Signali i sustavi

Sva pitanja za domaću zadaću – 20. ožujka 2008.

1.	Fourierov integral signala $x(t)$ računamo prema izrazu (t je vrijeme, dok je F frekvencija):
	a) $X(F) = \int_{-\infty}^{\infty} x(t)e^{j2\pi Ft} dt$ b) $X(F) = \frac{1}{T_p} \int_{-\infty}^{\infty} x(t)e^{j2\pi Ft} dt$ c) $X(F) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft} dt$ d) $X(F) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft} dt$ e) $X(F) = \frac{d}{dt} \left(x(t)e^{-j2\pi Ft} \right)$
2.	Za koji od navedenih kontinuiranih signala $f:\mathbb{R}\to\mathbb{R}$ ne možemo odrediti temeljni period?
((a) $f(t) = 2$ (b) $f(t) = \sin(t)$ (c) $f(t) = \sin(t)\cos(t) + 2$ (d) $f(t) = \tan(t)$ (e) $f(t) = \cos(t)$
3.	Parni dio funkcije $f(t)$ računamo kao $f_{\text{parno}}(t) = \frac{f(t) + f(-t)}{2}$.
	a) netočno (b) točno
4.	Odredite imaginarni dio spektra $\text{Im}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) 0 (b) $\frac{-1}{\Omega+1}$ (c) $\frac{1}{\Omega-1}$ (d) $\frac{1}{\Omega+1}$ (e) $\frac{-1}{\Omega-1}$
5.	Kada profesor Jeren (motivacijski) kaže "Recite DA Signalima i sustavima" time izrekne
	 a) Nyquistov kriterij b) jedan zvučni sustav c) definiciju teorema otipkavanja d) jedan zvučni signal e) princip podijeli pa vladaj
6.	Propuštanjem signala $x(t)$ kroz neki sustav dobili smo signal $x(0,1t)$. Sustav je napravio:
	a) vremensku kompresiju kontinuiranog signala d) vremensku kompresiju diskretnog signala d) vremensku kompresiju diskretnog signala de vremensku ekspanziju kontinuiranog signala
7.	Domena i kodomena digitalnog signala su podskup:
(skupa realnih brojeva b) skupa prirodnih brojeva c) domena je podskup cijelih, a kodomena prirodnih brojeva e) domena je podskup realnih, a kodomena cijelih brojeva
8.	Srednja snaga kontinuiranog signala $y(t)=t\mu(t)$ iznosi:
	a) 0 b) t c) t^2 d) ∞ e) 1
9.	Odredite temeljni period signala $\sin^2(t)$.
	a) Signal nije periodičan! b) 1 $(c)\pi$ d) $\frac{1}{2}$ e) 2π
LO.	Asistent T.P. (podaci poznati redakciji) se nakon završenog FER-a zaposlio i mora dizajnirati sustav za obradu signala koji radi sa signalima čija frekvencija ide do 40 kHz. Kako T.P. nije dobro naučio teoriju signala odabrao je D/A pretvornil nedovoljnih mogućnosti. Koji pretvornik je T.P. odabrao:
	a) Analog-Devices AD1935 (192 kHz) (b) Analog-Devices AD1847 (48 kHz) c) Analog-Devices ADAV803 (48/96 kHz) d) Analog-Devices ADAV801 (48/96 kHz) e) Analog-Devices AD1835A (96 kHz)
l1.	Među navedenim pojmovima samo je jedan signal. To je:
((a) impuls (b) automat (c) kapacitet (d) otpor (e) induktivitet
12.	Propuštanjem signala $x(t)$ kroz neki sustav dobili smo signal $x(4t)$. Sustav je napravio:
	a) vremensku ekspanziju kontinuiranog signala b) derivaciju signala c) vremensku kompresiju diskretnog signala e) vremensku ekspanziju diskretnog signala
13.	Srednja snaga signala $y[n] = \left(\frac{1}{3}\right)^{2n} \mu[n]$ iznosi:
	a) $\frac{80}{81}$ b) $\frac{81}{80}$ c) $\frac{162}{160}$ d) $\frac{81}{160}$ e) 0
14.	Važno svojstvo Diracove delta distribucije jest $\int_{-\infty}^{+\infty} f(t) \delta(t) dt = f(0)$.
(a) točno b) netočno

15. Sustavom se općenito smatra pojava ili fenomen koji nosi neku informaciju.

	a) točno (b) netočno
16.	Pronađi neperiodičan kontinuirani signal!
	a) $\sin(\pi t)\cos(\pi t)$ b) $\cos(\pi t - \sqrt{2})$ c) $\cos(\pi t)\mu(t)$ d) $\cos(\pi t)$ e) $\sin(\pi t - \frac{\pi}{4})$
17.	Rješavate zadatke iz Signala i sustava. Prisjećate se definicije s predavanja i mrmljate sebi u bradu: 'Produkt dva parna signala i produkt parnog i neparnog signala su parni, a produkt dva neparna signala je neparan.' No, nesigurni u svoje pamćenje, provjerite tu definiciju u bilježnici te zaključite:
((a) netočno b) točno
18.	Kolega Vam u pauzi dođe s pitanjem: 'Produkt dva neparna signala i produkt parnog i neparnog signala su parni, a produkt dva parna signala je paran – je li tako?' Odgovarate mu: a) netočno b) točno
10	
19.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja Ω ? a) signal b) spektar c) frekvenciju d) vrijeme (e) kružnu frekvenciju
20.	Parni dio signala $x(t) = t^2 + \sin(t) + \cos(3t) + t$ je:
	a) $\sin(t) + \cos(3t)$ b) $\cos(3t) + t$ c) $t^2 + \sin(t)$ d) $t^2 + \cos(3t)$ e) $\sin(t) + t$
21.	Među navedenim pojmovima samo je jedan sustav. To je:
	a) napon b) jedinična stepenica c) impuls d) struja (e) kapacitet
22.	Odredite snagu kontinuiranog kompleksnog periodičnog signala $x(t) = e^{jt}$ (prisjetite se Parsevalove relacije).
	a) $1/2\pi$ b) ∞ (c) 1 d) 0 e) 0.5
23.	Propuštanjem signala $x(t)$ kroz neki sustav dobili smo signal $x(4t)$. Sustav je napravio:
	a) vremensku ekspanziju kontinuiranog signala b) vremensku ekspanziju diskretnog signala c) vremensku kompresiju diskretnog signala d) derivaciju signala evremensku kompresiju kontinuiranog signala
24.	Želite zadiviti novu prijateljicu s muzičke akademije koja svira električnu violinu kojom može odsvirati ton najveće frekvencije f . Pokloniti ćete joj pojačalo i efekt koje namjeravate sami sastaviti. Kako ste odlično naučili teoriju sustava znate da NE smijete odabrati A/D pretvornik za koji je(F_s je frekvencija uzorkovanja):
	a) $F_s > 3f$ (b) $F_s \le 2f$ c) $F_s > 2,5f$ d) $F_s \ge 2,5f$ e) $F_s \ge 3f$
25.	Mali Ivica je promatrao neka dva diskretna signala i zaključio da oba imaju srednju snagu jednaku $\frac{1}{2}$. Koja dva signala su u pitanju?
	a) Jedinični skok $\mu[n]$ i kompleksna eksponencijala $\frac{1}{2}e^{j100n}$. b) Jedinični skok $\mu[n]$ i kompleksna eksponencijala $\frac{\sqrt{2}}{2}e^{j100n}$. c) Mali Ivica nije dobro zaključio. Ne postoje dva signala jednake snage. d) Jedinični impuls $\delta[n]$ i kompleksna eksponencijala $\frac{\sqrt{2}}{2}e^{j100n}$. e) Jedinični impuls $\delta[n]$ i kompleksna eksponencijala $\frac{1}{2}e^{j100n}$.
26.	Energija signala $y(t) = 3\sin(2t)$ za $-\pi \le t \le \pi$ iznosi:
	a) 0 b) 3π c) $9\pi - \frac{9}{8}$ d) $9\pi - \frac{9}{4}$ (e) 9π
27.	$\rm U$ 78. minuti filma Poštanska kočija (režija: John Ford, 1939.) indijanci napadaju poštansku kočiju. Kočija bjesomučno juri naprijed, a kotači se vrte unatrag. Zašto?
	a) Zato što se nije koristila relativistička korekcija brzine. b) Zato što John Ford ne zna teoriju sustava. postoji ta scena u Poštanskoj kočiji!!! d) Pa tko je vidio film u kojemu se kotači vrte na pravu stranu??? e) Došlo je do preklapanja spektra (eng. aliasing).
28.	Energija jediničnog impulsa $\delta[n-2]$ iznosi:
	a) 0 (b) 1 (c) π (d) 2 (e) ∞
29.	Vremenski diskretan signal s kvantiziranom amplitudom prikazan uz pomoć konačnog broja bitova naziva se:
	a) periodički signal b) harmonički signal c) digitalni signal d) konačni signal e) kauzalni signal
30.	Jedna je funkcija parna. Koja?

a) $f(x) = x \cos(x)$ $3\sin(x)\cos(x)$	$\mathbf{b)} \ f(x) = \sin(x) - \cos(x)$		(c)) d) $f(x) = \sin(x) - x^2$	e) $f(x) =$
Jedinična rampa $r(n)$ i jedinična rampa	edinični skok $\mu(n)$ su vezan	i izrazom:		
a) $r(n) = \mu(n+1) - \mu(n)$	b) $\mu(n) = r(n+2)$ c)	$r(n) = \sum_{m=0}^{2n} \mu(m)$	d) $\mu(n) = \frac{d}{dn}r(n)$ (e) $\mu(n) =$	r(n+1)-r(n)
Poznat je spektar signala	a $\mathcal{F}(x(t)) = e^{-j2\Omega} (\mu(\Omega) - \mu)$	$(\Omega - 2)$). Odredite ener	giju spektra pomaknutog signala	a $\mathcal{F}(x(t-3))$

a)
$$\frac{1}{-20j\pi}(e^{-20j}-1)$$
 b) Energija signala se ne može se odrediti jer je spektar kompleksan. c) $\frac{1}{20j\pi}(e^{20j}-1)$ $1/\pi$ e) ∞

Koja definicija je točna od navedenih pet defincija Kroneckerove delta funkcije?

a)
$$\delta[n] = 1$$
 za svaki n **b)** $\delta[n] = 1$ **c)** $\mu[n] = 1$ za $n \ge 0$ **d)** $\mu[n] = \begin{cases} n, & n > 0 \\ -1, & n < 0 \end{cases}$ **e)** $\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{inače} \end{cases}$

34. Snaga signala $y(t) = \cos(2t)$ iznosi:

(a) netočno

31

a) 0 b)
$$\frac{1}{2\pi} + \frac{1}{2}$$
 c) $\frac{1}{8\pi} + \frac{1}{2}$ e) $\frac{1}{8\pi}$ e) $\frac{1}{2\pi}$

35. Signal je cjelina sastavljena od međusobno vezanih objekata gdje svojstva objekata i njihova interakcija određuju vladanje

i svojstva cjeline.

36. Fourierov red realnog periodičnog signala x(t) iznosi $x(t) = 4 - 2\cos(50\pi t + \frac{\pi}{2})$. Kut θ_0 prvog i jedinog harmonika iznosi:

a) $\theta_0 = -\frac{\pi}{4}$ b) $\theta_0 = 4$ c) $\theta_0 = \frac{\pi}{4}$ d) $\theta_0 = \frac{\pi}{2}$ e) $\theta_0 = -\frac{\pi}{2}$

37. Samo jedna funkcija je parna. Koja?

b) točno

(a)
$$f(x) = x^3 \log \frac{x+1}{x-1}$$
 (b) $f(x) = \log(x + \sqrt{1+x^2})$ (c) $f(x) = x^2 \log \frac{1+\sin(x)}{1-\sin(x)}$ (d) $f(x) = x^3 \log(x^2)$ (e) $f(x) = x^5 \sin^2(x)$

38. Kontinuirani jedinični skok (eng. unit step) je definiran izrazom $\mu(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$. Vrijednost u nuli se uobičajeno uzima kao $\frac{1}{2}$, a ponekad kao 1.

a)) točno b) netočno **39.** Rastavom u Fourierov red realnog periodičnog signala x(t) dobijemo točno $x(t) = -2 + 3\sin(5\pi t - \frac{\pi}{2})$. Koeficijent X_0

rastava u red iznosi:

a) $X_0 = -1$ b) $X_0 = 0$ c) $X_0 = -\frac{\pi}{2}$ d) $X_0 = 3$ (e) $X_0 = -2$

40. Ako je $\mathcal{F}(x(t)) = 5\Omega$, koliko je $\mathcal{F}(x(t-2))$? **a)** $e^{j\Omega}5(\Omega-2)$ **b)** $e^{-2j\Omega}5\Omega$ **c)** $5(\Omega+2)$ **d)** $e^{2j\Omega}5\Omega$ **e)** $5(\Omega-2)$

41. Srednja snaga kontinuiranog signala $y(t) = t \mu(t)$ iznosi:

a) t^2 **b)** 0 **(c)** ∞ **d)** 1 **e)** t**42.** Energija signala $y(t) = 3\sin(2t)$ za $-\pi \le t \le \pi$ iznosi:

a) 3π **b)** $9\pi - \frac{9}{8}$ **c)** 0 **d)** 9π **e)** $9\pi - \frac{9}{4}$

43. Ako je $\mathcal{F}(x(t)) = 5\Omega$, koliko je $\mathcal{F}(x(t-2))$? a) $e^{j\Omega}5(\Omega-2)$ (b) $e^{-2j\Omega}5\Omega$ c) $5(\Omega-2)$ d) $5(\Omega+2)$ e) $e^{2j\Omega}5\Omega$

Odredite fazni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.

b) $\pi/2$ (c) ništa od navedenoga d) $-\infty$ e) π

Mali Ivica je promatrao neka dva diskretna signala i zaključio da oba imaju srednju snagu jednaku $\frac{1}{2}$. Koja dva signala 45. su u pitanju?

	a) Jedinični impuls $\delta[n]$ i kompleksna eksponencijala $\frac{1}{2}e^{j100n}$. b) Jedinični skok $\mu[n]$ i kompleksna eksponencijala $\frac{\sqrt{2}}{2}e^{j100n}$. c) Mali Ivica nije dobro zaključio. Ne postoje dva signala jednake snage. d) Jedinični skok $\mu[n]$ i kompleksna eksponencijala $\frac{1}{2}e^{j100n}$. e) Jedinični impuls $\delta[n]$ i kompleksna eksponencijala $\frac{\sqrt{2}}{2}e^{j100n}$.
46.	Samo jedan od slijedećih redova predstavlja parnu funkciju. Označite koji!
	(a) $\cos(x) + \frac{1}{2}\cos(2x) + \frac{1}{4}\cos(4x) + \frac{1}{6}\cos(6x) + \cdots$ (b) $\sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x) + \frac{1}{7}\sin(7x) + \cdots$ (c) $\sin(x) + \cos(x) + \sin(2x) + \cos(2x) + \sin(3x) + \cdots$ (d) $\sin(x) + \cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{5}\cos(5x) + \cdots$ (e) $2\sin(x) + 3\cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{6}\cos(5x) + \cdots$
47.	Odredite snagu signala $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$.
	(a) 0.82 b) 3.28 c) 2π d) 0.41 e) 1.64
48.	Diskretna rampa je definirana izrazom $r[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}$.
	(a) netočno b) točno
49.	Neka je $x(t)$ spektralno ograničeni signal za čiji spektar vrijedi $X(\omega)=0$ za $ \omega <\omega_m$. Signal $x(t)$ se može jednoznačno odrediti iz svojih uzoraka $x(nT_S), n=1,2,3,\ldots$ ako je $\frac{2\pi}{T_S}=\omega_S\geq 2\omega_m$. Navedeni teorem otipkavanja (uzorkovanja) zove se:
	(a) Shannon-Nyquistov teorem (b) Babić-Jerenov teorem (c) Mifune-Kurosawa teorem (d) Zagor-Willerov teorem (e) Dedic-Sherbedgia teorem
50.	Sustavi NE mogu biti (samo jedan odgovor):
	a) nekauzalni b) invarijantni c) bezmemorijski d) periodički e) nestabilni
51.	Fourierov red realnog periodičnog signala $x(t)$ je $x(t) = 4 + 2\sin(40\pi t + \frac{\pi}{3})$. Koeficijent X_0 iznosi:
	a) $X_0 = 8$ b) $X_0 = 0$ c) $X_0 = 2$ d) $X_0 = 4$ e) $X_0 = \frac{\pi}{3}$
52 .	Za signale $x_1(t) = t\cos(5t)$ i $x_2(t) = x_1'(t)$ (dakle $x_2(t)$ je derivacija) vrijedi:
	a) x_1 i x_2 su neparni d) x_1 i x_2 su parni e) x_1 je neparan, x_2 je niti paran niti neparan c) x_1 je niti paran niti neparan, x_2 je paran e) x_1 je neparan, x_2 je paran e) x_1 je niti paran niti neparan, x_2 je paran e) x_1 je niti paran niti neparan, x_2 je paran e) x_1 je niti paran niti neparan, x_2 je paran e) x_1 je niti paran niti neparan, x_2 je paran e) x_1 je niti paran niti neparan, x_2 je paran e) x_1 je niti paran niti neparan e) x_2 je paran e) x_1 je niti paran niti neparan e) x_2 je paran e) x_2 je paran e) x_1 je niti paran niti neparan e) x_2 je paran e) x_1 je niti paran niti neparan e) x_2 je paran e) x_1 je niti paran niti neparan e) x_2 je paran e) x
53.	U izrazu za spektar aperiodičnog kontinuiranog signala $x(t)$, $X(F) = X(F) e^{j\theta(F)}$, član $ X(F) $ predstavlja (t je vrijeme, dok je F frekvencija):
	a) kružna frekvencija b) fazni dio spektra c) amplitudni dio spektra d) vrijeme e) signal
54.	Parsevalova relacija za aperiodičke kontinuirane signale konačne energije izražava princip očuvanja energije u vremenskoj i frekvencijskoj domeni.
	(a) točno b) netočno
55.	Odredite snagu kontinuiranog kompleksnog periodičnog signala $x(t) = e^{jt}$ (prisjetite se Parsevalove relacije).
	a) ∞ (b) 1 c) 0,5 d) $1/2\pi$ e) 0
56.	
	a) 0.5 b) -1 c) 2π (d) 1 e) j
57.	U koleginim bilješkama s predavanja ste pročitali: 'Produkt dva parna signala i produkt parnog i neparnog signala su parni, a produkt dva neparna signala je neparan.' Vi kažete:
	(a) netočno b) točno
58.	Parni dio funkcije $f(t)$ računamo kao $f_{\text{parno}}(t) = \frac{f(t) - f(-t)}{2}$.
	(a) netočno b) točno
59.	Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi:
	(a) 1 b) 0 c) ∞ d) 2 e) $\frac{1}{2}$

60. Odredite amplitudni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.

	a) $\frac{1}{1-\Omega}$ b) $\frac{j}{\sqrt{1+\Omega^2}}$ c) $\pi \delta(\Omega-1)$ d) $\frac{1}{ 1-\Omega }$ e) ništa od navedenoga
31.	Koja od navedenih funkcija je kontinuirana jedinična rampa?
	a) $f(t) = \begin{cases} -2t^2, & t \ge 0 \\ 0, & t < 0 \end{cases}$ b) $f(t) = \begin{cases} 2t, & t > 0 \\ 0, & t \le 0 \end{cases}$ c) $f(t) = \begin{cases} t, & t > 0 \\ 0, & t \le 0 \end{cases}$ d) $f(t) = \begin{cases} 2\cos(t), & t > 0 \\ 0, & t \le 0 \end{cases}$ e) $f(t) = \begin{cases} 2, & t > 0 \\ 0, & t \le 0 \end{cases}$
	e) $f(t) = \begin{cases} 2, & t > 0 \\ 0, & t \le 0 \end{cases}$
62 .	Zadan je signal $x(t) = e^{jt}$. Odredite fazu spektra za $k = 1$ pri rastavu u Fourierov red. (a) 0 b) 2π c) $\pi/2$ d) $-\pi$ e) π
33.	·
,,,,	a) parkiralište b) Opel Corsa c) kotač d) sila na amortizeru e) Ferrari
64.	Rješavate zadatke iz Signala i sustava. Prisjećate se definicije s predavanja i mrmljate sebi u bradu: 'Produkt dva parna signala i produkt parnog i neparnog signala su parni, a produkt dva neparna signala je neparan.' No, nesigurni u svoje pamćenje, provjerite tu definiciju u bilježnici te zaključite:
	(a) netočno b) točno
65.	Diskretni jedinični skok (eng. unit step) je definiran izrazom $\mu[n] = \begin{cases} n, & n \geq 0 \\ 0, & n < 0 \end{cases}$.
	(a) netočno b) točno
66.	Ako je poznato da je $\mathcal{F}(x(t)) = 2\Omega$, koliko je $\mathcal{F}(x(2t))$?
	(a) $\Omega/2$ b) 4Ω c) $j\Omega/2$ d) 0 e) Ω
67.	Za graf neparne funkcije vrijedi:
	a) asimetričan je b) simetričan je s obzirom na simetralu 1. i 3. kvadranta c) simetričan je s obzirom na y-os d) simetričan je s obzirom na ishodište e) simetričan je s obzirom na x-os
68.	Ako je poznatno da je $\mathcal{F}(x(t)) = 5j(\Omega - 2)$, koliko je $\mathcal{F}(x(t)e^{-j2t})$?
	a) 0 b) $5j(\Omega - 4)$ c) $5j(\Omega - 2)e^{-j2t}$ d) $\Omega + 2$ e) $5j\Omega$
39.	Odredite energiju vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $-j/2$ b) $1/2$ c) ∞ d) $j/2$ e) 0
70.	Jedna je funkcija parna. Koja?
	a) $f(x) = 3\sin(x)\cos(x)$ b) $f(x) = x\cos(x)$ c) $f(x) = \sin(x) - x^2$ d) $f(x) = \sin(\cos(x))$ e) $f(x) = \sin(x)\cos(x)$
71.	Ako je poznatno da je $\mathcal{F}(x(t)) = 5j(\Omega - 2)$, koliko je $\mathcal{F}(x(t)e^{-j2t})$?
((a) $5j\Omega$ (b) $\Omega + 2$ (c) $5j(\Omega - 4)$ (d) $5j(\Omega - 2)e^{-j2t}$ (e) 0
72.	Pronađi periodičan kontinuirani signal:
	a) $\sin(t) \mu(t)$ (b) $\frac{\sin(t)}{\cos(t)}$ (c) $\mu(t)$ (d) $\frac{\sin(t)}{t^2}$ (e) $\frac{\sin(\pi t)}{\pi t}$
73.	Neparni dio funkcije $f(t)$ računamo kao $f_{\text{neparno}}(t) = \frac{f(t) + f(-t)}{2}$.
	$\begin{array}{ccc} \textbf{(a)} & \text{netočno} & \textbf{(b)} & \text{točno} \\ \hline \textbf{(a)} & \text{(b)} & \text{(b)} & \text{(b)} & \text{(b)} & \text{(c)} \\ \hline \textbf{(a)} & \text{(b)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(b)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} & \text{(c)} \\ \hline \textbf{(c)} & \text{(c)} &$

75. Odredite energiju vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.

a) -j/2

u tom redu je:

b) j/2

c) 0

d) 1/2

a) $\theta_1 = -\frac{\pi}{4}$ b) $\theta_1 = 4$ c) $\theta_1 = -\frac{\pi}{2}$ d) $\theta_1 = -\frac{\pi}{3}$ e) $\theta_1 = \frac{\pi}{3}$

(e)

74. Fourierov red realnog periodičnog signala x(t) je $x(t) = 4 + 2\sin(40\pi t - \frac{\pi}{3})$. Kut θ_1 prve i jedine harmonijske komponente

	ciju otipkavanja:
	a) bilo koju b) jednaku $0.5f$ c) jednaku f d) veću od $2f$ e) manju od $2f$
79.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = -4$ pri rastavu u Fourierov red.
	a) 1 b) 2π (c) 0.5 d) 0.8 e) 0.4
80.	U 78. minuti filma Poštanska kočija (režija: John Ford, 1939.) indijanci napadaju poštansku kočiju. Kočija bjesomučno juri naprijed, a kotači se vrte unatrag. Zašto?
	 a) Pa tko je vidio film u kojemu se kotači vrte na pravu stranu??? b) Zato što se nije koristila relativistička korekcija b) Zato što se nije koristila relativistička korekcija d) Ne postoji ta scena u Poštanskoj kočiji!!! e) Zato što John Ford ne zna teoriju sustava.
81.	Za graf parne funkcije vrijedi:
	 a) asimetričan je b) simetričan je s obzirom na ishodište je s obzirom na y-os e) simetričan je s obzirom na simetralu 1. 1 3. kvadranta
82.	Odredite temeljni period signala $\sin^2(t)$.
	a) $\frac{1}{2}$ b) 1 c) π d) 2π e) Signal nije periodičan!
83.	Kontinuirani periodički signal $x(t)$ osnovne frekvencije F_0 se može prikazati preko Fourierovog reda kao:
	a) $x(t) = \sum_{k=-\infty}^{0} e^{2\pi k F_0 t}$ b) $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k F_0 t}$ c) $x(t) = \sum_{k=0}^{\infty} X_k e^{2\pi k F_0 t}$ d) $x(t) = \sum_{k=0}^{\infty} X_k e^{-j2\pi i F_0 t}$ e) $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k t}$
84.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega) e^{j\Omega t} d\Omega$. Što predstavlja $e^{j\Omega t}$?
	a) signal b) kružnu frekvenciju c) kompleksnu eksponencijalu d) vrijeme e) spektar
85.	Ako uzimamo uzorke signala svakih 12,5 ms, te ako ih kvantiziramo s 8 bita po uzorku, kolika je potrebna propusnost komunikacijskog kanala?
	a) 360 bps b) 580 bps c) 540 bps d) 480 bps (e) 640 bps
86.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = 2$ pri rastavu u Fourierov red.
	a) 0.5 b) 1 c) 0 d) 0.4 e) 0.8
87.	Odredite temeljni period kompleksnog diskretnog signala $x[n] = e^{j2\pi n}!$
	a) π b) $\frac{1}{2}$ c) 1 d) 2 e) Signal nije periodičan!
88.	Fourierova transformacija kontinuiranog aperiodičnog signala postoji ako i samo ako je signal $x(t)$ konačne energije $\int_{-\infty}^{\infty} x(t) ^2 dt < \infty$ i ako ima neprebrojivo mnogo konačnih diskontinuiteta. To su Dirichletovi uvjeti!
	(a) netočno b) točno
89.	Računala uobičajeno rade s otipkanim i kvantiziranim signalima.
	a) netočno (b))točno
90.	Profesor pita: "Ako neki signal nije signal snage, možemo li znati kakav je on tada?". Vi mudro odgovarate:
	a) "Žao mi je, ali ne znam. Pas mi je prožvakao bilješke" b) Možemo. Signal je tada signal energije." (c) "Ne možemo. Signal ne mora biti niti signal snage niti signal energije." d) "Možemo. Svi signali su uvijek signali energije, pa tako i ovaj." e) "Možemo. Svi signali su uvijek signali snage, pa tako i ovaj."

76. Jedan od nužnih, ali ne i dovoljnih uvjeta za postojanje Fourierovog reda za periodični signal x(t) glasi:

 $\check{\mathbf{Z}}$ elimo otipkati harmonijski signal frekvencije f tako da izbjegnemo preklapanje spektra (eng. aliasing). Biramo frekven-

Signal x(t)je apsolutno integrabilan u bilo kojem periodu, $\int_{T}|x(t)|\,dt<\infty.$

(a))točno

b) netočno

77. Za koju od slijedećih funkcija možemo izračunati Fourierov red?

a) $\ln(t-3)$ b) $e^t \sin(t)$ c) $e^{\sin(t)}$ d) $\frac{1}{t}\sin(t)$ e) $\sin(t^2)$

91.	Odredite realni dio spektara $\operatorname{Re}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $\frac{1}{1-\Omega}$ b) $\pi \delta(\Omega+1)$ c) $\pi \delta(\Omega-1)$ d) 0 e) $\frac{-1}{1-\Omega}$
92.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = 4$ pri rastavu u Fourierov red.
	a) 0.5 b) 1 c) 0.4 d) 0.8 e) 2π
93.	Asistent T.P. (podaci poznati redakciji) se nakon završenog FER-a zaposlio i mora dizajnirati sustav za obradu signala koji radi sa signalima čija frekvencija ide do $40\mathrm{kHz}$. Kako T.P. nije dobro naučio teoriju signala odabrao je D/A pretvornik nedovoljnih mogućnosti. Koji pretvornik je T.P. odabrao:
	a) Analog-Devices AD1935 (192 kHz) b) Analog-Devices ADAV801 (48/96 kHz) c) Analog-Devices ADAV803 (48/96 kHz) d) Analog-Devices AD1835A (96 kHz) e) Analog-Devices AD1847 (48 kHz)
94.	Odredite realni dio spektra $\operatorname{Re}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) $\pi \delta(\Omega - 1)$ (b) 0 c) $\frac{1}{1+\Omega}$ d) $\frac{-1}{1+\Omega}$ e) $\pi \delta(\Omega + 1)$
95.	Ako je snaga vremenski kontinuiranog periodičnog signala 2, a njegov period 2π , kolika je njegova energija?
	a) 4π b) π c) 0 d) ∞ e) Ne može se odrediti, ima premalo podataka.
96.	Kolega Vam u pauzi dođe s pitanjem: 'Produkt dva neparna signala i produkt parnog i neparnog signala su parni, a produkt dva parna signala je paran – je li tako?' Odgovarate mu:
	(a) netočno b) točno
97.	U izrazu $X(F) = X(F) e^{j\theta(F)}$ za rastav spektra aperiodičnog kontinuiranog signala $x(t)$ član $\theta(F)$ predstavlja (t je vrijeme, dok je F frekvencija):
	a) signal b) vrijeme c) kružna frekvencija d) amplitudni dio spektra (e) fazni dio spektra
98.	Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio:
	a) vremensku kompresiju diskretnog signala (d) vremensku ekspanziju diskretnog signala (e) vremensku ekspanziju kontinuiranog signala (e) vremensku kompresiju kontinuiranog signala
99.	Poznat je spektar signala $\mathcal{F}(x(t)) = e^{-j2\Omega}(\mu(\Omega) - \mu(\Omega - 2))$. Odredite energiju spektra pomaknutog signala $\mathcal{F}(x(t-3))$.
	a) Energija signala se ne može se odrediti jer je spektar kompleksan. b) $\frac{1}{20j\pi}(e^{20j}-1)$ c) $\frac{1}{-20j\pi}(e^{-20j}-1)$ d) $1/\pi$ e) ∞
100.	Odredite temeljni period kompleksnog signala $e^{j2\pi t}$.
	a) $\frac{\pi}{2}$ (b) 1 c) π d) Signal nije periodičan! e) $\frac{1}{2}$
101.	Želimo otipkati harmonijski signal perioda T tako da izbjegnemo preklapanje spektra (eng. aliasing). Biramo period otipkavanja:
	(a) strogo manji od $0.5T$ b) bilo koji c) jednak T d) strogo veći od $2T$ e) manji ili jednak T
102.	Odredite fazni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) π b) 0 c) $\pi/2$ d) ništa od navedenoga e) $-\infty$
103.	Odredite Fourierovu transformaciju vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) $\frac{1}{\Omega+1}$ b) $\pi \delta(\Omega+1) + \frac{1}{j(\Omega+1)}$ c) $\frac{-j}{\Omega+1}$ d) $\frac{j}{\Omega+1}$ e) $\pi \delta(\Omega-1) + \frac{1}{j(\Omega-1)}$
104.	Neparni dio signala $x(t) = \sin(t)\cos(t) + t\sin(t) + \sin(\cos(t))$ je:
	a) $\sin(t)\cos(t) + \sin(\cos(t))$ b) $\sin(\cos(t))$ c) $\sin(t)\cos(t) + t\sin(t)$ d) $\sin(t)\cos(t)$ e) $t\sin(t)$
105.	Odredite amplitudni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) $\frac{1}{1+\Omega}$ b) $\frac{j}{1+\Omega}$ c) $\frac{-j}{1+\Omega}$ d) ništa od navedenoga e) $\frac{-1}{1+\Omega}$
106.	Signalom snage nazivamo signal za koji vrijedi $0 \le P < \infty$ i $E = \infty$.

	a) $x(t) = \int_{-\infty}^{\infty} X(F)e^{-j2\pi Ft} dt$ b) $X(F) = \frac{d}{dt}(x(t)e^{-j2\pi Ft})$ c) $X(F) = \frac{1}{T_p} \int_{-\infty}^{\infty} x(t)e^{j2\pi Ft} dt$ d) $X(F) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi Ft} dt$
108.	Sustavom se općenito smatra pojava ili fenomen koji nosi neku informaciju. a) točno (b) netočno
109.	Koja je od zadanih funkcija neparna?
	(a) $f(x) = \sqrt{1 - x + x^2} - \sqrt{1 + x + x^2}$ (b) $f(x) = x\sin(x)$ (c) $f(x) = \sin^2(x)\sqrt{1 - x^2}$ (d) $f(x) = \ln(x)$ (e) $f(x) = \sin(x) + \cos(x)$
110.	Parni dio funkcije $f(t)$ računamo kao $f_{\text{parno}}(t) = \frac{f(t) + f(-t)}{2}$.
	a) netočno (b) točno
111.	Fourierova transformacija kontinuiranog aperiodičnog signala postoji ako i samo ako je signal $x(t)$ konačne energije $\int_{-\infty}^{\infty} x(t) ^2 dt < \infty \text{ i ako ima neprebrojivo mnogo konačnih diskontinuiteta. To su Dirichletovi uvjeti!}$ (a) netočno b) točno
112.	Parni dio signala $x(t) = t^2 - 3t + 2$ je:
	a) $-3t+2$ b) $-3t$ c) t^2-2 d) t^2+2 e) t^2-3t
113.	Sve funkcije su parne, osim jedne. Pronađite uljeza!
	a) $f(x) = \sin^2(x) - x^2$ b) $f(x) = \cos(x)\sin^2(x)$ c) $f(x) = \ln\frac{\cos(x-1)}{\cos(x+1)}$ d) $f(x) = x^3\sin(x)$ e) $f(x) = \cos^2(x) - x^2$
114.	Poznat je spektar signala $X(\Omega) = 2\Omega(\mu(\Omega) - \mu(\Omega - 2))$. Odredite energiju tog signala. (a) $\frac{16}{3\pi}$ b) ∞ c) $32/3$ d) $\frac{2}{\pi}$ e) 4
115.	Ako se diskretni signal $x[n]$ nastao otipkavanjem ponovno otipka tako da uzimamo svaki peti uzorak dobiti ćemo signal $x[5n]$. Ovaj postupak zove se:
	 a) vremenska ekspanzija diskretnog signala b) vremenska kompresija kontinuiranog signala c) deriviranje d) škrtost e) podotipkavanje
116.	Jedinična rampa $r(t)$ i jedinični skok $\mu(t)$ su vezani izrazom:
	(a) $\mu(t) = \frac{d}{dt}r(t)$ (b) $\mu(t) = \frac{d}{dt}r(t+2)$ (c) $r(t) = \frac{d}{dt}\mu(t+2)$ (d) $\mu(t) = r(t+1) - r(t)$ (e) $r(t) = \frac{d}{dt}\mu(t)$
117.	Odredite temeljni period signala $\sin(4\pi t) \mu(t)!$
	a) 2π b) π c) 1 d) $\frac{1}{2}$ (e) Signal nije periodičan!
118.	Funkcija $f(x)$ je neparna ako i samo ako vrijedi:
110	a) $f(x) = -xf(-x)$ (b) $f(-x) = -f(x)$ c) $f(-x) = f(x)$ d) $f(x) = f(x+T)$ uz $T > 0$ e) $f(-x) = xf(x)$
119.	Odredite energiju vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$. a) $-j/2$ (b) ∞ c) $j/2$ d) $1/2$ e) 0
120.	Diskretni jedinični skok (eng. unit step) je definiran izrazom $\mu[n] = \begin{cases} n, & n \geq 0 \\ 0, & n < 0 \end{cases}$.
	a) točno (b) netočno
121.	Neparni dio signala $x(t) = t\cos(t) + t^2 + t + \sin(t)$ je:
	a) $ t + \sinh(t)$ b) $t^2 + t $ c) $t\cos(t) + t^2$ d) $t\cos(t) + \sinh(t)$ e) $t\cos(t)$
122.	Snaga signala $y(t) = \cos(2t)$ iznosi:
	(a) $\frac{1}{2}$ b) $\frac{1}{2\pi}$ c) $\frac{1}{8\pi} + \frac{1}{2}$ d) $\frac{1}{2\pi} + \frac{1}{2}$ e) 0

107. Fourierov integral signala x(t) računamo prema izrazu (t je vrijeme, dok je F frekvencija):

123.	Neka je $x(t)$ spektralno ograničeni signal za čiji spektar vrijedi $X(\omega) = 0$ za $ \omega < \omega_m$. Signal $x(t)$ se može jednoznačno odrediti iz svojih uzoraka $x(nT_S)$, $n = 1, 2, 3, \ldots$ ako je $\frac{2\pi}{T_S} = \omega_S \ge 2\omega_m$. Navedeni teorem otipkavanja (uzorkovanja) zove se:
	a) Dedic-Sherbedgia teorem (b) Shannon-Nyquistov teorem (c) Mifune-Kurosawa teorem (d) Babić-Jerenov teorem (e) Zagor-Willerov teorem
124.	Koja definicija je točna od navedenih pet defincija Kroneckerove delta funkcije?
	a) $\delta[n] = 1 \text{ za svaki } n$ b) $\mu[n] = \begin{cases} n, & n > 0 \\ -1, & n < 0 \end{cases}$ c) $\delta[n] = 1$ d) $\mu[n] = 1 \text{ za } n \ge 0$ e) $\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{inače} \end{cases}$
125.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = -1$ pri rastavu u Fourierov red. a) 2π b) 0.5 c) 0.4 d) 0.8 e) 1
	Pronađi neperiodičan kontinuirani signal: (a) $\frac{1}{t}\sin^2(4t)$ (b) $\sin^2(4\pi t)$ (c) $\cos(4\pi t + \frac{\pi}{4})$ (d) $\sin(4t + \frac{\pi}{4})$ (e) $\sin^2(4t)$
127.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja $x(t)$? (a) signal b) vrijeme c) frekvenciju d) kružnu frekvenciju e) spektar
128. (Kontinuirani periodički signal $x(t)$ osnovne frekvencije F_0 se može prikazati preko Fourierovog reda kao: (a) $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k F_0 t}$ (b) $x(t) = \sum_{k=0}^{\infty} X_k e^{-j2\pi i F_0 t}$ (c) $x(t) = \sum_{k=0}^{\infty} X_k e^{2\pi k F_0 t}$ (d) $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k t}$ (e) $x(t) = \sum_{k=-\infty}^{\infty} x_k e^{2\pi k F_0 t}$
129.	Signalom energije nazivamo signal za koji vrijedi $0 \le P < \infty$ i $E = \infty$. a) točno (b) netočno
130.	Funkcija $f(x)$ je parna ako i samo ako vrijedi: a) $f(-x) = xf(x)$ b) $f(x) = f(x+T)$ uz $T > 0$ c) $f(x) = -f(-x)$ d) $f(-x) = -f(x)$ e) $f(-x) = f(x)$
131.	Ako je $ X(\omega) $ amplitudni spektar signala $x(t) = \cos(t)$ i ako je $ G(\omega) $ amplitudni spektar signala $g(t) = x(t+3)$ onda vrijedi (samo jedan izraz je točan):
((a) $ X(\omega) + G(\omega) = 0$ (b) $ G(\omega) - 2 X(\omega) = 0$ (c) $ G(\omega) + 2 X(\omega) = 0$ (d) $ X(\omega) + G(\omega) = 2$ (e) $ X(\omega) - G(\omega) = 0$
132.	Odredite realni dio spektra $\operatorname{Re}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$. a) $\frac{1}{1+\Omega}$ b) $\pi \delta(\Omega-1)$ c) $\frac{-1}{1+\Omega}$ d) $\pi \delta(\Omega+1)$ e) 0
133.	Ako je poznato da je $\mathcal{F}(x(t)) = 2\Omega$, koliko je $\mathcal{F}(x(2t))$? a) 0 b) 4Ω c) Ω d) $\Omega/2$ e) $j\Omega/2$
134.	Koja od navedenih funkcija je diskretna kompleksna eksponencijala? a) $f[n] = \delta[n]$ (b) $f[n] = 2^{-n}$ (c) $f(t) = e^{-2jt}$ (d) $f[n] = n^2 + 2n + 1$ (e) $f(t) = 2t^2 + 3t + 1$
135.	Odredite realni dio spektara $\operatorname{Re}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$. a) $\pi \delta(\Omega - 1)$ b) $\frac{-1}{1-\Omega}$ c) 0 d) $\pi \delta(\Omega + 1)$ e) $\frac{1}{1-\Omega}$
136.	Diskretna rampa je definirana izrazom $r[n] = \begin{cases} n, & n \geq 0 \\ 0, & n < 0 \end{cases}$.
	a) netočno (b))točno
137.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja Ω ? a) frekvenciju b) signal c) kružnu frekvenciju d) spektar e) vrijeme
138.	Signali NE mogu biti (samo jedan odgovor): a) analogni (b) bezmemorijski (c) digitalni (d) stohastički (e) periodički

	a) $\mu(n) = \frac{d}{dn}r(n)$ b) $\mu(n) = r(n+2)$ c) $r(n) = \mu(n+1) - \mu(n)$ d) $r(n) = \sum_{m=0}^{2n} \mu(m)$ (e) $\mu(n) = r(n+1) - r(n)$
142.	Propuštanjem signala $x(t)$ kroz neki sustav dobili smo signal $x(0,1t)$. Sustav je napravio:
	 a) vremensku kompresiju diskretnog signala b) vremensku ekspanziju diskretnog signala c) vremensku ekspanziju kontinuiranog signala d) vremensku kompresiju kontinuiranog signala e) derivaciju signala
143.	Neparni dio signala $x(t) = t\cos(t) + t^2 + t + \sinh(t)$ je:
	a) $t\cos(t)$ b) $ t + \sinh(t)$ c) $t\cos(t) + t^2$ d) $t^2 + t $ e) $t\cos(t) + \sinh(t)$
144.	Samo jedan od slijedećih redova predstavlja parnu funkciju. Označite koji!
	(a) $\cos(x) + \frac{1}{2}\cos(2x) + \frac{1}{4}\cos(4x) + \frac{1}{6}\cos(6x) + \cdots$ (b) $\sin(x) + \cos(x) + \sin(2x) + \cos(2x) + \sin(3x) + \cdots$ (c) $\sin(x) + \cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{5}\cos(5x) + \cdots$ (e) $2\sin(x) + 3\cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{6}\cos(5x) + \cdots$
145.	Koja od navedenih funkcija je kontinuirana jedinična rampa?
	a) $f(t) = \begin{cases} -2t^2, & t \ge 0 \\ 0, & t < 0 \end{cases}$ b) $f(t) = \begin{cases} 2t, & t > 0 \\ 0, & t \le 0 \end{cases}$ c) $f(t) = \begin{cases} t, & t > 0 \\ 0, & t \le 0 \end{cases}$ d) $f(t) = \begin{cases} 2, & t > 0 \\ 0, & t \le 0 \end{cases}$
	e) $f(t) = \begin{cases} 2\cos(t), & t > 0\\ 0, & t \le 0 \end{cases}$
146.	Fourierovim integralom NE možemo prikazati neperiodični pravokutni signal.
	a) točno (b) netočno
147.	Fourierov transformacijski par je:
	a) $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{+j\Omega t} d\Omega \mathrm{i} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} dt$ b) $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} dt \mathrm{i} x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+2\infty} X(\Omega)e^{+2j\Omega t} dt$
	a) $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{+j\Omega t} d\Omega \mathrm{i} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} dt$ b) $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} dt \mathrm{i} x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+2\infty} X(\Omega)e^{+2\Omega t} dt \mathrm{i} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} d\Omega$ d) $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} d\Omega \mathrm{i} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{+j\Omega t} dt$
	(e) $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt \ i \ x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{+j\Omega t} d\Omega$
148.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja t ?
((a) vrijeme b) spektar c) kružnu frekvenciju d) signal e) frekvenciju
149.	Za signale $x_1(t) = t\cos(5t)$ i $x_2(t) = x_1'(t)$ (dakle $x_2(t)$ je derivacija) vrijedi:
	a) x_1 je niti paran niti neparan, x_2 je paran b) x_1 je neparan, x_2 je niti paran niti neparan x_2 je paran d) x_1 i x_2 su parni e) x_1 i x_2 su neparni
150.	Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[2n]$. Sustav je napravio:
	 a) vremensku ekspanziju kontinuiranog signala b) vremensku ekspanziju diskretnog signala c) derivaciju signala d) vremensku kompresiju diskretnog signala
151.	Za signal kažemo da je isključivo signal snage ako vrijedi:
	a) $P = 0 \text{ i } E = \infty$ (b) $0 \le P < \infty \text{ i } E = \infty$ (c) $0 \le P < \infty \text{ i } 0 \le E < \infty$ (d) $P = 0 \text{ i } 0 \le E < \infty$ (e) $0 \le P < \infty \text{ i } E = 0$
152.	
	a) $\sin(t) + t$ b) $\cos(3t) + t$ c) $t^2 + \cos(3t)$ d) $\sin(t) + \cos(3t)$ e) $t^2 + \sin(t)$
153.	Odredite Fourierovu transformaciju vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $\frac{1}{1-\Omega}$ b) $\frac{j}{1-\Omega}$ c) $\frac{-j}{1-\Omega}$ d) $\pi \delta(\Omega+1) + j\frac{1}{\Omega+1}$ e) $\pi \delta(\Omega-1) + j\frac{1}{\Omega-1}$

139. Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja t?

a) spektar

b) frekvenciju

c) signal

d) vrijeme

e) kružnu frekvenciju

d) nestabilni

e) bezmemorijski

 \mathbf{c}) nelinearni

140. Sustavi NE mogu biti (samo jedan odgovor)

a) linearni

(b)) periodički

141. Jedinična rampa r(n) i jedinični skok $\mu(n)$ su vezani izrazom:

170.	Zadan je kontinuirani periodičan signal $x(t) = e^{jt}$. Koju Fourierovu transformaciju ovog signala ćemo tražiti?
	a) vremenski diskretnu Fourierovu transformaciju (DTFT) b) vremenski diskretan Fourierov red (DFS) c) vremenski kontinuiranu Fourierovu transformaciju (CTFT) d) vremenski kratkotrajnu Fourierovu transformaciju (STFT) vremenski kontinuiran Fourierov red (CTFS)
171.	Samo jedan od slijedećih Fourierovih redova predstavlja neparnu funkciju. Označite koji!
	a) $2\sin(x) + 3\cos(x) + \frac{1}{4}\sin(3x) + \frac{5}{6}\cos(5x) + \cdots$ b) $\sin(x) + \cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{5}\cos(5x) + \cdots$ c) $\sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x) + \frac{1}{7}\sin(7x) + \cdots$ d) $\cos(x) + \frac{1}{2}\cos(2x) + \frac{1}{4}\cos(4x) + \frac{1}{6}\cos(6x) + \cdots$ e) $\sin(x) + \cos(x) + \sin(2x) + \cos(2x) + \sin(3x) + \cos(3x) + \cdots$
172.	Odredite Fourierovu transformaciju vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $\frac{1}{1-\Omega}$ b) $\pi \delta(\Omega-1) + j\frac{1}{\Omega-1}$ c) $\frac{j}{1-\Omega}$ d) $\pi \delta(\Omega+1) + j\frac{1}{\Omega+1}$ e) $\frac{-j}{1-\Omega}$
173.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja $X(\Omega)$?
	a) signal (b) spektar (c) vrijeme (d) kružnu frekvenciju (e) frekvenciju
174.	Signalom snage nazivamo signal za koji vrijedi $0 \le E < \infty$ i $P = 0$.
	(a) netočno b) točno
175.	Odredite Fourierovu transformaciju vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $\pi \delta(\Omega - 1) + j \frac{1}{\Omega - 1}$ b) $\pi \delta(\Omega + 1) + j \frac{1}{\Omega + 1}$ c) $\frac{-j}{1 - \Omega}$ d) $\frac{j}{1 - \Omega}$ e) $\frac{1}{1 - \Omega}$
176.	Ako uzimam uzorke signala svakih 5 ms te ako ih kvantiziramo s 8 bita po uzorku, kolika je potrebna propusnost komunikacijskog kanala?
	a) 800 bps b) 1000 bps c) 1400 bps d) 1200 bps e) 1600 bps
177.	Odredite Fourierovu transformaciju vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	(a) $\frac{-j}{\Omega+1}$ (b) $\pi \delta(\Omega-1) + \frac{1}{j(\Omega-1)}$ (c) $\pi \delta(\Omega+1) + \frac{1}{j(\Omega+1)}$ (d) $\frac{1}{\Omega+1}$ (e) $\frac{j}{\Omega+1}$
178.	Odredite amplitudni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $\frac{j}{\sqrt{1+\Omega^2}}$ b) $\frac{1}{1-\Omega}$ c) ništa od navedenoga d) $\pi \delta(\Omega-1)$ e) $\frac{1}{ 1-\Omega }$
179.	Koeficijente X_k u rastavu periodične funkcije u Fourierov red računamo prema izrazu:
	(a) $X_k = \frac{1}{T_p} \int_{T_p} x(t) e^{-j2\pi k F_0 t} dt$ (b) $X_k = \frac{1}{T_p} \int_{T_p} x(t) dt$ (c) $X_k = \frac{1}{T_p} \int_{T_p} e^{-j2\pi k F_0 t} dt$ (d) $X_k = \frac{1}{T_p} \int_{T_p} e^{j2\pi t} dt$ (e) $X_k = \int_{T_p} e^{-j2\pi k x(t) F_0 t} dx$
180.	Kada profesor Jeren (motivacijski) kaže "Recite DA Signalima i sustavima" time izrekne
(a) definiciju teorema otipkavanja b) princip podijeli pa vladaj c) jedan zvučni sustav d) Nyquistov kriterij e) jedan zvučni signal
181.	Za signal kažemo da je isključivo signal energije ako vrijedi:
	a) $0 \le E < \infty \text{ i } 0 \le P < \infty$ b) $0 \le E < \infty \text{ i } P = 0$ c) $0 \le E < \infty \text{ i } P = \infty$ d) $E = 0 \text{ i } P = 0$ e) $E = 0 \text{ i } 0 \le P < \infty$
182.	Fourierovim integralom NE možemo prikazati neperiodični pravokutni signal.
	(a) netočno b) točno
183.	Signalom snage nazivamo signal za koji vrijedi $0 \le P < \infty$ i $E = \infty$.
	(a) točno b) netočno
184.	Signalom energije nazivamo signal za koji vrijedi $0 \leq E < \infty$ i $P = 0.$
	a) netočno (b) točno
185.	Signal $x(t) = \sin(t) + \sin(\sqrt{2}t) + \sin(\sqrt{3}t)$ može se razviti u Fourierov red.
	(a) netočno b) točno

186.	Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[2n]$. Sustav je napravio:
	a) derivaciju signala b) vremensku ekspanziju diskretnog signala c) vremensku ekspanziju kontinuiranog signala d) vremensku kompresiju diskretnog signala e) vremensku kompresiju kontinuiranog signala
187.	Među navedenim parnim funkcijama ima jedan uljez. Koja je to funkcija?
	(a) $f(x) = \sin(x) + \cos(x)$ (b) $f(x) = \sin^2(x) - x^2$ (c) $f(x) = x^4 + 3x^2 + 2$ (d) $f(x) = \sin^4(x)\cos(x)$ (e) $f(x) = x \operatorname{sh}(x)$
188.	Diskretni jedinični skok (eng. unit step) je definiran izrazom $\mu[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}$.
	(a) točno b) netočno
189.	Odredite energiju vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) 0 b) $1/2$ c) ∞ d) $-j/2$ e) $j/2$
190.	Zadan je signal $x(t) = e^{jt}$. Odredite amplitudu spektra za $k = 0$ pri rastavu u Fourierov red.
	a) -1 (b) 0 c) 1 d) j e) 2π
191.	Zadan je signal $x(t) = e^{jt}$. Odredite amplitudu spektra za $k = 0$ pri rastavu u Fourierov red.
	(a) 0 b) 1 c) 2π d) j e) -1
192.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja $x(t)$?
	(a) signal (b) vrijeme (c) frekvenciju (d) kružnu frekvenciju (e) spektar
193.	Zadan je signal $x(t) = e^{jt}$. Odredite fazu spektra za $k = 1$ pri rastavu u Fourierov red.
	a) 2π b) π c) 0 d) $-\pi$ e) $\pi/2$
194.	Odredite Fourierovu transformaciju vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) $\frac{1}{\Omega+1}$ b) $\pi \delta(\Omega+1) + \frac{1}{j(\Omega+1)}$ c) $\pi \delta(\Omega-1) + \frac{1}{j(\Omega-1)}$ d) $\frac{-j}{\Omega+1}$ e) $\frac{j}{\Omega+1}$
195.	Poznati su Fourierove transformacije dva signala, $\mathcal{F}(x_1(t)) = 5\Omega$ i $\mathcal{F}(x_2(t)) = 2/\Omega$. Koliko je $\mathcal{F}(x_1(t) * x_2(t))$?
	a) $\frac{10}{\Omega}$ b) $\frac{5\Omega^2+2}{10}$ c) 10 d) 0 e) 5Ω
196.	Koeficijent X_0 u prikazu Fourierovim redom za realni periodični signal $x(t) = X_0 + 2\sum_{k=1}^{\infty} X_k \cos(2\pi k F_0 t + \theta_k)$ nam opisuje:
	a) maksimalnu vrijednost signala $x(t)$ b) kompleksnu eksponencijalu c) srednju vrijednost signala $x(t)$ e) spektar signala $x(t)$
197.	Sustavi NE mogu biti (samo jedan odgovor)
	a) nelinearni (b) periodički (c) linearni (d) bezmemorijski (e) nestabilni
198.	Neparni dio funkcije $f(t)$ računamo kao $f_{\text{neparno}}(t) = \frac{f(t) - f(-t)}{2}$.
	(a) točno b) netočno
199.	Fourierov red realnog periodičnog signala $x(t)$ je $x(t) = 4 + 2\sin(40\pi t + \frac{\pi}{3})$. Koeficijent X_0 iznosi:
	a) $X_0 = \frac{\pi}{3}$ b) $X_0 = 8$ c) $X_0 = 2$ d) $X_0 = 4$ e) $X_0 = 0$
200.	Periodični signali imaju diskretan (ili linijski) spektar i razmak između dviju spektralnih linija jednak je vrijednosti osnovnog perioda T_p .
	a) točno (b) netočno
201.	Srednja snaga signala $y[n] = \left(\frac{1}{3}\right)^{2n} \mu[n]$ iznosi:
	a) $\frac{81}{80}$ (b) 0 c) $\frac{162}{160}$ d) $\frac{80}{81}$ e) $\frac{81}{160}$

202. Signal $x(t) = \sin(t) + \sin(\sqrt{2}t) + \sin(\sqrt{3}t)$ može se razviti u Fourierov red.

	a) točno b) netočno
203.	Koja je od zadanih funkcija neparna?
	a) $f(x) = x \sin(x)$ (b) $f(x) = \sqrt{1 - x + x^2} - \sqrt{1 + x + x^2}$ (c) $f(x) = \sin^2(x)\sqrt{1 - x^2}$ (d) $f(x) = \sin(x) + \cos(x)$ (e) $f(x) = \ln(x)$
204.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = 4$ pri rastavu u Fourierov red.
	a) 0.8 b) 0.4 c) 2π d) 1 e) 0.5
205.	Profesor pita: "Ako neki signal nije signal snage, možemo li znati kakav je on tada?". Vi mudro odgovarate:
	 a) "Možemo. Svi signali su uvijek signali energije, pa tako i ovaj." b) Ne možemo. Signal ne mora biti niti signal snage niti signal energije." c) Možemo. Signal je tada signal energije." d) "Možemo. Svi signali su uvijek signali snage, pa tako i ovaj." e) "Žao mi je, ali ne znam. Pas mi je prožvakao bilješke"
206.	Odredite amplitudni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
(a) ništa od navedenoga b) $\frac{1}{ 1-\Omega }$ c) $\frac{j}{\sqrt{1+\Omega^2}}$ d) $\pi \delta(\Omega-1)$ e) $\frac{1}{1-\Omega}$
207.	Zadan je signal $x(t) = e^{jt}$. Odredite amplitudu spektra za $k = 1$ pri rastavu u Fourierov red.
	a) 0.5 b) -1 (c) 1 d) 2π e) j
208.	U koleginim bilješkama s predavanja ste pročitali: 'Produkt dva parna signala i produkt parnog i neparnog signala su parni, a produkt dva neparna signala je neparan.' Vi kažete:
(a) netočno b) točno
209.	Neparni dio signala $x(t) = t\cos(t) + t^2 + t + \sinh(t)$ je:
	a) $t^2 + t $ b) $t\cos(t) + t^2$ c) $ t + \sinh(t)$ d) $t\cos(t)$ e) $t\cos(t) + \sinh(t)$
210.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = -1$ pri rastavu u Fourierov red.
	a) 1 b) 2π c) 0.5 d) 0.4 e) 0.8
211.	$\check{\mathbf{Z}}$ elimo otipkati harmonijski signal perioda T tako da izbjegnemo preklapanje spektra (eng. aliasing). Biramo period otipkavanja:
	a) strogo veći od $2T$ b) manji ili jednak T c) jednak T d) bilo koji e) strogo manji od $0.5T$
212.	Među navedenim parnim funkcijama ima jedan uljez. Koja je to funkcija?
((a) $f(x) = \sin(x) + \cos(x)$ (b) $f(x) = \sin^2(x) - x^2$ (c) $f(x) = \sin^4(x)\cos(x)$ (d) $f(x) = x^4 + 3x^2 + 2$ (e) $f(x) = x \sin(x)$
213.	Temelj no frekvencijsko područje harmonijskog diskretnog signala je područje frekvencij a f između:
	a) $-1 \text{ i } 1$ b) $100.5 \text{ MHz i } 101 \text{ MHz}$ c) $-1 \text{ i } 0.5$ d) $-0.5 \text{ i } 0.5$ e) $-0.5 \text{ i } 1$
214.	Funkciju $\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$ zovemo:
((a) Kroneckerova delta funkcija (b) Diracova delta distribucija (c) jedinična rampa (d) Heavisideov jedinični skok (e) sinc funkcija
215.	Kada profesor Jeren (motivacijski) kaže "Recite DA Signalima i sustavima" time izrekne
(a) princip podijeli pa vladaj b) Nyquistov kriterij c) definiciju teorema otipkavanja d) jedan zvučni sustav e) jedan zvučni signal
216.	Sustavom se općenito smatra pojava ili fenomen koji nosi neku informaciju.
	a) točno (b) netočno
217.	Ako je snaga vremenski kontinuiranog periodičnog signala 2, a njegov period 2π , kolika je njegova energija?
	a) π b) Ne može se odrediti, ima premalo podataka. c) 4π d) ∞ e) 0
218.	Srednja snaga jediničnog impulsa $\delta[n]$ iznosi:

	a) $\frac{1}{2}$ b) ∞ c) 0 d) 2 e) 1
219.	Jedan od nužnih, ali ne i dovoljnih uvjeta za postojanje Fourierovog reda za periodični signal $x(t)$ glasi: Signal $x(t)$ je apsolutno integrabilan u bilo kojem periodu, $\int_T x(t) dt < \infty$.
	a) netočno (b) točno
22 0.	
	a) $t\sin(t) + t + 20 + \cosh(t)$ (b) $t\sin(t) + \cosh(t) + t $ (c) $t\sin(t) + t $ (d) $ t + \cosh(t)$ (e) $t^3 + t + \cosh(t)$
221 .	Fourierov transformacijski par je:
	a) $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{+j\Omega t} dt \mathrm{i} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} d\Omega$ b) $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} dt \mathrm{i} x(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} dt$ c) $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{+j\Omega t} d\Omega \mathrm{i} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{-j\Omega t} dt$ e) $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} d\Omega \mathrm{i} x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{+j\Omega t} dt$
222.	Ako je poznatno da je $\mathcal{F}(x(t)) = 5j(\Omega - 2)$, koliko je $\mathcal{F}(x(t)e^{-j2t})$?
	(a) $5j\Omega$ (b) $\Omega + 2$ (c) $5j(\Omega - 2)e^{-j2t}$ (d) $5j(\Omega - 4)$ (e) 0
223.	U koleginim bilješkama s predavanja ste pročitali: 'Produkt dva parna signala i produkt parnog i neparnog signala su parni, a produkt dva neparna signala je neparan.' Vi kažete:
	(a) netočno b) točno
224.	Ako je snaga vremenski kontinuiranog periodičnog signala 4, a njegov period $\pi,$ kolika je njegova energija?
	a) 0 (b) ∞ c) Ne može se odrediti, ima premalo podataka. d) 4π e) π
225.	Zadan je kontinuirani periodičan signal $x(t) = e^{jt}$. Koju Fourierovu transformaciju ovog signala ćemo tražiti?
	(a) vremenski diskretan Fourierov red (DFS) (D) vremenski kontinuiranu Fourierovu transformaciju (CTFT) (C) vremenski kontinuiran Fourierov red (CTFS) (D) vremenski kratkotrajnu Fourierovu transformaciju (STFT) (D) vremenski diskretnu Fourierovu transformaciju (DTFT)
226.	Izračunajte energiju signala $y(t) = \begin{cases} 0, & \text{inače} \\ e^{2t}, & -2 \le t \le 0. \\ e^{-t}, & 0 < t \le 4 \end{cases}$
	a) $E = 6 - 6e^{-8}$ (b) $E = \frac{3}{4} - \frac{3}{4}e^{-8}$ c) $E = \frac{7}{2} - \frac{7}{2}e^{-4}$ d) $E = \frac{5}{4} - \frac{1}{4}e^{-8} - e^{-4}$ e) $E = \frac{3}{2} - \frac{3}{2}e^{-4}$
227.	Fourierov red periodičnog pravokutnog signala $\boldsymbol{x}(t)$ je kontinuirana funkcija.
	(a) netočno b) točno
228.	Želimo otipkati harmonijski signal perioda T tako da izbjegnemo preklapanje spektra (eng. aliasing). Biramo period otipkavanja:
	a) manji ili jednak T b) jednak T c) strogo manji od $0.5T$ d) strogo veći od $2T$ e) bilo koji
229.	Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[2n]$. Sustav je napravio:
	a) vremensku ekspanziju diskretnog signala b) vremensku ekspanziju kontinuiranog signala c) vremensku kompresiju kontinuiranog signala d) vremensku kompresiju diskretnog signala e) derivaciju signala
230.	• • • • • • •
	a) ∞ b) $\frac{1}{2}$ c) 2 d) 1 (e) 0
231.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = -4$ pri rastavu u Fourierov red.
	a) 0.8 b) 0.4 c) 0.5 d) 2π e) 1
232.	Poznat je spektar signala $X(\Omega) = 2\Omega(\mu(\Omega) - \mu(\Omega - 2))$. Odredite energiju tog signala.
	(a) $\frac{16}{3\pi}$ b) ∞ c) 4 d) $\frac{2}{\pi}$ e) $32/3$

233. Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za k = 1 pri rastavu u Fourierov red.

a) $f(t) = f(t+T)$, uz $T \ge 0$ b) $f(t) = f(2t+T)$ c) $f(t) = f(\frac{t}{T})$ d) $f(t) = f(tT)$ uz $T > 0$ 235. Odredite imaginarni dio spektra $Im(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog sig a) 0 b) $\pi \delta(\Omega - 1)$ c) $\frac{-1}{1-\Omega}$ d) $\frac{1}{1-\Omega}$ e) $\pi \delta(\Omega + 1)$ 236. Kontinuirani periodički signal $x(t)$ osnovne frekvencije F_0 se može prikazati preko Fourierovog red a) $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi kF_0 t}$ b) $x(t) = \sum_{k=-\infty}^{0} e^{2\pi kF_0 t}$ c) $x(t) = \sum_{k=0}^{\infty} X_k e^{-j2\pi kF_0 t}$ 237. Zadan je signal $x(t) = e^{jt}$. Odredite amplitudu spektra za $k = 0$ pri rastavu u Fourierov red. a) 2π b) 1 c) -1 d) y e) 0 238. Neka je $x(t)$ spektralno ograničeni signal za čiji spektar vrijedi $X(\omega) = 0$ za $ \omega < \omega_m$. Signal $x(t)$ odrediti iz svojih uzoraka $x(nT_S)$, $n = 1, 2, 3, \ldots$ ako je $\frac{2\pi}{T_S} = \omega_S \ge 2\omega_m$. Navedeni teorem otipkavar se: a) Zagor-Willerov teorem b) Dedic-Sherbedgia teorem (c) Shannon-Nyquistov teorem	gnala $x(t) = e^{jt} \mu(-t)$. da kao: $e^{2\pi i F_0 t}$ d) $x(t) =$
 a) 0 b) πδ(Ω − 1) c) 1/(1-Ω) d) 1/(1-Ω) e) πδ(Ω + 1) 236. Kontinuirani periodički signal x(t) osnovne frekvencije F₀ se može prikazati preko Fourierovog red a) x(t) = ∑_{k=-∞}[∞] X_ke^{j2πkF₀t} b) x(t) = ∑_{k=-∞}⁰ E^{2πkF₀t} c) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{2πkF₀t} c) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} a) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{2πkF₀t} o) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} c) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{2πkF₀t} o) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} c) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} c) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t e) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t e) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} e) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t e) x(t) = ∑_{k=0}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>	da kao: $\mathbf{d}) \ x(t) =$
 236. Kontinuirani periodički signal x(t) osnovne frekvencije F₀ se može prikazati preko Fourierovog red (a) x(t) = ∑_{k=-∞}[∞] X_ke^{j2πkF₀t} (b) x(t) = ∑_{k=-∞}⁰ e^{2πkF₀t} (c) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} (d) x(t) = ∑_{k=0}[∞] X_ke^{-j2πkF₀t} (e) x(t) = ∑_{k=0}[∞] X_ke^{2πkF₀t} 237. Zadan je signal x(t) = e^{jt}. Odredite amplitudu spektra za k = 0 pri rastavu u Fourierov red. a) 2π (b) 1 (c) -1 (d) j (e) 0 238. Neka je x(t) spektralno ograničeni signal za čiji spektar vrijedi X(ω) = 0 za ω < ω_m. Signal x(t) odrediti iz svojih uzoraka x(nT_S), n = 1, 2, 3, ako je (2π/T_S) = ω_S ≥ 2ω_m. Navedeni teorem otipkavar se: 	\mathbf{d}) $x(t) =$
(a) $x(t) = \sum_{k=-\infty}^{\infty} X_k e^{j2\pi k F_0 t}$ b) $x(t) = \sum_{k=-\infty}^{0} e^{2\pi k F_0 t}$ c) $x(t) = \sum_{k=0}^{\infty} X_k e^{-j2\pi k F_0 t}$ 237. Zadan je signal $x(t) = e^{jt}$. Odredite amplitudu spektra za $k = 0$ pri rastavu u Fourierov red. a) 2π b) 1 c) -1 d) j e) 0 238. Neka je $x(t)$ spektralno ograničeni signal za čiji spektar vrijedi $X(\omega) = 0$ za $ \omega < \omega_m$. Signal $x(t)$ odrediti iz svojih uzoraka $x(nT_S)$, $n = 1, 2, 3, \ldots$ ako je $\frac{2\pi}{T_S} = \omega_S \ge 2\omega_m$. Navedeni teorem otipkavar se:	\mathbf{d}) $x(t) =$
 237. Zadan je signal x(t) = e^{jt}. Odredite amplitudu spektra za k = 0 pri rastavu u Fourierov red. a) 2π b) 1 c) -1 d) j e) 0 238. Neka je x(t) spektralno ograničeni signal za čiji spektar vrijedi X(ω) = 0 za ω < ω_m. Signal x(t) odrediti iz svojih uzoraka x(nT_S), n = 1, 2, 3, ako je ^{2π}/_{T_S} = ω_S ≥ 2ω_m. Navedeni teorem otipkava se: 	
a) 2π b) 1 c) -1 d) j e) 0 238. Neka je $x(t)$ spektralno ograničeni signal za čiji spektar vrijedi $X(\omega)=0$ za $ \omega <\omega_m$. Signal $x(t)$ odrediti iz svojih uzoraka $x(nT_S),n=1,2,3,\ldots$ ako je $\frac{2\pi}{T_S}=\omega_S\geq 2\omega_m$. Navedeni teorem otipkavar se:	
238. Neka je $x(t)$ spektralno ograničeni signal za čiji spektar vrijedi $X(\omega) = 0$ za $ \omega < \omega_m$. Signal $x(t)$ odrediti iz svojih uzoraka $x(nT_S)$, $n = 1, 2, 3, \ldots$ ako je $\frac{2\pi}{T_S} = \omega_S \ge 2\omega_m$. Navedeni teorem otipkavar se:	
odrediti iz svojih uzoraka $x(nT_S)$, $n=1,2,3,\ldots$ ako je $\frac{2\pi}{T_S}=\omega_S\geq 2\omega_m$. Navedeni teorem otipkava se:	
a) Zagor-Willerov teorem b) Dedic-Sherbedgia teorem c) Shannon-Nyquistov teorem	s) se može jednoznačno anja (uzorkovanja) zove
teorem e) Mifune-Kurosawa teorem	d) Babić-Jerenov
239. Signal je cjelina sastavljena od međusobno vezanih objekata gdje svojstva objekata i njihova interak i svojstva cjeline.	kcija određuju vladanje
a) točno (b) netočno	
240. Pronađi neperiodičan kontinuirani signal:	
a) $\sin(4t + \frac{\pi}{4})$ b) $\sin^2(4t)$ c) $\cos(4\pi t + \frac{\pi}{4})$ d) $\sin^2(4\pi t)$ e) $\frac{1}{t}\sin^2(4t)$	
241. Odredite temeljni period signala $\sin(4\pi t) \mu(t)!$	
(a) Signal nije periodičan! b) π c) 2π d) 1 e) $\frac{1}{2}$	
242. Jedna je funkcija parna. Koja?	
a) $f(x) = 3\sin(x)\cos(x)$ (b) $f(x) = \sin(\cos(x))$ c) $f(x) = x\cos(x)$ d) $f(x) = \sin(x) - x^2$	$f(x) = \sin(x) - \cos(x)$
243. Želimo otipkati harmonijski signal frekvencije f tako da izbjegnemo preklapanje spektra (eng. alias ciju otipkavanja:	asing). Biramo frekven-
a) bilo koju (b))veću od $2f$ (c) manju od $2f$ (d) jednaku f (e) jednaku $0.5f$	
244. Za koju od slijedećih funkcija možemo izračunati Fourierov red?	
a) $\frac{1}{t}\sin(t)$ b) $\ln(t-3)$ c) $\sin(t^2)$ d) $e^t\sin(t)$ e) $e^{\sin(t)}$	
245. Ako je $\mathcal{F}(x(t)) = 5\Omega$, koliko je $\mathcal{F}(x(t-2))$?	
a) $5(\Omega + 2)$ b) $e^{2j\Omega}5\Omega$ c) $e^{j\Omega}5(\Omega - 2)$ d) $e^{-2j\Omega}5\Omega$ e) $5(\Omega - 2)$	
246. Energija signala $y[n] = \left(\frac{1}{3}\right)^{2n} \mu[n]$ iznosi:	
a) 0 (b) $\frac{81}{80}$ (c) $\frac{80}{81}$ (d) $\frac{81}{160}$ (e) $\frac{162}{160}$	
247. Pronađi neperiodičan kontinuirani signal!	
_	$(\frac{\pi}{4}) - 2\cos(2\pi t + \frac{\pi}{2})$
a) $\cos(\pi t) + 2$ b) $\cos(\pi t) \delta(t)$ c) $\cos(\pi t - \sqrt{2})$ d) $\sin(\pi t) \cos(\pi t)$ e) $\sin(\pi t - \frac{\pi}{4})$	4/ 2/

a) 2π (b) 0.4 (c) 0.8 (d) 0.5 (e) 1

	a) netočno (b))točno
250.	Za signal kažemo da je isključivo signal snage ako vrijedi:
(a) $0 \le P < \infty$ i $0 \le E < \infty$ b) $P = 0$ i $0 \le E < \infty$ c) $P = 0$ i $E = \infty$ d) $0 \le P < \infty$ i $E = 0$ e) $0 \le P < \infty$ i $E = 0$
251.	Fourierov red koristimo samo za prikaz periodičnih signala!
	a) točno b) netočno
252.	Poznat je spektar signala $\mathcal{F}(x(t)) = e^{-j2\Omega}(\mu(\Omega) - \mu(\Omega - 2))$. Energija spektra pomaknutog signala $\mathcal{F}(x(t-3))$ je nenegativan realan broj.
	a) netočno (b) točno
253.	Snaga signala $y(t) = \cos(2t)$ iznosi:
	a) $\frac{1}{2\pi} + \frac{1}{2}$ b) $\frac{1}{8\pi} + \frac{1}{2}$ c) $\frac{1}{2}$ d) 0 e) $\frac{1}{2\pi}$
254.	Signali NE mogu biti (samo jedan odgovor):
	a) digitalni b) periodički c) antikauzalni d) bezmemorijski e) deterministički
255 .	Samo jedan od slijedećih Fourierovih redova predstavlja neparnu funkciju. Označite koji!
	a) $2\sin(x) + 3\cos(x) + \frac{1}{4}\sin(3x) + \frac{5}{6}\cos(5x) + \cdots$ (b) $\sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x) + \frac{1}{7}\sin(7x) + \cdots$ (c) $\sin(x) + \cos(2x) + \sin(2x) + \cos(2x) + \sin(3x) + \cos(3x) + \cdots$ (d) $\sin(x) + \cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{5}\cos(5x) + \cdots$ (e) $\cos(x) + \frac{1}{2}\cos(2x) + \frac{1}{4}\cos(4x) + \frac{1}{6}\cos(6x) + \cdots$
256.	Za realni aperiodični vremenski kontinuiran signal $x(t)$ vrijedi $\arg(X(-f)) = -\arg(X(f))$. To je svojstvo:
	a) jednakosti b) parnosti c) ponavljanja d) simetričnosti e) antisimetričnosti
257.	U izrazu za spektar aperiodičnog kontinuiranog signala $x(t)$, $X(F) = X(F) e^{j\theta(F)}$, član $ X(F) $ predstavlja (t je vrijeme, dok je F frekvencija):
	(a) amplitudni dio spektra (b) signal (c) vrijeme (d) kružna frekvencija (e) fazni dio spektra
258.	Jedinična rampa $r(n)$ i jedinični skok $\mu(n)$ su vezani izrazom:
	a) $r(n) = \sum_{m=0}^{2n} \mu(m)$ b) $\mu(n) = r(n+2)$ c) $\mu(n) = \frac{d}{dn}r(n)$ d) $r(n) = \mu(n+1) - \mu(n)$ e) $\mu(n) = r(n+1) - r(n)$
259.	Za signal kažemo da je isključivo signal energije ako vrijedi:
	a) $0 \le E < \infty$ i $P = \infty$ b) $0 \le E < \infty$ i $P = 0$ c) $E = \infty$ i $P = 0$ d) $0 \le E < \infty$ i $0 \le P < \infty$ e) $E = 0$ i $0 \le P < \infty$
260.	Rješavate zadatke iz Signala i sustava. Prisjećate se definicije s predavanja i mrmljate sebi u bradu: 'Produkt dva parna signala i produkt parnog i neparnog signala su parni, a produkt dva neparna signala je neparan.' No, nesigurni u svoje pamćenje, provjerite tu definiciju u bilježnici te zaključite:
	a) točno (b))netočno
261.	Odredite fazni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t)=e^{-jt}\mu(t).$
	a) 0 (b) ništa od navedenoga (c) $\pi/2$ (d) π (e) $-\infty$
262.	Za koju od slijedećih funkcija možemo izračunati Fourierov red?
	a) $\frac{1}{t}\sin(t)$ b) $\ln(t-3)$ c) $e^{\sin(t)}$ d) $e^t\sin(t)$ e) $\sin(t^2)$
263.	Pronađi neperiodičan kontinuirani signal!
	(a) $\cos(\pi t) \mu(t)$ (b) $\cos(\pi t - \sqrt{2})$ (c) $\cos(\pi t)$ (d) $\sin(\pi t - \frac{\pi}{4})$ (e) $\sin(\pi t) \cos(\pi t)$
264.	Diskretni jedinični skok (eng. unit step) je definiran izrazom $\mu[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}$.

249. Parsevalova relacija za aperiodičke kontinuirane signale konačne energije izražava princip očuvanja energije u vremenskoj

i frekvencijskoj domeni.

	a) netočno (b) točno
265.	Fourierov transformacijski par je $X(\Omega)=\int_{-\infty}^{+\infty}x(t)e^{-j\Omega t}dt$ i $x(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}X(\Omega)e^{j\Omega t}d\Omega$. Što predstavlja $e^{j\Omega t}$?
	(a) kompleksnu eksponencijalu (b) kružnu frekvenciju (c) spektar (d) signal (e) vrijeme
266.	Koja definicija je točna od navedenih pet defincija Kroneckerove delta funkcije?
	a) $\mu[n] = \begin{cases} n, & n > 0 \\ -1, & n < 0 \end{cases}$ b) $\mu[n] = 1 \text{ za } n \ge 0$ c) $\delta[n] = 1$ d) $\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & \text{inače} \end{cases}$ e) $\delta[n] = 1 \text{ za svaki } n$
267.	Za graf parne funkcije vrijedi:
	(a) simetričan je s obzirom na x-os b) simetričan je s obzirom na ishodište c) simetričan je s obzirom na simetralu 1. i 3. kvadranta d) asimetričan je e) simetričan je s obzirom na y-os
268.	Temeljno frekvencijsko područje harmonijskog diskretnog signala je područje frekvencija f između:
	a) $-1 \text{ i } 1$ b) $-1 \text{ i } 0.5$ c) $-0.5 \text{ i } 1$ d) $-0.5 \text{ i } 0.5$ e) $100.5 \text{ MHz i } 101 \text{ MHz}$
269.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja $X(\Omega)$?
	a) vrijeme b) signal (c) spektar d) frekvenciju e) kružnu frekvenciju
270.	Koja od navedenih funkcija je kontinuirana kompleksna eksponencijala?
	(a) $f(t) = e^{-2jt}$ b) $f(t) = \delta(t)$ c) $f[n] = 2^{-n}$ d) $f(t) = \mu(t)$ e) $f(t) = 2t^2 + 3t + 1$
271.	Signali NE mogu biti (samo jedan odgovor):
0 = 0	a) deterministički (b) bezmemorijski (c) periodički (d) digitalni (e) antikauzalni
272.	Pronađi periodičan kontinuirani signal: $\sin(t) \sin(t) \sin(t) \sin(t) \sin(t)$
	a) $\sin(t) \mu(t)$ b) $\frac{\sin(t)}{t^2}$ c) $\mu(t)$ d) $\frac{\sin(t)}{\cos(t)}$ e) $\frac{\sin(\pi t)}{\pi t}$
273.	Za signal kažemo da je isključivo signal snage ako vrijedi:
	a) $P = 0 \text{ i } 0 \le E < \infty$ e) $0 \le P < \infty \text{ i } 0 \le E < \infty$ fb) $0 \le P < \infty \text{ i } E = \infty$ c) $0 \le P < \infty \text{ i } E = 0$ d) $P = 0 \text{ i } E = \infty$
274.	Odredite snagu signala $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$.
	a) 3,28 b) 1,64 c) 2π d) 0,41 (e) 0,82
275.	Fourierovi koeficijenti X_k i X_{-k} , gdje je $X_k = \frac{1}{T_p} \int_{T_p} x(t) e^{-j2\pi k F_0 t} dt$, za realni periodični kontinuirani signal $x(t)$ iznose
	$X_k = X_k e^{+j\theta_k}$ i $X_{-k} = X_{-k} e^{-j\theta_k}$, gdje je θ_k amplituda. a) točno (b) netočno
276	Za signale $x_1(t) = t \cos(5t)$ i $x_2(t) = x_1'(t)$ (dakle $x_2(t)$ je derivacija) vrijedi:
210.	Ea signale $x_1(t) = t \cos(3t)$ i $x_2(t) = x_1(t)$ (dakle $x_2(t)$ je derivacija) vrijedi. (a) x_1 je neparan, a x_2 je paran (b) x_1 je niti paran niti neparan, x_2 je paran (c) x_1 i x_2 su parni (d) x_1 i x_2
	su neparni e) x_1 je neparan, x_2 je niti paran niti neparan
277.	Fizikalni proces koji transformira, prenosi ili pohranjuje signal je
	a) preklapanje spektara (eng. aliasing) b) decimacija (c) sustav d) povratna veza e) kompleksna eksponencijala
278.	
	(a) vremenski reverzan b) prostorno pomaknut za 2π c) konjugirano simetričan d) prostorno simetričan e) konjugirano kompleksan
279.	Zadan je signal $x(t) = e^{jt}$. Odredite amplitudu spektra za $k = 1$ pri rastavu u Fourierov red.
	a) j b) 0.5 c) 2π d) -1 (e) 1
280.	Koja od navedenih funkcija nije niti parna niti neparna?
	a) $f(x) = \log \frac{1-\sin(x)}{1+\sin(x)}$ b) $f(x) = \ln \frac{1-x}{1+x}$ c) $f(x) = x-1 + x+1 $ d) $f(x) = \sqrt{1-x^2}$ e) $f(x) = \frac{x-1}{ x-1 }$

281.	Odredite fazni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $\pi/2$ (b) ništa od navedenoga c) 0 d) $-\infty$ e) π
282.	Signalom energije nazivamo signal za koji vrijedi $0 \leq P < \infty$ i $E = \infty.$
	a) točno (b) netočno
283.	Računala uobičajeno rade s otipkanim i kvantiziranim signalima.
	a) točno (b) netočno
284.	Kontinuirani jedinični skok (eng. unit step) je definiran izrazom $\mu(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$. Vrijednost u nuli se uobičajeno
	uzima kao $\frac{1}{2}$, a ponekad kao 1.
	a) netočno (b) točno
285.	Pronađi neperiodičan kontinuirani signal:
	(a) $\frac{1}{t}\sin^2(4t)$ b) $\sin(4t + \frac{\pi}{4})$ c) $\cos(4\pi t + \frac{\pi}{4})$ d) $\sin^2(4t)$ e) $\sin^2(4\pi t)$
286.	Sustav je prema induktivitetu kao signal prema
	a) preklapanju spektara (eng. aliasing) b) otporu c) blok dijagramu d) kapacitetu e) naponu
287.	Funkcije koje opisuju fizikalnu veličinu nazivamo:
	a) signali i sustavi b) sustavi c) signali d) blok dijagrami e) automati
288.	Signal $f(-t)$ signalu $f(t)$ je:
	a) prostorno pomaknut za 2π b) vremenski reverzan c) konjugirano simetričan d) konjugirano kompleksan e) prostorno simetričan
289.	Signal je cjelina sastavljena od međusobno vezanih objekata gdje svojstva objekata i njihova interakcija određuju vladanje i svojstva cjeline.
	a) točno (b) netočno
290.	Odredite energiju vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	(a) ∞ b) 0 c) $j/2$ d) $-j/2$ e) $1/2$
291.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = 4$ pri rastavu u Fourierov red.
	a) 0.4 b) 0.5 c) 2π d) 0.8 e) 1
292.	Važno svojstvo Diracove delta distribucije jest $\int_{-\infty}^{+\infty} f(t) \delta(t) dt = f(0)$.
	a) netočno (b) točno
293.	Odredite imaginarni dio spektra $\text{Im}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) 0 b) $\frac{1}{\Omega-1}$ c) $\frac{1}{\Omega+1}$ d) $\frac{-1}{\Omega-1}$ e) $\frac{-1}{\Omega-1}$
294.	Profesor pita: "Ako neki signal nije signal snage, možemo li znati kakav je on tada?". Vi mudro odgovarate:
_0 1	 a) "Možemo. Svi signali su uvijek signali energije, pa tako i ovaj." b) Možemo. Signal je tada signal energije."
	c) "Možemo. Svi signali su uvijek signali snage, pa tako i ovaj." d) "Žao mi je, ali ne znam. Pas mi je prožvakao bilješke" e) "Ne možemo. Signal ne mora biti niti signal snage niti signal energije."
295.	Fourierov red realnog periodičnog signala $x(t)$ je $x(t)=4+2\sin(40\pi t-\frac{\pi}{3})$. Kut θ_1 prve i jedine harmonijske komponente u tom redu je:
	a) $\theta_1 = -\frac{\pi}{2}$ b) $\theta_1 = 4$ c) $\theta_1 = -\frac{\pi}{3}$ d) $\theta_1 = -\frac{\pi}{4}$ e) $\theta_1 = \frac{\pi}{3}$

296. Mali Ivica je promatrao neka dva diskretna signala i zaključio da oba imaju srednju snagu jednaku $\frac{1}{2}$. Koja dva signala su u pitanju?

	a) Jedinični skok $\mu[n]$ i kompleksna eksponencijala $\frac{1}{2}e^{j100n}$. b) Mali Ivica nije dobro zaključio. Ne postoje dva signala jednake snage. c) Jedinični impuls $\delta[n]$ i kompleksna eksponencijala $\frac{1}{2}e^{j100n}$. d) Jedinični impuls $\delta[n]$ i kompleksna eksponencijala $\frac{\sqrt{2}}{2}e^{j100n}$. e) Jedinični skok $\mu[n]$ i kompleksna eksponencijala $\frac{\sqrt{2}}{2}e^{j100n}$.
297.	Fourierov red realnog periodičnog signala $x(t)$ iznosi $x(t) = -3\cos(16\pi t + \frac{\pi}{4})$. Koeficijent X_0 rastava u red iznosi:
	a) $X_0 = -3$ b) $X_0 = 16$ c) $X_0 = 0$ d) $X_0 = \frac{\pi}{4}$ e) $X_0 = 3$
298.	U finalu ste kviza 'Najslabija karika'. Odlučujuće pitanje glasi: 'Produkt dva parna ili dva neparna signala je paran, a produkt parnog i neparnog signala je neparan – točno ili netočno?' Bez previše razmišljanja kažete:
(a) točno b) netočno
299.	Parni dio signala $x(t) = t^2 - 3t + 2$ je:
	a) $-3t+2$ b) t^2-2 c) $-3t$ d) t^2-3t e) t^2+2
300.	Ako uzimamo uzorke signala svakih 12,5 ms, te ako ih kvantiziramo s 8 bita po uzorku, kolika je potrebna propusnost komunikacijskog kanala?
	a) 580 bps b) 540 bps c) 480 bps d) 640 bps e) 360 bps
301.	Koja od navedenih funkcija nije niti parna niti neparna?
	(a) $f(x) = \frac{x-1}{ x-1 }$ (b) $f(x) = \ln \frac{1-x}{1+x}$ (c) $f(x) = \log \frac{1-\sin(x)}{1+\sin(x)}$ (d) $f(x) = \sqrt{1-x^2}$ (e) $f(x) = x-1 + x+1 $
302.	Asistent T.P. (podaci poznati redakciji) se nakon završenog FER-a zaposlio i mora dizajnirati sustav za obradu signala koji radi sa signalima čija frekvencija ide do $40\mathrm{kHz}$. Kako T.P. nije dobro naučio teoriju signala odabrao je D/A pretvornik nedovoljnih mogućnosti. Koji pretvornik je T.P. odabrao:
	a) Analog-Devices AD1935 (192 kHz) b) Analog-Devices ADAV803 (48/96 kHz) c) Analog-Devices ADAV801

(48/96 kHz) d) Analog-Devices AD1835A (96 kHz) (e) Analog-Devices AD1847 (48 kHz)

Energija signala $y(t) = 3\sin(2t)$ za $-\pi \le t \le \pi$ iznosi:

b) $9\pi - \frac{9}{8}$ **c)** $9\pi - \frac{9}{4}$ **d)** 0 **e)** 9π

Zadan je kontinuirani periodičan signal $x(t) = e^{jt}$. Koju Fourierovu transformaciju ovog signala ćemo tražiti? 304.

a) vremenski diskretan Fourierov red (DFS) b) vremenski kratkotrajnu Fourierovu transformaciju (STFT) menski diskretnu Fourierovu transformaciju (DTFT) d) vremenski kontinuiranu Fourierovu transformaciju (CTFT) (e))vremenski kontinuiran Fourierov red (CTFS)

U finalu ste kviza 'Najslabija karika'. Odlučujuće pitanje glasi: 'Produkt dva parna ili dva neparna signala je paran, a produkt parnog i neparnog signala je neparan – točno ili netočno?' Bez previše razmišljanja kažete:

(a))točno b) netočno

306. Fourierov red realnog periodičnog signala x(t) je $x(t) = 4 + 2\sin(40\pi t - \frac{\pi}{3})$. Kut θ_1 prve i jedine harmonijske komponente u tom redu je:

a) $\theta_1 = \frac{\pi}{3}$ b) $\theta_1 = -\frac{\pi}{4}$ c) $\theta_1 = -\frac{\pi}{2}$ d) $\theta_1 = 4$ e) $\theta_1 = -\frac{\pi}{3}$

307. Neparni dio funkcije f(t) računamo kao $f_{\text{neparno}}(t) = \frac{f(t) - f(-t)}{2}$.

(a))točno b) netočno

308. Temeljno frekvencijsko područje harmonijskog diskretnog signala je područje kružnih frekvencija ω između:

a) $2k\pi i 3k\pi za k = 1, 2, 3...$ b) $-\pi i 0$ c) $0 i \pi$ d) $-\pi i \pi$ e) $-\pi i 2\pi$

309. Funkciju $\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$ zovemo:

(a) Kroneckerova delta funkcija b) Diracova delta distribucija c) Heavisideov jedinični skok d) jedinična rampa e) sinc funkcija

310. Srednja snaga jediničnog impulsa $\delta[n]$ iznosi:

c) 1 d) 2 e) $\frac{1}{2}$ a) ∞

	a) kapacitetu b) preklapanju spektara (eng. aliasing) c) otporu d) naponu e) blok dijagramu
312.	U izrazu za spektar aperiodičnog kontinuiranog signala $x(t)$, $X(F) = X(F) e^{j\theta(F)}$, član $ X(F) $ predstavlja (t je vrijeme dok je F frekvencija):
	a) kružna frekvencija b) vrijeme c) amplitudni dio spektra d) fazni dio spektra e) signal
313.	Srednja snaga signala $y[n] = \left(\frac{1}{3}\right)^{2n} \mu[n]$ iznosi:
	a) $\frac{80}{81}$ (b) 0 c) $\frac{81}{80}$ d) $\frac{162}{160}$ e) $\frac{81}{160}$
314.	Za graf parne funkcije vrijedi:
	a) asimetričan je b) simetričan je s obzirom na y-os c) simetričan je s obzirom na x-os d) simetričan je s obzirom na ishodište
315.	Diskretna rampa je definirana izrazom $r[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}$.
	a) točno (b) netočno
316.	Poznat je spektar signala $\mathcal{F}(x(t)) = e^{-j2\Omega}(\mu(\Omega) - \mu(\Omega - 2))$. Odredite energiju spektra pomaknutog signala $\mathcal{F}(x(t-3))$
	a) ∞ b) $\frac{1}{-20j\pi}(e^{-20j}-1)$ c) $1/\pi$ d) $\frac{1}{20j\pi}(e^{20j}-1)$ e) Energija signala se ne može se odrediti jer je spektar kompleksan.
317.	Pronađi periodičan kontinuirani signal!
	a) $\cos(\pi t) \delta(t)$ b) $\sin(\pi t - \frac{\pi}{4}) - 2\cos(2\pi t^2 + \frac{\pi}{2})$ c) $t + t^2 + 3t^3$ d) $\cos(\pi t) + 2$ e) $\cos(\pi t - \sqrt{2}) + t^2$
318.	Koja od navedenih funkcija je kontinuirana jedinična rampa?
	a) $f(t) = \begin{cases} -2t^2, & t \ge 0 \\ 0, & t < 0 \end{cases}$ b) $f(t) = \begin{cases} 2t, & t > 0 \\ 0, & t \le 0 \end{cases}$ c) $f(t) = \begin{cases} t, & t > 0 \\ 0, & t \le 0 \end{cases}$ d) $f(t) = \begin{cases} 2t, & t > 0 \\ 0, & t \le 0 \end{cases}$
	e) $f(t) = \begin{cases} 2\cos(t), & t > 0 \\ 0, & t \le 0 \end{cases}$
319.	Ako je snaga vremenski kontinuiranog periodičnog signala 2, a njegov period 2π , kolika je njegova energija? a) Ne može se odrediti, ima premalo podataka. b) 4π c) ∞ d) 0 e) π
320.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja t ?
02 0.	a) frekvenciju b) spektar (c) vrijeme (c) vrijeme (c) vrijeme (c) kružnu frekvenciju
321.	Poznat je spektar signala $X(\Omega) = 2\Omega(\mu(\Omega) - \mu(\Omega - 2))$. Odredite energiju tog signala. a) $\frac{2}{\pi}$ b) $32/3$ c) $\frac{16}{3\pi}$ d) ∞ e) 4
322.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja $x(t)$?
	a) kružnu frekvenciju b) frekvenciju c) signal d) vrijeme e) spektar
323.	Za realni aperiodični vremenski kontinuiran signal $x(t)$ vrijedi $\arg(X(-f)) = -\arg(X(f))$. To je svojstvo:
	a) ponavljanja b) simetričnosti c) parnosti d) jednakosti (e) antisimetričnosti
324.	Koeficijente X_k u rastavu periodične funkcije u Fourierov red računamo prema izrazu:
	a) $X_k = \int_{T_p} e^{-j2\pi kx(t)F_0t} dx$ (b) $X_k = \frac{1}{T_p} \int_{T_p} x(t)e^{-j2\pi kF_0t} dt$ c) $X_k = \frac{1}{T_p} \int_{T_p} e^{-j2\pi kF_0t} dt$ d) $X_k = \frac{1}{T_p} \int_{T_p} e^{j2\pi t} dt$ e) $X_k = \frac{1}{T_p} \int_{T_p} x(t) dt$
325.	Ako je $ X(\omega) $ amplitudni spektar signala $x(t) = \cos(t)$ i ako je $ G(\omega) $ amplitudni spektar signala $g(t) = x(t+3)$ onda vrijedi (samo jedan izraz je točan):
	a) $ G(\omega) + 2 X(\omega) = 0$ b) $ X(\omega) - G(\omega) = 0$ c) $ G(\omega) - 2 X(\omega) = 0$ d) $ X(\omega) + G(\omega) = 0$

311. Sustav je prema induktivitetu kao signal prema

a) $|G(\omega)| + 2|X(\omega)| = 0$ e) $|X(\omega)| + |G(\omega)| = 2$

	(a) 0.4 b) 0.8 c) 0.5 d) 2π e) 1
342.	Fourierov red realnog periodičnog signala $x(t)$ iznosi $x(t) = -3\cos(16\pi t + \frac{\pi}{4})$. Koeficijent X_0 rastava u red iznosi:
	a) $X_0 = -3$ b) $X_0 = 3$ c) $X_0 = 16$ d) $X_0 = 0$ e) $X_0 = \frac{\pi}{4}$
343.	Diskretna rampa je definirana izrazom $r[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$.
	a) točno (b) netočno
344.	Kolega do Vas računa energiju signala $y[n] = \left(\frac{1}{2}\right)^n \mu[n]$ i za rezultat dobiva $\frac{2}{3}$. Vi:
	 a) Kimnete glavom, dobio je točan rezultat. je ⁴/₃. d) Mislite da je točan rezultat 1. b) Mislite da je točan rezultat ∞. e) Ispravljate ga, točan rezultat je 2.
345.	Ako je poznato da je $\mathcal{F}(x(t)) = 2\Omega$, koliko je $\mathcal{F}(x(2t))$?
	a) 4Ω b) 0 c) $j\Omega/2$ d) $\Omega/2$ e) Ω
346.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = -4$ pri rastavu u Fourierov red.
	(a) 0.5 b) 2π c) 0.4 d) 1 e) 0.8
	Fourierov transformacijski par je:
348.	Signali NE mogu biti (samo jedan odgovor):
	a) antikauzalni (b) bezmemorijski (c) periodički (d) digitalni (e) deterministički
349.	Koja od navedenih funkcija je diskretna kompleksna eksponencijala?
	a) $f[n] = \delta[n]$ (b) $f[n] = 2^{-n}$ (c) $f(t) = e^{-2jt}$ (d) $f(t) = 2t^2 + 3t + 1$ (e) $f[n] = n^2 + 2n + 1$
350.	Za signale koji nemaju konačnu energiju prikladnija mjera je srednja snaga (ako postoji).
	a) netočno (b))točno
351.	Fourierovim integralom NE možemo prikazati neperiodični pravokutni signal.
	a) točno (b) netočno
352.	Odredite snagu signala $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$.
	a) $3,28$ b) 2π (c) $0,82$ d) $0,41$ e) $1,64$
353.	Signal je prema struji kao sustav prema
	a) kompleksnoj eksponencijali b) impulsu c) naponu d) otporu e) preklapanju spektara (eng. aliasing)
354.	Pronađi periodičan kontinuirani signal!
	a) $\cos(\pi t) \delta(t)$ b) $\sin(\pi t - \frac{\pi}{4}) - 2\cos(2\pi t^2 + \frac{\pi}{2})$ c) $\cos(\pi t - \sqrt{2}) + t^2$ d) $t + t^2 + 3t^3$ e) $\cos(\pi t) + 2 + \sin(t)$
355.	Signal $x(t) = \sin(t) + \sin(\sqrt{2}t) + \sin(\sqrt{3}t)$ može se razviti u Fourierov red.
	a) točno (b)) netočno
356.	
550.	a) t (b) ∞ c) t^2 d) 1 e) 0
357.	Signalom energije nazivamo signal za koji vrijedi $0 \le E < \infty$ i $P = 0$.
	(a) točno b) netočno
358.	Nužni, ali ne i dovoljni uvjeti za postojanje Fourierovog reda su:

	a) Fourierovi b) Jerenovi (c) Dirichletovi d) Lagrangeovi e) Laplaceovi
359.	Fizikalni proces koji transformira, prenosi ili pohranjuje signal je
	a) kompleksna eksponencijala b) decimacija c) preklapanje spektara (eng. aliasing) d) sustav e) povratna veza
360.	Ako je $\mathcal{F}(x(t)) = e^{-2j\Omega} \mu(\Omega)$, koliko je $\mathcal{F}(x(t-3))$?
	$\mathbf{a)} \ e^{-3j\Omega} \mu(\Omega) \qquad \mathbf{b)} \ e^{-2j(\Omega-3)} \mu(\Omega) \qquad \mathbf{c)} e^{-5j\Omega} \mu(\Omega) \qquad \mathbf{d)} \ e^{-2j(\Omega+3)} \mu(\Omega) \qquad \mathbf{e)} \ e^{-2j\Omega} \mu(\Omega)$
361.	Pronađi neperiodičan kontinuirani signal!
	a) $\sin(\pi t)\cos(\pi t)$ (b) $\cos(\pi t)\delta(t)$ (c) $\cos(\pi t - \sqrt{2})$ (d) $\cos(\pi t) + 2$ (e) $\sin(\pi t - \frac{\pi}{4}) - 2\cos(2\pi t + \frac{\pi}{2})$
362.	Za signale koji nemaju konačnu energiju prikladnija mjera je srednja snaga (ako postoji).
	(a) točno b) netočno
363.	Ako je $\mathcal{F}(x(t)) = e^{-2j\Omega} \mu(\Omega)$, koliko je $\mathcal{F}(x(t-3))$?
	$\mathbf{a)} \ \ e^{-2j(\Omega-3)} \ \mu(\Omega) \qquad \qquad \mathbf{b)} e^{-5j\Omega} \ \mu(\Omega) \qquad \mathbf{c)} \ \ e^{-3j\Omega} \ \mu(\Omega) \qquad \mathbf{d)} \ \ e^{-2j\Omega} \ \mu(\Omega) \qquad \mathbf{e)} \ \ e^{-2j(\Omega+3)} \ \mu(\Omega)$
364.	Za signale koji nemaju konačnu energiju prikladnija mjera je srednja snaga (ako postoji).
	a) netočno (b) točno
365.	Pronađi periodičan kontinuirani signal!
	a) $\sin(\pi t - \frac{\pi}{4}) - 2\cos(2\pi t^2 + \frac{\pi}{2})$ b) $t + t^2 + 3t^3$ c) $\cos(\pi t) \delta(t)$ d) $\cos(\pi t - \sqrt{2}) + t^2$ e) $\cos(\pi t) + 2$
366.	Diskretna rampa je definirana izrazom $r[n] = \begin{cases} n, & n \geq 0 \\ 0, & n < 0 \end{cases}$.
	a) netočno (b))točno
367.	Zadan je periodičan kontinuirani signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Koju Fourierovu transformaciju ovog signala ćemo tražiti?
	 a) vremenski kontinuiranu Fourierovu transformaciju (CTFT) c) vremenski kratkotrajnu Fourierovu transformaciju (STFT) d) vremenski kontinuiran Fourierov red (CTFS) d) vremenski diskretnu Fourierovu transformaciju (DTFT)
368.	Među navedenim pojmovima samo je jedan sustav. To je:
	a) impuls b) struja c) kapacitet d) napon e) jedinična stepenica
369.	Parni dio funkcije $f(t)$ računamo kao $f_{\text{parno}}(t) = \frac{f(t) + f(-t)}{2}$.
	a) netočno (b) točno
370.	Odredite realni dio spektara $\operatorname{Re}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $\frac{1}{1-\Omega}$ b) $\pi \delta(\Omega+1)$ c) $\pi \delta(\Omega-1)$ d) 0 e) $\frac{-1}{1-\Omega}$
371.	Odredite imaginarni dio spektra $\operatorname{Im}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	(a) $\frac{-1}{1-\Omega}$ b) $\pi \delta(\Omega+1)$ c) $\frac{1}{1-\Omega}$ d) $\pi \delta(\Omega-1)$ e) 0
372.	Signalom energije nazivamo signal za koji vrijedi $0 \leq E < \infty$ i $P = 0.$
	a) netočno (b) točno
373.	Energija jediničnog impulsa $\delta[n-2]$ iznosi:
	a) π (b) 1 c) 0 d) ∞ e) 2
374.	Koja od navedenih funkcija je kontinuirana kompleksna eksponencijala?
	a) $f(t) = \mu(t)$ b) $f[n] = 2^{-n}$ c) $f(t) = \delta(t)$ d) $f(t) = 2t^2 + 3t + 1$ e) $f(t) = e^{-2jt}$
375	Signalom se općenito smatra pojava ili fenomen koji nosi neku informaciju

	a) netočno (b) točno
376.	Propuštanjem signala $x(t)$ kroz neki sustav dobili smo signal $x(4t)$. Sustav je napravio:
	 a) vremensku kompresiju diskretnog signala d) vremensku ekspanziju diskretnog signala e) vremensku ekspanziju kontinuiranog signala
377.	Temeljno frekvencijsko područje harmonijskog diskretnog signala je područje kružnih frekvencija ω između:
	a) $2k\pi i 3k\pi \text{ za } k = 1, 2, 3$ b) $-\pi i 0$ c) $-\pi i 2\pi$ d) $-\pi i \pi$ e) $0 i \pi$
378.	Zadan je periodičan kontinuirani signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Koju Fourierovu transformaciju ovog signala ćemo tražiti?
	(a) vremenski kontinuiran Fourierov red (CTFS) (CTFT) vremenski kontinuiranu Fourierovu transformaciju (CTFT) (CTF
379.	Pronađi periodičan kontinuirani signal:
	a) $\frac{\sin(\pi t)}{\pi t}$ (b) $\frac{\sin(t)}{\cos(t)}$ (c) $\mu(t)$ (d) $\frac{\sin(t)}{t^2}$ (e) $\sin(t) \mu(t)$
380.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja $X(\Omega)$?
	a) vrijeme b) frekvenciju c) kružnu frekvenciju d) signal e) spektar
381.	Odredite imaginarni dio spektra $\operatorname{Im}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	a) $\pi \delta(\Omega + 1)$ b) $\pi \delta(\Omega - 1)$ c) $\frac{-1}{1-\Omega}$ d) $\frac{1}{1-\Omega}$ e) 0
382.	Samo jedan od slijedećih redova predstavlja parnu funkciju. Označite koji!
	a) $\sin(x) + \cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{5}\cos(5x) + \cdots$ b) $\sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x) + \frac{1}{7}\sin(7x) + \cdots$ c) $\cos(x) + \frac{1}{2}\cos(2x) + \frac{1}{4}\cos(4x) + \frac{1}{6}\cos(6x) + \cdots$ d) $\sin(x) + \cos(x) + \sin(2x) + \cos(2x) + \sin(3x) + \cdots$ e) $2\sin(x) + 3\cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{6}\cos(5x) + \cdots$
383.	Rastavom u Fourierov red realnog periodičnog signala $x(t)$ dobijemo točno $x(t)=-2+3\sin(5\pi t-\frac{\pi}{2})$. Koeficijent X_0 rastava u red iznosi:
((a) $X_0 = -2$ b) $X_0 = 0$ c) $X_0 = 3$ d) $X_0 = -1$ e) $X_0 = -\frac{\pi}{2}$
384.	Odredi temeljni period kontinuiranog signala $\sin(4\pi t + \frac{\pi}{4})$.
	a) $\frac{\pi}{2}$ b) 2π c) π d) Signal nije periodičan! e) $\frac{1}{2}$
385.	Ako je snaga vremenski kontinuiranog periodičnog signala 4, a njegov period π , kolika je njegova energija?
	a) 4π (b) ∞ (c) 0 (d) Ne može se odrediti, ima premalo podataka. (e) π
386.	U 78. minuti filma Poštanska kočija (režija: John Ford, 1939.) indijanci napadaju poštansku kočiju. Kočija bjesomučno juri naprijed, a kotači se vrte unatrag. Zašto?
	 a) Zato što se nije koristila relativistička korekcija brzine. b) Došlo je do preklapanja spektra (eng. aliasing). c) Ne postoji ta scena u Poštanskoj kočiji!!! d) Pa tko je vidio film u kojemu se kotači vrte na pravu stranu??? e) Zato što John Ford ne zna teoriju sustava.
387.	Signalom energije nazivamo signal za koji vrijedi $0 \leq P < \infty$ i $E = \infty.$
	a) točno (b) netočno
388.	Ako se diskretni signal $x[n]$ nastao otipkavanjem ponovno otipka tako da uzimamo svaki peti uzorak dobiti ćemo signal $x[5n]$. Ovaj postupak zove se:
	 a) vremenska ekspanzija diskretnog signala b) vremenska kompresija kontinuiranog signala c) škrtost d) deriviranje e) podotipkavanje
389.	Jedinična rampa $r(t)$ i jedinični skok $\mu(t)$ su vezani izrazom:
	a) $\mu(t) = \frac{d}{dt}r(t+2)$ b) $\mu(t) = \frac{d}{dt}r(t)$ c) $r(t) = \frac{d}{dt}\mu(t+2)$ d) $\mu(t) = r(t+1) - r(t)$ e) $r(t) = \frac{d}{dt}\mu(t)$
390.	Za koji od navedenih kontinuiranih signala $f:\mathbb{R}\to\mathbb{R}$ ne možemo odrediti temeljni period?

	a) $f(t) = \tan(t)$ b) $f(t) = \cos(t)$ c) $f(t) = 2$ d) $f(t) = \sin(t)\cos(t) + 2$ e) $f(t) = \sin(t)$
391.	Sve funkcije su parne, osim jedne. Pronađite uljeza!
	(a) $f(x) = \ln \frac{\cos(x-1)}{\cos(x+1)}$ (b) $f(x) = x^3 \sin(x)$ (c) $f(x) = \sin^2(x) - x^2$ (d) $f(x) = \cos(x) \sin^2(x)$ (e) $f(x) = \cos^2(x) - x^2$
392.	Koeficijent X_0 u prikazu Fourierovim redom za realni periodični signal $x(t) = X_0 + 2\sum_{k=1}^{\infty} X_k \cos(2\pi k F_0 t + \theta_k)$ nam opisuje:
	a) kompleksnu eksponencijalu b) maksimalnu vrijednost signala $x(t)$ c) srednju vrijednost signala $x(t)$ d) minimalnu vrijednost signala $x(t)$ e) spektar signala $x(t)$
393.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = 1$ pri rastavu u Fourierov red.
	a) 2π b) 0.8 c) 0.5 d) 1 e) 0.4
394.	Odredite amplitudni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
((a) ništa od navedenoga (b) $\frac{1}{1+\Omega}$ (c) $\frac{-1}{1+\Omega}$ (d) $\frac{j}{1+\Omega}$ (e) $\frac{-j}{1+\Omega}$
395.	Parsevalova relacija za aperiodičke kontinuirane signale konačne energije izražava princip očuvanja energije u vremenskoj i frekvencijskoj domeni.
	a) netočno (b) točno
396.	Samo jedna funkcija je parna. Koja?
	a) $f(x) = x^2 \log \frac{1+\sin(x)}{1-\sin(x)}$ b) $f(x) = x^3 \log(x^2)$ c) $f(x) = x^5 \sin^2(x)$ d) $f(x) = \log(x + \sqrt{1+x^2})$ e) $f(x) = x^3 \log \frac{x+1}{x-1}$
397.	Vremenski diskretan signal s kvantiziranom amplitudom prikazan uz pomoć konačnog broja bitova naziva se:
	a) periodički signal b) kauzalni signal c) konačni signal d) harmonički signal e) digitalni signal
398.	Studenti su dobili zadatak napisati primjer parne funkcije. Svi su napisali dobar primjer osim malog Ivice! Koju funkciju je Ivica napisao?
	a) $f(x) = \sin^2(x)\cos^3(x)$ b) $f(x) = x^3\sin(x)$ c) $f(x) = \sqrt{x^2 - 1}$ d) $f(x) = \log \frac{1 + \sin(x)}{1 - \sin(x)}$ e) $f(x) = \sin^2(x) - \cos^2(x)$
399.	Studenti su dobili zadatak napisati primjer parne funkcije. Svi su napisali dobar primjer osim malog Ivice! Koju funkciju je Ivica napisao?
	a) $f(x) = \sin^2(x)\cos^3(x)$ (b) $f(x) = \log \frac{1+\sin(x)}{1-\sin(x)}$ c) $f(x) = \sqrt{x^2 - 1}$ d) $f(x) = x^3\sin(x)$ e) $f(x) = \sin^2(x) - \cos^2(x)$
400.	Periodični signali imaju diskretan (ili linijski) spektar i razmak između dviju spektralnih linija jednak je vrijednosti osnovnog perioda T_p .
	a) točno (b) netočno
401.	Što je signal (u primjeru tehničkog sustava s predavanja)?
	a) Ferrari b) kotač c) parkiralište d) sila na amortizeru e) Opel Corsa
402.	Signal je prema struji kao sustav prema
	a) naponu b) preklapanju spektara (eng. aliasing) c) kompleksnoj eksponencijali d) impulsu (e) otporu
403.	Signali NE mogu biti (samo jedan odgovor):
	(a) bezmemorijski b) analogni c) periodički d) stohastički e) digitalni
404.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = 2$ pri rastavu u Fourierov red.
	a) 1 b) 0.4 c) 0.5 d) 0 e) 0.8

405. Studenti su dobili zadatak napisati primjer parne funkcije. Svi su napisali dobar primjer osim malog Ivice! Koju funkciju

je Ivica napisao?

	a) $f(x) = \sin^2(x)\cos^3(x)$ (b) $f(x) = \log \frac{1+\sin(x)}{1-\sin(x)}$ c) $f(x) = \sin^2(x) - \cos^2(x)$ d) $f(x) = \sqrt{x^2 - 1}$ e) $f(x) = x^3 \sin(x)$
406.	Odredite temeljni period signala $\sin^2(t)$.
	$(\mathbf{a})\pi$ $\mathbf{b}) \frac{1}{2}$ $\mathbf{c})$ Signal nije periodičan! $\mathbf{d}) 2\pi$ $\mathbf{e})$ 1
407.	Odredi temeljni period kontinuiranog signala $\sin(4\pi t + \frac{\pi}{4})$.
	a) $\frac{\pi}{2}$ b) Signal nije periodičan! c) 2π d) π (e) $\frac{1}{2}$
408.	Temeljno frekvencijsko područje harmonijskog diskretnog signala je područje kružnih frekvencija ω između:
	a) $2k\pi \ i \ 3k\pi \ za \ k = 1, 2, 3$ (b) $-\pi \ i \ \pi$ (c) $0 \ i \ \pi$ (d) $-\pi \ i \ 2\pi$ (e) $-\pi \ i \ 0$
409.	Odredite temeljni period signala $\sin(4\pi t) \mu(t)$!
	a) 2π b) $\frac{1}{2}$ c) 1 d) Signal nije periodičan! e) π
410.	U finalu ste kviza 'Najslabija karika'. Odlučujuće pitanje glasi: 'Produkt dva parna ili dva neparna signala je paran, a
1101	produkt parnog i neparnog signala je neparan – točno ili netočno?' Bez previše razmišljanja kažete:
	a) netočno (b))točno
411.	Odredite imaginarni dio spektra $\operatorname{Im}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) 0 (b) $\frac{-1}{\Omega+1}$ c) $\frac{1}{\Omega-1}$ d) $\frac{-1}{\Omega-1}$ e) $\frac{1}{\Omega+1}$
412.	Signal $f(t)$ je periodičan ako vrijedi:
	a) $f(t) = f(tT)$ b) $f(t) = f(\frac{t}{T})$ c) $f(t) = f(2t+T)$ d) $f(t) = f(t+T)$, uz $T \ge 0$ e) $f(t) = f(t+T)$,
	$\operatorname{uz} T > 0$
413.	Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi:
	a) 0 b) $\frac{1}{2}$ c) 2 (d) 1 e) ∞
414.	Za amplitudni spektar realnog aperiodični vremenski kontinuirani signala $x(t)$ vrijedi (A je realna konstanta, dok je f frekvencija):
	a) $ X(-f) = \frac{1}{A} X(f) $ b) $ X(f) = -\frac{1}{A} X(f) $ c) $ X(-f) = A X(f) $ d) $ X(-f) = - X(f) $ e) $ X(-f) = X(f) $
	$(\mathbf{e}) X(-f) = X(f) $
415.	Samo jedna funkcija je parna. Koja?
	Samo jedna funkcija je parna. Koja? a) $f(x) = x^2 \log \frac{1+\sin(x)}{1-\sin(x)}$ b) $f(x) = x^5 \sin^2(x)$ c) $f(x) = \log(x + \sqrt{1+x^2})$ d) $f(x) = x^3 \log(x^2)$ e) $f(x) = x^3 \log \frac{x+1}{x-1}$
416.	Signalom se općenito smatra pojava ili fenomen koji nosi neku informaciju.
	(a) točno b) netočno
417.	Sustav je cjelina sastavljena od međusobno vezanih objekata gdje svojstva objekata i njihova interakcija određuju vladanje i svojstva cjeline.
	a) netočno (b) točno
418.	Energija signala $y[n] = \left(\frac{1}{3}\right)^{2n} \mu[n]$ iznosi:
110.	a) 0 b) $\frac{81}{160}$ c) $\frac{162}{160}$ d) $\frac{80}{81}$ (e) $\frac{81}{80}$
<i>4</i> 19	Signal $f(-t)$ signalu $f(t)$ je:
41 <i>0</i> ,	(a) vremenski reverzan (b) prostorno pomaknut za 2π (c) konjugirano kompleksan (d) prostorno simetričan
	e) konjugirano simetričan
420.	Ako je $\mathcal{F}(x(t)) = e^{-2j\Omega} \mu(\Omega)$, koliko je $\mathcal{F}(x(t-3))$?
	a) $e^{-2j(\Omega+3)}\mu(\Omega)$ b) $e^{-2j\Omega}\mu(\Omega)$ c) $e^{-3j\Omega}\mu(\Omega)$ d) $e^{-2j(\Omega-3)}\mu(\Omega)$ e) $e^{-5j\Omega}\mu(\Omega)$
421.	Odredite realni dio spektra $\operatorname{Re}(X(\Omega))$ Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.

	a) $\pi \delta(\Omega - 1)$ (b) 0 c) $\frac{1}{1+\Omega}$ d) $\frac{-1}{1+\Omega}$ e) $\pi \delta(\Omega + 1)$
422.	Domena i kodomena digitalnog signala su podskup:
	 a) skupa realnih brojeva b) domena je podskup cijelih, a kodomena prirodnih brojeva c) domena je podskup realnih, a kodomena cijelih brojeva d) skupa cijelih brojeva e) skupa prirodnih brojeva
423.	Funkcija $f(x)$ je neparna ako i samo ako vrijedi:
	a) $f(-x) = -f(x)$ b) $f(-x) = xf(x)$ c) $f(x) = -xf(-x)$ d) $f(-x) = f(x)$ e) $f(x) = f(x+T)$ uz $T > 0$
424.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega) e^{j\Omega t} d\Omega$. Što predstavlja $e^{j\Omega t}$?
	a) signal (b) kompleksnu eksponencijalu (c) kružnu frekvenciju (d) vrijeme (e) spektar
425.	Kolega Vam u pauzi dođe s pitanjem: 'Produkt dva neparna signala i produkt parnog i neparnog signala su parni, a produkt dva parna signala je paran – je li tako?' Odgovarate mu:
	(a) netočno b) točno
426.	Sustavi NE mogu biti (samo jedan odgovor):
	a) bezmemorijski (b) periodički c) nekauzalni d) nestabilni e) invarijantni
427.	Posudili ste bilješke od kolegice i u njima pročitali: 'Produkt dva parna ili dva neparna signala je neparan, a produkt parnog i neparnog signala je paran.' Vi kažete:
	(a) netočno b) točno
428.	Neparni dio signala $x(t) = \sin(t)\cos(t) + t\sin(t) + \sin(\cos(t))$ je:
	a) $t \operatorname{sh}(t)$ (b) $\sin(t) \cos(t)$ (c) $\sin(t) \cos(t) + \sin(\cos(t))$ (d) $\sin(t) \cos(t) + t \operatorname{sh}(t)$ (e) $\sin(\cos(t))$
429.	Funkciju $\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$ zovemo:
	a) sinc funkcija b) Diracova delta distribucija c) jedinična rampa d) Heavisideov jedinični skok e) Kroneckerova delta funkcija
430.	Želimo otipkati harmonijski signal frekvencije f tako da izbjegnemo preklapanje spektra (eng. aliasing). Biramo frekvenciju otipkavanja:
	a) jednaku f b) jednaku $0.5f$ c) bilo koju d) veću od $2f$ e) manju od $2f$
431.	Odredite temeljni period kompleksnog diskretnog signala $x[n] = e^{j2\pi n}!$
	(a) 1 b) 2 c) π d) Signal nije periodičan! e) $\frac{1}{2}$
432.	Fourierov red koristimo samo za prikaz periodičnih signala!
	a) netočno (b) točno
433.	Fourierov red realnog periodičnog signala $x(t)$ iznosi $x(t) = 4 - 2\cos(50\pi t + \frac{\pi}{2})$. Kut θ_0 prvog i jedinog harmonika iznosi:
	a) $\theta_0 = -\frac{\pi}{4}$ b) $\theta_0 = 4$ c) $\theta_0 = \frac{\pi}{2}$ d) $\theta_0 = -\frac{\pi}{2}$ e) $\theta_0 = \frac{\pi}{4}$
434.	Među navedenim pojmovima samo je jedan signal. To je:
	(a) impuls b) induktivitet c) kapacitet d) automat e) otpor
435.	Parni dio signala $x(t) = t\sin(t) + t^3 + t + \mathrm{ch}(t)$ je:
	a) $ t + \text{ch}(t)$ b) $t^3 + t + \text{ch}(t)$ c) $t \sin(t) + \text{ch}(t) + t $ d) $t \sin(t) + t $ e) $t \sin(t) + t + 20 + \text{ch}(t)$
436.	Želite zadiviti novu prijateljicu s muzičke akademije koja svira električnu violinu kojom može odsvirati ton najveće frekvencije f . Pokloniti ćete joj pojačalo i efekt koje namjeravate sami sastaviti. Kako ste odlično naučili teoriju sustava znate da NE smijete odabrati A/D pretvornik za koji je(F_s je frekvencija uzorkovanja):
	(a) $F_s \le 2f$ (b) $F_s \ge 3f$ (c) $F_s \ge 2,5f$ (d) $F_s > 2,5f$ (e) $F_s > 3f$

437. Domena i kodomena analognog signala su podskup

	 a) skupa prirodnih brojeva b) domena je podskup cijelih, a kodomena prirodnih brojeva c) domena je podskup realnih, a kodomena cijelih brojeva e) skupa cijelih brojeva
438.	Frekvencija uzorkovanja je:
	(a) frekvencija kojom uzorkujemo vrijednosti kontinuiranog signala (b) frekvencija kojom uzorkujemo maksimume signala (c) frekvencija kojom uzorkujemo nule signala (d) frekvencija kojom uzorkujemo minimume signala (e) frekvencija kojom uzorkujemo vrijednosti kvadrata signala
439.	Parni dio funkcije $f(t)$ računamo kao $f_{\text{parno}}(t) = \frac{f(t) - f(-t)}{2}$.
	(a) netočno b) točno
440.	Koja od navedenih funkcija je kontinuirana kompleksna eksponencijala?
	(a) $f(t) = e^{-2jt}$ (b) $f(t) = \mu(t)$ (c) $f(t) = 2t^2 + 3t + 1$ (d) $f(t) = \delta(t)$ (e) $f[n] = 2^{-n}$
441.	Fourierov red periodičnog pravokutnog signala $\boldsymbol{x}(t)$ je kontinuirana funkcija.
	(a) netočno b) točno
442.	Ako je poznato da je $\mathcal{F}(x(t)) = 3(\Omega + 2)$, koliko je $\mathcal{F}(x(t)e^{j2t})$?
	a) $3(\Omega + 4)$ b) 0 c) 3Ω d) $3(\Omega + 2)$ e) $3(\Omega + 2)e^{j2t}$
443.	Kolega do Vas računa energiju signala $y[n] = \left(\frac{1}{2}\right)^n \mu[n]$ i za rezultat dobiva $\frac{2}{3}$. Vi:
	a) Mislite da je točan rezultat 1. b) Ispravljate ga, točan rezultat je 2. c) Ispravljate ga, točan rezultat je $\frac{4}{3}$.
	d) Mislite da je točan rezultat ∞. e) Kimnete glavom, dobio je točan rezultat.
444.	Koja od navedenih funkcija je diskretna kompleksna eksponencijala?
	a) $f[n] = \delta[n]$ b) $f(t) = 2t^2 + 3t + 1$ c) $f(t) = e^{-2jt}$ d) $f[n] = 2^{-n}$ e) $f[n] = n^2 + 2n + 1$
445.	Funkcija $f(x)$ je neparna ako i samo ako vrijedi:
	a) $f(-x) = xf(x)$ b) $f(-x) = f(x)$ c) $f(x) = f(x+T)$ uz $T > 0$ d) $f(-x) = -f(x)$ e) $f(x) = -xf(-x)$
446.	Domena i kodomena analognog signala su podskup
	 a) skupa realnih brojeva b) skupa prirodnih brojeva c) domena je podskup realnih, a kodomena cijelih brojeva e) domena je podskup cijelih, a kodomena prirodnih brojeva
447.	Neparni dio funkcije $f(t)$ računamo kao $f_{\text{neparno}}(t) = \frac{f(t) + f(-t)}{2}$.
	a) točno b) netočno
448.	Nužni, ali ne i dovoljni uvjeti za postojanje Fourierovog reda su:
	a) Lagrangeovi (b) Dirichletovi (c) Fourierovi (d) Jerenovi (e) Laplaceovi
449.	Želite zadiviti novu prijateljicu s muzičke akademije koja svira električnu violinu kojom može odsvirati ton najveće frekvencije f . Pokloniti ćete joj pojačalo i efekt koje namjeravate sami sastaviti. Kako ste odlično naučili teoriju sustava znate da NE smijete odabrati A/D pretvornik za koji je(F_s je frekvencija uzorkovanja):
	(a) $F_s \le 2f$ b) $F_s > 3f$ c) $F_s \ge 2,5f$ d) $F_s \ge 3f$ e) $F_s > 2,5f$
450.	Funkcije koje opisuju fizikalnu veličinu nazivamo:
	(a) signali (b) automati (c) sustavi (d) signali i sustavi (e) blok dijagrami
451.	Izračunajte energiju signala $y(t) = \begin{cases} 0, & \text{inače} \\ e^{2t}, & -2 \le t \le 0. \\ e^{-t}, & 0 < t \le 4 \end{cases}$
	a) $E = 6 - 6e^{-8}$ (b) $E = \frac{3}{4} - \frac{3}{4}e^{-8}$ (c) $E = \frac{5}{4} - \frac{1}{4}e^{-8} - e^{-4}$ (d) $E = \frac{7}{2} - \frac{7}{2}e^{-4}$ (e) $E = \frac{3}{2} - \frac{3}{2}e^{-4}$
452.	Fourierov red realnog periodičnog signala $x(t)$ iznosi $x(t) = -3\cos(16\pi t + \frac{\pi}{4})$. Koeficijent X_0 rastava u red iznosi:
	a) $X_0 = -3$ (b) $X_0 = 0$ c) $X_0 = \frac{\pi}{4}$ d) $X_0 = 16$ e) $X_0 = 3$

453.	Parni dio funkcije $f(t)$ računamo kao $f_{\text{parno}}(t) = \frac{f(t) - f(-t)}{2}$.
	(a) netočno b) točno
454.	Funkcija $f(x)$ je parna ako i samo ako vrijedi:
	(a) $f(-x) = f(x)$ (b) $f(-x) = -f(x)$ (c) $f(x) = f(x+T)$ uz $T > 0$ (d) $f(-x) = xf(x)$ (e) $f(x) = -f(-x)$
455.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = 2$ pri rastavu u Fourierov red.
	a) 0.4 b) 0.5 (c) 0 d) 0.8 e) 1
456.	Ako je poznato da je $\mathcal{F}(x(t)) = 3(\Omega + 2)$, koliko je $\mathcal{F}(x(t)e^{j2t})$?
	a) 0 (b) 3Ω c) $3(\Omega + 4)$ d) $3(\Omega + 2)$ e) $3(\Omega + 2)e^{j2t}$
457.	Vremenski diskretan signal s kvantiziranom amplitudom prikazan uz pomoć konačnog broja bitova naziva se:
	a) konačni signal b) periodički signal c) kauzalni signal d) digitalni signal e) harmonički signal
458.	U izrazu $X(F) = X(F) e^{j\theta(F)}$ za rastav spektra aperiodičnog kontinuiranog signala $x(t)$ član $\theta(F)$ predstavlja (t je vrijeme, dok je F frekvencija):
	(a) fazni dio spektra b) vrijeme c) kružna frekvencija d) amplitudni dio spektra e) signal
459.	Fourierovi koeficijenti X_k i X_{-k} , gdje je $X_k = \frac{1}{T_p} \int_{T_p} x(t) e^{-j2\pi k F_0 t} dt$, za realni periodični kontinuirani signal $x(t)$ iznose $X_k = X_k e^{+j\theta_k}$ i $X_{-k} = X_{-k} e^{-j\theta_k}$, gdje je θ_k amplituda.
	a) točno (b) netočno
460.	Pronađi neperiodičan kontinuirani signal!
	a) $\cos(\pi t - \sqrt{2})$ (b) $\cos(\pi t) \delta(t)$ c) $\sin(\pi t - \frac{\pi}{4}) - 2\cos(2\pi t + \frac{\pi}{2})$ d) $\sin(\pi t)\cos(\pi t)$ e) $\cos(\pi t) + 2$
461.	Poznati su Fourierove transformacije dva signala, $\mathcal{F}(x_1(t)) = 5\Omega$ i $\mathcal{F}(x_2(t)) = 2/\Omega$. Koliko je $\mathcal{F}(x_1(t) * x_2(t))$?
	a) $\frac{5\Omega^2+2}{10}$ b) $\frac{10}{\Omega}$ c) 5Ω d) 0 e) 10
462.	Parni dio signala $x(t) = t^2 - 3t + 2$ je:
	a) $t^2 - 2$ b) $-3t + 2$ c) $-3t$ d) $t^2 + 2$ e) $t^2 - 3t$
463.	Signalom se općenito smatra pojava ili fenomen koji nosi neku informaciju.
	(a) točno b) netočno
464.	Koja je od zadanih funkcija neparna?
	a) $f(x) = \sin(x) + \cos(x)$ e) $f(x) = \sin^2(x)\sqrt{1-x^2}$ b) $f(x) = x\sin(x)$ c) $f(x) = \sqrt{1-x+x^2} - \sqrt{1+x+x^2}$ d) $f(x) = \ln(x)$
465.	Signalom snage nazivamo signal za koji vrijedi $0 \leq E < \infty$ i $P = 0.$
	a) točno (b))netočno
466.	Poznati su Fourierove transformacije dva signala, $\mathcal{F}(x_1(t)) = 5\Omega$ i $\mathcal{F}(x_2(t)) = 2/\Omega$. Koliko je $\mathcal{F}(x_1(t) * x_2(t))$?
	a) 10 b) 5Ω c) $\frac{10}{\Omega}$ d) 0 e) $\frac{5\Omega^2+2}{10}$
467.	Poznat je spektar signala $\mathcal{F}(x(t)) = e^{-j2\Omega}(\mu(\Omega) - \mu(\Omega - 2))$. Energija spektra pomaknutog signala $\mathcal{F}(x(t-3))$ je nenegativan realan broj.
	a) netočno (b) točno
468.	Frekvencija uzorkovanja je:
	a) frekvencija kojom uzorkujemo vrijednosti kvadrata signala b) frekvencija kojom uzorkujemo minimume signala c) frekvencija kojom uzorkujemo vrijednosti kontinuiranog signala d) frekvencija kojom uzorkujemo nule signala e) frekvencija kojom uzorkujemo maksimume signala

469. Domena i kodomena digitalnog signala su podskup:

	d) domena je podskup cijelih, a kodomena prirodnih brojeva (e) skupa cijelih brojeva
470.	Za amplitudni spektar realnog aperiodični vremenski kontinuirani signala $x(t)$ vrijedi (A je realna konstanta, dok je f frekvencija):
	a) $ X(-f) = \frac{1}{A} X(f) $ e) $ X(f) = -\frac{1}{A} X(f) $ b) $ X(-f) = A X(f) $ c) $ X(-f) = - X(f) $ d) $ X(-f) = X(f) $
471.	Signali NE mogu biti (samo jedan odgovor):
	a) analogni (b) bezmemorijski (c) stohastički (d) digitalni (e) periodički
472.	Energija signala $y[n] = \left(\frac{1}{3}\right)^{2n} \mu[n]$ iznosi:
	a) $\frac{81}{160}$ b) 0 (c) $\frac{81}{80}$ d) $\frac{80}{81}$ e) $\frac{162}{160}$
473.	Sustav je cjelina sastavljena od međusobno vezanih objekata gdje svojstva objekata i njihova interakcija određuju vladanje i svojstva cjeline.
	a) netočno (b) točno
474.	Ako uzimam uzorke signala svakih $5\mathrm{ms}$ te ako ih kvantiziramo s $8\mathrm{bita}$ po uzorku, kolika je potrebna propusnost komunikacijskog kanala?
	a) 800 bps b) 1400 bps c) 1600 bps d) 1200 bps e) 1000 bps
475.	Jedinična rampa $r(t)$ i jedinični skok $\mu(t)$ su vezani izrazom:
	a) $r(t) = \frac{d}{dt}\mu(t)$ b) $\mu(t) = \frac{d}{dt}r(t+2)$ c) $\mu(t) = \frac{d}{dt}r(t)$ d) $\mu(t) = r(t+1) - r(t)$ e) $r(t) = \frac{d}{dt}\mu(t+2)$
476.	Računala uobičajeno rade s otipkanim i kvantiziranim signalima.
	a) netočno (b) točno
477.	Pronađi periodičan kontinuirani signal!
	a) $\sin(\pi t - \frac{\pi}{4}) - 2\cos(2\pi t^2 + \frac{\pi}{2})$ b) $\cos(\pi t) \delta(t)$ c) $t + t^2 + 3t^3$ d) $\cos(\pi t - \sqrt{2}) + t^2$ e) $\cos(\pi t) + 2 + \sin(t)$
478.	Izračunajte energiju signala $y(t) = \begin{cases} 0, & \text{inače} \\ e^{2t}, & -2 \le t \le 0. \\ e^{-t}, & 0 < t \le 4 \end{cases}$
	a) $E = \frac{7}{2} - \frac{7}{2}e^{-4}$ b) $E = \frac{3}{2} - \frac{3}{2}e^{-4}$ c) $E = \frac{5}{4} - \frac{1}{4}e^{-8} - e^{-4}$ d) $E = 6 - 6e^{-8}$ e) $E = \frac{3}{4} - \frac{3}{4}e^{-8}$
479.	Odredite temeljni period kompleksnog diskretnog signala $x[n] = e^{j2\pi n}!$
	(a) 1 b) $\frac{1}{2}$ c) π d) Signal nije periodičan! e) 2
480.	Parni dio signala $x(t) = t^2 + \sin(t) + \cos(3t) + t$ je:
	a) $\sin(t) + t$ b) $t^2 + \sin(t)$ c) $\cos(3t) + t$ d) $\sin(t) + \cos(3t)$ e) $t^2 + \cos(3t)$
481.	Domena i kodomena analognog signala su podskup
	a) domena je podskup realnih, a kodomena cijelih brojeva b) skupa prirodnih brojeva c) domena je podskup cijelih, a kodomena prirodnih brojeva d) skupa realnih brojeva e) skupa cijelih brojeva
482.	Sustavi NE mogu biti (samo jedan odgovor):
	(a) periodički b) invarijantni c) nekauzalni d) nestabilni e) bezmemorijski
483.	Sve funkcije su parne, osim jedne. Pronađite uljeza!
	(a) $f(x) = \ln \frac{\cos(x-1)}{\cos(x+1)}$ (b) $f(x) = \cos^2(x) - x^2$ (c) $f(x) = x^3 \sin(x)$ (d) $f(x) = \cos(x) \sin^2(x)$ (e) $f(x) = \sin^2(x) - x^2$
484.	Odredite fazni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{-jt} \mu(t)$.
	a) $\pi/2$ (b) ništa od navedenoga c) 0 d) π e) $-\infty$

b) domena je podskup realnih, a kodomena cijelih brojeva

c) skupa prirodnih brojeva

a) skupa realnih brojeva

485.	Parni dio signala $x(t) = t \sin(t) + t^3 + t + \text{ch}(t)$ je: a) $t \sin(t) + t + 20 + \text{ch}(t)$ b) $t^3 + t + \text{ch}(t)$ c) $t \sin(t) + t $ d) $t \sin(t) + \text{ch}(t) + t $ e) $ t + \text{ch}(t)$
486.	Fourierov red realnog periodičnog signala $x(t)$ je $x(t) = 4 + 2\sin(40\pi t + \frac{\pi}{3})$. Koeficijent X_0 iznosi: a) $X_0 = 8$ b) $X_0 = 0$ c) $X_0 = 4$ d) $X_0 = 2$ e) $X_0 = \frac{\pi}{3}$
487.	Sustav je prema induktivitetu kao signal prema
	a) preklapanju spektara (eng. aliasing) b) blok dijagramu c) kapacitetu d) otporu e) naponu
488.	Fourierov red realnog periodičnog signala $x(t)$ iznosi $x(t) = 4 - 2\cos(50\pi t + \frac{\pi}{2})$. Kut θ_0 prvog i jedinog harmonika iznosi:
	a) $\theta_0 = 4$ b) $\theta_0 = \frac{\pi}{4}$ c) $\theta_0 = -\frac{\pi}{2}$ d) $\theta_0 = \frac{\pi}{2}$ e) $\theta_0 = -\frac{\pi}{4}$
489.	Frekvencija uzorkovanja je:
	 a) frekvencija kojom uzorkujemo nule signala b) frekvencija kojom uzorkujemo vrijednosti kvadrata signala c) frekvencija kojom uzorkujemo maksimume signala d) frekvencija kojom uzorkujemo vrijednosti kontinuiranog signala e) frekvencija kojom uzorkujemo minimume signala
490.	Među navedenim pojmovima samo je jedan sustav. To je:
	a) impuls (b) kapacitet (c) struja (d) jedinična stepenica (e) napon
491.	Za graf neparne funkcije vrijedi:
	 a) simetričan je s obzirom na x-os b) simetričan je s obzirom na y-os d) simetričan je s obzirom na simetralu 1. i 3. kvadranta e) asimetričan je
492.	Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio:
	a) vremensku ekspanziju kontinuiranog signala b) vremensku kompresiju diskretnog signala c) vremensku kompresiju kontinuiranog signala d) derivaciju signala elemensku ekspanziju diskretnog signala
493.	Koeficijente X_k u rastavu periodične funkcije u Fourierov red računamo prema izrazu:
	a) $X_k = \frac{1}{T_p} \int_{T_p} e^{j2\pi t} dt$ b) $X_k = \int_{T_p} e^{-j2\pi kx(t)F_0 t} dx$ c) $X_k = \frac{1}{T_p} \int_{T_p} e^{-j2\pi kF_0 t} dt$ d) $X_k = \frac{1}{T_p} \int_{T_p} x(t)e^{-j2\pi kF_0 t} dt$ e) $X_k = \frac{1}{T_p} \int_{T_p} x(t) dt$
494.	Signal $f(t)$ je periodičan ako vrijedi:
	a) $f(t) = f(tT)$ b) $f(t) = f(\frac{t}{T})$ c) $f(t) = f(t+T)$, uz $T \ge 0$ d) $f(t) = f(2t+T)$ e) $f(t) = f(t+T)$, uz $T > 0$
495.	Propuštanjem signala $x(t)$ kroz neki sustav dobili smo signal $x(0,1t)$. Sustav je napravio:
	(a) vremensku ekspanziju kontinuiranog signala (b) vremensku kompresiju diskretnog signala (c) vremensku ekspanziju diskretnog signala (d) vremensku kompresiju kontinuiranog signala (e) derivaciju signala
496.	Posudili ste bilješke od kolegice i u njima pročitali: 'Produkt dva parna ili dva neparna signala je neparan, a produkt parnog i neparnog signala je paran.' Vi kažete:
	(a) netočno b) točno
497.	Fourierova transformacija kontinuiranog aperiodičnog signala postoji ako i samo ako je signal $x(t)$ konačne energije $\int_{-\infty}^{\infty} x(t) ^2 dt < \infty$ i ako ima neprebrojivo mnogo konačnih diskontinuiteta. To su Dirichletovi uvjeti!
	(a) netočno b) točno
498.	Zadan je signal $x(t) = 0.8\cos(t) + \cos(4t + \pi/3)$. Odredite amplitudu spektra za $k = 1$ pri rastavu u Fourierov red.
	(a) 0.4 b) 1 c) 0.5 d) 0.8 e) 2π
499.	Diskretni jedinični skok (eng. unit step) je definiran izrazom $\mu[n] = \begin{cases} 1, & n \geq 0 \\ 0, & n < 0 \end{cases}$.
	(a) točno b) netočno

500.	Rastavom u Fourierov red realnog periodičnog signala $x(t)$ dobijemo točno $x(t) = -2 + 3\sin(5\pi t - \frac{\pi}{2})$. Koeficijent X_0 rastava u red iznosi:
	a) $X_0 = -\frac{\pi}{2}$ b) $X_0 = 0$ c) $X_0 = 3$ d) $X_0 = -2$ e) $X_0 = -1$
501.	Odredite snagu kontinuiranog kompleksnog periodičnog signala $x(t) = e^{jt}$ (prisjetite se Parsevalove relacije).
	a) ∞ (b) 1 c) 0 d) 0,5 e) $1/2\pi$
502 .	Odredi temeljni period kontinuiranog signala $\sin(4\pi t + \frac{\pi}{4})$.
	a) π (b) $\frac{1}{2}$ (c) 2π (d) $\frac{\pi}{2}$ (e) Signal nije periodičan!
503.	Posudili ste bilješke od kolegice i u njima pročitali: 'Produkt dva parna ili dva neparna signala je neparan, a produkt parnog i neparnog signala je paran.' Vi kažete:
	a) točno (b) netočno
504.	Pronađi periodičan kontinuirani signal!
	a) $\sin(\pi t - \frac{\pi}{4}) - 2\cos(2\pi t^2 + \frac{\pi}{2})$ b) $t + t^2 + 3t^3$ c) $\cos(\pi t) + 2$ d) $\cos(\pi t) \delta(t)$ e) $\cos(\pi t - \sqrt{2}) + t^2$
505.	Poznat je spektar signala $\mathcal{F}(x(t)) = e^{-j2\Omega}(\mu(\Omega) - \mu(\Omega - 2))$. Energija spektra pomaknutog signala $\mathcal{F}(x(t-3))$ je nenegativan realan broj. a) netočno (b) točno
506.	
300.	a) -0.5 i 1 b) 100.5 MHz i 101 MHz (c))-0.5 i 0.5 d) -1 i 0.5 e) -1 i 1
507.	Signalom snage nazivamo signal za koji vrijedi $0 \le P < \infty$ i $E = \infty$.
	(a) točno b) netočno
508.	Što je signal (u primjeru tehničkog sustava s predavanja)?
	(a) sila na amortizeru b) parkiralište c) Ferrari d) kotač e) Opel Corsa
509.	Sustav je cjelina sastavljena od međusobno vezanih objekata gdje svojstva objekata i njihova interakcija određuju vladanje i svojstva cjeline.
	a) netočno (b) točno
510.	Kontinuirani jedinični skok (eng. unit step) je definiran izrazom $\mu(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$. Vrijednost u nuli se uobičajeno
	uzima kao $\frac{1}{2}$, a ponekad kao 1.
	a) netočno (b) točno
511.	Ako se diskretni signal $x[n]$ nastao otipkavanjem ponovno otipka tako da uzimamo svaki peti uzorak dobiti ćemo signal $x[5n]$. Ovaj postupak zove se:
	a) škrtost b) deriviranje c) vremenska kompresija kontinuiranog signala (d) podotipkavanje e) vremenska ekspanzija diskretnog signala
512 .	Pronađi periodičan kontinuirani signal!
	a) $\cos(\pi t - \sqrt{2}) + t^2$ b) $t + t^2 + 3t^3$ c) $\sin(\pi t - \frac{\pi}{4}) - 2\cos(2\pi t^2 + \frac{\pi}{2})$ d) $\cos(\pi t) \delta(t)$ e) $\cos(\pi t) + 2 + \sin(t)$
513.	Fourierov red periodičnog pravokutnog signala $\boldsymbol{x}(t)$ je kontinuirana funkcija.
	(a) netočno b) točno
514.	Odredite fazni spektar Fourierove transformacije vremenski kontinuiranog signala $x(t) = e^{jt} \mu(-t)$.
	(a) ništa od navedenoga (b) $\pi/2$ (c) $-\infty$ (d) π (e) 0
515.	Pronađi neperiodičan kontinuirani signal!
	(a) $\cos(\pi t) \mu(t)$ (b) $\sin(\pi t) \cos(\pi t)$ (c) $\sin(\pi t - \frac{\pi}{4})$ (d) $\cos(\pi t)$ (e) $\cos(\pi t - \sqrt{2})$

516.	Zadan je signal $x(t) = e^{jt}$. Odredite fazu spektra za $k = 1$ pri rastavu u Fourierov red.
	a) $-\pi$ b) $\pi/2$ c) π d) 0 e) 2π
517.	Fourierov transformacijski par je $X(\Omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\Omega t} dt$ i $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\Omega)e^{j\Omega t} d\Omega$. Što predstavlja Ω ?
	a) signal b) spektar c) frekvenciju d) vrijeme (e) kružnu frekvenciju
518.	Fourierov integral signala $x(t)$ računamo prema izrazu (t je vrijeme, dok je F frekvencija):
519.	Odredite temeljni period kompleksnog signala $e^{j2\pi t}$.
	a) $\frac{\pi}{2}$ b) π c) Signal nije periodičan! d) 1 e) $\frac{1}{2}$
520.	Koja od navedenih funkcija nije niti parna niti neparna?
	a) $f(x) = \ln \frac{1-x}{1+x}$ b) $f(x) = \sqrt{1-x^2}$ c) $f(x) = x-1 + x+1 $ d) $f(x) = \frac{x-1}{ x-1 }$ e) $f(x) = \log \frac{1-\sin(x)}{1+\sin(x)}$
521.	Ako uzimamo uzorke signala svakih 12,5 ms, te ako ih kvantiziramo s 8 bita po uzorku, kolika je potrebna propusnost
	komunikacijskog kanala?
	(a) 640 bps b) 540 bps c) 360 bps d) 480 bps e) 580 bps
522.	Samo jedan od slijedećih Fourierovih redova predstavlja neparnu funkciju. Označite koji!
	a) $\sin(x) + \cos(x) + \sin(2x) + \cos(2x) + \sin(3x) + \cos(3x) + \cdots$ b) $\sin(x) + \cos(x) + \frac{1}{4}\sin(3x) + \frac{1}{5}\cos(5x) + \cdots$ c) $2\sin(x) + 3\cos(x) + \frac{1}{4}\sin(3x) + \frac{5}{6}\cos(5x) + \cdots$ d) $\cos(x) + \frac{1}{2}\cos(2x) + \frac{1}{4}\cos(4x) + \frac{1}{6}\cos(6x) + \cdots$ e) $\sin(x) + \frac{1}{3}\sin(3x) + \frac{1}{5}\sin(5x) + \frac{1}{7}\sin(7x) + \cdots$
523.	Jedan od nužnih, ali ne i dovoljnih uvjeta za postojanje Fourierovog reda za periodični signal $x(t)$ glasi:
	Signal $x(t)$ je apsolutno integrabilan u bilo kojem periodu, $\int_T x(t) dt < \infty$.
	(a) točno b) netočno
524.	32mt
	Odredite temeljni period kompleksnog signala $e^{j2\pi t}$.
	Odredite temeljni period kompleksnog signala $e^{j2\pi t}$. a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1
525.	
525.	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1
525. 526.	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala (b) vremensku ekspanziju diskretnog signala c) vremensku kompresiju
	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala (b) vremensku ekspanziju diskretnog signala (c) vremensku kompresiju kontinuiranog signala (d) derivaciju signala (e) vremensku ekspanziju kontinuiranog signala
526.	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala (b) vremensku ekspanziju diskretnog signala (c) vremensku kompresiju kontinuiranog signala (d) derivaciju signala (e) vremensku ekspanziju kontinuiranog signala Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi: a) ∞ b) 2 c) 0 d) $\frac{1}{2}$ e) 1
	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala (b) vremensku ekspanziju diskretnog signala (c) vremensku kompresiju kontinuiranog signala (d) derivaciju signala (e) vremensku ekspanziju kontinuiranog signala Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi:
526.	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala b) vremensku ekspanziju diskretnog signala c) vremensku kompresiju kontinuiranog signala d) derivaciju signala e) vremensku ekspanziju kontinuiranog signala Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi: a) ∞ b) 2 c) 0 d) $\frac{1}{2}$ e) 1
526.	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala b) vremensku ekspanziju diskretnog signala c) vremensku kompresiju kontinuiranog signala d) derivaciju signala e) vremensku ekspanziju kontinuiranog signala Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi: a) ∞ b) 2 c) 0 d) $\frac{1}{2}$ e) 1 Diskretna rampa je definirana izrazom $r[n] = \begin{cases} n, & n \geq 0 \\ 0, & n < 0 \end{cases}$
526. 527.	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala (b) vremensku ekspanziju diskretnog signala (c) vremensku kompresiju kontinuiranog signala (d) derivaciju signala (e) vremensku ekspanziju kontinuiranog signala Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi: a) ∞ b) 2 c) 0 d) $\frac{1}{2}$ (e) 1 Diskretna rampa je definirana izrazom $r[n] = \begin{cases} n, & n \geq 0 \\ 0, & n < 0 \end{cases}$ a) netočno (b) točno
526. 527.	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala b) vremensku ekspanziju diskretnog signala c) vremensku kompresiju kontinuiranog signala d) derivaciju signala e) vremensku ekspanziju kontinuiranog signala Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi: a) ∞ b) 2 c) 0 d) $\frac{1}{2}$ e) 1 Diskretna rampa je definirana izrazom $r[n] = \begin{cases} n, & n \geq 0 \\ 0, & n < 0 \end{cases}$ a) netočno b) točno Funkcije koje opisuju fizikalnu veličinu nazivamo:
526. 527.	a) Signal nije periodičan! b) π c) $\frac{1}{2}$ d) $\frac{\pi}{2}$ e) 1 Propuštanjem signala $x[n]$ kroz neki sustav dobili smo signal $x[0,5n]$. Sustav je napravio: a) vremensku kompresiju diskretnog signala b) vremensku ekspanziju diskretnog signala c) vremensku kompresiju kontinuiranog signala d) derivaciju signala e) vremensku ekspanziju kontinuiranog signala Energija jediničnog impulsa $\delta[n]$ (Kroneckerov delta impuls) iznosi: a) ∞ b) 2 c) 0 d) $\frac{1}{2}$ e) 1 Diskretna rampa je definirana izrazom $r[n] = \begin{cases} n, & n \geq 0 \\ 0, & n < 0 \end{cases}$ a) netočno b) točno Funkcije koje opisuju fizikalnu veličinu nazivamo: