Motion Planning II - Configuration Space

Last time...

We learned about how to plan paths for a point

- Real-world robots are complex, often articulated bodies
- What if we invented a space where the robots could be treated as points?

Outline

- Topology basics
- Configuration Space
- Obstacles
- Metrics

Basic Sets

- Open set A set with no boundary. Every point in the set has an open neighborhood which is also in the set.
 - In \mathbb{R}^n , this open neighborhood is called an open ball:

$$B(x, \rho) = \{x' \in \mathbb{R}^n \mid ||x' - x|| < \rho\}$$

• The set $X \subseteq \mathbb{R}^n$ is open if

$$\exists B(x, \rho) \subseteq X, \rho > 0 \quad \forall x \in X$$

- Example: $X = \{x \in \mathbb{R} \mid 1 < x < 5\}$
- Closed Set A set with a boundary. A closed set is the complement of some open set and vice versa.
 - Example: $X = \{x \in R \mid 1 \le x \le 5\}$
 - What is the complement of this set?

Topological Spaces

- A set X is called a topological space if there is a collection of open subsets of X for which the following hold:
 - 1. The union of any number of open sets is an open set.
 - 2. The intersection of a finite number of open sets is an open set.
 - 3. Both X and \emptyset are open sets.
- Two topological spaces X and Y are homeomorphic if there is a bijective (one-to-one and onto) function $f: X \to Y$ and both f and f^{-1} are continuous.
 - Intuitively, you can think of f as a continuous function that warps X into Y
 - f is called a homeomorphism

Homeomorphisms

- Homeomorphisms can not add or remove holes!
- Which are homeomorphic?

Common Topological Spaces

• The real numbers: R^1 Symbolic name for the space

- The unit circle: $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$
 - This is NOT the same as a disc: $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$

Cartesian Product

• Can make more complex spaces using the Cartesian product: Every $x \in X$, $y \in Y$ makes an $(x, y) \in X \times Y$. For example:

$$R^1 \times R^1 = R^2$$

- BE CAREFUL: Results of Cartesian product are not always obvious. This is NOT the same thing as adding up exponents in multiplication.
 - Example: What is $S^1 \times S^1$?
 - Hint: try to visualize the shape
 - This creates a 2D Taurus, $S^1 \times S^1 = T^2$
 - S^2 is a sphere
- Also, $S^1 = T^1$ but $S^{n>1} \neq T^{n>1}$

More complex spaces

Can create more complex topological spaces by Cartesian products and "gluing" boundaries:

Configuration Space

Definitions

- The configuration of a moving object is a specification of the position of every point on the object.
 - A configuration q is usually expressed as a vector of the Degrees of Freedom (DOF) of the robot

$$q = (q_1, q_2, ..., q_n)$$

- The **configuration space** *C* is the set of all possible configurations. Usually this is a topological space.
 - A configuration q is a point in C

Degrees of Freedom

What is the topology of each of these (assume no joint limits)?

Configuration Space

 The dimension of a configuration space is the minimum number of DOF needed to specify the configuration of the object completely.

Example: A Rigid 2D Mobile Robot

- 3-parameter specification: $q = (x, y, \theta)$ with $\theta \in [0, 2\pi)$.
 - 3D configuration space
 - Topology: $SE(2) = R^2 \times S^1$

Example: Rigid Robot in 3D workspace

- q = (position, rotation) = (x, y, z, ???)
- 3 representations for rotation
 - Euler Angles
 - Transform Matrices
 - Quaternions
- No matter the representation, rotation in 3D is 3 DOF
- C-space dimension: 6
- Topology: $SE(3) = R^3 \times SO(3)$

Configuration Space for Articulated Objects

- An articulated object is a set of rigid bodies connected by joints.
- For articulated robots (arms, humanoids, etc.)
 the DOF are usually the joints of the robot

- Example: For a single revolute joint with no joint limits, what is the topology?
- What is the topology if it does have joint limits?

 $q = (q_1, q_2, ..., q_n)$ Number of DOF = n

Paths and Trajectories

• A path in C is a continuous curve connecting two configurations $q_{\it start}$ and $q_{\it goal}$:

$$\tau: s \in [0,1] \to \tau(s) \in C$$

such that
$$\tau(0) = q_{start}$$
 and $\tau(1) = q_{goal}$.

A trajectory is a path parameterized by time:

$$\tau: t \in [0,T] \to \tau(t) \in C$$

Obstacles in C-space

 A configuration q is collision-free, or free, if the robot placed at q does not intersect any obstacles in the workspace.

• The free space C_{free} is a subset of C that contains all free configurations.

 A configuration space obstacle C_{obs} is a subset of C that contains all configurations where the robot collides with workspace obstacles or with itself (self-collision).

How do we compute C_{obs} ?

- Start with simple case: 2D translating robot
- Input:
 - Polygonal robot
 - Polygonal obstacle in environment
- Output:
 - Configuration space polygonal obstacle

Example: Disc in 2D workspace

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

$$A \oplus B = \{a+b \mid a \in A, b \in B\}$$

Configuration Space Obstacle

C-obstacle is
$$O \oplus \neg \mathcal{R}$$

This means use $-(r \in R)$ instead of $r \in R$

Obstacle

0

Robot

 \mathcal{R}

C-obstacle

 $O \oplus \mathcal{R}$

Like a convolution of the robot and obstacle

• Can Minkowski Sums be computed in higher dimensions efficiently?

Example: 2D Robot with Rotation

Configuration Space for Articulated Robots

How to compute C_{obs} for articulated bodies?

Break

Homotopic paths

Two paths τ and τ ' with the same endpoints are **homotopic** if one can be continuously deformed into the other through the free space F:

$$h:[0,1]\times[0,1]\to F$$

with $h(s,0) = \tau(s)$ and $h(s,1) = \tau'(s)$.

A homotopic class of paths contains all paths that are homotopic to one another.

Example

- \square τ_1 and τ_2 are homotopic
- \square τ_1 and τ_3 are not homotopic
- There are infinity homotopy classes here. Why?

Connectedness of C-Space

C is connected if every two configurations can be connected by a path.

- □ C is simply-connected if any two paths connecting the same endpoints are homotopic. Examples: R² or R³
- Otherwise C is multiply-connected.
 - Can you think of an example?

Metrics in configuration space

□ A metric or distance function d in a configuration space C is a function

$$d:(q,q')\in C^2\to d(q,q')\geq 0$$

such that

- \bullet d(q, q') = 0 if and only if q = q',
- d(q, q') = d(q', q),
- $d(q,q') \le d(q,q'') + d(q'',q')$.

Example

- Consider robot A and a point a on A
- $\ \square \ a(q)$: position of a in the workspace when A is at configuration q

□ Example distance metric: d in C is defined by $d(q, q') = \max_{a \in A} ||a(q) - a(q')||$

where ||a - b|| denotes the Euclidean distance between points a and b in the workspace.

Examples in $R^2 \times S^1$

- □ Consider R² x S¹ (the C-space of a mobile robot)
 - $q = (x, y, \theta), q' = (x', y', \theta') \text{ with } \theta, \theta' \in [0, 2\pi)$
 - $\alpha = \min \{ |\theta \theta'|, 2\pi |\theta \theta'| \}$

$$d(q,q') = \max_{a \in A} || a(q) - a(q') ||$$

$$= \max_{a \in A} \sqrt{(x - x')^2 + (y - y')^2 + \alpha r_a}$$

$$= \sqrt{(x - x')^2 + (y - y')^2 + \alpha \max_{a \in A} r_a}$$

$$= \sqrt{(x - x')^2 + (y - y')^2 + \alpha r_{\text{max}}}$$

Distance Metric for Articulated Bodies

Let's try to think of one

Discussion

 Do we need to have an explicit representation of C-obstacles to do path planning?

- Do we need a specialized distance metric in C-space to do path planning?
 - Can we use Euclidian distance in C-space?

Homework

- Read LaValle Ch. 5.5 5.6
- Read <u>Probability Review</u>
- HW 2 due on Wednesday!