Calcul Numeric – Tema #7

- **Ex. 1** Să se afle polinomul de interpolare Lagrange $P_2(x)$, prin metodele directă, Lagrange, Newton și Newton cu diferențe divizate, a funcției f(x) = sin(x) relativ la diviziunea $(-\frac{\pi}{2}, 0, \frac{\pi}{2})$. Să se evalueze eroarea $|P_2(\frac{\pi}{6}) f(\frac{\pi}{6})|$
- Ex. 2 1) Să se construiască în Matlab următoarele proceduri conform sintaxelor:
 - a) $y = \mathbf{MetDirecta}(X, Y, x)$
 - b) $y = \mathbf{MetLagrange}(X, Y, x)$
 - c) $y = \mathbf{MetN}(X, Y, x)$
 - d) $y = \mathbf{MetNDD}(X, Y, x)$

conform metodelor prezentate la curs. Vectorii X,Y reprezintă nodurile de interpolare, respectiv valorile funcției f în nodurile de interpolare;

- 2) Să se construiască în Matlab în aceeași figură, graficele funcției f pe intervalul [a,b], punctele $(X_i,Y_i), i=\overline{1,n+1}$ și polinomul P_n obținut alternativ prin una din cele patru metode. Datele problemei sunt: $f(x)=\sin(x), n=3, a=-\pi/2, b=\pi/2$. Se va considera diviziunea $(X_i)_{i=\overline{1,n+1}}$ echidistantă. Pentru construcția graficelor funcției f și P_n , folosiți o discretizare cu 100 noduri.
- 3) Reprezentați grafic într-o altă figură eroarea $E = f P_n$.
- 4) Creșteți progresiv gradul polinomului P_n și rulați programele. Ce observați în comportamentul polinomului P_n ? Deduceți n maxim pentru care polinomu P_n își pierde caracterul.

Obs.: Polinoamele Lagrange sunt instabile pentru n mare, i.e., la o variație mică în coeficienți apar variații semnificative în valorile polinomului.