

OKAN ÜNİVERSİTESI MÜHENDİSLİK-MİMARLIK FAKÜLTESI MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

2014.04.10

MAT234 Matematik IV – Ara Sınavın Çözümleri

N. Course

Soru 1 (Series).

(a) [10p] Give the definition of " $\sum_{n=1}^{\infty} a_n$ converges".

Define $s_n = \sum_{j=1}^n a_j$. We say that $\sum_{n=1}^\infty a_n$ converges iff the sequence (s_n) converges.

Now let

$$a_n = \frac{1}{n(n+1)(n+2)}$$
 and $s_n = \sum_{j=1}^n a_j = a_1 + a_2 + a_3 + \dots + a_n$.

(b) [10p] Write a_n in partial fractions (i.e. $a_n = \frac{?}{n} + \frac{?}{n+1} + \frac{?}{n+2}$).

$$a_n = \frac{1}{n(n+1)(n+2)} = \frac{\left(\frac{1}{2}\right)}{n} - \frac{1}{n+1} + \frac{\left(\frac{1}{2}\right)}{n+2} = \frac{1}{2n} - \frac{2}{2(n+1)} + \frac{1}{2(n+2)}$$

(c) [20p] Show that

$$s_n = \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}$$

for all $n \in \mathbb{N}$.

METHOD 1:

$$s_n = \sum_{j=1}^n a_n = \sum_{j=1}^n \frac{1}{2j} - 2\sum_{j=1}^n \frac{1}{2(j+1)} + \sum_{j=1}^n \frac{1}{2(j+2)}$$

$$= \left(\frac{1}{2} + \frac{1}{4} + \sum_{j=3}^n \frac{1}{2j}\right) - \left(\frac{1}{2} + 2\sum_{j=2}^{n-1} \frac{1}{2(j+1)} + \frac{2}{2(n+1)}\right)$$

$$+ \left(\sum_{j=1}^{n-2} \frac{1}{2(j+2)} + \frac{1}{2(n+1)} + \frac{1}{2(n+2)}\right)$$

$$= \frac{1}{4} + \sum_{j=3}^n \frac{1}{2j} - 2\sum_{j=3}^n \frac{1}{2j} + \sum_{j=3}^n \frac{1}{2j} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}$$

$$= \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}$$

METHOD 2: We can prove this using Induction. Since $s_1 = a_1 = \frac{1}{1 \times 2 \times 3} = \frac{1}{6}$, and since $\frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}\Big|_{n=1} = \frac{1}{4} - \frac{1}{4} + \frac{1}{6} = \frac{1}{6}$, the statement is true for n=1. Now suppose that it is true for n=k. Then $s_k = \frac{1}{4} - \frac{1}{2(k+1)} + \frac{1}{2(k+2)}$. It follows that

$$\begin{aligned} s_{k+1} &= s_k + a_{k+1} \\ &= \left(\frac{1}{4} - \frac{1}{2(k+1)} + \frac{1}{2(k+2)}\right) + \left(\frac{1}{2(k+1)} - \frac{2}{2(k+2)} + \frac{1}{2(k+3)}\right) \\ &= \frac{1}{4} - \frac{1}{2(k+2)} + \frac{1}{2(k+3)} \\ &= \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)} \bigg|_{n=k+1} \end{aligned}$$

It follows by the principle of mathematical induction that $s_n = \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}$ for all

(d) [5p] Show that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$

converges.

It is easy to see that $s_n = \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)} \rightarrow \frac{1}{4} + 0 + 0 = \frac{1}{4}$ as $n \rightarrow \infty$. Therefore the series also converges.

(e) [5p] Calculate

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}.$$

By my answer to (d), $s_n \to \frac{1}{4}$ as $n \to \infty$. Therefore $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}$.

Soru 2 (Cauchy sequences).

(a) [10p] Give the definition of a Cauchy sequence.

We say that (a_n) is a Cauchy sequence iff, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n, m > N \implies |a_n - a_m| < \varepsilon.$$

(b) [15p] Let $b_n = 1 + 10^{-n}$ for all $n \in \mathbb{N}$. Use the definition that you wrote in part (a) to show that (b_n) is a Cauchy sequence.

Let $\varepsilon > 0.4$ Choose $N \ge \log_{10} \frac{1}{\varepsilon}.4$ Then

$$n > m > N \boxed{2} \implies |b_n - b_m| = |10^{-n} - 10^{-m}|$$

$$= 10^{-m} (1 - 10^{m-n})$$

$$\leq 10^{-m}$$

$$< 10^{-N}$$

$$\leq 10^{-\log_{10} \frac{1}{\varepsilon}} \boxed{4}$$

$$= 10^{\log_{10} \varepsilon}$$

$$= \varepsilon.$$

Therefore (b_n) is a Cauchy sequence. 1

(c) [25p] Let (x_n) be a convergent sequence. Show that (x_n) is a Cauchy sequence.

Let $\varepsilon > 0.4$ Since $x_n \to x$ as $n \to \infty$, we know that $\exists N \in \mathbb{N}_5$ such that

$$n > N \implies |x_n - x| < \frac{\varepsilon}{2}.$$

It follows that

$$n, m > N \implies |x_n - x_m| = |x_n - x + x - x_m|$$

$$\leq |x_n - x| + |x - x_m| \frac{5}{5}$$
(by the triangle inequality) $\frac{1}{2}$

$$= |x_n - x| + |x_m - m|$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon. \frac{4}{5}$$

Therefore (x_n) is a Cauchy sequence. 1

Soru 3 (Convergent sequences and divergent sequences).

(a) [10p] Let (a_n) be a sequence of real numbers and let $l \in \mathbb{R}$. Give the definition of " $a_n \to l$ as $n \to \infty$ ".

We say that (a_n) tends to l $(a_n \to l \text{ as } n \to \infty)$ iff, for all $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that

$$n > N \implies |a_n - l| < \varepsilon.$$

(b) [10p] Let (b_n) be a sequence of real numbers and let $l \in \mathbb{R}$. Give the definition of " $b_n \not\to l$ as $n \to \infty$ ".

We say that $b_n \not\to l$ as $n \to \infty$ iff, there exists $\varepsilon > 0$ such that for all $N \in \mathbb{N}$, there exists $n \in \mathbb{N}$ such that

$$n > N$$
 and $|a_n - l| \ge \varepsilon$.

(c) [15p] Let $c_n = \frac{1}{2} + \frac{(-1)^n}{2}$ for all $n \in \mathbb{N}$. Use the definition that you wrote in part (b) to show that $c_n \not\to 1$ as $n \to \infty$.

Choose $\varepsilon = \frac{1}{2}$. Let $N \in \mathbb{N}$. If N is an even number, choose n = N+1; if N is an odd number, choose n = N+2. Then n > N. Moreover

$$|c_n - 1| = |0 - 1| = 1 \ge \frac{1}{2} = \varepsilon.$$

Therefore $c_n \not\to 1$ as $n \to \infty$.

Let

$$d_n = \frac{n + (-1)^n \sqrt{n}}{(n^2 + 1)^{1/2}}$$

for all $n \in \mathbb{N}$.

- (d) [15p]
 - Is (d_n) convergent or divergent?
 - Does $\lim_{n\to\infty} d_n$ exist?
 - If the limit exists, calculate $\lim_{n\to\infty} d_n$.

You must prove your answers. (For this question, you may use any theorem/lemma/corollary/example from the course.)

[HINT: Use the Sandwich Rule.]

Since

$$n^2 \le n^2 + 1 \le (n+1)^2$$
,

it follows that

$$n \le (n^2 + 1)^{\frac{1}{2}} \le n + 1.$$

Hence

$$1 \leftarrow \frac{1 + \frac{(-1)^n}{\sqrt{n}}}{1 + \frac{1}{n}} = \frac{n + (-1)^n \sqrt{n}}{n + 1} \le \frac{n + (-1)^n \sqrt{n}}{(n^2 + 1)^{1/2}} \le \frac{n + (-1)^n \sqrt{n}}{n} = 1 + \frac{(-1)^n}{\sqrt{n}} \to 1$$

as $n \to \infty$. It follows by the Sandwich Rule that $d_n \to 1$ as $n \to \infty$. Therefore (d_n) is a convergent sequence and $\lim_{n \to \infty} d_n = 1$.