CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO DIREÇÃO ACADÊMICA DE CIÊNCIAS HUMANAS E TECNOLÓGICAS DACHT CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

	Letícia Lindber	GHT DA COSTA		
Orbitar: Uma platafoi pr	RMA WEB PARA O I ROMOÇÃO DA ECON		ITO DE ELETRÔNI	COS E
	•			

CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO DIREÇÃO ACADÊMICA DE CIÊNCIAS HUMANAS E TECNOLÓGICAS DACHT CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

LETÍCIA	LINDBERGHT	DA	Costa
---------	------------	----	-------

ORBITAR: UMA PLATAFORMA WEB PARA O REAPROVEITAMENTO DE ELETRÔNICOS E PROMOÇÃO DA ECONOMIA CIRCULAR

Trabalho de Conclusão de Curso apresentado ao Centro Universitário Serra dos Órgãos como requisito obrigatório para obtenção do título de Bacharel em Ciência da Computação.

Orientador: ProfNome do Orientador

Teresópolis 2025

CENTRO UNIVERSITÁRIO SERRA DOS ÓRGÃOS UNIFESO DIREÇÃO ACADÊMICA DE CIÊNCIAS HUMANAS E TECNOLÓGICAS DACHT CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

ORBITAR:	UMA	PLATAFORM	A WEB	PARA	O RE	APROVI	EITAMI	ENTO	DE EI	LETRÔ	NICOS	\mathbf{E}
		PROM	10CÃC	DA E	CONO	MIA CII	RCULA	R				

LETÍCIA LINDBERGHT DA COSTA

Trabalho de Co	nclusão de Curso	apresentado ao	Centro Uni	versitário Se	erra dos Órgãos (como
requisito obriga	atório para obtenç	ão do título de	Bacharel em	Ciência da	Computação.	

ProfNome do Orientador Orientador - MSc.
Coorientador - DSc.
Nome do Primeiro Membro da Banca - DSc.
Nome do Segundo Membro da Banca - DSc.

Agradecimentos

	•		1	1	•		11	11	^
HOOTONIO	00111 0	COLLC OCTOC	lagimentag	do	monorro	ana	malhar	Iha	convom
LSCIEVA	aciiii O	SCHS ASTAC	lecimentos	ua	шанспа	unc	HIGHIOL	шс	COHVEILL

Lista de Ilustrações

Figura 1 –	Escreva aqui o titulo da	a sua figura	19
------------	--------------------------	--------------	----

Lista de Quadros

Lista de Tabelas

Lista de Algoritmos

Lista de abreviaturas e siglas

ABNT Associação Brasileira de Normas Técnicas

Resumo

Escreva aqui o resumo do seu trabalho. Lembre-se escreva o resumo por ultimo na monografia.

Palavra-chave: Palavra-chave1, Palavra-chave2, Palavra-chave3

Abstract

Escreva aqui o seu abstract (Resumo em inglês)

Keywords: Keywords1. Keywords2. Keywords3.

Sumário

1	INTRODUÇAO	14
1.1	MOTIVAÇÃO	14
1.2	JUSTIFICATIVA	15
1.3	OBJETIVOS	15
1.3.1	OBJETIVO GERAL	15
1.3.2	OBJETIVOS ESPECÍFICOS	15
1.4	ORGANIZAÇÃO DO TRABALHO	16
2	FUNDAMENTAÇÃO TEÓRICA	17
2.1	O DESAFIO DO LIXO ELETRÔNICO E A ECONOMIA CIRCULAR	17
2.2	ARQUITETURA DE APLICAÇÕES WEB MODERNAS	18
2.3	TECNOLOGIAS ADOTADAS NO PROJETO	18
3	METODOLOGIA E DESENVOLVIMENTO	
4	CONCLUSÃO	21
	REFERÊNCIAS	22
	APÊNDICES	23
	APÊNDICE A – EXEMPLO	
	ANIEWOC	25
	ANEXOS	25
	ANEXO A - EXEMPLO	26

1 INTRODUÇÃO

As Tecnologias da Informação e Comunicação *TIC* são pilares da sociedade contemporânea, catalisando o progresso social e econômico. Contudo, o modelo de produção que as sustenta, predominantemente linear e focado no consumo cíclico, gerou um passivo ambiental de proporções críticas: o lixo eletrônico, ou e-waste. Este fenômeno é o resultado direto de um sistema caracterizado pela obsolescência programada e por padrões de consumo insustentáveis, onde equipamentos são descartados em um ritmo alarmante, muitas vezes ainda em plenas condições de uso.

A magnitude deste problema é documentada por múltiplas fontes globais. O relatório *Global E-waste Monitor 2024* revela que a geração de lixo eletrônico atingiu um recorde histórico, crescendo a uma taxa cinco vezes superior à da reciclagem documentada, com dezenas de milhões de toneladas descartadas anualmente (FORTI et al., 2024). Para além do volume, a periculosidade desses resíduos é um fator crítico. Um estudo aprofundado sobre sua composição detalha a presença de numerosas substâncias tóxicas, como chumbo, mercúrio e cádmio, que, quando descartadas incorretamente, representam uma séria ameaça à saúde humana e aos ecossistemas (PERKINS et al., 2014).

Este cenário reflete um desafio sistêmico maior. Segundo a Organização para a Cooperação e Desenvolvimento Econômico *OCDE*, os atuais padrões de extração e uso de materiais são insustentáveis, e o setor de eletrônicos é um dos principais contribuintes para o esgotamento de recursos naturais finitos (CO-OPERATION; (OECD), 2019). Portanto, tratar o problema do e-waste é uma dupla necessidade: por um lado, mitigar a contaminação ambiental e, por outro, romper com um modelo econômico extrativista e desperdiçador. A solução mais eficaz, alinhada aos princípios da economia circular, é intervir antes que um equipamento se torne resíduo.

Neste contexto, a reutilização emerge como a estratégia prioritária, pois conserva a energia e os materiais embutidos na fabricação do produto, estendendo sua vida útil ao máximo. É a partir desta premissa que este trabalho se desenvolve, propondo uma solução tecnológica para um problema gerado pela própria tecnologia. O objetivo é criar uma ferramenta que não apenas ofereça um destino adequado para eletrônicos subutilizados, mas que também transforme um passivo ambiental em um ativo social, promovendo, como um valioso benefício secundário, a inclusão digital.

1.1 MOTIVAÇÃO

A motivação central deste projeto nasce da constatação de uma grande falha logística e cultural no ciclo de vida dos produtos eletrônicos. Para um cidadão ou uma empresa que substitui um equipamento funcional, o processo de descarte sustentável é frequentemente opaco, inconveniente e desestruturado. Na ausência de canais claros e confiáveis para a doação ou o reaproveitamento, a opção mais fácil acaba sendo o descarte inadequado, que alimenta o

crescente volume de e-waste.

Por outro lado, existe uma demanda latente por esses mesmos dispositivos. A tecnologia pode, ironicamente, resolver um problema que ela mesma ajudou a criar. A proposta é desenvolver a **Orbitar**, uma aplicação web que atue como uma ponte digital, conectando quem deseja descartar um eletrônico de forma consciente com quem pode dar a ele uma nova vida, tornando o processo de reutilização simples, seguro e geograficamente acessível.

1.2 JUSTIFICATIVA

A relevância deste trabalho se justifica primariamente sob a ótica ambiental, pela necessidade urgente de se contrapor ao modelo de consumo linear. A importância de tratar o e-waste reside em seu duplo impacto negativo: primeiro, a contaminação ambiental e os riscos à saúde pública causados por seus componentes tóxicos, conforme detalhado por Perkins et al. (2014); segundo, o esgotamento de recursos naturais finitos, desperdiçados no descarte prematuro de equipamentos. A plataforma **Orbitar** alinha-se diretamente aos princípios da economia circular (FOUNDATION, 2023), promovendo a estratégia mais nobre e eficiente de gestão de resíduos: a reutilização. Ao estender a vida útil de um produto, evitam-se os impactos de todo o ciclo de produção de um novo e do descarte de um antigo.

Como um benefício social derivado, ao intervir no ciclo de descarte, a plataforma gera um impacto secundário de grande relevância, abordando a persistente desigualdade digital no Brasil. Dados da pesquisa TIC Domicílios (CGI.BR, 2024) mostram que a posse de um computador ainda é um forte indicador de oportunidade socioeconômica. Portanto, a proposta se justifica por criar um mecanismo que ataca a raiz do problema do descarte inadequado e, como consequência, transforma um passivo ambiental em um ativo para a inclusão social.

1.3 OBJETIVOS

Diante do cenário exposto, os objetivos deste trabalho são definidos a seguir.

1.3.1 OBJETIVO GERAL

Desenvolver a Orbitar, uma aplicação web focada em promover a economia circular e a sustentabilidade, que conecte doadores e receptores de produtos eletrônicos de forma organizada, segura e localizada, a fim de mitigar o descarte inadequado de e-waste e estender a vida útil da tecnologia.

1.3.2 OBJETIVOS ESPECÍFICOS

a Realizar um levantamento conceitual sobre a gestão de e-waste e os princípios da economia circular, e analisar as tecnologias de desenvolvimento web a serem utilizadas (C# .NET,

Angular e SQL Server);

- b Modelar a arquitetura da solução, incluindo o projeto do banco de dados relacional e a definição das interfaces de comunicação via API REST;
- c Desenvolver o back-end da aplicação em C# com a plataforma .NET, implementando as regras de negócio, o sistema de autenticação e o gerenciamento de dados;
- d Desenvolver o front-end da aplicação com Angular, construindo uma interface de usuário responsiva, intuitiva e acessível;
- e Implementar e validar o fluxo completo de doação, desde o cadastro e filtragem por localidade até a reserva temporária do item e a confirmação de entrega.

1.4 ORGANIZAÇÃO DO TRABALHO

O restante deste trabalho está organizado da seguinte forma: o Capítulo 2 apresenta a fundamentação teórica, abordando os conceitos de e-waste, economia circular e as tecnologias que servem de base para o projeto. O Capítulo 3 descreve detalhadamente a metodologia empregada, incluindo a arquitetura do sistema, o modelo de dados e as ferramentas utilizadas no desenvolvimento. No Capítulo 4, são apresentados os resultados, com a demonstração das funcionalidades da plataforma. Finalmente, o Capítulo 5 traz as considerações finais, discutindo as conclusões do estudo, as limitações encontradas e as sugestões para trabalhos futuros.

2 FUNDAMENTAÇÃO TEÓRICA

Este capítulo apresenta as bases conceituais e tecnológicas que sustentam o desenvolvimento da plataforma Orbitar. A exposição parte do fenômeno ambiental que motiva o projeto, avança para a discussão sobre arquiteturas de software e, por fim, detalha as tecnologias específicas empregadas na sua implementação.

2.1 O DESAFIO DO LIXO ELETRÔNICO E A ECONOMIA CIRCULAR

A proposta de valor do projeto reside na aplicação de princípios de sustentabilidade para resolver um problema gerado pelo próprio ciclo de consumo tecnológico. Resíduos de Equipamentos Elétricos e Eletrônicos *REEE*, ou e-waste, compreendem todos os produtos eletrônicos ao final de sua vida útil. Este problema é definido tanto por sua escala massiva quanto por sua natureza perigosa.

Primeiramente, a escala do problema é evidenciada pelos dados do *Global E-waste Monitor 2024*. O relatório indica que o mundo gerou 62 milhões de toneladas de lixo eletrônico em um único ano, um aumento de 82% desde 2010, enquanto menos de um quarto 22,3% desse volume foi formalmente coletado e reciclado (FORTI et al., 2024). Essa disparidade demonstra a ineficácia dos sistemas atuais de gestão de resíduos e a urgência de novas abordagens.

Em segundo lugar, a periculosidade do e-waste define sua gravidade. Conforme detalhado por Perkins et al. (2014), os componentes eletrônicos contêm uma mistura complexa de materiais valiosos e substâncias perigosas. Elementos como chumbo em soldas, mercúrio em telas de LCD e cádmio em baterias recarregáveis são neurotoxinas e carcinógenos conhecidos. O descarte inadequado desses materiais em lixões ou sua queima a céu aberto liberam essas toxinas no ar, solo e água, resultando em contaminação ambiental duradoura e graves riscos à saúde das comunidades próximas.

A importância de tratar o problema do e-waste é reforçada pela estrutura da economia circular, que oferece um caminho viável para a sustentabilidade. Em oposição ao modelo linear de "extrair-produzir-descartar", a economia circular propõe um sistema restaurador e regenerativo por design. O objetivo é manter produtos, componentes e materiais em seu mais alto nível de utilidade e valor o tempo todo (FOUNDATION, 2023). Dentro de seus princípios, a reutilização se destaca como uma das estratégias mais eficientes, pois demanda menos energia e recursos do que a reciclagem. A plataforma **Orbitar** foi concebida como uma ferramenta para operacionalizar esse princípio, criando um mercado secundário local e acessível que intercepta dispositivos antes que se tornem lixo, reinserindo-os no sistema produtivo e social.

2.2 ARQUITETURA DE APLICAÇÕES WEB MODERNAS

A solução foi concebida como uma aplicação web moderna, projetada para ser escalável, resiliente e acessível.

A arquitetura base é a cliente-servidor, um paradigma que separa as responsabilidades da aplicação. O cliente front - end, executado no navegador do usuário, é responsável pela camada de apresentação e interação. O servidor (back-end) concentra a lógica de negócio, o acesso aos dados e as regras de segurança. Essa separação (desacoplamento) é fundamental, pois permite que as equipes de desenvolvimento do front-end e do back-end trabalhem de forma independente, além de viabilizar que diferentes tipos de clientes (como um futuro aplicativo móvel) consumam os mesmos serviços do servidor.

A comunicação entre cliente e servidor é mediada por uma Interface de Programação de Aplicações *API*. Foi adotado o padrão arquitetural REST (Representational State Transfer), definido na dissertação seminal de Roy Fielding (FIELDING, 2000). Uma API RESTful organiza a comunicação em torno de recursos (ex: doadores, doações, dispositivos), que são manipulados através dos verbos padrão do protocolo HTTP (GET, POST, PUT, DELETE). Uma característica chave do REST é ser stateless (sem estado), o que significa que cada requisição do cliente para o servidor deve conter toda a informação necessária para ser processada, garantindo escalabilidade e confiabilidade. Os dados são majoritariamente trafegados no formato JSON (JavaScript Object Notation) devido à sua leveza e fácil interpretação por linguagens de programação.

2.3 TECNOLOGIAS ADOTADAS NO PROJETO

A seleção tecnológica para a plataforma Orbitar foi orientada pela robustez, escalabilidade e pela forte integração do ecossistema de ferramentas escolhido.

Para o desenvolvimento do back-end, a escolha foi a linguagem C# em conjunto com a plataforma .NET. Mantida pela Microsoft, a .NET é um framework de desenvolvimento de código aberto, multiplataforma e de alto desempenho, ideal para a construção de aplicações web e APIs robustas. Sua arquitetura moderna, forte tipagem e vasto conjunto de bibliotecas permitem a criação de sistemas seguros e escaláveis, enquanto o framework ASP.NET Core simplifica drasticamente a construção de APIs RESTful, permitindo que o desenvolvedor se concentre nas regras de negócio da aplicação.

A interface com o usuário *front* – *end* foi construída com Angular, um framework mantido pelo Google para o desenvolvimento de Single-Page Applications *SPAs*. O Angular utiliza TypeScript, um superset do JavaScript que adiciona tipagem estática ao código, resultando em um desenvolvimento mais seguro e de fácil manutenção. Sua arquitetura baseada em componentes permite a criação de uma interface modular e reutilizável, o que é ideal para a complexidade e a evolução planejada para a plataforma.

Para a persistência dos dados, optou-se pelo Microsoft SQL Server, um Sistema de Gerenciamento de Banco de Dados *SGBD* relacional altamente robusto e confiável. Sua forte integração com o ecossistema .NET, por meio de ferramentas como o Entity Framework, otimiza o desenvolvimento da camada de acesso a dados. O SQL Server é reconhecido por sua performance e por garantir a integridade e consistência das informações através de transações ACID (Atomicidade, Consistência, Isolamento e Durabilidade), um requisito crucial para uma aplicação que gerencia o ciclo de vida de doações, onde cada etapa deve ser registrada de forma segura.

Figura 1 – Escreva aqui o titulo da sua figura

Fonte: UNIFESO, 2025

Utilize o comando 1 para referenciar as suas Figuras. exemplo: Figura 1.

3 METODOLOGIA E DESENVOLVIMENTO

Escreva aqui a metodologia adotada no seu trabalho

4 Conclusão

Escreva a sua conclusão do seu trabalho

Referências

AUTOR, N. do. **Título do Livro**. [S.l.]: Editora, 2025.

CGI.BR, C. G. da Internet no B. **Pesquisa sobre o uso das tecnologias de informação e comunicação nos domicílios brasileiros: TIC Domicílios 2023**. São Paulo: CGI.br, 2024. Disponível em: https://cgi.br/media/docs/publicacoes/2/20241104102822/tic_domicilios_2023_livro_eletronico.pdf.

CO-OPERATION, O. for E.; (OECD), D. Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences. Paris: OECD Publishing, 2019.

FIELDING, R. T. Architectural Styles and the Design of Network-based Software Architectures. Tese (Doutorado) — University of California, Irvine, 2000.

FORTI, V. et al. **Global E-waste Monitor 2024: Electronic Waste Rising Five Times Faster Than Documented E-waste Recycling**. Geneva: UNITAR, 2024. Disponível em: https://ewastemonitor.info/>.

FOUNDATION, E. M. **What is a circular economy?** 2023. Disponível em: https://www.ellenmacarthurfoundation.org/pt/temas/economia-circular-introducao/visao-geral.

PERKINS, D. N. et al. E-waste: a global hazard. **Annals of Global Health**, v. 80, n. 4, p. 286–295, 2014.

UNIFESO, C. U. S. dos Órgãos. **Informações Institucionais e Dados Acadêmicos**. 2025. Disponível em: https://www.unifeso.edu.br>.

APÊNDICE A - Exemplo

ANEXO A - Exemplo