MY SCIENTIFIC JOURNEY TO EMBRACING JULIA

Steven E. Hahn
Software Scientist
Computer Science and Mathematics Division
Oak Ridge National Laboratory
hahnse@ornl.gov

Neutron & X-ray Scattering, Scientific Software

- PhD research: Inelastic x-ray scattering and electronic structure calculations
 - HPC user, Python scripting
- Postdoctoral research: Inelastic neutron scattering and spin wave modelling
 - C++11 software development
- Neutron data reduction, analysis and visualization
 - Inconvenient data sizes
 - Large (256 GB+) memory CPU workstations
 - Python & C++

Transitioning to High Performance Computing

- Research Software Engineer
 - Plasma physics (ASGarD, KORC), Materials science (QMCPACK), and Power grid (RE-INTEGRATE)
 - C++, multi-node, GPU accelerators
- Neutron scattering software and Julia
 - Incorporate instrument effects into calculations
 - Emerging Julia software stack

- Processing raw neutron scattering data in OLCF resources
 - JACC.jl for performance portability

Current Thoughts

- User experience,
 - Learning curve, differentiation
- Developer productivity
 - Finite software engineering resources
- Language interoperability
 - Bindings? Alternative implementations? Rewrite?
- Performance portability
 - Heterogeneous computing landscape

