(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 October 2001 (18.10.2001)

PCT

(10) International Publication Number WO 01/77350 A2

(51) International Patent Classification7:

_ _ _

- (21) International Application Number: PCT/US01/11436
- (22) International Filing Date: 4 April 2001 (04.04.2001)
- (25) Filing Language:

English

C12N 15/79

(26) Publication Language:

English

(30) Priority Data: 09/545,574

7 April 2000 (07.04.2000) US

- (71) Applicant (for all designated States except US): LARGE SCALE BIOLOGY CORPORATION [US/US]; 3333 Vaca Valley Parkway, Vacaville, CA 95688 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): PALMER, Kenneth, E. [ZA/US]; 707 West Monte Vista Avenue, Vacaville, CA 95688 (US). POGUE, Gregory, P. [US/US]; 419 Trillick Court, Vacaville, CA 95688 (US).
- (74) Agent: HALLUIN, Albert, P.; Howrey Simon Arnold & White, 301 Ravenswood Avenue, Box 34, Menlo Park, CA 94025 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: COMPOSITIONS AND METHODS FOR INHIBITING GENE EXPRESSION

(57) Abstract: The present invention provides an eukaryotic recombinant vector suited for bi-directional transcription of a transgene to yield both sense and antisense RNA transcripts of the transgene in an eukaryotic cell. The invention vectors are particularly suited for mediating gene silencing in a variety of biological systems. The present invention also provides host cells and transgenic plants comprising the invention vectors. Further provided by the invention are methods of inhibiting expression of an endogenous gene present in an eukaryotic cell. Also included is a method of identifying a biological function(s) of an endogenous gene of interest in an eukaryotic cell by selectively inhibiting the expression of the endogenous gene.

COMPOSITIONS AND METHODS FOR INHIBITING GENE EXPRESSION

5

10

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit of U.S. Patent Application 09/545,574, filed April 7, 2000, pending, which is hereby incorporated herein by reference in its entirety.

STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH

15

Not applicable.

TECHNICAL FIELD

This invention is in the field of genetic analysis. Specifically, the invention relates to the generation of a eukaryotic vector that allows bi-directional transcription of a transgene to yield both sense and antisense RNA transcripts from the same transgene. The compositions and methods embodied in the present invention are particularly useful for targeted inhibition of gene expression in a eukaryotic cell.

25

30

20

BACKGROUND OF THE INVENTION

The structure and biological behavior of a cell is determined by the pattern of gene expression within that cell at a given time. Perturbations of gene expression have long been acknowledged to account for a vast number of diseases including, numerous forms of cancer, vascular diseases, neuronal and endocrine diseases.

Abnormal expression patterns, in form of amplification, deletion, gene rearrangements, and loss or gain of function mutations, are now known to lead to aberrant behavior of a disease cell. Aberrant gene expression has also been noted as a defense mechanism of certain organisms to ward off the threat of pathogens.

One of the major challenges of genetic engineering has been to regulate the expression of targeted genes that are implicated in a wide diversity of physiological responses. While overexpression of an exogenously introduced transgene in a eukaryotic cell is relatively straightforward, targeted inhibition of specific genes has been more difficult to achieve. Traditional approaches for suppressing gene expression, including site-directed gene disruption, antisense RNA or co-suppressor injection, require complex genetic manipulations or heavy dosages of suppressors that often exceeds the toxicity tolerance level of the host cell.

5

10

15

20

25

30

Recently, a new technique, "double-stranded RNA interference" has emerged in the study of gene silencing. Several research groups have demonstrated a marked inhibition of a specific nuclear gene expression in a wide range of eukaryotes by introduction into cells of dsRNA fragments that bear sequence homology with the nuclear gene. For instance, Fire et al. (1998) Nature 395: 854 reported the success of gene-specific interference in C. elegans that was mediated by ingested E. coli carrying a prokaryotic vector capable of producing both sense and antisense RNAs of the selected C. elgans genes. Misquitta et al. demonstrated the targeted disruption of nautilus gene in Drosophila melanogaster by injecting into the Drosophila embryo multiple copies of nautilus dsRNA. See Misquitta et al. (1999) PNAS U.S.A. 96:1451-1456. Studies by Ngô et al. (1998) Proc. Natl. Acad. of Sci. U.S.A., 96:1451-1456 confirmed that dsRNA interference also occurs in certain protozoan species. Earlier studies by Cogoni et al. and Hamilton et al. suggested that formation of dsRNA play a pivotal role in gene silencing in fungi Neurospora crassa and other plants. See Cogoni et al. (1999) Nature 399: 166-169; Hamilton et al. (1999) Science 286: 950-952; and Waterhouse et al. (1999) PNAS U.S.A. 95: 13959-13964. More recent investigations by Wargelius et al. revealed that this phenomenon is also conserved in vertebrates such as the zebrafish. Wargelius et al. Biochem. Biophys. Res. Commun. 263: 156-161.

Current techniques for achieving RNA mediated gene silencing include: (a) use of prokaryotic vectors capable of transcribing both sense and antisense RNA (Fire et al. (1998) *Nature* 395: 854; (b) *in vitro* transcription of individual strands of a selected gene followed by annealing the transcribed sense and antisense RNAs (see, e.g. Misquitta et al. (1999) *PNAS U.S.A.* 96:1451-1456); and possibly (c) viruses induced gene silencing (see, e.g. Angell et al. (1997) *EMBO Journal* 16:

3675-3684; Angell et al. (1999) Plant Journal 20: 357-362). However, these methods bear a number of intrinsic limitations. First, none of these methods employs gene delivery vehicles that are applicable for consistent and persistent inhibition of gene expression in a eukaryote. Second, these existing methods do not necessarily result in production of a substantially homogenous population of dsRNAs. Notably, the in vitro preparation of double-stranded RNAs by transcribing and annealing sense RNA transcripts to antisense transcripts is time consuming, labor intensive, and not amenable for mass production or high-throughput analyses.

10

5

Thus, there remains a considerable need for compositions and methods to effect dsRNA-mediated gene silencing. An ideal reagent would be a self-replicating vector that is (a) capable of autonomous replication and expression of a selected transgene in a eukaryotic cell; and (b) capable of yielding both sense and antisense RNA transcripts from the same transgene, so as to effect production of dsRNA transcripts in a eukaryotic host cell. The present invention satisfies these needs and provides related advantages as well.

15

SUMMARY OF THE INVENTION

20

25

30

A principal aspect of the present invention is the design of a eukaryotic recombinant vector to effect gene silencing in a eukaryotic cell that is susceptible to dsRNA-mediated reduction of gene expression. Such a vector allows bi-directional transcription of a transgene to yield both sense and antisense RNA transcripts of the same transgene in a eukaryotic cell. While not being bound to any one theory, the production of dsRNAs induces transcriptional and/or post-transcriptional gene silencing in the host cell. Accordingly, the present invention provides a recombinant vector having the following unique characteristics: it comprises a viral replicon having two overlapping transcription units arranged in an opposing orientation and flanking a transgene of interest, wherein the two overlapping transcription units yield both sense and antisense RNA transcripts from the same transgene fragment in a eukaryotic host cell.

In one aspect of this embodiment, each of the overlapping transcription units of the vector comprises a promoter and a terminator that are arranged in one of the configurations shown in Figure 2(a)-(d). The promoter can be constitutive or

inducible; it can be active in all tissues and cell types of an organism or operative only in selected tissues (i.e. tissue-specific).

In another aspect, the recombinant vector comprises a viral replicon that is derived from a DNA virus. Such DNA viruses can be selected from the group consisting of Geminivirus, Caulimoviridae, Badnaviridae, Circoviridae, Circinoviridae, Parvoviridae, Papovaviridae, Polyomaviridae, Adenoviridae, Herpesviridae, Poxviridae, Iridoviridae, Baculoviridae, Hepadnaviridae, Retroviridae, Gyrovirus, Nanovirus, and African Swine Fever virus.

5

10

15

20

25

30

In yet another aspect, the subject vector is capable of autonomous replication in a eukaryotic cell.

In still another aspect, the subject vector is capable of inhibiting expression of genes endogenous to a eukaryotic host cell. Non-limiting representative eukaryotic cells whose gene expression can be inhibited upon introduction of the subject vectors are fungi, yeast cells, plant cells, inset, avian, mammalian or other animal cells. Preferably, the vectors effect a reduced expression of an endogenous gene that is substantially homologous to the transgene contained in the overlapping transcription units of the vectors. More preferably, delivery of the vectors into a suitable host cell results in a phenotypic change of the host cell. In certain preferred embodiments, the endogenous gene is native to the host cell. The endogenous gene can also be heterologous to the host cell. In some embodiments, the endogenous gene is a pathogenic gene derived from one or more members of the group consisting of virus, bacterium, fungus, and protozoa. The transgene carried in the vector can be a nucleotide sequence that encodes a membrane protein, a cytosolic protein, a secreted protein, a nuclear protein, or a chaperon protein.

The present invention also provides host cells transformed with the invention vectors. The present invention further provides a transgenic plant comprising a eukaryotic recombinant vector of the present invention.

Also provided by the present invention is a kit for generating a doublestranded RNA transcript in a eukaryotic cell that contains the subject vectors in suitable packaging.

Further embodied in the present invention is a method of inhibiting expression of an endogenous gene present in a eukaryotic cell. The method involves: (a) providing a eukaryotic recombinant vector containing a transgene

that is substantially homologous to the endogenous gene; (b) introducing the eukaryotic recombinant vector into the eukaryotic cell; and (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene that is contained in the transcription units of the vector, and thereby inhibiting expression of the corresponding endogenous gene in the eukaryotic cell.

5

10

15

20

25

30

6.

Also included in the present invention is a method of identifying a biological function(s) of an endogenous gene of interest in a eukaryotic cell by selectively inhibiting the expression of the endogenous gene. The method comprises: (a) providing a eukaryotic recombinant vector containing a transgene that is substantially homologous to the endogenous gene; (b) introducing the eukaryotic recombinant vector of (a) into the eukaryotic cell; (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene contained in the eukaryotic recombinant vector and thereby inhibiting expression of the endogenous gene in the eukaryotic cell; and (d) determining one or more phenotypic changes in the eukaryotic cell that correlate with the inhibited expression of the endogenous gene, thereby identifying the biological function(s) of the endogenous gene in the eukaryotic cell. In essence, the subject methods allow the creation of a transient or more long-term gene-specific knock-out system for analyzing the biological function of any endogenous gene of interest.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic representation of the process for production of dsRNA transcripts by a subject vector containing two overlapping transcription units.

Figure 2 (a)-(d) depict four different configurations of the overlapping transcription units of the subject vectors.

Figure 3 is a schematic representation of an exemplary construct MSVLSB-

Figure 4 depicts the nucleotide sequence of the vector pMSVLSB-1 (SEQ ID NO:9) described in Examples 1-2.

Figure 5 depicts the nucleotide sequence of the vector pMSVLSB-2 (SEQ ID NO:10) described in Examples 1-2.

Figure 6 depicts the nucleotide sequence of the vector pMSVLSB-3 (SEQ ID NO:11) described in Examples 1-2.

Figure 7 depicts the nucleotide sequence of the vector pMSVLSB-4 (SEQ ID NO:12) described in Examples 1-2.

Figure 8 depicts the nucleotide sequence of the vector pMSVLSB-5 (SEQ ID NO:13) described in Examples 1-2.

Figure 9 depicts the nucleotide sequence of the vector pMSVLSB-6 (SEQ ID NO: 14) described in Examples 1-2.

MODES FOR CARRYING OUT THE INVENTION

Throughout this disclosure, various publications, patents and published patent specifications are referenced by an identifying citation. The disclosures of these publications, patents and published patent specifications are hereby incorporated by reference into the present disclosure to more fully describe the state of the art to which this invention pertains.

General Techniques:

5

10

15

20

25

30

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of immunology, biochemistry, chemistry, molecular biology, microbiology, cell biology, genomics and recombinant DNA, which are within the skill of the art. See, e.g., Matthews, PLANT VIROLOGY, 3rd edition (1991); Sambrook, Fritsch and Maniatis, MOLECULAR CLONING: A LABORATORY MANUAL, 2nd edition (1989); CURRENT PROTOCOLS IN MOLECULAR BIOLOGY (F. M. Ausubel, et al. eds., (1987)); the series METHODS IN ENZYMOLOGY (Academic Press, Inc.): PCR 2: A PRACTICAL APPROACH (M.J. MacPherson, B.D. Hames and G.R. Taylor eds. (1995)), Harlow and Lane, eds. (1988) ANTIBODIES, A LABORATORY MANUAL, and ANIMAL CELL CULTURE (R.I. Freshney, ed. (1987)).

As used in the specification and claims, the singular form "a", "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a cell" includes a plurality of cells, including mixtures thereof.

Definitions:

5

10

15

20

25

30

A "plant cell" refers to the structural and physiological unit of plants, consisting of a protoplast and the cell wall.

A "protoplast" is an isolated cell without cell walls, having the potency for regeneration into cell culture, tissue or whole plant.

A "host cell" includes an individual cell or cell culture which can be or has been a recipient for vector(s) or for incorporation of nucleic acid molecules and/or proteins. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in genomic of total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. A host cell includes cells transfected *in vivo* with a polynucleotide(s) of this invention.

The terms "polynucleotide", "nucleotides" and "oligonucleotides" are used interchangeably. They refer to a polymeric form of nucleotides of any length, either deoxyribonucleotides or ribonucleotides, or analogs thereof. Polynucleotides may have any three-dimensional structure, and may perform any function, known or unknown. The following are non-limiting examples of polynucleotides: coding or non-coding regions of a gene or gene fragment, loci (locus) defined from linkage analysis, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, recombinant polynucleotides, branched polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. If present, modifications to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component.

A "gene" refers to a polynucleotide containing at least one open reading frame that is capable of encoding a particular protein after being transcribed and translated.

"Genes of a specific developmental origin" refer to genes expressed at certain but not all developmental stages. For instance, a gene may be of embryonic or adult origin depending on the stage during which the gene is expressed.

5

10

15

20

25

30

A "disease-associated" or "disease-causing" gene refers to any gene which is yielding transcription or translation products at an abnormal level or in an abnormal form in cells derived from a disease-affected tissues compared with tissues or cells of a control. It may be a gene that becomes expressed at an abnormally high level; it may be a gene that becomes expressed at an abnormally low level, where the altered expression correlates with the occurrence and/or progression of the disease. A disease-associated gene also refers to gene possessing mutation(s) or genetic variation that is directly responsible or is in linkage disequilibrium with gene(s) that is responsible for the etiology of a disease. The transcribed or translated products may be known or unknown, and may be at normal or abnormal level.

A gene "database" denotes a set of stored data which represent a collection of sequences including nucleotide and peptide sequences, which in turn represent a collection of biological reference materials.

As used herein, "expression" refers to the process by which a polynucleotide is transcribed into mRNA and/or the process by which the transcribed mRNA (also referred to as "transcript") is subsequently being translated into peptides, polypeptides, or proteins. The transcripts and the encoded polypeptides are collectedly referred to as gene product. If the polynucleotide is derived from genomic DNA, expression may include splicing of the mRNA in an eukaryotic cell.

"Differentially expressed", as applied to nucleotide sequence or polypeptide sequence in a subject, refers to over-expression or under-expression of that sequence when compared to that detected in a control. Underexpression also encompasses absence of expression of a particular sequence as evidenced by the absence of detectable expression in a test subject when compared to a control.

"Differential expression" refers to alterations in the abundance or the expression pattern of a gene product.

A "primer" is a short polynucleotide, generally with a free 3'-OH group, that binds to a target or "template" potentially present in a sample of interest by hybridizing with the target, and thereafter promoting polymerization of a polynucleotide complementary to the target.

The term "hybridize" as applied to a polynucleotide refers to the ability of the polynucleotide to form a complex that is stabilized via hydrogen bonding between the bases of the nucleotide residues in a hybridization reaction. The hydrogen bonding may occur by Watson-Crick base pairing, Hoogstein binding, or in any other sequence-specific manner. The complex may comprise two strands forming a duplex structure, three or more strands forming a multi-stranded complex, a single self-hybridizing strand, or any combination of these. The hybridization reaction may constitute a step in a more extensive process, such as the initiation of a PCR reaction, or the enzymatic cleavage of a polynucleotide by a ribozyme.

10

5

Hybridization can be performed under conditions of different "stringency". Relevant conditions include temperature, ionic strength, time of incubation, the presence of additional solutes in the reaction mixture such as formamide, and the washing procedure. Higher stringency conditions are those conditions, such as higher temperature and lower sodium ion concentration, which require higher minimum complementarity between hybridizing elements for a stable hybridization complex to form. In general, a low stringency hybridization reaction is carried out at about 40 °C in 10 x SSC or a solution of equivalent ionic strength/temperature. A moderate stringency hybridization is typically performed at about 50 °C in 6 x SSC, and a high stringency hybridization reaction is generally performed at about 60 °C in 1 x SSC.

20

15

When hybridization occurs in an antiparallel configuration between two single-stranded polynucleotides, the reaction is called "annealing" and those polynucleotides are described as "complementary". A double-stranded polynucleotide can be "complementary" or "homologous" to another polynucleotide, if hybridization can occur between one of the strands of the first polynucleotide and the second. "Complementarity" or "homology" (the degree that one polynucleotide is complementary with another) is quantifiable in terms of the proportion of bases in opposing strands that are expected to form hydrogen bonding with each other, according to generally accepted base-pairing rules.

30

25

In the context of polynucleotides, a "linear sequence" or a "sequence" is an order of nucleotides in a polynucleotide in a 5' to 3' direction in which residues that neighbor each other in the sequence are contiguous in the primary structure of the

polynucleotide. A "partial sequence" is a linear sequence of part of a polynucleotide which is known to comprise additional residues in one or both directions.

The terms "cytosolic", "nuclear" and "secreted" as applied to cellular proteins specify the extracellular and/or subcellular location in which the cellular protein is mostly localized. Certain proteins are "chaperons", capable of translocating back and forth between the cytosol and the nucleus of a cell.

5

10

15

20

25

30

A "subject" as used herein refers to a biological entity containing expressed genetic materials. The biological entity is preferably can be plant, animal, or microorganisms including bacteria, viruses, fungi, and protozoa. Tissues, cells and their progeny of a biological entity obtained *in vivo* or cultured *in vitro* are also encompassed.

A "control" is an alternative subject or sample used in an experiment for comparison purpose. A control can be "positive" or "negative". For example, where the purpose of the experiment is to detect a differentially expressed transcript or polypeptide in cell or tissue affected by a disease of concern, it is generally preferable to use a positive control (a subject or a sample from a subject, exhibiting such differential expression and syndromes characteristic of that disease), and a negative control (a subject or a sample from a subject lacking the differential expression and clinical syndrome of that disease).

"Heterologous" means derived from a genotypically distinct entity from the rest of the entity to which it is being compared. For example, a promoter removed from its native coding sequence and operatively linked to a coding sequence other than the native sequence is a heterologous promoter.

A "cell line" or "cell culture" denotes bacterial, plant, insect or higher eukaryotic cells grown or maintained in vitro. The descendants of a cell may not be completely identical (either morphologically, genotypically, or phenotypically) to the parent cell.

A "vector" is a nucleic acid molecule, preferably self-replicating, which transfers an inserted nucleic acid molecule into and/or between host cells. The term includes vectors that function primarily for insertion of a DNA or RNA into a cell, replication of vectors that function primarily for the replication of DNA or RNA, and expression vectors that function for transcription and/or translation of the DNA

or RNA. Also included are vectors that provide more than one of the above functions.

An "expression vector" is a polynucleotide which, when introduced into an appropriate host cell, can be transcribed and translated into a polypeptide(s). An "expression system" usually connotes a suitable host cell comprised of an expression vector that can function to yield a desired expression product.

A "replicon" refers to a polynucleotide comprising an origin of replication (generally referred to as an <u>ori</u> sequence) which allows for replication of the polynucleotide in an appropriate host cell. Examples of replicons include episomes (such as plasmids), as well as chromosomes (such as the nuclear or mitochondrial chromosomes).

A "transcription unit" is a DNA segment capable of directing transcription of a gene or fragment thereof. Typically, a transcription unit comprises a promoter operably linked to a gene or a DNA fragment that is to be transcribed, and optionally regulatory sequences located either upstream or downstream of the initiation site or the termination site of the transcribed gene or fragment.

Vectors of the present invention

5

10

15

20

25

30

A central aspect of the present invention is the design of a recombinant vector suited for bi-directional transcription of a transgene to yield both sense and antisense RNA transcripts of the transgene in a eukaryotic cell. The invention vectors are particularly suited for mediating nuclear gene silencing in a variety of biological systems. Distinguished from the previously described DNA vectors, the subject vectors have the following unique characteristics: (a) the vector replicates and directs expression of a transgene in a eukaryotic cell; and (b) the vector comprises a replicon having two overlapping transcription units arranged in an opposing orientation and flanking a transgene of interest, wherein the two overlapping transcription units yield both sense and antisense RNA transcripts from the same transgene in a eukaryotic host cell.

Several factors apply to the design of vectors having the above-mentioned characteristics. First, the vector comprises a replicon having an origin of replication (generally referred to as an <u>ori</u> sequence) which permits replication of the vector in a eukaryotic host cell. A preferred replicon is one comprising viral sequences capable

of directing autonomous replication of the vector in an appropriate host cell. Non-limiting examples of viral replicons include sequences derived from DNA viruses such as Geminivirus, Caulimoviridae, Badnaviridae; Circoviridae, Circinoviridae, Parvoviridae, Papovaviridae, Polyomaviridae, Adenoviridae, Herpesviridae, Poxviridae, Iridoviridae, Baculoviridae, Hepadnaviridae, Retroviridae, Gyrovirus, Nanovirus, and African Swine Fever virus, or the like. In addition to the replication origin, a replicon typically carries a transcription unit that directs transcription of a transgene or a fragment thereof to yield a plurality of RNA transcripts.

5

10

15

20

25

30

A second consideration in designing the subject vector is to select two overlapping transcription units. By "overlapping" is meant that the two transcription units directs transcription of both DNA strands of the same transgene to yield a plurality of partially or perfectly double stranded RNA transcripts. The two overlapping transcription units are typically arranged in an opposing orientation so that each unit can drive transcription of one of the complementary strands from the same transgene, and thus facilitate the generation of double stranded RNA transcripts. Elements within a transcription unit include but are not limited to promoter regions, enhancer regions, repressor binding regions, transcription initiation sites, ribosome binding sites, translation initiation sites, protein encoding regions and introns, and termination sites for transcription and translation. Preferred transcription units are arranged in a configuration shown in Figure 2(a)-(d).

As used herein, a "promoter" is a DNA region capable under certain conditions of binding RNA polymerase and initiating transcription of a coding region located downstream (in the 3' direction) from the promoter. It can be constitutive or inducible. In general, the promoter sequence is bounded at its 3' terminus by the transcription initiation site and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence is a transcription initiation site, as well as protein binding domains responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes.

The choice of promoters will largely depend on the host cells in which the vector is introduced. Commonly employed plant promoters include but are not limited those from agrobacterium, nopaline synthase gene, octopine synthase gene,

mannopine synthase, rbcS (small subunit of ribulose bis-phosphate carboxylase). In addition, the promoter sequences may be provided by viral material. Any RNA virus subgenomic promoters described in Dawson et al. Advances in Virus Research, 38:307-342 and WO93/03161 can thus be employed. For animal cells, a variety of robust promoters, both viral and non-viral promoters, are known in the art. Non-limiting representative viral promoters include CMV, the early and late promoters of SV40 virus, promoters of various types of adenoviruses (e.g. adenovirus 2) and adeno-associated viruses. It is also possible, and often desirable, to utilize promoters normally associated with a desired transgene sequence, provided that such control sequences are compatible with the host cell system. See Goeddel et al., Gene Expression Technology Methods in Enzymology Volume 185, Academic Press, San Diego, (1991), Ausubel et al, Protocols in Molecular Biology, Wiley Interscience (1994).

Suitable promoter sequences for other eukaryotic cells such as yeast cells include the promoters for 3-phosphoglycerate kinase, or other glycolytic enzymes, such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other promoters, which have the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, and the aforementioned glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization.

25

5

10

15

20

To optimize the yield of double-stranded RNAs formed from the sense and anti-sense strands transcribed by the overlapping units, it is preferable to use two promoters of comparable strength. The relative strength of the promoters can be determined or ascertained by any convention recombinant techniques and methods exemplified herein. Representative techniques are Northern blot hybridization and DNA array-based technologies. An illustrative promoter pair comprises MSV mp promoter and CaMV 35S RNA promoter.

30

Where desired, heterologous promoters that are removed from their native coding sequences and operatively linked to a transgene which it is not naturally

found linked, can be used in constructing the invention vectors. As such, any viral promoters described above can be used to drive the transcription of a non-viral transgenes; promoters of one class of genes can be employed to direct transcription of transgenes coding for other related or unrelated classes of proteins. In certain embodiments of the invention, it is preferable to employ inducible promoters to control the transcription of a transgene. A diverse variety of inducible promoters have been described in the art. Promoters of any endogenous genes whose expressions are inducible by internal or external factors can be employed. Factors applicable for transcription induction include but are not limited to hormones, heat shock, oxygen deficiency, light, stress and various chemicals. Commonly employed inducible promoters are β-gal promoter that is activated upon addition of IPTG; hps70 promoter that is inducible by heat shock; and ribulose-1,5-biphosphate carboxylase (RUBISCO) promoter that is regulated by light.

Tissue-specific promoters may also be used. A vast diversity of tissue specific promoters have been described and employed by artisans in the field. Representative plant tissue promoters include that of legumin (or other seed storage protein promoters), patatin and the like. Exemplary promoters operative in selective animal tissue include hepatocyte-specific promoters and cardiac muscle specific promoters. Depending on the intended use of the subject vectors, those skilled in the art will know of other suitable tissue-specific promoters applicable for non-constitutive bi-directional transcription.

In constructing the subject vectors, the termination sequences associated with the transgene are also inserted into the 3' end of the sequence desired to be transcribed to provide polyadenylation of the mRNA and/or transcriptional termination signal. The terminator sequence preferably contains one or more transcriptional termination sequences (such as polyadenylation sequences) and may also be lengthened by the inclusion of additional DNA sequence so as to further disrupt transcriptional read-through. Preferred terminator sequences (or termination sites) of the present invention have a gene that is followed by a transcription termination sequence, either its own termination sequence or a heterologous termination sequence. Examples of such termination sequences, including stop codons coupled to various polyadenylation sequences that are known in the art, widely available, and exemplified below. Where the terminator comprises a gene, it

can be advantageous to use a gene which encodes a detectable or selectable marker; thereby providing a means by which the presence and/or absence of the terminator sequence (and therefore the corresponding inactivation and/or activation of the transcription unit) can be detected and/or selected. Alternatively, a terminator may simply be a second promoter, arranged in inverted orientation to the promoter described above.

5

10

15

20

25

30

The terminators and promoters of the two overlapping transcription units may take a variety of configurations. In one aspect, terminators 1 and 2 of the overlapping transcription units are arranged to immediately flank the transgene as shown in Figure 2(a). In another aspect, the two terminators are placed at the 5' end or the 3' end of their respective promoters as depicted in Figure 2(b). In other aspects, terminator 1 and promoter 1 are flanked by terminator 2 and promoter 2 as shown in Figure 2(c), or vice versa (see Figure 2(d)). Any other variations in configuring the two overlapping transcription units that permit bi-directional transcription are encompassed by the present invention.

The transgene transcribed by an invention vector can be any gene expressed in a eukaryotic cell. The selection of transgene is determined largely by the intended purpose of the vector. Where the vector is used to inhibit expression of an endogenous gene present in a host cell, the transgene selected are substantially homologous to the target endogenous gene. In general, substantially homologous nucleotide sequences are at least about 60% identical with each other, after alignment of the homologous regions. Preferably, the sequences are at least about 75% identical; more preferably, they are at least about 80% identical; more preferably, they are at least about 90% identical; still more preferably, the sequences are 95% identical.

Sequence alignment and homology searches are often determined with the aid of computer methods. A variety of software programs are available in the art. Non-limiting examples of these programs are Blast (http://www.ncbi.nlm.nih.gov/BLAST/), Fasta (Genetics Computing Group package, Madison, Wisconsin), DNA Star, MegAlign, and GeneJocky. Any sequence databases that contains DNA sequences corresponding to a target gene or a segment thereof can be used for sequence analysis. Commonly employed databases include but are not limited to GenBank, EMBL, DDBJ, PDB, SWISS-PROT, EST,

STS, GSS, and HTGS. Sequence similarity can be discerned by aligning the transgene sequence against a target endogenous gene sequence. Common parameters for determining the extent of homology set forth by one or more of the aforementioned alignment programs include p value and percent sequence identity. P value is the probability that the alignment is produced by chance. For a single alignment, the p value can be calculated according to Karlin et al. (1990) Proc.Natl. Acad. Sci 87: 2264. For multiple alignments, the p value can be calculated using a heuristic approach such as the one programmed in Blast. Percent sequence identity is defined by the ratio of the number of nucleotide matches between the query sequence and the known sequence when the two are optimally aligned. A selected transgene and target endogenous sequences are considered to be substantially homologous when the regions of alignment exhibit the aforementioned range of percentage of identity using Fasta or Blast alignment program with the default settings.

15

10

5

Sequence homology can also be determined by functional analyses. A sequence that preserves the functionality of the nucleic acid with which it is being compared is particularly preferred. Functionality may be established by different criteria, such as ability to hybridize with a target polynucleotide, ability to effectively amplify a target sequence to yield a substantially homogenous multiplicity of products, and the ability to extend the 3' end sequence complementary to a target sequence in a nucleotide sequencing reaction.

20

Where desired, the transgene may comprise heterologous sequences that facilitate detection of the expression and purification of the gene product. Examples of such sequences are known in the art and include those encoding reporter proteins such as β -galactosidase, β -lactamase, chloramphenicol acetyltransferase (CAT), luciferase, green fluorescent protein (GFP) and their derivatives. Other heterologous sequences that facilitate purification may code for epitopes such as Myc, HA (derived from influenza virus hemagglutinin), His-6, FLAG, glutathione Stransferase (GST), maltose-binding protein (MBP), or the Fc portion of immunoglobulin.

30

25

The target endogenous genes whose expression is to be inhibited encompass native and heterologous genes present in the host cell. "Native" genes are nucleic acid sequences originated from the host cell. Non-limiting illustrative native genes

include those encode membrane proteins, cytosolic proteins, secreted proteins, nuclear proteins and chaperon proteins. Heterologous genes are sequences acquired exogenously by the host cell. Exogenous sequences can be either integrated into the host cell genome, or maintained as episomal sequences. An exemplary class of heterologous genes includes pathogenic genes derived from viruses, bacteria, fungi, and protozoa.

5

10

15

20

25

30

The endogenous genes suitable for the present invention may also be characterized based on one or more of the following features: ability to induce a phenotypic change in a host cell or organism, species origin, developmental origin, primary structural similarity, involvement in a particular biological process, association with or resistance to a particular disease or disease stage, tissue, subtissue or cell-specific expression pattern, and subcellular location of the expressed gene product. In one aspect, the endogenous gene may be any gene expressed in a eukaryote cell, such as a plant cell, animal cell or a yeast cell. In another aspect, the endogenous gene confers a phenotypic characteristic detectable by visual, microscopic, genetic, or chemical means. Within this class of genes, of particular interest are plant genes involved in growth phenotypes, e.g. stunting, hyperbranching, vein banding, ring spot, etching, and those responsible for color characteristics including bleaching and chlorosis. Also, of particular relevance are genes which upon inhibition provide an enhanced resistance to pathogens (e.g. bacteria, fungi, viruses, insects, and protozoa), and resistance to adverse environmental factors (e.g. temperature fluctuation, nutritional deficiency, adverse soil conditions, moisture, dryness, etc.).

In another aspect, the endogenous genes are of a specific developmental origin, such as those expressed in an embryo or an adult organism, during ectoderm, mesoderm, or endoderm formation in a multi-cellular animal, or during development of leaves, tubers, bud of a plant. In yet another aspect, the endogenous genes belong to a family of genes, or a sub-family of genes that share primary structural similarities. Structural similarities can be discerned with the aid of computer software described above. Non-limiting examples of gene families include those encoding proteinase, proteinase inhibitors, cell surface receptors, protein kinases (e.g. tyrosine, serine/threonine or histidine kinases), trimeric G-proteins, cytokines, PH-, SH2-, SH3-, PDZ-domain containing proteins, and any of those gene families

published by the Institute for Genomic Research (TIGR), Incyte Pharmaceuticals, Inc., Human Genome Sciences Inc., Monsanto, and PE-Celera.

5

10

15

20

25

30

In yet another aspect, the endogenous genes are involved in a specific biological process, including but not limited to cell cycle regulation, cell differentiation, chemotaxsis, apoptosis, cell motility and cytoskeletal rearrangement. In still another aspect, the endogenous genes embodied in the invention are associated with a particular disease or with a specific disease stage. Such genes include but are not limited to those associated with autoimmune diseases, obesity, hypertension, diabetes, neuronal and/or muscular degenerative diseases, cardiac diseases, endocrine disorders, any combinations thereof. In yet still another aspect, the endogenous genes encompass those exhibiting restricted expression patterns. Non-limiting exemplary gene transcripts of this class include those that are not ubiquitously expressed, but rather are differentially expressed in one or more of the plant tissues including leaf, seed, tuber, stems, root, and bud; or expressed in animal body tissues including heart, liver, prostate, lung, kidney, bone marrow, blood, skin, bladder, brain, muscles, nerves, and selected tissues that are affected by various types of cancer (malignant or non-metastatic), affected by cystic fibrosis or polycystic kidney disease. Additional examples of non-ubiquitously expressed genes are those whose gene products are localized to certain subcellular locations: extracellular matrix, nucleus, cytoplasm, cytoskeleton, plasma and/or intracellular membranous structures which include but are not limited to coated pits, Golgi apparatus, endoplasmic reticulum, endosome, lysosome, and mitochondria.

In addition to the above-described elements, the vectors may contain a selectable marker (for example, a gene encoding a protein necessary for the survival or growth of a host cell transformed with the vector), although such a marker gene can be carried on another polynucleotide sequence co-introduced into the host cell. Only those host cells into which a selectable gene has been introduced will survive and/or grow under selective conditions. Typical selection genes encode protein(s) that (a) confer resistance to antibiotics or other toxins substances, e.g., ampicillin, neomycyin, methotrexate, etc.; (b) complement auxotrophic deficiencies; or (c) supply critical nutrients not available from complex media. The choice of the proper marker gene will depend on the host cell, and appropriate genes for different hosts are known in the art.

The vectors embodied in this invention can be obtained using recombinant cloning methods and/or by chemical synthesis. A vast number of recombinant cloning techniques such as PCR, restriction endonuclease digestion and ligation are well known in the art, and need not be described in detail herein. One of skill in the art can also use the sequence data provided herein or that in the public or proprietary databases to obtain a desired vector by any synthetic means available in the art.

Host cell and transgenic organisms of the present invention:

10

15

5

The invention provides eukaryotic host cells transformed with the recombinant DNA vectors described above. The recombinant vectors containing the transgene of interest can be introduced into a suitable eukaryotic cell by any of a number of appropriate means, including electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; and infection (where the vector is coupled to an infectious agent). The choice of introducing vectors will often depend on features of the host cell.

20

For most animal cells, any of the above-mentioned methods is suitable for vector delivery. For plant cells, a variety of techniques derived from these general methods is available in the art. The host cells may be in the form of whole plants, isolated cells or protoplasts. Preferably, the cells are "intact" in that the cell comprises an outer layer of cell wall, typically composed of cellulose for protection and maintaining the rigidity of the plant cell. Illustrative procedures for introducing vectors into plant cells include Agrobacterium-mediated plant transformation, protoplast transformation, gene transfer into pollen, injection into reproductive organs and injection into immature embryos. As is evident to one skilled in the art, each of these methods has distinct advantages and disadvantages. Thus, one particular method of introducing genes into a particular plant species may not necessarily be the most effective for another plant species.

30

25

Agrobacterium tumefaciens-mediated transfer is a widely applicable system for introducing genes into plant cells because the DNA can be introduced into whole plant tissues, bypassing the need for regeneration of an intact plant from a protoplast. The use of Agrobacterium-mediated expression vectors to introduce

5

10

15

20

25

30

DNA into plant cells is well known in the art. This technique makes use of a common feature of Agrobacterium which colonizes plants by transferring a portion of their DNA (the T-DNA) into a host cell, where it becomes integrated into nuclear DNA. The T-DNA is defined by border sequences which are 25 base pairs long, and any DNA between these border sequences is transferred to the plant cells as well. The insertion of a recombinant plant viral nucleic acid between the T-DNA border sequences results in transfer of the recombinant plant viral nucleic acid to the plant cells, where the recombinant plant viral nucleic acid is replicated, and then spreads systemically through the plant. Agro-infection has been accomplished with potato spindle tuber viroid (PSTV); CaV; and Lazarowitz, S., Nucl. Acids Res. 16:229 (1988)) digitaria streak virus (Donson et al., Virology 162:248 (1988)), wheat dwarf and tomato golden mosaic virus (TGMV). Therefore, agro-infection of a susceptible plant could be accomplished with a virion containing a recombinant plant viral nucleic acid based on the nucleotide sequence of any of the above viruses. Particle bombardment or electrosporation or any other methods known in the art may also be used.

Because not all plants are natural hosts for Agrobacterium, alternative methods such as transformation of protoplasts may be employed to introduce the subject vectors into the host cells. For certain monocots, transformation of the plant protoplasts can be achieved using methods based on calcium phosphate precipitation, polyethylene glycol treatment, electroporation, and combinations of these treatments. See, for example, Potrykus et al., *Mol. Gen. Genet.*, 199:167-177 (1985); Fromm et al., *Nature*, 319:791 (1986); Callis et al., *Genes and Development*, 1:1183 (1987). Applicability of these techniques to different plant species may depend upon the feasibility to regenerate that particular plant species from protoplasts.

In addition to protoplast transformation, particle bombardment is an alternative and convenient technique for delivering the invention vectors into a plant host cell. Specifically, the plant cells may be bombarded with microparticles coated with a plurality of the subject vectors. Bombardment with DNA-coated microprojectiles has been successfully used to produce stable transformants in both plants and animals (see, for example, Sanford et al. (1993) *Methods in Enzymology*, 217:483-509). Microparticles suitable for introducing vectors into a plant cell are

typically made of metal, preferably tungsten or gold. These microparticles are available for example, from BioRad (e.g., Bio-Rad's PDS-1000/He). Those skilled in the art will know that the particle bombardment protocol can be optimized for any plant by varying parameters such as He pressure, quantity of coated particles, distance between the macrocarrier and the stopping screen and flying distance from the stopping screen to the target.

5

10

15

. 20

25

30

Vectors can also be introduced into plants by direct DNA transfer into pollen as described by Zhou et al., Methods in Enzymology, 101:433 (1983); Luo et al., *Plant Mol. Biol. Reporter*, 6:165 (1988). Alternatively, the vectors can be injected into reproductive organs of a plant as described by Pena et al., *Nature*, 325:274 (1987).

Other techniques for introducing nucleic acids into a plant cell include:

- (a) Hand Inoculations. Hand inoculations are performed using a neutral pH, low molarity phosphate buffer, with the addition of cellite or carborundum (usually about 1%). One to four drops of the preparation is put onto the upper surface of a leaf and gently rubbed.
- (b) Mechanized Inoculations of Plant Beds. Plant bed inoculations are performed by spraying (gas-propelled) the vector solution into a tractordriven mower while cutting the leaves. Alternatively, the plant bed is mowed and the vector solution sprayed immediately onto the cut leaves.
- (c) High Pressure Spray of Single Leaves. Single plant inoculations can also be performed by spraying the leaves with a narrow, directed spray (50 psi, 6-12 inches from the leaf) containing approximately 1% carborundum in the buffered vector solution.
- (d) Vacuum Infiltration. Inoculations may be accomplished by subjecting a host organism to a substantially vacuum pressure environment in order to facilitate infection.

Once introduced into a suitable host cell, expression of the transgene can be determined using any assay known in the art. For example, the presence of transcribed sense or anti-sense strands of the transgene can be detected and/or quantified by conventional hybridization assays (e.g. Northern blot analysis), amplification procedures (e.g. RT-PCR), SAGE (U.S. Patent No. 5,695,937), and

array-based technologies (see e.g. U.S. Pat. Nos. 5,405,783, 5,412,087 and 5,445,934). In conducting these analytical procedures, it is preferable to induce transcription of one strand of the transgene at a time. As is apparent to one skilled in the art, the simultaneous transcription of both sense and anti-sense strands facilitates formation of double stranded RNA molecules, which may obscure the accurate determination of the levels of sense and anti-sense RNA transcripts.

5

10

15

20

25

30

Expression of the transgene can also be determined by examining the protein product. A variety of techniques are available in the art for protein analysis. They include but are not limited to radioimmunoassays, ELISA (enzyme linked immunoradiometric assays), "sandwich" immunoassays, immunoradiometric assays, in situ immunoassays (using e.g., colloidal gold, enzyme or radioisotope labels), western blot analysis, immunoprecipitation assays, immunoflourescent assays, and PAGE-SDS.

In general, determining the protein level involves (a) providing a biological sample containing polypeptides; and (b) measuring the amount of any immunospecific binding that occurs between an antibody reactive to the transgene product and a component in the sample, in which the amount of immunospecific binding indicates the level of expressed proteins. Antibodies that specifically recognize and bind to the protein products of the transgene are required for immunoassays. These may be purchased from commercial vendors or generated and screened using methods well known in the art. See Harlow and Lane (1988) supra. and Sambrook et al. (1989) supra. The sample of test proteins can be prepared by homogenizing the eukaryotic transformants (e.g. plant cells) or their progenies made therefrom, and optionally solubilizing the test protein using detergents, preferably non-reducing detergents such as triton and digitonin. The binding reaction in which the test proteins are allowed to interact with the detecting antibodies may be performed in solution, or on a solid tissue sample, for example, using tissue sections or solid support that has been immobilized with the test proteins. The formation of the complex can be detected by a number of techniques known in the art. For example, the antibodies may be supplied with a label and unreacted antibodies may be removed from the complex; the amount of remaining label thereby indicating the amount of complex formed. Results obtained using any such assay on a sample

from a plant transformant or a progeny thereof is compared with those from a non-transformed source as a control.

5

10

15

20

25

30

The eukaryotic host cells of this invention are grown under favorable conditions to effect transcription of the transgene. Non-limiting examples of eukaryotic hosts are fungus, yeast, plant cells, insect, avian, mammalian or other animal cells. The host cells can be used, *inter alia*, as repositories of the transgene and/or vehicles for production of the transgene-specific double stranded RNAs. The host cells may also be employed to generate transgenic organisms such as transgenic animals and plants comprising the recombinant DNA vectors of the present invention. Preferred host cells are those having the propensity to regenerate into tissue or a whole organisms. Examples of these preferred host cells are oocytes, blastocytes, and certain plant cells exemplified herein.

Accordingly, this invention provides transgenic plants carrying the subject vectors. In a preferred embodiment, the trangenic plant exhibits a reduced expression (when compared to a control plant) of an endogenous gene that is substantially homologous to the transgene carried in the subject vector.

The regeneration of plants from either single plant protoplasts or various explants is well known in the art. See, for example, Methods for Plant Molecular Biology, Mary A. Shuler and Raymond E. Zielinski, Academic Press, Inc., San Diego, Calif. (1988). This regeneration and growth process includes the steps of selection of transformant cells and shoots, rooting the transformant shoots and growth of the plantlets in soil.

The regeneration of plants containing the subject vector introduced by Agrobacterium tumefaciens from leaf explants can be achieved as described by Horsch et al., Science, 227:1229-1231 (1985). In this procedure, transformants are grown in the presence of a selection agent and in a medium that induces the regeneration of shoots in the plant species being transformed as described by Fraley et al., Proc. Natl. Acad. Sci. U.S.A., 80:4803 (1983). This procedure typically produces shoots within two to four weeks and these transformant shoots are then transferred to an appropriate root-inducing medium containing the selective agent and an antibiotic to prevent bacterial growth. Transformant shoots that rooted in the presence of the selective agent to form plantlets are then transplanted to soil to allow

the production of roots. These procedures will vary depending upon the particular plant species employed, as is apparent to one of ordinary skill in the art.

A population of progeny can be produced from the first and second transformants of a plant species by methods well known in the art including cross fertilization and asexual reproduction. Transgenic plants embodied in the present invention are useful for production of desired proteins, and as test systems for analysis of the biological functions of a gene.

Uses of the vectors of the present invention:

10

5

The subject vectors provide specific reagents for inhibiting expression of an endogenous gene present in a host cell. The expression inhibition methods may be used in a wide variety of circumstances including suppression of a gene associated with a particular disease or disease stage; delineating the biological functions of a gene by analyzing a phenotypic change in the host cell that correlates with the selective suppression of gene expression; and facilitating drug screening by rendering the host cell more susceptible or resistant to a therapeutic agent of interest.

15

20

Accordingly, this invention provides a method of inhibiting expression of an endogenous gene present in a eukaryotic cell. The method comprises the steps of:

(a) providing a subject vector containing a transgene that is substantially homologous to an endogenous gene of a eukaryotic cell; (b) introducing the recombinant vector into the eukaryotic cell; (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene, and thereby inhibiting expression of the corresponding endogenous gene in the eukaryotic cell.

25

In a separate embodiment, the invention provides a method of identifying a biological function(s) of an endogenous gene of interest in a eukaryotic cell by selectively inhibiting the expression of the endogenous gene. The method involves: (a) providing a recombinant vector of the present invention, wherein the transgene contained in the vector is substantially homologous to the endogenous gene; (b) introducing the recombinant vector of (a) into the eukaryotic cell; (c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene contained in the recombinant vector and thereby inhibiting expression of the endogenous gene in the eukaryotic cell; and

30

(d) determining one or more phenotypic changes in the eukaryotic cell that correlate with the inhibited expression of the endogenous gene, thereby identifying the biological function(s) of the endogenous gene in the eukaryotic cell.

5

10

15

20

25

30

The host cells encompassed by these embodiments are eukaryotic cells susceptible to dsRNA-mediated "genetic interference". dsRNA induced gene silencing has been observed in a variety of multi-cellular organisms including but not limited to worms, fruitflies, protozoa, fungi, mammals, and zebrafish. Thus, cells from any of these exemplary organisms can be employed. Suitable host cells may be derived from primary cultures or subcultures generated by expansion and/or cloning of primary cultures. Any cells capable of growth in culture can be used as host cells. Of particular interest is the type of cell that differentially expresses (over-expresses or under-expresses) a disease-causing gene. As is apparent to one skilled in the art, various cell lines may be obtained from public or private repositories. The largest depository agent is American Type Culture Collection (http://www.atcc.org), which offers a diverse collection of well-characterized cell lines derived from a vast number of organisms and tissue samples.

Upon delivery of the subject vectors, the host cells are cultured under conditions favorable for gene transcription. The parameters governing eukaryotic cell survival are generally applicable for induction of gene transcription. The culture conditions are well established in the art. Physicochemical parameters which may be controlled in vitro are, e.g., pH, CO₂ temperature, and osmolarity. The nutritional requirements of cells are usually provided in standard media formulations developed to provide an optimal environment. Nutrients can be divided into several categories: amino acids and their derivatives, carbohydrates, sugars, fatty acids, complex lipids, nucleic acid derivatives and vitamins. Apart from nutrients for maintaining cell metabolism, most cells also require one or more hormones from at least one of the following groups: steroids, prostaglandins, growth factors, pituitary hormones, and peptide hormones to survive or proliferate (Sato, G.H., et al. in "Growth of Cells in Hormonally Defined Media", Cold Spring Harbor Press, N.Y., 1982; Barnes and Sato (1980) Anal. Biochem., 102:255. Given the vast wealth of information on the nutrient requirements, medium conditions optimized for cell survival, one skilled in the art can readily fashion various culture conditions using

any one of the aforementioned methods and compositions, alone or in any combination.

The inhibition of expression of the endogenous gene sharing substantial sequence homology with the transgene carried in the vectors can be determined by assaying for a difference, between the host cell and the control cell, in the level of mRNA transcripts of the endogenous gene. Alternatively, a suppression in expression is determined by detecting a difference in the level of the polypeptide(s) encoded by the endogenous gene. A preferred method is to detect a phenotypic change resulting from the decrease in expression of the endogenous gene of interest.

10

5

In assaying for an alteration in mRNA level, nucleic acid contained in the host cells is first extracted according to standard methods in the art. For instance, mRNA can be isolated using various lytic enzymes or chemical solutions according to the procedures set forth in Sambrook et al. (1989), *supra* or extracted by nucleic-acid-binding resins following the accompanying instructions provided by manufacturers. The mRNA contained in the extracted nucleic acid sample is then detected by hybridization (e.g. Northern blot analysis) and/or amplification procedures according to methods widely known in the art or based on the methods exemplified herein.

20

15

Reduction in expression of the endogenous gene can also be determined by examining the protein product of the endogenous gene. A variety of techniques is available in the art for protein analysis. They include but are not limited to radioimmunoassays, ELISA (enzyme linked immunoradiometric assays), "sandwich" immunoassays, immunoradiometric assays, in situ immunoassays (using e.g., colloidal gold, enzyme or radioisotope labels), western blot analysis, immunoprecipitation assays, immunoflourescent assays, and SDS-PAGE. In addition, cell sorting analysis can be employed to detect cell surface antigens. Such analysis involves labeling target cells with antibodies coupled to a detectable agent, and then separating the labeled cells from the unlabeled ones in a cell sorter. A sophisticated cell separation method is fluorescence-activated cell sorting (FACS). Cells traveling in single file in a fine stream are passed through a laser beam, and the fluorescence of each cell bound by the fluorescently labeled antibodies is then measured.

30

25

Antibodies that specifically recognize and bind to the protein products of interest are required for conducting the aforementioned protein analyses. These antibodies may be purchased from commercial vendors or generated and screened using methods well known in the art. See Harlow and Lane (1988) supra. and Sambrook et al. (1989) supra.

host cell. As used herein, phenotypic change refers to any non-genotypic change that can be detected visually, or analyzed biochemically or genetically. The choice

characteristics that are under investigation. For instance, certain phenotypic features of a plant cell can be detected microscopically or macroscopically. These features include improved tolerance to herbicides, improved tolerance to extremes of heat or

of detection methods will largely depend on the nature of the phenotypic

cold, drought, salinity or osmotic stress; improved resistance to pests (insects, nematodes or arachnids) or diseases (fungal, bacterial or viral), production of

enzymes or secondary metabolites; male or female sterility; dwarfness; early

maturity; improved yield, vigor, heterosis, nutritional qualities, flavor or processing properties, and the like. Other detectable phenotypic changes are morphological alterations including but not limited to stunting, hyperbranching, vein banding, ring spot, etching, and those responsible for color characteristics including bleaching and

For animal cells, detectable phenotypic changes may encompass alterations

in cell cycle regulation, cell differentiation, apoptosis, chemotaxsis, cell motility and

Inhibition of gene expression can also result in phenotypic change(s) in a

10

5

15

chlorosis.

20

25

30

cytoskeletal rearrangement. Methods for detecting these phenotypic changes are well-established in the art and hence are not detailed herein. Other phenotypic changes commonly observed in both plant and animal cells involve differential expression (over-expression or under-expression) of a particular protein due to the selective inhibition of the endogenous gene of interest. Differential gene expression may be analyzed by any chemical means available in the art or those disclosed herein. As is also apparent to artisans, altering expression of one endogenous gene may lead to changes in gene expression profile of a host of genes mapped to the same or related signal transduction pathways. As used herein, "signal transduction" refers to the process by which stimulatory or inhibitory signals

27

are transmitted into and within a cell to elicit an intracellular response. Any

fluctuation in intracellular response of a eukaryotic host cell is also considered as a type of phenotypic change.

5

10

15

20

25

30

Alteration in intracellular response is often determined with the aid of reporter molecules. For example, when examining a signaling cascade involving a fluctuation of intracellular pH condition, pH sensitive molecules such as fluorescent pH dyes can be used as the reporter molecules. In another example where the signaling pathway of a trimeric G_q protein is analyzed, calcium-sensitive fluorescent probes can be employed as reporters. As is apparent to artisans in the field of signal transduction, trimeric G_q protein is involved in a classic signaling pathway, in which activation of G_q stimulates hydrolysis of phosphoinositides by phospholipase C to generate two classes of well-characterized second messengers, namely, diacylglycerol and inositol phosphates. The latter stimulates the mobilization of calcium from intracellular stores, and thus resulting in a transient surge of intracellular calcium concentration, which is a readout measurable with a calcium-sensitive probe.

Another exemplary class of reporter molecules is a reporter gene operably linked to an inducible promoter that can be activated upon the stimulation or inhibition of a signaling pathway. Reporter proteins can also be linked with other proteins whose expression is dependent upon the stimulation or suppression of a given signaling cascade. Commonly employed reporter proteins can be easily detected by a colorimetric or fluorescent assay. Non-limiting examples of such reporter proteins include: β -galactosidase, β -lactamase, chloramphenicol acetyltransferase (CAT), luciferase, green fluorescent protein (GFP) and their derivatives. Those skilled in the art will know of other suitable reporter molecules for assaying changes in a specific signaling transduction readout, or will be able to ascertain such, using routine experimentation.

To discern inhibition of gene expression, one typically conducts a comparative analysis of the subject and appropriate controls. Preferably, a test includes a positive control sample exhibiting a decrease in gene expression and a negative control having an unaltered expression level. The selection of an appropriate control cell or tissue is dependent on the sample cell or tissue initially selected and its phenotype which is under investigation.

In one aspect, the invention methods can be employed to selectively inhibit expression of an endogenous gene that is native to the eukaryotic host cell. Such a gene may encode encodes a protein selected from the group consisting of a membrane protein, a cytosolic protein, a secreted protein, a nuclear protein and a chaperon protein. Of particular interests are endogenous genes that confer phenotypic changes as a result of inhibition of the expression and/or function of the endogenous genes. In another aspect within this embodiment, the endogenous gene is heterologous to the host cell. As used herein, heterologous genes are acquired exogenously by the host cell. Non-limiting examples of heterologous genes are those derived from virus, bacterium, fungus, and protozoa.

In a separate embodiment, the invention methods are used to identify a biological function(s) of an endogenous gene in a eukaryotic cell by examining a phenotypic change associated with the inhibition in its expression and thus loss of biological function. In essence, the subject methods allow the creation of a transient or more long-term gene-specific knock-out system for analyzing the biological function of any endogenous gene of interest.

Kits comprising the vectors of the present invention

5

10

15

20

25

30

The present invention also encompasses kits containing the vectors of this invention in suitable packaging. Kits embodied by this invention include those that allow generation of a double-stranded RNA transcript in a eukaryotic cell.

Each kit necessarily comprises the reagents which render the delivery of vectors into a eukaryotic host cell possible. The selection of reagents that facilitate delivery of the vectors may vary depending on the particular transfection or infection method used. The kits may also contain reagents useful for generating labeled polynucleotide probes or proteinaceous probes for detection of gene silencing. Each reagent can be supplied in a solid form or dissolved/suspended in a liquid buffer suitable for inventory storage, and later for exchange or addition into the reaction medium when the experiment is performed. Suitable packaging is provided. The kit can optionally provide additional components that are useful in the procedure. These optional components include, but are not limited to, buffers, capture reagents, developing reagents, labels, reacting surfaces, means for detection, control samples, instructions, and interpretive information. The kits can be

employed to generate eukaryotic cells whose endogenous genes are selectively inhibited, and transgenic organisms comprising these eukaryotic cells.

Further illustration of the development and use of vectors and assays according to this invention are provided in the Example section below. The examples are provided as a guide to a practitioner of ordinary skill in the art, and are not meant to be limiting in any way.

5

EXAMPLES

Example 1: Construction of recombinant vectors comprising two opposing transcription units

5

We have designed a recombinant vector construct useful for silencing nuclear genes in many of the agriculturally-important cereal crops. The vector comprises sequences derived from maize streak geminivirus, isolated MSV-Kom (genbank accession number AF003952, classification: Family Geminiviridae, genus Mastrevirus, species maize streak virus, designated MSV-Komatipoort. Maize streak virus has a broad host range that encompasses all agriculturally important cereal crops, including but not limited to corn, wheat, rice, barley, rye, sorghum and millet. The methods for construction of infectious geminiviruses are well known to those skilled in the art, and are described in European patent application 8687015.5 as well as in US Patent No. 5,569,597.

15

20

10

We have synthesized a 1618 base pair synthetic DNA that contains the MSV-Kom repA and repB, long intergenic region (LIR) and short intergenic region (SIR) and thus all sequences that are required for viral replication. Palmer et al.(1999) Archives of Virology 144:1345-1360. This fragment was cloned into the pZeRO-2 vector (Invitrogen) as an EcoRI-XbaI fragment, to create the plasmid pMSVLSB-1, the sequence of which is shown in Figure 4. A 171 base pair fragment containing the movement protein (mp) promoter of MSV-Kom is synthesised and cloned into the pZeRO-2 vector as an HindIII-EcoRI fragment to create pMSVLSB-2 (sequence shown in Figure 5). The ApaI fragment containing the mp promoter is inserted between the two ApaI sites in pMSVLSB-1, to create pMSVLSB-3 (sequence shown in Figure 6).

25

30

The cauliflower mosaic virus 35S RNA promoter (CaMV 35S promoter) sequence is amplified with a vector containing this sequence (pBI121, from Clontech) as template DNA, using the following PCR primers containing the following restriction sites (shown in italicized): *Eco*RI in CaMV35SF and *Sal*I in CaMV35SR.

CaMV35SF:

TTTGAATTCGTCAACATGGTGGAGCAC (SEQ ID NO:1)

CaMV35SR:

TTTGTCGACGTCCTCTCCAAATGAAATGAAC (SEQ ID NO:2)

5

10

30

The CaMV 35S promoter PCR product yielded is digested with *Eco*RI and *Sal*I and the restricted fragments are purified.

The zeocin resistance gene is amplified by PCR with the vector pZeRO-1 (Invitrogen) as template, using the following primers containing the following restriction sites shown in italicized: SalI, PacI and NotI in ZeoF and XhoI, PacI and NotI in ZeoR:

ZeoF:

15 CCCGTCGACTTAATTAAGCGGCCGCGTTTACAATTTCGCCTGATGC (SEQ ID NO:3)

ZeoR:

CCCCTCGAGTTAATTAAGCGGCCGCCTCAAAAAGGATCTTCACCTA

20 G (SEQ ID NO:4)

The zeocin resistance gene product yielded is digested with XhoI and SalI and purified.

The nopaline synthase (nos) terminator sequence is amplified by PCR with the vector pBI121 (Clontech) as template, using the following primers, with restriction sites XhoI in nosF and SpeI in nosR italicized:

NosF:

TTTCTCGAGCGAATTTCCCCGATCGTTCAAAC (SEQ ID NO:5)

NosR:

TTTACTAGTCCCGATCTAGTAACATAGATGAC (SEQ ID NO:6)

The nos terminator product yielded is digested with XhoI and SpeI and purified.

5

The digested CaMV35S promoter, zeocin resistance gene and nos terminator sequences are ligated together with T4 DNA ligase. The ligated product is diluted 1:100 in sterile water and the whole ligation product is re-amplified with the CaMV35SF and nosR primers. The resulting PCR product is digested with *EcoRI* and *SpeI*, purified and ligated with pMSVLSB-3 that is pre-digested with *EcoRI* and *SpeI*. The ligation reaction is used to transform *E. coli* competent cells. Transformants are selected on Luria Agar plates containing both kanamycin (100 µg/ml) and zeocin (50 µg/ml) to select for colonies containing the CaMV35S promoter-zeocin resistance gene-nos terminator cassette inserted into pMSVLSB-3 (Figure 6 and SEQ ID NO:11). Colonies putatively containing the correct plasmid are chosen, plasmid DNA isolated and screened by digestion with *EcoRI* and *SpeI*. One plasmid designated pMSVLSB-4 (Figure 7 and SEQ ID NO:12) is selected.

15

20

25

10

One of the methods in the art of construction of infectious clones of geminivirus genomes is to clone tandemly duplicated sequences of the geminivirus genome, with at least the LIR duplicated. This allows the virus sequence to escape from the cloning vector in planta by a replicative release mechanism. The virus Rep protein is transiently expressed in transfected cells, and induces a nick at each of the stem loop sequences contained within the origin of replication in the LIR. Rolling circle replication is initiated at each nick point, and this results in release of a ssDNA copy of the virus replicon, which is circularized by the Rep protein, and which then replicates autonomously in the plant cell nucleus. The XbaI-SpeI fragment from pMSVLSB-3, containing the viral LIR and Rep genes is inserted into the unique SpeI site in pMSVLSB-4 to create pMSVLSB-5 (Figure 8 and SEQ ID NO:13). The zeocin resistance gene is deleted by digestion with NotI; the DNA is recircularized and used to transform E.coli to kanamycin resistance with a new vector, pMSVLSB-6 (Figure 9 and SEQ ID NO:14). When the vector is introduced into plant cells, a monomeric copy of the insert is released by replicative release (described above) and replicates autonomously as construct MSVLSB-6 in the nuclei of infected cells.

30

The restriction map of construct MSVLSB-6 is shown in Figure 3; this genetic construct possesses the following features: (a) the *rep* genes and origins of replication from maize streak geminivirus that are necessary and sufficient for the autonomous replication of the viral construct and its associated foreign DNA in the host plant cell; (b) two overlapping transcription units present in the DNA replicon. The two overlapping transcription units are arranged according to the configuration shown in Figure 2. With reference to Figure 2, "promoter 1" and "terminator 1" in MSVLSB-6 are the MSV mp promoter and transcription termination signals present in the SIR, respectively, and "promoter 2" and "terminator 2" are the CaMV 35S RNA promoter and nos terminator sequences, respectively. The two overlapping transcription units share three unique restriction sites (*SaII*, *PacI* and *NotI*) and one non-unique restriction site (*XhoI*) where foreign DNA may be inserted so that it may be transcribed by both promoters to yield at least a partially double stranded RNA duplex of the foreign DNA sequence.

15

10

5

Example 2: Use of recombinant vectors to inhibit or silence gene expression in cereal crops;

Application of pMSVLSB-6 in inhibition of Dwarf1 gene expression in rice

20

25

30

The vector pMSVLSB-6 exemplified above can be employed to inhibit expression of any endogenous gene in a variety of plant host cells. By way of illustration, the rice gene *Dwarf1* is inhibited to duplicate known mutant phenotype using a pMSVLSB-6 containing a fragment of the coding sequence of *Dwarf1* (Genbank accession number AB028602). The gene is amplified from cDNA isolated from rice seedlings. Primer sequences are designed to have homology with the published sequence of Dwarf1. Ashikari et al. (1999) PNAS U.S.A. 96:10284-10289. The primer sequences contain NotI restriction sites at their 5' ends. The PCR product is digested with NotI and cloned into the NotI site of pMSVLSB-6 to generate pMSVLSB-6::dwarf1s and pMSVLSB-6::dwarf1a, with the insert cloned in the sense and antisense orientation with respect to the MSV mp promoter, respectively. The XbaI-SpeI fragment from each of these plasmids is transferred into an Agrobacterium binary vector that is commonly used for rice transformation. This vector is used to transform electrocompetent Agrobacterium strain LBA4404

ş

(Life Technologies). Agrobacterium cultures containing the appropriate plasmids are used in transformation of rice. Transgenic rice is generated by standard protocols (see, e.g. US Patent 5,591,616). The transgenic rice plants display similar phenotypes to the dwarf1 mutant described by Ashikari et al. (1999) supra: they are giberellin-insensitve, dwarfed in comparison with un-silenced transgenic controls, and having broad, dark green leaves, compact pannicles and short, round grains.

Application of pMSVLSB-6 in inhibition of phytoene desaturase expression in maize seedlings

10

15

25

30

5

The coding sequence for the maize phytoene desaturase gene (pds), having the Genbank accession number U37285, is amplified from cDNA made from RNA isolated from four-day-old maize seedlings, of the cultivar "Golden Cross Bantam". The primers used for amplification of this cDNA have the following sequences containing the PacI sites (italicized) at the 5' ends:

zeapds1330:

TTTTTAATTAAGGTCCGCCTGAATTCTCG (SEQ ID NO:7)

20 zeapds1873

TTTTTAATTAACGGCAAGGCTCACAGTTTG (SEQ ID NO:8)

PCR amplification with these primers and cDNA made from RNA isolated from maize seedlings yields a product of 565 base pairs, which is then digested with *PacI*. The progenitor plasmid to pMSVLSB-6, pMSVLSB-5 is digested with *XbaI* and *SpeI* to release the MSV and associated overlapping transcription unit sequences from the pZeRO-2 cloning vector as a single 4816 base pair fragment. This fragment is cloned into the *Agrobacterium* binary vector pBin19 (Genbank: U09365) digested with *XbaI* to yield pMSVLSB-7. The plasmid pMSVLSB-7 is digested with *PacI* and the *pds* PCR fragment is inserted into this position, generating plasmid pMSVLSB-7::*pds1* (cloned in the sense orientation with respect to the MSV mp promoter) and pMSVLSB-7::*pds2* (cloned in the antisense orientation with respect to the MSV mp promoter. These two plasmids are each

introduced into Agrobacterium strain C58C1(pMP90) (Koncz and Schell, 1985) by electroporation. The Agrobacterium containing the binary vector plasmids is grown overnight in Luria Bertani medium containing appropriate selective antibiotics. The bacterial suspension is loaded into a 100 µl Hamilton syringe and injected into three day old maize seedlings (cultivar Golden Cross Bantam) according to methods described by Escudero et al. (1994) in the chapter "Agroinfection" of The Maize Handbook, Freelings M, Walbot V (eds). Plants that are successfully agroinfected display a photobleaching phenotype on the first three leaves, similar to that induced by spraying the plants with the phytoene desaturase-inhibitor norfluorazon.

10

5

CLAIMS

What is claimed is:

A eukaryotic recombinant vector comprising a viral replicon having two
overlapping transcription units arranged in an opposing orientation and flanking a
transgene of interest, wherein the two overlapping transcription units yield both
sense and antisense RNA transcripts from the same transgene in a eukaryotic host
cell.

10

5

- 2. The eukaryotic recombinant vector of claim 1, wherein each of the overlapping transcription units comprises a promoter and a terminator.
- 3. The eukaryotic recombinant vector of claim 2, wherein the promoter is a constitutive promoter.

15

4. The eukaryotic recombinant vector of claim 2, wherein the promoter is an inducible promoter.

5. The eukaryotic recombinant vector of claim 2, wherein the promoter is a tissue-specific promoter.

tissue-specific promoter.

25

6. The eukaryotic recombinant vector of claim 1, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(a).

7. The eukaryotic recombinant vector of claim 1, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(b).

30

8. The eukaryotic recombinant vector of claim 1, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(c).

9. The eukaryotic recombinant vector of claim 1, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(d).

5 10. The eukaryotic recombinant vector of claim 1 that inhibits gene expression of the eukaryotic host cell.

10

15

20

25

30

- 11. The eukaryotic recombinant vector of claim 1, wherein the eukaryotic host cell is selected from the group consisting of fungus, yeast cell, plant cell and animal cell.
- 12. The eukaryotic recombinant vector of claim 1 that inhibits expression of an endogenous gene present in the host cell, wherein the endogenous gene is substantially homologous to the transgene contained in the overlapping transcription units.
- 13. The eukaryotic recombinant vector of claim 12, wherein the endogenous gene is native to the host cell.
- 14. The eukaryotic recombinant vector of claim 12, wherein the endogenous gene is heterologous to the host cell.
- 15. The eukaryotic recombinant vector of claim 12, wherein the endogenous gene is a pathogenic gene derived from one or more members of the group consisting of virus, bacterium, fungus, and protozoa.
- 16. The eukaryotic recombinant vector of claim 1, wherein expression of the transgene to yield double-stranded RNA transcripts confers a phenotypic change in the eukaryotic host cell.
- 17. The eukaryotic recombinant vector of claim 1, wherein the transgene encodes a protein selected from the group consisting of a membrane protein, a cytosolic protein, a secreted protein, a nuclear protein, and a chaperon protein.

18. The eukaryotic recombinant vector of claim 1 that is an autonomously replicating vector.

- 19. The eukaryotic recombinant vector of claim 1, wherein the viral replicon is derived from a DNA virus.
- 20. The eukaryotic recombinant vector of claim 19, wherein the DNA virus is selected from the group consisting of Geminivirus, Caulimoviridae,
 Badnaviridae; Circoviridae, Circinoviridae, Parvoviridae, Papovaviridae,
 Polyomaviridae, Adenoviridae, Herpesviridae, Poxviridae, Iridoviridae,
 Baculoviridae, Hepadnaviridae, Retroviridae, Gyrovirus, Nanovirus, and African
 Swine Fever virus.

15

5

- 21. A host cell transformed with a vector of claim 1 or 10.
- 22. The host cell of claim 21 that is a eukaryotic cell selected from the group consisting of fungus, yeast cell, plant cell and animal cell.

20

25

- 23. A transgenic plant comprising a eukaryotic recombinant vector of claim 1 or 10.
- 24. The transgenic plant of claim 23 exhibiting reduced expression of an endogenous gene that is substantially homologous to the transgene contained in the eukaryotic recombinant vector.
 - 25. A kit for generating a double-stranded RNA transcript in a eukaryotic cell comprising a eukaryotic recombinant vector of claim 1 in suitable packaging.

30

- 26. A method of inhibiting expression of an endogenous gene present in a eukaryotic cell, comprising:
 - (a) providing a eukaryotic recombinant vector of claim 12;

(b) introducing the eukaryotic recombinant vector into the eukaryotic cell;

(c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene that is contained in the transcription units of the vector, and thereby inhibiting expression of the corresponding endogenous gene in the eukaryotic cell.

27. The method of claim 26, wherein the endogenous gene is native to the host cell.

5

15

20

25

30

28. The method of claim 26, wherein the endogenous gene is heterologous to the host cell.

29. The method of claim 26, wherein the endogenous gene is a pathogenic gene derived from one or more members of the group consisting of virus, bacterium, fungus, and protozoa.

30. The method of claim 26, wherein inhibition of the endogenous gene confers a phenotypic change in the host cell.

- 31. The method of claim 26, wherein the host eukaryotic cell is selected from the group consisting of fungus, yeast cell, plant cell, and animal cell.
- 32. The method of claim 26, wherein the eukaryotic recombinant vector is an autonomously replicating vector.
- 33. The method of claim 26, wherein the eukaryotic recombinant vector comprises a viral replicon derived from a DNA virus.

34. The method of claim 26, wherein the DNA virus is selected from the group consisting of *Geminivirus*, *Caulimoviridae*, *Badnaviridae*; *Circoviridae*, *Circinoviridae*, *Parvoviridae*, *Papovaviridae*, *Polyomaviridae*, *Adenoviridae*,

Herpesviridae, Poxviridae, Iridoviridae, Baculoviridae, Hepadnaviridae, Retrovirida, Gyrovirus, Nanovirus, and African Swine Fever virus.

35. The method of claim 26, wherein the eukaryotic recombinant vector comprises two overlapping transcription units, wherein each transcription unit comprises a promoter and a terminator.

5

10

15

20

25

30

- 36. The method of claim 26, wherein the promoter is a constitutive promoter.
- 37. The method of claim 26, wherein the promoter is an inducible promoter.
- 38. The method of claim 26, wherein the promoter is a tissue-specific promoter.
- 39. The method of claim 35, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(a).
- 40. The method of claim 35, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(b).
- 41. The method of claim 35, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(c).
- 42. The method of claim 35, wherein the promoter and the terminator of the overlapping transcription units are arranged in a configuration shown in Figure 2(d).
 - 43. A method of identifying a biological function(s) of an endogenous gene of interest in a eukaryotic cell by selectively inhibiting the expression of the endogenous gene, the method comprising:
 - (a) providing a eukaryotic recombinant vector of claim 12;
 - (b) introducing the eukaryotic recombinant vector of (a) in to the eukaryotic cell;

(c) culturing the eukaryotic cell of (b) under conditions favorable for expression of both sense and antisense RNA transcripts from the transgene contained in the eukaryotic recombinant vector and thereby inhibiting expression of the endogenous gene in the eukaryotic cell; and

5

(d) determining one or more phenotypic changes in the eukaryotic cell that correlate with the inhibited expression of the endogenous gene, thereby identifying the biological function(s) of the endogenous gene in the eukaryotic cell.

10

- 44. The method of claim 43, wherein the eukaryotic cell is selected from the group consisting of fungus, yeast cell, plant cell, and animal cell.
 - 45. The method of claim 43, wherein the eukaryotic cell is a plant cell.

15

46. The method of claim 43, wherein the eukaryotic cell is an animal cell.

Figure 1

Figure 2

Figure 3

Figure 4

pMSVLSB-1: 4881 bp; Composition 1161 A; 1260 C; 1251 G; 1209 T; 0 OTHER Percentage: 24% A; 26% C; 26% G; 25% T; 0%OTHER

Molecular Weight (kDa) ssDNA: 1506.65 dsDNA: 3009.2

AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TGCAGCTGGC ACGACAGGIT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC 61 TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA 121 TIGIGAGCGG ATAACAATIT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT 181 TTAGGTGACA CTATAGAATA CTCAAGCTAT GCATCAAGCT TGGTACCGAG CTCGGATCCA 241 CTAGTAACGG CCGCCAGTGT GCTGGAATTC ATGGGCAGAC CCGTCTGTAC TTTAAGAGTG 301 TTGGCAACCA GTAATGAATA AAAACTCCCG TTTTATTATA TTTGATGAAT GCTGAAAGCT 361 TACATTAATA TGTCGTGCGA TGGCACGAAA AAACACACGC AAACAATACA GGGGGGTAGT 421 CGGCGGCGG CTAAGGGTGG TGCTCGGCGG GCAGAACATC GAAAAATCAA GATCTATATG 481 ANTIACACTT CCTCCGTAGG AGGAAGCACA GGGGGAGAAT ACCACTTCTC CCCCGGCGAC 541 ATAATGTAAA TGACGCAGTT TGCCTCGAAA TACTCCAGCT GCCCTGGAGT CATTTCCTTC 601 ATCCAATCTT CATCCGAGTT GGCGAGGATT ATTGTAGGCT TAGACTTCTT CTGCACCTTT 661 TTCTTCTTAC CATACTTGGG GTTTACAATG AAATCCCTCT GACAGCCAAC TAACTGTTTC 721 CAACAAGGAC AGAATTTAAA CGGAATATCA TCTACGATGT TGTAGATTGC GTCTTCGTTG 781 TATGAAGACC AATCAACATT ATTTTGCCAG TAATTATGAA CCCCTAGGCT TCTGGCCCAA 841 GTAGATTTTC CGGTTCTTGT TGGGCCGACG ATGTAGAGGC TCTGCTTTCT TGATCTTTCA 901 961 TCTGATGACT GGATACAGAA TCCATCCATT GGAGGTCAGA AATTGCATCC TCGAGGGTAT AACAGGTAGG TTGAAGGAGC ATGTAAGCTT CGGGACTAAC CTGGAAGATG TTAGGCTGGA 1021 GCCAATCGTT GATTGACTCA TTACAAAGTA AATCAGGTGA GGAGGGTGGA TGAGGATTGG 1081 TGAACTCTTC CTGAATCTCA GGAAAAAGCT TATTTGCAGA GTATTCAAAA TACTGCAATT 1141 TIGTGGACCA ATCAAAGGGG AGCTCTTTCT GGATCATGGA GAGGTACTCT TCTTTGGAGG 1201 TAGCGTGTGA AATAATGTCT CGCATTATTT CATCTTTAGA AGGCTTTTTT TCCTTTACCT 1261 CTGAATCAGA TTTTCCTAGG AAGGGGGACT TCCTAGGAAT GAAAGTACCT CTCTCAAACA 1321 1381 CAGCCAGAGG TTCCTTGAGA ATGTAATCCC TCACTCTGTT AACTGACTTG GCACTCTGAA TATTTGGGTG ARACCCATTT ATATCAAAGA ACCTTGAGTC AGATATCCTT ATCGGCTTCT 1441 CTGGCTGAAG CAATGCATGT AAATGCAAAC TTCCATCTTT ATGTGCCTCT CGGGCACATA 1501 1561 GAATATATT GGGAATCCAA CGAACGACGA GCTCCCAGAT CATCTGACAG GCGATTTCAG GATTTCTGG ACACTTTGGA TAGGTTAGGA ACGTGTTAGC GTTCCTGTG GAGAACTGAC 1621 GGTTGGATGA GGAGGAGGCC ATAGCCGACG ACGGAGGTTG AGGCTGAGGG ATGGCAGACT 1681 GGGAGCTCCA AACTCTATAG TATACCCGTG CGCCTTCGAA ATCCGCCGCT CCATTGTCTT 1741 ATACTECTTC TARATECCCC GGACCGGGCC GGCCCAGCAG GAAAAGAAGG CGCGCACTAA 1801 TATTACCGCG CCTTCTTTC CTGCGAGGGC CCGGTAGGGA CCGAGCGCTT TGATTTAAAG 1861 CCTGGTTCTG CTTTGCGGCC GCTCGAGCAT GCATCTAGAG GGCCCAATTC GCCCTATAGT 1921 GAGTCGTATT ACAATTCACT GGCCGTCGTT TTACAACGTC GTGACTGGGA AAACCCTGGC 1981 GTTACCCAAC TTAATCGCCT TGCAGCACAT CCCCCTTTCG CCAGCTGGCG TAATAGCGAA 2041 GAGGCCCGCA CCGATCGCCC TTCCCAACAG TTGCGCAGCC TATACGTACG GCAGTTTAAG 2101 2161 GTTTACACCT ATAAAAGAGA GAGCCGTTAT CGTCTGTTTG TGGATGTACA GAGTGATATT 2221 ATTGACACGC CGGGGCGACG GATGGTGATC CCCCTGGCCA GTGCACGTCT GCTGTCAGAT AAAGTCTCCC GTGAACTTTA CCCGGTGGTG CATATCGGGG ATGAAAGCTG GCGCATGATG 2281 ACCACCGATA TEGCCAGTET GCCGGTCTCC GTTATCGGGG AAGAAGTGGC TGATCTCAGC 2341 CACCGCGAAA ATGACATCAA AAACGCCATT AACCTGATGT TCTGGGGAAT ATAAATGTCA 2401 2461 GGCCTGAATG GCGAATGGAC GCGCCCTGTA GCGGCGCATT AAGCGCGCGG GTGTGGTGGT 2521 TACGCGCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT TCGCTTTCTT 2581 CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA GCTCTAAATC GGGGGCTCCC TTTAGGGTTC CGATTTAGAG CTTTACGGCA CCTCGACCGC AAAAAACTTG ATTTGGGTGA 2641 2701 TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC 2761 CACGITCITI ANTAGIGGAC TCTTGITCCA AACIGGAACA ACACICAACC CTATCGCGGT 2821 CTATTCTTT GATTTATAG GGATGTTGCC GATTTCGGCC TATTGGTTAA AAAATGAGCT GATTTAACAA AAATTTTAAC AAAATTCAGA AGAACTCGTC AAGAAGGCGA TAGAAGGCGA 2881

Figure 4 (cont'd)

	.••
2941	TGCGCTGCGA ATCGGGAGCG GCGATACCGT AAAGCACGAG GAAGCGGTCA GCCCATTCGC
3001	CCCCARCCTC TTCACCARTA TCACCGGTAG CCAACGCTAT GTCCTGATAG CGGTCCGCCA
3061	CACCCAGCCG GCCACAGTCG ATGAATCCAG AAAAGCGGCC ATTTTCCACC ATGATATTCG
3121	GCAAGCAGG ATCGCCATGG GTCACGACGA GATCCTCGCC GTCGGGCATG CTCGCCTTGA
3181	GCCTGGGAA CAGTTCGGCT GGCGCGAGCC CCTGATGCTC TTCGTCCAGA TCATCCTGAT
3241	CGACAAGACC GGCTTCCATC CGAGTACGTG CTCGCTCGAT GCGATGTTTC GCTTGGTGGT
3301	CONTROLL GGTAGCCGGA TCAAGCGTAT GCAGCCGCCG CATTGCATCA GCCATGATGG
3361	ATACTTTCTC GGCAGGAGCA AGGTGAGATG ACAGGAGATC CTGCCCCGGC ACTTCGCCCA
3421	ATAGCAGCCA GTCCCTTCCC GCTTCAGTGA CAACGTCGAG CACAGCTGCG CAAGGAACGC
3481	CCGTCGTGGC CAGCCACGAT AGCCGCGCTG CCTCGTCTTG CAGTTCATTC AGGGCACCGG
3541	ACAGGTCGGT CTTGACAAAA AGAACCGGGC GCCCCTGCGC TGACAGCCGG AACACGGCGG
3601	CATCAGAGCA GCCGATTGTC TGTTGTGCCC AGTCATAGCC GAATAGCCTC TCCACCCAAG
3661	CGGCCGGAGA ACCTGCGTGC AATCCATCTT GTTCAATCAT GCGAAACGAT CCTCATCCTG
3721	TETETTGATE AGAICTTGAT CCCCTGCGCC ATCAGATCCT TGGCGGCGAG AAAGCCATCC
3781	AGTITACTIT GCAGGGCTTC CCAACCTTAC CAGAGGGCGC CCCAGCTGGC AATTCCGGTT
3841	CCCTTGCTGT CCATAAAACC GCCCAGTCTA GCTATCGCCA TGTAAGCCCA CTGCAAGCTA
3901	CCTGCTTTCT CTTTGCGCTT GCGTTTTCCC TTGTCCAGAT AGCCCAGTAG CTGACATTCA
3961	TCCGGGGTCA GCACCGTTTC TGCGGACTGG CTTTCTACGT GAAAAGGATC TAGGTGAAGA
4021	TOUTTTIGA TAATCTCATG ACCAAAATCC CTTAACGTGA GITTTCGTTC CACTGAGCGT
4081	CAGACCCCGT AGAAAAGATC AAAGGATCTT CTTGAGATCC TTTTTTTCTG CGCGTAATCT
4141	GCTGCTTGCA AACAAAAAAA CCACCGCTAC CAGCGGTGGT TTGTTTGCCG GATCAAGAGC
4201	TACCAACTCT TTTTCCGAAG GTAACTGGCT TCAGCAGAGC GCAGATACCA AATACTGTCC
4261	TTCTAGTGTA GCCGTAGTTA GGCCACCACT TCAAGAACTC TGTAGCACCG CCTACATACC
4321	TOGOTOTGCT AATCCTGTTA CCAGTGGCTG CTGCCAGTGG CGATAAGTCG TGTCTTACCG
4381	GGTTGGACTC AAGACGATAG TTACCGGATA AGGCGCAGCG GTCGGGCTGA ACGGGGGTT
4441	CGTGCACACA GCCCAGCTTG GAGCGAACGA CCTACACCGA ACTGAGATAC CTACAGCGTG
4501	AGCTATGAGA AAGCGCCACG CTTCCCGAAG GGAGAAAGGC GGACAGGTAT CCGGTAAGCG
4561	GCAGGGTCGG AACAGGAGAG CGCACGAGGG AGCTTCCAGG GGGAAACGCC TGGTATCTTT
4621	ATAGICCTGT CGGGTTTCGC CACCTCTGAC TTGAGCGTCG ATTTTTGTGA TGCTCGTCAG
4681	GGGGGCGAG CCTATGGAAA AACGCCAGCA ACGCGGCCTT TTTACGGTTC CTGGGCTTTT
4741	CONGCOUNTY TROUGACATE. TYCTTYCCTG CGTTATCCCC TGATTCTGTG GATAACCGTA
4801	TTACCGCCTT TGAGTGAGCT GATACCGCTC GCCGCAGCCG AACGACCGAG CGCAGCGAGT
4861	CAGTGAGCGA GGAAGCGGAA G

Figure 5

pMSVLSB-2: 3413 bp; Composition 777 A; 950 C; 884 G; 802 T; 0 OTHER Percentage: 23% A; 28% C; 26% G; 23% T; 0%OTHER Molecular Weight (kDa): ssDNA: 1052.40 dsDNA: 2104.2 AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TGCAGCTGGC ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC 61 TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA 121 TTGTGAGCGG ATAACAATTT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT 181 TTAGGTGACA CTATAGAATA CTCAAGCTAT GCATCAAGCT TGGGCCCGGT AGGGACCGAG 241 CGCTTTGATT TARAGCCTGG TTCTGCTTTG TATGATTTAT CTARAGCAGC CCARTCTARA 301 GANACCEGTC CCEGGCACTA TANATTECCT ANCANGTECG ATTCATTCAT GGATCCTTTA 361 AACTCGAGTC TAGAGGGCCC GAATTCTGCA GATATCCATC ACACTGGCGG CCGCTCGAGC . 421 ATGCATCTAG AGGGCCCAAT TCGCCCTATA GTGAGTCGTA TTACAATTCA CTGGCCGTCG 481 TTTTACAACG TCGTGACTGG GAAAACCCTG GCGTTACCCA ACTTAATCGC CTTGCAGCAC 541 ATCCCCCTTT CGCCAGCTGG CGTAATAGCG AAGAGGCCCG CACCGATCGC CCTTCCCAAC 601 AGTTGCGCAG CCTATACGTA CGGCAGTTTA AGGTTTACAC CTATAAAAGA GAGAGCCGTT 661 ATCGTCTGTT TGTGGATGTA CAGAGTGATA TTATTGACAC GCCGGGGGGA CGGATGGTGA 721 TCCCCTGGC CAGTGCACGT CTGCTGTCAG ATAAAGTCTC CCGTGAACTT TACCCGGTGG 781 TGCATATCGG GGATGAAAGC TGGCGCATGA TGACCACCGA TATGGCCAGT GTGCCGGTCT 841 CCGTTATCGG GGAAGAAGTG GCTGATCTCA GCCACCGCGA AAATGACATC AAAAACGCCA 901 TTAACCTGAT GTTCTGGGGA ATATAAATGT CAGGCCTGAA TGGCGAATGG ACGCGCCCTG 961 TAGCGGCGCA TTAAGCGCGC GGGTGTGGTG GTTACGCGCA GCGTGACCGC TACACTTGCC 1021 AGCGCCCTAG CGCCCGCTCC TTTCGCTTTC TTCCCTTCCT TTCTCGCCAC GTTCGCCGC 1081 TTTCCCCGTC AAGCTCTAAA TCGGGGGCTC CCTTTAGGGT TCCGATTTAG AGCTTTACGG 1141 CACCTCGACC GCAAAAAACT TGATTTGGGT GATGGTTCAC GTAGTGGGCC ATCGCCCTGA 1201 TAGACGGTTT TTCGCCCTTT GACGTTGGAG TCCACGTTCT TTAATAGTGG ACTCTTGTTC 1261 CARACTEGRA CARCACTCAA CCCTATCGCG GTCTATTCTT TTGATTTATA AGGGATGTTG 1321 CCGATTTCGG CCTATTGGTT AAAAAATGAG CTGATTTAAC AAAAATTTTA ACAAAATTCA 1381 GAAGAACTCG TCAAGAAGGC GATAGAAGGC GATGCGCTGC GAATCGGGAG CGGCGATACC . 1441 GTARAGCACG AGGAAGCGGT CAGCCCATTC GCCGCCAAGC TCTTCAGCAA TATCACGGGT 1501 AGCCAACGCT ATGTCCTGAT AGCGGTCCGC CACACCCAGC CGGCCACAGT CGATGAATCC 1561 AGAAAAGCGG CCATTTTCCA CCATGATATT CGGCAAGCAG GCATCGCCAT GGGTCACGAC GAGATCCTCG CCGTCGGGCA TGCTCGCCTT GAGCCTGGCG AACAGTTCGG CTGGCGCGAG 1681 CCCCTGATGC TCTTCGTCCA GATCATCCTG ATCGACAAGA CCGGCTTCCA TCCGAGTACG 1741 TGCTCGCTCG ATGCGATGTT TCGCTTGGTG GTCGAATGGG CAGGTAGCCG GATCAAGCGT 1801 ATGCAGCCGC CGCATTGCAT CAGCCATGAT GGATACTITC TCGGCAGGAG CAAGGTGAGA 1861 TGACAGGAGA TCCTGCCCCG GCACTTCGCC CAATAGCAGC CAGTCCCTTC CCGCTTCAGT 1921 GACAACGTCG AGCACAGCTG CGCAAGGAAC GCCCGTCGTG GCCAGCCACG ATAGCGGCGC 1981 TGCCTCGTCT TGCAGTTCAT TCAGGGCACC GGACAGGTCG GTCTTGACAA AAAGAACCGG 2041 GCGCCCCTGC GCTGACAGCC GGAACACGGC GGCATCAGAG CAGCCGATTG TCTGTTGTGC 2101 CCAGTCATAG CCGAATAGCC TCTCCACCCA AGCGGCCGGA GAACCTGCGT GCAATCCATC 2161 TTGTTCAATC ATGCGAAACG ATCCTCATCC TGTCTCTTGA TCAGATCTTG ATCCCCTGCG 2221 CCATCAGATC CTTGGCGGCG AGAAAGCCAT CCAGTTTACT TTGCAGGGCT TCCCAACCTT 2281 ACCAGAGGGC GCCCCAGCTG GCAATTCCGG TTCGCTTGCT GTCCATAAAA CCGCCCAGTC 2341 TAGCTATCGC CATGTAAGCC CACTGCAAGC TACCTGCTTT CTCTTTGCGC TTGCGTTTTC 2401 CCTTGTCCAG ATAGCCCAGT AGCTGACATT CATCCGGGGT CAGCACCGTT TCTGCGGACT 2461 GGCTTTCTAC GTGAAAAGGA TCTAGGTGAA GATCCTTTTT GATAATCTCA TGACCAAAAT 2521 CCCTTAACGT GAGTTTTCGT TCCACTGAGC GTCAGACCCC GTAGAAAAGA TCAAAGGATC 2581 TTCTTGAGAT CCTTTTTTC TGCGCGTAAT CTGCTGCTTG CAAACAAAAA AACCACCGCT 2641 ACCAGCGGTG GTTTGTTTGC CGGATCAAGA GCTACCAACT CTTTTTCCGA AGGTAACTGG 2701 CTTCAGCAGA GCGCAGATAC CANATACTGT CCTTCTAGTG TAGCCGTAGT TAGGCCACCA 2761 2821 CTTCAAGAAC TCTGTAGCAC CGCCTACATA CCTCGCTCTG CTAATCCTGT TACCAGTGGC TGCTGCCAGT GGCGATAAGT CGTGTCTTAC CGGGTTGGAC TCAAGACGAT AGTTACCGGA 2881

Figure 5 (cont'd)

2941	TAAGGCGCAG	CGGTCGGGCT	GAACGGGGGG	TTCGTGCACA	CAGCCCAGCT	TGGAGCGAAC
2001	CACCTACACC	GAACTGAGAT	ACCTACAGCG	TGAGCTATGA	GAAAGCGCCA	CGCTTCCCGA
3061	ACCCACAAAG	GCGGACAGGT	ATCCGGTAAG	CGGCAGGGTC	GGAACAGGAG	AGCGCACGAG
2121	CCACCTTCCA	GGGGGAAACG	CCTGGTATCT	TTATAGTCCT.	GTCGGGTTTC	GCCACCTCTG
2101	VCALACTICACA	CGATTTTTGT	GATGCTCGTC	AGGGGGGCGG	AGCCTATGGA	AAAACGCCAG
2243	CANCICICACIO	TTTTTACGGT	TCCTGGGCTT	TIGCIGGCCT	TTTGCTCACA	TGTTCTTTCC
2201	ייייייייייייייייייייייייייייייייייייייי	CCTGATTCTG	TGGATAACCG	TATTACCGCC	TTTGAGTGAG	CTGATACCGC
3361	TOGCOGCAGE	CGAACGACCG	AGCGCAGCGA	GTCAGTGAGC	GAGGAAGCGG	AAG
JJ U.L.	74444		•			

Figure 6

pMSVLSB-3:

pMSVLSB2 Apa fragment inserted: 4961 bp; Composition 1190 A; 1276 C; 1262 G; 1233 T; 0 OTHER Percentage: 24% A; 26% C; 25% G; 25% T; 0%OTHER

Molecular Weight (kDa): ssDNA: 1531.26 dsDNA: 3058.5

ORIG	Culture Horare (1984). Observe Total
	AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TGCAGCTGGC
1 61	ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC
121	TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA
181	TTGTGAGCGG ATAACAATTT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT
241 [.]	TTAGGTGACA CTATAGAATA CTCAAGCTAT GCATCAAGCT TGGTACCGAG CTCGGATCCA
301	CTACTAACGG ·CCGCCAGTGT GCTGGAATTC ATGGGCAGAC CCGTCTGTAC TTTAAGAGTG
	TTGGCAACCA GTAATGAATA AAAACTCCCG TTTTATTATA TTTGATGAAT GCTGAAAGCT
361	TACATTAATA TGTCGTGCGA TGGCACGAAA AAACACACGC AAACAATACA GGGGGTAGT
421	CGGCGGCCG CTAAGGGTGG TGCTCGGCCG GCAGAACATC GAAAAATCAA GATCTATATG
481 541	AATTACACTT CCTCCGTAGG AGGAAGCACA GGGGGAGAAT ACCACTTCTC CCCCGGCGAC
60 1	ATTACACTI CCICCGAGO AGCATAGA TACTCCAGCT GCCCTGGAGT CATTTCCTTC
661	ATCCAATCTT CATCCGAGTT GGCGAGGATT ATTGTAGGCT TAGACTTCTT CTGCACCTTT
721	TICTICTIAC CATACITGGG GITTACAATG AAATCCCTCT GACAGCCAAC TAACTGTTTC
721 781	CAACAAGGAC AGAATTAAA CGGAATATCA TCTACGATGT TGTAGATTGC GTCTTCGTTG
841	TATGAAGACC AATCAACATT ATTTTGCCAG TAATTATGAA CCCCTAGGCT TCTGGCCCAA
901	GTAGATTITC CGGTTCTTGT TGGGCCGACG ATGTAGAGGC TCTGCTTTCT TGATCTTTCA
961	TOTAL TOLOR GENERAL TECRTCEATT GGAGGTCAGA AATIGCATCC TCGAGGGTAT
1021	ANCAGGTAGG TIGAAGGAGC ATGTAAGCTT CGGGACTAAC CTGGAAGATG TTAGGCTGGA
1081	GCCAATCGTT GATTGACTCA TTACAAAGTA AATCAGGTGA GGAGGGTGGA TGAGGATTGG
1141	TEDACTOTTC CTGAATCTCA GGAAAAAGCT TATTTGCAGA GTATTCAAAA TACTGCAATT
1201	TTITCGACCA ATCAAGGGG AGCTCTTTCT GGATCATGGA GAGGTACTCT TCTTTGGAGG
1261	TAGCGTGTGA AATAATGTCT CGCATTATTT CATCTTTAGA AGGCTTTTTT TCCTTTACCT
1321	CTGAATCAGA TITTCCTAGG AAGGGGGACT TCCTAGGAAT GAAAGTACCT CTCTCAAACA
1381	CAGCCAGAGG TTCCTTGAGA ATGTAATCCC TCACTCTGTT AACTGACTTG GCACTCTGAA
1441	TRITTICGTG ARCCCRTTT ATATCARAGA ACCTTGAGTC AGATATCCTT ATCGCCTTCT
1501	CTGGCTGAAG CAATGCATGT AAATGCAAAC TTCCATCTTT ATGTGCCTCT CGGGCACATA
1561	GANTATATTT GGGAATCCAA CGAACGACGA GCTCCCAGAT CATCTGACAG GCGATTTCAG
1621	GATTTTCTGG ACACTTTGGA TAGGTTAGGA ACGTGTTAGC GTTCCTGTGT GAGAACTGAC
1681	GGTTGGATGA GGAGGAGGCC ATAGCCGACG ACGGAGGTTG AGGCTGAGGG ATGGCAGACT
1741	GGGAGCTCCA AACTCTATAG TATACCCGTG CGCCTTCGAA ATCCGCCGCT CCATTGTCTT
1801	ATAGTGGTTG TAAATGGGCC GGACCGGGCC GGCCCAGCAG GAAAAGAAGG CGCGCACTAA
1861	TATTACCGCG CCTTCTTTC CTGCGAGGGC CCGGTAGGGA CCGAGCGCTT TGATTTAAAG
1921	CCTGGTTCTG CTTGTATGA TTTATCTAAA GCAGCCCAAT CTAAAGAAAC CGGTCCCGGG
1981	CACTATAAAT TECCTAACAA GTECGATTCA TTCATEGATC CTTTAAACTC GAGTCTAGAG
2041	GGCCCAATTC GCCCTATAGT GAGTCGTATT ACAATTCACT GGCCGTCGTT TTACAACGTC
2101	GTGACTGGGA AAACCCTGGC GTTACCCAAC TTAATCGCCT TGCAGCACAT CCCCCTTTCG
2161	CCAGCTGGCG TAATAGCGAA GAGGCCCGCA CCGATCGCCC TTCCCAACAG TTGCGCAGCC
2221	TATACGTACG GCAGTITAAG GTTTACACCT ATAAAAGAGA GAGCCGTTAT CGTCTGTTTG
2281	TGGATGTACA GAGTGATATT ATTGACACGC CGGGGCGACG GATGGTGATC CCCCTGGCCA
2341	GTGCACGTCT GCTGTCAGAT AAAGTCTCCC GTGAACTTTA CCCGGTGGTG CATATCGGGG
2401	ATGAAAGCTG GCGCATGATG ACCACCGATA TGGCCAGTGT GCCGGTCTCC GTTATCGGGG
2461	ANGANGTEGC TEATCTCAGC CACCECGARA ATGACATCAR ARACGCCATT ARCCTGATET
2521	TOTGGGGAT ATAATGTCA GGCCTGAATG GCGAATGGAC GCGCCCTGTA GCGGCGCATT
2581	ANGUCCECE GTGTCGTCGT TACCCCCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG
2641	CCCGCTCCTT TCGCTTCCTT CCCTTCCTTT CTCGCCACGT.TCGCCGGCTT TCCCCGTCAA
2701	GCTCTAAATC GGGGGCTCCC TTTAGGGTTC CGATTTAGAG CTTTACGGCA CCTCGACCGC
2761	AAAAAACTTG ATTTGGGTGA TGGTTCACGT AGTGGGCCAT CGCCCTGATA GACGGTTTTT

Figure 6 (cont'd)

2021	CCCCTTTGA	CGTTGGAGTC	CACGTTCTTT	AATAGTGGAC	: TCTTGTTCCA	AACTGGAACA
2821 2881						
•			<u> </u>	AAATTTAAU	. AAAATICAGA	MOMMETCATE
2941			WOOLGO PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE	ATTAGGAGCG	GCGHIMCCGI	VUUOCUCOVO
3001			ം സ്ഥാവ മന്ദ്രസ്ഥ	TTCAGCAALA	TUNCUGUING	CCMMCGCIMI
3061			~ ~ ~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CCCACAGILL	AIGAAICCAG	MANAGEGGEE
3121	· ·		~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ATTITITATEG	GILACUACUA	GNICCICGCC
3181				LAGLITUGGLI	GGCGCGAGCC	CCTONTOCTO
3241			へつりいり りにりしてい	GROTTULATU	CONGINCATA	CICACICAC
3301		~~~~~~~~	ACT NATIONAL COLOR	TRTAGCULGA	TUMBOCOTAT	GC3GCCGCCG
3361			New Manager Now N	(3 if Alichianica)	MOGICAGNIO	TICH TO CHECK IT C
3421			ゝゕゝ෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭෭	arcccrrucu	GCTTCAGTGA	Chilcolcoro
3481		ON BOOK BOOK	CCGTCGTGGC	CAGCCACGAI	MACCACACAC	CCICOICIAO
3541		* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	スクスのグログログログログ	CTUGACAAAA	AGWATCCCCC	GCCCCTGCCC
3601		220000000	CNTCNCNCNC	CCCGATIGIC	101101000	Watchinger
3661		mmax acces 3.0	CCCCCCCCCAGAGA	ACCIGCUIGC	AAICCAICIL	GIICHICAI
3721			JALINE STATES AND THE	MATCHIGAT	CCCCTGCGCC	WICHGUICCT
3781		TOWNS TOWNS	Malala Valatable	GCAGGGCTIU	CCAACCTIAC	CHOMOGGGGG.
3841		A P WALLAND CALLADA		CCATAAAACC	GCCCMGICIM	CINICOCCA
3901		-macan a coma	CALCIAL STAND	CTTTGCGCTT	GCGTTTTCCC	TIGICINGAL
3961	·	ALAMAN AN ARAM	TODDODODO	CCACCGITIL	TUCUGACTUG	CTITCINCOT
4021	·		WAS ALABAMAN DE LA SELECTION D	TAATTICALG	ACCAGGATICC	CLIMMCGIOM
4081		~~ ~~~ ~~~~	CACACCCCCTT	AGAAAAGATU	ANAGGAICII	CIIGNONICC
4141		THE PARTY IS NOT THE	WALESTEE STREET	AMAMAMAIAA	CONCOCTAC	CHOCOLOG
4201			ጥአሮሮሽሽሮፕኖሞ	TITICLGAAG	GIMMCIGGCI	TOWOCHOO
4261			ערבארים עידי אריזיי	GCTGTAGTTA	COCCACCACA	TOMOINGE
4321			MCANDALANCE TANK	AATCCIGITA	CCACIGGCIG	CIGCONGIO
4381				PALIVITACE	LINCCGGWIN	Magacacaca
4441		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~~~~~~~~~~~	GUTT AGELT LE	GUOCOMICON	CCTITOTIO
4501						
4561						
4621						
4681			COOCCICICAL	ITTATISMAN	MACCCAGCA	110000
4741				TYRETT ALAIG	TICILICCIO	COTTINGO
4801	TTTACGGTTC	CTCGGCTTTT GATAACCGTA	POTOGCCTIT	TEACTGAGCT	GATACCGCTC	GCCGCAGCCG
4861	TGATTCTGTG	GATAACCGTA	TIMCCOCCII	CONDCIGGAN	G	•
4921	AACGACCGAG	CGCAGCGAGT	CAGIGAGCGA	CONTROCOGINA	•	

Figure 7

pMSVLSB4: 6309 bp; Composition 1522 A; 1620 C; 1590 G; 1577 T; 0 OTHER Percentage: 24% A; 26% C; 25% G; 25% T; 0%OTHER Molecular Weight (kDa): ssDNA: 1947.08 dsDNA: 3889.6 AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TGCAGCTGGC ORIGIN ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC 1 61 TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT 121 181 TTAGGTGACA CTATAGAATA CTCAAGCTAT GCATCAAGCT TGGTACCGAG CTCGGATCCA 241 CTAGTCCCGA TCTAGTAACA TAGATGACAC CGCGCGCGAT AATTTATCCT AGTTTGCGCG 301 CTATATTTTG TTTTCTATCG CGTATTAAAT GTATAATTGC GGGACTCTAA TCATAAAAAC 361 CCATCTCATA AATAACGTCA TGCATTACAT GTTAATTATT ACATGCTTAA CGTAATTCAA 421 CAGAAATTAT, ATGATAATCA TCGACAGACC GGCAACAGGA TTCAATCTTA AGAAACTTTA 481 TTGCCAAATG TTTGAACGAT CGGGGAAATT CGCTCGAGTT AATTAAGCGG CCGCCTCAAA 541 AAGGATCTTC ACCTAGATCC TITTAAATTA AAAATGAAGT TITAGCACGT GTCAGTCCTG 601 CTCCTCGGCC ACGAAGTGCA CGCAGTTGCC GGCCGGGTCG CGCAGGGCGA ACTCCCGCCC CCACGGCTGC TCGCCGATCT CGGTCATGGC CGGCCCGGAG GCGTCCCGGA AGTTCGTGGA 661 CACGACCTCC GACCACTCGG CGTACAGCTC GTCCAGGCCG CGCACCCACA CCCAGGCCAG GGTGTTGTCC GGCACCACCT GGTCCTGGAC CGCGCTGATG AACAGGGTCA CGTCGTCCCG 721 781 841 GACCACACCG GCGAAGTCGT CCTCCACGAA GTCCCGGGAG AACCCGAGCC GGTCGGTCCA 901 GAACTCGACC GCTCCGCCGA CGTCGCGCGC GGTGAGCACC GGAACGGCAC TGGTCAACTT 961 GGCCATGGTG GCCCTCCTCA CGTGCTATTA TTGAAGCATT TATCAGGGTT ATTGTCTCAT 1021 GAGCGGATAC ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC CGCGCACATT TCCCCGAAAA GTGCCACCTG TATGCGGTGT GAAATACCGC ACAGATGCGT AAGGAGAAAA 1081 TACCGCATCA GGCGAAATTG TAAACGCGGC CGCTTAATTA AGTCGACGTC .CTCTCCAAAT 1141 1201 GARATGRACT TCCTTATATA GAGGAAGGGT CITGCGAAGG ATAGTGGGAT TGTGCGTCAT 1261 CCCTTACGTC AGTGGAGATA TCACATCAAT CCACTTGCTT TGAAGACGTG GTTGGAACGT CTTCTTTTTC CACGTAGCTC CTCGTGGGTG GGGGTCCATC TTTGGGACCA CTGTCGGCAG 1321 AGGCATCTTG AACGATAGCC TTTCCTTATC GCAATGATGG CATTTGTAGG TGCCACCTTC 1381 1441 CTITTCTACT GTCCTTTTGA TGAAGTGACA GATAGCTGGG CAATGGAATC CGAGGAGGIT 1501 TCCCGATATT ACCCTTTGTT GAAAAGTCTC AATAGCCCTT TGGTCTTCTG AGACTGTATC 1561 TITGATATIC TIGGAGTAGA CGAGAGAGTG TCGTGCTCCA CCATGTTGAC GAATICATGG GCAGACCCGT CTGTACTTTA AGAGTGTTGG CAACCAGTAA TGAATAAAAA CTCCCGTTTT 1621 1681 ATTATATITG ATGAATGCTG AAAGCTTACA TTAATATGTC GTGCGATGGC ACGAAAAAAC 1741 ACACGCAAAC AATACAGGGG GGTAGTCGGC GGGCGGCTAA GGGTGGTGCT CGGCGGGCAG AACATCGAAA AATCAAGATC TATATGAATT ACACTTCCTC CGTAGGAGGA AGCACAGGGG 1801 1861 GAGAATACCA CTTCTCCCCC GGCGACATAA TGTAAATGAC GCAGTTTGCC TCGAAATACT 1921 CCAGCTGCCC TGGAGTCATT TCCTTCATCC AATCTTCATC CGAGTTGGCG AGGATTATTG 1981 TAGGCTTAGA CTTCTTCTGC ACCTTTTTCT TCTTACCATA CTTGGGGTTT ACAATGAAAT 2041 CCCTCTGACA GCCAACTAAC TGTTTCCAAC AAGGACAGAA TTTAAACGGA ATATCATCTA CGATGTTGTA GATTGCGTCT TCGTTGTATG AAGACCAATC AACATTATTT TGCCAGTAAT 2101 2161 TATGAACCCC TAGGCTTCTG GCCCAAGTAG ATTTTCCGGT TCTTGTTGGG CCGACGATGT 2221 AGAGGCTCTG CTTTCTTGAT CTTTCATCTG ATGACTGGAT ACAGAATCCA TCCATTGGAG 2281 GTCAGAAATT GCATCCTCGA GGGTATAACA GGTAGGTTGA AGGAGCATGT AAGCTTCGGG ACTAACCTGG AAGATGTTAG GCTGGAGCCA ATCGTTGATT GACTCATTAC AAAGTAAATC 2341 AGGTGAGGAG GGTGGATGAG GATTGGTGAA CTCTTCCTGA ATCTCAGGAA AAAGCTTATT 2401 2461 TGCAGAGTAT TCAAAATACT GCAATTTTGT GGACCAATCA AAGGGGAGCT CTTTCTGGAT 2521 CATGGAGAGG TACTCTTCTT TGGAGGTAGC GTGTGAAATA ATGTCTCGCA TTATTTCATC 2581 TITAGAAGGC TITITITCCT TTACCTCTGA ATCAGATTTT CCTAGGAAGG GGGACTTCCT 2641 AGGAATGAAA GTACCTCTCT CAAACACAGC CAGAGGTTCC TTGAGAATGT AATCCCTCAC 2701 TCTGTTAACT GACTTGGCAC TCTGAATATT TGGGTGAAAC CCATTTATAT CAAAGAACCT 2761 TGAGTCAGAT ATCCTTATCG GCTTCTCTGG CTGAAGCAAT GCATGTAAAT GCAAACTTCC 2821 ATCTITATGT GCCTCTCGGG CACATAGAAT ATATTTGGGA ATCCAACGAA CGACGAGCTC 2881

Figure 7 (cont'd)

					· managana	സ്വര്യാവര്
2941	CCAGATCATO	: TGACAGGCG	A TTTCAGGAT	TICIGGACA	TTTGGATAGG	CCCACCACC
3001	GTTAGCGTTC	CTGTGTGAG	A ACTGACGGT	COMPOSE	GAGGCCATAG	CCCACCACAC
3061	AGGTTGAGGC	TGAGGGATG	CAGACTUGGA	GCTCCAAACI	CTATAGTATA	CGGGCCGGCC
3121	TTCGAAATCC	GCCGCTCCAT	r TGTCTTATAG	IGGITGIAA	TGGGCCGGAC	CACCCCCCC
3181	CAGCAGGAAA	AGAAGGCGCC	CACTAATATI	ACCGCGCCC11	CTTTTCCTGC	TATCTABACC
3241	GGTAGGGACC	GAGCGCTTTC	ATTTAAAGCC	Tegricier	TTGTATGATT	COCATTOATT
3301	AGCCCAATCT	AAAGAAACCC	GTCCCGGGCA	CTATAAATI	CCTAACAAGT	CTCCTATTAC
3361	CATGGATCCT	TTAAACTCG	GTCTAGAGGG	CCCAATTCGC	CCTATAGTGA	TACCCAACTT
3421	AATTCACTGG	CCGTCGTTTT	r. ACAACGTCGI	GACTGGGAAH	ACCCTGGCGT	GGCCCGCACC
3481	AATCGCCTTG	CAGCACATCO	CCCTTCGCC	AGCIGGCG1A	ATAGCGAAGA	TTACACCTAT
3541	GATCGCCCTT	CCCAACAGTT	GCGCAGCUTA	TACGTACGGC	AGTTTAAGGT	TENCHOLITI
3601	AAAAGAGAGA	GCCGTTATCG	TCTGTTTGTG	GATGTACAGA	GTGATATTAT	AGTOTOCOGT
3661	GGGCGACGGA	TGGTGATCCC	CCTGGCCAGT	GCACGICIGC	TGTCAGATAA	DTATATOTA
3721	GAACTTTACC	CGGTGGTGCA	TATCGGGGAT	GAAAGCIGGC	GCATGATGAC	CCCCGAAAAT
3781						
3841	GACATCAAAA	ACGCCATTAA	CCTGATGTIC	TGGGGAATAI	AAATGTCAGG	CCCCCACCGT
3901		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>המרימים</i> אורי מים אים ו		GIGGIGGIYA	Cacacasca
3961			ידצדונותיתיתית	CIA TITLE	GCIIICIIC	CT1001110-
4021	CGCCACGTTC	GCCGGCTTTC	CCCGTCAAGC	TCTAAATCGG	GGGCTCCCTT	CAMON CCANC
4081	ATTTAGAGCT	TTACGGCACC	TCGACCGCAA	AAAACTTGAT	TTGGGTGATG	COMPONENTAL
4141	TGGGCCATCG	CCCTGATAGA	CGGTTTTTCG	CCCTTTGACG	TTGGAGTCCA	COTTCTTTUT
4201	TAGTGGACTC	TTGTTCCAAA	CTGGAACAAC	ACTCAACCCT	ATCGCGGTCT	WITCILLION
4261	TTTATAAGGG	ATGTTGCCGA	TTTCGGCCTA	TIGGITAAAA	AATGAGCTGA	CCCTCCGAAT
4321	ATTTTAACAA	AATTCAGAAG	AACTCGTCAA	GAAGGCGATA	GAAGGCGATG	CCAPCLACATA
4381	CGGGAGCGGC	GATACCGTAA	AGCACGAGGA	AGCGGTCAGC	CCATTCGCCG	CCAACCTCTT
4441	CAGCAATATC	ACGGGTAGCC	AACGCTATUT	CCIGATAGCG	GTCCGCCACA	DAGCAGGCAT
4501	CACAGTCGAT	GAATCCAGAA	AAGCGGCCAT	TITCCACCAT	GATATTCGGC	CTGGCGAACA
4561	CGCCATGGGT	CACGACGAGA	TCCTCGCCGT	CGGGCATGCT	CGCCTTGAGC	ACANGACCGG .
4621	GTTCGGCTGG	CGCGAGCCCC	TGATGCTCTT	COLCUMBATO	ATCCTGATCG	AATGGGCAGG
4681	CTTCCATCCG	AGTACGTGCT	CGCTCGATGC	GAIGITICGC	TIGGIGGICG	ACTTTCTCGG
4741	TAGCCGGATC	AAGCGTATGC	AGCCGCCGCA	TIGCATCAGE	CATGATGGAT	AGCAGCCAGT
4801	CAGGAGCAAG	GTGAGATGAC	AGGAGATUUT	GCCCCGGCAC	TTCGCCCAAT AGGAACGCCC	GTCGTGGCCA
4861	CCCTTCCCGC	TTCAGTGACA	ACGICGAGCA	CHGCIGCGCH	GGCACCGGAC	AGGTCGGTCT
4921	GCCACGATAG	CCGCGCTGCC	TCGTCTTGCA	ACACCCCCCADA	CACGGCGGCA	TCAGAGCAGC
4981	TGACAAAAAG	AACCGGGCGC	CCCIGCGCIG	ACAGCCCCCCCC	CACCCAAGCG	GCCGGAGAAC
5041	CGATTGTCTG	TTGTGCCCAG	TCATAGCCGA	UND COLOTO	TCATCCTGTC	TCTTGATCAG
5101	CTGCGTGCAA	TCCATCTTGT	TCAATCATGC	CUCCCCGGGGG	AGCCATCCAG	TTTACTTTGC
5161	ATCTTGATCC	CCTGCGCCAT	CAGATCCITG	COCCORCIAN	TTCCGGTTCG	CTTGCTGTCC
5221	AGGGCTTCCC	AACCTTACCA	GAGGGCGCCC	CACCIGGCAA	GCAAGCTACC	TGCTTTCTCT
5281	ATAAAACCGC	CCAGTCTAGC	TATCGCCATG	OCCACEACT	GACATTCATC	CGGGGTCAGC
5341	TTGCGCTTGC	GTTTTCCCTT	GTCCAGATAG	****CONTOTA	CCTCDACATC	CTTTTTGATA
5401	ACCGTTTCTG	CGGACTGGCT	TTCTACGTGA	MANGGAICIA	GGTGAAGATC	GACCCCGTAG
5461	ATCTCATGAC	CAAAATCCCT	TAACGTGAGT	TITCGITCCA	CTGAGCGTCA	TECTTECAAA
5521	AAAAGATCAA	AGGATCTTCT	TGAGATCCTT	TTTTTCTGCG	CGTAATCTGC	CCAACTCTTT
5581	CAAAAAAAACC	ACCGCTACCA	GCGGTGGTTT	GTTTGCCGGA	TCAAGAGCTA	CTACTCTACC
5641			አሮሮልቤልፎርርር	AGATACCAMA	TWCIGICCII	CINCICINO
5701			7 7 C 7 7 7 17 11 11 11 11 11 11 11 11 11 11	INISCALLUCE	TUCUTUCCEC	
5761			AAANATTAA	ATABISTI ASTIG	ILIIALLUGG	1100VC100-
5821			A AAAA A CCCCT	CTUUSI "ITSAAC	CHRISTIAN	TOCKCHICA
5881			יוא מיטייטי מיט מיט	TIGOGATALLI	WCWGCGIGUA .	C1111 O1101
5941						
6001						
6061			CACCOTICE AT	111-11-ALC	CICGICACOO.	00000
6121						
6181						
6241	AGTGAGCTGA	TACCGCTCGC	CGCAGCCGAA	CGACCGAGCG	CAGCGAGTCA	J TRIBLICIACO
6301	AAGCGGAAG					
	•			•		

Figure 8

pMSVLSB-5: 8043 bp; Composition 1983 A; 1992 C; 2011 G; 2057 T; 0 OTHER Percentage: 25% A; 25% C; 25% G; 26% T; 0%OTHER

Molecular Weight (kDa): ssDNA: 2483.31 dsDNA: 4958.5
ORIGIN

AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATT

ORIGIN					רי באישיראיזייא ז	י אניראניתוניני
1	AGCGCCCAA!	r acgcaaacco	CCTCTCCCC	CGCGTTGGC	C ONLICALIA	r construction
61	ACGACAGGT.	r TCCCGACTGG	AAAGCGGGCA	GIGAGCGCA	a cocnocran	T GIONGIINGC
121	TCACTCATTA	GGCACCCCAG	GCTTTACAC	TATGUTTU	r cornestate	י פריים אפריים איני
181	TTGTGAGCG	ATAACAATTI	CACACAGGAA	ACAGCTATG	n magnagaaa	ADDRESSOR I
241	TTAGGTGAC	CTATAGAATA	CTCAAGCTAT	GCATCAAGC	r IGGTACCGAG	CICGGAICCA
301	CTAGTAACGC	CCGCCAGTGT	GCTGGAATTC	ATGGGCAGA	CCGTCTGTAC	TITAAGAGIG
361	TTGGCAACC	GTAATGAATA	AAAACTCCCG	TTTTATTAT	A TITGATUAAT	GCTGAAAGCT
421	TACATTAATA	TGTCGTGCGA	. TGGCACGĂAA	AAACACACG	AAACAATACA	GGGGGGTAGT
481	CGGCGGCGG	CTAAGGGTGG	TGCTCGGCGG	GCAGAACAT	: GAAAAATCAA	GATUTATATG
541	AATTACACTI	CIAAGGGIGG	AGGAAGCACA	GGGGGAGAA	ACCACITCIC	CCCCGGCGAC
601	ATAATGTAAA	TGACGCAGTT	TGCCTCGAAA	TACTCCAGC	GCCCTGGAGT	CATTTCCTTC
661	ATCCAATCTI	CATCCGAGTT	GGCGAGGATT	ATTGTAGGC	TAGACTTCTT	CIGCACCITI
721	TTCTTCTTAC	CATACTIGGG	GTTTACAATG	AAATCCCTCT	GACAGCCAAC	TAACIGFIIC
781	CAACAAGGAC	AGAATTTAAA	CGGAATATCA	TCTACGATGT	TGTAGATIGU	GICTICUTIG
841	TATGAAGACC	AATCAACATT	ATTTTGCCAG	TAATTATGAA	CCCCTAGGCT	TUTGGCCCAA
901	GTAGATTTTC	CGGTTCTTGT	TGGGCCGACG	ATGTAGAGGC	Tergerrier	TGATCTTTCA
961	TCTGATGACT	GGATACAGAA	TCCATCCATT	GGAGGTCAGA	AATIGCATCC	TUGAGGGTAT
1021	AACAGGTAGG	TTGAAGGAGC	ATGTAAGCTT	CGGGACTAAC	CIGGAAGAIG	TTAGGCTGGA
1081	GCCAATCGTT	GATTGACTCA	TTACAAAGTA	AATCAGGTGA	GGAGGGTGGA	TUAGGATTUG
1141	TGAACTCTTC	CTGAATCTCA	GGAAAAAGCT	TATTIGCAGA	GTATTCHAAA	TACIGCAAII
1201	TTGTGGACCA	ATCAAAGGGG	AGCTCTTTCT	GGATCATGGA	GAGGTACICI	TCTTTGGAGG
1261	Tagcgtgtga	AATAATGTCT	CGCATTATTT	CATCTTTAGA	AGGCTTTTTT	TOCTITACCI
1321	CTGAATCAGA	TTTTCCTAGG	AAGGGGGACT	TCCTAGGAAT	BARRGIACCI	CICICAMACA
1381	CAGCCAGAGG	TTCCTTGAGA	ATGTAATCCC	TCACTCTGTT	AACIGACIIG	AUCCCCUTTOTT
1441	TATTTGGGTG	AAACCCATTT	ATATCAAAGA	ACCITGAGIC	AGMINICCII	CCCCCACATA
1501	CTGGCTGAAG	CAATGCATGT	AAATGCAAAC	TICCATCITI	AIGIGCCICI	COCOCACAIA
1561	GAATATATTT	GGGAATCCAA	CGAACGACGA	GCTCCCAGAT	CATCIGACAG	CAGAITICAC
1621	GATTTTCTGG	ACACTTTGGA	TAGGTTAGGA	ACGIGITAGC	GIICCIGIGI	AUCCUPCIONCE AUCCU
1681 .	GGTTGGATGA	GGAGGAGGCC.	ATAGCCGACG	ACGGAGGTTG	AGGCIGAGGG	CONTRACTOR
1741	3GGAGCTCCÀ	AACTCTATAG	TATACCCGTG	CGCCTTCGAA	ATCCGCCGCI	CCATTOTCTT
1801	ATAGTGGTTG	TAAATGGGCC	GGACCGGGCC	GGCCCAGCAG	GAAAAGAAGG	TOCOCHCIAN
1861	IATTACCGCG	CCTTCTTTTC	CTGCGAGGGC	CCGGTAGGGA	CCGAGCGCII	CONTINANO
1921	CTGGTTCTG	CTTTGTATGA	TTTATCTAAA	GCAGCCCAAT	CTAAAGAAAC	COGICCCOOO
1981	CACTATAAAT	TGCCTAACAA	GTGCGATTCA	TTCATGGATC	CTITAAACIC	GAGICIAGIC
2041	CCGATCTAGT	AACATAGATG	ACACCGCGCG	CGATAATITA	TCCTAGTTTG	CGCGCIAIAI
2101 3	TTGTTTTCT	ATCGCGTATT	AAATGTATAA	TIGCGGGACT	CTAATCATAA	AAACCCATCT
2161	CATAAATAAC	GTCATGCATT	ACATGTTAAT	TATTACATGC	TTAACGTAAT	TCAACAGAAA
2221 3	TATATGATA	ATCATCGACA	GACCGGCAAC	AGGATTCAAT	CTTAAGAAAC	TTTATIGCCA
2281 7	ATGTTTGAA	CGATCGGGGA	AATTCGCTCG	AGTTAATTAA	GCGGCCGCCT	CAAAAAGGAT
2341 (TTCACCTAG	ATCCTTTTAA	ATTAAAAAATG .	AAGTTTTAGC	ACGTGTCAGT	CCTGCTCCTC
		MOON COOK CO	TOPOSTORY	GTCGCGCAGG -	GCGAACTCCC	GCCCCCACGG
		* mamaaama	かいさいしんけんじん	CCAGGCGTCC	CGGAAGTTCG	TGGACACGAC
		MACCACED ACT	ር ርምር ያቸር ነው የ	CCCCCCCACC	CACACCCAGG	CCHGGGTGTT
		A CHARLES COMPANY	പ്രൂപ് സ്കൂര് വിവേധി	GATGAACAGG	GICACGICGI	CCCGGACCAC
	DEEDOOOOO	maamaamaan a	CCAACTCCCG (GGAGAACCCG	AGCCGGTCGG	TCCAGAACIC
		ACCRECATOR O	രസാസാസവർ (CACCGGAACG	GCACIGGICA .	WCITOCCUI
0764 6	ama a a a a a a	CONCIA CICITATION	ו ב) עוב אודידה עידיניע	CATTTATCAG	GGTTATTGTC	TCATGAGCGG
~~~~		CAN S HACOLD V GALAGE	ממיית את אמיה א	MUDAATAGGG	GTTCCGCGCA	CATTICCCC
2881 F	AAAGTGCCA	CCTGTATGCG	GTGTGAAATA	CCGCACAGAT	GCGTAAGGAG	AAAATACCGC

# Figure 8 (cont'd)

					. ' ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	בתבממבתומו
2941	ATCAGGCGAA	ATTGTAAAC	GGCCGCTT/	A ATTAAGTCG	CGTCCTCTCC	TOTOTOTO
3001	AACTTCCTTA	TATAGAGGA	4 GGGTCTTGC	AAGGATAGI	GGATTGTGCG	ערניטריטריטריטר ארניטריטריטריטר
3061	CGTCAGTGGA	GATATCACA!	CAATCCACT	e GCTTTGAAGA	CGTGGTTGGA	CCAGAGGGCAT
3121	TTTCCACGTA	GCTCCTCGT	GGTGGGGGT	CATCITIGG	ACCACTGTCG	Characterist
3181	CTTGAACGAT	AGCCTTTCCT	TATCGCAAT	AIGGCATITE	TAGGTGCEAC	CITCCITIC
3241						
3301	TATTACCCTT	TGTTGAAAAC	TCTCAATAGO	CCTTTGGTCT	TCTGAGACTG	ATCCCCACAC
3361			* 2 CANCALCASA (	* 11.1 ACCATUL	TOWCGUMITY	MICOCOMORC
3421	CCGTCTGTAC	TTTAAGAGTG	TTGGCAACCA	GIAAIGAAIA	AAAACTCCCG	PARCACACION
3481	TTTGATGAAT	GCTGAAAGCT	TACATTAATA	TGTCGTGCGA	TGGCACGAAA	GCAGAACATC
3541	AAACAATACA	GGGGGGTAGI	CGGCGGGCGG	CTAAGGGTGG	TGCTCGGCGG	CCCCCACAAT
3601	GAAAAATCAA	GATCTATATC	AATTACACTI	CCTCCGTAGG	AGGAAGCACA	TACTOCAGOT
3661	ACCACTTCTC	CCCCGGCGAC	ATAATGTAAA	TGACGCAGII	TGCCTCGAAA	ATTEMACIE
3721	GCCCTGGAGT	CATTTCCTTC	ATCCAATCIT	CATCCGAGIT	GGCGAGGATT	ATTOTAGGET
3781		AMAGA MARINTE	O Wilele Substantial Alberta	CATALTIGGG	GITIMUMIG	WANTOCCTCT
3841	GACAGCCAAC	TAACTGTTTC	CAACAAGGAC	AGAATTTAAA	CGGAATATCA	ICTACOMICT.
3901			かみかだれることに	AATCAACATT	MILLIGULAG	TWWTTWIGHT
3961		managaaaa N	CALVE VED AND ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	CGGTTCTTGT	TUGGCCCGACG	MIGINGMOOC
4021	TCTGCTTTCT	TGATCTTTCA	TCTGATGACT	GGATACAGAA	TCCATCCATT	CCCCA CTAAC
4081		made accomen	አአ <i>ሮአርርር</i> የአለርርር	TTGAAGGAGC	AIGTAAGCII	COCCHCIMAC
4141		WILL COLOUR COLOR	ርም የአካርር ተ	GATTGACTCA	TTACAAAGTA	WITCHGGIGH
4201			י אורויי אואי א א ניאאי	CHRADITIUA	GGAAAAAGCI	TWITTOMION
4261	GTATTCAAAA	TACTGCAATT	TTGTGGACCA	ATCAAAGGGG	AGCTCTTTCT	CONTENTOCA
4321	GAGGTACTCT	TCTTTGGAGG	TAGCGTGTGA	AATAATGTCT	CGCATTATTT	CAICIIIAGA
4381	AGGCTTTTTT	TCCTTTACCT	CTGAATCAGA	TTTTCCTAGG	AAGGGGGACT	TCCINGGAMI
4441			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7717 7 TITISALSA	MIGINALCCC	TOUCTORDS
4501	AACTGACTTG	GCACTCTGAA	TATTTGGGTG	AAACCCATTT	ATATCAAAGA	MCCIIGNOIC
4561			CHOCKERSONS	TARIUM ALGI	WWIGGRAM	* * * * * * * * * * * * * * * * * * *
4621						
4681	CATCTGACAG	GCGATITCAG	GATTTTCTGG	ACACTITGGA	TAGGTTAGGA	ACCRACGITG
4741	GTTCCTGTGT	GAGAACTGAC	GGTTGGATGA	COAGGAGGCC.	ATAGCCGACG	CCCTTCGAA
4801	AGGCTGAGGG	ATGGCAGACT	GGGAGCTCCA	MANAGECCCCC	TATACCCGTG	GGCCCAGCAG
4861	ATCCGCCGCT	CCATTGTCTT	ATAGTGGTTG	TARATGGGCC	GGACCGGGCC	CCGGGGTAGG .
4921	GAAAAGAAGG	CGCGCACTAA	TATTACCGCG	CCITCIIIIC	CIGCGAGGGC	AAGCAGCCCA
4981	GACCGAGCGC	TTTGATTTAA	AGCCTGGTTC	TOCTITOTAL	GATTTATCTA	CATTCATGGA
5041	ATCTAAAGAA	ACCEGTCCCG	GGCACTATAA	MITGCCIAAC	AAGTGCGATT.	TTACAATTCA
5101	TCCTTTAAAC	TCGAGTCTAG	AGGGCCCAAT	TUBUCCIAIA	GTGAGTCGTA	ACTTAATCGC
5161	CTGGCCGTCG	TTTTACAACG	TCGTGACTGG	GAAAACCCIG	GCGTTACCCA	CACCGATCGC
5221	CTTGCAGCAC	ATCCCCCTTT	CGCCAGCTGG	CGIAAIAGCG	AAGAGGCCCG	CTATAAAAGA
5281	CCTTCCCAAC	AGTIGCGCAG	CCTATACGTA	CGGCAGTIIA	AGGTTTACAC	CCCGGGGGA
5341	GAGAGCCGTT	ATCGTCTGTT	TGTGGATGTA	CAGAGIGAIA	TTATTGACAC	CCGTGAACTT
5401	CGGATGGTGA	TCCCCCTGGC	CAGTGCACGT	CIGCIGICAG	ATAAAGTCTC	TATCCĆCAGT
5461	TACCCGGTGG	TGCATATCGG	GGATGAAAGC	TGGCGCATGA	TGACCACCGA	A A A TICA CATIC
5521		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ביוויים אילים אילים אילים	GUTGATUTUA	ULLMUUGUGA A	Thy tour a
5581						
5641		MA GOOGGOOGGA	መሞክ ክርርርርርርር	GGGTGTGGTG	OTIMOROPHY A	GCGIGACCCC
5701		* ~~~~~~~~~	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	TITUULITIE	IICCCIICCI .	* * C * C C C C C C C C C C C C C C C C
5761			* * CONCOUNT * * * * * * * * * * * * * * * * * * *	44.44.44.44.11.11.	CCILINGGGI .	LCCONTING
5821			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	44204. LISTAL 1.	CHICCIICAC V	3170100000
5881			براها ملك الماليك بالجالة	CALLELIAN .	ICCMCGIICI .	TIMPINIO
5941						
6001						
6061						
6121						
6181						
6241						
6301	GGGTCACGAC	GAGATCCTCG	CCGTCGGGCA	TGCTCGCCTT	GAGCCTGGCG 1	AACAGTTCGG

# Figure 8 (cont'd)

		CARTON TO ANTICACA GA CCGCCTTCCA
6361	CTGGCGCGAG CCCCTGATGC TCTTCGTCC	A GATCATCCTG ATCGACAAGA CCGGCTTCCA
6421	TCCGAGTACG TGCTCGCTCG ATGCGATGT	TCGCTTGGTG GTCGAATGGG CAGGTAGCCG
6481		PACCCATGAT GGATACITIC ICGCAGGAG
6541	The second secon	I REACTIVECT CANIAGEAGE CAGILECTIC
6601		CECAAGGAAC GCCCGICGIG GCCAGCCACG
6661	THE PROPERTY OF THE PROPERTY O	. ALAGGGLACC GOACAGGICG GICIIONIGES
		CCAACACGGC GGCATCAGAG CAGCCGATIG
6721	CODE TO THE PROPERTY OF THE PR	TCTCCACCCA AGCGGCCGGA GAACCIGCGI
6781	PARKENERS TO THE PROPERTY OF THE PARKETS AND T	ATCCTCATCC TGTCTCTTGA TCAGATCTTG
6841	THE COURSE CONTRACTOR	AGNANGCCAT CCAGTTIACT TIGCAGGGCI
6901	ATCCCCTGCG CCATCAGATC CTTGGGGGCTG	GCAATTCCGG TTCGCTTGCT GTCCATAAAA
6961	TCCCAACCIT ACCAGAGGGC GCCCCAGCIC	CACTGCAAGC TACCTGCTTT CTCTTTGCGC
7021	CCGCCCAGTC TAGCTATCGC CATGTAAGCC	AGCTGACATT CATCCGGGGT CAGCACCGTT
7081	TTGCGTTTTC CCTTGTCCAG ATAGCCCAG	MOUNTAIN GATCOTTTTT GATAATCTCA
7141	TCTGCGGACT GGCTTTCTAC GTGAAAAGGA	TCTAGGTGAA GATCCTTTTT GATAATCTCA
7201	TGACCAAAAT CCCTTAACGT GAGTTTTCGT	TCCACTGAGC GTCAGACCCC GTAGAAAAGA
7261	TCAAAGGATC TTCTTGAGAT CCTTTTTTC	TGCGCGTAAT. CTGCTGGTTG CAAACAAAAA
7321	AACCACCGCT ACCAGCGGTG GTTTGTTTGC	CGGATCAAGA GCTACCAACT CITTITECGA
7381	AGGTAACTGG CTTCAGCAGA GCGCAGATAC	CARATACTGT CCTTCTAGTG TAGCCGTAGT
7441	TARGET OF THE PROPERTY OF THE	CCCTACATA CUICGUIUIG CIAAICUIGI
7501	magnacenar carantalar	CGTGTCTTAC CGGGTTGGAC TCAAGACGAT
7561		MACGGGGG TIUTUTGUALA CAGCCUAGEI
7621	TARGETT AND COMMONDER CANCELLAND	ACCTACAGCG TGAGCTATGA GARAGCGCCA
7681	TOURS DESCRIPTION OF THE PROPERTY OF THE PROPE	ATCCGGTAAG CGGCAGGGTC GGAACAGGAG
•		CCTGGTATCT TTATAGICCT GICGGIIIC
7741	THE PROPERTY AND A COURT OF A THE TOTAL OF A PARTY OF THE	GATGCTCGTC AGGGGGGGGGGGGGG
7801	THE PARTY OF THE P	TCTGGGCTT TIGCTGGCCT TITGCTCACK
7861	THE PROPERTY OF THE PROPERTY O	TEGATAACCG TATTACCGCC TIIGAGIGAG
7921	CTGATACCGC TCGCCGCAGC CGAACGACCG	AGCGCAGCGA GTCAGTGAGC GAGGAAGCGG
7981		
8041	AAG	

#### Figure 9

DMSVLSB-6: 7404 bp; Composition 1839 A; 1794 C; 1835 G; 1936 T; 0 OTHER Percentage: 25% A; 24% C; 25% G; 26% T; 0%OTHER Molecular Weight (kDa): ssDNA: 2286.33 dsDNA: 4564.5 AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA TGCAGCTGGC ORIGIN ACGACAGGTT TCCCGACTGG ANAGCGGGCA GTGAGCGCAA CGCAATTAAT GTGAGTTAGC 1 TCACTCATTA GGCACCCCAG GCTTTACACT TTATGCTTCC GGCTCGTATG TTGTGTGGAA 61 TTGTGAGCGG ATAACAATTT CACACAGGAA ACAGCTATGA CCATGATTAC GCCAAGCTAT 121 TTAGGTGACA CTATAGAATA CTCAAGCTAT GCATCAAGCT TGGTACCGAG CTCGGATCCA 181 CTAGTAACGG CCGCCAGTGT GCTGGAATTC ATGGGCAGAC CCGTCTGTAC TTTAAGAGTG 241 TTGGCAACCA GTAATGAATA AAAACTCCCG TTTTATTATA TTTGATGAAT GCTGAAAGCT 301 TACATTAATA TOTOGTGCGA TGGCACGAAA AAACACACGC AAACAATACA GGGGGGTAGT 361 CÉGCGGCGG CTAAGGGTGG TGCTCGGCGG GCAGAACATC GAAAAATCAA GATCTATATG 421 481 AATTACACTT CCTCCGTAGG AGGAAGCACA GGGGGAGAAT ACCACTTCTC CCCCGGCGAC ATANTOTANA TGACGCAGIT TGCCTCGAAA TACTCCAGCT GCCCTGGAGT CATTTCCTTC 541 ATCCAATCIT CATCCGAGIT GGCGAGGATT ATTGTAGGCT TAGACITCIT CTGCACCITT 601 TTCTTCTTAC CATACTTGGG GTTTACAATG AAATCCCTCT GACAGCCAAC TAACTGTTTC 661 CAACAAGGAC AGAATTTAAA CGGAATATCA TCTACGATGT TGTAGATTGC GTCTTCGTTG 721 TATGAAGACC AATCAACATT ATTTTGCCAG TAATTATGAA CCCCTAGGCT TCTGGCCCAA 781 GTAGATTITC COGTICITET TEGECCEACG ATGTAGAGGC TCTGCTTTCT TGATCTITCA 841 TCTGATGACT GGATACAGAA TCCATCCATT GGAGGTCAGA AATTGCATCC TCGAGGGTAT 901 AACAGGTAGG TTGAAGGAGC ATGTAAGCTT CGGGACTAAC CTGGAAGATG TTAGGCTGGA 961 GCCAATCGTT GATTGACTCA TTACAAAGTA AATCAGGTGA GGAGGGTGGA TGAGGATTGG 1021 TGAACTCTTC CTGAATCTCA GGAAAAAGCT TATTTGCAGA GTATTCAAAA TACTGCAATT 1081 TTGTGGACCA ATCAAAGGGG AGCTCTTTCT GGATCATGGA GAGGTACTCT TCTTTGGAGG 1141 TAGCGTGTGA AATAATGTCT CGCATTATIT CATCTTTAGA AGGCTTTTTT TCCTTTACCT 1201 1261 CTGAATCAGA TTTTCCTAGG AAGGGGGACT TCCTAGGAAT GAAAGTACCT CTCTCAAACA CAGCCAGAGG TTCCTTGAGA ATGTAATCCC TCACTCTGTT AACTGACTTG GCACTCTGAA 1321 1381 TATTTGGGTG ANACCCATTT ATATCANAGA ACCTTGAGTC AGATATCCTT ATCGGCTTCT CTGGCTGAAG CAATGCATGT AAATGCAAAC TTCCATCTTT ATGTGCCTCT CGGGCACATA 1441 GAATATATIT GGGAATCCAA CGAACGACGA GCTCCCAGAT CATCTGACAG GCGATTTCAG 1501 GATTITCTCG ACACTTTGGA TAGGTTAGGA ACGTGTTAGC GTTCCTGTGT GAGAACTGAC 1561 GGTTGGATGA GGAGGAGGCC ATAGCCGACG ACGGAGGTTG AGGCTGAGGG ATGGCAGACT 1621 1681 GGGAGCTCCA AACTCTATAG TATACCCGTG CGCCTTCGAA ATCCGCCGCT CCATTGTCTT ATAGTGGTTG TARATGGGCC GGACCGGGCC GGCCCAGCAG GAAAAGAAGG CGCGCACTAA 1741 TATTACCGCG CCTTCTTTC CTGCGAGGGC CCGGTAGGGA CCGAGCGCTT TGATTTAAAG 1801 1861 CCTGGTTCTG CTTTGTATGA TTTATCTAAA GCAGCCCAAT CTAAAGAAAC CGGTCCCGGG CACTATAAAT TGCCTAACAA GTGCGATTCA TTCATGGATC CTTTAAACTC GAGTCTAGTC 1921 1981 CCGATCTAGT ARCATAGATG ACACCGCGCG CGATAATTTA TCCTAGTTTG CGCGCTATAT TITGTTTTCT ATCGCGTATT AAATGTATAA TIGCGGGACT CTAATCATAA AAACCCATCT 2041 CATARATARC GTCATGCATT ACATGTTART TATTACATGC TTARCGTART TCARCAGARA 2101 2161 TTATATGATA ATCATCGACA GACCGGCAAC AGGATTCAAT CTTAAGAAAC TTTATTGCCA AATGITTGAA CGATCGGGGA AATTCGCTCG AGTTAATTAA GCGGCCGCTT AATTAAGTCG 2221 ACGTCCTCTC CAAATGAAAT GAACTTCCTT ATATAGAGGA AGGGTCTTGC GAAGGATAGT 2281 GGGATTGTGC GTCATCCCTT ACGTCAGTGG AGATATCACA TCAATCCACT TGCTTTGAAG 2341 ACGTGGTTGG AACGTCTTCT TTTTCCACGT AGCTCCTCGT GGGTGGGGGT CCATCTTTGG 2401 GACCACTOTC GGCAGAGGCA TCTTGAACGA TAGCCTTTCC TTATCGCAAT GATGGCATTT 2461 GTAGGTGCCA CCTTCCTTTT CTACTGTCCT TITGATGAAG TGACAGATAG CTGGGCAATG 2521 GAATCCGAGG AGGITTCCCG ATATTACCCT TTGTTGAAAA GTCTCAATAG CCCTTTGGTC 2581 2641 TTCTGAGACT GTATCTTGA TATTCTTGGA GTAGACGAGA GAGTGTCGTG CTCCACCATG TTGACGAATT CATGGGCAGA CCCGTCTGTA CTTTAAGAGT GTTGGCAACC AGTAATGAAT 2701

2761 2821

ARABACTCCC GTTTTATTAT ATTTGATGAR TGCTGARAGC TTACATTART ATGTCGTGCG

# Figure 9 (cont'd)

2883	
2941	
3001	
3061	
3123	
3181	
3241	
3301	
3361	
3421	
3481	
3541	
3601	
3661	GAGCTCTTTC TGGATCATGG AGAGGTACTC TTCTTTGGAG GTAGCGTGTG AAATAATGTC
3721	TCGCATTATT TCATCTTTAG AAGGCTTTTT TTCCTTTACC TCTGAATCAG ATTTTCCTAG
3781	GAAGGGGGAC TTCCTAGGAA TGAAAGTACC TCTCTCAAAC ACAGCCAGAG GTTCCTTGAG
3841	ANTOTANTCC CTCACTCTGT TAACTGACTT GGCACTCTGA ATATTTGGGT GAAACCCATT
3901	TATATCAAAG AACCTTGAGT CAGATATCCT TATCGGCTTC TCTGGCTGAA GCAATGCATG
3961	TARATGCARA CTTCCATCTT TATGTGCCTC TCGGGCACAT AGARTATATT TGGGARTCCA
4021	ACGAACGACG AGCTCCCAGA TCATCTGACA GGCGATTTCA GGATTTTCTG GACACTTTGG
4081	ATAGGTTAGG AACGTGTTAG CGTTCCTGTG TGAGAACTGA CGGTTGGATG AGGAGGAGGC
4141	CATAGCCGAC GACGGAGGTT GAGGCTGAGG GATGGCAGAC TGGGAGCTCC AAACTCTATA
4201	GTATACCCGT GCGCCTTCGA AATCCGCCGC TCCATTGTCT TATAGTGGTT GTAAATGGGC
4261	CGGACCGGC CGGCCCAGCA GGAAAGAAG GCGCGCACTA ATATTACCGC GCCTTCTTTT
4321	CCTGCGAGGG CCCGGGGTAG GGACCGAGCG CTTTGATTTA AAGCCTGGTT CTGCTTTGTA TGATTTATCT AAAGCAGCCC AATCTAAAGA AACCGGTCCC GGGCACTATA AATTGCCTAA
4381	CARGIGGGAT TCATTCATGG ATCCTTTARA CTCGAGTCTA GAGGGCCCAA TTCGCCCTAT
4441 4501	AGTGAGTCGT ATTACAATTC ACTGGCCGTC GTTTTACAAC GTCGTGACTG GGAAAACCCT
4561	GGCGTTACCC AACTTAATCG CCTTGCAGCA CATCCCCCTT TCGCCAGCTG GCGTAATAGC
4621	GAAGAGGCCC GCACCGATCG CCCTTCCCAA CAGTTGCGCA GCCTATACGT ACGGCAGTTT
4681	AAGGTTTACA CCTATAAAAG AGAGAGCCGT TATCGTCTGT TTGTGGATGT ACAGAGTGAT
4741	ATTATTGACA CGCCGGGCG ACGGATGGTG ATCCCCCTGG CCAGTGCACG TCTGCTGTCA
4801	GATAAAGTCT CCCGTGAACT TTACCCGGTG GTGCATATCG GGGATGAAAG CTGGCGCATG
4861	ATGACCACCG ATATGGCCAG TGTGCCGGTC TCCGTTATCG GGGAAGAAGT GGCTGATCTC
4921	AGCCACCGCG AAAATGACAT CAAAAACGCC ATTAACCTGA TGTTCTGGGG AATATAAATG
4981	TCAGGCCTGA ATGGCGARTG GACGCGCCCT GTAGCGGCGC ATTAAGCGCG CGGGTGTGGT
5041	GGTTACGCGC AGCGTGACCG CTACACTTGC CAGCGCCCTA GCGCCCGCTC CTTTCGCTTT
5101	CTTCCCTTCC TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGGCT
5161	CCCTTTAGGG TTCCGATTTA GAGCTTTACG GCACCTCGAC CGCAAAAAAC TTGATTTGGG
5221	TGATGGTTCA CGTAGTGGGC CATCGCCCTG ATAGACGGTT TTTCGCCCTT TGACGTTGGA
5281	GTCCACGTTC TTTAATAGTG GACTCTTGTT CCAAACTGGA ACAACACTCA ACCCTATCGC
5341	GGTCTATTCT TTTGATTTAT AAGGGATGTT GCCGATTTCG GCCTATTGGT TAAAAAATGA
5401	GCTGATTTAA CAAAAATTT AACAAAATTC AGAAGAACTC GTCAAGAAGG CGATAGAAGG
5461	CGATGCGCTG CGAATCGGGA GCGGCGATAC CGTAAAGCAC GAGGAAGCGG TCAGCCCATT
5521	CGCCGCCAAG CTCTTCAGCA ATATCACGGG TAGCCAACGC TATGTCCTGA TAGCGGTCCG
5581	CCACACCCAG CCGGCCACAG TCGATGAATC CAGAAAAGCG GCCATTTTCC ACCATGATAT
5641	TCGGCAAGCA GGCATCGCCA TGGGTCACGA CGAGATCCTC GCCGTCGGGC ATGCTCGCCT
5701	TGAGCCTGGC GAACAGTTCG GCTGGCGCGA GCCCCTGATG CTCTTCGTCC AGATCATCCT
5761	GATCGACAG ACCGGCTTCC ATCCGAGTAC GTGCTCGCTC GATGCGATGT TTCGCTTGGT
5821	GGTCGAATGG GCAGGTAGCC GGATCAAGCG TATGCAGCCG CCGCATTGCA TCAGCCATGA
5881	TGGATACTTT CTCGGCAGGA GCAAGGTGAG ATGACAGGAG ATCCTGCCCC GGCACTTCGC
5941	CCAATAGCAG CCAGTCCCTT CCCGCTTCAG TGACAACGTC GAGCACAGCT GCGCAAGGAA
6001	CGCCCGTCGT GGCCAGCCAC GATAGCCGCG CTGCCTCGTC TTGCAGTTCA TTCAGGGCAC
6061	CGGACAGGTC GGTCTTGACA AAAAGAACCG GGCGCCCCTG CGCTGACAGC CGGAACACGG
6121	CGCCATCAGA GCAGCCGATT GTCTGTTGTG CCCAGTCATA GCCGAATAGC CTCTCCACCC
6181	AAGCGGCCGG AGAACCTGCG TGCAATCCAT CTTGTTCAAT CATGCGAAAC GATCCTCATC
6241	CTGTCTCTTG ATCAGATCTT GATCCCCTGC GCCATCAGAT CCTTGGCGGC GAGAAAGCCA
	and and the contest of the contract contract of the contract o

# Figure 9 (cont'd)

		CARCOM TROOPS	PARCE CECCCARCE	CCCDDTTCCC
6301	TCCAGTTTAC TTTGCAGGGC TTCC	CAACCI IMCCAC	AGGG CGCCCCAGCI	COCHITICES
6361	GTTCGCTTGC TGTCCATAAA ACCG	CCCAGT CTAGC	TATCG CCATGTAAGC	CCACTGCAAG
6421	CTACCTGCTT TCTCTTTGCG CTTG	CGTTTT CCCTTC	STCCA GATAGCCCAG	TAGCTGACAT
6481	TCATCCGGGG TCAGCACCGT TTCT	GCGGAC TGGCTI	TCTA CGTGAAAAGG	ATCTAGGTGA
	AGATCCITTI TGATAATCIC ATGA	דייייייי ממממייי	AACG TGAGTTTTCG	TTCCACTGAG
6541	CGTCAGACCC CGTAGAAAAG ATCA		YOUR THAT THE	CHECKECKTAN
6601	CGTCAGACCC CGTAGAAAAG ATCA	AAGGAI CIICII	GAGA ICCITITI	CICCOCOIAN
6661	TCTGCTGCTT GCAAACAAAA AAAC	CACCGC TACCAG	CGGT GGTTTGTTTG	CCGGATCAAG
6721	AGCTACCAAC TCTTTTTCCG AAGG	PAACIG GCTTCA	GCAG AGCGCAGATA	CCAAATACTG
6781	TOTTOTAGT GTAGCCGTAG TTAGG	SCCACC ACTICA	agaa CTCTGTAGCA	CCGCCTACAT
	ACCTCGCTCT GCTAATCCTG TTACC	PAGTGG CTGCTG	CCAG TGGCGATAAG	TCGTGTCTTA
6841	CCGGGTTGGA CTCAAGACGA TAGT	DACCCC ATARCC	CCA GCGCTCGGGC	TGAACGGGGG
6901	CCGGGTTGGA CTCAAGACGA TAGI	ACCOS ATAMOS	AND CONTRACTOR	TACCTACACC
6961	GTTCGTGCAC ACAGCCCAGC TTGGA	IGCGAA CGACCI	ACAC CGAACIGAGA	INCCINCAGE
7021	GTGAGCTATG AGAAAGCGCC ACGCT	TCCCG AAGGGA	GAAA GGCGGACAGG	TATCCGGTAA
7081	GCGGCAGGGT CGGAACAGGA GAGCG	CACGA GGGAGC	TTCC AGGGGGAAAC	GCCTGGTATC
	TITATAGTCC TGTCGGGTTT CGCCA	COTOT GACTIG	AGCG TCGATTTTTG	TGATGCTCGT
7141	TIIMINGICC IGICGGGTTI COCC.	COCCO GCAACG	המינות החווויויויוים הפינו	TTCCTGGGCT
7201	CAGGGGGCG GAGCCTATGG AAAAA	COCCH CCHACO	no company	ODGGDGDGG
7261	TITGCTGGCC TITTGCTCAC ATGTI	CTITC CIGCGI	TATE CECTGATTET	GIGGATAACC
7321	GTATTACCGC CTTTGAGTGA GCTGA	TACCG CTCGCC	CCGAACGACC	GAGCGCAGCG
7381	AGTCAGTGAG CGAGGAAGCG GAAG			
1201	MOTOR CONTRACTOR CONTRACTOR			

#### SEQUENCE LISTING

<110> LARGE SCALE BIOLOGY CORPORATION	
<120> COMPOSITIONS AND METHODS FOR INHIBITING GENE EXPRESSION	
<130> 008010177PC00	
<140> To Be Assigned	
<141> 2001-04-04	
<150> 09/545,574	
<151> 2000-04-07	
<160> 14	
<170> FastSEQ for Windows Version 3.0	
<210> 1	
<211> 27	
<212> DNA	
<213> Cauliflower mosaic virus	
<400> 1	
tttgaattcg tcaacatggt ggagcac 2	7
<210> 2	
<211> 31	
<212> DNA	
<213> Cauliflower mosaic virus	
<400> 2	
tttgtcgacg tcctctccaa atgaaatgaa c 3	1
<210> 3	
<211> 46	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> zeocin resistance gene	
<400> 3	
cccgtcgact taattaagcg gccgcgttta caatttcgcc tgatgc 40	5
<210> 4	
<211> 47	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> zeocin resistance gene	
<400> 4	
cccctcgagt taattaagcg gccgcctcaa aaaggatctt cacctag 4'	7

```
<210> 5
      <211> 32
      <212> DNA
      <213> Artificial Sequence
      <223> nopaline synthase gene (nos) terminator sequence
      <400> 5
tttctcgagc gaatttcccc gatcgttcaa ac
                                                                        32
      <210> 6
      <211> 32
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> nopauline synthase (nos) terminator sequence
      <400> 6
tttactagtc ccgatctagt aacatagatg ac
                                                                        32
      <210> 7
      <211> 29
      <212> DNA
      <213> maize
      <400> 7
tttttaatta aggtccgcct gaattctcg
                                                                        29
      <210> 8
      <211> 30
      <212> DNA
      <213> maize
      <400> 8
tttttaatta acggcaaggc tcacagtttg
                                                                        30
      <210> 9
      <211> 4881
      <212> DNA
      <213> Viral
      <400> 9
agegeceaat aegeaaaceg ceteteceeg egegttggee gatteattaa tgeagetgge
                                                                        60
acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc
                                                                       120
tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa
                                                                       180
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctat
                                                                       240
ttaggtgaca ctatagaata ctcaagctat gcatcaagct tggtaccgag ctcggatcca
                                                                       300
ctagtaacgg ccgccagtgt gctggaattc atgggcagac ccgtctgtac tttaagagtg
                                                                       360
ttggcaacca gtaatgaata aaaactcccg ttttattata tttgatgaat gctgaaagct
                                                                       420
tacattaata tgtcgtgcga tggcacgaaa aaacacacgc aaacaataca ggggggtagt
                                                                       480
cggcgggcgg ctaagggtgg tgctcggcgg gcagaacatc gaaaaatcaa gatctatatg
                                                                       540
aattacactt cctccgtagg aggaagcaca gggggagaat accacttctc ccccggcgac
                                                                       600
ataatgtaaa tgacgcagtt tgcctcgaaa tactccagct gccctggagt catttccttc
                                                                       660
atccaatctt catccgagtt ggcgaggatt attgtaggct tagacttctt ctgcaccttt
                                                                       720
```

ttcttcttac	catacttggg	gtttacaatg	aaatccctct	gacagccaac	taactgtttc	780
					gtcttcgttg	840
	aatcaacatt					900
	cggttcttgt					960
	ggatacagaa					1020
	ttgaaggagc					1080
	gattgactca					1140
	ctgaatctca					1200
	atcaaagggg					1260
	aataatgtct					1320
	ttttcctagg					1380
	ttccttgaga					1440
	aaacccattt					1500
	caatgcatgt					1560
	gggaatccaa					1620
	acactttgga					1680
	ggaggaggcc					1740
	aactctatag					1800
	taaatgggcc					1860
	ccttctttc					1920
	ctttgcggcc					1980
	acaattcact					2040
qttacccaac	ttaatcgcct	tgcagcacat	cccctttcq	ccaqctqqcq	taatagcgaa	2100
	ccgatcgccc					2160
	ataaaagaga					2220
	cggggcgacg					2280
	gtgaacttta					2340
	tggccagtgt					2400
	atgacatcaa					2460
	gcgaatggac					2520
	gtgaccgcta					2580
	ctcgccacgt					2640
	cgatttagag					2700
tggttcacgt	agtgggccat	cgccctgata	gacggttttt	cgccctttga	cgttggagtc	2760
	aatagtggac					2820
ctattcttt	gatttataag	ggatgttgcc	gatttcggcc	tattggttaa	aaaatgagct	2880
	aaattttaac					2940
tgcgctgcga	atcgggagcg	gcgataccgt	aaagcacgag	gaagcggtca	gcccattcgc	3000
	ttcagcaata					3060
cacccagccg	gccacagtcg	atgaatccag	aaaagcggcc	attttccacc	atgatattcg	3120
gcaagcaggc	atcgccatgg	gtcacgacga	gatcctcgcc	gtcgggcatg	ctcgccttga	3180
gcctggcgaa	cagttcggct	ggcgcgagcc	cctgatgctc	ttcgtccaga	tcatcctgat	3240
	ggcttccatc					3300
	ggtagccgga					3360
	ggcaggagca					3420
atagcagcca	gtcccttccc	gcttcagtga	caacgtcgag	cacagctgcg	caaggaacgc	3480
	cagccacgat					3540
	cttgacaaaa					3600
	gccgattgtc					3660
cggccggaga	acctgcgtgc	aatccatctt	gttcaatcat	gcgaaacgat	cctcatcctg	3720
	agatcttgat					3780
	gcagggcttc					3840
	ccataaaacc					3900
	ctttgcgctt					3960
	gcaccgtttc					4020
	taatctcatg					4080
cagaccccgt	agaaaagatc	aaaggatctt	cttgagatcc	tttttttctg	cgcgtaatct	4140

4200

```
gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc
taccaactet ttttccgaag gtaactgget tcagcagage gcagatacca aatactgtcc
                                                                      4260
ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc
                                                                      4320
tegetetget aatcetgtta ceagtggetg etgecagtgg egataagteg tgtettaceg
                                                                      4380
                                                                      4440
ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt
                                                                      4500
cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg
agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg
                                                                      4560
gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt
                                                                      4620
atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag
                                                                      4680
gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctgggctttt
                                                                      4740
gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta
                                                                      4800
ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt
                                                                      4860
                                                                      4881
cagtgagcga ggaagcggaa g
      <210> 10
      <211> 3413
      <212> DNA
      <213> viral
      <400> 10
agegeecaat aegeaaaceg ceteteeceg egegttggee gatteattaa tgeagetgge
                                                                       60
acgacaggtt tecegactgg aaagegggea gtgagegeaa egeaattaat gtgagttage
                                                                       120
tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa
                                                                       180
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctat
                                                                       240
ttaggtgaca ctatagaata ctcaagctat gcatcaagct tgggcccggt agggaccgag
                                                                      300
cgctttgatt taaagcctgg ttctgctttg tatgatttat ctaaagcagc ccaatctaaa
                                                                      360
gaaaccggtc ccgggcacta taaattgcct aacaagtgcg attcattcat ggatccttta
                                                                      420
aactcgagtc tagagggccc gaattctgca gatatccatc acactggcgg ccgctcgagc
                                                                      480
atgcatctag agggcccaat tcgccctata gtgagtcgta ttacaattca ctggccgtcg
                                                                      540
ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca acttaatcgc cttgcagcac
                                                                      600
atccccttt cgccagctgg cgtaatagcg aagaggcccg caccgatcgc ccttcccaac
                                                                      660
agttgcgcag cctatacgta cggcagttta aggtttacac ctataaaaga gagagccgtt
                                                                      720
atcgtctgtt tgtggatgta cagagtgata ttattgacac gccggggcga cggatggtga
                                                                      780
tccccctggc cagtgcacgt ctgctgtcag ataaagtctc ccgtgaactt tacccggtgg
                                                                      840
tgcatatcgg ggatgaaagc tggcgcatga tgaccaccga tatggccagt gtgccggtct
                                                                      900
ccgttatcgg ggaagaagtg gctgatctca gccaccgcga aaatgacatc aaaaacgcca
                                                                      960
ttaacctgat gttctgggga atataaatgt caggcctgaa tggcgaatgg acgcgccctg
                                                                     1020
tageggegea ttaagegege gggtgtggtg gttaegegea gegtgaeege taeaettgee
                                                                     1080
agegeectag egecegetee tttegettte tteeetteet ttetegeeae gttegeegge
                                                                     1140
tttccccgtc aagctctaaa tcgggggctc cctttagggt tccgatttag agctttacgg
                                                                     1200
cacctcgacc gcaaaaaact tgatttgggt gatggttcac gtagtgggcc atcgccctga
                                                                     1260
tagacggttt ttcgcccttt gacgttggag tccacgttct ttaatagtgg actcttgttc
                                                                     1320
caaactggaa caacactcaa ccctatcgcg gtctattctt ttgatttata agggatgttg
                                                                     1380
ccgatttcgg cctattggtt aaaaaatgag ctgatttaac aaaaatttta acaaaattca
                                                                     1440
gaagaactcg tcaagaaggc gatagaaggc gatgcgctgc gaatcgggag cggcgatacc
                                                                     1500
gtaaagcacg aggaagcggt cagcccattc gccgccaagc tettcagcaa tatcacgggt
                                                                     1560
                                                                     1620
agccaacgct atgtcctgat agcggtccgc cacacccagc cggccacagt cgatgaatcc
agaaaagcgg ccattttcca ccatgatatt cggcaagcag gcatcgccat gggtcacgac
                                                                     1680
gagatecteg cegtegggea tgetegeett gageetggeg aacagttegg etggegegag
                                                                     1740
cccctgatgc tcttcgtcca gatcatcctg atcgacaaga ccggcttcca tccgagtacg
                                                                     1800
tgctcgctcg atgcgatgtt tcgcttggtg gtcgaatggg caggtagccg gatcaagcgt
                                                                     1860
atgeageege egeattgeat eagecatgat ggataettte teggeaggag caaggtgaga
                                                                     1920
tgacaggaga tcctgccccg gcacttcgcc caatagcagc cagtcccttc ccgcttcagt
                                                                     1980
gacaacgtcg agcacagctg cgcaaggaac gcccgtcgtg gccagccacg atagccgcgc
                                                                     2040
tgcctcgtct tgcagttcat tcagggcacc ggacaggtcg gtcttgacaa aaagaaccgg
                                                                     2100
gegeeeetge getgaeagee ggaacaegge ggeateagag eageegattg tetgttgtge
                                                                     2160
ccagtcatag ccgaatagcc tctccaccca agcggccgga gaacctgcgt gcaatccatc
                                                                     2220
```

```
ttgttcaatc atgcgaaacg atcctcatcc tgtctcttga tcagatcttg atcccctgcg
ccatcagatc cttggcggcg agaaagccat ccagtttact ttgcagggct tcccaacctt
                                                                     2340
accagagge geeccagetg geaatteegg ttegettget gtecataaaa cegeccagte
                                                                     2400
tagetatege catgtaagee caetgeaage tacetgettt etetttgege ttgegtttte
                                                                     2460
                                                                     2520
cettgtccag atagcccagt agetgacatt cateeggggt cageacegtt tetgeggact
                                                                     2580
ggctttctac gtgaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat
cccttaacgt gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc
                                                                     2640
ttcttgagat ccttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct
                                                                     2700
accageggtg gtttgtttge eggateaaga getaceaact etttteega aggtaactgg
                                                                     2760
cttcagcaga gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca
                                                                     2820
cttcaagaac tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccaqtqqc
                                                                     2880
tgctgccagt ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga
                                                                     2940
taaggcgcag cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac
                                                                     3000
gacctacacc gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga
                                                                     3060
agggagaaag gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag
                                                                     3120
ggagetteca gggggaaacg cetggtatet ttatagteet gtegggttte gecacetetg
                                                                     3180
acttgagcgt cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag
                                                                     3240
caacgcggcc tttttacggt tcctgggctt ttgctggcct tttgctcaca tgttctttcc
                                                                     3300
tgcgttatcc cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc
                                                                     3360
tegeegeage egaacgaeeg agegeagega gteagtgage gaggaagegg aag
                                                                     3413
```

<210> 11 <211> 4961 <212> DNA <213> Viral

<400> 11

agegeecaat aegeaaaceg ceteteeceg egegttggee gatteattaa tgeagetgge 60 acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc 120 tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa 180 240 ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac qccaagctat ttaggtgaca ctatagaata ctcaagctat gcatcaagct tggtaccgag ctcggatcca 300 ctagtaacgg ccgccagtgt gctggaattc atgggcagac ccgtctgtac tttaagagtg 360 ttggcaacca gtaatgaata aaaactcccg ttttattata tttgatgaat gctgaaagct 420 tacattaata tgtcgtgcga tggcacgaaa aaacacacgc aaacaataca ggggggtagt 480 cggcgggcgg ctaagggtgg tgctcggcgg gcagaacatc gaaaaatcaa gatctatatg 540 aattacactt cctccgtagg aggaagcaca gggggggaat accacttctc ccccggcgac 600 ataatgtaaa tgacgcagtt tgcctcgaaa tactccagct gccctggagt catttccttc 660 atccaatctt catccgagtt ggcgaggatt attgtaggct tagacttctt ctgcaccttt 720 ttettettae catacttggg gtttacaatg aaatecetet gacagecaac taactgttte 780 caacaaggac agaatttaaa cggaatatca tctacgatgt tgtagattgc gtcttcgttg 840 tatgaagacc aatcaacatt attttgccag taattatgaa cccctaggct tctggcccaa 900 gtagattttc cggttcttgt tgggccgacg atgtagaggc tctgctttct tgatctttca 960 totgatgact ggatacagaa tocatocatt ggaggtcaga aattgcatco togagggtat 1020 aacaggtagg ttgaaggagc atgtaagctt cgggactaac ctggaagatg ttaggctgga 1080 gccaatcgtt gattgactca ttacaaagta aatcaggtga ggagggtgga tgaggattgg 1140 tgaactette etgaatetea ggaaaaaget tatttgeaga gtatteaaaa taetgeaatt 1200 ttgtggacca atcaaagggg agctctttct ggatcatgga gaggtactct tctttggagg 1260 tagogtgtga aataatgtct cgcattattt catctttaga aggctttttt tcctttacct 1320 ctgaatcaga ttttcctagg aagggggact tcctaggaat gaaagtacct ctctcaaaca 1380 cagccagagg ttccttgaga atgtaatccc tcactctgtt aactgacttg gcactctgaa 1440 tatttgggtg aaacccattt atatcaaaga accttgagtc agatatcctt atcggcttct 1500 ctggctgaag caatgcatgt aaatgcaaac ttccatcttt atgtgcctct cgggcacata 1560 gaatatattt gggaatccaa cgaacgacga gctcccagat catctgacag gcgatttcag 1620 gattttctgg acactttgga taggttagga acgtgttagc gttcctgtgt gagaactgac 1680 ggttggatga ggaggaggcc atagccgacg acggaggttg aggctgaggg atggcagact 1740 gggagctcca aactctatag tataccegtg cgccttcgaa atccgccgct ccattgtctt 1800

atagtggttg	taaatgggcc	ggaccgggcc	ggcccagcag	gaaaagaagg	cgcgcactaa	1860
tattaccgcg	ccttctttc	ctgcgagggc	ccggtaggga	ccgagcgctt	tgatttaaag	1920
cctggttctg	ctttgtatga	tttatctaaa	gcagcccaat	ctaaagaaac	cggtcccggg	1980
cactataaat	tgcctaacaa	gtgcgattca	ttcatggatc	ctttaaactc	gagtctagag	2040
ggcccaattc	gccctatagt	gagtcgtatt	acaattcact	ggccgtcgtt	ttacaacgtc	2100
		gttacccaac				2160
		gaggcccgca				2220
		gtttacacct				2280
		attgacacgc				2340
		aaagtctccc				2400
		accaccgata				2460
		caccgcgaaa				2520
		ggcctgaatg				2580
		tacgcgcagc				2640
		cccttccttt				2700
		tttagggttc				2760
		tggttcacgt				2820
		cacgttcttt				2880
		ctattcttt				2940
		gatttaacaa				3000
		tgcgctgcga				3060
		cgccaagctc				3120
		cacccagccg				3180
		gcaagcaggc				3240
						3300
		gcctggcgaa cgacaagacc				3360
						3420
		cgaatgggca atactttctc				3420
						3540
		atagcagcca				3600
		ccgtcgtggc				3660
		acaggtcggt				3720
		catcagagca				
		cggccggaga				3780
		tctcttgatc				3840
		agtttacttt				3900
		cgcttgctgt				3960
		cctgctttct				4020
		tccggggtca				4080
		tcctttttga				4140
		cagaccccgt				4200
		gctgcttgca				4260
		taccaactct				4320
		ttctagtgta				4380
		tegetetget				4440
		ggttggactc				4500
		cgtgcacaca				4560
		agctatgaga				4620
		gcagggtcgg				4680
		atagtcctgt				4740
		gggggcggag				4800
		gctggccttt				4860
		ttaccgcctt			gccgcagccg	4920
aacgaccgag	cgcagcgagt	cagtgagcga	ggaagcggaa	g		4961

<210> 12

<211> 6309

<212> DNA

#### <213> Viral

<400> 12

(400	// 12					
agcgcccaat	acgcaaaccg	cctctccccg	cgcgttggcc	gattcattaa	tgcagctggc	60
acgacaggtt	tcccgactgg	aaagcgggca	gtgagcgcaa	cgcaattaat	gtgagttagc	120
tcactcatta	ggcaccccag	gctttacact	ttatgcttcc	ggctcgtatg	ttgtgtggaa	180
ttgtgagcgg	ataacaattt	cacacaggaa	acagctatga	ccatgattac	gccaagctat	240
ttaggtgaca	ctatagaata	ctcaagctat	gcatcaagct	tggtaccgag	ctcggatcca	300
ctagtcccga	tctagtaaca	tagatgacac	cgcgcgcgat	aatttatcct	agtttgcgcg	360
ctatattttg	ttttctatcg	cgtattaaat	gtataattgc	gggactctaa	tcataaaaac	420
ccatctcata	aataacgtca	tgcattacat	gttaattatt	acatgcttaa	cgtaattcaa	480
cagaaattat	atgataatca	tcgacagacc	ggcaacagga	ttcaatctta	agaaacttta	540
ttgccaaatg	tttgaacgat	cggggaaatt	cgctcgagtt	aattaagcgg	ccgcctcaaa	600
aaggatcttc	acctagatcc	ttttaaatta	aaaatgaagt	tttagcacgt	gtcagtcctg	660
ctcctcggcc	acgaagtgca	cgcagttgcc	ggccgggtcg	cgcagggcga	actcccgccc	720
ccacggctgc	tcgccgatct	cggtcatggc	cggcccggag	gcgtcccgga	agttcgtgga	780
cacgacctcc	gaccactcgg	cgtacagctc	gtccaggccg	cgcacccaca	cccaggccag	840
		ggtcctggac				900
gaccacaccg	gcgaagtcgt	cctccacgaa	gtcccgggag	aacccgagcc	ggtcggtcca	960
		cgtcgcgcgc				1020
		cgtgctatta				1080
		gtatttagaa				1140
		tatgcggtgt				1200
		taaacgcggc				1260
		gaggaagggt				1320
		tcacatcaat				1380
		ctcgtgggtg				1440
		tttccttatc				1500
		tgaagtgaca				1560
		gaaaagtctc				1620
tttgatattc	ttggagtaga	cgagagagtg	tcgtgctcca	ccatgttgac	gaattcatgg	1680
gcagacccgt	ctgtacttta	agagtgttgg	caaccagtaa	tgaataaaaa	ctcccgtttt	1740
		aaagcttaca				1800
acacgcaaac	aatacagggg	ggtagtcggc	gggcggctaa	gggtggtgct	cggcgggcag	1860
aacatcgaaa	aatcaagatc	tatatgaatt	acacttcctc	cgtaggagga	agcacagggg	1920
gagaatacca	cttctcccc	ggcgacataa	tgtaaatgac	gcagtttgcc	tcgaaatact	1980
ccagctgccc	tggagtcatt	tccttcatcc	aatcttcatc	cgagttggcg	aggattattg	2040
taggcttaga	cttcttctgc	acctttttct	tcttaccata	cttggggttt	acaatgaaat	2100
ccctctgaca	gccaactaac	tgtttccaac	aaggacagaa	tttaaacgga	atatcatcta	2160
cgatgttgta	gattgcgtct	tcgttgtatg	aagaccaatc	aacattattt	tgccagtaat	2220
tatgaacccc	taggcttctg	gcccaagtag	attttccggt	tcttgttggg	ccgacgatgt	2280
agaggctctg	ctttcttgat	ctttcatctg	atgactggat	acagaatcca	tccattggag	2340
		gggtataaca				2400
actaacctgg	aagatgttag	gctggagcca	atcgttgatt	gactcattac	aaagtaaatc	2460
aggtgaggag	ggtggatgag	gattggtgaa	ctcttcctga	atctcaggaa	aaagcttatt	2520
tgcagagtat	tcaaaatact	gcaattttgt	ggaccaatca	aaggggagct	ctttctggat	2580
catggagagg	tactcttctt	tggaggtagc	gtgtgaaata	atgtctcgca	ttatttcatc	2640
		ttacctctga				2700
aggaatgaaa	gtacctctct	caaacacagc	cagaggttcc	ttgagaatgt	aatccctcac	2760
tctgttaact	gacttggcac	tctgaatatt	tgggtgaaac	ccatttatat	caaagaacct	2820
		gcttctctgg				2880
atctttatgt	gcctctcggg	cacatagaat	atatttggga	atccaacgaa	cgacgagctc	2940
ccagatcatc	tgacaggcga	tttcaggatt	ttctggacac	tttggatagg	ttaggaacgt	3000
		actgacggtt				3060
		cagactggga				3120
		tgtcttatag				3180
		cactaatatt				3240
					_	

ggtagggacc	gagcgctttg	atttaaagcc	tggttctgct	ttgtatgatt	tatctaaagc	3300
		gtcccgggca				3360
		gtctagaggg				3420
aattcactgg	ccgtcgtttt	acaacgtcgt	gactgggaaa	accctggcgt	tacccaactt	3480
aatcgccttg	cagcacatcc	ccctttcgcc	agctggcgta	atagcgaaga	ggcccgcacc	3540
gatcgccctt	cccaacagtt	gcgcagccta	tacgtacggc	agtttaaggt	ttacacctat	3600
aaaagagaga	gccgttatcg	tctgtttgtg	gatgtacaga	gtgatattat	tgacacgccg	3660
		cctggccagt				3720
gaactttacc	cggtggtgca	tatcggggat	gaaagctggc	gcatgatgac	caccgatatg	3780
gccagtgtgc	cggtctccgt	tatcggggaa	gaagtggctg	atctcagcca	ccgcgaaaat	3840
gacatcaaaa	acgccattaa	cctgatgttc	tggggaatat	aaatgtcagg	cctgaatggc	3900
gaatggacgc	gccctgtagc	ggcgcattaa	gcgcgcgggt	gtggtggtta	cgcgcagcgt	3960
gaccgctaca	cttgccagcg	ccctagcgcc	cgctcctttc	gctttcttcc	cttcctttct	4020
cgccacgttc	gccggctttc	cccgtcaagc	tctaaatcgg	gggctccctt	tagggttccg	4080
atttagagct	ttacggcacc	tcgaccgcaa	aaaacttgat	ttgggtgatg	gttcacgtag	4140
tgggccatcg	ccctgataga	cggtttttcg	ccctttgacg	ttggagtcca	cgttctttaa	4200
tagtggactc	ttgttccaaa	ctggaacaac	actcaaccct	atcgcggtct	attcttttga	4260
tttataaggg	atgttgccga	tttcggccta	ttggttaaaa	aatgagctga	tttaacaaaa	4320
attttaacaa	aattcagaag	aactcgtcaa	gaaggcgata	gaaggcgatg	cgctgcgaat	4380
cgggagcggc	gataccgtaa	agcacgagga	agcggtcagc	ccattcgccg	ccaagctctt	4440
cagcaatatc	acgggtagcc	aacgctatgt	cctgatagcg	gtccgccaca	cccagccggc	4500
cacagtcgat	gaatccagaa	aagcggccat	tttccaccat	gatattcggc	aagcaggcat	4560
cgccatgggt	cacgacgaga	tcctcgccgt	cgggcatgct	cgccttgagc	ctggcgaaca	4620
gttcggctgg	cgcgagcccc	tgatgctctt	cgtccagatc	atcctgatcg	acaagaccgg	4680
cttccatccg	agtacgtgct	cgctcgatgc	gatgtttcgc	ttggtggtcg	aatgggcagg	4740
tagccggatc	aagcgtatgc	agccgccgca	ttgcatcagc	catgatggat	actttctcgg	4800
caggagcaag	gtgagatgac	aggagatcct	gccccggcac	ttcgcccaat	agcagccagt	4860
		acgtcgagca				4920
gccacgatag	ccgcgctgcc	tcgtcttgca	gttcattcag	ggcaccggac	aggtcggtct	4980
tgacaaaaag	aaccgggcgc	ccctgcgctg	acagccggaa	cacggcggca	tcagagcagc	5040
cgattgtctg	ttgtgcccag	tcatagccga	atagcctctc	cacccaagcg	gccggagaac	5100
ctgcgtgcaa	tccatcttgt	tcaatcatgc	gaaacgatcc	tcatcctgtc	tcttgatcag	5160
atcttgatcc	cctgcgccat	cagatccttg	gcggcgagaa	agccatccag	tttactttgc	5220
agggcttccc	aaccttacca	gagggcgccc	cagctggcaa	ttccggttcg	cttgctgtcc	5280
ataaaaccgc	ccagtctagc	tatcgccatg	taagcccact	gcaagctacc	tgctttctct	5340
ttgcgcttgc	gttttccctt	gtccagatag	cccagtagct	gacattcatc	cggggtcagc	5400
		ttctacgtga				5460
atctcatgac	caaaatccct	taacgtgagt	tttcgttcca	ctgagcgtca	gaccccgtag	5520
aaaagatcaa	aggatettet	tgagatcctt	tttttctgcg	cgtaatctgc	tgcttgcaaa	5580
caaaaaaacc	accgctacca	gcggtggttt	gtttgccgga	tcaagagcta	ccaactcttt	5640
ttccgaaggt	aactggcttc	agcagagcgc	agataccaaa	tactgtcctt	ctagtgtagc	5700
		aagaactctg				5760
tcctgttacc	agtggctgct	gccagtggcg	ataagtcgtg	tcttaccggg	ttggactcaa	5820
gacgatagtt	accggataag	gcgcagcggt	cgggctgaac	ggggggttcg	tgcacacagc	5880
		tacaccgaac				5940
		agaaaggcgg				6000
		cttccagggg				6060
		gagcgtcgat				6120
		gcggcctttt				6180
	-	ttatcccctg				6240
		cgcagccgaa				6300
aagcggaag		<del>-</del>	<del>-</del>			6309

<210> 13 <211> 8043

<212> DNA <213> Viral

<400> 13

```
60
agegeeeaat aegeaaaceg ceteteeeeg egegttggee gatteattaa tgeagetgge
acgacaggtt toccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc
                                                                     120
                                                                     180
teacteatta ggeacecag getttacaet ttatgettee ggetegtatg ttgtgtggaa
                                                                     240
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctat
ttaggtgaca ctatagaata ctcaagctat gcatcaagct tggtaccgag ctcggatcca
                                                                     300
ctagtaacgg ccgccagtgt gctggaattc atgggcagac ccgtctgtac tttaagagtg
                                                                     360
ttggcaacca gtaatgaata aaaactcccg ttttattata tttgatgaat gctgaaagct
                                                                     420
tacattaata tgtcgtgcga tggcacgaaa aaacacacgc aaacaataca ggggggtagt
                                                                     480
cggcgggcgg ctaagggtgg tgctcggcgg gcagaacatc gaaaaatcaa gatctatatg
                                                                     540
aattacactt cctccgtagg aggaagcaca gggggagaat accacttctc ccccggcgac
                                                                     600
ataatgtaaa tgacgcagtt tgcctcgaaa tactccagct gccctggagt catttccttc
                                                                     660
atccaatctt catccgagtt ggcgaggatt attgtaggct tagacttctt ctgcaccttt
                                                                     720
ttcttcttac catacttggg gtttacaatg aaatccctct gacagccaac taactgtttc
                                                                     780
caacaaggac agaatttaaa cggaatatca tctacgatgt tgtagattgc gtcttcgttg
                                                                     840
tatgaagacc aatcaacatt attttgccag taattatgaa cccctaggct tctggcccaa
                                                                     900
gtagattttc cggttcttgt tgggccgacg atgtagaggc tctgctttct tgatctttca
                                                                     960
tctgatgact ggatacagaa tccatccatt ggaggtcaga aattgcatcc tcgagggtat
                                                                    1020
aacaggtagg ttgaaggagc atgtaagctt cgggactaac ctggaagatg ttaggctgga
                                                                    1080
gccaatcgtt gattgactca ttacaaagta aatcaggtga ggagggtgga tgaggattgg
                                                                    1140
tgaactette etgaatetea ggaaaaaget tatttgeaga gtatteaaaa taetgeaatt
                                                                    1200
ttgtggacca atcaaagggg agctctttct ggatcatgga gaggtactct tctttggagg
                                                                    1260
tagegtgtga aataatgtct egeattattt catetttaga aggetttttt teetttaeet
                                                                    1320
ctgaatcaga ttttcctagg aagggggact tcctaggaat gaaagtacct ctctcaaaca
                                                                    1380
cagccagagg ttccttgaga atgtaatccc tcactctgtt aactgacttg gcactctgaa
                                                                    1440
tatttgggtg aaacccattt atatcaaaga accttgagtc agatatcctt ateggcttct
                                                                    1500
ctggctgaag caatgcatgt aaatgcaaac ttccatcttt atgtgcctct cgggcacata
                                                                    1560
gaatatattt gggaatccaa cgaacgacga gctcccagat catctgacag gcgatttcag
                                                                    1620
                                                                    1680
qattttctqq acactttqqa taqqttaqqa acqtqttaqc qttcctqtqt qaqaactqac
ggttggatga ggaggaggcc atagccgacg acggaggttg aggctgaggg atggcagact
                                                                    1740
gggagctcca aactctatag tatacccgtg cgccttcgaa atccgccgct ccattgtctt
                                                                    1800
                                                                    1860
atagtggttg taaatgggcc ggaccgggcc ggcccagcag gaaaagaagg cgcgcactaa
tattaccgcg ccttctttc ctgcgagggc ccggtaggga ccgagcgctt tgatttaaag
                                                                    1920
cctggttctg ctttgtatga tttatctaaa gcagcccaat ctaaagaaac cggtcccggg
                                                                    1980
cactataaat tgcctaacaa gtgcgattca ttcatggatc ctttaaactc gagtctagtc
                                                                    2040
ccgatctagt aacatagatg acaccgcgcg cgataattta tcctagtttg cgcgctatat
                                                                    2100
tttgttttct atcgcgtatt aaatgtataa ttgcgggact ctaatcataa aaacccatct
                                                                    2160
cataaataac gtcatgcatt acatgttaat tattacatgc ttaacgtaat tcaacagaaa
                                                                    2220
ttatatgata atcatcgaca gaccggcaac aggattcaat cttaagaaac tttattgcca
                                                                    2280
aatgtttgaa cgatcgggga aattcgctcg agttaattaa gcggccgcct caaaaaggat
                                                                    2340
cttcacctag atccttttaa attaaaaatg aagttttagc acgtgtcagt cctgctcctc
                                                                    2400
ggccacgaag tgcacgcagt tgccggccgg gtcgcgcagg gcgaactccc gcccccacgg
                                                                    2460
ctgctcgccg atctcggtca tggccggccc ggaggcgtcc cggaagttcg tggacacgac
                                                                    2520
ctccgaccac tcggcgtaca gctcgtccag gccgcgcacc cacacccagg ccagggtgtt
                                                                    2580
gtccggcacc acctggtcct ggaccgcgct gatgaacagg gtcacgtcgt cccggaccac
                                                                    2640
                                                                    2700
accggcgaag tcgtcctcca cgaagtcccg ggagaacccg agccggtcgg tccagaactc
gaccgctccg gcgacgtcgc gcgcggtgag caccggaacg gcactggtca acttggccat
                                                                    2760
ggtggccctc ctcacgtgct attattgaag catttatcag ggttattgtc tcatgagcgg
                                                                    2820
atacatattt gaatgtattt agaaaaataa acaaataggg gttccgcgca catttccccg
                                                                    2880
                                                                    2940
aaaagtgcca cctgtatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc
3000
aacttcctta tatagaggaa gggtcttgcg aaggatagtg ggattgtgcg tcatccctta
                                                                    3060
                                                                    3120
cgtcagtgga gatatcacat caatccactt gctttgaaga cgtggttgga acgtcttctt
tttccacgta gctcctcgtg ggtgggggtc catctttggg accactgtcg gcagaggcat
                                                                    3180
```

cttqaacqat	agcettteet	tatcqcaatq	atggcatttg	taggtgccac	cttccttttc	3240
					ggtttcccga	3300
					tatctttgat	3360
					atgggcagac	3420
					ttttattata	3480
					aaacacacgc	3540
					gcagaacatc	3600
					gggggagaat	3660
					tactccagct	3720
			catccgagtt			3780
			catacttggg			3840
					tctacgatgt	3900
					taattatgaa	3960
					atgtagaggc	4020
					ggaggtcaga	4080
			ttgaaggagc			4140
			gattgactca			4200
					tatttgcaga	4260
					ggatcatgga	4320
					catctttaga	4380
			ttttcctagg			4440
						4500
			ttccttgaga			4560
			aaacccattt caatgcatgt			4620
			gggaatccaa			4680 4740
			acactttgga			
			ggaggaggcc			4800
			aactctatag			4860
			taaatgggcc			4920 4980
			ccttctttc			
			tgctttgtat			5040 5100
			attgcctaac			5160
			tcgccctata			5220
			gaaaaccctg			5280
			cgtaatagcg			5340
			cggcagttta			5400
			cagagtgata			
			ctgctgtcag			5460
			tggcgcatga			5520
			gctgatctca			5580 5640
			atataaatgt			
			gggtgtggtg			5700 5760
			tttcgctttc			5760 5000
			tcgggggctc			5820
			tgatttgggt			5880
			gacgttggag.			5940
			ccctatcgcg			6000
			aaaaaatgag			6060
			gatagaaggc			6120
			cagcccattc			6180
			agcggtccgc			6240
			ccatgatatt			6300
			tgctcgcctt			6360
			gatcatcctg			6420
			tcgcttggtg			6480
			cagccatgat			6540
caaggtgaga	tgacaggaga	tcctgccccg	gcacttcgcc	caatagcagc	cagtcccttc	6600

```
ccgcttcagt gacaacgtcg agcacagctg cgcaaggaac gcccgtcgtg gccagccacg
                                                                      6660
atagccgcgc tgcctcgtct tgcagttcat tcagggcacc ggacaggtcg gtcttgacaa
                                                                      6720
aaagaaccgg gcgcccctgc gctgacagcc ggaacacggc ggcatcagag cagccgattg
                                                                      6780
tetgttgtge ceagteatag eegaatagee tetecaeeca ageggeegga gaacetgegt
                                                                      6840
gcaatccatc ttgttcaatc atgcgaaacg atcctcatcc tgtctcttga tcagatcttg
                                                                     6900
atcccctgcg ccatcagatc cttggcggcg agaaagccat ccagtttact ttgcagggct
                                                                     6960
teceaacett accagagge geeccagetg geaatteegg ttegettget gtecataaaa
                                                                     7020
ccgcccagtc tagctatcgc catgtaagcc cactgcaagc tacctgcttt ctctttgcgc
                                                                     7080
ttgcgttttc ccttgtccag atagcccagt agctgacatt catccggggt cagcaccgtt
                                                                     7140
tctgcggact ggctttctac gtgaaaagga tctaggtgaa gatccttttt gataatctca
                                                                     7200
tgaccaaaat cccttaacgt gagttttcgt tccactgagc gtcagacccc gtagaaaaga
                                                                     7260
tcaaaggatc ttcttgagat ccttttttc tgcgcgtaat ctgctgcttg caaacaaaaa
                                                                     7320
aaccaccgct accagcggtg gtttgtttgc cggatcaaga gctaccaact ctttttccga
                                                                     7380
aggtaactgg cttcagcaga gcgcagatac caaatactgt ccttctagtg tagccgtagt
                                                                     7440
taggccacca cttcaagaac totgtagcac cgcctacata cotcgctctg ctaatcctgt
                                                                     7500
taccagtggc tgctgccagt ggcgataagt cgtgtcttac cgggttggac tcaagacgat
                                                                     7560
agttaccgga taaggcgcag cggtcgggct gaacgggggg ttcgtgcaca cagcccagct
                                                                     7620
tggagcgaac gacctacacc gaactgagat acctacagcg tgagctatga gaaaqcqcca
                                                                     7680
cgcttcccga agggagaaag gcggacaggt atccggtaag cggcagggtc ggaacaggag
                                                                     7740
agcgcacgag ggagcttcca gggggaaacg cctggtatct ttatagtcct gtcgggtttc
                                                                     7800
gccacctctg acttgagcgt cgatttttgt gatgctcgtc aggggggggg agcctatgga
                                                                     7860
aaaacgccag caacgcggcc tttttacggt teetgggett ttgetggeet tttgeteaca
                                                                     7920
tgttctttcc tgcgttatcc cctgattctg tggataaccg tattaccgcc tttgagtgag
                                                                     7980
ctgataccgc tcgccgcagc cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg
                                                                     8040
                                                                     8043
```

<210> 14 <211> 7404 <212> DNA <213> Viral

#### <400> 14

agegeecaat aegeaaaceg eeteteeeeg egegttggee gatteattaa tgeagetgge 60 acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc 120 teacteatta ggeacecag getttacaet ttatgettee ggetegtatg ttgtqtqqaa 180 ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagctat 240 ttaggtgaca ctatagaata ctcaagctat gcatcaagct tggtaccgag ctcggatcca 300 ctagtaacgg ccgccagtgt gctggaattc atgggcagac ccgtctgtac tttaagagtg 360 ttggcaacca gtaatgaata aaaactcccg ttttattata tttgatgaat gctgaaagct 420 tacattaata tgtcgtgcga tggcacgaaa aaacacacgc aaacaataca ggggggtagt 480 cggcgggcgg ctaagggtgg tgctcggcgg gcagaacatc gaaaaatcaa gatctatatq 540 aattacactt cctccgtagg aggaagcaca gggggagaat accacttctc ccccggcgac 600 ataatgtaaa tgacgcagtt tgcctcgaaa tactccagct gccctggagt catttccttc 660 atccaatctt catccgagtt ggcgaggatt attgtaggct tagacttctt ctgcaccttt 720 ttcttcttac catacttggg gtttacaatg aaatccctct gacagccaac taactgtttc 780 caacaaggac agaatttaaa cggaatatca tctacgatgt tgtagattgc gtcttcgttg 840 tatgaagacc aatcaacatt attttgccag taattatgaa cccctaggct tctggcccaa 900 gtagattttc cggttcttgt tgggccgacg atgtagaggc tctgctttct tgatctttca 960 tctgatgact ggatacagaa tccatccatt ggaggtcaga aattgcatcc tcgagggtat 1020 aacaggtagg ttgaaggagc atgtaagctt cgggactaac ctggaagatg ttaggctgga 1080 gccaatcgtt gattgactca ttacaaagta aatcaggtga ggagggtgga tgaggattgg 1140 tgaactette etgaatetea ggaaaaaget tatttgeaga gtatteaaaa taetgeaatt 1200 ttgtggacca atcaaagggg agctctttct ggatcatgga gaggtactct tctttggagg 1260 tagcgtgtga aataatgtct cgcattattt catctttaga aggctttttt tcctttacct 1320 ctgaatcaga ttttcctagg aagggggact tcctaggaat gaaagtacct ctctcaaaca 1380

					gcactctgaa	1440
tatttgggtg	aaacccattt	atatcaaaga	accttgagtc	agatatcctt	atcggcttct	1500
					cgggcacata	1560
					gcgatttcag	1620
					gagaactgac	1680
ggttggatga	ggaggaggcc	atagccgacg	acggaggttg	aggctgaggg	atggcagact	1740
					ccattgtctt	1800
					cgcgcactaa	1860
					tgatttaaag	1920
					cggtcccggg	1980
	tgcctaacaa					2040
	aacatagatg					2100
	atcgcgtatt					2160
					tcaacagaaa	2220
	atcatcgaca					2280
	cgatcgggga					2340
	caaatgaaat					2400 -
					tgctttgaag	2460
					ccatctttgg	2520
	ggcagaggca					2580
	ccttcctttt					2640
	aggtttcccg					2700
	gtatctttga					2760
	catgggcaga					2820
	gttttattat					2880
atggcacgaa	aaaacacacg	caaacaatac	aggggggtag	tcggcgggcg	gctaagggtg	2940
	ggcagaacat					3000
	agggggagaa					3060
ttgcctcgaa	atactccagc	tgccctggag	tcatttcctt	catccaatct	tcatccgagt	3120
tggcgaggat	tattgtaggc	ttagacttct	tctgcacctt	tttcttctta	ccatacttgg	3180
ggtttacaat	gaaatccctc	tgacagccaa	ctaactgttt	ccaacaagga	cagaatttaa	3240
	atctacgatg					3300
tattttgcca	gtaattatga	acccctaggc	ttctggccca	agtagatttt	ccggttcttg	3360
	gatgtagagg					3420
					gttgaaggag	3480
	tcgggactaa					3540
attacaaagt	aaatcaggtg	aggagggtgg	atgaggattg	gtgaactctt	cctgaatctc	3600
	ttatttgcag					3660
	tggatcatgg					3720
	tcatctttag					3780
	ttcctaggaa					3840
	ctcactctgt					3900
	aaccttgagt					3960
	cttccatctt					4020
	agctcccaga					4080
	aacgtgttag					4140
	gacggaggtt					4200
	gcgccttcga					4260
	cggcccagca					4320
	cccggggtag					4380
	aaagcagccc					4440
	tcattcatgg					4500
	attacaattc					4560
	aacttaatcg					4620
	gcaccgatcg					4680
	cctataaaag					4740
accactgada	cgccggggcg	acggatggtg	accoccetgg	ccagugcacg	tetgetgtea	4800

gataaagtct	cccgtgaact	ttacccggtg	gtgcatatcg	gggatgaaag	ctggcgcatg	4860
		tgtgccggtc				4920
		caaaaacgcc				4980
tcaggcctga	atggcgaatg	gacgcgccct	gtagcggcgc	attaagcgcg	cgggtgtggt	5040
		ctacacttgc				5100
cttcccttcc	tttctcgcca	cgttcgccgg	ctttccccgt	caagctctaa	atcgggggct	5160
ccctttaggg	ttccgattta	gagctttacg	gcacctcgac	cgcaaaaaac	ttgatttggg	5220
tgatggttca	cgtagtgggc	catcgccctg	atagacggtt	tttcgccctt	tgacgttgga	5280
gtccacgttc	tttaatagtg	gactcttgtt	ccaaactgga	acaacactca	accctatcgc	5340
ggtctattct	tttgatttat	aagggatgtt	gccgatttcg	gcctattggt	taaaaaatga	5400
gctgatttaa	caaaaatttt	aacaaaattc	agaagaactc	gtcaagaagg	cgatagaagg	5460
		gcggcgatac				5520
cgccgccaag	ctcttcagca	atatcacggg	tagccaacgc	tatgtcctga	tagcggtccg	5580
ccacacccag	ccggccacag	tcgatgaatc	cagaaaagcg	gccattttcc	accatgatat	5640
tcggcaagca	ggcatcgcca	tgggtcacga	cgagatcctc	gccgtcgggc	atgctcgcct	5700
tgagcctggc	gaacagttcg	gctggcgcga	gcccctgatg	ctcttcgtcc	agatcatcct	5760
gatcgacaag	accggcttcc	atccgagtac	gtgctcgctc	gatgcgatgt	ttcgcttggt	5820
ggtcgaatgg	gcaggtagcc	ggatcaagcg	tatgcagccg	ccgcattgca	tcagccatga	5880
tggatacttt	ctcggcagga	gcaaggtgag	atgacaggag	atcctgcccc	ggcacttcgc	5940
ccaatagcag	ccagtccctt	cccgcttcag	tgacaacgtc	gagcacagct	gcgcaaggaa	6000
cgcccgtcgt	ggccagccac	gatagccgcg	ctgcctcgtc	ttgcagttca	ttcagggcac	6060
		aaaagaaccg				6120
cggcatcaga	gcagccgatt	gtctgttgtg	cccagtcata	gccgaatagc	ctctccaccc	6180
aagcggccgg	agaacctgcg	tgcaatccat	cttgttcaat	catgcgaaac	gatcctcatc	6240
ctgtctcttg	atcagatctt	gatcccctgc	gccatcagat	ccttggcggc	gagaaagcca	6300
tccagtttac	tttgcagggc	ttcccaacct	taccagaggg	cgccccagct	ggcaattccg	6360
gttcgcttgc	tgtccataaa	accgcccagt	ctagctatcg	ccatgtaagc	ccactgcaag	6420
ctacctgctt	tctctttgcg	cttgcgtttt	cccttgtcca	gatagcccag	tagctgacat	6480
tcatccgggg	tcagcaccgt	ttctgcggac	tggctttcta	cgtgaaaagg	atctaggtga	6540
agatcctttt	tgataatctc	atgaccaaaa	tcccttaacg	tgagttttcg	ttccactgag	6600
		atcaaaggat				6660
		aaaccaccgc				6720
		aaggtaactg				6780
tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	ccgcctacat	6840
acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	tcgtgtctta	6900
		tagttaccgg				6960
		ttggagcgaa				7020
		acgcttcccg				7080
		gagcgcacga				7140
tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	tgatgctcgt	7200
caggggggcg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	ttcctgggct	7260
		atgttctttc				7320
gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	gagcgcagcg	7380
agtcagtgag	cgaggaagcg	gaag				7404