Budget Constraint with Block Pricing and Discount

A consumer has an income of m = \$100. There are two goods, x and y. The price of good y is constant at $p_y = \$10$ per unit. Good x is sold under a block pricing schedule:

$$\text{Price of } x = \begin{cases} \$5 \text{ per unit,} & \text{if } x < 10, \\ \$3 \text{ per unit,} & \text{if } x \ge 10. \end{cases}$$

Assume that if the consumer purchases 10 or more units of x, the lower price applies to all units purchased.

- (a) Write down the consumer's piecewise budget constraint.
- (b) Sketch the corresponding budget line on the (x, y) plane. Clearly indicate the key intercepts and the discontinuity (kink) that occurs at x = 10.
- (c) Solve the problem again, but this time assume that the discount applies only to units purchased beyond x = 10. Write down the new piecewise budget constraint and sketch the modified budget line on the (x, y) plane.

Solution

(a) Formulation of the Piecewise Budget Constraint

Since the expenditure on good x depends on the quantity purchased, we have two cases:

 $\underline{x < 10}$: The price of x is \$5 per unit. Thus, the expenditure on x is 5x and on y is 10y. The budget constraint is

$$5x + 10y = 100$$
, for $0 \le x < 10$.

 $\underline{x \geq 10}$: If the consumer buys 10 or more units, the price of x becomes \$3 per unit (for all units of x). Thus, the expenditure on x is 3x and the budget constraint becomes

$$3x + 10y = 100$$
, for $x \ge 10$.

(b) Sketching the Budget Line

x<10: Rewriting the constraint:

$$5x + 10y = 100 \implies y = 10 - 0.5x.$$

- When x = 0, y = 10 (the y-intercept).
- When x = 10, y = 10 0.5(10) = 5.

 $x \ge 10$: Rewriting the discounted segment:

$$3x + 10y = 100 \implies y = 10 - 0.3x.$$

- When x = 10, y = 10 0.3(10) = 7.
- When y = 0, 3x = 100 so $x = \frac{100}{3} \approx 33.33$ (the x-intercept for this segment).

Graph: The budget line is piecewise linear with a jump at x = 10. Below is a sketch of the budget line.

Explanation: For x < 10, the consumer faces the higher price of \$5 per unit, so the budget line follows y = 10 - 0.5x and passes through (0, 10) and (10, 5). However, if the consumer opts to purchase 10 or more units of x, they receive a discount, and the price falls to \$3 per unit for all units of x. In this case, the budget line becomes y = 10 - 0.3x for $x \ge 10$ and passes through (10, 7) and the x-intercept (33.33, 0). Notice that at x = 10 there is a discontinuity: purchasing exactly 10 units under the higher price would allow only y = 5, whereas qualifying for the discount gives y = 7. This jump reflects the benefit of the discount when buying in bulk.

(c) Formulation of the Piecewise Budget Constraint

The expenditure on good x depends on the quantity purchased:

Expenditure on
$$x = \begin{cases} 5x, & \text{if } 0 \le x \le 10, \\ 5(10) + 3(x - 10) = 50 + 3(x - 10), & \text{if } x > 10. \end{cases}$$

Thus, the consumer's total expenditure is the sum of spending on x and y.

 $0 \le x \le 10$: In this range, the expenditure on x is 5x and on y is 10y. The budget constraint is:

$$5x + 10y = 100.$$

Solving for y:

$$y = 10 - 0.5x$$
.

 $\underline{x>10}$: If x>10, the first 10 units cost \$5 each (totaling \$50) and each extra unit costs \$3. Thus, the total cost for x is:

$$50 + 3(x - 10) = 3x + 20.$$

Adding the cost for y, the budget constraint becomes:

$$3x + 20 + 10y = 100 \implies 3x + 10y = 80.$$

Solving for y:

$$y = 8 - 0.3x$$
.

Sketching the Budget Line

For $0 \le x \le 10$:

$$y = 10 - 0.5x$$
.

- y-intercept: When x = 0, y = 10.
- At x = 10, y = 10 0.5(10) = 5.

For x > 10:

$$y = 8 - 0.3x.$$

- At x = 10, y = 8 0.3(10) = 8 3 = 5 (ensuring the two segments connect at x = 10).
- x-intercept: Set y=0, then 3x=80 so $x=\frac{80}{3}\approx 26.67$.

Thus, the budget line is given by:

For
$$0 \le x \le 10$$
: $y = 10 - 0.5x$,

For
$$x > 10$$
: $y = 8 - 0.3x$.

There is a kink at x = 10, y = 5 where the pricing rule changes.

Graph:

