Conformal equivalence and the Schwarz lemma

Chapter 8

Complex Function Theory 2

July 17, 2023

Some definitions

Definition

A bijective holomorphic $f: U \to V$ is called a **conformal** map (or **biholomorphism**). Given such f, we say U and V are **conformally** equivalent, or simply biholomorphic.

Note that the inverse of f is automatically holomorphic. We turn this into a proposition.

A proposition

Proposition 1.1

If $f: U \to V$ is holomorphic and injective, then $f(z) \neq 0$ for all $z \in U$. In particular, the inverse of f defined on its range is holomorphic, and thus the inverse of a conformal map is also holomorphic.

Thus, U, V are conformally equivalent if and only if there exist holomorphic f, g such that $g \circ f = \operatorname{Id}_U$ and $f \circ g = \operatorname{Id}_V$.

Note that in this text, we require a conformal map to be injective.

The disc and upper half-plane

Definition

The **upper half plane** \mathbb{H} is defined as

$$\mathbb{H} = \{ z \in \mathbb{C} \mid \operatorname{Im}(z) > 0 \}$$

We will show that \mathbb{H} is conformally equivalent to \mathbb{D} . The conformal maps are given by $F(z) = \frac{i-z}{i+z}$ and $G(w) = i\frac{1-w}{1+w}$.

The disc and upper half-plane

Theorem 1.2

The map $F: \mathbb{H} \to \mathbb{D}$ is a conformal map, with inverse $G: \mathbb{D} \to \mathbb{H}$.

The disc and upper half-plane

Note that F can be extended to $\partial \mathbb{H} = \mathbb{R}$. Take $x \in \mathbb{R}$ and observe F(x). It is easy to check |F(x)| = 1.

Furthermore, we may write

$$F(x) = \frac{i - x}{i + x} = \frac{1 - x^2}{1 + x^2} + i\frac{2x}{1 + x^2}$$

and reparametrize x as $\tan t$ for $(-\pi/2, \pi/2)$. Verify that $F(x) = e^{i2t}$.

Fractional linear transformations

Mappings of the form

$$z \mapsto \frac{az+b}{cz+d}$$

for complex a, b, c, d with nonzero determinant are referred to as fractional linear transformations.

This transformation is also referred to as a Möbius transformation. These are conformal maps from the Riemann sphere to itself. These transformations also explain 'reflection' with respect to a circle, or a sphere.

Further examples

Here we provide examples of conformal mappings.

Translations and dilations

Example 1

The translation $z \mapsto z + h$ is a conformal map from $\mathbb C$ to itself. Note that for real h, this also suffices to be a conformal map of \mathbb{H} .

The map $z \mapsto cz$ is called a dilation if c > 0, and a rotation if |c| = 1. If c < 0, then it is a dilation by |c| together with a π -rotation.

The power map

Example 2

For a positive integer n, the map $z \mapsto z^n$ is conformal from $S = \{z \in \mathbb{C} \mid 0 < \arg(z) < \pi/n\}$ to \mathbb{H} . The inverse is $w \mapsto w^{1/n}$ with the principal branch of the logarithm.

Upper half disc to first quadrant

Example 3

Define f(z) = (1+z)/(1-z). This takes the upper half disc $\{x+iy\mid x^2+y^2<1 \text{ and } y>0\}$ conformally to $\{u+iv\mid u>0 \text{ and } v>0\}$. Verify the inverse map is given by g(w) = (w-1)/(w+1), and both are holomorphic.

The logarithm

Example 4

The map $z \mapsto \log z$ with the branch cut \mathbb{R}^- , takes \mathbb{H} to the strip $\{u+iv\mid u\in\mathbb{R}, 0< v<\pi\}$. Check that the inverse map is $w\mapsto e^w$.

The logarithm

Example 5

Note that $z \mapsto \log z$ also defines a conformal map from the upper half disc to $\{u + iv \mid u < 0, 0 < v < \pi\}$.

The exponential map

Example 6

The map
$$z \mapsto e^{iz}$$
 takes $\{x + iy \mid -\pi/2 < x < \pi/2, y > 0\}$ to $\{u + iv \mid u^2 + v^2 < 1, u > 0\}.$

The function
$$f(z) = -1/2(z + 1/z)$$

Example 7

f(z) = -1/2(z+1/z) is a conformal map from the upper half disc to the upper half plane. Examine the boundary behavior of f.

$$f(z) = \sin z$$

 $\sin z$ takes \mathbb{H} conformally onto the half strip $\{x+iy\mid -\pi/2 < x < \pi/2, y > 0\}$. Verify this by letting $\zeta = e^{iz}$, then $\sin z = -1/2(i\zeta + 1/i\zeta)$ together with example 6, a rotation by i, and example 7.

Introduction

The Dirichlet problem in the open set Ω consists of solving both $\nabla^2 u = 0$ in Ω , and u = f on $\partial \Omega$.

In this section, we connect the Dirichlet problem to conformal maps.

Ω is a strip

We first solve when Ω is a strip. To do this, we introduce a lemma.

Lemma 1.3

Let U, V be open sets of \mathbb{C} , and $F: V \to U$ a holomorphic function. If $u: U \to \mathbb{C}$ is harmonic, then $u \circ F$ is harmonic on V.

Ω is a strip

Back to the problem; let $\Omega = \{x + iy \mid x \in \mathbb{R}, 0 < y < 1\}$. Suppose we have two boundary functions f_0 , f_1 defined on \mathbb{R} . We ask for a solution u(x, y) in Ω such that $u(x, 0) = f_0(x)$ and $u(x, 1) = f_1(x)$.

Assume f_0 , f_1 are continuous and vanish at infinity.

Overview of proof

Overview of proof

We introduce the mappings $F: \mathbb{D} \to \Omega$ and $G: \Omega \to \mathbb{D}$, defined by

$$F(w) = \frac{1}{\pi} \log \left(i \frac{1-w}{1+w} \right)$$
 and $G(z) = \frac{1-e^{\pi z}}{i+e^{\pi z}}$

Note that F and G are conformal and inverse to one another.

Dirichlet problem in the unit disc

Observe the behavior of $F(e^{i\phi})$ when ϕ varies from $-\pi$ to 0, and 0 to π . Notice that for negative ϕ , the value spans $i + \infty$ from $i - \infty$, and for positive ϕ , it spans \mathbb{R} .

We define

$$ilde{f_1}(\phi) = f_1(extit{F}(e^{i\phi}) - i)$$
 whenever $-\pi < \phi < 0$

and

$$\tilde{f}_0(\phi) = f_0(F(e^{i\phi}))$$
 whenever $0 < \phi < \pi$.

Dirichlet problem in the unit disc

Recall that we have defined f_0 and f_1 to vanish at infinity. Therefore we may extend \tilde{f}_1 and \tilde{f}_2 continuously to $\partial \mathbb{D}$. Name this function \tilde{f} . Now we solve the Dirichlet problem in the unit disc by the Poisson integral

$$\tilde{u} = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - \phi) \tilde{f}(\phi) d\phi$$

where $w=re^{i\theta}$ and $P_r(\theta)=\frac{1-r^2}{1-2r\cos\theta+r^2}$. If we put $u(z)=\tilde{u}(G(z))$, then by Lemma 1.3 this is harmonic in Ω . (The tedious calculations are omitted here.)

The Schwarz lemma

The Schwarz lemma is a simple result showing the rigidity of holomorphic functions.

Lemma 2.1

Let $f: \mathbb{D} \to \mathbb{D}$ be holomorphic with f(0) = 0. Then

- $|f(z)| \leq |z|$ for all $z \in \mathbb{D}$
- If $|f(z_0)| = |z_0|$ for some $z_0 \neq 0$, then f is a rotation.
- $|f(0)| \le 1$, and f is a rotation if equality holds.

Automorphisms of the disc

Using the Schwarz lemma, we determine the automorphisms of the disc.

A conformal map from an open set Ω to itself is called an **automorphism**, denoted $Aut(\Omega)$.

We may construct a group structure on $Aut(\Omega)$ by taking the group operation to be the composition of maps.

The maps ψ_{α}

Recall the automorphisms of the form

$$\psi_{\alpha}(z) = \frac{\alpha - z}{1 - \overline{\alpha}z}$$

where $\alpha \in \mathbb{C}$ with $|\alpha| < 1$.

Exercise

Prove ψ_{α} is indeed an automorphism of \mathbb{D} .

What do automorphisms of \mathbb{D} look like?

Theorem 2.2

All automorphisms f of \mathbb{D} are of the form

$$f(z) = e^{i\theta} \frac{\alpha - z}{1 - \overline{\alpha}z}$$

for $\theta \in \mathbb{R}$ and $\alpha \in \mathbb{D}$.

What do automorphisms of \mathbb{D} look like?

Corollary 2.3

The only automorphisms of \mathbb{D} that fix the origin are the rotations.

Note that for any $\alpha, \beta \in \mathbb{D}$, there is a $\psi \in \operatorname{Aut}(\mathbb{D})$ mapping α to β . An example is $\psi_{\beta} \circ \psi_{\alpha}$.

The structure of $Aut(\mathbb{D})$

 $Aut(\mathbb{D})$ is almost isomorphic to SU(1,1), the group of all 2×2 matrices that preserve the Hermitian form

$$\langle Z, W \rangle = z_1 \overline{w_1} - z_2 \overline{w_2}$$

on $\mathbb{C}^2 \times \mathbb{C}^2$ for $Z = (z_1, z_2)$ and $W = (w_1, w_2)$.

Automorphisms of \mathbb{H}

Now we determine the automorphisms of \mathbb{H} , using the knowledge of $Aut(\mathbb{D}).$

Define $\Gamma: \operatorname{Aut}(\mathbb{D}) \to \operatorname{Aut}(\mathbb{H})$ as $\Gamma(\phi) = F^{-1} \circ \phi \circ F$, where $F: \mathbb{H} \to \mathbb{D}$ is the conformal map defined earlier. Note that Γ is a group isomorphism.

Exercise

Verify that Γ is indeed a group isomorphism.

Automorphisms of \mathbb{H}

Recall that
$$F(z) = \frac{i-z}{i+z}$$
, $G(w) = i\frac{1-w}{1+w}$ and $\phi: \mathbb{D} \to \mathbb{D}$ is of the form $\phi(z) = e^{i\theta} \frac{\alpha-z}{1-\overline{\alpha}z}$.

Exercise

Check that all elements of Aut(\mathbb{H}) are of the form $z \mapsto \frac{az+b}{cz+d}$ for real a, b, c, d such that ad - bc = 1, by calculating $(G \circ \phi \circ F)(z)$.

The special linear group

Definition

Special linear group

$$\mathsf{SL}_2(\mathbb{R}) = \left\{ M = egin{bmatrix} a & b \ c & d \end{bmatrix} \mid a,b,c,d \in \mathbb{R} \quad \mathsf{and} \quad \mathsf{det}(M) = \mathsf{ad} - \mathsf{bc} = 1
ight\}$$

Definition

Given $M \in SL_2(\mathbb{R})$ we define f_M as

$$f_{M}(z) = \frac{az+b}{cz+d}$$

Again, automorphisms of \mathbb{H}

Theorem 2.4

Every automorphism of \mathbb{H} takes the form f_M for some $M \in SL_2(\mathbb{R})$. Conversely, every map of this form is an automorphism of \mathbb{H} .

Note that $Aut(\mathbb{H})$ is not isomorphic to $SL_2(\mathbb{R})$ since M and -M give rise to the same $f_M = f_{-M}$. Thus we obtain a new group $PSL_2(\mathbb{R})$, called the projective special linear group.

$\mathsf{PSL}_2(\mathbb{R})$

Conclusion

 $\mathsf{Aut}(\mathbb{H}) \simeq \mathsf{PSL}_2(\mathbb{R})$