Lecture 9. Backpropagation, Training deep networks

COMP90051 Statistical Machine Learning

Semester 1, 2021 Lecturer: Trevor Cohn

This lecture

- Deep learning
 - Representation capacity
 - Deep models and representation learning
- Backpropagation
 - * Step-by-step derivation
- Training
 - Optimisation methods
 - Regularisation

Deep Learning and Representation Learning

Hidden layers viewed as feature space transformation

Representational capacity

- ANNs with a single hidden layer are universal approximators
- For example, such ANNs can represent any Boolean function

$$OR(x_1, x_2)$$
 $u = g(x_1 + x_2 - 0.5)$
 $AND(x_1, x_2)$ $u = g(x_1 + x_2 - 1.5)$
 $NOT(x_1)$ $u = g(-x_1)$
 $g(r) = 1 \text{ if } r \ge 0 \text{ and } g(r) = 0 \text{ otherwise}$

- Any Boolean function over m variables can be implemented using a hidden layer with up to 2^m elements
- More efficient to stack several hidden layers

Deep networks

"Depth" refers to number of hidden layers

$$s = \tanh(A'x)$$
 $t = \tanh(B's)$ $u = \tanh(C't)$ $z = \tanh(D'u)$

Deep ANNs as representation learning

- Consecutive layers form <u>representations</u> of the input of increasing complexity
- An ANN can have a simple linear output layer, but using complex non-linear representation

$$z = \tanh \left(D' \left(\tanh \left(C' \left(\tanh \left(B' \left(\tanh \left(A' x \right) \right) \right) \right) \right) \right) \right)$$

- Equivalently, a hidden layer can be thought of as the transformed feature space, e.g., $m{u} = \varphi(m{x})$
- Parameters of such a transformation are learned from data

7

Depth vs width

- A single infinitely wide layer in theory gives a universal approximator
- However (empirically) depth yields more accurate models
 Biological inspiration from the eye:
 - first detect small edges and color patches;
 - compose these into smaller shapes;
 - building to more complex detectors, of e.g. textures, faces, etc.
- Seek to mimic layered complexity in a network
- However vanishing gradient problem affects learning with very deep models

Vs manual feature representation

- Standard pipeline
 - * input → feature engineering → classification algorithm
- Deep learning automates feature engineering
 - no need for expert analysis

	forehead_color	black	black	black
	breast_pattern	solid	solid	solid
	breast_color	white	white	white
	head_pattern	plain	capped	plain
	back_color	white	white	black
	wing_color	grey/white	grey	white
	leg_color	orange	orange	orange
	size	medium	large	medium
	bill_shape	needle	dagger	dagger
	wing_shape	pointed	tapered	long
	primary_color	white	white	white

Animals in the zoo

art: OpenClipartVectors at pixabay.com (CC0)

- An autoencoder is an ANN trained in a specific way.
 - E.g., a multilayer perceptron can be trained as an autoencoder, or a recurrent neural network can be trained as an autoencoder.

Backpropagation

= "backward propagation of errors"

Calculating the gradient of loss of a composition

Recap: Feed-forward Artificial Neural Network

 x_i are inputs, i.e., attributes

note: here x_i are components of a single training instance x

a training dataset is a set of instances

z_i are outputs, i.e., predicted labels

Loss function L used to compare outputs with gold, gradient used for training v, w

Backpropagation: start with the chain rule

• Recall that the output z of an ANN is a function composition, and hence L(z) is also a composition

*
$$L = 0.5(z - y)^2 = 0.5(h(s) - y)^2 = 0.5(s - y)^2$$

* =
$$0.5 \left(\sum_{j=0}^{p} u_j w_j - y \right)^2 = 0.5 \left(\sum_{j=0}^{p} g(r_j) w_j - y \right)^2 = \cdots$$

 Backpropagation makes use of this fact by applying the chain rule for derivatives

•
$$\frac{\partial L}{\partial w_j} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial w_j}$$

•
$$\frac{\partial L}{\partial v_{ij}} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_j} \frac{\partial u_j}{\partial r_j} \frac{\partial r_j}{\partial v_{ij}}$$

Backpropagation: intermediate step

- Apply the chain rule
- $\frac{\partial L}{\partial w_j} = \underbrace{\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial w_j}}_{}$
- $\frac{\partial L}{\partial v_{ij}} = \left[\frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_j} \frac{\partial u_j}{\partial r_j} \frac{\partial r_j}{\partial v_{ij}} \right]$

Now define

$$\delta \equiv \frac{\partial L}{\partial s} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s}$$

$$\varepsilon_j \equiv \frac{\partial L}{\partial r_j} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial s} \frac{\partial s}{\partial u_j} \frac{\partial u_j}{\partial r_j}$$

- Here $L = 0.5(z y)^2$ and z = sThus $\delta = (z - y)$
- Here $s = \sum_{j=0}^{p} u_j w_j$ and $u_j = g(r_j)$ Thus $\varepsilon_j = \delta w_j g'(r_j)$

Backpropagation equations

We have

$$* \frac{\partial L}{\partial w_j} = \delta \frac{\partial s}{\partial w_j}$$

$$* \frac{\partial L}{\partial v_{ij}} = \varepsilon_j \frac{\partial r_j}{\partial v_{ij}}$$

... where

*
$$\varepsilon_j = \frac{\partial L}{\partial r_j} = \delta w_j g'(r_j)$$

Recall that

$$* \quad s = \sum_{j=0}^{p} u_j w_j$$

$$* r_j = \sum_{i=0}^m x_i v_{ij}$$

• So
$$\frac{\partial s}{\partial w_j} = u_j$$
 and $\frac{\partial r_j}{\partial v_{ij}} = x_i$

We have

*
$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j x_i = \delta w_j g'(r_j) x_i$$

Forward propagation

• Use current estimates of v_{ij} and w_j

• Calculate r_j , u_j , s and z

Backpropagation equations

*
$$\frac{\partial L}{\partial w_i} = \delta u_j = (z - y)u_j$$

*
$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j x_i = \delta w_j g'(r_j) x_i$$

Backward propagation of errors

$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j x_i \quad \bullet \quad \varepsilon_j = \delta w_j g'(r_j) \quad \bullet \quad \frac{\partial L}{\partial w_j} = \delta u_j \quad \delta = (z - y)$$

Backpropagation equations

*
$$\frac{\partial L}{\partial w_i} = \delta u_j = (z - y)u_j$$

*
$$\frac{\partial L}{\partial v_{ij}} = \varepsilon_j x_i = \delta w_j g'(r_j) x_i$$

Interim Summary

- Motivation for "deep" networks
- Backpropagation of loss
 - derivative chain rule
 - algorithm to compute gradients in backwards pass over network graph

Training deep networks

Techniques specific to non-convex objective, largely based on gradient descent.

Recap: Gradient descent vs SGD

- 1. Choose $\boldsymbol{\theta}^{(0)}$ and some T
- 2. For i from 0 to T-1

1.
$$\boldsymbol{\theta}^{(i+1)} = \boldsymbol{\theta}^{(i)} - \eta \nabla L(\boldsymbol{\theta}^{(i)})$$

3. Return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(T)}$

$\theta^{(0)}$ x_0 x_2 x_2 x_3 x_4 x_2 x_3 x_4 x_4

Stochastic G.D.

- 1. Choose $\boldsymbol{\theta}^{(0)}$ and some T, k = 0
- 2. For i from 1 to T
 - 1. For j from 1 to N (in random order)

1.
$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \eta \nabla L(y_i, x_i; \boldsymbol{\theta}^{(k)})$$

2. k++

3. Return $\widehat{\boldsymbol{\theta}} \approx \boldsymbol{\theta}^{(k)}$

Wikimedia Commons. Authors: Olegalexandrov, Zerodamage

Mini-batch SGD

- SGD works on single instances
 - * high variance in gradients
 - * many, quick, updates

- GD works on whole datasets
 - stable update, but slow
 - * computationally expensive
- Compromise: mini-batch (often just called "SGD")
 - * process batches of size 1 < b < N, e.g., b = 100
 - balances computation and stability

(non-)Convex objective functions

Recall logistic regression, convex 'Bowl shaped' objective

Loss value

Local

minimum

gradient descent finds a global optimum

In contrast, most ANN objective are not convex

gradient methods get trapped in local optima or saddle points

Global minimum

Parameter value

Importance of learning rate

- Choice of η has big effect on quality of final parameters
- Each SGD step:

*
$$\boldsymbol{\theta}^{(i)} = \boldsymbol{\theta}^{(i-1)} - \eta \nabla L(\boldsymbol{\theta}^{(i-1)})$$

- Choosing η :
 - Large η fluctuate around optima, even diverge
 - * Small η barely moves, stuck at local optima

Momentum as a solution

- Consider a ball with some mass rolling down the objective surface
 - velocity increases as it rolls downwards
 - momentum can carry it past local optima
- Mathematically, SGD update becomes

*
$$\theta^{(t+1)} = \theta^{(t)} - v^{(t)}$$

*
$$\boldsymbol{v}^{(t)} = \alpha \boldsymbol{v}^{(t-1)} + \eta \Delta L(\boldsymbol{\theta}^{(t)})$$

- * α decays the velocity, e.g., 0.9
- Less oscillation, more robust

Adagrad: Adaptive learning rates

- Why one learning rate applied to all params?
 - * some features (parameters) are used more frequently than others → smaller updates for common features cf rare
- Adagrad tracks the sum of squared gradient perparameter, i.e., for parameter i

$$\begin{split} * & \boldsymbol{g}_i^{(t)} = \boldsymbol{g}_i^{(t-1)} + \Delta L \big(\boldsymbol{\theta}^{(t)}\big)_i^2 \\ * & \boldsymbol{\theta}_i^{(t+1)} = \boldsymbol{\theta}_i^{(t)} - \frac{\eta}{\sqrt{\boldsymbol{g}_i^{(t)} + \epsilon}} \Delta L \big(\boldsymbol{\theta}^{(t)}\big)_i \end{split} \quad \begin{array}{c} \text{Typically} \\ \epsilon = 10^{-8} \\ \eta = 0.01 \end{split}$$

 Removes need to tune learning rate; but can be too conservative (learning rates shrink quickly!)

Adam

 Combining elements of momentum and adaptive learning rates

*
$$\mathbf{m}^{(t)} = \beta_1 \mathbf{m}^{(t-1)} + (1 - \beta_1) \Delta L(\mathbf{\theta}^{(t)})$$

* $\mathbf{v}^{(t)} = \beta_2 \mathbf{v}^{(t-1)} + (1 - \beta_2) \Delta L(\mathbf{\theta}^{(t)})^2$
* $\mathbf{\theta}^{(t+1)} = \mathbf{\theta}^{(t)} - \frac{\eta}{\sqrt{\mathbf{v}^{(t)}/_{1-\beta_2} + \epsilon}} \mathbf{m}^{(t)}/_{1-\beta_1}$
* $\beta_1 = 0.9, \beta_2 = 0.999, \epsilon = 10^{-8}$ element-wise operations

 Good work-horse method, current technique of choice for deep learning

Zoo of optimisation algorithms

- Suite of batch-style algorithms, e.g., BFGS, L-BFGS, Conjugate Gradient, ...
- And SGD style:
 - Nesterov acc. grad.
 - * Adadelta
 - * AdaMax
 - * RMSprop
 - * AMSGrad
 - * Nadam
 - * AdamW
 - * QHAdam...

 Lots of choice, and rapidly changing as deep learning matures

Regularising deep networks

Best practices in preventing overfitting, a big problem for such high capacity and complex models.

Some further notes on ANN training

- ANN's are flexible (recall universal approximation theorem), but the flipside is over-parameterisation, hence tendency to overfitting
- Starting weights usually random distributed about zero
- Implicit regularisation: early stopping
 - * With some activation functions, this shrinks the ANN towards a linear model (why?)

Explicit regularisation

- Alternatively, an explicit regularisation can be used, much like in ridge regression
- Instead of minimising the loss L, minimise regularised function $L + \lambda \left(\sum_{i=0}^{m} \sum_{j=1}^{p} v_{ij}^2 + \sum_{j=0}^{p} w_j^2\right)$
- This will simply add $2\lambda v_{ij}$ and $2\lambda w_j$ terms to the partial derivatives
- With some activation functions this also shrinks the ANN towards a linear model

Dropout

- Randomly mask fraction of units during training
 - different masking each presentation
 - promotes redundancy in network hidden representation
 - a form of ensemble of exponential space
- (a) Standard Neural Net

- * no masking at testing (requires weight adjustment)
- Results in smaller weights, and less overfitting
- Used in most SOTA deep learning systems

This lecture

- Deep learning
- Backpropagation
- Training deep networks
 - * Optimisation methods
 - Regularisation techniques
- Next lecture: CNNs