Unit 4: Boolean Algebra

CSE 220: System Fundamental I
Stony Brook University
Joydeep Mitra

Digital Logic

- Digital systems perform operations on binary numbers.
- The fundamental building blocks used are logic gates.
- A logic gate is a digital circuit that takes binary inputs and produces a binary output.
 - Every logic gate is represented by a unique symbol
 - Inputs are drawn on the left (or top); outputs on the right (bottom)
 - Letters (e.g., A,B,C, and Y) indicate inputs and outputs
 - Letters may be subscripted with numbers (e.g., A₀, A₁)
- The relationship between inputs and output in a logic gate can also be represented in a truth table
 - A truth table indicates every combination of inputs and their corresponding output.
 - 1 indicates TRUE and 0 indicates FALSE
 - We will use 1, TRUE and 0, FALSE interchangeably

NOT Gate

- Has one input and one output.
- If input is TRUE, output is FALSE and vice-versa.
- The NOT gate is also called an inverter.

- The line over A should be read as "NOT A"
- An alternative notation is A' also read as "NOT A"

Buffer

- Has one input and one output.
- If input is TRUE, output is TRUE and vice-versa.
- The buffer is like a wire; output is same as input.
- From digital perspective a buffer might seem useless.
- But, from an analog perspective, it has numerous desirable characteristics (e.g., add delay).

AND Gate

- Two-input gate.
- Output is TRUE if and only if both inputs are TRUE; FALSE otherwise.
- Typical notation is Y = AB, other notations are used such as $Y = A \cdot B$ or $Y = A \cap B$

AND		Α	В	Y
4-	0	0	0	0
B)- Y	1	0	1	0
	2	1	0	0
Y = AB	3	1	1	1

• By convention, input combinations in truth table are listed as 00,01,10,11

OR Gate

- Two-input gate
- OR Gate output is TRUE if either of the inputs (or both) are TRUE; otherwise,
 FALSE
- Typical notation is Y = A+B, read as "Y equals A or B"
- Other notations include Y = AUB, read as "Y equals A union B"

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

NAND/NOR Gate

- A gate can be inverted by adding a bubble before the gate
- NAND gate is inverted AND
 - Output is FALSE if and only if both inputs are TRUE; otherwise, FALSE
- NOR gate is inverted OR
 - Output is TRUE if and only if both inputs are FALSE; otherwise, TRUE

XOR Gate

- Two-input gate
- Output is TRUE if and only if either inputs are TRUE (not both); otherwise, FALSE

 An N-input XOR gate can be used to check even/odd parity; TRUE for odd no. of inputs.

XNOR Gate

- Inverted XOR
- Output is TRUE if and only if inputs are the same; otherwise, FALSE

Joydeep Mitra

9

Multiple Input Gates

- Many Boolean function (or gates) work with 3 or more inputs
- Common ones include AND, OR, XOR, NAND, NOR, and XNOR
- E.g., N-input AND produces TRUE when all inputs are TRUE
- E.g., N-input OR produces TRUE when at least one input is TRUE

Combinational Circuit Design

- A circuit is a network that processes *discrete-valued* variables
- You can view a circuit as a black box with the following elements:
 - Input terminals
 - Output terminals
 - A functional specification to define the relationship between inputs and outputs
 - A timing specification to define the delay between inputs changing and outputs responding

- A circuit can be
 - combinational output is a function of input
 - sequential output is a function of input and memory. More later.

Peering Into The Black Box

The black box has

- Elements circuits with inputs, outputs, and specifications
- Nodes wire to convey voltage that indicates discrete-valued variable
- Nodes are input, output, or internal

- The illustration has 3 elements E1, E2, and E3
- Nodes A,B,C are inputs
- Nodes Y,Z are outputs
- n1 is an internal node

Specification vs Implementation

- Specification indicates "what" is the circuit
- Implementation indicates "how" the circuit will be built

$$Y = F(A, B) = A + B$$

Specification

(CL indicates combinational circuit)

Implementation 1

Implementation 2

Rules of Combinational Composition

- In general, a circuit is combinational if
 - It is made of interconnected circuit elements
 - Every circuit is combinational
 - Every node is an input terminal, output terminal, or connected to the output terminal of an element
 - circuit has no cycles

Specification vs Implementation

- Consider another example *full adder*
- The equations specify the function of outputs in terms of inputs

More about implementation later

Boolean Equation

- Boolean equation involve variables that are either TRUE or FALSE
- They can be used to describe the relationship between inputs and outputs
- But, first let's define a few terms

Terminology

- **Complement**: variable with a bar over it or a tick mark:
 - A', B', C'
- Literal: an instance of a variable or its complement present in an expression
 - A, A', B, B', C, C'
- **Product** of literals: AB'C
- Sum of literals: A + B' + C
- Minterm: a product that includes *all* input variables
 - For a 3-input circuit (inputs: A, B, C), AB'C, A'BC' and ABC would be minterms, but AB' and BC would not be minterms
- Maxterm: a sum that includes *all* input variables
 - For a 3-input circuit, A+B'+C and A'+B+C' would be maxterms, but A+B' and B+C would not be maxterms

Sum-of-Products Form

- A truth table has 2^N rows for N inputs, one for each combination of inputs
- Each row is associated with a **minterm that is TRUE** for the row
- Minterms are numbered starting with 0
 - Minterm 0 is m₀, minterm 1 is m₁, and so on ...

				minterm
Α	В	Y	minterm	name
0	0	0	$\overline{A} \overline{B}$	m_0
0	1	1	ĀB	m_1
1	0	0	$A\overline{B}$	m_2
1	1	0	AΒ	m_3

 A Boolean equation can be represented as the sum of minterms that have output 1 or TRUE

•
$$Y = A'B$$

Sum-of-Products Form

- This *sum of minterms* equation is called the **sum-of-products** form or **SOP** form.
- It is the sum (OR) of products (ANDs forming minterms).
- Generally, for the sake of consistency, if there is more than one minterm with output 1, we write them in order that they appear in the truth table.

Α	В	Y	minterm	minterm name
0	0	0	$\overline{A} \overline{B}$	m_{0}
0	1	1	ĀΒ	m_1
1	0	0	ΑB	m_2
1	1	1	AΒ	m_3

$$Y = A'B + AB$$

Notice the equation has 4 literals

Sum-of-Products Form

- SOP form can also be written in sigma notation
- For example, Y = A'B + AB could also be written $F(A,B)=\Sigma(m_1,m_3)$ or $F(A,B)=\Sigma(1,3)$ or $F(A,B)=\Sigma m(1,3)$
- Note that you MUST list the input variables in the same order as the truth table:
 start with 0 and increment the count from there

Product-of-Sums Form

- Product-of-sum or **POS** is an alternative way to express Boolean equations
- Each row in the truth table corresponds to a maxterm that is FALSE for that row
- Boolean equation is expressed as the product of maxterms with output FALSE or
 0

Α	В	Y	maxterm	maxterm name
0	0	0	A + B	M_0
0	1	1	$A + \overline{B}$	M_1
1	0	0	$\overline{A} + B$	M_2
1	1	1	$\overline{A} + \overline{B}$	M_3

$$Y = (A + B) (A' + B)$$

- SOP and POS are equivalent. Why?
 - De Morgan's Law
 - More on that shortly!

Product-of-Sums Form

- POS form can also be written in **pi notation**
- For example, Y = (A + B) (A' + B) could also be written as $F(A,B) = \Pi(M_0,M_2)$ or $F(A,B) = \Pi(0,2)$ or $F(A,B) = \Pi M(0,2)$

Example: DivBy4

- Consider designing a circuit that returns TRUE if a 3-bit number is divisible by 4 and FALSE otherwise
- Write a Boolean equation in SOP form and draw its circuit diagram
- $\Sigma(m_0, m_4) = A'B'C' + AB'C'$
 - The formula has 6 literals

В	С	F(A,B,C)
0	0	1
0	1	0
1	0	0
1	1	0
0	0	1
0	1	0
1	0	0
1	1	0
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0 1 1

Joydeep Mitra

23

Example: DivBy4

- Write a Boolean equation in POS form and draw its circuit diagram
- $\Pi(M_1, M_2, M_3, M_5, M_6, M_7)$

$$= (A + B + C')(A + B' + C)(A + B' + C')(A' + B + C')(A' + B' + C)(A' + B' + C')$$

Α	В	С	F(A,B,C)
0	0	0	1'
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

SOP vs POS

- They are duals of each other; equivalent ways of expressing the same function
- Generally, we use SOP if the truth table contains fewer 1s in output than 0s
- Similarly, we use POS if the truth table contains fewer 0s in output than 1s
- SOP and POS are called two-level logic because they use two gate levels : AND-OR or OR-AND
- A term is the minimal unit of a Boolean expression
- A term denotes the first-level gate from the perspective of a circuit
 - ABC has one term, but AB + BC has two terms
 - Likewise, (A+B+C) has one term but (A+C)(A+B'+C) has two terms

Minterm vs Maxterm

- A Boolean equation is *satisfiable* if at least one combination of inputs makes the output TRUE.
- SOP needs at least one term to make the equation satisfiable. Hence, its terms are called minterms
- POS needs all terms to make the equation satisfiable. Hence, its terms are maxterms.

Boolean Algebra

- So far, we have used truth tables to create Boolean expressions (SOP and POS)
- But such expressions may not lead to the simplest set of logic gates
- Boolean Algebra provides axioms and laws/theorems to simplify Boolean equations
 - Axioms are like definitions assumed to be true.
 - Theorems are derived and proved using axioms.

Axioms of Boolean Algebra

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1′	$B = 1$ if $B \neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	A4′	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

- There are 5 axioms and their duals
- Axioms A1 and A1' indicate that we are in a binary field, i.e., Boolean variable B is 0 when its not 1 and vice-versa
- Axioms A2 and A2' indicate the NOT gate
- Axioms A3-A5 denote the AND gate
- Axioms A3'-A5' denote the OR gate

One Variable Theorems

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B+0=B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
T3	$B \bullet B = B$	T3′	B+B=B	Idempotency
T4		$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

- Identity. The result of (any variable) B AND 1 is always B; its dual states that B OR 0 is always B
- Null Element. The result of ANDing any variable with 0 is always 0; its dual, ORing anything with 1 is always 1
- Idempotency. AND/ORing a variable B with itself gives back variable B
- Involution. Complementing a variable twice gives back the same variable
- Complement. A variable AND its complement results in 0; its dual OR results in 1

Several Variable Theorems

	Theorem		Dual	Name
Т6	$B \bullet C = C \bullet B$	T6'	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B+C)+D=B+(C+D)	Associativity
Т8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B+C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ = $B \bullet C + \overline{B} \bullet D$	T11′	$(B+C) \bullet (\overline{B}+D) \bullet (C+D)$ = $(B+C) \bullet (\overline{B}+D)$	Consensus
T12	$ \overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B_0} + \overline{B_1} + \overline{B_2} \dots) $	T12′	$ \overline{B_0 + B_1 + B_2 \dots} = (\overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2} \dots) $	De Morgan's Theorem

- **Commutativity**. Like in algebra the order of the variables does not matter.
- Associativity. The variable groupings do not matter. Same as algebra.
- **Distributivity**. T8 shows that AND distributes over OR and its dual shows that OR distributes over AND. Notice T8' is not allowed in algebra.
- Covering, Combining, and Consensus are used to eliminate redundant variables.

De Morgan's Theorem

- De Morgan's Theorem is a significant result (named after Augustus De Morgan).
- From De Morgan, we can infer that:
 - A NAND gate is equivalent to an OR gate with inverted inputs!
 - A NOR gate is equivalent to an AND gate with inverted inputs!

De Morgan's Theorem

- De Morgan's shows that SOP and POS are equivalent
- Consider the truth table:

_ <i>A</i>	В	Y	Y	minterm
0	0	0	1	$\overline{A}\overline{B}$
0	1	0	1	$\overline{\mathtt{A}} \hspace{0.1cm} \mathtt{B} \hspace{0.1cm})$
1	0	1	0	$A \overline{B}$
1	1	1	0	АВ

Simplifying Equations – Prime Implicant Rule

- Given a Boolean equation in SOP, look for the form PA + PA' and then combine them; P is any implicant
- The idea is to obtain a **minimized equation** with *fewest possible implicants*
- If several minimized equations exists, pick the one with the fewest no. of literals
- A prime implicant is one which cannot be combined with other implicants to create a new implicant with fewer literals
- The implicants in a minimal equation are prime implicants.

Simplifying Equations – Prime Implicant Rule

Step	Equation	Justification
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$	
1	$\overline{B} \overline{C} (\overline{A} + A) + A \overline{B} C$	T8: Distributivity
2	$\overline{B} \overline{C}(1) + A \overline{B} C$	T5: Complements
3	$\overline{B} \overline{C} + A \overline{B} C$	T1: Identity

- Notice that the pair of terms A'B'C' + AB'C' has the form PA + PA'
- We combine them to get B'C'
- We now have B'C' + AB'C; both terms are prime implicants so further simplification by combining implicants is not possible!
- But we can further simplify using Boolean Algebra theorems

```
B'C' + AB'C

= B'(C' + AC) (Distributivity)

= B'(C' + A)(C' + C) (Distributivity)

= B'(C' + A)(1) (Identity)

= B'(C' + A)
```

Simplifying Equations – Duplicating Term Rule

Step	Equation	Justification
	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} C$	
1	$\overline{A} \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C} + A \overline{B} \overline{C}$	T3: Idempotency
2	$\overline{B} \overline{C} (\overline{A} + A) + A \overline{B} (\overline{C} + C)$	T8: Distributivity
3	$\overline{B} \overline{C}(1) + A \overline{B}(1)$	T5: Complements
4	$\overline{B} \overline{C} + A \overline{B}$	T1: Identity

- But we can also pair AB'C' + AB'C?
- We can combine them to get AB'
- Further, implicants B'C' and AB' share the minterm AB'C'
- When implicants share a minterm, the minterm can be **duplicated** for more simplification
- Thus, A'B'C' + AB'C' + AB'C = A'B'C' + AB'C' + AB'C' + AB'C
- Suddenly we have two instances of PA + PA'!
- For each, we use the previous method of combination to get B'C' + AB'
- Simplify further by Distributivity to gets fewer literals B' (A + C')

Joydeep Mitra

35

Simplifying Equations – Expand Term Rule

- Sometimes it helps to expand an equation to enable the implicant approach (e.g., turn AB into ABC + ABC')
 - This works! But why? recall identity and complement.

• Example:

AB + A'C + BC
=> AB + A'C + ABC + A'BC Distributivity
=> AB
$$(1+C)$$
 + A'C $(1+B)$ Distributivity
=> AB + A'C Null Element

Simplifying Equations

- Let's try another example
- Show that Y = A'BC + (BC')' + BC can be simplified to Y = B' + C

- Any Boolean equation can be represented as a schematic
 - A circuit diagram showing the elements and the wires that connect them
- Any SOP equation can be drawn systematically
 - Draw columns for inputs
 - Inverters in next column (if complement is necessary)
 - Draw AND gates for each minterm
 - Draw an OR gate that takes each output from the AND gates as inputs and has one output

- When drawing circuits, we follow certain conventions for consistency
 - Inputs on the left (top) side of the schematic
 - Outputs on the right (bottom) side of the schematic
 - Generally, gates flow from left to right
 - Use straight wires
 - Wires always connect at a T junction
 - A dot where wires connect indicates a connection
 - Wires crossing without a dot indicates no connection

- Recall that A'B'C' + AB'C' + AB'C = B'C' + AB'
- The simplified circuit will have less gates
 - Cheaper and faster!

- Can we do better?
 - Notice B'C' is an AND gate with inverted inputs (same as NOR)
 - We can remove 1 inverter!

Joydeep Mitra

41

• An alternative simplified circuit!

VS.

$$B'C' + AB' = B'(C' + A)$$

Multiple Output Circuits

- Circuits may have more than one output (e.g., priority circuit)
- Assume a circuit with 4 inputs (A_3, A_2, A_1, A_0) and 4 outputs (Y_3, Y_2, Y_1, Y_0)
 - A₃ has highest priority and A₀ lowest
 - Y₃ is enabled when A₃ is enabled
 - Y₂ is enabled when A₂ is enabled but A₃ is not
 - Y₁ is enabled when A₁ is enabled but A₃ and A₂ are not
 - Y₀ is enabled when ONLY A₀ is enabled
- We will write truth tables, Boolean equation, and sketch a circuit for this system

• Start with the truth table and the black box representation

A_3	A_2	A_1	A_0	<i>Y</i> ₃	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1 1 1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

• Come up with Boolean equations.

$$Y_3 = A_3$$

$$Y_2 = A_3' A_2$$

$$Y_1 = A_3' A_2' A_1$$

$$Y_0 = A_3' A_2' A_1' A_0$$

<i>A</i> ₃	A_2	<i>A</i> ₁	<i>A</i> ₀	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	<i>Y</i> ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	0	0	1	0
0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	0	1	1	0	0	0
1	0	1	0	1	0	0	0
1	0	1	1	1	0	0	0
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	0
1	1	1	0	1	0	0	0
1	1	1	1	1	0	0	0

• Design the circuit.

$$Y_3 = A_3$$

$$Y_2 = A_3' A_2$$

$$Y_1 = A_3' A_2' A_1$$

$$Y_0 = A_3' A_2' A_1' A_0$$

- Notice that if A_3 is enabled then we don't care about other inputs.
- This notion can be used to shorten the truth table.
- Don't cares are represented as X in a truth table.
- X indicates the value can be 0 or 1.
- Later we will see how this can be used to simplify Boolean equations.

A_3	A_2	<i>A</i> ₁	A_0	<i>Y</i> ₃	Y_2	<i>Y</i> ₁	Y_0
0	0	0	0	0 0 0 0 1	0	0	0
0	0	0	1	0	0	0	1
0	0	1	X	0	0	1	0
0	1	X	X	0	1	0	0
1	X	X	X	1	0	0	0

- Let's design a circuit for an electronic die with the following specifications:
 - Inputs to the controller represent a 3-bit number (Q_2,Q_1,Q_0) , which indicates the number to be displayed
 - There are nine outputs, A I, one for each of the dots
 - Based on the input no., the output dots will light up.
 - If the value 0 or 7 is given, no dots should light

• First step is to draw the truth table.

Q_2	Q_1	Q_0	Α	В	С	D	Ε	F	G	Н	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0	0	0	1
1	0	0	1	0	1	0	0	0	1	0	1
1	0	1	1	0	1	0	1	0	1	0	1
1	1	0	1	0	1	1	0	1	1	0	1
1	1	1	0	0	0	0	0	0	0	0	0

- Write the Boolean expression for each of the 9 outputs, using a minimal number of terms (SOP or POS)
- A = I= $(Q_2 + Q_1 + Q_0)(Q_2 + Q_1 + Q'_0)$ $(Q'_2 + Q'_1 + Q'_0)$

$$= ((Q_2 + Q_1) + Q_0Q_0')(Q_2' + Q_1' + Q_0')$$

$$= (Q_2 + Q_1)(Q_2' + Q_1' + Q_0')$$

Q_2	Q_1	Q_0	Α	В	С	D	Ε	F	G	Н	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0	0	0	1
1	0	0	1	0	1	0	0	0	1	0	1
1	0	1	1	0	1	0	1	0	1	0	1
1	1	0	1	0	1	1	0	1	1	0	1
1	1	1	0	0	0	0	0	0	0	0	0

- Write the Boolean expression for each of the 9 outputs, using a minimal number of terms (SOP or POS)
- B = H = 0

Q_2	Q_1	Q_0	Α	В	С	D	Ε	F	G	Н	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0	0	0	1
1	0	0	1	0	1	0	0	0	1	0	1
1	0	1	1	0	1	0	1	0	1	0	1
1	1	0	1	0	1	1	0	1	1	0	1
1	1	1	0	0	0	0	0	0	0	0	0

- Write the Boolean expression for each of the 9 outputs, using a minimal number of terms (SOP or POS)
- $C = G = Q_2 Q_1' Q_0' + Q_2 Q_1' Q_0 + Q_2 Q_1 Q_0'$ = $Q_2 Q_1' + Q_2 Q_1 Q_0'$

Q_2	Q_1	Q_0	Α	В	С	D	Ε	F	G	Н	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0	0	0	1
1	0	0	1	0	1	0	0	0	1	0	1
1	0	1	1	0	1	0	1	0	1	0	1
1	1	0	1	0	1	1	0	1	1	0	1
1	1	1	0	0	0	0	0	0	0	0	0

- Write the Boolean expression for each of the 9 outputs, using a minimal number of terms (SOP or POS)
- $\bullet D = F = Q_2 Q_1 Q_0'$

Q_2	Q_1	Q_0	Α	В	C	D	Ε	F	G	Η	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0	0	0	1
1	0	0	1	0	1	0	0	0	1	0	1
1	0	1	1	0	1	0	1	0	1	0	1
1	1	0	1	0	1	1	0	1	1	0	1
1	1	1	0	0	0	0	0	0	0	0	0

- Write the Boolean expression for each of the 9 outputs, using a minimal number of terms (SOP or POS)
- $E = Q_2'Q_1'Q_0 + Q_2'Q_1Q_0 + Q_2Q_1'Q_0$

$$= Q_2' Q_1' Q_0 + Q_2' Q_1 Q_0 + Q_2 Q_1' Q_0 + Q_2' Q_1' Q_0$$

$$= Q_2'Q_0 + Q_2Q_1'Q_0 + Q_2'Q_1'Q_0$$

$$= Q_2' Q_0 + Q_1' Q_0$$

$\overline{Q_2}$	Q_1	Q_0	Α	В	С	D	Ε	F	G	Н	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0	0	0	1
1	0	0	1	0	1	0	0	0	1	0	1
1	0	1	1	0	1	0	1	0	1	0	1
1	1	0	1	0	1	1	0	1	1	0	1
1	1	1	0	0	0	0	0	0	0	0	0

• Recall the electronic die problem.

Q_2	Q_1	Q_0	A	В	С	D	Ε	F	G	Н	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	1
0	1	1	1	0	0	0	1	0	0	0	1
1	0	0	1	0	1	0	0	0	1	0	1
1	0	1	1	0	1	0	1	0	1	0	1
1	1	0	1	0	1	1	0	1	1	0	1
1	1	1	0	0	0	0	0	0	0	0	0

•
$$A = I = (Q_2 + Q_1 + Q_0)(Q_2 + Q_1 + Q_0')(Q_2' + Q_1' + Q_0')$$

= $((Q_2 + Q_1) + Q_0Q_0')(Q_2' + Q_1' + Q_0')$
= $(Q_2 + Q_1)(Q_2' + Q_1' + Q_0')$

•
$$B = H = 0$$

•
$$C = G = Q_2 Q_1' Q_0' + Q_2 Q_1' Q_0 + Q_2 Q_1 Q_0'$$

= $Q_2 Q_1' + Q_2 Q_1 Q_0'$

•
$$D = F = Q_2 Q_1 Q_0'$$

•
$$E = Q_2'Q_1'Q_0 + Q_2'Q_1Q_0 + Q_2Q_1'Q_0$$

 $= Q_2'Q_0 + Q_2Q_1'Q_0$
 $= Q_2'Q_0 + Q_2Q_1'Q_0 + Q_2'Q_1'Q_0 = Q_2'Q_0 + Q_1'Q_0$

Circuits in AND-OR or OR-AND Networks

- Can you implement SOP in NAND-NAND and POS in NOR-NOR?
- Recall, Y" = Y (involution) and DeMorgan's.
- Let's apply them to each output.

•
$$A = I = A'' = I'' = ((Q_2 + Q_1)(Q_2' + Q_1' + Q_0'))''$$

= $((Q_2 + Q_1)' + (Q_2' + Q_1' + Q_0'))'$

•
$$C = G = C'' = G'' = (Q_2Q_1' + Q_2Q_1Q_0')''$$

= $((Q_2Q_1')' \cdot (Q_2Q_1Q_0')')'$

•
$$D = F = D'' = F'' = (Q_2 Q_1 Q_0')'' = (Q_2' + Q_1' + Q_0)'$$

$$Q_1'_1$$
 D , F

•
$$E = E'' = (Q_2'Q_0 + Q_1'Q_0)'' = ((Q_2'Q_0)' \cdot (Q_1'Q_0)')'$$

- Let's design a black box with a decimal digit (0-9) encoded. in 4-bit binary as input (A_3, A_2, A_1, A_0) .
- The output is the decimal digit multiplied by 3.
- The maximum possible output of the circuit is 27, so we need at least 5 bits for the output.
- We will draw a truth table first with 16 rows (4 inputs).
- But we don't care about value greater than 9!

A	3 <i>A</i>
0	0
1	3
2	6
ത	9
4	12
5	15
6	18
7	21
8	24
9	27

A3	A2	A1	A0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0 1 1	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0 0 1 1 0	0 1 0 1 0 1 0 1 0 1 0
1	1	0	1
1	1	1	0
1	1	1	1

Х3	X2	X1	Х0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	1
0	0	0	1
0	0	0	1
0	0	0	1
X	Χ	Χ	Χ
X	Χ	Х	Χ
X	Χ	Χ	X
X	Χ	Χ	Χ
X	Χ	Х	X
X	Х	X	Χ

Y3	Y2	Y1	YO
0	0	0	0
0	0	1	0
0	1	1	0
1	0	0	1
1	1	0	0
1	1	1	1
0	0	1	0
1 0 0	1 0 1	1 1 0	1 0 1
1	0	0	0
1	0	1	1
X	Χ	Χ	Х
X	Χ	Χ	Χ
X	Χ	Χ	Χ
X	Χ	X	X
X X	X	X	X
X	Χ	X	X

- Let's derive the equation for X₀.
- Recall X's are don't cares (considered 0 or 1 as per convenience.)

Let's consider all X's as 0.

$$X_0 = A_3' A_2 A_1 A_0' + A_3' A_2 A_1 A_0 + A_3 A_2' A_1' A_0' + A_3 A_2' A_1' A_0$$

= $A_3' A_2 A_1 (A_0 + A_0') + A_3 A_2' A_1' (A_0' + A_0)$
= $A_3' A_2 A_1 A_0 + A_3 A_2' A_1'$

A3	A2	A1	Α0	X
0	0	0	0	
0	0	0	1	(
0	0	1	0	
0	0	1	1	
0		0	0	
0	1	0	1 0 1	
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1 0 1	1
1	0	1	0	>
1	0	1	1	\
1	1	0	0	\
1	1	0	1	\
1	1	1	0	
1	1	1	1	$\overline{}$

- Let's consider all X's as 1 instead.
 - Create SOP with minterms.
 - Duplicate the minterm $A_3A_2A_1A_0$
 - Apply the prime implicant rule to obtain $X_0 = A_{3} + A_2A_1$
- Considering X's as 1's helped us simplify the equation further!

А3	A2	A1	AO	X
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1 0 0	1	1	1 1 1
1	0	0	0	1
1 1 1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1		0	1	1
1 1 1 1	1	1	0	1 1 1 1
1	1	1	1	1

- Let's try another example.
- Derive the equation for X₁.
- Clearly X₁ is all 0s.
- We must set all X's to 0.
- We get $X_1 = 0$.

Takeaway:

- It may be useful to have X's in a truth table.
- X's can be 0 or 1.
- They are 0 or 1 if it helps us simplify further.

А3	A2	A1	A0
0	0	0	0
0	0	0	0
0	0	1	0
0	0	1	1 0 1
0	1		0
0	1	0	1
0	1	1	0
	1	1	1
1	0	0	0
1 1 1	0	0	1 0 1
1	0		0
1	0	1	1
1 1 1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

X1	
0	
0	
0	
0	
0	
0	
0	
0	
0	
0	
Χ	
Χ	
Χ	
Χ	
0 0 0 0 0 0 0 0 0 0 X X X X	
Х	