Deep Learning

MLP – Matrix Notation

Learning goals

- Compact representation of neural network equations
- Vector notation for neuron layers
- Vector and matrix notation of bias and weight parameters

- The input **x** is a column vector with dimensions $p \times 1$.
- **W** is a weight matrix with dimensions $p \times m$, where m is the amount of hidden neurons:

$$\mathbf{W} = \begin{pmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,m} \\ w_{2,1} & w_{2,2} & \cdots & w_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{p,1} & w_{p,2} & \cdots & w_{p,m} \end{pmatrix}$$

Hidden layer:

• For example, to obtain z_1 , we pick the first column of W:

$$\mathbf{W}_1 = \begin{pmatrix} w_{1,1} \\ w_{2,1} \\ \vdots \\ w_{p,1} \end{pmatrix}$$

and compute

$$z_1 = \sigma(\mathbf{W}_1^T \mathbf{x} + b_1) ,$$

where b_1 is the bias of the first hidden neuron and $\sigma : \mathbb{R} \to \mathbb{R}$ is an activation function.

• The network has m hidden neurons z_1, \ldots, z_m with

$$z_j = \sigma(\mathbf{W}_j^T \mathbf{x} + b_j)$$

- $\bullet \ z_{in,j} = \mathbf{W}_{i}^{T}\mathbf{x} + b_{j}$
- $z_{out,j} = \sigma(z_{in,j}) = \sigma(\mathbf{W}_j^T \mathbf{x} + b_j)$

for
$$j \in \{1, ..., m\}$$
.

- Vectorized notation:
 - $\mathbf{z}_{in} = (z_{in,1}, \dots, z_{in,m})^T = \mathbf{W}^T \mathbf{x} + \mathbf{b}$ (Note: $\mathbf{W}^T \mathbf{x} = (\mathbf{x}^T \mathbf{W})^T$)
 - $\mathbf{z} = \mathbf{z}_{out} = \sigma(\mathbf{z}_{in}) = \sigma(\mathbf{W}^T \mathbf{x} + \mathbf{b})$, where the (hidden layer) activation function σ is applied element-wise to \mathbf{z}_{in} .

Bias term:

• We sometimes omit the bias term by adding a constant feature to the input $\tilde{\mathbf{x}} = (1, x_1, ..., x_p)$ and by adding the bias term to the weight matrix

$$\tilde{\mathbf{W}} = (\mathbf{b}, \mathbf{W}_1, ..., \mathbf{W}_p).$$

 Note: For simplification purposes, we will not explicitly represent the bias term graphically in the following. However, the above "trick" makes it straightforward to represent it graphically.

Output layer:

- For regression or binary classification: one output unit f where
 - $f_{in} = \mathbf{u}^T \mathbf{z} + c$, i.e. a linear combination of derived features plus the bias term c of the output neuron, and
 - $f(\mathbf{x}) = f_{out} = \tau(f_{in}) = \tau(\mathbf{u}^T \mathbf{z} + c)$, where τ is the output activation function.
- For regression τ is the identity function.
- ullet For binary classification, au is a sigmoid function.
- **Note**: The purpose of the hidden-layer activation function σ is to introduce non-linearities so that the network is able to learn complex functions whereas the purpose of τ is merely to get the final score to the same range as the target.

Multiple inputs:

- It is possible to feed multiple inputs to a neural network simultaneously.
- The inputs $\mathbf{x}^{(i)}$, for $i \in \{1, ..., n\}$, are arranged as rows in the design matrix \mathbf{X} .
 - **X** is a $(n \times p)$ -matrix.
- The weighted sum in the hidden layer is now computed as $\mathbf{XW} + \mathbf{B}$, where,
 - **W**, as usual, is a $(p \times m)$ matrix, and,
 - B is a (n × m) matrix containing the bias vector b (duplicated) as the rows of the matrix.
- The *matrix* of hidden activations $\mathbf{Z} = \sigma(\mathbf{XW} + \mathbf{B})$
 - Z is a $(n \times m)$ matrix.

- The final output of the network, which contains a prediction for each input, is $\tau(\mathbf{Z}\mathbf{u} + \mathbf{C})$, where
 - **u** is the vector of weights of the output neuron, and,
 - C is a (n × 1) matrix whose elements are the (scalar) bias c
 of the output neuron.

