Coordinate Ascent for Off-Policy RL with Global Convergence Guarantees

Hsin-En Su, Yen-Ju Chen, Ping-Chun Hsieh, Xi Liu

Outline

- Introduction
- Methodology
- Experiments
- Conclusion

Reinforcement Learning

Objective:

$$J_{\mu}(heta) := \mathop{\mathbb{E}}_{s \sim \mu}[V^{\pi_{ heta}}(s)]$$

Where:

$$V^{\pi_{ heta}}(s) = \mathop{\mathbb{E}}_{\pi_{ heta}}[R_t \mid s_0 = s]$$

Policy Gradient

Update:

$$heta_{m+1} \leftarrow heta_m +
abla_ heta J_\mu(heta)$$

Where:

$$abla_{ heta} J_{\mu}(heta) = rac{1}{1-\gamma} \mathop{\mathbb{E}}_{s\sim d_{\mu}^{\pi_{ heta}}a\sim\pi_{ heta}(\cdot\mid s)} \! \left[
abla_{ heta} \log \pi_{ heta}(a\mid s) A^{\pi_{ heta}}(s,a)
ight]$$

$$d^{\pi_{ heta}}_{\mu}(s) := \mathop{\mathbb{E}}_{s_0 \sim \mu} \Bigg[(1-\gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{P}(s_t = s \mid s_0, \pi_{ heta}) \Bigg].$$

Motivation

Off-policy learning

- Importance sampling
- i.i.d sample from $d^{\pi_{eta}}$

Methodology

Coordinate Ascent Policy Optimization

General CAPO

Coordinate aspect:

$$rac{\partial J_{\mu}(heta)}{\partial heta(s,a)} = rac{1}{1-\gamma} d_{\mu}^{\pi_{ heta}}(s) \pi_{ heta}(a \mid s) A^{\pi_{ heta}}(s,a)$$

General CAPO form:

$$heta_{m+1}(s,a) = heta_m(s,a) + \mathbb{1}\{(s,a) \in \mathbb{B}_m\} \cdot lpha(s,a) \cdot sign(A^m(s,a))$$

Learning rate!
$$\begin{bmatrix} \theta_{s_1,a_1} & \theta_{s_1,a_2} & \theta_{s_1,a_3} \\ \theta_{s_2,a_1} & \theta_{s_2,a_2} & \theta_{s_2,a_3} \\ \theta_{s_3,a_1} & \theta_{s_3,a_2} & \theta_{s_3,a_3} \end{bmatrix}$$

Global Convergence (Theorem 1.)

Consider a tabular softmax policy update using CAPO with:

$$lpha_m(s,a) \geq \logigg(rac{1}{\pi_{ heta_m}(a\mid s)}igg).$$

and satisfy condition1 (infinite exploration):

$$orall (s,a), \lim_{M o\infty}\sum_{m=1}^M\mathbb{1}\{(s,a)\in\mathbb{B}_m\} o\infty$$

then we have:

$$V^{\pi_m}(s) o V^*(s) \ ext{ as } m o \infty$$

Convergence rate (Theorem 2. 3. 4.)

Algorithm

Convergence Rate

Policy Gradient (Mei et al., 2020) $V^*(\rho) - V^{\pi_m}(\rho) \le \frac{16 \cdot |\mathcal{S}|}{\inf_{m \ge 1} \pi_m (a^*|s)^2 \cdot (1-\gamma)^6} \cdot \left\| \frac{d_{\mu}^{\pi^*}}{\mu} \right\|_{\infty}^2 \cdot \left\| \frac{1}{\mu} \right\|_{\infty} \cdot \frac{1}{m}$

Cyclic CAPO (Theorem 2)

$$V^*(\rho) - V^{\pi_m}(\rho) \le \frac{2 \cdot |\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4} \cdot \left\| \frac{1}{\mu} \right\|_{\infty} \cdot \max \left\{ \frac{2}{\min_s \mu(s)}, \frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)} \right\} \cdot \frac{1}{m}$$

$$V^*(\rho) - V^{\pi_m}(\rho) \le \frac{|\mathcal{A}|}{(1-\gamma)^4} \cdot \left\| \frac{1}{\mu} \right\|_{\infty} \cdot \frac{1}{\min_s \{\mu(s)\}} \cdot \frac{1}{m}$$

$$\mathbb{E} \qquad [V^*(\rho) - V^{\pi_m}(\rho)] < \frac{2}{(1-\epsilon)^4} \cdot \left\| \frac{1}{\epsilon} \right\| \qquad \frac{1}{\min\{d - (\epsilon)\}}$$

$$\mathbb{E}_{(s_m, a_m) \sim d_{\text{gen}}} \left[V^*(\rho) - V^{\pi_m}(\rho) \right] \leq \frac{2}{(1 - \gamma)^4} \cdot \left\| \frac{1}{\mu} \right\|_{\infty} \cdot \frac{1}{\min_{(s, a)} \{d_{\text{gen}}(s, a) \cdot \mu(s)\}} \cdot \frac{1}{m}$$

Algorithm

Algorithm 1 Coordinate Ascent Policy Optimization

- 1: Initialize policy π_{θ} , $\theta \in \mathcal{S} \times \mathcal{A}$
- 2: **for** $m = 1, \dots, M$ **do**
- 3: Generate $|\mathcal{B}|$ state-action pairs $((s_0, a_0), ..., (s_{|\mathcal{B}|}, a_{|\mathcal{B}|}))$ from some generator satisfying Condition .
- 4: **for** $i=1,\cdots,|\mathcal{B}|$ **do**
- 5: $\theta_{m+1}(s_i, a_i) \leftarrow \theta_m(s_i, a_i) + \alpha_m(s_i, a_i) \operatorname{sign}(A^m(s_i, a_i))$
- 6: end for
- 7: end for

Importance Sampling

High variance in off-policy PG:

$$abla_{ heta}J(heta) = \mathop{\mathbb{E}}_{ au \sim \pi_{eta}(au)} \Biggl[\sum_{t=1}^{T}
abla_{ heta} \log \pi_{ heta}(a_t \mid s_t) \Biggl(\prod_{t'=1}^{t} rac{\pi_{ heta}(a_{t'} \mid s_{t'})}{\pi_{eta}(a_{t'} \mid s_{t'})} \Biggr) \Biggl(\sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \Biggr) \Biggr]$$

CAPO

$$heta_{m+1}(s,a) = heta_m(s,a) + \mathbb{1}\{(s,a) \in \mathbb{B}_m\} \cdot lpha(s,a) \cdot sign(A^m(s,a))$$

On-policy CAPO

Does not necessarily achieve infinite visitation

=> special design of learning rate ⇒ Global convergence!

$$lpha^m(s,a) = egin{cases} \log \left(rac{1}{\pi^m(a|s)}
ight) &, ext{ if } A^m(s,a) \leq 0 \ \log \left(rac{eta}{1-eta} \cdot rac{1}{\pi^m(a|s)}
ight) &, ext{ if } A^m(s,a) > 0 ext{ and } \pi^m(a \mid s < eta) \ \zeta \log \left(rac{N^m(s,a)+1}{N^k(s,a)}
ight) &, ext{ otherwise} \end{cases}$$

$$0$$

Importance of Learning Rate

Multi-armed bandit with reward = [10, 9.9, 9.9, 0]

Importance of Learning Rate

Multi-armed bandit with reward = [10, 9.9, 9.9, 0]

Neural CAPO

$$\pi_{\theta}(a|s) = f_{\theta}(s,a)$$
?

Original

$$egin{bmatrix} heta_{s_1,a_1} & heta_{s_1,a_2} & heta_{s_1,a_3} \ heta_{s_2,a_1} & heta_{s_2,a_2} & heta_{s_2,a_3} \ heta & heta & heta \end{bmatrix}$$

Neural Network

Neural CAPO

Original

$$heta_{m+1}(s,a) = heta_m(s,a) + \mathbb{1}\{(s,a) \in \mathbb{B}_m\} \cdot lpha(s,a) \cdot sign(A^m(s,a))$$

Neural Network

$$f_{ heta_{m+1}}(s,a) = f_{ heta_m}(s,a) + \mathbb{1}\{(s,a) \in \mathbb{B}_m\} \cdot lpha(s,a) \cdot sign(A^m(s,a))$$

Neural CAPO

Update the policy with KL-divergence loss:

$$L(heta) = \sum_{s \in \mathcal{B}} D_{KL}(\pi_{f_{ heta_{m+1}}}(\cdot \mid s) \mid\mid \pi_{f_{ heta_m}}(\cdot \mid s))$$

Where:

$$\pi_{f_{ heta_m}}(a \mid s) = rac{e^{f_{ heta_m}(s,a)}}{\sum_{a' \in \mathcal{A}} e^{f_{ heta_m}(s,a')}}$$

MinAtar

[MinAtar, Young et al., 2019], [Rainbow, Johan et al., ICML 2021], [PPO, Schulman et al., ICTAI 2019], [A2C, Mnih et al., ICML 2016]

Exploration Capability

[Liu et al., 2020b] 21

Magnitude of advantage

Noisy reward

- 5% of steps
- Noise sample from $N(0, \sigma^2)$

Conclusion

- Better off-policy learning.
- Coordinate ascent in RL.
- O Avoid importance sampling & i.i.d sampling from d^{π} .

Thanks!

Any questions?

