Deviation

Emphasise variations (+/-) from a fixed reference point. Typically the reference point is zero but it can also be a target or a long-term average. Can also be used to show sentiment (positive/neutral/negative).

Example FT uses Trade surplus/deficit, climate change

Diverging bar

A simple standard bar chart that can handle both negative and positive magnitude

Diverging stacked bar

Splits a single value into two contrasting

components (eq male/female).

The shaded area of these charts allows a balance to be shown either against a baseline or between two series.

Show the relationship between two or more variables. Be mindful that, unless you tell them otherwise, many readers will assume the relationships you show them to be causal (i.e. one causes the

Example FT uses Inflation & unemployment, income & life expectancy

Scatterplot

The standard way to show the relationship between two continuous variables, each of which

Column + line timeline

an amount (columns) and a rate (line).

Connected scatterplot

Usually used to show how the relationship between 2 variables has changed over time.

Like a scatterplot, but adds additional detail by sizing the circles according to a third

XY heatmap

A good way of showing the patterns between 2 categories of data, less good at showing fine differences in amounts.

Correlation

Use where an item's position in an ordered list is more important than its absolute or relative value. Don't be afraid to highlight the points of interest.

> Example FT uses Wealth, deprivation, league tables constituency election results

Ranking

Ordered bar

Standard bar charts display the ranks of values much more easily when sorted into order.

Ordered column

See above.

Ordered proportional symbol

Use when there are big variations between values and/or seeing fine differences between data is not so

Dot strip plot

Dots placed in order on a strip are a space-efficient ... method of laying out ranks across multiple categories.

Perfect for showing how ranks have changed over time or vary between categories.

Lollipops draw more attention to the data value than standard bar/column and can also show rank and value effectively.

Effective for showing changing rankings across multiple dates. For large datasets, consider grouping lines using colour.

Distribution

Show values in a dataset and how often they occur. The shape (or 'skew') of a distribution can be a memorable way of highlighting the lack of uniformity or equality in the data.

Example FT uses Income distribution, population (age/sex) distribution

The standard way to show a statistical distribution - keep the gaps between columns small to highlight the shape' of the data.

Dot plot

Dot strip plot

Good for showing individual values in a distribution, can be a problem when too many dots have the same value.

Barcode plot

good for displaying all the data in a table, they work best when highlighting individual

Boxplot

distributions by showing the median (centre) and range of the data

Similar to a box plot but more effective with complex distributions (data that cannot be summarised with simple average).

Population pyramid

A standard way for showing the age and sex breakdown of a population distribution; effectively, back to back

Cumulative curve

A good way of showing how unequal a distribution is: y axis is always cumulative frequency, x axis is always a measure.

Frequency polygons

For displaying multiple distributions of data. Like a regular mischart, best limited to a maximum of 3 or 4 datasets.

Change over Time

Give emphasis to changing trends These can be short (intra-day) movements or extended series traversing decades or centuries: Choosing the correct time period is important to provide suitable context

Example FT uses Share price movements, economic time

for the reader.

The standard way to show a changing time series. If data are irregular, consider markers to represent

Column

Columns work well for showing change over time - but usually best with only one series of

Column + line timeline

A good way of showing the relationship over time between an amount (columns) and a rate

Good for showing changing data as long as the data can be simplified into 2 or 3 points without missing a key part of story.

Area chart

Use with care – these are good at showing changes to total, but seeing change in components can be very difficult.

Candlestick

Usually focused on day-to-day activity, these charts show opening/closing and high/low points of each day.

Fan chart (projections)

Use to show the uncertainty in future projections - usually this grows the further forward to projection.

Connected scatterplot

A good way of showing changing data for two variables whenever there is a relatively clear pattern of _____ progression.

Calendar heatmap

A great way of showing temporal patterns (daily, weekly, monthly) – at the expense of showing precision in

Priestley timeline

Great when date and duration are key elements of the story in the data.

Circle timeline

discrete values of varying size across multiple categories (eg earthquakes by contintent).

axis. Good for

Presents time on the Y

displaying detailed

time series that work

especially well when

scrolling on mobile.

Good for showing

Vertical timeline

Another alternative to the circle timeline for showing series where there are big variations in the data.

Magnitude

Show size comparisons. These can be relative (just being able to see larger/bigger) or absolute (need to see fine differences). Usually these show a 'counted' number (for example, barrels dollars or people) rather than a

Example FT uses Commodity production, market capitalisation

calculated rate or per cent.

Column

The standard way to compare the size of things. Must always start at 0 on the axis.

Paired column

As per standard column but allows for multiple series. Can become tricky to read with more than 2

Paired bar

Marimekko

the same time – as long as the data are not too complicated

Proportional symbol

variations between values and/or seeing fine differences between data is not so important.

Isotype (pictogram)

off an arm to represent a decimal). Lollipop Lollipop charts draw

A space-efficient way of showing value of multiple variables- but make sure they are organised in a way that makes sense to reader.

more attention to the

standard bar/column -

zero (but preferable).

does not have to start a

data value than

Parallel coordinates An alternative to radar

Good for showing a measurement against the context of a targe or performance range

arrangement of the variables is important.

Usually benefits from

highlighting values.

charts – again, the arrangement of the variables is importan

Grouped symbol

data or highlight individual elements is useful.

An alternative to

being able to count

bar/column charts when

Part-to-whole

Show how a single entity can be broken down into its component elements. If the reader's interest is solely in the size of the components, consider a magnitude-type chart instead.

Example FT uses Fiscal budgets, company structures, national election results

Stacked column

showing part-to-whole relationships but can be difficult to read with more than a few components.

Marimekko

A common way of showing part-to-whole data – but be aware that it's difficult to accurately compare the size of the

Donut

but the centre can be a good way of making space to include more information about the data (eg total).

part-to-whole

Treemap

A way of turning points into areas – any point within each area is closer to the central

A hemicycle, often

information, they work

Use for hierarchical

relationships; can be

difficult to read when

used for visualising political results in parliaments.

point than any other

Gridplot

Generally only used for schematic representation.

Can be useful for

some of the

negative.

relationships where

Spatial

Aside from locator maps only used when precise locations or geographical patterns in data are more important to the reader than anything else.

Example FT uses Population density, natural resource locations, natural disaster risk/impact, catchment areas, variation in election

Basic choropleth (rate/ratio)

Proportional symbol (count/magnitude)

For showing

unambiguous movement across a

Flow map

For showing areas of equal value on a map. Can use deviation

colour schemes for

Converting each unit on

good for representing

voting regions with

equal value.

showing +/- values

Equalised cartogram

Scaled cartogram (value) Stretching and shrinking a map so that each area is sized

according to a

particular value.

events/locations make sure to annotate any patterns the reader should see.

Grid-based data values

intensity colour scale.

admin/political unit.

mapped with an

Sankey

graphs.

Example FT uses

Flow

Show the reader volumes or intensity of

movement between two or more states

or conditions. These might be logical

sequences or geographical locations.

Movement of funds, trade, migrants,

lawsuits, information; relationship

Waterfall

Network

Visual vocabulary

Designing with data

There are so many ways to visualise data - how do we know which one to pick? Use the categories across the top to decide which data relationship is most important in your story, then look at the different types of chart within the category to form some initial ideas about what might work best. This list is not meant to be exhaustive, nor a wizard, but is a useful starting point for making informative and meaningful data visualisations.

Inspired by the Graphic Continuum by Jon Schwabish and Severino Ribecca

FT graphic: Alan Smith; Chris Campbell; Ian Bott; Liz Faunce; Graham Parrish; Billy Ehrenberg; Paul McCallum; Martin Stabe

副總 ft.com/vocabulary