Multi-Agent Systems

Introduction to Reinforcement Learning:

Part 2: Model-based Prediction and Control

Eric Pauwels (CWI & VU)

December 7, 2023

Reading

• Sutton & Barto: chapters 3 & 4

Outline

Optimal Policy and Bellman Optimality Equations

Taxonomy of RL problems

Model-based Prediction and Control

Optimal value functions

• Value functions define a partial ordering over policies:

$$\pi \succ \pi' \iff v_{\pi}(s) \geq v_{\pi'}(s), \ \forall s \in S$$

 There can be multiple optimal policies but they all share the same optimal state-value function:

$$v^*(s) = \max_{\pi} v_{\pi}(s), \quad \forall s \in S$$

They also share the same optimal action-value function:

$$q^*(s,a) = \max_{\pi} q_{\pi}(s,a), \quad \forall s \in S, a \in A$$

Backup Diagram for Bellman Optimality Equations

Optimize over actions!

Figure 3.5: Backup diagrams for v_* and q_*

Bellman optimality equation in matrix form

$$v^*(s) = \max_{a \in A} \sum_{s'} p(s' \mid s, a) \left[r(s, a, s') + \gamma v^*(s') \right]$$

$$= \max_{a} \left(R(s, a) + \gamma \sum_{s'} \underbrace{p(s' \mid s, a)}_{T_a(s, s')} v^*(s') \right)$$

$$= \max_{a} \left(R(s, a) + \gamma \sum_{s'} T_a(s, s') v^*(s') \right)$$

or in matrix notation:

$$\mathbf{v}^* = \max_{a} (R_a + \gamma T_a \mathbf{v}^*)$$

 q^* versus v^*

$$V^*(s) = \max_a Q^*(s, a)$$

Why optimal value functions are useful

An optimal policy is **greedy** with respect to v^* or q^* :

$$\pi^*(s) \in \arg\max_{a} q^*(s,a) = \arg\max_{a} \Big[\sum_{s'} p(s' \mid a,s) (r(s,a,s') + \gamma v^*(s')) \Big]$$

٠١	معنطيدهاط
4)	ariaworia
1 1	gridworld

2	2.0	24.4	22.0	19.4	17.5
1	9.8	22.0	19.8	17.8	16.0
1	7.8	19.8	17.8	16.0	14.4
1	6.0	17.8	16.0	14.4	13.0
1.	4.4	16.0	14.4	13.0	11.7

b)
$$V^{*}$$

Outline

Optimal Policy and Bellman Optimality Equations

Taxonomy of RL problems

Model-based Prediction and Control

Model-based vs model-free

- Model-based (planning): the MDP = (S, A, P, R, γ) is completely specified;
 - Solve the Bellman (optimality) equations
 - Suffices to focus on state value function v(s);
- Model-free (learning): only direct experience, i.e. sample paths (states, actions and rewards) are given. Put differently, only experience-based information is given!
 - Focus on state-action value function q(s, a)
 - Random search but Bellman equations allow to propagate values!

Taxonomy of RL problems

	Prediction Estimation:	(Optimal) Control Optimisation:
	Given π , what is v ?	What is optimal π^* ?
model-based	Policy evaluation	Policy improvement
(MDP given)	using	(+ Policy evaluation)
	Dyn. Programming (DP)	= Policy iteration
model-free	Monte Carlo (MC)	Q-learning
(MDP unknown)	Temporal Diff ^{ing} (TD)	Generalized
	= "impatient MC"	Policy Iteration
	bootstrapping!	"simultaneous"

Outline

Optimal Policy and Bellman Optimality Equations

Taxonomy of RL problems

Model-based Prediction and Control

Model-based Prediction and Control

1. Dynamic Programming (DP): For completely specified MDP, solve

$$\mathbf{v}^* = \max_{a} (R_a + \gamma T_a \mathbf{v}^*)$$

- 2. Policy iteration
 - **Policy evaluation:** given a policy π compute value functions $v_{\pi}(s)$ and $q_{\pi}(s,a)$;
 - Policy improvement: given a policy π and corresponding value function v_{π} , can we find a better policy π' such that $v_{\pi'} \geq v_{\pi}$? (Spoiler alert: Greedification!)
 - Policy iteration: iteratively alternate between policy evaluation and improvement to find an optimal policy.

Policy evaluation, improvement and iteration

Policy **evaluation** (1)

Main idea: Iteratively solve the Bellman equation for v_{π} :

$$\mathbf{v}_{\pi} = \gamma P_{\pi} \mathbf{v}_{\pi} + \mathbf{r}_{\pi}$$

Policy Evaluation Algo:

- Initial value function v_0 is chosen arbitrarily
- Evaluate value function under the policy update rule:

$$\mathbf{v}_{\pi}^{k+1} = \gamma P_{\pi} \mathbf{v}_{\pi}^{k} + \mathbf{r}_{\pi}$$

or explicitly:

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_k(s') \Big]$$

- Apply to every state in each sweep of the state space

Policy evaluation (2): Algorithm

```
Input \pi, the policy to be evaluated:
Initialize v(s) = 0, for all s \in S
Repeat:
    \Delta \leftarrow 0:
    for each s \in S:
                        # single sweep over all states
        v \leftarrow v(s)
        v(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s'} p(s'|s,a) (r(s,a,s') + \gamma v(s'))
        \Delta \leftarrow \max(\Delta, |v - v(s)|)
until \Delta < small positive number;
Output: v \approx v_{\pi}
```

Policy **improvement**

Policy **improvement**

Policy **improvement** (1)

- Policy evaluation yields $v_{\pi}(s)$, and use one-step look-ahead to compute $q_{\pi}(s, a)$;
- Use this to incrementally improve the policy by considering whether for some state s_0 there is a better action $a \neq \pi(s_0)$:

$$q_{\pi}(s_0, a) > v_{\pi}(s_0)$$
?

• If so, then the **policy improvement theorem** tells us that defining new policy π' by changing π to take a in s_0 will increase its value:

$$\forall s \in S, v_{\pi'}(s) = q_{\pi}(s, \pi'(s)) \geq v_{\pi}(s)$$

• In our case, $\pi=\pi'$ except that $\pi'(s_0)=a
eq\pi(s_0)$

Policy improvement (2)

• Applying to all states yields the **greedy** policy w.r.t. v_{π} :

$$\pi'(s) \leftarrow \arg\max_{a} q_{\pi}(s, a)$$

• In that case: $v_{\pi'}(s) = \max_a q_{\pi}(s, a)$ or again:

$$v_{\pi'}(s) = \max_{a} \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_{\pi}(s') \Big]$$

• If $\pi = \pi'$, then $v_{\pi} = v_{\pi'}$ and for all $s \in S$:

$$v_{\pi'}(s) = \max_{a \in A} \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v'_{\pi}(s') \Big]$$

• This is equivalent to the Bellman optimality equation, implying that $v_{\pi} = v_{\pi'} = v^*$ and $\pi = \pi' = \pi^*$

Policy **iteration** (1)

Policy iteration = policy evaluation + policy improvement

$$\pi_0 \xrightarrow{\mathrm{E}} V^{\pi_0} \xrightarrow{\mathrm{I}} \pi_1 \xrightarrow{\mathrm{E}} V^{\pi_1} \xrightarrow{\mathrm{I}} \pi_2 \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi^* \xrightarrow{\mathrm{E}} V^*,$$

- Policy improvement makes result of policy evaluation obsolete
- Return to policy evaluation to compute $v_{\pi'}$
- Converges to the fixed point $v_{\pi} = v^*$

Policy **iteration** (2): geometric analogy

A geometric metaphor for convergence of GPI:

Compare to EM-algorithm in ML.

Policy iteration (3): Algorithm (for deterministic policy)

1. Initialization

$$V(s) \in \Re$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

$$\Delta \leftarrow 0$$

For each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s'} \mathcal{P}_{ss'}^{\pi(s)} \left[\mathcal{R}_{ss'}^{\pi(s)} + \gamma V(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until
$$\Delta < \theta$$
 (a small positive number)

3. Policy Improvement

$$policy\text{-}stable \leftarrow true$$

For each
$$s \in \mathcal{S}$$
:

$$b \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V(s') \right]$$

If $b \neq \pi(s)$, then policy-stable \leftarrow false

If policy-stable, then stop; else go to 2

Stopping policy evaluation early

Greedy Policy w.r.t. V_k

<i>k</i> =	10
------------	----

0.0	-6.1	-8 4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

	0.0	-1.7	-2.0	-2.0
k = 2	-1.7	-2.0	-2.0	-2.0
K — Z	-2.0	-2.0	-2.0	-1.7
	-2.0	-2.0	-1.7	0.0

$$k = \infty$$

Value iteration

• Compute optimal v^* first (iteratively), then derive optimal policy π^* :

$$v_1 \longrightarrow v_2 \longrightarrow v_3 \longrightarrow \dots \longrightarrow v^* \longrightarrow q^*(s, a) \longrightarrow \pi^*$$

value iteration:

$$q_{k+1}(s,a) \leftarrow \sum_{s'} p(s' \mid s,a) \Big[r(s,a,s') + \gamma v_k(s') \Big]$$
$$v_{k+1}(s) \leftarrow \max_{a} q_{k+1}(s,a),$$

Turns Bellman optimality equation into an update rule:

$$v_{k+1}(s) \leftarrow \max_{a} \sum_{s'} p(s' \mid s, a) \Big[r(s, a, s') + \gamma v_k(s') \Big]$$

(1)

Efficiency of dynamic programming

- An MDP has $|A|^{|S|}$ deterministic policies
- But the worst-case computational complexity of dynamic programming is polynomial in |S| and |A|
- MDP planning can also be done with linear programming, which has better worst-case guarantees, but is impractical for large MDPs
- In very large MDPs, where even doing one sweep is infeasible, asynchronous dynamic programming must be used
- Convergence in the limit is guaranteed as long as every state is backed up infinitely often

Model-based Prediction and Control 0000000000000000●

Summary of terminology

Value iteration algorithms search for optimal value function
 v* from which policy is deduced:

$$v_1 \longrightarrow v_2 \longrightarrow \ldots \longrightarrow v^* \longrightarrow \pi^*$$

• Policy iteration algorithms evaluate the policy π by computing the (corresponding) value function v_{π} and uses v_{π} to improve the policy: va

$$\pi_1 \longrightarrow v_1 \longrightarrow \pi_2 \longrightarrow v_2 \longrightarrow \ldots \longrightarrow \pi^*$$

• **Policy search** algorithms use optimisation techniques to directly search for an optimal policy:

$$\pi_1 \longrightarrow \pi_2 \longrightarrow \ldots \longrightarrow \pi^*$$