Input B_H_REFv1.3_demand_	 _tab_supply.txt	The EnergyPLAN model	16.1
Electricity demand (TWh/year): Flexible demand0,00	Group 2: MW-e MJ/s elec. Ther COP CHP	Minimum Stabilisation share 0,00 Stabilisation share of CHP 0,00 Minimum CHP gr 3 load 0 MW Minimum PP 0 MW Heat Pump maximum share 1,00 Maximum import/export 1800 MW Charge 1: 0 Discharge 1: 0 Charge 2: 0 Discharge 2: 0 Discharge 2: 0 Electrolysers: 0	0 0 0,80 0 0,90 0 0,80 0 0,90 0 0,80 0,00
Wind 87 MW 0,16 TWh/year 0,00 Grid Photo Voltaic 35 MW 0,08 TWh/year 0,00 stabili- River Hydro 172 MW 0,44 TWh/year 0,00 sation River Hydro 0 MW 0 TWh/year 0,00 share Hydro Power 2105 MW 4,21 TWh/year Geothermal/Nuclear 0 MW 0 TWh/year	Heatstorage: gr.2: 0 GWh gr.30 GWh Fixed Boiler: gr.2:0,0 Per cent gr.0,0 Per cent	Multiplication factor 2,00 Dependency factor 0,00 Average Market Price227 DKK/MWh Gas Storage 0 GWh Syngas capacity 0 MW (TWh/year) Coal Transport 0,00 13 Household 1,15 0	0,000 Oil Ngas Biomass
Output			
District Heating		Electricity	Exchange
Demand Production Distr. Waste heating Solar CSHP DHP CHP HP ELT Boiler EH MW	1 1 1	Production Balance Hy- Geo- Waste·· Stab- RES dro thermal CSHP CHP PP MW	Payment Imp Exp MW Million DKK

				Dist	trict He	ating														Electr	icitv								Exc	hange
_	Demand Production											Cons	umptio	 1					Producti					Balance						
_	Distr. heating	Solar		DHP	CHP	HP	ELT	Boiler		ı	ì	Flex.& idTransp		Elec- trolyse		Hydro Pump	bine	RES		hermal		CHP	PP		Imp	Exp	CEEP		Payn Imp	E
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	%	MW	MW	MW	MW	Millior	n DKI
January	391	0	0	271	81	0	0	0	0	39	737	7	4	0	701	0	0	100	482	0	0	999	500	100	13	0	0	0	3	
February	307	0	0	213	75	0	0	0	0	18	769	7	3	0	550	0	0	84	443	0	0	935	294	100	0	1	0	1	0	
March	283	0	0	197	72	0	0	0	0	14	712	7	3	0	508	0	0	108	456	0	0	894	391	100	5	3	0	3	1	
April	190	0	0	132	53	0	0	0	0	5	762	7	2	0	341	0	0	61	452	0	0	661	217	100	0	0	0	0	0	
May	114	0	0	79	35	0	0	0	0	0	833	7	1	0	204	0	0	50	452	0	0	430	300	100	0	7	0	7	0	
June	70	0	0	49	21	0	0	0	0	0	966	7	1	0	126	0	0	59	486	0	0	267	414	100	0	0	0	0	0	
July	48	0	0	33	15	0	0	0	0	0	1074	7	1	0	86	0	0	62	515	0	0	182	741	100	0	0	0	0	0	
August	41	0	0	28	12	0	0	0	0	0	1035	7	0	0	73	0	0	58	522	0	0	153	871	100	0	0	0	0	0	
Septembe		0	0	43	19	0	0	0	0	0	1013	7	1	0	111	0	0	67	505	0	0	234	626	100	0	0	0	0	0	
October	147	0	0	102	45	0	0	0	0	0	936	7	2	0	263	0	0	81	493	0	0	553	424	100	0	0	0	0	0	
Novembe		0	0	178	67	0	0	0	0	11	864	7	3	0	459	0	0	85	488	0	0	829	503	100	0	0	0	0	0	
Decembe	r 315	0	0	219	76	0	0	0	0	20	866	7	4	0	565	0	0	109	450	0	0	945	482	100	14	6	0	6	3	
Average	185	0	0	129	48	0	0	0	0	9	881	7	2	0	332	0	0	77	479	0	0	589	482	100	3	1	0	1	Avera	
Maximum	610	0	0	424	82	0	0	0	0	104	1514	13	7	0	1094	0	0	233	556	0	0	1017	1600	100	312	492	0	492	`	K/MW
Minimum	9	0	0	6	3	0	0	0	0	0	22	0	0	0	17	0	0	0	0	0	0	35	0	100	0	0	0	0	295	1
TWh/year	1,62	0,00	0,00	1,13	0,42	0,00	0,00	0,00	0,00	0,08	7,74	0,06	0,02	0,00	2,91	0,00	0,00	0,68	4,21	0,00	0,00	5,18	4,23		0,02	0,01	0,00	0,01	7	
FUEL BA	LANCE	(TWh/v	ear):							Wa	ste/ C/	AES Bio	Con-E	lectro-		PV an	d Wind	off					Indust	rv	Imp	/Exp C	orrecte	d CO	2 emiss	sion (
	DHP	,	,	P3 Bc	oiler2 B	oiler3	PP	Geo/N	lu.Hydr	o HT	L EI	c.ly. ver	sion F	uel	Wind	CSP	Wav	е Нус	dro S	olar.Th	Fransp.	househ	n.Variou	,		np/Exp			otal N	`
Coal	0,65	-	0,88	3	-	-	7,00	-	_	-				-	-	-	-	-		-	-	1,15	2,64	12,33	3 C	,00	12,33	4	,22 4	,22
Oil	0,08	-	-		-	-	2,34	-	-	_				-	-	-	-	-		- 13	,43	0,41	1,71	17,97	, c	,00	17,97	4	,79 4	,79
N.Gas	0,48	-	-		-	-	2,34	-	-	_				-	-	-	-	-	-	- 0	,82	0,71	1,96	6,32	2 0	,00	6,32	1	,30 1	,46
Biomass		-	-		-	-	2,34	-	-	-				-	-	-	-	-		-		3,47	0,20	16,06	s c	,00	16,06	0		,00
Renewal	ole -	-	-		-	-	-	-	4,21	-				-	0,16	0,08	-	4,6	64	-	- '	-	-	4,89) c	,00	4,89	0		,00
H2 etc.	_	_	-		_	-	-	-		-				-	-	-	_	· -		-	-	-	-	0,00) 0	,00	0,00	0	,00 0	,00
Biofuel	-	-	-		-	-	-	-	-	-				-	-	-	-	-		-	-	-	-	0,00		,00	0,00			,00
Nuclear/	CCS -	-	-		-	-	-	-	-	-				-	-	-	-	-		-	-	-	-	0,00		,00	0,00		,00 0	
 Total	1,25	_	0,88	 3	_	- 1	4.04	_	4,21					_	0,16	0,08	_	4,6	 64	- 14	,25 1	5,74	6,51	57,56	5 0	0,04	57,60	10	,30 10	.47
	.,_,		-,0	-			,		.,						-,	-,-3		.,•			,	- ,	-,	2.,00	1 "	,	- ,	1 .0	,	,

Output specifications	B_H_REFv1.3_demand_tab_supply.txt
-----------------------	-----------------------------------

The EnergyPLAN model 16.1

District Heating Production															>														
	Gr.1 Gr.2											Gr.3										RES specification							
	District				District								Stor-	Ва-	District								Stor-	Ва-	RES1	RES2	RES3	RES T	otal
h	neating :	Solar	CSHP	DHP	heating	Solar	CSHP	CHP	HP	ELT	Boiler	EH	age	lance	heating	Solar	CSHP	CHP	HP	ELT	Boiler	EΗ	age	lance	Wind	Photo F	River I 4	1- 7 ɔ	
	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
January	271	0	0	271	0	0	0	0	0	0	0	0	0	0	119	0	0	81	0	0	0	0	0	39	18	7	75	0	100
February	213	0	0	213	0	0	0	0	0	0	0	0	0	0	94	0	0	75	0	0	0	0	0	18	23	8	54	0	84
March	197	0	0	197	0	0	0	0	0	0	0	0	0	0	86	0	0	72	0	0	0	0	0	14	29	8	71	0	108
April	132	0	0	132	0	0	0	0	0	0	0	0	0	0	58	0	0	53	0	0	0	0	0	5	19	11	31	0	61
May	79	0	0	79	0	0	0	0	0	0	0	0	0	0	35	0	0	35	0	0	0	0	0	0	21	10	20	0	50
June	49	0	0	49	0	0	0	0	0	0	0	0	0	0	21	0	0	21	0	0	0	0	0	0	12	12	35	0	59
July	33	0	0	33	0	0	0	0	0	0	0	0	0	0	15	0	0	15	0	0	0	0	0	0	10	13	38	0	62
August	28	0	0	28	0	0	0	0	0	0	0	0	0	0	12	0	0	12	0	0	0	0	0	0	12	12	34	0	58
September	r 43	0	0	43	0	0	0	0	0	0	0	0	0	0	19	0	0	19	0	0	0	0	0	0	15	10	42	0	67
October	102	0	0	102	0	0	0	0	0	0	0	0	0	0	45	0	0	45	0	0	0	0	0	0	16	8	57	0	81]
November	178	0	0	178	0	0	0	0	0	0	0	0	0	0	78	0	0	67	0	0	0	0	0	11	17	7	61	0	85
December	219	0	0	219	0	0	0	0	0	0	0	0	0	0	96	0	0	76	0	0	0	0	0	20	27	3	79	0	109
Average	129	0	0	129	0	0	0	0	0	0	0	0	0	0	56	0	0	48	0	0	0	0	0	9	18	9	50	0	77
Maximum	424	0	0	424	0	0	0	0	0	0	0	0	0	0	186	0	0	82	0	0	0	0	0	104	87	35	172	0	233
Minimum	6	0	0	6	0	0	0	0	0	0	0	0	0	0	3	0	0	3	0	0	0	0	0	0	0	0	0	0	o
Total for th	e whole	year																											
TWh/year	1,13	0,00	0,00	1,13	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,50	0,00	0,00	0,42	0,00	0,00	0,00	0,00		0,08	0,16	0,08	0,44	0,00	0,68

Own use of heat from industrial CH0,00 TWh/year

								NAT	URAL GA	S EXCH	ANGE						
ANNUAL COSTS (Million DKK)		DHP &	CHP2	PP	Indi-	Trans	Indu.	Deman	ıd Bio-	Syn-	CO2Hy	SynHy	SynHy	Stor-	Sum	lm-	Ex-
Total Fuel ex Ngas exchange =	0	Boilers	CHP3	CAES	vidual	port	Var.	Sum	gas	gas	gas	gas	gas	age		port	port
Uranium = 0		MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW	MW
Coal = 0	January	116	0	64	171	1	236	589	0	0	0	Λ	Λ	0	589	589	0
FuelOil = 0	Februar		0	66	134	1	256	548	0	0	0	0	0	0	548	548	0
Gasoil/Diesel= 0	March	y 91 84	0	107	124	1	238	555	0	0	0	0	0	0	555	555	0
Petrol/JP = 0	April	57	0	139	83	1	190	471	0	0	0	0	0	0	471	471	0
Gas handling = 0	April May	34	0	241	50	1	170	496	0	0	0	0	0	0	471	496	0
Biomass = 0	,	3 4 21	0	333	31	1	138	524	0	0	0	0	0	0	524	524	0
Food income = 0	June			575		1		524 768	0	0	0	0	0	0			0
Waste = 0	July	14	0		21	1	157		-	•	0	0	0	0	768	768	0
Total Naca Freshause seats -	August	12	0	656	18	1	111	798	0	0	0	0	0	0	798	798	0
Total Ngas Exchange costs =	0 Septem		0	488	27	1	154	689	0	0	0	0	0	0	689	689	0
Marginal operation costs =	0 October		0	272	64	1	378	759	0	0	0	0	0	0	759	759	0
	Noveml		0	168	112	1	263	620	0	0	0	0	0	0	620	620	0
, ,	826 Decemb	er 94	0	84	138	1	386	703	0	0	0	0	0	0	703	703	0
Import = 7	Average	55	0	267	81	1	223	628	0	0	0	0	0	0	628	628	0
Export = -2	Maximu		0	834	268	1	728	1178	0	0	0	0	0	0	1178	1178	0
Bottleneck = 0	Minimu		0	0	4	1	0	22	0	0	0	0	0	0	22	22	0
Fixed imp/ex= -830		. •		Ů			Ů		Ū	Ū	·	J	Ū	Ū			Ŭ
Total CO2 emission costs =	0 Total fo	the whole	year														
	TWh/ye	ar 0,48	0,00	2,34	0,71	0,01	1,96	5,51	0,00	0,00	0,00	0,00	0,00	0,00	5,51	5,51	0,00
Total variable costs = -8	826																
Fixed operation costs =	0																

-826 RES Share: 36,4 Percent of Primary Energy 51,0 Percent of Electricity

0

Annual Investment costs =

TOTAL ANNUAL COSTS =

5,4 TWh electricity from RES

09-mart-2022 [10:53]