

planetmath.org

Math for the people, by the people.

closure of a subset under relations

 ${\bf Canonical\ name} \quad {\bf Closure Of A Subset Under Relations}$

Date of creation 2013-03-22 16:21:26 Last modified on 2013-03-22 16:21:26

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 36

Author CWoo (3771)
Entry type Definition
Classification msc 08A02
Defines closed under
Defines closure property

Let A be a set and R be an n-ary relation on A, $n \ge 1$. A subset B of A is said to be *closed under* R, or R-closed, if, whenever $b_1, \ldots, b_{n-1} \in B$, and $(b_1, \ldots, b_{n-1}, b_n) \in R$, then $b_n \in B$.

Note that if R is unary, then B is R-closed iff $R \subseteq B$.

More generally, let A be a set and \mathcal{R} a set of (finitary) relations on A. A subset B is said to be \mathcal{R} -closed if B is R-closed for each $R \in \mathcal{R}$.

Given $B \subseteq A$ with a set of relations \mathcal{R} on A, we say that $C \subseteq A$ is an \mathcal{R} -closure of B if

- 1. $B \subseteq C$,
- 2. C is \mathcal{R} -closed, and
- 3. if $D \subseteq A$ satisfies both 1 and 2, then $C \subseteq D$.

By condition 3, C, if exists, must be unique. Let us call it the \mathcal{R} -closure of B, and denote it by $\operatorname{Cl}_{\mathcal{R}}(B)$. If $\mathcal{R} = \{R\}$, then we call it the R-closure of B, and denote it by $\operatorname{Cl}_{R}(B)$ correspondingly.

Here are some examples.

- 1. Let $A = \mathbb{Z}$, $B = \{5\}$, and R be the relation that mRn whenever m divides n. Clearly B is not closed under R (for example, $(5, 10) \in R$ but $10 \notin B$). Then $\operatorname{Cl}_R(B) = 5\mathbb{Z}$. If R is instead the relation \leq , then $\operatorname{Cl}_{\leq}(B) = \{n \in A \mid n \geq 5\}$.
- 2. This is an example where R is in fact a function (operation). Suppose $A = \mathbb{Z}$ and R is the binary operation subtraction -. Suppose $B = \{3,5\}$. Then $\mathrm{Cl}_{-}(B) = A$. To see this, set $C = \mathrm{Cl}_{-}(B)$. Note that $2 = 5 3 \in C$ so 1 = 3 2 as well as $-1 = 2 3 \in C$. This means that if $n \in C$, both n 1 and $n + 1 \in C$. By induction, $C = \mathbb{Z}$. In general, if $B = \{p,q\}$, where p,q are coprime, then $\mathrm{Cl}_{-}(B) = \mathbb{Z}$. This is essentially the result of the Chinese Remainder Theorem.
- 3. If R is unary, then the R-closure of $B \subseteq A$ is just $B \cup R$. When every $R \in \mathcal{R}$ is unary, then the \mathcal{R} -closure of B in A is $(\bigcup \mathcal{R}) \cup B$.

Proposition 1. $Cl_{\mathcal{R}}(B)$ exists for every $B \subseteq A$.

Proof. Let $S_{\mathcal{R}}(B)$ be the set of subsets of A satisfying the defining conditions 1 and 2 of \mathcal{R} -closures above, partially ordered by \subseteq . If $\mathcal{C} \subseteq S_{\mathcal{R}}(B)$, then $\bigcap \mathcal{C} \in S_{\mathcal{R}}(B)$. To see this, we break the statement down into cases:

- In the case when $\mathcal{C} = \emptyset$, we have $\bigcap \mathcal{C} = A \in S_{\mathcal{R}}(B)$.
- When $C := \bigcap \mathcal{C} \neq \emptyset$, pick any *n*-ary relation $R \in \mathcal{R}$.
 - 1. If n = 1, then, since each $D \in \mathcal{C}$ is R-closed, $R \subseteq D$. Therefore, $R \subseteq \bigcap \mathcal{C} = \bigcap \{D \mid D \in \mathcal{C}\} = C$. So C is R-closed.
 - 2. If n > 1, pick elements $c_1, \ldots, c_{n-1} \in C$ such that $(c_1, \ldots, c_n) \in R$. As each $c_i \in D$ for $i = 1, \ldots, n-1$, and D is R-closed, $c_n \in D$. Since $c_n \in D$ for every $D \in C$, $c_n \in C$ as well. This shows that C is R-closed.

In both cases, $B \subseteq C$ since $B \subseteq D$ for every $D \in C$. Therefore, $C \in S_{\mathcal{R}}(B)$.

Hence, $S_{\mathcal{R}}(B)$ is a complete lattice by virtue of http://planetmath.org/CriteriaForAPosetToBe fact, which means that $S_{\mathcal{R}}(B)$ has a minimal element, which is none other than the \mathcal{R} -closure $\operatorname{Cl}_{\mathcal{R}}(B)$ of B.

Remark. It is not hard to see $Cl_{\mathcal{R}}$ has the following properties:

- 1. $B \subseteq \operatorname{Cl}_{\mathcal{R}}(B)$,
- 2. $\operatorname{Cl}_{\mathcal{R}}(\operatorname{Cl}_{\mathcal{R}}(B)) = \operatorname{Cl}_{\mathcal{R}}(B)$, and
- 3. if $B \subseteq C$, then $Cl_{\mathcal{R}}(B) \subseteq Cl_{\mathcal{R}}(C)$.

Next, assume that S is another set of finitary relations on A. Then

- 1. if $\mathcal{R} \subseteq \mathcal{S}$, then $\mathrm{Cl}_{\mathcal{S}}(B) \subseteq \mathrm{Cl}_{\mathcal{R}}(B)$,
- 2. $\operatorname{Cl}_{\mathcal{S}}(\operatorname{Cl}_{\mathcal{R}}(B)) \subseteq \operatorname{Cl}_{\mathcal{R} \cap \mathcal{S}}(B)$, and
- 3. $Cl_{\mathcal{S}}(Cl_{\mathcal{R}}(B)) = Cl_{\mathcal{R} \cap \mathcal{S}}(B)$ if $\mathcal{R} \subseteq \mathcal{S}$ or $\mathcal{S} \subseteq \mathcal{R}$.