L: Solve Combined Circuits in One-Step

Level 6

Prerequisite: Solve Complete Circuits with Nontraditional Information

Points To:

Objectives

- Solve for the voltage, current, resistance, and power of each element of a circuit that combines series and parallel elements.
- Use the "accordion method" of creating simpler circuits and using them to understand more complicated circuits.
- Use the formulas for combining resistance in series and parallel. (Especially practice the fractions in the parallel circuit formula!)

Limits:

- All of the circuits have only one step of simplification. They are only series in parallel or parallel in series, never any more complicated circuit.
- -Every circuit has only one battery.
- Information provided is always the voltage of the battery

Step 1:

Combine the resistors using the correct formula until you have a simple circuit.

Equivalent Resistance for a Series Circuit $R_s = R_1 + R_2 + R_3$ Equivalent Resistance for a Parallel Circuit $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Step 2:

Solve the simple circuit.

Step 3:

Go upward to each complex circuit, one at a time. In each case, follow the rule for separating resistors.

Rule for separating two resistors in series	Rule for separating two resistors in parallel.
Two resistors in series always have the same current.	Two resistors in parallel always have the same voltage (potential difference).

Step 4:

Solve each more complex circuit as you reach it. Repeat.

Step 5:

Use the information you have compiled to answer the final question:

Problem 1: Using the table below, find the power dissipated by each individual resistor and the total circuit:

Final Answer:

	Resistor A	Resistor B	Resistor C	Total Circuit
Power (Watts)				

Problem 2: Using the table below, find the power dissipated by each individual resistor and the total circuit:

Final Answer:

	Resistor A	Resistor B	Resistor C	Total Circuit
Power (Watts)				

Problem 3: Using the table below, find the power dissipated by each individual resistor and the total circuit:

Answer the final question

	Resistor A	Resistor B	Resistor C	Resistor D	Total Circuit
Power (Watts)					

Problem 4: Using the table below, find the power dissipated by each individual resistor

	Resistor A	Resistor B	Resistor C	Total Circuit
Power (Watts)				

Problem 4:

Using the table below, find the power dissipated by each individual resistor and the total circuit:

Original Circuit				
	_			
+		V		
8 Ohms 8 Ohms A A		I		
3 Ohms		R		
		P		
Simpler Circuit		V		
		I		
		R		
		P		

	Resistor A	Resistor B	Resistor C	Total Circuit
Power (Watts)				

Answers

1.

	Resistor A	Resistor B	Resistor C	Total Circuit
Power (Watts)	64	128	96	288

2.

	Resistor A	Resistor B	Resistor C	Total Circuit
Power (Watts)	2	1.25	0.75	4

3.

	Resistor A	Resistor B	Resistor C	Resistor D	Total Circuit
Power (Watts)	125	75	80	40	320

4.

	Resistor A	Resistor B	Resistor C	Total Circuit
Power (Watts)	48	32	32	112

One-Step Accordion Problem Template

One-Step Accordion Problem Templa	tt			
Original Circuit		V		
		I		
		R		
		P		
Simpler Circuit		V		
Simpler Circuit				
Simpler Circuit		I		
Simpler Circuit		I R		
Simpler Circuit		I		
Simpler Circuit		I R		
Simpler Circuit		I R		
Simpler Circuit		I R		
Simpler Circuit		I R		

Alternative one-step accordion method template
Original Circuit V I R P Simpler Circuit V I R P