Contents

1	Functions			
	1.1	arith1	- miscellaneous arithmetic functions	
		1.1.1	floorsqrt – floor of square root	
		1.1.2	floorpowerroot – floor of some power root	
		1.1.3	legendre - Legendre(Jacobi) Symbol	
		1.1.4	modsqrt - square root of a for modulo p	
		1.1.5	expand – p-adic expansion	
		1.1.6	inverse – inverse	
		1.1.7	CRT – Chinese Reminder Theorem	
		1.1.8	AGM – Arithmetic Geometric Mean	
		1.1.9	vp - p-adic valuation	
			issquare - Is it square?	
			log – integer part of logarithm	
			product - product of some numbers	

Chapter 1

Functions

- 1.1 arith1 miscellaneous arithmetic functions
- 1.1.1 floorsqrt floor of square root

 ${\tt floorsqrt(a:} \ integer/{\tt Rational}) \rightarrow integer$

aの2乗根の小数点切り捨てた値を返す.

1.1.2 floorpowerroot – floor of some power root

floorpowerroot(n: integer, k: integer)
ightarrow integer

nのk乗根の小数点切り捨てた値を返す.

1.1.3 legendre - Legendre (Jacobi) Symbol

legendre(a: integer, m: integer)
ightarrow integer

Legendre 記号と Jacobi 記号を返す $\binom{a}{m}$.

1.1.4 modsqrt - square root of a for modulo p

 $modsqrt(a: integer, p: integer) \rightarrow integer$

a の 2 乗根が存在する時は p を法とする a の 2 乗根の値を返す。 さもなければ エラーを返す。

p は素数。

1.1.5 expand – p-adic expansion

 $\texttt{expand}(\texttt{n:} \textit{integer}, \;\; \texttt{m:} \; \textit{integer}) \rightarrow \textit{list}$

nのm進展開を返す。.

nは正の整数。 mは2以上。 出力は降順の係数展開のリスト。.

1.1.6 inverse – inverse

 $inverse(x: integer, p: integer) \rightarrow integer$

法 p における x の逆関数を返す。.

р は素数。.

1.1.7 CRT - Chinese Reminder Theorem

 $\operatorname{CRT}(\operatorname{nlist}: \mathit{list}) \to \mathit{integer}$

Return the uniquely determined integer satisfying all modulus conditions given by nlist.

入力 nlist は 2 つの要素からなるリスト。一つ目は割った余りで二つ目は割る数。 どちらも整数。

1.1.8 AGM – Arithmetic Geometric Mean

 $\mathbf{AGM}(\mathtt{a:}\ integer,\ \mathtt{b:}\ integer)
ightarrow \mathit{float}$

aとbの算術幾何平均を返す。

1.1.9 vp – p-adic valuation

 $vp(n: integer, p: integer, k: integer=0) \rightarrow tuple$

p 進評価とnの他の部分群を返す。

 $\dagger k$ が与えられたら、評価と $\mathbf{n}p^{\mathbf{k}}$ の他の部分群を返す。

1.1.10 issquare - Is it square?

```
issquare(n: integer) \rightarrow integer
```

nが二乗になっていたら根をを返し、さもなくば0を返す。

1.1.11 log – integer part of logarithm

```
\log(\texttt{n:}\ integer, \, \texttt{base:}\ integer{=}2) 
ightarrow integer
```

nの対数の整数部分を返す。base.

1.1.12 product – product of some numbers

```
	ext{product(iterable: } \textit{list}, 	ext{ init: } \textit{integer/Rational} = 	ext{None}) \ 	o 	ext{prod: } \textbf{integer/Rational}
```

iterable のすべての要素からなるものを返す。

If init is given, the multiplication starts with init instead of the first element in iterable.

Input list iterable must be list of numbers including integers, **Rational** etc. The output prod may be determined by the type of elements of iterable and init.

Examples

```
>>> arith1.AGM(10, 15)
12.373402181181522
>>> arith1.CRT([[2, 5],[3,7]])
17
>>> arith1.CRT([[2, 5], [3, 7], [5, 11]])
192
>>> arith1.expand(194, 5)
[4, 3, 2, 1]
>>> arith1.vp(54, 3)
(3, 2)
>>> arith1.product([1.5, 2, 2.5])
```

```
7.5
>>> arith1.product([3, 4], 2)
24
>>> arith1.product([])
1
```

Bibliography