Genetic variation

- Types and classifications.
- Abundance.
- Effect.

1. HOW MANY VARIANTS DOES A HUMAN GENOME HAVE?

2. WHICH TYPE?

3. WHAT EFFECT DO THEY HAVE?

4. WHAT IS THE BIOLOGICAL SIGNIFICANCE?

1. HOW MANY VARIANTS DOES OUR GENOME HAVE?

1. HOW MANY VARIANTS DOES OUR GENOME HAVE?

1. HOW MANY VARIANTS DOES THE GENOME HAVE?

- Size (SNV, indels, CNVs)
- Frequency (rare, common)
- Nature (somatic, germinal)
- Localization (intergenic, UTRs, exons)

classification by SIZE

Trends in Genetics

De Hotspots of Human Mutation, Nesta et al. 2020

classification by SIZE

Chromosome mutations

classification by SIZE

classification by SIZE

Turner syndrome (XO)

Figure 17-13
Introduction to Genetic Analysis, Tenth Edition
© 2012 W. H. Freeman and Company

Klinefelter syndrome (XXY)

classification by SIZE

Figure 17-15
Introduction to Genetic Analysis, Tenth Edition
© 2012 W. H. Freeman and Company

classification by SIZE

Down syndrome (trisomy 21)

Figure 17-16
Introduction to Genetic Analysis, Tenth Edition
© 2012 W. H. Freeman and Company

classification by SIZE

The maternal-age effect in Down syndrome

Figure 17-17
Introduction to Genetic Analysis, Tenth Edition
© 2012 W. H. Freeman and Company

classification by SIZE

Table 1 | Median autosomal variant sites per genome

	AFR 661 8.2		AMR 347 7.6		EAS 504 7.7		EUR 503 7.4		SAS 489 8.0	
Samples Mean coverage										
	Var. sites	Singletons								
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (L1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	0	9	0	11	0
Nonsynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBSs	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEI, mobile element insertions.

classification by FREQUENCY

Types of genetic variation

classification by FREQUENCY

Allele Frequency Spectrum in Europeans

From: Casals et al. J Neuroimmunol. 2012 Next-generation sequencing approaches for genetic mapping of complex diseases.

classification by ORIGEN

Germline versus Somatic Mutations

classification by ORIGIN

Genetic mosaicism

"The term 'mosaic' has been used since antiquity to refer to an artistic patchwork of ornamental stones, glass, gems or other precious material. At a distance, the collective image appears as it would in a painting; only on close inspection do the individual components become recognizable. In biological systems, mosaicism implies the presence of more than one genetically distinct cell line in a single organism. As in the artistic sense, mosaicism in an organism might be inapparent unless closely analysed. At the level of the whole organism, appreciation of the mosaic phenotype depends on tissue-to-tissue genetic variations that might not clearly follow Mendelian rules of inheritance"

Mechanisms and consequences of somatic mosaicism in humans, Youssoufian and Pyeritz, Nature Reviews 2002

classification by ORIGEN

Figure 1. The timing of postzygotic mutation influences the distribution of mutant cells in the individual. (A) Mutations that occur during the first mitosis result in approximately half of the individual being affected. Individuals with CHILD syndrome (congenital hemidysplasia with ichthyosiform erythroderma and limb defects) have been observed with this striking pattern (see Figure 2A). (B) Mutations that occur before left-right determination can affect both sides of the individual, including one or both gonads. (C) Mutations that arise after the determination of the two sides of the embryo can be confined to only one side of the individual. Only one gonad is likely to be affected. (D) Mutations that occur after differentiation of primordial germ cells (PGCs) will be absent from somatic tissues. Thus, molecular investigations to detect such gonadal mosaicism must involve direct observation of germ cells. For males, this process is relatively straight forward, but for females it involves invasive biopsy of potentially both ovaries.

SNVs (3.000.000)

```
INTERGENIC ~ 62 %
INTRAGENIC ~ 38 %
Coding ~ 6 %
```

classification by LOCALIZATION

SNPs		+
INTERGENIC	2.054.900)
INTRAGENIC	1.252.778	3
Intron	1.043.427	
UTR	181.267	
Spl acc	1.898	
Spl don	398	
Coding	18.796	
Synonymous	9.612	
Missense	9.082	
Nonsense	87	
StopGain	15	
TOTAL	3.307.678	3

Data from Comprehensive Characterization of Human Genome Variation by High Coverage Whole-Genome Sequencing of Forty Four Caucasians, Shen et al. 2013

classification by LOCALIZATION

Table 1 | Median autosomal variant sites per genome

	AFR 661 8.2		AMR 347 7.6		EAS 504 7.7		EUR 503 7.4		489 8.0	
Samples Mean coverage										
	Var. sites	Singletons	Var. sites	Singletons						
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEI (L1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
nversions	12	0	9	0	10	0	9	0	11	0
Nonsynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
JTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
nsulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBSs	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	0	2.07k	0	1.99k	0	2.08k	0	2.06k	0
ClinVar	28	0	30	1	24	0	29	1	27	1

See Supplementary Table 1 for continental population groupings. CNVs, copy-number variants; HGMD-DM, Human Gene Mutation Database disease mutations; k, thousand; LoF, loss-of-function; M, million; MEI, mobile element insertions.

A change in the third nucleotide of codon GGC to GGT does not change the amino acid Glycine to another one.

The genetic code is degenerate

Second letter

letter

- Missense mutations may alter the function of the protein by substituting an amino acid with an unfavorable one.
- Example: hemoglobin and sickle cell anemia.

A change from glutamic acid (negatively charged) to a valine (non-polar) causes a severe change in the protein function and

SNVs in the coding region

- Nonsense mutation occurs early the gene results in the truncation (shorter) of protein and loss of function (truncated protein).
- Nonsense mutation occurs later in the sequence of the gene results in the protein loss of function or reduction in function.

Summary of substation mutations in coding region

In-frame indels

Frameshift indels

