概率论与数理统计

眠云跂石整理

附录

A.1 常用积分

特殊函数的性质 伽马函数与贝塔函数.

伽马函数与递推式:
$$\Gamma(x) = \int_0^{+\infty} \mathrm{e}^{-t} t^{x-1} \, \mathrm{d}t = (x-1)\Gamma(x-1) \quad (x>0)$$

贝塔函数与关系式:
$$\mathrm{B}(x,y)=\int_0^1 t^{x-1}(1-t)^{y-1}\,\mathrm{d}t=rac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\quad (x,y>0)$$

勒让德倍量公式:
$$\Gamma(s)\Gamma\left(s+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{2n-1}}\Gamma(2s)$$
 $(s>0)$

余元公式:
$$B(s,1-s) = \Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}$$
 $(0 < s < 1)$

$$egin{cases} \Gamma(n)=(n-1)!, & n\in\mathbb{N}^+, \ \Gamma\left(rac{n}{2}
ight)=rac{(n-2)!!}{2^{(n-1)/2}}\sqrt{\pi}, & n$$
 为正奇数.

$$B(s,s)=rac{1}{2^{2n-1}}B\left(rac{1}{2},s
ight)\quad (s>0)$$

更多内容可以参考 Euler 积分笔记.

特殊函数的应用

一般的

$$\int_{0}^{1} x^{a} (1 - x^{b})^{c} dx = \frac{1}{b} B\left(\frac{a+1}{b}, c+1\right) \qquad (a > -1, b > 0, c > -1)$$

$$\int_{0}^{+\infty} \frac{x^{a} dx}{(1+x^{b})^{c}} = \frac{1}{|b|} B\left(c - \frac{a+1}{b}, \frac{a+1}{b}\right) \qquad \begin{pmatrix} a > -1, b > 0, c > \frac{a+1}{b} & \overrightarrow{y} \\ a < -1, b < 0, c > \frac{a+1}{b} & \overrightarrow{y} \end{pmatrix}$$

$$\int_{0}^{+\infty} x^{n} e^{-ax^{p}} dx = \frac{\Gamma\left(\frac{n+1}{p}\right)}{|p|a^{\frac{n+1}{p}}} \qquad \begin{pmatrix} a > 0, p > 0, n > -1 & \overrightarrow{y} \\ a > 0, p < 0, n < -1 & \overrightarrow{y} \end{pmatrix}$$

特殊的

$$\int_{-\infty}^{+\infty} \frac{x^m \, \mathrm{d}x}{(1+x^2)^n} = \mathrm{B}\left(n - \frac{m+1}{2}, \frac{m+1}{2}\right) \qquad (注意积分限)$$

$$\int_{0}^{+\infty} \frac{x^m \, \mathrm{d}x}{(1+x)^n} = \mathrm{B}\left(n - m - 1, m + 1\right)$$

$$\int_{0}^{+\infty} \mathrm{e}^{-ax^{p}} \, \mathrm{d}x = rac{\Gamma\left(rac{1}{p}
ight)}{pa^{rac{1}{p}}}$$
 $\int_{0}^{+\infty} \mathrm{e}^{-x^{p}} \, \mathrm{d}x = rac{1}{p}\Gamma\left(rac{1}{p}
ight)$
 $\int_{-\infty}^{+\infty} \mathrm{e}^{-ax^{2}} \, \mathrm{d}x = \sqrt{rac{\pi}{a}} \quad (注意积分限)$

$$\int_0^{+\infty} x^n e^{-ax} = \frac{\Gamma(n+1)}{a^{n+1}} = \frac{n!}{a^{n+1}}$$

$$\int_0^{+\infty} x^n e^{-ax^2} = \frac{\Gamma\left(\frac{n+1}{2}\right)}{2a^{\frac{n+1}{2}}}$$

$$\int_0^{+\infty} x^{2n} e^{-ax^2} dx = \frac{(2n-1)!!}{2(2a)^n} \sqrt{\frac{\pi}{a}}$$

$$\int_0^{+\infty} x^{2n+1} e^{-ax^2} dx = \frac{(2n)!!}{(2a)^{n+1}}$$

$$\int_0^{+\infty} x^2 e^{-ax^2} dx = \frac{1}{4a} \sqrt{\frac{\pi}{a}}$$

有关 Catalan 常数的积分.

A.2 常用分布

定义说明

- 期望 $\mu := E(X)$.
- 方差 $\sigma^2 := E[(X \mu)^2].$
- k 阶原点矩 $\alpha_k := E(X^k)$.
- k 阶中心距 $\mu_k := E[(X \mu)^k].$
- 偏度系数 $\beta_1 = \frac{\mu_3}{\sigma^3}$.
 峰度系数 $\beta_2 := \frac{\mu_4}{\sigma^4} = \frac{\mu_4}{\mu_2^2}$.
- 变异系数 $v_c := \frac{\sigma}{u}$.

A.2.1 —维离散型

1 二项分布

1.1 基础概念

- $X \sim B(n, p)$.
- 理解: 事件发生的概率为 p, 则重复 n 次试验, 事件发生的次数为 x.
- 概率分布: $P(X=i)=b(i;n,p)=\binom{n}{i}p^i(1-p)^{n-i}$.

- 最可能数: x = |(n+1)p|.
- 期望: E(X) = np.
- 方差: Var(X) = np(1-p).
- 母函数: $G(s)=(ps+q)^n,\,s\in(-\infty,+\infty).$
- 特征函数: $g(t) = (pe^{it} + q)^n$.

1.3 其它性质

• 二项分布和的函数

$$X_1 \sim B(n_1,p), \ X_2 \sim B(n_2,p) \quad \Rightarrow \quad X_1 + X_2 \sim B(n_1+n_2,p).$$

- 发生偶数次的概率为 $p_n = \frac{1}{2}[1 + (1-2p)^n].$
- 记 $f(p) = P(X \le k)$, 则 f'(p) < 0, 并且

$$f(p) = rac{n!}{k!(n-k-1)!} \int_0^{1-p} t^k (1-t)^{n-k-1} \, \mathrm{d}t.$$

1.4 参数估计

- 矩估计: p=m/n. (MVU 估计)
- 极大似然估计: p=m/n. (MVU 估计)
- 贝叶斯估计
 - \circ 同等无知原则: $p=rac{X+1}{n+2}$.
 - o 若先验密度 $h(p) = p^{a-1}(1-p)^{b-a-1}$, 则 $\tilde{p} = \frac{X+c}{n+d}$
- 区间估计
 - \circ 大样本法: 近似地取枢轴变量 $(Y_n-np)/\sqrt{np(1-p)}\sim N(0,1)$, 则

$$heta_1, heta_2 = rac{n}{n + u_{lpha/2}^2} \Biggl(\hat{p} + rac{u_{lpha/2}^2}{2n} \pm u_{lpha/2} \sqrt{rac{\hat{p}(1-\hat{p})}{n} + rac{u_{lpha/2}^2}{4n^2}} \Biggr), \quad \hat{p} = Y_n/n.$$

取
$$\hat{p}(1-\hat{p})=1/4$$
,则区间长度为 $u_{lpha/2}/\sqrt{n+u_{lpha/2}^2}$.

当
$$\alpha = 0.05$$
, $n \ge 40$ 时, 有 $\theta_2 - \theta_1 \le 0.3$.

若舍去 λ/n 项, 则上式近似为

$$[\hat{p}_1,\hat{p}_2] = \left(\hat{p} - z_{lpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}},\hat{p} - z_{lpha/2}\sqrt{rac{\hat{p}(1-\hat{p})}{n}}
ight).$$

• $p^k\ (k\leq n)$ 的无偏估计是 $\dfrac{X^{\underline{k}}}{n^{\underline{k}}}$. (下降阶乘幂)

2 泊松分布

2.1 基础概念

- $X \sim P(\lambda)$.
- 理解: 单位时间内事件平均发生 λ 次, 则某一段单位时间内发生的次数为 x.
- 概率分布: $P(X=i) = \lim_{n \to \infty} b(i; n, \frac{\lambda}{n}) = \frac{\mathrm{e}^{-\lambda} \lambda^i}{i!}.$
- 当二项分布满足 n > 50, p < 0.1, np < 5 时,用泊松分布近似效果较好,

最可能数: k = |λ|.

期望: E(X) = λ.

• 方差: $Var(X) = \lambda$.

• 中位数: $m_e = \frac{\ln 2\lambda}{\lambda}$

 $\bullet \ E|X-m_e|=m_e.$

• 母函数: $G(s) = e^{\lambda(s-1)}, s \in (-\infty, +\infty).$

• 特征函数: $g(t) = e^{\lambda(e^{it}-1)}$.

2.3 其它性质

• 泊松分布和的函数 (可加性)

$$X_1 \sim P(\lambda_1), \, X_2 \sim P(\lambda_2) \quad \Rightarrow \quad X_1 + X_2 \sim P(\lambda_1 + \lambda_2).$$

• 记 $f(\lambda) = P(X \le k)$,则 $f'(\lambda) < 0$,并且

$$f(\lambda) = rac{1}{k!} \int_{\lambda}^{+\infty} t^k \mathrm{e}^{-t} \, \mathrm{d}t.$$

- 泊松分布的一个应用见特殊函数笔记中的 Dobinski 公式。

2.4 参数估计

• 矩估计

• $\lambda = m$. (MVU 估计)

$$\circ \lambda = m_2 \ \text{if } S^2.$$

- 极大似然估计: $\lambda = \overline{X}$
- 贝叶斯估计: 见第四章第五题.
- 区间估计

• 大样本法: 近似地取 $(Y_n - n\lambda)/\sqrt{n\lambda} \sim N(0,1)$, 则

$$A,B=\overline{X}+u_{lpha/2}^2/(2n)\pm u_{lpha/2}\sqrt{u_{lpha/2}^2/(4n^2)+\overline{X}/n},\quad \overline{X}=Y_n/n.$$

3 超几何分布

3.1 基础概念

- $X \sim H(N, n, M)$.

理解:
$$N$$
 件产品中有 M 件次品, 从总体中抽 n 件时次品的数量 m .
 概率分布: $P(X=m) = \binom{M}{m} \binom{N-M}{n-m} / \binom{N}{n}$.

3.2 数字特征

• 期望:
$$E(X) = \frac{nM}{N}$$
.
• 方差: $Var(X) = \frac{nM(N-n)(N-M)}{N^2(N-1)} = \frac{nM}{N} \frac{N-n}{N-1} \left(1 - \frac{M}{N}\right)$.

3.3 其它性质

3.4 参数估计

已知 N, n 估计 M.

• 贝叶斯估计: 采用同等无知原则, 则 $M = \frac{N+2}{n+2}(X+1) - 1$.

4 负二项分布

4.1 基础概念

- $X \sim NB(r, p)$, 又称为正整数形式帕斯卡分布.
- 理解: 合格率为 p, 抽取到 r 个合格产品时, 抽到的不合格产品的个数 x.
- 概率分布: $P(X=i) = d(i;r,p) = \binom{i+r-1}{r-1} p^r (1-p)^i$.

4.2 数字特征

- 数学期望: $E(X) = \frac{r(1-p)}{p}$.
- 方差: $Var(X) = \frac{r(1-p)}{n^2}$.

4.3 其它性质

4.4 参数估计

注: $m_e := (X_1 + X_2 + \cdots + X_n)/n$.

- 矩估计: $p=\frac{r}{m_e+r}$.
 极大似然估计: $p=\frac{r}{m_e+r}$.
 贝叶斯估计: $p=\frac{nr+1}{nr+nm_e+1}$.

5 几何分布

5.1 基础概念

- $X \sim GE(p)$.
- 理解: 合格率为 p, 抽取到第一个合格产品时, 抽到的不合格产品的个数 x.
- 概率分布: $P(X = i) = p(1 p)^i$.
- 累积分布函数: $P(X \le k) = 1 (1-p)^{k+1}$.
- 互补累积分布函数: $P(X \ge k) = (1-p)^k$.

5.2 数字特征

- 数学期望: $E(X) = \frac{1-p}{n}$.
- 方差: $\operatorname{Var}(X) = \frac{p}{p^2}$.
- 母函数: $G(s) = \frac{ps}{1-qs} 1, s \in \left(-\frac{1}{q}, \frac{1}{q}\right).$
- 特征函数: $g(t) = \frac{pe^{it}}{1 qe^{it}} 1$.

5.3 其它性质

- 几何分布具有无记忆性.
- 若 X_1, X_2, \dots, X_r 独立同分布 GE(p), 则 $X_1 + X_2 + \dots + X_r \sim NB(r, p)$.
- 若 $X_1 \sim \operatorname{GE}(1-p_1)$ 和 $X_2 \sim \operatorname{GE}(1-p_2)$ 独立,则

$$egin{aligned} \min(X_1,X_2) &\sim \mathrm{GE}(1-p_1p_2) \ \max(X_1,X_2) &\sim P(X=k) = p_1^k(1-p_1) + p_2^k(1-p_2) + p_1^kp_2^k(p_1p_2-1) \end{aligned}$$

更一般的, 若 $X_i \sim \operatorname{GE}(1-p_i)$, 则 $\min_i(X_i) = \operatorname{GE}(1-\prod_i p_i)$.

5' 几何分布

5'.1 基础概念

- $X \sim G(p)$.
- 理解: 合格率为 p, 抽取到第一个合格产品时, 抽取的总产品的个数 x.
- 概率分布: $P(X=i) = p(1-p)^{i-1}$.

5'.2 数字特征

- 数学期望: $E(X) = \frac{1}{p}$.
- 方差: $\operatorname{Var}(X) = \frac{1-p}{p^2}$.
- 母函数

$$egin{aligned} &\circ &G(s)=rac{ps}{1-qs},\,s\in\left(-rac{1}{q},rac{1}{q}
ight).\ &\circ &G^{(n)}(1)=rac{(1-p)^{n-1}}{p_{\cdot\cdot}^n}n!. \end{aligned}$$

• 特征函数: $g(t) = \frac{pe^{it}}{1 - qe^{it}}$.

5'.3 其它性质

- 几何分布具有无记忆性.
- 若 X_1, X_2, \dots, X_r 独立同分布G(p),则 $X_1 + X_2 + \dots + X_r r \sim NB(r, p)$.

6 泽塔分布

6.1 基础概念

- $X \sim \operatorname{Zeta}(s)$.
- Riemann Zeta 函数: $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$.
- 概率密度函数: $P(X=k)=rac{1}{\zeta(s)k^s},\,k=1,2,\cdots$

6.2 数字特征

- k 阶矩: $E(X^k) = \frac{\zeta(s-k)}{\zeta(s)}, \ s>k+1.$
- 对数期望: $E(\ln X) = -\frac{\zeta'(s)}{\zeta(s)}, \ s > 1.$
- 信息熵: $H(X)=E(-\ln(\mathrm{Zeta}(s)))=-\sum_{k=1}^{\infty}\frac{\ln\frac{1}{\zeta(s)k^s}}{\zeta(s)k^s}=\ln\zeta(s)-s\frac{\zeta'(s)}{\zeta(s)}.$

6.3 其它性质

• 问题 1 (最大熵分布)

对于取值为正整数的概率分布, 求给定对数期望的条件下熵最大的分布, 即

$$egin{aligned} \max &= -\sum_k p_k \ln p_k \ &\sum_k p_k = 1, \ &\sum_k p_k \ln k = a. \end{aligned}$$

由 Lagrange 乘数法解得此分布即为 Zeta 分布.

• 性质1

设 $X \sim \operatorname{Zeta}(s)$,则素因数分解中素数p的指数满足:

$$\nu_p(X) \sim \mathrm{GE}(1-p^{-s}).$$

证明

$$egin{split} P(
u_p(X) \geq k) &= rac{1}{\zeta(s)} \sum_{n=1}^{\infty} rac{1}{(p^k n)^s} = rac{1}{p^{ks}} \ P(
u_p(X) = k) &= rac{1}{p^{ks}} - rac{1}{p^{(k+1)s}} = (1-p^{-s})p^{-ks} \end{split}$$

• 性质 2

设 $X \sim \operatorname{Zeta}(s)$, 若p和q是两个互素的素数, 则 $\nu_p(X)$ 和 $\nu_q(X)$ 独立.

证明

$$P(
u_p(X) \geq k,
u_q(X) \geq l) = rac{1}{(p^k q^l)^s} = rac{1}{p^{ks} p^{ls}} = P(
u_p(X) \geq k) P(
u_q(X) \geq l).$$

• 性质3

设 $\mathbb P$ 是全体素数的集合, $\{X_p\}_{p\in \mathbb P}$ 是一组相互独立的随机变量, 其中 $X_p\sim \mathrm{GE}(1-p^{-s})$, 则

$$Z = \prod_{p \in \mathbb{P}} p^{X(1-p^{-s})} \sim \mathrm{Z}(s).$$

证明 由 Euler 乘积公式 $\dfrac{1}{\zeta(s)} = \prod_{p \in \mathbb{P}} \left(1 - \dfrac{1}{p^s}\right)$ 得:

$$P(Z=k) = \prod_{p \in \mathbb{P}} \left(1 - rac{1}{p^s}
ight) rac{1}{p^{
u_p(k)s}} = rac{1}{\zeta(s)} \prod_{p \in \mathbb{P}} rac{1}{p^{
u_p(x)s}} = rac{1}{\zeta(s) k^s}.$$

• 性质 4

若 $X_1 \sim \operatorname{Zeta}(s_1)$ 和 $X_2 \sim \operatorname{Zeta}(s_2)$ 独立,则

$$gcd(X_1, X_2) \sim Zeta(s_1 + s_2).$$

证明

$$u_p\left(\gcd(X_1,X_2)
ight) = \min\left\{
u_p(X_1),
u_p(X_2)
ight\} \sim \operatorname{GE}\left(1-p^{-(s_1+s_2)}
ight).$$

• 问题 2 (两个随机的正整数互素的概率)

X和Y互素 \Leftrightarrow gcd(X,Y) = 1.

正整数集上的均匀分布 $\sim \lim_{s \to 1^+} \mathrm{Zeta}(s)$.

$$\lim_{s_1,s_2 o 1^+} P(\gcd(X,Y)=1) = \lim_{s_1,s_2 o 1^+} rac{1}{\zeta(s_1+s_2)} = rac{1}{\zeta(2)} = rac{6}{\pi^2}.$$

注: 这并非严格的证明.

A.2.2 一维连续型

1 正态分布

点击查看 Geogebra 图像

或直接打开网页链接

1.1 基础概念

- 正态分布又称高斯分布.
- $X \sim N(\mu, \sigma^2)$.
- 概率密度函数: $f(x)=(\sqrt{2\pi}\sigma)^{-1}\mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}}$.
- 标准正态分布: $Y=(X-\mu)/\sigma \sim N(0,1)$.
- 3σ原则: 0.6826, 09544, 9.9974.
- 上 α 分位数: $\Phi(z_{\alpha}) = 1 \alpha$.

1.2 数字特征

- 期望: μ.
- 方差: σ².
- 二阶原点矩: $\alpha_2 = E(X^2) = \sigma^2 + \mu^2$.
- k 阶中心矩: $\mu_k = \begin{cases} \sigma^k(k-1)!!, & k$ 为偶数, k 为奇数.
- 偏度系数: $\beta_1 = 0$.
- 峰度系数: β₂ = 3.
- 特征函数: $g(t)=\mathrm{e}^{\mathrm{i}\mu t-rac{\sigma^2}{2}t^2}$.

1.3 其它性质

- $aN(\mu, \sigma^2) + b \sim N(a\mu + b, a^2\sigma^2)$.
- 若X和Y独立同分布N(0,1),则将(X,Y)化为极坐标 (R,Θ) 后,R与 Θ 独立.
- 相互独立的正态分布的函数
 - 。 分布之和
 - 若 $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2)$ 相互独立,则 $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$
 - ullet 若 $X_i \sim N(\mu_i, \sigma_i^2)$ 且相互独立, 则 $X_1 + \dots + X_n \sim N(\mu_1 + \dots + \mu_n, \sigma_1^2 + \dots + \sigma_n^2)$.
 - 。 分布之差

若 $X_1 \sim N(\mu_1, \sigma_1^2), ~ X_2 \sim N(\mu_2, \sigma_2^2)$ 相互独立, 则 $X_1 - X_2 \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2).$

o 分布之商

若 X_1 和 X_2 独立同分布 N(0,1), 则 $X_1/X_2 \sim C(1,0)$ (柯西分布).

o 分布之积

若 $X_1 \sim N(0,\sigma_1^2),~X_2 \sim N(0,\sigma_2^2)$,则 $X_1X_2 \sim \frac{1}{\pi\sigma_1\sigma_2}K_0\left(\frac{|z|}{\sigma_1\sigma_2}\right)$ (修正贝塞尔函数; 暂时未学)

。 平方之和

若
$$X_1,X_2,\cdots,X_n$$
 独立同分布 $N(0,1)$, 则 $Y=X_1^2+X_2^2+\cdots+X_n^2\sim\chi_n^2$

• 统计量的分布

$$\circ \ \overline{X}$$
 与 $S^2=rac{1}{n-1}\sum_{i=1}^n(X_i-\overline{X})$ 独立.

。 均值已知, 标准差已知

$$\begin{array}{ll} \blacksquare & \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right). \\ \blacksquare & \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1). \\ \blacksquare & \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi_n^2. \end{array}$$

o 均值已知. 标准差未知

$$lacksquare rac{\sqrt{n}\left(\overline{X}-\mu
ight)}{S} \sim t_{n-1}.$$

均值未知,标准差已知

。 两份相互独立的样本

$$X_1, X_2, \cdots, X_{n_1}$$
, iid, $\sim N(\mu_1, \sigma_1^2)$.

$$Y_1,Y_2,\cdots,Y_{n_2}, ext{ iid}, \sim N(\mu_2,\sigma_2^2).$$

$$lacksquare \overline{X} - \overline{Y} \sim N \left(\mu_1 - \mu_2, rac{\sigma_1^2}{n_1} + rac{\sigma_2^2}{n_2}
ight).$$

$$lacksquare rac{S_1^2}{\sigma_1^2} igg/rac{S_2^2}{\sigma_2^2} \sim f(n_1-1,n_2-1).$$

$$lacksymbol{\bullet}$$
 当 $\sigma_1^2=\sigma_2^2=\sigma^2$ 时,

$$S_{\omega} := \sqrt{rac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}}, \ rac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_{\omega}\sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}.$$

注: 利用
$$\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$$
 和 $\frac{SS}{\sigma^2}$, 由 t 分布的定义即得.

1.4 参数估计

- 单个正态总体 $N(\mu,\sigma^2)$ 均值 μ 与方差 σ^2 的估计.
 - \circ 已知 σ^2 , 估计 μ .
 - 矩估计: μ = m.
 注: 无论 σ² 是否已知, 均为 MVU 估计.
 - 区间估计(枢轴变量法)

根据
$$rac{\sqrt{n}(\overline{X}-\mu)}{\sigma}\sim N(0,1)$$
, 知

$$[\hat{\mu}_1,\hat{\mu}_2] = igg[\overline{X} - rac{\sigma}{\sqrt{n}} u_{lpha/2}, \overline{X} + rac{\sigma}{\sqrt{n}} u_{lpha/2} igg].$$

• 已知 μ , 估计 σ^2 .

■ 矩估计:
$$\hat{\sigma}^2 = m_2$$
.

注: 这是 μ 已知时的 MVU 估计, 且此时均方误差为 $\frac{2}{n}\sigma^4$.

■ 区间估计 (枢轴变量法)

根据
$$rac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim \chi_n^2$$
 知

$$[\hat{\sigma_1^2},\hat{\sigma_2^2}] = \left\lceil rac{\displaystyle\sum_{i=1}^n (X_i - \mu)^2}{\chi_n^2\left(rac{lpha}{2}
ight)}, rac{\displaystyle\sum_{i=1}^n (X_i - \mu)^2}{\chi_n^2\left(rac{lpha}{2}
ight)}
ight
ceil.$$

- \circ 估计 μ 和 σ^2 .
 - 矩估计
 - $\mu = m.$

注: 无论 σ^2 是否已知, 均为 MVU 估计.

 $\quad \quad \sigma^2 = S^2.$

注: 这是 μ 未知时的 MVU 估计.

- 极大似然估计
 - $\mu=m$. (MVU 估计)
 - $\sigma^2 = m_2$. (非 MVU 估计)
- 区间估计(枢轴变量法)
 - 根据 $\dfrac{\sqrt{n}\,(\overline{X}-\mu)}{S}\sim t_{n-1}$, 知一样本 t 区间估计为

$$[\hat{\mu}_1,\hat{\mu}_2] = \left[\overline{X} - \frac{S}{\sqrt{n}}t_{n-1}\left(\frac{\alpha}{2}\right), \overline{X} + \frac{S}{\sqrt{n}}t_{n-1}\left(\frac{\alpha}{2}\right)\right].$$

■ 根据 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$, 知

$$[\hat{\sigma_1^2},\hat{\sigma_2^2}]=\left[rac{(n-1)S^2}{\chi_{n-1}^2\left(rac{lpha}{2}
ight)},rac{(n-1)S^2}{\chi_{n-1}^2\left(1-rac{lpha}{2}
ight)}
ight].$$

■ 无偏估计 (通过调整系数而得)

$$ilde{\sigma} = \sqrt{rac{n-1}{2}} rac{\Gamma\left(rac{n-1}{2}
ight)}{\Gamma\left(rac{n}{2}
ight)} S.$$

- 两个正态总体 $N(\mu_1,\sigma_1^2)$ 和 $N(\mu_2,\sigma_2^2)$ 的均值差 $\mu_1-\mu_2$ 与方差比 σ_1^2/σ_2^2 的区间估计.
 - o 估计 $\delta = \mu_1 \mu_2$.
 - 方差 σ_1^2 和 σ_2^2 已知.

$$egin{aligned} U &= rac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}} \sim N(0,1), \ [\hat{\delta}_1,\hat{\delta}_2] &= \left[\overline{X}-\overline{Y}-z_{lpha/2}\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}},
ight. \ \overline{X}-\overline{Y}+z_{lpha/2}+\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}
ight]. \end{aligned}$$

■ 方差 $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 未知.

$$S_{\omega}^2 := rac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1 + n_2 - 2}, \ rac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{rac{1}{n_1} + rac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}, \ [\hat{\delta}_1, \hat{\delta}_2] = \left[\overline{X} - \overline{Y} - t_{n_1 + n_2 - 2} \left(rac{lpha}{2}
ight) S_{\omega} \sqrt{rac{1}{n_1} + rac{1}{n_2}}, \ \overline{X} - \overline{Y} + t_{n_1 + n_2 - 2} \left(rac{lpha}{2}
ight) S_{\omega} \sqrt{rac{1}{n_1} + rac{1}{n_2}}
ight].$$

■ 方差 σ_1^2 和 σ_2^2 未知.

即贝伦斯 - 费歇尔问题, 目前还没有较好的处理方法.

不过可以利用大样本法, 近似同方差已知的情况处理

$$N(0,1) \sim \left[(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2) \right] / \sqrt{\sigma_1^2 / n + \sigma_2^2 / m}$$
 (严格的) $\sim \left[(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2) \right] / \sqrt{S_1^2 / n + S_2^2 / m}$ (近似的)

- \circ 估计 $\lambda = \sigma_1^2/\sigma_2^2$.
 - 均值 µ₁ 和 µ₂ 已知.

$$F = rac{\displaystyle\sum_{i=1}^{n_2} rac{(Y_i - \mu_2)^2}{n_2 \sigma_2^2}}{\displaystyle\sum_{i=1}^{n_1} rac{(X_i - \mu_1)^2}{n_1 \sigma_1^2}} \sim F_{n_2,n_1}, \ [\hat{\lambda}_1, \hat{\lambda}_2] = \left[rac{\displaystyle\sum_{i=1}^{n_1} rac{(X_i - \mu_1)^2}{n_1}}{\displaystyle\sum_{i=1}^{n_2} rac{(Y_i - \mu_2)^2}{n_2}} F_{n_2,n_1} \left(1 - rac{lpha}{2}
ight), \ rac{\displaystyle\sum_{i=1}^{n_1} rac{(X_i - \mu_1)^2}{n_1}}{\displaystyle\sum_{i=1}^{n_2} rac{(Y_i - \mu_2)^2}{n_2}} F_{n_2,n_1} \left(rac{lpha}{2}
ight)
ight].$$

■ 均值 µ₁ 和 µ₂ 未知.

$$rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F_{n_1-1,n_2-1},$$
 $[\hat{\lambda}_1,\hat{\lambda}_2] = \left[rac{S_1^2}{S_2^2}F_{n_2-1,n_1-1}\left(1-lpha
ight), rac{S_1^2}{S_2^2}F_{n_2-1,n_1-1}\left(rac{lpha}{2}
ight)
ight].$

- 估计变异系数 σ/μ .
 - 矩估计: $\sqrt{m_2}/m$ 或 S/m.
- 估计 N(θ, 1) 的 θ.
 - 。 贝叶斯估计: 先验密度 $h(\theta) \sim N(\mu, \sigma^2)$, 则

$$ilde{ heta} = rac{n}{n+1/\sigma^2} \overline{X} + rac{1/\sigma^2}{n+1\sigma^2} \mu.$$

2 指数分布

点击查看 Geogebra 图像

或直接打开网页链接

2.1 基础概念

- 指数分布又称为负指数分布
- $X \sim E(\lambda)$.
- ・ 概率密度函数: $f(x)=egin{cases} \lambda \mathrm{e}^{-\lambda x}, & x>0, \\ 0, & x\leq 0. \end{cases}$ ・ 分布函数: $F(x)=egin{cases} 1-\mathrm{e}^{-\lambda x}, & x>0, \\ 0, & x\leq 0. \end{cases}$

2.2 数字特征

- 数学期望: $E[X] = \lambda^{-1}$.
- 方差: $Var[X] = \lambda^{-2}$.
- k 阶原点矩: $E(X^k) = \frac{k!}{\lambda^k}$.
- 特征函数: $g(t) = \frac{\lambda}{\lambda it}$.
- 矩量母函数: $m_X(t)=rac{\lambda}{\lambda-t},\ t<\lambda.$

2.3 其它性质

- $aE(\lambda) = E\left(\frac{\lambda}{a}\right)$.
- 指数分布具有无记忆性,即 $P(X>m+t\mid X>m)=P(X>t)$.
- 若有一批元件寿命 $X \sim E(\lambda)$, 让一个元件开始工作, 每当这个元件坏了就用一个新的替换, 则到经历时间 T后替换的次数 $Y \sim P(\lambda T)$.
- 若 X_1, X_2, \cdots, X_n 独立同分布 $E(\lambda)$,则

$$Y = 2\lambda(X_1 + X_2 + \dots + X_n) \sim \chi_{2n}^2$$

• 若 $X_i \sim E(\lambda_i)$ 相互独立,则

$$Y = \min(X_1, X_2, \cdots, X_n) \sim E(\lambda_1 + \lambda_2 + \cdots + \lambda_n).$$

2.4 参数估计

- 矩估计: $1/\lambda = m$. (MVU 估计)
- 极大似然估计: $\lambda = 1/m$.
- 贝叶斯估计: 若先验密度为 $h(\lambda) = \lambda e^{-\lambda} \ (\lambda > 0)$, 其它值为零, 则 $\lambda = \frac{n+2}{n^{\frac{1}{N}}+1}$.
- 区间估计
 - 。 枢轴变量法
 - 估计 \(\lambda\). 由 $2n\lambda\overline{X}\sim\chi^2_{2n}$, 知

$$[\hat{ heta}_1,\hat{ heta}_2] = \left[\chi_{2n}^2(1-lpha/2)/(2n\overline{X}),\,\chi_{2n}^2(lpha/2)/(2n\overline{X})
ight].$$

■ 估计 1/λ. 由 $2n\lambda \overline{X} \sim \chi^2_{2n'}$ 知

$$[\hat{ heta}_1,\hat{ heta}_2]= \Big[(2n\overline{X})/\chi^2_{2n}(1-lpha/2),\,(2n\overline{X})/\chi^2_{2n}(lpha/2)\Big].$$

- 若 X_1,X_2,\cdots,X_n 独立同分布 $E(\lambda_1),Y_1,Y_2,\cdots,Y_m$ 独立同分布 $E(\lambda_2)$,估计 λ_2/λ_1 .
 - 区间估计(枢轴变量法)

■ 利用
$$rac{4\lambda_1 n \overline{X}}{4\lambda_2 m \overline{Y}} \sim rac{2n\chi_{2n}^2}{2m\chi_{2m}^2} \sim F_{2n,2m}.$$

3 混合指数分布

3.1 基础概念

- 混合指数分布又称为 超指数分布 (Hyperexponential Distribution).
- ullet 理解: 设有 m 个平行的服务台 $X_i \sim E(\lambda_i)$, 若顾客有 p_i 的概率选取第 i 个服务台, 则这样顾客的服务时间分 布服从 m 阶超指数分布

• 概率密度函数
$$f(x) = \sum_{i=1}^m p_i \lambda_i \mathrm{e}^{-\lambda_i x}, \quad (x>0).$$

其中
$$\sum_{i=1}^{m} p_i = 1$$
.

• 累积分布函数
$$F(x) = \sum_{i=1}^m p_i \left(1 - \mathrm{e}^{-\lambda_i x}\right), \quad (x>0).$$

3.2 数字特征

• 和指数分布一样,不再赘述.如

$$k$$
 阶原点矩 $E(X^k) = \sum_{i=1}^m rac{k!}{\lambda_i^k} p_i.$

3.3 其它性质

- 无记忆性. $\bullet \ \ \, \hbox{$\stackrel{\textstyle \cdot}{ =}$} \, 1_{m}, \, i=1,2,\cdots,m, \, \hbox{$\stackrel{\textstyle \cdot}{ =}$} \, X \sim \chi^2_{2m}.$

3.4 参数估计

- 矩估计.
- 优化估计.

4均匀分布

4.1 基础概念

4.2 数字特征

- 数学期望: $\frac{a+b}{2}$.
 方差: $\frac{(b-a)^2}{12}$.
- k 阶原点矩: $lpha_k=rac{1}{k+1}rac{b^{k+1}-a^{k+1}}{b-a}.$

•
$$k$$
 阶中心距: $\mu_k = \begin{cases} \dfrac{1}{k+1} \left(\dfrac{b-a}{2}\right)^k, & k$ 为偶数, k 为奇数.

• 峰度系数: $\beta_2 = \frac{9}{5}$

・特征函数:
$$g(t)=egin{cases} rac{\mathrm{e}^{\mathrm{i}bt}-\mathrm{e}^{\mathrm{i}at}}{\mathrm{i}t(b-a)}, & t
eq 0, \ 1, & t=0. \end{cases}$$

4.3 其它性质

- $cR(a,b) + d \sim R(ac + d, bc + d) (c > 0)$.
- 若 X_1, X_2, \cdots, X_n 独立同分布U(a, b),则

$$\max(X_1 + X_2 + \dots + X_n) \sim f(x) = \frac{n(x-a)^{n-1}}{(b-a)^n} \ \min(X_1 + X_2 + \dots + X_n) \sim f(x) = \frac{n(b-x)^{n-1}}{(b-a)^n}$$

• 若 $X \sim U\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,则 $an X \sim C(1,0)$.

4.4 参数估计

- 估计 R(θ₁, θ₂) 的参数.
 - 矩估计: $\theta_1 = m \sqrt{3m_2}, \ \theta_2 = m + \sqrt{3m_2}$.
 - 。 极大似然估计: $heta_1 = \min_i(X_i), \ heta_2 = \max_i(X_i).$
- 估计 $R(0,\theta)$ 的参数.
 - 。 极大似然估计: $\hat{ heta} = \max_i(X_i)$.
 - 。 无偏估计
 - $\hat{ heta} = rac{n+1}{n} \max_i (X_i)$. (MVU 估计, 也是相合估计)
 - $oldsymbol{\hat{ heta}} = (n+1)\min_i(X_i)$. (方差很大)
 - $\bullet \ \ \hat{\theta} = \max_i(X_i) + \min_i(X_i).$
 - 。 区间估计

$$ullet$$
 由 $\hat{ heta}_1:=\max_i(X_i)\sim F_{\hat{ heta}_1}(x)=rac{nx^{n-1}}{ heta^n},$ $[\max(X_i),(1-lpha)^{-rac{1}{n}}\max(X_i)]$ 的置信系数为 $1-lpha$.

5 对数正态分布

点击查看 Geogebra 图像 或直接打开 网页链接

5.1 基础概念

• 概率密度函数:
$$f(x,\mu,\sigma) = \begin{cases} \left(x\sqrt{2\pi}\sigma\right)^{-1} \exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right], & x>0, \\ 0, & x\leq 0. \end{cases}$$

• 期望: $E(X) = e^{\mu + \sigma^2/2}$

• 方差: $\operatorname{Var}(X) = \left(\operatorname{e}^{\sigma^2} - 1 \right) \operatorname{e}^{2\mu + \sigma^2} = \left(\operatorname{e}^{\sigma^2} - 1 \right) E(X)^2.$ • k 阶原点矩: $\alpha_k = \operatorname{e}^{\mu k + k^2 \sigma^2/2}.$

• 偏度系数: $\beta_1 = \frac{\mu_3}{\sigma^3} = \frac{e^{2\sigma^2} - 3e^{\sigma^2} + 1}{(e^{2\sigma^2} - 1)^{3/2}}.$

• 峰度系数: $\beta_2 = \frac{\mu_4}{\sigma^4} = \left(e^{\sigma^2} - 1\right)\left(e^{4\sigma^2} + 2e^{3\sigma^2} + 3e^{2\sigma^2} - 3\right) > 0.$

5.3 其它性质

• $\ln bX^a \sim N(a\mu + \ln b, a^2\sigma^2)$.

• 对数正态分布总是右偏的。

• 对数正态分布的期望和方差都是两个参数的增函数. 而在正态分布中, 期望与 σ 无关, 方差与 μ 无关.

• $\lim_{\sigma \to 0+} E(X) = \mathrm{e}^{\mu}$.

$$\lim_{\sigma \to 0+} \operatorname{Var}(X) = 0.$$

当
$$\mu = 0$$
 时, $E(X^k) = E(X)^{k^2}$.

5.4 参数估计

• 矩估计

$$egin{align} & \hat{\sigma^2} = \ln \left(1 + rac{S^2}{\overline{X}^2}
ight). \ & \hat{\mu} = 2 \ln \overline{X} - rac{1}{2} \ln \left(\overline{X}^2 + S^2
ight). \end{split}$$

6 柯西分布

点击查看 Geogebra 图像

或直接打开 网页链接

6.1 基础概念

• 概率密度函数: $f(x;x_0,\gamma) = \frac{1}{\pi} \cdot \frac{\gamma}{(x-x_0)^2 + \gamma^2} \quad (-\infty < x < +\infty).$

• 累积分布函数: $F(x; x_0, \gamma) = \frac{1}{\pi} \arctan \frac{x - x_0}{\gamma} + \frac{1}{2}$.

・ 标准柯西分布: $C(1,0)\sim t_1.$ ・ 庁义柯西分布: $X_k\sim f_m(X_k\mid\sigma_X)=rac{a_m}{1+\left(rac{X_k^2}{2\sigma_k^2}
ight)^m}~(a_m>0.5).$

6.2 数字特征

• 数学期望不存在. (仅 Cauchy 主值积分存在)

• 方差不存在.

• 高阶矩不存在.

6.3 其它性质

• 可加性: 若 X_i 独立同分布 $C(\gamma, x_0)$,则 $X_1 + X_2 + \cdots + X_n \sim C(n\gamma, nx_0)$.

• 若 X_1 和 X_2 独立同分布N(0,1),则 $rac{X_1}{X_2}\sim C(1,0)$.

• 若 $X \sim U\left(-rac{\pi}{2},rac{\pi}{2}
ight)$,则 $an X \sim C(1,0)$.

6.4 参数估计

• 参数估计: 可使用样本中位数 \tilde{m} 估计.

7 拉普拉斯分布

点击查看 Geogebra 图像 或直接打开 网页链接

7.1 基础概念

- $X \sim \text{La}(\mu, \lambda)$.
- 概率密度函数: $f(x) = \frac{1}{2\lambda} e^{-\frac{|x-\mu|}{\lambda}}$.
- 累积分布函数: $F(x)=egin{cases} rac{1}{2}\mathrm{e}^{rac{x-\mu}{\lambda}}, & x<\mu. \ 1-rac{1}{2}\mathrm{e}^{rac{\mu-x}{\lambda}}, & x\geq\mu. \end{cases}$
- 参数说明
 - μ 是位置参数.
 - γ是尺度参数,越小曲线越陡。
 - \circ 当 $\mu=0$ 时, 正半部分是指数分布 $E\left(\lambda^{-1}\right)$ 概率密度的一半.

7.2 数字特征

- 矩及相关量
 - k 阶中心距: $\mu_k = E[(X \mu)^k] = \begin{cases} 0, & k \text{ 为奇数}, \\ k! \lambda^k, & k \text{ 为偶数}. \end{cases}$
 - 期望 $E(X) = \mu$.
 - 方差 $Var(X) = 2\lambda^2$.
- 同指数分布(注意与 k 阶中心距、期望和方差比较)
 - $\circ E(|X-\mu|^k) = k!\lambda^k.$
 - $\circ E(|X \mu|) = \lambda.$
 - $\circ \operatorname{Var}(|X \mu|) = \lambda^2$
- - \circ 偏度系数 $\beta_1 = \frac{\mu_3}{\sigma_4^3} = 0.$ \circ 峰度系数 $\beta_2 = \frac{\mu_4}{\sigma_4^4} = 6.$
- 相关函数

 - \circ 矩量母函数 $m(t)=rac{\mathrm{e}^{rac{\mu t}{\lambda}}}{1-\lambda^2 t^2}.$ \circ 特征函数 $g(t)=E(\mathrm{e}^{\mathrm{i}tX})=rac{\mathrm{e}^{rac{\mathrm{i}\mu t}{\lambda}}}{1+\lambda^2 t^2}.$

7.3 其它性质

- $a\text{La}(\mu, \lambda) + b \sim \text{La}(a\mu + b, a\lambda)$. $La(\mu, \lambda) \sim \lambda La(0, 1) + \mu$.
- 注意到 Laplace 分布与指数分布的关系, 可以立即得到如下平凡的结论
 - 。 对于 $X \sim \operatorname{La}(lpha,eta)$, 有 $rac{2}{eta}|X-lpha| \sim \chi_2^2 \sim \Gamma(1,2)$.
 - 。 若X和Y独立同分布于 $\operatorname{La}(lpha,eta)$,则 $\dfrac{|X-lpha|}{|Y-lpha|}\sim F_{2,2}$.
 - 。 若 $X_{11},X_{12},X_{21},X_{22}$ 独立同分布于 N(0,1), 则 $D=egin{vmatrix} X&Y\ Z&W \end{bmatrix}\sim \operatorname{La}(0,2)$.

• 与稳健性的联系

古典回归分析中,用偏差平方和的大小作为标准,这种回归不具有稳健性.而改成偏差的绝对值和作为标准,却具有稳健性(尽管求解更加困难).

• 标准 Laplace 分布

。 概率密度:
$$\operatorname{La}(x;0,1) = \frac{\mathrm{e}^{-|x|}}{2}$$
.

• 特征函数:
$$\phi_L(t) = \frac{1}{1+t^2}$$
.

7.4 参数估计

估计 μ.

 \circ 矩估计: $\hat{\mu} = \overline{X}$.

• 极大似然估计: $\hat{\mu} = m_e$ (中位数).

估计 λ

。 矩估计:
$$\hat{\lambda} = \frac{\sqrt{2}}{2} S$$
 (标准差).

。 类似矩估计的估计:

$$\hat{\lambda} = rac{1}{n} \sum_{i=1}^n |X_i - \mu| pprox rac{1}{n} \sum_{i=1}^n |X_i - \hat{\mu}|.$$

8 卡方分布

点击查看 Geogebra 图像

或直接打开 网页链接

8.1 基础概念

• 自由度为 n 的皮尔逊卡方密度与卡方分布 $X \sim \chi^2_n$.

• 概率密度函数

$$k_n(x) = egin{cases} rac{{
m e}^{-x/2} x^{(n-2)/2}}{\Gamma\left(rac{n}{2}
ight) 2^{n/2}}, & x>0, \ 0, & x \leq 0. \end{cases}$$

例子(以下 x > 0)

$$k_1(x) = rac{\mathrm{e}^{-rac{x}{2}}}{\sqrt{2\pi x}} \qquad \qquad k_2(x) = rac{1}{2}\mathrm{e}^{-rac{x}{2}} \ k_3(x) = rac{\sqrt{x}\mathrm{e}^{-rac{x}{2}}}{\sqrt{2\pi}} \qquad \qquad k_4(x) = rac{x}{4}\mathrm{e}^{-rac{x}{2}}$$

• 上 α 分位数 $\chi^2_{\alpha}(n)$.

• 由中心极限定理近似求值 $X \sim \chi_n^2$

$$rac{X-n}{\sqrt{2n}}\dot{\sim}N(0,1) \quad \Rightarrow \quad rac{\chi^2_lpha(n)-n}{\sqrt{2n}}pprox z_lpha \quad \Rightarrow \quad \chi^2_lpha(n)pprox n+z_lpha\sqrt{2n}.$$

8.2 数字特征

• E(X) = n.

• Var(X) = 2n.

注意到方差是均值的两倍,可以以此检验是否为卡方分布.

•
$$E(X^{-1}) = \frac{1}{n-2}$$
.

$$ullet \ E(X^k) = rac{2^k \, \Gamma\left(rac{n}{2} + k
ight)}{\Gamma\left(rac{n}{2}
ight)} \, \left(k > -rac{n}{2}
ight).$$

• 特征函数:
$$g(t) = \frac{1}{(1-2\mathrm{i}t)^{\frac{n}{2}}}$$
.

• 矩量母函数:
$$m_X(t)=rac{1}{(1-2t)^{rac{n}{2}}},\quad t<rac{1}{2}.$$

8.3 其它性质

- 若 $X \sim t_n$,则 $X^2 \sim F_{1n}$.
- 若 X_1, X_2, \dots, X_n 独立同分布 N(0,1), 则

$$Y = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi_n^2.$$

• 若 $X_1 \sim \chi_m^2$ 与 $X_2 \sim \chi_n^2$ 独立,则

$$X_1+X_2\sim\chi^2_{m+n}.$$

• 若 X_1, X_2, \cdots, X_n 独立同分布 $E(\lambda)$,则

$$X = 2\lambda(X_1 + X_2 + \dots + X_n) \sim \chi_{2n}^2$$
.

• 若 X_1, X_2, \cdots, X_n 独立同分布 $N(\mu, \sigma^2)$,则

$$rac{\mathrm{SS}}{\sigma^2} = rac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

9 t 分布

点击查看 Geogebra 图像

或直接打开网页链接

9.1 基础概念

- 自由度为n的t分布 $X\sim t_n$.
- 概率密度函数

$$t_n(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\,\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} = \frac{\left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}}{\sqrt{n}\,\mathrm{B}\left(\frac{n}{2}, \frac{1}{2}\right)}, \quad -\infty < x < +\infty.$$

- 上 α 分位数 $t_{\alpha}(n) \approx z_{\alpha}$. (正态分布的上 α 分位数)
- 由对称性知: $t_{1-\alpha}(n) = -t_{\alpha}(n)$.

9.2 数字特征

•
$$E(t_n) = 0 \ (n > 1)$$
.

•
$$E(t_n) = 0 \ (n > 1).$$

• $Var(t_n) = \frac{n}{n-2} \ (n > 2).$

$$\bullet \ \ E(X^k) = \frac{\mathrm{B}\left(\frac{n-k}{2},\frac{k+1}{2}\right)}{\mathrm{B}\left(\frac{n}{2},\frac{1}{2}\right)} n^{\frac{k}{2}} \ (-1 < k < n).$$

9.3 其它性质

• 若 $X \sim N(0,1)$ 与 $Y \sim \chi_n^2$ 独立,则

$$rac{X}{\sqrt{Y/n}} \sim t_n.$$

• 若 X_1, X_2, \cdots, X_n 独立同分布 $N(\mu, \sigma^2)$,则

$$\sqrt{n}\,(\overline{X}-\mu)/S\sim t_{n-1}.$$

• 设 X_1,X_2,\cdots,X_n 独立同分布 $N(\mu_1,\sigma^2)$, Y_1,Y_2,\cdots,Y_m 独立同分布 $N(\mu_2,\sigma^2)$, 且 X_i,Y_j 独立, 则

$$rac{\sqrt{rac{nm(n+m-2)}{n+m}}\left[(\overline{X}+\overline{Y})-(\mu_1-\mu_2)
ight]}{\sqrt{\displaystyle\sum_{i=1}^n(X_i-\overline{X})^2+\displaystyle\sum_{j=1}^m(Y_j-\overline{Y})^2}}\sim t_{n+m-2}.$$

10 F 分布

点击查看 Geogebra 图像

或直接打开网页链接

10.1 基础概念

- 自由度为 (m,n) 的 F 分布 $X \sim F_{m,n}$.
- 概率密度函数

$$f_{m,n}(x) = B\left(\frac{m}{2}, \frac{n}{2}\right) m^{\frac{m}{2}} n^{\frac{n}{2}} x^{\frac{m}{2} - 1} (mx + n)^{-\frac{m+n}{2}} \qquad (x > 0)$$

$$= B\left(\frac{m}{2}, \frac{n}{2}\right) \left(\frac{m}{n}\right)^{\frac{m}{2}} x^{\frac{m}{2} - 1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}} \qquad (x > 0)$$

- 若 $F \sim F(m,n)$,则 $F^{-1} \sim F(n,m)$.
- 第一自由度为 n_1 , 第二自由度为 n_2 的 F 分布的上 α 分位数 $F_{\alpha}(n_1, n_2)$.
- $F_{\alpha}(m,n) \cdot F_{1-\alpha}(n,m) = 1.$

10.2 数字特征

•
$$E(f_{m,n}) = \frac{n}{n-2}(n>2).$$

•
$$\operatorname{Var}(f_{m,n}) = \frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$$
.

•
$$E(X^k) = \left(\frac{n}{m}\right)^k B\left(\frac{m}{2}, \frac{n}{2}\right) B\left(\frac{m}{2} + k, \frac{n}{2} - k\right).$$

10.3 其它性质

ullet 设 X_1,X_2 独立, $X_1\sim\chi^2_m,\,X_2\sim\chi^2_n$,则

$$rac{X_1}{m}igg/rac{X_2}{n}\sim F_{m,n}.$$

• 设 X_1,X_2,\cdots,X_n 独立同分布 $N(\mu_1,\sigma_1^2)$, Y_1,Y_2,\cdots,Y_m 独立同分布 $N(\mu_2,\sigma_2^2)$, 且 X_i,Y_j 独立, 则

$$rac{S_Y}{\sigma_2^2} \left/ rac{S_X}{\sigma_1^2} \sim F_{m-1,n-1}.
ight.$$

 $\bullet \quad \forall k,n,\in \mathbb{N}, a\in (0,1): kF_{k,n}(a)\geq F_{1,n}(a).$

11 贝塔分布

点击查看 Geogebra 图像

或直接打开网页链接

11.1 基础概念

• $X \sim \text{Be}(\alpha, \beta) \quad (\alpha, \beta > 0).$

・ 概率密度函数
$$f(x; lpha, eta) = rac{x^{lpha - 1}(1 - x)^{eta - 1}}{\mathrm{B}(lpha, eta)} \quad (0 < x < 1).$$

- 累积分布函数 $F(x; \alpha, \beta) = \frac{B_x(\alpha, \beta)}{B(\alpha, \beta)} = I_x(\alpha, \beta).$
 - 不完全 Beta 函数 $B_x(\alpha, \beta)$
 - 。 正则不完全 Beta 函数 $I_x(lpha,eta)$

11.2 数字特征

• 常用统计量

。 期望
$$E(X)=\dfrac{lpha}{lpha+eta}$$
. (伯努利分布参数的贝叶斯估计 & 同等无知原则)

。 方差
$$\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$
.

• 矩及相关量

• 偏度
$$\beta_1 = \frac{\mu_3}{\sigma^3} = \frac{2(\beta - \alpha)\sqrt{\alpha + \beta + 1}}{(\alpha + \beta + 2)\sqrt{\alpha\beta}}$$

• 峰度
$$\beta_2 = \frac{\mu_4}{\mu_2^2} - 3 = \frac{6[(\alpha - \beta)^2(\alpha + \beta + 1) - \alpha\beta(\alpha + \beta + 2)]}{\alpha\beta(\alpha + \beta + 2)(\alpha + \beta + 3)}$$

11.3 其它性质

Beta 分布即伯努利分布的共轭先验分布。

•
$$E(\ln X) = \psi(\alpha) - \psi(\alpha + \beta)$$
.

$$ullet \ \ \ \mathrm{B}_{p,q}(lpha,eta) := rac{\partial^{p+q}\mathrm{B}(x,y)}{\partial^p x \partial^q y} = \int_0^1 x^{lpha-1} (1-x)^{eta-1} \ln^p x \ln^q (1-x) \, \mathrm{d}x.$$

$$\circ B_{1,0}(x,y) = B(x,y)(\psi(x) - \psi(x+y))$$

$$\circ \ \mathrm{B}_{0,1}(x,y) = \mathrm{B}(x,y) (\psi(y) - \psi(x+y)).$$

• Beta 分布与 Gamma 分布的关系.

12 伽马分布

点击查看 Geogebra 图像

或直接打开 网页链接

12.1 基础概念

$$ullet \ X \sim \mathrm{Ga}(lpha,eta) \sim \Gamma\left(lpha,rac{1}{eta}
ight).$$

• 概率密度函数
$$f(x; \alpha, \beta) = rac{eta^{lpha}}{\Gamma(lpha)} x^{lpha-1} \mathrm{e}^{-eta x} \quad (x>0).$$

- α 称为形状参数。
- \circ β 称为逆尺度参数.
- 累积分布函数 $F(x; \alpha, \beta) = \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)}$.

- 其中 $\gamma(s,x)$ 为下不完全 Gamma 函数.
- \circ 此外 $\Gamma(s,x)$ 为上不完全 Gamma 函数
- 注意区分
 - Gamma 分布 $Ga(\alpha, \beta)$ 或 $Gamma(\alpha, \beta)$, 其累积分布函数如上所示.
 - 。 Gamma 分布的另一种定义 $\Gamma(\alpha,\beta)$, 其累积分布函数为 $\frac{\gamma(\alpha,x/\beta)}{\Gamma(\alpha)}$
 - \circ 上述定义的密度函数 $\Gamma(x;\alpha,\beta)$ 或 $\Gamma(X\mid\alpha,\beta)$
 - \circ 上不完全 Gamma 函数 $\Gamma(s,x)$ 和 Gamma 函数 $\Gamma(s)$.
- 当 $\alpha \in \mathbb{N}$ 时, 退化为埃尔朗分布.

- 有量纲参数
 - 。 众数 $M_0=rac{lpha-1}{eta}\quad (lpha>1).$
 - \circ k 阶原点矩 $lpha_k=E(X^k)=rac{\Gamma(lpha+k)}{eta^k\Gamma(lpha)}=rac{(lpha)^{(k)}}{eta^k}.$
 - 。 期望 $\mu = E(X) = \frac{\alpha}{\beta}$.
 - 。 方差 $\sigma^2 = \operatorname{Var}(X) = \frac{\alpha}{\beta^2}$
- 无量纲参数
 - \circ 偏度系数 $\beta_1 = \frac{\mu_3}{\sigma^3} = \frac{2}{\sqrt[4]{\alpha}}$.

 - \circ 峰度系数 $eta_2 = rac{\mu_4}{\sigma^4} = rac{\delta}{lpha}.$ \circ 变异系数 $c_v = rac{\sigma}{\mu} = rac{1}{\sqrt{lpha}}.$
- 特征函数 $g(t) = \left(1 \frac{\mathrm{i}t}{\beta}\right)^{-\alpha}$.
- 矩量母函数 $m_X(t)=m_X(t)=\left(1-rac{t}{eta}
 ight)^{-lpha},\ t<eta.$

12.3 其它性质

- 变化趋势
 - \circ 当 $\alpha \in (0,1]$ 时, $f(x;\alpha,\beta)$ 递减.
 - \circ 当 $\alpha \in (1, +\infty)$ 时, $f(x; \alpha, \beta)$ 先增后减, 为单峰函数.
 - \circ 无量纲参数与图像形状仅与 α 有关, 故 α 称为形状参数
- 特殊情况
 - 指数分布 $Ga(1, \lambda) \sim E(\lambda)$.

另一定义
$$\Gamma\left(1,\frac{1}{\lambda}\right)\sim E(\lambda)$$
. (此外也有一种定义, 使得 $\Gamma(1,\lambda)\sim E(\lambda)$, 问就是别用)

。 卡方分布
$$\operatorname{Ga}\left(\frac{n}{2},\frac{1}{2}\right) \sim \chi_n^2$$
.

另一定义
$$\Gamma\left(\frac{n}{2},2\right)\sim\chi_n^2$$
.

- 函数运算
 - 。 数乘
 - 若 $X \sim \operatorname{Ga}(\alpha, \beta)$,则 $\lambda X \sim \operatorname{Ga}\left(\alpha, \frac{\beta}{\lambda}\right)$.
 - 因此 β 称为尺度参数或逆尺度参数, 即 β 越大, 曲线越窄, 图像越接近 y 轴.
 - 。 可加性
 - ullet 若 $X_1 \sim \operatorname{Ga}(lpha_1,eta)$ 和 $X_2 \sim \operatorname{Ga}(lpha_2,eta)$ 独立, 则 $X+Y \sim \operatorname{Ga}(lpha_1+lpha_2,eta)$.
 - 特例 1 (卡方分布): $\chi_m^2 + \chi_n^2 \sim \chi_{m+n}^2$

13 威布尔分布

点击查看 Geogebra 图像

或直接打开网页链接

13.1 基础概念

• 概率密度函数: $f(x;\lambda,k) = \begin{cases} rac{k}{\lambda} \left(rac{x}{\lambda}
ight)^{k-1} \mathrm{e}^{-\left(rac{x}{\lambda}
ight)^k}, & x \geq 0, \\ 0, & x < 0. \end{cases}$

• 累积分布函数: $F(x) = \begin{cases} 1 - e^{-\left(\frac{x}{\lambda}\right)^k}, & x \geq 0, \\ 0, & x \leq 0. \end{cases}$

13.2 数字特征

- n 阶原点矩: $E(X^n) = \lambda^n \Gamma\left(1 + \frac{n}{k}\right)$.
- 期望、方差、偏度、峰度等可由原点矩直接得到,形式复杂故不再列出。

14 瑞利分布

14.1 基础概念

• 概率密度函数: $f(x)=rac{x}{\sigma^2}\mathrm{e}^{-rac{x^2}{2\sigma^2}},\quad x>0.$

• 累积分布函数: $F(x) = 1 - e^{-\frac{x^2}{\lambda^2}}, \quad x > 0.$

14.2 数字特征

• k 阶原点矩: $E(X^k)=(2\sigma^2)^k\Gamma\left(1+rac{k}{2}
ight)$

• 期望: $E(X) = \sqrt{rac{\pi}{2}}\sigma pprox 1.253\sigma.$

• 方差: $\operatorname{Var}(X) = \frac{4-\pi}{2}\sigma^2 \approx 0.429\sigma^2$.

15 帕累托分布

15.1 基础概念

• 帕累托分布 (Pareto Distribution) 又称布拉德福分布, 与幂律分布形式相同. 参考齐夫定律

・ 概率密度函数:
$$f(x) = egin{cases} 0, & x < x_{\min}, \ rac{kx_{\min}^k}{x^{k+1}}, & x \geq x_{\min}. \end{cases}$$

• 互补累积分布函数:
$$P(X>x) = egin{cases} 0, & x < x_{\min}, \\ \left(rac{x_{\min}}{x}
ight)^k, & x \geq x_{\min}. \end{cases}$$

互补累积分布函数又称为生存函数, 残存函数 或可靠性函数.

- 大致服从帕累托分布的例子
 - 个人财富或资源的分布。
 - 。 人类居住区的大小.
 - 。 对百科条目的访问.
 - 。 龙卷风带来的灾难的数量.

• 方便起见, 改变记号如下: $f(x)=rac{lpha heta^{lpha}}{x^{lpha+1}},\,x\geq heta.$

• k 阶矩: $E(X^k) = \frac{\alpha \theta^k}{\alpha - k}, \ (\alpha > k).$ • 期望: $E(X) = \frac{\alpha \theta}{\alpha - 1}, \ (\alpha > 1).$

• 方差: $\operatorname{Var}(X) = \frac{\alpha \theta^2}{(\alpha - 1)^2 (\alpha - 2)}, \ (\alpha > 2).$

16 逻辑斯蒂分布

16.1 基础概念

- $X \sim L(\mu, \gamma)$.
- Logistic 分布属于位置-尺度参数族.

• 累积分布函数:
$$F(x)=rac{1}{1+\mathrm{e}^{-rac{x-\mu}{\gamma}}}=rac{1}{2}igg(1+ anhrac{x-\mu}{2\gamma}igg),\quad x\in\mathbb{R},\,\gamma>0.$$

• 概率密度函数:
$$f(x) = rac{\mathrm{e}^{-rac{x-\mu}{\gamma}}}{\gamma \left(1 + \mathrm{e}^{-rac{x-\mu}{\gamma}}
ight)^2}.$$

- 参数说明
 - μ 是位置参数, 称为 散布中心.
 - 7 是尺度参数, 称为 散布程度.
 - 当 $\mu = 0$ 时, $\gamma = \pm \gamma_0$ 的分布相同.
- 标准 Logistic 分布 L(0,1).
 - 累积分布函数: $F_0(x) = \frac{1}{1 + e^{-x}}$.
 - 概率密度函数: $f_0(x) = \frac{e^{-x}}{(1 + e^{-x})^2}$.

16.2 数字特征

- 期望 $E(X) = \mu$. 方差 $Var(X) = \frac{\gamma^2 \pi^2}{3}$.

16.3 其它性质

- $aL(\mu, \gamma) + b \sim L(a\mu + b, a\gamma)$. $L(\mu, \gamma) \sim \gamma L(0, 1) + \mu$.
- 图像特征: $F(\mu x) + F(\mu + x) = 1$.
- 回归模型:

$$P_i = rac{1}{1 + \mathrm{e}^{-(a + bx_i)}} \quad \Rightarrow \quad \ln\left(rac{P_i}{1 - P_i}
ight) = a + bx_i.$$

• 推广: 多元 Logistic 函数 $y = (1 + e^{-\beta x})^{-1}$.

其它分布

- 超指数分布
- Dirichlet 分布
- 广义 Dirichlet 分布
- 组合 Dirichlet 分布
- 刘维尔分布
- 威布尔分布
- 埃尔朗分布
- 帕累托分布

A.2.3 多维离散型

1 多项分布

$$X=(X_1,\cdots,X_n)\sim M(N;p_1,\cdots,p_n).$$

$$P(X_1=k_1,X_2=k_2,\cdots,X_n=k_n)=rac{N!}{k_1!k_2!\cdots k_n!}p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}.$$

多项分布的边缘分布是二项分布.

A.2.4 多维连续型

1矩形均匀分布

2 二维正态分布

2.1 基础概念

• $X = (X_1, X_2) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho).$

$$f(x_1,x_2) = (2\pi\sigma_1\sigma_2\sqrt{1-
ho^2})^{-1} \exp{\left[-rac{1}{2(1-
ho^2)} \left(rac{(x_1-\mu_1)^2}{\sigma_1^2} - rac{2
ho(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + rac{(x_2-\mu_2)^2}{\sigma_2^2}
ight)
ight]}.$$

- 当且仅当 $\rho = 0$ 时, X_1 和 X_2 独立.
- 边缘分布 $X_1 \sim N(\mu_1, \sigma_1^2), X_2 \sim N(\mu_2, \sigma_2^2).$

2.2 数字特征

- 相关系数 $Corr(X_1, X_2) = \rho$.
- 协方差 $Cov(X_1, X_2) = \rho \sigma_1 \sigma_2$.
- 期望 $E(X_1X_2) = \text{Cov}(X_1, X_2) + E(X_1)E(X_2) = \rho\sigma_1\sigma_2 + \mu_1\mu_2$.

2.3 其它性质

- 二维正态分布的边缘分布是正态分布.
- 二维正态分布的条件分布是正态分布.

若 $(X,Y)\sim N(a,b,\sigma_1^2,\sigma_2^2,
ho)$, 则给定 X=x 时 Y 的条件分布为

$$N(b + \rho \sigma_2 \sigma_1^{-1}(x-a), \, \sigma_2^2(1-\rho^2)).$$

• 二维正态分布的边缘分布的和仍为正态分布

若
$$(X_1,X_2)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,
ho)$$
,则 $Y=X_1+X_2\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2+2
ho\sigma_1\sigma_2)$.

• 独立的正态分布的联合分布是正态分布.

正态分布的联合分布不一定是二维正态分布.

• 若 $Y = X_1 + X_2$ 服从正态分布, X_1, X_2 独立, 则 X_1, X_2 也是正态分布. 🖈

3 多元正态分布

3.1 基础概念

• $\mathcal{O}(X_1, X_2, \cdots, X_n) \ni n$ 元随机变量, 令

$$m{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}, \quad m{\mu} = egin{pmatrix} \mu_1 \ \mu_2 \ dots \ \mu_n \end{pmatrix}, \quad m{C} = egin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \ c_{21} & c_{22} & \cdots & c_{nn} \ dots & dots & dots \ c_{n1} & c_{n2} & \cdots & n_{nn} \end{pmatrix},$$

其中 C 为<u>协方差矩阵</u>, $c_{ij} = \text{Cov}(X_i, X_j) = \rho_{ij}\sigma_i\sigma_j$.

如果 (X_1, X_2, \cdots, X_n) 的概率密度函数为

$$f(x_1,x_2,\cdots,x_n) = rac{\mathrm{e}^{-rac{1}{2}(m{x}-m{\mu})^{\mathrm{T}}m{C}^{-1}(m{x}-m{\mu})}}{(2\pi)^{rac{n}{2}}|m{C}|^{rac{1}{2}}}$$

则称 (X_1, X_2, \dots, X_n) 是参数为 μ , C 的 n 元正态变量.

- 方差: $Var(X_i) = c_{ii}$.
- 协方差: $Cov(X_i, X_j) = c_{ij}$.
- 相关系数: $\operatorname{Corr}(X_i, X_j) = \rho_{ij} = \frac{c_{ij}}{\sqrt{c_{ii}c_{jj}}}.$
- 数学期望: $E(X_iX_j) = c_{ij} + \mu_1\mu_2$.

3.3 其它性质

- n 维正态分布的边缘分布是正态分布.
- n 维正态分布的条件分布是正态分布.
- n 维正态分布的边缘分布的和是正态分布.
- n 维随机变量 (X_1, X_2, \dots, X_n) 服从 n 维正态分布的充要条件是:

$$orall l_i \in \mathbb{R} \, (i=1,2,\cdots,n): l_1X_1 + l_2X_2 + \cdots + l_nX_n \sim N(\mu,\sigma^2).$$

- 若 Y_1,Y_2,\cdots,Y_m 都是 n 维正态分布分量 X_i $(i=1,2,\cdots,n)$ 的线性函数, 则 (Y_1,Y_2,\cdots,Y_m) 服从 m 维正态分布.
- n 维正态分布各分量相互对立充要条件是它们两两不相关.

4 狄利克雷分布

4.1 基础概念

- $oldsymbol{X} \sim \mathrm{Dir}(oldsymbol{lpha})$.
- Dirichlet 分布又称为多元 Beta 分布, 属于指数族分布.
- 多元 Beta 函数与 Gamma 函数的 Dirichlet 公式

$$egin{aligned} \mathrm{B}(oldsymbol{lpha}) &= \mathrm{B}(lpha_1,lpha_2,\cdots,lpha_n) := \int \cdots \int \prod_{i=1}^n x_i^{a_i-1} \,\mathrm{d}oldsymbol{x} & \left(\sum_{i=1}^n x_i = 1
ight) \ &= rac{\Gamma(lpha_1)\Gamma(lpha_2)\cdots\Gamma(lpha_n)}{\Gamma(lpha_1+lpha_2+\cdots+lpha_n)} &= rac{\Gamma(lpha_1)\cdots\Gamma(lpha_n)}{\Gamma(a_0)} & \left(a_0 = \sum_{i=1}^n a_i
ight) \end{aligned}$$

其中 d $(d \in \mathbb{N}^+)$ 维积分域是一个开放的 d-1 维正单纯形, 由顶点 $(1,0,\cdots,0),(0,1,\cdots,0),\cdots,(0,0,\cdots,1)$ 围成.

• 概率密度函数

$$egin{aligned} \operatorname{Dir}(oldsymbol{X} \mid oldsymbol{lpha}) &= rac{1}{\operatorname{B}(oldsymbol{lpha})} \prod_{i=1}^d X_i^{lpha_i-1} &= rac{\Gamma(lpha_0)}{\prod_{i=1}^d \Gamma(lpha_i)} \prod_{i=1}^d X_i^{lpha_i-1} & \left(lpha_0 = \sum_{i=1}^d lpha_i, d \geq 3
ight) \ &= rac{\Gamma(lpha_0)}{\prod_{i=1}^d \Gamma(lpha_i)} \left(\prod_{i=1}^{d-1} X_i^{lpha_i-1}
ight) (1-X_1-\dots-X_{d-1})^{lpha_d-1} & (\|oldsymbol{X}\| = 1) \end{aligned}$$

其中 α 是无量纲的**分布参数**, d > 3为随机变量的维度.

备注:

- 。 上式中的范数指 1-范数而非 2-范数.
- o Dirichlet 分布的 d 维支撑集 同 Dirichlet 公式中的积分域.
- 。 概率分布记作 $\mathrm{Dir}(\boldsymbol{\alpha})$, 密度函数记作 $\mathrm{Dir}(\boldsymbol{X} \mid \boldsymbol{\alpha})$.
- \circ 向量 X 是 n-1 维, 而 α 是 n 维.
- 对称 Dirichlet 分布

。 概率密度函数
$$\operatorname{Dir}(oldsymbol{X} \mid oldsymbol{lpha}) = rac{\Gamma(doldsymbol{lpha})}{\Gamma(oldsymbol{lpha})^d} \prod_{i=1}^d X_i^{lpha_i-1}.$$

- \circ 对称 Dirichlet 分布在每个概率密度相等, 即分布参数 α 在所有维度相同, 取值也被称为 **浓度参数**.
 - 当浓度参数为 1 时, d 维 Dirichlet 分布退化为 d-1 维正单纯形上的均匀分布, 也被称为 **平 Dirichlet 分布**.
 - 当浓度参数大于 1 时, 对称 Dirichlet 分布是一个集中分布, 此时浓度参数越大, 概率密度越集中.
 - 当浓度参数小于 1 时, 对称 Dirichlet 分布是一个稀疏分布, 此时浓度参数越接近于 0, Giallo密度越稀疏.
- 累积分布函数

$$F(oldsymbol{b}) = \int_{\mathbb{R}_d \cap [0,b)} \mathrm{Dir}(oldsymbol{X} \mid oldsymbol{lpha}) \, \mathrm{d}oldsymbol{X}, \quad (oldsymbol{b} \in (0,1])$$

众数

・
$$M(X_i)=rac{lpha_i-1}{lpha_i+lpha_d-2}(x_d+x_i).$$

注: $x_d+x_i=1-x_1-\dots-x_{i-1}-x_{i+1}-\dots-x_{d-1}$ 与 x_i 无关.
・ $M(X_i)=rac{lpha_i-1}{lpha_0-d}.$

注: 这是所有分量都取到众数时的取值, 是上式的特例.

• 矩
$$E\left(\prod_{i=1}^{d}X_{i}^{\beta_{i}}\right)=\frac{\Gamma(\alpha_{0})}{\Gamma(\alpha_{0}+\beta_{0})}\prod_{i=1}^{d}\frac{\Gamma(\alpha_{i}+\beta_{i})}{\Gamma(\alpha_{i})}=\frac{\mathrm{B}(\boldsymbol{\alpha}+\boldsymbol{\beta})}{\mathrm{B}(\boldsymbol{\alpha})}$$
, $\beta_{0}=\sum_{i=1}^{d}\beta_{i}$.

• 期望 $E(X_{i})=\frac{\alpha_{i}}{\alpha_{0}}$.

• 方差 $\mathrm{Var}(X_{i})=E(X_{i}^{2})-E(X_{i})^{2}=\frac{\alpha_{i}(\alpha_{0}-\alpha_{i})}{\alpha_{0}^{2}(\alpha_{0}+1)}$.

• 协方差 $\mathrm{Cov}(X_{i},X_{j})=E(X_{i}X_{j})-E(X_{i})E(X_{j})=\frac{\alpha_{i}(\alpha_{0}-\alpha_{j})}{\alpha_{0}^{2}(\alpha_{0}+1)}$.

4.3 其它性质

- 相关分布
 - o 边缘分布 $p(X_i) = \operatorname{Be}(X_i \mid \alpha_i, \alpha_0 \alpha_i)$. 备注:
 - 即 Beta 分布, 或 2 维 Dirichlet 分布.
 - '|' 符号类似分号, 与条件概率毫无关系, 上式可写作 $F(x_i; \alpha_i, \alpha_0 \alpha_i)$.
 - 。 联合分布

$$p(X_i,X_j)=\operatorname{Dir}(X_i,X_j\mid oldsymbol{lpha}),\quad oldsymbol{lpha}=[lpha_i,lpha_j,lpha_0],\quad i,j\in\{1,2,\cdots,d\}.$$

即边缘分布 X_i 和 X_j 的联合分布为 3 维 Dirichlet 分布

- 作为概率分布的性质
 - 。 共轭性: 多项分布的共轭先验是 Dirichlet 分布 (同等无知原则).
 - 聚合性: 不懂
 - 。 中立性

任意的 $(X_1, X_2, \dots, X_s) \in \mathbf{X}$ 都与归一化后的 $(X_{s+1}, \dots, X_d) \in \mathbf{X}$ 相互独立:

$$(X_1,\cdots,X_s)\perp oldsymbol{X}^*, \quad oldsymbol{X}^*=igg(rac{X_{s+1}}{X_{s+1}+\cdots+X_d},\cdots,rac{X_d}{X_{s+1}+\cdots+X_d}igg), \ p(oldsymbol{X}^*\mid X_1,X_2,\cdots,X_s)=\mathrm{Dir}(oldsymbol{lpha}^*), \quad oldsymbol{lpha}^*=(lpha_{s+1},lpha_{s+2},\cdots,lpha_d).$$

o Dirichlet 是服从 Gamma 分布的 d 维 iid 随机变量 $T = \Gamma(T \mid \alpha, 1)$ 归一化后的联合分布:

$$egin{aligned} T_i &= \Gamma(T_i \mid lpha_i, 1), \quad Z_d = \sum_{i=1}^d T_i \ oldsymbol{X} &= rac{1}{Z_d}(T_1, T_2, \cdots, T_{d-1}), \ p(oldsymbol{X}) &= \mathrm{Dir}(lpha_1, lpha_2, \cdots, lpha_d). \end{aligned}$$

• 信息测度

A.3 数列和常数

A.3.1 数列

卡特兰数

Catalan 数又称明安图数.

递归定义

1.
$$C_0 = C_1 = 1$$
.
2. $C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k}$.

前几项值: 1, 1, 2, 5, 14, 43, 132, 429, 1439, 4862, 16796...

生成函数

由
$$G(x)=\sum_{n=0}^{\infty}C_nx^n$$
 知 $G^2(x)=\sum_{n=0}^{\infty}C_{n+1}x^n$,故
$$\begin{cases} G(x)=\sum_{n=0}^{\infty}C_nx^n \\ C_n=\sum_{n=0}^{n-1}C_kC_{n-1-k} \end{cases} \Rightarrow G^2(x)=\sum_{n=0}^{\infty}C_{n+1}x^n \\ \begin{cases} xG^2(x)+1=G(x) \\ G(0)=1 \end{cases} \Rightarrow G(x)=\frac{1-\sqrt{1-4x}}{2x} \end{cases}$$

通项公式

1.
$$C_n=rac{1}{n+1}inom{2n}{n}=rac{1}{2n+1}inom{2n+1}{n}.$$
2. $C_n=inom{2n}{n}-inom{2n}{n-1}.$
3. $C_n=rac{1}{n+1}\sum_{i=0}^ninom{n}{i}^2.$

证明

- 1. 由生成函数泰勒展开即得.
- 2. 由组合数定义即得.

3. 对比
$$(1+x)^nig(1+rac{1}{x}ig)^n=rac{(1+x)^{2n}}{x^n}$$
 两边系数, 即得 $\sum_{i=0}^nig(n\choose i^2=ig(2n\choose nig).$

递推公式:
$$C_n = \frac{4n-2}{n+1}C_{n-1}$$
.

例题

- 1. 满足通项关系 $C_n = inom{2n}{n} inom{2n}{n-1}$ 的场景.
 - 1. 在 $n\times n$ 网格中, 一开始在 (0,0) 处, 每次可以向上走一格或向右走一格, 在任一时刻, 向右的次数不少于向上的次数, 则合法的路径有 $\binom{2n}{n}-\binom{2n}{n-1}=C_n$ 种.
 - 2. 有 n 对括号, 则长度为 2n 的括号序列中合法的序列有 C_n 种. (入栈出栈)
 - 3. 一个圆周上有 2n 个点, 两两配对并连线, 则所有弦不相交的连法有 C_n 种.
- 2. 满足递归定义 $C_n=\sum_{k=0}^{n-1}C_kC_{n-k-1}$ 的场景.
 - 1. 把一个 n 层的矩形阶梯分为 n 个矩形的方法有 C_n 种.
 - 2. $\Box n + 2$ 边形按顶点连线划分为 n 个三角形的方法有 C_n 种.

A.3.2 常数

卡特兰常数

级数定义与积分定义

$$G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = \int_0^1 \frac{\arctan x}{x} \, dx$$
$$= -\int_0^1 \frac{\ln x}{1+x^2} \, dx = \int_0^{+\infty} \frac{\ln x}{1+x^2} \, dx$$
$$= -\int_0^{\frac{\pi}{4}} \ln \tan x \, dx = \int_0^{\frac{\pi}{4}} \ln \cot x \, dx$$
$$= 0.015965594177219015054603515$$

常用积分

- $\left[0, \frac{\pi}{2}\right]$.
 - 。 对数与三角
 - 正余弦(区间再现后相加)

- 正余切(卡特兰常数定义)
- 1 ± 正余弦 (由半角公式即得)

■ 1+正余切(分区间利用结论)

○ 幂与三角 (分布积分用结论)

$$\int_0^{\frac{\pi}{2}} \frac{x \cos x}{1 - \sin x} \, \mathrm{d}x = +\infty.$$

• $\left[0, \frac{\pi}{4}\right]$.

。 对数与三角

■ 正余弦(相加减后解方程)

■ 1 ± 正余切(区间再现后展开)

$$\int_0^{\frac{\pi}{4}} \ln(\cot x - 1) \, \mathrm{d}x = \frac{\pi}{8} \ln 2.$$

■ 正余弦和差(平方之后二倍角)

。 幂与三角

■ x·正余切(分布积分用结论)

• 其它区间

。 幂与对数 (三角换元用结论)