## 1m diameter helium plume

#### **Problem Description**

1m helium plum simulation is a standard test to ensure that CFD algorithm can handle variable density effects, but without extra complications caused by combustion. Validation data for this case is also available [1]. At time t=0 the computational domain is set up to have 1m diameter helium inlet with air coflow. The rest of the boundaries are set up to simulate open boundaries.

#### **Simulation Specifics**

Component used: ARCHES

Input file name: helium\_1m.ups

Command used to run input file: mpirun -np 64 sus helium\_1m.ups

Postprocessing command: scirun helium\_1m.srn

Simulation Domain:  $3 \times 3 \times 3 \text{ m}$ 

Cell Spacing:

 $2 \times 2 \times 2 \text{ cm (Level 0)}$ 

**Example Runtimes:** 

8 hours (64 processors, 2.4 GHz Xeon (inferno cluster))

Physical time simulated:

0.97 sec.

### Results

Figure 1 shows a 2D center-plane contour plot of density at t=0.97 seconds. This figure shows what can be expected from the code after 8 hours of run time. Figure 2 second helium puff going through the domain (after 35 hours of run time).



Figure 1: 2D center-plane contour plot of denisty at t=0.97 seconds.



Figure 2: 2D center-plane contour plot of density at t = 1.75 seconds.

# References

[1] P. E. Des Jardin, T. J. O'Hern, and S. R. Tieszen. Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. *Physics of Fluids*, 16(6):1866-1883.