

Metrics for Multi-class and Multi-label Classification

Motivation for Metrics in Machine Learning

- Classification: Categorize an instance/sample into a class or multiple classes
- General approach in machine learning:
 - Given: training data, test data,
 - Goal: Classifier predicts class(es) for given instance
 - Train classifier on training data
 - Evaluate classifier over test data
- How to determine the performance of the resulting classifier on the test data?
 - Count the number of correct and incorrect predictions
 - Summarize counts using evaluation metrics
- Finished?

Problems with Evaluation Metrics

- Metrics usually not standardized for application domains
 - There exists no common consent on deployed metrics
- Small variations in metrics may even lead to different classifier rankings
- Number of possibilities to evaluate classifiers for multi-class and multi-label problems increases
 - → Exacerbates the problem!

Binary Classification

- Given:
 - Instance $x \in \mathcal{X} \subseteq \mathbb{R}^d$
 - Binary label space $\mathcal{Y} = \{0, 1\}$, "yes or no", "x or y"
 - Classifier $h: \mathcal{X} \to \mathcal{Y}$

Confusion Matrix

Counts the number of correct and incorrect predictions of classifier h

		Actua	l Class	Predictions per		
		Cat	Not Cat	Class		
Predicted	Cat	9	2	11		Total number of instances in (test)
Class	Not Cat	1	8	9		dataset
Instances per Class		10	10	20		

- But what is the performance of our classifier?
 - Raw confusion matrix is difficult to interpret
- → Use metrics to summarize absolute confusion matrix values

Actual Class

Predicted Class

Positive Negative

Positive	Negative
TP	FP
FN	TN

Fundamental Metrics

Recall: Proportion of instances that have been correctly classified as positive

$$r = \frac{TP}{TP + FN}$$

Precision: Proportion of positive predictions that were actually correct

$$p = \frac{TP}{TP + FP}$$

F₁-score: harmonic mean of recall and precision

$$F_1 = \frac{2 \cdot p \cdot r}{p+r} = \left(\frac{p^{-1} \cdot r^{-1}}{2}\right)^{-1}$$

$$p = \frac{TP}{TP + FP}$$

Issue with Imbalanced Datasets

Balanced Dataset:

Equal amount of instances per class

Imbalanced Dataset: Different amount of instances per class

		Actua	l Class	Predictions per
		Cat	Not Cat	Class
Predicted	Cat	9	2	11
Class	Not Cat	1	8	9
Instances	per Class	10	10	20

		_		
n —	9	_ 9	~	0.82
p =	$\frac{1}{9+2}$	$-\frac{1}{11}$	~	0.02

		Actual Class Cat Not Cat		Predictions per
				Class
Predicted	Cat	9	4	13
Class	Not Cat	1	16	17
Instances per Class		10	20	30

$$p = \frac{9}{9+4} = \frac{9}{13} \approx 0.69$$

- Metrics may be sensitive to imbalanced datasets
 - Although same proportion of $\frac{TP}{FN}$ and $\frac{FP}{TN}$ different results for metric
- Metrics which use values from both "actual class" columns are sensitive to imbalanced datasets

Multi-class Classification

- Given:
 - Instance $x \in \mathcal{X} \subseteq \mathbb{R}^d$
 - Label space $\mathcal{Y} \subseteq \{0,1\}^m$, one-hot-coded vectors
 - Classifier $h: \mathcal{X} \to \mathcal{Y}$, predicts exactly **one** class per instance

Example: Cat
$$y_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
, Dog $y_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, Mouse $y_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

$$x \in \mathcal{X}$$

What kind of animal is this?

$$h \longrightarrow \operatorname{Cat}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in \mathcal{Y} \quad \checkmark$$

Multi-class Confusion Matrix

		Ac	tual Cla	Predictions per	
		Cat	ut Dog Mouse		Class
	Cat	9	3	1	13
Predicted Class	Dog	1	6	2	9
	Mouse	0	1	7	8
Instances per Class		10	10	10	30

- Confusion matrix becomes more complex: For m classes, $m \times m$ confusion matrix
- How to summarize now the performance of a given classifier?
- Solution:
 - Create for each class C_i a binary confusion matrix
 - Summarize all per-class results using an appropriate averaging strategy

Per-class Confusion Matrix

- Converts the problem into a binary classification problem
 - Class C_j and class "not C_j "
- Previously introduced metrics can thus be computed
- Problem: How to summarize the results for a given metric?

Actual Class

Predicted Class

Positive Negative

Positive	Negative
TP	FP
FN	TN

Averaging Strategies

Macro Averaging: Arithmetic mean of all per-class metrics

$$r_M = \frac{1}{m} \sum_{j=1}^{m} \frac{TP_j}{TP_j + FN_j}$$
 All per-class results weighted equally

Micro Averaging: Sum up numerator and denominator separately of the appropriate metric and compute the result

$$r_{\mu} = rac{\sum_{j=1}^{m} TP_{j}}{\sum_{j=1}^{m} TP_{j} + FN_{j}}$$
 Sensitive to imbalanced datasets

datasets

Weighted Averaging: weight the per-class metrics by the number of instances of the appropriate class

$$r_w = \frac{1}{n} \sum_{j=1}^m \frac{n_j \cdot TP_j}{TP_j + FN_j}$$

 $r_w = \frac{1}{n} \sum_{i=1}^{n} \frac{n_j \cdot TP_j}{TP_i + FN_i}$ Intentionally weighted by number of instances per class

Per-class Averaging Example

Summary of the per-class confusion matrices

	TP	TN	FP	FN	Sum	<u></u> *
Cat	9	16	4	1	30	
Dog	6	17	3	4	30	-
Mouse	7	19	1	3	30	•
Sum	22	52	8	8	90	

Balanced Dataset

	imbalanced Bataset					
	TP	TN	FP	FN	Sum	
Cat	9	41	9	1	60	
Dog	12	33	7	8	60	
Mouse	21	28	2	9	60	
Sum	42	102	18	18	180	

Imbalanced Dataset

Averaging Strategy	Balanced Dataset	Imbalanced Dataset
Macro-Precision p_M	$\frac{1}{3} \left(\frac{9}{9+4} + \frac{6}{6+3} + \frac{7}{7+1} \right) \approx 0.745$	$\frac{1}{3} \left(\frac{9}{9+9} + \frac{12}{12+7} + \frac{21}{21+2} \right) \approx 0.682$
Micro-Precision p_{μ}	$\frac{9+6+7}{9+4+6+3+7+1} = \frac{11}{15} \approx 0.73$	$\frac{9+12+21}{9+9+12+7+21+2} = 0.7$
Weighted-Precision p_w	$\frac{1}{30} \left(\frac{1}{10} \cdot \frac{9}{9+4} + \frac{1}{10} \cdot \frac{6}{6+3} + \frac{1}{10} \cdot \frac{7}{7+1} \right) \approx 0.745$	$\frac{1}{60} \left(10 \cdot \frac{9}{9+9} + 20 \cdot \frac{12}{12+7} + 30 \cdot \frac{21}{21+2} \right) \approx 0.750$

Averaging the F_1 -score

- Micro-averaged F_1 analogously to the standard approach:

$$F_{1\mu} = \frac{2 \cdot p_{\mu} \cdot r_{\mu}}{p_{\mu} + r_{\mu}}$$

- Two distinct approaches to compute the macro-averaged F_1 -score
 - \mathcal{F}_1 , the averaged F_1

$$\mathcal{F}_1 = \frac{1}{m} \sum_{j=1}^m \frac{2 \cdot p_j \cdot r_j}{p_j + r_j}$$

• \mathbb{F}_1 , the F_1 of averages

$$\mathbb{F}_1 = \frac{2 \cdot p_M \cdot r_M}{p_M + r_M}$$

The standard approach, recommended by Opitz and Burst (2019)

Individual values p_j and r_j not as much influence

→ May be overly benevolent

→ Different strategies also applicable to the weighted-aproach

Averaging the F_1 -score

Balanced Dataset

	TP	TN	FP	FN	Sum
Cat	9	16	4	1	30
Dog	6	17	3	4	30
Mouse	7	19	1	3	30
Sum	22	52	8	8	90

Imbalanced Dataset

	TP	TN	FP	FN	Sum
Cat	9	41	9	1	60
Dog	12	33	7	8	60
Mouse	21	28	2	9	60
Sum	42	102	18	18	180

Averaging Strategy	Balanced Dataset	Imbalanced Dataset
\mathcal{F}_1 , the Averaged F_1	$\mathcal{F}_1 = \frac{1}{m} \sum_{j=1}^{m} \frac{2 \cdot p_j \cdot r_j}{p_j + r_j} = 0.731$	$\mathcal{F}_1 = 0.684$
\mathbb{F}_1 , the F_1 of Averages	$\mathbb{F}_1 = \frac{2 \cdot p_M \cdot r_M}{p_M + r_M} = 0.739$	$\mathbb{F}_1 = 0.706$
$F_{1\mu}$, Micro-Averaged F_1	$F_{1\mu} = \frac{2 \cdot p_{\mu} \cdot r_{\mu}}{p_{\mu} + r_{\mu}} = \frac{11}{15} \approx 0.733$	$F_{1\mu}=0.7$

Micro-Precision, Micro-Recall, and Micro-F₁

– We have:

- Given: C_i is predicted class, C_k is actual class
 - From perspective of C_i : $false\ positive\ FP$
 - From perspective of C_k : false negative FN
 - \rightarrow Each *FP* is a *FN* value depending on the viewpoint of the appropriate class

Multi-label Classification

- Given:
 - Instance $x \in \mathcal{X} \subseteq \mathbb{R}^d$
 - Label space $\mathcal{Y} \subseteq \{0,1\}^m$
 - Classifier $h: \mathcal{X} \to \mathcal{Y}$, may predict **multiple** classes/labels per instance

Example: Text classification

What if prediction is only partially correct?

Multi-label Classification: Viewpoint of Correctness

Summarize confusion matrices with averaging strategies

Multi-label Classification: Per-instance evaluation

Too harsh, espcially if label space *y* becomes large

Exact Match Ratio:

$$MR = \frac{\#fullyCorrect}{\#instances}$$

Per-instance confusion matrix:

Per-instance Evaluation: Which Averaging Strategies?

- Per-instance evaluation makes only sense with macro averaging strategies → each instance is equally weighted
 - Micro- and weighted-averaged result would weight instances differently
- Example: weighted-average
 - Each per-instance result is weighted by the factor $TP_j + FN_j$ per instance x_i

	Meaning				
	Per-class	Per-instance			
$TP_j + FN_j$	#instances per class C_j	#labels in actual label set y_j			

Accuracy and Error Rate

	Accuracy	Error Rate
Binary	$Acc = \frac{TP + TN}{TP + TN + FP + FN}$	ERR = 1 - Acc
Multi-class/Multi-label Macro-averaged per Class m: Number of Classes	$Acc_{M} = \frac{1}{m} \sum_{j=1}^{m} \frac{TP_{j} + TN_{j}}{TP_{j} + TN_{j} + FP_{j} + FN_{j}}$	$ERR_{M} = 1 - Acc_{M}$
Multi-class/Multi-label Micro-averaged per Class	$Acc_{\mu} = \frac{\sum_{j=1}^{m} TP_{j} + TN_{j}}{\sum_{j=1}^{m} TP_{j} + TN_{j} + FP_{j} + FN_{j}}$	$ERR_{\mu} = 1 - Acc_{\mu}$
Multi-label	(Jaccard Similarity)	(Hamming Loss)
Averaged per Instance Only Macro Averaging Strategy	$Acc_{M} = \frac{1}{n} \sum_{i=1}^{n} \frac{TP_{i}}{TP_{i} + FP_{i} + FN_{i}}$	$HL = \frac{1}{n} \sum_{i=1}^{n} \frac{FP_i + FN_i}{TP_i + TN_i + FP_i + FN_i}$

 TN_i corresponds to labels which are not present in the actual label set $C_y \rightarrow$ usually large if y also large, therefore left out

Corresponds to XOR operation between predicted label vector h(x) and actual label vector y

Best Practice When Dealing with Metrics

- BioASQ: organizes challenges for biomedical semantic indexing and QA systems
 - MESINESP task (2020): implement classifier which assigns labels from the DeCS vocabulary to new medical documents
 - Participants used test dataset to evaluate their classifier
 - → Concrete predicted label sets for each instance were recorded as JSON file
 - MESINESP committee computed appropriate metrics centrally
 - → Ensures consistent usage of metrics
 - Per-class micro F₁-score
 - Lowest Common Ancestor (LCA) F₁-score

Best Practice When Dealing with Metrics – Paper Writing

- Always explicitly indicate which metric has been deployed
 - Include the metric as equation
 - If the metric has been implemented by a library (e.g. Python SciKit-learn), look up the concrete implementation
 - If possible include the test dataset evaluation
 - → Computation of metric can be reproduced

MESINESP task: Structure of the JSON file for test dataset evaluation

Source: https://temu.bsc.es/mesinesp2/evaluation/

Conclusion

- Confusion matrix summarizes predictions of a classifier on test data
- Metrics summarize the values from a confusion matrix
- The confusion matrix can be computed...
 - per class → multi-class/multi-label case
 - per instance → only multi-label case
- Averaging strategies: Summary of all per-class/per-instance metrics
 - macro, micro, weighted averaging
- To ensure reproducibility and prevent misconceptions:
 - Always include metric as concrete equation
- Always reflect if the deployed metric makes sense in an application domain

Multi-label Example

Label Space $\mathcal{Y} = \{a, b, c, d, e, f, g\}$

Instance	Predicted Label Set	Actual Label Set TP		TN	FP	FN	Sum
x_1	$\{a,b,c\}$	$\{a,b,c\}$	3	4	0	0	7
x_2	$\{a,b,d,e\}$	$\{a,b,c,d,e\}$	4	2	0	1	7
x_3	{ <i>e</i> , <i>f</i> }	$\{c,d\}$	0	3	2	2	7
x_4	$\{b,c,d\}$	$\{a,c,d,g\}$	2	2	1	2	7
x_5	$\{a,c,d,f,g\}$	$\{g\}$	1	2	4	0	7
		Sum	10	13	7	5	35

Metric Summary

	Recall	Precision	F ₁ -score	Accuracy	Error Rate
Binary	$r = \frac{TP}{TP + FN}$	$p = \frac{TP}{TP + FP}$	$F_1 = \frac{2 \cdot p \cdot r}{p+r}$	$Acc = \frac{TP + TN}{TP + TN + FP + FN}$	ERR = 1 - Acc
Multi-class/Multi-label Macro-averaged per Class m: Number of Classes	$r_M = \frac{1}{m} \sum_{j=1}^m \frac{TP_j}{TP_j + FN_j}$	$p_M = \frac{1}{m} \sum_{j=1}^m \frac{TP_j}{TP_j + FP_j}$	$\mathcal{F}_1 = \frac{1}{m} \sum_{j=1}^m \frac{2 \cdot p_j \cdot r_j}{p_j + r_j}$ $\mathbb{F}_1 = \frac{2 \cdot p_M \cdot r_M}{p_M + r_M}$	$Acc_{M} = \frac{1}{m} \sum_{j=1}^{m} \frac{TP_{j} + TN_{j}}{TP_{j} + TN_{j} + FP_{j} + FN_{j}}$	$ERR_{M} = 1 - Acc_{M}$
Multi-class/Multi-label Micro-averaged per Class	$r_{\mu} = \frac{\sum_{j=1}^{m} TP_{j}}{\sum_{j=1}^{m} (TP_{j} + FN_{j})}$	$p_{\mu} = \frac{\sum_{j=1}^{m} TP_{j}}{\sum_{j=1}^{m} (TP_{j} + FP_{j})}$	$F_{1\mu} = \frac{2 \cdot p_{\mu} \cdot \tau_{\mu}}{p_{\mu} + \tau_{\mu}}$	$Acc_{\mu} = \frac{\sum_{j=1}^{m} TP_{j} + TN_{j}}{\sum_{j=1}^{m} (TP_{j} + TN_{j} + FP_{j} + FN_{j})}$	$ERR_{\mu}=1-Acc_{\mu}$
Multi-class/Multi-label Weighted-averaged per Class n : # Instances in Dataset n_j : # Instances in Class C_j	$r_w = \frac{1}{n} \sum_{j=1}^m \frac{n_j \cdot TP_j}{TP_j + FN_j}$	$p_w = \frac{1}{n} \sum_{j=1}^{m} \frac{n_j \cdot TP_j}{TP_j + FP_j}$	$\mathcal{F}_1 = \frac{1}{n} \sum_{j=1}^m \frac{n_j \cdot 2 \cdot p_j \cdot r_j}{p_j + r_j}$ $\mathbb{F}_1 = \frac{2 \cdot p_w \cdot r_w}{p_w + r_w}$	Not used in literature	Not used in literature
Multi-label Averaged per Instance Only Macro Averaging Strategy	$r_{M} = \frac{1}{n} \sum_{i=1}^{n} \frac{TP_{i}}{TP_{i} + FN_{i}}$	$p_M = \frac{1}{n} \sum_{i=1}^{n} \frac{TP_i}{TP_i + FP_i}$	$\mathcal{F}_1 = \frac{1}{n} \sum_{i=1}^{n} \frac{2 \cdot p_i \cdot r_i}{p_i + r_i}$ $\mathbb{F}_1 = \frac{2 \cdot p_M \cdot r_M}{p_M + r_M}$	(Jaccard Similarity) $Acc_{M} = \frac{1}{n} \sum_{i=1}^{n} \frac{TP_{i}}{TP_{i} + FP_{i} + FN_{i}}$	(Hamming Loss) $HL = \frac{1}{n} \sum_{i=1}^{n} \frac{FP_i + FN_i}{TP_i + TN_i + FP_i + FN_i}$