

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

PROPUESTA DEL PROGRAMA DE PRODUCCIÓN DE LA LÍNEA DE PRODUCTOS LÍQUIDOS NO ESTÉRILES

Tesis para optar el Título de Ingeniero Industrial, que presenta el bachiller:

Eddy Santiago Pacoricuna Cabrera

ASESOR: Dr. Miguel Mejía Puente

Lima, septiembre de 2013

RESUMEN

La presente tesis presenta una aplicación de la investigación de operaciones utilizando algoritmos de programación lineal entera mixta por metas, con el objetivo de obtener un programa de producción para la línea de líquidos no estériles en la empresa de estudio. Este objetivo se logra a través del desarrollo y resolución del modelo, así mismo, del análisis comparativo de los resultados con el método actual de programación en la empresa de estudio. Por otro lado, con la finalidad de mejorar la velocidad del proceso de envasado se analiza el ahorro generado por la propuesta de implementación de una línea automática para las operaciones envasado y acondicionado.

La programación de la producción consiste principalmente en definir cuánto y cuándo se llevarán a cabo los procesos de fabricación, envasado y acondicionado de cada lote de un producto para un mes o periodo de producción.

La tesis se organizó en cuatro capítulos, que definen el marco teórico, el estudio del caso, el plan de mejoras, y las conclusiones y recomendaciones.

En el capítulo 1, se desarrolla el marco teórico, y se muestra el resumen, la formulación y conclusiones de tres casos de estudio en los que se utilizó la programación lineal como mejora de proceso.

En el capítulo 2, se desarrolla el estudio del caso en el que se presentan la descripción de la empresa, el análisis del sistema productivo y la descripción de los principales problemas.

En el capítulo 3, se desarrolla el plan de mejoras, en el que se presenta la metodología a seguir, la propuesta de implementación de una línea automática, el desarrollo del modelo matemático y análisis de resultados, y, por último, se realiza la evaluación económica.

Finalmente en el capítulo 4, se redactan las conclusiones y recomendaciones.

DEDICATORIA

A Dios, por darme la vida.

A mi madre Odilvia, por su amor constante.

A mi padre Felipe, por ser el mejor ejemplo de perseverancia.

Y a mis hermanas Yubi, Oddy y Yulissa, por ser parte de mi vida.

Que siempre sigamos unidos.

AGRADECIMIENTOS

Mi agradecimiento a todas las personas que de alguna manera colaboraron en la realización de esta tesis y de manera especial a mi asesor el Dr. Miguel Mejía por su valorada ayuda.

INDICE GENERAL

INDICE DE	E TABLAS	V
INDICE DE	E GRAFICOS	VII
INDICE DE	E CUADROS	IX
CAPÍTULO	D 1 MARCO TEÓRICO	3
1.1 Ca	so práctico de Cuadros	3
1.1.1	Resumen del problema de Cuadros	3
1.1.2	Formulación del modelo de Cuadros	4
1.1.3	Conclusiones del modelo de Cuadros	11
1.2 Ca	so práctico de Munhoz & Morabito	11
1.2.1	Resumen del problema de Munhoz & Morabito	12
1.2.2	Formulación del problema de Munhoz & Morabito	14
1.2.3	Conclusiones del problema de Munhoz & Morabito	19
1.3 Ca	so práctico de Mayo	19
1.3.1	Resumen del problema de Mayo	19
1.3.2	Formulación del modelo de mayo	22
1.3.3	Resultados y conclusiones del modelo de Mayo	29
	2 ESTUDIO DEL CASO	
2.1 De	escripción de La Empresa	31
2.1.1	Visión, Misión y Valores	
2.1.2	Estructura Organizacional	
2.1.3	Clientes	36
2.2 Ar	nálisis del sistema productivo	37
2.2.1	Productos	37
2.2.2	Tipología del sistema de producción	39
2.2.3	Principales procesos	40
2.2.4	Situación actual de los principales procesos	45
2.3 De	escripción de los problemas	52
2.3.1	Aplicación de Brainstorming	52
2.3.2	Aplicación de análisis causa-efecto	54
CAPÍTULO	O 3 PLAN DE MEJORAS	57
3.1 Me	etodología a seguir	57

TESIS PUCP

3.2	Lír	nea automática de dosificado, tapado y etiquetado	57
3.3	Мс	odelación del programa de producción	61
3.3	3.1	Formulación del modelo	61
3.3	3.2	Resultados del modelo	88
3.4	Ev	aluación económica	98
3.4	1.1	Impacto económico de la línea automática	98
3.4	.2	Impacto económico del modelado	99
3.4	1.3	Resumen del análisis económico	102
CAPÍT	ULC	4 CONCLUSIONES Y RECOMENDACIONES	103
4.1	Co	onclusiones	103
4.2	Re	comendaciones	104
REFE	REN	CIAS BIBLIOGRÁFICAS	106
ANEX	0 1.	Cotización de la línea automática	107
ANEY	0.2	Resumen del modelo	100

INDICE DE TABLAS

Tabla 1.1. Equivalencia de las variables intermedias	26
Tabla 2.1. Escala de calificación	53
Tabla 3.1. Velocidad de dosificado por presentación	59
Tabla 3.2. Política de stocks	62
Tabla 3.3. Duración de operación por lote.	68
Tabla 3.4. Relación de productos controlados	75
Tabla 3.5. Cantidad de materia prima por lote de producto	75
Tabla 3.6. Productos con TL mayor a 10,000 unid	79
Tabla 3.7. Cantidad de envases por lote de producto	79
Tabla 3.8. Precio de venta y costos de operación por lote de producto	83
Tabla 3.9. Costo de mezclado de producción en lote campaña	84
Tabla 3.10. Programa de producción del mes de enero 2013	89
Tabla 3.11. Programa de producción del mes de febrero 2013	90
Tabla 3.12. Programa de producción del mes de marzo 2013	91
Tabla 3.13. Programa de producción del mes de abril 2013	92
Tabla 3.14. Programa de producción del mes de mayo 2013	93
Tabla 3.15. Comparación de resultados	94
Tabla 3.16. Nivel de atención obtenido por el modelo	94
Tabla 3.17. Comparación resultados de cada cliente	95
Tabla 3.18. Inventario inicial de materia prima en cada mes	95
Tabla 3.19. Inventario utilizado de materia prima en cada mes	96
Tabla 3.20. Inventario final de materia prima en cada mes	96
Tabla 3.21. Inventario inicial de envases en cada mes	97
Tabla 3.22. Inventario utilizado de envases en cada mes	97
Tabla 3.23. Inventario final de envases en cada mes	98
Tabla 3.24. Costo de adquisición e implementación de la línea automática	99
Tabla 3.25. Ahorro mensual en horas-hombre (h-h)	99

TESIS PUCP

Tabla 3.26. Requerimientos técnicos y condiciones de mercado	.100
Tabla 3.27. Ratios Lp/Do y U/Lp de la situación actual de la empresa	.100
Tabla 3.28. Ratios Lp/Do y U/Lp obtenidos por el modelo	101
Tabla 3.29. Resultados proyectados para la empresa	101
Tabla 3.30. Resultados proyectados para el modelo	101
Tabla 3.31. Análisis costo-beneficio de las mejoras	102

INDICE DE GRAFICOS

Gráfico 1.1. Proceso general de zumos de naranja	12
Gráfico 1.2. Balance de inventario de bases	16
Gráfico 1.3. Balance de inventarios de en el almacén interno	17
Gráfico 1.4. Balance de inventarios de en el almacén externo	17
Gráfico 2.1. Cadena de abastecimiento de La Empresa	32
Gráfico 2.2. Organigrama de La Planta	34
Gráfico 2.3. Productos por línea de producción de La Planta	38
Gráfico 2.4. Productos líquidos no estériles por cliente y por forma	38
Gráfico 2.5. Diagrama de flujo del proceso principal	40
Gráfico 2.6. DFD, diagrama hijo proceso 1	
Gráfico 2.7. DFD, diagrama hijo proceso 3	43
Gráfico 2.8. Comparación del número de lotes fabricados vs planificados	46
Gráfico 2.9. Utilidades obtenidas en los meses de enero a mayo 2013	47
Gráfico 2.10. Comparación de secuencia no optimizada vs optimizada	51
Gráfico 2.11. Principales problemas y la puntuación asignada	53
Gráfico 2.12. Análisis de Pareto	54
Gráfico 2.13. Se pierde oportunidad de obtener más ingresos	55
Gráfico 2.14. Hay una falta de optimización en el proceso de fabricación	55
Gráfico 2.15. El proceso de envasado restringe el uso de tanques	56
Gráfico 3.1. Dosificadora semiautomática Daumaq DL1	58
Gráfico 3.2. Línea automática-operaciones principales	60
Gráfico 3.3. Ejemplo de programación de lotes de jarabes	69
Gráfico 3.4. Ejemplo de programación de lotes de suspensiones	69
Gráfico 3.5. Fechas límites de fabricación en jarabes	70
Gráfico 3.6. Fechas límites de fabricación en suspensiones	70
Gráfico 3.7. Ejemplo de programación de lote campaña	71
Gráfico 3.8. Fechas límites de fabricación en lotes campaña	71

TESIS PUCP

Gráfico 3.9. Fechas límites de envasado en jarabes	77
Gráfico 3.10. Fechas límites de envasado en suspensiones	77
Gráfico 3.11. Fechas límites de envasado en lotes campaña	77
Gráfico 3.12. Fechas límites de acondicionado en jarabes	80
Gráfico 3.13. Fechas límites de acondicionado en suspensiones	81
Gráfico 3.14. Fechas límites de acondicionado en lotes campaña	81

INDICE DE CUADROS

Cuadro 1.1. Dígitos utilizados en el modelo de Cuadros	. 4
Cuadro 1.2. Parámetros utilizados en el modelo de Cuadros	. 4
Cuadro 1.3. Variables de decisión utilizadas en el modelo de Cuadros	. 5
Cuadro 1.4. Terminología utilizada en la industria cítrica.	13
Cuadro 1.5. Dígitos utilizados en el modelo de Munhoz & Morabito	14
Cuadro 1.6. Datos utilizados en el modelo de Munhoz & Morabito	14
Cuadro 1.7. Variables de decisión del problema	15
Cuadro 1.8. Dígitos utilizados en el modelo de Mayo	22
Cuadro 1.9. Parámetros utilizados en el modelo de Mayo	23
Cuadro 1.10. Variables de decisión utilizadas en el modelo de Mayo	24
Cuadro 1.11. Variables intermedias a utilizar en el modelo de Mayo	24
Cuadro 2.1. Clasificación de los clientes de La Planta	36
Cuadro 2.2. Formas farmacéuticas por cada línea de producción	37
Cuadro 2.3. Productos líquidos no estériles que elabora La Planta	39
Cuadro 2.4. Cuadro comparativo de los tipos de configuraciones	40
Cuadro 2.5. Nivel de cumplimiento del plan de producción	45
Cuadro 2.6. Cantidad de días del mes en los que no se fabricaron.	48
Cuadro 2.7. Horas hombre de envasado de enero a mayo del 2013	50
Cuadro 3.1. Horas utilizadas en el envasado y acondicionado	59
Cuadro 3.2. Cantidad de operarios antes y luego de la propuesta	60
Cuadro 3.3. Registro de ventas mensuales de tres productos	62
Cuadro 3.4. Ejemplo del plan proyectado	63
Cuadro 3.3. Plan proyectado de enero a mayo del 2013	64
Cuadro 3.4. Stock inicial de materia prima y envases	66
Cuadro 3.5. Ingresos de insumos previstos de febrero a mayo	67
Cuadro 3.6. Calendario usado para la programación	87
Cuadro 3.7. Resumen del calendario	87

INTRODUCCIÓN

La presenta tesis se titula "Propuesta del programa de producción de la línea de productos líquidos no estériles".

El estudio se realiza en una empresa farmacéutica que se encuentra en un periodo de crecimiento debido a la conformación de la cadena de abastecimiento desde la producción hasta la venta retail de productos genéricos y de marca que ha formado. Debido a la competitividad en el sector en el que se encuentra, la empresa requiere optimizar sus procesos para poder atender a la mayor cantidad de productos que le generan demanda.

La tesis presentada tiene como objetivo mejorar los procesos de la empresa de estudio a través de dos propuestas de mejora para la línea de producción de líquidos no estériles. La primera mejora tiene que ver con la adquisición e implementación de una línea de dosificado, tapado y etiquetado automática que reduce los costos de horas-hombre en los proceso de envasado y acondicionado, y la segunda mejora se basa en el desarrollo de un modelo matemático que nos permite obtener un programa de producción que determine la secuencia óptima de los procesos productivos tal que genere ahorro en los costos productivos, incremente el nivel de atención de la demanda e incremente las utilidades.

Para el desarrollo de la tesis, el estudio se organiza en cuatro capítulos.

El capítulo 1, contiene el marco teórico en el que se desarrolla la presente tesis. En este capítulo se muestran el caso de estudio de un laboratorio farmacéutico, de una empresa de importaciones de zumos de naranja y de una empresa textil. En cada caso se utilizó la programación lineal como mejora del proceso.

El capítulo 2, contiene el desarrollo del estudio del caso de la empresa. Para ello, el capítulo se ha dividido en tres secciones. En la primera se hace una descripción de la empresa haciendo referencia a su estructura organizacional y sus principales clientes, en la segunda, se realiza un análisis del sistema productivo haciendo referencia sus productos, su tipología de producción, sus principales procesos y la

situación actual; y, en la tercera, se describen los principales problemas de la empresa aplicándose las herramientas de *brainstorming* y análisis causa-efecto.

El capítulo 3, contiene el desarrollo del plan de mejoras. Aquí se presenta la metodología a seguir, luego, se desarrolla la propuesta de mejora de la adquisición e implementación de una línea automática, después, se realiza la modelación en el que se presenta la formulación del modelo y el análisis de los resultados para un periodo de cinco meses, y, finalmente, se realiza la evaluación económica de las mejoras planteadas.

El capítulo 4, contiene las conclusiones y recomendaciones.

Con los beneficios obtenidos la empresa podrá atender la mayor cantidad de productos demandados y mantenerse competitiva en el sector farmacéutico.

CAPÍTULO 1 MARCO TEÓRICO

Las empresas manufactureras tienen mucho interés por conocer herramientas que ayuden a mejorar sus procesos de tal manera que puedan optimizarlo y así obtener mejores resultados para su beneficio y de sus clientes. A continuación, se exponen tres casos de aplicación de programación lineal en los procesos productivos que ayudaron a optimizar el uso de los recursos disponibles.

1.1 Caso práctico de una empresa farmacéutica

En este caso se presenta una aplicación de programación lineal en una empresa del sector farmacéutico. La empresa se dedica a fabricar productos estériles y no estériles desde la manufactura hasta el acondicionado final. El presente inciso se dividirá en tres partes. Para empezar, se relata un breve resumen del problema; luego, se explica la formulación del modelo; y finalmente, se exponen las conclusiones más importantes de la investigación.

1.1.1 Resumen del problema de una empresa farmacéutica

Cuadros (2006) aplicó programación lineal entera mixta por metas para determinar el plan de producción mensual de un laboratorio farmacéutico en las líneas de productos esterilizados, no esterilizados y manufactura de envases. El laboratorio atiende al sector público y sector privado. La línea de productos esterilizados ofertaba treinta y nueve productos, mientras que la línea de productos no esterilizados, once productos. Por parte de los envases, estos eran conformados por diez tipos de envases. El proceso general de la manufactura de sus productos está conformado por el pesado, mezclado, envasado y acondicionado, mientras que en la manufactura de envases, pesado, mezclado, soplado e inyectado. El margen de contribución de los productos variaba de acuerdo al tipo de cliente que se atiende y el tamaño de lote del pedido. El laboratorio atendía alrededor de 300 pedidos mensuales y para poder atenderlos, la empresa incurría en horas extras, especialmente, en la línea de fabricación de envases. El modelo propuesto por Cuadros (2006) busca maximizar la utilidad de los pedidos, minimizar los

costos de producción de envases y mantener un determinado grupo de inventario para atender necesidades futuras.

1.1.2 Formulación del modelo de PL de una empresa farmacéutica

<u>Dígitos usados:</u> En el cuadro 1.1 se listan los dígitos utilizados para la formulación del modelo matemático.

Cuadro 1.1. Dígitos utilizados en el modelo de Cuadros

Dígito	Denota	Valores
i	producto	i=1,50
j	cliente	j=1,13
k	materia prima para manufactura del producto	k=1,35
h	materia prima para manufactura de envases	h=1,2
m	envase	m=1,10
d	día	d=1,,31
g	desviación en la restricción meta	g=0,5

Fuente: Cuadros (2006) Elaboración propia

<u>Parámetros del modelo</u>: En el cuadro 1.2 se listan los parámetros utilizados para la formulación del modelo matemático y su respectiva descripción.

Cuadro 1.2. Parámetros utilizados en el modelo de Cuadros

Siglas	Descripción	Unidad
d _{ij}	pedidos del producto i del cliente j	unidades
dp _{ij}	pedidos pendientes del producto i del cliente j	unidades
P _{ij}	precio unitario del producto i destinada el cliente j	soles/unidades
Ci	costo unitario del producto i en horario diurno	soles/unidades
chh _i	costo unitario del producto i en horario extra	soles/unidades
pif _i	valor que permite priorizar la fabricación del producto i destinado al almacén de productos terminados	soles/unidades
pmp	valor que permite priorizar la fabricación de envases en horario diurno	-
VCi	valor de conversión del producto i (gramos = unidades, mililitros = unidades)	-
xapti _i	inventario inicial del producto i	unidades
yampi _k	inventario inicial de la materia prima k	g
cmaxf	capacidad máxima diaria de producción de productos que se envasan en frascos en horario diurno	unidades
cmaxt	capacidad máxima diaria de producción de productos que se envasan en tubos en horario diurno	unidades
cmafhh	capacidad máxima diaria de producción de productos que se envasan en frascos en horario extra	unidades
cmathh	capacidad máxima diaria de producción de productos que se envasan en tubos en horario extra	unidades

Siglas	Descripción	Unidad
Tf	velocidad de envasado de productos en frascos	min/unidades
Tt	velocidad de envasado de productos en tubos	min/unidades
Taf	velocidad de embalado de productos en frascos	min/unidades
Tat	velocidad de embalado de productos en tubos	min/unidades
Tacon	tiempo disponible diario en proceso de embalado en horario diurno	min
Thacon	tiempo disponible diario en proceso de embalado en horario extra	min
eampi _h	inventario inicial de materia prima h	kg
vc _m	variable de conversión del producto m (gramos = unidades)	-
ets _{qm}	velocidad de la máquina de soplado q para producir el producto m	min/unidades
etsenva _q	tiempo disponible de la máquina de soplado q en horario diurno	min
etshenva _q	tiempo disponible de la máquina de soplado q en horario extra	min
eti _{qm}	velocidad de la máquina de inyección q para producir el producto m	min/unidades
etienva _q	tiempo disponible de la máquina de inyección q en horario diurno	min
etihenva _q	tiempo disponible de la máquina de inyección q en horario extra	min
eapti _m	inventario inicial de productos de envase tipo m	unidades

Fuente: Cuadros (2006) Elaboración propia

<u>Variables de decisión</u>: En el cuadro 1.3 se listan las variables de decisión utilizadas para la formulación del modelo matemático y su respectiva descripción.

Cuadro 1.3. Variables de decisión utilizadas en el modelo de Cuadros

Siglas	Descripción	Unidad
x _{ij}	cantidad producida de producto i destinada al cliente j (horario diurno)	unidades
xhh _{ij}	cantidad producida de producto i destinada al cliente j (horario extra)	unidades
Z _{id}	decisión de producir el producto i el día d	-
vap _{ij}	cantidad vendida de producto i destinado al cliente j (pedidos pendientes)	unidades
va _{ij}	cantidad vendida de producto i destinado al cliente j (pedidos del mes analizado)	unidades
xaptf _i	inventario final de producto i	unidades
xpti _{ij}	inventario inicial de producto i destinada al cliente j	unidades
y _{ki}	cantidad de gramos de materia prima k destinada a la fabricación del producto i	g.
efrascad	frascos de alta densidad necesarios para proceso de envasado	unidades
etapafad	tapas de alta densidad para frascos necesarios para proceso de envasado	unidades
etaponad	tapones de alta densidad necesarios para proceso de envasado	unidades

Siglas	Descripción	Unidad
efrascbd	frascos de baja densidad necesarios para proceso de envasado	unidades
etapafbd	tapas de baja densidad para frascos necesarios para proceso de envasado	unidades
etaponbd	tapones de baja densidad necesarios para proceso de envasado	unidades
etubosad	tubos de alta densidad necesarios para proceso de envasado	unidades
etubosbd	tubos de baja densidad necesarios para proceso de envasado	unidades
etapatad	tapas de alta densidad para tubos necesarios para proceso de envasado	unidades
etapatbd	tapas de baja densidad para tubos necesarios para proceso de envasado	unidades
e _{hm}	cantidad de kilogramos de materia prima h de envases destinadas a fabricar los productos de envase tipo m	kg
e _m	cantidad de producto m a producir en horario diurno	unidades
ehh _m	cantidad de producto m a producir en horario extra	unidades
Aetiq	Etiquetas necesarias	unidades
Acaja	Cajas necesarias	unidades

Fuente: Cuadros (2006) Elaboración propia

Función objetivo

$$Min Z = M_1 * U_1 + M_2 * U_2 + M_3 * U_3 + M_4 * U_4 + M_5 * V_5 + M_6 * U_6$$
(1)

La función objetivo general minimiza las desviaciones de seis objetivos que se describen a continuación por orden de prioridad:

M₁: Maximizar la utilidad sin costos fijos considerando únicamente los pedidos pendientes de instituciones públicas.

M₂: Maximizar la utilidad sin costos fijos considerando únicamente los pedidos de instituciones públicas demandados en el mes de estudio.

M₃: Maximizar la utilidad sin costos fijos considerando únicamente los pedidos pendientes de cadenas de farmacias, mayoristas y pequeñas farmacias.

 M_4 : Maximizar la utilidad sin costos fijos considerando únicamente los pedidos de cadenas de farmacias, mayoristas y pequeñas farmacias demandados en el mes estudiado.

M₅: Minimizar la producción de material de envase para reducir costos en esta línea.

M₆: Maximizar el grupo de productos terminados que se deben tener en inventario.

Restricciones de metas

Maximizar la utilidad sin costos fijos considerando únicamente los pedidos pendientes de instituciones públicas

$$\sum_{i=1}^{50} \sum_{j=1}^{2} \left(p_{ij} * vap_{ij} \right) - \sum_{i=1}^{50} \sum_{j=1}^{2} \left(c_{i} * x_{ij} \right) - \sum_{i=1}^{50} \sum_{j=1}^{2} \left(chh_{ij} * xhh_{ij} \right) + U_{1} - V_{1} = 1000000$$
 (2)

Maximizar la utilidad sin costos fijos considerando únicamente los pedidos de instituciones públicas demandados en el mes estudio

$$\sum_{i=1}^{50} \sum_{j=1}^{2} \left(p_{ij} * vap_{ij} \right) - \sum_{i=1}^{50} \sum_{j=1}^{2} \left(c_{i} * x_{ij} \right) - \sum_{i=1}^{50} \sum_{j=1}^{2} \left(chh_{ij} * xhh_{ij} \right) + U_{2} - V_{2} = 1000000$$
 (3)

Maximizar la utilidad sin costos fijos considerando únicamente los pedidos pendientes de cadenas de farmacias y distribuidores

$$\sum_{i=1}^{50} \sum_{j=3}^{13} \left(p_{ij} * vap_{ij} \right) - \sum_{i=1}^{50} \sum_{j=3}^{13} \left(c_i * x_{ij} \right) - \sum_{i=1}^{50} \sum_{j=3}^{13} \left(chh_{ij} * xhh_{ij} \right) + U_3 - V_3 = 1000000$$
 (4)

Maximizar la utilidad sin costos fijos considerando únicamente los pedidos de cadenas de farmacias, mayoristas y doctores particulares demandados en el mes estudiado

$$\sum_{i=1}^{50} \sum_{j=3}^{13} \left(p_{ij} * vap_{ij} \right) - \sum_{i=1}^{50} \sum_{j=3}^{13} \left(c_i * x_{ij} \right) - \sum_{i=1}^{50} \sum_{j=3}^{13} \left(chh_{ij} * xhh_{ij} \right) + U_4 - V_4 = 1000000 \tag{5}$$

Minimizar la producción de productos de la línea de envases para reducir costos en esta línea

$$\sum_{m=1}^{10} (e_m + pmp^*ehh_m) - V_5 = 0$$
 (6)

Maximizar el grupo de productos terminados que se deben tener en inventario

$$\sum_{m=1}^{10} (pif_i^* xaptf_i) + U_6 - V_6 = 1000000$$
 (7)

Restricciones estructurales

Línea de manufactura del producto

Atención de la demanda.- La suma del inventario inicial de cada producto (i) destinada al cliente (j) y las cantidades de los productos (i) obtenidos en ambos turnos para (j) no deben exceder a la cantidad demandada de (i) por el cliente (j).

$$xpti_{ij} + x_{ij} + xhh_{ij} \le d_{ij} \quad \forall_i = 1,...50. \quad \forall_j = 1,...13.$$
 (8)

Relación entre los productos fabricados y los pedidos atendidos.- La cantidad de inventario inicial y la producción obtenida (en ambos turnos) del producto (i) destinado al cliente (j) debe ser igual a la suma de la cantidad que se vende y la cantidad pendiente por atender al cliente (j) en el mes presente.

$$xpti_{ij} + x_{ij} + xhh_{ij} - va_{ij} - va_{ij} = 0 \quad \forall_{i} = 1,...50. \quad \forall_{j} = 1,...13.$$
 (9)

Atención de los pedidos que están pendientes de entrega.

$$vap_{ii} \le dp_{ii} \quad \forall_i = 1,...50. \quad \forall_j = 1,...13.$$
 (10)

Disponibilidad de materia prima.- La cantidad de materia prima destinada a la fabricación de los productos que lo requieren debe ser menor o igual a la cantidad de materia prima existente en el inventario inicial.

$$\sum_{i=1}^{50} y_{ki} \le yampi_k \quad \forall_k = 1,...32.$$
 (11)

Disponibilidad de producto terminado.- El inventario inicial de cada producto (i) destinado a todos los clientes (j) no debe exceder a la cantidad de producto existente en el inventario al inicio del periodo.

$$\sum_{j=1}^{13} xpti_{ij} \le xapti_{i} \quad \forall_{i}=1,...50.$$
 (12)

Balance entre materias primas y productos terminados.-

$$y_{ki} = \left[\sum_{j=1}^{13} (x_{ij} + xhh_{ij}) + xaptf_i\right]^* vc_i \quad \forall_k = 1,...32. \quad \forall_i = 1,...50.$$
 (13)

Fabricación de un solo un tipo de producto por día en cada área: estéril y no estéril.- Se utilizan variables binarias z_{id}

$\sum_{i=1}^{50} z_{id} = 1$	∀ _d =1,23.	∀ _i :productos estériles.	(14)
------------------------------	-----------------------	--------------------------------------	------

$$\sum_{i=1}^{50} z_{id} \le 1 \quad \forall_{d} = 24,...31. \quad \forall_{i}: \text{productos estériles.}$$
 (15)

$$\sum_{i=1}^{50} z_{id} = 1$$
 $\forall_d = 1,...23$. \forall_i :productos no estériles. (16)

$$\sum_{i=1}^{50} z_{id} \le 1 \quad \forall_{d} = 24, \dots 31. \quad \forall_{i}: \text{productos no estériles}.$$
 (17)

Producción mínima y máxima (considera productos estériles y no estériles).Se utilizan los datos de cmaxf, cmaxt, cmafhh y cmathh para restringir los límites máximos de envasado de cada producto en (18), (20), (22) y (24). Así mismo, en (19), (21), (23) y (25), todos los datos cmaxf, cmaxt, cmafhh y cmathh toman el valor de 1 para fijar la producción mínima.

$$\sum_{i=1}^{13} (x_{ij}) + xaptf_i - cmaxf^* \sum_{d=1}^{31} z_{id} \le 0 \quad \forall_i : productos envasados en frascos.$$
 (18)

$$\sum_{j=1}^{13} (x_{ij}) + xaptf_{j} - \sum_{d=1}^{31} z_{id} \ge 0 \qquad \forall_{i}: productos envasados en frascos.$$
 (19)

$$\sum_{i=1}^{13} (x_{ij}) + xaptf_i - cmaxt^* \sum_{d=1}^{31} z_{id} \le 0 \quad \forall_i : productos envasados en tubos.$$
 (20)

$$\sum_{i=1}^{13} (x_{ii}) + xaptf_i - \sum_{d=1}^{31} z_{id} \ge 0 \qquad \forall_i : productos envasados en tubos.$$
 (21)

$$\sum_{i=1}^{13} (xhh_{ii})$$
-cmaxfhh* $\sum_{d=1}^{31} z_{id} \le 0$ \forall_i :productos envasados en frascos. (22)

$$\sum_{i=1}^{13} (xhh_{ii}) - \sum_{d=1}^{31} z_{id} \ge 0$$
 \forall_i :productos envasados en frascos. (23)

$$\sum_{i=1}^{13} (xhh_{ii}) - cmaxthh^* \sum_{d=1}^{31} z_{id} \le 0 \qquad \forall_i : productos envasados en tubos.$$
 (24)

$$\sum_{j=1}^{13} (xhh_{ij}) - \sum_{d=1}^{31} z_{id} \ge 0$$
 \forall_i :productos envasados en tubos. (25)

Requerimientos de envases (proceso de envasado).-

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_{i}) \le efrascad$$
 (26)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_i) \le efrascbd$$
 (27)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_j) \le etapafad$$
 (28)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_j) \le etapafbd$$
 (29)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_j) \le etubosad$$
(30)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_{i}) \le etubosbd$$
 (31)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_j) \le etaponad$$
 (32)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_{i}) \le etaponbd$$
 (33)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_j) \le etapatad$$
 (34)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_j) \le etapatbd$$
 (35)

Capacidad del proceso de embalado

$$Taf^* \sum_{i=1}^{50} \sum_{i=1}^{13} (x_{ii} + xaptf_i) + Tat^* \sum_{i=1}^{50} \sum_{i=1}^{13} (x_{ii} + xaptf_i) \le tacon^* \sum_{i=1}^{50} \sum_{d=1}^{31} z_{id}$$
 (36)

$$Taf^* \sum_{i=1}^{50} \sum_{j=1}^{13} xhh_i + Tat^* \sum_{i=1}^{50} \sum_{j=1}^{13} xhh_i \le thacon^* \sum_{i=1}^{50} \sum_{d=1}^{31} z_{id}$$
 (37)

Requerimiento de material de embalado

$$\sum_{i=1}^{50} \sum_{i=1}^{13} (x_{ij} + xhh_{ij} + xaptf_i) \le aetiq$$
 (38)

$$\sum_{i=1}^{50} \sum_{j=1}^{13} (x_{ij} + xhh_{ij} + xaptf_i) \le acaja$$
(39)

• Línea de productos de envase

Disponibilidad de materia prima

$$\sum_{m=1}^{10} e_{hm} \le eampi_h \quad \forall_h = 1, \dots 5.$$
 (40)

Balance entre materias primas y productos terminados

$$e_{hm} = (e_{hm} + ehh_{hm}) * vc_m$$
 $\forall_h = 1,...5.$ $\forall_m = 1,...10.$ (41)

Capacidad del proceso de soplado

$$\sum_{m=1}^{10} (e_m * ets_{qm}) \le etsenva_q * \sum_{i=1}^{50} \sum_{d=1}^{31} z_{id} \qquad \forall_q = 1,...3.$$
 (42)

$$\sum_{m=1}^{10} \left(ehh_{m}^{*}ets_{qm} \right) \le etshenva_{q}^{*} \sum_{i=1}^{50} \sum_{d=1}^{31} z_{id} \qquad \forall_{q} = 1,...3. \tag{43}$$

Capacidad del proceso de inyección

$$\sum_{m=1}^{10} (e_m * eti_{qm}) \le etienva_q * \sum_{i=1}^{50} \sum_{d=1}^{31} z_{id} \qquad \forall_q = 1,...3.$$
 (44)

$$\sum_{m=1}^{10} \left(ehh_{m}^{*}eti_{qm} \right) \le etihenva_{q}^{*} \sum_{i=1}^{50} \sum_{d=1}^{31} z_{id} \qquad \forall_{q} = 1, \dots 3. \tag{45}$$

Relación entre los productos fabricados y los productos requeridos para el proceso de envasado

$$e_1$$
+ehh₁+eapti₁=efrascad (46)

$$e_2$$
+ehh₂+eapti₂=efrascbd (47)

$$e_3$$
+ehh₃+eapti₃=etapafad (48)

$$e_4$$
+ehh₄+eapti₄=etapafbd (49)

$$e_5$$
+ehh₅+eapti₅=etubosad (50)

$$e_6$$
+ehh₆+eapti₆=etubosbd (51)

$$e_7$$
+ehh₇+eapti₇=etaponad (52)

$$e_8$$
+ehh₈+eapti₈=etaponbd (53)

e ₉ +ehh ₉ +eapti ₉ =etapatad	(54)
e ₁₀ +ehh ₁₀ +eapti ₁₀ =etapatad	(55)

1.1.3 Conclusiones del modelo de PL de una empresa farmacéutica

Cuadros (2006) llegó a las siguientes conclusiones:

- El modelo permitió obtener el inventario de materias primas y productos terminados para las líneas de producción de estériles y no estériles, además de los tiempos improductivos y la utilización de recursos.
- El modelo le generó un programa de producción estableciendo horas diurnas y horas extras de producción.
- En términos cuantitativos, el modelo le permitió obtener una utilidad adicional de S/. 62 188 con respecto utilidad del programa establecido por la empresa; además, se pudo llegar a incrementar el nivel de atención de la demanda de 82.6% a 92.3%.
- El modelo le permite a través de análisis de sensibilidad, simular diferentes escenarios generados por ajustes en precios y capacidades de recursos.

1.2 Caso práctico de una fábrica de zumos de naranja

El siguiente caso presenta la aplicación de programación lineal en una empresa dedicada a la fabricación de zumo de naranja congelado que se exporta por vía marítima. Munhoz & Morabito (2001) presentan un modelo de programación lineal en el que buscan apoyar a las decisiones tácticas y operacionales en los procesos de mezcla, almacenamiento y distribución. Este inciso inicia con un breve resumen del problema; luego, se explicará la formulación del modelo; y finalmente, se exponen las conclusiones más importantes de la investigación.

1.2.1 Resumen del problema de una fábrica de zumos de naranja

El proceso general de la obtención de zumos de naranja se muestra en el gráfico 1.1. El modelo propuesto contempla los procesos de mezcla, almacenamiento y distribución. El zumo congelado de naranja (producto) se obtiene a partir de la mezcla de "zumos base" (base) que contienen características fisicoquímicas propias. Las características relevantes se muestran en el cuadro 1.4. Al combinarse diferentes bases se obtendrán productos con características fisicoquímicas particulares (*brix*, *ratio* y variedad).

Gráfico 1.1. Proceso general de zumos de naranja Fuente: Munhoz & Morabito (2001) Elaboración propia

Para obtener una base existen variedades de frutos que se utilizan como materia prima pero el que más abunda y es menos costosa se llama *Hamlim*. Este factor también es tomado en cuenta para cumplir con las características que debe tener el producto.

Cuadro 1.4. Terminología utilizada en la industria cítrica.

Caja de Fruta	Unidad de peso equivalente a 40.8 kilos o 90 libras
Brix	Se refiere al porcentaje de sólidos o azúcares y ácidos presente en el zumo. Se mide con un instrumento llamado refractómetro.
Acidez	Porcentaje de los sólidos ácidos presente en el zumo.
Ratio	Es la relación entre <i>Brix</i> /acidez y corresponde al grado de maduración y calidad del zumo.
Variedad	Las variedades de <i>Pêra, Natal</i> y <i>Valência</i> son las más indicadas para la industrialización. Sin embargo, la variedad de <i>Hamlin</i> , madura mucho más rápido y es de bajo costo; aunque no se recomienda exceder la cantidad de esta variedad porque disminuye la calidad del producto.

Fuente: Munhoz & Morabito (2001)

Elaboración propia

El producto obtenido de la mezcla puede ser almacenado de dos formas: a granel o en tambores. Cada uno representa un costo distinto. Los productos obtenidos a partir de la mezcla, se almacenan en un sistema de almacenamiento interno dentro de la fábrica y cuando el producto se debe enviar al cliente, se transporta hacia un almacén externo que se encuentra cerca del punto de embarcación. Sin embargo, por restricción de capacidad del almacén interno, la empresa puede hacer uso de su almacén externo para almacenar sus productos hasta que estos sean requeridos.

El modelo pretende responder preguntas como cuánto, cuándo, cómo (granel o tambor) y en dónde almacenar el producto, respetando las restricciones de capacidad de mezcla y almacenamiento. Asimismo, plantea minimizar los costos de mezclado y obtener características mínimas que cumplan con los niveles de calidad del producto ofertado.

Este modelo fue planteado considerando una sola planta, y un solo almacén externo; sin embargo, el modelo puede ser fácilmente extendido para manejar varias plantas, aumentar ubicaciones externas y cada una en diferentes costos de operación.

1.2.2 Formulación del modelo de PL de una fábrica de zumos de naranja

Dígitos usados: En el cuadro 1.5 se listan los dígitos utilizados para la formulación del modelo matemático.

Cuadro 1.5. Dígitos utilizados en el modelo de Munhoz & Morabito

Dígito	Denota
j	base
р	producto
i	sistema de almacenamiento interno (i=1: granel, i=2: tambor)
е	sistema de almacenamiento externo (e=1: granel, e=2: tambor)
t	periodo

Fuente: Munhoz & Morabito (2001)

Elaboración propia

Datos del modelo: En el cuadro 1.6 se listan los datos utilizados para la formulación del modelo matemático.

Cuadro 1.6. Datos utilizados en el modelo de Munhoz & Morabito

Descripción	Unidad
Capacidad de mezcla en la fábrica en el periodo t	Ton/periodo
Capacidad de inventario i de la fábrica	Ton
Capacidad de inventario externo e	Ton
Ratio promedio de la base j	
Ratio mínimo del producto p	
Costo de mezclar la base j del almacén de bases para obtener productos que serán llevados al sistema de almacenamiento interno i.	\$/ton
Costo de transportar el producto p desde el sistema de almacenamiento interno k hacia el sistema de almacenamiento externo l.	\$/ton
Costo de almacenamiento de la base j en el almacén de bases.	\$/ton/periodo
Costo de almacenamiento del producto p en el sistema de almacenamiento interno i	\$/ton/periodo
Costo de almacenamiento del producto p en el sistema de almacenamiento externo e	\$/ton/periodo
Toneladas de base j obtenidas en el periodo t	ton
Demanda del producto p en el periodo t	ton
Porcentaje de base tipo <i>Hamlim</i> adicionada al producto en el periodo t	-
Costo de almacenar el producto p en el sistema de almacenamiento interno i.	\$/ton
Costo de almacenar el producto p en el sistema de almacenamiento externo e.	\$/ton
	Capacidad de inventario i de la fábrica Capacidad de inventario externo e Ratio promedio de la base j Ratio mínimo del producto p Costo de mezclar la base j del almacén de bases para obtener productos que serán llevados al sistema de almacenamiento interno i. Costo de transportar el producto p desde el sistema de almacenamiento externo l. Costo de almacenamiento de la base j en el almacén de bases. Costo de almacenamiento del producto p en el sistema de almacenamiento interno i Costo de almacenamiento del producto p en el sistema de almacenamiento interno i Costo de almacenamiento del producto p en el sistema de almacenamiento externo e Toneladas de base j obtenidas en el periodo t Demanda del producto p en el periodo t Porcentaje de base tipo Hamlim adicionada al producto en el periodo t Costo de almacenar el producto p en el sistema de almacenamiento interno i. Costo de almacenar el producto p en el sistema de almacenamiento interno i.

Elaboración propia

<u>Variables de decisión</u>: En la cuadro 1.7 se listan las variables de decisión utilizadas para la formulación del modelo matemático y su respectiva descripción.

Cuadro 1.7. Variables de decisión del problema

Notación	Descripción
XB ⁱ _{jpt}	Toneladas de base j tomadas del almacén de bases para ser utilizadas en la obtención del producto p en el periodo t. El producto p obtenido es llevado al sistema de almacenamiento interno i.
XT ^{ie} _{pt}	Toneladas del producto p transportados del sistema de almacenamiento interno i hacia el sistema de almacenamiento externo e, en el periodo t.
EB _{jt}	Toneladas de base j existente en el almacén de bases al final del periodo t.
EPF ⁱ _{pt}	Toneladas del producto p en el sistema de almacenamiento interno i al final del periodo t.
EPE ^e _{pt}	Toneladas del producto p en el sistema de almacenamiento externo e al final del periodo t.
F	Suma total del costo de mezcla, costo de almacenamiento y costo financiero para el horizonte de planeamiento.

Fuente: Munhoz & Morabito (2001)

Elaboración propia

Función objetivo

$$\begin{aligned} &\text{Min F=} \sum_{t} \sum_{k} \sum_{j} \sum_{p} CB_{j}^{i*} XB_{jpt}^{i} + \sum_{t} \sum_{k} \sum_{j} \sum_{p} CT_{p}^{ie*} XT_{pt}^{ie} \\ &+ \sum_{t} \sum_{j} HB_{j}^{*} EB_{jt} + \sum_{t} \sum_{i} \sum_{p} HPF_{p}^{i*} EPF_{pt}^{i} + \sum_{t} \sum_{l} \sum_{p} HPE_{p}^{e*} EPE_{pt}^{e} \\ &+ \sum_{t} \sum_{i} \sum_{p} TXF^{i} \Big(EPF_{pt}^{i} + EPE_{pt}^{e} \Big) + \sum_{t} \sum_{l} \sum_{p} TXE_{p}^{e*} EPE_{pt}^{e} \end{aligned} \tag{1}$$

La función objetivo a ser minimizada es la sumatoria de costos siguientes:

-Costo de mezclar las toneladas de base j tomadas del almacén de bases para la obtención del producto p que será llevado al sistema de almacenamiento interno i, en el periodo t.

$$\sum_{t} \sum_{i} \sum_{j} \sum_{p} CB_{j}^{i*} XB_{jpt}^{i}$$

-Costo de transportar el producto p desde el sistema de almacenamiento interno i hacia el sistema de almacenamiento externo e, en el periodo t. Si se transporta de i=1 a e=2 o de i=2 a e=1 el costo unitario incluiye un costo adicional por cambio de embalaje.

$$\textstyle \sum_t \sum_i \sum_j \sum_p CT_p^{ie_*} XT_{pt}^{ie}$$

-Costo de almacenar toneladas de base j en el almacén de bases que quedaron al final del periodo t, costo de almacenar toneladas del producto p en el sistema de almacenamiento interno i al final del periodo t y costo de almacenar toneladas del producto p en el sistema de almacenamiento externo e al final del periodo t.

$$\sum_{t}\sum_{j}HB_{j}^{*}EB_{jt} + \sum_{t}\sum_{i}\sum_{p}HPF_{p}^{i}^{*}EPF_{pt}^{i} + \sum_{t}\sum_{l}\sum_{p}HPE_{p}^{e}^{*}EPE_{pt}^{e}$$

-Costo de almacenar toneladas del producto p que quedan al final del periodo t en los sistemas de almacenamiento internos i y externos e.

$$\textstyle \sum_t \sum_i \sum_p \mathsf{TXF}^i * \mathsf{EPF}^i_{pt} + \sum_t \sum_e \sum_p \mathsf{TXE}^e_p * \mathsf{EPE}^e_{pt}$$

Restricciones estructurales

Restricciones de actualización de stocks de bases y productos en cada periodo.

$$EB_{it} = EB_{i(t-1)} + PR_{it} - \sum_{i} \sum_{p} XB_{ipt}^{i} \qquad \forall j,t$$
 (2)

$$\mathsf{EPF}_{\mathsf{pt}}^{\mathsf{i}} = \mathsf{EPF}_{\mathsf{p(t-1)}}^{\mathsf{i}} + \sum_{\mathsf{j}} \mathsf{XB}_{\mathsf{jpt}}^{\mathsf{i}} - \sum_{\mathsf{e}} \mathsf{XT}_{\mathsf{pt}}^{\mathsf{ie}} \quad \forall \ \mathsf{i,p,t}$$

$$EPE_{pt}^{e} = EPE_{p(t-1)}^{e} + \sum_{i} XT_{pt}^{ie} - D_{pt}^{e} \qquad \forall e, p, t$$
 (4)

En los gráficos 1.2, 1.3 y 1.4 se muestran de manera gráfica las restricciones (2), (3) y (4) respectivamente.

Gráfico 1.2. Balance de inventario de bases Fuente: Munhoz & Morabito (2001) Elaboración propia

Gráfico 1.3. Balance de inventarios de en el almacén interno Fuente: Munhoz & Morabito (2001) Elaboración propia

Gráfico 1.4. Balance de inventarios de en el almacén externo Fuente: Munhoz & Morabito (2001)

Elaboración propia

Restricciones limitantes de ratios

$$\sum_{j} (RATB_{j}^{*}XB_{jpt}^{i}) \leq (RATP_{p} + 0.8)^{*} \sum_{j} XB_{jpt}^{i} \quad \forall i, p, t$$
 (5)

$$\sum_{j} \left(RATB_{j}^{*}XB_{jpt}^{i} \right) \ge RATP_{p}^{*}\sum_{j}XB_{jpt}^{i} \quad \forall i, p, t$$
 (6)

Las ecuaciones (5)-(6) son típicas de los problemas de mezcla, en donde es preciso determinar las toneladas de base j que deben ser combinadas, para así obtener un producto con determinadas especificaciones. La ecuación (5) establece el límite superior (RATP $_p$ +0,8) para un ratio del producto p, mientras que la ecuación (6) establece el límite inferior (RATP $_p$).

Restricción de adición de base tipo Hamlin en la mezcla por lugar, periodo y producto.

$$XB_{"Hamlin"pt}^{i} = PERC_{t} \sum_{i} XB_{ipt}^{i} \forall i, p, t$$
 (7)

La restricción (7) tiene la misma característica que las restricciones anteriores (5)-(6). En este caso se establece un porcentaje (PERC $_{\rm t}$) de base de sumo del tipo j="hamlin" que debe ser adicionado al producto p en cada periodo t.

Restricciones de capacidad de los sistemas de almacenamiento interno y externo.

$$\sum_{j} EB_{jt} + \sum_{p} EPF_{pt}^{"granel"} \le AB^{"granel"} \quad \forall t$$
 (8)

$$\sum_{p} \mathsf{EPF}_{\mathsf{pt}}^{\mathsf{"tambor"}} \leq \mathsf{AB}^{\mathsf{"tambor"}} \quad \forall \mathsf{t} \tag{9}$$

$$\sum_{p} \mathsf{EPE}_{\mathsf{pt}}^{\mathsf{e}} \leq \mathsf{AT}^{\mathsf{e}} \quad \forall \mathsf{e,t} \tag{10}$$

La ecuación (8) establece que la suma de los stocks de las bases y productos a granel en los tanques de la fábrica (i=granel) al final del periodo t no pueden exceder la capacidad AB^{"granel"}. La ecuación (9) establece que los stocks de productos en tambor en las cámaras frías de la fábrica (i="tambor") al final del periodo t no pueden exceder ABⁱ, y la ecuación (10) establece que los stocks externos de productos (e="granel" o "tambor") al final del periodo t no pueden exceder la capacidad AT^e.

Restricción de capacidad de mezcla.

$$\sum_{i} \sum_{j} \sum_{p} X B_{jpt}^{i} \leq B_{t} \quad \forall t$$
 (11)

La ecuación (11) establece la cantidad máxima de sumo B_t que puede ser mezclada en cada periodo t.

El modelo de programación lineal (1)-(11), junto con las restricciones de no negatividad de las variables, fueron codificados en el lenguaje GAMS (*General Algebraic Modeling System*) y resuelto con un microcomputador.

1.2.3 Conclusiones del modelo de PL de una fábrica de zumos de naranja

Munhoz & Morabito (2001) llegaron a las siguientes conclusiones:

- Con base a los resultados que se obtuvieron de una prueba para 51 periodos, 8 tipos bases de zumo, 7 tipos de productos requeridos, 2 sistemas de almacenes internos (tanque y tambor) y 2 sistemas de almacenes externos (tanque y tambor), los autores verificaron que el modelo propuesto se comporta de manera satisfactoria convirtiéndose en una herramienta efectiva para el análisis de costos de mezcla y distribución.
- Además, este tipo de modelo se puede extender fácilmente a la simulación de escenarios alterando los parámetros como capacidad de mezcla, capacidad de almacenamiento en cada forma (granel o tambor) y en cada lugar (interno o externo), costos de mezcla, costos de almacenamiento y costos de distribución, con el fin de tomar decisiones del tipo estratégicas.

1.3 Caso práctico de una empresa textil

En este caso se presenta la aplicación de programación lineal en una empresa textil en los procesos de hilandería, tejeduría y teñido. El objetivo de este modelo es la maximización de utilidades a través de un diseño apropiado del flujo productivo en sus procesos de transformación de la materia prima. Este inciso inicia con un breve resumen del problema, luego se expone la formulación del modelo y finalmente, se exponen las conclusiones importantes de la investigación.

1.3.1 Resumen del problema de una empresa textil

El modelo presentado por Mayo (2005) se enfoca en el estudio de los módulos de Manejo de Hilo, Tintorería, Tejeduría y Ventas. Cada módulo busca sus propios objetivos que se describen a continuación:

Módulo de Manejo de Hilos

Los hilos se generan a partir del algodón y serán utilizados como urdimbre y trama durante el módulo de tejeduría. La cantidad y calidad del hilo que se debe abastecer al módulo de tejeduría dependerán de la tela cruda que se quiera obtener.

La empresa cuenta con cinco fuentes de abastecimiento de hilo: las líneas Anillos (HA) y las líneas Open-End (HO) son de su propia hilandería, la línea de Anillos provienen de una hilandería asociada llamada Hilandería Incaica (HI), otra fuente es su propio inventario de hilo y por último los proveedores externos. Las tres líneas de producción HA, HO y HI tienen una capacidad limitada de producción y los inventarios de la empresa son finitos, pero la compra de hilo es una alternativa inagotable.

Durante la transformación del algodón a hilo se tienen mermas debido a la pelusa que se escapa al aire y a fibras de mala calidad que son separadas por la maquinaria. Por ello, se utiliza para cada hilo requerido y, en cada línea, un factor de calidad que refleje el porcentaje de algodón que será convertido en hilo al final del proceso.

Las fuentes de abastecimiento de hilo obedecen al siguiente orden:

- 1. Inventario
- 2. La producción en HA o HO
- 3. La producción en HI
- 4. Compra a terceros.

En este módulo, los objetivos son determinar cuántos kilos de cada hilo se obtendrán en las líneas disponibles HA, HO y HI, cuánto se consumirá del inventario y cuánto se comprará a terceros.

Módulo de Tejeduría

Antes del tejido en sí, existe un proceso previo denominado "pre-tejido". En este proceso se produce urdimbre a partir del hilo a través de las operaciones de urdido y engomado. También ocurren distorsiones en la longitud que se asume de un valor de estiramiento fijo del 2.5% para todas las urdimbres.

La restricción del módulo de pre-tejido es la capacidad de las máquinas determinada por el número de días a considerar, el número de máquinas y la eficiencia de éstas. El tiempo que consume cada lote o partida de urdimbre en cada máquina se calcula conociendo la longitud de la partida y la velocidad de cada máquina en el proceso.

Luego de obtener la urdimbre en el pre-tejido, el proceso continúa con el tejido. En este proceso, los telares cruzan la urdimbre (hilos colocados verticalmente) con la trama (hilos colocados horizontalmente) para obtener la tela cruda. Actualmente, la empresa cuenta con ocho modelos de telares y cada una con sus propias características técnicas.

El requerimiento de urdimbre del módulo de tejeduría para obtener un artículo de tela cruda se calculará considerando la cantidad de metros a producir del artículo y el encogimiento que la urdimbre sufre durante el proceso de tejido. En este módulo los objetivos son determinar cuántos metros de cada artículo de tela cruda se deben tejer en los telares y cuántos telares de cada modelo se utilizarán durante el periodo de planificación.

Módulo de Tintorería

A este módulo ingresa la tela cruda que se transforma en tela terminada. La principal restricción en el módulo de tintorería es el número de horas disponibles en cada máquina durante el periodo de análisis.

La tela cruda requerida por este módulo es provista por el módulo de tejeduría, ya sea produciéndola o retirándola del almacén de artículos

crudos. En este módulo, el objetivo es determinar el nivel de producción de telas terminadas.

Módulo de Ventas

En el módulo de ventas se ingresa toda la información de los pedidos existentes de telas terminada en el periodo de análisis. Cada pedido se identifica de la siguiente forma: código de tela + cantidad pedida + precio. La empresa maneja dos tipos de sistema: MTS (*Make to stock*) y MTO (*Make to order*).

La tela terminada requerida es provista de por el módulo de tintorería o del almacén de telas terminadas. El modelo tiene como objetivo determinar en qué porcentaje se producirá para almacenar (MTS) y en qué porcentaje se producirá para atender los pedidos (MTO).

1.3.2 Formulación del modelo de PL de una empresa textil

<u>Dígitos usados:</u> En el cuadro 1.8 se listan los dígitos utilizados para la formulación del modelo matemático.

Cuadro 1.8. Dígitos utilizados en el modelo de Mayo

Dígito	Denota	Valores
i	tela terminada	i=1,376
j	tela cruda	j=1,190
k	hilo	k=1,20
t	telares	t=1,8
m	máquinas en general	
0	pedidos	o=1,659
	1 '	, , , , , , , , , , , , , , , , , , , ,

Fuente: Mayo (2005) Elaboración propia

<u>Parámetros del modelo</u>: En el cuadro 1.9 se listan los parámetros utilizados para la formulación del modelo matemático y su respectiva descripción.

Cuadro 1.9. Parámetros utilizados en el modelo de Mayo

Siglas	Descripción	Unidad
Car _i	Código del artículo con el cual se fabrica la tela i	-
CM _k	Compra máxima a terceros de hilo k para el periodo	kg
CPo	Cantidad de tela solicitada en pedido o	m
CVi	Costo variable de la tela i	\$/m
DIAS	Número de días a considerar dentro del periodo	días
EHA _m	Eficiencia de máquina m en HA	%
EHI _m	Eficiencia de máquina m en HI	%
EHO _m	Eficiencia de máquina m en HO	%
ENCTj	Encogimiento del artículo j durante el tejido	%
ENTI _i	Encogimiento de la tela i en la tintorería	%
EP _m	Eficiencia de máquina m en pretejido	%
ETEL _{jt}	Eficiencia de telares t tejiendo artículo j	%
ETI _m	Eficiencia de máquina m en tintorería	%
FCHA _k	Factor de calidad para hilo k en HA (100% - mermas)	%
FCHI _m	Factor de calidad para hilo k en HI (100% - mermas)	%
FCHO _k	Factor de calidad para hilo k en HO (100% - mermas)	%
IIA _j	Inventario inicial del artículo j en el periodo	m.
IIH _k	Inventario inicial del hilo k en el periodo	kg
IIT _i	Inventario inicial de la tela i en el periodo	m.
IMA _j	Inventario mínimo del artículo j para el final del periodo	m.
IMH _k	Inventario mínimo del hilo k para el final del periodo	kg
IMT _i	Inventario mínimo de la tela i para el final del periodo	m.
NHA _m	Número de máquinas m en HA	-
NHI _m	Número de máquinas m en HI	-
NHO _m	Número de máquinas m en HO	-
NP _m	Número de máquinas m en pretejido	-
NTEL _{jt}	Número de telas de artículo j que se tejen a la vez en telar t	-
NTE _t	Número de telares t en la tejeduría	-
NTI _m	Número de máquinas m en tintorería	-
PLE _j	Número de plegadores de urdimbre que utiliza el artículo j	-
PPo	Precio de venta de la tela en el pedido o	\$/m
RQTR _{jk}	Requerimiento de hilo k como trama por metro de artículo j	g/m
RQUR _{jk}	Requerimiento de hilo k como urdimbre por metro de artículo j	g/m
TELPo	Tela pedida en el pedido o	-
TPED _o	Tipo de pedido del pedido o	-
TPTR _j	Total de pasadas por pulgada en trama de artículo j	Pasadas/pulg.
VEHA _{mk}	Número de veces que pasa el hilo k por la máquina m de HA	-
VEHI _{mk}	Número de veces que pasa el hilo k por la máquina m de HI	-

Siglas	Descripción	Unidad
VEHO _{mk}	Número de veces que pasa el hilo k por la máquina m de HO	-
VELT _t	Velocidad de operación de los telares t	rpm
VEPR _{jm}	Número de veces que pasa el artículo j por máquina m en pretejido	-
VETI _{im}	Número de veces que la tela i pasa por máquina m en tintorería	-
VHA _{mk}	Velocidad de producción de hilo k en máquina m de HA	kg/h
VHI _{mk}	Velocidad de producción de hilo k en máquina m de HI	kg/h
VHO _{mk}	Velocidad de producción de hilo k en máquina m de HO	kg/h
VPR _{jm}	Velocidad de artículo j en máquina m de HI	m/min
VTI _{im}	Velocidad de la tela i en máquina m en tintorería	m/min

Fuente: Mayo (2005) Elaboración propia

<u>Variables de decisión</u>: En el cuadro 1.10 se listan las variables de decisión utilizadas para la formulación del modelo matemático y su respectiva descripción.

Cuadro 1.10. Variables de decisión utilizadas en el modelo de Mayo

Siglas	Descripción	Unidad
COHI _k	Compra de hilo k en el periodo	kg
NAT _o	Nivel de atención del pedido o	%
NTEA _{jt}	Número de telares modelo t tejiendo el artículo j	-
PNHA _k	Producción neta de hilo k en HA	kg
PNHI _k	Producción neta de hilo k en HI	kg
PNHO _k	Producción neta de hilo k en HO	kg
PTETi	Producción de tela i en el periodo	

Fuente: Mayo (2005) Elaboración propia

<u>Variables intermedias</u>: En el cuadro 1.11 se listan las variables de decisión utilizadas para la formulación del modelo matemático y su respectiva descripción.

Cuadro 1.11. Variables intermedias a utilizar en el modelo de Mayo

Siglas	Descripción	Unidad
CHIN _k	Consumo de hilo del inventario de TEXTILES S.A.	kg
CIAR _j	Consumo de artículo j de inventario de tejeduría	m
CITE _i	Consumo de inventario de tela i de la tintorería	m
HDHA _m	Horas disponibles en el periodo en máquinas m de HA	h
HDHI _m	Horas disponibles en el periodo en máquinas m de HI	h
HDHO _m	Horas disponibles en el periodo en máquinas m de HO	h
HDP _m	Horas disponibles en el periodo en máquinas m de pretejido	h

Siglas	Descripción	Unidad
HDTI _m	Horas disponibles en el periodo en máquinas m de tintorería	h
IFA _j	Inventario final del articulo j en el periodo	m
IFH _k	Inventario final del hilo k en el periodo	kg
IFT _i	Inventario final de tela i en el periodo	m
MPo	Margen por metro al atender pedido o	\$/m
NTU _t	Número de telares t al utilizar en el periodo	-
PBHA _k	Producción bruta de hilo k en HA	kg
PBHI _k	Producción bruta de hilo k en HI	kg
PBHO _k	Producción bruta de hilo k en HO	kg
PST _i	Producción de tela terminada i para stock en el periodo	m
PTA _j	Producción del artículo j en el periodo	m
PTEA _{jt}	Producción del artículo j en telares t durante el periodo	m
RCET _i	Requerimiento de crudo a la entrada de tintorería para tela i	m
RPHT _k	Requerimiento total de hilo k para trama	kg
RPHU _k	Requerimiento total de hilo k para urdimbre	kg
RQHT _{jk}	Requerimiento de hilo k como trama para artículo j	kg
RQHU _{jk}	Requerimiento de hilo k como urdimbre para artículo j	kg
RQPR _j	Requerimiento de pre-tejido para producir el artículo j	m
RCT _j	Requerimiento total de artículo j para tintorería	m
RTH _k	Requerimiento total de hilo k para el periodo	kg
TMHA _{mk}	Tiempo dedicado por la máquina m de HA a producir hilo k	h
TMHI _{mk}	Tiempo dedicado por la máquina m de HI a producir hilo k	h
TMHO _{mk}	Tiempo dedicado por la máquina m de HO a producir hilo k	h
TMP _{jm}	Tiempo dedicado por máquina m de pre-tejido a producir artículo j	h
TMTI _{im}	Tiempo utilizado en máquina m para producir tela terminada i	h
UTMHA _m	Tiempo total utilizado en la máquina m de HA	h
UTMHI _m	Tiempo total utilizado en la máquina m de HI	h
UTMHO _m	Tiempo total utilizado en la máquina m de HO	h
UTMP _m	Tiempo total utilizado por la máquina m de pretejido	h
UTMT _m	Tiempo total utilizado por la máquina m de tintoreria	h
VOP _o	Volumen a atender del pedido o	m
VTA _i	Ventas de tela i en el periodo	m

Fuente: Mayo (2005) Elaboración propia

Las variables intermedias han sido clasificadas de la siguiente manera:

- Directo datos, son variables que se pueden calcular a partir de datos a través de una función matemática.
- Directo VD, son variables que dependen directamente de alguna variable de decisión.
- Indirecto VD, son variables que dependen indirectamente de alguna variable de decisión.

Para el modelo, se crearon 2 funciones especiales:

Sumar si

SUMARSI (Bn, m, An)=Sumatoria de todos los An, talque Bn=m

Si no cero

SINOCERO(A, B)=A/B, si B>0

SINOCERO(A, B)=0, si B=0

En la tabla 1.1 se muestra la equivalencia de las variables intermedias

Tabla 1.1. Equivalencia de las variables intermedias

Siglas	abla 1.1. Equivalencia de las variables intermedias Descripción
HDHA _m	24*DIAS*NHA _m *EHA _m
HDHI _m	24*DIAS*NHI _m *EHI _m
HDHO _m	24*DIAS*NHO _m *EHO _m
HDP _m	24*DIAS*NP _m *EP _m
HDTI _m	24*DIAS*NTI _m *ETI _m
MP _o	PP _o -CV(TELP _o)
CHIN _k	RTH _k - PNHA _k - PNHO _k - PNHI _k - COHI _k
CITEi	VTA _i + PST _i - PTET _i
IFH _k	IIH _q -CHIN _k
NTU _t	SUM _j (NTEA _{jt})
PBHA _k	PNHA _k /FCHA _k
PBHI _k	PNHI _k /FCHI _k
PBHO _k	PNHO _k /FCHO _k
PTEA _{jt}	36.576*DIAS* NTEA _{jt} *VELT _t /TPTR _j *NTEL _{jt} *ETEL _{jt}
RCET _i	PTET _i /ENTI _i
VOP _o	CPo*NATo
CIAR _j	RTC _j -PTA _j
IFA _j	IIA _j -CIAR _j
IFT _i	IIT _i -CITE _i +PST _i
PST _i *4	SUMARSI(TELP _o ,i, VOP_o)
PTA _j	$SUM_t(\mathbf{PTEA_{jt}})$
RPHT _k	$SUM_t(RQHT_{jk})$
RPHU _k	$SUM_t(\mathbf{RQHU_{jk}})$
RQHT _{jk}	PTA _j *RQTR _{jk} /1000
RQHU _{jk}	PTA _j *RQUR _{jk} /1000
RQPR _j	PTA _j /ENCT _j
RTC _j	$SUMARSI(CAR_{i},j,RCET_{i})$
RTH _k	RPHT _k +RPHU _k
TMHA _{mk}	SINOCERO(VEHA _{mk} ,VHA _{mk})* PBHA _k
TMHI _{mk}	SINOCERO(VEHI _{mk} ,VHI _{mk})* PBHI_k
TMHI _{mk} TMHO _{mk}	SINOCERO(VEHI _{mk} ,VHI _{mk})* PBHI _k SINOCERO(VEHO _{mk} ,VHO _{mk})* PBHO _k

Siglas	Descripción
TMP _{jm} *2	SINOCERO(VEPR _{jm} , VPR _{jm})* RQPR _j / $\frac{1.025}{60}$ *PLE _j
TMTI _{im}	SINOCERO(VETI _{im} ,VTI _{im})* RCET _i /60
UTMHA _m	SUM _k (TMHA _{mk})
UTMHI _m	SUM _k (TMHI _{mk})
UTMHO _m	SUM _k (TMHO _{mk})
UTMP _m	$SUM_k(TMP_{jm})$
UTMT _m	SUM _k (TMTI _{im})
VTA _i *3	SUMARSI(TELP _o ,i, VOP_o)

Fuente: Mayo (2005) Elaboración propia

Dónde: XYZ:Dato XYZ:VI XYZ:VD

- *1 En el caso de engomadoras
- *2 En el caso de urdidoras
- *3 Utilizando pedidos de clientes
- *4 Utilizando pedidos de stock

Metas del Modelo

La primera prioridad es la maximización de utilidades. Se calculó las utilidades sumando el producto de la cantidad de tela vendida por el margen de contribución.

La segunda prioridad es obtener un diseño apropiado del flujo productivo. En la tintorería y tejeduría se le da prioridad a la producción frente al consumo de inventarios. En el módulo de manejo de hilo se le da prioridad en orden de importancia al consumo de inventario del almacén de hilo de la empresa, luego a la producción en la línea HA o HO, después a la producción en HI y finalmente a la compra de hilo a terceros.

La función objetivo utilizará coeficientes (M1, M2, etc.) diferenciados para reflejar el orden de prioridad de los diferentes objetivos. A continuación se presenta la formulación del modelo de PL:

Función Objetivo

$$\begin{aligned} \text{Max Z=M1*} & \sum (\text{MP}_o*\text{VOP}_o) \ - \ \text{M2*} & \sum \text{CIAR}_j \\ & - \ \text{M3*} & \sum \text{COHI}_k \ - \ \text{M4*} & \sum \text{PNHI}_k \ - \ \text{M5*} & \sum (\text{PNHA}_k+\text{PNHO}_k) \end{aligned}$$

Dónde:

M1: Minimizar las utilidades antes de cubrir costos fijos

M2: Minimizar el consumo de inventarios de artículos crudos (equivalente a maximizar la producción)

M3: Minimizar la compra de hilo a terceros

M4: Minimizar la producción de hilo en Hilandería Incaica

M5: Minimizar la producción de hilo en las líneas propias (Anillos y Open End)

Restricciones estructurales

Capacidad de la maquinaria (HA, HO, HI, pretejido, tintorería y tejeduría).Para cada caso, el número de horas a utilizar en el periodo es menor o igual
que el número de horas disponibles. En el caso de la tejeduría, el número de
telares a utilizar de un modelo determinado es menor o igual al número total
disponible.

UTMHA _m ≤HDHA _m	(2)
$UTMHO_m \leq HDHO_m$	(3)
UTMHI _m ≤HDHI _m	(4)
$UTMP_m \le HDP_m$	(5)
$UTMT_m \leq HDTI_m$	(6)
$NTU_t \le NTE_t$	(7)

Programación de telares.- La asignación de telares a la producción de artículos es entera, es decir, un telar no puede cambiar de artículo durante el periodo a ser programado.

$$NTEA_{it} \rightarrow ENTERO$$
 (8)

Atención de pedidos.- El nivel de atención de los pedidos está en el intervalo [0%-100%]. Considerando que la empresa tiene un pedido que no puede

satisfacer totalmente negocia con el cliente para que le acepte la cantidad de tela obtenida.

$$NAT_0 \le 1$$
 (9)

Restricciones de consumo de inventarios (tintorería, tejeduría y HT).-. Primero, el consumo de la tela del inventario (CITEi) es menor o igual que la cantidad que había en inventario inicialmente (IITi) (11). Segundo, los inventarios finales de tela, artículos e hilo son mayor o igual que los inventarios mínimos definidos (dato) (12)-(14). Si no se definen inventarios mínimos, el mínimo es cero.

CITE _i ≥0	(10)
CITE _i ≤IIT _i	(11)
$IFT_{i} {\geq} IMT_{i}$	(12)
IFA _j ≥IMA _j	(13)
IFH _k ≥IMH _k	(14)

Compra de hilo a terceros.- Para cada hilo, la cantidad que se le compra a terceros es menor o igual que la cantidad máxima permitida (dato). Si no se define un máximo, éste se asume como infinito.

$$COHI_k \leq CM_k$$
 (15)

Equivalencias de las variables.- En el modelo se colocan todas las equivalencias mostradas en la tabla 1.1.

Rango de existencia

NAT _o ≥0	PTET _i ≥0	NTEA _{jt} ≥0	PNHA _k ≥0
PNHO _k ≥0	PNHI _k ≥0	COHI _k ≥0	

1.3.3 Conclusiones del modelo de PL de una empresa textil

 Con el modelo propuesto las utilidades se hubieran incrementado 7.5% en promedio por cada mes en comparación con los resultados reales obtenidos por la empresa.

- El modelo desarrollado planifica la producción de la empresa en función de siete clases de variables de decisión:
 - La primera clase (NATo) es el nivel de atención de cada uno de los pedidos. Estas variables determinaron qué porcentaje de las cantidades de producto solicitadas en cada pedido fueron atendidas. Con esto queda definida la cantidad de tela terminada que se necesita entregar en el periodo.
 - 2. La segunda clase de variables (PTETi) determinaron la producción en el periodo de cada tipo de tela, lo cual le permite calcular también la cantidad de tela que se disponga del almacén para cumplir con los pedidos. En base a la producción de tela terminada se calcula el requerimiento de tela cruda.
 - La tercera clase de variables (NTEAjt) determinaron la asignación de los telares a la producción de los distintos artículos. Al igual que en el caso anterior, se calcula por diferencia el consumo de inventario de artículos crudos.
 - 4. Las otras cuatro clases de variables (PNHAk, PNHOk, PNHIk, COHIk) determinaron la producción en las líneas HA y HA, la producción en HI y la compra de hilo a terceros, respectivamente. En función de esas variables se determinó el consumo de hilo del inventario de la empresa
- Mayo (2005) también menciona que además de determinar la programación óptima de la producción, el modelo ofrece distintas aplicaciones de ingeniería como calcular indicadores sobre los productos y las máquinas, de simulación, como analizar el impacto que tendría sobre las utilidades un cambio en la maquinaria o evaluar los nuevos desarrollos de la empresa, ya que, al ingresar los datos técnicos y comerciales de una nueva tela, el modelo podría determinar si su producción es o no es conveniente respecto a las múltiples alternativas que se manejan.

CAPÍTULO 2 ESTUDIO DEL CASO

El presente capítulo se divide en tres secciones. En la primera, se realiza la descripción actual de la empresa de estudio. En la segunda sección se presenta un análisis del sistema productivo de La Planta y se da a conocer los principales procesos. En la tercera sección, se realiza una descripción de los principales problemas que serán objeto de estudio de la presente tesis.

2.1 Descripción de La Empresa

El Grupo S.A. (La Empresa en adelante) es una empresa farmacéutica comprometida con la salud, el bienestar y la seguridad de las personas. Fue fundada en el año 1953 como una empresa importadora, comercializadora y distribuidora de productos farmacéuticos; en el año 1962, la dirección forma en la ciudad de Lima la primera unidad de negocio denominada "Distribuidora" la cual se encarga de almacenar y distribuir productos farmacéuticos; más adelante inauguran siete sucursales en provincia. En el año 1990, se adquiere a "La Planta", una unidad de negocio que cuenta con maquinaria especializada en la fabricación, envasado y acondicionado de productos farmacéuticos. Desde entonces, La Empresa empezó a distribuir todo lo que producía. Luego, con el objetivo de promocionar y comercializar sus productos deciden crear la unidad de negocio "Líneas Propias", la cual se encarga de posicionar el producto en las farmacias, boticas, cadenas de boticas, centros hospitalarios, clínicas, y en el sector público. Esta unidad de negocio representaba a laboratorios reconocidos en todo el mundo y aprovechaban su posicionamiento como estrategia para generar más valor a La Empresa. En el año 2006, La Empresa adquiere la unidad de negocio "Retail", la cual estaba conformada por una cadena de boticas instaladas en todo el territorio nacional. Actualmente, se cuenta con 340 boticas en todo el Perú a las cuales abastece con los productos que La Planta fabrica. De esta forma, La Empresa ha logrado construir una cadena de valor sanitaria desde la producción, distribución, comercialización y mercadeo de productos farmacéuticos.

Gráfico 2.1. Cadena de abastecimiento de La Empresa Fuente: La Empresa (2013) Elaboración propia

2.1.1 Visión, Misión y Valores

En esta sección se dará a conocer la visión, misión y valores de La Empresa; así mismo, se hará un breve comentario de cada uno de ellos.

Visión: "Ser una organización líder y exitosa que democratiza la salud, contribuye al mejorar la calidad de vida y el bienestar de toda la comunidad".

Comentario: La base filosófica de La Empresa se encuentra en el crecimiento y expansión, por lo que, en los últimos, años ha enfocado todos sus esfuerzos en la obtención y crecimiento de unidades de negocio. Por ejemplo, la última unidad creada fue "Retail", en la que se ha propuesto abrir más locales en todo el país; y así también impulsar las ventas mediante servicio *delivery* y promociones. Con esto busca mantenerse entre las tres líderes del mercado.

Misión: "Contribuir con la salud, bienestar y seguridad de las personas y organizaciones a nivel nacional e internacional diseñando, elaborando, y comercializando productos y servicios innovadores y de calidad, logrando cumplir nuestro compromiso con la sociedad, brindar seguridad y desarrollo a nuestros colaboradores, así como rentabilidad a nuestros inversionistas"

Comentario: Para lograr el liderazgo y el éxito en la comunidad, La Empresa se ha integrado hacia atrás mediante la adquisición de la "Planta" y la integración hacia adelante mediante la adquisición de "Retail". Estas unidades le permitirán obtener mejores resultados que contribuyan a su misión.

Valores: Los valores más difundidos son los siguientes:

- "Trabajo en Equipo". Uno de los objetivos a largo plazo de La Empresa es ser líder y para lograr esto debe trabajar en equipo. Por eso, cada mes se reúnen los representantes de cada unidad de negocio para tratar sobre los resultados obtenidos del mes y coordinar los cambios necesarios que estén acordes a su estrategia que los guiarán en los siguientes meses.
- "Vocación de Servicio". Los colaboradores de La Empresa se esfuerzan por comprender las necesidades de sus clientes y así generar mayor valor agregado a sus productos que ofrece La Empresa.
- "Innovación". La Empresa pone en práctica las nuevas ideas propuestas para mejorar en sus servicios y sus procesos. Un buen ejemplo, es la implementación de un sistema ERP, el cual le ayudará a integrar a sus unidades de negocio.

El presente trabajo de tesis se enfocará en La Planta, unidad de negocio que se encarga de la fabricación, envasado y acondicionado de los productos farmacéuticos. Por esta razón, el resto de este capítulo y los siguientes se enfocarán solamente en esta unidad de negocio.

2.1.2 Estructura Organizacional

La Planta presenta una estructura organizacional tipo funcional como se muestra en el gráfico 2.2.

Gráfico 2.2. Organigrama de La Planta Fuente: La Empresa (2013) Elaboración propia

Según se muestra en el organigrama, las áreas funcionales que componen La Planta son los siguientes:

Desarrollo Farmacéutico.- Se encarga del análisis de los pilotos de productos nuevos desde la fabricación hasta el envasado. Las características son enviadas por el área comercial y en aceptación con la Dirección Técnica y Gerencia de Planta llevan a cabo las fabricaciones piloto requeridas. Asimismo, el área se responsabiliza de la evaluación de fórmulas y diseño de hojas de ruta para los nuevos productos.

Planeamiento y Control de la Producción (PCP).- El área de PCP funciona como la médula espinal de La Planta ya que en esta área se realizan los planes de producción, se colocan los pedidos de insumos, y se realiza el seguimiento de las líneas de producción de La Planta. También está a cargo de realizar el programa de producción e informar al área comercial sobre las fechas de entrega de los productos.

Aseguramiento de la Calidad: Se encarga de realizar la inspección al sobre técnico, el cual contiene documentación importante como la orden de trabajo, instrucciones de fabricación, reporte de insumos consumidos, reporte de horas utilizadas, hojas de resultados de análisis y el registro de

firmas con el fin de asegurar que se está cumpliendo con los procedimientos establecidos. El sobre técnico se emite junto con la orden de trabajo y fluye por las áreas de producción para ser firmadas por cada jefe de área hasta finalmente ser entregadas al área de aseguramiento que se encargará de revisar cada documento.

Almacenes: El área de almacenes se encarga de recepcionar, almacenar, despachar y llevar el control de los insumos, materiales y productos que se encuentran en los almacenes de La Planta.

Manufactura: Es la encargada de realizar la fabricación del producto. Este proceso transforma la materia prima en producto a granel que es almacenado en los recipientes indicados. La jefatura de manufactura dispone de personal especializado y supervisores. Las áreas están estrictamente libres de contaminación para obtener productos con el nivel de calidad requerida.

Empaque: El granel proveniente de la fabricación se traslada al área de empaque en donde se realizan los trabajos de envasado y acondicionado. Al finalizar con el acondicionado, la jefatura de empaque se encarga de emitir la documentación requerida en el sobre técnico y luego el producto obtenido es trasladado al almacén de cuarentena.

Mantenimiento: Esta área se encarga de brindar el servicio de reparación y mantenimiento a las instalaciones, maquinarias y demás equipos. También tiene como función contactar con mano de obra externa en caso de ser necesario y encargarse de las nuevas instalaciones.

Control de Calidad: El área de calidad se encarga de realizar los análisis fisicoquímicos y microbiológicos a los productos fabricados, envasados y acondicionados. Su objetivo principal es evitar que un producto de mala calidad llegue al consumidor final.

De acuerdo a la estructura de la organización y por disposición de la gerencia, el área de PCP es la encargada de hacer las coordinaciones con todas las jefaturas para el cumplimiento del plan de producción.

2.1.3 Clientes

Según la cadena de abastecimiento de La Empresa, el principal cliente de La Planta es la "Distribuidora", la cual se encarga de distribuir los productos a los diferentes canales de venta. Sin embargo, los requerimientos de la "Distribuidora" provienen de dos unidades de negocio: la primera de la unidad de "Líneas Propias" (LLPP en adelante) y la segunda de la unidad de "Retail". Cada unidad tiene su propia cartera de productos, sus propios precios y márgenes de contribución.

Por otra parte, La Planta también tiene como clientes a empresas que denominaremos los "Terceros" que solicitan el servicio de fabricación, envasado y acondicionado para que luego ellos se encarguen de la comercialización.

En el cuadro 2.1 se puede apreciar los dos canales de distribución identificados, los clientes principales y la prioridad de atención que se le ha asignado a cada uno según la política de la Empresa.

Cuadro 2.1. Clasificación de los clientes de La Planta

Fuente: La Empresa (2013) Elaboración propia

La creación de sus cuatro unidades de negocio que ha adquirido la Empresa, especialmente "Retail", le ha generado un incremento considerable en la demanda de sus productos, y buscar la mejora de los niveles de atención de sus pedidos y eficiencia de utilización de sus recursos. Este y otros puntos más se estudiarán en la siguiente sección de este capítulo.

2.2 Análisis del sistema productivo

En esta sección se dará a conocer los productos, la tipología del sistema productivo y la descripción de los procesos principales desde la planificación hasta la obtención del producto terminado.

2.2.1 Productos

Los productos se dividen por su forma farmacéuticas, en La Planta tienen identificado cuatro grupos o líneas de producción: sólidos, líquidos no estériles, líquidos estériles y semisólidos. En cada línea de producción se encuentra más de una forma farmacéutica tal como se presenta en el cuadro 2.2.

Cuadro 2.2. Formas farmacéuticas por cada línea de producción

Sólidos	Líquidos no estériles	Líquidos estériles	Semisólidos
Tabletas	Jarabes	Inyectables	Cremas
Capsulas	Suspensiones	Oftálmicos	Supositorios
Grageas			Óvulos
Polvos			

La Empresa (2013) Elaboración propia

La clasificación se determina de esa manera ya que cada grupo se fabrica en áreas independientes y cada área cuenta con máquinas y equipos necesarios para llevar a cabo las operaciones que se indiquen en la orden de trabajo. La cantidad de productos que se distribuye en los cuatro grupos suman en total 237 productos. En el gráfico 2.3 se distribuyen la cantidad de productos por línea de producción y por el tipo de cliente.

Gráfico 2.3. Productos por línea de producción de La Planta Fuente: La Empresa (2013) Elaboración propia

La presente tesis se enfocará en la línea de los productos líquidos no estériles. En esta línea se cuenta con un total de 40 productos distribuidos en 31 productos de la forma farmacéutica jarabes y 9 productos de la forma farmacéutica suspensiones. En el gráfico 2.4 se muestra la agrupación de los productos por cliente y luego por forma farmacéutica en la línea de líquidos no estériles.

Gráfico 2.4. Productos líquidos no estériles por cliente y por forma Fuente: La Empresa (2013) Elaboración propia

En el cuadro 2.3 se muestra la lista completa de los productos. Son 31 productos de la forma farmacéutica jarabes y 9 productos de la forma farmacéutica suspensiones.

Cuadro 2.3. Productos líquidos no estériles que elabora La Planta

Producto	Presentación	Cliente	Producto	Presentación	Cliente
Jarabe 1	15 ml	Retail	Jarabe 21	60 ml	Retail
Jarabe 2	15 ml	Retail	Jarabe 22	60 ml	Retail
Jarabe 3	15 ml	Retail	Jarabe 23	120 ml	Terceros
Jarabe 4	15 ml	Retail	Jarabe 24	30 ml	PyC
Jarabe 5	10 ml	Terceros	Jarabe 25	80 ml	PyC
Jarabe 6	10 ml	Terceros	Jarabe 26	30 ml	PyC
Jarabe 7	60 ml	PyC	Jarabe 27	20 ml	PyC
Jarabe 8	60 ml	PyC	Jarabe 28	10 ml	PyC
Jarabe 9	60 ml	PyC	Jarabe 29	15 ml	PyC
Jarabe 10	90 ml	PyC	Jarabe 30	15 ml	PyC
Jarabe 11	100 ml	PyC	Jarabe 31	30 ml	PyC
Jarabe 12	100 ml	PyC	Suspensión 1	150 ml	PyC
Jarabe 13	60 ml	Retail	Suspensión 2	60 ml	PyC
Jarabe 14	60 ml	Retail	Suspensión 3	60 ml	PyC
Jarabe 15	60 ml	Retail	Suspensión 4	180 ml	PyC
Jarabe 16	10 ml	Retail	Suspensión 5	100 ml	Retail
Jarabe 17	60 ml	Retail	Suspensión 6	60 ml	Retail
Jarabe 18	60 ml	Retail	Suspensión 7	150 ml	Retail
Jarabe 19	60 ml	Retail	Suspensión 8	60 ml	Retail
Jarabe 20	90 ml	Retail	Suspensión 9	50 ml	Retail

Fuente: La Empresa (2013)

2.2.2 Tipología del sistema de producción

La tipología del sistema de producción de La Planta, según el cuadro 2.4, se ajusta a una producción por lotes por cuatro características principales. En primer lugar, el inicio de la fabricación es posible sólo si se tiene la Orden de Trabajo, es decir, existe un pedido (por el área de planeamiento) que solicita el producto para despacharlo al cliente. En segundo lugar, La Planta solo cuenta con tres clientes "LLPP", "Retail" y los "Terceros". En tercer lugar, la variedad de productos está conformada por 40 diferentes productos, lo cual es considerado relativamente alto. Y por último, la demanda en el sector farmacéutico es fluctuante, lo que hace difícil obtener un pronóstico de fabricación firme en un plazo mayor a 6 meses.

En cuanto a la flexibilidad, La Planta es capaz de mantenerse eficaz y eficiente cuando la variabilidad adopta la forma de nuevos productos y mano de obra; en cambio, lo contrario ocurre cuando la variabilidad adopta la forma de la demanda.

Cuadro 2.4. Cuadro comparativo de los tipos de configuraciones.

Configuración	Demanda	Productos	Flexibilidad	Participación del cliente
Continua	Muy estable	Estándar	Inflexible	Mercado masivo
Línea	Estable	Muy Variable	Baja	Pocos
Batch	Fluctuante	Variable por OT	Media	Pocos
Taller a medida	Poca	A medida	Alta	Individual
Proyecto	No frecuente	Único	Alta	Individual

Fuente: J.A.D. Machuca y otros (1995)

Elaboración propia

2.2.3 Principales procesos

El sistema de producción actual se puede resumir en el DFD que se presenta en el gráfico 2.5. Aquí se muestra el flujo de datos e informaciones que se obtienen en el proceso de planeamiento, logística y despacho.

Gráfico 2.5. Diagrama de flujo del proceso principal Fuente: La Empresa (2013) Elaborado en base a Miranda (2010)

Como se puede apreciar en el DFD del proceso principal, las áreas involucradas son planeamiento, marketing, logística, producción, almacenes, despacho y contabilidad. Dado que el estudio se basará en las áreas de planeamiento y producción que corresponden al proceso Planear y Producir, procesos 1 y 3 respectivamente, a continuación se explicará el proceso de planeamiento y el proceso de producción.

a) Planear

La empresa tiene como política la producción constante respecto a plan proyectado de producción obtenido a partir del plan de demanda informado por el área de marketing. El plan proyectado o pronóstico es determinado para cada uno de los 40 productos y sirve como dato de entrada para La Planta para saber en qué mes se tiene que producir, cuántos lotes, y qué recursos y materiales se van a necesitar ya sea materia prima, material de envasado o material de acondicionado-. En el gráfico 2.6 se presentan los sub-procesos y archivos dentro del proceso Planear.

Proceso 1.1

Como se explicaba anteriormente, uno de los datos de entrada es el plan de demanda, por lo tanto el jefe de planeamiento proyecta la producción y requerimiento de materiales dentro de los próximos 6 meses.

Proceso 1.2

El equipo de planeamiento se encarga de verificar la cantidad en inventario de materiales que pueda existir en el almacén. Con dicha información y el pronóstico de producción hacen una lista de requerimientos al área de compras. En el sistema ERP se colocan las solpeds¹ de materiales y también se indican la fecha aproximada en la que se necesitará.

Proceso 1.3

También el equipo de planeamiento se encarga de verificar la cantidad en inventario de productos en proceso y productos terminados que se

Solicitudes de pedido en entorno SAP que cada usuario realiza. Contienen, ítems, cantidades, precios y proveedor seleccionado. Tomado de "Casos de operaciones". Centrum Católica. Lima: McGraw-Hill, p6. Año 2012

encuentran en los almacenes. Para luego determinar la lista de productos que se necesitan fabricar en el mes.

Gráfico 2.6. DFD, diagrama hijo proceso 1 Fuente: La Empresa (2013) Elaborado en base a Miranda (2010)

El proceso Planear finaliza cuando se entregan las listas respectivas al área de compras y al área de producción.

b) Producir

Una vez que se reciben las ordenes de trabajo y luego de que el área de almacén dispense los insumos requeridos (materia prima, materiales de envasado y materiales de acondicionado), el área de producción se encarga de fabricar, envasar y acondicionar los lotes de los productos solicitados por el área de planeamiento. En el gráfico 2.7 se muestran los sub-procesos y archivos dentro del proceso Producir.

Proceso 3.1

En este proceso se realiza la fabricación de un lote del producto, el cual consiste en mezclar en un tanque la materia prima y excipientes de acuerdo a las cantidades indicadas en la orden de trabajo (OT). Se usa un agitador automático para ayudar a que la mezcla sea homogénea. Luego, se utiliza un equipo filtrador para retener las impurezas. Una vez

terminado este proceso, se entrega la documentación del lote fabricado al área de aseguramiento de la calidad para su información y registro. Paralelamente también se comprueba la calidad y las especificaciones del lote fabricado por el área de control de calidad. El producto permanece almacenado en el tanque de mezcla hasta el momento que se tenga que envasar.

Gráfico 2.7. DFD, diagrama hijo proceso 3 Fuente: La Empresa (2013) Elaborado en base a Miranda (2010)

Solo los productos del tipo de forma farmacéutica suspensiones requieren un periodo de reposo después de la operación de mezclado. Por lo general, estos productos se fabrican en dos días, en el primer día se realiza la mezcla y al día siguiente se procede con la filtración. Por el contrario, en el caso de los jarabes las operaciones de mezclado y filtrado se realizan en el mismo día.

Los equipos utilizados en la fabricación son los siguientes:

- Marmita de vapor de agua.
- Tanque de mezcla
- Agitador para la mezcla.

Equipo Filtrador.

Proceso 3.2

El envasado consiste en dosificar el producto en los frascos en la cantidad indicada por la OT. Para este proceso se usa una máquina envasadora semiautomática. En la misma área de envasado se encuentra una línea de operarios encargados de colocar las tapas, enroscar las tapas, secar los frascos y colocarlos en las bandejas de almacenamiento. Una vez terminado, se entrega la documentación del lote envasado al área de aseguramiento de la calidad para su información y registro. Paralelamente también se comprueba la calidad y las especificaciones del lote envasado por el área de control de calidad. Los frascos permanecen en las bandejas hasta el momento que se tenga que acondicionar.

Los equipos utilizados en el envasado son los siguientes:

- Envasadora semiautomática.
- Balanza.
- Mesa de trabajo.
- Bandejas de almacenamiento.

Proceso 3.3

Finalmente se realiza el acondicionado o empacado del lote envasado. El acondicionado consiste en colocar los frascos en las cajas de presentación final. Estas cajas son codificadas con el número de lote del producto² indicado en la OT. Este proceso se lleva a cabo en una faja transportadora que facilita el recorrido de los frascos hacia los operarios. Una vez terminado, se entrega la documentación del producto terminado al área de aseguramiento de la calidad para su información y registro. El lote del producto se entrega en pallets al almacén bajo la condición de lote en cuarentena.

.

² El número de lote está compuesto de 6 dígitos y tiene la siguiente forma XYYZZZX, donde XX representa los dos últimos dígitos del año de fabricación, YY representa al mes de fabricación, y ZZZ es un número correlativo. Por ejemplo, 1010523 indica al lote número 052 que se fabricó en el mes de enero del año 2013

Los equipos utilizados en el acondicionado son los siguientes:

- Faja de acondicionado.
- Pallets.

Una vez concluido con el proceso Producir, el lote completo de producto terminado queda a la espera de la liberación por parte del área de aseguramiento de la calidad. La liberación consiste en dar la aprobación al lote del producto de acuerdo a la documentación consignada en el sobre técnico. Luego de que se da la aprobación, inmediatamente el área de planeamiento confirma la entrega al cliente.

2.2.4 Situación actual de los principales procesos

A continuación, se realiza una descripción de la situación actual de los procesos que se llevan a cabo en las áreas de planeamiento y producción.

a) Planeamiento

Según indicó el jefe de planeamiento, uno de los problemas que se presenta en el área es que no pueden cumplir con las fabricaciones del plan de producción. En las estadísticas mostradas en el cuadro 2.5, se puede visualizar que en promedio solo se cumplió con el 64 % del plan hasta mayo del 2013. En el mes de febrero solo se cumplió con el 20% debido a que la línea estuvo por 19 días inoperativa debido a los trabajos de mantenimiento que se llevaban a cabo.

Cuadro 2.5. Nivel de cumplimiento del plan de producción

Periodo	Ene-13	Feb-13	Mar-13	Abr-13	May-13	Total
Lotes Planificados	28	20	21	21	18	108
Lotes Fabricados	16	4	14	21	14	68
%Cumplimiento	57%	20%	67%	100%	78%	▼64%

Fuente: La Empresa (2013) Elaboración propia

El jefe de planeamiento explica que la capacidad teórica se mide en la cantidad de lotes que se pueden fabricar en el mes. Dado que se cuenta con productos del tipo jarabes, que toman un día en fabricarse, y también del tipo suspensiones, que toman dos días en fabricarse, exactamente no se puede definir una capacidad real, por lo que consideran un estimado de 22 días disponibles al mes; y tomando como dato que para todos los productos se fabrica un lote al día se estima que se puede fabricar 22 lotes al mes. Según lo explicado por el jefe de producción, no se consideran los 8 días restantes del mes debido a que estos se utilizan para cubrir los días que falten para la fabricación de las suspensiones y otras eventualidades que se presenten.

Asimismo, el jefe de planeamiento, indica que cada lote que se deja de fabricar pasa como pendiente al siguiente mes, lo cual se refleja en un incremento de la demanda de lotes del siguiente mes. En el gráfico 2.8, en la línea superior se muestra la evolución de lotes pendientes por fabricar a inicio de cada mes.

Gráfico 2.8. Comparación del número de lotes fabricados vs planificados.

Fuente: La Empresa (2013)

Elaboración propia

La línea media en el gráfico 2.8 representa al plan de producción que se proyectó para los meses de enero a mayo del 2013. Es importante resaltar que la proyección se hace como mínimo cuatro meses antes del mes de fabricación ya que se requiere comprar las materias primas y estas tienen un *lead time* de cuatro meses aproximadamente.

La línea inferior representa los lotes fabricados al final de cada mes. Sin embargo, a inicios del año ya se tenían 8 lotes pendientes por fabricar del mes de diciembre del 2012, los que sumados a los 20 lotes que se habían planificado para enero hacían un total de 28 lotes por fabricar en ese mes. Conforme se iba pasando de un mes a otro, se iba incrementando la cantidad demandada de lotes por fabricar. Al finalizar el mes de abril del 2013 se tenían 35 lotes por fabricar sumados a los 18 lotes que se tenían proyectados fabricar en ese mes nos da un total de 53 lotes por fabricar en el mes de mayo y la línea de producción ya se encontraba saturada.

Según explica el jefe de planeamiento, es difícil modificar el plan de producción debido a las urgencias que tienen los clientes por recibir sus productos y también porque con este documento están involucradas las compras de materia prima, compras de materiales de envasado y acondicionado.

Asimismo, al dejar de fabricar un producto claramente se reflejaba en una disminución en las utilidades de La Planta como se muestra en el gráfico 2.9. La gerencia de La Planta explica que en la última reunión con la gerencia general se estimaba que para este año las utilidades en la línea de líquidos no estériles deben superar los 650 mil soles que lo lograron en el año 2012.

Gráfico 2.9. Utilidades obtenidas en los meses de enero a mayo 2013.

Fuente: La Empresa (2013)

Elaboración propia

b) Producción

Por parte de producción, se entrevistó a los jefes de manufactura y empaque encargados de las áreas de fabricación y envasado respectivamente. Según explican los jefes de producción, el plan no es suficiente ya que no toma en cuenta la disponibilidad de los insumos ni la disponibilidad de recursos suficientes. Se ha dejado de fabricar porque no se contaban con los insumos disponibles en el momento de iniciar la fabricación. Asimismo, se ha dejado de fabricar porque el tanque de mezcla requerido en el que se almacenó el producto fabricado aún sigue en cola a la espera de que se inicie su proceso de envasado.

En el cuadro 2.6 se indica la cantidad de días en los que no se fabricaron productos para los meses de enero a mayo del 2013. En total no se fabricaron en 56 días, pero restando los días en el que no se fabricó a causa de los trabajos de mantenimiento y días no laborables que suma 38 días, se obtiene que se dejaron de fabricar en 18 días a causa de que no se contaban con todos los insumos disponibles o que no se contaba con los tanques de mezcla desocupados.

Cuadro 2.6. Cantidad de días del mes en los que no se fabricaron.

Periodo	Ene-13	Feb-13	Mar-13	Abr-13	May-13	Total
Lotes Fabricados	16	4	14	20	14	68
Días utilizados	22	5	22	27	19	95
Días disponibles	24	9	26	30	24	113
Días no utilizados	9	23	9	3	12	56

Fuente: La Empresa (2013) Elaboración propia

El jefe de manufactura indica que los insumos que se requieren se encuentran en La Planta pero no se pueden utilizar porque están en condición de cuarentena. Cuando un insumo llega a La Planta, inmediatamente ingresa al almacén de cuarentena para que sean inspeccionados por el personal de control de calidad. Según nos dio a conocer el jefe de control de calidad, la política de inspección de insumos se basa en lo siguiente: "el primero que llega es el primero que se inspecciona";

y nos explica que se debe cumplir de esa manera porque el pago a los proveedores está sujeto a la aprobación de los insumos que les abastecen.

En cuanto a la disponibilidad de los tanques de mezcla, esta restricción se genera cuando hay productos en espera para ingresar al área de envasado. Mientras el producto continúa almacenado en el tanque, este equipo no se podrá utilizar hasta que el área de empaque realice el proceso de envasado. El jefe del área de envasado indica que su proceso depende de la presentación (en mililitros) del producto que se tiene que envasar y de la disponibilidad de operarios capacitados en este proceso. De todos los operarios, solo tres son fijos en el área y están entrenados en este proceso, los que falten se completan de otras líneas de producción pero no tienen la habilidad suficiente por lo que el proceso se vuelve muy lento. Sin embargo, para que el área de manufactura pueda disponer del tanque, tiene que asignar más personal al área de envasado incurriendo en más horashombre e inclusive en sobretiempos.

La jornada laboral de las áreas de producción es de 8 horas/día por 5 días a la semana. Las horas extras se distribuyen en 3 horas diarias en los días de semana y 8 horas diarias para los sábados y domingos. En el área de empaque se trabaja en doble turno por la cantidad de productos existentes en todas las líneas de producción que tiene La Planta.

Se consultó con los jefes de producción sobre las horas-hombre incurridas en este mismo lapso de tiempo e inclusive las horas extras. El jefe de manufactura indica que las horas extras en la fabricación son casi inevitables por la naturaleza del producto. Hay productos que necesitan pasar más tiempo en agitación para que la mezcla pueda homogeneizarse, esto sumado a la indicación de que una vez empezado la fabricación no puede detenerse hasta que se culminen todas las operaciones, hacen que se tenga que incurrir necesariamente en horas-extras en el área de fabricación. En cambio, el jefe de empaque indica que existen horas extras en el área de envasado por el motivo de que este proceso es lento y no se han logrado automatizar todas las operaciones. La operación de dosificado (Ilenado del líquido al envase) es semiautomática y la máquina marca el ritmo; en cambio, la actividad de colocar y cerrar las tapas son totalmente

manuales por lo que los operarios marcan el ritmo. Así también, el riesgo de que la máquina de envasado esté mal calibrada y dosifique menos o más cantidad de líquido no permite acelerar el proceso. Cuando se detecta un error en el volumen de dosificado, se debe paralizar toda la línea de envasado y volver a calibrar la máquina. De esta manera, el ritmo del proceso de envasado es variable y como el proceso no puede detenerse una vez que ha empezado, se tiene que incurrir en horas-extras para terminar todo el lote. En el cuadro 2.7 se pueden visualizar las horas normales y horas extras incurridas durante el envasado en los cinco primeros meses del año 2013.

Cuadro 2.7. Horas hombre de envasado de enero a mayo del 2013.

Periodo	Ene-13	Feb-13	Mar-13	Abr-13	May-13	Total
Horas normales	623	222	559	901	533	2,838
Horas extras	269	134	138	463	224	1,228
Total por mes	892	356	698	1,364	756	4,066

Fuente: La Empresa (2013)

Elaboración propia

Finalmente, los jefes de producción explican que cuando el área de planeamiento tiene una urgencia por entregar un producto, les obligan a modificar las secuencias de producción previstas y no se logra optimizar los procesos. El jefe de manufactura indica que se puede optimizar los procesos cuando se fabrica en campaña; es decir, cuando se fabrican dos lotes consecutivos del mismo producto y del tipo suspensiones. Según explica el jefe de manufactura, con la producción en campaña la fabricación de dos lotes del mismo producto suspensiones se realizaría 3 días y no en 4 días. Con esto se ahorraría un día para poder fabricar un lote de un producto del tipo jarabe.

En el gráfico 2.10 se puede esquematizar un ejemplo de cómo se optimizaría el proceso con la fabricación en campaña. Se tienen 4 lotes de productos, de los cuales hay 2 lotes del mismo producto y son del tipo suspensiones. En la secuencia no optimizada se ve que los dos lotes del mismo producto no se fabrican en forma consecutiva y el resultado es que nos toma 4 días (días 1, 2, 4 y 5) en fabricar ambos lotes. En cambio, en la

secuencia optimizada se junta los dos lotes y se reduce el tiempo de fabricación en solo 3 días (días 1, 2 y 3).

Proceso	día 1	día 2	día 3	día 4	día 5	día 6
Fabricación	Suspensión 1 Lote 1	Suspensión 1 Lote 1	Jarabe 1 Lote 1	Suspensión 1 Lote 2	Suspensión 1 Lote 2	Jarabe 2 Lote 1
'	•	día O	-16- O	-15- A	-16- F	día O
Secuencia o	ptimizada día 1	día 2	día 3	día 4	día 5	día 6

Gráfico 2.10. Comparación de secuencia no optimizada vs optimizada.

Fuente: La Empresa (2013)

Elaboración propia

El jefe del área de envasado indica que si logrará envasar un lote de producto por día, no generarían cuellos de botella que ocasionan restricciones al área de manufactura por la disponibilidad de tanques. Además si se logrará reducir el tiempo del proceso de envasado, los operarios podrían apoyar en las otras líneas de producción que se están volviendo críticas.

En resumen, en los dos procesos vistos se ha encontrado lo siguiente:

- El nivel de cumplimiento del plan depende de una correcta programación de las fabricaciones y los envasados. Hasta el momento La Planta solo ha cumplido con el 64% del plan por lo que se está dejando de percibir ingresos en la línea de productos no estériles.
- No es suficiente tener el plan de producción, sino que hace falta un programa que contemple la disponibilidad de los insumos requeridos tal manera que solo se programen los que tengan todos los insumos completos (materia prima y envases) evitándose dejar de fabricar por este motivo.

- El plan que se ha estado manejando no contempla los trabajos preventivos de mantenimiento, lo cual a los jefes de producción no les permite garantizar la disponibilidad de todos los días para poder fabricar.
- Actualmente la política de secuenciación está basada en las urgencias de entrega de producto que se establecen con los clientes. Este hecho hace que se pierdan oportunidad de optimizar los procesos adecuadamente.
- El proceso de envasado es muy lento y requiere la disponibilidad de varios operarios. Logrando automatizar las operaciones se podría disponer de estos operarios a otras líneas de producción que lo necesitan.
- Estos puntos descritos serán tomados en cuenta como objetivos a mejorar en el siguiente capítulo.

2.3 Descripción de los problemas

Una vez que hemos descrito y analizado los principales procesos procedemos a encontrar los principales problemas. Para realizar esto utilizaremos las herramientas de *brainstorming* y análisis causa-efecto.

2.3.1 Aplicación de Brainstorming

Para identificar los problemas más relevantes que afectan a la línea de producción de líquidos no estériles se utilizó la herramienta de *brainstorming* o lluvia de ideas.

Se seleccionó a un grupo de personas con experiencia en la línea de producción de líquidos no estériles, entre ellos, el jefe del área de manufactura, el jefe del área de empaque, un operario de manufactura, un operario de empaque y el jefe de planeamiento. Se procedió a realizar una lluvia de ideas del tipo no estructurado en un lapso de 25 minutos. En consenso con todo el grupo, se eliminó las duplicaciones y los problemas no importantes. Luego, para seleccionar los problemas más significativos, cada integrante procedió a calificar de acuerdo a un puntaje de 0 a 4. Dándole el

valor de 4 al problema con impacto muy alto, 3 al problema con impacto alto, 2 al problema con impacto regular, 1 al problema con impacto bajo y 0 al problema con impacto muy bajo, según el punto de vista de cada integrante.

Tabla 2.1. Escala de calificación

Grado de impacto	Puntuación		
Muy alto	4		
Alto	3		
Regular	2		
Bajo	1		
Muy bajo	0		

Elaboración propia

Luego, se obtuvo el porcentaje de cada problema tomando como total la sumatoria de los puntajes. A la vez, se añadió una columna con el porcentaje acumulado para obtener el 30% de los problemas vitales que hacen que se originen el 62% de los efectos. Este valor nos sirve para realizar el análisis Pareto. Los resultados se pueden ver en los gráficos 2.11 y 2.12.

ID	Principales problemas encontrados.	Jefe de Manufactura	Jefe de Empaque	Operario de Manufactura	Operario de Empaque	Jefe de Planeamiento	sumatoria	%	% acumulado
Α	Se pierde oportunidad de obtener más ingresos.	4	4	4	4	4	20	22%	22%
В	Hay una falta de optimización en el proceso de fabricación.	4	4	4	4	3	19	21%	43%
С	El proceso de envasado restringe el uso de tanques.	4	3	4	3	3	17	19%	62%
D	Las actividades de mantenimiento (correctivo) paralizan la producción.	3	3	0	0	2	8	9%	70%
Е	La demora en las inspecciones de calidad retrasa la entrega del producto.	1	1	0	0	4	6	7%	77%
F	No se cuenta con equipos independientes en cada área.	1	3	0	1	0	5	5%	82%
G	Urgencias en la entrega de productos afectan la normalidad de los procesos.	3	2	0	0	0	5	5%	88%
Н	Se utiliza tiempo en exceso para la limpieza de las áreas de fabricación y envasado	1	0	2	1	0	4	4%	92%
I	La desinfección de frascos y tapas puede ser evitado comprando materiales asépticos.	0	2	0	2	0	4	4%	97%
J	No se puede fabricar a falta de materiales aprobados para envasar el producto.	1	0	0	0	2	3	3%	100%
Total					·	91	100%		

Gráfico 2.11. Principales problemas y la puntuación asignada Elaboración propia

Gráfico 2.12. Análisis de Pareto Elaboración propia

Con los resultados obtenidos se realizó un análisis de causa y efectos de los siguientes problemas:

- Se pierde oportunidad de obtener más ingresos.
- Hay una falta de optimización en el proceso de fabricación.
- El proceso de envasado restringe el uso de tanques.

2.3.2 Aplicación de análisis causa-efecto.

Se realizó un análisis causa-efecto para cada uno de los puntos obtenidos por el análisis de Pareto. Mediante este análisis podremos determinar los principales factores que pueden estar vinculados a cada uno de los problemas escogidos. En este análisis también participaron los jefes de cada área, dos operarios y el jefe de planeamiento.

Los resultados se pueden ver en los gráficos 2.13, 2.14 y 2.15.

Gráfico 2.13. Se pierde oportunidad de obtener más ingresos. Elaboración propia

Gráfico 2.14. Hay una falta de optimización en el proceso de fabricación. Elaboración propia

Gráfico 2.15. El proceso de envasado restringe el uso de tanques. Elaboración propia

De los tres gráficos de análisis causa-efecto, se han tomado los siguientes factores como propuesta de mejora a realizar en el siguiente capítulo de la tesis.

- Obtener un programa de producción que optimice la secuencia considerando los turnos extras (sábados y domingos) y los insumos disponibles.
- Renovar los equipos de envasado tal que el proceso de envasado sea más eficiente en todos los productos y que el nivel de producción se restringa por la disponibilidad de los tanques.

CAPÍTULO 3 PLAN DE MEJORAS

En el presente capítulo se describirán las mejoras propuestas para los principales problemas detectados en la línea de producción de líquidos no estériles. Además, se evalúa la factibilidad económica de tales propuestas.

3.1 Metodología a seguir

Se propondrán dos mejoras para solucionar los problemas antes detectados. Primero, se realizará una mejora en el proceso de envasado mediante la implementación de una línea automática que reduzca el *lead time* del proceso en menos de un día por cada lote de producto. Luego, con la primera mejora implementada, se elaborará un programa de producción mensual con el apoyo de un modelo de programación lineal entera mixta por metas, el cual nos ayudará a encontrar una secuencia óptima de producción tal que podamos maximizar las utilidades y mejorar la utilización de los recursos disponibles.

En las siguientes secciones se describirá la mejora realizada en el proceso de envasado y también el desarrollo del programa de producción con el objetivo de optimizar los procesos e incrementar los ingresos en la línea de líquidos no estériles.

3.2 Línea automática de dosificado, tapado y etiquetado

Para llevar a cabo el estudio, se escogió el producto llamado suspensión 37 como el más representativo por su alta demanda.

Las operaciones de los procesos de envasado y acondicionado que trataremos son los siguientes: dosificado, tapado y etiquetado. El dosificado se viene realizando en la máquina dosificadora de líquidos semiautomática Daumaq Modelo DL1 que se muestra en el gráfico 3.1. Antes de operar la máquina primero se debe esterilizar las partes que están en contacto con el producto, luego se regula el volumen de dosificado y, finalmente, se conecta la manguera

al tanque que contiene el producto fabricado. Una vez preparada la máquina, se pone en marcha, y se va colocando los frascos de dos en dos en los émbolos dosificadores mientras la máquina va llenando el envase con el producto. La velocidad de dosificado varía de acuerdo con la presentación del producto (mayor para 15ml y menor para 180ml). Actualmente, el negocio oferta 12 presentaciones que se detallan en la tabla 3.1.

Gráfico 3.1. Dosificadora semiautomática Daumaq DL1 Fuente: www.daumaq.com.ar

Antes del dosificado, hay un operario que se encarga de alimentar los envases colocándolos al alcance del operario que manipula la máquina. Luego de llenar el líquido en el frasco, hay un operario que se encarga de realizar una inspección visual a cada frasco para verificar el nivel de dosificado. Después, un operario coloca las tapas a los frascos, dos operarios se encargan de darle el torque para cerrar la tapa, un operario se dedica a secar los frascos que se han mojado y finalmente un operario coloca los frascos en bandejas.

Una vez concluido con envasar todo el lote del producto, los operarios realizan la limpieza del área de envasado, de la máquina, del tanque y los demás equipos utilizados. Las bandejas que contienen los frascos se envían al área de acondicionado.

En el área de acondicionado la primera actividad que se realiza es la de pegar las etiquetas en los envases. Para realizar esto, un operario debe alimentar los envases que se encuentran en las bandejas, dos operarios se encargan de

pegar las etiquetas y un tercer operario realiza la inspección visual y limpia los frascos.

Tabla 3.1. Velocidad de dosificado por presentación

Presentación (mililitros)	Velocidad dosificado (unid/min)	Cantidad de productos
10	40	4
15	40	6
20	38	1
30	38	3
50	36	1
60	34	15
80	30	1
90	30	2
100	28	3
120	28	1
150	26	2
180	22	1

Fuente: La Empresa (2013)

Elaboración propia

En todas estas operaciones mencionadas han intervenido un total de doce operarios por turno trabajando de manera secuencial. En el cuadro 3.1 se muestra las horas de proceso y horas-hombre incurridas en cada proceso para el producto suspensión 37.

Cuadro 3.1. Horas utilizadas en el envasado y acondicionado.

Producto: Suspensión 37 Tamaño de lote: 5,717 unidades Mes: Abril Lote: 01	Horas Operación	Horas Hombre	
Proceso de envasado: dosificado y tapado.	6.25	50.00	
Proceso de acondicionado: etiquetado.	8.25	33.00	
Proceso total	14.5	83.00	

Fuente: La Empresa (2013)

Elaboración propia

El proceso de envasado tuvo una duración de 6.25 horas que multiplicado por el número de 8 personas nos da un total de 50 horas-hombre. El proceso de acondicionado tomó 8.25 horas que multiplicado por un número de 4 personas nos da un total de 33 horas-hombre.

Para lograr una reducción significativa de tiempo en ambos procesos, se sugiere la adquisición de una línea automática del proveedor VC Seraming S.R.L. cuya cotización se encuentra en el Anexo 1. Esta línea realiza las operaciones principales de dosificado, tapado y etiquetado, tal como se muestra en el gráfico 3.2. Con esta línea solo se necesita cuatro operarios que se encarguen del monitoreo y control en las tres operaciones que realiza. Según las especificaciones dadas por el proveedor, esta línea es capaz de procesar 5,760 unidades en una hora. Es decir, puede llenar, tapar y etiquetar un lote del producto suspensión 37 en una hora.

Gráfico 3.2. Línea automática-operaciones principales

Fuente: VC Seraming S.R.L (2013)

Considerando los cuatro operarios trabajando una hora en las operaciones de dosificado, tapado y etiquetado, solo se necesitarían 4 horas-hombre para procesar un lote del producto suspensión 37. En el cuadro 3.2 se muestra la cantidad de operarios antes y luego de la propuesta.

Cuadro 3.2. Cantidad de operarios antes y luego de la propuesta

Operación	Proceso	Antes	Luego
Dosificado	Envasado	8	
Etiquetado	Acondicionado	4	4
Tapado		4	
To	otal	12	4

Fuente: La Empresa (2013)

La línea de automática es muy flexible en cuanto al nivel de dosificado. Tiene la capacidad de envasar desde 5ml hasta 500ml por cada émbolo y fácilmente se

adapta a todas las presentaciones de todos los productos con que cuenta La Planta. Asimismo, la preparación y limpieza de esta máquina toman aproximadamente una hora que es el mismo tiempo que se demora en preparar la máquina actual.

3.3 Modelación del programa de producción

El plan proyectado que actualmente se aplica en el área de planeamiento está realizado según la política de stocks por coberturas que implica fabricar los productos con un bajo nivel de stock. Por este motivo, el plan proyectado no permite optimizar los procesos de producción en la línea, y tampoco permite ahorrar en costos extras en el que se incurren para cumplir con las urgencias.

Para mitigar este inconveniente se plantea realizar un modelo de programación lineal entera mixta por metas que nos indique cuántos lotes de cada producto fabricar y en qué días se deben realizar para atender la demanda en el plan proyectado considerando la capacidad de La Planta; los insumos disponibles en el almacén y la prioridad de atención a los clientes tal que se pueda maximizar el nivel de ingresos con un impacto positivo en el nivel cumplimiento del plan proyectado.

3.3.1 Formulación del modelo

En los últimos cinco meses, La Planta tuvo un nivel de cumplimiento promedio de los pedidos del 64%. Esto sugiere aprovechar más los recursos para mejorar el nivel y así obtener más utilidades. Para tal fin, el área de planificación, en coordinación con las demás áreas, deben diseñar un programa de producción que le indique los productos que se fabricarán a lo largo del mes considerando las restricciones que se presentan en los procesos de planificación y producción.

En las siguientes líneas se explicará los procesos planificación y producción, y en forma paralela se irá desarrollando el modelo matemático.

Proceso de planificación

La empresa cuenta con una política de stocks para cada cliente en base a coberturas La cobertura es un ratio que indica la cantidad de meses que el stock actual podrá atender la demanda. En la tabla 3.2 se puede apreciar la política de stock para cada cliente. Por ejemplo, para los productos del cliente "LLPP", se debe tener como mínimo stock para 4 meses. En caso de que este ratio sea 3.8 (menor a 4.0), se demandará producir más lotes para poder alcanzar la cobertura de 4.0.

Tabla 3.2. Política de stocks

Cliente	Cobertura de stock mínima
LLPP	4.0 meses
Retail	3.0 meses
Terceros	2.5 meses

Fuente: La Empresa (2013)

Elaboración propia

También se cuenta con un registro de venta mensual para cada producto. En el cuadro 3.3 se muestra el registro de ventas de los seis últimos meses para tres productos representativos en cada tipo de cliente. En cada producto se obtiene un promedio de venta mensual que servirá como dato para realiza el plan proyectado. Por ejemplo en el producto Jarabe 25, el dato de venta mensual promedio de los últimos seis meses es de 4,162 unidades.

Cuadro 3.3. Registro de ventas mensuales de tres productos

Cliente	Producto	Jul-12	Ago-12	Set-12	Oct-12	Nov-12	Dic-12	Venta promedio
LLPP	Jarabe 25	1,713	2,651	3,807	6,501	5,641	4,658	4,162
Retail	Suspensión 06	4,767	4,050	5,691	6,374	7,104	6,925	5,819
Terceros	Jarabe 05	3,126	3,750	4,562	3,958	5,101	5,213	4,285

Fuente: La Empresa (2013)

Con la cobertura de stock mínima por cada cliente, la venta mensual promedio el responsable de planificación realiza un plan de producción proyectado para el primer semestre. Por ejemplo, en el cuadro 3.4, el Jarabe 25 cuenta con 10,002 unidades como stock a inicial al mes de enero del

2013, lo que equivale a tener una cobertura de 2.4 meses. Para cumplir con la política de stock, se planifica producir 2 lotes en el mes de enero que equivalen a 12,252 unidades. Si a esto se le resta la venta mensual promedio, se proyecta que al final del mes de enero quedará 18,092 unidades en stock, lo que equivale a tener 4.3 meses de cobertura. La ecuación para determinar la cobertura es la siguiente:

 $\label{eq:cobertura} \mbox{Cobertura=} \frac{\mbox{Stock del producto (unidades)}}{\mbox{Venta mensual promedio (unidades)}}$

Cuadro 3.4. Ejemplo del plan proyectado

	Datos				ficación	Resultados proyectados	
Producto	Tamaño de lote STD	Stock inicial ene-13	Venta promedio	#lotes a fabricar	Unidades	Stock final ene-13	Cobertura
Jarabe 25	6,126	10,002	4,162	2	12,252	18,092	4.3
Suspensión 06	5,717	6,542	5,819	3	17,151	17,875	3.1
Jarabe 05	19,602	9,950	8,083	1	19,602	21,469	2.7

Fuente: La Empresa (2013)

De este modo, se tendrá una lista de lotes de productos demandados en el mes que el responsable de producción deberá obtener en el mes. Dada la limitada capacidad, habrá productos que no se podrán realizar por lo que quedarán como pendiente a realizarse en el mes siguiente.

De acuerdo a la política de stocks de la empresa, cada cliente que es dueño del producto tendrá una prioridad de atención. En el modelo utilizaremos a P₁ que indicará la prioridad del cliente 1, P₂ que indicará la prioridad del cliente 2 y P₃ que indicará la prioridad del cliente 3. Aquí el cliente 1 representa a "LLPP", el cliente 2 representa a "Retail", y el cliente 3 representa a "Terceros", y la relación de los tres clientes es

$$P_1{\gg}P_2{\gg}P_3$$

En el cuadro 3.3, se aprecia la cantidad de lotes demandados en el plan proyectado de producción de enero a mayo del 2013 obtenido a inicios del mes de enero. Como el periodo tomado para efectos de la modelación será de un mes, sea JabD_i la cantidad de lotes del jarabe i que se demandan en

el mes y $SusD_j$ la cantidad de lotes de la suspensión j que se demandan en el mes, en donde i=1,...31 y j=1,...9.

Cuadro 3.3. Plan proyectado de enero a mayo del 2013.

Producto	Unid STD x	Ene-13	Feb-13	Mar-13	Abr-13	May-13
Jarabe1	12,545	0	0	0	0	0
Jarabe2	6,534	0	0	0	0	0
Jarabe3	6,534	1	0	0	0	0
Jarabe4	9,801	1	0	0	0	0
Jarabe5	19,602	1	2	0	1	2
Jarabe6	7,841	0	0	0	0	0
Jarabe7	14,702	0	0	1	1	0
Jarabe8	14,702	1	0	0	0	0
Jarabe9	4,901	1	0	1	0	0
Jarabe10	5,445	0	0	0	0	0
Jarabe11	4,901	0	0	0	0	0
Jarabe12	4,901	0	0	1	1	0
Jarabe13	5,717	1	0	1	0	0
Jarabe14	5,881	0	0	0	0	0
Jarabe15	1,634	0	0	0	0	0
Jarabe16	9,801	0	0	0	0	0
Jarabe17	4,901	0	0	1	1	0
Jarabe18	8,168	0	1	0	1	0
Jarabe19	5,717	1	1	1	0	0
Jarabe20	9,801	11	1	0	1	0
Jarabe21	14,702	0	0	0	0	0
Jarabe22	14,702	0	0	0	0	0
Jarabe23	4,901	1	1	0	1	1
Jarabe24	11,761	0	1	0	1	0
Jarabe25	6,126	2	1	0	/ 1	2
Jarabe26	4,901	0	0	0	0	0
Jarabe27	2,450	0	1	0	0	1
Jarabe28	9,801	0	0	1	1	0
Jarabe29	12,545	2	0	1	2	1
Jarabe30	13,068	1	0	1	0	0
Jarabe31	2,940	1 1	0	0	1	0
Suspensión 1	2,352	3	1	2	2	3
Suspensión 2	5,717	0	1	0	0	0
Suspensión 3	5,717	2	0	3	1	0
Suspensión 4	1,906	1	2	2	2	0
Suspensión 5	3,430	0	1	1	0	1
Suspensión 6	5,717	3	4	1	2	2
Suspensión 7	2,352	3	1	2	0	0
Suspensión 8	5,717	1	0	1	1	0
Suspensión 9	6,861	0	1	0	0	1
Total lo	otes	28	20	21	21	14

Fuente: La Empresa (2013)

Dado que no siempre se podrá atender la cantidad demanda de lotes, sea JabP_i cantidad de lotes del jarabe i que se producen en el mes, SusP_j cantidad de lotes de la suspensión j que se producen en el mes, JabNP_i cantidad de lotes del jarabe i que se dejan de producir en el mes y SusNP_j

cantidad de lotes de la suspensión j que se dejan de producir en el mes, en donde i=1,...31 y j=1,...9. Esto nos ayudará a saber la cantidad de lotes que estamos produciendo y la cantidad de lotes que dejamos de producir con lo cual construimos las siguientes restricciones:

$$JabP_i + JabNP_i = JabD_i \quad ; \quad \forall i, =1,...31. \tag{1}$$

$$SusP_{j} + SusNP_{j} = SusD_{j} ; \forall j=1,...9.$$
 (2)

Tener en cuenta que la cantidad de lotes que se dejan de producir en el mes de enero JabNP_i y SusNP_j se adicionarán a la demanda de lotes del mes de febrero y lo mismo para los siguientes meses.

Para iniciar la producción de cualquier producto, el responsable de producción verifica la disponibilidad de los insumos. El insumo principal que se utiliza en el proceso de fabricación es la materia prima; en el proceso de envasado, los envases y en el proceso de acondicionado, las cajas. Según indica el jefe de planeamiento, las materias primas y los envases tienen un *lead time* muy significativo: cuatro meses para el primero y dos meses para el segundo. En el caso de las cajas, estos tienen un *lead time* de una semana por lo que para la elaboración del programa no se considera como insumo crítico.

En el cuadro 3.4 se muestran el stock de materia prima y envases a inicios del mes de enero siendo este el primer mes a modelar. En el modelo sea MPo_w la cantidad de kilogramos de materia prima w que existen al inicio del mes y ENo_z la cantidad de unidades de envases z que existe al inicio del mes. De igual manera sea MPU_w la cantidad de kilogramos de materia prima w utilizados en la producción del mes, ENU_z la cantidad de unidades de envases z utilizados en la producción del mes, MPf_w la cantidad de kilogramos de materia prima w que queda al final del mes y ENf_z la cantidad de unidades de envases z que quedan al final del mes, en donde w=1,...25 y z=1,...26. Estos se usarán en las siguientes restricciones:

$$MPU_w + MPf_w = MPo_w ; \forall w = 1,...25.$$
 (3)

$$ENU_z + ENf_z = ENo_z ; \forall z = 1,...,26$$
 (4)

Cuadro 3.4. Stock inicial de materia prima y envases

Mater	ria prima	En	vases
Código	Cantidad	Código	Cantidad
MP1	230 kg	ENV1	0 unid
MP2	20 kg	ENV2	0 unid
MP3	60 kg	ENV3	6,850 unid
MP4	200 kg	ENV4	10,250 unid
MP5	12 kg	ENV5	24,599 unid
MP6	0 kg	ENV6	3,787 unid
MP7	3.828 kg	ENV7	18,294 unid
MP8	268.801 kg	ENV8	14,307 unid
MP9	37.547 kg	ENV9	991 unid
MP10	20 kg	ENV10	6,463 unid
MP11	13.176 kg	ENV11	20,512 unid
MP12	0.643 kg	ENV12	25,016 unid
MP13	13.176 kg	ENV13	5,323 unid
MP14	89.093 kg	ENV14	7,901 unid
MP15	4.293 kg	ENV15	23,272 unid
MP16	0.286 kg	ENV16	0 unid
MP17	18.367 kg	ENV17	0 unid
MP18	0.562 kg	ENV18	15,064 unid
MP19	52.258 kg	ENV19	14,067 unid
MP20	487.1 kg	ENV20	3,450 unid
MP21	153.53 kg	ENV21	12,329 unid
MP22	0.075 kg	ENV22	32,698 unid
MP23	9.58 kg	ENV23	9,105 unid
MP24	136.753 kg	ENV24	3,365 unid
MP25	53.741 kg	ENV25	9,308 unid
		ENV26	0 unid

Fuente: La Empresa (2013)

Elaboración propia

Al final de cada mes modelado, los valores de los parámetros MPf_w y ENf_z que representan al stock final de materia prima y envases respectivamente, se asignarán a los parámetros MPo_w y ENo_z siendo estos los valores iniciales de stock de insumos existente del siguiente periodo. Además, en el cuadro 3.5 se muestra los nuevos ingresos previstos de materia prima y envases para los meses de enero a mayo del 2013. Para considerarlos en el modelo, estos valores se suman directamente a los valores de MPo_w y ENo_z. Por ejemplo si en el mes de enero el stock final de MP09 fue de 10kg, entonces el valor del stock inicial de MP09 para febrero será de 10kg, y si además existe un ingreso de 50 kg para el mes de febrero, entonces el stock inicial de MP09 del mes de febrero será de 60kg. Recordar que estos

valores son parámetros por lo que el programador deberá introducirlos al modelo manualmente.

Cuadro 3.5. Ingresos de insumos previstos de febrero a mayo

Código insumo	Feb-13	Mar-13	Abr-13	May-13
MP07		14 kg		
MP08		340 kg		
MP09	50 kg			200 kg
MP14	150 kg			150 kg
MP18	1 kg			1 kg
MP20			480 kg	
MP21		100 kg		
MP22	5 kg	V F DA		
MP23		- DA	20 kg	
MP25			100 kg	
ENV05		42000 unid		42000 unid
ENV06	10000 unid	8000 unid		
ENV07		36000 unid	12000 unid	
ENV08			23000 unid	
ENV11		25000 unid		
ENV12		15000 unid		
ENV13		11111	6000 unid	6000 unid
ENV14	3000 unid	8000 unid		4600 unid
ENV15	5670 unid			13000 unid
ENV17	5966 unid		24	
ENV18		25000 unid	>//	12500 unid
ENV19		13700 unid		
ENV20			3000 unid	
ENV21	Ada		10000 unid	
ENV22	30000 unid	X V Vs	40000 unid	
ENV23			3150 unid	3150 unid
ENV24		1500 unid		
ENV25			12000 unid	
ENV26		7500 unid		

Fuente: La Empresa (2013)

Elaboración propia

Los procesos principales de producción en la línea de líquidos no estériles son fabricación, envasado y acondicionado. En cada lote de producto los procesos se realizan de forma consecutiva, uno tras otro.

Proceso de fabricación

El proceso de fabricación está compuesto por dos operaciones principales: mezclado y filtrado. Primero se realiza la operación de mezclado y luego la operación de filtrado; ambas operaciones se realizan en la misma área de fabricación por lo que solo se puede realizar una operación a la vez. En el modelo se utilizaron las siguientes variables binarias:

 M_dJ_i : decisión de mezclar en el día d un lote del jarabe i, donde i=1,..., 31.

 F_dJ_i : decisión de filtrar en el día d un lote del jarabe i, donde i=1,..., 31.

 M_dS_j : decisión de mezclar en el día d un lote de la suspensión j, donde j=1,...9.

 F_dS_j : decisión de filtrar en el día d un lote de la suspensión j, donde j=1,...9.

El rango del dígito d se definirá más adelante.

Tabla 3.3. Duración de operación por lote.

		-
Tipo de Producto	Operación	Tiempo
	Mezclado	0.5 días
Jarabe	Filtrado	0.5 días
Total duración del lead to	ime de fabricación	1 día
Cupranción	Mezclado	1 día
Suspensión	Filtrado	1 día
Total duración del lead t	2 días	

Fuente: La Empresa (2013)

Elaboración propia

El tiempo de duración de cada operación se muestra en la tabla 3.3. El *lead time* del proceso de fabricación se mide en días por lote y difiere según el tipo de producto que se va a procesar (jarabe o suspensión). En caso de fabricar un lote de jarabe, las actividades de mezclado y filtrado se realizarán en el mismo día, por lo que el proceso de fabricación tendrá un *lead time* de un día por cada lote de jarabe. En caso de que se fabrique un lote de suspensión, las actividades de mezclado y filtrado se realizarán en dos días consecutivos, por lo que el proceso de fabricación tendrá un *lead time* de dos días por cada lote de suspensión. En los gráficos 3.3 y 3.4 se

muestra un ejemplo de programación de lotes de jarabes y un ejemplo de programación de lotes de suspensiones respectivamente.

Operación	Día 1	Día 2	Día 3	Día 4	Día 5	Día 6
Mezclado	M_1J_3	M_2J_8	M_3J_{10}	M_4J_{15}	M_5J_3	M_6J_{10}
Filtrado	M_1J_3	M_2J_8	M_3J_{10}	$M_{4}J_{15}$	M_5J_3	$M_{6}J_{10}$

Gráfico 3.3. Ejemplo de programación de lotes de jarabes Elaboración propia

Operación	Día 1	Día 2	Día 3	Día 4	Día 5	Día 6
Mezclado	M ₁ S ₅	EN	M_2S_8		M_5S_5	-
Filtrado		F ₂ S ₅	~4	F ₂ S ₈	-	F ₆ S ₅

Gráfico 3.4. Ejemplo de programación de lotes de suspensiones Elaboración propia

Para efectos de la contabilización, un lote de producto se considera como lote fabricado del mes de contabilizado si su operación de mezclado y filtrado se realizan en el mismo periodo. De esta manera, se tendrá que definir los límites de fechas de fabricación para cada tipo de producto. Para esto, utilizamos la sigla td_m para denotar al total de días que existen en el mes m. Los valores de m son 1=enero, 2=febrero, 3= marzo, 4= abril y 5= mayo; de esta manera, $td_1=31$, $td_2=28$, $td_3=31$, $td_4=30$ y $td_5=31$. Entonces, para que cualquier lote de un jarabe sea contabilizado dentro del mes, la fecha más temprana para mezclar y filtrar un lote de jarabe es el primer día del mes y la fecha más tardía es el día td_m (ver gráfico 3.5); por otra parte, para que cualquier lote de una suspensión sea contabilizado dentro del mes, la fecha más temprana que puede mezclar es el primer día y la fecha más temprana que se puede filtrar es el segundo día, en cambio, la fecha más tardía que se puede mezclar es el día td_m-1 (penúltimo día) y la fecha más tardía que se puede filtrar es el día td_m (ver gráfico 3.6). De este modo, el rango de valores del dígito d para las variables M_dJ_i y F_dS_i será d=1,... td_m, para M_dS_i , d=1,... td_m -1 y para F_dS_i , d=2,... td_m .

Operación	Día 1	Día 2	 Día td _m -1	Día td _m
Mezclado	M_1J_3	M_2J_8	 $M_{td_m-1}J_{19}$	$M_{td_m}J_{10}$
Filtrado	M_1J_3	M_2J_8	 M _{tdm} -1J ₁₉	$M_{td_m}J_{10}$

Gráfico 3.5. Fechas límites de fabricación en jarabes Elaboración propia

Operación	Día 1	Día 2	 Día td _m -1	Día td _m
Mezclado	M_1S_5	-	 $M_{td_{m}-1}S_{7}$	-
Filtrado	-	F ₂ S ₅	 -	F _{td_m} S ₇

Gráfico 3.6. Fechas límites de fabricación en suspensiones Elaboración propia

La capacidad de La Planta para el proceso de fabricación depende de la disponibilidad del área. En el modelo se define el parámetro dia_d que toma el valor de 1 si el área de fabricación está disponible para trabajar en el día d, y 0 en caso contrario, donde d=1,...td_m. Los valores de dia_d serán 0 en los días feriados y cuando el área se encuentre en mantenimiento. Este valor lo define el programador y es dato de entrada para el modelo.

Dado que para cada lote de un jarabe se pueden realizar las operaciones de mezclado y filtrado en el mismo día, la decisión de programarlo solo dependerá de la disponibilidad del área, o sea del valor que previamente se ha definido para dia_d. En este caso elaboramos las siguientes restricciones:

$$\sum_{i=1}^{31} M_d J_i \le dia_d \; \; ; \; \; \forall \; d=1,...td_m. \tag{a}$$

$$\sum_{i=1}^{31} F_d J_i \le dia_d$$
; $\forall d=1,...td_m$. (b)

Para el caso de las suspensiones la fabricación de cada lote se debe realizar en dos días; sin embargo, se puede utilizar la producción en campaña que es un caso especial de la operación de mezclado cuando se programan, de forma consecutiva, dos lotes de un mismo producto del tipo suspensión. El *lead time* de fabricación para dos lotes consecutivos de suspensiones es cuatro días, pero con la producción en campaña el *lead time* se puede reducir a tres días. Ver gráfico 3.7.

Operación	Día 1	Día 2	Día 3	Día 4	Día 5	Día 6
Mezclado	M_1S_5 M_1S_5	-	-	M_4S_8	-	Libre
Filtrado	-	F ₂ S ₅	F ₃ S ₅		F ₅ S ₈	•

Gráfico 3.7. Ejemplo de programación de lote campaña Elaboración propia

En el gráfico 3.7 se han programado las operaciones de fabricación para 3 lotes de suspensiones (2 lotes de la suspensión 5 y 1 lote de la suspensión 8). Las posibles secuencias de fabricación han sido las siguientes:

Secuencia 1: suspensión 5 – suspensión 5 – suspensión 8; Secuencia 2: suspensión 5 – suspensión 8 – suspensión 5; Secuencia 3: suspensión 8 – suspensión 5 – suspensión 5;

Si tomamos la secuencia "a" o la secuencia "c" podríamos realizar la fabricación de los dos lotes de la suspensión 5 en 3 días (la secuencia "a" se muestra en el gráfico 3.7), pero si tomamos la secuencia "b" (mostrado en el gráfico 3.4) la fabricación de los dos lotes de la suspensión 5 se realizarían en 4 días necesariamente. El primer lote de la producción en campaña sigue el proceso normal ya que se mezcla en el primer día y se filtra en el segundo día, en cambio, el segundo lote (lote campaña) se mezcla en el primer día y se filtra en el tercer día.

Para que un lote campaña sea contabilizado dentro del mes, este debe ser fabricado (mezclado y filtrado) en el mismo mes, por lo que su fecha más temprana de mezclado es el primer día del mes y su fecha más temprana de filtrado, el tercer día del mes; en cambio, la fecha más tardía del mezclado es td_m-2 y del filtrado, td_m. Ver gráfico 3.8.

Operación	Día 1	Día 2	Día 3	 Día td _m -2	Día td _m -1	Día td _m
Mezclado	M_1S_5 M_1S_5	-	-	 $M_{td_m-2}S_2$ $M_{td_m-2}S_2$	-	-
Filtrado	-	F ₂ S ₅	F ₃ S ₅		F _{td_m-1} S ₂	$F_{td_m}S_2$

Gráfico 3.8. Fechas límites de fabricación en lotes campaña Elaboración propia

La ventaja de la producción en campaña radica en que se cuenta con disponibilidad de tanques de mezclado suficientes para realizar la operación de dos lotes en forma paralela. Empero, los dos lotes deben ser necesariamente del mismo producto para evitar la contaminación cruzada³.

Con la opción de la producción en campaña, se volvió a definir M_dS_j y F_dS_j , y se crearon las siguientes variables binarias:

M_dS_{1i}: decisión de mezclar en el día d un lote de la suspensión j

Donde $d=1,... td_m-1; j=1,...9$.

M_dS_{2i}: decisión de mezclar en el día d un lote campaña de la suspensión j

Donde $d=1,... td_m-2; j=1,...9$.

F_dS_{1i}: decisión de filtrar en el día d un lote de la suspensión j

Donde $d=2,... td_m; j=1,...9$.

F_dS_{2j}: decisión de filtrar en el día d un segundo lote consecutivo de la suspensión j

Donde $d=3,... td_m; j=1,...9$.

Al igual que los jarabes la decisión de mezclar y fabricar solo dependerá de la disponibilidad del área, o sea del valor de que se ha definido para dia_d. Tomando en cuenta que para las suspensiones solo se puede realizar una operación al día, las restricciones de capacidad de mezclado y filtrado para las suspensiones tienen la siguiente forma:

Mezclado

Sin lote campaña: $\sum_{j=1}^{9} M_d S_{1j} \le dia_d$; $\forall d=1,...td_m-1$. (c)

Con lote campaña: $\sum_{j=1}^{9} M_d S_{2j} \le dia_d$; $\forall d=1,...td_m-2$. (d)

Filtrado

Sin lote campaña: $\sum_{j=1}^{9} F_d S_{1j} \le dia_d$; $\forall d=2$. (e)

Con lote campaña: $\sum_{j=1}^{9} F_d S_{1j} + \sum_{j=1}^{9} F_d S_{2j} \le dia_d$; \forall d=3,...td_m. (f)

³ Contaminación cruzada: Contaminación de materia prima producto intermedio, o producto terminado, con otra materia prima o producto durante la producción. Tomado del Manual de Buenas Prácticas de Manufactura de Productos Farmacéuticos. DIGEMID, 1999.

En la práctica los jarabes y las suspensiones se programan conjuntamente por lo que el programador deberá decidir entre ambos. De acuerdo a esto, unimos las restricciones (a), (b), (c), (d), (e) y (f) y la convertimos en las siguientes restricciones:

Disponibilidad de capacidad en el proceso de mezclado sin lote campaña

$$\sum_{i=1}^{31} M_d J_i + \sum_{i=1}^{9} M_d S_{1i} \le dia_d ; \forall d=1,...td_m-1.$$
 (5)

$$\sum_{i=1}^{31} M_d J_i \le dia_d \; ; \; \forall \; d=td_m. \tag{6}$$

Disponibilidad de capacidad en el proceso de mezclado con lote campaña

$$\sum_{j=1}^{9} M_d S_{2j} \le dia_d \quad ; \quad \forall \ d=1,...td_m-2.$$
 (7)

Disponibilidad de capacidad en el proceso de filtrado sin lote campaña

$$\sum_{i=1}^{31} F_d J_i \le dia_d \quad ; \quad \forall d=1.$$
 (8)

$$\sum_{i=1}^{31} F_d J_i + \sum_{i=1}^{9} F_d S_{1i} \le dia_d \quad ; \quad \forall d=2.$$
 (9)

Disponibilidad de capacidad en el proceso de filtrado con lote campaña

$$\sum_{i=1}^{31} F_d J_i + \sum_{j=1}^{9} F_d S_{1j} + \sum_{j=1}^{9} F_d S_{2j} \le dia_d \; ; \; \forall \; d=3,...td_m.$$
 (10)

Para asegurarnos que el modelo realice la programación de la producción en campaña de manera correcta elaboramos las siguientes restricciones:

Relación entre el mezclado de dos lotes que se producen en campaña. Si se mezcla en el día d un lote campaña de la suspensión j " M_dS_{2j} ", entonces se mezcla en el día d un lote de la misma suspensión j " M_dS_{1j} ".

$$M_dS_{2j}-M_dS_{1j} \le 0$$
; $\forall d=1,...td_m-2$. $\forall j=1,...,9$. (11)

Relación entre el filtrado de dos lotes que se producen en campaña. Si se filtra en el día d+1 un segundo lote campaña de la suspensión j " F_dS_{2j} ", entonces se filtra en el día d un lote de la suspensión j " F_dS_{1j} ".

$$F_{(d+1)}S_{2j}-F_dS_{1j} \le 0 \; ; \; \forall \; d=2,...,td_m-1; \; \forall \; j=1,...9.$$
 (12)

Luego, para asegurarnos de que en la fabricación de suspensiones solo se realice una operación de mezclado o filtrado al día se elaboran las siguientes restricciones:

$$\sum_{j=1}^{9} F_d S_{1j} + \sum_{j=1}^{9} M_d S_{1j} \le 1 \; ; \; \forall \; d=2.$$
 (13)

$$\sum_{i=1}^{9} F_{d}S_{1j} + \sum_{i=1}^{9} F_{d}S_{2j} + \sum_{i=1}^{9} M_{d}S_{1j} \le 1 ; \forall d=3,...td_{m}-1.$$
 (14)

De igual modo, para asegurarnos de que el modelo realice la programación en la secuencia correcta programando primero el mezclado y luego el filtrado se realizan las siguientes restricciones:

Relación entre el proceso de mezclado y filtrado de jarabes

$$F_d J_i - M_d J_i \le 0$$
; $\forall i=1,...31$; $\forall d=1,...td_m$. (15)

$$M_d J_i - F_d J_i \le 0$$
; $\forall i = 1, ... 31$; $\forall d = 1, ... t d_m$. (16)

Relación entre el proceso de mezclado y filtrado de suspensiones sin lotes campaña

$$F_{(d+1)}S_{1j}-M_dS_{1j}\leq 0$$
; $\forall j=1,...9$; $\forall d=1,...td_m-1$. (17)

$$M_dS_{1j}-F_{(d+1)}S_{1j} \le 0$$
; $\forall j=1,...9$; $\forall d=1,...td_m-1$ (18)

Relación entre el proceso de mezclado y filtrado de suspensiones de lotes campaña

$$F_{(d+2)}S_{2i}-M_dS_{2i}\leq 0$$
; $\forall j=1,...9$; $\forall d=1,...td_m-2$. (19)

$$M_dS_{2j}-F_{(d+2)}S_{2j}\leq 0$$
; $\forall j=1,...9$; $\forall d=1,...td_m-2$. (20)

Otra restricción importante proviene de la característica de los productos controlados. Estos productos se fabrican con insumos cuya utilización es controlada por DIGEMID (Dirección General de Medicamentos, Insumos y Drogas). De tal forma que el día que se requiera fabricar un producto controlado, se necesita contar con la presencia de un personal de DIGEMID para que supervise las cantidades que se van a utilizar del insumo. Debido a que los trámites a realizarse para lograr que el personal de DIGEMID pueda supervisar el inicio de la fabricación dura alrededor de 17 a 19 días, la jefatura de manufactura sugiere que estos productos se programen a partir del día 20 de cada mes. Los productos controlados se muestran en la tabla 3.4.

Tabla 3.4. Relación de productos controlados

ID	Producto	Presentación	Tamaño de lote
J3	Jarabe 3	15 ml	6,534 unid
J7	Jarabe 7	60 ml	14,702 unid
J8	Jarabe 8	60 ml	14,702 unid
J18	Jarabe 18	60 ml	8,168 unid
J21	Jarabe 21	60 ml	14,702 unid
J22	Jarabe 22	60 ml	14,702 unid

Fuente: La Empresa (2013)

Elaboración propia

De acuerdo a la política actual para la programación de los productos controlados se elabora la siguiente restricción:

$$M_d J_i = 0 \; ; \; \forall \; d = 1, \dots 19; \; \forall \; i = 3, 7, 8, 18, 21, 22.$$
 (21)

Por otra parte, la cantidad de materia prima en kilogramos que le corresponde a cada lote del producto se muestra en la tabla 3.5. Se cuenta con 25 tipos de materia prima para los 40 productos existentes por lo que un tipo de materia prima puede utilizarse en más de un producto.

Tabla 3.5. Cantidad de materia prima por lote de producto

ID	Código de materia prima	Cantidad (kg/lote)
J1	MP01	56.50
J2	MP02	0.52
J3	MP03	3.09
J4	MP04	15.00
J5	MP05	1.00
J6	MP06	1.00
J7	MP07	1.96
J8	MP07	1.96
J9	MP08	55.34
J10	MP09	18.18
J11	MP10	0.55
J12	MP10	0.55
J13	MP02	0.37
J14	MP11	1.08
J15	MP12	0.10
J16	MP08	16.28
J17	MP08	55.34
J18	MP03	3.09
J19	MP04	11.20
J20	MP13	2.78

ID	Código de	Cantidad
	materia prima	(kg/lote)
J21	MP07	1.96
J22	MP07	1.96
J23	MP14	30.60
J24	MP15	1.89
J25	MP09	11.90
J26	MP16	4.00
J27	MP17	1.25
J28	MP08	16.28
J29	MP18	0.20
J30	MP18	0.19
J31	MP19	9.69
S1	MP20	33.98
S2	MP21	14.80
S3	MP21	29.60
S4	MP22	0.35
S5	MP23	0.36
S6	MP24	7.35
S7	MP20	33.98
S8	MP25	14.00
S9	MP25	28.00

Fuente: La Empresa (2013)

Para determinar la cantidad de materia prima utilizada en cada lote de producto se define a vcmjab, como el factor de conversión de lote a materia

prima para un lote del jarabe y vcmsus_j factor de conversión de lote a materia prima para un lote de la suspensión j, y se elabora la siguiente restricción:

$$MPU_{w}=vcmjab_{i}*JabP_{i}+vcmsus_{j}*SusP_{j}; \forall w=1,...25; \forall i=1,...31; \forall j=1,...9.$$
(22)

Finalmente para contabilizar la cantidad de lotes producidos en el mes, se utilizan las variables de decisión de mezclado M_dJ_i , M_dS_{1j} , M_dS_{2j} ya que estas inician la fabricación. Se elaboran las siguientes restricciones:

$$JabP_{i}-\sum_{d=1}^{30}M_{d}J_{i}=0 \; ; \; \forall \; i=1,...31. \tag{23}$$

$$SusP_{j}-\sum_{d=1}^{td_{m}-1}M_{d}S_{1j}-\sum_{d=1}^{td_{m}-2}M_{d}S_{2j}=0 ; \forall j=1,...9.$$
 (24)

Concluido con las operaciones de mezclado y filtrado, se termina con el proceso de fabricación en el área de manufactura. El siguiente proceso es el envasado, el cual se realiza en el área de empaque.

Proceso de envasado

El proceso de envasado está compuesto por las operaciones de dosificado, taponado, limpieza de frascos y almacenamiento de frascos en bandejas; y todas se realizan simultáneamente. En el modelo se utilizaron las siguientes variables binarias:

E_dJ_i: decisión de envasar en el día d un lote del jarabe i

Donde $d=2,... td_m+1; i=1,...31.$

E_dS_{1i}: decisión de envasar en el día d un lote de la suspensión j

Donde $d=3,... td_m+1; j=1,...9.$

E_dS_{2i}: decisión de envasar en el día d un lote campaña de la suspensión j

Donde $d=4,... td_m+1; j=1,...9$.

A diferencia de la fabricación, las fechas más tempranas para el proceso de envasado son d=2 para los lotes de jarabes, d=3 para los lotes de suspensiones de producción normal y d=4 para los lotes campaña de las suspensiones; la fecha más tardía es d=td_m+1 para cualquier producto. Ver en los gráficos 3.9, 3.10 y 3.11.

Operación	Día 1	Día 2	 Día td _m	Día td _m +1
Mezclado	M_1J_3		 $M_{td_m}J_{19}$	
Filtrado	M_1J_3		 $M_{td_m}J_{19}$	
Envasado		E ₂ J ₃		E _{tdm} +1J ₁₉

Gráfico 3.9. Fechas límites de envasado en jarabes Elaboración propia

Operación	Día 1	Día 2	Día 3	 Día td _m -1	Día td _m	Día td _m +1
Mezclado	M ₁ S ₁₅	1	7	 $M_{td_m-1}S_{12}$	-	
Filtrado		F ₂ S ₁₅	7	 1.0	F _{td_m} S ₁₂	
Envasado			E ₃ S ₁₅	7		E _{tdm+1} S ₁₂

Gráfico 3.10. Fechas límites de envasado en suspensiones Elaboración propia

Operación	Día 1	Día 2	Día 3	Día 4		Día td _m - 2	Día td _m -1	Día td _m	Día td _m +1
Mezclado	$M_1S_{15} M_1S_{25}$	//	•			$M_{td_{m}-2}S_{12}$ $M_{td_{m}-2}S_{22}$	1	-	
Filtrado		F ₂ S ₁₅	F ₂ S ₂₅	\sim			$F_{td_m}S_{12}$	$F_{td_m}S_{22}$	
Envasado			E ₃ S ₁₅	E ₃ S ₁₅	:			$E_{td_m}S_{12}$	$E_{td_m+1}S_{22}$

Gráfico 3.11. Fechas límites de envasado en lotes campaña Elaboración propia

La capacidad de La Planta para el proceso de envasado depende de la disponibilidad del área, o sea del valor de que el programador defina para dia_d. El *lead time* del proceso de acondicionado se mide en días por lote y es un día por cada lote de jarabe y un día por cada lote de suspensión. De este modo, si dia_d= 1 solo podemos realizar el envasado de un lote en cada día. En el modelo, se elaboran las siguientes restricciones:

Disponibilidad de capacidad en el proceso de envasado sin lote campaña

$$\sum_{i=1}^{31} E_d J_i \le dia_d \; ; \; \forall \; d=2. \tag{25}$$

$$\sum_{i=1}^{31} E_d J_i + \sum_{i=1}^{9} E_d S_{1i} \le dia_d \; ; \; \forall \; d=3.$$
 (26)

Disponibilidad de capacidad en el proceso de envasado con lote campaña

$$\sum_{i=1}^{31} E_d J_i + \sum_{i=1}^9 E_d S_{1i} + \sum_{i=1}^9 E_d S_{2i} \le dia_d \; ; \; \forall \; d=4,...td_m + 1.$$
 (27)

Así mismo, para asegurar que el proceso de envasado de un lote que se realiza en el día d+1 sea consecutivo a la operación de filtrado del mismo que se realiza en el día d, se elaboran las siguientes restricciones:

Relación entre el proceso de filtrado y envasado de un lote de un jarabe

$$E_{(d+1)}J_i-F_dJ_i \le 0$$
; $\forall i=1,...,31$; $\forall d=1,...td_m$. (28)

$$F_d J_i - E_{(d+1)} J_i \le 0$$
; $\forall i=1,...,31$; $\forall d=1,...td_m$. (29)

Relación entre el proceso de filtrado y envasado de un lote de una suspensión

$$E_{(d+1)}S_{1i}-F_dS_{1i} \le 0 \; ; \; \forall \; j=1,...,9; \; \forall \; d=2,...td_m.$$
 (30)

$$F_dS_{1j}-E_{(d+1)}S_{1j} \le 0$$
; $\forall j=1,...,9$; $\forall d=2,...td_m$. (31)

Relación entre el proceso de filtrado y envasado de un lote campaña de suspensión

$$E_{(d+1)}S_{2j}-F_dS_{2j} \le 0 \; ; \; \forall \; j=1,...,9; \; \forall \; d=3,...td_m.$$
 (32)

$$F_dS_{2i}-E_{(d+1)}S_{2i} \le 0$$
; $\forall j=1,...9$; $\forall d=3,...td_m$. (33)

El jefe del área ha sugerido que se evite programar en días consecutivos, es decir en día d y día d+1, dos productos cuyo tamaño de lote (TL) exceda las 10,000 unidades, por restricciones de capacidad de las bandejas de almacenamiento. En la tabla 3.6 se muestran los productos que exceden las 10,000 unidades en tamaño de lote.

Tabla 3.6. Productos con TL mayor a 10,000 unid

ID	Descripción	Presentación	Tamaño de lote
J1	Jarabe 1	15 ml	12,545 unid
J5	Jarabe 5	10 ml	19,602 unid
J7	Jarabe 7	60 ml	14,702 unid
J8	Jarabe 8	60 ml	14,702 unid
J21	Jarabe 21	60 ml	14,702 unid
J22	Jarabe 22	60 ml	14,702 unid
J24	Jarabe 24	30 ml	11,761 unid
J29	Jarabe 29	15 ml	12,545 unid
J30	Jarabe 30	15 ml	13,068 unid

Fuente: La Empresa (2013)

Elaboración propia

Para asegurar que se cumpla lo descrito en el anterior párrafo, se elabora la siguiente restricción:

$$\begin{split} &E_{d}J_{3}+E_{d}J_{7}+E_{d}J_{8}+E_{d}J_{18}+E_{d}J_{21}+E_{d}J_{22}+E_{d+1}J_{3}+E_{d+1}J_{7}+E_{d+1}J_{8}\\ &+E_{d+1}J_{18}+E_{d+1}J_{21}+E_{d+1}J_{22}\leq 0\;;\;\forall\;d=2,...td_{m}. \end{split} \tag{34}$$

A cada lote le corresponde una cantidad de frascos igual al tamaño de lote más un 2% por los frascos defectuosos. Se cuenta con 26 tipos de envase para los 40 productos existentes por lo que un tipo de frasco puede utilizarse para más de un producto. La lista producto-envase se muestra en la tabla 3.7.

Tabla 3.7. Cantidad de envases por lote de producto

rabia orri Garinada de								
ID	Código de	Cantidad						
	envase	(unid/lote)						
J1	ENV01	12,796						
J2	ENV02	6,665						
J3	ENV03	6,665						
J4	ENV04	9,997						
J5	ENV05	19,994						
J6	ENV06	7,998						
J7	ENV07	14,996						
J8	ENV07	14,996						
J9	ENV08	4,999						
J10	ENV09	5,554						
J11	ENV10	4,999						
J12	ENV10	4,999						
J13	ENV08	5,832						
J14	ENV07	5,998						
J15	ENV08	1,666						
J16	ENV06	9,997						
J17	ENV08	4,999						
J18	ENV07	8,331						
J19	ENV11	5,832						
J20	ENV12	9,997						

ID	Código de	Cantidad
ID	envase	(unid/lote)
J21	ENV07	14,996
J22	ENV07	14,996
J23	ENV13	4,999
J24	ENV14	11,996
J25	ENV15	6,248
J26	ENV16	4,999
J27	ENV17	2,499
J28	ENV06	9,997
J29	ENV18	12,796
J30	ENV19	13,329
J31	ENV20	2,999
S1	ENV21	2,399
S2	ENV22	5,832
S3	ENV22	5,832
S4	ENV23	1,944
S5	ENV12	3,499
S6	ENV22	5,832
S7	ENV24	2,399
S8	ENV25	5,832
S9	ENV26	6,998

Fuente: La Empresa (2013)

Para determinar la cantidad de envases utilizados por cada lote de producto se define a vcesus_j factor de conversión de lote a envases para un lote de la suspensión j y vcejab_i como factor de conversión de lote a envases para un lote del jarabe i y se utiliza la siguiente restricción:

$$ENU_z = vcejab_i * JabP_i + vcesus_i * SusP_i; \forall w=1,...,25. \forall i=1,...,31. \forall j=1,...,9.$$
(35)

Después de envasar el producto, continúa el proceso de acondicionado.

• Proceso de acondicionado

El proceso de acondicionado está compuesto por las operaciones de pegado de etiqueta y colocación del producto en cajas de presentación para venta; y todas se realizan simultáneamente. En el modelo se utilizaron las siguientes variables binarias:

A_dJ_i: decisión de acondicionar en el día d un lote del jarabe i

Donde $d=3,... td_m+2; i=1,...31.$

A_dS_{1i}: decisión de acondicionar en el día d un lote de la suspensión j

Donde $d=4,... td_m+2; j=1,...9.$

 $\mathsf{A}_\mathsf{d}\mathsf{S}_{2j}$: decisión de acondicionar en el día d un lote campaña de la

suspensión j

Donde $d=5,... td_m+2; j=1,...9$.

Las fechas más tempranas para el proceso de acondicionado son d=3 para los lotes de jarabes, d=4 para los lotes de suspensiones de producción normal y d=5 para los lotes de suspensiones de producción en campaña; las fechas más tardías es d=td_m+2 para cualquier producto. Ver en los gráficos 3.12, 3.13 y 3.14.

Operación	Día 2	Día 2	 Día td _m +1	Día td _m +2
Envasado	E_2J_3		E _{tdm} +1J ₁₉	
Acondicionado		A_3J_3		E _{tdm} +2J ₁₉

Gráfico 3.12. Fechas límites de acondicionado en jarabes Elaboración propia

Operación	Día 2	Día 3	Día 4	 Día td _m	Día td _m +1	Día td _m +2
Filtrado	F ₂ S ₁₅			 $F_{td_m}S_{12}$		
Envasado		E ₃ S ₁₅		 -	E _{tdm+1} S ₁₂	
Acondicionado			A ₄ S ₁₅			$A_{td_m+2}S_{12}$

Gráfico 3.13. Fechas límites de acondicionado en suspensiones Elaboración propia

Operación	Día 2	Día 3	Día 4	Día 5		Día td _m -1	Día td _m	Día td _m +1	Día td _m +2
Filtrado	F ₂ S ₁₅	F ₃ S ₂₅				F _{td_m-1} S ₁₂	$F_{td_m}S_{22}$		
Envasado		E ₃ S ₁₅	E ₄ S ₂₅				E _{td_m} S ₁₂	E _{td_m+1} S ₂₂	
Acondicionado	1		A ₄ S ₁₅	A ₅ S ₂₅	3/	1/_		$A_{td_m+1}S_{12}$	$A_{td_m+2}S_{22}$

Gráfico 3.14. Fechas límites de acondicionado en lotes campaña Elaboración propia

Del mismo modo que en los procesos anteriores, el acondicionado de un lote dependerá de la disponibilidad del área, o sea del valor de que se ha definido para dia_d. El *lead time* del proceso de acondicionado se mide en días por lote y es un día por cada lote de jarabe y un día por cada lote de suspensión. De este modo, si dia_d= 1 solo podemos realizar el acondicionado de un lote en cada día. En el modelo, se elaboran las siguientes restricciones:

Disponibilidad de capacidad en el proceso de acondicionado sin lotes campaña

$$\sum_{i=1}^{31} A_d J_i \le 1 \; ; \; \forall \; d=3.$$
 (36)

$$\sum_{i=1}^{31} A_d J_i + \sum_{i=1}^{9} A_d S_{1i} \le 1 \quad ; \quad \forall d=4.$$
 (37)

Disponibilidad de capacidad en el proceso de acondicionado con lotes campaña

$$\textstyle \sum_{i=1}^{31} A_d J_i + \sum_{j=1}^{9} A_d S_{1j} + \sum_{j=1}^{9} A_d S_{2j} \leq 1 \;\; ; \;\; \forall \; d=5,...td_m + 2. \eqno(38)$$

Así mismo, para asegurar que el proceso de acondicionado de un lote que se realiza en el día d+1 sea consecutivo al proceso de envasado del mismo que se realiza en el día d, se elaboran las siguientes restricciones:

Relación entre el proceso de envasado y acondicionado de un lote de un jarabe

$$A_{(d+1)}J_i-E_dJ_i \le 0$$
; $\forall i=1,...,31$; $\forall d=2,...td_m+1$. (39)

$$E_d J_i - A_{(d+1)} J_i \le 0$$
; $\forall i=1,...,31$; $\forall d=2,...td_m+1$. (40)

Relación entre el proceso de envasado y acondicionado de un lote de una suspensión

$$A_{(d+1)}S_{1i}-E_{d}S_{1i} \le 0$$
; $\forall j=1,...9$; $\forall d=3,...td_{m}+1$. (41)

$$E_dS_{1j}-A_{(d+1)}S_{1j} \le 0$$
; $\forall j=1,...9$; $\forall d=3,...td_m+1$. (42)

Relación entre el proceso de envasado y acondicionado de un lote campaña de una suspensión

$$A_{(d+1)}S_{2j}-E_dS_{2j} \le 0$$
; $\forall j=1,...9$; $\forall d=4,...td_m+1$. (43)

$$E_dS_{2j}-A_{(d+1)}S_{2j} \le 0$$
; $\forall j=1,...9$; $\forall d=4,...td_m+1$. (44)

Los estructura de costos para el caso se dividen en cuatro partes: costo de mezclado, costo de filtrado, costo de envasado y costo de acondicionado. El costo se incurre solo cuando se programa un lote de producto y varía de acuerdo al día en el que se programe. Si el proceso se programa en día de semana (lunes a viernes) entonces el costo es de turno normal, en cambio, si el proceso se programa un fin de semana (sábado o domingo), entonces el costo será de turno extra. Los turnos extras se pueden evitar, pero por la alta demanda existente, se deben aprovechar de manera que se utilicen los turnos extras para procesar los productos más rentables. En la tabla 3.8, se muestra el precio de venta de cada producto y los costos de cada proceso en turno normal (TN) y turno extra (TE) para un lote de cada producto. Estos datos son variables no controladas del modelo y para efectos de la programación se definen los siguientes parámetros:

Pvjab_i: precio de venta del jarabe i

Donde i=1,...31.

Pvsus_i: precio de venta de la suspensión j

Donde j=1,...9.

Cpm_dJ_i: costo de mezclar en el día d un lote del jarabe i

Donde i=1,...31; d=1,... td_m.

Cpm_dS_{1i}: costo de mezclar en el día d un lote de la suspensión j

Donde j=1,...9; $d=1,... td_m-1$.

Cpm_dS_{2i}:costo de mezclar en el día d un lote campaña de la suspensión j

Donde j=1,...9; $d=1,... td_m-2$.

Cpf_dJ_i: costo de filtrar en el día d un lote del jarabe i

Donde i=1,...31; $d=1,... td_m$.

Cpf_dS_{1i}: costo de filtrar en el día d un lote de la suspensión j

Donde j=1,...9; $d=2,... td_m$.

 $\mathsf{Cpf}_\mathsf{d}\mathsf{S}_{2j}$: costo de filtrar en el día d un lote campaña de la suspensión j

Donde j=1,...9; d=3,... td_{m} .

Cpe_dJ_i: costo de envasar en el día d un lote del jarabe i

Donde i=1,...31; $d=2,... td_m+1$.

 Cpe_dS_{1i} : costo de envasar en el día d un lote de la suspensión j

Donde j=1,...9; $d=3,... td_m+1$.

 $\mathsf{Cpe_dS}_{2\mathsf{j}}$: costo de envasar en el día d un lote campaña de la suspensión j

Donde j=1,...9; d=4,... td_m+1 .

Cpa_dJ_i: costo de acondicionar en el día d un lote del jarabe i

Donde i=1,...31; $d=3,... td_m+2$.

 Cpa_dS_{1j} : costo de acondicionar en el día d un lote de la suspensión j

Donde j=1,...9; $d=4,... td_m+2$.

 Cpa_dS_{2i} : costo de acondicionar en el día d un lote campaña de la

suspensión j

Donde j=1,...9; d=5,... td_m+2 .

Tabla 3.8. Precio de venta y costos de operación por lote de producto

ID	PV (S/.)	Mz Tn (S/.)	Mz Te (S/.)	Fr Tn (S/.)	Fr Te (S/.)	En Tn (S/.)	En Te (S/.)	Ac Tn (S/.)	Ac Te (S/.)
J1	24,086	7,025	7,728	3,011	3,312	4,014	4,415	6,022	6,624
J2	3,450	1,006	1,107	432	475	575	633	862	948
J3	14,584	4,254	4,679	1,823	2,005	2,431	2,674	3,645	4,010
J4	18,936	5,523	6,075	2,367	2,604	3,156	3,472	4,734	5,207
J5	41,400	13,173	13,832	5,645	5,927	7,527	7,903	11,291	11,856
J6	7,417	2,360	2,478	1,012	1,063	1,349	1,416	2,022	2,123
J7	35,504	10,806	11,670	4,631	5,001	6,175	6,669	9,261	10,002
J8	34,152	10,394	11,226	4,455	4,811	5,939	6,414	8,909	9,622
J9	14,709	4,477	4,835	1,918	2,071	2,558	2,763	3,837	4,144
J10	43,018	13,092	14,139	5,612	6,061	7,481	8,079	11,222	12,120
J11	17,865	5,437	5,872	2,331	2,517	3,107	3,356	4,660	5,033
J12	17,020	5,180	5,594	2,220	2,398	2,960	3,197	4,440	4,795
J13	16,740	4,883	5,371	2,092	2,301	2,790	3,069	4,185	4,604

ID	PV (S/.)	Mz Tn (S/.)	Mz Te (S/.)	Fr Tn (S/.)	Fr Te (S/.)	En Tn (S/.)	En Te (S/.)	Ac Tn (S/.)	Ac Te (S/.)
J14	14,184	4,137	4,551	1,773	1,950	2,364	2,600	3,546	3,901
J15	8,880	2,590	2,849	1,110	1,221	1,480	1,628	2,220	2,442
J16	23,640	6,895	7,585	2,955	3,251	3,940	4,334	5,910	6,501
J17	15,701	4,579	5,037	1,963	2,159	2,617	2,879	3,925	4,318
J18	20,778	6,060	6,666	2,598	2,858	3,463	3,809	5,194	5,713
J19	14,407	4,202	4,622	1,801	1,981	2,401	2,641	3,602	3,962
J20	26,698	7,787	8,566	3,337	3,671	4,450	4,895	6,674	7,341
J21	35,107	10,240	11,264	4,388	4,827	5,851	6,436	8,777	9,655
J22	36,695	10,703	11,773	4,587	5,046	6,116	6,728	9,173	10,090
J23	15,255	4,854	5,097	2,080	2,184	2,774	2,913	4,160	4,368
J24	39,359	11,979	12,937	5,134	5,545	6,845	7,393	10,267	11,088
J25	40,295	12,264	13,245	5,256	5,676	7,008	7,569	10,511	11,352
J26	15,328	4,665	5,038	2,000	2,160	2,666	2,879	3,998	4,318
J27	21,359	6,501	7,021	2,786	3,009	3,715	4,012	5,571	6,017
J28	23,895	7,272	7,854	3,117	3,366	4,156	4,488	6,233	6,732
J29	35,058	10,670	11,524	4,573	4,939	6,097	6,585	9,145	9,877
J30	26,450	8,050	8,694	3,450	3,726	4,600	4,968	6,900	7,452
J31	49,334	15,015	16,216	6,435	6,950	8,580	9,266	12,869	13,899
S1	15,365	4,676	5,050	2,005	2,165	2,672	2,886	4,008	4,329
S2	20,250	6,163	6,656	2,642	2,853	3,522	3,804	5,282	5,705
S3	24,262	7,384	7,975	3,165	3,418	4,219	4,557	6,329	6,835
S4	11,922	3,628	3,918	1,556	1,680	2,073	2,239	3,110	3,359
S5	13,955	4,070	4,477	1,745	1,920	2,326	2,559	3,488	3,837
S6	15,917	4,642	5,106	1,990	2,189	2,653	2,918	3,979	4,377
S7	15,130	4,413	4,854	1,891	2,080	2,522	2,774	3,782	4,160
S8	18,936	5,523	6,075	2,367	2,604	3,156	3,472	4,734	5,207
S9	23,464	6,844	7,528	2,933	3,226	3,911	4,302	5,865	6,452
1 1	Ji: jarab	e i, Sj: susp	ensión j, M	z: mezclar,	Fr: filtrar,	En: envasa	ar, Ac: aco	ndicionar	

Fuente: La Empresa (2013)

Elaboración propia

En el caso de que se realice la producción en campaña, existe un ahorro que se reflejaría en la disminución de los costos de mezclado. Los nuevos costos para el lote campaña se muestran en la tabla 3.9. Estos valores se almacenan en el parámetro $\operatorname{Cpm_dS_{2j}}$ definido anteriormente.

Tabla 3.9. Costo de mezclado de producción en lote campaña

ID	Mz Tn (S/.)	Mz Te (S/.)	Ahorro Tn (S/.)	Ahorro Te (S/.)
S1 lote 2	4,208	4,545	468	505
S2 lote 2	5,547	5,990	616	666
S3 lote 2	6,646	7,178	738	797
S4 lote 2	3,265	3,526	363	392
S5 lote 2	3.663	4,029	407	448
S6 lote 2	4,178	4,595	464	511
S7 lote 2	3,972	4,369	441	485
S8 lote 2	4,971	5,468	551	607
S9 lote 2	6,160	6,775	684	753

Fuente: La Empresa (2013)

Para la definición de la función objetivo se considera las siguientes formas:

La suma de costos de producción:

$$\begin{pmatrix} \text{Costo de} \\ \text{producción} \end{pmatrix} = \begin{pmatrix} \text{Costo de} \\ \text{mezclar} \end{pmatrix} + \begin{pmatrix} \text{Costo de} \\ \text{filtrar} \end{pmatrix} + \begin{pmatrix} \text{Costo de} \\ \text{envasar} \end{pmatrix} + \begin{pmatrix} \text{Costo de} \\ \text{acondicionar} \end{pmatrix}$$

El ingreso obtenido por la venta:

La utilidad obtenida:

Para el caso de estudio se busca obtener un programa de producción que indique el día en que se realizará el mezclado, filtrado, envasado y acondicionado de los productos tal que se logre obtener la máxima utilidad por cada lote de producto. Para esto se tiene que tener en cuenta la prioridad de atención de los clientes y, además, la demanda, los insumos disponibles y la disponibilidad de días de fabricación que se tienen a lo largo del mes. De acuerdo a esto se plantea la función objetivo siguiente:

Minimizar
$$Z=P_1*U_1+P_2*U_2+P_3*U_3$$

Los objetivos por orden de prioridad son los siguientes:

- Maximizar la utilidad sin costos fijos considerando únicamente los productos del cliente LLPP.
- 2. Maximizar la utilidad sin costos fijos considerando únicamente los productos del cliente Retail.
- Maximizar la utilidad sin costos fijos considerando únicamente los productos del cliente Terceros

En donde: $P_1 \gg P_2 \gg P_3$

Además, para cada cliente se busca lo siguiente:

Maximizar la utilidad sin costos fijos considerando únicamente los productos del cliente LLPP.

$$\begin{split} & \left(\mathsf{Pvjab}_{i}^{\, *} \mathsf{JabP}_{i} \right) + \left(\mathsf{Pvsus}_{j}^{\, *} \mathsf{SusP}_{j} \right) - \sum_{d=1}^{td_{m}} \left(\mathsf{Cpm}_{d} \mathsf{J}_{i}^{\, *} \mathsf{M}_{d} \mathsf{J}_{i} \right) - \sum_{d=1}^{td_{m}-1} \left(\mathsf{Cpm}_{d} \mathsf{S}_{1j}^{\, *} \mathsf{M}_{d} \mathsf{S}_{1j} \right) \\ & - \sum_{d=1}^{td_{m}-2} \left(\mathsf{Cpm}_{d} \mathsf{S}_{2j}^{\, *} \mathsf{M}_{d} \mathsf{S}_{2j} \right) - \sum_{d=1}^{td_{m}} \left(\mathsf{Cpf}_{d} \mathsf{J}_{i}^{\, *} \mathsf{F}_{d} \mathsf{J}_{i} \right) - \sum_{d=2}^{td_{m}} \left(\mathsf{Cpf}_{d} \mathsf{S}_{1j}^{\, *} \mathsf{F}_{d} \mathsf{S}_{1j} \right) \\ & - \sum_{d=3}^{td_{m}} \left(\mathsf{Cpf}_{d} \mathsf{S}_{2j}^{\, *} \mathsf{F}_{d} \mathsf{S}_{2j} \right) - \sum_{d=2}^{td_{m}+1} \left(\mathsf{Cpe}_{d} \mathsf{J}_{i}^{\, *} \mathsf{E}_{d} \mathsf{J}_{i} \right) - \sum_{d=3}^{td_{m}+1} \left(\mathsf{Cpe}_{d} \mathsf{S}_{1j}^{\, *} \mathsf{E}_{d} \mathsf{S}_{1j} \right) \\ & - \sum_{d=4}^{td_{m}+2} \left(\mathsf{Cpa}_{d} \mathsf{S}_{2j}^{\, *} \mathsf{E}_{d} \mathsf{S}_{2j} \right) + \mathsf{U}_{1} - \mathsf{V}_{1} = \mathsf{M}; \; \forall \; i=7, \dots 12, 24, \dots 31; \; \forall \; j=1, \dots 4 \dots \\ \end{split}$$

Maximizar la utilidad sin costos fijos considerando únicamente los productos del cliente Retail.

$$\begin{split} & \left(\mathsf{Pvjab}_{i}^{\, *} \mathsf{JabP}_{i} \right) + \left(\mathsf{Pvsus}_{j}^{\, *} \mathsf{SusP}_{j} \right) - \sum_{d=1}^{td_{m}} \left(\mathsf{Cpm}_{d} \mathsf{J}_{i}^{\, *} \mathsf{M}_{d} \mathsf{J}_{i} \right) - \sum_{d=1}^{td_{m}-1} \left(\mathsf{Cpm}_{d} \mathsf{S}_{1j}^{\, *} \mathsf{M}_{d} \mathsf{S}_{1j} \right) \\ & - \sum_{d=1}^{td_{m}-2} \left(\mathsf{Cpm}_{d} \mathsf{S}_{2j}^{\, *} \mathsf{M}_{d} \mathsf{S}_{2j} \right) - \sum_{d=1}^{td_{m}} \left(\mathsf{Cpf}_{d} \mathsf{J}_{i}^{\, *} \mathsf{F}_{d} \mathsf{J}_{i} \right) - \sum_{d=2}^{td_{m}} \left(\mathsf{Cpf}_{d} \mathsf{S}_{1j}^{\, *} \mathsf{F}_{d} \mathsf{S}_{1j} \right) \\ & - \sum_{d=3}^{td_{m}} \left(\mathsf{Cpf}_{d} \mathsf{S}_{2j}^{\, *} \mathsf{F}_{d} \mathsf{S}_{2j} \right) - \sum_{d=2}^{td_{m}+1} \left(\mathsf{Cpe}_{d} \mathsf{J}_{i}^{\, *} \mathsf{E}_{d} \mathsf{J}_{i} \right) - \sum_{d=3}^{td_{m}+1} \left(\mathsf{Cpe}_{d} \mathsf{S}_{1j}^{\, *} \mathsf{E}_{d} \mathsf{S}_{1j} \right) \\ & - \sum_{d=4}^{td_{m}+1} \left(\mathsf{Cpe}_{d} \mathsf{S}_{2j}^{\, *} \mathsf{E}_{d} \mathsf{S}_{2j} \right) - \sum_{d=3}^{td_{m}+2} \left(\mathsf{Cpa}_{d} \mathsf{J}_{i}^{\, *} \mathsf{A}_{d} \mathsf{J}_{i} \right) - \sum_{d=4}^{td_{m}+2} \left(\mathsf{Cpa}_{d} \mathsf{S}_{1j}^{\, *} \mathsf{A}_{d} \mathsf{S}_{1j} \right) \\ & - \sum_{d=5}^{td_{m}+2} \left(\mathsf{Cpa}_{d} \mathsf{S}_{2j}^{\, *} \mathsf{A}_{d} \mathsf{S}_{2j} \right) + \mathsf{U}_{2} - \mathsf{V}_{2} = \mathsf{M}; \ \forall \ i=1, \dots 4, 13, \dots 22; \ \forall \ j=5, \dots 9. \end{split}$$

Maximizar la utilidad sin costos fijos considerando únicamente los productos del cliente Terceros

$$\begin{split} & \left(\text{Pvjab}_{i}^{\, *} \text{JabP}_{i} \right) - \sum_{d=1}^{td_{m}} \left(\text{Cpm}_{d} \text{J}_{i}^{\, *} \text{M}_{d} \text{J}_{i} \right) - \sum_{d=1}^{td_{m}} \left(\text{Cpf}_{d} \text{J}_{i}^{\, *} \text{F}_{d} \text{J}_{i} \right) - \sum_{d=2}^{td_{m}+1} \left(\text{Cpe}_{d} \text{J}_{i}^{\, *} \text{E}_{d} \text{J}_{i} \right) \\ & - \sum_{d=3}^{td_{m}+2} \left(\text{Cpa}_{d} \text{J}_{i}^{\, *} \text{A}_{d} \text{J}_{i} \right) \, + \, \text{U}_{3} \text{- V}_{3} \text{= M; } \forall \text{ i=5,6,23.} \end{split}$$

Para la programación se toma en cuenta el calendario del área de fabricaciones que se muestra en el cuadro 3.6. En el calendario se consideran 7 días a la semana; desde el día lunes hasta el viernes se trabajan como turno normal, y los días sábados y domingos se trabajan como turno extra.

Cada mes cuenta con número determinado de días para fabricar (td_m). En el calendario se han tachado los días en que el área de fabricaciones no está operativa por trabajos de mantenimiento y feriados no laborables. En el cuadro 3.7 se muestra un resumen del calendario.

Cuadro 3.6. Calendario usado para la programación

Mes	L	М	М	J	٧	S	D	L	М	М	J	V	S	D	Mes
	-	4	2	3	4	5	6	7	8	9	10	11	12	13	
Enero	14	15	16	17	18	19	20	21	22	23	24	25	26	27	
_	28	29	30	31	4	2	എ	4	5	6	7	8	9	10	П
	11	12	13	14	15	16	17	18	19	20	21	22	23	2 4	Febrero
	25	26	27	28	4	2	ф	4	5	6	7	8	9	10	Ö
Marzo	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
ı	25	26	27	28	29	30	31	1	2	3	4	5	6	7	
	8	9	10	11	12	13	14	15	16	17	18	19	20	21	Abril
	22	23	24	25	26	27	28	29	30	1	2	3	4	5	
Mayo	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
	20	21	22	23	24	25	26	27	28	29	30	31	-	-	

Fuente: La Empresa (2013)

Elaboración propia

Cuadro 3.7. Resumen del calendario

Mes de fabricación	Total de días en el mes	Días operativos en turno normal	Días operativos en turno extra
Enero-2013	31	16	8
Febrero-2013	28	7	2
Marzo-2013	31	18	8
Abril-2013	30	22	8
Mayo-2013	31	18	6

Fuente: La Empresa (2013)

Elaboración propia

Finalmente, se describen los supuestos clave de este caso:

- ➤ El periodo de estudio del modelo será de cinco meses los cuales comprende a enero, febrero, marzo, abril y mayo del 2013. Cada mes cuenta con un determinado número de días operativos divididos en días de turno normal y turno extra.
- ➤ El inventario de insumos disponibles (materia prima y envases) es dato de entrada y se verifica en el sistema de stock de inventarios con el que cuenta La Planta, antes del inicio de cada mes.

- La materia prima que se considera en el modelo es el principio activo, ya que es el principal componente de cada producto.
- ➤ La demanda de productos se encuentra en el plan de producción y es dato de entrada para la programación. Los productos que no se fabriquen se acumulan para el siguiente periodo.
- ➤ El mezclado, filtrado, envasado y acondicionado se realizan de manera consecutiva y de acuerdo a *lead time* de cada proceso.
- ➤ Los costos de materia prima, mano de obra directa (operarios) e indirecta (supervisores) se considerarán como costos variables que solo se incurren si se toma la decisión de procesar un lote de producto. El ahorro considerado en la operación de mezclado de suspensión debido a la producción en campaña fueron calculados mediante el juicio de los operarios y supervisores considerando a la mano de obra como la principal fuente de ahorro.
- ➤ El orden de prioridad de atención a los clientes se basa en la cobertura determinada para cada uno. El cliente que requiere la mayor cobertura en sus productos es aquel que tiene la mayor prioridad.

En el Anexo 2 se muestra un resumen del modelo matemático.

3.3.2 Resultados del modelo

Se realizó la modelación para los meses de enero hasta mayo del 2013 obteniéndose una utilidad total de S/.73,081.00 por encima de los resultados reales de la empresa en el mismo periodo de producción y, además, se logró producir 15 lotes más que la empresa. Los programas propuestos para los meses de enero a mayo del 2013 se muestran en las tablas 3.10 a 3.14, mientras que los resultados se muestran en la tabla 3.15.

Tabla 3.10. Programa de producción del mes de enero 2013

Mes	de Enero, 2	2013	OPERACIONES						
	Fecha		M1	M2	F	E	Α		
01/01/13	mar	TN	INOP.	INOP.	INOP.				
02/01/13	mié	TN	INOP.	INOP.	INOP.				
03/01/13	jue	TN	J23		J23				
04/01/13	vie	TN	S6			J23			
05/01/13	sáb	TE			S6		J23		
06/01/13	dom	TE	J9		J9	S6			
07/01/13	lun	TN	J29		J29	J9	S6		
08/01/13	mar	TN	J20		J20	J29	J9		
09/01/13	mié	TN	J31	DA	J31	J20	J29		
10/01/13	jue	TN	S7	DAY		J31	J20		
11/01/13	vie	TN		1	S7		J31		
12/01/13	sáb	TE	S3			S7			
13/01/13	dom	/ TE	7		S3		S7		
14/01/13	lun	TN	J25		J25	S3			
15/01/13	mar	TN	J25		J25	J25	S3		
16/01/13	mié	TN	J13		J13	J25	J25		
17/01/13	jue	TN	J19	411	J19	J13	J25		
18/01/13	vie	TN	S8		7/	J19	J13		
19/01/13	sáb	TE			S8		J19		
20/01/13	dom	TE	J30		J30	S8			
21/01/13	lun	TN	J5	2	J5	J30	S8		
22/01/13	mar	TN	J3		J3	J5	J30		
23/01/13	mié	TN	J4		J4	J3	J5		
24/01/13	jue	TN	J8		J8	J4	J3		
25/01/13	vie	TN	S6	S6		J8	J4		
26/01/13	sáb	TE			S6		J8		
27/01/13	dom	TE			S6	S6			
28/01/13	lun	TN	INOP.	INOP.	INOP.	S6	S6		
29/01/13	mar	TN	INOP.	INOP.	INOP.		S6		
30/01/13	mié	TN	INOP.	INOP.	INOP.				
31/01/13	jue	TN	INOP.	INOP.	INOP.				

Turno normal (TN), Turno extra (TE).

Operaciones: Mezclado (M), Filtrado (F), Envasado (E), Acondicionado (A), Inoperativo (INOP).

^{*}M1: Producción normal de un lote.

**M2: Mezclado de un segundo lote (producción en campaña).

Tabla 3.11. Programa de producción del mes de febrero 2013

Mes	de Febrero,	2013		0	PERACIONE	S	
	Fecha		M1*	M2**	F	E	Α
01/02/13	vie	TN	INOP.	INOP.	INOP.		
02/02/13	sáb	TE	INOP.	INOP.	INOP.		
03/02/13	dom	TE	INOP.	INOP.	INOP.		
04/02/13	lun	TN	INOP.	INOP.	INOP.		
05/02/13	mar	TN	INOP.	INOP.	INOP.		
06/02/13	mié	TN	J25		J25		
07/02/13	jue	TN	J27		J27	J25	
08/02/13	vie	TN	S6	S6		J27	J25
09/02/13	sáb	TE	NE	h .	S6		J27
10/02/13	dom	TE	INE	30,	S6	S6	
11/02/13	lun	TN	J19	31/	J19	S6	S6
12/02/13	mar	TN	J20		J20	J19	S6
13/02/13	mié	TN	INOP.	INOP.	INOP.	J20	J19
14/02/13	jue	TN	INOP.	INOP.	INOP.		J20
15/02/13	vie	TN	INOP.	INOP.	INOP.		
16/02/13	sáb	TE	INOP.	INOP.	INOP.		
17/02/13	dom	TE	INOP.	INOP.	INOP.	1	
18/02/13	lun	TN	INOP.	INOP.	INOP.		
19/02/13	mar	TN	INOP.	INOP.	INOP.		
20/02/13	mié	TN	INOP.	INOP.	INOP.		
21/02/13	jue	TN	INOP.	INOP.	INOP.		
22/02/13	vie	TN	INOP.	INOP.	INOP.		
23/02/13	sáb	TE	INOP.	INOP.	INOP.		
24/02/13	dom	TE	INOP.	INOP.	INOP.		
25/02/13	lun	TN	INOP.	INOP.	INOP.		
26/02/13	mar	TN	INOP.	INOP.	INOP.		
27/02/13	mié	TN	INOP.	INOP.	INOP.		
28/02/13	jue	TN	INOP.	INOP.	INOP.		

Turno normal (TN), Turno extra (TE).

Operaciones: Mezclado (M), Filtrado (F), Envasado (E), Acondicionado (A), Inoperativo (INOP).

^{*}M1: Producción normal de un lote.

^{**}M2: Mezclado de un segundo lote (producción en campaña).

Tabla 3.12. Programa de producción del mes de marzo 2013

Mes	de Marzo, 2	2013		0	PERACION	ES	
	Fecha		M1*	M2**	F	E	Α
01/03/13	vie	TN	INOP.	INOP.	INOP.		
02/03/13	sáb	TE	INOP.	INOP.	INOP.		
03/03/13	dom	TE	INOP.	INOP.	INOP.		
04/03/13	lun	TN	J24		J24		
05/03/13	mar	TN	J5		J5	J24	
06/03/13	mié	TN	J29		J29	J5	J24
07/03/13	jue	TN	J28		J28	J29	J5
08/03/13	vie	TN	S6	S6		J28	J29
09/03/13	sáb	TE			S6		J28
10/03/13	dom	TE			S6	S6	
11/03/13	lun	TN	J5	DA	J5	S6	S6
12/03/13	mar	TN	S7	DD_{λ}		J5	S6
13/03/13	mié	TN		21/1	S7		J5
14/03/13	jue	TN	J29	16	J29	S7	
15/03/13	vie	TN	S4	S4		J29	S7
16/03/13	sáb	TE	7	/	S4		J29
17/03/13	dom	TE			S4	S4	
18/03/13	lun	TN	S9			S4	S4
19/03/13	mar	TN	W /	/	S9		S4
20/03/13	mié	TN	J7		J7	S9	
21/03/13	jue	TN	J19	1777	J19	J7	S9
22/03/13	vie	TN	S5	S5	7	J19	J7
23/03/13	sáb	TE			S5		J19
24/03/13	dom	TE			S5	S5	
25/03/13	lun	TN	J18	3 //	J18	S5	S5
26/03/13	mar	TN	S6			J18	S5
27/03/13	mié	TN		111	S6		J18
28/03/13	jue	TN	INOP.	INOP.	INOP.	S6	
29/03/13	vie	TN	INOP.	INOP.	INOP.		S6
30/03/13	sáb	TE	J12		J12		
31/03/13	dom	TE	J30		J30	J12	
01/04/13	lun	TN	S8			J30	J12
02/04/13	mar	TN			S8		J30

Turno normal (TN), Turno extra (TE). Operaciones: Mezclado (M), Filtrado (F), Envasado (E), Acondicionado (A), Inoperativo (INOP).
*M1: Producción normal de un lote.
**M2: Mezclado de un segundo lote (producción en campaña).

Tabla 3.13. Programa de producción del mes de abril 2013

Mes	de Abril, 2	013		OPERACIONES						
	Fecha		M1*	M2**	F	E	Α			
01/04/13	lun	TN	S8			J30 ⁽¹⁾	J12 ⁽²⁾			
02/04/13	mar	TN			S8		J30 ⁽¹⁾			
03/04/13	mié	TN	J16		J16	S8				
04/04/13	jue	TN	S3			J16	S8			
05/04/13	vie	TN			S3		J16			
06/04/13	sáb	TE	S3			S3				
07/04/13	dom	TE			S3		S3			
08/04/13	lun	TN	S6	S6		S3				
09/04/13	mar	TN			S6		S3			
10/04/13	mié	TN	10. H		S6	S6				
11/04/13	jue	TN	J9	0 6	J9	S6	S6			
12/04/13	vie	TN	S4	S4		J9	S6			
13/04/13	sáb	TE		21/1	S4		J9			
14/04/13	dom	TE		10	S4	S4				
15/04/13	lun	TN	J13		J13	S4	S4			
16/04/13	mar	TN	J20		J20	J13	S4			
17/04/13	mié	TN	J31		J31	J20	J13			
18/04/13	jue	TN	J23		J23	J31	J20			
19/04/13	vie	TN	S4	S4		J23	J31			
20/04/13	sáb	TE			S4		J23			
21/04/13	dom	TE		1777	S4	S4				
22/04/13	lun	TN	J22		J22	S4	S4			
23/04/13	mar	TN	J25		J25	J22	S4			
24/04/13	mié	TN	J17		J17	J25	J22			
25/04/13	jue	TN	S3	5 //		J17	J25			
26/04/13	vie	TN			S3		J17			
27/04/13	sáb	TE	S3			S3				
28/04/13	dom	TE	$A \vee A$		S3		S3			
29/04/13	lun	TN	S8			S3				
30/04/13	mar	TN			S8		S3			
01/05/13	mié	TN	INOP.	INOP.	INOP.	S8				
02/05/13	jue	TN	INOP.	INOP.	INOP.		S8			

Turno normal (TN), Turno extra (TE). Operaciones: Mezclado (M), Filtrado (F), Envasado (E), Acondicionado (A), Inoperativo (INOP).
*M1: Producción normal de un lote.

^{**}M2: Mezclado de un segundo lote (producción en campaña).

^{&#}x27;(1) y (2) vienen de marzo 2013.

Tabla 3.14. Programa de producción del mes de mayo 2013

Mes	de Mayo, 2	013		0	PERACIONE	ES	
	Fecha		M1*	M2**	F	E	Α
01/05/13	mié	TN	INOP.	INOP.	INOP.	S8	
02/05/13	jue	TN	INOP.	INOP.	INOP.		S8
03/05/13	vie	TN	INOP.	INOP.	INOP.		
04/05/13	sáb	TE	INOP.	INOP.	INOP.		
05/05/13	dom	TE	INOP.	INOP.	INOP.		
06/05/13	lun	TN	INOP.	INOP.	INOP.		
07/05/13	mar	TN	INOP.	INOP.	INOP.		
08/05/13	mié	TN	J25		J25		
09/05/13	jue	TN	S1			J25	
10/05/13	vie	TN			S1		J25
11/05/13	sáb	TE	S1	DA		S1	
12/05/13	dom	TE	INF	DD_{λ}	S1		S1
13/05/13	lun	TN	S6	S6	7	S1	
14/05/13	mar	TN		16	S6		S1
15/05/13	mié	TN	7		S6	S6	
16/05/13	jue	TN	S1	/	· C	S6	S6
17/05/13	vie	TN			S1	r.	S6
18/05/13	sáb	TE	S1		10	S1	
19/05/13	dom	TE	M /		S1		S1
20/05/13	lun	TN	J19		J19	S1	
21/05/13	mar	TN	J29		J29	J19	S1
22/05/13	mié	TN	J5		J5	J29	J19
23/05/13	jue	TN	S1		7 / /	J5	J29
24/05/13	vie	TN			S1		J5
25/05/13	sáb	TE	S1	5 //		S1	
26/05/13	dom	TE			S1		S1
27/05/13	lun	TN	J14		J14	S1	
28/05/13	mar	TN	J5	VIII	J5	J14	S1
29/05/13	mié	TN	J25		J25	J5	J14
30/05/13	jue	TN	J23		J23	J25	J5
31/05/13	vie	TN	J27		J27	J23	J25
01/06/13	sáb	TE				J27	J23
02/06/13	dom	TE					J27

Turno normal (TN), Turno extra (TE). Operaciones: Mezclado (M), Filtrado (F), Envasado (E), Acondicionado (A), Inoperativo (INOP).
*M1: Producción normal de un lote.
**M2: Mezclado de un segundo lote (producción en campaña).

Tabla 3.15. Comparación de resultados

Año 2013	Resultado	os de la empresa	Resultados del modelo		
Tipo de cliente	Lotes Producidos	Utilidad Obtenida	Lotes Producidos	Utilidad Obtenida	
Enero	16	S/.48,063	20	S/.63,123	
Febrero	4	S/.12,143	6	S/.19,554	
Marzo	14	S/.34,341	20	S/.68,172	
Abril	21	S/.63,901	21	S/.66,613	
Мауо	14	S/.37,621	17	S/.51,688	
Total	69	S/.196,069	84	S/.269,150	

El incremento en la producción de lotes ha tenido un efecto positivo en el nivel de atención de demanda. Según las propuestas del modelo para los meses de estudio, el nivel de atención ha tenido un incremento de 64% a 78%. En la tabla 3.16 se aprecia el nivel de atención obtenido en cada mes de producción.

Tabla 3.16. Nivel de atención obtenido por el modelo

Periodo	Ene-13	Feb-13	Mar-13	Abr-13	May-13	Total
Lotes Planificados	28	20	21	21	18	108
Lotes Producidos	20	6	20	21	17	84
%Cumplimiento	71%	30%	95%	100%	94%	78%

Elaboración propia

El modelo también nos proporciona la cantidad de lotes producidos y la utilidad obtenida de cada cliente. Así mismo, nos proporciona el inventario de materia prima y envases existentes al inicio del mes (considerando los datos de ingresos previstos brindado por el área de logística), el inventario de materia prima y envase utilizados, y el inventario de materia prima y envase al final del mes. La comparación de resultados por cada cliente se muestra en la tabla 3.17, mientras que los resultados de inventarios se muestran en las tablas 3.18 a 3.23.

Tabla 3.17. Comparación resultados de cada cliente

Año 2013		Resultados d	e la empresa	Resultados del modelo	
Mes	Cliente	Lotes producidos	Utilidad obtenida	Lotes producidos	Utilidad obtenida
	LLPP	8	S/.28,621	8	S/.31,521
Enero	Retail	6	S/.15,232	10	S/.26,659
	Terceros	2	S/.4,210	2	S/.4,943
Subtota	al enero	16	S/.4,8063	20	S/.63,123
	LLPP	2	S/.7,620	2	S/.7,596
Febrero	Retail	2	S/.4,523	4	S/.11,958
	Terceros	0	S/.0	0	S/.0
Subtota	l febrero	4	S/.12,143	6	S/.19,554
	LLPP	9	S/.22,270	9	S/.36,471
Marzo	Retail	4	S/.8,307	9	S/.24,173
	Terceros	1	S/.3,764	2	S/.7,528
Subtota	al marzo	14	S/.34,341	20	S/.68,172
	LLPP	13	S/.42,034	11	S/.28,705
Abril	Retail	6	S/.17,865	9	S/.36,729
	Terceros	2	S/.4,002	1	S/.1,179
Subtot	al abril	21	S/.63,901	21	S/.66,613
	LLPP	7	S/.20,585	10	S/.32,446
Mayo	Retail	4	S/.9,438	4	S/.10,535
	Terceros	3	S/.7,598	3	S/.8,707
Subtot	al mayo	14	S/.37,621	17	S/.51,688
то	TOTAL		S/.196,069	84	S/.269,150

Tabla 3.18. Inventario inicial de materia prima en cada mes

Cód. MP	Enero	Febrero	Marzo	Abril	Mayo
MP1	230 kg				
MP2	20 kg	19.635 kg	19.635 kg	19.635 kg	19.27 kg
MP3	60 kg	56.91 kg	56.91 kg	53.82 kg	53.82 kg
MP4	200 kg	173.8 kg	162.6 kg	151.4 kg	151.4 kg
MP5	12 kg	11 kg	11 kg	9 kg	9 kg
MP6	0 kg				
MP7	3.828 kg	1.868 kg	15.868 kg	13.908 kg	11.946 kg
MP8	268.801 kg	213.466 kg	553.466 kg	537.182 kg	410.228 kg
MP9	37.547 kg	63.747 kg	51.847 kg	51.847 kg	239.947 kg
MP10	20 kg	20 kg	20 kg	19.45 kg	19.45 kg
MP11	13.176 kg				
MP12	0.643 kg				
MP13	13.176 kg	10.396 kg	7.616 kg	7.616 kg	4.836 kg
MP14	89.093 kg	208.493 kg	208.493 kg	208.493 kg	327.893 kg
MP15	4.293 kg	4.293 kg	4.293 kg	2.403 kg	2.403 kg
MP16	0.286 kg				
MP17	18.367 kg	18.367 kg	17.117 kg	17.117 kg	17.117 kg
MP18	0.562 kg	1.17 kg	1.17 kg	0.578 kg	1.578 kg
MP19	52.258 kg	42.57 kg	42.57 kg	42.57 kg	32.882 kg
MP20	487.1 kg	453.116 kg	453.116 kg	899.132 kg	899.132 kg
MP21	153.53 kg	123.93 kg	223.93 kg	223.93 kg	105.53 kg
MP22	0.075 kg	5.075 kg	5.075 kg	4.375 kg	2.975 kg
MP23	9.58 kg	9.58 kg	9.58 kg	28.86 kg	28.86 kg
MP24	136.753 kg	114.703 kg	100.003 kg	77.953 kg	63.253 kg
MP25	53.741 kg	39.741 kg	39.741 kg	111.741 kg	83.741 kg

Tabla 3.19. Inventario utilizado de materia prima en cada mes

Cód. MP	Enero	Febrero	Marzo	Abril	Mayo
MP1	0 kg	0 kg	0 kg	0 kg	0 kg
MP2	0.365 kg	0 kg	0 kg	0.365 kg	0 kg
MP3	3.09 kg	0 kg	3.09 kg	0 kg	0 kg
MP4	26.2 kg	11.2 kg	11.2 kg	0 kg	11.2 kg
MP5	1 kg	0 kg	2 kg	0 kg	2 kg
MP6	0 kg	0 kg	0 kg	0 kg	0 kg
MP7	1.96 kg	0 kg	1.96 kg	1.962 kg	0 kg
MP8	55.335 kg	0 kg	16.284 kg	126.954 kg	0 kg
MP9	23.8 kg	11.9 kg	0 kg	11.9 kg	23.8 kg
MP10	0 kg	0 kg	0.55 kg	0 kg	0 kg
MP11	0 kg	0 kg	0 kg	0 kg	1.08 kg
MP12	0 kg	0 kg	0 kg	0 kg	0 kg
MP13	2.78 kg	2.78 kg	0 kg	2.78 kg	0 kg
MP14	30.6 kg	0 kg	0 kg	30.6 kg	30.6 kg
MP15	0 kg	0 kg	1.89 kg	0 kg	0 kg
MP16	0 kg	0 kg	0 kg	0 kg	0 kg
MP17	0 kg	1.25 kg	0 kg	0 kg	1.25 kg
MP18	0.392 kg	0 kg	0.592 kg	0 kg	0.2 kg
MP19	9.688 kg	0 kg	0 kg	9.688 kg	0 kg
MP20	33.984 kg	0 kg	33.984 kg	0 kg	203.88 kg
MP21	29.6 kg	0 kg	0 kg	118.4 kg	0 kg
MP22	0 kg	0 kg	0.7 kg	1.4 kg	0 kg
MP23	0 kg	0 kg	0.72 kg	0 kg	0 kg
MP24	22.05 kg	14.7 kg	22.05 kg	14.7 kg	14.7 kg
MP25	14 kg	0 kg	28 kg	28 kg	0 kg

Tabla 3.20. Inventario final de materia prima en cada mes

Cód. MP	Enero	Febrero	Marzo	Abril	Mayo
MP1	230 kg				
MP2	19.635 kg	19.635 kg	19.635 kg	19.27 kg	19.27 kg
MP3	56.91 kg	56.91 kg	53.82 kg	53.82 kg	53.82 kg
MP4	173.8 kg	162.6 kg	151.4 kg	151.4 kg	140.2 kg
MP5	11 kg	11 kg	9 kg	9 kg	7 kg
MP6	0 kg				
MP7	1.868 kg	1.868 kg	13.908 kg	11.946 kg	11.946 kg
MP8	213.466 kg	213.466 kg	537.182 kg	410.228 kg	410.228 kg
MP9	13.747 kg	51.847 kg	51.847 kg	39.947 kg	216.147 kg
MP10	20 kg	20 kg	19.45 kg	19.45 kg	19.45 kg
MP11	13.176 kg	13.176 kg	13.176 kg	13.176 kg	12.096 kg
MP12	0.643 kg				
MP13	10.396 kg	7.616 kg	7.616 kg	4.836 kg	4.836 kg
MP14	58.493 kg	208.493 kg	208.493 kg	177.893 kg	297.293 kg
MP15	4.293 kg	4.293 kg	2.403 kg	2.403 kg	2.403 kg
MP16	0.286 kg				
MP17	18.367 kg	17.117 kg	17.117 kg	17.117 kg	15.867 kg
MP18	0.17 kg	1.17 kg	0.578 kg	0.578 kg	1.378 kg
MP19	42.57 kg	42.57 kg	42.57 kg	32.882 kg	32.882 kg
MP20	453.116 kg	453.116 kg	419.132 kg	899.132 kg	695.252 kg
MP21	123.93 kg	123.93 kg	223.93 kg	105.53 kg	105.53 kg
MP22	0.075 kg	5.075 kg	4.375 kg	2.975 kg	2.975 kg
MP23	9.58 kg	9.58 kg	8.86 kg	28.86 kg	28.86 kg
MP24	114.703 kg	100.003 kg	77.953 kg	63.253 kg	48.553 kg
MP25	39.741 kg	39.741 kg	11.741 kg	83.741 kg	83.741 kg

Tabla 3.21. Inventario inicial de envases en cada mes

Cód. MP	Enero	Febrero	Marzo	Abril	Mayo
ENV01	0 unid				
ENV02	0 unid				
ENV03	6850 unid	185 unid	185 unid	185 unid	185 unid
ENV04	10250 unid	253 unid	253 unid	253 unid	253 unid
ENV05	24599 unid	4605 unid	46605 unid	6617 unid	48617 unid
ENV06	3787 unid	13787 unid	21787 unid	11790 unid	1793 unid
ENV07	18294 unid	3298 unid	39298 unid	27971 unid	12975 unid
ENV08	14307 unid	3476 unid	3476 unid	26476 unid	10646 unid
ENV09	991 unid				
ENV10	6463 unid	6463 unid	6463 unid	1464 unid	1464 unid
ENV11	20512 unid	14680 unid	33848 unid	28016 unid	28016 unid
ENV12	25016 unid	15019 unid	20022 unid	13024 unid	3027 unid
ENV13	5323 unid	324 unid	324 unid	6324 unid	7325 unid
ENV14	7901 unid	10901 unid	18901 unid	6905 unid	11505 unid
ENV15	23272 unid	16446 unid	10198 unid	10198 unid	16950 unid
ENV16	0 unid				
ENV17	0 unid	5966 unid	3467 unid	3467 unid	3467 unid
ENV18	15064 unid	2268 unid	27268 unid	1676 unid	14176 unid
ENV19	14067 unid	738 unid	14438 unid	1109 unid	1109 unid
ENV20	3450 unid	451 unid	451 unid	3451 unid	452 unid
ENV21	12329 unid	12329 unid	12329 unid	22329 unid	22329 unid
ENV22	32698 unid	39370 unid	27706 unid	50210 unid	15218 unid
ENV23	9105 unid	9105 unid	9105 unid	8367 unid	3741 unid
ENV24	3365 unid	966 unid	2466 unid	67 unid	67 unid
ENV25	9308 unid	3476 unid	3476 unid	15476 unid	3812 unid
ENV26	0 unid	0 unid	7500 unid	502 unid	502 unid

Tabla 3.22. Inventario utilizado de envases en cada mes

Cód. MP	Enero	Febrero	Marzo	Abril	Mayo
ENV01	0 unid				
ENV02	0 unid				
ENV03	6665 unid	0 unid	0 unid	0 unid	0 unid
ENV04	9997 unid	0 unid	0 unid	0 unid	0 unid
ENV05	19994 unid	0 unid	39988 unid	0 unid	39988 unid
ENV06	0 unid	0 unid	9997 unid	9997 unid	0 unid
ENV07	14996 unid	0 unid	23327 unid	14996 unid	5998 unid
ENV08	10831 unid	0 unid	0 unid	15830 unid	0 unid
ENV09	0 unid				
ENV10	0 unid	0 unid	4999 unid	0 unid	0 unid
ENV11	5832 unid	5832 unid	5832 unid	0 unid	5832 unid
ENV12	9997 unid	9997 unid	6998 unid	9997 unid	0 unid
ENV13	4999 unid	0 unid	0 unid	4999 unid	4999 unid
ENV14	0 unid	0 unid	11996 unid	0 unid	0 unid
ENV15	12496 unid	6248 unid	0 unid	6248 unid	12496 unid
ENV16	0 unid				
ENV17	0 unid	2499 unid	0 unid	0 unid	2499 unid
ENV18	12796 unid	0 unid	25592 unid	0 unid	12796 unid
ENV19	13329 unid	0 unid	13329 unid	0 unid	0 unid
ENV20	2999 unid	0 unid	0 unid	2999 unid	0 unid
ENV21	0 unid	0 unid	0 unid	0 unid	14394 unid
ENV22	23328 unid	11664 unid	17496 unid	34992 unid	11664 unid
ENV23	0 unid	0 unid	3888 unid	7776 unid	0 unid
ENV24	2399 unid	0 unid	2399 unid	0 unid	0 unid
ENV25	5832 unid	0 unid	0 unid	11664 unid	0 unid
ENV26	0 unid	0 unid	6998 unid	0 unid	0 unid

Tabla 3.23. Inventario final de envases en cada mes

Cód. MP	Enero	Febrero	Marzo	Abril	Mayo
ENV01	0 unid				
ENV02	0 unid				
ENV03	185 unid				
ENV04	253 unid				
ENV05	4605 unid	4605 unid	6617 unid	6617 unid	8629 unid
ENV06	3787 unid	13787 unid	11790 unid	1793 unid	1793 unid
ENV07	3298 unid	3298 unid	15971 unid	12975 unid	6977 unid
ENV08	3476 unid	3476 unid	3476 unid	10646 unid	10646 unid
ENV09	991 unid				
ENV10	6463 unid	6463 unid	1464 unid	1464 unid	1464 unid
ENV11	14680 unid	8848 unid	28016 unid	28016 unid	22184 unid
ENV12	15019 unid	5022 unid	13024 unid	3027 unid	3027 unid
ENV13	324 unid	324 unid	324 unid	1325 unid	2326 unid
ENV14	7901 unid	10901 unid	6905 unid	6905 unid	11505 unid
ENV15	10776 unid	10198 unid	10198 unid	3950 unid	4454 unid
ENV16	0 unid				
ENV17	0 unid	3467 unid	3467 unid	3467 unid	968 unid
ENV18	2268 unid	2268 unid	1676 unid	1676 unid	1380 unid
ENV19	738 unid	738 unid	1109 unid	1109 unid	1109 unid
ENV20	451 unid	451 unid	451 unid	452 unid	452 unid
ENV21	12329 unid	12329 unid	12329 unid	22329 unid	7935 unid
ENV22	9370 unid	27706 unid	10210 unid	15218 unid	3554 unid
ENV23	9105 unid	9105 unid	5217 unid	591 unid	3741 unid
ENV24	966 unid	966 unid	67 unid	67 unid	67 unid
ENV25	3476 unid	3476 unid	3476 unid	3812 unid	3812 unid
ENV26	0 unid	0 unid	502 unid	502 unid	502 unid

3.4 Evaluación económica

En esta sección se realiza la evaluación económica de las mejoras planteadas en el presente estudio. En primer lugar se analiza el impacto económico que genera la implementación de una línea automática para las operaciones de dosificado, tapado y etiquetado. En segundo lugar, se analiza el impacto económico que se obtiene a partir programa de producción planteado por el modelo matemático desarrollado.

3.4.1 Impacto económico de la línea automática

Actualmente, en la operación de dosificado se utiliza una dosificadora semiautomática y la operación de tapado se realiza manualmente; ambas operaciones se llevan a cabo durante el proceso de envasado con una duración de 6.25 horas para un lote completo. Así mismo, en el proceso de acondicionado, la operación de etiquetado también se realiza de forma manual con una duración de 8.25 horas para un lote completo. En total se requiere de

14.5 horas de operación lo que equivale a 83 horas-hombre. Con la adquisición e implementación de la línea de dosificado, tapado y etiquetado automática se mejoraría el tiempo de operación a una hora y se requerirían solo 4 horas-hombre por cada lote. Para esto, se debe realizar una inversión para la adquisición e implementación de la línea automática del proveedor VC Seraming S.R.L que se muestra en la tabla 3.24.

Tabla 3.24. Costo de adquisición e implementación de la línea automática

Ítem	Costo	Frecuencia
Adquisición e implementación de la línea de automática	\$ 133,222	Única vez
Capacitación de operarios y personal de mantenimiento	\$ 1,500	Única vez
Tasa de cambio al 09/08/13	1USD = 2.789 PEN	-

Elaboración propia

Debido a que el tiempo de dosificado, tapado y etiquetado se reduce de 83 horas-hombre a 4 horas-hombre por cada lote se genera una reducción considerable de 79 horas-hombre en cada lote. En la tabla 3.25 se encuentra el ahorro generado en horas-hombre.

Tabla 3.25. Ahorro mensual en horas-hombre (h-h)

H-H por lote	Lote por mes	H-H por mes	Costo h-h	Ahorro mensual	Ahorro anual (S/.)
79	22	1,738	11.00	19,118	229,416

Elaboración propia

3.4.2 Impacto económico del modelado

La producción en la línea de líquidos no estériles se realiza en base a un plan proyectado que solo mide las coberturas de cada producto, mas no toma en cuenta la capacidad de La Planta ni los insumos disponibles lo que ocasiona que se no se optimice los procesos teniendo que producir los productos más urgentes y dejando pendientes los productos que generan mayor utilidad. Por esta razón se ha planteado un modelo matemático que ayude a realizar el programa de producción para un periodo mensual en el que se indique la secuencia óptima de producción teniendo en cuenta la capacidad y los insumos disponibles. Para ejecutar el modelo matemático se debe tener en cuenta los

requerimientos del hardware y software, y las condiciones de mercado mostrados en la tabla 3.26

Tabla 3.26. Requerimientos técnicos y condiciones de mercado

Concepto	Descripción	Costo	Frecuencia
Hardware	CPU con procesador de 3.0 Ghz, memoria RAM de 4 GB, disco duro de 500 GB + Pantalla LCD de 22" + teclado y mouse.	S/.1,500.00	Única vez
Software	Industrial LINGO Constraints: 16,000 Variables: 32,000 Integers: 3,200	\$2,995.00	Única vez
Administrador	Conocimientos de planeamiento de operaciones y mejora de procesos.	S/.39,200.00	Anual
Mercado	Tasa de cambio al 09/08/13	1USD = 2.789 PEN	-

Elaboración propia

En la tabla se demuestra que con el programa de producción generado por el modelo matemático se llega a obtener una utilidad de S/. 73,081.00 por encima de los resultados reales de la empresa para el periodo comprendido de enero a mayo del 2013.

Para proyectar las utilidades esperadas de los meses de junio a diciembre se utilizó los ratios Lp/Do (número de lotes producidos en el mes dividido entre los días operativos del mes) y U/Lp (utilidad obtenida en el mes dividido entre el número de lotes producidos en el mes). Los resultados de los ratios se muestran en las tablas 3.27 y 3.28.

Tabla 3.27. Ratios Lp/Do y U/Lp de la situación actual de la empresa

Mes	Días operativos	Lotes producidos	Ratio Lp/Do	Utilidad obtenida	Ratio U/Lp
Enero	24	16	0.67	S/. 48,063	3003.94
Febrero	9	4	0.44	S/. 12,143	3035.75
Marzo	26	14	0.54	S/. 34,341	2452.93
Abril	30	21	0.70	S/. 63,901	3042.90
Mayo	24	14	0.58	S/. 37,621	2687.21
Mínimo	9	4	0.44	S/. 12,143	2452.93
Máximo	30	21	0.70	S/. 63,901	3042.90
Promedio	22.6	13.8	0.59	S/. 39,214	2844.55

Tabla 3.28. Ratios Lp/Do y U/Lp obtenidos por el modelo

Mes	Días operativos	Lotes producidos	Ratio Lp/Do	Utilidad obtenida	Ratio U/Lp
Enero	24	20	0.83	S/. 63,123	3156.15
Febrero	9	6	0.67	S/. 19,554	3259.00
Marzo	26	20	0.77	S/. 68,172	3408.60
Abril	30	21	0.70	S/. 66,613	3172.05
Mayo	24	17	0.71	S/. 51,688	3040.47
Mínimo	9	6	0.67	S/. 19,554	3040.47
Máximo	30	21	0.83	S/. 68,172	3408.60
Promedio	22.6	16.8	0.74	S/. 53,830	3207.25

Los resultados de la empresa en los meses de junio a diciembre se proyectarán con los ratios máximos Lp/Do igual a 0.70 y U/Lp igual a 3042.90; mientras que los resultados del modelo se proyectarán con los ratios promedios Lp/Do igual a 0.74 y U/Lp igual a 3207.25. Los resultados se muestran en las tablas 3.29 y 3.30 respectivamente.

Tabla 3.29. Resultados proyectados para la empresa

Mes	Días operativos	Lotes producidos	Ratio Lp/Do	Utilidad obtenida	Ratio U/Lp
Junio	30	21	0.70	S/. 70,769	3207.25
Julio	31	21	0.70	S/. 73,128	3207.25
Agosto	31	21	0.70	S/. 73,128	3207.25
Septiembre	30	21	0.70	S/. 70,769	3207.25
Octubre	31	21	0.70	S/. 73,128	3207.25
Noviembre	30	21	0.70	S/. 70,769	3207.25
Diciembre	31	21	0.70	S/. 73,128	3207.25
		147		S/. 426,113	

Elaboración propia

Tabla 3.30. Resultados proyectados para el modelo

Mes	Días operativos	Lotes producidos	Ratio Lp/Do	Utilidad obtenida	Ratio U/Lp
Junio	30	22	0.70	S/. 59,735	2844.55
Julio	31	22	0.70	S/. 61,727	2844.55
Agosto	31	22	0.70	S/. 61,727	2844.55
Septiembre	30	22	0.70	S/. 59,735	2844.55
Octubre	31	22	0.70	S/. 61,727	2844.55
Noviembre	30	22	0.70	S/. 59,735	2844.55
Diciembre	31	22	0.70	S/. 61,727	2844.55
		154		S/. 504,821	

Según los resultados obtenidos se proyecta que con el modelo se obtendrá S/78.708 por encima de los resultados proyectados para la empresa, además se logrará producir 7 lotes más que la empresa.

En total, considerando la producción para el año 2013, se proyecta que con el modelo desarrollado se obtendrá S/.152,509.00 más de lo que obtendría la empresa.

3.4.3 Resumen del análisis económico

El análisis de costo-beneficio de se muestra en la tabla 3.31.

Tabla 3.31. Análisis costo-beneficio de las mejoras

Mejora	Costo	Beneficio	ROI
Línea automática	S/.375,740	S/.229,416	1.64
Modelo matemático	S/.49,053	S/.152,509	0.32
Total	S/.424,793	S/.381,925	1.11

Elaboración propia

Se demuestra que desde el punto de vista financiero, las mejoras implementadas tienen capacidad de generación valor para la empresa. En total se obtendría un beneficio anual de con un retorno a la inversión de 1.11.

Nota: En la actualidad, La Empresa no tiene una cuenta corriente en el banco.

CAPÍTULO 4 CONCLUSIONES Y RECOMENDACIONES

4.1 Conclusiones

El bajo nivel de cumplimiento (64%) del plan proyectado, la constante acumulación de lotes pendientes por fabricar y el exceso de horas-hombre durante los procesos de envasado y acondicionado en la línea de líquidos no estériles nos llevó a realizar un análisis a las principales áreas e identificar las causas principales. Los resultados fueron una necesidad de automatización en las operaciones de dosificado, tapado y etiquetado, y también la necesidad de un programa de producción que optimice los recursos disponibles principalmente en el área de fabricación o manufactura.

Se ha propuesto dos mejoras. El primero es una línea automática que se encargaría de realizar las operaciones de dosificado, tapado y etiquetado bajo la supervisión de cuatro operarios y operando a una velocidad de un lote por hora. La segunda mejora se trata de un modelo matemático que propone un programa de producción de la línea de líquidos no estériles para un mes, teniendo en cuenta los recursos disponibles y la política de stocks actual.

La línea de automática nos genera un ahorro de un poco más de S/.220 mil nuevos soles al año y también aumenta la capacidad disponible con lo cual se procesarían más unidades de producción al mes.

- La línea automática nos permite reducir las horas-hombre que se necesitan para procesar un lote completo.
- La línea automática abre la posibilidad de que se tenga un proyecto de ampliación en los tamaños de lote y los niveles de dosificado de cada producto.

El programa de producción planteado por el modelo matemático nos permite obtener una utilidad de más de un poco más de S/.152 mil nuevos soles respecto del programa establecido por la empresa, lo que aumentaría el nivel de atención de demanda a un 78%.

- El modelo permite obtener un programa considerando los turnos normales y turnos extras que tiene cada mes de producción y también permite obtener el inventario de materias primas y envases de la línea.
- El modelo sirve para la toma de decisiones en las áreas de planificación, manufactura y empaque. Al área de planificación le dará a conocer la cantidad de lotes de productos que se atenderán y el nivel de stock de inventarios con el que contarán al final de mes. A las áreas de manufactura y empaque les ayudará a programar la asignación de los operarios en los turnos extras.
- El modelo nos permitiría simular un programa de producción si se duplicará la capacidad del área de fabricaciones y envasado. Por otro lado, si hubiera algún cambio en la fórmula de los productos, se podría simular una nueva situación de inventarios de materia prima y envases.

Las mejoras planteadas permiten un ahorro anual de S/.373,213.00 nuevos soles con un retorno de la inversión de 1.11 años, lo cual se considera como un proyecto rentable que debe implementarse en el mediano plazo.

4.2 Recomendaciones

Con la implementación de la línea de dosificado, tapado y etiquetado automática, se recomienda realizar un estudio de tiempos para cada producto con el fin de mejorar el planeamiento de la producción.

Analizar la posibilidad implementar un segundo turno en el área de fabricación y también el incremento de los lotes a fin de que se pueda aprovechar al máximo los beneficios de esta línea de envasado.

Antes de poner en práctica el modelo, las áreas interesadas deben revisar los datos que el modelo utiliza para asegurar que el modelo no arroje resultados incoherentes y estén de acuerdo a las políticas de la empresa.

Los datos que deben actualizarse en el modelo son los días disponibles del mes, la demanda de productos, el stock inicial de materia prima y envases, y, lo más importante, asignar los costos de cada proceso (mezclado, filtrado, envasado y acondicionado) para cada día del mes (si es día de turno normal o turno extra).

Es conveniente simplificar el modelo lo máximo posible para poder realizar con mayor rapidez la actualización de datos. También es conveniente desarrollar una macro en Excel que permite realizar la lectura de los valores arrojados y lo convierta en un gráfico más apreciable.

Nombrar a un encargado de la administración y mantenimiento del modelo matemático. Esta persona debe tener conocimientos de programación lineal, planificación y mejora de procesos.

Por último, se recomienda realizar un plan de mantenimiento preventivo para evitar las paralizaciones inesperadas y tenerlo en cuenta en el plan de producción.

REFERENCIAS BIBLIOGRÁFICAS

CUADROS, Dante

2006

Desarrollo de un modelo de optimización de los procesos productivos de un laboratorio farmacéutico aplicando programación lineal entera mixta con múltiples objetivos. Tesis de Licenciatura de Ciencias e Ingeniería con mención en Ingeniería Industrial. Lima: Pontificia Universidad Católica del Perú, Facultad de Ciencias e Ingeniería.

MACHUCA, J.A.D y otros.

1995

"Dirección de operaciones: aspectos estratégicos en la producción y los servicios". Madrid: McGraw-Hill.

MACHUCA. J.A.D v otros.

1995

"Dirección de operaciones: aspectos tácticos y operativos en la producción y los servicios". Madrid: McGraw-Hill.

MATEO, Pedro, & LAHOZ, David.

2001

Programación lineal entera. Material de enseñanza. Zaragoza: Universidad de Zaragoza. Consulta: 19 de julio de 2013. http://ocw.unizar.es/ocw/ensenanzas-tecnicas/modelos-de-investigacion-operativa/ficheros/OCWProgEntera.pdf>

MAYO, Daniel

2005

Desarrollo de un modelo de optimización de la producción en una empresa textil utilizando la programación lineal entera mixta. Tesis de Licenciatura de Ciencias e Ingeniería con mención en Ingeniería Industrial. Lima: Pontificia Universidad Católica del Perú, Facultad de Ciencias e Ingeniería.

MIRANDA, Alvaro

2010

Análisis y propuesta del sistema de producción de una empresa manufacturera de productos químicos con el enfoque MRP. Tesis de Licenciatura de Ciencias e Ingeniería con mención en Ingeniería Industrial. Lima: Pontificia Universidad Católica del Perú, Facultad de Ciencias e Ingeniería.

MUNHOZ, José Renato, & MORABITO, Reinaldo.

2001

"Um modelo baseado em programação linear e programação de metas para análise de um sistema de produção e distribuição de suco concentrado congelado de laranja." *Gestão & Produção.* São Carlos, 2001, vol. 8, número 2, pp. 139-159. Consulta: 05 de mayo de 2013.

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-530X2001000200004

VARGAS, María

2012

"Cuadros, tablas y figuras". Curso elaborar ponencias. Tijuana. Consulta: 19 de mayo de 2013.

https://sites.google.com/site/itt2012cursoelaborarponencias/