

## Tone melodies in the age of Surface Correspondence

Sharon Inkelas inkelas@berkeley.edu Stephanie S Shih shih@ucmerced.edu

Linguistics
University of California, Berkeley

Cognitive & Information Sciences University of California, Merced

CLS 51 | 24 April 2015

Slides: cogsci.ucmerced.edu/shih/InkelasShih\_CLS2015.pdf

#### Tone

- The behavior of tone systems was a central motivation for Autosegmental Phonology (AP; Goldsmith 1976; Leben 1978)
- AP: a theory of phonological representations and rules operating over representations

V C V

VCV |×| V C V / [nas] C C C
[dist]

 Designed around tone, then extended to the (tamer) behavior of vowels and consonants

#### **Tone in Optimality Theory**

- Tone has played a relatively peripheral role in the development of Optimality Theory (Prince & Smolensky 1993)
- In the area of vowel and (especially) consonant harmony, AP
  has been supplanted by Agreement by Correspondence Theory
  (ABC), or Surface Correspondence (e.g., Hansson 2001, Rose &
  Walker 2004, Bennett 2013)
- ABC is segment-based; correspondence constraints refer to segments, not autosegments
- · Where does this leave tone?

#### This talk

- Uses Agreement by Correspondence theory and subsegmental Q theory (ABC+Q) to model the attested distribution of tone in Mende, a language originally thought to support AP representations
- Argues that ABC+Q provides a better account of a so-called tone melody language than a traditional AP melody account does



#### **Tone melodies**

- The association of autosegmental tone melodies to tonebearing units is a canonical example of what AP was designed to do
- · Universal tone association conventions:
  - Associate tones to TBUs in a 1-1, L-R manner
  - Spread the rightmost tone to any remaining toneless TBUs
  - Dock any leftover tones to the rightmost TBU
- Obligatory Contour Principle: no adjacent identical autosegments

#### **Tone melodies**

 The OCP and Universal Association Conventions team up to produce the famous Mende 5-way tone melody pattern (Williams 1971; Leben 1973, 1978) (also attested in Kukuya; Hyman 2007)

| Melody in UR | σ   | σσ   | σσσ   |
|--------------|-----|------|-------|
| Н            | Н   | H.H  | н.н.н |
| L            | L   | L.L  | L.L.L |
| H L          | ĤĹ  | H.L  | H.L.L |
| LH           | ĹΗ  | L.H  | L.H.H |
| LHL          | LĤĹ | L.ĤL | L.H.L |

## **Tone melodies**

nyaha | | | L H L 1. L-R, 1-1 Association

2. Spread

3. Dock



### **Challenges for melody account**

- Mende has melodies beyond than the 5 canonical ones (Dwyer 1978)
- Melody complexity is correlated with word length
- The alignment of melody tones frequently violates the universal conventions (Dwyer 1978), forcing exceptional underlying representations (Leben 1978)



#### Data: a Mende lexicon

- Data: 4,000 words from dictionary (Innes 1969)
- ~2,700 of the words are nouns (the category for which the AP melody analysis was said to hold)
- $\sim$ 92% of nouns are 1–3 syllables long (n=2,493).
- Morpheme breaks not indicated, but the main source of morphological complexity in nouns appears to be total reduplication in 4-syllable words. We are not addressing 4syllable words today.

## **Challenges for melody account**

- Mende has melodies beyond the 5 canonical ones (Dwyer 1978)
- Melody complexity is correlated with word length
- The alignment of melody tones frequently violates the universal conventions (Dwyer 1978), forcing exceptions underlying representations (Leben 1978)



#### Tone melodies in the lexicon

 A search of the 2700 nouns in the Mende lexicon reveals many melodies. Disregarding alignment to syllables and just focusing on the overall contours of the melody, we find the following.

|       | 4  | ٠,  | 2   |
|-------|----|-----|-----|
|       | 1  | 2   | 3   |
| L     | 25 | 251 | 25  |
| Н     | 53 | 531 | 101 |
| LH    | 27 | 400 | 112 |
| HL    | 31 | 243 | 127 |
| LHL   | 9  | 276 | 204 |
| HLH   | 0  | 6   | 22  |
| LHLH  | 0  | 3   | 13  |
| HLHL  | 0  | 11  | 12  |
| LHLHL | 0  | 1   | 10  |
|       |    |     |     |

Black indicates a melody licensed in the original AP analysis

Red indicates melody not predicted

#### Tone melodies in the lexicon

- Could add more melodies to the original AP account.
  - H L LH HL LHL HLH LHLH HLHL LHLHL
- But: the AP account still misses the target on melody complexity and on tone alignment



#### Tone melody complexity

- Leben states: "By regarding the tone pattern as phonologically separate from the segments in these words, we capture the fact that a given pattern can occur regardless of how many syllables a word has" [Leben 1978:186]
- But: the corpus also reveals that the longer the word, the more likely a complex melody
- The independence of melodies in the original AP account does not predict this

## Tone melody complexity

· Word length correlates with melody complexity



## Tone melody complexity

 Word length correlates with melody complexity more than would be expected in an AP approach



#### Tone melody complexity

 Word length correlates with melody complexity more than would be expected in an AP approach



#### **Tone alignment**

- Mende has melodies beyond than the 5 canonical ones (Dwyer 1978)
- Melody complexity is correlated with word length
- The alignment of melody tones frequently violates the universal conventions (Dwyer 1978)....



## **Tone alignment**

- ... forcing exceptional rules and underlying representations (Leben 1978)
- New association convention: a final H links to the final TBU
- · Some H tones are exceptionally linked in UR



H tones linked in UR to syllables where Association Conventions wouldn't link them

#### **Tone alignment**

- ... forcing exceptional rules and underlying representations (Leben 1978)
- New association convention: a final H links to the final TBU
- Some H tones are exceptionally linked in UR



New, Mende-specific Association Convention links final H to final TBU

#### **Tone alignment**

- ... forcing exceptional rules and underlying representations (Leben 1978)
- · New association convention: a final H links to the final TBU
- · Some H tones are exceptionally linked in UR



Universal Association Conventions do the rest of the work

#### **Tone alignment**

• But the issue of unpredictable tone alignment goes beyond just these examples (e.g., Dwyer 1978, Conteh et al. 1983)



#### A fresh look at tone

- Goal: instead of tone melodies and tone assignment rules, govern tone patterns via a set of correspondence constraints
- These constraints involve proximity and similarity
- Claim: the resulting model better predicts the observed surface tone patterns in the lexicon, compared to the AP tone melody model



#### **ABC**

- Agreement by Correspondence (ABC) originally developed for long distance consonant agreement, but since extended to vowel harmony and other local harmonies.
- ABC's purview: interactions between syntagmatic units.
- Key claim of ABC: units which are both sufficiently similar and sufficiently close to one another will correspond and thus interact.
  - Correspondence between elements which are similar yet not identical is unstable.
  - Assimilation and dissimilation are repairs for unstable correspondence.

## **Q-theory**

Key claim of Q theory (cf. Steriade's 1993 Aperture Theory): each segment ('Q') is decomposed into a small number of sequenced, featurally uniform subsegments ('q')

$$\begin{array}{c} Q(q^1\,q^2\,q^3) \\ V(v^1\,v^2\,v^3) & C(c^1\,c^2\,c^3) \end{array}$$

#### The tone-bearing unit (TBU) in Q-theory

• Contour tones in Q theory:

- In Q theory, each q subsegment is featurally uniform
- "Contours" are Q's whose q's do not all agree tonally



# Tone in ABC+Q: correspondence under proximity and/or similarity

Corr-qq

q subsegments correspond & agree in tone

• CORR-[q::q]<sub>a</sub>

Adjacent q subsegments within a syllable correspond & agree in tone

• CORR- $[q_w::q_w]_\sigma$ 

Adjacent q subsegments within a nonfinal ('weak') syllable agree in tone

NB: Scaling of proximity and similarity is standard in ABC

#### Tone in ABC+Q

|                                                                          | $CORR-[q_w::q_w]_\sigma$ | Corr-q::q |
|--------------------------------------------------------------------------|--------------------------|-----------|
| $\Rightarrow$ a. L. $\widehat{HL}$ (= $I_xI_x$ . $h_yI_z$ )              |                          | 2         |
| b. LH.L (=l <sub>x</sub> h <sub>v</sub> .l <sub>z</sub> l <sub>z</sub> ) | W1                       | 2         |

- CORR constraints penalize any change of tone across consecutive q's
- The penalty is higher if the tone change takes place within a (nonfinal) syllable



# Tone in ABC+Q: correspondence penalized across syllables

• qq-Edge  $\sigma$ 

Adjacent q subsegments should not correspond across a syllable boundary

|      |                                                  |     | qq-EDGE | Corr-               | CORR- |
|------|--------------------------------------------------|-----|---------|---------------------|-------|
|      |                                                  |     | σ       | $[q_w::q_w]_\sigma$ | q::q  |
| ☞ a. | $L.\widehat{HL} (=l_xl_x.h_yl_z)$                | 204 |         |                     | 2     |
| b.   | $\widehat{LH}.L (=l_xh_y.l_zl_z)$                | 64  |         | 1                   | 2     |
| C.   | $\widehat{LH}.\widehat{HL} (=l_x h_y . h_y l_z)$ | 8   | W1      | 1                   | 2     |

On Edge constraints, see Bennett 2013

# Resulting prediction: tone melody complexity, # of syllables should correlate

|      | 0.0                                                      | freq    | qq-EDGE             | Corr-               | Corr- |
|------|----------------------------------------------------------|---------|---------------------|---------------------|-------|
| σσ   |                                                          | σ       | $[q_w::q_w]_\sigma$ | q::q                |       |
| ☞ a. | $L.H (=l_x l_x .h_y h_y)$                                | 380     |                     |                     | 1     |
| b.   | $L.L (= l_x l_{x,y} \cdot l_{y,z} l_z)$                  | 251     | W1                  |                     | L     |
|      | freq                                                     | qq-EDGE | Corr-               | Corr-               |       |
|      | σσσ                                                      |         | σ                   | $[q_w::q_w]_\sigma$ | q::q  |
| ☞ a. | L.H.L $(=l_x l_x .h_y h_y .l_z l_z)$                     | 142     |                     |                     | 2     |
| b.   | L.L.H (= $l_x l_{x,y} \cdot l_{y,z} l_z h_a h_a$ )       | 63      | W1                  |                     | L1    |
| c.   | L.H.H (= $l_x l_x \cdot h_y h_{y,z} \cdot h_{z,a} h_a$ ) | 40      | W1                  |                     | L1    |
| d.   | L.L.L (= $l_x l_{x,y} . l_{y,z} l_{z,a} . l_{a,b} l_b$ ) | 25      | W2                  |                     | L     |
| e.   | $\widehat{LH}$ .L.H (= $l_x h_y . l_z l_z . h_a h_a$ )   | 12      |                     | W1                  | 3     |
| 18   |                                                          |         |                     |                     |       |









## **Comparing analyses**

- Maximum Entropy Harmonic Grammar (MaxEnt) models (Goldwater & Johnson 2003; Wilson 2006; et seq.):
  - ABC+Q
  - AP
- fitted using maximum likelihood estimation in the MaxEnt Grammar Tool (Hayes et al. 2009).

### **Comparing analyses**

- Input: number of syllables per word
- Output candidates: possible combinations of surface tone patterns

| Input | Candidates |        |                                         |
|-------|------------|--------|-----------------------------------------|
| σσσ   | H.H.H      | L.H.L  | HL.HL.HL                                |
|       | L.L.L      | H.L.H  | HL.HL.L                                 |
|       | H.H.HL     | L.L.LH | HL.HL.H                                 |
|       | H.H.L      | L.L.H  | HL.L.HL                                 |
|       | H.HL.L     | L.LH.H | HL.H.HL                                 |
|       | H.L.L      | L.H.H  | L.HL.HL                                 |
|       | HL.L.L     | LH.H.H | etc                                     |
|       |            |        | A 27 × 27 × 27 × 27 × 27 × 27 × 27 × 27 |

## **Comparing analyses**

 MaxEnt ranks probabilities (i.e., comparative grammaticality) of outcome candidates in variable data.

$$\Pr(x) = \frac{\exp(-\mathcal{H}(x))}{\sum_{y \in \Omega} \exp(-\mathcal{H}(y))},$$

where x = output candidate,  $\mathcal{H}$  = harmony score of a given candidate ( $\mathbf{w} \cdot \mathbf{C}$ ), and y = possible output candidate in the entire candidate set  $\Omega$  for a given input.















## **Alignment**

- Observed:
  - L.L.H, H.H.L are more frequent than L.H.H, H.L.L.
     10.06, 9.27%
     6.39, 6.07%
- AP analysis doesn't predict this:
  - Universal L → R association convention predicts the opposite.
  - Leben posited special rule + underlyingly linked tones to get L.L.H versus L.H.H, but these were supposed to be exceptional (and less frequent).
  - Cross-linguistically, tones tend to be R-aligned, rather than L-aligned (Cahill 2007).

## Alignment

- Observed:
  - L.L.H, H.H.L are more frequent than L.H.H, H.L.L.
     10.06, 9.27%
     6.39, 6.07%
- ABC+Q analysis doesn't predict any alignment differences (for now).
  - Delayed peak/transition likely arise from perceptual issues of tone
  - i.e., preferred site for tonal transitions might be as close to the final syllable boundary as possible.

## H tone overattestation

- Models don't quite capture the full extent of the overattestation of level H surface patterns.
  - Potentially a multiplicative effect of Have H at each domain (word, syllable, segment).
  - Or a compounded effect licensed by the dispreference for H tones with intervening Ls.















#### Conclusion

- Examine surface tone melody patterns in classic "melody tone" language: Mende.
- Capture tone melody facts without recourse to representational mechanisms of AP.
- Proposed alternative: surface-oriented, correspondence-driven optimization in ABC+Q.
  - Based on general (potentially phonetically-grounded) properties of similarity and proximity interaction.
     ⇒ ABC
  - With representational "null hypothesis".⇒ +Q

#### Conclusion

- Stochastic ABC+Q analysis predicts both lexical distribution *and* surface tone melody patterns.
- No need to a priori limit the melodic inventory.

   ⇒ Melody inventory is emergent from the grammar.
- In line with OT goal of a united analysis of morpheme structure constraints and phonological alternations.
- Melody inventory ≈ morpheme structure constraints

#### Conclusion

- ABC+Q does not need to make overt reference to melodic units.
- AP needs to reference contours and melodies as units, even though they're not supposed to be units.

#### Contours

- \*CONTOUR achieved via CORR-q::q, where close proximity begets tone agreement.
- COINCIDE(contour) achieved via CORR-[q<sub>w</sub>::q<sub>w</sub>]<sub>o</sub>, where close proximity within weaker prosodic positions begets tone agreement (i.e., less contrast).

#### Conclusion

- ABC+Q does not need to make overt reference to melodic units.
- AP needs to reference contours and melodies as units, even though they're not supposed to be units.

#### Melodies

- \*HLH/\*TROUGH achieved via qq-Limiter constraints (q[H]q[H]-qADJ)
- Parallels in the segmental domain (e.g., Bennett 2013)
- Provides a united analysis of tone plateauing (see Shih & Inkelas, in prep)
- Similar subphonemic agreement work (e.g., Lionnet 2014)

### Conclusion

- In ABC+Q:
  - similarity- and proximity-driven tone agreement captures contour and melody behaviors (contour, trough avoidance)
  - similarity- and proximity-driven tone disagreement captures scaling of melodic complexity with increasing number of syllables in words.
  - ⇒ Single mechanism of surface correspondence underlies both effects.

