

DESARROLLO DE APLICACIONES WEB - TEMA 2

Tecnologías de desarrollo de aplicaciones web

Micael Gallego

Correo: micael.gallego@urjc.es

Twitter: @micael_gallego

Blog: http://micaelgallego.github.io

DESARROLLO DE APLICACIONES WEB

Tecnologías de desarrollo de aplicaciones web

- Introducción
- Arquitecturas de aplicaciones web
- Tecnologías del cliente
- Tecnologías del servidor
- Bases de datos
- Sistemas gestores de contenido

Introducción

 El desarrollo de aplicaciones web ha evolucionado enormemente en la última década, tanto desde el punto de vista del desarrollo de software como a nivel de administración de sistemas

Desarrollo de software

 Se han creado multitud de tecnologías, frameworks de desarrollo de aplicaciones, bibliotecas, aplicaciones configurables, arquitecturas, modelos de publicación de versiones (release)...

Administración de sistemas

 Se ha evolucionado enormemente en la administración de sistemas, servicios de alojamiento, técnicas de escalabilidad, monitorización, gestión de centros de procesos de datos...

Desarrollo de software

- La evolución ha tenido como resultado que hay una gran cantidad de tecnologías, librerías, herramientas y estilos arquitectónicos para desarrollar una aplicación web
- Es conveniente conocer los elementos más importantes desde un punto de vista de alto nivel para tener una visión global de la disciplina
- Existen dos enfoques en el desarrollo de aplicaciones web:
 - Creación de webs con tecnologías de desarrollo
 - Creación de webs con sistemas gestores de contenido

Desarrollo de software

- Creación de webs con tecnologías de desarrollo
 - Arquitecturas de aplicaciones web: Una aplicación web puede tener diferentes arquitecturas. Esto determina cómo se usan las diferentes tecnologías existentes
 - Tecnologías de cliente: Tecnologías que permiten crear interfaces de usuario atractivos y permiten la comunicación con el servidor. Basadas en HTML, CSS y JavaScript.
 - Tecnologías de servidor: Tecnologías que permiten implementar el comportamiento de la aplicación web en el servidor: lógica de negocio, generación de informes, compartir información entre usuarios, envío de correos, etc...
 - Bases de datos: La gran mayoría de las webs necesitan guardar información.
 Las bases de datos son una parte esencial del desarrollo web.

Desarrollo de software

- Creación de webs con sistemas gestores de contenido
 - Existen aplicaciones web cuya principal funcionalidad es la publicación de contenido: blogs, páginas de empresas, organismos públicos, etc.
 - Todas estas webs tienen mucho en común, prácticamente sólo se diferencian en el contenido y en el aspecto gráfico
 - Para desarrollar este tipo de webs, en vez de desarrollar la web con técnicas de desarrollo, se utiliza un software ya desarrollado y se personaliza y adapta a las necesidades
 - A las aplicaciones de este tipo se las denomina Sistemas Gestores de Contenido (CMSs).

1

Administración de sistemas

- Internet y las aplicaciones web han hecho evolucionar la administración de sistemas en muchos aspectos
 - Para que una aplicación web funcione necesita que el sistema donde se instale disponga de un servidor web y habitualmente una base de datos
 - Como la web tiene que estar disponible para los usuarios de Internet, habitualmente se instala en sistemas que se alquilan a terceros: alojamiento en la nube (cloud)
 - Como las aplicaciones web pueden tener un número muy grande de usuarios y tienen que estar siempre disponibles, se utilizan técnicas de escalabilidad y tolerancia a fallos

Se verá en el Tema3

DESARROLLO DE APLICACIONES WEB

Tecnologías de desarrollo de aplicaciones web

- Introducción
- Arquitecturas de aplicaciones web
- Tecnologías del cliente
- Tecnologías del servidor
- Bases de datos
- Sistemas gestores de contenido

- La **arquitectura básica de una aplicación web** está formada por los siguientes elementos:
 - Un navegador: Hace de cliente y realiza peticiones solicitando recursos a los servidores web. Cuando hace una petición a un servidor y le contesta enviándole un recurso, se lo muestra al usuario.
 - Un servidor web: Recibe peticiones de clientes (navegadores) y responde a esas peticiones enviado un recurso o notificando un error si el recurso no existe.
 - El protocolo http: Es el protocolo basado en TCP/IP que se utiliza para que el navegador realice las peticiones al servidor web y este responda.
 - HTML: Es el formato básico de los documentos de la web. Es un formato textual, basado en etiquetas que permite estructurar el contenido de la página.

- La arquitectura de las aplicaciones web ha evolucionado mucho en los últimos años
- No todas las aplicaciones web tienen la misma arquitectura
- Las arquitecturas se diferencias principalmente en lo estática o dinámica que sea la web
- Una web puede ser dinámica en el cliente y/o en el servidor
- Las tecnologías utilizadas:
 - Dinamismo en cliente: JavaScript
 - Dinamismo en servidor: Java EE, .NET, PHP, Ruby on Rails, Python Django, Groovy, Node.js, Scala Play...

1

- Cliente estático (Sin JavaScript)
 - Servidor estático
 - Servidor dinámico (3 capas)
- Cliente dinámico (Con JavaScript)
 - Servidor estático
 - Servidor dinámico
 - JavaScript para efectos gráficos
 - JavaScript con peticiones en segundo plano (AJAX)
 - Single Page Application con REST

1

- Arquitectura Cliente estático y Servidor estático
 - El navegador hace petición al servidor mediante http
 - El servidor transforma URL a ruta en disco
 - El servidor devuelve el fichero de disco al navegador
 - El navegador visualiza (renderiza) la página HTML con estilos CSS e imágenes (sin JavaScript).
 - Cuando el usuario hace clic en un enlace, el navegador repite el proceso con la URL del link y recarga por completo la página web

- Arquitectura Cliente estático y Servidor estático
 - Con esta arquitectura el servidor siempre devuelve los mismos recursos
 - Desde el punto de vista del servidor, la web es estática
 - La web está formada por HTML, CSS, Imágenes, PDF, etc...
 (pero no incluye JavaScript)
 - A este tipo de web no se le suele llamar aplicación web porque nada es dinámico. Se denomina simplemente página web

- Arquitectura Cliente estático y Servidor estático
 - La web se diseñó con esta arquitectura
 - Las primeras páginas web eran así
 - Todavía se sigue usando en muchas páginas web:
 - Páginas personales o de proyectos básicas (p.e. Tecnología de webs de github)
 - Documentación técnica (JavaDoc en Java, Maven site, etc...)

Arquitecturas de aplicaciones web

Arquitectura Cliente estático y Servidor dinámico

- Es un ejemplo de arquitectura de 3 capas:
 - Navegador: Capa de presentación
 - Servidor web: Capa de aplicación (Lógica de negocio)
 - Base de datos: Capa de datos

Arquitecturas de aplicaciones web

Arquitectura Cliente estático y Servidor dinámico

- Cuando el servidor web recibe una petición, dependiendo de la URL:
 - Devolver contenido del disco
 - Ejecutar código para generar el recurso dinámicamente
- Cuando se ejecuta código, normalmente se hacen consultas a una base de datos para recuperar la información
- Lo más habitual es que se genere la página HTML de forma dinámica
- También se pueden generar recursos de otro tipo (imágenes, PDFs...)
- Si el usuario pulsa un link, se recarga la página al completo

- Arquitectura Cliente estático y Servidor dinámico
 - Es la arquitectura de las primeras "aplicaciones web"
 - Todavía sigue habiendo muchas web con esta arquitectura
 - El contenido es dinámico, porque se ejecuta código en el servidor para generar dicho contenido
 - La experiencia de usuario antes no era muy buena:
 - · Conexiones lentas implican tiempos de carga apreciables en cada clic
 - La recarga completa de la página ofrece una mala experiencia de usuario (página en blanco)
 - Pero ha mejorado:
 - Mayor velocidad de Internet (menos tiempo de espera)
 - Navegadores muestran la nueva página una vez cargada (sin pasar por la página en blanco)

- Arquitectura Cliente dinámico y Servidor estático
 - El contenido de la página web está alojado en el disco duro del servidor (estático)
 - El cliente es dinámico porque las páginas incluyen código
 JavaScript que se ejecuta en el navegador
 - Este JavaScript se usa para incluir efectos gráficos:
 - Efectos gráficos que no se pueden implementar con CSS
 - Mostrar u ocultar información en función de los elementos que se seleccionan (para documentos largos)
 - Menús desplegables
 - Páginas adaptables para móviles (responsive)

- Arquitectura Cliente dinámico y Servidor dinámico
 - La mayoría de las aplicaciones web actuales son dinámicas tanto en cliente como en servidor
 - Dependiendo de cómo se use el JavaScript en el cliente, las aplicaciones se pueden dividir en tres tipos:
 - JavaScript para efectos gráficos
 - JavaScript con peticiones en segundo plano (AJAX)
 - Single Page Application con API REST

Arquitectura Cliente dinámico y Servidor dinámico

- JavaScript para efectos gráficos
 - En este caso, el dinamismo en el cliente se utiliza exactamente igual que con un servidor estático
 - JavaScript se diseñó, entre otras cosas, para añadir efectos gráficos básicos a las páginas cuando el CSS era muy limitado
 - La gran mayoría de las aplicaciones web que existen en Internet siguen esta arquitectura

Arquitectura Cliente dinámico y Servidor dinámico

- JavaScript se puede usar para no tener que recargar completamente la página completa al pulsar un link
- Con JavaScript se puede hacer petición al servidor web en segundo plano (oculta al usuario)
- Cuando llega al navegador el resultado de la petición, el código JavaScript actualiza aquellas partes de la página necesarias
- A esta técnica se la conoce como AJAX (Asynchronous JavaScript And XML)

Arquitectura Cliente dinámico y Servidor dinámico

- Usar AJAX en una página mejora mucho la experiencia de usuario
- No es necesario **recargar la página al completo**, sólo aquellas partes que cambian (p.e. se puede dejar el menú fijo)
- La página se puede cargar por partes, primero la información importante y en segundo plano otros elementos complementarios (p.e. los botones de compartir, los comentarios en un blog...)
- Se puede dar realimentación al usuario de formas más adecuadas (cuadro de diálogo, error de validación en un formulario, quitar el icono de carga de un recurso, etc...)

Arquitectura Cliente dinámico y Servidor dinámico

- Cuando el código JavaScript hace peticiones, el servidor puede devolver:
 - · Contenido para ser incluido en la página directamente:
 - Fragmentos de HTML generados dinámicamente
 - Recursos estáticos en disco: Imágenes, PDF, HTML, etc...
 - Información que será interpretada por JavaScript para modificar la página (Mostrar un error, cambiar un color, ...):
 - Información generada dinámicamente **estructura en XML** o **JSON** (un formato similar a XML).

1

Arquitectura Cliente dinámico y Servidor dinámico

- Un servidor web genera HTML de forma dinámica cuando recibe peticiones http
- Si se usa AJAX, el servidor genera información en XML o JSON cuando recibe peticiones http
- Habitualmente, cuando un servidor web genera XML o JSON ante peticiones http, implementa una API REST

Arquitectura Cliente dinámico y Servidor dinámico

- Existen muchas aplicaciones web que no usan
 AJAX
- La mayoría de las aplicaciones que se han desarrollado en los últimos años usan AJAX en algunas de sus páginas por la mejora en la experiencia del usuario

Arquitectura Cliente dinámico y Servidor dinámico

- Single Page Application con API REST
 - La técnica AJAX se puede llevar al extremo y que todo el contenido dinámico se cargue únicamente con JavaScript
 - En este caso, la aplicación web es un conjunto de recursos HTML, CSS y JavaScript estáticos, que se cargan en el navegador
 - El contenido dinámico se genera en el servidor únicamente como XML o JSON que se carga en segundo plano con JavaScript mediante peticiones a la API REST del servidor web

Arquitectura Cliente dinámico y Servidor dinámico

- Single Page Application con API REST
 - Google popularizó AJAX y SPA con Gmail y Maps

Arquitectura Cliente dinámico y Servidor dinámico

• Single Page Application con API REST

- El cliente una web SPA es una aplicación completa y autónoma, que se descarga de la red al acceder a una URL y que se comunica con un servidor usando REST
- Existe una única página cuyo contenido va cambiando según el usuario interactúa con botones, pestañas, etc.
- El **botón de atrás** del navegador funciona porque se "emula" una navegación por páginas cuando se evoluciona por los estados de la aplicación

Arquitectura Cliente dinámico y Servidor dinámico

- Single Page Application con API REST
 - Las aplicaciones autónomas que se implementan con tecnologías HTML5 se consideran SPA:
 - Móviles: Apache Cordova, Firefox OS, ubuntu mobile...
 - Escritorio: Windows Store Apps, Google Chrome Apps...
 - SmartTV: Samsung, LG...
 - En la mayoría de estas tecnologías en código de la aplicación cliente (HTML, CSS y JS) puede estar contenido en el paquete de instalación o puede descargarse al iniciar la aplicación

DESARROLLO DE APLICACIONES WEB

Tecnologías de desarrollo de aplicaciones web

- Introducción
- Arquitecturas de aplicaciones web
- Tecnologías del cliente
- Tecnologías del servidor
- Bases de datos
- Sistemas gestores de contenido

Tecnologías del cliente

- El cliente web por excelencia es el navegador web
- Existen un conjunto de estándares web, definidos por el W3C, que todo navegador debería implementar
- Existen un conjunto de **tecnologías no estándar** que algunos navegadores implementan para la construcción de aplicaciones **avanzadas** y acceso a contenido **multimedia**

Estándares web

• El W₃C (*World Wide Web Consortium*) es una comunidad internacional que desarrolla estándares abiertos que aseguran el crecimiento de la Web a largo plazo

Scripting and Ajax

HTML & CSS

Gráficos

Accesibilidad

Audio & Video

Web Semántica

XML

Servicios Web

http://www.w3.org

Estándares web

- HTML (Hypertext Markup Language) and CSS (Cascading Style Sheets) son dos de las tecnologías principales para la construcción de páginas web
 - **HTML** proporciona la información estructurada en secciones, párrafos, título, imágenes, etc...
 - **CSS** proporciona la distribución de los elementos y su estilo (colores, tipos de letra, fondos, efectos...)

Estándares web

HTML

- La versión actual es HTML5
- Todavía no está finalizada, pero la mayoría de los navegadores implementan gran parte de la especificación
- Ha supuesto una revolución para el dinamismo en el cliente porque ofrece muchas librerías/tecnologías avanzadas:
 - Multimedia: etiquetas vídeo, audio y canvas, webgl
 - Comunicaciones: websockets
 - Concurrencia: webworkers


```
<!DOCTYPE html>
<html>
<html>
<!-- created 2010-01-01-->
<head>
<title>sample</title>
</head>
<body>
Voluptatem accusantium totam rem aperiam.
</body>
</html>
```


Estándares web

CSS

- CSS es un lenguaje usado para definir la presentación de un documento estructurado escrito en HTML, XML, SVG o incluso interfaces de usuario de otras tecnologías (JavaFX)
- Su versión actual es CSS₃ (aunque todavía no está finalizada)


```
body (
margin: 4px;
border: 3px dotted #
font-family: sans-serif;
color: #000000;
background-color: #FFFFFFF;
)

h1 (
padding: 5px;
margin: 10px;
border: 1px solid #C0C0C0;
color: #FF0000;
background-color:#0000FF;
)
```

Estándares web

Scripting

- Las páginas web pueden programarse con diversos lenguajes de script, aunque prácticamente sólo se usa JavaScript
- Con JavaScript se puede modificar la página y ejecutar código cuando se interactúa con ella (a través del modelo de objetos del documento **DOM**)
- Se hacen peticiones al servidor web en segundo plano y se actualiza el contenido de la web (AJAX)

Estándares web

JavaScript

- Es un lenguaje de programación basado en el estándar
 ECMAScript de ECMA (otra organización diferente al W3C)
- Hay ligeras diferencias en la implementación de JS de los navegadores, aunque actualmente todos son bastante compatibles entre sí (en el pasado no fue así)
- Aunque algunos elementos de la sintaxis recuerden a Java, no tiene nada que ver con Java.
- El **nombre JavaScript** se eligió al publicar el lenguaje en una época en la que Java estaba en auge y fue principalmente por marketing

http://www.ecma-international.org/

Estándares web

JavaScript

- Inicialmente era un lenguaje interpretado, pero actualmente se ejecuta con máquinas virtuales en los navegadores (velocidad de ejecución y eficiencia de memoria)
- Características:
 - Tipado dinámico (habitual en los lenguajes de script)
 - Funcional y orientado a objetos (basado en prototipos)

Estándares web

DOM

- Document Object Model
- Librería (API) para manipular el documento HTML cargado en el navegador
- Es el equivalente en web a la librería de componentes gráficos
- Permite la gestión de eventos, insertar y eliminar elementos, etc.

Estándares web

Librerías JavaScript

 Existen multitud de bibliotecas (APIs) JavaScript para el desarrollo de aplicaciones

- Las más utilizadas son:
 - **jQuery**: es un recubrimiento de la API DOM que aporta facilidad de uso, potencia y compatibilidad entre navegadores. Se usa para gestionar el interfaz (la página) y para peticiones ajax.
 - underscore.js: Librería para trabajar con estructuras de datos con un enfoque funcional. También permite gestionar plantillas (templates) para generar HTML partiendo de datos

Estándares web

Librerías JavaScript

- Además de librerías, también existen frameworks del alto nivel que estructuran una aplicación de forma completa. Especialmente en aplicaciones SPA
- Los más populares son Angular.js, Backbone.js y Ember

http://www.lostiemposcambian.com/blog/javascript/backbone-vs-angular-vs-ember/

1

Tecnologías no estándar en la web

- La web ha avanzado y evolucionado gracias a tecnologías no estándar incluidas en los navegadores mediante plugins
- Algunas llegaron a convertirse en estándares "de facto"
- La tecnología no estándar por excelencia de la web es
 Adobe Flash (aunque ha habido otras)
- La llegada de los dispositivos móviles, consolas y televisiones conectadas (SmartTVs) y la estandarización de HTML5 han hecho que estas tecnologías no estándar estén en desuso

1

Tecnologías no estándar en la web

Adobe Flash

 Es una tecnología usada principalmente para incrustar contenido multimedia interactivo en páginas web

- Durante muchos años fue la única forma de tener interactividad, animaciones, vídeos, juegos... en la web
- Es posible que haya cosas que a día de hoy sólo se puedan hacer con flash y no se puedan implementar con la tecnología HTML5

http://active.tutsplus.com/articles/roundups/10-flash-things-you-can%E2%80%99t-do-with-html5/

Tecnologías no estándar en la web

Adobe Flash

- Es una tecnología propietaria y cerrada
- Es gratuita para los usuarios, pero los desarrolladores y servidores que usen ciertas características tienen que pagar licencia

 Adobe lo ha acabado reconociendo y no seguirá apostando por Flash como la herramienta básica de la web interactiva (Nov 2011)

> http://www.apple.com/hotnews/thoughts-on-flash/ http://blogs.adobe.com/conversations/2011/11/flash-focus.html

Tecnologías no estándar en la web

Java Applets

- Los applets de Java fueron los precursores de Flash
- Debido a prácticas anticompetitivas de Microsoft y que Sun Microsystems estaba más centrada en los servidores de aplicaciones hace mucho tiempo que está en desuso

- La apuesta de Microsoft para competir con Adobe Flash
- Soporte muy limitado en plataformas diferentes a Windows
- El navegador web de Metro en Windows 8 no soportará plugins, por tanto, no tendrá soporte para Flash ni para Silverlight

http://www.infoq.com/news/2011/09/Metro-Plug-ins

Conclusiones

- Si no hay un motivo importante, todas las aplicaciones web deberían implementarse con estándares
- En un mundo con multitud de dispositivos conectados a la red, es la única forma de la web sea accesible desde todos ellos
- Si es estrictamente necesario usar Flash, es conveniente conocer la cantidad de usuarios que no podrán acceder a la web porque sus dispositivos no son compatibles con esta tecnología
- HTML5 avanza muy rápido. Se ha convertido en la tecnología estándar para multitud de plataformas diferentes
- Para saber qué estándares soporta cada versión de cada navegador, se puede usar la web http://caniuse.com/

Conclusiones

- Si no hay un motivo importante, todas las aplicaciones web deberían implementarse con estándares
- En un mundo con multitud de dispositivos conectados a la red, es la única forma de la web sea accesible desde todos ellos
- Si es estrictamente necesario usar Flash, es conveniente conocer la cantidad de usuarios que no podrán acceder a la web porque sus dispositivos no son compatibles con esta tecnología
- HTML5 avanza muy rápido. Se ha convertido en la tecnología estándar para multitud de plataformas diferentes

DESARROLLO DE APLICACIONES WEB

Tecnologías de desarrollo de aplicaciones web

- Introducción
- Arquitecturas de aplicaciones web
- Tecnologías del cliente
- Tecnologías del servidor
- Bases de datos
- Sistemas gestores de contenido

Tecnologías del servidor

- Los estándares son muy importantes en los navegadores web (cliente) porque la web tiene que ser compatible con cualquier dispositivo
- En cambio los estándares no son necesarios en el servidor, porque cada organización desarrollará su servidor con la tecnología de su elección
- En el servidor, se utilizan tecnologías, propietarias o abiertas, para el desarrollo de aplicaciones web

Tecnologías del servidor

- Existen multitud de tecnologías de construcción de aplicaciones en el servidor
 - Más usadas: PHP, Java EE, ASP.NET
 - Menos usadas: Ruby on Rails, Grails (Groovy),
 Django (Python), Perl, ColdFusion, muchas más

Java EE

- Tecnología basada en Java
- Desarrollada por una coalición de empresas lideradas por Oracle, IBM, Red Hat, etc..

- Tecnología muy usada a nivel empresarial
- La mayoría de las implementaciones y herramientas para desarrollo son software libre
- Existen comunidades de desarrolladores y empresas que realizan complementos, bibliotecas, herramientas...

http://www.oracle.com/javaee/

Java EE

Estándares en Java EE

- Java tiene una organización de estandarización propia llamada Java Community Process (JCP)
- En ella se definen estándares abiertos que se pueden implementar con licencia libre o propietaria
- Estándares web: Java EE, Servlets, JSP, JDBC, JPA, JSF, EJBs...

Bibliotecas y frameworks en Java EE

- Existen multitud de implementaciones independientes que pueden seguir o no un estándar
- Ejemplos: Spring, Hibernate, GWT, Vaadin, Google Closure, Struts, Apache Tiles...

Java EE

• Estándares más importantes en Java EE

- Servlets: Estándar para ejecutar código Java ante una petición web en un servidor Java EE
- JSP (Java Server Pages): Estándar que permite mezclar en un documento código Java y HTML para generar páginas web de forma dinámica
- JDBC (Java Database Conectivity): Estándar para conexión a bases de datos relacionales desde Java
- JPA (Java Persistence API): Estándar para la correspondencia objeto-relacional (ORM, Object Relational Mapping)
- **JSF** (*Java Server Faces*): Estándar de construcción de aplicaciones web basadas en componentes reutilizables
- **EJB** (*Enterprise JavaBeans*): arquitectura manejada para la construcción de aplicaciones web (transacciones, seguridad, distribución...)

Java EE

Servidores Java EE

- Toda aplicación web Java EE tiene que ejecutarse en una servidor de aplicaciones Java (aunque luego se integre en Apache, NginX o IIS)
- Existen muchos tipos de servidores, dependiendo de sus funcionalidades/rendimiento y de su licencia/coste
- Ejemplos: Glassfish (Oracle), Tomcat (Apache), Jetty (Eclipse), JBoss (RedHat), WebSphere (IBM), WebLogic (Oracle)

Java EE

Herramientas de desarrollo

- Para desarrollar aplicaciones Java EE se utilizan
 IDEs y plugins para ellos
- **Eclipse**: Fundación Eclipse con multitud de plugins. Mucha diversidad, falta de integración. Software libre.
- Netbeans: Oracle. Muy integrado. Software libre.
- IntelliJ: Jetbrains. Muy integrado. Propietario

PHP

- Desarrollado en 1994 por Rasmus Lerdorf
- Tecnología con un lenguaje propio llamado
 PHP

- Desarrollada por PHP Group con licencia libre PHP license
- Es la tecnología de programación del lado del servidor con se han implementado más servidores de Internet
- Es multiplataforma
- Se integra normalmente con Apache y MySQL en entornos Linux en un paquete llamado LAMP

http://www.php.net/

PHP

• Estándares y empresas en PHP

- No existe un organismo de estandarización, la tecnología evoluciona por la comunidad en PHP Group
- No hay muchas empresas grandes que apoyan el desarrollo de PHP, pero Zend es muy relevante
- Facebook es sin duda una muestra importante de la popularidad de PHP
- CMSs como Drupal y Wordpress también están implementados en PHP

PHP

Bibliotecas y frameworks

- Existen multitud de frameworks para el desarrollo de aplicaciones PHP
- Ejemplos: CakePHP, CodeIgniter, Zend, Symfony,
 Yii, Zeta Components, Horde

http://www.phpframeworks.com/

ASP.NET

- Versión evolucionada del ASP clásico
- Integrada en la tecnología .NET
 de Microsoft junto con el lenguaje C#

- Licencia propietaria y para plataformas Windows
- Tiene una comunidad de desarrolladores más limitada que las otras alternativas

http://www.asp.net/

ASP.NET

Librerías y frameworks

- La mayoría de las librerías para ASP.NET son las oficiales proporcionadas por Microsoft
- Web Pages: Tecnología similar a JSP y PHP que permite combinar HTML con código ASP
- Web Forms: Tecnología de construcción de aplicaciones web basadas en componentes (similar a JSF de JavaEE)
- Data Access Layer (DAL): Capa de acceso a los datos.
 Proporciona la misma funcionalidad que JDBC y JPA

DESARROLLO DE APLICACIONES WEB

Tecnologías de desarrollo de aplicaciones web

- Introducción
- Arquitecturas de aplicaciones web
- Tecnologías del cliente
- Tecnologías del servidor
- Bases de datos
- Sistemas gestores de contenido

Bases de datos

- Las bases de datos más populares para el desarrollo de aplicaciones web han sido las bases de datos relacionales
- Existen muchas bases de datos relacionales (comerciales y software libre): MySQL, Derby, Oracle, MS SQL Server, PostgreSQL

Bases de datos

MySQL

- http://www.mysql.org/
- Sistema gestor de base de datos multiplataforma

- Desarrollado en C
- Licencia código abierto GPL
- Soporte de un subconjunto de SQL 99
- Herramienta interactiva para hacer consultas y crear bases de datos
- Muy popular en el desarrollo web

Bases de datos

- Como las aplicaciones web tienen muchas necesidades de escalabilidad y tolerancia a fallos, hay una nueva familia de bases de datos
- Se denominan genéricamente NoSQL, que se puede interpretar como: No SQL o como Not Only SQL
- Algunas de las más famosas son:

DESARROLLO DE APLICACIONES WEB

Tecnologías de desarrollo de aplicaciones web

- Introducción
- Arquitecturas de aplicaciones web
- Tecnologías del cliente
- Tecnologías del servidor
- Bases de datos
- Sistemas gestores de contenido

1

Sistemas gestores de contenido

- CMS (Content Management System)
- Aplicación web genérica que permite la creación y administración de contenidos **vía web**
- El sistema permite manejar de manera independiente el contenido y el diseño, permite el cambio de diseño (con templates o themes)
- Los CMSs han evolucionado para convertirse en un nuevo modelo de desarrollo de aplicaciones web configurando y adaptando módulos con un interfaz web

Sistemas gestores de contenido

- Existen multitud de CMSs con enfoques y objetivos diferentes
- Ejemplos: Drupal (PHP), Joomla (PHP),
 Wordpress (PHP), Plone (JavaSript), Moodle
 (PHP), Liferay (Java)

http://en.wikipedia.org/wiki/List_of_content_management_systems

- Joomla: Principal ventaja es permitir editar el contenido de un sitio web de manera sencilla.
- WordPress: Es un sistema de gestión de contenido enfocado a la creación de blogs

- Drupal fue originalmente creado por Dries Buytaert
- Comenzó como Sistema de tablón de anuncios
- Código libre con licencia GPL/GNU
- Escrito en PHP
- Modular y muy configurable
- Desarrollado y mantenido por una activa comunidad de usuarios
- www.drupal.org

- Código abierto: El código fuente de Drupal está libremente disponible bajo los términos de la licencia GNU/GPL.
- Módulos: La comunidad de Drupal ha contribuido con infinidad de módulos que proporcionan diversas funcionalidades.
- Objetos de Contenido (Nodos): El contenido creado en Drupal es, funcionalmente, un objeto (Nodo).
- Plataforma Independiente de la base de datos: Aunque la mayor parte de las instalaciones de Drupal utilizan MySQL.

- Multiplataforma: Drupal ha sido diseñado desde el principio para ser multi-plataforma
- Múltiples idiomas y Localización: Drupal está pensado para una audiencia internacional y proporciona opciones para crear un portal multilingüe
- Administración y Análisis Administración via Web: La administración y configuración del sistema se puede realizar enteramente con un navegador

