

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATION OF COMPLIANCE

WIZNET Co., LTD.

4F Humax Village, 11-4 Sunae-dong, Bundang-gu, Seongnam-si Gyeonggi-do, 463-825, Korea

Dates of Tests: January 21 ~ February 12, 2010

Test Report S/N: DR50111002Y Test Site: DIGITAL EMC CO., LTD.

FCC ID

APPLICANT

XR2WIZ6000

WIZNET Co., LTD.

Purpose : Original Grant

FCC Equipment Class : Digital Transmission System (DTS)

Device name : Serial to Wireless LAN Device Server

Manufacturer : WIZNET Co., LTD.

FCC ID : XR2WIZ6000

Model name : WIZ6000

Test Device Serial number : Identical prototype

FCC Rule Part(s) : FCC Part 15.247 Subpart C

ANSI C-63.4-2003

Frequency Range : 2412 ~ 2462 MHz

Max. Output power : 802.11b – 14.54 dBm Conducted

802.11g - 12.56 dBm Conducted

Data of issue : February 18, 2010

The Test results relate only to the tested sample. It is not allowed to copy this report even partly without the allowance of DIGITAL EMC CO., LTD.

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. EQUIPMENT INFORMATION	
2.1 EQUIPMENT DESCRIPTION	4
2.2 QNCILLARY EQUIPMENT	4
3. INFORMATION ABOUT TEST ITEM	5
3.1 TESTED FREQUENCY	
3.2 TESTED ENVIRONMENT	5
3.3 TEST MODE	
3.4 AUXILIARY EQUIPMENT	
3.5 EMI SUPPRESSION DEVICE(S)/MODIFICATION	5
4. TEST REPORT	6
4.1 SUMMARY OF TESTS	
4.2 TRANSMITTER REQUIREMENTS	7
4.2.1 6 dB BANDWIDTH	7
4.2.2 PEAK OUTPUT POWER	
4.2.3 OUT OF BAND EMISSIONS / BAND EDGE	19
4.2.4 OUT OF BAND EMISSION – RADIATED	44
4.2.5 TRANSMITTER POWER SPECTRAL DENSITY	61
4.2.6 AC CONDUCTED EMISSIONS	66
4.2.7 ANTENNA REQUIREMENTS	71
APPENDIX TEST FOLUPMENT FOR TESTS	72

1. General information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail: harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

Tested by: Engineer

February 18, 2010 D.C. Cha

Date Name Signature

Witnessed by: Engineer

February 18, 2010 S.K. RYU

Date Name Signature

Reviewed by: Manager

February 18, 2010 W.J. Lee

Date Name Signature

Applicant:

Company name : WIZNET Co, LTD.

Address 4F Humax Village, 11-4 Sunae-dong, Bundang-gu, Seongnam-si Gyeonggi-do,

Address : 463-825, Korea

Date of order : August 26, 2009

Dongos

2. Equipment information

XR2WIZ6000

2.1 Equipment information

Equipment model no.	WIZ6000
Equipment serial no.	Identical prototype
Type of equipment	Serial to Wireless LAN Device Server
Frequency band	2412 ~ 2462 MHz
Type of Modulation	802.11b – CCK
	802.11g – OFDM
Power	AC 120V 60Hz
Type of antenna	☐ Internal Type: ☑ External Type: Dipole antenna

2.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
Adaptor	DP-05020DG	DE28001718	GREEN POWER	-
-	-	-	-	-

3. Information about test items

XR2WIZ6000

3.1 Tested frequency

Frequency	TX	RX
Lowest frequency	2412MHz	2412MHz
Middle frequency	2437MHz	2437MHz
Highest frequency	2462MHz	2462MHz

3.2 Tested environment

Temperature	:	21 ~ 23 (°C)
Relative humidity content	:	35 ~ 50 % R.H.
Details of power supply	:	AC 120V 60Hz

3.3 Test mode

Test Case 1	-
Test Case 2	-
Test Case 3	-

3.4 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
Mouse	MOC5UO	IO201LWF	DELL	DoC
Keyboard	SK-8115	N/A	DELL	DoC
Monitor	6135-AB1	N/A	LENOVO	DoC
Computer	DM-V60	740W97A600253R	SAMSUNG	DoC
Printer	SRP-770	SRP77008060035	BIXOLON	DoC

3.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing

 \rightarrow None

4. Test Report

4.1 Summary of tests

FCC Part Section(s)	Parameter	Limit (Using in 2400 ~ 2483.5MHz)	Test Condition	Status Note 1
I. Test Items				
15.247(a)(2)	6 dB Bandwidth	> 500 kHz		С
15.247(b)(3)	Transmitter Output Power	< 1Watt		С
15.047()	Out of Dend Franciscon / Dend Files	20 ID : 100I H DW	Conducted	С
15.247(c)	Out of Band Emissions / Band Edge	20dBc in any 100kHz BW		С
15.247(d)	Transmitter Power Spectral Density	< 8dBm / 3kHz		С
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	< FCC 15.209 limits	Radiated	С
15.207	AC Conducted Emissions	EN 55022	AC Line Conducted	С
15.203	Antenna Requirements	FCC 15.203	-	С

Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003, DA00-705

4.2 Transmitter requirements

4.2.1 6 dB Bandwidth

- Procedure:

The bandwidth at 6 dB below the highest inband spectral density was measured with a spectrum analyzer connected to the antenna terminal at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest Frequencies

Span = 50 MHz (Greater than EBW)

RBW = 100 kHz Sweep = auto

 $VBW = \geq RBW$ Detector function = peak

Trace = max hold

- Measurement Data: Comply

Test Mode	Frequency	Test Results (MHz)
	Lowest	10.90
802.11b	Middle	11.10
	Highest	11.35
802.11g	Lowest	16.50
	Middle	16.50
	Highest	16.50

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

The minimum 6 dB bandwidth shall be at least 500 kHz

Test Mode: 802.11b & Lowest Frequency

6 dB Bandwidth

Test Mode: 802.11b & Middle Frequency

Test Mode: 802.11b & Highest Frequency

6 dB Bandwidth

Test Mode: 802.11g & Middle Frequency

Test Mode: 802.11g & Highest Frequency

4.2.2 Peak Output Power

- Test Procedure and Spectrum Analyzer setting:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal at the highest, middle and the lowest available channels.

The transmitter output is connected to a spectrum analyzer and the analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 26dB EBW.

The test is performed in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005. The transmitter operates continuously therefore Power Output Option 2, Method #1 is used.

- Measurement Data: Comply

Test Mode	Frequency	Test Results	
		dBm	W
	Lowest	14.54	0.0284
802.11b	Middle	14.24	0.0265
	Highest	14.31	0.0270
	Lowest	12.37	0.0173
802.11g	Middle	12.56	0.0180
	Highest	12.47	0.0177

Note 1: See next pages for actual measured spectrum plots.

Minimum Standard:	< 1W

Test Mode: 802.11b & Lowest Frequency

Test Mode: 802.11b & Lowest Frequency

Test Mode: 802.11b & Middle Frequency

Peak Output Power

Test Mode: 802.11b & Middle Frequency

Test Mode: 802.11b & Highest Frequency

Test Mode: 802.11b & Highest Frequency

Test Mode: 802.11g & Lowest Frequency

Test Mode: 802.11g & Lowest Frequency

Test Mode: 802.11g & Middle Frequency

Test Mode: 802.11g & Middle Frequency

Test Mode: 802.11g & Highest Frequency

Test Mode: 802.11g & Highest Frequency

4.2.3 Out of Band Emissions / Band Edge

- Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

This device complies with use of power option 2. The attenuation under this paragraph shall be 30dB instead of 20dB.

For Band-edge testing the spectrum analyzer is set to:

Tested frequency = the highest and the lowest Frequencies

Center frequency = 2400MHz, 2483.5MHz

Span = 100MHz Detector function = peak

RBW = 1% of the span VBW = 100 kHz $Trace = \max \text{ hold}$ Sweep = auto

For spurious testing the spectrum analyzer is set to:

Tested frequency = the highest, middle and the lowest Frequencies

RBW = 100 kHz VBW = 100 kHzDetector function = peak Sweep = auto

Trace = max hold

- Measurement Data: Comply

- All conducted emission in any 100 kHz bandwidth outside of the spread spectrum band was at least 30dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.

Note 1: See next pages for actual measured spectrum plots.

Minimum Standard:	> 30 dBc

10MHz ~ **5GHz Conducted Spurious Emissions** Test Mode: 802.11b & Lowest Frequency

5GHz ~ **10GHz Conducted Spurious Emissions** Test Mode: 802.11b & Lowest Frequency

Copyright 2000-2005 Agilent Technologies

15GHz ~ 20GHz Conducted Spurious Emissions Test Mode: 802.11b & Lowest Frequency

Reference for limit

Test Mode: 802.11b & Middle Frequency

10MHz ~ **5GHz Conducted Spurious Emissions** Test Mode: 802.11b & Middle Frequency

Copyright 2000-2005 Agilent Technologies

15GHz ~ 20GHz Conducted Spurious Emissions Test Mode: 802.11b & Middle Frequency

High Band-edge at 30 dB blow Test Mode: 802.11b & Highest Frequency

10MHz ~ **5GHz Conducted Spurious Emissions** Test Mode: 802.11b & Highest Frequency

5GHz ~ 10GHz Conducted Spurious Emissions Test Mode: 802.11b & Highest Frequency

Copyright 2000-2005 Agilent Technologies

15GHz ~ 20GHz Conducted Spurious Emissions Test Mode: 802.11b & Highest Frequency

10MHz ~ **5GHz Conducted Spurious Emissions** Test Mode: 802.11g & Lowest Frequency

5GHz ~ **10GHz Conducted Spurious Emissions** Test Mode: 802.11g & Lowest Frequency

15GHz ~ 20GHz Conducted Spurious Emissions Test Mode: 802.11g & Lowest Frequency

Reference for limit

Test Mode: 802.11g & Middle Frequency

10MHz ~ **5GHz Conducted Spurious Emissions** Test Mode: 802.11g & Middle Frequency

5GHz ~ **10GHz Conducted Spurious Emissions** Test Mode: 802.11g & Middle Frequency

Copyright 2000-2005 Agilent Technologies

15GHz ~ 20GHz Conducted Spurious Emissions Test Mode: 802.11g & Middle Frequency

High Band-edge at 30 dB blow Test Mode: 802.11g & Highest Frequency

10MHz ~ **5GHz Conducted Spurious Emissions** Test Mode: 802.11g & Highest Frequency

5GHz ~ 10GHz Conducted Spurious Emissions Test Mode: 802.11g & Highest Frequency

Copyright 2000-2005 Agilent Technologies

15GHz ~ 20GHz Conducted Spurious Emissions Test Mode: 802.11g & Highest Frequency

4.2.4 Out of band Emission - Radiated

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

```
The spectrum analyzer is set to: 
Tested frequency = Low, Middle, High Frequencies 
Frequency Range = 30 \text{ MHz} \sim 10 \text{th} harmonic. 

RBW and VBW = 1. \text{ Frequency range: } 30 \text{MHz} \sim 1 \text{GHz} RBW = 120 \text{KHz} / VBW = 120 \text{KHz}
```

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

- Minimum Standard:

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	GHz	GHz
$0.009 \sim 0.110$	8.41425 ~ 8.41475	108 ~ 121.94	$1300\sim1427$	3600 ~ 4400	14.47 ~ 14.5
$0.495 \sim 0.505$	12.29 ~ 12.293	123 ~ 138	$1435 \sim 1626.5$	4.5 ~ 5.15	15.35 ~ 16.2
$2.1735 \sim 2.1905$	12.51975 ~ 12.52025	149.9 ~ 150.05	$1645.5 \sim 1646.5$	5.35 ~ 5.46	$17.7 \sim 21.4$
$4.125 \sim 4.128$	12.57675 ~ 12.57725	156.52475 ~ 156.52525	$1660 \sim 1710$	$7.25 \sim 7.75$	22.01 ~ 23.12
$4.17725 \sim 4.17775$	13.36 ~ 13.41	156.7 ~ 156.9	$1718.8 \sim 1722.2$	8.025 ~ 8.5	23.6 ~ 24.0
$4.20725 \sim 4.20775$	$16.42 \sim 16.423$	162.0125 ~ 167.17	$2200\sim2300$	$9.0 \sim 9.2$	31.2 ~ 31.8
$6.215 \sim 6.218$	16.69475 ~ 16.69525	167.72 ~ 173.2	$2310 \sim 2390$	9.3 ~ 9.5	36.43 ~ 36.5
$6.26775 \sim 6.26825$	$16.80425 \sim 16.80475$	$240 \sim 285$	$2483.5 \sim 2500$	10.6 ~ 12.7	Above 38.6
$6.31175 \sim 6.31225$	25.5 ~ 25.67	322 ~ 335.4	$2655\sim2900$	13.25 ~ 13.4	
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	$3260 \sim 3267$		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	$3332 \sim 3339$		
8.37625 ~ 8.38675	74.8 ~ 75.2	960 ~ 1240	3345.8 ~ 3358		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Restricted Band Edge Test Mode: 802.11b & Lowest Frequency

Peak mode / Horizontal polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Test Mode: 802.11b & Lowest Frequency

Average mode / Horizontal polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Test Mode: 802.11b & Lowest Frequency

Peak mode / Vertical polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Test Mode: 802.11b & Lowest Frequency

Average mode / Vertical polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Test Mode: 802.11b & Highest Frequency

Peak mode / Horizontal polarization

Restricted Band Edge Test Mode: 802.11b & Highest Frequency

Average mode / Horizontal polarization

Restricted Band Edge Test Mode: 802.11b & Highest Frequency

Peak mode / Vertical polarization

Restricted Band Edge Test Mode: 802.11b & Highest Frequency

Average mode / Vertical polarization

Restricted Band Edge Test Mode: 802.11g & Lowest Frequency

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Test Mode: 802.11g & Lowest Frequency

Average mode / Horizontal polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Test Mode: 802.11g & Lowest Frequency

Peak mode / Vertical polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Test Mode: 802.11g & Lowest Frequency

Average mode / Vertical polarization

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge Test Mode: 802.11g & Highest Frequency

Restricted Band Edge Test Mode: 802.11g & Highest Frequency

Average mode / Horizontal polarization

Restricted Band Edge Test Mode: 802.11g & Highest Frequency

Restricted Band Edge Test Mode: 802.11g & Highest Frequency

Average mode / Vertical polarization

30MHz ~ 1GHz Radiated Spurious Emissions

Test Mode: 802.11b & Lowest Frequency

RADIATED EMISSION

Date: 2010-02-12

Model Name Model No. Serial No. Test Condition Reference No. Power Supply Temp/Humi Operator WIZ6000 120 60Hz 23'C 50% D.C.Cha Identical prototype TX: 2412 MHz(802.11b)

[MHz] [dBuV] [dB] [dB] [dB] [dBuV/m] [dBuV/m] [dBuV/m] [dB] [cm] [DEG] Horizontal 1 31.384 34.3 17.3 0.8 22.6 29.8 40.0 10.2 201 161 2 47.939 46.2 9.9 1.0 22.7 34.4 40.0 5.6 400 327 3 53.925 37.5 7.2 1.0 22.7 23.0 40.0 17.0 301 257 4 72.388 47.0 6.7 1.2 22.7 32.2 40.0 7.8 301 1 5107.913 35.3 11.1 1.5 22.7 25.2 43.5 18.3 100 275 6 132.284 28.5 11.5 1.6 22.9 18.7 43.5 24.8 100 275 7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.7 38.3 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.7 38.3 46.0 7.7 100 263 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 11.6 100 21.5 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0	No	٠.	FREQ	READING		LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE	
1 31.384 34.3 17.3 0.8 22.6 29.8 40.0 10.2 201 161 2 47.939 46.2 9.9 1.0 22.7 34.4 40.0 5.6 400 327 3 53.925 37.5 7.2 1.0 22.7 23.0 40.0 17.0 301 257 4 72.388 47.0 6.7 1.2 22.7 32.2 40.0 7.8 301 1 5 107.913 35.3 11.1 1.5 22.7 25.2 43.5 18.3 100 275 6 132.284 28.5 11.5 1.6 22.9 18.7 43.5 24.8 100 275 7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0			[MHz]	QP [dBuV]	FACTOR [dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]	
1 31.384 34.3 17.3 0.8 22.6 29.8 40.0 10.2 201 161 2 47.939 46.2 9.9 1.0 22.7 34.4 40.0 5.6 400 327 3 53.925 37.5 7.2 1.0 22.7 23.0 40.0 17.0 301 257 4 72.388 47.0 6.7 1.2 22.7 32.2 40.0 7.8 301 1 5 107.913 35.3 11.1 1.5 22.7 25.2 43.5 18.3 100 275 6 132.284 28.5 11.5 1.6 22.9 18.7 43.5 24.8 100 275 7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.8 34.4 46.0 11.6 100 263 10 304.928 41.2 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0		T.T	orizont	1									
2 47,939 46.2 9.9 1.0 22.7 34.4 40.0 5.6 400 327 353.925 37.5 7.2 1.0 22.7 23.0 40.0 17.0 301 257 4 72.388 47.0 6.7 1.2 22.7 32.2 40.0 7.8 301 1 5 107.913 35.3 11.1 1.5 22.7 25.2 43.5 18.3 100 275 6 132.284 28.5 11.5 1.6 22.9 18.7 43.5 24.8 100 275 7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.7 38.3 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.7 38.3 44.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0		1.1	OLLLOII										
2 47,939 46.2 9.9 1.0 22.7 34.4 40.0 5.6 400 327 353.925 37.5 7.2 1.0 22.7 23.0 40.0 17.0 301 257 4 72.388 47.0 6.7 1.2 22.7 32.2 40.0 7.8 301 1 5 107.913 35.3 11.1 1.5 22.7 25.2 43.5 18.3 100 275 6 132.284 28.5 11.5 1.6 22.9 18.7 43.5 24.8 100 275 7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.7 38.3 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.7 38.3 44.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0	1	2	31.384	34.3	17.3	0.8	22.6	29.8	40.0	10.2	201	161	
3 53.925 37.5 7.2 1.0 22.7 23.0 40.0 17.0 301 257 4 72.388 47.0 6.7 1.2 22.7 32.2 40.0 7.8 301 1 5 107.913 35.3 11.1 1.5 22.7 25.2 43.5 18.3 100 275 6 132.284 28.5 11.5 1.6 22.9 18.7 43.5 24.8 100 275 7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.8 34.4 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 Vertical 14 31.448 37.1 17.3 0.8 22.6 32.6 40.0 7.4 199 1 15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.65 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 55.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 10.7 100 358				46.2	9.9								
4 72.388 47.0 6.7 1.2 22.7 32.2 40.0 7.8 301 1 5 107.913 35.3 11.1 1.5 22.7 25.2 43.5 18.3 100 275 6 132.284 28.5 11.5 1.6 22.9 18.7 43.5 24.8 100 275 7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.7 38.3 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0 Vertical 14 31.448 37.1 17.3 0.8 22.6 32.6 40.0 7.4 199 1 15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 35.0 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 15.8 299 358 18 68.902 38.9 6.5 1.2 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 27.2 40.0 12.8 299 358 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358		ţ	53.925			1.0	22.7	23.0	40.0			257	
5 107.913 35.3 11.1 1.5 22.7 25.2 43.5 18.3 100 275 6 132.284 28.5 11.5 1.6 22.9 18.7 43.5 24.8 100 275 7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.7 38.3 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0			72.388	47.0					40.0			1	
7 141.974 38.0 11.1 1.7 22.9 27.9 43.5 15.6 201 71 8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.7 38.3 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11.375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0 Vertical 14 31.448 37.1 17.3 0.8 22.6 32.6 40.0 7.4 199 1 15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 7 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	5			35.3					43.5	18.3	100	275	
8 250.013 46.0 13.2 2.3 23.5 38.0 46.0 8.0 100 182 9 300.674 45.0 14.4 2.6 23.8 34.4 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0	6	13	32.284	28.5	11.5	1.6	22.9	18.7	43.5	24.8	100	275	
9 300.674 45.0 14.4 2.6 23.7 38.3 46.0 7.7 100 263 10 304.928 41.2 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0 Vertical 14 31.448 37.1 17.3 0.8 22.6 32.6 40.0 7.4 199 1 15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	7	14	41.974	38.0	11.1		22.9	27.9	43.5	15.6	201	71	
10 304.928 41.2 14.4 2.6 23.8 34.4 46.0 11.6 100 215 11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0	8	25	50.013	46.0	13.2	2.3	23.5	38.0	46.0		100	182	
11 375.014 46.4 16.0 2.9 24.2 41.1 46.0 4.9 100 239 12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0	9	30	00.674	45.0	14.4	2.6	23.7	38.3	46.0	7.7	100	263	
12 500.003 41.1 18.0 3.5 24.5 38.1 46.0 7.9 201 248 13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0 Vertical 14 31.448 37.1 17.3 0.8 22.6 32.6 40.0 7.4 199 1 15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	10	30	04.928	41.2	14.4	2.6	23.8	34.4	46.0				
13 750.023 38.2 19.2 4.5 23.9 38.0 46.0 8.0 201 0 Vertical 14 31.448 37.1 17.3 0.8 22.6 32.6 40.0 7.4 199 1 15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358					16.0								
Vertical 14 31.448 37.1 17.3 0.8 22.6 32.6 40.0 7.4 199 1 15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358					18.0	3.5			46.0				
14 31.448 37.1 17.3 0.8 22.6 32.6 40.0 7.4 199 1 15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7<	13	75	50.023	38.2	19.2	4.5	23.9	38.0	46.0	8.0	201	0	
15 47.956 46.8 9.9 1.0 22.7 35.0 40.0 5.0 100 358 16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358		- V	ertical										
16 52.428 38.2 7.6 1.0 22.7 24.1 40.0 15.9 199 1 17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	14	ż	31.448	37.1	17.3	0.8	22.6	32.6	40.0	7.4	199	1	
17 60.841 43.0 5.8 1.1 22.7 27.2 40.0 12.8 299 358 18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	15	4	47.956	46.8	9.9	1.0	22.7	35.0	40.0	5.0	100	358	
18 68.902 38.9 6.5 1.2 22.7 23.9 40.0 16.1 400 256 19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	16	ţ	52.428	38.2	7.6	1.0	22.7	24.1	40.0	15.9	199	1	
19 81.165 47.3 7.6 1.3 22.7 33.5 40.0 6.5 100 358 20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	17	(50.841	43.0	5.8	1.1	22.7	27.2	40.0	12.8	299	358	
20 97.387 40.3 10.3 1.4 22.7 29.3 43.5 14.2 100 258 21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	18	6	58.902	38.9	6.5	1.2	22.7	23.9	40.0	16.1	400	256	
21 113.597 41.2 11.3 1.5 22.8 31.2 43.5 12.3 100 358 22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	19	8	31.165	47.3	7.6	1.3	22.7	33.5	40.0	6.5	100	358	
22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	20	(97.387	40.3	10.3	1.4	22.7	7 29.3	43.5	14.2	100	258	
22 375.018 40.4 16.0 2.9 24.2 35.1 46.0 10.9 100 358 23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358	21	11	13.597	41.2	11.3	1.5	22.8	31.2	43.5	12.3	100	358	
23 500.029 36.3 18.0 3.5 24.5 33.3 46.0 12.7 100 358													
				35.2	20.0	5.0	23.2		46.0	9.0	100	358	

30MHz ~ **1GHz Radiated Spurious Emissions** Test Mode: 802.11b & Middle Frequency

RADIATED EMISSION

Date: 2010-02-12

 Model Name
 :
 WIZ6000
 Reference No.
 :
 Hower Supply
 :
 120
 60Hz

 Model No.
 :
 Identical prototype
 Temp/Humi
 :
 23'C
 50%

 Test Condition
 :
 TX: 2437 MHz(802.11b)
 Operator
 :
 D.C.Cha

Memo :

No	• FREQ	READING OP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
Carta at a said	Horizon	tal	-							
5 6 7 8 9 10	32.339 47.945 72.389 113.573 119.928 129.863 250.009 299.586 374.999 440.459	25.0 45.7 46.4 41.7 35.9 35.7 44.8 33.9 47.0 39.1	16.8 9.9 6.7 11.3 11.6 11.7 13.2 14.3 16.0 17.1	0.8 1.0 1.2 1.5 1.5 2.3 2.6 2.9 3.2	22.6 22.7 22.8 22.8 22.8 23.5 24.2	7 33.9 7 31.6 31.7 8 26.2 9 26.1 5 36.8 7 27.1 41.7 4 35.0	40.0 40.0 43.5 43.5 43.5 46.0 46.0 46.0	20.0 6.1 8.4 11.8 17.3 17.4 9.2 18.9 4.3	201 400 400 301 400 301 100 100 201	358 298 358 183 159 1 247 217 340
	499.453	21.9 30.5	18.0 19.2	3.5 4.0	24.5		46.0 46.0	27.1 16.7	100 201	1 0
122-222	Vertica.	1	***							
21 22 23 24	32.387 47.960 55.961 60.857 64.952 81.162 97.299 113.605 142.051 374.998 500.013 750.003 880.905	28.9 46.3 37.6 45.2 44.2 48.1 41.3 41.8 40.3 36.9 35.5 33.9	16.8 9.9 6.7 5.8 6.2 7.6 10.2 11.3 11.1 16.0 18.0 19.2 19.7	0.8 1.0 1.0 1.1 1.1 1.3 1.4 1.5 1.7 2.9 3.5 4.5	22.0 22.1 22.1 22.2 22.2 22.2 22.3 24.4 24.5 23.5	7 34.5 7 22.6 7 29.4 7 28.8 7 34.3 7 33.0 8 31.3 31.7 22 35.0 33.9 9 35.3	40.0 40.0 40.0 40.0 40.0 43.5 43.5 46.0 46.0	16.1 5.5 17.4 10.6 11.2 5.7 10.5 12.2 11.8 11.0 12.1 10.7	199 100 199 199 100 100 100 100 100 100	345 284 10 232 358 358 290 284 334 358 61 312

30MHz ~ **1GHz Radiated Spurious Emissions** Test M

Test Mode: 802.11b & Highest Frequency

RADIATED EMISSION

Date: 2010-02-12

 Model Name
 :
 WIZ6000
 Reference No.
 :
 Hower Supply
 :
 120
 60Hz

 Model No.
 :
 Identical prototype
 Temp/Humi
 :
 23°C
 50%

 Test Condition
 :
 TX: 2462 MHz(802.11b)
 Operator
 :
 D.C.Cha

Memo

No.	FREQ	READING QP	ANT	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]		[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
I	Horizont	al	5.00							
2 3 4 5 1 6 1 7 3 8 3 9 4 10 5	31.422 47.948 60.862 72.378 13.524 19.921 00.684 75.011 81.729 00.016 51.584	34.1 46.7 38.7 36.9 44.3 47.5 21.1 41.7	17.3 9.9 5.8 6.7 11.3 11.6 14.4 16.0 17.7 18.0 19.2	0.8 1.0 1.1 1.2 1.5 1.5 2.6 2.9 3.4 3.5 4.5	22.8 23.7 24.2 24.5 24.5	7 30.5 7 18.3 7 31.9 8 28.7 27.2 7 37.6 42.2 17.7 5 38.7	43.5 43.5 46.0 46.0 46.0	13.8 9.5 21.7 8.1 14.8 16.3 8.4 3.8 28.3 7.3	100 301 400 400 100 100 100 200	358 309 249 1 358 358 1 223 1 243 229
	Jr.501 Vertical			1.0	20.	21.2	40.0	21.0	200	225
13 14 15 16 1 17 1 18 1 19 1 20 1 21 3 22 7	31.467 47.949 60.294 81.178 01.907 06.682 13.573 41.923 83.993 75.009 50.007	33.6 47.3 40.1 48.1 42.5 41.7 36.5 41.9 44.4 39.3 35.3 34.2	17.3 9.9 5.8 7.6 10.8 11.0 11.3 11.1 10.5 16.0 19.2 20.0	0.8 1.0 1.1 1.3 1.4 1.5 1.5 1.7 1.9 2.9 4.5 5.0	22.8 22.9 23.2 24.2	7 35.5 7 24.3 7 34.3 7 32.0 7 31.5 8 26.5 8 31.8 2 33.6 2 34.0 3 35.1	43.5 43.5 43.5 43.5 46.0 46.0	9.9 12.0	100 100 100 100 100 201 100 201	358 1 1 1 245 1 285 358 1 216 0

30MHz ~ **1GHz Radiated Spurious Emissions** Test Mode: 802.11g & Lowest Frequency

RADIATED EMISSION

Date: 2010-02-12

 Model Name
 :
 WIZ6000
 Reference No.
 :
 Hower Supply
 :
 120
 60Hz

 Model No.
 :
 :
 Identical prototype
 Temp/Humi
 :
 23'C
 50%

 Test Condition
 :
 TX: 2412 MHz(802.11g)
 Operator
 :
 D.C.Cha

Memo :

No	. FREQ	READING OP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]		[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	<u></u>									
Contraction of	Horizon	tal								
1	47.967	45.5	9.9	1.0	22.7	33.7	40.0	6.3	301	305
2	72.384	43.6	6.7	1.2	22.7	28.8	40.0	11.2	301	1
3	111.577	35.4	11.2	1.5	22.8	25.3	43.5	18.2	400	153
4	119.946	33.2	11.6	1.5	22.8	23.5	43.5	20.0	201	358
5	142.131	35.7	11.1	1.7	22.9	25.6	43.5	17.9	201	358
6	250.016	45.4	13.2	2.3	23.5	37.4	46.0	8.6	100	1
7	300.683	44.3	14.4	2.6	23.7	37.6	46.0	8.4	100	277
8	304.934	46.5	14.4	2.6	23.8		46.0	6.3	100	223
9	374.996	46.8	16.0	2.9	24.2	41.5	46.0	4.5	100	1 1
10	500.004	39.9	18.0	3.5	24.5	36.9	46.0	9.1	100	1
11	750.016	38.1	19.2	4.5	23.9	37.9	46.0	8.1	100	207
	Vertica	7								
200000	vertica.	L ener	7.5							
12	31.528	35.2	17.3	0.8	22.6	30.7	40.0	9.3	199	4
13	47.941	47.4	9.9	1.0	22.7	35.6	40.0	4.4	100	2
14	60.910	45.2	5.9	1.1	22.7	29.5	40.0	10.5	100	167
15	64.849	44.2	6.2	1.1	22.7	28.8	40.0	11.2	100	235
16	81.162	48.3	7.6	1.3	22.7	34.5	40.0	5.5	100	358
17	97.371	43.0	10.3	1.4	22.7	32.0	43.5	11.5	100	231
18	111.602	40.1	11.2	1.5	22.8	30.0	43.5	13.5		304
19	129.967	37.2	11.7	1.6	22.9	27.6	43.5	15.9	100	318
20	141.987	42.3	11.1	1.7	22.9		43.5	11.3	100	358
21	375.006	39.7	16.0	2.9	24.2		46.0	11.6	100	358
22	628.316	20.1	19.1	4.1	24.3	19.0	46.0	27.0		86
23	737.042	34.7	19.1	4.4			46.0	11.8	100	181
24	914.767	33.1	20.0	5.0	23.2	34.9	46.0	11.1	100	358

30MHz ~ **1GHz Radiated Spurious Emissions** Test Mode: 802.11g & Middle Frequency

RADIATED EMISSION

Date: 2010-02-12

 Model Name
 :
 WIZ6000
 Reference No.
 :
 Hower Supply
 :
 120
 60Hz

 Model No.
 :
 Identical prototype
 Temp/Humi
 :
 23'C
 50%

 Test Condition
 :
 TX: 2437 MHz(802.11g)
 Operator
 :
 D.C.Cha

Memo :

No	• FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizon	tal								
11	31.459 47.943 72.382 85.488 113.485 250.009 300.688 304.937 372.698 375.020 500.007 750.019	34.7 47.7 43.8 40.3 38.4 43.5 45.3 44.7 43.0 42.1 39.8 37.0	17.3 9.9 6.7 8.3 11.3 13.2 14.4 15.9 16.0 18.0 19.2	0.8 1.0 1.2 1.3 1.5 2.6 2.6 2.9 2.9 3.5 4.5		7 35.9 7 29.0 7 27.2 8 28.4 5 35.5 3 37.9 2 37.6 2 36.8 5 36.8	40.0 40.0 40.0 43.5 46.0 46.0 46.0 46.0 46.0	9.8 4.1 11.0 12.8 15.1 10.5 7.4 8.1 8.4 9.2 9.2	201 400 301 201 201 100 100 100 100 100 201	358 358 1 358 358 1 267 227 1 233 169 219
********	Vertica:	1,	¥422							
18 19 20 21 22 23	31.499 47.935 63.339 81.166 106.722 183.999 205.072 276.006 440.451 678.934 914.775 916.219	32.1 47.1 40.2 47.3 41.8 45.8 30.5 38.5 36.7 25.0 33.9 24.0	17.3 9.9 6.0 7.6 11.0 10.5 11.1 13.8 17.1 18.9 20.0 20.0	0.8 1.0 1.1 1.3 1.5 1.9 2.1 2.4 3.2 4.2 5.0 5.0	22. 22. 22. 22. 23. 23. 24. 24. 23.	7 35.3 7 24.6 7 33.5 7 31.6 2 35.0 2 0.4 31.1 4 32.6 2 23.9 2 35.7	40.0 40.0 40.0 43.5 43.5 46.0 46.0 46.0	12.4 4.7 15.4 6.5 11.9 8.5 23.1 14.9 13.4 22.1 10.3 20.2	200 200 200 100 100 299 200 100 100 299	330 1 250 103 358 105 4 1 252 0 0

30MHz ~ **1GHz Radiated Spurious Emissions** Test Mode: 802.11g & Highest Frequency

RADIATED EMISSION

Date: 2010-02-12

 Model Name
 :
 WIZ6000
 Reference No.
 :
 Hower Supply
 :
 120
 60Hz

 Model No.
 :
 Identical prototype
 Temp/Humi
 :
 23°C
 50%

 Test Condition
 :
 TX: 2462 MHz(802.11g)
 Operator
 :
 D.C.Cha

Memo :

No	. FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
077777	Horizont	tal								
1	31.461	39.1	17.3	0.8	22.0	34.6	40.0	5.4	199	1
2	48.693	37.8	9.3	1.0	22.	7 25.4	40.0	14.6	400	1 1
3	69.095	32.6	6.5	1.2	22.	7 17.6	40.0	22.4	299	358
4	72.385	42.7	6.7	1.2	22.	7 27.9	40.0	12.1	299	358
5	112.328	34.3	11.3	1.5	22.8	3 24.3	43.5	19.2	199	1
6	304.932	41.7	14.4	2.6	23.8	34.9	46.0	11.1	100	236
7	375.016	46.8	16.0	2.9	24.2	2 41.5	46.0	4.5	100	358
8	480.022	38.9	17.7	3.4	24.5	35.5	46.0	10.5	100	198
9	500.010	40.9	18.0	3.5	24.5	5 37.9	46.0	8.1	199	1
10	600.543	29.5	19.2	4.0	24.4	1 28.3	46.0	17.7	199	1
11	750.000	38.8	19.2	4.5	23.9	38.6	46.0	7.4	100	358
	Vertical	l	2.55							
12	34.045	32.6	15.9	0.9	22.6	5 26.8	40.0	13.2	200	345
13	40.615	39.0	13.7	0.9	22.6		40.0	9.0	100	258
14	47.941	49.8	9.9	1.0	22.		40.0	2.0	100	0
15	60.326	41.0	5.8	1.1	22.7	7 25.2	40.0	14.8	100	244
16	97.403	42.3	10.3	1.4	22.	7 31.3	43.5	12.2	100	358
17	101.875	42.8	10.8	1.4	22.7	7 32.3	43.5	11.2	100	307
18	142.091	40.9	11.1	1.7	22.9	30.8	43.5	12.7	100	358
19	183.995	46.6	10.5	1.9	23.2		43.5	7.7	100	358
20	357.899	39.6	15.6	2.8	24.1	1 33.9	46.0	12.1	100	358
21	500.005	37.2	18.0	3.5			46.0	11.8		358
22	914.782	34.2	20.0	5.0	23.2		46.0	10.0	100	0

1GHz ~ 25GHz Radiated Spurious Emissions

■ Test Mode: 802.11b & Lowest Frequency

Trequency Aivi	Reading	g(dBuV)	T.F	F Result(dBuV/m)		Limit(d	BuV/m)	Margin(dB)		
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4824	Н	49.90	36.76	7.27	57.17	44.03	74.00	54.00	16.83	9.97
4824	V	53.11	39.47	7.27	60.38	46.74	74.00	54.00	13.62	7.26
-	i	-	-	1	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

Test Mode: 802.11b & Middle Frequency

Frequency	ATT-) Dol		g(dBuV)	T.F	Result(dBuV/m)		Limit(d	BuV/m)	Margin(dB)	
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4874	Н	54.49	41.58	7.65	62.14	49.23	74.00	54.00	11.86	4.77
4874	V	59.10	45.74	7.65	66.75	53.39	74.00	54.00	7.25	0.61
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

• Test Mode: 802.11b & Highest Frequency

Frequency	In) Dol		g(dBuV)	T.F	Result(d	IBuV/m)	Limit(d	BuV/m)	Margin(dB)	
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4924	Н	51.39	37.82	7.96	59.35	45.78	74.00	54.00	14.65	8.22
4924	V	58.07	44.64	7.96	66.03	52.60	74.00	54.00	7.97	1.40
-	-	-	-	i	-	-	1	-	1	-
-	-	-	-	ı	-	-	ı	ı	ı	ı

Note.

1. No other spurious and harmonic emissions were detected at a level greater than 20dB below limit.

2. Sample Calculation.

 $\begin{aligned} & \text{Margin} = \text{Limit} - \text{Result} & & \text{Result} = \text{Reading} + \text{T.F} & & \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ & \text{Where, T.F} = \text{Total Factor,} & & \text{AF} = \text{Antenna Factor,} & \text{CL} = \text{Cable Loss,} & & \text{AG} = \text{Amplifier Gain} \end{aligned}$

1GHz ~ 25GHz Radiated Spurious Emissions

■ Test Mode: 802.11g & Lowest Frequency

Frequency	Dol		g(dBuV)	T.F	Result(dBuV/m)		Limit(d	BuV/m)	Margin(dB)	
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4824	Н	46.79	33.00	7.27	54.06	40.27	74.00	54.00	19.94	13.73
4824	V	49.24	35.33	7.27	56.51	42.60	74.00	54.00	17.49	11.40
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

■ Test Mode: 802.11g & Middle Frequency

Frequency	ANT	NT Reading(dBuV)		T.F	Result(dBuV/m)		Limit(d	BuV/m)	Margin(dB)	
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4874	Н	52.55	38.89	7.65	60.20	46.54	74.00	54.00	13.80	7.46
4874	V	54.83	41.02	7.65	62.48	48.67	74.00	54.00	11.52	5.33
-	-	-	-	1	-	-	-	-	-	1
-	-	-	-	-	-	-	-	-	-	-

■ Test Mode: 802.11g & Highest Frequency

10001/100										
Frequency	ANT Reading(ding(dBuV) T.F		Result(dBuV/m)		Limit(d	BuV/m)	Margin(dB)	
(MHz)	Pol	PK	AV	(dB)	PK	AV	PK	AV	PK	AV
4924	Н	52.05	38.18	7.96	60.01	46.14	74.00	54.00	13.99	7.86
4924	V	52.56	39.51	7.96	60.52	47.47	74.00	54.00	13.48	6.53
-	-	-	-	1	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-

Note.

- 1. No other spurious and harmonic emissions were detected at a level greater than 20dB below limit.
- 2. Sample Calculation.

 $\begin{aligned} & \text{Margin} = \text{Limit} - \text{Result} & / & \text{Result} = \text{Reading} + \text{T.F} & / & \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ & \text{Where, T.F} = \text{Total Factor,} & \text{AF} = \text{Antenna Factor,} & \text{CL} = \text{Cable Loss,} & \text{AG} = \text{Amplifier Gain} \end{aligned}$

4.2.5 Transmitter Power Spectral Density

- Procedure:

The transmitter output is connected to a spectrum analyzer. Locate and zoom in on emission peak within the passband. The maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer using RBW = 3kHz and VBW > 9kHz, sweep time= auto, video averaging is turned off. Trace average 100 traces in power averaging mode. The PPSD is the highest level found across the emission in any 3kHz band. The test is performed in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005. The transmitter output power was measured with power output option #2. Therefore, PSD was measured with PSD option #2.

- Measurement Data: Comply

Test Mode	Frequency	Test Results (dBm)			
	Lowest	-15.967			
802.11b	Middle	-16.198			
	Highest	-15.773			
	Lowest	-19.880			
802.11g	Middle	-17.702			
	Highest	-15.358			

Note 1: See next pages for actual measured spectrum plots.

- Minimum Standard:

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3kHz BW.

Transmitter Power Spectral Density Test Mode: 802.11b & Middle Frequency

Transmitter Power Spectral Density Test Mode: 802.11b & Highest Frequency

Transmitter Power Spectral Density

Transmitter Power Spectral Density Test Mode: 802.11g & Highest Frequency

4.2.6 AC Conducted Emissions

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. Emissions closest to the limit are measured in the quasi-peak mode (QP) and average mode (AV) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: Comply

Note 1: See next pages for actual measured spectrum plots and data.

- Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15 ~ 0.5	66 to 56 *	56 to 46 *					
0.5 ~ 5	56	46					
5~30	60	50					

^{*} Decreases with the logarithm of the frequency

AC Line Conducted Emissions (Graph)

Test Mode: 802.11b

AC Line Conducted Emissions (Data List)

Test Mode: 802.11b

****	********	*******	*******	******		*******		TED EMISSI			**********	
							44COMDOC	. IDD BRIDGE	Ollina			1 February, 2010 17:00
Stand Manu Mode	facturer 1	: FCC P : WIZ60 : D.C.C	00									
AC P		: 120V : 23'C	60Hz 45%									
Rema Rema Rema	rk2	: 802.1	1b									
Rema	EKJ	- 1										
	********	********	*********	******		********	********	********	*******	*******	**********	
Fina.	1 Result											
]	N Phase											
No.	Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV	Remark	
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]		
1 2	0.205	49.4	40.0	0.1	49.5	40.1	63.4	53.4	13.9	13.3		
2	0.407	44.9	34.2	0.2	45.1	34.4	57.7	47.7	12.6	13.3		
3	0.283	42.5	34.8	0.1	42.6	34.9	60.7	50.7	18.1	15.8		
4	0.487	43.4	32.7	0.1	43.5	32.8	56.2	46.2	12.7	13.4		
5	0.686	40.6	30.0	0.1	40.7	30.1	56.0	46.0	15.3	15.9		
6	3.347	46.8	33.8	0.3	47.1	34.1	56.0	46.0	8.9	11.9		
7	7.314	40.2	28.5	0.5	40.7	29.0	60.0	50.0	19.3	21.0		
	L1 Phase	-										
No.	Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV	Remark	
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]		
1	0.207	43.8	37.9	0.3	44.1	38.2	63.3	53.3	19.2	15.1		
2	0.422	43.8	34.9	0.4	44.2	35.3	57.4	47.4	13.2	12.1		
3	0.609	41.3	29.4	0.5	41.8	29.9	56.0	46.0	14.2	16.1		
4	1.859	41.9	25.4	0.6	42.5	26.0	56.0	46.0	13.5	20.0		
5	3.295	46.9	33.0	0.6	47.5	33.6	56.0	46.0	8.5	12.4		
6	12.398	32.2	24.1	1.1	33.3	25.2	60.0	50.0	26.7	24.8		

AC Line Conducted Emissions (Graph)

Test Mode: 802.11g

AC Line Conducted Emissions (Data List)

Test Mode: 802.11g

							< <conduc< th=""><th>TED EMISSI</th><th>ON>></th><th></th><th></th><th></th></conduc<>	TED EMISSI	ON>>			
												1 February, 2010 17
etan	dard	: FCC P	art 15									
	facturer	. 200 2	are 15									
fode		: WIZ60	00									
	ator	: D.C.C										
	ower	: 120V	60Hz									
emp	Humidity	: 23'C	45%									
	rk1	: 802.1	1g									
tema		:										
ema	rk3	:										
***				******		********	********	********				
ina	1 Result											
	N Phase											
lo.	Frequency	Reading QP	Reading AV	c.f	Result	Result AV	Limit QP	Limit	Margin	Margin AV	Remark	
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]		
1	0.279	44.2	35.5	0.1	44.3	35.6	60.8	50.8	16.5	15.2		
2	0.488	43.1	31.8	0.1	43.2	31.9	56.2	46.2	13.0	14.3		
3	0.701	40.5	28.3	0.1	40.6	28.4	56.0	46.0	15.4	17.6		
4	3.382	47.7	33.8	0.3	48.0	34.1	56.0	46.0	8.0	11.9		
5	8.793	39.8	27.4	0.5	40.3	27.9	60.0	50.0	19.7	22.1		
6	0.204	46.9	37.2	0.1	47.0	37.3	63.4	53.4	16.4	16.1		
	L1 Phase	-										
lo.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Remark	
		QP	AV		QP	AV	QP	AV	QP	AV		
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]		
1	0.153	39.0	14.4	0.2	39.2	14.6	65.8	55.8	26.6	41.2		
2	0.356	39.8	27.2	0.4	40.2	27.6	58.8	48.8	18.6	21.2		
3 4	0.499	42.6	28.7	0.4	43.0	29.1	56.0	46.0	13.0	16.9		
5	0.713 3.181	41.3	26.2	0.5	41.8	26.7 35.4	56.0 56.0	46.0	14.2	19.3		
						29.1	56.0	46.0	12.8	16.9		
6	2.274	42.6	28.5	0.6	43.2							

4.2.7 Antenna Requirements

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Conclusion: Comply

This device employs a SMA plug reverse type(left-hand thread) for the unique connector.

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
\boxtimes	Spectrum Analyzer	Agilent	E4440A	25/09/09	25/09/10	MY45304199
	Spectrum Analyzer	Rohde Schwarz	FSQ26	25/02/10	25/02/11	200445
	Spectrum Analyzer(RE)	H.P	8563E	13/10/09	13/10/10	3551A04634
	Power Meter	H.P	EMP-442A	02/07/09	02/07/10	GB37170413
	Power Sensor	H.P	8481A	02/07/09	02/07/10	3318A96332
	Power Divider	Agilent	11636B	13/10/09	13/10/10	56471
	Power Splitter	Anritsu	K241B	13/10/09	13/10/10	20611
	Power Splitter	Anritsu	K241B	02/07/09	02/07/10	017060
	Frequency Counter	H.P	5342A	13/07/09	13/07/10	2119A04450
	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/09	10/10/10	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	13/03/09	13/03/10	3146A13475, US36122178
	Multifuction Synthesizer	HP	8904A	06/10/09	06/10/10	3633A08404
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	13/03/09	13/03/10	101251
\boxtimes	Signal Generator	H.P	ESG-3000A	02/07/09	02/07/10	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	11/01/10	11/01/11	100148
	Audio Analyzer	H.P	8903B	02/07/09	02/07/10	3011A09448
	Modulation Analyzer	H.P	8901B	02/07/09	02/07/10	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	02/07/09	02/07/10	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU 200	19/05/09	19/05/10	106760
	Bluetooth Tester	TESCOM	TC-3000B	02/07/09	02/07/10	3000B000268
	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-3
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-2
	Thermo hygrometer	BODYCOM	BJ5478	28/01/10	28/01/11	090205-4
\boxtimes	AC Power supply	DAEKWANG	5KVA	13/03/09	13/03/10	20060321-1
	DC Power Supply	HP	6622A	13/03/09	13/03/10	3448A03760
	DC Power Supply	HP	6633A	13/03/09	13/03/10	3524A06634
	BAND Reject Filter	Microwave Circuits	N0308372	06/10/09	06/10/10	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	06/10/09	06/10/10	2
	High-Pass Filter	ANRITSU	MP526D	06/10/09	06/10/10	M27756
	High-pass filter	Wainwright	WHNX8.5	N/A	N/A	1
\boxtimes	High-Pass Filter	Wainwright	WHKX3.0	N/A	N/A	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	32
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40-10SSK	N/A	N/A	53
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	30
	HORN ANT	ETS	3115	17/06/09	17/06/10	6419
	HORN ANT	ETS	3115	23/09/09	23/09/10	21097
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	154
	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	155

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2116
	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2117
	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2261
	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2262
	LOOP Antenna	ETS	6502	14/09/09	14/09/10	3471
	Coaxial Fixed Attenuators	Agilent	8491B	02/07/09	02/07/10	MY39260700
	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2342
	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2370
	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/09	01/10/10	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	11/01/10	11/01/11	BP4387
	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/09	06/10/10	432
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	446
	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	408
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/09	01/10/10	NN837
	Attenuator (30dB)	JFW	50FH-030-300	13/03/09	13/03/10	060320-1
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	02/07/09	02/07/10	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	02/07/09	02/07/10	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	02/07/09	02/07/10	112
\boxtimes	Amplifier (30dB)	Agilent	8449B	10/10/09	10/10/10	3008A01590
	Amplifier	EMPOWER	BBS3Q7ELU	02/11/09	02/11/10	1020
	RF Power Amplifier	OPHIRRF	5069F	02/07/09	02/07/10	1006
\boxtimes	EMI TEST RECEIVER	R&S	ESU	29/01/10	29/01/11	100014
	BILOG ANTENNA	SCHAFFNER	CBL6112B	02/06/09	02/06/10	2737
	Amplifier (22dB)	H.P	8447E	29/01/10	29/01/11	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	12/05/09	12/05/10	100364
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	30/05/09	30/05/10	590
	BICONICAL ANT.	Schwarzbeck	VHA 9103	02/06/09	02/06/10	2233
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP 9108 A-1	07/10/09	07/10/10	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	06/10/09	06/10/10	91031946
	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	13/03/09	13/03/10	1252741
	Amplifier (25dB)	Agilent	8447D	12/05/09	12/05/10	2944A10144
	Amplifier (25dB)	Agilent	8447D	03/07/09	03/07/10	2648A04922
\boxtimes	Spectrum Analyzer(CE)	H.P	8591E	26/04/09	26/04/10	3649A05889
\boxtimes	LISN	Kyoritsu	KNW-407	29/01/10	29/01/11	8-317-8
\boxtimes	LISN	Kyoritsu	KNW-242	29/01/10	29/01/11	8-654-15
\boxtimes	CVCF	NF Electronic	4420	13/03/09	13/03/10	304935/337980
\boxtimes	50 ohm Terminator	НМЕ	CT-01	12/01/10	12/01/11	N/A
\boxtimes	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	03/07/09	03/07/10	4N-170-3