Chiral Dirac Superconductors: Second-order and Boundary-obstructed Topology

University of Florida, December

Outline

1. Introduction—Topological bands

2. Higher-order topology and boundary-obstructed topologies

3. Chiral Dirac higher-order topological superconductors

Bands structure

Electrons on a lattice can be described by local degrees of freedom,

$$a_i^{\dagger}(\mathbf{R})|0\rangle = |\mathbf{R}|i\rangle$$

- R label lattice coordinate.
- ▶ *i* label *internal* degrees of freedom.

Bands structure

Electrons on a lattice can be described by local degrees of freedom,

$$a_i^{\dagger}(\mathbf{R}) |0\rangle = |\mathbf{R}|i\rangle$$

- R label lattice coordinate.
- ▶ *i* label *internal* degrees of freedom.

For free electrons,

$$|\mathbf{k}|i\rangle = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} |\mathbf{R}|i\rangle, \quad a^{\dagger}(\mathbf{k}) |0\rangle = |\mathbf{k}|i\rangle$$

$$H = \int \frac{d\mathbf{k}}{(2\pi)^d} a_i^{\dagger}(\mathbf{k}) \mathcal{H}^{ij}(\mathbf{k}) a_j(\mathbf{k})$$

- lacktriangle Translational symmetry ightarrow conservation of crystal momentum.
- ▶ Diagonalizing the Hamiltonian we end up with a set of bands.
- lacktriangle We will refer to $\mathcal{H}(k)$ as the Hamiltonian.
- ▶ We are interested in gapped systems (insulators).

Topology of the occupied bands

Suppose we are studying systems with some symmetry group. Define an equivalence between $\mathcal{H}^0(\boldsymbol{k})$ and $\mathcal{H}^1(\boldsymbol{k})$:

$$\mathcal{H}^0({\pmb k}) pprox \mathcal{H}^1({\pmb k})$$
 iff \exists

- \vdash $\mathcal{H}(\mathbf{k},t)$; $\mathcal{H}(\mathbf{k},0) = \mathcal{H}^0(\mathbf{k})$, $\mathcal{H}(\mathbf{k},1) = \mathcal{H}^1(\mathbf{k})$,
- $ightharpoonup \mathcal{H}({m k},t)$ for all values of $t\in[0,1]$ is:
 - 1. Gapped
 - 2. Preserve the symmetry

Topology of the occupied bands

Suppose we are studying systems with some symmetry group. Define an equivalence between $\mathcal{H}^0(\mathbf{k})$ and $\mathcal{H}^1(\mathbf{k})$:

$$\mathcal{H}^0(\textbf{\textit{k}})\approx\mathcal{H}^1(\textbf{\textit{k}})$$
 iff \exists

- \vdash $\mathcal{H}(\mathbf{k},t)$; $\mathcal{H}(\mathbf{k},0) = \mathcal{H}^0(\mathbf{k})$, $\mathcal{H}(\mathbf{k},1) = \mathcal{H}^1(\mathbf{k})$,
- $ightharpoonup \mathcal{H}({m k},t)$ for all values of $t\in[0,1]$ is:
 - 1. Gapped
 - 2. Preserve the symmetry

- ▶ This can be thought as deforming the occupied (and empty bands) bands from those of $\mathcal{H}^0(\mathbf{k})$ to those of $\mathcal{H}^1(\mathbf{k})$.
- If this deformation is possible, then the occupied bands of $\mathcal{H}^0(\mathbf{k})$ and $\mathcal{H}^1(\mathbf{k})$ are topologically equivalent.

Topological classification

Topological classification require a survey of all possible gapped Hamiltonian and grouping them into equivalence classes under the restrictions of some symmetry group.

Space of Hamiltonians with some symmetry

► Find topological invariants that differentiate one class from the other.

Superconductors

The Bogoliubov-de Gennes (BdG) form for superconducting Hamiltonian,

$$H = \frac{1}{2} \int \frac{d\boldsymbol{k}}{(2\pi)^d} \begin{bmatrix} \Psi^{\dagger}(\boldsymbol{k})\Psi^T(-\boldsymbol{k}) \end{bmatrix} \begin{bmatrix} \mathcal{H}_n(\boldsymbol{k}) & \Delta(\boldsymbol{k}) \\ \Delta^{\dagger}(\boldsymbol{k}) & -\mathcal{H}_n^*(-\boldsymbol{k}) \end{bmatrix} \begin{bmatrix} \Psi(\boldsymbol{k}) \\ \Psi^*(-\boldsymbol{k}) \end{bmatrix}$$

- $\qquad \qquad \Psi^{\dagger}(\mathbf{k}) = (a_1^{\dagger}(\mathbf{k}), \dots, a_N^{\dagger}(\mathbf{k})).$
- $ightharpoonup \mathcal{H}_n(m{k})$ is the normal state Hamiltonian.
- lacksquare $\Delta(k)$ is the superconducting order parameter.
- ▶ The BdG Hamiltonian $\mathcal{H}(\boldsymbol{k}) = \begin{bmatrix} \mathcal{H}_n(\boldsymbol{k}) & \Delta(\boldsymbol{k}) \\ \Delta^{\dagger}(\boldsymbol{k}) & -\mathcal{H}_n^*(-\boldsymbol{k}) \end{bmatrix}$ allows us to study the topology of superconductors within the same framework as insulating Hamiltonians.
- ▶ BdG Hamiltonians has an *intrinsic* particle-hole symmetry.

Internal symmetries

Internal symmetries are those that do not change the positions of the particles: $m{R} o m{R}$.

Internal symmetries

Internal symmetries are those that do not change the positions of the particles: $m{R} o m{R}$.

Three important internal symmetries:

- ightharpoonup Time-reversal symmetry (\mathcal{T})
- ightharpoonup Particle-hole symmetry (P)
- ▶ Chiral symmetry (C = PT)

Complete topological classification exists for the 10 Altland-Zirnbauer (AZ) classes. Teo and Kane (2010)

AZ	\mathcal{T}^2	\mathcal{P}^2	\mathcal{C}^2
Α	0	0	0
AIII	0	0	1
Al	1	0	0
BDI	1	1	1
D	0	1	0
DIII	-1	1	1
All	-1	0	0
CII	-1	-1	1
C	0	-1	0
CI	1	-1	1

Gapless boundaries

- A boundary interpolates between a topological system and the vacuum.
- Internal symmetries are not broken on the boundary.

Gapless boundaries

- A boundary interpolates between a topological system and the vacuum.
- Internal symmetries are not broken on the boundary.

Topological systems protected by internal symmetries *only* will in general have gapless boundaries.

Examples

In 2D:

Chern insulators.

Protecting symmetries: None.

Topological invariant: Chern number.

Examples

In 2D:

Chern insulators.

Protecting symmetries: None.

Topological invariant: Chern number.

<u>In 1D:</u>

SSH chain.

Protecting symmetry: Chiral symmetry

Topological invariant: Polarization

Outline

1. Introduction—Topological bands

2. Higher-order topology and boundary-obstructed topologies

3. Chiral Dirac higher-order topological superconductors

Higher-order topology

Can we find topological systems systems with gapped boundaries?

First-order topology; gapless mode on boundaries of co-dimension 1.

Second-order topology; gapless mode on boundaries of co-dimension 2

The protecting symmetry must be broken on the boundary. Internal symmetries are not enough.

Spatial symmetries

Spatial symmetries are those that change the position of the particles. $m{R} o m{R}'$.

Examples of spacial symmetries:

$$C_4: (R_x, R_y) \to (-R_y, R_x)$$
 $C_2: (R_x, R_y) \to (-R_x, -R_y)$

 C_4 and C_2 are broken on the boundaries.

A cheap way to get corner modes

▶ These corner zero modes are not protected by a bulk gap.

Higher-order and boundary-obstructed topologies

Boundary-obstructed topology

- What kinds of system would show such surface signature?
- ▶ What kinds of topological invariants we can find?

Summary

- Topological band systems are those that cannot be deformed to the vacuum without:
 - 1. Closing a gap
 - 2. Breaking the symmetry
- ► Topologies protected by internal symmetries alone lead to first-order topology (gapless boundaries).
- Including spatial symmetries can lead to a much richer topological structure.
- ► Higher-order topologies have gapless modes on boundaries with co-dimension higher than one.
- Boundary-obstructed topologies are only protected by a boundary gap closing.

Outline

Introduction—Topological bands

2. Higher-order topology and boundary-obstructed topologies

3. Chiral Dirac higher-order topological superconductors

Apoorv Tiwari University of Zurich

Yuxuan Wang University of Florida

A concrete model

$$\mathcal{H}(\mathbf{k}) = [\gamma_x + \cos(k_x)] \, \sigma_x \tau_z + [\gamma_y + \cos(k_y)] \, \sigma_z \tau_z - \mu \tau_z + \Delta \sin(k_x) \tau_y + \Delta \sin(k_y) \tau_x$$

4 Majorana corner zero modes. Wang, Lin, and Hughes (2018)

$$\gamma_x = \gamma_y = 0.2, \ \Delta = 0.4, \ \mu = 0.5$$

A concrete model

$$\mathcal{H}(\mathbf{k}) = [\gamma_x + \cos(k_x)] \, \sigma_x \tau_z + [\gamma_y + \cos(k_y)] \, \sigma_z \tau_z - \mu \tau_z + \Delta \sin(k_x) \tau_y + \Delta \sin(k_y) \tau_x$$

4 Majorana corner zero modes. Wang, Lin, and Hughes (2018)

Can we abstract a sufficient condition that would guarantee the existence of the Majorana zero modes?

A more general model—a sufficient condition

$$\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x \tau_z + f_2(\mathbf{k})\sigma_z \tau_z - \mu \tau_z + \Delta_1(\mathbf{k})\tau_y + \Delta_2(\mathbf{k})\tau_x$$

$$f_{1,2}(\pm \mathbf{K}) = f_{1,2}(\pm \mathbf{K}') = 0$$

p+ip order parameter.

A more general model—a sufficient condition

$$\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x \tau_z + f_2(\mathbf{k})\sigma_z \tau_z - \mu \tau_z + \Delta_1(\mathbf{k})\tau_y + \Delta_2(\mathbf{k})\tau_x$$

p+ip order parameter.

$$f_{1,2}(\pm \mathbf{K}) = f_{1,2}(\pm \mathbf{K}') = 0$$

- lacktriangle With C_4 symmetry the model has a second-order topological phase with corner Majorana zero modes.
- With only C_2 symmetry the model has a boundary-obstructed phase with corner Majorana zero modes.

Fourfold rotation symmetry

$$\mathcal{H}(\boldsymbol{k}) = f_1(\boldsymbol{k})\sigma_x\tau_z + f_2(\boldsymbol{k})\sigma_z\tau_z - \mu\tau_z + \Delta_1(\boldsymbol{k})\tau_y + \Delta_2(\boldsymbol{k})\tau_x$$

$$\mathcal{P}\mathcal{H}(\boldsymbol{k})\mathcal{P}^{-1} = -\mathcal{H}(-\boldsymbol{k}), \qquad \mathcal{P} = \tau_x K$$

$$C_4\mathcal{H}(k_x, k_y)C_4^{-1} = \mathcal{H}(-k_y, k_x), \quad C_4 = \frac{1}{\sqrt{2}}(\sigma_x + \sigma_y)e^{-i\frac{\pi}{4}\tau_z}$$
we matry constraints:

Symmetry constraints:

$$f_1(k_x, k_y) = f_2(-k_y, k_x)$$

$$f_{1,2}(-\mathbf{k}) = f_{1,2}(\mathbf{k}), \quad \Delta_{1,2}(-\mathbf{k}) = -\Delta_{1,2}(\mathbf{k})$$

Fourfold rotation symmetry

$$\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x \tau_z + f_2(\mathbf{k})\sigma_z \tau_z - \mu \tau_z + \Delta_1(\mathbf{k})\tau_y + \Delta_2(\mathbf{k})\tau_x$$

$$\mathcal{PH}(\mathbf{k})\mathcal{P}^{-1} = -\mathcal{H}(-\mathbf{k}), \qquad \mathcal{P} = \tau_x K$$

$$C_4 \mathcal{H}(k_x, k_y) C_4^{-1} = \mathcal{H}(-k_y, k_x), \quad C_4 = \frac{1}{\sqrt{2}} (\sigma_x + \sigma_y) e^{-i\frac{\pi}{4}\tau_z}$$

Symmetry constraints:

$$f_1(k_x, k_y) = f_2(-k_y, k_x)$$

 $f_{1,2}(-\mathbf{k}) = f_{1,2}(\mathbf{k}), \quad \Delta_{1,2}(-\mathbf{k}) = -\Delta_{1,2}(\mathbf{k})$

High-symmetry points:

- $ightharpoonup C_4: \{(0,0), (\pi,\pi)\} \to \{(0,0), (\pi,\pi)\}$
- $ightharpoonup C_2: \{(0,\pi), (\pi,0)\} \to \{(0,\pi), (\pi,0)\}$

Define:

$$f_{\Gamma} \equiv f_1(0,0) = f_2(0,0), \quad f_M \equiv f_1(\pi,\pi) = f_2(\pi,\pi)$$

Symmetry indicators

Easy topological invariants to calculate

$$\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x \tau_z + f_2(\mathbf{k})\sigma_z \tau_z - \mu \tau_z + \Delta_1(\mathbf{k})\tau_y + \Delta_2(\mathbf{k})\tau_x$$

We first ignore that we are dealing with a BdG Hamiltonian and treat it as an insulating system (two occupied bands). We reinterpret the results for the BdG Hamiltonian in the end.

Symmetry indicators

Easy topological invariants to calculate

$$\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x \tau_z + f_2(\mathbf{k})\sigma_z \tau_z - \mu \tau_z + \Delta_1(\mathbf{k})\tau_y + \Delta_2(\mathbf{k})\tau_x$$

We first ignore that we are dealing with a BdG Hamiltonian and treat it as an insulating system (two occupied bands). We reinterpret the results for the BdG Hamiltonian in the end.

High-symmetry points:

- $[\mathcal{H}(0,0), C_4] = 0$ $[\mathcal{H}(\pi,\pi), C_4] = 0$
- $[\mathcal{H}(0,\pi), C_2] = 0$ $[\mathcal{H}(\pi,0), C_2] = 0$

Symmetry indicators

Easy topological invariants to calculate

$$\mathcal{H}(\mathbf{k}) = f_1(\mathbf{k})\sigma_x \tau_z + f_2(\mathbf{k})\sigma_z \tau_z - \mu \tau_z + \Delta_1(\mathbf{k})\tau_y + \Delta_2(\mathbf{k})\tau_x$$

We first ignore that we are dealing with a BdG Hamiltonian and treat it as an insulating system (two occupied bands). We reinterpret the results for the BdG Hamiltonian in the end.

High-symmetry points:

- $[\mathcal{H}(0,0), C_4] = 0$ $[\mathcal{H}(\pi,\pi), C_4] = 0$
- $[\mathcal{H}(0,\pi), C_2] = 0$ $[\mathcal{H}(\pi,0), C_2] = 0$

Symmetry operators eigenvalues at the high-symmetry points are topological invariants.

Wannier centers must:

- ightharpoonup Respect the C_4 symmetry.
- ▶ Be consistent with the symmetry eigenvalues at the high-symmetry points.

×	×	×	×
×	×	×	×
×	×	×	×
×	×	×	×

Wannier centers must:

- ightharpoonup Respect the C_4 symmetry.
- ▶ Be consistent with the symmetry eigenvalues at the high-symmetry points.

•	•	•	•
•	•	•	•
•	•	•	•
•	•	•	•

$$\operatorname{sgn}(f_{\Gamma})\operatorname{sgn}(f_M) = 1$$

Wannier centers must:

- ▶ Respect the *C*⁴ symmetry.
- ► Be consistent with the symmetry eigenvalues at the high-symmetry points.

Wannier centers must:

- ightharpoonup Respect the C_4 symmetry.
- ▶ Be consistent with the symmetry eigenvalues at the high-symmetry points.

► These are two topologically distinct phases.

Filling anomaly—Majorana corner modes

Filling anomaly means the system cannot be:

- 1. Neutral
- 2. Gapped
- 3. C_4 symmetric

Khalaf, Benalcazar, Hughes, and Queiroz (2019)

One orbital at each corner that can be either empty, or filled.

Filling anomaly—Majorana corner modes

Filling anomaly means the system cannot be:

- 1. Neutral
- 2. Gapped
- 3. C_4 symmetric

Khalaf, Benalcazar, Hughes, and Queiroz (2019)

One orbital at each corner that can be either empty, or filled.

What does the filling anomaly mean for the BdG Hamiltonian?

- Filling anomaly means one state localized at each corner.
- Particle-hole symmetry is a local symmetry.
- ▶ If $|\Psi\rangle$ is localized on one corner, so is $|\mathcal{P}\Psi\rangle$.
- lt must be that $|\mathcal{P}\Psi\rangle \propto |\Psi\rangle$; A Majorana zero mode.

Is the system in the topological phase?

The condition for the topological phase is $sgn(f_{\Gamma}) sgn(f_{M}) = -1$. Is it true for our system?

$$\mathcal{H}_n(\mathbf{k}) = f_1(\mathbf{k})\sigma_x + f_2(\mathbf{k})\sigma_z$$

- ► The Dirac point is a source of *magnetic* field.
- ▶ Berry phase gained when moving around the loop is π .

$$\hat{oldsymbol{n}}(oldsymbol{k}) \equiv rac{f_1(oldsymbol{k})e_x + f_2(oldsymbol{k})e_z}{\sqrt{f_1^2(oldsymbol{k}) + f_2^2(oldsymbol{k})}}$$

$$N_{\mathsf{w}}(\gamma \circ C_4 \gamma) = 2N_{\mathsf{w}}(\gamma) = 1$$
$$\hat{\boldsymbol{n}}(0,0) = -\hat{\boldsymbol{n}}(\pi,\pi)$$

Now we break C_4 down to C_2 .

Boundary-obstruction

Going back to

$$\mathcal{H}(\mathbf{k}) = [\gamma_x + \cos(k_x)] \, \sigma_x \tau_z + [\gamma_y + \cos(k_y)] \, \sigma_z \tau_z - \mu \tau_z + \Delta \sin(k_x) \tau_y + \Delta \sin(k_y) \tau_x$$

It can at best be boundary obstructed.

Edge defect approach

When C_4 is broken down to C_2 we no longer have a phase protected by bulk gap.

Our approach:

- 1. Solve for the edge theory at each *point* on a rounded corner, using knowledge of the low energy properties of the model.
- Show that the boundary properties, as derived from the bulk, lead to a Majorana corner zero mode.

Edge defect approach

When C_4 is broken down to C_2 we no longer have a phase protected by bulk gap.

Our approach:

- 1. Solve for the edge theory at each *point* on a rounded corner, using knowledge of the low energy properties of the model.
- Show that the boundary properties, as derived from the bulk, lead to a Majorana corner zero mode.

$$h(q_{||}, \delta\theta) = \alpha q_{||} s_1 + m \delta\theta s_2$$

▶ Looks like a 1D Dirac equation with a mass domain wall, which we know host a zero mode at the domain wall. Jackiw and Rebbi (1976)

Conclusions

We find low energy criteria that guarantee the existence of the corner modes.

In 2D

- Dirac points in the normal state.
- ▶ A p + ip superconducting order parameter gapping the Dirac points.
- With C_4 symmetry \rightarrow second-order topology
- With C₂ symmetry → boundary-obstructed topology.

Future work

3D Higher-order topological superconductors:

- A natural extension to the Dirac + p + ip project in 2D is to look for higher-order topology in 3D.
- \blacktriangleright Starting from Weyl points in the normal state and adding p+ip order-parameter.

An example of such Hamiltonian:

$$\mathcal{H}(\mathbf{k}) = \left[\gamma_x - 1 + \cos(k_x) + \cos(k_z)\right] \sigma_x \tau_z - \mu \tau_z$$
$$+ \left[\gamma_y - 1 + \cos(k_y) + \cos(k_z)\right] \sigma_z \tau_z + \sin(k_x) \tau_y + \sin(k_y) \tau_x.$$

Despite having a very similar look to the 2D Hamiltonian, it turned out to have a lot of features that deserve a closer look.

Future work

Applications in quantum computing?

- Majorana zero mode can be used to implement a fault-tolerant quantum computer. Kitaev (2003)
- Usual platforms for obtaining the Majorana zero modes are the ends of 1D topological superconductors or on the vortices of a 2D topological superconductors.
- ► The method proposed to manipulate these Majorana modes are not easily implemented experimentally.
- The Majorana zero modes at the corners of a higher-order topological superconductor offers a new platform, for which we can try and look for easier ways of manipulating the Majorana modes.

- R. Jackiw and C. Rebbi. Solitons with fermion number $\frac{1}{2}$. *Physical Review D*, 13(12):3398–3409, Jun 1976. ISSN 0556-2821. doi: 10.1103/PhysRevD.13.3398.
- Eslam Khalaf, Wladimir A. Benalcazar, Taylor L. Hughes, and Raquel Queiroz. Boundary-obstructed topological phases. arXiv:1908.00011 [cond-mat], Jul 2019. URL http://arxiv.org/abs/1908.00011. arXiv: 1908.00011.
- A.Yu. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, Jan 2003. ISSN 00034916. doi: 10.1016/S0003-4916(02)00018-0.
- Jeffrey C. Y. Teo and C. L. Kane. Topological defects and gapless modes in insulators and superconductors. *Physical Review B*, 82 (11):115120, Sep 2010. ISSN 1098-0121, 1550-235X. doi: 10.1103/PhysRevB.82.115120.
- Yuxuan Wang, Mao Lin, and Taylor L. Hughes. Weak-pairing higher order topological superconductors. *Physical Review B*, 98 (16):165144, Oct 2018. ISSN 2469-9950, 2469-9969. doi: 10.1103/PhysRevB.98.165144.