Дифференциальные уравнения

Свирщевский Сергей Ростиславович

7 сентября 2017 г.

Лекция 1

Введение

Основные понятия

Определение. Обыкновенным дифференциальным уравнением (ОДУ) п-го порядка называется уравнение вида:

$$F(x, y, y', \dots y^{(n)}) \tag{1}$$

где x - независимая переменная, y(x) - искомая функция, $y', \ldots, y^{(n)}$ - ее производные, F - заданная функция, определенная в области $\Omega \subseteq \mathbb{R}^{n+2}$. Порядок n уравнения равен порядку старшей производной, входящей в уравнение.

Определение. Функция $y = \varphi(x)$, определенная на некотором интервале $X = (\alpha, \beta)$, называется решением уравнения (1), если

- 1. $\varphi(x)$ п раз дифференцируемо на X,
- 2. $x, \varphi(x), \varphi'(x), \dots \varphi^{(n)} \in \Omega, \forall x \in X,$
- 3. $F(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n)}(x)) = 0$.

Замечание. В этом определении в качестве X можно взять полуинтервал или отрезок, т.е любой промежуток действительной оси.

Замечание. Решение может быть определено на сколько можно малом интервале. Разные решения могут быть определены на разных интервалах.

Определение. Уравнение

$$y^{(n)} = f(x, y, y', \dots y^{(n-1)})$$
(2)

где f - заданная функция, определенная в некоторой области $D\subseteq\mathbb{R}^{n+1}$, называется разрешенным относительно старшей производной или уравнение в нормальной форме.

Определение. Функция $y = \varphi(x)$, определенная на некотором интервале $X = (\alpha, \beta)$, называется решением уравнения (2), если

1. $\varphi(x)$ п раз дифференцируемо на X,

2.
$$x, \varphi(x), \varphi'(x), \dots \varphi^{(n-1)} \in D, \forall x \in X,$$

3.
$$\varphi^{(n)} \equiv f(x, \varphi(x), \varphi'(x), \dots, \varphi^{(n-1)}(x)).$$

Замечание. Процесс нахождения решений уравнения называется его интегрированием.

Пример 1.

1. $y' = f(x) \Rightarrow y = \int f(x)dx$ $y' = e^{-x^2}, \quad y = \frac{1}{2}e^{-x^2} + C$ 2.

$$y^{(n)} = f(x) \Rightarrow y = \int f(x)dx$$
$$y'' = 2x, \quad y' = x^2 + C_1, \quad y = \frac{1}{3}x^3 + C_1x + C_2$$

3.
$$y' = ky, \quad k = const \neq 0$$

$$y = Ce^{kx}$$

4.
$$y' = y^2, \quad y = -\frac{1}{x}$$

Замечание. Формулы, описывающие все решения уравнения содержат n произвольных постоянных.

Задача Коши и теорема существования и единственности для уравнения (2)

Для получения из множества решений какого-либо частного решения, необходимо задать дополнительные условия. Рассмотрим, например, уравнение первого порядка:

$$y' = f(x, y), \quad (x, y) \in D \tag{3}$$

$$y_0 = y(x_0) \tag{4}$$

Возьмем точку $(x_0, y_0) \in D$ и рассмотрим начальное условие (НУ).

Определение. Найти решение уравнения (3), удовлетворяющее НУ (4)

Теорема 1. Пусть функция f(x,y) и ее частная производная $\frac{\partial f(x,y)}{\partial y}$ непрерывны в области $D \subseteq \mathbb{R}^2$. Тогда, $\forall (x_0,y_0) \in D$:

- 1. Существует решение задачи Коши, определенное на некотором интервале $X \ni x_0$
- 2. Если $y_1(x)$, $y_2(x)$ какие-либо решения, то $y_1(x) \equiv y_2(x)$ на пересечении их интервалов определения.

Пример 2.

$$y' = kx, \quad k = const \neq 0$$

Решение: $y = Ce^{kx}$, $x \in (-\infty, +\infty)$ Докажем, что других решений нет. Пусть $y = \varphi(x), x \in X$ - какое-либо решение. Возъмем произвольную $x_0 \in X$ и найдем $y_0 = \varphi(x_0)$. Теперь покажем, что в этом семействе есть решение с такими же начальными условиями. Рассмотрим $y = C_0e^{kx}$, $C_0 = y_0e^{kx_0}$. Оба этих решения являются решениями одной и той же задачи Коши с $HY(x_0, y_0)$. В силу единственности по теореме (1) мы имеем $\varphi(x) = C_0e^{kx}$ на X.

Замечание. Решение $y = \varphi(x)$, $x \in X$ называется сужением решения $y = C_0 e^{kx}$, $x \in \mathbb{R}$, на интервал X. А решение $y = C_0 e^{kx}$ называется продолжением решения $y = \varphi(x)$ на \mathbb{R} .

Определение. Пусть $y = \varphi_1(x), \ x \in X_1 \ u \ y = \varphi_2(x), \ x \in X_2$ - какие-либо решения уравнения, и пусть $X_1 \subseteq X_2$. Тогда решение $y = \varphi_2(x)$ называется продолжением решения $y = \varphi_1(x)$ на X_2 .

Замечание. В дальнейшем докажем, что каждое решение может быть продолжено на некоторый максимальный интервал до непродолжаемого решения.

Определение. График решения $y = \varphi(x)$ на плоскости (x,y) называется его интегральной кривой. Если под интегральной кривой понимать непродолжаемое решение, то теорему (1) можно переформулировать так:

Через каждую точку $(x_0, y_0) \in D$ проходит единственная интегральная кривая уравнения (3).

Замечание. Мы можем нарисовать интегральные кривые, не решая уравнение, поскольку мы знаем, как направлена касательная в любой точке. Не каждое уравнение не имеет аналитическое решение, например: $y'=x^2+y^2$. В качестве альтернативы можно нарисовать на плоскости (x,y) изоклины и получить представления о том, как выглядят интегральные кривые.

Замечание. Для **существования** решения задачи Коши достаточно непрерывности функции f(x,y). Но решение может быть не единственным.

Пример 3.

$$y' = 3\sqrt[3]{y^2}$$

Решения:
$$y = 0, y = (x - C)^3$$

B каждой точки интегральной кривой y=0 нарушается единственность решения задачи Коши. Решение y=0 называется особым.