COMP7906 Introduction to Cyber Security

Assignment 3

ZHANG Hongyi

Q1

PKC Screenshot

证书

www.google.com	WR2	GTS Root R1
主题名称		
国家/地区 组织 通用名称	US Google Trust Services LLC GTS Root R1	
颁发者名称		
国家/地区	US	
组织	Google Trust Services LLC	
通用名称	GTS Root R1	
有效性		
起始时间	Wed, 22 Jun 2016 00:00:00 GMT	
终止时间	Sun, 22 Jun 2036 00:00:00 GMT	
公钥信息		
算法	RSA	
密钥大小	4096	
指数	65537	

The screenshot of the PKC of www.google.com in Firefox is shown above.

Issuer (CA)

The issuer of the PKC is **Google Trust Services** according to the detailed information.

Signing algorithm and the key length

In Firefox, the signing algorithm is shown as **RSA**. And the key length of it is **4096 bits**.

Alice's private key

$$n_A = 77$$

$$= 7 \times 11$$

$$p = 7, q = 11$$

Since
$$e_A=23$$
, and $e_A imes d_A\equiv 1\, \mathrm{mod}\, \varphi(n)$, $d_A=rac{k\varphi(n)+1}{e_A}=rac{60k+1}{23}, k\in\mathbb{N}.$

Thus, we can calculate the value of $d_A\colon$

$$d_A = 47$$

So, Alice's private key $(d_A,n_A)=(47,77). \label{eq:constraint}$

The value of the plaintext m

According to RSA, $m = c^{d_B} \mod 91 = 82$.

So the plaintext m is **82**.