5

R³ is hydrogen, a functional group, optionally substituted alkyl, optionally substituted alkenyl. optionally substituted alkynyl, optionally substituted aryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aralkyl, optionally substituted aralkyloxy, optionally substituted cycloalkyl;

PCT/GB00/00260

R4 is a group NHCOR¹⁵, NHSO₂R¹⁵ or OCONR¹⁶R¹⁷ where R¹⁵ is optionally substituted alkyl, optionally substituted aryl or optionally substituted heteroaryl and R¹⁶ and R¹⁷ are independently selected from hydrogen, optionally substituted alkyl, optionally substituted aryl and optionally substituted heteroaryl, with the proviso that at least one of R¹⁶ or R¹⁷ is other than hydrogen, or R¹⁶ and R¹⁷ together with the nitrogen atom to which they 10 are attached form an optionally substituted heterocyclic ring which optionally contains further heteroatoms; and

R⁵, R⁶ and R⁷ are independently selected from hydrogen, a functional group or an optionally substituted hydrocarbyl groups or optionally substituted heterocyclic groups.

Suitably, where R⁴ is a group NHCOR¹⁵, R¹⁵ is substituted alkyl, optionally 15 substituted aryl or optionally substituted heteroaryl.

Compounds of formula (I) are inhibitors of monocyte chemoattractant protein-1. In addition, they appear to inhibit RANTES (Regulated upon Activation, Normal T-cell Expressed and Secreted), induced chemotaxis. RANTES is another chemokine from the same family as MCP-1, with a similar biological profile, but acting though the CCR1 20 receptor. As a result, these compounds can be used to treat disease mediated by these agents, in particular inflammatory disease.

In this specification the term 'alkyl' when used either alone or as a suffix includes straight chained, branched structures. These groups may contain up to 10, preferably up to 6 and more preferably up to 4 carbon atoms. Similarly the terms "alkenyl" and "alkynyl" refer 25 to unsaturated straight or branched structures containing for example from 2 to 10, preferably from 2 to 6 carbon atoms. Cyclic moieties such as cycloalkyl, cycloalkenyl and cycloalkynyl are similar in nature but have at least 3 carbon atoms. Terms such as "alkoxy" comprise alkyl groups as is understood in the art.

The term "halo" includes fluoro, chloro, bromo and iodo. References to aryl groups 30 include aromatic carbocylic groups such as phenyl and naphthyl. The term "heterocyclyl" includes aromatic or non-aromatic rings, for example containing from 4 to 20, suitably from 5 to 8 ring atoms, at least one of which is a heteroatom such as oxygen, sulphur or nitrogen.

Examples of such groups include furyl. thienyl, pyrrolyl, pyrrolidinyl, imidazolyl, triazolyl, thiazolyl, tetrazolyl, oxazolyl, isoxazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, isoquinolinyl, quinoxalinyl, benzothiazolyl, benzoxazolyl, benzothienyl or benzofuryl.

"Heteroaryl" refers to those groups described above which have an aromatic character.

The term "aralkyl" refers to aryl substituted alkyl groups such as benzyl.

Other expressions used in the specification include "hydrocarbyl" which refers to any structure comprising carbon and hydrogen atoms. For example, these may be alkyl, alkenyl, alkynyl, aryl, heterocyclyl, alkoxy, aralkyl, cycloalkyl, cycloalkenyl or cycloalkynyl.

The term "functional group" refers to reactive substituents. They may comprise electron-donating or electron-withdrawing. Examples of such groups include halo. cyano, nitro, C(O)_nR¹⁸, OR¹⁸, S(O)_nR¹⁸, NR¹⁹R²⁰, C(O)NR¹⁹R²⁰, OC(O)NR¹⁹R²⁰, -NR¹⁹C(O)_nR¹⁸, -NR¹⁸CONR¹⁹R²⁰, -N=CR¹⁹R²⁰, S(O)_mNR¹⁹R²⁰ or -NR¹⁹S(O)_mR¹⁸ where R¹⁸, R¹⁹ and R²⁰ are independently selected from hydrogen or optionally substituted hydrocarbyl, or R¹⁹ and R²⁰ together form an optionally substituted ring which optionally contains further heteroatoms such as S(O)_m, oxygen and nitrogen, n is an integer of 1 or 2, m is 1 or 2.

Suitable optional substituents for hydrocarbyl groups R¹⁸, R¹⁹ and R²⁰ include halo, perhaloalkyl such as trifluoromethyl, mercapto, hydroxy, carboxy, alkoxy, heteroaryl, heteroaryloxy, alkenyloxy, alkynyloxy, alkoxyalkoxy, aryloxy (where the aryl group may be substituted by halo, nitro, or hydroxy), cyano, nitro, amino, mono- or di-alkyl amino, oximino or S(O)_nR^x where n is as defined above and R^x is alkyl such as C₁₋₄ alkyl.

Suitable substituents for these hydrocarbyl or heterocylic groups include those listed above for R^{18} , R^{19} and R^{20} .

Suitably R¹ is an optionally substituted phenyl, pyridyl, naphthyl, furyl or thienyl ring, and in particular is a substituted phenyl or pyridyl ring.

Suitable optional substitutents for R¹ in formula (I) include alkyl. alkenyl, alkynyl, halo, haloalkyl including perhaloalkyl such as trifluoromethyl, mercapto. alkoxy, haloalkoxy, alkenyloxy, alkynyloxy, hydroxyalkoxy, alkoxyalkoxy, alkanoyl, alkanoyloxy, cyano, nitro, amino, mono- or di-alkyl amino, oximino, sulphonamido, carbamoyl, mono or

30 dialkylcarbamoyl or S(O)_m R²¹ where m is as defined above and R²¹ is hydrocarbyl.

Particular examples of substituents R⁵, R⁶ and R⁷, and where appropriate also R⁴ include hydrogen, hydroxy, halo, optionally substituted alkyl such as aralkyl, carboxyalkyl or

5

WO 00/46195 PCT/GB00/00260

the amide derivative thereof; alkoxy; aryloxy; aralkyloxy; or an amino group which is optionally substituted with alkyl, aryl or aralkyl. A specific functional group which is suitable for R⁴, R⁵, R⁶ and/or R⁷ is a group of sub-formula (IV).

$$-c-N$$

Particular examples of groups R⁵, R⁶ and R⁷ are hydrogen, hydroxy, halo or alkoxy.

In particular R⁶ and R⁷ are hydrogen. R⁵ may be hydrogen but in addition is suitably a small substitutent such as hydroxy, halo or methoxy.

Particular substituents for R¹ include trifluoromethyl, C₁₋₄alkyl, halo, trifluoromethoxy, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, nitro, carbamoyl, C₁₋₄alkoxycarbonyl, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphinyl, C₁₋₄alkylsulphonyl, sulphonamido, carbamoylC₁₋₄alkyl, N-(C₁₋₄alkyl, N-(C₁₋₄alkyl)₂carbamoyl-C₁₋₄alkyl, hydroxyC₁₋₄alkyl or C₁₋₄alkoxyC₁₋₄alkyl.

Additionally or alternatively, two such substituents together may form a divalent radical of the formula $-O(CH_2)_{1-4}O$ - attached to adjacent carbon atoms on the R¹ ring.

Preferred substitutents for R¹ are one or more non-polar substituents such as halo.

In particular, R¹ is substituted by one or more halo groups, in particular chlorine. A
20 particular example of an R¹ group is 3,4-dichlorophenyl, 3-fluoro-4-chlorophenyl, 3-chloro-4fluorophenyl or 2,3-dichloropyrid-5-yl.

Examples of groups R² include carboxy; cyano; tetrazol-5-yl; SO₃H; -CONHR⁸ where R⁸ is selected from cyano, hydroxy, -SO₂R¹² where R¹² is alkyl such as C₁₋₄ alkyl, aryl such as phenyl, heteroaryl or trifluoromethyl, or R⁸ is a group-(CHR¹⁰)_r-COOH where r is an integer of 1-3 and each R¹⁰ group is independently selected from hydrogen or alkyl such as C₁₋₁ alkyl; or R² is a group -SO₂NHR⁹ where R⁹ is an optionally substituted phenyl or an optionally substituted 5 or 6 membered heteroaryl group, or a group COR¹⁴ where R¹⁴ is alkyl such as C₁₋₄ alkyl, aryl such as phenyl, heteroaryl or trifluoromethyl, or R² is a group of formula (VI)