MATH 127 Calculus for the Sciences

Lecture 17

Today's lecture

Last time

Calculus of trig functions

- 1. Factorial Function
- 2. Implicitly Defined Functions

This time

Course note coverage Section 2.7.2

Logarithmic differentiation

- Derivative of x^x : I taught you how to do this, but there is an alternative way to do this called...
- Logarithmic differentiation
- my way is better, but they still want you to know this. rip

Recap

Suppose we are given an implicit function

(something about
$$x, y$$
) = (something else about x, y)

We can take derivative on both sides with respect to x and get

$$\begin{array}{lcl} \hbox{(thing about x,y,y')} &= & \hbox{(another thing about x,y,y')} \end{array}$$

Then we isolate y' and get the derivative

$$y' = \frac{dy}{dx} =$$
 (whatever you get in terms of x, y)

Now if you want the tangent line at (x, y) = (a, b), you use the point-slope formula:

$$y = \text{slope} \cdot (x - a) + b$$

The slope is just the derivative at (x, y) = (a, b), i.e.

slope =
$$\frac{dy}{dx}\Big|_{x=a,y=b}$$
.

Motivation

Example

- 1. What is the derivative of x^2 ?
- 2. What is the derivative of 2^x ?
- 3. What is the derivative of x^x ? What is the domain of this function?

Logarithmic differentiation

Example Here is another way of taking derivative of $y = x^x$ for x > 0.

1. Take ln of both sides and get

$$\ln y = \boxed{} = \boxed{}$$

- 2. This is an implicit function now, remember how to take derivative of this?
 - 2.1 The derivative of LHS with respect to x is

$$(\ln y)' = \frac{1}{y} \cdot \boxed{} = \frac{1}{x^x} \cdot \boxed{}$$

by rule.

2.2 The derivative of RHS with respect to x is

by rule.

Logarithmic differentiation

Example Here is another way of taking derivative of $y = x^x$ for x > 0.

3. Combining the previous two steps, we get

$$\frac{y'}{x^x} = \ln x + 1$$

4. Hence

$$y' = x^x(\ln x + 1)$$

Example

Example Determine the derivative of $y = \cos(x)^{\sin(x)}$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$

Example

Example Consider
$$y = \frac{(x+1)^2(x-2)^3}{x^5\sqrt{x-1}}$$
 where $x > 2$.

- 1. What is the domain of this function if I don't say x > 2?
- 2. Take its derivative directly using quotient and product rule.

Example

Example Consider
$$y = \frac{(x+1)^2(x-2)^3}{x^5\sqrt{x-1}}$$
 where $x > 2$.

- 3. Take log of both sides and see what happens.
- 4. Why did I say x > 1?