

MONASH **BUSINESS SCHOOL**

Introduction to Multi-level Models using R

Professor Di Cook, Econometrics and **Business Statistics** Workshop for the Institute for Safety, Compensation and Recovery Research

Outline

- Session 1: Basic models, fitting multiple separate models
- Session 2: Putting it together, using mixed effects models

- Session 3: Summarising and visualising models
- Session 4: Advanced modeling

Session 1

■ Basic models, fitting multiple separate models

Your turn

■ What is a model?

Gapminder data

- Original source from Hans Rosling's software and TED talk
- Example modeling code by Hadley Wickham, enhanced by Heike Hofmann
- Demographic data by country and continent since 1952, life expectancy and GDP per capita (reduced subset in the R package from the original)

Gapminder

```
library(gapminder)
glimpse(gapminder)
# Observations: 1,704
# Variables: 6
# $ country (fctr) Afghanistan, Afghanistan, Afghanistan, A
# $ continent (fctr) Asia, Asia, Asia, Asia, Asia, Asia, Asia
# $ year (int) 1952, 1957, 1962, 1967, 1972, 1977, 1982,
# $ lifeExp (dbl) 29, 30, 32, 34, 36, 38, 40, 41, 42, 42, 42
# $ pop (int) 8425333, 9240934, 10267083, 11537966, 130
# $ qdpPercap (dbl) 779, 821, 853, 836, 740, 786, 978, 852, 6.
```

Take a look

ggplot(data=gapminder, aes(x=year, y=lifeExp, group=country))
geom_line(alpha=0.5)

How would you describe this plot?

Using models as exploratory tools

- Idea: fit a line to each one of the countries' life expectancies
- then use e.g. intercept and slope to characterise groups of countries

```
gapminder2 <- gapminder %>% mutate(year1950 = year-1950)
by_country <- gapminder2 %>%
    select(country, year1950, lifeExp, continent) %>%
    group_by(country, continent) %>%
    nest()
```

From a data frame

country	continent	year1950	lifeExp
Afghanistan	Asia	2	29
Afghanistan	Asia	7	30
Afghanistan	Asia	12	32
Afghanistan	Asia	17	34
Afghanistan	Asia	22	36
Afghanistan	Asia	27	38
Afghanistan	Asia	32	40
Afghanistan	Asia	37	41
Afghanistan	Asia	42	42
Afghanistan	Asia	47	42
Afghanistan	Asia	52	42
Afghanistan	Asia	57	44
Albania	Europe	2	55
Albania	Europe	7	59
Albania	Europe	12	65

... to a list of data frames

purrr applies function to each element of the list

```
Fits a linear model to each country, e.g. lm(lifeExp ~ year1950, data=australia)
```

Use broom to unnest the fitted models

```
by_country <- by_country %>%
  unnest(model %>% purrr::map(broom::tidy))
kable(head(by_country))
```

country	continent	term	estimate	std.error	statistic	p.valı
Afghanistan	Asia	(Intercept)	29.36	0.70	42	·
Afghanistan	Asia	year1950	0.28	0.02	13	
Albania	Europe	(Intercept)	58.56	1.13	52	
Albania	Europe	year1950	0.33	0.03	10	
Algeria	Africa	(Intercept)	42.24	0.76	56	
Algeria	Africa	year1950	0.57	0.02	26	

And tidyr::spread to keep desired items

```
country_coefs <- by_country %>%
  select(continent, country, term, estimate) %>%
  spread(term, estimate)
kable(head(country_coefs))
```

continent	country	(Intercept)	year1950
Africa	Algeria	42	0.57
Africa	Angola	32	0.21
Africa	Benin	39	0.33
Africa	Botswana	53	0.06
Africa	Burkina Faso	34	0.36
Africa	Burundi	40	0.15

Plot estimates

What do we learn?

■ High life expectancy in 1950 (e.g. Europe) tends to have smaller gains

- Most countries on the African continent observed lower respective gains, and three saw declines
- Largest gains occurred in Asia

Add interaction

Australian Life Expectancy

```
oz <- gapminder %>% filter(country=="Australia")
kable(head(oz))
```

country	continent	year	lifeExp	pop	gdpPercap
Australia	Oceania	1952	69	8.7e+06	10040
Australia	Oceania	1957	70	9.7e + 06	10950
Australia	Oceania	1962	71	1.1e+07	12217
Australia	Oceania	1967	71	1.2e + 07	14526
Australia	Oceania	1972	72	1.3e + 07	16789
Australia	Oceania	1977	73	1.4e + 07	18334
		·	•		

Life Expectancy in Australia since 1950

```
ggplot(data=oz, aes(x=year, y=lifeExp)) +
  geom_point() +
  geom_smooth(method="lm")
```


Intercept is estimated life expectancy at 0 BC - let's use 1950 for the first value:

```
oz <- oz %>% mutate(year = year-1950)
oz.lm <- lm(lifeExp~year, data=oz)
07.lm
#
# Call:
 lm(formula = lifeExp \sim year, data = oz)
#
 Coefficients:
# (Intercept)
                      year
       67.945
                 0.228
```

Nesting data

We don't want to subset the data for every country . . . nest() makes a data frame part of another data frame:

```
by_country <- gapminder2 %>%
 group_by(continent, country) %>%
 nest()
head(by_country)
# Source: local data frame [6 x 3]
#
# continent country
                              data
\# (fctr) (fctr) (chr)
# 1 Asia Afghanistan <tbl_df [12,5]>
# 2 Europe Albania \langle tbl_df [12,5] \rangle
# 4 Africa
               Angola <tbl df [12,5]>
# 5 Americas Argentina <tbl_df [12,5]>
# 6 Oceania Australia <tbl df [12,5]>
```

Each element of the data variable in by_country is a dataset:

```
head(by country$data[[1]])
# Source: local data frame [6 \times 5]
#
  year lifeExp pop gdpPercap year1950
   (int) (dbl) (int) (dbl) (dbl)
# 1 1952
           29 8425333
                       779
# 2 1957
           30 9240934 821
# 3 1962
           32 10267083 853
                                12
# 4 1967 34 11537966 836
                                17
# 5 1972
           36 13079460 740 22
                                27
# 6 1977
           38 14880372
                      786
```

Fitting multiple models

Now we are using the map function in the package purrr. map allows us to apply a function to each element of a list.

```
by_country$model <- by_country$data %>%
 purrr::map(~lm(lifeExp~year1950, data=.))
head(by_country)
# Source: local data frame [6 x 4]
#
# continent country data model
\# (fctr) (fctr) (chr)
# 1 Asia Afghanistan <tbl df [12,5]> <S3:lm>
# 2 Europe Albania <tbl_df [12,5]> <S3:lm>
# 3 Africa
               Algeria <tbl df [12,5]> <S3:lm>
# 4 Africa
                Angola <tbl df [12,5]> <S3:lm>
# 5 Americas Argentina <tbl_df [12,5]> <S3:lm>
# 6 Oceania Australia <tbl df [12,5]> <S3:lm>
```

On to the broom package

broom allows to extract values from models on three levels:

- for each model: broom::glance
- for each coefficient in the model: broom::tidy
- for each value in the dataset: broom::augment

broom::augment(by_country\$model[[1]])

```
#
    lifeExp year1950 .fitted .se.fit .resid .hat .sigma .co
                         30 0.66 -1.106 0.295 1.2 2.4
# 1
         29
                  2
                              0.58 -0.952 0.225
# 2
         30
                         31
                                                  1.2 1.1
                         33 0.50 -0.664 0.169
# 3
         32
                 12
                                                  1.3 3.6
# 4
         34
                 17
                         34
                              0.44 -0.017 0.127
                                                  1.3 1.7
                              0.38 0.674 0.099
# 5
         36
                 22
                         35
                                                  1.3 1.9
# 6
         38
                         37
                               0.36 1.647 0.085
                 27
                                                  1.2 9.2
                               0.36 1.687 0.085
# 7
         40
                 32
                         38
                                                  1.1 9.7
                               0.38 1.278 0.099
# 8
         41
                 37
                         40
                                                  1.2 6.7
# 9
         42
                               0.44 0.754 0.127
                 42
                         41
                                                  1.3 3.2
         42
                              0.50 -0.534 0.169
# 10
                 47
                         42
                                                  1.3 2.3
         42
                 52
                              0.58 -1.545 0.225
# 11
                         44
                                                  1.1 3.0
# 12
         44
                 57
                         45
                              0.66 -1.222 0.295
                                                  1.2 3.0
```

Extract values for each coefficient

Extract all countries automatically (hello map again!)

```
by_country_coefs <- by_country %>%
  unnest(model %>% purrr::map(broom::tidy))
coefs <- by_country_coefs %>%
  select(country, continent, term, estimate) %>%
  spread(term, estimate)
```

and finally, the visualisation:

```
ggplot(data=coefs, aes(x=`(Intercept)`, y=year1950,
                              colour=continent)) +
  geom point()
  0.8 -
  0.6 -
                                                                   continent
                                                                       Africa
year1950
0.2-
                                                                       Americas
                                                                       Asia
                                                                       Europe
                                                                       Oceania
  0.0 -
           30
                       40
                                   50
                                               60
                                                           70
```

(Intercept)

Extract other model diagnostics

```
by_country <- by_country %>%
  unnest(model %>%
           purrr::map(broom::glance))
by_country$country <- reorder(by_country$country,</pre>
                               -by country$r.squared)
ggplot(data=by country, aes(x=country, y=r.squared,
                             colour=continent)) +
  geom point() +
  coord flip() +
  scale_colour_brewer(palette="Dark2")
```


Examine countries with worst fit

What patterns do you see, and what do they mean?

Now, let's look at the next worst

34/37

What patterns do you see, and what do they mean?

Your turn

- extract residuals for each of the models and store it in a dataset together with country and continent information
- plot residuals across the years and fit a smooth. What does the pattern mean?

Reference material

- Hadley Wickham's gapminder example: http://wombat2016.org/slides/hadley.pdf
- David Robinson's broom vignettes

Credits

Notes prepared by Di Cook, using material developed by Hadley Wickham and Heike Hofmann.