

# COMPARISON OF MULTI ITEM CAPACITATED LOT SIZING HEURISTICS

| Project submitted in partial fulfillment of the requirements for the degree of Master of S | science in |
|--------------------------------------------------------------------------------------------|------------|
| Industrial Engineering                                                                     |            |

**Under the guidance of:** 

**Dr. Chase Murray** 

Date: 05/19/2017

Aditya Patankar 50204875

Ramandeep Singh Makhija 50204307

### 1. Introduction.

The multi-item single level capacitated dynamic lot sizing problem consists of scheduling a variety of N different items over the planning horizon of T time periods; S.Parveen, A.F.M.Haque, 2007. According to B. Karimia, S.M.T. Fatemi Ghomia, J.M. Wilsonb; 2003, lot sizing is considered to be one of the most important and also one of the most difficult problems in production planning. The complexity of this problem depends on the number of features taken into account by this model. The features which are taken into account are the planning horizon, number of levels, number of products, capacity or resource constraints, deterioration of the items, demand, inventory shortage and the setup structure.

The main objective when considering the multi-item single level lot sizing problem is to minimize the combined inventory holding and setup costs over the planning horizon subject to the capacity constraints in each planning period. Hence the amount and the timing of the production of products during the planning horizon needs to be determined to achieve this objective. According to research presented by Chen and Thizy, the multi-item CLSP is strongly NP-hard. According to Maes, even finding a feasible solution to these problems is considered NP-hard. Hence it is unlikely that any effective optimal algorithm can be developed to solve this problem. Hence based on the literature, developing effective heuristics has been a profitable area of research. According to B. Karimia, S.M.T. Fatemi Ghomia, J.M. Wilsonb; 2003, the heuristics are classified according to the Table 1 shown below. As shown in the Table 1, provided by B. Karimia, S.M.T. Fatemi Ghomia, J.M. Wilsonb; 2003 the heuristics considered in our paper i.e the Lambrecht and Vanderveken; and Dixon and Silver are categorized under the Common-sense or specialized heuristics.

| Lot Shifting  | Feasibility Check | <b>Priority Indices</b> | Initial Solution | Algorithm                 |  |  |  |  |  |  |  |  |
|---------------|-------------------|-------------------------|------------------|---------------------------|--|--|--|--|--|--|--|--|
| Left Shifting | Feedback          | Silver- Meal            | NA               | Lambrecht and Vanderveken |  |  |  |  |  |  |  |  |
| NA            | NA                | PPB                     | NA               | EisenHut                  |  |  |  |  |  |  |  |  |
| Left Shifting | Look- ahead       | Silver-Meal             | NA               | Dixon and Silver          |  |  |  |  |  |  |  |  |

Table 1: Characteristics of Specialized Heuristics

# 2. Summary:

The main objective of this project is to analyze the research work done with respect to the capacitated lot sizing problem and code the heuristics using Python. The heuristics which are considered for further study are:

- 1. Extended Dixon- Silver Heuristic as presented in Parveen, Sultana, and AFM Anwarul Haque. "A heuristic solution of multi-item single level capacitated dynamic lot-sizing problem." *Journal of Mechanical Engineering* 38 (2007): 1-7.
- 2. Extended Eisenhut Heuristic as presented in Lambrecht MR, Vanderveken H. "Heuristic procedures for the single operation, multi-item loading problem". AIIE Transactions 1979;15(4):319–25.

A common data set has been selected for the evaluation of both the heuristics. Analyzing the results obtained from both the heuristics using a common data set helps us identify the features of heuristic and also identify the possible advantages or flaws in each heuristic. A detailed comparison of the findings and a concluding remarks are provided at the end of the report.

#### Deliverables:

- Python code: The python code for Extended Dixon-Silver heuristic and the Extended Eisenhut heuristic has been attached along with this report. The readme.txt file attached along with this code gives detailed about how to run the code. A pseudo-code explaining the heuristics has been described in the report.
- Input Data: The input data selected to run the two python scripts has been obtained from Dixon PS, Silver EA. "A heuristic solution procedure for the multi-item, single level, limited capacity, lot sizing problem". Journal of Operations Management 1981;21(1):23–40. Also in order to further analyze the heuristics, a random manually generated data set has been used. These data sets are attached along with this report in separate csv files. A detailed description of the data set has been provided in later sections of the report.

- Results: The results obtained from the heuristic i.e the lot sizes for each item over each planning horizon are saved in separate csv files. A detailed analysis and interpretation of the results has been provided in the later sections of the report.
- Animation: An animation file showing the findings of the heuristics has been attached and details about it explained in later sections of the report.
- YouTube video: A video summarizing the key findings and addressing all the sections of the project has been created and uploaded on YouTube. The link to the video has been attached. The link to the YouTube videos is as follows:

https://www.youtube.com/watch?v=Td4PQ7GCJqI&lc=z13dg5vaxo2hy1exs04cclmojpvpidnw1s40k

# 3. Deliverables:

### 3.1 Pseudo Code for Extended Dixon-Silver heuristic:

```
1. INPUT the holding and setup cost, maximum lot size and production rate for all items
2. INPUT the forecasted demand.
3. CREATE a pandas DataFrame from Forecasted demand
4. INITIALIZE period = 1 : j \in \{1,12\}
     INITIALIZE (Remaining inventory) = (Initial inventory) – (Safety Stock)
     IF (Remaining Inventory)<sub>i</sub> > (Demand)<sub>ij</sub>
          SET (Equivalent Demand)<sub>ij</sub> = 0
     ELSE
          SET (Equivalent Demand)<sub>ij</sub> = (Demand)<sub>ij</sub> – (Remaining Inventory)<sub>i</sub>
     COMPUTE (Remaining Inventory)<sub>I</sub> = (Remaining Inventory)<sub>I</sub> - (Demand)<sub>ij</sub>
     INCREMENT J BY ONE
     RECYCLE till (Remaining Inventory)<sub>I</sub> >0
5. FOR EVERY VALUE IN PERIOD:
          SUM (TOTAL DEMAND FOR ALL ITEMS) <= SUM (TOTAL CAPACITY FOR ALL ITEMS)
6. SET (Maximum Demand)<sub>i</sub>= Maximum demand for all items
7. CALCULATE n_i = (Maximum demand)_I / (Maximum lot-size)_I -1
8. CALCULATE N' = N + SUM(n_i): item i is split into n_i + 1 items.
9. INITIALIZE (Remaining demand)<sub>ij</sub> = (Demand)<sub>ij</sub> and SET l = 0
10. IF (Remaining demand)<sub>ij</sub> \leq (Maximum lot-size)<sub>i</sub>
          SET (Demand)<sub>ij</sub> = (Remaining demand)<sub>ij</sub>
          COMPUTE (Remaining Demand)<sub>ij</sub> = 0
    ELSE
          SET (Demand)_{ij} = (Maximum lot-size)_i
          COMPUTE \ (Remaining \ Demand)_{ij} - (Maximum \ lot-size)_I
     INCREMENT 1 by one.
     RECYCLE till l = ni
     INITIALIZE Updated Setup and holding costs.
11. INITIALIZE PERIOD R =1
12. INITIALIZE (Lot-size)<sub>ij</sub> = (Equivalent Demand)<sub>ij</sub>
    CALCULATE (Remaining Lot-size)<sub>ij</sub> = (Maximum Lot-size)<sub>i</sub>- (Lot-size)<sub>ij</sub>
13. INITIALIZE T_i = 1
14. CALCULATE (Remaining Capacity)<sub>R</sub> = (Capacity)<sub>R</sub> - SUM ((Production rate)<sub>i</sub>* (Equivalent demand)<sub>IR</sub>)
15. INITIALIZE I'_{i,i} = 0.
16. CALCULATE AP_j = SUM(K_i * (I'_{i,j-1} - I'_{ij}))
17. CALCULATE (Total demand)<sub>i</sub> = SUM(K_i * (Equivalent demand_{ij}))
18. IF SUM(AP)_i < SUM((Total demand)_i - (capacity)_i)
          SET t = Period i
          SET t_c = Minimum(t)
    ELSE
          SET t_c = H+1
```

```
19. CALCULATE x_{can} = \min((Equivalent demand)_{i,R+T_i} - (x_{rem})_{i'R})
    IF T_{i'} < t_c and x_{can} > 0 and ((Remaining capacity)<sub>R</sub> - x_{can}) > 0
          CALCULATE U_i = \frac{AC(T_i) - AC(T_i+1)}{k_i (equivalent\ demand)_i}
          CALCULATE (AC)_{T_i} = \frac{S_i + h_i Sum(j-R)*(equivalent demand)_{ij}}{(ac)_{T_i}}
20. IF U_i > 0
          CALCULATE x_{iR} = x_{iR} + x_{can}
          CALCULATE I'_{ij} = I'_{ij} + x_{can}
          CALCULATE xrem_{i,R+T_i} = xrem_{i,R+T_i} + x_{can}
          CALCULATE xrem_{i,R} = xrem_{i,R} - x_{can}
          CALCULATE x_{iR+T_i} = x_{iR+T_i} - x_{can}
          CALCULATE (Equivalent demand)<sub>iR+Ti</sub> = (Equivalent demand)<sub>iR+Ti</sub> - x_{can}
          CALCULATE Remaining capacity)<sub>R</sub> = (Remaining capacity)<sub>R</sub> - x_{can}
          SET T_i = T_i + 1
   ELSE
          IF (t_c > H)
                     GOTO STEP 27
          ELSE
                     GOTO STEP 21
21. CALCULATE amount of production needed Q = MAX (SUM((Total \ demand)_i - (capacity)_i - (AP)_i))
22. IF T_{i'} < t_c and x_{can} > 0 and ((Remaining capacity)<sub>R</sub> - x_{can}) > 0
          CALCULATE \Delta_{i'} = \frac{AC(T_i+1) - AC(T_{i'})}{k_{i'}(equivalent\ demand)_{i'}T_{i+1}}
23. COMPUTE MIN \Delta_{i'}
24. SET W = k_i * x_{can}
     IF Q> W
           CALCULATE x_{iR} = x_{iR} + x_{can}
          CALCULATE I'_{ij} = I'_{ij} + x_{can}
          CALCULATE xrem_{i,R+T_i} = xrem_{i,R+T_i} + x_{can}
          CALCULATE xrem_{i,R} = xrem_{i,R} - x_{can}
          CALCULATE x_{iR+T_i} = x_{iR+T_i} - x_{can}
          CALCULATE (Equivalent demand)<sub>iR+Ti</sub> = (Equivalent demand)<sub>iR+Ti</sub> - x_{can}
          CALCULATE Remaining capacity)<sub>R</sub> = (Remaining capacity)<sub>R</sub> - x_{can}
          INCREMENT Q BY ONE
          SET T_i = T_i + 1
    ELSE
          SET IQ = \frac{Q}{K_i}
          FOR PERIOD = R + 1 TO R + T_i
                     x_{iR} = x_{iR} + IQ
                     I'_{ij} = I'_{ij} + IQ
                     xrem_{i,R+T_i} = xrem_{i,R+T_i} + IQ
                     x_{iR+T_i} = x_{iR+T_i} - IQ
                     (Equivalent\ demand)_{iR+T_i} = (Equivalent\ demand)_{iR+T_i} - IQ
                     xrem_{i,R} = xrem_{i,R} - IQ
25. INCREMENT R BY ONE.
26. IF R < H
          GOTO STEP 13
     ELSEIF R> H
          PRINT "HEURISTIC COMPLETE"
27. (Lotsize)_{ij} = SUM ((Lotsize)_{i_l,j})
28. CALCULATE Inventory, setup and total cost.
```

# 3.2 Pseudo Code for Extended Eisenhut Heuristic:

```
GENERATE Equivalent Requirements Matrix d_{it}
2. B_t = SUM(SUM(demand_{ik} - capacity_k))
3. IF B_k > 0
         Order upto period: T^* = k
    ELSE
         T^* = \mathbf{H} + 1
4. COMPUTE Inventory_i(t) = h_i * SUM((k-1) * demand_{ik}))
5. IF SUM (capacity_k) \ge SUM (demand_{ik})
         COMPUTE Coefficient U_i(t) = \frac{s_i - Inventory_i(t)}{t^2(demand)_{it}}
    ELSE
         GOTO STEP 8
6. SELECT i with U = MAX(U_i(t))
7. IF U_i(t) > 0 and demand_{it} \le remaining capacity_t
         INCREMENT x_{it-1} by d_{it}
         DECREMENT remaining capacity, and d_{it} by d_{it}
    ELSE
         DELETE MAX((U_i(t))
         REPEAT STEP 6
8. CALCULATE INF_t = SUM(demand_{it} - capacity_t)
    SET a = 1
    IF d_{it-a} = 0
         APPEND i to M^*
9. COMPUTE C_i = \min(demand_{it}, INF_t)
10. COMPUTE MIN (a * C_i * h_i)
11. SELECT q corresponding to minimum STEP 10
12. COMPUTE E = MIN(remaining\ capacity\ _{t-a}, C_q)
13. INCREMENT x_{qt-a} with E units.
     DECREMENT d_{qt}, remaining capacity _{t-a}, \mathit{INF}_t by E units
14. IF INF_t > 0
         IF E = remaining \ capacity \ _{t-a}
                  SET a = a + 1
                  GOTO STEP 1
14.1
         ELSE
                  PROCESS All conditions given in Table 2
                  SELECT x_{it} with minimum additional cost.
                  UPDATE Transfer units for period t-a
                  IF t = feasible
                            GOTO SETEP 14.1
                  ELSE
                            SET a = a + 1
                            GOTO STEP 8
15. CALCULATE Inventory_i(t) = h_i * SUM((k-1) * demand_{it}))
16. CALCULATE Inventory cost, setup cost, and total cost.
```

Table 2: Table for Step 14.1 of Extended Eisenhut heuristic

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DETERMINE                                           |   | IF                                                                                                   | TRANSFER                                          | ADDITIONAL COSTS                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---|------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------|
| GROUP $1 \\ d_{it} \\ < INF_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | • | $E_i = demand_{it}$ $E_i = remaining capacity_{t-a}$                                                 | $demand_{it}$ remaining capacity $_{t-a}$         | $a*demand_{it}*h_i$ $a*remaining capacity_{t-a}*h_i+s_i$                           |
| GROUP $ \begin{array}{c}     & \\     2 \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\     & \\    & \\    & \\    & \\    & \\    & \\    & \\    & \\    & \\    & \\    & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & \\   & $ | $B_{i} = \min\{INF_{t}, remaining capacity_{t-a}\}$ | • | $B_i = remaining capacity_{t-a}$<br>$B_i = INF_t$<br>$demand_{it} <$<br>$remaining \ capacity_{t-a}$ | remaining capacity $_{t-a}$ $INF_t$ $demand_{it}$ | $a*$ remaining capacity $_{t-a}*h_i+s_i$ $a*INF_t*h_i+s_i$ $a*$ demand $_{it}*h_i$ |

# 3.3 Input Data:

- The input data selected for this project has been obtained from Dixon, Paul S., and Edward A. Silver. "A heuristic solution procedure for the multi-item, single-level, limited capacity, lot-sizing problem." *Journal of operations management* 2.1 (1981): 23-39.
- The tables 2 and 3 from this paper have been selected as Data 1 and tables 6 and 7 as Data 2.
- These data sources have been shown in our report in the Tables 3,4,5 and 6 respectively.
- These data tables have been saved in a csv file which has been uploaded along with this report.
- The data from Table 3, provides information about various factors like standard cost, marginal factor, carriage
  cost, setup cost, production rate, lead time, safety stock, free balance inventory, ending inventory and the
  inventory plan.
- This information has been provided for all the 'n' items which in case of Table 3 is 12.
- The Table 4 provides information about the forecasted demand for n items over m time periods.
- Tables 5 and 6 provide the same information as tables 3 and 4 respectively and act as Data 2.

Table 3: Relevant product Data for hypothetical machine 1

| Item<br>No | Holding<br>cost | Setup<br>Cost | Maximum<br>lot size | Production<br>Rate | Safety<br>Stock | Initial<br>Inventory | Ending<br>Inventory |
|------------|-----------------|---------------|---------------------|--------------------|-----------------|----------------------|---------------------|
| (i)        | (hi)            | (Si)          | (Xmaxi)             | (1/ki)             | (SSi)           | (Iin)                | (Iend)              |
| 1          | 0.0167          | 322           | 6000                | 524                | 0               | 19320                | 18893               |
| 2          | 0.0167          | 81            | 60000               | 349                | 10602           | 200180               | 124225              |
| 3          | 0.0167          | 124           | 68000               | 245                | 4577            | 24460                | 43294               |
| 4          | 0.0167          | 124           | 29000               | 172                | 1974            | 23260                | 21757               |
| 5          | 0.0167          | 81            | 49000               | 349                | 7581            | 55489                | 92168               |
| 6          | 0.0167          | 124           | 68000               | 245                | 4861            | -2727                | 44394               |
| 7          | 0.0167          | 124           | 44000               | 172                | 2026            | 9659                 | 8466                |
| 8          | 0.0167          | 105           | 41000               | 847                | 11117           | 29705                | 40273               |
| 9          | 0.0167          | 105           | 32000               | 464                | 9533            | 11362                | 84717               |
| 10         | 0.0167          | 106           | 185000              | 575                | 20417           | 242944               | 227344              |
| 11         | 0.0167          | 105           | 150000              | 1261               | 16634           | 324215               | 271627              |
| 12         | 0.0167          | 105           | 97000               | 663                | 9794            | 45439                | 69068               |

Table 4: Forecasted demand and available machine hours for hypothetical machine 1

| Item<br>No |        |        |        |        |        | Period |       |       |       |       |       |       |
|------------|--------|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|
| (i)        | 1      | 2      | 3      | 4      | 5      | 6      | 7     | 8     | 9     | 10    | 11    | 12    |
| 1          | 11456  | 11456  | 10501  | 13365  | 13365  | 11456  | 8592  | 1909  | 1909  | 1909  | 4773  | 4773  |
| 2          | 53124  | 53124  | 48697  | 61977  | 61977  | 53124  | 39842 | 8854  | 8854  | 8854  | 22135 | 22135 |
| 3          | 18099  | 18099  | 16591  | 21116  | 21116  | 18099  | 13574 | 3016  | 3016  | 3016  | 7541  | 7541  |
| 4          | 9250   | 9250   | 8480   | 10792  | 10792  | 9250   | 6938  | 1542  | 1542  | 1542  | 3854  | 3854  |
| 5          | 39546  | 39546  | 36250  | 46137  | 46137  | 39546  | 29659 | 6591  | 6591  | 6591  | 16478 | 16478 |
| 6          | 18363  | 18363  | 16833  | 21423  | 21423  | 18363  | 13772 | 3060  | 3060  | 3060  | 7651  | 7651  |
| 7          | 4976   | 4976   | 4562   | 5806   | 5806   | 4976   | 3732  | 829   | 829   | 829   | 2074  | 2074  |
| 8          | 41690  | 41690  | 38216  | 48638  | 48638  | 41690  | 31267 | 6948  | 6948  | 6948  | 17371 | 17371 |
| 9          | 32816  | 32816  | 30081  | 38285  | 38285  | 32816  | 24612 | 5469  | 5469  | 5469  | 13673 | 13673 |
| 10         | 96745  | 96745  | 88683  | 112868 | 112868 | 96745  | 72559 | 16124 | 16124 | 16124 | 40310 | 40310 |
| 11         | 119220 | 119220 | 109285 | 139088 | 139088 | 119220 | 89415 | 19870 | 19870 | 19870 | 49675 | 49675 |
| 12         | 27715  | 27715  | 25405  | 32333  | 32333  | 27715  | 20786 | 4619  | 4619  | 4619  | 11548 | 11548 |

Table 5: Relevant product Data for hypothetical machine 2

| Ţ.         |              |               | Neievani produ      | *1                 |                 |                      |                     |
|------------|--------------|---------------|---------------------|--------------------|-----------------|----------------------|---------------------|
| Item<br>No | Holding cost | Setup<br>Cost | Maximum<br>lot size | Production<br>Rate | Safety<br>Stock | Initial<br>Inventory | Ending<br>Inventory |
| (i)        | (hi)         | (Si)          | (Xmaxi)             | (1/ki)             | (SSi)           | (Iin)                | (Iend)              |
| 1          | 0.0167       | 186           | 6000                | 187                | 9343            | 43671                | 98945               |
| 2          | 0.0167       | 320           | 60000               | 111                | 3106            | 26280                | 18551               |
| 3          | 0.0167       | 640           | 68000               | 73                 | 823             | 13480                | 7463                |
| 4          | 0.0167       | 640           | 29000               | 50                 | 1156            | 15980                | 16309               |
| 5          | 0.0167       | 186           | 49000               | 222                | 1579            | 27480                | 24156               |
| 6          | 0.0167       | 320           | 68000               | 137                | 417             | 0                    | 12668               |
| 7          | 0.0167       | 640           | 44000               | 101                | 0               | 6000                 | 1311                |
| 8          | 0.0167       | 640           | 41000               | 71                 | 0               | 9240                 | 3239                |

Table 6: Forecasted demand and available machine hours for hypothetical machine 1

| Item<br>No |       |       |       |       |       | Perio      | od        |      |      |      |       |       |
|------------|-------|-------|-------|-------|-------|------------|-----------|------|------|------|-------|-------|
| (i)        | 1     | 2     | 3     | 4     | 5     | 6          | 7         | 8    | 9    | 10   | 11    | 12    |
| 1          | 39600 | 39600 | 36300 | 46200 | 46200 | 39600      | 29700     | 6600 | 6600 | 6600 | 16500 | 16500 |
| 2          | 11537 | 11537 | 10575 | 13459 | 13459 | 11537      | 8652      | 1923 | 1923 | 1923 | 4807  | 4807  |
| 3          | 7957  | 7957  | 7294  | 9283  | 9283  | 7957       | 5968      | 1326 | 1326 | 1326 | 3315  | 3315  |
| 4          | 11663 | 11663 | 10691 | 13607 | 13607 | 11663      | 8747      | 1944 | 1944 | 1944 | 4860  | 4860  |
| 5          | 14105 | 14105 | 12929 | 16456 | 16456 | 14105      | 10579     | 2351 | 2351 | 2351 | 5877  | 5877  |
| 6          | 5886  | 5886  | 5396  | 6867  | 6867  | 5886       | 4415      | 981  | 981  | 981  | 2453  | 2453  |
| 7          | 1177  | 1177  | 1079  | 1373  | 1373  | 1177       | 883       | 196  | 196  | 196  | 491   | 491   |
| 8          | 1962  | 1962  | 1799  | 2289  | 2289  | 1962       | 1472      | 327  | 327  | 327  | 818   | 818   |
|            |       |       |       | •     | Ava   | ilable Mac | hine hour | s    | •    | •    |       |       |
|            | 706   | 729   | 729   | 706   | 729   | 706        | 729       | 729  | 660  | 729  | 706   | 729   |

# 3.4 Results:

- The output obtained from the heuristic is the lot-size or the actual production plan for n items over the m time periods.
- This lot-size is also used to calculate the total expected setup costs and the total expected inventory holding cost. The summation of these quantities provides us the total expected costs for this production plan.
- The production plan and the total expected costs for this production plan are calculated for both the Data Sets using the Extended Eisenhut Heuristic and the Extended Dixon- Silver Heuristic.
- The outputs have been saved in a separate csv file and the results have been represented in the Table 5, Table 6, Table 7 and Table 8 respectively.

Table 5: Final lot sizes for hypothetical machine 1 from Extended Dixon-Silver heuristic

| Item<br>No | Period |        |       |        |        |        |       |       |       |        |        |        |
|------------|--------|--------|-------|--------|--------|--------|-------|-------|-------|--------|--------|--------|
| (i)        | 1      | 2      | 3     | 4      | 5      | 6      | 7     | 8     | 9     | 10     | 11     | 12     |
| 1          | 6000   | 8093   | 14730 | 12000  | 12000  | 8048   | 6000  | 0     | 0     | 6000   | 16500  | 0      |
| 2          | 0      | 0      | 27344 | 61977  | 53124  | 0      | 48696 | 39843 | 0     | 0      | 120000 | 0      |
| 3          | 32906  | 0      | 42232 | 0      | 0      | 18099  | 19606 | 0     | 56815 | 0      | 0      | 0      |
| 4          | 0      | 5694   | 10792 | 20042  | 0      | 0      | 6938  | 3084  | 29000 | 0      | 33     | 0      |
| 5          | 49000  | 49000  | 0     | 15571  | 46137  | 39546  | 29659 | 13182 | 49000 | 0      | 72069  | 0      |
| 6          | 44314  | 68000  | 0     | 0      | 0      | 10042  | 13772 | 64015 | 0     | 0      | 0      | 0      |
| 7          | 6881   | 0      | 11612 | 0      | 0      | 8708   | 829   | 12246 | 0     | 0      | 0      | 0      |
| 8          | 41000  | 41000  | 20318 | 41000  | 41000  | 41000  | 31267 | 6948  | 41000 | 0      | 31267  | 0      |
| 9          | 32816  | 32000  | 45386 | 32000  | 32000  | 29068  | 24612 | 5469  | 5469  | 32000  | 19142  | 32000  |
| 10         | 0      | 0      | 59646 | 112868 | 112868 | 96745  | 72559 | 16124 | 32248 | 185000 | 0      | 40310  |
| 11         | 0      | 150000 | 0     | 29232  | 139088 | 119220 | 89415 | 59610 | 0     | 150000 | 49675  | 150000 |
| 12         | 45190  | 0      | 64666 | 0      | 0      | 27715  | 20786 | 96227 | 0     | 0      | 0      | 0      |

Table 6: Final lot sizes for hypothetical machine 1 from Extended Eisenhut heuristic

| Item<br>No | Period |        |       |        |        |        |       |       |        |       |       |        |
|------------|--------|--------|-------|--------|--------|--------|-------|-------|--------|-------|-------|--------|
| (i)        | 1      | 2      | 3     | 4      | 5      | 6      | 7     | 8     | 9      | 10    | 11    | 12     |
| 1          | 0      | 39300  | 23580 | 23056  | 0      | 11004  | 8384  | 48208 | 1572   | 1572  | 28296 | 46636  |
| 2          | 0      | 0      | 0     | 26873  | 61773  | 53048  | 39786 | 8725  | 8725   | 8725  | 21987 | 135412 |
| 3          | 0      | 15925  | 16415 | 21070  | 21070  | 17885  | 13475 | 2940  | 2940   | 49000 | 7350  | 0      |
| 4          | 0      | 0      | 5504  | 10664  | 10664  | 9116   | 6880  | 1376  | 1376   | 14448 | 14276 | 0      |
| 5          | 0      | 31061  | 35947 | 46068  | 46068  | 39437  | 29316 | 37692 | 76082  | 6282  | 16403 | 0      |
| 6          | 64925  | 18130  | 16660 | 21315  | 0      | 0      | 13720 | 2940  | 19845  | 33320 | 7595  | 0      |
| 7          | 0      | 7740   | 10148 | 0      | 0      | 4816   | 3612  | 688   | 688    | 688   | 10664 | 0      |
| 8          | 125356 | 116039 | 60137 | 0      | 28798  | 31339  | 30492 | 6776  | 6776   | 6776  | 62678 | 0      |
| 9          | 94656  | 77488  | 29696 | 0      | 0      | 0      | 24592 | 5104  | 5104   | 93728 | 13456 | 0      |
| 10         | 0      | 0      | 59225 | 112700 | 112700 | 96600  | 72450 | 16100 | 16100  | 16100 | 40250 | 247250 |
| 11         | 0      | 0      | 39091 | 138710 | 138710 | 118534 | 88270 | 18915 | 322816 | 18915 | 49179 | 0      |
| 12         | 0      | 51051  | 57018 | 0      | 0      | 27183  | 20553 | 3978  | 3978   | 3978  | 82212 | 0      |

Table 7: Final lot sizes for hypothetical machine 2 from Extended Dixon-Silver heuristic

| Item<br>No | Period |       |       |       |       |       |       |       |      |       |       |      |
|------------|--------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|------|
| (i)        | 1      | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9    | 10    | 11    | 12   |
| 1          | 42000  | 36000 | 48000 | 44400 | 37500 | 29700 | 12000 | 6000  | 6000 | 18000 | 96300 | 5272 |
| 2          | 0      | 37393 | 0     | 0     | 11537 | 14421 | 0     | 0     | 0    | 25059 | 0     | 0    |
| 3          | 10551  | 0     | 18566 | 0     | 0     | 7957  | 23216 | 0     | 0    | 0     | 0     | 0    |
| 4          | 8502   | 0     | 10691 | 13607 | 13607 | 11663 | 8747  | 29000 | 0    | 0     | 1705  | 0    |
| 5          | 15238  | 0     | 0     | 16456 | 30561 | 0     | 17632 | 0     | 0    | 34331 | 0     | 0    |
| 6          | 12189  | 5396  | 0     | 13734 | 0     | 5886  | 7358  | 0     | 0    | 17157 | 0     | 0    |
| 7          | 0      | 0     | 0     | 2827  | 0     | 0     | 0     | 0     | 0    | 2293  | 0     | 0    |
| 8          | 0      | 0     | 0     | 0     | 1061  | 1962  | 3271  | 0     | 0    | 0     | 4057  | 0    |

Table 8: Final lot sizes for hypothetical machine 2 from Extended Eisenhut heuristic

| Item<br>No |       | Period |       |       |       |       |       |      |      |       |       |       |  |  |
|------------|-------|--------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|--|--|
| (i)        | 1     | 2      | 3     | 4     | 5     | 6     | 7     | 8    | 9    | 10    | 11    | 12    |  |  |
| 1          | 28798 | 50864  | 36278 | 34782 | 31977 | 30107 | 29546 | 6545 | 6545 | 51238 | 16456 | 61523 |  |  |
| 2          | 0     | 0      | 10323 | 13431 | 13431 | 11433 | 8547  | 1887 | 1887 | 22200 | 4773  | 0     |  |  |
| 3          | 0     | 3285   | 7227  | 9271  | 9271  | 7957  | 5913  | 1314 | 1314 | 6132  | 8395  | 0     |  |  |
| 4          | 0     | 8500   | 10650 | 13600 | 13600 | 11650 | 8700  | 1900 | 1900 | 1900  | 4850  | 20000 |  |  |
| 5          | 0     | 29526  | 12876 | 0     | 5550  | 13986 | 10434 | 2220 | 2220 | 2220  | 33966 | 0     |  |  |
| 6          | 11919 | 14933  | 9864  | 0     | 0     | 0     | 4384  | 959  | 959  | 959   | 16851 | 0     |  |  |
| 7          | 0     | 0      | 0     | 0     | 0     | 1010  | 808   | 101  | 101  | 101   | 2020  | 0     |  |  |
| 8          | 0     | 0      | 0     | 0     | 923   | 1917  | 1420  | 284  | 284  | 284   | 4757  | 0     |  |  |

# 3.5 Interpretation of The Results:

Table 9: Comparison of Inventory, Setup and Total cost calculated by two heuristics considering two data sets

| Heuristic> | Extend                | ed Dixon-Silve    | er         | Exten                 | <b>Extended Eisenhut</b> |                   |  |  |
|------------|-----------------------|-------------------|------------|-----------------------|--------------------------|-------------------|--|--|
|            | <b>Inventory Cost</b> | <b>Setup Cost</b> | Total cost | <b>Inventory Cost</b> | <b>Setup Cost</b>        | <b>Total cost</b> |  |  |
| Data 1     | 82046                 | 11575             | 93621      | 86898                 | 13958                    | 100856            |  |  |
| Data 2     | 19261                 | 17882             | 37143      | 11297                 | 31106                    | 42403             |  |  |

- As we can see from the Table 9 for Data 1 the Inventory, Setup and the Total cost for Extended Dixon Silver Heuristic is better than the costs of Extended Eisenhut heuristic.
- We can also see that for Data 2 Extended Eisenhut heuristic is performing better to lower down the inventory
  cost but on the expense of Setup cost. Therefore, Extended Dixon-Silver heuristic is again better in terms of
  Total cost.
- So, for a given Dataset with limited lot size per setup we can say that Extended Dixon-Silver heuristic will give better lot sizes than the Extended Eisenhut heuristic.

# 3.6 Animation

- In—order to better visualize the results, an animation plot has been provided. This animation plot has been generated using the 'matplotlib.animation' library. The animation provides information about the comparison between the total costs obtained from both the heuristics for Data 1 and Data 2.
- The total costs have been represented on y –axis and the data set on the x –axis. The image generated from this animation is as shown in the Figure 1.

# Comparison of Total cost for two heuristics with different data sets 120000 - Total Cost from Modified Eisenhut heuristic Total Cost from Modified Dixon-Silver heuristic 100000 - \*\* 80000 - \*\* Data 1 Data 2

Figure 1: Comparison of Total cost for two heuristics with two different data sets

# 3.7 Python Libraries

# Pandas:

As this project demanded working with DataFrames representing the data in a matrix form, Pandas library has been chosen as it provides an easy framework to analyze the data. Pandas has an R- styled DataFrame with column names which helps in keeping track of the data. It also provides good IO capabilities, making it easier to access and output the data from a csv file.

Data Set

### Math:

The math library has been imported in order to have access to some of the common math functions which makes it easier to manipulate the data.

# • Matplotlib:

The matplotlib library provides an easy way to generate plots and animations. It is possible to easily include legends for the plots, the axis labels, title of the plot and also provides access to variety of plots.

# 4. Conclusion and Suggestions:

# 4.1 Conclusion:

- The extended Eisenhut heuristic is an efficient procedure and can be used to generate feasible production schedules for the multi-item, multi- period capacitated lot sizing problem.
- The extended Dixon- Silver Heuristic contains an important improvement over the original heuristic by including an important parameter which is the maximum lot size from the machine.
- Based on the comparison of these two heuristics it was observed that the Extended Dixon Silver Heuristic produced lesser total costs for both the data sets. The reason for this may be that, lot –sizing of the current period is done after considering the feasibility from current period to period  $T_i$  at the same time. But in the Eisenhut heuristic, the feasibility check is performed for each period at a time.

# **4.2 Future Suggestions:**

- The run-time of the heuristics can be compared to check which heuristic performs better.
- The data sets can be manipulated to check which heuristic performs better for various sorts of data.

# 5 Appendix:

Instructions to run the codes:

- 1. Keep the Sample Data folder and all three codes in the same folder.
- 2. Open Command line and change the directory to the folder location
- 3. To get the solution of Extended Dixon-Silver heuristic:

For Data 1:

Type in the command line: python Extended\_Dixon\_Silver.py Data\_1

For Data 2:

Type in the command line: python Extended Dixon Silver.py Data 2

4. To get the solution of Extended Eisenhut Heuristic:

For Data 1:

Type in command line: python Extended\_Eisenhut.py Data\_1

For Data 2:

Type in command line: python Extended\_Eisenhut.py Data\_2

5. To get the animation plot for the heuristics:

Type in command line: Animation.py

# 6. References:

Chen WH, Thizy JM. Analysis of relaxations for the multi-item capacitated lot-sizing problem. Annals of Operations Research 1990; 26:29–72.

Dixon PS, Silver EA. A heuristic solution procedure for the multi-item, single level, limited capacity, lot sizing problem. Journal of Operations Management 1981;21(1):23–40.

Eisenhut PS. A dynamic lot sizing algorithm with capacity constraints. AIIE Transactions 1975;7(2):170-6.

Karimi, Behrooz, SMT Fatemi Ghomi, and J. M. Wilson. "The capacitated lot sizing problem: a review of models and algorithms." *Omega* 31.5 (2003): 365-378.

Lambrecht MR, Vanderveken H. Heuristic procedures for the single operation, multi-item loading problem. AIIE Transactions 1979;15(4):319–25.

Maes J, McClain JO, Van Wassenhove LN. Multilevel capacitated lot sizing complexity and LP-based heuristics. European Journal of Operational Research 1991;53(2): 131–48.

https://jakevdp.github.io/blog/2012/08/18/matplotlib-animation-tutorial/

http://stackoverflow.com/questions/18016390/save-matplotlib-animation

http://matplotlib.org/examples/animation/histogram.html

http://stackoverflow.com/questions/28821150/plot-points-with-different-colors-in-a-matplotlib-animation

http://matplotlib.org/api/animation api.html