

Organiske forbindelser: Alkaner og deres stereokjemi

Alkaner – mettede hydrokarboner

- Bare enkeltbindinger
- Bare C og H
- Generell formel C_nH_{2n+2}
- Upolare bindinger
 - Lite reaktive
 - "paraffin" = "uten affinitet"
 - Alifatiske forbindelser
- Ingen funksjonelle grupper

Funksjonelle grupper

- Gruppe atomer i et molekyl, assosiert med kjemisk reaktivitet
 - Forutsigbar kjemisk reaktivitet
 - Oftest assosiert med områder i molekylet som er
 - Elektronfattige (elektrofile)
 - Elektronrike (nukleofile)
 - "Motsetninger tiltrekker hverandre"

 Elektronflyt fra et elektronpar (elektronrikt sted) til et elektronfattig sted

Funksjonell gruppe	Stoffklasse	Prefiks – forstavelse (engelsk i parentes)	Suffiks – etterstavelse (engelsk i parentes)	
О —С, ОН	karboksylsyre	karboksy-	-syre (-oic acid)	
$-\overset{O}{\overset{NH_2}{\overset{N}{N}}}$	amid	karbamoyl-	-amid (-amide)	
—C≡N	nitril	cyano-	-nitril (-nitrile)	
O -C H	aldehyd	formyl-	-al	
-c-c-c-	keton	okso- (oxo-)	-on (-one)	
—ОН	alkohol	hydroksy- (hydroxy-)	-ol	
—SH	tiol	merkapto- (mercapto-)	-tiol (-thiol)	
-N	amin	amino-	-amin (-amine)	

Utvalgte funksjonelle grupper (2)

Funksjonell gruppe	Stoffklasse	Prefiks – forstavelse (engelsk i parentes)	Suffiks – etterstavelse (engelsk i parentes)	
C=C	alken	alkenyl-	-en (-ene)	
—c≡c—	alkyn	alkynyl-	-yn (-yne)	
	alkan	alkyl-	-an (-ane)	
—OR —OPh	eter	alkoksy-, fenoksy- (alkoxy-, phenoxy-)	-eter (ether)	
—F —СI —Вr —I	halid	fluor-, klor-, brom-, jod- (fluoro-, chloro-, bromo-, iodo-)		
-NO ₂		nitro-		

UNIVERSITETET

Stoffklassene er ordnet etter fallende prioritet:

En gitt forbindelsen anses for å tilhøre den høyst prioriterte stoffklassen som er mulig ut fra hvilke funksjonelle grupper den har. Dette er av betydning for navnsettingen.

Isomeri

- Flere strukturformler kan ofte skrives for en forbindelse med en gitt bruttoformel
- Disse kalles isomerer
- Dersom atomene er bundet sammen i forskjellig rekkefølge, kalles disse konstitusjonsisomere
- Isomeri kan finnes i alle organiske stoffklasser
- Andre former for isomeri f
 ølger senere i kurset

Alkaner

Metan	Etan	Propan	Butan	Pentan
CH ₄	C ₂ H ₆	C ₃ H ₈	C ₄ H ₁₀	C ₅ H ₁₂
1 isomer	1 isomer	1 isomer	2 isomerer	3 isomerer
Heksan	Heptan	Oktan	Nonan	Dekan
C ₆ H ₁₂	C ₇ H ₁₄	C ₈ H ₁₈	C ₉ H ₂₀	C ₁₀ H ₂₂
5 isomerer	7 isomerer	18 isomerer	35 isomerer	75 isomerer
Undekan	Dodekan	Tridekan	Tetradekan	Eicosan
C ₁₁ H ₂₄	C ₁₂ H ₂₆	C ₁₃ H ₂₈	C ₁₄ H ₃₀	C ₂₀ H ₄₂
159 isomerer	335 isomerer	802 isomerer	1858 isomerer	366319 isomerer
Heneicosan C ₂₁ H ₄₄	Docosan C ₂₂ H ₄₆	Tricosan C ₂₃ H ₄₈	Tetracosan C ₂₄ H ₅₀	Triacontan C ₃₀ H ₆₂ 4111846763 isomerer
Hentriacontan C ₃₁ H ₆₄	Dotriacontan C ₃₂ H ₆₆	Tritriacontan C ₃₃ H ₆₈	Triheksakontan C ₆₃ H ₁₂₈ 4,37672×10 ²³ isomerer	Hektan C ₁₀₀ H ₂₀₂ 5,92107×10 ³⁹ isomerer

Kun antall konsitusjonsisomerer er listet. Stereoisomerer kommer i tillegg!

Navnsetting av organiske forbindelser

- IUPAC nomenklatur for organiske molekyler
 - International Union of Pure and Applied Chemistry
 - http://en.wikipedia.org/wiki/IUPAC_nomenclature_of_organic_chemistry
 - http://www.chem.qmul.ac.uk/iupac/
- Norsk nomenklatur
 - Skolelaboratoriets sider
 - http://www.mn.uio.no/kjemi/forskning/grupper/skole/nomenklatur/ Nettsidene er forfattet av Vivi Ringnes i 2008 og bygger på hennes bok "Navn på Kjemiske stoffer" (Cappelens forlag, 1996). Boken er ikke lenger i salg.
- ChemDraw har en kjekk funksjon:

"Convert structure to name" (og motsatt)

Trivialnavn vs. systematiske navn

Unadecacyclo[9.9.0.0^{1,5}.0^{2,12}.0^{2,18}.0^{3,7}.0^{6,10}.0^{8,12}.0^{11,15}.0^{13,17}.0^{16,20}]eicosane

Eller hvorfor ikke rett og slett pagodan?

"Molecules with silly names":

http://www.chm.bris.ac.uk/sillymolecules/sillymols.htm

Navnsetting av organiske forbindelser

- Trivialnavn og systematiske navn
 - effektivitet vs. presisjon i kommunikasjon med kolleger
- Prefiks stamme posisjon suffiks
 - prefiks angir plassering av og navn på substituenter
 - stamme angir antall C-atomer i hovedkjeden
 - stammen er den lengste karbonkjeden som inneholder den høyst prioriterte funksjonelle gruppen
 - posisjon angir plassering av høyst prioriterte funksjonelle gruppe
 - suffiks angir hva som er den høyst prioriterte funksjonelle gruppen
 - suffikset definerer hvilken stoffklasse forbindelsen tilhører
- Vi vil bare introdusere en begrenset del av det omfattende navnsettingssystemet i dette kurset
 - Det er viktigere å forstå selve kjemien til forbindelsene

Navnsetting av alkaner

- Finn den lengste karbonkjeden. Hovedkjedens navn defineres fra antall C i kjeden
 - Hvis to kjeder er like lange, velges den som har flest forgreninger
- Karbonatomene i hovedkjeden nummereres fra 1 og oppover
 - Nummereringen starter i den enden som er nærmest første forgrening (ved likhet – gå til eventuelt forgrening nr. 2, osv.)
- Grupper som er bundet til hovedkjeden (substituenter) navngis og nummereres, og angis som forstavelse(r) til hovedkjedens navn
 - Substituentene angis i alfabetisk rekkefølge
 - Flere like substituenter angis med di-, tri-, tetra- osv. der denne lille forstavelsen ikke tas med i alfabetiseringen. Plasseringen angis for hvert tilfelle av hver substituent
- Forbindelsens navn skrives ut i ett ord

Alkylgrupper

- En gruppe som fås ved å fjerne et hydrogenatom fra et alkan
- Navnet fås ved å erstatte alkanets –an etterstavelse med –yl
- "R" brukes som betegnelse på en generell alkylgruppe

primært C primært H

sekundært C sekundært H

tertiært C tertiært H

kvaternært C

primær alkylgruppe

sekundær alkylgruppe

tertiær alkylgruppe

C₆₀ eller Buckminsterfullerene

Systematisk navn i følge en tidligere versjon av IUPACs navnsettingsregler:

hentriacontacyclo[29.29.0.0 2,24 .0 3,12 .0 4,59 .0 5,10 .0 6,58 .0 7,55 .0 8,53 .0 9,21 .0 11,20 .0 13,18 .0 15,30 .0 16,2 .8.0 17,25 .0 22,52 .0 23,50 .0 26,49 .0 27,47 .0 29,45 .0 32,44 .0 33,60 .0 34,57 .0 35,43 .0 36,56 .0 37,41 .0 38,54 .0 39,51 .0 40,48 .0 42,46]hexaconta-1,3,5(10),6,8,11(18),14,-16,19,21,23,25,27,29(45),30,32(44),33,-35(43),36,38(54),39(51),40(48),41,46,49,-52,55,57,59-triacontaene

Navn etter dagens regler: C_{60} - I_h [5,6]fullerene

Navnsettingsreglene er med andre ord under stadig utvikling...heldigvis!

Alkaners fysikalske egenskaper

- Smeltepunkt og kokepunkt øker med økende størrelse på alkanet
- Data for rettkjedete alkaner, CH₄ C₁₄H₃₀

Alkaners reaktivitet

- Generelt lite reaktive
- Reagerer med Cl₂ og Br₂
 - Behov for aktivering med UV-lys (hv) eller varme (Δ)
 - Introduserer funksjonelle grupper –Cl og –Br
 - Lite selektive reaksjoner
- Reagerer med luftas O₂
 - Forbrenning til CO₂ og H₂O
 - Meget eksoterm reaksjon

Konformasjoner

- Det er "fri rotasjon" rundt C-C enkeltbindinger (og andre enkeltbindinger)
- Forskjellige atomer eller grupper i molekylet kan dermed få forskjellig romlig orientering i forhold til hverandre
- Disse forskjellige øyeblikks-strukturene kalles konformasjoner
- Konformasjonsanalyse er en viktig del av den organiske kjemien
 - eks. enzym-substrat interaksjoner

Konformasjoner av etan, C₂H₆

torsjons-spenninger frastøtning destabiliserende

"eclipsed" overskyggende

$$H_3C$$
— CH_3

"staggered" mellomliggende

Melvin Spencer Newman (1908-1993)

Newman-projeksjoner

Konformasjoner av etan

Konformasjoner av butan

Dihedral angle between methyl groups