HAMT - Tool for simulation of Heat And Mass Transfer

Leo Basov

January 19, 2021

Contents

1	Numerics				
	1.1		Difference Method - FDM		
		1.1.1	Dirichlet Boundary Conditions		
		1.1.2	Neumann Boundary Conditions		
		1.1.3	Radiation Boundary Conditions		
2	Heat Transfer 2.1 Homogeneous Heat Transfer Equation				
			- Homogeneous Equidistant Cartesian 2D		
			Central Equation		
		2.2.2	Corner Equations		
		2.2.3	Side Equations		
		2.2.4	Verification		

1 Numerics

1.1 Finite Difference Method - FDM

First order Discritization.

$$f_f' = \frac{f_{i+1} - f_i}{\Delta x} \tag{1.1}$$

$$f_b' = \frac{f_i - f_{i-1}}{\Delta x} \tag{1.2}$$

$$f_c' = \frac{1}{2} \left(f_f' + f_b' \right) = \frac{1}{2} \left(\frac{f_{i+1} - f_i}{\Delta x} + \frac{f_i - f_{i-1}}{\Delta x} \right) = \frac{f_{i+1} - f_{i-1}}{2 \Delta x}$$
 (1.3)

second order

$$f'' = \frac{f_f' - f_b'}{\Delta x} = \frac{f_{i+1} - f_i}{\Delta x^2} - \frac{f_i - f_{i-1}}{\Delta x^2} = \frac{f_{i+1} - 2f_i + f_{i-1}}{\Delta x^2}$$
(1.4)

Assuming the differentials $a \frac{\partial f}{\partial x}$ and $a \frac{\partial^2 f}{\partial x^2}$ where a is not constant.

$$a f_c' = \frac{1}{2} \left(\frac{a_{i+1}(f_{i+1} - f_i)}{\Delta x} + \frac{a_{i-1}(f_i - f_{i-1})}{\Delta x} \right) = \frac{a_{i+1}f_{i+1} + (a_{i-1} - a_{i+1})f_i - a_{i-1}f_{i-1}}{2\Delta x}$$
 (1.5)

$$af'' = a_{i+1}\frac{f_{i+1} - f_i}{\Delta x^2} - a_{i-1}\frac{f_i - f_{i-1}}{\Delta x^2} = \frac{a_{i+1}f_{i+1} - (a_{i+1} + a_{i-1})f_i + a_{i-1}f_{i-1}}{\Delta x^2}$$
(1.6)

1.1.1 Dirichlet Boundary Conditions

$$f|_i = f_0 \tag{1.7}$$

1.1.2 Neumann Boundary Conditions

$$\left. \frac{\partial f}{\partial x} \right|_{x=i} = c \tag{1.8}$$

$$\frac{f_i - f_i - i}{\Delta x} = c \tag{1.9}$$

$$f_i - f_{i-i} = \Delta x c \tag{1.10}$$

1.1.3 Radiation Boundary Conditions

$$\vec{\dot{q}}_r = \epsilon \, \sigma \, T^4 \, \vec{n} \tag{1.11}$$

Using the Taylor series

$$T f(x; a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$
 (1.12)

we get the linearized equation for the heat flux due to radiation

$$T \dot{q}_r(T; T_0) = (4 \epsilon \sigma T_0^3) T - 3 \epsilon \sigma T_0^4. \tag{1.13}$$

Using eqation (2.3)

$$-\lambda \frac{\partial T}{\partial x} = T \dot{q}_r(T; T_0)$$
 (1.14)

leads to the discitized, linear equation

$$(1 + 4kT_0^3)T_i - T_{i-1} = 3kT_0^4$$
(1.15)

 $\quad \text{where} \quad$

$$k = \frac{\epsilon \, \sigma \, \Delta x}{\lambda} \tag{1.16}$$

2 Heat Transfer

The base equation for the heat transfer is the balance equation of the form

$$\frac{\partial \rho}{\partial t} + \nabla \vec{j} = f(\vec{r}, t) \tag{2.1}$$

where ρ is the density of the quantity in question, \vec{j} is the flux, \vec{r} is the position vector and t is time. For heat transfer problem we define ρ as the volumetric heat density q which is defined as

$$q = \frac{Q}{V} = c \rho T \tag{2.2}$$

 \vec{j} is equivalent to the heat flux \vec{q}

$$\vec{q} = -\lambda \, \nabla T \tag{2.3}$$

and the source $f(\vec{r},t)$ is the volumetrix heat source $\dot{q}_v(\vec{r},t)$. Inserting 2.2 and 2.3 in 2.1 leads to the heat transfer equation

$$\frac{\partial(c\,\rho\,T)}{\partial t} + \nabla(-\lambda\,\nabla T) = \dot{q}_v(\vec{r},t) \tag{2.4}$$

where the quantities are defined as seen in table ??.

Table 2.1: Electron beam - simulation parameters

Quantitiy	Description	Unit
\overline{c}	Specific heat capacity	$ m Jkg^{-1}K^{-1}$
ho	Density	${\rm kgm^{-3}}$
T	Temperature	K
λ	Thermal conductivity	${ m W}{ m m}^{-1}{ m K}^{-1}$
\dot{q}_v	Volumetric heat source	${ m Wm^{-3}}$

2.1 Homogeneous Heat Transfer Equation

Aussuming...

$$\lambda \, \Delta T = 0 \tag{2.5}$$

The homogeneous heat equation in cartesian coordinates is expressed as

$$\lambda \frac{\partial^2 T}{\partial x^2} + \lambda \frac{\partial^2 T}{\partial y^2} + \lambda \frac{\partial^2 T}{\partial z^2} = 0 \tag{2.6}$$

while in cylinder coordinates as

$$\lambda \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \lambda \frac{1}{r^2} \frac{\partial^2 T}{\partial \phi^2} + \lambda \frac{\partial^2 T}{\partial z^2} = 0. \tag{2.7}$$

2.2 FDM - Homogeneous Equidistant Cartesian 2D

By assuming only the x and y directions equation (2.6) reduces to

$$\lambda \frac{\partial^2 T}{\partial x^2} + \lambda \frac{\partial^2 T}{\partial y^2} = 0. \tag{2.8}$$

2.2.1 Central Equation

Using equation (1.6) equation (2.8) can be discritizised as

$$\lambda_{i+1,j}T_{i+1,j} + \lambda_{i,j+1}T_{i,j+1} - \lambda_{tot}T_{i,j} + \lambda_{i-1,j}T_{i-1,j} + \lambda_{i,j-1}T_{i,j-1} = 0$$
(2.9)

where

$$\lambda_{tot} = \lambda_{i+1,j} + \lambda_{i-1,j} + \lambda_{i,j+1} + \lambda_{i,j-1}. \tag{2.10}$$

In case any of the λ paramters is to be taken on a boundary between two segments, a mean between to is to take. The correctness of this assumptions can be proven by setting up 4 equations around a center node using Fourrier's law. For $\lambda = const$ the equation reduces to

$$T_{i+1,j} + T_{i,j+1} - 4T_{i,j} + T_{i-1,j} + T_{i,j-1} = 0 (2.11)$$

2.2.2 Corner Equations

2.2.3 Side Equations

2.2.4 Verification