EC508: Econometrics Forecasting and Dynamic Causal Effects

Jean-Jacques Forneron

Spring, 2023

Boston University

Forecasting

• Given the data $(Y_1, \ldots, Y_T, X_1, \ldots, X_T)$ we can forecast Y in the next period using:

$$\hat{Y}_{T+1|T} = \hat{\beta}_0 + \hat{\beta}_1 Y_T + \dots + \hat{\beta}_p Y_{T-p+1} + \hat{\delta}_{1,1} X_{1,T} + \dots + \hat{\delta}_{1,q_1} X_{1,T-q_1+1} + \dots + \hat{\delta}_{k,q_k} X_{k,T-q_k+1}$$

ullet When Y_{T+1} is released, we can compute the forecast error:

$$Y_{T+1} - \hat{Y}_{T+1|T} = X_T' \big[\underbrace{\beta - \hat{\beta}}_{\text{estimation error}} \big] + \underbrace{u_{T+1}}_{\text{fundamental uncertainty}}$$

Forecast Errors

• Forecast error:

$$Y_{T+1} - \hat{Y}_{T+1|T} = X_T' [\underbrace{\beta - \hat{\beta}}_{\text{estimation error}}] + \underbrace{u_{T+1}}_{\text{fundamental uncertainty}}$$

• Since $\hat{\beta}$ is estimated using data from the past and u_{t+1} comes from the future, we can split to mean squared forecast error (MSFE) into:

$$\mathbb{E}_T([Y_{T+1} - \hat{Y}_{T+1|T}]^2) = var(u_{T+1}) + X_T' var(\hat{\beta})X_T$$

- More parameters: larger variance $var(\hat{\beta})$ (declines with T), lower variance $var(u_{T+1})$
- \Rightarrow tradeoff between estimation accuracy and the variance of the error term u_{T+1}

RMFSE; Pseudo Out-of-Sample Forecasting

- Root Mean Squared Forecast error (RMSFE): \sqrt{MSFE}
- Suppose we estimate $\hat{\beta}$ using data $t=1,\ldots,T-t_1-1$ and compute forecasts for $t=T_1,\ldots,T$
- This allows us to replicate the forecasting conditions
- We can compute the approximation:

$$extit{RMSFE} \simeq \sqrt{rac{1}{T-T_1-1} \sum_{t=T_1}^{T-1} (Y_{t+1} - \hat{Y}_{t+1|t})^2}$$

- This is called pseudo out-of-sample forecasting
- We can use these estimates to compare different models (p, q) to see which one(s) historically perform best out-of-sample

Forecast Intervals

• If $u_{t+1} \sim \mathcal{N}(0, \sigma_u^2)$; given that $\hat{\beta} - \beta$ is approximately normal then we can make the approximation

$$\hat{Y}_{T+1|T} - Y_{T+1} \sim \mathcal{N}(0, \textit{MSFE})$$

• A 95% forecast interval, which contains the true Y_{T+1} 95% of the time, is given by

$$\{\hat{Y}_{T+1|T} \pm 1.96 \times \textit{RMSFE}\}$$

• RMSFE is approximated with pseudo out-of-sample forecasts or with $\hat{\sigma}_u$ and \hat{V}_β the asymptotic variance of $\hat{\beta}$

Forecast Intervals in Central Banks

- The Bank of England publishes its Inflation Reports with forecasts of future inflation along with confidence bands that summarize the uncertainty around its forecasts
- This is useful in communicating how it intends to achieve its objective of maintaining inflation close to its 2% target

Forecast Intervals in Central Banks

Chart 5.3 CPI inflation projection based on market interest rate expectations, other policy measures as announced

Distributed Lag Model and Dynamic Causal Effects

The Distributed Lag (DL) model is

$$Y_t = \beta_0 + \beta_1 X_t + \dots + \beta_q X_{t-q} + u_t$$

- If X_t is exogenous then the regression has a causal interpretation: e.g. effect of oil price on GDP/inflation
- Suppose we increase X_t by 1 and then revert to the mean (say 0) for ever afterwards
- Effect: at $t \beta_1$, at $t + 1 \beta_2$,...
- The effect is persistent over time, a one-time event will affect Y_t now and into the future
- The cumulative multiplier is the sum of all the effects this one-time shock will have:

$$\beta_1 + \beta_2 + \cdots + \beta_q$$

Computing Cumulative Multipliers

The Distributed Lag (DL) model is

$$Y_t = \beta_0 + \beta_1 X_t + \dots + \beta_q X_{t-q} + u_t$$

• To compute $\beta_1 + \beta_2 + \cdots + \beta_q$ and its standard errors, there is a trick:

$$Y_{t} = \beta_{0} + \beta_{1}(X_{t} - X_{t-1}) + [\beta_{1} + \beta_{2}]X_{t-1} + \dots + \beta_{q}X_{t-q} + u_{t}$$

$$= \beta_{0} + \beta_{1}\Delta X_{t} + [\beta_{1} + \beta_{2}]\Delta X_{t-1} + \dots + [\beta_{1} + \dots + \beta_{q-1}]\Delta X_{t-1} + [\beta_{1} + \dots + \beta_{q}]X_{t-q} + u_{t}$$

- where $\Delta X_t = X_t X_{t-1}$. Simply regress Y_t on $(\Delta X_t, \dots, \Delta X_{t-q-1})$ and X_{t-q}
- The last coefficient is the cumulative multiplier

TABLE 15.1 The Dynamic Effect of a Freezing Degree Day (*FDD*) on the Price of Orange Juice: Selected Estimated Dynamic Multipliers and Cumulative Dynamic Multipliers

	(1)	(2)	(3)	(4)
Lag Number	Dynamic Multipliers	Cumulative Multipliers	Cumulative Multipliers	Cumulative Multipliers
0	0.50	0.50	0.50	0.51
	(0.14)	(0.14)	(0.14)	(0.15)
1	0.17	0.67	0.67	0.70
	(0.09)	(0.14)	(0.13)	(0.15)
2	0.07	0.74	0.74	0.76
	(0.06)	(0.17)	(0.16)	(0.18)
3	0.07	0.81	0.81	0.84
	(0.04)	(0.18)	(0.18)	(0.19)
4	0.02	0.84	0.84	0.87
	(0.03)	(0.19)	(0.19)	(0.20)
5	0.03	0.87	0.87	0.89
	(0.03)	(0.19)	(0.19)	(0.20)
6	0.03	0.90	0.90	0.91
	(0.05)	(0.20)	(0.21)	(0.21)
:				
12	- 0.14	0.54	0.54	0.54
	(0.08)	(0.27)	(0.28)	(0.28)
:				
18	0.00	0.37	0.37	0.37
10	(0.02)	(0.30)	(0.31)	(0.30)
Monthly indicators? No		No	No	Yes
Monthly male	110	110	110	F = 1.01
				(p = 0.43)
HAC standard				
parameter (m)		7	14	7
parameter (m)	<u>'</u>			<u> </u>

(b) Estimated Cumulative Dynamic Multipliers and 95% Confidence Interval