Stukan 18

Ordkunskap: Se till att du känner till definitionerna av och eventuellt de viktiga formlerna för följande begrepp:

egenvärde, egenvektor & egenrum algebraisk multiplicitet (av ett egenvärde)
diagonalisering geometrisk multiplicitet (av ett egenvärde)

Övning 1. Följande delfrågor är oberoende av varandra.

a) Låt $A = \begin{bmatrix} 5 & 8 \\ -3 & -5 \end{bmatrix}$. Diagonalisera A. Vi vill alltså bestämma P och D sådana att $A = PDP^{-1}$, där D är någon diagonalmatris och P är någon inverterbar matris.

Anmärkning: Denna matris är från **Stukan 17**, **Övning 1**. Utnyttja de egenvärden och egenvektorer som du fann för att lösa uppgiften.

b) Låt
$$B = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
 (från **Stukan 17**, **Övning 2**). Bestäm en matris P sådan att $P^{-1}BP$ är en diagonalmatris.

- c) Låt $C = \begin{bmatrix} 9 & -9 \\ 4 & -3 \end{bmatrix}$ (från **Stukan 17**, **Övning 3**). Förklara varför denna matris inte är diagonaliserbar.
- d) Låt M vara en 4×4 -matris med egenvärdena -3, 0, 17 och 42. Förklara varför M är garanterat diagonaliserbar.

Anmärkning: Detta liknar uppgift **4** (a) från tentamen 2014-10-29.

Övning 2. Diagonalisera matrisen $A = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$ och beräkna sedan A^{17} .

Anmärkning: Detta är uppgift 3 från tentamen 2014-05-20.

Övning 3. Låt \mathcal{L} vara en rät linje i planet som går genom origo. Låt $T: \mathbb{R}^2 \to \mathbb{R}^2$ vara den linjära avbildningen som speglar varje vektor i \mathbb{R}^2 kring linjen \mathcal{L} .

Låt $\mathcal N$ vara den räta linjen som går genom origo och är ortogonal mot $\mathcal L$. Låt $\vec r$ vara en riktningsvektor för $\mathcal L$ och $\vec n$ vara en riktningsvektor för $\mathcal N$.

- a) Beräkna $T(\vec{r})$ respektive $T(\vec{n})$. **Tips:** Rita en idéskiss och tänk geometriskt.
- b) Bestäm alla egenvärden och alla motsvarande egenvektorer till avbildningen *T*. **Anmärkning:** Egenvärden till en avbildning är desamma som egenvärden till avbildningens avbildningsmatris.
- c) Skriv $T(3\vec{r} + 4\vec{n})$ som en linjärkombination av \vec{r} och \vec{n} .

Anmärkning: Detta är uppgift **6** (formulerad med andra ord) från tentamen 2014-05-20. Du bör kunna lösa denna uppgift även om du inte siktar på ett så högt betyg som C.

Övning 4. Låt $A = \begin{bmatrix} 2 & a \\ 1 & 3 \end{bmatrix}$, där a är en konstant. Bestäm alla värden på a så att A är diagonaliserbar.

Ledning: Börja med att ta fram egenvärdena och de motsvarande egenvektorerna, precis som vanligt.

Anmärkning: Detta är uppgift **3** från tentamen 2013-01-07. I denna kurs tar vi hänsyn till endast reella egenvärden och reella egenvektorer, dvs. *A* ska vara reellt diagonaliserbar.

Facit: Se nästa sida.

Facit

Latin för alla: Ordet "matris" på svenska och "matrix" på engelska kommer av latinets "matrix" som betyder "livmoder", vilket i sin tur kommer av latinets "mater" som betyder "moder". Den engelske matematikern James Joseph Sylvester (1814-1897) myntade ordet "matrix" runt år 1850 då han tänkte sig en matris som en plats där något annat härstammar från.

Sylvester beskrev en matris med följande ord:

"a rectangular array of terms out of which different systems of determinants may be engendered, as from the womb of a common parent."

Lustigt nog fanns ordet (och konceptet) "determinant" innan ordet "matrix" infördes.

Några användbara uttryck och citat:

- 1. alma **mater** (närande **moder**, används idag för att ofta syfta på en alumns lärosäte)
- 2. dura **mater** (tålig **moder**, innebär idag duralhinnan som skyddar hjärnan mot skador)
- 3. Repetitio est **mater** studiorum. (Repetition är studiernas **moder**.)

Övning 1. a) Från Stukan 17, Övning 1 vet vi att A har egenvärdena $\lambda_1 = 1$ och $\lambda_2 = -1$. En egenvektor tillhörande egenvärdet $\lambda_1 = 1$ är $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$, och en egenvektor tillhörande egenvärdet $\lambda_2 = -1$ är $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$. Enligt diagonaliseringsformeln kan vi välja $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ och $P = \begin{bmatrix} -2 & -4 \\ 1 & 3 \end{bmatrix}$.

Snabb kontroll:

$$PDP^{-1} = \begin{pmatrix} \begin{bmatrix} -2 & -4 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} -2 & -4 \\ 1 & 3 \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} -2 & 4 \\ 1 & -3 \end{bmatrix} \frac{1}{-2} \begin{bmatrix} 3 & 4 \\ -1 & -2 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} -10 & -16 \\ 6 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 8 \\ -3 & -5 \end{bmatrix} = A$$

Det stämmer!

Anmärkning: Det går naturligtvis också bra att välja $D = \begin{bmatrix} \lambda_2 & 0 \\ 0 & \lambda_1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$. En motsvarande P kan vara $P = \begin{bmatrix} -4 & -2 \\ 3 & 1 \end{bmatrix}$. Vi testar:

$$PDP^{-1} = \begin{pmatrix} \begin{bmatrix} -4 & -2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} -4 & -2 \\ 3 & 1 \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 2 \\ -3 & -4 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 10 & 16 \\ -6 & -10 \end{bmatrix} = \begin{bmatrix} 5 & 8 \\ -3 & -5 \end{bmatrix} = A$$

Det stämmer!

b) Vi vill bestämma en matris P sådan att $P^{-1}BP = D$, där D är en diagonalmatris. Detta är ekvivalent med $B = PDP^{-1}$. Från **Stukan 17**, Ö**vning 2** vet vi att B har egenvärdena $\lambda_1 = \lambda_2 = 2$ och $\lambda_3 = 3$.

Två linjärt oberoende egenvektorer tillhörande egenvärdet $\lambda_1 = \lambda_2 = 2$ är $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ och $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$, och en egenvektor tillhörande egenvärdet $\lambda_3 = 3$ är $\begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

Enligt diagonaliseringsformeln kan vi välja
$$D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 och $P = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$.

Anmärkning: Notera att vi vid diagonalisering inte behöver bestämma S^{-1} .

- c) Från **Stukan 17**, **Övning 3** vet vi att $C = \begin{bmatrix} 9 & -9 \\ 4 & -3 \end{bmatrix}$ endast har ett egenvärde $\lambda = 3$ av algebraisk multiplicitet 2 men av geometrisk multiplicitet 1. Enligt satsen om diagonaliserbarhet är C inte diagonaliserbar, ty vi inte kan skriva $C = PDP^{-1}$ där kolonnerna i P utgörs av två linjärt oberoende egenvektorer tillhörande egenvärdet $\lambda = 3$.
- d) Matrisen M är en 4×4 -matris med de fyra olika egenvärdena -3, 0, 17 och 42. Eftersom egenvärdena tillhörande olika egenvektorer är linjärt oberoende kan vi säkert skriva $M = PDP^{-1}$ där kolonnerna i P utgörs av fyra linjärt oberoende egenvektorer. Alltså är M diagonaliserbar.

Övning 2. Vi börjar med att bestämma alla egenvärden och motsvarande egenvektorer till A. Om vi bara ska diagonalisera A räcker det med att bestämma två linjärt oberoende egenvektorer.

Egenvärdena till A bestäms av den karakteristiska ekvationen $\det(A - \lambda I) = 0$. Vi räknar på: $\det\begin{bmatrix} 2 - \lambda & 3 \\ -1 & -2 - \lambda \end{bmatrix} = (2 - \lambda)(-2 - \lambda) + 3 = \lambda^2 - 1 = 0$, så egenvärdena är $\lambda_1 = 1$ och $\lambda_2 = -1$.

För $\lambda_1 = 1$: En motsvarade egenvektor \vec{u} fås genom att lösas ekvationen $(A - 1I)\vec{u} = \vec{0}$, dvs.

$$\begin{bmatrix} 1 & 3 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Tydligen gäller att $u_1 + 3u_2 = 0$. Vi kan välja $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

För $\lambda_2 = -1$: En motsvarade egenvektor \vec{v} fås genom att lösa ekvationen $(A - (-1)I)\vec{v} = \vec{0}$, dvs.

$$\begin{bmatrix} 3 & 3 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Tydligen gäller att $v_1 + v_2 = 0$. Vi kan välja $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Enligt diagonaliseringsformeln kan vi skriva $A = PDP^{-1}$, där $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ och $P = \begin{bmatrix} 3 & 1 \\ -1 & -1 \end{bmatrix}$.

Härmed fås

$$A^{17} = (PDP^{-1})^{17} = PDP^{-1}PDP^{-1} \dots PDP^{-1} = PD^{17}P^{-1} = P \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}^{17} P^{-1}$$

$$= P \begin{bmatrix} 1^{17} & 0 \\ 0 & (-1)^{17} \end{bmatrix} P^{-1} = P \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} P^{-1} = PDP^{-1} = A, \text{ dvs. } A^{17} = A = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}.$$

Anmärkning: Om vi absolut inte kan något om diagonalisering kan vi också tänka så här. Notera att $A^2 = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$, så $A^{17} = A^{16}A = (A^2)^8A = I^8A = IA = A = \begin{bmatrix} 2 & 3 \\ -1 & -2 \end{bmatrix}$. Vi har dock tur i detta fall bara för att $A^2 = I$.

Övning 3. a) Med tanke på hur spegling kring en rät linje fungerar är det uppenbart att $T(\vec{r}) = \text{ref}_{\mathcal{L}} \vec{r} = \vec{r}$ och $T(\vec{n}) = \text{ref}_{\mathcal{L}} \vec{n} = -\vec{n}$. Ingen formel behövs här.

b) Eftersom $T(\vec{r}) = \vec{r} = 1\vec{r}$ och $T(\vec{n}) = -\vec{n} = -1\vec{n}$ är det uppenbart att T har egenvärdena $\lambda_1 = 1$ och $\lambda_2 = -1$. Då $T: \mathbb{R}^2 \to \mathbb{R}^2$ är avbildningsmatrisen A en 2×2 -matris, varför A bara kan ha högst två olika reella egenvärden. Dessa är precis $\lambda_1 = 1$ och $\lambda_2 = -1$ (och inga andra).

En egenvektor tillhörande egenvärdet $\lambda_1 = 1$ är enligt ovan \vec{r} . Samtliga egenvektorer tillhörande egenvärdet $\lambda_1 = 1$ är således $t\vec{r}$, där $t \neq 0$.

På samma sätt är samtliga egenvektorer tillhörande egenvärdet $\lambda_2 = -1$ således $s\vec{n}$, där $s \neq 0$.

c) Eftersom T är en linjär avbildning gäller att

$$T(3\vec{r} + 4\vec{n}) = T(3\vec{r}) + T(4\vec{n}) = 3T(\vec{r}) + 4T(\vec{n}) = 3\vec{r} - 4\vec{n}$$

vilket är precis en linjärkombination av \vec{r} och \vec{n} .

Anmärkning: Minns att om $T: \mathbb{R}^2 \to \mathbb{R}^2$ är en linjär avbildning gäller följande för alla $\vec{x}, \vec{y} \in \mathbb{R}^2$ och alla $k \in \mathbb{R}$:

i)
$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$

ii)
$$T(k\vec{x}) = k T(\vec{x})$$
.

Övning 4. Vi börjar med att ta fram egenvärdena och de motsvarande egenvektorerna, precis som vanligt.

Egenvärdena till A bestäms av den karakteristiska ekvationen $\det(A - \lambda I) = 0$. Vi räknar på: $\det\begin{bmatrix} 2 - \lambda & a \\ 1 & 3 - \lambda \end{bmatrix} = (2 - \lambda)(3 - \lambda) - a = \lambda^2 - 5\lambda + 6 - a = 0$. Denna ekvation har rötterna

$$\lambda = \frac{5}{2} \pm \sqrt{\left(\frac{5}{2}\right)^2 - (6-a)} = \frac{5}{2} \pm \sqrt{\frac{1}{4} + a}$$

Om *A* har två olika reella egenvärden är *A* garanterat diagonaliserbar (jämför **Stukan 18**, **Övning 1**, delfråga d). Detta inträffar precis då

$$\frac{1}{4} + a > 0 \Leftrightarrow a > -\frac{1}{4}$$

Om a=-1/4 fås ett egenvärde $\lambda=5/2$ av algebraisk multiplicitet 2. Om $\lambda=5/2$ också har geometrisk multiplicitet 2 är A diagonaliserbar, annars är A inte diagonaliserbar. Vi kollar upp detta genom att bestämma egenvektorerna tillhörande $\lambda=5/2$:

$$\left(A - \frac{5}{2}I\right)\vec{v} = \vec{0} \Leftrightarrow \begin{bmatrix} -\frac{1}{2} & -\frac{1}{4} \\ 1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Detta ekvationssystem löses enkelt med exempelvis gausseliminering:

$$\begin{bmatrix} -\frac{1}{2} & -\frac{1}{4} \\ 1 & \frac{1}{2} \end{bmatrix} 0 \\ -\begin{bmatrix} -2R_1 \\ R_2 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{2} \\ 1 & \frac{1}{2} \end{bmatrix} 0 \\ 1 & \frac{1}{2} \end{bmatrix} vilket innebär $v_1 + \frac{1}{2}v_2 = 0$, dvs. $\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} t \\ -2t \end{bmatrix} = t \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, där $t \neq 0$.$$

Nu ser vi att $\lambda = 5/2$ har geometrisk multiplicitet 1, varför A inte är diagonaliserbar om a = -1/4.

Slutsats: *A* är (reellt) diagonaliserbar om a > -1/4.