

Northern Illinois University

Graphs

Dr. Maoyuan Sun - smaoyuan@niu.edu

Graphs – Terms

- Graph a data structure that consists of a set of nodes and a set of edges that relate the nodes to one another; G = (V, E)
- Vertex a node in a graph; V(G) is a finite, nonempty set of vertices
- Edge (arc) a pair of vertices representing a connection between two nodes in a graph; E(G) is a set of edges (written as pairs of vertices)
- Undirected graph a graph in which the edges have no direction
- **Directed graph** (**digraph**) a graph in which each edge is directed from one vertex to another (or the same) vertex

Graphs – Terms

- Adjacent vertices two vertices in a graph that connected by an edge
- Path a sequence of vertices that connects two nodes in a graph
- Complete graph a graph in which every vertex is directly connected to every other vertex
- Weighted graph— a graph in which each edge carries a value

Depth-First Search

 Depth-first search follows a path as far as possible before backtracking

 It is useful in graphs for checking if a path exists between two nodes

Depth-First Search Algorithm

- Add the nodes adjacent to the start node to the stack
- Pop a node off the stack and examine it
- Add all the nodes adjacent to the popped node to the stack
- Continue until the target node is found or the stack is empty (no more nodes to check)

Depth-First Search Algorithm

```
1 set found to false
2 stack.Push(startVertex)
3 do
4     stack.Pop(vertex)
5     if vertex == endVertex
6         write endVertex
7         set found to true
8     else
9         write vertex
10         push all adjacent vertices onto stack
11 while !stack.IsEmpty() && !found
12 if(!found)
13     write "Path does not exits"
```


Is there a path from Austin to Washington?

Depth-First Search Algorithm

```
1 set found to false
          2 stack.Push(startVertex)
          3 do
                 stack.Pop(vertex)
                 if vertex == endVertex
                     write endVertex
                     set found to true
                 else
                     write vertex
                     push all adjacent vertices onto stack
            while !stack.IsEmpty() && !found
            if(!found)
                 write "Path does not exits"
                                                  1300
                  Austin
                                                   Washington
                               Denver
                                                      600
                   Chicago
                                                  Atlanta
CSCI 340 – Data Structures
```

Is there a path from Austin to Washington?

Breadth-First Search

- Breadth-first search examines all possible paths of the same length before going further
- DFS backtracks as little as possible, while BFS backtracks as far as possible
- In a binary tree, BFS would explore all the nodes at a particular level before exploring any nodes on the next level
- BFS uses a queue to keep track of nodes

Breadth-First Search Algorithm

```
1 set found to false
2 queue.enqueue(startVertex)
3 do
4     queue.dequeue(vertex)
5     if vertex == endVertex
6          write endVertex
7         set found to true
8     else
9         write vertex
10         enqueue all adjacent vertices into queue
11 while !queue.IsEmpty() && !found
12 if(!found)
13     write "Path does not exits"
```


Is there a path from Austin to Washington?

Representing Graphs

		1	2	3	4	5	6	/
	1	Т	Т	Т	Т	F	F	F
	2	F	Т	F	Т	Т	F	F
21	3	F	F	Т	F	F	Т	F
u	4	F	F	Т	Т	F	Т	Т
	5	F	F	F	T	T	F	Т
	6	F	F	F	F	F	Т	F
	7	F	F	F	F	F	Т	Т

A two-dimensional array (matrix) to represent a graph, $u \rightarrow v$.

Representing Graphs

A two-dimensional array (matrix) to represent a graph, $u \rightarrow v$.

Put a True(T) for edge and False(F) for no edge, it's a choice on how to handle selfconnection. For this class assume every vertex is self connected so put a T.

 Same thing as before but instead of T/F we put in the weights, with special mark for no edges. Weight on self connection is 1.

 Same thing as before but instead of T/F we put in the weights, with special mark for no edges. Weight on self connection is 1.

v

		1	2	3	4	5	6	7
	1	1	10	5	5	∞	∞	∞
	2	∞	1	∞	5	5	∞	∞
4 1	3	∞	∞	1	∞	∞	5	∞
u	4	∞	∞	15	1	∞	5	5
	5	∞	∞	∞	15	1	∞	5
	6	∞	∞	∞	∞	∞	1	∞
	7	∞	∞	∞	∞	∞	10	1

v

$$u \rightarrow v$$
 (u, v)

		1	2	3	4	5	6	7
u	1	1	10	5	5	∞	∞	∞
	2	∞	1	∞	5	5	∞	∞
	3	∞	∞	1	∞	∞	5	∞
	4	∞	∞	15	1	∞	5	5
	5	∞	∞	∞	15	1	∞	5
	6	∞	∞	∞	∞	∞	1	∞
	7	∞	∞	∞	∞	∞	10	1

Representing Graphs

Adjacency List

1	2, 3, 4
2	4, 5
3	6
4	3, 6, 7
5	4, 7
6	-
7	6

Adjacency List

1	2[10], 3[5], 4[5]
2	4[5], 5[5]
3	6[5]
4	3[15], 6[5], 7[5]
5	4[15], 7[5]
6	-
7	6[10]

Definitions

 weight (cost) – optional third component to an edge, numerical value assigned as a label to the edge

Vertices: 1, 2 Edge: (1, 2) no weight

Vertices: 1, 2 Edge: (1, 2) weight of 5

• path – in a graph is a sequence of vertices $w_1, w_2, w_3, ..., w_N$ such that $(w_i, w_{i+1}) \in E$ for $1 \le i \le N$

Vertices: w_1 , w_2 , w_3 , w_4 Edges: (w_1, w_2) , (w_2, w_3) with a path from w_1 to w_3 , where N=3

Definitions

• Length: is the number of edges on a path, it is equal to N-1

Vertices: w_1 , w_2 , w_3 , w_4 Edges: (w_1, w_2) , (w_2, w_3) with a path from w_1 to w_3 , where N=3 and the length is 2 If a path contains no edges, then its path length is 0

- Loop: if there is an edge (v, v) from a vertex to itself then this
 path is known as a loop, we will consider graphs in general will
 be loopless
- simple path: is a path that all vertices are distinct, except the first and last could be the same

Definitions

- **cycle** in a directed graph, a path with a length of at least 1, such that $w_1 = w_N$, the *cycle* is simple if the path is simple; in an undirected graph the edges must be distinct
- acyclic (DAG) is a directed graph with no cycles
- connected in an undirected graph, the graph is connected if there is a path from every vertex to every other vertex
- strongly connected a connected directed graph is known as a strongly connected graph
- weakly connected a graph is weakly connected if the directed graph is connected when direction of the edges is ignored
- complete is a graph where there is an edge between every pair of vertices
- Indegree the number of incoming edges in directed graph
- Outdegree the number of outgoing edges in directed graph

Summary of Definitions

Undirected Graph

Vertices: 1, 2, 3, 4, 5, 6

Edges: [8] (1, 2), (1, 4), (2, 3),

(3, 4), (3, 6), (4, 5),

(4, 6), (5, 6)

Adjacent: 1 is adjacent to 2 and 4

Path: 1 to 4 to 5 to 6 or 1 to 2 to 3

Length: 1 to 4 to 5 to 6 is 3 and 1 to 2 to 3 is 2

Is this graph connected? Yes

Summary of Definitions

Directed Graph

Vertices: 1, 2, 3, 4, 5, 6

Edges: [8] (1, 2), (2, 3), (3, 4),

(4, 1), (4, 6), (5, 4),

(6, 3), (6, 5)

Adjacent: 1 is adjacent to 2

Path: 6 to 5 to 4 to 1 or 1 to 2 to 3

Length: 6 to 5 to 4 to 1 is 3 and 1 to 2 to 3 is 2

Is this graph strongly connected? Yes

Depth-First Search

Starting at A

A, B

A, B, D pop back to B

A, B, D, F

A, B, D, F, E has path to A* pop back to F, then to B, then to A looking for path to a vertex that has not be visited

A, B, D, F, E, C

A, B, D, F, E, C, G Finished

*Coding wise this why its important to keep a list of vertices visited

We can use DFS to detect cycle Starting at A

List of visited vertices: A

We can use DFS to detect cycle Starting at A Visit B

List of visited vertices: A, B

We can use DFS to detect cycle

Starting at A

Visit B

Visit D – nothing is adjacent to D so pop back to B

List of visited vertices: A, B, D

We can use DFS to detect cycle

Starting at A

Visit B

Visit D – nothing is adjacent to D so pop back to B

Visit F

List of visited vertices: A, B, D, F

We can use DFS to detect cycle

Starting at A

Visit B

Visit D – nothing is adjacent to D so pop back to B

Visit F

Visit E

List of visited vertices: A, B, D, F, E

List of visited vertices: A, B, D, F, E

We can use DFS to detect cycle

Starting at A

Visit B

Visit D – nothing is adjacent to D so pop back to B

Visit F

Visit E

Visit A – but A is visited list, this means there is an alternative path from A to E in addition to the path E to A and a **cycle is found**!!!!

- Topological sort: is the ordering of vertices in a directed acyclic graph, such that if there is a path from v_i to v_j , then v_j appears after v_i in the ordering
- Reminder: acyclic (DAG) is a directed graph with no cycles

• The ordering of vertices in a directed acyclic graph, such that if there is a path from v_i to v_j , then v_i appears after v_i in the ordering

- A single topological ordering is not possible if the graph has a cycle, as for the two vertices v and w on the cycle, v precedes w and w precedes v
- Valid topological ordering:

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Topological Ordering:

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? 2 So we remove it and all edges

Topological Ordering: 1, 2

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? 5
So we remove it and all edges

Topological Ordering: 1, 2, 5

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? 4
So we remove it and all edges

Topological Ordering: 1, 2, 5, 4

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? 3 or 7 So we remove it and all edges

Topological Ordering: 1, 2, 5, 4, {3, 7}

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? 3 or 7 So we remove it and all edges

Topological Ordering: 1, 2, 5, 4, {3, 7}

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? 6
So we remove it and all edges

Topological Ordering: 1, 2, 5, 4, {3, 7}, 6

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges

remove it and its edges

Topological Ordering: 1, 2, 5, 4, $\{3, 7\}$, 6 $v_1, v_2, v_5, v_4, v_3, v_7, v_6$ $v_1, v_2, v_5, v_4, v_7, v_3, v_6$

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Topological Ordering:

Which vertex has no incoming edges?
So we remove it and all edges

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? a So we remove it and all edges

Topological Ordering:

a

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? c
So we remove it and all edges

Topological Ordering:

a, c

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? d
So we remove it and all edges

Topological Ordering: a, c, d

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? **b** or **f** So we remove it and all edges

Topological Ordering: a, c, d, {b, f}

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? **b** or **f** So we remove it and all edges

Topological Ordering: a, c, d, {b, f}

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? e
So we remove it and all edges

Topological Ordering: a, c, d, {b, f}, e

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Which vertex has no incoming edges? **g**So we remove it and all edges

Topological Ordering: a, c, d, {b, f}, e, g

- A simple algorithm to find a topological ordering
 - find any vertex with no incoming edges
 - remove it and its edges

Topological Ordering: a, c, d, {b, f}, e, g

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological

order

1	0
2	1
3	2
4	3
5	1
6	3
7	2

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

1	0	X	
2	1	0	
3	2	1	
4	3	2	
5	1	1	
6	3	3	
7	2	2	

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

1	0	X	
2	1	0	X
3	2	1	1
4	3	2	1
5	1	1	0
6	3	3	3
7	2	2	2

Topological Order: 1, 2

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

1	0	X		
2	1	0	X	
3	2	1	1	1
4	3	2	1	0
5	1	1	0	X
6	3	3	3	3
7	2	2	2	1

Topological Order: 1, 2, 5

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

Topological Order: 1, 2, 5, 4

• Formally, we use our definition of **indegree** of a vertex v as the number of edges (u, v). Compute the indegree of all vertices in the graph and keep in adjacency list to generate a topological order

Topological Order: 1, 2, 5, 4, {3, 7}

Acknowledgement

These slides have been adapted and borrowed from books on the right as well as the CS340 notes of NIU CS department (Professors: Alhoori, Hou, Lehuta, and Winans) and many google searches.

