Przewidywanie struktury drugorzędowej z uwzględnieniem więzów oraz wizualizacja struktur RNA

- I. Przewidywanie struktury drugorzędowej tRNA za pomocą RNAfold z zastosowaniem "twardych" więzów (ang. *hard constrains*)
- 1. Przeprowadź przewidywanie struktury tRNA-Ala(AGC) *Saccharomyces cerevisiae* za pomocą programu RNAfold.
- > tRNA | Ala | AGC | Saccharomyces cerevisiae | cytosolic GGGCGUGUGGCGUAGCGGGCGCUCCCUUAGCAUGGGAGAGGUCUCCGGUUCGAUUCCGGAC UCGUCCACCA
- 2. Skorzystaj z bazy danych MODOMICS [http://modomics.genesilico.pl]. Znajdź informacje o modyfikacjach w badanej cząsteczce tRNA.
- 3. W tabeli znajdują się modyfikacje, które destabilizują kanoniczne parowanie w strukturze drugorzędowej RNA. Skorzystaj z poniższej tabeli w celu zdefiniowania pozycji jednoniciowych w sekwencji.

MODOMICS abbreviation	Short name	Full name
"	m1A	1-Methyladenosine
4	m3C	3-Methylcytidine
+	i6A	N6-isopentyladenosine
6	t6A	N6-threonylcarbamoyladenosine
D	D	Dihydrouridine
I	I	Inosine
K	m1G	1-Methylguanosine
R	m2,2G	N2,N2-dimethylguanosine
Y	yW	Wybutosine

4. Uwzględnij informacje o modyfikacjach tRNA w przewidywaniu struktury drugorzędowej tRNA. Przeprowadź przewidywanie struktury za pomocą programy RNAfold.

Wizualizacja wyników

- 1. Zwizualizuj otrzymane struktury za pomocą programu forna [http://rna.tbi.univie.ac.at/
 forna/]
- 2. Porównaj struktury. Czy zastosowanie więzów poprawiło przewidywaną strukturę? Która struktura przypomina kanoniczną strukturę tRNA? Czy modyfikacje wpływają na strukturę drugorzędową RNA?
- II. Przewidywanie struktury drugorzędowej ryboprzełącznika TPP za pomocą RNAfold z zastosowaniem "miękkich" więzów (ang. *soft constrains*) uzyskanych w wyniku eksperymentu SHAPE-MaP.
- Użyj programu shapemapper w celu obliczenia reaktywności dla poszczególnych pozycji w cząsteczce. Dane znajdują się w folderze cw3_dane. Ustaw parametr min_depth na 1000.

Dane potrzebne do przeprowadzenia analizy:

- 16S.fa sekwencja cząsteczki (—target)
- Wyniki eksperymentu SHAPE-MaP (w formacie fastq):
 - Próba modyfikowana folder TPPplus
 - Próba kontrolna- folder TPPminus
- 2. Przeanalizuj otrzymane wyniki. Umieść w protokole wykresy i statystyki informujące o jakości uzyskanych danych (pokrycie odczytami, informacja o liczbie mutacji).
- 3. Zastosuj reaktywności znajdujące się w pliku .shape jako więzy do przewidywania struktury w programie RNAfold.
- 4. Zwizualizuj uzyskane struktury za pomocą programu VARNA. Spróbuj przedstawić strukturę w jak najbadziej czytelny sposób.