## 96
       9 7.17 NA 4.24
## 97
       9 8.80
              NA 4.11
## 98
       9 11.60 NA 3.16
       9 24.43 NA
## 99
                  1.12
## 100 10 0.00 320
                   0.24
## 101 10 0.37 NA 2.89
## 102 10 0.77
              NA 5.22
## 103 10 1.02 NA 6.41
## 104 10 2.05 NA 7.83
## 105 10 3.55 NA 10.21
## 106 10 5.05 NA 9.18
## 107 10 7.08 NA 8.02
## 108 10 9.38
## 109 10 12.10 NA 5.68
## 110 10 23.70
               NA
                  2.42
## 111 11 0.00 320
                   0.00
## 112 11 0.25 NA
## 113 11 0.50 NA 7.24
## 114 11 0.98 NA 8.00
## 115 11 1.98 NA 6.81
## 116 11 3.60 NA 5.87
## 117 11 5.02 NA 5.22
## 118 11 7.03 NA 4.45
## 119 11 9.03
              NA 3.62
## 120 11 12.12 NA
                  2.69
## 121 11 24.08
               NA
                   0.86
## 122 12 0.00 320
                  0.00
## 123 12 0.25 NA 1.25
## 124 12 0.50 NA 3.96
## 125 12 1.00 NA 7.82
## 126 12 2.00 NA 9.72
```

```
## 127 12 3.52 NA 9.75
## 128 12 5.07 NA 8.57
## 129 12 7.07 NA 6.59
## 130 12 9.03 NA 6.11
## 131 12 12.05 NA 4.57
## 132 12 24.15 NA 1.17
```

자료를 병합(merge)해 보겠습니다.

```
DataAll = merge(demog, AdmDv, by=c("ID"), all=TRUE)
DataAll
```

```
ID BWT
              TIME AMT
## 1
       1 79.6 0.00 320
                         0.74
       1 79.6 0.25
                     NA
                         2.84
       1 79.6 0.57 NA
## 3
                         6.57
       1 79.6 1.12
                     NA 10.50
## 5
       1 79.6 2.02
                     NA
                         9.66
       1 79.6 3.82
                     NA
## 7
       1 79.6 5.10 NA
                         8.36
       1 79.6 7.03
                         7.47
       1 79.6 9.05
## 9
                     NA
                         6.89
## 10
       1 79.6 12.12 NA
                         5.94
## 11
       1 79.6 24.37 NA
                        3.28
## 12
       2 72.4 0.00 320
                         0.00
       2 72.4 0.27
## 13
                     NA
                         1.72
## 14
       2 72.4 0.52 NA 7.91
## 15
       2 72.4 1.00
                    NA 8.31
## 16
       2 72.4 1.92 NA
                         8.33
       2 72.4 3.50
                         6.85
  17
                     NA
       2 72.4 5.02 NA
## 18
                         6.08
       2 72.4 7.03
                    NA
                         5.40
       2 72.4 9.00 NA
## 20
                         4.55
       2 72.4 12.00
                     NA
                         3.01
## 22
       2 72.4 24.30 NA
                         0.90
       3 70.5 0.00 320
## 24
       3 70.5 0.27
                     NA
                         4.40
  25
       3 70.5 0.58
                     NA
                         6.90
## 26
       3 70.5 1.02 NA
                         8.20
       3 70.5 2.02
## 27
                     NA
                         7.80
## 28
       3 70.5 3.62
                     NA
                         7.50
## 29
       3 70.5 5.08 NA
                         6.20
       3 70.5 7.07
## 30
                     NA
                         5.30
## 31
       3 70.5 9.00
                     NA
                         4.90
## 32
       3 70.5 12.15
                     NA
                         3.70
       3 70.5 24.17 NA
## 33
                        1.05
```

```
4 72.7 0.00 320
                           0.00
## 34
        4 72.7
                0.35
                           1.89
##
  35
                       NA
        4 72.7
                0.60
                       NA
                           4.60
## 36
        4 72.7
                1.07
                       NA
                           8.60
   37
## 38
        4 72.7
                2.13
                       NA
                           8.38
  39
        4 72.7
                3.50
                       NA
                           7.54
##
        4 72.7
                5.02
                       NA
                           6.88
  40
## 41
        4 72.7
                7.02
                           5.78
                       NA
        4 72.7 9.02
## 42
                           5.33
                       NA
  43
        4 72.7 11.98
                       NA
                           4.19
        4 72.7 24.65
## 44
                       NA
                           1.15
        5 54.6
               0.00 320
                           0.00
## 46
        5 54.6
                0.30
                       NA
                           2.02
## 47
        5 54.6
                0.52
                       NA
                           5.63
        5 54.6
                1.00
                       NA 11.40
## 48
        5 54.6
                2.02
                           9.33
## 50
        5 54.6
                3.50
                       NA
                           8.74
        5 54.6
                5.02
##
   51
                       NA
                           7.56
## 52
        5 54.6 7.02
                       NA
                           7.09
## 53
        5 54.6 9.10
                       NA
                           5.90
        5 54.6 12.00
##
  54
                       NA
                           4.37
## 55
        5 54.6 24.35
                       NA
                           1.57
  56
        6 80.0
                0.00 320
                           0.00
## 57
        6 80.0
                0.27
                       NA
                           1.29
        6 80.0
                0.58
                       NA
                           3.08
##
  59
        6 80.0
                1.15
                       NA
                           6.44
        6 80.0
                2.03
                       NA
                           6.32
## 61
                3.57
        6 80.0
                       NA
                           5.53
##
   62
        6 80.0
                5.00
                       NA
                           4.94
## 63
        6 80.0
                7.00
                       NA
                           4.02
        6 80.0
                9.22
                       NA
        6 80.0 12.10
                           2.78
##
  65
                       NA
## 66
        6 80.0 23.85
                       NA
                           0.92
                           0.15
##
  67
        7 64.6
                0.00 320
        7 64.6
                0.25
                           0.85
        7 64.6
                0.50
## 69
                       NA
                           2.35
        7 64.6
                1.02
##
   70
                       NA
                           5.02
        7 64.6 2.02
## 71
                       NA
                           6.58
## 72
        7 64.6 3.48
                           7.09
                       NA
##
  73
        7 64.6
                5.00
                       NA
                           6.66
## 74
        7 64.6
                6.98
                       NA
                           5.25
        7 64.6 9.00
                       NA
                           4.39
        7 64.6 12.05
## 76
                       NA
                           3.53
        7 64.6 24.22
                       NA
                           1.15
        8 70.5 0.00 320
                           0.00
## 78
```

```
## 79
        8 70.5 0.25
                         3.05
                      NA
        8 70.5 0.52
## 80
                      NA
                          3.05
        8 70.5 0.98
                      NA
                          7.31
## 81
        8 70.5
                2.02
                          7.56
  82
                      NA
## 83
        8 70.5
               3.53
                          6.59
                      NA
  84
        8 70.5
                5.05
                      NA
                          5.88
##
        8 70.5
               7.15
                      NA
                          4.73
  85
        8 70.5 9.07
## 86
                      NA
                          4.57
        8 70.5 12.10
## 87
                      NA
                          3.00
        8 70.5 24.12
  88
                      NA
                          1.25
        9 86.4 0.00 320
## 89
                          0.00
  90
        9 86.4
                0.30
                      NA
## 91
        9 86.4
                0.63
                      NA
                          9.03
## 92
        9 86.4
               1.05
                      NA
        9 86.4 2.02
## 93
                      NA
                          6.33
## 94
        9 86.4
               3.53
                          5.66
## 95
        9 86.4
               5.02
                      NA
                          5.67
##
  96
        9 86.4
               7.17
                      NA
                          4.24
## 97
        9 86.4 8.80
                      NA
                          4.11
## 98
        9 86.4 11.60
                      NA
                          3.16
        9 86.4 24.43
## 99
                      NA
                          1.12
## 100 10 58.2 0.00 320
                          0.24
## 101 10 58.2 0.37
                      NA
                          2.89
## 102 10 58.2 0.77
                          5.22
## 103 10 58.2
                1.02
                      NA
                          6.41
## 104 10 58.2 2.05
                         7.83
                      NA
## 105 10 58.2
                3.55
## 106 10 58.2 5.05
                          9.18
                      NA
## 107 10 58.2 7.08
                      NA
                          8.02
## 108 10 58.2 9.38
                      NA
                          7.14
## 109 10 58.2 12.10
## 110 10 58.2 23.70
                      NA
                          2.42
## 111 11 65.0
               0.00 320
                          0.00
## 112 11 65.0
                0.25
                      NA
                          4.86
## 113 11 65.0
               0.50
                          7.24
## 114 11 65.0
                0.98
                      NA
                          8.00
## 115 11 65.0
               1.98
                      NA
                          6.81
## 116 11 65.0
                3.60
                      NA
                          5.87
## 117 11 65.0
                5.02
                      NA
                          5.22
## 118 11 65.0 7.03
                      NA
                          4.45
## 119 11 65.0 9.03
                      NA
                          3.62
## 120 11 65.0 12.12
                      NA
                          2.69
## 121 11 65.0 24.08 NA
                          0.86
## 122 12 60.5 0.00 320
                          0.00
## 123 12 60.5 0.25 NA
                          1.25
```

```
## 124 12 60.5 0.50 NA 3.96

## 125 12 60.5 1.00 NA 7.82

## 126 12 60.5 2.00 NA 9.72

## 127 12 60.5 3.52 NA 9.75

## 128 12 60.5 5.07 NA 8.57

## 129 12 60.5 7.07 NA 6.59

## 130 12 60.5 9.03 NA 6.11

## 131 12 60.5 12.05 NA 4.57

## 132 12 60.5 24.15 NA 1.17
```

## Appendix A

### As-is R Files

교수님께서 주신 원본 R 파일 입니다.

#### A.1 Lecture 3

```
Graphics
# 상위수준 그림 함수는 그림을 생성한다.
# 하위수준 그림 함수는 기존의 그림에 그림을 추가한다.
## 상위수준 그림 함수의 주요 인자 (arguments) ###
# main : 제목
# xlab/ylab : x축 및 y축 레이블
# xlim/ylim : x축 및 y축 범위
# col : 색깔
# lty : 선모양
# pch : 점모양
# cex : 그림 성분의 크기
# lwd : 선 굵기
# type : 그림 타입
######## 상위수준 그림 함수 #########
```

```
WD <- "D:\\AMC\\Education\\UU\\2017\\R\\Graphics\\"</pre>
setwd(WD)
dta <- read.csv("PK.csv")</pre>
head(dta)
str(dta)
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0])
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], log="y")
plot(dta$TIME[dta$MDV==0], log(dta$DV[dta$MDV==0]))
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0]
   , xlab="Time (hr)", ylab="Concentration (ng/mL)"
   , type="o", pch=2, col=1, main="PK time-course of Drug X"
   , x \lim = c(-2,218), y \lim = c(0,80)
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], axes=F,
   , xlab="Time (hr)", ylab="Concentration (ng/mL)"
   , type="o", pch=2, col=1, main="PK time-course of Drug X"
   , x \lim = c(-2,218), y \lim = c(0,80)
axis(1, at=seq(0, 218, 24))
axis(2)
box()
d.demog <- read.csv("DEMOG.csv")</pre>
# histogram
hist(d.demog$HT)
hist(d.demog$HT, breaks=10)
hist(d.demog$HT, nclass=10)
# with density line
```

A.1. LECTURE 3 53

```
hist (d.demog$HT, probability=TRUE, breaks=10)
lines(density(d.demog$HT))
hist (d.demog$HT, probability=TRUE, breaks=9, xaxt="n"
      , main="Histogram for Height", xlab="Height (cm)", ylab="Probability (%)")
axis(1, at=seq(min(d.demog$HT), max(d.demog$HT), 3))
lines(density(d.demog$HT))
hist (d.demog$HT, probability=TRUE, breaks=9, xaxt="n"
      , main="Histogram for Height", xlab="Height (cm)", ylab="Probability (%)"
      , col = "lightblue", border = "pink")
axis(1, at=seq(min(d.demog$HT), max(d.demog$HT), 3))
lines(density(d.demog$HT))
# Box-and-Whisker Plot
boxplot(d.demog$WT)
boxplot(d.demog$WT ~ d.demog$SEX)
boxplot(split(d.demog$WT, d.demog$SEX))
boxplot(WT ~ SEX, data=d.demog)
boxplot(d.demog$WT ~ d.demog$SEX
        , names=c("Male", "Female"), ylab="AGE, year", ylim=c(min(d.demog$WT)-2, max(d.demog$WT)+2)
           , col="pink")
boxplot(d.demog$WT ~ d.demog$SEX
        , names=c("Male","Female"), ylab="AGE, year", ylim=c(min(d.demog$WT)-2, max(d.demog$WT)+2)
           , col=c("lightblue", "salmon"), width=c(0.6, 1))
#varwidth: if varwidth is TRUE, the boxes are drawn with widths proportional
#to the square-roots of the number of observations in the groups.
boxplot(d.demog$WT ~ d.demog$SEX
        , names=c("Male","Female"), ylab="AGE, year", ylim=c(min(d.demog$WT)-2, max(d.demog$WT)+2)
           , col=c("lightblue", "salmon")
           , varwidth=TRUE)
```

```
barplot(d.demog$HT)
VADeaths
barplot(VADeaths, border = "dark blue")
barplot(VADeaths, col = rainbow(20))
barplot(VADeaths, col = heat.colors(8))
barplot(VADeaths, col = gray.colors(4))
barplot(VADeaths, col = gray.colors(4), log="x")
barplot(VADeaths, col = gray.colors(4), log="y")
barplot(VADeaths, col = gray.colors(4), log="xy")
drug.X.market <- c(0.12, 0.29, 0.32, 0.22, 0.11, 0.28)
names(drug.X.market) <- c("South Korea","China","USA","Japan","Austria","EU")</pre>
pie(drug.X.market)
# matrix와 column 사이의 그림
pct.95 <- read.csv("pct95.csv")</pre>
matplot(pct.95[,1], pct.95[,2:ncol(pct.95)], pch=1)
matplot(pct.95[,1], pct.95[,2:ncol(pct.95)], pch=1, col=c(1,2,1), type="l", lty=1, lwd=c(1,2,1))
###### Scatter plot matrices (pairs plots) ######
pairs(d.demog)
```

A.1. LECTURE 3 55

```
#add a loess smoother, type:
pairs(d.demog, panel = panel.smooth)
 panel.cor <- function(x, y, digits=2, prefix="", cex.cor)</pre>
      usr <- par("usr"); on.exit(par(usr))</pre>
      par(usr = c(0, 1, 0, 1))
      r = (cor(x, y))
      txt <- format(c(r, 0.123456789), digits=digits)[1]</pre>
      txt <- paste(prefix, txt, sep="")</pre>
      if(missing(cex.cor)) cex <- 1.5</pre>
      text(0.5, 0.5, txt, cex = 1.5)
  }
pairs(d.demog, lower.panel=panel.smooth, upper.panel=panel.cor)
하위수준 그림 함수
# points : 점추가
# lines : 선 추가
# abline : 기준선 추가
# mtext : 텍스트 추가
# legend : 설명(legend) 추가
# polygon : polygon 추가
########## 점, 선, 설명 추가 하기 ###########
plot(pct.95$TIME, pct.95$PCT50, main="PK of Drug X"
    , type="l", xlab="Time (h)", ylab="Concentration (ng/ml)"
    , ylim=range(0,80), lty=1, col="red", lwd=2)
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], main="PK of Drug X"
    , type="n", xlab="Time (h)", ylab="Concentration (ng/ml)"
    , ylim=range(0,80))
points(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], pch = 16, cex=0.8)
lines(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], col="black", lwd=1)
abline(40, 0, col="red", lty=2)
                                                         #abline(a,b): y=a+b*x
legend("topright", legend=c("Individual concentrations")
```

```
, lty=1, col="black")
plot(c(1, 10), c(1, 6), type = "n")
polygon(c(2,8,8,2), c(5,4,3,2), col="lightgreen")
plot(c(1, 9), 1:2, type = "n")
polygon(1:9, c(2,1,2,1,1,2,1,2,1),
       col = c("red", "blue"),
       border = c("green", "yellow"),
       lwd = 3, lty = c("dashed", "solid"))
#--pdf graphics devices
pdf("PK_of_Drug_X.pdf")
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], main="PK of Drug X"
    , type="n", xlab="Time (h)", ylab="Concentration (ng/ml)"
    , ylim=range(0,80))
points(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], pch = 16, cex=0.8)
lines(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], col="black", lwd=1)
abline(40, 0, col="red", lty=2)
                                                          #abline(a,b): y=a+b*x
legend("topright", legend=c("Individual concentrations")
      , lty=1, col="black")
dev.off()
#--PNG graphics devices
png("PK_of_Drug_X.png")
plot(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], main="PK of Drug X"
    , type="n", xlab="Time (h)", ylab="Concentration (ng/ml)"
    , ylim=range(0,80))
points(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], pch = 16, cex=0.8)
lines(dta$TIME[dta$MDV==0], dta$DV[dta$MDV==0], col="black", lwd=1)
                                                         #abline(a,b): y=a+b*x
abline(40, 0, col="red", lty=2)
legend("topright", legend=c("Individual concentrations")
      , lty=1, col="black")
```

A.2. LECTURE 4 57

#### A.2 Lecture 4

```
# 2017-03-29
setwd("D:/Rt")
dir()
mydata = read.csv("MyData2017.csv", as.is=TRUE)
Theoph
library(lattice) # trellis
xyplot(conc ~ Time | Subject, data=Theoph)
xyplot(conc ~ Time | Subject, data=Theoph, type="b")
Theoph[,"ID"] = as.numeric(as.character(Theoph[,"Subject"]))
xyplot(conc ~ Time | ID, data=Theoph, type="b")
xyplot(conc ~ Time | as.factor(ID), data=Theoph, type="b")
write.csv(Theoph, "Theoph.csv", row.names=FALSE, quote=FALSE, na="")
```

```
IDs = sort(unique(Theoph[,"ID"])) ; IDs
nID = length(IDs) ; nID
demog = unique(Theoph[,c("ID","Wt")])
colnames(demog) = c("ID", "BWT")
write.csv(demog, "1-demog.csv", row.names=FALSE, quote=FALSE, na="")
DV = Theoph[,c("ID","Time", "conc")]
colnames(DV) = c("ID", "TIME", "DV")
write.csv(DV, "3-DV.csv", row.names=FALSE, quote=FALSE, na="")
adm = cbind(IDs, rep(0, nID), rep(320, nID))
colnames(adm) = c("ID", "TIME", "AMT")
write.csv(adm, "2-adm.csv", row.names=FALSE, quote=FALSE, na="")
demog = read.csv("1-demog.csv", as.is=TRUE)
adm = read.csv("2-adm.csv", as.is=TRUE)
dv = read.csv("3-dv.csv", as.is=TRUE)
AdmDv = merge(adm, dv, by=intersect(colnames(adm), colnames(dv)), all=TRUE)
DataAll = merge(demog, AdmDv, by=c("ID"), all=TRUE)
```

### Appendix B

### Using Coursera

PAGK에 보낸 이메일을 그대로 옮겼습니다.

배균섭 교수님의 추천을 받아 다음과 같은 강의와 책을 공유하고자 합니다. Coursera.com 에 유익한 R 강좌가 열렸습니다. "Mastering Software Development in R Specialization"이란 제목의 강좌 인데 4개 Course를 무료로 들을 수 있게 되어있습니다. https://www.coursera.org/specializations/r 이것이 본래의 Link인데 여기서 각각의 Course를 찾거나 혹은 아래의 링크를 각각 클릭하여 하단에 나오는 "Audit"을 클릭하면 무료로 들을 수 있습니다.

Audit 버튼이 안보이신다고 하신 분들이 몇분 계셔서 첨언합니다. Coursera 회원가입하시고 로그인한 뒤, Enroll Now를 누르시면 Audit 혹은 청강하기 라디오버튼을 보실 수 있습니다. 앱에서도 마찬가지입니다. 이외에도 코세라에는 많은 유익한 강의가 있는 것 같습니다. 다만 코스(Course)의 묶음인 "Specialization"에서는 유료등록(Enroll) 밖에 없으므로 Certificate가 필요하지 않다면, 각각의 코스를 구글검색 혹은 코세라 내에서 검색해서 "Audit(청강)"하시면 무료로 강의를 들을 수 있습니다.

- https://www.coursera.org/learn/r-programming-environment
- https://www.coursera.org/learn/advanced-r
- https://www.coursera.org/learn/r-packages
- https://www.coursera.org/learn/r-data-visualization

https://bookdown.org/rdpeng/RProgDA/ 이 링크는 무료로 공개된 강의 책자입니다. 강의를 듣지 않고 책으로 보고 싶으신 분은 참고하시면 됩니다.

# Appendix C

# R Tips

• Changing defualt R console size and etc: 배균섭 교수님께서 알려주신 tip을 참고하여 video clip을 만들었습니다. 매일같이 마주하게 되는 R console이 너무 작게 느껴지셨다면 다음의 동영상을 참고하셔서 초기 세팅 (Rconsole 파일)을 바꿔서 해결할 수 있습니다. https://youtu.be/uSunEN8W5Mo

# Appendix D

# Acknowledgement

- 이 웹북을 만드는데 도움을 주신 분들은 다음과 같습니다.
  - 1. Dr. Jekyll
  - 2. Hyde

# **Bibliography**

Sarkar, D. (2017). lattice: Trellis Graphics for R. R package version 0.20-35.

Xie, Y. (2016). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.3.16.