Semaine 14 : Variables Aléatoires et Probas

Exercice 1

Soit X une variable aléatoire suivant une loi géométrique de paramètre p. Calculer $\mathbb{E}\left(\frac{1}{X}\right)$.

Exercice 2

On considère une expérience aléatoire ayant la probabilité p>0 de réussir et 1-p d'échouer.

On répète l'expérience indépendamment jusqu'à obtention de m succès et on note T_m le nombre d'essais nécessaires à l'obtention de ces m succès.

- a) Reconnaître la loi de T_1 .
- b) Déterminer la loi de T_m dans le cas général $m \in \mathbb{N}^*$.
- c) Exprimer le développement en série entière de $\frac{1}{(1-t)^m}$.
- d) Déterminer la fonction génératrice de T_m et en déduire son espérance.

Exercice 3

Soient X_1, \ldots, X_n des variables aléatoires indépendantes de loi uniforme sur $\{-1, 1\}$. On pose $S_n = X_1 + \cdots + X_n$.

a) Soient α et λ des réels strictement positifs. Établir

$$\mathbb{P}\left(\frac{S_n}{n} > \alpha\right) = \mathbb{P}\left(e^{\lambda S_n} > e^{n\lambda\alpha}\right).$$

b) En déduire que pour tout $\alpha > 0$,

$$\mathbb{P}\left(\frac{S_n}{n} > \alpha\right) \le e^{-n\alpha^2/2}.$$

Exercice 4 (Urnes d'Ehrenfest)

On considère deux urnes A et B ainsi que N boules numérotées de 1 à N. Initialement, toutes les boules sont dans l'urne B. À chaque pas de temps, on tire un numéro i entre 1 et N selon une loi uniforme et l'on transfère la boule i dans l'urne où elle n'est pas. On note X_n le nombre de boules dans l'urne A au bout de n étapes. En particulier, X_0 vaut 0.

- a) Déterminer la loi de X_1 et X_2 .
- b) Pour $n \in \mathbb{N}$, exprimer la loi de X_{n+1} en fonction de celle de X_n .
- c) On note G_n la fonction génératrice de la variable X_n . Établir

$$\forall t \in \mathbb{R}, \quad G_{n+1}(t) = tG_n(t) + \frac{1 - t^2}{N}G_n(t).$$

d) Déterminer la limite de $\mathbb{E}(X_n)$ lorsque n tend vers l'infini.

Exercice 5 (Fonction caractéristique)

On appelle fonction caractéristique d'une variable aléatoire X prenant ses valeurs dans \mathbb{Z} , l'application $\varphi_X : \mathbb{R} \to \mathbb{C}$ donnée par

$$\varphi_X(t) = \mathbb{E}\left(e^{itX}\right).$$

- a) Vérifier que φ_X est définie, continue sur \mathbb{R} et 2π -périodique.
- b) On suppose que X admet une espérance. Vérifier que φ_X est de classe \mathcal{C}^1 sur \mathbb{R} et exprimer $\mathbb{E}(X)$ à l'aide de φ_X' .
- c) Que peut-on dire si X est de variance finie? Exprimer alors $\mathbb{V}(X)$ à l'aide de φ_X .
- d) **Application** : Retrouver les valeurs connues de l'espérance et de la variance d'une loi géométrique.

Exercice 6

Pour un entier $n \geq 2$, on donne une matrice $M \in \mathcal{M}_n(\mathbb{R})$ dont les coefficients $m_{i,j}$ sont des variables aléatoires indépendantes et identiquement distribuées selon une loi d'espérance μ . Pour $\lambda \in \mathbb{R}$, calculer l'espérance de $\chi_M(\lambda)$.

Exercice 7

Soient $p \in]0;1]$ et $(X_k)_{k \in \mathbb{N}^*}$ une suite de variables aléatoires mutuellement indépendantes vérifiant

$$\mathbb{P}(X_k = 1) = p$$
 et $\mathbb{P}(X_k = -1) = 1 - p$.

- a) Calculer l'espérance de X_k .
- b) On pose

$$Y_n = \prod_{k=1}^n X_k.$$

En calculant de deux façons l'espérance de Y_n , déterminer $p_n = \mathbb{P}(Y_n = 1)$.

c) Quelle est la limite de p_n , quand $n \to +\infty$?