Google Classroom Code: mhxgl24

Classification, Dataloaders, Activation Functions (sigmoid), loss functions (log loss, cross entropy), TensorBoard

Deep Learning (DS-5006)

Dr. Adeel Mumtaz

Lecture 5

Fall, 2022

Contents

- Review
 - NN Concepts summary
 - Multiple Regression
 - PyTorch Summary
 - Quiz-2
 - A Simple Regression Problem (Pytorch Implementation)
 - Home Task (backprop)
- A simple binary classification problem (Theory)
 - NN Architecture
 - Why Activation function is required
 - Sigmoid Activation
 - Why MSE can't be used as loss function
 - Log loss or logistic loss
 - GD for logistic regression

- A simple binary classification problem (PyTorch)
 - scikit-learn library
 - Feature/Data Scaling
 - Datasets and Dataloaders
 - Model Class
 - Mode Visualization using TorchSummary
 - PyTorch BCELoss
 - Batch wise Training Loop
 - Evaluation Metrics
 - Model Checkpointing
 - TensorBoard
- Summary
- Home Task

NN Summary Review

- Data Set, Training, Validation, Test
- NN as function Approximators
- Cost/Loss Function
 - MSE Loss for regression
- Architecture of NN
- Parameters
- Training Loop
- Optimizer
- Learning Rate
- Types of Gradient Descent
 - Epoch
 - Batch
- Loading/Saving Model

MULTIPLE REGRESSION

Multiple regression

 Multiple regression is a technique that can be used to analyze the relationship between a single dependent variable and several independent variables

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	×z	×3	*4	<u>.</u>
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Model

Vectorization

$$X = \begin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} & \cdots & x_n^{(1)} \\ 1 & x_1^{(2)} & x_2^{(2)} & \cdots & x_n^{(2)} \\ 1 & x_1^{(3)} & x_2^{(3)} & \cdots & x_n^{(3)} \\ 1 & x_1^{(m)} & x_2^{(m)} & \cdots & x_n^{(m)} \end{bmatrix}_{m \times (n+1)}$$

$$\hat{Y} = XW$$

$$W = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_n \end{bmatrix}_{n+1}$$

$$Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}_m$$

Gradient Descent (Vectorization)

Scalar derivative

$$\mathcal{L}(X, W) = \frac{1}{m} \sum_{i=1}^{m} (W^{T} x^{(i)} - y^{(i)})^{2}$$

i=		x^2	\rightarrow	2x	\mathbf{x}^{7}
		bx^2	\rightarrow	2bx	\mathbf{x}^T

$$W_{new} = W_{old} - \alpha * dW$$

$$b_{new} = ?$$

Vector derivative

PYTORCH SUMMARY

Summary-1

```
scalar = torch.tensor(3.14159)
vector = torch.tensor([1, 2, 3])
matrix = torch.ones((2, 3), dtype=torch.float)
tensor = torch.randn((2, 3, 4), dtype=torch.float)
print(tensor.size(), tensor.shape)
same_matrix = matrix.view(1, 6)
another_matrix = matrix.view(1, 6).clone().detach()
x_train_tensor = torch.as_tensor(x_train)
dummy_tensor.numpy()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
x_train_tensor = torch.as_tensor(x_train).float().to(device)
```

back_to_numpy = x_train_tensor.cpu().numpy()

Summary-2

```
loss = (error ** 2).mean()
```

loss.backward()

```
print(b.grad, w.grad)
```

```
with torch.no_grad():
    b -= lr * b.grad
    w -= lr * w.grad
```

Summary-3

- Optimizer
 - opt=optim.SGD(parameters)
 - opt.step()
 - opt.zero_grad()
- Loss Fuction
 - nn.MSELoss()
 - loss.backward()
- Model Class
 - __init__(self)
 - forward(self, x)
 - Defining Model Parameters
 - Model state_dict()
 - Model device
 - Nested Model

Forward & Backprop

DYNAMIC COMPUTATION GRAPH

Graded Home Task (backprop)

Training Data

x_1	x_2	y
-2	3	5
1	-2	-3

Assuming MSE Loss function, Given above training samples calculate

- 1. Forward Pass (values of x_3, x_4, \hat{y})
- 2. Calculate Loss value
- 3. Calculate gradients of w_1 to w_6 with respect to loss function using backprop/chain rule
- 4. Update w_1 to w_6 using SGD optimizer with lr=0.1
- 5. Write PyTorch Code using Autograd, built-in loss function and optimizer
- 6. Compare manual and PyTorch output

Quiz-2

x_1	x_2	y
-2	3	5

Assuming MSE Loss function, Given above training sample calculate

- 1. Forward Pass (values of h_1, h_2, \hat{y})
- 2. Calculate Loss value
- 3. Calculate gradients of w_1 and w_5 with respect to loss function
- 4. Update w_1 and w_5 using SGD optimizer with Ir=0.1
- 5. Write PyTorch Code using Autograd, built-in loss function and optimizer

Quiz-2 (solution)

x_1	x_2	y
-2	3	5

Step1: Forward Pass:

$$h_1 = x_1 * w_1 + x_2 * w_3 = 0.25$$

 $h_2 = x_1 * w_2 + x_2 * w_4 = 0.11$
 $\hat{y} = h_1 * w_5 + h_2 * w_6 = 0.0855$

Step2: Computing Loss

$$L = (\hat{y} - y)^2 = 24.1523$$

Step3: Computing Gradients

$$\frac{\partial L}{\partial w_5} = \frac{\partial L}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_5} = 2(\hat{y} - y) * h_1 = 2(0.0855 - 5) * 0.25 = -2.45725$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial h_1} * \frac{\partial h_1}{\partial w_1} = 2(\hat{y} - y) * w_5 * x_1 = 2(0.0855 - 5) * 0.21 * (-2) = 4.12818$$

Step4: Parameter update using SGD

$$w_{1new} = w_1 - \alpha * \frac{\partial L}{\partial w_1} = 0.1 - 0.1 * 4.12818 = -0.3128$$

 $w_{5new} = w_5 - \alpha * \frac{\partial L}{\partial w_5} = 0.21 - 0.1 * (-2.45725) = 0.4557$

Quiz-2 (Solution)

```
import torch
#forward pass
x=torch.tensor([-2,3],dtype=torch.float)
wh= torch.tensor([[0.1,0.2],[0.15,0.17]],dtype=torch.float,requires grad=True)
h= torch.matmul(wh.t(),x)
wo=torch.tensor([0.21,0.3],dtype=torch.float,requires grad=True)
yhat = torch.matmul(wo.t(),h)
#backward pass
loss func=torch.nn.MSELoss()
y=torch.tensor([5],dtype=torch.float)
loss=loss_func(yhat,y)
loss.backward()
print(wh.grad)
print(wo.grad)
opt=torch.optim.SGD(params=[wh,wo],lr=0.1)
opt.step()
print(wh)
print(wo)
```

Output (grad)

Output (new params)

```
Step3: Computing Gradients \frac{\partial L}{\partial w_5} = \frac{\partial L}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_5} = 2(\hat{y} - y) * h_1 = 2(0.0855 - 5) * 0.25 = -2.45725 \frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial h_1} * \frac{\partial h_1}{\partial w_1} = 2(\hat{y} - y) * w_5 * x_1 = 2(0.0855 - 5) * 0.21 * (-2) = 4.12818
```

```
Step4: Parameter update using SGD w_{1new} = w_1 - \alpha * \frac{\partial L}{\partial w_1} = 0.1 - 0.1 * 4.12818 = \textbf{-0.3128} w_{5new} = w_5 - \alpha * \frac{\partial L}{\partial w_5} = 0.21 - 0.1 * (-2.45725) = \textbf{0.4557}
```

A SIMPLE REGRESSION PROBLEM (PYTORCH IMPLEMENTATION)

Imports, Device, Seed

```
import numpy as np
import matplotlib.pyplot as plt
import torch
from torchviz import make_dot
```

```
7 device='cuda' if torch.cuda.is_available() else 'cpu'
8 torch.manual_seed(100)
```

Model Class

```
class SimpleRGNet(torch.nn.Module):

def __init__(self):
    super().__init__()
    self.linear = torch.nn.Linear(1,1,bias=True)

def forward(self,x):
    return self.linear(x)
```

Model, optimizer and loss initialization

```
model=SimpleRGNet().to(device)
40
41
     paramList=list(model.parameters())
42
     stateDict=model.state dict()
43
     print(paramList)
44
     print(stateDict)
45
46
     lr=0.1
47
     optimizer=torch.optim.SGD(model.parameters(), lr=lr)
     lossfnc = torch.nn.MSELoss(reduce="mean")
48
```

Data Preparation

```
20
     true w=2
21
     true b=1
22
     N=100
23
     #data generation
24
     np.random.seed(100)
     x=np.random.rand(N,1)
25
     epsilon=0.1*np.random.randn(N,1)
26
     y=true w*x+true b+epsilon
27
     #data split
28
     idx=np.arange(N)
29
     np.random.shuffle(idx)
30
     idx train=idx[:int(0.8*N)]
31
     idx test=idx[int(0.8*N):]
32
     x_train, y_train = x[idx_train],y[idx_train]
33
34
     x val, y val = x[idx test],y[idx test]
     x train tensor=torch.as tensor(x train).float().to(device)
35
     y_train_tensor=torch.as_tensor(y_train).float().to(device)
36
37
     x val tensor=torch.as tensor(x val).float().to(device)
     y val tensor=torch.as tensor(y val).float().to(device)
38
```

Training Loop

```
53
     trainLosses=[]
     valLosses=[]
     for i in range(1000):
         model.train()
         #forward pass
57
         yhat=model(x train tensor)
         loss=lossfnc(yhat,y train tensor)
         trainLosses.append(loss.item())
60
         #make dot(loss).view()
62
         loss.backward()
         optimizer.step()
         optimizer.zero grad()
64
         stateDict=model.state dict()
         w=stateDict['linear.weight']
         b=stateDict['linear.bias']
67
         w=w.item()
         b=b.item()
70
         model.eval()
71
         with torch.no grad():
72
             #val MSE loss
73
74
             yhatval=model(x val tensor)
75
             valLoss=lossfnc(yhatval,y val tensor)
             valLosses.append(valLoss.item())
76
77
         #stopping condition
         if(valLoss.item()<0.0001):</pre>
78
             break
79
         print(f'train loss={loss.item()}, val loss={valLoss.item()}, w={w}, b={b}')
80
```

PyTorch Summary

- Data & Parameters as Tensors
- Moving from numpy to Tensor to GPU
- PyTorch Model Class
- Autograd using backward()
- Built-in Loss Functions
- Built-in optimizers
- Much Simplified Training Loop
- Getting Ready for deep models training using large datasets?

A SIMPLE BINARY CLASSIFICATION PROBLEM (THEORY)

Binary Classification

 Supervised learning algorithm that categorizes new observations into one of two classes

Application	Observation	0	1
Medical Diagnosis	Patient	Healthy	Diseased
Email Analysis	Email	Not Spam	Spam
Financial Data Analysis	Transaction	Not Fraud	Fraud
Marketing	Website visitor	Won't Buy	Will Buy
Image Classification	Image	Hotdog	Not Hotdog

- Logistic Regression
- k-Nearest Neighbors
- Decision Trees
- Support Vector Machine
- Naive Bayes

Binary Classification

- Why Linear Regression is not suitable for classification?
 - Linear Regression deals with continuous values at output whereas classification problems requires discrete values

Solution (Activation Function)

- Sigmoid function
 - Mathematical function having a characteristic that can take any real value and map it to between 0 to 1 shaped like the letter "S".
 - The sigmoid function also called a logistic function.

$$-\sigma(Z) = \frac{1}{1+e^{-Z}}$$

- We can threshold the probability output of sigmoid for classification
 - E.g. if threshold=0.5
 - Class = A if $\sigma(Z) \ge 0.5$
 - Class = B if $\sigma(Z) < 0.5$

Sigmoid Activation

Resulting Logistic Regression Model

- We can think of the logistic regression as the second simplest neural network possible.
- It is pretty much the same as the linear regression, but with a sigmoid applied to the results of the output layer (z).

Notes on Uses of Activation Functions

- It makes it easy for the model to generalize or adapt with variety of data
- Help the network learn complex patterns in the data
- Different for hidden and output layer
- Sigmoid, tanh, Softmax, ReLU etc.

Notes on Uses of Activation Functions

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU max(0.1x, x)

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0, x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Binary Classification with MSE

- With sigmoid MSE loss function becomes Nonconvex
- If the loss function is not convex, it is not guaranteed that we will always reach the global minima, rather we might get stuck at local minima.

Log loss or Logistic loss

- Also called Binary Cross-Entropy
- $\bullet \quad \sigma(Z_i) = p(y_i = 1) = \hat{y}_i$
- Note I am still calling the final output of network after sigmoid as $\widehat{oldsymbol{y}}_i$
- $1 \sigma(Z_i) = p(y_i = 0) = 1 \hat{y}_i$
- Log Loss for positive class= $-\log(\hat{y}_i)$
- Log Loss for negative class= $-\log(1-\hat{y}_i)$

 More loss if predicted probability is away from true class

Log loss or Logistic loss

Combining loss for both classes

$$\label{eq:log_loss} \begin{split} & \log \operatorname{Loss} = -y_i \log(\hat{y}_i) - (1-y_i) \log(1-\hat{y}_i) \\ & \operatorname{Mean \ Log \ Loss} = \end{split}$$

$$-\frac{1}{N}\sum_{i=1}^{N}y_{i}\log(\widehat{y}_{i})+(1-y_{i})\log(1-\widehat{y}_{i})$$

Gradient Descent for logistic regression

•
$$L(W,X) = -\frac{1}{N}\sum_{i=1}^{N} y^{i} log(\widehat{y}_{i}) + (1-y^{i})log(1-\widehat{y}_{i})$$

•
$$\widehat{y}_i = \frac{1}{1+e^{-z}}$$

• $\mathbf{Z} = \mathbf{W}^T \mathbf{x}^i$

- $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial \hat{v}} * \frac{\partial \hat{y}}{\partial z} * \frac{\partial z}{\partial W}$
- $\frac{\partial z}{\partial w} = x^i$
- $\frac{\partial \widehat{y}}{\partial z} = \widehat{y}_i (1 \widehat{y}_i)$ derivative of sigmoid

•
$$\frac{\partial L}{\partial \hat{y}} = -\frac{1}{N} \sum_{i=1}^{N} \left(\frac{y^i}{\hat{y}_i} - \frac{(1-y^i)}{1-\hat{y}_i} \right)$$

• =
$$-\frac{1}{N}\sum_{i=1}^{N} \left(\frac{y^i(1-\hat{y}_i)-\hat{y}_i(1-y^i)}{\hat{y}(1-\hat{y}_i)} \right)$$

• =
$$-\frac{1}{N}\sum_{i=1}^{N} \left(\frac{y^i - \hat{y}_i}{\hat{y}(1 - \hat{y})} \right)$$

•
$$\frac{\partial L}{\partial W} = -\frac{1}{N} \sum_{i=1}^{N} \left(\frac{y^i - \hat{y}_i}{\hat{y}_i (1 - \hat{y}_i)} \right) * \hat{y}_i (1 - \hat{y}_i) * x^i$$

•
$$\frac{\partial L}{\partial W} = dW = \frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y^i) * x^i$$
 Any surprise?

•
$$W_{new} = W_{old} - \alpha * dW$$

$$dW = \frac{\partial \mathcal{L}(X, W)}{\partial W} = \frac{2}{m} \sum_{i=1}^{m} (x^{(i)}W - y^{(i)}) x^{(i)}$$
 GD for linear regression

A SIMPLE BINARY CLASSIFICATION PROBLEM (PYTORCH)

The moons dataset

- A simple toy dataset to visualize clustering and classification algorithm
- scikit-learn comes with a few small standard datasets that do not require to download any file from some external website
- make_moons generate 2d binary classification datasets that are challenging to certain algorithms

Other Datasets

load_boston(*[, return_X_y])	DEPRECATED: load_boston is deprecated in 1.0 and will be removed in 1.2.
<pre>load_iris(*[, return_X_y, as_frame])</pre>	Load and return the iris dataset (classification).
<pre>load_diabetes(*[, return_X_y, as_frame, scaled])</pre>	Load and return the diabetes dataset (regression).
<pre>load_digits(*[, n_class, return_X_y, as_frame])</pre>	Load and return the digits dataset (classification).
<pre>load_linnerud(*[, return_X_y, as_frame])</pre>	Load and return the physical exercise Linnerud dataset.
<pre>load_wine(*[, return_X_y, as_frame])</pre>	Load and return the wine dataset (classification).
<pre>load_breast_cancer(*[, return_X_y, as_frame])</pre>	Load and return the breast cancer wisconsin dataset (classification).

<pre>fetch_olivetti_faces(*[, data_home,])</pre>	Load the Olivetti faces data-set from AT&T (classification).
<pre>fetch_20newsgroups(*[, data_home, subset,])</pre>	Load the filenames and data from the 20 newsgroups dataset (classification).
<pre>fetch_20newsgroups_vectorized(*[, subset,])</pre>	Load and vectorize the 20 newsgroups dataset (classification).
<pre>fetch_lfw_people(*[, data_home, funneled,])</pre>	Load the Labeled Faces in the Wild (LFW) people dataset (classification).
<pre>fetch_lfw_pairs(*[, subset, data_home,])</pre>	Load the Labeled Faces in the Wild (LFW) pairs dataset (classification).
fetch_covtype(*[, data_home,])	Load the covertype dataset (classification).
fetch_rcv1(*[, data_home, subset,])	Load the RCV1 multilabel dataset (classification).
fetch_kddcup99(*[, subset, data_home,])	Load the kddcup99 dataset (classification).
<pre>fetch_california_housing(*[, data_home,])</pre>	Load the California housing dataset (regression).

TORCHAUDIO, TORCHVISION, TORCHTEXT Datasets

- CelebA
- CIFAR
- Cityscapes
- COCO
 - Captions
 - Detection
- DatasetFolder
- EMNIST
- FakeData
- Fashion-MNIST
- Flickr
- HMDB51
- ImageFolder
- ImageNet
- Kinetics-400
- KMNIST
- LSUN
- MNIST

Built-in datasets

Image classification

Image detection or segmentation

Optical Flow

Image pairs

Image captioning

Video classification

torchaudio.datasets

CMUARCTIC

CMUDict

COMMONVOICE

GTZAN

LibriMix

LIBRISPEECH

LibriLightLimited

LIBRITTS

LJSPEECH

SPEECHCOMMANDS

TEDLIUM

VCTK_092

DR VCTK

YESNO

QUESST14

References

- Text Classification
 - AG_NEWS
 - AmazonReviewFull
 - AmazonReviewPolarity
 - CoLA
 - DBpedia
 - IMDb
 - MNII
 - MRPC
 - QNLI
 - QQP
 - RTE
 - SogouNews
 - o SST2
 - STSB
 - WNLI
 - YahooAnswers
 - YelpReviewFull
 - YelpReviewPolarity

- · Language Modeling
 - PennTreebank
 - WikiText-2
 - WikiText103
- Machine Translation
 - IWSLT2016
 - IWSLT2017
 - Multi30k
- · Sequence Tagging
 - CoNLL2000Chunking
 - UDPOS
- · Question Answer
 - SQuAD 1.0
 - SQuAD 2.0
- · Unsupervised Learning
 - o CC100
 - EnWik9

make_moons

from sklearn.datasets import make_moons

```
#Getting a toy dataset from scikit learn library
X, y = make_moons(n_samples=10000, noise=0.3, random_state=0)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=.2, random_state=13)
```

```
fig, ax = plt.subplots(1, 2, figsize=(12, 6))

ax[0].scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)#, edgecolors='k')
ax[0].set_xlabel(r'$X_1$')
ax[0].set_ylabel(r'$X_2$')
ax[0].set_xlim([-2.3, 2.3])
ax[0].set_ylim([-2.3, 2.3])
ax[0].set_title('Generated Data - Train')
```

make_moons

Feature/Data Scaling

- Machine learning algorithms perform better when numerical input variables are scaled to a standard range
- Differences in the scales across input variables may increase the difficulty of the problem being modeled
- For example, algorithms that fit a model that use a weighted sum of input variables are affected, such as linear regression, logistic regression, and artificial neural networks (deep learning).
- Main Types:
 - Normalization (MinMaxScaler)
 - scales each input variable separately to the range 0-1
 - newX = (x min) / (max min)
 - Standardization (StandardScaler)

Feature/Data Scaling

- Standard Scaler
 - normalize the features i.e. each column of X, INDIVIDUALLY, so that each column/feature/variable will have $\mu = 0$ and $\sigma = 1$

Standardization:

$$z = \frac{x-\mu}{\sigma}$$

with mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (x_i)$$

and standard deviation:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Feature/Data Scaling

from sklearn.preprocessing import StandardScaler

```
sc = StandardScaler()
sc.fit(X_train) #note only from training data

X_train = sc.transform(X_train)
X_val = sc.transform(X_val)
```

- All preprocessing transforms in deep learning are trained (parameter estimation) only using training data
 - We don't know test data yet
 - Hide validation data as much as we can
- Here Mean, variance for standard scaling is computed from training data only
- Soon we will shift to PyTorch Transforms

Datasets and Dataloaders

Datasets

- All PyTorch Datasets (Toy, Synthetic, Pubic) are objects of classes derviced from Dataset class
- Built-in PyTorch Dataset classes
 - TensorDataset, ImageFolder, datasets.FashionMNIST etc
- Create your own sub-class for your dataset
 - Load Data
 - Apply Transofrmations
- We will create datasets for numeric, image, text and audio data

Dataset for moons

from torch.utils.data import DataLoader, TensorDataset,Dataset

```
class MoonsDataSet(Dataset):
    def __init__(self,x_tensor, y_tensor):
       super().__init__()
       self.X=x_tensor
       self.Y=y_tensor
   def __getitem__(self, index):
       return (self.X[index],self.Y[index])
   def len (self):
       return len(self.X)
```

Dataset for moons

```
#Getting a toy dataset from scikit learn library
X, y = make_moons(n_samples=10000, noise=0.3, random_state=0)
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=.2, random_state=13)

sc = StandardScaler()
sc.fit(X_train)  #note only from training data

X_train = sc.transform(X_train)
X_val = sc.transform(X_val)
```

```
# Builds tensors from numpy arrays
x_train_tensor = torch.as_tensor(X_train).float()
y_train_tensor = torch.as_tensor(y_train.reshape(-1, 1)).float()
x_val_tensor = torch.as_tensor(X_val).float()
y_val_tensor = torch.as_tensor(y_val.reshape(-1, 1)).float()
# Builds dataset containing ALL data points
train_dataset = MoonsDataSet(x_train_tensor, y_train_tensor)
val_dataset = MoonsDataSet(x_val_tensor, y_val_tensor)
```

DataLoader

- Combines a dataset and a sampler, and provides an iterable over the given dataset
- DataLoader in action (Why shuffle for trainloader only?)

```
# Builds a loader of each set
train_loader = DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
val_loader = DataLoader(dataset=val_dataset, batch_size=16)
test_batch=next(iter(train_loader))
total_batches_one_epoch = len(iter(train_loader))
```

```
for X_train, Y_train in train_loader:
```

Size of X_train?
Size of Y_train?

Model Class

```
class SimpleClassificationNet(torch.nn.Module):

    def __init__(self):
        super().__init__()
        self.linearLayer1 = nn.Linear(2,1000) #hidden layer
        self.linearLayer2 = nn.Linear(1000,1)
        self.sigmoidLayer=nn.Sigmoid()

    def forward(self,x):
        u = self.linearLayer1(x)
        z = self.linearLayer2(u)
        yhat = self.sigmoidLayer(z)
        return yhat
```

#of parameters for each layer? Total # of parameters?

TorchSummary Package

from torchsummary import summary

```
model = SimpleClassificationNet().to(device)
stateDict=model.state_dict()
print(stateDict)
print(model)
summary(model,(1,2))

SimpleClassificationNet(
  (linearLayer1): Linear(in_features=2, out_features=1000, bias=True)
  (linearLayer2): Linear(in_features=1000, out_features=1, bias=True)
  (sigmoidLayer): Sigmoid()
)
```

```
Layer (type:depth-idx)
                                          Output Shape
 -Linear: 1-1
                                          [-1, 1, 1000]
                                                                     3,000
                                          [-1, 1, 1]
 -Linear: 1-2
                                                                     1,001
 -Sigmoid: 1-3
Total params: 4,001
Trainable params: 4,001
Non-trainable params: 0
Total mult-adds (M): 0.00
Input size (MB): 0.00
Forward/backward pass size (MB): 0.01
Params size (MB): 0.02
Estimated Total Size (MB): 0.02
```

Optimizer & Loss

- PyTorch implements the binary cross-entropy loss in nn.BCELoss
- BCEWithLogitsLoss (be careful)
 - The former loss function took probabilities as an argument (together with the labels, obviously). This loss function takes logits as an argument, instead of probabilities.

```
lr = 0.001
optimizer = optim.SGD(model.parameters(), lr=lr)
loss_fn = nn.BCELoss()
```

Batch Training Loop Thanks to DataLoader

```
#batch wise training loop
epochs = 1000
train_losses = []
val losses = []
best accuracy=0
for epoch in range(epochs): #epochs loop
   all Y train epoch=np.array([]).reshape(0,1)
   all_Yhat_train_epoch=np.array([]).reshape(0,1)
   all train losses epoch=np.array([])
   for X train, Y train in train loader:
                                                 #batch wise training on train set
       model.train()
       X train = X train.to(device)
       Y_train = Y_train.to(device)
       y_hat = model(X_train)
       loss = loss fn(y hat, Y train)
       loss.backward()
       optimizer.step()
       optimizer.zero_grad()
       #store metrics for all batches of current epoch
       all Y train_epoch=np.vstack((all Y train_epoch,Y train.detach().cpu().numpy()))
       all Yhat_train_epoch=np.vstack((all Yhat_train_epoch,y hat.detach().cpu().numpy()))
       all train losses epoch=np.append(all train losses epoch,loss.item())
```

What
DataLoader
will do if
batch_size is
not divisible
by number of
training
samples?

Why we are saving losses for each batch along with y and yhat?

Batch Training Loop Computing Metrics

- $Accuracy = \frac{\text{# of correct predictions}}{total number of predictions}$
- Is it a good measure?
- We will study more metrics next week

	Total	Correct Prediction	Accuracy
Cancer=Yes	300	90	30%
Cancer= No	9700	9560	98.5%

Overall Accuracy: 96.5% Error: 3.5%

#computing metrics for current epoch
train_losses.append(all_train_losses_epoch.mean()) #mean loss for all batches
preidctions=(all_Yhat_train_epoch>=0.5) #from probabilities to predictions
acTrain=accuracy_score(all_Y_train_epoch, preidctions)

Batch Training Loop Computing Metrics

- $\frac{Accuracy}{total\ number\ of\ predictions}$ Is it a good measure?
- We will study more metrics next week

	Total	Correct Prediction	Accuracy
Cancer=Yes	300	90	30%
Cancer= No	9700	9560	98.5%

Overall Accuracy: 96.5% Error: 3.5%

Computing Accuracy

from sklearn.metrics import accuracy_score,

```
#computing metrics for current epoch
train_losses.append(all_train_losses_epoch.mean()) #mean loss for all batches
preidctions=(all_Yhat_train_epoch>=0.5) #from probabilities to predictions
acTrain=accuracy_score(all_Y_train_epoch, preidctions)
```

Is 0.5 a good choice for threshold?

Validation Also Batch Wise

```
#validation loop also bacth wise
all Y val epoch=np.array([]).reshape(0,1)
all_Yhat_val_epoch=np.array([]).reshape(0,1)
all val losses epoch=np.array([])
for X val, Y val in val loader: #batch wise validation set predictions only
   model.eval()
   X val = X val.to(device)
   Y val = Y val.to(device)
   with torch.no grad():
       y hat val = model(X val)
        loss = loss fn(y hat val, Y val)
   #store metrics for all batches of current epoch
   all Y val epoch=np.vstack((all Y val epoch, Y val.detach().cpu().numpy()))
   all_Yhat_val_epoch=np.vstack((all_Yhat_val_epoch,y_hat_val.detach().cpu().numpy()))
   all val losses epoch=np.append(all val losses epoch,loss.item())
#computing metrics for current epoch
val_losses.append(all_val_losses epoch.mean()) #mean loss for all batches
preidctions=(all Yhat val epoch>=0.5) #from probabilities to predictions
acVal=accuracy score(all Y val epoch, preidctions)
```

Model CheckPointing

```
#loading best model
checkpoint = torch.load('best.pth')
# Restore state for model and optimizer
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
total_epochs = checkpoint['epoch']
losses = checkpoint['loss']
val_losses = checkpoint['val_loss']
```

- Can we save the whole model object instead?
- Any other Advantage of checkpointing?
- resuming training

WHERE ARE THE CURVES?

TensorBoard (Why Tensorflow here?)

- TensorBoard is TensorFlow's visualization toolkit
- PyTorch provides classes and methods for us to integrate it with our model.
- Running on colab and standalone system

```
conda install -c conda-forge tensorboard
```

```
# Load the TensorBoard notebook extension
%load_ext tensorboard
%tensorboard --logdir runs
```

TensorBoard

 It all starts with the creation of a SummaryWriter object

#tensorboard
tboardWriter=SummaryWriter('runs/simpleClassification')

add graph	<u>add scalars</u>	<u>add scalar</u>
<u>add histogram</u>	<u>add images</u>	<u>add image</u>
<u>add figure</u>	<u>add video</u>	<u>add audio</u>

<u>add text</u>	<u>add embedding</u>	<u>add pr curve</u>
add custom scalars	<u>add mesh</u>	<u>add hparams</u>

Plotting Loss and Accuracy Curves using TensorBoard

from torch.utils.tensorboard import SummaryWriter

```
#tensorboard
tboardWriter=SummaryWriter('runs/simpleClassification')
```

```
tboardWriter.add_scalar("Loss/train", train_losses[epoch], epoch)
tboardWriter.add_scalar("Loss/val", val_losses[epoch], epoch)
tboardWriter.add_scalar("accuracy/train", acTrain, epoch)
tboardWriter.add_scalar("accuracy/val", acVal, epoch)
```

(envpt) C:\WINDOWS\system32>tensorboard --logdir=F:\adeel\DLCourse\week4\runs\simpleClassification_

TensorBoard Output

TensorBoard 2.6.0 at http://localhost:6006/ (Press CTRL+C to quit)

Summary

- New Concepts Learned
 - Role of Activation Functions
 - Sigmoid Activation
 - New Loss Function
 - Log loss or logistic loss or BCE
 - Logistic Regression GD
 - Datasets and Dataloaders
 - Feature/Data Scaling
 - Batch wise training
 - Mode Visualization using TorchSummary
 - Evaluation Metrics
 - Model Checkpointing
 - TensorBoard
 - scikit-learn library
- Prepare well by coding each concept yourself
- Practice with provided code with each lecture
 - PyTorch Autograd
 - Binary Classification of moons_dataset

Graded Home Task-2

- Create a binary classification model for sklearn's digits dataset
 - DataSet (X,y) with size (1797,64)
 - Each 64 features are pixels of an 8×8 digit image
 - Output Y vector size is 1797
 - Modify the output vector such that all values with Y>1 becomes 1 (to make it binary classification problem) digit 0 vs all other digits
- Train the model using your own logistic regression model discussed in this lecture
- Take help from this lecture code
- Check in your code + tensorboard graphs