А. С. Лебелев

Классификация мультиспектральных снимков дистанционного зондирования Земли с использованием метрики Евклида-Махаланобиса

Научный руководитель: В. М. Хачумов

Аннотация. Предложен метод классификации участков снимков, полученных с космических аппаратов, на основе метрики Евклида-Махаланобиса. Предложен подход к параллельной реализации классификатора на универсальных многоядерных процессорах с использованием технологии OpenMP, а также на графических вычислителях NVIDIA CUDA. Экспериментально исследованы скоростные характеристики классификатора при обработке снимков ASTER.

 $Knoveesue\ cnoea\ u\ \phi pasu:\$ Зондирование Земли, классификация, метрика Евклида-Махаланобиса, параллелизм по данным, графические вычислители.

Введение

Мультиспектральные изображения, полученные с космических аппаратов, дают возможность в реальном времени следить за регионами или целевыми объектами, получать точные трехмерные модели местности. Такая информация востребована при определении чрезвычайных ситуаций, поиске полезных ископаемых, организации полетов беспилотных аппаратов с использованием систем технического зрения. Обработка снимков требует большого объема вычислительных операций над массивами данных с целью решения задач фильтрации, сжатия, кластеризации и классификации мультиспектральных снимков. Последняя задача является предметом настоящего исследования, в котором предложены параллельные реализации классификатора с использованием метрики Евклида-Махаланобиса как для универсальных многоядерных процессоров, так и для графических вычислителей NVidia CUDA.

Изображения, использованные в настоящей работе, получены с помощью камеры ASTER (Advanced Spaceborne Thermal Emission and Reflector Radiometer) со спутника TERRA. Снимки ASTER имеют

Рис. 1. Канал Thermal Infrared 12 снимка территории Ярославской области

высокое пространственное разрешение и находятся в открытом доступе [1]. Снимки представлены в иерархическом формате хранения данных HDF (Hierarchical Data Format) четырнадцатью каналами в диапазонах видимого и инфракрасного спектра.

Для проведения классификации выбран снимок территории Ярославской области, включающий русло реки Волги и города Рыбинск, Тутаев, Мышкин. Изображение в градациях серого, представленное на рисунке 1, является интерпретацией данных канала 12 (спектральный диапазон $8.925-9.275~{\rm mkm}$) выбранного снимка.

1. Математическая модель классификации

Задача классификации формализуется в общем случае следующим образом [2]. Пусть дано множество M объектов $\{\omega_i\}$, которое в нашем случае соответствует множеству пикселей снимка. Множество необходимо разбить на конечное число подмножеств (классоврегионов) $\Omega_k, k=1..m, \bigcup \Omega_k=M$. Каждый класс Ω_k имеет внутреннюю структуру, например, в виде некоторого множества объектов-эталонов. Объекты задаются значениями некоторых признаков $x_j, j=1..N$ (этот набор признаков соответствует каналам спектра). Совокупность значений признаков x_j определяет описание объектапикселя $\{x_1, x_2, ..., x_N\}$. Решение о принадлежности произвольного объекта ω_i классу Ω_k принимается на основе сравнения расстояний между объектом и классами. Вопрос о выборе метрики остается за пользователем.

Основой кластеризации и классификации служит сравнение исследуемого образца с эталонами. Для этой цели используют различные метрики расстояния и близости. Метрика Махаланобиса [3] удобна для вычисления степени «похожести» между регионами (Region Of Interest — ROI), представленными известным множеством данных, заданным экспертом, и остальными пикселями. Будем рассматривать образец как точку в p-мерном признаковом пространстве. Пусть задано произвольное подмножество $X \subseteq R^p$ и точки $x,y,z \in X$. Статистическим расстоянием или расстоянием Махаланобиса (Mahalanobis Distance) между двумя точками $x=(x_1,x_2,...,x_p)$ и $y=(y_1,y_2,...,y_p)$ в пространстве R^p называют функцию вида

(1)
$$d_M(x,y) = \sqrt{(x-y)^T S^{-1}(x-y)}$$

и $d_M(x,0) = \|x\|_S = \sqrt{x^T S^{-1} x}$ является нормой x. Здесь S — матрица ковариации. Пусть $z_i = (z_{i1}, z_{i2}, ..., z_{ip})^T$ и $z_j = (z_{j1}, z_{j2}, ..., z_{jp})^T$ — два вектора-строки размерности p (т.е. $z_i \in R^p$ и $z_j \in R^p$ для всех i,j). Элемент матрицы ковариации S вычисляют следующим образом:

(2)
$$s_{ij} = \sum_{k=1}^{N} (z_{ki} - \overline{z_i})(z_{kj} - \overline{z_j})/(N-1), i = 1..p, j = 1..p.$$

Метрика Махаланобиса имеет недостаток, поскольку при малых разбросах, параметров в выделенных классах-регионах возникают трудности с вычислением обратных матриц ковариаций классов. Этого недостатка лишена объединенная метрика Евклида-Махаланобиса [4–6]. Расстоянием Евклида-Махаланобиса (Euclidean-Mahalanobis Distance) между двумя точками $x=(x_1,x_2,...,x_p)$ и $y=(y_1,y_2,...,y_p)$ в пространстве R^p называется функция вида

(3)
$$d_{E-M}(x,y) = \sqrt{(x-y)^T (S+E)^{-1} (x-y)},$$

где E — единичная матрица. Метрика Евклида-Махаланобиса устраняет недостаток метрики Махаланобиса, поскольку элементы главной диагонали матрицы всегда больше нуля, что обеспечивает обратимость матрицы. В дальнейшем будем применять именно эту метрику.

В начале работы эксперт задает подмножества пикселей, которые заведомо принадлежат целевым регионам, к которым требуется отнести остальные пиксели изображения. Классификатор использует расстояние Евклида-Махаланобиса для определения принадлежности текущего обрабатываемого элемента множества (пикселя изображения) к одному из выбранных экспертом регионов: элемент причисляется к классу, расстояние до которого является наименьшим. Расстоянием от обрабатываемого элемента до класса считается наименьшее из расстояний от этого элемента до регионов, задающих класс.

2. Экспериментальные исследования

Каждый пиксель изображения может быть обработан независимо. Это позволяет реализовать их параллельную обработку. Подход к распараллеливанию на универсальном многоядерном процессоре заключается в том, чтобы равномерно распределить строки изображения по имеющимся ядрам. Это естественным образом реализуется с помощью технологии OpenMP [7], позволяющей распараллеливать независимые по данным итерации циклов.

Поскольку гранулой параллелизма является пиксель изображения, для графического вычислителя NVidia CUDA [7–9] представляется естественной следующая биекция координат пикселей в индексы легковесных нитей (threads): нить с глобальным индексом (x,y) двухмерного индексного пространства произведет классификацию пикселя с координатами (x,y). При такой схеме естественным образом реализуется когерентный доступ к глобальной памяти, что позволяет избежать нежелательных транзакций и эффективно использовать ресурсы CUDA-вычислителя.

Класс	Количество эталонов	Назначенный цвет
Вода	2	Черный
Лес	1	Темно-серый
Трава	1	Серый
Почва	1	Светло-серый
Постройки	3	Белый

Таблица 1. Назначение цветов классам пикселей

Код классификатора в обоих случаях (для CPU и GPU) состоит из фрагментов, написанных вручную, а также из макросов, сгенерированных автоматически. Автоматически сгенерированные макросы осуществляют вычисление расстояния Евклида-Махаланобиса путем явного раскрытия матрично-векторных произведений. Вычисление обратной матрицы ковариации проводится единожды. Значения ее элементов входят в качестве констант в арифметические операции, составляющие вычисление раскрытых матрично-векторных произведений.

Полученный код эффективно обрабатывается компиляторами gcc и пvcc: появляется возможность вообще не выделять память под массивы значений признаков эталонов и обратных матриц ковариации ценой увеличения количества инструкций, оперирующих с константами, и увеличения нагрузки на кэш инструкций. Это невысокая цена, поскольку становится возможным интенсивное использование регистров, что особенно важно для GPU, так как позволяет эффективно вычислить расстояние Евклида-Махаланобиса с помощью быстрых multiply-add инструкций, оперирующих над уже готовыми данными в регистрах.

Для первичного просмотра спутниковых данных и визуального дешифрирования мультиспектрального снимка без его обработки три канала были использованы в качестве составляющих в цветовой системе RGB. Тематическая классификация осуществлялась пользователем-экспертом путем назначения эталонных регионов и их принадлежности к целевым классам, формирования классов путем составления матрицы ковариации и назначения цветов (таблица 1), а также последующей «раскраски» снимка на основе решения задачи классификации для каждого пикселя мультиспектрального снимка (рисунок 2).

Рис. 2. Результат тематической классификации

В качестве признаков использовались 14 каналов снимка. Вычисления производились на универсальном многоядерном процессоре Intel Core i7 920 $(1,\,2,\,4,\,8$ нитей) и графических процессорах NVidia GeForce GTX480 $(1,\,2$ вычислителя) с одинарной точностью вычислений.

В таблице 2 приведено время выполнения классификации для каждого эксперимента на CPU. Для экспериментов на GPU (таблица 3) учитывалось время, затраченное на пересылку данных между памятью RAM основной системы и глобальной памятью CUDA-вычислителя. Выигрыш GPU рассчитывался относительно самого лучшего результата на CPU, достигаемого при запуске с 8 нитями.

Таблица 2. Время выполнения классификации на СРИ

1 нить	2 нити	4 нити	8 нитей
17247,09 мс	9039,84 мс	4445,71 мс	3993,31 мс

Таблица 3. Время выполнения классификации на GPU

1 GPU	2 GPU	Выигрыш 1 GPU	Выигрыш 2 GPU
89,80 мс	53,90 мс	44,46 раз	74,08 раз

Заключение

При вычислениях на четырехъядерном CPU Intel Core i7 920 имеет место почти линейное масштабирование до четырех нитей включительно. Запуск восьми нитей позволяет задействовать возможности Intel Hyper-threading и примерно на 11% ускорить вычисления благодаря более эффективному использованию ресурсов FPU в случаях кэш-промахов и ошибок предсказания ветвлений. Из проведенных экспериментов видно, что применение графических вычислителей NVidia CUDA позволяет в десятки раз ускорить обработку данных. Использование двух GPU позволяет вдвое ускорить вычисления, однако пересылка вдвое меньшего объема данных между памятью RAM основной системы и глобальной памятью CUDA-вычислителя не происходит в два раза быстрее. Рассматриваемый размер задачи (данные каждого признака представлены квадратной матрицей порядка 4000, тип данных - byte) не позволяет достичь максимальной пропускной способности при операциях копирования DMAконтроллером видеокарты. Поэтому, достигнуть близкого к линейному масштабирования на GPU можно только при больших размерах задачи (на снимках с большим разрешением), когда затраты времени на вычисления будут существенно превосходить затраты времени на пересылку данных.

В перспективе предполагается исключить затраты на традиционную компиляцию кода вычислительных процедур в условиях предварительного вычисления констант ($\gcd+nvcc$) путем генерации целевого ассемблерного кода PTX для вычислителя NVidia и применению средств JIT для вычислений на CPU.

Список литературы

- [1] База мультиспектральных снимков ASTER [Электронный ресурс], http://gis-lab.info/projects/aster/index.html. ↑(document)
- [2] Журавлев Ю. И., Рязанов В. В., Сенько О. В. Распознавание. Математические методы. Программная система. Практические применения. Москва: Фазис, 2005. 159 с. $\uparrow 1$
- [3] Mahalanobis Distance [Электронный ресурс], http://classifion.sicyon.com/ References/M_distance.pdf. \dagger1
- [4] Амелькин С. А., Хачумов В. М. Обобщенное расстояние Евклида-Махаланобиса и его применение в задачах распознавания образов // XII Всероссийская конференция «Математические методы распознавания образов». Москва: МАКС Пресс, 2005, с. 7–9. ↑1
- [5] Амелькин С. А., Захаров А. В., Хачумов В. М. Обобщенное расстояние Евклида-Махаланобиса и его свойства // Информационные технологии и вычислительные системы, № 4, 2006, с. 40–44. ↑1
- [6] Хачумов М. В. *Расстояния*, метрики и кластерный анализ // Искусственный интеллект и принятие решений, № 1, 2012, с. 81–89. \uparrow 1
- [7] Farber R. CUDA Application Design and Development.—US: Morgan Kaufmann Publishers, 2011. 324 c. \uparrow 2
- [8] Боресков А. В., Харламов А. А. Основы работы с технологией СUDA. Москва: ДМК Пресс, 2010. 232 с. \uparrow 2
- [9] NVidia CUDA C Programming Guide 4.1 [Электронный ресурс], 2012, http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. ↑2
- A. S. Lebedev. Classification of multispectral remote sensing images in Euclid-Mahalanobis metric space // Proceedings of Junior research and development conference of Ailamazyan Pereslavl university.—Pereslavl, 2013.—p. . (in Russian).

ABSTRACT. A classification method based on Euclid-Mahalanobis metric space is introduced for remote sensing images. A parallelisation approach is discussed in terms of OpenMP for CPUs and CUDA for NVIDIA GPUs. ASTER images are used for classification speed benchmarks.

Key Words and Phrases: Remote sensing, classification, Euclid-Mahalanobis distance, datalevel parallelism, GPU.