CHM102-Assignment-1

1. Which of the following wave functions represent stationary states? (1) $\Psi_1(t) = Ce^{i\omega t}$,

$$\Psi_2(x) = C \sin x, \Psi_3(x,t) = Cx^2 \sin \omega t$$
 (C is a complex constant).

2. Is
$$\psi(x) = xe^{-ax^2}$$
 an eigen function of the operator $\left(\frac{d^2}{dx^2} - 4a^2x^2\right)$?

3. Consider the wave function,
$$\Psi(x) = A(ax - x^2)$$
 for $0 \le x \le a$

(a) Normalize the wave function (b) Find
$$\langle x \rangle, \langle x^2 \rangle$$
 and Δx (deviation).

4. Consider a system whose state is expressed in terms of a complete orthonormal set of basis functions $\phi_1, \phi_2, \phi_3, \phi_4, \phi_5$ as follows:

$$\Psi = \frac{1}{\sqrt{19}}\phi_1 + \frac{2}{\sqrt{19}}\phi_2 + \sqrt{\frac{2}{19}}\phi_3 + \sqrt{\frac{3}{19}}\phi_4 + \sqrt{\frac{5}{19}}\phi_5 \ . \ \ \text{If the } \phi_i \text{ 's satisfy the following relation,}$$

$$\widehat{H}\phi_n=narepsilon_0\phi_n$$
 where $n=1,2...5$, calculate

- (a) the average energy of the system.
- (b) if the energy is measured on a large number of identical systems that are initially in the same state Ψ , comment on the possible energies that could be measured along with their probabilities.
- 5. An electron in a stationary state of a 1D-box of length 3 A $^{\circ}$ emits a photon of frequency 5.05 X 10^{15} s⁻¹. Find the initial and final quantum numbers for this transition.
- 6. Consider a one-dimensional particle with wave function $\Psi(x,t) = \sin\left(\frac{\pi x}{a}\right)e^{-i\omega t}$ confined within the region $0 \le x \le a$. Calculate the probability of finding the particle in the interval $a/4 \le x \le 3a/4$.
- 7. If an electron in a certain excited energy level in a 1D-box of length 2 A ° makes a transition to the ground state emitting a photon of wavelength 8.79 nm, find the quantum number of the excited state.
- 8. Consider a particle confined in a 1D-box of length 'a' and described by a wave function $\Psi(x) = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$. Show that the uncertainty relation $\sigma_x . \sigma_{p_x} > \frac{\hbar}{2}$. $\sigma_x . \sigma_{p_x}$ represent the standard deviation of the position and momentum along the x-direction respectively.

Note:
$$\int_{0}^{l} x \sin^{2} \frac{n\pi x}{l} dx = \frac{l^{2}}{4}$$
, $\int_{0}^{l} x^{2} \sin^{2} \frac{n\pi x}{l} dx = \left(\frac{l}{2n\pi}\right)^{3} \left[\frac{4n^{3}\pi^{3}}{3} - 2n\pi\right]$, $\sigma_{A}^{2} = \langle A^{2} \rangle - \langle A \rangle^{2}$

- 9. Employing the following operators, $\hat{P}=\sqrt{\frac{1}{m\omega\hbar}}~\hat{p}_x,~\hat{Q}=\sqrt{\frac{m\omega}{\hbar}}~\hat{x}$, $\hat{a}=\sqrt{\frac{1}{2}}\big[\hat{Q}+i\hat{P}\big],~\hat{a}^\dagger=\sqrt{\frac{1}{2}}\big[\hat{Q}-i\hat{P}\big]$, evaluate (a) $[\hat{P},\hat{Q}]$ (b) $[\hat{a}^\dagger,\hat{a}]$. Note: $\hat{p}_x,~\hat{x}$ denote the x-component of momentum and displacement.
- 10. An electron in a 1D-potential well, defined by $V(x)=0, -a \le x \le a$ and $V(x)=\infty$ otherwise, makes a transition from the n=4 to the n=2 level. The frequency of the emitted photon is 3.43 x 10¹⁴ Hz. Calculate the width of the box.
- 11. A system is initially prepared in the state $\Psi=\frac{1}{\sqrt{7}}\Big[\sqrt{2}\phi_1+i\sqrt{3}\phi_2+\phi_3+\phi_4\Big]$, where ϕ_n are eigen states of the system's Hamiltonian, such that $\hat{H}\phi_n=n\varepsilon_0\phi_n$.
- (a) If energy is measured, what values will be obtained and with what probabilities? Also, calculate the mean energy and the most probable energy for this state?
- (b) If the system is in state $\,\phi_3$, what values of energy and the observable A will be obtained if we measure (I) H first and than A (ii) A first and than H, given that $\,\hat{A}\phi_n=na_0\,\,\phi_{n+1}\,$
- 12. Find the value of the constant 'a' that makes e^{-ax^2} an eigen function of the operator $\left(\frac{d^2}{dx^2}-Bx^2\right)$, where 'B' is a constant. What is the corresponding eigenvalue?
- 13. Suppose, we have 810 identical systems, each of which is in the state Ψ , given by, $\Psi = \frac{\sqrt{3}}{3}\phi_1 + \frac{2}{3}\phi_2 + \sqrt{\frac{2}{9}}\phi_3 \text{ (where } \phi_1,\phi_2 \text{ and } \phi_3 \text{ are orthonormal basis functions). If measurements are to be done on all of the systems, predict the occupancy of the states <math>\phi_1,\phi_2$ and ϕ_3 .
- 14. Compare the probability density profiles for a system described by the following states:

(a)
$$\Psi(x) = \phi_1(x)$$
 (b) $\Psi(x) = \phi_2(x)$ (c) $\Psi(x) = \frac{1}{\sqrt{2}} (\phi_1(x) + \phi_2(x))$

(Note: $\phi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}\right) x$ are the basis states for the 1D-box lof length 'a'.)

15. Consider the following operators: $\hat{A}\phi(x) = x^3\phi(x)$, $\hat{B}\phi(x) = x\frac{d\phi(x)}{dx}$. Find the commutator relation $[\hat{A},\hat{B}]$.