12 Vectors and the Geometry of Space

Copyright © Cengage Learning. All rights reserved.

12.2 Vectors

Vectors

The term **vector** is used in mathematics and the sciences to indicate a quantity that has both magnitude and direction.

Geometric Description of Vectors

Geometric Description of Vectors (1 of 10)

A vector is often represented by an arrow or a directed line segment. The length of the arrow represents the magnitude of the vector and the arrow points in the direction of the vector.

We denote a vector by printing a letter in boldface (\mathbf{v}) or by putting an arrow above the letter (\vec{v}).

Geometric Description of Vectors (2 of 10)

For instance, suppose a particle moves along a line segment from point *A* to point *B*.

The corresponding **displacement vector v**, shown in Figure 1, has **initial point** A (the tail) and **terminal point** B (the tip) and we indicate this by writing $\mathbf{v} = \overrightarrow{AB}$.

Equivalent vectors

Figure 1

Geometric Description of Vectors (3 of 10)

Notice that the vector $\mathbf{u} = \overrightarrow{CD}$ has the same length and the same direction as \mathbf{v} even though it is in a different position.

We say that \mathbf{u} and \mathbf{v} are **equivalent** (or **equal**) and we write $\mathbf{u} = \mathbf{v}$.

The **zero vector**, denoted by **0**, has length 0. It is the only vector with no specific direction.

Geometric Description of Vectors (4 of 10)

Suppose a particle moves from A to B, so its displacement vector is \overrightarrow{AB} .

Then the particle changes direction and moves from B to C, with displacement vector \overrightarrow{BC} as in Figure 2.

The combined effect of these displacements is that the particle has moved from *A* to *C*.

The resulting displacement vector \overrightarrow{AC} is called the *sum* of \overrightarrow{AB} and \overrightarrow{BC} and we write

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$

Figure 2

Geometric Description of Vectors (5 of 10)

In general, if we start with vectors \mathbf{u} and \mathbf{v} , we first move \mathbf{v} so that its tail coincides with the tip of \mathbf{u} and define the sum of \mathbf{u} and \mathbf{v} as follows.

Definition of Vector Addition If u and \mathbf{v} are vectors positioned so the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then the **sum u + v** is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .

The definition of vector addition is illustrated in Figure 3. You can see why this definition is sometimes called the **Triangle Law**.

The Triangle Law Figure 3

Geometric Description of Vectors (6 of 10)

In Figure 4 we start with the same vectors **u** and **v** as in Figure 3 and draw another copy of **v** with the same initial point as **u**.

Completing the parallelogram, we see that $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.

This also gives another way to construct the sum: If we place **u** and **v** so they start at the same point, then **u** + **v** lies along the diagonal of the parallelogram with **u** and **v** as sides. (This is called the **Parallelogram Law**.)

The Parallelogram Law Figure 4

Geometric Description of Vectors (7 of 10)

It is possible to multiply a vector **v** by a real number *c*. In this context we call the real number *c* a **scalar** to distinguish it from a vector.

For instance, we want the *scalar multiple* $2\mathbf{v}$ to be the same vector as $\mathbf{v} + \mathbf{v}$, which has the same direction as \mathbf{v} but is twice as long. In general, we multiply a vector by a scalar as follows.

Definition of Scalar Multiplication If c is a scalar and \mathbf{v} is a vector, then the **scalar multiple** $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c > 0 and is opposite to \mathbf{v} if c < 0. If c = 0 or $\mathbf{v} = \mathbf{0}$, then $c\mathbf{v} = \mathbf{0}$.

Geometric Description of Vectors (8 of 10)

This definition is illustrated in Figure 7.

Scalar multiples of v
Figure 7

We see that real numbers work like scaling factors here; that's why we call them scalars.

Geometric Description of Vectors (9 of 10)

Notice that two nonzero vectors are **parallel** if they are scalar multiples of one another.

In particular, the vector $-\mathbf{v} = (-1)\mathbf{v}$ has the same length as \mathbf{v} but points in the opposite direction. We call it the **negative** of \mathbf{v} .

By the **difference u** – **v** of two vectors we mean

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$$

Geometric Description of Vectors (10 of 10)

For the vectors \mathbf{u} and \mathbf{v} shown in Figure 8(a), we can construct the difference $\mathbf{u} - \mathbf{v}$ by first drawing the negative of \mathbf{v} , $-\mathbf{v}$, and then adding it to \mathbf{u} by the Parallelogram Law as in Figure 8(b).

Alternatively, since $\mathbf{v} + (\mathbf{u} - \mathbf{v}) = \mathbf{u}$, the vector $\mathbf{u} - \mathbf{v}$, when added to \mathbf{v} , gives \mathbf{u} . So we could construct $\mathbf{u} - \mathbf{v}$ as in Figure 8(c) by means of the Triangle Law.

Drawing the difference **u** – **v**

Figure 8

Components of a Vector

Components of a Vector (1 of 16)

For some purposes it's best to introduce a coordinate system and treat vectors algebraically.

If we place the initial point of a vector \mathbf{a} at the origin of a rectangular coordinate system, then the terminal point of \mathbf{a} has coordinates of the form (a_1, a_2) or (a_1, a_2, a_3) , depending on whether our coordinate system is two- or three-dimensional (see Figure 11).

Figure 11

Components of a Vector (2 of 16)

These coordinates are called the **components** of **a** and we write

$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 or $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$

We use the notation $\langle a_1, a_2 \rangle$ for the ordered pair that refers to a vector so as not to confuse it with the ordered pair (a_1, a_2) that refers to a point in the plane.

For instance, the vectors shown in Figure 12 are all equivalent to the vector $\overrightarrow{OP} = \langle 3, 2 \rangle$ whose terminal point is P(3, 2).

Representations of $\mathbf{a} = \langle 3, 2 \rangle$

Components of a Vector (3 of 16)

What they have in common is that the terminal point is reached from the initial point by a displacement of three units to the right and two upward.

We can think of all these geometric vectors as **representations** of the algebraic vector $\mathbf{a} = \langle 3, 2 \rangle$.

The particular representation \overrightarrow{OP} from the origin to the point P(3, 2) is called the **position vector** of the point P.

Components of a Vector (4 of 16)

In three dimensions, the vector $\mathbf{a} = \overrightarrow{OP} = \langle a_1, a_2, a_3 \rangle$ is the **position vector** of the point $P(a_1, a_2, a_3)$. (See Figure 13.)

Representations of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$

Figure 13

Components of a Vector (5 of 16)

Let's consider any other representation of **a** by a directed line segment \overline{AB} with initial point $A(x_1, y_1, z_1)$ and the terminal point is $B(x_2, y_2, z_2)$.

Then we must have $x_1 + a_1 = x_2$, $y_1 + a_2 = y_2$, and $z_1 + a_3 = z_2$ and so $a_1 = x_2 - x_1$, $a_2 = y_2 - y_1$, and $a_3 = z_2 - z_1$.

Thus we have the following result.

1 Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector **a** with representation \overrightarrow{AB} is

$$\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Example 3

Find the vector represented by the directed line segment with initial point A(2, -3, 4) and terminal point B(-2, 1, 1).

Solution:

By (1), the vector corresponding to \overrightarrow{AB} is

$$\mathbf{a} = \langle -2-2, 1-(-3), 1-4 \rangle$$
$$= \langle -4, 4, -3 \rangle$$

Components of a Vector (6 of 16)

The **magnitude** or **length** of the vector \mathbf{v} is the length of any of its representations and is denoted by the symbol $|\mathbf{v}|$ or $||\mathbf{v}||$. By using the distance formula to compute the length of a segment OP, we obtain the following formulas.

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Components of a Vector (7 of 16)

How do we add vectors algebraically? Figure 14 shows that if $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then the sum is $\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$, at least for the case where the components are positive.

In other words, to add algebraic vectors we add corresponding components. Similarly, to subtract vectors we subtract corresponding components.

Figure 14

Components of a Vector (8 of 16)

From the similar triangles in Figure 15 we see that the components of ca_1 and ca_2 .

So to multiply a vector by a scalar we multiply each component by that scalar.

Figure 15

Components of a Vector (9 of 16)

If
$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 and $\mathbf{b} = \langle b_1, b_2 \rangle$, then

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$
 $\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$ $c\mathbf{a} = \langle ca_1, ca_2 \rangle$

Similarly, for three-dimensional vectors,

$$\langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$
 $\langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$
 $c \langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$

Components of a Vector (10 of 16)

We denote by V_2 the set of all two-dimensional vectors and by V_3 the set of all three-dimensional vectors.

More generally, we will consider the set V_n of all n-dimensional vectors.

An *n*-dimensional vector is an ordered *n*-tuple:

$$\mathbf{a} = \langle a_1, a_2, ..., a_n \rangle$$

where a_1, a_2, \ldots, a_n are real numbers that are called the components of **a**.

Components of a Vector (11 of 16)

Addition and scalar multiplication are defined in terms of components just as for the cases n = 2 and n = 3.

Properties of Vectors If **a**, **b**, and **c** are vectors in V_n and c and d are scalars, then

1.
$$a + b = b + a$$

2.
$$a + (b + c) = (a + b) + c$$

3.
$$a + 0 = a$$

4.
$$a + (-a) = 0$$

5.
$$c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$

6.
$$(c + d)a = ca + da$$

7.
$$(cd)a = c(da)$$

8.
$$1a = a$$

Components of a Vector (12 of 16)

Three vectors in V_3 play a special role. Let

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1, 0 \rangle$ $\mathbf{k} = \langle 0, 0, 1 \rangle$

These vectors i, j, and k are called the standard basis vectors.

They have length 1 and point in the directions of the positive x-, y-, and z-axes.

Components of a Vector (13 of 16)

Similarly, in two dimensions we define $\mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{j} = \langle 0, 1 \rangle$. (See Figure 17.)

Standard basis vectors in V_2 and V_3

Figure 17

Components of a Vector (14 of 16)

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, then we can write

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle a_1, 0, 0 \rangle + \langle 0, a_2, 0 \rangle + \langle 0, 0, a_3 \rangle$$
$$= a_1 \langle 1, 0, 0 \rangle + a_2 \langle 0, 1, 0 \rangle + a_3 \langle 0, 0, 1 \rangle$$

2
$$\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

Thus any vector in V_3 can be expressed in terms of \mathbf{i} , \mathbf{j} , and \mathbf{k} . For instance,

$$\langle 1, -2, 6 \rangle = \mathbf{i} - 2\mathbf{j} + 6\mathbf{k}$$

Similarly, in two dimensions, we can write

3
$$\mathbf{a} = \langle a_1, a_2 \rangle = a_1 \mathbf{i} + a_1 \mathbf{j}$$

Components of a Vector (15 of 16)

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with Figure 17.

Standard basis vectors in V_2 and V_3

Figure 17

Figure 18

Components of a Vector (16 of 16)

A unit vector is a vector whose length is 1. For instance, i, j, and k are all unit vectors. In general, if $a \neq 0$, then the unit vector that has the same direction as a is

4
$$u = \frac{1}{|a|}a = \frac{a}{|a|}$$

In order to verify this, we let $c = \frac{1}{|\mathbf{a}|}$. Then $\mathbf{u} = c\mathbf{a}$ and c is a positive scalar, so \mathbf{u} has the same direction as \mathbf{a} . Also

$$|\mathbf{u}| = |c\mathbf{a}| = |c||\mathbf{a}| = \frac{1}{|\mathbf{a}|}|\mathbf{a}| = 1$$

Applications

Applications (1 of 1)

Vectors are useful in many aspects of physics and engineering. Here we look at forces.

A force is represented by a vector because it has both a magnitude (measured in pounds or newtons) and a direction.

If several forces are acting on an object, the **resultant force** experienced by the object is the vector sum of these forces.

Example 7

A 100-lb weight hangs from two wires as shown in Figure 19. Find the tensions (forces) T_1 and T_2 in both wires and the magnitudes of the tensions.

Figure 19

Example 7 – Solution (1 of 4)

We first express T_1 and T_2 in terms of their horizontal and vertical components. From Figure 20 we see that

5
$$\mathbf{T}_1 = -|\mathbf{T}_1|\cos 50^{\circ}\mathbf{i} + |\mathbf{T}_1|\sin 50^{\circ}\mathbf{j}$$

6
$$\mathbf{T}_2 = |\mathbf{T}_2| \cos 32^{\circ} \mathbf{i} + |\mathbf{T}_2| \sin 32^{\circ} \mathbf{j}$$

Figure 20

The resultant $\mathbf{T}_1 + \mathbf{T}_2$ of the tensions counterbalances the weight $\mathbf{w} = -100 \, \mathbf{j}$ and so we must have

$$T_1 + T_2 = -w = 100 j$$

Example 7 – Solution (2 of 4)

Thus

$$(-|\mathbf{T}_1|\cos 50^\circ + |\mathbf{T}_2|\cos 32^\circ)\mathbf{i} + (|\mathbf{T}_1|\sin 50^\circ + |\mathbf{T}_1|\sin 32^\circ)\mathbf{j}$$
$$= 100\mathbf{j}$$

Equating components, we get

$$-|\mathbf{T}_{1}|\cos 50^{\circ} + |\mathbf{T}_{2}|\cos 32^{\circ} = 0$$
$$|\mathbf{T}_{1}|\sin 50^{\circ} + |\mathbf{T}_{2}|\sin 32^{\circ} = 100$$

Example 7 – Solution (3 of 4)

Solving the first of these equations for $|\mathbf{T}_2|$ and substituting into the second, we get

$$|\mathbf{T}_1|\sin 50^\circ + \frac{|\mathbf{T}_1|\cos 50^\circ}{\cos 32^\circ}\sin 32^\circ = 100$$

$$|\mathbf{T}_1| \left(\sin 50^\circ + \cos 50^\circ \frac{\sin 32^\circ}{\cos 32^\circ} \right) = 100$$

So the magnitudes of the tensions are

$$|\mathbf{T}_1| = \frac{100}{\sin 50^\circ + \tan 32^\circ \cos 50^\circ} \approx 85.64 \text{ lb}$$

and

$$\left|\mathbf{T}_{2}\right| = \frac{\left|\mathbf{T}_{1}\right|\cos 50^{\circ}}{\cos 32^{\circ}} \approx 64.91 \text{ lb}$$

Example 7 – Solution (4 of 4)

Substituting these values in (5) and (6), we obtain the tension vectors

$$T_1 \approx -55.05i + 65.60j$$
 $T_2 \approx 55.05i + 34.40j$