Санкт-Петербургский политехнический университет Петра Великого

Высшая школа прикладной математики и вычислительной физики Кафедра «Прикладная математика и информатика»

Отчёт по лабораторной работе №4 по дисциплине «Интервальный анализ»

Выполнил студент: Лапотников Павел Вадимович группа: 5030102/90201

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Пос	становка задачи	2
2	Teo 2.1 2.2 2.3 2.4	рия Точечная оценка параметров регрессии	2 2 2 3 3
3	Pea	ализация	
4	Рез	езультаты	
5	Обо	бсуждение	
C	Япис	сок иллюстраций	
	1	График входных интервальных данных	3
	2	Информационное множество	4
	3	Допусковый корридор	4
	4	График построенной модели с предсказанием при аргументе 101.5	5
	5	Предсказание значения при аргументе -10	5
	6	Предсказание значения при аргументе 1000	6

Постановка задачи 1

Дана линейная задача построения регресии

$$\mathbf{y} = X\beta \tag{1}$$

Для данной задачи задать набор входных и выходных значений: точечный x и интервальный у. Необходимо провести вычисления и привести иллюстрации:

- Построить информационное множество решений β , сделать точечные оценки параметров
- Построить коридор совместных зависимостей
- Задать набор предсказания внутри и вне x, построить набор значений выходной переменной у

2 Теория

2.1Точечная оценка параметров регрессии

Пусть х - номер измерения в выборке, а у - получившийся результат. Тогда мы можем представить линейную регрессию как

$$y = b_0 + b_1 * x$$

Для получения точечной оценки можно поставить задачу оптимизации

ния точечной оценки можно поставить задачу оптимизации
$$\begin{cases} mid(y_i) - \omega_i * rad(y_i) \leq X * \beta \leq mid(y_i) + \omega * rad(y_i) & i = 1, m \\ \sum_{i=1}^m \omega_i \to min \\ w_i \geq 0 \\ w, \beta = ? \end{cases} . \tag{2}$$

Здесь Х - матрица т х 2, в первом столбце которой элементы, равны 1, а во втором значения x_i . В качестве значений середины и радиуса возьмем $mid(y_i) = y_i$ и $rad(y_i) = 1$

2.2Информационное множество

Интервальное множество решений β , которое необходимо построить и оценить в задаче (1), называется информационным множеством.

Построим визуальное представление информационного множества параметров b_0 и b_1 . Для этого воспользуемся следующим алгоритмом:

- Для индекса і от 0 до т:
 - Для индекса j от i+1 до m:
 - * По $(x_i, y_i \pm \epsilon)$ и $(x_j, y_j \pm \epsilon)$ построим 4 прямые.
 - * Для каждой прямой проверим, попадает ли она во все интервалы нашей вы-
 - * Если да сохраняем параметры прямой как вершину нашего информационного множества.

2.3 Коридор совместных зависимостей

Коридором совместных зависимостей называется множество, образованное всеми решениями с параметрами из информационного множества

2.4 Предсказание значений

Для предсказания значения строится сечение коридора совместных зависимостей в указанных точках

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python с использованием библиотек matplotlib, intvalpy, numpy, scipy, statsmodels в среде разработки Jupyter Notebook.

4 Результаты

Рис. 1: График входных интервальных данных

Рис. 2: Информационное множество

Рис. 3: Допусковый корридор

Рис. 4: График построенной модели с предсказанием при аргументе 101.5

Рис. 5: Предсказание значения при аргументе -10

Рис. 6: Предсказание значения при аргументе 1000

5 Обсуждение

- 1. Исходя из предсказанных значений можно заметить, что при экстаполяции погрешность гораздо больше чем при интерполяции.
- 2. Из предсказанных значений можно заметить, что при экстаполяции погрешность увеличивается по мере удаления от имеющихся данных.