Базис, размерност и сума на подпространства

Сайт: learn.fmi.uni-sofia.bg Разпечатано от: Цветомир Стайков

урс: Алгебра 1, поток 1, зимен семестър 2023/2024 Дата: четвъртък, 16 ноември 2023, 15:07

Книга: Базис, размерност и сума на подпространства

Съдържание

1. Базис и размерност

- 1.1. Примери
- 1.2. безкрайномерно пространство
- 1.3. крайнопородено пространство
- 1.4. Размерност
- 1.5. пример матрично пространство
- 1.6. свойства -1
- 1.7. свойства 2

2. Координати спрямо базис

2.1. Свойства на координатите

3. Ранг на система вектори

- 3.1. МЛНП
- 3.2. Пример
- 3.3. ранг
- 3.4. Свойства

4. Сума на подпространства

- 4.1. Свойства на сумата на подпространства
- 4.2. размерност на сумата
- 4.3. Директна сума
- 4.4. Т (за директна сума)

1. Базис и размерност

Определение

Нека V е линейно пространство над полето F и $B=\{b_1,\ldots,b_n\}\subset V$. Множеството B е базис на пространството V, ако е изпълнено

- $\ell(b_1,\ldots,b_n)=V;$
- ullet множеството $B=\{b_1,\ldots,b_n\}$ е линейно независимо.

Пример:

Нека да разгледаме пространството от геометрични вектори в равнината \mathbb{R}^2 . Ако в равнината е зададена декартова координатна система $O\overrightarrow{e}_1\overrightarrow{e}_2$, тогава единичните вектори по координатните оси \overrightarrow{e}_1 и \overrightarrow{e}_2 образуват базис на това линейно пространството.

Ако разгледаме произволен вектор, $\overrightarrow{p}=\overrightarrow{OP}$, където координатите на точката са P=(a,b), тогава векторът се представя като следната сума $\overrightarrow{p}=a\overrightarrow{e}_1+b\overrightarrow{e}_2$.

Известно ни е, че нулевият вектор се представя чрез \overrightarrow{e}_1 и \overrightarrow{e}_2 единствено като $\overrightarrow{\mathcal{O}}=0$ \overrightarrow{e}_1+0 \overrightarrow{e}_2 . Следователно \overrightarrow{e}_1 и \overrightarrow{e}_2 са линейно независими и образуват базис на това линейно пространството.

Забележка: Аналогът на понятието базис на линейно пространство в геометрията е координатната система

1.1. Примери

Пример:

Нека да разгледаме множеството на комплексните числа $\mathbb C$, като линейно пространство над полето на реалните числа $\mathbb R$. Представянето на комплексно число в алгебричен вид е z=a+bi където a и b са реални числа. Това означава, че всяко комплексно число е линейна комбинация на 1 и i, т.е. принадлежи на линейната обвивка $\ell(1,i)$. Едно комплексно число е равно на нула z=a+bi=0, само когато реалната част a и имагинерната част b на числото са нули, откъдето получаваме че b и b са линейно независими. Следователно b и b0 образуват базис на на комплексните числа като линейно пространство над полето на реалните числа.

Пример

Да разгледаме пространството F^n , състоящо се от n- мерните вектори с координати от поле F. Разглеждаме векторите

$$e_1 = (1,0,0,\ldots,0,0) \ e_2 = (0,1,0,\ldots,0,0) \ \ldots \ e_n = (0,0,0,\ldots,0,1)$$

където векторът e_i има n-1 координати нула и i-та координата е равна на 1. Тогава ако $A=(a_1,a_2,\ldots,a_n)$ е произволен вектор от F^n , то се вижда че той може да се представа като сума на n вектора, всеки от които има по n-1 нулеви координати и е изпълнено:

$$egin{array}{lll} A &=& (a_1,a_2,\ldots,a_n) = \ &=& (a_1,0,\ldots,0) + (0,a_2,0,\ldots,0) + \ldots + (0,\ldots,0,a_n) = \ &=& a_1e_1 + a_2e_2 + \ldots + a_ne_n \end{array}$$

От полученото равенство установяваме, че вектора $A=(a_1,a_2,\ldots,a_n)$ е елемент на линейната обвивка на векторите e_1,\ldots,e_n , но тъй като A е произволен вектор от пространството F^n , получавама че $F^n=\ell(e_1,\ldots,e_n)$. Разглеждаме, кога може да се получи нулевия вектор като линейна комбинация на векторите e_1,\ldots,e_n :

$$\lambda_1 e_1 + \ldots + \lambda_n e_n = (\lambda_1, \ldots, \lambda_n) = \mathcal{O} \iff \lambda_1 = \ldots = \lambda_n = 0$$

Установихме, че векторите e_1, \ldots, e_n са линейно независими и пораждат цялото n- мерно векторно пространство. Следователно e_1, \ldots, e_n образуват базис на пространството и този базис се нарича c на c н

1.2. безкрайномерно пространство

Определение:

Линейно пространство V над поле F е безкрайномерно, когато за произволно естествено число n и за произволни n на брой вектори от пространството b_1, \ldots, b_n е изпълнено, че $\ell(b_1, \ldots, b_n) \neq V$.

Забележка: Ако V е безкрайномерно линейно пространство и искаме да изберем множество от линейно независими вектори, тогава можем да започнем от произволен ненулев вектор от V и на всяка стъпка да допълваме с вектор, който не е от линейната обвивка на вече избраното множество. Съгласно лемата за линейната независимост, следва че ако пространството V е безкрайномерно, тогава за всяко естествено число n съществува линейно независимо множество от n вектора от пространството V.

Пример:

Разглеждаме полиномите на една променлива с коефициенти от поле F и нека n е произволно естествено число. За всеки избор на n полинома $f_1(x),\ldots,f_n(x)$ нека k е максималната от степените на тези полиноми. Тогава всяка линейна комбинация от полиномите $\alpha_1f_1(x)+\ldots+\alpha_nf_n(x)$ има степен ненадминаваща k и следователно всички полиноми от степен по-голяма от k не принадлежат на линейната обвивка $\ell(f_1(x),\ldots,f_n(x))$. По този начин получаваме, че пространството на полиномите на една променлива с коефициенти от поле е безкрайномерно.

Пример:

Множеството от реалните числа \mathbb{R} , разглеждано като линейно пространство над полето на рационалните числа \mathbb{Q} е безкрайномерно линейно пространство. Причината за товае наличието на така наречините трансцендентни числа (най-популярните от тях са π и Неперовото число e), за които е изпълнено че не са корени на полиноми с рационални числа и поради тази причина произволен набор от n на брой степени на едно такова число са линейно независими.

1.3. крайнопородено пространство

Линейно пространство, което не е безкрайномерно може да се нарече крайнопородено.

В следващата теорема се показва, че всяко линейно пространство, което е крайнопородено и е различно от нулевото, има базис.

Теорема:

Heка (V) е ненулево линейно пространство ((V) - (F), 3a което съществуват вектори от пространството $(a_1, dots, a_t)$, чиято линейна обвивка съвпада с цялото пространство $((ell(a_1, dots, a_t) - V))$. Тогава пространството (V) има базис $(b_1, dots, b_n)$, който е подмножество на пораждащите го вектори $((b_1, dots, b_n))$ subseteq $(a_1, dots, a_t)$.

Доказателство:

Ненулевото линейно пространство (V) е породено от векторите $(a_1, ldots, a_t)$ и следователно поне един от тези вектори е различен от нулевия вектор. Започваме да строим базис на пространството като за първи вектор , вземаме един ненулев от пораждащите вектори $(b_1=a_i)$, където (a_i) маthcal (0). Започва се процедура по допълване на търсения базис.

- Стъпка 1: Векторът \(b_1\) е линейно независим и имаме една от следните две възможности
 - \circ ако е изпълнено, че \(\{a_1,\\dots,a_t\}\\subset \ell(b_1)\\), тогава завършваме процедурата с определен базис \(\{b_1\\}\) на пространството \(\V\),
 - ако съществува вектор от пораждащото множество, който не е от линейната обвивка \(a_l\notin \ell(b_1) \), тогава вземаме за следващ вектор от търсения базис да бъде \(b_2=a_l\), като от лемата за линейната независимост получаваме, че векторите \(b_1,b_2\) са линейно независими и продължаваме със втора стъпка.
- Стъпка \(k\)- ако сме намерили множеството \(\{b 1,\ldots,b k\}\subset \{a 1,\ldots,a t\}\) което е линейно независимо, тогава:
 - \circ ако е изпълнено, че \(\{a_1,\\dots,a_t\}\\subset \ell(b_1,\\dots,b_k)\), тогава завършваме процедурата като сме определили \(\\bar{b_1},\\dots,b_k\\\)) базис на пространството \(\V\)
 - ако съществува вектор от пораждащото множество, който не е линейна комбинация на вече определените вектори \(a_p\notin \ell(b_1,\ldots,b_k) \), тогава приемаме за следващ вектор от търсения базис да бъде \(b_{k+1}=a_p\) и е изпълнено, че векторите \(b_1,\ldots,b_k,b_{k+1}\) са линейно независими и продължаваме със следваща стъпка

Описаната процедура е крайна и има най - много \(t\) стъпки, колкото е броят векторите в пораждащото множество \(a_1,\\dots,a_t\). В момента, когато се завърши процедурата са получени няколко вектора \(b_1,\\dots,b_n\) за които е известно следното: \$\$\begin{array}{rcl}

 $\b_1,\dots,b_n\$ &\subseteq &\{a_1,\\dots,a_t\}\\

 ${a_1,\ldots,a_t}\&\sum_{k,k}\$

\end{array}\$\$

\(\square\)

1.4. Размерност

Теорема:

Нека $(e_1, \ldots (v_1, \ldots v_n))$ и $(g_1, \ldots g_k)$ са два базиса в едно линейно пространство (v_n) . Тогава бройките на векторите в двата базиса съвпадат, т.е. (n=k)

Доказателство:

Векторите $(e_1, ldots, e_n)$ са базис и следователно $(g_i \in V_n)$ от Основната лема на линейната алгебра ще получим, че $(g_1, ldots, g_k)$ са линейно зависими, което е противоречие с факта, че то образуват базис на пространството, следователно $(k \in V_n)$.

По аналогичен начин, от това че $(g_1, \ldots, u \in 1, \ldots, u$

По този начин се установява, че \(n=k\) и всички базиси, които има едно пространство имат по равен брой вектори.

\(\square\)

Определяйки, че всички базиси на едно пространство имат по един и същи брой вектори, получаваме че броят на векторите в един базис е характерен белег на пространството, независещ от конкретния избор на базисните вектори и благодарение на този факт може да се дефинира понятието размерност.

Определение:

Размерността на едно линейно пространство \(V\) над поле \(F\) е равна на броя на векторите \(n\) в произволен базис на пространството. Когато пространството \(V\) има размерност \(n\) над полето \(F\) записваме по следния начин \(\dim_F V=n=dim V\). За нулевото пространство, казваме, че има нулева размерност \(\dim \{\mathcal{O}\}=0\).

От тази дефиниция следва, че всяко линейно пространство е или безкрайномерно или *крайномерно* с размерност \(n\geq 0\). От крайномерните линейни пространство само нулевото пространство\(V=\{\mathcal{O}\}\)) няма базис, защото в него няма линейно независими вектори.

Например, комплексните числа, като линейно пространство над полето на реалните числа има базис (1,i) и размерността на това пространство е $(2=\dim_{\mathbf{K}}\mathbb{R})\$ \mathbb{C}\). От друга страна само (1) образува базис на комплексните числа, като линейно пространство над полето на комплексните числа и $(1=\dim_{\mathbf{K}}\mathbb{C})\$ \mathbb{C}\)

Размерността на $\(n)$ -мерното векторно пространство $\(F^n)$ е равна на $\(n=\dim F^n)$, защото стандартния базис $\(e_1, \dim F^n)$ на пространството има $\(n)$ вектора.

1.5. пример - матрично пространство

Пример:

За да определим размерността на матричното пространство \(M_{n\times k}(F)\) ще намерим базис на пространството, като потърсим аналог от матрици на стандартния базис на \(F^n\). За целта разглеждаме матриците \(E_{ij}\) при които всички елементи са нулеви с изключение на един ненулев елемент, който е 1 и се намира на \(i\) -ти ред и \(i\)-ти стълб. Например в случая на \(2\times 2\) матрици имаме $\$E_{11}=\left(\frac{1}{e}\right)$ \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\) \(F_{12}=\left(\frac{1}{e}\right) \(F_{11}=\) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\) \(F_{12}=\) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\) \(F_{12}=\) \(F_{12}=\left(\frac{1}{e}\right) \(F_{12}=\) \(F_{12}=\) \(F_{12}=\) \(F_{12}=\) \(F_{12}=\) \(F_{12}=\) \(F_{12}=\) \(F_{12}=\)

Проверяваме по какви начини нулевата матрица може да се получи като линейна комбинация на тези матрици \$\$\sum_{\begin{array}{c} 1\leq i\leq n\\ 1\leq j\leq k \end{array}}\lambda_{ij}E_{ij}=\left(\begin{array}{ccc}}

 $\label{lambda_{11}&\lambda_{12}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}&\lambda_{12}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}&\lambda_{12}&\lambda_{12}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}&\lambda_{12}&\lambda_{12}&\lambda_{12}&\lambda_{12}} \label{lambda_{11}&\lambda_{12}&\lambda$

 $\label{lambda_{21}&\lambda_{22}&\lambda_{22}} $$ \and $a_{22}.$ \and $a_{2k}(x) = a_{2k}(x) + a_{2k}$

\ldots&\ldots&\ldots\\

\lambda {n1}&\lambda {n2}&\ldots&\lambda {nk}\\

\end{array} \right) =

\left(\begin{array}{cccc}

0&0&\ldots&0\\

0&0&\ldots&0\\

\ldots&\ldots&\ldots\\

0&0&\Idots&0\\

 $\ensuremath{\mathcharmay} \ensuremath{\mathcharmay} \ensuremath{\ma$

Матриците $(B=\{E_{ij}\} | 1 \le i \le n; 1 \le j \le k \})$ се наричат матрични единици.

1.6. свойства -1

Следващото свойство често се използва, когато определяме базис в крайномерно пространство с известна размерност.

Свойства:

- Всеки \(n\) линейно независими вектора в \(n\) мерно линейно пространство образуват базис.
- Всеки \(n+1\) вектора в \(n\) мерно линейно пространство са линейно зависими.

Доказателство:

Нека (V) е линейно пространство с размерност $(n=\dim V)$ и (e_1,\ldots,n) е базис на това пространство. Тогава произволни (n+1) вектора $(a_1,\ldots,n+1)$ от пространството принадлежат на линейната обвивка на базисните вектори $(a_1,\ldots,n+1)$ са линейно зависими.

Нека $(b_1, ldots, b_n)$ са линейно независими вектори от (n) мерно линейно пространство и $(c \in n)$ е произволен вектор от пространството. Тогава векторите $(b_1, ldots, b_n, c)$ са линейно зависими и следователно $(c \in n)$. Тъй като (c) е произволен вектор от пространствота, следователно $(c \in n)$, $(c \in n)$,

\(\square\)

Пример:

образуват базис на $(M_{2\times 2}(\mathbb{C}))$.

1.7. свойства - 2

Твърдение:

Нека \(V\) е крайномерно линейно пространство и \(\dim V=n\)

- Всяко линейно независимо множество вектори от \(V\) може да се допълни до базис на пространството;
- Всяко собствено подпространство \(L\) на крайномерното пространство \(V\) има по-малка от \(n\) размерност \(\dim L<\dim V. \)

Доказателство:

Ако \(L\) е собствено подпространство на пространството \(L\neq V\) и ако \(b_1,\ldots,b_k\) е базис на подпространството \(L\), тогава \(\ell(b_1,\ldots,b_k)\subsetneqq V \) и \(b_1,\ldots,b_k\) може да се допълни до базис на пространството (който има поне един вектор в повече). От това се получава, че \(\ldot\)

\(\square\)

Пример:

В четиримерното векторно пространство\(\mathbb{R}^4\) разглеждаме линейно независимите вектори $(a_1=(1,-3,0,4))$ и $(a_2=(5,1,0,7))$. Допълваме ги до базис на пространството, като прилагаме описаната процедура при крайнопородените пространство:

- Изпълнено е, че \(e_1\notin \ell(a_1,a_2)\) вземаме за следващ вектор от базиса да бъде \(e_1\), като се получават линейно
 независимите вектори \(a_1,a_2,e_1\);
- Вижда се че \(e 2\in \ell(a 1,a 2,e 1)\), така че \(e 2\) не може да се добави към вече определените \(a 1,a 2,e 1\);
- Ясно е, че \(e_3\notin \ell(a_1,a_2,e_1) \) и се получава че векторите \(a_1,a_2,e_1,e_3 \) са линейно независими.

По този начин, се получава че векторите \(a_1,a_2,e_1,e_3 \) образуват базис на четиримерното векторно пространство. Ясно е, че този базис не е единствения който съдържа векторите \(a_1,a_2\).

Твърдение:

Heкa \(V\) е крайномерно ненулево пространство. Тогава е изпълнено, че \$\$\dim v=n\ \ \Leftrightarrow\ \ \left\\brace \begin{array}{\left\\brace \brace \

\$\$

Доказателство:

От доказаните свойства имаме, че е изпълнена едната посока на твърдението.

Нека $(b_1, ldots, b_n)$ са линейно независими вектори от пространството и всеки (n+1) вектора от (V) са линейно зависими. Тогава за произволен вектор $(c \in V)$ е изпълнено, че $(b_1, ldots, b_n, c)$ са линейно зависими и следователно $(c \in V)$ е изпълнено, че $(b_1, ldots, b_n, c)$ са линейно зависими и следователно $(c \in V)$ со отнася за всеки вектор от пространството и следователно $(V \in V)$, откъдето се получава че $(b_1, ldots, b_n)$ е базис на (V) и затова размерността е (ldim V = N).

\(\square\)

2. Координати спрямо базис

Теорема:

Множеството от вектори $(\{b_1, los, b_n\})$ е базис за пространството (V), тогава и само тогава когато всеки вектор (c) от пространството по единствен начин се изразява като линейна комбинация на векторите (b_1, los, b_n) .

Доказателство:

\(boxed{\Rightarrow}\) Нека \(\{b_1,\ldots,b_n\}\) е базис за пространството и да разгледаме два начина, по които се представя произволен вектор \(c\in V=\ell(b_1,\ldots,b_n)\) като линейна комбинация на базисните вектори \$\$\left. \begin{array}{rcrcr}

c&=&\alpha_1b_1+&\ldots+&\alpha_nb_n\\
c&=&\beta_1b_1+&\ldots+&\beta_nb_n\\
\end{array}\right\rbrace \Rightarrow \\
\mathcal{O}=(\alpha_1-\beta_1)b_1+\ldots+

 $\label{eq:local_object_local_object} $$\operatorname{O}=(\alpha_1-\beta_1)b_1+\dots+(\alpha_n)b_n. $$$

 $\$ Базисните вектори \(b_1,\\dots,b_n\) са линейно независими и затова се получава, че $\$ \begin{array}{c}

\end{array}\$\$ От това получаваме, че представянето на всеки вектор като линейна комбинация на базиса е единствено.

 $(\boxed{\Leftarrow})\$ Нека произволен вектор от пространството се представя по единствен начин като линейна комбинация на векторите \(b_1,\ldots,b_n\). Нека е изпълнено, че \(\lambda_1b_1+\ldots+\lambda_nb_n=\mathcal{O}\), и знаем че винаги е изпълнено и равенството\(\mathcal{O}=0b_1+\ldots+0b_n\). Тогава от единствеността на представянето на нулевия вектор получаваме, че \(\lambda_1=\ldots=\lambda_n=0\) и следователно векторите \(b_1,\ldots,b_n\) са линейно независими и тъй като \(V= \ell(b_1,\ldots,b_n)\) получихме, че \(b_1,\ldots,b_n\) образуват базис на пространството \(V\).

\(\square\)

Определение:

Нека \(B=[b_1,\ldots, b_n]\) е базис (разглеждан с наредбата на векторите) на линейното пространство \(V\). Ако за елементът на линейното пространство \((a\in V\)) е изпълнено, че

\(a=\alpha_1b_1+\ldots+\alpha_nb_n\), тогава \(n\)- мерния вектор, съставен от коефициентите на тази линейна комбинация се нарича координати на \(a\), спрямо наредения базис \(B\):

 $\$ \sigma B(a)=\sigma(a)=(\alpha 1,\ldots,\alpha n)\in F^n \$\$

Пример:

\sigma_B(A)=(3,7,-2,5),\\

\\

\sigma_C(A)=(-2,5,7,3).

 \end{array} \$\$ Освен това, лесно се вижда, че \(A,E_{12}, E_{21},E_{22}\) са линейно независими матрици и може да се разгледа наредения базис \(D=[E_{12}, E_{21},A,E_{22}]\) и спрямо този нареден базис кординатите на матрицата \(A\) са следните \(\sigma_D(A)=(0,0,1,0).\)

11/16/23, 15:08

2.1. Свойства на координатите

Нека е фиксиран един базис $(B=[b_1, ldots, b_n])$ на линейното пространство (V) над полето (F), тогава вземането на координатите спрямо фоксирания базис на векторите от пространството, задава взаимно еднозначно съответствие (биекция) между линейното пространство и (n)-мерното векторно пространство (F^n) : \$\$\sigma_B: V\rightarrow F^n , V = \alpha_1b_1+\ldots+\alpha_nb_n \xightarrow \sigma_B\(\alpha_1, \ldots, \alpha_1) \$\$ Биективното съответствие "координати спрямо фиксиран базис" се съгласува с операциите събиране и умножение със скалар.

Твърдение:

Нека $(B=[b_1, ldots, b_n])$ е нареден базис на пространството (V) и нека векторите $(a,c \in V)$ имат координати спрямо този базис $(sigma(a)=(apha_1, ldots, apha_n))$ и $(sigma(c)=(gamma_1, ldots, gamma_n))$. Тогава за координатите на сумата и на произведението със скалар е изпълнено:

- \(\sigma(a+c)=\sigma(a)+\sigma(b)\),
- \(\sigma (\lambda a)=\lambda \sigma(a)\), където \(\lambda\in F\).

Доказателство:

3наейки координатите \(\sigma(a)=(\alpha_1,\ldots,\alpha_n)\) и \(\sigma(c)=(\gamma_1,\ldots,\gamma_n)\) спрямо базиса \(B=[b_1,\ldots,b_n]\), следователно

\(a=\alpha_1b_1+\ldots+\alpha_nb_n\) и \(c=\gamma_1b_1+\ldots+\gamma_nb_n\) и непосредствено се получава \$\$\begin{array}{rcl}

 $a+c\&=\&\alpha_1b_1+\ldots+\alpha_nb_n+\gamma_1b_1+\ldots+\gamma_nb_n=\ldots+\ldots+\gamma_nb_n=\ldots+\ldo$

&\Downarrow&\\

&=&\sigma(a)+\sigma(c)

\end{array}\$\$ Също така, за произволен скалар \(\lambda\in F\) и за всеки вектор \(a\in V\) е изпълнено \$\$\begin{array}{rcl}

 $\lambda = \lambda = \lambda \cdot 1 + \lambda \cdot 1 + \lambda \cdot 1$

 $=\&\label{lambda} = \&\label{lambda} \$

&\Downarrow&\\

 $\label{lem:lembda} $$ \simeq (\lambda_1) - \lambda_1 \ \lambda_1 \ \lambda_1 \ \lambda_2 \ \lambda_2 \ \lambda_2 \ \lambda_1 \ \lambda_1 \ \lambda_2 \ \lambda_1 \ \lambda_2 \ \lambda_2 \ \lambda_2 \ \lambda_1 \ \lambda_2 \ \lambda_$

&=&\lambda\sigma(a).

\end{array}\$\$

\(\square\)

3. Ранг на система вектори

Понятието ранг на система вектори е аналог на размерността, и се използва когато говорим за подмножество от вектори (обикновено крайно), а не за цяло линейно пространство.

3.1. МЛНП

Определение:

Нека \(V\) е линейно пространство над полето \(F\) и \(A_1,\ldots,A_k\) са набор от вектори на пространството. Казваме, че подмножеството \(\{A_{i_1},\ldots,A_k\}\) е максимално линейно независима подсистема (МЛНП) на \(\{A_1,\ldots,A_k\}\), когато

- \(\{A_{i_1},\ldots, A_{i_r}\}\) са линейно независими,
- всеки вектор от \(\{A_1,\\dots,A_k\}\) е линейна комбинация на \(\{A_{i_1},\\dots, A_{i_r}\}\), т.е. \(A_j\\in \ell(A_{i_1},\\dots, A_{i_r}),\\\forall j=1,\\dots,k\).

Твърдение:

Всеки ненулев набор от вектори на линейното пространство \(V\) има максимално линейно независима подсистема.

Доказателство:

Нека (V) е линейно пространство над полето (F) и (A_1, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектори на пространството, като поне един (A_i, A_k) са набор от вектор от (A_i, A_k) са набор от вектор от (A_i, A_k) са набор от

Тогава, ако \(U=\ell(A_1,\ldots,A_k)\) имаме, че \(U\) е крайнопородено ненулево линейно подпространство на \(V\). От доказаната теорема за крайнопородените пространства, следва че съществува базис \(A_{i_1},\ldots, A_{i_r}\) на \(U\), който е подмножество на \({A_1,\ldots,A_k}\). Системата \({A_{i_1},\ldots,A_k}\) е линейно независима и всеки вектор от \({A_1,\ldots,A_k}\) е линейна комбинация на този базис. Следователно системата от вектори \({A_{i_1},\ldots,A_k}\) е максимално линейно независима подсистема на \({A_1,\ldots,A_k}\).

\(\square\)

3.2. Пример

```
Разглеждаме 3- мерното пространство (\mathcal{Q}^3)) и следния набор от вектори (A_1=(3,1,-4)), (A_2=(-1,-2,3)), (A_3=(-4,-1,5)),
(A_4=(7,-7,0)), (A_5=(2,4,-6)) u (A_6=(-7,2,5)). Преобразуваме векторите $$\begin{array}{ccc}
  \left(\begin{array}{rrrr}
  A_1:&3&1&-4\\
  A_2:&-1&-2&3\\
  A_3:&-4&-1&5\\
  A_4:&7&-7&0\\
  A_5:&2&4&-6\\
  A_6:&-7&2&5\\
  \end{array} \right)&\rightarrow&
  \left(\begin{array}{rrrr}
  A_1:&3&1&-4\\
  A_2+2A_1:&5&0&-5\\
  A_3+A_1:&-1&0&1\\
  A_4+7A_1:&28&0&-28\\
  A 5-4A 1:&-10&0&10\\
  A_6-2A_1:&-13&0&13\\
  \end{array} \right)\\
  \end{array} $$
```

• \(A_1,A_2\) са линейно независими,

Установяваме, че:

- \(A_1,A_2,A_3\) са линейно зависими и следователно \(A_3\in\ell(A_1,A_2)\),
- \(A_1,A_2,A_4\)\(\Rightarrow\) \(A_4\in\ell(A_1,A_2)\),
- \(A_5\in\ell(A_1,A_2)\) защото \(A_1,A_2,A_5\),
- \(A_6\in\ell(A_1,A_2)\) защото \(A_1,A_2,A_6\).

Получихме, че (A_1,A_2) е максимално линейно независима подсистема на (A_1,A_2) е максимално независима подсистема на (A_1,A_2) е максимално независима подсистема на (A_1,A_2) е максимално независима на (A_1,A_2) е максимално независима на (A_1,A_2) е максимално независима на (A_1,A_2) е максима независима независима независима на (A_1,A_2) е максима независима независим

3.3. ранг

Твърдение:

Ако и двете системи $(\{A_{i_1}, \ldots, A_{i_r}\})$ и $(\{A_{i_1}, \ldots, A_{i_r}\})$ са максимално линейни подсистеми на векторите (A_1, \ldots, A_k) от линейно пространство (V), тогава (r=s).

Доказателство:

Да допуснем, че едното от двете числа е по-голямо, например \(r>s\). Тъй като \(A_{i_1},\ldots, A_{i_r}\in \ell (\{A_{j_1},\ldots, A_{j_s}\)\), от основната лема на линейната алгебра следва, че \(\{A_{i_1},\ldots, A_{i_r}\}\) са линейно зависими, което е в противоречие с факта, че те образуват МЛНП, следователно допускането не е вярно и следователно \(r=s.\)

\(\square\)

Определение:

Рангът на система вектори $(A_1, \ldots A_k)$ е равен на броя на векторите в една максимално линейно независима подсистема, и се записва $(r(A_1, \ldots A_k)=r).$ \\Leftrightarrow\\exists\\{A_{i_1}, \\dots, A_{i_r}\}\\text{- MЛНП}\$\$

11/16/23, 15:08

3.4. Свойства

Свойства:

Нека (A_1, \ldots, A_k) е набор от вектори от линейно пространство (V). Тогава:

- 1. Линейната обвивка на набора от вектори и на максимално линейно независима му подсистема съвпадат,
- 2. $(r(A_1, \ldots, A_k) = r \cdot (A_1, \ldots, A_k), \cdot)$
- 3. $(r(A_1, \ldots A_k)=r))(Leftrightarrow)$ в набора от вектори има (r) линейно независими вектора и всеки (r+1) вектора са линейно зависими.

Доказателство:

Нека \(\{A_{i_1}, \ldots, A_{i_r}\}\) е МЛНП за \(A_1, \ldots, A_k\).

- 1. Да разгледаме техните линейни обвивки $(U=\left(A_{i_1}\right), A_{i_r}) \ (W=\left(A_1, A_k\right))$. МЛНП $(A_{i_1}, A_{i_r}) \ (U_{i_1}, A_{i_r}) \ (U_{i_1}, A_{i_1}, A_{i_1}) \ (U_{i_1}, A_{i_1}, A_{i_1}, A_{i_1}, A_{i_1})$. Всеки вектор от изходната система е линейна комбинация $(A_i) \ (A_i) \ (A_i) \ (A_i) \ (A_i) \ (A_i) \ (U_{i_1}, A_{i_1}, A_{i_1}, A_{i_1}, A_{i_1})$.
- 2. Получихме, че \(\ell(A_{i_1},\ldots, A_{i_r})=W=\ell(A_1,\ldots,A_k)\) и векторите \(\{A_{i_1},\ldots, A_{i_r}\}\) са линейно независими \(\Rightarrow\)те образуват базис на \(\ell(A_1,\ldots,A_k)\), откъдето получаваме че \(r(A_1,\ldots,A_k)=r=\dim \ell(A_1,\ldots,A_k).\)

\(\square\)

4. Сума на подпространства

Знаем, че в ненулево линейно пространство \(V\) има различни подпространства и освен това ако се вземе сечението на две подпространство се получава пак подпространство.

Непосредствено се вижда, че обединението на две подпространство *не е* подпространство. За да се опише подпространството, което съдържа обединението на две подпространства се използва конструкцията на сума на подпространства.

Определение:

Нека (V) е линейно пространство над полето (F) и (U) и (W) са подпространства на (V). Сума на подпространствата (U) и (W) се нарича: $$U+W={a+b \mid A \in W}$ A in U, b in W.

Пример:

Нека в 4 мерното векторно пространство \(\mathbb{R}^4\) разгледаме подпространствата \(U=\ell(a_1,a_2)\) и \(W=\ell(b_1,b_2)\), където \$ \\psi\begin{array}{cc}

```
a_1=(1,1,0,0), & a_2=(0,0,1,1) \\
b_1=(1,0,1,0),& b_2=(0,1,0,1)\\
```

 $\ensuremath{\mbox{\mbox{$\m$

 $\U_1+\dots+U_k=\a_1+\dots+a_k\ |\ a_i\in U_i,\ i=1,\dots,k\ }.$

11/16/23, 15:08

4.1. Свойства на сумата на подпространства

Твърдение:

Нека \(V\) е линейно пространство, като \(U\) и \(W\) са негови подпространства. Тогава е изпълнено:

- \(U+W\) е подпространство на \(V\),
- 3. ако за подпространството \(T\) е в сила, че \(U\subset T\), и \(W\subset T\), тогава е изпълнено \(U+W\subset T\),
- 4. сумата на подпространствата \(U\) и \(W\) е равна на сечението на всички подпространства на \(V\), които съдържат обединението \(U\cup W\)\\$\$U+W=\bigcap_{ \ (U\cup W\)\subset T<V\T.\$\$

Доказателство:

- 1. Нека да разгледаме два произволни елемента от сумата на подпространствата $(a=u_1+w_1)$ и $(b=u_2+w_2)$. Тъй като (U) и (W), като подпространства са затворени относно операциите, е изпълнено $(\lambda a=\lambda u_1+w_1)$ и $(u_1+\lambda u_2+w_2)$ (underbrace (u_1+u_2) (in u_2+w_2) (underbrace (u_1+u_2) (in u_2+w_2) е подпространство.
- 2. Нека да резгледаме по един елемент от всяка една от двете линейни обвивки \(u \in U=\ell(a_1,\ldots,a_k)\), където \(u=\lambda_1a_1+\ldots+\lambda_ka_k\), също и \(w \in W=\ell(b_1,\ldots,b_s)\Rightarrow w=\mu_1b_1+\ldots+\mu_sb_s\). Тогава имаме \$\$\legin{array}{ccl} u+w&=&\lambda_1a_1+\ldots+\lambda_ka_k+\mu_1b_1+\ldots+\mu_sb_s\\ &\Downarrow&\\ U+W&\subset&\ell(a_1,\ldots,a_k,b_1,\ldots,b_s)\\ \end{array}\$\$ От друга страна за произволен вектор \(t\in\ell(a_1,\ldots,a_k,b_1,\ldots,b_s)\\) е изпълнено, че \$\$\legin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \text{\legin} \text{\legin} \\ \ell(a_1,\ldots,a_k\)+\ell(a_1,\ldots,a_k\)+\underbrace{\gamma} \\ \ell(a_1,\ldots,b_s)\\\ \ell(a_1,\ldots,b_s)\\\ \ell(a_1,\ldots,b_s)\\\ \ell(a_1,\ldots,b_s)\\\ \ell(a_1,\ldots,b_s)\\\ \ell(a_1,\ldots,b_s)\\\ \ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)\\\ \ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(a_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,b_s)=\ell(a_1,\ldots,a_k\)+\ell(b_1,\ldots,a
- 3. Ако \(T<V\) е подпространство, което съдържа и двете подпространства \(U\subset T\), също и \(W\subset T\), тогава за произволен елемент от сумата \(U+W\) е изпълнено \$\$a=u+w\in U+W,\ \ \text{където }\ u\in U\subset T \text{ и } w\in W\subset T \ \Rightarrow a=u+w\in T\ \Rightarrow U+W\subset T. \$\$
- 4. Сумата \(U+ W\) се съдържа във всички подпространства \(T\) , които съдържат \(U\сup W\), затова \(U+ W\) се съдържа в сечението на всички такива подпространства \$\$U\cup W\subset T\Rightarrow U+W\subset T\Rightarrow \(U\cup W\); \$\$\left. \begin{array}c} u\in U\Rightarrow u=u+\underbrace{\mathcal{O}}_{\in U}+w\in U+W\\ \mathcal{O}}\right \\ \rightarrow \(U\cup W\)\subset U+W\\$ Получаваме, че \(L=U+W\) е едно от подпространствата, които участват в сечението и следователно \(\bigcap_{\in U}\rightarrow U+W\). По този начин установихме, че \$\$ U+W = \bigcap_{\in U\cup W}\subset T\rightarrow \(U\cup W\)\subset T\rightarrow \(U\cup W\cup W\cup

\(\square\)

11/16/23, 15:08

4.2. размерност на сумата

Теорема:

Heка (V) е линейно пространство над полето (F), (U) и (W) са крайномерни подпространства на (V). Тогава е изпълнено $$$\dim(U+W)=\dim U+\dim W-\dim (U)$

Доказателство:

Тъй като \(U\) и \(W\) са крайномерни пространства, затова и тяхното сечение \(U\сар W\) също е крайномерно и нека \(e_1,\ldots,e_s\) е базис на \(U\cap W\) и \(\ldot\dim (U\cap W)=s\). Ако сечението е нулевото пространство \(U\cap W=\{\mathcal{O}\}\), тогава не се взема никакъв вектор за сечението.

Допълва се базиса на сечението веднъж до базис на подпространството \(U\) и от друга страна се допълва до базис на \(W\): \$\$\begin{array}{ccc}

```
e_1,\ldots,e_s,a_1,\ldots a_m & \text{- базис на } U, &\dim U=s+m,\\ e_1,\ldots,e_s,b_1,\ldots b_k & \text{- базис на } W, &\dim W=s+k.\\ \end{array} $$ Ще докажем, че \(e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k\) образува базис на сумата на подпространствата \(U+W \).
```

- За векторите от разглежданите базиси е изпълнено \(e_i\in U\cap W \subset U+W\), освен това \(a_j\in U\subset U+W\), както и \(b_l\in W \subset U+W\). Следователно \(\lell(e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k)\subset U+W \). Нека разгледаме произволен елемент от сумата \(t=u+w\in U+W\), където \(u=\lambda_1e_1+\ldots+\lambda_se_s+\alpha_1a_1+\ldots+\alpha_ma_m\in U\) и \(w=\mu_1e_1+\ldots+\mu_se_s+\beta_1b_1+\ldots+\beta_kb_k\in W\). От това изразяване, получаваме \$\$\begin{array}{rcl} t&=&u+w=\\ &=&(\lambda_1+\mu_1)e_1+\ldots+(\lambda_s+\mu_s)e_s+\\ &&\\ +\alpha_1a_1+\ldots+\alpha_ma_m+\\ &&\\ +\beta_bk_k\\ &\\ +\beta_1b_1+\ldots+\beta_kb_k\\ \\ +\beta_1b_1+\ldots+\beta_kb_k\\ \\ +\beta_1b_1+\ldots+\beta_kb_k\\ \\ +\beta_1b_1+\ldots+\beta_kb_k\\ \\ +\beta_1b_1+\ldots+\beta_kb_k\\ \\ +\beta_1b_1+\ldots+\beta_1b_1+\ldot
- Ще докажем, че векторите \(e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k\) са линейно независими. За целта разглеждаме едно изразяване на нулевия вектор \$\$\underbrace{\gamma_1e_1+\ldots+\gamma_se_s}_{=x\in U\cap W} +\underbrace{\delta_1a_1+\ldots+\delta_ma_m}_{=y\in U}+\underbrace{\nu_1b_1+\ldots \nu_k b_k}_{=z\in W} =\mathcal{O}\$\$ За векторите \(x\in U\cap W\), \(y\in U\) и \(z\in W\) е изпълнено \(x+y+z=\mathcal{O}\), следователно \(x+y=-z\). Изпълнено е, че \(x+y\in U\), както и \(-z\in W\) и тъй като те са равни, затова тези вектори са от сечението на двете подмножества \(x+y=-z\in U\cap W\). Следователно тези вектори могат да се представят като линейна комбинация на базисните вектори на \(U\cap W\) и затова можем да напишем \(x+y=-z=\omega_1e_1+\ldots+\omega_se_s\). Изразяваме по следния начин \\$\omega_1e_1+\ldots+\omega_se_s+\nu_1b_1+\ldots \nu_k b_k=\mathcal{O}.\$\$
 Векторите \(e_1,\ldots,e_s,b_1,\ldots b_k\) са линейно независими, защото са базис на подпространството \(W\) и затова всички коефициенти на тази линейна комбинация са нули \(\omega_1=0,\ldots,\omega_s=0,\nu_1=0,\ldots \nu_k=0\), следователно е изпълнено \(x+y=\mathcal{O}\)). По този начин установяваме и за останалите коефициенти, че са равни на нула \(\gamma_1=0,\ldots,\gamma_1=0,\ldots,\gamma_s=0\), както и \(\delta_1=0,\ldots,\delta_m=0\). Следователно \(e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k\) са линейно независими.

По този начин установихме, че \(e_1,\ldots,e_s,a_1,\ldots a_m,b_1,\ldots b_k\) е базис на \(U+W\). Следователно е изпълнено \$\$\begin{array}{ccl} \\dim(U+W)&=&s+m+k=\\ &=&(s+m)+(s+k)-s=\\ &=&\dim U+\dim W-\dim(U\cap W). \\end{array}\$\$\$

\(\square\)

Пример:

```
В разгледания на предната страница пример в \(\mathbb{R}^4\), където \(U=\ell(a_1,a_2)\) и \(W=\ell(b_1,b_2)\), където $$\begin{array}{cc} a_1=(1,1,0,0), & a_2=(0,0,1,1) \\ b_1=(1,0,1,0),& b_2=(0,1,0,1)\\ \end{array} $$ Елементите на подпространствата се изразяват по следния начин \(U=\{(x,x,y,y)\ |\ x,y\\in\mathbb{R}\}\) и \(W=\\((z,t,z,t)\ |\ z,t\\in\mathbb{R}\\\)\)

Тогава $$ \begin{array}{ccl} U+W&=&\\((x+z,x+t,y+z,y+t)\ |\ x,y,z,t\\in\mathbb{R}\\)=\\
&=&\ell(a_1,a_2,b_1,b_2)
\end{array} $$ Сечението на двете подпространства е едномерно и \(U\\cap W=\ell(c),\) където \((c=(1,1,1,1)\)). Можем да определим размерността на сумата \(\dim (U+W)=2+2-1=3.\)
```

20 of 23

Следвайки начина на доказване на теоремата, можем да намерим базис на сумата на подпространствата. Имаме следните базиси

\(\{c,a_1\}\) образува базис на \(U\), \(\{c,b_1\}\) образува базис на \(W\), \(\{c,a_1,b_1\}\) образува базис на \(U+W\).

4.3. Директна сума

Определение:

Нека \(U\) и \(W\) са подпространства на линейното пространство \(V\). Сумата на подпространствата \(U+W\) се нарича директна сума - когато всеки вектор \(a\in U+W\) може да се изрази **по единствен начин** във вид \(a=u+w, \ u\in U,\ w\in W\). Когато сумата на подпространствата е директна сума, записваме \(U\oplus W.\)

Пример:

Нека линейно пространство \(V\) има базис \(b_1,\ldots,b_n\) и нека \(1\leq k<n\). За подпространствата \(U=\ell(b_1,\ldots,b_k)\) и \(W=\ell(b_{k+1},\ldots,b_n)\) е вярно, че сумата на тези подпространства е директна сума.

- Нека \(a\in U+W\) е представено като \(a=u_1+w_1\) и освен това като \(a=u_2+w_2\), където \(u_1,u_2\in U\) и \(w_1,w_2\in W\). Тогава е изпълнено, че $\$ \underset \(u_1+w_1=u_2+w_2 \ Rightarrow\\ u_1-u_2=w_2-w_1\in U\\сар $\$ \\\$
- От това получаваме, че $(u_1-u_2=w_2-w_1=\mathbf{0})$.

Получихме, че всеки вектор от (U+W) по единствен начин се представя като вектор от (U) плюс вектор от (W), следователно сумата на подпространствата е директна сума и е изпълнено, че (U) (U)

4.4. Т (за директна сума)

Начина, по който се доказа, че имаме директна сума в предния пример, е валиден за произволни пространства. В сила е следната теорема:

Теорема:

(U) и (W) са подпространства на линейното пространство (V). Сумата (U+W) е директна сума, тогава и само тогава когато $(U\c W=\{\{mathcal\{O\}\}\})$.

Доказателство:

\(\boxed{\Rightarrow}\) Нека сумата на двете подпространства е директна сума \(U+W=U\oplus W\). За произволен елемент от сечението \(x\in U\cap W\), има две очевидни представяния като сума на елемент от подпространството \(U\) плюс елемент от \(W\) и щом сумата на подпространствата е директна, трябва тези две представяния да изразяват едно и също: \$\$\left.\begin{array}{ccc} x=x+\mathcal{O},& \text{kъдето} \ x\in U,&\mathcal{O}\in W\\ x=\mathcal{O}+x,& \text{kъдето} \mathcal{O}\in U,& x\in W\\ \end{array}\right

\$\$ Получихме, че единственият елемент от сечението може да бъде нулевия вектор \(U\cap W=\{\mathcal{O}}\}\).

\(boxed{\Leftarrow}\) Нека е изпълнено \(U\cap W=\{\mathcal{O}\}\) и да разгледаме произволен елемент от сумата на подпространствата \(a\in U+W\). Ако е изпълнено

 $(a=u_1+w_1)$) и $(a=u_2+w_2)$, тогава е изпълнено $u_1-u_2+w_2$ \Rightarrow\ u_1-u_2=w_2-w_1\in U\cap W=\{\mathcal{O}.\}\$\$ Получихме, че \(u_1=u_2\) и \(w_1=w_2\), следователно векторът \(a\) по единствен начин се представя като сума на вектори от \(U\) и \(W\).

\(\square\)

Следствие:

Ако \(U\) и \(W\) са крайномерни подпространства на линейното пространство \(V\) и тяхната сума е директна сума, тогава $\$ (U\oplus W)=\dim U+\dim W.\$\$