Predicting Top Movie Ratings

Group B Aidan Mantelmacher, Jiarui Chen, Simon Soendergaard, Sizhe Wang

Agenda

- 1. Background
- 2. Predictive analytics problem and design
- 3. Data information
- 4. Data cleaning
- 5. Models/Model Selection
 - a. Results
- 6. Insights
- 7. Takeaways

Background

- Since 1995 on average more than 1 billion movie theater tickets has been sold in North America alone each year
- According to Statista, 83% of Americans 18 years and older have a subscription video service in 2022
 - Approximately 220 million Americans

Predictive Analytics Problem

- Writers, directors, and actors can heavily influence the quality of a movie
- Is there a simpler formula to produce a well-liked movie?
- Question: Can we use film features, budget, and sales to predict consumer ratings?
 - Model predicts film ratings on a scale of 1-10 and compares to average user-generated ratings from online

Description of Data

Data Information

Movies Metadata (from TMDB (Movies Database))

- 737339 observations, 20 columns
- Title, Genre, Popularity, Release Date, Budget,
 Runtime, Votes, Vote Average

Highest Hollywood Grossing Movies

- 918 observations, 11 columns
- Title, Distributor, World Sales (in \$),
 License (Appropriateness Rating)

kaggle

Data Cleaning/Preprocessing

- TMDB data has more than just films (TV shows, shorts, games) → Remove duplicate names and keep higher rated films
- Clean movie titles in both datasets to <u>merge</u> on them
- Remove unneeded attributes
- Remove observations with null, blank, or zero values
- Convert categorical values to dummy variables
 - 4 appropriateness ratings (G, PG, PG-13, R)
 - 32 distributors → 7 dummies (i.e. Warner Bros, 20th Century Fox, Disney, Universal)
 - 7 dummies chosen all had 10+ films in the dataset
 - 7 genres (Action, Adventure, Family, Scary, Sci-Fi, Comedy, Drama)
 - Most films had multiple genres, kept first/most fitting one

Final Dataset

- 341 observations (films) with title, 24 prediction variables, 1 outcome variable
- Dummy Variables: G + PG + R + PG_13 + Warner_Bros + Universal + Disney + TwentiethC_Fox + Sony
 + Paramount + Lionsgate + Action + Adventure + Family + Scary + Sci_Fi + Comedy + Drama
- Example: {<u>Title</u>: 'A Quiet Place', <u>World Sales</u>: 340,952,971, <u>Popularity</u>: 73.248, <u>Budget</u>: 17,000,000, <u>Runtime</u>: 91, vote_average: 7.397, vote_count: 12,137, <u>Release_Month</u>: 4, <u>PG_13</u>: 1, <u>Paramount</u>: 1, <u>Scary</u>: 1}
- Split 60/40 into train and validation set
 - Avoid overfitting
 - Provided better results than 70/30 or more

Title	[‡] World_Sales [‡]	popularity	budget [‡]	runtime [‡]	vote_average 🎽	vote_count $^{\scriptsize extstyle +}$	Release_Month
Schindler's List	322161245	44.655	22000000	195	8.565	13456	12
The Dark Knight	1005973645	70.953	185000000	152	8.503	28547	7
Pulp Fiction	213928762	74.145	8000000	154	8.492	24075	9
Forrest Gump	678226133	66.762	55000000	142	8.481	23593	6
The Lord of the Rings: The Return of the King	1146030912	95.023	94000000	201	8.478	20542	12
Spider-Man: Into the Spider-Verse	375540831	88.916	90000000	117	8.416	11926	12
The Lord of the Rings: The Fellowship of the Ring	897690072	115.983	93000000	179	8.388	21796	12
Interstellar	701729206	212.500	165000000	169	8.382	29785	11
The Lord of the Rings: The Two Towers	947495095	103.997	79000000	179	8.371	18942	12
Inception	836836967	84.678	160000000	148	8.359	32609	7
Se7en	327333559	65.788	33000000	127	8.358	17876	9
Avengers: Endgame	2797501328	236.025	356000000	181	8.278	22117	4
Green Book	321752656	58.716	23000000	130	8.244	9525	11

Example of dataset without the dummy variables

Correlation Matrix

Heatmap showing the best fitting variables:

- Vote_count, World_Sales, runtime and the Drama categories are the best fit for vote_average
- Majority of the other variables seems to be more insignificant to the vote average

Modeling

Model Selection Methodology

- Predicting numerical output (vote_average)
- Useful methods we have learned:
 - Multiple Linear Regression
 - Stepwise Regression
 - Neural Network
 - Logistic Regression (classification)
 - KNN (mainly for classification)
 - Did not learn KNN for regression
 - Need substantial amount of observations for # of predictors

Multiple Linear Regression

Performed on all variables

AIC: -273.6

R-Squared: 0.6629, Adj: 0.62

• RMSE for training: 0.4546

• RMSE for validation: <u>0.5149</u>

Predicted [‡]	Actual [‡]	Residual [‡]
7.158	7.981	0.823209
7.138	5.802	-1.336052
6.961	6.685	-0.275845
6.885	6.870	-0.015130
6.799	6.842	0.042981

Estimate (Intercept) 5.2956982650851 World_Sales 0.0000000000977 popularity -0.0008147317836 budget -0.0000000024266 runtime 0.0098361416119 vote_count 0.0000747729598 Release_Month 0.0183008431321 0.3547375637829 PG0.2267556144616 0.1156925604161 PG_13 -0.1037503692582 Warner Bros Universal 0.1303504519254 Disney 0.1936399987978 TwentiethC Fox 0.0520128187181 0.0584073214714 Sony 0.0923006330407 4 Paramount Lionsaate 0.0707137583241 -0.2710753679224 Action Adventure -0.3016284469747 Family 0.0845626959650 Scary -0.2124533896252 Sci_Fi -0.6900816288388 -0.3584056515873 Comedy 0.1423592436294 Drama

LM: Actual Ratings (Black) Versus Predictions Green: Within 0.25 points, Red: > 0.25

Stepwise Regression

- Similar methodology for multiple linear regression, but eliminating variables
- Utilize "both" (forward and backward) method of stepwise regression
- Formula with lowest AIC (-289.2):

```
vote_average ~ budget + runtime + vote_count + G + PG +
Warner_Bros + Disney + Action + Adventure + Scary + Sci_Fi +
Comedy
```

- Adjusted R-Squared: <u>0.63</u>
- Lower AIC should lead to better model
- RMSE on validation data is: 0.5176

Coefficients:

	Estimate
(Intercept)	5.478784035099
budget	-0.000000002796
runtime	0.011529478986
vote_count	0.000072744498
G	0.338343179027
PG	0.193305154627
Warner_Bros	-0.154169778160
Disney	0.168328715375
Action	-0.398892692880
Adventure	-0.454128181193
Scary	-0.313452253886
Sci_Fi	-0.831061180435
Comedy	-0.489991178188

Regression Discussion

- The reduced stepwise regression fits the model slightly better according to the adjusted R-squared metric
- Original regression has a lower RMSE on the validation dataset
- 24 versus 12 predictor variables
 - AIC score of -273.6 versus -289.2
 - Simplified model with very similar performance
 - In general, more predictors lead to overfitting
- We asked ourselves, is the data actually linear?

Neural Network

- Normalize (scale) data from 0-1 using preprocess
- Attempted many combinations of nodes and layers
 - Trial and error method
 - Analyze on RMSE
- 2 nodes, 1 hidden layer yielded best results
- 2 nodes limited RMSE on validation set: 0.5328

Second Neural Network

- Fit model on equation from stepwise regression
 - 12 variables
 - 9 dummies
- 2 nodes, 1 hidden layer
- RMSE on validation: <u>0.5021</u>

Visuals for Second Neural Network

Predicted [‡]	Actual [‡]	Residual [‡]
7.094	7.981	0.88887
7.149	5.802	-1.35218
7.132	6.685	-0.45045
7.091	6.870	-0.21856
6.922	6.842	-0.05376

NN: Actual Ratings (Black) Versus Predictions Green: Within 0.25 points, Red: > 0.25

Insights

- All of our models have an RMSE around 0.50.
 - Example: A film with an actual rating of 7.5 is predicted to be 7.0 or 8.0
- This is not amazing, but it still shows that the variables can be used to predict the vote average
- Stepwise regression: Positive coefficients for the models are runtime, vote count, G, PG, and Disney
 - Similar to what we saw from the heatmap

Takeaways

- A few variables seem to have a significant impact on the vote average → Errors
- Difficult to choose which model works best
- Neural networks randomness and no proven methods for choosing nodes/layers leads to uncertainty
 - Model, weights, and RMSE change each time it's run
- Multiple linear regression is a proven and simple method
- <u>Stepwise regression</u> does the same, but with lesser variables on a consistent basis

Model	RMSE
MLR	0.5149
Stepwise	0.5176
1st NN	0.5328
2nd NN	0.5021

Questions?

Sources

https://www.kaggle.com/datasets/sanjeetsinghnaik/top-1000-highest-grossing-movies?select=Highest+Holywood+Grossing+Movies.csv

https://www.kaggle.com/datasets/akshaypawar7/millions-of-movies

https://www.the-numbers.com/market/

https://worldpopulationreview.com/countries/united-states-population

https://www.statista.com/statistics/318778/subscription-based-video-streaming-services-usage-usa/