OBJECTIVES

GRAPH DATABASES

- Introduction to GraphDB
- Neo4j

NoSQL Databases

WHAT IS IT

- Not Only NoSQL
- Non Relational Database system
- Relaxation in ACID properties (Atomicity, Consistency, Isolation, Duarbility)
- Uses CAP theorem (Consistency, Availability, Partition Tolerance)

TYPES

- Document databases
- Key-value stores
- Column-oriented databases
- Graph databases

GRAPH DATABASES

WHAT IS IT

- A database with an explicit graph structure
- Each node knows its adjacent nodes
- Plus an Index for lookups

KEY-VALUE STORES

- Simplest form of database management systems.
- They store pairs of keys and values as well as retrieve values when a key is known.

Key	Value
K1	AAA,BBB,CCC
K2	AAA,BBB
K3	AAA,DDD
K4	AAA,2,01/01/2015
K5	3,ZZZ,5623

Examples

(twitter.com) Tweet id ⇒ information about tweet

(amazon.com) Item number ⇒ information about it

(kayak.com) Flight number ⇒ information about flight, e.g., availability

(yourbank.com) Account number ⇒ information about it

KEY-VALUE STORES...

- It's a dictionary datastructure.
 - Insert, lookup, and delete by key
 - E.g., hash table, binary tree
- But distributed
- Key-Value stores reuse many techniques from DHTs

Tradtional RDBMS...

- Data stored in tables and schema-based, i.e., structured tables
- Primary key that is unique within that table
- Queried using SQL and supports joins

GRAPH DATABASES ...

RDBMS VS GRAPHDB

- Graph Operations are hard to implement in relational database
- Excution of graph operations are inefficient in RDBMS
- Any meaningful work that requires traversals would require the relational database to execute a lot of joins

GRAPH DATABASES ..

RDBMS VS GRAPHDB

- The circles represent nodes, and the solid lines represent relationships.
- We need only create a new edge from the Person node to the Company node.
- Do not have to execute joins for each edge traversal

NEO4J GRAPH DATABASE

GRAPH MODEL

- The Neo4j graph is composed of nodes and edges, with an unlimited number of edges between nodes.
- Nodes and edges can have properties, which are key-value pairs.
- They can also be given labels, which define the type of each node or edge.
- We can add additional constraints to the schema like uniqueness.

NEO4J DESKTOP

NEO4J DESKTOP: GRAPH APPS

NEO41-NETWORKX

```
// from local server
from neo4j import GraphDatabase
driver = GraphDatabase.driver("bolt://localhost:7687",
         auth=("user", "password"))
```

NEO41 OPTIONS

- Neo4j Desktop
- Neo4j Sandbox
- Neo4j Aura
- Neo4j Enterprise

```
import nxneo4j as nx2
G1 = nx2. DiGraph(driver)
G2 = nx2.Graph(driver)
```

```
// from neo4j sandbox
from neo4j import GraphDatabase, basic auth
driver = GraphDatabase.driver(
    "bolt://54.174.242.100:36186".
    auth=basic auth("neo4j", "invention-airship-gunnery"))
```

NEO4J-NETWORKX ..

```
oreaklines
```

```
G1.add_node(1)
G1.add_nodes_from([2, 3, 4])
G1.add_edge([1, 2])
```

Lance Life

```
G2.add_edges_from([('A', 'C'),('B', 'A'),('B', 'C'), ('B', 'D'), break b
```

RIEBRIIHE

IN BUILT DATASETS IN NEO4J

- Game of Throne- G.load got()
- Twitter- G.load_twitter()
- European Roads- G.load euroads()

```
nx2.pagerank(G)
nx2.betweenness_centrality(G)
nx2.closeness_centrality(G)
nx2.clustering(G)
nx2.list_connected_components(G)
```

SUMMARY

GRAPH DATABASES

Neo4j & Examples

REFERENCES

Miller, J. J.

Graph database applications and concepts with neo4j.

In Proceedings of the southern association for information systems conference, Atlanta, GA, USA (2013), vol. 2324.

Needham, M.

https://medium.com/neo4j/

experimental-a-networkx-esque-api-for-neo4j-graph-algorithms-4002baac45

Prad Nelluru, Bharat Naik, E. L.

Graph databases

www.cs.utexas.edu/users/dsb/cs386d/Projects14/GraphDB.pdf.

