

/	Please write clearly in	ı block capitals.	
	Centre number	Candidate number	
	Surname		
	Forename(s)		
	Candidate signature		
		I declare this is my own work.	

INTERNATIONAL AS **MATHEMATICS**

(9660/MA01) Unit P1 Pure Mathematics

Wednesday 17 May 2023 07:00 GMT Time allowed: 1 hour 30 minutes

Materials

- For this paper you must have the Oxford International AQA Booklet of Formulae and Statistical Tables (enclosed).
- You may use a graphical calculator.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Do all rough work in this book. Cross through any work you do not want to be marked.

-	
1	
2	
3	
4	
5	
6	
7	
8	
9	
TOTAL	

For Examiner's Use

Mark

Question

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- Show all necessary working; otherwise marks may be lost.

Answer all questions in the spaces provided.

1 (a) It is given that

$$m = 8a^{\frac{4}{3}}$$
 and $n = 2a^{\frac{1}{2}}$

where a is a positive constant.

1 (a) (i) Find mn

Circle your answer.

[1 mark]

$$10a^{\frac{3}{2}}$$

$$16a^{\frac{2}{3}}$$

$$10a^{\frac{11}{6}}$$

$$16a^{\frac{11}{6}}$$

1 (a) (ii) Find $\sqrt{\frac{m}{n}}$

Circle your answer.

[1 mark]

$$2a^{\frac{5}{12}}$$

$$\sqrt{6} a^{\frac{5}{12}}$$

$$2a^{\frac{5}{6}}$$

$$\sqrt{6} a^{\frac{5}{6}}$$

1	(b) (i)	Find the value of p for which $500x^6 \times (5x^2)^p$ is constant for all non-zero value.	ues of x	outside box
			[2 marks]	
		<i>p</i> =		
1	(b) (ii)	Use the value of p found in part (b)(i) to calculate $500x^6 \times (5x^2)^p$		
			[1 mark]	
		Answer		5
		T		
		Turn over for the next question		

The line l and an isosceles triangle with vertices at the points P, Q and R are shown in the diagram.

The coordinates of Q are (4, 9)

The coordinates of $\,R\,$ are $\,\left(14,-3\right)\,$

2	(a)	Find the exact le	ength of the	line segment	QR
---	-----	-------------------	--------------	--------------	----

		[2 marks]
Answer		

2	(b)	The line	l is	the line	of s	ymmetry	of the	isosceles	triangle
	` '					,			

Show that l has the equation $y = \frac{5}{6}x - \frac{9}{2}$

[4 marks]

2 (c) The line with equation $y = \frac{1}{4}x + d$ intersects l at the point (30, k) where k and d

9

are constants.

[3 marks]

3		An arithmetic sequence has first term a , common difference d and n th term u_n
		The sum of the first n terms of the sequence is S_n
		For this sequence $S_{30} - S_{10} = 522$
3	(a)	Show that $10a + 195d = 261$ [3 marks]
3	(b)	It is also given that $u_{36} = 5u_9 + 27$
		Find a formula in terms of n for the n th term of the arithmetic sequence.
		Give your answer in the form $u_n=pn-q$ where p and q are positive constants. [5 marks]

			Do not write
			outside the box
		$u_n = $	
3	(c)	Find the number of terms in the arithmetic sequence that have a value less than 140	
		[2 marks]	
		Answer	10

4	(a)	The first four terms in ascending powers of x of the binomial expansion of $(1+6x)^7$ are
		$1 + ax + bx^2 + 7560x^3$
		where a and b are constants.
		Find the value of a and the value of b [3 marks]
		[o marko]
		a = b =

4	(b)	In the expansion of	

$$\left(\frac{1}{2} - kx\right) \left(1 + 6x\right)^7$$
 where k is a constant

the coefficient of x^3 is 1512

Find the	he valı	ue of k
----------	---------	-----------

[3 marks]

_

Turn over for the next question

5	(a)	Use the trapezium rule with six ordinates (five strips) to find an approximate value for			
		$\int_{1}^{3} 8^{\sqrt{x}} dx$			
		Give your answer to one decimal place. [4	marks]		
		Answer			

$y = 8^{\left(\frac{1}{3} + \sqrt{x}\right)}$	
	[3 marks]
Lise your answers to nart (a) and nart (h)(i) to find an approximate value for	
$\int_{1}^{3} 8^{\left[\frac{1}{3} + \sqrt{x}\right]} dx$	
Give your answer to one decimal place.	
Give your answer to one decimal place.	[2 marks]
Give your answer to one decimal place.	[2 marks]
Give your answer to one decimal place.	[2 marks]
Give your answer to one decimal place.	[2 marks]
Give your answer to one decimal place.	[2 marks]
Give your answer to one decimal place.	[2 marks]
	[2 marks]
Give your answer to one decimal place. Answer	[2 marks]
	$y = 8^{\left(\frac{1}{3} + \sqrt{x}\right)}$ Use your answers to part (a) and part (b)(i) to find an approximate value for $\int_{1}^{3} 8^{\left(\frac{1}{3} + \sqrt{x}\right)} dx$

6		The function 1 is given by	
		$f(x) = x^3 + ax^2 - 6bx + 7$	
		where a and b are constants.	
		When $f(x)$ is divided by $(x-4)$ the remainder is 23	
6	(a)	Use the Remainder Theorem to show that $2a-3b=-6$	[2 marks]
6	(b)	The value of the gradient of the tangent of the curve $y = f(x)$	
		at the point where $x = -5$ is 21	
		Use the value of the gradient to find an equation of the form $pa+qb=r$ where p,q and r are integers.	[3 marks]
		Answer	

6	(c)	Use your answers to part (a) and part (b) to find the value of <i>a</i> and the value	of <i>b</i> [1 mark]
		a = b =	
6	(d)	The function f is an increasing function when $x < -4$ or $x > 2$	
		The function g is given by $g(x) = 9 + 48x + x^2 - \frac{1}{3}x^3$	
		Find all of the values of x for which both f and g are increasing functions.	[6 marks]
		Answer	

12

7		A curve has the equation	
		$y = x \left(x - 6x^{\frac{1}{3}}\right) + 16$	
		where $x > -4$	
7	(a)	Find $\frac{dy}{dx}$	[2 marks]
		dy	
		$\frac{\mathrm{d}y}{\mathrm{d}x} =$	
7	(b)	The curve has two stationary points P and Q	
		Show that the coordinates of P are $(0, 16)$ and find the coordinates of Q	[5 marks]
		Q	

	Do not write outside the box
k]	
k]	
k]	

7	(c) (i)	Find $\frac{d^2y}{dx^2}$	[1 mark]
			[1 mark]
		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \underline{\hspace{1cm}}$	
7	(c) (ii)	Use your answers to part (b) and part (c)(i) to show that Q is a minimum.	[1 mark]
7	(d) (i)	Explain why it is not possible to use the x -coordinate of P with your answer to part (c)(i) to determine whether P is a minimum or a maximum.	[1 mark]
7	(d) (ii)	Calculate the values of the gradient of the curve at the points where $x = -0.1$ $x = 0.1$ and hence deduce that P is a maximum.	and [2 marks]

12

Do not write outside the box

8	Find the values of <i>a</i> for which	
	$\int_{a^2}^{25a^2} \frac{6x + 5x^2}{x^2 \sqrt{x}} \mathrm{d}x = 44$	[7 marks]

	Do no outsic be	ot write ide the ox
Answer		<u>'</u>
Turn over for the next question		

Turn over ▶

9	The first three terms of a geometric sequence are	
	$u_1 = 27^{2p+1}$, $u_2 = 3^{18p}$ and $u_3 = 3^{6p+1}$	
	where p is a constant.	
9 (a)	Show that $p = \frac{1}{6}$	[4 marks]

Do not write outside the box

The n th term of the geometric sequence is u_n	
Show that for any positive integer k	
$54\sum_{n=k+1}^{6k}u_n = b^{c-k} \left(1 - b^{dk}\right)$	
where $b,\ c$ and d are integers.	6 marks]
	Show that for any positive integer k $54\sum_{n=k+1}^{6k}u_n=b^{c-k}\left(1-b^{dk}\right)$ where $b,\ c$ and d are integers.

10

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED

Copyright information

For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.oxfordaqaexams.org.uk.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and Oxford International AQA Examinations will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team

Copyright © 2023 Oxford International AQA Examinations and its licensors. All rights reserved.

Do not write outside the