Clawback provisions, executive pay and accounting manipulation

A Discussion

Alvaro Remesal, discussed by Bo Hu July 4, 2018

Tinbergen Institute, Amsterdam

The Paper

- Very interesting and important topic: Clawbacks.
- Close link of theory and empirics.
- Well written and crystal clear.
- Ready to submit.

The Topic

- Clawbacks: Shareholders recover previously-awarded compensation from managers involved in accounting manipulations.
- Many interesting questions to ask:
 - Is it possible to clawback?
 - If clawback is difficult, why to award managers in the first place?
 - Are clawback provisions useful to deter accounting manipulations?
 - What is the influence on executive compensation?
 - Who will adopt clawback provisions?
- All the questions are well answered with a clean model and convincing regressions.

The Model

The Model

Timing

- three-period model, t = 0, 1, 2
- cash flow at t = 2, $\{y_L, y_H\}$
- earning announcement $\{x_L, x_H\}$, can be manipulated

Choices (backward)

- Managers
 - manipulate $m = \overline{m}$ from x_l to x_h with cost γ
 - effort $e = \overline{e}$ to lose private benefit B
- Shareholders
 - compensations $w_1 = \{w_H, w_L\}, w_2 = \{w_{HH}, w_{HL}, w_{LL}\}$
 - ullet clawbacks c=1 with fixed cost κ and recover probability I

Key Conditions

• Managers manipulate if benefits are higher than cost

$$\overline{m}[w_H + \beta w_{HL} - (w_L + \beta w_{LL})] \ge \gamma.$$

• Managers take effort if benefits are higher than cost

$$\overline{e}\Big\{(w_H+\beta w_{HH}-[m(w_H+\beta w_{HL})+(1-m)(w_L+\beta w_{LL})-\gamma(m)]\Big\}\geq B.$$

• Lemma 1

$$w_L = w_{LL} = 0, w_{HL} = -cIw_H.$$

5

Contracting Problem

Shareholders choose $\{w_H, w_{HH}, c, m\}$ (assuming $e = \overline{e}$) to minimize

$$\overline{e}(w_H + w_{HH}) + (1 - \overline{e})m(1 - cl)w_H + \kappa c$$

subject to

$$\left(1 - m(1 - \beta cl)\right) w_H + \beta w_{HH} \ge \frac{B}{\overline{e}} - \gamma(m),$$
 (effort)
$$m = \overline{m} \text{ if } w_H \ge \frac{\gamma}{(1 - \beta cl)\overline{m}}.$$
 (manipulation)

6

Trade-off

- To motivate effort, use either short-term incentives w_H or long-term incentives w_{HH} .
- Due to the impatience of managers (β < 1), w_{HH} is costly.
- However, if w_H is too high, the manager may manipulate

$$w_H \geq \frac{\gamma}{(1-\beta cl)\overline{m}}.$$

The optimal contract

- (*S*,0), when moral hazard problem is not very severe or manipulation cost is relative high, *w*_H is enough to motivate the manager while not trigger manipulation.
- (S + L, 0), when β is relatively large, then defer to w_{HH} so that manipulation is not triggered.
- (S, \overline{m}) , when β is relatively low, only use w_H , and trigger manipulations.

From no clawbacks to clawbacks

$$c = 0$$
 $c = 1$ $(S, 0)$ $(S, 0)$ $(S, 0)$ $(S + L, 0)$ $(S, 0)$ $(S + L, 0)$ (S, \overline{m}) (S, \overline{m})

Why from (S, \overline{m}) to (S + L, 0)?

- Complementarity between claw-backs and deferred compensation.
- Due to the adoption of claw-backs, w_H can be higher (without triggering manipulation).
- *w_{HH}* can be lower compared to the contract without claw-backs.
- The deferred compensation is less costly.

- Why it is important to stress the complementarity of claw-backs and long-term compensation?
 - Explore the policy implications.
 - Brief the intuition and policy implications in the introduction.
- Similarity between noisy signal and frictional recovery.
 - Chen et. al. (2015) argue that "A clawback contracts ... has the disadvantage of tying pay to the true-earnings level, which is a relatively noisy measure of effort."
 - In your paper, the recovery is noisy. (1)
 - In Chen et. al. (2015), the signal is noisy. $(\{y_H, y_L\})$
 - Clarify the differences may help readers.

- Which is the key parameter, κ or I?
 - \bullet κ is the ex-ante enforcement cost.
 - *I* is the recovery capacity.
 - It seems that I is the key parameter in shaping optimal contract with limited recovery, while κ only influences whether adopt the provision.
 - May clarify this for readers.
- Voluntary v.s. Mandatory adoptions
 - Ignoring ex-ante cost κ , then clawbacks are good for all firms. Even firms with severe agency problem can benefit from it.
 - For these firms, account manipulation still occurs, but short-term pay becomes cheaper.
 - However, consider the ex-ante cost κ , these firms may not voluntarily adopt clawbacks.
 - Mandatory adoptions may make these firms (shareholders) worse.
 - The policy focus should be lowering κ .

- Manipulation or not?
 - Dodd-Frank requires a clawback to trigger after any material restatement, regardless of whether or not managerial misconduct was the root cause of the original misstatement.
 - Misreport without misconduct, $m \in \{\underline{m}, \overline{m}\}$
- Accounting manipulation can be punished in other ways. Why do we need clawbacks?
 - · Less compensation in the next contracting period.
 - External fraud penalty by the authority.

The Empirical Evidence

The Design

- Test the adoption of clawbacks on
 - ullet wealth-performance sensitivities, Δ_S and Δ_L
 - manipulations, Meet and Restate
- Effects are expected to depend on the pre-adoption status
 - measured by $\frac{\Delta_S}{\Delta_{Total}}$ 2002
 - · firms respond differently
 - the key to check the model
- Adoption of clawbacks involves self-selection
 - IV: the adoption of clawbacks in other industries
 - · clear and clever identification

The measurement of Δ_S and Δ_L .

- In the model, the short-run is very clear. But in a dynamic model, it is not clear what is short run and what is long run.
- And in the data, Δ_S and Δ_L is clearly generated dynamically.
- Grant one CEO 1000 shares, vested in 3 years. So now they are included in Δ_L. After 3 years, these shares are included in Δ_S.
- Correct me if I am wrong.

Pre-adoption status

- In the main regressions, the author tends to use Δ_S/Δ_{Total} to measure the accounting manipulation.
- But why not use a proxy for initial level of accounting manipulation, such as Meet and Restate.

Measure account manipulation

• Use other variables to identify the manipulation, such as abnormal accruals.

Interpretation of regressions

- "In particular, firms at the 10th percentile of $\frac{\Delta_S}{\Delta_{Total}\,2002}$ reduce the slope of long-term incentives by 60 percent. In contrast, firms at the 90th percentile of $\frac{\Delta_S}{\Delta_{Total}\,2002}$ increase the slope of long-term incentives by 34 percent."
- Strictly compare to the model's prediction, shouldn't the effect at 90th percentile on long-term incentives be insignificant?