cc MESONS

 $\eta_c(15)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m = 2983.4 \pm 0.5 \text{ MeV}$ (S = 1.2) Full width $\Gamma=31.8\pm0.8~\text{MeV}$

 $\eta_{c}(1S)$ DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

-6 :	, ,			
Decays invo	olving hadronic r	esonances		
$\eta'(958)\pi\pi$	(4.1 ± 1			1323
$\rho \rho$	(1.8 ± 0	.5) %		1274
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.0 ±0	.7) %		1277
$K^*(892)\overline{K}^*(892)$	(7.0 ± 1	$.3) \times 10^{-3}$		1196
$K^*(892)^0 \overline{K}^*(892)^0 \pi^+ \pi^-$	(1.1 ± 0	.5) %		1073
$\phi K^+ K^-$	($2.9~\pm1$	$.4) \times 10^{-3}$		1104
$\phi\phi$	(1.75 ± 0	$.20) \times 10^{-3}$		1089
$\phi 2(\pi^+\pi^-)$	< 4	\times 10 ⁻³	90%	1251
$a_0(980)\pi$	< 2	%	90%	1327
$a_2(1320)\pi$	< 2	%	90%	1196
$K^*(892)\overline{K}+$ c.c.	< 1.28	%	90%	1309
$f_2(1270)\eta$	< 1.1	%	90%	1145
$\omega \omega$	< 3.1	$\times 10^{-3}$	90%	1270
$\omega \phi$	< 1.7	\times 10 ⁻³	90%	1185
$f_2(1270) f_2(1270)$		$.5) \times 10^{-3}$		774
$f_2(1270)f_2'(1525)$	(9.7 \pm 3	$.2) \times 10^{-3}$		513
$f_0(980)\eta$	seen			1264
$f_0(1500)\eta$	seen			1026
$f_0(2200)\eta$	seen			496
$a_0(980)\pi$	seen			1327
$a_0(1320)\pi$	seen			_
$a_0(1450)\pi$	seen			1123
$a_0(1950)\pi$	seen			859
$a_2(1950)\pi_{_}$	not seen			_
$K_0^*(1430)\overline{K}$	seen			_
$K_2^*(1430)\overline{K}$	seen			_
$K_0^*(1950)\overline{K}$	seen			_

Decays into stable hadrons

$K\overline{K}\pi$	(7.3 ± 0.5) %	1381
$K\overline{K}\eta$	(1.35±0.16) %	1265
$\eta \pi^+ \pi^-$	(1.7 ±0.5)%	1427
$\eta^{2}(\pi^{+}\pi^{-})$	(4.4 ±1.3) %	1385
$\overset{'}{K^{+}}\overset{'}{K^{-}}\pi^{+}\pi^{-}$	$(6.9 \pm 1.1) \times 10^{-3}$	1345
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.5 ±0.6) %	1304
$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.6 ±1.5) %	_
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	$(7.5 \pm 2.4) \times 10^{-3}$	1253
$2(K^{+}K^{-})$	$(1.46\pm0.30)\times10^{-3}$	1055
$\pi + \pi - \pi^{0} \pi^{0}$	(4.7 ±1.0) %	1460
$2(\pi^{+}\pi^{-})$	$(9.7 \pm 1.2) \times 10^{-3}$	1459
$2(\pi^{+}\pi^{-}\pi^{0})$	(17.4 ±3.3) %	1409
$3(\pi^{+}\pi^{-})$	(1.8 ±0.4) %	1406
$p\overline{p}$	$(1.50\pm0.16)\times10^{-3}$	1160
$p \overline{p} \pi^0$	$(3.6 \pm 1.3) \times 10^{-3}$	1101
$\Lambda \overline{\Lambda}$	$(1.09\pm0.24)\times10^{-3}$	990
$\Sigma^+ \overline{\Sigma}^-$	$(2.1 \pm 0.6) \times 10^{-3}$	900
<u>=</u> - <u>=</u> +	$(8.9 \pm 2.7) \times 10^{-4}$	692
$\pi^+\pi^-p\overline{p}$	$(5.3 \pm 1.8) \times 10^{-3}$	1027
·· ·· r r	() =-	

Radiative decays

 $\gamma\gamma$ ($1.59\pm0.13)\times10^{-4}$ 1492

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

	_		_		
$\pi^+\pi^-$	P,CP	< 1.1	$\times10^{-4}$	90%	1485
$\pi^0\pi^0$	P,CP	< 4	$\times10^{-5}$	90%	1486
K^+K^-	P,CP	< 6	$\times10^{-4}$	90%	1408
$K_S^0 K_S^0$	P,CP	< 3.1	$\times 10^{-4}$	90%	1406

$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3096.900\pm0.006$ MeV Full width $\Gamma=92.9\pm2.8$ keV (S = 1.1) $\Gamma_{e\,e}=5.55\pm0.14\pm0.02$ keV

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level (MeV/ c)
hadrons	(87.7 \pm 0.5) %	_
virtual $\gamma ightarrow $ hadrons	(13.50 \pm 0.30)%	_
ggg	(64.1 ± 1.0) %	_
$\gamma g g$	(8.8 ± 1.1) %	_
e^+e^-	$(5.971\pm0.032)\%$	1548
$e^+e^-\gamma$	[a] (8.8 ± 1.4) $ imes 10^{-1}$	-3 1548
$\mu^+\mu^-$	$(5.961\pm0.033)\%$	1545

HTTP://PDG.LBL.GOV

Page 2

Decays involving hadronic resonances

becays involving nationic resonances						
$\rho\pi$		•	± 0.15	•	S=2.4	1448
$\rho^0 \pi^0$				$) \times 10^{-3}$		1448
$a_2(1320) \rho \ \omega \pi^+ \pi^+ \pi^- \pi^-$		•	±0.22			1123
$\omega \pi + \pi - \pi^0$				$) \times 10^{-3}$ $) \times 10^{-3}$		1392 1418
$\omega \pi^+ \pi^-$				$) \times 10^{-3}$	S=1.1	1435
$\omega f_2(1270)$				$) \times 10^{-3}$	3-1.1	1142
$K^*(892)^0 \overline{K}^*(892)^0$) × 10 ⁻⁴		1266
$K^*(892)^{\pm} K^*(892)^{\mp}$) × 10 ⁻³		1266
$K^*(892)^{\pm} K^*(800)^{\mp}$		(1.1	$^{+1.0}_{-0.6}$	$) \times 10^{-3}$		_
$K_S^0 \pi^- K^*(892)^+ + \text{c.c.}$		(2.7	± 0.9	$) \times 10^{-3}$		1342
$K_S^0\pi^-K^*(892)^++$ c.c. $ ightarrow$		(6.7	± 2.2	$) \times 10^{-4}$		_
$K^0_SK^0_S\pi^+\pi^-$						
$\eta K^*(892)^0 \overline{K}^*(892)^0$		(1.15	± 0.26	$) \times 10^{-3}$		1003
$K^*(892)^0\overline{K}_2^*(1430)^0+$ c.c.		(4.66	± 0.31	$) \times 10^{-3}$		1012
$K^*(892)^+ K_2^*(1430)^- + \text{c.c.}$		(3.4	± 2.9	$) \times 10^{-3}$		1012
$K^*(892)^+ K_2^*(1430)^- + \text{c.c.} \rightarrow$		(4	± 4	$) \times 10^{-4}$		_
$K^*(892)^+ K_S^0 \pi^- + { m c.c.}$						
$K^*(892)^0 \overline{K}_2(1770)^0 + \text{c.c.} \rightarrow K^*(892)^0 K^- \pi^+ + \text{c.c.}$		(6.9	± 0.9	$) \times 10^{-4}$		_
$\omega K^*(892)\overline{K} + \text{c.c.}$		(61	+09) × 10 ⁻³		1097
$K^+K^*(892)^- + \text{c.c.}$				$) \times 10^{-3}$		1373
$K^{+}K^{*}(892)^{-} + \text{c.c.} \rightarrow$				$) \times 10^{-3}$		_
$K^+K^-\pi^0$						
$K^+K^*(892)^- + \text{c.c.} \rightarrow$		(3.0	± 0.4	$) \times 10^{-3}$		_
$K^{0}K^{\pm}\pi^{\mp}$ + c.c. $K^{0}\overline{K}^{*}(892)^{0}$ + c.c.		(4 20	. 0.21) 10-3		1272
$K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.} \rightarrow$				$) \times 10^{-3}$ $) \times 10^{-3}$		1373
$K^0K^{\pm}\pi^{\mp}$ + c.c.		(3.2	±0.4) × 10		
$K_1(1400)^{\pm}K^{\mp}$		(3.8	± 1.4	$) \times 10^{-3}$		1170
$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$		seen		,		1343
$\omega \pi^{0} \pi^{0}$		(3.4	± 0.8	$) \times 10^{-3}$		1436
$b_1(1235)^{\pm}\pi^{\mp}$	[<i>b</i>]	(3.0	±0.5	$) \times 10^{-3}$		1300
$\omega K^{\pm} K_{S}^{0} \pi^{\mp}$	[<i>b</i>]	(3.4	± 0.5	$) \times 10^{-3}$		1210
$b_1(1235)^0\pi^0$		(2.3	± 0.6	$) \times 10^{-3}$		1300
$\eta K^{\pm} K_S^0 \pi^{\mp}$	[<i>b</i>]			$) \times 10^{-3}$		1278
$\phi K^*(892)\overline{K} + \text{c.c.}$				$) \times 10^{-3}$		969
$\omega K \overline{K}$		(1.70	± 0.32	$) \times 10^{-3}$		1268
$\omega f_0(1710) \rightarrow \omega K \overline{K}$				$) \times 10^{-4}$		878
$\phi_2(\pi^+\pi^-)$		(1.66	± 0.23	$) \times 10^{-3}$		1318
$\Delta(1232)^{++}\overline{p}\pi^{-}$		(1.6	± 0.5	$) \times 10^{-3}$		1030

$\omega\eta$				$) \times 10^{-3}$	S=1.6	1394
$\phi K \overline{K}$		(1.77		$) \times 10^{-3}$	S=1.3	1179
$\phi K_S^0 K_S^0$		(5.9		$) \times 10^{-4}$		1176
$\phi f_0(1710) \rightarrow \phi K \overline{K}$		(3.6	± 0.6	$) \times 10^{-4}$		875
ϕ K ⁺ K ⁻		(8.3	± 1.2	$) \times 10^{-4}$		1179
$\phi f_2(1270)$		(3.2	± 0.6	$) \times 10^{-4}$		1036
$\Delta(1232)^{++}\overline{\Delta}(1232)^{}$		(1.10	± 0.29	$) \times 10^{-3}$		938
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$ (or c.c.)	[<i>b</i>]	(1.16	± 0.05	$) \times 10^{-3}$		697
$K^+K^-f_2'(1525)$				$) \times 10^{-3}$		892
$\phi f_2'(1525)$		(8	± 4	$) \times 10^{-4}$	S=2.7	871
$\phi \pi^{+} \pi^{-}$		(8.7	± 0.9	$) \times 10^{-4}$	S=1.4	1365
$\phi\pi^0\pi^0$		(5.0		$) \times 10^{-4}$		1366
$\phi K^{\pm} K^0_S \pi^{\mp}$	[<i>b</i>]	(7.2		$) \times 10^{-4}$		1114
$\omega f_1(1420)$		(6.8		$) \times 10^{-4}$		1062
- • • • •		, (7.5		$) \times 10^{-4}$	S=1.5	1320
$ \begin{array}{l} \phi \eta \\ = 0 \overline{=} 0 \end{array} $				$) \times 10^{-3}$		818
$\Xi(1530)^{-}\overline{\Xi}^{+}$		(5.9		$) \times 10^{-4}$		600
$p \dot{K}^{-} \overline{\Sigma} (1385)^{0}$		(5.1		$) \times 10^{-4}$		646
$\omega \pi^0$		(4.5) × 10 ⁻⁴	S=1.4	1446
$\phi \eta'$ (958)		(4.6		$) \times 10^{-4}$	S=2.2	1192
$\phi f_0(980)$		(3.2	± 0.9) × 10 ⁻⁴	S=1.9	1178
$\phi f_0(980) \rightarrow \phi \pi^+ \pi^-$		(2.60	±0.35	$) \times 10^{-4}$		_
$\phi f_0(980) \rightarrow \phi \pi^0 \pi^0$		(1.8	± 0.5	$) \times 10^{-4}$		_
$\phi \pi^0 f_0(980) \to \phi \pi^0 \pi^+ \pi^-$		(4.5	± 1.0) × 10 ⁻⁶		_
$\phi \pi^0 f_0(980) \rightarrow \phi \pi^0 p^0 \pi^0$		(1.7	± 0.6	$) \times 10^{-6}$		1045
$\eta \phi f_0(980) \rightarrow \eta \phi \pi^+ \pi^-$		(3.2	± 1.0) × 10 ⁻⁴		_
$\phi a_0(980)^{\circ} \rightarrow \phi \eta \pi^0$		` (5	± 4) × 10 ⁻⁶		_
$\Xi(1530)^{0}\overline{\Xi}^{0}$		(3.2	± 1.4) × 10 ⁻⁴		608
$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)	[<i>b</i>]	(3.1	± 0.5	$) \times 10^{-4}$		855
$\phi \hat{f}_1(1285)$		(2.6	± 0.5	$) \times 10^{-4}$		1032
$\phi f_1(1285) \rightarrow$		`		$) \times 10^{-7}$		952
$\phi \pi^0 f_0(980) \rightarrow$		`		,		
$\phi \pi^0 \pi^+ \pi^-$						
$\phi f_1(1285) \rightarrow$		(2.1	± 2.2	$) \times 10^{-7}$		955
$\phi \pi^0 f_0(980) \rightarrow$		`		,		
$ \begin{array}{c} \phi \pi^0 f_0(980) \rightarrow \\ \phi \pi^0 \pi^0 \pi^0 \end{array} $						
$\eta \pi^+ \pi^-$		(4.0	± 1.7	$) \times 10^{-4}$		1487
ηho				$) \times 10^{-4}$		1396
$\omega \eta'(958)$		(1.82	± 0.21	$) \times 10^{-4}$		1279
$\omega f_0(980)$				$) \times 10^{-4}$		1267
$\rho \eta'(958)$				$) \times 10^{-4}$		1281
$a_2(1320)^{\pm}\pi^{\mp}$	[<i>b</i>]	< 4.3		$\times 10^{-3}$	CL=90%	1263
$K\overline{K}_{2}^{*}(1430) + \text{c.c.}$		< 4.0		$\times10^{-3}$	CL=90%	1159
$K_1(1270)^{\pm}K^{\mp}$		< 3.0		$\times10^{-3}$	CL=90%	1231
±\ /				=		

HTTP://PDG.LBL.GOV

Page 4

		2	
$K_{S}^{0}\pi^{-}K_{2}^{*}(1430)^{+}+\text{c.c.}$	(3.6 ± 1.8)		1117
$K_S^0 \pi^- K_2^* (1430)^+ + { m c.c.} o$	(4.5 ± 2.2)	$\times 10^{-4}$	_
$K_S^0 K_S^0 \pi^+ \pi^-$			
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	< 2.9	\times 10 ⁻³	CL=90% 604
$\phi \pi^0$	3×10^{-6} or 1×10		1377
$\phi \eta (1405) \rightarrow \phi \eta \pi^+ \pi^-$	(2.0 ± 1.0)		946
$\omega f_2'(1525)$			CL=90% 1003
$\omega X(1835) \rightarrow \omega p \overline{p}$		_	CL=95% -
$\phi X(1835) \rightarrow \phi p \overline{p}$		_	CL=90% -
$\phi X(1835) \rightarrow \phi \eta \pi^{+} \pi^{-}$		4	CL=90% 578
$\phi X(1870) \rightarrow \phi \eta \pi^{+} \pi^{-}$		_	CL=90% -
$\eta \phi(2170) \rightarrow \eta \phi f_0(980) \rightarrow$	(1.2 ± 0.4)		628
$\eta \phi \pi^+ \pi^-$	(1.2 ±0.4)	^ 10	020
$\eta \phi (2170) \rightarrow$	< 2.52	\times 10 ⁻⁴	CL=90% -
$\eta K^*(892)^0 \overline{K}^*(892)^0$	< 2.52 /	× 10	JL=3070
$\Sigma(1385)^0\overline{\Lambda}$ + c.c.	< 8.2	$\times 10^{-6}$ (CL=90% 912
$\Delta(1232)^{+}\overline{p}$			CL=90% 1100
$\Lambda(1520)\overline{\Lambda} + \text{c.c.} \rightarrow \gamma \Lambda \overline{\Lambda}$		_	CL=90% -
$\Theta(1540)\overline{\Theta}(1540) \rightarrow$		_	CL=90% -
$K_S^0 p K^- \overline{n} + \text{c.c.}$	1.1	× 10	JL=3070
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	< 2.1	$\times 10^{-5}$ (CL=90% -
$\Theta(1540) K_S^0 \overline{p} \to K_S^0 \overline{p} K^+ n$		_	CL=90% -
$\overline{\Theta}(1540)K_S^+ n \to K_S^0 \overline{p}K_S^+ n$		_	CL=90% -
		_	
$\overline{\Theta}(1540) K_S^0 p \rightarrow K_S^0 p K^- \overline{n}$ $\Sigma^0 \overline{\Lambda}$			CL=90% -
Σ°/\	< 9	\times 10 ⁻⁵	CL=90% 1032
Decays in	nto stable hadrons		
$2(\pi^{+}\pi^{-})\pi^{0}$	(4.1 ± 0.5)	%	S=2.4 1496
$3(\pi^+\pi^-)\pi^0$	(2.9 ± 0.6)	%	1433
$\pi^+\pi^-\pi^0$	(2.11 ± 0.07)	%	S=1.5 1533
$\pi^+\pi^-\pi^0$ K $^+$ K $^-$	(1.79 ± 0.29)	%	S=2.2 1368
$4(\pi^+\pi^-)\pi^0$	(9.0 ± 3.0)	$\times 10^{-3}$	1345
$\pi^{+}\pi^{-}K^{+}K^{-}$	(6.84 ± 0.32) :	$\times 10^{-3}$	1407
$\pi^+\pi^-K^0_SK^0_L$	(3.8 ± 0.6)	$\times 10^{-3}$	1406
$\pi^+\pi^-K_S^{0}K_S^{0}$	(1.68 ± 0.19)	$\times 10^{-3}$	1406
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	(4.1 ± 0.8)	$\times 10^{-4}$	1127
$\pi^+\pi^-K^+K^-\eta$	(1.84 ± 0.28)	$\times 10^{-3}$	1221
$\pi^{0}\pi^{0}K^{+}K^{-}$	(2.12 ± 0.23)		1410
$K\overline{K}_{\pi}$	(6.1 ± 1.0)	$\times 10^{-3}$	1442
$2(\pi^{+}\pi^{-})$	(3.57 ± 0.30) :		1517
$3(\pi^{+}\pi^{-})$	(4.3 ± 0.4)	$\times 10^{-3}$	1466
$2(\pi^{+}\pi^{-}\pi^{0})$	(1.62 ± 0.21) $^{\circ}$		1468
$2(\pi^+\pi^-)\eta$	(2.29 ± 0.24)	$\times 10^{-3}$	1446

$3(\pi^{+}\pi^{-})\eta$	(7.2 ± 1.5)	× 10 ⁻⁴	1379
$p\overline{p}$	(2.120 ± 0.029)		1232
$ ho \overline{ ho} \pi^0$	(1.19 ± 0.08)	$\times 10^{-3}$ S=1.1	1176
$p\overline{p}\pi^+\pi^-$	(6.0 ± 0.5)	$\times 10^{-3}$ S=1.3	1107
$\rho \overline{\rho} \pi^+ \pi^- \pi^0$	[c] (2.3 \pm 0.9)		1033
$p\overline{p}\eta$	(2.00 ± 0.12)		948
$p\overline{p}\rho$	< 3.1	$\times 10^{-4}$ CL=90%	774
$p\overline{p}\omega$	(9.8 ± 1.0)	$\times 10^{-4}$ S=1.3	768
$p\overline{p}\eta'(958)$	(2.1 ± 0.4)		596
$p\overline{p}a_0(980) \rightarrow p\overline{p}\pi^0\eta$	(6.8 ± 1.8)	× 10 ⁻⁵	_
$p\overline{p}\phi$	(5.19 ± 0.33) :		527
n n	(2.09 ± 0.16)		1231
$n\overline{n}\pi^+\pi^-$	(4 ±4)	× 10 ⁻³	1106
$\Sigma^{+}\overline{\Sigma}^{-}$	(1.50 ± 0.24)	× 10 ⁻³	992
$\Sigma^0 \overline{\Sigma}{}^0$	(1.29 ± 0.09)	× 10 ⁻³	988
$2(\pi^{+}\pi^{-})K^{+}K^{-}$	(4.7 ± 0.7)		1320
$p\overline{n}\pi^-$	(2.12 ± 0.09)	× 10 ⁻³	1174
n N(1440)	seen		984
n N(1520)	seen		928
n N(1535)	seen		914
<u>=</u> - <u>=</u> +	(9.7 ± 0.8)	$\times 10^{-4}$ S=1.4	807
$\Lambda \overline{\Lambda}$	(1.61 ± 0.15) $>$	$\times 10^{-3}$ S=1.9	1074
$\Lambda \overline{\Sigma}{}^- \pi^+$ (or c.c.)	[b] (8.3 \pm 0.7)	$\times 10^{-4}$ S=1.2	950
$pK^{-}\overline{\Lambda}$	(8.9 ± 1.6)	× 10 ⁻⁴	876
$2(K^{+}K^{-})$	(7.4 ± 0.7)	× 10 ⁻⁴	1131
$pK^{-}\overline{\Sigma}^{0}$	(2.9 ± 0.8)	× 10 ⁻⁴	819
K^+K^-	(2.86 ± 0.21) :		1468
$K_S^0 K_L^0$	(2.1 ± 0.4)	$\times 10^{-4}$ S=3.2	1466
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(4.3 ± 1.0)	× 10 ⁻³	903
$\Lambda \overline{\Lambda} \eta$	(1.62 ± 0.17)	× 10 ⁻⁴	672
$\Lambda \overline{\Lambda} \pi^0$	(3.8 ± 0.4)	× 10 ⁻⁵	998
$\overline{\Lambda}nK_{S}^{0}+\text{c.c.}$	(6.5 ± 1.1)		872
$\pi^+\pi^-$	(1.47 ± 0.14)		1542
$\Lambda \overline{\Sigma} + \text{c.c.}$	(2.83 ± 0.23)		1034
$K_S^0 K_S^0$		$\times 10^{-6}$ CL=95%	1466
3 3	D !' .' I		
	Radiative decays	5	
3γ	(1.16 ± 0.22)	_	1548
4γ		$\times 10^{-6}$ CL=90%	1548
5γ		$\times 10^{-5}$ CL=90%	1548
$\gamma \pi^0 \pi^0$	(1.15 ± 0.05)		1543
$\gamma \eta \pi^0$	(2.14 ± 0.31)		1497
$\gamma a_0 (980)^0 \to \gamma \eta \pi^0$		$\times 10^{-6}$ CL=95%	_
$\gamma a_2(1320)^0 \rightarrow \gamma \eta \pi^0$	< 6.6	$\times 10^{-6}$ CL=95%	_

$\gamma \eta_c(1S)$		(1.7	± 0.4) %	S=1.5	111
$\gamma \eta_c(1S) \rightarrow 3\gamma$		(3.8	$+1.3 \\ -1.0$	$) \times 10^{-6}$	S=1.1	_
$\gamma \pi^{+} \pi^{-} 2\pi^{0}$		(8.3	± 3.1	$) \times 10^{-3}$		1518
$\gamma\eta\pi\pi$		(6.1	± 1.0	$) \times 10^{-3}$		1487
$\gamma \eta_2(1870) \rightarrow \gamma \eta \pi^+ \pi^-$		(6.2	± 2.4	$) \times 10^{-4}$		_
$\gamma \eta (1405/1475) ightarrow \gamma K \overline{K} \pi$	[d]	(2.8	± 0.6	$) \times 10^{-3}$	S=1.6	1223
$\gamma \eta (1405/1475) ightarrow \gamma \gamma ho^0$		(7.8	± 2.0	$) \times 10^{-5}$	S=1.8	1223
$\gamma\eta(1405/1475) \rightarrow \gamma\eta\pi^{+}\pi^{-}$		(3.0	± 0.5	$) \times 10^{-4}$		_
$\gamma \eta$ (1405/1475) $ ightarrow \ \gamma \gamma \phi$		<	8.2		$\times 10^{-5}$	CL=95%	_
$\gamma \rho \rho$		(4.5	± 0.8	$) \times 10^{-3}$		1340
$\gamma ho \omega$		<	5.4		$\times 10^{-4}$	CL=90%	1338
$\gamma \rho \phi$		<			$\times 10^{-5}$	CL=90%	1258
$\gamma \eta'$ (958)		(5.13		$) \times 10^{-3}$	S=1.3	1400
$\gamma 2\pi^+ 2\pi^-$		(2.8		$) \times 10^{-3}$	S=1.9	1517
$\gamma f_2(1270) f_2(1270)$		(9.5	± 1.7	$) \times 10^{-4}$		878
$\gamma f_2(1270) f_2(1270)$ (non reso-		(8.2	± 1.9	$) \times 10^{-4}$		_
nant)					2		
$\gamma K^+ K^- \pi^+ \pi^-$		($) \times 10^{-3}$		1407
$\gamma f_4(2050)$		($) \times 10^{-3}$		891
$\gamma\omega\omega$					$) \times 10^{-3}$		1336
$\gamma \eta (1405/1475) \rightarrow \gamma \rho^0 \rho^0$		•	1.7		$) \times 10^{-3}$	S=1.3	1223
$\gamma f_2(1270)$					$) \times 10^{-3}$	S=1.3	1286
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$		`	4.2		$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$		(1.00) × 10 ⁻³	S=1.5	1075
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$		(3.8		$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$		($) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$		(2.4	$^{+1.2}_{-0.7}$	$) \times 10^{-4}$		_
$\gamma\eta$		(1.104	1 ± 0.03	4) \times 10 ⁻³		1500
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$				± 1.3	$) \times 10^{-4}$		1220
$\gamma f_1(1285)$			6.1	± 0.8	$) \times 10^{-4}$		1283
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$		(4.5	± 1.2	$) \times 10^{-4}$		_
$\gamma f_2'(1525)$		(5.7	$^{+0.8}_{-0.5}$) × 10 ⁻⁴	S=1.5	1173
$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$		($) \times 10^{-5}$		_
$\gamma f_2(1640) \rightarrow \gamma \omega \omega$		•	2.8	± 1.8) × 10 ⁻⁴		_
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$		(2.0	± 1.4) × 10 ⁻⁴		_
$\gamma f_0(1800) \rightarrow \gamma \omega \phi$		(2.5	± 0.6	$) \times 10^{-4}$		_
$\gamma f_2(1810) \rightarrow \gamma \eta \eta$		•		+3.5) × 10 ⁻⁵		_
$\gamma f_2(1950) \rightarrow$		•		۷٠١) × 10 ⁻⁴		_
$\gamma I_2(1930) \rightarrow \gamma K^*(892) \overline{K}^*(892)$		(7.0	⊥∠.∠) × 10		_
$\gamma K^*(892)K^*(892)$		ſ	4 O	⊥13) × 10 ⁻³		1266
$\gamma \phi \phi$					$) \times 10^{-4}$	S=2.1	1166
144		(1.0	_ 4.4	, ^ 10	5—2.1	1100

$\gamma p \overline{p}$	(20 ⊥1	0) × 10 ⁻⁴		1232
$\gamma \eta(2225)$		$\begin{array}{c} 50 \\ 19 \end{array}) \times 10^{-4}$		752
$\gamma \eta(1760) \rightarrow \gamma \rho^0 \rho^0$ $\gamma \eta(1760) \rightarrow \gamma \omega \omega$		9) \times 10 ⁻⁴		1048
		33) \times 10 ⁻³		_
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$	(2.77 - 0.00)	$^{34}_{40}$) × 10 ⁻⁴	S=1.1	1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	$(7.7 \begin{array}{cc} +1. \\ -0. \end{array}$	$_{9}^{5}$) × 10 ⁻⁵		_
$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	(3.3 +21.	$_{3}^{0}$) × 10 ⁻⁵		_
$\gamma X(1840) \rightarrow \gamma 3(\pi^+\pi^-)$	(2.4 +0.00)	$_{8}^{7}$) × 10 ⁻⁵		-
$\gamma(K\overline{K}\pi)[J^{PC}=0^{-+}]$	(7 ±4	$) \times 10^{-4}$	S=2.1	1442
$\gamma\pi^{0}$	$(3.49 \begin{array}{c} +0. \\ -0. \end{array}$	$^{33}_{30}$) × 10 ⁻⁵		1546
$\gamma \rho \overline{\rho} \pi^+ \pi^-$	< 7.9	× 10 ⁻⁴	CL=90%	1107
$\gamma \Lambda \overline{\Lambda}$	< 1.3	$\times10^{-4}$	CL=90%	1074
$\gamma f_0(2100) \rightarrow \gamma \eta \eta$	$(1.13 \begin{array}{c} +0. \\ -0. \end{array}$	$^{60}_{30}$) × 10 ⁻⁴		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	(6.2 ± 1.0)	0) $\times 10^{-4}$		_
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	(5.9 ± 1 .			_
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	< 3.9	$\times 10^{-5}$	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma K K$	< 4.1	× 10 ⁻⁵	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$		8) $\times 10^{-5}$		_
$\gamma f_2(2340) \rightarrow \gamma \eta \eta$	$(5.6 \begin{array}{c} +2. \\ -2. \end{array}$	$^{4}_{2}$) × 10 ⁻⁵		_
$\gamma f_0(1500) \rightarrow \gamma \pi \pi$	($1.09 \pm 0.$	$24) \times 10^{-4}$		1183
$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	(1.7 + 0.1)	$^{6}_{4}$) × 10 ⁻⁵		_
$\gamma A \rightarrow \gamma$ invisible	[e] < 6.3	$\times10^{-6}$	CL=90%	_
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[f] < 5	$\times 10^{-6}$	CL=90%	_
	Dalitz decays			
$\pi^0 e^+ e^-$	$(7.6 \pm 1.$	4) $\times 10^{-7}$		1546
$\eta e^+ e^-$		$(09) \times 10^{-5}$		1500
$\eta'(958) e^+ e^-$		$(35) \times 10^{-5}$		1400
	Weak decays			
$D^{-}e^{+}\nu_{e}^{}+$ c.c.	< 1.2	$\times10^{-5}$	CL=90%	984
\overline{D}^0 e ⁺ e ⁻ + c.c.	< 1.1	× 10 ⁻⁵	CL=90%	987
$D_{s}^{-}e^{+}\nu_{e}+\text{c.c.}$	< 1.3	$\times10^{-6}$	CL=90%	923
$D_s^{*-}e^+\nu_e^{}+ \text{c.c.}$	< 1.8	$\times10^{-6}$	CL=90%	828
$D^{-}\pi^{+}$ + c.c.	< 7.5	$\times10^{-5}$	CL=90%	977
$\overline{D}^0\overline{K}^0+$ c.c.	< 1.7	$\times 10^{-4}$	CL=90%	898
$\overline{D}^0\overline{K}^{*0}$ + c.c.	< 2.5	× 10 ⁻⁶	CL=90%	670
$D_s^- \pi^+ + \text{c.c.}$	< 1.3	× 10 ⁻⁴	CL=90%	916
$D_s^- \rho^+ + \text{c.c.}$	< 1.3	× 10 ⁻⁵	CL=90%	663
HTTP://PDG.LBL.GOV	Page 8	Created:	5/30/2017	17:13

Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes

$\gamma \gamma$	С	< 2.7	$\times 10^{-7}$	CL=90%	1548
$\gamma \phi$	С	< 1.4	$\times 10^{-6}$	CL=90%	1381
$e^{\pm}\mu^{\mp}$	LF	< 1.6	$\times 10^{-7}$	CL=90%	1547
$e^{\pm} au^{\mp}$	LF	< 8.3	$\times 10^{-6}$	CL=90%	1039
$\mu^{\pm} au^{\mp}$	LF	< 2.0	$\times 10^{-6}$	CL=90%	1035

Other decays

invisible $< 7 \times 10^{-4} \text{ CL}=90\%$

 $\chi_{c0}(1P)$

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3414.75\pm0.31~{\rm MeV}$ Full width $\Gamma=10.5\pm0.6~{\rm MeV}$

$\chi_{c0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
Hadre	onic decays		
$2(\pi^{+}\pi^{-})$	$(2.24\pm0.18)\%$		1679
$ ho^{0}\pi^{+}\pi^{-}$	$(8.7 \pm 2.8) \times 3$	10	1607
$f_0(980) f_0(980)$	$(6.5 \pm 2.1) \times 3$	10^{-4}	1391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(3.3 \pm 0.4) %		1680
$\rho^{+}\pi^{-}\pi^{0}$ + c.c.	(2.8 \pm 0.4) %	_	1607
$4\pi^{0}$	$(3.2 \pm 0.4) \times 3$	10^{-3}	1681
$\pi^+\pi^-$ K ⁺ K ⁻	(1.75 ± 0.14) %		1580
$K_0^*(1430)^0\overline{K}_0^*(1430)^0 \to$	$(9.6 \begin{array}{c} +3.5 \\ -2.8 \end{array}) \times 1$	10^{-4}	_
$\pi^{+}\pi^{-}K^{+}K^{-}$	2.0		
$K_0^*(1430)^0\overline{K}_2^*(1430)^0+ ext{ c.c.} ightarrow \pi^+\pi^-K^+K^-$	$(7.8 \begin{array}{c} +1.9 \\ -2.4 \end{array}) \times 1$	10 ⁻⁴	_
$K_1(1270)^+ K^- + { m c.c.} ightarrow$	$(6.1 \pm 1.9) \times 1$	10 ⁻³	_
$\pi^{+}\pi^{-}K^{+}K^{-}$ $K_{1}(1400)^{+}K^{-}+\text{c.c.} ightarrow$ $\pi^{+}\pi^{-}K^{+}K^{-}$	< 2.6 × 3	10 ⁻³ CL=90%	-
$f_0(980) f_0(980)$	$(1.6 \ ^{+1.0}_{-0.9}) \times 1$	10^{-4}	1391
$f_0(980) f_0(2200)$	$(7.8 \begin{array}{c} +2.0 \\ -2.5 \end{array}) \times 1$	10^{-4}	584
$f_0(1370) f_0(1370)$	< 2.7 × 3	10^{-4} CL=90%	1019
$f_0(1370) f_0(1500)$	< 1.7 × 3	10^{-4} CL=90%	921
$f_0(1370) f_0(1710)$	$(6.6 \begin{array}{c} +3.5 \\ -2.3 \end{array}) \times 1$	10^{-4}	720
$f_0(1500) f_0(1370)$	< 1.3 × 3	10 ⁻⁴ CL=90%	921
$f_0(1500) f_0(1500)$	< 5 × 3	10^{-5} CL=90%	807
$f_0(1500) f_0(1710)$	< 7 × 3	10^{-5} CL=90%	557

Page 9

$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(8.6 \pm 0.9) \times 10^{-3}$		1545
$K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$(4.2 \pm 0.4) \times 10^{-3}$		1544
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(5.4 \pm 0.9) \times 10^{-3}$		1582
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$	(2.44 ± 0.33) %		1581
$ ho^{+} K^{-} K^{0} + \text{c.c.}$	$(1.18\pm0.21)~\%$		1458
$K^*(892)^- K^+ \pi^0 \to$	$(4.5 \pm 1.1) \times 10^{-3}$		_
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0}+\text{c.c.}$			
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	$(5.6 \pm 1.0) \times 10^{-3}$		1579
$K^+K^-\eta\pi^0$	$(3.0 \pm 0.7) \times 10^{-3}$		1468
$3(\pi^{+}\pi^{-})$	$(1.20\pm0.18)\%$		1633
$K + \overline{K}^* (892)^0 \pi^- + \text{c.c.}$	$(7.2 \pm 1.6) \times 10^{-3}$		1523
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.7 \pm 0.6) \times 10^{-3}$		1456
$\pi\pi$	$(8.33\pm0.35)\times10^{-3}$		1702
$\pi_{0}^{0}\eta$	$< 1.8 \times 10^{-4}$		1661
$\pi^0_{\eta'}$	$< 1.1 \times 10^{-3}$		1570
$\pi^0 \eta_c$	$< 1.6 \times 10^{-3}$	CL=90%	384
$\eta\eta$	$(2.95\pm0.19)\times10^{-3}$		1617
$\eta \eta'$	$< 2.3 \times 10^{-4}$	CL=90%	1521
$\eta'\eta'$	$(1.96\pm0.21)\times10^{-3}$		1413
$\omega \omega$	$(9.5 \pm 1.1) \times 10^{-4}$		1517
$\omega \phi$	$(1.16\pm0.21)\times10^{-4}$		1447
$\omega K^+ K^-$	$(1.94\pm0.21)\times10^{-3}$		1457
K^+K^-	$(5.91\pm0.32)\times10^{-3}$		1634
$K_S^0 K_S^0$	$(3.10\pm0.18)\times10^{-3}$		1633
$\pi^+\pi^-\eta$	$< 1.9 \times 10^{-4}$	CL=90%	1651
$\frac{\pi^+\pi^-\eta'}{2}$	$< 3.5 \times 10^{-4}$	CL=90%	1560
$\overline{K}^{0}K^{+}\pi^{-}+\text{c.c.}$	$< 9 \times 10^{-5}$	CL=90%	1610
$K^+K^-\pi^0$	$< 6 \times 10^{-5}$	CL=90%	1611
$K^+K^-\eta$	$< 2.2 \times 10^{-4}$	CL=90%	1512
$K^+K^-K_S^0K_S^0$	$(1.4 \pm 0.5) \times 10^{-3}$		1331
$K^+K^-K^+K^-$	$(2.75\pm0.28)\times10^{-3}$		1333
$K^+K^-\phi$	$(9.5 \pm 2.4) \times 10^{-4}$		1381
$\overline{K}^{0}K^{+}\pi^{-}\phi + \text{c.c.}$	$(3.7 \pm 0.6) \times 10^{-3}$		1326
$K^+K^-\pi^0\phi$	$(1.90\pm0.35)\times10^{-3}$		1329
$\phi \pi^+ \pi^- \pi^0$	$(1.18\pm0.15)\times10^{-3}$		1525
$\phi \phi$	$(7.7 \pm 0.7) \times 10^{-4}$		1370
$p\overline{p}$	$(2.25\pm0.09)\times10^{-4}$		1426
$\rho \overline{\rho} \pi^0$	$(6.8 \pm 0.7) \times 10^{-4}$	S=1.3	1379
$p\overline{p}\eta$	$(3.5 \pm 0.4) \times 10^{-4}$		1187
$p\overline{p}\omega$	$(5.1 \pm 0.6) \times 10^{-4}$		1043
$p\overline{p}\phi$	$(5.9 \pm 1.4) \times 10^{-5}$		876
$p\overline{p}\pi^+\pi^-$	$(2.1 \pm 0.7) \times 10^{-3}$	S=1.4	1320
$p\overline{p}\pi^0\pi^0$	$(1.02\pm0.27)\times10^{-3}$		1324
$p\overline{p}K^+K^-$ (non-resonant)	$(1.19\pm0.26)\times10^{-4}$		890

00		4		
$p\overline{p}K_S^0K_S^0$	< 8.8	\times 10 ⁻⁴	CL=90%	884
$p \overline{n} \pi^-$	$(1.24 \pm 0$	$(.11) \times 10^{-3}$		1376
\overline{p} n π^+	$(1.34 \pm 0$	$(.12) \times 10^{-3}$		1376
$p\overline{n}\pi^-\pi^0$	$(2.29 \pm 0$	$(.21) \times 10^{-3}$		1321
$\overline{p}n\pi^+\pi^0$		$(.18) \times 10^{-3}$		1321
$\Lambda \overline{\Lambda}$	(3.21 ± 0)	$(.25) \times 10^{-4}$		1292
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	(1.15±0	$(.13) \times 10^{-3}$		1153
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	< 5	× 10 ⁻⁴	CL=90%	1153
$\Sigma(1385)^{+}\overline{\Lambda}\pi^{-}+\text{c.c.}$	< 5	$\times 10^{-4}$	CL=90%	1083
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}$ + c.c.	< 5	$\times 10^{-4}$	CL=90%	1083
$K^+ \stackrel{\frown}{p} \Lambda + \stackrel{\frown}{c.c.}$	$(1.22 \pm 0$	$(.12) \times 10^{-3}$	S=1.3	1132
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$		$(.7) \times 10^{-4}$		858
$\Lambda(1520)\overline{\Lambda}(1520)$	(3.1 ± 1)	$.2) \times 10^{-4}$		779
$\sum_{i} \sum_{j} \sum_{i} \sum_{j} \sum_{j} \sum_{i} \sum_{j} \sum_{j$		$.4) \times 10^{-4}$		1222
$\Sigma^{+}\overline{\Sigma}^{-}$		$(.7) \times 10^{-4}$	S=1.7	1225
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	(1.6 ± 0)	$(.6) \times 10^{-4}$		1001
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+}$		$(.6) \times 10^{-4}$		1001
$K - \Lambda \overline{\Xi} + c.c.$		$(.34) \times 10^{-4}$		873
=0 =0 =-=+	(3.1 ±0	$(.8) \times 10^{-4}$		1089
<u>=-</u> =+		$(.7) \times 10^{-4}$		1081
$\eta_c \pi^+ \pi^-$	< 7	\times 10 ⁻⁴	CL=90%	308
R	adiative decays	5		
$\gamma J/\psi(1S)$	(1.27±0			303
$\gamma \rho^0$	< 9	× 10 ⁻⁶	CL=90%	1619
$\gamma\omega$	< 8	$\times 10^{-6}$	CL=90%	1618
$\stackrel{'}{\gamma}\phi$	< 6	\times 10 ⁻⁶	CL=90%	1555
$\gamma \gamma$	(2.23±0	$(.13) \times 10^{-4}$		1707
1 1	`	•		

$\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m = 3510.66 \pm 0.07 \text{ MeV}$ (S = 1.5) Full width $\Gamma=0.84\pm0.04~\text{MeV}$

$\chi_{c1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
	Hadronic decays		
$3(\pi^{+}\pi^{-})$	(5.8 ± 1.4) $ imes$	10^{-3} S=1.2	1683
$2(\pi^{+}\pi^{-})$	(7.6 \pm 2.6) $ imes$	10^{-3}	1728
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.22\pm0.16)\%$)	1729
$ ho^{+}\pi^{-}\pi^{0}+$ c.c.	(1.48±0.25) %)	1658
$ ho^0\pi^+\pi^- \ 4\pi^0$	(3.9 \pm 3.5) $ imes$	10^{-3}	1657
	(5.5 \pm 0.8) $ imes$		1729
$\pi^+\pi^-$ K ⁺ K ⁻	(4.5 ± 1.0) $ imes$	10 ⁻³	1632
HTTP://PDG.LBL.GOV	Page 11 Cr	eated: 5/30/201	7 17:13

0.0	2		
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(1.14\pm0.28)\times10^{-3}$		1634
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.15\pm0.13)\%$		1598
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(7.5 \pm 0.8) \times 10^{-3}$		1596
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	$(8.7 \pm 1.4) \times 10^{-3}$		1632
$\rho^- K^+ \overline{K}^0 + \text{c.c.}$	$(5.1 \pm 1.2) \times 10^{-3}$		1514
$K^*(892)^0 \overline{K}^0 \pi^0 \rightarrow$	$(2.4 \pm 0.7) \times 10^{-3}$		
$K^{+}\pi^{-}\overline{K^{0}}\pi^{0} + \text{c.c.}$	(2.4 ±0.7) × 10		
$K^+K^-\eta\pi^0$	$(1.14\pm0.35)\times10^{-3}$		1523
$\pi^+\pi^-K_5^0K_5^0$			
	$(7.0 \pm 3.0) \times 10^{-4}$		1630
$K^+K^-\eta$	$(3.2 \pm 1.0) \times 10^{-4}$		1566
$\overline{K}^0 K^+ \pi^- + \text{c.c.}$	$(7.1 \pm 0.6) \times 10^{-3}$		1661
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.0 \pm 0.4) \times 10^{-3}$		1602
$K^*(892)^+K^- + \text{c.c.}$	$(1.5 \pm 0.7) \times 10^{-3}$		1602
$K_J^*(1430)^0\overline{K}{}^0+$ c.c. $ ightarrow$	$<$ 8 $\times 10^{-4}$	CL=90%	_
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K_{I}^{*}(1430)^{+}K^{-}+\text{c.c.} \rightarrow$	$< 2.2 \times 10^{-3}$	CL=90%	_
5 ·	× 2.2 × 10	CL-3070	
$K_{S}^{0}K^{+}\pi^{-}$ + c.c.	2		
$K^+K^-\pi^0$	$(1.85\pm0.25)\times10^{-3}$		1662
$\eta \pi^+ \pi^-$	$(4.9 \pm 0.5) \times 10^{-3}$		1701
$a_0(980)^+\pi^- + \text{c.c.} \to \eta \pi^+\pi^-$	$(1.8 \pm 0.6) \times 10^{-3}$		_
$f_2(1270)\eta$	$(2.7 \pm 0.8) \times 10^{-3}$		1467
$\pi^+\pi^-\eta'$	$(2.3 \pm 0.5) \times 10^{-3}$		1612
$K^+K^-\eta'(958)$	$(8.8 \pm 0.9) \times 10^{-4}$		1461
$K_0^*(1430)^+K^- + \text{c.c.}$	$(6.4 \begin{array}{c} +2.2 \\ -2.8 \end{array}) \times 10^{-4}$		_
$N_0(1430)$ $N + c.c.$	$(0.4 - 2.8) \times 10$		
$f_0(980)\eta'(958)$	$(1.6 \ ^{+1.4}_{-0.7}) imes 10^{-4}$		1460
$f_0(1710)\eta'(958)$	$(7 {+7 \atop -5}) \times 10^{-5}$		1106
$f_2'(1525)\eta'(958)$	$(9 \pm 6) \times 10^{-5}$		1225
$\pi^{0} f_{0}(980) \rightarrow \pi^{0} \pi^{+} \pi^{-}$	$< 6 \times 10^{-6}$	CL=90%	
$K^{+} \overline{K}^{*} (892)^{0} \pi^{-} + \text{c.c.}$		CL—9070	1 5 7 7
$K^*(992) \% + C.C.$	$(3.2 \pm 2.1) \times 10^{-3}$		1577
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.5 \pm 0.4) \times 10^{-3}$	GL 000/	1512
$K^+K^-K^0_SK^0_S$	$< 4 \times 10^{-4}$	CL=90%	1390
$K^+K^-K^+K^-$	$(5.5 \pm 1.1) \times 10^{-4}$		1393
$K^+K^-\phi$	$(4.2 \pm 1.6) \times 10^{-4}$		1440
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.3 \pm 0.5) \times 10^{-3}$		1387
$K^+K^-\pi^0$ ϕ	$(1.62\pm0.30)\times10^{-3}$		1390
$\phi \pi^{+} \pi^{-} \pi^{0}$	$(7.5 \pm 1.0) \times 10^{-4}$		1578
$\omega\omega$	$(5.8 \pm 0.7) \times 10^{-4}$		1571
$\omega K^+ K^-$	$(7.8 \pm 0.9) \times 10^{-4}$		1513
$\omega \phi$	$(2.1 \pm 0.6) \times 10^{-5}$		1503
$\phi \phi$	$(4.2 \pm 0.5) \times 10^{-4}$		1429
$p\overline{p}$	$(7.72\pm0.35)\times10^{-5}$		1484
ГГ	(= ± 0.00) / 10		1.01

0	4		
$ \rho \overline{\rho} \pi^0 $	$(1.59\pm0.19)\times10^{-4}$		1438
$p\overline{p}\eta$	$(1.48\pm0.25)\times10^{-4}$		1254
$p\overline{p}\omega$	$(2.16\pm0.31)\times10^{-4}$		1117
$ ho \overline{ ho} \phi$	$< 1.8 \times 10^{-5}$	CL=90%	962
$ ho \overline{ ho} \pi^+ \pi^-$	$(5.0 \pm 1.9) \times 10^{-4}$		1381
$p\overline{p}K^+K^-$ (non-resonant)	$(1.30\pm0.23)\times10^{-4}$		974
$p\overline{p}K_S^0K_S^0$	$< 4.5 \times 10^{-4}$	CL=90%	968
$p\overline{n}\pi^-$	$(3.9 \pm 0.5) \times 10^{-4}$		1435
$\overline{p}n\pi^+$	$(4.0 \pm 0.5) \times 10^{-4}$		1435
$p\overline{n}\pi^-\pi^0$	$(1.05\pm0.12)\times10^{-3}$		1383
$\frac{1}{p}n\pi^+\pi^0$	$(1.03\pm0.12)\times10^{-3}$		1383
$\Lambda \overline{\Lambda}$	$(1.16\pm0.12)\times10^{-4}$		1355
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(3.0 \pm 0.5) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(2.5 \pm 0.6) \times 10^{-4}$		1223
$\Sigma(1385)^+\overline{\Lambda}\pi^-+$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}$ + c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$K^{+}\overline{p}\Lambda$	$(4.2 \pm 0.4) \times 10^{-4}$	S=1.1	1203
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$	$(1.7 \pm 0.5) \times 10^{-4}$		950
$\Lambda(1520)\overline{\Lambda}(1520)$	$< 1.0 \times 10^{-4}$	CL=90%	879
$\sum_{i} \overline{\Sigma}_{0}$	$< 4 \times 10^{-5}$	CL=90%	1288
$\Sigma + \overline{\Sigma} -$	$< 6 \times 10^{-5}$	CL=90%	1291
$\Sigma(1385)^{+} \overline{\Sigma}(1385)^{-}$	$< 1.0 \times 10^{-4}$	CL=90%	1081
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	$< 5 \times 10^{-5}$	CL=90%	1081
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.38\pm0.25)\times10^{-4}$		963
<u>=0 =0</u>	< 6 × 10 ⁻⁵	CL=90%	1163
<u></u> +	$(8.2 \pm 2.2) \times 10^{-5}$		1155
$\pi^{+}\pi^{-} + K^{+}K^{-}$	$< 2.1 \times 10^{-3}$		_
$K_S^0 K_S^0$	$< 6 \times 10^{-5}$	CL=90%	1683
$\eta_c \pi^+ \pi^-$	$< 3.2 \times 10^{-3}$	CL=90%	413
	Radiative decays		
a. 1/a/(15)	•		200
$\gamma J/\psi(1S)$	$(33.9 \pm 1.2)\%$		389
$\gamma \rho^0$	$(2.20\pm0.18)\times10^{-4}$		1670
$\gamma \omega$	$(6.9 \pm 0.8) \times 10^{-5}$		1668
$\gamma\phi$	$(2.5 \pm 0.5) \times 10^{-5}$		1607

$$h_c(1P)$$

$$I^{G}(J^{PC}) = ?^{?}(1^{+})$$

 $\mathsf{Mass}\ m = 3525.38 \pm 0.11\ \mathsf{MeV}$ Full width $\Gamma=0.7\pm0.4~\text{MeV}$

h _c (1P) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi\pi$	not seen		312
$rac{ ho\overline{ ho}}{\pi^+\pi^-\pi^0}$	< 1.5 × 1	$.0^{-4}$ 90%	1492
$\pi^{+}\pi^{-}\pi^{0}$	< 2.2 × 1	0^{-3}	1749
$2\pi^{+}2\pi^{-}\pi^{0}$	$(2.2^{+0.8}_{-0.7})\%$		1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 2.9 %		1661
Rad	liative decays		
$\gamma\eta$	$(4.7\pm2.1)\times1$	0^{-4}	1720
$\gamma \eta'$ (958)	$(1.5\pm0.4) \times 1$.0-3	1633
$\gamma \eta_c(1S)$	(51 ± 6)%		500

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 3556.20 \pm 0.09 \; \text{MeV}$ Full width $\Gamma=1.93\pm0.11~\text{MeV}$

X-2	(1 <i>P</i>)	DECAY	MODES

$\chi_{c2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
	Hadronic decays		
$2(\pi^{+}\pi^{-})$	(1.07 ± 0.10)	%	1751
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.91 ± 0.25) 9	%	1752
$\rho^{+}\pi^{-}\pi^{0}$ + c.c.	(2.3 ± 0.4)	%	1682
$4\pi^0$	(1.16 ± 0.16)	× 10 ⁻³	1752
$\mathit{K^{+}K^{-}\pi^{0}\pi^{0}}$	(2.2 ± 0.4)	× 10 ⁻³	1658
$\mathit{K}^{+}\pi^{-}\overline{\mathit{K}}{}^{0}\pi^{0}+\mathrm{c.c.}$	(1.44 ± 0.21)	%	1657
$ ho^-$ K $^+$ $\overline{K}{}^0$ $+$ c.c.	(4.3 ± 1.3)	× 10 ⁻³	1540
$K^*(892)^0 K^- \pi^+ \to$	(3.1 ± 0.8)	× 10 ⁻³	_
$K^{-}\pi^{+}K^{0}\pi^{0} + \text{c.c.}$ $K^{*}(892)^{0}\overline{K^{0}}\pi^{0} \rightarrow K^{+}\pi^{-}\overline{K^{0}}\pi^{0} + \text{c.c.}$	(4.0 ±0.9)	× 10 ⁻³	-
$K^*(892)^- K^+ \pi^0 \rightarrow$	(3.9 ± 0.9)	× 10 ⁻³	_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$ $K^{*}(892)^{+}\overline{K}^{0}\pi^{-} \rightarrow$ $K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$	(3.1 ±0.8)	× 10 ⁻³	_
$K^+K^-\eta\pi^0$	(1.3 ± 0.5)	× 10 ⁻³	1549
$K^+K^-\pi^+\pi^-$	(8.9 ± 1.0)	× 10 ⁻³	1656
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.17 ± 0.13) 9	%	1623
	5 4.	/00 /004	

HTTP://PDG.LBL.GOV

Page 14

$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(7.3 \pm 0.8) \times 10^{-3}$		1621
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(2.2 \pm 1.1) \times 10^{-3}$		1602
$K^*(892)^0 \overline{K}^*(892)^0$	(2.4 ± 0.5) $\times 10^{-3}$		1538
$3(\pi^{+}\pi^{-})$	(8.6 ± 1.8) $\times 10^{-3}$		1707
$\phi \phi$	$(1.12\pm0.10)\times10^{-3}$		1457
$\omega\omega$	$(8.8 \pm 1.1) \times 10^{-4}$		1597
ω K ⁺ K ⁻	$(7.3 \pm 0.9) \times 10^{-4}$		1540
$\pi\pi$	$(2.33\pm0.12)\times10^{-3}$		1773
$ ho^0\pi^+\pi^-$	$(3.8 \pm 1.6) \times 10^{-3}$		1682
$\pi^+\pi^-\eta$	$(5.0 \pm 1.3) \times 10^{-4}$		1724
$\pi^+\pi^-\eta'$	$(5.2 \pm 1.9) \times 10^{-4}$		1636
$\eta\eta$	$(5.7 \pm 0.5) \times 10^{-4}$		1692
K^+K^-	$(1.05\pm0.07)\times10^{-3}$		1708
$K_S^0 K_S^0$	$(5.5 \pm 0.4) \times 10^{-4}$		1707
$\frac{K_S^0 K_S^0}{K^0 K^+ \pi^- + \text{c.c.}}$	$(1.34\pm0.19)\times10^{-3}$		1685
$K^+K^-\pi^0$	$(3.2 \pm 0.8) \times 10^{-4}$		1686
$K^+K^-\eta$	$< 3.4 \times 10^{-4}$	90%	1592
$K^{+}K^{-}\eta'(958)$	$(1.94\pm0.34)\times10^{-4}$		1488
$\eta \eta'$	$< 6 \times 10^{-5}$	90%	1600
$\eta'\eta'$	$< 1.0 \times 10^{-4}$	90%	1498
$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	$(2.3 \pm 0.6) \times 10^{-3}$		1655
$K^+K^-K_S^0K_S^0$	$<$ 4 \times 10 ⁻⁴	90%	1418
$K^+K^-K^+K^-$	$(1.73\pm0.21)\times10^{-3}$		1421
$K^+K^-\phi$	$(1.48\pm0.31)\times10^{-3}$		1468
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(4.8 \pm 0.7) \times 10^{-3}$		1416
$K^+K^-\pi^0\phi$	$(2.7 \pm 0.5) \times 10^{-3}$		1419
$\phi\pi^+\pi^-\pi^0$	$(9.3 \pm 1.2) \times 10^{-4}$		1603
$p\overline{p}$	(7.5 \pm 0.4) $ imes$ 10 ⁻⁵		1510
$ ho \overline{ ho} \pi^0$	$(4.9 \pm 0.4) \times 10^{-4}$		1465
$p\overline{p}\eta$	$(1.82\pm0.26)\times10^{-4}$		1285
$p\overline{p}\omega$	$(3.8 \pm 0.5) \times 10^{-4}$		1152
$ ho \overline{ ho} \phi$	$(2.9 \pm 0.9) \times 10^{-5}$		1002
$p\overline{p}\pi^+\pi^-$	$(1.32\pm0.34)\times10^{-3}$		1410
$p \overline{p} \pi^0 \pi^0$	$(8.2 \pm 2.5) \times 10^{-4}$		1414
$p\overline{p}K^+K^-$ (non-resonant)	$(2.00\pm0.34)\times10^{-4}$		1013
$p\overline{p}K_S^0K_S^0$	$< 7.9 \times 10^{-4}$	90%	1007
$p \overline{n} \pi^-$	$(8.9 \pm 1.0) \times 10^{-4}$		1463
$\overline{p}n\pi^+$	$(9.3 \pm 0.9) \times 10^{-4}$		1463
$p\overline{n}\pi^-\pi^0$	$(2.27\pm0.19)\times10^{-3}$		1411
$\frac{1}{p} \underline{n} \pi^+ \pi^0$	$(2.21\pm0.20)\times10^{-3}$		1411
$\Lambda \overline{\Lambda}$	$(1.92\pm0.16)\times10^{-4}$		1385
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.31\pm0.17)\times10^{-3}$		1255
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(6.9 \pm 1.6) \times 10^{-4}$		1255
$\Sigma(1385)^+\overline{\Lambda}\pi^- + \text{c.c.}$	$< 4 \times 10^{-4}$	90%	1192

$\Sigma(1385)^{-}\overline{\Lambda}\pi^{+}+\text{c.c.}$	< 6	\times 10 ⁻⁴	90%	1192
$K^{+}\overline{p}\Lambda + c.c.$	(8.1	± 0.6) $\times 10^{-4}$		1236
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$		± 0.7) $\times 10^{-4}$		992
$\Lambda(1520)\overline{\Lambda}(1520)$,	± 1.5) $\times 10^{-4}$		923
$\sum_{i=0}^{\infty} \overline{\sum}_{i=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{j=0}^{\infty} \sum_{j=0}^{\infty} \sum_{j=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum$	< 6	$\times 10^{-5}$	90%	1319
$\Sigma^{+}\overline{\Sigma}^{-}$	< 7	$\times10^{-5}$	90%	1322
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 1.6	$\times10^{-4}$	90%	1118
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	< 8	$\times10^{-5}$	90%	1118
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	(1.84	$\pm 0.34) \times 10^{-4}$		1004
$\underline{=}^0\overline{\underline{=}}^0$	< 1.1	$\times 10^{-4}$	90%	1197
<i>Ξ</i> − <i>Ξ</i> +	(1.48	$\pm 0.33) \times 10^{-4}$		1189
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5	%	90%	185
$\pi^0 \eta_c$	< 3.2	$\times 10^{-3}$	90%	512
$\eta_{c}(1S)\pi^{+}\pi^{-}$	< 5.4	$\times 10^{-3}$	90%	459
	Radiative deca	ys		
$\gamma J/\psi(1S)$		±0.7)%		430
$\gamma \rho^0$	< 2.0	$\times 10^{-5}$	90%	1694
$\gamma \omega$	< 6	$\times 10^{-6}$	90%	1692
$\gamma \phi$	< 8	\times 10 ⁻⁶	90%	1632
$\gamma\gamma$	(2.74	$\pm 0.14) \times 10^{-4}$		1778

$\eta_c(2S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 5/30/2017 17:13

Quantum numbers are quark model predictions.

Mass
$$m=3639.2\pm1.2$$
 MeV Full width $\Gamma=11.3^{+3.2}_{-2.9}$ MeV

$\eta_{\mathcal{C}}(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	not seen		_
$K\overline{K}\pi$	$(1.9\pm1.2)\%$		1730
$K\overline{K}\eta$	$(5 \pm 4) \times 10^{-3}$	-3	1638
$2\pi^{+}2\pi^{-}$	not seen		1793
$ ho^0 ho^0$	not seen		1646
$3\pi^{+}3\pi^{-}$	not seen		1750
$K^{+}K^{-}\pi^{+}\pi^{-}$	not seen		1701
$K^{*0}\overline{K}^{*0}$	not seen		1586
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.4\pm1.0)\%$		1668
$K^{+}K^{-}2\pi^{+}2\pi^{-}$	not seen		1628
$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	seen		1667
$2K^{+}2K^{-}$	not seen		1471

$\phi \phi$	not seen		1507
$p\overline{p}$	$< 2.0 \times 10^{-3}$	90%	1559
$\gamma\gamma$	$(1.9\pm1.3)\times10^{-4}$		1820
$\pi^+\pi^-\eta$	not seen		1767
$\pi^+\pi^-\eta'$	not seen		1681
$\pi^+\pi^-\eta_c(1S)$	< 25 %	90%	539

 $\psi(2S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3686.097\pm0.025$ MeV (S = 2.6) Full width $\Gamma=296\pm8$ keV $\Gamma_{e\,e}=2.34\pm0.04$ keV

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
hadrons virtual $\gamma \to \text{ hadrons}$ $g g g g \gamma g g g$ light hadrons $e^+e^- \mu^+\mu^- \tau^+\tau^-$	$ \begin{array}{c} (97.85 \pm 0.13) \\ (1.73 \pm 0.14) \\ (10.6 \pm 1.6) \\ (1.03 \pm 0.29) \\ (15.4 \pm 1.5) \\ (7.89 \pm 0.17) \\ (7.9 \pm 0.9) \\ (3.1 \pm 0.4) \end{array} $) %) %) %) %) %) × 10 ⁻³) × 10 ⁻³	- - - - 1843 1840 489
Decays into $J/$	$\psi(1S)$ and anyth	ning	
$J/\psi(1S)$ anything $J/\psi(1S)$ neutrals $J/\psi(1S)\pi^+\pi^ J/\psi(1S)\pi^0\pi^0$ $J/\psi(1S)\eta$ $J/\psi(1S)\pi^0$	(61.0 ± 0.6) (25.14 ± 0.33) (34.49 ± 0.30) (18.17 ± 0.31) (3.36 ± 0.05) (1.268 ± 0.032)) %) %) %) %	- 477 481 199 528
Hadro	onic decays		
$\pi^{0} h_{c}(1P)$ $3(\pi^{+}\pi^{-})\pi^{0}$ $2(\pi^{+}\pi^{-})\pi^{0}$ $\rho a_{2}(1320)$ $\rho \overline{\rho}$ $\Delta^{++} \overline{\Delta}^{}$ $\Lambda \overline{\Lambda} \pi^{0}$ $\Lambda \overline{\Lambda} \eta$ $\Lambda \overline{\rho} K^{+}$ $\Lambda \overline{\rho} K^{+} \pi^{+} \pi^{-}$ $\Lambda \overline{\Lambda} \pi^{+} \pi^{-}$	(8.6 ± 1.3) (3.5 ± 1.6) (2.9 ± 1.0) (2.6 ± 0.9) (2.88 ± 0.10) (1.28 ± 0.35) < 2.9 (2.5 ± 0.4) (1.00 ± 0.14) (1.8 ± 0.4) (2.8 ± 0.6)	$) \times 10^{-3}$ $) \times 10^{-3}$ S=4.7 $) \times 10^{-4}$ $) \times 10^{-4}$ $) \times 10^{-6}$ CL=90% $) \times 10^{-5}$ $) \times 10^{-4}$ $) \times 10^{-4}$	85 1746 1799 1500 1586 1371 1412 1197 1327 1167 1346

$A\overline{A}$		± 0.18) $\times 10^{-4}$	1467
$\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$		$\pm 0.13) \times 10^{-4}$	1376
$\Lambda \overline{\Sigma}^- \pi^+ + \text{c.c.}$		± 0.14) $\times 10^{-4}$	1379
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$ $\Sigma^+ \overline{\Sigma}^-$		± 0.18) $\times 10^{-5}$	1291
$\sum_{i} 0 \frac{\sum_{i} 0}{\sum_{i} 0}$	•	± 0.21) × 10 ⁻⁴ ± 0.16) × 10 ⁻⁴	1408 1405
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$		± 0.7) × 10^{-5}	1218
$\Sigma(1385)^{-} \overline{\Sigma}(1385)^{+}$		± 0.8) $\times 10^{-5}$	1218
<u>=</u> - <u>=</u> +		± 0.12) $\times 10^{-4}$	1284
$\equiv^0 \overline{\equiv}^0$		± 0.23) $\times 10^{-4}$	1291
$\Xi(1530)^0 \overline{\Xi}(1530)^0$	(5.2	$^{+3.2}_{-1.2}$) \times 10 ⁻⁵	1025
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	(3.9	± 0.4) $\times 10^{-5}$	1114
$\Xi(1690)^-\overline{\Xi}^+ \rightarrow K^-\Lambda\overline{\Xi}^+ +$	(5.2	± 1.6) $\times 10^{-6}$	_
Ξ (1820) $^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}+$	(1.20	± 0.32) $\times 10^{-5}$	_
$K^- \Sigma^0 \overline{\Xi}^+ + \text{c.c.}$	(3.7	± 0.4) $\times 10^{-5}$	1060
$\Omega^{-}\overline{\Omega}^{+}$		± 1.0) $\times 10^{-5}$	774
$\pi^0 \rho \overline{\rho}$		± 0.07) $\times 10^{-4}$	1543
$N(940)\overline{p}+ ext{c.c.} ightarrow \pi^0p\overline{p}$		$^{+1.8}_{-1.3}$) $\times10^{-5}$	_
$N(1440)\overline{p}+ ext{ c.c.} ightarrow \pi^0 p \overline{p}$	(7.3	$^{+1.7}_{-1.5}$) \times 10 ⁻⁵ S=2.5	_
$N(1520)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$	(6.4	$^{+2.3}_{-1.8}$) \times 10 ⁻⁶	_
$N(1535)\overline{p}+ ext{c.c.} ightarrow \ \pi^0p\overline{p}$	(2.5	± 1.0) $\times10^{-5}$	_
$N(1650)\overline{p}+ { m c.c.} ightarrow \pi^0 p \overline{p}$	(3.8	$^{+1.4}_{-1.7} \)\times 10^{-5}$	-
$N(1720)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(1.79	$^{+0.26}_{-0.70}\)\times 10^{-5}$	_
$N(2300)\overline{p} + \text{c.c.} \rightarrow \pi^0 p \overline{p}$	(2.6	$^{+1.2}_{-0.7} \)\times 10^{-5}$	_
$N(2570)\overline{p}+ \text{c.c.} \rightarrow \pi^0 p\overline{p}$	(2.13	$^{+0.40}_{-0.31}\)\times 10^{-5}$	_
$\pi^0 f_0(2100) \rightarrow \pi^0 \rho \overline{\rho}$		± 0.4) $\times 10^{-5}$	_
$\eta p \overline{p}$		± 0.4) $\times 10^{-5}$	1373
$\eta f_0(2100) \rightarrow \eta p \overline{p}$		± 0.4) $\times 10^{-5}$	_
$N(1535)\overline{p} \rightarrow \eta p \overline{p}$		± 0.7) $\times 10^{-5}$	-
ω p p φ p p	(6.9 < 2.4	± 2.1) $\times 10^{-5}$ $\times 10^{-5}$ CL=90%	1247 1109
$\varphi \rho \rho = \pi^+ \pi^- \rho \overline{\rho}$		± 0.4) $\times 10^{-4}$	1491
$p\overline{n}\pi^-$ or c.c.		± 0.17) $\times 10^{-4}$	_
$p \overline{n} \pi^- \pi^0$	`	± 0.7) $\times 10^{-4}$	1492
$2(\pi^{+}\pi^{-}\pi^{0})$	•	± 1.5) $\times 10^{-3}$	1776
$\eta \pi^+ \pi^-$	< 1.6		1791
$\eta \pi^{+} \pi^{-} \pi^{0}$		± 1.7) $\times 10^{-4}$	1778
$2(\pi^+\pi^-)\eta$	(1.2	± 0.6) × 10 ⁻³	1758

$\eta' \pi^+ \pi^- \pi^0$	(4.5	±2.1	$) \times 10^{-4}$		1692
$\omega \pi^+ \pi^-$	(7.3	± 1.2	$) \times 10^{-4}$	S=2.1	1748
$b_1^\pm\pi^\mp$	(4.0	± 0.6	$) \times 10^{-4}$	S=1.1	1635
$b_1^0 \pi^0$	(2.4	± 0.6	$) \times 10^{-4}$		_
$\omega f_2(1270)$	(2.2	± 0.4	$) \times 10^{-4}$		1515
$\pi^0\pi^0\dot{\kappa}^+\kappa^-$	(2.6	± 1.3	$) \times 10^{-4}$		1728
$\pi^+\pi^-K^+K^-$	(7.3		$) \times 10^{-4}$		1726
$ ho^0$ K $^+$ K $^-$	(2.2	± 0.4	$) \times 10^{-4}$		1616
$K^*(892)^0\overline{K}_2^*(1430)^0$	(1.9	±0.5	$) \times 10^{-4}$		1418
$K^{+}K^{-}\pi^{+}\pi^{-}\eta$	(1.3	± 0.7	$) \times 10^{-3}$		1574
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	(1.00		$) \times 10^{-3}$		1611
$K^+K^-2(\pi^+\pi^-)$	(1.9	± 0.9	$) \times 10^{-3}$		1654
$K_1(1270)^\pmK^\mp$	(1.00	± 0.28	$) \times 10^{-3}$		1581
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	(2.2	± 0.4	$) \times 10^{-4}$		1724
$\rho^0 p \overline{p}$	(5.0	± 2.2	$) \times 10^{-5}$		1252
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	(6.7		$) \times 10^{-4}$		1674
$2(\pi^{+}\pi^{-})$	(2.4	± 0.6	$) \times 10^{-4}$	S=2.2	1817
$\rho^0 \pi^+ \pi^-$	(2.2	± 0.6	$) \times 10^{-4}$	S=1.4	1750
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.26	± 0.09	$) \times 10^{-3}$		1694
$\omega f_0(1710) ightarrow \omega K^+ K^-$	(5.9	± 2.2	$) \times 10^{-5}$		_
$K^*(892)^0 K^- \pi^+ \pi^0 + \text{ c.c.}$	(8.6		$) \times 10^{-4}$		_
$K^*(892)^+ K^- \pi^+ \pi^- + \text{ c.c.}$	(9.6	±2.8	$) \times 10^{-4}$		_
$K^*(892)^+_{1}K^-\rho^0_{1}+\text{ c.c.}$	(7.3	±2.6	$) \times 10^{-4}$		_
$K^*(892)^0K^- ho^++$ c.c.	(6.1	± 1.8	$) \times 10^{-4}$		_
$\eta {\it K}^+ {\it K}^-$, no $\eta \phi$	(3.1	± 0.4	$) \times 10^{-5}$		1664
$\omega K^+ K^-$	(1.62	±0.11	$) \times 10^{-4}$	S=1.1	1614
$\omega K^*(892)^+ K^- + \text{c.c.}$	(2.07		$) \times 10^{-4}$		1482
$\omega K_2^*(1430)^+ K^- + \text{c.c.}$	(6.1	± 1.2	$) \times 10^{-5}$		1253
$\omega \overline{K}^*(892)^0 K^0$			$) \times 10^{-4}$		1481
$\omega \overline{K}_{2}^{*}(1430)^{0} K^{0}$	(5.8	±2.2	$) \times 10^{-5}$		1251
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	(1.6	± 0.4	$)\times 10^{-5}$		_
C.C.					
$\omega X(1440) \rightarrow \omega K^+ K^- \pi^0$			$) \times 10^{-5}$		_
$\omega f_1(1285) \to \omega K_S^0 K^- \pi^+ +$	(3.0	± 1.0	$) \times 10^{-6}$		_
$\omega f_1(1285) \rightarrow \omega K^+ K^- \pi^0$	(1 2	107) v 10-6		
$3(\pi^+\pi^-)$			$) \times 10^{-6}$	S_2 0	1774
$p\overline{p}\pi^+\pi^-\pi^0$			$) \times 10^{-4}$	S=2.8	1774
K^+K^-			$) \times 10^{-4}$ $) \times 10^{-5}$		1435 1776
Κ°ς Κ° ₁	`		$) \times 10^{-5}$		1775
$\pi^+\pi^-\pi^0$				C_1 7	
			$) \times 10^{-4}$	S=1.7	1830
$\rho(2150)\pi \rightarrow \pi^+\pi^-\pi^0$	(1.9	-0.4	$) \times 10^{-4}$		_
$\rho(770)\pi \to \pi^+\pi^-\pi^0$	(3.2	±1.2	$)\times 10^{-5}$	S=1.8	_

			_		
$\pi^+\pi^-$,		$) \times 10^{-6}$		1838
$\mathcal{K}_1(1400)^\pm\mathcal{K}^\mp$	< 3.1		$\times 10^{-4}$	CL=90%	1532
$K_2^*(1430)^{\pm}K^{\mp}$	(7.1	$+1.3 \\ -0.9$	$) \times 10^{-5}$		_
$K^{+}K^{-}\pi^{0}$		0.5	$) \times 10^{-5}$		1754
$K^+K^*(892)^- + \text{c.c.}$			$) \times 10^{-5}$	S=1.2	1698
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	•		$) \times 10^{-4}$		1697
$\phi \pi + \pi$			$) \times 10^{-4}$	S=1.5	1690
$\phi f_0(980) \rightarrow \pi^+ \pi^-$	(7.5	± 3.3	$) \times 10^{-5}$	S=1.6	_
$2(K^{+}K^{-})$			$) \times 10^{-5}$		1499
$\phi K^+ K^-$	(7.0	± 1.6	$) \times 10^{-5}$		1546
$2(K^+K^-)\pi^0$	•		$) \times 10^{-4}$		1440
$\phi\eta$			$) \times 10^{-5}$		1654
$\phi \eta'$			$) \times 10^{-5}$		1555
$\omega\eta'$	(3.2	$+2.5 \\ -2.1$	$) \times 10^{-5}$		1623
$\omega \pi^0$	(2.1	± 0.6	$) \times 10^{-5}$		1757
$ ho \eta'$	(1.9	$+1.7 \\ -1.2$	$) \times 10^{-5}$		1625
$ ho\eta$			$) \times 10^{-5}$	S=1.1	1717
$\omega \eta$	< 1.1			CL=90%	1715
$\phi\pi^{0}$	< 4			CL=90%	1699
$\eta_c \pi^+ \pi^- \pi^0$	< 1.0			CL=90%	513
$\underline{p}\overline{p}K^{+}K^{-}$	(2.7		$) \times 10^{-5}$		1118
$\overline{\Lambda}nK_S^0$ + c.c.	(8.1		$) \times 10^{-5}$		1324
$\phi f_2'(1525)$	(4.4	± 1.6	$) \times 10^{-5}$		1321
$\Theta(1540)\overline{\Theta}(1540) ightarrow$	< 8.8		\times 10 ⁻⁶	CL=90%	_
$K_S^0 p K^- \overline{n} + \text{c.c.}$					
$\Theta(1540) K^{-} \overline{n} \rightarrow K^{0}_{S} p K^{-} \overline{n}$	< 1.0		$\times 10^{-5}$	CL=90%	_
$\Theta(1540)K_{S}^{0}\overline{p} ightarrow K_{S}^{0}\overline{p}K^{+}n$	< 7.0		\times 10 ⁻⁶	CL=90%	_
$\overline{\Theta}(1540)K^{+}n \rightarrow K_{S}^{0}\overline{p}K^{+}n$	< 2.6		$\times 10^{-5}$	CL=90%	_
$\overline{\Theta}(1540) K_S^0 p \rightarrow K_S^0 p K^- \overline{n}$	< 6.0		$\times 10^{-6}$	CL=90%	_
$K_S^0 K_S^0$	< 4.6		$\times 10^{-6}$		1775
Ra	diative deca	VS			
$\gamma \chi_{c0}(1P)$		±0.27) %		261
$\gamma \chi_{c1}(1P)$	•	± 0.31	•		171
$\gamma \chi_{c2}(1P)$,	± 0.31	•		128
$\gamma \eta_c(1S)$,		$) \times 10^{-3}$	S=1.3	636
$\gamma \eta_c(2S)$ $\gamma \pi^0$	(7	± 5	$) \times 10^{-4}$		47
	,		$) \times 10^{-6}$		1841
$\gamma \eta'$ (958)	(1.23	± 0.06	$) \times 10^{-4}$		1719
$\gamma f_2(1270)$	(2.73	$+0.29 \\ -0.25$	$) \times 10^{-4}$	S=1.8	1622
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$	(3.1	± 1.7	$) \times 10^{-5}$		1588
$\gamma f_0(1500)$			$) \times 10^{-5}$		1536
LITTE //DDC LDL COV	D 00	,	· · · · · · · · · · · · · · · · · · ·	- /20 /201	7 17 10

 $\mathsf{HTTP://PDG.LBL.GOV} \qquad \qquad \mathsf{Page} \ \ 20 \qquad \qquad \mathsf{Created:} \ \ 5/30/2017 \ \ 17{:}13$

$\gamma f_2'(1525)$	(3.3	± 0.8	$) \times 10^{-5}$		1528
$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	•	3.5	± 0.6	$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	`	6.6) × 10 ⁻⁵		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	`	4.8	± 1.0) × 10 ⁻⁶		1244
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	`	3.2) × 10 ⁻⁶		1193
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	<	5.8		_	CL=90%	1168
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	<	9.5		$\times10^{-6}$	CL=90%	1168
$\gamma \gamma$	<	1.5		$\times 10^{-4}$	CL=90%	1843
$\gamma\eta$	(1.4	± 0.5	$) \times 10^{-6}$		1802
$\gamma\eta\pi^+\pi^-$		8.7		$) \times 10^{-4}$		1791
$\gamma \eta($ 1405 $) ightarrow \ \gamma K \overline{K} \pi$	<	9		$\times 10^{-5}$	CL=90%	1569
$\gamma \eta$ (1405) $ ightarrow \eta \pi^+ \pi^-$	(3.6	± 2.5	$) \times 10^{-5}$		_
$\gamma \eta($ 1475 $) ightarrow \ K \overline{K} \pi$	<	1.4		$\times 10^{-4}$	CL=90%	_
$\gamma \eta$ (1475) $ ightarrow \ \eta \pi^+ \pi^-$	<	8.8		$\times 10^{-5}$	CL=90%	_
$\gamma 2(\pi^+\pi^-)$	(4.0	± 0.6	$) \times 10^{-4}$		1817
$\gamma K^{*0} K^{+} \pi^{-} + \text{c.c.}$	(3.7	± 0.9	$) \times 10^{-4}$		1674
$\gamma K^{*0} \overline{K}^{*0}$	(2.4	±0.7	$) \times 10^{-4}$		1613
$\gamma K_{S}^{0} K^{+} \pi^{-} + \text{c.c.}$	(2.6	± 0.5	$) \times 10^{-4}$		1753
$\gamma K^+ K^- \pi^+ \pi^-$	(1.9	±0.5	$) \times 10^{-4}$		1726
$\gamma p \overline{p}$	(3.9	± 0.5	$) \times 10^{-5}$	S=2.0	1586
$\gamma f_2(1950) \rightarrow \gamma p \overline{p}$	(1.20	± 0.22	$) \times 10^{-5}$		_
$\gamma f_2(2150) \rightarrow \gamma \rho \overline{\rho}$	(7.2	± 1.8	$) \times 10^{-6}$		_
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(4.6	$+1.8 \\ -4.0$	$) \times 10^{-6}$		_
$\gamma X \rightarrow \gamma \rho \overline{\rho}$	[g] <	2		$\times 10^{-6}$	CL=90%	_
$\gamma \pi^+ \pi^- \rho \overline{\rho}$	(2.8	± 1.4	$) \times 10^{-5}$		1491
γ 2($\pi^+\pi^-$) K^+K^-		2.2			CL=90%	1654
$\gamma 3(\pi^+\pi^-)$	<	1.7		$\times 10^{-4}$	CL=90%	1774
$\gamma K^+ K^- K^+ K^-$	<	4		\times 10 ⁻⁵	CL=90%	1499
$\gamma \gamma J/\psi$	(3.1	$^{+1.0}_{-1.2}$) × 10 ⁻⁴		542
	Other d	ecays	;			
invisible		1.6		%	CL=90%	_

$$\psi$$
(3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3773.13\pm0.35$ MeV (S = 1.1) Full width $\Gamma=27.2\pm1.0$ MeV $\Gamma_{ee}=0.262\pm0.018$ keV (S = 1.4)

In addition to the dominant decay mode to $D\overline{D}$, $\psi(3770)$ was found to decay into the final states containing the J/ψ (BAI 05, ADAM 06). ADAMS 06 and HUANG 06A searched for various decay modes with light hadrons and found a statistically significant signal for the decay to $\phi\eta$ only (ADAMS 06).

ψ (3770) DECAY MODES	Fraction (Γ_i/Γ_i)		cale factor/ idence level	<i>p</i> (MeV/ <i>c</i>)
$D\overline{D}$	$(93 \begin{array}{cc} +8 \\ -9 \end{array}$) %	S=2.0	286
$D^0 \overline{D}{}^0$	$(52 \begin{array}{cc} +4 \\ -5 \end{array}$) %	S=2.0	286
D^+D^-	(41 ± 4)) %	S=2.0	253
$J/\psi \pi^+ \pi^-$	(1.93 ± 0.2			560
$J/\psi \pi^0 \pi^0$	(8.0 ± 3.0	•		564
$J/\psi \eta$	(9 ± 4)	$) \times 10^{-4}$		360
$J/\psi \pi^0$	< 2.8	\times 10 ⁻⁴	CL=90%	603
e^+e^-	(9.6 ± 0.7	$\times 10^{-6}$	S=1.3	1887
Deca	ays to light hadror	ns		
$b_1(1235)\pi$	< 1.4	$\times 10^{-5}$	CL=90%	1683
$\phi\eta'$	< 7	$\times 10^{-4}$	CL=90%	1607
$\omega \eta'$	< 4	$\times 10^{-4}$	CL=90%	1672
$ ho^{f 0}\eta'$	< 6	$\times 10^{-4}$	CL=90%	1674
$\phi \eta$	(3.1 ± 0.7	,		1703
$\omega \eta$	< 1.4	\times 10 ⁻⁵	CL=90%	1762
$\rho^{0}\eta$	< 5	\times 10 ⁻⁴	CL=90%	1764
$\phi \pi^0$	< 3	\times 10 ⁻⁵	CL=90%	1746
$\omega \pi^0$	< 6	\times 10 ⁻⁴	CL=90%	1803
$\pi^+\pi^-\pi^0$	< 5	$\times 10^{-6}$	CL=90%	1874
$\rho\pi$	< 5	$\times 10^{-6}$	CL=90%	1804
$K^*(892)^+K^- + \text{c.c.}$	< 1.4	$\times 10^{-5}$	CL=90%	1745
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 1.2	$\times 10^{-3}$	CL=90%	1744
$K_S^0 K_L^0$	< 1.2	$\times 10^{-5}$	CL=90%	1820
$2(\pi^{+}\pi^{-})$	< 1.12	$\times 10^{-3}$	CL=90%	1861
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.06	× 10 ⁻³	CL=90%	1843
$2(\pi^{+}\pi^{-}\pi^{0})$	< 5.85	%	CL=90%	1821
$\omega \pi^+ \pi^-$	< 6.0	$\times 10^{-4}$	CL=90%	1794
$3(\pi^{+}\pi^{-})$	< 9.1	× 10 ⁻³	CL=90%	1819
$3(\pi^{+}\pi^{-})\pi^{0}$	< 1.37	%	CL=90%	1792
$3(\pi^{+}\pi^{-})2\pi^{0}$	< 11.74	%	CL=90%	1760
HTTP://PDG.LBL.GOV	Page 22	Created:	5/30/2017	17:13

$\eta \pi^+ \pi^-$	<	1.24	$\times 10^{-3}$	CL=90%	1836
$\pi^{+}\pi^{-}2\pi^{0}$	<	8.9	\times 10 ⁻³	CL=90%	1862
$ ho^0 \pi^+ \pi^-$	<	6.9	\times 10 ⁻³	CL=90%	1796
$\eta 3\pi$	<	1.34	$\times 10^{-3}$	CL=90%	1824
$\eta 2(\pi^+\pi^-)$	<	2.43	%	CL=90%	1804
$\eta ho^0 \pi^+ \pi^-$	<	1.45	%	CL=90%	1708
η' 3 π	<	2.44	$\times 10^{-3}$	CL=90%	1740
$K^{+}K^{-}\pi^{+}\pi^{-}$	<	9.0	$\times 10^{-4}$	CL=90%	1772
$\phi \pi^+ \pi^-$	<	4.1	$\times 10^{-4}$	CL=90%	1737
$K^+K^-2\pi^0$	<	4.2	\times 10 ⁻³	CL=90%	1774
$4(\pi^{+}\pi^{-})$	<	1.67	%	CL=90%	1757
$4(\pi^{+}\pi^{-})\pi^{0}$	<	3.06	%	CL=90%	1720
$\phi f_0(980)$	<	4.5	$\times 10^{-4}$	CL=90%	1597
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	<	2.36	$\times 10^{-3}$	CL=90%	1741
$K^+K^- ho^0\pi^0$	<	8	$\times 10^{-4}$	CL=90%	1624
$\mathcal{K}^+\mathcal{K}^- ho^+\pi^-$	<	1.46	%	CL=90%	1622
ω K ⁺ K ⁻	<	3.4	\times 10 ⁻⁴	CL=90%	1664
$\phi \pi^{+} \pi^{-} \pi^{0}$	<	3.8	$\times 10^{-3}$	CL=90%	1722
$K^{*0}K^{-}\pi^{+}\pi^{0}$ + c.c.	<	1.62	%	CL=90%	1693
$K^{*+}K^{-}\pi^{+}\pi^{-}+$ c.c.	<	3.23	%	CL=90%	1692
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	<	2.67	%	CL=90%	1705
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	<	1.03	%	CL=90%	1702
$K^{+}K^{-}2(\pi^{+}\pi^{-})\pi^{0}$	<	3.60	%	CL=90%	1660
$\eta K^+ K^-$	<	4.1	$\times 10^{-4}$	CL=90%	1712
$\eta K^+ K^- \pi^+ \pi^-$	<	1.24	%	CL=90%	1624
$\rho^0 K^+ K^-$	<	5.0	$\times 10^{-3}$	CL=90%	1665
$2(K^+K^-)$	<	6.0	$\times 10^{-4}$	CL=90%	1552
$\phi K^+ K^-$	<	7.5	$\times 10^{-4}$	CL=90%	1598
$2(K^{+}K^{-})\pi^{0}$	<	2.9	$\times 10^{-4}$	CL=90%	1493
$2(K^{+}K^{-})\pi^{+}\pi^{-}$	<	3.2	\times 10 ⁻³	CL=90%	1425
$K_S^0 K^- \pi^+$	<	3.2	$\times 10^{-3}$	CL=90%	1799
$K_S^{ar{0}}K^-\pi^+\pi^0$	<	1.33	%	CL=90%	1773
$K_{S}^{0}K^{-}\rho^{+}$	<	6.6	$\times 10^{-3}$	CL=90%	1664
$\kappa_{S}^{0} \kappa^{-2}\pi^{+}\pi^{-}$	<	8.7	$\times 10^{-3}$	CL=90%	1739
$K_{S}^{0}K^{-}\pi^{+}\rho^{0}$		1.6	%	CL=90%	1621
$K_{S}^{0}K^{-}\pi^{+}\eta$		1.3	%	CL=90%	1669
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$		4.18	%	CL=90%	1703
$K_{S}^{O}K^{-}2\pi^{+}\pi^{-}\eta$		4.8	%	CL=90%	
					1570
$K_{S}^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$		1.22	%	CL=90%	1658
$K_{S}^{0}K^{-}\pi^{+}2\pi^{0}$		2.65	%	CL=90%	1742
$K_{S}^{S}K^{-}K^{+}K^{-}\pi^{+}$		4.9	\times 10 ⁻³		1490
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\pi^{0}$	<	3.0	%	CL=90%	1427
$K_S^{0}K^-K^+K^-\pi^+\eta$	<	2.2	%	CL=90%	1214

_				
$K^{*0}K^{-}\pi^{+}$ + c.c.	< 9.7	$\times 10^{-3}$	CL=90%	1722
$ ho \overline{ ho} \pi^0$	< 4	$\times 10^{-5}$	CL=90%	1595
$ ho \overline{ ho} \pi^+ \pi^-$	< 5.8	$\times 10^{-4}$	CL=90%	1544
$\Lambda \overline{\Lambda}$	< 1.2	$\times 10^{-4}$	CL=90%	1521
$ ho \overline{ ho} \pi^+ \pi^- \pi^0$	< 1.85	$\times 10^{-3}$	CL=90%	1490
$\omega p \overline{p}$	< 2.9	$\times 10^{-4}$	CL=90%	1309
$\Lambda \overline{\Lambda} \pi^0$	< 7	$\times 10^{-5}$	CL=90%	1468
$ ho \overline{ ho} 2 (\pi^+ \pi^-)$	< 2.6	$\times 10^{-3}$	CL=90%	1425
$\eta p \overline{p}$	< 5.4	$\times 10^{-4}$	CL=90%	1430
$\eta p \overline{p} \pi^+ \pi^-$	< 3.3	$\times 10^{-3}$	CL=90%	1284
$ ho^{0}p\overline{p}$	< 1.7	$\times 10^{-3}$	CL=90%	1313
$p\overline{p}K^+K^-$	< 3.2	$\times 10^{-4}$	CL=90%	1185
$\eta p \overline{p} K^+ K^-$	< 6.9	$\times 10^{-3}$	CL=90%	736
$\pi^0 p \overline{p} K^+ K^-$	< 1.2	$\times 10^{-3}$	CL=90%	1093
$\phi \underline{p} \overline{p}$	< 1.3	$\times 10^{-4}$	CL=90%	1178
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.5	$\times 10^{-4}$	CL=90%	1404
$\Lambda \overline{p} K^+$	< 2.8	$\times 10^{-4}$	CL=90%	1387
$\Lambda \overline{\underline{p}} K^+ \pi^+ \pi^-$	< 6.3	$\times 10^{-4}$	CL=90%	1234
$\Lambda \overline{\Lambda} \eta_{\underline{}}$	< 1.9	\times 10 ⁻⁴	CL=90%	1262
$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.0	$\times 10^{-4}$	CL=90%	1464
$\Sigma^0 \overline{\Sigma}^0$	< 4	$\times 10^{-5}$	CL=90%	1462
<u>=+=</u> -	< 1.5	$\times 10^{-4}$	CL=90%	1346
<u>=</u> 0 <u>=</u> 0	< 1.4	\times 10 ⁻⁴	CL=90%	1353
	Radiative decays			
$\gamma \chi_{c2}$	< 6.4	\times 10 ⁻⁴	CL=90%	211
$\gamma \chi_{c1}$	(2.48±0.23		CL-30/0	253
$\gamma \chi_{c0}$	(7.0 ± 0.6)			341
$\gamma \eta_c$	< 7	$\times 10^{-4}$	CL=90%	707
$\gamma \eta_c(2S)$	< 9	× 10 ⁻⁴	CL=90%	132
$\gamma \eta'$	< 1.8	× 10 ⁻⁴	CL=90%	1765
$\gamma \eta = \gamma \eta$	< 1.5	× 10 ⁻⁴	CL=90%	1847
$\frac{\gamma}{\gamma}\frac{\gamma}{\pi}$ 0	< 2	× 10 ⁻⁴	CL=90%	1884
1	\ 4	/\ 10	CE 90/0	1001

 $\psi(3823)$ was X(3823)

$$I^G(J^{PC}) = ?^?(2^{--})$$

J, P need confirmation.

Created: 5/30/2017 17:13

Mass $m=3822.2\pm1.2~{\rm MeV}$ Full width $\Gamma~<~16~{\rm MeV},~{\rm CL}=90\%$

ψ (3823) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\chi_{c1}\gamma$	seen	299
$\chi_{c2}\gamma$	not seen	257

X(3872)

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3871.69\pm0.17$ MeV $m_{X(3872)}-m_{J/\psi}=775\pm4$ MeV Full width $\Gamma<1.2$ MeV, CL =90%

X(3872) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-J/\psi(1S)$	> 2.6 %	650
$\omega J/\psi(1S)$	> 1.9 %	†
$D^0 \overline{D}{}^0 \pi^0$	>32 %	117
$\overline{D}^{*0} D^0$	>24 %	2
$\gamma J/\psi$	$> 6 \times 10^{-3}$	697
$\gamma \psi$ (2S)	> 3.0 %	181
$\pi^+\pi^-\eta_c(1S)$	not seen	746
$\pi^+\pi^-\chi_{c1}$	not seen	218
$p\overline{p}$	not seen	1693

X(3900)

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

Mass $m=3886.6\pm2.4$ MeV (S =1.6) Full width $\Gamma=28.1\pm2.6$ MeV

X(3900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi$	seen	699
$J/\psi\pi \ h_c\pi^\pm$	not seen	318
$\eta_c \pi^+ \pi^- (D\overline{D}^*)^{\pm}$	not seen	759
	seen	_
$D^0 D^{*-} + \text{c.c.}$	seen	150
$D^{-}D^{*0}$ + c.c.	seen	141
$\omega\pi^{\pm}$	not seen	1862
$J/\psi\eta$	not seen	509
$D^{+}D^{*-}$ + c.c	seen	_
$D^0\overline{D}^{*0}+$ c.c	seen	_

X(3915) was $\chi_{c0}(3915)$

$$I^{G}(J^{PC}) = 0^{+}(0 \text{ or } 2^{+})$$

Created: 5/30/2017 17:13

Mass $m=3918.4\pm1.9$ MeV Full width $\Gamma=20\pm5$ MeV (S =1.1)

X(3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega J/\psi$	seen	222
$\omega J/\psi \ \pi^+\pi^-\eta_c(1S)$	not seen	785
$\eta_c \eta_{\perp}$	not seen	665
$ \eta_c \eta \\ \eta_c \pi^0 \\ K \overline{K} $	not seen	815
$K\overline{K}$	not seen	1896
$\gamma \gamma$	seen	1959

$\chi_{c2}(2P)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3927.2\pm2.6$ MeV Full width $\Gamma=24\pm6$ MeV

$\chi_{c2}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma\gamma$	seen	1964
$D\overline{D}$	seen	615
D^+D^-	seen	600
$D^0 \overline{D}{}^0$	seen	615
$\pi^+\pi^-\eta_c(1S)$	not seen	793
K \overline{K}	not seen	1901

X(4020)

$$I(J^P) = 1(??)$$

Mass $m=4024.1\pm1.9~\text{MeV}$ Full width $\Gamma=13\pm5~\text{MeV}~(\text{S}=1.7)$

X(4020) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$h_c(1P)\pi$ $D^*\overline{D}^*$	seen	450
$D^* \overline{D}^*$	seen	85
$D\overline{D}^*$ + c.c.	not seen	542
$\eta_c \pi^+ \pi^-$	not seen	872

ψ**(4040)** [h]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 5/30/2017 17:13

Mass $m=4039\pm1$ MeV Full width $\Gamma=80\pm10$ MeV $\Gamma_{ee}=0.86\pm0.07$ keV Γ_{ee} < 2.9 eV, CL = 90% Γ_{ee} < 4.6 eV, CL = 90%

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4040) DECAY MODES	Fraction (Γ _i /Γ	-) Co	onfidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(1.07\pm0.16$	$) \times 10^{-5}$		2019
$D\overline{D}$	seen	,		775
$D^0 \overline{D}{}^0$	seen			775
D^+D^-	seen			764
$D^*\overline{D}$ + c.c.	seen			569
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen			575
$D^*(2010)^+D^-+$ c.c.	seen			561
$D^*\overline{D}^*$	seen			193
$D^*(2007)^0 \overline{D}{}^*(2007)^0$	seen			226
$D^*(2010)^+ D^*(2010)^-$	seen			193
$D^0D^-\pi^++$ c.c. (excl.	not seen			_
$D^*(2007)^0 \overline{D}^0 + \text{c.c.},$				
$D^*(2010)^+D^-$ +c.c.)				
$D\overline{D}^*\pi$ (excl. $D^*\overline{D}^*$)	not seen			_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+ D_s^-$	seen			452
$J/\psi \pi^+ \pi^-$	< 4	$\times 10^{-3}$	90%	794
$J/\psi \pi^0 \pi^0$	< 2	$\times 10^{-3}$	90%	797
$J/\psi\eta$	(5.2 ± 0.7)			675
$J/\psi\pi^0$	< 2.8	$\times 10^{-4}$		823
$J/\psi\pi^+\pi^-\pi^0$	< 2	$\times 10^{-3}$	90%	746
$\chi_{c1}\gamma$	< 3.4	$\times 10^{-3}$	90%	494
$\chi_{c2}\gamma$	< 5	$\times 10^{-3}$	90%	454
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 1.1	%	90%	306
$\chi_{c2}\pi^+\pi^-\pi^0$	< 3.2	%	90%	233
$h_c(1P)\pi^+\pi^-$	< 3	\times 10 ⁻³	90%	403
$\phi \underline{\pi}^+ \pi^-$	< 3	$\times 10^{-3}$	90%	1880
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.9	$\times 10^{-4}$	90%	1578
$\Lambda \overline{\Lambda} \pi^0$	< 9	$\times 10^{-5}$		1636
$\Lambda \overline{\Lambda} \underline{\eta}$	< 3.0	$\times 10^{-4}$	90%	1452
$\sum_{-0}^{+}\sum_{-0}^{-0}$	< 1.3	\times 10 ⁻⁴	90%	1632
$ \begin{array}{l} \Sigma + \frac{1}{\Sigma} - \\ \Sigma^{0} \overline{\Sigma}^{0} \\ \Xi + \overline{\Xi} - \\ \Xi^{0} \overline{\Xi}^{0} \end{array} $	< 7	$\times 10^{-5}$		1630
<u>=</u> + <u>=</u> -	< 1.6	$\times 10^{-4}$		1527
<u>=</u> 0 <u>=</u> 0	< 1.8	× 10 ⁻⁴	90%	1533

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=4146.8\pm2.5$ MeV (S =1.1) Full width $\Gamma=19^{+8}_{-7}$ MeV (S =1.4)

X(4140) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \phi$	seen	217
$\gamma\gamma$	not seen	2073

ψ (4160) [h]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4191\pm 5$ MeV Full width $\Gamma=70\pm 10$ MeV $\Gamma_{ee}=0.48\pm 0.22$ keV $\Gamma_{ee}~<~2.2$ eV, CL =90%

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4160) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e ⁺ e ⁻	$(6.9 \pm 3.3) \times 10$	-6	2096
$\mu_{-}^{+}\mu^{-}$	seen		2093
$D\overline{D}$	seen		956
$D^0 \overline{D}{}^0$	seen		956
D^+D^-	seen		947
$D^*\overline{D}$ + c.c.	seen		798
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen		802
$D^*(2010)^+ D^- + \text{c.c.}$	seen		792
$D^*\overline{D}^*$	seen		592
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		604
$D^*(2010)^+ D^*(2010)^-$	seen		592
$D^{0}D^{-}\pi^{+}$ +c.c. (excl.	not seen		_
$D^*(2007)^0 \overline{D}^0 + c.c.,$			
$D^*(2010)^+D^- + c.c.)$			
$D\overline{D}^*\pi+\text{c.c.}$ (excl. $D^*\overline{D}^*$)	seen		_
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen		_
$D^*(2010)^+ D^*(2010)^-)$			
$D_s^+ D_s^-$	not seen		720
$D_s^{*+}D_s^-$ +c.c.	seen		385

$J/\psi\pi^+\pi^-$	< 3	$\times 10^{-3}$	90%	919
$J/\psi \pi^0 \pi^0$	< 3	$\times 10^{-3}$	90%	922
$J/\psi K^+ K^-$	< 2	$\times 10^{-3}$	90%	407
$J/\psi\eta$	< 8	$\times 10^{-3}$	90%	822
$J/\psi \pi^0$	< 1	$\times 10^{-3}$	90%	944
$J/\psi\eta'$	< 5	$\times 10^{-3}$	90%	457
$J/\psi \pi^+ \pi^- \pi^0$	< 1	$\times 10^{-3}$	90%	879
$\psi(2S)\pi^+\pi^-$	< 4	$\times 10^{-3}$	90%	396
$\chi_{c1}\gamma$	< 5	$\times 10^{-3}$	90%	625
$\chi_{c2}\gamma$	< 1.3	%	90%	587
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 2	\times 10 ⁻³	90%	496
$\chi_{c2}\pi^{+}\pi^{-}\pi^{0}$	< 8	\times 10 ⁻³	90%	445
$h_c(1P)\pi^+\pi^-$	< 5	\times 10 ⁻³	90%	556
$h_c(1P)\pi^0\pi^0$	< 2	\times 10 ⁻³	90%	560
$h_c(1P)\eta$	< 2	\times 10 ⁻³	90%	348
$h_c(1P)\pi^0$	< 4	\times 10 ⁻⁴	90%	600
$\phi\pi^+\pi^-$	< 2	\times 10 ⁻³	90%	1961
$\gamma X(3872) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 6.8	\times 10 ⁻⁵	90%	_
$\gamma X(3915) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.36	\times 10 ⁻⁴	90%	_
$\gamma X(3930) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.18	\times 10 ⁻⁴	90%	_
$\gamma X(3940) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.47	$\times 10^{-4}$	90%	_
$\gamma X(3872) \rightarrow \gamma \gamma J/\psi$	< 1.05	\times 10 ⁻⁴	90%	_
$\gamma X(3915) ightarrow \gamma \gamma J/\psi$	< 1.26	\times 10 ⁻⁴	90%	_
$\gamma X(3930) ightarrow \gamma \gamma J/\psi$	< 8.8	\times 10 ⁻⁵	90%	_
$\gamma X(3940) \rightarrow \gamma \gamma J/\psi$	< 1.79	\times 10 ⁻⁴	90%	_

X(4260)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

Mass $m=4230\pm 8$ MeV (S = 2.9) Full width $\Gamma=55\pm 19$ MeV (S = 4.4)

X(4260) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi^+ \pi^-$	seen	950
$J/\psi f_0(980), \;\; f_0(980) ightarrow \; \pi^+ \tau$		_
$X(3900)^{\pm}\pi^{\mp}$, $X^{\pm} ightarrow~J/\psi\pi$	$^{\pm}$ seen	_
$J/\psi \pi^0 \pi^0$	seen	952
$J/\psi K^+ K^-$	seen	477
$J/\psiK^0_SK^0_S$	not seen	465
$X(3872)\gamma$	seen	343
$J/\psi\eta$	not seen	857
$J/\psi\pi^0$	not seen	974
$J/\psi\eta'$	not seen	520
$J/\psi \pi^+\pi^-\pi^0$	not seen	912
HTTD://DDC LBL COV	Dago 20	Croated: 5/20/2017 17:12

HTTP://PDG.LBL.GOV

Page 29 Created: 5/30/2017 17:13

0		
$J/\psi \eta \pi^0$	not seen	780
$J/\psi \eta \eta$	not seen	247
$\psi(2S)\pi^+\pi^-$	not seen	437
$\psi(2S)\eta$	not seen	†
$\chi_{c0}\omega$	not seen	205
$\chi_{c1}\gamma$	not seen	658
$\chi_{c2}\gamma$	not seen	620
$\chi_{c1}\pi^+\pi^-\pi^0$	not seen	537
$\chi_{c2}\pi^{+}\pi^{-}\pi^{0}$	not seen	489
$h_c(1P)\pi^+\pi^-$	not seen	593
$\phi \pi^+ \pi^-$	not seen	1982
$ \frac{\phi \pi^+ \pi^-}{\frac{\phi f_0(980)}{D}} \rightarrow \phi \pi^+ \pi^- $	not seen	_
$D\overline{D}$	not seen	998
$D^0 \overline{D}{}^0$	not seen	998
D^+D^-	not seen	989
$D^*\overline{D}$ +c.c.	not seen	887
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen	_
$D^*(2010)^+D^-+c.c.$	not seen	_
$D^*\overline{D}^*$	not seen	657
$D^*(2007)^0 \overline{D}^*(2007)^0$	not seen	668
$D^*(2010)^+ D^*(2010)^-$	not seen	657
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2007)^0 \overline{D}{}^{*0} + {\sf c.c.},$		
$D^*(2010)^+D^-$ +c.c.)		
$D\overline{D}^*\pi+$ c.c. (excl. $D^*\overline{D}^*$)	not seen	723
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2010)^+ D^*(2010)^-)$		
$D^0 D^*(2010)^- \pi^+ + \text{c.c.}$	not seen	716
$D^* \overline{D}{}^* \pi$	not seen	395
$D_s^+ D_s^-$	not seen	774
$D_{s}^{*+}D_{s}^{-}+c.c.$	not seen	615
$D_{s}^{*+}D_{s}^{*-}$	not seen	111
$D_{s}^{*+}D_{s}^{*-}$ $p\overline{p}$ $K_{S}^{0}K^{\pm}\pi^{\mp}$ $K^{+}K^{-}\pi^{0}$	not seen	1896
$K_{c}^{0}K^{\pm}\pi^{\mp}$	not seen	2037
$K^{+}K^{-}\pi^{0}$	not seen	2038
		2030

X(4360)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

$$X(4360)$$
 MASS $=4341\pm 8$ MeV \quad (S $=1.3)$ $X(4360)$ WIDTH $=102\pm 9$ MeV \quad Γ_{ee} $<$ 0.57 eV, CL $=90\%$ \quad Γ_{ee} $<$ 1.9 eV, CL $=90\%$

X(4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\psi(2S)\pi^+\pi^-}$	seen	547
ψ (3823) $\pi^{+}\pi^{-}$	possibly seen	411

ψ (4415) ^[h]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m = 4421 \pm 4$ MeV Full width $\Gamma = 62 \pm 20$ MeV $\Gamma_{ee} = 0.58 \pm 0.07$ keV $\Gamma_{ee} < 3.6$ eV, CL = 90% $\Gamma_{ee} < 0.47$ eV, CL = 90% $\Gamma_{ee} < 2.3$ eV, CL = 90%

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D\overline{D}$	seen		1187
$D^0 \overline{D}{}^0$	seen		1187
D^+D^-	seen		1179
$D^*\overline{D}$ + c.c.	seen		1063
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen		1067
$D^*(2010)^+ D^- + \text{c.c.}$	seen		1059
$D^* \overline{D}^*$	seen		919
$D^*(2007)^0 \overline{D}^*(2007)^0 + \text{c.c.}$	seen		927
$D^*(2010)^+ D^*(2010)^- + \text{c.c.}$	seen		919
$D^0 D^- \pi^+ ({ m excl.} \ D^* (2007)^0 \overline{D}{}^0$	< 2.3 %	90%	_
_+c.c., $D^*(2010)^+D^-$ +c.c.			
$D\overline{D}_{2}^{*}(2460) \to D^{0}D^{-}\pi^{+}+\text{c.c.}$	(10 ± 4) %		_
$D^0 D^{*-} \pi^+ + \text{c.c.}$	< 11 %	90%	926
$D_s^+ D_s^-$	not seen		1006
$\omega \chi_{c2}$	possibly seen		330
$D_{s}^{*+}D_{s}^{-}+c.c.$	seen		_
$D_s^{*+}D_s^{*-}$	not seen		652
$\psi(3823)\pi^{+}\pi^{-}$	possibly seen		494
$J/\psi \eta$	< 6 × 10	-3 90%	1022
$\chi_{c1}\gamma$	< 8 × 10	-4 90%	817
$\chi_{c2}\gamma$	< 4 × 10		780
e^+e^-	$(9.4\pm3.2)\times10^{-1}$	_	2210

$$I(J^P) = ?(1^+)$$

Quantum numbers not established.

Mass
$$m=4478^{+15}_{-18}~\text{MeV}$$

Full width $\Gamma=181\pm31~\text{MeV}$

X(4430) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\psi(2S)$	seen	711
$\pi^+ J/\psi$	seen	1162

X(4660)

$$I^{G}(J^{PC}) = ?^{?}(1^{-})$$

$$X(4660)$$
 MASS $=4643\pm9$ MeV \quad (S $=1.2)$ $X(4660)$ WIDTH $=72\pm11$ MeV \quad Γ_{ee} $<$ 0.45 eV, CL $=90\%$ \quad Γ_{ee} $<$ 2.1 eV, CL $=90\%$

X(4660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\psi(2S)\pi^+\pi^-}$	seen	820

NOTES

- [a] For $E_{\gamma} > 100$ MeV.
- [b] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [c] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [d] See the "Note on the $\eta(1405)$ " in the $\eta(1405)$ Particle Listings.
- [e] For a narrow state A with mass less than 960 MeV.
- [f] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [g] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.
- [h] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.