Doc. version :
 0.0

 Total pages :
 34

 Date :
 2015/07/30

CUSTOMER APPROVAL SHEET

C	Company Name	
	MODEL	H139BLN01.0
	CUSTOMER	Title:
	APPROVED	Name :
	APPROVAL FOR SPECIFICAT	FIONS ONLY (Spec. Ver) FIONS AND ES SAMPLE (Spec. Ver) FIONS AND CS SAMPLE (Spec. Ver)
	skvpe:	panoxweslev

0.0

2/34 Page:

Product Specification 1.39" AMOLED

MODEL NAME: H139BLN01.0

Panox Display

AUO Product P/N: 95.01H73.000 sales@panoxdisplay.com skype: panoxwesley

- < ◆ >Preliminary Specification
- >Final Specification

Note: The content of this specification is subject to change.

© 2015 AU Optronics All Rights Reserved, Do Not Copy.

0.0

Page: 3/34

Record of Revision

Version	Revise Date	Page	Content
0.0	May 26, 2015		First Draft
			F 12 0.10
		Pair	ON Dignilla
		$O_{II,II}$	
		Sai	parioxuispiay.com
		SKy	De: panoxwesley

0.0

Page: 4/34

Contents

A. General Specification	5
1. Physical Specifications	5
2. FPC Pin Assignment	5
3. Absolute Maximum Ratings	7
B. DC Characteristics	8
1. Display DC Characteristics	8
2. Display Current Consumption	9
C. AC Characteristics	10
1. MIPI Interface Characteristics	10
2. Display RESET Timing Characteristics	12
' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	14
D. Power IC Application Circuit	17
D. Power IC Application Circuit E. Display Scan Direction & Coordinate F. Optical Specifications G. Reliability Test Items	17
F. Optical Specifications	23
G. Reliability Test Items	31
H. Packing	32
I. Outline Demension	33
J. Precaution	34
Sales Walloxuisplay.	COIII
Skype, parioxwesiey	

Page:

0.0

5/34

A. General Specification

1. Physical Specifications

No.	Item	Specification	Unit	Remark
1	Display Size	1.4	Inch	
2	ITO Technology Type	LTPS		
3	Display Type	AMOLED		
4	Resolution	400RGB*400		
5	Color Depth	16.7M		12 D.
6	Viewing Direction	All direction		Note 1
7	Contrast Ratio	10000:1		Min
8	Luminance	350cd/m2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	cd/m ²	Тур
9	Panel Size	40.5(H)+38.6(W)+0.7(E)	mm	Note 1
10	Panel Maximum Thickness	0.80	mm	Note 1
11	Panel Active Area	\$35.4	mm	Diameter
12	Pixel Size	88.5*88.5	μm	
13	Pixel Pitch	88.5	μm	
14	Pixel Aspect Ratio	1		
15	Driver IC 2 9	Recommended by supplier	lav	com
16	Driver IC RAM Size	Full RAM		
17	Light Source	É: Daged XWes	lev	
18	Interface	MIPI		
19	Operation Temperature	-20~70	degC	
20	Storage Temperature	-30~80	degC	
21	Weight	2.15	Gram	±15%
22	Pixel Per inch	286	PPI	
23	Environmental Protection	RoHS & REACH must be executed		
	Requirement			
24	Connection method	MOLEX : 5042482410		Part No.
25	Gamma Correction	R/G/B separation		
26	Polarizer Type	Hard coat treating	3H	
		Glare		
27	Panel gate scan direction	W/O		Note 2
28	Warpage	Front side warpage value < 0.1mm		Note 3
		Rear side warpage value(w/o		
		foam) < 0.1mm		

Note1:Please Refer to the mechanical drawing.

Note2:Some GOP panel can not support gate bidirectional scanning, or even some gate bidirectional scanning GOP panel are abnormal working when the gate scanning direction set to be reversed.

Page: 6/34

0.0

Note3: Warpage inspected by 3D coordinate scanning/ measuring system to analyze surface warpage and precision gauge is applied for module thickness measurement. OLED is placed on flat stage to get 4 points warpage measured by 3D scanning system or gauge.(4 points position is defined same as Uniformity in note 9) Test Method: Nikon VMR-3020- optical or other useful method.

2. FPC Pin Assignment

Main FPC Pin assignment — AMOLED Panel Input/Output Signal Interfac

FPCA recommended connector: 504248-2410, Molex Main board recommended connector: 504208-2410, Molex

Pin No.	Symbol	1/0	Function	Remark
1	GND	Power	Ground	
2	XRES	1	Device reset signal (0 : enable ; 1 Disable)	
3	DSI_DON	1/0	MIPI negative data signal	
4	SWIRE	0	SWIRE signal for PWR IC control	
5	DSI_DOP	1/0	MIPI positive data signal	
6	NC	-D	Floating	
7	GND	Power	Ground	
8	TE	sal	Vsync (vertical sync) signal output from panel to avoid tearing effect	n
9	DSI_CLKN	1961	MIPI negative clock signal	
10	GND	Power	Ground	
11	DSI_CLKP	1	MIPI positive clock signal	
12	GND	Power	Ground	
13	GND	Power	Ground	
14	GND	Power	Ground	
15	VDDIO	Power	Power supply for interface system excep MIPI interface	
16	VCI	Power	Driver analog power supply	
17	GND	Power	Ground	
18	GND	Power	Ground	
19	ELVSS	Power	AMOLED negative power supply	
20	ELVDD	Power	AMOLED positive power supply	
21	ELVSS	Power	AMOLED negative power supply	
22	ELVDD	Power	AMOLED positive power supply	
23	ELVSS	Power	AMOLED negative power supply	
24	ELVDD	Power	AMOLED positive power supply	

Note: I = input; O = output; P = Power; I/O = input / Output; NC= No Connection

0.0

Page: 7/34

3. Absolute Maximum Ratings

Item	Symbol	Min.	Max.	Unit	Remark
Digital Power Supply	VDDIO	-0.3	5.5	V	
Analog Power Supply	VCI	-0.3	5.5	V	
ELVDD power Supply	ELVDD	-	5.0	٧	
ELVSS power Supply	ELVSS	-5.0	-	V	

Note: If the module exceeds the absolute maximum ratings, it may be damaged permanently.

0.0

Page: 8/34

B. DC Characteristics

1. Display DC Characteristics

Item		Symbol	Min.	Тур.	Max.	Unit	Remark
Digital Power Supply		VDDIO	1.65	1.8	1.95	٧	Note1
Analog Power S	upply	VCI	2.7	2.8	2.9	٧	Note1
ELVDD power S	upply	ELVDD	4.55	4.60	4.65	V	Note1
ELVSS power Supply		ELVSS	-2.35	-2.40	-2:45		Note1
Input Signal	H Level	V _{IH}	0.8* VDDIO	1 - 0 1 - 1	/ADDIO	V	Note1
Voltage	L Level	V_{IL}	000	<u>)) </u>	0.2* VDDIO	V	
Output Signal	H Level	VoH S	VDDIO		VDDIO	٧	Note1
Voltage	L Level	V _{OL}		<u> </u>	0.2* VDDIO	V	Note1

Note 1: The operation is guaranteed under the recommended operating conditions only. The operation is not guaranteed if a quick voltage change occurs during the operation. To prevent the noise, a bypass capacitor must be inserted into the line closed to the power pin.

Page: 9/34

0.0

2. Display Current Consumption

Power Supply: IOVCC=1.8V VCI=2.8V

Frame Frequency: Fframe >=60HZ @ 25degC, Brightness 350 nits

Display Mode	Item	Symbol	Sp	ec
			Тур	Max
			Current(mA)	Current(mA)
100% Pixel On	Current of IOVDD	ldd	2.2	25
(Normal mode)	Current of VCI	lci	4.2	4.6
	Current of ELVSS	less	21	23.4
50% Pixel On	Current of IOVDD	ldd	7 1 22	2.5
(Normal mode)	Current of VCI	lci	4.4	4.9
	Current of ELVSS	less	10.5	11.7
All Pixel Off	Current of IOVDD	Idd	2.2	2.5
(Normal mode)	Current of VCI	lci	4.6	5.3
	Current of ELV\$S	less	0.0	0.0
All Pixel Off	Current of IOVDD	taa		0.0
(Standby mode)	Current of VCI	(ci.)\\	avdičnlav	<2uA
	Current of ELVSS	less	oxuispia)	/ • CO _{0.0} I

Power Supply: IOVCC=1.8V VCI=2.8V Danoxwesley

Frame Frequency: Fframe =15HZ @ 25degC, Brightness 20 nits

Display Mode	Item	Symbol	Spec	
			Тур	Max
			Current(mA)	Current(mA)
10% Pixel On	Current of IOVDD	ldd	1.2	1.3
(Idle mode)	Current of VCI	lci	2.4	2.7
	Current of ELVSS	less	0	0

Page: 10/34

T_{D-TERM-EN}

0.0

C. AC Characteristics

1. MIPI Interface Characteristics

HS Data Transmission Burst

Turnaround Procedure

0.0

11/34 Page:

Bus turnaround (BAT) from MPU to display module timing

Timing Parameters

Symbol	Description	Min	Тур	Max	Unit
T _{CLK-POST}	Time that the transmitter continues to send	60ns + 52*W	υ <u>`</u>		ns
	HS clock after the last associated Data Lane				
	has transitioned to LP Mode. Interval is				
	defined as the period from the end of T_{HS} .		[[]] []		
	TRAIL to the beginning of Tolk TRAIL .				
T _{CLK-TRAIL}	Time that the transmitter drives the HS-0	60			ns
	state after the last payload clock bit of a HS				
7	transmission burst.	xdisp	lav.	com	
T _{HS-EXIT}	Time that the transmitter drives LP-11	300			ns
	following a HS burst.	xwes	ey		
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable	Time for Dn to		38	ns
	the HS line termination, starting from the	reach V _{TERM-}			
	time point when Dn crosses V _{IL,MAX} .	EN			
T _{CLK-PREPARE}	Time that the transmitter drives the Clock	38		95	ns
	Lane LP-00 Line state immediately before				
	the HS-0 Line state starting the HS				
	transmission.				
$T_{\text{CLK-PRE}}$	Time that the HS clock shall be driven by the	8			UI
	transmitter prior to any associated Data				
	Lane beginning the transition from LP to HS				
	mode.				
T _{CLK-PREPARE}	T _{CLK-PREPARE} + time that the transmitter drives	300			ns
+ T _{CLK-ZERO}	the HS-0 state prior to starting the Clock.				
$T_{D-TERM-EN}$	Time for the Data Lane receiver to enable	Time for Dn to		35 ns	
	the HS line termination, starting from the	Reach V _{TERM-}		+4*UI	
	time point when Dn crosses V _{IL,MAX} .	EN			
T _{HS-PREPARE}	Time that the transmitter drives the Data	40ns + 4*UI		85 ns +	ns
	Lane LP-00 Line state immediately before			6*UI	

0.0

Page: 12/34

			I	I	l
	the HS-0 Line state starting the HS				
	transmission				
T _{HS-PREPARE}	T _{HS-PREPARE} + time that the transmitter drives	145ns + 10*UI			ns
+ T _{HS-ZERO}	the HS-0 state prior to transmitting the Sync				
· · HS-ZENO	sequence.				
	·	60ns + 4*UI			no
T _{HS-TRAIL}	Time that the transmitter drives the flipped	60/1S + 4 UI			ns
	differential state after last payload data bit of				
	a HS transmission burst				
$T_{LPX(M)}$	Transmitted length of any Low-Power state	50		150	ns
	period of MCU to display module	1	ω	}	
T _{TA-SURE(M)}	Time that the display module waits after the	T _{LPX(M)}		2*T _{LPX(M)}	ns
	LP-10 state before transmitting the Bridge				
	state (LP-00) during a Link Turnaround.		ı n		
T _{LPX(D)}	Transmitted length of any Low-Power state	50		150	ns
	period of display module to MCU		1100		
$T_{TA-GET(D)}$	Time that the display module drives the		5*T _{LPX(D)}		ns
	Bridge state (LP-00) after accepting control	J y			
	during a Link Turnaround.	ydian			
T _{TA-GO(D)\\}	Time that the display module drives the	yxui5p	4*T _{LPX(D)}		ns
	Bridge state (LP-00) before releasing control	VWOC	OV		
	during a Link Turnaround.	VMC2	C y		
T _{TA-SURE(D)}	Time that the MPU waits after the LP-10	$T_{LPX(D)}$		2*T _{LPX(D)}	ns
	state before transmitting the Bridge state				
	(LP-00) during a Link Turnaround.				

2. Display RESET Timing Characteristics

Reset input timing

Timing Parameters

Symbol	Parameter	Related Pins	MIN	TYP	MAX	Note	Unit
t _{RESW}	*1) Reset low pulse width	RESX	10	-	-	-	μs
t _{REST}		-	-	-	5	When reset applied during Sleep in mode	ms
	*2) Reset complete time	-		-	120	When reset applied during Sleep out mode	ms

0.0

Page: 13/34

Note 1. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below.

RESX Pulse	Action
Shorter than 5µs	Invalid Reset
Longer than 15μs	Valid Reset
Between 5μs and 15μs	Reset Initialigation Precedure

- Note 2. During the resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode) and then return to Default condition for H.W. reset.
- Note 3. During Reset Complete Time, data in OTP will be latched to internal register during this period.

 This loading is done every time when there is H/W reset complete time (tREST) within 5ms after a rising edge of RESX.
- Note 4. Spike Rejection also applies during a valid reset pulse as shown below:

Note 5. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

TE Timing Characteristics

Mode 1, the tearing effect output signal consist of V-sync information only:

tvdh = The display is not updated from the frame memory

tvdl = The display is updated from the frame memory

MIPI Initial CMD Flow

0.0

Page: 14/34

Operating Sequence

Display Power on/off Sequence Power on sequence

Power On sequence

Power off sequence

Power Off sequence

0.0

Page: 15/34

Display Initial Setting

				MIPI	Add	dress		
Step	Instruction/Parameters	Delay time	R/W	Data Type	MIPI	Others	Data hex.	Description
1	Turn on V _{CI}							VCI=2.8V
2	Turn on VDDIO							VDDIO=1.8V
3	Delay	no limit						
4	REST pin low	20us						
5	REST pin high					\bigcap_{n}^{α}		
6	Delay	5 ms						
7			W	0x15	FE	FE00	07	
8		_	0 W	0x15	07	07A0	4F	
9		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0x15	FE	FE00	∫∫ 0A	
10		101	Ø W	0x15	10	1CD0	1B	
11	Pati		W	0x15	FE	FE00	00	
12				0x15	35	3500	00	
13	Sleep out Sa		W	0x05	X (1)	1100	00/	com
14	Turn on peripheral packet		/	0x32				Video Turn On
15	Delay SKV	300 ms	pa	nox	(W	esi	ey	
16	Display on		w	0x05	29	2900	00	

Recommended Power off Mode Sequence

				MIPI	Add	dress	Data	
Step	Instruction/Parameters	Delay	R/W	Data	MIDI	Oth a wa		Description
		time		Туре	MIPI	Others	hex.	
1	Display Off		W	0x05	28	2800	00	
2	Sleep in		W	0x05	10	1000	00	
3	delay	120ms						
4	Power off							

0.0

Page: 16/34

Idle mode Flow

(1) Normal to Idle

	Recommended Idle Initial Sequence										
		Delay		MIPI	Add	dress	Data				
Step	Instruction/Parameters	time	R/W	Data Type	MIPI	Others	hex.	Description			
1	Enter Idle mode		W	0x05	39	3900	00	Idle mode 15HZ			
(2) Idl	e to Normal							L SIGNA			
		Recomme	anded D	ower on	Initial 9	Seguence					

(2) Idle to Normal

		Recomme	ended Po	ower on	Initial S	Sequence	Э	
		Delay		MIPI	Add	dress	Data	
Step	Instruction/Parameters	time	R/W	Data	MIPI	Others	hex.	Description
				Туре				
1	Idle mode Off	(~~ \\	0x05	38	3800	<u>)</u> 00	Normal mode 60HZ
Brigh	itness Control	Jen,	Die Julie		SE			

Brightness control		JN											
	Recommended Brightness Control												
	Delay	sa	MIPI	Add	dress	Data	a۱	/.com					
Instruction/Parameters	time	R/W	Data	MIPI	Others			Description					
	skvr	e.	Type	no	XM			1					
Brightness control	יועיים	w	0x05	51	5100	Value	7	Value form 0~255(FF)					

Page: 17/34

0.0

D. Power IC Application Circuit

E. Display Scan Direction & Coordinate

Panel Start Point = (0,0)

Panel End Point = (399, 399)

Each Line = (Start x, y) $\sim \sim$ (End x, y)

0.0

Page: 18/34

Coordinate

	Coordinate													
Υ	start_X	end_X	Total	Υ	start_X	end_X	Total	Υ	start_X	end_X	Total			
0	187	212	26	30	94	305	212	60	57	342	286			
1	176	223	48	31	92	307	216	61	56	343	288			
2	169	230	62	32	91	308	218	62	55	344	290			
3	163	236	74	33	89	310	222	63	54	345	292			
4	158	241	84	34	88	311	224	64	53	346	294			
5	154	245	92	35	86	313	228	65	52	347	296			
6	150	249	100	36	85	314	230	66	51	348	298			
7	146	253	108	37	84	315	232	67	50 //	349	300			
8	143	256	114	38	82	317	236	68	49	350	302			
9	139	260	122	39	81	318	238	69	49	350	302			
10	136	263	128	40	79	320	242	70	48	351	304			
11	133	266	134	41	78	321	244	71	47	352	306			
12	131	268	138	42	77	322	246	72	46	353	308			
13	128	271	144	43	76	323	248	73	45	354	310			
14	125	274	150	44	74	325	252	74	44	355	312			
15	123	276	154	45	73	326	254	75	44	355	312			
16	121	278	158	46	72	327	256	76	43	356	314			
17	118	281	164	My The	D [™] 71	328	258	77	42	357	316			
18	116	283	168	48	70	329	260	S 78	41	358	318			
19	114	285	172	49	68	331	264	79	40	359	320			
20	112	287	176	50	67	332	266	80	40	359	320			
21	110	289	180	51	66	333	268	81	39	360	322			
22	108	291	184	52	65	334	270	82	38	361	324			
23	106	293	188	53	64	335	272	83	38	361	324			
24	104	295	192	54	63	336	274	84	37	362	326			
25	102	297	196	55	62	337	276	85	36	363	328			
26	101	298	198	56	61	338	278	86	35	364	330			
27	99	300	202	57	60	339	280	87	35	364	330			
28	97	302	206	58	59	340	282	88	34	365	332			
29	96	303	208	59	58	341	284	89	33	366	334			

Page: 19/34

0.0

Υ	start_X	end_X	Total	Υ	start_X	end_X	Total	Υ	start_X	end_X	Total
90	33	366	334	120	17	382	366	150	6	393	388
91	32	367	336	121	16	383	368	151	6	393	388
92	31	368	338	122	16	383	368	152	6	393	388
93	31	368	338	123	15	384	370	153	6	393	388
94	30	369	340	124	15	384	370	154	5	394	390
95	30	369	340	125	14	385	372	155	5	394	390
96	29	370	342	126	14	385	372	156	5	394	390
97	28	371	344	127	14	385	372	157	5	394	390
98	28	371	344	128	13	386	374	158	4	395	392
99	27	372	346	129	13	386	374	159	4	395	392
100	27	372	346	130	13	386	374	160	4	395	392
101	26	373	348	131	12	(387)	376	161	4	395	392
102	25	374	350	132	12	387	376	162	4	395	392
103	25	374	350	138	11	388	378	163	3	396	394
104	24	375	352	134	Dis	388	378	164	3	396	394
105	24	375	352	135		388	378	165	3	396	394
106	23	376	354	136	102	389	380	166	V 3 C	396	394
107	23	376	354	(J37)	10	389	380	167	3	396	394
108	22	377	356	138	10	389	380	168	3	396	394
109	22	377	356	139	9	390	382	169	2	397	396
110	21	378	358	140	9	390	382	170	2	397	396
111	21	378	358	141	9	390	382	171	2	397	396
112	20	379	360	142	9	390	382	172	2	397	396
113	20	379	360	143	8	391	384	173	2	397	396
114	19	380	362	144	8	391	384	174	2	397	396
115	19	380	362	145	8	391	384	175	2	397	396
116	18	381	364	146	7	392	386	176	1	398	398
117	18	381	364	147	7	392	386	177	1	398	398
118	17	382	366	148	7	392	386	178	1	398	398
119	17	382	366	149	7	392	386	179	1	398	398

Page: 20/34

0.0

Υ	start_X	end_X	Total	Υ	start_X	end_X	Total	Υ	start_X	end_X	Total
180	1	398	398	210	0	399	400	240	4	395	392
181	1	398	398	211	0	399	400	241	4	395	392
182	1	398	398	212	0	399	400	242	5	394	390
183	1	398	398	213	1	398	398	243	5	394	390
184	1	398	398	214	1	398	398	244	5	394	390
185	1	398	398	215	1	398	398	245	5	394	390
186	1	398	398	216	1	398	398	246	600	393	388
187	0	399	400	217	1	398	398	247	6	393	388
188	0	399	400	218	1	398	398	248	<u>)</u> 6	393	388
189	0	399	400	219	1	398	398	249	6	393	388
190	0	399	400	220	1	398	398	250	7	392	386
191	0	399	400	221	1	398	398	251	7	392	386
192	0	399	400	222		398	398	252	7	392	386
193	0	399	400	223	1	398	398	253	7	392	386
194	0	399	400	224	2	397	396	254	8	391	384
195	0	399	400	225	2	397	396	255	8	391	384
196		399	400	226	1/2/1	397	396	256	\/8 C	391	384
197	0	399	400	227	2	397	396	257	9	390	382
198		399	400	228	133	397	396	258	V 9	390	382
199	0	399	400	229	2	397	396	259	9	390	382
200	0	399	400	230	2	397	396	260	9	390	382
201	0	399	400	231	3	396	394	261	10	389	380
202	0	399	400	232	3	396	394	262	10	389	380
203	0	399	400	233	3	396	394	263	10	389	380
204	0	399	400	234	3	396	394	264	11	388	378
205	0	399	400	235	3	396	394	265	11	388	378
206	0	399	400	236	3	396	394	266	11	388	378
207	0	399	400	237	4	395	392	267	12	387	376
208	0	399	400	238	4	395	392	268	12	387	376
209	0	399	400	239	4	395	392	269	13	386	374

Page:

21/34

0.0

Υ	start_X	end_X	Total	Y	start_X	end_X	Total	Υ	start_X	end_X	Total
270	13	386	374	300	27	372	346	330	49	350	302
271	13	386	374	301	28	371	344	331	49	350	302
272	14	385	372	302	28	371	344	332	50	349	300
273	14	385	372	303	29	370	342	333	51	348	298
274	14	385	372	304	30	369	340	334	52	347	296
275	15	384	370	305	30	369	340	335	53	346	294
276	15	384	370	306	31	368	338	336	54	345	292
277	16	383	368	307	31	368	338	337	55	344	290
278	16	383	368	308	32	367	336	338	56	343	288
279	17	382	366	309	33	366	334	339	57	342	286
280	17	382	366	310	33	366	334	340	58	341	284
281	17	382	366	311	34	365	332	341	√ 59	340	282
282	18	381	364	312	35	364	330	342	60	339	280
283	18	381	364	373	35	364	330	343	61	338	278
284	19	380	362	314	36	363	328	344	62	337	276
285	19	380	363	315	37	362	326	345	63	336	274
286	20	379	360	316	38	361	324	346	64	335	272
287	20	379	360	317	38	361	324	347	65	334	270
288	21	378	358	318	39	360	322	348	66	333	268
289	21	378	358	319	40	359	320	349	67	332	266
290	22	377	356	320	40	359	320	350	68	331	264
291	22	377	356	321	41	358	318	351	70	329	260
292	23	376	354	322	42	357	316	352	71	328	258
293	23	376	354	323	43	356	314	353	72	327	256
294	24	375	352	324	44	355	312	354	73	326	254
295	24	375	352	325	44	355	312	355	74	325	252
296	25	374	350	326	45	354	310	356	76	323	248
297	25	374	350	327	46	353	308	357	77	322	246
298	26	373	348	328	47	352	306	358	78	321	244
299	27	372	346	329	48	351	304	359	79	320	242

0.0

Page: 22/34

Υ	start_X	end_X	Total	Υ	start_X	end_X	Total	Υ	start_X	end_X	Total
360	81	318	238	390	139	260	122				
361	82	317	236	391	143	256	114				
362	84	315	232	392	146	253	108				
363	85	314	230	393	150	249	100				
364	86	313	228	394	154	245	92				
365	88	311	224	395	158	241	84			20	1
366	89	310	222	396	163	236	74				
367	91	308	218	397	169	230	62			O^3	
368	92	307	216	398	176	223	48				
369	94	305	212	399	187	212	26				
370	96	303	208								
371	97	302	206			4/10)11			\setminus		
372	99	300	202	41.5							
373	101	298	198		MR110	Λ.					
374	102	297	196	OV	Die	nla	1/				
375	104	295	192				y				
376	106	293	188	s(a)) na	nox	<i>c</i> dis	sola	V_C	om	
377	108	291	184		7			P . O	.,		
378	110	289	180	pe:	pa	nox	(WE	sle	V		
379	112	287	176						<i>y</i>		
380	114	285	172								
381	116	283	168								
382	118	281	164								
383	121	278	158								
384	123	276	154								
385	125	274	150								
386	128	271	144								
387	131	268	138								
388	133	266	134								
389	136	263	128								

23/34 Page:

0.0

F. Optical Specifications

Test condition: IOVCC=1.8V, VCI=2.8V, Ta=25℃

la.		Cumhal	Condition		AUO Spe	eC .	l lmia	Note
Ite	m	Symbol	Condition	Min	Тур	Max	Unit	Note
lumina	ance	Вр	θ=0°	300	350		cd/m2	CPK>1.33 Note1
Unifor	mity	∆Вр		85			% 6	Note2
	Left	θ_{L}		80			EL 160	
Viewing	Right	θ_{R}	0::>10	80		0 10		Nata O
Angle	Тор	Ψτ	Cr≥10	80	1	10 JU	∖deg	Note 3
	Bottom	Ψв		80	~~-\\	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Contras	t Ratio	Cr	θ=0° =0°	10000		\\\	n -	Note 4
		Tr	120		2	3	ms	
Respons	e Time	Tf		1000 c	2	3/1/1/2	ms	Note 5
		Tgray			12	9 3	ms	
	Red ((Ipx	WX L	0.645	0.675	0.705		
	Red (a Grey	0.295	0.325	0.355		
Color \	Croan	Sal		0.186	0.236	0.286	ly.C	
Coordina	Green	У		0.661	0.711	0.761	\ /	Note C
te of	Dhio	X	θ=0° =0°	0.09	0.13	0.17	y -	Note 6
CIE1931	Blue	у		0.025	0.065	0.105		
	White	Х		0.28	0.3	0.32		
	vvriite	у		0.29	0.31	0.33		
NTSC	Ratio	NTSC	CIE1931		100		%	Note 7
Color tem	perature	CT			7500		K	
Flick	ker	amount	ı	-		-30	dB	Note 8
Gam	ıma	-	-	1.9	2.2	2.5		Note 9
Cross	stalk	△CT	ı	-		1.1		<u>Note</u> 10
Reflect	tance	Rf	@550nm		TBD		%	<u>Note 1</u> 1
Polariz direction polar	of front	PdF		ı	135		deg	<u>Note 1</u> 2
			θL=30°		35	40	%	
Lumin			θR=30°		35	40	%	.
decrease			ψT=30°		35	40	%	<u>Note</u> 13
full w	rnite		ψB=30°		35	40	%	
Color	shift		θL=30°		3	4	JNCD	Note 14
			θR=30°		3	4	JNCD	_

Version 0.0

Page: 24/34

		ψT=30°		3	4	JNCD	
		ψB=30°		3	4	JNCD	
	0.95*(TY	At					
OLED lifetime	Р	25°C ,with	150			t	Tentative
	brightnes	white color	150	-		hrs	remanve
	s)	pattern					
		With 8*8					
		black-white					
		chess			A 126		
		board	Light off of	or gray disp	olay for 3	1/1/16)^>
Image sticking		test image,			formance		Tentative
image sticking		lighting on	after the t	est, withou		remanve	
		with	sticking.	N ()) // -		
		maximum	1) 1/2 /	<i>]) </i>	7/1	\bigcap	
		luminance	8/11 11		2)		
		for 12H	7110	100			

Note 1: Luminance measurement

The test condition is at 25 and measured on the surface of OLED module.

- The data are measured after OLEDs are lighted on for more than 5 minutes and displays are fully white.

 The brightness is the average value of 5 measured spots. Measurement equipment CS2000 or similar equipments (Field of view:1deg,Distance:50cm)
- · Measuring surroundings: Dark room.
- Measuring temperature: Ta=25^oC.
- Adjust operating voltage to get optimum contrast at the center of the display.
- Measured value at the center point of panel must be after more than 5 minutes while backlight turning on.

Note 2: Uniformity

- The test condition is at 25°C and measured on the surface of display module.
- Measurement equipment: CS2000 or similar equipments.
- The luminance uniformity is calculated by using following formula:
- △Bp = Bp (Min.) / Bp (Max.)×100 (%)

Version 0.0

splay.com

θ_R =90°

Page: 25/34

- Bp (Max.) = Maximum brightness in 5 measured spots
- Bp (Min.) = Minimum brightness in 5 measured spots.

Note 3: The definition of Viewing Angle

 $_{\varphi_{\mathbf{B}}}\text{= 90}\circ$

Refer to the graph below marked by e and Ô

Skype Normal Line $\phi_{B} = 0^{\circ}, \theta = 0^{\circ}$ $\theta_{L} = 90^{\circ} \times 0^{\circ}$ $\theta_{L} = 90^{\circ}$ $\theta_{L} = 90^{\circ}$

Note 4: The definition of Contrast Ratio (Test OLED using CS2000 or similar equipments):

Luminance When OLED is at "White" state

Contrast Ratio(CR)=

Luminance When OLED is at "Black" state

(Contrast Ratio is measured in optimum common electrode voltage)

Note 5: Definition of Response time. (Test OLED using DMS501 or similar equipments):

0.0

Page: 26/34

The output signals of photo detector are measured when the input signals are changed from "black" to "white" (Voltage falling time) and from "white" to "black" (Voltage rising time), respectively. The response time is defined as the time interval between the 10% and 90% of amplitudes. Refer to figure as below.

Response time of gray to gray:

- Measurement equipment: DMS501 or similar equipments.
- Test method :we define 8 grays 10 17, the grays of L0-L7 were defined as:0,36,73, 109, 146, 182, 219, 255. The output signals of photo detector are measured when the input signals are changed from "Lx" to "Ly", x, y= [0, 7]. The response time is defined as the time interval between the 10% and 90% of amplitudes. The result of the test can be noted as below:

	L0	L1	L2	L3	L4	L5	L6	L7
LO								
L1								
L2								
L3								
L4								
L5								
L6								
L7								

Note 6: Color Coordinates of CIE 1931

- The test condition is at 25°C and measured on the surface of display module.
- Measurement equipment: CS2000 or similar equipments.
- The Color Coordinate (CIE 1931) is the measurement of the center of the display shown in below figure.

Note 7: Definition of Color of CIE Coordinate and NTSC Ratio.

Page: 27/34

0.0

$$S = \frac{\text{area of RGB triangle}}{\text{area of NTSC triangle}} \times 100\%$$

Note 8: Flicker

Measurement equipment :CA-210 or similar equipments

Measuring temperature: Ta=25^oC.

Test method: JEITA method

• Test pattern : Refer to below(Test Pattern should be full-fill of display screen)

1 Dot Inversion 2 Dot inversion Line Inversion Frame Inversion

The point should be marked is, for line and frame inversion, the background of Flicker Test Pattern-"gray" are defined as middle gray scale .For example, RGB 24bit "gray" defined as below:

R7																						B1	
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

For Dot inversion, the RGB data for first pixel is (127, 0, 127), the RGB data for the second pixel is (0, 127, 0).

 Frame Frequency Requirement before test: The OLED must be tuned to more than 65HZ before measurement.

Page: 28/34

0.0

- Measurement Point: the center of display active area.
- Conversion of Flicker ratio:

Flicker[dB] = 10xlog[Px/P0]

Where

Px: Maximum power spectrum of AC component after passing through integrator

P0:Power spectrum of DC component after passing through integrator

AC component=b (Refer to below diagram)

DC component=a (Refer to below diagram)

Note 9: gamma curve control

- For gamma curve control, HUAWEI's request as below:
- 1,the whole curve's tolerance must control within +/-0.3, HUAWEI will test the gray scale below:

0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173, 181, 189, 197,206, 214, 222, 230, 239, 247, 255

Note 10: Crosstalk

- There should be no visible cross-talk in normal direction of the display when the two "Cross-talk Test Patterns" below are loaded.
- · Measurement equipment: CS2000 or similar equipments
- The point should be marked is, the background of Cross-talk Test Pattern-"gray " are defined as middle gray scale . For example, RGB 24bit "gray" defined as below:

R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	B7	B6	B5	B4	В3	B2	B1	B0
1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0

△Bpn = Bpn (gray) / Bpn (white)

Which n means the dot No. In the Cross-talk Test Pattern ;

Page: 29/34

0.0

Bpn (gray) means the brightness of the No.n spots in Cross-talk Test Pattern; Bpn (white) means the brightness of the No.n spots in Full white Test Pattern;

- △Bp (Max.) = Maximum value in △Bp1~△Bp4.
- \triangle Bp (Min.) = Minimum value in \triangle Bp1 \sim \triangle Bp4.
- \triangle CT= \triangle Bp (Max.)/ \triangle Bp(Min.).
- △CT must be less than 1.10

Cross-talk Test Pattern

Note 11: Reflectance Ratio

Measurement equipment : X-rite SP64

Measurement parameter : Reflectance Ratio @550nm

Note 12: Polarization Direction Definition

- Viewing direction is normal user viewing direction which is vertical to the display surface
- The polarizer which is closer to viewer is defined as Front Polarizer
- The polarizer which is on the rear side of viewer is defined as Rear Polarizer
- The X axis is defined as parallel line to top&bottom sidelines of the Active Area
- PdF which is marked in blue arrow is polarization degree of Front polarizer
- The polarization degree parameter must be indicated in range of 0deg to 180deg according to above definition

Page: 30/34

0.0

Absorption axis Definition

Note 13: Definition of Luminance decrease ratio

- Refer to the graph of note 9.
- Test pattern : Full White
- e: panoxwesley

splay.com

• The luminance decrease ratio is calculated by using following formula:

 $\label{eq:Luminance test at theta} Luminance test at $\theta_L/\theta_R/\psi_T/\psi_B=30^\circ$ \\ Luminance test at $\theta_L/\theta_R/\psi_T/\psi_B=0^\circ$ \\$

Note14: Color Shift JNCD

- For JNCD measure:
- Fix on one pattern like white pattern,
- On the condition θ=0 F=0°, we can get the color coordinate (u1', v1') and onθL=30° we can get another color coordinate (u2', v2')
- Delta = Square Root((u2' u1')^2 + (v2' v1')^2)
- JNCD stands for "Just Noticeable Color Difference"
- For the (u', v') color space JNCD=0.0040.
- 2JNCD means Delta u'v'<0.0080
- For color shift we need to measure white/red/green/blue pattern.

This Requirement is from our customer and we have test some of our phone display and the result is OK.

0.0

Page: 31/34

G. Reliability Test Items

Category	No.	Test items	Conditions		Remark
	1	High Temp. Operation	Ta= 70°C	240 hrs	Reliability (Environment)
	2	High Temp. Storage	Ta= 80 °C	240 hrs	
Reliability	3	Low Temp. Operation	Ta= -20 °C	240 hrs	
(Environment)	4	Low Temp. Storage	Ta= -30 °C	240 hrs	
	5	High Temp./Humi. Operation	Ta= 60 °C. 90% RH	240 hrs	
	6	Thermal Shock	-40 °C ~80 °C, Dwell for 30 min. 1	00 cycles.	Non-operation

Alse of Unitoly

31

Page: 32/34

0.0

H. Packing

Pallex Display

Sales Manoxdisplay.com

skype: panoxwesley

0.0

33/34

I. Outline Demension

VNO

0.0

Page:

34/34

J. Precaution

Please pay attention to the following items when you use the OLED Modules(Panel):

- 1. Do not twist or bend the module(panel) and prevent the unsuitable external force for display during assembly.
- 2. Adopt measures for good heat radiation. Be sure to use the module(panel) with in the specified temperature.
- 3. Avoid dust or oil mist during assembly.
- 4. Follow the correct power sequence while operating. Do not apply the invalid signal, otherwise, it will cause improper shut down and damage the module(panel).
- 5. Less EMI: it will be more safety and less noise.
- 6. Please operate module(panel) in suitable temperature. The response time & brightness will drift by different temperature.
- 7. Avoid to display the fixed pattern (exclude the white pattern) in a long period, otherwise, it will cause image sticking.
- 8. Please be sure to turn-off the power when connecting or disconnecting the circuit.
- 9. Polarizer scratches easily, please handle it carefully.
- 10. Display surface never likes dirt or stains.
- 11. A dew drop may lead to destruction. Please wipe off any moisture before using module(panel).
- 12. Sudden temperature changes cause condensation, and it will cause polarizer damaged.
- 13. High temperature and humidity may degrade performance. Please do not expose the module(panel) to the direct sunlight and so on.
- 14. Acetic acid or chlorine compounds are not friends with AMOLED display module(panel).
- 15. Static electricity will damage the module(panel), please do not touch the module(panel) without any grounded device.
- 16. Please avoid any static electricity damage (ESD) during producing and operating.
- 17. Do not disassemble and reassemble the module (panel) by self.
- 18. Be careful do not touch the rear side directly.
- 19. No strong vibration or shock. It will cause module(panel) broken.
- 20. Storage the modules (panel) in suitable environment with regular packing.
- 21. Be careful of injury from a broken display module(panel).
- 22. Please avoid the pressure adding to the surface (front or rear side) of modules(panel), because it will cause the display non-uniformity or other function issue.