北京工业大学计算机学院

2009~2010学年第一学期《数字逻辑》闭卷试题(A卷)

考试时间: 2009年月日 时分至时分

学与	<u>;</u>		姓名:		成绩:		<u>_</u>	
	A	题号:	_	<u> </u>	Ξ	四		
	1	导分:						
1. 5	一、填空题 (每空 2 分,共 26 分) 1. 完成下列数制转换							
	完成下列	代码转换			(1FFF) ₁₆ = (0101 1010			
	3. 已知[X] _原 = 10001101,则[X] _反 = <u>11110010</u> ; 已知真值Y= - 0100110,则8位字长时,[Y] _补 = <u>11011010</u> 。							
	4. 已知某数为(0010 1100) ₂₄₂₁ ,则对应的(1A) ₁₆ 。 5. 已知 $F = A + \overline{BC} \bullet (\overline{A} + D)$,按规则求得 $F' = A \bullet \overline{B} + \overline{C} + \overline{AD}$ 。							
	6. 已知奇偶校验码中的信息码为(1010110) ₂ 、校验位为1,则约定的校验方式为。							
			,7),则 F		. <mark>2,3,5</mark>)。 b0101,则 A	&B= <u>4'b000</u>	<u>1</u> 。	
9.	在Verilo	g HDL中	,持续赋值语	句assign只	能对 <u>连线</u> 型	型(wire) 变	量赋值。	
	是: _ <u>(1</u>)[司步时序	<u> </u>	钟控制下同步				
(2)	可序 电路	生性何时	刻产生的稳态	输出小仪取得	P. 计 该时刻电	路的输入,血	」且与过	

去的输入所产生的电路状态有关。

二、简答题(每题5分,共30分)

1. 某函数 F(A,B,C,D) 的卡诺图如下,按要求求出最简表达式。

$$\mathbf{F}_{\text{L}} = A \mathbf{C} + \overline{BD}$$

$$\mathbf{F}_{\text{H} \hat{\text{m}} = \hat{\text{m}} = \hat{\text{m}} + \hat{B} \hat{C}}$$

$$\mathsf{F}_{\text{最简或与式}} = (A + \overline{D})(\overline{B} + C)$$

2. 画出图示同步时序电路初态 $Q_1Q_0=00$ 后的时序波形。

3. 将描述 $F = \overline{AB} + (B \oplus C)$ 的 Verilog HDL 模块补充完整。

4. (a) 建立图示逻辑门的功能表。

/en	а	b	f
1	d	d	Z
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0

(b) 已知 $F_{\text{最简与或式}} = A\overline{D} + BCD$

若克服险象,需增加的冗余项为___ABC____。

5. 由74LS138译码器及逻辑门构成的组合逻辑电路如下,其中输入信号 $A_7 \sim A_0$ 为地址变量。试填写表格。

	A	, A ₆	A ₅	A ₄	A ₃	A	Δ1	A ₀
/ Y ₀ 有效时	1	1	0	0	1	0	0	0
/Y₁有效时	1	1	0	0	1	0	0	1
/Y ₄ 有效时	1	1	0	0	1	1	0	0
/ Y ₆ 有效时	1	1	0	0	1	1	1	0
/ Y ₇ 有效时	1	1	0	0	1	1	1	1

6. 根据给定的Moore型状态表画出状态图。

S(t) X	0	1	Z	
Α	C	В	0	
В	С	D	0	
С	D	В	0	
D	В	Α	1	
S(t+1)				

三、综合分析应用题 (每题6分,共24分)

1. 分析由译码器74LS138和逻辑门构成的电路,写出函数 F(A,B,C)的表达式;列真值表;说明电路功能。

电路功能:奇校验位发生器。

2. 分析图示电路,写出F(A,B,C)逻辑表达式,填写卡诺图, 求最简无险象与或式。

3. 图示电路采用74LS194构成一个三位扭环型移位计数器,写出启动清零后 $Q_BQ_CQ_D$ 的状态转移序列并画出它们的波形图。

 74LS194功能表

 /CLR
 S₁
 S₀
 CLK
 功能

 0
 ×
 ×
 ×
 清零

 1
 0
 0
 ↑
 保持

 1
 0
 1
 ↑
 右移

 1
 1
 0
 ↑
 左移

 1
 1
 1
 1
 T

4. 分析输入变量顺序为 X_3 、 X_2 、 X_1 的组合电路。要求写出输出表达式、列 真值表、说明电路的综合功能(S_2 、 S_1)。

$$\mathbf{S_2} = X_3 \oplus X_2 \oplus X_1$$

$$\mathbf{S_1} = (X_3 \oplus X_2) \bullet X_1 + X_3 \bullet X_2$$

	$X_3 X_2$	X ₁	S_2	S ₁
0	0	0	0	0
0	0	<u>1</u>	1	0
0	1	0	1	0
0	<u>1</u>	1	0	<u>1</u>
1	0	0	<u>1</u>	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

四、设计题(共20分)

1. 某组合电路的逻辑功能如下表所示,其中en为使能信号; sel[1:0]为选择信号; d[15:0]为数据输入; f[3:0]为电路输出。请用Verilog HDL建立该电路的模型。(5分)

en	sel[1:0]	f[3:0]
1	х х	zzzz
0	0 0	d[3:0]
0	0 1	d[7:4]
0	1 0	d[11:8]
0	1 1	d[15:12]

```
module selet_16_4 (en,sel,d,f);
input en;
input [1:0] sel;
input [15:0] d;
output [3:0] f;
reg [3:0] f;
always @(en or sel or d)
begin
If (!en)
case (sel)
2'b00:f=d[3:0];
2'b01:f=d[7:4];
2'b10:f=d[11:8];
2'b11:f=d[15:12];
Default: f=4'bzzzz;
endcase
else f=4'bzzzz;
end
endmodule
```

```
2. 用Verilog HDL描述一个满足下列要求的计数器。(10分)
(1) 下降沿"三位格雷码" 加1计数;
(2) 电路具有一个低有效的异步清零端;
(3) 电路具有一个高有效的计数使能端;
 (4) 电路具有一个高有效的循环进位(RCO)输出端。
 module gray 3 (clk, en, reset, q, rco);
  input clk ,en,reset;
  output [3:1] q;
  output rco;
   reg [3:1] q;
    always @ (negedge clk or negedge reset)
    begin
   if (!reset) q < = 3'b000;
     else if (en = = 1)
     case (q)
      3'b000: q <= 3'b001;
       3'b001: q < = 3'b011;
       3'b011: q <= 3'b010;
       3'b010: q < = 3'b110;
       3'b110: q < = 3'b111;
       3'b0111: q < = 3'b101;
       3'b101: q < = 3'b100;
       3'b100: q < = 3'b000;
      default: q<=q;
     endcase
       else q < = q;
       end
 assign rco=(en&(q==3'b100)) ? 1:0;
```

endmodule

3. 图为 "101" (不可重) 序列检测器的状态图,请用Verilog HDL建模。(5分) 提示: 时钟有效沿为上升沿; 异步复位信号 /reset 低有效。 可用 parameter A=2'b00, B=2'b01, C=2'b10; 进行状态编码。

X	0	1
Α	A / 0	B / 0
В	C / 0	B / 0
С	A / 0	A / 1

```
module T4-3(clk, reset, z, x);
 parameter A=2'b00, B=2'b01, C=2'b10;
 input clk, reset, x;
 output z;
 reg z;
 reg [2:1] now, next;
    always @ (posedge clk or negedge reset)
       if (!reset) next<=A;
       else now <= next;
    always @ (now or x )
      case (now)
        A: if (x==0) begin next=A; z=0; end
            else begin next=B; z=0; end
        B: if (x==0) begin next=C; z=0; end
            else begin next=B; z=0; end
        C: if (x==0) begin next=A; z=0; end
            else begin next=A; z=1; end
      endcase
endmodule
```