Lorenzo Speri | Publication list

lorenzo.speri@esa.int • https://lorenzsp.github.io/ • March 8, 2025

Publications:

- 28 short-author papers published in major peer-reviewed journals (out of which 7 first-authored papers).
- 9 papers in submission stage,

Total number of citations: >5500. h-index: 22 (using ADS and iNSPIRE).

Web links to list services: ADS; iNSPIRE; arXiv; orcid.

Papers in major peer-reviewed journals:

28. Systematics in tests of general relativity using LISA massive black hole binaries.

Garg, Mudit; Sberna, Laura; Speri, Lorenzo; Duque, Francisco; Gair, Jonathan.

10.1093/mnras/stae2605. Published in Monthly Notices of the Royal Astronomical Society.

27. Impact of correlations on the modeling and inference of beyond vacuum–general relativistic effects in extrememass-ratio inspirals.

Kejriwal, Shubham; Speri, Lorenzo; Chua, Alvin J. K.

10.1103/PhysRevD.110.084060. Published in Physical Review D.

26. The second data release from the European Pulsar Timing Array. V. Search for continuous gravitational wave signals.

EPTA Collaboration et al. (include **Speri, L.**).

10.1051/0004-6361/202348568. Published in Astronomy and Astrophysics.

25. Assessing the importance of first postadiabatic terms for small-mass-ratio binaries.

Burke, Ollie; Piovano, Gabriel Andres; Warburton, Niels; Lynch, Philip; **Speri, Lorenzo**; Kavanagh, Chris; Wardell, Barry; Pound, Adam; Durkan, Leanne; Miller, Jeremy.

10.1103/PhysRevD.109.124048. Published in Physical Review D.

24. Comparing Recent Pulsar Timing Array Results on the Nanohertz Stochastic Gravitational-wave Background. Agazie, G. et al. (include **Speri**, **L**.).

10.3847/1538-4357/ad36be. Published in The Astrophysical Journal.

23. The second data release from the European Pulsar Timing Array. IV. Implications for massive black holes, dark matter, and the early Universe.

EPTA Collaboration et al. (include Speri, L.).

10.1051/0004-6361/202347433. Published in Astronomy and Astrophysics.

22. Impact of the noise knowledge uncertainty for the science exploitation of cosmological and astrophysical stochastic gravitational wave background with LISA.

Muratore, Martina; Gair, Jonathan; Speri, Lorenzo.

10.1103/PhysRevD.109.042001. Published in Physical Review D.

21. Cosmology with the Laser Interferometer Space Antenna.

Auclair, Pierre et al. (include Speri, L.).

10.1007/s41114-023-00045-2. Published in Living Reviews in Relativity.

20. The second data release from the European Pulsar Timing Array. I. The dataset and timing analysis. EPTA Collaboration et al. (include **Speri**, **L**.).

10.1051/0004-6361/202346841. Published in Astronomy and Astrophysics.

19. The second data release from the European Pulsar Timing Array. II. Customised pulsar noise models for spatially correlated gravitational waves.

EPTA Collaboration et al. (include **Speri, L.**).

10.1051/0004-6361/202346842. Published in Astronomy and Astrophysics.

18. The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals. EPTA Collaboration et al. (include **Speri, L.**).

10.1051/0004-6361/202346844. Published in Astronomy and Astrophysics.

17. Second Data Release from the European Pulsar Timing Array: Challenging the Ultralight Dark Matter Paradigm. Smarra, Clemente et al. (include **Speri, L.**).

10.1103/PhysRevLett.131.171001. Published in Physical Review Letters.

16. Cosmology with massive black hole binary mergers in the LISA era.

Mangiagli, A.; Caprini, C.; Volonteri, M.; Marsat, S.; Vergani, S.; Tamanini, N.; Speri, L..

Published in 41st International Conference on High Energy Physics.

15. Searching for continuous Gravitational Waves in the second data release of the International Pulsar Timing Array. Falxa, M. et al. (include **Speri, L.**).

10.1093/mnras/stad812. Published in Monthly Notices of the Royal Astronomical Society.

14. Probing Accretion Physics with Gravitational Waves.

Speri, Lorenzo; Antonelli, Andrea; Sberna, Laura; Babak, Stanislav; Barausse, Enrico; Gair, Jonathan R.; Katz, Michael L.

10.1103/PhysRevX.13.021035. Published in Physical Review X.

13. Constraining the evolution of Newton's constant with slow inspirals observed from spaceborne gravitational-wave detectors.

Barbieri, Riccardo; Savastano, Stefano; **Speri, Lorenzo**; Antonelli, Andrea; Sberna, Laura; Burke, Ollie; Gair, Jonathan; Tamanini, Nicola.

10.1103/PhysRevD.107.064073. Published in Physical Review D.

12. Quality over quantity: Optimizing pulsar timing array analysis for stochastic and continuous gravitational wave signals.

Speri, Lorenzo; Porayko, Nataliya K.; Falxa, Mikel; Chen, Siyuan; Gair, Jonathan R.; Sesana, Alberto; Taylor, Stephen R.

10.1093/mnras/stac3237. Published in Monthly Notices of the Royal Astronomical Society.

11. A roadmap of gravitational wave data analysis.

Speri, Lorenzo; Karnesis, Nikolaos; Renzini, Arianna I.; Gair, Jonathan R.

10.1038/s41550-022-01849-y. Published in Nature Astronomy.

10. Modeling transient resonances in extreme-mass-ratio inspirals.

Gupta, Priti; Speri, Lorenzo; Bonga, Beátrice; Chua, Alvin J. K.; Tanaka, Takahiro.

10.1103/PhysRevD.106.104001. Published in Physical Review D.

9. Assessing the impact of instrumental calibration uncertainty on LISA science.

Savalle, Etienne; Gair, Jonathan; Speri, Lorenzo; Babak, Stanislav.

10.1103/PhysRevD.106.022003. Published in Physical Review D.

8. Workshop on Gravitational-Wave Astrophysics for Early Career Scientists.

Bayle, Jean-Baptiste et al. (include Speri, L.).

10.1038/s41550-022-01629-8. Published in Nature Astronomy.

7. The International Pulsar Timing Array second data release: Search for an isotropic gravitational wave background. Antoniadis, J. et al. (include **Speri, L.**).

10.1093/mnras/stab3418. Published in Monthly Notices of the Royal Astronomical Society.

6. Noise analysis in the European Pulsar Timing Array data release 2 and its implications on the gravitational-wave background search.

Chalumeau, A. et al. (include Speri, L.).

10.1093/mnras/stab3283. Published in Monthly Notices of the Royal Astronomical Society.

5. Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search.

Chen, S. et al. (include Speri, L.).

10.1093/mnras/stab2833. Published in Monthly Notices of the Royal Astronomical Society.

4. Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis.

Katz, Michael L.; Chua, Alvin J. K.; **Speri, Lorenzo**; Warburton, Niels; Hughes, Scott A. 10.1103/PhysRevD.104.064047. Published in Physical Review D.

3. Assessing the impact of transient orbital resonances.

Speri, Lorenzo; Gair, Jonathan R.

10.1103/PhysRevD.103.124032. Published in Physical Review D.

2. Testing the quasar Hubble diagram with LISA standard sirens.

Speri, Lorenzo; Tamanini, Nicola; Caldwell, Robert R.; Gair, Jonathan R.; Wang, Benjamin.

10.1103/PhysRevD.103.083526. Published in Physical Review D.

1. Fast and Fourier: Extreme Mass Ratio Inspiral Waveforms in the Frequency Domain.

Speri, Lorenzo; Katz, Michael L.; Chua, Alvin J. K.; Hughes, Scott A.; Warburton, Niels; Thompson, Jonathan E.; Chapman-Bird, Christian E. A.; Gair, Jonathan R.

10.48550/arXiv.2307.12585. Published in Frontiers in Applied Mathematics and Statistics.

Submitted papers.:

- **9.** The implications of stochastic gas torques for asymmetric binaries in the LISA band. Copparoni, Lorenzo; **Speri, Lorenzo**; Sberna, Laura; Derdzinski, Andrea; Barausse, Enrico. 10.48550/arXiv.2502.10087.
- 8. Is your stochastic signal really detectable?. Pozzoli, Federico; Gair, Jonathan; Buscicchio, Riccardo; Speri, Lorenzo. 10.48550/arXiv.2412.10468.
- **7.** Constraining accretion physics with gravitational waves from eccentric extreme-mass-ratio inspirals. Duque, Francisco; Kejriwal, Shubham; Sberna, Laura; **Speri, Lorenzo**; Gair, Jonathan. 10.48550/arXiv.2411.03436.
- **6.** Impact of relativistic waveforms in LISA's science objectives with extreme-mass-ratio inspirals. Khalvati, Hassan; Santini, Alessandro; Duque, Francisco; **Speri, Lorenzo**; Gair, Jonathan; Yang, Huan; Brito, Richard. 10.48550/arXiv.2410.17310.
- **5.** Fewer supermassive binary black holes in pulsar timing array observations. Goncharov, Boris et al. (include **Speri, L.**). 10.48550/arXiv.2409.03627.
- 4. Probing fundamental physics with Extreme Mass Ratio Inspirals: a full Bayesian inference for scalar charge. Speri, Lorenzo; Barsanti, Susanna; Maselli, Andrea; Sotiriou, Thomas P.; Warburton, Niels; van de Meent, Maarten; Chua, Alvin J. K.; Burke, Ollie; Gair, Jonathan. 10.48550/arXiv.2406.07607.
- 3. GWnext 2024: Meeting Summary.
 Torres-Orjuela, Alejandro et al. (include **Speri, L.**).
 10.48550/arXiv.2406.03498.
- LISA Definition Study Report.
 Colpi, Monica et al. (include Speri, L.).
 10.48550/arXiv.2402.07571.
- **1.** Massive black hole binaries in LISA: constraining cosmological parameters at high redshifts. Mangiagli, Alberto; Caprini, Chiara; Marsat, Sylvain; **Speri, Lorenzo**; Caldwell, Robert R.; Tamanini, Nicola. 10.48550/arXiv.2312.04632.