

Optimization Method & Optimal Guidance

Haichao Hong AE8120

- What is Guidance
- Generic Formulation of Trajectory Optimization
- Discretization Methods
- Newton-Type Methods in Computational Guidance
- © Convex Optimization with CVX and/or MOSEK
- Sequential Convex Optimization Methods
- Trigonometric-polynomial Control Parameterization
- Sequential Convex Optimization Methods continued
- Trajectory Optimization Practice
- Review

What is Guidance?

- Trajectory / Maneuvering
- Motion of Aircraft (Translational Dynamics)
- Select Commands
- Current State to Desired State
- Constraints

Note: Attitude is NOT irrelevant!

Control:

- Forces and torques
- Attitude or flight condition
- Stability

Guidance

- Realize the maneuver
- Output to control
- Velocity and accelerations

Computational Guidance*:

- Relying on numerical algorithms
- Relying on onboard computation
- Model-based or data-based, no reference (necessarily) needed

*Lu, P., "Introducing Computational Guidance and Control," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017

Relationship between

(Computational) Guidance and Trajectory Optimization

Determine a trajectory

Select a trajectory

Steer the aircraft Design the maneuver

Need to consider constraints

Can consider constraints

Optimality is not fundamental Optimality is fundamental

Computational guidance mostly onboard Not necessarily onboard

Trajectory Optimization

- Performance index / Objective function / Cost function
- Equations of motion (often translational dynamics)
- Initial and terminal conditions
- Path constraints

Constraints

A generic formulation:

minimize
$$\mathbf{J} = \varphi(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} L(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

subject to $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}, t)$,
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}, t) = 0$,
 $\mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}, t) \leq 0$

Note:

- Constraints are imposed when necessary.
- t_f might or might not be given.

Before solving it

minimize
$$\mathbf{x}(t) = \mathbf{y}(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} L(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

subject to $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}, t)$,
 $\mathbf{h}(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}, t) = 0$,
 $\mathbf{g}(\mathbf{x}(t), \mathbf{u}(t), \mathbf{p}, t) \leq 0$

- 1. Figure out your purpose
- 2. Know your objective (function)
- 3. Constraints = Practical concerns

Discretization methods

Single Shooting

- Multiple Shooting
- Collocation Full Discretization

A guidance problem:

$$egin{aligned} \dot{oldsymbol{x}}(t) &= oldsymbol{f}\left(oldsymbol{x}\left(t
ight), oldsymbol{u}\left(t
ight), oldsymbol{u}\left(t
ight), oldsymbol{p}\left(t
ight), oldsymbol{p}\left(t
ight), oldsymbol{p}\left(t
ight), oldsymbol{v}\left(t
ight), oldsymbol{p}\left(t
ight),$$

- Initial condition fixed
- Terminal condition fixed
- No path constraints
- To determine a control sequence

To determine a control sequence

$$m{U} = [m{u}_1^T, m{u}_2^T, ..., m{u}_{N-1}^T]^T \in \mathbb{R}^{(N-1)m}$$

Using Euler Forward: (Number of states is n)

$$egin{aligned} oldsymbol{x}_2 &= oldsymbol{F}_1\left(oldsymbol{x}_1,oldsymbol{u}_1
ight) \ oldsymbol{x}_3 &= oldsymbol{F}_2\left(oldsymbol{F}_1\left(oldsymbol{x}_1,oldsymbol{u}_1
ight),oldsymbol{u}_2
ight) \ &dots \ oldsymbol{x}_N &= oldsymbol{F}_{N-1}\left(oldsymbol{F}_{N-2}\left(...\left(oldsymbol{F}_1\left(oldsymbol{x}_1,oldsymbol{u}_1
ight),...
ight),oldsymbol{u}_{N-2}
ight),oldsymbol{u}_{N-1}
ight) \end{aligned}$$

Unknown:
$$oldsymbol{U} = [oldsymbol{u}_1^T, oldsymbol{u}_2^T, ..., oldsymbol{u}_{N-1}^T]^T \in \mathbb{R}^{(N-1)m}$$

Number of equations: n (Number of states)

It is very likely that $(N-1)m \gg n$

$$G(U) = 0$$

It is an underdetermined system! But Nonlinear

To find the root of a nonlinear underdetermined system

$$G(U) = 0$$

Newton's method is available for this task:

$$\boldsymbol{U} = \boldsymbol{U}^{p} + d\boldsymbol{U}$$
 $\boldsymbol{r} - \boldsymbol{G}'(\boldsymbol{U}^{p})d\boldsymbol{U} = 0$

where $G^{'}$ is the Jacobian matrix, dU is the Newton step, and r is the residual from the previous iteration.

One more step!

Line Search

Newton iterations
$$\boldsymbol{U} = \boldsymbol{U}^p + \boldsymbol{s} \cdot d\boldsymbol{U}$$

Improve convergence

Algorithm 1 Line-Search Strategy

- 1: Get U^p , dU, s = 1, $\kappa \in (0, 1]$
- 2: while $|G_n(U^p + s \cdot dU)|_{\infty} > |G_n(U^p)|_{\infty} do$
- 3: $s \leftarrow \kappa s$
- 4: end while
- 5: $\boldsymbol{U} \leftarrow \boldsymbol{U}^p + s \cdot d\boldsymbol{U}$
- 6: **return** *U*

(Many) Optimization Toolboxes

- Rely on external solvers
- Automatic transcription takes time
- Easy to work with
- GPOPS, FALCON.m, CVX

Solvers/Optimizers

- Have rather fixed interface
- Manual transcription takes effort
- Hard to develop from scratch
- IPOPT, SNOPT, MOSEK

Many of them have academic licenses

Sequential Convex Optimization Methods:

- Trending in computational guidance
- Convert the original nonlinear trajectory optimization problem into convex optimization subproblems
- Good computational efficiency

The 1st step: Deal with the nonlinear dynamics

Review

$$dx^{(j+1)} := x^{(j+1)} - x^{(j)},$$

$$du^{(j+1)} := u^{(j+1)} - u^{(j)}$$
.

$$x_{k+1}^{(j+1)} = x_k^{(j+1)} + h(\dot{x})_k^{(j+1)}$$

$$dx_{k+1}^{(j+1)} + x_{k+1}^{(j)} = h\left[(\mathbf{F_x})_k^{(j)} dx_k^{(j+1)} + (\mathbf{F_u})_k^{(j)} du_k^{(j+1)} + \mathbf{f}_k^{(j)} \right] + \left[x_k^{(j)} + dx_k^{(j+1)} \right]$$

$$= \left[h(\mathbf{F_x})_k^{(j)} + \mathbf{I}_n \right] dx_k^{(j+1)} + h(\mathbf{F_u})_k^{(j)} du_k^{(j+1)} + h\mathbf{f}_k^{(j)} + x_k^{(j)}$$

States dynamics with normalized time

The derivative of the state vector with respect to the normalized time τ can be defined using the chain rule as:

$$x' := \frac{\mathrm{d}x}{\mathrm{d}\tau} = \frac{\mathrm{d}x}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}\tau} = t_f \frac{\mathrm{d}x}{\mathrm{d}t}$$

It can be noticed that x' is a function of x, u, and t_f as

$$\boldsymbol{x}'\left(\boldsymbol{x}\left(\tau\right),\boldsymbol{u}\left(\tau\right),t_{f}\right)=t_{f}\boldsymbol{f}\left(\boldsymbol{x}\left(\tau\right),\boldsymbol{u}\left(\tau\right)\right)$$

Linear inequality constraints on states and optimization variables can be expressed as

$$egin{bmatrix} egin{bmatrix} oldsymbol{L}_1 & oldsymbol{L}_2 \ oldsymbol{G}_1 & oldsymbol{G}_2 \end{bmatrix} egin{bmatrix} oldsymbol{x}_a \ oldsymbol{u}_a \end{bmatrix} \leq oldsymbol{l}$$

$$egin{bmatrix} egin{bmatrix} egin{aligned} egi$$

Inexact

A general class of constrained trajectory optimization formulations:

minimize
$$J(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{p})$$

subject to $\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{p})$, (1)
 $\boldsymbol{g}_{lb}(t) \leq \boldsymbol{g}(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{p}) \leq \boldsymbol{g}_{ub}(t)$

Problem (1) does not always correspond to a smooth control history

The i-th control component is expressed by

$$u^{(i)}(t) = a_0^{(i)} + \sum_{n=1}^{N} \left(a_n^{(i)} \cos\left(\frac{n\pi}{T_f}t\right) + b_n^{(i)} \sin\left(\frac{n\pi}{T_f}t\right) \right)$$
$$= \boldsymbol{s}_N^{(i)}(t) \boldsymbol{c}^{(i)}, \quad i = 1, 2, \dots, m,$$

where

$$\boldsymbol{s}_{N}^{(i)}\left(t\right) = \left[1, \cos\left(\frac{\pi}{T_{f}}t\right), \dots, \cos\left(\frac{N\pi}{T_{f}}t\right),\right]$$

$$\sin\left(\frac{\pi}{T_f}t\right),\ldots,\sin\left(\frac{N\pi}{T_f}t\right)$$

$$\mathbf{c}^{(i)} = \left[a_0^{(i)}, \dots, a_N^{(i)}, b_1^{(i)}, \dots, b_N^{(i)} \right]^{\mathrm{T}}.$$

Constraints on derivatives are represented by

$$\boldsymbol{l}_{lb}\left(t\right) \leq \boldsymbol{l}\left(\boldsymbol{c},t\right) \leq \boldsymbol{l}_{ub}\left(t\right)$$
.

The original problem is re-written as

minimize
$$J(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{p})$$

subject to $\dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{p})$,
 $\boldsymbol{u}(t) = \boldsymbol{S}_N(t) \boldsymbol{c}$,
 $\boldsymbol{g}_{lb}(t) \leq \boldsymbol{g}(\boldsymbol{x}(t), \boldsymbol{u}(t), \boldsymbol{p}) \leq \boldsymbol{g}_{ub}(t)$,
 $\boldsymbol{l}_{lb}(t) \leq \boldsymbol{l}(\boldsymbol{c}, t) \leq \boldsymbol{l}_{ub}(t)$.

The trigonometric polynomial can be h defined with respect to other independent variables.

Here, the climb distance r

$$u_i(r) = (a_0)_i + \sum_{n=1}^{N} \left[(a_n)_i \cos\left(\frac{2n\pi}{\kappa x_f}r\right) + (b_n)_i \sin\left(\frac{2n\pi}{\kappa x_f}r\right) \right]$$
$$= s_{Ni}(r) c_i, \quad i = 1, 2, \dots, p,$$

$$\overset{(n)}{\boldsymbol{u}}(0) = \overset{(n)}{\boldsymbol{u}}(1), \quad n \in \mathbb{N}^0$$

The period of $\boldsymbol{s}_{N}^{(i)}\left(au\right)$ is 1.

$$u^{(i)}(\tau) = (a_0)^{(i)} + \sum_{n=1}^{N} \left[(a_n)^{(i)} \cos(2\pi n\tau) + (b_n)^{(i)} \sin(2\pi n\tau) \right]$$
$$= s_N^{(i)}(\tau) c^{(i)}, \quad i = 1, 2, \dots, q$$

$$\dot{\boldsymbol{u}}\left(t\right) = \frac{\mathrm{d}\boldsymbol{u}\left(\tau\right)}{\mathrm{d}\tau} \frac{\mathrm{d}\tau}{\mathrm{d}t} = \left[\frac{\mathrm{d}\boldsymbol{S}_{N}\left(\tau\right)}{\mathrm{d}\tau}\right] \frac{1}{t_{f}}\boldsymbol{c}$$

Also, u being a linear function of c leads that the incremental change of u and \dot{u} are linear to the increments of c.

Impact-time Control Problem

To eliminate the nonlinearities, we parameterize

$$\cos \varepsilon (t) = s_N(t) c$$

Its definite integral is still a linear function of the coefficient vector:

$$\int_{0}^{t_{f}} \cos \varepsilon (t) dt = \int_{0}^{t_{f}} s_{N}(t) c dt = \left(\int_{0}^{t_{f}} s_{N}(t) dt \right) c = \tilde{s}_{N} c$$

$$r_i = V \int_0^{t_f} \cos \varepsilon (t) dt$$
 $\tilde{s}_N c = r_i / V$

$$a_0^{(i)}(t) = \begin{cases} u_0^{(i)} & t = 0\\ \frac{(u_f^{(i)} - u_0^{(i)})/2}{\exp(-1/(d_1 t_f/2)^2)} \exp\left(\frac{-1}{(d_1 t)^2}\right) + u_0^{(i)} & t \in (0, t_f/2]\\ -\frac{(u_f^{(i)} - u_0^{(i)})/2}{\exp(-1/(d_1 t_f/2)^2)} \exp\left(\frac{-1}{(d_1 (t - t_f))^2}\right) + u_f^{(i)} & t \in (t_f/2, t_f)\\ u_f^{(i)} & t = t_f \end{cases}$$

The hierarchical parameterization is summarized as

$$u^{(i)}(t) = a_0^{(i)}(t) + \hat{\boldsymbol{s}}_N^{(i)}(t) \boldsymbol{H}_v^{(i)}(t) \tilde{\boldsymbol{c}}^{(i)}$$

By construction, the following conditions are satisfied:

$$u^{(i)}(0) = u_0^{(i)}$$

$$u^{(i)}(t_f) = u_f^{(i)}$$

$$u^{(i)}(t_f) = u_f^{(i)}$$

$$u^{(i)}(0) = u_f^{(i)}(t_f) = 0, \quad r \in \mathbb{N}^+.$$

Trigonometric-polynomial parameterization

- Infinite differentiability
- Linear with respect to the coefficients
- Given as function of time, or other independent variables
- Derivative / Integral

FALCON.m

FALCON.m is the FSD optimAL CONtrol tool for MATLAB that has been developed at the Institute of Flight System Dynamics of Technische Universität München.

Review

Variable	LB	UB	Scaling	Final
Х	0	100	0.01	100
у	0	100	0.01	100
V	0	5	1	5
chi	-2*pi	2*pi	1	0
Vdot	-0.1	0.1	1	n/a
chidot	-pi/8	pi/8	1	n/a

The dynamic model is given as

$$\dot{x}(t) = V(t) \cos \chi(t) ,$$

$$\dot{y}(t) = V(t) \sin \chi(t) ,$$

$$\dot{V}(t) = \dot{V}_{cmd}(t) ,$$

$$\dot{\chi}(t) = \dot{\chi}_{cmd}(t) ,$$

Tasks:

- Complete x_vec
- Complete u_vec
- Complete source_car
- Add final boundary constraints

and the state and control vectors are defined as

$$\boldsymbol{x} = [x, y, V, \chi]^{\mathrm{T}}$$

$$\boldsymbol{u} = \begin{bmatrix} \dot{V}_{cmd}, \dot{\chi}_{cmd} \end{bmatrix}^{\mathrm{T}}.$$

Jacobian Matrix

$$\boldsymbol{J} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x_1} & \cdots & \frac{\partial \boldsymbol{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^{\mathrm{T}} f_1 \\ \vdots \\ \nabla^{\mathrm{T}} f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Note: MATLAB symbolic toolbox can help

Sequential Convex Optimization: Mission A

To climb 500 m instead of 400 m

Task part I:

- Open main_fixed.m
- Read the code
- Complete the forward Euler integration
- Complete the lower-triangular matrix

Task part II:

- Open scp_solve_fixed.m
- Convert the box constraints
- Run the optimization
- Plot the velocity profile

$$u_{a\min} \leq u_a \leq u_{a\max}$$

$$\boldsymbol{u}_{a\min} - \boldsymbol{u}_a^p \le d\boldsymbol{u}_a \le \boldsymbol{u}_{a\max} - \boldsymbol{u}_a^p$$

17th week, January 6th, 14:00 – 15:40

- Questions given on Canvas
- Monitoring via Tencent Meeting
- Front and rear cameras
- Prepare (A4) white papers for writing answers

