



# Multiscale Recurrence Analysis of Long-Term Nonlinear and Nonstationary Time Series

Yun Chen Hui Yang, Ph.D.

Industrial & Management Systems Engineering University of South Florida



#### Relevant Publications



- □ H. Yang\*, "Multiscale Recurrence Quantification Analysis of Spatial Vectorcardiogram (VCG) Signals," *IEEE Transactions on Biomedical Engineering*, Vol. 58, No. 2, p339-347, 2011, DOI: 10.1109/TBME.2010.2063704
- ☐ Y. Chen<sup>†</sup> and **H. Yang\***, "Multiscale recurrence analysis of long-term nonlinear and nonstationary time series," *Chaos, Solitons and Fractals*, Vol. 45, No. 7, p978-987, 2012, DOI: 10.1016/j.chaos.2012.03.013
- H. Yang\*, S. T. S. Bukkapatnam, and L. G. Barajas, "Local recurrence model for performance prediction and prognostics in nonlinear and nonstationary systems," *Pattern Recognition*, Vol. 44, No. 8, p1834-1840, 2011, DOI: 10.1016/j.patcog.2011.01.010
- ☐ Y. Chen<sup>†</sup>, and **H. Yang\***, "Wavelet packet analysis of disease-altered recurrence dynamics in the long-term spatiotemporal vectorcardiogram (VCG) signals", *Proceedings of 2013 IEEE Engineering in Medicine and Biology Society Conference (EMBC)*, p. 2595-2598, July 3-7, 2013, Osaka, Japan. DOI: 10.1109/EMBC.2013.6610071



#### Outline



- ☐ Problem Statement
- ☐ Research Background
  - ➤ Wavelet transform
  - > Recurrence analysis
- ☐ Research Methodology
  - ➤ Multiscale recurrence analysis
  - > Feature selection
  - > Randomized classification experiments
- ☐ Experimental Designs & Results
- Conclusions



#### **Problem Statement**



#### ☐ Challenges:

- > Data complexity: nonlinearity and nonstationarity
- > Enormous data torrents

#### ☐ State of the Art:

- > Conventional frequency-domain and linear system approaches
- ➤ Nonlinear stochastic dynamics under highly nonstationary conditions
- ➤ Nonlinear dynamic methods **computational expensive**

#### **□** Goals:

- ➤ Address the issues of nonlinearity, nonstationarity and large datasets
- > Extended and integrated into other nonlinear dynamic approaches
- ➤ Disease-altered nonlinear dynamics



## Time-Frequency Representation



- ☐ Time info difficult to interpret in frequency domain
- ☐ Frequency info difficult to interpret in time domain
- ☐ Perfect time info in time domain, perfect freq. info in freq. domain





#### Discrete Wavelet Transform







## Recurrence Analysis



- ☐ Recurrence patterns of the dynamical systems
  - $\triangleright$  Recurrence plot:  $R(i,j) = \Theta(\varepsilon ||x(i) x(j)||)$







## Structures in Recurrence Plots





- **□Small-scale** structures
  - ➤ single dots, diagonal and vertical lines
- □ Large-scale structures
  - homogenous, periodic and disrupted visualization



#### Recurrence Features



- ☐ Quantifying the *topological features of Recurrence Plots*
- Statistical features to quantify certain recurrence patterns from Threshold Recurrence Plot (Kantz, Marwan, and Kurths et al.):
  - ➤ Recurrence rate (%REC)
  - ➤ Determinism (%DET)
  - ➤ Linemax (LMAX)
  - > Entropy (ENT)
  - ➤ Laminarity (%LAM)
  - > Trapping time (TT)
- ☐ Diagonal structures (first four) and vertical structures (last two) in the threshold recurrence plot
- ☐ Computational complexity: square increase



#### Outline



- ☐ Problem Statement
- ☐ Research Background
  - > Wavelet transform
  - > Recurrence analysis
- **☐** Research Methodology
  - ➤ Multiscale recurrence analysis
  - > Feature selection
  - > Randomized classification experiments
- ☐ Experimental Designs & Results
- Conclusions



# Hierarchical Nonlinear Dynamics







## Completeness of MRA



- $\square$  Given a time series  $\boldsymbol{X} = \{x_1, x_2, \dots, x_N\}^T$
- $\square$  Embedded state space  $\mathbf{x}(i) = (x_i, x_{i+\tau}, \dots, x_{i+\tau(M-1)})$
- ☐ Recurrence distance matrix ← time series:

$$UR_{0,0}^{2}(i,j) = \|\mathbf{x}(i) - \mathbf{x}(j)\|^{2} = \sum_{m=0}^{M-1} |x_{i+m\tau} - x_{j+m\tau}|^{2}$$

$$=\sum_{m=0}^{M-1} (\mathbf{X}^T \Phi_{i+m\tau,j+m\tau} \mathbf{X})$$

 $\Phi_{i,j}$  positive semidefinite, 1 in the  $ii^{th}$  and  $jj^{th}$  elements, -1 in the  $ij^{th}$  and  $ji^{th}$  elements and 0 otherwise.

☐ Recurrence distance matrix ← wavelet subseries:

$$UR_{0,0}^{2}(i,j) = [\boldsymbol{W}_{k,2^{k}-1}^{T} \cdots \boldsymbol{W}_{k,0}^{T}] \mathcal{W}_{k} \left( \sum_{m=0}^{M-1} \Phi_{i+m\tau,j+m\tau} \right) \mathcal{W}_{k}^{T} \begin{bmatrix} \boldsymbol{W}_{k,2^{k}-1} \\ \vdots \\ \boldsymbol{W}_{k,0} \end{bmatrix}$$



## Multiscale Recurrence Analysis



- ☐ Reconstruct time series from recurrence plot
  - > Y. Hirata et al. (2008); M. Thiel et al. (2004)

Recurrence Plot Time Series





# Wavelet Preservation of Dynamics



- $\square$  Time-delay state space:  $\mathbf{w}(i) = (w_i, w_{i+\tau}, \dots, w_{i+\tau(M-1)})$
- □ Gram matrix:  $G(i,j) \equiv w(i) \cdot w(j)$
- ☐ Multidimensional scaling

$$UR^{2}(i,j) = [w(i) - w(j)] \cdot [w(i) - w(j)]$$

$$G(i,j) = -\frac{1}{2} \left[ UR^{2}(i,j) - \frac{1}{N} \sum_{k=1}^{N} UR^{2}(i,k) - \frac{1}{N} \sum_{k=1}^{N} UR^{2}(k,j) + \frac{1}{N^{2}} \sum_{g=1}^{N} \sum_{h=1}^{N} UR^{2}(g,h) \right]$$

- $\Box$  Gram matrix is a square matrix:  $G = U\Lambda U^T$ 
  - $\triangleright$   $\Lambda$  is a diagonal matrix formed from the eigenvalues of G
  - $\triangleright$  U is a matrix of the corresponding eigenvectors of G
- ☐ Gram matrix is positive semidefinite

 $\square$  ISOMETRY:  $U\sqrt{\Lambda}$  and  $w_i$ 



# Multiscale Recurrence Analysis







#### **Feature Selection**



#### ☐ Recurrence features

- > RR, DET, LMAX, ENT, LAM, TT are extracted for each of the wavelet subseries
- $\triangleright$   $k^{th}$  level:  $2^k$  number of wavelet subseries
- > Selected level: *m* to *n*
- ☐ Total feature size:

$$\sum_{k=m}^{n} 6 \times 2^{k}$$

**Curse of dimensionality** 





## Cross-validation



#### ☐ K-fold cross-validation & Random sub-sampling





## Dataset – Heart Rate Variability



- □ Dataset 24-hour heart rate variability (HRV)
  - ➤ 54 Health control (HC)
  - 29 congestive heart failure(CHF)
- ☐ Classification models;
  - K-nearest neighbor (KNN)
  - ➤ Logistic regression (LR)
  - Artificial neural network(ANN)
- ☐ Feature selection
  - > Selected level: 6 to 9
  - ightharpoonup Total:  $\sum_{k=6}^{9} 6 \times 2^k = 5760$
- Select 10 features in order to prevent overfitting.







## Performance Evaluation (1)







## Dataset – Vectorcardiogram



- □ Dataset Vectorcardiogram(VCG)
  - > 80 Health controls (HC)
  - ➤ 368 myocardial infarctions (MI)
- ☐ Classification models:
  - ➤ K-nearest neighbor (KNN)
  - Logistic regression (LR)
  - > Artificial neural network (ANN)
- ☐ Feature selection
  - > Selected level: 4 to 5
  - ightharpoonup Total:  $\sum_{k=4}^{5} 6 \times 2^{k} = 288$
- ☐ Select 10 features in order to prevent overfitting.



MI (2), after occlusion (1) of a branch of LCA, RCA





## Performance Evaluation (2)







## Single-scale VS. Multiscale



☐ Comparison of classification correct rates between single-scale and multi-scale (i.e., DWT and WPD) recurrence analysis





#### Conclusions



- **□** Challenges:
  - > Data complexity: nonlinearity and nonstationarity
  - Enormous data torrents
- ☐ Multiscale recurrence analysis
  - Large size of dataset dyadic subsampling
  - Nonstationarity wavelet decomposition
  - Nonlinearity recurrence analysis
- ☐ Discriminant analysis
  - > HRV database: 92.1% (sensitivity) and 94.7% (specificity)
  - > VCG database: 96.8% (sensitivity) and 92.8% (specificity)
- ☐ Single-scale vs. multiscale recurrence analysis





# END Questions?