MATRIX A Reconfigurable Computing Device with Configurable Instruction Distribution

André DeHon Dan Hartman Ethan Mirsky <andre@acm.org> <omv@ai.mit.edu> <eamirsky@ai.mit.edu>

Reinventing Computing
MIT Artificial Intelligence Laboratory

Acknowledgments: This research is supported by the Advanced Research Projects Agency of the Department of Defense under Rome Labs contract number F30602-94-C-0252.

Al Lak

Outline

- Problem Identification
- Benefits of Configurable Instruction Distribution
- MATRIX Architecture
- Usage Example Convolution
- Implementation Details
- Summary

The Problem

We want to have:

- Computing solutions which are programmable (post fabrication and in-system)
- Efficient (application oriented) Silicon Usage (minimize size and cost necessary to solve problem)

Traditional Approaches

Traditional Solutions (e.g. Processors and FPGAs)

- Fix Instruction Distribution
- Limits application range where architecture is efficient

Processors

Dedicate significant area to instruction and data memory

- ⇒ efficient for heavily multiplexed operation
- ⇒ inefficient on regular tasks
- ⇒ lower yielded capacity on fine-grained data

Field-Programmable Gate Arrays

Dedicate most area to fine-grained interconnect

- ⇒ efficient on very regular operations
- ⇒ high fine-grain yield
- ⇒ low yielded capacity on irregular tasks

MATRIX Benefits: Configurable Granularity

Select granularity according to needs of the application.

MATRIX Benefits: Configurable Instruction Distribution

Just as much control granularity as the problem needs

MIT Al

MATRIX Architecture Basic Functional Unit (BFU)

- Same network servers data, instructions, and addresses
- Can use BFU as Instruction Store, Data Memory, or Compute Unit

MATRIX Architecture (Network)

Length Four Bypass Interconnect

Global - 4 Lines per Row/Column

MATRIX Port Architecture

10

Usage Example Finite Impulse Response Computation

$$y_i = w_1 \cdot x_i + w_2 \cdot x_{i+1} + \dots + w_k \cdot x_{i+k-1}$$

Examples based on:

- 8-bit samples
- 16-bit accumulate

MATRIX FIR - Systolic (Spatial)

Area:

4k BFUs as shown (2k + 4 in practice)

ALLIO

(k == number of filter weights)

Throughput: 2 cycles per 16-bit result (25MHz)

12

MATRIX FIR - Microcoded (Space Limited)

	Labei	ALU OP	PC
	inn	$Rs \leftarrow Rs \times Rw$	
		$Rw \leftarrow \times$ -continue	
I _{src} PC I _a		$RI \leftarrow Rs + RI$	
		$Rh \leftarrow Rw +-continue Rh$	
X;	ent	$Rxp \leftarrow Rxp + 1$; Match $(k + 1)$	BNE x2
→		$Rs \leftarrow < Rxp >$	(br slot)
lalu src (8 bit)		Rxp ← 65	
		$Rs \leftarrow \langle Rxp \rangle$	
(16 bits output over 2 cycles)	x2	$Rwp \leftarrow Rwp + 1$; Match $(k + 1)$	BNE inn
The over 2 cycles)		$Rw \leftarrow < Rwp >$	(br slot)

Area:

8 BFUs

Throughput: (8k + 9) cycles per 16-bit result

(k == number of filter weights)

MATRIX FIR - VLIW

Label	Xptr unit	Wptr unit	PC	MPY unit	+-unit
innerloop	$Xptr++ MOD k \mid 64$	Wptr++; Match k	BNE innerloop	$< Xptr > \times < Wptr >$	Rhigh← Rhigh + MPY-result
	output Xptr	output Wptr	(pipelined branch slot)	x-continue	$Rlow \leftarrow Rlow + MPY-result$

Area:

11 BFUs

Throughput: (2k + 1) cycles per 16-bit result

(k == number of filter weights)

MATRIX Area-Time Comparison

Area-Time for 16 TAP Filter

Summary

- Traditional Architecture fix instruction distribution
 - Large amounts of silicon may sit idle ⇒ inefficient
- MATRIX is a novel architecture which addresses this problem with:
 - Resource Balance
 - Configurable Instruction Distribution
 - Deployable Resources
- Resources may be deployed in an application specific manner
 - Datapaths
 - Memory
 - Instruction Distribution

18

Reinventing Computing

http://www.ai.mit.edu/projects/transit/ rc_home_page.html

MATRIX Documents

http://www.ai.mit.edu/projects/transit/ matrix_documents.html

MATRIX Implementation

Technology 0.6µm CMOS

(3 metal)

Die Size 13mm×10mm Pin Count 228 (124 I/O)

Clock Rate 50 MHz

BFUs 36 (prototype)

(envision 100's in typical devices) Performance 1.8 Gops/sec

(8-bit Ops)

MATRIX BFU Details

- BFU Size 1.3mm×1.7mm
- Features
 - 8-bit ALU
 - 8×8→16 Multiplier
 - 256 Byte SRAM (dual port)
 - 8 Byte-wide input ports
 - 28 input sources
 - 11 Byte-wide output drivers
 - Config. Memory: 90 Bytes

