CS170 Computation Theory

Lecture 7

September 26, 2023

Megumi Ando

Review of Last Lecture

- Robustness of TMs
- Church-Turing Thesis

Today's Topics

- Robustness of TMs
- Church-Turing Thesis

- Notation for Encodings and TMs
- Decision procedures for DFAs

Recall Definition of a Language

Definitions:

- A string is a finite sequence of symbols
- A <u>language</u> is a set of strings

A language A

Language Can Represent a Computational Problem

E.g.,

Let B be a Deterministic Finite Automaton.

Let A_{DFA} be the set of pairs $\langle B, w \rangle$ such that w is a string and B accepts w, i.e.,

$$A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid$$

B is a DFA that accepts input string w

Language Can Represent a Computational Problem

E.g.,

Let B be a Deterministic Finite Automaton.

Let A_{DFA} be the set of pairs $\langle B, w \rangle$ such that w is a string and B accepts w, i.e.,

$$A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid$$

B is a DFA that accepts input string *w*}

Is there a TM that recognizes this language A_{DFA} ?

Language Can Represent a Computational Problem

E.g.,

Let B be a Deterministic Finite Automaton.

Let A_{DFA} be the set of pairs $\langle B, w \rangle$ such that w is a string and B accepts w, i.e.,

$$A_{\mathsf{DFA}} = \{ \langle B, w \rangle \mid$$

B is a DFA that accepts input string *w*}

Is there a TM that recognizes this language A_{DFA} ? that <u>decides</u> this language A_{DFA} ?

Notation for Encodings

- Let $O_1, O_2, ..., O_k$ be "objects," e.g., TMs, graphs, etc.
- We denote the encoding of these objects as $\langle O_1, O_2, ..., O_k \rangle$.
- In example in previous slide, $\langle B, w \rangle$ is the encoding of the pair, consisting of the DFA B and the string w.

Work tape contains current state and input head location

Theorem (p.194): The language A_{DFA} is decidable.

Theorem (p.194): The language A_{DFA} is decidable.

Proof: Let $D_{A_{\mathsf{DFA}}}$ be the following TM.

Theorem (p.194): The language A_{DFA} is decidable.

Proof: Let $D_{A_{\mathrm{DFA}}}$ be the following TM.

$$D_{A_{\mathsf{DFA}}}$$
= "On input s ,

Theorem (p.194): The language A_{DFA} is decidable.

Proof: Let $D_{A_{\mathsf{DFA}}}$ be the following TM.

$$D_{A_{\mathsf{DFA}}}$$
= "On input s ,

1. Check that s has correct form, i.e., $s = \langle B, w \rangle$ such that B is a DFA and w is a sequence of symbols from B's input alphabet; if not, reject.

Theorem (p.194): The language A_{DFA} is decidable.

Proof: Let $D_{A_{\mathsf{DFA}}}$ be the following TM.

$$D_{A_{\mathsf{DFA}}}$$
= "On input s ,

- 1. Check that s has correct form, i.e., $s = \langle B, w \rangle$ such that B is a DFA and w is a sequence of symbols from B's input alphabet; if not, reject.
- 2. Simulate the computation of B on w.

Theorem (p.194): The language A_{DFA} is decidable.

Proof: Let $D_{A_{\mathrm{DFA}}}$ be the following TM.

$$D_{A_{\mathsf{DFA}}}$$
= "On input s ,

- 1. Check that s has correct form, i.e., $s = \langle B, w \rangle$ such that B is a DFA and w is a sequence of symbols from B's input alphabet; if not, reject.
- 2. Simulate the computation of B on w.
- 3. If B ends in an accept state, accept. Otherwise, reject."

Theorem (p.194): The language A_{DFA} is decidable.

Proof: Let $D_{A_{\mathrm{DFA}}}$ be the following TM.

$$D_{A_{\mathsf{DFA}}}$$
= "On input s ,

- 1. Check that s has correct form, i.e., $s = \langle B, w \rangle$ such that B is a DFA and w is a sequence of symbols from B's input alphabet; if not, reject.
- 2. Simulate the computation of B on w.
- 3. If B ends in an accept state, accept. Otherwise, reject."

 $D_{A_{\mathsf{DFA}}}$ decides A_{DFA} .

Theorem (p.194): The language A_{DFA} is decidable.

Proof: Let $D_{A_{\mathrm{DFA}}}$ be the following TM.

$$D_{A_{\mathsf{DFA}}}$$
= "On input s ,

Verbose; no need to include in future.

- 1. Check that s has correct form, i.e., $s = \langle B, w \rangle$ such that B is a DFA and w is a sequence of symbols from B's input alphabet; if not, reject.
- 2. Simulate the computation of B on w.
- 3. If B ends in an accept state, accept. Otherwise, reject."

$$D_{A_{\mathsf{DFA}}}$$
 decides A_{DFA} .

Theorem (p.194): The language A_{DFA} is decidable.

Proof: Let $D_{A_{\mathsf{DFA}}}$ be the following TM.

$$D_{A_{\mathsf{DFA}}}$$
= "On input s ,

Verbose; no need to include in future.

- 1. Check that s has correct form, i.e., $s = \langle B, w \rangle$ such that B is a DFA and w is a sequence of symbols from B's input alphabet; if not, reject.
- 2. Simulate the computation of B on w.
- 3. If B ends in an accept state, accept. Otherwise, reject."

$$D_{A_{\mathsf{DFA}}}$$
 decides A_{DFA} .

- Let $r_0 = q_{\text{start}}$ (in the DFA).
- The simulation (step 2) always completes in |w| sub-steps because each transition "consumes" an input symbol w_i and takes us to the next state r_{i+1} .

- Let $r_0 = q_{\text{start}}$ (in the DFA).
- The simulation (step 2) always completes in |w| sub-steps because each transition "consumes" an input symbol w_i and takes us to the next state r_{i+1} .

Input: w_1, w_2, w_3, w_k

- Let $r_0 = q_{\text{start}}$ (in the DFA).
- The simulation (step 2) always completes in |w| sub-steps because each transition "consumes" an input symbol w_i and takes us to the next state r_{i+1} .

Input: w_1, w_2, w_3, w_k

- Let $r_0 = q_{\text{start}}$ (in the DFA).
- The simulation (step 2) always completes in |w| sub-steps because each transition "consumes" an input symbol w_i and takes us to the next state r_{i+1} .

Input: w_1, w_2, w_3, w_k

- Let $r_0 = q_{\text{start}}$ (in the DFA).
- The simulation (step 2) always completes in |w| sub-steps because each transition "consumes" an input symbol w_i and takes us to the next state r_{i+1} .

Input: W_1, W_2, W_3, W_k

- Let $r_0 = q_{\text{start}}$ (in the DFA).
- The simulation (step 2) always completes in |w| sub-steps because each transition "consumes" an input symbol w_i and takes us to the next state r_{i+1} .

Input: W_1, W_2, W_3, W_k

Check-In 1 (Break)

Consider the following DFAs.

- 1. Is $\langle M_1 \rangle$ in A_{DFA} ?
- 2. Is $\langle 0100 \rangle$ in A_{DFA} ?
- 3. Is $\langle M_1,0101\rangle$ in A_{DFA} ?
- 4. Is $\langle M_2,0101\rangle$ in A_{DFA} ?
- 5. Is $\langle M_2,0011111111111111111110010 \rangle$ in A_{DFA} ?

Acceptance Problem for

NFAs

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\} \text{ is decidable.}$

Proof Attempt 1: Let $D'_{A_{NFA}}$ be the following TM.

 $D_{A_{\mathrm{NFA}}}^{\prime}$ = "On input $\langle B,w \rangle$ where B is a NFA and w is a string,

- 1. Simulate the computation of B on w.
- 2. If *B* ends in an accept state, *accept*. Otherwise, *reject.*"

 $D_{A_{\mathsf{NFA}}}'$ decides A_{NFA} .

Acceptance Problem for

NFAs

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\} \text{ is decidable.}$

Proof Attempt 1: Let $D'_{A_{NFA}}$ be the following TM.

 $D_{A_{\mathrm{NFA}}}^{\prime}$ = "On input $\langle B,w \rangle$ where B is a NFA and w is a string,

- 1. Simulate the computation of B on w.
- 2. If *B* ends in an accept state, *accept*. Otherwise, *reject.*"

 $D_{A_{\mathsf{NFA}}}'$ decides A_{NFA} .

(ϵ -transitions make argument tricky.)

```
Theorem (p.195): The language
```

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Proof: Let $D_{A_{NFA}}$ be the following TM.

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Proof: Let $D_{A_{\mathsf{NFA}}}$ be the following TM.

 $D_{A_{\mathrm{NFA}}}$ = "On input $\langle B, w \rangle$ where B is a NFA and w is a string,

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Proof: Let $D_{A_{NEA}}$ be the following TM.

 $D_{A_{\rm NFA}}$ = "On input $\langle B, w \rangle$ where B is a NFA and w is a string,

1. Convert B to an equivalent DFA, B', using the procedure from Lecture 2.

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Proof: Let $D_{A_{\mathsf{NFA}}}$ be the following TM.

 $D_{A_{\mathrm{NFA}}}$ = "On input $\langle B, w \rangle$ where B is a NFA and w is a string,

- 1. Convert B to an equivalent DFA, B', using the procedure from Lecture 2.
- 2. Run $D_{A_{\text{DFA}}}$ (from previous slide) on $\langle B', w \rangle$.

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Proof: Let $D_{A_{\mathsf{NFA}}}$ be the following TM.

 $D_{A_{\mathrm{NFA}}}$ = "On input $\langle B, w \rangle$ where B is a NFA and w is a string,

- 1. Convert B to an equivalent DFA, B', using the procedure from Lecture 2.
- 2. Run $D_{A_{\mathrm{DFA}}}$ (from previous slide) on $\langle B', w \rangle$.
- 3. If $D_{A_{\mathsf{DFA}}}$ accepts, accept. Else, reject."

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Proof: Let $D_{A_{\mathsf{NFA}}}$ be the following TM.

 $D_{A_{\mathrm{NFA}}}$ = "On input $\langle B, w \rangle$ where B is a NFA and w is a string,

- 1. Convert B to an equivalent DFA, B', using the procedure from Lecture 2.
- 2. Run $D_{A_{\mathrm{DFA}}}$ (from previous slide) on $\langle B', w \rangle$.
- 3. If $D_{A_{\mathrm{DFA}}}$ accepts, accept. Else, reject."

 $D_{A_{\mathsf{NFA}}}$ decides A_{NFA} .

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Proof: Let $D_{A_{NFA}}$ be the following TM.

 $D_{A_{\mathrm{NFA}}}$ = "On input $\langle B, w \rangle$ where B is a NFA and w is a string,

- 1. Convert B to an equivalent DFA, B', using the procedure from Lecture 2.
- 2. Run $D_{A_{\mathrm{DFA}}}$ (from previous slide) on $\langle B', w \rangle$.
- 3. If $D_{A_{\mathrm{DFA}}}$ accepts, accept. Else, reject."

 $D_{A_{\mathsf{NFA}}}$ decides A_{NFA} .

Why does $D_{A_{\mathsf{NFA}}}$ always halt?

Theorem (p.195): The language

 $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA that accepts input string } w\}$ is decidable.

Proof: Let $D_{A_{NEA}}$ be the following TM.

 $D_{A_{\rm NFA}}$ = "On input $\langle B, w \rangle$ where B is a NFA and w is a string,

- 1. Convert B to an equivalent DFA, B', using the procedure from Lecture 2.
- 2. Run $D_{A_{\mathrm{DFA}}}$ (from previous slide) on $\langle B', w \rangle$.
- 3. If $D_{A_{\mathsf{DFA}}}$ accepts, accept. Else, reject."

 $D_{A_{\mathsf{NFA}}}$ decides A_{NFA} .

Why does $D_{A_{\mathsf{NFA}}}$ always halt?

(Because $D_{A_{\mathsf{DFA}}}$ does.)

Q.E.D.

Acceptance Problem for Regular Expressions

Theorem (p.196): The language

 $A_{REG} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$ is decidable.

Theorem (p.196): The language

 $A_{RFG} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$ is decidable.

Proof: Let $D_{A_{RFG}}$ be the following TM.

Theorem (p.196): The language

 $A_{REG} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$ is decidable.

Proof: Let $D_{A_{REG}}$ be the following TM.

 $D_{A_{REG}}$ = "On input $\langle R, w \rangle$ where R is a regular expression and w is a string,

Theorem (p.196): The language

 $A_{REG} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$ is decidable.

Proof: Let $D_{A_{REG}}$ be the following TM.

 $D_{A_{\rm RFG}}$ = "On input $\langle R, w \rangle$ where R is a regular expression and w is a string,

1. Convert R to an equivalent NFA, R', using the procedure from Lecture 2 (closure properties).

Theorem (p.196): The language

 $A_{RFG} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$ is decidable.

Proof: Let $D_{A_{RFG}}$ be the following TM.

 $D_{A_{\mathrm{RFG}}}$ = "On input $\langle R, w \rangle$ where R is a regular expression and w is a string,

- 1. Convert R to an equivalent NFA, R', using the procedure from Lecture 2 (closure properties).
- 2. Run $D_{A_{NFA}}$ (from previous slide) on $\langle R', w \rangle$.

Theorem (p.196): The language

 $A_{REG} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$ is decidable.

Proof: Let $D_{A_{RFG}}$ be the following TM.

 $D_{A_{\mathrm{RFG}}}$ = "On input $\langle R, w \rangle$ where R is a regular expression and w is a string,

- 1. Convert R to an equivalent NFA, R', using the procedure from Lecture 2 (closure properties).
- 2. Run $D_{A_{NFA}}$ (from previous slide) on $\langle R', w \rangle$.
- 3. If $D_{A_{\rm NFA}}$ accepts, accept. Else, reject."

Theorem (p.196): The language

 $A_{REG} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w \}$ is decidable.

Proof: Let $D_{A_{RFG}}$ be the following TM.

 $D_{A_{\mathrm{RFG}}}$ = "On input $\langle R, w \rangle$ where R is a regular expression and w is a string,

- 1. Convert R to an equivalent NFA, R', using the procedure from Lecture 2 (closure properties).
- 2. Run $D_{A_{NFA}}$ (from previous slide) on $\langle R', w \rangle$.
- 3. If $D_{A_{\rm NFA}}$ accepts, accept. Else, reject."

 $D_{\!A_{\mathrm{REG}}}$ decides $A_{\mathrm{REG}}.$

Theorem (p.196): The language

 $A_{REG} = \{\langle R, w \rangle | R \text{ is a regular expression that generates string } w\}$ is decidable.

Proof: Let $D_{A_{RFG}}$ be the following TM.

 $D_{A_{\mathrm{RFG}}}$ = "On input $\langle R, w \rangle$ where R is a regular expression and w is a string,

1. Convert R to an equivalent NFA, R', using the procedure from Lecture 2 (closure properties).

12

- 2. Run $D_{A_{NFA}}$ (from previous slide) on $\langle R', w \rangle$.
- 3. If $D_{A_{\rm NFA}}$ accepts, accept. Else, reject."

 $D_{\!A_{\mathrm{REG}}}$ decides $A_{\mathrm{REG}}.$

 $D_{A_{\mathsf{REG}}}$ always halts because $D_{A_{\mathsf{NFA}}}$ does.

Q.E.D.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \varnothing\}$ is decidable.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \varnothing \}$ is decidable.

Let's see some examples to build intuition.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \varnothing \}$ is decidable.

Let's see some examples to build intuition.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Let's see some examples to build intuition.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Let's see some examples to build intuition.

Is $B_1 \in E_{\mathsf{DFA}}$? Is $B_2 \in E_{\mathsf{DFA}}$?

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \varnothing \}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \varnothing \}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathsf{DFA}}}$ = "On input $\langle B \rangle$ where B is a DFA,

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}$ = "On input $\langle B \rangle$ where B is a DFA,

1. Mark the start state of B.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \varnothing\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}$ = "On input $\langle B \rangle$ where B is a DFA,

- 1. Mark the start state of B.
- 2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}$ = "On input $\langle B \rangle$ where B is a DFA,

- 1. Mark the start state of B.
- 2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}\!\!=$ "On input $\langle B \rangle$ where B is a DFA,

- 1. Mark the start state of B.
- 2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}\!\!=$ "On input $\langle B \rangle$ where B is a DFA,

1. Mark the start state of B.

2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}\!\!=$ "On input $\langle B \rangle$ where B is a DFA,

- 1. Mark the start state of *B*.
- 2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}$ = "On input $\langle B \rangle$ where B is a DFA,

- 1. Mark the start state of B.
- 2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}$ = "On input $\langle B \rangle$ where B is a DFA,

- 1. Mark the start state of *B*.
- 2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.
- 3. If no accept state is marked, accept. Else, reject."

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state.

 $D_{E_{\mathrm{DFA}}}$ = "On input $\langle B \rangle$ where B is a DFA,

- 1. Mark the start state of B.
- 2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.
- 3. If no accept state is marked, accept. Else, reject."

 $D_{E_{
m DFA}}$ decides $E_{
m DFA}.$

Theorem (p.196): The language $E_{\mathsf{DFA}} = \{\langle B \rangle \,|\, B \text{ is a DFA and } L(B) = \emptyset\}$ is decidable.

Proof: Let $D_{E_{\rm DFA}}$ be the following TM that tests if there is a path from the start state to an accept state. Let $B_2=$

 $D_{E_{\mathrm{DFA}}}$ = "On input $\langle B \rangle$ where B is a DFA,

- 1. Mark the start state of *B*.
- 2. Repeat until no new states are marked: mark any unmarked state with a transition from a marked state.
- 3. If no accept state is marked, accept. Else, reject."

$$D_{E_{\mathrm{DFA}}}$$
 decides $E_{\mathrm{DFA}}.$

 $D_{E_{\mathrm{DFA}}}$ always halts within |Q| sub-steps.

Q.E.D.

Check-In 2 (Break)

Let $ALL_{DFA} = \{ \langle M \rangle | M \text{ is a DFA and } L(M) = \Sigma^* \}.$

Prove that ALL_{DFA} is decidable.

(Hint: Consider what we just saw in the last slide: E_{DFA} .)

Equivalence Problem for DFAs

```
Theorem (p.197): The language
```

 $EQ_{\mathsf{DFA}} = \{\langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$ is decidable.

On the whiteboard.

Summary of Today's Lecture

- Notation for Encodings and TMs
- Decision procedures for DFAs

Acknowledgements

- These slides are based on lecture notes on Theory of Computation from other universities, namely Michael Sipser (MIT), Lorenzo De Stefani (Brown).
- Errata: If you let us know of any errors in the slides, we'll fix them and acknowledge you here!