Neural Nets (Part I) An artificial neural network (ANN) is a highly interconnacted network of information processing elements that "minic the connectivity and functionality of the human brain. They will only 0.6 Definition input (feature. x_2 and y_3 and y_4 and y_5 are y_6 and y_6 and y_6 are y_6 and y_6 are y_6 are y_6 are y_6 and y_6 are y_6 and y_6 are y_6 are y_6 are y_6 and y_6 are y_6 and y_6 are o desired wheat e.g. 2(n) E &1,03 gry Ell We can calculate he error of each output: $e_{j}(n) = d_{j}(n) - y_{j}(n)$ (2) The instantaneous error energy @ the ith never $E_{j}(n) = \frac{1}{2} e_{j}(n)$ $E(n) = \sum_{j=1}^{c} E_{j}(n) = \sum_{j=1}^{c} e_{j}^{2}(n)$ Ownall samples $\frac{1}{N} = \frac{1}{N} = \frac{1}{N}$

The chain rule from calculus I $\frac{\partial E}{\partial w_{ij}(n)} = \frac{\partial E}{\partial e_{j}(n)} \cdot \frac{\partial e_{j}(n)}{\partial w_{ij}(n)} \cdot \frac{\partial v_{j}(n)}{\partial w_{ij}(n)}$

Diff (1) wrt esch) $\frac{\partial E}{\partial e_{j}(n)} = e_{j}(n)$ $\frac{\partial V_{j}(n)}{\partial v_{j}(n)} = \frac{\partial V_{j}(n)}{\partial v_{j}(n)}$

Diff (z) wrt $y_i(n)$ $\frac{\partial e_j(n)}{\partial w_i(n)} = y_i(n)$ $\frac{\partial v_i(n)}{\partial w_i(n)} = y_i(n)$

 $\frac{\partial E}{\partial w_{i}(n)} = -e_{j}(n) \left(Q_{j}(v_{j}(n)) \cdot Q_{j}(n) \right) \cdot Q_{j}(n) \rightarrow \Delta w_{j}(n) = -M_{ab}^{dE}$