

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

PERIODICAL SHELVES

SCIENCE SENTER LIDRARY

GOVERNMENT DOCUMENTS SOCIAL SCIENCES PROGRAM HARVARD COLLEGE LIBRARY (find

ASTRONOMICAL PAPERS

PREPARED FOR THE USE OF THE

AMERICAN EPHEMERIS AND NAUTICAL ALMANAC

PRINTED BY AUTHORITY OF THE HONORABLE THE SECRETARY OF THE NAVY

VOL. IX, PART I

RESEARCHES ON THE MOTION OF THE MOON AND RELATED ASTRONOMICAL ELEMENTS BASED ON OBSERVATIONS EXTENDING FROM THE ERA OF THE BABYLONIANS UNTIL A. D. 1908

WASHINGTON
GOVERNMENT PRINTING OFFICE
1912

Darwind October Library
100 21 1913
100 100 100

RESEARCHES ON THE MOTION OF THE MOON

BY SIMON NEWCOMB.

PART II.

THE MEAN MOTION OF THE MOON AND OTHER ASTRONOMICAL ELEMENTS DERIVED FROM OBSERVATIONS OF ECLIPSES AND OCCULTATIONS EXTENDING FROM THE PERIOD OF THE BABYLONIANS UNTIL A. D. 1908.

PREFATORY NOTE.

The present work is the last of a series of papers on the Moon by Professor Newcomb, extending over a period of 40 years. It was completed during his last illness and the copy for the printer was finished only a month before his death. In putting this work through the press Dr. F. E. Ross, who was associated with Professor Newcomb throughout its entire preparation, has been freely consulted with the view of overcoming as far as possible the disadvantage in publishing such a work without the assistance of the author. It would doubtless have been changed in many minor points at least if it had been possible for him to have seen the proof.

The arduous work of proof reading has been performed by Mr. H. G. Hodgkins and Mr. Arthur Snow of this office.

W. S. EICHELBERGER,

Professor of Mathematics, U. S. Navy,

Director Nautical Almanac.

NAUTICAL ALMANAC OFFICE, May, 1912.

3

PREFACE.

More than 30 years have elapsed since the publication of the author's Researches on the Motion of the Moon as an appendix to the Washington Observations for 1875. These researches were incomplete in being devoted almost entirely to observations before 1750. In the present work, which is a continuation of the former one, the discussion is brought down to the present time. As thus completed, the whole work may be described as a discussion of ancient and mediæval eclipses of the sun and moon, and of occultations of stars by the moon observed from 1627 to the present time, with the general purpose of studying those fluctuations in the moon's motion which are not represented by existing theory. The work also includes a determination of some of the fundamental astronomical elements from the occultations, which may prove more accurate than any afforded by the older methods.

The most important fact brought out by this and other researches of the author on this subject, and by a comparison with the theoretical researches of other investigators, especially of Prof. Ernest W. Brown, is that the moon's mean motion is subject to fluctuations which are not only unrepresented by existing theory, but for which it seems difficult to assign any sufficient physical cause. That fluctuations exist has been known from the time of Laplace, but the question whether they could be represented by gravitational theory was long a mooted one. Hansen supposed that the inequalities were completely explained by his discovery of two terms of long period, due to the action of Venus on the moon. His tables of the moon, which were published in 1857, embodied these inequalities, and were supposed to represent both ancient and modern observations in a satisfactory way.

The evidence adduced by Hansen for the supposed agreement was limited to the period 1750 to 1855. During this period observations were so well represented by the tables that Hansen's view seemed well established. But from 1862 to 1869 the tables deviated from observation in such an unexpected way that the author undertook a comparison of their results with observations before The only available observations which seemed worth using were occultations of stars by the moon, and solar eclipses. He found that the deviation from observation was unexpectedly wide, showing large fluctuations in the moon's mean motion not represented by Hansen's tables. As the most recent observations showed that the moon was falling behind its tabular place at a rate of more than half a second annually, the author entered upon two lines of investigation: one, to find whether any unknown inequalities of long period could be derived from theory; the other, what inequalities were shown to exist by the totality of available observations. To prosecute this last inquiry it became necessary to work up all the earlier available observations, and to ascertain what light would be thrown on the subject by ancient records of solar and lunar eclipses. For this purpose a search was made into the manuscript records of several European observatories, especially that of Paris, with a view of finding unpublished observations of occultations. It was found that such observations had been made from 1672 until about 1740 of such precision that by careful discussion it was possible to trace out the mean motion of the moon in longitude with a precision fairly comparable with that reached by meridian observations during the first half of the nineteenth century.

The determination of the secular acceleration being a necessary part of the work, a discussion of ancient solar eclipses was also undertaken. Great stress having been laid on real or supposed records of such eclipses found in the works of ancient historians, the question arose as to their availability for the purpose in question. As this subject is rediscussed in the present work, it will suffice to remark here that the records in question failed to inspire the author with any confidence that reliable conclusions could be derived from them. It appeared that the only ancient data that could be safely used for the determination of the secular acceleration were the eclipses of the moon recorded by Ptolemy in the Almagest, and a number of solar and lunar eclipses observed by Arabian astronomers during the ninth and tenth centuries.

Combining these with the most recent observations, it was found that the apparent secular acceleration was little more than half that which had generally been adopted, and little greater than that derived from modern theory. This result implied a smaller tidal retardation of the earth's rotation than had been supposed probable. The subject thus opened up has been widely discussed from various points of view by contemporary astronomers. Their conclusions are, so far as it seems necessary to the purpose of the present work, reviewed and discussed in the following chapters.

One conclusion of the former work was that at least one fluctuation having a period of nearly three centuries, and a coefficient exceeding 10", still existed in the moon's mean motion, which was not explained by theory. The author's efforts to find a term in the theory which would represent this fluctuation have appeared in two memoirs. The first was published in 1896 as Volume V, Part III, of Astronomical Papers of the American Ephemeris; the other was published by the Carnegie Institution as No. 72 of its publications. Of these works it is only necessary to say that no such term has been found, and that it is difficult to see any possibility that it can exist in gravitational theory. Yet more complete and exhaustive is the recent work of Brown, which seems to establish the nonexistence of such a term.

The first step in the explanation of an anomalous phenomenon is a precise knowledge of its character. The main purpose of the present work is, therefore, to show with all the precision of which the observations admit, what unexplained fluctuations the mean motion of the moon has actually undergone.

The mass of material on which the work is based is so large, and the computations have proved so prolix and varied, that a full presentation of the processes would be difficult for any student of the subject to follow. It has therefore been deemed best to limit the published work to those steps and results which will best facilitate its criticism, revision, and use by the future investigator. It can scarcely be supposed that anyone, even should he reconstruct the entire work, would repeat the author's study of each individual observation. A systematic and complete list of the original sources is therefore not given, and the published steps of computation have been reduced to those best adapted to test their correctness and facilitate such revision as may be found necessary. An attempt has been made to so plan and arrange the chapters that the student of the work shall find it as easy as possible to trace out and revise any of its processes for himself in his own way. The analytic table of contents has been arranged with this end in view. To avoid the necessity of going over this table in each special case, it may be remarked that matters relating to the purpose of the work and the reasons for the form which it has assumed will generally be found in the introductory chapter under the appropriate head for each. The subsequent chapters are so planned and arranged that each shall be, so far as is possible, complete in itself. Detailed contents of each will be found at its beginning whenever the work of examination would thus be facilitated. The author emphasizes this policy owing to the difficulty he often finds in looking up special points in the works of his fellow investigators, not to say his own. It is too often necessary to go over a large portion of a work to find some special point, such as the meaning of a symbol, the character of a result, or the nature of a process.

PREFACE. 7

It is expected that the computations will all be arranged, collected, and preserved at the Naval Observatory in the archives of the Nautical Almanac Office in such form that the student of the subject who wishes to see the original computations can readily find those pertaining to any of the chapters. For the most part the papers are divided into six classes, which were originally kept in as many cases designed for the purpose. These classes are:

- (A) Matters pertaining to the reduction of the observations so as to obtain the local and Greenwich mean time of each. This class is largely composed of copies of observations either supplied by the observers or obtained from printed data; of the time reductions for the older observations; matters pertaining to the geographical positions of the stations; and miscellaneous information generally as to the work.
- (B) The computations and copies of tabular geocentric positions of the moon. Most of these tabular positions were computed in bound books on ruled and printed forms, but many were made on forms prepared by the computer.
- (C) Matters pertaining to the positions of the occulted stars; especially their longitudes and latitudes.
- (D) Reductions for parallax and computations of the differential coefficients, both of which are made on the same forms.
 - (E) Tabular summary of the reductions of class A.
- (F) Final revision of the coefficients, solution of the equations of condition, and discussion of the results generally.

As a general rule, computations pertaining to the corrections have been placed in the same class with those of the quantities corrected. There is a large and quite miscellaneous mass of computations for correcting the parallaxes, observed time, etc. In the final computations the various parallactic and miscellaneous corrections were computed together and the results combined.

As the author has already intimated, he can not conceive that it will be worth while for anyone to attempt the revision or even the examination of this great mass of computations in detail. In the reconstruction of the work most of the numbers, especially those pertaining to the equations of condition, can be used without revision. The corrections to the tabular longitudes, and parallactic corrections, if the work is revised, should be recomputed *ab initio*.

The great number of computers employed on the work from time to time and the period of 30 years through which it extended, during which supposedly improved values of the astronomical elements became available, have resulted in a great portion of the correctional work being done several times over with continually improved numbers. The author does not disguise the inevitable advantage which the future investigator of the subject will enjoy in being able to start with definitive provisional data and carry it through every branch of the work on a uniform system.

As to the history of the work itself, it may be remarked that at the time of publishing the former researches the author had in view the speedy continuance of the discussion from 1750 till the present time. The great mass of the occultations observed during this period were worked up under his direction in the office of the Nautical Almanac during the years 1878–1888. Owing to the necessity of completing the planetary tables, the work had then to be laid aside. The official retirement of the author from active service in 1897 threw difficulties in the way of its continuance as an official work. In 1903, through the agency of the Carnegie Institution, an arrangement was made with the Navy Department for its continuance under the auspices of that institution, to which the unfinished work was turned over from the archives of the Nautical Almanac Office and of the Naval Observatory.

During the 15 years which had elapsed since the cessation of the work, much better determinations of the fundamental elements of reduction had become available, and it was found that important corrections were sometimes necessary in consequence. The introduction of these corrections was no easy matter, and was made more laborious from the fact that, even in the

original work, some of the elements had been changed as supposedly improved values became available. Most important among these are the constants pertaining to the ellipticity of the earth and the parallax of the moon. Of the difficulties incident to the frequent changes of computers, to the preparation of formulæ for their use, and to the avoidance of accidental and systematic errors of computation, it is unnecessary to speak. It will suffice to remark that the details of the work have been so arranged as to make the discovery of any errors thus arising and still uncorrected as easy as possible.

Acknowledgment is due the Carnegie Institution for the very liberal way in which it has made the grants necessary for the employment of computers, and for clerical assistance in the work. On the official side it is worthy of record that the great mass of the earlier computations was made by young officers of the Navy, whose training well fitted them for such work.

In the completion of the work the author takes pleasure in acknowledging the very important services rendered by Dr. Frank E. Ross, who has acted both as computer and superintendent of computations, and whose care and efficiency in the performance of these duties have contributed greatly to facilitate the completion of the work and insure its correctness. As the author is unable to revise the proof himself, the task of seeing the work through the press must devolve upon others, probably on Dr. Ross.

The author's thanks are also due to Prof. E. W. Brown, who has made a thorough and critical examination of the entire work before it was passed for the press, resulting in a number of minor emendations.

WASHINGTON, JUNE 15, 1909.

Analysis of the Contents.

CHAPTER	I.—Introduction 1. The respective advantages and drawbacks of occultations and meridian observations of the moon in right ascension. 2. Advantages of occultations in elements involving the moon's declination. 3. Determination of various astronomical elements by occultations—Systematic errors and drawbacks incident to the occultations. 4. General arrangement of the work described.	13
Chapter	II.—ADOPTED METHODS AND FORMULÆ OF REDUCTION	17
CHAPTER	III.—REDUCTION OF HANSEN'S TABLES TO THE PROVISIONALLY ACCEPTED THEORY:	
Sect	14. Criterion for dropping or retaining a correction. 15. Secular corrections and those of long period—Table of these corrections. 16. Corrections of mean period—Especially those depending on the longitude of the node. 17. The Jovian evection and other terms of mean period. 18. Planetary terms of short period. 19. Solar terms of short period—Especially parallactic terms. 20. Annual equation, evection, and variation. 21. Miscellaneous terms. 22. Correction of the perigee and eccentricity.	28
Sect	TION II.—Corrections to the latitude, semidiameter, and parallax	38
Sect	TION III.—Recapitulation of theoretical corrections to the geocentric position of the moon given by	
H	ansen's tables	45
Chapter	IV.—DATA RELATING TO STATIONS AND ORIGINAL OBSERVATIONS	49
CHAPTER	V.—Positions of the Moon from Hansen's Tables with Reduction of the Longitudes to	
ТН	33. Methods of forming the argument—Modification in the use of Hansen's tables. 34. Explanation of the forms of computation—Example of computation. 35. Tabular places from Hansen's tables with their reduction to provisional theory.	52
CHAPTER	VI.—Positions of the Occulted Stars	76
CHAPTER	VII.—TABLE OF THE POSITION ANGLES USED IN COMPUTING THE COEFFICIENTS OF THE EQUATIONS	
OF	Condition	85
CHAPTER	VIII.—EQUATIONS OF CONDITION, 1672-1747	

CHAPTER IX.—EQUATIONS OF CONDITION, 1753-1908:	Page.
Section I.—Coefficients of the equations of condition, 1753-1908	132
SECTION II.—Mean longitudes for the period 1753-1908	193
SECTION III.—Elements of the moon's mean longitude	196
CHAPTER X.—DISCUSSION OF THE MOON'S MEAN MOTION IN LONGITUDE	204
CHAPTER XI.—DISCUSSION OF THE REMAINING ELEMENTS WHICH CAN BE DETERMINED FROM THE	
Occultations:	
SECTION I.—Preliminary solution	212
SECTION II.—Final shaping of the results	220
SECTION III.—Definitive values of the lunar elements as derived from this investigation	223
CHAPTER XII.—DISCUSSION OF NARRATIVES OF ANCIENT ECLIPSES OF THE SUN:	
SECTION I.—The historical narratives. 57. Consideration of the reliability of such narratives. 58. (A) Babylonian eclipse of -1062, June 19—(B) Eclipse of Nineveh -762, June 4—(C) Eclipse of Archilochus -647, April—(D) Eclipse of Thales -584, May 28—(E) Eclipse of Athens -430, August 3—F) Eclipse of Agathocles -309, August 14—(G) Eclipse of Alexandria and the Hellespont -128, November 20—(H) Eclipse of Utica 197, June 3. 59. Other supposed total eclipses described by the ancient historians.	228
SECTION II.—Discussion of Oppolzer's tables of eclipses	234
SECTION III.—Computation of eclipses from Oppolzer's tables	239
CHAPTER XIII.—CONCLUDING REMARKS	247

Bibliography.

The following is a list, perhaps incomplete, of the author's writings on the lunar theory, especially the development of the enigmatical fluctuations in the moon's mean motion. He would have been glad to make a complete bibliography by all the writers on the subject, but he believes that scarcely anyone besides himself has written at length on this particular branch of the lunar theory. Such bibliography should include the investigations of Airy, especially his reductions and discussions of the Greenwich lunar observations from 1753 until 1850. The original material for this work is found in the publications of the Royal Observatory. Several of Airy's papers discussing the results are found in the Philosophical Transactions and in the Memoirs and the Monthly Notices of the Royal Astronomical Society.

The author first called attention to the inconsistencies between theory and observation about the year 1869. Since then his papers on the subject have been the following:

- Considerations on the apparent inequalities of long period in the mean motion of the moon. American Journal of Science, Series II, Vol. L, pp. 183-194, September, 1870. (Read before the National Academy, April, 1870.)
- 2. On a hitherto unnoticed apparent inequality in the longitude of the moon. Monthly Notices, R. A. S., Vol. XXXVI, pp. 358-361, June, 1876.
- 3. Papers published by the Commission on the Transit of Venus. (This is the first of the author's series of researches on the elements of the moon's motion. That it appears in connection with the transit of Venus arises from its being undertaken in order to correct the tabular longitude of the moon for all known sources of error in order to determine the longitudes of the stations occupied for the observations of the transit.)
- 4. Note on the new inequalities in the moon's longitude, pointed out by Mr. Neison. Monthly Notices, R. A. S., Vol. XXXVII, pp. 428-430, June, 1877.
- 5. On the mean motion of the moon. American Journal of Science, Series III, Vol. XIV, pp. 401-410, November, 1877. (This is an abstract of the next paper.) Also a summary in the English Mechanic, Vol. XXVI, p. 400, January, 1878.
- 6. Researches on the motion of the moon made at the United States Naval Observatory, Washington. Part I: Reduction and discussion of observations of the moon before 1750. Washington, 1878. (Appendix 2, Washington Observations, 1875.)
- 7. Note on the correction to the mean longitude of Hansen's lunar tables. Monthly Notices, R. A. S., Vol. XL, pp. 81–82, December, 1879.
- 8. A transformation of Hansen's lunar theory compared with the theory of Delaunay, by Simon Newcomb, aided by John Meier. Astronomical Papers, Vol. I, Part II., pp. 57–107, 1882.
- 9. The apparent inequality in the mean motion of the moon. Letter dated Neuchatel, Switzerland, July 11, 1883. The Observatory, London, Vol. VI, pp. 243-244, August, 1883.
- 10. Remarks on published corrections to Hansen's Lunar Tables. Astronomische Nachrichten, Bd. 107, s. 269-270, December 4, 1883.

- 11. Theory of the inequalities in the motion of the moon produced by the action of the planets. Astronomical Papers, Vol. V, Part III, pp. 97-295, 1894. (The work developed in this paper was actually carried through more than 20 years before its publication, which was delayed in the hope that the author would be able to put the method into a satisfactory practical form. It has since been proved that as a general method it can not be made practical. But many of its formulæ and developments seem to be of use in the lunar theory; at least such is the opinion professed by Prof. E. W. Brown.)
- 12. On the use of statements of ancient solar eclipses for correcting the elements of the moon's motion, with special reference to Professor Ginzel's "Specialler Kanon der Finsternisse." Astronomische Nachrichten, Bd. 154, s. 197-202, January 25, 1901. Dated Washington, December 5, 1900.
- 13. On the desirableness of a reinvestigation of the problems growing out of the mean motion of the moon. Monthly Notices, R. A. S., Vol. LXIII, 316-324, March, 1903. (This paper comprises a general résumé of the observations and investigations which show the reality of unexplained fluctuations of remarkable magnitude in the mean motion of the moon. It is believed that it was due to the appearance of this paper that the subject of inequalities produced by the action of the planets on the moon was proposed as an Adams prize essay. This prize was awarded to Prof. E. W. Brown Feb. 8, 1907.)
- 14. Investigation of inequalities in the motion of the moon produced by the action of the planets. Publication No. 72 of the Carnegie Institution of Washington, dated June, 1907. Hereafter referred to as "Action II."
- 15. La Théorie du Mouvement de la Lune, son histoire et son état actuel. Address before the International Congress of Mathematicians in Rome, April, 1908. Atti del IV Congresso Internazionale dei Matematici, Roma, 6-11 Aprile, 1908, Vol. I, pp. 135-143. (This is a discussion of the whole subject more complete than that published in 1903.)
- 16. Fluctuations in the moon's mean motion. Monthly Notices, R. A. S., Vol. LXIX, pp. 164-169, January, 1909. Dated Washington, December 11, 1908. (This is an abstract of the present work.)
- 17. Comparison of ancient eclipses of the sun with modern elements of the moon's motion. Monthly Notices, R. A. S., Vol. LXIX, pp. 460-467, March, 1909. (The basis of this paper is also formed by the results of the present work. Its purpose is to decide whether the ancient eclipses can be used for correcting the lunar elements, a point on which the author has generally differed from his fellow investigators.)

RESEARCHES ON THE MOTION OF THE MOON, PART II.

CHAPTER I.

INTRODUCTION.

1. We begin by presenting such statements of the purpose, methods, and contents of the present work as shall facilitate the mastery and criticism of its processes and conclusions. Taken in connection with the "Researches" of 1878, of which it is a continuation, the purpose of the work may be defined as primarily a determination of the moon's mean motion and its fluctuations of long period, by means of all available material not previously worked up by others. Practically the material is limited to eclipses and occultations. The reason for omitting meridian observations is twofold. The Greenwich observations of the last half century have been very fully discussed and their results worked out by Mr. Cowell, under the auspices of the Royal Observatory itself. The results have appeared in recent publications of the Royal Astronomical Society. The older Greenwich observations require to be reduced with modern data before they can be of much use. They are therefore practically unavailable at present.

The large difference known to exist between the personal equation in observing the limb of the sun or moon and a star renders meridian observations less suitable than occultations for detecting changes in the moon's mean motion. The result of this difference is that during periods of several consecutive years the mean longitude of the moon derived from meridian observations may be appreciably in error. Observations of occultations are comparatively free from this source of error, and are therefore most suitable for determining fluctuations of long period in the mean motion. Moreover, as this class of observations extends back more than 80 years before meridian observations are available, they afford a series of fairly uniform results extending through more than 230 years.

On the other hand, inequalities of short period can as a general rule be better determined from the meridian observations than from occultations. In this statement must be included the determination of the eccentricity and of the longitude of the perigee, taking for the latter its value at any recent epoch. But the motion of the perigee can not thus be well determined until the Greenwich meridian observations from 1750 to 1830 or 1840 are better reduced and compared with the tables than they have yet been. Observations of occultations being available since 1625, they are now essential in the determination, but may still lose importance when the data of meridian observations are complete. In the work already alluded to, Mr. Cowell has discussed the Greenwich observations of the last half century so completely that his results for the inequalities of short period seem to be definitive so far as present requirements are concerned. They still remain to be compared with Brown's theoretical determinations. Should any discrepancy be found too large to be accounted for by known causes, additional investigation may be required.

An exception to this is the parallactic inequality. Great interest attaches to this inequality because its accurate determination affords one of the most precise methods of determining the solar parallax. In this determination the numerical divisor of the inequality is nearly 15, so

that, possible theoretical uncertainty aside, the error of the parallax will be little more than one-fifteenth that of the inequality. It follows that if the latter can be determined from observations within the limits $\pm 0^{\prime\prime}.15$, the solar parallax will be determined within $\pm 0^{\prime\prime}.01$. But, in the case of the meridian observations, it is impossible to free the true value of the inequality from systematic errors varying with the position of the moon relative to the sun. From this cause it can hardly be expected that any such determination will be accurate to the degree mentioned. But, for the most part, observations of occultations are free from at least the larger part of this systematic error. The difficulty of dealing with them is, however, such that we can not in advance define the degree of precision, but we have good reason to believe that the result will be markedly better than that which can be derived from meridian observations.

- 2. The preceding remarks apply to the inequalities of the moon's motion in right ascension or longitude. In the case of the declination, meridian observations of the ordinary class are subject to a serious drawback of that troublesome character that may be called semi-systematic. This arises from the motion of the moon in declination. Although we habitually speak and think of an observer as observing the image of a star, or placing the thread of his instrument tangent to the limb of the moon at a definite moment of time, or when the object is in a definite position, such is practically never the case. Time is required for all mental operations, and the setting of a thread can never be the work of a moment. Practically it requires the work of a number of seconds and the time will be longer the worse the image. In the case of a star or planet, or even of the sun, this is no drawback, because the accurate setting remains practically unchanged during a period of a number of seconds, and the skilled observer can arrange his setting to correspond to some mean and well determined moment. But, in the case of the moon, unless near the points of maximum or minimum declination, the motion in declination while the observer is deciding upon the tangency may be appreciable. It will commonly amount to an entire second near the equator. Under such circumstances personal error of a systematic character is unavoidable. system of setting the thread in a fixed position and observing the time of transit of the limb over it might do away with the error in great part. But I do not think that this device has ever been adopted. Observations of occultations are completely free from this source of error and are therefore best adapted to determine the node and inclination of the lunar orbit.
- 3. A weighty consideration which offered to the author a strong inducement to undertake and carry through a work so onerous is that occultations afford a method of determining certain astronomical elements pertaining to the motion of the earth with possibly greater precision than does any other method. Making abstraction of the inequality in the moon's latitude arising from the oblateness of the earth, the mean orbit of the moon coincides with the ecliptic. The determination of the position of the latter in the usual direct way by observations of the sun is subject to large systematic errors arising from numerous causes, known and unknown, incident to diurnal changes of temperature. In reducing an observation of the sun the refraction is determined from the external temperature in the same way as in the case of a star at night. But owing to the very different law of temperature in the very different strata of air by day and by night, the same formulæ can not hold for the two cases, and the difference continually increases as we pass from the zenith to the horizon. In these different laws of temperature must be included the difference in the temperature inside and outside the observing room, and even inside and outside the tube of the instrument—we might say even the difference between the lower side and the upper side of the column of air in the tube itself, which is found to cause a quite measurable refraction within the tube. To this cause must be added others, the effect of which can not be determined, due to the action of the sun on the instrument and to the systematic difference, never admitting of determination, between the personal equation for the sun and for a star. An example of the uncertainty thus arising is seen in the very discordant results for the position of the ecliptic as determined at

INTRODUCTION. 15

Greenwich year after year, where the constancy of the conditions is such that we should suppose the results to be nearly the same, how much soever they might be affected by systematic error.

Observations of occultations are practically free from this source of systematic error. It is quite true that the position of the ecliptic determined from them will be affected by whatever corresponding systematic error may affect the positions of the stars. But, from the general uniformity of the conditions under which star determinations are made, the systematic errors are much less than those liable to affect observations of the sun. For this reason the present work includes the determination from occultations not only of the lunar node and inclination, but the position and motion of the equinox, or the common correction to the absolute right ascension of the stars, and the secular variation of the obliquity of the ecliptic. The obliquity itself can not be reliably determined owing to the uncertainty of the effect of the earth's oblateness.

In setting forth the advantages of occultations for the determinations in question, the writer does not desire to ignore a very serious drawback the importance of which can not be estimated except by a careful study of the finished work. This is the large probable error of the best observations as shown by the discordance between observations at different places and times. The main source of this error is probably to be found in the inequalities of the lunar surface. So far as purely fortuitous this error may be regarded as accidental and therefore admitting of almost complete elimination by increasing the number of observations. In the present work this number is so great that, theoretically, the result should be satisfactory.

But a study of the distribution of the residual errors in magnitude shows that, in common with most astronomical observations, this distribution does not follow the normal law of error, both large and small errors being more frequent than they should be if the law were followed. This feature is doubtless largely due to defects in the practice of observers. Without great care the disappearance of a star in the glare surrounding the moon's bright limb is liable to be mistaken for an actual occultation. We must therefore expect an undue number of errors of the same sign in this class of occultations. In the case of emersions, even at the dark limb, the observer may fail to catch the star at its actual instantaneous reappearance, and it may happen that the only method of detecting an error may be by the discordance of the result. It must be admitted that a conscientious and careful observer ought rarely to be at fault in such case without knowing it; how far this holds can be determined only by a study of results.

It is a curious psychological fact, which I have observed through the whole series of observations, that when an observer is conscious of having noted an immersion too soon, or an emersion too late, his estimate of the error may safely be multiplied many times, perhaps ten times on the average.

A seemingly fair method of eliminating all this class of errors is by having an occultation at one and the same station observed independently by several observers, as is generally done at Greenwich. Yet, a comparison of final results may show that all systematic errors are not thus avoided. Unfortunately, there are few other observatories than Greenwich at which occultations are habitually noted by more than one observer.

General Arrangement of the Work.

4. It seems essential to the usefulness of the work to the future investigator that it should be so arranged as to facilitate its criticism and correction. One method of doing this is to present as fully as possible the various steps of computation.

In publishing the former work, the tabular data and steps of computation were given with some fullness in the form of tabular exhibits. In the original plan of the present work it was intended to adopt the same policy, but after some consideration the author judged that the publication of so large a mass of matter as the separate data for some 4,000 occultations would render

cumbrous the study of the work, and that scarcely any case would be likely to rise in which a future investigator would deem it worth while to repeat the reduction of any one occultation out of so large a mass.

The repeated corrections which had to be made from time to time in the work as constants were changed, improved methods devised, and correction after correction applied, must all result in increasing the probable error of the constant terms in the equations. If, therefore, the work is ultimately to be revised and reconstructed by the future investigator, his best course will not be to attempt its repetition, but to proceed de novo so far as the absolute terms of the equations of condition are concerned. This is especially true with the numerous corrections of all kinds which have to be applied to Hansen's tables. It is not meant by this statement that these tables can not be the basis of a revision, and that new provisional ones should be substituted. The view taken by the author is that it will be advantageous to substitute a new system of corrections to Hansen's tables for the one he has used, to decide upon the best constants of the geoid, and then to repeat the computation of the absolute terms of the equations. The labor of doing this, if carried through systematically, will be much less than that of revising the whole work.

These remarks apply only to the absolute terms of the equations. The coefficients of the conditional equations are, the author believes, sufficiently accurate for all future purposes, occasional accidental errors aside. He adds that it will not be necessary even to repeat the computation of the coefficients of the normal equations, especially as these have been so arranged as to facilitate any new combination that may be desirable.

CHAPTER II.

ADOPTED METHODS AND FORMULÆ OF REDUCTION.

5. The essential features of the process employed by the author to derive an equation of condition from an observed occultation are to be mentioned. What the observation gives is, that at a certain moment of time, the apparent angular distance between the moon's center and the position of the occulted star is equal to the moon's apparent angular semidiameter. The processes of utilizing such an observation for determining corrections to the elements of the moon's motion are the following:

For the observed Greenwich mean time the tabular apparent position of the moon's center, as seen from the point of observation, is to be computed from the tabular data. The apparent position of the star being also computed, the tabular distance between the latter and the center of the moon is determined. The comparison of this distance with the apparent semidiameter of the moon gives the error of the tabular place projected upon the line joining the center of the moon and the star. Expressing this error in terms of errors of the various elements, an equation of correction is formed.

The formulæ and methods of computation are derived in the Researches of 1878, and are recapitulated in the present paper in their proper connection so far as is necessary for the understanding of the numerical processes. The principal steps of computation are the following:

- (1) Computation of the geocentric spherical coordinates of the moon for the moment of observation expressed in Greenwich mean time. These are made originally from Hansen's tables or, since 1862, from the ephemeris given in the Nautical Almanac. (Generally from 1847 from the Nautical Almanac computations.)
- (2) Computation of the corresponding geocentric coordinates of the observer for the same moment.
- (3) With these relative coordinates of the moon and of the observer, the tabular apparent spherical coordinates of the former as seen by the latter are computed. Also the moon's semi-diameter.
- (4) Computation of the apparent position of the star. Before 1862 the coordinates of the moon and star are generally referred to the ecliptic; from and after that year to the equator.
- (5) Computation from these apparent coordinates of the tabular distance between the center of the moon and the star.
- (6) Computation of the differential coefficients by which the correction of the distance is expressed in terms of corrections to the various elements involved.

Reduction Using Ecliptic Coordinates.

For the period before 1862 it was found convenient in computing the moon's apparent position to reduce the coordinates of the observer upon the earth to the ecliptic, rather than to reduce the moon's ecliptic coordinates to the equator. This required that the position of the stars should be reduced from right ascension and declination to longitude and latitude. The labor of this transformation is partly compensated by the greater simplicity of the reductions to remote epochs, and to apparent place, when ecliptical coordinates are used. As occultations of the same star are often observed several times, the excess of labor is thus divided. It may be added that the computation of the coefficients for correcting the lunar elements is also simpler with ecliptical coordinates.

NOTE.—In the completion of the work at the Carnegie Institution use was made almost exclusively of the equatorial coordinates from Hansen's tables which are found in an appendix in the Monthly Notices, R. A. S., Vol. L.

Digitized by Google

The formulæ used in the reductions up to 1862 are derived with some fullness in the Researches of 1878. For convenience of reference they are here quoted:

6. Apparent place of the moon.—Put

r, l, b, the geocentric radius-vector, longitude, and latitude of the moon;

 ρ , λ , β , the corresponding coordinates of the observer;

r', l', b', the corresponding coordinates of the moon as seen by the observer;

$$R=\frac{r'}{r};$$

 π , the moon's equatorial horizontal parallax;

 ϵ , the obliquity of the ecliptic.

The values of λ and β are obtained from the observer's geocentric latitude and his local sidereal time by changing the right ascension and declination of his geocentric zenith into ecliptic longitude and latitude. Putting

 φ' , the observer's geocentric latitude;

 τ , his sidereal time expressed in arc;

we compute u and k' from the formulæ

$$k' \sin u = \rho \sin \varphi',$$

 $k' \cos u = \rho \cos \varphi' \sin \tau.$

Then $\rho \cos \beta$, $\rho \sin \beta$, and λ are given by

```
\rho \cos \beta \cos \lambda = \rho \cos \varphi' \cos \tau,
\rho \cos \beta \sin \lambda = k' \cos (u - \varepsilon) = \rho \cos \varphi' \cos \varepsilon \sin \tau + \rho \sin \varphi' \sin \varepsilon,
\rho \sin \beta = k' \sin (u - \varepsilon) = \rho \sin \varphi' \cos \varepsilon - \rho \cos \varphi' \sin \varepsilon \sin \tau.
```

In the Researches of 1878 Bessel's spheroid was adopted in the reductions for parallax. This series terminated with the year 1747. Afterwards when the work of reducing the observations since 1750 was undertaken, Clarke's determination of the figure of the earth had been published, and being supposed to supersede Bessel's, was temporarily adopted. A general revision of the constant was made by Listing, whose concluded result was a

Compression =
$$1 \div 288.48$$
,

which was also employed. Thus three values of the compression were adopted in the preliminary work.

In 1903, when the revision and completion of the work was undertaken, it was found that the derivation of the compression from geodetic measures as made by Clarke, and presumably by Listing, was unreliable, owing to the irregularities in the direction of gravity in various regions of the earth, and that Bessel's value which rested on pendulum observations was probably better than the others. The value $1 \div 298.26$ was communicated in writing by Professor Helmert as the most probable found up to 1903, and was therefore adopted as that to which all the results were to be reduced.

At the present time, 1908, the author would not be surprised should it ultimately be found that, after all, the Clarke value best expresses the actual compression of the geoid.

Having thus found the apparent coordinates of the observer, those of the moon may be derived by the equations:

$$R \cos b' \cos (l'-l) = \cos b - \rho \cos \beta \sin \pi \cos (l-\lambda),$$

 $R \cos b' \sin (l'-l) = \rho \cos \beta \sin \pi \sin (l-\lambda),$
 $R \sin b' = \sin b - \rho \sin \beta \sin \pi.$

a Neue geometrische und dynamische Constanten des Erdkörpers. Astronomische Nachrichten, Bd. 93, S. 318.

Knowing R, b', l'-l, and thence l', the apparent semidiameter of the moon, s', is found from the equation

$$\sin s' = \frac{k \sin \pi}{R},\tag{1}$$

k being the ratio of the diameter of the moon to that of the earth. The semidiameter, s', is so small that we may suppose it equal to its sine, making the equation for its determination, in seconds,

$$s' = \frac{[5.31443] k \sin \pi}{R}.$$
 (2)

The numerical value of k depends upon the adopted constant of lunar parallax, as well as upon the semidiameter of the moon. In the present work we have used

$$s_0 = 932''.58.$$

This with Hansen's constant of parallax gives

$$[5.31443] k = [4.74982].$$

But if, before the computation, we increase Hansen's parallax by 0".40, the logarithm is 4.74977. The value of k adopted in the original work was that of Oudemans, 0.27264. This gave

$$\log k = 9.43559, s' = \frac{[4.75002]}{R} \frac{\sin \pi}{N},$$
 (3)

the parallax being Hansen's.

7. Apparent place of the star.—In the original work published in 1878, and in the continuation carried on during the next few years, the right ascensions and declinations of the stars were reduced to the ecliptic with Hansen's obliquity, and the reduction to the equinox of observation was made with the Struve-Peters precession. In the revised work begun in 1903, the positions of the occulted stars were mostly taken from the Catalogue of Standard Stars of 1897, and the Catalogue of Zodiacal Stars published by the office of the American Ephemeris in 1905. The positions for 1900 were reduced to the ecliptic, using the new value of the obliquity:

$$\varepsilon = 23^{\circ} \ 27' \ 8''.26.$$

For the sake of convenient comparison with the older work, the ecliptical coordinates were then reduced to 1850.0, as the standard epoch.

We used the notation

L, the longitude of the star;

B, its latitude.

The precessional motions and the formulæ of reduction to apparent place are approximately those of the author as developed in his Compendium of Spherical Astronomy, §149. They are as follows, unity of time being the star century and the epoch 1850.0:

$$\frac{dL}{dt} = 5024''.53 + \mu_1 - 47''.14 \tan B \cos (L + 6^{\circ} 30'),$$

$$\frac{d^2L}{dt^2} = 2''.23 + 0''.40 \tan B \sin (L + 16^{\circ}),$$

$$\frac{dB}{dt} = 47''.14 \sin (L + 6^{\circ} 30') + \mu_2,$$

$$\frac{d^2B}{dt^2} = 0''.40 \cos (L + 16^{\circ}).$$
(4)

Reduction for aberration:

$$\Delta L = -20^{\circ}.50 \cos (\bigcirc -L) \sec B,$$

$$\Delta B = -20^{\circ}.50 \sin (\bigcirc -L) \sin B,$$
(5)

being the sun's true longitude.

Nutation has been omitted in computing the places both of the moon and the star.

8. Distance of centers of the moon and star.—Having found by the preceding methods, l', b', s', the apparent longitude, latitude, and semidiameter of the moon; L, B, the longitude and latitude of the star;

the distance of centers, D, and the angle of position, m, of the line joining the centers are given by the equations

$$D \sin m = (l' - L) \cos \frac{1}{2}(b' + B),$$

$$D \cos m = b' - B.$$
(6)

These expressions are not rigorous, but the error is of no importance, because the angle m is never observed with such accuracy as to be used as a datum for correcting the moon's place, while the error in D is so small as to be entirely unimportant.

Reduction Using Equatorial Coordinates.

9. From the beginning of 1862 the right ascensions and declinations of the moon given in the hourly ephemeris of the Nautical Almanac were used in the reductions. The general plan of the reduction corresponded to that adopted in the case of the longitude. From the geocentric place of the moon as taken from the ephemeris was computed the apparent place of the center as seen by the observer, and the apparent semidiameter. The original reductions were made in the following way. Put

 α , δ , the moon's geocentric R. A. and Decl.;

 α' , δ' , its apparent R. A. and Decl. as seen by the observer;

H₁ its west geocentric hour-angle;

 ρ , the radius of the earth at the point of observation;

 φ' , the geocentric latitude.

Compute

$$\begin{array}{c}
p = \rho \cos \varphi' \sin \pi, \\
q = \rho \sin \varphi' \sin \pi.
\end{array}$$
(7)

The apparent position, the factor R, and the semidiameter were then computed from the equations

$$R \cos \delta' \sin (\alpha' - \alpha) = -p \sin H,$$

$$R \cos \delta' \cos (\alpha' - \alpha) = \cos \delta - p \cos H,$$

$$R \sin \delta' = \sin \delta - q,$$
(8)

$$s' = \frac{\left[4.75002\right] \sin \pi}{R},$$

or, with the semidiameter and parallax as finally adopted,

$$s' = \frac{\left[4.74977\right] \sin \pi}{R}.$$

To find the distance and position angle between the moon's apparent center and the star, we put α_1 and δ_1 for the apparent coordinates of the star. We then have, with sufficient precision,

$$D \sin m_1 = (\alpha' - \alpha_1) \cos \frac{1}{2} (\delta' + \delta_1),$$

$$D \cos m_1 = \delta' - \delta_1.$$
(9)

Having found D and m_1 , the subsequent computation of the differential coefficients scarcely differs except in arrangement and order of quantities from that used in the longitudes.

Coefficients of the Equations of Condition for Correcting the Provisional Elements.

position of the moon, and occasionally one or more of the lunar elements. But it will be of interest, and may prove of scientific value, to introduce a wider range of corrections, including certain elements pertaining to the position of the occulted stars as well as to the elements of the moon's motion. We have already mentioned the two drawbacks incident to meridian observations of the moon—the varying personal equation of the observers and the systematic error liable to arise in the observed declination through the rapid motion of the moon in declination. The latter introduces an element of uncertainty in the determination of the moon's node and inclination from meridian observations. The only two elements which we can confidently base entirely on this class of observations are the eccentricity and the perigee. Even in the case of the latter the motion may be defective because the meridian observations for determining it commenced with Bradley, and have not yet been satisfactorily worked up and discussed. Since accurate observations of occultations commenced about 80 years before Bradley's time, they can be used with advantage to determine the motion of the perigee.

Although not strictly an element, the parallactic inequality should be determined from observation. The reasons for this, and the principles on which other elements may be determined have been set forth in the preceding chapter.

To form the equations of condition for the corrections of the elements of reduction, we proceed thus: each observed occultation gives rise to a conditional equation of the form

$$s' - D = \mathcal{I}D, \tag{10}$$

where ΔD is the symbolic increment of D, which is to be expressed in terms of corrections to the various elements. To form this expression the derivatives of D with respect to the elements are to be formed. We regard the moon's parallax and the elements related to it as sufficiently well determined. Moreover, as the corrections to the geocentric longitude differ from those to the apparent longitude by a factor which at its maximum is only about 0.016, we regard the corrections $\Delta l'$ and $\Delta b'$ as equal to those of the moon's geocentric coordinates Δl and Δb .

The formulæ of correction are, in terms of coordinates,

(A) with ecliptical coordinates:

$$\Delta D = (\Delta l' - \Delta L) \cos B \sin m + (\Delta b' - \Delta B) \cos m. \tag{11}$$

(B) with equatorial coordinates:

Practically, we may take $\cos B=1$, and may take for δ' the declination of either the moon or the star, or their half sum.

(C) It is sometimes necessary to refer the corrections to the moon's longitude in orbit, v. We may then use

$$\Delta D = (\Delta v' - \Delta L) \sin m' + (\Delta \beta' - \Delta B) \cos m', \tag{13}$$

m' being the position angle corresponding to the plane of the moon's orbit, which is introduced in \S_{12} .

In any critical revision of the work it is necessary to distinguish clearly the three measures m, m_1 , and m' of the position angle of the line joining the star and the center of the moon. The angles have already been fully defined; but their understanding will be facilitated by the accompanying diagram.

We have now to express these corrections to the coordinates of the two bodies in terms of corrections to the fundamental elements.

Corrections to the Coordinates of the Stars.

11. We regard the mean of all the corrections to the right ascensions and that of all the corrections to the declinations, as quantities varying uniformly with the time. Let us put

△a, this correction in right ascension;

 $\Delta \delta$, this correction in declination;

 $\Delta \varepsilon$, the correction to the obliquity of the ecliptic.

If we determine an angle S from either of the equations

$$\sin S = \cos \alpha \sec B \sin \varepsilon,
\sin S = \cos L \sec \delta \sin \varepsilon,$$
(14)

we shall have

$$\cos B \Delta L = \cos S \cos \delta \Delta u + \sin S \Delta \delta + \sin B \cos L \Delta_{\epsilon},$$

$$\cos B \Delta B = -\sin S \cos \delta \Delta \alpha + \cos S \Delta \delta - \sin L \Delta_{\epsilon}.$$

By substituting these values in (11) and putting, as we may, $\cos B = 1$, which gives $\sin S = \sin \varepsilon \cos \alpha$,

we find

$$\Delta D = -\sin (m - S) \cos \delta \Delta a
-\cos (m - S) \Delta \delta
+(\cos m \sin L - \sin m \sin B \cos L) \Delta \varepsilon.$$

We have, in (12)

$$m_1 = m - S$$
.

Putting

$$h \sin H = \sin B \cos L$$
,
 $h \cos H = \sin L$,

we shall have

$$\Delta D = -\sin m_1 \Delta a - \cos m_1 \Delta \delta + h \cos (m + H) \Delta \epsilon. \tag{15}$$

Since

$$h^2 = \sin^2 L + \sin^2 B \cos^2 L,$$

we may put, when $\sin^2 B$ is dropped,

$$h = \sin L$$
.

From $\tan H = \sin B \cot L$, we see that near the equinoxes H may approach 90°. But in this case h will become small, and the coefficient become unimportant, and may be dropped. In the second semicircle the argument becomes $L - 180^{\circ}$, and the signs of h and H are to be changed.

Coefficients of the Corrections to the Lunar Elements.

12. In the case of the corrections to the lunar elements, we first replace Δl and Δb by the corrections to the longitude in orbit, and to the latitude in a direction perpendicular to the plane of the orbit. We replace the position angle m by one counted from a perpendicular to this orbit as an origin by introducing the angle σ between the apparent orbit of the moon on the celestial sphere, and a parallel to the ecliptic. Then, putting $u=v-\theta$, the argument of latitude, we have

$$\sin \sigma = \sin i \cos u; \tag{16}$$

we compute

$$m'=m+\sigma$$

and putting Δv , $\Delta \beta$ for the correction to the orbital longitude and latitude, we then have

$$\sin m \Delta l' + \cos m \Delta b' = \sin m' \Delta v + \cos m' \Delta \beta$$
.

In terms of corrections to the elements and a constant error of any kind in the theoretical latitude, we have

$$\Delta \beta = \Delta i \sin u - i \Delta \theta \cos u + \Delta \beta_0. \tag{17}$$

Put

 $\Delta \lambda$, the correction to the moon's mean longitude;

 $\Delta \pi$, that to the longitude of the perigee;

 ΔP , that to the parallactic coefficient.

For the corrections to the moon's longitudinal elements, we have

$$\Delta v = \Delta \lambda (1 + 2c \cos g) - 2 e \Delta \pi \cos g + \Delta P \sin D (g = \text{moon's mean anomaly}).$$
 (18)

The equation (15) with the additional terms formed by substituting (17) and (18) in (11) or (13), as the case may be, will be the complete conditional equation having ΔD as its absolute

term. The coefficients of the unknown quantities in the expression for ΔD are found to be as follows, putting $F=1+2e\cos g$:

Coefficient of
$$\Delta a_0 = -\sin m_1 \cos \delta$$
,

" " $\Delta \lambda = F \sin m'$,

" " $2e \Delta \pi = -\sin m' \cos g$,

" " $\Delta P = \sin m' \sin D$,

" " $\Delta i = \cos m' \sin u$,

" " $\Delta \theta = -\cos m' \cos u$,

" " $\Delta \varepsilon = \sin L \cos (m+H)$,

" " $\Delta \beta_0 = \cos m'$,

" " $\Delta \delta_0 = -\cos m_1$.

The correction of the mean longitude to that of the true can generally

F, the factor for reducing the correction of the mean longitude to that of the true, can generally be found most readily by taking for it the ratio of the rates of change of these two quantities in any unit of time; that is

$$F = \frac{D_i v}{D_i \lambda}$$
.

The value thus found will not be rigorously equal to the other, but the difference is practically unimportant, and, withal, the second value is the better.

In the reductions where longitudes were used the motion in longitude for .01 of a day was computed. We then have

$$F = \frac{D_t l}{7'.906}.$$

In the preceding formulæ the coefficient $\Delta \varepsilon$ is expressed in terms of the ecliptical coordinates of the star. As these coordinates are not used after 1862.0, it will be convenient to express $\frac{d}{d\varepsilon}D$ in terms of equatorial coordinates. We then have

$$\frac{d}{d\epsilon}D=\sin \alpha \cos m_1-\sin \delta \cos \alpha \sin m_1.$$

It is indifferent whether we take for α and δ the coordinates of the moon or those of the star. In the latter case, if the star is one of which many occultations are used, the expression may be reduced to a monomial. But in the present case the computation has been made in the preceding form unchanged, natural numbers being used.

As m, m_1 , m' do not differ greatly in value, there will arise between the coefficients of Δa_0 and $\Delta \lambda$ approximations to equality, as also between those of $\Delta \delta_0$ and $\Delta \beta_0$, which will weaken the separate determination of these quantities by the solution of the equations. We shall therefore introduce, instead of $\Delta \lambda$ and $\Delta \beta_0$, the linear combinations

$$\Delta \lambda' = \Delta \lambda - \Delta \alpha_0,$$

$$\Delta \beta_0' = \Delta \beta_0 - \Delta \delta_0,$$

which may be done by the substitution

$$\Delta \lambda = \Delta \lambda' + \Delta \alpha_0$$
,
 $\Delta \beta_0 = \Delta \beta_0' + \Delta \delta_0$;

we shall then have

Coefficient of
$$\Delta \lambda' = F \sin m'$$
,
" $\Delta \beta_0' = \cos m'$,
" $\Delta \alpha_0 = F \sin m' - \sin m_1 \cos \delta$,
" $\Delta \delta_0 = \cos m' - \cos m_1$.

The preceding expression of ΔD in terms of corrections to the elements of reduction are, of course, the same whatever system of coordinates is used in the reductions. When the ecliptic system is used, m is computed in the reductions, while m_1 is computed when the equatorial system is used. For dates posterior to 1862 the factor F may be most conveniently formed by taking the moon's apparent path and rate of motion on the celestial sphere, and deriving from them the position and angular speed in the apparent orbit. Putting

$$\gamma = S + \sigma$$

the angle which the moon's orbit makes with a parallel to the equator, and

$$v'=D_{t}v,$$

the moon's motion in longitude, the value of v' and of γ may be derived from the data of the hourly ephemeris by the equations

$$z' \sin \gamma = D_t \delta,$$

 $z' \cos \gamma = \cos \delta D_t a.$

The factor F is then computed by

$$F = \frac{v'}{32.9} = [8.483] v'.$$

Here the divisor 32.9 is the mean motion of the moon in seconds of arc per minute of time.

The formulæ for the differential coefficients now become

$$m' = m_1 + \gamma,$$

$$\frac{dD}{d\lambda} = F \sin (m_1 + \gamma),$$

$$\frac{dD}{d\beta} = \cos (m_1 + \gamma).$$

 $\frac{dD}{di}$ and $\frac{dD}{id\theta}$ are then found by multiplying $\frac{dD}{d\beta}$ by $\sin u$ and $-\cos u$ as before.

Transformation of Published Reductions.

13. In several published series of occultations the symbolic expression of ΔD , in terms of corrections to the moon's coordinates, is computed and given. In these cases our problem is that of transforming these corrections into the corrections of the adopted elements. Among the series of this kind are those of Greenwich, Cambridge (Eng.), the Cape of Good Hope, and, for the period 1862–1876, the Radcliffe observations at Oxford. In these four cases the coefficients of correction to the right ascension and declination of the moon are given. Other published results may be utilized in much the same way, because the coefficient of the correction of the coordinates of the star is practically equal to that of the coordinates of the moon.

In the case of the Greenwich observations the results are presented in the following way. The notation used in the published volumes, expressed in terms of our own, is

 $x = \Delta a$, correction of moon's right ascension;

 $y = -\Delta \delta$, correction of moon's N. P. D.;

 $e = \Delta a_1$, correction of star's R. A.;

 $f = -\Delta \delta_1$, correction of star's north polar distance;

 $m=1000 \Delta \pi$, factor of correction to the equatorial horizontal parallax;

 $n = 1000 \frac{\Delta s}{s}$, factor of correction of moon's semidiameter.

There are other corrections introduced which we do not deem it necessary and practicable to take account of in the present work. In the case of each occultation an equation of condition is derived and expressed in a form which we may write

$$\Delta D = -h \times e^{\prime\prime} - g \times f^{\prime\prime} + h \times x^{\prime\prime} + g \times y^{\prime\prime} + [\pi] \times m - [s] \times n,$$

 $h, g, [\pi]$ and [s] being numerical coefficients given in the volumes of Greenwich observations. From the latter the position angle m_1 may be at once derived by either or both the equations

$$\sin m_1 = h \sec \delta,$$

 $\cos m_1 = -g;$

 γ and F may then be computed from the equations already given, using the motion of the hourly ephemeris of the moon. But the Greenwich volumes give the motion of a and $-\delta$ for a second of time. If we use these motions instead of referring to the ephemeris, the equations are

$$v' \sin \gamma = -D_t(N. P. D.),$$

$$v' \cos \gamma = \cos \delta D_t(R. A.),$$

$$F = \frac{v'}{0.548} = [0.261] v'.$$

Then we form $m'=m_1+\gamma$ and proceed as before.

The same is true of the Cape observations except that declination is used instead of N. P. D., and instead of m and n the increments of π and s are expressed by the quantities p and s, where, with a sufficient approximation,

$$p = \frac{\Delta \pi}{\sin \pi}, \qquad s = \frac{\Delta s}{\sin s}.$$

The Cape equation may therefore, by using our Greenwich notation, be expressed in the form

$$\Delta D = h \Delta a - g \Delta \delta - h \Delta a_1 + g \Delta \delta_1 + 1000 [\pi] p - 1000[s] s.$$

In the Radcliffe and Cambridge observations the results are given in the same form as in the case of Greenwich.

If we aim at rigor the parallactic corrections require special attention. At Greenwich, Oxford, and the Cape, the compression

$$\alpha = \frac{1}{300}$$

has been adopted in the published reductions. We thus have, with Helmert's compression (page 18), for use in the formulæ (7),

$$\Delta u = +0.000 020$$

which gives

$$\Delta(\rho \sin \pi) = 0''.40 - 0''.06 \sin^2 \varphi$$
.

This correction to the local horizontal parallax is

For England,
$$\Delta(\rho \sin \pi) = 0^{\prime\prime}.36$$
, $m = +0.105$;
For the Cape, $\Delta(\rho \sin \pi) = 0^{\prime\prime}.38$, $\rho = +0.111 \div 10^3$.

The semidiameter generally used in the Greenwich reductions is

1826 to 1899,
$$s_0 = 934$$
".08 (Hansen), hence $n = -1$ ".60; 1900 and later, $s_0 = 932$ ".65 (Struve), hence $n = -0$ ".07.

In the Cape reductions was used

$$s = [9.43559]\pi$$
.

The constant of π in Hansen's tables being 3422".23, this gives

$$s_0 = 933''.04$$
, hence $s = -0''.49 \div 10^3$.

At Oxford Hansen's semidiameter was used, so that the value of m and n are the same as for .Greenwich.

CHAPTER III.

REDUCTION OF HANSEN'S TABLES TO THE PROVISIONALLY ACCEPTED THEORY.

SECTION I.—CORRECTIONS TO THE LONGITUDE.

- Tables de la Lune, and originally used as the theoretical basis of the present work, require a great number of small corrections and additions to reduce the results to the now accepted theory. It is necessary to collect and apply such of these corrections as would materially affect the results to be derived from the comparison with observations. It is not, however, necessary that rigorous numerical precision should be aimed at. Were such the case, it would practically be necessary to construct new tables of the moon. This necessity is evaded by the consideration that small periodic errors in the theory compared, especially if the period is short, will merge themselves with the errors of observation. A possible exception occurs in the case of those so related to the argument of the moon's elongation from the sun that the unequal distribution of the observations in the lunation would result in an error in the adopted coefficient leading to a systematic error in the conclusion. Cases of this sort have been pointed out by Cowell in his discussion of Greenwich observations of the moon. Without attempting to form a rigorous criterion to determine whether a given correction is necessary, the following general principles will serve to guide our decision:
- (A) Every correction which amounts to a large fraction of the probable error of a single observation should be included. Applying this rule to individual terms a correction of 0".3 would be unimportant in the case of a single observation. But the accumulated effect of a large number of such corrections may be frequently important. It is therefore advisable to introduce all corrections exceeding 0".2. Many of these small corrections can be introduced without much additional labor.
- (B) Up to a certain limit the longer the period of the correction the more important it will be, for the obvious reason that it will affect a longer series of observations in the same way. We may therefore make a distinction between the solar terms, of which the period is generally of the order of magnitude of a month, and the planetary terms, of which the period may be one or more years. In the latter case greater precision is required, but in the case of periods much exceeding that of the moon's node the correction again becomes less necessary, because it will be merged with the unknown inequalities of very long period in the mean longitude.
- (C) The parallactic inequality being one which is to be determined from the observations, it is necessary that the coefficients related to it should be determined as accurately as possible.

These considerations lead to the division of the corrections into two classes. One comprises those of the longest period, which merge with those which have to be determined from observations alone, and which therefore need not be applied in advance. When the observed value of the fluctuations having a period greater than that of the moon's node are mapped out it can be determined by a comparison with the best theory what the outstanding residual correction is. We shall therefore consider in the present chapter only those terms which for the reasons above mentioned are to be applied in advance of the discussion. These corrections, so far as they could be determined, were constructed, tabulated, and applied in 1904, when Brown's lunar theory was still incomplete, and when the best determination of the planetary terms was that of Radau. After

this work was done Brown's completed theory appeared, and should supersede the corrections which had been used. Early in 1907 the author completed and published his reinvestigation of the action of the planets on the moon, which appeared in June of that year as Publication No. 72 of the Carnegie Institution. The tables were now reconstructed so as to reduce them to Brown's theory of the solar terms and my own computation of the planetary terms.

The foregoing considerations apply to periodic terms in the longitude. But it may be necessary also to correct some of the elements in advance. Of these the eccentricity and inclination of the moon's orbit are of secondary consideration because they can probably be better determined from meridian observations. The former has, however, been included. The semidiameter is excluded because it has been determined with all required precision by Peters and by Struve. The parallax is not included because its theoretical value for the mean radius of the earth is beyond serious doubt. Its value for special points of observation depends on the compression of the geoid; but the question whether the value of this constant can be determined from the occultations must be postponed to the end of the work.

Errors of short period will have no systematic effect on any of the elements to be determined, except the parallactic inequality, but will be merged with the accidental errors, which they will increase only when so large as to be an important fraction of their amount. So long as the average sum of all the theoretical errors of short period does not exceed o".3, they will be of no importance in the present work.

Corrections of Long Period.

15. Were the inequalities of long period in the mean longitude determined by theory with unquestionable completeness and rigor, and did the result agree fairly well with observations, we should adopt the results of theory as the basis for the ephemeris of comparison. But as entire rigor in this respect can not be assumed at the time the present work is being carried on, it seems better to leave the question of the ultimate outstanding difference between theory and observation to be discussed when the former is brought as near as may be to completeness. Moreover, the discrepancy between theory and observation is, so far as yet appears, too large to admit of the convenient and precise determination of the unknown quantities of the equations unless an empirical correction is applied to the mean longitude so as to reduce the residuals left by observations. Under these circumstances the most eligible course seems to be to take the corrections, empirical and otherwise, to Hansen's tables, which have been applied in the Ephemerides since 1883, as the basis of the ephemeris of comparison. The corrections thus derived will be nearly but not rigorously identical with those derived and tabulated in the Researches of 1878, page 268. As used in the Ephemerides from 1883, the corrections of long period to Hansen's tables are as follows:

We put V₂ for the empirical Venus term, wrongly introduced by Hansen to represent observations. We also put A for the argument of the other Hansenian term, of which Hansen's coefficient is in error by approximately 1". Then

$$V_2 = 21''.47 \sin (8V - 13E + 274^{\circ} 14'),$$

 $A = 18V - 16E - g,$
Empirical term = $-15''.5 \cos A.$

The total secular correction to Hansen's mean longitude, long-period terms included, which has been used in the Ephemerides since 1883, then becomes

$$\delta \lambda = -V_2 - 1''.14 - 29''.17 T - 3''.76 T^2 - 15''.5 \cos A.$$
 (20)

The most convenient way of applying this correction is to omit Hansen's Table XLI and to replace it by the sum of the above terms, omitting the first. We may tabulate the sum thus found as a function of the time. Since Hansen's Table XLI contains the constant 21."49, which

will be omitted with the table, this constant must be applied in the new table. If this process is followed, the quantity by which to replace Table XLI is

$$20''.35 - 29''.17 T - 3''.76 T^2 - 15''.50 \cos A.$$
 (21)

When the longitude is first computed from Hansen's tables unchanged, the original correction (20) is to be used. Its value is tabulated for 10-year intervals in the following scheme, where column C gives the value of -1''.14 - 29''.17 T - 3''.76 T^2 .

Corrections of	f Lona Perio	l and Secular	Corrections to	Hansen's Mear	I onoritude
COLLEGE OF C	Ling I crow	i una scomun	COLLEGIOUS FO	II WINSCIN S INI CUI	v isonouvivie.

Year.	Arg. A.	$-\mathrm{V}_2$	-15".5 cos A	c	ðλ
		,,	,,	,,	,,
1630	319.63	+ 18.67	-11.81	+37.58	+44.44
1640	332.82	+20. 78	- 13. 79	+35.90	+42.89
1650	346. 01	+21.46	-15.04	+34. 16	+40. 58
1660	359. 20	+20.66	-15.50	+32.33	+37.49
1670	12. 39	+ 18. 45	-15.14	+30.43	+33.74
1680	25. 58	+14.98	-13.98	+28.46	+29.46
1690	38. 77	+10.45	-12.08	+26.40	+24.77
1700	51.96	+ 5. 22	- 9.54	+24.27	+19.95
1710	65. 15	- o. 38	- 6. ši	+22.06	+15.17
1720	78. 34	- 5.94	- 3.13	+19.79	+10.72
1730	91.53	-11.10	+ 0.41	+17.44	+ 6.75
1740	104. 72	-15.49	+ 3.94	+15.01	+ 3.46
1750	117.91	-18.82	+ 7.26	+12.51	+ o. 95
1760	131. 10	– 20. 85	+10.17	+ 9.93	- o. 75
1770	144. 29	-21.45	+12.59	+ 7.27	- 1.59
1780	157.48	-20.58	+14.32	+ 4.55	- 1.71
1790	170.67	- 18. ž8	+15.29	+ 1.74	- 1.25
1800	183. 86	- 14. 73	+15.46	– 1.14	- O. 4I
1810	197. 05	- 10. 17	+14.82	- 4. 10	+ o. 55
1820	210. 24	- 4.92	+13.39	- 7.12	+ 1.35
1830	223. 43	+ o. 68	+11.26	-10.23	+ 1.71
1840	236. 62	+ 6. 23	+ 8.53	-13.41	+ 1.35
1850	249. 81	+11.35	+ 5.35	- 16. 66	+ 0.04
1860	263.00	+15.71	+ 1.89	- 19. 99	- 2.39
1870	276. 19	+ 18. 97	- 1.67	-23.40	- 6. 10
1880	289. 38	+20.93	- 5.14	-26.89	-11.10
1890	302. 57	+21.46	- 8. 34	- 30. 44	-17.32
1900	315.76	+20.50	-11.10	- 34. 07	- 24. 67
1910	328.95	+18.14	- 13. 28	-37.78	-32.92

Corrections of Mean Period.

16. Under this head we first include terms in which the argument contains the longitude of the moon's node and which arise from the compression of the earth and the motion of the ecliptic. Although most of these terms are of short period in the longitude, they arise from changes in the elements having periods of the order of magnitude of the time of revolution of the node. In Hansen's tables these terms are

$$n\delta z = +7''.760 \sin (\Omega - 4^{\circ} 42') - 0''.035 \sin 2 \Omega - 0''.128 \sin (g + \Omega) + 0''.128 \sin (g - \Omega).$$

For the purpose of comparison these terms in the mean anomaly must be transformed into terms of longitude. The transformation gives

$$\delta l = +7$$
".594 sin \otimes -0".636 cos \otimes -0".035 sin 2 \otimes +0".30 sin $(g+\otimes)$ -0".30 sin $(g-\otimes)$.

I shall take Hill's investigation of the inequalities due to the compression of the earth as the basis of the provisional theory. The terms found by Hill of a magnitude to be considered are

$$\delta/=+7''.671 \sin \Omega-0''.040 \sin 2\Omega + 0''.520 \sin (g+\Omega)-0''.519 \sin (g-\Omega) + 0''.096 \sin (2D+\Omega)-0''.064 \sin (2D-\Omega).$$

Hill has also computed the terms produced by the motion of the ecliptic and found from this source

$$\delta = 0$$
.029 sin $\Omega = 0$.285 cos Ω .

My own result of 1907 is

$$\delta l = 0^{\circ}.030 \sin \Omega - 0^{\circ}.273 \cos \Omega$$
.

The terms depending on Q become

Omitting minute terms of period so short as to be unimportant, we find that the true longitude of Hansen's tables requires the following corrections depending on \otimes to reduce it to the provisional theory.

$$\delta l = +0$$
".107 $\sin \Omega + 0$ ".363 $\cos \Omega + 0$ ".22 $\sin (g + \Omega) - 0$ ".22 $\sin (g - \Omega)$.

Reduced to a monomial the first two terms are

$$\delta l = 0^{\circ}.378 \sin{(Q + 73^{\circ}.6)}$$
.

The Jovian Evection and Similar Terms.

17. The most important theoretical correction still needed to Hansen's tables is the Jovian evection. This is related to the preceding terms in a way to add interest to the history of its discovery. In 1875 the present writer published a discussion of the corrections required to Hansen's Tables de la Lune, both from theory and observation. When the corrections to the eccentricity and perigee were worked out, they were found to be affected with a well-marked fluctuation in a period of about 17 years. The resulting coefficient in the longitude as found from the observations was 1".50. The discussion gave the correction of longitude

$$\delta l = 1$$
".50 sin [g+21°.6 (t-1865.1)].

Shortly after this publication Neison showed that this inequality was mainly due to the action of Jupiter in the same way that the ordinary evection is due to the action of the sun. From theory he found for the term^b

$$\delta = 1''.16 \sin(2\pi - 2J + g)$$

J being the mean longitude of Jupiter and π that of the moon's perigee.

In 1885 Hill published a very careful recomputation of this and the related terms, leading to the result

$$\delta l = -0^{"}.903 \sin(2\pi - 2J + g).$$

a Astronomical Papers of the American Ephemeris, Vol. III, Part II.

b Monthly Notices, R. A. S., Vol. XXXVII, pp. 248, 358.

Radau reduced the coefficient still farther to 0".881, a value little more than half that found from observation."

In 1904 Dr. Frank E. Ross, research assistant of the Carnegie Institution, working under the writer's direction, made a computation of the action of Jupiter on the moon, using the moon's coordinates as affected by the action of the sun. The result was the discovery of certain important terms due to the indirect action of Jupiter, and omitted by Hill and Radau, which carried the coefficient up to 1".15. This result is verified by me in the work of 1907.

An important point in this connection is that the annual motion of the argument $2J-2\pi$ differs by only 1°.31 from that of the moon's node. The result is that the terms depending on the node and this argument will combine themselves together during a space of many years, and a cycle of 274 years will be required to complete the separation of the effects. The result is best shown by treating both terms as inequalities of long period in the eccentricity and perigee. If we express the effect on the longitude of the moon in the form

$$\delta l = h \sin \varrho + k \cos \varrho$$

where $h=2\delta e$ and $k=-2e\delta \pi$, the values of h and k for the Jovian evection, and for the corresponding correction to Hansen's terms depending on \otimes are, from theory,

$$h=-1''.15 \cos (2\pi-2J),$$

 $k=-1''.15 \sin (2\pi-2J)+o''.44 \sin \otimes.$

With the last term of k may be combined the inequality of π arising from the motion of the ecliptic and planetary action derived in "Action II,"

$$\delta \pi = -0$$
".10 sin $\otimes +0$ ".80 cos \otimes .

This gives the terms

in k, making the entire term

The numerical values of the arguments are

$$\otimes = 146^{\circ}.20 - 19^{\circ}.3415$$
 (t-1850.0), $2\pi - 2J = 239^{\circ}.85 + 20^{\circ}.6550$ (t-1850.0).

The amplitude of k reaches nearly its maximum when

$$2\pi-2$$
]+ \otimes =0,

which was the case in 1830. In 1825 and 1834, k reached maxima numerical values of -1''.59 and +1''.59, respectively. In 1898 the apparent augmentation of the Jovian evection vanished, to give place to a diminution in subsequent years, the minimum being reached in 1967.

Certain other terms of period approximating to that of the node, omitted by Hansen, but computed by subsequent authorities, may be associated with these. The most important as computed by Radau and by the author are

Newcomb.

$$\delta l = +0$$
".206 sin $(2\pi - 2J)$ +0".256 sin $(2\pi - 2J)$ +0".258 sin $(2\pi - 3J + 267^{\circ}.5)$ +0".258 sin $(2\pi - 3J + 268^{\circ}.2)$ +0".445 sin $(2\pi - 3J + g + 268^{\circ}.0)$.

The inequality containing g in its argument is most easily expressed by adding to h and k the terms

Radau. Newcomb.
$$h=0^{\circ}.316 \cos (2\pi-3J+267^{\circ}.5), \quad h=0^{\circ}.445 \cos (2\pi-3J+268^{\circ}.0), \\ k=0^{\circ}.316 \sin (2\pi-3J+267^{\circ}.5), \quad k=0^{\circ}.445 \sin (2\pi-3J+268^{\circ}.0).$$

a" Recherches concernant les Inegalités Planétaires du Mouvement de la Lune" Annales de l'Observatoire de Paris, Memoires 21, p. B 113.

The value of the argument is

$$2\pi - 3J = 179^{\circ}.4 - 9^{\circ}.6940 (t - 1850.0).$$

Terms of similar period due to the action of Jupiter, Mars, and Venus, as computed by the author, are

$$\delta l = +0".183 \sin (J + 22°.5) +0".372 \sin (2M - g' + 328°.7) +0".095 \sin (4M - 2g' + 89°) +0".072 \sin (2\pi + 3V - 5g'),$$

where M, V, J, and π are measured from the earth's perihelion for 1800, ($\pi'=99^{\circ}.5$), and g' is the sun's or earth's mean anomaly. The only corresponding inequalities in Hansen's tables are

$$\delta l = +0''.320 \sin (2M - g' + 328^{\circ}) +0''.099 \sin (4M - 2g' + 87^{\circ}).$$

The following inequalities produced by Venus, were computed by Radau and by Brown, but not by the writer:

18. The following inequalities of shorter period, some of which have been omitted by Hansen, may be deemed worthy of application:

Action of Venus.

Newcomb. Hansen.
$$\delta l = -0$$
".88 $\sin (V - g')$ -1 ".10 $\sin (V - E)$ $+0$ ".40 $\sin 2 (V - g')$ $+0$ ".43 $\sin 2 (V - E)$ -0 ".04 $\sin 3 (V - g')$ -0 ".07 $\sin 3 (V - E)$. $+0$ ".20 $\sin (3V - 4g' + 168^{\circ}.3)$ -0 ".65 $\sin (g + 2\pi + 3V - 5g')$.

Neglecting terms of short period less than o".20, it seems that by putting, for brevity,

$$L=v-g'=V-E$$
,

we have the following terms of correction to Hansen depending on the arguments L and g':

$$\delta l = +0''.22 \sin L$$

+0''.35 sin (2L-g'+164°.3)
+0''.20 sin (3L-g'+168°.3).

The term depending on the argument $g + 2\pi + 3V - 5g'$ may most conveniently be developed as an inequality of h and k with a period of nearly 10 years. A number of other small terms ranging between 0".10 and 0".23 are collected later.

The remaining terms included by Hansen are

Action of Mars.

Newcomb. Hansen.

$$\delta l = +0''.011 \sin (g' - M) +0''.031 \sin (E - M) +0''.224 \sin 2 (g' - M) +0''.241 \sin 2(E - M) +0''.372 \sin (2M - g' + 329°) +0''.320 \sin (2M - E + 228°) +0''.095 \sin (4M - 2g' + 89°) +0''.099 \sin (4M - 2E + 248°) 35990°-12-3$$

Action of Jupiter.

Newcomb.

$$\delta l = +0''.74 \sin (g'-J+1^{\circ}.2)$$
 $-0''.24 \sin 2(g'-J).$

Hansen.

 $+0''.74 \sin (E-J)$
 $-0''.24 \sin 2(E-J).$

None of these six terms needs correction.

Solar Terms of Short Period.

19. Among all the errors of Hansen's tables the most troublesome is that of the parallactic equation. The original theory started with certain numbers which he afterward found to correspond to a solar parallax of 8".6085. On this basis Hansen found for the parallactic term in $n\delta z$, the mean longitude, a theoretical coefficient of

By comparison with observations he found that this coefficient should be multiplied by the factor

thus changing the coefficient by 4".336 and carrying it to

$$-125''.704.$$

This increase is nearly double that given by observation.^a

To facilitate the discussion of the corrections we compare the Hansenian tabular coefficients of the four principal parallactic terms with the values found by Delaunay and by Brown as follows:

	Theory of H	Delaunay.	Brown.		
Arg	nðz	δυ	1.03573 dv	π=8".78	$\pi = 8''.78$
	"	"	" "	"	"
$\left[\begin{array}{c} \mathbf{D} \\ \mathbf{D} + \boldsymbol{g'} \\ \mathbf{D} - \boldsymbol{g} \end{array} \right]$	-121. 368 + 17. 489 - 11. 692	-122.065 + 17.524 - 18.490	-126.43 + 18.15 - 19.15 - 8.54	$ \begin{array}{c cccc} -124.42 \\ + 18.14 \\ - 18.82 \end{array} $	-124.78 $+17.99$ -18.55

Table of Parallactic Terms.

It appears that there is a substantial agreement between Hansen and Delaunay as to the theoretical value of the minor parallactic terms corresponding to a given value of the solar parallax, except in the case of the argument D-g. Here the subsequent computation by Hansen, found in his Darlegung, gives a coefficient numerically less by 0".292 than that of the tables. This brings his theory into better agreement with Brown, which last shows a large coefficient of correction, 0".60, to the tables.

As a definitive theoretical value of the parallactic inequality was not established with numerical rigor when this work was commenced, I provisionally applied a diminution of 1".60 to Hansen's implicit coefficient of the inequality in ecliptic longitude, reducing it to -124".83, a value corresponding to a value of the solar parallax of about 8".783. Applying the corresponding increment to the three other terms of Brown's theory, the total adopted correction is

^a A portion of the error may be conjecturally accounted for on the theory that Hansen took the coefficient of the term in the ecliptic longitude, which is greater by 0''.7 than that in $n\partial z$, as if it were applicable to the latter.

$$\delta P = +1$$
".60 sin D
 -0 ".15 sin (D+g')
 $+0$ ".59 sin (D-g)
 $+0$ ".10 sin (D+g)

Annual Equation.

20. For this we have

Hansen (tables) -669.90 sin g'
Reduction to 1850 + 0.83 sin g'
Factor, .000154 - 0.10 sin g'
Hansen (tables, 1850) -669.17 sin g'
Brown -668.94 sin g'
Correction to Hansen + 0.23 sin g'

Evection and Variation.

The variation is closely associated with the parallactic inequality, because an error in the one will affect the determination of the other from observation unless observations are equally numerous on both sides of the moon's quadratures, which is not the case. It is well known that Hansen multiplied these and the other inequalities in the moon's longitude by the factor 1.0001544 on account of a supposed noncoincidence of the moon's center of gravity and of figure. I have shown that this correction is not well founded and that the apparent augmentation of the two largest inequalities grew mainly out of the fact that Hansen's theoretical value of the coefficient of evection was too small because his eccentricity was too small. Also that the value of the variation derived from meridian observations is too large through excess of the apparent semidiameter of the moon from first to last quarter over the semidiameter from last to first quarter, which excess is due to irradiation. It is therefore necessary to reduce the coefficients of evection and variation adopted in Hansen's tables to their theoretical values.

For the theoretical variation in ecliptic longitude we have:

Hansen's original tabular theory
As used in tables, with increase
Theory in Darlegung
Delaunay's theory
2369.77 sin 2D
2369.75 sin 2D
2369.74 sin 2D
2369.90 sin 2D

In "Action II" an increment of 0".02 is derived from the action of the planets. The tables therefore require the correction

 $\delta l = -0$ ".21 sin 2D.

The theoretical evection contains the eccentricity as a factor. Hansen's coefficient was computed with a value of e less by 1".15 than that finally introduced in the tables; but the tabular value was not increased to correspond, as it should have been. In the theory on which the tables were based, the value of the coefficient of evection in ecliptic longitude was 4585".978. This having been multiplied by 1.0001544, we have Hansen's actual tabular value, 4586".68. The correct theoretical value depends on the eccentricity. Using the value of this element as corrected by Cowell from observations, we shall have:

Theory of Hansen's Darlegung
Theory of Delaunay

Theory of Brown

Action of planets

4586.42 $\sin (2D-g)$ 4586.42 $\sin (2D-g)$ 4586.42 $\sin (2D-g)$ +0.04 $\sin (2D-g)$

Digitized by Google

In "Action II" a correction of +0".036 is derived from the action of the planets. The definitive correction to Hansen's Tables for this term is therefore

$$\delta l = -0''.22 \sin(2D - g).$$

Miscellaneous Terms.

21. The preceding terms of short period are mostly large ones which require special adjustments to the revised values of the elements. The question now arises whether there are other solar terms which require important correction to reduce them to Brown's theory. An examination of Brown's comparison of his results with those of Hansen a shows only the following terms to be corrected:

Hansen (tables) $\delta l = +206.49 \sin (g - 3g' + 2\pi - 2\pi')$ Delaunay $\delta l = +206.34 \sin (g - 3g' + 2\pi - 2\pi')$ Brown $\delta l = +206.22 \sin (g - 3g' + 2\pi - 2\pi')$ Hansen (tables) $\delta l = -1.54 \sin (\pi - \pi')$ Hansen (Darlegung) $\delta l = -1.33 \sin (\pi - \pi')$ Delaunay $\delta l = -0.87 \sin (\pi - \pi')$ Brown $\delta l = -1.09 \sin (\pi - \pi')$

Here π' is the longitude of the solar perigee. When the earth's perihelion is used the sign is to be changed. The corrections in question thus become

$$\delta l = - o''.27 \sin (g - 3g' + 2\pi - 2\pi') + o''.45 \sin (\pi - \pi').$$

The last of these may be classified with the terms of mean period, which will be tabulated as a function of the time.

Hill has also a term arising from the ellipticity of the earth,

$$\delta l = 0^{\prime\prime}.390 \sin(2g + 2\pi - \Omega)$$

as to the use of which I am in doubt. Its shortness of period renders it unnecessary to take account of it.

Erroneously Tabulated Term.

There is yet another correction of short period, related to the reduction to the ecliptic, which is to be applied to the positions of the moon given in the ephemerides from 1862 to 1882, and which arises in the following way: Hansen found, in his theory, a term

$$\delta l = -0''.335 \sin(2g - 4g' + 2\omega' - 4\omega')$$

which he includes in Table XXXIV as an inequality of $n\delta z$, but which he accidentally used with the positive sign. In the Darlegung he found a coefficient of 0".285. Hence the tables require the correction

$$\delta l = 0''.62 \sin(2g - 4g' + 2\omega - 4\omega')$$

A revised Table XXXIV, in which this correction was incorporated, was printed and circulated by the office of the American Ephemeris in 1878, and used in the national ephemerides from 1883. It was also used in the present work from the beginning till 1861.

22. When the tables for the preceding corrections were prepared it was supposed that the error of the moon's perigee was so small that it was not necessary to introduce any correction as pre-

a Monthly Notices, R. A. S., Vol. LXV, pp. 276-296, January, 1905.

liminary to the equation, but the researches of Cowell seem to show the advisability of introducing this correction in advance. He applies to Hansen's perigee the preliminary correction

$$\delta \pi = -4''.63 + 13''.99T - 4''.74T^2$$
 (1800).

To this he finds from a general discussion of the early and later Greenwich observations the correction

$$\delta \pi = -2.^{\circ}9 - 1^{\circ}.0^{\circ}T + 7^{\circ}.4^{\circ}T^{2}$$

making the total correction to Hansen's longitude of the perigee

$$\delta \pi = -7''.5 + 13''.0 + 2''.7 + 2''.$$

The term in T² has a well determined theoretical value best derived from Brown's expressions, from which we obtain the following results:

Sidereal term $-38.13T^2$ Equinoctial term $+ 1.11T^2$ Total $-37.02T^2$ Hansen's term $-36.19T^2$ Actual correction $-0.83T^2$ Correction to Cowell $-3.5T^2$

The coefficients have all been reduced to 1850, from which epoch T is reckoned.

This correction will have a material influence upon the motion to be derived from the observations, the amount of which depends upon the epoch at which Cowell's coefficient of T has the maximum weight. I assume this epoch to be 1875.

By differentiating (22) we find that the correction to Hansen's centennial motion found by Cowell has the general form

$$D_t \delta \pi = +13''.0+5''.4T;$$

T is counted from 1800.0. It follows that the correction to Hansen's centennial motion found by Cowell for this epoch is +17".0 at the epoch 1875. By differentiating the correction -0".83T² found by theory, we find that in order to produce the preceding value for 1875 the general form of the correction is

$$D\delta\pi = 18''.2 - 1''.66T$$

and the actual correction to the longitude of the perigee as it results from Cowell's work may be taken as

$$\delta \pi = -9^{\circ}.4 + 18^{\circ}.2T - 0^{\circ}.83T^{2}.$$

The values for special epochs are as follows:

Year.	$\partial\pi$	2 <i>e</i> ∂π
1675 1700 1750 1800 1850	77 -33.4 -28.4 -18.7 - 9.4 - 0.5 + 8.0	77 -3.7 -3.1 -2.1 -1.0 -0.1 +0.9

This correction is so large that I have tested it by a rough least-square solution of the 66 good equations of condition found in Researches, pages 226-230, which lead to the result

circa 1700;
$$\delta \pi = +8'' \pm 7''$$
.

This is so incompatible with Cowell's result that I apply no preliminary correction to π .

Correction of the Eccentricity.

The correction to the coefficient of the equation of the center found by the author is

$$2\delta e = -0^{\prime\prime}.57.$$

In deriving this result I overlooked a point recently brought out by Cowell, that the unequal distribution of the observations through a lunation will lead to an error in δe in case the tabular terms depending on D + g and D - g are incorrect. From Cowell's work it would seem that the correction $2\delta e$ is about -0.65. Battermann, in two important researches, to be discussed later, has found from occultations a seemingly much larger value of the negative correction, namely

1884.3 – 1885.7;
$$2\delta c = -1$$
".10.
1894.8 – 1897.0; $2\delta e = -0$ ".90.

But an examination of the table of mean-period inequalities of $2\delta c$, or of h, shows that these are in good agreement with Cowell's mean correction.

	1884-1885.	1894-1897.
Inequality of $2\delta e = h$	-0. 45	-0. 33
Cowell's constant	-0. 65	-0. 65
Apparent correction	-1. 10	-0. 98

As these provisional corrections are not intended as the basis of a theory, but only to bring the tables into as near an accord with observations as is practicable, I have accepted Cowell's result,

$$\delta l = -0^{\circ\prime}.65 \sin g,$$

as a correction to Hansen's tabular ecliptic longitude.

SECTION II.—CORRECTIONS TO THE LATITUDE, SEMIDIAMETER, AND PARALLAX.

23. The most important deviation of Hansen's tabular latitude from pure theory consists in the constant correction of -1".00 to the latitude on account of a supposed noncoincidence of the centers of gravity and figure of the moon. It seems probable that the seeming necessity for this correction arose partly because Hansen used too small a value of the moon's parallax, and partly from systematic errors in the observations of declination with which his comparisons were made. Owing to the serious doubt which may be entertained of the reality of the correction, it seems advisable to take it out, leaving the question involved in it for determination by equations of condition. This course is the more advisable from the correction being so easily made. We shall therefore apply to the provisional comparisons the constant correction

$$\delta\beta = +1$$
".o.

In "Action II," section 67, page 138, I have found the following terms in the combined effect of the motion of the ecliptic and the action of the planets upon the moon's node and inclination:

$$\delta \otimes = +(2''.55-o''.24T) \sin \otimes -(17''.33+o''.o1T) \cos \otimes,$$

 $\delta i = -(o''.228-o''.o22T) \cos \otimes -(1''.538+o''.oo2T) \sin \otimes,$

T being reckoned from 1800. These give the inequality of the latitude

$$\delta \beta = -(0''.228 - 0''.022T) \sin \tau + (1''.546 + 0''.002T) \cos \tau$$

a Astronomical Papers of the American Ephemeris, Vol. I, p. 69.

v being the true longitude in orbit of the moon. The argument v is also that of a term due to the ellipticity of the earth of which Hill's value is equivalent to

$$\delta\beta = -8^{\prime\prime}.726 \sin \nu$$
.

Applying to this the terms just found we have as a result of theory,

$$\delta\beta = -8''.954 \sin v + 1''.546 \cos v + (0''.022 \sin v + 0''.002 \cos v)$$
T.

The corresponding term in Hansen's tables is

$$\delta\beta = +8''.764 \sin (v+169^{\circ} 51')$$

= $-8''.627 \sin v+1''.544 \cos v$.

Thus the theoretical correction to the tabular latitude is

$$\delta\beta = -(0''.327 - 0''.022T) \sin \nu$$
;

but the correction is doubtful by its entire amount owing to the uncertainty of Hill's value of the earth's radius of gyration, and need not be considered until after the comparison with observations. Its effect on the moon's declination is practically the same as that of a correction to the tabular obliquity of the ecliptic.

Hansen cites, but does not tabulate, a secular variation equivalent to

$$\delta \beta = +0$$
".039 $T \sin \nu + 0$ ".005 $T \cos \nu$,

which is nearly twice as great as that given above. The latter is too small to demand consideration in the present connection.

Cowell finds a correction of -0''.30 to Hansen's inclination.^a This is presumptively real, but it is not necessary to apply it in the present work.

As to the value of $\delta 3$ to be used, we remark that the only correction which we apply in advance to the ecliptic latitude is

$$\delta \beta = + 1'' + \sin i \cos (v - \Omega) \delta l$$
.

When we use m' the second term of this expression is unnecessary, its effect being included in the correction Δv . The preliminary correction of β actually required is the constant $+\iota''$ simply. This is in strictness applicable only to the ecliptic latitude, because it is from this latitude that Hansen's tables subtract the constant. But it may without appreciable error be applied in the direction at right angles to the plane of the orbit, and therefore used for $\delta\beta'$.

The correction of D for the obliquity may be easily computed by using the coefficient of $\Delta \varepsilon$ in the equations of condition. But as we shall hereafter find it convenient to compute separate values of $\Delta \varepsilon$ for various groups of the equations of condition, this correction may in most cases be omitted and applied to the respective values of $\Delta \varepsilon$ formed from the groups of equations.

24. From a consideration of the work of J. Peters,^b L. Struve,^c and H. Batterman,^d I have adopted as the best value of the semidiameter

$$s_0 = 932^{\prime\prime}.58.$$

d Beobachtungs-Ergebnisse der Königlichen Sternwarte zu Berlin, Hefte Nr. 5 und 11.

a Monthly Notices, R. A. S. Vol. LXV, p. 564, April, 1905.

b Ast. Nach. CXXXVIII, S. 147.

c Ast. Nach. CXXXV, S. 175.

In the original work the geocentric semidiameter was computed from

$$s = [4.75002] \sin \pi$$

giving, for the constant of $\sin \pi = 3422''.07$, $\log \sin \pi_0 = 8.21986$;

$$s_0 = 933''.\infty$$
.

The adopted semidiameter therefore requires the correction

$$\delta s_0 = -0''.42.$$

which may be takén as constant.

Hansen uses $s_0 = 934$ ".08, correction = -1".50. At Greenwich since 1900 a correction of -1".43 has been applied to Hansen's value, leaving a subsidiary correction of -0".07.

With Hansen's parallax and $s_0 = 932^{\circ}.58$, we have for the geocentric semidiameter

$$s = [4.74982] \sin \pi$$
.

But if we increase Hansen's parallax by o".40, a correction given by theory, we have

$$s = [4.74977] \sin \pi$$
.

25. The preceding corrections being geocentric, it is now necessary to consider, in addition to them, those of the moon's parallax. We have at the base of these corrections a system of connected quantities requiring a careful study of their relations in order to determine what form of correction for parallax is best. These are the dimensions of the geoid, its compression, the difference between the astronomical and geometrical latitude of the point of observation, which we may regard as the deviation of the plumb line at the point, the intensity of gravity, and the parallax of the moon, which it is common to refer to the earth's equatorial radius.

Whether, in the present investigation, it will be profitable to attempt the determination of any of these quantities from the occultations can be settled only after the latter are discussed. Whatever the decision on this point, it is sufficient to our present purpose to reduce all the apparent positions of the moon to the best attainable value of the quantities growing out of the parallax of the moon.

Let us first consider local deviations of the plumb line. In astronomical investigations it has always been tacitly assumed that the geographic and the astronomical terrestrial longitudes of the station are identical. This can be the case only when the direction of the plumb line intersects the earth's axis of rotation. Since local deviations in the direction of gravity are as likely to affect the longitude as the latitude, the two effects are equally worthy of study. Using round numbers, the maximum change in the direction of the moon caused by such a deviation is about one-sixtieth of the change in the geocentric position of the observer; in other words, 1' of deviation of the plumb line will correspond to a maximum error of less than 1" in the position of the moon, and therefore to an average error yet smaller. Since the deviations amount only to a very few seconds, except in mountainous regions, it follows that the error thus produced in the positions of the moon may be neglected, and that we may adhere to the theory of the ellipsoidal figure of the geoid in all discussions of the observations of the moon having an astronomical and not a geodetic purpose.

We must still use the best attainable value of the compression of the geoid, and it will then be a question whether a new determination of the compression can be inferred from the occultations. Professor Battermann in the discussion of the second series of his occultations has taken an

important step in this direction by introducing into his equation two unknown quantities which depend upon the parallax and the compression. Whether it is practicable to utilize the work in this way remains to be seen.

A defect in astronomical practice consists in taking the equatorial radius of the earth as the fundamental length to which the moon's parallax is referred. As a matter of fact, the mean radius, for which we may take indifferently the mean of the three axes, or the radius at mean latitude, where $\sin^2 \varphi' = \frac{1}{3}$, should be, in theory at least, adopted as the radius of reference. It is practically this radius which is best determined by geodetic measurements, and for which the intensity of gravity can best be ascertained through observations of the pendulum. Accepting this, we have first to consider the error to which the parallax of the moon referred to this radius is liable when determined from gravitational theory. This method rests on the equation

$$a^3n^2 = M + m$$

M and m being the respective masses of the earth and moon in gravitational units; a the moon's mean distance and n its mean sidereal motion in the unit of time. The value of M is derived from pendulum observations. When the formulæ are reduced to their most concise form we find that the equation which gives π_1 , the mean parallax of the moon, in terms of l_1 , the length of the seconds pendulum at mean latitude, and ρ_1 , the mean radius of the earth, is of the form

$$\pi_1^3 = K \frac{\rho_1}{I_1}$$

K being a constant of which the value is known with all necessary precision. We may regard the mean radius of the geoid, as determined from geodetic measures, to be accurate within a few hundred meters, say 0.00005 of its whole amount. This proportional error would imply an error of more than 318 meters in the determination, which seems to be the probable limit. The proportional error of l_1 must, I suppose, be smaller than this. The proportional error in π_1 being only one-third of that in ρ_1 and l_1 , the maximum error which we have to fear in this quantity can scarcely be much greater than

$$\pm 0.000025\pi_1 = \pm 0''.09.$$

As we can not hope to detect so small an error as this from observations of the moon, we may regard the parallax of the latter, referred to the mean radius of the earth, as a known quantity not subject to correction. It follows that the only quantity which remains so subject will be the compression of the geoid. We have, therefore, to express the parallactic corrections in terms of the compression. Putting

 ρ_1 , the mean radius of the earth;

a, the compression;

the radius in latitude φ' is, when all powers of α above the first are neglected,

$$\rho = \rho_1 \left[1 + \alpha \left(\frac{1}{3} - \sin^2 \varphi' \right) \right]. \tag{23}$$

The author has published computations of the constant of the moon's parallax from gravitational theory first in "Elements and Constants," and then in the Encyclopædia Britannica, supplement to the ninth edition. It seems desirable to repeat the computation from the most recent data bearing on the result. I am indebted to Professor Helmert for the following numbers expressing the most probable form and dimensions of the geoid from all data at present available. Along with

a The Elements of the Four Inner Planets and the Fundamental Constants of Astronomy.

them are given for comparison the numbers of Clarke, Bessel, and Listing:

•	а	ь	$ ho_1$	α
Helmert Clarke Bessel Listing H – C H – B	6377980 6378249 6377397 -269 +583	6356596 6356515 6356079 + 81 +517	6370843 6370997 6370282 -154 +561	1+298.26 1+293.46 1+299.15 1+288.48

The length of the seconds pendulum derived by Helmert a is

$$L=0^{m}.990918 (1+0.005310 \sin^{2} \varphi),$$

from which follows for the force of gravity, affected by centrifugal force,

$$g = 9^{m}.77997 (1 + 0.005310 \sin^{2} \varphi).$$

The expression for the centrifugal force is

$$\Delta g = 0^{\text{m}}.03392 \ \rho \cos \varphi' \cos \varphi$$
.

At mean latitude $(\sin^2 \varphi' = \frac{1}{3})$ these data give

Apparent gravity	9.79743
Centrifugal force	0.02253
Actual gravity	9.81996

I adopt from "Elements and Constants," page 193,

Mass of moon: Mass of earth=1:81.45,

and from page 194,

Motion of moon in a Julian century, 1336.85 rev.,

giving for motion in arc in one second of time

$$\log n = 4.425159 - 10.$$

Proceeding as in Elements and Constants, section 97, we find that when any radius ρ of the earth is expressed in meters, the corresponding horizontal parallax π of the moon is given by the equation

$$\sin \pi = [1.415232 - 10]\rho$$

Hence, for the mean radius ρ_1 ,

$$\log \sin \pi_1 = 8.219429$$
,

or expressed in seconds,

$$\sin \pi_1'' = 3418''.65.$$

For the constant of the sine of the equatorial horizontal parallax we then have

$$\sin \pi_0'' = 3418''.65 (1 + \frac{1}{3}\alpha).$$
 (24)

The transformation of Hansen's parallax shows, that in his tables,^b

$$\sin \pi_0'' = 3422''.07.$$

a Höheren Geodäsie, II, p. 241.

b Astronomical Papers of the American Ephemeris, Vol. I, Part II.

Using the parallax of Hansen's tables, and a compression a_0 , the adopted constant of the sine of the horizontal parallax at latitude φ' will be equivalent to

$$3422''.07 (1-a_0 \sin^2 \varphi'), \tag{25}$$

while the value found above is

$$3418''.65 \left[1+\alpha \left(\frac{1}{3}-\sin^2\varphi'\right)\right],$$
 (26)

a being the true value of the compression, which appears in the equation as an indeterminate quantity. The difference between these last two expressions will be the symbolic correction to the adopted parallax, practically that of Hansen's tables. Putting

$$\delta a = a - a_0$$

the correction of the adopted compression, the total correction of the local horizontal parallax, or of ρ sin π_0 is, with all necessary precision,

$$\Delta(\rho \sin \pi_{o}) = -3''.\dot{\gamma}2 + 1140'' \ \alpha + \sin^{2}\varphi' \ (3''.42 \ \alpha_{o} - 3419'' \ \delta\alpha). \tag{27}$$

- 26. Our next step will be to express the corrections to the adopted parallaxes in longitude and latitude. For this purpose approximate expressions for the parallaxes themselves will suffice. Using the notation of §6, put
 - π , the horizontal parallax for the arbitrary unit-radius;
 - ρ , the radius of the earth for the place;
 - π_l , the parallax in longitude;
 - π_b , the parallax in latitude;

neglecting quantities of the second order as to the latitude and parallax, we shall have

$$\pi_l = \rho \sin \pi \cos \beta \sin (l - \lambda),$$
 (28)

where β and λ are the coordinates of the observer. Substituting for $\cos \beta \cos \lambda$, and $\cos \beta \sin \lambda$, their values in terms of equatorial coordinates, and τ the sidereal time, namely

$$\cos \beta \cos \lambda = \cos \varphi' \cos \tau,
\cos \beta \sin \lambda = \cos \varphi' \sin \tau \cos \epsilon + \sin \varphi' \sin \epsilon,$$
(29)

to which we add for reference

$$\sin \beta = \sin \varphi' \cos \varepsilon - \cos \varphi' \sin \varepsilon \sin \tau$$

we shall have

$$\pi_i = \rho \cos \varphi' \sin \pi \left[\cos^2 \frac{1}{2} \varepsilon \sin (\ell - \tau) + \sin^2 \frac{1}{2} \varepsilon \sin (\ell + \tau)\right] \\
-\rho \sin \varphi' \sin \pi \sin \varepsilon \cos \ell.$$

The last term of the first line is quite small and is also without systematic effect upon the result; we may therefore omit it. The original expression (28) for π_i is too small by a factor having the average value of 0.01. We may therefore put for our immediate purpose

$$π_l = +0.97 \rho \cos \varphi' \sin \pi \sin (l-\tau)$$

$$-0.40 \rho \sin \varphi' \sin \pi \cos l.$$

Putting

r, the geocentric distance of the moon in terms of the unit radius of the earth;

r', the distance of the moon from the observer;

the apparent latitude b' is given by the equation

$$r' \sin b' = r \sin b - r \rho \sin \pi \sin \beta$$
,

or, since $r \sin \pi = 1$,

$$r' \sin b' = r \sin b - \rho \sin \beta$$
.

Putting $\Delta r = r' - r$, and $\cos b = 1$, we have

$$b' = b + \pi_b,$$

$$r' = r + \Delta r,$$

then, neglecting quantities of the second order as to the parallax,

$$\pi_b = b' - b = -\frac{\rho}{r} \sin \beta - \frac{\Delta r}{r} \sin b.$$

The maximum range of sin b is between the limits ± 0.09 and, being as often positive as negative, its systematic effect as a factor of Δr will be insensible. We may therefore drop it entirely. Putting as before, sin π for 1:r, we shall now have

$$\pi_b = -\rho \sin \pi \sin \beta.$$

Putting for $\sin \beta$ its value as already given, and replacing $\sin \varepsilon$ and $\cos \varepsilon$ by their numerical values, gives

$$\pi_b = -0.92 \ \rho \sin \varphi' \sin \pi + 0.40 \ \rho \cos \varphi' \sin \pi \sin \tau.$$

The compression which I shall use as definitive in the present work is that of Helmert, as privately communicated,

$$a=1:298.2=0.003353.$$

This gives, from (24), for the constant of the sine of the equatorial horizontal parallax

$$\sin \pi_0'' = 3422''.47,$$

showing a correction of +0".40 to the Hansenian value. The correction of the actual parallax at any place will depend also on the adopted compression. Taking the earth's equatorial radius as unity we have, approximately,

$$\rho \sin \varphi' = (1 - 2\alpha) \sin \varphi + \alpha \sin^3 \varphi,$$

$$\rho \cos \varphi' = \cos \varphi (1 + \alpha \sin^2 \varphi).$$

It follows that the corrections of these coordinates for the compression are

$$\Delta (\rho \sin \varphi') = -2\delta \alpha \sin \varphi + \delta \alpha \sin^{3} \varphi,
\Delta (\rho \cos \varphi') = +\delta \alpha \sin^{2} \varphi \cos \varphi.$$
(30)

Three values of α have been used in the course of the reductions, those of Bessel, Clarke, and Listing:

Bessel	$a_0 = 1:299.15 = .003343$	$\therefore \delta u = +.000010$
Clarke	$a_0 = 1:293.46 = .003408$	$\delta a =000055$
Listing	$a_0 = 1 : 288.48 = .003466$	$\delta a =000113$

We use the notation

$$h' = \rho \sin \varphi' \sin \pi,$$

 $k' = \rho \cos \varphi' \sin \pi.$

Disregarding negligible quantities, we have the corrections

$$\Delta h' = \sin \pi \, \Delta(\rho \sin \varphi') + \sin \varphi \, \delta \pi,$$

$$\Delta k' = \sin \pi \, \Delta(\rho \cos \varphi') + \cos \varphi \, \delta \pi.$$

From (30) and $\delta \pi = +0^{\prime\prime}$.40, we now have

$$\Delta h' = (0''.40 - 2 \, \delta a \, \sin \, \pi) \, \sin \, \varphi + \delta a \, \sin \, \pi \, \sin^{3} \varphi,$$

$$\Delta k' = 0''.40 \, \cos \, \varphi + \delta a \, \sin \, \pi \, \cos \, \varphi \, \sin^{2} \varphi.$$

From the three values of $\delta \alpha$ given above we have the following results:

When Bessel's compression has been used:

$$\Delta h' = +0''.33 \sin \varphi + 0''.03 \sin^3 \varphi,$$

$$\Delta k' = +0''.40 \cos \varphi + 0''.03 \cos \varphi \sin^2 \varphi.$$

When Clarke's compression has been used:

$$\Delta h' = +0''.78 \sin \varphi - 0''.19 \sin^3 \varphi,$$

 $\Delta k' = +0''.40 \cos \varphi - 0''.19 \cos \varphi \sin^2 \varphi.$

When Listing's compression has been used:

$$\Delta h' = +1''.17 \sin \varphi - 0''.39 \sin^3 \varphi,$$

 $\Delta k' = +0''.40 \cos \varphi - 0''.39 \cos \varphi \sin^2 \varphi.$

In all cases the corrections to the apparent longitude and latitude of the moon are

$$\Delta l' = +0.97 \, \delta k' \sin (l-\tau) -0.40 \, \delta h' \cos l,$$

 $\Delta b' = +0.40 \, \delta k' \sin \tau -0.92 \, \delta h'.$

To the equatorial coordinates the corrections are

$$\cos \delta \Delta a = -\delta k' \sin (\tau - a),$$

$$\Delta \delta = -\delta h' \cos \delta + \delta k' \sin \delta \cos (\tau - a).$$

Section III.—Recapitulation of Theoretical Corrections to the Geocentric Position of the Moon Given by Hansen's Tables.

Corrections to the Longitude and Latitude.

- 27. (A) To the mean longitude.—These are the secular and long-period corrections expressed in §15 and tabulated on page 30.
 - (B) To the true longitude.—These are expressed in the form

$$\delta l + h \sin g + k \cos g$$
.

In the following expressions the constituents π , g', J, M, and V are reckoned from the earth's perihelion of 1800 ($\pi'=99^{\circ}.5$ for the equinox of 1800, or 100°.2 for that of 1850). t is expressed in Julian years counting from 1850.0:

```
Terms of Mean Period.
                                                        Argument.
\delta l = +0.38 \sin{(\Omega + 73^{\circ}.6)}
                                                    320.8+19.34151ª
    +0.26 \sin (2\pi - 2J)
                                                   239.8+20.6551
    +0.26 \sin (2\pi - 3J + 268^{\circ}.2)
                                                    92.4 + 9.694t^a
    +0.18 \sin (1+22^{\circ}.5)
                                                    82.2 + 30.349t
    +0.05 \sin (2M - g' + 329^{\circ})
                                                   295.2 + 22.812t
    +0.07 \sin (2\pi + 3V - 5g')
                                                    72.6+36.947t
    -0.45 \sin \pi
                                                   179.5 + 40.673t
    +0.13 \sin (g+2\pi-20V+19g'+13^{\circ})
                                                   147.2+10.340/4
    +0.11 \sin (g-26V+29g'+51^{\circ})
                                                   255.0+ 2.826ta
h = -0.65
    -1.15 \cos (2\pi - 2I)
                                                   239.8 + 20.655t
    +0.44 \cos (2\pi - 3J + 268^{\circ}.0)
                                                    92.6+ 9.694t°
    -0.65 \cos (2\pi + 3V - 5g')
                                                    72.6+36.9471
k = +0.13 T^2
    -1.15 \sin (2\pi - 2J)
                                                   239.8+20.655t
    +0.44 \sin (2\pi - 3J + 268^{\circ}.0)
                                                    92.6+ 9.6941
    -0.65 \sin (2\pi + 3V - 5g')
                                                    72.6+36.947
    +0.45 \sin (\Omega - 11^{\circ}.3)
                                                    45.1 + 19.341t^a
                         Terms of Short Period.
                                                [L=V-E=v-g']
               \delta l = + 0.22 \sin L
                    + 0.35 \sin (2L - g' + 164^{\circ}.3)
                    + 0.20 \sin (3L - g' + 168^{\circ}.3)
                    + 1.60 sin D
                    -0.15 \sin (D + g')
                    + 0.59 \sin (D - g)
                    + \text{ o.10 sin } (D + g)
                    + 0.23 \sin \varrho'
                    - 0.21 sin 2D
                    - 0.22 \sin (2D - g)
                    -0.27 \sin (g - 3g' + 2\pi)
                    -0.23 \sin (g + 2\pi - 3e' + J)
                    + 0.19 \sin (2J - g' + 342^{\circ})
                    -0.17 \sin (g + 2\pi - 2V)
                    + \text{ o.17 sin } (g - v + g')
                    -0.15 \sin (g + v - g')
                    + 0.15 \sin (g + 2\pi - V - g')
                    + 0.14 \sin (g + 2\pi + 2V - 4g')
                    + \text{ o.14 sin } (g + g' - J)
                    -0.16 \sin (g-g'+J)
                    -0.17 \sin (2g+2\pi-3g'+1)
                    -0.14 \sin (2g+2\pi-2V).
```

^aIn these terms the supplement of the argument is used in order to make the motion positive. The third term of h thus becomes — 0'.44 cos Arg.

Exceptional Term (1862-1882).

$$\delta l = + o''.62 \sin(2g - 4g' + 2\omega - 4\omega').$$

(C) To the latitude.—This takes the form

$$\delta\beta = +1$$
". $\infty + \sin i \cos (v - \Omega) \delta l$,

where v is the moon's true longitude in orbit.

The preceding corrections were computed and tabulated for all the dates of observation with results found in Chapter V. As it is the author's intention to issue improved tables based on the definitive results of the work, it seems unnecessary to publish the preliminary tables.

The corrections to the position of the star, if necessary, are to be found, and need not be considered here.

With the corrected apparent coordinates of the moon and star, we may now compute the value of D for the corrected provisional theory by the formulæ of §§ 8 or 9. But since nearly all the occultations to be used have been reduced in some form, we may generally find a correction to D by the formulæ of §10.

Corrections to the Right Ascension and Declination.

28. As longitudes and latitudes alone were used up to 1861 in the independent reductions, no corrections to the equatorial coordinates need be considered before that year. But after 1861, and in some earlier cases when published reductions are used, it may be desirable to transform the corrections of the ecliptical system into those of the equatorial system. This requires that we also consider the correction to the obliquity of the ecliptic.

In most of the reductions the R. A. and Decl. of the moon are taken from the British Nautical Almanac. Here the obliquity of Bessel's Tabulæ Regiomontanæ was used from 1835 until 1862, and that of Leverrier from 1863 until 1900. The reduction to that of Newcomb's Tables is found as follows:

Bessel	$\varepsilon = 23^{\circ} 27' 31''.95 - 0.''457t$
Leverrier	$\varepsilon = 23^{\circ} 27' 31''.83 - 0.''4759t$
Newcomb	$\varepsilon = 23^{\circ} \ 27' \ 31''.68 - 0.''4684t$

Reduction of Bessel
$$\delta \epsilon = -0''.27 - 0''.0114t$$

Reduction of Leverrier $\delta \epsilon = -0''.15 + 0''.0075t$

where t is counted in years from 1850. The corrections for decennial epochs are as follows:

Reduction of the Obliquity.

Be	ssel.	Leve	errier.
Year.	Δε	Year.	Je
1830 1840 1850 1860 1870	-0.04 -0.16 -0.27 -0.38 -0.50	1860 1870 1880 1890 1900	" -0.08 0.00 +0.08 +0.15 +0.23

The corrections of the longitude, latitude, and obliquity may be transformed to those of R. A. and Decl. by well known formulæ. The coefficients of the transformation of δl and δb are tabulated in the author's work of 1876, Investigation of Corrections to Hansen's Tables of the Moon, etc., and also in his Compendium of Spherical Astronomy, Appendix, Table XXI. But instead of computing Δa and $\Delta \delta$, he has generally preferred to compute at once the correction to D. In doing this we remark that the small corrections of short period of which we have given the expressions may be applied indifferently to the longitude in orbit or to the ecliptic longitude. But the secular corrections and those of long period are applicable to the longitude in orbit. The correction to the distance of the moon and star may therefore in most cases be most conveniently computed by the equation (13) of §10.

CHAPTER IV.

DATA RELATING TO STATIONS AND ORIGINAL OBSERVATIONS.

29. The great majority of the observations have been taken from published sources so well known and generally accessible that it does not seem necessary to cite the original times of the occultations in detail. The requisite original data for each occultation are the position of the station and the mean time at which the occultation was observed. There are, however, a few cases in which the positions of the station had to be specially investigated, and other cases in which the mean time had to be computed. In these cases some details of the work may be useful, as may also be some statements respecting the sources and the use made of them.

All the observations before 1750 being fully discussed in the Researches of 1878, the present statement refers only to the period since 1750.

The Greenwich observations during the time of Bradley, Bliss, and Maskeleyn are found in the published volumes, mostly scattered in their proper chronological order among the meridian observations. Generally, the apparent time of the occultation is given, making necessary the application of the equation of time.

The Paris observations for 1801 and a few following years are found in the regular volumes published by Arago.

The richest of all the sources is the Astronomische Nachrichten, most of the volumes of which contain observations of occultations.

Some other sources are: Memoirs and Monthly Notices of the Royal Astronomical Society; The Astronomical Journal; Sternbedeckungen und Mondsterne beobachtet auf der K. K. Sternwarte in Krakau, herausgegeben von Dr. Max. Weisse, director, Krakau, 1855; Bestimmungen des Monddurchmessers aus Neun Plejadenbedeckungen des Zeitraumes 1839 bis 1876, mit gleichzeitiger Ermittlung der Oerter des Mondes. (Inaugral-Dissertation der mathematischen und naturwissenschaftlichen Facultät der Kaiser-Wilhelms-Universität Strassburg zur Erlangung der Doctorwürde vorgelegt von Friedrich Küstner aus Görlitz, Halle, 1880.) Beobachtungs-Ergebnisse der Koniglichen Sternwarte zu Berlin, Hefte 5, 11, und 13, von Dr. H. Battermann, 1891–1910. Observations made at the [temporary] Naval Observatory, Washington, by Lieut. J. M. Gilliss, U. S. Navy, Washington, 1846.

The regular annual volumes of the Greenwich, Cambridge, Washington, and Radcliffe (Oxford) Observatories need only be mentioned.

Remarks on the Stations and Series of Occultations.

30. Cambridge, 1791-1831.—The observations of this series were published by Airy in the Memoirs of the Royal Astronomical Society, Volume XXII. They are of much value, owing to their early date. An undue number of them are, however, discordant to an extent that can be accounted for only by errors in the times as published, which probably correspond to the times recorded. The most notable examples of those among the earlier observations are given by the occultation of a Tauri on March 27, 1792, and θ Libræ on April 9, both of which are wrong by several minutes. All the observations of 1812 are discordant by corresponding amounts, though the clock determinations appear good.

Digitized by Google

The longitude given by Airy for the observatory of St. Johns is 28°.64 E., but I actually used 27°.9—for what reason I can not now say.

Habana.—A valuable series by Don Ferrer is found in the Memoirs of the Royal Astronomical Society, Volume IV. Don Ferrer gives the latitude of his observatory as 23° 8′ 17″.5 and states that it is 23″.6 east of the tower of Morro Castle.

Harkness determined a station

$$\varphi = 23^{\circ}$$
 8' 3".0,
 $\lambda = 0^{h}$ 21^m 12^s.54,

west of Washington, which was 1' 17".9 south and 0".85 east of Morro Light;

Hence Morro Light
$$\varphi=23^{\circ}$$
 9' 21"
 $\lambda=0^{h}$ 21^m 13^s.39 west of Washington.
 $\lambda=5^{h}$ 29^m 25^s.5 west of Greenwich.
Red. to Ferrer's station $-1^{s}.6$
Ferrer's station $\lambda=5^{h}$ 29^m 23^s.9
 $\varphi=23^{\circ}$ 8' 17."5

It is assumed that the tower of Morro Castle=Morro Light.

Dorchester, Mass.—The observations by William C. Bond are found in the Memoirs of the American Academy of Arts and Sciences.

Cracow.—Weisse gives as the position of his observatory

$$\varphi = +50^{\circ} 3' 50''.00,$$

 $\lambda = -1^{h} 10^{m} 28^{s}.41.$

It may be assumed that this position is the same as that of the modern university observatory, which has been adopted from the ephemerides.

Cape of Good Hope.—The observations, with their complete reduction, are found in the publications of the Cape Observatory. For the reduction of those previous to 1863 the writer supplied the longitudes and latitudes of the moon, as computed from Hansen's tables.

Washington.—There are three principal stations in Washington. The first, the old observatory of Captain Gilliss, at which observations were made during the years 1839–1842, in connection with the Wilkes's exploring expedition. The second is the old Naval Observatory, and the third the new observatory. The observations at the second point began in 1862.

There is also an unpublished series of observations made at a locality known as Wiesner Farm, by two of my assistants, supplied with all the instruments necessary for accurate work, and who were supposed to be quite capable of making good observations. Their probable error is, however, unduly large, and accordingly no use has been made of them.

Leipzig.—There are two stations at which observations were made of which the second is distinguished as Nr. Leipzig.

Strassburg.—Observations were made at both the old and the new university observatories, which are designated in the accompanying list as (1) and (2). They are, however, not distinguished in what follows.

Cobham, England.—The observations made here were communicated by the observer.

Reduction to Geocentric Coordinates.

31. From what has already been remarked (Chapter III, §26), it will be seen that three different values of the compression were used in the earlier reductions, and a fourth, that of Helmert, in the final ones. All the earlier values were reduced to the latter.

The important question whether the actual figure of the geoid is satisfactorily determined from observations of gravity is one as to which the author feels in doubt. It is to be hoped that the recent extended measures of arcs, both of the parallel and of the meridian, will result in settling this question. It is only necessary here to remark that all the older reductions for parallax were reduced to Helmert's compression and to the writer's determination of the constant, as given in Chapter III.

The adopted mean times of the phases observed are, before 1847, generally the same as those for which the positions of the moon are computed, as found in the next chapter.

List of Geographical Positions.

32. The adopted longitudes from Greenwich, the geographic latitudes, and the geocentric coordinates as computed with Helmert's compression are shown in the following table.

The years of observation in the last column are only approximate summary statements, intended to give a general idea of the series used.

Stations and Series of Occultations.

Station.	West Longitude.	Lat itude .	$\rho \sin \varphi^{\rho}$.	$\rho\cos\varphi'$.	Period.
Paris Greenwich Cambridge, England Habana Dorpat	h m s -0 9 21.0 0 0 0.0 -0 0 27.9 +5 29 23.9 -1 46 53.5	0 , +48 50. 2 +51 28. 6 +52 12. 9 +23 8. 3 +58 22. 8	9. 87461 9. 89138 9. 89579 9. 59165 9. 92835	9. 81919 9. 79526 9. 78816 9. 96380 9. 72062	1810-1829 1753-1814; 1827-1831; 1847-1908 1791-1831; 1847-1860 1808-1812 1812-1826
Dorchester	+4 44 16. 2	+42 19.0	9. 82590	9. 86956	1825-1839
Berlin	-0 53 34. 8	+52 30.3	9. 89750	9. 78532	1826-1846; 1876-1903
Cracow	-1 19 50. 3	+50 3.9	9. 88261	9. 80834	1825-1854
Cape of Good Hope	-1 13 55. 0	-33 56.1	9. 74436n	9. 91936	1834-1907
Washington (1)	+5 8 2. 1	+38 53.5	9. 79551	9. 89174	1839-1842
Washington (2) Washington (3) Cambridge, U. S. (1) Cambridge, U. S. (2) Leiden	+5 8 12.1	+38 53.6	9· 79553	9. 89173	1862-1884
	+5 8 15.8	+38 55.2	9· 79578	9. 89157	1906-1908
	+4 44 27.9	+42 22.2	9· 82635	9. 86919	1840-1844
	+4 44 31.0	+42 22.8	9· 82643	9. 86913	1845-1850
	-0 17 56.2	+52 9.3	9· 89544	9. 78874	1857-1872
Radcliffe	+0 5 2.6	+51 45.6	9. 89309	9. 79256	1862-1876
Göttingen	-0 39 46.3	+51 31.8	9. 89171	9. 79476	1868-1877; 1887-1895
Kremsmünster	-0 56 31.6	+48 3.4	9. 86938	9. 82587	1869
Madrid	+0 14 45.1	+40 24.5	9. 80947	9. 88229	1869
Altona	-0 39 46.2	+53 32.8	9. 90347	9. 77486	1871
Neuchatel	-0 27 49 9	+47 0.0	9. 86201	9. 83454	1872
Leipzig	-0 49 34 0	+51 20.1	9. 89052	9. 79660	1869-1876
Nr. Leipzig	-0 49 29 6	+51 21.8	9. 89069	9. 79634	1876-1880
Nikolaieff	-2 7 53 8	+46 58.4	9. 86180	9. 83478	1873-1883
Kiel	-0 40 35 8	+54 20.5	9. 90787	9. 76660	1876
Strassburg (1) Strassburg (2) Vienna Hamburg Prague	-0 31 2.5	+48 34.9	9. 87290	9. 82138	1873-1880
	-0 31 4.7	+48 35.0	9. 87291	9. 82137	1881-1898
	-1 5 31.7	+48 12.6	9. 87039	9. 82454	1869-1879
	-0 39 53.8	+53 33.1	9. 90349	9. 77480	1882-1896
	-0 57 40.3	+50 5.3	9. 88275	9. 80813	1883-1898
Pola	-0 55 23.1	+44 51.8	9. 84625	9. 85124	1886-1901
Kasan	-3 16 29.0	+55 47.4	9. 91558	9. 75091	1890-1907
Engelhardt	-3 15 16.5	+55 50.3	9. 91583	9. 75037	1904-1907
Padua	-0 47 29.2	+45 24.1	9. 85033	9. 84716	1891-1896
Santiago	+4 42 46.2	-33 26.7	9. 73878n	9. 92182	1892-1897
Evanston	+5 50 42.3	+42 3.6	9. 82375	9. 87132	1897-1901
Wilhelmshaven	-0 32 35.2	+53 31.8	9. 90338	9. 77501	1898-1904
Cobham	+0 1 2.6	+51 19.7	9. 89048	9. 79667	1902-1904
Utrecht	-0 20 31.0	+52 5.2	9. 89503	9. 78941	1904-1905
Tokio	-9 18 58.0	+35 39.3	9. 76317	9. 91034	1905-1906
Jena	-0 46 21.9	+50 56.3	9. 88808	9. 80033	1 1905
Königsberg	-1 21 59.0	+54 42.8	9. 90989	9. 76264	1 1905-1907

CHAPTER V.

POSITIONS OF THE MOON FROM HANSEN'S TABLES, WITH REDUCTION OF THE LONGITUDES TO THE PROVISIONAL THEORY.

33. The foundation for the whole theory consists in positions of the moon computed from Hansen's tables. The only substantial modification made is in the omission of the nutation. As the effect of this is eliminated in comparing the position of the moon and of the occulted star, the geocentric quantities will remain unchanged if the nutation is omitted from both bodies. In theory the correction for parallax will be slightly altered, but the alteration is too minute to make it worth while to apply a nutation which is substantially eliminated from the final result. Withal it would be necessary, if nutation were retained, to correct that of Hansen for reduction to the value used in the ephemeris of the star. By completely ignoring it these complications are avoided.

When a long series of positions are to be computed the work may be abridged by various devices described in the Researches of 1878, pages 189–195. These are the following:

- (A) Formation of the arguments of single entry.—Since the arguments are expressed in days, and, small secular terms aside, increase uniformly with the time, all arguments for one epoch may be derived from those for a preceding epoch by the addition of the interval, periods being subtracted when necessary. An indefinite series of arguments may be thus formed, but it is advisable not to jump over long intervals in the series. The correctness of the arguments may be proved by computing the values for the two extreme epochs from the tables and comparing those for the end of the series with the values derived by continuous addition.
- (B) Double-entry arguments.—As these remain constant throughout each separate period of the fundamental argument g, it is only necessary to form a series of arguments, and add or subtract constants dependent on the intervening periods of g. The device adopted for this process is described in the former work.
- (C) Terms of long period.—It is of course much easier to compute the values of these terms for intervals of 10 years, or for the beginning of each year, and then interpolate them, than it is to compute each separately. The following table, giving the tabular quantities of long period, is a continuation of that terminating on page 194 of the Researches of 1878.

Here Δg is the sum of Hansen's Venus-terms of long period, as derived from Tables XLI and XLII, arguments 30 and 31, without modification.

The next two columns give the corresponding corrections of arguments 32 and 33.

The last three columns contain data for the correction on account of secular acceleration, as explained on page 191 of the Researches of 1878.

Digitized by Google

Continuation of Table in Researches of 1878, pages 192-194.

Year.	⊿g	J ₃₂	333 ل	$\frac{d \Delta g}{dt}$	d132 dt	d133 dt
1830	4561	727	675	- 20. 8	-5.4	-3.6
1831	4421	711	660	- 19. 7	−5.4	-3.5
1832	4283	694	645	-18.9	-5.4	-3.4
1833	4146	679	631	-17.5	-5.4	-3.4
1834	4012	663	616	-16.4	-5.3	-3.3
1835	3879	648	602	-15.1	-5.3	-3.2
1836	3749	633	588	-14.0	-5.3	-3.1
1837	3621	618	574	-12.6	-5.2	-3. o
1838	3496	· 603	560	-11.5	-5.2	-3. o
1839	3373	589	547	-10.4	-5. I	-2.9
1840	3252	575	534	- 9.1	-5. o	- 2. 8
1841	3134	562	522	- 7.7	-4.9	- 2. 7
1842	3019	548	509	- 6.3	-4.9	- 2.6
1843	2907	535	497	- 4.7	-4.8	-2.5
1844	2798	523	486	- 3.3	-4.8	- 2.4
1845	2692	510	474	- 2.2	-4.8	-2.3
1846	2588	498	463	- o. 6	-4.7	-2.2
1847	2488	488	453	+ 0.6	-4.7	-2.1
1848	2390	476	442	+ 2.5	-4.6	-2.0
1849	2297	465	432	+ 3.6	-4.5	-1.9
1850	2206	454	422	+ 5.2	-4.4	– 1.8
1851	2119	445	413	+ 6.8	-4.3	-1.7
1852	2036	435	404	+ 8.2	-4. 2	-1.6
1853	1956	425	395	+ 9.9	-4.2	-1.4
1854	1879	. 417	387	+11.5	-4. 1	-1.3
1855	1806	408	379	+13.2	-3.9	— I. 2
1856	1737	400	372	+14.5	- 3. 8	- I. I
1857	1671	393	365	+16.2	-3.7	-1. O
1858	1609	385	358	+17.8	-3.7	-o. 8
1859	1551	379	352	+19.5	-3.6	-o. 7
1860	1497	372	346			
1870	1175			1		
1880	1270					

Explanation of Modifications in the Use of Hansen's Tables.

Args. 1-27: No change.

g: Venus-terms (Args. 30-31) are included in g.

32-33: The corrections for Venus-terms and the constants of args. 28-29, are alone included in the corrections of args. 32-33. The omitted correction is principally

$$\left\{\begin{array}{l} +190 \\ +177 \end{array} \sin (\theta + 184^{\circ}.7 \right\}.$$

The maximum effect of each omission is about $\pm 0^{\prime\prime}$.16.

Args. 34-50: From Hansen unchanged except omission of 47 and 49.

Args. 47 and 49: Found near middle of fourth column opposite arg. g.

Constant is a misnomer here; it is the sum of the numbers in the right-hand column namely:

- 1. The tables for args. 47 and 49.
- 2. The interpolation products for the other tables.

Table VII, Arg. 28, const. 500 Nutation terms: omitted in first computation. Table IX, Arg. 51, const. 50

34. Example of computation.—The computation of the tabular positions was made in ruled computing books, the form being that shown in the example appended. As there is no complete check on this part of the work, it was all done in duplicate.

At the top of the page is the number of the date. These numbers do not form a continuous series, because additional sets of observations were added from time to time. In order to reduce the skilled computations necessary to a minimum, the system was adopted of copying the values of the arguments from the original books of arguments into the pages. The second column gives therefore the value of the argument as computed.

To reduce the labor still more to a matter of routine computing and copying, the tabular numbers before interpolation are, in the case of the single-entry arguments, copied from the printed tables, as are also the differences taken from the tables. The product of each difference by the excess of the actual over the tabular argument follows in the next column.

The sums of the non-interpolated numbers plus the sums of these products form the interpolated sum of the terms.

The sum of the differences multiplied by appropriate factors as necessary serves to compute the variation in 0.01 of a day.

The remainder of the computation will be easily made out by anyone familiar with the use of the tables. Each final value of the coordinates is given in duplicate, one result being that of the best of the original computations, the other of the duplicate computations. For example, in date 57 one result for the longitude, that of which the computation is copied was 24° 18′ 44″.71. The result of the duplicate computation was the same in this particular case. In the same way one sum of the variation of the longitude was 7′ 6″.60 and the other was 7′ 6″.71.

It seems unnecessary to repeat the details for the computation of latitude. Anyone mastering the methods of using Hansen's tables will be able to follow the computation.

LONGI	TUDE AND			MOON, FROM	HANSEN'S	LAT		i's Table:	N, FROM S.
		DATE 57:	[1843, Sept.	11].	· · · · · ·			ATE 57.	
Arg. 1 10 ×t Arg. 1	43. 69 52. 72	25 1. 50 15 2. 14 91 1. 95 32 0. 32 38 4. 41 194 2393		Arg. 1	3. 701 3. 773	g 1 2 3 4 5	1. 3359 42. 66 70. 36 51. 08 59. 49 54. 36	15. 87 1 10. 52 1 16. 77 1 3. 69	1. 50 10. 12 16. 35 10. 94 16. 58 3. 60
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	77. 14 50. 05 127. 17 71. 79 78. 30 16. 07 59. 38 10. 87 34. 88 36. 78 11. 54 45. 20 31. 62 11. 07 1. 36 38. 57 2. 78 23. 76 26. 95 1. 91 16. 75 13. 37	515 1775 2857 2857 3150 1844 5000 538 240 240 5655 578 358 390 382 357 184 184 187 490 490 22 29 22 95 2246 2246 2246 2246 2246 2246 2246 224	7.698 21.528 36.786 3.969 0.018 52 0.815 45.89 7 7 53 56.71 4.83 54 1.54	3 3 4 4 5 5 6 6 7 8 10 12 14 15 16 17 33 3 3 3 3 7 3 3 8 4 2 2 2 Sum Table xxI Parallax	200 199 234 165 165 1.361 1.374 101 286 323 14 14 577 568 758 67 71 149 16 16 7.643 7.802 +.159	6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25	26. 51 26. 81 9. 74 30. 72 13. 04 7. 80 5. 22 3. 46 1. 71 19. 53 18. 94 20. 7 9. 5 17. 64454 182. 79953 8. 9389 12. 208 10. 750 21. 149 29. 255	2	3. 55 1. 79 . 80 2. 15 . 08 . 25 . 90 1. 12 . 67 . 69 . 39 . 25 . 22 70. 45 30 70. 24 +15. 63 +10. 75 -52. 72 - 2. 11 42. 78 +42. 92 +
27	7.63	42 42 192 209 19130 -79 1. 3358840		22		26 27 28 f+π Sum f+ω	29. 253 208. 2 19. 9 17. 3 24. 09	- 6	2. 11 0. 53 0. 05 6. 67 32. 91 0. 68
	5234. 5 4516 20. 052049 18. 060313 88. 5239 182. 279 140. 845 23. 0271 10. 4072 16. 8657 25. 1547 0. 0690 5. 0555 6. 1712 4. 6028 1. 6456 1. 785 577. 0 234. 1 Constant	1. 3358840 19182 10 140 78103 917013 270467 1253 12723 46273 33801 1669 3906 829 794 2351 1930 8116 7629 180 223 —190	31.05 483.5 - 3 -737 +728 + 8.6 + 1.5 + 6.0 + 76 - 134 + 18 - 26 - 12 - 28 + 35 + 9 - 16 - 2 - 4882 - 958 - 0.99924	-177 -151 + 22 + 21 + 11 + 27 + 53 - 96 + 11 - 13 - 11 - 15 + 4 + 2 - 9 - 1 - 283 - 473		p. p. Sin. Red. Lat. (a) f' (b) 4 (c) 4	$ \begin{array}{cccc} +\omega' & - \\ \beta_0 & - \\ (f+\omega) & \\ (a)\times(b) & \\ (b)\times(c) & \\ \end{array} $	+4 30 +4 30 11877 log	10. 33
	for Aff w f f π f+w f+π red. ecl. X × lat. ineq Constant	180. 78865 7648 295. 20773 180. 86513 203. 22427 116. 07286 24. 08940 21275 42 435 550 24. 31242	9. 99967 4. 06901 9. 81452 4. 06868 3. 88353 164 11713 111 11877 11824 25 1	lg⊿z lg f' lg⊿f	X 0.04387+.68 2.59429 2.63816				·
	24	, ,, 18 44.71 71	7 6.60 71	λ'					

Geocentric Positions of the Moon.

35. The following table contains the geocentric positions of the moon, computed from Hansen's tables for the dates of the occultations between 1753 and 1858. The last column contains the reduction of Hansen's longitude to the provisional theory. Its value is generally omitted in the case of rejected occultations.

Date.	Greenwich Me	an Time.	Geocentric Longitude of Moon.	Motion in o ^d .01.	Geocentric Latitude of Moon.	Motion in o ^d .01.	Parallax.	∆v.
1753, Apr. 19 Aug. 5 Oct. 5	h m s 15 57 58. 1 9 34 35. 3 8 10 4. 5 9 30 22. 6	d . 6652558 . 3990197 . 3403299 . 3960950	239 40 49.0 221 52 34.2 300 40 22.5 301 20 16.6	, ,, 7 44. 29 7 51. 65 7 9. 32 7 9. 14	+2 7 42. I +1 I 0. 4 +5 15 29. 6 +5 15 14. 3	+ 39. 23 + 40. 79 - 2. 55 - 2. 96	, ,, 56 28.7 57 9.6 54 18.6 54 17.8	-0.5 +1.0 +2.5 +2.5
Nov. 21 1755, July 5 18 1756, Dec. 12	8 0 24.5 16 26 42.0 8 54 20.9 16 9 53.9 17 30 45.6	. 4976610 . 3336170 . 6852084 . 3710753 . 6735406 . 7296945	132 46 46.6 330 53 39.4 65 39 10.1 236 11 34.3 152 28 23.8 153 9 38.5	8 39. 85 7 14. 63 7 18. 34 8 35. 83 7 20. 39 7 20. 86	-4 47 45.8 +3 3 4.6 -4 48 51.0 +4 35 41.4 +0 42 22.7 +0 46 1.0	+20. 32 -31. 43 -11. 47 +19. 80 +38. 89 +38. 89	59 44.9 54 49.6 54 44.7 59 28.7 55 13.6 55 15.6	+1.2 +1.8 +0.2
1757, Feb. 25 25 Apr. 3 July 30	6 38 47.0 7 48 55.1 10 21 45.9 11 18 48.5 11 8 21.3	. 2769329 . 3256378 . 4317814 . 4713948 . 4641356	66 22 51. 2 66 58 12. 6 186 8 14. 3 186 39 42. 3 307 31 45. 5	7 15.73 7 15.35 7 56.39 7 56.84 9 7.06	-5 7 32.0 -5 6 44.2 +3 36 4.3 +3 38 2.9 +0 32 56.8	+ 9.58 + 9.97 +30.05 +29.80 -50.40	54 45·5 54 44·2 57 4·0 57 5·5 61 21.6	+1.3 +1.3 -1.3 -1.3
1758, Feb. 17 1761, Dec. 10 1764, Feb. 20 20 1765, Feb. 4	10 31 33.6 9 38 37.0 13 36 51.6 14 44 44.5 8 55 57.6	. 4385835 . 4018171 . 5672638 . 6144038 . 3721944	93 29 54-7 64 35 27.0 199 43 22.0 200 24 33.4 123 32 46.5	7 14.68 8 46.18 8 44.32 8 44.12 7 35.90	+3 34 1.2	+34.30 +46.67 -46.31 -46.16 -30.02	54 45. 2 60 8. 9 60 7. 7 60 7. 1 55 49. 3	+0. 5 -0. 6 -2. 4 -2. 4 -0. 1
Sept. 25 Oct. 2 1766, Sept. 22	10 15 11.5 5 54 47.9 12 55 56.9 13 26 1.0 10 23 11.0 10 39 45.3	. 4272164 . 2463877 . 5388530 . 5597338 . 4327662	124 14 35.9 319 49 38.7 55 55 37.5 56 10 59.8 55 37 12.5 55 46 16.2	7 36. 33 8 22. 10 7 21. 78 7 21. 58 7 52. 44 7 52. 34	+3 31 14.7 -1 34 38.5 +5 5 31.7 +5 5 47.4 +5 7 36.7 +5 7 30.4	-30.40 +43.82 + 7.59 + 7.39 - 5.38 - 5.54	55 51. 1 58 47. 4 54 58. 9 54 58. 3 56 55. 6 56 55. 0	-0. 1 +0. 8 -3. 8 -3. 8 -4. 2
1767, Sept. 12 12 1768, Jan. 27 27 1769, Sept. 15	15 17 3.0 16 29 15.1 11 40 17.3 12 41 53.1 8 1 42.6	. 6368403 . 6869804 . 4863114 . 5290869	56 28 43.5 57 10 23.9 56 54 33.1 57 29 40.8	8 19.05 8 18.19 8 12.90 8 12.50	+4 34 29. I +4 32 46. 8 +4 17 58. I +4 16 5. 3 +5 0 10. I	-20. 07 -20. 55 -26. 12 -26. 47 - 2. 08	58 35.6 58 32.7 58 13.3 58 12.0 58 13.6	-5.4 -5.4 -1.4 -1.4
20 20 25 Nov. 18	10 21 51. 2 11 16 54. 6 17 24 13. 7 15 4 49. 5	. 4318426 . 4700764 . 7251586 . 6283508	64 13 58.8 64 46 39.7 138 4 50.5 130 7 19.2	8 32.89 8 32.82 8 9.56 8 22.96 8 10.32	+1 14 12.0 +1 11 24.0 -4 21 36.2 -4 20 7.9 -4 58 4.1	-43. 92 -44. 01 -23. 06 -26. 31 +10. 52	59 30. 7 59 30. 4 57 54. 5 58 51. 4 57 50. 0	-4.0 -4.0 -5.4 -5.5
28 July 19 1771, July 4 Sept. 18	9 48 41. 6 14 37 14. 5 12 24 8. 6 13 21 41. 2	. 4084148 . 6091956 . 5167662 . 5567268	81 57 33.6 81 16 35.9 10 28 56.7 10 58 5.7	8 43.34 8 53.48 7 17.53 7 17.78 7 10.89	-1 27 23.1 -1 29 0.9 +2 55 58.3 +2 53 50.1 +5 6 0.7	-46.06 -45.74 -31.93 -32.14 + 5.17	60 2.5 60 37.8 54 59.9 55 1.2 54 20.8	0. 0 -2. 0 +0. 4 +0. 4
Dec. 24 1772, May 15 15 Aug. 17 Sept. 7	9 53 28.7 11 52 23.0	. 4121377 . 4947106	132 29 41. 3 221 28 35. 5 222 12 33. 0 16 44 40. 0 301 20 38. 1	8 40. 67 8 46. 77 8 46. 52 7 4. 12 7 33. 92	-5 3 25.7 +1 9 37.6 +1 13 32.9 +0 23 45.9 +5 5 52.5	+ 4.81 +47.06 +46.88 -37.92	59 39.0 60 10.3 60 9.4 54 6.3 55 43.2	-3.5 -2.4 -2.4 -0.9
1773, Feb. 6 Sept. 7 Nov. 1 1774, Nov. 18	6 51 36.8 20 45 29.2 8 57 15.6 16 19 55.9 8 54 17.5	. 2858425 . 8649212 . 3730972 . 6805081	129 28 42.0 67 0 36.5 65 59 35.3 67 28 17.8 187 29 52.5	8 18.03 7 7.63 7 6.49 7 19.90	-4 31 35.8 -4 47 45.5 -4 40 44.3 -5 0 0.2 +3 35 29.4	+20. 38 -16. 30 -16. 13 - 1. 48 +29. 71	58 17. 7 54 15. 7 53 57. 7 54 43. 0	-0.6 -2.1 -1.0 -0.4 -1.3
Dec. 12 1776, Jan. 29 Mar. 30 Apr. 6	9 59 36. 4 12 18 58. 2 13 58 13. 2 14 4 32. 1 8 0 0.0	. 4163934 . 5131735 . 5820971 . 5864825	146 10 23.5 67 2 58.1 146 47 16.8 231 37 49.1 99 22 58.9	7 4.35 7 40.85 7 3.85 7 35.58 8 18.36	+0 48 46.3 -4 55 55.9 +1 7 0.3 +4 59 58.5 -0 12 45.0	+37.61 +15.45 +36.99 - 5.80 +44.07	54 11.4 56 15.0 54 3.0 55 45.9 58 44.5	-2.7 -0.3 -0.8 -4.2 -2.4
Nov. 15 16 16	18 15 39.7 11 2 1.0 12 8 26.6	. 7608762 . 4597339 . 5058635	70 34 9.3 81 2 55.0 81 44 4.1	9 3. 69 8 55. 50 8 54. 96	-2 30 0.4 -1 38 16.6 -1 34 45.4	+42. 72 +45. 73 +45. 88	61 7.2 60 43.2 60 41.2	-0.7 -1.3 -1.3

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in o ^d .o1.	Geocentric Latitude of Moon.	Motion in od.o1.	Parallax.	∆v.
1778, Feb. 7 June 24 24 Dec. 31 1779, Feb. 27	h m s d 11 24 34.2 .4753958 3 20 0.0 .1388889 5 44 0.0 .2388889 6 3 11.8 .2522200 12 32 5.9 .5222906	0 , ,, 92 23 40. 2 92 52 54. 7 94 23 7. 1 72 59 50. 5 124 26 42. 8	8 28.00 9 1.46 9 0.94 9 0.74 8 46.30	0 , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	+45.75 +50.07 +49.92 +49.43 +30.97	, ,, 59 10. 3 61 2. 2 61 0. 6 61 2. 3 60 3. 9	+2.6 +0.6 +0.6 +1.5 +2.5
27 Oct. 30 Dec. 22 1781, Mar. 13 Oct. 16	14 32 46.6 .6060950 10 3 10.4 .4188705 7 18 42.8 .3046621 15 0 0.0 .6250000 20 0 0.0 .83333333	125 40 14.0 110 5 37.1 83 42 22.3 227 34 53.6 203 46 38.3	8 46. 34 8 30. 12 8 50. 36 8 34. 82 9 8. 19	+3 47 3.7 +3 52 40.4 +1 55 33.0 -1 7 3.2 +0 9 25.5	+30. 24 +31. 34 +44. 93 -45. 54 -50. 79	60 3.7 59.15.1 60 21.2 59 38.5 61 25.2	+2.5 -1.5 -0.4 -2.0 -0.4
1783, Feb. 9 9 May 16 Oct. 7 Dec. 6	6 0 0.0 .2500000 .2750000 .2750000 .11 17 28.2 .4704653 .6006517 .614 11.3 .6765198	56 38 18. 1 56 56 10. 0 239 17 39. 2 344 44 58. 0 56 53 25. 4	7 8.73 7 8.69 9 1.93 8 19.14 7 26.18	+4 24 9. 1 +4 24 59. 9 -4 31 30. 4 -0 21 6. 8 +4 45 59. 1	+20. 35 +20. 20 -21. 42 +45. 61 +11. 42	54 22. 2 54 21. 8 60 51. 5 58 35. 3 55 8. 4	-0.8 -0.8 -0.8 -0.9
6 30 30 1784, July 2 1785, Apr. 11	16 50 16.8 . 7015835 8 6 9.4 . 3376089 9 11 12.5 . 3827837 12 29 59.3 . 5208254 8 40 0.0 . 3611111	57 12 3.6 11 28 3.2 12 3 48.8 281 45 51.8 57 1 35.8	7 25. 98 7 55. 09 7 54. 51 8 59. 32 8 30. 29	+4 46 27.7 +2 31 59.1 +2 34 43.9 -3 54 30.9 +5 1 2.1	+11. 22 +36. 57 +36. 30 +31. 07 - 6. 32	55 7.8 57 19.7 57 17.5 60 45.6 59 4.6	-1.8 -1.3 -1.3 -2.1 -2.6
June 22 Aug. 16 1786, Mar. 5	9 16 0.0 .3861111 11 56 59 2 .4979076 8 2 16.6 .3349145 6 40 0.0 .2777777 7 16 0.0 .3027778	57 22 51. I 276 54 12. I 277 22 50. 9 56 36 57. 8 56 58 18. I	8 29. 90 8 15. 25 8 12. 34 8 32. 14 8 31. 85	+5 0 45.9 -3 1 8.6 -3 0 40.4 +4 41 11.2 +4 40 22.8	- 6. 55 +36. 18 +37. 23 -19. 08 -19. 35	59 3.5 58 13.9 58 13.7 59 20.0 59 19.0	-2.6 -1.7 +0.1 -1.0 -1.0
Nov. 12 12 Dec. 9 1787, Nov. 26	17 20 2.0 .7222454 18 36 7.3 .7750845 10 50 13.3 .4515428 10 26 39.3 .4768437 11 10 40.0 .4657407	145 44 57. 2 146 25 38. 5 137 44 1. 3 138 4 30. 8 89 49 32. 8	7 42. 32 7 41. 66 8 6. 09 8 5. 70 9 1. 06	-3 16 13.9 -3 19 1.1 -2 52 27.1 -2 54 1.0 -0 20 10.5	-31. 67 -31. 35 -37. 16 -37. 02 -49. 76	56 31.5 56 29.0 57 55.9 57 54.4 61 2.5	-4.9 -4.9 -4.1 -4.1
26 26 1788, May 11 Oct. 18	12 19 33.9 .5135867 15 26 26.5 .6433621 15 41 40.1 .6359361 9 25 14.7 .3925310 10 33 37.6 .4400183 11 30 12.0 .4793053	90 32 40.9 92 29 35.2 92 39 6.4 130 44 1.2 73 7 34.0 73 39 53.5	9 0.85 9 0.13 9 0.09 8 31.43 8 13.64 8 13.83	-0 24 8.4 -0 34 52.0 -0 35 44.3 -4 13 17.8 -0 25 25.5 -0 28 20.4	-49. 70 -49. 47 -49. 47 -27. 70 -44. 54 -44. 50	61 1.8 60 59.8 60 59.7 59 19.2 58 19.3 58 20.1	-4.4 -4.4 -1.5 -3.3
Nov. 15 15 1789, Nov. 9 1790, Mar. 5 Aug. 17	7 23 13.7 . 3077975 7 50 46.5 . 3269272 12 7 20.8 . 5051020 17 28 52.6 . 7283868 8 11 52.3 . 3415778	81 8 7.2 81 24 22.3 132 37 28.6 234 34 51.2 241 40 43.9	8 29. 80 8 29. 85 8 20. 75 8 24. 27 8 19. 17	-5 25 25.4 -1 13 7.9 -1 14 35.5 -5 15 22.1 +1 8 47.3 +2 22 52.1	-45.75 -45.73 - 5.37	59 11.6 59 12.0 58 37.6 59 4.1 58 43.3	-3. 3 -3. 4 -3. 1 -4. 4 -0. 6
Oct. 15 Nov. 17 1791, Mar. 16 Apr. 3	5 34 56.7 .2326009 12 51 54.8 .5360512 12 15 11.3 .5105477 0 0 0.0 .0000000 6 54 25.4 .2877943	300 59 37. 4 15 4 4. 6 133 13 22. 5 13 19 5. 7 64 16 51. 6	7 47. 19 7 4. 76 8 4. 63 7 15. 28 7 5. 23	+5 17 42. 2 +1 26 57. 6 -4 53 16. 4 +0 47 11. 0	+ 0. 15 -37. 56 +15. 86 -39. 83 -28. 94	56 40.0 54 4.9 57 36.2 54 38.0 54 3.6	-0. 5 +1. 4 +0. 5
June 12 Dec. 15 1792, Mar. 27 Apr. 9	7 34 8.9 .3153811 9 43 45.6 .4053892 16 24 3.3 .6833718 8 42 22.5 .3630151 11 23 26.3 .4746100	64 36 24.8 213 42 22.8 146 1 31.2 67 22 17.5 236 6 46.1	7 5. 28 8 47. 04 7 26. 52 7 13. 35 8 40. 30	-3 36 4.5 +1 12 32.1 -3 27 37.6 -4 44 51.6 +4 10 59.2	-28. 79 +45. 56 +28. 50 -17. 46 +28. 76	54 3.8 60 18.2 55 27.9 54 33.2 59 41.5	+2.0 -0.7 -1.9 +1.8
1793, Apr. 19 1794, Mar. 5 7 Aug. 4	12 28 54.3 .5200730 11 28 30.1 .4781263 7 1 21.2 .2926067 6 46 30.0 .2822919 9 33 22.0 .3981715	236 46 11.9 138 54 55.7 39 27 24.4 67 4 18.9 232 13 2.9	8 40. 44 7 5. 79 8 35. 74 8 3. 42 7 24. 02	+4 13 9.4 -2 12 17.0 -5 1 59.0 -5 10 57.0 +5 16 21.3	+28.36 +34.78 -13.90 + 7.98 - 3.14	59 41.9 54 15.7 59 29.4 57 39.2 55 14.7	-5. 2 +0. 8 -0. 3 +0. 5
Nov. 8 8 Dec. 18 1795, May 4 July 25	7 11 43. 1 .2998046 8 3 44.9 .3359366 18 29 56.9 .7707977 12 41 4.1 .5285199 9 9 48.9 .3818162	66 9 42.7 66 41 39.4 231 55 13.4 234 28 31.2 234 19 42.0	8 50. 77 8 50. 19 7 19. 11 7 9. 07 7 8. 96	-4 35 32.0 -4 34 24.7 +5 1 19.6 +4 38 32.5 +4 47 15.3	+18.43 +18.76 - 3.55 -13.93 -16.58	60 14.3 60 12.8 54 45.8 54 4.4 54 18.4	-1. 1 -1. 1 -2. 4 -2. 5 -1. 6
Aug. 6 28 Sept. 28 Oct. 6 Nov. 24	12 30 11.9 . 5209710 11 50 27.2 . 4933703 7 24 10.3 . 3084525 12 39 40.2 . 5275485 7 15 41.2 . 3025601	34 13 44.9 319 4 42.6 7 25 0.6 125 19 29.4 38 37 19.6	8 32.20 8 8.78 8 53.00 7 54.82 9 6.18	-5 14 32.5 -1 47 25.9 -4 45 3.8 +0 48 36.2 -4 53 17.5	+ 4.13 -41.52 -15.42 +41.35 +14.57	59 16. 1 57 55. 5 60 18. 8 57 18. 1 61 6. 8	-4. 2 -2. 8 -3. 0 -2. 4 -0. 4
1796, Mar. 14 14 Aug. 20 1797, Mar. 17	7 10 47.3 .2991585 7 49 15.2 .3258703 11 31 22.0 .4801157 12 52 22.4 .5363703	64 15 29.6 64 38 19.8 356 21 31.7 241 23 44.5	8 32.98 8 32.87 7 52.95 7 28.04	-3 28 14.4 -3 26 45.8 -4 58 48.9 +2 10 39.0	+33.02 +33.22 - 9.70 -35.59	59 25.8 59 25.6 56 47.8 55 38.0	+1.4 +1.4 -3.4 -2.0

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in od.o1.	Geocentric Latitude of Moon.	Motion in o. ^d o1.	Parallax.	∆v.
	h m s d	5 , ,,	, ,,			, ,,	,,
1797, Dec. 25 1798, Aug. 8	4 31 20.6 . 1884328 13 36 46.1 . 5672002	356 3 45.4 96 46 9.8	7 12.45 8 24.92	-5 7 8.9 $+2$ 56 5.3	+ 8.65 +36.01	54 32.8 58 56.1	-o. 3 +o. 7
Oct5 1799, Apr. 10 21	15 46 15.4 . 6571227 10 43 14.4 . 4466944	144 3 26.7 82 59 31.3	8 48. 28 7 26. 29	+5 9 6.0 +3 10 30.7 -1 15 6.8	+ 1.53	60 9.6 55 28.6	+0.4 +2.4
1800, May 5	10 53 34.9 .4538761 9 28 57.4 .3951088	239 25 14.6 181 36 47.8	8 50.42 8 33.61	+2 18 16.1	-47. 61 · -42. 53	60 27.0 59 30.3	-0.9 +3.6
July 4	10 24 57.3 .4339965 10 24 22.7 .4335960	182 10 6.6 258 49 9.9	8 34.30 9 1.10	+2 15 30. 1 -4 5 53. 6	-42.80 -27.33	59 32.4 60 52.2	+3.6 +1.0
Sept. 30 Nov. 26	9 42 48.6 .4047291 14 13 19.1 .5925821	343 31 19.5 17 44 59.9	7 56.04 7 23.55	-3 I 22.6 $+0$ 0 32.2	+35.88 +39.95	57 6.7 55 18.8	-o. 7 -1. 8
1801, Jan. 5	18 29 59.8 . 7708307 19 25 33.6 . 8094164	174 9 34·3 174 39 8·9	7 39.58 7 39.98	+1 39 1.5 +1 36 33.9	-38. 16 -38. 31	56 22. 2 56 23. 8	+o. 8 +o. 8
Mar. 30	13 57 7.0 .5813307 15 5 43.9 .6289800	200 41 5.8	8 13.94 8 14.34	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-44. 70 -44. 60	58 13.5 58 14.9	+o. 8 +o. 8
Apr. 24	7 28 49.7 3116861	165 14 43.0	7 42.46	+2 6 34.8	-38.74	56 28.0	+3.8
May 21	9 41 25.0 .4037616 8 51 12.0 .3688889	161 44 5.4	7 29. 82 8 13. 85	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-36. 16 -42. 96	55 47.2 58 21.7	+4.0 +4.0
Oct. 23	10 I 8.3 .4174572 I2 0 0.0 .5000000	201 8 55. 3 56 51 56. 8	8 14.66 7 41.93	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-42.96 +22.56	58 24.3 56 11.7	+4.0 -1.4
23 23	13 12 0.0 .5500000 14 24 0.0 .6000000	57 30 25.3	7 41.38	+4 24 16.3 +4 26 6.3	+22. 14 +21. 69	56 9.7 56 7.8	-1.4 -1.4
1802, Mar. 14 July 23	12 6 23.8 .5044422 14 30 0.0 .6041667	124 48 35. 2 57 8 39. 3	7 5. 22	+3 48 7.8 +4 58 43.1	-27. 26 +11. 06	54 3.6 56 37.0	+o. 7 -3. 3
23 Nov. 3	15 42 0.0 .6541667 4 52 56.0 .2034260	57 47 34. 2 319 14 57. 1	7 46.68	+4 59 37·5 -1 46 51.9	+10.63 +42.33	56 35. I 59 12. I	-3.3 +3.5
3	7 52 13.7 . 3279364	321 0 15.9	8 27.92	-1 38 1.3	+42.85	59 15.2	+3.5
1803, Mar. 3	6 11 40.9 . 2581123 7 26 27.6 . 3100417	110 15 17.4	7 24.89	+3 33 35. I +3 30 56. 4	-30.39 -30.64	55 19.5 55 17.8	+0.4 +0.4
1804, July 17 Dec. 14	9 28 28.4 . 3947731 14 0 0.0 . 5833333	240 5 11. 2 57 21 53. 9	7 9.41 9 5.85	-4 46 13.0 +4 26 25.6	+16.64 -25.69	54 16.8 61 8.1	+1.5 -0.2
14 1805, Aug. 6	15 12 0.0 .6333333 7 29 40.1 .3122696	58 7 13.9 273 8 20.3	9 6. 14 7 4. 93	+4 24 15.5 -1 12 9.5	-26.21 +37.93	61 9.2 54 6.1	-0. 2 +0. 4
Sept. 7	8 2 41.5 .3352024 9 14 45.7 .3852510	330 11 27. 8 330 49 16. 5	7 33. 10	+3 36 55. 2 +3 39 15. 5	+28.14 $+27.82$	55 39.0 55 40.6	+0.5 +0.5
1806, June 16	4 22 0.0 . 1819444	84 45 7.9	8 48.44	+0 19 16.8	-48.8 5	60 16.6	
16 1807, Dec. 14	5 34 0.0 .2319444 12 36 36.2 .5254188	85 29 10.8 82 3 21.1	8 48. 75 7 46. 50	+0 15 12.6 -1 55 33.9	-48. 92 -39. 81	60 17.9 56 31.8	 +o. 9
1808, Apr. 5	13 25 37.2 . 5594582 17 25 30.9 . 7260519	82 29 49. 5 130 52 13. 8	7 46.83 8 16.37	-1 57 49. 2 -5 6 25. 7	- 39. 67 - 8. 57	56 32.9 58 23.4	+0.9 +2.9
May 3 Oct. 31	16 0 49.9 . 6672440 8 35 12.3 . 3577810	139 24 18.8	8 10.81 7 10.30	-5 17 25.7 $+2$ 44 9.0	- 1.52 -34.08	58 3.8 54 19.5	+2.7 +0.2
1809, Feb. 27 Apr. 3	8 17 2.0 .3451618 14 37 9.3 .6091354	129 45 16. 7 241 26 5. 2	7 52.59 8 46.97	-5 4 19.8 +2 29 53.0	+ 3.64 +42.70	56 47.5 60 14.7	+2. I -1. 3
3 29	15 48 5.2 .6583935 16 32 56.5 .6895428	242 9 20. 3 221 40 35. 3		+2 33 22. 7 +0 47 8. 8			-1.3 +0.3
29	17 58 22.2 .7488680	222 34 11.4	9 2.23	+0 52 3.1	+49. 51	61 44	+0.3
May 28 June 23	11 50 17.8 .4932615 13 13 50.7 .5512812	242 6 47.9 221 43 39.3	9 8.71 8 44.07	+2 33 5.0 +0 55 18.7	+43.41 +45.95	61 23.5 60 9.1	+0.2 +2.2
28 28	21 13 39.6 .8844860 22 27 11.2 .9355461	301 42 17.6 302 27 20.4	8 49.63 8 49.00	+5 3 18.4 +5 3 12.7	- 0.80 - 1.36	60 9.7 60 7.5	-1.0 -1.0
Sept. 28 Nov. 12	9 37 46.0 .4012267 10 29 19.2 .4370276	64 16 39.4 301 18 52.7	7 9.84 8 32.35	-3 24 5.2 +5 11 23.3	-30. 17 - 6. 11	54 25.4 59 18.5	+1.0 +1.0
Dec. 15	11 54 47.6 .4963841 10 10 13.7 .4237696	302 9 31.8 17 37 37.5	8 31.60 7 28.68	+5 10 45.2 +0 24 36.9	- 6.75 -39.90	59 16.0 55 43.4	+1.0 +1.4
1810, Jan. 15	13 23 39.3 .5580938	64 38 29.5	7 7.66	-3 35 19.5	-26. 15	54 13.6	+1.9
Feb. 18	13 53 51.4 .5790672 14 41 52.8 .6124167	64 53 26.4	7 7.62	-3 36 14.3 -3 54 47.7	-26.01 +25.66	54 13.3 55 9.1	+1.6
May 10 June 15	9 12 28.3 .3836609 11 57 32.4 .4982917	130 34 36.2	7 9.68 8 52.44	-4 39 10.7 +4 2 7.3	+17.21 +27.86	54 23.6 60 23.3	+2.7 +1.1
July 25	13 41 32.4 . 5705139 14 27 13.4 . 6022384	63 32 43.7	7 17.94	-4 10 7.0 -4 11 16.3	-21.82 -21.64	54 52.6 54 51.6	-0. 4 -0. 4
Sept. 18	9 54 7.8 .4125902 10 47 7.4 .4493911	66 25 9.8	7 30.00	-4 36 51.7 -4 38 5.4	-20. 10 -19. 79	55 39.6 55 38.0	-1.0 -1.0
1811, Jan. 19 Mar. 1	15 47 52.1 .6582418 6 40 0.0 .2777778	236 40 42.9 66 41 36.9	8 11.00 7 38.55	+4 19 52.8 -4 58 8.4	+22.72 -14.09	58 7.7	+0. I +2. 3
I	7 52 0.0 .3277778	67 19 48.4	7 37.81	-4 59 18.1	-13.69	56 8.9	+2.3
7	9 4 0.0 . 3777778 11 1 44.7 . 4595451	67 57 56.7	7 37.30	-5 0 25.6 -3 1 43.1	-13.24 +32.16	56 6.5 54 0.0	+2.3 +1.7
27 July 15	7 33 14.8 .3147546 22 37 56.3 .9430127	49 0 32.4 66 17 25.2	8 11.58 7 46.27	-4 12 45.5 -4 58 23.8	-27.31 - 9.01	58 5.5 56 29.1	-o. 3

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in o ^d .o1.	Geocentric Latitude of Moon.	Motion in od.o1.	Parallax.	∆v.
	h m s d	0 , ,,	, ,,	0 , ,,	!- <i></i> ,	, ,,	,,
1811, July 26 Aug. 26 Sept. 2 2	15 0 55.7 .6256446 9 4 44.2 .3782893 9 24 1.9 .3916886 11 29 35.4 .4788819 7 8 0.0 .2972222	195 56 53. 2 238 51 48. 0 338 45 12. 1 340 4 52. 1 174 4 49. 8	7 12.70 7 41.77 9 8.21 9 8.18 7 5.41	+2 25 21.3 +5 0 56.6 +0 47 8.0 +0 39 49.2 +0 37 32.0	+34. 62 +13. 35 -50. 26 -50. 35 +39. 16	54 41.7 56 22.0 61 25.3 61 25.3 54 1.2	+1. 2 +1. 4 -0. 7 -0. 7
Oct 8 8 23 23 27	20 13 10.0 . 8424768 21 18 33.0 . 8878819 6 30 20.3 . 2710683 13 19 50.3 . 5554433 5 7 46.5 . 2137362	105 49 5.0 106 22 54.4 283 23 25.8 287 14 2.9 338 35 57.0	7 27. 12 7 26. 60 8 5. 23 8 7. 96 8 42. 27	-4 35 54 7 -4 34 24 5 +4 36 12 3 +4 26 9 7 +0 41 48 8	+19.62 +19.94 -19.79 -22.46 -46.71	55 30. 7 55 28. 8 57 45. 5 57 56. 1 60 3. 1	-1.2 -1.2 +2.4 +2.4 +2.6
1812, Jan. 23 23 Apr 14 14 May 24	7 4 36.5 . 2948669 7 34 32.4 . 3156528 5 40 48.7 . 2366748 6 22 27.0 . 2655903 20 25 39.7 . 8511540	67 0 2.8 67 16 43.6 67 31 18.7 67 56 6.0 232 51 30.8	8 1.46 8 1.37 8 34.56 8 34.08 7 24.58	-5 11 20.4 -5 11 22.9 -5 8 27.2 -5 8 25.5 +4 54 57.1	- 1.24 - 1.08 + 0.44 + 0.73 + 7.18	57 24.9 57 24.3 59 21.6 59 20.0 55 1.6	+2.3 +2.3 +2.2 +2.2 -0.9
July 30 Aug. 28 28 Oct. 19	15 34 38.5 . 6492883 18 53 6.3 . 7868786 19 50 54.1 . 8270152 13 2 36.0 . 5434724 15 16 20.3 . 6363463	39 26 57.5 66 11 5.3 66 44 31.2 21 59 35.1 23 25 3.3	8 28.84 8 19.89 8 19.50 9 12.02 9 12.24	-4 56 44. 2 -5 14 48. 6 -5 14 24. 7 -4 8 41. 9 -4 12 59. 1	$ \begin{array}{r} -15.66 \\ +5.72 \\ +6.10 \\ -28.08 \\ -27.11 \end{array} $	59 6.8 58 35.1 58 33.6 61 28.1 61 28.6	-0.8 -0.5 -0.5 +0.2 +0.2
2I 2I 22 22 22 22	10 8 47.8 .4227757 11 3 51.1 .4610084 8 21 40.9 .3483904 9 16 26.0 .3864120 11 46 30.1 .4906261	50 44 37.8 51 19 22.7 64 37 53.2 65 11 42.8 66 44 15.5	9 5.44 9 5.00 8 54.04 8 53.52 8 52.01	-5 2 7.6 -5 2 26.7 -5 1 11.7 -5 9 46.7 -4 59 29.5	- 5. 22 - 4. 74 + 6. 30 + 6. 78 + 7. 98	61 3.1 61 1.9 60 27.4 60 25.7 60 20.9	-0. I -0. I -0. 2 -0. 2 -0. 2
Nov. 24 24 Dec. 10	12 39 31. I . 5274433 17 14 33. 7 . 7184455 17 33 34. 2 . 7316457 13 3 24. 2 . 5440300 14 5 45. 9 . 5873367	67 16 52.8 146 16 7.3 146 26 1.3 342 12 20.5 342 47 50.0	8 51.48 7 30.08 7 29.89 8 11.49 8 11.94	-4 58 59.3 +0 14 36.4 +0 15 28.8 -1 46 47.4 -1 49 44.7	+ 8.44 +39.71 +39.68 -40.96 -40.82	60 19. 2 55 52. 0 55 51. 4 58 18. 0 58 19. 6	-0. 2 +0. 2 +0. 2 +2. 9 +2. 9
14 16 16 16 16	14 7 37.3 . 5886262 4 40 0.0 . 1944444 5 52 0.0 . 2444444 7 4 0.0 . 2944444 8 16 0.0 . 3444444	39 52 29.8 63 42 25.6 64 26 58.7 65 11 30.9 65 56 2.5	8 51.74 8 54.62 8 54.49 8 54.40 8 54.20	-4 58 24. 2 -4 57 41. 7 -4 56 49. 7 -4 55 54. 7 -4 54 56. 8	- 9.42 +10.08 +10.64 +11.30 +11.83	60 19.3 60 24.5 60 24.0 60 23.6 60 23.0	+3.8 +3.8 +3.8 +3.8 +3.8
16 16 16 1813, Mar. 6 8	9 28 0.0 .3944444 10 40 0.0 .44444444 11 52 0.0 .4944444 8 50 23.7 .3683299 6 17 14.8 .2619769	66 40 33. 2 67 25 3. 2 68 9 32. 2 39 52 26. 0 67 9 9. 6	8 54.06 8 53.84 8 53.72 8 45.28 8 30.57	-4 53 55.9 -4 52 52.0 -4 51 45.1 -5 9 10.2 -4 58 40.3	+12.48 +13.06 +13.57 - 7.85 +14.06	60 22.5 60 21.9 60 21.3 59 58.6 59 13.4	+3.8 +3.8 +3.8 +2.9 +3.7
Apr. 8 8 10 10 17	5 41 58.5 .2374827 6 54 15.1 .2876748 5 19 13.4 .2216829 6 33 12.1 .2730576 10 24 42.6 .4338264	118 25 20.6 119 5 12.1 144 5 24.4 144 44 25.3 231 40 55.7	7 56. 78 7 56. 14 7 35. 76 7 35. 38 7 7. 37	-1 41 59.7 -1 38 38.2 +0 33 11.4 +0 36 38.4 +5 0 12.0	+40. 08 +40. 17 +40. 33 +40. 22 - 3. 20	57 25.9 57 23.7 56 6.5 56 4.7 53 58.6	+4. 2 +4. 2 -0. 4
July 11 12 Aug. 13 Sept. 14	11 36 4.9 .4833900 11 2 53.3 .4603390 12 56 53.3 .5395080 11 52 57.9 .4951145 12 31 41.5 .5220080	232 16 13.8 270 27 49.9 283 42 6.9 343 55 48.5 50 57 38.8	7 7.36 7 18.33 7 24.92 8 9.64 8 39.77	+4 59 55.3 +3 2 49.4 +2 22 21.8 -2 54 21.6 -5 3 26.9	$ \begin{array}{r} -3.52 \\ -30.54 \\ -36.34 \\ -37.51 \\ +9.03 \end{array} $	53 58.7 54 46.7 55 12.5 57 55.7 59 40.2	-0. 4 -0. 6 -1. 2 -1. 4 -0. 2
Nov. 29 Dec. 28 1814, Jan. 1 28 Feb. 1	5 50 37.8 . 2434930 7 33 33.9 . 3149754 9 22 53.4 . 3908959 8 43 31.7 . 3635614 11 37 58.7 . 4847072	321 8 14.7 344 10 32.9 39 35 17.5 35 14 19.8 94 22 0.0	7 28. 18 7 42. 51 8 38. 47 8 19. 28 8 48. 50	-1 37 18.8 -3 34 27.9 -5 12 20.0 -5 16 40.3 -2 23 49.9	$ \begin{array}{r} -38.09 \\ -31.03 \\ +6.75 \\ +3.24 \\ +43.47 \end{array} $	55 41.9 56 28.0 59 38.3 58 33.1 60 18.0	+1.3 +2.2 +4.8 +4.5 +6.1
Oct. 1 1 Nov. 29 1816, Apr. 12 Dec. 7	10 29 32. I .4371771 11 30 20. 7 .4794062 19 36 41. 2 .8171435 8 59 53. 9 .3749294 7 34 43. 5 .3157812	38 51 14. 1 39 26 11. 2 106 35 58. 3 211 6 47. 7 110 43 58. 6	8 16. 48 8 16. 76 8 51. 09 8 54. 53 7 55. 98	-4 42 26. 2 -4 41 21. 6 +0 17 11. 9 +3 38 38. 9 +3 42 8. 7	+15.02 +15.45 +48.32 -33.13 +31.15	58 13.4 58 14.5 60 30.3 60 31.1 57 6.2	-0. I -0. I +1. 4 +4. 4 +1. I
1817, Dec. 30 1818, Feb. 13 13 Apr. 12 1819, Sept. 8	14 53 17. 1 . 6203367 6 7 52. 0 . 2554628 6 32 29. 2 . 2725600 7 51 18. 7 . 3272998 15 10 37. 8 . 6323820	186 40 1.5 60 44 44.1 60 56 49.9 101 10 27.6 49 31 19.4	8 12.48 7 4.55 7 4.55 7 11.89 7 48.09	+3 17 24.6 +1 36 15.9 +1 37 16.8 +4 40 19.4 +3 14 12.8	-33.77 +35.60 +35.56 +18.36 +33.61	58 18.0 54 13.8 54 13.8 54 32.2 56 50.0	+2.9 +0.8 +0.8 +2.6 -2.3
Oct. 9 1820, Feb. 1 Apr. 23 Aug. 28	14 46 30. 9 . 6156355 10 27 20. 3 . 4356517 11 36 6. 9 . 4834132 7 24 47. 1 . 3088785 11 56 24. 6 . 4975069	94 55 23.6 161 7 42.3 161 41 33.7 161 40 33.0 45 11 26.4	7 17. 10 7 5. 27 7 5. 32 7 6. 76 8 20. 02	+5 15 4.8 +1 54 4.8 +1 51 15.5 +1 47 15.0 +4 10 16.2	+ 4. 38 -35. 37 -35. 51 -36. 65 +28. 05	54 49.3 54 2.4 54 2.8 54 15.5 58 41.4	-1.4 +0.6 +0.6 +1.9 -3.0

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in o ^d .01.	Geocentric Latitude of Moon.	Motion in od.o1.	Parallax.	∆v.
	hms, d	B / //	'_ "	• , ,,		, ,,	,,
1820, Aug. 28 1821, Feb. 6 6 6	12 59 29.3 . 5413113 5 50 0.0 . 2430555 7 2 0.0 . 2930555 12 20 10.1 . 5140058 6 49 13.0 . 2841782	45 47 55 5 11 51 6.2 12 34 40.8 15 46 51.7 94 55 15 9	8 19.39 8 43.06 8 42.70 8 41.00 7 46.54	+4 12 18.6 +2 28 0.5 +2 31 31.3 +2 46 43.4 +4 54 4.8	+27.62 +42.28 +41.94 +40.47 -15.29	58 39. 1 60 3. 0 60 1. 7 .59 55. 8 .56 31. 5	-3.0 $+1.3$ $+1.3$ $+1.5$
May 6 6 July 22 23 23	9 18 13.4 . 3876551 9 32 6.6 . 3972986 11 12 57.2 . 4673286 12 40 0.0 . 5277778 13 52 0.0 . 577778	111 16 50. I 111 24 27. 3	7 54. 12 7 53. 92 8 29. 58 8 26. 85 8 26. 70	+3 53 56.4 +3 53 30.3 +4 45 13.5 +5 7 53.1 +5 8 26.6	-26.87 -26.96 +18.48 + 6.90 + 6.38	57 9. 2 57 8. 7 59 9. 7 58 55. 9 58 55. 2	+1.3 +1.3 -2.0 -2.0 -2.0
23 25 Sept. 10 Oct. 8	15 4 0.0 .6277778 15 14 38.8 .6351713 8 49 20.2 .3675949 5 33 41.3 .2317280 9 10 0.0 .3819444	57 46 32.4 85 45 46.1 332 38 58.7 353 21 54.2 56 18 19.9	8 26.47 8 16.10 8 42.32 8 55.50 8 58.67	+5 8 57. 2 +4 51 28. 2 -0 11 6. 2 +1 42 52. 5 +5 5 18. 7	+ 5.79 -15.82 +48.20 +45.54 + 6.10	58 54.4 58 13.6 59 56.9 60 42.0 60 42.7	-2.0 -1.7 +0.8 +1.9 -1.9
13 15 15 Dec. 7	10 22 0.0 .4319444 8 53 8.5 .3702372 9 33 22.8 .3981805 8 0 0.0 .3333333 9 12 0.0 .3833333	57 3 11.9 85 16 57.1 85 40 38.6 56 46 57.1 57 32 15.0	8 58.02 8 28.82 8 28.39 9 3.53 9 3.58	+5 5 47.6 +4 45 52.9 +4 45 5.3 +5 1 2.8 +5 1 7.5	+ 5.42 -16.84 -17.09 + 1.27 + 0.61	60 40.8 59 8.1 59 6.6 60 54.8 60 54.8	-1.9 -2.4 -2.4 +1.6 +1.6
1822, Feb. 8 8 27 27 Apr. 30	10 0 0.0 .4166667 11 12 0.0 .4666667 6 5 29.9 .2538182 6 30 28.9 .2711678 12 42 58.9 .5298484	171 46 16. 2 172 24 0. 9 57 28 1. 1 57 42 51. 3 162 28 12. 5	7 33. 22 7 32. 66 8 33. 16 8 33. 04 7 28. 92	-2 21 44.6 -2 24 51.1 +5 15 49.8 +5 15 46.5 -1 45 17.3	-37.43 -37.13 - 1.79 - 1.97 -37.04	55 47.9 55 46.1 59 19.9 59 19.6 55 39.8	+2.2 +2.2 +2.0 +2.0 +3.4
May 1 Aug. 10 10 Sept. 6	7 31 57.2 3138565 7 53 55.6 3291157 9 0 0.0 3750000 10 12 0.0 4250000 14 6 6.0 5875693	172 10 58.3 172 22 14.6 56 45 15.9 57 28 4.4	7 23. 20 7 23. 16 8 33. 47 8 33. 70	-2 31 36.7 -2 32 28.2 +5 11 25.9 +5 10 41.0	-33.64 -33.53 - 8.60 - 9.27 - 8.64	55 14. 5 55 14. 1 59 21. 5 59 22. 2 59 20. 9	+3.6 +3.6 -1.8 -1.8 -2.1
Oct. 31 31 31 Nov. 30	5 30 0.0 .2291667 6 42 0.0 .2791667 7 54 0.0 .3291667 7 39 38.2 .3191921	56 35 35.1 56 34 21.0 57 19 40.1 58 4 58.8 96 39 38.6	8 33.60 9 3.85 9 3.71 9 3.62 9 1.42	+5 7 34.0 +4 50 21.3 +4 49 19.8 +4 48 15.1 +2 41 39.5	-11.98 -12.51 -13.17 -40.66	60 56.9 60 56.9 60 56.8 61 0.8	-1.7 -1.7 -1.7 -1.5
Dec. 25 25 25 1823, Jan. 23 24 24	3 20 0.0 .1388889 4 32 0.0 .1888889 5 44 0.0 .2388889 6 59 31.2 .2913327 6 0 19.6 .2502268 6 8 47.6 .2561060	56 17 45.7 57 2 37.6 57 47 32.3 82 19 19.7 96 36 12.0 96 41 27.8	8 58. 13 8 58. 63 8 59. 20 	+4 54 49. 2 +4 53 28. 5 +4 52 4. 7 +3 42 53. 2 +2 40 10. 0 +2 39 44. 8	-15. 73 -16. 48 -16. 97 	60 42.0 60 43.9 60 45.7 60 33.2 60 47.3 60 47.3	+2.2 +2.2 +2.2 +2.3 +2.3
Apr. 13 13 May 18 June 17	7 34 45.5 3158044 8 59 42.0 3747910 9 3 1.4 3771116 8 55 21.7 3717789 10 56 3.6 .4555972	57 41 1.7	8 57.84 	+2 35 26.9 +4 34 7.4 +4 34 3.0 -3 41 57.5 -5 11 23.8	-43.35 	60 47. 7 59 40. 7 59 40. 8 57 27. 9 55 53. 9	+2.3 +3.2 +3.7
Sept. 23 1824, Jan. 7 Mar. 4 5	9 49 29.0 . 4093640 7 7 45.0 . 2970486 6 6 43.8 . 2546736 6 33 27.8 . 2732379 8 23 25.1 . 3495962	240 10 16. 5 41 53 17. 9 356 8 52. 4 27 38 48. 2 41 27 30. 9	8 8.74 7 19.98	-4 24 56.3 +4 51 9.1 +4 54 5.4 +4 59 34.3 +4 37 9.5	-12.14 +15.48	54 31.8 57 47.9 55 0.5 55 57.3 56 33.0	-1. 1 +3. 8
12 12 Apr. 5 5 Sept. 4	7 28 51. 3 . 3117049 12 55 22. 8 . 5384584 7 43 49. 3 . 3220985 9 6 40. 2 . 3796314 8 53 44. 1 . 3706495	138 23 21.0 141 45 53.3 91 39 16.7 92 26 51.7 302 52 24.1	8 55.34 8 56.40 8 16.04 	-2 4I 10.4 -2 56 4.9 +1 2 58.7 +0 58 32.4 +2 10 16.2	-40. 18 -38. 65 -42. 75 +34. 18	60 39. 5 60 41. 9 58 33. 2 58 34. 7 54 11. 0	+2.4 +2.4 +2.5 +2.5 +3.4
30 30 Nov. 29 Dec. 7 31	6 41 19.0 . 2786927 9 21 3.2 . 3896197 7 32 54.1 . 3145152 5 59 56.9 . 2499643 12 4 46.3 . 5033138	286 33 14.6 287 53 41.6 350 39 22.0 92 28 20.5 49 58 3.5	7 9. 10 8 19. 90 7 44. 43	+1 1 43.9 +1 8 39.8 +5 10 0.3 -0 12 7.4 +3 25 28.6	+ 6.71 -46.05 -32.56	54 56. 3 54 52. 9 54 19. 0 58 35. 5 56 32. 2	+2.7 -0.5 +1.9
1825, Jan. 3 Feb. 11 27 27 Mar. 24	8 16 59.4 .3451319 16 32 50.3 .6894710 9 43 45.2 .4053844 9 51 6.5 .4104918 9 2 17.0 .3765856	88 11 23. 2 258 40 8. 5 91 7 15. 0 91 11 23. 3 61 23 2. 9	8 23.93 7 40.37 	+0 11 53.3 -0 55 10.2 -0 19 34.6 -0 19 56.5 +1 58 15.9	-46.46 +40.60 	58 51.1 56 25.6 57 59.3 57 59.6 55 31.0	+0.7 -0.3 +3.5 +3.5 +3.6
24 28 Apr. 1 June 27 27	9 19 39. 2 . 3886481 7 17 5. 3 . 3035336 7 26 57. 4 . 3103865 11 10 34. 6 . 4656782 11 13 0. 4 . 4673660	61 32 1.5 112 26 13.9 170 55 58.6 244 57 50.1 244 59 14.1	7 26. 76 8 15. 20 9 8. 67 8 17. 05	+1 57 32.2 -2 22 50.7 -5 1 9.4 -1 27 38.6 -1 27 31.3	-36. 20 -38. 46 - 2. 50 +43. 96	55 31.4 58 30.4 61 13.3 58 27.4 58 27.3	+3.6 +3.8 +3.0 +3.3 +3.3

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in o ^d .01.	Geocentric Latitude of Moon.	Motion in od.01.	Parallax.	∆v.
-	h m s d	• • • • •	, ,,	• , ,,	,,	, ,,	···
1825, July 4 4 4 4	13 5 28.3 . 5454664 13 58 42.7 . 5824386	336 44 7.5 337 11 0.0	7 16. 25 7 16. 09	+5 4 47·4 +5 5 22·5	+ 9.61	54 40.8 54 39.9	+0. 1 +0. 1
25 27	10 42 9.5 .4459431 12 17 38.2 .5122476	254 42 56. 2 281 58 46. 4	7 47.50	-0 30 54.5 +1 53 55.0	+39.08	57 40. I 56 38. 4	+3.8
27 27	13 4 12. 2 . 5445856 15 48 17. 2 . 6585324	282 23 57.9 283 52 38.4	7 47. 22 7 46. 44	+1 56 1.1	+38.97 +38.44	56 37.5 56 34.1	+3.8 +3.8
28 Aug. 8	10 23 25.8 .4329374 20 10 5.2 .8403380	293 51 11.9 72 53 58.9	7 38.32	+2 50 32.3 +0 34 59.1	-40. 69	56 10.5 56 18.4	+2.0
8 22	21 24 9.2 .8917732 8 59 12.4 .3744485	73 33 17.5 264 1 9.1	7 39.04	+0 31 29.5 +0 29 27.1	-40. 8 r	56 20.9 57 12.3	+2.0
22 Sept. 4	14 25 21.9 . 6009480 13 17 39.8 . 5539329	65 41 20. 1 65 6 44. 5	7 21.76 7 21.25	+0 58 15.3 +1 1 14.7	-38. 24 +38. 09	55 19.6 55 17.9	 + 1. 2
23	7 '1 24.5 . 2926447 9 58 31.0 . 4156366	323 II 9.8 336 46 57.2	7 18. 23 7 13. 50	+4 39 19. 2 +4 57 51. 7	+14. 29 + 5. 38	54 44. 8 54 22. 6	+4.7 +4.7
Dec. 14 1826, Jan. 13	4 55 47.9 . 2054155 5 23 42.8 . 2248010	323 20 29.4 356 4 23.6	7 35.60 7 16.80	+5 0 40.2	+13. 22	55 55.8 54 43.8	+2.8 +3.7
Feb. 15	7 27 0.4 .3104213 4 44 11.9 .1973600	64 25 49.4	7 13.84 7 21.93	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-38. 30 -38. 79	54 50.3	+4. 2 +4. 1
May 12	9 10 21.6 . 3821945 8 38 18.0 . 3599306	115 58 46.4 128 29 44.5	7 35.36 7 46.67	-4 15 0. 2 -4 49 54. 5	-24. 95 -17. 50	55 58.4 56 39. I	+3.5 +3.7
July 27	11 58 7.5 .4986979	46 26 30. 1	7 4.94	+1 14 39.9	-36.78	54 14.7	+o. 7
Sept. 13 21 Oct. 24	10 39 34.9 . 4441539 10 8 44.0 . 4227315 15 31 20.8 . 6467686	323 7 58.0 61 25 32.2	7 53. 15 7 3. 97	+5 2 49.3 -0 34 7.4	+ 2.00 -37.82	56 48.3 54 9.4	+2.8 +1.1 +0.7
1827, Jan. 5	10 37 15. 1 . 4425360	133 23 53.4 25 0 36.1	7 45·57 7 12.76	-5 10 41.1 $+2$ 21 35.7	- 7.67 -34.48	56 34.9 54 44.0	+2.4
14 14	9 28 22.6 . 3947062 10 34 24.3 . 4405591	132 51 51. 2 133 26 46. 0	7 36.71 7 36.98	-4 59 57. 2 -5 0 23. 8	- 6. oo - 5. 59	55 46. 2 55 47. 4	+1.2
Feb. 10	14 53 29. I . 6204758 12 4 10. 2 . 5028960	130 21 5.3	8 14.50 7 40.77	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-38. 27 - 5. 88	58 26.6 56 0.3	-0.4 +1.7
July 2	8 51 30. 6 . 3691043 9 3 13. 8 . 3772430	197 12 1.8	8 6.90 8 6.90	-2 12 2.8 $-2 11 30.9$	+39. 24 +39. 28	58 1.8 58 2.2	+3. o +3. o
Aug. 1	11 1 34.6 .4594284 8 20 35.7 .3476353	270 57 30. 9 234 31 36. 3	9 7. 25 8 28. 30	+3 48 4.6 +1 15 58.9	+31.98 +43.37	61 14.3 59 17.3	+1.0 +2.2
Oct. 12	6 21 50.0 · . 2651619 14 28 44.9 · . 6032976	243 56 52. 7 109 37 49. 3	8 24.50 7 8.74	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+40. 10 -10. 64	59 1.8 54 18.9	+2.5 +0.7
Nov. 16	5 I 40. 2 . 2094930 IO 3 I9. 4 . 4189745	201 20 31.2 14 37 44.6	8 19.93 7 39.96	-1 16 22.6 +1 49 51.9	+44. 68 -39. 38	58 40.4 56 18.8	+0. 2 +1. 8
Dec. 8	15 59 41. 7 . 6664549 17 21 53. 2 . 7235325	138 41 1.4 139 22 6.0	7 11.73	-4 59 48.7 -4 58 52.7	+ 9.53 + 9.98	54 26.6 54 27.9	+0. 7 +0. 7
1828, Jan. 31 Feb. 22	11 24 55.6 .4756436	130 17 4.6	7 11.64	-4 54 26.7 -3 8 23.6	+ 7.07 -30.83	54 11.5	+1.2 +1.5
Mar. 23	7 31 7.2 .3132777 8 4 50.6 .3366968 9 12 3.7 .3833761	65 22 34.8 97 42 33.5 110 8 38.2	7 17.50 7 8.53 7 7.28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 12. 32 - 4. 12	55 0.0 54 18.7 54 11.3	+2. I +2. I
. 24 31	10 19 35.4 .4302708 11 58 54.0 .4992361	110 42 1.9 198 5 28.2	7 7.30 8 30.55	-5 13 10.7 -0 43 13.2	- 3. 70 +46. 48	54 11.2	+2. I -0. 6
June 16	8 19 38.3 . 3469710	133 53 18.4	7 6.40	-4 45 29.9	+12.93	54 3.2	+1.8
Aug. 16 28 1829, Jan. 18	12 6 59. 8 . 5048589 9 23 36. 5 . 3913948 8 49 27. 5 . 3676795	214 32 2.3 25 22 15.0 105 47 56.6	7 38.89 8 17.58 7 19.29	+1 26 54.7 -0 42 32.7 -4 59 47.3	+39.48 -44.59 + 3.53	56 20. I 58 38. 0 54 40. 7	+2.2 -1.1 $+2.9$
Apr. 12	5 51 6.3 .2438229	130 53 5.9	7 9. 10	-4 24 54.0	+21.70	54 21.6	+2.8
June 13	10 36 20.4 .4419029 10 55 17.2 .4550601	221 34 27.8 221 44 28.6	7 37.40 7 37.50	+3 3 10. 3 $+3$ 3 52. 4	+31.98 +31.99	56 3.4 56 4.0	+ 1. 7 + 1. 7
July 26	11 37 36. I . 4844456 12 13 17. 4 . 5092291	222 6 54.6 80 13 25.0	7 37.88 7 46.90	+3 5 26. 2 -5 0 57. 3	+31.81	56 5. 2 56 30. 0	+1.7 -1.2
Aug. 8	12 0 0.0 .5000000 13 0 0.0 .5416667	238 28 52.0 64 30 32.6	7 39. 02 8 0. 10	+4 26 39.9 -4 45 45.3	+21.23 -18.01	56 13.8	+ 1.8 + 1.8
21 21	15 24 0.0 .6416667 16 36 0.0 .6916667	65 50 28.5 66 30 21.9	7 58.91 7 58.32	-4 48 41. 1 -4 50 5. 4	-17.01 -16.53	57 23.8 57 21.5	+1.8
21 21	17 48 O.O .7416667 20 12 O.O .8416667	67 10 12.2 68 29 44.0	7 57·74 7 56.57	-4 51 27.2 $-4 54 3.4$	- 16. 06 - 15. 08	57 19. 2 57 14. 7	+1.8 +1.8
Sept. 18 23	2 3 49.8 .0859930 21 4 14.0 .8779398	67 54 56.6	8 9.83 7 9.35	-4 57 50.4 -3 14 36.9	-15.82 +31.41	58 2.4 54 18.5	-1.6 +0.2
Oct. 15	21 40 53.0 .9033912 9 4 58.5 .3784549	141 13 34.7 66 41 27.4	7 9. 29 8 27. 38	-3 13 6.7 $-4 52 51.7$	+31.53 -17.00	54 18. 1 58 58. 6	+0. 2 -0. 6
15 Nov. 11	9 48 58.6 . 4090117 21 50 51.7 . 9103208	67 7 17.0	8 26.86 8 34.69	-4 53 43.4 -4 49 34.9	-16.72 -15.02	58 56. 9 59 17. 4	-0.6 +0.2
11 Dec. 9	22 31 13.7 . 9383532 5 46 18.3 . 2404894	68 23 22.8 66 41 55.3	8 34.40 8 30.90	-4 50 16.7 -4 45 58.0	-14.71 -13.81	59 17.4 59 16.1 59 1.6	+0. 2 +2. 0
1830, Jan. 5	5 51 36.3 .2441702 14 59 7.2 .6243889	66 45 3. 7 67 26 58. 7	8 31.01 8 17.73	-4 46 3. I -4 53 37. 8	-13.70 -10.83	59 1.5 58 18.7	+2.0 +2.4

Date.	Greenwich Me	an Time.	Geocentric Longitude of Moon.	Motion in o ^d .01.	Geocentric Latitude of Moon.	Motion in o ^d .or.	Parallax	₫v.
1830, Jan. 5 Mar. 2	h m s 15 43 32.4 5 54 49.8	d . 6552361 . 2464096	67 52 34.0 83 0 13.1	, ,, 8 17.64 8 1.50	0 / // -4 54 10.9 -5 16 59.6	'' 10. 53 + 2. 81	, ,, 58 18.0 57 30.1	+2.4 +2.7
. 2 3 3	9 24 2.9 8 50 46.2 9 0 13.9	. 3917002 . 3685903 . 3751609	84 56 36.8 97 49 3.0 97 54 10.2	7 59. 70 7 49. 12 7 49. 10	-5 16 8.2 -5 1 24.1 -5 1 15.2	+ 4.35 +13.59 +13.73	57 24.0 56 44.8 56 44.6	+3.0 +3.0 +3.0
28 28 28 28 28	7 20 0.0 8 32 0.0 9 44 0.0 10 56 0.0 12 8 0.0	. 3055556 . 3555556 . 4055556 . 4555556 . 5055556	65 56 11.0 66 38 57.9 67 21 40.9 68 4 20.0 68 46 55.1	8 33. 70 8 32. 92 8 32. 14 8 31. 35 8 30. 55	-5 7 46. 3 -5 8 38. 8 -5 9 28. 4 -5 10 15. 1 -5 10 58. 9	- 10. 76 - 10. 17 - 9. 59 - 9. 02 - 8. 46	59 22.4 59 19.8 59 17.2 59 14.5 59 11.8	+1.9 +1.9 +1.9 +1.9
29 29 Apr. 5 28 28	7 4 43.9 7 49 55.3 7 13 27.0 7 18 19.4 7 28 0.9	. 2949526 . 3263345 . 3010070 . 3043912 . 3111215	79 50 28.5 80 16 30.7 168 15 13.0 115 49 48.6 115 55 4.0	8 17.92 8 17.47 7 7.64 7 49.53 7 49.50	-5 16 8.9 -5 16 6.6 -0 5 40.0 -4 4 19.4 -4 4 12.1	+ 0.52 + 0.83 +39.26 +25.71 +25.81	58 29.0 58 27.3 54 13.3 56 54.4 56 54.0	+2. 1 +2. 1 +3. 2 +2. 7 +2. 7
May I	11 13 3.7 11 28 59.7	. 4674040 . 4784687	155 16 47.0 155 24 45.2	7 13.11 7 13.00	-1 8 36.6 -1 7 54.6 $+4$ 41 42.9	+37.96 +38.03	54 44.5 54 44.2	+3.3
June 4 25 July 15	10 10 42.5 8 22 30.5 22 17 53.2	. 4241030 . 3489641 . 9290879	234 42 59.9 158 13 8.9 66 47 19.9	7 17.80 7 24.40 8 31.78	-0 24 7.0 -5 6 43.1	+13.25 $+39.36$ -3.69	54 38.6 55 26.7 59 9.3	+1.5 $+2.8$ -1.0
16 Aug. 1 Sept. 5 Oct. 4	0 14 18.7 9 8 15.4 8 31 20.4 9 14 11.4 14 28 17.2	. 0099386 . 3807338 . 3550971 . 3848540 . 6029767	67 56 17.6 275 55 15.0 22 40 30.4 23 6 49.3 50 34 14.2	8 31.60 7 46.80 8 50.62 8 50.57 8 57.75	-5 7 9.0 +4 42 23.0 -3 34 15.5 -3 36 2.7 -4 54 48.0	- 2.72 -17.95 -36.08 -35.79 -16.09	59 8. 2 56 29. 7 60 21. 8 60 21. 5 60 41. 0	-1.1 +0.7 -2.4 -2.4 -1.7
4 5 5 20	14 51 49. 2 14 20 0. 0 16 44 0. 0 4 32 13. 7	. 6193193 . 5972222 . 6972222 . 1890475	50 48 52.9 65 16 43.8 66 44 24.3 249 1 18.8	8 57.59 8 46.64 8 45.28 7 9.71	-4 55 14.2 -5 11 18.9 -5 11 50.9 +5 7 6.3	- 15. 84 - 3. 79 - 2. 57 + 0. 05	60 40. 5 60 4. 8 60 0. 5 54 12. 4	-1.7 -1.9 -1.9 +1.7
20 23 30 Nov. 4 Dec. 22	4 39 34·3 5 51 22.0 5 23 42.1 13 39 51.6 4 4 36.5	. 1941470 . 2440046 . 2247928 . 5693472 . 1698670	249 4 57·7 286 8 55.0 22 43 15.2 102 40 56.1 356 52 47·7	7 9.70 7 28.60 9 8.13 8 24.04 8 12.80	+5 7 6.4 +4 4 43.5 -3 32 19.9 -4 10 23.5 -2 3 45.7	+ 0.01 - 24.22 - 34.82 + 25.29 - 40.02	54 12.5 55 37.3 61 18.1 58 54.1 58 22.7	+1.7 +2.6 +0.2 -1.1 +2.5
27 1831, Jan. 20 20 21 21	9 46 5.3 7 39 8.6 7 47 54.6 10 39 10.8 11 54 13.8	. 4070058 . 3188495 . 3249376 . 4438749 . 4959931	72 33 8.8 23 32 44.5 23 37 50.7 39 25 35.6 40 10 1.7	8 56. 70 8 24. 76 8 24. 80 8 31. 38 8 31. 69	-5 0 8.4 -4 7 45.9 -4 8 2.9 -4 50 39.5 -4 52 8.2	+ 8. 10 -28. 00 -28. 03 -17. 19 -16. 69	60 31.6 58 56.7 58 56.8 59 16.3 59 17.1	+2.0 +2.0 +2.5 +2.5
26 28 Feb. 4	6 49 50. 3 10 15 16. 6 17 11 57. 3 22 22 22. 1 23 47 29. 2	. 2846100 . 4272755 . 7166355 . 9322004 . 9913104	51 25 6.4 110 52 3.2 142 32 7.4 232 13 53.1 232 55 59.1	8 35.50 8 29.13 8 5.00 7 7.30 7 7.35	-5 8 28.7 -3 22 45.4 -0 36 19.8 +5 12 20.5 +5 12 54.6	-79.92 +35.41 +44.01 + 6.00 + 5.51	59 27.3 59 2.3 57 42.8 54 12.9 54 13.0	+3.6 +2.2 +1.4 +1.0 +1.0
19 19 19 19 19	6 45 23.4 7 12 58.2 9 17 5.3 12 15 32.3 16 27 53.2 11 52 17.6	. 3006736 . 3868669 . 5107905 . 6860324 . 4946481	62 22 51.0 62 39 7.7 63 52 27.8 65 37 22.3 68 6 47.5 79 31 59.5	8 30.63 8 30.60 8 30.40 8 30.10 8 29.58 8 27.04	-5 17 8.9 -5 17 6.5 -5 16 50.2 -5 16 11.7 -5 14 47.2 -5 0 48.1	+ 1.39 + 2.46 + 3.78 + 5.81	59 11. 2 59 10. 5 59 9. 5 59 7. 9 58 59. 0	+2.8 +2.8 +2.8 +2.8 +2.8 +2.9
Apr. 15 May 22 June 21 21 July 31	5 5 42.5 12 30 57.4 9 12 3.1 9 50 22.3 12 26 37.3	. 2122975 . 5214977 . 3833692 . 4099804 . 5184872	67 43 39.8 201 8 16.0 232 18 57.6 232 37 53.8 35 2 51.7	8 55.01 7 13.73 7 7.28 7 7.30 8 24.43	-5 2 19.4 +4 6 27.4 +5 5 20.6 +5 5 22.1 -5 2 50.3	+ 6.90 +21.66 + 0.65 + 0.45 -13.29	60 31.0 54 31.2 54 1.8 54 1.6 58 51.1	+1.8 +2.0 +1.1 +1.1
Aug. 28 29 29 29 30	21 3 28. 2 16 40 0.0 19 4 0.0 21 28 0.0 1 12 35. 4	. 8774096 . 6944444 . 7944444 . 8944444 . 0504096	51 2 44.8 62 38 6.0 64 3 21.5 65 28 38.6 67 41 42.0	8 29 68 8 31.47 8 31.58 8 31.76 8 31.96	-5 16 2.4 -5 10 22.1 -5 8 47.9 -5 7 2.2 -5 3 54.7	- 0.55 + 8.82 + 9.95 + 11.06 + 12.88	59 6.8 59 14.3 59 15.1 59 15.7 59 16.7	-2.2 -1.8 -1.8
Oct. 14 21 21 23 23	12 54 13. 2 8 36 10. 1 9 28 14. 1 9 30 0. 0 10 42 0. 0	. 5376528 . 3584502 . 3946076 . 3958333 . 4458333	302 33 53. 3 34 38 4. 6 35 10 5. 9 64 54 10. 1 65 38 43. 0	7 19. 47 8 51. 36 8 51. 56 8 54. 67 8 54. 49	+1 30 48.6 -4 52 19.8 -4 53 1.9 -4 50 30.8 -4 49 24.9	-37.40 -11.70 -11.32 +12.85 +13.38	55 10. 4 60 12. 2 60 13. 0 60 28. 1 60 27. 7	+0.4 -1.5 -1.5 -1.8
23 23 23 23 23	11 54 0.0 13 6 0.0 13 32 45. I 14 18 0.0 14 27 53.8	. 4958333 . 5558333 . 5644109 . 5958333 . 6027060	66 23 15. 2 67 7 46. 3 67 24 19. 4 67 52 16. 4 67 58 24. 2	8 54. 30 8 54. 10 8 53. 90 8 53. 88 8 53. 90	-4 48 16. 3 -4 47 4. 7 -4 46 37. 4 -4 45 50. 3 -4 45 39. 8	+13.94 +14.52 +14.90 +15.12 +15.20	60 27. 3 60 26. 8 60 26. 6 60 26. 3 60 26. 3	-1.8 -1.8 -1.8 -1.8

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in o ^d .o1.	Geocentric Latitude of Moon.	Motion in o.do1.	Parallax.	∆v.
1831, Nov. 8	h m s d .2305671 11 27 1.8 .4771042 11 11 37.4 .4664051	271 20 48.0 15 15 33.4 133 32 50.4	7 5.79 8 32.27 8 21.32	+3 35 33.6 -4 17 28.4	-25.99 -23.24	, ,, 54 1. 1 59 16. 3	+0.6 +0.4
Dec. 17	3 34 4.2 .1486597 3 36 59.3 .1506863	62 40 55. 5 62 42 46. 6	9 5.90 9 5.96	-0 10 48. 3 -4 50 43. 1 -4 50 39. 9	+44. 33 +15. 90 +15. 88	58 55.0 61 6.0 61 6.0	-1.2 +1.2 +1.2
1832, Jan. 5 Feb. 10 10-	7 11 26. I . 2996076 3 41 27.5 . 1537905 5 5 40.3 . 2122720 6 10 27.4 . 2572615 4 57 50. I . 2068298	80 14 35.5 311 51 42.4 67 10 15.3 67 48 42.6 140 6 38.4	9 12.17 7 13.80 8 32.50 8 33.00 8 45.06	-4 6 49.3 +0 3 58.9 -4 48 35.7 -4 47 6.0 +0 41 56.7	+29. 44 -39. 70 +19. 70 +20. 20 +48. 05	61 28.8 54 36.3 59 21.1 59 22.6 60 3.9	+0.7 +0.2 +2.7 +2.7 +1.7
15 15 Mar. 8 8 9	17 13 48.2 .7179190 17 17 11.5 .7202720 8 56 1.8 .3722431 12 6 10.9 .5042928 11 5 11.9 .4619433	147 32 13.6 147 34 16.1 66 6 35.2 67 57 44.0 81 26 59.7	8 40. 99 8 41. 10 8 24. 70 8 25. 21 8 28. 77	+1 22 16. 2 +1 22 27. 2 -4 44 27. 5 -4 40 11. 7 -4 0 37. 6	+46. 45 +46. 40 +18. 70 +19. 96 +29. 29	59 49.3 59 49.2 58 52.6 58 55.0 59 11.0	+1.7 +1.7 +2.8 +2.8 +2.9
9 9 Apr. 14 June 17 17	11 6 35.9 11 41 3.9 8 2 59.1 19 0 25.7 19 43 14.5 . 4629155 . 4868507 . 3354062 . 7919640 . 8216956	81 27 47.8 81 48 7.0 200 50 35.2 321 4 16.8 321 25 32.6	8 28.80 8 28.84 7 52.79 7 9.01 7 9.12	-4 0 34.8 -3 59 24.3 +4 45 30.7 -1 32 50.2 -1 34 41.2	+29. 30 +29. 48 +13. 16 -37. 35 -37. 27	59 11.0 59 11.4 56 45.3 54 25.0 54 25.6	+2.9 +2.9 +2.5 -1.0
Sept. 4 7 7 Dec. 31 1833, Mar. 31	8 11 10.8	282 44 17.8 320 59 11.6 321 34 24.0 28 4 2.9 138 29 28.7	7 4.60 7 13.33 7 13.66 7 49.90 8 44.20	+1 47 48.1 -1 36 32.6 -1 39 33.7 -5 16 31.4 +2 20 42.3	-36.30 -37.21 -37.11 $+2.80$ $+40.80$	54 9.8 54 32.5 54 33.4 56 49.8 60 5.8	0.0 -0.7 -1.0 +1.8 +4.7
Dec. 26 1834, Apr. 13 20 Aug. 12 12	4 47 38.6 . 1997522 7 54 36.0 . 3295833 8 40 52.2 . 3617153 7 3 10.8 . 2938749 8 3 58.3 . 3360913	92 13 39.9 75 14 50.0 171 25 40.2 240 42 1.0 241 16 46.8	8 19. 57 7 30. 80 8 58. 40 8 14. 19 8 13. 85	-0 20 51.4 -1 11 1.4 +5 2 19.1 +2 8 6.1 +2 5 16.0	+46. 12 +38. 80 + 5. 80 -40. 16 -40. 31	58 33.9 55 45.7 60 42.0 58 25.8 58 24.4	+1.1 +2.8 +5.4 +5.1 +5.1
Oct. 7 7 7 8	16 23 47.0 .6831835 5 32 8.3 .2306516 5 56 8.2 .2473171 6 6 8.8 .2542685 6 40 59.5 .2784664	111 6 57.9 259 50 6.1 260 3 58.5 260 9 44.8 274 7 26.9	8 10.91 8 19.30 8 18.98 8 18.90 8 2.74	+2 18 45.9 +0 0 2.9 -0 1 11.0 -0 1 41.7 -1 15 20.6	+38.46 -44.40 -44.32 -44.30 -41.58	58 10.0 58 47.1 58 46.2 58 45.8 57 49.3	+1.8 +2.8 +2.8 +2.8 +2.7
Nov. 3 Dec. 17 17 1835, Jan. 6	6 50 38.9 . 2851724 4 10 5.1 . 1736702 13 50 30.0 . 5767360 15 9 21.6 . 6315001 9 45 19.2 . 4064722	274 12 50.0 253 19 20.2 107 36 3.9 108 18 29.8 15 58 46.2	8 2.70 8 43.10 7 44.71 7 45.07 7 7.90	-1 15 48.5 +0 25 8.8 +2 39 8.5 +2 42 31.0 -4 35 10.5	-41.50 -47.30 +37.05 +36.84 +18.70	57 49.0 60 3.0 56 25.6 56 27.2 54 18.4	+2. 7 +2. 4 +0. 1
18 18 Apr. 9 June 10 12	12 4 28.9 . 5031122 12 51 59.4 . 5361039 8 39 14.4 . 3605833 9 41 57.4 . 4041365 11 14 11.4 . 4681872	170 38 30. 1 171 6 21. 7 151 48 52. 6 258 35 59. 8 288 55 56. 5	8 26. 54 8 26. 64 8 27. 10 8 58. 00 8 37. 26	+5 8 27.6	- 3. 14 - 3. 54 + 6. 10 -48. 80 -36. 09	58 52. 3 58 52. 7 58 57. 1 60 49. 7 59 35. 5	+0.8 +0.8 +5.1 +2.5 +0.8
July 6 Aug. 6 6	11 34 41.6 10 0 32.1 5 38 32.7 5 45 58.7 6 59 52.6 . 4824262 . 4170382 . 2351006 . 2402625 . 2915815	317 1.59.2 238 10 20.7 288 31 50.4 288 36 13.2 289 19 44.4	8 6.47 8 45.50 8 28.93 8 28.93 8 28.64	-4 55 7.6 +0 52 46.7 -3 25 3.1 -3 25 20.1 -3 28 8.7	-16. 08 -47. 10 -33. 11 -33. 07 -32. 64	57 46.6 60 11.8 59 2.6 59 2.4 59 1.3	-0.7 +4.2 +2.9 +2.9 +2.9
9 Oct. 3 29 Nov. 25	. 9 39 52. 7 5 51 30. 2 6 22 35. 0 5 42 39. 0 6 13 1. 9 . 2590498	318 44 43.6 228 35 48.4 335 27 48.9 319 1 8.0 315 31 22.5	8 12.62 8 30.60 7 46.80 7 56.42 8 12.60	-4 49 7.4 +1 17 56.6 -5 5 35.4 -5 9 42.5 -5 8 57.8	-12.58 -43.50 + 3.60 - 7.89 -10.70	57 56.8 59 23.1 56 26.5 57 12.4 58 11.3	+0.6 +5.6 +1.4 +2.0 +0.8
1836, Feb. 8 23 25 Mar. 24	10 11 58. 7 11 6 55. 6 5 35 44. 2 8 11 50. 9 5 10 34. 9 . 4249853 . 4631436 . 2331504 . 3415613 . 2156817	344 10 46.6 214 56 25.1 55 59 18.4 80 54 21.3 87 13 41.3	7 41. 29 8 16. 46 7 7. 90 7 5. 40 7 5. 60	-5 7 19.0 +1 44 6.9 +0 12 45.6 +2 19 30.6 +3 2 47.3	+10.98 -41.07 +37.80 +33.40 +31.00	56 19.4 58 33.9 54 27.8 54 14.7 54 14.7	+1.5 -0.4 +0.6 +1.0
Apr. 25 25 25 May 17 June 28	8 26 14.4	145 29 34.9 145 38 33.3 145 48 10.4 81 12 24.7 278 29 30.2	7 36.82 7 36.90 7 37.22 7 5.65 9 9.97	+5 14 59.6 +5 14 55.0 +5 14 49.8 +2 44 12.1 -3 53 52.1	- 3.92 - 4.00 - 4.13 +33.58 -31.95	56 1. 1 56 1. 7 56 2. 2 54 1. 7 61 22. 6	+4. 1 +4. 1 +4. 1 -0. 6 +2. 3
Aug. 22 22 Sept. 16 16	6 32 33.0 . 2726032 7 56 23.5 . 3308276 8 40 10.2 . 3612291 8 45 26.7 . 3648924 8 47 32.7 . 3663507	277 27 28. 3 278 18 31. 7 246 44 26. 3 246 47 30. 1 246 48 43. 3	8 45.90 8 46.33 8 22.00	-4 2 33. 2 -4 5 12. 1 -2 9 40. 7 -2 9 55. 7 -2 10 1. 7	-27.59 -27.03 -41.01 -41.01	60 5.6 60 6.6 58 51.8 58 51.9 58 51.9	+4.5 +4.5 +6.1 +6.1

Date.	Greenwich Mean Time	Geocentric Longitude of Moon.	Motion in od.01.	Geocentric Latitude of Moon.	Motion in od.o1.	Parallax.	. 1 v.
	h m s d		, ,,	6 / //	- ,,	, ,,	,,
1836, Sept. 21 Oct. 21 21 21	8 12 51.6 34226 8 34 23.7 35721 10 47 57.0 44996 12 0 28.1 50032	33 355 38 14.3 51 356 53 32.0 49 357 34 22.1	8 35.73 8 7.46 8 6.73 8 6.34	-5 7 7.8 -3 45 3.2 -3 40 8.6 -3 37 26.0	+ 4.64 +31.44 +32.06 +32.46	59 21.6 57 46.8 57 44.3 57 42.9	+3.3 +1.7 +1.7 +1.7
Dec. 16 1837, Feb. 14 17 Mar. 12	8 31 39. 1 . 35531, 6 57 52. 1 . 29018 9 36 43. 6 . 40050, 6 13 8. 8 . 25912	64 82 31 49. 0 45 119 25 40. 6	7 44·73 7 9.40 7 7.82 7 26.42	-2 8 39. I +3 45 35. 8 +5 I 4. 8 +2 53 6. 2	+38.20 $+25.20$ $+2.99$ $+33.51$	56 40. 4 54 23. 7 54 1. 4 55 33. 1	+0. 2 +1. 2 +0. 3
13 15 16	9 39 4.1 .40213 9 0 43.5 .37550 6 53 18.3 .28701	80 8 43. I 35 103 45 32. 4	7 16.00 7 7.40 7 6.80	+3 50 23.5 +4 54 31.2 +5 7 42.5	+26.40 +12.20 + 5.10	54 52.3 54 12.4 54 6.5	+0.9 +1.1 +1.5
May 10 June 6 16 July 9	9 21 40. 7 . 39005. 8 3 44. 3 . 33592 6 29 40. 7 . 270610 6 47 8. 9 . 28274	94 115 21 25.5 95 239 41 2.3	7 8. 50 7 10. 50 8 29. 31 7 17. 98	+5 14 45.6 +5 6 15.4 -2 30 29.1 +2 8 6.5	+ 1.10 + 3.50 -39.51 -34.91	54 14.8 54 14.6 59 9.3 55 2.4	+1.4 +0.1 +5.1 +4.3
Aug. 18 18 Oct. 9 9 Nov. 5	10 6 59. 2 . 42151 11 11 14. 2 . 46613 6 36 46. 4 . 27553 7 47 38. 7 . 32475 6 32 6. 4 . 27229	67 4 4 30. 5 71 319 10 9. 8 36 319 53 8. 3	8 43. 94 8 43. 15 8 43. 78 8 44. 05 8 30. 30	-1 47 59. I -1 44 44. 2 -4 43 15. 0 -4 41 27. 3 -4 49 49. 9	+43.61 +43.71 +21.51 +22.05 +18.24	60 5.3 60 3.1 59 56.6 59 57.6 59 12.8	-1.2 -1.2 +4.3 +4.3 +5.2
10 12 1838, Jan. 3 Feb. 2	8 9 6.2 .33965 12 41 2.0 .52849 3 8 27.0 .13086 9 8 0.8 .38056 7 6 31.9 .29620	54 57 21 44.9 81 17 21 19.5 52 57 40 34.1	8 23.00 8 4.81 8 13.60 7 49.40 7 32.10	+0 26 56. 2 +3 0 0. 5 -0 5 53. 4 +3 25 23. 0 +4 40 8. 8	+45.90 +36.09 +43.50 +30.77 +15.60	58 47. 3 57 36. 6 58 27. 3 56 54. 4 55 40. 9	+1.3 -0.7 +2.0 +0.5
7 Mar. 1 29 June 4 July 31	7 49 28.9 . 32602 4 33 12.0 . 18972 4 14 34.0 . 17678 7 52 56.7 . 32843 9 16 19.2 . 38633	89 119 25 41.3 22 51 16 33.2 24 59 33 24.4 40 213 23 9.4	7 15. 10 8 9. 00 8 15. 67 7 25. 60 7 42. 27	+4 54 29.9 +3 11 33.8 +3 50 14.1 -1 54 35.7 -4 16 28.8	- 9. 60 +35. 20 +31. 46 -36. 70 -22. 45	54 26.6 58 7.0 58 24.2 55 22.5 56 23.8	+0.8 +0.3 +0.6 +5.2 +6.2
Aug. 12 12 12 Sept. 2	13 45 22.4 .57317 14 47 54.9 .61660 15 36 57.2 .65066 6 54 7.8 .28759	55 56 18 22.6 81 56 53 42.3 24 57 21 22.9 03 319 2 44.4	8 8. 20 8 7. 76 8 7. 43 8 55. 80	+4 1 6.4 +4 3 5.3 +4 4 37.2 -3 43 43.2	+27.59 +27.17 +26.86 +34.40	58 O. 1 57 58. 1 57 56. 7 60 36. 5	-2.6 -2.6 -2.6 +3.2
Oct. 5 25 25 Nov. 3	8 4 2.0 .33613 12 47 34.5 .53303 7 4 51.8 .29504 7 8 16.7 .29741 6 49 41.5 .28450	87 46 14 53. 2 40 294 43 29. 0 55 294 45 24. 4 81 65 14 53. 2	8 28.70 8 48.68 8 1.80 8 1.80 8 41.33	+3 43 16.9 +3 33 3.7 -4 53 21.0 -4 53 17.3 +4 33 39.8	+33. 13 +36. 22 +15. 60 +15. 63 +22. 39	59 12. 7 60 16. 1 57 33. 5 57 33. 6 59 43. 6	-2.5 -2.3 +5.6 +5.6
27 29 Dec. 26 26 1839, Apr. 20	4 49 27.6 .20101 9 43 9.2 .40496 5 7 59.5 .21388 5 8 12.6 .21403 15 28 40.7 .64491	74	8 42. 20 8 47. 15 8 31. 20 8 31. 13 7 39. 68	+1 1 5.6 +3 30 42.7 +3 11 11.5 +3 11 12.1 +3 55 39.8	+45.50 +33.53 +34.60 +34.61 -27.45	60 1.2 60 5.4 59 17.6 59 17.6 56 19.3	+2.9 +0.9 +2.4 +2.4 +0.4
May 2 6 24 24 June 19	12 41 25.9 . 52877 13 16 34.7 . 55248 4 2 2.6 . 16808 4 18 3.2 . 17920 13 0 27.4 . 54198	20 268 49 25.4 48 320 44 18.9 201 10 39.8 35 201 18 32.0	7 26.46 8 6.93 7 4.67 7 4.66 7 6.98	-5 6 14.5 -2 47 0.4 -2 25 41.5 -2 26 18.0 -1 46 27.9	+ 3.47 +36.67 -32.94 -32.86 -35.26	55 16. 2 58 0. 4 54 2. 8 54 2. 7 54 21. 1	+2.5 +2.1 +2.2
20 20 23 24 July 1	13 7 31.2 . 54688 13 54 30.9 . 57952 13 50 0.0 . 57638 6 49 34.6 . 28442 18 42 7.9 . 77925	89 202 11 36.6 43 202 34 44.7 238 18 35.6 83 246 56 16.2	7 5. 28 7 5. 32 7 16. 30 7 21. 09 8 14. 19	-2 42 39. 1 -2 44 22. 0 -4 41 5. 3 -4 54 3. 2 -0 19 48. 0	$ \begin{array}{c cccc} -31.55 \\ -31.42 \\ -13.62 \\ -8.21 \\ +43.76 \end{array} $	54 11. 3 54 11. 1 54 36. 2 54 51. 4 58 24. 9	+2.6 +2.6 +3.9 +3.8 +3.0
6 6 6 23 Aug. 17	19 54 49.6 . 82974 21 13 51.2 . 88462 21 41 43.2 . 90397 8 50 33.8 . 36844 8 58 55.2 . 37425	07 345 13 48. I 03 56 46 5. 4 22 57 2 52. 6 68 268 44 29. 3	8 14.50 8 40.42 8 40.46 7 35.90 7 11.60	-0 16 7. 1 +4 43 3. 8 +4 43 35. 8 -5 1 3. 1 -5 2 30. 2	+43.80 +16.59 +16.45 +8.30 -11.04	58 26. 2 59 41. 8 59 41. 8 55 47. 4 54 29. 4	+3. o -2. 2 -2. 2 +4. 4 +3. 9
25 Sept. 11 26 26	9 31 9.1 .39663 8 32 4.4 .35560 11 26 31.2 .47675 9 8 29.8 .38090 15 0 0.0 .62500	36 240 7 46. 9 65 344 31 51. 2 00 213 31 59. 2 04 52 53 18. 1	7 11.69 8 35.10 7 7.07 8 50.12 8 47.87	-5 2 54.6 -0 7 28.3 -3 54 35.2 +4 50 36.6	-10.84 +47.50 -26.42 +18.78	54 29.9 59 30.1 54 8.8 60 17.0	+3.9 +1.5 +1.8 -2.3
26 Oct. 17 18	16 12 0.0 .67500 17 24 0.0 .72500 13 26 21.2 .55996 10 55 56.9 .45551	57 12 31. 4 57 56 27. 6 76 321 31 59. 7	8 46. 98 8 5. 37 8 20. 46	+4 57 42.0 +4 59 0.1 +5 0 15.4 -2 5 34.6 -1 2 9.3	+15. 90 +15. 35 +14. 74 +40. 26 +44. 46	60 9.8 60 8.2 60 6.6 57 55.4 58 48.0	-2.3 -2.3 -2.3 +4.1 +3.4
18 19	10 59 11.6 .45777 5 19 59.9 .22222	31 333 49 28.7		-1 1 59.4 -0 3 53.8	+44. 40 +46. 50	58 48. 2 59 31. 6	+3.4

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in o ^d .01.	Geocentric Latitude of Moon.	Motion in o ^d .01.	Parallax.	Av.
1839, Oct. 19 28 Nov. 14 19	h m s d . 3622754 19 16 32.2 . 8031504 7 11 58.5 . 2999827 20 37 22.9 . 8592928 11 0 0.0 . 4580000	346 35 30.9 124 49 58.7 326 48 56.1 46 52 10.9 56 3 55.0	8 35.80 7 56.16 7 55.30 9 12.04 9 12.91	+0 6 58.6 +3 17 36.3 -1 25 46.8 +4 30 50.3 +4 48 18.3	+46. 70 -32. 71 +40. 40 +21. 01 +13. 73	59 39. 2 57 21. 5 57 23. 3 61 26. 3 61 27. 5	+2.7 -3.3 +4.5 -1.0 -0.8
20 20 Dec. 12 12	12 12 0.0 5083333 13 24 0.0 5583333 6 44 41.2 . 2810324 13 23 20.9 5578808 14 33 22.0 . 6065047	56 49 59. 8 57 36 4. 4 336 14 8. 6 339 53 20. 9 340 32 0. 0	9 12.89 9 12.80 7 53.40 7 56.68 7 57.24	+4 49 25.9 +4 50 30.2 -0 20 7.4 -0 0 48.4 +0 2 36.2	+13.20 +12.50 +41.70 +42.02 +42.08	61 25. 1 61 26. 9 57 50. 0 57 27. 0 57 29. 2	-0.8 -0.8 +4.6 +4.6 +4.6
1840, Jan. 11 11 13 13	3 35 11.8 .1494421 4 42 6.1 .1959039 7 34 59.3 .3159641 7 51 34.1 .3274781 8 29 35.2 .3538796	11 48 0.4 12 26 25.7 42 15 29.9 42 25 22.2 42 48 6.7	8 15. 95 8 16. 30 8 35. 90 8 36. 00 8 36. 22	+2 54 8.5 +2 56 59.0 +4 39 22.6 +4 39 45.2 +4 40 36.5	+36.78 +36.53 +19.66 +19.50 +19.23	58 30. 5 58 32. 0 59 32. 1 59 32. 4 59 33. 0	+3.7 +3.7 +2.6 +2.6 +2.6
14 14 14 14	8 52 32.4 . 3698194 9 5 55.4 . 3791134 9 23 29.6 . 3913148 9 29 23.6 . 3954120 9 51 42.8 . 4109120	57 28 49. 3 57 36 54. 9 57 47 33. 9 57 51 8. 4 58 4 41. 5	8 43.60 8 43.70 8 43.70 8 43.70 8 43.80	+5 4 1.3 +5 4 8.8 +5 4 18.5 +5 4 21.7 +5 4 33.6	+ 8. 03 + 8. 00 + 7. 80 + 7. 80 + 7. 55	59 53.6 59 53.8 59 54.0 59 54.1 59 54.3	+2.6 +2.6 +2.6 +2.6 +2.6
14 16 16 16 20	10 1 14.4 .4175277 6 10 11.1 .2570730 6 11 2.8 .2576713 7 50 59.3 .3270753 14 17 14.0 .5953010	58 10 26.9 85 7 16.5 85 7 47.4 86 8 56.6 146 56 14.7	8 43.80 8 45.55 8 48.60 8 48.46 8 7.28	+5 4 38.7 +4 53 57.3 +4 53 56.4 +4 52 13.0 +0 54 2.6	+ 7.50 -14.43 -14.40 -15.21 -43.51	59 54.4 60 5.6 60 5.6 60 5.2 57 53.7	+2.6 +0.8 +0.8 +0.8 -0.6
Feb. 15 15 26 Mar. 15 15	10 33 2.6 .4396134 11 13 0.9 .4673715 11 13 26.1 .4676632 7 26 38.9 .3101725 8 34 3.6 .3569862	264 3 16.9	8 19.03 8 18.82 7 12.97 7 55.58 7 55.20	+2 42 38.5 +2 40 49.0 -5 2 24.1 +0 53 12.6 +0 49 50.6	-39. 42 -39. 58 +11. 98 -43. 11 -43. 14	58 29. 2 58 28. 5 54 33. 7 57 10. 2 57 8. 9	+0.8 +0.8 +3.4 +1.4 +1.4
23 23 Apr. 11 11	8 13 2.0 .3423843 9 7 12.6 .3800070 9 58 16.6 .4144700 10 5 23.8 .4204144 7 46 50.1 .3241910	246 38 30. 4 247 5 18. 5 145 4 15. 5 145 8 6. 9 169 35 28. 8	7 7·54 7 7·41 7 50·22 7 50·20 7 35·35	-5 13 5.3 -5 13 3.6 +0 57 12.4 +0 56 51.8 -1 14 7.3	+ 0.27 + 0.60 -41.64 -41.60 -39.71	54 9·4 54 9·5 56 58.7 56 58.4 55 57·5	+3. 1 +3. 1 +1. 2 +1. 2 +1. 6
16 19 19 May 6 8	8 17 2.2 20 20 41.4 .8477013 21 13 21.2 .8842731 14 4 23.2 .5863796 8 30 56.6 .3548217	207 3 10. 3 249 4 58. 0 249 31 1. 0 117 3 44. 0 141 10 52. 2	7 18.55 7 7.39 7 7.36 8 24.35 7 58.16	-3 59 57.0 -5 3 57.4 -5 3 46.7 +3 0 13.2 +1 4 42.4	$ \begin{array}{r} -24.10 \\ + 2.75 \\ + 3.92 \\ -35.70 \\ -41.31 \end{array} $	54 42.3 54 2.5 54 2.5 59 0.0 57 32.4	+2.7 +3.5 +3.5 +0.7 +1.2
9 18 19 19 20	9 17 3.5 .3868461 10 40 12.0 .4445834 11 52 48.0 .4950001 13 29 41.7 .5622883 10 37 13.6 .4425186	154 41 57.0 264 53 47.2 277 23 16.5 278 11 23.6 288 42 51.1	7 45·34 7 7·54 7 8·97 7 9·13 7 11·91	-0 6 28.8 -4 36 38.0 -4 4 58.7 -4 2 31.4 -3 25 59.6	$ \begin{array}{r} -41.11 \\ +14.38 \\ +21.66 \\ +22.13 \\ +27.58 \end{array} $	56 45.0 54 1.7 54 12.8 54 13.8 54 29.6	+1.0 +3.2 +3.4 +3.4 +3.2
20 22 22 June 12 July 10	12 1 46.0 . 5012269 13 59 14.8 . 5828102 15 20 35.2 . 6392963 14 18 5.5 . 5958970 15 3 11.8 . 6272198	289 25 7.7 314 45 29.3 315 27 30.6 239 59 1.2 249 6 42.0	7 12.15 7 26.07 7 26.58 7 7.57 7 7.23	-3 23 16.8 -1 28 16.2 -1 24 43.5 -5 1 37.6 -5 3 36.1	+27.92 +37.55 +37.75 + 0.01 + 7.30	54 30.8 55 33.5 55 35.7 53 59.0 54 2.4	+3. 2 +3. 0 +3. 0 +3. 4 +3. 8
Sept. 3 8 Oct. 6	15 52 27.7	249 31 3.5 249 6 16.5 316 1 44.0 321 12 50.1 57 19 1.0	7 7. 28 7 8. 60 7 34. 23 7 34. 50 8 46. 84	-5 3 10.6 -5 9 22.2 -1 2 11.5 -0 28 17.8 +5 5 5.6	+ 7.57 + 8.00 +40.91 +40.75 - 1.18	54 2.3 54 17.7 55 53.5 56 1.5 59 59.6	+3.8 +3.1 +3.6 +3.9 -1.1
Nov. 2 2 3 1841, Feb. 7 27	11 24 1.3 .4750152 12 46 54.4 .5325743 12 12 43.7 .5088391 7 2 50.5 .2936401 6 38 5.5 .2764526	315 27 1.8 316 9 16.5 328 15 3.7 162 5 23.0 55 22 21.9	7 20. 08 7 20. 73 7 31. 96 8 35. 35 8 17. 10	-0 45 14.3 -0 41 32.5 +0 22 27.2 -2 9 35.1 +5 12 30.8	+38. 45 +38. 59 +39. 80 -43. 50 - 5. 90	55 14. 1 55 16. 3 55 57. 4 59 31. 6 58 24. 5	+4.0 +4.0 +3.9 -0.2 +3.8
30 July 28	16 51 1.1 . 7020961	134 32 25.5 102 15 29.3 264 39 49.0 247 46 49.3 259 55 54.3	8 22.70 8 50.28 7 13.53 7 17.92 7 11.53	-0 1 57. 2 +2 28 12. 8 -3 38 56. 0 -4 34 51. 2 -4 0 20. 5	-44. 40 -40. 86 +26. 82 +18. 89 +25. 98	58 58.0 60 23.8 54 25.6 54 42.9 54 25.7	+2. I +2. 0 +3. 4 +3. 9 +4. 0
Aug. 1 10 10 10 Sept. 6	21 6 52.5 . 8797743 10 30 0.0 . 4375000 11 42 0.0 . 4875000 12 54 0.0 . 5375000 16 0 0.0 . 6666667		7 5.79 8 13.81 8 14.50 8 15.13 8 4.54	+0 2 5.1 +5 2 37.6 +5 1 27.8 +5 0 15.4 +4 56 47.6	+39. 46 -13. 61 -14. 21 -14. 70 -13. 38	54 3.0 58 15.5 58 18.0 58 20.5 57 40.5	+3.9 +0.7 +0.7 +0.7 +0.2

35990°—12——5

Date.	Greenwich Mean	n Time.	Geocentric Longitude of Moon.	Motion in o ^d .01.	Geocentric Latitude of Moon.	Motion in o ^d .01.	Parallax.	₫v.
	hm s d		0 / //	, ,,	ō / //	,,	, ,,	,,
1841, Sept. 6	17 12 0.0 .	7166667	56 54 59. o	8 5.03	+4 55 39.4	-13.8o	57 21.8	+0. 2
6		7666667 2843866	57 35 25 0 271 59 27 3	8 5.44 7 11.50	+4 54 28.8 -3 0 24.9	-14.34 +31.40	57 44.2 54 37.3	+0. 2 +3. 9
25	'' '	5002177	310 3 47.3	7 6.10	+0 12 32.9	+38.19	54 14.6	+4.7
Oct. 6	21 47 4.3	9076888	97 45 12.6	8 23.31	+2 26 36.8	-39.05	58 56.9	-1.2
Nov. 27		5841956	56 36 2.2	8 27.11	+4 36 28.1	- 19. 05	58 49.8	+1.7
27		6143021	57 1 29.6	8 27.51	+4 35 30.0	-19.41	58 51.0	+1.7
1842, Jan. 17 21	• - •	5981771 4501042	7 22 51. I 56 41 29. 6	7 18.60 8 8.40	+4 53 59.5 +4 44 3.2	+15.11 -20.22	54 55·7 57 57·9	+4. 1
21		4864352	57 11 5.4	8 9.00		-20.59	58 0.0	+4. 1
24	13 57 1.1 .	5812628	101 21 44.0	8 56.40	+1 41 19.7	-47.09	60 44.9	+1.6
Mar. 22		3462512	129 54 12.0	8 45. 10	-1 4 8.9	-45.70	60 12.2	+3.0
22 Apr. 12		3519930 5012442	129 59 13.6 46 55 9.4	8 45. 20 7 46. 05	-1 4 35. 2 $+4$ 39 21. 6	-45.60 -14.89	60 12.4 56 23.4	+3. c +3. 7
May 14		3241644	108 25 15.3	8 21.50	+0 20 58.0	-44. 70	58 49. I	+3.2
June 12	7 32 20.6	3141273	132 50 48.4	8 36.90	-1 57 O.3	-43.80	59 40. 7	+2.7
Oct. 7	18 35 6.2 .	7743773	248 42 56.5	8 9.49	-3 3 50.0	+34. 12	58 5.0	
1843, Jan. 24 Mar. 6		9520521	245 21 6.3	8 0.61	-3 5 54·4	+35.55	57 32.2	— I. I
Apr. 2		3203206 5111446	46 19 46.0 45 38 35.2	7 13.50 7 12.96	+4 0 44.4 +3 51 16.8	-23. 20 -24. 10	54 37. I 54 27. O	+3.5 +3.8
May 3	~	2730093	89 4 16.3	7 35.70	+0 22 32. 1	-40.80	56 3.3	+3.5
3		3784861	90 24 28.3	7 36.60	+0 15 21.0	-40.90	56 6.8	+3.5
3	9 19 38.5	3886401	90 32 12.0	7 36.70	+0 14 39.5	-41.00	56 7.1	+3.5
June 3		3852592 3715092	172 2 47.6 140 5 32.5	8 46.00 8 12.90	-5 2 49. I	- 9.00 -30.30	60 3.0 58 13.6	+2.6 +2.9
	1	_			-3 53 41.4		• •	-0.1
Sept. 11 30		5307627 5772847	24 18 44. 7 283 11 26. 5	7 6.67 7 53.66	+4 30 40.0 +1 25 17.8	- 16. 18 +40. 08	54 I.5 57 I5.9	+2.8
Oct. 6		4431077	356 16 8.0	7 12.40	+5 0 46.8	- o. o8	54 16.0	+2.1
Nov. 2		2064908	350 27 28.5	7 12.60	+5 7 42.4	+ 2.50	54 25.5	+2.3
2	-	2091297	350 29 22.7	7 12.60	+5 7 43. 1	+ 2.50	54 25.4	+2.3
3 27		5571239 3380751	6 36 3.8	7 8.40 7 36.75	+5 0 57.9 +4 35 51.4	-8.37 +20.40	54 5·4 56 5.8	+2.4 +1.8
1844, Jan. 8	.,,,	4052395	146 27 15.5	8 8. 22	-4 41 10.7	- 19. 79	57 46.5	-1.2
8		4568796	147 9 17.4	8 8.53	-4 42 51.5	- 19. 31	57 47.8	-1.2
Feb. 22		4985081	26 29 1.4	7 10. 27	+4 2 46.3	-22.55	54 22.2	+1.7
Apr. 26 May 23		4023183 6076389	139 25 3.4 138 20 40.1	7 55.90 7 43.70	-4 42 35.9 -4 46 32.3	- 18. 20 - 18. 38	57 14.0 56 28.7	+2.2 +2.3
Nov. 24		4825753	62 47 58.0	7 5. 27		-39.43	54 O. I	+1.6
24	12 41 3.4	5285116	63 20 31.3	7 5.18	+0 8 18.0	-39.42	53 59.9	+1.6
Dec. 14		5922708	334 29 50. 2	8 5.75	+5 16 27.8	+ 0. 20	57 44 ·7	+2.1
1845, Jan. 12		2072338	351 6 30.0	8 1.20		-12.90	57 29.0	+2.1
Mar. 22		2104213 5408079	351 9 3.3 172 7 52.0	8 1.20 8 4.88	+4 54 15.9 -4 36 54.1	-12.90 +18.15	57 28.8 57 30.4	+2.1 +1.3
Apr. 12	9 20 41.4	3893680	91 0 8.5	7 5.20	-25954.3	-31.70		+1.8
May 16	7 28 58. 1 .	3117836	171 50 29.6	7 52.64	-4 45 16.8	+19.13	57 0.3	+2.5
16		3474641	172 18 37. 2	7 53. 22	-4 44 7.8	+19.48	57 2.2	+2.5
20 20		3499629 3540937	228 17 I.8 228 20 40.8	8 50.64 8 50.80	-0 41 0.4 -0 40 40.3	+48.71 +48.70	60 25.3 60 25.5	+1.5
June 16		4826516	223 51 49.4	8 38.52	-1 2 59.7	+46.47	59 49.0	+2.0
July 16	14 18 31.6	5961991	263 38 0.9	8 59.78	+2 31 33.2	+41.61	60 55.8	+1.7
17		6222234	279 8 15.8	9 7.25	+3 36 46.2	+33.97	61 15.3	+1.2
Sept. 13		3715104 6742165	323 17 46.6 86 13 7.2	8 44. 20 7 8. 47	+5 3 39.5 -3 12 52.5	- 4. 10 - 30. 09	59 49.0 54 25.1	+2.5 -1.8
22		8807488	88 40 29.9	7 7.78	-3 23 3.7	- 28. 97	54 22. I	-1.8
Oct. 20		3834525	90 34 24.8	7 10. 18	-3 39 30.8	-28.37	54 26.8	— 1. :
20		4243518	91 3 43.9	7 10.02	-3 41 26.6	-28.13	54 26. 2	<u>- 1. 2</u>
Nov. 6		2901447	314 38 56. 1	8 27.80 8 27.00	+5 17 10.1	+ 1.60	59 2.3	+2.5 +2.5
6		2907823 3152024	314 39 29.4 315 0 9.5	8 27.90 8 27.69	+5 17 10.2 +5 17 13.7	+ 1.58 + 1.25	59 2.3 59 1.7	+2.5 +2.5
9		3889339	357 27 12.3	8 5.75	+4 0 12.1	-29. 25	57 44.4	+2.0
9	9 27 18.1 .	3939595	357 31 15.3	8 5.60	+3 59 57.5	-29.20	57 44.3	+2.0
9	10 29 29.5	4371470	358 6 13.6	8 5.39	+3 57 50.0	-29.58	57 43. I	+2.0
10 Dec. 6		4358403 6361158	11 27 42.9 357 44 6.5	7 57.52 8 3.81	+3 2 50.3 +3 55 38.4	-35.99 -29.15	57 15.0 57 44.5	+2. 4 +2. 3
1846, Feb. 6		5781313	91 9 44.5	7 8.29	-3 49 29.3	-24. IS	54 13.5	+0.
20	1	9201251	271 11 52.6	8 38. 20	+3 57 26.5	+28.40	59 42.6	+o.
Mar. 31	15 27 39.9	6442118	72 8 36.3	7 31.55	-2 59 19.0	— 33. 88	55 49.0	+1.6
May 3		5684479	139 27 18.9	7 8.38	-5 9 44.6	+ 8.31	54 16.5	+2.0
4 1	10 0 12.2 .	4168079	149 34 32.1	7 10.90	-4 53 10.0	+15.00	54 26.4	+2.0

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in o ^d .01.	Geocentric Latitude of Moon.	Motion in od.01.	Parallax.	∆v.
	hm s d	0 / //	, ,,	. , ,,	"	, ,,	,,
1846, July 5 Aug. 14	9 18 34.8 . 3879028 13 6 9.1 . 5459387	241 32 20. 2 64 44 59. 7	8 19.88 7 35.22	+2 16 43.4 -2 49 32.1	+39.42 -33.40	58 41.1 56 5.2	+1.2 -1.5
14	13 59 23.2 . 5829075	65 13 1.9	7 34.80	-2 51 35.3	-33.15	56 3.6	-1.5
Sept. 14 Nov. 22	12 2 51. 7 .5019874 4 44 11. 9 .1973599	287 31 5.7	7 11.75 8 25.58	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 5.85 + 7.99	54 26. I 58 47. 7	-1.3
1847, Apr. 25	7 50 50. 1 . 3269688	162 51 15.6	7 4.94	-3 6 15.3	+31.75	54 5.5	0.0
May 21 June 17	7 35 48.8 .3165371 7 2 40.3 .2935221	147 8 30.0	7 11.62	-4 I 22.9 -4 3 4I.I	+24.64 +23.13	54 34.0 54 55.8	-o. 9
Oct. 18 1848, Feb. 15	8 51 46. 1 . 3692836	314 26 42.5 106 9 56.5	8 22.02	+4 20 52.7	-26.25 +11.20	58 47.6	+2.0 +1.2
Мат. 28	6 46 58.2 .2826180 16 12 6.6 .6750764	291 53 42.8	7 56. 50	-5 0 45.4 +4 55 59.6	-15.72	57 3.9	-0.4
Apr. 15	9 0 12.9 . 3751493	176 19 1.4	7 9.48	-o 23 16. 2	+39.36	54 20.9	+0.2
May 8	5 11 25.5 .2162674 9 9 48.2 .3818079	136 28 21.6	7 58.35	-4 22 33.3 -3 30 41.4	+22.62 +30.20	57 24.1 56 23.0	+1.3 +1.2
17	9 2 49. 1 . 3769572	232 35 24.8	7 9.86	+4 5 20.5	+22.60	54 9.7	-0.9
17 June 8	10 35 4.0 .4410186 9 24 15.6 .3918473	233 21 19.4 170 3 11.1	7 10.09	+4 7 43.8 -0 36 29.7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 10.4 55 4.9	+o. 6
Nov. 8 Dec. 4	8 27 51.6 . 3526806 6 3 18.7 . 2522998	15 18 27. 7 354 10 2. 4	8 53. 10 8 11.00	-2 10 48.6 -0 36 17.7	-42.97 -42.90	60 34.5 58 19.0	+1.0 +2.8
Dec. 4 1849, Jan. 3	6 3 18.7 .2522998 4 56 39.2 .2060092	31 16 43.5	8 31.80	-3 43 36. ₂	-30. 80	59 22.9	+3. 1
3 Feb. 13	6 2 53.4 .2520069	31 55 59. 1	8 32.40	-3 45 57.6	-30.50	59 24.6	
Feb. 13	11 26 45. 1 .4769109 12 38 58. 6 .5270672	222 12 49.8	7 11.31	+4 33 36. I +4 35 I4. 5	+19.81 +19.41	54 30. 5 54 29. 6	-2. 3 · · ·
Apr. 5	7 4 30. 3 . 2947952 8 39 25. 5 . 3607119	174 11 31.8	7 40. 30 7 33. II	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+40.90 +36.96	56 13.0 55 42.6	+o. 8 o. o
. 6	10 6 43.2 .4213334	188 28 37.6	7 32.77	+2 19 29.9	+36.65	55 40.9	;
July 13	12 54 24.8 .5377871 13 23 56.1 .5582883	30 53 35·3 31 10 42.3	8 20.73 8 21.00	+4 20 23.5 -4 21 13.6	-24.48 -24.32	58 42.7 58 43.6	- i. ı
Sept. 25	8 23 49. 2 . 3498751	287 37 56.7	7 9.93	+3 42 15.8	- 27. 67	54 27.9	+0. 2
25 Oct. 3	9 24 18.4 . 3918797 7 57 35.7 . 3316633	288 8 3. 0 31 16 23. 4	7 10.05 8 30.00	+3 40 19.0	-27.89 -23.74	54 28.6 59 1.6	-o. 4
25	5 54 42. 1 . 2463206	318 20 59. 2	7 21.70	+1 7 33.5	- 38. 40	55 18.5	+0.5
Nov. 23	7 11 49.6 .2998797 8 28 26.2 .3530810	339 25 23. O 340 5 24. 3	7 31.01	-0 59 38.5 -1 3 6.1	-39.01 -38.98	55 54·7 55 57·2	+1.3
26	11 2 34.2 .4601180	21 11 24.7	8 23.50	-4 I 50. 2	-26. 29	58 47.8	+1.3
Dec. 1	9 12 13.4 . 3834885 . 1328068	94 19 18.3 358 32 34.9	9 4.88	-4 0 7.4 -2 49 15.7	+28.88 -34.38	61 5.8	-0. 2
850, Jan. 17	7 55 1.0 .3298728	345 20 0.0	7 23. 10	-1 55 36.7	-37.82	55 15.6	+1.9
23 25	8 13 39. 2 . 3428149 7 37 24. 6 . 3176459	65 3 27.3 94 13 59.3	8 39. 72 9 1. 75	-5 9 41. 2 -4 0 43. 9	+ 9. 21 +32. 23	59 42.4 60 57.2	+3.7 +3.0
25	8 54 30.4 . 3711852	95 2 20.4	9 2.12	-3 57 50.0	+32.75	60 58.5	
Feb. 21	7 25 41. 1 . 3095035 7 41 25. 2 . 3204306	88 44 20.8 88 53 48.0	8 38.84 8 38.98	-4 20 18.5 -4 19 48.5	+27.42 +27.59	59 43.8 59 44.1	+4.4
Apr. 15	5 51 38.0 . 2441898 8 5 59.0 . 3374884	66 50 27.0		-4 53 3.4 -4 51 7.9	+11.80 +12.90	59 0.2 59 1.6	+2.2
16	7 43 34.9 .3219317	82 7 24.3	8 31. 20	-4 21 29.9	+23.00	59 13.0	+2.7
17	5 19 4 0.4 . 2219954	94 54 26.8	8 31.15	-3 40 38.3	+31.14	59 18.0	+3.1
21 22	10 40 16.4 .4446342 6 46 36.0 .2823611	154 20 58. I 165 57 44. 9	8 20. 70 8 17. 30	+2 7 15.2	+43. 20 +39. 90	58 45.7 58 29.7	+3.4 +3.2
June 13	6 8 57.7 . 2562234	130 21 12.1	8 47.02	-0 30 19. 2	+47.06	60 18.7	+3. 2
13 July 30	6 10 2.2 .2569711 12 18 9.5 .5126100	130 21 51.5	8 47.05 7 39.07	-0 30 15.7 -4 55 7.8	+47.06 -15.70	60 18.6 56 11.2	– 1. 6
Aug. 14	8 49 44.5 . 3678762 15 2 50.7 . 6269758	233 7 50. 5 88 5 8. 2	7 37. 10 8 29. 60	+5 14 19.3 -3 48 50.2	-6.10 $+32.19$	56 3.8	+1.1 -0.3
Sept. 1	15 19 0.1 .6381969	102 33 52.7	8 41.02	-2 47 17.4	+40.52	59 56.3	+o. 5
30 Nov. 17	14 15 22.0 . 5940048 7 11 16.3 . 2994944	126 18 19.4 31 20 59.6	8 37.39 7 57.56	-0 37 49.0 -4 59 23.2	+46.03 - 5.28	59 46. 7 57 4. 5	0. 0 -0. 2
851, Jan. 15	5 46 15.0 . 2404514	87 59 58.8	8 44. 10	-3 13 52.7	+ 38. 30	59 59.3	+1.3
Mar. 9	8 27 57.6 .3527500 9 43 5.2 .4049213	65 48 37. 9 121 41 20. 6	7 50. 56 8 43. 80	-4 24 55.6 -0 15 27.9	+21.97 +47.20	56 551 60 9.0	+3.0 +3.8
26	16 18 2.1 .6791910	304 51 46.9	7 5.52	-0 6 15.7	-37.98	54 15.1	-2.0
Apr. 18 May 17	13 42 25.8 .5711320 15 20 30.7 .6392443	249 23 32.4 271 23 19.6	8 3.01 7 43.59	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-26. 22 -36. 75	57 34·3 56 27.2	-0. 2 -0. 4
17	16 14 25.9 .6766888	271 52 14.9	7 43. 10	+2 15 29.7	-36.86	56 25.6	• • •
18 18	8 12 22.7 . 3419296 8 28 34.5 . 3531773	280 21 5.4 280 29 36. g	7 34.71	+1 33 36.3	-38.54 -38.56	55 58.3	-o. 6
18	9 2 59.1 .3770731	280 47 43.0	7 34. 31 8 28. 68	+1 31 20.8	-38.6o	55 57·9 55 57·0	
June 7	10 39 2.1 .4437745 13 29 28.8 .5621402	182 I 23.6 315 35 12.6	8 28.68 7 12.54	+4 40 55.9 -1 41 52.7	+19.42 -37.41	59 6.0 54 36.5	+3.0 -1.7
July 12	5 35 45.6 .2331668	283 10 14.7		+1 12 52.3	-40.50	55 34.2	-o. 3

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in od.o1.	Geocentric Latitude of Moon.	Motion in o.dor.	Parallax.	∆ v.
1851, Aug. 2 8 8	h m s d . 3430533 7 24 45. 2 . 368566 8 51 19. 9 . 3689804	202 2 27.9 280 54 55.0 281 39 38.7	, ,, 8 31.50 7 26.58 7 26.24	+5 15 29.8 +1 24 49.8 +1 20 51.3	+ 3.50 -39.62 -39.71	, ,, 59 14.8 55 25.5 55 23.8	+2.9 +0.6
Sept. 4 Oct. 17	8 59 21.8 . 3745579 18 33 26.9 . 7732280	278 48 44. O 117 37 43. 8	7 27. 20 8 11. 49	+1 29 45.6 +0 32 13.0	-38.60 +43.08	55 35.8 58 20.3	+o. 8
Dec. 5 7 7 31 1852, Jan. 4	6 53 30. 1 . 2871540 8 41 28. 3 . 3621331 9 51 7.6 . 4105046 7 24 32. 9 . 3087141 3 23 28. 1 . 1412978	39 37 33.0 65 50 55.6 66 28 21.7 23 18 43.3 71 0 28.2	7 25.90 7 44.17 7 44.56 7 12.09 7 48.40	-4 48 29.1 -3 27 23.1 -3 24 50.3 -5 15 10.8 -3 7 42.8	+15.00 +31.45 +31.75 + 4.20 +34.80	55 12.0 56 19.7 56 21.4 54 30.0 56 42.0	-1.6 -1.2 -1.4 -0.7
6 Feb. 15 15 Mar. 9	5 45 44.8 .2401019 14 44 33.1 .6142731 15 37 41.2 .6511712 11 32 35.5 .4809663 12 27 30.2 .5190995	1 -	8 13.40 7 39.58 7 39.31 8 44.72 8 44.11	-0 45 12.1 +0 26 22.2 +0 23 49.0 +4 29 24.9 +4 28 2.6	+45. 20 -41. 54 -41. 52 -21. 43 -21. 75	58 11. 9 56 16. 8 56 15. 6 60 1. 5 59 59 7	-0. 4 -1. 7 -0. 8
9 30 30 30	8 44 53. I . 3645035 9 19 3. 5 . 3882350 9 19 22. 4 . 3884537 9 40 15. 2 . 4029537	124 57 5.6 125 16 44.0 125 16 54.8 125 28 55.4	8 16.40 8 16.70 8 16.70 8 17.10	+1 53 40.3 +1 55 16.2 +1 55 17.1 +1 56 15.5	+40. 40 +40. 30 +40. 30 +40. 30	58 34.8 58 56.2 58 36.2 58 37.0	+3. o
Apr. 25 27 28 Aug. 25 Sept. 18	6 42 30. 7 . 2795220 9 30 42. 9 . 3963298 10 21 3. 0 . 4312847 6 47 43. 6 . 2831435 6 2 33. 6 . 2517777 7 46 9 9 2 . 238310	106 43 3.8 134 47 48.2 149 10 34.7 287 8 49.0 242 36 49.7	7 44. 20 8 12. 20 8 28. 10 7 53. 90 8 33. 20	+0 35 42.4 +2 54 22.1 +3 51 4.9 -0 56 5.4 +2 38 3.9	+41.00 +35.80 +29.30 -41.60 -38.40	56 40. 2 58 18. 9 59 9. 9 57 8. 2 59 31. 1	+2. I +3. 2 +3. 5 +1. 7 +2. 5 +0. 9
Sept. 23 Oct. 23 24 1853, Jan. 6	7 46 19.0 . 3238310 6 27 1.2 . 2687639 5 24 19.6 . 2252268 19 29 51.6 . 8124028 20 48 35.2 . 8670741	310 31 39.7 344 10 2.4 355 44 27.2 255 40 10.6 256 27 42.7	7 36. 40 7 17. 86 7 13. 50 8 41. 73 8 41. 57	-2 59 37.8 -4 51 16.7 -5 2 47.3 +1 11 36.7 +1 7 20.2	-32.10 -11.07 - 3.40 -46.86 -46.99	56 2. 1 54 45. 4 54 24. 9 59 54. 7 59 54. 3	+0. I -0. 5
Feb. 18 Apr. 20 May 12 20 July 17	5 22 39.3 .2240660 6 51 35.8 .2858310 7 34 39.4 .3157338 9 0 31.5 .3753646 9 24 38.3 .3921100	171 8 23.6 102 28 4.2 210 11 56.8 258 16 12.2	7 20.40 8 35.07 7 13.30 8 58.70 8 48.90	+0 9 17.7 +5 7 22.3 +2 1 58.3 +3 59 55.2 +0 5 0.1	+39. 20 - 0. 25 +36. 60 -32. 00 -48. 20	55 11.5 59 22.2 54 39.5 60 47.5 60 22.2	+0.4 +2.3 +0.4 +2.8 +3.1
Sept. 6 8 11 Nov. 7 Dec. 8 1854, Jan. 7	5 54 15.9 . 2460173 6 45 12.4 . 2813935 8 38 14.4 . 3598889 8 54 36.5 . 3712558 8 44 56.4 . 3645417 6 19 49.3 . 2637651	206 10 23.7 235 0 58.8 278 25 14.1 313 40 14.9 2 52 36.9 35 22 5.5	8 29.05 8 30.09 8 24.25 8 12.17 7 35.79 7 15.80	+3 46 54.8 +1 42 41.1 -2 1 23.0 -4 40 28.4 -4 54 13.2 -2 58 2.1	-29. 38 -42. 26 -40. 71 -20. 54 +15. 99 +32. 60	59 4.8 59 20.2 58 59.3 58 12.1 55 59.9 54 52.8	+2.6 +3.4 +3.2 +1.8 -0.2
Mar. 3 7 20 22 22	5 58 17.9 .2488183 7 4 41.3 .2949225 11 18 35.1 .4712396 12 19 8.2 .5132894 13 14 53.5 .5520081	39 4 32. 1 87 41 44. 8 259 48 36. 8 288 39 6. 1 289 11 57. 5	7 29. 10 7 4. 67 8 27. 25 8 29. 07 8 29. 12	-2 12 8.2 +1 57 55.4 -1 26 22.5 -3 37 1.5 -3 39 3.9	+35.60 +34.59 -43.29 -31.76 -31.46	55 40.0 54 13.3 59 12.4 59 12.2 59 12.0	-1. 5 -0. 7 -0. 5 -0. 7
Apr. 13 13 15 May 11	9 21 55.2 .3902222 10 28 28.6 .4364421 10 40 7.8 .4445347 5 4 23.0 .2113773 12 44 12.0 .5306944	212 1 40. 4 212 40 56. 0 241 24 56. 8 217 54 4. 9 222 30 42. 6	8 29.47 8 29.83 8 38.45 8 38.02 8 41.44	+2 34 20.9 +2 31 15.3 +0 1 31.6 +2 6 11.5 +1 42 23.1	-40. 02 -40. 31 -47. 14 -43. 95 -45. 59	59 5.8 59 7.2 59 44.6 59 39.2 59 51.5	+0.5 -0.1 +1.3
June 7 7 14 14	17 9 2.7 .7146157 5 27 4.6 .2271365 6 23 25.5 .2662673 9 38 13.6 .4015462 10 32 32.3 .4392626	20 8 6. 2 212 1 28. 3 212 34 26. 7 318 26 31. 9 318 59 20. 9	7 37·54 8 25.32 8 25.87 8 42.23 8 41.83	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+31.81 -40.60 -40.82 -10.47 -10.00	56 2.9 59 0.4 59 2.6 59 50.7 58 48.9	-2.8 +2.4 -2.6
July 5 7 13 13 29	8 44 59. 2 . 3645741 9 44 39. 0 . 4060069 13 26 33. 8 . 5601135 14 35 0. 3 . 6076425 5 17 13. 1 . 2202606	222 31 53.5 251 55 6.4 344 8 52.7 344 49 20.8 177 37 45.8	8 22.32 8 53.10 8 31.25 8 30.44 7 31.30	+1 36 12.8 -1 1 3.9 -4 58 2.0 -4 57 7.9 +4 25 7.1	-43. 19 -47. 10 +11. 14 +11. 67 -19. 22	58 55.5 60 37.2 59 13.2 59 10.6 55 38.5	+2.9 +2.3 -2.3 +1.6
July 31 Aug. 8 8 14 14	8 11 47.9 . 3415266 5 43 36.1 . 2386124 6 43 3.6 . 2799029 13 2 56.9 . 5437142 14 12 44.1 . 5921772	204 45 24.6 318 23 33.6 319 0 54.6 45 44 54.6 46 21 11.5	7 50. 80 9 2. 79 9 2. 52 7 29. 43 7 28. 83	+2 48 50.3 -4 56 50.5 -4 57 21.9 -1 0 53.2 -0 57 44.8	-34.60 - 7.85 - 7.34 +38.87 +38.91	57 1.0 60 52.5 60 51.6 55 48.4 55 46.3	+3.1
Sept. 1 2 2 30 30	9 10 10.0 . 3820603 8 34 38.4 . 3573890 10 17 6.6 . 4285487 6 46 0.7 . 2819525 8 22 44.3 . 3491239	270 22 55. 2 284 28 21. 2 285 30 35. 7 293 51 54. 3 294 49 29. 4	8 35 34 8 44 50 8 45 06 8 34 20 8 34 50	-2 53 5.4 -3 48 15.3 -3 51 48.1 -4 29 12.4 -4 31 41.7	-37. 26 -30. 15 -29. 61 -22. 50 -21. 80	59 36.8 60 2.6 60 4.2 59 26.4 59 27.0	+3.1 +2.5 +2.6

Date.	Greenwich Mean Time.	Geocentric Longitude of Moon.	Motion in o ^d .o1.	Geocentric Latitude of Moon.	Motion in od.01.	Parallax.	∆v.
1854, Oct. 29 Nov. 27 1855, Jan. 3 Apr. 4 4 4 8 8 May 8 1856, Apr. 25 Sept. 8 Nov. 12	h m s d 3245452 8 15 29.5 3446915 9 21 29.1 3899202 10 30 7.2 4375845 11 28 30.8 4781343 12 40 18.0 5279862 12 50 56.7 5353797 12 39 21.4 5273311 13 41 13.0 5702894 14 0 34.5 5837326 14 9 24.7 5898692 15 39 35.3 6524919 7 54 27.4 3294838 7 42 45.3 3213576	319 38 15. 9 344 45 39. 2 345 23 34. 7 109 30 49. 9 222 40 55. 1 223 19 55. 8 223 25 43. 2 277 13 52. 9 277 49 45. 7 317 17 55. 9 282 17 44. 4 283 7 37. 1 270 0 50. 7 56 56 22. 1	8 28. 07- 8 16. 71 8 16. 28 7 8. 88 7 49. 39 7 49. 72 7 49. 81 8 21. 00 8 21. 30 8 32. 57 5 57. 55 7 58. 22 7 47. 25 8 57. 67	0 / // -5 15 22.6 -4 52 18.2 -4 50 57.0 +4 20 29.7 +0 1 35.5 -0 1 58.3 -0 2 30.0 -4 15 6.1 -4 17 0.1 -5 15 43.5 -5 9 41.1 -5 10 36.5 -5 2 14.5 +3 28 20.2	- 2. 20 +17. 49 +17. 95 +19. 83 -42. 87 -42. 90 -42. 91 -26. 70 -26. 35 + 3. 65 - 9. 11 - 8. 50 - 11. 55 + 36. 24	59 1.6 58 25.5 58 24.1 54 4.5 56 47.9 56 49.4 56 49.6 58 42.4 58 43.5 59 17.7 57 13.9 57 16.3 56 41.4 60 42.1	+2.0 +0.9 -2.8 -1.1 -1.3 -2.3 -1.8 +1.1
1857, Jan. 15 15 Feb. 6 Mar 16 16 16 18 18	8 47 26.3 .3662766 12 44 58.8 .5312361 13 37 57.2 .5680231 11 3 0.1 .4604178 11 3 51.2 .4610092 12 3 30.7 .5024386 16 44 14.6 .4482303 10 34 59.5 .4409664 10 45 27.1 .6973912 11 42 34.9 .4879039 8 7 39.1 .3386470	57 36 36.6 182 24 11.0 182 50 36.3 113 29 57.0 244 57 29.5 245 27 13.2 247 47 20.4 269 1 18.0 269 6 42.3 282 10 48.1 91 50 42.6	8 57. 30 7 11. 03 7 10. 89 8 1. 73 7 10. 49 7 10. 68 7 11. 73 7 26. 42 7 26. 51 7 38. 96 8 17. 12	+3 31 2.0 +0 35 16.4 +0 32 56.8 +4 54 39.1 -4 31 28.7 -4 32 53.2 -4 39 15.5 -5 14 55.7 -5 14 55.7 -5 15 44.8 +5 16 37.4	+35. 79 -37. 94 -37. 96 -11. 88 -20. 57 -20. 32 -18. 94 -5. 14 -5. 08 +4. 34 +3. 44	50 40. 9 54 37. I 54 36. 3 57 18. 7 54 26. 0 54 26. 8 54 30. 9 55 24. 6 55 24. 9 56 10. 3 58 26. 3	-4.0 -2.3 -1.4 -1.0
Apr. 29 May 31 July 27 Nov. 23 23 1858, Mar. 6 6 Oct. 12	5 17 0.0 .2201389 10 14 0.6 .4263958 6 11 58.6 .2583171 5 48 5.4 .2417291 6 57 31.1 .2899432 9 54 31.3 .4128622 10 48 45.0 .4505208 8 58 12.9 .3737604	113 23 39. 2 175 52 51. 6 202 14 38. I 319 45 53. 2 320 22 31. I 246 52 36. 7 247 19 28. 5 265 48 24. 7	8 8.43 7 14.90 7 10.83 7 35.65 7 36.17 7 8.04 7 8.00	+4 58 0.2 +0 42 58.1 -2 3 38.3 -2 53 11.8 -2 50 31.4 -5 11 15.8 -5 11 43.1 -4 54 25.5	-13. 47 -38. 34 -35. 36 +33. 11 +33. 40 -7. 45 -7. 10 +11. 93	57 57. 3 54 53. 1 54 36. 0 56 7. 2 56 9. 3 54 15. 3 54 15. 1 54 17. 8	-1.7 -0.7 -0.8 +2.3 -0.8

Since the right ascension and declination of the moon, based on Hansen's tables, are available from 1847 on, the direct computation from Hansen is unnecessary after that date, α and δ being interpolated from the Nautical Almanac. The reduction to the provisional theory for all dates not already given is found in the table following, which is a continuation of the last column of the preceding table. In cases where several occultations have been observed on the same day, Δv was generally computed for the mean of the times.

Date.	₫v.	- Date.	Jv.	Date.	Av.	Date.	∆v.
			"		"		"
1847, Jan. 3	-o. 6	1848, June 6	+0.5	1849, Sept. 8	-o. 2	1850, Oct. 14	-o.
5	-1.1	13	-0.2	27	+0.4	21	-o.
25	+1.2	July 11	+1.2	Nov. 22	+1.1	Nov. 21	-o.
Feb. 24	+0.6		-0.9	29	+o. 1	Dec. 17	+o
Mar. 24	+o. 8	Aug. 7	-o. 7	1850, Feb. 26	+1.8	1851, Apr. 6	+2
26	+o. 1	21	-2.7	Mar. 23	+3.6	7	+2.
Apr. 22	+0.6	Sept. 15	-2.0	24	+3.5	July 21	-2.
May 23	-o. 2	Oct. 28	-1.3	Apr. 18	+3.3	Sept. 14	-2.
28	-o. 5	Nov. 9	+0.5	May 19	+3.1	Oct. 2	+o.
June 1	-1.3	1849, Feb. 9	-o. 7	28	-2. I	11	-2.
Sept. 16	+0.4	27	+2.2	June 1	-2.2	28	-o.
Nov. 18	+1.6		+2.9		+3.4	Dec. 10	— 1 .
1848, Jan. 12	+2. 1	3	+2.8	July 21	-o. 8	1852, Feb. 3	+ o.
16	+2.2	B i	+0.2		-2.2	11	-1.
Feb. 12	+1.6	11	-1.1	Aug. 2	-o. 5	May 2	+2.
Mar. 11	+1.4	29	+2.4	8	+1.8	July 4	-2 .
21	-1.5	May 2	+1.0	27	-1.4	Aug. 26	+0.
Apr. 12	+o. 8	July 12	-2.3	30	-0.9	1853, Jan. 14	-o.
May 4	+o. 8	16	+1.5	Sept. 12	-0.3	Feb. 17	+o.
7	+1.2	Sept. 5	-1.2	Oct. 13	-0.7	Mar. 26	+o.

Date.	Δv.	Date.	4 v.	Date.	∆v.	Date.	₫v.
	"		"		"		• "
1853, Mar. 28 May 22	-0. I +2. 0	1859, Nov. 11 Dec. 8	-4.4 -1.1	1863, May 4 June 28	-6.8 -4.3	1866, Aug. 29 Sept. 15	-9. 3 -4. 1
Aug. 29	-2.2	21	-2.8	30	-5.0	28	-9.4
Sept. 20 Oct. 14	-3.0 +0.3	1860, Jan. 4	-1. I -3. I	July 28 Aug. 7	-4.4 -4.7	29 [†] Nov. 16	-9. I -4. I
Dec. 9	-o. ı	Feb. 13	-5. 1	27	-6.6	20 1	-5. I
1854, Feb. 7	-1.1 -0.9	28 Mar. 1	-0. I -0. 7	30 Sept. 24	-4.6 -3.6	27 Dec. 24	-8. 4 -7. 4
Mar. 12	+o. 2	4	-2.1	Oct. 22	-3.1	1867, Jan. 29	-7.4 -7.0
Apr. 4	-0.4	5	-2.8	23	-2.6	Apr. 8	-4.6
May 6	+1.4 +2.0	7	-3.7 -3.9	30 Nov. 3	-4. 1 -5. 4	16 ! 18	-5. 2 -6. 0
June 28	-0. I	28	-1.1	17	-3.3	May 5	-5.3
Sept. 4	+1.6 -0.8	Apr. 27 May 1	-2. 2 -2. 7	19 30	-2.5 -4.5	June 14 July 9	-5.5 -5.5
Oet. 11	-3.3	8	-2.3	Dec. 19	-2.1	Oct. 16	-8.3
Dec. 10 1855, Mar. 23	-1.9	June 1	-2.5	24 27	-1.5 -3.7	Nov. 6	-5.3 -5.5
Apr. 7	-1.2	3	-2.3	30	-5.5	Dec. 28	-6. I
23	-1.9	Aug. 24	-0.7	1864, Jan. 24 Feb. 13	-2.9	1868, Feb. 8	-6.3
June 27 Aug. 30	+o. 8	30 Sept. 6	+0.9 -2.8	Feb. 13	-2.7 -2.5	11 28	-8. 2 -4. 4
Sept. 20	+2.3 +2.0	Oct. 17 Nov. 5	-3. I -5. 4	16	-2. I -6. 3	29 Mar. 1	-3.8 -3.9
Oct. 24	+1.0	Dec. 19	+1.3	29	-7·3	28	-4. I
Nov. 15	+2.2	1861, Mar. 19	+0.4	Mar. 18	-2.8	Apr. 4	-5.5
1856, Jan. 12 Mar. 11	-0. 2 -1. 4	Apr. 19	-1.7 -3.6	19	-3.2 -6.4	May 4 1	-5.7 -5.5
13 26	-1.7	May 19	-2.7	27	-8. o	27 !	-4.4
June 16	-1.5 -0.3	June 11	-2.4 -1.8	Apr. 11	-2.3	June 24 July 1	-5.5 -r.8
July 25	-4.7	25 Sept. 14	0.0	23	-5.5 -8.1	July 1 Aug. 9	-5.8 -7.0
Sept. 20 Nov. 11	-5.9 -1.7	26 Oct. 15	-4. I +0. 6	May 20	-8.3 -6.3	Sept. 4	-6.6 -7.0
1857, Mar. 4	-1.8	19	-0.6	June 20	-7.6	7	-7.4
Apr. 2	-1.7	20	-1.2	26	-7·4	8	-7.4
May 6	0. 0 +0. 7	Dec. 23	-2.6 -5.5	July 18	-6.5 -7.3	9 28	-7.2 -5.9
Sept. 29 30	-1.0 -0.3	1862, Feb. 4 Mar. 9	+o. 8 o. o	Aug. 12 Nov. 4	-4.9	1869, Jan. 23	-3. I
Oct. 6	-5. o	Mar. 9	-4.5	Nov. 4	-4·4 -4·1	24	-3.7 -6.5
26	+1.6	Apr. 15	-5.6	10	-2.6	Feb. 15	-4.2
28 Nov. 27	+0.8 -0.2	May 8	-2. I -3. 7	Dec. 5	-6.8 -3.7	19 Mar. 23	-2.7 -3.4
Dec. 26	-o. 2	June 9	-o. 7	6	-3.6	Apr. 16	-3.5
1858, Feb. 19 20	-0. 5 -0. 2	July 15	-2.8 -1.3	1865, Jan 8	-3.4	May 18 Aug. 2	-3.6 -9.1
Apr. 25	-1.9	Aug. 1	-3.3	Feb. 2	-5.0 -3.3	13	-6. 3
May 18	-1.9 -1.7	Sept. 3 Oct. 11	-2.5 -2.5	Mar. 3	-4.8 -3.5	19	-6. 1 -7. 0
20	-1.7	29	-2.0	15	-6.5	Nov. 10	-6.9
Aug. 30 Sept. 18	-6. o	Dec. 7	-2.2	Apr. 30	-3.9	Dec. 8	-6. o
21	-1.2	10	-4.5 -5.9	July 3	-4.8 -6.2	14	-6.5 -5.3
Oct. 14	+0.7	1863, Jan. 9	-6.4	Aug. 6	-6.5	1870, Jan. 5	-5.9
Nov. 22	$\begin{array}{c c} -2.4 \\ -5.8 \end{array}$	Feb. 23	-1.4 -1.4	Sept. 11 29	-6.9 -4.1	Feb. 7	-3.4 -2.9
Dec. 22	-5.8	Mar. 2	-3.8	Oct. 4	-6.3	10	-2.9
1859, Jan. 21 Feb. 8	-4.9 +0.6	T2 22	-7. I -1. 5	Nov. 4	-6. o -6. 5	11 12	-3. 1 -2. 5
11	0.0	. 24	-o. 6	Dec. 30	-4.2	22	-9.3
16 Apr. 11	-2.9 -2.3	Apr. 2	-5. I -6. 8	1866, Jan. 8 Feb. 27	-6.4 -5.6	Mar. 10	-2.8 -9.1
13	-2.4	8	-7.6 °	Apr. 20	-5. o	June 16	− 8 . 2
May 5	-2.2	9	-7.4	May 11	-7.6	July 10	-6. 3
Aug. 18	$\begin{bmatrix} -2.6 \\ -2.7 \end{bmatrix}$	2 I 25	— I. 6 — 2. 0	20 June 18	-4.7 -4.5	Aug. 9	-6.5 -7.2
Sept. 21 Oct. 28	-6. o -1. 7	26	- 2. I	July 8	-8.2	19	-6.6
•••• 20 I	-1.7	29	4.0	26	-5·7 -8.9	Sept. 6	-6.7

	1 1	1 (1		
Date.		Date.	∆ v.	Date.	Av.	Date.	
	"		"		"		"
1870, Sept.	$ \begin{vmatrix} 16 & -6.7 \\ -6.2 \end{vmatrix} $	1874, Mar. 31 Apr. 22	- 7.5 -11.0	1877, Sept. 25 Nov. 20	- 9.2 - 8.3	1880, May 18	-10.0 -14.6
Oct.	1 - 6.2	May 19	- 8.9	22	- 8.7	June 13	- 9.0
Nov.	14 - 9.9 9 - 7.8	July 8 Aug. 20	-11.4 - 5.4	1878, Jan. 10 Feb. 15	- 4.8 - 9.4	14	- 9.3 -11.9
Dec.		31	- 6.3	Mar. 7	- 4.8	20	-12.9
1871, Jan. Feb.	11 - 7.5 1 - 5.5	Oct. 22	- 7·4 - 8·3	16 Apr. 9	- 9.9 - 6.6	2 I 25	-13.6 -13.7
Mar.	$\begin{vmatrix} 28 & -4.7 \\ 3 & -4.8 \end{vmatrix}$	Nov. 19 Dec. 16	- 7.0 - 8.4	13 May 26	- 9.3 - 6.3	30 July 17	-11.1 -11.7
May	5 - 6.8	19	- 7. 2	June 5	- 8.8	19	-12.4
June Sept.		1875, Jan. 16	- 7.3 - 9.1	- 14 27	-10.0 - 7.2	20 27	-12.6 -11.9
	22 - 5.6	30	- 7.4	Aug. 6	- 10. 2	30	-10.5
Oct.	$\begin{vmatrix} 27 & -7.8 \\ 3 & -8.5 \end{vmatrix}$	Feb. 13 Mar. 16	- 7.8 - 8.9	Sept. 5	- 9. 2 - 8. 8	Aug. 16	-11.4 -10.7
:	21 - 6.3	May 12	- 9. ó	17	- 8.6	Sept. 11	-11.4
	$\begin{bmatrix} 23 & -6.6 \\ -7.2 \end{bmatrix}$	Aug. 10	- 6. o	Oct. 5 Nov. 10	- 8. 2 - 8. 2	12	-11.0 -11.1
Nov.		Sept. 10	- 5.9	13	-10.4	14	- 10.8
!	18 - 7.4 27 - 6.9	12 14	- 6. 1 - 7. 7	Dec. 2	- 6.5 - 7.3	17 25	-10.0 -10.7
Dec.	1 - 7.1	Oct. 3	- 7.3 -11.0	1879, Jan. 6 Feb. 3	- 8. 6 - 8. 1	Oct. 7	-12.5 -11.6
	20 - 7.5	20	-13.0	Feb. 3 26	- 6. o	15	-10.0
1872, Jan. Feb.		24 Nov. 8	-12.2 - 6.2	28 Apr. 1	- 6. I - 8. 2	Nov. 17	- 9.8 - 70.3
Apr.	25 — Š. 8	16	-12.7	14	-12.3	19	-10.3 -10.6
May	19 - 4.6 22 - 6.8	Dec. 7	-12.4 - 5.8	25 26	- 6.8 - 7.4	Dec. 12 1881, Jan. 5	-11.3 -11.9
July		9	- 7.6	30	- 8.7	7	- 10. 7
Aug.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1876, Jan. 1	- 9.4 - 8.0	May 3	- 10.9 - 9.3	9 12	- 10. 9 - 10. 8
Sept.		10 Feb. 2	- 10. 5 - 6. 4	June 30 July 28	-11.3 -11.1	Feb. 6 Mar. 8	- 9.4 - 8.5
	24 -10.3	16	- 9. 7	Aug. 9	- 9. I	16	-13.1
Oct.	11 - 5.8	Mar. 4	- 8.4 - 8.7	10	- 9. I -11. 3	18 May 4	-14.7 - 8.7
	15 - 8.4	5 6	- 9.4	25 28	- 10. I	11	-12.6
Dec. 1873, Jan.	9 - 7.3	Apr. 1	- 8.6 - 2.3	Sept. 6	- 9. I - 9. 7	July 5	-13.3 -11.2
Mar.	1 - 7.0 1 - 8.4	4 7	- 9.3 - 9.8	Oct. 4	- 9.0	18	-12.5
Apr.	$\begin{bmatrix} 5 & -8.2 \\ 2 & -7.4 \end{bmatrix}$	May 4	- 9. 2 - 9. 5	24 30	- 9.6 - 8.2	Aug. 15 Sept. 3	- 12.6 - 11.8
	30 - 7.9	5	- 9.2	31	- 8.4	Oct. 3	-11.3
May	$\begin{bmatrix} 1 & -7.1 \\ 5 & -5.3 \end{bmatrix}$	June 1 5	- 9. 2 - 8. 2	Nov. 16 18	-12.8 -11.7	5 9	-11.2 -11.6
	11 - 5.8 16 - 9.2	29 30	- 9.5 - 8.9	Dec. 1	- 8.6 - 10.4	Nov. 1	-11.2 -11.0
June	5 - 4.3	July 13	- 9.2	22	- 7.6	12	-10.3
July	1 - 4.9 2 - 4.5	16 Oct. 5	- 10. 7 - 10. 1	27 1880, Jan. 16	- 8.4 - 9.2	29 Dec. 24	-11. I -13. I
	4 - 4.1	ő	- 10. 9	20	- 7.1	27	-11.7
Aug.	19 - 10. 6 6 - 6. 3	Nov. 23	- 4.7 - 4.0	28 Feb. 5	-11.7 -14.8	1882, Feb. 7	-10. I -13. I
	9 - 8.7	24	- 4.2	12	-10. I	11	-14.3
B .	10 - 9.7 11 -10.1	29 30	- 7.6 - 8.6	18 Mar. 3	- 6.8 -16.1	Mar. 8	- 14. 4 - 14. 4
	12 - 10.6 18 - 9.4	Dec. 26 1877, Jan. 30	- 6.3 -12.2	4 13	-15.8 - 8.4	Apr. 1	-11.9 -11.9
Oct.	3 - 7.0	Feb. 26	- 10. 4	18	- 6.5	May 6	-16. o
	9 -10.9 13 - 9.9	Mar. 23	- 8.0 - 9.6	21 25	- 8.0 -12.2	29 June 4	-12.3 -16.1
Dec.	1 - 7.5	Apr. 22	- 9.0	30	-15.6	July 2	-13.6
1874, Jan.	24 - 6. I 25 - 7. 5	26 May 31	- 9.8 - 8.0	Apr. 1	-15.6 -15.0	2 I Aug. 2	-12.0 -15.5
:	26 - 7.5	July 6	- 8 . 5	11	– 8 . 1	18	-12.2
	27 - 7.8 30 - 7.9	Aug. 29 30	- 9. 1 - 9. 7	16 20	- 7.6 -11.2	27 Sept. 7	- 14. 1 - 13. 3
Mar. :	26 - 8.5	Sept. 18	- 7.0	26	-14.5	20	-12.2

Date.	₫v.	Date.	1v.	Date.	Jv.	Date.	∆v.
1882, Oct. I	-14.8 -11.7	1885, Jan. 4	-0.8 +2.4	1886, Apr. 10	+5. 2 +4. 5	1888, Jan. 15	-1.6 +1.8
Nov. 2 18	-12. 2 -14. 1 -12. I	· 21 22 23	+3.0 +3.6 +4.4	May 6	+4.0 +3.6 +2.7	Mar. 9 18 25	-2.4 +1.9 +3.2
Dec. 5 1883, Jan. 4 11	$ \begin{array}{c cccc} -12.7 \\ -13.7 \\ -2.2 \\ 0.0 \\ +0.6 \end{array} $	24 25 26 28 Feb. 1	+4.6 +4.2 +4.6 +3.4 +0.3	16 21 June 6 10 15	+0.9 -1.8 +4.3 +3.1 -0.5	July 17 20 21 23 25	+4.0 +2.1 +1.1 -0.7 -1.6
Feb. 14 Mar. 12 Apr. 17	+ 1.0 - 1.4 + 1.4 0.0 - 3.2	20 21 22 23 24	+3.8 +4.5 +4.7 +4.8 +4.4	July 8 Aug. 8 19 24 Sept. 5	+2.7 +0.6 -1.2 +1.0 -0.1	28 Aug. 17 20 Sept. 13	-2.9 +2.1 -0.5 +2.4 +0.4
May 13 17 June 14 July 15	+ 1.0 - 0.3 - 0.4 - 1.0 - 1.3	Mar. 4 21 22 23	-1.2 +3.6 +4.0 +4.2 +2.7	Oct. 7 22 Nov. 1	-0.4 -1.1 +0.9 -1.9 +0.6	Oct. 9 13 15 20 Nov. 15	+2.0 +0.7 -0.4 -2.1 -1.2
19 21 Aug. 24 Sept. 6	- 1.6 - 2.0 - 1.5 - 1.6 - 1.5	28 Apr. 2 4 18	+2. 1 -1. 7 -2. 1 +3. 4 +1. 0	Dec. 3 6 18 1887, Jan. 5	+0.9 -1.3 +0.2 +0.2 +2.0	Dec. 20 1889, Jan. 8	-0.4 -1.2 -0.6 -0.2 -1.1
14 16 Oct. 23 Nov. 13 1884, Jan. 2	- 0.7 - 1.0 - 2.4 + 1.2 + 0.9	20 21 22 24 26	+3.6 +3.5 +3.1 +2.1 +0.7	6 11 12 19 . 28	+2.4 +1.3 +0.8 -2.1 -0.4	9 12 Mar. 10 11 23	0.0 +0.8 +1.0 +1.3 -1.1
Feb. 6 16 17 Mar. 3	+ 3.5 + 3.0 - 3.3 - 3.2	May 5	-2.3 +3.2 +2.3 +0.7	30 Feb. 1 4 6	+1.1 +2.3 +3.5 +3.1	Apr. 20 June 5 10 July 19	-1.4 +3.9 +3.5 -2.3
6 8 9	+ 2.6 + 2.1 + 1.1 + 0.3 - 3.0	June 23 25 28 July 1 6	-1.3 -2.2 -3.4 -2.9 -0.1	7 18 Mar. 2 8 13	+2.9 -3.2 +3.8 +3.7 -1.3	Sept. 4 16 30 Oct. 5	+2.6 +3.3 -1.1 +3.5 +1.7
24 Apr. 4 6 30 May 1	- 0. 1 + 1. 3 - 0. 2 + 1. 9 + 1. 6	7 9 21 22 26	+0.6 +1.7 -0.6 -1.3 -2.6	14 31 Apr. 4 6 9	-2. 2 +4. 8 +5. 2 +3. 9 +0. 5	Nov. 29 Dec. 1 29 31	+2. 1 +1. 2 +0. 8 +0. 7 +0. 4
2 8 29 30 June 5 28	+ 1.3 - 2.6 + 1.3 + 1.2 - 1.9	Aug. 20 31 Sept. 1 2 5	- 1.8 -0.3 +0.1 +0.6 +0.6	30 May 1 4 June 3	-3.7 +5.4 +5.6 +4.1 +2.5	1890, Jan. 3 15 Feb. 7 12 14	+0. 2 -1. 9 +0. 4 +0. 3 +0. 2
July 3	- 0.2 - 1.5 - 2.6	16 17 20	-2.5 -1.9 -1.7	July 1 6	-2.9 +1.9 -2.2	Mar. 14 Apr. 7	-0.4 0.0 -1.2
Aug. 15 Sept. 8	- I. 4 - I. 7 - 0. 8 - 0. 9	21 30 Oct. 1	-1.2 +0.6 +0.6 -2.4	16 29 Aug. 1	+0.5 +1.8 -0.6 -2.9	28 30 May 3	+0.6 +1.7 +1.3 -1.3
12 13 14 15	- 0. 5 - 0. 5 - 0. 9 - 0. 7	·	-2. I +0. 4 +1. 2 -1. 2	8 14 31 Sept. 3	-2.7 +1.0 -1.9 -2.7	June 2 4 5	+2.4 +1.2 -0.1 -0.5
26 28 Oct. 9 28 30	- 1.3 - 1.0 - 0.8 + 0.4 + 0.8	28 1886, Jan. 14 16 . 18 . Feb. 9	-1.6 +3.9 +4.5 +3.8 +3.4	13 Oct. 12 26 28 Nov. 7	+1.4 +0.9 -1.1 -1.1 +0.5	6 29 July 12 21 Aug. 26	-1.1 $+2.4$ -2.6 $+1.8$ $+3.0$
Nov. 22 25 29	+ 0.3 + 1.9 + 2.5	12 13 14	+5.3 +5.5 +5.6	21 22 24	-1.5 -1.4 -1.1	Sept. 1 6 20	-1.5 -2.6 $+3.3$
Dec. 1 30	+ 1.8 + 3.1	Mar. 9 Apr. 8	+3.2 +4.1	Dec. 17	- r. 6 +o. 6	30	+0.7 -1.1

Date.	₫v.	Date.	∆v.	Date.	ا <i>v</i> .	Date.	∆v.
	"		,,		"		"
1890, Oct. 24	+1.6	1893, Feb. 26	+1.8	1894, Nov. 20	-2.1	1895, Sept. 5	+o
27	-O. 2	Mar. 25	+2.1	Dec. 1	+2.0	6	0.0
Nov. 17	+2.4	Apr. 18	+1.7	2 8	+2.0	9	- I.
20 21	+2.3 +1.8	21 22	+2.0 +2.0	10	+1.7 +0.8	10 11	-1.
	· H			ı			
Dec. 1	-1.4	Mar. 6	+2.0	11	+0.4	15	- I.
20 23	+1.4 +0.5	May 6	-0.9	1895, Jan. 1	+2.8 -1.5	29	+1. +1.
1891, Jan. 4	+0.2	June 24	+0.8	31	+3.1	30 Oct. 1	+1.
Feb. 12	+0.5	July 1	-0.9	Feb. 6	+2.7	4	+0.
	+0.5	6	-1.3		+1.7		-o.
17	+0.3	9	-1.0	7 8	+1.4	7 9	-0. -1.
21	+0.2	30	-o. 8	13	-1.3	10	- i.
Mar. 15	+0. 2	Aug. 2	-1.2	18	-1.1	11	-1 .
19	+o. 6	21	+0.5	Mar. 3	+3.2	28	+1.
26	-1.0	Sept. 3	-1.5	4	+3.3	29	+1.
28	-0.4	23 i	0.0		+3.3	31	+0.
Apr. 15	+0.2	Oct. 19	+1.4	5 6	+3.3	Nov. 1	+o.
18	+0.4	20	+1.2	8	+2.3	3	-o.
20	+0.7	26	-1.4	9	+2.0	10	-1.
25	-o. 3	30	-2.2	10	+1.5	25	+1.
May 4	-1.6	Nov. 19	+2.0	11	+0.9	27	+1.
10	-o. 7	22	+0.7	12	+0.4	28	+ 1.
14	+0.2	24	-o. 5	29	+2.0	29	+0.
28	-2. I	Dec. 13	+2.6	30	+2.4	30	о.
June 12	+o. 5	20	+2.3	31	+2.5	Dec. 6	-2.
July 18	+1.1	1894, Jan. 12	+2.9	Apr. 1	+2.8	10	-2.
22	-1.2	16	+3.6	2	+2.9	. 28	+ 1.
Aug. 14	+1.9	18	+3.1	3	+2.8	29	+ 0.
18	+0.4	20	+2.1	4	+2.6	1896, Jan. 7	-2.
20	-1.2	Feb. 13	+3.3	7	+1.7	8	-2.
24	-2.9	15	+3.2	10	+o. 6	19	+3.
Oct. 12	+2.3	16	+3. I	11	+0.2	. 21	+3.
14	+1.5	26	+0.4	12	+0.1	22	+3.
15	+1.3	28	+0.4	28	+2.2	24	+2.
Nov. 6	+1.9	Mar. 14	+2.7	29	+2.2	26	+1.
7	+2.2	16	+2.6	30	+2.3	27	+1.
10	+2.3	17	+2.4	May 1	+2.3	28	+0.
19 1892, Jan. 19	-2.2 -1.5	22 23	+1.2 +0.7	2	+2.4 +2.2	31 Feb. 19	一 I.
	- 11			3		· .	+3.
Feb. 1	+1.3	. 25	+o. 8	4	+1.9	20	+3.
7	+o. 7 -o. 3	Apr. 9	+1.4	5	+1.6	21	+3.
Mar. 8	-0. 3 -0. 7	Apr. 9	+2.4 +2.5	7	+1.4 +1.0	22 23	+3.
16	-2.0	11	+2.5	9	+0.4	23	+3. +2.
1	11					1	
Apr. 2 May 8	+0.5 -0.2	12 24	+2.7 +0.7	28 29	+2.2 +2.2	26 Mar. 1	+1.
May 8	-1.3	25	+0.7	30	+2.2 + 2.3	Mar. 1	-1. -0.
June 8	-0.2	29	+1.4	31	+2.3	9	-o.
14	-1.8	May 2	+1.6	June 9	-0.3	21	+3.
July 4	+0.3	12	+2.4	12	-o. 3	22	+3.
July 4	+0. I	14	+2.2	13	-0.3 -0.3	23	+3.
11	-1.3	21	+0.1	15	-0.3	25	+2.
13	-2.0	30	+o. 6	16	0.0	`27	+1.
19	- 2. O	July 15	+2.2	26	+1.9	Apr. 1	— 1 .
Aug. 2	+o. 6	17	+1.4	27	+1.9	7	+o.
3	+o. 6	Aug. 4	+0.2	July 2	+1.5	15	+2.
4	+0.7	23	-1.4	9	-0.4	17	+2.
S4	-2.4	Sept. 11	+1.5	14	-0.6	19	+2.
Sept. 6	-o. 8	21	-1.5	15	-o. 6	20	+2.
7	-1.5	Oct. 7	+1.1	16	-o.6	22	+2.
11	-3. o	10	+1.1	17	-o. 5	25	+1.
12	-3.0 l	11	+0.9	18	-o. 2	26	+1.
Opt 15	-2.5	19	+2.4	30	+1.8	May I	+0.
Oct. 3	+o. 8	21	– г. 6	Aug. 7	-o. 3	16	+2.
4	+0.4	23	- I. 4	10	-o. 8	17	+2.
31	+2.3	Nov. 7	+1.6	12	-1.1	20	+2.
Nov. 30	+2.4	.9	+0.9	13	- I. 2	21	+1.
Dec. 12	-1.2	15	-1.9	16	-1.2	23	+1.
25	十2.7	16	-2.5	Sept. 2	+1.1	25	+ 0.

Date.	Av.	Date.	∆v.	Date.	Av.	Date.	∆v.
	"		"		"		,,,
1896, May 26	+c. 6 +c. 5	1897, Aug. 14	+2.2 +3.2	1899, May 12 26	+1.8	1901, Apr. 22	+1.1 +1.5
June 2	+0.9		+2.0	June 13	+1.9	28	+1.1
3	+0.9	18	+0.9	25	-3.5	May 5	-2.6
14	+2.0		+1.4	July 18	-o. 8	31	-1.7
15	+1.8	3 8	+2. I	20 Aug 26	-1.6	June 4	-3.5
19	+1.7 ' +1.1 '	30	+3.0 +1.1	Aug. 26	-1.4 -1.0	5	-4.0 -2.1
24	+0.9	Nov. 4	+3.1	Oct. 11	-o. 1	22	+0.2
July 6	+1.4	Dec. 2	+2.5	12	+1.6	25	-o. 3
20	+1.6	5	+3. 1	27	-o. 8	29 Tude: 20	-2.3
27 28	+0. I 0. 0	6 7	+3.2 +3.0	Nov. 11	+0.9 +1.1	July 10 25	-2.4 -1.4
31	+o. 1	13	+o. 1	14	+1.1	28	-2.3
Aug. 5	-1.2	25	-0. 2	18	+0.3	Aug. 9	-1.8
20	+1.9	27	+o. 8	Dec. 8	+0.1	19	-0.4
21	+1.5 +1.1	1898, Jan. 2 3	+2.8 +2.8	13	+1.8 +1.0	22	-1.2 -1.5
27	+0.2	5	+2. 1	1900, Jan. 9	+1.5	30	-2.
28	-o. ı	10	-0.4	11	-o. 7	Sept. 25	-1.2
29	+0.5	26	+1.9	23	-2.8	Oct. 17	-1.5
30 Sept. 3	0. 0 -0. 5	Feb. 5	+0.3 -2.7	Feb. 3	-0. I +1. I	19 21	-o. 9 -o. 6
5 Sept. 3	-0.5	13 25	+2.5	7	+o. 3	23	-0. d
14	+1. ğ	Mar. i	+2. ğ	12	+o. 8	24	-o. 4
. 18	+2.1	2	+2.2	Mar. 5	+o. 5	27	-1. C
23	+1.0	5	+0.9	7	+1.2	29 Nov. 16	-1.5
26 28	-o. 3	13	-3.4 -1.8	8 23	+1.4 -3.8	Nov. 16 Dec. 18	-o. 7
29	-0.9	26	+2.9	26	-3.1	19	+1.5
Oct. 9	-o. 1	Apr. 1	+2.3	Apr. 2	-o. 1	21	+1.6
10	-o. 1	2	+1.1	4	+0.9	22	+1.6
16 18	+1.9 +2.0	4 25	+0.3 +2.4	May 1	+0.9 +0.1	1902, Jan. 18 19	+2. 9 +2. 6
24	+0.2	28	+2.2	7	+0.6	31	-1.8
25	-o. 1	29	+2.4	16	-4.3	Feb. 12	+1.1
27	-o.6	May 2	+1.1	20	-3.7	13	+1.5
30 Nov. 9	-1.1 +0.2	16 June 5	-0.5 -1.5	June 2 8	+0.6 -1.0	14	+2.0 +2.4
10	+0.6	June 5	-1.5	14	-4.3	16	+2.8
12	+1.1	13	-0.4	July 6	-o. 5	17	+2.
13	+1.3	30	+2.9	10	-2.5	Mar. 17	+2.0
15 16	+1.5 +1.6	July 30 Aug. 6	+0.6 -0.5	Aug. 7	-3.3 -1.6	20 25	+2. ; -0.
17	+1.4	25	+0.8		-2.1	28	-1.
26	-1.4	-	-о. з	17	-2.8	29	-1.8
Dec. 16	+1.1	23	+1.1	Sept. i	-0.4	Apr. 21	+0.4
17 18	+1.8	28 Oct. 20	+1.1 +0.7	2	-o. 5	May 10	+o. (
1897, Jan. 7	+0.7 +1.5	24	+2.1	4	-0.9 -3.0	11	+1.6
10	+2.0	Nov. 16	-o. 5	13	+1.8	14	+2.0
11	+2.1	22	+2.3	28	-0.4	15	+2.0
17	-0. 2	. Dec. 19	+o. 8	Oct. 3	-o. 3	17 18	+1.5 +1.6
23 27	-2.7 -1.6	23 30	+2.4 +0.9	Nov. 13	-0.4 -0.5	19	+0.8
Feb. 13	+1.5	1899, Jan. 19	+1.9	Dec. 5	+0.9	25	-2.4
23	-2.7	Feb. 2	-2.3	9	0. o	June 10	+1.2
Apr. 12	+2.8 +1.8	4 18	-3.1 +2.3	1901, Jan. 28	+1.9	15 17	+o. 8 -o. 2
14	+1.8 -1.5	19	+2.3	30 Feb. 15	$\begin{array}{c c} +2.4 \\ -2.3 \end{array}$. 18	-o. (
May 5	+2.9	21	+2.0	21	-o. I	23	-2.6
11	+2.5	22	+1.6	25	+1.9	25	-3. 2
July 3	+2.2	Mar. 16	+1.9	26	+2.2	27 28	-3. a
12	+o. 8 +o. 7	20 Apr. 15	+2.5 +2.6	Mar. 10	-1.8 +1.4	July 11	-3.0 +0.0
20	+3.5	17	+2.7	26	+1.9	15	-o.
23	+2.2	19	+1.9	28	+2.2	18	-1.6
Aug. 1	-1.5	28	-4.2	Apr. 4	-0.4	19	-2.0
4	+1.7	May 1	-4.5	7	-2.2 -2.9	2 I 2 2	-2.8 -3.3
	1 4 - /	may I	4.2				

Date.	∆v.	Date.	∆v.	Date.	∆v.	Date.	∆v.
	"		"				"
1902, July 28 Oct. 10 11 16	-2.6 -1.1 -1.2 -1.9 -2.6	1904, Jan. 4 Feb. 24 29 Mar. 4 22	-0.9 +2.3 +1.7 -0.9 +2.2	1905, Aug. 23 Sept. 9 11 12 17	-0.9 +0.1 -1.5 -0.8 -0.7	1906, Oct. 26 28 Nov. 5 19 21	-0.6 -1.0 -0.2 -0.6 -0.8
21 22 23 24 Nov. 6	-2.7 -2.6 -2.6 -2.4 -1.2	27 Apr. 22 24 28 May 1	+2.6 +3.4 +3.2 +0.6 -1.8	18 19 Oct. 4 11 Nov. 7	-0.6 -0.1 0.0 -0.8 -1.2	Dec. 5 19 25 1907, Jan. 20	-0.8 +0.8 -1.8 -1.6 -1.9
8 11 14 17 18	-0.9 -0.6 -0.9 -1.7 -2.1	21 24 June 4 July 7 9	+3.3 +2.5 -3.1 -1.4 -0.3	Dec. 2 9 10 1906, Jan. 1	-1.7 -0.2 0.0 -1.0 +0.8	26 27 Feb. 1 16 21	0. 0 +0. 5 +0. 5 -1. 5 +0. 6
19 20 22 Dec. 4 11	-2.2 -2.4 -2.4 -1.2 +0.6	18 22 Aug. 30 Sept. 13 22	+1.7 +0.5 -2.2 -0.5 -2.6	6 10 13 Feb. 3	+0.4 +0.5 -0.1 +1.2 +1.7	22 23 25 Mar. 10 20	+1.4 +1.3 +1.6 -3.2 +0.8
12 13 1903, Jan. 6 9 12	+0.6 +0.1 +1.1 +1.6 +1.0	27 29 Oct. 27 Nov. 20 23	-1.8 -1.4 -1.3 -1.4 -1.2	7 8 Mar 2 3 4	+1.8 +1.6 +1.9 +2.3 +3.0	21 22 24 28 Apr. 19	+1.4 +2.3 +3.0 +2.0 +2.3
14 15 18 19 20	-0. 3 -0. 7 -2. 0 -2. 4 -2. 7	Dec. 16 20 1905, Jan. 10 16 17	-0.9 0.0 -1.7 +1.4 +1.2	17 20 29 31 Apr. 2	-3.2 -4.0 +1.0 +2.8 +3.6	25 May 24 June 18 21 24	+3.0 +3.3 +3.6 +2.7 +0.9
Feb. 2 6 7 9	+0.5 +2.4 +2.4 +2.0 +0.6	18 19 26 Feb. 13 17	+1.5 +1.4 -2.1 +2.3 +3.0	3 4 5 6 10	+3.9 +4.0 +4.0 +3.6 +0.2	July 23 26 Aug. 18 Sept. 14	+0.9 -2.9 +2.8 +2.9 +2.9
15 16 19 Mar. 2	$ \begin{array}{c} -1.6 \\ -2.1 \\ -3.2 \\ +1.3 \\ +1.6 \end{array} $	20 21 Mar. 10 12 15	+1.2 +0.2 +0.6 +2.4 +3.8	11 14 27 May 1	-0.4 -3.0 +1.1 +4.3 +4.3	16 18 19 24 26	+2. 1 +0. 7 -0. 4 -3. 8 -3. 6
5 6 7 8 12	+2.4 +2.6 +2.8 +2.9 +1.0	16 17 18 19 20	+4.0 +3.8 +3.2 +2.8 +2.2	3 8 9 11 17	+4.7 +1.6 0.0 -1.0 -3.8	Oct. 2 24 Nov. 16 Dec. 11	+0.3 -2.6 -0.8 -0.8
Apr. 4 May 2 June 2 Aug. 1	-2.4 +2.8 +2.4 +1.6 -1.3	Apr. 12 15 16 17 24	+4.0 +3.9 +3.2 +2.8 -2.8	June 2 4 7 8 25	+3.3 +2.3 -0.5 -1.4 +4.6	1908, Jan. 18 29 Mar. 7 10 13	-0.3 +0.7 -1.8 -1.0
Sept. 2 3 Oct. 22 30 Nov. 4	-2.4 -2.6 -2.1 -1.6 -1.7	May 10 13 14 15 July 7	+4. 1 +4. 2 +3. 7 +3. 0 +4. 2	July 2 5 8 Aug. 9 Sept. 1	+2.6 +1.9 -3.2 -4.0 -0.6	23 Apr. 6 9 13 June 11	-1.2 -0.7 +0.9 +1.5 +2.7
Dec. 2 4 10 31	-2.3 -0.4 -0.8 -2.4 +0.5	13 20 Aug. 7 12 17	+1.3 -2.7 +2.6 +3.8 -1.9	5 9 Oct. 8 11 25	-3.5 -2.6 -0.5 -0.2 0.0	15 16 July 17 Aug. 3 9	-0. 5 -1. 8 +0. 7 +3. 1 +0. 9 0. 0

CHAPTER VI.

POSITIONS OF THE OCCULTED STARS.

The positions of the occulted stars have been taken primarily from the Catalogue of Zodiacal Stars in Astronomical Papers of the American Ephemeris, Vol. VIII, Part III. The positions of the occulted stars observed by Batterman, published in Beobachtungs-Ergebnisse der Königlichen Sternwarte zu Berlin, Hefte 5, 11, und 13, have been used unchanged. The right ascensions as found in the printed catalogue are not corrected for the magnitude equation. This correction, however, has been applied to the adopted positions, or in many cases the final numbers have been corrected for this equation. The adopted expression for the magnitude equation is

$$\Delta a = 0^8.008 (4.0 - m),$$

m being the magnitude of the star.

The positions of the stars occulted before 1847 were not corrected for this equation before being transformed into ecliptic coordinates. This transformation was made for the epoch 1900, the adopted obliquity being that of the author's Tables of the Sun,

$$\varepsilon = 23^{\circ} 27' 8''.26.$$

For convenient comparison with the positions used in Researches I, these longitudes and latitudes were reduced back to 1850.0, and were then corrected for the magnitude equation. The positions thus derived are given in the following list, in which is included the magnitude equation, which, however, it should be noted, is actually applied to derive the longitudes and latitudes as printed.

After reduction to the epoch of observation by the formulæ for precession and proper motion found in Chapter II, the positions are corrected for aberration. The adopted corrections are:

$$\Delta L = -20^{\circ\prime}.50 \text{ sec } B \cos (\odot - L),$$

 $\Delta B = -20^{\circ\prime}.50 \sin B \sin (\odot - L).$

This value of the aberration is tabulated in the following tables, the arguments being in all cases the excess of the sun's longitude over that of the star.

The algebraic signs of the aberration for positive latitudes are shown at the top and bottom of the columns of arguments. It should be noted that the aberration in latitude changes sign with the latitude.

Table of Aberration Correction.

AL.

⊙- <i>L</i>	B=o°	<i>B=</i> 2°	B=4°	B=6°	B=8°	⊙- <i>L</i>
+ - 180° 0° 182 2 184 4 186 6 188 8 190 10 192 12 194 14 196 16 198 18 + -	20. 50 1 20. 49 4 20. 45 6 20. 39 9 20. 30 11 20. 19 14 20. 05 16 19. 89 19 19. 70 21	20. 51 1 20. 50 4 20. 46 6 20. 40 9 20. 31 11 20. 20 14 20. 06 16 19. 90 18 19. 72 21 19. 51 28	20. 55 1 20. 55 4 20. 50 6 20. 44 9 20. 35 11 20. 24 14 20. 10 16 19. 94 19 19. 75 21 19. 54 22	20. 61 1 20. 60 4 20. 56 6 20. 50 9 20. 41 11 20. 30 14 20. 16 18 20. 00 19 19. 81 21 19. 60 28	20. 70 1 20. 69 4 20. 65 6 20. 59 9 20. 50 11 20. 39 14 20. 25 16 20. 09 19 19. 90 21 19. 69 22	+ - 180° 360° 178 358 176 356 174 354 172 352 170 350 168 348 166 346 164 344 162 342 + -

Table of Aberration Correction—Continued.

1L.

	D 0	P . C	ъ. о	D (0	72 00	0.7
⊙— <i>L</i>	B=o°	B=2°	B=4°	B=6°	B=8°	⊙— <i>L</i>
+ -	"	"	"	"	"	+ -
200° 20°	19. 26 25	19. 28 ₂₆	19. 31 25	19.37 m	19.46 26	160° 340°
202 22	19.01 28	19.02 28	19.06 28	19.11 28	19. 20 20	158 338
204 24	18. 73 81	18.74 30	18. 78 a1	18.83 31	18.91 31	156 336
206 26	18.42 82	18. 44 ₃₃	18.47 33	18. 52 32	18.60 ₈₈	154 334
208 28	18. 10 ₂₅	18. 11 ₂₅	18. 14 ₈₅	18. 20 ₃₅	18. 27 35	152 332
210 30	17. 75 27	17. 76 87	17. 79 a7	17.85 87	17.92 87	150 330
212 32	17. 38 39	17.39 39	17.42 ag	17.48 89	17·55 89	148 328
214 34	16. 99 41	17.00 41	17.03 41	17.09 41	17. 16 41	146 326
216 36	16. 58 43	16. 59 48	16. 62 48	16.68 4	16. 75 4	144 324
218 38	16. 15 45	16. 16 ₄₅	16. 19 45	16. 24 45	16.31 46	142 322
220 40	15. 70 47	15.71 47	15.74 47	15. 79 47	15.85 47	140 320
222 42	15. 23 48	15. 24 48	15. 27 40	15. 32 49	15. 38 49	138 318
224 44	14. 75 51	14. 76 ₅₁	14. 78 ₅₁	14. 83 51	14. 89 51	136 316
226 46	14. 24 52	14. 25 52	14. 27 52	14. 32 58	14. 38 53	134 314
228 48	13. 72 54	13. 73 ы	13. 75 84	13.79 84	13.85 54	132 312
230 50	13. 18 ₅₆	13. 19 56	13.21 56	13.25 56	13.31 57	130 310
232 52	12.62 ₅₇	12. 63 57	12.65 57	12.69 58	12.74 58	128 308
234 54	12.05 50	12.06 ₅₉	12.08 ₅₉	12. II 59	12. 16 59	126 306
236 56	11.46 60	11.47 60	11.49 61	11.52 60	11.57 61	124 304
238 58	10. 86 61	10. 87 ₆₁	10. 88 61	10. 92 62	10.96 61	122 302
240 60	10. 25 62	10. 26 ₆₃	10. 27 63	10. 30 62	10. 35 63	120 300
242 62	9. 63 64	9.63 64	9.64 64	9. 68 64	9.72 65	118 298
244 64	8.99 65	8. 99 ₆₄	9.00 84	9.04 66	9.07 65	116 296
246 66	8. 34 66	8. 35 66	8. 36 ₆₆	8. 38 ₆₆	8.42 66	114 294
248 68	7.68 ₆₇	7.69 es	7 · 7 · 67	7 · 7 2 67	7.76 ms	112 292
250 70	7.01 68	7. OI 68	7.03 68	7.05 68	7.08 69	110 290
252 72	6. 33 ₆₈	6. 33 ₀₈	6. 35 🐽	6. 37 69	6. 39 🐽	108 288
254 74	5.65 🐽	5.65 m	5.66 mg	5.68 mg	5.70 70	106 286
256 76	4.96 70	4.96 70	4.97 70	4.99 n	5.00 ₇₀	104 284
258 78	4. 26 70	4. 26 70	4. 27 70	4. 28 70	4. 30 n	102 282
260 80	3. 56 71	3. 56 71	3 · 57 71	3. 58 71	3. 59 71	100 280
262 82	2.85 71	2.85 71	2.86 71	2.87 72	2.88 72	98 278
264 84	2. 14 71	2. 14 71	2. 15 72	2. 15 71	2. 16 72	96 276
266 86	1.43 71	1.43 71	I. 43 71	I. 44 72	I · 44 72	94 274
268 88	0. 72 72	0. 72 72	0. 72 72	0. 72 72	0. 72 72	92 272
270 90	0.00	0.00	0.00	0.00	0.00	90 270
+ -			1	1		+ -
1		<u> </u>	1	l	<u> </u>	<u> </u>

∆B.

⊙- <i>L</i>	B=o°	B=1°	B=2°	B=3°	B= 4°	B=5°	B=6°	B=7°	0-	·L
+ - 180° 0° 185 5 190 10 195 15 200 20 20 20 215 35 220 40 225 45 230 50 235 55 240 60 245 65 250 70 255 75 260 80 265 85 270 90 + -	" 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.003 0.003 0.003 0.0093 0.128 0.153 0.183 0.212 0.232 0.252 0.272 0.312 0.331 0.341 0.350 0.350 0.360	0.006 0.066 0.126 0.186 0.246 0.365 0.465 0.514 0.558 0.623 0.652 0.672 0.701 0.701	0.00 9 0.09 10 0.19 9 0.28 9 0.37 8 0.45 9 0.54 7 0.61 8 0.69 7 0.76 6 0.82 6 0.88 5 0.93 4 0.97 4 1.01 3 1.04 2 1.06 1 1.07 0	0. 00 13 0. 13 12 0. 25 12 0. 37 12 0. 49 12 0. 61 11 0. 72 10 0. 82 10 0. 92 9 1. 01 9 1. 10 7 1. 17 7 1. 24 6 1. 30 4 1. 38 3 1. 41 1 1. 42 1	0. 00 16 0. 16 15 0. 31 15 0. 46 15 0. 61 14 0. 75 14 0. 89 13 1. 02 13 1. 15 11 1. 26 11 1. 37 9 1. 46 9 1. 55 7 1. 62 6 1. 68 8 1. 73 3 1. 76 2 1. 78 0 1. 78	0. 00 19 0. 19 18 0. 37 18 0. 55 18 0. 73 17 0. 90 17 1. 07 16 1. 23 15 1. 38 14 1. 52 12 1. 64 11 1. 75 10 1. 85 9 1. 94 8 2. 02 8 2. 07 4 2. 11 2 2. 13 1	0.00 22 0.22 21 0.43 22 0.65 20 0.85 20 1.05 20 1.25 18 1.43 18 1.61 16 1.77 14 1.91 14 2.05 11 2.16 11 2.27 8 2.35 6 2.41 5 2.49 1 2.50	175 170 165 160 155 150 145 140 135 130 125 120 115	+ 360° 355 345 340 335 330 325 320 315 300 295 290 285 275 270 +

Note.—For B negative, change sign of ΔB .

Longitude and Latitude of Stars Occulted before 1862, Referred to the Equinox of 1850.0.

Name of Star.	Mag.	Longitude,	Cen- tennial	Proper	Latitude,	Cen- tennial	Proper	Mag	. Eq.
Name of Star.	Mag.	1850.	Variation.	Motion.	1850.	Variation.	Motion.	AL.	₫B.
10 Ceti	6. 4	3 59 35.76	5034. 94	+ 8. 25	-2 41 26.64	+ 6. 26	" - 2.33 - 1.28 - 6.67 - 1.06	-0. 26	+0. 11
44 Piscium	6. 1	4 30 15.52	5022. 26	- 2. 86	-0 44 38.39	+ 7. 71		-0. 22	+0. 09
45 Piscium	7. 2	6 50 58.42	5022. 53	+ 1. 62	+4 30 37.42	+ 4. 22		-0. 40	+0. 16
60 Piscium	6. 2	11 25 47.38	5024. 59	+ 1. 25	+1 31 4.78	+ 13. 46		-0. 26	+0. 11
62 Piscium δ Piscium 171 B. Piscium 33 Ceti ε Piscium 35 Ceti	6. I	11 50 55.16	5032.96	+ 9.95	+1 56 49.02	+11.45	- 3.39	-0. 24	+0. 10
	4. 5	12 3 4.62	5028.58	+ 5.74	+2 10 24.15	+ 7.76	- 7.24	-0. 07	+0. 03
	6. 3	14 10 36.83	5025.36	+ 0.90	+0 5 4.02	+15.74	- 0.90	-0. 28	+0. 25
	6. I	15 6 20.35	5026.41	- 1.70	-4 40 8.79	+17.36	0.00	-0. 28	+0. 24
	4. 4	15 26 2.42	5017.25	- 6.45	+1 5 2.75	+23.09	+ 5.48	-0. 06	+0. 25
	6. 8	15 34 33.08	5008.31	- 19.91	-4 49 46.79	+15.56	- 2.16	-0. 34	+0. 13
e Piscium f Piscium ζ Piscium 88 Piscium 95 Piscium	5. 6	15 50 1.73	4994. 31	-31.36	-1 29 45. 36	+12.41	- 5.50	-0. 20	+0. 12
	5. 3	17 13 45.45	5022. 17	- 5.58	-4 16 18. 63	+18.50	- 0.47	-0. 14	+0. 14
	5. 3	17 46 42.73	5035. 86	+11.17	-0 13 2. 65	+ 9.16	-10.23	-0. 02	+0. 01
	6. 2	17 47 20.16	5022. 62	- 2.55	-0 50 58. 29	+17.63	- 1.77	-0. 25	+0. 14
	7. 3	20 9 58.53	5018. 06	- 9.10	-3 34 19. 54	+ 9.49	-11.67	-0. 48	+0. 19
μ Piscium 96 Piscium ν Piscium η Piscium π Piscium	5. 0	21 1 45.49	5053. 36	+26.59	-3 4 0.89	+ 8. 26	-13.54	-0. 14	+0. 13
	6. 7	21 12 14.39	5021. 64	- 4.27	-1 53 54.14	+17. 88	- 4.04	-0. 32	+0. 12
	4. 6	23 24 41.92	5025. 95	- 1.94	-4 42 16.42	+24. 62	+ 1.11	-0. 08	+0. 03
	3. 8	24 43 19.93	5022. 66	+ 1.91	+5 22 4.26	+23. 39	- 1.05	+0. 04	-0. 03
	5. 6	24 49 21.84	5017. 74	- 5.47	+1 53 1.54	+30. 36	+ 5.85	-0. 19	+0. 07
o Piscium o Piscium 104 Piscium 54 Ceti 311 B. Piscium	6. 2	25 26 19. 25	5022. 78	+ 1.30	+4 21 4.05	+24. 26	- 0.68	-0. 31	+0. 12
	4. 5	25 38 41. 17	5034. 07	+ 8.40	-1 37 53.93	+26. 65	+ 1.56	-0. 05	+0. 18
	6. 9	26 5 10. 05	5028. 89	+ 6.93	+3 41 47.03	+19. 47	- 5.93	-0. 42	+0. 15
	6. 0	27 34 47. 17	5017. 23	- 7.53	-0 20 43.39	+26. 38	- 0.04	-0. 22	+0. 07
	7. 1	27 56 6. 85	5033. 49	+ 5.00	-5 49 21.14	+22. 15	- 4.51	-0. 37	+0. 17
64 Ceti	5. 8	31 28 29.84	5010. 91	-16.48	-4 24 4.92	+23.57	- 5.44	-0. 20	+0.07
\$\xi^1\$ Ceti	4. 6	31 56 48.52	5024. 99	- 2.30	-4 16 45.40	+28.43	- 0.89	-0. 06	+0.02
\$\xi\$ Arietis	5. 5	35 16 56.43	5026. 79	+ 0.06	-3 34 0.79	+29.07	- 2.34	-0. 17	+0.07
\$\xi^2\$ Ceti	4. 3	35 22 21.34	5031. 49	+ 3.35	-5 52 4.82	+29.61	- 1.86	-0. 05	+0.02
31 Arietis	5. 7	38 36 12.79	5049. 82	+23.70	-2 43 49.81	+16.63	-16.77	-0. 19	+0.06
27 Arietis 85 Ceti μ Ceti 38 Arietis μ Arietis	6. 4	38 56 24. 58	5024. 01	+ 1.04	+2 41 28.22	+23.85	- 9.75	-0. 30	+0.09
	6. 3	39 27 30. 39	5023. 30	- 3.98	-4 47 58.58	+33.90	+ 0.01	-0. 28	+0.08
	4. 3	39 50 6. 03	5053. 50	+25.80	-5 34 34.20	+23.24	- 10.87	-0. 05	+0.02
	5. 2	40 32 54. 41	5035. 30	+ 8.89	-3 21 12.34	+23.39	- 11.12	-0. 14	+0.05
	5. 7	42 14 13. 05	5024. 25	+ 1.92	+4 2 45.34	+30.79	- 4.65	-0. 22	+0.06
σ Arietis 40 Arietis ρ Arietis 47 Arietis ε Arietis (mean)	5·4	42 50 55.00	5026. 49	+ 1.26	-1 18 28.25	+31.79	- 3.98	-0. 18	+0.05
	6.0	43 6 38.60	5026. 94	+ 3.46	+1 57 40.09	+32.78	- 3.13	-0. 25	+0.11
	5.6	44 49 27.59	5044. 59	+20.67	+1 10 34.37	+ 8.76	-28.04	-0. 18	+0.04
	5.8	45 57 9.06	5043. 70	+20.98	+3 35 35.64	+28.85	- 8.53	-0. 23	+0.06
	4.6	46 24 19.28	5020. 92	- 1.54	+4 9 31.70	+37.04	- 0.57	-0. 07	+0.03
53 Arietis 54 Arietis ∂ Arietis ∠ Arietis 161 B. Arietis	6. o	47 18 15.61	5021. 84	- 2.54	+0 17 48.86	+39. 16	+ 1.11	-0. 32	+0.09
	6. 5	47 45 41.91	5026. 09	+ 2.10	+1 7 10.48	+36. 21	- 2.05	-0. 30	+0.08
	4. 5	48 45 10.75	5038. 63	+14.95	+1 48 35.10	+34. 58	- 4.17	-0. 06	+0.02
	4. 8	49 51 1.45	5018. 44	- 4.77	+2 52 40.66	+32. 07	- 7.17	-0. 11	+0.03
	6. 9	50 12 44.37	5032. 27	+ 9.89	+4 45 20.98	+32. 76	- 6.65	-0. 35	+0.10
7 Arietis 7 Tauri 65 Arietis 66 Arietis 7 Tauri	5. 1 4. 3 6. 0 6. 1 5. 9	51 18 3.81 51 29 47.73 51 56 25.55 53 20 23.14 55 4 40.31	5025. 66 5029. 46 5024. 21 5020. 92 5023. 77	+ 2.27 + 2.33 + 0.57 - 2.05 + 1.23	+2 35 38.18 -5 55 55.96 +2 4 17.79 +3 47 1.04 +5 3 38.01	+35.88 +39.58 +39.21 +29.75 +38.81	- 4.02 - 0.39 - 0.96 -11.01 - 2.65	-0. 14 -0. 04 -0. 19 -0. 25 -0. 23	+0.10 +0.03
14 H ¹ . Tauri 9 Tauri 14 Tauri 22 H ¹ . Tauri 17 Tauri	6. 5 6. 7 6. 2 6. 1 3. 8	55 16 20. 66 55 20 44. 05 56 4 40. 44 56 31 6. 88 57 19 4. 21	5024.00 5022.19 5035.07 5025.05 5023.62	- 0.90 +10.50 + 0.93 + 1.01	+1 21 52.54 +3 42 22.76 -0 6 19.74 +1 5 18.38 +4 10 27.19	+41.53 +38.02 +34.35 +41.19 +37.52	- 3·54 - 7·49 - 0.82 - 5·39	-0. 30 -0. 36 -0. 26 -0. 25 +0. 02	+0.07 +0.09 +0.06 +0.05 -0.01
16 Tauri q Tauri 18 Tauri 20 Tauri 23 Tauri	5· 4	57 20 27. 92	5023. 56	+ 0. 10	+4 20 58.26	+37.53	- 5.03	-0. 30	+0.07
	4· 3	57 28 14. 16	5023. 51	+ 0. 57	+4 30 8.78	+37.57	- 3.62	-0. 04	+0.01
	5· 6	57 32 35. 83	5023. 38	- 0. 27	+4 52 3.13	+37.59	- 3.81	-0. 28	+0.06
	4· 1	57 35 10. 80	5023. 56	+ 1. 15	+4 22 27.50	+37.61	- 4.77	0. 00	0.00
	4· 3	57 36 18. 68	5023. 72	+ 1. 07	+3 56 24.34	+37.62	- 5.43	-0. 02	+0.01
21 Tauri	5. 8	57 38 44. 73	5023. 50	+ 0.62	+4 33 9.16	+37.63	- 4.85	-0. 22	+0.03
22 Tauri	6. 5	57 40 16. 06	5023. 51	- 0.01	+4 31 9.63	+37.64	- 4.02	-0. 30	+0.07
7 Tauri	2. 9	57 53 53. 95	5023. 70	+ 1.01	+4 2 6.77	+37.72	- 5.34	+0. 12	-0.03
27 Tauri	3. 7	58 15 42. 81	5023. 77	+ 0.61	+3 54 6.08	+37.85	- 5.08	+0. 02	-0.01
28 Tauri	5. 2	58 17 7. 23	5023. 32	+ 0.19	+3 58 55.09	+37.86	- 4.82	-0. 26	+0.06

Longitude and Latitude of Stars Occulted before 1862, Referred to the Equinox of 1850.0 -- Continued.

Name of Star.	Mag.	Longitude,	Cen- tennial	Proper	Latitude,	Cen- tennial	Proper	Мая	g. Eq.
Name of Otal.	Mag.	1850.	Variation.	Motion.	1850.	Variation.	Motion.	AL.	∆B. -
33 Tauri A Tauri 39 Tauri 36 Tauri 43 Tauri	6. 0 4. 5 6. 1 5. 6 5. 5	59 51 0.35 61 21 28.74 61 29 14.63 61 40 31.77 61 55 0.35	5027. 02 5032. 47 5038. 56 5023. 20 5035. 05	// + 3.37 + 8.32 + 14.39 - 0.34 + 10.11	+2 39 45.37 +1 14 40.86 +1 8 53.28 +3 14 35.18 -1 22 53.39	+41.51 +36.06 +27.40 +41.56 +37.35	" - 1. 67 - 7. 62 - 16. 30 - 2. 20 - 6. 48	-0. 36 -0. 06 -0. 25 -0. 19 -0. 22	" +0. 08 +0. 01 +0. 05 +0. 04 +0. 05
48 Tauri p Tauri γ Tauri 58 Tauri ω Tauri	6. 3	62 42 27. 47	5037. 91	+11.68	-5 48 19.06	+39.46	- 4.62	-0. 29	+0.06
	5. 5	63 33 54. 10	5019. 09	- 3.95	+5 18 5.63	+40.81	- 3.51	-0. 19	+0.04
	3. 9	63 42 22. 42	5037. 59	+11.45	-5 44 56.31	+39.67	- 4.69	+0. 01	0.00
	5. 4	63 48 36. 27	5036. 20	+ 9.91	-6 18 24.40	+40.93	- 3.45	-0. 13	+0.03
	4. 8	63 57 59. 72	5020. 64	- 4.10	-0 46 3.77	+39.59	- 4.84	-0. 07	+0.02
51 Tauri	5. 6	64 23 28.47	5033. 54	+ 9.06	+0 10 23. 25	+38.77	- 5.77	-0. 17	+0.03
53 Tauri	5. 3	64 33 37.23	5027. 63	+ 3.02	-0 17 56. 78	+38.88	- 5.71	-0. 18	+0.03
56 Tauri	5. 2	64 42 26.37	5028. 06	+ 3.62	+0 18 57. 19	+39.95	- 4.68	-0. 17	+0.03
63 Tauri	5. 7	64 45 37.07	5035. 90	+10.11	-4 45 36. 32	+40.17	- 4.48	-0. 19	+0.03
∂ Tauri	3. 9	64 46 18.51	5035. 74	+10.15	-3 59 10. 42	+39.80	- 4.85	0. 00	0.00
64 Tauri 70 Tauri 71 Tauri 68 Tauri φ Tauri θ ¹ Tauri	4. 9 6. 4 4. 6 4. 3 5. 0	65 1 46. 13 65 8 54. 18 65 16 9. 16 65 26 10. 13 65 49 5. 74 65 51 22. 36	5036. 74 5036. 00 5036. 52 5035. 89 5019. 16	+11.13 +10.02 +10.44 +10.42 - 3.92	-4 7 41.27 -5 40 15.30 -6 1 2.61 -3 42 15.45 +5 47 9.67	+38. 78 +40. 41 +41. 03 +39. 93 +37. 30	- 5.93 - 4.34 - 3.74 - 4.90 - 7.62	-0. 11 -0. 29 -0. 07 -0. 02 -0. 13 +0. 01	+0.02 +0.05 +0.01 0.00 +0.02
θ² Tauri 75 Tauri 2 Tauri π Tauri π Tauri π Tauri	4. 2 3. 6 5. 2 5. 3 4. 1 6. 1	65 51 46. 22 65 53 23. 56 66 1 17. 54 66 6 22. 72	5035. 76 5036. 88 5026. 51 5026. 83 5032. 22	+ 9.79 +10.89 + 0.64 + 3.29 + 7.84	-5 45 43. 13 -5 51 19. 73 -5 22 0. 88 +4 0 12. 78 +0 36 38. 27 +2 38 25. 11	+41.00 +41.08 +46.81 +41.50 +39.39	- 3.93 - 3.85 + 1.87 - 3.47 - 5.60	+0. 05 -0. 16 -0. 20 -0. 07	-0.01 +0.03 +0.03 +0.01
80 Tauri 81 Tauri 264 B. Tauri 2 Tauri	5. 8 5. 5 4. 8 3. 5	66 10 51.33 66 18 36.00 66 21 56.26 66 21 58.57	5024. 60 5034. 38 5031. 41 5037. 47 5036. 05	+ 0.72 + 8.36 + 9.39 +11.58 +10.90	-6 8 26. 31 -6 6 21. 19 -5 36 22. 50 -2 35 1. 64	+42.97 +42.51 +40.31 +40.50 +39.80	- 2.02 - 2.50 - 4.73 - 4.55 - 5.26	-0. 26 -0. 19 -0. 18 -0. 22 +0. 04	+0.04 +0.03 +0.03 +0.04 -0.01
v Tauri	4. 2	66 24 8.93	5034. 24	+ 9.97	+1 5 21.72	+38.57	- 6.49	-0. 07	+0.01
247 B. Tauri	5. 8	66 36 19.67	5033. 39	+ 8.83	-0 9 5.03	+35.90	- 9.20	-0. 22	+0.04
85 Tauri	6. 0	66 37 28.88	5035. 74	+ 9.78	-5 59 31.33	+41.52	- 3.59	-0. 30	+0.04
275 B. Tauri	6. 5	67 7 18.67	5027. 52	+ 1.69	-5 35 23.31	+46.90	+ 1.67	-0. 30	+0.04
a Tauri	1. I	67 41 34.49	5029. 62	+ 3.86	-5 28 41.01	+25.63	+ 9.73	+0. 36	-0.05
o² Tauri	4. 9	68 24 31.54	5034. 43	+ 8.57	-6 11 1.51	+42. 33	- 3. 19	-0. 10	+0.02
τ Tauri	4. 3	70 3 34.45	5025. 06	+ 0.67	+0 41 43.60	+43. 78	- 2. 07	-0. 05	+0.01
95 Tauri	6. 2	70 25 54.32	5025. 71	+ 1.51	+1 47 17.38	+42. 70	- 3. 22	-0. 34	+0.05
• Tauri	5. 1	71 39 27.08	5032. 98	+ 7.83	-3 39 16.50	+41. 64	- 4. 50	-0. 13	+0.02
318 B. Tauri	5. 7	72 53 31.49	5024. 09	- 1.27	-5 29 32.28	+45. 41	- 0. 93	-0. 20	+0.03
99 Tauri	6. o	73 43 21.87	5024. 41	+ 0.06	+1 15 10.13	+42.95	- 3.51	-0. 24	+0.04
k Tauri	5. 6	73 55 3.40	5026. 65	+ 2.44	+2 20 29.26	+40.05	- 6.43	-0. 20	+0.03
' Tauri	4. 7	74 41 27.33	5031. 91	+ 7.23	-1 12 59.90	+40.87	- 5.72	-0. 08	+0.01
330 B. Tauri	6. 3	74 57 20.10	5028. 19	+ 3.47	-1 33 23.74	+42.85	- 3.76	-0. 28	+0.02
m Tauri	5. o	75 24 43.42	5079. 26	+54.24	-4 14 43.74	+43.81	- 2.87	-0. 13	+0.01
l Tauri 105 Tauri n Tauri 111 Tauri 115 Tauri	5. 2	75 40 51.08	5019. 67	- 5. 14	-2 29 13.14	+41.77	- 4.93	-0. 18	+0.01
	6. 0	75 49 17.20	5025. 09	+ 0. 43	-1 12 33.14	+45.94	- 0.78	-0. 22	+0.02
	5. 1	78 28 40.40	5026. 82	+ 2. 22	-1 1 34.91	+38.48	- 8.48	-0. 14	+0.01
	5. 1	79 22 0.44	5048. 95	+24. 08	-5 48 41.10	+44.37	- 2.65	-0. 14	+0.01
	5. 3	80 4 0.75	5026. 89	+ 2. 10	-5 16 21.30	+44.77	- 2.28	-0. 17	+0.01
o Tauri o Tauri 118 Tauri 119 Tauri 120 Tauri	6. 0 4. 8 5. 4 4. 9 5. 6	80 13 51.05 80 24 6.19 80 57 8.62 81 18 3.09 81 36 38.01	5026. 81 5025. 39 5026. 32 5025. 70 5026. 22	+ 2.00 + 0.80 + 1.86 + 1.02 + 1.56	-6 0 17. 76 -1 18 39. 81 +1 52 41. 46 -4 42 19. 37 -4 46 26. 98	+39. 16 +46. 08 +43. 13 +46. 69 +47. 09	- 7.91 - 1.00 - 3.97 - 0.42 - 0.03	-0. 30 -0. 10 -0. 17 -0. 07 -0. 16	+0.02 +0.01 +0.01 +0.01 +0.01
Tauri 107 B. Aurigæ	5. I	82 18 6.83	5025. 71	+ 1.19	+0 42 3.13	+43. 94	- 3. 19	-0. 17	+0.01
	6. 5	82 33 46.20	5022. 35	- 2.12	+4 19 0.32	+39. 64	- 7. 50	-0. 30	+0.02
	3. 0	82 41 25.26	5025. 18	+ 0.63	-2 12 51.55	+43. 91	- 3. 23	+0. 12	-0.01
	5. 7	82 48 11.66	5023. 82	- 0.67	+3 34 3.20	+43. 22	- 3. 92	-0. 20	+0.02
	5. I	83 20 41.02	5026. 77	+ 2.25	+2 31 9.85	+44. 10	- 3. 04	-0. 11	+0.01
126 Tauri	4. 8	83 23 27.21	5026. 69	+ 2. 15	-6 51 3.24	+45. 19	- 1.95	-0. 11	+0.01
130 Tauri	5. 6	84 53 58.78	5024. 99	+ 0. 57	-5 41 48.31	+46. 21	- 0.92	-0. 18	+0.01
132 Tauri	5. 0	85 24 28.96	5024. 52	- 0. 04	+1 8 0.22	+44. 81	- 2.31	-0. 13	+0.01
406 B. Tauri	5. 6	85 54 19.65	5023. 00	- 1. 70	+4 31 27.28	+48. 24	+ 1.14	-0. 19	+0.02
136 Tauri	4. 6	86 25 24.38	5026. 37	+ 1. 66	+4 9 44.96	+45. 01	- 2.07	-0. 06	0.00

 $A_2L = +(1''.11+o''.20 \tan B \sin (L+16^\circ)) T^2; A_2B = +o''.20 T^2 \cos (L+16^\circ).$

Longitude and Latitude of Stars Occulted before 1862, Referred to the Equinox of 1850.0—Continued.

Name of Star.	Mag.	Longitude,	Cen- tennial	Proper	Latitude,	Cen- tennial	Proper	Mag	g. Eq.
Name of Star.	.mag.	1850.	Variation.	Motion.	1850.	Variation.	Motion.	AL.	, .1 B.
χ' Orionis 57 Orionis 139 Tauri 141 Tauri 64 Orionis	4. 5 5. 8 4. 7 6. 3 5. I	86 35 39. 26 86 42 50. 04 87 27 16. 17 88 17 51. 58 88 43 14. 75	5006. 46 5024. 70 5024. 70 5023. 20 5026. 18	-17. 93 + 0. 34 + 0. 03 - 1. 26 + 1. 93	-3 10 22.30 -3 42 13.73 +2 29 45.62 -1 3 23.19 -3 45 54.17	+38.93 +45.73 +46.36 +45.89 +44.86	" - 8. 15 - 1. 34 - 0. 67 - 1. 09 - 2. 09	-0. 08 -0. 23 -0. 13 -0. 32 -0. 13	0.00 0.00 0.00 0.00
χ² Orionis 1 Geminorum 2 Geminorum 3 Geminorum 4 Geminorum	4. 7 4. 1 6. 9 5. 6 6. 7	88 49 38.03 88 51 8.15 89 27 56.22 90 8 36.77 90 19 18.82	5025. 80 5024. 77 5025. 93 5026. 38 5024. 25	+ 1.52 + 0.25 + 1.38 + 1.88 - 0.24	-3 19 1.50 -0 11 15.99 +0 11 20.94 -0 19 34.56 -0 26 19.26	+46. 64 +36. 05 +45. 82 +46. 90 +45. 66	- 0.30 -10.88 - 1.06 + 0.07 - 1.14	-0. 10 -0. 04 -0. 38 -0. 30 -0. 32	0. 00 0. 00 0. 00 0. 00
5 Geminorum 68 Orionis 6 Geminorum κ Aurigæ η Geminorum	5.9 5.7 6.3 4.4 3.2	90 31 56. 34 90 44 21. 68 90 44 32. 68 91 16 22. 13 91 20 40. 95	5026. 23 5025. 90 5025. 49 5019. 94 5019. 12	+ 1.60 + 1.75 + 1.01 - 5.27 - 5.31	+0 59 24.50 -3 38 17.28 -0 31 10.66 +6 5 43.07 -0 54 25.22	+40.69 +45.52 +45.47 +20.35 +44.98	- 6.09 - 1.24 - 1.29 -26.36 - 1.72	-0. 32 -0. 19 -0. 32 -0. 06 +0. 10	0. 00 0. 00 0. 00 0. 00 0. 00
71 Orionis 8 Geminorum 9 Geminorum μ Geminorum 16 Geminorum	5. I 6. I 6. 2 3. 2 6. 2	91 25 32.10 91 38 0.23 91 47 25.90 93 12 18.59 94 27 24.55	5015. 55 5023. 44 5025. 13 5031. 20 5021. 41	- 8.50 - 1.16 + 0.56 + 6.79 - 2.68	-4 14 56.75 +0 33 52.50 +0 20 22.67 -0 50 5.44 -2 48 13.91	+27. 11 +44. 08 +45. 84 +35. 23 +45. 63	-19.58 - 2.59 - 0.80 -11.24 - 0.65	-0. 13 -0. 30 -0. 34 +0. 10 -0. 34	0. 00 0. 00 0. 00 0. 00
 Geminorum Geminorum Aurigæ Geminorum Geminorum 	4. 0 7. 2 5. 1 1. 9 3. 2	94 42 31.01 95 37 42.93 95 41 41.57 97 0 32.74 97 50 40.20	5023. 43 5025. 93 5025. 40 5028. 27 5024. 89	- 0.61 + 2.35 + 0.03 + 5.04 - 0.06	-3 4 29.73 -5 27 32.31 +4 48 8.19 -6 45 35.47 +2 3 6.06	+44. 62 +49. 65 +43. 41 +41. 30 +43. 86	- 1.62 + 3.56 - 2.67 - 4.54 - 1.81	0.00 -0.36 -0.11 +0.24 +0.10	0. 00 0. 00 0. 00 0. 00
Geminorum d Geminorum ω Geminorum ζ Geminorum Geminorum	5. 2 5. 2 5. 2 3. 8 5. 6	98 2 55. 52 99 51 49. 06 102 6 40. 02 102 53 47. 43 103 49 15. 69	5025. 47 5025. 04 5024. 48 5023. 80 5024. 91	+ 2.07 + 0.78 - 0.45 - 0.17 - 0.88	-5 26 12.62 -1 9 43.05 +1 31 25.86 -2 3 25.77 +4 22 52.64	+36.48 +40.80 +44.65 +43.73 +38.96	- 9. 14 - 4. 43 - 0. 03 - 0. 73 - 5. 25	-0. 13 -0. 14 -0. 16 +0. 02 -0. 18	0. 0 -0. 0 -0. 0 0. 0
Geminorum Geminorum δ Geminorum λ Geminorum Geminorum Geminorum	5. 8 6. 1 3. 3 3. 7 5. 2	104 23 37. 70 104 48 21. 04 106 25 33. 52 106 41 13. 55 107 3 39. 06	5024. 31 5031. 44 5023. 32 5019. 13 5018. 14	- 0.72 + 6.15 - 1.15 - 3.56 - 5.85	+1 42 13. 22 +2 31 12. 69 -0 11 44. 49 -5 39 4. 75 -1 39 37. 22	+39.84 +35.96 +41.79 +38.35 +39.94	- 4.20 - 7.95 - 1.62 - 4.98 - 3.27	-0. 22 -0. 28 +0. 04 +0. 05 -0. 12	-0.0 -0.0 0.0 0.0
63 Geminorum U Geminorum 176 B. Geminorum 67 Geminorum 68 Geminorum	5· 3 4· 3 6· 3 6· 7 5· 2	108 15 15.08 109 14 59.65 110 10 55.10 110 28 37.07 110 29 39.68	5021.09 5025.92 5031.20 5021.06 5021.71	- 3. 28 - 0. 47 + 5. 64 - 1. 22 - 0. 64	-0 28 13.92 +5 12 10.77 +2 46 57.39 -6 0 22.29 -5 48 47.36	+31. 19 +31. 33 +40. 11 +41. 77 +39. 48	-11.62 -11.13 - 2.01 - 0.24 - 2.53	-0. 16 -0. 02 -0. 28 -0. 32 -0. 12	-0. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
c Geminorum x Geminorum f Geminorum Geminorum g Geminorum	5· 5 3. 6 5· 3 6. 3 5· 0	111 15 13.16 111 34 18.80 111 34 53.54 112 43 22.64 112 59 52.72	5024. 47 5024. 79 5022. 78 5023. 94 5017. 78	- 1.76 - 0.93 - 0.29 - 1.39 - 5.67	+4 24 48.71 +3 3 49.51 -3 45 40.51 +1 59 33.77 -2 39 43.72	+38.56 +35.35 +41.98 +40.78 +33.63	- 3. 16 - 6. 25 + 0. 39 - 0. 36 - 7. 40	-0. 16 +0. 05 -0. 14 -0. 30 -0. 13	-0.0 +0.0 -0.0 -0.0
φ Geminorum 85 Geminorum ω Cancri 4 Cancri 1 Cancri	4.9 5.2 6.1 6.2 6.0	113 9 0.49 114 57 20.21 115 3 44.02 115 18 9.03 116 3 37.95	5024. 78 5023. 44 5027. 10 5024. 76 5020. 17	- 2. 11 - 0. 71 + 0. 52 - 1. 72 - 2. 21	+5 45 49. 32 -0 53 45. 35 +4 44 31. 96 +4 28 53. 24 -4 51 2. 29	+37.86 +35.71 +39.83 +40.41 +34.79	- 3. 10 - 4. 51 - 0. 31 + 0. 36 - 4. 94	-0. 11 -0. 16 -0. 23 -0. 26 -0. 23	-0.0 -0.0 -0.0 -0.0
5 Cancri μ Cancri ζ Cancri λ Cancri d¹ Cancri	5·9 5·5 4·6 5·9 5·7	116 59 34. 19 117 22 56. 19 119 14 40. 91 119 43 15. 00 121 40 51. 50	5023. 29 5029. 43 5033. 24 5025 81 5019. 50	+ 0. 57 + 4. 29 + 9. 81 - 0. 85 - 4. 52	-3 59 7.42 +1 20 17.55 -2 16 42.07 +4 21 54.95 -1 1 2.82	+39. 38 +31. 44 +27. 22 +34. 98 +32. 81	+ 0.07 - 7.69 -11.04 - 3.05 - 4.24	-0. 29 -0. 16 -0. 12 -0. 20 -0. 23	-0.0 -0.0 -0.0 -0.0
d² Cancri η Cancri θ Cancri 29 Cancri 38 Cancri	6. 2 5. 6 5. 5 5. 9 6. 7	122 33 32.78 123 18 51.88 123 38 10.11 123 53 9.00 125 4 21.36	5008. 55 5023. 31 5020. 31 5020. 16 5023. 56	- 14. 88 - 2. 04 - 3. 81 - 1. 86 - 1. 70	-2 7 22.33 +1 33 31.53 -0 46 48.56 -4 43 23.07 +1 19 42.56	+17. 35 +30. 04 +28. 10 +33. 22 +34. 69	-19. 25 - 6. 16 - 7. 94 - 2. 68 - 0. 58	-0. 26 -0. 18 -0. 22 -0. 23 -0. 32	-0.00 -0.00 -0.00 -0.00
39 Cancri 98 B. Cancri 102 B. Cancri & Cancri 42 Cancri	6. 5 6. 6 6. 5 6. 3	125 6 14. 18 125 9 49. 21 125 15 0. 30 125 18 1. 88	5022. 13 5025. 09 5018. 87 5024. 92	- 3. 26 - 0. 05 - 6. 35 - 0. 24	+1 34 25.93 +1 6 23.88 +1 15 47.08 +1 8 49.89	+32.76 +32.22 +32.47 +32.26	- 2.49 - 3.00 - 2.71 - 2.88	-0. 30 -0. 31 -0. 30 -0. 28	-0.0 -0.0 -0.0

Longitude and Latitude of Stars Occulted before 1862, Referred to the Equinox of 1850.0—Continued.

	Name of Star.	Mag.	Longitude,	Cen- tennial	Proper	Latitude,	Cen- tennial	Proper	Mag	. Eq.
			1850.	Variation.	Motion.	1850.	Variation.	Motion.	JL.	JB.
107	7 B. Caneri γ Caneri δ Caneri	6. 7 4. 7 4. I	0 ' '' 125 24 9.75 125 26 50.14 126 37 33.22	5022. 94 5017. 79 5029. 53	// - 2. 26 - 8. 50 + 4. 96	0 , ,, +1 12 39.11 +3 10 43.69 +0 4 20.92	+32.73 +28.37 +10.90	- 2. 36 - 6. 69 - 23. 50	-0. 32 -0. 05 -0. 04	" -0. 07 -0. 02 -0. 01
1	A ² Cancri o ¹ Cancri o ² Cancri	5·7 5·1 5·7	128 45 6.92 130 17 13.27 130 17 35.13	5015. 80 5028. 50 5028. 91	- 5.44 + 5.08 + 5.33	-5 37 15.48 -1 51 6.77 -1 34 51.71	+25.83 +35.97 +36.21	- 7.35 + 3.70 + 3.94	-0. 22 -0. 14 -0. 19	-0. 05 -0. 04 -0. 05
68 60	Cancri Cancri α Cancri κ Cancri	7. I 5. 7 4. 3 5. 0	130 49 40. 16 131 0 34. 63 131 32 49. 16 134 4 35. 03	5022. 31 5020. 44 5025. 99 5019. 57	- 2.31 - 0.75 + 4.58 - 1.40	+0 8 23.82 -5 29 24.94 -5 5 32.66 -5 34 54.50	+31.49 +29.66 +28.49 +28.18	- 0.46 - 2.17 - 3.03 - 1.75	-0. 42 -0. 20 -0. 04 -0. 12	-0. 05 -0. 01 -0. 03
83 222 8	B. Cancri Leonis ω Leonis	5. 6 6. 6 6. 3 5. 9 5. 5	134 33 22.97 134 34 54.13 136 12 12.14 139 4 40.23 139 26 53.72	5021. 12 5019. 55 5028. 55 5025. 67 5026. 43	- 2.80 - 6.23 + 6.67 - 0.29 + 5.70	-0 57 35.71 +1 57 8.06 -4 2 54.18 +2 5 50.66 -5 33 58.34	+27.96 +13.38 +29.91 +24.98 +26.99	- 1.67 -16.24 + 1.35 - 1.66 + 0.60	-0. 19 -0. 31 -0. 28 -0. 23 -0. 19	-0. 05 -0. 08 -0. 07 -0. 07 -0. 06
18	 ξ Leonis h Leonis (pr.) ψ Leonis o Leonis Leonis 	5. 0 5. 2 5. 6 3. 7 5. 8	139 33 22.68 140 3 46.95 141 23 30.72 142 9 32.57 142 44 9.98	5016. 18 5021. 89 5024. 80 5009. 57 5022. 33	- 6. 20 + 0. 57 + 0. 03 - 12. 31 - 1. 12	-3 9 42.64 -4 39 57.87 +0 20 24.68 -3 45 49.63 -1 31 58.14	+15.47 +24.78 +24.08 +16.82 +24.61	- 10. 85 - 1. 19 - 0. 97 - 7. 69 + 0. 50	-0. 14 -0. 17 -0. 20 +0. 02 -0. 25	-0. 05 -0. 05 -0. 06 +0. 01 -0. 07
83	 ν Leonis η Leonis Β. Leonis π Leonis α Leonis 	5.0 3.6 5.9 5.0	145 14 38.97 145 48 34.33 146 2 16.13 147 13 15.50 147 44 40.27	5021. 57 5025. 22 5011. 08 5018. 51 5001. 76	- 3.00 - 2.86 - 10.96 - 3.13 - 23.11	+0 2 36.04 +4 51 25.00 -3 24 24.28 -3 55 8.50 +0 27 35.94	+18. 33 +20. 40 +19. 57 +16. 89 +11. 72	- 3. 98 - 1. 50 - 2. 17 - 3. 97 - 8. 76	-0. 16 +0. 05 -0. 24 -0. 12 +0. 31	-0.05 +0.02 -0.07 -0.04 +0.09
37 14 42 16	A Leonis Leonis Sextantis Leonis Sextantis	4. 6 5. 5 6. 3 6. 1 6. 8	148 19 20. 38 149 0 10. 23 149 36 29. 69 149 43 10. 82 149 59 0. 40	5017. 95 5025. 36 5017. 25 5026. 59 5020. 51	- 5.52 - 1.29 - 3.03 - 1.29 - 0.32	-1 25 26. 30 +2 49 22. 71 -5 37 45. 89 +4 26 14. 91 -4 53 27. 39	+10.83 +17.54 +17.74 +15.59 +17.05	- 9. 22 - 2. 00 - 1. 35 - 3. 42 - 1. 76	-0. 07 -0. 23 -0. 35 -0. 26 -0. 37	-0.02 -0.08 -0.12 -0.09 -0.13
19 167 46 49	Sextantis B. Leonis Leonis P. Leonis Leonis Leonis	5.9 7.1 5.8 3.8 5.7	151 22 20.60 151 31 37.90 152 22 4.51 154 17 41.42 155 2 59.81	5014. 95 5021. 75 5024. 05 5024. 24 5020. 63	- 4.97 - 6.20 - 4.00 - 0.40 - 3.70	-6 1 48.16 +4 27 58.52 +4 34 32.46 +0 8 37.48 -0 15 41.61	+15. 20 +12. 04 +17. 79 +14. 98 +12. 35	- 2.55 - 5.60 + 0.80 - 0.52 - 2.57	-0. 24 -0. 37 -0. 20 0. 00 -0. 20	-0. 08 -0. 13 -0. 07 0. 00 -0. 07
48 37 34	k Leonis Leonis Sextantis Sextantis c Leonis	5·5 5·2 6·3 6·6 5·1	155 33 28.82 155 37 41.67 158 26 31.69 158 41 53.77 161 54 50.36	5019. 56 5011. 37 5023. 52 5011. 88 5020. 47	- 9.63 -11.71 + 0.06 - 9.26 - 3.89	+5 55 38.59 -1 51 37.03 -1 20 46.80 -4 15 26.74 -0 12 30.72	+ 3.75 +14.83 + 7.91 +11.32 + 5.16	- 10. 77 + 0. 36 - 4. 33 - 0. 72 - 4. 31	-0. 20 -0. 14 -0. 26 -0. 44 -0. 13	-0.07 -0.05 -0.10 -0.17 -0.05
55	χ Leonis Leonis d Leonis p ⁴ Leonis c Leonis	4. 6 6. 1 5. 1 5. 6 4. 1	162 25 36. 38 162 48 40. 19 162 49 31. 76 164 56 44. 33 165 27 43. 92	4995. 12 5030. 64 5023. 92 4989. 77 5046. 88	-30.50 $+10.69$ $+1.42$ -31.96 $+17.36$	+1 20 42.24 -5 38 51.25 -2 31 12.78 -3 25 53.25 +6 6 9.94	- 8. 05 +11. 70 + 6. 89 -15. 04 + 4. 92	-17.11 + 2.96 - 1.83 -22.05 - 1.67	-0.08 -0.24 -0.12 -0.12 +0.01	-0.03 -0.09 -0.05 -0.05 +0.01
89	σ Leonis p ⁵ Leonis τ Leonis Leonis ξ Virginis	4. 2 5. 3 5. 2 5. 7 4. 8	166 36 51.36 167 18 26.57 169 25 0.50 170 49 1.07 171 14 10.71	5017. 94 5016. 88 5025. 88 5012. 25 5037. 03	- 7.98 - 3.85 + 1.80 -12.50 + 7.45	+1 41 48.47 -4 38 14.31 -0 33 20.15 +0 16 20.40 +6 6 51.40	+ 0.87 + 3.10 + 2.33 -14.45 + 1.40	- 4.78 - 1.98 - 1.02 - 16.65 - 0.46	-0.01 -0.16 -0.12 -0.20 -0.11	0. 00 -0. 08 -0. 05 -0. 08 -0. 04
	 Virginis e Leonis υ Leonis β Virginis b Virginis 	4. ² 5. ¹ 4. ⁵ 3. ⁸ 5. ²	172 3 39. 83 172 17 0. 19 172 56 38. 45 175 2 12. 32 176 26 15. 67	5033. 76 5022. 67 5020. 41 5103. 93 5026. 58	+ 5.45 + 2.84 - 1.61 +78.83 - 0.71	+4 35 36.30 -5 42 12.42 -3 2 49.16 +0 41 35.28 +3 21 0.03	$ \begin{array}{r} -16.76 \\ + 1.29 \\ + 4.00 \\ + 2.93 \\ - 3.98 \end{array} $	-17.94 + 0.29 + 3.55 + 4.20 - 1.56	-0. 02 -0. 13 -0. 06 +0. 04 -0. 14	-0.01 -0.05 -0.02 +0.03 -0.06
13	B. Virginis c Virginis Virginis y Virginis y Virginis y Virginis (mean	5.9 5.1 5.9 4.0 2.9	177 58 48.01 181 15 57.00 182 30 1.45 182 44 21.55 188 4 4.36	5020. 59 5004. 24 5028. 86 5021. 78 4976. 18	+ 0.82 -24.43 + 3.41 - 3.86 -50.59	-5 46 53.42 +5 4 19.19 +1 8 9.09 +1 22 13.64 +2 48 15.46	- 2.64 -24.83 - 8.18 -12.22 -33.04	+ 1.04 -18.46 - 0.80 - 4.65 -21.18	-0. 23 -0. 14 -0. 28 -0. 14 +0. 12	-0.09 -0.06 -0.11 -0.06 +0.05
28 48	k Virginis	5·3 7·2 5·7 6·5 4·4	189 23 41.03 190 29 3.96 193 6 44.05 194 2 2.34 196 8 35.51	5012. 31 5025. 33 5022. 82 5023. 23 5023. 32	- 7.99 + 2.96 - 3.54 - 3.54 - 2.54	-5 19 55.39 -2 44 28.52 +2 21 57.73 +2 54 43.31 +1 45 9.13	-15.94 -17.51 -17.76 -21.02 -23.52	- 3.03 - 3.74 - 1.93 - 4.48 - 5.37	-0. 20 -0. 38 -0. 23 -0. 30 -0. 05	-0.08 -0.16 -0.09 -0.11 -0.02

 $J_2L = +(1''.11 + o''.20 \tan B \sin (L + 16^\circ)) T^2; J_2B = +o''.20 T^2 \cos (L + 16^\circ).$

Longitude and Latitude of Stars Occulted before 1862, Referred to the Equinox of 1850.0—Continued.

Name of Star.	Mag.	Longitude,	Cen- tennial	Proper	Latitude,	Cen- tennial	Proper	Mag	Eq.
Name of Star.	Mag.	1850.	Variation.	Motion.	1850.	Variation.	Motion.	AL.	JB.
49 Virginis	5. 2	197 39 3.38	5023.61	+ 1.53	0 / // -3 15 10.21	,, - 20. 19	// - 0.90	" -0. 14	,, -0.06
58 Virginis l Virginis α Virginis So Virginis	7.2 4.8 1.2 5.6	199 45 27. 36 201 29 47. 12 201 44 55. 61 202 0 11. 98	5015. 59 5018. 89 5020. 38 5026. 26	- 7.33 - 7.92 - 2.67 - 1.35	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 23. 32 - 30. 07 - 26. 89 - 14. 92	- 2.46 - 7.94 - 4.57 + 7.58	-0. 36 -0. 11 +0. 34 -0. 22	-0. 14 -0. 04 +0. 04 -0. 08
i Virginis 69 Virginis m Virginis 75 Virginis 88 Virginis	5· 7 4· 9 5· 2 5· 6 6· 5	202 40 24. 76 204 3 20. 19 204 37 3. 02 205 2 32. 77 205 29 43. 52	5009. 86 5007. 91 5014. 43 5013. 88 5024. 02	-12. 27 -12. 13 -11. 31 - 6. 95 - 3. 34	-3 20 23.00 -6 18 30.15 +1 43 14.95 -5 15 35.64 +4 3 23.68	- 30. 42 - 27. 47 - 25. 29 - 26. 96 - 29. 80	- 7.44 - 3.50 - 0.92 - 2.30 - 4.82	-0. 18 -0. 11 -0. 16 -0. 20 -0. 36	-0.07 -0.04 -0.05 -0.07 -0.14
85 Virginis 607 B. Virginis 94 Virginis 95 Virginis κ Virginis	6. I 6. 8 6. 6 5. 4 4. 4	208 3 15.01 210 23 47.16 210 23 54.42 210 38 39.55 212 24 0.91	5018. 76 5024. 56 5025. 21 5012. 66 5022. 72	- 2.69 + 1.28 - 1.74 -14.05 - 3.69	-4 31 30. 31 -1 53 20. 46 +3 40 42. 77 +3 19 9. 25 +2 55 11. 78	- 31.43	- 4.69 + 0.36	-0. 25 -0. 34 -0. 34 -0. 20 -0. 04	-0. 08 -0. 12 -0. 12 -0. 07 -0. 01
40 H. Virginis λ Virginis μ Libræ 13 Libræ 8 Libræ	5. I 4. 5 5. 4 5. 7 5. 4	213 56 32. 14 214 51 31. 10 222 4 29. 04 222 35 53. 64 222 56 3. 10	5023. 54 5020. 83 5019. 12 5020. 88 5016. 87	+ 0.86 - 4.01 - 6.52 - 6.11 - 7.86	-2 55 22.46 +0 30 10.78 +2 2 55.17 +4 33 38.64 +0 22 52.31	- 13.77 - 30.37 - 40.32 - 39.57 - 46.01	- 1. 19 + 0. 78 - 4. 97 - 3. 94 - 10. 20	-0. 13 -0. 07 -0. 17 -0. 23 -0. 17	-0. 05 -0. 02 -0. 05 -0. 07 -0. 05
α Libræ 10 Libræ ν Libræ 26 Libræ ι Libræ	2. 7 6. 8 5. 3 6. 3 4. 3	222 59 29.60 223 53 14.88 226 40 39.74 228 54 37.02 228 54 41.09	5016. 26 5019. 75 5021. 32 5022. 10 5022. 58	- 8. 45 - 3. 84 - 3. 81 - 2. 55 - 2. 81	+0 21 8.11 -1 47 46.80 +1 12 48.46 +0 15 55.20 -1 50 37.37	- 46. 50 - 36. 66 - 42. 65 - 41. 24 - 45. 14	- 10.65 - 0.34 - 4.91 - 2.42 - 6.33	+0. 12 -0. 29 -0. 17 -0. 30 -0. 11	+0.04 -0.08 -0.04 -0.08 -0.03
25 Libræ σ Libræ 28 Libræ ζ Libræ γ Libræ	6. 0 6. 2 6. 2 5. 6 4. I	229 7 23.44 229 49 44.04 230 27 53.62 232 55 22.24 233 2 25.16	5019. 86 5027. 79 5024. 14 5024. 55 5032. 87	- 3.91 + 1.98 - 0.51 - 0.92 + 6.50	-1 37 24. 26 +2 48 29. 77 +0 16 48. 22 +2 15 2. 25 +4 24 7. 50	- 43. 67 - 36. 18 - 45. 98 - 44. 20 - 38. 35		-0. 30 -0. 24 -0. 24 -0. 17 0. 00	-0.08 -0.06 -0.06 -0.04 0.00
41 Libræ η Libræ κ Libræ 42 Libræ θ Libræ	5·3 5·5 5·0 5·0	234 52 33.04 235 15 32.07 235 39 48.58 236 13 36.55 237 46 28.83	5035. 47 5023. 96 5022. 18 5021. 13 5032. 45	+10.86 - 2.13 - 2.35 - 1.84 + 6.68	+0 12 15.54 +4 1 7.53 +0 0 10.63 -4 7 11.81 +3 29 0.12	- 44.67 - 50.19 - 53.16 - 45.12 - 28.84		-0. 20 -0. 18 -0. 12 -0. 12 -0. 04	-0.05 -0.06 -0.03 -0.03 -0.01
λ Libræ b Scorpii 49 Libræ A Scorpii δ Scorpii	4.9 4.7 5.4 4.6 2.7	238 22 54.76 239 I 53.85 239 I7 16.41 239 3I 28.32 240 28 38.38	5023. 18 5020. 52 4972. 61 5021. 10 5023. 05	- 1.38 - 2.14 -53.27 - 1.78 - 0.84	+0 6 15.92 -5 28 5.87 +4 1 12.97 -4 55 42.03 -1 58 0.23	- 45· 79 - 47. 11	- 5.03 - 4.99 - 51.12 - 2.72 - 3.72	-0. 12 -0. 10 -0. 19 -0. 08 +0. 18	-0.03 -0.02 -0.04 -0.02 +0.04
π Scorpii β Scorpii ω¹ Scorpii ω² Scorpii ν Scorpii	3. 0 2. 9 4. 3 4. 6 3. 9	240 50 46.96 241 5 43.83 241 34 30.60 241 44 52.06 242 32 57.63	5022. 50 5023. 84 5023. 31 5029. 82 5023. 48	- 0.29 - 1.01 - 1.29 + 5.27 - 1.54	-5 27 20.58 +1 1 37.24 +0 14 24.26 +0 4 14.92 +1 39 10.52		- 5.00 - 3.06 - 4.25 - 5.13 - 4.43	+0.11 +0.12 -0.01 -0.07 -0.06	+0.03 +0.03 0.00 -0.02 -0.02
 65 B. Scorpii 83 B. Scorpii 58 G. Scorpii 19 Scorpii σ Scorpii 	5. 5 6. 7 6. 2 4. 9 3. 0	242 55 57. 12 243 17 19. 15 244 19 59. 95 245 20 37. 65 245 42 21. 12	5035. 17 5012. 59 5025. 23 5022. 51 5022. 69	+12.17 -11.89 + 0.38 - 1.34 - 0.82	-5 15 41.96 -0 11 6.14 +1 12 1.69 -2 38 7.16 -4 1 2.94	- 39.37 - 45.07 - 45.26 - 46.33 - 48.98	+ 4.77 - 0.83 - 0.74 - 1.54 - 4.10	-0. 18 -0. 32 -0. 26 -0. 08 +0. 12	-0.04 -0.04 -0.04 -0.02 +0.02
γ Ophiuchi ρ Ophiuchi 22 Scorpii α Scorpii 24 Scorpii	4. 9 4. 7 4. 8 1. 3 5. 0	245 53 4·53 246 20 34·82 247 38 41·64 247 40 6·65 249 12 33·04	5024. 79 5022. 24 5023. 58 5023. 15 5023. 02	- 0.55 - 1.87 - 0.22 - 0.36 - 2.41	+3 14 36.70 -1 44 13.45 -3 13 15.97 -4 32 59.92 +4 27 10.34	- 47. 26 - 46. 12 - 47. 05 - 48. 29 - 46. 43	- 2.32 - 1.08 - 1.70 - 2.94 - 0.74	-0. 12 -0. 08 -0. 07 +0. 35 -0. 12	-0.02 -0.02 -0.01 +0.04 -0.02
7 Scorpii 18 Ophiuchi 24 Ophiuchi 29 Ophiuchi 36 Ophiuchi	2. 8 6. 8 5. 5 6. 4 5. 4	249 21 47.80 251 58 24.19 253 24 23.82 254 8 12.06 257 56 2.41	5022, 12 5024, 35 5025, 06 5021, 85 4984, 87	- 1. 18 + 0. 17 + 0. 60 - 3. 20 - 39. 38	-6 6 0.86 -2 8 50.26 -0 28 58.32 +3 52 54.97 -3 28 50.94	- 49.37 - 50.33 - 49.81 - 48.92 - 167.62	- 3.65 - 4.13 - 3.40 - 2.40 -120.71	+0. 13 -0. 32 -0. 19 -0. 30 -0. 17	+0.02 -0.05 -0.02 -0.02 -0.02
157 B. Ophiuchi θ Ophiuchi 43 Ophiuchi 191 B. Ophiuchi 44 Ophiuchi	6. 7 3. 3 5. 4 6. 3 4. I	258 20 57. 38 259 18 1. 94 259 48 20. 03 259 57 14. 12 260 14 19. 66	5034. 34 5023. 82 5024. 30 5025. 69 5024. 12	+ 9.88 - 0.60 + 0.03 + 1.21 - 0.38	-0 57 28.25 -1 49 22.33 -4 56 23.63 -1 1 32.80 -0 56 5.50	- 53. 10 - 50. 64 - 51. 02 - 45. 29 - 60. 84	- 6. 16 - 3. 63 - 3. 98 + 1. 76 - 13. 78	-0. 29 +0. 07 -0. 19 -0. 28 -0. 06	-0. 02 +0. 01 -0. 02 -0. 02 0. 00

Longitude and Latitude of Stars Occulted before 1862, Referred to the Equinox of 1850.0—Continued.

Name of Star.	Mag.	Longitude,	Cen- tennial	Proper	Latitude	Cen- tennial	Proper	Mag	. Eq.
Name of Star.	mag.	1850.	Variation.	Motion.	1850.	Variation.	Motion.	JL.	JB.
52 Ophiuchi 58 Ophiuchi	6. 4 4. 8 4.4-5.4 4.3-5.1 4. 0	6 , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5023. 60 5016. 04 5024. 96 5025. 97 5023. 67	- 0. 95 - 8. 47 + 0. 33 + 0. 95 - 0. 60	0 , " +1 17 35.21 +1 43 20.67 -4 24 4.22 -6 7 32.67 +2 21 41.35	-47. 59 -52. 70 -48. 65 -48. 45 -46. 87	- 0.46 - 5.56 - 1.53 - 1.52 - 0.15	-0. 30 -0. 10 -0. 08 +0. 16 -0. 01	" -0. 02 0. 00 0. 00 0. 00 0. 00
16 Sagittarii	5·9	271 28 33.45	5024. 86	+ 0.67	+3 1 24.99	-46. 86	- 0.17	-0. 26	0. 00
66 B. Sagittarii	4·7	271 55 56.52	5024. 95	- 0.02	-3 38 49.05	-45. 14	+ 1.49	-0. 08	0. 00
67 B. Sagittarii	6·4	272 7 23.20	5018. 64	- 6.16	-2 12 46.93	-52. 66	- 6.05	-0. 29	0. 00
8 Sagittarii	2·9	272 29 4.90	5028. 30	+ 2.94	-6 27 6.16	-50. 02	- 3.46	+0. 14	0. 00
21 Sagittarii	5·0	273 50 44.21	5024. 07	- 0.05	+2 47 14.81	-48. 77	- 2.39	-0. 12	0. 00
λ Sagittarii 24 Sagittarii 110 B. Sagittarii 121 B. Sagittarii φ Sagittarii	2. 9 5. 7 7. 2 5. 9 3. 3	274 13 28.85 275 38 23.99 276 16 25.53 276 58 59.71 278 5 3.52	5019. 55 5024. 23 5025. 81 5015. 56 5029. 86	- 5.30 - 0.44 + 2.00 - 8.57 + 4.51	-2 6 31.38 -0 48 2.46 +3 56 1.45 +2 6 24.27 -3 56 5.41	-66. 01 -48. 06 -48. 22 -59. 19 -46. 56	- 19. 69 - 1. 97 - 2. 25 - 13. 34 - 0. 94	+0.11 -0.23 -0.38 -0.23 +0.08	0.00 0.00 0.00 -0.01
28 Sagittarii 29 Sagittarii 3 Sagittarii 3 Sagittarii \$ Sagittarii	5. 6 5. 3 2. 1 5. 8 3. 7	278 36 23.61 279 33 2.43 280 17 24.73 280 28 2.02 281 21 19.47	5026. 95 5024. 86 5024. 28 5022. 96 5027. 05	+ 2.56 + 0.93 - 1.06 - 1.21 + 2.95 - 8.77	+0 38 11.92 +2 37 53.22 -3 25 41.96 +1 30 43.90 +1 40 50.27	-44. 73 -42. 33 -52. 55 -46. 49 -47. 41	+ 0.78 + 2.97 - 7.42 - 1.40 - 2.54	-0. 19 -0. 18 +0. 20 -0. 24 +0. 06	+0.02 +0.01 -0.02 +0.02 0.00
τ Sagittarii ο Sagittarii 187 B. Sagittarii π Sagittarii d Sagittarii	3. 5 3. 9 6. 4 3. 0 5. I	282 44 33. 79 282 53 48. 10 283 48 42. 86 284 9 27. 86 286 15 18. 36	5017. 14 5030. 62 5027. 93 5022. 99 5021. 18	+ 6. 33 + 4. 48 - 1. 12 - 2. 30	-5 3 37. 10 +0 52 52. 56 +3 47 54. 29 +1 27 24. 66 +3 16 37. 63	-69. 10 -51. 48 -50. 29 -47. 59 -44. 86	-24.60 - 7.02 - 6.08 - 3.49 - 1.39	+0.06 +0.01 -0.29 +0.11 -0.11	0.00 +0.02 -0.02 +0.01
234 B. Sagittarii 226 B. Sagittarii χ Sagittarii 45 Sagittarii ρ Sagittarii	5. 9 6. 4 4. 9 6. 0 4. 0	286 34 58. 37 287 8 59. 57 287 14 22. 73 287 19 46. 15 287 21 25. 73	5024. 90 5023. 93 5029. 01 5031. 22 5020. 46	- 1.50 + 0.35 + 3.66 + 7.95 - 2.66	-5 46 4.29 +2 52 13.22 -2 28 6.80 +3 47 1.87 +4 14 27.22	-41. 45 -42. 28 -50. 00 -52. 43 -41. 21	+ 1.91 + 0.90 - 6.85 - 9.31 + 1.90	-0. 23 -0. 30 -0. 13 -0. 24 +0. 01	+0. 02 +0. 02 +0. 03 -0. 00
49 Sagittarii	5·5	287 22 15.63	5022. 95	$ \begin{array}{r} -2.23 \\ +2.58 \\ +5.57 \\ +5.53 \\ -15.26 \end{array} $	-1 56 16.14	-42. 66	+ 0. 45	-0. 18	+0. 02
50 Sagittarii	5·5	287 52 31.65	5027. 05		+0 11 49.16	-43. 17	- 0. 24	-0. 18	+0. 02
h Sagittarii	4·7	289 44 58.65	5031. 28		-3 14 25.94	-45. 87	- 3. 60	-0. 05	+0. 01
e Sagittarii	5·2	292 33 46.98	5027. 99		+5 9 57.78	-43. 64	- 2. 45	-0. 12	+0. 02
f Sagittarii	5·1	292 50 0.27	5008. 70		+1 25 36.72	-47. 42	- 6. 32	-0. 13	+0. 02
ω Sagittarii 57 Sagittarii A Sagittarii σ Capricorni 16 B. Capricorni	4.8	293 44 46.76	5047. 50	+20. 72	-5 24 24.04	-36. 47	+ 4. 25	-0. 12	+0.02
	6.0	294 18 46.03	5022. 88	- 0. 86	+1 52 44.11	-46. 10	- 5. 61	-0. 26	+0.04
	4.9	294 27 42.92	5029. 21	+ 2. 37	-5 26 27.98	-37. 17	+ 3. 25	-0. 12	+0.02
	5.5	300 34 57.80	5023. 91	- 0. 39	+0 28 15.36	-38. 14	- 0. 53	-0. 19	+0.04
	6.2	301 53 45.77	5025. 74	+ 3. 58	+4 36 50.32	-37. 31	- 0. 36	-0. 23	+0.05
β Capricorni π Capricorni ρ Capricorni υ Capricorni τ Capricorni	3. 2	301 57 7.87	5026. 62	+ 4.45	+4 36 15.08	-37. 26	- 0. 35	+0.07	-0. 02
	5. I	302 37 11.26	5024. 50	+ 0.44	+0 54 54.68	-36. 93	- 0. 36	-0.14	+0. 03
	5. Ø	303 4 18.69	5021. 65	- 2.24	+1 12 50.43	-37. 85	- 1. 52	-0.12	+0. 03
	5. 3	305 34 7.90	5021. 80	- 2.60	+0 14 16.73	-35. 01	- 0. 02	-0.16	+0. 05
	5. 8	306 4 41.57	5027. 60	+ 1.17	-3 23 41.97	-36. 43	- 1. 72	-0.22	+0. 07
19 Capricorni	5.7	309 0 27. 04	5018. 80	- 6.02	-0 29 8.60	-32.69	+ 0.35	-0. 24	+0.06
20 Capricorni	6.2	309 47 23. 80	5026. 70	+ 1.05	-1 52 13.03	-34.98	- 2.41	-0. 26	+0.07
21 Capricorni	6.5	310 30 10. 80	5021. 32	- 3.52	-0 30 42.94	-31.37	+ 0.77	-0. 28	+0.07
7 Capricorni	4.8	310 38 43. 20	5021. 57	- 4.76	-2 58 39.96	-35.53	- 3.47	-0. 14	+0.04
7 Capricorni	5.3	311 11 15. 34	5027. 31	+ 0.01	-4 32 22.07	-37.93	- 6.20	-0. 16	+0.04
 θ Capricorni φ Capricorni ν Aquarii 29 Capricorni 33 Capricorni 	4. 1	311 44 48. 46	5029. 94	+ 5.05	-0 34 10.50	-39. 81	- 8.42	-0. 04	+0.01
	5. 3	312 55 48. 81	5027. 31	- 0.05	-4 30 52.50	-30. 69	- 0.03	-0. 18	+0.04
	4. 4	314 17 59. 76	5029. 34	+ 7.86	+4 46 43.30	-32. 77	- 2.98	-0. 07	+0.01
	5. 5	314 36 12. 83	5026. 36	+ 2.28	+0 42 15.05	-29. 86	- 0.26	-0. 18	+0.04
	5. 3	314 46 34. 65	5022. 76	- 5.19	-5 18 37.93	-39. 58	- 10.10	-0. 19	+0.05
35 Capricorni c Capricorni 18 Aquarii c Capricorni 73 B. Aquarii	6. o	315 21 17.62	5025. 32	- 3.02	-5 52 2.82	-31. 33	- 2. 22	-0. 24	+0.06
	4. 3	315 35 9.59	5028. 55	+ 3.14	-1 21 16.95	-29. 58	- 0. 62	-0. 05	+0.02
	5. 5	317 15 6.80	5030. 73	+ 7.70	+2 15 50.85	-29. 61	- 1. 74	-0. 17	+0.04
	4. 7	318 6 9.64	5027. 89	+ 0.02	-4 57 53.17	-27. 25	+ 0. 05	-0. 06	+0.02
	6. 8	318 18 34.85	5025. 72	+ 1.48	+0 25 45.93	-31. 08	- 3. 92	-0. 34	+0.10
143 B. Capricorni K Capricorni Capricorni Capricorni Capricorni Capricorni	6. I	319 25 21.87	5036. 01	+ 7.66	-5 35 1.26	-33. 18	- 6.77	-0. 25	+0.07
	4. 8	319 32 37.26	5040. 22	+12.39	-4 49 36.60	-31. 18	- 4.85	-0. 08	+0.03
	3. 7	319 41 18.48	5043. 21	+16.94	-2 32 35.18	-33. 82	- 7.59	+0. 02	-0.01
	6. 0	321 6 59.22	5025. 07	+ 0.09	-0 38 43.36	-22. 74	+ 2.50	-0. 22	+0.06
	5. 8	321 13 3.07	5023. 42	- 1.84	-1 3 1.61	-24. 74	+ 0.44	-0. 19	+0.06

 $A_2L = +(1''.11+o''.20 \tan B \sin (L+16^\circ)) T^2; A_2B = +o''.20 T^2 \cos (L+16^\circ).$

Longitude and Latitude of Stars Occulted before 1862, Referred to the Equinox of 1850.0—Continued.

Name of Star.	Mag.	Longitude,	Cen- tennial	Proper	Latitude,	Cen- tennial	Proper	Ma	g. Eq.
Name of Star.	mag.	1850.	Variation.	Motion.	1850.	Variation.	Motion.	AL.	4B.
		0 / //	,,	"	0 / //	,,	,,	,,	,,
 δ Capricorni c¹ Capricorni c² Capricorni 29 Aquarii (mean) 4 Aquarii 	2. 9	321 26 28.24	5040. 46	+14. 12	-2 34 34.32	-61.40	- 36. 39	+0. 12	-0.04
	5. 3	323 19 13.02	5022. 30	+ 0. 77	+4 13 6.46	-23.14	+ 0. 56	-0. 14	+0.05
	6. 3	323 33 3.75	5022. 92	+ 1. 20	+3 55 54.14	-23.84	- 0. 31	-0. 26	+0.05
	6. 5	324 38 15.05	5029. 20	+ 1. 32	-4 38 9.44	-22.27	+ 0. 48	-0. 30	+0.09
	4. 4	326 37 26.68	5026. 90	+ 0. 85	-2 4 10.11	-28.20	- 6. 90	-0. 04	+0.01
e Aquarii 40 Aquarii 42 Aquarii 50 Aquarii θ Aquarii	5·4	328 23 27.40	5028. 03	+ 3. 29	-0 16 28.18	-19.10	+ 0.90	-0. 17	+0.06
	7·1	328 54 26.96	5025. 93	+ 0. 76	-0 51 20.29	-21.39	- 1.77	-0. 37	+0.13
	5·5	329 21 5.11	5027. 78	+ 1. 75	-1 59 44.55	-18.99	+ 0.29	-0. 20	+0.07
	5·9	330 50 5.72	5032. 16	+ 5. 11	-3 19 9.70	-18.75	- 0.59	-0. 24	+0.08
	4·3	331 9 56.15	5032. 02	+ 9. 55	+2 43 0.16	-23.52	- 5.61	-0. 04	+0.01
ρ Aquarii	5·3	331 56 2.18	5023. 57	+ 0.86	+2 22 44. 31	-18.56	- 1. 24	-0. 17	+0.06
σ Aquarii	4·8	333 17 36.84	5024. 50	- 0.97	-1 13 13. 16	-18.64	- 2. 36	-0. 10	+0.04
58 Aquarii	6·4	333 26 41.26	5031. 33	+ 5.62	-1 31 29. 09	-21.76	- 5. 60	-0. 29	+0.10
51 Aquarii	5·8	333 55 39.98	5021. 89	+ 1.09	+4 48 23. 95	-17.40	- 1. 61	-0. 22	+0.07
69 Aquarii	5·6	335 53 48.74	5031. 89	+ 2.70	-5 54 47. 58	-16.85	- 2. 60	-0. 19	+0.06
204 B. Aquarii 7 Aquarii 8 Aquarii 70 Aquarii 2 Aquarii 2 Aquarii	6. 8	335 56 39.66	5042. 97	+17.76	-0 51 47. 23	-17. 92	- 3.70	-0. 34	+0. 12
	4. 4	336 30 1.82	5026. 67	-2.33	-5 39 28. 04	-16. 38	- 2.60	-0. 01	0. 00
	5. 2	337 19 39.61	5010. 30	-10.97	+4 7 8. 76	-20. 89	- 7.76	-0. 18	+0. 06
	6. 1	337 27 17.98	5031. 79	+5.09	-2 44 34. 99	-14. 04	- 1.01	-0. 28	+0. 09
	3. 8	339 28 50.14	5026. 42	+1.58	-0 23 0. 06	- 8. 26	+ 3.16	+0. 02	-0. 01
78 Aquarii	6. 3	340 4 24. 53	5021. 29	- 3.42	-0 13 9.35	-12.67	- 1.73	-0. 28	+0. 10
82 Aquarii	6. 4	342 8 34. 12	5023. 62	- 1.23	-0 23 47.64	-12.40	- 3.12	-0. 34	+0. 13
h Aquarii	5. 4	342 18 14. 68	5037. 58	+11.69	-1 40 48.12	-12.25	- 3.10	-0. 18	+0. 07
ϕ^1 Aquarii	4. 5	344 11 56. 30	5061. 64	+33.86	-3 59 31.32	-22.50	- 14.88	-0. 06	+0. 02
ϕ^2 Aquarii	4. 6	344 37 59. 21	5029. 54	+ 1.52	-4 16 47.28	- 8.14	- 0.88	-0. 06	+0. 02
ψ^3 Aquarii χ Aquarii φ Aquarii 96 Aquarii 337 B. Aquarii	5. 2	344 42 14. 23	5032. 05	+ 3.63	-4 46 33.95	- 8.85	- 1.65	-0. 13	+0.06
	5. 3	344 57 57. 74	5024. 25	- 2.59	-2 50 18.77	- 7.44	- 0.45	-0. 14	+0.07
	4. 6	345 2 44. 04	5019. 89	- 5.48	-1 2 29.92	- 25.71	- 18.76	-0. 02	+0.01
	5. 7	346 33 38. 70	5042. 24	+17.15	-0 41 19.58	- 14.00	- 8.31	-0. 20	+0.11
	6. 4	349 7 9. 19	5033. 51	+ 8.05	-1 7 48.64	- 30.74	- 27.13	-0. 29	+0.12
κ Piscium 9 Piscium 15 Piscium 16 Piscium B. D.—1° 4485	4.9 6.4 6.6 5.7 7.3	350 48 32. 14 350 49 44. 28 352 47 50. 76 353 19 33. 08 354 12 8. 65	5024. 91 5024. 32 5043. 72 5013. 10 5023. 80	+ 4.03 + 3.31 +22.19 - 7.91	+4 26 17.94 +4 16 55.58 +3 38 32.46 +4 16 13.67 +0 53 2.86	-14.00 - 6.79 -13.81 + 9.47 + 0.58	-11.80 - 4.60 -13.24 + 9.61	-0. 12 -0. 29 -0. 38 -0. 19 -0. 40	+0.05 +0.12 +0.16 +0.08 +0.16
λ Piscium 21 Piscium 30 Piscium 19 Piscium 27 Piscium	4. 6	354 30 8.96	5002. 97	-18.75	+3 25 14.61	- 7.84	- 8.67	-0.08	+0.03
	5. 6	355 54 59.22	5021. 76	- 1.10	+2 2 7.85	- 1.15	- 3.14	-0.25	+0.10
	4. 7	355 57 6.15	5031. 79	+ 2.55	-5 42 35.10	- 3.16	- 5.18	-0.07	+0.03
	5. 4	356 10 32.27	5015. 31	- 5.47	+4 33 3.67	+ 2.42	+ 0.22	-0.14	+0.06
	5. 1	356 11 14.82	5019. 79	- 7.31	-3 7 46.42	- 1.79	- 4.00	-0.12	+0.05
33 Piscium	4. 8	356 50 53.43	5032. 16	+ 2.88	-5 46 14. 28	+11.40	+ 8.65	-0. 07	+0.03
29 Piscium	5. 1	357 7 1.66	5027. 72	+ 0.76	-2 57 34. 66	+ 1.38	- 1.60	-0. 13	+0.05
22 Piscium	5. 8	357 13 47.27	5022. 51	+ 0.85	+3 29 12. 40	+ 1.53	- 1.54	-0. 23	+0.09
4 Ceti	6. 3	358 39 47.77	5029. 84	+ 2.76	-3 6 32. 46	+ 4.01	- 0.24	-0. 29	+0.12
5 Ceti	6. 3	358 48 41.28	5027. 99	+ 0.94	-3 3 46. 53	+ 5.43	+ 1.07	-0. 28	+0.11

CHAPTER VII.

TABLE OF THE POSITION ANGLES USED IN COMPUTING THE COEFFICIENTS OF THE EQUATIONS OF CONDITION.

The circumstances under which the present work has been completed prevent all the required data and numbers from being collected on a uniform plan. It is believed, however, that incomplete lists of the numbers will be useful in any revision of the work that may be hereafter undertaken. The data will at least be harmless.

The arrangement of the original work was that adopted in the Researches of 1878. Instead of the occultations being worked up in chronological order the more convenient plan was adopted of working up each series made in any one place by itself. The principal numbers entering into the computations of the parallax and their corrections were tabulated in the form of tabular exhibits of the equations. Afterwards the equations themselves were formed and arranged in chronological order.

For reasons which will be mentioned in the next chapter these tabular exhibits have been omitted in publishing the present work, and instead of them are given merely the most needful data for the coefficients of the conditional equations.

The following are the tabular numbers retained in the present connection. They are all so clear that no detailed explanation seems necessary.

ALTONA.

Date.	Star.	m	m ₁	m'	Date.	Star.	m	m _t m'	. <u> </u>
1871, Nov. 18	ε Capricor.	225	207	223				<u> </u>	

BERLIN.

l			!	1 /		1 1
1	î 1	1 .			0	•
1826, May 12	1 Cancri	226 236 222	1837, Feb. 17 \ \lambda \ Cancri	348	359	349
13	A ² Cancri	272 286 270	Mar. 12 62 Tauri	228	219	232
July 27	53 Arietis	307 292 302	July 9 η Virginis	99	122	95
Sept. 21	43 Tauri	66 55 61	Aug. 18 10 Ceti	263	240	268
1828, Mar. 24	68 . Geminor.	263 271 262	18 10 Ceti	75	52	80
24	67 Geminor.	310 318 308	Oct. 9 143 B. Capricor.	254	237	256
1830, Mar. 3	26 Geminor.	233 236 234	9 143 B. Capricor.	88	105	91
29	111 Tauri	98 94 98	Nov. 5 35 Capricor.	316	300	318
29	117 Tauri	300 296 301	1838, July 31 65 B. Scorpii	287	297	291
Apr. 28	1 Cancri	297 307 300	Sept. 8 ζ Arietis	255	240	259
Sept. 5	Piscium بر	313 292 310	Oct. 25 A Sagittarii	193	184	195
5	ν Piscium	49 28 46	Nov. 3 7 Tauri	213	203	216
Oct. 20	24 Scorpii	221 229 221	Dec. 26 27 Arietis	232	214	236
30	ν Piscium	322 301 319	1839, May 2 W Sagittarii	57	57	57
1831, Jan. 20	ν Piscium	280 259 276	Sept. 26 66 Arietis	18	5	20
21	μ Ceti	306 288 304	26 20 Tauri	317	305	318
28	18 Leonis	287 305 292	Oct. 18 58 Aquarii	241	220	246
Apr. 15	α Tauri	242 233 243	1840, Jan. 11 8 Piscium	278	255	282
Dec. 17	7 Tauri	276 266 278	11 δ Piscium	55	32	59
1832, Feb. 15	ψ Leonis	231 249 236	13 μ Arietis	305	288	307
	α Leonis		·		28	
15 Apr. 14	80 Virginis	267 286 273 255 276 257	13 μ Arietis 14 q Tauri	45 302	290	47 303
1833, Dec. 26	μ Geminor.	214 215 219	14 18 Tauri	231	219	232
1834, Aug. 12	β Scorpii	311 322 306	14 q Tauri	57	45	58
12	β Scorpii	63 74 58	16 406 B. Tauri	241	239	240
		1 1		1		
Oct. 7		1 1 -/- 10	16 136 Tauri 16 136 Tauri	347	345	345
		1 1 1 1	16 136 Tauri Mar. 15 α Leonis	11	9	9
	η Leonis η Leonis	218 237 218 161 180 161	· · · · · · · · · · · · · · · · · · ·	258 126	277	253 120
25 May 17	118 Tauri	327 323 331	15 α Leonis Apr. 11 ν Leonis	324	145	319
May 1/	110 I auii	327 323 331	Apr. 11	324	343	319

BERLIN—Continued.

Date.	Star.	m	m ₁	m′	Date.	Star.	m	m_{i}	m'
1840, Apr. 16 May 8 1841, Feb. 7 May 23	85 Virginis ψ Leonis d Leonis ω Geminor.	249 273 118 294	269 291 140 299	246 269 114 289	1884, Sept. 13 13 13 13	B. D. +17° 1502 B. D. +16° 1395 B. D. +16° 1398 B. D. +16° 1400	150 93 64 78	99 70 85	149 93 64 78
Aug. 10 10 10 10 10	17 Tauri 16 Tauri 20 Tauri 16 Tauri 17 Tauri 17 Tauri 1 Tauri	270 230 227 123 83 313	258 218 215 111 71 301	268 228 226 121 81 311	14 14 14 14 14	B. D. +14° 1822 B. D. +14° 1825 B. D. +14° 1828 B. D. +14° 1829 B. D. +14° 1838 B. D. +14° 1839	32 62 73 74 59	73 85 85 71 138	33 63 74 75 60
10 10 1843, Oct. 6 Nov. 27 1845, Mar. 22	20 Tauri η Tauri 19 Piscium c² Capricor. ε Leonis	124 37 241 289 334	112 25 218 271 311	123 35 241 291 336	15 26 28 28 Oct. 30	B. D. +11° 1974 290 B. Ophiuchi B. D17° 5672 B. D17° 5699 11 Piscium	27 238 291 268 260	44 240 282 259 237	30 240 290 267 255
May 16 16 20 June 16 Oct. 20	e Leonis e Leonis 25 Libræ 10 Libræ 71 Orionis	322 48 298 215 255	345 71 313 231 255	3 ² 4 50 303 2 ² 0 252	Nov. 22 1885, Jan. 20 20 20 20	B. D 17° 5748 B. D 3° 5639 B. D 3° 5642 B. D 3° 5643 B. D 3° 5644	338 282 265 264 319	329 259 242 241 296	337 277 261 259 314
Nov. 6 6 9 9	71 Orionis v Aquarii v Aquarii 22 Piscium 22 Piscium	106 204 142 257 100	106 188 126 234 77	103 204 142 254 96	21 22 23 23 23	98 B. Piscium e Piscium B. D.+ 8° 307 B. D.+ 8° 314 B. D.+ 9° 264	264 286 297 287 218	241 264 278 266 197	259 281 293 282 213
1846, Aug. 14 Sept. 14 Nov. 22 1876, Oct. 6	68 Tauri 68 Geminor. ρ Sagittarii 17 Tauri 17 Tauri	52 78 280 245 95	42 86 273 232 82	47 77 281 248 98	23 24 24 25 25	B. D. + 9° 266 B. D. + 12° 411 B. D. + 12° 410 B. D. + 15° 546 B. D. + 15° 547	238 269 209 272 288	217 252 192 260 275	233 265 205 269 285
6 6 6 6	16 Tauri 16 Tauri 23 Tauri 23 Tauri 20 Tauri	197 142 311 30 204	184 129 298 17 191	199 145 314 32 206	25 26 Feb. 1 21 21	B. D.+15° 557 318 B. Tauri d Leonis B. D.+14° 592 B. D.+14° 595	314 334 86 14 291	301 328 108 0	332 90 10 288
6 6 6 6	η Tauri 24 Tauri Anon. 24 20 Tauri η Tauri	298 292 259 135 42	285 279 246 122 29	301 295 262 137 44	21 21 21 22 22	B. D.+14° 597 B. D.+14° 598 B. D.+14° 600	288 322 272 340 22	275 308 258 331	285 319 268 337
1879, Oct. 24 1880, Sept. 11 1881, Jan. 5 May 11 1884, Apr. 30	θ Aquarii θ Ophiuchi 19 Piscium 75 Virginis B. D. + 15° 1619	256 190 340 325 280	237 195 317 347 289	260 195 340 328 280	24 24 24 24 Mar. 21 21	B. D.+17° 1339 B. D.+17° 1392 B. D.+17° 1393 B. D.+15° 630 75 Tauri	239 273 315 301 288	242 277 319 291 278	239 273 315 298 286
30 30 30 30 30	B. D.+15° 1620 B. D.+15° 1624 B. D.+15° 1633 B. D.+15° 1635 B. D.+15° 1642	206 263 258 297 241	215 273 267 307 251	206 263 258 297 241	21 21 22 22 22 22	B. D.+15° 633 264 B. Tauri B. D.+17° 918 B. D.+17° 919 111 Tauri	348 338 240 295 295	338 328 235 291 291	346 335 238 294 294
May 2 8 29 June 28 July 15	ω Leonis λ Virginis Β. D.+10° 1956 Β. D.+ 0° 2793 ο Piscium	302 225 261 284 71	320 245 278 307 50	304 230 263 288 66	22 22 22 22 22 22	B. D. +17° 921 B. D. +17° 929 117 Tauri B. D. +17° 943 B. D. +17° 945	233 318 326 294 247	229 314 322 291 243	317 324 293 246
Sept. 8 12 12 12	88 B. Libræ B. D. + 9° 264 B. D. + 17° 1101 B. D. + 17° 1113 B. D. + 17° 1136	307 83 97 119 13	323 63 96 119	311 78 95 118 12		B. D. +17° 950 B. D. +17° 1225 B. D. +17° 1226 B. D. +17° 1230 B. D. +17° 1231	256 289 229 308 308	252 290 230 309 310	255 289 229 308 308
12 12 12 12 12	B. D. +17° 1144 B. D. +17° 1145 B. D. +17° 1147 B. D. +17° 1151 B. D. +17° 1158	118 150 90 85 99	118 150 90 85 100	116 148 89 84 98	23 23 23 23 23	B. D.+17° 1238 B. D.+17° 1241 B. D.+17° 1247 B. D.+17° 1252 B. D.+17° 1256	297 321 257 274 290	299 323 259 276 292	297 321 257 274 290
12 12 13 13	B. D. +17° 1161 124 H¹. Orionis B. D. +16° 1380 B. D. +17° 1495 B. D. +16° 1385	97 133 110 144 99	97 132 116 150	96 131 110 144 99	23 23 23 23 23	B. D.+17° 1261 B. D.+17° 1263 B. D.+17° 1277 B. D.+17° 1280 B. D.+17° 1281	228 327 229 292 303	230 329 231 294 306	228 327 229 292 304

BERLIN—Continued.

Date.	Star.	m	m ₁	m'	Date.	Star.	m	m ₁	m
885, Mar. 23	B. D.+17° 1288 B. D.+17° 1291	308 327	311 330	308 328	1885, Sept. 30 30	B. D. +17° 1195 292 B. Orionis	71 138	7 ² 139	73
23 23 Apr. 18	B. D.+17° 1294 B. D.+17° 1307 B. D.+17° 862	298 248 233	250 228	298 248 232	30 30 30	B. D. +17° 1223 B. D. +17° 1224 B. D. +17° 1226	153 91 109	93 110	15. 9. 110
19 19 19 19	B. D.+17° 1136 B. D.+17° 1139 B. D.+17° 1146 B. D.+17° 1147 B. D.+17° 1151	305 309 259 230 233	305 309 259 230 233	305 309 259 230 233	Oct. 14 16 1894, Oct. 11 19	B. D. – 18° 5012 B. D. – 16° 5545 B. D. – 8° 6040 B. D. +28° 1095 B. D. +28° 1097	246 278 253 94 64	243 266 240 96 65	24, 27, 24, 9, 6,
19 19 19 19	B. D.+17° 1153 B. D.+17° 1154 B. D.+17° 1154 B. D.+17° 1155 B. D.+17° 1167	329 297 297 293 262	329 298 298 293 263	329 297 297 292 262	21 23 23 Nov. 7	B. D.+24° 1918 B. D.+12° 2213 B. D.+12° 2215 70 Aquarii B. D11° 5933	116 156 47 254 278	128 177 68 232 256	11 15 4 25 28
19 19 19 19	B. D.+17° 1172 B. D.+17° 1177 B. D.+17° 1179 B. D.+17° 1183 B. D.+17° 1191	296 250 282 272 316	296 251 282 273 316	296 250 281 272 315	7 7 9 9	B. D 11° 5932 243 B. Aquarii B. D. + 0° 34 B. D. + 1° 52 B. D. + 2° 54	251 312 288 200 328	230 290 265 177 305	25 31 29 20 33
. 20 20 20 20 20	B. D.+17° 1506 B. D.+16° 1400 B. D.+16° 1419 B. D.+16° 1421 B. D.+16° 1423	215 293 241 245 226	221 299 248 252 232	216 294 242 246 227	15 15 15 15	B. D. +27° 880 136 Tauri B. D. +27° 914 B. D. +28° 958 B. D. +28° 966	43 26 36 129 102	42 25 35 128 101	4 2 3 12 10
21 22 26 May 19 19	30 B. Cancri 209 B. Cancri 71 G. Virginis B. D.+12° 1931 B. D.+12° 1942	238 226 235 294 219	250 242 258 309 235	240 229 240 297 223	16 Dec. 1 8 8	B. D. +27° 1270 C. D25° 14589 # Piscium 281 B. Piscium B. D. +11° 210	132 250 267 297 266	137 238 246 275 245	13 25 27 30 27
July 6 6 6 7 9	α Cancri B. D.+ 9° 296 B. D.+ 9° 301 B. D.+12° 453 α Tauri	322 112 97 77 307	338 93 78 62 298	325 108 93 74 305	11 1895, Jan. 1 31 Feb. 6	χ Tauri B. D. – 8° 5991 B. D. + 6° 127 B. D. +27° 1141 49 Aurigæ	293 193 293 265 221	283 170 270 268 224	29 19 29 26 22
21 22 Aug 31 31 Sept. 1	B. D. – 16° 4230 29 Ophiuchi B. D. + 13° 565 B. D. + 13° 568 θ¹ Tauri	257 352 74 86 98	268 359 59 72 89	259 354 71 84 97	7 8 Mar. 3 3 3	B. D. +25° 1778 7 Cancri B. D. +25° 677 B. D. +25° 681 B. D. +25° 682	305 287 276 227 210	316 302 264 216 199	30 28 27 22 21
I I I I	θ ² Tauri B. D.+15° 633 B. D.+15° 635 269 B. Tauri 85 Tauri	78 144 130 116 33	68 135 121 106 24	76 143 129 114 32	3 3 4 4 4	B. D. +25° 692 B. D. +25° 703 B. D. +27° 738 B. D. +27° 737 B. D. +27° 743	316 305 285 329 263	305 295 280 324 258	31 30 28 32 26
I I I I	B. D. +15° 646 B. D. +15° 648 B. D. +15° 649 275 B. Tauri	62 42 40 122 208	52 33 30 113 199	60 41 38 121 207	4 4 5 5 5	B. D.+27° 744 B. D.+27° 746 B. D.+27° 1078 B. D.+28° 1097 B. D.+27° 1090	291 280 298 247 300	286 275 299 249 301	29 28 29 24 29
1 1 2 2 2	B. D.+15° 653 \(\alpha \) Tauri B. D.+17° 930 B. D.+16° 788 B. D.+17° 938	145 61 100 40 113	136 52 96 36 109	143 60 100 40 112	5 6 6 6	B. D. +27° 1117 B. D. +26° 1495 134 B. Geminor. B. D. +26° 1514 B. D. +26° 1516	274 313 281 300 288	276 320 288 308 295	27 31 27 29 28
2 2 2 2 2	B. D. + 17° 942 167 H¹. Tauri B. D. + 17° 943 B. D. + 17° 945 B. D. + 17° 950	49 23 93 145 116	45 19 90 142 113	48 23 93 145 116	6 6 6 6	B. D. +27° 1362 B. D. +26° 1525 B. D. +26° 1528 B. D. +26° 1531 B. D. +26° 1539	219 249 272 354 260	226 257 280 1 268	21 24 27 35 25
2 5 5 5 16	B. D. +17° 953 B. D. +14° 1932 B. D. +14° 1929 B. D. +14° 1930 B. D18° 4789	28 136 80 79 264	25 150 95 93 264	28 139 84 82 264	6 6 6 6	B. D. +26° 1554 B. D. +26° 1563 B. D. +26° 1561 B. D. +26° 1564 B. D. +26° 1580	307 232 321 210 258	315 240 329 218 267	30 23 31 20 25
17 17 17 17 20	B. D. – 18° 5134 B. D. – 18° 5136 B. D. – 18° 5155 B. D. – 18° 5157 18 Aquarii	306 316 298 270	301 311 292 265	304 314 296 268	8 8 8 8	B. D. +18° 2176 B. D. +18° 2181 B. D. +18° 2182 B. D. +17° 2092 B. D. +11° 2219	281 239 236 312	298 257 254 330	27 23 23 30

BERLIN-Continued.

	•								
Date.	Star.	m	m ₁	m′	Date.	Star.	m	m ₁	m′
1895, Mar. 9 11 11 12 29	B. D.+11° 2222 B. D 1° 2632 42 G. Virginis 49 Virginis B. D.+20° 493	262 142 147 78 295	283 165 170 100 278	257 136 142 73 298	1895, May 7 28 28 29 30	B. D16° 3802 B. D. +21° 1866 B. D. +21° 1868 B. D. +16° 1975 B. D. +11° 2217	268 262 258 332 262	0 288 276 272 351 283	264 259 255 329 257
29 30 30 30 31	B. D. +20° 496 B. D. +24° 595 B. D. +24° 603 B. D. +24° 602 B. D. +26° 764	241 216 260 219 308	225 204 248 207 301	244 218 262 221 309	30 30 30 31 June 9	B. D. +11° 2221 B. D. +11° 2223 45 Leonis B. D. + 5° 2467 284 B. Sagittarii	278 283 328 257	299 304 350 280 103	273 278 323 252 114
31 31 31 Apr. 1	B. D. +27° 712 B. D. +27° 716 B. D. +27° 716 B. D. +28° 930 B. D. +27° 895	268 280 278 266 341	261 273 272 265 339	268 280 279 266 340	12 12 12 13 13	B. D15° 6103 B. D15° 6109 B. B15° 6111 B. D10° 5973 B. D10° 5974	170 102 110 87 116	151 82 90 65 94	175 106 114 92 121
1 1 1	B. D. +28° 934 B. D. +28° 941 B. D. +28° 940 B. D. +27° 913 B. D. +27° 912 B. D. +27° 915	232 278 232 311 325	231 276 231 310 324	232 277 231 310 325	13 15 15 16 16	65 Aquarii B. D. + 0° 2 B. D. + 0° 8 B. D. + 6° 114 B. D. + 6° 115	62 109 24 140 73	40 86 0 117 50	67 114 28 145 78
1 1 1 1	B. D. +27° 933 B. D. +28° 961 B. D. +28° 966 B. D. +28° 982 B. D. +27° 960	325 344 265 261 241	324 343 264 260 240	324 343 264 260 240	July 2 2 14	B. D. + 6° 2387 C. D23° 12194 C. D23° 12202 C. D23° 12208 B. D. + 9° 148	314 314 306 296 26	336 330 322 313 3	309 312 304 294 30
I I 2 2 2	B. D. +27° 956 B. D. +28° 989 Anon. B. D. +27° 1294 B. D. +27° 1293	291 332 215 253 241	291 332 214 258 246	290 331 214 251 239	14 14 15 15 16	B. D. + 9° 146 B. D. + 10° 161 B. D. + 15° 303 B. D. + 15° 304 B. D. + 19° 433	105 104 77 62 57	88 81 56 42 40	109 108 80 65 60
2 2 2 2	B. D. +27° 1293 B. D. +27° 1296 B. D. +27° 1292 B. D. +27° 1295	230 226 263 341 204	236 232 269 346 210	228 225 262 339 203	16 17 17 17 18	47 Arietis 27 Tauri 28 Tauri B. D.+24° 589 B. D.+26° 759	45 47 66 132 55	28 34 53 120 48	48 49 68 134 55
4 4 4 7	B. D. + 19° 2153 B. D. + 19° 2170 B. D. + 19° 2171 B. D. + 19° 2174 9 B. Virginis B. D 0° 2507	282 264 256 262 324	299 281 272 279 347	278 260 252 258 318	Aug. 10 10 13 13	B. D. + 8° 158 180 B. Piscium B. D. + 23° 462 B. D. + 23° 463 B. D. + 23° 465	68 127 112 105 97	46 104 98 90 82	73 132 114 106 98
7 10 11 11 12	B. D19° 3899 C. D23° 12251 C. D23° 12264 C. D27° 10930	290 96 100 67 94	314 115 116 82 104	98 65 93	13 13 13 16 Sept. 2	B. D. +23° 468 B. D. +23° 467 B. D. +23° 469 B. D. +27° 1133 B. D15° 6119	45 111 103 101 222	31 96 89 103 202	47 112 105 99 226
28 29 29 29 30	B. D. + 27° 866 B. D. + 27° 1213 B. D. + 27° 1212 B. D. + 27° 1236 B. D. + 24° 1777	299 278 244 249 327	297 282 248 253 337	298 276 242 247 324	5 5 6 6 6	B. D. + 1° 10 B. D. + 2° 16 60 Piscium 62 Piscium B. D. + 6° 111	62 99 30 121 139	39 76 7 98 116	67 104 34 125 143
30 May 1 1	B. D. +24° 1783 7 Caneri B. D. +21° 1914 B. D. +20° 2224 B. D. +20° 2228	297 248 279 301 290	308 263 294 316 305	294 244 275 297 286	9 9 9 9	B. D. +21° 413 B. D. +21° 416 B. D. +21° 427 B. D. +22° 463 B. D. +22° 466	32 56 58 106 104	16 39 42 90 89	34 58 60 108 106
1 1 2 2 2	B. D. +20° 2233 B. D. +20° 2232 B. D. +15° 2114 B. D. +15° 2117 B. D. +15° 2118	244 299 305 227 292	259 315 324 242 311	240 296 300 222 287	9 10 10	B. D. +22° 468 B. D. +22° 469 B. D. +24° 613 B. D. +25° 667 B. D. +24° 616	126 84 111 109 85	69 99 98 73	128 86 112 110 86
3 5 5 5 5	B. D.+10° 2176 98 B. Virginis 42 G. Virginis B. D 3° 3264 B. D 3° 3267	267 262 260 268 287	288 285 284 291 310	263 282	10 10 10	B. D. +25° 671 B. D. +24° 617 B. D +25° 677 B. D. +25° 678 B. D. +25° 681	105 54 149 147 102	93 42 138 136 91	106 54 150 148 103
5 5 6 6	B. D 4° 3275 B. D 4° 3281 B. D 10° 3624 B. D 10° 3627	275 256 288 256 292	298 280 311 279 314	270 251 283 252 288	10 10 11 11 29	B. D.+25° 682 B. D.+25° 685 B. D.+27° 733 B. D.+27° 738 B. D17° 6363	104 119 74 74 275	93 108 68 68 256	105 120 74 74 280

BERLIN-Continued.

Date.		Star.	m	m ₁	m'	Date.	Star.	_ m	m ₁	m
					۰					
1895, Sept.	-	d Capricor.	266	247	271	1896, Jan. 28	B. D. +25° 1644	237	244	233
	29 29	B. D 16° 5946 8 Capricor.	287 64	268 44	292 69	28 28	B. D. +25° 1659 B. D. +25° 1709	258	266 250	255
	30	B. D11° 5842	275	254	280	Feb. 19	B. D. +17° 339	255	236	25
	30	58 Aquarii	275	254	280	19	B. D.+17° 346	285	266	28
Oct.	I	282 B. Aquarii B. D. – 5° 5963	255	232	260	20	B. D. +21° 403 B. D. +22° 438	195	178	19
	1 4	235 B. Piscium	243 123	220 101	248 127	20 20	B. D. +22° 441	256 241	239	25 24
	4	B. D. + 11° 175	116	93	119	20	B. D. +22° 446	276	260	27
	7	η Tauri	27	14	28	20	B. D. +22° 453	238	222	239
	7 7	24 Tauri B. D. +23° 531	34	21 27	35 41	20 20	B. D. +22° 455 B. D. +22° 457	270	255 222	27
	7	B. D. +23° 540	73	60	74	21	B. D. +24° 598	314	301	31.
	7	B. D. +23° 549	66	53	67	21	B. D. +25° 656	226	214	22
	7	105 B. Tauri	67	54	68	21	B. D. +25° 674	262	250	26:
	7 7	B. D. +23° 560 B. D. +23° 561	63 58	50 45	64 59	21 21	B. D.+25° 677 B. D.+25° 678	280	268	280
	7	B. D. + 23° 567	37	24	38	22	B. D. +27° 702	290	282	289
	7	B. D. +24° 578 B. D. +24° 595	61	48	62 102	22 22	B. D.+27° 712 Anon,	299	292	29
	7		101	88	1	I		264	258	26
	7	B. D.+24° 598 406 B. Tauri	102 91	90	103 90	22	B. D. +27° 716 B. D. +27° 716	314	307	31,
	10	B. D. +27° 1230	68	72	66	22	B. D. +27° 717	262	255	26
	1 I 1 I	B. D. +24° 1785 B. D. +24° 1783	16	26 119	106	22	B. D. +27° 722 B. D. +27° 731	256	250 290	25
•	11	B. D. +24° 1800	65	76	62	22	B. D. +27° 734	231	225	230
	28	B. D 8° 5980	265	242	270	23	B. D. +27° 888	253	252	25
	28	82 Aquarii	269	247	274	23	B. D. +28° 918	224	222	22
	29 29	B. D. – 2° 6007 B. D. – 2° 6013	307 258	283	312 263	23	B. D. +28° 939 B. D. +27° 909	233	232 268	23
	31	B. D. + 8° 158	280	257	284	23	B. D. +27° 912	253	252	25
	31	180 B. Piscium	222	199	226	23	B. D. +27° 913	241	240	239
	31 31	B. D. + 8° 177 210 B. Piscium	335	312	339 299	23	B. D. +27° 915 B. D. +27° 914	254	253	25
Nov.		B. D.+15° 290	²⁹⁵ ²⁷⁰	273	273	23	B. D. +28° 955	234	233	23:
	10	B. D.+10° 2147	97	76	92	23	B. D. +27° 932	292	291	290
	10	45 Leonis	119	97	114	23	B. D. +27° 933	271	270	26
	25 28	B. D 3° 5638 B. D. +13° 250	230	206	234 230	23	B. D. +27° 940 B. D. +27° 938	336	335 341	334 34
	28	R. D. +13° 267	262	240	265	23	415 B. Tauri	317	316	31
	29	B. D. +18° 319	242	224	245	23	B. D. +27° 950	281	280	279
	30 30	B. D. +21° 416 B. D. +21° 427	271 267	254 251	272 269	24 24	B. D. +26° 1453 B. D. +25° 1594	329 290	335 296	320
	30	B. D. +22° 466	215	200	216	24	B. D. +25° 1595	287	294	28
	30	B. D. +22° 469	238	222	239	24	B. D.+25° 1596	306	312	30:
Dec.	6	80 Cancri	149	166	144	24	B. D. +26° 1485	224	230	220
	29 29	B. D. +26° 750 B. D. +26° 752	293 290	285	292 289	24 24	B. D. +25° 1608 49 Geminor.	284	291 243	28
	29	B. D. +26° 764	282	274	281	26	78 Cancri	294	310	28
	29	B. D. +27° 716	253	246	252	Mar. 21	B. D. +27° 799	259	256	25
1896, Jan.	8 8.	B. D. – 19° 3870 B. D. – 19° 3869	133	152	130	21 21	B. D. +27° 798	213	210	21
	8	B. D. – 19° 3879	140	79 159	58 137	21	B. D. +27° 803	²⁷⁴ 308	270 305	30
	2 I	B. D. + 8° 153	332	309	336	21	B. D. +27° 811	246	243	24
	21	B. D. + 9° 116	254	231	258	21	B. D. +27° 824	236	233	23.
	24 24	B. D. +22° 473 B. D. +22° 475	290 270	²⁷⁵ ²⁵⁵	291 271	2 I 2 I	B. D. +27° 830 B. D. +27° 833	330 250	327 248	32
	24	B. D. +22° 475 B. D. +22° 480	268	252	269	21	B. D. +27° 832	337	335	33
	24 24	B. D. +22° 480 B. D. +22° 482	326	311	327	21	B. D. +27° 837	280	277	27
	- 1	B. D. +23° 454	314	299	315	21	B. D. +27° 849	235	233	23.
	24 24	B. D. +23° 454 B. D. +23° 457	²⁵⁴	239 322	255 338	22 22	B. D. +27° 1144 B. D. +27° 1148	307	265 310	30
	24	B. D. +23° 469	321	307	322	22	B. D. +27° 1164	220	223	21
	24 26	B. D. +23° 470 B. D. +27° 771	214	200	215	22 22	B. D. +27° 1167 B. D. +27° 1181	298	301	29
	26	B. D. +27° 778	315	248	314	ļ	B. D. +26° 1317	284	287	28
	26	B. D. + 27° 783	252	256	250 258	22 22	B. D. +26° 1333	300	304 348	34
	27	B. D. +27° 1066	294	295	292	22	B. D. +26° 1350	310	314	30
	27 27	B. D. +27° 1089 B. D. +27° 1090	279	281	277	23	B. D. +25° 1706 B. D. +25° 1709	279	284	27.
	-/		203	20,	3	23	2. 2. 123 1/09	248	252	24

BERLIN—Continued.

Date.	Star.	m	$\mathbf{m_i}$	m′	Date.	Star.	m	mı	m
		•		•			•		 : •
896, Mar. 23	B. D. +25° 1725	240	245	236	1896, Sept. 14	C. D 28° 14144 '	201	201	204
23	176 B. Geminor.	313	318	309	14	38 B. Sagittarii	241	241	244
23	B. D. +24° 1729	306	312	302	23	B. D. + 11° 172	91	69	94
23	181 B. Geminor. B. D. +24° 1740	325	330	321	26 26	17 Tauri B. D. +23° 504	31	18	3
23		306	311	302	1		108	95	10
23	B. D. +24° 1746 B. D. +24° 1750	275	280	271 322	26 26	16 Tauri g Tauri	94	81	9
23 23	B. D. +24° 1755	326	335	209	26	q Tauri B. D. +23° 519	21	97 8	110
. 25	B. D. +15° 2075	285	303	280	26	B. D. +23° 512	73	60	7
25	B. D. +15° 2079	308	326	302	26	B. D. +24° 550	102	89	10
25	B. D.+15° 2080	307	325	302	26	20 Tauri	_77	64	7
25	II Leonis	303	322	298	26	B. D. $+23^{\circ}$ 523	36	23	3
25 Apr. 15	B. D.+15° 2091 B. D.+23° 462	262	281 281	257	26	21 Tauri 22 Tauri	118	105	11
Apr. 15	B. D. +23° 463	296	284	297 299	26 26	B. D. +23° 540	108	95	10
15	B. D. +23° 469	269	254	269	26	B. D. +24° 562	80	76	8
20	B. D. +22° 1901	273	286	269	26	B. D. +24° 566	96	83	9
20	B. D. +21° 1807	289	302	285	26	B. D. +24° 567	111	98	ıί
26	83 Virginis	254	275	251	26	B. D. +24° 577	59	46	5
May 16	B. D. +25° 1570	258	264	254	26	B. D. +24° 587	143	131	14
16	B. D. +25° 1579	244	250	240	26	B. D. +24° 598	89	76	8
16 16	B. D.+25° 1590 B. D.+25° 1584	264	271	261	28 28	B. D. +27° 818 B. D. +27° 832	100	97	1 9
17	B. D. +23° 1836	288	357	347 283	28	B. D. +27° 846	72	69	6
17	B. D. +22° 1834	314	326	310	28	B. D. +27° 850	53	51	5
17	B. D. +22° 1852	272	283	267	28	B. D. +27° 856	58	55	5
21	B. D. + 0° 2801	349	12	344	28	B. D. +27° 866	160	158	15
21	u Leonis	272	296	268	29	B. D. +26° 1276	105	108	10
23 25	B. D12° 3785 C. D23° 12133	248	270 304	245 288	29 29	B. D. +26° 1292 B. D. +26° 1298	56 91	59	. 5 8
	""	j	1 .	}			1	94	
25 25	C. D23° 12202 C. D23° 12208	208	238	222	29 29	B. D. +26° 1304 B. D. +26° 1300	140	143	13
31	30 Capricor.	62	44	67	29	B. D. +26° 1302	64	68	6
June 2	B. D 8° 5961	31	9	36	29	B. D. +26° 1308	88	91	8
2	B. D 7° 5873	162	140	167	29	B. D. +26° 1309	53	56	4
2	B. D 8° 5964	50	28	55	29	B. D. +26° 1311	39	42	3
3	14 Piscium B. D. +19° 2094	266	106	134 261	29	B. D. +26° 1326	155	159	15
14 14	B. D. +19° 2095	274	289	269	29 29	B. D. +26° 1321 B. D. +26° 1322	74	77	7
14	B. D. + 19° 2097	200	215	195	29	B. D. +26° 1327	45	49	4
15	B. D. +14° 2123	282	300	277	29	B. D. +26° 1331	112	116	10
22	C. D26° 11106	314	326	314	29	B. D. +26° 1332	103	107	10
July 6	B. D. +24° 584	77	64	77	29	B. D. +26° 1333	104	108	10
6 6	B. D. +24° 589 B. D. +24° 593	99	86	99	29	B. D. +26° 1338 B. D. +26° 1342	64	68	6
		43	31	43	29	1	47	51	4
27 27	B. D 6° 6110 B. D 6° 6112	98	89 76	116	Oct. 18	B. D 0° 4558 B. D. +25° 703	128	246 118	27
27	B. D 6° 6125	16	354	21	24	χ Tauri	50	39	12
Aug. 5	B. D.+26° 1205	103	105	100	25	B. D.+26° 827	65	6í	6
5	B. D. +26° 1227	107	109	104	27	B. D. +25° 1597	126	132	12
5	B. D. +26° 1230	75	77	72	27	B. D. +24° 1549	31	37	2
	B. D. +27° 1122 B. D18° 5875	155	157	152	27	B. D. +24° 1562	53	59	4
21	B. D. – 18° 5875 B. D. – 8° 5932	270	253 22	² 75	27 27	B. D. +24° 1567 B. D. +24° 1576	63	47	3
27	B. D. +14° 249	115	93	49 117	27	52 Geminor.	104	70	10
28	B. D. + 17° 346	95	76	97	27	B. D. +25° 1625	116	123	11
28	B. D. + 18° 300	112	93	114	27	B. D. +24° 1627	98	105	9
28	B. D. +18° 305	18	359	20	30	B. D. +11° 2153	78	98	7
28 28	B. D.+18° 312 B. D.+19° 362	51	32	52	30 Nov. 10	B. D. +11° 2162 B. D22° 5389	94	115	8
	1'	154	135	155	11		246	234	25
28 29	26 Arietis B. D.+21° 418	76	92	112 76	12 12	B. D 12° 6153 B. D 12° 6152	224	204	23
29 29	B. D. +21° 423	56	59 40	56	13	B. D. – 12° 6152 B. D. – 7° 5837	223	203	24
29	B. D. +22° 455	114	98	114	13	B. D 7° 5847	237	214	24
29	161 B. Arietis	128	112	128	13	B. D. $-7^{\circ}5858$	291	269	29
29	B. D. +22° 465	100	84	100	13	B. D 7° 5861	281	259	28
30 Sant 3	B. D. +25° 678	134	123	133	13	B. D 7° 5866 ···	327	305	33
Sept. 3	B. D. +22° 1810 B. D. +22° 1834	44	55	40	15	B. D. + 3° 10 B. D. + 3° 15	212	189	21
3 14	C. D28° 14143	247	5 ² 247	37 250	15	B. D. + 3° 15 B. D. + 4° 22	263	240	26 24
7	-7-73	1 77	, 7/	1 0	_∥ -3	·	-01		

BERLIN-Continued.

Date.	Star.	m	m ₁	m'	Date.	Star.	m	m ₁	m'
1896, Nov. 16 16 16 16	B. D. + 8° 126 B. D. + 9° 110 B. D. + 9° 109 B. D. + 10° 123 104 Piscium	292 246 212 222 328	269 223 189 200	0 295 249 215 225	1902, Oct. 22 22 22 22 22 22	B. D.+16° 1421 B. D.+16° 1423 B. D.+16° 1426 \(\lambda\) Geminor. B. D.+16° 1436	0 103 118 140 234	0 110 125 147 241	0 103 118 140 234
26 26 26 26 26 Dec. 16	B. D. +13° 2131 47 B. Leonis B. D. +13° 2139 B. D. +13° 2147 B. D. +22° 438	100 74 64 42 246	306 119 92 82 61 230	330 95 68 58 37 246	22 22 22 22 23 23	B. D.+16° 1441 \[\lambda \] Geminor. B. D.+16° 1448 B. D.+14° 1850 B. D.+14° 1854	63 115 124 50 94 84	70 122 131 58 106 96	114 123 50 94 84
17 17 17 17	17 Tauri 20 Tauri q Tauri B. D. +23° 523 B. D. +24° 562	283 242 196 278 228	270 229 183 265 214	282 242 195 278 227	24 24 Nov. 8 8 8	κ Cancri B. D.+10° 1956 B. D11° 5578 B. D11° 5583 B. D11° 5589	84 82 297 336 295	99 280 318 277	85 84 295 334 293
17 17 17 17 17	B. D. +23° 540 B. D. +24° 566 B. D. +23° 553 B. D. +23° 560 B. D. +23° 561 B. D. +23° 567	290 217 296 299 305	276 204 283 286 292	289 216 294 298 304	11 11 14 14 17	B. D 0° 4566 21 Piscium B. D. + 12° 354 B. D. + 12° 370 B. D. + 18° 990 B. D. + 18° 1001	255 192 261 266 129	231 168 242 248 128	250 187 256 261 127
17 17 17 18 1897, Jan. 7	B. D. +24° 578 B. D. +24° 602 B. D. +26° 775 252 B. Aquarii B. D. +10° 128	339 298 265 279 257 273	326 286 253 273 235 250	338 298 264 277 262	17 17 18 18 19	B. D.+18° 1012 B. D.+17° 1392 41 H¹. Geminor. B. D.+15° 1672 B. D.+15° 1676	72 146 55 34 87 26	71 145 59 40 97	70 144 54 33 87 26
10 10 1902, May 11 11	B. D.+11° 146 B. D.+11° 152 41 H¹. Geminor. B. D.+16° 1373 B. D.+17° 1488	273 184 249 353 294	161 226 359 300	273 186 252 351 293	20 20 22 22 22	B. D.+12° 1927 60 Cancri 34 Sextantis B. D.+ 3° 2406 B. D.+ 4° 2378	103 100 85 30	118 115 107 52	104 101 89 34 78
11 11 14 15	B. D.+16° 1380 B. D.+16° 1385 B. D.+7° 2203 36 Sextantis	288 284 215 255	294 290 235 277	287 283 217 258	Dec. 11 11	B. D.+ 3° 2411 34 B. Arietis B. D.+10° 292 B. D.+11° 295	74 71 263 340 270	93 242 320 250	75 257 335 265
17 18 19 25 June 15	B. D 5° 3487 B. D 9° 3640 B. D 12° 3933 B. D 18° 5155 86 Virginis	257 295 264 129 266	281 318 285 124 287	262 300 269 131 271	12 13 13 13	B. D.+13° 494 180 B. Tauri B. D.+16° 561 193 B. Tauri ð Tauri	279 202 232 270 269	262 190 220 259 258	274 198 228 266 265
18 18 23 25 27	B. D. – 19° 4332 v Scorpii B. D. – 15° 5663 B. D. – 8° 5791 B. D. – 0° 4547	279 281 62 147 108	290 292 49 127 84	284 286 60 145 104	1903, Jan. 6 9 12	64 Tauri 171 B. Piscium B. D.+15° 531 B. D.+17° 1409 B. D.+7° 2227	291 259 263 228 84	280 236 250 232 104	287 254 259 227 87
28 28 28 28 July 15	R. D.+ 3° 56 B. D.+ 4° 66 B. D.+ 4° 73 B. D 18° 4196	168 99 113 93 263	75 89 70 276	163 94 108 89 268	15 18 19 19 20	B. D. + 7° 2232 B. D 6° 3656 h Virginis B. D 9° 3736 6 G. Libræ	117 88 40 132 123	137 111 62 154 142	93 45 137 128
19 21 21 22 28	ρ Sagittarii 8 Aquarii B. D. – 13° 5830 B. D. – 9° 5854 B. D. + 14° 502	225 41 127 125 163	217 25 111 105 146	226 40 126 122 158	Feb. 2 6 6 6 6 6	B. D. + 3° 86 B. D. + 16° 577 B. D. + 16° 582 B. D. + 16° 591 64 Tauri	299 299 288 304 213	276 288 278 294 203	294 295 284 300 209
Oct. 10 11 19 19	B. D16° 5478 87 B. Capricor. B. D. +16° 561 B. D. +16° 568 193 B. Tauri	232 295 136 96 96	221 280 125 85 85	232 294 136 92 92	6 6 6 7	B. D.+17° 722 B. D.+16° 600 B. D.+16° 602 B. D.+16° 606 B. D.+18° 825	219 292 322 265 252	209 282 313 256 247	215 288 319 262 249
21 21 21 21 21	B. D.+17° 1135 B. D.+17° 1144 B. D.+18° 1112 B. D.+17° 1158 B. D.+17° 1161	78 71 137 52 49	78 71 137 52 49	76 68 135 50 46	7 9 9 9	115 Tauri B. D.+16° 1506 68 Geminor. 67 Geminor. B. D.+15° 1605	297 259 284 333 308	293 268 293 342 317	294 259 284 333 308
2I 2I 2I 2I 22	124 H¹. Orionis B. D.+18° 1147 B. D.+18° 1178 B. D.+18° 1179 B. D.+16° 1419	82 143 128 126 109	83 144 130 128 116	80 141 126 124 109	9 12 15 16 16	B. D.+16° 1518 155 B. Leonis 487 B. Virginis B. D11° 3659 B. D11° 3668	273 79 104 38 110	282 100 126 58 130	273 82 109 42 115

BERLIN—Continued.

Date.	Star.	m	m ₁	m′	Date.	Star.	m	m,	m′
1903, Feb. 16 Mar. 2 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	B. D. – 11° 3684 B. D. + 6° 195 B. D. + 13° 499	91 273 240 256 296 277 243 245 323 285 202 248 247 268	0 111 251 224 250 295 276 243 228 245 323 285 202 248 247 268	96 268 236 253 293 274 241 226 243 321 282 199 245 244 265 266 239	1903, Mar. 7 8 8 8 8	B. D.+17° 1154 B. D.+17° 1469 B. D.+17° 1477 41 H¹. Geminor.	341 263 252 312 278 273 187 272 265 289 271 310 199 274 252 90 63	268 258 317 283 279 193 271 295 277 317 206 297 275 105	263 252 311 277 273 187 272 264 288 270 310 198 279 257

CAMBRIDGE, ENGLAND.

1 12	Ι,	Virginis		243	228	-9a6 Tar		3 10		Piscium	220	216	
1791, June 12	1 .			242		1826, Jar					239		23
1793, Apr. 19	{		327	344	331	1827, De		8		Leonis	102	119	10
1794, Mar. 5		u Ceti	275	257	273	1829, Jar		8		Geminor.	305	311	30
7	1	7 Tauri	208	197	209	Oct	t. I	5		Tauri	216	207	21
Nov. 8	(τ Tauri	279	270	281		I	5	α	Tauri	138	129	13
8		r Tauri	112	103	114	1830, Ma	r. 2	28		Tauri	287	277	28
Dec. 18	1 7	r Libræ	102	116	101		2	8	θ^{2}	' Tauri	309	299	30
1795, Oct. 6	6	3 Cancri	54	67	59		2	8 85	5	Tauri	335	325	33
1797, Mar. 17	1 1	Scorpii	137	148	132		2	9 11	7	Tauri	309	305	30
Dec. 25	33	Piscium	242	219	243	Ap	r.	5	τ	Leonis	268	291	27
798, Oct. 5	,	Leonis	234	253	234	Ma	v	1 48	3	Leonis	256	277	26
799, Apr. 10	125	Tauri	271	267	275	1831, Fel	Ď. 2	20 111	1	Tauri	310	306	31
800, Sept. 30	١ ،	b Aquarii	305	283	310	Oc		23		Tauri	284	275	28
Nov. 26	1 7	Piscium	211	189	216			23	α	Tauri	63	54	6
1801, Mar. 30		v Virginis	296	318	291	1847, Jai				. Tauri	230	218	22
30		γ Virginis	88	110	83	1	b. 2		14	Geminor.	234	238	23
May 21	-	χ Leonis	311	333	306		r. 2			² Cancri	241	256	24
24		Virginis	299	321	294		y 2			Leonis	269	292	27
24		v Virginis	89	111	84			8	ح	Libræ	246	1 2	25
Oct. 23	,	And	235	223	238	Jui		1	ρ	Sagittarii	259	252	25
23	,		104	92	107				ρ.	Sagittarii	101	93	. 10
	27	Tauri	62	50	65	No.	v. 1	-	•	Piscium	329	306	32
23	28	Tauri	80	68	82	1848, Jai				Tauri	308	298	30
23 1811, Mar. 1		τ Tauri	266		264	1040, jai		6		Tauri	_	38	
1811, Mar. 1		Tauri	101	257 92	99	Ma	r. 2			Virginis	224	245	4
Oct. 27	,	Aguarii	298	276	293	_	ne i			Libræ	240	255	24
1813, Mar. 6		c Ceti	248	230	247		y i		A	Libræ	335	348	33
8		r Tauri	260	251	255	ر	•		ξ.	. Sagittarii	318	310	31
July 11	1	a Sagittarii	305	-	302	Δ.,	g. 2		7	Tauri	249	239	24
Nov. 29	1 .	Capricor.	313	305 295	308	, ,,,,		21	.,	Tauri	106	96	10
1814, Jan. 1	1 .	u Ceti	223	205	224	No	v	9	,-	Ceti	325	305	32
28		² Ceti	285	266	285	1	٠.	9		Ceti	323	14	3
Feb. 1	1 '	Geminor.	294	296	298	De	_		-	Piscium	222	236	21
Oct. I		u Ceti	285	267	287	1849, Jar		T		Ceti	216	202	21
1820, Feb. 1		γ Leonis	300	322	296	Ma Ma		3 130	-	Tauri	246	244	24
	1	•	78	100	-		•			Geminor.	1	295	20
1821, Feb. 6		χ Leonis Piscium		201	73 228	i		3 20		Leonis	292	295	
May 6	1	Geminor.	224		298	Ser	\ t	-		Piscium	339		34
		Tauri	302	310		361	π.	5		Piscium		194	21
U	17	P#1 .	297	285	298			5 ' 8 ' 71	. ν	Tauri	141		13
13	1	•	231	219	232			•			112	102	1
13	20	Tauri Tauri	262	250	263			8 8		' Tauri Tauri	203	193	20
13	17		47	35	47						275		27
13	16	Tauri	84	72	84			8 80	-	Tauri	69	60	7
15 15	136	Tauri Tauri	124	225 122	122	1850, Jar	1 2	8 81		Tauri Tauri	74 214	227	21
_	1		, ,					•			1	1	l
1822, Sept. 6		q Tauri Geminor.	279	267 283	278 275			?3 ?3	T A	Tauri Tauri	262	98 274	26
1823, Jan. 24 May 18		b ⁵ Leonis	1 - 1			1 4-				Tauri	1	82	
	, ,	Piscium	308	331	305	Ma Ma	r. 1				91	268	26
1824, Jan. 7	19	Leonis	217	194	219	Ma		:8 36 :8 36		Sagittarii Sagittarii	273	98	26
1825, Apr. 1	. (TEOMS	295	318	295	1	_ 2	28 36	,	Sagittarii	103	· yo	9

CAMBRIDGE, ENGLAND—Continued.

Date.	Star.	m	m_1	m′	Date.	Star.	m	m ₁	m'
1850, July 21 21 24 Aug. 2	21 Sagittarii 21 Sagittarii 21 Capricor. α Tauri γ Libræ	220 147 292 280 260	0 219 145 276 271 274	216 143 287 282 259	1854, Sept. 30 30 1855, Mar. 23 Apr. 23 June 27	ω Sagittarii A Sagittarii k Tauri λ Cancri 22 Scorpii	262 270 230 80 82	252 259 223 93 92	259 267 234 81
Sept. 12 Nov. 21 21 1851, Jan. 15	7 Libræ 29 Ophiuchi 64 Orionis 68 Orionis 64 Orionis	102 210 106 275 238	116 216 105 275 238	101 207 110 279 243	Aug. 30 Sept. 20 21 Oct. 24 Nov. 15	o Piscium 234 B. Sagittarii 40 B. Capricor. o Piscium 86 B. Capricor.	261 239 241 300 254	239 232 228 279 238	266 238 241 305 254
Mar. 13 Apr. 6 6 7 July 21	 θ Cancri m Tauri m Tauri χ² Orionis ξ² Ceti 	258 274 88 265 150	272 268 82 265 131	263 277 91 270 151	1856, Mar. 11 13 26 June 16 July 25	33 Tauri 136 Tauri	239 269 289 281 182	227 268 299 291 167	243 272 285 277 186
Sept. 14 Oct. 2 11 11 Dec. 10	μ Ceti 222 B. Sagittarii ξ² Ceti ξ² Ceti 63 Geminor.	113 106 307 45 247	95 98 288 26 254	114 100 308 46 252	Sept. 20 20 Nov. 11 1857, Mar. 4 Apr. 2	136 Tauri 136 Tauri 40 Arietis 49 Aurigæ 1 Cancri	329 13 225 96 251	3 ² 7 1 ² 2 ⁰ 7 99 2 ⁶ 3	330 15 230 96 248
10 1852, Feb. 3 May 2 July 4 Aug. 26	63 Geminor. 63 Geminor. 94 Virginis 29 Aquarii 36 B. Capricor.	70 266 304 118 319	78 274 324 98 306	75 272 302 114 315	May 6 Sept. 30 Oct. 6	λ Cancri α Virginis 50 Aquarii 27 Tauri 27 Tauri	131 75 293 218 126	143 98 272 205 112	128 70 297 221 128
1853, Jan. 14 14 14 Feb. 17 Mar. 26	30 Piscium 33 Piscium 33 Piscium n Tauri 95 Virginis	141 255 89 230 276	118 232 66 225 297	141 255 89 235 273	6 6 Nov. 27 1858, Feb. 19 20	28 Tauri 28 Tauri & Piscium & Arietis q Tauri	186 157 311 227 257	173 144 288 210 243	188 160 316 230 259
26 Apr. 20 May 20 20 Sept. 20	95 Virginis v Virginis 95 Virginis 95 Virginis 95 Virginis 38 Arietis	105 93 263 120 271	125 116 283 140 253	93 259 117, 275	20 20 Måy 18 19	q Tauri 20 Tauri 83 Cancri α Leonis α Leonis	87 57 199 344 42	74 44 217 4 62	89 59 195 339 37
Dec. 9 1854, Feb. 7 9 9 Mar. 12	33 Ceti 121 Tauri 52 Geminor. 52 Geminor. 42 Leonis	182 279 294 61 307	160 276 301 68 328	185 284 298 65 307	Aug. 30 30 30 30 Sept. 18	16 Tauri q Tauri q Tauri 20 Tauri 17 Capricor.	303 272 70 308 226	289 258 56 294 211	304 273 71 309 231
Apr. 4 May 9 9 Sept. 4	167 B. Leonis Geminor. 48 Virginis 48 Virginis Capricor.	257 345 297 82 278	278 349 319 105 260	257 350 293 78 277	Nov. 22 22 1859, Feb. 16 1860, Feb. 28 28	136 Tauri 136 Tauri ψ Leonis 16 Tauri 20 Tauri	259 93 248 333 316	257 91 267 320 303	257 91 243 332 315
4	35 Capricor.	69	51	68	28	22 Tauri	279	266	278

CAMBRIDGE, MASS.

1840, July 10 Oct. 6	45	7 Scorpii Capricor.	320 236	328 218	321	1847, Jan. 5	34	Sextantis ð Tauri	326	91 316	7 ² 3 ² 3
Nov. 2		Capricor.	241	225	246	25	68	Tauri Ophiuchi	246	236	316
1842, Apr. 12		ε Arietis σ Scorpii	305	289 67	303 62	Aug. 19 Sept. 16	29	Ophiuchi	313 286	323	288
Sept. 30	39	Sagittarii	219	214	224	1848, Jan. 12	80	Piscium	267	245	262
Nov. 3	45	Piscium	263	240	262	Feb. 12	ı	α Tauri	331	322	329
1844, Feb. 22	104	Piscium	291	270	287	12		α Tauri	20	11	. 18
1845, July 16	58	Ophiuchi	248	250	253	Mar. 11	111	Tauri	320	316	319
17	29	Sagittarii	285	281	289	Apr. 12		o Leonis	274	292	278
Sept. 22	57	Orionis	117	115	113	May 4		α Tauri	317	308	315
22	64	Orionis	86	85	82	Aug. 7	_	η Libræ	232	245	234
Nov. 10	!	∂ Piscium	295	272	290	Sept. 15	65	Ceti -	90	70	86
Dec. 6	22	Piscium	292	269	289	Oct. 28		η Libræ	235	248	236
1846, Fe b. 6	71	Orionis	287	288	284	1849, Jan. 5		γ Tauri	280	270	280
20	16	Sagittarii	66	65	70	5		γ Tauri	68	58	68
Mar. 31	97	Tauri	302	295	298	. 5	75	Tauri	246	236	245
May 3	^	ω Leonis	218	235	219	6	III	Tauri	295	291	296
June 29	69	Leonis	296	319	299	Feb. 9	5	Virginis	286	309	291
1847, Jan. 3	65	Cancri	100	124	109	Mar. 11	95	Virg i nis	122	142	125

CAMBRIDGE, MASS.—Continued.

Date.	Star.	m	mı	m'	Date.	Star.	m	m ₁	m'
1849, May 2	5 Virginis	275	o 298	280	1850, May 19	σ Leonis	291	314	296
July 16	α Tauri	249	240	250	19	σ Leonis	78	101	82
16 Sept. 27	α Tauri 29 Capricor.	321	97 305	106 317	June 13	82 Cancri α Leonis	286	302	290 277
Nov. 22	40 Aquarii	290	270	286	14	a Leonis	95	115	100
29	θ^2 Tauri	298	288	299	Aug. 8	α Leonis	337	357	342
29	α Tauri	266	257	267	8	α Leonis	25	45	30
1850, Jan. 23	$ heta^2$ Tauri $lpha$ Tauri	271	261	272	27	73 Ceti 73 Ceti	252	233	252
23 23	α Tauri	247 100	238 91	248 101	30	73 Ceti α Tauri	303	77 294	96 305
Feb. 26	σ Leonis	259	282	264	Oct. 13	7 Capricor.	240	228	236
Mar. 24	27 Leonis	202	221	207	14	23 Capricor.	232	216	227
Apr. 15	α Tauri	304	295	306	21	87 Ceti	220	202	220
15 18	$egin{array}{l} lpha & { m Tauri} \ g & { m Geminor.} \end{array}$	41 225	32 235	43 230	21	87 Ceti	129	141	128

CAPE OF GOOD HOPE.

8 G. Libræ	*		'		*	
8 G. Libræ					-	
	250 - 270	248	1844, June 25	40 H. Virginis	206	217 20
κ Geminor.	94 80		25	40 H. Virginis	156	168 15:
ξ Virginis	229 240		1847, Apr. 25	d Leonis	251	268 25
ξ Virginis	1 - 1		June 17	o Leonis	277	290 27
: - 9		, ,				279 29
	1 .	.	1	•	-	
'	, ,	, , ,		' '		343 32
					283	299 28
	1 9 1		J		316	333 31
		: 1 ·			1 1	119 10
κ Capricor.	300 286	5 303	Apr. 6	γ Virg. (N)	287	306 28
κ Capricor.	242 222	240	6	γ Virg. (S)	287	306 28
4 G. Libræ	119 142	117	July 13	€¹ Ceti	13	359 1
φ Sagittarii	267 26	267		ρ Sagittarii	224	217 22
φ Sagittarii	92 92	92		ρ Sagittarii	126	119 12
ρ Ophiuchi	1 - 1 -	' -	Oct. 3	ξ¹ Ceti	44	29 4
e Capricor.	262 243	261	Nov. 23	λ Aquarii	245	226 24
					-40	80 9
					1	204 22
		00				132 13
O. A. 16481			1 2		1 4 1	217 23
a Tauri			,	_ · · · _ · · .		108 21
1				-7		246 24
			1			106 10
					1	324 32
			1			216 21
	1	.				i
			1			306 30
			1 2 1			51 7
				A		322 32
~ • •	-05	1 -00	•			91 9
•	1 1	0.0	- :		74	84 7
			Nov. 17		194	169 18
	, , , , ,	, ı	17		152	128 14
3 Sagittarii	1		1851, Mar. 9		272	259 27
			26		223	210 21
φ Sagittarii	94 87	94	Apr. 18	24 Scorpii	162	169 15
h Sagittarii	270 258	270	May 17	μ Sagittarii	310	318 31.
h Sagittarii	100 87	99	17	μ Sagittarii	33	40 3
c Capric	284 264	285	18	36 Sagittarii		218 21
c Capric	54 34	57	18	€ Sagittarii	331	336 33
A ¹ Scorpii	1 - 3 1 1		18	🗲 Sagittarii	38	42 4
α Scorpii ·	288 297	290	June 7	c Virginis		251 23
η Piscium			17	· Capricor.	122	107 12
π Leonis			July 12			282 28
π Leonis						248 24
2 Geminor.			8	i 0		115 11
	k Sagittarii k Capricor. Sagittarii k Sagittarii k Sagittarii k Sagittarii k Capricor. κ Capricor. κ Capricor. κ Capricor. γ Capricor. γ Capricor. γ Sagittarii γ Sagittarii γ Ophiuchi ε Capricor. γ Piscium Piscium Piscium γ Scorpii Ο A. 16481 γ Tauri ε Arietis ε Arietis ε Arietis γ Capricor. γ Virginis γ Virginis γ Scorpii Λ Scorpii Λ Scorpii γ Cancri γ Scorpii γ Cancri γ Sagittarii γ Sagittarii γ Sagittarii γ Sagittarii κ Sagittarii κ Sagittarii κ Sagittarii γ Sagittarii	k Sagittarii 250 244 c Capricor. 302 286 c Sagittarii 265 265 k Sagittarii 108 100 κ Capricor. 300 286 κ Capricor. 300 286 κ Capricor. 242 222 4 G. Libræ 119 144 φ Sagittarii 267 267 φ Sagittarii 267 267 γ Sagittarii 267 267 γ Sagittarii 267 267 γ Sagittarii 267 267 γ Piscium 230 200 γ Piscium 255 226 γ Capricor. 262 243 γ Piscium 255 226 γ Tauri 42 30 κ Arietis 309 29 γ Arietis 309 29 γ Arietis 309 29 γ Capricor. 109 83 κ Scorpii 277 29 κ Virginis 19 50 κ Scorpii 277 29 κ Sagittarii 265 255 γ Sagittarii 265 250 γ Sagittarii 270 284 κ Sagittarii 270 288 γ Sagittarii 296 311 κ Scorpii 288 297 γ Piscium π 288 297 γ Piscium π 272 293 π Leonis 98 119	# Sagittarii 250 244 248 # Capricor. 302 289 305 Sagittarii 265 261 265 # Sagittarii 265 261 265 # Sagittarii 108 103 107 # Capricor. 300 286 303 # Capricor. 300 286 303 # Capricor. 4 G. Libræ 119 142 117 # Sagittarii 267 267 267 267 # Sagittarii 92 92 92 # Ophiuchi 241 252 238 # Capricor 262 242 261 # Arietis 270 278 270 # Tauri 42 30 46 # Arietis 309 292 312 # Arietis 49 31 52 # Arietis 309 292 312 # Arietis 309 292 322 # Arietis 309 29	k Sagittarii 250 244 248 Oct. 18 ε Capricor. 302 289 305 1848, Apr. 15 May 17 51 Sagittarii 265 261 265 265 June 8 k Sagittarii 108 103 107 1849, Feb. 13 κ Capricor. 242 222 240 4 G. Libræ 119 142 117 July 13 φ Sagittarii 92<	h Sagittarii 250 244 248 Oct. 18 ν Aquarii ε Capricor. 302 289 305 1848, Apr. 15 B. A. C. 4019 51 Sagittarii 265 261 265 June B. T. Leonis k Sagittarii 108 103 107 1849, Feb. 13 ξ Libræ τ Leonis κ Capricor. 242 222 240 6 7 Virg. (N) κ Capricor. 242 222 240 6 7 Virg. (S) 6 7 Virg. (N) κ Capricor. 242 222 240 242 222 240 7 Virg. (S) 6 7 Virg. (S) 6 Ccti 7 Virg. (S) 6 Ccti 6 7 Virg. (S) 6 Ccti 6 7 Virg. (S) 6 Ccti 8 Agittarii 6 Capricor. 7 Virg. (S) 6 Ccti	h Sagittarii 250 244 248 Oct. 18 ν Aquarii 289 ε Capricor. 302 289 305 1848, Apr. 15 B. A. C. 4019 325 h Sagittarii 229 220 225 May 17 γ Libræ 100 h Sagittarii 108 103 107 Apr. 6 γ Virg. (N) 287 κ Capricor. 202 222 240 6 γ Virg. (N) 287 4 G. Libræ 119 142 117 July 13 γ Virg. (S) 287 φ Sagittarii 267 267 267 Sept. 25 ρ Sagittarii ρ Sagittarii 124 222 240 6 γ Virg. (S) 287 Ceti 13 φ Sagittarii 126 ρ Sagittarii 126 ρ Sagittarii 126 227 267 Sept. 25 ρ Sagittarii 126 226 27 27 27 27 27 27 28 26 Naurii 244 24 24 261 <t< td=""></t<>

* See note, page 119.

CAPE OF GOOD HOPE—Continued.

Date.	Star.	m*	mı	m'	Date.	Star.	m*	m ₁	m
		•	0	0				•	-
1851, Oct. 28	30 G. Sagittarii	311	320	315	1859, Feb. 8	η Piscium	230	201	226
Dec. 7	ε Tauri	226	209	222	11	φ Tauri	341	337	346
7	ε Tauri	119	103	117	Aug. 18	η Piscium	183	154	178
31	ν Piscium	295	271	293	18	η Piscium	161	132	156
1852, Feb. 15	o Sagittarii	246	244	244	Oct. 28	ά Scorpii	280	289	281
15	o Sagittarii	138	133	134	28	α Scorpii	63	69	6:
Mar. 9	£ Libræ	242	260	240	Nov. 8	η Piscium	218	190	214
9	£ Libræ	145	160	141	Dec. 21	σ Scorpii	250	257	24
Sept. 23	η Capricor.	316	308	320	21	α Scorpii	301	311	304
1853, Apr. 20	ξ Virginis	207	225	202	1860, Feb. 13	A Scorpii	296	310	29
		1		1			_		
Sept. 6	88 Virginis	253	276	251	Mar. 7	υ Leonis	315	346	319
8	174 B. Libræ	295	315	297	7	v Leonis	65	94	6
11	126 B. Sagittarii	306	310	309	12	α Scorpii	306	316	30
Dec., 8	54 B. Ceti	330	310	335	12	α Scorpii	66	75	6
1854, Mar. 7	139 Tauri	338	338	343	28	354 B. Tauri	227	222	22
7	139 Tauri	21	20	26	Apr. 27	μ Cancri	231	245	228
2Ò	b Ophiuchi	95	104	95	May 1	v Leonis	297	326	299
22	h Sagittarii	263	258	262	8	λ Sagittarii	131	122	128
22	h Sagittarii	117	110	115	25	∂ Cancri	301	324	304
Apr. 13	κ Virginis	308	336	311	June 3	A² Ophiuchi	285	288	280
13	κ Virginis	74	99	75	3	A ² Ophiuchi	53	57	5
15	ω¹ Scorpii	42	63	46	3	A ¹ Ophiuchi	53	57	56
May 11	6 B. Libræ	244	265	242	Aug. 24	A ¹ Ophiuchi	298	302	30
11	μ Libræ	239	259	236	30	θ Aquarii	99	72	9
11	μ Libræ	132	151	129	Oct. 17	22 Scorpii	228	230	224
22	μ Piscium	1	_	1		μ Geminor.	88	1	88
June 7	μ Piscium κ Virginis	253	225 282	251 257	1862, Dec. 7	μ Gennior. p ⁵ Leonis	286	95 311	288
•	κ Virginis	60	86	62	1863, Jan. 27	r Arietis	278	268	279
7	κ Capricor.	245	226	1 1	Mar. 12	58 Ophiuchi	85	83	8
14 14	κ Capricor.	129	108	243 126	Apr. 7	ω Ophiuchi	239	240	230
•	•			1			1	1	1
28	ξ Cancri	242	255	240	8	58 Ophiuchi	264	261	26.
28	79 Cancri	222	233	218	May 4	ω ² Scorpii	214	216	210
July 5	μ Libræ	212	229	207	June 28	ω ² Scorpii	221	224	217
13	<i>y</i> ³ Aquarii	44	23	47	28	ω ² Scorpii	161	162	150
Sept. 2	201 B. Sagittarii	242	237	240	30	21 Sagittarii	111	102	100
2	201 B. Sagittarii	104	99	103	Nov. 17	ξ · Aquarii	284	266	285
Oct. 29	κ Capricor.	263	243	262	1864, Feb. 29	ψ Ophiuchi	277	283	285
Nov. 27	ψ ² Aquarii	274	249	274	29	$oldsymbol{\psi}$ Ophiuchi	98	102	97
27	ψ^2 Aquarii	64	40	66	Mar. 24	α Virginis	303	323	300
1855, Jan. 3	υ Geminor.	110	114	108	24	α Virginis	75	94	76
Apr. 4	8 Libræ	118	139	116	27	ν Scorpii	226	228	22:
• 4	α Libræ	273	296	273	Apr. 27	e Sagittarii	127	113	124
4	α Libræ	115	136	113	July 18	e Sagittarii	243	229	240
8	φ Sagittarii	248	246	246	18	e Sagittarii	103	91	10
8	φ Sagittarii	134	131	131	Dec. 6	κ Piscium	275	254	27
May 8	e Capricor.	221		228	6	κ Piscium	67	40	6
1856, Apr. 25	τ Sagittarii	267	262	267	1865, Mar. 15	λ Virginis	319	49 337	32
25	τ Sagittarii	88	87	88	15	λ Virginis	42	60	4
Sept. 8	38 B. Sagittarii	297	300	299	1866, May 11	ζ Piscium	265	248	26
Nov. 12	η Tauri	275	259	276	20	o Leonis	352	348	35
_		1 -	_	i ·	1		i .		:
1857, Jan. 15	η Virginis	236	261	233	July 8	68 Tauri	86	79	86
Feb 6	η Virginis	157	181	153	26	e Sagittarii	284	277	285
Feb. 6 Mar. 16	φ Geminor. σ Scorpii	242	251	240	26 Aug. 29	e Sagittarii o Piscium	101	92 80	100
Mar. 10	σ Scorpii σ Scorpii	252	263	250	Sept. 15	ο Piscium φ Ophiuchi	213	216	20
		140	149	136	Sept. 13	•	1		1
16	α Scorpii	266	278	266	15	φ Ophiuchi	151	154	14
18	38 B. Sagittarii	185	181	180	1867, Jan. 29	φ Ophiuchi	14	27	I
18	38 B. Sagittarii	16	22	21	Apr. 16	η Virginis	241	257	238
19	τ Sagittarii	36	34	40	Dec 38	η Virginis	137	152	134
31	κ Aurigæ	240	238	237	. Dec. 28	τ Capricor.	309	302	312
Apr. 29	φ Geminor.	262	273	261	1868, Apr. 4	χ Leonis	292	312	294
May 31	β Virginis	327	359	331	Aug. 9	€¹ Ceti	287	271	289
July 27	α Virginis	306	336	309	1869, Mar. 23	ð Cancri	229	234	22
Nov. 23	γ Capricor.	281	259	282	23	δ Cancri	158	163	15
23	7 Capricor.	47	28	50	Aug. 19	ρ Capricor.	185	172	180
1858, Mar. 6	α Scorpii	1 1	269	258	10	ρ Capricor.	168	155	16
1050, Mai. 6	α Scorpii	259	_	121	19	δ Tauri	268	155	26
Oct. 12	X Sagittarii	124 252	132 250	250	29	δ Tauri	73	255 62	74
14	h Sagittarii	270	258	270	1870, Feb. 22	24 Scorpii	225	233	22
	·- wasiiiaiii	1 - 10	~ 50		, , ,				
1859, Jan. 21	c Leonis	105	131	104	22	24 Scorpii	161	168	15

^{*}See note, page 119.

CAPE OF GOOD HOPE—Continued.

Date.	Star.	m#	m ₁	m′	Date.	Star.	m*	mi	m'
1870, Mar. 10 23 Sept. 7	ζ Tauri 15 Sagittarii δ Capricor. δ Capricor.	139	285 139 266 42	292 135 281 57	1882, Nov. 18 18 Dec. 5	138 B. Aquarii B. D5° 5738 & Virginis & Virginis	226 191 324 43	203 166 345 65	0 222 186 328 47
28 28 Dec. 27 27 1871, Feb. 1	γ Libræ γ Libræ ψ Aquarii ψ² Aquarii ι Geminor. ι Geminor.	141 253 334	234 154 231 318 257 85	217 137 251 339 263 90	1883, Feb. 14 Apr. 28 May 13 July 19 Sept. 7 Nov. 13	164 B. Tauri 54 Sagittarii h Leonis e Sagittarii 32 Libræ Arietis	299 21 245 261 229 251	231 15 260 244 235 235	302 26 243 260 225 249
May 5 June 29 1875, Aug. 10 1876, Mar. 5 1879, Oct. 31	θ Libræ θ Libræ σ Scorpii ι Geminor. 20 Tauri	118 253 238	133 268 248 308 58	116 251 235 299 68	1884, Jan. 2 7 Mar. 8 9	44 Aquarii ο Arietis 209 B. Cancri 89 B. Leonis π Leonis	274 315 306 291 290	256 306 324 310 309	274 319 309 293 292
1880, Feb. 5 5 18 Mar. 3 4	θ Ophiuchi θ Ophiuchi χ Tauri 26 Ophiuchi 7 Sagittarii	263 36 102	269 109 256 42 97	269 109 262 40 101	May 1 30 June 5	μ Libræ κ Aquarii 29 Cancri 89 B. Leonis μ Libræ	61 115 350 324 315	76 95 8 345 330	63 113 355 328 317
4 30 Apr. 1 2 26	9 Sagittarii B. A. C. 5641 v² Sagittarii f Sagittarii Scorpii	88 70 91 91 70	84 74 81 77 77	88 72 91 91 72	Oct. 28 28 Nov. 29 Dec. 1 1885, Jan. 4	c ¹ Capricor. c ¹ Capricor. 54 Ceti 148 B. Tauri 48 Leonis	319 13 210 273 107	308 3 189 264 124	323 18 205 274 106
May 26 June 13 13 13	o Sagittarii 83 B. Leonis 89 B. Leonis 89 B. Leonis 34 Sextantis	274 212 285 92 275	263 230 309 115 300	274 207 286 92 275	Mar. 4 Apr. 2 2 4 May 5	κ Virginis γ Libræ γ Libræ 125 B. Ophiuchi 16 B. Capricor.	108 239 133 22 33	122 247 140 31 27	107 236 130 27 37
18 20 21 25 25	43 H. Virginis 19 Scorpii 39 Ophiuchi c¹ Capricor. c¹ Capricor.	254 294 285 282 50	269 302 286 261 30	252 296 286 283 53	5 22 24 June 23 25	β Capricor. τ Leonis θ Virginis τ Libræ 125 B. Ophiuchi	28 286 282 243 264	22 306 301 252 268	32 288 283 241 264
30 July 19 19 20 20	4 Arietis 4 Sagittarii 1 Sagittarii 0 Sagittarii 0 Sagittarii 0 Sagittarii	46 42 294 269 102	112 129 291 259 90	49 46 296 269 101	25 28 July 1 26 26	164 B. Ophiuchi 54 Sagittarii θ Aquarii β Capricor. β Capricor.	241 146 64 223 128	242 134 50 210 116	238 142 66 219 125
27 30 Aug. 16 16	7 Piscium 36 Tauri 28 Sagittarii 30 Sagittarii 31 Sagittarii	76 27 264 290 265	57 24 254 283 254	77 31 263 292 264	1886, Jan. 14 Feb. 9 13 14 May 14	38 Arietis 122 G. Piscium m Tauri 71 Orionis 46 Virginis	269 210 204 255 275	255 188 193 253 294	269 205 199 254 275
Oct. 7 10 10 Dec. 12 1881, Mar. 8	 δ Scorpii π Sagittarii π Sagittarii 26 Arietis I Geminor. 	216 308 25 252 348	300 18 234 358	212 311 29 250 353	16 21 21 June 6 10	ξ Libræ ρ Sagittarii ρ Sagittarii ο¹ Cancri γ Virg. N)	278 298 58 255 233	294 297 56 265 249	279 301 60 254 230
Nov. 1 Dec. 24	40 H. Virginis 19 Aquarii 138 B. Aquarii 3 Piscium \$ Aquarii	142 231 271 221 239	154 209 250 195 216	138 228 271 217 236	July 8	γ Virg. S) γ Virg. N) γ Virg. S) 125 B. Ophiuchi 66 Virginis	273 107 107 297 313	292 125 125 305 335	273 106 106 299 317
1882, Feb. 7 11 12 Mar. 8	d Piscium γ Virginis ω² Scorpii 116 B. Ophiuchi 621 B. Virginis	266 106 80 95 81	245 125 88 96 98	266 105 81 95 82	Aug. 24 Sept. 5 Oct. 7 Nov. 1	71 Orionis 164 B. Ophiuchi 18 Aquarii ρ Sagittarii 64 Tauri	49 293 270 255 121	51 300 257 250 109	52 295 270 254 119
Apr. 20 May 6 29 June 4 July 2	247 B. Tauri 16 Sagittarii 621 B. Virginis g Sagittarii β Capricor.	305 79 273 138 349	304 74 289 121 339	308 80 273 134 354	Dec. 6 1887, Jan. 11 19 Feb. 1	68 Orionis μ Piscium 7 Leonis 78 B. Ophiuchi 3 B. Tauri	255	137	123 254 124 121 296
Aug. 18 27 27 Sept. 7	γ Virginis 50 Virginis 19 Aquarii ξ Aquarii 5 Cancri	256 252 281 203 42	275 268 264 180 59	255 250 282 198 46	4 18 Mar. 14 31 Apr. 4	57 Orionis 246 B. Sagittarii	237 47 33 277 298	47 47 275	234 50 37 278 300

* See note, page 119.

CAPE OF GOOD HOPE-Continued.

Date.	Star.	m* m,	m'	Date.	Star.	m*	m ₁	m'
1887, Apr. 4 6 9 15	α Leonis b Virginis 18 Libræ 47 B. Capricor.	76 99 260 278 125 138 56 56	3 259 3 122	1890, Mar. 14 Apr. 7 15 28	117 B. Sagittarii 30 Libræ ψ³ Aquarii η Leonis	118 115 100 300	77 321	116 113 99 303
May 1 June 3	61 B. Capricor. ψ Leonis 18 Libræ	136 12. 269 28. 271 28	1 133 2 269	May 9 30 June 4	329 B. Sagittarii 566 B. Virginis 24 Sagittarii	138 296 85	322 322 88	134 298 85
13 13 July 29	4 Ceti 5 Ceti φ Ophiuchi	36 2 300 31		5 5 6	53 Sagittarii 274 B. Sagittarii 17 Capricor.	132 132 80	125 125 70	129 129 81
Aug. 1 5	190 B. Sagittarii d Sagittarii 64 Aquarii 72 Orionis	298 290 230 222 72 5 112 100	1 226 7 73 5 110	July 21 Aug. 26 Sept. 1 30	ω Virginis 208 B. Sagittarii f Piscium 31 Arietis	283 253 68 108	307 249 46 85	284 251 70 107
Sept. 3 3 13 Nov. 7	27 Piscium 29 Piscium θ Cancri δ Cancri	47 3 74 5 44 5 73 8	5 75 5 47	Oct. 24 Nov. 17 20 Dec. 1	351 B. Aquarii 36 B. Capricor.	202 246 263 169	233 239 177	197 244 262 164
21 22 22	42 Capricor. σ Aquarii 58 Aquarii	235 21 227 20 300 28	3 232 7 223	1891, Feb. 20 21	53 Tauri λ Cancri 90 H¹. Cancri	3 ² 4 3 ⁰ 5 283	313 318 298	328 308 284
24 24 24 Dec. 17	4 Ceti 5 Ceti 19 B. Ceti ρ Capricor.	284 26 276 25 245 22 270 26	7 277 3 243	Mar. 15 19 19 May 4	56 Tauri ω¹ Cancri ω² Cancri 54 B. Ceti	330 196 276 92	320 201 285 66	335 191 277 92
17 1888, Jan. 15 27 Mar. 9	34 B. Capricor. μ Capricor. 85 Geminor. 44 Capricor. 45 Capricor.	284 276 274 256 328 336 133 11 27 1	274 8 332 7 130	14 14 28 July 18 18	ξ Cancri 79 Cancri φ Capricor. 157 B. Ophiuchi Pi. XVII 31	284 271 132 276 322	300 285 114 287 336	285 271 129 277 326
- 18 25 July 17 17 20	ð Tauri l Leonis £ Libræ 18 Libræ 16 G. Sagittarii	303 29. 342 306 32 211 22 261 26	347 7 309 5 207	18 22 Aug. 14 18 20	39 Ophiuchi 6 Capricor. 22 Ophiuchi γ Capricor. ψ ¹ Aquarii	3 ² 3 38 282 267 134	337 25 295 253 107	327 42 283 267 131
21 21 21 23 23	36 Sagittarii £ Sagittarii £ Sagittarii 19 Capricor. 21 Capricor.	220 210 323 32 29 3 95 10 134 120	3 ²⁷ 3 33 5 95	20 24 Oct. 12 14 14	ψ^2 Aquarii σ Arietis φ Capricor. ψ^1 Aquarii ψ^2 Aquarii	50 10 237 225 298	28 353 218 196 276	53 15 234 221 301
23 25 28 Aug. 17 Sept. 13	θ Capricor. 70 Aquarii 35 Ceti 121 B. Sagittarii 15 Sagittarii	95 8. 155 13. 98 7. 320 32. 247 24	3 151 5 97 5 324	Nov. 6 6 19 1892, Feb. 23 May 13	σ Sagittarii σ Sagittarii υ Geminor. σ Sagittarii 26 Ophiuchi	285 100 121 82 50	285 82 125 81 64	286 99 119 83 53
Oct. 9 15 Nov. 15 Dec. 20	21 Sagittarii 29 Ophiuchi 70 Aquarii ν Piscium μ Cancri	224 22 230 230 259 24 304 28 87 9	5 227 258 5 307	July 4 6 6 11 Aug. 3	cr Libræ ρ Oph. (N). ρ Oph. (S). χ Capricor. 88 B. Ophiuchi	254 295 295 168 208	275 311 312 147 214	252 297 297 163 203
1889, Jan. 8 14 Feb. 5 Mar. 10	35 Ceti 141 Tauri Piscium Geminor. 44 Geminor.	334 31 210 19 330 31 296 29 326 33	9 205 3 335 5 298	Sept. 6 11 Dec. 12 1893, Mar. 25 Apr. 23	 φ¹ Aquarii 33 Tauri 46 Virginis c Geminor. 79 Cancri 	265 145 104 285 289	239 124 130 293 309	265 141 103 286 291
Apr. 20 20 June 5 5	14 Sagittarii 30 Sagittarii 31 Sagittarii 167 B. Leonis 46 Leonis	96 10 70 7 138 13 288 30 237 25	72 4 134 9 290	May 8 June 24 July 1 6 Aug. 2	e Capricor. 28 G. Libræ χ Capricor. ζ Piscium 171 B. Piscium	60 296 98 68 125	42 321 79 47 94	62 298 97 70 122
July 19 Aug. 8 Sept. 4 30	13 Libræ 64 Ceti 168 Β. Sagittarii ν² Sagittarii 190 Β. Ophiuchi	299 22 87 6 328 33 328 33 255 26	302 87 3 333 3 333	Sept. 3 23 Oct. 20 26	3 Sagittarii β Tauri 70 Aquarii 50 Aquarii 23 Tauri	258 201 251 265 36	261 189 220 235 14	257 196 246 260
Nov. 29 Dec. 1	74 Aquarii 15 Ceti 33 Ceti	255 23. 200 17 314 29.	254 1 195 5 318	26 Nov. 19 24	20 Tauri 44 Piscium β Tauri	139 288 292	117 254 280	134 283 287
1890, Feb. 12	38 Arietis θ Libræ	125 130		Dec. 20	β Tauri 9 Tauri	81 322	70 299	76 327

35990°—12——7

*See note, page 119.

Digitized by Google

CAPE OF GOOD HOPE—Continued.

Date.	Star.	m*	m ₁	m′	Date.	Star.	m	m ₁	m'
1893, Dec. 20	17 Tauri	0 280	258	° 275	1898, Feb. 13	42 Libræ	0 114	128	117
20 20	16 Tauri 20 Tauri 8 Tauri	239 231	219 211	236 228	25 Mar. 2	θ Arietise Geminor.	294 290 246	274 294 262	293 286
1894, Jan. 18 Feb. 28	10 G. Sagittarii	124	123	121	5 17	ρ Capricor.	127	114	132
Mar. 16	φ Geminor. χ Capricor. 38 B. Sagittarii	287 31	301 16 66	289 35 65	Apr. 25 28 May 16	139 Tauri θ Cancri 75 Piscium	312 326 91	311 339 69	307
Apr. 24 25 29	38 B. Sagittarii τ Sagittarii 50 Aquarii	63 104 41	97 20	103	June 6	75 Piscium 50 Sagittarii 105 Piscium	64	56 106	12
29 May 2	182 B. Aquarii 147 B. Piscium	24 51	2 25	28 54	30 Aug. 6	42 Libræ 75 Piscium	306 10	320 347	309
July 15	10 G. Sagittarii 38 B. Sagittarii	315	152 320	150 319	Sept. 3	26 Ophiuchi 7 Piscium 2 Sagittarii	195 83 288	201 62 283	199 82 293
Aug. 4 Sept. 21	β Virginis 116 B. Aurigæ	30	324	²⁹⁵	23	ν² Sagittarii	289	284	294
Dec. 2 1895, Jan. 20	η Capricor. α Scorpii α Scorpii	254 315 62	233 330	253 319 64	Oct. 20 24 Nov. 16	23 Sagittarii 51 Aquarii 1 Sagittarii	213 263 276	242 275	260 280
Feb. 6	28 Geminor.	242	75 244	239	Dec. 30	o¹ Cancri	158	174	154
6 13 18	53 Aurigæ α Virginis 38 B. Sagittarii	31 86	298 62 85	294 35 86	1899, Feb. 2 4 21	43 H. Virginis 27 G. Scorpii 79 Geminor.	43 54 282	66 291	45 58 276
Apr. 3 May 6	ω ¹ Cancri g Virginis	339 210	358 234	344 205	Mar. 16 16	26 Tauri 27 Tauri	27I 212	258 200	267 208
July 30 1896, Jan. 7	48 B. Scorpii i Virginis	286 79	299 101	287 76	May 1	31 B. Capricor. 44 Aquarii	97 104	83 83	100
31 Mar. 8 Apr. 7	ρ Leonis h Sagittarii μ Capricor.	68 120 85	90 112 65	63 123 90	June 13 25	132 Tauri ο Leonis τ Capricor.	230 224 78	228 243 63	225 221 81
22 25	α Leonis φ Virginis	295 286	316 309	290 282	July 18 18	ð Scorpii δ Scorpii	179 159	191 171	183
May 1 1 20	σ Sagittarii σ Sagittarii ρ Leonis	222 147 307	218 142 328	226 150 302	Aug. 26 27 Oct. 11	66 Arietis 62 Tauri 36 Sagittarii	149 118 254	135 108 249	145 115 259
26 26	α Scorpii α Scorpii	224 116	234 126	225 117	27 Nov. 11	o Leonis 187 B. Aquarii	92 248	110 226	89 249
June 19 22 July 31	φ Virginis A Scorpii ι Arietis	307 272 100	330 284 89	304 272 111	13 14 18	36 Piscium 75 Piscium 99 Tauri	246 204 101	222 182 94	245 202 90
Aug. 20 Sept. 5	4 Capricor. α Leonis	274 218	262 239	278 213	Dec. 8	138 B. Aquarii	216 256	196 239	218 252
18 Oct. 9	42 Capricor. α Scorpii α Scorpii	278 246 130	259 255 140	283 247 132	1900, Jan. 23 Feb. 3	40 H. Virginis d Piscium 90 B. Cancri	139 324 274	159 300 288	143 322 270
Nov. 9	χ Sagittarii	324	316	328 II	Mar. 7	300 B. Tauri 394 B. Tauri	221 286	213 283	216
9 9 1897, Jan. 17	χ Sagittarii 49 Sagittarii A Geminor.	7 194 337	359 186 344	198 332	23 26	14 Sagittarii v Aquarii	67	66 97	72
23 27	χ Virginis α Scorpii	333	190 342	335	Apr. 2	τ Arietis η Geminor.	262 264	² 47 ² 65	257 259
27 Feb. 13	α Scorpii 39 Geminor.	346 347	55 35 ²	48 343	May 16	52 Ophiuchi 158 G. Ophiuchi	74 105	77 108	79 110
Apr. 14	α Scorpii 79 Leonis	83 282	92 306	85 278	16 20	58 Ophiuchi 19 Aquarii	129 100	131 83	134
May 5	σ Scorpii 136 Tauri	68 244	78 243	70 240	June 8	550 B. Virginis 45 Sagittarii	211 126	233	130
July 3	18 Leonis λ Sagittarii	337	356 208	332 214	July 6	40 H. Virginis 58 Ophiuchi μ Sagittarii	279 247 264	298 250 264	283 252 269
Aug. 4 Sept. 9	83 Virginis ρ Aquarii	² 55 306	276 285	255 310	Aug. 7	d Sagittarii	287	280	291
Oct. 1	136 Tauri A Ophiuchi	166 278	165 283	162 282	Sept. 1	A Tauri	233	135 244 262	141 238 262
Nov. 4	16 Piscium R Piscium	260	194 237	220 264	4	171 B. Sagittarii	257 324	318	328
Dec. 5	9 Piscium θ Arietis π Canori	301 249	278	304 248	28 Nov. 13 26	λ Libræ h Leonis g Sagittarii	234 24 251	247 42 240	239 23 254
13 1898, Jan. 10	π Cancri 18 Leonis	106	94 125	72 102	Dec. 5	67 Tauri	239	229	234

* See note, page 119-

CAPE OF GOOD HOPE—Continued.

Date.	Star.	m	m ₁	m′	Date.	Star.	m	m ₁	m′
1901, Jan. 28 Feb. 15 25 26	22 H ¹ . Tauri	94 252 244	229 86 242 240	237 97 246 239	1903, Dec. 31 1904, Mar. 4 Apr. 22 May 1	68 Tauri l Virginis 2 B. Cancri P Ophiuchi	238 129 290 98	232 151 302 107	240 134 293 100
Mar. 10 25 28 Apr. 4 4	28 Libræ 105 Tauri 5 Cancri α Virginis α Virginis 56 B. Scorpii	252 233 287 77 78	123 246 244 308 99	247 231 291 81 83	24 June 4 July 7 18 22 Sept. 13	η Virginis ρ Aquarii 38 Arietis 38 Virginis ρ Ophiuchi 13 Libræ	266 121 101 325 283 278	289 100 83 348 292 295	271 116 98 330 284 281
7 10 24 May 5 June 5	β Scorpii 89 G. Sagittarii f Geminor. 123 B. Scorpii g Sagittarii	78 36 239 69 91	89 33 248 77 79	83 40 236 74 93	Oct. 27 Dec. 16 1905, Jan. 26 Mar. 17	67 Aquarii m Tauri 77 Piscium 80 Virginis o ¹ Cancri	303 124 248 72 247	281 118 225 93 263	298 124 244 76 252
12 22 25 25 July 10	p ⁵ Leonis α Virginis α Virginis ρ Arietis	51 336 296 78 101	31 315 97 88	46 341 298 80 100	Apr. 16 24 May 10 10 July 7	σ Leonis ρ Sagittarii ζ Cancri Pi. VIII 6 σ Leonis	211 112 245 245 340	234 105 257 257 4	216 109 249 249 345
Aug. 9 19 22 30 Sept. 25	ζ Tauri 86 Virginis ν Scorpii κ Piscium 30 Aquarii	108 244 264 67 315	266 275 44 295	104 249 269 64 314	20 Aug. 7 Sept. 12 I2 Dec. 2	337 B. Aquarii 15 Libræ \(\lambda \) Aquarii \(\lambda \) Aquarii 37 Aquarii	134 300 226 122 200	317 204 100 180	129 301 221 117 196
Oct. 21 29 Nov. 16 Dec. 18 22	16 B. Aquarii 129 H ¹ . Tauri 283 B. Sagittarii 19 Piscium 175 B. Arietis	304 114 212 260 244	288 105 203 237 229	304 109 214 256 239	1906, Mar. 3 4 17 20	64 Tauri m Tauri 57 Orionis Y Sagittarii 29 Capricor.	335 244 152 86	329 244 150 69	338 247 148 81
1902, Jan. 18 19 31 Feb. 17 Mar. 20	53 Arietis 43 Tauri 2 Libræ 2 Orionis 2 Leonis	232 344 92 283 290	216 332 108 282 308	227 339 97 280 291	Apr. 2 10 14 May 9 17	61 Geminor. 18 Libræ 190 B. Sagittarii • \(\varphi\) Ophiuchi 4 Ceti	198 107 121 114 133	206 124 115 123 109	202 107 117 112 129
25 28 29 May 10	h Virginis 73 B. Scorpii 29 Ophiuchi 57 Orionis 1 Cancri	68 69 154 308 342	89 81 160 307 352	73 74 158 306 341	June 4 July 8 Aug. 9 Sept. 5 Oct. 28	18 Libræ μ Capricor. ν Piscium f Piscium 27 Piscium	255 104 61 136 230	271 85 40 114 206	255 100 60 134 226
June 10 . 17 July 11 11	h Leonis 32 Libræ 261 B. Virginis f Virginis 100 B. Sagittarii	299 245 295 295 274	318 259 318 319 271	301 250 300 300 276	Dec. 19 1907, Jan. 27 Feb. 1 16 21	45 Capricor. 63 Geminor. Virginis f Piscium 351 B. Tauri	274 246 103 260 295	255 254 126 238 290	269 251 106 259 298
Nov. 6 17 1903, Feb. 7 19 Mar. 5	283 B. Sagittarii 57 Orionis 352 B. Tauri 24 Scorpii 173 B. Tauri	244 120 248 88 346	234 119 244 96 334	244 118 246 91 342	25 Mar. 10 Apr. 25 June 18 July 23	139 B. Cancri 19 Capricor. c Virginis v Virginis 33 Sagittarii	311 83 316 317 242	326 67 340 340 237	316 78 318 320 237
Apr. 4 Aug. 1 Sept. 2 Oct. 22	74 B. Geminor. η Libræ 54 Sagittarii e Sagittarii γ Libræ	318 259 323 299 218	322 272 314 290 231	317 263 322 298 221	23 26 Se pt. 15 16	π Sagittarii 39 Aquarii 30 G. Sagittarii ο Sagittarii 39 Aquarii	247 55 293 283 288	241 34 293 277 267	242 51 288 278 284
Dec. 31	119 H1. Tauri	285	276	283	19	45 Aquarii	268	248	265

совнам.

1902, Oct. 22 Nov. 20 1903, Jan. 14 Mar. 8 June 2 Oct. 30 1904, July 9	λ Geminor. 60 Cancri 7 Cancri 60 Geminor. 7 Leonis 8 Aquarii 8 Tauri	124 13 96 11 111 12 327 33 295 31 204 18 80 7	1 97 6 112 4 327 7 299 3 199	1904, Sept. 29 29 29 Nov. 20 20 Dec. 20	γ Tauri θ¹ Tauri 6² Tauri 64 Ceti ξ¹ Ceti γ Tauri	124 82 61 297 274 100 233	72 51 277 2 254 2 90 1	123 81 59 294 271 100 232
--	--	---	--	--	---	---	------------------------------------	---

CRACOW.

Date.	Star.	m	m ₁	m′	Date.	Star.	m	m ₁	m′
1825, Dec. 14 1827, July 2 Aug. 1 29 1828, Feb. 22	c¹ Capricor. 49 Virginis 41 Libræ 58 G. Scorpii 68 Tauri	306 300 296 304 296	288 322 309 314 286	311 298 296 309 293	1839, Oct. 19 19 Nov. 14 1840, Jan. 13	φ Aquarii 96 Aquarii ι Aquarii μ Arietis η Tauri	286 290 262 322 313	264 267 243 305 301	286 291 267 325 314
June 16 1829, Apr. 12 June 13 Dec. 9 1830, Mar. 2	κ Cancri α Cancri μ Libræ α Tauri 130 Tauri	272 311 300 269 237	288 326 317 260 235	267 307 304 264 232	14 14 16 Apr. 11 Sept. 3	21 Tauri 22 Tauri 406 B. Tauri V Leonis F Scorpii	300 308 255 318 284	288 296 253 337 292	301 309 253 313 285
Apr. 28 May 1 June 4 25	26 Geminor. 1 Cancri 48 Leonis 7 Libræ 0 Sextantis	237 297 246 232 291	240 307 267 245 312	232 294 245 237 290	1841, Feb. 27 Apr. 28 Sept. 22 1842, Mar. 22	7 Tauri π Cancri 66 B. Sagittarii ο² Cancri ο¹ Cancri	212 325 216 257 314	199 341 215 272 329	211 320 220 252 309
July 16 Aug. 1 Oct. 20 23 Dec. 22	α Tauri 110 B. Sagittarii 24 Scorpii d Sagittarii 29 Piscium	222 248 228 272 305	213 246 236 266 282	216 246 233 276 303	May 14 1843, Mar. 6 May 3 3	63 Geminor. 47 Arietis 1 Geminor. 3 Geminor. 4 Geminor.	290 272 269 236 257	297 256 269 236 257	285 269 263 231 252
1831, Jan. 20 22 Feb. 19 19 June 21	ν Piscium f Tauri 48 Tauri γ Tauri γ Libræ	290 335 272 255 233	269 321 261 244 247	286 330 267 250 239	June 3 Nov. 2 1844, Apr. 26	e Leonis h Leonis κ Piscium 9 Piscium ω Leonis	221 247 253 290 284	244 264 230 267 301	219 244 254 291 281
Oct. 23 23 Dec. 17 1832, Jan. 5 Feb. 10	α Tauri α Tauri γ Tau ri θ Capricor. α Tauri	307 46 284 269 294	298 37 274 254 285	302 41 279 269 289	1845, Jan. 12 12 Apr. 12 May 20 Sept. 13	κ Piscium 9 Piscium 68 Orionis 25 Libræ c¹ Capricor.	257 293 267 296 278	234 270 267 311 260	256 291 263 301 278
10 15 Mar. 8 Sept. 4	α Tauri α Leonis 75 Tauri 119 Tauri υ Sagittarii	53 267 285 273 294	44 286 275 269 289	48 269 280 269 296	Nov. 6 9 1846, May 4 1848, Feb. 15 May 9	ν Aquarii 22 Piscium 14 Sextantis λ Geminor. 35 Leonis	223 269 258 302 192	207 246 278 309 208	223 266 260 304 195
Dec. 31 1833, Mar. 31 1834, Apr. 13 20 Oct. 7	311 B. Piscium 8 Leonis 330 B. Tauri Virginis 33 Scorpii	283 207 217 224 296	262 224 211 247 300	283 210 222 229 296	1849, Jan. 3 Apr. 5 Oct. 25 1850, Apr. 15	64 Ceti \$^2 Ceti \$\beta\$ Virginis 73 B. Aquarii 264 B. Tauri	270 250 251 249 311	250 231 274 232 301	267 246 256 244 312
7 8 Nov. 3 1835, Jan. 6 Apr. 9	44 Ophiuchi λ Sagittarii 24 Ophiuchi 35 Ceti 46 Leonis	274 271 268 225 256	278 269 275 203 276	274 270 268 228 261	15 16 21 22 Aug. 14	α Tauri 120 Tauri ρ Leonis σ Leonis γ Libræ	267 215 318 243 263	258 212 339 266 277	269 217 323 248 262
June 10 July 6 Aug. 29 Oct. 3 Nov. 25	 θ Ophiuchi λ Libræ 26 Libræ 69 Aquarii 35 Capricor. 	254 228 289 255 271	258 240 304 234 255	253 228 290 250 266	1851, Jan. 15 Mar. 13 Aug. 2 Sept. 4 Dec. 5	64 Orionis d¹ Cancri 80 Virginis 28 Sagittarii 87 Ceti	261 302 285 282 301	260 314 306 278 283	265 307 285 277 302
1836, Feb. 23 25 Mar. 24 Apr. 25 1837, Feb. 14	14 Tauri 118 Tauri 139 Tauri 1 Leonis 112 B. Aurigæ	248 280 317 208 230	235 276 316 227 227	253 283 320 213 234	1852, Jan. 4 6 Mar. 30 30 30	i Tauri d Geminor. 98 B. Cancri 102 B. Cancri 107 B. Cancri	224 236 317 279 289	217 240 330 292 302	228 241 322 284 293
Mar. 15 16 May 10 June 6 Nov. 10	47 Geminor. ω Cancri λ Cancri 4 Cancri 54 Ceti	286 276 310 238 306	288 286 321 248 285	291 281 315 239 307	Apr. 25 27 28 Aug. 25 Sept. 18	 δ Geminor. 83 Cancri 37 Leonis 49 Sagittarii ν Scorpii 	334 323 327 289 281	341 339 347 282 292	339 327 330 284 276
1838, Jan. 3 Feb. 4 Mar. 1 June 4 Sept. 2	88 Piscium 107 B. Aurigæ τ Arietis 40 H. Virginis κ Capricor.	274 270 315 333 295	252 267 301 352 278	274 273 318 328 292	Oct. 24 1853, Feb. 18 May 12 20 July 17	30 Piscium 1 Geminor. 42 Geminor. 95 Virginis 157 B. Ophiuchi	225 251 237 239 286	202 251 242 259 291	225 256 242 236 281
Oct. 25 Nov. 27 Dec. 26 1839, July 23 Aug. 25	A Sagittarii 171 B. Piscium 27 Arietis W Sagittarii 9 Aquarii	215 301 246 320 270	205 278 228 228 320 248	210 306 250 321 270	1854, Jan. 7 Mar. 3 July 7 31 Sept. 30	ξ Arietis 31 Arietis 18 Ophiuchi m Virginis ω Sagittarii	287 291 304 316 272	268 273 311 337 263	291 296 299 312 270

DORCHESTER, MASS.

Date.	Star.	m	m ₁	m′	Date.	Star.	m	m ₁	m
		0	•				0		
825, July 27	o Sagittarii	321	316	326	1831, Feb 19	α Tauri	207	198	207
27	o Sagittarii	34	29	39	Aug. 28	<i>f</i> Tauri	308	294	308
27	π Sagittarii	206	201	210	29	γ Tauri	230	220	231
827, Feb. 10	α Cancri	215	230	214	29	7 Tauri	116	106	117
Nov. 16	lpha Virginis	249	271	254	29	α Tauri	273	264	275
28	e Piscium	277	255	272	29	$ heta^1$ Tauri	300	290	30:
828, Jan. 31	60 Cancri	222	237	223	29	θ^2 Tauri	338	328	339
Aug. 16	λ Virginis	293	312	299	29	θ^2 Tauri	7	357	
829, Aug. 21	α Tauri	247	238	245	Oct. 14	π Capricor.	242	230	23
21	α Tauri	106	97	104	23	α Tauri	244	235	24.
Sept. 17	α Tauri	286	277	284	23	α Tauri	104	95	, IO
23	o Leonis	321	339	525	1832, June 17	∂ Capricor.	332	314	32
23	o Leonis	26	44	30	17	∂ Capricor.	29	11	2.
Nov. 11	α Tauri	326	317	325	Sept. 7	∂ Capricor.	308	290	30.
11	α Tauri	46	57	44	7	∂ Capricor.	53	35	. 4
830, Jan. 5	α Tauri	315	306	313	1839, Apr. 20	γ Cancri	307	320	30
Mar. 28	α Tauri	252	243	251	June 19	28 Virginis	357	20	35
28	α Tauri	109	100	108	20	68 Virginis	244	265	24
July 15		216	207	216	23	b Scorpii	265	277	26
Oct. 4	<i>f</i> Tauri	333	319	331	July 1	φ Aquarii	243	221	24
4	<i>f</i> Tauri	19	5	17	1	$oldsymbol{arphi}$ Aquarii	88	66	9.
831, Jan. 21	μ Ceti	314	296	312	Nov. 20	17 Tauri	256	244	25
Feb. 4	γ Libræ	297	311	298	20	20 Tauri	224	212	22
4	γ Libræ	76	90	77	20	η Tauri	312	300	31.
19	θ¹ Tauri	289	279	289	Dec. 12	λ Aquarii	251	263	25
19	θ^2 Tauri	312	302	313		-		1	1

DORPAT.

1812, Oct.	.		f Tau	ri '	300	286	300	1822, Feb.	37		q	Tauri	240	328	220
•	21		f Tau		52	38	51	1022, 140	27	21	ч	Tauri	340	307	339
Dec.	1		r Tau	1	242	232	242		27	21	q	Tauri	24	12	24
	16		r Tau		109	-	110	May	-/		y	Leonis	210		205
	16		θ ² Tau		312	99	312	May				Leonis		233 198	17
	· · [312	302	_		- 1		•		175	1	1,7
	16	264	B. Tau		266	256	267	Aug.	10	17		Tauri	71	58	79
1	16		a Tau	ri	260	251	261	1	10	16		Tauri	109	96	10
1813, Apr.	8		ζ Can	eri	262	273	267		10	20		Tauri	243	231	24:
	8		ζ Can	cri	95	106	100		10		q	Tauri	153	141	152
1	10		ν Leon	nis	258	277	263		10		η	Tauri	330	318	329
1	10		ν Leon	nis	99	118	104		10	22		Tauri	157	145	150
1814, Feb.	1		ν Gen	inor.	263	265	267		10	20		Tauri	112	100	111
	12		« Virg	inis	258	277	255		10		ŋ	Tauri	23	11	2:
1819, Sept.	8		¿ Arie		230	215	235	Oct.	31	23	.,	Tauri	276	264	275
Oct.	9	49	Aur	igæ	260	271	270		31	- 0	7)	Tauri	261	249	260
-O A	- I	• • •	1			•			Ĭ.		•	Tauri		''	۱ _
	23		χ Leon		210	232	205		31	23		Tauri	75	63	. 74
	28	47	Arie		241	225	244		31	27			295	283	294
	28	47	Arie		98	82	101		31		7	Tauri	90	78	89
1821, Feb .	6	62	Pisc		261	238	266		31	27		Tauri	55	43	54
	6		ð Pisc	ium	212	189	216	Nov.	· 30		E	Geminor.	267	270	26
	6		∂ Pisc		38	15	43	Dec.	25	17		Tauri	263	250	261
May	6			inor.	272	280	269	1	25	16		Tauri	223	210	222
July 2	22		μ Arie		228	211	230	1	25	20		Tauri	222	210	220
	23	16	Tau	ri	265	252	266		25		η	Tauri	303	291	301
4	23	17	Tau	ri	305	292	306	1	25		ή	Tauri	48	36	4:
	23		q Tau	ri	235	223	236		25	28		Tauri	330	318	328
	23	20	Tau		266	254	267	1823, Jan.		-0	z	Geminor.	277	280	27
	23	21	Tau		228	216	229	1023, jan.	24		Ē	Geminor.	91	94	8
	23	17	Tau		41	28	42	Sept			u	Arietis	103	86	10
	23	16	Tau		81	60	82	1824, Sept				Capricor.	306	294	31
	-			· ·		,			1		~	•	•	''	-
	23	20	Tau		79	67	80	1825, Jan.	3	I		Geminor.	228	227	22
Dec.	7		q Tau		258	266	258	Feb.			7	Geminor.	251	251	240
	7	17	Tau		349	337	349	Mar.			A		285	274	280
	7	17	Tau		2	350	2		24	39	•	Tauri	302	291	29
	7	21	Tau	rı	251	239	251	Sept	. 23		c²	Capricor.	246	228	24
	7		q Tau	ni	94	82	94	1826, Feb.	15	53		Tauri	298	288	29
1822, Feb.	8		υ Leo	nis	289	312	284		16	105		Tauri	2 8 0	274	27
•	8		v Leo	nie I	94	117	90		1					1 ''	1 '

ENGELHARDT (NEAR KASAN).

Date.	Star.	m	mı	m'	Date.	Star.	m	m ₁	m'
1904, Feb. 29 29 Mar. 22 27 Apr. 28 Dec. 20 48 20 20	o Leonis o Leonis γ Tauri B. Cancri m Virginis Tauri γ Tauri θ¹ Tauri θ² Tauri	261 100 334 24 219 308 310 302 331	280 119 324 40 240 297 300 293 322	0 266 104 332 27 223 307 310 302 331	1904, Dec. 20 1905, Apr. 12 12 July 13 Oct. 11 1906, Dec. 25 1907, Mar. 21 Sept. 18	θ ² Tauri 162 B. Geminor. 162 B. Geminor. 29 Ophiuchi 5 Ceti 5 Ceti ξ ² Ceti B. D.+19° 1110 η Capricor.	36 286 76 316 188 159 229 305 18	27 295 85 322 164 144 210 304	36 290 80 314 183 154 230 310

EVANSTON.

1897, Aug. 9 14 Oct. 3 30 Dec. 5	γ Sagitta λ Piscium 53 Sagitta 49 Sagitta 26 Arietis	ni 224 201 ni 263 254	301 228 268 319 208	1898, Feb. 5 25 26 Apr. 2 16 1900, Sept. 12 44 1901, Oct. 19))	Cancri Arietis Sextantis Arietis Sagittarii	278 272 303 110 241	294 253 323 92 234	273 270 299 105 244
1898, Jan. 5 26	o Caprice θ Aquari 125 Tauri 45 Piscium	199 178 240 237	182 203 236 324	Dec. 19 62	λ : "	Piscium Piscium Arietis	222 303 315	199 280 297	219 299 310

GÖTTINGEN.

1868, Feb. 29 Mar. 1 1 1		f Tauri θ¹ Tauri θ² Tauri B. Tauri Tauri	336 257 277 214 307	3 ² 2 247 267 204 297	335 257 277 214 306	1891, Feb. 12 Apr. 20 25 25 25	29 41	Ceti v Virginis Libræ κ Libræ κ Libræ	293 256 85 305 84	272 279 98 318 97	296 255 80 300 79
Sept. 8 8 1869, Aug. 2 Dec. 8 1870, Feb. 10		 α Tauri α Tauri α Tauri δ Capricor. m Tauri 	222 134 65 239 322	212 124 56 220 316	222 134 67 234 325	May 10 10 15 15 Nov. 7 10	30 30	Tauri Piscium Piscium ω Sagittarii τ Aquarii	312 325 25 283 201	309 301 1 273 179	317 327 27 280 202
1877, Nov. 20 20 20 20 20 22	20 20 20 136	Tauri q Tauri Tauri Tauri Tauri	23 244 276 67 198	231 263 54 196	23 245 277 67 195	1892, Jan. 19 May 8 8 Oct. 3		τ Aquarii γ Virginis θ Virginis θ Virginis τ Aquarii	138 309 298 82 294	116 332 320 104 272	139 305 294 78 296
1887, Mar. 8 8 1889, Jan. 12 1890, Jan. 3 Feb. 7	64	ρ Leonis ρ Leonis Tauri l Tauri ν Virginis	243 116 239 330 269	264 137 229 324 292	248 121 243 335 270	31 1893, Sept. 1 1894, Mar. 14 Apr. 12 1895, June 26	136	 ψ³ Aquarii δ Arietis Tauri c Geminor. α Leonis 	200 148 338 271 298	177 132 337 280 318	203 152 339 270 293
7 14 14 June 29 July 12	4 7	Virginis Sagittarii Sagittarii Scorpii Tauri	103 157 303 92 25	126 158 303 104 15	104 152 298 87 30	26 Sept. 29 30 Nov. 27 27	62	r Leonis δ Capricor. σ Aquarii Piscium δ Piscium	80 263 197 290 249	100 244 176 267 226	75 268 202 294 253

GREENWICH.

1753, Apr. 19 Aug. 5 Oct. 5	 β Scorpii 8 Libræ 16 B. Capricor. β Capricor. β Capricor. 	317 329 182 199 235 223 239 227 108 96	321 188 235 239 108	1764, Feb. 20 1765, Feb. 4 Sept. 25 Oct. 2	α Virginis γ Cancri γ Cancri δ Capricor. q Tauri	113 270 102 277 294	2 1	108 266 98 282 295
1754, Apr. 2 Nov. 21 1755, July 18 1757, Feb. 25 Apr. 3	κ Cancri ρ Aquarii θ Libræ α Tauri γ Virginis	268 283 278 268 311 324 118 109 316 339	270 274 313 120 320	2 18 1766, Sept. 22 17 22 20 1767, Sept. 12 12 27	Tauri Tauri η Tauri	206 330 279 285 327	317 266 272	207 329 279 283 324
July 30 1758, Feb. 17 1761, Dec. 10 1764, Feb. 20	γ Virginis 19 Capricor. ν Geminor. θ^2 Tauri α Virginis	53 76 283 269 243 244 318 308 276 298	56 278 247 318 271	1768, Jan. 27 23 27 27 1769, Sept. 15 16	η Tauri η Tauri	70 251 197 182 235	185	68 248 194 179 235

GREENWICH—Continued.

Date.	Star.	m m	m'	Date.	Star.	m	mı	m'
1769, Sept. 20 20 20 20	67 Tauri κ Tauri 67 Tauri κ Tauri κ Tauri h Leonis	254 244 231 221 127 117 105 95 226 243	1	1791, Mar. 16 Apr. 7 June 12 1792, Mar. 27 1793, Apr. 19	κ Cancri δ Tauri λ Virginis α Tauri ξ Leonis	262 253 224 325	277 243 243 316 346	263 249 229 322
Nov. 18 1770, Apr. 7 28 July 19 1771, July 4	α Cancri e Leonis ζ Tauri ζ Tauri δ Piscium	28 43 260 283 276 272 108 104 246 223	25 261	1793, Apr. 19 1794, Mar. 5 7 Aug. 4 Nov. 8 Dec. 18	μ Ceti α Tauri γ Libræ α Tauri γ Libræ	329 277 214 268 67 100	259 205 282 58	333 276 215 268 69 99
Sept. 18 Dec. 24 1772, May 15	 ∂ Piscium β Capricor. κ Cancri Libræ α Libræ 	116 93 228 216 90 105 239 256 246 263	90 244 251	1795, May 4 July 25 Aug. 6 28 Oct. 6	η Libræ η Libræ ξ² Ceti η Capricor. δ Cancri	137 249 196 257 52	150 262 177 240 65	135 247 197 253 57
Aug. 17 Sept. 7 1773, Feb. 6 Sept. 7 Nov. 1	ζ Piscium β Capricor. α Cancri α Tauri α Tauri	130 108 232 220 282 297 319 310 296 287	231 284 317 294	Nov. 24 1796, Aug. 20 1797, Dec. 25 1798, Aug. 8 1799, Apr. 10	μ Ceti 33 Piscium 33 Piscium ε Geminor. 125 Tauri	243 105 243 65 273	225 82 220 68 270	244 104 244 69 277
1774, Nov. 18 1775, Aug. 1 Dec. 12 1776, Jan. 29 Mar. 30	α Tauri γ Virginis α Leonis α Tauri α Leonis	96 87 112 135 117 136 272 263 240 259	274 245	1800, May 5 July 4 Nov. 26 1801, Jan. 5	δ Scorpii η Virginis Ο Ophiuchi ζ Piscium β Virginis	106 322 235 215 322	345 239 193 345	318 232 220 318
Apr. 6 1777, Nov. 16 16 1778, Feb. 7 Dec. 31	γ Libræ ζ Tauri ζ Tauri μ Geminor. τ Tauri	212 226 270 267 68 65 219 220 235 229	275 73 224 241	Mar. 30 30 Apr. 24 May 24	β Virginis α Virginis α Virginis σ Leonis α Virginis	64 297 87 246 300	87 319 109 268 322	292 82 241 295
1779, Feb. 27 Oct. 30 Dec. 22 1783, Feb. 9	7 Cancri Geminor. 132 Tauri q Tauri 18 Tauri	254 267 52 60 312 310 219 206 217 204	316 222 220	Oct. 23 23 23 23 23 23	24 Tauri 7 Tauri 23 Tauri 27 Tauri 28 Tauri	231 237 92 282 265	219 225 80 270 253	234 240 95 285 268
May 16 Oct. 7 Dec. 6 6 30	π Scorpii φ Aquarii 17 Tauri q Tauri δ Piscium	270 282 312 290 297 284 197 184 236 213		1802, Mar. 14 Nov. 3	Tauri Tauri Tauri γ Cancri γ Capricor. δ Capricor.	60 77 280 132 299	48 65 293 115 281	62 80 276 137 304
30 1784, July 2 1785, Apr. 11	 δ Piscium τ Sagittarii q Tauri 17 Tauri 20 Țauri 	103 80 305 300 259 247 354 341 284 271	107 308 259 353 283	1803, Mar. 3 3 1804, July 17 Dec. 14	κ Geminor. κ Geminor. π Scorpii η Tauri 27 Tauri	293 74 213 252 270	301 82 224 240 258	289 70 213 250 267
11 11 i June 22 Àug. 16 1786, Mar. 5	21 Tauri 22 Tauri φ Sagittarii φ Sagittarii 17 Tauri	242 229 250 237 261 258 97 94 295 282		14 1805, Aug. 6 Sept. 7 7 1807, Dec. 14	28 Tauri λ Sagittarii θ Aquarii θ Aquarii ζ Tauri	252 280 276 66 226	240 278 256 46 223	249 285 279 70 222
5 5 5 Nov. 12 12	16 Tauri q Tauri 20 Tauri π Leonis π Leonis	257 244 213 200 249 236 294 313 91 110	211 246 290	1808, Oct. 31 1809, Feb. 27 Apr. 3	ζ Tauri δ Piscium 60 Cancri γ Scorpii γ Scorpii	245 250 257 99	118 222 265 268 110	240 250 261 104
Dec. 9 9 1787, Nov. 26 26 26	 ξ Leonis ξ Leonis η Geminor. η Geminor. μ Geminor. 	219 236 147 164 279 279 88 88 203 204	143 274 83	May 28 Sept. 28 Dec. 15 1810, Jan. 15	γ Scorpii 64 Tauri ζ Piscium δ Tauri 64 Tauri	99 308 243 269	89 286 233 259	95 303 239 265
26 1788, Oct. 18 18 Nov. 15	μ Geminor. i Tauri i Tauri ζ Tauri ζ Tauri	177 178 297 291 61 55 329 326 30 27	172 292 56 324 25	1811, Mar. 1 1 1812, Dec. 14 1813, Mar. 6 Apr. 17	α Tauri α Tauri μ Ceti μ Ceti γ Libræ	268 99 288 250 261	259 90 270 232 275	260 97 28 249 260
1789, Nov. 9 1790, Mar. 5 Aug. 17 Oct. 15 Nov. 17	κ Cancri κ Libræ ν Scorpii β Capricor. ε Piscium	140 155 321 334 216 227 223 211 257 234	139 326 221 223 252	17 Aug. 13 Sept. 14 1814, Oct. 1	γ Libræ y¹ Aquarii 27 Tauri μ Ceti μ Ceti	37 66 286 57	129 15 52 268 39	33 67 288 59

GREENWICH—Continued.

Date.	Star.	m m _i	m'	Date.	Star.	ın	mı	m
1827, Jan. 14 14 19 Dec. 8	κ Cancri κ Cancri i Virginis ω Leonis	8 0 293 309 70 86 30 51 272 289	292 69 35 273	1851, Apr. 6 Sept. 14 1852, Feb. 3	 m Tauri μ Ceti 63 Geminor. 30 Libræ 	275 110 268 47	270 94 276 62	275 113 273 44
8 1828, Mar. 23	ω Leonis 26 Geminor.	100 117 256 259	101 254	Oct. 24	30 Piscium 33 Piscium	211	188	245
1830, Jan. 5 Mar. 28 28	68 Geminor. α Tauri θ^1 Tauri θ^2 Tauri	277 285 257 248 290 280 312 302	276 256 288 311	1853, Mar. 26 28 May 20 22	κ Virginis β Scorpii 95 Virginis β Scorpii	294 265 123	108 305 285 135	280 261
28 28 29 Apr. 5 Oct. 5	264 B. Tauri 85 Tauri 117 Tauri τ Leonis θ^1 Tauri	249 240 339 330 312 308 270 293 263 253	248 338 312 276 262	Aug. 29 Sept. 20 Oct. 14 1854, May 6 Sept. 19	48 Geminor. 38 Arietis 33 Piscium i Leonis i Leonis	84 62 289 312 87	90 44 266 334 108	89 66 290 312
5 5 1 831, Jan . 26 Feb. 19 20	 62 Tauri 85 Tauri f Geminor. 48 Tauri 111 Tauri 	282 272 332 322 241 250 263 252 312 308	282 331 244 263 314	30 30 30 Oct. 11 Dec. 10	ω Sagittarii ω Sagittarii A Sagittarii 139 Tauri i Leonis	262 98 270 65 105	252 88 260 64 126	260 268 69
May 22 June 21 July 31 Oct. 21	l Virginis 7 Libræ 62 Ceti 62 Ceti 62 Ceti	301 323 247 233 107 88 301 282 51 32	304 247 105 299 50	1855, Apr. 7 23 Aug. 30 30 Oct. 24	X Sagittarii l Cancri o Piscium o Piscium o Piscium	107 295 262 71 301	109 308 240 50 280	290 26: 70 300
23 23 23 23 23	$ heta^1$ Tauri $ heta^2$ Tauri 75 Tauri $ heta^1$ Tauri 75 Tauri	298 288 329 319 207 197 48 38 138 128	300 330 209 50 140	1856, Jan. 12 Mar. 13 26 Sept. 20 1857, Apr. 2	29 Piscium 136 Tauri	198 272 289 332 252	174 270 299 330 265	20 27 28 33 25
23 23 23 Nov. 16 24	99 Tauri α Tauri α Tauri 33 Ceti π Cancri	68 58 286 277 61 52 224 201 8 24	70 288 63 221	May 6 6 27 Oct. 6 6	α Virginis α Virginis γ Cancri 27 Tauri 27 Tauri	314 73 340 219 125	336 95 354 206 112	30 6 33 22
Dec. 18 1847, Jan. 25 Mar. 24 24 26	119 Tauri 180 B. Tauri λ Geminor. λ Geminor. κ Cancri	245 241 232 221 223 230 148 155 266 282	248 229 223 148 267	26 28 Nov. 27 1858, Feb. 20 Apr. 25	χ Capricor. 70 Aquarii ε Piscium 20 Tauri 28 Virginis	266 300 314 291 283	250 278 292 277 306	270 30 31 29 27
Apr. 22 May 23 June 1 1848, Jan. 16 May 7	A ² Cancri υ Leonis ρ Sagittarii α Tauri 68 Geminor.	242 257 270 294 100 93 45 36 321 330	244 275 100 43 323	May 18 19 Aug. 30 30 30	83 Cancri α Leonis q Tauri q Tauri 20 Tauri	203 154 273 69 309	220 174 259 55 296	199 149 279 319
June 6 July 11 Aug. 21 Sept. 15 1849, Jan. 5	10 Sextantis θ Libræ γ Tauri ξ¹ Ceti θ¹ Tauri	69 88 339 351 105 94 44 24 296 286	73 340 104 40 295	30 Nov. 22 1859, Apr. 13 Sept. 21 Dec. 8	16 Tauri 136 Tauri 37 Sextantis μ Cancri 23 Tauri	37 91 231 67 305	24 89 253 78 292	3 8 22 6 30
• 5 5 5 5 Feb. 27	θ ² Tauri 264 B. Tauri θ ¹ Tauri 269 B. Tauri 85 Ceti	319 309 253 244 75 65 264 254 226 208	318 253 74 263 224	8 8 8 8	23 Tauri 28 Tauri 27 Tauri 17 Tauri 17 Tauri	46 310 354 104 287	33 297 341 91 274	30 35 10 28
Mar. 29 29 July 12 Sept. 5	III Tauri III Tauri / Piscium v Piscium v Piscium	284 280 71 77 134 112 217 196 140 118	285 72 130 214 137	1860, Jan. 4 4 4 Feb. 28 28	17 Tauri q Tauri 20 Tauri q Tauri 16 Tauri	3 ² 5 242 256 290 338	312 228 243 277 325	32 24 25 28 33
1850, Jan. 23 23 Mar. 23 June 1 Aug. 14	α Tauri α Tauri ο¹ Cancri 42 Aquarii γ Libræ	213 204 152 143 267 282 88 68 260 274	214 153 272 83 259	28 28 Mar. 4 5 Sept. 6	22 Tauri 20 Tauri ∂ Cancri 18 Leonis η Tauri	281 316 247 263 105	268 306 261 282 91	28 31 24 25 10
Dec. 17 1851, Jan. 15 15 Mar. 13	75 Tauri 64 Orionis 68 Orionis d¹ Cancri θ Cancri	272 262 240 239 283 283 346 359 276 273	275 244 287 352 282	6 6 1861, Mar. 19 June 25 Sept. 14	27 Tauri 28 Tauri 5 Geminor. 18 Aquarii π Capricor.	66 83 318 202 285	52 70 318 184 272	6 8 31 20 28

GREENWICH—Continued.

Date.	Star.	m	mı	m′	Date.	Star.	m	mı	m
			_ 0				0		-
1861, Sept. 14	ρ Capricor.	238	225	242	1872, July 22	60 Aquarii	84	63	8
Oct. 20	¿ Arietis	281	265	278	Aug. 15	σ Sagittarii	126	122	12
22	103 Tauri	264	258	259	Sept. 15	69 Aquarii	282	263	28
1862, Mar. 9	6 Geminor.	295	295	289	15	τ Aquarii	249	228	250
Apr. 15	43 B. Libræ	85	101	88	24	e Geminor.	274	277	27
July 15	κ Piscium	115	92	115	24	e Geminor.	63	66	6
21	v Tauri	121	112	118	Oct. 11	35 Capricor.	332	316	33
Sept. 3	π Sagittarii	185	179	190	14	33 Piscium	283	260	28
Oct. 11	κ Tauri	256	247	253	Dec. 9	f Piscium	212	190	210
11	κ Tauri	104	96	100	1873, May 1	39 Geminor.	276	280	279
Dec. 10	α Cancri	311	326	307	July 4	λ Virginis	318	337	31:
10	α Cancri	73	88	69	Aug. 9	τ Aquarii	242	220	244
1863, Jan. 27	∂ Arietis	251	236	247	Oct. 3	τ Aquarii	239	218	24:
27 Mar. 2	∂ Arietis α Cancri	300	316 316	297	Dec. 1	λ Cancri ο Arietis	44	55 220	4
		1 1	-		Dec. 1		237	220	24;
Apr. 26	κ Cancri	286	302	284	24	τ Aquarii	295	274	29
26 July 28	k Cancri 36 Sagittarii	93	109 240	90 249	1874 Jan 25	τ Aquarii 53 Arietis	41	20	4.
Oct. 23	16 Piscium	245	188	208	1874, Jan. 25	53 Arietis k Tauri	233 271	265	239
30	7 ¹ Orionis	277	275	273	30	c Geminor.	222	230	22
_	l ~	1					l	_	1
30 1864, Mar. 18	χ¹ Orionis A¹ Cancri	80	79	76	Mar. 26	λ Cancri 10 Virginis	323 264	335	322
1804, Mai. 18	A ² Cancri	231	245 293	230 277	May 19	c Geminor.	227	287 236	259
19	ω Leonis	269	286	268	July 8	53 Arietis	63	48	6
June 26	62 Piscium	306	284	302	Oct. 22	27 Piscium	244	221	240
26	62 Piscium	54	31	50	22	29 Piscium	246	223	25
26	δ Piscium	256	233	252	Nov. 19	10 Ceti	312	289	31
26	∂ Piscium	104	81	100	Dec. 19	π Arietis	283	267	280
Dec. 5	κ Aquarii	232	2 I I	230	1875, May 12	37 Leonis	335	355	33
1865, Mar. 3	68 Tauri	317	308	314	Oct. 16	ζ Arietis	232	217	230
July 3	α Libræ	314	331	318	16	7 Arietis	101	87	10
3	α Libræ	38	55	43	Nov. 21	Virginis	274	296	268
Nov. 4	64 Tauri	141	131	138	21	β Virginis	103	126	98
Dec. 30	115 Tauri	314	310	312	1876, Feb. 2	27 Arietis	291	273	296
1866, Sept. 28	75 Tauri	102	93	100	Apr. 7	f Virginis	296	319	290
28	α Tauri	67	58	65	11	b Scorpii	41	53	3
Nov. 16	67 Aquarii	305	284	301	May 5	50 Virginis	297	319	29:
20	ξ Arietis	249	230	245	Nov. 29	47 Arietis	292	276	290
27	o Leonis	281	299	285	1877, Jan. 30	45 Leonis ρ Leonis	55	76	59
27		67	85	70	30	•	272	293	260
1867, June 14	49 Libræ	236	248	238	30	ρ Leonis	110	131	104
Nov. 8	ro Ceti	270	247	266	Feb. 26	α Leonis	279	299	274
1868, Feb. 28 Mar. 1	μ Ceti θ² Tauri	34 ² 276	324 266	340 276	Nov. 20	q Tauri a Tauri	231	218 98	23
mai. I	θ¹ Tauri	255	245	255	20	q Tauri 20 Tauri	264	250	26
		1			!	— :			
May 4	l Virginis . 18 Leonis	268	290	271 287	20	20 Tauri 17 Tauri	79	66 28	79
1869, Jan. 24	120 Tauri	246	301 242	249	1878, Mar. 16	17 Tauri A Leonis	41 340	360	334
24	119 Tauri	221	217	223	June 5	π Cancri	301	317	29.
Aug. 2	α Tauri	70	61	73	Sept. 6	51 Sagittarii	288	280	29
Dec. 14	ξ² Ceti	310	291	311	Nov. 10	17 Tauri	263	250	26:
1870, Feb. 10	m Tauri	324	318	328	100.10	17 Tauri	82	69	8:
May 14	30 Libræ	324	338	320	10	20 Tauri	221	208	220
Aug. 17	μ Ceti	107	90	110	10	η Tauri	316	304	315
19	64 Tauri	123	113	127	1879, Apr. 30	83 B. Leonis	338	357	33
Sept. 16	i Tauri	86	79	91	May 3	q Virginis	222	245	219
Oct. 1	117 B. Sagittarii	307	304	302	July 28	α Scorpii	198	207	20
14	ζ Tauri	263	260	268	28	α Scorpii	150	159	15.
14	ζ Tauri	88	84	92	Aug. 25	142 B. Ophiuchi	248	253	25
1871, Mar. 3	η Caneri	295	308	298	Sept. 26	λ Capricor.	262	243	260
3	39 Cancri	274	287	277	Oct. 4	36 Tauri	98	87	9
Oct. 23	69 Aquarii	327	306	327	Nov. 18	σ Capricor.	274	262	280
23	τ Aquarii	274	253	274	22	16 Piscium	233	210	23
Dec. 20	ν Piscium	210	188	213	Dec. 22	101 Piscium	319	297	31
1872, Feb. 21	γ Cancri	249	262	250	1880, Jan. 20	ε Arietis	251	235	24
21	γ Cancri	124	137	125	Mar. 13	101 Piscium	298	277	29
May 19	65 Virginis	263	285	260	21	d ² Cancri	245	258	240
19	66 Virginis	269	291	266	Apr. 16	56 Geminor.	326	334	32:
22	ω ² Scorpii ω ² Scorpii	299 88	310 99	293 82	May 18 Sept. 13	p ² Leonis 50 Sagittarii	277 308	299 300	313
22									

GREENWICH—Continued.

Date.	Star.	m	mı	m'	Date.	Star.	m	m ₁	mʻ
1880, Nov. 17 19 19 19	υ Tauri η Geminor. μ Geminor. μ Geminor. ζ Geminor.	293 265 236 138 284	282 266 238 140 290	288 260 231 134 280	1886, May 6 June 23 Aug. 19 Sept. 7 Oct. 22	Tauri 24 Piscium v Piscium 190 B. Sagittarii 44 Leonis	291 107 84 319	84 63 313 50	292 103 81 316 34
1881, Jan. 5 12 Mar. 8 16	ζ Geminor. 19 Piscium 394 B. Tauri 14 B. Geminor. q Virginis	73 331 271 278 234	79 308 269 278 257	69 332 267 272 235	Nov. 21 Dec. 3	Pi. X 67. 46 Virginis h Aquarii 84 Aquarii 7 Virginis	32 131 256 272 132	53 153 234 250 155	37 134 251 268 136
16 May 4 Sept. 3 Oct. 5	q Virginis 5 Cancri 33 Sagittarii 6 Piscium 9 Piscium	139 270 231 259 293	162 282 226 236 270	267 235 258 292	1887, Jan. 5 5 6 6 6	f Tauri f Tauri θ² Tauri θ¹ Tauri α Tauri	292 55 47 71 239	278 41 37 61 230	292 55 47 71 239
9 Nov. 12 12 29 29	54 Arietis α Cancri α Cancri 16 Piscium 19 Piscium	31 263 105 283 272	14 278 120 260 249	26 260 102 282 270	12 12 12 28 28	45 Leonis ρ Leonis ρ Leonis 4 Ceti 5 Ceti	129 242 111 236 222	150 264 132 213 199	134 247 116 233 218
Dec. 30 1882, Apr. 1 Aug. 2 Sept. 20 Oct. 1	45 Arietis e Leonis 22 Piscium μ Sagittarii l Tauri	264 357 111 290 142	247 20 88 289 136	260 358 109 294 137	Feb. 6 Mar. 2 2 13 Apr. 30	3 Cancri α Tauri α Tauri γ Libræ 54 Cancri	248 187 164 105 309	259 178 155 119 324	253 188 165 105 313
2 22 24 Nov. 26 1883, Mar. 12	57 Orionis ** Aquarii 51 Piscium 64 Orionis **o* Arietis	79 330 203 104 300	78 310 187 104 283	75 330 199 101 295	30 July 1 Aug. 8 31 Sept. 28	o¹ Cancri ŋ Libræ 29 Ceti 45 Capricor. 42 Aquarii	212 332 144 284 321	227 345 122 265 301	216 337 142 279 317
July 17 Aug. 24 Sept. 14 14 1884, Feb. 6	16 G. Sagittarii 148 B. Tauri c ¹ Capricor. c ² Capricor. 120 Tauri	239 97 195 275 89	240 85 176 256 86	242 93 193 274 86	Oct. 12 12 26 28 Dec. 27	α Leonis α Leonis 70 Aquarii 54 B. Ceti 75 Tauri	268 83 288 316 277	288 103 267 293 267	272 88 284 314 279
Mar. 6 May 30 Dec. 30 1885, Feb. 20	A Geminor. 16 Sextantis 115 Tauri 38 Arietis 130 Tauri	246 267 256 202 256	253 287 252 184 254	245 269 254 198 255	1888, Oct. 20 1889, Feb. 9 12 Sept. 16 Oct. 5	μ Ceti i Tauri 63 Geminor. ζ Tauri 56 Aquarii	300 322 212 307 230	282 314 219 304 209	302 326 216 312 227
Mar. 22 22 27 27 28	111 Tauri 117 Tauri B. A. C. 3529 43 Leonis 75 Leonis	303 348 309 229 280	299 344 330 250 303	302 346 313 233 285	Dec. 31 1890, Jan. 15 Feb. 7	208 B. Sagittarii 85 Ceti 0 Libræ v Virginis v Virginis	265 223 74 275 94	258 205 89 298 117	259 227 79 275
Apr. 20 20 20 July 22 Aug. 20	Pi. VII 39 \(\lambda \) Geminor. \(\lambda \) Geminor. 29 Ophiuchi 95 B. Sagittarii	321 207 161 338 225	328 214 168 344 223	322 208 162 338 224	Apr. 7 30 30 May 3	32 Libræ v Virginis v Virginis Virginis Virginis K Virginis	143 232 145 353 345	157 255 168 13	138 232 145 350 342
Sept. 1 1 1 20 21	θ ² Tauri 264 B. Tauri 85 Tauri 18 Aquarii 150 B. Aquarii	84 141 45 305 245	74 131 35 288 225	82 139 42 302 241	June 2 29 29 Sept. 6 20	ω Ophiuchi 56 B. Scorpii β Scorpii 394 B. Tauri 24 Ophiuchi	308 90 90 112 237	318 102 102 110 244	30; 86 86 118 23;
Oct. 1 Nov. 17 Dec. 28 1886, Jan. 14 16	λ Geminor. 80 B. Piscium θ Virginis Ceti θ² Tauri	284 242 112 304 67	290 219 134 286 57	286 238 116 301 66	Oct. 27 Oct. 27 1891, Jan. 4 Feb. 17 Mar. 26	33 Piscium \$^1 Ceti 2 Libræ 121 Tauri \$^1 Virginis	293 242 63 230 121	270 222 82 226 143	29! 246 58 23!
16 16 16 16	 θ¹ Tauri 264 B. Tauri α Tauri α Tauri 26 Geminor. 	88 239 232 123 284	78 229 224 114 287	86 238 232 121 285	28 Apr. 18 20 Aug. 14 Oct. 15	ν Libræ 42 Leonis ν Virginis 26 Ophiuchi 30 Piscium	130 290 111 314 318	146 312 134 320 295	125 291 109 309
Mar. 9 9 9 Apr. 10	\$\frac{\xappa_1}{\xappa_1} \text{Ceti} \\ 64 \text{Ceti} \\ \xappa_1 \text{Ceti} \\ \xappa_2 \text{Geminor.}	259 74 107 241	240 54 88	256 70 105	1892, Feb. 1 7 7 Mar. 8	376 B. Aquarii 118 Tauri (S.) 118 Tauri (N.) 4 Cancri	235 285 285	212 281 281	23 28 28

GREENWICH—Continued.

Date.	Star.	m	m ₁	m′	Date.	Star.	m	m ₁	m'
1892, Aug. 11 Sept. 12	14 Ceti * Tauri 4 Cancri	31 95 103	8 88 114	35 99 105	1896, Oct. 27 Dec. 17 1897, May 4	52 Geminor. 7 Tauri 332 B. Tauri	240 330 132	246 316 126	236 329 129
Oct. 3 Nov. 30	τ Aquarii 122 G. Piscium 122 G. Piscium	329 329	307	334	June 18 18 July 13	151 B. Capricor.	327	308 353 226	332
Dec. 25 1893, Feb. 26 Apr. 18 21	351 B. Aquarii c Geminor. 32 Tauri 47 Geminor.	328 282 319 307 300	307 259 328 295 306	334 286 320 312 300	7 my 13 13 23 23 23	χ Sagittarii χ Sagittarii 17 Tauri 16 Tauri 16 Tauri	234 117 250 190 163	109 238 177 150	239 121 249 188 161
May 6 July 9 30 Oct. 19	λ Cancri b Sagittarii 32 Tauri 56 Aquarii 37 Capricor.	289 47 80 77 268	302 36 68 56	289 47 85 81 270	23 23 23 23	23 Tauri 17 Tauri Pi. III 135 · η Tauri 23 Tauri	314 101 154 292 36	301 88 142 279	313 100 153 291
19 25 30 Nov. 22 1894, Jan. 12	37 Capricor. 38 Capricor. 40 Arietis 4 Cancri <i>d</i> Arietis 24 Piscium	307 213 38 330 295	250 289 196 49 314 272	310 218 37 335 300	23 23 23 23 23 23	24 Tauri 7 Tauri 28 Tauri Pi. III 151 28 Tauri	62 57 320 98 28	23 49 44 306 85 15	35 60 55 318 97 27
20 Feb. 13 Mar. 16 23 25	c Geminor. 36 Tauri 4 Cancri 40 H. Virginis 2 Scorpii	297 321 257 117 88	307 309 268 137 101	296 324 256 113 85	23 23 Aug. 4 Oct. 3	105 B. Tauri Pi. III 164 89 Virginis 48 Sagittarii 2 Sagittarii	94 316 307 285 307	81 303 328 277 299	92 314 306 290 312
Apr. 9 10 11 16	3 Scorpii 2 Tauri 107 B. Aurigæ 49 Aurigæ \(\sigma\) Leonis	257 257 275 253 153	139 247 272 256 176	123 260 277 253 148	1898, Jan. 3 3 3 3 3	χ Sagittarii 17 Tauri 23 Tauri 17 Tauri 24 Tauri	32 240 302 112 277	24 227 289 99 264	37 238 299 110 274
May 12 30 Nov. 15 15 1895, Feb. 6	37 Leonis ζ Piscium 136 Tauri 136 Tauri 49 Aurigæ	248 48 301 44 208	268 26 300 43 211	244 54 302 45 208	. 3 3 3 3 3	η Tauri Pi. III 151 23 Tauri 105 B. Tauri 28 Tauri	281 239 53 238 294	268 226 40 225 282	279 237 51 236 292
Mar. 10 10 10 10 10	82 Leonis 83 Leonis Pi. XI 71 7 Leonis 83 Leonis	236 252 252 242 134	259 275 276 265 157	231 247 247 237 128	3 3 3 Mar. 13 13	27 Tauri η Tauri 27 Tauri α Scorpii α Scorpii	317 79 49 260 104	304 66 36 270 114	315 76 46 264 108
10 10 May 4 9	Pi. XI 71 τ Leonis τ Leonis π Scorpii τ Sagittarii	133 142 277 136 328	156 165 300 148 328	128 136 272 134 328	Apr. 29 May 2 June 5 Sept. 28 Nov. 22	€ Leonis 13 B. Virginis	204 326 96 252 228	222 349 94 229 205	200 324 101 254 230
June 26 26 July 16 Aug. 6	α Leonis α Leonis 47 Arietis 42 Aquarii 81 Aquarii	307 74 58 54 64	327 94 40 34 42	302 69 60 60 70	Dec. 23 23 1899, Jan. 19 Feb. 22 Apr. 17	47 Arietis 47 Arietis μ Arietis 90 B. Cancri 3 Cancri	303 56 242 300 351	286 40 224 314 2	300 53 239 296 346
7 12 Sept. 2 15 29	82 Aquarii B. D.+18° 325 ι Aquarii 83 Cancri δ Capricor.	212 99 286 85 250	190 81 266 102 231	217 102 291 80 255	May 26 July 19 19 Dec. 16 16	9 Sagittarii 88 B. Ophiuchi 26 Ophiuchi 175 H¹. Tauri 175 H¹. Tauri	98 67 89 248 129	98 73 95 246 127	103 71 93 244 124
29 30 Nov. 3 Dec. 10	δ Capricor. 58 Aquarii 19 Tauri 20 Tauri ψ Virginis	80 258 76 42 164	61 237 63 29 187	85 263 77 43 160	1900, Jan. 9 Feb. 6 7 Apr. 4 May 7	27 Arietis \$\psi\$ Arietis 39 Tauri \$\rightarrow\$ Tauri 19 Sextantis	336 322 230 256 287	318 307 219 251 308	331 317 225 250 286
1896, Mar. 1 19 27 27 Apr. 26	343 B. Virginis 18 Tauri 79 Leonis 79 Leonis 83 Virginis	61 256 316 72 274	84 243 340 95 295	58 256 312 67 271	June 2 July 11 Sept. 4 4	κ Cancri ξ Sagittarii 36 Sagittarii 36 Sagittarii π Arietis	285 296 247 95 277	301 291 243 91 260	282 300 251 100 272
May 21 June 22 24	u Leonis 4 Scorpii 38 B. Sagittarii	282 216 236	305 228 236	277 216 239	13 13 Oct. 3	13 Tauri 14 Tauri 27 G. Capricor.	253 277 257	240 263 244	248 272 260
July 20 28	τ Scorpii 21 Piscium	59 33	10	61 37	1901, Mar. 26 Apr. 22	68 Orionis B. D. +19° 1110	243 247	244 245	239

GREENWICH—Continued.

Date.	Star.	m	m ₁	m'	Date	Star.	m	mı	m'
1901, Apr. 22 28 May 31 June 4	57 Orionis. p³ Leonis 11 H. Librie 171 B. Sagittarii 74 B. Ophiuchi	253 255 211 137 269	251 277 224 131 276	0 248 257 216 140 274	1904, Dec. 20 1905, Jan. 10 10 17 18	α Tauri φ Aquarii φ Aquarii 318 B. Tauri 130 Tauri	0 246 248 108 224 284	237 225 85 218 282	245 242 103 224 286
July 28 Aug. 24 Oct. 23 27 27	21 Sagittarii 24 B. Sagittarii 12 Aquarii 29 Arietis 29 Arietis	242 224 263 229 133	241 225 241 211 115	246 228 261 224 128	19 Mar. 12 16 19 Apr. 12	26 Geminor. 48 Tauri 2 B. Cancri 56 Leonis 162 B. Geminor.	316 278 254 288 355	319 268 257 310	318 278 250 293 358
Dec. 18 18 1902, Feb. 12 12 13	λ Piscium λ Piscium ε Piscium ε Piscium ε Piscium 26 B. Arietis	215 141 326 33 263	191 117 303 20 243	211 137 321 28 258	12 15 15 17 May 15	162 B. Geminor. 44 Leonis 44 Leonis 7 Virginis 38 Virginis	5 260 102 306 347	14 280 123 329 10	265 107 311 351
15 16 Mar. 17 20 20	163 B. Tauri i Tauri 26 Geminor. ω Leo. (1st) ω Leo. (2d)	215 316 313 268 268	204 308 316 285 285	210 312 310 269 269	15 15 Sept. 19 Oct. 4 Nov. 7	38 Virginis k Virginis θ¹ Tauri Β. F. 2471 27 Piscium	17 234 78 251 239	40 257 69 250 215	21 238 79 248 234
May 12 June 18 18 Oct. 16 Dec. 4	12 Cameri Pi. XVI 3 ν Scorpii ζ Piscium β Capricor.	349 285 287 302 231	296 298 280 218	349 290 292 297 230	7 7 7 Dec. 9 1906, Jan. 4	27 Piscium 29 Piscium 29 Piscium 5 Tauri 52 Ceti	116 196 159 295 303	92 172 135 281 284	111 191 154 295 301
1903, May 2 June 2 Sept. 3 Oct. 30	68 Geminor. 4 Leonis 27 G. Capricor. ρ Aquarii ρ Aquarii	258 298 274 204 152	266 317 261 183 130	258 299 271 199 147	Feb. 3 3 4 4	y Geminor. α Tauri α Tauri το Tauri 115 Tauri 115 Tauri	198 228 117 288 55	208 219 108 284 51	203 230 118 290 58
Nov. 4 9 Dec. 2 4 4	ξ Arietis λ Geminor. W. B. II 1033 318 B. Tauri 318 B. Tauri	315 114 331 298 56	296 121 315 291 49	311 115 327 296 54	Mar. 2 29 Apr. 3	ζ Cancri b² Tauri 179 B. Tauri d² Cancri π Cancri	252 333 306 289 281	240 3 ² 4 ² 95 30 ² ² 98	256 335 307 294 287
10 10 31 31 1904, Mar. 22	d Leonis d Leonis 75 Tauri 75 Tauri θ¹ Tauri	325 27 322 33 321	348 50 312 24 311	331 32 320 31 319	5 6 27 27 Sept. 9	α Leonis χ Leonis 119 Tauri 120 Tauri α Tauri	307 266 282 338	147 329 263 279 329	132 311 269 285 340
Apr. 24 July 9 9	75 Tauri 10 Sextantis θ¹ Tauri θ² Tauri 264 B. Tauri	221 279 87 66 239	211 298 77 56 229	219 283 86 65 238	Nov. 5 19 Dec. 5 1907, Jan. 26	α Tauri ν Geminor. ο Sagittarii Χ Cancri ν Geminor.	3 95 283 37 290	355 97 277 52 292	99 278 42 295
9 9 Aug. 30 Sept. 29 29	α Tauri α Tauri ξ¹ Ceti γ Tauri γι Tauri	229 123 92 124 24	220 114 73 114 14	228 122 88 123 23	Feh. 23 Mar. 20 21 21 28	ζ Geminor. m Tauri χ¹ Orionis 57 Orionis b Virginis	243 309 244 278 315	249 303 242 278 338	248 313 248 282 318
29 29 29 29 29	$ heta^1$ Tauri $ heta^2$ Tauri $ heta^2$ Tauri $ heta^1$ Tauri 264 B. Tauri	270 292 61 83 244	260 282 51 73 234	269 291 60 82 243	Apr. 19 May 24 June 24 Sept. 24 24	56 Geminor. n Virginis ξ Ophiuchi μ Ceti μ Ceti	323 338 261 303 36	330 359 265 286	328 338 257 305
Nov. 20 20 Dec. 20 20 20	64 Ceti ξ¹ Ceti γ Tauri γ Tauri 70 Tauri	296 273 280 69 293	277 254 270 59 283	293 270 279 68 292	26 Oct. 2 24 Dec. 11	64 Tauri 8 Leonis i Tauri 290 B. Aquarii ð Tauri	234 98 71 279 337	224 117 63 256 327	237 103 75 276 341
20 20 20 20	75 Tauri B. D.+15° 633 θ¹ Tauri θ¹ Tauri 264 B. Tauri	232 283 334 25	222 273 324 15	231 282 333 24 287	17 1908, Mar. 13 13 23	68 Tauri 39 Cancri 40 Cancri 116 B. Ophiuchi	265 280 288 133	256 295 302 139	270 285 293

HAMBURG.

Date.	Star.	m	mı	m'	Date.	Star.	m	m ₁	m'
-				0			۰	0	۰
1882, Nov. 26	64 Orionis 64 Orionis	255 109	255 109	251 105	1892, July 19	72 Tauri v Tauri	227 93	217 83	232 98
1883, Jan. 4	κ Libræ	223	236	228	19	72 Tauri	116	106	121
11	117 G. Capricor. c^1 Capricor.	307	288	306	Oct. 3	τ Aquarii	294	272	297
11		324	305	323	93,33	e Piscium	131	110	136
13	15 Piscium α Tauri	258	235	255	1894, Jan. 12	24 Piscium	300	277	305
1885, Nov. 22 1886, Jan. 16	α Tauri α Tauri	264	255 223	263 231	Apr. 9	χ Tauri γ Tauri (comp.)	242 242	232	245 245
16	α Tauri	126	117	125	11	49 Aurigæ	234	237	234
1891, Mar. 26	l Virginis	245	266	241	1895, June 26	a Leonis	297	317	292
Apr. 25	κ Libræ	87	100	82	26	α Leonis	81	101	76
Nov. 10	τ Aquarii	193	171	194	July 17	ŋ Tauri	88	75	90
1892, Jan. 19	γ Virginis	305	328	301	Sept. 29	∂ Capricor.	260	241	265
Mar. 16	λ Virginis	128	147	123	29	δ Capricor.	70	51	75
June 6	λ Virginis	225	244	220	1896, Apr. 19	A Geminor.	239	247	235
8	∂ Scorpii	213	225	208					

HABANA.

1808, Apr. 5	60	Cancri	250	265	248	1811, July	15	a		313	304	31:
May 3		ω Leonis	205	222	205		26	ť	Virginis	273	295	278
809, Apr. 29	8	Libræ	247	264	252	Oct.	23	45	Sagittarii	305	298	30
29		α Libræ	252	269	258	1812, May	24	1	Libræ	243	257	244
29		α Libræ	114	131	119	Aug.	28	a	r Tauri	230	221	23
June 23	8	Libræ	272	289	277		28	a	r Tauri	110	101	11
23		α Libræ	277	294	282	Oct.	19	1	Piscium	253	232	25
28		β Caprico	r. 264	252	264	Nov.	24	0	r Leonis	188	207	19
28		B Caprico	r. 75	63	7.5	1	24	a	r Leonis	152	171	15
Nov. 12		β Caprico		257	268	Dec.	10	85	Aquarii	248	226	24
12		β Caprico	r. 73	61	72	Ī	10	87	Aquarii	235	213	23
810, Feb. 18		π Leonis	259	278	263	•	- 1	•	•	"		

JENA.

1905, Aug. 17	27 Piscium	271 248 267	1906, Apr. 5	130 150 135
23	89 Tauri	75 67 76		302 324 306
23	σ² Tauri	25 16 26		57 69 56
23	μ Ceti	250 232 249		289 288 286
Sept. 17	μ Ceti	100 82 98		83 82 80
18 19 19 1906, Jan. 4 Apr. 4	f Tauri γ Tauri γ Tauri ξ² Ceti π Cancri	83 69 82 215 205 215 133 123 134 320 301 319 278 295 283	July 2 1907, Jan. 26 Mar. 21 June 21 June 21 Mar. 21 June 21 Mar. 21 June 21	226 240 226 302 305 307 243 242 247 213 233 213

KASAN.

1890, Nov. 21	33	Piscium	227	203	229	1897, Dec.	6	1	a Arietis	266	250	265
Dec. 20		ν Piscium	293	272	293	i .	7	27	Tauri	214	201	211
891, Apr. 15		κ Geminor.	274	284	278	1898, Jan.	2		Arietis	341	325	339
15		к Geminor.	92	102	95	Mar.	I	125	Tauri	197	194	194
June 12		i Leonis	220	241	220		26	9	Tauri	284	270	28
Nov. 10	69	Aquarii	282	260	283	Apr.	1	54	Cancri	312	327	30
10	-	τ Aquarii	244	222	245	-	4		p⁵ Leonis	252	275	24
1894, Mar. 16		c Geminor.	341	351	340	July	30	l	λ Sagittarii	271	269	27
May 14		β Virginis	230	253	225	Nov.	22	19	Piscium	266	243	26
Dec. 8		π Piscium	269	248	273	ļ	22	19	Piscium	86	63	8
1895, Feb. 8		r Cancri	295	309	291	Dec.	19		κ Piscium	266	243	26
1896, Apr. 22		ν Leonis	243	262	238		23	47	Arietis	287	271	28
Oct. 16		e Aquarii	263	243	268	1899, Feb.	18	103	Tauri	221	215	21
1897, Apr. 12	19	Leonis	232	251	227	1	19	Ĭ	Geminor.	307	307	30
Dec. 2	22	Piscium	321	298	324	Mar.		56	Geminor.	249	257	24

KASAN-Continued.

Date.	Star.	m	m ₁	m′	Date.	Star.	m	m ₁	n
				•			-		
-O A	L Y!-		l		' TO	T	i .	l	l
1899, Apr. 19 July 20	h Leonis 7 Sagittarii	, 265	283	261	1905, Jan. 18	130 Tauri 70 Tauri	298	297	30
~ .		242	242	247 281	Feb. 13	,	227	217	22
	57 Sagittarii 29 Cancri	278	i .		13 Mar. 10	71 Tauri 389 B. Ceti	311	302	31
1904, Jan. 4	29 Cancri	108	255 121	245 111	Apr. 12	162 B. Geminor.	252	234 295	25 29
Feb. 24	θ¹ Tauri	21	1 11	18	Мау 13	56 Leonis	337	359	34
29	o Leonis	262	280	266	13	c Leonis	244	267	24
29	o Leonis	101	119	105	14	β Virginis	322	345	32
Mar. 22	7 Tauri	334	324	332	1906, May 1	o ² Cancri	340	355	34
22	7 Tauri	36	26	34	June 8	π Sagittarii	95	89	9
27	200 B. Cancri	339	355	342	July 5	115 B. Sagittarii	329	326	32
Apr. 24	83 B. Leonis	238	257	241	5	121 B. Sagittarii	246	243	24
May 21	o Leonis	292	310	295	Oct. 25	114 B. Capricor.	234	217	23
Nov. 23	α Tauri	144	134	142	25	c Capricor.	246	229	24
Dec. 20	θ^1 Tauri	303	293	302	Dec. 25	€2 Ceti	230	211	23
20	θ² Tauri	332	322	331	1907, July 23	ν¹ Sagittarii	278	273	27
20	48 Tauri	309	298	308	23	ν ² Sagittarii	265	260	26
20	γ Tauri	310	300	310	Aug. 18	₹ Ophiuchi	249	253	24
		1	1	KII	€L. 	1	<u> </u>	<u></u>	1
1876, Oct. 6	17 Tauri	239	226	242	1876, Oct. 6	20 Tauri	149	136	15
6	17 Tauri	101	•88	104	6	24 Tauri	285	272	28
6	16 Tauri	178	165	181	6	24 Tauri	56	43	5
6	16 Tauri	162	149	165	6	η Tauri	291	278	29
6	23 Tauri	303	290	305	6	η Tauri	50	37	5
		·]	KÖNIG	SBERG.		.'= = =	-	
1905, Sept. 9	B. D 18° 5646	258	245	253	1906, Apr. 2	B. D.+18° 1652	280	288	28
18	f Tauri	268	254	268	2	B. D. +18° 1653 π Cancri	308	316	31
18 18	B. D. + 12°485 f Tauri	33	19	33	4	α Leonis	,	280	26
Oct. 4	B. D 19° 4858	258	23 258	37 256	5 5	α Leonis	158	179	16
• • • • •		1 -	' -	1 1	!		i -		1
4	B. D20° 5003	308	308	305	6	χ Leonis	284	306	28
4	B. D. – 19° 4863 B. D. – 20° 5011	260	260	257	Tuly 3	B. D. + 7° 2412 8 Libræ	300	323	30
4	20 G Somittonii	295	295	293	July 2 Sept. 9	l	206	221	20
. 4 1906, Jan. 1	39 G. Sagittarii B. D. – 3° 14	255	255 264	253 284	Sept. 9 Oct. 11	75 Tauri θ Cancri	242	232	24 21
Feb. 8	π Cancri	215	i	220	. 11	θ *Cancri	132	146	13
Mar. 29	α Tauri	116	232	118	26	B. D 14° 6228	328	307	
Apr. 2	B. D. + 18° 1616	339	347	343	26	39 Aquarii	322	302	32 31
-					26	B. D14°6223	261	240	25
2	Berlin A. 2834	337	345	341	1907, Jan. 20	B. D.+ 3° 219	279	257	27
2	B. D. + 18° 1618 B. D. + 18° 1640	339	347	343	Feb. 25	ð Cancri			1
2	B. D. +18° 1641	270 272	278 280	² 75 ² 77	Feb. 25	o Caneri	235	250	24
	<u>i</u>		- KR	EMSM	U NSTER.				

LEIDEN.

1857, Sept. 29 Dec. 26 1858, May 20 Sept. 21 Oct. 21	128 B. Capricor. B.D.+18° 325 56 Leonis 82 Aquarii 210 B. Piscium	217 213 326 218 292	199 194 349 195 269	221 216 321 223 296	1859, May 7 Nov. 11 1860, Jan. 6 Mar. 1	82 Geminor. 7 Tauri 112 B. Aurigæ 112 B. Aurigæ 112 B. Aurigæ	283 299 258 249	265 289 254 246 113	279 298 254 246 113
Dec. 22 22 1859, Apr. 11 May 5 5	40 Cancri 39 Cancri 176 B. Cancri 112 B. Aurigæ 112 B. Aurigæ	30 42 269 325 54	45 56 284 322 51	26 37 264 322 52	June 1 Nov. 5	ð Cancri ð Cancri 50 G. Libræ ο¹ Cancri ο¹ Cancri	242 133 312 301 69	257 148 328 316 84	237 128 313 296 64

LEIDEN—Continued.

Date.	Star.	m	$\mathbf{m_{l}}$	m'	Date.	Star.	m	m ₁	m'
1860, Nov. 5 5 Dec. 19 1861, Apr. 19	o² Cancri o² Cancri 16 Piscium o Leonis 151 G. Ophiuchi	239 128 229 251 102	254 144 206 270 106	0 234 123 231 247 107	1865, Aug. 6 Oct. 4 Nov. 5 5 1866, Sept. 28	8 Aquarii 147 B. Piscium 115 Tauri 115 Tauri 99 Tauri	304 264 292 64 304	289 242 288 60 304	303 260 289 62 301
May 19 June 11 11 Sept. 26 26	13 B. Virginis Cancri Cancri Geminor. Geminor.	273 271 106 140 78	297 283 118 141 79	272 266 101 135 73	. 28 29 29 29 29	a Tauri 111 Tauri 111 Tauri 111 Tauri 117 Tauri 117 Tauri	292 240 114 294 59	284 236 109 290 55	290 239 112 293 58
Oct 15 15 15 15 15	22 B. Piscium 9 Piscium 9 Piscium κ Piscium κ Piscium	297 254 87 213 127	274 231 64 190 104	299 255 88 214 129	1867, Oct. 16 1868, Feb. 8 11 11 28	85 Tauri A Leonis k Virginis k Virginis μ Ceti	75 50 321 46 335	65 70 343 68 317	74 55 325 49 332
19 20 Dec. 23 1862, Mar. 15	B. D.+18° 325 \$\zeta\$ Arietis \$e\$ Leonis \$e\$ Leonis \$e\$ Leonis	5 ² 70 273 276 102	33 54 296 299 125	49 66 272 275 101	28 Mar. 1 1 1	μ Ceti 71 Tauri 70 Tauri θ^2 Tauri θ^1 Tauri	35 306 130 275 254	17 296 120 265 244	33 306 130 274 254
Apr. 15 1863, Jan. 9 27 Mar. 2	43 B. Libræ 55 Leonis δ Arietis α Cancri α Cancri	273 92 104 293 87	290 114 88 309 103	277 91 100 291 84	I I I 1 28	θ¹ Tauri θ² Tauri 264 B. Tauri 85 Tauri γ Tauri	105 85 213 306 259	95 75 203 296 248	105 85 212 306 259
24 24 Apr. 2 Aug. 7 Oct. 23	51 Tauri 53 Tauri 13 B. Virginis ω Tauri 16 Piscium	199 48 326 293 216	188 37 349 282 193	194 42 327 288 214	May 4 27 Sept. 4 6 8	l Virginis 18 Leonis 33 Ceti μ Ceti 71 Tauri	262 279 282 227 278	284 298 260 209 268	265 284 279 225 279
30 Nov. 19 19 30 30	χ¹ Orionis κ Piscium 9 Piscium 60 Cancri 60 Cancri	79 255 289 259 100	78 232 266 274 116	75 253 287 258 99	8 8 8 8	71 Tauri θ ² Tauri 264 B. Tauri 264 B. Tauri 85 Tauri	71 256 208 139 36	61 246 198 129 26	71 257 208 139 36
Dec. 24 27 27 27 27 27	x² Orionis A¹ Cancri A¹ Cancri A² Cancri A² Cancri A² Cancri	89 263 108 306 72	88 278 123 321 87	84 262 106 305 71	8 8 9 1869, Jan. 23 23	α Tauri α Tauri 115 Tauri β² Tauri β² Tauri	215 138 122 311 35	205 128 118 301 25	215 138 124 313 36
30 1864, Jan. 24 24 Mar. 18 18	p³ Leonis κ Cancri κ Cancri A² Cancri A² Cancri	90 310 46 272 105	112 326 63 287 120	91 309 46 271 104	23 23 24 24 24	01 Tauri 264 B. Tauri 120 Tauri 119 Tauri 119 Tauri	60 267 246 221 129	50 257 242 217 125	61 268 249 224 131
19 19 Apr. 20 20 23	ω Leonis ω Leonis 49 Virginis 49 Virginis λ Libræ	266 102 241 125 250	283 120 264 148 263	265 102 245 129 255	1870, Feb. 9 10 11 11 July 10	63 Tauri m Tauri z² Orionis z² Orionis 158 G. Ophiuchi	262 320 337 21 258	252 314 337 21 261	265 324 342 25 253
Nov. 10 10 19 19 1865, Jan. 8	62 Piscium 62 Piscium κ Cancri κ Cancri 302 B. Tauri	258 108 228 128 315	235 85 244 144 307	253 103 228 128 311	Aug. 17 1871, Jan. 11 11 Oct. 23 23	μ Ceti ν Virginis ν Virginis 69 Aquarii 69 Aquarii	244 262 94 342 10	226 285 117 320 348	246 263 96 340
Feb. 9 Apr. 30 July 3	i Tauri k Cancri 67 Geminor. 8 Libræ a Libræ	330 275 260 301 311	323 291 269 319 329	326 276 260 306 316	23 23 1872, May 19 19 22	τ Aquarii τ Aquarii 65 Virginis 66 Virginis ω ¹ Scorpii	280 66 255 263 265	258 44 277 285 277	279 65 252 260 260
8	ρ¹ Sagittarii	221	214	1 -	22	ω ² Scorpii	291	303	287

LEIPZIG.

Date	Star.	m	m ₁	m'	Date.	Star.	m	mı	m'
1869, May 18 1870, June 16	α Leonis η Capricor.	326 303	346 287	331 298	1876, Oct. 6	23 Tauri 20 Tauri	312 204	299 191	0 314 206
1871, Nov. 18 1872, Aug. 15	ε Capricor. σ Sagittarii σ Sagittarii	233 243 124	215	231 238 120	6 6	η Tauri Anon. 24 Anon. 29	299 259 268	286 246 255	301 261 270
1875, Jan. 30 Feb. 13	31 B. Scorpii 36 Tauri 36 Tauri	308 233 137	321 221 125	304 237 140	6	Anon. 32 16 Tauri 17 Tauri	277 141 94	264 128 81	279 143 96
Mar. 16 16 Nov. 16	ω Cancri 4 Cancri 47 Geminor.	323	334	269 322	6 6	23 Tauri 20 Tauri 7 Tauri	134	121	136
1876, Feb. 2 Apr. 1	Arietis Geminor.	302 304 326	308 285 332	302 308 324	6 Nov. 30	Anon. 24 7 Tauri	41 79 231	28 66 218	43 81 233
June 29 Oct. 6	i Virginis 17 Tauri 16 Tauri	261 245 197	283 232 184	257 247 199	30 30 30	27 Tauri 28 Tauri 27 Tauri	270 253 75	257 240 62	272 255 77

NEAR LEIPZIG.

1876, Feb.	,	27	Arietis	304 285	308	1876, Nov. 30,	28	Tauri	253	240	255
	6	-,	r Cancri	316 330	313	1879, Dec. 27	132	Tauri	295	293	290
	6	16	Tauri	197 184	199	1880, Jan. 28	-3-	π Leonis	240	259	23
	6	16	Tauri	141 128	143	28	l	π Leonis	146	165	14
•	6	17	Tauri	245 232	247	Feb. 18	62	Tauri	307	297	30
i	6	20	Tauri	204 191	206	Mar. 13	101	Piscium	292	270	29
	6	23	Tauri	312 299	314	18	132	Tauri	239	237	23
i	6	•	η Tauri	299 286	301	25	13	B. Virginis	300	323	29
	6	24	Tauri	293 280	295	July 17	31	B. Scorpii	272	285	27
Nov. 30	0	-	η Tauri	231 218	233	Aug. 28	121	Tauri	250	247	24
30	0	26	Tauri	311 298	313	Sept. 25	1	Geminor.	250	250	24
30		27	Tauri	270 257	272	25	l r	Geminor.	107	107	10

MADRID.

	1869, Nov. 17	μ Ceti	285	267	286	1	869, Nov. 17	μ Ceti	52	34	53	
--	---------------	--------	-----	-----	-----	---	--------------	--------	----	----	----	--

NEUCHATEL.

1872, Aug. 15	σ Sagittarii	248	243	243			
		ľ	t	1	 1] !	1 1

NIKOLAIEFF.

1873, Apr. 30 May 1 1 5	139 39 40 42 8	Tauri Geminor. Geminor. Leonis Libræ	243 248 280 299 297	242 253 285 320 314	247 252 284 298 291	1	9 9 10 11	τ τ 376 B. 15	Aquarii Aquarii Aquarii Ceti Piscium	269 154 102 84 111	247 132 79 61 89	271 155 106 88 115
June 5 July 1	46	 α Libræ α Libræ ω Sagittarii Virginis b Virginis 	300 91 116 231 309	317 108 106 253 332	294 85 114 226 306		18 18 3 9	39 40 7 0	Geminor. Geminor. Aquarii Tauri Tauri	78 34 283 10 37	83 39 261 0	81 37 285 15 42
19 19	67	γ Virginis κ Tauri Tauri	90 118 96	113 108 86	87 123 101		15	ββ	Scorpii Scorpii	293 54	305 66	298 59

PADUA.

Date.	Star.	m	m ₁	m'	Date.	Star.	m	m ₁	m'
1891, Nov. 10	τ Aquarii τ Aquarii	0 224 113	0 202 91	o 226 115	1894, Nov. 20 Dec. 10	χ Leonis 66 Arietis	0 161 289	0 183 275	0 156 292
1894, Jan. 16. 16 July 17	ζ Arietis τ Arietis Α Sagittarii	230 301 247	215 286 236	234 305 249	11 11 1895, Mar. 29	χ Tauri χ Tauri ε Arietis	314 26 229	304 16 213	316 28 232
Aug. 23 23 23	27 Tauri 28 Tauri 27 Tauri	234 119 101	221 106 88	237 122 104	29 May 1	ε Arietis γ Cancri γ Cancri	135 270 118	119 284 132	138 266 114
Sept. 11	χ Capricor. χ Capricor.	191	175 124	194 144	July 9	δ Capricor. δ Capricor.	²⁵⁵ 71	236 52	260 76
Oct. 7 7 7 10	A Sagittarii A Sagittarii 50 Aquarii	219 115 251	209 105 230	221 117 256	Sept. 6 6 Dec. 28	62 Piscium 62 Piscium 20 Tauri	225 115 308	202 92 295	120 309
Nov. 7	70 Aquarii	258	236	263	1896, Jan. 19	14 Piscium	224	201	229

PARIS.

			1		<u>}</u>	1				ì	1
1810, Jan. 15		δ Tauri	249	239	245	1821, July 23	20	Tauri	93	81	94
15	64	Tauri .	274	264	270	Sept. 10	_	σ Aquarii	296	275	302
May 10	60	Cancri	303	318	306	Oct. 13	16	Tauri	273	261	274
June 15		γ Ophiuchi	237	247	240	13	17	Tauri	306	294	307
July 25	63	Tauri	228	218	225	13		q Tauri	239	227	240
25	63	Tauri	127	117	125	13	20	Tauri	269	257	270
Sept. 18		α Tauri	290	281	287	13	2 I	Tauri	234	222	235
18		α Tauri	66	57	63	13	17	Tauri	37	25	37
1811, Jan. 19		θ Libræ	39	54	42	13	16	Tauri	76	64	76
Mar. 1	275	B. Tauri	306	297	304	13		q Tauri	103	91	104
I		α Tauri	276	267	274	13		Anon. 4	70	58	71
1		α Tauri	92	84	90	13	20	Tauri	73	61	74
. 7		o Leonis	317	335	322	13	21	Tauri	108	96	109
Aug. 26	49	Libræ	298	310	300	13	22	Tauri	103	91	104
Sept. 2		λ Aquarii	329	307	324	1822, Feb. 8		υ Leonis	359	22	353
2		λ Aquarii	34	12	20	. 8		υ Leonis	17	40	13
2	78	Aquarii	284	262	278	Apr. 30		d Leonis	253	275	248
2	78	Aquarii	76	54	71	Dec. 25		η Tauri	291	279	290
Oct. 23		B. Sagittarii	262	257	260	1823, June 17	69	Virginis	330	351	329
1812, Jan. 23		α Tauri	197	188	197	1824, Mar. 12	-	v Leonis	283	301	279
23		α Tauri	752	144	7.53	Dec. 7		μ Geminor.	100	110	104
Oct. 19		v Piscium	273	252	153 270	31		γ Arietis	311	296	307
21	-	f Tauri	52	38	51	1825, Feb. 11		θ Ophiuchi	63	67	58
1813, Mar. 6		μ Ceti	258	240	257	Mar. 28		g Geminor.	222	231	217
July 12		π Sagittarii	292	286	287	June 27	19	Scorpii	332	342	337
Dec. 28		ψ¹ Aquarii	1	220		1	- /		1	288	1
1814, Oct. 1		μ Ceti	242	220	238	July 4		κ Aquarii κ Aquarii	309	12	310
1814, Oct. 1		μ Ceti	292	274	294	Sept. 4	67	Tauri	33	238	35 242
1817, Dec. 30		γ Virginis	267	31 290	51 263	Sept. 4	67	Tauri	108	99	103
1818, Feb. 13		A Tauri	260	249	265	4	0,	ж Tauri	222	213	217
			1	٠′ ا		1 ' 1			1	I .	1 .
13 Pak	39	Tauri	290	279	295	1826, Sept. 13		c ¹ Capricor.	294	276	294
1821, Feb. 6	62	Piscium ∂ Piscium	277	254	282	Oct. 24		κ Cancri π Piscium	102	118	101
_		Aurigæ	238	215	243	1827, Jan. 5 Feb. 10	60	Cancri	294	273	290 261
12 July 23	49	- S	293	295	291	Feb. 10 July 2		Virginis	306	277	1
July 23		•	219	207	220	1	49	· ·	1	328	311
23	20	Tauri	253	241	254	1829, June 13		μ Libræ	307	324	311
23	22	Tauri	221	209	222	13		μ Libræ	50	67	54
23	21	Tauri	210	199	210	Aug. 21	70	Tauri	51	41	49
23	21	Tauri	136	124	137	21		α Tauri	293	284	291
23	16	Tauri	94	82	95	Oct. 15		α Tauri	226	217	225
23		Anon. 4	90	78	90	15		α Tauri	127	118	125

35990°—12——8

POLA.

Date.	Star.	m	m _ւ	m′	Date.	Star.	m	mı	m′
1886, Apr. 8 8 Aug. 8 1887, Jan. 30 Mar. 2 2 8 July 16	α Tauri α Tauri 24 Scorpii ν Piscium α Tauri α Tauri ρ Leonis α Tauri	244 124 262 258 235 120 262 227	235 115 271 237 226 111 283 218	243 123 262 255 236 121 267	1894, Apr. 11 1895, June 26 Nov. 10 27 1896, July 20 1898, Mar. 13 1899, Apr. 28	49 Aurigæ α Leonis ρ Leonis ρ Leonis δ Piscium τ Scorpii α Scorpii θ Ophiuchi	251 301 276 110 263 303 256 264	254 321 297 131 240 312 266 268	251 296 271 105 267 304 260 269
1888, Aug. 20 Sept. 16	γ Capricor. 30 Capricor.	296 277	278 260	291 272	28 1901, Jan. 30	$ heta$ Ophiuchi ζ Tauri	92 196	96 193	97 191
Oct. 13 1893, Dec. 13 1894, Jan. 16 Mar. 22 Apr. 9	20 Capricor. χ Capricor. ζ Arietis α Virginis χ Tauri	245 243 232 281 264	229 224 217 303 254	240 246 236 276 267	30 Feb. 21 July 25 Oct. 29	ζ Tauri 51 Piscium κ Libræ ε Tauri	169 300 184 205	166 277 197 195	164 296 189 200

PRAGUE.

883, Oct. 18	68		Tauri	325	315	321	1885, Sept. 1	α	Tauri	218	209	210
23	1	к	Cancri	249	265	250	1	α	Tauri	. I 34	125	13:
23		κ	Cancri	110	126	111	Dec. 2	K	Virginis	193	212	19
Dec. 15		λ	Geminor.	64	71	63	2	K	Virginis	173	192	17
884, Feb. 6	119		Tauri	269	266	266	1886, Feb. 12	γ	Tauri	278	268	27
6	119		Tauri	102	99	99	Aug. 8	24	Scorpii	255	263	25.
6	120		Tauri	277	274	274	Dec. 3	h	Aquarii	271	249	26
6	120		Tauri	96	93	93	1887, Mar. 2	α	Tauri	213	204	21.
16	1	λ	Virginis	1 232	251	237	2	α	Tauri	143	134	14
16	1	λ	Virginis	132	151	137	8	ρ	Leonis	245	266	250
17		ν	Libræ	55	71	60	May 4	r	Virginis	213	236	210
Mar. 6	1	λ	Geminor.	236	243	235	1892, Jan. 19	r	Virginis	304	327	30
May 8	İ	λ	Virginis	230	249	225	Oct. 3	τ	Aquarii	300	278	30
July 3	32		Libræ	201	215	205	1894, Oct. 7	\boldsymbol{A}	Sagittarii	217	206	210
Oct. 9	130		Tauri	264	262	262	1895, Sept. 29	٠ ٥	Capricor.	271	252	27
9	130		Tauri	89	87	87	29	д	Capricor.	57	38	6
Nov. 25		θ	Aquarii	261	240	257	1898, Mar. 13	α	Scorpii	249	259	25.
885, Jan. 22		e	Piscium	293	272	288	13	α	Scorpii	110	120	11.
Mar. 22	111		Tauri	302	298	300					1	!
Apr. 24	1	đ	Leonis	217	239	222	1					

RADCLIFFE.

1862, June 9		Libræ	266	283	270	1869, Aug. 2	α		71	62	74
1863, Jan. 27	ð	Arietis	250	234	245	13	13	Libræ	208	225	207
27	ð	Arietis	107	91	102	Nov. 10	30	Capricor.	323	306	318
Mar. 2	α	Cancri	301	317	298	Dec. 14	₹2	Ceti	91	72	91
Apr. 29	e	Leonis	241	264	242	1870, Feb. 11	χ2	Orionis	351	351	356
29	e	Leonis	130	153	131	11	χ2	Orionis	7	6	11
Oct. 22	K	Aquarii	298	277	298	Aug. 9	4	Capricor.	328	316	324
23	16	Piscium	207	184	205	Oct. 1	117 B.		310	303	305
30	χ¹	Orionis	275	274	271	Nov. 9	68	Tauri	311	301	315
30	χ¹	Orionis	82	81	78	9	68	Tauri	28	17	31
Dec. 19	π	Piscium ⁻	317	295	312	1871, Oct. 23	69	Aquarii	325	303	324
864, Mar. 18	A^2	Cancri	279	294	278	23	τ	Aquarii	273	251	272
19	ω	Leonis	98	115	97	23	τ	Aquarii	72	50	91
Apr. 11	57	Orionis	120	119	116	Nov. 15	'λ	Sagittarii	280	278	274
866, Jan. 8	h	Virginis	352	13	357	18		Capricor.	211	193	209
8	h	Virginis	9	31	14 .	27		Tauri	275	268	280
Feb. 27	h	Leonis	279	297	282	Dec. i	i r	Cancri	260	274	264
867, Nov. 6	λ	Aquarii	269	247	264	1	r	Cancri	100	123	112
. 8	10	Ceti	269	246	264	20	ν	Piscium	208	187	211
868, Sept. 7	j	Tauri	237	219	233	1872, Jan. 23	ω	Geminor.	203	208	208
8	θ^2	Tauri	252	242	253	May 22	ω²	Scorpii	86	98	81
8	$\theta^{_1}$	Tauri	229	220	230	Aug. 12	l i	Libræ	259	271	254
9	111	Tauri	334	329	336	Sept. 15	60	Aquarii	283	261	283
869, Jan. 24	119	Tauri	219	215	222	15	7	Aquarii	248	225	248
24	119	Tauri	129	125	132	15	7	Aquarii	96	73	96

RADCLIFFE—Continued.

Date.	Star.	m	m ₁	m′	Date.	Star.	m	m ₁	m'
1872, Oct. 11 Dec. 9 1873, Jan. 22 Apr. 2	35 Capricor. f Piscium 28 Libræ 118 Tauri (S) 118 Tauri (N)	328 124 241 252 252	311 101 257 248 248	3 ² 7 1 ² 7 2 ³ 6 2 ⁵ 6 2 ⁵ 6	1874, Apr. 22 22 Dec. 16 19 1875, Jan. 16	ω Cancri 4 Cancri 29 Piscium π Arietis 63 Arietis	236 290 233 282 255	247 302 210 265 240	237 291 238 287 259
July 4 Oct. 3 Dec. 24 1874, Jan. 25 26	λ Virginis 69 Aquarii τ Aquarii 53 Arietis Α Tauri	318 283 293 234 284	337 261 271 217 273	313 285 295 239 289	20 May 12 Oct. 24 Nov. 8 1876, Feb. 2	c Geminor. 37 Leonis σ Leonis χ Aquarii 27 Arietis	304 334 145 319 289	313 357 168 296 271	304 331 141 324 294
27 30 Mar. 26	k Tauri c Geminor. λ Cancri	270 218 3 ² 3	264 227 336	275 220 324	Apr. 1 July 13	27 Arietis 47 Geminor. • Piscium	52 348 293	33 354 270	56 347 298

SANTIAGO.

1892, June 14 July 13 13 Aug. 2	κ Capricor. ψ² Aquarii ψ² Aquarii ρ Ophiuchi 66 B. Sagittarii	131 276 72 239 291	112 253 49 249 290	131 279 75 234 288	1896, Apr. 1 1 1 1 17	α Scorpii α Scorpii 116 B. Scorpii 116 B. Scorpii β Tauri	241 140 226 155 351	251 150 236 165 347	241 141 227 156 349
Sept. 7 Oct. 4 1894, Feb. 15 16	10 Ceti 27 Piscium κ Aurigæ ε Geminor. ε Geminor.	36 259 239 321 57	13 236 240 329 65	40 263 240 321 56	17 May 1 26 July 19 1897, Jan. 11	β Tauri 201 B. Sagittarii α Scorpii A² Scorpii 15 Arietis	16 95 290 239 264	12 88 300 251 244	98 291 239 265
16 26 26 Mar. 17	b² Geminor. σ Scorpii σ Scorpii ξ Cancri 90 H¹. Cancri	230 337 53 232 261	238 347 63 248 277	229 334 50 229 258	18 May 11 July 20 20 Aug. 1	η Cancri 75 Leonis η Piscium η Piscium 359 B. Leonis	67 221 281 56 271	81 244 259 34 294	62 217 282 57 267
1896, Jan. 22 26 27	ι Arietis 116 B. Aurigæ 25 Geminor.	210 250 304	189 247 307	213 248 301	14 17	16 Piscium ι Arietis	139 80	116 59	142 80

STRASSBURG.

873, Apr.		118 118	Tauri (S) Tauri (N)	252 251	248 247	256 256	1876, July 16			Anon. 10 Anon. 24	184	171	187
874, Aug. 3	31	29	Arietis	52	33	57	Oct. 5		ŧ	Arietis	242	225	245
	25		π Arietis	1 268	251	274	5		E	Arietis	110	93	113
	25		π Arietis	76	59	82	ĕ	17		Tauri	243	230	246
	9	19	Arietis	257	237	261	. 6	17		Tauri	96	83	99
876, Jan.	7		Anon. 19	247	234	251	6	23		Tauri	309	296	312
	7		Anon. 25.	291	278	294	6	23		Tauri	31	18	33
	7		Anon. 22	226	213	229	6	20		Tauri	201	188	204
	7		Anon. 13	192	179	195	6	20		Tauri	136	123	139
	7	26	Tauri	268	255	271	6	24		Tauri	291	278	29
	7		Anon. 30	267	254	270	6	24		Tauri	48	35	59
	7	27	Tauri	233	220	236	6		η	Tauri	297	284	299
	7	28	Tauri	214	201	217	6		η	Tauri	42	29	4:
	7		Anon. 40	282	269	285	6			Anon. 1	70	57	7.
	7	27	Tauri	109	96	112	6			Anon. 15	52	39	5.
-	10	47	Geminor.	285	291	284	6			Anon. 18	54	4 I	5
Apr.	4	34	Leonis	262	282	257	6			Anon. 24	80	67	8
_	7		f Virginis	288	311	283	6			Anon. 27	71	58	7
June	5	65	B. Scorpii	239	251	238	6			Anon. 29	72	59	7.
	19		i Virginis	266	288	262	6			Anon. 31	67	54	6
	6		Anon. 1	225	212	228	6			Anon. 32	62	49	6.
	16	•	Anon. 1	114	101	117	6			Anon. 37	42	29	4
	6		Anon. 7	106	93	109	6			Anon. 39	63	50	6
1	6	23	Tauri	260	247	263	1877, Mar. 23		K	Geminor.	315	325	31
	6	23	Tauri	79	66	81	26		ρ	Leonis	134	155	12
	6		Anon. 9	204	191	206	Apr. 26	85		Virginis	218	239	21
	6		Anon. 8	200	187	203	May 31	17		Capricor.	60	46	6
	6	24	Tauri	246	233	249	Aug. 29		μ	Arietis	62	44	6.
I	6		η Tauri	251	238	254	30	2 I		Tauri	36	23	3

STRASSBURG—Continued.

Date.	1	Star.	m	mı	m'	Date.	Star.	m	m ₁	m'
1877, Sept. 18 Nov. 20 20 1878, Feb. 15	20	Tauri	221 94 63 217	204 81 50 230	5 226 94 63 212	1880, Oct. 15 1881, Jan. 9 July 5 1882, Nov. 2	83 Virginis	252 226 294 246	0 229 211 315 262	253 222 297 245
Mar. 16 Apr. 13 May 26 June 27 Sept. 6	48 51	Cancri Leonis Leonis Piscium Tauri Sagittarii	334 278 96 94 297	354 299 73 84 288	329 273 99 92 302	2 1883, Jan. 4 12 May 17 Sept. 14 1884, Mar. 3	κ Libræ κ Aquarii χ Virginis	239 283 262 188 256	133 252 262 285 169 246	244 281 266 186 252
Oct. 5 Nov. 10 10	17 20 17	Capricor. Tauri Tauri Tauri Tauri	251 279 241 67 106	235 266 228 54 93	256 277 239 65 104	July 11 11 Aug. 15 1885, Jan. 22	θ Aquarii θ Aquarii 115 Tauri c Piscium	278 290 70 90 293	268 269 49 86 271	274 287 66 88 288
1879, Jan. 6 Apr. 4 July 28	139 p	Tauri Tauri Scorpii Scorpii	108 336 306 209 133	95 335 328 219 143	106 332 303 213 137	22 28 Feb. 23 23 1886, Apr. 8	c Piscium l Geminor. 130 Tauri 130 Tauri c Tauri	66 259 258 114 232	266 256 112 223	260 257 113 232
Aug. 9 10 10 10	27	Tauri Anon. 22 Anon. 17 Anon. 19	73 202 143 93 110	56 189 130 80 97	71 199 140 90 107	8 14 Aug. 8 8 Nov. 12	α Tauri 48 Leonis 24 Scorpii 24 Scorpii γ Tauri	134 320 259 104 292	125 341 267 112 282	133 325 258 104 292
10 10 10	26	Tauri Tauri Anon. 34 Anon. 38 Anon. 40	147 96 50 78 88	134 83 37 65 75	144 93 47 75 85	1887, Jan. 6 6 6 Feb. 7	γ Tauri θ^2 Tauri θ^2 Tauri θ^2 Tauri θ^1 Tauri θ Cancri	54 3 ²² 28 56 204	44 312 18 46 219	54 322 28 56 209
Oct. 4 24 24 30 1 880, Jan . 16			84 255 78 125 259	7 ² 234 57 109 236	81 259 82 123 261	July 1 6 8	0 Cancri 7 Libræ 7 Libræ 8 Capricor. 42 Aquarii	331 37 67 40	157 334 50 54	147 330 36 62 35
28 28 Feb. 12 Mar. 18	π 9 132	Leonis	256 131 280 253 248	275 150 257 251 261	252 127 282 248 243	16 16 Aug. 12 Oct. 12 1898, Mar. 13	α Tauri α Tauri γ Tauri γ Tauri α Leonis α Scorpii	212 133 287 277 256	203 124 277 297 266	214 135 288 282 260
Apr. 11	47	Arietis	255	238	252	13	α Scorpii	105		109

TOKIO.

1905, Jan. 16 16 16 17 17	264 B. Tau 269 B. Tau 264 B. Tau α Tau α Tau	i 282 i 75 i 276	260 273 65 267 72	268 282 74 276 81	1905, Aug. 12 Sept. 11 1906, Jan. 6 13	σ α α	Sagittarii Aquarii Tauri Leonis Leonis	255 67 271 254 98	247 46 263 275 118	251 62 273 260 103
Feb. 20 Mar. 18	c Leon 44 Leon		75 330	57 314	Mar. 31	71	Orionis	324	323	323

UTRECHT.

1904, Feb. 24	α Tauri	262 253	260	1905, Feb. 21	η Virginis 110 B. Geminor. β Virginis β Virginis μ Ceti	42	65	46
Aug. 27	20 Piscium	260 237	255	Mar. 15		242	247	244
Sept. 2	89 Tauri	275 266	274	20		306	329	311
2	σ² Tauri	318 309	317	20		53	76	58
27	85 Ceti	258 240	255	Sept. 17		243	225	242
Dec. 20 1905, Feb. 13	85 Ceti 75 Tauri θ¹ Tauri 23 H¹. Cancri	96 78 231 221 249 239 285 297	93 230 248 288	17 18 18 Dec. 10	μ Ceti f Tauri f Tauri f Tauri γ Tauri	108 262 90 277	91 247 76 267	107 261 89 278

VIENNA.

Date.	Star.	m m ₁ m'	Date.	Star.	m	m ₁	m'
1869, Jan. 23	θ¹ Tauri 264 B. Tauri	0 0 0 0 309 299 311 288 278 289	1876, June 30 1877, Mar. 26	43 H. Virginis ρ Leonis	280 242	299 263	276 237
23 Apr. 16 1872, May 17	α Tauri 119 Tauri ν Virginis	287 278 288 309 306 313 254 277 253	Sept. 18 1878, Jan. 10 Mar. 7	30 Capricor. 51 Piscium 101 Piscium	235 293 273	218 270 251	240 297 275
Aug. 15 1873, Apr. 2 1875, Sept. 12 Dec. 7	σ Sagittarii 118 Tauri 33 Capricor. 44 Piscium 19 Arietis	246 241 241 243 239 247 310 293 313 237 214 242 270 250 275	16 Apr. 9 Aug. 6 Sept. 6 1879, Feb. 26	.4 Leonis 37 Geminor. 4 Scorpii 51 Sagittarii 26 Arietis	319 283 212 309 277	339 288 224 300 258	314 279 214 314 276
1876, Apr. 1 June 29	47 Geminor. . Virginis	332 338 330 261 283 257	Apr. 1	θ Cancri	242	255	237

WASHINGTON.

1839, June 23 July 6 6 6 6	ο 17 η	Scorpii Tauri Tauri Tauri Tauri	278 290 195 183 100 88 292 280 140 128	276 197 102 294 142	1862, Mar. 10 May 8 11 Aug. 1 Oct. 29	56 55 75 75 13	Geminor. Leonis Virginis Virginis Capricor.	217 278 287 266 232	224 300 309 288 218	212 277 290 269 236
Sept. 26 26 26 26 26	20 17 16 q	Tauri Tauri Tauri Tauri Tauri	252 240 56 44 91 79 121 109 86 74	254 57 93 122 88	29 1863, Feb. 23 Mar. 22 Apr. 9	40 36 105	Capricor. Arietis Arietis Sagittarii Tauri	243 235 254 118 265	229 219 237 113 259	247 230 250 122 259
Oct. 17 Nov. 19 20 20 20	ο ε 17 η	Capricor. Arietis Tauri Tauri Tauri	202 184 292 276 255 243 308 296 30 18	207 294 256 310 31	25 30 Aug. 24 27 30	29 29 c ¹ 51	Cancri Virginis Sagittarii Capricor. Piscium	236 291 202 243 289	249 314 198 224 266	233 294 206 244 286
Dec. 12 1840, Jan. 20 Apr. 19 19 May 6	78 t t	Aquarii Leonis Scorpii Scorpii Cancri	250 228 46 65 325 333 34 42 310 320	256 41 326 35 306	30 Sept. 24 Nov. 3 19	51 51 ω	Piscium Aquarii Leonis Piscium Piscium	63 225 288 246 202	40 204 306 223 179	61 225 288 244 200
July 10 Sept. 8 Oct. 13 Nov. 2	τ ! η !	Scorpii Capricor. Tauri Capricor. Capricor.	328 336 232 216 28 16 237 221 87 71	3 ² 9 ² 37 ² 7 ² 42 ⁹ 3	1864, Jan. 23 Feb. 13 14 14 16	53 43 43	l¹Cancri Arietis Tauri Tauri Orionis	279 242 330 52 281	293 226 319 41 280	277 237 325 47 277
3 1841, June 4 Aug. 1 Sept. 6	19 17 16	Aquarii Sagittarii Capricor. Tauri Tauri	262 243 71 73 282 268 293 281 255 243	267 74 288 291 253	16 25 May 20 June 20 July 23	49 z d	Orionis Virginis Libræ Sagittarii Piscium	101 172 245 356 30	100 194 258 349 7	97 176 249 358 26
6 6 6 6	20 17 16	Tauri Tauri Tauri Tauri Tauri	222 210 256 244 52 40 90 78 122 110	220 254 50 88 120	23 23 Aug. 12 Nov. 4	; E	Piscium Piscium Ophiuchi Sagittarii Capricor.	268 81 280 291 307	245 58 285 284 295	264 77 284 293 309
6 6 6 25 Oct. 6	2Ο 2Ι 22 21	Tauri Tauri Tauri Capricor. Geminor.	88 76 128 116 118 106 254 239 51 54	86 126 117 259 47	1865, Jan. 12 Feb. 2 Sept. 11	Α σ σ	Capricor. Cancri Arietis Tauri Capricor.	314 266 292 31 285	301 280 275 27 273	314 260 288 28 285
Nov. 27 27 27 27 27 1842, Jan. 21	17 16 20 q	Tauri Tauri Tauri Tauri Tauri	278 266 298 276 243 231 336 324 276 264	276 296 241 333 273	29 Oct. 12 12 12	60 60	Capricor. Cancri Cancri r Cancri r Cancri	289 315 43 217	277 330 58 232 159	288 317 45 218 145
21 21 21 24 1862, Feb. 4	q 21 22 ω I ΟΙ	Tauri Tauri Tauri Geminor. Piscium	247 235 240 228 248 236 252 257 322 300	244 238 246 250 320	1866, Jan. 31 Apr. 20 June 18 July 31	68 75 44 . 44	Leonis Geminor. Leonis Piscium Piscium	249 263 220 247 117	268 272 243 224 94	251 264 225 242 112

WASHINGTON—Continued.

Date.	Star.	m m ₁	m'	Date.	Star.	т	ı _ı m
1866, Dec. 24 24 1867, Apr. 8 18	£ Leonis £ Leonis 318 B. Tauri 96 Virginis	196 214 155 173 264 257 289 309	200 159 263 293	1876, Oct. 27 Nov. 23 24 Dec. 26	64 Aquarii 42 Aquarii 81 Aquarii μ Arietis	246 2 206 1 251 2	0 231 25 250 34 212 33 254
May 5 July 9	96 Virginis α Tauri α Tauri κ Virginis κ Virginis	82 102 286 277 87 78 285 305 81 101 297 288	284 86 288 85	27 1877, Apr. 22 22 July 6 6	q Tauri 45 Leonis 45 Leonis 16 Tauri 16 Tauri q Tauri	262 28 133 1 287 2 54	37 302 33 257 54 128 74 288
June 24 July 1 Sept. 28 1869, Jan. 28	 α Tauri 49 Leonis 24 Scorpii 64 Aquarii α Leonis α Leonis 	297 288 316 337 233 242 207 186 265 285 104 124	298 321 232 203 270 108	6 6 6 6	q Tauri q Tauri Anon. 4 Anon. 4 20 Tauri 20 Tauri	82 294 26 291 291 2	45 259 59 83 81 295 33 47 78 292 36 50
Feb. 15 15 19 1870, Jan. 5 Feb. 7	29 Ceti 33 Ceti 75 Tauri 182 B. Aquarii μ Ceti	273 251 237 215 282 272 234 213 274 256	270 235 283 230	6 6 6 6	Tauri Tauri Tauri Tauri Anon. 12 Anon. 6	253 2. 261 2. 77 281 2	40 254 48 262 54 78 58 282 20 34
Mar. 10 10 Sept. 6 1871, Feb. 28	ζ Geminor. χ¹ Orionis ζ¹ Orionis η Capricor. 141 Tauri	337 343 333 33 ² 3 ² 3 ¹ 313 297 244 243	343	Sept. 25 1878, June 14 14 Sept. 5	Anon. 2 μ Arietis 3 Sagittarii 3 Sagittarii σ Sagittarii	74 301 2 216 2 154 1	51 75 83 305 18 216 56 155 30 236
June 29 Sept. 7 22 27 Oct. 3	3 Scorpii 3 Geminor. 2 Sagittarii 33 Piscium 2 Tauri	305 316 70 70 234 226 69 46 268 262	230	Nov. 10 13 13 13	χ Tauri η Tauri ε Geminor. ε Geminor. ε Geminor.	82 104 267 85	71 80 91 102 70 262 89 81 70 263
3 21 27 Dec. 18 1872, Feb. 21	γ Tauri γ Capricor. 64 Ceti 24 B. Ceti γ Cancri	63 57 260 245 211 191 284 261 336 350	69 258 214 285 339	Dec. 2 7 7 1879, Feb. 3	ε Geminor. λ Piscium q Tauri Tauri ε Geminor.	76 268 2 299 2	89 81 53 86 55 266 86 293 76 268
21 Apr. 25 Sept. 21 21 21	γ Cancri Ophiuchi ω Tauri ω Tauri τα Tauri	10 24 103 110 301 290 27 16 232 222	306	28 28 Apr. 25 26 May 28	χ Tauri χ Tauri 125 Tauri 52 B. Geminor. 34 Sextantis	65 261 2 249 2	99 300 55 62 58 253 52 243 82 250
Oct. 15 15 1873, Feb. 5 28	37 Geminor. 33 Ceti f Piscium 67 Tauri 14 Ceti	97 102 258 236 282 260 212 202 234 211	262	June 30 Aug. 28 Sept. 6 6	48 B. Scorpii σ Capricor. η Tauri -27 Tauri 28 Tauri	205 I 235 2 277 2	64 256 92 216 22 232 64 274 46 256
Mar. 1 5 Aug. 6 6 1874, Aug. 20	μ Piscium 103 Tauri ω Sagittarii Α Sagittarii α Scorpii	245 223 274 268 270 260 274 264 295 305	249 278 268	. 6 6 6 6	23 Tauri 24 Tauri η Tauri 26 Tauri 27 Tauri	248 2 117 1 112 24	35 245 04 114 99 109 11 21 64 74
Dec. 19 1875, Aug. 13 Sept. 10 14	45 Arietis 234 B. Sagittarii A Sagittarii y Aquarii y Aquarii	235 218 267 259 238 228 236 213 112 89	240 241	6 6 6 Nov. 16 16	28 Tauri 23 Tauri Anon. 7 λ Sagittarii λ Sagittarii	95 96 128 1 337 3	82 9: 83 9: 15 12: 34 34: 53 36:
Oct. 3 3 20 Nov. 16 1876, Jan. 1	A Scorpii 3 Scorpii ω Cancri c Geminor. 70 Aquarii	267 279 236 248 71 82 322 331 60 38	263 233	Dec. 1 1880, Apr. 20 20 Sept. 12	∂ Geminor. ∂ Geminor. 36 Sextantis 36 Sextantis 117 B. Sagittarii	248 2 122 1 299 3 91 1	55 24; 29 11; 21 29; 13 8; 24 23;
10 10 Feb. 16 16 Mar. 4	c Geminor. c Geminor. A Scorpii π Scorpii 49 Aurigæ	238 248 143 153 129 142 301 313 331 334	142 127 298	14 17 1881, Jan. 7 Feb. 6 May 21	47 B. Capricor. κ Piscium 101 Piscium 32 Tauri 16 Piscium	308 2 265 2 276 2	85 200 85 310 43 260 63 270 30 50
4 5 5 May 4	49 Aurigæ c Geminor. c Geminor. f Virginis	29 32 324 334 56 66 249 272	323 54	July 18 Aug. 15 15 1882, Sept. 20	27 Arietis ∂ Arietis ∂ Arietis 21 Sagittarii	256 2 94	18 13; 39 25; 78 96 57 26;

WASHINGTON—Continued.

Date.	Star.	m	mı	m′	Date.	Star.	m	mı	m′
		•	0	•			. •	•	0
1883, June 14	62 Virginis	301	323	306	1907, Mar. 22	ζ Geminor.	295	291	290
July 21	c ² Capricor.	80	61	78	24	ð Cancri	303	308	298
Sept. 6	α Libræ	210	227	215	24	δ Cancri	85	90	80
6	α Libræ	135	152	140	Sept. 14	§ Ophiuchi	221	234	225
6	8 Libræ	192	209	197	Oct. 24	333 B. Tauri	106	91	102
16	21 Piscium	331	308	328	24	107 Tauri	292	278	288
1884, Mar. 3	68 Tauri	121	111	117	24	107 Tauri	59	44	54
Apr. 4	α Cancri	192	208	194	Nov. 16	117 G. Piscium	203	180	202
6	34 Sextantis	307	329	311	Dec. 11	336 B. Aquarii	335	316	337
6	34 Sextantis	63	85	67	1908, Jan. 18	η Cancri	101	105	96
Мау і	A ² Cancri	283	298	284	18	39 Cancri	100	114	105
1	A ² Cancri	91	106	92	18	40 Cancri	103	108	98
June 28	υ Leonis	290	313	295	29	21 G. Sagittarii	108	108	103
28	υ Leonis	73	~ 96	78	Mar. 7	30 B. Tauri	247	233	250
1906, Apr. 6	σ Leonis	334	348	330	10	η Geminor.	204	205	209
6	σ Leonis	52	66	48	10	n Geminor.	141	142	146
May 2	α Leonis	249	259	244	Apr. 6	141 Tauri	214	214	210
3	γ Leonis	297	311	293	9	39 Cancri	323	337	327
8	η Libræ	359	14	0	ģ	40 Cancri	333	348	338
8	η Libræ	16	31	16	13	ν Virginis	266	289	267
1	36 Sagittarii	1	1118	118	Tune 11	o Libræ	281	296	278
June 2	36 Sagittarii 65 Virginis	330	348	328	June 11	49 Sagittarii	119	111	114
25	7 Leonis	267	276	262	15	36 B Capricor.	255	242	251
Sept. 1	, Aquarii	221	211	226	16	36 B. Capricor.	107	93	102
Jept. I	Aquarii	128	118	133	July 17	30 Piscium	183	159	182
- 1	_ •			1	11	5		1	ļ
Oct. 8 Nov. 21	64 Orionis	99	91	95	17	30 Piscium 88 Virginis	162	139	162
	Capricor.	204	197	210	Aug. 3		259	280	258
1907, Feb. 22	45 Aquarii 15 Geminor.	253	241	258	9	49 Sagittarii 36B. Capricor.	238	230	232
1907, Feb. 22	15 Geminor. 16 Geminor.	230	223 296	226	10	36B. Capricor.	253	240	249
22	to Geninor.	303	290	299			1		ł

WILHELMSHAVEN.

1898, Nov. 22 1899, Apr. 15 17 19 1900, Jan. 11	19 7 3 h 67	Cancri	235 0 331 302 319	212 I 342 320 309	236 355 326 298 314	1900, July 11 1901, Oct. 17 1902, Feb. 12 14 16	 ξ Sagittarii ξ Ophiuchi ρ Piscium σ Arietis τ Tauri 	300 328 317 313 310	295 333 294 296 303	304 332 312 308 306
Feb. 6 6 Mar. 5 May 1 July 11	40 33		312 63 314 287 311	296 47 297 281 306	307 58 310 282 315	Apr. 21 June 18 July 19 1904, Feb. 24 24	α Virginis ν Scorpii ρ Sagittarii α Tauri α Tauri	296 281 220 259 104	318 292 212 250 95	301 285 221 257 102

Note.—The values of m for the occultations observed at the Cape of Good Hope during the years 1834 to 1895 inclusive are incorrect, m' having been substituted for u in the formula for v given on page 23. The error of m can not exceed 10? The erroneous values of m are published as they were used in the computation of the coefficients of t, the only ones depending on m. This error is of the nature of a small accidental error, and its effect on the final result is believed to be neglible.—F. E. R.

CHAPTER VIII.

EQUATIONS OF CONDITION, 1672-1747.

36. Had the present volume been arranged fully on the plan of that of 1878, tabular exhibits of the principal numbers employed in the reductions for parallax would have been given. But this exhibit would serve no purpose except for the revision of the work by correcting the adopted data. Now, such a number of preliminary corrections have been applied one after the other that no additional ones would be useful. The feeling of the writer is that the whole work well deserves being recomputed in great part. The labor of doing this would be much less than has been actually applied in the present work, because it could be done on a uniform system, the tabular places of the moon would be those derived from Hansen's tables after applying all the preliminary corrections The reductions for parallax should then be made with the definitive values of the lunar parallax. This question involves the decision upon the correct value of the compression of the geoid. The various values of this element have already been discussed. As the final outcome of this discussion the author is less confident than formerly that the value derived directly from geodetic measures of arcs of the parallel and the meridian should be given as little weight as Helmert has given them in deriving his value of the compression. This question belongs to the domain of geodesy, the data of which are continually improving in extent. We should expect that every year will throw more light on the subject. Theory also enters in, especially Clairaut's theorem on the relation between gravity and the compression. This subject would require a much more careful investigation than the author has ever been able to give it, and future geodesists will be in a better condition to reach a conclusion.

Whatever value of the compression be adopted the interesting question will still be whether it can be corrected by the occultations themselves. If so, the methods of correction can be readily derived from the discussions of the lunar parallax, etc., in our chapter on the corrections of Hansen's tables.

The author also deems it quite likely that the method of computing the reductions for parallax may be improved. A careful study of a subject like this often shows that one's predecessors have not adopted the best course at every point.

The probable inequalities of the lunar surface itself form another important set of quantities which have been ignored. These will be mentioned hereafter.

In arranging and solving the equations I have considered separately those made before and after 1750. The present chapter deals mainly with the earlier equations, but the form of the two groups is so nearly the same that we shall give such preliminary equations as are necessary to both series.

37. The coefficients of the equations of condition as found for each individual occultation have been formed by the formulæ and methods given in Chapter II. To facilitate their critical study the following statement of the meaning of the separate data is given:

The date, the place of observation, and the name of the star seem to require no explanation. Commonly the name of the star is that used in the author's Fundamental Catalogue and in the Catalogue of Zodiacal Stars of the American Ephemeris, but no rigorous rule has been followed.

The classification of the phases is twofold—immersion or disappearance indicated by I, and emersion or reappearance by E. When the occultation took place at the bright limb the letter B is added; for the dark limb no indication is given. Hence the absence of the letter B indicates a dark limb observation.

The symbols for the unknown quantities, nine in number, are at the top of each column of coefficients. Their significance is—

- λ , the correction of the excess of mean longitude of the moon over that of the star. Assuming the position of the stars to be final, λ would be simply the correction to the moon's mean longitude.
 - z, is equivalent to $-2e\delta\pi$, where π is the longitude of the perigee.
 - $i\theta$, is equivalent to sin $i\delta\Omega$, where Ω is the longitude of the node.
 - i, correction to the inclination of the moon's orbit.
- b_0 , the correction of the moon's tabular latitude, measured perpendicularly to the plane of the orbit, relative to the corresponding latitude of the star. Assuming the center of gravity of the moon to revolve around the earth in a great circle, b_0 is the difference between the centers of mass and of figure of the moon together with any common correction that may be required to the latitude of all the zodiacal stars.
- a_0 , the correction to the absolute right ascension of the star. In combining the equations this will be the mean correction to all the right ascensions of the stars, or all the positions of the equinox.
- δ_0 , the correction to the declination of the star, or, in combining the different equations, the mean correction to the declination of all the stars.
- ϵ , the correction to the tabular obliquity of the ecliptic as adopted in the author's Tables of the Sun.
 - P, the correction to the parallactic equation.
 - s', the apparent semidiameter of the moon as computed with the constant, $s_0 = 932''.58$.
 - D, the tabular apparent distance of the center of the moon from the star.

Assuming the elements and observations to be exact we should have D=s'. s'-D is therefore taken as the constant term of the equation of condition.

The manipulation of the equations would have been somewhat facilitated by changing all the signs in the equations from immersion so as to make the coefficients of λ positive throughout, but it was judged preferable to secure that uniformity of system which results from always using the excess of s' over D with its actual sign.

38. Coefficients of Equations of Condition, 1672-1747.

GROUP I-1672-1686.

Date.	Place.	Star.	Ph.	\	K	iO	<i>i</i>	<i>b</i> _o	α,	∂.	£	s'-D	Wt.
1672, Aug. 2 1676, Feb. 29 Mar. 18	Paris Paris Greenwich	τ Scorpii e Leonis ζ Arietis	I E I	+0.93 -0.78	+0. 96 +0. 52 +0. 88	+0. 07 -0. 37	-0. 47 -0. 32	+0.47 -0.48	-0. 07 -0. 06	+0. 39 +0. 16	-0. 01 -0. 29	+6. o	o. 3 o. 3 o. 3
Nov. 9	Greenwich Greenwich	28 Geminor. π Sagittarii	I		+0. 27 -0. 81								0. 3 0. 3
1678, Sept. 24 1680, Sept. 13 13 Nov. 7 1682, Feb. 15	Greenwich Greenwich Greenwich Greenwich Paris	45 Sagittarii α Tauri α Tauri α Tauri α Tauri θ¹ Tauri	I IB E E I	-1.07 +1.01 +1.10	-0. 72 -0. 94 +0. 89 +0. 99 -0. 77	+0. 12 +0. 17 +0. 06	-0. 25 -0. 38 -0. 13	+0. 28 +0. 42 +0. 14	+0. 12 +0. 20 +0. 18	+0. 12 -0. 12 -0. 14	+0. 28 +0. 39 +0. 12	+1.6 -5.0 +6.7	0. 3 0. 3 0. 3 1. 0
Mar. 14 14 1683, Feb. 5	Paris Greenwich Greenwich Paris Greenwich	θ² Tauri γ Tauri γ Tauri γ Tauri γ Tauri	I EB I I	+1.02 +0.70	-0. 74 -0. 66 +0. 64 -0. 13 -0. 15	0.00 +0.01 -0.21	+0. 19 +0. 33 -0. 69	-0. 19 -0. 33 +0. 72	-0. 17 +0. 08 +0. 11	+0. 19 -0. 19 +0. 16	-0. 21 -0. 26 +0. 59	$ \begin{array}{c c} -2.5 \\ -0.7 \\ +2.0 \end{array} $	1. 0 1. 0 0. 3 1. 0
Apr. 2 May 4 1684, Dec. 21 21	Greenwich Greenwich Greenwich Paris Paris	Tauri α Leonis α Leonis μ Geminor. μ Geminor.	I EB IB E	-0. 69 +0. 87 -0. 30	-0. 33 -0. 61 +0. 76 +0. 21 -0. 35	-0. 75 -0. 60 +0. 94	+0.422 +0.18 +0.11	+0. 78 +0. 62 -0. 95	-0. 28 -0. 01 -0. 09	-0. 13 +0. 20 +0. 02	+0.41 +0.40 -0,97	+2.3 +2.2 -2.7	1. 0 1. 0 0. 3 1. 0
21 21 1685, Oct. 17 1686, June 25	Paris Paris Paris Paris	μ Geminor. μ Geminor. ι Geminor. ι Geminor. ιδη Β. Leonis	IB E IB I	+o. 49	+0. 21 -0. 35 +0. 99 +0. 55	+o. 84 -o. 08	+0. 10 +0. 01	-0.85 +0.08	-0. 06 +0. 03	-0.05 +0.10	-0. 80 0. 00	-4.0 +1.7	1.0 1.0

GROUP II—1699-1720.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	b_{o}	$\alpha_{_0}$	ðo	ε	s'-D	Wt.
1699, Aug. 18 18 1701, Sept. 22 22 1705, Aug. 4	Paris Paris Paris Paris Paris	α Tauri α Tauri α Tauri α Tauri α Capricor.	IB E IB E IB	+0. 75 -0. 56 +0. 55 -0. 70	+0. 59 +0. 25 -0. 24 -0. 56	-0. 24 -0. 29 -0. 31 -0. 22	+0. 79 +0. 68 -0. 75 -0. 76 +0. 74	-0. 72 +0. 81 +0. 82 -0. 77	0.00 +0.14 +0.16 -0.29	-0.09 +0.13 -0.09 +0.13	-0.65 +0.71 +0.78 +0.50	+2.7 +1.3 -0.5 +0.9	I. 0 I. 0 I. 0 I. 0
Sept. 2 2 1706, Jan. 27 Apr. 21 21	Paris Paris Paris Paris Paris	τ Aquarii τ Aquarii λ Cancri η Leonis η Leonis	I EB I EB	+1.04 -0.80 -0.76	+0. 92 +0. 27 +0. 46	+0. 04 +0. 21 -0. 09	+0. 60 +0. 33 -0. 51 -0. 58 -0. 83	-0. 33 -0. 55 -0. 59	+0. 07 +0. 02 +0. 16	-0. 37 -0. 14 -0. 31	+0. 21 -0. 53 -0. 37	$\begin{vmatrix} -3.8 \\ +1.3 \\ -3.7 \end{vmatrix}$	1.0 0.3 1.0 1.0
May 24 Nov. 17 1707, Apr. 4 Sept. 3	Paris Paris Paris Paris Paris Paris	λ Virginis ο Piscium ρ Arietis α Scorpii α Scorpii	I I I EB	-1.02 -0.42 -0.52	-0.90 -0.38 +0.58	-0.41 +0.37 -0.56	-0. 17 -0. 08 -0. 11 +0. 60 +0. 56	+0.42 -0.39 -0.82	-0. 03 +0. 25 +0. 14	+0.44 +0.32 -0.09	+0. 12 -0. 32 +0. 75	+0.5 +7.9 -6.2	1.0 1.0 0.3 0.3
1709, Apr. 20 Sept. 23 23 1710, Dec. 4 1711, Sept. 30	Paris Paris Paris Paris Paris	r Leonis 20 Tauri 22 Tauri 17 Tauri 7 Tauri	I IB E I IB	-0. 82 -0. 88 +0. 53 -0. 88	-0. 65 +0. 02 -0. 01 +0. 79	+0.66 +0.11 +0.19 +0.04	0. 00 -0. 46 -0. 82 +0. 23 +0. 78	+0. 66 -0. 47 -0. 85 +0. 23	-0. 48 -0. 20 -0. 13 +0. 04	-0. 28 +0. 20 -0. 15 +0. 21	+0. 17 -0. 37 -0. 71 +0. 24	-2.9 +3.5 -2.8 +2.0	1.0 0.5 1.0 1.0
30 1712, May 15 1713, Dec. 1 1714, Mar. 20 21	Paris Paris Luxemburg Luxemburg Paris	η Tauri e Leonis τ Tauri 247 B. Tauri ο Tauri	E I I I	-0. 55 -0. 59 -0. 65	-0. 08 +0. 10 -0. 08	+0. 39 -0. 78 +0. 76	+0. 76 -0. 74 -0. 14 +0. 11	+0.84 -0.80 +0.77	-0. 43 -0. 09 +0. 01	-0. 15 +0. 03 +0. 06	+0. 20 -0. 70 +0. 75	-5.2 -0.3 $+2.4$	I. 0 I. 0 I. 0 I. 0
Apr. 6 6 Sept. 27 Oct. 2	Luxemburg Paris Luxemburg Luxemburg Luxemburg	o Tauri ξ Sagittarii ξ Sagittarii ω Tauri α Cancri	I E E E	+1.02 +1.03 +0.98	+0. 59 +0. 59 +0. 49	+0. 28 +0. 28 -0. 38	-0. 03 -0. 14 -0. 16 -0. 01 +0. 39	-0. 32 -0. 32 -0. 38	+0. 11 +0. 12 +0. 08	-0. 15 -0. 15 -0. 09	+0. 23 +0. 23 -0. 42	+3. 1 +3. 0 +1. 3	I. 0 I. 0 I. 0 I. 0
, 1715, July 21 Aug. 15 15 Oct. 9 Dec. 30	Paris Paris Paris Paris Paris	ð Piscium κ Aquarii κ Aquarii κ Aquarii κ Aquarii	IB IB E I	-0. 54 +0. 76 -0. 86	-0. 30 +0. 43 -0. 44	-0. 29 -0. 24 -0. 23	+0. 36 -0. 81 -0. 67 -0. 53 -0. 38	-0. 86 -0. 71 -0. 58	-0. 35 -0. 14 -0. 29	+0. 12 -0. 27 +0. 24	+0. 39 +0. 27 +0. 29	-1.0 -5.4 +6.5	0. 3 0. 3 0. 3 0. 3
1717, Sept. 25 25 25 25 25 1718, Feb. 9	Paris Paris Luxemburg Luxemburg Luxemburg	α Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	IB E IB E I	+1.05 -1.07 +1.05	+0.66 -0.67 +0.66	+0. 11 +0. 04 +0. 11	-0. 07 -0. 20 -0. 07 -0. 20 -0. 18	+0. 22 +0. 08 +0. 22	+0. 14 -0. 11 +0. 14	-0. 11 +0. 12 -0. 11	+0. 19 +0. 08 +0. 19	+2. 3 -3. 6 -0. 8	0. 3 1. 0 0. 3 1. 0
Sept. 9 9 1719, Apr. 22 22 22	Luxemburg Paris Paris Paris Luxemburg	337 B. Aquarii 337 B. Aquarii α Tauri α Tauri α Tauri	IB IB I EB I	-0. 58 -0. 84 +0. 76	+0. 64 +0. 30 -0. 27	+0. 76 +0. 02 +0. 02	-0. 02 -0. 02 +0. 49 +0. 62 +0. 49	+0. 76 -0. 50 -0. 62	+0. 21 -0. 09 -0. 08	+0. 24 +0. 14 -0. 12	-0. 19 -0. 50 -0. 55	-1.6 +2.0 -1.3	0. 5 0. 5 1. 0 1. 0
Aug. 21 Oct. 30 Nov. 26 1720, Apr 20 20	Luxemburg Paris Paris Paris Paris	γ Libræ α Tauri γ Tauri γ Virginis γ Virginis	I E IB I EB	+0.85 -0.78 -0.29	-0.63 +0.68 -0.23	+0.09 -0.08 -0.60	-0. 26 +0. 40 -0. 51 +0. 75 +0. 69	-0.41 +0.52 +0.96	-0. 08 +0. 12 -0. 36	-0. 17 +0. 19 -0. 04	-0. 33 +0. 42 -0. 11	-4.6 -0.5 +2.5	I. 0 0. 3 0. 5 I. 0

GROUP III-1725-1729.

1725, Feb. 19 1727, Feb. 27 Sept. 6 6 6 1729, Dec. 3 3 3	Luxemburg St. Petersburg Paris Paris Paris St. Petersburg St. Petersburg St. Petersburg St. Petersburg St. Petersburg St. Petersburg	A Tauri 9 Tauri 17 Tauri 9 Tauri 20 Tauri 17 Tauri 16 Tauri 20 Tauri 20 Tauri 21 Tauri 22 Tauri 23 Tauri 7 Tauri	I I E E I I I I	-1. 10 -0. +0. 80 -0. +0. 79 -0. +0. 98 -0. -0. 87 +0. -0. 77 +0. -0. 26 +0. -0. 79 +0.	. 19 + 0. 01 . 16 - 0. 25 . 15 + 0. 26 . 19 - 0. 01 . 91 + 0. 07 . 81 - 0. 14 . 62 - 0. 23 . 27 + 0. 30	+0. 02 +0. 51 -0. 52 +0. 02 +0. 22 -0. 47 -0. 71 +0. 91	-0. 02 +0. 57 -0. 58 +0. 02 +0. 23 -0. 49 -0. 75 +0. 96	-0. 14 +0. 21 -0. 07 +0. 10 +0. 05 -0. 01 -0. 13 +0. 15	+0. 27 -0. 20 -0. 24 -0. 27 +0. 19 +0. 18 +0. 12	-0. 02 +0. 47 -0. 48 +0. 02 +0. 26 -0. 36 -0. 59 +0. 83	+6.5 +3.6 -1.1 +3.5 +1.1 +3.5 +1.1 +1.4	I. O O. 3 I. O I. O I. O I. O I. O I. O
3 3	St. Petersburg St. Petersburg	28 Tauri 27 Tauri	I	-0. 78 +0. -0. 53 +0.	. 82 +0. 15 . 56 +0. 25	+0. 47 +0. 77	+0. 50 +0. 81	+0.09 +0.13	+0. 17 +0. 11	+0. 48 +0. 73	+1.2 +1.6	I. O I. O

GROUP IV-1736-1739.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	b _o	$\alpha_{_{0}}$	ð.	E	s'-D	Wt.
1736, Apr. 14 Aug. 1 Oct. 22 1737, May 7 July 22 1738, Jan. 2 2 2 2 2 2 2 2	St. Petersburg Petersburg St. Petersburg St. Petersburg St. Petersburg	 α Tauri α Tauri α Tauri ξ Leonis θ¹ Tauri 71 Tauri ρ¹ Tauri ρ² Tauri σ Tauri α Tauri 	I IB IB EB I I I I EB	-0. 99 -0. 98 -1. 05 +0. 42 +0. 80 -0. 52 -0. 90 -0. 85 -0. 79 -0. 52 +0. 49	+0. 04 +0. 22 -0. 61 -0. 33 -0. 63 +0. 54 +0. 93 +0. 87 +0. 82 +0. 54	+0. 30 +0. 07 -0. 01 +0. 20 -0. 10 -0. 03 0. 00 -0. 01 +0. 02 +0. 06 +0. 06	-0. 14 +0. 02 +0. 10 +0. 88 +0. 49 -0. 81 +0. 03 -0. 35 +0. 47 +0. 81 +0. 84	+0. 16 -0. 02 -0. 22 -0. 89 -0. 49 +0. 81 -0. 03 +0. 35 -0. 47 -0. 81 -0. 84	-0. 03 -0. 03 -0. 07 -0. 16 -0. 18 +0. 04 +0. 09 -0. 04 -0. 10 -0. 15	+0. 12 +0. 12 -0. 22 -0. 09 -0. 15 +0. 11 +0. 18 +0. 16 +0. 09 -0. 10	+0. 15 -0. 01 -0. 16 -0. 79 -0. 43 +0. 70 -0. 08 +0. 27 -0. 48 -0. 78 -0. 76	-3.4 -2.9 -0.7 +1.3 -2.0 +1.8 0.0 +0.8 +2.5 -1.1 -0.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Feb. 2	Paris St. Petersburg	α Tauri f Geminor.	EB I	+o. 87	-0.90	+0. 02 +0. 67	+0. 24	-0.24	-o. o9	-o. 15	-o. 19	0.0	I. O I. O
Aug. 8 8 Oct. 2 2 Dec. 23	St. Petersburg St. Petersburg St. Petersburg St. Petersburg Paris	71 Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	IB IB IB E I	-0. 57 -0. 72 +0. 80	+0.64 +0.80 -0.89	-0. 11 +0. 22 +0. 20 +0. 14 -0. 14	+0. 74 +0. 56 +0. 41	-0. 77 -0. 59 -0. 43	-0. 11 -0. 07 -0. 13	+0. 11 +0. 14 -0. 17	-0. 75 -0. 60 -0. 35	+0.4 +3.6 -4.5	I. 0 I. 0 I. 0 I. 0
1739, Oct. 23 23 24 24 24	Paris St. Petersburg St. Petersburg St. Petersburg St. Petersburg	a Tauri 85 Geminor. 85 Geminor. ∂ Cancri ∂ Cancri	EB IB E IB E	-0. 87 +0. 89 -0. 89	+0.98 -1.00 +0.99	-0. 22 +0. 22 +0. 10 +0. 05 -0. 07	+0.01 0.00 -0.01	-0. 22 -0. 10 -0. 05	+0. 06 -0. 03 +0. 06	-0. 06 +0. 07 -0. 14	-0. 28 -0. 02 -0. 11	+0. 2 -3. 9 +4. 4	1.0 1.0 0.3 0.3 0.3

GROUP V-1746-1747.

								1			1		1	l
1746, Mar. 26	St. Petersburg	17 Tau		I	-0.92	+0.7	12 +0. Q	4 – o. o8	-0.0 9	-0.06	+0. 25	-0.07	+0. 2	1.0
26	St. Petersburg	16 Tau	i	I	-o. 53	+o. 4	2 +0.3	7 -0. 73	-o. 82	-O. 22	+0. 12	-0.69	+0.9	1.0
26	St. Petersburg	23 Tau:	i	I	-o. 56	+0.4	4 -0.3	6 +0. 70	十0. 79	+o. 18	+0. 19	+0.67	+2.1	1.0
26	St. Petersburg	24 Tau	ri	I	-o. 87	+0.6	8 -o. ı	4 +0. 28	+0.31	+o. o5	+0. 26	+0. 27	+2.2	1.0
26	St. Petersburg	η Tau	i	I			67 -0. 1							1.0
26	St. Petersburg	28 Tau	i	I	-o. 8o	+0.6	3 -0. 2	2 +0.44	+0.49	+0.00	+0. 25	+0.41	+2.0	1.0
26	St. Petersburg	Ano	n. 8	I	-0.90	+0. 7	o +o. o	8 -o. i.	-o. i7	-0.06	+0. 25	-o. i3	+1.2	1.0
26	St. Petersburg	Ano	n. g	I			1 +0.0							1.0
26	St. Petersburg	Ano		I	-0. 45	+o.	15 +0. 3	0 -0. 7	-o. 87	-0. 23	+0. 10	-o. 72	+0.6	
26	St. Petersburg		n. 10	I	-o. 85	+o. è	6 +o. i	$\frac{1}{7}$ -0. 34	ı] −o. 38	-0. 12	+0. 24	-o. 30	+0.6	1.0
26	St. Petersburg	Ano	n. 15	I	-o. 8o	+o. 2	0 -0. 1	1 +0. 22	+0. 25	+0.03	+0, 27	+0, 21	+1.0	1.0
26	St. Petersburg		n. 18	Ī			ю -0. 1							1.0
26	St. Petersburg		n. 20	Ī			5 +0. 2							1.0
1747, Jan. 20	St. Petersburg	16 Tau		Ī			0 -0. 2							1.0
20	St. Petersburg	q Tau		Ī	-o. 86	+0.	6 -0.0	5 +0. 2	+0. 25	+o. o6	+0. 23	+0. 24	+0.9	1.0
20	St. Petersburg	21 Tau	ri .	T	-0.80	1+0	0.0	0.00	0.00	0.00	+0 24	+0.02	-2 I	1.0
20	St. Petersburg	20 Tau		Ť	-0.62	140.3	0 -0. 1	2 +0.70	+0.71	+0.16	+0.10	+0.61	-2 7	1.0
20	St. Petersburg	22 Tau		Î			8 -0.0							1.0
July 30	St. Petersburg	Ano		Ē			64 -0.0							1.0
30	St. Petersburg	20 Tau		Ē			6 -o. o							1.0
30	St. Petersburg	q Tau		Ē			0.0							1.0
30	Di. 2 Ciciobaig	y ruu	•	~	, 5. 09] "	, J	0. 1.	J. 14	1 3.03	3.23	3.10	7 9.4	1.0

Conditional Equations Which Have Not Been Used on Account of Weakness or Discordances.

Date.	Place.	Sta	r. Ph.	λ	, K	iθ	i	b _o	α ₀	<i>ბ</i> 。	£
1676, Feb. 29 June 29 Aug. 19 31	Paris Greenwich Greenwich Greenwich Greenwich	e Le k Aq o Saj Ma Ma	uarii E gittarii I rs IB	+1.01 -0.93 -0.81	+0. 02 -0. 74 +0. 88	+0.03	-0. I -0. 2 0. 0	-0. 09 -0. 52 -0. 43	+0. 08 -0. 23 +0. 02	-0. 25 -0. 40 +0. 14 +0. 01 +0. 01	+0. 32 +0. 44 -0. 35
1680, Jan. 16 Nov. 7 1683, Feb. 5 Apr. 2 1690, July 2	Greenwich Greenwich Greenwich Greenwich Paris	α Car α Tar γ Tar 119 Tar 27 Tar	uri IB uri EB uri EB	-1.17 +0.87 +0.98	-1.00 -0.14 -0.34	-0. 13 -0. 15	0. 0 -0. 5	-0.03 +0.52 +0.25	-0. 26 +0. 18	-0. 20 +0. 14 -0. 16 	-0. 03 +0. 51
1709, Sept. 23 23 1710, Dec. 4 1711, Sept. 30	Paris Paris Paris Paris Paris	q Ta 22 Ta 22 Ta 21 Ta 20 Ta	uri IB uri I uri I	-0. 36 -0. 40 -0. 05	+0.01 +0.33 +0.04	-0. 14 -0. 16	-0.9 -0.9 -1.0	-0. 93 -0. 91 -1. 00	-0. 25 -0. 20 -0. 21	+0. 05 +0. 06 +0. 07 -0. 02 +0. 16	-0. 79 -0. 75 -0. 85
30 6 6 1719, Apr. 22 Oct. 30	Paris Paris I.uxemburg I.uxemburg Luxemburg		gittarii IB gittarii IB uri EB	-0. 98 -0. 98 +0. 73	-0. 58 -0. 58 -0. 26	+0. 26 +0. 26 +0. 03	-0. I -0. I +0. 6	-0. 30 -0. 30 -0. 64	-0. 15 -0. 15 -0. 08	+0.01 +0.14 +0.14 -0.14 +0.13	+0. 38 +0. 38 -0. 57
30 6 6 6 6	Luxemburg Paris Paris Paris Paris	7 Ta 17 Ta 16 Ta 9 Ta 20 Ta	uri IB uri IB uri IB	-0. 93 -0. 89 -0. 57	+0. 20 +0. 18 +0. 12	-0. 12 +0. 18 +0. 36	+0. 2 -0. 3 -0. 5	+0. 26 -0. 39 -0. 82	+0.01 -0.15 -0.23	-0. 17 +0. 26 +0. 23 +0. 11 +0. 24	+0. 22 -0. 31 -0. 68
1733, Mar. 22 25 1738, Aug. 8	Paris St. Petersburg St. Petersburg St. Petersburg St. Petersburg St. Petersburg St. Petersburg	16 Ta ν Ge κ Ca 71 Ta θ¹ Ta θ² Ta	minor. I ncri I uri E uri IB	-1.00 -0.49 +0.69 -0.88	-0. 50 +0. 06 -0. 76 +0. 98	-0. 23 +0. 34 -0. 15 +0. 06	+0. 1 -0. 8 -0. 6 +0. 2	-0. 26 +0. 88 +0. 66 -0. 26	-0. 09 -0. 28 +0. 11 -0. 03	-0. 26 -0. 10 -0. 09 -0. 13 +0. 18 +0. 19	-0. 19 +0. 66 +0. 65

Discussion of the Equations of Condition, 1672-1747.

39. The fact that the moon's longitude is subject to fluctuations which can not as yet be expressed by any known formula prevents the general solution of the equations in their entirety. Even were this not the case the fact that seven of the unknown quantities vary with the time would render a single solution laborious. The point first stated renders it necessary to proceed by approximations. The first step is to determine the fluctuations in the mean longitude. This is facilitated by two circumstances. The first is the minuteness of the unknown quantities, which, with the exception of λ , are only small fractions of a second. The other is the smallness in the general mean of any correlation between the mean longitude and any of the other unknown quantities.

All the unknown quantities except λ are constant, or increase uniformly with the time. λ is therefore exceptional in being subject to unknown fluctuations. Our method of proceeding must therefore be by successive approximations. The first approximation will consist in determining λ , assuming that all the other unknown quantities vanish. As the latter are quite small, this proceeding will lead to a fairly precise correction of the mean longitude at various epochs. We shall divide the equations into groups extending through periods of time in which we may suppose the difference between the true values of λ and a value increasing uniformly with the time to be smaller than the probable error of the mean derived from the group. By representing these preliminary corrections to the mean longitude by a smooth curve we shall determine values which can replace λ in the equations. Each term containing λ is then to be carried over to the second member of its equation. We shall then have a system of simultaneous equations in which the unknowns will vary uniformly with the time.

By assigning to each unknown the form x+yt, all the equations could be solved by least squares as a single system. But this method would be so laborious that it is desirable to abbreviate it, which we can readily do without appreciably detracting from the weight of the final result. The process will consist in dividing the equations into groups, solving each group as if the unknown were a constant, and then, from the series of values thus obtained, finding the nearest expression increasing uniformly with the time. If we deem it remunerative we can reinsert these values in the normal equations and thus obtain a second approximation to the values of the unknowns. The question whether it is necessary to continue the approximations further can be considered later.

The divisions between the groups used in forming λ is shown by blank spaces, and the approximate mean epoch for each group will otherwise supply a sufficient guide in comparing the results.

The work of deriving the mean corrections λ consists in a solution by least squares of the several groups of equations for that unknown, all the other unknown quantities being supposed to vanish. As their values have been made as small as convenient by preliminary corrections, and as there is only a small systematic correlation between the corrections to the mean longitude and to the other elements, the preliminary values obtained in this way will probably differ from the best obtainable ones by quantities less than the probable amount of the accidental errors.

Thus if the equations be taken as expressed in the form

$$a\lambda = n$$

the normal equation will be

$$[aa]\lambda = [an],$$

and the solution will be

$$\lambda = \frac{[an]}{[aa]}$$
.

Equations in which the square of the coefficient a is less than 0.10 have been generally omitted, as the effect of systematic errors increases as their coefficient diminishes.

Systematic errors of phase.—The most troublesome feature of the equations is the systematic character of the errors to which certain of the observations are liable. Immersions at the dark limb, that is, before full moon, are indeed fairly free from such errors. Fortunately, these comprise nearly a majority of all the observations; but it is, on several accounts, desirable to utilize the entire series. The character of the systematic errors to which observations other than dark limb immersions are liable is readily seen. An observation of emersion is always liable to be recorded too late through the observer failing to catch the star at its first reappearance. We might suppose that a good observer should always know whether he has or has not actually seen the star emerge. But experience shows that, measured in this way, few or perhaps no observers are free from defects. As I have already remarked, experience shows that when an observer estimates an error of his observation, his estimate is commonly but a small fraction of the truth, perhaps between one-tenth and two-tenths.

In a phenomenon at the bright limb an immersion is necessarily recorded when the star disappears, which may be before it reaches the limb, and an emersion when it reappears, which may be after it has left the limb. The result of all three of these classes of systematic error is the same in sign; the actual distance of the star from the moon's center at the assigned moment is greater than the semidiameter. The residual of s'-D will therefore always be negative in sign. We must, therefore, always look with suspicion on abnormal negative values of s'-D in all three cases.

The liability to bright limb error varies of course with the quality of the telescope and the magnitude of the star. In the case of a star of the first magnitude, especially Aldebaran, the true phase should always be observed, yet exceptions appear now and then. The presumption is also in favor of any other first magnitude star being free from the error. We must also expect that, as the telescope has been improved, the number of defective observations of this class should diminish. This is found to be the case.

What was actually done was to make a general study of the residuals s'-D throughout the whole series in order to ascertain the frequency of seemingly abnormal negative values in the cases under consideration, and to form some estimate of the law of their variability with the time and the magnitude of the star. But it was not found practicable to formulate a universal rule applicable to all cases. What I actually did was to reject the equations in which, all things considered, the absolute term seemed abnormally large, while also following the rule of rejecting observations which there was strong reason to suspect a priori might be defective from the cause in question, even when not discordant.

40. For the purpose of discussion the observations have been separated into two series, the first comprising all those made before 1750, the second those made after that epoch. The observations of the first series have been discussed very fully in the author's Researches already often quoted. But the work has been carefully revised and such of the additional unknowns as it seemed advisable to include have been added to the equations.

The revision commenced with the Paris school of astronomers, whose work began about 1670. The observations made previous to that epoch, principally by Hevelius, are not so precise as to repay the labor of any further revision. The results have therefore been accepted as they stand in the Researches.

The circumstances under which the original records of the earlier Paris observations were examined and worked up by the author in 1871 are detailed in the former work, as is also the method of determining the clock correction. This is the weakest point in all the earlier observations. The clock correction was determined either by a rude meridian observation with the quadrant, or by equal altitudes, or by a combination of the two, the position of the quadrant being corrected by the altitudes. In this way it may be supposed that a fairly good result is derived for the actual time of determination. But as the clocks were not compensated, the uncertainty continually increased when, as sometimes happened, more than an entire day elapsed between the determinations. On examining his former work the author found no necessity of making a redetermination of the clock corrections. With some possible exceptions the mean time of the observations are taken as found in the Researches. The principal modification made in the absolute terms are due to the application of the correction to the moon's position and to that of the stars. Especially the values of D have been recomputed.

In the first series the number of discordant observations, saying nothing of those seeming to be affected with unduly large errors, is larger in proportion than it should be. It was necessary to exclude a number of discordant equations. Owing to the importance of observations at this epoch the excluded ones are given in a separate list. It is not impossible that if a re-examination of the author's Researches were made several of these equations might be made available by changes in the clock corrections. It will be seen that only two values of the weight are assigned. We might say three, if we include the weight zero given to the discordant observations. These are I and 0.3. Greater refinement did not seem to be necessary. Of course the weights are not uniform in their relation to the probable error; all that has been aimed at has been to have them uniform for the groups into which the equations are separated. For the purpose of solution the occultations of this series are divided into five groups, separated by well-marked gaps.

41. Corrections to the moon's mean longitude for the period 1672-1747.—From the equations of condition the following equations for the determination of λ were formed according to the method which has been outlined in §39:—

Group.	Mean Epoch.	Equa	ition.
I	1681	10. 9 $\lambda = -13.9$	$\lambda = -1.3 \pm 1.0$ $\lambda = +0.3 \pm 0.5$ $\lambda = -0.2 \pm 0.9$ $\lambda = -0.6 \pm 0.4$ $\lambda = -0.6 \pm 0.4$
II	1710	25. 2 $\lambda = +8.6$	
III	1727	7. 0 $\lambda = -1.1$	
IV	1738	14. 0 $\lambda = -8.7$	
V	1747	13. 4 $\lambda = -8.5$	

42. To solve for the other unknowns these values of λ were interpolated to a smoothed-off curve, substituted in the equations of condition, and the terms containing them transposed to the second members. But before the normal equations were formed, the equations of condition were modified by multiplying all the coefficients of α_0 and δ_0 by 3, so that, instead of α and δ we have as the unknowns $\frac{1}{3}\alpha$, $\frac{1}{3}\delta$. The equations of condition thus modified are as follows:

GROUP I-1672-1686.

Date.	Place.	Star.	Ph.	ĸ	iθ	b_o	1/300.	, 30°°	ε	n	₩t.
1672, Aug. 2 1676, Feb. 29 Mar. 18 23 Nov. 9	Paris Paris Paris Greenwich Greenwich Greenwich	τ Scorpii e Leonis ζ Arietis Geminor. π Sagittarii	I E I I	+0. 96 +0. 52 +0. 88 +0. 27 -0. 81	0. 00 +0. 07 -0. 37 -0. 64 -0. 43	-0. 02 +0. 47 -0. 48 -0. 69 +0. 48	-0. 03 -0. 21 -0. 18 +0. 39 -0. 27	-0. 42 +1. 17 +0. 48 -0. 51 +0. 45	+0.06 -0.01 -0.29 -0.56 -0.40	+1. 1 +7. 2 -8. 4 -6. 7 -4. 3	0. 3 0. 3 0. 3 0. 3 0. 3
1678, Sept. 24 1680, Sept. 13 13 Nov. 7 1682, Feb. 15	Greenwich Greenwich Greenwich Greenwich Paris	45 Sagi*tarii α Tauri α Tauri α Tauri α Tauri θ! Tauri	I IB E E I	-0. 72 -0. 94 +0. 89 +0. 99 -0. 77	-0. 14 +0. 12 +0. 17 +0. 06 0. 00	+0. 35 +0. 28 +0. 42 +0. 14 -0. 08	-0. 27 -0. 36 +0. 60 +0. 54 -0. 51	+0. 42 +0. 36 -0. 36 -0. 42 +0. 48	-0. 28 +0. 28 +0. 39 +0. 12 -0. 10	+2.8 +0.2 -3.7 +8.1 -0.6	0. 3 0. 3 0. 3 0. 3 1. 0
Mar 14 14 1683, Feb. 5	Paris Greenwich Greenwich Paris Greenwich	θ² Tauri γ Tauri γ Tauri γ Tauri γ Tauri	I I EB I I	-0. 74 -0. 66 +0. 64 -0. 13 -0. 15	0.00 0.00 +0.01 -0.21 -0.18	+0. 28 -0. 19 -0. 33 +0. 72 +0. 62	-0. 24 -0. 51 +0. 24 +0. 33 +0. 15	+0. 54 +0. 57 -0. 57 +0. 48 +0. 54	+0. 21 -0. 21 -0. 26 +0. 59 +0. 51	+3.7 -3.8 +0.5 +1.2 +0.3	1.0 1.0 0.3 1.0
Apr. 2 May 4 4 1684, Dec. 21 21	Greenwich Greenwich Greenwich Paris Paris	Tauri α Leonis α Leonis μ Geminor. μ Geminor.	I I EB IB E	-0. 33 -0. 61 +0. 76 +0. 21 -0. 35	-0. 24 -0. 75 -0. 60 +0. 94 +0. 84	+0. 39 +0. 78 +0. 62 -0. 95 -0. 85	-0. 15 -0. 84 -0. 03 -0. 27 -0. 18	+0. 33 -0. 39 +0. 60 +0. 06 -0. 15	+0.33 +0.41 +0.40 -0.97 -0.80	+3.5 +1.5 +3.2 -3.0 -4.0	I. 0 I. 0 O. 3 I. 0 I. 0
21 21 1685, Oct. 17 1686, June 25	Paris Paris Paris Paris	μ Geminor. μ Geminor. 1 Geminor. 167 B. Leonis	IB E IB I	+0. 21 -0. 35 +0. 99 +0. 55	+0. 94 +0. 84 -0. 08 +0. 10	-0. 95 -0. 85 +0. 08 -0. 57	-0. 24 -0. 18 +0. 09 +0. 51	+0.06 -0.15 +0.30 -0.87	-0. 97 -0. 80 0. 00 -0. 36	-2.8 -3.5 +0.9 +2.2	1.0 1.0 1.0 1.0

GROUP II—1699-1720.

Date.	Place.	Star.	Ph.	K	iθ	b _o	1/30T ₀	⅓∂₀ ———	, e	n	Wt.
1699, Aug. 18 18 1701, Sept. 22 22 1705, Aug. 4		α Tauri α Tauri α Tauri α Tauri α Tauri 33 Capricor.	IB E IB E IB	-0. 46 +0. 59 +0. 25 -0. 24 -0. 56	-0. 29 -0. 24 -0. 29 -0. 31 -0. 22	-0. 84 -0. 72 +0. 81 +0. 82 -0. 77	-0. 57 0. 00 +0. 42 +0. 48 -0. 87	+0. 21 -0. 27 +0. 39 -0. 27 +0. 39	-0. 79 -0. 65 +0. 71 +0. 78 +0. 50	" -4.5 +2.7 +1.4 -0.6 +1.0	I. 0 I. 0 I. 0 I. 0
Sept. 2 2 1706, Jan. 27 Apr. 21 21	Paris Paris Paris Paris Paris	τ Aquarii τ Aquarii λ Cancri η Leonis η Leonis	EB I I EB	-0. 78 +0. 92 +0. 27 +0. 46 -0. 31	+0.06 +0.04 +0.21 -0.09 -0.13	-0. 60 -0. 33 -0. 55 -0. 59 -0. 84	-1. 14 +0. 21 +0. 06 +0. 48 +0. 87	+0. 75 -1. 11 -0. 42 -0. 93 +0. 39	+0. 19 +0. 21 -0. 53 -0. 37 -0. 48	-2. 2 -4. 0 +1. 5 -3. 5 +0. 3	1.0 0.3 1.0 1.0
May 24 Nov. 17 1707, Apr. 4 Sept. 3	Paris Paris Paris Paris Paris	λ Virginis ο Piscium ρ Arietis α Scorpii α Scorpii	EB I I I	+0.47 -0.90 -0.38 +0.58 -0.63	-0.85 -0.41 +0.37 -0.56 -0.52	-0.87 +0.42 -0.39 -0.82 -0.77	+1.02 -0.09 +0.75 +0.42 +0.48	-0.81 +1.32 +0.96 -0.27 +0.36	+0.46 +0.12 -0.32 +0.75 +0.73	-0. 2 +0. 7 +8. 0 -6. 1 -0. 9	1.0 1.0 0.3 0.3 1.0
1709, Apr. 20 Sept. 23 1710, Dec. 4 Sept. 30	Paris Paris Paris Paris Paris	τ Leonis 20 Tauri 22 Tauri 17 Tauri η Tauri	I IB E I IB	-0.65 +0.02 -0.01 +0.79 +0.52	+0.66 +0.11 +0.19 +0.04 +0.36	+0.66 -0.47 -0.85 +0.23 +0.86	-1.44 -0.60 -0.39 +0.12 +0.48	-0.84 +0.60 -0.45 +0.63 +0.36	+0. 17 -0. 37 -0. 71 +0. 24 +0. 75	$ \begin{array}{r} -2.7 \\ +3.8 \\ -3.0 \\ +2.3 \\ -2.9 \end{array} $	1. 0 0. 5 1. 0 1. 0 0. 3
30 1712, May 15 1713, Dec. 1 1714, Mar. 20 21	Paris Paris Luxemburg Luxemburg Paris	η Tauri e Leonis τ Tauri 247 B. Tauri ο Tauri	E I I I	-0. 54 -0. 08 +0. 10 -0. 08 +0. 11	+0. 34 +0. 39 -0. 78 +0. 76 +0. 32	+0.84 +0.84 -0.80 +0.77 +0.32	+0. 39 -1. 29 -0. 27 +0. 03 -0. 21	-0. 27 -0. 45 +0. 09 +0. 18 -0. 06	+0.66 +0.20 -0.70 +0.75 +0.40	-0.8 -5.0 -0.1 +2.6 -2.4	1.0 1.0 1.0 1.0
Apr. 6 6 Sept. 27 Oct. 2	Luxemburg Paris Luxemburg Luxemburg Luxemburg	o Tauri & Sagittarii & Sagittarii ω Tauri α Cancri	I E E E	+0.11 +0.59 +0.59 +0.49 -0.55	+0. 32 +0. 28 +0. 28 -0. 38 -0. 16	+0. 32 -0. 32 -0. 32 -0. 38 -0. 42	-0. 21 +0. 33 +0. 36 +0. 24 +0. 33	-0.06 -0.45 -0.45 -0.27 +0.72	+0.40 +0.23 +0.23 -0.42 -0.40	-1.2 +2.8 +2.7 +1.0 -2.5	1.0 1.0 1.0 1.0
1715, July 21 Aug. 15 15 Oct. 9 Dec. 30	Paris Paris Paris Paris Paris Paris	δ Piscium κ Aquarii κ Aquarii κ Aquarii κ Aquarii κ Aquarii	IB IB E I I	-0. 75 -0. 30 +0. 43 -0. 44 -0. 37	+0.49 -0.29 -0.24 -0.23 -0.19	+0.61 -0.86 -0.71 -0.58 -0.42	+0. 21 -1. 05 -0. 42 -0. 87 -0. 66	+0.90 +0.36 -0.81 +0.72 +0.78	+0. 14 +0. 39 +0. 27 +0. 29 +0. 24	-5.6 -0.8 -5.6 +6.8 +1.9	0. 3 0. 3 0. 3 0. 3
1717, Sept. 25 25 25 25 1718, Feb. 9	Paris Paris Luxemburg Luxemburg Luxemburg	α Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	IB E IB E I	-0. 67 +0. 66 -0. 67 +0. 66 -0. 49	+0.04 +0.11 +0.04 +0.11 +0.07	+0.08 +0.22 +0.08 +0.22 +0.19	-0. 33 +0. 42 -0. 33 +0. 42 -0. 24	+0. 36 -0. 33 +0. 36 -0. 33 +0. 36	+0.08 +0.19 +0.08 +0.19 +0.17	-7. 2 +2. 1 -3. 4 -1. 0 -0. 6	0. 3 1. 0 0. 3 1. 0
Sept. 9 9 1719, Apr. 22 22 22	Luxemburg Paris Paris Paris Paris Luxemburg	337 B. Aquarii 337 B. Aquarii \alpha Tauri \alpha Tauri \alpha Tauri	IB IB I EB I	+0.65 +0.64 +0.30 -0.27 +0.30	+0. 76 +0. 76 +0. 02 +0. 02 +0. 02	+0. 76 +0. 76 -0. 50 -0. 62 -0. 49	+0.81 +0.63 -0.27 -0.24 -0.27	+0. 72 +0. 72 +0. 42 -0. 36 +0. 42	-0. 19 -0. 19 -0. 50 -0. 55 -0. 50	-0.9 -1.5 +2.2 -1.5 +1.3	0. 5 0. 5 1. 0 1. 0
Aug. 21 Oct. 30 Nov. 26 1720, Apr. 20 20	Luxemburg Paris Paris Paris Paris Paris	γ Libræ α Tauri γ Tauri γ Virginis γ Virginis	I E IB I EB	-0.83 -0.63 +0.68 -0.23 +0.41	+0.03 +0.09 -0.08 -0.60 -0.55	-0. 26 -0. 41 +0. 52 +0. 96 +0. 88	-0. 27 -0. 24 +0. 36 -1. 08 -0. 69	-0.66 -0.51 +0.57 -0.12 +0.66	+0. 18 -0. 33 +0. 42 -0. 11 -0. 08	+2.5 -4.8 -0.3 +2.6 -3:7	1. 0 0. 3 0. 5 1. 0

GROUP III-1725-1729.

1725, Feb. 19 Luxer 1727, Feb. 27 St. Pe Sept. 6 Paris 6 Paris 6 Paris	nburg A Tauri tersburg 9 Tauri 17 Tauri q Tauri 20 Tauri	I E E	-0. 99 -0. 19 -0. 16 -0. 15 -0. 19	+0. 16 +0. 01 -0. 25 +0. 26 -0. 01	-0. 17 -0. 02 +0. 57 -0. 58 +0. 02	-0. 78 -0. 42 +0. 63 -0. 21 +0. 30	+0.81 +0.81 -0.60 -0.72 -0.81	-0. 22 -0. 02 +0. 47 -0. 48 +0. 02	-2.4 +6.3 +3.8 -0.9 +3.7	1.0 0.3 1.0 1.0
3 St. Pe 3 St. Pe 3 St. Pe 3 St. Pe 3 St. Pe	tersburg 17 Tauri tersburg 16 Tauri tersburg 20 Tauri tersburg 23 Tauri tersburg 7 Tauri tersburg 28 Tauri tersburg 27 Tauri	I I I I	+0.91 +0.81 +0.62 +0.27 +0.82 +0.82 +0.56	+0.07 -0.14 -0.23 +0.30 +0.15 +0.25	+0. 23 -0. 49 -0. 75 +0. 96 +0. 48 +0. 50 +0. 81	+0. 15 -0. 03 -0. 39 +0. 45 +0. 27 +0. 27 +0. 39	+0. 57 +0. 54 +0. 36 +0. 21 +0. 57 +0. 51 +0. 33	+0. 26 -0. 36 -0. 59 +0. 83 +0. 45 +0. 48 +0. 73	+0.8 +3.3 +0.9 +1.3 +0.3 +1.0 +1.4	1.0 1.0 1.0 1.0 1.0

GROUP IV-1736-1739.

Date.	Place.	Star.	Ph.	к	iθ	b _o	½ α _ο	⅓ ∂₀	e	n	Wt.
1736, Apr. 14 Aug. 1 Oct. 22 1737, May 7 July 22	St. Petersburg St. Petersburg St. Petersburg St. Petersburg St. Petersburg	α Tauri α Tauri α Tauri ε Leonis θ¹ Tauri	I IB IB I EB	-0. 13 +0. 04 +0. 22 -0. 61 -0. 33	+0.30 +0.07 -0.01 +0.20 -0.10	+0.62 +0.16 -0.02 -0.22 -0.89	+0.06 -0.09 -0.09 -0.21 -0.48	+0. 30 +0. 36 +0. 36 -0. 66 -0. 27	+0. 56 +0. 15 -0. 01 -0. 16 -0. 79	7 -3.4 -4.0 -3.5 -1.3 +1.6	I. O I. O I. O I. O I. O
1738, Jan. 2 2 2 2 2	St. Petersburg St. Petersburg St. Petersburg St. Petersburg St. Petersburg St. Petersburg	$ heta^2$ Tauri 71 Tauri $ heta^1$ Tauri $ heta^2$ Tauri 264 B. Tauri	EB I I I I	-0.63 +0.54 +0.93 +0.87 +0.82	-0.06 -0.03 0.00 -0.01 +0.02	-0.49 +0.81 -0.03 +0.35 -0.47	-0.30 +0.54 +0.12 +0.27 -0.12	-0.45 +0.33 +0.54 +0.54 +0.48	-0.43 +0.70 -0.08 +0.27 -0.48	-1.5 +1.5 -0.5 +0.3 +2.0	1.0 1.0 1.0 1.0
2 2 2 2 Feb. 2	St. Petersburg St. Petersburg Paris Paris St. Petersburg	α Tauri α Tauri α Tauri α Tauri α Tauri f Geminor.	I EB I EB I	+0.54 -0.50 +0.87 -0.90 +0.19	+0.06 +0.06 +0.02 +0.02 +0.67	-0.81 -0.84 -0.33 -0.24 -0.87	-0. 30 -0. 45 -0. 03 -0. 27 +0. 15	+0. 27 -0. 30 +0. 45 -0. 45 -0. 12	-0. 78 -0. 76 -0. 35 -0. 19 -0. 83	-1.4 -0.2 +0.2 +0.5 -1.6	I. 0 I. 0 I. 0 I. 0
Aug. 8 8 Oct. 2 2 Dec. 23	St. Petersburg St. Petersburg St. Petersburg St. Petersburg Paris	71 Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	IB IB IB E I	+0.86 +0.64 +0.80 -0.89 +0.88	-0. II +0. 22 +0. 20 +0. I4 -0. I4	+0.51 -0.77 -0.59 -0.43 +0.36	+0.42 -0.33 -0.21 -0.39 +0.30	+0.51 +0.33 +0.42 -0.51 +0.57	+0.42 -0.75 -0.60 -0.35 +0.28	-1.5 +0.1 +3.2 -4.0 +2.3	I.O I.O I.O I.O
23 1739, Oct. 23 23 24 24	Paris St. Petersburg St. Petersburg St. Petersburg St. Petersburg	85 Geminor. 85 Geminor. 85 Geminor. 8 Cancri 8 Cancri	EB IB E IB E	-0.78 +0.98 -1.00 +0.99 -0.99	-0. 22 +0. 22 +0. 10 +0. 05 -0. 07	+0.57 -0.22 -0.10 -0.05 +0.07	+0. 21 +0. 18 -0. 09 +0. 18 -0. 18	-0. 45 -0. 18 +0. 21 -0. 42 +0. 42	+0.58 -0.28 -0.02 -0.11 +0.13	-1.6 -0.3 -3.4 +3.9 -5.9	1. 0 1. 0 0. 3 0. 3 0. 3

GROUP V-1746-1747.

35990°—12——9

43. From these equations of condition the following normal equations have been formed in the usual way:

Group.	Year.	к	iθ	b _o	1/3α,	¹∕₃∂₀	ŧ.	[n]
			Norn	nal equations	in ĸ.			,,
I	1681	+ 5.75	+0. 20	- 1.00	+ 2.31	- I.58	-o. 33	=+ 2.8o
11	1710	+10.86	+0.37	+ 0. 23	+ 5. ĭ9	- 3. 8 ₅	-o. 77	+ 6.19
III	1727	+ 4.67	+0.11	+ 1.03	+ 1.32	+ 1.83	+1. 18	+ 7.00
IV I	1738	+11.48	+0.40	+ 0. 24	+ 2.02	+ 5. 22	-0.43	+13.52
l v	1747	+11.08	-0.23	+ 0.65	- 0. 22	+10.01	+0.75	- 5.48
l		· '	Norm	al equations	in <i>iθ</i> .	''		• •
1	1681	1	+4. 24	- 4. 16	- Q. 14	- o. 38	-3.66	=-11.67
II	1710		+5.70	+ 3.40	- 0.47	- o. 99	+ŏ. 78	- 1.02
III	1727		+0.42	+ o. 58	+ 0.09	+ 0. 29	+0.50	– 1.25
IV	1738		+0.83	- 1.07	- 0. 20	- o. o5	-1.05	- 2.44
l v	1747		+o. 68	- 1.63	- 1.17	- o. 36	– 1. 38	+ 0.48
	• • • •		Norm	al equations	in b_0 .		•	
1	1681			+ 5.98	1 + 0.00	+ 1.60	十4. 97	=+19.79
II	1710			+15.97	- 1.03	+ 1.44	+5.46	+10.51
III	1727			+ 3.60	+ 1.97	+ 0.52	+3. 12	+ 4.04
IV I	1738			+ 6.67	+ 2.75	+ 1.13	+6. 15	– 1. 28
l v	1747			+ 4.79	+ 3.40	+ 0.96	+3.99	- 2.60
	- , , ,		Norma	l equations i	n ½α.	·	. 0 33	
1	1681	1				- o. 98	+0.64	=+ 3.97
II	1710	1			+14.24	- 1. 27	+1.21	+11.92
111	1727	1	1			- o. 76	+1.76	+ 5.92
IV	1738				+ 1.80	+ 1.06	+2.41	+ 2.29
l vi	1747				+ 2.48	- 0.05	+2.83	- 1.92
·	• • • •		Norma	l equations i	n / δ_0 .	ı ı		
1	1681	l				+ 3.57	+o. 89	=- 1.89
11	1710					+12.93	+0.03	+11.37
III	1727			. 		+ 3. 87	+0.52	- 1.07
IV	1738		l		۱ ا	+ 4.02	+0.73	+ 1.78
v	1747			. 		+ 9.50	+1.00	- 2.99
·		1		ial equations			•]
I	1681	[1		+4.60	=+17.50
II	1710			. . 			+8.49	+ 1.15
III	1727	l			·		+2.70	+ 3.99
IV	1738			. 			+5.73	- 2.04
v	1747	l			•		+3.36	- 2.36
	• • • •				1.			

It will be seen that, owing to the irregular way in which the observations are scattered around the moon's orbit, the coefficients of the unknowns in the normal equations are very irregular, showing that a solution of each group separately will lead to results of little weight. On the other hand, if we combine the five sets of normal equations into a single one, the true values of the unknowns will not be the same in all the equations, because they vary with the time. Of course, one way of apparently evading this difficulty would be to multiply by the time to include its coefficient as additional unknowns, but the variations thus obtained would be very uncertain compared with those to be subsequently reached through all the occultations. The easiest way of surmounting the difficulty is the following:

Let x be any one of the unknowns. Let x_0 and x_1 be the values of x at the respective epochs 1850 and an arbitrary epoch near the mean of all the groups under consideration, say 1720. The value of x at an interval τ after 1720 will then be

$$x=x_1\left(1-\frac{\tau}{1.30}\right)+\frac{\tau}{1.30}x_0.$$

The value of x_0 is so small that, τ being a small factor sometimes positive and sometimes negative, the last term of this expression may be dropped and regarded as belonging to the accidental errors, the magnitude of which it will not increase in any appreciable degree. We may therefore replace x by the unknown x_1 , its value at the mean epoch. The expressions to be used then become

Group I
$$x=1.28 x_1$$

II $x=1.05 x_1$
III $x=0.94 x_1$
IV $x=0.86 x_1$
V $x=0.79 x_1$

44. We thus form a single set of normal equations by multiplying the terms of the partial normals already given by the appropriate factors and adding. Doing this, the final normals for the values of the unknowns at the mean epoch become:

К	i0	<i>b</i> _o	½α _ο	⅓∂₀	ε	[n]
+40. 86 + 1. 15 + 0. 10 + 12. 01 + 4. 86 - 0. 21	+ 1. 15 +14. 62 - 4. 37 - 1. 55 - 1. 71 - 6. 34	+ 0. 10 - 4. 37 + 38. 46 + 4. 90 + 6. 10 + 23. 93	+12.01 - 1.55 + 4.90 +23.88 - 2.93 + 7.45	+ 4.86 - 1.71 + 6.10 - 2.93 +32.34 + 3.11	- 0. 21 - 6. 34 +23. 93 + 7. 45 + 3. 11 +25. 58	7, +23.96 -18.91 +37.02 +23.59 + 7.68 +23.75

On account of the correlation between b_0 and ε , we shall neglect b_0 in this preliminary solution. Putting therefore b_0 =0, and solving, we derive:

$$\begin{array}{c}
\pi = -2e \, \delta \pi = +0.44 \\
i\theta = \sin i \, \delta \Omega = -1.03 \\
\frac{1}{3} \alpha_0 = +0.54 \\
\frac{1}{3} \delta_0 = +0.12 \\
\varepsilon = +0.50
\end{array}$$
Epoch 1720.

CHAPTER IX.

EQUATIONS OF CONDITION, 1753-1908.

SECTION I.

GROUP VI-1753-1779.

Date.	Place.	Star.	Ph.	λ	κ	i0	i	b ₀ .	α_{o}	ð,		P	n	n'
1753, Apr. 19 Aug. 5 Oct. 5	Greenwich Greenwich Greenwich Greenwich Greenwich	β Scorpii Libræ 16 B. Capricor. β Capricor. β Capricor.	IB I I EB	-0. 13 -0. 74 -0. 77	一o. o3 十o. 73 十o. 77	+0. 97 -0. 03 -0. 03	-0. 19 -0. 57 -0. 52	-0. 99 -0. 58 -0. 52	+0. 19 -0. 10 -0. 08	-0. 04 +0. 16 +0. 16	+0. 65 +0. 53 +0. 48	+0. 27 -0. 14 -0. 79 -0. 83 +0. 89	$ \begin{array}{r} -3.9 \\ +2.3 \\ +3.5 \end{array} $	-4. 0 +1. 6
1754, Apr. 2 Nov. 21 1757, Apr. 3 July 30 1758, Feb. 17	Greenwich Greenwich Greenwich Greenwich Greenwich	κ Cancri ρ Aquarii γ Virginis 19 Capricor. ν Geminor.	I I IB IB I	-0. 92 -0. 65 -1. 15	+0. 06 -0. 98	+0. 05 -0. 53 +0. 13	+0. 04 +0. 55 +0. 01	+0.06 +0.76 +0.13	+0.06 -0.29 -0.19	+0. 11 -0. 16 +0. 16	-0. 11 +0. 07 -0. 18	-0. 79 -1. 00 -0. 06 -0. 03 -0. 82	+2.3 +6.1 +2.4	+5. 5 +1. 4
1761, Dec. 10 1764, Feb. 20 20 1765, Feb. 4 Sept. 25	Greenwich Greenwich Greenwich Greenwich Greenwich	 θ² Tauri α Virginis α Virginis γ Cancri δ Capricor. 	I IB E I I	-1.11 +1.05 -0.96	-0. 99 +0. 94 +0. 45	+0.01 -0.31 -0.04	0. 00 +0. 07 -0. 04	+0. 01 -0. 31 -0. 06	-0. 24 +0. 35 -0. 04	-0. 45 +0. 40 -0. 29	-0. 01 +0. 12 -0. 03	-0. 15 +0. 74 -0. 70 -0. 14 -0. 73	-6.4 -4.9 +1.2	-7. 2 -4. 6
Oct. 2 2 1766, Sept. 22 22 1767, Sept. 12	Greenwich Greenwich Greenwich Greenwich Greenwich	q Tauri 18 Tauri 17 Tauri 20 Tauri 17 Tauri	IB IB IB IB IB	-0. 42 -0. 51 -0. 98	+0. 35 +0. 06 +0. 12	+0. 15 +0. 13 +0. 02	-0. 88 +0. 85 +0. 15	-0. 90 +0. 86 +0. 15	-0. 21 +0. 31 -0. 04	+0. 08 +0. 13 +0. 23	-0.90 +0.76 +0.18	+0. 58 +0. 30 +0. 37 +0. 71 +0. 81	-5.7 -3.3 -0.1	-6. o -3. 6 -0. 7
12 12 1768, Jan. 27 27 27	Greenwich Greenwich Greenwich Greenwich Greenwich	27 Tauri 7 Tauri 23 Tauri 7 Tauri 7 Tauri	IB E I I E	+0. 97 -0. 96 -0. 24	+0. 49 -0. 64 -0. 17	+0. 18 -0. 22 -0. 50	+0. 33 -0. 31 -0. 78	+0. 38 -0. 38 -0. 97	+0. 16 -0. 15 -0. 15	+0. 16 +0. 16 +0. 03	+0. 25 -0. 32 -0. 80	+0. 50 +0. 78 -0. 86 -0. 22 +0. 02	+1.2 -0.5 -0.1	-1.0 -0.2
1769, Sept. 15 20 20 20 20	Greenwich Greenwich Greenwich Greenwich Greenwich	16 Piscium 67 Tauri	IB IB IB E E	-1.01 -0.77 +0.91	-0. 91 -0. 71 +0. 83	-0. 32 -0. 68 +0. 52	+0. 15 -0. 18 -0. 11	-0. 36 -0. 70 -0. 53	-0. 17 -0. 16 +0. 08	+0. 08 +0. 06 -0. 08	-0. 25 -0. 57 -0. 55	+0. 02 +0. 82 +0. 67 -0. 75 -0. 87	+0.8 +2.4 +6.6	+0. 4 +2. 1 +6. 6
Nov. 18 1770, Apr. 7 28 July 19	Greenwich Greenwich Greenwich Greenwich Greenwich	h Leonis α Cancri e Leonis ζ Tauri ζ Tauri	IB E I E	+0.45 -1.02 -1.10	+0. 30 -0. 33 -0. 96	+0. 52 +0. 04 +0. 02	-0. 74 +0. 16 0. 00	+0. 91 -0. 16 +0. 02	-0. 19 -0. 05 -0. 18	+0. 18 -0. 38 -0. 02	+0.63 +0.08 +0.10	+0. 52 -0. 40 -0. 51 -0. 70 -0. 54	+4.4 -0.3 +1.1	+4. 4 -0. 6 +0. 8
1771, July 4 4 Sept. 18 Dec. 24 1772, May 15	Greenwich Greenwich Greenwich Greenwich Greenwich	 ∂ Fiscium - ∂ Piscium β Capricor. κ Cancri 8 Libræ 	IB E I E I	+0.86 -0.69 +1.10	-0. 61 -0. 60 +0. 86	-0. 31 +0. 10 0. 00	-0. 20 -0. 65 +0. 01	-0. 37 -0. 66 -0. 01	-0. 13 -0. 14 +0. 18	-0. 32 +0. 15 +0. 26	-0. 11 +0. 67 -0. 06	+0. 85 -0. 91 -0. 62 -0. 65 -0. 21	+2.0 +3.4 +2.2	+1.8 +3.3 +1.9
15 Aug. 17 Sept. 7 1773, Feb. 6 Sept. 7	Greenwich Greenwich Greenwich Greenwich Greenwich	α Libræ ζ Piscium β Capricor. α Cancri α Tauri	I E I I IB	+0. 74 -0. 74 -1. 02	-0. 83 +0. 15 -0. 21	-0. 56 -0. 11 -0. 10	-0. 06 -0. 62 -0. 21	-0. 57 -0. 63 +0. 24	-0. 20 -0. 14 -0. 18	-0. 25 +0. 14 -0. 21	-0. 20 +0. 54 +0. 22	-0. 21 -0. 64 -0. 59 -0. 05 +0. 68	+2.4 -3.5 -0.2	+2. I -3. 6 -0. 2
Nov. 1 1774, Nov. 18 1775, Aug. 1 Dec. 12 1776, Jan. 29	Greenwich Greenwich Greenwich Greenwich Greenwich	α Tauri α Tauri γ Virginis α Leonis α Tauri	IB E EB E I	+0. 92 +0. 83 +0. 76	-0. 77 -0. 42 -0. 84	0.00 +0.33 +0.53	+0. 11 -0. 30 -0. 07	+0. 11 -0. 44 -0. 54	+0. 12 +0. 07	-0. 16 +0. 27 +0. 17	-0. 07 +0. 09 -0. 24	I - O. 75	-2. I -3. 6 -3. 0	-2.6 -4.0
Mar. 30 Apr. 6 1777, Nov. 16 16 1778, Feb. 7	Greenwich Greenwich Greenwich Greenwich Greenwich	α Leonis γ Libræ ζ Tauri ζ Tauri μ Geminor.	IB IB E I	-0.49 -1.12 +1.08	+0. 11 -0. 86 +0. 83	-0. 14 -0. 08 -0. 28	-0. 85 -0. 03 -0. 10	-0.86 +0.09 +0.30	+0. 19 -0. 20 +0. 24	-0. 16 +0. 14 -0. 13	+0.66 0.00 + 0.37	-0. 62 +0. 34 +0. 33 -0. 32 -0. 50	-2.3 -0.5 +1.9	-2. 2 -0. 3 +1. 3
Dec. 31 1779, Feb. 27 Oct. 30 Dec. 22	Greenwich Greenwich Greenwich Greenwich	r Cancri r Cancri Geminor.	I I E I	-1.08 +0.88	-o. 88 +o. 80	+0. 14 -0. 38	-0. 16 +0. 42	-0. 21 +0. 57	-o. 13 +o. 08	-0. 16 +0. 07	-0. 26 +0. 62	-0. 36 -0. 55 -0. 80 -0. 06	+2.0 +0.2	+1.5 +2.2 -0.3 +0.7

GROUP VII-1783-1801.

Date.	Place.	Star.	Ph.	λ	ĸ	i θ	i	b _o	α_{o}	δ_{o}	ε	P	n	n'
1783, Feb. 9 9 May 16 Oct. 7 Dec 6	Greenwich Greenwich Greenwich Greenwich Greenwich	q Tauri 18 Tauri π Scorpii φ Aquarii 17 Tauri	I IB I	-0. 58 -1. 14 -0. 72	-0. 58 -0. 89 -0. 38	+0. 45 +0. 02 -0. 73	-0. 62 +0. 04 -0. 03	-0. 77 -0. 05 +0. 73	-0. 19 -0. 22 +0. 20	+0. 14 -0. 26 +0. 39	-0. 66 +0. 05 -0. 31	-0. 66 -0. 63 +0. 15 -0. 38 -0. 35	-1.6 +0.6 -2.4	" +1.2 -1.5 +0.7 -2.3 +0.7
6 30 30 1784, July 2 1785, Apr. 11	Greenwich Greenwich Greenwich Greenwich	q Tauri δ Piscium δ Piscium τ Sagittarii q Tauri	I EB IB I	-0. 87 +0. 95 -0. 90 -1. 05	-0. 30 +0. 33 +0. 68 -0. 41	+0. 43 +0. 26 -0. 39 -0. 03	-0. 24 -0. 15 -0. 48 -0. 20	-0.49 -0.30 +0.62 -0.20	-0. 32 -0. 03 -0. 10 -0. 19	+0.46 -0.46 +0.12 +0.20	-0.09 -0.09 -0.57 -0.12	-0.09 -0.88 +0.96 +0.04 -0.50	+1.6 -4.6 -1.8 +0.6	1
June 22 Aug. 16	Greenwich Greenwich Greenwich Greenwich Greenwich Greenwich	17 Tauri 20 Tauri 21 Tauri 22 Tauri φ Sagittarii φ Sagittarii	I I IB	-1.05 -0.94 -1.00 -1.04	-0. 41 -0. 37 -0. 39 -0. 29	+0. 04 -0. 08 -0. 06 +0. 07	+0. 22 -0. 47 -0. 36 +0. 05	+0. 22 -0. 48 -0. 36 -0. 09	-0. 11 -0. 23 -0. 21 -0. 14	+0. 20 +0. 18 +0. 19 +0. 12	+0. 24 -0. 43 -0. 34 +0. 14	-0. 07 -0. 50 -0. 44 -0. 47 -0. 16 +0. 66	-2.0 +0.8 +0.2 -2.2	+0.5 -2.0 +0.8 +0.2 -2.2 -4.6
1786, Mar. 5 5 5 5 Nov. 12	Greenwich Greenwich Greenwich Greenwich Greenwich	17 Tauri 16 Tauri q Tauri 20 Tauri π Leonis	I I I I IB	-1.00 -1.04 -0.56 -0.99	-0.80 -0.84 -0.45 -0.79 -0.05	+0. 17 -0. 11 -0. 38 -0. 18 +0. 26	+0. 35 -0. 23 -0. 77 -0. 36 -0. 21	+0. 39 -0. 26 -0. 86 -0. 40 +0. 34	-0. 08 -0. 19 -0. 24 -0. 21	+0. 18 +0. 18 +0. 08 +0. 15 -0. 34	+0. 40 -0. 15 -0. 69 -0. 27 +0. 27	-0. 84 -0. 90 -0. 50 -0. 84 +0. 94	-1.3 -1.2 +1.6 -0.3 -8.4	-1.3 -1.2
Dec. 9 9 1787, Nov. 26 26	Greenwich Greenwich Greenwich Greenwich	π Leonis ξ Leonis ξ Leonis η Geminor. η Geminor.	IB E IB E	-0. 58 +0. 62 -1. 14 +1. 13	-0. 14 +0. 14 -1. 00 +0. 99	-0. 70 -0. 67 +0. 06 +0. 13	+0. 44 +0. 42 0. 00 -0. 01	-0. 82 -0. 79 +0. 07 +0. 13	+0. 22 +0. 35 -0. 23 +0. 21	-0. 26 +0. 16 -0. 09 +0. 08	-0. 48 -0. 56 +0. 16 +0. 04	-1.00 +0.44 -0.47 +0.36 -0.36	-4.5 +2.5 -3.4 +2.9	+2.9 -4.5 +2.3 -3.5 +2.7
26 26 1788, Oct. 18 18 Nov. 15	Greenwich Greenwich Greenwich Greenwich	μ Geminor. μ Geminor. i Tauri i Tauri ζ Tauri	E IB E IB	+0. 15 -0. 96 +0. 86 -0. 63	+0. 14 -0. 56 +0. 50 -0. 39	-0. 99 +0. 38 +0. 56 +0. 79	+0. 10 -0. 02 -0. 04 -0. 18	-0. 99 +0. 38 +0. 56 +0. 81	+0. 11 -0. 10 +0. 10	+0. 01 +0. 01 -0. 01 -0. 02	+0. 41 +0. 68 +0. 85	+0. 13 -0. 07 +0. 70 -0. 62 +0. 31	-0.5 -4.3 +0.7 -4.2	-0. 4 -0. 5 -4. 5 +0. 6
1789, Nov. 9 1790, Mar. 5 Aug. 17 Oct. 15 Nov. 17	Greenwich Greenwich Greenwich Greenwich Greenwich Greenwich	ζ Tauri κ Cancri κ Libræ ν Scorpii β Capricor. ε Piscium	E I I	+0.69 -0.60 -0.69	+0. 53 -0. 41 -0. 55 -0. 08	-0.09 -0.81 +0.67	+0. 75 +0. 16 -0. 35	-0. 76 +0. 83 -0. 76	+0. 29 -0. 19 0. 00 -0. 18	+0. 15 -0. 07 -0. 08 +0. 13	-0. 59 -0. 64 +0. 71 +0. 65	-0. 21 -0. 65 +0. 53 -0. 65 -0. 67 -0. 68	+0. 1 -3. 0 -1. 1 +2. 5	-0.7 +0.1 -3.3 -1.4 +2.2
1791, Mar. 16 Apr. 7 June 12 12 1792, Mar. 27	Greenwich Greenwich Greenwich Greenwich Greenwich	ε Piscium κ Cancri δ Tauri λ Virginis λ Virginis α Tauri	I I I	-1.01 -0.84 -0.84	-0. 04 +0. 89 -0. 72 -0. 70	+0. 04 -0. 26 +0. 63 +0. 65	+0. 11 +0. 24 -0. 17 -0. 18	-0. 12 -0. 35 -0. 65 -0. 67	-0. 07 0. 00 +0. 03 +0. 03	-0. 24 +0. 09 -0. 21 -0. 20	-0. 04 -0. 14 +0. 41 +0. 42	-0. 55 -0. 70 -0. 52 -0. 51 -0. 55	-0. I +1. 5 -1. 3 -0. 7	+1.0 -0.7 +1.0 -1.8 -1.2
1793, Apr. 19 1793, Mar. 5	Camb., Eng. Greenwich Camb., Eng. Greenwich Camb., Eng.	£ Leonis £ Leonis μ Ceti μ Ceti α Tauri	I I I	-0.43 -0.40 -1.08	+0.49 +0.45 -0.71	-0. 80 -0. 82 -0. 02 +0. 03	-0. 36 -0. 36 +0. 06 -0. 09	+0. 88 +0. 90 -0. 06 +0. 10	-0. 16 -0. 17 +0. 22 -0. 11	-0.08 -0.08 +0.28	+0. 56 +0. 53 -0. 02	-0. 35 -0. 42 -0. 38 -0. 75 -0. 74 -0. 48	+3.0 +2.1 +2.3 +6.9	+2.6 +1.7 +1.2
Aug. 4 Nov. 8 8 Dec. 18	Greenwich Camb., Eng. Camb., Eng. Greenwich Greenwich	γ Libræ α Tauri α Tauri α Tauri γ Libræ	I IB E E	-0.94 -1.10 +1.02	+0.62 -0.70 +0.65 +0.66	-0. 03 -0. 07 +0. 16 -0. 14	-0. 03 +0. 17 +0. 37 -0. 33	-0. 03 +0. 19 -0. 41 +0. 36	-0.01 -0.17 +0.12 +0.25	-0. 25 +0. 19 -0. 18 -0. 17	-0. 01 +0. 12 -0. 31 +0. 39	-0. 97 +0. 21 -0. 20 -0. 20	+2.0 +2.4 -1.2 -6.2	+1.1 +1.3 -0.4 -5.4
18 1795, Aug. 6 Oct. 6 Nov. 24	Camb., Eng. Greenwich Greenwich Camb., Eng. Greenwich	γ Libræ ξ² Ceti δ Cancri ο Cancri α Ceti	E IB E E	+0.91 -0.31 +0.84 +0.86	-0.81 -0.28 +0.34	-0. 04 +0. 77 -0. 53	+0. 19 -0. 95 +0. 10	-0. 19 -0. 96 +0. 54 +0. 52	+0. 05 -0. 36 -0. 02	+0. 25 +0. 04 +0. 12 +0. 13	-0. 13 -0. 59 +0. 49	-0. 53 +0. 29 -0. 81 -0. 88 -0. 37	-0.6 -1.5 0.0	+0. i -1. 9 +0. 7 -0. 4
1797, Mar. 17 Dec. 25 25 1798, Aug. 8 Oct. 5	Camb., Eng. Camb., Eng. Greenwich Greenwich Camb., Eng.	ν Scorpii 33 Piscium 33 Piscium ε Geminor. η Leonis	E I E	+0. 70 -0. 81 -0. 82 +0. 99	-0. 41 +0. 72 +0. 73 +0. 39	-0. 61 -0. 11 +0. 11	-0. 29 -0. 44 +0. 43 +0. 22	-0. 67 -0. 45 -0. 44 +0. 36	+0. 20 -0. 18 -0. 18 +0. 13	+0. 18 +0. 33 +0. 33	+0. 66 -0. 07 -0. 07 +0. 43	-0. 65 -0. 89 -0. 90 -0. 51 +0. 57	-2.0 +3.4 +3.2 -0.7	-1.3 +2.3 +2.1 +0.5 -4.3
1799, Apr. 10 10 21 1800, May 5 July 4	Camb., Eng. Greenwich Greenwich Greenwich Greenwich	Tauri 125 Tauri 125 Tauri δ Scorpii η Virginis 43 Ophiuchi	I E I	-0. 94 -0. 94 +1. 10 -0. 73	+0. 28 +0. 28 +0. 77 -0. 42	-0. 04 -0. 10 -0. 18 +0. 69	+0. 03 +0. 07 +0. 04 +0. 32	+0. 05 +0. 12 -0. 19 +0. 76	-0. 02 -0. 02 +0. 27 -0. 47	+0. 12 +0. 12 +0. 28 -0. 23	-0. 02 +0. 05 +0. 22 -0. 05	-0. 94 -0. 94 -0. 40 -0. 40	+3. 2 +3. 2 +1. 3 +3. 1	+1.7 +1.7 +2.6 +1.9
Sept. 30 Nov. 26 26	Camb., Eng. Camb., Eng. Greenwich	φ Aquarii ζ Piscium ζ Piscium	I	-0. 77 -0. 55	-0. 11 +0. 19	一o. 52 十o. 81	-0. 37 -0. 03	+0. 64 -0. 81	†+0. 19 -0. 39	+0.41 +0.18	-0. 22 -0. 26	-0. 40 -0. 48 -0. 51	+3.3 +1.8	+2.0 +0.9

GROUP VII—1783-1801—Continued.

Date.	Place.	Star.	Ph.	ړ	K	iθ	i	$b_{\rm o}$	α _o	\hat{o}_{o}	•	P	n	n'
1800, Nov. 26 1801, Jan. 5 Mar. 30	Greenwich Greenwich Greenwich Camb., Eng.	ζ Pisc.(comp.) β Virginis β Virginis α Virginis α Virginis	I IB E IB IB	-0. 65 +0. 85 -0. 97	-0.05 +0.06 -0.31	+0. 77 +0. 70 +0. 48 +0. 35 +0. 37	+0. 25 +0. 17 -0. 07	+0. 74 +0. 51 +0. 36	-0. 39 -0. 16 -0. 31	-0. 23 +0. 45 -0. 38	+0. 06 +0. 05 -0. 14	+0. 64 -0. 83 +0. 25	+1. I -1. 2 -2. 0	0. 0 -0. 1 -3. 6
30 30 Apr. 24 May 21 24 24	Greenwich Camb., Eng. Greenwich Camb., Eng. Greenwich Camb., Eng. Camb., Eng.	α Virginis α Virginis σ Leonis χ Leonis α Virginis α Virginis α Virginis α Virginis	E E I I I EB	+1.03 +1.03 -0.85 -0.77 -0.94	+0. 33 +0. 33 +0. 26 +0. 33 -0. 24	+0. 13 +0. 12 -0. 45 +0. 54 +0. 41 +0. 39 +0. 10	-0. 03 -0. 03 -0. 19 +0. 25 -0. 10	+0. 14 +0. 13 -0. 48 +0. 59 +0. 42 +0. 40	+0.09 +0.10 +0.15 -0.32 -0.33	+0. 47 +0. 46 -0. 44 -0. 30 -0. 37	-0. 05 -0. 04 -0. 13 +0. 42 -0. 16	-0. 28 -0. 28 -0. 61 -0. 76 -0. 51	+0.8 -0.2 +1.6 +3.1 +2.6 +2.7	+2. 2 +1. 2 +0. 2 +1. 8 +1. 0

GROUP VIII—1801-1820.

			•	GROUP VIII—1801–1820.
1801, Oct. 23 23 23 23 23 23 23	Camb., Eng. Greenwich Greenwich Greenwich Greenwich Greenwich	η Tauri 24 Tauri η Tauri 23 Tauri 27 Tauri 28 Tauri	IB IB IB E IB	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
23 23 23 23	Camb., Eng. Camb., Eng. Camb., Eng. Greenwich	η Tauri 27 Tauri 28 Tauri 27 Tauri	EEE	+0. 93 -0. 37 +0. 15 -0. 25 -0. 29 -0. 01 -0. 25 -0. 24 -0. 32 -1. 4 -0. +0. 88 -0. 35 -0. 21 +0. 37 +0. 43 +0. 16 -0. 22 +0. 36 -0. 30 -1. 3 -0. 40. 96 -0. 38 +0. 07 +0. 12 +0. 14 +0. 09 -0. 24 +0. 11 -0. 33 -5. 0 -3. +0. 86 -0. 34 -0. 23 +0. 40 +0. 46 +0. 16 -0. 20 +0. 39 -0. 29 -2. 4 -1.
1802, Mar. 14 Nov. 3 1803, Mar. 3	Greenwich Greenwich Greenwich Greenwich Greenwich	28 Tauri γ Cancri γ Caprico δ Caprico κ Gemino	r. I	+0. 95 -0. 38 -0. 09 +0. 15 +0. 17 +0. 09 -0. 25 +0. 15 -0. 32 -4. 4 -3. -0. 89 +0. 97 +0. 08 +0. 08 +0. 11 -0. 03 -0. 28 +0. 11 -0. 73 +2. 9 +1. +0. 73 +0. 65 -0. 69 +0. 24 -0. 73 -0. 14 -0. 31 +0. 45 +0. 66 -9. 0 -8. -0. 89 -0. 79 -0. 53 -0. 17 +0. 56 +0. 05 +0. 37 -0. 33 -0. 82 +2. 7 +1. -0. 88 +0. 32 +0. 25 +0. 22 +0. 33 -0. 08 -0. 19 +0. 34 -0. 77 +3. 7 +2.
1804, July 17 Dec. 14 14 1805, Aug. 6	Greenwich Greenwich Greenwich Greenwich Greenwich	π Scorpii η Tauri 27 Tauri 28 Tauri λ Sagitta	I	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Sept. 7 7 1807, Dec. 14 1808, Apr. 5	Greenwich Greenwich Greenwich Greenwich Havana	θ Aquari θ Aquari ζ Tauri ζ Tauri 60 Cancri		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
May 3 Oct. 31 1809, Feb. 27 Apr. 3	Havana Greenwich Greenwich Greenwich Havana	 ω Leonis δ Pisciur 60 Cancri γ Scorpii 8 Libræ 	n I I I I I I I I I I I I I I I I I I I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
29 29 June 23 23 28	Havana Havana Havana Havana Havana	α Libræ α Libræ 8 Libræ α Libræ α Libræ β Caprice	IB E I I I IB	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
28 Sept. 28 Nov. 12 12 Dec. 15	Havana Greenwich Havana Havana Greenwich	β Caprice 64 Tauri β Caprice β Caprice ζ Pisciur	or. I or. EB	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1810, Jan. 15 15 15 Feb. 18	Greenwich Paris Paris Greenwich Havana	δ Tauri δ Tauri 64 Tauri 64 Tauri π Leonis	I I I I IB	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
May 10 June 15 July 25 25 Sept. 18	Paris Paris Paris Paris Paris Paris	60 Cancri 2 Ophiuc 63 Tauri 63 Tauri \(\alpha\) Tauri	hi I IB E IB	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1811, Mar. 1 1 1 1	Paris Paris Paris Paris Greenwich Camb., Eng.	α Tauri 275 B. Tauri α Tauri α Tauri α Tauri	E I I I I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

GROUP VIII—1801-1820—Continued.

Date.	Place	Star.	Ph.	,	к	iθ	i	b _o	$\alpha_{\rm o}$	ð.	e	P	n	n'
1811, Mar. 1 1 1 7 July 15	Camb., Eng. Paris Greenwich Paris Havana	α Tauri α Tauri α Tauri α Tauri ο Leonis α Tauri	EB EB I	+0. 96 +0. 96 -0. 56	-0. 17 -0. 17 +0. 62	0.00 -0.04 -0.70	0.09 +0.11 -0.34	0.00 -0.12 +0.78	+0.04 +0.03 -0.16	-0. 11 -0. 12 -0. 12	0. 00 -0. 11 +0. 48	+0. 99 +1.00 +0. 99 -0. 24 +0. 58	-2.8 -4.3 +1.0	" -1. 1 -1. 4 -2. 9 -0. 1 -1. 7
26 Aug. 26 Sept. 2 2	Havana Paris Paris Paris Paris	θ Virginis 49 Libræ λ Aquarii λ Aquarii 78 Aquarii	I I EB	-0. 84 -0. 68 +0. 56	+0. 04 -0. 59 +0. 49	-0. 16 +0. 80 +0. 86	+0.47 +0.12 +0.13	+0. 50 +0. 81 +0. 88	-0. 12 +0. 11 +0. 35	-0. 14 +0. 21 -0. 11	-0. 44 -0. 31 -0. 30	-0. 99 -0. 86 -0. 03 +0. 02 -0. 05	+1.6 -3.3 -1.7	-0.8 0.0 -4.6 -0.9 -0.1
Oct. 23 23 27 1812, Jan. 23	Paris Paris Havana Camb., Eng. Paris	78 Aquarii 187 B. Sagittarii 45 Sagittarii λ Aquarii α Tauri	I	-1.05 -0.87 -0.92	-0. 53 -0. 45 -0. 91	-0. 09 +0. 29 +0. 39	-0. 16 +0. 45 +0. 04	-0. 15 +0. 54 +0. 39	-0. 13 -0. 05 +0. 07	+0.06 +0.08 +0.28	+0. 12 -0. 53 -0. 17	-0. 05 -0. 95 -0. 82 -0. 72 -0. 24	+6.3 +2.0 -4.2	-0.4 +4.3 +0.3 -5.9 -2.8
May 24 Aug. 28 28 Oct. 19	Paris Havana Havana Havana Havana	α Tauri ν Libræ α Tauri α Tauri ν Piscium	I IB E I	-0. 84 -0. 81 +0. 99 -1. 10	+0.61 -0.60 +0.72 -0.95	+0. 08 +0. 08 +0. 05 -0. 18	-0. 44 +0. 63 +0. 35 +0. 28	-0. 44 -0. 63 -0. 35 -0. 33	+0.08 -0.20 +0.08 -0.32	-0. 21 +0. 13 -0. 17 +0. 29	+0. 32 -0. 62 -0. 29 -0. 19	+0. 37 -0. 08 +0. 78 -0. 93 +0. 08	+5.6 +0.7 -1.7 +0.2	-0.8 -0.2 -1.9
19 21 21 21 Nov. 24	Paris Paris Dorpat Dorpat Havana	y Piscium f Tauri f Tauri f Tauri a Leonis	E IB E IB	+0.90 -1.00 +0.90	+0. 73 -0. 81 +0. 73	+0. 05 +0. 04 +0. 05	-0. 62 -0. 49 -0. 63	+0. 63 +0. 49 +0. 63	+0. 31 -0. 09 +0. 31	-0. 16 +0. 22 -0. 16	+0. 50 +0. 34 +0. 52	$\begin{array}{c} -0.08 \\ 0.000 \\ +0.24 \\ 0.000 \\ 0.000 \end{array}$	-0. I -4. 7 -1. 0	+1.2 -6.6 +0.4
Dec. 10 10 14 16	Havana Havana Havana Greenwich Dorpat	α Leonis 85 Aquarii 87 Aquarii μ Ceti γ Tauri	I I I	-0. 92 -0. 80 -0. 85 -1. 00	-0. 64 -0. 55 -0. 95 -0. 77	-0.43 -0.60 +0.06 +0.08	+0. 15 +0. 22 -0. 28 +0. 46	-0. 45 -0. 64 +0. 29 -0. 46	-0. 21 -0. 26 -0. 11 -0. 26	+0. 25 +0. 20 +0. 29 +0. 25	+0. 08 +0. 15 +0. 12 -0. 46	-0. 38 -0. 89 -0. 77 -0. 65 -0. 34	+4.7 +5.3 +4.6 -0.9	+3.8
16 16 16 16 16 1813, Mar. 6	Dorpat Dorpat Dorpat Dorpat Greenwich	γ Tauri θ² Tauri 264 B. Tauri α Tauri μ Ceti		-0. 82 -1. 13 -1. 11	+0. 64 -0. 87 -0. 88	-0. 15 +0. 01 +0. 03	-0. 67 +0. 05 +0. 16	+0. 68 -0. 05 -0. 16	+0.02 -0.20 -0.23	+0. 14 +0. 19 +0. 17	+0.64 -0.10	+0. 37 -0. 29 -0. 39 -0. 39 -0. 74	-1.8 +2.5 -0.3	
6 6 8 Apr. 8	Paris Camb., Eng. Camb., Eng. Dorpat Dorpat	μ Ceti μ Ceti α Tauri ζ Cancri ζ Cancri	I	-1.02 -1.04 -1.00	-0. 92 -0. 90 -0. 41	-0.06 +0.08 +0.05	+0. 39 +0. 25 +0. 02	-0. 40 -0. 26 -0. 05	-0, 28 -0, 16 -0, 06	+0. 25 +0. 07 -0. 10	-0. 31 -0. 19	-0.87 -0.73 -0.95 -1.00	+2.4 +2.5 +5.1	-1.9 +0.5 +0.5 +3.2 +4.9
8 10 10 17	Dorpat Dorpat Dorpat Greenwich Greenwich	ζ Cancri ν Leonis ν Leonis γ Libræ γ Libræ	I EB IB	-0. 95 +0. 93 -0. 89	+0. 04 -0. 04 +0. 97	+0. 13 +0. 25 -0. 02	-0. 02 -0. 04 -0. 17	-0. 13 -0. 25 -0. 17	+0.01 +0.08 +0.06	-0. 24 +0. 23 -0. 26	-0. 12 -0. 00 +0. 08	+0. 98 -0. 83 +0. 81 3 +0. 40 6 -0. 37	+3.5 -8.8 -0.1	+0.7 +1.7 -7.4 -1.8 -1.0
July 11 12 Aug. 13 Sept. 14 Nov. 29	Camb., Eng. Paris Greenwich Greenwich Camb., Eng.	μ Sagittarii π Sagittarii ψ^1 Aquarii 27 Tauri δ Capricor.	E E	-0. 90 +0. 56 +1. 01	+0. 58 +0. 18 +0. 89	+0. 26 +0. 70 -0. 09	+0. 14 -0. 47 -0. 39	+0. 30 +0. 84 +0. 40	0.00 -0.26 +0.26	+0. 01 -0. 13 -0. 23	-0. 37 -0. 19 +0. 31	-0. 24 -0. 06 -0. 23 -0. 76 -0. 79	+3.6 -2.2 -0.9	+1.9 -1.4 +0.6
Dec. 28 1814, Jan. 1 28 Feb. 1	Paris Camb., Eng. Camb., Eng. Camb., Eng. Dorpat	φ¹ Aquarii μ Ceti ξ² Ceti ν Geminor. ν Geminor.	I I I	-0. 75 -1. 02 -0. 98	-0. 61 -0. 77 -0. 84	+0.09 -0.02 -0.42	+0. 72 -0. 25 -0. 21	-0. 72 +0. 26 +0. 47	-0. 35 -0. 05 -0. 15	+0. 19 +0. 33 +0. 03	-0. 52 +0. 07 +0. 36	-0. 81 -0. 59 -0. 97 -0. 53 -0. 61	+3.6 +5.7 +4.5	+1.5 +2.2 +3.8 +2.6 +1.1
Oct. 1 1 1 1	Greenwich Paris Paris Camb., Eng. Greenwich	μ Ceti μ Ceti μ Ceti μ Ceti μ Ceti	IB E IB	-0. 95 +0. 82 -1. 00	-0. 41 +0. 35 -0. 43	-0. 15 -0. 23 -0. 10	-0. 38 -0. 58 -0. 27	+0.41 +0.63 +0.29	+0. 01 +0. 32 -0. 04	+0. 34 -0. 23 +0. 34	+0. 17 +0. 48 +0. 09	+0. 51 +0. 48 -0. 40 -0. 51 -0. 45	-1.6 -1.8 -2.6	-o. 6
1816, Apr. 12 1817, Dec. 30 1818, Feb. 13 1819, Sept. 8	Dorpat Paris Paris Paris Dorpat	κ Virginis γ Virginis Α Tauri 39 Tauri ζ Arietis	I I IB	-1.03 -0.89 -0.82 -0.80	-0.68 +1.00 +0.90 +0.08	-0. 08 +0. 08 -0. 39 +0. 46	-0. 01 -0. 03 +0. 13 -0. 35	-0. 10 -0. 08 +0. 42 -0. 58	-0.09 -0.02 +0.10 -0.26	-0. 46 +0. 27 +0. 26 +0. 25	-0. 04 -0. 14 +0. 31 -0. 47	+0. 14 +0. 97 -0. 97 -0. 88 +0. 67	+1.6 +2.1 +3.9 -0.4	+0.4
Oct. 9 1820, Feb. 1 Apr. 23 Aug. 28	Dorpat Camb., Eng. Camb., Eng. Dorpat Dorpat	49 Aurigæ 7 Leonis 7 Leonis 7 Leonis 7 Leonis Arietis	IB E I IB	-0. 81 +0. 86 -0. 36 -0. 83	+0. 84 -0. 89 +0. 41 -0. 56	+0.40 +0.26 -0.86 +0.27	+0. 17 +0. 11 -0. 29 -0. 34	+0. 43 +0. 29 -0. 91	-0. 20 -0. 13 +0. 40 -0. 16	-0. 35 +0. 46 -0. 29 +0. 27	+0. 32 +0. 13 -0. 55 -0. 32	+0. 95 +0. 47 -0. 50 -0. 32 +0. 78	-6. i -0. 7 -1. 0	-1.7

GROUP IX-1821-1838.

Date.	Place.	Star.	Ph.	λ	к	iθ	i	b _o	α_{o}	$\partial_{\mathbf{o}}$	ε	 P	n	n'
1821, Feb. 6 6 6 6 6	Paris Camb., Eng. Paris Dorpat Dorpat	62 Piscium \$\frac{\partial}{\partial}\text{ Piscium}\$ \$\frac{\partial}{\partial}\text{ Piscium}\$ 62 Piscium \$\frac{\partial}{\partial}\text{ Piscium}\$	I I I I	-0.82 -0.98 -1.10	-0. 74 -0. 89 -1.00	+0. 59 +0. 41 +0. 06	-0. 30 -0. 21 -0. 03	+0. 20 -0. 67 -0. 46 -0. 07 -0. 81	-0.46 -0.41 -0.25	+0. 26 +0. 47 +0. 46	-0. 12 -0. 08 0. 00	-0. 58 -0. 70 -0. 79	+1.8 +0.6 -0.7	+0. 2 -1. 3 -2. 8
6 12 May 6 6 July 22	Dorpat Paris Dorpat Camb., Eng Dorpat	 δ Piscium 49 Aurigæ κ Geminor κ Geminor μ Arietis 	EB I I I IB	-0. 91 -0. 98 -0. 88	-0.09 +0.01 +0.05	+0. 12 -0. 01 +0. 31	+0. 34 -0. 02 +0. 24	+0. 73 +0. 36 -0. 02 +0. 48 -0. 64	-0. 07 -0. 07 -0. 16	-0.06 -0.19 -0.17	+0. 38 -0. 08 +0. 47	-0. 69 -0. 86 -0. 76	+0. 3 +2. 1 +0. 6	+2.8 -1.4 +0.2 -1.1 -2.8
23 23 23 23 23	Dorpat	16 Tauri 17 Tauri 9 Tauri 20 Tauri 21 Tauri	IB IB IB IB	-0. 87 -0. 88 -1. 07 -0. 80	-0. 70 -0. 71 -0. 86 -0. 65	+0. 10 +0. 01 +0. 11	+0. 57 -0. 56 -0. 06 -0. 65	-0. 08 +0. 58 -0. 57 -0. 06 -0. 66	0.00 -0.24 -0.17 -0.25	+0. 22 +0. 17 +0. 23 +0. 15	+0. 51 -0. 45 -0. 04 -0. 54	+0. 75 +0. 76 +0. 92 +0. 70	-3.4 +0.7 -0.4 +0.8	-4. 5 -5. 1 -1. 0 -2. 4 -0. 7
23 23 23 23 23	Dorpat Paris Paris Paris Paris Paris	17 Tauri	E IB IB IB IB	-0. 69 -1. 03 -0. 71 -0. 54	-0. 55 -0. 83 -0. 57 -0. 43	+0. 13 +0. 05 +0. 12 +0. 14	-0. 75 -0. 27 -0. 73 -0. 85	+0. 74 -0. 76 -0. 27 -0. 74 -0. 86	-0. 27 -0. 20 -0. 27 -0. 24	+0. 12 +0. 21 +0. 14 +0. 08	-0. 63 -0. 22 -0. 61 -0. 71	+0. 58 +0. 80 +0. 62 +0. 46	-3.6 -5.1 -3.8 +0.5	-o. 5
23 23 23 23 23 23	Paris Paris Paris Paris Dorpat Dorpat	21 Tauri 16 Tauri Anon. 4 20 Tauri 16 Tauri 20 Tauri	EEEE E	+1.06 +1.06 +1.06 +1.06	+0.84 +0.85 +0.84 +0.85	+0.01 0.00 0.00 -0.02	-0.08 0.00 -0.06 +0.14	-0. 73 -0. 08 0. 00 -0. 06 +0. 14 +0. 17	+0. 16 +0. 17 +0. 16 +0. 19	-0. 23 -0. 21 -0. 23 -0. 22	-0. 10 -0. 04 -0. 08 +0. 09	-0. 93 -0. 93 -0. 91	-3. I +1. 9 +1. 0 -0. 5	+0. I -1. 5 +3. 5 +2. 6 +1. I -2. 2
Sept. 10 Oct. 13 13	Paris Camb., Eng. Camb., Eng. Camb., Eng.	σ Aquarii 17 Tauri q Tauri 20 Tauri	I IB IB IB	-0.94 -1.00 -0.89 -1.12	-0. 54 -0. 83 -0. 74 -0. 93	-0. 52 -0. 05 +0. 06 +0. 01	-0. 01 +0. 47 -0. 62 -0. 13	+0. 52 +0. 47 -0. 62 -0. 13 +0. 60	+0. 04 -0. 09 -0. 30 -0. 24	+0. 44 +0. 21 +0. 16 +0. 22	-0. 22 +0. 42 -0. 50 -0. 09	-0. 18 +0. 43 +0. 40 +0. 50	+0.6 -5.8 -1.8 -2.2	-1. 2 -7. 7 -3. 5 -4. 3
13 13 13 13	Paris Paris Paris Paris	17 Tauri	IB IB IB E E	-0.98 -1.13 -0.92 +0.69	-0.82 -0.82 -0.77 +0.56	+0.05 0.00 +0.05 -0.07	-0. 50 -0. 01 -0. 58 +0. 79	-0. 51 -0. 01 -0. 58 +0. 80	-0. 29 -0. 25 -0. 29 +0. 17	+0. 18 +0. 23 +0. 17 -0. 11	-0.40 +0.04 -0.47 +0.65	+0. 45 +0. 49 +0. 43 -0. 30	-2.7 -2.3 -5.7 -0.3	-7.4 +0.7
13 13 13 13	Paris Paris Paris Paris Paris Paris	16 Tauri q Tauri Anon. 4 20 Tauri 21 Tauri	E E E	+1.10 +1.07 +1.09 +1.08	+0. 91 +0. 89 +0. 90 +0. 89	+0. 02 -0. 03 -0. 02 +0. 03	-0. 24 +0. 33 +0. 28 -0. 32	+0. 24 -0. 24 +0. 33 +0. 28 -0. 32	+0. 16 +0. 27 +0. 26 +0. 15	-0. 22 +0. 20 -0. 20 -0. 22	+0. 23 +0. 25 +0. 21 -0. 30	-0. 51 -0. 50 -0. 51 -0. 50	+1.5 +0.7 +1.4 +0.7	$\begin{vmatrix} +2.3 \\ +3.6 \\ +2.3 \end{vmatrix}$
13 13 15 15 Dec. 7	Camb., Eng. Camb., Eng. Camb., Eng. Camb., Eng. Dorpat	17 Tauri 16 Tauri 136 Tauri 136 Tauri 136 Tauri q Tauri	E IB E I	+1.13 -0.75 +0.91 -1.12	+0. 93 -0. 49 +0. 59 -0. 93	-0. 01 -0. 28 -0. 21 +0. 01	+0. 10 -0. 65 -0. 49 -0. 20	+0. 68 +0. 10 -0. 71 -0. 53 -0. 20	+0. 24 +0. 10 +0. 13 -0. 18	-0. 20 0. 00 0. 00 -0. 14	+0. 05 -0. 67 -0. 57 -0. 14	-0. 50 +0. 58 -0. 70 -0. 34	+1.2 -4.8 -0.3 -0.1	+2.9 -6.2 +1.1 -2.2
7 7 7 7 7 1822, Feb. 8	Dorpat Dorpat Dorpat Paris	17 Tauri 17 Tauri 21 Tauri q Tauri v Leonis	I EB I EB IB	+0. 04 -1. 08 +1. 14 -0. 09	+0.04 -0.90 +0.95 +0.06	-0. 03 +0. 01 0. 00 +0. 89	+1.00 -0.33 -0.07 -0.44	+0.98 +1.00 -0.33 -0.07 +0.99	+0. 20 -0. 27 +0. 21 -0. 47	+0. 02 +0. 19 -0. 21 +0. 06	+0. 84 -0. 24 -0. 10 +0. 12	+0. 01 -0. 33 +0. 35 +0. 06	-0. 3 -0. 7 +0. 3 -5. 6	+0. 2 -2. 8 +2. 0
8 8 8 27 27	Paris Dorpat Dorpat Dorpat Dorpat	v Leonis v Leonis v Leonis q Tauri 21 Tauri	E IB E I	-0. 92 +0. 95 -0. 38 -0. 72	+0. 52 -0. 54 -0. 36 +0. 66	+0. 22 +0. 01 +0. 05 +0. 04	-0. 11 -0. 01 +0. 94 +0. 74	+0. 97 +0. 25 +0. 01 +0. 94 +0. 75	-0. 18 +0. 06 +0. 12 +0. 03	-0. 43 +0. 45 +0. 08 +0. 14	+0. 19 +0. 04 +0. 81 +0. 67	+0.47 -0.48 -0.36 -0.66	-2.5 +1.2 -4.4 +0.6	+0. 2 -4. 2 +2. 6 -5. 1 -0. 8
Apr. 30 May 1 1 Aug. 10	Dorpat Paris Dorpat Dorpat Dorpat	q Tauri d Leonis v Leonis v Leonis Tauri		-0. 88 -0. 40 +0. 15 +1. 02	+0. 20 +0. 16 -0. 06 +0. 93	-0. 35 -0. 78 -0. 84 +0. 06	+0. 13 +0. 46 +0. 51 +0. 33	+0. 49 -0. 37 -0. 90 -0. 99 +0. 34	+0. 11 +0. 40 +0. 46 +0. 22	-0. 47 -0. 31 -0. 04 -0. 19	-0. 04 -0. 50 -0. 57 +0. 24	-0. 83 -0. 33 +0. 13 -0. 92	+0.9 +0.8 -2.1 +1.3	+2.8
10 10 10	Dorpat Dorpat Dorpat Dorpat Dorpat	16 Tauri 20 Tauri q Tauri η Tauri 22 Tauri	E IB E E	-0. 95 +0. 51 -0. 55 +0. 45	-0.87 +0.46 -0.52 +0.40	-0. 09 -0. 17 +0. 16 -0. 17	-0. 46 -0. 86 +0. 84 -0. 89	-0. 31 -0. 47 -0. 88 +0. 86 -0. 91	-0. 22 -0. 08 +0. 08 -0. 09	+0. 16 -0. 10 +0. 12 -0. 09	-0. 35 -0. 77 +0. 76 -0. 80	+0.86 -0.46 +0.51 -0.40	$ \begin{array}{r} -2.5 \\ +2.7 \\ -3.2 \\ +3.7 \end{array} $	-4. 2 +4. 4
10 10 Sept. 6 Oct. 31 31	Dorpat Dorpat Camb., Eng. Dorpat Dorpat	20 Tauri η Tauri q Tauri 23 Tauri η Tauri	E E IB IB IB	+0.41 -1.07 -1.14	+0. 38 -0. 97 -0. 95	+0. 18 +0. 03 +0. 02	+0. 91 +0. 14 +0. 08	-0. 35 +0. 92 +0. 14 +0. 08 -0. 18	+0. 23 -0. 13 -0. 21	-0. 05 +0. 19 +0. 20	+0. 76 +0. 17 +0. 13	-0. 37 +0. 93 +0. 28	+0. 3 -5. 1 -2. 6	-4.8

GROUP IX-1821-1838-Continued.

Date.	Place.	Star.	Ph.	۱ ا	K	iθ	. <i>i</i>	$b_{\rm o}$	α_{o}	δ _o		P	n	n'
1822, Oct. 31 31 31 31 Nov. 30	Dorpat Dorpat Dorpat Dorpat Dorpat	23 Tauri 27 Tauri 7 Tauri 27 Tauri 2 Geminor.	E IB E E IB	-1.05 +1.15 +0.92 -1.13	-0. 88 +0. 95 +0. 77 -0. 96	+0. 11 +0. 01 +0. 16 -0. 11	+0. 39 +0. 02 +0. 57 -0. 07	+0. 41 +0. 02 +0. 59 -0. 13	-0. 14 +0. 26 +0. 28 -0. 21	+0. 15 0. 19 0. 14 0. 14	+0. 40 -0. 04 +0. 45 -0. 06	-0. 27 +0. 26 -0. 28 -0. 23 +0. 38	-1.9 +4.4 +3.0 -3.3	-3.9 +6.1
Dec. 25 25 25 25 25 25	Dorpat Paris Dorpat Dorpat Dorpat	17 Tauri 7 Tauri 16 Tauri 20 Tauri 7 Tauri	I I I I	-1.07 -0.76 -0.73 -0.97	-0. 88 -0. 63 -0. 60 -0. 81	+0. 10 -0. 23 -0. 23 +0. 16	+0. 32 -0. 71 -0. 73 +0. 39	+0. 34 -0. 74 -0. 76 +0. 52	-0. 14 -0. 29 -0. 26 -0. 10	+0. 18 +0. 13 +0. 10 +0. 16	3 +0. 35 3 -0. 59 5 -0. 60 5 +0. 49	-0. 55 -0. 53 -0. 38 -0. 36 -0. 48	+1. 2 -0. 1 +0. 6 -0. 8	-1.5 -0.8 -2.6
25 25 1823, Jan. 24 24 24	Dorpat Dorpat Camb., Eng. Dorpat Dorpat	7 Tauri 28 Tauri 2 Geminor. 2 Geminor. 3 Geminor.	EB I I EB	-0.60 -1.13 -1.13 +1.13	-0. 50 -0. 97 -0. 97 +0. 97	+0. 27 +0. 08 +0. 04 +0. 05	+0. 80 +0. 05 +0. 02 +0. 03	+0. 85 +0. 09 +0. 04 +0. 06	+0.03 -0.24 -0.23 +0.21	+0. 11 -0. 14 -0. 12 +0. 12	+0. 76 +0. 16 +0. 11 -0. 01	+0. 41 -0. 30 -0. 45 -0. 45 +0. 45	-0.8 +0.8 +0.2 +3.1	+1.6 -1.9 -1.2 -1.8 +4.6
May 18 June 17 Sept. 23 1824, Jan. 7 Mar. 12	Camb., Eng. Paris Dorpat Camb., Eng. Paris	b ³ Leonis 69 Virginis μ Arietis 19 Piscium ο Leonis	I	-0.49 +1.01 -0.58 -1.12	+0.06 +0.41 +0.32 -0.97	+0.09 -0.06 +0.30 +0.12	-0. 86 -0. 20 -0. 72 -0. 09	+0.86 -0.20 -0.78 +0.16	-0. 33 +0. 05 -0. 34 -0. 29	-0. 13 -0. 28 +0. 19 -0. 36	3' -0. 31 3 -0. 24 5'+0. 10 5 +0. 18	-0. 60 -0. 52	+0.5 +2.7 +0.6 -0.5	-2.5
Sept. 4 Dec. 7 31 1825, Jan. 3 Feb. 11	Dorpat Paris Paris Dorpat Paris	ho Capricor. μ Geminor. ζ Arietis 1 Geminor. θ Ophiuchi	I E	+1.02 -0.78 -0.72 +0.82	+0. 43 +0. 23 -0. 23 +0. 08	-0. 24 +0. 46 -0. 73 -0. 53	+0. 01 +0. 38 -0. 08 -0. 08	-0. 24 +0. 60 -0. 73 +0. 54	+0. 16 +0. 08 -0. 05 -0. 03	+0. 10 +0. 16 -0. 05 +0. 14	0 -0.33 6 +0.20 6 -0.67 6 -0.45	-0. 12 -0. 78	-1.0 0.0 -1.0 +3.0	+0. 4 -1. 4 -2. 3 +4. 1
27 Mar. 24 24 28 Apr. 1	Dorpat Dorpat Dorpat Paris Camb., Eng.	η Geminor. A Tauri 39 Tauri g Geminor. c Leonis	I I I	-0. 63 -1. 05	+0. 24 +0. 21 -0. 36 +0. 91	+0. 16 +0. 42 -0. 71 +0. 03	+0. 07 +0. 18 +0. 37 -0. 42	+0. 18 +0. 46 -0. 80 +0. 42	0.00 -0.08 +0.10 -0.41	+0. 10 +0. 09 -0. 17 -0. 32	+0. 27 +0. 50 -0. 67 +0. 15	-0. 90 -0. 82 -0. 54 -0. 27	+2.0 +0.6 -0.8 +0.2	-1. I -1. 9 -1. 7
June 27 July 4 4 27 27	Paris Paris Paris Paris Dorchester Dorchester	19 Scorpii	IB E I	+0. 5 ² -0. 56 +0. 6 ²	+0. 67 -0. 50 +0. 01 -0. 01	-0. 15 -0. 18 -0. 76 -0. 71	+0.63 +0.80 +0.33 +0.31	+0.65 +0.82 +0.83 +0.78	+0. 24 +0. 31 +0. 08 +0. 18	+0. 33 -0. 16 +0. 11 -0. 10	-0. 20 -0. 36 -0. 76 -0. 81	+0.60 -0.43 -0.27 +0.31	-4.9 +0.6 +2.8 +0.9	+1.8 +1.8
Sept. 4 4 4 23	Dorchester Paris Paris Paris Paris Dorpat	π Sagittarii 67 Tauri κ Tauri 67 Tauri c² Capricor.	I IB IB E I	-0.82 -0.56 +0.91 -0.85	+0. 42 +0. 29 -0. 47 +0. 54	-0. 46 -0. 78 -0. 22 +0. 15	-0.09 -0.16 -0.04 -0.36	-0.47 -0.80 -0.22 -0.38	-0. 03 -0. 05 -0. 01 -0. 14	+0.06 +0.04 -0.07 +0.28	-0. 35 -0. 67 -0. 28 +0. 29	1	-6. 2 -2. 7 +4. 1 +2. 7	-7.7 -3.7 +5.4 +1.2
Dec. 14 1826, Jan. 13 Feb. 15 16 May 12	Cracow Camb., Eng. Dorpat Dorpat Berlin	c¹ Capricor. 19 Piscium 53 Tauri 105 Tauri 1 Cancri	I I I I	-0. 78 -0. 84 -0. 93 -0. 65	+0. 71 +0. 71 +0. 62 +0. 06	-0. 15 +0. 39 +0. 09 -0. 45	-0. 52 +0. 02 -0. 01 +0. 59	-0. 54 +0. 40 +0. 09 -0. 74	-0. 19 +0. 05 -0. 01 +0. 13	+0. 26 +0. 08 +0. 02 -0. 18	+0. 11 +0. 44 +0. 21 -0. 60	-0. 62 -0. 71 -0. 89 -0. 90 -0. 64	+3.2 -0.9 -0.5 -1.1	$\begin{vmatrix} +1.8 \\ -2.4 \\ -2.2 \\ -2.2 \end{vmatrix}$
July 27 Sept. 13 21 Oct. 24	Berlin Berlin Paris Berlin Paris	A ² Cancri 53 Arietis c ¹ Capricor. 43 Tauri κ Cancri	I IB I E E	+0. 78 +0. 96	+0.02 -0.06 -0.86 -0.10	+0. 52 -0. 03 -0. 48 -0. 04	+0. 12 +0. 40 -0. 04 +0. 18	+0. 53 +0. 41 +0. 48 -0. 19	+0. 12 +0. 05 +0. 01 +0. 12	+0. 15 +0. 30 -0. 09 +0. 28	+0. 44 -0. 34 +0. 37 -0. 09	+0. 83 -0. 51 -0. 78 -0. 92	-5.8 +0.6 -0.3 +2.0	-7. 1 -1. 0 +0. 8 +3. 3
1827, Jan. 5 14 14 19 Feb. 10	Paris Greenwich Greenwich Greenwich Dorchester	π Piscium κ Cancri κ Cancri i Virginis κ Cancri	I IB E I	-0. 89 +0. 90 +0. 59 -0. 54	+0. 29 -0. 29 +0. 44 +0. 23	+0. 05 +0. 04 -0. 73 -0. 12	-0. 37 -0. 35 -0. 39 +0. 82	+0. 38 +0. 35 +0. 82 -0. 83	-0. 15 -0. 05 -0. 18 +0. 07	-0. 26 +0. 29 +0. 19 -0. 06	6 +0. 33 6 +0. 19 6 -0. 36 6 -0. 68	-0.45	-2.5 +3.6 +1.9 -5.0	+4.8 +2.7 -5.9
July 2 2 Aug. 1	Paris Paris Cracow Cracow Cracow	60 Cancri 49 Virginis 49 Virginis 41 Libræ 58 G. Scorpii	I I I I	-0. 77 -0. 85 -0. 92 -0. 82	-0. 38 -0. 42 -0. 77 -0. 71	-0.60 -0.52 -0.49 -0.61	-0. 27 -0. 23 +0. 13 -0. 17	+0. 65 +0. 57 +0. 51 +0. 63	-0. 25 -0. 24 -0. 18 -0. 14	-0. 19 +0. 09 -0. 19 -0. 07	0 - 0.14 0 - 0.10 0 - 0.36 0 - 0.53	-0. 08 -0. 72 -0. 46 -0. 85 -0. 76	+0. 2 -4. 3 +1. 9 -0. 9	$ \begin{array}{c c} -1.1 \\ -5.7 \\ +0.3 \\ -2.3 \end{array} $
Nov. 16 28 Dec. 8 8	Dorchester Dorchester Greenwich Greenwich Camb., Eng.	α Virginis ε Piscium ω Leonis ω Leonis ω Leonis	IB IB E E	-0.97 -0.91 +0.89 +0.89	-0. 05 +0. 75 -0. 74 -0. 73	+0. 03 -0. 01 -0. 06 +0. 06	+0.01 +0.05 -0.19 +0.22	+0. 03 +0. 05 +0. 20 -0. 22	0. 00 0. 00 +0. 04 +0. 05	+0. 30 -0. 28 +0. 26 +0. 26	+0. 05 +0. 08 5 -0. 17 6 -0. 20	+0. 46 -0. 86 +0. 91 -0. 90 -0. 88	+5.0 -2.6 -2.3 -1.1	+3.4 -4.1 -1.1 +0.1
1828, Feb. 22 Mar. 23 24 24 24	Cracow Greenwich Greenwich Berlin Berlin	68 Tauri 26 Geminor. 68 Geminor. 68 Geminor. 67 Geminor.	I I IB IB	-0. 87 -0. 89 -0. 89	+0.91 +0.99 +0.99	+0.09 +0.01 -0.05	-0. 26 -0. 11 -0. 14	-0. 28 +0. 11 -0. 15	+0. 03 +0. 01 +0. 04	-0. 09 -0. 15 -0. 16) -0. 24 ; +0. 09 ; -0. 09	-0. 92 -0. 95 -0. 94 +0. 24 +0. 19	-1.6 +0.6 +0.7	-0.9

GROUP IX-1821-1838-Continued.

Date.	Place.	Star.	Ph.	! 	K	iθ	i	b_{o}	$\alpha_{\rm o}$	$\partial_{\mathbf{o}}$	e	P	n	n'
1828, June 16 Aug. 16 1829, Jan. 18 Apr. 12 June 13	Cracow Dorchester Camb., Eng. Cracow Cracow	κ Cancri λ Virginis λ Geminor. α Cancri μ Libræ	I I I I	-0. 85 -0. 75 -0. 66	-0. 02 +0. 58 +0. 63	-0. 46 -0. 04 -0. 38	-0. 05 +0. 12 -0. 58 -0. 57 +0. 35	+0.48 +0.58 +0.69	-0. 13 -0. 04 -0. 11	-0. 19 -0. 07 -0. 23	-0. 22 +0. 57 +0. 54	-0. 86 -0. 23 -0. 77	+7.2 +1.6 -0.2	+5.8 +0.4 -1.3
Aug. 21 21 21 21 21	Paris Paris Dorchester Dorchester Paris	μ Libræ 70 Tauri α Tauri α Tauri α Tauri α Tauri	I E IB E IB	-0. 72 +0. 76 -0. 92 +0. 98	+0. 33 +0. 29 -0. 34 +0. 36	-0. 59 +0. 28 +0. 17 -0. 09	+0. 46 -0. 59 +0. 38 +0. 22 -0. 33	+0. 74 +0. 66 -0. 42 -0. 24	-0. 15 +0. 14 -0. 13 +0. 06	-0. 15 -0. 09 +0. 11 -0. 12	-0.41 +0.60 -0.39 -0.23	-0. 44 -0. 75 +0. 91 -0. 97	+0.9 -3.1 +5.1 -5.9	-0. 2 -2. 2 +3. 7 -4. 8
Sept. 17 23 23 Oct. 15 15	Dorchester Dorchester Dorchester Paris Camb., Eng.	α Tauri σ Leonis σ Leonis σ Leonis α Tauri α Tauri	IB IB E IB IB	-0. 52 +0. 56 -0. 75	+0. 44 -0. 39 -0. 33	+0.65 +0.70 -0.25	-0. 23 -0. 50 +0. 53 +0. 67 +0. 77	+o. 83 +o. 87 -o. 71	-0. 17 -0. 11 -0. 19	-0. 11 +0. 15 +0. 09	+0. 50 +0. 54 -0. 66	+0.41 -0.36 +0.41	-1.2 -8.3 +0.4	-2.0 -7.7 -0.7
15 Nov. 11 11 Dec. 9	Camb., Eng. Paris Dorchester Dorchester Cracow	α Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	E IB E I	+0. 88 -0. 63 +0. 76	+0. 39 -0. 27 +0. 33	-0. 20 -0. 25 +0. 21	+0. 68 +0. 54 -0. 78 -0. 68 +0. 05	-0. 57 +0. 81 +0. 71	+0.06 0.00 +0.20	-0. 10 +0. 09 -0. 08	-0. 54 +0. 75 +0. 66	-0. 48 +0. 11 -0. 14	-0.4 -0.6 -1.4	-1. (-0. (
1830, Jan. 5 Mar. 2 3 3	Dorchester Greenwich Cracow Cracow Berlin	α Tauri α Tauri 130 Tauri 26 Geminor. 26 Geminor.	I I I I	-1.02 -0.86 -0.84	-0. 54 -0. 35 -0. 17	-0.06 +0.05 +0.16	-0. 66 -0. 23 +0. 53 +0. 50 +0. 56	-0. 24 -0. 54 -0. 53	-0. 16 -0. 10 -0. 06	+0. 13 -0. 05 -0. 12	-0. 24 -0. 54 -0. 52	-0. 65 -0. 78 -0. 74	-4.4 +0.7 +0.4	-0. 6 -0. 9
28 28 28 28	Camb., Eng. Camb., Eng. Greenwich Greenwich Greenwich	θ^1 Tauri θ^2 Tauri θ^1 Tauri θ^2 Tauri θ^2 Tauri 264 B. Tauri	I I I I	-0. 85 -1. 03 -0. 82	-0. 55 -0. 67 +0. 54	+0. 14 +0. 07 +0. 14	-0. 27 -0. 63 -0. 31 -0. 64 +0. 37	+0. 65 +0. 32 +0. 65	+0. 22 -0. 12 -0. 03	-0. 12 +0. 14 +0. 13	+0.60 +0.26 +0.58	+a. 64 -o. 79 -o. 63	-2.0 +2.0 +1.1	-3. 3 +0. 5 -0. 1
28 28 28 28 29	Greenwich Camb., Eng. Dorchester Dorchester Berlin	85 Tauri 85 Tauri α Tauri α Tauri 111 Tauri	I I EB EB	-0.47 -1.02 +1.02	-0. 31 -0. 67	+0. 18 -0. 06 -0. 06	+0. 91 -0. 88 +0. 31 -0. 31 +0. 13	+0.90 -0.32 -0.31	+0.06 -0.19 +0.11	+0. 08 +0. 12 -0. 14	+0.80 -0.32 -0.28	-0. 36 -8. 78 +0. 78	+2.0 +1.7 -3.0	+1. +0. -1.
29 29 29 Apr. 5	Berlin Greenwich Camb., Eng. Greenwich Camb., Eng.	Tauri Tauri Tauri Tauri Tauri Leonis T Leonis	I I I I	-0. 78 -0. 66 -0. 90	-0. 40 -0. 42 +0. 85	-0. 02 -0. 03 -0. 10	-0. 51 -0. 67 -0. 77 0. 00 0. 00	-0. 67 +0. 77 +0. 10	-0.05 +0.09 +0.02	+0. 05 +0. 06 -0. 28	+0. 65 +0. 60 +0. 01	-0. 67 -0. 70 -0. 50	+2.3 +3.5 +2.1	+1. 2 +2. 5 +0. 8
28 28 May 1 1 June 4	Cracow- Berlin Camb., Eng. Cracow Cracow	I Cancri I Cancri 48 Leonis 48 Leonis 7 Libræ	I I I I	-0.90 -0.86	+0. 02 +0. 65 +0. 62	-0. 32 +0. 15 +0. 32	-0. 39 -0. 39 +0. 03 +0. 06 -0. 55	+0. 51 -0. 15 -0. 32	-0. 11 +0. 07 +0. 13	-0. 10 -0. 28 -0. 37	+0. 44 -0. 07 -0. 14	-0. 83 -0. 92 -0. 85	+0.5 +2.9 +1.9	+0.6 +0.6
July 15 16 Aug. 1 Sept. 5	Cracow Dorchester Cracow Cracow Berlin	σ Sextantis α Tauri α Tauri 110 B. Sagittarii ν Piscium	IB IB	-0. 63 -0. 71 -0. 90	-0.48 -0.53 +0.28	-0. 08 -0. 06 -0. 17	-0. 04 +0. 81 +0. 75 -0. 38 -0. 43	-0. 81 -0. 76 -0. 41	-0. 21 -0. 18 -0. 04	+0.08 +0.03 0.00	-0. 77 -0. 71 +0. 39	+0. 45 +0. 44 +0. 45	0. 0 +0. 7 +0. 2	-0. g
Oct. 5 5 5 5 20	Berlin Greenwich Greenwich Greenwich Berlin	$ \nu$ Piscium $ \theta^1$ Tauri $ \theta^2$ Tauri $ 85$ Tauri 24 Scorpii	E IB IB IB I	-1.10 -1.09 -0.53	-0. 91 -0. 88 -0. 45	-0.01 +0.01 +0.03	-0. 48 +0. 13 -0. 20 -0. 88 -0. 75	-0. 14 +0. 20 +0. 88	-0. 21 -0. 13 +0. 05	+0. 15 +0. 17 +0. 08	-0. 15 +0. 15 +0. 79	+0. 71 +0. 70 +0. 36	+1.0 +0.5 -4.7	-0.8 -0.6 -1.1 -5.5 +0.6
20 23 30 Dec. 22 1831, Jan. 20	Cracow Cracow Berlin Cracow Cracow	24 Scorpii d Sagittarii v Piscium 29 Piscium v Piscium	I I I I	-0.95 -0.76 -0.90	+0. 29 -0. 64 -0. 62	-0. 02 +0. 52 +0. 48	-0. 67 -0. 02 -0. 54 -0. 19 -0. 23	-0.02 +0.75 +0.52	-0.01 +0.09 +0.08	+0. 18 +0. 24 +0. 34	-0. 03 +0. 26 -0. 01	-0. 98 -0. 17 -0. 84	+0.9 +0.8 +0.9	+1. 5 -0. 5 -0. 3 +2. 9
20 21 21 22 26	Berlin Dorchester Berlin Cracow Greenwich	ν Piscium μ Ceti μ Ceti f Tauri f Geminor.	I I I I	-0. 80 -0. 89 -0. 47	-0. 74 -0. 82 -0. 43	-0. 26 +0. 21 +0. 17	-0.09 +0.62 -0.52 -0.88 +0.29	+0.67 +0.56 +0.90	+0.06 +0.02 +0.15	+0. 23 +0. 25 +0. 10	+0. 38 +0. 32 +0. 68	-0. 72 -0. 82 -0. 46	+5. 2 +1. 2 +0. 5	+2.9 +4.1 0.0 -0.2 +1.0
Feb. 4 4 19 19	Dorchester Dorchester Cracow Greenwich Cracow	γ Libræ γ Libræ 48 Tauri 48 Tauri Γ Tauri	IB E I I I	+0.87 -1.08 -1.07	-0. 95 -0. 98 -0. 98	-0.04 0.00 0.00	+0. 47 +0. 23 -0. 04 +0. 13 +0. 25	+0. 23 +0. 04 -0. 13	-0. 08 -0. 12 -0. 18	+0. 23 +0. 11 +0. 19	-0. 15 -0. 01 -0. 16	-0.97 -1.00 -0.98	-3.8 +2.3 +3.9	+0. 8 +2. 4

GROUP IX-1821-1838-Continued.

Date.	Place.	Star.	Ph.	λ.	K	iθ	i	b _o	$\alpha_{\rm o}$	ð,	•	P	n	n'
1831, Feb. 19 20 20 Apr. 15 May 22	Dorchester Greenwich Camb., Eng. Berlin Greenwich	α Tauri III Tauri III Tauri III Tauri α Tauri l Virginis	I I I I I	-0. 77 -0. 80 -1. 01	-0. 66 -0. 69 -0. 88	-0. 22 -0. 21 +0. 07	-0. 66 -0. 63 +0. 44	-0. 89 +0. 69 +0. 66 -0. 45 +0. 56	-0. 04 -0. 05 -0. 27	+0. 08 +0. 07 +0. 15	+0.65 +0.62 -0.47	-0. 68 -0. 73 -0. 61	+1.5 +1.1 +3.6	+0.4 0.0 +2.2
June 21 21 July 31 Aug. 28 29	Greenwich Cracow Greenwich Dorchester Dorchester	7 Libræ 7 Libræ 62 Ceti 7 Tauri 7 Tauri	I E IB IB	-0.83 -0.73 +1.03	+0. 89 +0. 78 +0. 83 -0. 73	+0. 02 +0. 02 -0. 08 0. 00	-0. 39 -0. 59 +0. 25 -0. 61	-0. 39 -0. 59 -0. 26 +0. 61 -0. 62	-0.07 +0.16 +0.04 +0.01	+0. 21 -0. 13 -0. 30 +0. 21	+0. 28 +0. 45 -0. 08 +0. 56	-0. 55 -0. 53 -0. 96 +0. 77	+2.8 +2.7 -0.3 -2.0	+1.7 +1.7 +0.7 -3.2
29 29 29 29 29	Dorchester Dorchester Dorchester Dorchester Dorchester	r Tauri α Tauri θ^1 Tauri θ^2 Tauri θ^2 Tauri θ^2 Tauri	E IB IB IB E	+0. 96 -1. 07 -0. 34 -0. 39	+0. 87 -0. 98 -0. 50 -0. 35	+0. 10 -0. 02 +0. 23 -0. 23	+0. 45 -0. 08 +0. 92 -0. 90	-0.46 +0.09 +0.95 +0.93 +0.99	+0.06 -0.15 +0.53 +0.10	-0. 17 +0. 20 +0. 19 +0. 08	-0. 36 +0. 02 +0. 43 +0. 84	-0. 89 +1. 00 +0. 85 +0. 36	-1.7 +1.1 -3.1 -0.1	-0.8 -0.3 -3.6 -0.6
Oct. 14 21 21 23 23	Dorchester Greenwich Greenwich Greenwich Greenwich	π Capricor. ξ^2 Ceti ξ^2 Ceti θ^1 Tauri θ^2 Tauri	I IB E IB IB	-0. 98 +0. 86 -0. 98 -0. 56	-0. 65 +0. 57 -0. 84 -0. 48	+0. 11 +0. 14 -0. 14 -0. 25	-0. 48 -0. 62 -0. 47 -0. 83	-0. 54 +0. 49 +0. 64 +0. 50 +0. 87	-0. 03 +0. 35 -0. 10 +0. 07	+0. 28 -0. 21 +0. 19 +0. 11	+0. 24 +0. 42 +0. 39 +0. 75	+0. 11 -0. 08 +0. 48 +0. 28	+0.8 -2.0 +0.2 -1.3	-0.5 -1.1 -1.1 -2.0
23 23 23 23 23	Greenwich Greenwich Greenwich Greenwich Dorchester	75 Tauri θ^1 Tauri 75 Tauri 99 Tauri α Tauri	I E E IB	+0.86 +0.73 +1.06 -1.02	+0. 75 +0. 62 +0. 91 -0. 88	-0. 19 +0. 23 -0. 10 +0. 13	-0. 62 +0. 73 -0. 33 +0. 40	-0.88 +0.65 -0.77 +0.34 -0.42	+0. 28 0. 00 +0. 27 -0. 26	-0. 15 -0. 15 -0. 19 +0. 15	+0. 64 -0. 64 +0. 35 -0. 44	-0. 42 -0. 35 -0. 52 +0. 52	-1.6 -1.3 -0.1 -0.9	-0.7 -0.6 +0.9 -2.2
23 23 23 23 23	Dorchester Greenwich Camb., Eng. Camb., Eng. Greenwich	α Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	E IB IB E E	- 1. 07 - 1. 08 + 1. 02	-0. 92 -0. 93 +0. 88	-0. 10 -0. 09 -0. 14	-0. 29 -0. 26 -0. 40	-0. 28 +0. 31 +0. 28 +0. 42 +0. 46	-0. 15 -0. 15 +0. 27	+0. 19 +0. 19 -0. 17	+0. 23 +0. 19 +0. 45	+0. 53 +0. 53 -0. 50	+1.2 $+2.7$ -2.3	-0.2 $+1.3$ -1.3
23 23 Nov. 16 24 Dec. 17	Cracow Cracow Greenwich Greenwich Cracow	α Tauri α Tauri 33 Ceti π Cancri γ Tauri	IB E I E I	+0.83 -0.71 +0.23	+0. 72 -0. 30 +0. 16	-0. 23 -0. 39 -0. 98	-0. 64 +0. 64 -0. 04	+0. 62 +0. 68 -0. 75 +0. 98 +0. 27	+0. 25 -0. 35 -0. 16	-0.04 +0.17 +0.06	+0.67 -0.25 +0.70	-0. 38 -0. 35 -0. 20	-1.9 +0.7	$\begin{vmatrix} -1.2 \\ -0.2 \\ +0.2 \end{vmatrix}$
17 18 1832, Jan. 5 Feb. 10	Berlin Greenwich Cracow Cracow Cracow	γ Tauri 119 Tauri θ Capricor. α Tauri α Tauri	I I I EB	-1.08 -0.91 -0.97	-0. 93 +0. 76 -0. 83	+0. 21 -0. 12 -0. 18	+0. 30 0. 00 -0. 40	+0. 14 -0. 37 -0. 12 +0. 44 +0. 58	-0. 27 -0. 02 -0. 04	+0. 12 +0. 26 +0. 07	-0.43 0.00 +0.35	-0. 11 -0. 53 -0. 88	$ \begin{array}{c c} -0.2 \\ +1.3 \\ +3.2 \end{array} $	-1.6 +0.1 +1.9
15 15 15 Mar. 8	Berlin Berlin Cracow Cracow Cracow	ψ Leonis α Leonis α Leonis 75 Tauri 119 Tauri	I I I I	-1.10 -1.10 -1.02	-0.80 -0.64 -0.86	-0.05 -0.04 -0.12	0.00 -0.01 -0.26	-0. 55 +0. 05 +0. 04 +0. 29 +0. 11	-0. 21 -0. 17 -0. 06	-0. 23 -0. 30 +0. 08	+0. 03 +0. 20	-0. 08 -0. 08 -0. 97	-4. I +1. 4 +2. 8	-5.5 0.0 +1.5
Apr. 14 June 17 17 Sept. 4	Berlin Dorchester Dorchester Cracow Dorchester	80 Virginis δ Capricor. ο Sagittarii δ Capricor.	E	-0. 49 +0. 37 -0. 85	+0. 43 -0. 32 +0. 92	+0.81 +0.87 +0.31	-0. 23 -0. 25 +0. 10	-0. 22 +0. 84 +0. 91 +0. 33 -0. 55	+0. 20 +0. 19 +0. 03	+0. 14 -0. 07 +0. 11	-0.56 -0.54 -0.40	+0.47 -0.35 -0.81	-4.4 -0.8 +2.3	-5.0 -0.5 +1.2
Dec. 31 1833, Mar. 31 Dec. 26 1834, Apr. 13 20	Cracow Cracow Berlin Cracow Cracow	8 Leonis μ Geminor. 330 B. Tauri ν Virginis	I IB I I	-0. 58 -0. 66 -0. 63	-0. 52 -0. 20 +0. 12	+0. 75 +0. 78 +0. 72	-0.40 +0.05 +0.10	+0. 23 -0. 85 -0. 78 -0. 75 -0. 72	+0.09 -0.14 -0.14	-0. 15 +0. 04 +0. 11	'−0.60 '−0.83 -0.70	-0. 37 +0. 02 -0. 58	+1.2 -0.8 $+3.2$	+0.5 -1.5 +2.5
July 14 Aug. 12 12 30 Oct. 7	Cape Berlin Berlin Cape Cracow	8 G. Libræ β Scorpii β Scorpii κ Geminor. 33 Scorpii	I I EB E I	-0. 84 +0. 89 +1. 03	-0.60 +0.63 +0.19	+0. 54 +0. 49 +0. 06	+0. 23 +0. 20 -0. 03	-0. 38 +0. 59 +0. 53 -0. 06 +0. 36	-0. 26 -0. 01 +0. 13	-0. 20 +0. 25 -0. 07	-0.56 -0.43 -0.05	-0. 81 +0. 85 -0. 64	+1.0 -4.4 -6.8	+0. 1 -3. 9 -6. 1
7 7 8 8 8 Nov. 3	Cracow Berlin Berlin Cracow Cracow	44 Ophiuchi 44 Ophiuchi λ Sagittarii λ Sagittarii 24 Ophiuchi	I I I	-1.04 -1.00 -1.01	-0. 61 -0. 40 -0. 37	-0. 12 -0. 19 -0. 07	0.00 +0.05 +0.02	-0. 02 -0. 12 -0. 20 -0. 07 -0. 13	-0. 12 -0. 09 -0. 11	-0. 16 -0. 07 +0. 02	+0.03 +0.10 -0.02	-0. 82 -0. 91 -0. 93	+1.6 +2.7 +3.0	+0.5 +1.7 +2.0
1835, Jan. 6 18 18 Apr. 9 June 10	Cracow Cape Cape Cracow Cracow	35 Ceti ξ Virginis ξ Virginis 46 Leonis θ Ophiuchi	I IB E I	-0. 76 +0. 53 -1. 04	-0. 55 +0. 39 -0. 44	-0.06 -0.09 +0.04	-0. 70 -0. 86 -0. 23	-0. 67 -0. 70 -0. 87 -0. 24 -0. 36	+0. 16 +0. 43 -0. 07	-0.35 +0.11 -0.27	-0. 19 -0. 16	+0. 59 -0. 42 -0. 61	-2.0 -0.3 +2.9	$\begin{array}{c c} -2.8 \\ 0.0 \\ +1.9 \end{array}$

GROUP IX-1821-1838-Continued.

Date.	Place.	Star.	Ph.	λ	κ	iθ	i	$b_{\mathbf{o}}$	$\alpha_{\rm o}$	\hat{o}_{o}	ε	P	n	n'
1835, June 12 14 July 6 Aug. 6	Cape Cape Cracow Cape Cape	h Sagittarii c Capricor. l Libræ 51 Sagittarii h Sagittarii	IB I	-0. 84 -0. 75 -0. 76	-0. 11 -0. 67 -0. 48	-0. 20 -0. 73 -0. 51	-0. 53 -0. 11 +0. 49	+0.57 -0.74 -0.71	+0.04 +0.07 -0.18	+0. 26 -0. 17 +0. 05	-0.41 +0.57 +0.60	+0.61 -0.53 -0.35	+ 2.6 - + 0.3 - + 0.8 - + 2.7 - + 1.7 -	- 0.5 + 0.1 + 2.0
6 8 29 Oct. 3 29	Cape Cape Cracow Cracow Cape	h Sagittarii r Capricor. 26 Libræ 69 Aquarii r Capricor.	IB I	-0.87 -1.04 -0.95	-0. 18 -0. 96 -0. 02	+0. 15 +0. 23 +0. 02	+0.06 +0.25	+0. 54 +0. 24 -0. 25	+0. 02 -0. 25 -0. 17	+0. 28 -0. 22 +0. 25	-0. 37 -0. 25 +0. 02	-0. 05 -0. 88 -0. 63	-12.1 - - 2.0 - + 1.7 - + 2.1 - + 7.1 -	+ 0.7 + 1.2
Nov. 25 1836, Feb. 8 23 25 Apr. 25	Cracow Cape Cracow Cracow Berlin	35 Capricor. 4 G. Libræ 14 Tauri 118 Tauri η Leonis	I E I I I	+0. 93 -0. 86 -0. 87	+0. 73 +0. 88 +0. 96	-0.43 -0.29 -0.23	-0. 16 -0. 01	-0.46 -0.29 +0.26	+0. 32 -0. 09 +0. 02	+0. 32 +0. 28 +0. 12	+0. 27 -0. 30 +0. 18	-0. 88 -0. 95 -0. 93	+ 4.6 - + 6.9 - + 2.1 - + 4.8 - + 0.5	+ 7·4 + 1·3
25 25 May 17 Aug. 22	Berlin Cracow Berlin Cape Cape	η Leonis η Leonis 118 Tauri φ Sagittarii φ Sagittarii		-0.44 -0.43 -1.11	+0. 17 +0. 48 -1. 00	-0. 07 -0. 74 -0. 03	-0. 89 -0. 46	-0. 89 +0. 88 -0. 05	+0. 25 +0. 12 -0. 24	-0. 16 +0. 07 +0. 50	-0. 51 +0. 84 +0. 04	-0.48 -0.21 -0.78	- 2.7 + 1.4 + 0.8 - 1.0 - 2.5	+ 1.0 + 0.4
Sept. 16 21 Oct. 21 21 1837, Feb. 14	Cape Cape Cape Cape Cracow	ρ Ophiuchi ε Capricor. γγ Piscium γγ Piscium 112 B. Aurigæ	I I I I	-1.07 -0.75 -0.98	-0.82 -0.27 -0.36	+0.01 +0.48 +0.21	+0. 16 +0. 49 +0. 20	-0. 16 -0. 68 -0. 29	-0. 15 -0. 42 -0. 27	+0. 52 +0. 25 +0. 40	+0. 03 0. 00 -0. 04	-0. 70 -0. 44 -0. 56	+ 4.5 + 0.6 + 1.8 + 2.3 + 1.4	- 0.3 + 1.2 + 1.5
Mar. 12 15 May 10 June 6	Berlin Berlin Cracow Cracow Cracow	λ Cancri 62 Tauri 47 Geminor. λ Cancri 4 Cancri	I I I I	-o. 75 -o. 86 -o. 69	+0.42 +0.91 +0.76	+0. 52 -0. 11 -0. 01	+0. 29 +0. 65	-0. 61 +0. 31 +0. 65	-0. 16 -0. 02 -0. 12	+0. 16 +0. 05 -0. 07	-0. 63 +0. 25 +0. 53	-0. 74 -0. 88 -0. 67	+ 2. 1 + 2. 6 + 2. 7 + 0. 1 + 2. 1	+ 2.0 - 0.4
July 9 Aug. 11 18 18	Cape Berlin Cape Berlin Berlin	ð Scorpii η Virginis Ο. Α. 16481 10 Ceti 10 Ceti	I EB I IB E	+0. 92 -1. 07 -1. 10	-0. 56 -0. 62 -0. 75	-0.08 0.00 +0.03	-0. 04 0. 00 +0. 01	-0. 08 0. 00 -0. 03	+0. 07 -0. 20 -0. 23	+0.44 -0.14 +0.46	+0. 03 -0. 03 -0. 06	+0.99 -0.83 +0.51	+ 1.2 - 3.6 - 0.2 - 1.2 - 0.9	- 3.3 - 1.0 - 2.0
Oct. 9 9 Nov. 5 10 1838, Jan. 3	Berlin Berlin Berlin Cracow Cracow	143 B. Capricor. 143 B. Capricor. 35 Capricor. 54 Ceti 88 Piscium	I EB I I	+1.10 -0.71 -0.80	+1.00 -0.66	0. 00 -0. 31 -0. 65	+0. 01 -0. 68 +0. 07	-0.01 +0.75 +0.66	+0. 17 +0. 12 +0. 15	+0. 24 +0. 24 +0. 34	+0. 04 -0. 55 +0. 26	+o. 85 -o. 67	+ o. 8¦+	- 5. I - 0. 5
Feb. 4 Mar. 1 June 4 July 31 Aug. 12	Cracow Cracow Cracow Berlin Cape	107 B. Aurigæ τ Arietis 40 H. Virginis 65 B. Scorpii q Tauri	I I I E	-0. 67 -0. 50 -0. 94	-0. 26 +0. 35 +0. 26	-0. 60 -0. 78 +0. 13	+0. 44 -0. 33 -0. 19	+0. 74 +0. 85 +0. 23	+0. 15 -0. 36 -0. 34	+0. 22 +0. 14 -0. 09	+0. 57 -0. 48 -0. 30	-0. 60 -0. 31 -0. 81	+ 1.6 + 0.1 + 0.6 + 4.3 + 1.2 - 1.2	- 0.4 - 0.3 - 3.6
Sept. 2 8 Oct. 5 25 25	Cracow Berlin Cape Cracow Berlin	R Capricor. C Arietis A Arietis A Sagittarii A Sagittarii		-0.99 -1.05 +0.88 -0.61	-0. 70 -0. 72 +0. 62 -0. 26	-0. 33 +0. 14 -0. 45 +0. 33	-0. 35 -0. 13 +0. 42 +0. 74	+0.48 -0.19 +0.61 -0.80	-0. 06 -0. 22 +0. 04 -0. 23	+0. 24 +0. 31 +0. 30 +0. 04	-0. 32 -0. 17 +0. 44 +0. 73	-0.30 +0.80 -0.38 -0.50	+ 1.2 + - 4.6 7.8 0.3 - + 0.8 +	+ 0.6 - 5.3 - 7.6 - 0.7
Nov. 3 27 29 Dec. 26 26	Berlin Cracow Cape Berlin Cracow	7 Tauri 171 B. Piscium 2 Arietis 27 Arietis 27 Arietis	IB I I I	-0. 64 -0. 89 -0. 82 -0. 90	-0. 35 -0. 81 -0. 61 -0. 75	+0. 36 -0. 57 -0. 47 +0. 43	-0. 72 -0. 13 +0. 48 -0. 35	-0.81 -0.59 +0.67 -0.55	-0. 28 +0. 10 +0. 04 -0. 36	+0. 11 +0. 45 +0. 30 +0. 27	-0. 75 +0. 13 +0. 49 -0. 42	+0. 17 -0. 63 -0. 32 -0. 71	- 1	0.0 1.6 0.6 1.8

GROUP X-1839-1856.

1839, Apr. 20 May 2 6	Dorchester Berlin Cape Cape	α	Cancri Sagittarii Capricor. Virginis	E	+0. 79 +0. 98 -0. 04	-0. 30 +0. 50 -0. 05	-0.06 +0.25 +0.87	6, -0. 54 5, +0. 15 -0. 50	+0.54 -0.29 +1.00	+0.02 +0.04 -0.43	0.00 -0.40 +0.00	-0. 55 +0. 24 -0. 38	-0. 83 -0. 69 -0. 92 -0. 03	+1.4 0.0	-0.8 +1.5 +0.2 -2.3
24 June 20	Cape Dorchester	α 68	Virginis Virginis	EB	+0.36	+0.41	+0. 79	, -0. 4 6	+0.92	-o. 39	+o. 28	-o. 37	+0. 28 +0. 81	0.0	+0. I -3. 8
23 23	Washington Dorchester	ь b	Scorpii Scorpii	I	-0. 92 -0. 91	+o. 87 +o. 87	+0. 04 -0. 04	-0. 10 +0. 12	+0. 11 -0. 13	-0. 04 +0. 02	-0. 23 -0. 24	-0.07 -0.02	-0.51 -0.51	+0.9	+0.4 +0.6
July I	Cape Dorchester		Scorpii Aquarii	I	-0. 81 -0. 97	-o. 88 -o. 67	-0. 06 +0. 36	+0.47 +0.03	-0. 48 -0. 37	+0. 03 -0. 32	-0. 18 +0. 40	+0. 44 +0. 10	-0. 34 -0. 31	+1.5 +0.2	+1.0

GROUP X-1839-1856-Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	<i>b</i> _o	$\alpha_{\rm o}$	δ ₀ .		P	n .	n'
1839, July 1 6 6 6 6	Dorchester Washington Washington Washington Washington	φ Aquarii 20 Tauri 17 Tauri η Tauri 20 Tauri	EB IB E IB	-0.33 +1.07 -1.00	-0. 27 +0. 90 -0. 84	+0.06 +0.36 +0.08 +0.15 +0.29	-0. 89 -0. 19 +0. 37	-0. 95 -0. 21 +0. 41	-0. 28 +0. 13 -0. 08	+0.04 -0.25 +0.24	-0. 81 -0. 18 +0. 36	+0. 22 -0. 73 +0. 68	+0.4 +0.4 -0.3	-0.8 +0.2 +0.6 -0.8 -3.8
Aug. 17 17 17 25 Sept. 26	Cracow Cape Cape Cracow Berlin	II ^r Sagittarii A ¹ Scorpii A ² Scorpii \(\theta\) Aquarii 66 Arietis	I I IB E	-0. 90 -0. 87 -1. 09	+0. 90 +0. 87 -0. 65	-0. 14 +0. 04 -0. 08 -0. 09 -0. 35	-0. 13 +0. 27 0. 00	+0. 14 -0. 29 +0. 09	-0. 07 +0. 03 -0. 17	-0. 24 +0. 10 +0. 38	-0.06 +0.27 -0.02	-0. 98 -0. 95 +0. 24	+1.6 +0.4 -1.5	+0.8 +1.1 -0.1 -2.1 -1.2
26 26 26 26 26	Washington Washington Washington Washington Washington	20 Tauri 17 Tauri 16 Tauri <i>q</i> Tauri 20 Tauri	IB E E E	+0. 94 +1. 11 +0. 94	+0. 83 +0. 99 +0. 85	+0.09 -0.17 +0.01 +0.16 -0.01	+0.51 -0.05 -0.51	+0. 54 -0. 05 -0. 54	+0. 28 +0. 19 +0. 05	-0. 18 -0. 24 -0. 22	+0. 45 -0. 05 -0. 46	-0. 59 -0. 70 -0. 60	-0.9 +1.1 +0.8	+0.9
26 Oct. 17 18 18	Berlin Washington Berlin Cracow Cracow	20 Tauri δ Capricor. 58 Aquarii 58 Aquarii φ Aquarii	IB I I I I	-0.46 -0.96 -1.01	-0. 11 -0. 40 -0. 42	-0. 22 +0. 83 +0. 40 +0. 17 -0. 35	+0. 34 +0. 07 +0. 05	-0. 89 -0. 41 -0. 17	-0. 39 -0. 33 -0. 22	+0. 11 +0. 36 +0. 31	+0. 58 +0. 20 +0. 10	-0. 39 -0. 66 -0. 69	+1.9 +3.5 +1.1	+3.0
Nov. 14 20 20 20	Cracow Cracow Washington Dorchester Dorchester	96 Aquarii	I I I I	-1.00 -1.13 -1.14	-0. 26 -0. 96 -0. 97	-0. 43 +0. 16 +0. 06 +0. 06 +0. 18	+0.05 -0.23 -0.20	-0. 16 -0. 24 -0. 21	-0. 14 -0. 29 -0. 29	+0.40 +0.21 +0.23	+0. 05 -0. 18 -0. 16	-0. 98 -0. 08 -0. 08	+0.6 -8.0 -7.4	
20 20 20 Der. 12 1840, Jan. 11	Washington Washington Dorchester Washington Berlin	η Tauri η Tauri η Tauri η Tauri 78 Aquarii ∂ Piscium	I EB I I I	+0.60 -0.84 -0.97	+0.51 -0.71 -0.42	-0. 16 -0. 22 +0. 17 +0. 25 -0. 18	+0.83 +0.67 0.00	+0.86 +0.69 -0.25	+0. 31 -0. 02 -0. 24	-0.09 +0.20 +0.43	+0. 72 +0. 60 +0. 12	+0. 04 -0. 06 -0. 96	-6. 2 -1. 5 +5. 9	-7. 2 -6. 1 -1. 9 +5. 4
11 13 13 13	Berlin Berlin Berlin Cracow Cracow	δ Piscium μ Arietis μ Arietis μ Arietis μ Arietis η Tauri	EB I EB I I	-0. 87 +0. 79 -0. 63	-0. 79 +0. 72 -0. 57	-0. 43 -0. 27 -0. 30 -0. 37 -0. 13	+0. 54 +0. 61 +0. 73	+0.60 +0.68 +0.82	+0. 04 +0. 34 +0. 14	+0. 29 -0. 20 +0. 25	+0. 42 +0. 44 +0. 56	-0. 74 +0. 67 -0. 52	+0. 2 -8. 4 -1. 3	-0. 2 -8. 3 -1. 6
14 14 14 14	Cracow Cracow Berlin Berlin Berlin	21 Tauri 22 Tauri q Tauri 18 Tauri q Tauri	I I I EB	-0. 86 -0. 93 -0. 87	-0. 78 -0. 83 -0. 78	-0. 10 -0. 12 -0. 11 +0. 12 -0. 10	+0.62 +0.53 -0.60	+0.63 +0.54 -0.61	-0. 04 -0. 05 -0. 28	+0. 19 +0. 21 +0. 16	+0. 68 +0. 48 -0. 50	-0. 62 -0. 67 -0. 63	-1.8 0.0 +1.9	
. 16 16 16 16	Cracow Berlin Berlin Berlin Washington	406 B. Tauri 406 B. Tauri 136 Tauri 136 Tauri α Leonis	I I EB E	-0. 96 -0. 29 +0. 17	-0. 77 -0. 23 +0. 14	-0. 08 -0. 14 +0. 28 +0. 29 +0. 74	-0. 48 +0. 92 +0. 94	-0.50 +0.97 +0.99	-0. 15 -0. 05 +0. 02	+0. 02 0. 00 0. 00	+0. 47 +0. 97 +0. 98	-0. 44 -0. 13 +0. 08	+0.5 -0.4 -2.7	-2.7
Feb. 15 Mar. 15 15 23 Apr. 11	Cape Berlin Berlin Cape Cracow	γ Cancri α Leonis α Leonis α Scorpii ν Leonis	I I EB E I	-0. 96 +0. 86 +0. 81	-0. 15 +0. 14 -0. 90	+0.82 -0.29 -0.50 +0.01 +0.67	-0. 05 -0. 07 +0. 44	-0. 30 -0. 51 -0. 44	+0. 01 +0. 30 +0. 09	-0.41 +0.32 +0.14	-0. 11 -0. 31 +0. 41	-0. 49 +0. 44 -0. 84	+0.6 -0.8 -1.3	+0. 1 -0. 7 -1. 2
11 16 19 19 May 6	Berlin Berlin Washington Washington Washington	ν Leonis 85 Virginis τ Scorpii τ Scorpii μ Cancri	I IB IB E I	-0.85 -0.50 +0.51	+0.68 +0.56 -0.57	+0. 75 -0. 24 -0. 08 -0. 08 +0. 48	+0. 33 -0. 82 +0. 82	-0.41 +0.83 -0.11	+0. 13 -0. 08 +0. 08	-0. 39 -0. 06 -0. 79	+0. 23 -0. 74 -0. 39	-0. 02 +0. 39 -0. 39	$ \begin{array}{r} -2.4 \\ -3.3 \\ +2.1 \end{array} $	$\begin{vmatrix} -2.8 \\ -3.5 \\ +2.1 \end{vmatrix}$
8 9 18 19	Berlin Cape Cape Cape Cape	ψ Leonis ρ Leonis 3 Sagittarii φ Sagittarii φ Sagittarii	IB	-0. 94 +0. 86 -0. 90	-0. 16 -0. 92 +0. 86	-0.03 +0.29 +0.10 +0.05 +0.04	-0.01 +0.25 +0.07	+0. 29 -0. 27 -0. 09	-0. 23 +0. 02 -0. 04	-0. 39 0. 00 +0. 11	+0. 17 +0. 24 +0. 08	-0.95 -0.46 +0.69	+0. 2 -1. 2 -1. 7	-1.2 -2.1
20 20 22 22 22 June 12	Cape Cape Cape Cape Cape	h Sagittarii h Sagittarii c Capricor. Capricor. A¹ Scorpii	IB	-0. 91 +0. 90 -0. 91 +0. 79	+0. 72 -0. 71 +0. 28 -0. 24	0.00 +0.11 -0.26 -0.53 +0.13	0.00 +0.11 -0.08 -0.16	0.00 -0.16 +0.27 +0.55	-0. 03 +0. 01 +0. 02 +0. 26	+0. 21 -0. 22 +0. 38 -0. 26	-0. 02 +0. 18 -0. 18	+0. 83 -0. 82 +0. 95 -0. 82	-3.3 -6.6 -1.3 +0.1	-3.7 -6.6 -1.7 +0.1
July 10 10 Sept. 3 8 Oct. 13	Camb., Mass. Washington Cracow Washington Washington	τ Scorpii τ Scorpii τ Scorpii τ Scorpii ι Capricor. η Tauri	I I I E	-0. 59 -0. 46 -0. 87 -0. 81	+0.62 +0.51 +0.94 +0.44	-0. 13 -0. 14 -0. 06 +0. 53 +0. 04	-0. 76 -0. 85 -0. 25 +0. 10	+0. 77 +0. 86 +0. 25 -0. 54	-0. 08 -0. 08 -0. 05 -0. 24	-0.07 -0.05 -0.12 +0.26	-0. 69 -0. 77 -0. 18 +0. 56	-0. 42 -0. 34 -0. 97 -0. 41	+0.8 +3.4 +0.3 +1.4	+0.6 +3.2 0.0 +1.1 -0.2

GROUP X-1839-1856-Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	b _o	α_{o}	δ,	•	P	n	n'
1840, Nov. 2 2 2 2 3	Washington Camb., Mass. Washington Washington	c Capricor. Capricor. Capricor. Aquarii	I I EB I	-0.85 +0.93	+0. 54 -0. 59	+0.41 +0.04	+0.06 0.00	-0. 41 -0. 04	-0. 18 +0. 02	+0. 30 -0. 38	+0. 27 -0. 04	-0. 87 -0. 90 +0. 99 -0. 93	+3.4 -8.2	+2.2 +3.1 -8.2 +1.6
1841, Feb. 7	Berlin	d Leonis	E	+1.00	+0.47	-o. 37	+0. 16	-0.40	+0. 37	+0. 36	-0. 17	-0. 29	-1.7	-1.7
Apr. 28 May 23 June 4	Cracow Cracow Berlin Washington	7 Tauri π Cancri ω Geminor. ρ Sagittarii	I I E	-0.69 -1.05	-0. 59 -0. 94	+0. 76 +0. 29	-0.01 +0.17	+0. 76 +0. 33	-0. 27 -0. 24	-0. 18 -0. 15	} +0. 59 ; +0. 39	-0. 52 -0. 64 -0. 63 -0. 15	+0. I -2. 2	+1.6 -0.1 -2.5
30	Cape	a Scorpii	I	-o. 87	+0. 59	-o. 16	-o. 30	+0. 34	-o. o8	-0. 11	,-o. 26	-0. 54	+1.6	+1.3
Aug. 1 10 10 10 10	Washington Berlin Berlin Berlin Berlin	19 Capricor. 17 Tauri 16 Tauri 20 Tauri 16 Tauri	I IB IB IB E	-1.04 -0.78 -0.74	-0. 56 -0. 41 -0. 40	-0. 21 -0. 22	-0. 03 -0. 63 -0. 66	-0.03 -0.67 -0.70	-0. 12 -0. 20 -0. 20	+0. 17 +0. 21 +0. 12	+0.04 -0.51 -0.55	-0.02 +0.96 +0.71 +0.69	-4.0 -2.7 +0.2	-4.2
10 10 10 Sept. 6 6	Berlin Berlin Berlin Washington Washington	17 Tauri 7 Tauri 20 Tauri 17 Tauri <i>q</i> Tauri	IB IB IB IB	-0. 79 +0. 88 -0. 95	-0. 43 +0. 47 -0. 46	+0. 21 -0. 17 +0. 12	+0.62 -0.51 +0.35	+0.66 -0.54 +0.37	+0.02 +0.03 -0.03	+0. 14 -0. 17 +0. 17	+0.61 -0.50 +0.37	-0. 95 +0. 73 -0. 81 +0. 90 +0. 62	-1.6 +2.1 -4.6	+1.9
6 6 6 6	Washington Washington Washington Washington Washington Washington	20 Tauri 17 Tauri 16 Tauri <i>q</i> Tauri 20 Tauri	IB E E E	+0. 78 +1. 02 +0. 88	+0. 38 +0. 50 +0. 44	+0. 22 +0. 01 -0. 17	+0.61 +0.03 -0.47	+0.64 +0.03 -0.50	+0. 18 +0. 10 0. 00	-0. 13 -0. 17 -0. 16	+0.49 -0.04 -0.48	+0. 93 -0. 75 -0. 97 -0. 84 -0. 97	+1.2 +3.4 +1.8	-3.5 +1.1 +3.2 +1.6 +3.1
6 6 22 25 Oct. 6	Washington Washington Cracow Washington Washington	21 Tauri 22 Tauri 66 B.Sagittarii 21 Capricor. & Geminor.	E I I E	+0. 82 +0. 91 -0. 59 -0. 88	+0. 40 +0. 45 +0. 53 +0. 97	-0. 21 -0. 15 +0. 63 +0. 19	-0. 56 -0. 42 +0. 44 -0. 01	-0.60 -0.45 -0.76 -0.19	-0.03 +0.01 -0.08 -0.06	-0. 15 -0. 17 +0. 05 +0. 33	-0. 56 -0. 43 +0. 81 +0. 24	-0. 79 -0. 86 -0. 64 -0. 78	-9.3 +2.4 -0.6 +1.9	-9.5 +2.2 -0.7
Nov. 27 27 1842, Jan. 21 21 21	Washington Washington Washington Washington Washington	17 Tauri 20 Tauri 16 Tauri q Tauri 21 Tauri	I I I I	-0. 94 -1. 03 -0. 93	-0. 32 -0. 29 -0. 26	+0. 20 +0. 03 -0. 20	-0.44 +0.05 -0.39	-0.49 +0.06 -0.43	-0. 21 -0. 10 -0. 16	+0. 15 +0. 16 +0. 13	-0. 34 +0. 13 -0. 29	-0. 10 -0. 09 -0. 84 -0. 76	-5. I +6. 6 +0. 3	-7.7 -5.3 +6.4 +0.1 +0.2
21 24 Mar. 22 22 Apr. 12	Washington Washington Cracow Cracow Camb., Mass.	22 Tauri ω Geminor. ο² Cancri ο¹ Cancri ε Arietis	I I I I	-0. 92 -1. 05 -0. 87	-0.81 -0.92 -0.76	-0. 12 -0. 30 +0. 61	+0. 32 +0. 07 -0. 14	-0. 34 -0. 31 +0. 62	-0. 01 -0. 09 -0. 37	-0. 11 -0. 35 -0. 23	-0. 30 -0. 19 +0. 59	-0. 76 -0. 29 -0. 68 -0. 56 -0. 43	+7.8 -3.1 -2.5	+0.4 +7.6 -3.3 -2.6 -1.6
May 14 1843, Jan. 24 Mar. 6 May 3	Cracow Camb., Mass. Cracow Cracow Cracow	63 Geminor. σ Scorpii 47 Arietis 1 Geminor. 3 Geminor.	I E I I I	+0.89 -0.91 -0.95	+0. 76 +0. 74 +0. 06	-0. 39 -0. 03 -0. 11	0 -0. 27 2 -0. 02 1 -0. 01	+0.48 -0.03	+0. 00 0. 00 1 -0. 00	+0.08 +0.22 -0.10	0 -0.5 +0.0 -0.0	-0. 83 -0. 79 7 -0. 92 2 -0. 79 5 -0. 62	+3.9 -3.5 -3.0	+3.5 -3.5 -3.0
3 9 June 3 Sept. 11 30	Cracow Cracow Cracow Cape Camb., Mass.	4 Geminor. e Leonis h Leonis y Piscium 39 Sagittarii	I I IB I	-0. 71 -0. 93 -0. 19	-0.61 -0.61 +0.21	-0. 17 -0. 30 -0. 43	1 +0. 75 1 +0. 32 3 -0. 88	-0. 77 -0. 44 -0. 98	1 +0. 19 1 +0. 09 3 -0. 31	0 -0. 34 5 -0. 33 1 0. 00	-0.00 -0.20 +0.40	-0.76 -0.49 -0.86 +0.12	-2.4 -2.4 +4.1	$\begin{vmatrix} -2.4 \\ -2.4 \\ +4.1 \end{vmatrix}$
Oct. 6 Nov. 2 2 3	Berlin Cracow Cracow Camb., Mass. Berlin	κ Piscium κ Piscium 9 Piscium 45 Piscium c² Capricor.	III	-0. 80 -0. 85 -0. 90	+0.74 +0.75 +0.69 +0.89	0.00 +0.00 -0.00 -0.00	0 -0.49 2 -0.28 3 +0.35 3 -0.14	-0. 49 -0. 28 +0. 35	-0. 22 -0. 10 +0. 11 -0. 03	+0. 31 +0. 36 +0. 41 3 +0. 36	+0. 10 +0. 13 +0. 03 +0. 03	0 -0. 34 -0. 78 -0. 75 -0. 63 -0. 87	+0.7 -1.1 -2.2 -0.2	+0.8 -1.0 -2.1 -0.1 -2.1
1844, Jan. 8 8 31 Feb. 22 Apr. 26	Cape Cape Cape Camb., Mass. Cracow	π Leonis π Leonis 2 Geminor. 104 Piscium ω Leonis	IB E I I	-1.03 +1.03 -0.85 -0.86	-0.42 +0.42 +0.50 +0.92	+0.00 -0.00 -0.40 +0.10	-0.02 5 +0.11 5 +0.07 3 +0.22	+0.00 1 -0.10 7 -0.45 +0.30	3 -0. 1; 2 +0. 10 5 -0. 0; 0 +0. 1	-0.37 +0.36 -0.08 +0.29	+0.00 -0.13 -0.45 +0.2	+0.66 -0.68 -0.52 -0.77	-3.3 $+1.2$ -2.2 $+0.6$	-3. 2 +0. 7 -2. 1 +0. 7
June 25 25 1845, Jan. 12	Cape Cape Cracow Cracow	40 H.Virginis 40 H.Virginis & Piscium 9 Piscium	I EB I I	-0.40 +0.52 -0.98	-0. 3! +0. 4! -0. 0! -0. 0!	+0. 73 +0. 73 -0. 08 +0. 1	+0. 58 +0. 54 3 -0. 23 1 +0. 34	3 -0.93 -0.88 -0.23 +0.30	+0. 13 +0. 33 -0. 15 +0. 05	8 -0. 15 2 -0. 05 7 +0. 35 5 +0. 36	+0. 5. +0. 40 +0. 10 +0. 0	4 -0. 29 5 +0. 38 2 -0. 77 1 -0. 74	-0. 2 -1. 6 -0. 2 -1. 6	-0. P -1. 9 +0. 1 -1. 3
Mar. 22 Apr. 12 May 16 16	Berlin Cracow Berlin Berlin	e Leonis 68 Orionis e Leonis e Leonis	I I I EB	-0. 42 -0. 89 -0. 59	+0. 0: +0. 0: +0. 0:	-0. 30 -0. 10 3 -0. 3	5 — 0. 82 0 + 0. 03 5 — 0. 73	+0.9: 7 -0.1: 3 +0.8:	2 +0. 3; 2 +0. 0; 1 -0. 3;	+0. 25 2 -0. 05 3 -0. 10	5 +0. 10 7 -0. 0 6 +0. 1	6 -0.02 5 -0.93 7 -0.48 2 +0.62	-5.3 -2.5 -0.2	-2. 2 0. 0
20 20	Berlin Cracow	25 Libræ 25 Libræ	I	-0.94	µ −o. 6	-o. 5	1 -o. o	7 +0. 5	-0. 2	-o. i	3 -0. 3.	4 -0. 10	-1.0	

GROUP X-1839-1856-Continued.

				1		- 					1	_	·	· _I
Date.	Place.	Star.	Ph.	λ	К	<i>iθ</i>	i	<i>b</i> _o	α ₀	ð	•	P_	n	n'
1845, June 16 July 16 17 Sept. 13	Berlin Camb., Mass. Camb., Mass. Cracow Camb., Mass.	10 Libræ 58 Ophiuchi 29 Sagittarii c¹ Capricor. 57 Orionis	I I I	-1.09 -1.09 -1.09 +0.83	-0. 94 -0. 95 -0. 82 -0. 86	+0. 25 -0. 22 +0. 01 -0. 31	-0. 15 +0. 23 +0. 13 +0. 23	-0. 29 +0. 32 +0. 13 -0. 39	-0. 23 -0. 19 -0. 13 -0. 01	+0.05 +0.14 +0.31 +0.03	+0. 37 -0. 24 -0. 02 -0. 45	-0. 38 -0. 47 -0. 26 -0. 52 -0. 92	-0. 2 +1. 0 -3. 3 +3. 1	" -0. 1 +0. 2 +1. 4 -2. 9 +2. 4
Oct. 20 20 Nov. 6 6	Camb., Mass. Berlin Berlin Berlin Berlin	64 Orionis 71 Orionis 71 Orionis 2 Aquarii 4 Aquarii	E IB E I EB	-0. 86 +0. 85 -0. 43 +0. 65	+0. 89 -0. 91 -0. 39 +0. 58	-0. 23 -0. 25 +0. 03 +0. 02	-0. 21 -0. 24 -0. 91 -0. 79	-0. 31 -0. 34 -0. 92 -0. 79	+0.03 -0.03 -0.30	-0. 05 +0. 05 +0. 08 -0. 20	-0. 26 -0. 28 +0. 68 +0. 53	-0. 98 +0. 82 -0. 83 -0. 41 +0. 62	-5. I +3. 0 +1. 6 0. 0	-o. 5
6 9 9 10 Dec. 6	Cracow Cracow Berlin Berlin Camb., Mass. Camb., Mass.	v Aquarii 22 Piscium 22 Piscium 22 Piscium d Piscium 22 Piscium	I I EB I	-1.02 -0.98 +1.02 -0.94	-0. 50 -0. 46 +0. 47 -0. 26	-0. 05 -0. 19 -0. 07 +0. 29	-0. 05 -0. 21 -0. 08 +0. 20	-0. 07 -0. 28 -0. 11 +0. 35	-0. 11 -0. 17 +0. 05 +0. 06	+0. 34 +0. 31 -0. 34 +0. 30	+0.07 +0.07 -0.05 +0.12	-0. 68 -0. 84 -0. 81 +0. 83 -0. 64	-1.1 +0.4 -1.0 -1.0	1 1
1846, Feb. 6 20 Mar. 31 May 3	Camb., Mass. Camb., Mass. Camb., Mass. Camb., Mass. Camb., Mass.	71 Orionis 16 Sagittarii 97 Tauri ω Leonis 14 Sextantis	I E I I	-0. 88 +1. 03 -0. 84 -0. 57	+0.81 +0.85 +0.42 +0.62	+0. 15 -0. 22 +0. 39 +0. 17	-0. 18 +0. 27 -0. 26 +0. 76	+0. 24 +0. 35 +0. 47 -0. 77	-0. 01 +0. 19 +0. 01 +0. 22	-0. 07 -0. 08 +0. 05 -0. 21	+0. 29 -0. 41 +0. 48 -0. 42	-0. 95 -0. 73 -0. 77 -0. 74 -0. 62	-1.9 +2.1 -3.6 -1.0	-1.0 -1.5 +1.3 -3.2 -0.7
June 29 Aug. 14 Sept. 14 Nov. 22	Camb., Mass. Berlin Berlin Berlin Camb., Mass.	69 Leonis 68 Tauri 68 Geminor. ρ Sagittarii 65 Cancri	I E E I	-0. 79 +0. 70 +0. 89 -1. 05	+0. 73 -0. 07 -0. 73 -0. 72	-0. 33 +0. 56 +0. 04 -0. 03	-0. 36 -0. 38 -0. 23 +0. 18	+0. 49 +0. 68 +0. 23 +0. 18	-0. 13 +0. 07 -0. 04 -0. 12	-0. 28 -0. 06 +0. 16 +0. 14	+0. 19 +0. 58 +0. 23 -0. 15	-0. 93 -0. 84 -0. 72 -0. 89 -0. 73	-0.8 +3.6 +2.7 -1.4	-1.6 -0.4 +3.0 +1.9 -0.8
5 5 25 25 25 25 25	Camb., Mass. Camb., Mass. Camb., Mass. Greenwich Camb., Eng.	34 Sextantis 34 Sextantis 3 Tauri 68 Tauri 180 B. Tauri 180 B. Tauri		+0.86 -0.60 -0.88 -0.75	-1.00 -0.16 -0.17 -0.16	-0. 22 +0. 59 -0. 34 -0. 51	-0. 22 -0. 53 +0. 32 +0. 42	+0. 30 +0. 80 -0. 47 -0. 66	-0. 14 +0. 07 -0. 08 -0. 13	-0. 05 -0. 05 -0. 06 +0. 10	+0.07 +0.73 -0.40 -0.56	-0. 82 -0. 63 -0. 75 -0. 70	+0.8 -1.2 -0.4 +0.8	+0. 2 0. 0 -0. 8 +0. 1 +1. 3
Feb. 24 Mar. 24 24 26 Apr. 22	Camb., Eng. Greenwich Greenwich Greenwich Greenwich	u Geminor. λ Geminor. λ Geminor. κ Cancri Α²Cancri	Î I EB I	-0. 75 -0. 64 +0. 49 -0. 90	+0. 26 +0. 27 -0. 21 +0. 80	-0. 13 -0. 05 -0. 06 +0. 02	+0. 58 +0. 73 +0. 85 +0. 04	-0. 60 -0. 73 -0. 85 -0. 04	+0.05 +0.09 +0.09 +0.06	-0.06 -0.09 +0.06 -0.24	-0. 57 -0. 68 -0. 82 +0. 01	-0. 76 -0. 72 -0. 67 +0. 52 -0. 81	-1.9 -0.5 +0.6 -0.5	0. 0 -1. 4 -0. 1 +0. 2 +0. 1
22 25 May 23 23	Camb., Eng. Cape Greenwich Camb., Eng.	A ² Cancri d Leonis v Leonis v Leonis	I I I	-0. 82 -0. 85 -0. 90 -0. 89	+0.62 +0.93 +1.00 +1.00	+0. 15 +0. 28 -0. 08 -0. 06	+0. 44 +0. 20 -0. 04 -0. 03	-0. 46 -0. 34 +0. 09 +0. 07	+0. 12 +0. 13 +0. 02 +0. 03	-0. 21 -0. 31 -0. 31 -0. 31	-0. 33 -0. 05 +0. 05 +0. 05	-0. 90 -0. 87 -0. 70 -0. 93 -0. 93	-1.3 -2.0 -0.7 -1.0	+5.9 -0.7 -1.4 0.0 -0.3
June 1 1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Camb., Eng. Camb., Eng. Camb., Eng. Greenwich Cape	ζ Libræ ρ Sagittarii ρ Sagittarii ρ Sagittarii ο Leonis	I IB E E I	-1.01 +1.01 +1.02 -0.92	-0. 45 -0. 45 +0. 46 +0. 77	0.00 0.00 0.00 -0.05	-0. 19 -0. 18 -0. 17 -0. 06	-0. 19 -0. 18 -0. 17 +0. 08	-0. 11 +0. 06 +0. 07 0. 00	+0. 12 -0. 12 -0. 13 -0. 26	+0. 20 +0. 15 +0. 14 +0. 11	-0. 15 +0. 65 -0. 65 -0. 83	-8.7 +1.0 +2.0 -2.0	+0. 1 +1. 1 -1. 3
Sept. 16 Oct. 18 Nov. 18 1848, Jan. 12 16	Cape Camb., Eng. Camb., Mass. Greenwich	29 Ophiuchi v Aquarii 44 Piscium 80 Piscium r Tauri	EB	-0. 97 -0. 65 -1. 06 +0. 72	-0. 61 -0. 59 -0. 87 +0. 49	+0. 23 +0. 81 -0. 13 +0. 31	+0. 32 +0. 03 +0. 03 -0. 66	+0. 39 +0. 81 -0. 13 +0. 73	-0. 02 +0. 16 -0. 15 +0. 17	+0. 23 +0. 23 -0. 08 -0. 08	-0. 17 +0. 07 -0. 06 +0. 68	-0. 91 -0. 81 -0. 39 -0. 87 +0. 53	-2.2 -4.3 -2.0 +1.3	$\begin{bmatrix} -1.3 \\ -3.7 \end{bmatrix}$
16 16 Feb. 12 12 15	Camb., Eng. Camb., Eng. Camb., Mass. Camb., Mass. Cracow	α Tauri α Tauri α Tauri α Tauri α Tauri λ Geminor.	I EB I EB I	+0. 74 -0. 54 +0. 33 -0. 84	+0.50 -0.50 +0.12 -0.20	+0. 30 +0. 37 +0. 40 -0. 13	-0. 65 -0. 78 -0. 86 -0. 54	+0. 71 +0. 86 +0. 95 +0. 55	+0. 15 +0. 06 +0. 15 -0. 09	-0. 08 -0. 02 +0. 01 -0. 08	+0. 67 +0. 80 +0. 88 +0. 54	-0. 61 +0. 56 -0. 63 +0. 16	+1.0 -1.9 +0.9 -2.7	-1.9 +0.3 -1.4 +0.6 -1.9
Mar. 11 21 Apr. 12 15 May 4	Camb., Mass. Camb., Eng. Camb., Mass. Cape Camb., Mass.	m Virginis o Leonis B. A. C. 4019 a Tauri	IB I I I I	-0. 64 -0. 94 -0. 52	+0. 75 +0. 25 +0. 45	+0.60 -0.11 -0.82	-0. 27 -0. 09 -0. 04	-0. 66 +0. 14 +0. 82	+0. 26 -0. 03 -0. 24	-0. 24 +0. 06 -0. 12	+0. 29 +0. 08 +0. 82	-0. 71 +0. 28 -0. 82 -0. 30	-2. I -3. 9 -0. 2	-3. I -1. 4 -2. 9 +0. 3 -1. 5
7 9 17 June 6 8	Greenwich Cracow Cape Greenwich Cape	68 Geminor. 35 Leonis 7 Libræ 10 Sextantis 7 Leonis	I I EB I	-0. 26 -0. 86 +0. 93 -0. 65	+0. 04 +0. 90 -0. 22 +0. 44	+0. 72 -0. 17 -0. 24 -0. 70	+0. 64 +0. 24 -0. 16 -0. 08	-0. 96 +0. 30 +0. 29 +0. 70	+0. 20 -0. 02 -0. 05 -0. 20	-0. 08 -0. 17 +0. 26 -0. 19	-0. 68 -0. 22 -0. 12 +0. 13	-0. 50 -0. 26 -0. 05 +0. 86 -0. 71	-0.5 -1.5 +7.0 -1.8	+0.9 -0.2 -0.6 +6.2 -1.1
July 11	Camb., Eng. Camb., Eng. Greenwich Camb., Eng.	30 Libræ θ Libræ θ Libræ 246 B. Sagittarii	I I I	-0. 34 -0. 31	+0. 02 +0. 02	-0. 40 -0. 41	+0. 83 +0. 85	+0. 92 +0. 94	-0. 14 -0. 15	-0. 26 -0. 05	-0. 78	-0.47 -0.32 -0.26	-2. I -0. 2	+0. I -1. 7 +0. I
· Aug. 7	Camb., Mass.	η Libræ	i	-0. 67 -0. 72	+0. 89	+0. 30 +0. 28	+0. 66 -0. 52	+0. 72 -0. 59	+0.06	+0. 07 +0. 05	-0. 70 +0. 48	-0.01 -0.91	-0.4 -2.3	+0.3

GROUP X-1839-1856-Continued.

Date.	Place.	Star.	Ph.	λ	κ	i θ _.	i	b_{o}	$\alpha_{_{0}}$	$\partial_{\mathbf{o}}$	ε	P	n	21'
848, Aug. 21 21 21 Sept. 15	Camb., Eng. Camb., Eng. Greenwich Greenwich Camb., Mass.	γ Tauri γ Tauri γ Tauri γ Tauri ξ¹ Ceti ξ¹ Ceti	IB E E E	+1.05 +1.03 +0.77	-0. 50 -0. 50 +0. 66	-0.08 +0.07 +0.56	+0. 24 -0. 23 -0. 52	-0. 25 -0. 24 +0. 77	+0.09 +0.07 +0.37	-0. 15 -0. 16 -0. 14	-0. 21 -0. 19 +0. 42	+0.93 -0.96 -0.97 -0.41 +0.54	+1.8 +1.1 +4.4	-7. +0. +0. +3. +0.
Oct. 28 Nov. 9 9 Dec. 4 849, Jan. 3	Camb., Mass. Camb., Eng. Camb., Eng. Camb., Eng. Camb., Eng.	η Libræ ξ¹ Ceti ξ¹ Ceti η Piscium ξ¹ Ceti	I I EB I I	-0. 72 +0. 58 -0. 62	-0. 58 +0. 46 -0. 34	+0. 55 +0. 61 -0. 79	+0. 56 -0. 63 +0. 10	+o. 78 +o. 87 -o. 80	+0.09 +0.34 +0.20	+0. 20 -0. 10 -0. 23	+0.40 +0.47 0.00	-0. 31 -0. 18 +0. 17 -0. 52 -0. 54	-5. I -5. 0 +7. 4	-0. -4. -5. +8.
3 3 5 5 5	Cracow Cracow Camb., Mass. Camb., Mass. Camb., Mass.	64 Ceti E ² Ceti Tauri Tauri Tauri Tauri	I I I EB I	-0.99 -1.11 +1.04 -1.02	-0.83 -0.99 +0.83 -0.81	-0. 28 +0. 04 +0. 08 -0. 07	+0. 29 -0. 17 -0. 36 +0. 42	-0. 41 +0. 17 +0. 37 -0. 43	-0. 22 -0. 14 +0. 22 -0. 21	+0. 22 -0. 02 +0. 02 -0. 01	-0. 28 +0. 15 +0. 3. -0. 41	7 -0. 92 8 -0. 84 5 -0. 64 3 +0. 54 1 -0. 52	-1. 7 -0. 7 -8. 2 -0. 6	-0 +0 -9 +0
. 5 5 5 5 5	Greenwich Greenwich Greenwich Greenwich Greenwich	θ^1 Tauri θ^2 Tauri 264 B. Tauri θ^1 Tauri 269 B. Tauri	I I EB I	-0.75 -1.06 +1.08 -1.11	-0. 66 -0. 94 +0. 95 -0. 95	+0. 10 0. 00 +0. 04 -0. 02	-0. 74 +0. 30 -0. 28 +0. 13	+0. 75 -0. 30 +0. 28 -0. 13	-0.01 -0.20 +0.21 -0.19	+0. 12 +0. 14 -0. 14 +0. 15	+0.66 -0.30 -0.48	5 — 0. 58 5 — 0. 43 6 — 0. 61 8 — 0. 60 4 — 0. 63	-1.2 +1.1 -7.4 +6.1	+0 -0 +2 -8 +7
Feb. 9 13 27 Mar. 2	Camb., Mass. Camb., Mass. Cape Greenwich Camb., Eng.	Tauri 5 Virginis \$ Libræ 85 Ceti 130 Tauri	I IB E I I	-0. 93 +0. 88 -0. 93 -0. 99	+0. 17 -0. 88 -0. 79 -0. 88	-0. 34 +0. 12 -0. 27 +0. 08	+0.06 -0.21 +0.45 +0.37	+0. 35 -0. 24 -0. 52 -0. 38	-0. 15 +0. 03 -0. 46 -0. 13	+0. 07 +0. 24 +0. 36 +0. 05	+0.02 +0.18 -0.48	9 -0. 46 2 +0. 35 3 -0. 94 5 -0. 77 0 -0. 85	-4.4 +3.1 -1.1 +3.1	-1 -3 +2 0 +4
3 8 11 29 29	Camb., Eng. Camb., Eng. Camb., Mass. Greenwich Greenwich	26 Geminor. 82 Leonis 95 Virginis 111 Tauri 111 Tauri	I IB E I EB	-0. 28 +0. 76 -1. 07	+0. 03 -0. 44 -0. 98	-0. 96 +0. 37 -0. 03	+0. 10 -0. 43 -0. 16	+0. 96 -0. 57 +0. 16	-0.30 +0.15 -0.13	-0. 04 -0. 03 -0. 01	+0. 18 +0. 32 +0. 2	3 -0. 76 3 +0. 03 2 -0. 34 3 -0. 93 7 +0. 93	-1.3 +0.4 -1.6	-0
Apr. 5 6 6 May 2 July 12	Cracow Cape Cape Camb., Mass. Greenwich	β Virginis γ Virg. (N) γ Virg. (S) 5 Virginis f Piscium	I I I E	-0. 91 -0. 91 -0. 95	+0. 39 +0. 39 +0. 10	-0. 27 -0. 27 -0. 16	+0. 14 +0. 14 +0. 04	+0. 30 +0. 30 +0. 16	-0. 11 -0. 11 -0. 07	一0. 28 一0. 28 十0. 08	-0.00 -0.00	-0.42 -0.20 -0.20 -0.66 -0.69	+3. I -1. 4 -1. 6	-o
13 16. Sept. 5 5 5	Cape Camb., Mass. Greenwich Greenwich Camb., Eng.	ξ¹ Ceti α Tauri ν Piscium ν Piscium ν Piscium	E I IB E IB	-1.06 -0.58 +0.83	-0. 84 -0. 29 +0. 42	+0. 01 -0. 50 -0. 36	+0. 34 +0. 66 +0. 48	-0. 34 -0. 83 -0. 60	+0. 16 -0. 30 -0. 05	-0. 23 +0. 13 -0. 12	-0.36 -0.36 -0.25	-0. 30 +0. 65 +0. 55 -0. 55 +0. 41	-0.5 -4.7 +1.0	+0 -4 +0
5 8 8 8	Camb., Eng. Camb., Eng. Camb., Eng. Camb., Eng. Camb., Eng.	ν Piscium 71 Tauri Θ² Tauri 81 Tauri 80 Tauri	E E IB IB E	+0. 99 -0. 42 -1. 06	+0. 87 -0. 38 -0. 94	+0. 03 +0. 08 -0. 01	+0. 38 +0. 92 -0. 10	-0. 38 -0. 92 +0. 10	+0.05 -0.20 -0.10	-0. 18 +0. 05 +0. 18	-0. 29 -0. 89 +0. 00	-0.43 -0.91 +0.39 +0.98 -0.92	+0.9 -1.5 -6.0	-c
25 25 27 Oct. 3	Camb., Eng. Cape Cape Camb., Mass. Cape	81 Tauri ρ Sagittarii ρ Sagittarii 29 Capricor. ξ^1 Ceti	E E I E	-0. 59 +0. 77 -0. 64	十0. 61 一0. 80 十0. 57	-0. 55 -0. 39 +0. 71	-0. 53 -0. 37 +0. 21	-0. 76 -0. 54 +0. 74	-0. 03 -0. 05 +0. 15	+0. 03 -0. 06 -0. 07	+0. 70 +0. 55 -0. 52	-0. 94 -0. 62 +0. 81 -0. 64 2 -0. 26	-0. 3 -3. 9 +4. 4	+0 -4 +5
Nov. 22 23 23 26	Cracow Camb., Mass. Cape Cape Cape	73 B. Aquarii 40 Aquarii λ Aquarii λ Aquarii μ Piscium	I I EB I	-0. 90 -0. 85 +0. 95	+0. 50 +0. 30 -0. 34	+0. 27 -0. 45 -0. 12	0.00 +0.09 +0.03	+0. 27 -0. 45 -0. 12	+0.07 -0.15 -0.01	-0.09 +0.22 -0.29	+0. 15 +0. 05	-0.86 -1.00 -0.86 -0.96 -0.41	+3.2 -0.2 -2.9	+4 +6 -3
29 29 Dec. 1 850, Jan. 17 23	Camb., Mass. Camb., Mass. Cape Cape Cape	θ^2 Tauri α Tauri ν Geminor. φ Aquarii 64 Tauri	I E I I	-1. 15 +0. 64 -0. 77	-0. 78 +0. 73 +0. 30	+0. 01 +0. 40 -0. 54	+0. 05 +0. 54 +0. 20	-0. 05 -0. 68 -0. 58	-0. 22 -0. 06 -0. 17	+0. 02 -0. 02 +0. 22	-0.00 -0.7 +0.1	+0.01 +0.01 -0.28 -0.66 -0.38	-2.3 +1.2 -1.2	-0 +0 -0
23 23 23 23 23	Camb., Mass. Camb., Mass. Camb., Mass. Camb., Eng. Camb., Eng.	$ heta^2$ Tauri lpha Tauri lpha Tauri γ Tauri γ Tauri	I	-1.02 +1.08 -0.63	-0. 75 +0. 87 -0. 50	+0. 08 +0. 04 +0. 14	+0. 36 +0. 19 +0. 80	-0. 37 -0. 19 -0. 82	-0. 20 +0. 12 +0. 07	+0.01 -0.02 -0.13	-0.39 -0.13 -0.5	-0. 76 -0. 66 +0. 77 -0. 43 -0. 43	-2.6 +1.3 -1.0	+0
23 23 23 25 · 25	Camb., Eng. Greenwich Greenwich Cape Cape	θ¹ Tauri α Tauri α Tauri υ Geminor. ν Geminor.	I I EB I	-1.08 -0.62 +0.49 -1.05	-0. 86 -0. 49 +0. 39 -0. 92	+0. 03 +0. 18 +0. 20 +0. 24	+0. 12 +0. 81 +0. 86 +0. 29	-0. 12 -0. 83 -0. 89	-0. 12 -0. 23 -0. 09 -0. 20	-0. 19 +0. 08 -0. 09 +0. 02	+0. 18 -0. 79 -0. 81	-0. 76 -0. 43 +0. 35 -0. 46	-2.3 -1.8 +2.0 -2.4	-c

GROUP X-1839-1856-Continued.

Date.	Place.	Star.	Ph.	λ	К	iθ	i	b _o	$\alpha_{\rm o}$	$\hat{\sigma}_{\mathrm{o}}$	ε	P	n	n'
1850, Feb. 21 21 26 Mar. 23	Greenwich	64 Orionis χ² Orionis σ Leonis ο¹ Cancri 27 Leonis	I I I I	-0.69 -1.10 -1.09	-0. 61 -0. 54 -0. 93	+0. 45 +0. 10 -0. 03	+0. 63 -0. 04 -0. 01	+0. 85 -0. 77 -0. 11 +0. 03 -0. 89	-0. 15 -0. 13 -0. 15	+0. 03 +0. 08 -0. 18	-0. 79 -0. 12 -0. 02	-0. 55 +0. 07 -0. 78	-2. I -3. 4 -3. I	" -1.8 -1.2 -2.0 -1.7 +0.7
Apr. 15 15 15 15 15	Cracow Camb., Eng. Camb., Mass. Camb., Mass. Cracow	264 B. Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	I EB I EB I	-0. 80 +1. 07 -0. 87 +0. 73	-0. 56 +0. 75 -0. 67 +0. 42	-0. 18 +0. 01 -0. 17 -0. 22	-0.65 +0.04 -0.57 -0.70	+0. 67 -0. 04 +0. 58 +0. 74 -0. 02	-0. 01 +0. 12 0. 00 +0. 22	+0. 15 -0. 18 +0. 03 -0. 02	+0. 58 +0. 03 +0. 50 +0. 73	-0. 55 +0. 74 -0. 59 +0. 37	-2.0 +4.8 -1.7 +0.7	-0.9 +3.6
16 17 18 21 22	Cracow Cape Camb., Mass. Cracow Cracow	120 Tauri ν Geminor. g Geminor. ρ Leonis σ Leonis	I I I I	-0. 84 -0. 83 -0. 64	-0. 77 -0. 87 -0. 52	-0. 42 +0. 57 -0. 77	-0. 43 +0. 30 +0. 18	-0. 80 +0. 60 -0. 64 +0. 80 -0. 38	-0. 08 -0. 05 -0. 29	+0. 02 -0. 07 -0. 13	+0. 56 -0. 66 +0. 29	-0. 75 -0. 86 -0. 51	-0.5 0.0 -1.0	+1.1
May 19 19 28 28 June 1	Camb., Mass. Camb., Mass. Camb., Eng. Camb., Eng. Greenwich	σ Leonis σ Leonis 36 Sagittarii 36 Sagittarii 42 Aquarii	I EB IB E E	+1.04 -0.90 +0.89	+0.66 +0.96 -0.95	-0. 12 -0. 02 -0. 12	+0. 07 -0. 01 -0. 09	+0. 43 +0. 14 -0. 02 -0. 15 +0. 12	+0.07 +0.03 -0.03	-0.07 +0.01 -0.01	+0. 11 -0. 04 +0. 21	+0. 94 +0. 53 -0. 52	-1.6 -2.7 +0.1	$ \begin{array}{r} -1.1 \\ -2.8 \\ -1.5 \\ -1.0 \\ +1.3 \end{array} $
13 14 14 July 21 21	Camb., Mass. Camb., Mass. Camb., Mass. Camb., Eng. Camb., Eng.	82 Cancri 1 Leonis 1 Leonis 21 Sagittarii 21 Sagittarii	I I EB I EB	-1.08 +1.08 -0.53 +0.54	-0. 81 +0. 79 +0. 50 -0. 50	-0. 11 +0. 16 -0. 60 -0. 60	+0. 02 -0. 03 -0. 53 -0. 53	+0. 34 +0. 11 -0. 17 -0. 80 -0. 80	-0. 18 +0. 21 +0. 06 +0. 01	+0.07 +0.12 -0.02 +0.02	+0.02 -0.05 +0.76 +0.84	-0. 77 +0. 75 -0. 33 +0. 28	-2.6 +2.1 +0.3 -2.3	-2.3 -1.1 +0.8 +1.0 -2.9
Aug. 24 30 Aug. 2 8	Camb., Eng. Cape Camb., Eng. Camb., Mass. Camb., Mass.	21 Capricor. ν Piscium α Tauri α Leonis α Leonis	EB	+0.91 -1.05 -0.35	-0. 05 -0. 64 +0. 04	+0. 13 -0. 09 -0. 93	-0. 31 -0. 19 +0. 21	+0. 29 +0. 34 +0. 21 +0. 95 +0. 86	+0. 14 -0. 09 -0. 30	-0. 29 +0. 19 0. 00	+0. 22 +0. 13 +0. 49	-0. 93 +0. 82 0. 00	-0.5 +0.1 -1.5	-1.7 -1.6 +1.6 -1.0 +0.1
14 14 14 14 27	Cracow Greenwich Camb., Eng. Camb., Eng. Camb., Mass.	r Libræ r Libræ r Libræ r Libræ r Libræ r Ceti	I I EB IB	-0. 94 -0. 97 +0. 94	+0. 21 +0. 21 -0. 21	-0. 03 -0. 03 -0. 03	-0. 14 -0. 19 -0. 19	-0. 03 -0. 14 -0. 19 -0. 19 -0. 32	+0. 03 0. 00 +0. 17	-0. 26 -0. 25 +0. 25	+0. 10 +0. 21 +0. 21	-0. 98 -0. 98 +0. 98	+0.4 +0.8 -3.7	+1.6 +1.7 +2.2 -4.8 -0.4
27 30 31 Sept. 1	Camb., Mass. Camb., Mass. Cape Cape Camb., Eng.	73 Ceti α Tauri χ² Orionis ζ Geminor. 29 Ophiuchi	E	-0.85 -0.60 +1.10	-0. 56 -0. 46 -0. 93	-0. 24 -0. 59 +0. 01	-0. 52 -0. 59 0. 00	-0. 10 +0. 57 +0. 83 -0. 01 -0. 89	+0.02 -0.03 +0.17	+0. 03 +0. 04 +0. 01	+0. 49 +0. 80 -0. 01	+0. 89 +0. 52 -0. 82	-0.9 -1.1 +2.4	-0.2 +0.3 -0.2 +1.1 +1.0
30 Oct. 13 14 21 21	Cape Camb., Mass. Camb., Mass. Camb., Mass. Camb., Mass.	δ Cancri 7 Capricor. 23 Capricor. 87 Ceti 87 Ceti		-0. 74 -0. 65 -0. 64 +0. 79	+0.67 +0.52 -0.02 +0.04	-0. 55 -0. 69 -0. 02 -0. 01	-0. 10 +0. 01 +0. 77 +0. 63	+0. 27 -0. 56 -0. 69 -0. 77 -0. 63	-0. 04 -0. 11 -0. 26 -0. 13	-0.06 -0.05 0.00 0.00	+0. 43 +0. 47 -0. 53 -0. 48	-0. 67 -0. 49 +0. 09 -0. 22	0. 0 -0. 3 -2. 7 -0. 1	0.0 +1.1 +0.6 -1.8 -1.1
Nov. 17 17 21 21 Dec. 17	Cape Cape Camb., Eng. Camb., Eng. Greenwich	£¹ Ceti £¹ Ceti 64 Orionis 68 Orionis 75 Tauri	I EB E IB I	+0. 54 +1. 02 -1. 08	-0. 08 +0. 66 -0. 69	+0. 11 +0. 26 -0. 13	+0. 84 +0. 21 -0. 10	-0. 99 -0. 85 -0. 34 +0. 16 +0. 09	-0. 23 +0. 12 -0. 14	-0. 24 +0. 08 +0. 07	-0. 44 -0. 27 +0. 08	+0. 19 -0. 48 +0. 50	-0. I +1. 3 -1. 7	+0.4 -0.8 0.0 -0.1 +0.3
1851, Jan. 15 15 15 15 Mar. 9	Greenwich Greenwich Camb., Eng. Cracow Cape	64 Orionis 68 Orionis 64 Orionis 64 Orionis 68 Tauri	I I I I I	- 1. 07 -0. 99 -1. 10	-0. 63 -0. 59 -0. 63	-0. 23 +0. 37 +0. 07	-0. 18 +0. 28 +0. 06	-0.44 +0.29 +0.46 -0.09 +0.03	-0. 16 -0. 19 -0. 18	+0.07 +0.08 +0.08	+0. 22 -0. 53 -0. 16	-0. 36 -0. 30 -0. 37	-2.2 -1.2 -3.0	-0.4 -0.6 +0.3 -1.4 -0.2
13 13 13 13 26	Cracow Camb., Eng. Greenwich Greenwich Cape	d¹ Cancri θ Cancri d¹ Cancri θ Cancri υ Capricor.	I I I I IB	-1.11 -0.16 -1.09	-0. 92 -0. 14 -0. 91	+0. 12 -0. 97 -0. 20	0.00 -0.21 0.00	+0. 61 -0. 12 +0. 99 +0. 20 -0. 78	-0. 16 +0. 32 -0. 15	-0. 15 +0. 13 +0. 15	-0. 17 +0. 62 -0. 14	-0. 71 -0. 10 -0. 69	-0.8 +4.9 +3.6	-1.3 +0.9 +5.1 +5.2 -0.5
Apr. 6 6 6 7 18	Greenwich Camb., Eng. Camb., Eng. Camb., Eng. Cape	m Tauri m Tauri m Tauri χ² Orionis 24 Scorpii	I I EB I E	-0.99 +1.01 -1.02	-0. 36 +0. 36 -0. 56	-0. 08 +0. 01 +0. 01	-0.09 +0.01 +0.01	+0. 16 +0. 12 -0. 02 -0. 01 -0. 92	-0. 04 +0. 07 -0. 08	+0. 16 -0. 16 +0. 08	+0. 05 +0. 05 -0. 08	-0. 92 +0. 92 +0. 99	-2.9 +1.1 -2.6	-2.6 -1.4 -0.2 -1.1 +1.1
May 17 18 18 18	Cape Cape Cape Cape Cape	μ Sagittarii μ Sagittarii 36 Sagittarii ξ Sagittarii ξ Sagittarii	E IB IB	-0. 71 +0. 58 -0. 60 -0. 39	+0. 24 -0. 20 +0. 30 +0. 20	+0. 61 +0. 71 -0. 74 +0. 86	+0. 33 +0. 37 -0. 26 +0. 30	+0. 69 +0. 80 -0. 79 +0. 91 +0. 74	-0.09 -0.02 -0.02 -0.01	-0. 04 +0. 05 -0. 01 0. 00	-0. 64 -0. 84 +0. 74 -0. 86	+0. 37 -0. 31 +0. 40 +0. 26	-1.7 -0.1 0.0 +0.1	-0.6 -0.9 +0.9 +0.7 -0.5

35990°—12——10

GROUP X-1839-1856-Continued.

Date.	Place.	Star.	Ph.	λ	κ	iθ	i	b _o	α_{o}	ð.	ε	P	n	n'
1851, June 7 17 July 12 21 Aug. 2	Cape Cape Cape Camb., Eng. Cracow	c Virginis c Capricor. π Sagittarii ξ² Ceti 80 Virginis	I E I E I	+0. 79 -0. 93 +0. 45	-0.46 +0.43 -0.26	-0. 47 +0. 20 +0. 17	+0. 15 +0. 05 +0. 86	-0. 50 +0. 21 -0. 88	-0. 11 -0. 02 -0. 29	-0. 20 +0. 02 -0. 22	+0. 38 -0. 17 -0. 46	5 -0. 74 8 -0. 38 7 -0. 20 6 -0. 48 5 -0. 88	-0. 2 -3. 2 +1. 8	-1.2 -1.8 +1.2
8 8 Sept. 4 14 14	Cape Cape Cracow Greenwich Camb., Eng.	ξ Sagittarii ξ Sagittarii 28 Sagittarii μ Ceti μ Ceti		+0.86 -0.94 +0.85	-0. 33 +0. 25 -0. 78	-0.41 +0.12 +0.25	-0. 10 +0. 03 +0. 32	-0.42 +0.13 -0.40	+0. 03 -0. 03 -0. 13	0.00 -0.01 -0.33	+0.43 -0.21 -0.17	0 -0. 60 3 +0. 59 -0. 94 -0. 73 -0. 73	+1.9 -1.0 +2.6	+0.7 +0.5 +1.4
Oct. 2 11 11 28 Dec. 5	Camb., Eng. Camb., Eng. Camb., Eng. Cape Cracow	222 B. Sagittarii ξ² Ceti ξ² Ceti 30 G. Sagittarii μ Ceti	IB E	-0. 73 +0. 67 -0. 71	+0. 55 -0. 50 -0. 01	-0. 16 -0. 18 +0. 67	-0.60 -0.67 +0.25	+0.62 +0.69 +0.71	+0. 21 +0. 23 -0. 12	+0. 32 -0. 21 -0. 06	+0. 27 +0. 47 -0. 77	+0.96 +0.25 -0.23 -0.68 -0.44	-4.7 +1.6 -1.6	-3.5 +0.7
7 7 10 10 31	Cape Cape Camb., Eng. Camb., Eng. Cape	t Tauri t Tauri G Geminor. G Geminor. Piscium	I EB IB E I	-0.66 +0.88 -0.99 +1.01	+0. 19 -0. 26 -0. 38 +0. 39	+0. 54 +0. 33 +0. 31 -0. 26	+0.50 +0.30 +0.01 -0.01	-0. 74 -0. 45 -0. 31 +0. 26	-0. 21 -0. 03 -0. 10 +0. 10	+0. 13 -0. 22 -0. 04 +0. 04	-0. 63 -0. 42 +0. 13 +0. 34	3 -0.07 2 +0.09 3 +0.49 -0.50	-1.9 +0.7 -5.9	-o. 5
1852, Jan. 4 6 Feb. 3 3	Cracow Cracow Camb., Eng. Greenwich Greenwich	i Tauri d Geminor. 63 Geminor. 63 Geminor. 30 Libræ	I I I E	-0.89 -1.06 -1.06	-0. 18 -0. 29 -0. 29	+0.48 -0.03 -0.06	+0.08 0.00 0.00	-0.49 +0.03 +0.06	-0. 10 -0. 13 -0. 14	+0. 01 -0. 03 -0. 04	-0. 55 -0. 07 -0. 04	-0. 35 -0. 04 -0. 35 -0. 35 -0. 68	-1.2 0.0 -1.6	+1.7 +0.1
15 15 Mar. 9 9 30	Cape Cape Cape Cape Cracow	o Sagittarii o Sagittarii ĉ Libræ ĉ Libræ 98 B.Cancri	IB	+0. 70 -0. 96 +0. 70	+0.01 -0.76 +0.55	-0. 69 -0. 24 -0. 38	-0. 44 -0. 68	-0. 69 -0. 50 -0. 77	+0. 03 -0. 01 +0. 37	-0. 01 -0. 32 +0. 16	+0. 72 +0. 27 +0. 59	+0.68 2 -0.54 7 +0.66 0 -0.48 0 -0.52	+1.6 -0.7 +1.9	+o. 8
30 30 Apr. 25 27 28	Cracow Cracow Cracow Cracow	102 B. Cancri 107 B. Cancri ∂ Geminor. 83 Cancri 37 Leonis	I I I I	-0. 96 -0. 36 -0. 58	-0.46 -0.07 -0.33	-0. 37 -0. 93 -0. 69	+0. 15 +0. 08 +0. 45	+0.40 +0.93 +0.84	-0. 16 -0. 05 -0. 23	-0. 13 -0. 02 -0. 09	+0. 26 +0. 86 +0. 56	2 -0.81 -0.77 5 -0.36 -0.52 -0.44	+0.6 -3.1 -1.5	-0.9 +2.1 -2.5 -0.5 -1.6
May 2 July 4 Aug. 25 26 Sept. 18	Camb., Eng. Camb., Eng. Cracow Camb., Eng. Cracow	94 Virginis 29 Aquarii 49 Sagittarii 36 B. Capricor. 9 Scorpii	I E I I I	+o. 87 -o. 97 -o. 70	-0. 47 -0. 28 +0. 07	-0. 35 +0. 24 +0. 62	+0. 24 -0. 05 -0. 33	-0.42 +0.24 +0.71	-0. 07 -0. 08 +0. 04	-0. 28 +0. 03 +0. 12	+0. 32 -0. 33 -0. 66	3 -0. 13 -0. 56 3 -0. 77 6 -0. 35 8 -0. 87	-3.5 -2.5 -3.7	-4.8 -0.9 -2.5
Oct. 24 24 24 1853, Jan. 14	Cape Cracow Greenwich Greenwich Camb., Eng.	7 Capricor. 30 Piscium 30 Piscium 31 Piscium 32 Piscium 33 Piscium	I I I E	-0. 64 -0. 46 -0. 83	+0. 48 +0. 37 +0. 66	-0. 08 -0. 04 -0. 02	+0. 71 +0. 86 +0. 42	-0. 71 -0. 86 -0. 42	-0. 27 -0. 33 -0. 17	+0. 22 +0. 13 +0. 33	-0. 34 +0. 35 +0. 19	6 -0. 55 4 -0. 48 5 -0. 34 9 -0. 61 2 +0. 53	-0.9 +5.8 -3.9	+0. 2 +6. 6 -2. 5
14 14 Feb. 17 18 Mar. 26	Camb., Eng. Camb., Eng. Camb., Eng. Cracow Camb., Eng.	33 Piscium 33 Piscium n Tauri Geminor. 95 Virginis	I EB I I IB	+0. 94 -0. 65 -0. 88	-0. 62 +0. 67 +0. 66	0.00 +0.57 +0.25	-0. 01 +0. 07 -0. 01	+0.01 -0.58 -0.25	+0. 03 +0. 01 -0. 03	-0.40 +0.13 +0.08	+0. 11 +0. 75 -0. 3	8 -0. 81 1 +0. 84 5 -0. 70 3 -0. 80 1 +0. 44	-1.9 +5.4 -0.9	-3.4 +6.6 +0.7
26 26 28 Apr. 20 20	Camb., Eng. Greenwich Greenwich Camb., Eng. Cape	95 Virginis κ Virginis β Scorpii ν Virginis ξ Virginis	E IB EB I	+1.12 -1.06 +1.08	+0. 93 -0. 95 +0. 56	+0.06 +0.29 0.00	+0.08 +0.12 -0.05	+0. 10 +0. 32 -0. 05	+0. 18 -0. 29 +0. 19	+0.41 -0.26 +0.39	+0.00 -0.30 +0.00	8 -0.43 3 -0.44 6 +0.74 8 +0.52 8 -0.20	+2.3 -2.1 +0.9	-o. 1
May 12 20 20 20 20	Cracow Cracow Camb., Eng. Camb., Eng. Greenwich	42 Geminor. 95 Virginis 95 Virginis 95 Virginis 95 Virginis	I I EB I	-0.80 -0.94 -1.11 +1.01	+0. 54 -0. 81 +0. 89 +0. 81	+0. 44 -0. 36 -0. 12 -0. 30	-0. 18 -0. 44 -0. 14 -0. 34	-0.48 -0.57 -0.18 -0.45	0. 00 +0. 03 -0. 15 +0. 38	-0. 01 -0. 38 -0. 41 +0. 32	-0.67 +0.27 0.00 +0.30	7 -0. 74 3 -0. 36 0 -0. 43 0 +0. 37 1 -0. 43	-0.6 -4.0 -4.2 +1.5	-2. 2 -2. I -0. 2
July 17 Aug. 29 Sept. 6	Greenwich Cracow Greenwich Cape Cape	β Scorpii 157 B. Ophiuchi 48 Geminor. 88 Virginis 174 B. Libræ	E I E I I	-1.10 +0.92 -1.02	-0. 96 -0. 79 -0. 70	+0. 19 -0. 02 -0. 21	0, 00 +0, 01 -0, 24	+0. 19 +0. 02 -0. 32	-0. 25 +0. 01 -0. 04	-0. 17 +0. 03 -0. 42	-0. 2 +0. 1 +0. 0	+0.02 7 -0.60 1 -0.76 5 -0.63 5 -0.82	$ \begin{array}{r} -2.5 \\ +2.4 \\ -3.6 \end{array} $	+o. 8
20 20 Oct. 14 Dec. 8	Cape Greenwich Camb., Eng. Greenwich Cape	126 B. Sagittarii 38 Arietis 38 Arietis 33 Piscium 54 B. Ceti	I E IB I I	+0. 84 -0. 92 -0. 92	-0. 76 +0. 83 +0. 12	-0. 34 -0. 08 -0. 10	-0. 22 -0. 05 -0. 34	+0.41 +0.09 +0.35	+0. 16 +0. 02 +0. 07	-0. 31 +0. 39 +0. 43	+0. 34 -0. 04 +0. 1	8 -0. 75 4 -0. 56 4 +0. 60 1 -0. 51 1 -0. 42	+0.2 -2.2 -3.3	-0.4 -1.5

GROUP X-1839-1856-Continued.

Date.	Place.	Star.	Ph.	λ	K	iO	i	b_{o}	$\alpha_{_{0}}$	ð _o	ε	P	n	n'
1853, Dec. 9 1854, Jan. 7 Feb. 7	Camb., Eng. Cracow Camb., Eng. Camb., Eng. Camb., Eng.	33 Ceti \$\frac{\xi}{\xi} Arietis 121 Tauri 52 Geminor. 52 Geminor.	I I I I EB	-0. 86 -0. 87 -0. 80	+0. 64 +0. 97 +0. 84	-0. 30 -0. 23 -0. 37	-0. 20 +0. 06 +0. 29	-1.00 +0.36 +0.24 +0.47 +0.42	+0. 13 +0. 04 -0. 02	-0. 39 -0. 13 -0. 04	+0. 12 +0. 17 +0. 82	-0.90 -0.85 -0.51	-3.9 -2.0	- 2.0 - 0.2 + 1.7
Mar. 3 7 7 12	Cracow Cape Cape Camb., Eng. Camb., Eng.	31 Arietis 139 Tauri 139 Tauri 42 Leonis 167 B. Leonis	I I EB I I	-0. 85 -0. 26 +0. 39 -0. 77	+0. 54 +0. 29 -0. 44 +0. 37	-0. 39 -0. 89 -0. 83 -0. 04	-0. 20 +0. 36 +0. 35 +0. 60	+0. 44 +0. 96 +0. 90 +0. 60	+0. 13 +0. 08 +0. 08 -0. 25	+0. 39 +0. 04 -0. 04 -0. 24	+0. 18 +0. 93 +0. 93 +0. 24	-0. 71 -0. 28 +0. 43 -0. 25	-2.7 -0.5 -3.1	_
20 22 22 Apr. 4 13	Cape Cape Cape Camb., Eng. Cape	b Ophiuchi h Sagittarii h Sagittarii e Geminor. k Virginis		-1.06 +0.97 -0.16 -0.81	-0. 95 +0. 87 +0. 18 -0. 41	-0. 10 -0. 31 -0. 81 +0. 56	+0. 10 +0. 30 +0. 55 +0. 34	+0.66	-0. 18 +0. 13 +0. 01 -0. 41	+0.08 -0.08 0.00 -0.24	+0. 09 +0. 44 +0. 98 -0. 36	+0. 94 -0. 86 -0. 25 +0. 18	-1.6 +1.9 -1.8 -2.8	+ 0.6 0.0 - 1.5 - 1.0
13 15 May 6 9 9	Cape Cape Greenwich Camb., Eng. Camb., Eng.	κ Virginis ω¹ Scorpii i Leonis 48 Virginis 48 Virginis	E I I EB	+0. 79 -0. 70 -0. 96	+0. 63 +0. 43 -0. 20	+0. 69 +0. 03 +0. 27	+0. 02 +0. 67 +0. 28	+0. 27 +0. 69 +0. 67 +0. 39 +0. 20	-0. 03 -0. 28 -0. 31	+0. 24 -0. 23 -0. 37	-0. 65 +0. 27 -0. 15	-0.46 -0.68 -0.42	+3.0 -2.7 -1.0	+ 1.4 - 1.1 + 1.2
June 7	Cape Cape Cape Cape Cape	6 B. Libræ μ Libræ μ Libræ μ Piscium κ Virginis	I I EB IB I	-0. 92 +0. 86 -0. 91	-0. 51 +0. 48 +0. 09	-0. 52 -0. 60 +0. 24	-0. 18 -0. 20 +0. 21	-0. 47 -0. 55 -0. 63 -0. 32 -0. 22	+0. 02 +0. 40 -0. 21	-0. 36 +0. 24 +0. 38	+0. 30 +0. 47 -0. 15	-0. 07 +0. 06 +0. 68	-2.8 -8.5 -1.7	- 0.7 -10.3 + 0.4
7 14 14 28 28	Cape Cape Cape Cape Cape	κ Virginis κ Capricor. κ Capricor. ξ Cancri 79 Cancri	EB IB E I	-0. 98 +0. 89 -0. 78	-0. 74 +0. 67 +0. 74	-0.09 -0.11 +0.15	+0.44 +0.57 -0.48	+0. 48 -0. 45 -0. 58 -0. 50 -0. 79	+0.31 0.00 +0.11	+0. 24 -0. 28 -0. 24	+0. 22 +0. 45 -0. 44	+0.69 -0.69	-1.5 +1.8 +1.0	+ 0.8 - 0.1 + 3.7
July 5 7 13 31 Sept. 2	Cape Cracow Cape Cracow Cape	μ Libræ 18 Ophiuchi ψ^3 Aquarii m Virginis 201 B. Sagittarii	E I	-0. 96 +0. 79 -0. 74	-0. 74 +0. 43 -0. 18	+0.47 -0.19 +0.57	-0. 12 -0. 65 +0. 36	-0.89 +0.49 +0.68 +0.67 -0.50	-0.31 +0.41 -0.35	-0. 18 -0. 22 -0. 25	-0. 56 -0. 12 -0. 32	-0.45 -0.53 -0.73	-4·3 +1·7 -0·8	- 2.0 0.0
4 4 19 30	Cape Camb., Eng. Camb., Eng. Greenwich Greenwich	201 B. Sagittarii 35 Capricor. 35 Capricor. i Leonis ω Sagittarii	I EB E	-1.11 +1.04 +0.93	-0. 90 +0. 85 -0. 73	+0. 02 +0. 06 +0. 01	-0. 13 -0. 37 +0. 06	-0. 22 +0. 13 +0. 37 +0. 06 -0. 18	-0. 19 +0. 32 +0. 02	+0. 30 -0. 26 +0. 38	-0. 17 -0. 19 +0. 08	-0.49 +0.46 -0.39	-2.6 -3.6 +2.8	0.0 - 5.8 + 0.8
30 30 30 30 30	Greenwich Greenwich Camb., Eng. Camb., Eng. Cracow	ω Sagittarii A Sagittarii ω Sagittarii A Sagittarii ω Sagittarii ω Sagittarii	I I	-1.08 -1.05 -1.08	-1.00 -0.98 -1.00	-0.02 -0.09 -0.02	+0. 04 +0. 16 +0. 04	-0. 10 -0. 04 -0. 18 -0. 05 -0. 01	-0. 19 -0. 20 -0. 20	+0. 14 +0. 13 +0. 14	-0.04 +0.09	-0.96 -0.95 -0.96	-4.2 -3.1 -2.7	- 1.7 - 0.6 - 0.1
30 Oct 11 29 Nov. 27 27	Cracow Greenwich Cape Cape Cape	A Sagittarii 139 Tauri κ Capricor. ψ² Aquarii ψ² Aquarii	EB	+0.85 -1.05 -1.04	-0.81 -0.92 -0.78	-0. 30 -0. 01 -0. 03	+0. 19 +0. 15 -0. 07	+0. 32 +0. 36 -0. 15 +0. 07 +0. 41	+0. 05 -0. 22 -0. 13	-0.08 +0.30 +0.42	+0.42 +0.02 -0.08	-0.84 -0.98	+1.8 -4.9 -2.6	- 2.4 0.0
Dec. 10 1855, Jan. 3 Mar 23 Apr. 4	Greenwich Cape Camb., Eng. Cape Cape	i Leonis v Geminor. k Tauri Libræ c Libræ	E E I E IB	+0. 86 -0. 77 +0. 90	-0. 92 +0. 42 +0. 08	+0. 16 +0. 52 -0. 43	-0. 27 -0. 28 -0. 01	-0. 24 -0. 31 -0. 59 -0. 43 +0. 06	+0.05 -0.15 +0.17	+0.09 +0.14 +0.31	-0. 29 -0. 55 +0. 32	-0.09 -0.72 -0.51	+3.7 -1.9 +1.0	- 0.3 + 1.7 + 0.1 - 0.3 - 1.2
4 7 8 8 23	Cape Greenwich Cape Cape Greenwich	α Libræ X Sagittarii φ Sagittarii φ Sagittarii λ Cancri	IB	+1.00 -0.96 +0.79	+0. 71 -0. 78 +0. 65	-0. 16 -0. 24 -0. 39	+0. 15 +0. 32 +0. 53	-0. 39 -0. 22 -0. 41 -0. 66 +0. 44	+0. 16 -0. 16 +0. 12	+0. 10 0. 00 -0. 02	+0. 28 +0. 37 +0. 70	-0.93 +0.90	+3.6 -2.5 $+1.2$	+ 0. 1 + 1. 1 + 0. 1 - 0. 8 - 1. 3
May 8 June 27 Aug. 30	Camb., Eng. Cape Camb., Eng. Camb., Eng. Greenwich	λ Cancri ε Capricor. 22 Scorpii ο Piscium ο Piscium	EB IB EB IB IB	-0.79 +1.04 -1.09	-0. 74 +0. 34 -0. 82	+0. 05 +0. 20 +0. 07	+0.67 -0.10 +0.01	+0. 16 -0. 67 +0. 22 -0. 07 -0. 06	-0. 34 +0. 13 -0. 24	+0. 20 +0. 25 +0. 44	+0. 37 -0. 15	+0. 74 +0. 39 +0. 63	-3.4 -7.1	- 4.6 - 1.2 - 9.7 + 1.5 + 1.1
30 Sept. 20 21 Oct. 24 24	Greenwich Camb., Eng. Camb., Eng. Camb., Eng. Greenwich	o Piscium 234 B. Sagittarii 40 B. Capricor. o Piscium o Piscium	E I I I I	+1.05 -0.88 -0.96 -0.91	+0.80 -0.66 -0.79	-0. 25 -0. 18 +0. 02 -0. 57	-0.05 +0.51 +0.48 -0.08	+0. 25 -0. 54 -0. 48 +0. 58 +0. 59	+0. 30 -0. 19 -0. 29 +0. 07	-0.40 +0.08 +0.19 +0.43	+0. 17 +0. 45 +0. 35 +0. 20	-0. 62 -0. 79 -0. 81	+2.9 -3.4 -4.3	+ 0. 1 - 0. 8 - 1. 5 + 1. 1

GROUP X-1839-1856 -Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	b _o	$\alpha_{\rm o}$	õ,	. ε	P	n	n'
55, Nov. 15 56, Jan. 12 Mar. 11 13 26 26 Apr. 25 25 June 16 July 25 Sept. 8 20 20 Nov. 11	Camb., Eng. Greenwich Camb., Eng. Camb., Eng. Greenwich Greenwich Camb., Eng. Cape Cape Camb., Eng. Cape Greenwich Camb., Eng. Cape Greenwich Camb., Eng. Cape Greenwich Camb., Eng. Cape Camb., Eng. Cape Camb., Eng. Cape	86 B. Capricor. 29 Piscium 33 Tauri 136 Tauri 136 Tauri α Scorpii α Scorpii τ Sagittarii τ Sagittarii α Scorpii β Arietis 38 B. Sagittarii 136 Tauri 136 Tauri 136 Tauri 136 Tauri 140 Arietis η Tauri	I I I IB I IB E I I	-0. 41 -0. 93 -0. 98 -0. 98 -0. 91 -0. 90 -1. 00 +1. 00 -0. 12 -0. 12 -0. 44 -0. 49 +0. 26	-0. 38 -0. 43 -0. 05 -0. 05 +0. 18 +0. 18 +0. 37 -0. 37 +0. 34 -0. 08 +0. 19 -0. 22 +0. 11 -0. 70	+0. 03 +0. 80 +0. 38 -0. 02 +0. 04 +0. 20 -0. 01 +0. 10 +0. 84 +0. 14 -0. 31 -0. 30 -0. 33 +0. 57 -0. 08	+0. 48 +0. 24 +0. 03 -0. 06 -0. 18 -0. 03 -0. 03 -0. 52 -0. 40 +0. 85 +0. 82 +0. 91 -0. 32	-0. 93 -0. 45 +0. 03 -0. 07 +0. 26 -0. 06 +0. 03 -0. 99 +0. 87 +0. 97 -0. 65	-0. 51 -0. 26 -0. 09 -0. 10 -0. 12 -0. 11 +0. 13 -0. 12 -0. 34 -0. 11 0. 00 -0. 01 +0. 08	+0. 07 +0. 23 +0. 07 -0. 07 -0. 22 +0. 08 -0. 01 -0. 02 -0. 02 +0. 03 +0. 03 +0. 03 +0. 04	+0. 03 -0. 42 0. 00 -0. 04 -0. 28 -0. 27 +0. 03 -0. 02 -0. 14 -0. 79 -0. 51 +0. 89 +0. 86 +0. 97 -0. 46	-0. 34 -0. 77 -1. 00 -1. 00 +0. 89 +0. 88 +0. 96 -0. 23 -0. 29 -0. 84 +0. 50 -0. 22 -0. 21	-0.6 -1.9 -3.9 -4.9 -1.2 -1.7 -6.9 +5.5 -1.9 +3.8 -3.7 +2.8 -1.0 +1.1	+0.7 +1.1 -0.8 -1.8 +1.7 +1.2 -3.6 +2.4 +1.4 +4.2 -0.6 +4.4 +0.8 +0.2

GROUP XI-1857-1873.

1857, Jan. 15 15 Feb. 6 Mar. 4 16	Cape Cape Cape Camb., Eng. Cape	η Virginis η Virginis φ Geminor. 49 Aurigæ σ Scorpii	IB E IB E IB	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
16 16 18 18	Cape Cape Cape Cape Cape	σ Scorpii α Scorpii 38 B. Sagittarii 38 B. Sagittarii τ Sagittarii	\mathbf{E}	$ \begin{vmatrix} +0.63 - 0.55 - 0.37 & +0.61 & -0.71 & +0.17 & +0.13 & +0.68 - 0.68 & +1.5 & -0. \\ -0.91 + 0.79 - 0.04 & +0.07 - 0.08 & -0.03 & -0.21 + 0.10 + 1.00 & -4.1 & -0. \\ +0.01 & 0.00 - 0.13 & +0.99 - 1.00 & +0.01 & 0.00 + 1.00 & 0.00 & +8.5 & +8. \\ +0.34 - 0.17 + 0.12 & -0.92 & +0.93 & +0.01 & +0.01 & -0.93 & -0.35 & +2.5 & +1. \\ +0.63 - 0.17 - 0.07 & -0.76 & +0.76 & +0.14 & -0.07 & -0.78 & -0.60 & +3.0 & +0. \\ \end{vmatrix} $
Apr. 2 2 2 2 2 29	Cape Camb., Eng. Camb., Eng. Greenwich Cape	κ Aurigæ λ Cancri λ Cancri λ Cancri φ Geminor.	I I EB I	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
May 6 6 6 6 27 31	Greenwich Greenwich Camb., Eng. Greenwich Cape	α Virginis α Virginis α Virginis γ Cancri β Virginis	I EB EB I I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
July 27 Sept. 29 30 Oct. 6 6	Cape Leiden Camb., Eng. Camb., Eng. Camb., Eng.	α Virginis 128 B. Capricor. 50 Aquarii 27 Tauri 27 Tauri	I I IB E	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
6 6 6 6 26	Camb., Eng. Camb., Eng. Greenwich Greenwich Greenwich	28 Tauri 28 Tauri 27 Tauri 27 Tauri 27 Capricor.	IB E IB E I	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
28 Nov. 23 23 27 27	Greenwich Cape Cape Camb., Eng. Greenwich	70 Aquarii γ Capricor. γ Capricor. ε Piscium ε Piscium	I I EB I I	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Dec. 26 1858, Feb. 19 20 20 20	Leiden Camb., Eng. Camb., Eng. Camb., Eng. Camb., Eng.	B.D.+18° 325 Arietis q Tauri q Tauri 20 Tauri	I I EB EB	
20 Mar. 6 6	Greenwich Cape Cape	20 Tauri α Scorpii α Scorpii	I IB E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Apr. 25 May 18	Greenwich Greenwich	28 Virginis 83 Cancri	Ī	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
18 19 19	Camb., Eng. Camb., Eng. Camb., Eng. Gree. wich	83 Cancri α Leonis α Leonis α Leonis α Leonis	I I EB EB	
20	Leiden	56 Leonis	I	-0.62 $ -0.18 $ $ +0.78 $ $ +0.78 $ $ +0.78 $ $ -0.42 $ $ -0.20 $ $ +0.28 $ $ -0.61 $ $ -2.9 $ 0.

GROUP XI-1857-1873-Continued.

Date.	Place.	Star.	Ph.	λ	к	iθ	i	b _o	α_{o}	ðo	•	P	n	n'
1858, Aug. 30 30 30 30 30	Greenwich Greenwich Greenwich Greenwich Camb., Eng.	q Tauri q Tauri 20 Tauri 16 Tauri 16 Tauri	IB E IB E IB	+0.99 -0.80 +0.65	+0. 79 -0. 64 +0. 52	-0. 08 -0. 14 -0. 17	+0.06 +0.34 +0.64 +0.76 +0.55	+0. 35 +0. 65 +0. 78	+0. 25 +0. 02 +0. 28	-0. 23 +0. 22 -0. 14	+0. 28 +0. 55 +0. 65	-0. 92 +0. 74 -0. 61	+ 5.2 - 8.9 + 2.6	+0.7 -5.1 -0.4
30 30 30 Sept. 18 21	Camb., Eng. Camb., Eng. Camb., Eng. Camb., Eng. Leiden	q Tauri q Tauri 20 Tauri 17 Capricor. 82 Aquarii	IB E IB I I	+1.00 -0.83 -0.71	+0. 79 -0. 66 +0. 62	-0. 07 -0. 13 +0. 54	+0. 04 +0. 32 +0. 61 +0. 33 -0. 06	+0. 33 -0. 62 -0. 63	+0. 24 +0. 01 -0. 23	-0. 22 +0. 22 +0. 23	+0. 25 +0. 54 +0. 53	-0. 92 +0. 77 -0. 53	+ 4.2 - 7.0 - 5.6	-0.4 -3.0 -2.2
Oct. 12 14 21 Nov. 22 22	Cape Cape Leiden Greenwich Camb., Eng.	X Sagittarii h Sagittarii 210 B. Piscium 136 Tauri 136 Tauri		-0. 90 -0. 94 +1. 14	+0. 97 -0. 24 +0. 96	0. 00 -0. 32 +0. 01	+0. 33 0. 00 +0. 29 +0. 02 -0. 20	+0. 01 +0. 43 +0. 02	-0. 02 +0. 06 +0. 26	+0. 21 +0. 44 +0. 01	-0. 02 +0. 15 -0. 03	-1.00 -0.11 -0.40	- 4.8 - 2.2 + 8.1	$+2.3 \\ +2.8$
Dec. 22 22 22 1859, Jan. 21 Feb. 8	Camb., Eng. Leiden Leiden Cape Cape	136 Tauri 40 Cancri 39 Cancri c Leonis 7 Piscium	EEEEI	+0.50 +0.68 +1.07	+0.42 +0.58 +0.66	+0.80 +0.71 -0.23	-0.02 +0.41 +0.37 3+0.05 -0.57	+0. 90 +0. 80 -0. 23	-0. 15 -0. 09 +0. 33	+0. 19 +0. 24 +0. 42	+0. 70 +0. 61 -0. 08	-0. 22 -0. 30 -0. 55	+ 3.6 + 3.9 + 6.2	+1.3 +0.7 +1.2
11 16 Apr. 11 13 May 5	Cape Camb., Eng. Leiden Greenwich Leiden	φ Tauri ψ Leonis 176 B. Cancri 37 Sextantis 112 B. Aurigæ	I I I I	-1.01 -1.07 -0.78 -0.66	-0. 78 -0. 96 -0. 55 -0. 51	-0. 45 -0. 11 -0. 68 +0. 37	+0. 97 -0. 06 -0. 03 +0. 13 +0. 70	-0. 45 -0. 11 -0. 69 +0. 79	-0. 04 -0. 16 +0. 17 -0. 11	-0. 40 -0. 36 -0. 40 +0. 01	-0. 23 0. 00 -0. 20 +0. 80	-0. 13 -0. 93 -0. 51 -0. 40	- 5. I - 3. 8 - 9. I - 3. 2	-0. I +1. 5 -5. 2 +0. I
5 7 Aug. 18 18 Sept. 21	Leiden Leiden Cape Cape Greenwich	82 Geminor. η Piscium η Piscium μ² Cancri	EB I IB E E	-1.08 +0.03 +0.38	-0. 98 -0. 01 -0. 08	+0. 14 +0. 44 +0. 40	+0. 55 +0. 09 -0. 90 -0. 83 +0. 16	+0. 16 -1. 00 -0. 91	-0. 18 -0. 39 -0. 33	+0. 25 -0. 11 -0. 24	+0. 21 +0. 07 -0. 43	-0. 90 -0. 04 -0. 37	- 4.6 + 0.1 + 2.4	+0.8 +0.3 +0.6
Oct. 28 28 Nov. 8 II Dec. 8	Cape Cape Cape Leiden Greenwich	α Scorpii α Scorpii η Piscium χ Tauri 23 Tauri	I EB I IB I	+0. 88 -0. 55 -0. 93 -0. 86	-0. 21 +0. 21 -0. 29 -0. 17	+0. 18 +0. 30 +0. 16 +0. 12	-0. 18 -0. 43 -0. 77 -0. 44 +0. 54	+0. 47 -0. 83 +0. 46 +0. 56	+0. 04 -0. 38 -0. 07 -0. 01	+0. 13 +0. 14 +0. 14 +0. 19	-0. 46 -0. 27 +0. 45 +0. 51	+0. 38 -0. 20 +0. 28 -0. 10	+ 5.9 - 1.4 - 3.3 - 6.2	+1.6 +1.4 +1.5 -1.7
8 8 8 8	Greenwich Greenwich Greenwich Greenwich Greenwich	23 Tauri 28 Tauri 27 Tauri 17 Tauri 7 Tauri	I I EB I	-0.81 -0.13 +1.01	-0. 16 -0. 02 +0. 19	+0. 14 +0. 22 -0. 05	+0. 68 +0. 61 +0. 96 -0. 22 +0. 26	+0.63 +0.99 -0.23	0.00 +0.17 +0.10	+0. 18 +0. 04 -0. 21	+0. 57 +0. 85 -0. 25	-0.09 -0.01 +0.12	- 5. I - 2. 2 + 1. 8	-0.9 -1.5 -3.2
1860, Jan. 4 4 4	Cape Cape Greenwich Greenwich Greenwich	σ Scorpii α Scorpii 17 Tauri g Tauri 20 Tauri	IB IB I I	-0. 81 -0. 61 -0. 90 -0. 99	+0.07 -0.08 -0.11 -0.12	-0. 23 +0. 19 -0. 12 -0. 06	+0. 34 -0. 51 +0. 79 -0. 48 -0. 25	+0. 55 +0. 81 -0. 49 -0. 26	-0. 14 +0. 06 -0. 22 -0. 11	-0. 10 +0. 14 +0. 17 -0. 01	-0. 45 +0. 71 -0. 35 +0. 03	+0. 42 -0. 37 -0. 54 -0. 60	- 4.6 - 5.2 - 5.7 - 8.3	-0.4 -2.0 -1.0 -3.2
Feb. 13 28 28 28	Leiden Cape Camb., Eng. Camb., Eng. Camb., Eng.	112 B. Aurigæ A Scorpii 16 Tauri 20 Tauri 22 Tauri	I IB I I I	-0. 87 -0. 46 -0. 70 -0. 97	-0. 21 -0. 02 -0. 03 -0. 04	+0. 25 +0. 25 +0. 20 +0. 04	-0. 21 -0. 45 +0. 84 +0. 67 +0. 12	+0. 48 +0. 88 +0. 70 +0. 13	-0. 18 +0. 13 +0. 06 -0. 06	-0. 15 +0. 11 +0. 15 +0. 20	-0. 34 +0. 77 +0. 64 +0. 18	+0.88 -0.45 -0.69 -0.99	- 6.6 - 4.2 - 4.3 - 5.7	-2. I -1. 8 -0. 7 -0. 7
28 28 28 28 Mar. I	Greenwich Greenwich Greenwich Greenwich Leiden	q Tauri 16 Tauri 22 Tauri 20 Tauri 112 B. Aurigæ	I I I I	-0. 39 -0. 96 -0. 65 -0. 94	-0. 02 -0. 04 -0. 03 -0. 42	+0. 27 +0. 05 +0. 21 -0. 28	+0. 31 +0. 88 +0. 16 +0. 71 -0. 30	+0. 92 +0. 17 +0. 74 -0. 41	+0. 14 -0. 05 +0. 08 -0. 13	+0. 10 +0. 21 +0. 15 0. 00	+0.80 +0.11 +0.66 -0.35	-0. 40 -0. 99 -0. 67 -0. 85	- 2.9 - 5.1 - 4.7 - 3.1	-0.9 -0.1 -1.3 +1.8
1 4 4 4 5	Leiden Leiden Leiden Greenwich Greenwich	112 B. Aurigæ ð Cancri ð Cancri ð Cancri 18 Leonis	EB I EB I I	-0.95 +0.88 -0.99 -1.11	-0. 77 +0. 72 -0. 81 -0. 96	-0. 54 -0. 62 -0. 47 -0. 20	-0. 26 -0. 03 -0. 03 -0. 02 +0. 05	-0. 54 -0. 62 -0. 47 -0. 21	-0. 05 +0. 38 -0. 06 -0. 16	-0. 22 +0. 23 -0. 32 -0. 42	-0. 41 -0. 55 -0. 32 -0. 05	-0. 44 +0. 41 -0. 48 -0. 32	- 4.0 - 0.1 - 5.1 - 7.8	+0.9 -4.5 0.0 -2.0
7 7 12 12 28	Cape Cape Cape Cape Cape	υ Leonis υ Leonis α Scorpii α Scorpii 354 B. Tauri	IB IB E I	+1.06 -0.78 +0.92 -0.66	+0.87 -0.07 +0.08 -0.22	+0. 28 -0. 30 -0. 18 -0. 49	-0. 52 -0. 27 -0. 55 -0. 33 -0. 55	+0. 39 +0. 62 +0. 37 -0. 73	+0.08 -0.16 +0.07 -0.08	+0.46 -0.09 +0.12 +0.02	0.00 -0.53 -0.41 -0.66	-0.09 +0.73 -0.86 -0.67	+ 3.9 - 4.3 + 7.6 + 2.4	-1.4 -0.2 +3.0 +5.8
Apr. 27 May 1 8 25 June. 1	Cape Cape Cape Cape Leiden	μ Cancri υ Leonis λ Sagittarii δ Cancri 50 G. Libræ	I E I I	-0. 96 +0. 77 -0. 88	-0.85 -0.23 -0.70	+0. 34 +0. 52 +0. 56	-0. 10 -0. 35 +0. 33 -0. 02 -0. 67	+0. 49 -0. 62 +0. 56	-0. 40 +0. 01 -0. 33	-0. 33 -0. 10 -0. 24	+0.09 +0.66 +0.42	-0. 62 -0. 52 -0. 76	-5.6 +5.2 -4.1	-0.6 +1.3 +0.5

GROUP XI-1857-1873-Continued.

Date.	Place.	Star.	Ph.	λ	κ	i0	i	b_{o}	$\alpha_{_{0}}$	\hat{o}_{o}	ε	P	71	n'
1860, June 3 3 3 Aug. 24 30	Cape Cape Cape Cape Cape	A ² Ophiuchi A ² Ophiuchi A ¹ Ophiuchi A ¹ Ophiuchi θ Aquarii	E	+0. 84 +0. 84 -0. 84	+0. 02 +0. 02 -0. 18	-0. 39 -0. 39 -0. 38	-0.40 -0.40 -0.34	+0. 56 +0. 56 +0. 51	+0.09 +0.09 -0.09	+0. 03 +0. 03 -0. 01	-0. 61 -0. 61 -0. 44	+0. 03 -0. 02 -0. 02 -0. 85 +0. 18	+5. I -0. 6 -5. 0	-1.9 +0.9 -4.8 -0.6
Sept. 6 6 6 Oct. 17 Nov. 5	Greenwich Greenwich Greenwich Cape Leiden	7 Tauri 27 Tauri 28 Tauri 22 Scorpii o ^l Cancri	E E F I IB	+0. 91 +0. 84 +0. 93 -0. 74	-0. 37 -0. 34 -0. 38 -0. 34	-0.09 +0.20 +0.07 +0.47	+0. 19 +0. 40 +0. 14 +0. 54	-0. 21 +0. 45 +0. 16 -0. 72	0.00 +0.12 +0.07 -0.16	-0. 19 -0. 16 -0. 18 +0. 04	-0. 26 +0. 32 +0. 06 +0. 65	-0.96 -0.87 -0.97 -0.41 +0.90	+5. 1 +4. 0 +6. 6 -4. 3	+0.5 -0.3 +1.9 -0.4 -0.8
5 5 5 Dec. 19 1861, Mar. 19	Leiden Leiden Leiden Leiden Greenwich	o¹ Cancri o² Cancri o² Cancri 16 Piscium 5 Geminor.	E IB E I	-0. 84 +0. 86 -0. 70	-0. 57 +0. 58 +0. 76	-0. 57 -0. 53 +0. 31	+0. 14 +0. 13 -0. 54	-0. 59 -0. 55 -0. 62	+0.08 +0.29 -0.27	-0. 32 +0. 25 +0. 28	-0. 39 -0. 50 +0. 13	-0. 90 +0. 81 -0. 83 -0. 78 -0. 72	$\begin{array}{r r} -4.8 \\ +3.6 \\ -2.8 \end{array}$	
Apr. 19 27 May 19 June 11	Leiden Leiden Leiden Leiden Leiden	o Leonis 151 G. Ophiuchi 13 B. Virginis ζ Cancri ζ Cancri	I E I I EB	+1.04 -1.10 -1.00	+0. 58 -0. 93 -0. 18	+0. 26 +0. 01 -0. 08	+0. 13 -0. 03 +0. 02	-0. 29 +0. 03 -0. 08	+0. 17 -0. 21 -0. 07	-0. 01 -0. 42 -0. 30	+0. 21 +0. 10 +0. 0	-0. 78 -0. 61 -0. 82 -0. 71 5 +0. 70	+5.6 -8.7 -1.7	$\begin{vmatrix} -2.9 \\ +3.6 \end{vmatrix}$
Sept. 14 14 26 26	Greenwich Greenwich Greenwich Leiden Leiden	18 Aquarii π Capricor. ρ Capricor. 9 Geminor. 11 Geminor.	IB I E E	-0. 93 -0. 88 +0. 66	-0. 17 -0. 16 -0. 34	-0. 30 +0. 42 -0. 70	+0. 13 -0. 18 -0. 09	+0. 33 -0. 46 -0. 71	+0.02 -0.21 +0.09	+0. 30 +0. 25 +0. 07	-0. 20 +0. 45 -0. 7	+0.26 -0.80 -0.76 -0.69 -0.95	-4. 6 +3. 1 +4. 2	+0.3 +7.8 +0.8
Oct. 15 15 15 15	Leiden Leiden Leiden Leiden Leiden	22 B. Piscium 9 Piscium 9 Piscium κ Piscium κ Piscium	I I EB I EB	-0. 89 +0. 92 -0. 52	+0. 56 -0. 58 +0. 35	+0.07 -0.01 +0.24	-0. 24 +0. 04 -0. 80	-0. 25 +0. 04 -0. 83	-0. 12 +0. 02 -0. 36	+0. 38 -0. 40 +0. 16	+0.13 -0.09 +0.10	2 -0. 56 3 -0. 62 4 -0. 64 -0. 34 +0. 48	-5.2 +0.2 -1.4	-0.5 -4.5 +1.4
19 20 20 22 Dec. 23	Leiden Leiden Greenwich Greenwich Leiden	B.D.+18° 325 ζ Arietis ζ Arietis 103 Tauri e Leonis	E E IB IB IB	+0. 83 -0. 89 -0. 89	+0. 90 +0. 97 +0. 76	+0. 27 +0. 09 -0. 18	+0. 30 +0. 10 -0. 07	+0.40 +0.14 -0.19	+0.08 +0.04 0.00	-0. 19 +0. 23 +0. 02	+0. 21 +0. 17 -0. 09	3 -0. 17 -0. 35 7 +0. 36 9 +0. 74 0 +0. 99	+3.9 -8.9 -7.1	-1. I -0. 3 -4. 2 -2. 4
1862, Feb. 4 Mar. 9 15 15 Apr. 15	Washington Greenwich Leiden Leiden Leiden	101 Piscium 6 Geminor. e Leonis e Leonis 43 B. Libræ	I I IB E IB	-0.87 -1.08 +1.06	+0. 74 -0. 50 +0. 49	+0. 33 +0. 01 -0. 03	0.00 -0.08 +0.19	+0. 33 +0. 08 -0. 19	-0. 03 -0. 20 +0. 24	-0.09 -0.40 +0.39	+0.41 +0.10 -0.13	3 -0. 59 -0. 90 +0. 05 -0. 05 2 +0. 36	-3.7 -6.7 +5.3	-0. I +0. 9 -1. 0 -0. I -2. 4
May 8 11 June 9 July 15	Greenwich Washington Washington Radcliffe Greenwich	43 B. Libræ 55 Leonis 75 Virginis 43 B. Libræ * Piscium	E I I E	-1.02 -1.08 -1.14	-0. 29 -0. 78 -0. 96		-0. 12 -0. 30 0. 00	+0. 14 +0. 31 0. 00	-0. 15 -0. 32 -0. 22	-0. 38 -0. 29 -0. 23	+0. 13 -0. 04 +0. 11	-0. 38 -0. 83 -0. 33 -0. 45 -0. 70	-6. 7 -5. 2 -4. 6	+1.4
15 21 Aug. 1 Sept. 3 Oct. 11	Greenwich Greenwich Washington Greenwich Greenwich	9 Piscium υ Tauri 75 Virginis π Sagittarii κ Tauri	E E I I IB	+0.80 -1.05 -0.19	-0. 88 -0. 74 -0. 16	+0. 01 +0. 01 +0. 89	-0. 13 +0. 02 -0. 40	-0. 46 -0. 02 -0. 98	-0. 05 -0. 13 -0. 19	-0.07 -0.33 +0.02	+0. 10 +0. 10	-0. 76 -0. 73 -0. 99 -0. 15 +0. 67	+3.4 -5.0 -0.3	-0.6 +0.5 +0.7
Dec. 7 10	Greenwich Washington Cape Greenwich Greenwich	κ Tauri τ Capricor. μ Geminor. α Cancri α Cancri	E I E IB E	-0. 96 +0. 90 -0. 73	-0.72 -0.99 +0.50	+0. 27 +0. 03 +0. 35	-0. 29 -0. 01 -0. 50	-0.40 +0.03 +0.61	-0. 22 -0. 01 -0. 10	-0. 27 +0. 12 -0. 22	+0.40 +0.04	6 -0. 69 -0. 92 4 -0. 30 3 +0. 68 -0. 80	-3.9 +5.8 -9.1	-1.3
1863, Jan. 9 27 27 27 27	Cape Leiden Leiden Radcliffe Radcliffe	p⁵ Leonis 55 Leonis ∂ Arietis ∂ Arietis ∂ Arietis	IB EB I EB	+0. 95 +0. 91 -0. 84	-0. 19 -0. 66 +0. 60	0.00 -0.15 -0.38	+0. 03 -0. 07 -0. 18	-0. 03 -0. 17 -0. 42	+0.04 -0.03 -0.08	+0. 38 -0. 20 +0. 17	-0. 10 -0. 20 -0. 2	+0. 94 -0. 87 +0. 98 -0. 90 +0. 97	+5.6 +4.7 -5.2	+0.9 +0.2 -0.8
27 27 27 Feb. 23 Mar. 2	Greenwich Greenwich Cape Washington Leiden	 ∂ Arietis ∂ Arietis ζ Arietis ∂ Arietis α Cancri 	I EB I I I	+0.90 -0.90 -0.72 -0.87	-0. 65 +0. 65 +0. 49 +0. 73	+0. 17 +0. 15 -0. 59 +0. 17	-0. 04 +0. 06 -0. 26 -0. 31	-0. 18 +0. 16 -0. 63 +0. 35	-0. 04 +0. 03 -0. 13 -0. 11	-0. 17 +0. 19 +0. 14 -0. 28	-0. 20 +0. 14 -0. 41 +0. 31	+0.91 +0.97 +0.98 -0.72 -0.42	-1.0 -4.3 -0.5 -6.4	+0.4 +3.2
2 2 2 12 22	Leiden Radcliffe Greenwich Cape Washington	α Cancri α Cancri α Cancri 58 Ophiuchi 40 Arietis	EB I E E I	-0.82 -0.83 $+1.07$	+0.69 +0.70 +0.98	-0. 24 +0. 23 -0. 08	-0. 40 -0. 40 +0. 02	+0. 47 +0. 46 +0. 08	-0, 15 -0, 14 +0, 15	-0. 25 -0. 14 -0. 04	+0.4 +0.4 -0.0	+0. 45 -0. 40 -0. 40 -0. 99 -0. 59	-4.4 -6.8 +4.3	-2.5

GROUP XI-1857-1873—Continued.

Date.	Place.	Star.	Ph.	λ	κ	iθ	i	<i>b</i> _o	$\alpha_{\rm o}$	ðo	ε	P	n	n'
1863, Mar. 24 24 Apr. 2 7 8	Leiden Leiden Leiden Cape Cape	51 Tauri 53 Tauri 13 B. Aurigæ ω Ophiuchi 58 Ophiuchi	I EB I IB IB	+0. 62 -0. 54 -0. 89	-0. 54 +0. 05 -0. 72	+0.74 -0.26 +0.57	+0. 07 -0. 80 +0. 03	-0.97 +0.74 +0.84 -0.57	+0.06 -0.35 -0.10	-0.06 -0.14 -0.07	+0.61 +0.11 +0.46	+0. 58 -0. 08 +0. 66	+5.0 -2.8 -4.1	70 -2.0 +1.9 0.0 +0.4 -0.3
9 21 25 26 26	Washington Washington Washington Greenwich Greenwich	36 Sagittarii 105 Tauri 29 Cancri & Cancri & Cancri	E I I EB	-0. 90 -0. 72 -0. 89	+0. 88 +0. 72 +0. 79	-0. 19 -0. 34 +0. 10	+0. 02 +0. 49 -0. 21	-0. 54 -0. 19 -0. 60 +0. 23	0.00 +0.18 -0.06	0.00 -0.24 -0.30	-0. 09 -0. 43 +0. 26	-0. 70 -0. 80 -0. 94	-5.4 -0.8 -3.4	+0.5 -0.8
29 29 30 May 4 June 28	Radcliffe Radcliffe Washington Cape Cape	e Leonis e Leonis q Virginis ω² Scorpii ω² Scorpii	I EB I IB I	+0. 74 -0. 94 -0. 55 -0. 67	-0. 17 -0. 04 -0. 39 -0. 44	+0. 14 -0. 20 +0. 86 +0. 79	+0. 64 -0. 35 +0. 10 +0. 05	-0:47 -0:65 +0:40 -0:87 -0:80	+0. 28 -0. 23 -0. 01 -0. 03	+0. 24 -0. 29 -0. 07 -0. 09	+0. 16 +0. 73 +0. 66	+0. 43 -0. 37 +0. 18 -0. 31	-2.0 -3.8 -3.7 -2.8	+1.0 -0.9
28 30 July 28 Aug. 7 27	Cape Cape Greenwich Leiden Washington	ω^2 Scorpii 21 Sagittarii 36 Sagittarii ω Tauri c^1 Capricor.		+1.09 -1.07 -0.87 -1.02	+0. 92 -0. 92 +0. 53 -0. 81	+0. 28 +0. 29 +0. 31 +0. 07	-0. 16 +0. 22 0. 00 -0. 43	-0.91 -0.32 +0.36 +0.31 -0.44	+0. 19 -0. 25 +0. 05 -0. 33	-0. 11 +0. 13 +0. 19 +0. 28	+0. 36 +0. 42 +0. 35 +0. 32	+0.06 -0.36 +0.92 -0.22	+5.8 -2.1 -6.4 -4.4	+3.4 -2.0
30 30 Sept. 24 Oct. 22 23	Washington Washington Washington Radcliffe Greenwich	51 Piscium 51 Piscium 51 Aquarii 6 Aquarii 16 Piscium	IB I I I	+0. 94 -0. 78 -0. 96	+0. 37 -0. 60 -0. 71	+0. 29 -0. 06 +0. 06	+0. 40 -0. 70 +0. 46	+0. 28 +0. 49 0 -0. 71 0 +0. 46 0 -0. 88	+0. 31 -0. 37 +0. 03	-0. 28 -0. 20 +0. 34	+0. 02 +0. 36 -0. 13	-0. 30 -0. 38 -0. 72	-5. 2 -0. 8 -4. 7	+3. 2 +0. 2
23 23 30 30 30	Radcliffe Leiden Leiden Radcliffe Radcliffe	16 Piscium 16 Piscium χ¹ Orionis χ¹ Orionis χ¹ Orionis	I E IB E	-0. 59 +0. 89 -0. 93	+0. 48 -0. 75 +0. 77	-0. 35 +0. 23 +0. 01	-0.76 +0.12 0.00	-0. 90 -0. 83 +0. 26 +0. 01 +0. 21	-0. 37 -0. 02 0. 00	+0. 15 +0. 05 -0. 05	+0. 16 +0. 19 +0. 08	-0. 37 -0. 67 +0. 69	-1.2 +3.9 -8.5	+1.8 -0.4 -3.8
Nov 3 17 19	Greenwich Washington Cape Washington Washington	χ¹ Orionis ω Leonis ξ Aquarii 9 Piscium κ Piscium	E IB I I	-0. 86 -1. 04 -0. 92	+0. 91 -0. 94 -0. 67	+0.05 -0.02 -0.17	-0. 30 +0. 26 -0. 40	+0. 07 +0. 31 +0. 26 -0. 44 -0. 94	-0.07 -0.06 -0.24	-0. 28 +0. 33 +0. 29	+0. 26 -0. 54 +0. 13	+0. 94 -0. 97 -0. 86	-3.6 -3.3 -2.1	+1.9 +2.5
19 19 30 30 Dec. 19	Leiden Leiden Leiden Leiden Radcliffe	κ Piscium 9 Piscium 60 Cancri 60 Cancri π Piscium	I I IB E I	-1.01 -0.88 +0.89	-0. 72 +0. 98 -0. 99	+0. 12 -0. 07 -0. 05	+0. 26 +0. 21 +0. 15	3 -0. 30 5 +0. 28 5 -0. 22 5 -0. 16 5 +0. 67	-0. 01 +0. 10 +0. 01	+0. 36 -0. 30 +0. 28	+0.01 -0.14 -0.14	-0. 91 +0. 87 -0. 88	-4.6 -8.2 +4.7	+0.5 -3.8 +0.4
24 27 27 27 27	Leiden Leiden Leiden Leiden Leiden	χ² Orionis A¹ Cancri A¹ Cancri A² Cancri A² Cancri	EB IB E IB E	-0. 89 +0. 86 -0. 74	+0. 99 -0. 96 +0. 82	-0. 05 -0. 08 +0. 16	+0. 13 +0. 27 -0. 54	+0. 10 -0. 14 -0. 28 +0. 56 +0. 33	+0. 07 +0. 05 -0. 13	-0. 27 +0. 26 -0. 22	-0.04 -0.30 +0.50	+0.50 -0.51 +0.42	-7. I +4. I -7. 5	-6.7 -2.6 0.0 -3.8 -0.5
30 1864, Jan. 24 Feb. 13 14	Leiden Leiden Leiden Washington Washington	p³ Leonis κ Cancri κ Cancri 53 Arietis 43 Tauri	E IB E I	-0. 70 +0. 64 -0. 84	+0. 78 -0. 71 -0. 08	+0. 12 +0. 13 -0. 54	-0.69 -0.69	-0. 04 +0. 63 +0. 70 -0. 54 +0. 82	-0. 16 -0. 23 -0. 16	+0. 20 +0. 24 +0. 15	+0.51 +0.45 -0.34	+0. 16 -0. 14 -0. 79	-8.9 +0.2 -4.2	-5·4 -2·9 0·0
14 16 16 25 29	Washington Washington Washington Washington Cape	43 Tauri χ Orionis χ Orionis 49 Virginis ψ Ophiuchi	EB EB E IB	-0.91 +0.91 +0.06	+0. 58 +0. 58 -0. 03	+0. 11 -0. 10 +0. 82	-0.07 -0.07 +0.57	+0.68 +0.13 -0.12 -1.00 +0.13	+0. 02 -0. 02 +0. 30	-0. 05 +0. 05 -0. 03	+0. 19 -0. 11 +0. 30	-0.90 +0.90 -0.05	-5.9 0.0 -0.3	-4.3
Mar. 18 18 18 18 18	Cape Greenwich Greenwich Radcliffe Leiden	ψ Ophiuchi A¹Cancri A²Cancri A²Cancri A²Cancri A²Cancri	E IB I I	-0. 68 -0. 89 -0. 89	+0. 74 +0. 97 +0. 97	+0.03 +0.03	+0.63 -0.13 -0.14	-0. 12 -0. 65 +0. 13 +0. 14 +0. 03	+0. 22 0. 00 0. 00	-0. 23 -0. 26 -0. 26	-0.44 +0.18 +0.19	-0. 57 -0. 74 -0. 74	-5.5 -6.3 -6.0	-2. 2 -1. 9 -1. 6
18 19 19 19	Leiden Leiden Leiden Radcliffe Greenwich	A ² Cancri ω Leonis ω Leonis ω Leonis ω Leonis ω Leonis	EB I EB EB I	-0. 90 +0. 88 +0. 89	+1.00 -0.98 -0.99	0.00 -0.01 -0.01	+0. 08 +0. 21 +0. 13	-0. 23 -0. 08 -0. 21 -0. 13 -0. 03	+0. 05 +0. 03 0. 00	-0. 31 +0. 29 +0. 30	+0.01 -0.20 -0.16	-0. 62 +0. 61 +0. 63	-6.6 -2.6 -0.1	-0.7 -2.2 -6.7 -4.3 -1.1
24 24 27 Apr. 11 20	Cape Cape Cape Radcliffe Leiden	α Virginis α Virginis ν Scorpii 57 Orionis 49 Virginis	IB E IB E I	+0. 92 -0. 67 +0. 86	-0. 36 -0. 22 -0. 49	+0. 21 +0. 73 -0. 35	-0. 11 -0. 16 +0. 26	+0. 59 +0. 23 -0. 75 -0. 44 -0. 41	-0. 05 +0. 02 +0. 04	+0. 30 -0. 09 +0. 05	-0. 13 +0. 61 -0. 51	-0.41 +0.60 +0.83	+5.3 -5.1 -0.3	+1.0 -1.8 -4.3

GROUP XI-1857-1873-Continued.

Date.	Place.	Star.	Ph.	\ \	К	iθ	i	b _o	α_{o}	ð.	E	P	п	n'
1864, Apr. 20 23 27 May 20 June 20	Leiden Leiden Cape Washington Washington	49 Virginis \$\lambda \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	I	-0. 98 +0. 88 -0. 96	-0. 17 +0. 74 -0. 08	+0. 25 +0. 25 +0. 35	+0. 34 -0. 04 -0. 50 -0. 05 +0. 86	-0. 25 -0. 56 -0. 36	-0. 04 0. 00 -0. 03	-0. 13 -0. 18 -0. 15	+0. 29 +0. 52 +0. 32	+0. 49 -0. 81 +0. 03	- 7.9 + 6.6 - 1.7	-3. 1 +2. 5 +3. 0
26 26 26 July 18 18	Greenwich Greenwich Cape Cape	62 Piscium δ Piscium δ Piscium ε Sagittarii ε Sagittarii	E	-1.00 +1.04 -0.98 +1.10	-0. 75 +0. 78 -0. 70 +0. 78	-0. 27 -0. 14 +0. 19 +0. 08	+0. 36 -0. 18 -0. 10 -0. 46 -0. 20	-0. 32 -0. 17 -0. 50 -0. 21	-0. 21 +0. 06 -0. 27 +0. 15	+0. 29 0. 00 +0. 15 -0. 19	-0.01 -0.09 +0.45 +0.16	+0. 94 -0. 98 -0. 02 +0. 02	- 8.7 + 7.8 - 4.8 + 5.2	-3. 9 +3. 0 -0. 1 +0. 1
23 23 23 Aug. 12 Nov. 4	Washington Washington Washington Washington Washington	62 Piscium δ Piscium δ Piscium ξ Ophiuchi ρ Sagittarii	I	-1.07 +1.05 -1.01 -0.95	-0. 83 +0. 81 -0. 07 -0. 58	-0. 09 +0. 19 -0. 20 -0. 14	+0. 14 +0. 36	-0. 10 +0. 23 +0. 24 +0. 39	-0. 17 +0. 21 -0. 10 -0. 03	+0. 31 -0. 30 -0. 02 +0. 15	+0. 03 -0. 01 -0. 18 -0. 33	+0.91 -0.88 -0.79 -0.86	- 5.6 + 4.0 - 5.4 - 2.2	-0.5 -0.8 -0.6 $+2.3$
5 5 10 10	Washington Washington Leiden Leiden Leiden Leiden	16 B. Capricor. 3 Capricor. 62 Piscium 62 Piscium 62 Cancri		-0. 76 -1. 07 +1. 08 -0. 68	-0. 57 -0. 86 +0. 87 +0. 61	-0. 08 -0. 26 -0. 21 +0. 06	+0. 62 +0. 69 -0. 13 -0. 10 +0. 67	+0. 70 -0. 29 -0. 23 -0. 67	+0. 07 -0. 26 +0. 09 +0. 20	-0. 18 +0. 28 -0. 32 -0. 23	-0. 56 -0. 02 -0. 08 -0. 44	-0. 71 -0. 60 +0. 60 +0. 70	- 4.5 - 8.3 + 1.3 - 4.6	-0.9 -3.2 -3.6 -1.4
Dec. 5 6 6 1865, Jan. 8	Greenwich Cape Cape Leiden Leiden	κ Cancri κ Aquarii κ Piscium κ Piscium 302 B. Tauri	I EB I	-0.83 -1.06 +1.00 -0.77	-0. 76 -1. 00 +0. 93 -0. 22	-0. 33 +0. 06 +0. 25 +0. 54	-0. 55 +0. 06 +0. 26 -0. 37	-0. 64 +0. 08 +0. 37 +0. 67	-0. 31 -0. 11 +0. 26 -0. 02	+0. 21 +0. 35 -0. 28 +0. 06	+0. 29 +0. 06 -0. 12 +0. 67	-0. 77 -1. 00 +0. 93 -0. 52	- 2. 1 - 3. 9 0. 0	+1.8 +1.1 -4.5 -1.5
Feb. 2 9 Mar. 3	Washington Washington Leiden Greenwich	i Tauri A¹Cancri σ Arietis κ Cancri 68 Tauri	IB IB I	-0. 94 -1. 00 -0. 92 -0. 74	+0. 66 -0. 69 +0. 71 -0. 35	0. 00 +0. 30 -0. 02 +0. 58	-0. 05 -0. 10 -0. 38	-0. 05 +0. 31 +0. 10 +0. 69	+0. 02 -0. 03 -0. 01 0. 00	0.00 +0.22 -0.76 +0.07	+0. 01 +0. 25 +0. 12 +0. 65	+0. 20 +0. 80 -0. 16 -0. 71	- 5.8 - 6.3 - 5.2 - 5.2	-1.4 -1.6 -0.9 -1.8
Apr. 30 July 3	Cape Cape Leiden Greenwich Greenwich	λ Virginis λ Virginis 67 Geminor. α Libræ α Libræ	I EB	+0. 65 -0. 96 -0. 62 +0. 63	-0. 55 -0. 98 +0. 54 -0. 56	-0. 69 -0. 03 -0. 71 -0. 71	+0. 18 +0. 21 +0. 21	+0. 70 -0. 18 +0. 74 +0. 74	-0. 20 0. 00 -0. 15 -0. 17	+0. 21 -0. 16 -0. 12 +0. 16	-0. 42 -0. 12 -0. 47 -0. 54	-0. 52 -0. 89 -0. 54 +0. 56	- 0. 2 - 2. 8 - 4. 7 + 2. 1	-3. I +1. 6 -1. 9 -0. 6
3 8 Aug. 6 Sept. 11	Leiden Leiden Leiden Leiden Washington	8 Libræ \$\alpha\$ Libræ \$\rho\$ Sagittarii 8 Aquarii 115 Tauri	IB E	-0. 63 -0. 70 -0. 92 +0. 49	+0. 57 -0. 12 -0. 44 -0. 28	-0. 69 +0. 12 +0. 16 +0. 48	+0. 21 -0. 73 +0. 51 -0. 74	+0. 72 -0. 74 +0. 54 +0. 88	-0. 13 -0. 16 +0. 01 +0. 06	-0. 14 +0. 09 +0. 22 -0. 01	-0. 44 +0. 71 -0. 37 +0. 86	-0. 57 +0. 06 +0. 01 -0. 47	- 4.3 - 4.0 - 4.9 + 2.2	1
29 29 Oct. 4 Nov. 4	Washington Washington Leiden Greenwich Leiden	16 B. Capricor. β Capricor. 147 B. Piscium 64 Tauri 115 Tauri	I IB E IB	-0. 98 -1. 14 +0. 76 -1. 03	-0. 29 -0. 96 +0. 54 -0. 61	+0.06 -0.18 -0.52 +0.17	+0. 25 +0. 30 -0. 04 +0. 53 -0. 17	+0. 31 -0. 18 -0. 74 +0. 33	-0. 02 -0. 26 +0. 05 -0. 12	+0. 19 +0. 29 -0. 08 +0. 03	-0. 24 -0. 02 -0. 61 +0. 37	-0. 82 -0. 04 -0. 20 +0. 47	- 3.6 - 8.3 - 0.1 - 4.8	+0. 7 -3. 3 -3. 2 -0. 3
Dec. 30 1866, Jan. 8 Feb. 27	Leiden Greenwich Radcliffe Radcliffe Radcliffe	Tauri Tauri h Virginis h Virginis h Leonis	E IB E I	-0. 81 -0. 05 +0. 23 -0. 96	-0. 51 +0. 06 -0. 24 +0. 25	+0. 31 -0. 99 -0. 97	-0. 41 -0. 60 +0. 10 +0. 10 -0. 16	+0.67 +1.00 +0.97 +0.20	-0. 08 -0. 28 -0. 28 -0. 08	+0. 02 +0. 03 +0. 11 -0. 25	+0. 68 -0. 40 -0. 40 +0. 16	-0. 29 +0. 06 -0. 25 -0. 32	- 4.2 - 2.0 - 0.6 - 6.7	-0. 7 -1. 8 -1. 5 -2. 6
Apr. 20 May 11 20 June 18 July 8	Washington Cape Cape Washington Cape	68 Geminor. 7 Piscium 9 Leonis 75 Leonis 68 Tauri	IB I I E	-1. 12 -0. 06 -0. 68 +1. 11	-0. 91 0. 00 +0. 26 +0. 97	-0. 08 -0. 69 +0. 66 +0. 04	+0. 11 +0. 01 -0. 72 +0. 26 -0. 06	-0. 08 +1. 00 -0. 70 +0. 07	-0. 20 -0. 26 +0. 21 +0. 18	+0. 29 +0. 02 -0. 26 -0. 12	-0. 03 +0. 62 -0. 13 +0. 09	+0. 47 -0. 05 -0. 68 -0. 66	- 8.7 - 3.6 - 3.1 + 8.0	-4. I -3. 3 -0. 3 +3. 7
26 26 31 31 Aug. 29	Cape Cape Washington Washington Cape	e Sagittarii e Sagittarii 44 Piscium 44 Piscium o Piscium	EB IB E E	+0. 95 -0. 93 +0. 97 +1. 07	-0. 46 -0. 48 +0. 63 +0. 85	-0. 05 -0. 46 -0. 38 -0. 11	+0. 24 -0. 16 -0. 03 -0. 01 +0. 04	-0. 17 -0. 46 -0. 38 -0. 12	0.00 -0.23 -0.03 +0.10	-0. 13 +0. 25 -0. 31 -0. 29	+0. 13 -0. 04 -0. 03 -0. 03	+0. 14 +0. 60 -0. 79 -0. 75	- 1.9 + 3.9 - 7.0 + 6.5	-5. 6 +7. 7 -10. 8 +2. 3
Sept. 15 15 28 28 28	Cape Cape Greenwich Greenwich Leiden	φ Ophiuchi φ Ophiuchi 75 Tauri α Tauri 99 Tauri	EB E E IB	+0. 49 +1. 08 +1. 00 -0. 94	-0. 53 +0. 98 +0. 91 -0. 85	+0. 36 -0. 08 +0. 17 +0. 23	-0. 76 +0. 16 -0. 38 -0. 47	-0. 84 -0. 18 +0. 42 +0. 52	+0.07 +0.12 +0.16 -0.14	+0.05 -0.14 -0.13 -0.04	+0. 77 -0. 15 +0. 39 +0. 51	+0. 52 -0. 82 -0. 76 +0. 70	+ 2.0 + 4.6 + 3.8 - 9.1	+1.4 +0.1 +0.4 -0.1
28 29 29 29 29	Leiden Leiden Leiden Leiden Leiden	Tauri	IB IB E IB E	-0. 93 +1. 00 -0. 99	-0. 83 +0. 90 -0. 88	-0. 12 -0. 09 +0. 09	+0. 49 +0. 37 -0. 38	-0. 51 -0. 38 +0. 39	-0. 14 +0. 10 -0. 10	+0. 05 -0. 05 +0. 05	-0. 48 -0. 39 +0. 40	+o. 79 -o. 86 -o. 85	- 10. 0 + 3. 3 - 4. 3	+0. 4 -6. 3 -0. 5 -0. 3 -0. 1

GROUP XI—1857-1873—Continued.

Date.	Place.	Star.	Ph.	λ	к	iθ	i	b _o	$\alpha_{\rm o}$	\hat{o}_{o}		P	n	n'
1866, Nov. 16 20 27 Dec. 24 24	Greenwich Greenwich Greenwich Washington Washington	67 Aquarii \$ Arietis o Leonis \$ Leonis \$ Leonis	I I E IB E	-1.03 +0.97 -0.37	-0. 79 +0. 39 -0. 20	-0. 34 -0. 26 +0. 73	+0. 24 -0. 20 +0. 59	+0. 51 -0. 42 +0. 33 -0. 94 -0. 93	-0. 29 -0. 01 +0. 18	+0. 22 +0. 24 -0. 11	-0. 24 +0. 20 -0. 60	-0. 32 -0. 86 +0. 21	-3.4 +3.8 -5.5	+0.4 +0.7 +0.1 -4.1 +7.5
1867, Jan. 29 Apr. 8 16 16	Cape Washington Cape Cape Washington	φ Ophiuchi 318 B. Tauri η Virginis η Virginis 96 Virginis		+0. 29 -1. 09 -0. 83 +0. 70	-0. 33 -0. 98 +0. 08 -0. 06	-0. 32 -0. 02 +0. 51 +0. 68	+0. 89 +0. 12 -0. 11 -0. 15	+0. 94 -0. 12 -0. 52 -0. 70 +0. 39	-0. 14 -0. 17 +0. 13 +0. 24	+0.05 +0.11 -0.28 +0.18	-0. 86 -0. 13 0. 00 +0. 05	-0. 29 -0. 82 -0. 38 +0. 32	+1.0 -4.2 -1.6 -1.5	-0. I -0. I +1. 5 -4. 0 -0. 9
18 May 5 5 June 14 July 9	Washington Washington Washington Greenwich Washington	96 Virginis \alpha Tauri \alpha Tauri 49 Libræ \alpha Virginis	E I EB I I	-1.10 +1.13 -0.85	-0. 93 +0. 96 +0. 72	+0. 05 +0. 01 +0. 19	-0. 23 -0. 07 -0. 55	+0.08 +0.25 +0.07 -0.58 +0.31	-0. 15 +0. 19 +0. 04	+0. 12 -0. 14 -0. 17	+0. 23 +0. 08 +0. 43	-0.40 +0.41 -0.38	-0. I +3. 2 -2. 2	-6. I +4. 0 -0. 8 +0. 9 -0. 7
Oct. 16 Nov. 6 8	Washington Leiden Radcliffe Radcliffe Greenwich	κ Virginis 85 Tauri λ Aquarii 10 Ceti 10 Ceti	EB E I I I	+1.04 -0.95 -1.01	+0. 79 +0. 50 +0. 12	+0. 03 -0. 10 -0. 09	-0. 27 0. 00 +0. 04	+0.09 +0.27 -0.10 -0.10	+0. 17 -0. 04 -0. 10	-0. 14 +0. 29 +0. 31	+0. 28 -0. 01 -0. 06	-0. 66 -0. 23 -0. 61	+3.9 -3.6 -4.4	-3.3 +0.4 -0.3 -0.9 +1.3
Dec. 28 1868, Feb. 8 11 28 28	Cape Leiden Leiden Leiden Leiden	τ Capricor. A Leonis Virginis Ceti Ceti	I E I EB	+0.93 +0.79 -0.47	+0. 74 +0. 28 -0. 15	-0. 58 -0. 52 +0. 36	-0. 07 +0. 40 -0. 81	-0. 83 +0. 58 +0. 66 +0. 89 +0. 84	+0.01 -0.14 +0.20	+0. 23 +0. 29 +0. 15	+0. 32 -0. 13 +0. 55	-0. 07 -0. 53 -0. 42	+5.0 -0.9 -3.2	+1.2 +2.0 -3.3 -1.6 -4.1
28 29 Mar. 1 1	Greenwich Göttingen Leiden Leiden Leiden	μ Ceti f Tauri 71 Tauri 70 Tauri θ^2 Tauri	I I EB I	-0. 42 -0. 84 +0. 80	-0. 20 -0. 55 +0. 59	+0. 20 -0. 01 +0. 01	-0. 89 -0. 59 +0. 64	+0. 94 +0. 91 +0. 59 -0. 64 +0. 07	+0. 18 +0. 02 -0. 03	+0. 12 +0. 15 -0. 14	+0.69 +0.50 -0.55	-0. 42 -0. 81 +0. 77	-2.4 -4.2 -4.5	-0. 3 -1. 0 -1. 4 -7. 0 -1. 3
I I I I	Leiden Leiden Leiden Leiden Leiden	$egin{array}{l} heta^2 & { m Tauri} \\ 264 & { m B. Tauri} \\ heta^1 & { m Tauri} \\ heta^1 & { m Tauri} \\ 85 & { m Tauri} \end{array}$	EB I EB I	-0.56 -1.00 +1.00	−o. 36 −o. 65 +o. 66	+0.03 +0.01 +0.01	+0. 84 +0. 27 +0. 26	+0.09 -0.84 -0.27 -0.26 +0.58	-0. 18 -0. 14 +0. 04	+0.07 +0.16 -0.17	-0. 79 -0. 29 -0. 20	-0. 53 -0. 96 +0. 97	$ \begin{array}{c c} -2.3 \\ -2.1 \\ +3.5 \end{array} $	-0.4 -0.5 +1.2 +0.4 -1.5
I I I I	Göttingen Göttingen Göttingen Göttingen Greenwich	264 B. Tauri 85 Tauri θ^1 Tauri θ^2 Tauri θ^2 Tauri	I I I I	-0. 84 -1. 01 -1. 03	-o. 55 -o. 66	-0. 02 +0. 01 0. 00	+0. 59 +0. 23 -0. 12	-0.83 +0.59 -0.23 +0.12 +0.09	+0.01 -0.13 -0.07	+0. 14 +0. 15 +0. 17	+0. 5 ² -0. 24 +0. 07	-0. 81 -0. 97 -0. 99	-4. 0 -3. 0 -3. 0	-0. I -1. 2 +0. 3 +0. 4 +0. 4
1 28 Apr. 4 May 4 4	Greenwich Leiden Cape Greenwich Leiden	θ¹ Tauri γ Tauri χ Leonis l Virginis l Virginis	I I I I	-1.01 -0.99 -1.04	-0. 58 -0. 73 -0. 33	0.00 -0.41 -0.01	+0. 20 +0. 07 +0. 01	-0. 26 -0. 20 +0. 41 +0. 02 -0. 09	-0. 12 -0. 26 -0. 10	+0. 19 -0. 25 -0. 31	-0. 21 +0. 10 +0. 11	-0.87 -0.51 -0.45	-3.8 -2.0 -2.7	+1.2 +0.6
27	Washington Greenwich Washington Washington Cape	α Tauri 18 Leonis 49 Leonis 24 Scorpii ξ¹ Ceti	I I I IB	-1.04 -0.69 -0.75	-0. 94 -0. 59 +0. 28	-0. 05 -0. 77 -0. 11	-0. 28 +0. 09 -0. 61	+0. 47 +0. 29 +0. 78 -0. 62 +0. 32	-0. 22 -0. 31 +0. 09	-0. 23 -0. 14 +0. 15	+0. 16 +0. 30 +0. 53	-0. 93 -0. 53 -0. 53	-4. I -0. 8 -1. I	-0.8 +1.1 +1.2
Sept. 4 6 7 8 8	Leiden Leiden Radcliffe Radcliffe Radcliffe	33 Ceti μ Ceti f Tauri θ^2 Tauri θ^1 Tauri	IB IB IB IB	-0. 69 -0. 78 -0. 97	+0. 05 -0. 13 -0. 36	-0. 18 -0. 38 +0. 06	+0.68 +0.46 +0.28	+0. 15 -0. 70 -0. 60 -0. 29 -0. 64	-0. 22 -0. 17 -0. 12	+0. 17 +0. 18 +0. 17	-0. 50 -0. 52 -0. 32	+0. 62 +0. 76 +0. 96	+4.7 -2.6 -2.8	+6.8 -0.2 +0.2
8 8 8 8	Leiden Leiden Leiden Leiden Leiden	71 Tauri 71 Tauri 82 Tauri 264 B. Tauri 264 B. Tauri	IB IB I	+0. 95 -0. 98 -0. 47	+0. 35 -0. 36 -0. 17	-0.06 +0.04 +0.18	-0. 31 +0. 22 +0. 86	+0. 15 +0. 32 -0. 22 -0. 88 -0. 76	+0. 11 -0. 11 -0. 17	-0. 15 +0. 18 +0. 07	+0. 35 -0. 26 -0. 83	-0. 95 +0. 97 +0. 47	+2.3 -2.4 -2.7	-0.5 +0.6 -1.3
8 8 8 8	Leiden Leiden Leiden Göttingen Göttingen	85 Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	E IB E IB E	-0. 58 +0. 67 -0. 68	-0. 21 +0. 25 -0. 25	+0. 19 +0. 18 +0. 17	' +0. 79 +0. 73 '+0. 72	+0. 81 -0. 82 -0. 75 -0. 74 -0. 69	-0. 18 -0. 09 -0. 17	+0.09 -0.12 +0.11	-0. 78 -0. 67 -0. 71	+0. 57 -0. 67 +0. 67	-1.5 +0.4 -2.6	+0. 2 -1. 5
9 9 28 1869, Jan. 23 23	Leiden Radcliffe Washington Leiden Leiden	115 Tauri 111 Tauri 64 Aquarii θ^1 Tauri θ^2 Tauri	E IB EB EB	-0.42	-0. 23 +0. 38 +0. 06	-0. 38 -0. 90 -0. 15	-0. 83 +0. 19 -0. 45	-0. 56 +0. 91 -0. 92 +0. 48 +0. 81	+0. 07 -0. 24 +0. 16	+0. 05 +0. 08 -0. 16	+0.87 +0.36 +0.49	+0. 90 -0. 23 +0. 58	-4.3 -0.6 -4.1	-6.5

GROUP XI-1857-1873-Continued.

Date.		Place.	Star.	Ph.	,		iθ	i	b ₀	$\alpha_{\rm o}$	ð,		P	n	n'
		- I lace.					••							",	"
; 	23 23 23 23 24	Leiden Vienna Vienna Vienna Leiden	264 B. Tauri θ¹ Tauri 264 B. Tauri α Tauri 119 Tauri	I I I I	-0. 77 -0. 97 -0. 97	-0. 05 -0. 07 -0. 07	-0. 20 -0. 11 -0. 11	-0. 62 -0. 31 -0. 29	-0.04 +0.65 +0.33 +0.31 -0.72	+0. 07 -0. 02 -0. 02	+0. 18 +0. 19 +0. 17	+0. 54 +0. 25 +0. 24	-0. 50 -0. 63 -0. 63	-4.7 -4.7 -0.8 -0.9	-1.8 -2.5
; 	24 24 24 24 24	Leiden Greenwich Greenwich Radcliffe Radcliffe	120 Tauri 120 Tauri 119 Tauri 119 Tauri 119 Tauri	I I I EB	-0. 99 -0. 73 -0. 70 +0. 80	-0. 28 -0. 20 -0. 28 +0. 32	3 +0. 20 0 -0. 41 3 +0. 43 2 +0. 38	+0. 30 1 -0. 61 3 +0. 62 3 +0. 55	-0. 36 -0. 36 +0. 73 -0. 75 -0. 67	-0. 15 -0. 16 -0. 16 +0. 03	+0. 10 +0. 07 +0. 07 -0. 09	-0. 42 -0. 77 -0. 78 -0. 61	-0. 46 -0. 33 -0. 32 +0. 37	-3.5 -3.3 -4.0 -1.5	-1.0 -0.6 -1.2 -2.0 -3.7
Feb.	15 19	Washington Washington Washington Washington Cape	α Leonis 29 Ceti 33 Ceti 75 Tauri δ Cancri	E I I I	-0.91 -0.74 -0.96	+0.75 +0.62 -0.05	0. 00 2 -0. 20 -0. 08	0.00 +0.49 3 -0.21	-0. 37 +0. 01 -0. 58 +0. 22 -0. 71	+0. 04 -0. 17 0. 00	+0. 33 +0. 25 +0. 19	-0. 07 -0. 21 +0. 15	-0.81 -0.66 -0.94	-3.4 -1.4 -1.6	-0.4 -0.9 +0.7 +1.1 +0.4
Apr. May		Cape Vienna Leipzig Kremsmunster Kremsmunster		EB I I I EB	-0. 73 -0. 52 -0. 42	-0. 16 -0. 46 -0. 37	-0. 43 -0. 82 -0. 88	+0. 25 +0. 27	-0. 89 +0. 68 +0. 87 +0. 92 +0. 85	+0. 03 -0. 29 -0. 30	+0.09 -0.09 -0.07	+0. 61 +0. 44 +0. 47	-0, 66 -0, 48 -0, 39	$\begin{bmatrix} -3.5 \\ -1.1 \\ -3.7 \end{bmatrix}$	+0. 1 -1. 5 +0. 3 -2. 6 -0. 3
	2 2 2 13	Göttingen Greenwich Radcliffe Radcliffe Cape	α Tauri α Tauri α Tauri 13 Libræ ρ Capricor.	E E I I	+0. 94 +0. 94	+0. 20 +0. 20 -0. 35	0 -0. 14 0 -0. 14 5 -0. 11	-0. 25 -0. 23 -0. 88	+0. 39 +0. 29 +0. 27 -0. 89 -1. 00	+0. 10 +0. 09 +0. 27	-0. 19 -0. 19 -0. 18	+0.35 +0.33 +0.58	-0. 80 -0. 80 -0. 07	+5. I +4. 2 +0. 5	+4.4 +2.9 +2.0 +1.6 -1.3
Nov.	19 29 29 10	Cape Cape Cape Radcliffe Madrid	ρ Capricor. δ Tauri δ Tauri 30 Capricor. μ Ceti	EB IB E I	-0. 95 +0. 91 -0. 62	+0. 31 -0. 30 +0. 36	+0.0. -0.13 +0.73	+0.03 -0.24 -0.16	-0. 96 -0. 04 +0. 27 +0. 75 +0. 28	-0. 03 +0. 08 +0. 15	+0. 20 -0. 20 +0. 16	-0. 07 +0. 29 -0. 58	+0. 99 -0. 95 -0. 66	-3.5 +1.9 -3.6	-3. I -1. 1 -0. 3 -2. I +2. 3
Dec.	17 8 14 14 5	Madrid Göttingen Greenwich Radcliffe Washington	μ Ceti δ Capricor. ξ² Ceti ξ² Ceti 182 B. Aquarii	EB I EB I	-0.76 -0.67 +0.91	+0.45 +0.68 -0.90	-0. 55 -0. 07 0. 00	+0. 21 -0. 66 +0. 02	+0. 60 -0. 59 +0. 66 -0. 02 -0. 64	+0. 15 +0. 25 -0. 02	+0. 18 +0. 30 -0. 33	+0. 30 +0. 31 +0. 09	-0. 70 -0. 54 +0. 71	-6. 5 -3. 5 +7. 6	-3.7 -4.7 -1.9 +5.7 +0.7
	7 9 10 10	Washington Leiden Leiden Göttingen Greenwich	μ Ceti 63 Tauri m Tauri m Tauri m Tauri m Tauri	I I I I	-0. 93 -0. 56 -0. 54	+0.60 +0.20 +0.25	+0. 05 -0. 61 -0. 62	+0.06 -0.53 -0.54	+0. 08 -0. 08 +0. 81 +0. 82 +0. 84	-0. 03 +0. 12 +0. 13	+0. 22 +0. 11 +0. 10	-0. 16 +0. 74 +0. 84	-0. 93 -0. 51 -0. 49	-2.3 +7.0 -1.4	+0.5 -0.3 +8.2 -0.2 +0.4
	11 11 11 11 12	Leiden Leiden Radcliffe Radcliffe Washington	χ² Orionis χ² Orionis χ² Orionis χ² Orionis ζ Geminor.	I EB I EB I	+0. 42 -0. 08 +0. 19 -0. 30	-0. 07 +0. 02 -0. 04 -0. 29	-0. 80 -0. 88 -0. 86 -0. 92	-0. 42 -0. 47 -0. 46 -0. 25	+1.∞ +0.98 +0.95	+0. 08 +0. 07 +0. 09 -0. 03	-0. 02 +0. 01 -0. 01 0. 00	+0. 93 +0. 99 +0. 99 +0. 89	+0. 30 -0. 06 +0. 14 -0. 17	-4.9 -0.6 -3.7 -0.9	-0.8 -5.8 -0.4 -4 I -0.2
Mar.	22 22 10 10	Cape Cape Cape Washington Washington	24 Scorpii 24 Scorpii	IB E IB I EB	+0. 42 -0. 88 -0. 37	+0. 30 +0. 32 +0. 13	-0. 62 -0. 32 -0. 81	-0. 67 -0. 21 -0. 43	-0. 75 -0. 92 +0. 38 +0. 92 +0. 81	+0. 23 +0. 02 +0. 07	+0. 04 +0. 12 +0. 04	+0. 89 +0. 34 +0. 89	-0. 41 -0. 90 -0. 38	+1.3 +1.3 -2.8	+0.5 +3.2 -2.0
June July Aug.	10	Cape Leipzig Leiden Radcliffe Leiden	15 Sagittarii η Capricor. 158 G. Ophiuchi 4 Capricor. μ Ceti	IB	-0. 89 -1. 04 -0. 61	+0.04 -0.66 -0.14	+0.45 -0.27 +0.78	-0. 17 -0. 13 -0. 17	-0. 70 +0. 48 -0. 30 +0. 80 -0. 41	+0.01 -0.12 +0.04	+0. 18 -0. 13 +0. 08	-0.43 +0.20 -0.74	+0. 56 -0. 45 -0. 23	-8. 2 -0. 7 -5. 2	+1.3 -4.0
	17 19 6 7	Greenwich Greenwich Washington Cape Cape	μ Ceti 64 Tauri η Capricor. δ Capricor. δ Capricor.	E E I E E B	+0. 73 -0. 78 -0. 96	-0. 70 -0. 08 +0. 07) +0. 44 3 +0. 56 7+0. 16	+0.40 -0.26 -0.11	-0. 34 -0. 60 +0. 62 +0. 20 +0. 54	-0. 14 +0. 06 -0. 02	-0. 20 +0. 17 +0. 26	-0. 47 -0. 48 -0. 14	-0. 78 -0. 51 -0. 52	+1.1 -3.5 -1.7	+0.8 -0.1 -2.1 0.0 -2.2
	16 28 28 1 1	Greenwich Cape Cape Radcliffe Greenwich	i Tauri 7 Libræ 7 Libræ 117 B.Sagittarii 117 B.Sagittarii		-0. 67 +0. 77 -0. 85	-0. 60 +0. 68 -0. 57	-0. 50 -0. 46 +0. 57	-0. 62 -0. 56 +0. 08	-0. 01 -0. 80 -0. 73 +0. 58 +0. 52	+0. 11 +0. 35 -0. 08	-0. 22 +0. 16 +0. 03	+0. 58 +0. 65 -0. 58	-0. 41 +0. 46 -0. 82	+0.4 -3.5 -3.2	+1.9 +1.6 -4.7 -1.7 -2.3
	9	Greenwich Greenwich Radcliffe Radcliffe Cape	ζ Tauri ζ Tauri 68 Tauri 68 Tauri ζ Tauri ζ Aquarii	IB IB E I	+0. 91 -0. 64 +0. 46	+0.75 -0.27 +0.10	+0.03 -0.56 -0.53	+0. 01 -0. 42 -0. 68	-0. 04 -0. 03 +0. 70 +0. 86 -0. 32	-0.01 +0.18 +0.18	-0. 13 +0. 19 -0. 10	+0. 04 +0. 57 +0. 82	-0. 90 +0. 26 -0. 18	+7.2 -5.5 -7.0	-4.3 +5.8 -4.4 -7.7 +0.8

GROUP XI-1857-1873-Continued.

Date.	Place.	Star.	Ph.	λ	κ	iθ	i	b ₀	α_{o}	δ,	e	P	n	n'
1870, Dec. 27 1871, Jan. 11 11 Feb. 1	Cape Leiden Leiden Cape Cape	ψ ² Aquarii ν Virginis ν Virginis ι Geminor. ι Geminor.	I IB E I EB	-1.01 +1.02	-0. 50 +0. 50 +0. 82	+0. 04 +0. 03 +0. 12	-0. 11 -0. 09 +0. 02	-0. 12 -0. 10 -0. 12	-0. 05 +0. 14 -0. 01	-0. 38 +0. 34 +0. 10	-0. 10 +0. 07 -1. 00	-0. 32 +0. 90 -0. 90 -0. 63 +0. 64	-3.2 +0.9 -0.5	" -0.3 -1.6 -0.5 +1.0 -2.3
28 Mar. 3 3 May 5 June 29	Washington Greenwich Greenwich Cape Cape	141 Tauri η Cancri 39 Cancri θ Libræ θ Libræ	I I E I	-0. 86 -0. 97 +1. 04	+0. 32 +0. 36 +0. 88	-0. 43 -0. 11 -0. 36	+0. 22 +0. 06 -0. 25	+0. 48 +0. 13 -0. 44	-0. 12 -0. 09 +0. 35	-0. 17 -0. 16 +0. 23	+0. 33 +0. 04 +0. 43	-0. 86 -0. 46 -0. 51 -0. 22 -0. 55	+0.3 -1.7 +1.1	+2.3 +1.6 -0.3 -0.1 +0.5
Sept. 7 22 27 Oct. 3	Washington Washington Washington Washington Washington	y Scorpii 3 Geminor. 2 Sagittarii 33 Piscium 4 Tauri	I E I EB IB	+0.87 -0.81 +0.94	-0. 96 -0. 72 +0. 07	-0. 26 -0. 60 -0. 01	+0. 02 +0. 24 -0. 36	+0. 26 -0. 65 +0. 35	+0. 01 -0. 15 +0. 22	-0. 08 +0. 06 -0. 34	+0. 34 +0. 59 +0. 07	-0. 50 -0. 93 -0. 75 +0. 25 +0. 87	+0.4 -0.8 -2.2	-1.1 -0.5 +0.1 -3.0 -1.7
3 21 23 23 23	Washington Washington Greenwich Greenwich Leiden	γ Tauri γ Capricor. 69 Aquarii τ Aquarii 69 Aquarii	E I I I	-1.03 -0.55 -1.01 -0.35	-0. 75 -0. 24 -0. 44 -0. 15	-0. 14 +0. 80 +0. 07 +0. 29	+0. 15 -0. 26 -0. 02 -0. 90	-0. 20 +0. 84 +0. 07 +0. 94	-0. 18 +0. 23 -0. 08 +0. 27	+0. 21 +0. 24 +0. 36 +0. 17	+0. 08 -0. 38 -0. 12 -0. 40	-0. 81 -0. 97 -0. 48 -0. 87 -0. 29	+0.9 -0.2 -0.3 +1.2	
23 23 23 23 23	Leiden Leiden Leiden Radcliffe Radcliffe	69 Aquarii	EB I EB I I	-1.01 +0.92 -0.61 -1.02	-0. 44 +0. 40 -0. 26 -0. 44	+0. 04 +0. 12 +0. 21 +0. 01	-1.14 -0.40 -0.78 -0.04	+0. 15 +0. 42 +0. 80 +0. 04	-0.06 +0.24 +0.20 -0.10	+0. 37 -0. 30 +0. 26 +0. 36	-0. 16 -0. 08 -0. 37 -0. 11	-0. 52 -0. 87	+0. 5 -5. 4 -4. 3 -0. 4	+2.6 +1.5 -6.2 -3.7 +0.6
23 27 Nov. 15 18 18	Radcliffe Washington Radcliffe Radcliffe Leipzig	τ Aquarii 64 Ceti λ Sagittarii ε Capricor. ε Capricor.	I	-0. 54 -1. 12 -0. 50 -0. 81	+0. 27 -1. 00 -0. 36 -0. 58	+0. 50 +0. 08 -0. 48 -0. 35	+0. 66 -0. 02 +0. 74 +0. 52	-0. 83 +0. 08 -0. 88 -0. 63	-0. 35 -0. 22 -0. 29 -0. 27	+0. 15 -0. 05 +0. 09 +0. 19	-0. 49 -0. 17 +0. 53 +0. 35	-0. 83 -0. 09 -0. 65 -0. 47 -0. 76	-1.5 -0.2 +0.2 +0.2	-4.4 -1.0 +0.9 +0.7 +1.0
18 27 Dec. 1 1 18	Altona Radcliffe Radcliffe Radcliffe Washington	c Capricor. Tauri Cancri Cancri Cancri B.Ceti	IB IB E I	-0. 90 -0. 90 +0. 85 -0. 96	+0. 94 -0. 77 -0. 73 -0. 20	-0. 17 +0. 08 +0. 27 -0. 03	-0. 02 -0. 08 -0. 27 -0. 26	+0. 17 -0. 11 -0. 38 +0. 27	+0. 03 +0. 02 +0. 08 +0. 03	+0. 21 -0. 19 +0. 17 +0. 44	+0.06 -0.17 -0.23 -0.17	-0. 66 +0. 40 -0. 81 +0. 45 -0. 97	-6. 2 +1. 5 -3. 4 -3. 0	+2.4 -4.0
20 20 1872, Jan. 23 Feb. 21	Greenwich Radcliffe Radcliffe Washington Washington	ν Piscium ν Piscium ω Geminor. γ Cancri γ Cancri	I I I EB	-0. 49 -0. 43 -0. 33	+0. 14 +0. 47 +0. 32	+0. 49 +0. 80 -0. 64	+0. 71 -0. 36 +0. 67	-o. 86 -o. 88 +o. 93	-0. 37 0. 00 -0. 17	+0. 13 0. 00 -0. 06	-0. 39 -0. 90 +0. 74	-0. 51 -0. 51 -0. 13 -0. 15 +0. 10	-1.5 -1.2 -2.7	-1. 2 -1. 0 -0. 8 -2. 4 -8. 6
21 21 Apr. 25 May 19	Greenwich Greenwich Washington Leiden Leiden	γ Cancri γ Cancri 22 Ophiuchi 65 Virginis 66 Virginis	I EB E I I	+0. 74 +1. 09 -0. 98 -1. 01	-0. 73 +0. 83 -0. 07 -0. 07	+0. 38 -0. 15 -0. 18 -0. 11	-0. 44 0. 00 -0. 25 -0. 14	-0. 58 -0. 15 -0. 31 -0. 18	+0. 11 +0. 23 +0. 01 -0. 04	+0. 15 +0. 20 -0. 43 -0. 43	-0. 47 +0. 21 +0. 03 +0. 01	-0. 65 -0. 51 -0. 53	+0.8 +0.7 -1.0 -0.5	+0. I -0. 4 +0. I
19 19 22 22 22	Greenwich Greenwich Leiden Leiden Greenwich	65 Virginis 66 Virginis ω¹ Scorpii ω² Scorpii ω² Scorpii	I IB IB E	-1.03 -1.09 -1.06 +1.11	-0. 07 -0. 67 -0. 65 +0. 67	+0. 03 -0. 17 +0. 28 +0. 13	-0. 05 -0. 04 +0. 06 +0. 02	-0. 06 -0. 17 +0. 29 +0. 13	-0. 10 -0. 16 -0. 27 +0. 18	-0. 42 -0. 29 -0. 25 +0. 29	-0. 05 +0. 08 -0. 32 -0. 04	+0. 07 -0. 07	-2. 4 -6. 0 -3. 7 -2. 7	$\begin{bmatrix} -1.8 \\ -5.3 \end{bmatrix}$
July 22 Aug. 12 15	Radcliffe Greenwich Radcliffe Vienna Neuchatel	ω² Scorpii 69 Aquarii λ Libræ σ Sagittarii σ Sagittarii	1	+1.11 -1.02 -0.99 -1.00	+0. 83 -0. 59 -0. 84 -0. 85	0. 00 -0. 19 -0. 41 -0. 38	-0. 08 -0. 03 +0. 26 +0. 24	+0. 08 -0. 19 -0. 49 -0. 45	+0. 25 -0. 07 -0. 20 -0. 20	-0. 37 -0. 21 0. 00 0. 00	+0.05 +0.17 +0.54 +0.46	-0. 95 -0. 57 -0. 58	-1.4 -0.4 -0.6 +2.0	-2.9 -1.8 +0.2 -0.1 +2.5
15 15 15 Sept. 15	Leipzig Leipzig Greenwich Greenwich Greenwich	σ Sagittarii σ Sagittarii σ Sagittarii 69 Aquarii τ Aquarii	EB EB I I	+0. 98 +0. 96 -1. 08 -1. 05	+0. 83 +0. 82 -0. 84 -0. 82	-0. 42 -0. 45 +0. 04 0. 00	+0. 26 +0. 28 -0. 26 +0. 35	-0. 50 -0. 53 +0. 26 -0. 35	+0. 18 +0. 19 +0. 12 -0. 32	-0. 02 -0. 01 +0. 38 +0. 32	+0. 56 +0. 58 -0. 17 +0. 06	+0. 55 -0. 36 -0. 35	-7.6 -0.4 -0.7 -1.2	-0.8 -0.2 -0.7
15 15 15 21 21	Radcliffe Radcliffe Radcliffe Washington Washington	69 Aquarii τ Aquarii τ Aquarii ω Tauri ω Tauri	I I IB E	-1.03 +1.12 -0.78 +0.51	-0. 80 +0. 87 -0. 22 -0. 20	-0. 38 -0. 10 -0. 58 -0. 85	-0. 05 -0. 01 +0. 04 -0. 04	-0. 38 -0. 10 +0. 58 +0. 85	-0. 34 +0. 19 +0. 08 +0. 25	+0. 32 -0. 39 +0. 25 -0. 11	+0.07 +0.12 +0.47 +0.80	-0. 36 -0. 34 +0. 37 +0. 67 -0. 44	+4.9 -7.2 -3.7 -2.8	-7.6 -3.3 -3.0
21 24 24 24 Oct. 11	Washington Greenwich Greenwich Washington Radcliffe	53 Tauri 6 Geminor. 7 Geminor. 7 Geminor. 7 Geminor. 7 Capricor.	IB IB E I	-0.90 +0.83 +0.89	+0.85 -0.79 -0.84	-0. 13 -0. 38 +0. 17	+0.08 +0.21 -0.12	+0. 15 +0. 40 -0. 20	-0. 01 +0. 01 +0. 01	+0. 02 0. 00 0. 00	+0.06 +0.47 -0.13		-1.8 +3.1 +3.1	

GROUP XI-1857-1873-Continued.

Date.	Place.	Star.	Ph.	λ	K	i0	i	b_{o}	α_{o}	δο	ε	P	n	n'
1872, Oct. 11 14 15 15 Dec. 9	Greenwich Greenwich Washington Washington Greenwich	35 Capricor. 33 Piscium 33 Ceti f Piscium f Piscium	I I I I	-1.05 -1.06 -1.03	-0. 69 -0. 45 -0. 43	-0.09 +0.10 -0.18	一0, 24 一0, 10 十0, 21	+0. 88 +0. 26 -0. 14 +0. 27 -0. 81	-0.08 -0.23 -0.04	+0. 43 +0. 42 +0. 45	-0. 11 -0. 13 +0. 13	-0. 50 -0. 25 -0. 24	-0.8 -0.0 -1.9	
1873, Jan. 22 Mar. 1 5 Apr. 2	Radcliffe Radcliffe Washington Washington Strassburg	f Piscium 28 Libræ μ Piscium 103 Tauri 118 Tauri (S)	E IB I I	-0.83 -1.02 -0.94	-0.09 -0.55 +0.29	-0. 55 +0. 29 -0. 13	-0. 09 +0. 21 +0. 04	-0. 60 -0. 56 -0. 36 +0. 14	+0. 10 -0. 34 -0. 03	-0. 33 +0. 37 +0. 18	+0. 37 -0. 20 +0. 06	+0. 76 -0. 54 -0. 99	-2.6 +1.6 -1.6	-6.4 -2.4 +1.9 -1.3
2 2 2 2 30	Strassburg Vienna Radcliffe Radcliffe Nikolaieff	118	I I I I	-0. 89 -0. 94 -0. 94	+0. 31 +0. 35 +0. 35	+0. 36 +0. 22 +0. 22	-0. 17 -0. 10 -0. 10	-0. 25 -0. 39 -0. 24 -0. 24 -0. 39	-0. 12 -0. 10 -0. 10	+0. 13 +0. 14 +0. 14	-0. 46 -0. 31 -0. 31	-0.81 -0.85 -0.85	+0. I -7. I -8. 7	
May 1 1 1 5 11	Greenwich Nikolaieff Nikolaieff Nikolaieff Nikolaieff	39 Geminor. 39 Geminor. 40 Geminor. 42 Leonis 8 Libræ	I I I I	-0. 90 -0. 92 -0. 79	+0. 57 +0. 58 +0. 88	+0. 22 -0. 16 +0. 04	-0. 23 +0. 22 +0. 47	+0. 15 -0. 30 +0. 24 +0. 47 +0. 37	-0. 04 -0. 05 -0. 17	-0. 02 -0. 02 -0. 30	-0.38 +0.15 +0.20	-0. 79 -0. 80 -0. 84	-0. 4 -0. 7 -0. 6	-o. z
11 11 16 June 5 July 1	Nikolaieff Nikolaieff Nikolaieff Nikolaieff Nikolaieff	α Libræ α Libræ ω Sagittarii 46 Virginis b Virginis	I EB E I I	+0. 98 +0. 98 -0. 67	-0. 26 +0. 75 +0. 51	+0.08 -0.20 -0.53	+0. 02 +0. 35 -0. 44	+0. 41 +0. 08 -0. 40 -0. 69 +0. 59	+0.06 +0.12 +0.29	+0.40 -0.13 -0.41	+0.01 +0.44 +0.12	+0. 05 -0. 81 -0. 59	0.0 -1.3 -0.5	+0. 2 -0. 0 -0. 0
2 4 4 19	Nikolaieff Greenwich Radcliffe Nikolaieff Nikolaieff	γ Virginis λ Virginis λ Virginis λ Virginis κ Tauri 67 Tauri	EB I E E	-0. 71 -0. 69 +0. 82	+0. 29 +0. 32 +0. 14	+0.65 +0.65 +0.53	+0. 19 +0. 20 -0. 15	+0.06 +0.68 +0.68 -0.55 -0.18	-0. 32 -0. 31 -0. 06	-0. 18 -0. 24 -0. 24	-0. 42 -0. 44 -0. 43	-0.60 -0.65 -0.71	+1.7 +1.3 -0.5	+3.6 +1.6 +1.5 -0.2 +0.2
Aug. 6 6 9 9	Washington Washington Greenwich Nikolaieff Nikolaieff	ω Sagittarii A Sagittarii τ Aquarii τ Aquarii τ Aquarii	I IB IB E	-1.12 -1.04 -1.15	-0.74 -0.90 -1.00	+0.02 +0.13 0.00	一0. 04 十0. 42 一0. 01	-0. 03 +0. 04 -0. 44 +0. 01 -0. 91	-0. 22 -0. 41 -0. 26	+0. 15 +0. 32 +0. 41	-0. 10 +0. 11 -0. 08	+0. 31 +0. 27 +0. 32	-0.7 -2.2 -1.6	-0. 8 -0. 8 -2. 6 -1. 8
10 11 12 18 Oct. 3	Nikolaieff Nikolaieff Nikolaieff Nikolaieff Greenwich	376 B. Aquarii 15 Ceti μ Piscium 39 Geminor. τ Aquarii	E E E I	+1. 12 +0. 98 +0. 92	+0. 93 +0. 75 -0. 41	-0. 03 +0. 38 -0. 10	+0. 20 +0. 12	-0. 27 +0. 04 -0. 43 +0. 16	+0. 24 -0. 02 +0. 04	-0. 44 -0. 44 +0. 22	-0. 07 -0. 08 +0. 22	-0. 79 -0. 75 -0. 77	-0.6 +1.0 -1.0	+ I. i
3 3 9 9	Nikolaieff Radcliffe Nikolaieff Nikolaieff Greenwich	τ Aquarii 69 Aquarii υ Tauri 72 Tauri λ Cancri	I I E E	-1.10 +0.27 +0.70	-0.96 +0.09 +0.22	-0. 10 -0. 91 -0. 70	+0. 24 +0. 33 +0. 26	+0. 25 +0. 26 +0. 97 +0. 74 +0. 72	-0. 14 +0. 27 +0. 29	+0.41 -0.03 -0.15	-0. 18 +0. 90 +0. 73	-0.56 -0.17 -0.43	0.0 +1.9 +0.9	+0.2 +1.0 +1.0
Dec. 1 24 24 24	Greenwich Greenwich Greenwich Radcliffe	o Arietis τ Aquarii τ Aquarii τ Aquarii	I I EB I	-0. 97 -0. 95 +0. 76	-0. 62 -0. 84 +0. 66	+0. 45 -0. 20 -0. 30	+0.01 -0.43 -0.64	-0.45 +0.47 +0.71 +0.42	-0. 35 +0. 02 +0. 42	+0. 31 +0. 40 -0. 23	-0. 27 -0. 24 -0. 24	-0.46 -0.79 +0.63	-1.4 +0.1 -1.3	-1.2 +0.3 -1.1

GROUP XII—1874-1890.

1874, Jan. 25 25 26 27 27	Greenwich Radcliffe Radcliffe Radcliffe Greenwich	53 Arietis 53 Arietis A Tauri k Tauri k Tauri	I I I I	-0.88 -0.97 -1.00	-0. 62 -0. 51 -0. 36	+0.51 -0.31 -0.07	-0.06 +0.11 +0.04	-0. 52 +0. 33 +0. 08	-0. 3 -0. 0 -0. 1	1 +0. 28 0 +0. 27 0 +0. 28 0 +0. 19	-0.43 +0.22 +0.03	-0. 84 -0. 88 -0. 84	+0.2 -1.6 -2.4	+0.4 -1.4 -2.2
30 30 Mar. 26 26 31	Greenwich Radcliffe Radcliffe Greenwich Greenwich	c Geminor. c Geminor. λ Cancri λ Cancri υ Cancri	I I I I	-0. 61 -0. 55 -0. 57	+0. 15 +0. 17 +0. 18	+0. 24 -0. 10 -0. 10	一o. 73 十o. 80 十o. 78	-0. 77 +0. 81 +0. 79	+0.0 -0.1 -0.1	8 -0. 09 9 -0. 10 9 -0. 11 8 -0. 47	-0. 75 +0. 67 +0. 67	-0. 26 -0. 55 -0. 57	+0. 2 -0. I +0. I	+0.3 0.0 +0.2
Apr. 22 22 May 19 July 8 Aug. 20	Radcliffe Radcliffe Greenwich Greenwich Washington	ω Cancri 4 Cancri c Geminor. 53 Arietis α Scorpii	I I E I	-0.89 -0.74 +1.00	+0. 17 +0. 04 +0. 83	-0.06 +0.15 -0.35	+0. 35 -0. 66 +0. 10	+0. 36 -0. 68 +0. 36	-0. I -0. 0 +0. 3	01 -0. 16 2 -0. 16 01 -0. 12 0 -0. 31 9 -0. 23	+0. 28 -0. 66 +0. 34	-0. 90 -0. 54 -0. 81	-4.4 +1.9 -2.0	-4.2 +2.0 -1.8

GROUP XII—1874-1890—Continued.

Date.	Place.	Star.	Ph.	λ	κ	iθ	i	b _o	α_{o}	ð,	ε	P	n	n'
1874, Aug. 31 Oct. 22 22 25 25	Strassburg Greenwich Greenwich Strassburg Strassburg	29 Arietis 27 Piscium 29 Piscium π Arietis π Arietis	E I IB E	-1.06 -1.07 -1.16	-0. 84 -0. 85 -0. 98	+0. 30 +0. 28 -0. 06	+0. 17 +0. 15 +0. 02	-0. 35 -0. 32 +0. 06	-0.40 -0.40 -0.26	+0.40 +0.40 +0.40	-0. 01 -0. 03 0. 00	-0. 71 -0. 46 -0. 47 +0. 14 -0. 14	-0.5 +0.8 -2.0	" -4.3 -0.3 +1.0 -1.8 -3.4
Nov. 19 Dec. 16 19 19	Greenwich Radcliffe Radcliffe Greenwich Washington	10 Ceti 29 Piscium π Arietis π Arietis 45 Arietis	I I I I	-0.89 -1.06 -1.05	-0. 72 -0. 94 -0. 94	+0. 49 -0. 28 -0. 31	+0. 23 +0. 10 +0. 11	-0. 54 +0. 30 +0. 33	-0.40 -0.11 -0.10	+0. 33 +0. 39 +0. 39	-0.01 +0.31 +0.18	-0. 50 -0. 82 -0. 65 -0. 65 -0. 59	-1.5 +0.2 +4.4	-1.8 -1.3 +0.4 +4.6 0.0
1875, Jan. 16 20 30 Feb. 13 Mar. 16	Radcliffe Radcliffe Leipzig Leipzig Leipzig	63 Arietis c Geminor. 31 B. Scorpii 36 Tauri ω Cancri	I IB I I	-0. 88 -0. 75 -0. 90	-0. 32 +0. 79 -0. 79	0.00 +0.44 +0.41	+0. 55 -0. 35 -0. 36	+0. 55 +0. 56 -0. 55	-0. 22 -0. 17 -0. 30	-0. 13 -0. 22 +0. 22	+0. 49 -0. 50 -0. 49	-0. 86 -0. 19 +0. 78 -0. 83 -0. 90	-0.6 -8.4 +1.2	-0.4 -0.4 -8.2 +1.4 -0.5
May 12 12 Aug 10	Leipzig Greenwich Radcliffe Cape Washington	4 Cancri 37 Leonis 37 Leonis σ Scorpii 234 B. Sagittarii	I I I I	-0.47 -0.45 -0.74	0.00 0.00 +0.82	+0.60 +0.61 -0.32	+0.63 +0.63 +0.47	+0.87 +0.87 -0.57	-0. 39 -0. 40 +0. 09	-0. 12 -0. 13 -0. 21	+0.46 +0.44 +0.51	-0: 56 -0. 49 -0. 49 -0. 78 -0. 54	-2. I -1. 3 -0. 7	+0.7 -2.0 -1.2 -0.5 -1.9
Sept. 10 12 14 14 Oct. 3	Washington Vienna Washington Washington Washington	A Sagittarii 33 Capricor. χ Aquarii χ Aquarii Α Scorpii	I I EB I	-0. 71 -0. 92 +0. 94	+0. 21 -0. 19 +0. 20	-0.40 +0.44	-0. 55 +0. 20 +0. 18	+0.69 -0.49 -0.45	+0. 15 -0. 38 -0. 05	+0. 29 +0. 35 -0. 47	+0.40 +0.11 +0.16	-0. 67 -0. 39 -0. 07 +0. 07 -0. 73	-2.5 +2.6 -4.1	+0. 3 -2. 3 +2. 9 -4. 0 -0. 2
3 16 16 20 24	Washington Greenwich Greenwich Washington Radcliffe	3 Scorpii ζ Arietis ζ Arietis ω Cancri σ Leonis	I IB E E E	-0. 72 -0. 94 +1. 08 +0. 98	-0.62 -0.78 +0.90 +0.73	-0. 37 +0. 41 +0. 21 +0. 10	+0.47 -0.37 -0.20 +0.34	-0. 61 -0. 55 -0. 29 +0. 35	+0. 13 -0. 38 +0. 15 +0. 09	-0. 22 +0. 25 -0. 31 +0. 22	+0. 53 -0. 45 -0. 17 +0. 33	-0. 59 +0. 35 -0. 40 -0. 91 -0. 50	-1.4 -7.4 +0.2 -4.5	-1. 2 -7. 1 +0. 3 -4. 4 -5. 0
Nov. 8 16 16 21 21	Radcliffe Leipzig Washington Greenwich Greenwich	χ Aquarii 47 Geminor. c Geminor. β Virginis β Virginis	I IB IB IB	-0. 95 -0. 70 -0. 96	-0. 79 -0. 59 +0. 05	+0. 07 +0. 21 -0. 03	+0. 52 +0. 75 -0. 01	+0. 53 +0. 77 -0. 03	-0. 25 -0. 26 -0. 07	-0. 09 -0. 10 -0. 48	+0. 51 +0. 71 -0. 01	-0. 50 +0. 75 +0. 40 +0. 95 -0. 94	-4.6 +1.4 -0.2	-3.9 -4.3 +1.6 +0.1 -0.5
Dec. 7 9 9 1876, Jan. 1 7	Vienna Vienna Strassburg Washington Strassburg	44 Piscium 19 Arietis 19 Arietis 70 Aquarii Anon. 19	I I EB I	-1.10 -1.10 +0.87	-0.80 -0.79 +0.04	-0. 07 +0. 13 -0. 39	+0. 04 -0. 08 -0. 18	-0. 08 -0. 15 +0. 43	-0. 19 -0. 29 +0. 26	+0. 43 +0. 39 -0. 35	+0. 03 -0. 11 +0. 16	-0. 79 -0. 64 -0. 63 +0. 81 -0. 65	-0.8 +0.4 -7.8	+1. I -0. 5 +0. 7 -7. 7 +0. 6
7 7 7 7 7	Strassburg Strassburg Strassburg Strassburg Strassburg	Anon. 25 Anon. 22 Anon. 13 26 Tauri Anon. 30	I I I I	-0. 84 -0. 29 -1. 12	+0. 74 +0. 25 +0. 96	+0. 38 +0. 55 -0. 01	-0. 54 -0. 79 +0. 01	-0. 66 -0. 96 +0. 01	-0. 34 -0. 31 -0. 24	+0. 18 +0. 03 +0. 28	-0. 55 -0. 82 +0. 02	-0. 62 -0. 52 -0. 17 -0. 67 -0. 68	-0. I -0. 7 -1. 8	+5.5 +0.2 -0.6 -1.5 +4.3
7 7 7 7 10	Strassburg Strassburg Strassburg Strassburg Strassburg	27 Tauri 28 Tauri Anon. 40 27 Tauri 47 Geminor.	I I EB I	-0.67 -1.08 +1.04	+0. 58 +0. 94 -0. 90	+0.45 -0.14 +0.20	-0.66 +0.21 -0.30	-0. 80 +0. 26 -0. 37	-0. 34 -0. 17 +0. 14	+0. 13 +0. 28 -0. 27	-0.66 +0.22 +0.15	-0. 57 -0. 41 -0. 66 +0. 63 -0. 02	-0.9 +2.0 +0.6	+0.3 -0.7 +2.3 +0.7 -0.5
Feb. 2 2 2 2	Washington Greenwich Leipzig Nr. Leipzig Radcliffe	c Geminor. 27 Arietis 27 Arietis 27 Arietis 27 Arietis 27 Arietis	I I I I	-0. 94 -0. 82 -0. 82	-0. 72 -0. 63 -0. 63	-0. 35 -0. 48 -0. 48	+0. 27 +0. 38 +0. 38	+0. 44 +0. 62 +0. 62	+0.01 +0.10 +0.10	+0. 39 +0. 36 +0. 36	+0. 27 +0. 39 +0. 38	-0. 02 -0. 90 -0. 79 -0. 79 -0. 92	+0.4 -1.4 -2.0	+2.4 +0.7 -1.1 -1.7 +0.4
2 16 Mar. 4 4 5	Radcliffe Washington Washington Washington Cape	27 Arietis A Scorpii 49 Aurigæ 49 Aurigæ & Geminor.	E	+0. 73 -0. 52 +0. 52	-0. 72 -0. 48 +0. 48	-0.31 +0.09 +0.09	+0. 50 +0. 87 +0. 87	-0. 60 +0. 87 +0. 88	+0. 17 -0. 13 +0. 05	+0. 17 -0. 02 +0. 03	+0. 52 +0. 87 +0. 87	+0.83 -0.80 -0.45 +0.45 -0.72	-2. I -2. 0 -1. 9	-4. 9 -2. 0 -1. 8 -1. 9 -2. 3
5 5 6 Apr. 1	Washington Washington Nr. Leipzig Leipzig Vienna	c Geminor. c Geminor. 7 Cancri Geminor. 47 Geminor.	I EB I I I	+0. 88 -0. 80 -0. 63	+0. 74 -0. 57 -0. 57	+0. 22 +0. 39 +0. 22	+0. 55 +0. 55 +0. 78	+0. 59 +0. 67 +0. 81	+0. 07' -0. 34 -0. 24	+0. 18 -0. 19 -0. 07	+0. 54 +0. 57 +0. 78	-0. 49 +0. 66 -0. 47 -0. 59 -0. 50	-1. 1 +2. 7 +0. 4	-1.1 +2.9 +0.6
1 4 7 7 11	Radcliffe Strassburg Greenwich Strassburg Greenwich	47 Geminor. 34 Leonis f Virginis f Virginis b Scorpii	I I I E	-1.01 -0.93 -0.97	-0. 58 +0. 08 +0. 09	-0. 20 +0. 34 +0. 22	-0. 11 -0. 06 -0. 04	-0. 23 +0. 35 +0. 22	-0.06 -0.27 -0.21	-0. 44 -0. 40 -0. 43	-0. 12 -0. 04 +0. 66	-0. 23 -0. 76 -0. 22 -0. 22 -0. 36	-0. 2 -1. 7 -0. 3	+0. 2 -1. 3 +0. 1

GROUP XII—1874-1890—Continued.

Date.		Place.	Star.	Ph.	λ	K	iθ	i	b _o	α_{o}	δ_{o}	.	P	n	n'
•	4 5 1 5 29	Washington Greenwich Washington Strassburg Leipzig	f Virginis 50 Virginis 50 Virginis 65 B. Scorpii i Virginis	I I I I	-0. 90 -0. 92 -0. 77	+0. 20 +0. 12 +0. 65	+0. 34 -0. 26 -0. 20	+0. 09 -0. 13 +0. 11 +0. 49	+0. 37 -0. 27 -0. 53	-0. 25 +0. 05 +0. 09	-0. 38 -0. 47 -0. 20	-0. 11 +0. 10 +0. 49	-0. 48 -0. 83 -0. 17	-1.0 -0.5 -0.7	-0. I -0. 6 -0. I -0. 4 +0. 2
July	29 29 30 13	Vienna Strassburg Vienna Radcliffe Strassburg	i Virginis i Virginis 43 H. Virginis Piscium Anon. 1	I I IB IB	-0. 95 -0. 93 -0. 87 -0. 81	+0. 16 +0. 36 -0. 19 -0. 58	-0. 12 +0. 08 -0. 44 +0. 29	+0. 11 +0. 07 -0. 07 +0. 18 -0. 61	-0. 14 +0. 10 +0. 47 -0. 67	-0. 02 -0. 09 +0. 12 -0. 33	-0. 45 -0. 37 +0. 47 +0. 18	+0.06 -0.13 +0.13 -0.56	-0. 98 -0. 93 +0. 88 +0. 61	-0.9 -2.0 -1.9 -3.3	+0. 2 -0. 5 -1. 6 -1. 5 -2. 9
	16 16 16 16	Strassburg Strassburg Strassburg Strassburg Strassburg	Anon. 1 Anon. 7 23 Tauri 23 Tauri Anon. 9	E E IB E IB	+1.04 -1.08 +1.08 -0.48	+0. 74 -0. 77 +0. 77 -0. 34	+0. 13 +0. 05 -0. 06 +0. 39	-0. 41 -0. 29 -0. 11 +0. 14 -0. 81	-0. 32 -0. 12 +0. 15 -0. 90	+0. 13 -0. 24 +0. 25 -0. 31	-0. 28 +0. 27 -0. 25 +0. 08	-0. 28 -0. 10 +0. 11 -0. 74	-0. 78 +0. 81 -0. 81 +0. 36	+2.6 -4.4 +2.2 -1.7	+2.1 -1.5
	16 16 16 16	Strassburg Strassburg Strassburg Strassburg Strassburg	Anon. 8 24 Tauri 7 Tauri Anon. 24 & Arietis	IB IB IB IB	-1.02 -1.04 -0.59	-0. 73 -0. 75 -0. 43	+0. 15 +0. 12 +0. 36	-0. 83 -0. 32 -0. 25 -0. 76 -0. 36	-0. 36 -0. 28 -0. 84	-0. 29 -0. 27 -0. 33	+0. 24 +0. 25 +0. 12	-0. 30 -0. 22 -0. 65	+0. 76 +0. 79 +0. 45	-1.5 -3.0 -7.8	0. 0 -1. 0 -2. 5 -7. 5 +1. 9
	5 6 6 6	Strassburg Strassburg Strassburg Strassburg Strassburg	Arietis 17 Tauri 17 Tauri 23 Tauri 23 Tauri 23 Tauri	E IB E IB E	-0.97 +1.05	-0.61 +0.66 -0.50	+0. 14 +0. 05 -0. 24	-0. 34 -0. 38 -0. 14 +0. 62 +0. 78	-0.41 -0.15 +0.67	-0. 27 +0. 15 +0. 03	+0. 23 -0. 28 +0. 23	-0. 34 -0. 14 +0. 58	+0. 64 -0. 69 +0. 52	+0.9 +0.3 +4.1	+0.3 +1.4 +0.2 +4.5 -0.3
	6 6 6 6	Strassburg Strassburg Strassburg Strassburg Strassburg	20 Tauri 20 Tauri 24 Tauri 24 Tauri 7 Tauri	IB E IB E IB	+0. 70 -0. 98 +0. 82	+0.44 -0.62 +0.52	+0. 27 -0. 14 -0. 22	-0.85 -0.70 +0.37 +0.60 +0.36	-0. 75 +0. 40 +0. 67	-0. 06 +0. 08 +0. 30	-0. 21 +0. 25 -0. 18	-0. 65 +0. 35 +0. 52	-0.46 +0.64 -0.54	+0.4 -0.9 -0.3	+0.3 -0.4
	6 6 6 6	Strassburg Strassburg Strassburg Strassburg Strassburg	7 Tauri Anon. 1 Anon. 15 Anon. 18 Anon. 24	EEEE	+1.01 +0.87 +0.88	+0. 64 +0. 55 +0. 56	-0. 11 -0. 20 -0. 10	+0. 67 +0. 27 +0. 54 +0. 52 +0. 13	+0. 29 +0. 58 +0. 56	+0. 25 +0. 30 +0. 28	-0. 26 -0. 21 -0. 20	+0. 24 +0. 48 +0. 46	-0. 67 -0. 57 -0. 58	-3.5 +0.2 +0.1	-0.9 -3.6 +0.1 0.0 -1.5
	6 6 6 6	Strassburg Strassburg Strassburg Strassburg Strassburg	Anon. 27 Anon. 29 Anon. 31 Anon. 32 Anon. 37	E E E E	+1.02 +0.99 +0.95	+0.64 +0.62 +0.60	-0. 10 -0. 12 -0. 15	+0. 26 +0. 26 +0. 34 +0. 41 +0. 67	+0. 28 +0. 37 +0. 44	+0. 24 +0. 25 +0. 26	-0. 24 -0. 23 -0. 22	+0. 22 +0. 29 +0. 35	-0. 67 -0. 65 -0. 63	-1.5 -1.0 -0.1	-1.1 -0.2
	6 6 6	Strassburg Nr. Leipzig Nr. Leipzig Nr. Leipzig Nr. Leipzig	Anon. 39 23 Tauri 24 Tauri 7 Tauri 20 Tauri	IB IB IB IB	-0. 76 -0. 96 -0. 90 -0. 47	-0. 48 -0. 61 -0. 58 -0. 29	-0. 25 -0. 15 -0. 18 +0. 32	+0. 40 +0. 65 +0. 39 +0. 48 -0. 84	+0. 70 +0. 43 +0. 52 -0. 89	+0. 04 -0. 07 -0. 03 -0. 30	+0. 22 +0. 25 +0. 24 +0. 08	+0.60 +0.39 +0.44 -0.75	+0.50 +0.64 +0.60 +0.31	-2. I -2. 3 0. 0 +1. 7	-1.7 -1.8 +0.4 +1.9
	6 6 6 6	Nr. Leipzig Nr. Leipzig Nr. Leipzig Leipzig Leipzig	17 Tauri 16 Tauri 16 Tauri 17 Tauri 16 Tauri	IB IB E IB IB	-0. 36 +0. 62 -0. 98 -0. 36	-0. 22 +0. 40 -0. 62 -0. 22	+0. 34 +0. 29 +0. 14 +0. 31	-0. 36 -0. 88 -0. 74 -0. 36 -0. 88	-0. 94 -0. 81 -0. 38 -0. 94	-0. 30 -0. 10 -0. 26 -0. 30	+0. 05 -0. 18 +0. 23 +0. 05	-0. 79 -0. 67 -0. 31 -0. 79	+0. 23 -0. 42 +0. 64 +0. 23	-0.7 +1.6 +2.5 -0.8	-0. 5 +1. 5 +3. 0 -0. 6
	6 6 6 6	Leipzig Leipzig Leipzig Leipzig Leipzig	23 Tauri 20 Tauri 7 Tauri Anon. 24 Anon. 29	IB IB IB IB	-0.48 -0.90 -1.04 -1.06	-0. 29 -0. 58 -0. 66 -0. 67	+0. 32 -0. 19 +0. 05 0. 00	+0. 65 -0. 84 +0. 48 -0. 15 0. 00	-0. 89 +0. 52 -0. 14 0. 00	-0. 31 -0. 03 -0. 21 -0. 17	+0. 08 +0. 24 +0. 25 +0. 26	-0. 74 +0. 45 -0. 11 +0. 02	+0. 31 +0. 60 +0. 69 +0. 70	+0.8 -0.7 -1.2 -2.0	+1.0 -0.3 -0.7 -1.4
	6 6 6 6	Leipzig Leipzig Leipzig Leipzig Leipzig	Anon. 32 16 Tauri 17 Tauri 23 Tauri 20 Tauri	IB E E E	+0. 62 +1. 05 +0. 55 +0. 73	+0. 40 +0. 66 +0. 35 +0. 47	+0. 29 +0. 04 -0. 30 +0. 26	+0. 15 -0. 74 -0. 10 +0. 80 -0. 67	-0.81 -0.12 +0.86 -0.72	-0. 10 +0. 15 +0. 30 +0. 26	-0. 18 -0. 27 -0. 10 +0. 14	-0. 69 -0. 11 +0. 85 -0. 82	-0. 42 -0. 69 -0. 36 -0. 49	+2. 2 +2. 3 -1. 9 +0. 2	+2. I +2. I -2. O +0. I
	6 6 6 6	Leipzig Leipzig Kiel Kiel Kiel	7 Tauri Anon. 24 17 Tauri 17 Tauri 16 Tauri	E E IB E IB	+1.04 -0.94 +1.03 -0.01	+0. 66 -0. 59 +0. 65 -0. 01	-0. 05 +0. 17 +0. 08 +0. 36	+0. 68 +0. 15 -0. 44 -0. 22 -0. 93	+0. 15 -0. 47 -0. 24 -1. 00	+0. 21 -0. 28 +0. 03 -0. 25	-0. 25 +0. 23 -0. 28 -0. 03	+0. 11 -0. 40 -0. 21 -0. 86	+0.63 +0.68 +0.01	-1.8 -0.4 +1.5 -0.1	-2. 0 -0. 1 +1. 3 -0. 1
	6 6 6	Kiel Kiel Kiel Kiel Kiel	16 Tauri 23 Tauri 20 Tauri 24 Tauri 24 Tauri	E IB E IB E	-0.86 +0.51	-0. 55 +0. 32	-0. 21 +0. 31	-0. 90 +0. 54 -0. 82 +0. 28 +0. 50	+0.58 -0.88 +0.30	0.00 -0.13 -0.01	+0. 23 -0. 16 +0. 27	+0.50 -0.75 +0.27	+0.57 -0.34 +0.67	-2.7 +3.4 -3.0	$\begin{array}{r r} -2.3 \\ +3.3 \\ -2.5 \end{array}$

GROUP XII—1874-1890—Continued.

Date.	Place.	Star.	Ph.	λ .	ĸ	iθ	i	b _o	$\alpha_{\rm o}$	ð _o	ε	P	n	n'
1876, Oct. 6 6 6 6	Kiel Kiel Berlin Berlin Berlin	η Tauri η Tauri 17 Tauri 17 Tauri 16 Tauri	IB E IB E IB	+0.84 -0.98 +1.05	+0. 54 -0. 62 +0. 66	-0. 21 +0. 14 +0. 05	+0. 57 -0. 36 -0. 12	+0.61 -0.38 -0.13	+0. 29 -0. 26 +0. 15	-0. 20 +0. 24 -0. 28	+0.51 -0.31 -0.13	+0. 64 -0. 56 +0. 65 -0. 69 +0. 23	+1.7 -1.7 +1.4	+1.6 -1.2 +1.2
6 6 6 6	Berlin Berlin Berlin Berlin Berlin	16 Tauri 23 Tauri 23 Tauri 20 Tauri 7 Tauri	E IB E IB IB	+0.61 -0.76 +0.56 -0.47 -0.91	+0. 38 -0. 48 +0. 36 -0. 29 -0. 58	+0. 29 -0. 25 -0. 30 +0. 32 -0. 18	-0. 76 +0. 65 +0. 79 -0. 84 +0. 48	-0.82 +0.69 +0.85 -0.90 +0.51	-0. 10 +0. 04 +0. 30 -0. 30 -0. 03	-0. 19 +0. 23 -0. 11 +0. 08 +0. 26	-0. 70 +0. 59 +0. 71 -0. 74 +0. 44	-0. 40 +0. 50 -0. 37 +0. 31 +0. 60	+1.0 -1.5 -1.2 -0.2 -1.2	-1.1
6 6 6 6	Berlin Berlin Berlin Berlin Washington	24 Tauri Anon. 24 20 Tauri 7 Tauri 64 Aquarii	IB IB E E I	-1.05 +0.72 +0.74 -0.73	-0. 66 +0. 46 +0. 47 +0. 49	+0. 05 +0. 26 -0. 25 +0. 62	-0. 14 -0. 69 +0. 67 -0. 12	-0. 15 -0. 73 +0. 72 -0. 63	-0. 22 -0. 05 +0. 30 -0. 33	+0. 27 -0. 20 -0. 16 +0. 28	-0. 11 -0. 63 +0. 60 +0. 28	+0. 64 +0. 69 -0. 48 -0. 49 -0. 64	+0.1 +0.6 +0.6 +1.9	+0.5
Nov. 23 24 29 30 30	Washington Washington Greenwich Nr. Leipzig Nr. Leipzig	42 Aquarii 81 Aquarii 47 Arietis 28 Tauri 7 Tauri	I I I I	-0. 49 -0. 97 -1. 06 -0. 88	+0. 32 +0. 40 -0. 60 -0. 50	+0.85 -0.22 +0.08 +0.18	-0.05 +0.38 -0.25 -0.58	-0.85 +0.44 -0.25 -0.60	-0.42 -0.05 -0.28 -0.32	+0. 15 +0. 33 +0. 24 +0. 19	+0. 27 +0. 31 -0. 21 -0. 50	-0. 94 -0. 51 -0. 28 -0. 12 -0. 10	+1.1 +1.8 +0.2 +0.9	-1.3 +1.4 +2.3 +0.8 +1.4
30 30 30 30 30	Nr. Leipzig Nr. Leipzig Leipzig Leipzig Leipzig	26 Tauri 27 Tauri 7 Tauri 27 Tauri 28 Tauri	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-1.10 -0.88 -1.10 -1.06	-0. 62 -0. 50 -0. 62 -0. 60	-0.01 +0.18 -0.01 +0.08	+0.03 -0.57 +0.03 -0.25	+0.03 -0.60 +0.03 -0.25	+0. 26 -0. 32 -0. 22 -0. 28	+0. 27 +0. 19 +0. 27 +0. 24	+0.04 -0.50 +0.04 -0.21	-0.09 -0.12 -0.07 -0.12 -0.12	-0.3 +0.4 -2.5 -0.8	-2.0 +0.3 +0.9 -1.9 -0.2
Dec. 26 1877, Jan. 30 30	Leipzig Washington Greenwich Greenwich	27 Tauri μ Arietis 45 Leonis ρ Leonis ρ Leonis	EB I E IB E	-1.01 +0.88 -1.14 +1.10	-0. 36 +0. 69 -0. 89 +0. 86	+0. 14 +0. 63 -0. 07 -0. 25	-0. 24 .+0. 12 -0. 01 -0. 03	-0. 27 +0. 64 -0. 07 -0. 25	-0. 26 -0. 07 -0. 24 +0. 36	+0. 32 +0. 40 -0. 45 +4. 40	-0. 17 +0. 26 +0. 02 -0. 16	+0. 12 -0. 69 -0. 26 +0. 34 -0. 33	-0.6 0.0 -1.3 -0.2	-1. 2 0. 0 -0. 2 -0. 6 -0. 4
Feb. 26 Mar. 23 26 26 Apr. 22	Greenwich Strassburg Vienna Strassburg Washington	α Leonis κ Geminor. ρ Leonis ρ Leonis Leonis	I I EB I	-0.80 -0.93 +0.88 -1.05	-0. 72 -0. 76 +0. 71 -0. 90	+0.45 -0.55 -0.61 -0.23	+0.49 -0.05 -0.05 -0.02	+0.67 -0.55 -0.61 -0.23	-0. 29 +0. 04 +0. 47 -0. 10	-0. 15 -0. 43 +0. 28 0. 00	+0.68 -0.26 -0.29 -0.13	-0. 18 -0. 67 -0. 44 +0. 41 -0. 83	-1.7 -0.5 -3.7 -1.0	+0. I -1. I +0. 2 -4. 0 -0. 3
26 May 31 July 6 6 6	Strassburg Strassburg Washington Washington Washington	85 Virginis 17 Capricor. 16 Tauri q Tauri Anon. 4	I E IB IB I	+0. 82 -0. 99 -1. 02 -0. 94	-0. 89 -0. 23 -0. 24 -0. 22	-0. 37 +0. 04 +0. 02 -0. 05	-0. 21 +0. 31 -0. 19 +0. 42	+0. 42 +0. 32 -0. 19 +0. 42	+0. 14 -0. 08 -0. 19 -0. 05	-0. 28 +0. 24 +0. 23 +0. 23	-0. 38 +0. 28 -0. 14 +0. 41	-0. 11 -0. 76 -0. 63 -0. 65 -0. 60	-6.6 -2.0 -3.0 -3.3	0. 0 -6. 9 -1. 2 -2. 2 -2. 5
6 6 6 6	Washington Washington Washington Washington Washington	20 Tauri 21 Tauri 22 Tauri Anon. 4 q Tauri	IB IB IB E	-1.00 -1.03 +0.77 +1.04	-0. 23 -0. 24 +0. 18 +0. 24	+0. 03 +0. 02 -0. 08 -0. 01	-0. 28 -0. 13 +0. 67 +0. 12	-0. 27 -0. 13 +0. 68 +0. 12	-0. 21 -0. 12 +0. 27 +0. 19	+0. 22 +0. 23 -0. 16 -0. 24	-0. 21 -0. 10 +0. 53 +0. 08	-0. 61 -0. 63 -0. 65 +0. 48 +0. 65	-3.7 -4.1 +0.6 -3.1	-0. 2 -2. 9 -3. 3 +0. 3 -3. 5
6 6 Aug. 29 30 Sept. 18	Washington Washington Strassburg Strassburg Vienna	20 Tauri 22 Tauri μ Arietis 21 Tauri 30 Capricor.	E E E I	+1.02 +0.86 +0.59 -0.78	+0. 24 -0. 11 +0. 09 +0. 84	-0. 02 -0. 14 -0. 05 +0. 48	+0. 21 -0. 42 -0. 81 +0. 13	+0. 20 +0. 44 +0. 80 -0. 50	+0. 20 +0. 20 +0. 24 -0. 18	-0. 23 -0. 28 -0. 11 +0. 29	+0. 16 +0. 27 +0. 67 +0. 46	+0. 51 +0. 65 -0. 85 -0. 59 -0. 61	+1.9 +0.6 -0.4 0.0	+0. 2
25 Nov. 20 20 20 20	Washington Göttingen Göttingen Göttingen Göttingen	μ Arietis 17 Tauri q Tauri 20 Tauri 20 Tauri	IB IB IB E	+0. 40 -0. 91 -1. 00 +0. 93	-0. 02 +0. 05 +0. 05 -0. 05	+0. 01 0. 00 0. 00 +0. 01	+0. 92 -0. 43 +0. 11 +0. 38	+0.92 -0.43 +0.11 +0.38	+0. 25 -0. 20 -0. 10 +0. 19	-0.06 +0.21 +0.24 -0.20	+0. 75 -0. 34 +0. 14 +0. 29	+0. 56 -0. 02 +0. 05 +0. 05 -0. 05	+0.5 -2.2 -1.9 -0.7	-2.7 +0.3 -1.4 -1.0 -1.2
20 20 20 20 20	Greenwich Greenwich Strassburg Strassburg	q Tauri 20 Tauri 17 Tauri q Tauri 20 Tauri	EEEE	+0. 99 +0. 68 +1. 00 +0. 89	-0. 05 -0. 03 -0. 05 -0. 04	0.00 +0.01 0.00 0.00	+0. 19 +0. 74 +0. 07 -0. 45	+0. 19 +0. 74 -0. 08 +0. 45	+0. 16 +0. 25 +0. 10 +0. 18	-0. 22 -0. 13 -0. 23 -0. 19	+0. 13 +0. 60 -0. 10 +0. 34	-0. 05 -0. 05 -0. 03 -0. 05 -0. 04	-0.6 -3.8 -2.8 -2.0	-5.8 -1.2 -4.2 -3.4 -2.5
1878, Jan. 10 Feb. 15 15 Mar. 7	Göttingen Vienna Strassburg Strassburg Vienna	136 Tauri 51 Piscium 7 Cancri 7 Cancri 101 Piscium	IB I E I	-0. 80 -0. 58 +0. 67 -0. 91	+0. 77 -0. 42 +0. 47 +0. 73	-0. 32 -0. 81 -0. 76 -0. 03	+0. 32 -0. 28 -0. 27 +0. 08	+0. 45 -0. 86 -0. 80 +0. 08	+0. 18 +0. 14 +0. 38 +0. 01	+0. 45 -0. 21 +0. 14 +0. 42	-0. 05 -0. 69 -0. 72 +0. 09	+0. 12 -0. 89 -0. 17 +0. 20 -0. 71	-0. 2 -1. 5 -1. 6 -2. 7	-5.3 +0.6 -0.9 -2.0 -1.8
16 16 16 Apr. 9	Strassburg Vienna Greenwich Vienna Strassburg	A Leonis A Leonis A Leonis Geminor. 48 Leonis	I I I I	-0. 85 -0. 49 -1. 00	-0. 69 -0. 41 -0. 45	+0. 67 +0. 89 +0. 12	-0. 13 -0. 12 +0. 12	+0.68 +0.90 +0.15	-0. 50 -0. 49 -0. 14	-0. 23 -0. 10 -0. 15	+0. 41 +0. 51 +0. 74	-0. 20 -0. 28 -0. 17 -0. 99 -0. 67	+2.9 -0.9 -1.9	+1.8 +3.8 -0.4 -0.8 +1.4

GROUP XII—1874-1890—Continued.

Date.	Place.	Star.	Ph.	λ	κ	$i\theta$	i	b _o	$\alpha_{\rm o}$	$\hat{\sigma}_{o}$	t	P	n	n'
1878, May 26 June 5 14 14 27	Strassburg Greenwich Washington Washington Strassburg	51 Piscium π Cancri 3 Sagittarii 3 Sagittarii χ Tauri	E I I EB E	-0. 96 -0. 65 +0. 40	-0. 72 -0. 09 +0. 05	+0. 42 +0. 49 +0. 58	+0. 01 +0. 61 +0. 72	+0. 42 -0. 78 -0. 92	-0. 30 -0. 10 +0. 04	-0. 31 +0. 01 -0. 01	+0. 36 +0. 81 +0. 90	-0. 81 -0. 82 -0. 04 +0. 02	-0.5 -1.2 +1.4	+2.9 +0.6 -0.5 +1.1 +6.5
Aug. 6 Sept. 5 6 6	Vienna Washington Greenwich Vienna Strassburg	4 Scorpii σ Sagittarii 51 Sagittarii 51 Sagittarii 51 Sagittarii	I	-0. 83 -0. 88 -0. 69	-0. 02 +0. 08 +0. 06	+0. 44 -0. 37 -0. 64	+0. 26 -0. 15 -0. 25	-0. 51 +0. 40 +0. 69	-0. 14 +0. 01 +0. 10	+0. 13 +0. 22 +0. 20	+0. 56 -0. 31 -0. 61	-0. 55 -0. 80 -0. 82 -0. 64 -0. 76	+0. 2 +0. 6 -1. 2	+1.2 +1.7 -0.4
Oct. 5 Nov. 10 10	Washington Strassburg Strassburg Strassburg Strassburg	γ Tauri θ Capricor. 17 Tauri 17 Tauri 17 Tauri 16 Tauri	E IB E E	-0. 90 -0. 91 +0. 84 +0. 89	+0.41 +0.67 -0.62 -0.66	+0. 24 +0. 05 +0. 14 -0. 09	-0. 01 +0. 12 +0. 39 -0. 23	-0. 24 +0. 14 +0. 41 -0. 26	-0. 11 0. 00 +0. 10 -0. 02	+0. 33 +0. 19 -0. 17 -0. 19	+0. 24 +0. 18 +0. 29 -0. 28	-0. 94 -0. 89 +0. 22 -0. 20 -0. 21	-2.3 -4.7 +1.4 -2.9	
10 10 10 10	Strasburg Strassburg Greenwich Greenwich Greenwich	20 Tauri 20 Tauri 17 Tauri 17 Tauri 20 Tauri	IB E IB E IB	+0. 89 -0. 92 +0. 92	-0. 65 +0. 67 -0. 67	-0. 10 -0. 05 +0. 05	-0. 26 -0. 13 +0. 14	-0. 28 -0. 14 +0. 15	-0. 02 -0. 06 +0. 07	-0. 19 +0. 20 -0. 20	-0. 30 -0. 06 +0. 08	+0. 19 -0. 21 +0. 22 -0. 22 +0. 14	+2.0 -2.7 +4.0	-1.6
10 10 13 13	Greenwich Washington Washington Washington Washington	η Tauri η Tauri ε Geminor. ε Geminor. ε Geminor.	IB IB E IB	+0.91 -0.96 +0.96 -0.96	-0.63 +0.05 -0.05 +0.05	-0.07 -0.11 +0.14 -0.11	-0. 20 -0. 06 +0. 08 -0. 07	-0. 21 -0. 13 +0. 16 -0. 13	0.00 -0.06 +0.06 -0.06	-0. 20 -0. 14 +0. 14 -0. 13	-0. 25 -0. 08 +0. 09 -0. 06	+0. 15 -0. 26 +0. 77 -0. 77 +0. 78	+2. I -1. 7 +2. I -1. 7	
Dec. 2 7 7 1879, Jan. 6	Washington Washington Washington Washington Strassburg	Geminor. λ Piscium q Tauri 20 Tauri 139 Tauri	E E I I I	+0. 88 -0. 94 -0. 84	-0. 91 +0. 72 +0. 64	-0. 12 0. 00 +0. 17	+0. 13 0. 00 +0. 42	+0. 18 0. 00 +0. 45	+0. 16 -0. 06 +0. 03	-0. 42 +0. 19 +0. 17	-0.08 -0.04 +0.48	-0. 78 +0. 95 -0. 27 -0. 24 -0. 11	-1.2 -3.2 -1.0	-2.0 -2.0
Feb. 3 26 28 28 Apr. 1	Washington Vienna Washington Washington Vienna	Geminor. Geminor. Arietis Tauri Tauri Cancri	I I EB I	-0. 89 -0. 75 +0. 81	+0. 97 +0. 53 -0. 57	+0.02 +0.32 +0.26	+0. 11 +0. 49 +0. 39	+0. 11 +0. 59 +0. 47	+0. 03 +0. 04 +0. 07	+0. 32 +0. 11 -0. 11	+0. 02 +0. 60 +0. 37	-0. 48 -0. 91 -0. 81 +0. 88 -0. 71	-1.7 -3.3 -1.0	
4 25 26 30 May 3	Strassburg Washington Washington Greenwich Greenwich	p ⁵ Leonis Tauri 52 B. Geminor. 83 B. Leonis q Virginis	IB I I I I	-0. 89 -0. 85 -0. 47	+0. 48 +0. 25 -0. 24	一0. 19 一0. 40 十0. 79	-0. 13 -0. 16 -0. 41	-0. 23 -0. 43 +0. 89	-0.01 +0.01 -0.42	-0. 03 -0. 13 -0. 11	-0. 15 -0. 36 +0. 52	+0.82 -0.84 -0.85 -0.41 -0.30	-4·3 -3·7 -0.2	-1.5 -3.1 -2.6 +0.4 +1.5
June 30 July 28 28 28	Washington Washington Greenwich Greenwich Strassburg	34 Sextantis 48 B. Scorpii α Scorpii α Scorpii α Scorpii	I I EB I	-1.08 -0.38 +0.49	-0.90 -0.33 +0.41	-0. 15 +0. 65 +0. 62	+0. 19 +0. 68 +0. 64	-0. 25 -0. 94 -0. 89	-0. 18 +0. 03 +0. 16	-0. 15 -0. 05 +0. 04	+0. 31 +0. 89 +0. 79	-0. 96 -0. 59 -0. 30 +0. 39 -0. 47	-0.4 +0.8 +1.3	+1.3 +0.8
Aug. 9 10 10 10	Strassburg Strassburg Strassburg Strassburg Strassburg	α Scorpii Arietis Anon. 17 Anon. 19 27 Tauri	EB E E IB	+0. 90 +0. 86	-0. 95 -0. 61 -0. 96	+0. 12 -0. 01 -0. 17	+0. 30 0. 00 -0. 24	+0. 32 -0. 01 -0. 30	+0.08 +0.20 -0.03	-0. 23 -0. 13 -0. 17	+0. 16 -0. 67 -0. 08	+0. 59 -0. 95 -0. 98 -0. 94 +0. 32	+1.2 +5.1 +1.2	+0.4 +4.2 +0.4
10 10 10 10	Strassburg Strassburg Strassburg Strassburg Strassburg	27 Tauri 26 Tauri Anon. 34 Anon. 38 Anon. 40	E E E E	+0. 52 +0. 90 +0. 66 +0. 87	-0. 57 -0. 96 -0. 70 -0. 93	-0.46 -0.03 +0.39 +0.15	-0. 66 -0. 04 +0. 56 +0. 21	-0.87 -0.06 +0.68 +0.26	-0. 14 0. 00 +0. 11 +0. 04	-0. 11 -0. 17 -0. 12 -0. 16	-0. 73 -0. 13 +0. 48 +0. 13	-0. 58 -0. 98 -0. 71 -0. 95 -0. 98	+3.3 +2.6 +3.5 +1.9	+3.8 +1.7 +2.9 +1.1
25 28 Sept. 6 6 6	Greenwich Washington Washington Washington Washington	142 B. Ophiuchi P Capricor. 23 Tauri Tauri Tauri 23 Tauri	I IB IB E	-0. 51 -0. 82 -0. 71	-0. 13 +0. 88 +0. 77	+0. 85 -0. 24 -0. 36	-0. 17 -0. 34 -0. 50	-0. 87 -0. 42 -0. 61	-0. 32 -0. 07 -0. 11	+0.48 +0.15 +0.12	+0.75 -0.28 -0.45	-0. 93 -0. 29 +0. 87 +0. 76 -0. 96	+1.2 -1.0 -0.6	+ 1.9 +0.1
6 6 6 6	Washington Washington Washington Washington Washington	27 Tauri 28 Tauri 24 Tauri 7 Tauri 26 Tauri	IB IB E E	-0. 87 +0. 82 +0. 85	+0. 94 -0. 88 -0. 92	-0. 15 -0. 24 -0. 19	-0. 19 -0. 33 -0. 27	-0. 25 -0. 41 -0. 33	-0.04 -0.06 -0.05	-0. 18 -0. 17 -0. 17	-0. 11 -0. 43 -0. 37	+0. 96 +0. 93 -0. 87 -0. 90 -0. 34	-1.7 +2.4 +2.0	-0.8 -0.5 +1.6 +1.2 -3.1
6 6 26 Oct. 4 4	Washington Washington Greenwich Greenwich Strassburg	27 Tauri 28 Tauri λ Capricor. 36 Tauri 36 Tauri	E E I E E	+0.90 -0.98 +0.90	-0. 97 +0. 02 -0. 97	-0.02 +0.06 -0.07	-0. 03 -0. 04 -0. 08	-0.04 -0.07 -0.10	0.00 -0.11 0.00	-0. 18 +0. 39 -0. 14	-0. 11 +0. 11 -0. 15	-0. 92 -0. 96 -0. 72 -0. 78 -0. 77	+1.8 +0.6 +3.1	+2.0 +2.2

GROUP XII—1874-1890—Continued.

Date.		Place.	Star.	Ph.	λ	K	iθ	i	b _o	$\alpha_{\rm o}$	ð.	ε	P	n	n'
1879, Oct.	24 24 24 30 31	Strassburg Strassburg Berlin Strassburg Cape	θ Aquarii θ Aquarii θ Aquarii ε Arietis 20 Tauri	I EB I E	+0. 95 -0. 95 +0. 74	-0. 02 +0. 02 -0. 83	-0. 11 +0. 11 -0. 27	+0. 10 -0. 12 -0. 48	-0. 20 +0. 15 -0. 15 -0. 56 +0. 37	+0. 12 -0. 12 -0. 14	-0.41 +0.38 -0.22	-0. 14 -0. 35 -0. 45	+0.91 -0.90 -0.12	-3.5 +0.1 -8.2	#1.9 -4.4 +1.4 -8.9 -0.5
Nov. Dec.	-	Washington Washington Greenwich Greenwich Washington	λ Sagittarii λ Sagittarii σ Capricor. 16 Piscium δ Geminor.	I	-0. 35 +0. 01 -1. 04 -0. 77	-0. 25 +0. 01 -0. 51 +0. 34	-0. 92 -0. 97 -0. 16 +0. 23	-0. 22 -0. 23 +0. 04 -0. 52	+0.95 +1.00 +0.17 -0.57 -0.45	+0. 04 +0. 12 -0. 14 -0. 27	+0. 05 +0. 01 +0. 30 +0. 30	-0. 92 -0. 99 -0. 07 +0. 13	-0. 20 +0. 01 -0. 83 -0. 78	-3.0 -0.5 -1.0 +0.5	-2.5 -0.5 +0.4 +1.6 -0.9
1880, Jan.	1 22 27 16	Washington Greenwich Nr. Leipzig Strassburg Greenwich	δ Geminor. 101 Piscium 132 Tauri 19 Piscium ε Arietis	E I I I I	+0. 82 -0. 61 -0. 85 -0. 96	-0. 50 +0. 52 +0. 84 +0. 31	-0.45 +0.12 +0.32 +0.05	0.00 +0.73 +0.12 -0.15	-0. 45 +0. 74 +0. 34 -0. 16	+0. 11 +0. 25 +0. 01 -0. 13	+0. 18 +0. 29 -0. 05 +0. 40	-0. 51 +0. 28 +0. 42 +0. 09	-0. 61 -0. 63 -0. 15 -0. 81	+0.4 -0.3 -3.0 -1.1	-0.4 +0.6 -1.8 -0.2 +2.3
Feb.	28 28 28 28 28	Strassburg Strassburg Nr. Leipzig Nr. Leipzig Cape	π Leonis π Leonis π Leonis π Leonis π Leonis θ Ophiuchi	IB E I E IB	+0. 80 -0. 81 +0. 62	-0. 03 +0. 03 -0. 02	-0. 43 -0. 42 -0. 57	+0.40 +0.38 +0.54	-0. 33 -0. 59 -0. 57 -0. 78 -0. 02	+0. 30 +0. 16 +0. 36	+0. 27 -0. 37 +d. 18	-0. 39 -0. 29 -0. 29	-0. 34 +0. 35 -0. 26	-0.4 -5.5 +0.2	-4.0 -1.2 -4.4 -0.4 +1.3
Mar.	5 12 18 18	Cape Strassburg Cape Nr. Leipzig Cape	θ Ophiuchi 9 Piscium γ Tauri 62 Tauri 26 Ophiuchi	I I I	-0. 98 -0. 89 -0. 75	+0. 19 +0. 99 +0. 84	-0.08 -0.12 +0.44	+0. 20 -0. 09 +0. 33	-0. 33 +0. 21 -0. 14 +0. 55 +0. 77	-0. 01 -0. 02 +0. 06	+0. 44 +0. 11 +0. 10	+0. 04 -0. 08 +0. 57	-0. 38 -0. 98 -0. 83	-2.8 -2.5 -3.9	+0.3 -1.4 -1.3 -2.8 0.0
	4 4 13 13 18	Cape Cape Greenwich Nr. Leipzig Strassburg	7 Sagittarii 9 Sagittarii 101 Piscium 101 Piscium 132 Tauri	E I I I	+1.07 -0.78 -0.88	+0. 94 +0. 63 +0. 66	-0. 03 +0. 10 +0. 08	-0.01 +0.41 +0.32	-0. 20 +0. 03 +0. 42 +0. 34 -0. 38	+0. 17 +0. 18 +0. 09	-0. 08 +0. 33 +0. 36	-0. 12 +0. 26 +0. 22	-0. 97 -0. 45 -0. 47	-0.7 -2.0 -0.4	+0.9 -1.8 -0.9 +0.8 -1.5
	18 21 21 25 30	Nr. Leipzig Strassburg Greenwich Nr. Leipzig Cape	132 Tauri d ² Cancri d ² Cancri 13 B. Virginis B. A. C. 5641	I I I E	-0. 85 -0. 82 -0. 94	+0.47 +0.45 -0.34	-0.43 -0.47 +0.11	+0. 16 +0. 18 -0. 46	-0. 59 -0. 46 -0. 50 +0. 47 +0. 31	+0. 09 +0. 11 -0. 34	-0. 29 -0. 29 -0. 32	-0. 22 -0. 34 +0. 02	-0. 68 -0. 67 -0. 02	-2.9 -1.0 -1.7	+0.3 -1.7 +0.1 -0.4 -1.9
Apr.	1 2 11 16 20	Cape Cape Strassburg Greenwich Washington	y ² Sagittarii f Sagittarii 47 Arietis 56 Geminor. 36 Sextantis	E I I I	+1.05 -0.87 -0.56	+0. 79 +0. 86 +0. 46	-0. 18 +0. 78	0.00 -0.25 -0.10	-0. 02 -0. 02 -0. 31 +0. 79 +0. 44	+0. 14 -0. 07 -0. 15	-0. 25 +0. 22 -0. 12	+0. 01 -0. 15 -0. 65	-0. 98 -0. 39 -0. 62	-0. I -1. 0 -2. 4	+0. 1 -1. 1 +0. 2 -1. 6 -1. 0
May June	26	Washington Cape Greenwich Cape Cape	36 Sextantis 19 Scorpii p² Leonis o Sagittarii 83 B. Leonis	E	+1.08 -1.00 -1.12	+0. 94 -0. 16 -0. 91	-0. 26 +0. 03 -0. 06	-0. 18 +0. 06 0. 00	+0. 03 +0. 32 +0. 07 +0. 06 -0. 89	+0. 20 -0. 12 -0. 21	+0. 11 -0. 41 +0. 19	-0. 37 +0. 09 -0. 07	-0.48 -0.90 +0.59	-0.6 -2.5 -1.8	-2.8 -1.7 -1.1 -0.2 -3.1
	13 13 14 18 20	Cape Cape Cape Cape Cape	89 B. Leonis 89 B. Leonis 34 Sextantis 43 H. Virginis 19 Scorpii	I EB I I I	+0. 95 -0. 96 -1. 04	-0. 26 +0. 04 -0. 76	-0. 02 +0. 04 +0. 15	+0. 03 -0. 08 +0. 27	+0. 28 -0. 03 +0. 09 -0. 31 +0. 44	+0.06 -0.10 -0.10	+0. 39 -0. 40 -0. 30	-0. 38 +0. 09 +0. 27	+0. 94 -1. 00 -0. 67	-5.6 -3.2 -2.9	-1.8
July	21 25 25 30 17	Cape Cape Cape Cape Nr. Leipzig	39 Ophiuchi c¹ Capricor. c¹ Capricor. 4 Arietis 31 B. Scorpii	I IB E E I	-1.04 +0.86 +0.70	-0. 52 +0. 43 -0. 41	-0. 16 -0. 41 -0. 25	+0. 17 +0. 44 -0. 61	+0. 28 +0. 23 +0. 60 -0. 65 +0. 11	-0. 08 +0. 37 -0. 19	+0. 39 -0. 25 -0. 28	-0. 07 -0. 43 -0. 39	+0.67 -0.55 -0.74	-0.4 -0.1 +0.1	+0.6 +1.1 -1.0 -0.6 +0.9
	19 19 20 20	Cape Cape Cape Cape Cape	4 Sagittarii 1 Sagittarii 0 Sagittarii 0 Sagittarii 1 Piscium	I	-1.02 -1.14 +1.12	-0. 89 -0. 95 +0. 93	-0. 44 +0. 01 +0. 18	-0. 03 0. 00 -0. 02	-0. 69 +0. 44 -0. 01 -0. 18 +0. 23	-0. 18 -0. 24 +0. 20	+0. 09 +0. 19 -0. 19	-0. 36 +0. 02 +0. 20	-0. 42 -0. 31 +0. 30	+1.4 -0.1 -1.2	-2.3
Aug.	30 16 16 16 28	Cape Cape Cape Cape Nr. Leipzig	36 Tauri 28 Sagittarii 30 Sagittarii 31 Sagittarii 121 Tauri	I	+0.47 -1.10 -1.02 -1.10	-0.47 -0.96 -0.90	+0.71 +0.13 +0.38 +0.10	+0.47 -0.01 +0.04 -0.01	+0. 85 -0. 13 +0. 38 -0. 10	+0. 10 -0. 23 -0. 13 -0. 21	-0.06 -0.41 +0.16 +0.16	+0. 77 +0. 10 -0. 29 +0. 19	+0. 49 -0. 70 -0. 66 -0. 71	+0.3 -0.4 +1.2 -0.1	-0.2
Sept.	11 12 13 14	Berlin Washington Greenwich Washington Washington	θ Ophiuchi 117 B. Sagittarii 50 Sagittarii 47 B. Capricor. κ Piscium	I I I I	-0. 28 -0. 85 -0. 79 -0. 42	-0. 26 -0. 77 -0. 69 -0. 31	+0. 94 +0. 61 -0. 65 +0. 78	+0. 21 -0. 05 +0. 19 -0. 49	-0. 96 -0. 61 +0. 68 -0. 92 +0. 64	-0. 04 -0. 21 +0. 03 -0. 34	0.00 +0.11 +0.17 +0.08	+0. 96 +0. 67 -0. 59 +0. 79	-0. 26 -0. 75 -0. 67 -0. 29	+0.5 +1.0 -1.4 +1.1	+0.9 +2.2 -0.3 +1.7 -1.5

GROUP XII—1874-1890—Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	b _o	$\alpha_{\rm o}$	ð _o	£	P	, "	n'
1880, Sept. 25 Oct. 7 10	Nr. Leipzig Nr. Leipzig Cape Cape Cape	I Geminor. I Geminor. δ Scorpii π Sagittarii π Sagittarii		+0.88 -0.58 -0.81	-0. 98 -0. 46 -0. 74	+0. 72 +0. 72 -0. 62	+0. 01 +0. 42 +0. 16	+0. 41 -0. 21 -0. 85 +0. 66	0.00 +0.01 -0.01	-0. 50 -0. 09 +0. 17	-0. 29 +0. 71 -0. 59	-0. 98 -0. 38 -0. 76	+4.4 +0.1 -1.4	+0.9 -0.3
Nov. 17 19 19 19	Strassburg Greenwich Greenwich Greenwich Greenwich	16 Piscium υ Tauri η Geminor. μ Geminor. μ Geminor.	I IB IB IB E	-0. 95 -0. 89 -0. 70	+0.81 +0.99 +0.78	+0. 28 -0. 13 -0. 6	+0. 12 +0. 01 +0. 05	-0. 29 +0. 31 -0. 17 -0. 63 -0. 69	-0. 05 +0. 03 +0. 07	+0.09 -0.10 -0.09	+0. 37 -0. 10 -0. 57	+0. 12 +0. 54 +0. 43	-4.7 -3.0 -1.7	-3.3 -1.7 -0.7
Dec. 12 1881, Jan. 5 5	Greenwich Greenwich Cape Berlin Greenwich	ζ Geminor. ζ Geminor. 26 Arietis 19 Piscium 19 Piscium	IB E I I I	+0. 84 -0. 88 -0. 35	-0. 92 +0. 39 -0. 13	+0. 3! -0. 2; +0. 0	+0.09 -0.26 +0.94	+0. 16 +0. 36 -0. 35 +0. 94 +0. 88	-0.07 -0.12 +0.33	+0. 18 +0. 23 +0. 21	+0. 27 -0. 12 -0. 04	-0. 65 -0. 70 -0. 32	+2.6 -2.6 -3.7	+1.8 -1.4 -3.2
7 9 12 Feb. 6 Mar. 8	Washington Strassburg Greenwich Washington Cape	7 Piscium 7 Arietis	I I I I	-0. 62 -0. 90 -0. 92 -0. 11	+0. 34 +0. 93 +0. 67 +0. 11	-0.60 -0.00 +0.00 +0.99	0 -0.43 0.00 2 +0.01 0 -0.12	-0. 14 -0. 74 -0. 05 +0. 02 +0. 99	-0. 13 +0. 02 -0. 01 -0. 07	+0. 12 -0. 05 +0. 14 -0. 01	+0. 50 +0. 02 +0. 10 +0. 98	-0. 62 -0. 52 -0. 99 -0. 12	-0.9 -3.8 -3.4 +0.4	-2.5
8 16 16 18 May 4	Greenwich Greenwich Greenwich Cape Greenwich	14 B. Geminor. q Virginis q Virginis 40 H. Virginis 5 Cancri	I IB E I	-0.90 +0.63 +0.68 -0.90	+0.08 -0.06 +0.22 +1.00	+0. 38 +0. 69 +0. 49 -0. 0	+0. 19 +0. 35 +0. 55 +0. 04	+0.04 -0.42 -0.77 -0.74 -0.06	+0.06 +0.33 +0.27 +0.04	-0. 20 +0. 18 +0. 15 -0. 27	+0. 16 +0. 12 +0. 42 -0. 28	+0. 20 -0. 14 -0. 45 -1. 00	-0.5 +1.0 +1.8 -5.9	+0.8 +0.4 +1.1 -4.6
July 5 18 Aug. 15	Berlin Washington Strassburg Washington Washington	75 Virginis 16 Piscium 83 Virginis 27 Arietis \$\delta\$ Arietis	I E I IB	+0.81 -0.89 +0.72 -0.93	+0.46 -0.12 -0.02 +0.11	+0.030 -0.30 -0.54	2 +0.61 0 -0.34 1 -0.42 3 -0.14	+0. 84 +0. 61 +0. 46 -0. 68 -0. 32	+0. 32 -0. 21 -0. 12 -0. 12	-0. 26 -0. 26 -0. 21 +0. 19	-0. 14 -0. 18 -0. 48 -0. 15	-0. 73 -0. 80 -0. 72 +0. 93	+1.9 +1.9 -0.1 -1.2	+1.1 +3.1 -0.8 +0.1
Sept. 3 Oct. 3 5	Washington Greenwich Cape Greenwich Greenwich	δ Arietis 33 Sagittarii 19 Aquarii κ Piscium 9 Piscium	I I	-0.90 -0.82 -1.09 -1.03	-0. 75 -0. 73 -0. 77 -0. 77	+0. 27 -0. 03 +0. 06	$\begin{vmatrix} -0.26 \\ -0.61 \\ 3 -0.26 \\ +0.38 \end{vmatrix}$	+0.01 -0.57 -0.67 -0.20 +0.30	-0. 23 -0. 36 -0. 26 -0. 03	+0. 12 +0. 20 +0. 36 +0. 38	+0. 62 +0. 50 +0. 10 +0. 02	-0. 70 -0. 58 -0. 42 -0. 40	+1.0 +1.3 +0.5 +0.5	+2.3 +2.4 +2.6 +1.9
9 31 Nov. 1 12 12	Greenwich Cape Cape Greenwich Greenwich	54 Arietis 138 B. Aquarii 3 Piscium \(\alpha \) Cancri \(\alpha \) Cancri	I I IB E	-0. 64 -0. 89 +0. 88	-0. 96 -0. 53 -0. 98 -0. 97	0.00 -0.00 -0.00	+0.02 6 -0.80 8 +0.15 1 +0.18	+0.90 +0.02 -0.80 -0.17 -0.20	-0. 15 -0. 39 +0. 07 +0. 04	+0. 36 +0. 15 -0. 31 +0. 30	+0. 08 +0. 27 -0. 03 -0. 25	-0. 93 -0. 52 +0. 97 -0. 96	-1.1 -0.1 -6.7 +1.7	-0. 2 +0. 4 +0. 9 -5. 5 +0. 9
29 29 Dec. 24 27 30	Greenwich Greenwich Cape Cape Greenwich	16 Piscium 19 Piscium 5 Aquarii d Piscium 45 Arietis	I I I I	-1.05 -0.92 -1.04 -0.97	-0. 84 -0. 83 -0. 78 -0. 22	0. 00 +0. 12 -0. 00 -0. 17	0.00 1 -0.54 3 -0.06 7 -0.07	+0. 20 0. 00 -0. 55 -0. 07 -0. 18	-0. 12 -0. 34 -0. 15 -0. 10	+0. 36 +0. 26 +0. 35 +0. 21	+0.09 +0.43 +0.10	-0. 97 -0. 61 -1. 00 -0. 86	-1.5 +1.7 -1.2 -1.5	+0.2 -0.1
1882, Feb. 7 11 12 Mar. 8 Apr. 1	Cape Cape Cape Cape Greenwich	γ Virginis ω Scorpii 116 B. Ophiuchi 621 B. Virginis e Leonis	E E E I	+0. 99 +1. 03 +0. 93 -0. 03	+0. 22 +0. 44 -0. 37 +0. 03	-0. 1 +0. 00 -0. 1 -0. 3	-0. 01 -0. 02 -0. 07 -0. 94	-0. 26 +0. 15 -0. 09 +0. 14 +1. 00	+0.07 +0.11 -0.01 -0.37	+0. 11 +0. 02 +0. 28 +0. 06	-0. 15 +0. 01 -0. 15 +0. 15	-0. 93 -0. 85 -0. 77 +0. 01	+1.3 +3.0 +1.3 -0.1	+0.4 +2.1 +0.5
May 6 29 June 4 July 2	Cape Cape Cape Cape Cape	247 B. Tauri 16 Sagittarii 621 B. Virginis g Sagittarii β Capricor.	I E I E IB	+1.01 -0.96 +0.77 -0.12	+0.49 +0.52 +0.46 +0.08	-0. 15 -0. 05 +0. 37	+0.09 -0.03 -0.60 -0.89	+0.61 +0.18 +0.06 -0.70 +0.99	+0. 12 -0. 06 -0. 05 +0. 23	-0.09 -0.26 -0.20 +0.06	-0. 19 +0. 05 +0. 55 -0. 82	-0. 77 -0. 51 -0. 42 +0. 04	+0. 2 -3. 7 -1. 5 +0. 4	-2. 3 -0. 6 -2. 4 -2. 1 +0. 6
Aug. 21 18 27 27	Cape Greenwich Cape Cape Cape	γ Virginis 22 Piscium 50 Virginis 19 Aquarii ξ Aquarii	E I I I	+1.06 -0.85 -1.11 -0.36	+0. 94 +0. 78 -0. 88 -0. 28	-0. 17 +0. 28 -0. 03 +0. 03	7 —0. 27 3 —0. 20 3 —0. 21 3 —0. 95	-0. 26 -0. 32 -0. 35 +0. 22 -0. 95	+0.06 +0.13 -0.14 -0.37	-0. 28 -0. 32 +0. 32 +0. 04	-0.04 +0.16 -0.07 +0.60	-0. 66 -0. 77 -0. 23 -0. 07	+0.9 -2.9 +0.4 +0.3	+1.7 +0.7
Sept. 7 20 20 Oct. 1 22	Cape Greenwich Washington Greenwich Greenwich	5 Cancri μ Sagittarii 21 Sagittarii l Tauri κ Aquarii	E I E I	-0.91 -1.01 +0.69 -0.56	-0. 28 -0. 31 +0. 18 -0. 48	-0. 32 +0. 09 -0. 67 +0. 25	+0. 26 -0. 08 +0. 29 +0. 83	+0.69 +0.41 -0.12 -0.73 +0.86	-0. 03 -0. 10 +0. 04 +0. 21	+0. 08 +0. 11 -0. 01 +0. 22	-0. 34 +0. 19 -0. 76 -0. 31	-0. 89 -0. 97 -0. 57 -0. 38	-0.3 -0.5 -1.0 -1.8	+0.7 +0.6 -1.5 -1.2
Nov. 2 18 18	Greenwich Strassburg Strassburg Cape Cape	51 Piscium κ Cancri κ Cancri 138 B. Aquarii B. D.—5° 5738	I IB E I I	-0.83 +0.83 -0.72	+0.57 -0.57 -0.61	-0.05	+0. 42 +0. 44 -0. 72	+0.94 -0.43 -0.44 -0.74 -1.00	+0. 14 +0. 11 -0. 34	-0. 28 +0. 24 +0. 17	-0. 37 -0. 34 +0. 40	+0.90 -0.90 -0.66	-2.9 +2.4 +0.9	-1.9 +1.8 +1.7

GROUP XII—1874-1890—Continued.

Date.	Place.	Star.	Ph.	λ	К	iθ	i	b_{o}	α_{o}	$\hat{\sigma}_{\mathbf{o}}$	ε	P	n	n'
·	5 Hamburg	64 Orionis 64 Orionis α Virginis α Virginis κ Libræ	IB E IB E IB	+1.00 -0.49 +0.67	+0. 10 +0. 51 -0. 71	-0. 20 -0. 75 -0. 60	+0. 16 -0. 39 -0. 31	-0. 25 +0. 85 +0. 68	+0. 11 -0. 24 -0. 21	+0.07 -0.11 +0.25	-0. 33 -0. 29 -0. 30	+0. 28 -0. 29 +0. 41 -0. 57 +0. 63	-1.2 -0.6 +1.2	+0. 2 -1. 9 -0. 1 +0. 7 -1. 0
1 1 1 1	Hamburg Strassburg	κ Libræ 117 G. Capricor. c¹ Capricor. κ Aquarii 15 Piscium	I I I I	-0.87 -0.65 -1.07	-0. 64 -0. 47 -0. 89	+0. 07 +0. 10 +0. 07	+0.60 +0.80 +0.19	+0.60 +0.81 +0.20	+0. 29 -0. 06 -0. 08	+0. 28 +0. 23 +0. 33	-0.40 -0.44 -0.08	+0. 52 -0. 47 -0. 35 -0. 72 -0. 85	-2. 2 -0. 7 +0. 3	+0.2 -1.2 0.0 +1.4 +0.9
Feb. 1. Mar. 1 Apr. 1 2 May 1	Greenwich Washington Cape	164 B. Tauri o Arietis 36 Sextantis 54 Sagittarii h Leonis		-1.00 -0.89 +0.43 -0.84	-0.80 +0.76 +0.11 +0.42	+0. 43 +0. 09 -0. 30 +0. 08	+0. 01 +0. 19 +0. 85 +0. 45	+0. 43 -0. 19 +0. 90 -0. 46	-0.06 +0.10 +0.18 +0.12	+0. 21 -0. 35 -0. 06 -0. 29	+0. 34 -0. 03 -0. 87 -0. 22	+0. 43 -0. 67 -0. 73 -0. 44 -0. 88	-1.0 -1.7 -1.6 -1.5	-o. 8
June 1. July 1. 1.	Washington Nikolaieff Greenwich	χ Virginis 62 Virginis β Scorpii 16 G. Sagittarii ε Sagittarii		-0. 31 -0. 82 -0. 87 -1. 02	+0.81 +0.68 +0.32 -0.04	-0. 89 -0. 42 +0. 29 +0. 05	-0. 18 -0. 19 -0. 36 -0. 17	+0. 94 +0. 46 -0. 46 -0. 17	+0. 28 -0. 04 -0. 05 -0. 16	-0. 21 -0. 11 +0. 04 +0. 26	-0. 20 -0. 30 +0. 51 +0. 19	-0. 72 -0. 72 -0. 65 -0. 65 -0. 33 +0. 01	-1.0 +0.9 -1.6 +0.3	+1.7
	4 Greenwich	c² Capricor. 148 B. Tauri α Libræ α Libræ 8 Libræ	E I EB I	+1.06 -0.51 +0.55 -0.26	+0. 90 +0. 55 -0. 62 +0. 28	-0. 05 +0. 81 +0. 74 +0. 95	+0.02 →0.12 -0.13 -0.15	-0. 05 -0. 82 -0. 76 -0. 95	+0. 11 +0. 20 +0. 09 +0. 21	-0. 14 -0. 14 +0. 11 -0. 08	-0. 08 +0. 59 +0. 48 +0. 69	6 -0.47 -0.99 -0.50 +0.56 -0.26	+1.7 -0.1 -1.5 +2.6	-1.8 +1.1 +0.4 -1.8 +2.9
1 1 1 Oct. 2	4 Greenwich 6 Washington	32 Libræ c¹ Capricor. c² Capricor. 21 Piscium κ Cancri	I I I IB	-0. 24 -1. 08 -0. 62 -0. 91	-0. 11 -0. 48 -0. 45 -0. 04	-0. 32 +0. 02 +0. 66 +0. 07	-0.91 +0.06 +0.53 +0.33	-0.98 +0.06 +0.84 -0.34	-0. 32 -0. 12 +0. 17 +0. 07	+0. 03 +0. 30 +0. 23 -0. 25	+0.60 +0.01 -0.01 -0.32	-0. 67 -0. 09 -0. 41 +0. 03 +0. 93	-0. 2 -0. 4 -4. I -3. 4	-1.6 0.0 +0.6 -3.5 -2.6
Feb.	Cape Cape Cape Greenwich	κ Cancri 29 Arietis 44 Aquarii ο Arietis 120 Tauri	E I I I I	- 1.08 - 1.01 - 0.71 - 1.07	-0. 93 -0. 42 -0. 66 -0. 84	+0. 36 +0. 04 +0. 73 +0. 04	+0.04 +0.05 -0.17 -0.06	-0. 36 +0. 06 +0. 76 +0. 07	-0. 29 -0. 05 +0. 06 -0. 13	+0. 20 0. 00 +0. 18 +0. 01	+0. 01 +0. 01 +0. 5	6 -0. 92 8 -0. 23 -0. 83 -0. 59 -0. 82	-0.6 +1.1 -2.4	+2.0 -1.8
	. _ 0	119 Tauri 120 Tauri 119 Tauri 1 Virginis 1 Virginis	I EB IB E	-1.07 +1.06 -0.75 +0.62	-o. 66	+0.04 -0.10 +0.55 +0.72	-0.06 +0.14 -0.08 -0.11	+0.08 -0.17 -0.56 -0.73	+0. 13 +0. 12 +0. 18 +0. 15	0.00 0.00 -0.22 +0.15	+0. 10 +0. 11 +0. 35 +0. 35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0. I +4. 2 -2. 7 +1. 4	+0.9 +3.7 -2.0 +1.1
	3 Strassburg 3 Strassburg 6 Greenwich 6 Prague	ν Libræ ð Tauri 64 Tauri λ Geminor. λ Geminor.	E I I I I	-1.03 -1.07 -0.94	-0. 92 -0. 97 -0. 56	+0. 23 +0. 06 -0. 06	+0. 20 -0. 05 +0. 42	-0. 30 +0. 08 -0. 42	-0. 16 -0. 11 -0. 02	+0. 10 +0. 11 -0. 13	+0. 10 +0. 30	-0. 85 -0. 94 -0. 99 -0. 81 -0. 73	-0. 2 -0. 1 0. 0	+0.7 +0.8 +0.9
	4 Cape	209 B. Cancri 89 B. Leonis π Leonis μ Libræ κ Aquarii	I I E E	-0. 91 -0. 91 +0. 80 +0. 98	+0. 05 +0. 05 -0. 88 +0. 33	-0. 21 -0. 21 -0. 43 -0. 27	-0. 32 -0. 32 +0. 14 -0. 29	+0. 38 +0. 38 +0. 45 -0. 40	-0. 16 -0. 16 -0. 13 -0. 01	-0. 25 -0. 25 +0. 20 -0. 31	+0. 22 +0. 23 -0. 30 +0. 11	3 -0.48 -0.40 3 -0.40 0 -0.67 1 -0.31	-1.3 -1.7 +0.2 +3.2	-0. 5 -0. 9 -0. 2
3	Washington Washington Berlin Berlin Berlin	α Cancri 34 Sextantis B. D. +15° 1619 B. D. +15° 1620 B. D. +15° 1624	I I I I	-0. 73 -1. 06 -0. 47	+0. 12 -0. 62	-0.46 0.00 -0.02 0.00	-0.47 -0.17 +0.90 +0.11	+0. 65 +0. 17 -0. 90 -0. 11	-0. 21 -0. 15 +0. 09 -0. 10	-0. 20 -0. 15 -0. 08 -0. 16	+0. 23 +0. 20 -0. 83 -0. 00	1'-0. 22 7-0. 51 0-0. 92 2-0. 41 5-0. 92	-1.5 -0.2 +0.1 0.0	+0. 7 +0. 5 +0. 8
3 May	o Berlin o Berlin o Berlin I Cape I Washington	B. D. +15° 1633 B. D. +15° 1635 B. D. +15° 1642 29 Cancri A ² Cancri	I I I I	-0. 95 -0. 94 -0. 08 -0. 98	-0.43	0.00 0.00 -0.21 -0.07	-0.45 +0.48 -0.98 -0.23	+0.45 -0.48 +1.00 +0.25	-0. 18 -0. 03 -0. 21 -0. 13	-0. 15 -0. 16 +0. 02 -0. 23	+0.40 -0.40 +0.82 +0.24	5 — 0. 91 5 — 0. 83 5 — 0. 82 2 — 0. 09 1 — 0. 96	-0.7 +0.3 -0.2 0.0	+0. I +1. I
	o Cape	ω Leonis λ Virginis λ Virginis Β. D. +10° 1956 89 B. Leonis	I I I I	-0. 69 -0. 74 -1. 03 -0. 53	+0. 70 +0. 65 -0. 38 -0. 08	+0.62 +0.56 +0.05 -0.51	-0. 16 -0. 13 +0. 13 -0. 68	-0.64 -0.58 -0.13 +0.85	+0. 29 +0. 17 -0. 06 -0. 28	-0. 21 -0. 35 -0. 26 -0. 10	+0. 36 +0. 36 -0. 05 +0. 48	+0.83 -0.19 -0.18 -0.86 -0.50	-0.3 +1.0 +0.9 -0.5	+o. 3 +1. 6
June 2	8 Washington	16 Sextantis µ Libræ v Leonis v Leonis B. D. + 0° 2793	I I EB	-0. 62 -0. 88 +0. 94	+0.63 +0.24 +0.25	-0. 68 -0. 37 -0. 20	3'+0. 23 7 -0. 18 0 -0. 08	+0. 73 -0. 41 +0. 22	-0. 14 -0. 15 -0. 05	-0. 12 -0. 26 +0. 32	+0. 19 +0. 19	-0. 95 -0. 40 -0. 85 +0. 92 -0. 88	-0.5 -0.7 -1.4	+0.8 0.0 0.0 -1.8 +1.1

GROUP XII-1874-1890-Continued.

Date.	Place.	Star.	Ph.	λ	К	iθ	i	b _o	$\alpha_{\rm o}$	$\delta_{ m o}$	ε	P	n	n'
1884, July 3 11 15 30 Aug. 15	Prague Strassburg Berlin Berlin Strassburg	32 Libræ θ Aquarii ο Piscium 88 B. Libræ 115 Tauri	I IB E I	-0.94 +1.∞ -0.76	+0. 41 -0. 02 +0. 75 +0. 66 +0. 98	+0. 20 +0. 41 -0. 57	+0. 22 -0. 06 +0. 35	+0. 30 +0. 41 +0. 66	+0.05 +0.25 -0.18	+0. 31 -0. 23 -0. 14	-0. 14 +0. 17 -0. 47	+0. 70 -0. 91 -0. 15	+1.8 -1.2 -3.0	$\begin{vmatrix} +2.5 \\ -1.6 \\ -2.3 \end{vmatrix}$
Sept. 8 12 12 12 12 12	Berlin Berlin Berlin Berlin Berlin	B. D. + 9° 264 B. D. + 17° 1101 B. D. + 17° 1113 B. D. + 17° 1136 B. D. + 17° 1144	EEEE	+1.07 +1.11 +0.99 +0.22	+0. 79 +0. 96 +0. 85 +0. 19 +0. 86	+0. 19 -0. 03 -0. 13 +0. 27	-0.06 +0.09 +0.44 -0.94	+0. 20 -0. 09 -0. 46 +0. 98	+0. 20 +0. 16 +0. 16 0. 00	-0. 25 +0. 01 +0. 02 0. 00	+0. 10 -0. 11 -0. 48 +0. 97	-0. 72 -0. 99 -0. 88 -0. 20	+3.8 +1.2 -1.1 -0.6	+3.4 +0.8 -1.5
12 12 12 12 12	Berlin Berlin Berlin Berlin Berlin	B. D. +17° 1145 B. D. +17° 1147 B. D. +17° 1151 B. D. +17° 1158 B. D. +17° 1161	E E E E	+0. 59 +1. 11 +1. 10 +1. 10	+0. 51 +0. 96 +0. 95 +0. 95 +0. 96	-0. 22 +0. 01 +0. 03 -0. 04	+0.82 -0.03 -0.11 +0.14	-0.85 +0.03 +0.11 -0.14	+0. 11 +0. 15 +0. 15 +0. 16	+0. 01 +0. 04 +0. 03 +0. 02	-0.87 0.00 +0.00 -0.16	-0. 52 -0. 99 -0. 98 -0. 98	+2.0 +1.2 +1.1 +1.2	+0.8 +0.7 +0.8
12 13 13 13	Berlin Berlin Berlin Berlin Berlin	124 H ¹ .Orionis B. D.+16° 1380 B. D.+17° 1495 B. D.+16° 1385 B. D.+17° 1502	EEEE	+1.03 +0.66 +1.09	+0. 72 +0. 83 +0. 53 +0. 88 +0. 45	-0. 07 -0. 17 -0. 03	+0. 34 +0. 78 +0. 15	-0. 35 -0. 80 -0. 15	+0. 18 +0. 18 +0. 17	+0.08 +0.07 +0.10	-0.36 -0.86 -0.18	-0. 88 -0. 56 -0. 94	0.0 -1.3 +0.8	-0.4 -1.6 +0.4
13 13 14 14	Berlin Berlin Berlin Berlin Berlin	B. D. +16° 1395 B. D. +16° 1398 B. D. +16° 1400 B. D. +14° 1822 B. D. +14° 1825	EEEE	+0.99 +1.09 +0.59	+0. 88 +0. 79 +0. 86 +0. 41 +0. 66	+0.09 +0.04 -0.17	-0.43 -0.20 -0.82	+0. 44 +0. 20 +0. 84	+0.09 +0.14 -0.07	+0. 11 +0. 11 +0. 11	+0.41 +0.17 +0.73	-0.85 +0.92 -0.47	+0.9 -0.3 +1.2	+0.5 -0.7 +1.0
14 14 14 15	Berlin Berlin Berlin Berlin Berlin	B. D. +14° 1828 B. D. +14° 1829 B. D. +14° 1838 B. D. +14° 1839 B. D. +11° 1974	EEEE	+1.04 +0.94 +0.86	+0. 71 +0. 71 +0. 64 +0. 59 +0. 30	-0.06 -0.11 +0.13	-0. 26 -0. 49 +0. 58	+0. 27 +0. 50 -0. 60	+0.07 +0.03 +0.21	+0. 19 +0. 18 +0. 14	+0. 21 +0. 42 -0. 55	-0.83 -0.75 -0.69	+0.7 +0.9 -1.0	+0.3 +0.5 -1.4
26 28 28 Oct. 9 28	Berlin Berlin Berlin Prague Cape	290 B. Ophiuchi B. D. – 17° 5672 B. D. – 17° 5699 130 Tauri c ¹ Capricor.	I I E I	-0.86 -0.92 +1.09	+0. 84 +0. 70 +0. 74 +0. 99 +0. 17	+0. 04 -0. 01 +0. 01	+0. 35 -0. 05 -0. 04	+0. 35 -0. 05 +0. 04	+0. 08 +0. 02 +0. 14	+0. 13 +0. 15 0. 00	-0. 32 +0. 01 +0. 01	-0. 89 -0. 95 -0. 89	-0.8 -2.6 +0.4	+1.5 -1.9 0.0
28 30 Nov. 22 25 29	Cape Berlin Berlin Prague Cape	c¹ Capricor. 11 Piscium B. D.—17° 5748 θ Aquarii 54 Ceti	EB I I I I	-0. 99 -0. 36 -0. 94	-0. 09 -0. 19 +0. 29 +0. 20 -0. 27	-0. 24 +0. 19 -0. 18	+0. 10 +0. 90 -0. 15	-0. 26 +0. 92 -0. 23	-0. 15 +0. 13 -0. 08	+0. 28 +0. 06 +0. 27	+0.05 -0.85 +0.11	-0.63 -0.34 -0.97	-1.0 -0.3 -0.8	-0.3
Dec. 1 30 1885, Jan. 4 20 20	Cape Greenwich Cape Berlin Berlin	148 B. Tauri 115 Tauri 48 Leonis B. D. — 3° 5639 B. D. — 3° 5642	I E I I	-1.11 +1.01 -1.00	-0. 93 -0. 96 +0. 50 -0. 04 -0. 04	-0.09 +0.24 +0.11	+0. 26 +0. 15 +0. 04	-0. 28 -0. 28 +0. 12	-0. 21 +0. 19 -0. 01	+0. 04 +0. 27 +0. 32	-0. 27 -0. 15 -0. 02	-0. 32 -0. 60 -0. 82	-0.7 -0.2 -0.5	+0. 1 -0. 5 +0. 2
20 20 21 22 22	Berlin Berlin Berlin Berlin Prague	B. D. — 3° 5643 B. D. — 3° 5644 98 B. Piscium e Piscium e Piscium	I I I I	-0. 73 -0. 99 -1. 03	-0. 04 -0. 04 -0. 04 -0. 43 -0. 42	+0. 66 -0. 19 +0. 19	+0. 22 -0. 02 -0. 03	+0. 70 -0. 19 +0. 19	+0. 17 -0. 11 -0. 04	+0. 26 +0. 30 +0. 30	-0. 12 -0. 01 +0. 05	-0.60 -0.81 -0.97	+0.7 -2.8 +1.0	+1.2 -2.1 +1.7
22 22 23 23 23	Strassburg Strassburg Berlin Berlin Berlin	e Piscium e Piscium B. D. + 8° 307 B. D. + 8° 314 B. D. + 9° 264	I EB I I I	+0.88 -0.98 -1.05	-0. 42 +0. 39 -0. 61 -0. 65 -0. 36	'+0. 47 '+0. 35 +0. 19	-0. 08 -0. 16 -0. 08	+0.48 +0.39 +0.21	+0. 18 0. 00 -0. 07	-0. 34 +0. 26 +0. 27	+0. 14 +0. 20 +0. 11	+0.87 -0.92 -0.98	+0.9 -0.5 +2.3	+0.6 +0.2 +3.0
23 24 24 25 25	Berlin Berlin Berlin Berlin Berlin	B. D. + 9° 266 B. D. + 12° 411 B. D. + 12° 410 B. D. + 15° 546 B. D. + 15° 547	I I I I	-1.09 -0.46 -1.09 -1.06	-0. 53 -0. 81 -0. 34 -0. 81 -0. 79	-0. 07 -0. 73 -0. 01 +0. 16	+0. 05 +0. 55 +0. 01 -0. 20	-0.09 -0.91 -0.01 +0.25	-0. 15 -0. 26 -0. 13 -0. 09	+0. 21 +0. 08 +0. 16 +0. 16	-0. 04 -0. 64 -0. 01 +0. 23	-0. 96 -0. 40 -0. 96 -0. 93	-3. I -1. I -2. 4 +0. 8	-2.4 -0.8 -1.7 +1.5
25 26 28 Feb. 1 20	Berlin Berlin Strassburg Berlin Greenwich	B. D. +15° 557 318 B. Tauri \[\lambda \text{ Geminor.} \] \[d \text{ Leonis} \] 38 Arietis	I I E I	-0. 52 -1. 12 +1. 04 -0. 32	-0. 62 -0. 46 -0. 92 +0. 36 -0. 22	+0. 34 +0. 03 +0. 01 -0. 77	-0.81 +0.17 0.00 +0.55	+0.88 -0.17 -0.01 -0.95	-0.01 -0.16 +0.09 -0.25	+0. 03 -0. 10 +0. 29 +0. 05	+0. 87 -0. 15 +0. 07 -0. 62	-0. 36 -0. 44 -0. 38 -0. 29	-2. 2 -1. 3 +0. 9 -1. 0	-1.8 -0.5 +0.6 -0.8
21 21 21 21 21	Berlin Berlin Berlin Berlin Berlin	B. D.+14° 592 B. D.+14° 595 B. D.+14° 597 B. D.+14° 598 B. D.+14° 600	E I I I	-1.05 -1.07 -0.73	+0. 16 -0. 84 -0. 85 -0. 58 -0. 88	+0. 19 +0. 16 +0. 48	-0. 23 -0. 20 -0. 58	+0. 30 +0. 26 +0. 76	-0.09 -0.11 +0.02	+0. 18 +0. 18 +0. 14	+0. 26 +0. 22 +0. 64	-0. 95 -0. 97 -0. 66	+1.2 +1.6	+1.9 +2.3 +0.3

GROUP XII—1874-1890—Continued.

Date.	Place.	Star.	Ph.	λ	K	i0	i	<i>b</i> _o	α ₀		ε	P	n	n'
1885, Feb. 22 22 23 23 24	Berlin Greenwich Strassburg	α Tauri α Tauri 130 Tauri 130 Tauri 130 Tauri B. D.+17° 1339	I EB I I	+0.38 -1.05 -1.06	+0. 33 -0. 97 -0. 97	+0. 42 -0. 05 -0. 04	-0. 82 -0. 83 +0. 24 +0. 22 +0. 52	+0.94 -0.25 -0.22	+0. 12 -0. 14 -0. 14	-0.04 +0.02 +0.01	+0.88 -0.25 -0.22	+0. 34 -0. 89 -0. 89	+1.2 -2.1 -2.8	+0.9 +1.1 -1.4 -2.1 -0.5
21	Berlin Cape Berlin Berlin	B. D.+17° 1392 B. D.+17° 1393 ** Virginis B. D.+15° 630 75 Tauri	I I E I I	-0. 78 +0. 92 -0. 97 -1. 06	-0. 68 -0. 45 -0. 81 -0. 88	-0.04 +0.26 +0.22 +0.12	-0. 05 -0. 71 -0. 14 -0. 42 -0. 24	+0. 71 -0. 30 +0. 47 +0. 27	-0. 15 +0. 10 -0. 08 -0. 11	-0.05 +0.23 +0.13 +0.13	+0. 71 +0. 20 +0. 44 +0. 25	-0. 59 -0. 67 -0. 83 -0. 90	-2.4 +2.2 +0.1 +1.5	+2. 1
21 21 22 22 23	Berlin Berlin Berlin Berlin	B. D.+15° 633 264 B. Tauri B. D.+17° 918 B. D.+17° 919 111 Tauri B. D.+17° 921	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-0. 46 -0. 94 -1. 01 -1. 01	-0. 39 -0. 83 -0. 89 -0. 89	+0. 40 -0. 13 +0. 10 +0. 10	-0. 87 -0. 82 +0. 51 -0. 40 -0. 40 +0. 61	+0.91 -0.53 +0.41 +0.41	-0.05 -0.16 -0.12 -0.12	+0.06 +0.04 +0.07 +0.07	+0.86 -0.52 +0.39 +0.39	-0. 39 -0. 84 -0. 90 -0. 90	-1.0 -0.3 -0.5 -1.0	+0.9 -0.7 +0.3 +0.1 -0.4 +0.9
22 22 22 22 22	Berlin Berlin Berlin Berlin	B. D. + 17° 929 117 Tauri B. D. + 17° 943 B. D. + 17° 945 B. D. + 17° 950	I I I I	-0. 75 -0. 64 -1. 02 -1. 05	-0. 67 -0. 57 -0. 90 -0. 89	+0. 16 +0. 18 +0. 08 +0. 08	-0. 71 -0. 79 -0. 39 +0. 40 +0. 26	+0. 73 +0. 81 +0. 40 -0. 41	-0.05 -0.05 -0.13 -0.16	+0.03 +0.03 +0.06 +0.05	+0. 72 +0. 81 +0. 40 -0. 40	-0. 67 -0. 57 -0. 91 -0. 90	-0.7 -0.9 +0.4 -1.1	-0. 2 -0. 5 +1. 0 -0. 6
22 22 23 23	Prague Greenwich Greenwich Berlin Berlin	111 Tauri 111 Tauri 117 Tauri 117 Tauri B. D. +17° 1225 B. D. +17° 1226	I I I I	-0. 92 -0. 91 -0. 26 -1. 05	-0. 85 -0. 83 -0. 24 -0. 95 -0. 75	+0. 13 +0. 14 +0. 23 0. 00	-0. 49 +0. 51 -0. 94 -0. 32 +0. 66	+0. 50 +0. 53 +0. 97 +0. 32 -0. 66	-0. 08 -0. 07 +0. 01 -0. 16	+0. 03 +0. 05 +0. 01 -0. 01 -0. 03	+0. 50 +0. 51 +0. 96 +0. 33 -0. 65	-0. 86 -0. 84 -0. 24 -0. 95 -0. 75	-0. 5 -1. 4 -0. 8 +0. 4 -1. 3	+0. 1 -0. 9 -0. 6 +1. 0 -0. 8
23 23 23 23	Berlin Berlin Berlin	B. D. +17° 1230 B. D. +17° 1231 B. D. +17° 1238 B. D. +17° 1241 B. D. +17° 1247	I I I I	-0. 87 -0. 99 -0. 69	-0. 79 -0. 78 -0. 89 -0. 62 -0. 97	0. 00 0. 00 0. 00	-0. 61 -0. 62 -0. 46 -0. 78 +0. 23	+0. 62 +0. 46 +0. 78 -0. 23	-0. 13 -0. 16 -0. 12 -0. 14	-0. 02 -0. 02 -0. 02 -0. 04	+0. 63 +0. 47 +0. 78 -0. 22	-0. 78 -0. 89 -0. 62 -0. 97	-2. 7 -1. 7 -0. 8 0. 0	-0.4 -2.2 -1.1 -0.4 +0.6
23 23 23 23 23	Berlin Berlin Berlin	B. D.+17° 1252 B. D.+17° 1256 B. D.+17° 1261 B. D.+17° 1263 B. D.+17° 1277	I I I I	-0. 94 -0. 81 -0. 61	-0. 73 -0. 55 -0. 75	-0. 01 +0. 01 -0. 02 +0. 01	-0. 08 -0. 34 +0. 67 -0. 84 +0. 66	+0. 34 -0. 67 +0. 84 -0. 66	-0.06 -0.08 -0.12	-0. 02 -0. 03 -0. 01 +0. 04	+0. 35 +0. 67 +0. 84 -0. 65	-0. 94 -0. 73 -0. 55 -0. 75	-0.6 -1.4 -1.5 -1.3	-0.6 0.0 -0.9 -1.1
23 23 23 23 23	Berlin Berlin Berlin Berlin	B. D. +17° 1280 B. D. +17° 1281 B. D. +17° 1288 B. D. +17° 1291 B. D. +17° 1294	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-0. 92 -0. 87 -0. 60 -0. 98	-0. 83 -0. 78 -0. 54 -0. 88	-0. 01 -0. 02 -0. 03 -0. 02	-0. 37 -0. 55 -0. 62 -0. 84 -0. 47	+0. 55 +0. 62 +0. 84 -0. 47	-0. 15 -0. 15 -0. 12 -0. 49	-0.03 +0.04 -0.02 +0.38	+0. 56 +0. 62 +0. 84 +0. 48	-0. 83 -0. 78 -0. 54 -0. 88	-1.4 -1.0 -1.4 -1.1	+0.9 -0.9 -0.5 -1.0
23 27 28 Apr. 2	Greenwich Greenwich Cape Cape	B. D. +17° 1307 43 Leonis 75 Leonis 7 Libræ 7 Libræ	I I IB E	-0. 85 -1. 00 -0. 78 +0. 72	-0.45 -0.35 +0.60	+0. 51 -0. 25 +0. 36 +0. 41	+0. 37 +0. 31 -0. 08 -0. 42 -0. 49	-0. 60 +0. 26 -0. 55 -0. 64	+0.08 -0.16 +0.10	-0. 26 -0. 29 -0. 17 +0. 12	-0. 25 +0. 08 +0. 39 +0. 57	-0.47 -0.40 +0.51 -0.48	-1.3 -1.1 -1.5 +0.8	+0.4 -0.8 -0.5 -1.0 +0.6
16 16 19 19	Berlin Berlin Berlin Berlin	B. D. +17° 862 B. D. +17° 1136 B. D. +17° 1139 B. D. +17° 1146	I I I	-0. 86 -0. 80 -0. 76 -0. 95	-0. 74 +0. 24 +0. 23 +0. 28	-0. 18 +0. 03 +0. 03 -0. 01	+0.85 +0.60 -0.57 -0.63 +0.20	-0. 62 +0. 57 +0. 63 -0. 20	-0. 17 -0. 02 -0. 02 -0. 02	+0.05 -0.01 0.00 -0.02	-0. 60 +0. 58 +0. 63 -0. 19	-0. 59 -0. 74 -0. 70 -0. 88	+0.5 -2.0 -3.5 -2.3	+1.0 -1.5 -3.1 -1.8
16 16 16	Berlin Berlin Berlin Berlin	B. D. +17° 1147 B. D. +17° 1151 B. D. +17° 1153 B. D. +17° 1154 B. D. +17° 1154	I I I	-0. 77 -0. 50 -0. 86 -0. 86	+0. 23 +0. 15 +0. 26 +0. 26	-0. 02 +0. 03 +0. 02 +0. 02	+0.65 +0.61 -0.86 -0.45	-0. 61 +0. 86 +0. 45 +0. 45	0. 00 -0. 02 -0. 02 -0. 02	-0. 01 -0. 00 -0. 01	-0.60 +0.86 +0.46 +0.46	-0. 71 -0. 47 -0. 80 -0. 80	-1.4 -1.4 -1.9 -2.8	-1.8 -1.0 -1.1 -1.4
19 19 19	Berlin Berlin Berlin Berlin	B. D. +17° 1155 B. D. +17° 1167 B. D. +17° 1172 B. D. +17° 1179	I I I I	-0. 96 -0. 87 -0. 91 -0. 95	+0. 29 +0. 26 +0. 27 +0. 28	0.00 +0.01 -0.01	-0. 38 +0. 14 -0. 43 +0. 34 -0. 20	-0. 14 +0. 43 -0. 34 +0. 20	-0. 02 -0. 02 -0. 01 -0. 02	-0. 02 -0. 01 -0. 01 0. 00	-0. 14 +0. 43 -0. 34 +0. 20	-0. 89 -0. 81 -0. 85 -0. 88	-1.9 -1.2 -2.4 -2.0	-1.5 -1.3 -0.7 -1.9
10 10 20 20	Berlin Berlin Berlin Berlin	B. D. +17° 1183 B. D. +17° 1191 B. D. +17° 1506 B. D. +16° 1409 B. D. +16° 1409	I I I I	-0. 68 -0. 65 -1. 02 -0. 99	+0. 20 -0. 58 -0. 90 -0. 87	+0. 01 +0. 17 -0. 09 +0. 10	-0. 04 -0. 71 +0. 79 -0. 40 +0. 45	+0. 71 -0. 81 +0. 41 -0. 46	-0. 02 -0. 03 -0. 18	-0. 01 -0. 06 -0. 07 -0. 10	+0. 72 -0. 79 +0. 40 -0. 43	-0. 63 -0. 58 -0. 91 -0. 88	-2.8 0.0 +1.1 +2.7	-2.4 +0.4 +1.7 +3.2
20 20 20 20	Berlin Greenwich	B. D. +16° 1421 B. D. +16° 1423 λ Geminor.	I I EB	-o. 81	-0. 72 -0. 46	十0. 15 十0. 21	+0. 40 +0. 66 +0. 85 +0. 92	-o. 68 -o. 88	-0. 05 +0. 02	-0. 08 -0. 05	-o. 65 -o. 85	-0. 72 -0. 46	-0. I	+0.4 +0.2

GROUP XII-1874-1890-Continued.

Date.	Place.	Star.	Ph.	λ .	K	$i\theta$	i	b _o	'N ₀	∂_{o}	ε	P	n	n'
1885, Apr. 21 22 24 26 May 5	Berlin Berlin Prague Berlin Cape	30 B. Cancri 209 B. Cancri d Leonis 71 G. Virginis 16 B. Capricor.	I I I E	-o. 83 -o. 67 -o. 88	-0. 62 -0. 30 -0. 05	+0. 43 +0. 71 +0. 49	+0. 51 +0. 26 -0. 05	-0. 66 -0. 75 -0. 49	+0.04 +0.19 +0.10	-0. 19 -0. 22 -0. 29	一0. 47 一0. 42 十0. 09	-0. 87 -0. 75 -0. 54 -0. 45 -0. 59	+0.3 +0.5 +0.2	+0.9 +0.7 +0.9 +0.7 -0.8
5 19 19 19 22	Cape Berlin Berlin Berlin Cape	β Capricor. B. D.+12° 1931 B. D.+12° 1942 α Cancri τ Leonis	E I I I	-0. 98 -0. 74 -0. 63	-0. 79 -0. 60 -0. 51	-0. 28 +0. 47 -0. 52	-0. 36 +0. 57 -0. 64	+0. 45 -0. 73 +0. 82	-0. 23 +0. 06 -0. 27	-0. 17 -0. 16 -0. 11	+0. 37 -0. 57 +0. 64	-0. 52 -0. 83 -0. 62 -0. 53 -0. 92	+2.2 +0.8 -1.2	-1.2 +2.7 +1.2 -0.9 +2.2
June 23 25 25 28	Cape Cape Cape Cape	θ Virginis γ Libræ 125 B. Ophiuchi 164 B. Ophiuchi 54 Sagittarii	I E	-0. 90 -0. 77 +0. 56	+0. 53 +0. 88 +0. 75 -0. 61	+0. 29 +0. 03 +0. 10 -0. 30	-0. 40 -0. 11 -0. 52 -0. 72	-0. 49 -0. 11 -0. 53 -0. 78	+0. 11 +0. 04 +0. 06 -0. 12	-0. 18 -0. 08 -0. 06 -0. 09	+0. 32 +0. 12 +0. 52 +0. 74	-0. 94 -0. 85 -0. 35 -0. 30 -0. 16	+0. I -0. 2 +0. 7 +0. I	+0.7 +0.5 +0.3 +1.1 0.0
July 1 6 6 7 9	Cape Berlin Berlin Berlin Berlin	θ Aquarii B. D. + 9° 296 B. D. + 9° 301 B. D. + 12° 453 α Tauri	E E E IB	+1.00 +1.05 +1.03 -0.90	+0. 40 +0. 42 +0. 59 -0. 74	-0. 25 +0. 04 +0. 18 +0. 19	+0. 19 +0. 03 -0. 21 -0. 54	-0. 31 -0. 05 +0. 28 +0. 57	+0. 02 +0. 09 +0. 18 -0. 05	-0. 27 -0. 26 -0. 20 +0. 10	-0. 18 -0. 01 +0. 21 +0. 53	-0. 76 -0. 86 -0. 91 -0. 78 +0. 40	+0. I +0. 8 +0. 5 -1. 7	-2.2 -0.1 +0.6 +0.3 -1.2
21 22 22 26 26	Berlin Berlin Greenwich Cape Cape	B. D. –16° 4230 29 Ophiuchi 29 Ophiuchi β Capricor. β Capricor.	I IB E	-0. 10 -0. 33 -0. 57 +0. 74	+0.09 +0.30 +0.60 -0.78	-0. 22 -0. 22 -0. 43 -0. 33	+0. 96 +0. 90 -0. 64 -0. 48	+0. 99 +0. 93 -0. 77 -0. 58	0.00 -0.06 -0.10 -0.12	-0. 01 -0. 03 +0. 09 -0. 15	-0.96 -0.90 +0.65 +0.50	-0. 88 -0. 08 -0. 28 -0. 02 +0. 02	+1.6 -0.4 +1.6 -0.3	-0.2 +1.9
Aug. 20 31 · 31 Sept. 1	Greenwich Berlin Berlin Berlin Berlin	95 B. Sagittarii B. D. +13° 565 B. D. +13° 568 \theta^1 Tauri \theta^2 Tauri	E E E	+1.01 +1.05 +1.08	+0. 56 +0. 58 +0. 77	+0. 18 +0. 06 -0. 03	-0. 28 -0. 09 +0. 10	+0. 33 -0. 11 -0. 11	+0. 17 +0. 13 +0. 12	-0. 17 -0. 20 -0. 13	+0. 28 +0. 11 -0. 09	-0. 57 -0. 92 -0. 96 -0. 99 -0. 97	-1. 1 +1. 8 +0. 3	+1.7 +0.2
1 1 1 1	Berlin Berlin Berlin Berlin Berlin	B. D.+15° 633 B. D.+15° 635 269 B. Tauri 85 Tauri B. D.+15° 646	E E E E	+0.85 +0.99 +0.58	+0.61 +0.71 +0.41	-0. 20 -0. 13 +0. 26	+0.60 +0.39 -0.81	-0. 63 -0. 41 +0. 85	+0. 03 +0. 06 +0. 19	-0. 11 -0. 14 -0. 07	-0. 59 -0. 37 +0. 80	-0. 60 -0. 78 -0. 91 -0. 53 -0. 87	-1.0 -0.9 +1.3	
1 1 1 1	Berlin Berlin Berlin Berlin Berlin	B. D. +15° 648 B. D. +15° 649 275 B. Tauri	E E IB E	+0.68 +0.94 -0.49	+0.48 +0.67 -0.35	+0. 23 -0. 15 -0. 26	-0. 76 +0. 49 +0. 85	+0. 79 -0. 51 -0. 89	+0. 19 +0. 05 -0. 18	-0. 08 -0. 13 +0. 06	+0. 74 -0. 46 -0. 84	-0. 65 -0. 62 -0. 86 +0. 45 -0. 60	+0.8 -0.3 -0.3	+0.7 +0.7 -0.4 0.0 +2.1
1 1 1 1	Berlin Greenwich Greenwich Greenwich Prague	α Tauri θ² Tauri 264 B. Tauri 85 Tauri α Tauri	E E E IB	+1.04 +0.69 +0.71	+0. 77 +0. 51 +0. 52	+0. 04 +0. 26 +0. 24	-0. 12 -0. 71 -0. 70	+0. 13 +0. 76 +0. 74	+0. 12 -0. 03 +0. 16	-0. 14 -0. 10 -0. 08	+0. 12 -0. 68 +0. 69	-0. 87 -0. 99 -0. 65 -0. 57 +0. 59	+1. I -1. 4 +0. 7	-1.4 +1.0 -1.5 +0.6 -0.8
1 2 2 2 2	Prague Berlin Berlin Berlin Berlin	α Tauri B. D.+17° 930 B. D.+16° 788 B. D.+17° 938 B. D.+17° 942	EEEE	+1.08 +0.70 +1.01	+0.87 +0.57 +0.82	-0. 02 -0. 05 -0. 03	+0. 17 -0. 77 +0. 38	-0. 17 +0. 77 -0. 38	+0. 13 +0. 13 +0. 11	-0.07 +0.03	-0. 15 -0. 77 -0. 37	-0. 74 -0. 95 -0. 62 -0. 89 -0. 73	+0.9 -0.6 -0.8	+0.8 -0.7 -0.0
2 2 2 2 2	Berlin Berlin Berlin Berlin Berlin	167 H ¹ . Tauri B. D. +17° 943 B. D. +17° 945 B. D. +17° 950 B. D. +17° 953	EEEEE	+1. 10 +0. 63 +0. 99	+0.89 +0.51 +0.80	0.00 -0.06 -0.02	+0. 05 +0. 82 +0. 44	-0. 05 -0. 82 -0. 44	+0. 14 +0. 04 +0. 12	-0. 05 -0. 03 -0. 04	-0. 05 -0. 80 -0. 44	-0. 38 -0. 97 -0. 55 -0. 87 -0. 46	+1.8 +0.1 -0.9	-0.5 +1.7 0.0 -1.0 -0.3
5 5 5 16 17	Berlin Berlin Berlin Berlin Berlin	B. D. +14° 1932 B. D. +14° 1929 B. D. +14° 1930 B. D18° 4789 B. D18° 5134	E E I I	+1. 10 +1. 10 -1. 10	+0. 97 +0. 97 -0. 97	-0. 07 -0. 08 -0. 01	-0. 10 -0. 10	+0. 11 +0. 13 -0. 10	+0. 15 +0. 15 -0. 05	+0. 19 +0. 18 +0. 01	+0. 10 +0. 11 +0. 10	-0.43 -0.65 -0.65 +0.65 -0.81	+0.5 -0.3 -0.6	-0.9 +0.4 -0.4 0.0 -2.1
17 17 17 20 20	Berlin Berlin Berlin Berlin Greenwich	B. D. – 18° 5136 B. D. – 18° 5155 B. D. – 18° 5157 18 Aquarii 18 Aquarii	I I I I	-0. 80 -0. 89 -0. 74	+0.87 +0.97 +0.74	+0. 13 -0. 01 +0. 45	+0.42 -0.04 +0.38	+0. 44 -0. 04 +0. 58	+0.07 +0.06 +0.15	+0.06 +0.06 +0.17	-0. 44 +0. 02 -0. 02	-0. 69 -0. 87 -0. 97 -0. 53 -0. 55	-0.8 -0.9 -2.2	-0. 2 -0. 4 -0. 4 -1. 8 -2. 0
21 30 30 30 30	Greenwich Berlin Berlin Berlin Berlin	150 B. Aquarii B. D. +17° 1195 292 B. Orionis B. D. +17° 1223 B. D. +17° 1224	I E E E	-0.81 +1.05 +0.73 +0.48 +1.10	+0.87 +0.61 +0.40	-0.05 +0.13 +0.15	-0. 31 +0. 74 +0. 88	+0. 31 -0. 75 -0. 90	+0. 15 +0. 11 +0. 06	+0. 02 +0. 01 0. 00	-0. 33 +0. 74 +0. 80	-0.44	+0.5 -0.1 +1.4	-0.2 +1.3

GROUP XII—1874-1890—Continued.

Date.	Place.	Star.	Ph.	λ	ĸ	iθ	i	b _o	$\alpha_{\rm o}$	δ _o	ε	P	n	n'
1885, Sept. 30 Oct. 1 14 16 Nov. 17	Berlin Greenwich Berlin Berlin Greenwich	B. D.+17° 1226 \(\lambda\) Geminor. B. D18° 5012 B. D16° 5545 80 B. Piscium	IB I I	-1.04 -0.82 -0.89	-0. 95 +0. 86 +0. 99	-0.06 -0.09 +0.05	-0. 26 -0. 41 +0. 07	-0. 34 +0. 27 -0. 42 +0. 09 -0. 54	-0. 15 +0. 03 +0. 07	-0. 08 +0. 08 +0. 17	+0. 27 +0. 41 -0. 09	+0. 95 +0. 87 -0. 99	-1.5 -1.6 -0.9	
Dec. 2 2 2 28 1886, Jan. 14	Hamburg Prague Prague Greenwich Greenwich	α Tauri κ Virginis κ Virginis θ Virginis 85 Ceti	IB E	-0. 27 +0. 07 +0. 90	-0.03 0.00 +0.38	+0. 73 +0. 76 +0. 40	-0. 63 -0. 65 -0. 19	-0. 13 -0. 96 -1. 00 -0. 44 +0. 52	+0. 25 +0. 28 +0. 18	-0. 11 -0. 02 +0. 26	+0. 05 +0. 05 +0. 14	+0. 21 -0. 71 -0. 90	+0.3 +1.1 +0.9	+1. i +0. 9
14 16 16 16 16	Cape Greenwich Greenwich Greenwich Greenwich	38 Arietis θ² Tauri θ¹ Tauri 264 B. Tauri α Tauri	EB	-1.01 +0.98 +1.08 -0.91	-0. 21 +0. 56 +0. 62 -0. 53	-0.01 +0.09 +0.02 -0.12	+0. 01 -0. 40 -0. 07 +0. 51	-0. 01 +0. 41 +0. 07 -0. 53 -0. 62	-0.07 +0.17 +0.15 -0.18	+0. 26 -0. 13 -0. 14 +0. 12	-0.05 +0.39 +0.08 -0.51	-0. 92 +0. 61 +0. 67 -0. 57	-2.3 -2.4 -1.5 -0.4	-1.9 -2.4 -1.5
16 16 16 18 Feb. 9	Greenwich Hamburg Hamburg Greenwich Cape	α Tauri α Tauri α Tauri 26 Geminor. 122 G. Piscium	EB I	-0. 84 +0. 88 -1. 14	-0.48 +0.51 -0.88	-0. 12 -0. 10 -0. 09	+0.62 +0.57 -0.24	-0. 52 -0. 63 -0. 58 +0. 26 -0. 90	-0. 19 +0. 03 -0. 23	+0. 10 -0. 12 -0. 03	-0.60 -0.53 +0.24	-0. 52 +0. 55 -0. 28	-1.8 +1.5 -1.2	-o. 8
12 13 14 Mar. 9	Prague Cape Cape Greenwich Greenwich	7 Tauri m Tauri 71 Orionis ⁶¹ Ceti 64 Ceti	I I I	-0. 35 -1. 05 -0. 94	-0. 22 -0. 83 +0. 05	-0. 03 +0. 07 -0. 17	+0. 94 +0. 27 +0. 18	+0. 12 -0. 94 -0. 28 -0. 24 +0. 34	-0. 13 -0. 15 -0. 09	+0. 02 +0. 01 +0. 28	-0, 89 -0, 26 -0, 16	-0. 29 -0. 84 -0. 76	-0.7 -2.9 +0.5	-0. 1 -0. 6 -2. 5 +0. 9 -2. 3
Apr. 8 8 8 8	Strassburg Strassburg Pola Pola Greenwich	α Tauri α Tauri α Tauri α Tauri α Ceminor.	Ι	+0. 75 -0. 91 +0. 86	+0. 34 -0. 42 +0. 39	-0. 07 -0. 05 -0. 05	+0.68 +0.45 +0.54	-0.63 -0.68 -0.45 -0.54 -0.46	-0. 04 -0. 12 -0. 01	-0. 11 +0. 12 -0. 13	-0. 62 -0. 44 -0. 50	+0.61 -0.74 +0.70	-1.3 -0.5 -0.1 -0.1	-1.0 -0.4 +0.2 0.0 -0.5
14 15 May 6 14 16	Strassburg Greenwich Greenwich Cape Cape	48 Leonis τ Leonis 111 Tauri 46 Virginis ξ Libræ	I	-0.41 -0.98 -1.05	-0. 31 -0. 53 -0. 63	-0. 93 -0. 04 -0. 08	+0. 08 -0. 37 +0. 05	+0.81 +0.93 +0.37 +0.09 +0.16	-0. 34 -0. 07 -0. 15	-0. 07 +0. 08 -0. 31	+0. 10 +0. 31 -0. 05	-0. 22 -0. 58 -0. 67	0.0 +2.4 +0.6	-1. 1 +0. 1 +2. 7 +0. 9 +0. 2
June 6 10 10	Čape Cape Cape Cape Cape	ρ Sagittarii ρ Sagittarii ο¹ Cancri γ Virg. (N) γ Virg. (S)	E I I	+0.80 -1.05 -0.80	-0. 71 -0. 94 -0. 56	+0. 29 +0. 24 +0. 57	+0.40 +0.14 -0.29	+0. 51 +0. 50 -0. 28 -0. 64 +0. 05	+0.02 -0.10 +0.12	+0.07 -0.20 -0.27	-0.53 -0.18 +0.05	-0.82 -0.79 -0.75	-1.1 -0.4 +2.5	-1.0 -0.1 +2.7
10 10 15 July 8 Aug. 8	Cape Cape Cape Cape Strassburg	7 Virg. (N) 7 Virg. (S) 125 B. Ophiuchi 66 Virginis 24 Scorpii	EB I I	+1.00 -0.85 -0.70	+0. 70 +0. 27 -0. 46	+0. 25 +0. 03 -0. 56	-0. 13 +0. 48 +0. 48	-0. 28 -0. 28 +0. 48 +0. 73 -0. 20	+0. 19 -0. 08 -0. 29	+0. 28 -0. 09 -0. 17	+0. 08 -0. 50 -0. 28	+0. 93 -0. 22 -0. 68	+0. I -1. 6 -0. I	0.0 +0.2 -1.3 +0.1 +2.3
8 8 8 19 24	Strassburg Pola Prague Greenwich Cape	24 Scorpii 24 Scorpii 24 Scorpii 24 Scorpii 24 Piscium 71 Orionis	I E	-0. 96 -0. 93 +0. 92	+0.07 +0.07 -0.49	0.00 -0.01 +0.10	-0. 13 -0. 26 -0. 11	-0. 24 -0. 13 -0. 26 +0. 15 +0. 61	0.00 +0.02 +0.03	-0. 16 -0. 14 -0. 30	+0. 16 +0. 27 +0. 04	-0.96 -0.94 -0.87	+1.3 +2.0 -0.6	+1.6 +2.3 -0.5
Sept. 5 7 Oct. 7 Nov. 1	Cape Greenwich Cape Greenwich Cape	164 B. Ophiuchi 190 B. Sagittarii 18 Aquarii 44 Leonis ρ Sagittarii	I E	-0. 63 -0. 90 +0. 61	+0.41 +0.93 +0.56	+0. 45 0. 00 -0. 83	+0. 57 0. 00 -0. 02	+0. 42 +0. 72 0. 00 +0. 83 -0. 28	+0.06 +0.04 -0.13	+0.04 +0.22 +0.18	-0. 59 +0. 03 +0. 38	-0. 64 -0. 88 -0. 47	+2.3 -1.7 0.0	-1.4 +0.1
12 12 12 14 Dec. 3	Strassburg Strassburg Cape Cape Prague	7 Tauri 7 Tauri 64 Tauri 68 Orionis h Aquarii	E	+0.81 +0.88 +0,86	+0. 02 +0. 02 +0. 35	-0. 01 +0. 02 +0. 26	-0. 59 +0. 48 +0. 48	+0. 39 +0. 59 -0. 48 -0. 55 -0. 05	+0. 13 -0. 02 +0. 06	-0. 13 -0. 16 -0. 03	+0. 57 -0. 44 -0. 59	-0. 26 -0. 28 -0. 56	-0. I -0. 9 -1. 0	+0. I -0. 7 -0. 8
3 3 6 18 1887, Jan. 5	Greenwich Greenwich Cape Greenwich Greenwich	h Aquarii 84 Aquarii μ Piscium γ Virginis f Tauri	I E	-0. 90 -0. 90 +0. 74	+1.00 +0.69 +0.65	-0. 03 -0. 18 +0. 58	+0.01 +0.21 -0.43	-0. 32 -0. 03 -0. 27 -0. 72 +0. 38	+0. 03 -0. 08 +0. 32	+0. 30 +0. 29 +0. 19	-0. 04 -0. 14 +0. 11	-1.00 -0.78 -0.69	-1.4 -0.3 +3.3	-1. 2 -0. 1 +3. 4
5 6 6 6	Greenwich Strassburg Strassburg Strassburg Greenwich	f Tauri θ² Tauri θ² Tauri θ¹ Tauri θ² Tauri	EB EB	-0. 61 +0. 47 +0. 84	+0. 03 -0. 02 -0. 04	-0. 08 -0. 10	-0. 79 -0. 88 -0. 55	+0. 58 +0. 80 +0. 89 +0. 55 +0. 68	+0. 10 +0. 17 +0. 15	+0. 12 -0. 07 -0. 14	+0. 70 +0. 82 +0. 53	-0. 35 +0. 26 +0. 46	-0. 2 +0. 4 +0. 7	-0. I +0. 5 +0. 9

GROUP XII-1874-1890-Continued.

Date.	` Place.	Star.	Ph.	λ	к	iθ	i	$b_{\rm o}$	α_{o}	$\hat{\sigma}_{o}$	ε	P	n	n'
1887, Jan. 6 11 12 12 12	Greenwich Cape Greenwich Greenwich Greenwich	α Tauri 7 Leonis 45 Leonis ρ Leonis ρ Leonis	I E IB E	+0.93 +0.81 -1.03	+0. 76 +0. 70 -0. 89	+0.55 +0.69 +0.39	+0.09 -0.03 -0.03	-0. 56 -0. 69 -0. 39	+0. 28 +0. 32 -0. 06	+0. 16 +0. 17 -0. 28	-0. 31 -0. 29 -0. 20	-0. 48 -0. 42 -0. 48 +0. 61 -0. 59	-5.6 -5.6 +1.6	-5.4
19 28 28 30 Feb. 1	Cape Greenwich Greenwich Pola Cape	78 B. Ophiuchi 4 Ceti 5 Ceti Piscium 3 B. Tauri	_	+0. 84 -0. 71 -0. 55 -0. 88	+0. 15 +0. 77 +0. 60 +0. 75	-0. 12 -0. 52 -0. 68 -0. 15	-0. 51 +0. 31 +0. 40 +0. 21	-0. 52 -0. 61 -0. 79 -0. 26	+0. 10 -0. 16 -0. 23 -0. 04	+0. 12 +0. 23 +0. 16 +0. 29	+0. 52 -0. 03 -0. 02 -0. 16	-0. 69 -0. 64 -0. 50 -0. 96 -0. 88	+0.8 -0.4 -1.3 -1.1	+1.0 -0.3 -1.2 -0.9
4 6 7 18 Mar. 2	Cape Greenwich Strassburg Cape Prague	57 Orionis 3 Cancri θ Cancri 246 B. Sagittarii α Tauri	I I E	-0. 84 -1. 06 -0. 54 +0. 72	-0. 19 -0. 64 -0. 38 -0/28	+0. 28 +0. 26 +0. 84 +0. 49	+0. 52 +0. 16 +0. 29 +0. 40	-0. 59 -0. 30 +0. 88 +0. 75	-0. 12 -0. 13 +0. 06 +0. 04	+0. 04 -0. 11 -0. 10 +0. 07	-0. 54 -0. 33 -0. 74 -0. 57	-0. 54 -0. 26 -0. 03 -0. 55 -0. 56	-4.8 -0.9 -0.9 -0.8	-4.6 -0.7
2 2 2 2 2	Prague Greenwich Greenwich Pola Pola	α Tauri α Tauri α Tauri α Tauri α Tauri α Tauri	EB I EB I EB	-0. 14 +0. 25 -0. 80	+0. 02 -0. 03 +0. 10	+0.97 +0.95 +0.11	+0. 19 +0. 18 +0. 54	-0. 99 -0. 97 -0. 56	-0. 01 -0. 15 -0. 11	0.00 -0.06 +0.14	-0. 92 -0. 95 -0. 55	+0. 59 -0. 14 +0. 26 -0. 83 +0. 86	-0. I +0. 2 0. 0	
8 8 13 14	Prague Göttingen Göttingen Greenwich Cape	ρ Leonis ρ Leonis ρ Leonis γ Libræ φ Ophiuchi	I I EB E E	-1.07 +0.99 +1.03	-0. 89 +0. 83 +0. 57	+0. 38 +0. 51 +0. 01	-0. 05 -0. 07 -0. 26	-0. 38 -0. 52 -0. 26	-0. 10 +0. 32 +0. 18	-0. 27 +0. 21 +0. 22	-0.07 -0.16 +0.23	-0. 17 -0. 17 +0. 16 -0. 79 -0. 55	+1.4 +0.8 -0.7	+1.4 +1.6 +1.6 -0.
31 Apr. 4 4 6 9	Cape Cape Cape Cape Cape	68 Orionis α Leonis α Leonis b Virginis 18 Libræ	I I EB I E	-0.97 +1.09 -1.12	-0.81 +0.90 -0.98	-0. 49 +0. 22 +0. 17	+0. 03 +0. 01 -0. 10	+0. 49 +0. 22 -0. 20	-0. 28 +0. 12 -0. 14	-0. 21 +0. 26 -0. 33	+0. 25 +0. 13 -0. 07	-0. 99 -0. 56 +0. 62 -0. 30 -0. 31	+1.6 +0.1 -0.2	
15 15 30 May 1 4	Cape Cape Greenwich Cape Prague	47 B. Capricor. 61 B. Capricor. 54 Cancri ψ Leonis γ Virginis	E I I I	+0.68 -0.77 -1.07	-0. 39 -0. 54 -0. 86	-0. 65 -0. 67 -0. 03	-0. 22 -0. 18 0. 00	-0. 68 +0. 69 -0. 03	-0. 11 -0. 20 -0. 13	-0. 13 -0. 12 -0. 24	-0. 59 +0. 51 -0. 07	-0. 85 -0. 72 -0. 72 -0. 95 -0. 32	+4.5 -2.5 +0.3	-0. +4. -2. +0. +1.
June 3 13 13 July 1	Cape Cape Cape Greenwich Strassburg	18 Libræ 4 Ceti 5 Ceti 7 Libræ 7 Libræ	E E I I	+0. 42 +0. 58 -0. 53	-0. 47 -0. 64 -0. 33	+0.61 +0.07	-0. 53 -0. 46 +0. 87	+o. 88 +o. 77 +o. 87	+0. 27 +0. 23 -0. 29	-0. 10 -0. 15 -0. 09	0.00 +0.01 -0.74	-0. 54 -0. 47 -0. 63 -0. 36 -0. 37	+0.6 0.0 -2.7	+0. +0. +0. -2. -3.
1 6 16 16 16	Strassburg Strassburg Strassburg Strassburg Pola	η Libræ o Capricor. α Tauri α Tauri α Tauri	EB E IB E IB	+0.86 -0.54 +0.68	-0. 36 +0. 24 -0. 30	+0. 45 +0. 25 +0. 22	+0. 14 +0. 79 +0. 67	+0. 47 -0. 83 -0. 70	+0.09 -0.17 -0.12	-0. 12 +0. 09 -0. 15	-0. 32 -0. 81 -0. 60	+0. 44 -0. 21 +0. 38 -0. 48 +0. 52	+0.9 -1.4 +0.1	-2. +1. -1. +0.
Aug. 1 1 5 8	Cape Cape Cape Cape Greenwich	φ Ophiuchi 190 B. Sagittarii d Sagittarii 64 Aquarii 29 Ceti	I E E	-0.85 -0.71 +0.89 +0.55	0.00 0.00 -0.76 -0.60	+0. 41 -0. 58 +0. 28 -0. 43	+0. 30 -0. 37 -0. 08 +0. 66	+0.51 -0.69 +0.29 -0.79	-0. 03 -0. 07 +0. 08 -0. 30	+0.03 +0.02 -0.26 -0.26	-0. 55 +0. 62 -0. 07 -0. 16	-0. 76 -0. 45 -0. 37 -0. 29 -0. 52	-1.7 +1.2 -1.5 +0.7	-1. +1. -1. +0.
Sept. 3 31 31 3 13	Cape Greenwich Cape Cape Cape	χ² Orionis 45 Capricor. 27 Piscium 29 Piscium θ Cancri	E I E E	-0. 92 +0. 70 +0. 88 +0. 77	+0. 58 +0. 74 -0. 93 +0. 32	+0. 15 +0. 50 +0. 19 -0. 67	-0.01 -0.40 -0.16 -0.16	+0. 15 +0. 64 +0. 25 +0. 69	+0. 05 +0. 19 +0. 06 -0. 01	+0. 24 -0. 21 -0. 30 +0. 12	-0. 16 -0. 01 +0. 04 +0. 59	-0. 70 -0. 39 -0. 17 -0. 21 -0. 50	-1.9 +1.5 -0.4 0.0	-1. +1. -0.
Oct. 12 12 12 26 28	Strassburg Greenwich Greenwich Greenwich	α Leonis α Leonis α Leonis 70 Aquarii 54 B. Ceti	IB IB E I I	-1.09 +1.09 -0.89 -0.65	-0. 72 +0. 72 +0. 66 +0. 69	-0. 04 -0. 03 +0. 22 +0. 46	+0. 01 +0. 01 -0. 09 -0. 52	+0. 04 +0. 03 +0. 24 +0. 69	0. 17 +0. 14 +0. 09 +0. 27	-0. 26 +0. 27 +0. 30 +0. 29	+0. 02 +0. 06 -0. 15 -0. 02	+0. 73 +0. 75 -0. 75 -0. 87 -0. 43	-0.5 -1.0 -1.1	- I. - I.
Nov. 7 21 22 22 24	Cape Cape Cape Cape Cape	 ∂ Cancri 42 Capricor. σ Aquarii 58 Aquarii 4 Ceti 	E I I I I	-0. 75 -0. 63 -0. 77 -0. 87	+0. 29 +0. 40 +0. 50 +0. 85	-0. 61 -0. 68 +0. 51 +0. 18	+0. 08 +0. 25 -0. 19 -0. 19	-0. 62 -0. 73 +0. 55 +0. 26	-0. 16 -0. 19 +0. 16 +0. 11	+0. 15 +0. 15 +0. 27 +0. 34	+0. 35 +0. 30 -0. 24 -0. 05	-0. 96 -0. 76 -0. 68 -0. 84 -0. 91	-0. 3 +0. 2 -3. 6 -0. 1	-0. +0. -3. -0.
24 24 Dec. 17	Cape Cape Cape Cape Greenwich	5 Ceti 19 B. Ceti ρ Capricor. 34 B. Capricor. 75 Tauri	I I I I	-0. 80 -1. 01 -0. 98	+0. 78 +0. 05 +0. 05	-0. 31 -0. 01 +0. 25	+0. 33	-0. 45 -0. 01 +0. 26	-0. 12 -0. 07 -0. 04	+0. 28 +0. 14 +0. 15	-0.04 +0.01 -0.28	-0. 93 -0. 84 -0. 51 -0. 49	-0. 2 -1. 5 -0. 1	-0. -1. -0.

GROUP XII-1874-1890-Continued.

Date.	Place.	Star.	Ph.	λ ,	K	il	ï	b_{o}	$\alpha_{\rm o}$	ò _o	ε	P	n	n'
1888, Jan. 15 27 Mar. 9 .9	Cape Cape Cape Cape Cape	μ Capricor. 85 Geminor. 44 Capricor. 45 Capricor. δ Tauri	I E E	-0. 48 +0. 73 +0. 49	-0. 02 -0. 16 -0. 11	-o. 86 -o. 63 +o. 83	-0.02 +0.15 -0.20	+0.06 +0.88 -0.65 +0.86 +0.59	-0. 12 -0. 13 +0. 21	-0.04 -0.20 -0.09	+0. 77 +0. 44 -0. 55	-0. 04 -0. 43 -0. 29	+0.7 -0.1 -2.5	" -1.0 +0.7 +0.2 -2.0 -1.0
July 17 17 20 21	Cape Cape Cape Cape Cape	l Leonis £ Libræ 18 Libræ 16 G. Sagittarii 36 Sagittarii	I I I	-0. 84 -0. 49 -1. 08	-0. 78 -0. 45 -0. 77	+0. 15 -0. 22 -0. 14	+0. 61 -0. 87 -0. 09	+0. 98 +0. 63 -0. 89 -0. 17 -0. 81	-0. 32 +0. 20 -0. 16	-0. 20 -0. 11 -0. 09	-0.45 +0.57 +0.10	-0. 76 -0. 44 -0. 63	-1.7 +1.0 -0.3	+0.2 -1.7 +1.0 -0.3 +1.7
21 21 23 23 23	Cape Cape Cape Cape Cape	E Sagittarii E Sagittarii 19 Capricor. 21 Capricor. θ Capricor.	EB E E	+0. 59 +1. 04 +0. 79	+0. 35 +0. 21 +0. 16 +0. 21	+0. 79 -0. 09 -0. 64 -0. 09	+0. 26 +0. 01 +0. 12 +0. 02	+0. 84 +0. 84 -0. 09 -0. 66 -0. 09	+0.09 +0.14 -0.02 +0.10	+0. 02 +0. 17 -0. 16 -0. 19	-0. 86 +0. 07 +0. 52 +0. 08	+0. 20 +0. 04 +0. 03 +0. 04	-4.3 +0.3 -3.9 +2.3	-4.5 -4.0 +0.8 -3.5 +2.8
25 28 Aug. 17 20 Sept. 13	Cape Cape Cape Pola Cape	70 Aquarii 35 Ceti 121 B.Sagittarii 7 Capricor. 15 Sagittarii	E I I I	-0. 63 -0. 94 -0. 96	-0. 79 -0. 43 -0. 08 -0. 79	-0. 03 +0. 75 +0. 35 -0. 37	+0. 11 +0. 29 -0. 14 -0. 18	-0. 88 -0. 12 +0. 81 +0. 38 -0. 42	-0. 05 -0. 11 +0. 01 -0. 10	-0. 37 0. 00 +0. 22 -0. 07	+0. 04 -0. 75 -0. 31 +0. 34	-0. 85 -0. 46 -0. 25 -0. 91	-0.7 -2.2 -4.5 +4.8	+0.6 -0.3 -2.2 -4.5 +4.8
13 16 Oct. 9 13 15	Cape Pola Cape Pola Cape	21 Sagittarii 30 Capricor. 29 Ophiuchi 20 Capricor. 70 Aquarii	I I I	-1.00 -0.79 -0.87 -0.94	-0. 26 -0. 71 -0. 37 +0. 05	+0.04 -0.52 -0.49 -0.15	-0.01 -0.45 +0.12 +0.14	-0. 77 +0. 04 -0. 69 -0. 50 -0. 21	-0.07 0.00 -0.15 -0.10	+0. 21 -0. 14 +0. 16 +0. 29	-0. 09 +0. 59 +0. 30 +0. 03	-0. 78 -0. 58 -0. 84 -0. 77	+1.7 +1.2 +3.0 +0.6	+2.9
Nov. 15 Dec. 20 1889, Jan. 8	Greenwich Cape Cape Cape Göttingen	μ Ceti ν Piscium μ Cancri 35 Ceti 64 Tauri	E I	-0. 72 +0. 93 -0. 34	+0. 58 -0. 53 +0. 19	+0. 01 -0. 05 +0. 08	-0. 61 +0. 01 -0. 93	+0. 53 +0. 61 +0. 05 +0. 93 -0. 46	+0. 23 +0. 01 +0. 34	+0. 34 +0. 10 +0. 21	+0. 15 +0. 05 +0. 20	-0. 45 -0. 55 -0. 36	+1.5 -0.8 +0.8	-0. 5 +1. 4 -0. 3 +0. 8 -0. 7
Feb. 5 9 12 Mar. 10	Cape Cape Greenwich Greenwich Cape	141 Tauri v Piscium i Tauri 63 Geminor. n Geminor.	I I	-0. 40 -0. 51 -0. 55	+0. 26 +0. 56 +0. 45	-0. 07 -0. 66 +0. 81	-0. 90 -0. 51 +0. 02	-0. 91 +0. 90 +0. 83 -0. 81 +0. 48	+0. 33 +0. 17 +0. 03	+0. 22 +0. 13 -0. 03	+0. 31 +0. 74 -0. 81	-0. 38 -0. 52 -0. 32	-0.9 -1.3 -0.5	-0.9 -0.9 -1.3 -0.6 +1.3
23 Apr. 20 20 June 5	Cape Cape Cape Cape Cape	44 Geminor. 14 Sagittarii 30 Sagittarii 31 Sagittarii 167 B. Leonis	E	+1.06 +1.03 +0.79	+0. 97 +0. 90 +0. 68	-0. 10 +0. 30 -0. 68	-0. 03 +0. 03 -0. 07	+0. 86 -0. 11 +0. 30 -0. 69 +0. 35	+0. 16 +0. 15 +0. 13	+0.07 +0.01 0.00	+0. 18 -0. 21 +0. 74	-1.00 -0.87 -0.66	-3. I -4. 3 -1. 8	-0. 2 -2. 6 -3. 8 -1. 4 -0. 8
5 10 July 19 Aug. 8 Sept. 4	Cape Cape Cape Cape Cape	46 Leonis 13 Libræ 64 Ceti 168 B. Sagittarii 12 Sagittarii	E	-0. 94 +0. 94 -0. 52	-0. 70 -0. 44 -0. 44	+0. 46 -0. 02 +0. 89	+0. 27 -0. 05 -0. 02	-0. 59 +0. 53 +0. 05 +0. 89 +0. 89	-0. 35 +0. 05 -0. 10	-0. 25 -0. 36 +0. 01	-0. 38 +0. 10 -0. 90	-0.43 -1.00 -0.26	-2.7 -1.5 -4.2	-0. 2 -2. 8 -1. 0 -4. 3 -3. I
16 30 Oct. 5 29 Nov. 29	Greenwich Cape Greenwich Greenwich Cape	7 Tauri 190 B. Ophiuchi 56 Aquarii 208 B. Sagittarii 74 Aquarii	I I I	— 1. 03 —0. 78 —1. 07	-0. 92 -0. 46 -0. 98	-0. 26 -0. 39 -0. 18	-0. 08 +0. 56 +0. 03	+0.67 -0.27 -0.68 -0.18 -0.27	-0. 12 -0. 31 -0. 17	-0. 15 +0. 20 +0. 03	+0. 18 +0. 24 +0. 08	-0.90 -0.52 -0.89	+1.0 +0.3 +0.8	+0.9 +0.2
Dec. 1 29 31 31 1890, Jan. 3	Cape Cape Greenwich Cape Göttingen	15 Ceti 33 Ceti 85 Ceti 38 Arietis 1 Tauri	I I I	-0. 65 -0. 69 -0. 70	-0. 11 +0. 20 +0. 21	-0. 17 +0. 41 +0. 41	-0. 73 +0. 54 +0. 52	-0. 97 +0. 75 -0. 68 -0. 66 +0. 91	+0. 25 -0. 27 -0. 25	+0. 33 +0. 22 +0. 22	+0. 12 -0. 62 -0. 44	-o. 67 -o. 67 -o. 68	+0. I -1. 0	-1.7 -0.1 0.0 -1.1 -1.4
15 Feb. 7 7 7	Greenwich Göttingen Göttingen Greenwich Greenwich	o Libræ v Virginis v Virginis v Virginis v Virginis v Virginis	E I E IB	+0. 97 -0. 94 +0. 92 -0. 94	-0. 49 +0. 41 -0. 40 +0. 41	+0. 23 0. 00 +0. 03 -0. 01	+0. 25 -0. 01 -0. 22 +0. 09	+0. 34 -0. 01 -0. 23 +0. 09 -0. 07	0.00 -0.02 +0.12 -0.06	+0. 34 -0. 38 +0. 35 -0. 37	-0. 18 -0. 05 +0. 03 -0. 01	-0.83 +0.64 -0.62 +0.64	+1.8 -3.3 $+2.3$ -3.0	+2.3 -3.4 +2.8 -3.1
12 14 Mar. 14 Apr. 7	Cape Göttingen	θ Libræ 4 Sagittarii 117 B. Sagittarii 30 Libræ 32 Libræ	E E E	+0. 88 +0. 51 +0. 97 +0. 96	+0. 58 +0. 44 +0. 86 +0. 43	-0. 45 -0. 89 -0. 43 -0. 31	-0. 28 -0. 03 +0. 06 -0. 23	-0. 53 -0. 89 -0. 43 -0. 39 -0. 75	+0. 25 +0. 16 +0. 17 +0. 25	+0. 21 +0. 05 +0. 02 +0. 27	+0. 50 +0. 92 +0. 51 +0. 35	-0. 83 -0. 37 -0. 85 -0. 59	-2.0 -0.7 -1.7 +0.8	-1.6 -0.4 -1.2
15 28 30 30 May 3	Cape Cape Greenwich Greenwich Greenwich	ψ ³ Aquarii η Leonis ν Virginis ν Virginis 95 Virginis	E I I EB	+1.06 -0.76 -0.75 +0.55	+0. 72 +0. 73 +0. 42 -0. 44	-0. 03 -0. 27 +0. 04 +0. 05	+0. 14 +0. 48 -0. 62 -0. 82	-0. 15 +0. 55 -0. 62 +0. 82 +0. 99	+0. 11 -0. 16 +0. 20 +0. 35	-0. 38 -0. 22 -0. 36 +0. 16	+0. 12 +0. 25 -0. 14 -0. 06	-0. 67 -0. 77 -0. 51 +0. 37	-0.3 -3.1 -0.4 -5.3	+0. 2 -3. 2 -0. 5 -5. 0

GROUP XII—1874-1890—Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	b _o	α_{o}	ð,		P	n	n'	
1890, May 3 9 30 June 2 4	Greenwich Cape Cape Greenwich Cape	κ Virginis 329 B. Sagittarii 566 B. Virginis ω Ophiuchi 24 Sagittarii	I IB	+0. 79 -0. 89 -0. 92	+0.71 +0.04 -0.51	-0.60 +0.23 +0.53	+0. 34 +0. 40 +0. 16	-0.69 +0.47	+0.06 -0.12 -0.28	-0.09 -0.14 -0.19	+0.48 -0.28 -0.57	-0. 02 -0. 66 -0. 54 -0. 03 -0. 40	-3.0 +0.7 -1.3	+0.7 -2.6 +0.6 -1.4 +1.9	
5 5 6 29 29	Cape Cape Cape Greenwich Greenwich	53 Sagittarii 274 B. Sagittarii 17 Capricor. 56 B. Scorpii β Scorpii		+0.86 +1.10 +1.08	+0. 76 +0. 99 +0. 52	-0. 57 +0. 12 +0. 07	+0. 28 -0. 11 +0. 03	-0. 63 +0. 16 +0. 07	+0. 12 +0. 24 +0. 15	-0.06 -0.18 +0.28	+0. 65 -0. 11 +0. 01	-0.46 -0.46 -0.73 +0.51 +0.51	-0.6 -1.3 -1.7	-1.3 -0.2 -0.7 -1.2 -5.2	
July 12 21 Aug. 26 Sept. 1	Göttingen Göttingen Cape Cape Cape	β Scorpii c Tauri ω Virginis 208 B. Sagittarii f Piscium	EB I I E	+0.46 -0.88 -1.05	-0. 18 +0. 66 -0. 86	-0. 84 0. 00 -0. 29	-0. 23 +0. 24 +0. 14	+0. 87 +0. 24 -0. 32	+0. 22 -0. 00 -0. 21	-0. 10 -0. 36 +0. 03	+0.85 -0.05 +0.23	+0. 50 -0. 38 -0. 80 -0. 67 -0. 47	-3. I -0. 3 +0. 6	+0.7	
6 20 27 30 Oct. 24	Greenwich Greenwich Greenwich Cape Cape	394 B. Tauri 24 Ophiuchi 33 Piscium 31 Arietis 351 B. Aquarii	E I IB E I	-0.80 -1.02 +1.00	-0. 41 -0. 72 +0. 27	-0. 62 -0. 07 +0. 23	-0. 05 -0. 42 +0. 19	-0. 62 +0. 42 -0. 30	+0. 04 -0. 02 +0. 03	-0. 18 -0. 41 -0. 39	+0. 52 -0. 11 -0. 11	-0. 87 -0. 77 -0. 18 -0. 37 -0. 20	-0.7 +4.7 +0.6	-0.8 +4.6 +1.1	
Nov. 17 20 21 Dec. 1	Greenwich Cape Cape Kasan Cape	ξ¹ Ceti 36 B. Capricor. ψ³ Aquarii 33 Piscium 79 Cancri	IB I I E	-0. 96 -1. 06 -0. 79 +0. 25	-0.85 -0.93 -0.65 -0.27	-0. 30 0. 00 +0. 14 +0. 53	+0. 33 +0. 13 +0. 66 +0. 80	-0. 45 -0. 13 -0. 67 -0. 96	-0. 22 -0. 23 -0. 40 +0. 21	+0. 14 +0. 37 +0. 26 +0. 04	+0. 30 -0. 04 -0. 69	-0. 15 -0. 83 -0. 96 -0. 68 -0. 24	+2.5 +2.3 +2.5 -0.9	+2.4 +2.2 +2.4 -0.8	
20 23	Kasan Cape	ν Piscium 53 Tauri	I	-0. 92 -0. 52	-0. 57 +0. 03	-0. 29 -0. 84	-0. 34 -0. 13	+0.45 +0.85	+0. 08 +0. 16	+0. 35 +0. 18	+0.09 +0.73	-0. 87 -0. 30	+3.4 -0.9	+3.3 -1.0	
GROUP XIII—1891-1908.															
1891, Jan. 4 Feb. 12 17 20 21	Greenwich Göttingen Greenwich Cape Cape	2 Libræ 29 Ceti 121 Tauri λ Cancri 90 H¹. Cancri	E I I I	-0. 98 -0. 77 -0. 72	-0. 74 +0. 17 +0. 62	一0. 26 十0. 57 一0. 40	-0. 38 -0. 12 +0. 47	+0.46 -0.58 +0.61	+0. 02 -0. 11 -0. 11	+0.40 +0.11 -0.12	+0. 03 -0. 64 +0. 47	-0. 73 -0. 64 -0. 78 -0. 44 -0. 36	+1.0 +2.2 -1.2	+0.9 +2.1	
Mar. 15 19 19 26 26	Cape Cape Cape Hamburg Greenwich	56 Tauri ω¹ Cancri ω² Cancri l Virginis l Virginis	I I IB E	-0. 18 -0. 90 -0. 81	-0. 13 +0. 67 +0. 60	+0. 67 -0. 09 -0. 33	-0. 71 +0. 09 -0. 36	-0. 98 +0. 13 -0. 49	+0. 14 -0. 03 +0. 19	-0. 05 -0. 13 -0. 41	-0.88 +0.06 +0.20	-0. 38 -0. 17 -0. 91 +0. 30 -0. 30	-1.4 -0.6 -3.3	-1.2 -1.4 -0.6 -3.3	
28 Apr. 15 18 20 20	Greenwich Kasan Greenwich Göttingen Greenwich	ν Libræ κ Geminor. 42 Leonis ν Virginis ν Virginis	E E I I E B	+0. 93 -0. 84 -0. 87	-0. 60 -0. 91 -0. 95	+0. 06 -0. 05 -0. 07	-0.06 +0.36 -0.26	-0. 10 +0. 36 -0. 27	+0.05 -0.12 +0.11	+0. 30 -0. 30 -0. 42	-0. 04 +0. 13 -0. 07	-0. 59 +1.00 -0. 79 -0. 59 +0. 58	-0.4 +0.2 -4.7	0.0 +0.2 -4.7	
25 25 25 25 25 May 4	Göttingen Göttingen Göttingen Hamburg Cape Göttingen	41 Libræ κ Libræ κ Libræ κ Libræ 54 B. Ceti	E IB E E	-0.85 +0.95 +0.96 +1.11	+0. 14 -0. 16 -0. 16 +0. 93	+0.48 +0.20 +0.15 +0.01	+0. 10 +0. 04 +0. 03 +0. 03	+0. 49 +0. 20 +0. 15 -0. 03	-0. 21 +0. 01 +0. 03 +0. 20	-0. 24 +0. 31 +0. 31 -0. 43	-0. 50 +0. 05 0. 00 +0. 08	-0. 45 +0. 40 -0. 45 -0. 46 -0. 65	-5.4 +1.2 +1.3 -0.5	-5.4 +1.6 +1.7	
14 14 28 June 12	Cape Cape Cape Kasan	ξ Cancri 79 Cancri φ Capricor. i Leonis	I E I	-0. 88 -0. 91 +0. 81	+0. 80 +0. 82 +0. 68	-0. 11 0. 00 -0. 24	+0. 24 +0. 01 +0. 59	+0. 26 +0. 01 -0. 64	-0. 08 -0. 02 -0. 03	-0. 24 -0. 25 -0. 23	+0. 12 -0. 08 +0. 53	-0. 94 -0. 96 -0. 73 -0. 60	0. 0 -1. 8 -1. 9	0. 0 -1. 8 -1. 6 -0. 2	
July 18 18 18 22 Aug. 14	Cape Cape Cape Cape Cape	157 B. Ophiuchi Pi. XVII 31 39 Ophiuchi 1 Capricor. 22 Ophiuchi	I I E I	-0. 57 -0. 56 +0. 75	-0. 04 -0. 04 +0. 58	+0.80 +0.81 +0.18	-0. 22 -0. 22 -0. 72	+0.83 +0.84 +0.75	-0. 20 -0. 20 +0. 37	-0. 07 -0. 07 -0. 15	-0. 85 -0. 85 -0. 49	-0. 53 -0. 30 -0. 29 -0. 22 -0. 85	-3.8 -4.0 -2.1	+0.6 -3.8 -4.0 -1.8 +2.2	
14 18 20 20 20	Greenwich Cape Cape Cape Cape	26 Ophiuchi γ Capricor. ç ⁱ¹ Aquarii ç ⁱ² Aquarii σ Arietis	I E E E	-1.13 +0.86 +0.91	+0. 79 +0. 75 +0. 79	-0. 02 +0. 17 -0. 16	+0. 04 +0. 64 -0. 59	-0. 05 -0. 66 +0. 61	-0. 26 -0. 07 +0. 45	+0. 25 -0. 37 -0. 26	+0.01 +0.22 -0.10	-0. 69 -0. 20 -0. 20 -0. 21 -0. 23	-0. I -1. 5 -1. 6	-2.5 -0.1 -1.2 -1.3 -3.6	
Oct. 12 14 14 15 15	Cape Cape Cape Göttingen Greenwich	φ Capricor. ψ¹ Aquarii ψ² Aquarii 30 Piscium 30 Piscium	I I I I	-0. 74 -0. 98 -0. 62	-0. 64 -0. 83 -0. 55	+0. 22 -0. 15 -0. 40	+0. 72 -0. 49 -0. 74	-0. 76 +0. 51 +0. 84	-0.46 -0.01 +0.24	+0. 19 +0. 40 +0. 32	+0. 15 -0. 17 -0. 12	-0. 71 -0. 39 -0. 51 -0. 26 -0. 30	-2. 2 -0. I -0. 7	+1.9 -2.1 0.0 -0.7 -0.4	

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ .	K	iθ	i	b _o	α_{o}	ô,		P	n	n'
1891, Nov. 6 6 7 10	Cape Cape Göttingen Göttingen Göttingen	σ Sagittarii σ Sagittarii ω Sagittarii τ Aquarii τ Aquarii	I EB I I EB	+1.02 -1.00 -0.41	+0. 24 -0. 44 -0. 35	+0. 11 +0. 10 +0. 18	+0. 11 -0. 16 +0. 91	-0. 15 +0. 18 -0. 92	+0. 14 -0. 10 -0. 43	-0. 28 +0. 12 +0. 07	+0. 18 -0. 25 +0. 33	-0.84 +0.87 -0.94 -0.35 +0.62	-1.3 +3.8 +0.7	" +1.2 -1.0 +3.9 +0.7 -5.1
10 10 10 10	Kasan Kasan Hamburg Padua Padua	69 Aquarii τ Aquarii τ Aquarii τ Aquarii τ Aquarii τ Aquarii	I I I I EB	-1.05 -0.98 -0.26 -0.76	-0. 90 -0. 85 -0. 22 -0. 67	-0. 04 +0. 08 +0. 19 +0. 13	-0. 23 +0. 41 +0. 96 +0. 70	+0. 24 -0. 42 -0. 97 -0. 71	-0. 10 -0. 33 -0. 42 -0. 40	+0. 40 +0. 32 +0. 02 +0. 23	+0. 17 +0. 09 +0. 29 +0. 23	-0. 91 -0. 86 -0. 22 -0. 68 +0. 85	+3.0 +2.7 +0.5 +0.9	+3. I +2. 8 +0. 5 +1. 0
19 1892, Jan. 19 19 Feb. 1	Cape Hamburg Prague Göttingen Greenwich	υ Geminor. γ Virginis γ Virginis γ Virginis γ Virginis 376 B. Aquarii	E IB IB IB	-0. 76 -0. 78 -0. 74 -0. 94	+0. 86 +0. 86 +0. 82 -0. 80	+0. 37 +0. 36 +0. 41 +0. 28	+0. 36 +0. 36 +0. 40 +0. 45	+0. 52 +0. 51 +0. 57 -0. 53	-0. 23 -0. 23 -0. 27 -0. 42	-0. 33 -0. 32 -0. 31 +0. 32	-0. 11 +0. 11 -0. 12 0. 00	-0. 65 +0. 81 -0. 81 +0. 77 -0. 56	-3.6 -3.0 -3.5 +1.7	
7 7 23 Mar. 8 16	Greenwich Greenwich Cape Greenwich Hamburg	118 Tauri (S.) 118 Tauri (N.) σ Sagittarii 4 Cancri λ Virginis	E	-0. 96 +1. 00 -0. 53 +0. 76	-0. 42 +0. 07 +0. 03 -0. 79	-0. 28 +0. 08 +0. 34 -0. 52	+0. 16 -0. 10 -0. 77 -0. 14	+0. 32 +0. 13 -0. 84 -0. 54	-0.08 +0.12 +0.07 +0.22	+0. 13 -0. 03 -0. 10 +0. 29	+0. 27 -0. 13 -0. 79 +0. 35	-0. 82 -0. 83 -0. 70 -0. 47 -0. 56	-0. I +2. 0 +0. 8 -0. I	
Apr. 2 May 8 8 June 8	Greenwich Göttingen Göttingen Cape Hamburg	139 Tauri θ Virginis θ Virginis 26 Ophiuchi θ Scorpii	I I EB E I	-0. 82 +0. 88 +0. 74 -0. 44	+0. 90 -0. 97 -0. 46 +0. 37	+0. 34 +0. 20 +0. 53 -0. 85	+0. 20 -0. 12 -0. 28 +0. 24	+0. 40 +0. 23 +0. 60 -0. 88	-0. 18 -0. 09 -0. 07 +0. 22	-0. 36 +0. 45 +0. 17 -0. 17	-0. 17 -0. 01 -0. 52 +0. 74	-0. 75 -0. 47 +0. 51 -0. 35 -0. 13	-1.5 -1.5 -1.3 -0.7	-1. I
July 4 6 6	Santiago Cape Cape Cape Cape	κ Capricor. α Libræ ρ Ophiuchi (N.) ρ Ophiuchi (S.) χ Capricor.	E I I E	-0.86 -0.83 -0.83 +0.29	+0. 92 +0. 69 +0. 69 +0. 08	-0. 30 +0. 41 +0. 42 -0. 05	0.00 -0.17 -0.17 +0.96	-0. 30 +0. 45 +0. 45 -0. 96	+0.09 -0.15 -0.15 -0.22	-0. 39 -0. 20 -0. 20 -0. 13	+0. 19 -0. 37 -0. 37 +0. 75	-0. 65 -0. 82 -0. 53 -0. 53 -0. 12	0.0 -0.2 -0.8 -1.0	0. o -o. 6
13 13 19 19	Santiago Santiago Hamburg Hamburg	ψ^2 Aquarii ψ^2 Aquarii 72 Tauri v Tauri 72 Tauri 72 Tauri	IB IB E E	+1.02 -0.84 +1.07	+0. 71 -0. 66 +0. 82	-0. 14 +0. 58 +0. 11	-0. 23 -0. 25 -0. 05	+0. 27 -0. 63 -0. 12	+0. 28 -0. 29 +0. 16	-0. 40 +0. 18 -0. 26	-0. 06 -0. 64 -0. 80	+0. 75 -0. 74 +0. 64 -0. 80 -0. 70	-3.4 -1.3 +0.2	- i. I
Aug. 2 3 4 11 Sept. 6	Santiago Cape Santiago Greenwich Cape	ρ Ophiuchi 88 B. Ophiuchi 66 B. Sagittarii 14 Ceti ψ¹ Aquarii	I I E IB	-0. 36 -0. 92 +0. 63	+0. 34 +0. 39 +0. 53	一o. 78 十o. 19 一o. 67	+0. 50 -0. 24 -0. 48	+0. 31 +0. 82	+0. 14 -0. 08 +0. 50	-0. 10 -0. 03	+0. 87 -0. 36 +0. 14	-0. 75 -0. 32 -0. 64 -0. 42 0. 00	$\begin{vmatrix} -2.4 \\ +3.7 \\ -1.5 \end{vmatrix}$	+3.9 -1.4
7 11 12 15 Oct. 3	Santiago Cape Greenwich Greenwich	10 Ceti 33 Tauri K Tauri 4 Cancri T Aquarii	E E E I	+0.68 +1.05 +0.97 -0.99	+0. 59 +0. 83 +0. 30 -0. 50	+0. 74 +0. 13 +0. 06 -0. 19	-0. 26 -0. 09 -0. 24 -0. 37	-0. 78 -0. 16 -0. 25 +0. 42	-0.08 +0.15 +0.15 -0.02	-0. 22 -0. 19 +0. 16 +0. 42	-0. 72 -0. 08 -0. 17 -0. 22	-0. 16 -0. 57 -0. 96 -0. 88 -0. 48	-1.9 -0.7 +0.3 -1.1	-0.5 +0.5 -0.8
3 3 4 31 Nov. 30	Hamburg Prague Santiago Göttingen Greenwich	τ Aquarii τ Aquarii 27 Piscium ψ³ Aquarii 122 G. Pisc. (1st)	I I I I	-0. 92 -1. 12 -0. 43 -0. 50	-0. 45 -0. 77 -0. 25 -0. 41	-0. 25 +0. 08 +0. 56 -0. 88	-0.48 +0.08 +0.73 -0.20	+0. 54 -0. 11 -0. 92 +0. 90	+0. 04 -0. 29 -0. 48 +0. 29	+0.41 +0.44 +0.08 +0.30	-0. 28 -0. 03 +0. 18 +0. 33	-0. 51 -0. 76 -0. 33 -0. 29 -0. 30	-1.7 -1.1 +1.6 -0.7	-I.4 -0.8
Dec. 12 25 1893, Feb. 26 Mar. 25	Greenwich Cape Greenwich Greenwich Cape	122 G.Pisc. (2d) 46 Virginis 351 B. Aquarii c Geminor. Geminor.	I E I I I	+0.88 -0.98 -0.68	-0. 76 -0. 57 -0. 40	-0. 20 -0. 20 -0. 13	-0. 08 -0. 20 +0. 75	-0. 22 +0. 28 +0. 76	+0. 12 -0. 01 -0. 21	+0.42 +0.47 -0.00	+0. 11 -0. 11 +0. 60	-0. 30 -0. 92 -0. 95 -0. 49 -0. 94	+0. I -0. 5 -0. 9	-o. 6
Apr. 18 21 22 23 May 6	Greenwich Greenwich Greenwich Cape Greenwich	32 Tauri 47 Geminor. λ Cancri 79 Cancri b Sagittarii	I I I E	-0. 92 -0. 98 -0. 95	-0. 68 -0. 56 -0. 41	-0. 12 +0. 01 +0. 09	+0. 48 +0. 32 +0. 34	+0. 50 +0. 32 +0. 35	-0. 20 -0. 21 -0. 23	-0. 08 -0. 21 -0. 27	+0.46 +0.25 +0.23	-0. 41 -0. 81 -0. 95 -0. 92 -0. 71	-1. I -0. 3 -0. 9	-0.4
June 24 July 1 6 6	Cape Cape Cape Hamburg	ε Capricor. 28 G. Libræ χ Capricor. ε Piscium ζ Piscium	E E E	-0. 97 +0. 94 +0. 71 +0. 98	+0. 77 -0. 37 +0. 48 +0. 64	+0. 45 +0. 03 +0. 73 -0. 34	-0. 15 +0. 11 +0. 10 -0. 04	+0. 47 -0. 12 -0. 73 +0. 34	-0. 19 +0. 04 -0. 23 +0. 27	-0. 29 -0. 31 -0. 38 -0. 34	-0. 37 +0. 15 -0. 16 +0. 11	-0. 86 -0. 69 -0. 59 -0. 69 -0. 93	-1.2 +0.4 +0.6 -2.1	-0.4 -0.7 +0.2 +0.5 -2.3
9 30 Aug. 2 21 Sept. 3	Greenwich Greenwich Cape Cape Cape	32 Tauri 56 Aquarii 171 B. Piscium 3 Sagittarii β Tauri	E E I IB	+0. 97 +0. 88	-0.09 +0.50 +0.95	-0. 10 +0.52 -0.10	-0. 12 +0. 08 +0. 21	+0. 16 -0. 52 -0. 23	+0. 16 -0. 10 -0. 02	-0.40 -0.45 -0.07	-0.03 -0.12 +0.20	-0. 71 -0. 48 -0. 78 -0. 86 +0. 28	+0.9 -2.6	-1.2

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	b_{o}	$\alpha_{\rm o}$	$\partial_{\mathbf{o}}$	· ·	P	n	n'
1893, Sept. 23 Oct. 19 19 20 26	Cape Greenwich Greenwich Cape Cape	70 Aquarii 37 Capricor 38 Capricor 50 Aquarii 23 Tauri	4	-0. 95 -0. 73 -0. 97	+0. 47 +0. 36 +0. 25	0. 00 0. 00 0. 00 0. 01 15 +0. 12 1 -0. 66	0.00 -0.56 +0.13	0.00 +0.64 -0.17	-0. 07 +0. 16 -0. 18	+0. 36 +0. 32 +0. 39	-0. 04 -0. 47 -0. 08	-0. 90 -0. 69 -0. 75	-2. 2 -3. 0 -2. 0	-1. -2. -1.
26 30 Nov. 19 22 24	Cape Greenwich Cape Greenwich Cape	20 Tauri 4 Cancri 44 Piscium δ Arietis β Tauri	E E I I IB	+0.65 -0.97 -0.49	+0. 53 -0. 25 -0. 36	+0. 53 +0. 10 +0. 97 -0. 77 -0. 13	+0. 79 +0. 22 +0. 48	+0.80 -1.00 +0.90	-0. 03 -0. 01 +0. 19	+0, 14 +0, 50 +0, 20	+0. 74 +0. 14 +0. 66	-0. 57 -0. 70 -0. 07	-0. 5 -0. 1 -1. 4	+o.
Dec. 13 20 20 20	Cape Pola Cape Cape Cape	β Tauri χ Capricor. 9 Tauri 17 Tauri 16 Tauri	E I I I I	-0. 83 -0. 77 -1. 13	+0. 48 -0. 59 +0. 25	$ \begin{array}{c} -0.10 \\ +0.23 \\ -0.56 \\ -0.06 \\ +0.42 \end{array} $	+0. 34 +0. 47 +0. 06	-0.41 +0.73 +0.09	-0. 17 +0. 03 -0. 24	+0. 31 +0. 25 +0. 30	+0. 30 +0. 59 +0. 07	-0. 82 -0. 35 -0. 51	-0. 1 +0. 9 -0. 3	+0. +1. +0.
1894, Jan. 12 12 16 16	Cape Hamburg Greenwich Pola Padua	20 Tauri 24 Piscium 24 Piscium ζ Arietis ζ Arietis	I I I I	-0. 79 -0. 84 -0. 91	-0. 02 -0. 02 -0. 68	+0. 49 -0. 54 -0. 48 +0. 44 +0. 48	-0. 18 -0. 16 -0. 33	+0. 57 +0. 50 -0. 55	+0. 20 +0. 16 -0. 35	+0. 45 +0. 46 +0. 24	-0. 07 -0. 06 -0. 40	-0. 78 -0. 81 -0. 71	-4. 2 +0. 4 +1. I	-3. +1.
16 18 20 Feb. 13 15	Padua Cape Greenwich Greenwich Santiago	τ Arietis β Tauri c Geminor 36 Tauri κ Aurigæ	I I I I	-1.09 -0.78 -0.65	-0. 95 +0. 65 -0. 54	-0. 45 -0. 11 +0. 10 -0. 48 7+0. 10	+0. 26 +0. 73 +0. 61	+0. 29 +0. 74 +0. 79	-0. 23 +0. 07 +0. 06	+0. 10 +0. 12 +0. 17	+0. 27 +0. 71 +0. 70	-0. 54 +0. 11 -0. 58	+1. I -4. 3 -2. 9	-3. -2.
16 16 26 26 28	Santiago Santiago Santiago Santiago Cape	c Geminor b² Geminor σ Scorpii σ Scorpii 10 G. Sagittari	I IB E	-0. 84 -0. 40 +0. 69	-0. 74 +0. 37 -0. 64	+0. 07 -0. 07 +0. 54 +0. 38	-0. 66 -0. 72 -0. 52	-0.66 +0.90 +0.65	-0. 08 -0. 19 -0. 12	-0. 13 -0. 07 +0. 19	-0. 61 -0. 83 -0. 57	-0. 49 +0. 44 -0. 76	+1.3 -0.6 +1.3	+2. -0. +1.
Mar. 14 16 16 16 17	Göttingen Kasan Cape Greenwich Santiago	c Geminor φ Geminor Cancri ξ Cancri		-0. 38 -0. 36 -1. 02 -1. 05	-0. 35 -0. 33 -0. 91	-0. 22 +0. 17 +0. 07 -0. 06 -0. 34	+0.91 +0.93 +0.32 -0.24	+0. 94 +0. 94 +0. 33 -0. 25	-0. 04 -0. 22 -0. 26 -0. 15	+0.01 -0.05 -0.18 -0.21	+0. 94 +0. 87 +0. 23 -0. 25	-0. 36 -0. 30 -0. 83 -0. 84	-0.4 -1.2 +2.4 +0.4	+3. +1.
17 22 23 25 25	Santiago Pola Greenwich Greenwich Greenwich	90 H¹Cancri a Virginis 40 H. Virginis 2 Scorpii 3 Scorpii	I IB E E	-1.06 -1.00 +0.91 +0.93	-0. 83 +0. 09 -0. 33 -0. 73	-0. 12 +0. 09 -0. 36 +0. 05 -0. 35	-0. 19 -0. 02 +0. 16 -0. 06	-0. 22 +0. 09 -0. 39 +0. 08	-0. 14 -0. 17 +0. 25 +0. 04	-0. 33 -0. 44 +0. 34 +0. 27	-0.06 -0.04 +0.22 -0.07	-0. 72 +0. 22 -0. 42 -0. 80	+3. 1 -3. 9 0. 0	+4. -3.
Apr. 9 9 10	Cape Greenwich Hamburg Greenwich Greenwich	χ Capricor χ Tauri χ. Tauri 107 B Aurigæ 49 Aurigæ	E I I I I	-1.06 -0.98 -1.08	-0. 84 -0. 78 -0. 95	-0. 42 +0. 10 +0. 23 -0. 03 +0. 02	-0. 15 -0. 35 +0. 11	-0. 18 -0. 42 +0. 11	-0. 23 -0. 27 -0. 20	+0. 21 +0. 20 +0. 07	-0. 18 -0. 40 +0. 11	-0. 76 -0. 71 -0. 90	-0. 2 +1. 1 -0. 8	+2. +0.
11 11 12 24 25	Pola Hamburg Göttingen Cape Cape	49 Aurigæ 49 Aurigæ c Geminor 38 B. Sagittari τ Sagittari	E	-1.08 +0.82	-o. 98	+0. 02 +0. 03 0. 00 +0. 07 +0. 02	-0. 02 -0. 41	-0. 02 +0. 42	-0. 21 +0. 03	-0. 17 +0. 02	-0. 01 -0. 41	-1.00 -0.76	+1.6 +1.0	+2. +0.
29 29 May 2 12 14	Cape Cape Cape Greenwich Kasan	50 Aquarii 182 B. Aquarii 147 B. Piscium 37 Leonis β Virginis	E E I I	+0. 44 +0. 82 -0. 94	-0. 28 +0. 06 -0. 70	-0. 56 -0. 71 -0. 59 -0. 34 -0. 70	-0. 52 +0. 02 -0. 28	+0.89 +0.59 -0.44	+0.40 +0.40 +0.03	-0. 10 -0. 31 -0. 41	-0.40 +0.14 -0.22	-0.41 -0.32 -0.90	+4. I +0. 9 +0. 7	+0. +1.
July 15 17 Aug. 4	Cape Greenwich Cape Padua Cape	10 G. Sagittarii ζ Piscium 38 B. Sagittarii A Sagittarii β Virginis	E	+0. 83 -0. 58 -0. 83	+0. 13 +0. 59 +0. 93	-0. 14 -0. 58 +0. 07 +0. 13 +0. 43	+0. 11 -0. 76 +0. 35	+0. 59 +0. 76 -0. 37	+0. 39 -0. 02 -0. 08	-0.31 +0.01 +0.20	+0. 19 -0. 77 +0. 31	-0. 55 -0. 31 -0. 02	-0.7 -2.8 +0.5	-1.
23 23 23 Sept. 11 21	Padua Padua Padua Padua Cape	28 Tauri 27 Tauri 27 Tauri 27 Tauri 28 Capricor. 116 B. Aurigæ	E IB E I E	-0.87 +1.01 -0.23	+0. 54 +0. 61 +0. 23	+0. 30 +0. 31 +0. 13 +0. 63 -0. 11	-0. 45 -0. 19 +0. 74	-0. 55 -0. 24 -0. 97	-0. 27 +0. 10 -0. 31	+0. 21 -0. 28 +0. 03	-0. 44 -0. 20 +0. 73	+0.83 -0.96 -0.15	-0. 2 +0. 6 +0. 9	+0 +0 -0 +1 -1
Oct. 7 7 10 11	Prague Padua Padua Berlin Berlin	A Sagittarii A Sagittarii 50 Aquarii B. D. — 8° 6040 B. D. +28° 1095		-0. 57 -0. 60 -0. 89 -0. 92	+0. 62 +0. 65 +0. 82 +0. 71	+0. 33 +0. 31 +0. 22 +0. 04 0. 00	+0. 70 +0. 67 +0. 12 +0. 01	-0. 78 -0. 74 -0. 25 -0. 05	-0. 17 -0. 17 -0. 14 -0. 06	+0. 12 +0. 12 +0. 40 +0. 44	+0.71 +0.69 +0.11 -0.01	-0. 62 -0. 66 -0. 69 -0. 56	-1.5 -1.1 -1.5 -3.6	-0. -0. -0. -2.

GROUP XIII-1891-1908-Continued.

Date.	Place.	Star.	Ph.	λ	к	iθ	<i>i</i>	b _o	α_{o}	ð _o		P	n	n'
1894, Oct. 19, 21, 23, 23, Nov. 7	Berlin Berlin Berlin Berlin Berlin Berlin	B. D. +28° 1097 B. D. +24° 1918 B. D. +12° 2213 B. D. +12° 2215 70 Aquarii	E E E I	+1.02 +0.53 +0.74	+0. 92 +0. 42 +0. 58	-0. 20 -0. 79 +0. 66	-0. 34 -0. 39 +0. 33	-0. 39 -0. 88 +0. 74	+0. 30 +0. 48 -0. 16	+0. 22 +0. 12 +0. 38	+0. 33 -0. 40 -0. 33	-0. 84 -0. 91 -0. 42 -0. 58	-0.4 -0.6 +0.2	-1.2
7 7 7 7 9	Berlin Berlin Berlin Padua Berlin	B. D11° 5933 B. D11° 5932 243 B. Aquarii 70 Aquarii B. D. + 0° 34	I I I I	-0. 88 -0. 62 -0. 91	+0. 79 +0. 55 +0. 80	+0. 23 -0. 70 +0. 12	+0. 08 -0. 25 +0. 05	-0. 24 +0. 74 -0. 13	-0.07 +0.30 -0.10	+0.40 +0.38 +0.44	+0. 08 -0. 25 +0. 04	-0. 88 -0. 88 -0. 62 -0. 89 -0. 53	-1.9 -2.1 -1.4	-1.4 -0.4
9 9 15 15	Berlin Berlin Berlin Berlin Berlin	B. D. + 1° 52 B. D. + 2° 54 B. D. + 27° 880 136 Tauri B. D. + 27° 914	I E E E	-0. 42 +0. 74 +0. 48	+o. 16	-0. 90 -0. 01 0. 00	+0. 10 +0. 73 +0. 90	+0. 90 +0. 73 +0. 90	+0.40 +0.15 +0.10	+0. 32 -0. 02 -0. 01	+0.08 +0.73 +0.90	-0. 25 -0. 26 -0. 37 -0. 24 -0. 32	-1.5 +0.4 -0.3	
15 15 15 15 16	Berlin Berlin Greenwich Greenwich Berlin	B. D. +28° 958 B. D. +28° 966 136 Tauri 136 Tauri B. D. +27° 1270	E E IB E E	+1.07 -0.93 +0.77 +0.84	+0. 77 -0. 67 +0. 56 +0. 69	0. 00 -0. 02 -0. 02 -0. 15	-0. 21 +0. 52 +0. 71 -0. 62	-0. 21 +0. 52 +0. 71 -0. 64	+0. 21 -0. 16 +0. 16 +0. 23	-0. 03 +0. 02 -0. 02 +0. 07	+0. 20 +0. 52 +0. 70 -0. 65	-0. 43 -0. 54 +0. 47 -0. 39 -0. 55	-0. 3 -2. 1 0. 0 -3. 0	-1.2 -1.0 -0.7 -3.7
Dec. 1 2 8 8	Padua Berlin Cape Kasan Berlin	χ Leonis C. D.—25° 14589 η Capricor. π Piscium π Piscium	E I I I I	-0.85 -0.86 -1.00	+0. 95 +0. 96 +0. 0 9	+0. 16 +0. 20 -0. 05	+0. 27 +0. 21 +0. 03	-0. 31 -0. 29 +0. 06	-0.09 -0.11 -0.09	+0. 23 +0. 30 +0. 42	+0. 26 +0. 18 +0. 02	-0. 40 -0. 72 -0. 84 -0. 71 -0. 71	-1.0 -0.8 -1.7	0.0 +0.2 -0.4
8 8 10 11	Berlin Berlin Padua Padua Berlin	281 B. Piscium B. D. +11° 210 66 Arietis \(\chi \) Tauri \(\chi \) Tauri	I I I I	-0. 99 -0. 99 -0. 76	+0.09 -0.34 -0.38	-0. 01 -0. 20 -0. 26	0.00 +0.32 +0.67	+0.01 +0.38 +0.72	-0. 11 -0. 07 -0. 01	+0. 44 +0. 28 +0. 16	+0. 01 +0. 30 -0. 56	-0. 60 -0. 71 -0. 33 -0. 24 -0. 16	-2.2 +0.9 -0.8	+2.2 +0.2
1895, Jan. 1 20 20 31 Feb. 6	Berlin Cape Cape Berlin Berlin	B. D 8° 5991	I IB E I I	-0. 62 +0. 85 -0. 86	+0. 20 -0. 28 +0. 26	+0. 22 +0. 13 -0. 43	-0. 72 -0. 42 +0. 15	+0. 75 +0. 43 +0. 46	-0. 17 -0. 01 +0. 13	-0. 11 +0. 18 +0. 47	-0. 64 -0. 47 +0. 11	-0. 27 +0. 55 -0. 76 -0. 86 -0. 57	-2.5 +1.8 +0.4	-1.7 +1.0 +1.5
6 6 6 6	Cape Cape	49 Aurigæ 49 Aurigæ 28 Geminor. 53 Aurigæ B. D. +25° 1778	I I I I	-0. 52 -0. 95 -1. 02	-0. 39 -0. 71 -0. 76	-0. 18 -0. 13 +0. 09	-0.86 -0.50 +0.39	-0. 88 -0. 52 +0. 40	-0.06 -0.17 -0.26	-0. 03 -0. 08 -0. 07	-0. 88 -0. 51 +0. 41	-0. 37 -0. 27 -0. 50 -0. 53 -0. 29	-0. 7 -2. 4 -3. 4	-2.1
8 8 13 18 Mar. 3	Cape	γ Cancri γ Cancri α Virginis 38 B. Sagittarii B. D. +25° 677	I E E I	-1:08 +0.61 +0.91	-0. 92 +0. 34 -0. 60	+0. 24 +0. 72 -0. 01	+0. 27 -0. 39 -0. 07	+0. 36 +0. 82 +0. 07	-0. 35 -0. 25 +0. 05	-0. 27 +0. 35 -0. 02	+0. 31 -0. 35 -0. 09	-0. 19 -0. 19 -0. 42 -0. 90 -0. 99	-0.5 -1.6 +1.0	-2.2 +0.1
3 3 3 3 4	Berlin Berlin Berlin	B. D. +25° 681 B. D. +25° 682 B. D. +25° 692 B. D. +25° 703 B. D. +27° 738	I I I I	-0. 55 -0. 71 -0. 85	-0. 24 -0. 31 -0. 37	+0. 24 -0. 21 -0. 15	-0. 83 +0. 70 +0. 57	-0. 86 +0. 73 +0. 59	-0. 26 +0. 03 -0. 03	+0. 08 +0. 17 +0. 18	-0. 77 +0. 67 +0. 54	-0. 75 -0. 52 -0. 68 -0. 81 -0. 91	+1.2 -1.1 -1.3	+1.9 -0.1 -0.1
4 4 4 4 5	Berlin Berlin Berlin	B. D. +27° 737 B. D. +27° 743 B. D. +27° 744 B. D. +27° 746 B. D. +27° 1078	I I I I	-1.06 -1.06	-0. 67 -0. 63 -0. 67	+0. 01 +0. 01 +0. 01	-0. 12 +0. 36 +0. 17	-0. 12 +0. 36 +0. 17	-0. 20 -0. 15 -0. 18	+0.08 +0.09 +0.09	-0. 10 +0. 37 +0. 19	-0. 48 -0. 94 -0. 88 -0. 94 -0. 77	-1.0 +0.9 -1.5	+2.3 0.0
5 5 5 6 6	Berlin Berlin Berlin	B. D. +28° 1097 B. D. +27° 1090 B. D. +27° 1117 B. D. +26° 1495 134 B. Geminor.	I I I I	-0.96 -1.09 -0.83	—o. 73 —o. 83 —o. 69	+0.08 +0.01 +0.24	+0. 47 +0. 05 +0. 61	+0.48 +0.05 +0.66	-0. 21 -0. 22 -0. 25	-0. 04 -0. 03 -0. 11	+0.50 +0.06 +0.65	-0. 79 -0. 77 -0. 87 -0. 58 -0. 76	-1.0 -2.0 -0.6	+0.3 -0.5
6 6 6 6	Berlin Berlin Berlin Berlin	B. D. +26° 1514 B. D. +26° 1516 B. D. +27° 1362 B. D. +26° 1525 B. D. +26° 1528	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-1.06 -0.66 -1.01	-0. 88 -0. 55 -0. 85	+0. 10 -0. 30 -0. 14	+0. 26 -0. 74 -0. 35	+0. 28 -0. 80 -0. 38	-0. 25 -0. 02 -0. 14	-0. 14 -0. 11 -0. 16	+0. 28 -0. 77 -0. 36	-0. 68 -0. 74 -0. 46 -0. 71 -0. 77	十1.6 一1.4 一1.9	-o. 5
6 6 6 6	Berlin Berlin Berlin	B. D. +26° 1531 B. D. +26° 1539 B. D. +26° 1554 B. D. +26° 1563 B. D. +26° 1561	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-1.08 -0.90 -0.85	-0.90 -0.75 -0.71	-0.08 +0.23 -0.26	-0. 18 +0. 51 -0. 59	-0. 20 +0. 57 -0. 64	-0. 19 -0. 26 -0. 07	-0. 17 -0. 13 -0. 15	-0. 17 +0. 55 -0. 59	+0. 11 -0. 75 -0. 63 -0. 59 -0. 50	-1.3 -2.3 -0.4	+0. 2 -1. 0 +0. 8

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	K	$i\theta$	i	. b _o	$\alpha_{_{0}}$	$\delta_{\rm o}$	ŧ	P	n	n'
1895, Mar. 6 6 8 8 8	Berlin Berlin Berlin Berlin Berlin	B. D. +26° 1564 B. D. +26° 1580 B. D. +18° 2176 B. D. +18° 2181 B. D. +18° 2182	I I I I I	-1.07 -1.10 -0.91	-0.8 -0.9 -0.8	+0. 36 9 -0. 16 9 +0. 06 2 -0. 46	-0. 22 +0. 07 5 -0. 34	-0. 24 +0. 12 -0. 57	-0. 18 -0. 27 +0. 01	-0. 18 -0. 35 -0. 36	-0. 21 +0. 10 -0. 37	-0. 75 -0. 43 -0. 35	-1.6 -2.5 -2.4	-0. -1. 0
8 9 9 10 10	Berlin Berlin Berlin Greenwich Greenwich	B. D. +17° 2092 B. D. +11° 2219 B. D. +11° 2222 82 Leonis 83 Leonis	I I IB I	-1.10 -1.07 -0.89 -1.05	-0.9 -0.9 -0.6 -0.8	9 +0. 40 5 +0. 00 12 -0. 20 18 -0. 60 10 -0. 30	+0. 01 -0. 08 -0. 11 -0. 07	+0. 02 -0. 22 -0. 63 -0. 40	-0. 23 -0. 12 +0. 09 -0. 05	-0. 44 -0. 43 -0. 44 -0. 48	+0. 03 -0. 08 -0. 10	-0. 20 -0. 19 -0. 03 -0. 04	-1. I -2. 0 -4. I +0. I	+0. -0. -2. +1.
10 11 11 12 29	Greenwich Berlin Berlin Berlin Berlin Berlin	r Leonis B. D 1° 2632 42 G. Virginis 49 Virginis B. D. +20° 493 B. D. +20° 496	I E E I I	+0. 75 +0. 67 +1. 01 -0. 88	+0.4 +0.4 +0.5	3 -0. 54 19 -0. 76 14 -0. 76 1 +0. 26 13 -0. 26 14 +0. 24	+0. 10 5 +0. 12 7 -0. 12 6 +0. 38	-0. 73 -0. 78 +0. 29 +0. 46	+0. 50 +0. 50 +0. 03 +0. 04	+0. 23 +0. 21 +0. 46 +0. 32	+0. 04 +0. 02 -0. 11 +0. 35	-0. 15 -0. 14 -0. 40 -0. 63	-0. 2 +0. 5 +0. 2 -1. 0	-1. -0. -0. +0.
29 29 29 30 30	Padua Padua Berlin Berlin	E. D. +20 490 • Arietis • Arietis B. D. +24° 595 B. D. +24° 603 B. D. +24° 602	I	-0. 78 +0. 64 -0. 62 -0. 99	+0.0 +0.1 -0.1	3 +0. 32 3 +0. 4 0 +0. 29 6 +0. 0	-0. 51 -0. 63 -0. 74 -0. 13	-0. 61 -0. 76 -0. 79 -0. 14	-0. 27 -0. 18 -0. 26 -0. 15	+0. 22 -0. 26 +0. 13 +0. 23	-0. 44 -0. 55 -0. 67 -0. 11	-0. 57 +0. 48 -0. 56 -0. 89	+1.7 -0.8 +0.8 -1.0	+2. -1. +1. +0.
31 31 31 31 31 Apr. 1	Berlin Berlin Berlin Berlin	B. D. +26° 764 B. D. +27° 712 B. D. +27° 716 B. D. +27° 716 B. D. +28° 930	I I I I	-0.81 -1.04 -1.02 -1.03	-0. 3 -0. 3 -0. 3	30 -0.00 38 0.00 37 -0.00 38 -0.00 31 -0.00	3 +0.61 0 -0.04 2 +0.17 2 +0.15	+0.62 -0.04 +0.17 +0.15	-0. 05 -0. 17 -0. 14 -0. 14	+0. 11 +0. 12 +0. 12 +0. 12	+0.60 -0.02 +0.18 +0.16	-0. 76 -0. 97 -0. 95 -0. 96	-2.7 -1.7 -1.3 -1.0	-1. -0. +0. +0.
1 1 1 1	Berlin Berlin Berlin Berlin	B. D. +27° 895 B. D. +28° 934 B. D. +28° 941 B. D. +28° 940 B. D. +27° 913	I I I I	-0. 37 -0. 84 -1. 07 -0. 84	-0. 2 -0. 5 -0. 7 -0. 5	4 +0. 10 5 -0. 0 0 +0. 0 5 -0. 0	+0. 94 7 -0. 62 1 +0. 12 7 -0. 62	+0. 94 -0. 62 +0. 12 -0. 62	-0. 06 -0. 16 -0. 19 -0. 17	0.00 0.00 +0.01 0.00	+0. 94 -0. 61 +0. 13 -0. 62	-0. 34 -0. 78 -0. 99 -0. 78	+0.8 -0.1 -0.9 +0.4	+1. +1. +0. +1.
1 1 1 1	Berlin Berlin Berlin Berlin Berlin	B. D. +27° 912 B. D. +27° 915 B. D. +27° 933 B. D. +28° 961 B. D. +28° 966	I I I I	-0. 63 -0. 63 -0. 31 -1. 08	-0.4 -0.4 -0.2 -0.7	+0.00 1 +0.0 1 +0.1 1 -0.0 0 -0.0	+0.82 +0.81 +0.96 1 -0.10	+0.82 +0.81 +0.96 -0.10	-0. 11 -0. 11 -0. 04 -0. 20	+0. 01 0. 00 0. 00 0. 00	+0. 82 +0. 82 +0. 96 +0. 09		-1.0 -0.3 -0.1 0.0	-0. +0. +0. +1.
I I I I	Berlin Berlin Berlin Berlin	B. D. +28° 982 B. D. +27° 960 B. D. +27° 956 B. D. +28° 989 Anon.	I I I I	-0. 89 -1. 02 -0. 52 -0. 60	-0.6 -0.6 -0.3	12 -0.0 7 +0.0 14 +0.1 10 -0.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-0. 50 +0. 34 +0. 88 -0. 83	-0. 12 -0. 20 -0. 10 -0. 11	-0. 02 0. 00 0. 00 0. 00	-0.48 +0.36 +0.89 -0.82	-0. 87 -0. 94 -0. 48 -0. 56	+1.4 +1.6 -1.0 +0.1	+2. +3. -0. +0.
2 2 2 2 2	Berlin Berlin Berlin Berlin	B. D. +27° 1294 B. D. +27° 1293 B. D. +27° 1293 B. D. +27° 1296 B. D. +27° 1292	I I I I	-0. 95 -0. 81 -0. 77 -1. 09	-0. 7 -0. 6 -0. 6 -0. 8	6 -0. 18 5 -0. 26 62 -0. 26 7 -0. 06 11 +0. 3	8 -0.47 6 -0.64 6 -0.66 6 -0.14	-0. 51 -0. 69 -0. 71 -0. 15	-0. 14 -0. 08 -0. 07 -0. 20	-0. 12 -0. 12 -0. 09 -0. 13	-0. 48 -0. 64 -0. 69 -0. 14	-0. 84 -0. 73 -0. 69 -0. 97	-0.4 -1.0 +0.2 -1.5	+0. +0. +1.
2 3 4 4	Berlin Cape Berlin Berlin Berlin	B. D. +27° 1295 w¹ Cancri B. D. +19° 2153 B. D. +19° 2170 B. D. +19° 2171	I I I I	-0. 43 -0. 29 -1. 10 -1. 10	-0. 3 -0. 2 -0. 9	6 +0. 50 19 +0. 1 19 -0. 1 15 -0. 2	+0. 86 +0. 78 +0. 09 -0. 10	-0. 92 +0. 96 +0. 14 -0. 17	+0.01 -0.26 -0.28 -0.18	-0. 05 -0. 03 -0. 34 -0. 35	-0.90 +0.84 +0.13	-0. 38 -0. 27 -0. 80 -0. 80	+0. 2 -1. 1 +0. 3 -1. 1	+0. -0. +1. +0.
4 7 7 10	Berlin Berlin Berlin Berlin Berlin	B. D. + 19° 2174 9 B. Virginis B. D 0° 2507 B. D 19° 3899 C. D 23° 12251	I I E E	-0. 72 -1. 06 +1. 02	-0. 5 -0. 7 +0. 2	08 -0. 1 3 +0. 7 8 +0. 2 0 -0. 0 03 -0. 0	5 -0. 07 6 -0. 03 3 +0. 04	+0. 75 +0. 26 -0. 05	-0. 50 -0. 34 +0. 17	-0. 23 -0. 43 +0. 36	+0.07 +0.06 0.00	-0. 20 -0. 30 -0. 34	-0. 2 -0. 6 -3. 3	-0. +0. +0. -4.
11 12 28 29	Berlin Berlin Berlin Berlin Berlin	C. D23° 12264 C. D27° 10930 B. D. +27° 866 B. D. +27° 1213 B. D. +27° 1212	E	+0. 90 +0. 97 -0. 94 -1. 08 -0. 96	-0. 0 -0. 2 -0. 5 -0. 7	03 +0. 20 25 -0. 0 8 +0. 0 9 +0. 0 10 -0. 1	0 -0. 37 1 +0. 06 5 +0. 47 4 +0. 10 5 -0. 44	+0. 42 -0. 06 +0. 47 +0. 11 -0. 46	-0. 02 +0. 08 -0. 15 -0. 21	+0. 29 +0. 19 +0. 02 -0. 09	-0. 38 +0. 03 +0. 49 +0. 13	-0. 48 -0. 70 -0. 76 -0. 92 -0. 82	-3.3 +0.4 -0.4 -1.0	-4. -0. +0. +1.
29 30 30 May 1	Berlin Berlin Berlin Berlin Berlin	B. D. +27° 1236 B. D. +24° 1777 B. D. +24° 1783 7 Cancri B. D. +21° 1914	I I I I	-1.00 -0.65 -1.00 -1.00	-0. 7 -0. 5 -0. 8 -0. 8	74 -0. 12 55 +0. 40 55 +0. 22 66 -0. 31 66 +0. 03	1 -0. 36 5 +0. 66 1 +0. 34 1 -0. 28 7 +0. 06	-0. 39 +0. 81 +0. 42 -0. 42 +0. 09	-0. 16 -0. 30 -0. 28 -0. 08	-0. 11 +0. 11 -0. 19 -0. 30	-0. 36 +0. 76 +0. 39 -0. 33 +0. 09	-0. 86 -0. 59 -0. 91 -0. 90 -1. 00	-0.6 -0.9 +0.4 -0.4 +1.4	+0. 0. +1. +1. +3.
1 1 1	Berlin Berlin Berlin Berlin	B. D. +20° 2224 B. D. +20° 2228 B. D. +20° 2233 B. D. +20° 2232	I I I I	-1.07 -0.97	-o. 9	35 +0. 34 2 +0. 2 4 -0. 39 6 +0. 3	+0. 18 -0. 32	+0. 28 -0. 50	-0.31 -0.05	-0. 29 -0. 32	+0. 23 -0. 37	-0. 96 -0. 87	+2.5 -0.4	+4. +1.

GROUP XIII-1891-1908-Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i '	b_{o}	α _o	ò,		P	n	n'
1895, May I I 2 2 2 2	Padua Padua Berlin Berlin Berlin	γ Cancri γ Cancri Β. D.+15° 2114 Β. D.+15° 2117 Β. D.+15° 2118		-0. 74	+o. 87 -o. 87 -o. 67	-0. 30 +0. 45 -0. 67	-0. 28 +0. 22 -0. 33	-0.41 +0.50 -0.74	+0. 29 -0. 41 +0. 11	+0. 26 -0. 31 -0. 27	-0. 36 +0. 32 -0. 43		-1.5 -1.7 -1.8	+0. 7 -2. 5 -0. 3 -0. 8 +3. 0
3 4 5 5 5	Berlin Greenwich Berlin Berlin Berlin	B. D. +10° 2176	I I I I	-1.05 -1.05	-0. 91 -0. 73 -0. 73	+0. 04 -0. 22 -0. 24	0.00 +0.06 +0.06	+0. 04 -0. 23 -0. 25	-0. 23 -0. 08 -0. 08	-0.46 -0.48 -0.48	+0. 03 +0. 05 +0. 05	-0. 91 -0. 81 -0. 60 -0. 60 -0. 61	+0. 3 -1. 0 -0. 8	+0.5
5 5 5 5 6	Berlin Berlin Berlin Berlin Berlin	B. D 3° 3267 129 B. Virginis B. D 4° 3275 B. D 4° 3281 B. D 10° 3624	I I I I	-1.08 -1.03 -1.05	-0. 75 -0. 71 -0. 73	0.00 -0.31 +0.21	0.00 +0.09 -0.06	0.00 -0.32 +0.22	-0. 20 -0. 04 -0. 30	-0. 48 -0. 48 -0. 44	+0.04 +0.06 +0.02	-0. 61 -0. 62 -0. 59 -0. 60 -0. 48	-1.5 0.0 +1.3	+1.4 0.0 +1.5 +2.8 +1.4
6 6 7 9 28	Berlin Cape Berlin Greenwich Berlin	B. D10° 3627 g Virginis B. D16° 3802 π Scorpii B. D. +21° 1866	I I E I	-0.46 -1.04 +0.74	-0. 27 -0. 36 -0. 01	-0. 80 -0. 07 -0. 21	+0. 43 +0. 07 +0. 66	-0. 90 -0. 10 -0. 69	+0. 31 -0. 12 +0. 25	-0.30 -0.41 +0.15	+0. 27 +0. 10 +0. 59	-0. 48 -0. 21 -0. 20 -0. 12 -0. 87	-0.6 -1.3 -0.2	+0. 2 -1. 0
28 29 30 30 30	Berlin Berlin Berlin Berlin Berlin	B. D. +21° 1868 B. D. +16° 1975 B. D. +11° 2217 B. D. +11° 2221 B. D. +11° 2223	I I I I	-0.58 -1.08 -1.11	-0. 52 -0. 97 -1. 00	+0.66 -0.22 +0.06	+0. 55 -0. 06 +0. 02	+0.86 -0.23 +0.06	-0.42 -0.16 -0.26	-0. 13 -0. 44 -0. 43	+0. 59 -0. 09 +0. 05	-0.85 -0.50 -0.97 -1.00 -0.99	-1.5 0.0 -0.2	-0.7 +1.5 +1.4
30 31 June 9 12 12	Berlin Berlin Berlin Berlin Berlin	45 Leonis B. D. + 5° 2467 248 B. Sagittarii B. D15° 6103 B. D15° 6109	I I E E	-1.05 +0.83 +0.08	-0. 88 -0. 71 -0. 09	-0. 31 +0. 21 +0. 93	-0. 01 +0. 34 +0. 37	-0.31 -0.40 -1.00	-0.06 -0.04 -0.40	-0.47 -0.16 -0.13	-0.04 +0.37 +0.57	-0. 60 -0. 94 -0. 46 -0. 08 -0. 88	+0.5 +2.7 +1.2	+2.0 +1.8 +1.1
12 13 13 13	Berlin Berlin Berlin Berlin Berlin	B. D15° 6111 B. D10° 5973 B. D10° 5974 65 Aquarii B. D. + 0° 2	EEEEE	+0. 89 +0. 77 +0. 82	-0. 97 -0. 83 -0. 89	+0.04 +0.50 -0.38	+0.01 +0.09 -0.07	-0. 04 -0. 51 +0. 39	0.00 -0.21 -0.18	-0.46 -0.43 -0.37	+0. 02 3 +0. 20 7 -0. 15	-0. 84 -0. 98 -0. 84 -0. 90	+3.6 +2.3 +1.5	+2.6 +1.4 +0.6
15 16 16 26 26	Berlin Berlin Berlin Hamburg Hamburg	B. D. + 0° 8 B. D. + 6° 114 B. D. + 6° 115 \alpha \text{ Leonis} \alpha \text{ Leonis}	E E I EB	+0. 54 +0. 90 -1. 03	-0. 44 -0. 74 -0. 93	+0. 74 -0. 19 +0. 35	-0. 36 +0. 09 +0. 11	+0. 21 +0. 37	-0. 34 +0. 13 -0. 37	-0. 35 -0. 43 -0. 36	5 +0. 19 5 +0. 02 5 +0. 24	-0. 48 -0. 56 -0. 94 -0. 73 +0. 77	+2.6 +1.1 -1.0	+2.0 +0.1 +0.5
26 26 26 26 27	Göttingen Pola Greenwich Greenwich Berlin	α Leonis α Leonis α Leonis α Leonis α Leonis B. D. + 6° 2387	I I EB I	-0. 99 -0. 94	-0.90 -0.85 +0.93	+0.42 +0.50 +0.34	+0. 14 +0. 16 +0. 11	+0.44 +0.53 +0.36	-0.38 -0.41 +0.00	-0. 34 -0. 31 +0. 43	+0. 28 +0. 29 +0. 17	-0. 73 -0. 71 -0. 67 +0. 73 -0. 73	-0. 2 -1. 8 -0. 4	+1.3 -0.4 -1.5
July 2 2 2 9 9	Berlin Berlin Berlin Padua Padua	C. D23° 12194 C. D23° 12202 C. D23° 12208 d Capricor. d Capricor.	I I IB	-0. 85 -0. 93 -0. 87	-0. 13 -0. 15 +0. 96	+0. 24 +0. 17 +0. 17	-0. 51 -0. 37 -0. 37 +0. 07	+0.56 +0.41 -0.18	-0. 28 -0. 26 -0. 07	-0. 23 -0. 27 +0. 39	3 -0.40 7 -0.32 9 +0.13	-0. 56 -0. 62 -0. 68 +0. 54 -0. 53	-1.8 -2.7 -2.2	-0.5 -1.3 -0.9
14 14 15 15	Berlin Berlin Berlin Berlin Berlin	B. D. + 9° 148 B. D. + 9° 146 B. D. + 10° 161 B. D. + 15° 303 B. D. + 15° 304	EEEEE	+0. 89 +0. 89 +0. 95	-0. 49 -0. 49 -0. 32	+0. 2 +0. 2 -0. 1	7 -0. 18 5 -0. 18 2 +0. 13	3 -0. 32 3 -0. 31 3 +0. 17	-0.09 -0.08 +0.15	-0.45 -0.47 -0.39	5 —0. 13 7 —0. 13 9 —0. 08	8 -0. 49 3 -0. 93 3 -0. 93 3 -0. 92 -0. 85	+3.8 +3.8 +2.7	+2.8 +2.8 +1.7
16 16 16 17	Berlin Berlin Greenwich Hamburg Berlin	B. D. + 19° 433 47 Arietis 47 Arietis 7 Tauri 27 Tauri	EEEE	+0. 73 +0. 85 +1. 01 +0. 75	-0. 12 -0. 14 +0. 04 +0. 03	-0. 3. -0. 24 0. 00 -0. 10	+0. 59 +0. 44 0. 00 +0. 64	+0.6; +0.50 0.00 +0.60	+0. 29 +0. 20 +0. 13 +0. 23	-0. 20 -0. 20 -0. 20	2 + 0. 48 5 + 0. 35 6 - 0. 01 6 + 0. 55	-0. 75 -0. 64 -0. 76 -0. 76 -0. 57	+1.8 +2.6 +3.0 +1.5	+1.0 +1.7 +1.9 +0.7
17 17 18 30 Aug. 7	Berlin Berlin Berlin Cape Greenwich	28 Tauri B. D. +24° 589 B. D. +26° 759 48 B. Scorpii 81 Aquarii	E E I E	+0. 72 +0. 84 -0. 94 +0. 85	+0. 03 +0. 13 -0. 15	+0. 18 -0. 08 +0. 08 -0. 34	-0. 68 +0. 57 6 -0. 28 4 -0. 01	3 -0. 70 7 +0. 57 8 +0. 29 1 +0. 34	-0.07 +0.19 -0.16 +0.18	-0. 21 -0. 08 -0. 20 -0. 40	-0.61 $+0.53$ -0.23 -0.13	-0. 91 -0. 43	+1.7 +1.9 -0.6 0.0	+0.9 +1.0 +0.8
7 10 10 12 13	T	82 Aquarii B. D. + 8° 158 180 B. Piscium B. D. +18° 325 B. D. +23° 462	IB E E E E	'+o. 88	-0.61 -0.48 -0.30	-0. 20 +0. 5 +0. 1	6 +0. 15 7 -0. 34 2 -0. 17	5'+0. 30 1 -0. 60 1-0. 2:	+0. 18 -0. 26 -0. 01	-0.40 -0.40 -0.3	0 +0.00 0 -0.20 7 -0.10	5 +0. 28 5 -0. 87 5 -0. 69 5 -0. 98 6 -0. 87	+1.4 +2.0 +1.1	+1.2 -0.1

GROUP XIII-1891-1908-Continued.

Date.	Place.	Star.	Ph.	λ	K	$i\theta$	i	b ₀	α_{o}	$\delta_{ m o}$	•	P	n	n'
1895, Aug. 13 13 13 13	Berlin Berlin Berlin Berlin Berlin	B. D. +23° 463 B. D. +23° 465 B. D. +23° 468 B. D. +23° 467 B. D. +23° 469	EEEEE	+0. 99 +0. 73 +0. 93	+0.02 +0.01 +0.02	+0. 05 -0. 24 +0. 13	-0. 13 +0. 65 -0. 36	-0. 14 +0. 69 -0. 38	+0.08 +0.25 +0.02	-0. 27 -0. 17 -0. 27	-0.06 +0.55 -0.29	-0. 92 -0. 95 -0. 70 -0. 89	+2.3 +1.4 +2.1	+0.6 +1.1
Sept. 2 2 5 5	Berlin Berlin Greenwich Berlin Berlin	B. D. +27° 1133 B. D15° 6119 Aquarii B. D. + 1° 10 B. D. + 2° 16	E I E E	-0. 65 -0. 84 +0. 83	+0. 71 +0. 91 -0. 81	+0. 66 -0. 35 -0. 38	+0. 20 -0. 09 +0. 12	-0.69 +0.36 +0.39	-0. 30 +0. 13 +0. 20	+0. 24 +0. 43 -0. 37	+0.40 -0.18 -0.01	-0. 62 -0. 19 -0. 25 -0. 35 -0. 37	-0. I -1. 3 +0. 8	+o. 9
6 6 6 6	Berlin Berlin Berlin Padua Padua	60 Piscium 62 Piscium B. D. + 6° 111 62 Piscium 62 Piscium	E E IB E	+0. 75 +0. 55 -0. 69	-0.65 -0.48 +0.60	+0. 50 +0. 70 +0. 57	-0. 27 -0. 38 -0. 32	-0. 57 -0. 80 -0. 65	-0. 23 -0. 34 -0. 32	-0. 43 -0. 36 +0. 27	-0. 13 -0. 13	-0. 29 -0. 42 -0. 31 +0. 39	+3.4 +1.8 -1.7	-0.3 +2.5 +1.2 -0.6 +0.8
9 9 9 9	Berlin Berlin Berlin Berlin Berlin	B. D. +21° 413 B. D. +21° 416 B. D. +21° 427 B. D. +22° 463 B. D. +22° 466	EEEEE	+0.82 +0.84 +0.93	-0. 12 -0. 12 -0. 13	-0. 21 -0. 19 +0. 11	+0. 49 +0. 46 -0. 29	+0. 53 +0. 50 -0. 31	+0. 23 +0. 22 +0. 01	-0. 24 -0. 24 -0. 30	+0. 40 +0. 38 -0. 28	-0. 54 -0. 80 -0. 82 -0. 90 -0. 91	+1.9 +1.4 +2.6	+0.4
9 9 10 10	Berlin Berlin Berlin Berlin Berlin	B. D. +22° 468 B. D. +22° 469 B. D. +24° 613 B. D. +25° 667 B. D. +24° 616	EEEEE	+0. 98 +0. 94 +0. 95	-0. 14 +0. 08 +0. 08	-0. 03 +0. 07 +0. 06	+0. 07 -0. 36 -0. 33	+0.07 -0.37 -0.34	+0. 12 +0. 05 +0. 06	-0. 30 -0. 21 -0. 21	+0.02 -0.36 -0.32	-0. 74 -0. 95 -0. 92 -0. 93 -0. 99	+3. I +1. 7 +2. 6	+2.0 +0.6 +1.5
10 10 10 10	Berlin Berlin Berlin Berlin Berlin	B. D. +25° 671 B. D. +24° 617 B. D. +25° 677 B. D. +25° 678 B. D. +25° 681	EEEEE	+0.82 +0.51 +0.54	+0. 07 +0. 04 +0. 05	-0. 10 +0. 15 +0. 13	+0. 56 -0. 85 -0. 84	+o. 57 -o. 87 -o. 86	+0. 22 -0. 09 -0. 09	-0. 18 -0. 12 -0. 14	+0.51 -0.80 -0.78	-0. 95 -0. 80 -0. 50 -0. 52 -0. 96	+2.0 +2.4 +2.5	+1.0 +1.8 +1.9 +1.2
10 10 11 11 15	Berlin Berlin Berlin Berlin Greenwich	B. D. +25° 682 B. D. +25° 685 B. D. +27° 733 B. D. +27° 738 83 Cancri	EEEEE	+o. 88 +o. 99 +o. 99	+0. 08 +0. 30 +0. 30	+0. 07 +0. 03 +0. 03	-0. 49 +0. 28 +0. 28	-0. 50 +0. 28 +0. 28	+0. 03 +0. 17 +0. 17	-0. 18 -0. 08 -0. 09	-0.46 +0.25 +0.25	-0. 96 -0. 86 -0. 95 -0. 95 -0. 57	+2.4 +1.4 +0.4	+1.3
29 29 29 29	Greenwich Greenwich	 δ Capricor. δ Capricor. δ Capricor. δ Capricor. B. D17° 6363 	I I EB I	-0. 89 -0. 87 +0. 90	+0. 92 +0. 90 -0. 93	-0. 11 +0. 24 -0. 09	-0. 04 +0. 09 -0. 03	+0. 11 -0. 26 +0. 09	+0.06 -0.12 +0.06	+0. 42 +0. 37 -0. 40	-0. 02 +0. 18 -0. 08	-0. 75 -0. 74 -0. 73 +0. 75 -0. 74	-2.3 -1.5 +0.1	0.0 -0.9 -0.1 -1.0
29 29 29 30 30	Berlin Berlin Berlin Berlin Berlin	δ Capricor. B. D. – 16° 5946 δ Capricor. B. D. – 11° 5842 58 Aquarii	I I EB I I	-0. 84 +0. 84 -0. 87	-o. 86 +o. 97	-0. 35 -0. 34 -0. 17	-0. 11 -0. 12 -0. 02	+0. 37 +0. 36 +0. 17	+0. 12 +0. 17 +0. 08	+0.41 -0.43 +0.46	-0. 21 -0. 23 -0. 08	-0. 75 -0. 70 +0. 70 -0. 60 -0. 60	-3.3 +2.3 -2.9	-2.6 -2.0 +1.3 -1.5
Oct. 1 1 4 4	Greenwich Berlin Berlin Berlin Berlin	58 Aquarii 282 B. Aquarii B. D. — 5° 5963 235 B. Piscium B. D. +11° 175	I I E E	-0. 88 -0. 83 +0. 74	+0. 98 +0. 92 -0. 52	+0. 17 +0. 37 +0. 46	+0. 02 +0. 03 -0. 38	-0. 17 -0. 37 -0. 60	-0.09 -0.18 -0.22	+0. 51 +0. 49 -0. 40	+0. 07 +0. 10 -0. 22	-0. 60 -0. 37 -0. 34 -0. 22 -0. 24	-2.5 -1.5 $+2.4$	-1.3 -1.1 -0.2 +1.5 +1.5
7 7 7 7	Berlin Berlin Berlin Berlin Berlin	7 Tauri 24 Tauri B. D. +23° 531 B. D. +23° 540 B. D. +23° 549	EEEEE	+0. 57 +0. 64 +0. 95	-0. 03 -0. 03 -0. 05	-0. 18 -0. 17 -0. 06	+0.80 +0.74 +0.26	+0.82 +0.76 +0.27	+0. 24 +0. 23 +0. 17	-0. 11 -0. 13 -0. 23	+0.68 +0.64 +0.22	-0. 36 -0. 46 -0. 51 -0. 76 -0. 73	+0.4 -0.2 +0.6	-1. I -0. 3 -1. 0 -0. 5 +0. 2
7 7 7 7	Berlin Berlin Berlin Berlin Berlin	105 B. Tauri B. D. +23° 560 B. D. +23° 561 B. D. +23° 567 B. D. +24° 578	EEEEE	+0. 89 +0. 85 +0. 60	-0. 04 -0. 04 -0. 03	-0.09 -0.11 -0.16	+0. 43 +0. 50 +0. 77	+0. 44 +0. 51 +0. 79	+0. 19 +0. 20 +0. 23	-0. 22 -0. 21 -0. 12	+0. 36 +0. 42 +0. 67	-0. 73 -0. 71 -0. 68 -0. 48 -0. 70	+0.9 +1.3 -0.2	+0.4 -0.1 +0.3 -0.9 -0.4
7 7 9 10	Berlin Berlin Berlin Berlin Berlin	B. D. +24° 595 B. D. +24° 598 406 B. Tauri B. D. +27° 1230 B. D. +24° 1785	EEEE	+0.96 +1.05 +0.97	-0. 05 +0. 42 +0. 56	+0.04 0.00 +0.19	-0. 22 0. 00 +0. 36	-0. 22 0. 00 +0. 41	+0. 02 +0. 17 +0. 12	-0. 23 +0. 01 +0. 10	-0. 22 -0. 03 +0. 37	-0. 77 -0. 77 -0. 97 -0. 91 -0. 20	+2.6 -2.5 -0.9	-3.4 +1.4 -3.8 -2.1 -0.3
11 11 28 28 29	Berlin Berlin Berlin Berlin Berlin	B. D. +24° 1783 B. D. +24° 1800 B. D 8° 5980 82 Aquarii B. D 2° 6007	E E I I	+1.05 +0.96 -0.90	+0.76 +0.70 +1.00 +1.00	-0. 18 +0. 33 0. 00 -0. 07	-0. 20 +0. 35 0. 00	-0. 27 +0. 47 0. 00 +0. 07	+0. 26 +0. 07 -0. 03 +0. 01	+0. 21 +0. 23 +0. 47 +0. 47	-0. 28 -0. 40 +0. 01 +0. 01	-0. 93 -0. 85 -0. 79 -0. 79 -0. 48	+0. 1 +1. 0 -3. 7 -3. 2	-1.2 -0.2 -2.2 -1.7 -3.7

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	À	K	iθ	i	<i>b</i> _o	$\alpha_{_0}$	ð _o	ε	P	n	n'
1895, Oct. 29 31 31 31 31	Berlin Berlin Berlin Berlin Berlin	B. D 2° 6013 B. D. + 8° 158 180 B. Piscium B. D. + 8° 177 210 B. Piscium	I I I I I	-o. 88 -o. 65 -o. 33	+0. 76 +0. 55 +0. 28	-0. 20 +0. 57 -0. 74	-0. 03 +0. 14 -0. 40 +0. 56 +0. 29	+0. 24 -0. 70 +0. 93	+0.06 -0.34 +0.40	+0.47 +0.25 +0.26	+0.08 -0.17 +0.29	-0. 28 -0. 21 -0. 10	$ \begin{array}{c c} -2.7 \\ -2.2 \\ -3.3 \end{array} $	-2.8
Nov. 1 3 3 10 10	Berlin Greenwich Greenwich Pola Pola	B. D. +15° 290 19 Tauri 20 Tauri ρ Leonis ρ Leonis	I E E IB E	-0. 94 +0. 95 +0. 67 -1. 08	+0. 56 -0. 20 -0. 14 -0. 99	-0. 03 -0. 04 -0. 14	+0. 02 +0. 22 +0. 72 0. 00 -0. 02	+0.05 +0.22 +0.73 0.00	-0.04 +0.14 +0.22 -0.21	+0. 42 -0. 23 -0. 14 -0. 43	+0.06 +0.16 +0.60 +0.09	-0. 02 -0. 33 +0. 59 +0. 95	-3.7 -0.4 -1.1 -0.4	-2.2 -1.6 -1.9 +1.3
10 10 25 27 27	Berlin Berlin Berlin Göttingen Göttingen	B. D. +10° 2147 45 Leonis B. D 3° 5638 62 Piscium ∂ Piscium	E E I I I	+1.02 -0.72 -0.83	+0.91 +0.80 +0.82	-0.40 +0.56 -0.34	0.00 +0.04 -0.10 +0.23 -0.16	-0. 40 -0. 57 +0. 41	+0.04 -0.28 +0.16	-0. 28 +0. 32 +0. 46	-0. 21 +0. 14 +0. 10	-0. 87 -0. 75 -0. 71	+0.8 -1.2 -0.1	+0. 1 -0. 5 0. 0 +1. 2 -0. 5
27 28 28 29 30	Pola Berlin Berlin Berlin Berlin	δ Piscium B. D. +13° 250 B. D. +13° 267 B. D. +18° 319 B. D. +21° 416	I I I I	-0. 71 -0. 93 -0. 86	+0. 51 +0. 67 +0. 42	+0.45 +0.06 +0.21	-0. 02 -0. 46 -0. 07 -0. 36 +0. 04	-0. 64 -0. 09 -0. 42	-0. 30 -0. 09 -0. 21	+0. 27 +0. 40 +0. 32	-0. 25 0. 00 -0. 23	-0. 41 -0. 54 -0. 30	-2.3 -3.2 -1.6	-1.6
30 30 30 Dec. 6 10	Berlin Berlin Berlin Berlin Greenwich	B. D. +21° 427 B. D. +22° 466 B. D. +22° 469 80 Cancri ψ Virginis	I I E E	-0. 58 -0. 83 +0. 64 +0. 36	+0. 19 +0. 28 +0. 52 +0. 32	+0. 25 +0. 16 -0. 75 -0. 75	-0. 03 -0. 76 -0. 48 -0. 33 +0. 56	-0.80 -0.51 -0.82 -0.94	-0. 27 -0. 21 +0. 41 +0. 49	+0. 16 +0. 24 +0. 15 +0. 05	-0. 61 -0. 36 -0. 61 +0. 23	+0. 03 -0. 56 -0. 31	-6. 1 -2. 2 +0. 6 +0. 4	
28 29 29 29 29	Padua Berlin Berlin Berlin Berlin	20 Tauri B. D. + 26° 750 B. D. + 26° 752 B. D. + 26° 764 B. D. + 27° 716	I I I I	-0. 76 -0. 92 -0. 95 -0. 98 -0. 95	0.00 0.00 0.00	+0.03 +0.04 +0.03	+0. 63 +0. 38 +0. 32 +0. 19 -0. 31	+0. 38 +0. 32 +0. 19	-0.06 -0.08 -0.09	+0.12 +0.11 +0.11	+0. 39 +0. 35 +0. 21	-0. 27 -0. 28 -0. 28	-1.9 -2.0 -5.0	
1896, Jan. 7 8 8 8 8 19	Cape Berlin Berlin Berlin Padua	i Virginis B. D. – 19° 3870 B. D. – 19° 3869 B. D. – 19° 3879 14 Piscium	E E E I	+0. 84 +0. 92 +0. 74	+0. 64 +0. 70 +0. 56	-0. 31 +0. 25 -0. 35	-0. 19 +0. 56 -0. 47 +0. 64 -0. 19	-0. 64 +0. 53 -0. 73	+0. 39 -0. 01 +0. 40	+0. 24 +0. 35 +0. 20	+0. 36 -0. 37 +0. 42	-0. 75 -0. 82 -0. 67	+0.4 +0.6 -0.4	
21 21 22 24 24	Berlin Berlin Santiago Berlin Berlin	B. D. + 8° 153 B. D. + 9° 116 Arietis B. D. +22° 473 B. D. +22° 475	I I I I	-0. 89 -0. 49 -0. 89	+0. 84 +0. 40 +0. 32	+0. 17 +0. 46 -0. 09	+0. 57 -0. 14 -0. 71 +0. 35 +0. 02	-0. 22 -0. 85 +0. 36	-0. 13 -0. 34 +0. 03	+0.41 +0.15 +0.28	-0. 02 -0. 53 +0. 32	-0. 98 -0. 55 -0. 81	-3.1 +1.1 -2.8	-3. 2 -1. 6 +1. 9 -1. 3 -3. 4
24 24 24 24 24	Berlin Berlin Berlin Berlin Berlin	B. D. +22° 475 B. D. +22° 480 B. D. +22° 482 B. D. +23° 454 B D. +23° 457	I I I I	-0. 52 -0. 67 -0. 92	+0. 18 +0. 24 +0. 33	-0. 20 -0. 17 +0. 06	+0. 02 +0. 81 +0. 69 -0. 25 +0. 91	+0. 84 +0. 71 -0. 26	+0. 18 +0. 13 -0. 14	+0. 18 +0. 21 +0. 27	+a. 69 +o. 60 -o. 17	-0. 47 -0. 61 -0. 84	-3. I -3. 6 -5. 0	-4. 2 -2. 2 -2. 5 -3. 4 -0. 2
24 24 26 26 26	Berlin Berlin Berlin Berlin Berlin	B. D. +23° 469 B. D. +23° 470 B. D. +27° 771 B. D. +27° 778 B. D. +27° 783	I I I I	-0. 56 -0. 73 -0. 96	+0. 20 -0. 12 -0. 15	+0. 16 +0. 17 -0. 00	+0. 77 -0. 80 +0. 67 -0. 33 -0. 20	-0.82 +0.69 -0.34	-0. 25 -0. 06 -0. 14	+0. 16 +0. 05 +0. 03	-0.80 +0.71 -0.30	-0. 50 -0. 40 -0. 53	-0.6 -2.8 -4.2	+0.4
26 27 27 27 27 27	Santiago Santiago Berlin Berlin Berlin	116 B. Aurigæ 25 Geminor. B. D. +27° 1066 B. D. +27° 1089 B. D. +27° 1090	I I I I	-0. 91 -0. 97 -1. 03	-0. 28 -0. 31 -0. 33	+0. 28 +0. 17 +0. 06	-0. 35 +0. 44 +0. 33 +0. 11 -0. 82	+0. 52 +0. 37 +0. 12	-0. 21 -0. 17 -0. 15	-0. 08 -0. 05 -0. 07	+0. 54 +0. 40 +0. 15	-0. 32 -0. 38 -0. 40	-1.3 -4.3 -4.3	+0. 2 +0. 3 -2. 6 -2. 5 -2. 0
28 28 28 31 Feb. 19	Berlin Berlin Berlin Cape Berlin	B. D. +25° 1644 B. D. +25° 1659 B. D. +25° 1709 \(\rho\) Leonis B. D. +17° 339	I I E I	-1.03 -0.89 +0.98	-0. 52 -0. 45 +0. 85	-0. 17 -0. 37 +0. 45	-0. 46 -0. 19 -0. 38 0. 00 -0. 18	-0. 26 -0. 53 +0. 45	-0. 14 -0. 05 0. 00	一0. 19 一0. 20 十0. 45	, −0. 29	-0. 19 -0. 17 -0. 40	-4.9 -3.5 +2.7	-1.9 -3.1 -2.0 +1.4 -0.2
19 20 20 20 20	Berlin Berlin Berlin Berlin Berlin	B. D. +17° 346 B. D. +21° 403 B. D. +22° 438 B. D. +22° 441 B. D. +22° 446	I I I I	-0. 27 -0. 92 -0. 85	+0. 13 +0. 45 +0. 41	+0. 30 +0. 06 +0. 12	+0. 27 -0. 92 -0. 21 -0. 45 +0. 13	-0. 97 -0. 22 -0. 46	-0. 31 -0. 12 -0. 19	+0.04 +0.29 +0.25	-0. 69 -0. 14 -0. 31	-0. 28 -0. 97 -0. 89	-0.3 -2.9 -0.9	+0.7 +0.2 -1.3 +0.6 -1.2
20 20 20 21 21	Berlin Berlin Berlin Berlin Berlin	B. D. +22° 453 B. D. +22° 455 B. D. +22° 457 B. D. +24° 598 B. D. +25° 656	I I I I	-0. 82 -0. 95 -0. 82 -0. 70	+0.40 +0.46 +0.40 +0.18	+0. 12 -0. 01 +0. 12 -0. 03	-0. 49 +0. 03 -0. 48 +0. 69 -0. 71	-0. 51 +0. 03 -0. 50 +0. 69	-0. 20 -0. 06 -0. 20 +0. 07	+0. 24 +0. 30 +0. 24 +0. 17	-0. 37 +0. 06 -0. 36 +0. 64	-0. 86 -1. 00 -0. 86 -0. 71	-1.3 -3.3 -0.6 -2.7	-1.4

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	к	iθ	i	b o	α ₀	δ _o	E	P	n	n'
1896, Feb. 21 21 21 22 . 22	Berlin Berlin Berlin Berlin Berlin	B. D. +25° 674 B. D. +25° 677 B. D. +25° 678 B. D. +27° 702 B. D. +27° 712	I I I I I	-0. 96 -0. 91 -0. 95	+0.03	0.00 0.00 +0.05	+0. 17 -0. 34 +0. 31	+0. 17 -0. 34 +0. 32	-0. 06 -0. 14 -0. 09	+0. 20 +0. 18 +0. 10	+0. 19 -0. 28 +0. 36	-0. 97 -0. 97 -0. 92 -0. 87 -0. 81	-3.4 -1.4 -1.9	-1.7 +0.2 -0.2
. 22 22 22 22 22	Berlin Berlin Berlin Berlin Berlin	Anon. B. D. +27° 716 B. D. +27° 716 B. D. +27° 717 B. D. +27° 722	I I I I	-0. 99 -0. 73 -0. 72 -0. 99	+0. 03 +0. 02 +0. 02 +0. 03	-0. 02 +0. 13 +0. 13 -0. 03	-0. 12 +0. 67 +0. 69 -0. 16	-0. 12 +0. 68 +0. 70 -0. 16	-0. 13 -0. 03 -0. 03 -0. 14	+0. 09 +0. 07 +0. 07 +0. 10	-0. 08 +0. 69 +0. 71 -0. 12	-0. 91 -0. 67 -0. 66 -0. 91	-3.0 -2.6 -2.0 -3.2	-1.3 -1.3 -0.7 -1.5
22 22 23 23 23	Berlin Berlin Berlin Berlin Berlin Berlin	B. D. +27° 731 B. D. +27° 734 B. D. +27° 888 B. D. +28° 918 B. D. +28° 939	I I I I	-0. 76 -0. 97 -0. 68 -0. 80	+0.02 -0.19 -0.13 -0.16	-0. 14 -0. 12 -0. 28 -0. 25	-0. 62 -0. 30 -0. 70 -0. 58	-0. 64 -0. 32 -0. 75 -0. 63	-0. 14 -0. 13 -0. 08 -0. 10	+0.07 0.00 -0.02 -0.01	-0. 59 -0. 29 -0. 72 -0. 60	-0. 84 -0. 70 -0. 78 -0. 55 -0. 64	-2.0 -3.7 -2.4 -1.1	-2.0 -1.2 +0.3
23 23 23 23 23 23	Berlin Berlin Berlin Berlin Berlin	B D.+27° 909 B. D.+27° 912 B. D.+27° 913 B. D.+27° 915 B. D.+27° 914 B. D.+28° 955	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-0. 97 -0. 88 -0. 97 -0. 74	-0. 20 -0. 17 -0. 20 -0. 15	-0. 13 -0. 20 -0. 12 +0. 27	-0. 30 -0. 46 -0. 29 +0. 63	-0. 32 -0. 50 -0. 31 +0. 68	-0. 13 -0. 11 -0. 12 -0. 10	-0. 01 -0. 01 -0. 02 -0. 01	-0. 29 -0. 48 -0. 27 +0. 71	-0. 82 -0. 78 -0. 71 -0. 78 -0. 60	-2.7 -2.2 -3.2 -1.8	-1.5 -0.5
23 23 23 23 23	Berlin Berlin Berlin Berlin Berlin	B. D. +27° 932 B. D. +27° 933 B. D. +27° 940 B. D. +27° 938 415 B. Tauri	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-0. 96 -1. 02 -0. 45 -0. 35	-0. 19 -0. 20 -0. 09 -0. 07	+0. 14 -0. 01 +0. 36 -0. 38	+0. 31 -0. 02 +0. 83 +0. 86	+0. 34 -0. 02 +0. 90	-0. 13 -0. 14 -0. 08 -0. 07	-0. 02 -0. 02 0. 00 0. 00	+0. 38 +0. 02 +0. 92 +0. 95	-0. 64 -0. 77 -0. 82 -0. 36 -0. 28 -0. 58	-1.8 -3.7 +0.4 +1.4	-1.9 +1.2 +2.0
23 24 24 24 24	Berlin Berlin Berlin Berlin Berlin	B. D. +27° 950 B. D. +26° 1453 B. D. +25° 1594 B. D. +25° 1595 B. D. +25° 1596	I I I I	-1.01 -0.59 -1.01 -1.02	-0. 20 -0. 27 -0. 46 -0. 47	+0.06 +0.55 +0.18 +0.16	+0. 14 +0. 64 +0. 21 +0. 18	+0. 15 +0. 83 +0. 28 +0. 24	-0. 14 -0. 21 -0. 21 -0. 20	-0. 03 -0. 08 -0. 15 -0. 15	+0. 19 +0. 82 +0. 32 +0. 27	-0. 81 -0. 36 -6. 61 -0. 62	-2.8 -1.2 -1.7 -0.9	-1.0 -0.2 +0.1
24 24 24 26 Mar. 1	Berlin Berlin Berlin Berlin Greenwich	B. D. +26° 1485 B. D. +25° 1608 49 Geminor. 78 Cancri 343 B. Virginis	I I I I E	-0. 68 -1. 03 -0. 84 -1. 04	-0. 31 -0. 47 -0. 38 -0. 74	-0. 51 +0. 12 -0. 38 +0. 30	-0. 59 +0. 14 -0. 45 +0. 12	-0. 77 +0. 18 -0. 59 +0. 32	+0.01 -0.20 -0.04 -0.32	-0. 13 -0. 16 -0. 16 -0. 33	-0. 71 +0. 22 -0. 54 +0. 28	-0. 42 -0. 63 -0. 51 -0. 31	-3.4 -2.0 -1.3 -0.7	-2.2 -0.2 +0.2
8 19 21 21	Cape Greenwich Berlin Berlin Berlin	h Sagittarii 18 Tauri B. D. +27° 799 B. D. +27° 798 B. D. +27° 803	E I I I	+0.81 -0.90 -0.99 -0.54	-0. 21 +0. 40 -0. 09 -0. 05	+0. 40 +0. 20 -0. 07 -0. 28	+0. 37 +0. 13 -0. 20 -0. 80	-0. 55 -0. 24 -0. 22 -0. 85	-0. 03 -0. 09 -0. 13 -0. 09	-0. 18 +0. 22 +0. 02 +0. 03	+0. 49 -0. 17 -0. 17 -0. 82	-0. 75 -0. 91 -0. 97 -0. 52 -0. 99	+2.3 -4.3 -3.1 -1.0	+1.2 -2.7 -1.3 0.0
21 21 21 21 21	Berlin Berlin Berlin Berlin Berlin	107 B. Aurigæ B. D. +27° 811 B. D. +27° 824 B. D. +27° 830 B. D. +27° 833	I I I I	-0. 82 -0. 91 -0. 82 -0. 54	-0. 07 -0. 08 -0. 07 -0. 05	+0. 20 -0. 15 -0. 21 +0. 31	+0. 56 -0. 40 -0. 54 +0. 79	+0. 59 -0. 43 -0. 58 +0. 85	-0.09 -0.12 -0.12 -0.05	+0. 02 +0. 02 +0. 03 0. 00	+0. 61 -0. 39 -0. 56 +0. 87	-0.80 -0.89 -0.80 -0.52	-3.8 -1.9 -2.1 -2.3	-2.3 -0.3 -0.6 -1.3
21 21 21 21 22	Berlin Berlin Berlin Berlin Berlin	B. D. +27° 832 B. D. +27° 837 B. D. +27° 849 B. D. +27° 1144 B. D. +27° 1148	I I I I	-1.00 -0.81 -1.01	-0. 09 -0. 07 -0. 30	+0. 05 -0. 22 -0. 90	+0. 12 -0. 56 -0. 14	+0. 13 -0. 60 -0. 17	-0. 13 -0. 11 -0. 12	+0.01 +0.01 -0.08	+0. 18 -0. 56 -0. 14	-0. 92 -0. 42 -0. 98 -0. 79 -0. 93	-2.8 -1.3 -2.8	-1.0 +0.2 -1.0
22 22 22 22 22 22	Berlin Berlin Berlin Berlin Berlin	B. D. +27° 1164 B. D. +27° 1167 B. D. +27° 1181 B. D. +26° 1317 B. D. +26° 1333	I I I	-0. 94 -1. 01 -0. 92	-0. 19 -0. 28 -0. 30 -0. 28	-0. 43 +0. 24 +0. 11 +0. 26	-0. 67 +0. 35 +0. 16 +0. 38	-0. 80 +0. 42 +0. 19 +0. 46	-0. 01 -0. 17 -0. 16 -0. 18	+0.07 -0.09 -0.10 -0.10	-0. 77 +0. 45 +0. 23 +0. 49	-0. 57 -0. 86 -0. 93 -0. 85	-1.8 -2.0 -1.4 -2.3	+0.4 -0.7
22 22 23 23 23 23	Berlin Berlin Berlin Berlin Berlin	B. D.+26° 1333 B. D.+26° 1350 B. D.+25° 1706 B. D.+25° 1709 B. D.+25° 1725 176 B. Geminor.	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-0. 82 -1. 06 -0. 95 -0. 88	-0. 25 -0. 52 -0. 47 -0. 43	+0. 34 +0. 07 -0. 32 -0. 42	+0. 46 +0. 06 -0. 30 -0. 37	+0. 58 +0. 09 -0. 44 -0. 56	-0. 17 -0. 18 -0. 09 -0. 06	-0. 10 -0. 14 -0. 14 -0. 14	+0. 63 +0. 12 -0. 37 -0. 48	-0. 30 -0. 76 -0. 87 -0. 78 -0. 72	-2.3 -2.2 -2.4 -1.7	+2.9 -0.8 -0.3 -0.7 -0.1
23 23 23 23 23	Berlin Berlin Berlin Berlin Berlin	B. D. +24° 1729 181 B. Geminor. B. D. +24° 1740 B. D. +24° 1746 B. D. +24° 1750	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-0. 89 -0. 67 -0. 90 -1. 06	-0. 44 -0. 33 -0. 44 -0. 52	+0. 41 +0. 58 +0. 40 +0. 01	+0. 36 +0. 52 +0. 34 +0. 01	+0. 54 +0. 78 +0. 53 +0. 01	-0. 21 -0. 22 -0. 22 -0. 17	-0. 11 -0. 09 -0. 11 -0. 16	+0. 54 +0. 75 +0. 53 +0. 06	-0. 67 -0. 73 -0. 55 -0. 74 -0. 87	-1.3 -1.4 -1.4 -3.3	-0.2 +0.2
23 23 25 25 25	Berlin Berlin Berlin Berlin	B. D. +24° 1750 B. D. +24° 1755 B. D. +15° 2075 B. D. +15° 2079 B. D. +15° 2080	I I I	-0. 51 -1. 08 -0. 92 -0. 93	-0. 25 -p. 84 -0. 71	-0.67 +0.16 +0.52	+0. 57 +0. 04 +0. 11	一o. 88 十o. 17 十o. 53	-0.09 -0.27 -0.38	-0. 15 -0. 38 -0. 30	-0. 79 +0. 17 +0. 38	-0. 42 -0. 57 -0. 49	-2. I -0. 5 -2. 7	-1.2 +1.4 -1.1

GROUP XIII—1891-1908—Continued.

Date.		Place.	Star.	Ph.	λ	К	iθ	i	<i>b</i> _o	<i>α</i> ₀	ð _o	·	P	n	n'
1896, Mar. Apr.	25 25 27 27	Berlin Berlin Greenwich Greenwich Santiago	11 Leonis B. D. +15° 2091 79 Leonis 79 Leonis α Scorpii	I I EB IB	-1.06 -0.86 +1.06	-0. 82 -0. 73 +0. 90	-0. 22 +0. 64 +0. 37	-0. 05 -0. 19 -0. 12	-0. 22 +0. 67 +0. 39	-0. 12 -0. 51 +0. 06	-0. 40 -0. 27 +0. 47	-0. 08 +0. 15 +0. 02	-0. 51 -0. 56 -0. 20 +0. 25 +0. 64	-3.3 +0.3 -1.3	
	1 1 7 15	Santiago Santiago Santiago Cape Berlin	α Scorpii 116 B. Scorpii 116 B. Scorpii 116 B. Scorpii μ Capricor. B. D. +23° 462	E IB E E I	-0. 77 +0. 43 +0. 92 -0. 85	-0. 38 +0. 21 -0. 73 +0. 41	+0. 08 +0. 11 0. 00 -0. 05	+0. 68 +0. 91 0. 00 +0. 45	-0.69 -0.91 0.00 +0.45	-0.03 +0.20 +0.05 +0.04	-0. 12 +0. 06 -0. 42 +0. 25	+0. 63 +0. 83 -0. 05 +0. 41	-0.46 +0.53 -0.30 -0.85 -0.58	-4.3 +0.2 +1.4 -4.0	+0. i
	15 15 17 17	Berlin Berlin Santiago Santiago Hamburg	B. D. +23° 463 B. D. +23° 469 β Tauri β Tauri A Geminor.	I I EB I	-0. 95 -0. 17 +0. 24	+0. 46 +0. 02 -0. 02	+0. 34 +0. 34	-0. 02 +0. 92 +0. 91	-0. 02 +0. 98 +0. 97	-0. 08 +0. 03 +0. 06	+0. 26 +0. 01 -0. 01	+0.03 +0.98 +0.96	-0. 57 -0. 65 -0. 17 +0. 22 -0. 82	-3.4 +1.7 +1.0	+2.0 +0.5
	20 20 22 22 22	Berlin Berlin Kasan Cape Cape	B. D. +22° 1901 B. D. +21° 1807 ν Leonis α Leonis ψ Virginis	I I I I I	-1.04 -0.91 -1.03	-0. 61 -0. 71 -0. 83	+0. 21 -0. 54 +0. 35	+0. 13 -0. 05 0. 00	+0. 26 -0. 54 +0. 35	-0. 25 +0. 05 -0. 36	-0. 26 -0. 39 -0. 37	+0. 27 -0. 26 +0. 22	-0. 97 -0. 94 -0. 77 -0. 78 -0. 32	-1.3 -0.6 -0.9	+0.6 +1.0 +1.0
Мау	26 26 I I	Greenwich Berlin Cape Cape Santiago	83 Virginis 83 Virginis • Sagittarii • Sagittarii 201 B. Sagittarii	E	-1.05 -0.70 +0.49	-0. 88 +0. 13 -0. 09	-0. 18 +0. 45 +0. 56	+0. 27 +0. 54 +0. 67	-0. 32 -0. 70 -0. 87	-0. 09 -0. 18 -0. 04	-0. 31 +0. 09 -0. 08	+0. 20 +0. 73 +0. 71	+0. 16 -0. 15 +0. 57 -0. 40 -0. 78	-1.6 +0.5 +2.0	+0.3 +1.8 +1.3
	16 16 16 16	Berlin Berlin Berlin Berlin Berlin	B. D. +25° 1570 B. D. +25° 1579 B. D. +25° 1590 B. D. +25° 1584 B. D. +22° 1836	I I I I	-0. 90 -1. 02 -0. 23	-0. 27 -0. 31 -0. 07	-0. 36 -0. 12 +0. 70	-0. 36 -0. 11 +0. 68	-0. 50 -0. 16 +0. 97	-0.06 -0.12 -0.19	-0. 16 -0. 18 -0. 03	-0. 44 -0. 11 +0. 97	-0. 83 -0. 75 -0. 85 -0. 19 -0. 91	-1.7 -2.4 $+1.8$	-0.7 -0.1 -0.5 +2.2 +2.7
	17 17 20 21 21	Berlin Berlin Cape Berlin Berlin	B. D. +22° 1834 B. D +22° 1852 \(\rho\) Leonis B. D. + 0° 2801 \(\rho\) Leonis	I I I I	-1.06 -0.93 -0.31	-0. 50 -0. 75 -0. 27	-0. 04 +0. 53 +0. 88	-0. 03 -0. 05 -0. 38	-0. 05 +0. 53 +0. 96	-0. 16 -0. 43 -0. 53	-0. 27 -0. 32 -0. 02	+0. 01 +0. 25 +0. 16	-0. 72 -0. 94 -0. 84 -0. 24 -0. 90	-2.3 -1.9 +0.8	+0.9 -0.4 -0.2 +1.4 -1.1
	21 23 25 25 25	Greenwich Berlin Berlin Berlin Berlin	u Leonis B. D 12° 3785 C. D 23° 12133 C. D 23° 12202 C. D 23° 12208	1	-0. 99 -1. 03 -0. 72	-0. 94 -0. 67 -0. 48	-0. 26 +0. 04 -0. 09	+0. 33 -0. 30 +0. 75	-0. 42 +0. 30 -0. 75	0.00 -0.27 +0.06	-0.40 -0.27 -0.21	+0. 20 -0. 17 +0. 63	-0. 89 -0. 55 -0. 22 -0. 15 -0. 11	-3.0 -2.7 -1.3	+2.3 -1.1 -0.8 0.0 -0.2
June	26 26 26 31 2	Santiago Cape Cape Berlin Berlin	α Scorpii α Scorpii α Scorpii 30 Capricor. B. D. — 8° 5961	I IB E E	-0. 76 +0. 94 +0. 86	-0. 39 +0. 48 -0. 53	+0. 12 +0. 08 -0. 39	+0.68 +0.45 -0.09	-0. 70 -0. 46 +0. 39	-0.05 +0.22 +0.19	-0. 11 +0. 13 -0. 34	+0. 69 +0. 39 -0. 31	-0. 06 0. 00 0. 00 -0. 81 -0. 59	-0.6 +1.0 +2.0	+0. 7 +0. 8 -0. 4 +0. 7 -0. 9
	2 2 3 14 14	Berlin Berlin Berlin Berlin Berlin	B. D 7° 5873 B. D 8° 5964 14 Piscium B. D. +19° 2094 B. D. +19° 2095	E E I I	+0.74 +0.65 -1.06	-0. 72 -0. 63 -0. 60	-0. 57 +0. 63 -0. 14	+0.01 -0.27 -0.05	+0. 57 -0. 69 -0. 15	+0. 27 -0. 31 -0. 13	-0. 31 -0. 40 -0. 33	-0. 24 +0. 06 -0. 07	-0. 22 -0. 82 -0. 72 -0. 80 -0. 79	+0.9 +2.2 -2.7	+1.0 -0.2 +1.2 -0.7 +1.1
	14 15 19 22 22	Berlin Berlin Cape Cape Berlin	B. D. +19° 2097 B. D. +14° 2123 \$\psi\$ Virginis \$A\$ Scorpii C. D26° 11106	I I I I	-1.08 -0.92 -1.07	-o. 77 -o. 83 -o. 68	+0. 12 +0. 37 0. 00	+0. 02 -0. 40 -0. 03	+0. 12 +0. 55 +0. 03	-0. 25 -0. 46 -0. 21	-0. 37 -0. 32 -0. 22	+0. 15 -0. 10 +0. 01	-0. 21 -0. 89 -0. 80 -0. 58 -0. 42	-0.4 -2.0 -1.6	-1.9 +1.6 -0.3 +0.4 -3.1
July	22 24 6 6	Greenwich Greenwich Berlin Berlin Berlin	4 Scorpii 38 B. Sagittarii B. D +24° 584 B. D. +24° 589 B. D. +24° 593	I E E E	-0. 89 +0. 91 +0. 93	-0. 24 -0. 54 -0. 55	+0. 28 +0. 01 -0. 01	+0. 44 +0. 22 -0. 15	-0. 52 +0. 22 -0. 15	-0. 15 +0. 10 +0. 03	+0. 04 -0. 22 -0. 22	+0. 56 +0. 16 -0. 18	-0. 34 -0. 14 -0. 60 -0. 61 -0. 42	-1.2 +2.1 +3.2	+0. I +0. 5 +0. 7 +1. 8 -0. 4
	20 20 27 27 27	Greenwich Pola Berlin Berlin Berlin	† Scorpii † Scorpii B.D. – 6° 6110 B.D. – 6° 6112 B.D. – 6° 6125	EB I E E	-0. 86 +0. 82 +0. 88	-0. 52 -0. 77 -0. 83	-0. 13 +0. 42 +0. 22	-0. 55 -0. 12 -0. 06	+0. 56 -0. 44 -0. 23	-0. 20 -0. 18 -0. 08	-0. 11 -0. 46 -0. 48	-0. 48 +0. 09 +0. 03	+0. 70 -0. 67 -0. 54 +0. 58 -0. 22	-1.0 +3.1 +3.3	-4.0 +0.6 +1.9 +2.0 -2.3
Aug.	28 31 5 5 5	Greenwich Cape Berlin Berlin Berlin	21 Piscium (Arietis B. D. +26° 1205 B. D. +26° 1227 B. D. +26° 1230	EEEE	+0.84 +1.09 +1.07	-0. 88 +0. 88 +0. 86	+0. 14 -0. 10 -0. 16	-0. 34 -0. 13 -0. 20	-0. 36 -0. 17 -0. 25	-0. 11 +0. 23 +0. 23	-0. 38 +0. 08 +0. 08	-0. 25 -0. 20 -0. 24	-0. 46 -0. 93 -0. 67 -0. 66 -0. 65	+4.5 +4.8 +4.6	

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	К	i0	i	b_{o}	$\alpha_{\rm o}$	$\partial_{\mathbf{o}}$	ε	P	n	n'
1896, Aug. 5 20 21 23 27	Berlin Cape Berlin Berlin Berlin	B. D. +27° 1122 4 Capricor. B. D18° 5875 B. D 8° 5932 B. D. +14° 249	E I IB E E	-0. 97 -0. 95 +0. 68	+0. 14 +0. 44 -0. 59	-0. 14 -0. 09 -0. 63	-0.06 -0.02 +0.16	+0. 15 +0. 09 +0. 65	-0. 10 -0. 04 +0. 32	+0. 04 +0. 29 +0. 39 -0. 28 -0. 40	-0. 08 -0. 03 -0. 27	-0. 57 -0. 31 -0. 09	-0.4 -1.1 -3.1	" +0.7 +1.5 +0.8 -4.1 +1.6
28 28 28 28 28	Berlin Berlin Berlin Berlin Berlin	B.D.+17° 346 B.D.+18° 300 B.D.+18° 305 B.D.+18° 312 B.D.+19° 362	EEEE	+0.83 +0.31 +0.71	-0. 82 -0. 30 -0. 70	+0. 12 -0. 26 -0. 16	-0. 38 +0. 90 +0. 57	-0. 40 +0. 94 +0. 61	-0. 11 +0. 32 +0. 21	-0. 38 -0. 35 -0. 06 -0. 24 -0. 21	-0. 29 +0. 56 +0. 16	-0. 85 -0. 31 -0. 73	+2.5 +0.5 +1.8	+1.5 +1.2 0.0 +0.7 +1.5
28 29 29 29 29	Berlin Berlin Berlin Berlin Berlin	26 Arietis B. D. +21° 418 B. D. +21° 423 B. D. +22° 455 161 B. Arietis	E E E E	+o. 89 +o. 76 +o. 84	-0. 74 -0. 63 -0. 69	-0. 02 -0. 04 +0. 03	+0. 24 +0. 55 -0. 40	+0. 24 +0. 55 -0. 40	+0.09 +0.16 -0.08	-0. 42 -0. 27 -0. 22 -0. 25 -0. 24	+0. 12 +0. 38 -0. 36	-0. 95 -0. 81 -0. 89	+2. 2 +0. 8 +1. 3	+2.3 +0.8 -0.4 0.0 -0.4
29 30 Se pt. 3 3 5	Berlin Berlin Berlin Berlin Cape	B. D. +22° 465 B. D. +25° 678 B. D. +22° 1810 B. D. +22° 1834 \$\alpha\$ Leonis	E E E IB	+0.67 +0.66 +0.62	一0. 53 十0. 19 十0. 17	-0. 12 +0. 68 +0. 71	-0.68 +0.37 +0.38	-0. 69 +0. 77 +0. 80	-0.08 -0.09 -0.10	-0. 25 -0. 14 +0. 21 +0. 20 -0. 32	-0.66 +0.65 +0.69	-0. 72 -0. 40 -0. 37	+0.5 +2.0 +1.9	+0.9 -0.5 +1.0 +0.9 -0.7
14 14 14 18 23	Berlin Berlin Berlin Cape Berlin	C. D28° 14143 C. D28° 14144 38 B. Sagittarii 42 Capricor. B. D. +11° 172	1	-0. 42 -0. 94 -0. 93	一0. 15 一0. 34 十0. 41	+0. 55 +0. 25 -0. 21	+0. 74 +0. 34 -0. 01	-0. 92 -0. 42 +0. 21	-0. 11 -0. 16 +0. 01	+0.05 +0.01 +0.06 +0.41 -0.43	+0. 94 +0. 48 -0. 09	-0.40 -0.90 -0.67	+0.6 +0.3 -1.8	+2.0 +1.4 +2.2 +0.1 +3.2
26 26 26 26 26	Berlin Berlin Berlin Berlin Berlin	17 Tauri B. D. +23° 504 16 Tauri q Tauri B. D. +23° 519	E E E E	+0. 87 +0. 92 +0. 86	-0. 66 -0. 70 -0. 66	-0. 03 -0. 01 -0. 04	-0. 30 -0. 07 -0. 34	-0. 30 -0. 07 -0. 34	-0. 03 +0. 10 -0. 03	-0. 09 -0. 21 -0. 22 -0. 21 -0. 06	-0. 30 -0. 11 -0. 34	-0. 83 -0. 87 -0. 82	+3.3 +2.4 +2.5	-0.6 +1.9 +0.9 +1.1 -1.3
26 26 26 26 26	Berlin Berlin Berlin Berlin Berlin	B. D. +23° 512 B. D. +24° 550 20 Tauri B. D. +23° 523 21 Tauri	E E E E	+0.90 +0.90 +0.53	-0. 69 -0. 68 -0. 41	-0. 02 +0. 03 +0. 09	-0. 20 +0. 24 +0. 82	-0. 20 +0. 24 +0. 82	0.00 +0.08 +0.17	-0. 19 -0. 21 -0. 20 -0. 09 -0. 19	-0. 24 +0. 16 +0. 67	-0.85 -0.84 -0.50	+3. 1 +2. 5 +1. 0	+1.1
26 26 26 26 26	Berlin Berlin Berlin Berlin Berlin	22 Tauri B.D.+23° 540 B.D.+24° 562 B.D.+24° 566 B.D.+24° 567	E E E E	+0. 24 +0. 92 +0. 92	-0. 18 -0. 70 -0. 70	+0. 11 0. 00 -0. 01	+0. 97 +0. 04 -0. 10	+0.97 +0.04 -0.10	+0. 20 +0. 05 +0. 03	-0. 21 -0. 03 -0. 22 -0. 23 -0. 21	+0.81 -0.03 -0.14	-0. 23 -0. 87 -0. 87	-1.5 +4.1 +2.5	+1.5 -1.9 +2.6 +1.0 +0.3
26 26 26 28 28	Berlin Berlin Berlin Berlin Berlin	B. D. +24° 577 B. D. +24° 587 B. D. +24° 598 B. D. +27° 818 B. D. +27° 832	E E E E	+0. 56 +0. 92 +0. 96	-0. 43 -0. 70 -0. 29	-0. 11 +0. 01 -0. 06	-0. 79 +0. 04 -0. 10	-o. 80	-0. 12 +0. 05 +0. 09		-0. 92 -0. 01 -0. 18	-o. 53	+2.7 +3.7 +1.9	+1.8 +2.2 +0.4
28 28 28 28 29	Berlin Berlin Berlin Berlin Berlin	B. D. +27° 846 B D. +27° 850 B. D. +27° 856 B. D. +27° 866 B. D. +26° 1276	E E E E E	+0. 75 +0. 80 +0. 38	-0. 22 -0. 24 -0. 11	+0.35 +0.31 -0.50	+0. 54 +0. 47 -0. 77	+0.57 -0.92	+0.06 +0.07 +0.04	0.00 -0.03 +0.01 0.00 +0.12	-0.61 +0.53 -0.94	-0. 82 -0. 39	+3.0 +2.1 -0.1	-0. † +1. 8 +0. 8 -0. 7 +0. 3
29 29 29 29 29	Berlin Berlin Berlin Berlin Berlin	B. D. +26° 1292 B. D. +26° 1298 B. D. +26° 1304 B. D. +26° 1300 B. D. +26° 1302	E E E E	+0. 99 +0. 68 +0. 95	-0. 07 -0. 05 -0. 07	+0.04 -0.51 -0.18	+0.04 -0.51 -0.18	+0.05 -0.72 -0.26	0.00 +0.15 +0.12	+0.07 +0.13 +0.09 +0.12 +0.10	-0. 02 -0. 76 -0. 31	-0. 99 -0. 68 -0. 94	+2.2 +1.6 +1.4	+1.5 +0.6 +0.5 -0.1 +0.5
29 29 29 29 29	Berlin Berlin Berlin Berlin Berlin	B. D. +26° 1308 B. D. +26° 1309 B. D. +26° 1311 B. D. +26° 1326 B. D. +26° 1321	E E E E	+0. 75 +0. 57 +0. 47	-0. 05 -0. 04 -0. 03	+0. 45 +0. 58 -0. 63	+0.45 +0.58 -0.62	+0. 64 +0. 81 -0. 88	+0.01 -0.03 +0.15	+0. 13 +0. 08 +0. 06 +0. 07 +0. 13	+0.60 +0.78 -0.90	-0. 74 -0. 57 -0. 46	+2.4 +0.9 0.0	+1.5 +1.2 0.0 -0.8 +0.8
29 29 29 29 29	Berlin Berlin Berlin Berlin Berlin	B.D.+26° 1322 B.D.+26° 1327 B.D.+26° 1331 B.D.+26° 1332 B.D.+26° 1333	E E E E	+0. 65 +0. 94 +0. 98	-0. 05 -0. 07 -0. 07	+0. 54 -0. 22 -0. 12	+0. 53 -0. 22 -0. 12	+0. 76 -0. 31 -0. 17	-0. 02 +0. 13 +0. 12	+0. 12 +0. 09 +0. 13 +0. 12 +0. 13	+0. 70 -0. 36 -0. 21	-0. 65 -0. 93 -0. 97	+1.8 +0.9 +2.1	+0.1 +0.8 -0.6 +0.5
29 29 Oct. 9 10 16	Berlin Berlin Cape Cape Kasan	B. D. +26° 1338 B. D. +26° 1342 α Scorpii α Scorpii ε Aquarii	E E I EB I	+0.67 -0.99 +0.80	-0.05 -0.71 +0.57	+0. 53 +0. 10 +0. 19	+0. 50 +0. 38 +0. 64	+0. 73 -0. 39 -0. 67	-0. 02 -0. 14 +0. 21	+0. 11 -0. 09 -0. 13 +0. 07 +0. 41	+0.65 +0.41 +0.55	-0.67 -0.61 +0.49	+1.8 -0.8 +0.8	+0.6 +0.7 +1.2 -0.5 +2.4

GROUP XIII—1891-1908—Continued.

Date.	Plac	e. Star.	Ph.	λ	κ	$i\theta$	i	$b_{\rm o}$	α_{o}	ð _o	E	P	n	n'
	Berlin Berlin Berlin Berlin Berlin Berlin Berlin	B. D 0° 4558 B. D. +25° 703	I E E E	+0. 74 +0. 70 +0. 83	-0. 51 -0. 48 -0. 50	-0. 15 +0. 17 +0. 24	-0. 56 +0. 65 +0. 40	-0. 58 +0. 67 +0. 47	-0.06 +0.12 +0.05	-0. 10 -0. 11 -0. 01	+0. 04 -0. 59 +0. 57 +0. 41 -0. 55	-0. 53 -0. 50 -0. 62	+0.5 +2.4 +1.0	" -1.0 -0.7 +1.2 -0.4 -1.0
	27 Berlin 27 Berlin 27 Berlin 27 Berlin 27 Berlin	B. D. +24° 1549 B. D. +24° 1562 B. D. +24° 1567 B. D. +24° 1576 52 Geminor		+0. 74 +0. 59 +0. 84	-0. 05 -0. 04 -0. 06	+0. 52 +0. 65 +0. 42	+0. 38 +0. 46 +0. 30	+0.65 +0.80 +0.52	-0. 03 -0. 08 0. 00	+0. 13 +0. 11 +0. 16	+0. 83 +0. 59 +0. 75 +0. 46 -0. 23	-0. 72 -0. 58 -0. 82	+1.8 +1.6 +2.3	+0.6 +0.6 +0.6 +0.9 -0.2
	27 Berlin 27 Berlin 27 Greenw 30 Berlin 30 Berlin	B. D. +25° 1625 B. D. +24° 1627 52 Geminor B. D. +11° 2153 B. D. +11° 2162	E E IB E E	+0.99 -0.80 +1.01	-0. 07 +0. 06 +0. 49	-0. 05 -0. 45 +0. 30	-0. 03 -0. 33 -0. 03	-0.06 -0.56 +0.30	+0. 12 +0. 03 +0. 04	+0. 20 -0. 16 +0. 44	-0. 40 -0. 11 -0. 50 +0. 10 -0. 07	-0. 96 -0. 80 -0. 90	+1.2 -3.2 +0.7	-0.5 -0.4 -1.6 -0.9 -0.7
	9 Cape 9 Cape 9 Cape 10 Berlin 12 Berlin	χ Sagittari χ Sagittari 49 Sagittari B. D. – 22° 5389 B. D. – 12° 6153	i EB	+0. 19 -0. 32 -0. 95	+0. 05 -0. 08 +0. 03	-0.83 +0.81 +0.31	-0. 52 +0. 50 +0. 10	+0. 98 -0. 95 -0. 32	+0. 20 -0. 22 -0. 21	-0. 01 +0. 03 +0. 27	-0. 77 -0. 93 +0. 91 +0. 33 +0. 40	+0. 15 -0. 24 -0. 87	-1.7 -0.5 -1.9	-2.3 -2.0 +0.1 0.0 +0.7
	12 Berlin 13 Berlin 13 Berlin 13 Berlin 13 Berlin	B. D 12° 6152 B. D 7° 5837 B. D 7° 5847 B. D 7° 5858 B. D 7° 5861	I I I I	-0. 85 -0. 82 -0. 84	+0. 59 +0. 57 +0. 58	+0. 39 +0. 46 -0. 42	-0. 12 -0. 15 +0. 14	-0.41 -0.48 +0.44	-0. 23 -0. 22 +0. 15	+0. 37 +0. 35 +0. 46	+0.41 +0.21 +0.22 -0.11 -0.05	-0. 88 -0. 85 -0. 87	-1.0 -1.4 -2.9	+0.4 +0.7 +0.3 -1.2 -1.0
-	13 Berlin 15 Berlin 15 Berlin 15 Berlin 16 Berlin	B. D 7° 5866 B. D. + 3° 10 B. D. + 3° 15 B. D. + 4° 22 B. D. + 8° 126	I I I I	-0. 53 -0. 90 -0. 78 -0. 80	+0. 54 +0. 92 +0. 80 +0. 88	+0. 61 +0. 04 +0. 37 -0. 25	-0. 53 -0. 03 -0. 33 +0. 34	-0. 81 -0. 05 -0. 49 +0. 42	-0. 34 -0. 03 -0. 23 +0. 19	+0. 17 +0. 45 +0. 35 +0. 43	-0. 29 +0. 01 +0. 05 +0. 02 +0. 14	-0.46 -0.78 -0.68 -0.58	-1.4 -3.5 -1.1 -1.9	-1.2 -0.3 -1.7 +0.5 -0.3
	16 Berlin 16 Berlin 16 Berlin 17 Berlin 26 Berlin	B.D.+ 9° 110 B.D.+ 9° 109 B.D.+10° 123 104 Piscium B.D.+13° 2131	III	-0. 51 -0. 63 -0. 44	+0. 56 +0. 70 +0. 50	+0.48 +0.40 -0.37	-0. 66 -0. 59 +0. 78	-0. 82 -0. 71 +0. 87	-0. 36 -0. 30 +0. 35	+0. 17 +0. 23 +0. 28	-0. 04 -0. 17 -0. 15 +0. 38 -0. 13	-0. 36 -0. 45 -0. 24	-1.1 -1.2 -1.8	-0.7 -0.1 +0.1 -0.9 -1.0
Dec.	26 Berlin 26 Berlin 26 Berlin 16 Berlin 17 Berlin	47 B. Leonis B. D. +13° 2139 B. D. +13° 2147 B. D. +22° 438 17 Tauri	E E I I	+0.90 +0.64 -0.82	+0.47 +0.33 +0.82	+0. 52 +0. 80 0. 00	-0. 02 -0. 04 -0. 40	+0. 52 +0. 80 -0. 40	-0.06 -0.21 -0.12	+0. 39 +0. 33 +0. 25	+0. 16 +0. 27 +0. 45 -0. 25 +0. 23	-0. 84 -0. 59 -0. 54	+2.3 +2.2 -4.2	-0.4 +0.8 +1.1 -2.5 -0.6
	17 Berlin 17 Berlin 17 Berlin 17 Berlin 17 Berlin	20 Tauri q Tauri B. D. +23° 523 B. D. +24° 562 B. D. +23° 540	I	-0. 23 -0. 89 -0. 66	+0. 23 +0. 86 +0. 64	-0. 16 +0. 02 -0. 12	-0. 95 +0. 13 -0. 68	-0. 97 +0. 13 -0. 69	-0. 18 +0. 02 -0. 14	+0. 03 +0. 22 +0. 14	-0. 36 -0. 81 +0. 16 -0. 54 +0. 32	-0. 12 -0. 47 -0. 34	-1.7 -3.3 -1.4	-1.2 -1.2 -1.4 0.0 +1.0
	17 Berlin 17 Berlin 17 Berlin 17 Berlin 17 Berlin	B. D. +24° 566 B. D. +23° 553 B. D. +23° 560 B. D. +23° 561 B. D. +23° 567	I I I I	-0. 82 -0. 79 -0. 75	+0. 79 +0. 77 +0. 72	+0.08 +0.09 +0.11	+0. 40 +0. 45 +0. 55	+0.41 +0.46 +0.56	+0. 07 +0. 08 +0. 09	+0. 19 +0. 18 +0. 19	-0. 65 +0. 39 +0. 44 +0. 52 +0. 81	-0. 43 -0. 41 -0. 39	-2. I -2. 5 -3. 0	-0.8 -0.4 -0.8 -1.4 -0.9
	17 Berlin 17 Berlin 17 Greenw 18 Berlin 7 Berlin	B. D. +24° 578 B. D. +24° 602 7 Tauri B. D. +26° 775 252 B. Aquarii	I I I I I	-0. 89 -0. 48 -0. 91	+0.86 +0.45 +0.75	-0. 02 +0. 15 +0. 05	-0. 11 +0. 84 +0. 11	-0. 11 +0. 86 +0. 12	-0.03 +0.25 -0.02	+0. 20 +0. 14 +0. 06	+0. 44 -0. 04 +0. 75 +0. 18 +0. 11	-0. 47 -0. 24 -0. 39	-3.7 -2.2 -2.4	-0.5 -1.8 -1.2 -0.5 -2.0
	10 Berlin 10 Berlin 10 Berlin 11 Santiag 17 Cape	B. D. +10° 128 B. D. +11° 146 B. D. +11° 152 15 Arietis A Geminor	I I I I	-0. 10 -0. 85 -0. 89	+0.11 +0.92 +1.00	+0. 50 +0. 16 +0. 02	-0. 87 -0. 28 -0. 09	-1.00 -0.32 -0.09	-0.42 -0.12 -0.04	-0.06 +0.36 +0.35	+0. 10 -0. 29 -0. 02 -0. 11 +0. 86	-0. 11 -0. 95 -0. 98	+0.5 -3.1 -1.6	-2.4 +0.7 -1.3 +0.3 +2.1
Feb.	Cape Cape Cape Cape Cape Cape Cape Cape	χ Virginis α Scorpii α Scorpii 39 Geminor. α Scorpii	E IB E I E	-0. 46 +0. 81 -0. 29 +1. 09	-0. 36 +0. 64 +0. 10 +0. 89	-0. 34 -0. 25 +0. 81 -0. 04	-0. 84 -0. 63 +0. 50 -0. 08	+0.91 +0.68 +0.95 +0.09	-0. 19 +0. 08 -0. 17 +0. 20	-0. 04 +0. 11 -0. 04 +0. 14	+0. 16 -0. 81 -0. 67 +0. 94 -0. 13	+0. 37 -0. 64 -0. 18 -1. 00	-1.9 +2.9 -0.7 -1.0	1 1
May	12 Kasan 14 Cape 19 Cape 5 Cape 11 Santiag	19 Leonis 79 Leonis σ Scorpii 136 Tauri 75 Leonis	I I E I I	-1.06 +1.03 -0.80	-0. 65 +0. 89 +0. 61	+0. 10 -0. 14 -0. 37	-0. 08 -0. 31 -0. 34	+0. 14 +0. 35 -0. 50	-0. 25 +0. 15 -0. 02	-0. 44 +0. 14 -0. 04	-0. 35 +0. 07 -0. 37 -0. 44 -0. 11	-0. 17 -0. 54 -0. 64	-1.5 +2.6 -1.3	+0.8 +0.7 +0.5

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	. λ	K	i0	i	b_{o}	α_{o}	$\delta_{ m o}$	ε	P	n	n'
1897, July 3 12 13 20 20	Cape Cape Greenwich Santiago Santiago	18 Leonis λ Sagittarii χ Sagittarii η Piscium η Piscium		-0. 60 -0. 94 -0. 89	-0.43 -0.55 +0.76	+0. 70 +0. 49 -0. 05	+0.43 +0.17 +0.21	-0.82 -0.52 +0.22	-0. 18 -0. 28 +0. 06	+0. 05 +0. 17 +0. 40	+0.85 +0.55 +0.17	-0. 35 -0. 18 -0. 12 +0. 86 -0. 74	-0. 2. +1. 6 -0. 6	+1.2 +3.8 +1.5
23 23 23 23 23	Greenwich Greenwich Greenwich Greenwich Greenwich	17 Tauri 16 Tauri 16 Tauri 16 Tauri 23 Tauri 17 Tauri	IB IB E IB E	-0. 13 +0. 29 -0. 66	+0. 15 -0. 32 +0. 73	-0. 35 -0. 34 +0. 24	-0. 92 -0. 88 +0. 63	-0. 99 -0. 95 +0. 68	-0. 18 -0. 16 +0. 11	+0.01 -0.09 +0.16	-0. 82 -0. 82 +0. 62	+0.85 +0.14 -0.29 +0.66 -0.88	+0.6 +1.1 -1.7	+0.9 +0.5 -0.2
23 23 23 23 23	Greenwich Greenwich Greenwich Greenwich Greenwich	η Tauri 23 Tauri 24 Tauri η Tauri 28 Tauri	IB E E E IB	+0. 5 ² +0. 79 +0. 74	-0. 57 -0. 87 -0. 82	+0. 30 +0. 19 +0. 22	+0. 76 +0. 46 +0. 53	+0.82 +0.49 +0.57	+0. 17 +0. 10 +0. 11	-0. 10 -0. 16 -0. 15	+0.66 +0.36 +0.42	+0. 84 -0. 51 -0. 78 -0. 74 +0. 60	+0.7 +0.2 +1.6	-0.3 -1.3 +0.2
23 23 Aug. 1 4	Greenwich Greenwich Santiago Greenwich Cape	28 Tauri 105 B. Tauri 359 B. Leonis 89 Virginis 83 Virginis	E I I I	+0.90 -1.04 -0.86	-1.00 -0.46 -0.74	-0. 02 -0. 03 +0. 05	-0. 04 +0. 04 -0. 59	-0.04 -0.05 +0.59	0.00 -0.13 -0.35	-0. 20 -0. 46 -0. 26	-0. 11 +0. 07 -0. 22	-0. 40 -0. 90 +0. 99 -0. 80 -0. 95	-1.0 -4.3 -0.4	-1.9 +1.6
9 14 17 Sept. 9 18	Evanston Evanston Santiago Cape Cape	χ Sagittarii λ Piscium ι Arietis ρ Aquarii 136 Tauri	I IB E I E	-0.72 +0.90	+0.31 -0.81 -0.04	+0.46 -0.01 -0.56	-0. 50 +0. 18 +0. 30	-0.68 +0.18 +0.64	-0.37 +0.07 +0.17	+0. 26 -0. 35 +0. 39	+0. 11 +0. 10 -0. 24	+0.97 -0.28	-5. I +1. I -2. 7	-3.4 -0.6 -0.9
Oct. 1 3 3 3 8	Cape Evanston Greenwich Greenwich Cape	A Ophiuchi 53 Sagittarii 48 Sagittarii 2 Sagittarii 16 Piscium	I	-1.04 -0.99 -0.78	-0.69 -0.73 -0.58	+0. 04 -0. 32 -0. 64	-0. 01 -0. 08 -0. 16	-0. 04 +0. 33 +0. 66	-0. 16 -0. 08 +0. 03	+0. 24 +0. 21 +0. 18	+0.11 -0.25 -0.57	-0. 88 -0. 99 -0. 94 -0. 75 -0. 32	-0.7 -1.9 -2.2	+1.8 +0.5 -0.3
30 Nov. 4 Dec. 2	Evanston Cape Cape Kasan Cape	49 Sagittarii κ Piscium 9 Piscium 22 Piscium θ Arietis	I I I I	-0. 97 -0. 81 -0. 56	+0.16 +0.13 +0.11	+0.07 -0.35 -0.42	-0.08 +0.43 +0.69	-0. 11 +0. 56 +0. 81	-0. 14 +0. 17 +0. 32	+0. 42 +0. 43 +0. 34	+0. 11 0. 00 0. 00	-0. 61 -0. 84 -0. 71 -0. 58 -0. 62	-0.8 -3.0 -1.5	-1.0 -0.1
5 6 7 13 25	Evanston Kasan Kasan Cape Evanston	26 Arietis ε Arietis 27 Tauri π Cancri ο Capricor.	I I E I	-0. 90 -0. 48 +0. 91	+0.89 +0.50 -0.30	-0. 02 -0. 41 +0. 30	-0.07 -0.74 -0.09	-0. 07 -0. 85 +0. 31	-0. 03 -0. 15 -0. 04	+0. 25 +0. 07 +0. 38	-0. 69 +0. 14	-0. 28 -0. 54 -0. 18 -0. 82 -0. 01	-1.7 -1.0 +2.8	+0.5 +0.2 +0.9
1898, Jan. 27 3 3 3	Evanston Kasan Greenwich Greenwich Greenwich	θ Aquarii ε Arietis 17 Tauri 24 Tauni 23 Tauri	I I I I	-0. 31 -0. 76 -0. 90	+0.32 +0.82 +0.96	+0. 32 -0. 26 +0. 04	+0.88 -0.46 +0.07	+0.94 -0.53 +0.08	+0. 22 -0 10 0.00	+0. 11 +0. 15 +0. 19	+0.70 -0.39 +0.15	-0. 31 -0. 31 -0. 61 -0. 72 -0. 63	-1.3 -1.5 -5.2	-0.5 +0.4 -2.5
3 3 3 3 3	Greenwich Greenwich Greenwich Greenwich Greenwich	17 Tauri 7 Tauri 23 Tauri 105 B. Tauri 28 Tauri	EB I EB I I	+0. 70 -0. 74	+0.95 -0.75 +0.79	+0.08 +0.32 -0.30	+0.13 +0.54 -0.40	+0. 15 +0. 63 -0. 57	+0.02 +0.10 -0.00	+0. 18 -0. 13 +0. 13	+0. 26 +0. 46 -0 41	+0. 68 -0. 71 +0. 56 -0. 59 -0. 67	-3.2 $+2.5$ -3.7	-1.0 +1.0
3 3 3 5	Greenwich Greenwich Greenwich Evanston Cape	27 Tauri 7 Tauri 27 Tauri 125 Tauri 18 Leonis	I EB EB I E	+0.87 +0.64 -0.75 +0.95	-0. 93 -0. 69 +0. 80 -0. 25	+0. 12 +0. 37 -0. 46 -0. 18	+0. 20 +0. 60 -0. 32 +0. 09	+0. 24 +0. 70 -0. 56 -0. 20	+0.04 +0.11 +0.01 +0.16	-0. 17 -0. 11 -0. 02 +0. 38	+0. 12 +0. 53 -0. 48 -0. 19	-0. 51 +0. 70 +0. 52 -0. 28 -0. 63	+2.3 -1.6 -2.5 +2.7	-2.9
Feb. 5 13	Cape Evanston Evanston Cape Cape	19 Leonis 45 Piscium σ² Cancri 42 Libræ θ Arietis	E I I E I	-0. 58 -0. 95 +0. 99 -0. 84	+0. 19 +0. 48 +0. 85 +0. 77	-0. 28 +0. 05 +0. 23 +0. 08	+0. 76 -0. 01 +0. 39 +0. 37	+0.81 +0.05 -0.45 +0.38	+0. 29 -0. 07 +0. 27 +0. 10	+0. 33 -0. 35 +0. 15 +0. 31	+0. 17 +0. 12 +0. 30 +0. 32	-0. 63 -0. 50 +0. 01 -0. 89 -0. 77	-1.6 -3.5 +1.5 -1.9	+1.4 -0.1 -1.1 -0.6 +0.2
Mar. 1 2 5 13	Evanston Kasan Cape Cape Greenwich	26 Arietis 125 Tauri ε Geminor. π Cancri α Scorpii	I I I IB	-0. 20 -0. 86 -0. 82	+0. 24 +0. 89 +0. 44	-0. 84 +0. 26 -0. 45	-0.50 +0.07 +0.17	-0. 98 +0. 27 -0. 48	+0. 02 -0. 04 +0. 13	0.00 -0.13 -0.35	-0. 95 +0. 33 -0. 27	-0. 90 -0. 23 -0. 82 -0. 36 +0. 97	-1.3 -0.8 -4.4	+1.4
13 13 13 13	Greenwich Pola Strassburg Strassburg Prague	α Scorpii α Scorpii α Scorpii α Scorpii α Scorpii	E IB I E IB	+1.04 -1.05 -1.06 +1.01	+0. 92 -0. 95 -0. 95 +0. 92	+0. 21 +0. 12 +0. 12 +0. 24	+0. 22 +0. 13 +0. 12 +0. 24	-0. 30 -0. 18 -0. 17 -0. 34	+0. 21 -0. 14 -0. 16 +0. 19	+0. 10 -0. 10 -0. 10 +0. 09	+0. 18 +0. 25 +0. 25 +0. 21	-0. 92 +0. 95 +0. 95 -0. 91 +0. 93	+4.8 -0.8 -0.9 +4.8	+2.5 +1.5 +1.8 +2.6

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ .	K	iθ	. i	b _o	$\alpha_{\rm o}$	ð.	e	P	n	n'
1898, Mar. 1	Cape Kasan	α Scorpii ρ Capricor. 9 Tauri 54 Cancri 10 Sextantis	E E I I	+0.80 -0.90 -0.75	+0. 57 +0. 86 +0. 55	+0.66 +0.11 +0.58	-0. 11 +0. 17 -0. 17	-0. 67 +0. 20 +0. 60	-0.07 +0.02 -0.22	+0.09 -0.27 +0.19 -0.39 -0.32	+0. 59 +0. 24 +0. 53	-0. 61 -0. 75 -0. 73	+2. 2 -0. 8 -2. 6	+0.4 +1.5 -0.6
22 22 May	Kasan Cape Cape Greenwich	p ⁵ Leonis 139 Tauri Ø Cancri £ Leonis 13 B. Virginis	I I I I	-0. 95 -0. 73 -0. 62 -0. 32	0.00 +0.57 +0.06 +0.16	-0. 21 +0. 55 +0. 76 -0. 83	+0. 29 +0. 25 -0. 17 +0. 45	-0. 36 +0. 60 +0. 78 -0. 94	+0. 05 -0. 05 -0. 28 +0. 34	-0. 45 -0. 05 -0. 14 -0. 20 -0. 17	-0. 02 +0. 66 +0. 68 -0. 57	-0. 33 -0. 64 -0. 63 -0. 32	-5.0 -1.2 -1.3 -1.5	-2.5 +0.7 +0.3 -0.7
June 1.	5 Greenwich 6 Cape 3 Cape	75 Piscium \$\lambda\$ Sagittarii 50 Sagittarii 105 Piscium 42 Libræ		+1.13 +1.02 +0.83	+0.89 -0.31	+0. 18 -0. 35 -0. 07	+0. 05 -0. 01 -0. 50	-0. 19 +0. 35 -0. 50	+0. 22 +0. 26 -0. 09	-0. 38 -0. 12 -0. 20 -0. 22 -0. 12	+0. 11 -0. 40 -0. 37	-0. 31 -0. 47 -0. 76	+5.4 +2.8 +1.5	+2.8 +0.5 -0.4
Aug. 2 Sept. 2	6 Cape 5 Cape 3 Cape	λ Sagittarii 75 Piscium 26 Ophiuchi η Piscium ν¹ Sagittarii	E I E	+0. 16 -0. 36 +0. 97	-0. 02 -0. 31 -0. 14	+0. 13 +0. 83 +0. 02	+0. 99 +0. 47 +0. 13	+0. 99 -0. 95 +0. 13	+0. 38 -0. 04 +0. 12	+0. 13 +0. 02 -0. 03 -0. 34 +0. 16	+0. 29 +0. 94 -0. 04	-0. 14 -0. 32 -0. 59	+1.6 +0.4 +2.2	+1.2 +1.4 -0.1
Oct. 20 22 24 25 26 Nov. 10	B Greenwich Cape 4 Cape	v² Sagittarii 16 Piscium 23 Sagittarii 51 Aquarii 1 Sagittarii	I I I	-1.01 -0.69	-0. 37 -0. 61 -0. 70	+0.09 +0.78 +0.04	-0. 27 +0. 09 -0. 05	-0. 28 -0. 79 -0. 07	-0. 26 -0. 23 -0. 20	+0. 17 +0. 38 +0. 06 +0. 40 +0. 09	+0.05 +0.82 +0.12	-0. 30 -0. 57 -0. 88	-0. 1 -0. 7 +0. 4	$\begin{array}{c c} +2.7 \\ +1.3 \\ +3.4 \end{array}$
Dec. 1	Wilhelmshaven Kasan Kasan	19 Piscium 19 Piscium 19 Piscium 19 Piscium 19 Piscium 19 Arietis	I I I I	-1.02 -1.04	-0. 40 -0. 48 -0. 59	+0. 13 +0. 01 +0. 01	-0. 54 -0. 05 -0. 03	-0. 56 -0. 05 -0. 03	-0. 01 -0. 13 -0. 15	+0. 26 +0. 29 +0. 40 +0. 41 +0. 22	+0. 11 +0. 08 +0. 06	-0. 78 -0. 94 -0. 97	+1.4 -0.1 -2.6	+3.8 +2.8 +0.4
2 30 1899, Jan. 10 Feb.	Cape Greenwich	47 Arietis o¹ Cancri μ Arietis 43 H. Virginis 27 G. Scorpii	I E I E E	+0.40 -0.82 +0.70	-0. 42 +0. 14 +0. 11	-0. 76 -0. 30 -0. 35	+0.49 -0.41 -0.61	-0. 90 -0. 51 +0. 70	+0. 30 -0. 16 -0. 14	+0. 22 +0. 09 +0. 21 +0. 25 +0. 11	-0. 70 -0. 27 -0. 47	-0. 24 -0. 85 -0. 71	-0. 2 -0. 7 +1. 7	-1.2 +1.7 -0.1
13 10 2 2 2 Mar. 10	Kasan Cape Greenwich	103 Tauri 1 Geminor. 79 Geminor. 90 B. Cancri 26 Tauri	I I I I	-0. 77 -0. 89 -0. 81	+0. 71 +0. 99 +0. 89	+0. 52 +0. 11 +0. 38	+0.06 -0.03 -0.22	+0. 53 +0. 11 +0. 44	-0. 04 -0. 02 -0. 13	+0.01 -0.07 -0.24 -0.26 +0.15	+0.60 +0.19 +0.44	-0.76 -0.61 -0.40	-5.3 -3.1 -2.7	-3.0 -0.5 -0.4
Apr. 1	Kasan Wilhelmshaven Wilhelmshaven	27 Tauri 56 Geminor. 7 Geminor. 3 Cancri 3 Cancri	I I I I	-0, 81 -0, 09 -0, 50	+0.86 +0.07 +0.55	+1.00 +0.75	+0. 10 +0. 01 -0. 35	-0.43 +1.00 +0.83	+0.09 -0.01 +0.03	+0.06 -0.21 0.00 -0.12 -0.03	-0.34 +1.00 +0.80	-0.86 -0.08 -0.56	-4. I -0. 8 -2. 8	-1.7 -5.8 -1.3
10 10 22 23 May	Kasan Pola Pola	h Leonis h Leonis θ Ophiuchi θ Ophiuchi 31 B. Capricor.	E	-0.90 -1.06 +1.05	+0. 95 -0. 73 +0. 72	+0. 12 +0. 12	+0. 11 +0. 01 +0. 03	-0. 14 -0. 03 -0. 12	+0. 05 -0. 15 +0. 15	-0. 30 -0. 39 +0. 02 -0. 01 -0. 31	+0. 01 +0. 11 +0. 02	-0. 89 +0. 73 -0. 72	-5.0 -2.4 +4.2	-2.3 +0.8 +1.4
June 1	6 Greenwich 3 Cape	44 Aquarii 232 Tauri 9 Sagittarii 0 Leonis 7 Capricor.	E I E I E	-0.66 +1.08 -0.59	+0. 52 +0. 77 +0. 64	-0. 71 +0. 22 -0. 45	-0.06 0.00 +0.61	-0. 71 -0. 22 -0. 76	+0. 02 +0. 17 +0. 29	-0.40 -0.05 -0.08 -0.30 -0.31	-0. 64 +0. 12 -0. 42	-0. 38 -0. 45 -0. 58	-2. I +0. I -5. 7	-0. I -2. 8 -3. 9
July 11 22 Aug. 20 22	Cape Kasan Cape	 d Scorpii d Scorpii 7 Sagittarii 66 Arietis 62 Tauri 	I EB I E E	+0. 28 -1. 04 +0. 56	+0. 08 -0. 68 -0. 04	+o. 87 +o. 39 -o. 70	+0. 42 -0. 01 -0. 43	-0. 96 -0. 39 -0. 82	+0. 14 -0. 23 -0. 10	-0. 02 +0. 03 +0. 08 -0. 11 -0. 08	+0.80 +0.47 -0.71	+0. 20 -0. 38 -0. 54	+1.9 -1.0 +2.3	+1. I +2. 2 +0. 7
Oct. 1	Kasan Cape Cape	36 Sagittarii 57 Sagittarii 0 Leonis 187 B. Aquarii 36 Piscium		-1.04 +0.90 -1.01	+0.87 -1.00 -0.92	+0. 01 +0. 01 +0. 09	+0. 11 -0. 01 -0. 35	+0. 21 +0. 01 -0. 36	-0. 09 -0. 02 -0. 29	+0. 17 +0. 23 +0. 36 +0. 34 +0. 31	-0. 12 -0. 06 +0. 25	-0. 97 -0. 98 -0. 88	+0.7 +4.8 -0.5	+4.0 +2.1 +2.8
Dec.	Cape Cape Cape Cape Cape Cape	75 Piscium 99 Taurl 138 B. Aquarii μ Arietis 175 H ¹ . Tauri	I E I I I	-0.41 +0.99 -0.67	-0. 24 +0. 25 -0. 62 -0. 32	-0. 42 -0. 11 +0. 24 -0. 24	-0. 83 -0. 01 -0. 75 -0. 18	-0. 93 -0. 11 -0. 79 -0. 30	-0. 38 +0. 07 -0. 40 -0. 17	+0. 07 -0. 03 +0. 18 +0. 22 -0. 04	-0. 25 -0. 19 +0. 43 -0. 10	-0. 24 -0. 20 -0. 60 -0. 68	+2.4 +3.9 +0.6 -1.1	+3.7 +0.9 +2.8 +2.1

GROUP XIII-1891-1908-Continued.

Date.	Place.	Star.	Ph.	λ.	κ	i0	i	t_{o}	α_{o}	$\partial_{\mathbf{o}}$	E	P	n	n'
1899, Dec. 16 1900, Jan. 9 11 23 Feb. 3	Greenwich Greenwich Wilhelmshaven Cape Cape	175 H¹. Tauri 27 Arietis 67 Tauri 40 H. Virginis d Piscium	E I I E I	+0.81 -0.51 -0.71 +0.57 -0.68	-0. 24 -0. 05 -0. 32	+0. 69 +0. 67 +0. 58	+0.55 +0.14 +0.55	+0.88 +0.69 -0.80	+0. 16 -0. 05 +0. 23	+0. 14 +0. 07 +0. 14	+0. 58 +0. 68 +0. 41	-0. 46 -0. 54 -0. 59	-3.0 -4.7 +2.3	-1.3 -2.4 +0.5
6 6 7 12 Mar. 5	Wilhelmshaven Greenwich Greenwich Cape Wilhelmshaven	δ Arietis δ Arietis 39 Tauri 90 B. Cancri 40 Arietis	I I I I	-0. 81 -0. 73 -0. 76 -0. 91 -0. 82	-0. 34 -0. 27 -0. 13 +0. 84 -0. 43	+0. 54 +0. 66 -0. 69 +0. 01 +0. 55	+0. 28 +0. 34 -0. 18 -0. 01 +0. 34	+0. 60 +0. 74 -0. 71 +0. 01 +0. 64	-0. 06 +0. 07 -0. 13 +0. 01 -0. 09	+0. 16 +0. 14 +0. 07 -0. 30 +0. 19	+0. 51 +0. 60 -0. 56 +0. 10 +0. 48	-0. 80 -0. 68 -0. 70 -0. 33 -0. 62	-2.3 -1.9 -2.3 -4.7 -3.0	+0.4 +0.5 +0.2 -1.7 -0.3
7 8 23 26 Apr. 2	Cape Cape Cape Cape Cape Cape Cape Cape	300 B. Tauri 394 B. Tauri 14 Sagittarii v Aquarii t Arietis o Tauri	I E E I I	-0. 58 -0. 95 +0. 97 +1. 00 -1. 05	+0. 23 +0. 30 +0. 78 -0. 36	-0. 30 +0. 22 -0. 21	-0. 03 +0. 09 -0. 38 -0. 08	+0. 18 +0. 31 -0. 44 -0. 22	-0.05 +0.12 +0.02 -0.19	-0.05 +0.09 -0.31 +0.17	+0. 27 -0. 39 +0. 23 -0. 08	-0. 98 -0. 93 -0. 64 -0. 57	-4.9 +2.2 +3.3 -2.9	-1.7 -0.9 +0.1 +0.6
May 1 7 16 16	Cape Wilhelmshaven Greenwich Cape Cape	7 Geminor. 7 Tauri 19 Sextantis 52 Ophiuchi 158 G. Ophiuchi	I I E E	-0. 96 -1. 02 -0. 86 +0. 94 +0. 73	+0. 29 -0. 14 +0. 91 +0. 07 +0. 08	-0. 18 +0. 20 +0. 05 +0. 34 +0. 67	+0.06 -0.01 -0.28 -0.07 -0.16	-0. 19 +0. 20 +0. 28 -0. 35	-0. 04 -0. 11 +0. 07 +0. 06 +0. 03	-0. 10 +0. 02 -0. 33 -0. 04	-0. 10 +0. 26 +0. 23 -0. 28	-0. 92 -0. 50 -0. 93 -0. 56	-5. 1 -5. 4 -5. 4 +2. 3 +5. 1	-1.8 -1.9 -2.5 -0.8 +2.7
16 20 June 2 8	Cape Cape Greenwich Cape Cape	58 Ophiuchi 19 Aquarii	E I I E	+0. 99 +1. 04 -0. 92 -0. 53 +0. 81	+0. 06 +0. 84 +0. 07 +0. 48 +0. 34	-0. 19 +0. 09 +0. 10 +0. 57 +0. 50	+0. 04 -0. 20 -0. 20 +0. 59 -0. 40	+0. 19 -0. 22 +0. 22 -0. 82 -0. 64	+0.09 +0.06 +0.06 +0.25 -0.03	-0. 04 -0. 35 -0. 30 -0. 22	+0. 62 +0. 05 +0. 18 +0. 39	-0. 41 -0. 93 +0. 24 -0. 42	+3.9 +3.1 -5.0 -1.9 +2.9	+0.6 -0.3 -1.8 0.0 +0.2
July 6 10 11 Aug. 7	Cape Cape Greenwich Cape Cape	40 H. Virginis 58 Ophiuohi ξ Sagittarii μ Sagittarii d Sagittarii	I I I I	-0. 90 -0. 98 -0. 98 -1. 04 -1. 00	+0. 03 -0. 31 -0. 04	+0. 30 -0. 42 +0. 01	-0.08 +0.28 -0.01	-0. 31 +0. 50 -0. 01	-0. 11 -0. 04 -0. 12	+0. 03 +0. 14 +0. 09	+0. 39 -0. 42 +0. 10	-0. 31 -0. 05 -0. 62	-2.6 -3.5 -4.1	+0.8 -0.1 -0.5
Sept. 17 2 4 4	Cape Cape Cape Cape Greenwich	A Tauri ω² Scorpii 116 B. Ophiuchi 171 B. Sagittarii 36 Sagittarii	E I I I	+0. 64 -0. 80 -0. 96	+0. 30 +0. 41 +0. 25 -0. 11	-0. 78 +0. 53 +0. 14 -0. 67	-0. 08 +0. 03 -0. 03 +0. 52	-0. 78 -0. 53 -0. 14 +0. 85	-0. 02 +0. 04 -0. 04 +0. 07	-0.08 -0.10 -0.07 +0.11	-0. 74 +0. 53 +0. 22 -0. 77	-0. 62 -0. 85 -0. 96 -0. 41	+3.3 -1.3 -2.7 -3.6	+1.2 +1.5 +0.7 -1.7
12 12 13	Greenwich Greenwich Evanston Greenwich	36 Sagittarii π Arietis 44 Arietis 13 Tauri 14 Tauri	EB IB E IB	+1.08 -1.15 +1.07 -1.05 -1.13	+0. 33 -0. 83 +0. 75 -0. 63	+0. 14 +0. 03 -0. 23 -0. 37	-0. 10 +0. 02 -0. 09 -0. 06	-0. 17 +0. 04 -0. 25 -0. 38	+0.09 -0.16 +0.12 -0.18	-0. 15 +0. 22 -0. 21 +0. 13	+0.09 +0.10 -0.26 -0.24	+0. 77 +0. 71 -0. 74 -0. 85	+4.8 -5.7 +6.1 -2.6	+1.2 -1.7 +2.5 +1.1
28 Oct. 3 Nov. 13 26 Dec. 5	Cape Greenwich Cape Cape	λ Libræ 27 G. Capricor. h Leonis g Sagittarii 67 Tauri	I I E I	-0.80 -1.08 +0.36 -0.97	+0, 49 -0, 62 -0, 26 -0, 27	+0. 51 +0. 09 +0. 19	+0. 05 -0. 16 -0. 90 -0. 23	-0. 51 -0. 18 +0. 92 -0. 28	+0. 06 -0. 18 -0. 30 -0. 14	-0. 11 +0. 26 +0. 18 +0. 22	+0. 50 +0. 18 +0. 53 +0. 51	-0. 72 -0. 84 -0. 39 -0. 81	-0. 4 -2. 1 +3. 0	+2.4 +1.7 +1.8 +4.6
1901, Jan. 28 30 30 Feb. 15	Cape Cape Pola Pola	23 H¹. Cancri 22 H¹. Tauri ζ Tauri ζ Tauri ρ Sagittarii	E I I EB E	+0. 93 -0. 88 -0. 21 +0. 28	-0. 31 -0. 65 -0. 10 +0. 14	+0. 17 -0. 55 -0. 03 -0. 04	-0. 29 -0. 01 -0. 98 -0. 96	+0. 34 -0. 55 -0. 98 -0. 96	-0. 03 -0. 17 0. 00 +0. 06	+0. 26 +0. 11 -0. 01 +0. 01	+0. 22 -0. 37 -0. 96 -0. 93	-0. 58 -0. 81 -0. 15 +0. 22	+2. 2 -3. 2 -1. 1 -0. 7	-1.0 +0.1 -0.3 -1.2
21 25 26 Mar. 10	Pola Cape Cape Cape	51 Piscium 247 B. Tauri 0 Tauri 28 Libræ 105 Tauri	I I I E I	-1.00 -0.96 -0.88 +0.84	-0. 88 -0. 63 -0. 43 -0. 81	-0. 43 -0. 39 -0. 46 +0. 38	+0. 15 +0. 07 +0. 21 +0. 04	+0. 46 -0. 40 -0. 51 -0. 38	-0. 02 -0. 13 -0. 07 +0. 04	+0. 32 +0. 06 -0. 01 +0. 16	+0. 13 -0. 29 -0. 49 +0. 22	-0. 56 -0. 92 -0. 84 -0. 85	-3.3 -4.1 -3.7 +5.2	+0.4 -0.5 -0.4 +2.2
26 28 Apr. 4 4	Greenwich Cape Cape Cape Cape	68 Orionis 5 Cancri \$\alpha\$ Virginis \$\alpha\$ Virginis 56 B. Scorpii	I I IB E	-0. 94 -0. 76 -0. 84 +0. 89	-0. 41 +0. 05 +0. 93 -0. 99	-0. 41 -0. 29 -0. 30 -0. 13	+0. 30 +0. 56 -0. 19 -0. 08	-0. 51 -0. 63 +0. 35 +0. 15	-0. 04 +0. 11 -0. 07 -0. 08	-0. 07 -0. 20 -0. 26 +0. 31	-0. 45 -0. 51 -0. 08 -0. 11	-0. 85 -0. 75 +0. 15 -0. 16	-3.6 -3.0 -3.0 +3.1	0. 0 -0. 1 +0. 2 -0. 1
7 7 10 22 22 22	Cape Cape Cape Greenwich Greenwich Cape	β Scorpii β Scorpii 89 G. Sagittarii B. D. +19° 1110 57 Orionis f Gem	E E I I	+0. 90 +0. 62 -1. 01 -1. 07 -0. 83	-0. 79 -0. 19 -0. 53 -0. 56	-0. 13 -0. 55 -0. 39 -0. 31	+0. 02 +0. 53 +0. 25 +0. 21	+0. 13 +0. 76 -0. 46 -0. 37	-0. 04 +0. 11 -0. 10 -0. 12	+0.09 -0.08 -0.04 -0.05	-0. 17 -0. 82 -0. 44 -0. 34	-0. 75 -0. 65 -0. 69 -0. 73	+2.9 +1.2 -3.0 -3.6	-0.4 -1.0 +0.8 +0.5
24 28 May 5 31 June 4	Greenwich Cape Greenwich Greenwich	p³ Leonis 123 B. Scorpii 11 H. Libræ 171 B. Sagittarii	I E I E	-0. 83 -0. 97 +0. 89 -0. 56 +0. 65	+0. 67 -0. 71 +0. 53	+0.09 -0.26 +0.81	+0. 21 +0. 08 -0. 04	-0. 23 +0. 28 -0. 81	+0. 10 -0. 02 +0. 14	-0. 35 +0. 05 -0. 10	+0. 01 -0. 33 +0. 70	-0. 80 -0. 40 -0. 13	-3.5 +3.7 -1.0	+0. 2 +0. 5 +1. 1

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	$b_{\mathbf{o}}$	$\alpha_{\rm o}$	ð,	ε	P	n	n'
1901, June 5 12 22 25 25	Cape Cape Cape Cape Cape	g Sagittarii 19 Arietis p^5 Leonis α Virginis α Virginis	E E I I EB	+0. 81 -0. 31 -0. 88	+0. 72 +0. 23 +0. 86	+0. 02 +0. 66 -0. 44 -0. 40 -0. 16	+0. 20 -0. 83 -0. 22	+0. 69 +0. 94 +0. 46	+0. 31 -0. 33 -0. 11	-0. 17 -0. 06 -0. 25	+0. 35 +0. 23 -0. 14	-0. 51 -0. 31 -0. 85	+3.6 -0.5 -2.8	+0.6 +0.7 +0.3
July 10 25 28 Aug. 9	Greenwich Cape Pola Greenwich Cape	74 B. Ophiuchi ρ Arietis κ Libræ 21 Sagittarii ζ Tauri	I E I E	+1.07 -0.14 -0.93	+0.97 +0.15 +0.42	-0. 07 -0. 18 -0. 26 +0. 29 -0. 20	-0. 01 +0. 95 -0. 29	-0. 18 -0. 99 -0. 41	+0. 12 +0. 14 -0. 06	-0. 21 -0. 03 +0. 08	-0. 20 +0. 80 +0. 47	-0. 86 -0. 14 -0. 45	+2.6 0.0 -3.5	-1.4 +0.5 +0.1
19 22 24 30 Sept. 25	Cape Cape Greenwich Cape Cape	86 Virginis	I I E I	-0.91 -0.75 +0.99	+0. 92 +0. 44 +0. 57	+0. 33 +0. 02 +0. 49 +0. 24 +0. 15	-0.01 -0.44 +0.36	-0. 02 -0. 66 +0. 43	+0. 03 -0. 04 +0. 29	-0. 07 +0. 04 -0. 27	+0.08 +0.71 -0.12	-0. 99 -0. 63 -0. 23	-4.5 -4.2 +4.3	-1.0 -1.3 +0.6
Oct. 17 19 21 23 24	Wilhelmshaven Evanston Cape Greenwich Evanston	 ξ Ophiuchi ρ Sagittarii 16 B. Aquarii κ Aquarii λ Piscium 	I I I I	-0. 85 -0. 82 -1. 06	+0. 31 +0. 82 -0. 48	-0. 73 +0. 20 -0. 03 -0. 07 -0. 48	-0.40 +0.56 -0.15	-0. 45 +0. 56 -0. 16	-0. 08 +0. 11 -0. 18	+0. 14 +0. 25 +0. 32	+0.48 -0.36 +0.11	-0. 90 -0. 80 -0. 70	-2.4 -3.5 -5.1	+1.0 -0.1 -0.9
27 27 29 Nov. 16 Dec. 18	Greenwich Greenwich Cape Cape Greenwich	29 Arietis 29 Arietis 129 H¹. Tauri 283 B. Sagittarii 1283 B. Piscium	IB E E I I	+0.95 +1.08 -0.53	+0. 77 +0. 88 +0. 25	-0. 72 -0. 61 -0. 29 +0. 26 -0. 60	-0. 04 +0. 14 -0. 78	-0. 62 -0. 33 -0. 82	+0.04 +0.17 -0.15	-0. 19 -0. 07 +0. 10	-0. 44 -0. 36 +0. 80	-0.04 -0.44 -0.51	+1.8 +6.5 -0.4	一1.8 十2.4 十1.7
18 18 19 21 22	Greenwich Cape Evanston Evanston Cape	λ Piscium 19 Piscium 62 Piscium ο Arietis 175 B. Arietis	EB I I I I	-1.01 -0.94 -0.86	+0. 53 -0. 74 -0. 76	-0. 52 -0. 17 +0. 42 +0. 64 -0. 50	-0. 16 +0. 24 -0. 01	-0. 23 +0. 48 +0. 64	-0. 17 +0. 03 0. 00	+0. 32 +0. 31 +0. 19	+0.09 +0.16 +0.47	-0. 96 -0. 83 -0. 52	-1.6 -1.7 -2.0	+2.5 +2.1 +1.6
1902, Jan. 18 19 31 Feb. 12 12	Cape Cape Cape Wilhelmshaven Greenwich	53 Arietis 43 Tauri Libræ Piscium Piscium	I E I I	-0.40 +0.90 -0.78	-0.36 -0.97 -0.56	-0. 67 +0. 86 +0. 12 +0. 63 +0. 73	-0. 37 -0. 02 +0. 25	+0.93 -0.12 +0.67	+0. 04 -0. 01 -0. 05	+0. 04 +0. 19 +0. 26	+0.86 +0.04 +0.21	-0. 29 -0. 98 -0. 62	-2.7 +6.9	-1.1 +3.4 +1.8
12 13 14 15 16	Greenwich Greenwich Wilhelmshaven Greenwich Greenwich	e Piscium 26 B. Arietis o Arietis 163 B. Tauri i Tauri	EB I I I I	-1.07 -0.84 -0.57	-0.89 -0.76 -0.51	+0. 75 -0. 21 +0. 62 -0. 79 +0. 55	-0. 03 -0. 06 +0. 34	-0. 21 +0. 62 -0. 86	-0. 17 -0. 07 -0. 17	+0. 25 +0. 18 +0. 05	-0.06 +0.45 -0.72	-0.93 -0.78 -0.50	-4.5 -3.1 -2.1	-0. 1 +0. 3 +0. 2
16 17 Mar. 17 20 20	Wilhelmshaven Cape Greenwich Greenwich Greenwich	i Tauri χ¹ Orionis 26 Geminor. ω Leo. (1st) ω Leo. (2d)	I I I I	-1.06 -0.86 -1.03	-0.88 -0.64 -0.31	+0. 49 +0. 11 +0. 29 +0. 03 0. 00	-0. 13 -0. 57 +0. 01	+0. 17 +0. 64 -0. 02	-0. 14 -0. 16 -0. 07	-0. 04 -0. 07 -0. 28	+0. 22 +0. 67 +0. 05	-0.87 -0.74 -0.65	-4. I -4. 4 -4. 2	+0.3 -0.9 0.0
20 25 28 29 Apr. 21	Cape Cape Cape Cape Wilhelmshaven	 k Leonis k Virginis 73 B. Scorpii 29 Ophiuchi α Virginis 	I E E I	+0. 90 +0. 87 +0. 34	-0. 72 -0. 96 -0. 37	-0. 09 -0. 29 -0. 24 +0. 72 -0. 50	-0.06 +0.12 -0.59	+0. 30 +0. 27 -0. 93	-0. 08 -0. 07 +0. 02	+0. 29 +0. 11 +0. 01	0.00 -0.30 +0.87	-0. 29 -0. 82 -0. 35	+4.5 +3.7 +3.1	+0.9 +0.2 +1.8
May 10 11 11 11 11	Cape Berlin Berlin Berlin Berlin	57 Orionis 41H¹.Geminor. B. D.+16° 1373 B. D.+17° 1488 B. D.+16° 1380	I I I I	-0. 17 -1. 02 -0. 81	-0. 13 -0. 81 -0. 63	+0. 33 +0. 33 +0. 16 -0. 19 +0. 13	-0. 93 -0. 38 +0. 63	+0. 99 +0. 40 -0. 67	-0. 15 -0. 19 -0. 03	-0. 01 -0. 10 -0. 09	+0. 96 +0. 42 -0. 64	-0. 13 -0. 83 -0. 65	-0. 2 -4. 0 -3. 6	+0.9 +0.3 -0.2
11 12 12 14 15	Berlin Cape Greenwich Berlin Berlin	B. D.+16° 1385 1 Cancri 12 Cancri B. D.+ 7° 2203 36 Sextantis	I I I I	-0. 35 -0. 21 -0. 63	-0. 22 -0. 15 -0. 22	+0. 11 +0. 10 +0. 05 +0. 35 +0. 18	-0. 94 -0. 98 +0. 75	+0.94 +0.98 -0.83	-0. 22 -0. 23 +0. 18	-0. 05 -0. 02 -0. 25	+0.87 +0.84 -0.41	-0. 29 -0. 17 -0. 71	-1.4 -2.2 -3.2	0.0 -1.3 -0.5
17 18 19 25 June 10	Berlin Berlin Berlin Berlin Cape	B. D 5° 3487 B. D 9° 3640 B. D 12° 3933 B. D 18° 5155 7 Leonis	I I E I	-0. 81 -0. 92 +0. 68	+0.46 +0.72 -0.61	+0. 16 -0. 43 +0. 05 +0. 19 -0. 17	-0. 11 0. 00 -0. 60	+0. 44 -0. 10 -0. 64	-0. 14 +0. 02 -0. 10	-0. 32 -0. 36 +0. 07	-0. 12 +0. 05 +0. 60	-0. 68 -0. 61 -0. 46	-4.6 -4.1 +3.0	-1. I -0. I +0. 3
15 17 18 18	Berlin Cape Berlin Berlin Wilhelmshaven	86 Virginis 32 Libræ B. D. – 19° 4332 v Scorpii v Scorpii	I I I I	-0. 85 -0. 88 -0. 87	+0. 88 +0. 95 +0. 94	+0. 04 +0. 32 -0. 14 -0. 17 -0. 23	-0. 13 +0. 07 +0. 10	-0. 35 +0. 15 +0. 18	+0. 09 +0. 02 +0. 02	-0. 16 -0. 19 -0. 19	+0. 32 -0. 15 -0. 18	-0. 55 -0. 43 -0. 42	-2.8 -4.2 -5.1	+0.9 -0.4 -1.4

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	$b_{\rm o}$	$\alpha_{\rm o}$	ðo	e	P	n	n'
1902, June 18 23 25 27 28	Greenwich Berlin Berlin Berlin Berlin Berlin	ν Scorpii B. D. –15° 5663 B. D. – 8° 5791 B. D. – 0° 4547 116 B. Piscium	I E E E	+0. 83 +0. 74 +0. 99	-0. 52 -0. 13 +0. 27	-0. 02 -0. 34 -0. 23	+0. 19 +0. 45 -0. 62 -0. 18 -0. 39	+0. 45 -0. 70 -0. 30	+0.09 -0.18 0.00	-0. 20 -0. 30 -0. 41	-0. 43 +0. 30 -0. 03	-0. 58 -0. 76 -1. 17	+3.9 +3.2 +4.3	+0.6 +0.2 +0.3
28 28 28 July 11	Berlin Berlin Berlin Cape Cape	B. D. + 3° 56 B. D. + 4° 66 B. D. + 4° 73 261 B. Virginis f Virginis	E E I I	+1.04 +1.00 +1.04 -0.84	+0. 48 +0. 46 +0. 49 +0. 35	-0. 11 -0. 31 -0. 02 -0. 46	-0. 06 -0. 14 -0. 02 -0. 17 -0. 18	-0. 15 -0. 37 -0. 05 +0. 49	+0.08 +0.01 +0.12 -0.17	-0. 40 -0. 40 -0. 39 -0. 25	-0.06 -0.09 -0.04 -0.04	-1.21 -1.16 -1.21 -0.84	+3.9 +2.8 +3.4 -4.1	-0. 3 -1. 2 -0. 8
15 18 19 19 21	Berlin Cape Wilhelmshaven Berlin Berlin	B. D. —18° 4196 100 B. Sagittarii	I	-0. 90 -0. 90 -0. 59 -0. 66	+0. 93 +0. 94 +0. 54 +0. 60	+0.80 -0.04 +0.16 +0.14	-0. 06 +0. 10 -0. 75 -0. 68 +0. 76	-0. 11 +0. 10 -0. 76 -0. 70	+0. 05 +0. 05 -0. 09 +0. 02	-0. 21 +0. 08 +0. 10 +0. 10	+0.09 -0.05 +0.79 +0.69	-0. 78 -0. 31 -0. 07 -0. 07	-4.7 -5.5 -5.6 -1.5	-0.8 -1.6 -3.1 +1.3
21 22 28 Oct. 10	Berlin Berlin Berlin Berlin Berlin	B. D13° 5830 B. D 9° 5854 B. D. +14° 502 B. D16° 5478 87 B. Capricor.	E E I I	+0.82 +0.42 -0.73	-0. 25 +0. 33 +0. 66	-0. 27 -0. 91 +0. 02	-0. 60 -0. 52 +0. 27 -0. 59 +0. 42	-0. 57 -0. 96 -0. 60	-0. 14 -0. 12 -0. 08	-0. 31 -0. 12 +0. 14	+0. 27 -0. 67 +0. 56	-0. 56 -0. 48 -0. 60	+4.4 +2.3 -3.9	+1.1 +0.6 -0.7
16 19 19 19 21	Greenwich Berlin Berlin Berlin Berlin	ζ Piscium B. D. + 16° 561 B. D. + 16° 568 193 B. Tauri B. D. + 17° 1135	I E E E	+0.82 +1.10 +1.10	+0. 67 +0. 91 +0. 91	-0. 56 -0. 08 -0. 07	+0. 05 +0. 43 +0. 07 +0. 06 -0. 18	-0. 71 -0. 12 -0. 09	+0. 04 +0. 15 +0. 16	-0. 15 -0. 19 -0. 19	-0, 62 -0, 07 -0, 06	-0. 60 -0. 74 -0. 75	+2.6 +5.0 +5.9	-0.8 +0.5 +1.4
21 21 21 21 21	Berlin Berlin Berlin Berlin Berlin Berlin	B. D.+17° 1144 B. D.+18° 1112 B. D.+17° 1158 B. D.+17° 1161 124 H.¹ Orionis	E E E E	+0. 80 +0. 85 +0. 82	+0. 71 +0. 76 +0. 73	-0. 3 ² +0. 2 ³ +0. 2 ⁴	-0. 30 +0. 66 -0. 57 -0. 61 -0. 13	-0. 75 +0. 62 +0. 66	+0. 15 +0. 10 +0. 09	0.00 0.00 +0.01	-0. 72 +0. 63 +0. 66	-0. 77 -0. 82 -0. 79	+3.8 +4.5 +4.1	+0. +1. +0.
21 21 21 22 22	Berlin Berlin Berlin Berlin Berlin	B. D. +18° 1147 B. D. +18° 1178 B. D. +18° 1179 \[\lambda \text{ Geminor} \] \[\lambda \text{ Geminor}. \]	E E IB E	+0. 90 +0. 92 -0. 87	+0.81 +0.83 -0.82	-0. 25 -0. 24 -0. 08	+0. 73 +0. 57 +0. 55 +0. 58 +0. 54	-0. 62 -0. 59 -0. 59	+0. 17 +0. 17 -0. 05	+0. 02 +0. 02 -0. 06	-0.63 -0.60 -0.47	-0. 90 -0. 91 +0. 82	+4.8 +4.3 -4.6	+1. +0. -0.
22 22 22 22 22	Berlin Berlin Berlin Berlin Berlin	B. D. +16° 1419 B. D. +16° 1421 B. D. +16° 1423 B. D. +16° 1426 B. D. +16° 1436	EEEE	+1.06 +1.09 +0.99 +0.73	+0. 92 +0. 95 +0. 86 +0. 64	-0.09 -0.07 -0.11 -0.14	+0. 31 +0. 21 +0. 46 +0. 75 -0. 46	-0. 31 -0. 21 -0. 46 -0. 76	+0. 20 +0. 19 +0. 21 +0. 21	+0. 11 +0. 12 +0. 10 +0. 07	-0. 33 -0. 23 -0. 46 -0. 74	-1.09 -1.12 -1.02 -0.75	+5.0 +5.8 +4.3 +3.4	+0. +1. +0. +0.
22 22 22 23 23	Berlin Berlin Cobham Berlin Berlin	B.D.+16° 1441 B.D.+16° 1448 \(\lambda \) Geminor. B.D.+14° 1850 B.D.+14° 1854		+0.85 +0.91 +1.10	+0. 74 +0. 81 +0. 88	+0.04 -0.07 -0.04	+0.41 -0.63 +0.55 +0.05 -0.12	+0.63 -0.55 -0.05	+0.04 +0.20 +0.17	+0. 11 +0. 11 +0. 21	+0. 58 -0. 56 -0. 09	-0.88 -0.80 -1.14	+4.9 +2.9 +5.2	+1. -0. +0.
24 24 Nov. 6 8 8		κ Cancri B. D. +10° 1956 283 B. Sagittarii B. D11° 5578 B. D11° 5583	E	-0.81 -0.85	+0. 73 +0. 82 +0. 55	-0.08 0.00 +0.21	-0.07 -0.13 -0.44 +0.42 +0.84	+0. 14 -0. 44 +0. 46	+0. 11 -0. 03 +0. 12	+0. 30 +0. 15 +0. 29	+0. 02 +0. 45 -0. 24	-1.08 -0.85 -0.69	+4.2 -3.3 -4.5	-0. +0. -0.
8 11 11 14 14	Berlin Berlin Berlin Berlin Berlin	B. D 11° 5589 B. D 0° 4566 21 Piscium B. D. + 12° 354 B. D. + 12° 370	I I I I	-0. 94 -0. 11 -1. 03	-0. 03 -0. 01 -0. 64	-0. 25 -0. 88 -0. 18	+0. 39 -0. 12 -0. 44 +0. 04 +0. 02	-0. 26 -0. 98 -0. 18	-0. 15 -0. 32 -0. 18	+0.36 0.00 +0.30	+0.08 +0.07 -0.14	-0. 52 -0. 06 -0. 02	-5.4 -2.1 -6.4	-I. -I.
17 17 17 17 18	Cape Berlin Berlin Berlin Berlin	57 Orionis B. D. +18° 990 B. D. +18° 1001 B. D. +18° 1012 B. D. +17° 1392	E E E E	+0.89 +1.05 +0.67	+0.80 +0.94 +0.59	-0. 31 +0. 11 -0. 38	+0. 42 +0. 57 -0. 28 +0. 75 -0. 56	-0.64 +0.31 -0.83	+0. 16 +0. 15 +0. 12	-0. 02 -0. 02 -0. 02	-0.63 +0.31 -0.83	-0. 51 -0. 61 -0. 39	+4.7 +3.1 +3.7	+1. -1. +0.
18 19 19 20 20	Berlin Berlin Berlin Berlin Berlin	41 H¹.Geminor. B. D. +15° 1672 B. D. +15° 1676 B. D. +12° 1927 60 Cancri		+0.62 +1.10 +0.49 +1.06	+0. 55 +0. 94 +0. 42 +0. 82	+0. 11 -0. 05 -0. 04 +0. 03	-0.82 -0.06 -0.90 +0.21 +0.15	+0.83 +0.06 +0.90 -0.23	0.00 +0.15 -0.08 +0.20	+0.06 +0.18 +0.09 +0.25	+0.80 0.00 +0.81 -0.23	-0. 46 -0. 91 -0. 40 -0. 97	+2.9 +3.6 +1.6 +4.6	+0. -1. -0. +0.
20 22 22 22 22	Cobham Berlin Berlin Berlin Berlin	60 Cancri 34 Sextantis B. D. + 3° 2406 B. D. + 4° 2378 B. D. + 3° 2411	EEEE	+1.05 +0.59 +1.03	+0.50 +0.27 +0.48	-0.06 -0.62 -0.19	+0. 11 -0. 06 -0. 60 -0. 18 -0. 22	+0.09 +0.87 +0.27	+0. 10 -0. 20 +0. 04	+0.38 +0.25 +0.39	-0. 02 +0. 28 +0. 03	-1.00 -0.55 -0.97	+4. I +2. 5 +4. 0	-0. 0. -0.

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	к	iθ	i	$b_{\rm o}$	α _o	δ.	E	P	n	n'
1902, Dec. 4 11 11 11 12	Berlin Berlin	β Capricor. 34 B. Arietis B. D. +10° 292 B. D. +11° 295 B. D. +13° 494	I I I I	-1.04 -0.44 -1.06	-0. 54 -0. 24 -0. 59	-0. 13 +0. 92 -0. 02	+0. 02 -0. 16 0. 00	-0. 13 +0. 95 +0. 02	-0. 16 +0. 18 -0. 14	+0. 34 +0. 17 +0. 34	-0. 07 +0. 50 -0. 01	-0. 63 -0. 56 -0. 23 -0. 53	-6.3 -0.7 -6.2	-1.7 +1.2 -1.5
13 13 13 13	Berlin Berlin	δ Tauri 64 Tauri 180 B. Tauri B. D. +16° 561 193 B. Tauri	I I I I	-1.11 -0.33 -0.81	-0. 89 -0. 27 -0. 65	+0. 19 -0. 72 -0. 48	-0. 18 +0. 58 +0. 39	+0. 27 -0. 93 -0. 62	-0. 19 -0. 16 -0. 19	+0. 10 +0. 05 +0. 15	+0. 27 -0. 82 -0. 58	-0. 27 -0. 26 -0. 06 -0. 15	-2.7 -1.9 -4.4	+2.2 -0.4 -0.9
1903, Jan. 6 9 12 14	Cobham Berlin	171 B. Piscium B. D. +15° 531 B. D. +17° 1409 α Cancri B. D. + 7° 2227	I I E E	-1.07 -0.82 +1.06 +1.08	-0. 81 -0. 73 +0. 80 +0. 71	-0. 11 -0. 10 +0. 13 -0. 09	+0.07 +0.66 +0.34 -0.10	-0. 12 -0. 67 -0. 37 +0. 13	-0. 17 -0. 06 +0. 27 +0. 12	+0. 23 -0. 06 +0. 21 +0. 34	-0. 13 -0. 65 -0. 33 0. 00	-0. 86 -0. 70 -0. 17 -0. 24 -0. 41	-5.8 -5.0 +6.7 +5.0	-1.1 -1.4 +2.2 +0.5
15 18 19 19 20	Berlin Berlin Berlin Berlin Berlin	B. D. + 7° 2232 B. D 6° 3656 h Virginis B. D 9° 3736 6 G. Libræ	EEEE	+1.00 +0.69 +0.66 +0.75	+0.06 -0.09 -0.11 -0.28	0.00 -0.75 +0.70 +0.55	-0. 01 +0. 04 -0. 06 -0. 16	+0. 04 +0. 77 -0. 70 -0. 55	+0.07 -0.18 +0.23 +0.15	+0. 39 +0. 29 +0. 22 +0. 24	-0. 02 -0. 31 +0. 30 +0. 34	-0. 36 -0. 76 -0. 56 -0. 53 -0. 62	+4.6 +3.6 +4.0 +3.2	+0.4 +0.7 +1.2 0.0
Feb. 2 6 6 6 6	Berlin Berlin Berlin Berlin	B. D. + 3° 86 64 Tauri B. D. +16° 577 B. D. +16° 582 B. D. +16° 591	I I I I	-0. 53 -1. 00 -1. 07 -0. 95	-0. 43 -0. 79 -0. 84 -0. 76	-0. 59 +0. 33 +0. 21 +0. 38	+0. 64 -0. 33 -0. 21 -0. 40	-0.87 +0.47 +0.30 +0.55	-0.06 -0.09 -0.12 -0.08	+0.05 +0.17 +0.18 +0.15	-0. 78 -0. 41 +0. 26 +0. 49	-0. 75 -0. 45 -0. 91 -0. 96 -0. 85	-3.0 -4.4 -2.1 -5.2	-0.7 0.0 +2.6 -1.0
6 6 6 7	Berlin Berlin Berlin	B. D. +17° 722 B. D. +16° 600 B. D. +16° 602 B. D. +16° 606 B. D. +18° 825	I I I I	-1.05 -0.72 -1.09 -1.03	-0. 84 -0. 58 -0. 88 -0. 90	+0. 25 +0. 54 -0. 04 -0. 14	-0. 27 -0. 58 +0. 05 +0. 27	+0. 36 +0. 79 -0. 06 -0. 32	-0. 11 -0. 02 -0. 17 -0. 17	+0. 16 +0. 11 +0. 16 +0. 08	+0. 31 +0. 71 -0. 08 -0. 32	-0. 57 -0. 94 -0. 64 -0. 97 -0. 85	$ \begin{array}{c c} -2.2 \\ -2.8 \\ -5.6 \\ -4.8 \end{array} $	+2.4 +0.4 -0.8 -0.3
7 7 9 9 9	Berlin	115 Tauri 352 B. Tauri 68 Geminor. B. D. +16° 1506 67 Geminor.	I I I I	-1. IO	-0. 85 -0. 95 -0. 97	-0. 20 -0. 01 +0. 05	+0. 35 -0. 26 +0. 19	-0.41 +0.26 -0.19	-0. 16 -0. 17 -0. 14	+0. 03 -0. 15 -0. 16	-0. 37 +0. 26 -0. 15	-0.81 -0.74 -0.46 -0.58	-4.4 -5.1 -5.7	+0. 1 -0. 2 -0. 8
9 9 12 15 16	Berlin Berlin	B. D. +15° 1605 B. D. +16° 1518 155 B. Leonis 487 B. Virginis B. D11° 3659	I E E E	-1.12 +1.06 +0.94	-0. 98 +0. 66 -0. 03	+0. 04 -0. 14 +0. 27	-0. 05 -0. 14 -0. 01	+0. 05 +0. 20 +0. 27	-0. 17 +0. 08 +0. 14	-0. 16 +0. 37 +0. 35	+0.03 +0.03 +0.08	-0.46 -0.58 +0.02 -0.51	-6.5 +5.4 +5.7	-1.6 +0.9 +1.7
16 16 19 Mar. 2	Berlin Cape	B. D 11° 3668 B. D 11° 3684 24 Scorpii B. D. + 6° 195 B. D. + 13° 499	E E I I	+0.96 +0.91 -1.02	-0. 27 -0. 85 -0. 22	+0. 04 +0. 01 +0. 02	-0. 01 -0. 01 0. 00	-0. 04 -0. 01 +0. 07	+0. 05 -0. 04 -0. 08	+0. 35 +0. 10 +0. 38	+0. 05 -0. 01 +0. 01	-0.99	+5.7 +5.1 -3.9	+1.6 +1.2 +0.7
5 6 7 7 7	Berlin Berlin	173 B. Tauri B. D. +17° 841 B. D. +17° 1082 B. D. +17° 1089 B. D. +18° 1061	I I I I	+1.06 -1.02 -1.11	-0. 88 -0. 90 -0. 97	一0. 10 十0. 17 十0. 07	+0. 19 -0. 40 -0. 11	-0. 23 +0. 43 +0. 12	-0. 16 -0. 16 -0. 17	+0. 10 +0. 02 +0. 02	+0. 43 +0. 11	- 1.08 - 1.04	-4.4 -4.4 -4.1	-1. I +0. 4 +0. 2 +0. 9 +0. 3
7 7 7 7 7		B. D. +18° 1060 B. D. +18° 1067 B. D. +17° 1101 B. D. +17° 1113 B. D. +18° 1084	I I I I	-1.00 -0.69 -1.08	-0. 88 -0. 60 -0. 95	-0. 10 +0. 27 +0. 12	+0.40 -0.76 -0.25	-0. 42 +0. 80 +0. 26	-0. 14 -0. 12 -0. 17	+0. 01 0. 00 0. 00	+0.81 +0.26	-0.83 -1.00 -0.69 -1.09	-3.7 -3.7 -2.2	+0.8 -0.6 +2.6
7 7 7 7 7	Berlin Berlin	B. D.+17° 1135 B. D.+17° 1144 B. D.+17° 1147 B. D.+17° 1151 B. D.+17° 1158	I I I I	-1.01 -1.11	-0. 89 -0. 98 -0. 98	-0. 08 +0. 02 +0. 03	+0. 39 +0. 04 +0. 01	-0.41 -0.04 -0.03	-0. 14 -0. 17 -0. 17	-0. 01 -0. 01 -0. 01	-0. 41 -0. 04 -0. 01	-1.02 -1.01 -1.11 -1.11	-3.7 -4.9 -5.4	+0.8 +0.1
7 8 8 8	Berlin Berlin Berlin Berlin Berlin	B. D.+17° 1154 B. D.+17° 1469 B. D.+17° 1477 41 H'.Geminor. B. D.+16° 1373	I I I I	-1.11 -1.07 -0.84	-0. 99 -0. 95 -0. 75	+0. 03 +0. 02 +0. 08	+0. 14 +0. 30 -0. 67	-0. 14 -0. 30 +0. 67	-0. 15 -0. 13 -0. 19	-0. 10 -0. 10 -0. 08	-0. 11 -0. 27 +0. 66	-0. 38 -1. 06 -1. 02 -0. 80 -1. 06	-4.5 -4.2 -5.7	+0.6
8 8 8 8 8	Berlin Berlin Berlin Berlin Berlin	B. D.+16° 1380 B. D.+17° 1488 B. D.+16° 1385 B. D.+16° 1395 B. D.+16° 1398	I I I I	-0. 13 -1. 12 -1. 11	-0, 12 -1, 00 -1, 00	-0.05 +0.04 +0.04	+1.00 -0.02 +0.10	-1.00 +0.04 -0.11	+0.08 -0.17 -0.16	-0. 02 -0. 11 -0. 12	-0.97 +0.06	-1.06 -0.13 -1.06 -1.05	-1.0 -5.6	-0.6

GROUP XIII-1891-1908-Continued.

Date.	Place.	Star.	Ph.	λ	к	iθ	i	$b_{\rm o}$	α _o	ð,	z	P	n	n'
1903, Mar. 8 8 8 8	Berlin Berlin Berlin Cobham Berlin	B. D.+16° 1400 51 Geminor. B. D.+16° 1421 51 Geminor. B. D.+ 2° 2386	I I I I	-0. 85 -0. 37 -0. 60	-0. 77 -0. 33 -0. 55	+0. 05 0. 00 +0. 01	0. 00 -0. 64 +0. 95 -0. 84 -0. 04	+0. 64 -0. 95 +0. 84	-0. 20 +0. 05 -0. 18	-0.09 -0.05 -0.06	+0. 64 -0. 90 +0. 82	-0. 80 -0. 35 -0. 47	-5.8 -0.9 -3.1	-2.0 +0.7 -0.4
12 17 17 Apr. 4 May 2	Berlin Berlin Berlin Cape Greenwich	p Leonis 34 Libræ ζ Libræ 74 B. Geminor. 68 Geminor.	I E E I I	-1.03 +0.94 +0.86 -0.73	-0. 52 -0. 55 -0. 55 -0. 68	+0. 25 0. 00 -0. 36 +0. 08	+0. 17 0. 00 +0. 28 -0. 73 +0. 20	-0. 32 0. 00 +0. 46 +0. 73	-0. 03 0. 00 -0. 08 -0. 15	-0. 39 +0. 25 +0. 23 -0. 06	-0. 03 +0. 03 -0. 34 +0. 75	-0. 34 -0. 56 -0. 52 -0. 68	-5.1 +5.0 +4.8 -2.4	-0.5 +1.0 +1.1 +0.9
June 2 Aug. 1 Sept. 2		p⁴ Leonis p⁴ Leonis η Libræ 54 Sagittarii e Sagittarii		-0. 91 -0. 91 -0. 93 -0. 55	-0.60 -0.59 -0.44 +0.60	-0. 08 -0. 43 +0. 09 +0. 19	-0. 48 -0. 23 -0. 09 +0. 77 +0. 46	+0. 48 +0. 49 -0. 13 +0. 79	-0. 23 -0. 23 +0. 03 +0. 13	-0. 25 -0. 25 +0. 09 +0. 09	+0. 16 +0. 16 -0. 07 -0. 72	-0. 88 -0. 87 -0. 97 -0. 47	-3.8 -4.3 -5.3 -3.1	+0.3 +0.2 -1.0 -0.5
30 Oct. 22 30 30 Nov. 4	Greenwich Cape Cobham Greenwich Greenwich	27 G. Capricor. γ I.ibræ ρ Aquarii ρ Aquarii ξ Arietis	I I I I	-0. 65 -0. 30 -0. 30	-0. 17 +0. 30 +0. 30	+0. 50 -0. 80 -0. 79	+0.02 -0.57 -0.50 -0.51 -0.33	-0. 76 -0. 94 -0. 94	+0. 10 -0. 25 -0. 25	-0. 13 +0. 06 +0. 06	+0.63 +0.44 +0.42	-0. 20 -0. 29 -0. 29	-2.6 -1.0 -0.8	+0.4 +0.4 +0.6
Dec. 2 4 4 10	Greenwich Greenwich Greenwich Greenwich Greenwich	λ Geminor. W. B. II 1033 318 B. Tauri 318 B. Tauri d Leonis	E I IB EB IB	-0. 58 -1. 03 +0. 92	-0. 07 -0. 52 +0. 47	+0.61 +0.15 +0.20	+0. 42 -0. 58 -0. 41 -0. 55 -0. 30	+0. 84 +0. 44 +0. 59	+0. 13 -0. 09 +0. 16	+0. 14 +0. 08 -0. 06	+0.61 +0.44 +0.58	-0. 17 +0. 11 -0. 10	-3.4 -4.6 +2.3	-0.6 +0.3 -1.8
10 31 31 31 31	Greenwich Greenwich Greenwich Cape Cape	d Leonis 75 Tauri 75 Tauri 119 H'. Tauri 68 Tauri	E I EB I I	-0. 73 +0. 58 -1. 05	-0. 29 +0. 23 -0. 36	+0. 33 +0. 36 +0. 09	-0. 29 -0. 68 -0. 77 -0. 21 +0. 45	+0.76 +0.86 +0.23	+0.01 +0.17 -0.10	+0.09 -0.06 +0.12	+0. 31 +0. 33 +0. 22	-0. 29 +0. 23 -0. 44	-2.0 +3 8 -2.8	+1.5 +1.1 +2.2
1904, Jan. 4 Feb. 24 24 24	Kasan Utrecht	29 Cancri 29 Cancri θ¹ Tauri α Tauri α Tauri	IB E EB I I	+1.07 +0.32 -1.00	+0. 91 +0. 12 -0. 39	+0. 19 +0. 36 -0. 06	+0. 36 +0. 30 -0. 88 +0. 16 +0. 21	-0. 35 +0. 95 -0. 17	+0. 25 +0. 15 -0. 08	+0. 17 -0. 03 +0. 12	-0. 30 +0. 86 -0. 16	-0. 32 +0. 30 -0. 96	+6.6 +0.1 -4.8	+1.7 -1.4 0.0
24 29 29 29 29	Wilhelmshaven Kasan Kasan Englehardt Englehardt	α Tauri ο Leonis ο Leonis ο Leonis ο Leonis ο Leonis	EB I EB I EB	+1.00 -1.15 +1.12 -1.15	+0.38 -1.00 +0.97 -1.00	-0.07 +0.06 +0.20 +0.06	+0. 19 +0. 05 +0. 15 +0. 04 +0. 14	-0. 20 -0. 08 -0. 25 -0. 07	+0.06 -0.19 +0.27 -0.19	-0. 12 +0. 26 +0. 24 +0. 25	-0. 19 -0. 05 -0. 16 -0. 06	-0. 95 -0. 27 +0. 26 -0. 27	+4. 2 -6. 4 +4. 3 -7. 2	-0.4 -0.9 -1.0
Mar. 4 22 22 22 22	Cape Greenwich Greenwich Kasan Kasan	l Virginis θ¹ Tauri 75 Tauri γ Tauri γ Tauri γ Tauri	E I I I EB	-0. 67 -0. 62 -0. 47	-0. 22 -0. 16 -0. 12	+0. 26 -0. 27 +0. 34	-0. 28 -0. 70 +0. 73 -0. 81 -0. 77	+0. 74 -0. 78 +0. 88	-0. 04 -0. 02 +0. 09	+0. 10 +0. 08 +0. 08	+0. 69 -0. 72 +0. 78	-0.64 -0.60 -0.76	-2.8 -4.4 -5.7	+0.5 -1.4 -3.4
22 27 27 Apr. 22 24	Kasan Englehardt	r Tauri 209 B. Cancri 209 B. Cancri 2 B. Cancri 83 B. Leonis	I EB I	-0. 44 -0. 34 +0. 51 -0. 98	+0. 21 -0. 30 +0. 45 -0. 78	+0. 3 ² -0. 70 -0. 66 -0. 21	-0. 83 -0. 64 -0. 60 -0. 33 +0. 25	+0.90 +0.95 +0.89 +0.39	+0. 13 -0. 25 -0. 11 -0. 15	+0.09 -0.05 +0.12 -0.13	+0. 64 +0. 69 +0. 64 -0. 58	+0. 67 -0. 22 +0. 32 -0. 92	-5. 1 -4. 6 -2. 4 -3. 0	-2.9 -2.9 -4.8 +1.8
24 28 May 1 21 24	Kasan	10 Sextantis m Virginis φ Ophiuchi o Leonis η Virginis	I	-0. 74 +1. 01 -0. 97	-0.41 -0.12 -0.90	+0.63 +0.05 -0.36	-0. 11 -0. 36 -0. 16 -0. 22 0. 00	-0. 73 -0. 17 +0. 42	+0. 11 +0. 10 -0. 22	-0. 23 +0. 13 -0. 22	+0. 31 +0. 37 +0. 28	-0. 17 -0. 38 -0. 91	-0.7 +5.5 -3.0	+2.9 +0.7 +1.8
June 4 July 7 9 9 9	Cape Cape Greenwich Greenwich Greenwich	ρ Aquarii 38 Arietis θ¹ Tauri θ² Tauri 264 B. Tauri	E E E IB	+0.96 +1.03 +0.93	-0.45 +0.08 +0.09	-0.09 +0.02 +0.11	-0. 16 +0. 10 -0. 07 -0. 41 +0. 52	-0.13 +0.07 +0.43	-0.01 +0.16 -0.03	-0. 04 -0. 14 -0. 16	-0.08 +0.41 +0.09	-0. 84 -0. 58 -0. 52	+3.6 +7.4 +6.9	-1.0 +2.5 +2.5
9 9 18 22 Aug. 30	Greenwich Greenwich Cape Cape Greenwich	α Tauri α Tauri 38 Virginis φ Ophiuchi ξ¹ Ceti	IB E I I E	-0. 76 +0. 88 -0. 54 -0. 95	-0.07 +0.08 -0.42 -0.03	-0. 16 -0. 12 -0. 80 -0. 06	+0. 65 +0. 51 +0. 32 +0. 23 -0. 01	-0.67 -0.53 -0.86 +0.24	-0.05 +0.06 -0.33 -0.06	+0. 10 -0. 12 -0. 12 -0. 13	-0. 63 -0. 76 -0. 20 -0. 24	+0. 41 -0. 48 -0. 48 -0. 83	-5.5 +4.7 -2.4 -4.1	-1.7 +0.5 +0.3 +0.6
Sept. 13 22 27 29 29	Cape Cape Utrecht Cobham Cobham	13 Libræ 67 Aquarii 85 Ceti 7 Tauri 01 Tauri	I E E E	-1.06 -0.79 +0.93 +0.81	-0. 52 +0. 87 -0. 53 -0. 10	-0. 11 +0. 46 +0. 03 -0. 12	+0. 16 +0. 08 +0. 04 +0. 53 -0. 16	+0. 19 +0. 47 -0. 04 -0. 54	-0. 17 +0. 18 -0. 02 -0. 07	-0. 23 +0. 27 -0. 25 -0. 14	-0. 16 -0. 19 0. 00 -0. 53	-0. 68 -0. 40 -0. 62 -0. 75	-5. I -5. 9 +4. 4 +4. I	+0.2 -1.9 -0.1 +0.2

GROUP XIII-1891-1908-Continued.

							· 		,		-	1	Ī		,
Date.		Place.	Star.	Ph.	λ	κ	iθ	i	<i>b</i> _o	α ₀	ð,	ε .	P	n	n'
1904, Sept.	29 29 29 29	Cobham Greenwich Greenwich Greenwich Greenwich	 θ² Tauri θ¹ Tauri θ¹ Tauri θ² Tauri θ² Tauri 	E IB E IB E	-0.96 +0.95 -0.90	+0. 10 -0. 10 +0. 09	+0.03 +0.03	-0. 51 +0. 02 -0. 15 -0. 34 -0. 51	-0. 02 +0. 16 -0. 35	0.00 0.00 -0.01	+0. 15 -0. 15 +0. 15	+0. 15 +0. 30	+o. 88 -o. 87 +o. 83	-5.3 +4.1 -2.2	" -0.6 -0.5 -0.5 +2.3 +0.2
Oct. Nov.	20	Greenwich Greenwich Greenwich Cape Cobham	264 B. Tauri 7 Tauri 71 Tauri 71 Tauri 64 Ceti	IB E E I	+0, 81 +0, 37 +0, 81 -0, 86	-0. 08 -0. 04 -0. 06 +0. 66	+0. 12 +0. 18 +0. 01 +0. 27	+0. 46 +0. 53 -0. 91 +0. 56 -0. 30	-0. 54 +0. 92 -0. 56 +0. 40	0.00 0.00 -0.03 +0.12	-0. 14 -0. 05 -0. 09 +0. 27	-0. 48 +0. 85 -0. 52 +0. 17	-0. 74 -0. 33 -0. 60 -0. 37	+4. 2 +2. I +3. 9 -4. 0	-1.4 +0.3 +0.3 0.0 +0.4
Dec.	20 20 20 23 16	Cobham Greenwich Greenwich Kasan Cape Greenwich	ξ ¹ Ceti 64 Ceti ξ ¹ Ceti α Tauri 77 Piscium γ Tauri	I I E I	-0. 86 -0. 94 +0 61 -0. 82	+0. 66 +0. 68 -0. 11 +0. 84	+0. 27 +0. 01 -0. 08 -0. 38	-0. 01 -0. 30 -0. 01 +0. 78 +0. 24 -0. 17	+0. 40 +0. 01 -0. 79 -0. 44	+0. 05 +0. 01 -0. 08 -0. 11	+0. 27 +0. 28 -0. 10 +0. 26	+0. 17 -0. 04 -0. 73 -0. 13	-0. 34 -0. 37 -0. 11 -0. 83	-3.8 -4.8 +4.4 -5.4	+0.4 +0.8 0.0 +1.4 -1.2 +0.2
	20 20 20 20 20 20	Greenwich Greenwich Greenwich Greenwich Greenwich	γ Tauri γ Tauri γ 0 Tauri γ 5 Tauri B.D.+15° 633 θ 1 Tauri	EB I I I I	+0. 92 -0. 92 -0. 77 -0. 97	-0. 27 +0. 27 +0. 23 +0. 28	+0.06 +0.05 -0.07 +0.02	-0. 17 -0. 36 -0. 37 +0. 62 -0. 20	+0. 37 +0. 38 -0. 63 +0. 20	+0. 03 -0. 03 -0. 02 -0. 03	-0. 14 +0. 15 +0. 11 +0. 16	+0. 36 +0. 32 -0. 59 +0. 17	+0. 34 -0. 34 -0. 29 -0. 36	+3.3 -2.3 -4.0 -4.8	+0. 2 -1. 2 +2. 4 -0. 1 +0. 1
	20 20 20 20 20	Greenwich Greenwich Greenwich Cobham Utrecht	θ ¹ Tauri 264 B. Tauri α Tauri 75 Tauri 75 Tauri	EB I I I	+0. 40 -0. 95 -0. 91 -0. 78 -0. 76	+0. 26 +0. 26 +0. 26 +0. 20	+0. 10 +0. 03 -0. 03 -0. 07	-0. 91 -0. 30 +0. 41 +0. 62 +0. 63	+0. 92 +0. 30 -0. 41 -0. 62 -0. 64	+0. 01 -0. 03 -0. 04 +0. 14 -0. 13	-0. 06 +0. 13 +0. 12 +0. 14 +0. 11	+0. 85 +0. 28 -0. 41 -0. 58	+0. 15 -0. 35 -0. 34 -0. 29	-0. 5 -2. 6 -4. 1 -3. 3 -4. 5	-2.5 +2.2 +0.5 +0.7 -0.6
	20 20 20 20 20	Kasan Kasan Kasan Kasan Englehardt	θ^1 Tauri θ^2 Tauri 48 Tauri 7 Tauri 48 Tauri	I I I	-0. 49 -0. 78 -0. 76 -0. 78	+0. 11 +0. 23 +0. 22 +0. 23	+0. 10 +0. 10 +0. 10	-0. 53 -0. 87 -0. 60 -0. 64 -0. 60	+0.87 +0.61 +0.64 +0.61	+0. 11 +0. 06 +0. 07 +0. 07	+0.08 -0.27 +0.13 +0.15	+0. 55 +0. 52 +0. 55 +0. 51	-0. 18 -0. 29 -0. 28 -0. 30	-4. 2 -6. 5 -5. 4 -5. 8	-0.4 -1.7 -2.5 -1.5
1905, Jan.		Englehardt Englehardt Englehardt Englehardt Greenwich	r Tauri θ^1 Tauri θ^2 Tauri θ^2 Tauri θ^2 Tauri φ Aquarii	I I EB I	-0. 84 -0. 49 +0. 58 -0. 82	+0. 18 +0. 11 -0. 13 +0. 86	+0.06 +0.09 +0.08	-0. 63 -0. 53 -0. 87 -0. 81 +0. 03	+0. 54 +0. 87 +0. 81 -0 46	+0. 02 +0. 11 +0. 14 -0. 11	+0. 14 +0. 08 -0. 08 +0. 25	+0. 45 +0. 78 +0. 76 +0. 09	-0. 31 -0. 18 +0. 22 -0. 73	$ \begin{array}{r} -3.7 \\ -3.8 \\ +1.2 \\ -4.6 \end{array} $	-0.6 +0.6 -1.3 -1.6
	16 16 16	Greenwich Tokio Tokio Tokio Tokio	φ Aquarii 264 B. Tauri 269 B. Tauri 264 B. Tauri α Tauri	EB IB IB E	-0. 97 -0. 95 +0. 93 -0. 97	+0. 29 +0. 28 -0. 27 +0. 29	+0. 02 +0. 02 +0. 02 +0. 01	+0. 02 +0. 03 -0. 20 -0. 27 -0. 10	-0. 03 +0. 20 +0. 27 +0. 10	-0. 03 +0. 01 +0. 06 -0. 01	+0. 15 +0. 15 -0. 15 +0. 15	-0. 05 +0. 17 +0. 28 +0. 06	-0.65 -0.64 +0.62 -0.65	-8. I -6. 5 +3. I -6. 6	-1.4 -3.2 -1.7 -1.5
!	17 17 18 18	Tokio Greenwich Kasan Greenwich	7 Tauri 318 B. Tauri 130 Tauri 130 Tauri 26 Geminor.	E I I I	-0. 73 -0. 87 -1. 04 -0. 74	+0. 15 -0. 03 -0. 02 -0. 16	+0. 02 -0. 12 -0. 06	-0. 16 +0. 71 -0. 48 -0. 25 -0. 67	-0. 71 +0. 49 +0. 26 +0. 75	-0. 12 -0. 02 -0. 06 -0. 08	+0.08 +0.04 +0.05 -0.01	-0. 69 +0. 47 +0. 25 +0. 71	-0. 45 -0. 37 -0. 45 -0. 18	-5. I -5. 9 -6. 2 -5. 0	+0.8 -1.4 -1.5 -0.9
Feb.	13 13	Cape Utrecht Kasan Kasan Utrecht Tokio	80 Virginis θ¹ Tauri 70 Tauri 71 Tauri 23 H¹. Cancri 6 Leonis	E I I I E	-0. 89 -0. 69 -0. 69	+0. 32 +0. 23 +0. 24 -0. 53	-0. 03 -0. 05 +0. 05	+0. 17 +0. 36 +0. 69 -0. 65	-0. 38 -0. 69 +0. 65 +0. 31	-0.07 -0.11 +0.13 -0.16	+0. 14 +0. 11 +0. 13 -0. 15	-0. 37 -0. 66 +0. 57 +0. 26	-0.87 -0.94 -0.71 -0.35	-3. 1 -3. 9 -3. 9 -5. 8	+0.9 +1.4 -0.4 -0.4
Mar.	20 21 10 12 15 16	Utrecht Kasan Greenwich Utrecht Greenwich	7 Virginis 389 B. Ceti 48 Tauri 110 B. Geminor. 2 B. Cancri	E	+0.82 -0.86 -0.96 -0.93	+0. 72 +0. 76 +0. 42 -0. 24	-0. 64 -0. 18 +0. 01 +0. 25	+0. 02 +0. 27 +0. 29 -0. 14 +0. 35	+0. 70 -0. 34 +0. 14 -0. 43	-0. 08 -0. 06 +0. 04 -0. 06	+0. 27 +0. 25 +0. 17 -0. 04	-0. 02 -0. 24 +0. 09 -0. 45	-0. 37 -0. 76 -0. 98 -0. 79	+4.8 -4.8 -6.1	+1. 1 +0. 8 -0. 3 -1. 1 +0. 9 +1. 1
	17 18 19 20	Cape Tokio Greenwich Utrecht Utrecht	o¹ Cancri 44 Leonis 56 Leonis β Virginis β Virginis	I I I	-1.04 -0.78 -1.07 -0.84	-0. 55 -0. 62 -0. 85 -0. 74	+0. 28 -0. 68 -0. 39	+0. 21 +0. 14 -0. 08 0. 00 +0. 22 +0. 18	-0. 31 +0. 69 +0. 39 +0. 65	-0. 08 -0. 29 -0. 30 -0. 33	-0. 19 -0. 17 -0. 25 -0. 21	-0. 28 +0. 29 +0. 11 +0. 03	-0. 58 -0. 25 -0. 21 -0. 03	-5·4 -8·2 -3·3 -7·3	-1.1 0.0 -4.1 +2.3 -2.9 -0.7
Apr.		Kasan Englehardt Englehardt Greenwich Greenwich	162 B. Geminor. 162 B. Geminor. 162 B. Geminor. 162 B. Geminor. 44 Leonis	I	-0. 98 -0. 98 +1. 02 -0. 03	-0. 33 -0. 33 +0. 34 -0. 01	-0. 23 -0. 23 -0. 13	-0. 24 -0. 24 -0. 13 -0. 72 +0. 01	+0.34 +0.34 +0.18 +1.00	-0. 12 -0. 12 +0. 07 -0. 08	-0.08 -0.08 +0.09	+0. 29 +0. 29 +0. 19 +0. 93	-0. 93 -0. 93 +0. 97 -0. 03	-3.5 -4.0 +4.4 -0.6	-0.7 +1.6 +1.1 -0.7 -0.4 -2.8
	15 16 17	Greenwich Cape Greenwich	44 Leonis σ Leonis η Virginis	EB I	+1.07 -0.67	+0.84 +0.57	+0. 29 +0. 79	+0.01 -0.14 +0.28	-0. 29 -0. 81	+0. 23 +0. 14	+0. 25 -0. 22	-0. 09 -0. 23	+0.65 -0.32	+8. o -4. o	

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	K	iθ	i	b _o	α,	ð _o	ε	P	'n	n'
1905, Apr. 24 May 10 10 13	Cape Cape Cape Kasan Kasan	ρ Sagittarii ζ Cancri Pi. VIII 6 56 Leonis c Leonis	E I I I	-0. 95 -0. 95 -0. 34	+0. 43 +0. 43 -0. 28	-0. 21 +0. 27 +0. 27 -0. 95 +0. 35	+0. 19 +0. 19 +0. 10	-0. 35 -0. 35 +0. 95	-0.01 -0.01 -0.33	-0. 13 -0. 13 -0. 05	-0. 34 -0. 35 +0. 29	-0. 98 -0. 93 -0. 28	- 5.5 - 5.6 - 3.8	-0.5 -0.6
14 15 15 15 July 7	Kasan Greenwich Greenwich Greenwich Cape	β Virginis 38 Virginis 38 Virginis k Virginis σ Leonis	I EB I I	-0. 17 +0. 40 -0. 96	-0. 15 +0. 36 -0. 85	-0. 78 -0. 79 -0. 74 +0. 41 -0. 93	+0. 59 +0. 56 -0. 32	+0. 99 +0. 93 -0. 52	-0. 35 -0. 24 +0. 01	0.00 +0.17 -0.30	-0. 20 -0. 20 +0. 10	-0. 10 +0. 23 -0. 54	- 2.4 + 0.6 - 4.2	-1.5 -1.4 +0.8
13 20 Aug. 7 12 17	Englehardt Cape Cape Tokio Jena	29 Ophiuchi 337 B. Aquarii 15 Libræ 226 B. Sagittarii 27 Piscium	I E I I IB	+0. 72 -0. 91 -0. 98	+0. 63 -0. 29 -0. 26	+0. 15 -0. 62 -0. 15 -0. 24 -0. 05	+0. 20 +0. 50 -0. 23	-0. 63 +0. 52 -0. 33	-0. 20 -0. 24 -0. 11	-0. 27 -0. 21 +0. 0 6	+0. 15 -0. 44 +0. 28	-0. 59 -0. 86 -0. 95	+ 4.5 - 4.4 - 2.4	+0. 8 +0. 4 +2. 8
23 23 Sept. 9 11 12	Jena Jena Königsberg Tokio Cape	89 Tauri σ² Tauri B. D. – 18° 5646 σ Aquarii λ Aquarii	E I EB I	+0. 40 -0. 96 +0. 83 -0. 61	-0. 28 -0. 01 -0. 48 -0. 43	-0. 04 -0. 14 -0. 37 3 +0. 47 -0. 74	-0. 89 -0. 19 -0. 04 +0. 15	+0.90 -0.29 +0.47 -0.76	+0. 13 -0. 10 +0. 13 -0. 21	-0.06 +0.13 -0.23 +0.15	+0. 86 +0. 22 -0. 18 +0. 26	-0. 42 -0. 77 +0. 34 -0. 12	+ 2.8 + 0.6 + 1.9 - 2.6	+0.8 +5.8 -2.4 +0.6
12 17 17 17	Cape Jena Jena Utrecht Utrecht	λ Aquarii μ Ceti μ Ceti μ Ceti μ Ceti	EB IB E IB E	-0. 84 +0. 88 -0. 78 +0. 85	+0. 89 -0. 95 -0. 84 -0. 92	-0. 44 -0. 11 -0. 05 -0. 15	+0. 34 +0. 14 +0. 46 +0. 28	-0. 36 -0. 15 -0. 48 -0. 29	-0.07 -0.09 -0.08 -0.13	+0. 25 -0. 29 +0. 23 -0. 28	-0. 27 -0. 05 -0. 35 -0. 15	+0. 67 -0. 71 +0. 63 -0. 69	- 6.7 + 5.9 - 8.7 + 4.8	-2.2 +1.4 -4.5 +0.4
18 18 18 18	Utrecht Utrecht Königsberg Königsberg Königsberg	f Tauri f Tauri f Tauri f Tauri B. D.+12°485 f Tauri	IB E IB E	+0.90 -0.90 +0.49	-0. 89 +0. 88 -0. 48	-0.02 0.00 -0.28 +0.94 +0.91	-0.01 +0.04 -0.11	+0. 01 -0. 04 +0. 84	-0.04 +0.03 +0.18	-0. 24 +0. 24 -0. 11	+0.06 -0.09 +0.70	-0. 85 +0. 85 -0. 46	+ 7.6 - 6.4 + 11.1	+2.9 -1.5 +8.4
18 19 19 19 Oct. 4	Jena Jena Jena Greenwich Greenwich	f Tauri γ Tauri γ Tauri θ¹ Tauri Β. F. 2471	E IB E E	-0. 53 +0. 66 +0. 93	+0. 44 -0. 54 -0. 71	+0. 01 +0. 08 +0. 08 -0. 03	+0.81 +0.69 -0.19	-0. 81 -0. 70 +0. 19	-0. 13 -0. 15 0. 00	+0. 10 -0. 15 -0. 16	-0. 76 -0. 59 +0. 22	+0. 55 -0. 66 -0. 92	- 4.8 + 4.3 + 1.6	+0. 9
4 4 4 4	Königsberg Königsberg Königsberg Königsberg Königsberg	B. D19° 4858 B. D20° 5003 B. D19° 4863 B. D20° 5041 38 G. Sagittarii	I I I I	-0. 87 -1. 03 -0. 98	-0.67 -0.81	-0. 11 +0. 33 -0. 10 +0. 23 -0. 14	+0. 51 -0. 15 +0. 35	+0. 58 -0. 22 +0. 38	-0. 12 -0. 11 -0. 12	-0. 03 -0. 04 -0. 04	-0. 62 +0. 17 -0. 43	-0. 77 -0. 91 -0. 86	- 3.4 - 0.9 - 2.0	+1.3 +4.6 +3.3
Nov. 7 7 7	Englehardt Englehardt Greenwich Greenwich Greenwich	5 Ceti 5 Ceti 27 Piscium 27 Piscium 29 Piscium	I EB I EB I	+0. 39 -0. 85 +0. 90	-0. 37 +0. 68 -0. 72	-0. 84 -0. 76 -0. 45 -0. 04 -0. 81	+0. 49 +0. 26 +0. 02	-0. 90 -0. 52 -0. 04	-0. 20 -0. 19 -0. 18	-0.00 +0.30 +0.39	0.00 -0.01 +0.09	+0. 16 -0. 66 +0. 70	- 2.3 - 4.5 + 3.1	-4. 3 +0. 1 -1. 6
Dec. 2 9 10	Greenwich Cape Greenwich Cape Utrecht	29 Piscium 37 Aquarii f Tauri 64 Tauri 7 Tauri	EB I I I I	-0. 26 -0. 76 -0. 47	-0.09 +0.77 -0.42	-0. 78 -0. 95 +0. 02 +0. 15 -0. 02	+0.09 -0.57 +0.84	-0. 96 +0. 57 -0. 86	-0. 26 +0. 22 -0. 14	+0, 04 +0, 37 +0, 08	+0.47 +0.30 -0.77	-0. 24 -0. 32 -0. 10	- 1.5 - 5.4 - 2.3	-0. i -1. i +0. i
1906, Jan. 1 4 4 6 10	Königsberg Greenwich Jena Tokio Greenwich	B. D. — 3° 14 £° Ceti £° Ceti α Tauri g Geminor.	I I I I IB	-0. 77 -0. 59 -0. 90	+0.86 +0.66 +0.88	-0.08 +0.15 +0.22 -0.01 +0.80	-0. 49 -0. 72 -0. 05	+0. 52 +0. 75 +0. 05	+0. 19 +0. 26 +0. 05	+0. 27 +0. 23 +0. 18	+0. 26 +0. 43 0. 00	-0.80 -0.61 -0.61	- 6. 1 - 5. 1 - 6. 7	-1.9 -1.9
Feb. 3 4	Tokio Tokio Greenwich Greenwich Greenwich	α Leonis α Leonis α Tauri α Tauri 115 Tauri	IB E I EB I	+1.01 -0.68 +0.79 -0.86	+0. 38 +0. 67 -0. 77 +0. 77	+0. 18 +0. 23 +0. 19 +0. 14 -0. 16	-0. 02 +0. 62 +0. 45 -0. 30	-0. 23 -0. 65 -0. 47 +0. 34	+0. 15 -0. 07 -0. 12 +0. 06	+0. 25 +0. 12 -0. 17 +0. 12	-0. 07 -0. 66 -0. 38 +0. 27	-0. 62 -0. 68 +0. 78 -0. 71	+ 5.9 - 5.4 + 5.3 - 5.2	+0.5 -1.6 +1.1
4 7 8 Mar. 2 3	Greenwich Greenwich Königsberg Greenwich Cape	Tauri ζ Cancri π Cancri θ Tauri m Tauri	EB I I I I	-0. 96 -0. 66 -0. 39	+0. 14 -0. 09 +0. 39	-0. 26 +0. 21 +0. 61 -0. 27 -0. 40	+0.09 +0.06 -0.86	-0. 23 -0. 76 +0. 90	-0. 14 +0. 11 +0. 17	+0. 27 -0. 15 +0. 09	-0. 57 -0. 56 -0. 80	+0. 02 +0. 02 -0. 43	- 5.2 - 2.9 - 4.3	+0. 1 +0. 2 -2. 1
4 17 20 29 29	Cape Cape Cape Greenwich Königsberg	57 Orionis γ Sagittarii 29 Capricor. 179 B. Tauri α Tauri		+0. 56 +0. 97 -0. 71	-0.40 -0.18 +0.77	+0. 25 -0. 60 +0. 16 -0. 14 +0. 10	-0. 62 +0. 01 -0. 58	-0.85 +0.16 +0.60	+0.09 +0.08 +0.17	+0. 02 -0. 20 +0. 19	+0. 86 +0. 36 +0. 47	-0. 52 -0. 74 -0. 62	+ 0.8 + 3.6 - 5.8	$\begin{vmatrix} -2 & 2 \\ -2 & 2 \\ -1 & 8 \end{vmatrix}$

GROUP XIII—1891-1908—Continued.

Date.	Place.	Star.	Ph.	λ	κ	iθ	i i	b _o	α_{o}	ð,	ŧ	P	n	n'
1906, Mar. 31 Apr. 2 2 2 2	Tokio Cape Königsberg Königsberg Königsberg	71 Orionis 61 Geminor. B, D. +18° 1616 Berlin A. 2834 B. D. +18° 1618	I I I I I	-0. 35 -0. 28 -0. 31	-0. 13 +0. 11 +0. 12	+0.81 -0.84 -0.84	-0. 60 +0. 43 -0. 48 -0. 48 -0. 48	-0.93 +0.96 +0.95	+0.05 -0.06 -0.06	-0. 03 -0. 01 -0. 02	+0.02 +0.89 +0.89	-0. 36 -0. 28 -0. 31	+0. I -4. 4 -4. 2	+2. I -2. 8 -2. 5
2 2 2 2 3	Königsberg Königsberg Königsberg Königsberg Greenwich	B. D. +18° 1640 B. D. +18° 1641 B. D. +18° 1652 B. D. +18° 1653 d ² Cancri	I I I I	-0. 96 -0. 95 -0. 93 -0. 70	+0. 37 +0. 37 +0. 36 +0. 27	-0. 13 -0. 16 -0. 28 -0. 64	-0. 07 -0. 09 -0. 14 -0. 33 -0. 10	+0.08 +0.12 +0.25 +0.68	-0.02 -0.02 -0.03 -0.04	-0.06 -0.06 -0.06 -0.04	+0. 02 +0. 06 +0. 18 +0. 61	-0. 96 -0. 95 -0. 93 -0. 70	-6.8 -9.3 -6.8 -7.1	-1.4 -4.6 -1.6
4 4 4 5 5	Greenwich Jena Königsberg Königsberg Königsberg	π Cancri π Cancri π Cancri α Leonis α Leonis	I I I EB	-0. 98 -1. 01 -0. 48 +0. 30	-0.07 -0.06 -0.13 +0.08	-0. 23 -0. 17 +0. 68 +0. 98	-0. 02 -0. 01 -0. 01 -0. 12 -0. 18	+0. 23 -0. 05 -0. 88 -0. 96	-0. 12 -0. 06 +0. 19 +0. 27	-0. 20 -0. 22 -0. 19 +0. 04	+0. 11 -0. 08 -0. 45 -0. 48	-0. 75 -0. 77 -0. 30 +0. 18	-6. 2 -6. 6 -0. 5 +5. 8	-0.0 -1.0 +2.2
5 5 6 6	Jena Greenwich Greenwich Jena Washington	α Leonis α Leonis χ Leonis χ Leonis σ Leonis	EB EB I I	+0. 77 -0. 90 -0. 85	+0. 20 -0. 43 -0. 41	+0. 66 -0. 47 -0. 54	-0. 13 -0. 12 +0. 22 +0. 24 +0. 43	-0.67 +0.52 +0.59	+0. 23 -0. 39 -0. 27	+0. 17 -0. 34 -0. 22	-0. 31 +0. 15 +0. 14	+0.47 -0.39 -0.36	+5.2 -5.2 -5.9	-0.2 -1.
6 6 710	Washington Königsberg Königsberg Cape Jena	σ Leonis χ Leonis B.D.+7° 2412 18 Libræ 49 Libræ	EB I E E	-1.00 -0.86 +1.10	-0. 47 -0. 41 -0. 96	-0. 54 -0. 73 +0. 03	+0. 34 +0. 25 +0. 34 -0. 30 +0. 55	+0. 31 +0. 57 -0. 30	-0. 21 -0. 27 +0. 29	-0. 28 -0. 23 +0. 25	+0. 05 +0. 13 +0. 26	-0. 43 -0. 37 -0. 40	-7.3 -6.8 +6.2	-1. -2. +0.
14 27 27 May 1	Cape Greenwich Greenwich Kasan Washington	190 B. Sagittarii 119 Tauri 120 Tauri 0 ² Cancri α Leonis	E I I I I	-0. 91 -0. 87 -0. 26	+0. 82 +0. 79 +0. 01	+0. 01 -0. 16 -0. 96	-0. 25 +0. 02 -0. 22 -0. 09 -0. 09	-0.02 +0.27 +0.96	+0. 03 +0. 07 -0. 18	+0. 10 +0. 17 -0. 04	一0. 07 十0. 14 十0. 70	-0. 78 -0. 75 -0. 28	-6. 3 -6. 1 -6. 0	-1. : -1. : -4. ;
3 8 8 9	Washington Washington Washington Cape Washington	χ Leonis η Libræ η Libræ φ Ophiuchi 36 Sagittarii		0.00 +0.32 +1.07	0.00 +0.28 -0.90	+0. 10 +0. 09 -0. 12	+0. 18 +1. 00 +0. 96 -0. 35 -0. 27	+1.00 +0.96 -0.37	-0. 23 -0. 18 +0. 26	+0.03 +0.10 +0.17	-0. 83 -0. 77 +0. 40	0.00 -0.06 -0.30	-0.3 +1.3 +5.6	-0. -0.
June 2 4 7 8	Cape Washington Cape Jena Kasan	4 Ceti 65 Virginis 18 Libræ μ Sagittarii π Sagittarii		-0.57 -1.10 +1.07	-0. 47 +0. 95 +0. 82	-0. 33 +0. 01 +0. 13	+0.44 +0.78 -0.26 +0.12	+0. 85 -0. 27 +0. 18	-0. 37 -0. 12 +0. 14	-0. 13 -0. 29 +0. 05	-0. 32 +0. 12 -0. 15	-0. 35 -0. 44 -0. 20	一5·4 一7·5 十7·6	-2.2 -1.3 +1.8
July 25 2 2 5 5	Washington Jena Königsberg Kasan Kasan	7 Leonis 7 Libræ 8 Libræ 115 B. Sagittarii 121 B. Sagittarii		-0. 79 -0. 48 -0. 36	-0. 71 -0. 43 -0. 46	-0. 12 -0. 13 +0. 66	-0. 02 -0. 69 -0. 75 +0. 49 -0. 28	-0. 70 -0. 90 +0. 82	+0.05 +0.15 -0.10	-0. 21 -0. 14 -0. 01	+0. 52 +0. 70 -0. 84	-0. 50 -0. 30 -0. 60	-3.6 -4.5 -7.6	+0.8 -1.8
Aug. 9 Sept. 1	Cape Cape Washington Washington Cape	μ Capricor. ν Piscium ι Aquarii ι Aquarii f Piscium	E I EB E	+0.80 -0.74 +0.75	+0. 62 -0. 13 +0. 13	+0. 15 -0. 66 -0. 65	+0. 03 -0. 48 +0. 21 +0. 20 +0. 65	+0.51 -0.69 -0.68	+0. 16 -0. 17 -0. 10	-0. 26 +0. 17 -0. 21	+0. 25 +0. 38 +0. 35	-0. 76 -0. 19 +0. 20	+6. I -2. 9 -0. 4	+I. +I. -4.
9 9 9 Oct. 8	Greenwich Greenwich Königsberg Washington Königsberg	α Tauri α Tauri 75 Tauri 64 Orionis θ Cancri	IB E IB E IB	+0.09 -0.80 +0.89	-0. 10 +0. 90 -0. 90	一0. 47 一0. 27 十0. 07	-0.83 -0.88 -0.55 +0.06 +0.05	+1.00 -0.44 -0.09	+0. 18 -0. 04 -0. 05	0.00 +0.17 -0.07	+0. 93 -0. 46 -0. 03	-0. 10 +0. 88 -0. 96	-1.6 -5.0 +6.8	-2. -0.4 +1.6
11 25 25 26 26	Königsberg Kasan Kasan Königsberg Königsberg	θ Cancri 114 B. Capricor. ε Capricor. Β. D. –14° 6228 39 Aquarii	E I I I I	-0. 80 -0. 92 -0. 64	-0. 38 -0. 44 -0. 21	-0. 64 -0. 48 +0. 56	+0.06 +0.08 +0.08 -0.22 -0.19	-0.65 -0.48 +0.79	-0. 22 -0. 20 +0. 13	+0. 14 +0. 18 +0. 19	+0. 41 +0. 27 -0. 47	-0. 75 -0. 87 -0. 59	-2.9 -2.9 -2.4	+1. +2. +1.
26 28 Nov. 5 19 21	Königsberg Cape Greenwich Greenwich Washington	B. D. —14° 6233 27 Piscium v Geminor. o Sagittarii c Capricor.	E	-0. 70 +0. 89 -1. 09 -0. 51	-0. 13 -0. 90 -0. 91 -0. 27	-0. 45 +0. 13 +0. 14 -0. 85	+0. 18 +0. 52 +0. 09 +0. 06 +0. 17	-0. 69 -0. 16 +0. 15 -0. 87	-0. 26 -0. 04 -0. 17 -0. 23	+0. 21 -0. 05 -0. 03 +0. 09	+0.01 -0.08 -0.27 +0.57	-0. 51 -0. 79 -0. 64 -0. 47	-1.8 +3.3 -6.1 -1.5	+2. : -1. : +0. : +1. :
Dec. 5	Washington Greenwich Cape Englehardt Kasan	45 Aquarii X Cancri 45 Capricor. \mathcal{E}^2 Ceti \mathcal{E}^2 Ceti	I	+0.64 -0.70 -0.70	-0. 34 -0. 53 +0. 52	-0. 74 -0. 02 +0. 02	+0. 09 +0. 07 -0. 01 +0. 65 +0. 64	+0. 74 -0. 02 -0. 65	-0. 11 -0. 13 -0. 20	+0. 13 +0. 25 +0. 21	+0. 62 -0. 05 -0. 44	-0. 59 -0. 72 -0. 67	+3.7 -6.4 -6.5	+0. -2. -2.

GROUP XIII—1891-1908—Continued.

			,					1					1		,
Date.		Place.	Star.	Ph.	λ	ĸ	iθ	i	<i>b</i> _o	α _o	δ _o		<i>P</i>	n	n'
1907, Jan. Feb.	20 26 26 27	Königsberg Jena Greenwich Cape Cape	B. D.+ 3° 219 v Geminor. v Geminor. 63 Geminor. v Virginis	I I I E	-0. 71 -0. 81 -0. 75	+0. 78 +0. 88 -0. 67	-0. 04 -0. 53 -0. 37 +0. 31 +0. 17	-0. 28 -0. 19 +0. 07	+0.60 +0.42 -0.68	+0.05 +0.06 +0.14	+0.03 +0.05 -0.41	+0. 54 +0. 33 -0. 63	-0. 39 -0. 45 -0. 24	-5.3 -5.0 -5.5	+0. I -1. 2 -0. 3 -1. I +0. 3
	16 21 22 22 23	Cape Cape Washington Washington Greenwich	f Piscium 351 B. Tauri 15 Geminor. 16 Geminor. ζ Geminor.	I I I I	-0. 80 -0. 65 -0. 79 -0. 84	-0.86 +0.76 +0.85 +0.88	-0. 04 -0. 35 -0. 63 -0. 43 +0. 36	-0. 31 +0. 30 -0. 21 +0. 11	+0. 48 -0. 70 +0. 48 -0. 38	+0.08 +0.01 +0.08 +0.03	+0. 14 +0. 03 +0. 04 -0. 02	+0. 40 -0. 75 +0. 40 -0. 43	-0. 84 -0. 58 -0. 71 -0. 69	-5.5 -3.0 -5.3 -4.8	-o. 7 +o. 1
Mar.	25 25 10 20 21	Königsberg Cape Cape Greenwich Greenwich Greenwich	 δ Cancri 139 B. Cancri 19 Capricor. m Tauri χ¹ Orionis χ² Orionis 	I I E I I	-0. 66 +1. 04 -0. 65 -0. 83	-0. 52 -0. 82 +0. 71 +0. 93	+0. 34 -0. 71 +0. 22 -0. 50 3 +0. 32 -0. 19	+0. 10 -0. 03 -0. 46 +0. 20	+0. 72 +0. 22 +0. 68 -0. 38	-0. 13 +0. 17 +0. 15 0. 00	-0. 11 -0. 17 +0. 14 +0. 07	+0. 51 -0. 16 +0. 58 -0. 43	-0. 26 -0. 62 -0. 72 -0. 93	-5.3 +6.2 -5.3 -4.4	+2. 2 -1. 5 +0. 3 -1. 5 +0. 5
	2I 2I 22 24 24	Jena Englehardt Washington Washington Washington	χ ¹ Orionis B. D. +19° 1110 ζ Geminor. δ Cancri δ Cancri	I I I EB	-0. 82 -0. 69 -0. 85 -0. 82	+0. 92 +0. 77 +0. 88 +0. 61	+0. 33 -0. 54 -0. 47 -0. 17	+0. 20 -0. 34 -0. 09 +0. 07	-0. 39 +0. 64 +0. 34 +0. 47	+0.01 +0.09 +0.03 -0.08	+0.08 +0.08 -0.02 -0.15	-0. 45 +0. 58 +0. 27 +0. 32	-0. 92 -0. 77 -0. 89 -0. 63	-4.6 -5.3 -4.2 -3.2	+0. 2 -1. 2 +0. 8 +1. 6
Apr. May June	25 24 18	Greenwich Greenwich Cape Greenwich Cape	b Virginis 56 Geminor. c Virginis n Virginis v Virginis	I I I I	-0. 77 -0. 69 -0. 39 -0. 63	+0. 81 +0. 05 -0. 10	-0. 39 -0. 52 -0. 33 0. 00 -0. 38	-0. 09 +0. 67 +0. 93 +0. 65	+0. 53 +0. 75 +0. 93 +0. 76	-0. 31 -0. 34 -0. 38 -0. 29	-0. 34 -0. 19 -0. 07 -0. 18	+0. 77 -0. 08 -0. 43 +0. 08	-0. 85 -0. 27 -0. 19 -0. 65	-2.0 -4.6 -2.4 -6.4	-0.4 +2.5 -0.5 -0.1
July	21 24 23 23 23	Jena Greenwich Kasan Kasan Cape	652 B. Virginis ¢ Ophiuchi v ¹ Sagittarii v ² Sagittarii 33 Sagittarii	I I I I	-1.07 -1.00 -0.99	-0. 92 -0. 04 -0. 04	-0. 12 -0. 19 +0. 06 -0. 17	-0. 13 +0. 02 -0. 04	-0. 23 +0. 06 -0. 17	-0. 14 -0. 07 -0. 07	-0.13 0.00 0.00	+0. 19 -0. 14 +0. 09	-0. 17 -0. 29 -0. 29	-7. I -5. 0 -5. 6	-0.6 -0.7 +1.0 +0.4 +0.8
Aug. Sept.		Cape Cape Kasan Washington Cape	π Sagittarii 39 Aquarii ξ Ophiuchi ξ Ophiuchi 30 G. Sagittarii	I E I I	-1.01 +0.86 -0.86 -0.76	+0. 73 -0. 73 +0. 29 -0. 65	-0. 46 +0. 52 -0. 37 -0. 62 +0. 29	-0. 07 -0. 38 -0. 23 -0. 36	-0.47 +0.64 -0.43 -0.71	-0. 20 +0. 32 +0. 04 -0. 01	+0.02 -0.19 -0.14 -0.12	+0. 45 -0. 27 +0. 35 +0. 64	-0. 22 -0. 28 -0. 78 -0. 71	-5.8 +5.9 -7.3 -5.6	+0.3 +0.9 -2.1 -1.0 +2.5
	16 18 19 19	Cape Englehardt Cape Cape Greenwich	o Sagittarii η Capricor. 39 Aquarii 45 Aquarii μ Ceti	I EB I I	-1.09 +0.26 -1.07 -1.10	+0. 99 +0. 22 +0. 81 +0. 84	+0. 13 +0. 90 +0. 20 -0. 07	+0. 02 -0. 35 -0. 15 +0. 06	+0. 13 +0. 97 +0. 23 -0. 10	-0. 17 +0. 22 -0. 10 -0. 21	+0.01 -0.03 +0.28 +0.28	-0. 12 -0. 72 -0. 21 -0. 03	-0. 92 +0. 17 -0. 49 -0. 51	-5.0 -3.5 -6.1 -9.7	+1.6 -5.0 +0.4 -3.0
Oct.	24 26 2 24	Greenwich Greenwich Greenwich Greenwich Washington	μ Ceti 64 Tauri 8 Leonis i Tauri 333 B. Tauri	E IB E E	+0. 60 -0. 78 +0. 89	-0. 16 +0. 55 -0. 84 -0. 68	6 -0. 28 6 +0. 39 1 +0. 19 3 -0. 21	-0. 73 +0. 38 -0. 11 -0. 15	+0.79 -0.54 -0.22 +0.26	+0. 28 -0. 11 +0. 03 +0. 04	-0. 16 +0. 18 +0. 22 -0. 19	+0. 57 -0. 57 -0. 07 +0. 33	-0. 32 +0. 70 -0. 40 -0. 57	+3.7 -7.0 +7.3 +6.0	+o. 2
Nov. Dec.	11	Washington Washington Washington Washington Greenwich	107 Tauri 107 Tauri 117 G. Piscium 336 B. Aquarii	IB E I I	-0. 88 +0. 75 -0. 38 -0. 41	+0. 76 -0. 65 -0. 05 -0. 26	6 -0. 26 5 -0. 50 6 +0. 09 6 +0. 39	-0. 16 -0. 30 +0. 93 -0. 84	+0. 31 +0. 58 -0. 93 +0. 92	+0.05 +0.09 -0.38 +0.28	+0. 18 -0. 13 +0. 07 +0. 20	+0. 22 +0. 63 -0. 42 -0. 22	+0.66 -0.56 -0.23 -0.39	-7.8 +4.7 -2.6 -1.2	-2.4 +0.3 -0.3 +1.3
1908, Jan.	18	Greenwich Greenwich Washington Washington	290 B. Aquarii 8 Tauri 68 Tauri 7 Cancri 39 Cancri	I I E E	-0. 31 -0. 94 +0. 89 +0. 87	+0. 17 +0. 52 -0. 92 -0. 92	+0.05 -0.72 +0.01 +0.10 2 +0.23	-0. 59 +0. 01 -0. 04 -0. 10	+0. 94 -0. 01 -0. 11 -0. 25	+0. 22 -0. 02 -0. 01 +0. 01	+0. 11 +0. 23 +0. 15 +0. 16	+0. 82 -0. 09 0. 00 -0. 11	-0. 14 -0. 43 -0. 36 -0. 39	-2.5 -4.9 +8.3 +3.3	+2.6 -0.6 +0.9 +3.0
M ar.	10	Washington Washington Washington Washington Washington	40 Cancri 21 G. Sagittarii 30 B. Tauri η Geminor. η Geminor.	E I I EB	+1.06 -0.92 -0.45 +0.52	+0. 8; +0. 1; +0. 3; -0. 4;	+0. 13 -0. 22 +0. 23 +0. 86 3 +0. 82	-0.06 +0.24 +0.12 +0.12	-0. 23 -0. 34 -0. 87 -0. 83	+0. 18 -0. 15 -0. 06 -0. 05	+0.09 +0.26 +0.04 -0.04	+0.31 -0.36 -0.91 -0.78	-0. 54 -0. 84 -0. 49 +0. 55	+6.8 -4.8 -2.0 +4.1	+2.9 +0.4 +1.0 +0.8 +0.9
Apr.	13 13 6 9	Greenwich Greenwich Greenwich Washington Washington	39 Cancri 40 Cancri 116 B. Ophiuchi 141 Tauri 39 Cancri	I E I I	-0. 86 +0. 85 -0. 58 -0. 48	+0. 92 +0. 54 +0. 44 +0. 54	7 -0. 24 -0. 35 1 -0. 57 1 +0. 78 1 -0. 75	+0. 16 -0. 25 +0. 13 +0. 39	+0. 39 -0. 62 -0. 78 +0. 84	-0.03 +0.23 -0.07 -0.12	-0. 14 +0. 13 -0. 05 -0. 08	+0. 24 +0. 67 -0. 83 +0. 62	-0. 66 -0. 77 -0. 59 -0. 51	-5.8 +3.8 -3.2 -3.8	-1.2 -0.7 -1.4 +0.5 -0.8
June	9 13 11 15 16	Washington Washington Washington Washington	40 Cancri v Virginis o Libræ 49 Sagittarii 36 B. Capricor.	I I E IB	-0. 92 -1. 01 +1. 01	+0. 72 -0. 16 +0. 81	3 -0.82 2 +0.01 5 +0.11 5 -0.39 5 -0.29	-0.05 +0.11 +0.09	-0. 05 +0. 15 -0. 40	+0. 02 -0. 14 +0. 15	-0. 38 -0. 29 -0. 04	-0.09 -0.19 +0.47	-0.45 -0.41 -0.39	-7.7 -7.7 +3.9	-3. I -1. 9 -1. 3 -2. 3 +0. 7

GROUP XIII-1891-1908-Continued.

Date.	Place.	Star.	Ph.	, <u>,</u>	κ	iθ	i	b _o	α _o	ð _o	•	P	n	n'
1908, June 16 17 17 Aug. 3 9	Washington Washington Washington Washington Washington Washington	36 B. Capricor. 30 Piscium 30 Piscium 88 Virginis 49 Sagittarii 36 B. Capricor.	ı	-0. 04 +0. 31 -0. 94 -0. 86	+0. 01 -0. 07 +0. 35 -0. 66	-0. 13 -0. 12 -0. 08 -0. 58	+0. 99 +0. 94 -0. 19 +0. 18	-1.00 -0.95 -0.21 -0.61	-0. 39 -0. 33 +0. 04 -0. 16	-0.06 -0.20 -0.38 +0.04	+0. 27 +0. 05 +0. 08 +0. 01 +0. 50 +0. 22	+0. 03 -0. 82 -0. 97 -0. 36	-0. 2 +0. 5 -7. 0 -5. 2	0. 0 -1. 4 -1. 0 +0. 3

Section II.—Mean Longitudes for the Period 1753-1908.

45. The corrections λ for this period have been formed on the plan described in §39. The irregular character of the observations before 1810 or 1820 prevents their being treated on a strictly uniform system. Owing to the probability of systematic differences between the results of immersions and emersions which may arise from the errors both of the semidiameter and of the parallactic equation, the mean values from the two phases should be derived separately and compared. This is easy during the last half century, when the observations were numerous. But before that time the mean epoch of the groups of the two phases does not coincide, so that a strict comparison can not be made between the two classes of results.

The length of time embraced in a single group is also quite irregular. As to the length of the groups, the general rule is that observations through any period during which the correction $\delta\lambda$ may be assumed to vary uniformly with the time may be combined into one group. But we can not determine how long this may be. The fluctuations appear sometimes to be remarkably rapid. The best that we can do is to limit the lengths of the periods to times in which the probable variation of the fluctuations will be less than the probable error of the mean result.

After 1845 the observations are so much more numerous that the results for each year are commonly combined in a separate group.

Group Corrections to the Moon's Mean Longitude.

PERIOD 1753-1845.

		sions.	Emers			rsions.	Imme	
I-E	λ	[an]	[aa]	Epoch.	λ	[an]	[aa]	Epoch.
"	"	"				,,		-
					- 1. o8	- 5.2	4. 8	1755-7
-2.06	十1.24	+14.0	11.3	1771.8	-o. 82	-12.4	15. 2	1771.4
	• • • • • •		• • • •		+0. 26	+ 2.6	10. I	1785.0
-o. 76	-0.44	- 4.7	10. 7	1790.0	-1.20	-14.0	11.7	1792.0
-0. 13	-1.68	-17.2	10. 2	1801.7	-1.81	-31.8	17.5	1801.9
+1.31	-2.34	-18.2	7.8	1810.4	-1.03	-23.7	23. I	1810.4
-0.70	-1.72	-11.0	6.4	1813. 2	-2.42	-61.6	25.4	1813.3
-o. 76	-0. 12	- 2.2	18. 5	1821.6	-o. 88	-11.7	13.4	1821. O
-3. 14	+2.99	+21.2	7. I	1822.8	-o. 15	- 1.2	8. ვ	1822.9
-1.72	+1.38	+11.2	8. ı	1826. 2	-o. 34	- 6.9	20. 5	1826. O
+0.75	-2.50	-38. o	15. 2	1830.8	-1.75	-92.0	52.5	1830.6
-0.94	-1.00	- 3. I	3. I	1834.5	-1.94	-66.8	34.5	1834. 5
-o. 75	-o. 18	- 2.5	14. 9	1839.6	-o. 93	-47.2	50. 8	1839. 3
-1.50	+2.35	+28.9	12. 3	1843. I	+o. 85	+31.5	37. I	1843.6

35990°-12-13

Group Corrections to the Moon's Mean Longitude—Continued.

PERIOD 1846-1908.

[The means are mostly taken for single years.]

		Immersion	s.		Emersions	3.		Final	
Year.	[aa]	[an]	λ	[aa]	[an]	λ	I-E	λ	Wt.
1847. 0 1848. 5 1849. 5 1850. 5 1851. 5	16. 0 9. 6 22. 8 26. 5 18. 0	// + 18.8 + 26.7 + 11.2 + 45.4 + 30.4	+1. 18 +2. 79 +0. 50 +1. 72 +1. 69	5.9 5.2 7.8 11.1 4.6	+ 11.7 + 10.4 + 11.4 + 18.0 + 6.4	+2.00 +2.00 +1.47 +1.62 +1.40	-0. 82 +0. 79 -0. 97 +0. 10 +0. 29	+1.40 +2.51 +0.75 +1.69 +1.63	22 15 31 38 23
1852. 5	11.9	+ 22. 1	+1.86	2. 3	+ 1.1	+0.48	+1.38	+1.64	14
1853. 5	9.8	+ 19. 5	+2.00	5. 4	+ 7.0	+1.30	+0.70	+1.75	15
1854. 5	22.5	+ 58. 9	+2.62	7. 5	+ 17.5	+2.30	+0.32	+2.54	30
1855. 5	6.6	+ 23. 8	+3.60	5. 1	+ 14.6	+2.86	+0.74	+3.28	12
1856. 5	7.0	+ 19. 3	+2.76	1. 0	+ 5.5	+5.50	-2.74	+3.11	8
1857. 5	11.4	+ 45. 2	+3.97	4. 4	+ 9.0	+2.04	+1.93	+3.43	16
1858. 5	8.3	+ 31. 9	+3.85	6. 7	+ 38.8	+5.80	-1.95	+4.72	15
1859. 5	9.2	+ 47. 1	+5.12	3. 0	+ 18.5	+6.18	-1.06	+5.38	12
1860. 5	16.9	+ 95. 9	+5.68	8. 8	+ 41.8	+4.77	+0.91	+5.37	26
1861. 5	7.0	+ 32. 2	+4.60	3. 5	+ 18.2	+5.20	-0.60	+4.80	11
1862. 5	7. 2	+ 38.2	+5. 31	7. 2	+ 39.7	+5.52	-0. 21	+5.42	14
1863. 5	17. 6	+ 73.6	+4. 18	9. 3	+ 50.2	+5.40	-1. 22	+4.60	27
1864. 5	12. 6	+ 62.2	+4. 94	8. 1	+ 31.4	+3.90	+1. 04	+4.53	21
1865. 5	7. 2	+ 37.5	+5. 21	2. 6	+ 5.5	+2.13	+3. 08	+4.39	10
1866. 5	4. 4	+ 19.1	+4. 33	8. 4	+ 38.3	+4.56	-0. 23	+4.48	13
1867. 5 1868. 5 1869. 5 1870. 5 1871. 5	7. 8 17. 0 12. 8 8. 8	+ 22.2 + 48.5 + 39.2 + 21.0 + 11.8	+2.85 +2.85 +3.06 +2.39 +0.76	2. 2 4. 9 3. 8 2. 8 4. 3	+ 0.9 + 10.6 + 16.9 + 7.5 + 0.2	+0.41 +2.16 +4.45 +2.68 +0.05	+2.44 +0.69 -1.39 -0.29 +0.71	+2. 32 +2. 69 +3. 38 +2. 46 +0. 50	10 22 17 12 20
1872. 5	16. 7	+ 9.5	+0.57	6.6	- 2.4	-0. 36	+0.93	+0.31	23
1873. 5	20. 8	+ 10.0	+0.48	8.9	+ 0.3	+0. 03	+0.45	+0.35	30
1874. 5	11. 8	+ 10.1	+0.86	3.1	- 10.2	-3. 29	+4.15	0.00	15
1875. 5	13. 0	+ 8.6	+0.66	3.4	- 8.0	-2. 35	+3.01	+0.04	16
1876. 5	35. 7	+ 9.3	+0.26	27.2	+ 2.7	+0. 10	+0.16	+0.19	63
1878. 0 1879. 5 1880. 5 1881. 5 1882. 5	17.8 13.4 29.2 15.6	+ 16.7 + 17.4 + 37.4 + 14.5 + 9.7	+0.94 +1.30 +1.28 +0.93 +1.33	21. 5 12. 8 13. 5 4. 0 9. 5	+ 6.4 + 32.3 + 9.1 + 7.7 + 10.5	+0.30 +2.53 +0.68 +1.92 +1.11	+0.64 -1.23 +0.60 -0.99 +0.22	+0.59 +1.90 +1.09 +1.13 +1.21	40 26 43 20
1883. 5	13. 1	+ 12.6	+0.96	3. 5	- 4.2	-1.20	+2. 16	+0. 50	17
1884. 5	31. 7	+ 18.1	+0.57	28. 0	+ 22.2	+0.79	-0. 22	+0. 67	60
1885. 5	148. 4	+ 75.9	+0.51	36. 9	+ 0.8	+0.02	+0. 49	+0. 41	185
1886. 5	26. 5	+ 7.7	+0.29	8. 2	+ 0.8	+0.10	+0. 19	+0. 25	35
1887. 5	30. 4	+ 24.5	+0.81	16. 5	- 10.1	-0.61	+1. 42	+0. 31	47
1888. 5 1889. 5 1890. 5 1891. 5 1892. 5	11.0 10.4 9.2 19.6 18.6	- 4.2 + 5.1 - 3.5 + 2.1 + 23.9	-0. 38 +0. 49 -0. 38 +0. 11 +1. 29	5· 5 3· 7 14. 6 9. 6	- 2.8 - 10.5 - 3.5 - 1.6 - 10.9	-0. 51 -2. 84 -0. 24 -0. 17 -1. 02	+0. 13 +3. 33 -0. 14 +0. 28 +2. 31	-0. 42 -0. 38 -0. 29 +0. 02 +0. 45	17 14 24 29
1893. 5	16. 0	+ 18.5	+1. 16	9. I	- 5·3	-0.58	+1. 74	+0.53	25
1894. 5	40. 3	+ 27.2	+0. 68	18. I	- 4·7	-0.26	+0. 94	+0.39	58
1895. 5	142. 7	+174.0	+1. 22	74· 5	+112.8	+1.52	-0. 30	+1.32	217
1896. 5	134. 0	+326.5	+2. 44	70· 3	+148.8	+2.12	+0. 32	+2.33	204
1897. 5	24. 6	+ 43.6	+1. 77	8. 2	+ 13.4	+1.64	+0. 13	+1.74	33
1898. 5	30. 7	+ 60.6	+1.98	13. 8	+ 42. 1	+3. 05	-1.07	+2.31	44
1899. 5	15. 3	+ 34.4	+2.25	9. 9	+ 25. 7	+2. 60	-0.35	+2.39	25
1900. 5	26. 7	+ 99.3	+3.72	10. 0	+ 37. 8	+3. 78	-0.06	+3.74	37
1901. 5	23. 7	+ 84.6	+3.57	13. 9	+ 53. 8	+3. 87	-0.30	+3.68	38
1902. 5	26. 6	+ 114.7	+4.31	12. 9	+ 52. 7	+4. 09	+0.22	+4.24	40
1903. 5 1904. 5 1905. 5 1906. 5 1907. 5 1908. 3	17. 5 29. 7 29. 0 16. 9 17. 3 6. 1	+ 83.0 +146.2 +158.7 + 96.7 +104.0 + 37.9	+4. 74 +4. 92 +5. 47 +5. 73 +6. 04 +6. 17	7. I 15. 4 10. 3 13. 6 4. I 5. 7	+ 29. 5 + 82. 1 + 62. 1 + 66. 1 + 26. 3 + 34. 3	+4. 15 +5. 33 +6. 03 +4. 86 +6. 40 +6. 05	+0. 59 -0. 41 -0. 56 +0. 87 -0. 36 +0. 12	+4.57 +5.06 +5.62 +5.34 +6.11 +6.11	25 45 39 31 21

46. The differences between the results of the two phases are, in the general average, markedly larger than would be the values derived from the probable errors. Yet the systematic difference seems to be small, and perhaps variable, so that it might have been ignored without seriously changing any of the results. The following method of combination has been adopted as likely to lead to the best results.

To find the corrections to the mean longitude itself, the results of the two phases have been reduced to a common mean standard by applying the following reductions:

These mean results have been combined and smoothed off to obtain the varying correction to the mean longitude itself. The result is given in the column, "General λ " in the table immediately following.

But, in the final solution of the equations for the other unknown quantities the values of λ to be used as given quantities should be affected by their systematic errors, whatever these may be. The preceding corrections have therefore been subtracted from the smoothed off general values to obtain those to be used for the two phases separately. The results are shown in the following table:

Observed Corrections to the Moon's Mean Longitude.	Observed	Corrections	to	the	Moon's	Mean	Longitude.
--	----------	-------------	----	-----	--------	------	------------

Epoch.	General à	Immer- sion λ	Emer- sion \(\lambda\)	Epoch.	General à	Immer- sion l	Emer- sion λ	Epoch.	General à	Immer- sion λ	Emer- sion λ
	"	"	,,		,,	"	_ ,,		,,	-,,	"
167a. o	-1.3			1705. 0	+0. 2		·	1740. 0	-0.7		
1671. 0	1.3			1706. 0	0. 2			1741. 0	0.7		
1672. 0	1.3			1707. 0	0. 2			1742. 0	0.7		
1673. o	1.3			1708. o	0.3			1743. 0	0.8		
1674. 0	1.3			1709. 0	0. 3			1744. 0	o. 8		
1675. o	-1.3			1710. 0	+0.3			1745. 0	-o. 8		
1676. o	1.3			1711.0	0.3			1746. 0	0.9		
1677. 0	1.3			1712.0	0.3			1747. 0	0.9		
1678. o	1.3			1713. 0	0.3	:::		1748.0	0.9		
1679. 0	1.3			1714. 0	0.3			1749. 0	0.9		
	_				1 *				1		
1680. o	-1.3	• • • •	• • • •	1715. 0	+0.3			1750.0	-o. 8	-1.0	-0.6
1681. o	1.3	• • • •	• • •	1716. 0	0.3			1751. 0	0.8	1.0	0.6
1682. o	1.2		• • •	1717. 0	0. 2		• • •	1752. 0	0.8	1.0	0.6
1683. o	1.1	• • • •	• • • •	1718. 0	0. 2			1753. 0	0.8	1.0	0.6
1684. o	1.0	• • • • •		1719. 0	0. 2			1754. 0	o. 8	1.0	0.6
1685. o	-0.9			1720. 0	+0.1			1755. 0	-о. 8	-1.o	-о. 6
1686. o	0.9			1721.0	0. 1			1756. 0	0.7	0.9	0.5
1687. o	0.8			1722. 0	+o. 1			1757. 0	0.7	0. 9	0.5
1688. o	0.7			1723. 0	0.0			1758.0	0.7	0. 9	0.5
1689. o	0.6			1724. 0	0.0		·	1759. 0	0.7	0. 9	0.5
160a. o	-0.5			1725. 0	-0.1	1		1760. o	-o. ₇	-o. g	-o. 5
1601. 0	0.5	• • •		1726. 0	0. 1			1761. 0	0.7	0.9	0.5
1692. 0	0.4	• • •		1727. 0	0. 2	1		1762. 0	0.6	0.8	0.4
1693. 0	0.3	•••		1728. 0	0. 2			1763. 0	0.6	0.8	0.4
1694. 0	0. 2			1729. 0	0.3	:::		1764. 0	0.5	0.7	0.3
	1				_	'''		1			_
1695. o	-0. 2	· · · · j	• • • •	1730. 0	-o. 3		• • •	1765. 0	—o. 5	-o. 7	-о. з
1696. o	0.1	• • • •	• • •	1731. 0	0.4			1766. 0	0.4	0.6	0. 2
1697. 0	-o. 1	• • • •	• • •	1732. 0	0.4		• • • •	1767. 0	0. 3	0. 5	0. 1
1698. o	0.0	• • • •		1733. 0	0.5		• • •	1768. o	0. 3	0. 5	-0. I
1699. o	0.0		• • •	1734. 0	0.5			1769. 0	O. 2	0.4	0.0
1700. o	+o. 1			1735. 0	-o. 5			1770. 0	-o. 1	-о. з	+o. 1
1701. 0	0.1			1736. 0	0.6			1771. 0	0.0	0. 2	0. 2
1702. 0	0.1			1737. 0	0.6			1772. 0	+o. 1	-o. 1	0.3
1703. 0	0.2			1738. o	0.6	'	٠	1773.0	0. 2	0.0	0.4
1704. 0	0.2			1739. 0	0.6			1774.0	0. 3	+o. 1	0.5

Observed Corrections to the Moon's Mean Longitude—Continued.

Epoch.	General à	Immer- sion \(\lambda \)	Emer- sion \(\lambda\)	Epoch.	General à	Immer- sion λ	Emer- sion \(\lambda\)	Epoch.	General à	Immer- sion \(\lambda \)	Emer- sion λ
	,,	,,	,,		,,		,,		",		,,
1775. 0	+0.3	+o. 1	+o. 5	1820. o	-1.7	-1.9	-r.5	1865. o	+4.6	+4.7	+4.5
1776. 0	0.4	0. 2	0.6	1821. 0	1.7	1. 9	1.5	1866. o	4.2	4.3	4. 1
1777. 0	0.4	0. 2	0.6	1822. 0	1.7	1.9	1.5	₽867. o	3.8	3. 9	3.7
1778. 0	0.4	0. 2	0.6	1823. o	1.6	1. 8	1.4	1868. o	3.3	3.4	3. 2
1779. 0	0.4	0. 2	0.6	1824. 0	1.6	1.8	1.4	1869. o	2.8	2. 9	2.7
1780. 0	+0.4	+o. 2	+ 0.6	1825. o	-1.6	—1.8	-1.4	1870. O	+2.2	+2.3	+2.1
1781.0	0.4	0. 2	0.6	1826. o	1.6	1.8	1.4	1871. 0	1.5	1.6	1.4
1782. 0	0.4	0. 2	0.6	1827. 0	1.5	1.7	1.3	1872. 0	0.8	0.9	0.7
1783. 0	0.3	O. I	0.5	1828. o	1.5	1.7	1.3	1873. o	+ 0. 2	0. 3	+o. 1
1784. 0	0.3	+o. 1	0.5	1829. O	1.4	1.6	1.2	1874. 0	0.0	0. 2	-o. 2
1785. o	+0 . 2	0.0	+0.4	1830. o	-1.3	-1.5	-1.1	1875. o	0.0	+0 . 2	-o. 2
1786. o	0. 2	0.0	0.4	1831.0	1.2	1.4	1.0	1876. o	+o. 1	0. 3	-0. I
1787. 0	+o. 1	-o. 1	0.3	1832. 0	I. I	1.3	0.9	1877. 0	0.4	o. 6	+0.2
1788. o	0.0	0. 2	0.2	1833. o	1.0	1.2	o. 8	1878. o	0.8	1.0	0.6
1789. o	-o. 1	0. 3	+o. 1	1834. 0	0.9	I. I	0. 7	1879. o	1.1	1.3	0.9
1790. 0	-o. 3	-0 . 5	-o. ı	1835. o	—o. 8	—1.0	— o. 6	1880. o	+1.2	+1.4	+1.0
1791. 0	0.4	o . 6	0. 2	1836. o	0.7	0.9	0.5	1881. o	1.2	1.4	1.0
1792. 0	0.5	0.7	0.3	1837. o	0.6	0.8	0.4	1882. o	1.1	1.3	0.9
1793. 0	0. 7	0.9	0.5	1838. o	0.5	0.7	0.3	1883. o	0.9	I. I	0.7
1794. 0	o. 8	1, 0	0.6	1839. 0	0.4	0.6	0. 2	1884. 0	0.7	0.9	0.5
1795. o	—1.0	—1.2	-о. 8	1840.0	-o. 3	-o. 5	-o. 1	1885. o	+0.5	+0.7	+o. 3
1796. o	I. I	1.3	0.9	1841. 0	-o. 1	о. з	+0.1	1886. o	+0.2	∵0. 4	0.0
1797. 0	I. 2	1.4	1.0	1842. 0	0.0	- 0. 2	0. 2	1887. o	0.0	+ 0. 2	-0. 2
1798. 0	1.3	1.5	1.1	1843. 0	+o. 2	0.0	0.4	1888. o	-o. 2	0.0	0.4
1799. 0	1.4	1.6	I. 2	1844. 0	0.3	+0. 1	0.5	1889. o	0.3	-o. 1	0.5
1800. 0	-1.5	-1.7	-1.3	1845. 0	+0.5	+0 . 3	+o. <u>7</u>	1890. o	-o. 3	-o. ı	-o. 5
1801. 0	1.5	1.7	1.3	1846. 0	0.6	0. 5	0.8	1891.0	0.3	-o. 1	0.5
1802. 0	1.6	1.8	1.4	1847. 0	0.8	0. 7	0.9	1892. 0	-o. 1	+o. 1	-o. 3
1803. 0	1.6	1.8	1.4	1848. o	0.9	1.0	0.9	1893. o	+0.2	0.4	0.0
1804. 0	1.6	1.8	1.4	1849. o	I. I	1. 2	1.0	1894. 0	0.6	о. 8	+0.4
1805. 0	-1.6	-1.8	-1.4	1850. o	+1.2	+1.3	+1.1	1895. o	+1.1	+1.3	+0.9
1806. o	1.6	1.8	1.4	1851. 0	1.4	1.5	1.3	1896. o	1.5	1.7	1.3
1807. 0	1.6	1.8	1.4	1852. 0	1.5	1.6	1.4	1897. o	1.9	2. I	1.7
1808. o	1.6	1.8	1.4	1853. o	1.7	1.8	1.6	1898. o	2.3	2. 5	2. 1
18 0 9. 0	1.7	1.9	1.5	1854. 0	2.0	2. I	1.9	1899. 0	2.7	2.8	2.6
1810. 0	-1.7	-1.9	-1.5	1855. o	+2.4	+2.5	+2.3	1900. 0	+3.2	+3.2	+3.2
1811.0	1.7	1.9	1.5	1856. o	3.0	3. I	2.9	1901. 0	3.6	3.6	3.6
1812. 0	1.7	1.9	1.5	1857. o	3.7	3.8	3.6	1902. 0	4.1	4. I	4. I
1813. 0	1.7	1.9	1.5	1858. o	4.4	4.5	4.3	1903. 0	4.4	4.4	4.4
1814. 0	1.7	1.9	1.5	1859. o	4.8	4. 9	4.7	1904.0	4.8	4. 8	4.8
1815. 0	-1.7	-1.9	-1.5	1860. o	+5.1	+5.2	+5.0	1905. 0	+5.1	+5.1	+5. 1
1816. o	1.7	1.9	1.5	1861. o	52	5⋅3	5. I	1906. o	5.5	5⋅ 5	5.5
1817. 0	1.7	1.9	1.5	1862. o	5.2	5⋅3	5. I	1907. 0	5.8	5.8	5.8
1818. o	1.7	1.9	1.5	1863. o	5. 1	5. 2	5.0	1908. o	6.1	6. 1	6.1
1819. o	. 1. 7	1.9	1.5	1864. 0	4.9	5. O	4.8	1909. 0	+(6.4)	+(6.4)	+(6.4)

Section III.—Elements of the Moon's Mean Longitude.

The preceding corrections in mean longitude apply to the provisional theory constructed in Chapter III, which contains an empirical term, and is otherwise not a rigorous expression of the results of gravitational theory. Since the results of observation should be compared with a pure theory, our first step is to construct the latter.

47. Ulterior corrections to the secular variations.—This subject, strictly speaking, belongs to Chapter III, because it discusses the corrections to some of Hansen's elements. It comprises theoretical corrections which so slightly affect modern positions of the moon that they have been ignored in discussing those positions. Brown's researches have shown that the motion of the moon's perigee and node agree with gravitational theory within the limits of probable error of the theory and of the observations. Such being the case, we are justified in regarding this agreement as a permanent feature of the lunar theory. It follows that, were the theoretical computations of the motion complete, and all the elements on which it depends precisely known, we might pro-

visionally adopt the motions of these two elements given by the theory. But a summation of Brown's results, as given in Chapter IX of his work, shows that the effect of the terms of the sixth order in e and γ , which he has omitted, may be to change the theoretical motion by a few seconds per century. The uncertainty of the effect arising from the earth's ellipticity is yet larger, and it is also possible that some slight change may be caused by the ellipticity of the moon itself.

It follows that the motions of the perigee and node to be finally adopted must still be derived from observation. But the agreement of the observed motions with theory is so close that we are fully justified in determining the acceleration of the motion from the secular change of the elements on which the motions depend; that is to say, to the theoretical motion we may add a minute constant to represent observations without changing the theoretical secular acceleration.

Hansen's accelerations of the perigee and node have been adopted without change in all our work up to the present stage. It now becomes advisable, in the final comparison, to make any corrections that may be necessary. Brown's final results enable this to be done with ease and certainty.

Fundamentally, the only variable element on which the motions depend is the eccentricity of the earth's orbit. The inclination and eccentricity of the moon's orbit change so slightly that they may be regarded as absolute constants during all history.

The secular acceleration of the moon's mean longitude has been determined both by Brown and the writer with results practically identical when reduced to the same values of the elements. We have now only to consider those of the perigee and node. We express the longitudes of these elements in the general form

$$\pi = \pi_0 + \pi_1 T + \pi_2 T^2 + \pi_3 T^3$$
.

Brown b has expressed π_1 and θ_1 in the form

$$\pi_1$$
; $\theta_1 = \varphi(e', n)$,

in which the constant elements need not be written. Here n is the actually observed mean motion of the moon, which changes slightly through the change of e'. The variation may be expressed in the form

$$D_t n = ke' D_t e' = \frac{1}{2} k D_t \eta$$

where k is a function of n and of the other elements, which we may regard as constant, and where we put for brevity

$$\eta = e^{\prime 2}$$
.

Brown's expressions of π_1 and θ_1 may, by summation of similar terms, be expressed in the form

$$\pi_1 = \pi_1^0 + h\eta,$$

$$\theta_1 = \theta_1^0 + h'\eta.$$

in which the second terms are much smaller than the first.

The derivative of π_1 as to the time may be written

$$D_i\pi_1=hD_i\eta+\frac{d\pi_1}{dn}D_in$$

with a similar expression for the motion of the node, using h' for h.

a Theory of the Motion of the Moon, Memoirs of the Royal Ast. Soc., Vol. LVII.

b Memoirs of the Royal Ast. Soc., Vol. LVII, p. 110.

From Brown's numerical values we find by summation, and reducing to the century as the unit of time,

$$h\eta = 15367'',$$

 $h'\eta = -2595''.$

the epoch being 1850. Dividing by Brown's adopted e'^2 for 1850, we find

$$10^{-6}h = 54''.64,$$

 $10^{-6}h' = -9''.23.$

From the author's Tables of the Sun, page 9, for 1900,

$$e' = .01675104 - .00004180 \text{ T} - .000000126 \text{ T}^2$$

whence

$$10^6 \eta = 280.60 - 1.4004 \text{ T} - .00248 \text{ T}^2$$

From these numbers the secular accelerations arising directly from the change of η , terms in T^3 being dropped, are

$$\Delta \pi_1 = h\eta = -76^{\circ\prime}.52 \text{ T} - 0^{\circ\prime}.1355 \text{ T}^2,$$

 $\Delta \theta_1 = h'\eta = +12^{\circ\prime}.92 \text{ T} + 0^{\circ\prime}.0229 \text{ T}^2,$

where T is reckoned from 1900.

We have still to derive that part of the variation arising from n. I have found from Delaunay's expressions^a

$$\frac{d\pi_1}{dn} = -.01480,$$

$$\frac{d\theta_1}{dn} = +.00377.$$

The secular acceleration of n is, from Brown and myself, including the effect of the earth's oblateness, $D_t n = 12^{\prime\prime}.34 + 0^{\prime\prime}.0408 \text{ T},$

which gives

$$D_t \pi_1 = -0$$
".183 -0 ".00060 T,
 $D_t \theta_1 = +0$ ".046 $+0$ ".00016 T,
 $\Delta \pi_1 = -0$ ".183 T -0 ".0003 T²,
 $\Delta \theta_1 = +0$ ".046 T.

Adding these terms to the principal term above we have for the complete values of the secular accelerations

$$\Delta \pi_1 = -76$$
".70 T-0".1358 T²,
 $\Delta \theta_1 = +12$ ".97 T+0".0229 T².

Integrating these, the complete expressions for π and θ become

$$\pi = \pi_0 + \pi_1 T - 38''.35 T^2 - 0''.0453 T^3,$$

 $\theta = \theta_0 + \theta_1 T + 6''.48 T^2 + 0''.0076 T^3,$

where the first two terms of each are to be determined from observation.

The above expressions are referred to a fixed departure point. To reduce them to the mean equinox of any date we have to apply a further correction for precession. This may be found from the data given in the author's Compendium of Spherical Astronomy, Chapter IX, section 126.

Repeating the computation there made for other epochs, I have found the following values of the instantaneous centennial planetary and luni-solar precessions in longitude, p, and λ ,

Þ	λ	ı
"	,,	,, .,
5027. 03	-46. 38	4980. 65
5027. 29	-45.55	4981.74
5031.89	-29.52	5002.37
5032. 13	-28.71	5003.42
5036. 84	-12.31	5024. 53
5037. 08	-11.45	5025.64
	5027. 03 5027. 29 5031. 89 5032. 13 5036. 84	5027. 03 -46. 38 5027. 29 -45. 55 5031. 89 -29. 52 5032. 13 -28. 71 5036. 84 -12. 31

These numbers give for the centennial motion of precession in longitude, using the epoch 1900,

$$l = 5025''.64 + 2''.23 \text{ T} + 0''.0026 \text{ T}^2.$$

The entire correction of π and θ for precession in longitude thus becomes

Prec. =
$$5025''.64 T + 1''.11 T^2 + 0''.00087 T^3$$
.

The motions from the mean equinox now take the form

$$\pi = \pi_0 + \pi_1 T - 37''.24 T^2 - 0''.0444 T^3,$$

 $\theta = \theta_0 + \theta_1 T + 7''.59 T^2 + 0''.0085 T^3.$

To compare these with Hansen, we should transfer the epoch for T=0 from 1900 to 1800. Thus for the secular accelerations

$$\Delta \pi = -37$$
".10 T²-0".0444 T³,
 $\Delta \theta = +7$ ".56 T²+0".0085 T³.

Hansen's values, which are those of the provisional theory, are

$$\Delta \pi = -36''.134 \text{ T}^2 - 0''.0366 \text{ T}^3,$$

 $\Delta \theta = + 8''.180 \text{ T}^2 + 0''.00716 \text{ T}^3.$

The corrections required are

$$\Delta \pi = -0^{\circ\prime}.97 \text{ T}^2 - 0^{\circ\prime}.0078 \text{ T}^3,$$

 $\Delta \theta = -0^{\circ\prime}.63 \text{ T}^2 + 0^{\circ\prime}.0013 \text{ T}^3,$

where T is reckoned from 1800.

The terms in T⁸ are practically unimportant. Those in T² should, however, be taken account of in the modern observations at least. It does not seem that any secular corrections should be applied to the provisional mean longitude. The coefficient of T² in this element is to be determined from observation.

Omitting the unknown tidal retardation from the theory, the secular terms of the mean longitude referred to a fixed equinox are

$$\Delta \lambda = 5^{\circ\prime}.80 \text{ T}^2 + 0^{\circ\prime}.0068 \text{ T}^3.$$

There is also a term in T² arising from the increasing effect of the earth's ellipticity, brought about by the diminution in the obliquity of the ecliptic. This term, of which the principal part was first computed by Stockwell, I estimated at 0".27 T². We have also to add in the precession,

of which the value has just been given. The sum of the three expressions gives, for the secular terms referred to the mean equinox

$$\Delta \lambda = 7''.18 \text{ T}^2 + 0''.0077 \text{ T}^3.$$

Hansen's terms are

$$\Delta(g+\omega-\theta)=13''.30 T^2+0''.01347 T^8.$$

Thus the entire theoretical correction to his mean longitude may be written

$$\Delta \lambda = a + b \text{ T} - 6^{"}.12 \text{ T}^2 - 0^{"}.0058 \text{ T}^8.$$

The correction we have used in the provisional theory is

$$\Delta \lambda = -3^{\prime\prime}.76 \text{ T}^2$$

which is tantamount to allowing the term 2".36 T² for the tidal retardation. This we retain for the final comparison. The term of precession in T³ should be applied also to the longitudes of the sun and stars. As this has not been done, we should omit the precessional term in T³ from the moon's longitude. Doing this the correction to Hansen will be

$$\Delta \lambda = -0^{\prime\prime}.0067 \text{ T}^{8}.$$

It is a serious question whether the term of the precession in T³, of which the coefficient is 0".0009, should be included for any purpose at the present time. It is of course necessary if all our longitudes are to be referred to the absolute equinox. But, practically, the term in question has been omitted in all our astronomical work, and it will not reach the value of 0".10 within 1,000 years before or after the present time.

Reduction of the Provisional Mean Longitude to Pure Theory.

- 48. To draw the clearest conclusion from the observed corrections of λ already found, we have to recapitulate the main points of the theory of comparison, especially the parts of which it is formed. These are the following:
- 1. We have as the basis of the whole work the longitudes of the moon as derived from Hansen's Tables de la Lune, without any change whatever except that arising from the correction of one of the tables. On the longitudes thus derived is based the ephemeris of comparison used throughout the Researches of 1878, and the ephemerides of the British Nautical Almanac from 1862 to 1882, inclusive. I shall designate this system of tabular longitudes by the symbol H.
- 2. The right ascensions and declinations of the Nautical Almanac, and all the coordinates, both ecliptic and equatorial, of the American Ephemeris from 1883 to the present time, are based on H, with the addition of secular and long-period corrections of two classes. The first and principal class comprises corrections to the elements of mean longitude, and the omission of Hansen's purely empirical term 21".47 sin (8V-13E+274° 14'), which I call V₂, and which has no existence in the theory. The second class comprises the single empirical term -15".5 cos A, which has never been found in the theory and which may be regarded as a substitute for Hansen's empirical term. The entire expression for the sum of these corrections has been given in Chapter III, Equation 20, and is tabulated on page 30 for every tenth year of the modern period.

Possible confusion may be avoided by distinguishing between two ways of applying this correction. When a longitude of the moon has been derived from H unchanged, the tabular correction is applicable to it. But if a corrected ephemeris is to be computed from the tables, it is more convenient to omit Table XLI of H, which contains the empirical term to be dropped plus the constant 21".49. Since the negative of this term is included in the table on page 30 only for the purpose

of annulling it, the practical correction to be applied in this case will be the table on page 30 minus Hansen's Table XLI. Then, instead of the correction (20) of Chapter III, we use (21), which differs from it by the quantity

 $21''.49+V_2$

which is the number of Hansen's Table XLI.

The system of longitudes thus corrected will be designated by the symbol N_1 , and the amount of the correction by the symbol ΔH . The numerical expressions for ΔH in its two forms are:

1. Applicable to the mean longitude of Hansen's tables unchanged:

$$\Delta H = -1''.14 - 29''.17 T - 3''.76 T^2 - V_2 - 15''.5 \cos A$$

where

$$V_2 = 21''.47 \sin (8 V - 13 E + 274^{\circ} 14')$$

2. To be used when we omit Hansen's Table XLI:

$$\Delta'H = \Delta H + 21''.49 + V_2,$$

= 20''.35 - 29''.17 T - 3''.76 T² - 15''.5 cos A.

We then have

$$N_1 = H + \Delta H$$
.

The system N₁ is that of the ephemeris in the Nautical Almanac and American Ephemeris since 1883.0, except the Nautical Almanac longitude, which is still H.

3. It will be seen that N_1 makes no change in or addition to Hansen's terms of short or mean period. Both H and N_1 therefore require a large number of theoretical corrections. These are discussed in Chapter III, and their sum will be designated by the symbol ΔN . The ephemeris thus corrected is the provisional one of the present work and will be designated as N_2 . Thus we have

$$N_2=N_1+\Delta N=H+\Delta H+\Delta N$$
.

4. In N_1 and N_2 is included the empirical term of long period -15".5 cos A. N_1 and N_2 also require two minute corrections of long period, which have been omitted because one was not fully ascertained and the other is too small to affect our present conclusions.

Our first step in the present discussion must be to compare the observations with the results of pure gravitational theory. But in the latter theory we may leave the secular acceleration as an arbitrary quantity because, owing to the unknown tidal retardation, its theoretical value must require some modification.

In this pure theory we shall leave the mean longitude, mean motion, and secular acceleration of N₁ and N₂ unchanged. The reductions of the provisional theory to pure theory will then be the following:

- (A), the subduction of the empirical term-15".5 cos A, which is found in the table on page 30.
- (B), the application of the small omitted term of long period, of which the argument is 8V-13E, and therefore the same as that of Hansen's omitted empirical term. The adopted value is that which I have derived in my recent work, Action of the Planets on the Moon, and is practically identical with that derived by Brown and by Radau.
 - (C), the correction of Hansen's Venus term of long period,

15".34 sin (18 V-16 E-
$$g$$
+30°.2),

which is so near the truth that it has been retained unchanged in the provisional ephemeris. But

it now seems desirable to introduce any correction which it may require. The values recently computed are the following:

Newcomb (1)^a
$$\delta\lambda = 14''.75 \sin (A + 30^{\circ}.5)$$

Newcomb (2)^b $\delta\lambda = 14''.77 \sin (A + 29^{\circ}.9)$
Brown ^c $\delta\lambda = 14''.49 \sin (A + 29^{\circ}.0)$
Radau ^d $\delta\lambda = 14''.42 \sin (A + 30^{\circ}.0)$
Brown $\delta\lambda = 14''.27 \sin (A + 29^{\circ}.0)$

Until more light can be thrown upon the unexplained fluctuations of long period in the observed longitude of the moon, the differences between these five values are of no practical importance. The following remarks upon the possible doubts that may attach to each may, however, be worthy of consideration:

The first value, which was computed about 1874, but not published until twenty years later, is uncertain in one of the combinations which enter into it, as is explained in the work itself. The coefficient derived may well be too large by an unimportant fraction of a second.

The second value was the first one in which the effect of the second order arising from the mutual perturbations of the Earth and Venus is included. In fact, the determination of this effect was the principal purpose of the computation. The development of the planetary terms was made by what is commonly called mechanical quadrature, but the division of the circle was not carried sufficiently far. The uncertainty thus arising is estimated by the author at about o".3. The values of Brown and Radau are computed by developing in powers of the eccentricities and inclinations. Brown's last value includes all second-order terms. Before completing the study I adopted the expression

$$\Delta \lambda = 14.^{\circ}55 \sin{(A+29^{\circ}.2)}$$
.

This is a weighted mean of the second and third values preceding, when weight 4 is assigned to the third.

I have little doubt that it is too large unless the mass of Venus should be found to require a positive correction. But, whatever the difference may be, it is entirely unimportant for our present purpose. This gives for the correction of Hansen's value adopted in N₂ the expression:

$$\Delta \lambda = -0^{\prime\prime}.56 \sin A - 0^{\prime\prime}.62 \cos A = 0^{\prime\prime}.83 \sin (A + 228^{\circ}).$$

(D), we have finally the correction $\Delta \lambda = -0^{\prime\prime}.0067^{\circ}$ already derived, necessary only in the ancient observations.

Brown has also found a term with a coefficient of more than half a second having a period of 1,800 years. The consideration of this term under present circumstances is quite unnecessary.

The sum of these four corrections to reduce N_2 to gravitational theory I shall call ΔTh . Its numerical expression is:

$$\Delta$$
Th=15".5 cos A+0".83 sin (A+228°)+0".25 sin B-0".0067T3,

where

A=18 V-16 E-
$$g$$
=183°.9+131°.92 T,
B=8 V-13 E+225°=87°+150° T.

a Astronomical Papers of the American Ephemeris, Vol. V, Pt. III, p. 286. The coefficient is here corrected for the mass of Venus and for the indirect action.

b Action of the Planets on the Moon: Publications of the Carnegie Institution No. 72, June, 1907, p. 140.

c Monthly Notices, R. A. S.: LXVIII, January, p. 156.

d Annales de l'Observatoire de Paris, Memoires, Tome XXI, p. B 113.

The ephemeris of mean longitudes for pure theory is:

$$Th=N_2+\Delta Th=H+\Delta H+\Delta N+\Delta Th$$
.

The values of Δ Th for the modern period are formed in the table below as follows:

Column (1) gives the value of 15".5 cos A.

Column (2) gives the value of 0".83 sin (A+228°).

Column (3) gives the value of 0".25 sin B.

The sum of the three is the reduction from N_2 to pure theory.

Year.	(1)	(2)	(3)	₫Th	Year.	(1)	(2)	(3)	⊿ Th
1620 1630 1640 1650 1660 1670 1680 1690 1700 1710	+ 9. 20 +11. 81 +13. 79 +15. 04 +15. 50 +15. 14 +13. 98 +12. 08 + 9. 54 + 6. 51 + 3. 13	+0.09 -0.11 -0.30 -0.46 -0.61 -0.72 -0.80 -0.83 -0.82 -0.76	// +0.01 -0.05 -0.11 -0.17 -0.21 -0.24 -0.25 -0.24 -0.22 -0.19 -0.14	// + 9. 30 +11. 65 +13. 38 +14. 41 +14. 68 +14. 18 +12. 93 +11. 01 + 8. 50 + 5. 56 + 2. 32	1770 1780 1780 1800 1810 1820 1830 1840 1850 1860	" -12.59 -14.32 -15.29 -15.46 -14.82 -13.39 -11.26 -8.53 -5.35 -1.89 +1.67	+0. 18 +0. 36 +0. 52 +0. 65 +0. 75 +0. 81 +0. 83 +0. 73 +0. 63 +0. 49	+0. 17 +0. 21 +0. 24 +0. 25 +0. 24 +0. 22 +0. 19 +0. 14 +0. 08 +0. 01 -0. 05	
1730 1740 1750 1760	- 0.41 - 3.94 - 7.26 -10.17	-0. 54 -0. 38 -0. 21 -0. 01	-0. 08 -0. 01 +0. 05 +0. 11	- 1.03 - 4.33 - 7.42 -10.07	1890 1900 1910	+ 5. 14 + 8. 34 + 11. 10 + 13. 28	+0. 32 +0. 14 -0. 05 -0. 24	-0.11 -0.17 -0.21 -0.24	+ 5.35 + 8.31 + 10.84 + 12.80

CHAPTER X.

DISCUSSION OF THE MOON'S MEAN MOTION IN LONGITUDE.

- 49. From the preceding reductions and corrections and from the material found in the Researches of 1878 it is now proposed to discuss the moon's mean motion in longitude from all observations, ancient and modern, and to determine the fluctuations in mean longitude which can not be explained by theory. The material on which this discussion is based is the following:
- (A) The ancient eclipses of the moon used by Ptolemy in his Almagest to determine the elements of the moon's motion.
 - (B) The Arabian observations of eclipses collected by Ibn Junis.
- (C) Occultations of stars between 1621 and 1750, including occultations and eclipses observed by Bullialdus, Gassendus, and Hevelius between 1620 and 1690, as discussed in the Researches of 1878.
- (D) Modern occultations from 1750 to 1908, the results of which have already been tabulated. Were there no unaccounted-for fluctuations in the mean longitude, all the corrections to that element could be represented in the form $a+bt+ct^2$. But this is found not to be the case, and the fluctuations of $\Delta\lambda$ require a special treatment of the equations.

Although the observations of importance before 1750 are published and discussed in the Researches of 1878, where they are compared with the longitudes of Hansen's tables, it seems desirable, in view of the importance of the subject, to revise the discussion on all points where additional light has been thrown by recent researches or by mature consideration.

The rediscussion of the first two of the preceding periods has been carried through quite independently in a very valuable paper by Mr. Nevill, in which these observations are discussed with great thoroughness. Mr. Nevill's work was, in fact, unnoticed by me at the time of making the present rediscussion. But it will be of great interest to compare his results with those independently reached by myself, and this I have done in part.

The deviation of the revised results from the earlier ones is so small that no extended presentation of the revision seems necessary. The main points are the following:

The first eclipse of the series, -720, March 19, is quite discordant, as was pointed out by Mr. Nevill shortly after my paper was published. The statement as quoted by Ptolemy is that "the eclipse began when one hour had quite far passed after the rising" (of the moon). Ptolemy has assumed an hour and a half as the interval but it seemed to me more likely to be earlier than this. But on submitting the question of the admissible range of interpretation to Professor Carroll, of the George Washington University, the possible range of time seemed so wide that Ptolemy's estimate was accepted.

In the earlier work a somewhat problematic correction of the times was applied on account of the interval between the beginning of an eclipse and the time when it first became visible. But I have been led to drop this correction, because the darkness of the moon might be seen before the actual entrance of the limb into the shadow. In fact, a comparison of the results would lead to the conclusion that the beginning was recorded even earlier than the actual phase of totality.

Period A.—The system on which the author proceeded in his former discussion of these eclipses was to reach a conclusion as to the reliability and probable error of each phase described

by Ptolemy without respect to discordances between observation and theory. Assuming only normal sources of error this proceeding is logically the best. It avoids the objectionable process of rejecting or retaining observations of equal value, according as they do or do not coincide with the results of other observations. At the same time it must be admitted that abnormalities are possible which would require an observation to be rejected.

The most troublesome eclipse to deal with is the first quoted by Ptolemy, of which the year is -720. The time of beginning is discordant from the others by more than half an hour. In the discussion of the subject, which appeared shortly after the publication of the work, Mr. Nevill shows the discordance between the first four Babylonian eclipses and all the others in a strong light and reaches the conclusion that this group should have been thrown out entirely.

The writer does not conceive that the discordance is such that this proceeding would be justifiable. The furthest he has thought it admissible to go in the direction suggested by Nevill is to adopt Ptolemy's conclusion as to time of beginning of the first eclipse, making it one hour thirty minutes after moonrise, instead of one hour twenty-two minutes, which was first done. The results are as follows: First is shown the corrections to tabular times given by the observations and the respective weights in the old work; then the results which are now adopted in preference. The second eclipse of the group was in the early discussion rejected entirely owing to the uncertainty of the time, which was stated as the middle of the night. It is now retained with a small weight. Another change which we have made in the present discussion is to omit a somewhat conjectural correction to the times of beginning and ending on the ground that the eclipse would not be seen as beginning until some minutes after the moon had impinged upon the shadow of the earth. On further consideration it appears to me that as the darkening of the moon's limb would be very perceptible, even before the moment of entering into the shadow, and as we may presume the eclipses were expected, the more probable supposition now seems to be that the first contact with the actual shadow was observed. This course is greatly strengthened by the fact that a comparison between the recorded times of beginning and ending of the two eclipses, both phases of which are observed, show a longer duration of the total phase than that taken by the moon in passing through the shadow itself.

The whole series of Ptolemaic eclipses may be divided into four groups and the mean taken. The following is a comparison of the work of 1878 with the revised work of 1908. Δt is the correction to the tabular time as computed from Hansen's tables:

Date.	т.	<i>dt</i> (1878).	4t (1908).	At (Nevill).
720, Mar. 19 719, Mar. 18 719, Sept. 1 620, Apr. 21	c -25. 2 -25. 2 -25. 2 -25. 2 -24. 2	m + 8; wt. 3 +63; wt. 0 +43; wt. 1 +44; wt. 2	m +18; wt. 2 +63; wt. 0.5 +43; wt. 1 +44; wt. 2	m +23; wt. 2 +63; wt. 0.5 +43; wt. 2 +44; wt. 3

Thus modified, the mean correction to the tabular time given by the group is $+36^{m}$, and to the Hansenian mean longitude of the moon -18'. The mean of Nevill's results is 39^{m} and -19'.

I have also subjected the results from the other eclipses to some slight revision, making the mean results for groups and the corrections to the adopted theory as follows:

Epoch.	T.	Obs.—H.	Nev.	Th—H.	Obs.—Th.
-684 -381 -189 +134	c -24.8 -21.8 -19.9 -16.7	-18.0 -26.5 -18.5 -15.0	-19 -26 -17 -15	-25.0 -18.0 -14.2 - 8.8	7.0±4 -8.5±3 -4.3±4 -6.2±3

In the preceding I have taken no account of Hansen's erroneous Venus term, but have in what follows.

Period B.—In the former work the Arabian observations were worked up so carefully that I do not deem it necessary to revise the results. The means and their reduction to theory are the following:

Epoch.	T.	Obs. – H.	Th—H.	Obs. – Th.
850	-9.5	-3.8	-1.2	$\begin{array}{c} -2.6 \pm 2.4 \\ -1.5 \pm 1.7 \\ -4.4 \pm 1.3 \end{array}$
927	-8.7	-1.6	-0.1	
986	-8.1	-4.5	-0.1	

Nevill has revised these eclipses, making a few changes and additions based on a study of the Arabian originals. The use of his work would add to the weight of the results without, I think, materially changing the general mean.

Periods C and D.—The observations of the years 1620–1670 are fully worked up in Researches of 1878, pages 205–230, and the results collected in pages 231–248. Including both eclipses and occultations I have formed the following mean corrections to the moon's longitude from the observations of Bullialdus, Gassendus, and Hevelius, from the separate results of the Researches of 1878. The column Th—H contains the sum of the reductions in the table on page 30 and Δ Th in the preceding section.

Үеаг.	Obs. – H.	Th – H.	ObsTh.
1621 1635 1639 1645 1653 1662	778 +78 +54 +27 +44 +34 +36	+54 +57 +56 +56 +55 +52	" " +24±14 - 3± 7 -29± 5 -12± 6 -21± 8 -16± 4

For the years 1672-1908 I have adopted mean results from the smoothed-off means of §46. In forming these corrections for the purpose in question, their fluctuations are seen to be such that it is quite useless to aim at definitive values of the corrections. Approximate preliminary values are as good as the best until something is learned of the law or cause of the fluctuations.

50. Observed mean corrections to the purely theoretical longitude of the moon through the period of 2,592 years, from -684 to 1908, with their probable errors:

Year.	4)	p. e.	Year.	אר	р. е.
Year. - 684 - 381 - 189 + 134 - 850 927 986 1621 1635 1639 1645 1653	"" +420 -510 -258 -372 -156 -90 -264 +24 -3 -29 -12 -116	77 240 180 240 180 144 102 78 14 7 5 6	Year. 1737 1747 1757 1780 1795 1806 1820 1830 1840 1850 1860 1870	12.8 + 6.0 + 8.3 + 13.9 + 13.3 + 12.4 + 11.5 + 8.3 + 7.6 + 6.3 + 6.3 - 4.1	p. e.
1681 1710 1727	- 14 - 5.2 - 0.1	4 1 1	1890 1900 1908	- 8.5 - 7.6 - 6.3	I I I

51. Preliminary solution of the equations of condition for the moon's mean motion.—If the moon's mean motion could be represented by gravitational theory, its derivation from the preceding corrections given by observation would be extremely simple. It would require only the solution by least squares of equations of condition involving three unknown quantities, the mean longitude at any selected epoch, the mean motion at that epoch, and the secular acceleration. But, as I have already remarked, and as is evident from the run of the corrections, there are fluctuations in the motion which make it impossible to derive any definite result without taking them into account. The difficulty of the problem is increased by the fact that we can make no plausible assumption as to the permanent form of these fluctuations. So long as they might be supposed to arise from defects in the computations of gravitational theory we might plausibly suppose them to arise from actual periodic terms which had eluded our scrutiny. But to-day it seems almost as certain as any proposition in mathematical science can be that there are no known masses of matter, the gravitational action of which could produce the observed effects. Working quite independently of each other, I feel that Brown and I have examined every possible term and made such estimation of its limiting possible magnitude as to ensure the correctness of our conclusions. Brown has gone yet further by finding the limiting value of any possible omitted term to be insensible. In the Researches of 1878 I brought out the curious result that the great fluctuation could be represented by a very small change in the argument and coefficient of the Hansenian Venus term; in fact, that little more was necessary than to change the algebraic sign of the constant term in the argument. I did not notice at the time that the angle to be changed could be practically identified with the longitude of the node of Venus, in which no change is of course possible. The singular coincidence must therefore be regarded as accidental, in view of the fact already cited that several fundamentally different ways lead to the same result.

A similar remark applies to the term of nearly the same long period arising from the argument 13 E-8 V, which gives rise to an important term in the mutual action of the Earth and Venus. It seems to be fully proven that there can be no corresponding term in the motion of the moon except the unimportant one first computed by Delaunay.

Additional weight is given to our negative conclusion by the fact that although the great fluctuation may be represented by a term of about 270 years, even the introduction of this term fails to completely represent the observations. There are still fluctuations outstanding which it is impossible to reconcile with gravitational theory, and, in fact, which do not admit of representation by a trigonometric series without introducing a number of terms, each purely empirical, and which we can have no reason for believing to be expressions of the actual law, if law there be.

One conclusion from these facts is that there is no value which we can assign to the moon's undisturbed mean motion as definitive. Representing the mean longitude in the form

$$\lambda = a + bt + st^2 + F$$
,

where F represents the sum of all the fluctuations, we have no assurance that any empirical formula we may construct for F will not in the future be found to require a correction of the same form as the sum of the three terms of λ above given. The coefficients of this correction will then have to be subtracted from the corresponding values of a, b, and s, so as to insure the best general representation of the observed facts. Thus, no such values can be definitive until we succeed in establishing the form of F in its completeness.

Another proceeding may also be adopted. Since we know nothing of the actual law of F, it may be claimed that we should make no hypothesis as to that law, but determine a, b, and s so as to make F as small as possible in a general way.

We shall solve the equations by both these methods, beginning with that first named. But it must be remarked that, even in this solution, we have to adopt the principle of the second method,

where

except as to the great fluctuation of long period. The amplitude of this fluctuation, in fact, represents the largest part of the value of F, but by no means all of it.

What we have first to do is, therefore, to represent the excess of the observed over the theoretical mean longitude in the form

$$x + \sqrt{1} + zT^2 + c \sin (A + Bt)$$

where c, A and B are to be determined so as best to represent the observations.

To effect the solution we express the fluctuation in the form

$$c \sin (A + Bt) = u \sin Bt + v \cos Bt,$$

$$u = c \cos A,$$

$$v = c \sin A.$$

Since the unknown quantity B does not enter in a linear form, our easiest course is to find by trial what value of this quantity will lead to the best solution. I have actually assumed the following four values of B:

$$B=1^{\circ}.2; 1^{\circ}.3; 1^{\circ}.4; 1^{\circ}.5.$$

In forming the equations the question of the weights to be assigned would be a difficult one were it possible to derive determinate values of them. But, from the nature of the case, this is not possible. The outstanding residuals are not in the nature of independent deviations, but are markedly systematic. From the commencement of fairly precise observations in 1672 until the present time the purely accidental errors of observation are markedly less than the outstanding fluctuations, which are systematic in their character. What I have done is to assume each decennial mean result during the period since 1680 to be affected by a probable error ± 1 ". This is doubtless smaller than the probable value of the outstanding residual; but its acceptance may be justified by the fact that the end at which we are practically aiming is that of predicting the moon's motion during the next 25 years, and that we can probably best do this by making our empirical theory fit as well as may be into modern observations.

Where the probable errors and the coefficients of the equation are both so large as in the case of the ancient observations the most convenient method of reducing the conditional equations is to divide each by its probable error, so that the weight shall be the same throughout.

From the uncertain character of the fluctuating term neither the ancient nor the mediæval observations can be of use in its determination. It is therefore only necessary to introduce the coefficients of the fluctuation into the modern observations.

Equations of Condition of Equal Weight for the Assumed Values of B.

-681 -381 -189 +131 850 927 986 1621 1635 1639	0.00x 0.00 0.00 +0.01 +0.01 +0.01 0.00 +0.07 +0.14 +0.20	-0. 12 -0. 08 -0. 09 -0. 07 -0. 10 -0. 13 -0. 26 -0. 32 -0. 26 -0. 25	+2.64 +1.65 +1.54 +0.63 +0.76 +0.85 +0.23 +0.39 +0.52 +0.40 +0.36	+0.05 +0.02 -0.01	0. 06v 0. 14 0. 19 0. 16 0. 17	+0.06% +0.08 +0.10 +0.06 +0.04	-0. 12 -0. 17 -0. 15 -0. 16	+0.07 <i>u</i> +0.11 +0.14 +0.10 +0.07	-0.09 -0.14 -0.13 -0.15	+0.074 +0.13 +0.18 +0.13 +0.11	-0. 05 -0. 10 -0. 10 -0. 13	=-	2. 8 1. 1 2. 1 1. 1 0. 9 3. 4 1. 7 0. 4 5. 8 2. 0 3. 5	p. e. 240 180 240 180 144 102 78 14 7 5
1645	+0.17	-o. 26	+0.40	+0.02 -0.01 -0.06 -0.61	0. 16	+0.06	-o. 15	+0. 10	-o. 13	+0. 13	-0. 10		2. 0 3. 5 4. 0	6

Equations of Condition of Equal Weight for the Assumed Values of B-Continued.

				B=	1°.20	B=	1°.30	B=	1°.40	B=	1°.50	"	1
727	+1.00x	-о. 73 <i>у</i>	+o. 532	-1.00#	+0.040	-1.004	-0.09v	-0.98u	-0. 21v	-0.944	-o. 33v	= - o. ı	
737	+1.∞	-o. 63	+0.40	-o. 97	+ 0. 25	-o. 99	+ 0. 14	 1.00	+o. o3	– 1.00	-o. o8	=+2.8	ı
747	+1.00	-o. 53	+o. 28	-o. 89	+ 0.44	-o. 93	+o. 36	-o. 96	十0. 27	-o. 98	+o. 18	=+6.0	1
757	+1.00	-0.43	+o. 18	-о. 78	+o. 62	-о. 83	+o. 56	о. 87	+ 0. 50	-o. 9o	+0.43	=+8.3	l
1780	+1.∞	-0.20	+0.04	-o. 41	+0.91	-0.44	+0.90	-o. 47	+o. 88	-0. 50	+o.8 ₇	=+13.9	
795	+1.00	-o. o5	0.00	-o. 10	+1.00	-o. 11	+0.99	-O. 12	+0.99	-о. 13	+0.99	=+13.3	ļ
1806	+1.00	+o. o6	0.00	+o. 13	+0.99	+o. 14	+0.99	+o. 15	+0.99	+o. 16	+0.99	=十12.4	
1820	+1.00	+0. 20	+0.04	+0.41	+0.91	+0.44	+0.90	+0.47	+o. 88	+0.50	+0.87	=+11.5	
1830	+1.00	+o. 30	+0.09	+0.59	+o. 81	+0.63	+0.78	+0.67	十0.74	+0.71	+0.71	=+8.3	1
1840	+1.00	+0.40	+0. 16	+0.74	+0.6 7	+0.79	+0.62	+0.83	+ 0. 56	+o. 87	+0.50	=+7.6	1
1850	+1.00	+0.50	+o. 25	+o. 8 ₇	+o. 50	+0.91	+ 0.42	+0.94	+0.34	+0.97	+o. 26	= + 6.3	1
ı 860	+1.00	+0.60	+o. 36	+0.95	+0.31	+0.98	+0.21	+1.00	+0, 10	+1.00	0.00	=+6.2	ł
1870	+1.00	+0.70	+0.49	+1.00	+0. 10	+1.00	-O. O2	+0.99	-o. 14	+1.00	-o. 26	= -0.3	
188o	+1.00	+o. 8o	+0.64	+1.00	-0. 10	+0.97	-0. 24	+0.93	о. 38	+o. 87	-o. 50	= - 4. T	1
1890	+1.00	+0.90	+o. 8i	+0.95	+o. 31	+o. 89	-o. 45	+o. 81	-o. 59	+0.71	-o. 71	=-8.5	1
900	+1.00	+1.00	+1.00	+o. 8 ₇	+o. 50	+0.77	-o. 64	+0.64	-o. 77	+0.50	-o. 87	= -7.6	1
800	+1.00	+1.08	+1.17	+0.77	+0.64	+0.64	-o. 77	+o. 48	-o. 88	+0.31	-0.95	= -6.3	1

The following normal equations, corresponding to the assumed values of B, were then formed:

	B=1°.20	
+19.19 x + 1.60 + 9.13 + 2.57 + 4.71	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 6 7
	B=1°.30	
+19. 19 x + 1. 60 + 9. 13 + 2. 59 + 3. 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 5 7
' 	B=1°.40	
+19.19 x + 1.60 + 9.13 + 2.57 + 1.60	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 5
	B=1°.50	_
+19. 19 x + 1.60 + 9. 13 + 2. 51 + 0. 26	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8

The results obtained from a solution of these normal equations are exhibited in the following table:

Assumed Annual Motion of Argument.	1°.20	1°.30	1°.40	1°.50
Length of period in years	300	277	257	240
x =	- o". 59	+ 0". 71 + 2". 59	257 + 1". 77 + 2". 97	+ 2".67
<i>y</i> =	+ 2". 81		+ 2". 97	+ 2". 89
z=	- o". 40	- o″. 47	- o". 46	- o″. 53
u =	- 2". 55	- 2". 36	- 2". 66 °	- 2". 70
v =	+13″. 70	+12″.80	+12″. 20	+11". 63
c=	13″. 94	13". 01	12". 49	11". 92
A=	100°: 6	100°. 5	102°. 3	103°. 1
Sum of squares of residuals	82 ″. 6	77″. O	81". 2	91".6

We deduce from the above table $\sum pvv$ a minimum for B= 1°.31. The values of the elements corresponding are

$$x$$
=Correction of λ for 1800+ 0".83 y =Correction of centennial motion+ 2".60 z =Correction of secular acceleration- 0".47 u = c cos A- 2".37 v = c sin A+ 12".73 c =12".95A=100°.6

The great fluctuation is therefore

$$\delta v = 12''.95 \sin \left\{ 1^{\circ}.31 \ (t - 1800.0) + 100^{\circ}.6 \right\}.$$

Period=275 years.

The definitive results for the moon's mean longitude may now be summed up as follows:

Fundamental Epoch, 1800, Jan. o, G. M. N.

T, time from this epoch in Julian Centuries.

'The expression for Hansen's mean longitude, measured from the moving mean equinox is

$$\lambda = 335^{\circ} 43' 26''.70 + (1336^{\text{rev.}} + 1108419''.61)T + 13''.301T^{2} + 0''.01347T^{3}$$

The reduction of this to the provisional systems N₁ and N₂ is

$$\Delta H = -1''.14 - 29''.17T - 3''.76T^2 - 0''.0067T^3.$$

We have just formed the further correction

$$\Delta N_2 = +0^{\prime\prime}.83 + 2^{\prime\prime}.60 T - 0^{\prime\prime}.47 T^2$$

making the entire correction to Hansen

$$\Delta \lambda H = -0^{\circ}.31 - 26^{\circ}.57T - 4^{\circ}.23T^2 - 0^{\circ}.0067T^3$$

and giving for the undisturbed value

$$\lambda = 335^{\circ} 43' 26''.39 + (1336^{\text{rev.}} + 1108393''.04)T + 9''.071T^{2} + 0''.0068T^{3}.$$

Subtracting from the third term 1".11T2 for precession, the observed sidereal secular acceleration becomes

The following table shows the residual differences between the result of observations of the moon since 1620 and pure gravitational theory. In deriving the elements of mean motion it was necessary to divide the residual excess into two parts, one the great fluctuation just described, the other the smaller fluctuations which were superimposed upon it. In the table, the second column gives the minor fluctuations, which are in fact the residuals of the conditional equations. The

UNEXPLAINED FLUCTUATIONS IN THE MOON'S MEAN LONGITUDE: 1630-1908.

third column shows the main fluctuation as computed from the expression given above. The sum of the two found in the fourth column is the total excess of the moon's observed longitude over the result of gravitational theory. It is, however, to be remarked that in this theory is included the excess of the observed over the theoretical secular acceleration.

The unit of weight, as the latter is given in the last column, corresponds to a probable error of about $\pm 0^{\prime\prime}.9$, and a mean error of about $\pm 1^{\prime\prime}.3$. Being in many cases partly a matter of judgment, round numbers are preferred where it is doubtful. The limiting value assigned is 60, it being judged that the actual probable error can never be below $\pm 0^{\prime\prime}.12$.

Mean date.	Minor res.	Great fluctua- tion.	Total fluctua- tion.	Wt.	Mean date.	Minor res.	Great fluctua- tion.	Total fluctua- tion.	`Wt.
Mean date. 1621. 0 1635. 0 1639. 0 1645. 0 1653. 0 1662. 0 1681. 0 1710. 0 1727. 0 1737. 0 1747. 0 1755. 0 1771. 0 1801. 5 1809. 5 1813. 0 1821. 0 1822. 5 1833. 5 1843. 0 1846. 5 1848. 5 1849. 5 1850. 5 1851. 5 1852. 5 1853. 5 1854. 5 1855. 5 1855. 5 1856. 5 1857. 5 1858. 5	+ 39.0 0 + 13.0 0 + 13.0 0 - 13.0 0 - 4.0 0 - 0.4 + 0.5 1 - 0.2 0 - 0.3 + 1.4 + 1.6 + 0.3 0 - 0.6 1 - 1.6 - 0.6 1 - 1.6 - 0.6 1 + 1.1 1 + 1.9 + 0.1 1 + 1.9	fluctua-	fluctuation.	Wt. 0.005 0.02 0.04 0.03 0.03 1.06 2.0 6.0 3.0 6.0 5.0 12.0 16.0 16.0 16.0 10.0 20.0 10.0 30.0 20.0 11.0 8.0 12.0 18.0 12.0 8.0 14.0 6.0 6.0 6.0	Mean date. 1866. 5 1867. 5 1868. 5 1869. 5 1870. 5 1871. 5 1872. 5 1874. 5 1875. 5 1876. 5 1878. 0 1879. 5 1880. 5 1881. 5 1882. 5 1884. 5 1885. 5 1886. 5 1887. 5 1889. 5 1899. 5 1891. 5 1895. 5 1896. 5 1897. 5 1898. 5 1899. 5	res. // +2.8 +1.1 +1.0 +1.6 +0.7 -1.3 -1.8 -1.8 -2.2 -2.3 -2.1 -1.8 -0.5 -1.4 -1.6 -1.4 -2.2 -2.1 -2.5 -2.8 -2.6 -3.5 -3.5 -3.4 -3.1 -2.6 -2.7 -3.0 -2.2 -1.2 -1.2 -1.5 -1.4 -0.0 -0.1	fluctua-	fluctuation. + 1.2 - 0.8 - 1.2 - 0.9 - 2.1 - 4.4 - 5.1 - 6.5 - 6.5 - 6.5 - 6.6 - 5.7 - 6.9 - 7.3 - 7.4 - 8.4 - 8.6 - 9.2 - 9.8 - 11.0 - 11.2 - 11.4 - 11.3 - 11.0 - 11.3 - 11.0	6. 0 5. 0 10. 0 9. 0 6. 0 10. 0 12. 0 8. 0 18. 0 14. 0 20. 0 18. 0 7. 0 30. 0 50. 0 18. 0 19. 0 10. 0 1
1858. 5 1859. 5 1860. 5 1861. 5 1862. 5 1863. 5 1864. 5 1865. 5	+ 3.5 + 3.9 + 3.3 + 3.9 + 3.0 + 2.9 + 2.6	+ 0.5 + 0.2 - 0.1 - 0.4 - 0.7	+ 4.3 + 4.4 + 4.1 + 3.2 + 3.5 + 2.3 + 1.9 + 1.3	8. 0 6. 0 12. 0 5. 0 7. 0 6. 0 10. 0 5. 0	1902. 5 1903. 5 1904. 5 1905. 5 1906. 5 1907. 5 1908. 3	+0.3 +0.6 +1.1 +1.5 +1.3 +2.0 +2.1	-10.5 -10.6 -10.8 -11.0 -11.1	- 10. 2 - 10. 0 - 9. 7 - 9. 5 - 9. 8 - 9. 3 - 9. 3	18. 0 12. 0 20. 0 20. 0 16. 0 15. 0 9. 0

The accompanying plate gives a graphical representation in three sections of the residual deviations from pure theory, the motion derived from gravitational theory being represented by the straight medial lines. In order to show clearly the two parts into which the total fluctuation is divided, the term of great fluctuation is represented by a fine, sharp curve. The curve of actual longitude is bounded on each side by a shaded area showing the mean error at each point, which is nearly $\frac{3}{2}$ of the probable error. In this way not only the fluctuations as shown by observation are exhibited, but also the error to which the curve may be subject, the probability being $\frac{2}{3}$ that at any point the true curve lies inside the shaded area, and $\frac{1}{3}$ that it lies without it.

CHAPTER XI.

DISCUSSION OF THE REMAINING ELEMENTS WHICH CAN BE DETERMINED FROM THE OCCULTATIONS.

SECTION I.—PRELIMINARY SOLUTION.

52. As I have already several times remarked, observations of occultations are of special value in determining other astronomical elements than the moon's mean longitude, partly because of the early period when fairly good observations were begun and partly because of their comparative freedom from the systematic errors which affect meridian observations of the moon. It is now proposed to do for the equations of the period 1753–1908 what I have already done for the earlier occultations—solve the equations for the remaining unknown quantities.

The method which I shall adopt is, as for the older occultations, to regard the moon's mean longitude known with all the necessary precision from the preceding discussion so that it becomes a known quantity and then to substitute this in the first member of the equations and transpose the resulting term to the second term of the equation. The equations will then be solved for the remaining unknown quantities.

I do not disguise the fact that some question may be raised as to the rigor of this mode of proceeding, especially in the case of those unknown quantities which are correlated with the mean longitude. But I, notwithstanding, think that the results will be of interest and will probably be more accurate than those obtainable in any other way.

53. Weights of the equations.—In solving for the mean longitude we have made little distinction of weights except to reject abnormally discordant observations. But, in the present solution, it seems advisable to adopt a logically more rigorous method of procedure owing to the abnormal and systematic character of the statistical distribution of the residuals.

If this distribution followed the normal law the derivation of the results by the method of least squares would require only numerical computations by well-known methods, in which the judgment would be allowed no play. There would then be no room either for difference of opinion as to the treatment or for the exercise of judgment in reaching a result and assigning its probable error.

Discussion of the Equations.

But we scarcely enter upon the computation before we find the distribution of errors to be so different from that of the normal law that some modification of the method is necessary. The familiar method is to reject all observations, the residuals of which are so large as to indicate some abnormal sources of error, and to retain the others with unmodified weight. That this method is not the best one is very evident from the fact that it is necessary to assign some limit to the value of an error which can be regarded as normal, and that this limit is necessarily a matter of judgment. The final result then becomes a discontinuous function of the residual of the rejected observation, the continuity being broken at the point regarded as the limit of normal error. A simple example will make the case clear. If we have three observed results a, b, c, of which the mean

Digitized by Google

is to be taken, and if c be the result which may be abnormal, then so long as c is retained we shall have

Mean
$$=\frac{1}{3}(a+b+c);$$

the mean will then continually increase with c. When c passes the normal limit the mean changes per saltum to

$$\frac{1}{2}(a+b)$$
.

If c_0 be the limit, we have two values differing by the amount

$$\frac{1}{6}(2c_0-a-b),$$

of which we choose either one or the other. As the limit of abnormality is necessarily doubtful, being very largely a matter of judgment, it follows that if c is near the limit c_0 , we shall be in doubt which of the two values are to be adopted. The laws of probability show that the best result is a weighted mean of the two, the weights being proportional to their probabilities. This involves making a weight to be assigned to an observation depend upon its deviation from the mean of the other observations, a proceeding which seems to violate the logical rules of procedure in combining observations. But the method is logically rigorous if properly applied.

The subject was treated by the writer in a former publication where a method was shown of making the weight a function of the residual error of the observation. The fundamental idea of the method is quite simple. In the formula of distribution of the errors under the normal law it is assumed that the modulus of error (instead of which we may use the probable error) is a perfectly determinate quantity. Clearly this can never be the case in practice. The modulus of error must itself always be a more or less doubtful quantity. We can never say in practice that the chance is less than 1 out of 200 that a residual will be five times the assigned probable error. In a rigorous treatment of the subject what we should do is to regard the modulus itself as a doubtful quantity and to determine the law of the probability that it shall have any one of its separate possible values. It is shown in the paper referred to how a weight can be assigned the value of which shall diminish with the residual error of the observation to which it is applied.

The strict application of the method would require two approximations, too laborious to be remunerative except in the simple taking of means. Even then the advantage of applying it is not so much the attainment of increased precision as the satisfaction of the investigator in reaching an unbiased result. But in this case there is a modification which leads to a result practically as good as that of the rigorous method, and much easier. It consists in assigning a limit to the value which an entirely abnormal error may have; but if a residual exceeds that limit instead of throwing the observation out entirely, we assign it a weight diminishing with the magnitude of the residual.

In the paper already alluded to I have developed the theory of the diminution of weight. This of course depends upon the distribution of the possible values of the modulus of error. So long as this modulus is absolutely fixed the weights are equal. They vary with the range of possible values of the modulus.

So little is gained by aiming at complete rigor of method that almost any modification which will prevent the incongruity of changing the weight per saltum from 1 to 0 at a certain point will do. Almost any reasonable law of diminution will answer the purpose. In taking a simple mean, an easy method which will lead to a result practically as good as the most rigorous treatment is this:

We premise that up to a certain limit e_0 the weight of an observation should not be diminished on account of its discordance. The question will arise as to the law of diminution of the weight when the residual error exceeds e_0 . In this case let us put for Δ the excess of the error above the limit e_0 . Then I propose to determine the weight by the condition

$$w = \frac{e_0}{e_0 + J}$$

This will lead to practically the same result as if we substituted for the actually observed quantity another quantity corresponding to the residual e_0 . Instead of taking a mean by weights we change one of the quantities of which the mean is taken, and use the weight 1.

Of course there is still a certain amount of indetermination because the limit e_0 is a matter of judgment. But the influence of the judgment is far less than what results from continuing the usual fashion of treatment. Some observers throw out discordant observations much more freely than others, and they may still disagree as to the precise point where an observation is entitled to less weight; but their judgments will, in the latter case, differ much less than if the question were whether an observation should be rejected entirely or retained with full weight.

We shall still have to regard observations as quite abnormal, and reject them entirely, when the residuals are so large as to show some gross error. We then have an uncertainty which is in kind of the same general nature as that when the usual plan is adopted. But the doubt is reduced in two ways. In the first place the number of observations in which there can be any question of rejection or retention with diminished weight will be few. Moreover, the difference of the results, according to whether in these rare cases the observation is retained or rejected, will be small.

54. Abbreviated method of solving the equations.—Of the 8 unknown quantities which enter into the equations as written, 5 are to be regarded as increasing uniformly with the time. Thus in a rigorous treatment of the equations we should have to form normal equations in 13 unknown quantities, the labor of which would be great. I shall therefore adopt a method somewhat similar to that already applied in treating the equations of 1672-1747. Owing to the slowness of the change in most cases, it does not seem necessary to determine the most probable value in the way that we did in Chapter IX. What we shall do is first to determine the unknown quantities from the different groups of equations as they stand. We shall then develop the quantities thus determined in the form a+bt. In the earlier observations, especially those made before 1820, the number of observations in a group is so small that the probable error of the unknown quantity will be considerable. We must therefore proceed by adjustment and successive approximations, so as to reach as the final result what seems to be the most probable value of the unknown quantity with its secular variation.

In order to make the coefficients more homogeneous we have transformed several of the unknown quantities by multiplication by the factor 3; that is to say, we have taken, instead of the unknown quantity α_0 and δ_0 , $\frac{1}{3}$ of these unknowns.

Data for Normal Equations—Immersion.

	Unknown.	Group VI. 1753–1779.	Group VII. 1783–1801.	Group VIII. 1801–1820.	Group IX. 1821–1838.	Group X. 1839–1856.	Group XI. 1857–1873.	Gʻroup XII. 1874–1890.	Group XIII. 1891–1908.
Σaa ab ac ad ae af ag an	β, δ,	+13.81 + 0.16 - 1.12 + 1.92 + 5.42 + 0.44 + 2.59 - 0.36	+14. 18 - 2. 63 + 0. 28 + 3. 81 + 4. 33 + 0. 45 + 0. 88 + 16. 77	+33.77 + 0.86 - 1.33 + 3.64 +14.03 - 8.82 + 2.11 +15.20	+80. 88 + 0. 08 + 3. 59 + 2. 26 +31. 20 -25. 10 + 3. 61 +29. 43	+119.89 - 2.45 - 8.58 - 4.21 + 48.26 - 14.30 - 3.09 + 38.33	+109. 41 + 1. 14 + 2. 71 + 1. 17 + 33. 97 - 25. 74 - 1. 32 - 38. 02	+208. 76 - 3. 57 - 7. 48 - 3. 62 + 83. 41 - 11. 31 - 7. 50 - 90. 23	+371.00 + 5.86 - 1.65 - 3.93 +136.24 +137.93 - 4.38 -131.55
bb bc bd be bf bg bn	iθ i b ₀ !/3α, !/3δ,	+ 3. 77 + 0. 57 - 0. 76 + 0. 90 - 1. 41 + 0. 08 + 3. 59	+10.83 - 0.41 - 3.44 - 7.71 - 2.11 + 0.42 - 2.87	+ 6. 65 + 0. 20 + 2. 41 + 1. 20 + 0. 12 - 0. 30 - 2. 41	+21.10 - 1.46 - 5.83 - 5.89 + 3.60 + 1.03 + 2.60	+ 41.33 + 3.05	+ 49.97 + 3.44 - 1.22 - 9.36 + 4.70 - 1.31 + 1.54	+ 72. 11 + 0. 09 - 9. 07 - 9. 20 - 1. 34 + 2. 43 + 18. 77	+132.19 + 7.36 + 11.99 - 32.41 + 0.15 + 33.11 +103.38
cc cd ce cf cg	b. 1/30° 1/30°	+ 4.95 + 3.18 + 0.99 - 0.87 - 0.93	+ 8. 28 + 3. 28 + 2. 37 - 1. 30 + 1. 78 + 1. 60	+ 7.69 - 3.57 - 2.07 + 0.14 - 3.19 + 0.83	+40. 48 - 2. 92 + 1. 75 - 3. 26 - 4. 14 - 0. 91	+ 50. 74 - 2. 04 - 12. 25 + 3. 67 - 4. 05 - 13. 60	+ 56. 29 + 0. 48 + 3. 04 + 3. 36 - 5. 62 - 17. 78	+109. 12 + 1. 29 + 5. 07 + 1. 45 - 21. 29 - 35. 28	+177.47 + 32.19 + 3.43 + 1.67 + 36.00 - 8.76
dd de df dg dn	b ₀ 1/3α ₀ 1/3δ ₀	+ 8.82 + 1.69 + 1.27 + 2.87 - 3.92	+18.76 + 4.48 - 4.35 + 5.09 + 5.27 +22.97	+14. 27 + 5. 48 + 0. 13 + 4. 10 + 9. 30 +16. 82	+62.07 +11.27 +5.15 +21.57 -19.76 +56.08	+ 92.04 - 1.87 + 1.11 + 19.38 - 41.17 + 88.59	+106. 31 + 20. 56 + 6. 02 + 18. 60 - 63. 15 +106. 70	+181.51 + 21.27 + 12.51 + 47.75 - 80.71	+310.09 + 23.91 + 3.20 +112.87 -126.06
ef eg en ff	ν ₃ α, ν ₃ δ, ν ₃ δ,	+ 5.62 - 2.12 + 1.87 - 3.04 +10.21	+ 0. 19 + 3. 76 - 6. 28 +24. 29	- 9.02 + 3.20 + 12.92 + 30.51	$ \begin{array}{r} -17.31 \\ +9.88 \\ +8.82 \\ +76.12 \end{array} $	$ \begin{array}{r} - 9.42 \\ + 4.30 \\ + 12.32 \\ + 132.17 \end{array} $	$ \begin{array}{rrr} & -8.38 \\ & +6.21 \\ & -7.09 \\ & +106.35 \end{array} $	$ \begin{array}{r} +172.25 \\ -28.07 \\ +6.31 \\ -33.35 \\ +253.27 \end{array} $	+294. 42 + 44. 23 - 14. 14 -114. 77 +467. 03
fg fn gg gn	 E	+ 0.49 + 0.80 + 6.38 - 2.95	- 2. 72 + 4. 80 + 8. 49 + 6. 53	- 2.80 -10.96 + 8.70 + 9.24	+ 0. 35 - 2. 66 +38. 35 +10. 90	+ 2. 16 - 24. 19 + 55. 66 - 14. 65	$ \begin{array}{c} + & 0.74 \\ + & 21.44 \\ + & 58.27 \\ - & 7.33 \end{array} $	+ 2.33 - 1.98 +110.77 + 22.90	+ 3.51 - 87.09 +192.86 + 1.08

Marked correlation exists between several of the coefficients in these normal equations—notably between α and α_0 , and α_0 and α_0 . This will be considered a little later.

The above systems of equations were solved by the method of successive approximation. The resulting values of the unknowns are tabulated below:

Group.	K	iθ	i	b.,	1/3000	1/30°	ε
VI. 1753-1779 VII. 1783-1801 VIII. 1801-1820 IX. 1821-1838 X. 1839-1856 XI. 1857-1873 XII. 1874-1890 XIII. 1891-1908	+0. 41 +1. 30 +0. 26 +0. 40 +0. 30 -0. 35 -0. 49 -0. 29	" +1. 16 -0. 66 -0. 62 -0. 07 +0. 26 +0. 07 +0. 17 +0. 75	+0. 02 +0. 24 +0. 85 -0. 04 -0. 27 -0. 31 -0. 29 -0. 03	-0. 16 -0. 20 +0. 53 -0. 55 -0. 42 -0. 64 -0. 54 -0. 48	70. 93 -0. 90 +0. 29 -0. 02 -0. 08 +0. 20 +0. 12 -0. 12	+0.05 +0.22 -0.12 +0.14 -0.14 +0.19 +0.01	-0. 29 +1. 20 +0. 88 +0. 56 -0. 04 +0. 01 +0. 34 +0. 13

Data for Normal Equations—Emersions.

	Group VI. 1753-1779.	Group VII. 1783-1801.	Group VIII. 1801–1820.	Group IX. 1821-1838.	Group X. 1839–1856.	Group XI. 1857-1873.	Group XII. 1874–1890.	Group XIII. 1891–1908.
Σaa ab ac ad ae af ag an bb	+6. 59 -0. 18 +0. 83 +1. 74 +2. 12 +2. 34 +0. 75 +8. 48 +1. 34	+ 4.87 - 0.33 + 0.89 + 0.77 + 2.25 + 1.04 + 0.29 + 6.87 + 3.87	+10. 16 + 1. 42 - 1. 13 + 1. 89 + 5. 48 - 3. 32 + 0. 11 - 1. 77 + 3. 09	+28. 30 - 1. 32 - 0. 09 + 3. 41 +18. 64 -18. 80 + 3. 89 +16. 21 + 6. 32	+50. 27 + 0. 43 + 0. 81 + 2. 11 +16. 49 - 1. 54 + 1. 63 + 6. 91 +11. 83	+61.43 + 1.31 - 0.54 - 1.42 +20.02 -11.98 + 2.12 - 4.98 +20.58	+110.03 - 4.65 + 3.23 - 3.39 + 45.61 - 1.69 + 8.17 - 47.92 + 29.79	+178. 40 - 4. 16 + 6. 76 - 3. 66 + 46. 14 + 59. 38 - 2. 27 - 83. 58 + 65. 49
bc bd be bf bg bn	+0. 34 +0. 82 +0. 59 +0. 84 +0. 42 -2. 86	- 0.51 + 2.71 - 2.05 - 0.15 + 1.50 - 0.89	- 0.65 + 2.09 + 0.89 + 0.66 - 0.55 - 0.41	- 0.91 - 0.40 - 3.28 + 0.87 - 0.01 - 4.75	+ 0.60 + 5.00 . - 3.59 + 1.87 - 4.18 + 6.71	- 0. 10 - 4. 81 - 3. 71 - 1. 01 - 1. 04 + 5. 55	- 2.96 + 1.89 + 1.87 + 0.15 - 0.44 + 18.22	- 0. 34 + 1. 74 - 26. 89 + 2. 13 + 14. 27 + 53. 00 + 89. 83
cc cd ce cf cg cn	+1.23 +1.20 +0.72 +0.23 +0.19 -1.24 +2.60	+ 1.18 - 0.93 + 1.05 + 0.35 - 1.13 + 1.52 + 5.08	+ 3.89 - 2.39 - 1.37 + 0.32 - 2.57 - 4.72 + 7.09	+15. 22 + 1. 70 + 1. 78 - 1. 91 + 0. 32 + 9. 36 +21. 58	+22.32 - 4.24 - 4.85 - 2.41 - 2.25 - 9.76 +34.27	+21.09 - 2.77 - 1.92 + 0.77 + 0.28 - 5.03 +41.63	+ 57·39 - 7·06 + 11·57 - 4·76 - 9·35 - 30·94 + 87·82	+ 89. 83 + 16. 79 + 20. 57 + 3. 69 + 21. 87 - 12. 41 + 154. 63
de df dg dn	+1.26 +0.59 +1.75 +0.07 +2.68	+ 5.08 - 2.22 + 0.41 + 3.36 + 0.31 + 4.38	+ 4.08 - 2.92 + 1.90 + 1.91 + 9.97	+21. 35 + 6. 95 - 2. 47 +11. 71 + 3. 93 +29. 55	+34. 27 + 4. 72 + 4. 16 + 5. 84 + 0. 44 +32. 28	+ 1.06 + 5.47 + 9.42 + 0.24 +35.78	+ 37. 32 + 12. 90 - 8. 17 + 24. 99 - 29. 77 + 72. 77	+ 134. 63 + 22. 91 + 22. 73 + 45. 85 - 40. 79 + 144. 68
ef eg en ff	+1.20 +1.02 -2.50 +3.86	$\begin{array}{c} + 2.83 \\ - 0.52 \\ + 5.57 \\ + 12.29 \end{array}$	$ \begin{array}{r} -5.69 \\ +1.55 \\ -5.72 \\ +11.90 \end{array} $	-14.30 + 5.78 + 3.84 +20.49	+ 0. 94 + 9. 56 - 5. 56 +52. 13	$ \begin{array}{r} - 6.52 \\ + 7.37 \\ + 0.32 \\ + 62.17 \end{array} $	- 12.96 + 17.41 - 37.47 + 97.17	$ \begin{array}{r} + & 8.37 \\ + & 13.21 \\ - & 39.42 \\ + & 253.23 \end{array} $
fg fn gg gn	+0. 13 -3. 41 +1. 65 -1. 43	+ 0.30 + 7.87 + 4.14 - 0.47	+ 0.33 + 4.24 + 3.96 + 3.13	$ \begin{array}{c cccc} & -2.13 \\ & -7.24 \\ & +12.78 \\ & -5.45 \end{array} $	$ \begin{array}{r} - 0.74 \\ + 7.64 \\ + 22.39 \\ - 19.43 \end{array} $	- 0.88 + 3.49 +26.96 + 4.42	- 2.08 + 7.65 + 62.70 - 57.09	+ 3.97 - 70.84 + 92.63 - 15.66

On account of their small weight, it is not worth while to solve Groups VI-VIII above. The results of the solution of Groups IX to XIII are exhibited below:

Group.	K	i0	i	b _o	1/3α,	1/300	
IX. 1821-1838 X. 1839-1856 XI 1857-1873 XII. 1874-1890 XIII. 1891-1908	+1.35 +0.21 -0.10 -0.38 -0.42	-0.66 +0.23 +0.30 +0.48 +0.88	+0. 63 -0. 55 -0. 24 -0. 69 -0. 04	+0.86 +0.06 -0.02 -0.19 -0.21	" -0. 51 -0. 10 +0. 06 +0. 09 +0. 11	+0. 58 +0. 11 +0. 06 +0. 01 -0. 17	" -1.34 -0.86 +0.17 -0.91 -0.21

Data for Normal Equations, Immersions and Emersions combined.

	Groups I-V. 1672-1746.	Group VI. 1753-1779.	Group VII. 1783–1801.	Group VIII. 1801–1820.	Group IX. 1821–1838.	Group X. 1839–1856.	Group XI. 1857-1873.	Group XII. 1874–1890.	Group XIII. 1891–1908.
Saa ab ac ad ae af ag an	+40. 86 + 1. 15 + 0. 10 +12. 61 + 4. 86 - 0. 21 +23. 96	+20.40 - 0.02 - 0.29 + 3.66 + 7.54 + 2.78 + 3.34 + 8.12	+19.05 - 2.30 + 1.17 + 4.58 + 6.58 + 1.49 + 1.17 +23.64	+43. 93 + 2. 28 - 2. 46 + 5. 53 + 19. 51 - 12. 14 - 2. 22 - 2. 82	+109. 18 - 1. 24 + 3. 50 + 5. 67 + 49. 84 - 43. 90 - 7. 50 + 45. 64	+170. 16 - 2.02 - 7.77 - 2. 10 + 64.75 - 15.84 + 1.46 + 45.24	+170. 84 + 2. 45 + 2. 17 - 0. 25 + 53. 99 - 37. 72 + 0. 80 - 43. 00	+318.79 - 8.22 - 4.25 - 7.01 +129.02 - 13.00 + 0.67 -138.15	+549. 40 + 1.70 - 5.11 - 7.59 +182. 38 +197. 31 - 6.65 -215. 13
bb bc bd be bf bg	+14. 62 	+ 5.11 + 0.91 + 0.06 + 1.49 - 0.57 + 0.50 + 0.73	+14.70 - 0.92 - 0.73 - 9.76 - 2.26 + 1.92 - 3.76	+ 9.74 - 0.45 + 4.50 + 2.09 + 0.78 - 0.85 - 2.82	+ 27. 42 - 2. 37 - 6. 23 - 9. 17 + 4. 47 + 1. 02 - 2. 15	+ 53. 16 + 3. 65 - 0. 36 - 7. 42 - 1. 41 - 16. 35 + 18. 97	+ 70. 55 + 3. 34 - 6. 03 - 13. 07 + 3. 69 - 2. 35 + 7. 09	+101.90 - 2.87 - 7.18 - 7.33 - 1.19 + 1.99 + 36.99	+197.68 + 7.02 + 13.73 - 59.30 + 2.28 + 47.38 +156.38
64 64 64 64 64 64 64 64 64 64 64 64 64 6		+ 6. 18 + 4. 38 + 1. 71 - 0. 64 - 0. 62 - 2. 17	+ 9.46 + 2.35 + 3.42 - 0.95 + 0.65 + 3.12	+11.58 - 5.96 - 3.44 + 0.46 - 5.76 - 3.89	+ 55. 70 - 1. 22 + 3. 53 - 5. 17 - 3. 82 + 8. 45	+ 73.06 - 6.28 - 17.10 + 1.26 - 6.30 - 23.36	+ 77. 38 - 2. 29 + 1. 12 + 4. 13 - 5. 34 - 22. 81	+166.51 - 5.77 + 16.64 - 3.31 - 30.64 - 66.32	+267. 30 + 48. 98 + 24. 00 + 5. 36 + 57. 87 - 21. 17
dd de df dg dn	+38.46 + 4.90 + 6.10 +23.93 +37.02	+11.42 + 2.95 + 1.86 + 4.62 - 3.85	+23.84 + 2.26 - 3.94 + 8.45 + 5.58	+21.36 + 9.56 - 2.79 + 6.00 +11.21	+ 83.65 + 18.22 + 2.68 + 33.28 - 15.83	$ \begin{array}{r} +126.31 \\ +2.85 \\ +5.27 \\ +25.22 \\ -40.73 \end{array} $	+147.94 + 21.62 + 11.49 + 28.02 - 62.89	+269. 33 + 34. 17 + 4. 34 + 72. 74 -110. 48	+464.72 + 46.82 + 25.93 +158.72 -166.85
ee ef eg en	+23.88 -2.93 $+7.45$ $+23.59$	+ 8.30 - 0.92 + 2.89 - 5.54	+27.35 + 3.02 + 3.24 - 0.71	+26. 79 -14. 71 + 4. 75 + 7. 20	+ 85.63 - 31.61 + 15.66 + 12.66	+120.87 - 8.48 + 13.86 - 6.76	+142.48 - 14.90 + 13.58 - 6.77	+245.02 - 41.03 + 23.72 - 70.82	+439.10 + 52.60 - 0.93 -154.19
ff fg fn	+32.34 + 3.11 + 7.68	+14.07 + 0.62 - 2.61	+36.58 - 2.42 +12.67	+42.41 - 2.47 - 6.72	+ 96.61 - 1.78 - 9.90	+184.30 + 1.42 - 16.55	+ 24.93	+350.44 + 0.25 + 5.67	+720. 26 + 7. 48 -157. 93
gg gn	+25.58 +23.75	+ 8.03 - 4.38	+12.63 + 6.06	+12.66 +12.37	+ 51.13 + 5.45	+ 78.05 - 34.08	+ 85. 23 - 2. 91	+173.47 - 34.19	+285.49 - 16.74

Method of Solving for the Unknown Corrections.

The following values have been adopted as a first approximation to the unknown quantities. They have been obtained by combining the values just given separately for the immersions and emersions. The weights assigned below have not been chosen on any uniform plan, the probable error for weight unity varying with the unknown to which it is attached.

Group.	Mean date.	T–1850.	K	Wt.	iθ	Wt.	i	.Wt.	b_{o}	Wt.	1/3α°	Wt.	⅓∂₀	Wt	¢	Wι.
I-V VII VIII IX X XI XII	1720 1761 1792 1811 1829 1848 1865 1882	-1.30 -0.89 -0.58 -0.39 -0.21 -0.02 +0.15 +0.32 +0.49	+0. 44 +0. 41 +1. 30 +0. 26 +0. 67 +0. 27 -0. 26 -0. 45 -0. 34	25 9 16 25 100 100 100	-1. 03 +1. 16 -0. 66 -0. 62 -0. 18 +0. 25 +0. 14 +0. 25 +0. 79	9 4 9 9 25 49 81 100	+0.02 +0.24 +0.85 +0.13 -0.35 -0.29 -0.42	3 7 6 54 68 75 160 250	 -0. 16 -0. 20 +0. 53 -0. 16 -0. 30 -0. 55 -0. 42 -0. 38	5 15 10 70 120 130 240 400	+0. 54 -0. 95 -0. 90 +0. 29 -0. 18 -0. 09 +0. 17 +0. 11	16 4 25 16 64 100 100	+0. 12 +0. 05 +0. 22 -0. 12 +0. 23 -0. 08 +0. 14 +0. 01	25 9 25 .25 100 100 100	+0. 50 -0. 29 +1. 20 +0. 88 +0. 09 -0. 28 +0. 06 -0. 14 0. 00	16 4 9 9 49 64 81 100

From these values we have derived by a least square solution the correction to the adopted values of the elements for the epoch 1850, as well as the correction to the adopted centennial motions. The results of this solution follow:

It has been assumed that i and b_0 are constants. These values of the elements have been used as a first approximation in obtaining more correct values, in the following way: Take for instance the unknown $\sin i \delta \Omega$. The normal equation in $\sin i \delta \Omega$, which is the second equation in each group, is used as a basis of obtaining a second approximation to its value. It is first thrown into the form

$$y = \frac{[bn]}{[bb]} - \frac{[ab]}{[bb]}x - \frac{[ac]}{[bb]}z - \frac{[ad]}{[bb]}s \quad . \quad . \quad .$$

in which $y = \sin i \, \delta \Omega$. There are nine such equations in y, one corresponding to each group. As the coefficients $\frac{[ab]}{[bb]}$, $\frac{[ac]}{[bb]}$ are small fractions, we need only approximate values of x, z, s, \ldots , in order to get a more accurate value of y. These values of x, z, s, \ldots for this substitution are obtained from equations (a). In this manner all the unknowns have been solved anew with the following results:

Group.	κ	iθ	š	b_{o}	1⁄3α ₀	⅓δ₀	•
I-V VI VIII IX X XI XII XIII	+0. 64 +0. 45 +1. 33 +0. 42 +0. 50 +0. 26 -0. 25 -0. 39	" -1. 27 +0. 20 -0. 28 -0. 20 -0. 21 +0. 39 +0. 08 +0. 32 +0. 86	+0. 11 +0. 35 -0. 38 +0. 14 -0. 35 -0. 31 -0. 42 -0. 02	+0. 56 -0. 66 +0. 08 +0. 40 -0. 25 -0. 34 -0. 42 -0. 39 -0. 33	// +0. 30 -1. 23 -0. 26 +0. 12 +0. 11 -0. 01 +0. 06 -0. 10 -0. 09	// +0. 03 -0. 35 +0. 29 -0. 08 -0. 01 -0. 07 +0. 15 +0. 01 -0. 11	+1. 12 -0. 61 +0. 79 +1. 00 +0. 33 -0. 29 +0. 00 +0. 00

From these values the following second approximation to the elements were obtained in the same manner as before:

Starting anew with the values (b), the solution was repeated in the same manner, with the following results:

Group.	Epoch.	K	iθ	i	$b_{ m o}$	⅓α,	⅓∂₀	ε
I-V VI VIII VIII IX X XI XII	1720 1761 1792 1811 1829 1848 1865 1882 1899	+0. 58 +0. 34 +1. 24 +0. 34 +0. 43 +0. 26 -0. 24 -0. 41 -0. 36	" -1. 11 +0. 10 -0. 23 -0. 23 -0. 17 +0. 42 +0. 08 +0. 32 +0. 83	+0.06 +0.25 -0.25 +0.15 -0.34 -0.31 -0.41 -0.03	+0. 32 -0. 78 -0. 02 +0. 29 -0. 25 -0. 36 -0. 43 -0. 39 -0. 32	+0. 05 -1. 35 -0. 34 +0. 02 +0. 04 -0. 01 +0. 05 -0. 10 -0. 06	" 0.00 -0.38 +0.29 -0.04 +0.01 -0.07 +0.14 0.00 -0.10	" +0.91 -0.71 +0.95 +0.26 -0.32 +0.07 -0.08 +0.04

These values lead to the following results for the correction to the elements for 1850 and their centennial motions with their probable errors:

Correlation between the Unknowns.

Correlation between x and a_0 . The coefficient of a_0 is given by

$$a_0 = F \sin m' - \cos \delta \sin m_1$$

= \sin m' - \cos \delta \sin m_1 + 2 e \cos g \sin m'.

The coefficient of x is $\cos g \sin m'$, a quantity which, according to the above equation, is seen to enter into α_0 , forming in fact a large percentage of its numerical value.

Correlation between b_0 and ϵ . We have

coeff. of
$$b_0 = \cos m'$$
,

" $\varepsilon = \cos m \sin L - \sin m \sin B \cos L$.

The second term of ε is small. But on account of the large number of occultations of the Pleiades which we have used in the above discussion, for which $\sin L$ is nearly unity, the value of the coefficient of ε has a preponderance toward the value $\cos m$. As this differs but little from the coefficient of b_0 , correlation will exist between the quantities b_0 and ε , if determined as above. In order to separate the two, only those equations of condition should be used which belong to stars which are well distributed in longitude.

SECTION II.—FINAL SHAPING OF THE RESULTS.

55. As the methods we have followed in working out results differ in several important points from those ordinarily used it is necessary for the sake of clearness to outline the relation of the various processes. In determining the elements of motion in the solar system, especially the coordinates of the sun, moon, and planets, the conclusive method consists in adopting positions of the fixed stars which are derived from observation and, assuming these positions to be correct, to determine the right ascensions and declinations of the sun, moon, and planets. Sometimes the declinations of these bodies are determined as absolute without reference to the declinations of the stars and in other forms of reduction they depend upon the latter.

In the case of occultation of stars by the moon all the determinations are, of course, relative; the positions of the moon are therefore referred to positions of the stars, assumed to need no correction. In this way we work out a system of corrections to the moon's coordinates, or of individual positions of the moon's center relative to the occulted stars. Assuming the latter to be known, we thus derive a large mass of relative corrections by which the corrections to the lunar elements are determined.

These elements necessarily have to be revised as improved positions of the stars are determined. But the great point which we have to recall is that by conclusive methods the work of determining the final positions of the stars is quite independent of that of determining the positions of the moon. Following this method, our course would be to adopt the best set of star positions, probably those of Professor Boss, and, assuming them to be absolute, to determine values of the lunar elements which would be regarded as definitive. Substantially this is what we have done, only instead of Boss's fundamental positions we have used those worked out in my own fundamental catalogue of 1900. The difference is probably not of prime importance, and in any case, it need not be considered, because the new course we are now taking seeks to derive independent systematic corrections to the star' places of the occultations themselves. The relations between these various corrections are first expressed in the form of equations of condition, the solution of which on various hypotheses may be supposed to lead eventually to the best double result.

We thus have been dealing with two sets of corrections to the moon's elements, in one of which the positions of the stars are regarded as given, while in the other set the star positions are corrected from the occultations themselves.

What has been said of positions of the stars applies equally to those of the sun. Heretofore whenever eclipses have been used it has been exclusively to determine positions of the moon, those of the sun being assumed as given by the solar tables. But when we inquire how the data of observation can best be used we find that the process should be reversed and that the positions of the sun, or rather its mean longitude, and possibly the other solar elements should be determined from the occultations.

The idea on which we have proceeded has been to determine the systematic corrections of the star positions from the occultations themselves. We should expect the absolute right ascensions of the stars in the general mean, as well as the position of the equator among the stars, to admit of better determination from the occultations than from the meridian observations, especially when the means of the corrections are considered, each correction being of the form:

a+bt.

The earlier meridian observations are quite uncertain and this uncertainty must affect greatly the values of b. Now, fairly good observations of occultations extend back to 1700, while good mean observations of star positions are few in number before the work at Greenwich and Poulkova in 1840–1850. In other words, we have a range of more than two centuries in the results from occultations as against less than three-quarters of a century for the meridian observations them-

selves. This being remarked, is in addition to the known systematic errors which affect even the best meridian observations of declination.

- 56. Corrections of the lunar elements relative to the stars.—Let us inquire what corrections to the lunar elements we should derive if the places of the stars were exact; also assuming these places to require corrections, what discordances we should expect to find by ignoring the errors of the star places. Assuming the star positions to be exact, the elements which we determine from the occultations are:
 - λ, the correction to the moon's mean longitude;
 - x, or $-2e\delta\pi$, the correction growing out of the lunar perigee;
 - i, the correction of the inclination;
 - $i\theta$, the correction of the node into the sine of the inclination.

We should also look for a common correction b_0 to all the latitudes of the moon. The values of λ then derived would be the same which we have already developed in the preceding chapter. The results for the other unknown quantities are obtained by several successive approximations to the unknown quantities, with the following results for the various groups.

Year.	Group.	, K	iθ	i	$b_{\rm o}$
1720 1766 1792 1811 1830	I-V VI VII VIII IX	+0.59 +0.40 +1.28 +0.35 +0.45	-1.48 +0.17 -0.20 -0.26 -0.16	-0.09 +0.29 -0.42 +0.14	// +(0.83) - 0.53 + 0.11 + 0.41 - 0.21
1848 1865 1882 1900	X XII XIII	+0. 25 -0. 25 -0. 43 -0. 39	+0. 37 +0. 09 +0. 32 -0. 82	-0. 35 -0. 31 -0. 41 -0. 05	- 0.33 - 0.42 - 0.41 - 0.37

By successive approximations we find that the unknown quantities developed in the form a+bt are as follows. We count the time from 1850 as the most convenient fundamental epoch for our purpose.

$$-2e\delta\pi = +0.04 - 0.86 \text{ (T-1850)}$$

$$\sin i\delta\Omega = +0.13 + 1.06 \text{ (T-1850)}$$

$$\delta i = -0.19$$

$$b_0 = -0.36$$

The interpretation of the first three unknowns involves no difficulty. It is different in the case of the latitude correction, which may arise from several sources, and which will require a separate investigation to be placed on a satisfactory basis.

We recall that Hansen applied a common correction of -1".00 to all the moon's latitudes, accounting for it on the ground that there might be a displacement of the center of gravity of the moon from its center of figure. We must regard the introduction of this quantity as one of the unfortunate features of Hansen's tables, especially as there are other causes than that introduced by Hansen for such a discrepancy. These are:

1. An error in the adopted constant of the lunar parallax. This would result in a common systematic correction to all the declinations, and therefore to all the latitudes of the moon observed on the meridian in the northern hemisphere. Of course the result would be reversed in the southern hemisphere, but Hansen did not make use of any observations in that hemisphere. I do not think that the theoretical value of the lunar parallax which we have derived from the terrestrial value of gravity is likely to be in error by more than o".1. This may be regarded as the possible error of our correction to Hansen's parallax, which we have found to be o".40 (§26).

- 2. The other cause of the constant latitude discrepancy would be found in the common error of the declinations or latitudes of all the occulted stars.
- 3. It may well be that the lunar inequalities in the outline of the moon's disk are more or less systematic in their character, thus producing an apparent systematic error in b_0 . Really this is practically identical with Hansen's hypothesis of a displacement of the centers of gravity and figures, since the apparent center of figure is altered by the lunar inequalities.

In forming the equations of condition I have assumed a value of this third displacement in a direction at right angles to the moon's varying orbit. I think this is not what we should expect from the theory of libration, but am unable to correct the result at present. The best that we can do, therefore, seems to be to ignore this correction, or rather to merge it with the common corrections to the latitudes of all the stars.

It may be added in this connection that the general method we have adopted will completely suffice to determine both the systematic amount of the Hansen inequality and the common correction to the declinations of all the stars. In fact, the formulæ which we have derived in Chapter II for the coefficients of the equations of condition enable an independent determination of the quantities to be made. But there still seems to be some discrepancy which the author is, in completing the work, unable to explain.

Our next important result will be the common correction to the Right Ascensions and Declinations of all the stars. From the equations (c), page 219, this comes out

$$a_0 = -0.15 + 0.21 \text{ (T-1850)},$$

 $\delta_0 = 0.00 - 0.12 \text{ (T-1850)}.$

I regard this correction to the equinox as probably more reliable than any heretofore obtained, so far at least as the centennial motion is concerned. As has already been explained it rests on the principle that the equinox can be determined from the moon as well as from the sun, while the probable error of the determination is much less. In the case of the equinoxes determined from the sun we have the unavoidable difficulties arising from the effect of the diurnal change of temperature on the instrument and the surroundings, and the uncertainty as to the personal equation of the observer. The latter is worthy of special consideration. Before the existence of the magnitude equation was known, it was necessarily assumed that there would be no personal equation between the observations of the sun and of a star. Now, if we suppose, as we might well do, that the personal equation is the same for the sun's limb and for a star of the first magnitude there would then be an equation of o'.05 between the sun and a star of the seventh magnitude. We have assumed that the standard personal equation for magnitude corresponds to the magnitude 4.0, and this is the standard to which the preceding result alludes.

Our result, as derived from equations (c), may therefore be expressed in the following form: When the Right Ascensions are all reduced for magnitude equation to the standard magnitude 4.0 the correction for equinox is

$$a_0 = -0.15 \pm 0.12 + (0.21 \pm 0.30)(T - 1850).$$

Expressed in time the results are:

$$a_0 = -0.010 \pm 0.008$$

+(0.014±0.020) (T-1850).

The apparent correction to the standard declination is yet smaller, which is surprising, because the general trend of evidence is that the standard adopted requires an appreciable correction. On this subject compare the catalogues of Boss and Auwers. On the other hand, we have to remember that the uncertainty arising from the figure of the moon can not be completely eliminated by the process we have followed and must, therefore, still affect this result.

SEC. III.—DEFINITIVE VALUES OF THE LUNAR ELEMENTS AS DERIVED FROM THIS INVESTIGATION.

For convenience of reference, the conclusions of the present paper as to the principal elements of the moon's motion will now be collected.

As different fundamental epochs are more convenient for different purposes we have chosen three, the comparison of which will serve as a check upon the values of the printed numbers. These epochs are:

```
1800, Jan. 0.0, G.M.N.; Julian date 2 378 497; 1850, Jan. 0.0, G.M.N.; Julian date 2 396 759; 1900, Jan. 0.0, G.M.N.; Julian date 2 415 021.
```

The time from these several epochs is counted in Julian centuries of 36525 days each.

T₀ means the time from 1800.0;

T₁ means the time from 1850.0;

T₂ means the time from 1900.0.

The epoch for T=0 is therefore indicated without ambiguity, depending on whether we use T_0 , T_1 , or T_2 . I have always found this condensed method of expressing the time through long periods much more convenient than the ordinary method of using a fraction, dividing the years by 100 for centuries.

We have two sets of corrections designated as A and B. In the set A we have assumed the star places to be subject to corrections as shown below. In B the initial values are accepted without correction.

$$\delta\pi = -0.36 + 7.55 T_1
\delta\Omega = + 1.79 + 10.84 T_1
\delta i = -0.18
\delta_0 = -0.32
\alpha_0 = -0.15 + 0.21 T_1
\delta_0 = 0.00 - 0.12 T_1
\delta_0 = +0.09 - 0.40 T_1
$$\delta\pi = -0.36 + 7.83 T_1
\delta\Omega = + 1.45 + 11.84 T_1
\delta i = -0.19
\delta_0 = -0.36
\delta_0 = +0.09 - 0.43 T_1
B$$$$

The values of the moon's mean longitude, λ , longitude of perigee, π , and longitude of node, Ω , used by Hansen in his tables are given below. Hansen gives their values for the epoch 1800, Jan. 0.0 only. For convenience of reference their values for 1850, Jan. 0.0, and 1900, Jan. 0.0, are given in addition. The relation between λ , π , and Ω , and the quantities g, ω , and Ω , tabulated by Hansen, is well known and need not be stated here. Hansen uses:

$$\lambda = 335 \ 43 \ 26.70 + (1336 + 1108 \ 419.61) \ T_0 + 13.301 \ T_0^2 + 0.0135 \ T_0^3$$

$$\pi = 225 \ 23 \ 53.06 + (\ 11 + \ 392 \ 582.46) \ T_0 - 36.134 \ T_0^2 - 0.037 \ T_0^3$$

$$\Omega = 33 \ 16 \ 31.15 - (\ 5 + \ 482 \ 939.61) \ T_0 + \ 8.189 \ T_0^2 + 0.007 \ T_0^3$$

$$\lambda = 123 \ 5 \ 2.31 + (1336 + 1108 \ 432.92) \ T_1 + 13.321 \ T_1^2 + 0.0135 \ T_1^3$$

$$\pi = 99 \ 51 \ 54.74 + (\ 11 + \ 392 \ 546.30) \ T_1 - 36.190 \ T_1^2 - 0.037 \ T_1^3$$

$$\Omega = 146 \ 13 \ 38.72 - (\ 5 + \ 482 \ 931.41) \ T_1 + \ 8.200 \ T_1^2 + 0.007 \ T_1^3$$

$$\lambda = 270 \ 26 \ 45.84 + (1336 + 1108 \ 446.25) \ T_2 + 13.341 \ T_2^2 + 0.0135 \ T_2^3$$

 $\pi = 334 \ 19 \ 38.30 + (11 + 392 \ 510.08) \ T_2 - 36.245 \ T_2^2 - 0.037 \ T_2^3$
 $\Omega = 259 \ 10 \ 50.38 - (5 + 482 \ 923.21) \ T_2 + 8.210 \ T_2^2 + 0.007 \ T_2^3$

The various corrections to Hansen which we have found will now be collected. These corrections are of the form:

$$a_0 + a_1 T + a_2 T^2 + a_3 T^3$$
.

In Chapter IX, §47, we found:

$$\delta\pi = -0.97 \text{ T}_0^2 - 0.0078 \text{ T}_0^3,$$

 $\delta\Omega = -0.63 \text{ T}_0^2 + 0.0013 \text{ T}_0^3.$

Adding to these partial corrections the values obtained in solution (B) preceding, after reducing all of the corrections to the same epoch, and collecting the results, we obtain the results given below. The value of $\Delta\lambda$ is taken from §51, and needs no explanation. The results for all three epochs are given for convenience.

The final adopted values of the mean longitude of the moon, the longitude of the perigee, and of its node now become for the chosen epochs:

$$\lambda = 335 \ 43 \ 26.39 + (1336 + 1108 \ 393.04)T_0 + 9.07 \ T_0^2 + 0.0068 \ T_0^3$$

$$\pi = 225 \ 23 \ 48.79 + (11 + 392 \ 590.28)T_0 - 37.10 \ T_0^2 - 0.045 \ T_0^3$$

$$\Omega = 33 \ 16 \ 26.68 - (5 + 482 \ 927.77)T_0 + 7.56 \ T_0^2 + 0.008 \ T_0^3$$

$$\lambda = 123 \ 4 \ 47.66 + (1336 + 1108 \ 402.11)T_1 + 9.08 \ T_1^2 + 0.0068 \ T_1^3$$

$$\pi = 99 \ 51 \ 54.14 + (11 + 392 \ 553.15)T_1 - 37.17 \ T_1^2 - 0.045 \ T_1^3$$

$$\Omega = 146 \ 13 \ 40.01 - (5 + 482 \ 920.20)T_1 + 7.57 \ T_1^2 + 0.008 \ T_1^3$$

$$\lambda = 270 \ 26 \ 14.72 + (1336 + 1108 \ 411.20)T_2 + 9.09 \ T_2^2 + 0.0068 \ T_2^3$$

$$\pi = 334 \ 19 \ 40.87 + (11 + 392 \ 515.94)T_2 - 37.24 \ T_2^2 - 0.045 \ T_2^3$$

$$\Omega = 259 \ 10 \ 57.12 - (5 + 482 \ 912.63)T_2 + 7.58 \ T_2^2 + 0.008 \ T_2^3$$

Principal elliptic term in longitude (Cowell): 22,639".50 sin g. Principal term in latitude: 18,461".45 sin u.

The mechanical ellipticity of the earth.—Subducting the precessional motions from the movement of π and $\mathbb Q$ in the values given above for the epoch 1850 we obtain the following values for the sidereal movements for a Julian year:

$$\pi_1 = +146 \ 435.29 \pm 0.02,$$

 $\Omega_1 = -69 \ 679.45 \pm 0.02.$

These values, taken in conjunction with their theoretical values deduced by Brown furnish a value of the terms in the lunar theory due to the ellipticity of the earth, and therefore the mechanical ellipticity itself, which is probably as accurate as any obtainable. The terms due to this cause as deduced from the occultations become

$$\delta \pi_1 = +6''.49t;$$
 $\delta \Omega_1 = -6''.13t,$

The theoretical values deduced by Hill are:

$$\delta \pi_1 = +6''.82t;$$
 $\delta \Omega_1 = -6''.41t.$

From the values of $\delta \pi_1$, we find that Hill's value of

$$\mu = \frac{3}{2} \frac{I}{M} \left(C - \frac{A+B}{2} \right) = 0.0017595,$$

which enters as a factor into all the perturbations due to the earth's ellipticity, should be multiplied by F=0.952 in order to represent its observed value. Similarly from the observed value of $\delta \Omega_1$, the factor is found to be F=0.956, which is in very good agreement with the preceding. A third value of equally great weight can be deduced by comparing Hill's value of the principal ellipticity term in latitude with its observed value. There is, however, a difficulty in obtaining its value from observation, due to its entering into the moon's latitude in the same manner as the obliquity of the ecliptic. The obliquity must therefore be assumed as known with precision from observations of the sun. Assuming Newcomb's value of the obliquity for 1850 as correct, we deduce from the set of corrections (c), page 219, the following correction to Hansen's value:

$$\Delta \beta = +o''.og \sin v.$$

Hansen used

$$\delta\beta = -8^{\prime\prime}.63 \sin v$$
.

The observed value is, therefore,

$$\delta\beta = -8^{\prime\prime}.54 \sin v.$$

Subducting from this,

$$\delta\beta = -0^{\prime\prime}.23 \sin v$$

due to the motion of the ecliptic and action of the planets, we obtain the following observed value of the principal term due to the earth's ellipticity:

$$\delta \beta = -8^{\circ\prime}$$
.31 sin v .

Hill's value is

$$\delta\beta = -8^{\prime\prime}.726 \sin v$$
.

Comparison of these two values gives, therefore,

The agreement of these three entirely independent values of F which we have deduced, the total range in value being less than 1 per cent, is quite remarkable. Its mean value is

F=0.953.

The observed value of μ is, then,

 $\mu = 0.001677.$

There is no doubt that a better value for the observed principal inequality in latitude can be obtained after a rediscussion of solar observations, with especial reference to the obliquity of the ecliptic, has been made.

Addendum to Chapter XI.

Proceeding in regular course and assuming the theory to be complete, our final step in the present work would be to express the conclusions as to the values of the unknown quantities in terms of fundamental elements. But there are obstacles which prevent this being readily done. Among the most important of these elements is the factor depending upon the ellipticity and radius of gyration of the earth which determines the inequalities arising from the non-sphericity of the geoid. Hill determined the factor wholly by geodetic investigations, finding a markedly larger value than that derived by Helmert. But we may also determine the factor from the observed values of the several inequalities to which it gives rise. These are four in number:

- 1. The inequality in the moon's mean longitude depending on the longitude of the node.
- 2. The inequality in the moon's latitude produced by the same cause.
- 3. The motion of the node.
- 4. The motion of the perigee.

None of these four methods can be used to lead to a reliable result. The difficulty in the case of the longitude term in the \otimes arises from the irregular fluctuations in the moon's mean longitude, which make it impossible to separate these irregular changes from the regular inequality itself. In fact we shall find that, owing to this cause, the different values obtained for the coefficient of the ellipticity term are markedly discordant, the difference amounting to half a second or more.

The difficulty in the case of the latitude term is that practically it is combined with the obliquity of the ecliptic; that is to say, to determine it from observation we must have an independent knowledge of the obliquity. This, of course, we have, but not with a satisfactory degree of certainty. In other words, what we actually determine from observations of the moon is the value of $\varepsilon + \eta$, the latter being the latitude coefficient. Having found this sum we have to subtract ε in order to obtain η . Here we have an uncertainty of several tenths of a second owing to the difficulty of making an exact determination of the obliquity from observation. This difficulty is not encountered in the secular variation of the obliquity because the increment η is a constant. The value of $D_t\varepsilon$ which we have derived from our equations therefore correctly expresses the correction to the secular variation of ε because it seems to be the most reliable value of that variation with which observations supply us.

In the case of the node and perigee we have to make an exact theoretical determination of the secular motions of these two elements from pure theory, and assume that the excess of the observed motion over the theoretical one is due to the earth's ellipticity. From the rough determination I have made the result thus reached is fairly accordant with that reached in other ways, but it can not be called satisfactory.

In view of the reliability of the secular motion of the obliquity as we have derived it from occultations its magnitude may seem surprising; but there is an important action in play which may account for the discordance when fully investigated. This is the attraction of matter near the sun that causes the excess of motion of the perihelion of Mercury. The following is a

statement of the question as it now stands. In my final discussion of the solar elements (Elements and Constants), I found that the motion of the perihelion of Mercury could be caused by a ring of matter, either between Mercury and Venus or inside the orbit of Mercury itself. The latter, of course, will be so much the more probable that it alone need be considered.

Had it been certain that the motion was due to this cause, I might well have constructed the solar and planetary elements by introducing the hypothesis of this ring. As simplicity in the theory was a prime requisite, and the elements of the supposed ring were affected by such an uncertainty that I did not desire to see them made a basis of the theory of the sun, I therefore provisionally adopted the hypothesis that gravitation was not exactly as the inverse square, which had the advantage of great simplicity, leading, should it be wrong, to a very easy method of correcting the theory by future investigators.

After the publication of my tables, Brown's completed determination of the theoretical motion of the lunar perigee showed that the gravitation of the earth did not differ from the Newtonian law and the same thing was true presumptively of that of the sun. We were thus forced back upon the hypothesis of a mass of matter surrounding the sun sufficient to cause the motion of the perihelion of Mercury.

The next step forward was taken by Seeliger, who sought to identify the matter in question with that of the zodiacal light, and showed that by assuming an ellipsoidal mass the motion of the perihelion of Mercury and the other secular variations could be represented.

This hypothesis of Seeliger has been somewhat misapprehended. In its essential results it does not differ materially from my own hypothesis of an intramercurial ring. In fact, a comparison of Seeliger's elements with my ring elements will show a close approach to identity in the position of the plane containing the ellipsoidal mass.

More important yet is the fact that the matter of Seeliger's hypothesis is not really identical with that of the zodiacal light because it is too near the sun to be visible. In other words, nothing that we know of the figure of the zodiacal light would be compatible with Seeliger's ellipsoid. The latter is therefore to be regarded as an independent hypothesis, the matter of the zodiacal light not coming into play at all. At the same time I freely admit that the hypothesis of the ellipsoid is more probable than that of the ring, and therefore prefer Seeliger's form to my own.

We now reach a critical point in the whole discussion. All my determinations of the elements were made on the hypothesis that the motion of the perihelion of Mercury was not caused by the attraction of matter. Introduce this matter as an attracting body and we have a new set of secular variations, especially of the node of Venus. This may well be the reason why the value of the solar parallax which I derived from the node of Venus, notwithstanding its seeming certainty, is abnormally small.

It is therefore necessary to the completion of the results of the present paper that the secular motions of the elements, including the obliquity, be completely rediscussed.

CHAPTER XII.

DISCUSSION OF NARRATIVES OF ANCIENT ECLIPSES OF THE SUN.

SECTION I.

57. A total eclipse of the sun is so impressive a phenomenon, especially as presented to the minds of the ancients, who supposed celestial phenomena to be intimately associated with the destiny of men and nations, that the number of narratives of such eclipses found in ancient records seems notably small. Ginzel's charts show that between B. C. 700 and A. D. 200, 14 total eclipses of the sun were visible in Greece or its neighborhood and several others in regions outside of Greece where we should have supposed they would have been noticed and recorded by Greek or Roman historians. The number of annular eclipses is of course yet greater. Of these 30 or 40 striking eclipses only 5 have yet been identified with the narratives of historians, and in at least one of these cases the identification is doubtful. In this enumeration I have omitted several passages which have been supposed with a greater or less degree of probability to have referred to eclipses, but in which no identification is possible. Saying nothing of eclipses passing through more distant regions, which might well have been recorded, we find nine unrecorded total eclipses against four probably identified ones and one of doubtful identity.

The mass of literature relating to the subject of total eclipses during the period in question is so great that no detailed discussion and comparison of conclusions seems necessary in the present chapter. The author will therefore content himself with a résumé of the questions at issue.

He must admit at the outset that his views of the usefulness of the narratives in question as tests of the lunar tables may seem at first sight to differ so widely from those of nearly all other commentators as to require some explanation or defense. Naming only those authors who expressly or impliedly repose confidence in the results to be derived from the sources in question we have Hansen, Airy, Oppolzer, Ginzel, and Cowell, not to mention other writers who have touched on special points. So far as the author is concerned, it might at first sight seem that the authorities in favor of the material in question must far outweigh that of a single authority treating the material as practically valueless except for historic purposes. But, in order that the authorities may have weight as such, it is necessary that they should agree as to their conclusions. When we apply this test to their works we can scarcely be said to find agreement between any two, but rather conclusions of the most contradictory kind. An exceptional case of agreement may be that of Airy and Hansen; but their work had for its purpose rather to show that Hansen's tables represented the ancient eclipses than to derive any new conclusions from them. Ginzel and Oppolzer agree in deriving from the eclipses corrections to the elements of the mean moon's motion which are incompatible both with gravitational theory and with modern observations. So high are these authorities that if they agreed as to the corrections we might inquire whether greater weight should be assigned to modern observations than to the eclipses in question. But, as a matter of fact, we find no agreement as to the corrections which the modern tables require in order to represent the eclipses.

What the author now proposes to do is to repeat, so far as is necessary, his examination of ancient solar eclipses found in his Researches of 1878, in the light of more recent developments on the side both of observation and theory. The fundamental principles on which the treatment is based are so obvious as to need no detailed statement. The only fact of history on which any

conclusion can be based is that an identifiable total eclipse of the sun was seen to be total at a well-defined spot on the earth's surface. The mere fact of totality does not suffice unless the place where this phase was observed is established, nor does the place suffice unless the narrative inspires confidence that the total phase was actually observed at that place, and that the narrative does not refer to an observation of totality made elsewhere.

Granting that a narrative sustains this test, the next question to arise will be what conclusions are to be drawn from the fact of totality. In our ignorance of the time of the observed phase all that can be deduced from any one observation is an equation of condition between the corrections to the elements which will represent the phenomenon of totality. The question to be considered is, therefore, what elements we are to consider as subject to correction.

It needs no argument to show that the moon's mean longitude at the time is the most uncertain element, and therefore the one first to be considered. The mean motion is so well determined from modern observations that the correction to the mean longitude needs to be expressed only as that to the secular acceleration.

Next in order comes the correction to the longitude of the moon's node. The necessity of including this correction will depend upon whether we consider the longitude of the node to be sufficiently well determined from gravitational theory and modern observations. Formerly the uncertainty on this point was such that a correction to the node could well be included in the conditional equations. But at the present time it seems to me that, although it may be well to know what effect a change in the position of the node may have upon the phenomenon, we can scarcely correct its longitude by ancient eclipses, and this for the following reasons: The researches of Brown have shown that the motions of the perigee and node of the moon during the last 250 years are in as precise accordance with the Newtonian law of gravitation as the uncertainty of our data permits. Of the latter the ellipticity of the geoid is the principal uncertain element. The presumption is very strong that this accordance of the motion with the law of gravitation is a permanent feature of the moon's motion. Accepting this, it follows that the secular acceleration of these elements and, therefore, their values in ancient times, can be determined with all necessary precision by gravitational theory combined with modern observation. The actual centennial motion is to be determined from observations alone. The secular acceleration is easily determined by theory, as already shown.

The motion of the sun in longitude is now so well determined that it might appear quite superfluous to consider its correction by material so uncertain as that before us. But Mr. Cowell has sought to reconcile the most reliable ancient eclipses with gravitational theory and modern observation by assuming a secular acceleration of about 4" in the sun's mean longitude. The probability of this need not be discussed in the present connection; but it is quite easy to include as an unknown quantity the correction to the sun's longitude in the conditional equations.

Proceeding as in former Researches we shall begin with a short study of the several narratives with a view of forming some idea beforehand how reliable each may be supposed. But it is not necessary to analyze critically the original passages, as was done in the former Researches.

58. (A) Babylonian eclipse of -1062, June 19.—For the account of this eclipse I depend upon Mr. Cowell's paper in the Monthly Notices R. A. S., Vol. LXV. We learn from this that Mr. L. W. King, of the British Museum, made a translation of a Babylonian record, reading as follows:

"On the 26th day of the month Sivan in the seventh year, the day was turned into night and fire in the midst of heaven."

Mr. Crommelin adds that the inscription from which this is an extract is a record of omens occurring in the city of Babylon—wild beasts entering the streets, dogs entering the temple, etc.

The author confesses his inability to see that this account should be considered as evidently referring to an eclipse of the sun, or if so, how it can be confidently regarded as having been total at Babylon. An unusual darkness from meteorological causes, popularly characterized as being

as dark as night, is more common than total eclipses of the sun. If the entrance of animals into the temple was an important omen, so might also be any unusual darkness. It also seems to me that, granting an eclipse of the sun, the critical care implied in not recording it unless it was absolutely total and omitting to take account of it if the statement regarding it was brought in by couriers from other regions, is not implied in what we know of the human mind in ancient times. "Fire in the midst of heaven" may well have been a description of the corona, but it may also have been suggested by other phenomena. It is also to be remarked that there is a range of half a century in the possible time of the occurrence. The year -1062 was chosen because it was the only one in which an eclipse could have been total near Babylon.

Under these circumstances it is well worth while to inquire whether, according to modern data, the eclipse could have been total at Babylon. If so, it will be admissible to inquire what correction to the moon's mean longitude is implied at that time.

(B) Eclipse of Nineveh, -762, June 4.—I quote the statement respecting this eclipse given by Mr. Cowell which, as translated from the inscription, is in the words: "In the month of Sivan the sun underwent an eclipse." I do not know how certain the identification of this eclipse is, but as the date seems to have been accepted by all who have alluded to the subject I assume that there is no doubt.

It is noteworthy that we have not the slightest intimation in the statement that the eclipse was total at Nineveh or anywhere else. The tables show that on the date assigned the shadow of the moon passed some two degrees north of Nineveh. In view of the rapid and constant intercommunication between different parts of the empire there can be no doubt that the fact of a total eclipse was reported at the capital and duly recorded. Under these circumstances I see no strong reason for assuming that the total phase passed over Nineveh, but rather the contrary, because in this case something would probably have been said about the darkness. In deference to the opinion of others on the subject, I shall, however, determine what changes in the lunar elements will bring the path south to Nineveh.

(C) Eclipse of Archilochus, -647, April.—In the writings of the poet Archilochus, who is supposed to have flourished some time in the seventh century B.C., is found the passage (Archilochus, frg. 74 [Bergk]):

Χρημάτων ἄελπτον οὐδέν ἐστιν οὐδ' απώμοτον οὐδὲ θαυμάσιον, ἐπειδή Ζεῦς πατὴρ 'Ολυμπιων ἔκ μεσημβρίης ἔθηκε νύκτ' ἀποχρύ ψας φάος ἡλίου λάμποντος λυγρὸν δ' ἡλθ' ἐπ' ἀνθρώπους δέος.

I am indebted to Prof. Mitchell Carroll, of the George Washington University, for the following translation of the passage:

Of events not one is unexpected nor impossible nor wonderful, since Zeus, father of Olympus, out of high noon has made night, concealing the light of the shining sun; but baneful terror has come upon mortals.

From this it may fairly be inferred that Archilochus at some time in his life either witnessed a total eclipse of the sun or heard about one from those who had witnessed it. It may be supposed that the former is the more probable alternative, yet the presumption in favor of it is not strong. Of course, if he based his remarks upon the reports of others, no conclusion as to the path of totality could be drawn from what he says. Assuming that he was an eyewitness, the question is, where and when he made his observation. The only way in which the eclipse can be identified is by finding one which probably occurred during the early or middle life of the poet at the place where he lived.

So far as I have looked into the historical evidence, although it seems to be generally accepted that during several years of his life Archilochus lived on the island of Thasos, the doubt as to the date of his birth and death is such that we can not be at all confident that he lived on the island at the date in question. Even granting that he did, as Thasos is separated from the mainland by a strait only five miles in breadth, he might well have seen the eclipse as a nearly total one and heard of the totality from dwellers on the mainland. The presumption that the shadow actually

passed over Thasos is, therefore, rather weak, unless strengthened by coincidence with other eclipses.

The only eclipse that could have fulfilled the conditions is that of -647. Our conclusion must, therefore, rest on the following combination: (1) that the poet actually referred to a total eclipse of the sun; (2) that he saw the eclipse himself; (3) that he was living at the time on the island of Thasos. A possibility of some element in this combination failing is such that I have little confidence in any conclusion to be drawn from the eclipse.

(D) Eclipse of Thales, -584, May 28.—I have discussed the evidence for this celebrated eclipse with so much fullness in former researches that nothing need be added on the lines there followed. Among other difficulties in using the eclipse was the obvious fact that if the change of day into night was really due solely to it, night must have been changed back into day almost immediately, a fact of which the historian says nothing, and the contrary of which is implied by the whole narrative. It is all the less necessary to rediscuss the question because all the difficulties in interpreting the narrative are cleared up by the computation of the shadow path from modern data which is found in the introduction to my paper on the recurrence of eclipses. The total phase came on some 15 or 20 minutes after sunset, a circumstance corresponding remarkably with the narrative of Herodotus. Moreover, as the total phase passed and the sun grew brighter, its continually increasing depression below the horizon might have made the seeming night almost permanent, and led to the result described by Herodotus. There can be little doubt that Thales predicted this eclipse; in fact, it is probable that this was the only one he could have predicted.

While these considerations seem to clear up the whole question, they leave it evident that no use can be made of the eclipse for correcting the astronomical tables.

(E) Eclipses of -462 and -430.—The first of these is one of the eclipses, the absence of which from recorded history may well appear remarkable. It is true that a passage in Valerius Maximus states that during the time of Pericles there was an eclipse of the sun which threw Athens into darkness and terrified the inhabitants. Their fear was allayed by Pericles, who explained the theories of Anaxagoras on the subject. But researches by Mr. Fotheringham^b show that the eclipse must have been that of -430; in fact, it seems that Valerius Maximus really borrowed from Cicero in whose De Republica I, 16, we find the passage:

Atque eius modi quiddam etiam bello illo maximo, quod Athenienses et Lacedæmonii summa inter se contentione gesserunt, Pericles ille, et auctoritate et eloquentia et consilio princeps civitatis suæ, cum obscurato sole tenebræ factæ essent repente Atheniensiumque animos summus timor occupavisset, docuisse cives suos dicitur id quod ipse ab Anaxagora, cuius auditor fuerat, acceperat, certo illud tempore fieri et necessario, cum tota se luna sub orbem solis subiecisset; itaque, etsi non omni intermenstruo, tamen id fieri non posse certe nisi intermenstruo tempore. Quod cum disputando rationibusque docuisset, populum liberavit metu; erat enim tum hæc nova et ignota ratio, solem lunæ oppositu solere deficere quod Thaletem Milesium primum vidisse dicunt.

What is remarkable about this passage is that one would suppose that nothing but a total eclipse could have produced such fear among the Athenians. And yet the allusion to the Peloponnesian war, which did not commence until -431, seems to show with entire certainty that the eclipse alluded to is the annular one of -430, August 3, which is known as the eclipse of Athens, and which may well give rise to interesting discussion. The well known description by Thucydides II, 28, is translated as follows:

But in the same manner, at the new moon of the month, as in that time alone it seems possible for the phenomenon to occur—the sun was eclipsed after midday, and having assumed a crescent form, some of the stars having also appeared, it again became full orbed.

I believe that Thucydides has the reputation of being the most careful and exact of the Greek historians. He is writing of events of which he was a witness; he was in Athens at the time of

^a Washington Observations for 1875, Appendix II; Astronomical Papers of the American Ephemeris, Vol. I. ^b Observatory, December, 1908.

the eclipse, and it seems to be as certain as anything in his history can be that the eclipse alluded to is the one just mentioned.

Now, the curious fact is that according to the tables the eclipse was not total anywhere, but only annular, and the path of the annular eclipse passed centrally through the Black Sea some 200 miles from Athens, less than an hour before sunset, so that there was no time for the sun to have again become full-orbed before it set. But the fact that the stars are said to have appeared would indicate a total eclipse. It has been suggested by some writers that planets, especially Venus, might have been visible. As Venus can be easily seen within an hour of sunset, even when there is no eclipse, this would offer no difficulty except for the use of the plural. The starlike objects next brightest were Mercury and Mars, but I do not think that either of these could have been seen even during the annular phase.

From Mr. Fotheringham's study it appears that this eclipse must have been the one referred to by Cicero in terms so strong. It might therefore appear that the fact of totality at Athens is better made out than in the case of any other ancient eclipse seen at a definite point. This evidence is weakened only by the point that in his actual description Thucydides says nothing to indicate that the eclipse was total except his allusion to the stars, nor does he allude to any fear being among the inhabitants.

Still, it will be of great interest to determine what changes in the lunar elements would make this eclipse annular at Athens, and a further discussion of the subject may be deferred until we have made the comparison with the tables.

- (F) Eclipse of Agathocles, -309, August 14.—This eclipse is completely identified with that observed by Agathocles, whose description would leave no reasonable doubt of totality. If any correction of the lunar elements could be based upon it, it would be the best of all the ancient ones for our purpose. But there are two circumstances which prevent this. In the first place, Agathocles was at sea and his position is doubtful. Secondly, the shadow path was so broad that even if we knew precisely where Agathocles was, no admissible changes in the tables would throw him outside the shadow unless he were near one border. Apart from this, the eclipse has been so thoroughly discussed by Airy and others that nothing more need be said of it in the present connection, although we shall have occasion to refer to it later.
- (G) Eclipse of Alexandria and the Hellespont, -128, November 20.—This eclipse differs from all his others in that no date of the occurrence is recorded, but the circumstances of the eclipse are described with a degree of precision unequaled in any other ancient record. What is actually known is that the eclipse was total in the Hellespont and four-fifths covered at Alexandria. The three authorities by whom it is mentioned are cited and discussed with such fullness by Celoria and later by Fotheringham that it does not seem necessary to enter into details. Celoria undertook an exhaustive examination of all the eclipses within the period during which the eclipse in question might have occurred, basing his conclusions on Hansen's tables. The only one he found fulfilling the conditions was that of Agathocles, in -309. Afterwards Doctor Hultsch proposed to identify it with the eclipse of -128, November 20.

A careful examination showed that the eclipse was probably used by Hipparchus, and therefore occurred during the time of his activity. This renders the date last mentioned the only admissible one. We may therefore say with more confidence than in the case of any other central eclipse of antiquity that the eclipse of -128, November 20, was total in the Hellespont, while the sun was only four-fifths covered at Alexandria.

(H) Eclipse of Utica, 197, June 3.—We quote the following passage of Tertullian, at Scapian, chapter 3, from Mr. Cowell:

Nam et sol ille in conventu Uticensi, extincto pæne lumine, adeo portentum fuit, ut non potuerit ex ordinario deliquio hoc pati, positus in suo hypsomate et domicilio. Habetis astrologos.

a Memorie della Classe di scienze fisiche, matematiche e naturali, Serie 3, Vol. VII, R. Accademia dei Lincei, Seduta del 7 marzo, 1880.

b Monthly Notices, R. A. S., Vol. LXIX, p. 204, January, 1909.

The tables show this eclipse to have been really annular though almost total. As Tertullian describes the eclipse only as nearly total, "extincto pæne lumine," there is a wide range of uncertainty as to the formation of the annulus. Any correction that can be derived from it will therefore be doubtful.

Possible Total Eclipses of Doubtful Identity.

59. There are a number of passages in the classical authors which may be supposed with more or less probability to have referred to total solar eclipses, which, however, prove incapable of certain identification. One of the most curious of these is the supposed eclipse of Xerxes, of which the time and place would seem to be more certainly fixed than in the case of any other. The place was near Sardis, the time between -477 and -480. What is remarkable is that the eclipse is described by two writers, both practically contemporaneous with the event.

Herodotus states that the sun, leaving his seat in the heavens, was concealed from view, and night instead of day came on, though the weather was not cloudy, but exceedingly clear.

Aristides states that there happened an eclipse of the sun in the east, which foretold to Xerxes his defeat, because the sun was eclipsed in the region of its rising, the direction from which Xerxes was marching.

No possible eclipse of the sun could have given rise to these two statements. The latter are therefore available only as an index to the degree of confidence with which we can assign any precise interpretation to the statements of ancient historians on the subject. It is quite unnecessary for our present purpose to discuss the numerous suggestions as to what the passages may have referred, because in any case the eclipse will be useless for our purpose.

A supposed eclipse at Larissa has been made celebrated through its discussion by Airy, who assigns the date -556. The author is Xenophon. Nothing but doubt has been thrown upon the whole subject of this eclipse by recent researches, which is heightened by the doubt whether the passage referred to an eclipse at all, and, if it did, whether the year -556 is possible.

The several other narratives quoted by Hansen to support his value of the secular acceleration it does not seem necessary to discuss, since they have been discussed at great extent by several recent authors without any result being reached on which a definite correction can be based.

The question may still arise as to the possible value of mediæval total eclipses. Ginzel has collected a great number of observations of this class, and Celoria, in a well-known paper, has discussed those of 1140 and 1143. What is especially worthy in this discussion is that the limits of the shadow path are determined from the statements of observers by judging in each case whether the eclipse was or was not seen as a total one.

Comparison with the tables shows that no admissible values of the elements of the moon's mean motion will give the limits of the path as mapped by Celoria.

The author has also made a careful study of Ginzel's eclipses with a view to determining whether in any case it could be judged with a fair degree of confidence that what any of the narrators saw was undoubtedly the total phase. If he found any such cases, they were too few to base any conclusions upon. He frankly admits that on this point he differs widely from the views of his fellow astronomers who have examined the same data, especially of Ginzel. The corrections derived by the latter from the totality of the mediæval eclipses as found in his Kanon der Finsternisse diverge greatly from the results of modern observations. Notwithstanding the high authority of so careful a student, the writer feels himself compelled to hold that when the question is whether the modern observations of Greenwich and Paris are in error by large fractions of a minute of time, or whether deductions from the narratives of mediæval authorities are reliable when we attempt to interpret them with entire precision, his own judgment is in favor of the modern observations, combined with gravitational theory. That the results of each author were widely divergent both from mean observations and gravitational theory, was not, it seems to me, given its due weight.

The maps of Oppolzer's Canon are defective principally from the rough method of delineating the path of central eclipse upon the earth. This was done by computing the noon point, and that of beginning and ending, and then drawing an arc of a circle upon the map through these three points. As the true path when projected upon the map scarcely ever approximates to the arc of a circle, the result is that although the noon point and the two extremes are correct according to the formulæ used, the intermediate portions of the path are frequently in error by 400 or 500 miles. This error might have been reduced by the very slight modification of computing the direction of the tangent to the path at the noon point, and then representing the path before and after this point by arcs of circles tangent to the actual path at the noon point. Although the path would not even then have been precise, it would have been much nearer the truth than is the one actually drawn.

In Ginzel's maps this defect does not exist, every path being laid down with entire precision according to his tabular elements.

SECTION II. DISCUSSION OF OPPOLZER'S TABLES OF ECLIPSES.

- 60. To compare ancient eclipses with theory, I have made use of Oppolzer's eclipse tables, applying the corrections necessary to reduce their elements to those of the concluded theory. These tables are constructed on a very convenient plan worked out by Hansen. They include only the larger inequalities in the motion of the moon and omit the periodic inequalities of the sun's longitude. The effect of these omissions on the circumstances of an eclipse is too small to be of importance in the discussion of the historical eclipses. The principal points in the construction of these tables are the following:
 - 1. The moment of mean conjunction of the sun and moon in ecliptic longitude is tabulated.
- 2. The arguments with which the tables are entered have the values corresponding to this moment of mean conjunction, and are therefore readily computed and checked.
- 3. The theory is so constructed and transformed that the quantities tabulated are the reductions to the moment of true conjunction in longitude, and the values of the principal eclipse elements for the latter moment.
- 4. With the elements thus determined the circumstances of the eclipse are computed in the usual way, assuming the motions during the eclipse to remain unchanged from their value at true conjunction.
- 5. The elements tabulated on this system are ecliptical, not equatorial; some reductions to the equator are therefore necessary. The method of making this reduction is given at some length by Oppolzer, but I have found it more convenient to reduce the ecliptical coordinates of the axis of the shadow to the equator, thus using the Besselian coordinates in the further computations.
- 6. Oppolzer tabulates certain empirical corrections to his arguments, but does not, so far as the writer is aware, give any statement of the grounds on which they are based. As they are inconsistent both with gravitational theory and modern observations, I have ignored them, and reduced the elements to the concluded theory of the present work.

Correction of Oppolzer's Tables.

61. The elements on which Oppolzer's tables are based are Hansen's tables of the moon and Leverrier's of the sun. But the lunar elements of mean motion have received the following modifications:

The longitude of the node receives the correction

$$\Delta \Omega = -5''.5 + 11''.0 \text{ T}.$$

The lunar perigee remaining unchanged, Oppolzers's virtual correction of ω is

$$\Delta\omega = +5$$
".5-11".0 T.

2. The secular accelerations which Oppolzer adopts are those of Hansen's Darlegung, which compare with those of Hansen's tables as follows:

Hansen's Tables.	Oppolzer (Darlegung).	Oppolzer – Tables.
$J_2g = +49.435T^2 + 0.05007T^3$ $J_2\omega = -44.323T^2 - 0.04376T^3$ $J_2Q = +8.189T^2 + 0.00716T^3$ $J_2\lambda = +13.301T^2 + 0.01347T^3$	$\begin{array}{c} " \\ +51.134T^2 + .05115T^3 \\ -45.200T^204521T^3 \\ + 7.744T^2 + .00662T^3 \\ + 13.678T^2 + .01256T^3 \end{array}$	$\begin{array}{c} "" \\ + 1.699 T^2 + .00108 T^3 \\ - 0.877 T^200145 T^3 \\ - 0.445 T^200054 T^3 \\ + 0.377 T^200091 T^3 \end{array}$

The corrections required are those to Oppolzer. I accept his centennial motions of π and \otimes , and therefore of ω , for the epoch 1800, but correct the terms in T^2 and T^3 . These terms as corrected compare with those of Oppolzer as follows:

N.	N-O.
$J_2g = +46.171T^2 + .0518T^3$ $J_2\omega = -44.66 T^2053T^3$ $J_2\Omega = +7.56 T^2 + .008T^3$ $J_2\lambda = +9.071T^2 + .0068T^3$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

These corrections are applicable to the body of Oppolzer's tables. They affect only the times of mean conjunction and the arguments with which the tables are entered.

The corrections of the arguments are of two classes, the one that of the moving elements at any given time; the other the reduction to the actual time of true conjunction in longitude.

The term in T of reduction of Oppolzer's mean longitude of the moon to that of the present theory is the same as for Hansen's tables. The entire reduction, N-O, is,

$$\delta \lambda = -0^{\circ}.3 - 26^{\circ}.57T - 4^{\circ}.607T^2 - 0^{\circ}.0058T^3.$$

In my new Tables of the Sun for 1900, Leverrier's mean longitude has received the correction

$$\delta L = -0^{\circ}.36 - 0^{\circ}.78T - 0^{\circ}.018T^{2}$$
.

Thus we have, for the correction to Oppolzer, $\lambda - L$,

$$\delta(\lambda - L) = -25^{\circ}.79\text{T} - 4^{\circ}.589\text{T}^2 - 0^{\circ}.\infty58\text{T}^3.$$

We now put τ for the time of mean conjunction, called T by Oppolzer. Then $\Delta \tau$ is the time required for $\lambda - L$ to move through the arc $\delta(\lambda - L)$. Putting λ_1 and L_1 for the daily motions of λ and L, we have

$$\Delta \tau = \frac{\delta L - \delta \lambda}{\lambda_1 - L_1}$$

We have

$$\lambda_1 = 13^{\circ}.176,$$

 $L_1 = 0^{\circ}.986.$

Hence,

$$\Delta \tau = \frac{25''.79T + 4''.589T^2 + 0''.0058T^3}{12^{\circ}.190}$$

and

$$10^4 \Delta \tau = 5.^{d}877 T + 1^{d}.0458 T^2 + 0^{d}.0013 T^3.$$

The arguments of the tables are all given for the moment of mean conjunction. Their corrections therefore consist of two parts:

- 1. The correction at a given moment, as already found.
- 2. The reduction for the interval $\Delta \tau$.

We represent these two corrections by the symbols δ and δ_i .

Since Hansen's centennial motion of the perigee is retained without change, the term of g factored by T is the same as for λ . We therefore have for the correction of g,

$$\delta g = -26^{\circ}.57T - 4^{\circ}.963T^2 + 0^{\circ}.0006T^3$$
.

In degrees

$$10^4 \text{ Mg} = -73^\circ.80 \text{ T} - 13^\circ.786 \text{ T}^2 + 0^\circ.0017 \text{ T}^3.$$

For the sun's mean longitude

$$10^4 \delta L = -2^{\circ}.17 T - 0^{\circ}.050 T^2$$
.

For the sun's mean anomaly Oppolzer used Leverrier's value

$$g'=g'_0+(100^r-3401''.40)T-0''.7157T^2$$
.

The value in my Tables of the Sun is

$$g'=g'_0+(100^r-3419''.86)T-0''.50T^2$$
.

Dropping the constant term for 1800 the result is:

$$\delta g' = -18''.46T + 0''.22T^2$$

giving

$$10^4 \delta g' = -51^{\circ}.3T + 0^{\circ}.61T^2$$
.

Oppolzer's motion for the node for 1900 being also retained, we have

$$10^4 \delta \Omega = -0^{\circ}.51 T^2 + 0^{\circ}.004 T^3$$

 $10^4 \delta \omega = +1^{\circ}.50 T^2 - 0^{\circ}.021 T^3$.

For the corresponding reductions for $\Delta \tau$ we have the daily motions

$$g_1 = 13.065,$$

 $g'_1 = L_1 = 0.9856,$
 $\omega_1 = 0.1644,$
 $\Omega_1 = -0.0530.$

The product of these into $J\tau$ gives the following:

$$\begin{array}{l}
 \text{10}^{4} \delta_{1} g = +76.78 \text{T} + 13.666 \text{T}^{2} + 0.0144 \text{T}^{3}, \\
 \text{10}^{4} \delta_{1} L = +5.792 \text{T} + 1.031 \text{T}^{2} + 0.0011 \text{T}^{3}, \\
 \text{10}^{4} \delta_{1} \omega = +0.966 \text{T} + 0.172 \text{T}^{2} + 0.0002 \text{T}^{3}, \\
 \text{10}^{4} \delta_{1} \omega = -0.312 \text{T} - 0.056 \text{T}^{2}, \\
 \delta_{1} g' = \delta_{1} L.
\end{array}$$

Adding these to the values of δg , etc., we have the entire corrections:

$$10^{4} \Delta g = + 2.98 \text{T} - 0.120 \text{T}^{2} + 0.016 \text{T}^{3},$$

$$10^{4} \Delta L = + 3.62 \text{T} + 0.98 \text{I} \text{T}^{2} + 0.001 \text{T}^{3},$$

$$10^{4} \Delta \omega = + 0.97 \text{T} + 1.67 \text{T}^{2} - 0.021 \text{T}^{3},$$

$$10^{4} \Delta \Omega = - 0.31 \text{T} - 0.57 \text{T}^{2} + 0.004 \text{T}^{3},$$

$$10^{4} \Delta g' = -45.51 \text{T} + 1.64 \text{T}^{2} + 0.001 \text{T}^{3}.$$

The corrections to Oppolzer's P and Q are each equal to that of $g+\omega$. Hence $10^4 P = 10^4 Q = +3^{\circ}.95 T + 1^{\circ}.55 T^2 - 0^{\circ}.005 T^3$.

Oppolzer's arguments I-VIII are expressed in units of 0°.9. The expressions for the arguments and corrections thus arising are:

Arg.
$$I = g$$
 $Io^4 \Delta I$ $= + 3.3T - 0.13T^2 + 0.018T^3$
 $II = g'$ $Io^4 \Delta II$ $= -50.6T + 1.82T^2$
 $III = 2g' + 2\omega'$ $Io^4 \Delta III$ $= + 8.0T + 2.2T^2$
 $IV = g - g'$ $Io^4 \Delta IV$ $= +53.9T - 2.0T^2$
 $V = g + g'$ $Io^4 \Delta V$ $= -47.3T + 1.7T^2$
 $VI = \otimes$ $Io^4 \Delta VI$ $= -0.3T - 0.6T^2$
 $VII = 2g - g'$ $Io^4 \Delta VIII = +57.2T - 2.1T^2$
 $VIII = 2g + g'$ $Io^4 \Delta VIII = -44.0T + 1.6T^2$

These corrections are to be used in place of the "Empirische Correctionen," which Oppolzer prefixes to his tables. They are so readily computed that the exhibit of the following values, for intervals of 500 years, will answer our present purpose.

Year	T	J÷	1L	JP = JQ	J I	AII	IIIL	A IV	٦V
		d	0	0	•	0	0	О	0
-1200	-30	+0.0795	+o. o8o	+0. 117	-0.07	+0.31	+0.2	-о. з	+o. 3
– 700	-25	+0.0524	+0.054	+0.081	-o. o5	+0. 24	+o. 1	-o. 3	+0.2
- 200	-20	+0. 0310	+0.033	+o. o5 i	-0.03	+0.17	+o. 1	-o. 2	+0.2
+ 300	-15	+0.0151	+0.017	+o. o28	-o. or	+0.12	0.0	-o. 1	+o. ı
8 0 0	-10	+0.0047	+o. oo 6	+0.011	-o. or ,	+0.07	0.0	-о. і	+o. 1
1300	- 5	-0.0004	-0.001	+0.002	0.00	+0.03	0.0	0.0	0.0
1800	0	0.0000	0.000	0.000	0.00	0.00	0.0	0.0	0.0

The corrections to the other arguments seem to be unimportant.

Theoretical precision requires that the secular variation of the earth's eccentricity be reduced to the modern value. Leverrier's value for 1850 is -8''.755. The modern value is -8''.595. The numbers factored by τ in Oppolzer's tables should therefore be diminished by 0.0183 of their amount. The effect of this correction has been omitted in the work. The maximum effect on τ for the ancient eclipses is $0^{d}.0002$.

62. It may be of interest to compare the preceding with Oppolzer's empirical corrections, as given on his pages 15 and [4] and [5]. His $\Delta \tau$ agrees closely with my own, being in my notation,

$$10^4 \Delta \tau = +6^d T + 0^d \cdot 9 T^2 + 0^d \cdot 0009 T^3$$
.

This corresponds to

$$\Delta \lambda = -26''T - 3''.9T^2 - 0''.0039T^3.$$

His $\Delta L'$, as tabulated, is the reduction of L' for $\Delta \tau$, or what I term $\delta_1 L$. As my δL is small, this differs little from my value.

The case is different with Δg and $\Delta \omega$. The values of these quantities cited by Oppolzer on his page 15 may be written

$$10^4 J(g + \omega) = -190^{\circ} T - 4^{\circ} T^2 - 0^{\circ} .004 T^3,$$

 $10^4 Jg = +30^{\circ} T^2 + 0^{\circ} .03 T^3,$

from which follows

$$10^4 \Delta \omega = -190^{\circ} T - 34^{\circ} T^2 - 0^{\circ}.034 T^3.$$

But when we compare the result of computation with these expressions with Oppolzer's tabulated corrections we find that, while $\Delta(g+\omega)$ agrees and gives ΔP and ΔQ , as it should, this is not exactly the case with Δ Arg. I, the equivalent of g. The expression in sexigesimal degrees,

in fact, is used as centesimal degrees, without division by 0.9. It follows that, so far as results are concerned, the tabulated correction is

$$10^4 \Delta g = 27^{\circ}.0T^2 + 0^{\circ}.027T^3$$

which will give

$$10^4 \text{ A}_{\odot} = -190^{\circ} \text{ T} - 31^{\circ}.0 \text{ T}^2 - 0^{\circ}.03 \text{ T}^3.$$

These corrections are those for the mean conjunction. To pass from them to the actual corrections at a given time we have the relation

$$\delta = \Delta - \delta_1$$
.

Using Oppolzer's $\mathcal{I}\tau$ we shall have

$$10^4 \delta_1 g = +78^\circ.4 T + 11^\circ.76 T^2 + 0^\circ.012 T^3$$
,
 $10^4 \delta_1 \omega = + 1^\circ.0 T + 0^\circ.15 T^2$.

It follows that the implicit values of the corrections are

$$10^4 \delta g = -78^\circ.4 T + 15^\circ.24 T^2 + 0^\circ.015 T^3,$$

 $10^4 \delta \omega = -191^\circ.0 T - 31^\circ.15 T^2 - 0^\circ.03 T^3.$

Reducing to seconds of arc

$$\delta g = -28''.22T + 5''.486T^{2} + 0''.0054T^{3},$$

$$\delta \omega = -68''.76T - 11''.214T^{2} - 0''.0108T^{3},$$

$$\delta (g + \omega) = -96''.98T - 5''.728T^{2} - 0''.0054T^{3}.$$

The next question of interest is what corrections of the mean longitude, perigee, and node these imply. We have already found from $\Delta \tau$

$$\delta \lambda = -26''T - 3''.9T^2 - 0''.0039T^3.$$

The argument g being that for the equation of the center is virtually $\lambda - \pi$. Hence

$$\delta \pi = \delta \lambda - \delta g$$
.

The virtual longitude of the node is determined by the mean argument of latitude, $g+\omega$, through the condition

$$\varrho + \omega = \lambda - \Omega$$
.

Hence, for the virtual correction of the node

$$\delta \otimes = \delta \lambda - \delta(g + \omega) = \delta \pi - \delta \omega$$
.

We thus have, for the perigee and node,

$$\delta\pi = + 2^{"}.22T - 9^{"}.39T^{2} - 0^{"}.0093T^{3},$$

 $\delta\otimes = +70^{"}.98T + 1^{"}.82T^{2} + 0^{"}.0015T^{3}.$

These are the corrections which in Oppolzer's Canon der Finsternisse are implicitly applied to obtain the basis of the tables already quoted. To reduce them to the provisional basis of the present work they are equivalent to

Newcomb – Opp. Can.:
$$\delta g = + 1''.65 T - 10''.449 T^2 - 0''.0048 T^3$$
, $\delta \pi = -2''.2 T + 9''.75 T^2 + 0''.003 T^3$, $\delta \Omega = -71''.0 T - 2''.00 T^2 - 0''.000 T^3$.

Ginzel's Empirical Corrections.

63. In his work (Spezieller Kanon der Finsternisse, p. 5), Ginzel gives a system of corrections with which he replaces those of Oppolzer. Changing the notation and form to that of the present work, they are:

 $10^4 \Delta \tau = -1^d.92 T + 0^d.247 T^2 + 0^d.00025 T^3$.

This gives for the corresponding correction to the difference of mean longitude of the moon and sun

$$J\lambda - JL = 8''.43T - 1''.084T^2 - 0.0011T^3$$
.

He also uses

$$10^4 JP = 10^4 JQ = -76^\circ.9 T + 0^\circ.49 T^2 + 0^\circ.00049 T^3,$$

 $10^4 JI = + 240^\circ T + 5^\circ.2 T^2 + 0^\circ.0052 T^3.$

His values of $\Delta L'$ and ΔIII need not be used.

From $\Delta \tau$ we have

$$10^4 \delta_1 g = -25^{\circ}.08T + 3^{\circ}.227T^2 + 0^{\circ}.00327T^3,$$

 $10^4 \Delta g = +216^{\circ}.00T + 4^{\circ}.680T^2 + 0^{\circ}.00468T^3,$
 $10^4 \delta g = +241^{\circ}.08T + 1^{\circ}.453T^2 + 0^{\circ}.00141T^3,$
 $\delta g = +86''.79T + 0''.523T^2 + 0''.00051T^3.$

This gives

$$\Delta \pi = -78^{\circ}.4\text{T} - 1^{\circ}.61\text{T}^2 - 0^{\circ}.0016\text{T}^3.$$

We also have

$$10^4\delta_1 (g+\omega) = -25^{\circ}.4T + 3^{\circ}.26T^2 + 0^{\circ}.0033T^3$$
.

Subtracting this from $\Delta P = \Delta(g + \omega)$, after multiplying ΔP by 0.9, leaves

$$10^{4}\delta (g+\omega) = -43^{\circ}.8T - 2^{\circ}.82T^{2} - 0^{\circ}.0029T^{3},$$

 $\delta (g+\omega) = -15''.8T - 1''.02T^{2} - 0''.0010T^{3}.$

Whence, subtracting δg

$$10^4\delta\omega = -284^\circ.9T - 4^\circ.27T^2 - 0^\circ.0043T^3,$$

 $\delta\omega = -102''.6T - 1''.54T^2 - 0''.0015T^3,$
 $\delta\Omega = + 24''.2T - 0''.07T^2 - 0''.0001T^3.$

For the differences, Ginzel-Oppolzer, we have

$$\delta \Omega = -46''.8T - 1''.89T^2 - 0''.0016T^3,$$

$$10^4 \Delta \tau = -7^{d}.9T - 0^{d}.65T^2 - 0^{d}.0006T^3.$$

SECTION III.—COMPUTATION OF ECLIPSES FROM OPPOLZER'S TABLES.

64. The computation of the principal circumstances of eclipses at any period of history can be so easily made by means of Oppolzer's tables with the application of the preceding corrections that it seems desirable to outline the best method of doing this. We begin by recalling to mind the basis of the theory of eclipses. This is a system of coordinates the planes of which pass through the center of the earth as the origin. The fundamental plane of xy is perpendicular to the shadow axis. The axis of z is therefore parallel to the shadow axis, but only an approximate value of it is ever necessary. On the fundamental plane two systems of rectangular axes may be taken. In one, the axis of the equatorial system is the intersection of the equator with the plane. In the ecliptic system this axis is the intersection of the ecliptic with the plane. The first is the Besselian, the second the Hansenian system. We shall put

 x_2 , y_2 , the coordinates of the shadow axis in the ecliptic system;

x, y, the coordinates in the Besselian system;

h, the angle between the axes of x in the two systems.

We now show how we may pass from the elements of the eclipse as found from Oppolzer's tables to the coordinates just defined. These elements are the following:

T, the moment of true conjunction of the sun and moon in longitude which we suppose expressed in Greenwich mean time;

L', the true longitude of the sun at this moment;

E, the equation of time, in the sense mean time = true time + E;

 ε , the obliquity of the ecliptic;

P, the moon's argument of latitude at the time;

Q, p, q, auxiliary quantities which need not be geometrically defined, of which the first differs little from P, while p differs little from $\sin i \div \sin \pi$, and q differs little from $\sin i$, i being the inclination of the moon's orbit;

 $\Delta L'$, the hourly motion of the coordinate x_2 of the shadow axis along the fundamental plane.

When we seek the limits of the shadow of the penumbra two additional quantities are necessary, namely—

u, the radius of the umbra on the fundamental plane;

f, the angle which the element of the shadow cone makes with the shadow axis.

There will, of course, be two values of f as well as of u, the one corresponding to the penumbra, the other to the umbra.

These elements are computed from Oppolzer's tables and corrected by the formulæ already given.

The ecliptical coordinates of the shadow axis at the time T in terms of the Oppolzer elements are

$$x_2^{(0)} = 0, \ y_2^{(0)} = p \sin P.$$
 (1)

The hourly motions of these coordinates, which we regard as constant, are

$$x_2' = \Delta L',$$

$$y_2' = q \cos Q.$$

Their values at any time T+t are

$$x_2 = x_2't,$$

 $y_2 = y_2^{(0)} + y_2't.$

The method now proposed differs from that of Oppolzer in that these ecliptical coordinates are at once transformed to the Besselian system, which is used in the rest of the computation. For this transformation we need the sun's declination and the angle between the two systems of coordinate axes on the fundamental plane. These are computed by the formulæ

$$\cos d \sin h = \sin \epsilon \cos L',
\cos d \cos h = \cos \epsilon,
\sin d = \sin \epsilon \sin L'.$$
(2)

If the time of the special phase to be computed differs much from T, it may be well to correct L', the sun's longitude, for the motion during the interval. The effect of this correction will, however, always be small.

In strictness the angle d should be the declination of the shadow axis and not of the sun itself, but as the two are coincident at the total phase, which is the one principally considered, and differ very little in any case, we may use the declination of the sun for d throughout. The coordinates of the shadow axis are now reduced to those of the equatorial system by the equations

$$\begin{array}{l}
x = x_2 \cos h - y_2 \sin h, \\
y = x_2 \sin h + y_2 \cos h.
\end{array}$$
(3)

The hourly motions may be found by using the numerical values of x_2' and y_2' in these equations. A familiar form of computation is the following:

When, as will nearly always be the case in historical eclipses, we wish to find the circumstances of the eclipse, especially the magnitude of the greatest phase at a given place, our method of proceeding is this: we choose a moment τ expressed in Greenwich mean time as near as convenient to the moment of maximum phase at the place. The preceding computation of the coordinates may advantageously be made for this moment. For this moment we find the local west hour angle of the shadow axis by the equation

$$\mu' = \tau \times 15^{\circ} - E + \lambda, \tag{5}$$

 λ being the east longitude of the place from Greenwich. The coordinates ξ and η of the place of observation, together with their hourly motions, are found from the equations

$$\xi = \rho \cos \varphi' \sin \mu',
\eta = \rho \sin \varphi' \cos d - \rho \cos \varphi' \sin d \cos \mu',
\xi' = [9.4192] \rho \cos \varphi' \cos \mu',
\eta' = [9.4192] \xi \sin d,$$
(6)

where ρ and ϕ' are the radius of the earth and the geocentric latitude of the place.

We assume that the moment τ is so near the time of greatest phase that the hourly motions ξ' and η' may be regarded as constant during the interval. The least distance of the shadow axis from the place of observation, which we call Δ , is then given by the computation

$$X = x - \xi, \qquad X' = x' - \xi',$$

$$Y = y - \eta, \qquad Y' = y' - \eta',$$

$$\Delta = \frac{X'Y - XY'}{\sqrt{X'^2 + Y'^2}}.$$

$$(7)$$

Here, of course, X and Y are the coordinates of the shadow axis relative to the point of observation.

The following form of computation may be used with advantage, especially as the values of s and S are used in computing the differential coefficients:

$$\begin{cases}
c \sin C = Y, \\
c \cos C = X, \\
s \sin S = Y, \\
s \cos S = X', \\
\Delta = c \sin (C - S).
\end{cases}$$
(8)

A positive value of Δ indicates that the shadow axis passes north of the place, and a negative value, that it passes to the south.

65. We have next to determine the displacement by a small change in the elements. Practically, it will suffice to determine the displacement in a direction parallel on the fundamental plane, which will be equal to $\delta \Delta$. Now

$$\delta \mathcal{L} = \frac{d\mathcal{L}}{dX} \delta X + \frac{d\mathcal{L}}{dY} \delta Y = -\sin S \delta X + \cos S \delta Y. \tag{9}$$

From the equations (3) we find

$$\begin{cases} \delta x = \cos h \, \delta x_2 - \sin h \, \delta y_2, \\ \delta y = \sin h \, \delta x_2 + \cos h \, \delta y_2. \end{cases}$$
 (10)

The expressions for x_2 and y_2 in terms of the lunar and solar coordinates at a fixed moment are

$$x_{2} = \frac{\sin (v - L')}{\sin (\pi - \pi')},$$

$$y_{2} = \frac{\sin \beta}{\sin (\pi - \pi')} = \frac{\sin i \sin (v - \Omega)}{\sin (\pi - \pi')},$$
(11)

where i is the inclination of the moon's orbit, and π and π' the parallaxes of the moon and sun, respectively.

In our present problem approximate values of the increments will suffice, so that we may put $\cos(v-\Omega)$ equal to ± 1 according to the node at which the eclipse occurs, and $\cos(v-L')$ equal to ± 1 according to whether it is a solar or a lunar eclipse. We may also take for v indifferently the longitude in orbit of the moon or its ecliptic longitude. Thus we may use for a solar eclipse

$$\delta x_2 = \frac{\delta v - \delta L'}{\sin(\pi - \pi')},$$

$$\delta y_2 = \pm \frac{\sin i}{\sin(\pi - \pi')} (\delta v - \delta \Omega).$$
(12)

The substitution of these values in (10) gives δx and δy .

Since Δ is a function of $x-\xi$ and $y-\eta$ we have in rigor to subtract $\delta\xi$ and $\delta\eta$ from δx and δy . But we see from a comparison of (6) and (12) that $\delta\xi$ and $\delta\eta$ are less than δx and δy in the ratio $\sin \pi$: 1; we may therefore drop them entirely. We may then use instead of (10)

$$\sin (\pi - \pi') \delta X = \cos h (\delta v - \delta L') \mp \sin h \sin i (\delta v - \delta \Omega),$$

 $\sin (\pi - \pi') \delta Y = \sin h (\delta v - \delta L') \pm \cos h \sin i (\delta v - \delta \Omega).$

By substituting in (9) we see that the partial derivatives of Δ as to v, L' and Q may be written

$$\frac{d\Delta}{dv} = \frac{\sin (h-S)}{\sin (\pi - \pi')} \pm \frac{\cos (h-S)}{\sin (\pi - \pi')} \sin i,$$

$$\frac{d\Delta}{dL'} = -\frac{\sin (h-S)}{\sin (\pi - \pi')},$$

$$\frac{d\Delta}{dQ} = \mp \frac{\cos (h-S)}{\sin (\pi - \pi')} \sin i;$$
(13)

the upper sign being used for an eclipse near the ascending node and the lower sign for one near the descending node.

To use the corrections of the mean longitudes of the sun and moon, as we should in theory, we multiply $\frac{d\Delta}{dL'}$ by $1+0.034 \cos g'$, and $\frac{d\Delta}{dv}$ by $\frac{dv}{d\lambda}$, for which last we may put, in the case of a solar eclipse

$$\frac{dv}{d\lambda} = 1.019 + 0.131 \cos g. \tag{14}$$

The increment of Δ in terms of increments to the moon's and sun's mean longitude, and \otimes , the node, will then be

$$\delta \Delta = \frac{d\Delta}{dv} \frac{dv}{d\lambda} \delta\lambda + (1 + 0.034 \cos g') \frac{d\Delta}{dL'} \delta L + \frac{d\Delta}{d\Omega} \delta \Omega,$$

the factors having the values given in (13) and (14).

Limits of the Umbra.

66. To determine from observation the position of a geographical point relative to the axis of the shadow at the moment of nearest approach, it is generally necessary to make use of the duration of the total phase at some point near the limit of the penumbra. We have therefore to determine the radius of the umbra at the place. For this we require angle f, which the elements of the umbral cone make with the axes, and in connection therewith the radius of the umbra on the fundamental plane. This branch of the theory of the eclipse is so familiar that no detailed development of the theory is necessary. The theory, so far as we have to make use of it, is rendered all the simpler from the fact that what we require is not the geographical limit of the shadow path on the earth's surface, but only the position of the place relative to the umbral cone at the moment of the nearest approach.

The angle f differs but little from the apparent semidiameter, s', of the sun. For the mean value of s' we use that which I have adopted in my Tables of the Sun, in which the effect of irradiation is subducted. This value is

$$s'_0 = 959''.63.$$

The sun's apparent semidiameter is, therefore,

$$s' = \frac{a'}{5} \times 959''.63.$$

For the moon's constant of semidiameter I have found

$$s_0 = 932^{\circ}.58.$$

Taking 8".80 as the constant of solar parallax, the well known formula for the angle f may be reduced to the following approximate form:

Put f_1 for the umbral angle, and f_2 for the penumbral angle, although we shall scarcely have occasion to use the latter in our present work. Dropping terms of the order e'^2 we shall have:

$$f_1 = 957''.23(1.0026 + e' \cos g'),$$

 $f_2 = 962''.03(1.0026 + e' \cos g'),$

where e' is the eccentricity of the earth's orbit and g' the sun's mean anomaly. If a more precise value is desirable, it may be found by the equations

Umbra
$$f_1 = \frac{957''.23}{r'_1 - .00258}$$

Penumbra
$$f_2 = \frac{962''.03}{r' - .00258'}$$

where r' is the sun's radius vector expressed in the usual way.

In Oppolzer's tables are given the formulæ for the radius on the fundamental plane, while the numerical value of the penumbral radius is tabulated for each eclipse in his Canon. But the enlarged semidiameters of the sun and moon, as affected by irradiation, have evidently been used in these formulæ.

The rigorous formula for the radius of the umbra on the fundamental plane is

$$u=k \sec f_1-z \tan f_1$$

where z is the perpendicular distance of the moon's center from the fundamental plane, expressed in terms of the earth's equatorial radius, while k is the linear radius of the moon. If the exact

value of z is wanted, which it is only in exceptional cases, it may be found with sufficient precision by the formula

$$z = \frac{\cos G}{\sin \pi}$$

G being the geocentric angular distance of the centers of the sun and moon at the moment of the phase under consideration.

For our purpose the umbral radius required is that upon a plane passing through the place, parallel to the fundamental plane. The distance of these two planes is the coordinate ζ corresponding to the formulæ (6) of which the value is

$$\zeta = \rho \sin \varphi' \sin d + \rho \cos \varphi' \cos d \cos \mu';$$

the required umbral radius is then

$$u_1 = u + \zeta \tan f_1$$
.

Should the penumbral radius also be required, this expression is

$$u_2 = u' - \zeta \tan f_2$$
.

The distance of the place from the margin of the shadow cone at the moment of greatest obscuration is then equal to

$$u_1-\Delta$$
.

If this difference comes out negative, it shows that according to the tables the eclipse was not entirely total at the place.

67. The results of the whole computation are tabulated as follows: T, L', etc., are the elements from the author's theory, in Oppolzer's notation. Δ is given in units of the fourth place of decimals of the earth's equatorial radius. Each Δ is followed by the increment which it would receive from an increment of λ , Ω , and L', all, for convenience, expressed in minutes of arc.

Elements of Seven Ancient Eclipses.

T	. L'	E	P	Q	log p	log q	log AL
- 762 June - 647 Apr. - 430 Aug. - 309 Aug. 10 - 128 Nov. 20	0. 7548 116. 332 4. 8691 74. 585 5. 8765 8. 925 3. 1327 124. 487 4. 8505 136. 573 3. 0565 236. 080 71. 068	+0. 75 +0. 52 +0. 52	177. 858 176. 547 171. 597 170. 577 3. 736 9. 403 1. 702	175. 90 174. 74 172. 14 172. 95 2. 66 11. 40 4. 03	o. 7005 o. 6988 o. 6909 o. 7233 o. 6929 o. 6998 o. 7245	8. 7490 8. 7599 8. 7594 8. 7262 8. 7574 8. 7490 8. 7249	9. 7528 9. 7555 9. 7638 9. 7277 9. 7612 9. 7509 9. 7268

Node.	Date.	Minimum distance of shadow-axis.	Radius of shadow.
සාසයයය	-1062 July 30 - 762 June 15 - 647 Apr. 6 - 430 Aug. 3 - 359 Aug. 14 - 128 Nov. 20 + 197 June 3		+ 94 +151 +178 - 55 +145 + 15 - 6

The preceding eclipses, that of -128 excepted, were discussed by Mr. Cowell. He shows that five of the eclipses in question can all be represented in two ways, either by a change in the secular acceleration of the node, or by a hitherto unsuspected acceleration of the sun's longitude, combined with an equal correction to the moon's secular acceleration.

It will be seen that the preceding equations are confirmatory of Mr. Cowell's results. A diminution of 36' in the longitude of the node will make all five of the eclipses nearly or quite annular or total, as the case may be. This effect will be brought about by a diminution of about 3".5 in the secular acceleration of the node.

In the equations it will be seen that the sums of the coefficients of the increments are nearly evanescent. It follows that the representation of the eclipses will remain nearly unchanged when we assign arbitrary equal increments to the longitudes of the moon, the sun, and the node. Hence, instead of a diminution of 3".5 in the nodal acceleration, we may assign an increment of 3".5 to the accelerations of the sun and moon. All this is quite accordant with Cowell's conclusions.

On the other hand, Cowell's corrections make both the eclipse of -309 and that of -128 only partial in the Hellespont. We have therefore to set against the evidence of the five the contrary evidence afforded by the eclipse of -128 that the elements admit of no correction.

It may also be remarked that an increase of 1" in the secular acceleration of the mean longitude, coupled with a diminution of 1" in that of the node, would suffice to make the eclipses of -1062 and -647 total, without throwing that of -128 quite away from the Hellespont. But this change in $\Delta^2 \aleph$ is outside the limit of theoretical uncertainty, and in $\Delta^2 \lambda$ is difficult to admit.

The question whether the remarkable coincidence among the five eclipses affords probable evidence that either set of corrections to the elements is real is one on which opinions will doubtless differ. It must certainly be admitted that either correction seems extremely improbable. In the case of the node, gravitational theory admits of no appreciable correction to the adopted secular acceleration. That any other cause than gravitation changes the motion of the node is rendered improbable by the close agreement between the actual motion and the theoretical motion derived by Brown.

Equally difficult of explanation on any theory is a secular acceleration of the earth's orbital motion. Moreover, while modern observations, so far as I have discussed them, do not exclude the possibility of such an acceleration, they do render it improbable.

The other branch of the question is, whether a chance coincidence in five cases out of six can be regarded as conclusive. The evidence in favor of the actual centrality at the several places of record of the eclipses, as the accounts are cited by Mr. Cowell, seems to me rather weak. It is certain that the eclipses were central within a few hundred miles of the several points, but, in the absence of any specific statement of the place, I see nothing stronger than a greater or less presumption of centrality at the supposed places.

The eclipse of the list in which the question of the phase is most perplexing is that of -430, described by Thucydides, and also mentioned by Cicero and Valerius Maximus, as seen at Athens. Both of these accounts are weak from proving too much, namely, a total eclipse. If there could be any question whether the eclipse was annular or total, the combined weight of the two accounts would lead us to regard totality at Athens as practically certain, because no other phase could have been one of darkness, caused alarm among the citizens, or made the stars visible. We must therefore make a large allowance for exaggeration; and the question is whether this allowance can be much smaller for an annular eclipse than for the partial eclipse which is computed from the tables. The most exact basis for a comparison is afforded by comparing the fraction of the sun's disk which must have remained uncovered in the two hypothetical cases. I find that if the eclipse was annular at Athens, the breadth of the annulus was about 18". If it were partial, a rough computation shows that the area of the sun's disk uncovered was about four times that of the annulus—

possibly nearly five times. At first sight this difference might seem important, but a little consideration may lead us to minimize this importance. The difference in the intensity of daylight under a cloudy sky may well be much greater than this without being striking. The light of the sky a very few minutes after sunset is less than it was during either of the hypothetical phases. Those who have observed total eclipses of the sun know how little striking is the apparent diminution in the intensity of daylight up to within a few minutes of the total phase, and how suddenly the first ray of the reappearing sun illumines the sky and blots out the stars. Computation shows that Venus was very favorably situated for observation during the eclipse of -430, and it may well be doubted whether any other star or planet could have been visible, even if the phase were annular. It is also to be considered that the ratio of the illuminations of the sky in the two cases is less than that of the uncovered sun. Altogether, we may make an ample allowance for exaggeration and misapprehension without overstepping the bounds of reasonable probability.

CHAPTER XIII.

CONCLUDING REMARKS.

The original plan of the present work contemplated a comparison of the observed fluctuations with those of the earth's rotation, assuming the latter to be corrected by observations of Jupiter's satellites and by transits of Mercury. The author made a fairly complete list of the less known observations on eclipses of Jupiter's first satellite from the time of the early Paris astronomers, Picard, etc., until nearly the present. The idea of the comparison is this:

Making abstraction of possible limitations imposed by the laws of motion, the observed fluctuations in the moon's mean motion may be equally due to actual changes in that motion or to changes in the earth's rotation leading to errors in our measurement of time. Which alternative is to be chosen can be determined only by having some independent method of detecting errors in our measure of time. Only two tests on this point are available, one consists in the observed transits of Mercury, the other in observations of Jupiter's satellites.

In the Researches of 1878 will be found a tabular exhibit of the corrections to the measure of time which would account for the observed fluctuations up to 1877. But this is imperfect as regards the period 1750–1870, because the investigation was not complete for that interval. It was there assumed that Hansen's tables represented observations of the moon during the century in question. The results of the present work show that this is far from being the case. The author's discussion of all observed transits of Mercury up to 1881 is found in the first volume of Astronomical Papers prepared for the use of the American Ephemeris. A special effort was made to decide the question whether the observed fluctuations in the moon's motion could be attributed to changes in the earth's rotation, but the question was left in doubt, the inequalities derived from transits of Mercury being only one authority of those necessary to explain the phenomena. It followed that while it was still possible that the inequalities were partly due to the cause in question they were mainly unreal.

About May, 1896, the subject was again taken up in a paper published in the Comptes Rendus (Tome 122, p. 1235). The observations of the transit of 1891 had been made and published in the meantime, and of course would add greatly to the result. The comparison of the observed and theoretical times of the phases was made with the author's new tables of Mercury and the sun, which had just been brought to completion in manuscript. Only November transits were used, the weight of the May transits being very small. Since then the transit of November 13, 1907, has been observed.

The general outcome of these comparisons at the present time is that the curious anomaly of fluctuations, one-third of the magnitude of those required to explain the seeming lunar inequalities, have disappeared. In fact, the fluctuations in the earth's axial rotation, as indicated by transits of Mercury, are no greater than the possible errors of the results. The conclusion to be drawn from all the observed transits of Mercury up to date is that the earth's axial rotation is nearly invariable and can be affected by no inequalities exceeding a small fraction of those needed to explain the apparent fluctuations in the moon's mean motion.

It will still be of interest to test the question by the observations of Jupiter's satellites. The author hopes that this will speedily be done with the aid of the material which he has gathered for the purpose, and which is in good shape for use.

Digitized by Google

An elaborate discussion of the corrections for reducing eclipses of Jupiter's satellites has been made by Professor Glasenapp. If the proposed new discussion is to be exhaustive, these corrections should be taken account of. But for the practical purpose of the work little will be gained by doing so because the unavoidable probable errors of the observations are of a nature that can be eliminated only by multiplying the number of observations and not by minute corrections to them. A necessary supplement to the present work as published is my own work on solar eclipses. Only two determinations are to be sought for from this source. One is the longitude of the moon's node, which ought to be determinable with great precision from the observed path of the moon's shadow. The other is the sun's longitude relative to the stars using the moon as an intermediary.

The lack of modern determinations of the shadow path in total solar eclipses is very curious, especially as the author has made various attempts to either carry out such determinations himself or to have them done by others. The first author who seems to have been alive to the interest and importance of this determination was Halley, who, before the eclipse of 1715, May 3, organized a special set of observations to determine the limits of totality on either side. His observations are found in the Philosophical Transactions, and are very fully described by the writer in his Researches of 1878.

In view of the interest and importance of the subject it is a curious illustration of the unsystematic way in which astronomical work is organized that nearly 100 years elapsed before anyone else attempted to repeat Halley's enterprise. Nathaniel Bowditch, the celebrated translator of the Mecanique Celeste, essayed a similar set of determinations for the total eclipse of 1806. The data which he derived are fully published in the Memoirs of the American Academy of Arts and Sciences. The author has undertaken, as a part of the present work, to determine the shadow path from these data. But he found himself unable to derive any consistent results for either limit of the shadow. How the discrepancies between the reports of the observers are to be explained it is hard to see. The observations look as good on every phase as those made by Halley's observers a century ago. It is barely possible that the author has himself overlooked some point in connection with the stations or made some error in his discussion. But he must leave it to others to ascertain whether such is the case.

The writer himself assayed a similar set of determinations during the total eclipse of 1869. These were entirely successful, and he believes that the limits of the shadow path can be determined from the reports in the official observations of the eclipse with very great precision. But he has not had time to derive the conclusions.

A similar effort was made during the total eclipse of 1878, observations of which will be found in the author's reports of this eclipse. But the uncertainty of the geographical position of many of the stations necessitated a continual postponement of the final discussion until it became too late to undertake it.

When the American photoheliograph for photographing the transits of Venus was designed a greatly improved system of determining the center of the shadow path became available. By photographs of the partial phase on each side of totality as made with this instrument it would have been easy to locate the path of the center of the axis of the shadow. But it is singular that every effort which he made to apply the instrument was frustrated in one way or another. In 1878 his own photographs were a total failure, through the carelessness of the official authority who prepared the instructions for taking them. The result was that they were too faint to admit of measurement. It is needless to catalogue the several eclipses which have since occurred and to state in detail how each attempt to use the photoheliograph for the purpose in question was a failure. This is all the more to be regretted because in reality a total eclipse is not necessary for the determination. The fact is that photographs of the annulus taken on each side of the center are not only as good as but much better than those pertaining to the total phase.

The author earnestly hopes that the science of geometric astronomy will not continue in the backward state implied by these failures.

The enigmatical character of the inequalities brought out in the present work has been shown in the author's address to the International Association of Mathematicians at Rome in 1908. It seems almost impossible to construct any explanation of the phenomenon without in some way setting aside the fundamental laws of dynamics. Tidal retardation will not account for the fluctuations unless modified in some way not now apparent. In fact, this retardation will affect the actual motion of the moon as well as the length of the day, and what forms the basis of the paradox itself, the difference of the earth's rotation and the moon's fluctuation, and not a sum which would result from retardation.

The author had intended to reinvestigate the whole question of tidal retardation taking into account the tidal action of the three bodies, the sun, moon, and earth. A necessary part of this work would be an expression of the dynamical action of the sun and moon on the tidal wave in true terms of the modification in the form of the wave produced by friction. This is a chapter on the subject which the author believes has remained uninvestigated even by Darwin. These hints are dropped merely with the hope that they may be found useful to the future investigator who shall inquire into the theory.

The most unsatisfactory feature of the conclusion of the entire work as carried through by the author is that, until the matter is cleared up, it will be impossible to predict the moon's longitude with the precision required for astronomical purposes. We shall be obliged to correct the moon's mean longitude from time to time, perhaps at intervals of 10 or 20 years, from observations.

book should be returned to ary on or before the last date below.

of five cents a day is incurrant to beyond the specific

PTOP

ASTRONOMICAL PAPERS

PREPARED FOR THE USE OF THE

AMERICAN EPHEMERIS AND NAUTICAL ALMANAC

PUBLISHED BY THE NAUTICAL ALMANAC OFFICE, U. S. NAVAL OBSERVATORY,
BY DIRECTION OF THE SECRETARY OF THE NAVY AND
UNDER THE AUTHORITY OF CONGRESS

VOL. IX, PART II

NEW ELEMENTS OF MARS AND TABLES FOR CORRECTING THE HELIOCENTRIC POSITIONS
DERIVED FROM ASTRONOMICAL PAPERS, VOL. VI, PART 1V

WASHINGTON GOVERNMENT PRINTING OFFICE 1917

ASTRONOMICAL PAPERS

PREPARED FOR THE USE OF THE

AMERICAN EPHEMERIS AND NAUTICAL ALMANAC

PUBLISHED BY THE NAUTICAL ALMANAC OFFICE, U. S. NAVAL OBSERVATORY,
BY DIRECTION OF THE SECRETARY OF THE NAVY AND
UNDER THE AUTHORITY OF CONGRESS

VOL. IX, PART III

THE ORBIT OF NEPTUNE'S SATELLITE AND THE POLE OF NEPTUNE'S EQUATOR

WASHINGTON
GOVERNMENT PRINTING OFFICE
1926

U. S. NAVAL OBSERVATORY.

Captain Edwin T. Pollock, U. S. N., Superintendent.

ASTRONOMICAL COUNCIL.

Captain EDWI	N T. Po	LLOC	ĸ, l	7. S.	N.							Superintendent
Captain W. C.	Asser	son,	U. A	S. N.						Assist	ant	Superintendent
Captain W. S.	EICHE	LBER	GER	(Mat	h.),	U. S	. N.		•			. Astronomer
Captain F. B.	Littel	л (М	ath.), <i>U</i> .	S. I	N.	•	•	•			. Astronomer
Commander A	. Hall	(Ma	th.),	U. S	. N.	., Ret		•		•		. Astronomer
J. C. HAMMON	D.			•						•		. Astronomer
G. A. HILL		•		•	•			•	•	•		. Astronomer
H. R. Morgan	₹.								•	•		. Astronomer

DEPARTMENT OF THE NAUTICAL ALMANAC.

Captain W. S. EICHELBERGER (Math.), U. S. N., Director.

JAMES ROBERTSON			•			•				Astronomer
ARTHUR SNOW .			•							Associate Astronomer
WALTER M. HAMILI	ON								•	Associate Astronomer
ARTHUR NEWTON .		.•	•					•		Associate Astronomer
Janet McWilliam .		•	•		•					Assistant Astronomer
Hannah F. M. Hedri	ck .	•	•	•						Assistant Astronomer
Thomas E. Trott .				•						Assistant Astronomer
Perez Fisher .				•						Assistant Astronomer
Isabel M. Lewis .				•						Assistant Astronomer
GEORGE F. CRAWLEY	· ·				•					Assistant Astronomer
CLIFFORD S. LEWIS			•				•			Assistant Astronomer
Joseph J. Arnaud .				•						Assistant Astronomer
Morris Liferock .	•		•							. Junior Astronomer
CATHERINE DE M.	Lewis				•					. Junior Astronomer
CHARLES L. RUSH										. Junior Astronomer
RUDOLPH J. JOERS	•						•			. Junior Astronomer

Note.—Those whose names are printed in italics devote only a small portion of their time to work of the Nautical Almanac Office.

JANUARY, 1926.

THE ORBIT OF NEPTUNE'S SATELLITE

AND THE

POLE OF NEPTUNE'S EQUATOR

BY
W. S. EICHELBERGER and ARTHUR NEWTON

A. P. Vol. IX, Pt. III 275

PREFACE.

The determination of a new orbit of the satellite of Neptune had been begun by Prof. Simon Newcomb at the time of his death. Later the uncompleted work was kindly turned over to the Nautical Almanac Office by his family for completion. A full statement of the state of the work at that time is contained in the pages following this preface.

The Naval Observatory wishes also to acknowledge the kindness of Prof. E. B. Frost, Director of the Yerkes Observatory, in furnishing in manuscript the last three series of observations of the satellite made by Professor Barnard.

EDWIN T. POLLOCK,

Captain, U. S. Navy,

Superintendent, Naval Observatory.

WASHINGTON, January, 1926.

CONTENTS.

Introductory remarks	
Provisional theory	
Comparison of observation with provisional theory	
Equations of condition and normal equations.	
Greenwich observations	
The pole of Neptune's equator	
Longitude and motion of satellite	
Mean distance of satellite and mass of Neptune	
Eccentricity of satellite's orbit and longitude of periastron	
Addendum	
An example of the computation of position angle, distance, and time of elongation	
Errata	
	270

Digitized by Google

THE ORBIT OF NEPTUNE'S SATELLITE AND THE POLE OF NEPTUNE'S EQUATOR

INTRODUCTORY REMARKS.

* Several years after the death of Prof. Simon Newcomb in 1909, the Nautical Almanac Office, in response to a suggestion from its Director, received from the family of Professor Newcomb his uncompleted work on the orbit of the satellite of Neptune.

The following statement concerning the work was left by Professor Newcomb:

"The most complete discussion of the orbit of Neptune's satellite that has been published up to the present time is that of Hermann Struve found in his memoir, Beobachtungen des Neptunstrabanten am 30-zölligen Pulkowaer Refractor, Mémoires de l'Académie Impériale des Sciences de St. Pétersbourg, VII Série, Tome XLII, No. 4. In this memoir are discussed all the observations made from the time of the discovery of the satellite by Lassell

"During the period which has since elapsed a mass of observations has accumulated much greater than that made use of by Struve. Of these, several special series have been worked up by Professors See, Brown, and

others, but none of these includes a complete discussion of all the material.

"Added interest is given to the subject by the application of the photographic method which has been made at several observatories, notably those of Mount Hamilton and Greenwich. These discussions may be supposed almost entirely free from the systematic personal errors to which eye observations, especially of distance, are liable. The magnitude of these errors is shown in the diversity among the values of the mass of Neptune derived from the work of different observers. In this connection attention may be called to defects in the method of making the measures of distances. When, as is sometimes the case, these measures are made by setting one thread centrally across the planet and moving the other to such a distance that the satellite shall appear mid-way between the threads, the presence of the planet may be expected to influence the judgment as to the position when the satellite is midway between the threads. No reliance can therefore be placed on values of the mass of Neptune derived by this method. The better and more accurate method is to set one thread on the planet and the other on the satellite. But it can not be claimed that even this method does away with the necessity of special effort on the part of the observer to avoid the error which may arise from dividing the attention between the bisection of the planet and that of the satellite. In his own measures, made in 1874, the author made it a rule not to record a measure of distance as satisfactory until, by repeated careful examination of both bisections, the simultaneous accuracy of both seemed to be assured.

'The subject is worthy of special attention because the psychology of observation has not been sufficiently developed on the astronomical side, and the command of the results reached by psychologists is now necessary

to the perfection of methods of astronomical observation.

"In the present work no attempt has been made to rediscuss those observations from which the resulting elements have already been sufficiently derived. This seems to be the case with all the observations made use of by Professor Struve. It has, however, been deemed best to rediscuss all the observations (1892-1908) made since the publication of his memoir, using the few published discussions which exist as checks against accidental errors in computation.

"The order of subjects is as follows:

1. Provisional theory, based on Struve's elements, to be corrected by observation. In constructing this theory Marth's system of constants is adopted.

2. Examination and classification of observations used and their comparison with the distance and position-

angle derived from the provisional theory.

3. Formation of the equations of condition and of the normal equations, and their solution for the different series of observations employed.

4. Discussion of results, and of the resulting mass of Neptune.

81470°-26--2

"PROVISIONAL THEORY.

"The adopted provisional elements of the satellite are derived from the work of Struve." We follow the usual notation:

N = the right ascension of the ascending node of the orbit on the plane of the Earth's equator:

I = the inclination of the orbit to the same plane;

 u_{\oplus} = the mean angular distance of the satellite in its orbit from the ascending node of the orbit on the plane of the Earth's equator;

a =the semi-major axis of the orbit.

"The adopted numerical values are [1889-1908]:

 $u_{\oplus} = 234.42$ for 1890, Jan. 0, G. M. N.

n = 61.25748

 $N = 185^{\circ}15 + 0^{\circ}148 \text{ (T-1890.0)}$

I = 119.35 - 0.165 (T-1890.0)

a = 16.30, for mean distance [1.47814]

Here n is the daily motion of u_{\oplus} , not the sidereal motion of the satellite."

COMPARISON OF OBSERVATION WITH PROVISIONAL THEORY.

The formulae used for computing the values of p and s, the position angle and distance, are, using the notation of Struve:

$$s \sin (p-P) = r \sin (u_{\oplus} - U)$$

$$s \cos (p-P) = r \sin B \cos (u_{\oplus} - U)$$

$$\cos B \sin U = \cos \delta \sin (\alpha - N) \cos I + \sin \delta \sin I$$

$$\cos B \cos U = \cos \delta \cos (\alpha - N)$$

$$\sin B = \cos \delta \sin (\alpha - N) \sin I - \sin \delta \cos I$$

$$\cos B \sin P = -\cos (\alpha - N) \sin I$$

$$\cos B \cos P = \sin \delta \sin (\alpha - N) \sin I + \cos \delta \cos I$$

$$r = \frac{a [1.47814]}{a [2.69033]}$$

where

$$r = \frac{a [1.47814]}{\rho} = \frac{16.730 [1.47814]}{\rho} = \frac{[2.69033]}{\rho}$$

and ρ , α , δ are the geocentric coordinates of Neptune.

Under the direction of Professor Newcomb the position angle and distance had been computed from the provisional elements for the time of each of the observations of Neptune's satellite given in Table I from 1889 to 1908, and much work had been done on the computation of the differential coefficients of the equations of condition for determining the corrections to the provisional elements. As there was uncertainty about just what portions of this work had been checked, a duplicate computation covering the entire period was made in the Nautical Almanac Office and the list of observations to be discussed was extended from 1908 to 1923.

Before commencing the computations for these additional observations, the following corrections were applied to the provisional elements—

	1908.0	1912.0	1916.0	1920.0	1924.0
du	+0.701	+0.819	+0.941	+1.067	+1.197
dN	+0.948	+1.190	+1.453	+1.736	+2.039
dI	+0.312	+0.506	+0.737	+1.006	+1.313

thus materially reducing the size of the right-hand members in the normal equations of these years.

Table I contains all the observations discussed, the corresponding quantities obtained from the provisional theory, the corrections to the results from the provisional theory, dp, ds, and s sin dp, and the residuals, v, remaining from using in each group of observations the corrected elements derived by a least square solution from that group. From this table are omitted all the observations made at Greenwich as it was decided to make use of the discussion of those observations as published in the annual volumes of that observatory.

The second column, Greenwich M. T.-Aber. Time, is the time of the computed position angle, i. e., the time of observing the position angle minus the aberration time. This time corrected by Δt , column 6, the time of observing the distance minus that of observing the position angle, gives the time of the computed distance.

^{*} The values of a and ϵ were adopted by Newcomb and are not the result of Struve's discussion.

TABLE I.—Comparison of Observations with Theory.

		Position	a Angle.	dp		Dist	ance.	d	le	e si	n <i>dp</i>	
Observatory and Observer.	Greenwich M. T. -Aber. Time.	0	C	0-C	Δŧ	О	С	0-C	v	0-C		Remarks.
Leander McCormick: Parrish.	1889 h m Oct. 28 15 29 28 16 23 Nov.24 14 31 Dec. 12 10 4 13 10 13 19 10 55 21 10 41 23 11 5	134.3 129.5 266.9 264.1 222.9 218.0 71.3 320.3	134.30 130.13 270.29 260.34 224.58 219.02 71.24 317.30	-1.68 -1.02 $+0.06$	m +18 +25 +30 +22 + 2	" 13.24 13.65 15.79 15.42 8.66	9.09 9.20 12.57 14.04 16.18 15.47 15.45 8.85	+.67 39 39 03 19	+.73 30 15	.00 10 74 +.91 48 28 +.02 +.46	" +.12 +.02 84 +.86 22 +.03 19 +.34	A. J. XII, 90.
U. S. Naval Obs.: A. Hall, jr.	1891-92 Nov. 7 12 41 9 12 17 11 11 38 29 11 43 30 10 36 Dec. 1 10 59 5 10 41 8 10 50 9 10 52 10 10 58 17 9 35 18 10 19 28 9 12 30 9 25 31 9 23 Jan. 7 9 53 16 8 31 17 8 26 20 9 17 21 7 42 27 8 8 Feb. 5 8 15 11 7 45 12 7 59 13 8 26 15 8 22 17 8 10 Mar. 3 9 4	193.00 59.20 276.91 255.55 121.55 145.60 254.76 35.05 309.86 246.51 204.80 190.90 101.10 51.65 224.90 165.40 335.25 224.90 165.55 61.95 21.35 285.50 200.15 58.50 200.15	191.00 56.65 276.63 257.76 223.48 150.54 254.44 71.82 35.16 310.74 246.92 207.05 284.43 194.02 99.54 51.69 227.13 165.08 334.53 259.77 253.88 63.29 23.18 288.11 198.35 58.57 226.81	+2.55 +0.28 -2.21 -1.93 -4.94 +0.32 +1.88 -0.41 -2.25 +0.17 -3.12 +1.56 -0.04 -2.23 +0.32 +0.72 -0.87 -0.87 -1.33 -1.83 -2.61 +1.80 -0.07	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.80 16.55 11.95 15.42 16.46 16.26 16.44 14.73 16.82 13.82 11.59 11.64 11.57 16.96 16.11 9.06 9.25 15.27 15.92 16.84 16.81	11.23 16.90 12.58 15.30 15.72 9.35 15.75 16.08 14.48 9.66 13.23 11.36 11.53 11.89 16.61 16.11 9.42 9.15 14.53 15.37 16.15 16.39 12.44 10.64 11.79 16.56	+.57 35 63 +.12 +.74 +.51 +.26 +.59 +.23 +.11 32 +.35 36 +.10 +.74 +.59 +.42 38 +.10 36 +.39 36 36 36 36 36 36 36 36	+.37 65 81 +.50 +.24 +.10 01 03 +.38 +.09 52 +.05 26 +.04 +.13 +.15 13 +.15	+.39 +.75 +.06 59 53 81 +.09 +.53 03 15 12 52 +.03 +.32 01 63 +.32 01 63 +.32 38 38 38 38 38 38 38 38	+.55 +.72 +.26 34 30 74 +.52 05 +.14 33 +.21 47 +.32 04 39 39 45 39 45 32 +.25 +.25	A. J. XII, 22.
Lick: Barnard.	Oct. 2 18 27 Nov.13 14 50 18 18 15 20 17 23 Dec. 9 14 30 16 12 6 Jan. 8 14 55 13 15 2 20 12 7	87.87 61.53 91.87 357.50 258.78 220.55 234.08 268.45 230.30	90.51 61.90 91.47 357.32 258.49 220.67 235.39 269.19 230.75	+0.29 -0.12 -1.31 -0.74	-++98 ++99 +++99 +++99	14.05 17.13 13.72 9.84 15.50 15.14 16.99 13.59 16.44	13.80 16.96 13.76 10.24 15.55 15.09 16.71 13.67 16.29	+.25 +.17 04 40 05 +.05 +.28 08 +.15	+.18 .00 10 29 11 +.01 +.18 07 +.07	64 11 +.10 +.03 +.08 03 38 18 13	38 .00 +.37 06 +.31 +.01 26 +.06 04	A. J. XIII, 10.
Lick: Barnard.	1893-94 Nov.12 18 16 13 18 15 Dec. 3 13 51 10 14 28 Jan. 7 14 32 10 12 55 21 14 18 22 12 26 28 11 15 Feb. 26 11 37	70.52 30.28 239.92 180.60 249.50 70.10 101.68 61.15 58.80 71.40	29.50 241.52 180.78 249.37 69.55 101.69 61.47	-0.18 +0.13	+ 8 + 9 + 8 + 9 + 10 + 6 + 7 + 7 + 8 + 8	16.77 12.86 16.63 10.68 16.89 16.54 12.40 16.85 16.56 15.92	16.73 13.20 16.96 10.51 16.63 16.59 12.36 16.76 16.66 15.97	+.04 34 33 +.17 +.26 05 +.04 +.09 10	+.07 23 33 +.19 +.23 01 +.04 +.14 05 02	.00 +.18 47 03 +.04 +.16 .00 09 02 13	03 +.18 25 +.10 +.27 +.13 .00 12 05 16	A. J. XIV, 9.
Lick: Barnard.	1894-95 Nov.18 19 15 19 18 36 Dec. 23 13 25 31 14 44 Jan. 6 12 58 28 13 16 Feb. 4 10 49 5 11 13 17 12 25 18 12 36 24 11 40 25 11 1 Mar. 3 11 20 4 11 25	40.05 319.02 60.10 269.50 267.05 27.78 297.15 244.82 234.30 177.80 170.14 87.82 82.82 44.90	319.99 60.23 269.83 267.45 27.55 295.94 245.88 235.24 176.52 168.18 88.84 82.69	-1.06 -0.94 +1.28 +1.96 -1.02 +0.13	+ 8	14.22 10.16 16.84 14.54 14.88 12.54 11.07 16.26 9.94 9.79 14.19 15.26	14.45 10.23 16.83 14.58 14.86 12.81 11.23 16.66 16.19 9.96 9.72 14.22 15.03 14.87	23 07 +.01 04 +.02 27 16 10 +.07 02 +.07 03 +.23 +.14	25 +.04 +.01 .00 +.05 27 06 14 +.01 +.10 +.07 +.31 +.12	+.09 17 04 08 10 +.06 +.24 31 27 +.23 +.33 25 +.03 +.05	+.06 14 01 +.06 +.04 .00 +.33 19 20 +.12 +.22 22 +.07 +.04	A. J. XV 42.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	Angle.	dp	At	Dist	ance.	d	.	e si	n dp	D
Observer.	-Aber. Time.	0	c	0-C	A.F	0	С	0-C	,	о-с		Remarks.
Lick: Schaeberle.	1894-95 h m Dec. 13 12 26 Jan. 10 11 47 25 14 24 26 13 38 29 14 9 30 11 45 31 12 40 Feb. 2 12 6 3 11 59 6 11 45	298.73 49.10 207.22 121.73 294.36 248.88 204.91 66.64 23.54 198.91	298.97 48.64 208.41 121.44 294.71 249.56 205.31 66.81 23.19 199.70	-0.24 +0.46 -1.19 +0.29 -0.35 -0.68 -0.40 -0.17 +0.35 -0.79	m - 2 - 3 + 1 + 2 + 3 + 1 - 2	" 10.98 15.85 12.93 10.84 11.48 16.45 12.17 16.84 12.24 11.75	" 11.30 15.77 12.97 10.81 11.33 16.57 12.55 16.66 12.29 11.88	"33 +.0804 +.03 +.151238 +.180513	"22 +.04 +.0802 +.260627 +.1304	"05 +.1327 +.0507200905 +.0716	" +.02 +.03 09 +.19 +.01 04 +.09 06 +.02	A. J. XV, 2
Lick: Schaeberle.	1895-96 Oct. 22 16 48 26 16 19 27 15 43 28 15 36 29 15 45 Nov. 9 15 32 16 14 50 20 14 15 Dec. 1 13 19 7 13 31 9 13 17 31 12 16 Jan. 1 12 43 2 12 58 Feb. 21 11 47	219.18 313.22 257.82 215.93 129.29 200.72 105.4 240.62 272.68 265.62 153.71 248.27 201.15 112.15 291.44	220.54 313.70 257.67 216.64 130.25 201.14 105.98 241.42 272.63 266.60 154.34 248.85 202.64 112.11 292.16	-0.71 -0.96 -0.42 -0.58 -0.80 +0.05 -0.98 -0.63 -0.58 -1.49 +0.04	+ 2 + 5 + 2 + 1 + 4 + 5 + 1 - 1 - 1 + 2	14.18 10.58 16.52 13.68 10.99 12.04 16.81 15.54 10.23 16.76 11.96 11.61	14.18 10.74 16.48 13.73 10.92 12.05 13.10 16.74 14.78 15.55 10.12 16.91 12.29 12.17 11.77	.00 16 +.04 05 +.07 01 +.07 01 +.11 15	+.04 10 +.10 02 +.05 +.01 +.13 06 +.09 09	34 09 +.04 17 18 09 13 23 +.01 27 11 17 32 +.01	15 05 +.22 +.02 09 +.08 04 03 +.15 11 .00 +.02 15 +.10	A. J. XVII, 6
Lick: Sch ae berle.	1896 Oct. 16 16 46 17 16 58 27 15 58 28 15 24 29 14 43 30 16 40 Nov. 6 17 21	100.49 59.23 162.33 91.69 52.53 334.10 259.48	100.68 59.42 163.06 91.45 53.05 333.98 260.34	-0.19 -0.73 +0.24 -0.52 +0.12	+ 9 - 3 - 1 + 1 +42 +19 + 3	13.90 16.30 10.07 15.30 15.49 10.09 16.72	14.14 16.17 10.24 15.32 15.47 10.30 16.50	24 +.13 17 02 +.02 21 +.22	17 +.07 10 +.02 03 05 +.17	05 05 13 +.06 14 +.02 25	+.04 03 17 +.16 15 +.08	A. J. XVII, (
Lowell: Drew.	1896-97 Oct. 16 16 5 19 15 59 29 16 15 30 15 44 Nov. 4 16 15 6 15 49 7 15 52 Jan. 6 11 41 7 11 49 8 11 26 9 14 45 11 13 52 14 13 58 18 14 9 28 14 26 30 14 8 Feb. 1 14 55 6 12 34 8 13 56 13 13 40 18 13 12 19 13 10 20 13 19 21 12 23 22 12 48 23 12 12 24 24 12 2 25 10 54 27 12 38 Mar. 1 11 22 6 10 0 7 10 8 8 10 2	99.7 280.0 52.0 338.4 44.1 263.0 222.4 132.3 77.7 38.4 298.3 209.7 20.2 108.5 234.7 94.9 346.3 53.5 264.5 326.2 40.7 316.6 256.9 216.3 133.5 75.7 34.8 312.1 210.4 128.1 73.7 73.7 73.7 73.0 24.5	36.33 299.41 206.43 21.93 108.35 236.77 94.60 346.30 52.41 266.43 326.74 39.88 316.91 257.50 218.43 132.63 77.03 35.86 314.22 210.82 126.84 73.56 30.22 306.10 253.33 121.66 70.90	+0.48 -0.27 +0.15 +0.33 -2.89 +0.47 +2.07 -1.17 +3.27 +0.15 -2.07 +0.30 +1.09 -1.93 -0.54 +0.82 -0.31 -0.60 -2.13 +0.87 -1.33 -1.06 -2.12 -1.42 +1.26 +0.14 -1.02 -4.10 -0.13 +1.04 +1.02 -1.13 +1.04 -1.10 -1.13 -1.10 -1.13 -1.10 -1	+28 +10 -11 +17 +23 +28 +28 +28 +24 +19 +39 +31 +21 +21 +21 +31 +36 +29 +21 +21 +21 +21 +22 +31 +22 +21 +21 +22 +21 +22 +21 +22 +21 +22 +21 +22 +21 +22 +21 +22 +21 +22 +21 +22 +21 +22 +23 +24 +25 +26 +27 +27 +27 +27 +27 +27 +27 +27 +27 +27	13.75 14.17 15.18 10.25 14.22 15.71 14.21	14.04 14.35 15.32 10.27 14.47 16.36 14.16 10.75 16.60 13.74 11.92 12.49 11.93 13.00 16.07 14.55 10.11 15.61 15.51 10.18 13.89 10.51 16.24 13.66 10.68 16.27 13.29 10.57 12.73 10.97 16.36 11.30 16.36 11.33 16.41 11.90	291814022565 +.0530205503 +.301235 +.07 +.43607014 +.19 +.0330 +.1413 +.31 +.45 +.473906 +.36	25 03 14 +.11 25 51 +.16 37 70 17 51 +.09 +.35 21 +.21 +.44 45 57 03 +.19 +.11 +.04 14 +.24 14 +.35 27 27 35 37 38 38 38 38 38 38 38 38	61 +.20 +.47 +.09 07 +.04 +.50 23 +.72 37 +.08 58 +.08 52 10 +.20 17 51 +.16 25 39 27 39 04 +.20 23 39 24 39 39 39 39 39 39 39 39	61 +.24 +.34 03 21 +.11 +.17 50 +.35 25 +.80 50 +.06 14 +.19 46 20 +.06 14 20 +.03 39 43 39 39 39 39 39 39 39 3	A.J.XVII,13

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	n Angle.	dp	Δı	Dist	ance.	d	le	a si	n dp	Bamasha
Observer.	-Aber. Time.	0	C	о-с		0	С	0-c	0	0-C	•	Remarks.
Lowell: Drew.	1897 h m Mar. 9 10 10 10 9 48 11 9 53 12 9 57 19 9 27 25 9 39 26 9 52 27 10 24	299.1 250.5 202.9 113.7 65.4 60.1 354.9 275.5	112.73 62.93	-1.41	m +26 +28 +20 +23 +19 +11 +16 +24	" 11.31 16.32 11.84 12.51 16.67 16.72 10.00 13.42	" 11.75 16.40 11.72 12.09 16.16 15.76 10.02 14.21	"4408 +.12 +.42 +.51 +.960279	"28 +.04 +.21 +.46 +.53 +.98 +.0665	" +.55 +.39 +.15 +.20 +.70 +.59 25 +.40	" +.54 +.47 +.23 +.21 +.62 +.49 39 +.45	
Lick: Schaeberle.	1897 Sept.13 18 54 18 19 19 Oct. 16 16 34 18 16 29 29 16 45 30 15 30 Nov. 1 15 56 12 15 37 15 15 5 27 15 26 29 14 22 Dec. 3 15 37 11 12 41 24 12 18 25 14 41 27 12 14	277.57 342.34 74.21 298.89 6.61 286.41 184.13 233.33 52.30 39.13 259.78 30.68 252.85 189.68 99.72 3.75	287.02 184.66 234.09 52.32 39.11 260.78 31.24 253.92 189.46 99.45	-1.31 -1.11 -0.52 -1.06 -0.47 -0.61 -0.53 -0.76 -0.02 -1.00 -0.56 -1.07 +0.22 +0.27 -0.60	- 1 +14 0 + 1 - 1 - 1 0 +14 +13 - 1 - 1 - 1	14.77 10.10 16.69 12.40 10.95 13.86 10.93 15.74 15.55 13.59 16.72 13.04 17.16 10.98 14.49 111.17	14.44 10.16 16.70 12.31 10.93 13.74 10.84 15.59 15.41 13.77 12.96 16.96 11.18 14.55 10.91	+.33 06 01 +.09 +.02 +.12 +.09 +.15 +.14 18 +.02 +.08 +.20 20 +.26	+.23 05 06 +.03 +.03 01 +.02 +.09 21 11 +.07 31 08 +.28	33 20 15 23 10 15 10 21 01 29 13 32 +.07 11	07 05 07 00 +.03 +.10 06 02 +.07 +.09 03 04 07 +.08 +.11 +.01	A.J.XVIII,168
Yerkes: Barnard.	1897-98 Sept.14 16 38 20 17 36 22 17 8 24 18 27 26 16 54 Oct. 3 16 35 6 17 8 15 59 12 15 30 14 15 30 25 15 6 26 14 1 Nov. 2 15 41 9 17 38 22 13 8 23 13 27 Dec. 6 17 10 7 16 27 20 16 45 21 14 27 25 12 4 26 11 8 27 11 27 29 11 2 Jan. 1 9 53 2 12 14 3 15 3 16 12 58 17 11 43 18 9 45 23 9 49 27 13 3 Feb. 23 10 28 4 Mar. 2 10 10 5 8 52 6 8 46 7 8 39 13 8 41 13 9 26 14 9 0 15 8 57 23 9 36	242.48 235.00 33.19 335.10 230.44 144.70 315.59 219.83 311.47 213.58 248.85 201.90 101.75 53.16 335.18 268.56 202.00 118.53 60.54 8.40 105.31 64.00 7.02 242.75 61.18 354.05 267.25 222.52 143.20 85.32 138.14 252.26 56.59 233.37 339.39 158.64 87.68 48.73 42.30 41.96 320.95 261.07 37.06 123.06 123.06 120.53	235.36 93.67 334.84 231.09 144.64 314.76 220.41 312.46 250.00 201.57 103.21 53.09 334.50 267.32 202.54 116.92 60.26 6.95 105.30 61.75 352.85 269.98 222.24 144.82 286.09 140.75 253.41 56.14 5339.06	-0.65 +0.06 +0.83 -0.99 -0.68 -1.15 +0.33 -1.46 +0.07 +0.68 +1.24 +1.61 +0.07 +0.60 -0.25 +0.45 -0.45 -0.45 -0.45 -1.20 -2.73 +0.28 -1.15 +0.45 -1.15 -1.15 +0.45 -1.15 -1.15 +0.45 -1.15 -1.15 -1.15 -1.15 -1.15 -1.16 -1.15 -1.16 -1.15 -1.16 -1.15 -1.16 -1.15 -1.16 -1.15 -1.16 -1.15 -1.16	+11 + 8 + 7 + 8 + 5 + 11 + 9 + 19 + 19	16.02 15.32 14.83 10.68 10.81 14.02 11.71 12.50 16.85 11.71 15.25 9.92 15.68 12.48 16.12 10.70 13.84 16.12 10.74 16.31 10.74 15.55 9.90 15.76 10.77 11.57 10.77 11.57 10.71 11.57 11.57 11.77 11.57 11.57 11.57 11.77 11.57 11.77	13.87 16.73 11.03 16.57 16.52 10.49 15.70	+.14 +.06 34 +.04 39 +.04 +.42 45 +.13 11 18 +.39 27 31 27 31 27 31 27 31 27 31 27 31 27 31 31 31 32 +.16 32 31 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 33 33 33 34 34 34 34 34	+.21 +.24 24 10 +.14 22 40 +.22 39 34 +.39 27 21 +.09 +.01 18 16 +.13 +.23 +.23 +.01 22 +.04 18 23 +.02 +.04 23 27 21 +.09 27 21 +.09 27 21 23 +.03 23 +.03 23 +.03 23 +.03 23 +.03 23 23 +.03 23 23 23 23 23 23 23 2	+.071013 +.0517 +.01 +.16141534 +.0736 +.02 +.12 +.3511 +.08 +.08 +.091010101010101010	+.28 +.08 04 00 +.06 +.19 015 03 111 +.152 03 +.07 +.09 18 +.09 18 +.34 15 125 121 25 121 101 +.111 06 111 06 +.111 25 121 125 121 125 121 126 125 121 126 125 121 126 125 121 126 125 121 126 -	A. J. XIX, 27.

TABLE I.—Comparison of Observations with Theory—Continued.

		Position	Angle.	dp		Dist	ance.	d	'a	s sin dp		
Observatory and Observer.	Greenwich M. T. —Aber. Time.	О	c	0-с	Δŧ	0	С	0-C	Ü	0-C		Remarks.
Yerkes: Barnard.	1898 h m Apr. 1 9 49 2 9 39 3 9 28 5 9 35 11 9 43 20 9 58 23 9 32	287.34 243.87 190.50 63.34 57.25 228.35 47.99	58.15 229.78	-1.43	m + 8 + 8 + 5 + 5 + 6 + 7	" 12.37 16.50 11.15 16.03 15.16 14.50 13.92	" 12.71 16.08 10.81 15.94 15.48 14.49 14.21	"34 +.42 +.34 +.0932 +.0129	"14 +.50 +.40 +.1032 +.0730	"314430 +.042436 +.05	"162324 +.062420 .00	
U. S. Naval Obs.: Brown.	1897-98 Oct. 13 16 0 17 15 17 29 14 26 30 14 26 Nov. 3 14 32 4 14 7 6 13 39 13 13 12 17 13 10 20 13 15 23 12 54 24 12 31 27 12 19 29 12 12 Dec. 7 12 18 11 10 32 12 10 23 15 10 46 16 10 39 23 10 49 Jan. 1 10 1 4 9 30 10 49 Jan. 1 10 1 4 9 9 40 13 9 15 17 10 40 18 8 40 21 8 52 24 8 36 28 8 32 Feb. 7 8 14 10 8 6 12 8 36 13 7 42 26 8 34 Mar. 5 8 57	256.95 30.90 302.07 15.35 288.59 62.73 5.24 241.70 171.95 272.71 90.10 268.04 248.44 44.21 264.66 128.80 257.22 214.15 24.51 300.28 65.62 183.68 60.69 240.60 175.45 351.85 52.10 148.42 82.16 218.66 299.56 204.01 117.32 17.82 292.15 236.77 156.30	303.53 15.37 289.59 63.71 5.99 242.71 172.31 90.32 268.28 46.03 264.36 129.86 257.32 213.41 28.44 300.95 248.21 65.20 184.20 61.53 240.61 175.57 351.40 752.57 351.40 351.40 351.40	+0.79 -1.03 -1.33 -0.09	+ 22 + 19 0 1 + 0 1 0 2 2 + 1 1 0 0 1 + 2 2 1 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1 1 1	15.65	15.80	+.21 +.28 +.08 +.02 53 25 +.33 22 17 +.23 +.30 23 +.22 17 +.23 +.16 38 +.21 34 +.16 38 +.21 38 +.21 38 +.22 34 +.10 38 +.21 38 +.21 38 +.21 38 +.21 38 +.21 38 +.22 34 +.22 34 +.22 34 +.23 34 +.23 34 +.23 34 38 +.21 38 +.22 34 +.23 38 +.22 34 +.23 34 +.23 34 +.23 34 +.23 34 +.23 34 +.23 34 +.23 34 +.23 34 +.23 34 +.26 38 +.36 36 36 36 36 36 36 36 -	+.15 +.37 04 +.43 12 +.26 +.14 05 +.14 02 +.13 14 +.03 12 +.103 +.12 26 +.23 14 +.03 12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.12 26 +.23 26 +.23 26 +.23 26 +.23 26 +.20 26 26 26 26 26 26 26 26	30 +.0531002428142907140647 +.0921102405 +.12102400231201230823082121212929	19 +.3312 +.290806 +.142217 .00 +.05 +.06 +.1521 +.2126 +.05 +.05 +.05 +.0121 +.2120 +.1559 +.05 +.01 +.331802 +.1120 +.1120 +.1120 +.1120 +.1120 +.1120 +.1120 +.1120 +.1338	A.J.XX, 135.
Yerkes: Barnard.	1898-99 Aug. 29 17 15 30 16 57 31 16 58 Sept. 1 16 20 2 16 3 2 16 33 3 16 38 14 15 43 20 16 11 22 18 58 26 16 3 27 16 3 27 16 2 Cot. 10 15 1 11 16 11 11 17 4 Nov. 7 14 10 14 20 4 15 12 32 22 17 37 24 11 29 26 11 39 29 14 30	87.12 46.14 325.67 267.20 226.72 224.62 139.77 211.04 201.64 66.60 191.48 107.02 56.91 342.96 338.45 121.46 60.68 19.99 276.90 187.93 62.72 236.69	191.55 108.52 57.48 341.95 338.24 121.85 59.54 20.16 276.44 188.45	+0.09 +0.88 +0.64 -1.74 -0.62 +0.40 +0.44 -0.07 -1.50 -0.57 +1.01 +0.21 -0.39 +1.14 -0.17 +0.46	+ 8 + 9 + 8 + 12 + 3 + 10 + 12 + 8 + 12 + 12 + 13 + 14 + 17 + 12 + 18 + 16 + 16 + 17 + 17 + 17 + 17 + 17 + 17	15.30 13.59 13.58 10.89 12.14 11.34 16.09 10.88 13.79 15.49 10.82 10.47 12.80 15.68 11.76 15.22 10.98	15.76 13.85 10.57 15.85 13.72 13.60 10.79 11.45 16.08 10.92 13.80 15.42 10.44 10.49 12.56 11.74 15.45 11.08 16.42 15.67	+.17 +.11 03 55 13 02 +.10 15 11 +.01 01 +.07 +.38 02 +.24 27 +.02 23 10 27	+.18 +.15 +.05 43 +.03 +.14 +.15 +.05 +.05 +.11 +.05 +.26 23 +.06 11 +.05 +.03 12	25 20 03 +.02 +.21 +.15 33 13 +.08 +.12 01 36 15 +.18 +.04 03 +.12 03 +.12 03 +.12	14 19 07 .00 +.24 +.18 15 07 +.17 +.18 +.10 20 12 +.13 01 +.09 +.36 +.10 +.02 26 +.16	A. J. XX, 42.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	Angle.	dp		Dist	ance.	d	ls	a si	n dp	
Observer.	-Aber. Time.	0	C	0-с	Δέ	0	C	0-C	,	0-C	r	Remarks.
Yerkes: Barnard.	1898-99 h m Dec. 3 12 3 6 15 38 10 11 29 11 10 51 12 11 20 13 11 1 Jan. 18 10 16 24 9 54 30 11 56 31 12 33 Feb. 6 9 20 7 10 37 9 11 46 10 9 11 11 10 30 12 10 25 13 8 52 20 11 11 11 10 30 12 10 25 13 8 52 20 11 11 28 9 42 Mar.13 10 49 18 9 18 19 9 44 28 9 49 29 9 31 30 10 5 Apr. 3 10 9 4 9 17 4 9 45 7 9 55 17 9 26 18 9 25	53.16 338.70 139.82 82.31 39.02 127.68 78.20 77.01 253.87 15.79 288.21	289.70	+0.51 -0.62 +0.46 -0.71 -1.83 -0.32 -0.22 +0.61 -0.31 +1.40 -0.25 -0.15 -0.73 +0.31 +0.39 +0.25 -0.88 -0.52 +0.10 +0.24 -0.68 -0.24	m8+9+6+11+68++88+10+56++188++196++188++196++188++196++188++196++196	10.68 16.70 16.24 15.86 14.19 10.71 10.22 16.46 11.01 16.34 13.02 11.06 10.23 11.74 16.56 10.33 14.78 9.99 10.62 15.71 12.74 11.41 15.90 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.02 16.03	15.19 10.68 16.19 16.27 15.80 14.62 10.70 10.62 16.38 11.31 16.36 13.34 11.31 10.45 11.90 16.41 10.14 14.49 10.13 10.59 15.93 13.20 16.12 16.15 16.18 10.91	"1405510700 +.5103 +.0643 +.0643 +.083022322316 +.152014 +.03221422130605 +.06	"-08 +.03 38 +.09 +.52 +.01 +.10 39 +.21 26 .00 +.21 15 10 .00 +.125 16 07 +.24 20 11 +.13 21 21 21 21 21 22 22 21 22 23 23 24 25 25 25 25 25 25 25 25	" +.0912 +.1319341006 +.1606 +.26070321 +.070215 +.103 +.041307011222 +.011228 +.1034	" +.04 +.06 +.111716 +.020502 +.1711 +.2109 +.1511 +.06 +.0609 +.0501 +.0501 +.05 +.03 +.0104 +.100329 +.07	
Lick: Aitken.	19 9 25 1898-99 Oct. 14 19 27 16 18 13 23 17 22 Nov. 5 17 32 11 14 40 12 17 12 15 17 29 20 15 16 Dec. 2 14 36 3 15 10 9 14 47 11 14 12 Feb. 11 16 16	144.3 44.8 316.2 249.5 189.8 2.9 62.2 52.9 337.3 326.7 223.4 21.2	143.28 44.94 314.99 251.31 251.12 188.98 2.37 62.72 53.14 336.26 326.22 224.79			11.02 13.89 10.97 16.83 16.97 11.55 10.66 15.85 15.10 10.17 10.64 14.60	10.94 14.01 11.43 16.76 16.79 11.09 10.83 16.32 15.36 10.64 10.91 14.37 11.78	+.06 +.08 12 46 +.07 +.18 +.46 17 47 26 47 +.23 23	+.20 +.24 09 14 +.22 +.33 +.24 07 29 17 24 +.01 +.09 19	16 +.1903 +.245347 +.16 +.101506 +.19 +.0935 +.03	162603 +.3001 +.05010902 +.13 +.080503	A. N.Vol. 149, 374.
Lick: Hussey.	1898-99 Oct. 27 17 20 28 17 23 Nov.17 16 26 Dec. 7 12 3 15 19 45 16 12 31 23 13 0 Jan. 5 11 59 12 12 4 20 12 23 26 12 23 Feb. 10 15 4 16 14 19	79.2 32.5 242.55 92.5 297.8 264.2 211.5 111.6 62.8 275.4 271.2 73.0 69.5	32.19 243.27 92.88 299.66 264.27 213.39 112.69 63.28 275.29 269.77 73.09	+0.39 +0.31 -0.72 -0.38 -1.86 -0.07 -1.89 -1.09 -0.48 +0.11 +1.43 -0.09 -0.10	+ 9 0 - 1 0 0 +10 + 8 + 6 + 8 + 7 - 3 + 8	16.69 12.77 16.19 15.32 12.88 17.12 13.28 13.01 16.80 15.40	16.75 12.70 16.34 15.81 12.67 16.62 13.04 13.31 16.46 15.27 15.82 16.70 16.59	06 +.07 15 49 +.21 +.50 +.34 +.13 30	12 +.01 26 54 +.12 +.40 +.13 35 +.28 +.03	+.11 +.07 21 10 41 02 43 25 14 +.03 +.39 03	+.16 +.16 12 07 33 +.08 37 25 07 +.12 +.48 +.03 +.03	A. J. XX, 71.
Lowell: Drew.	1898 Sept. 9 18 45 12 18 36 14 18 13 18 18 16 19 18 28 22 17 53 27 18 24 29 18 4 Oct. 17 18 5 21 18 2 Nov. 9 19 3 Dec. 7 16 24	306.24 120.90 23.84 113.01 68.71 246.94 281.86 176.18 142.25 262.08 187.97 263.58	7.51	+0.16	0 - 44 + 1	11.86 12.53 12.29 13.37 16.42 16.34 14.51 10.37 11.32 16.57 10.54 16.84	11.94 12.30 11.68 13.08 16.26 16.20 14.36 10.47 10.97 16.57 11.01 16.54	08 +.23 +.61 +.29 +.16 +.14 +.15 10 +.35 .00 47 +.30	07 +.06 +.35 +.11 15 01 +.12 21 +.21 11 58 +.20	+.34 +.03 08 17 18 29 37 38 13 12 +.09 50	+.34 +.25 15 +.05 01 05 25 19 +.07 +.10 +.29 29	A. J. XX, 30. All observed position angles as- sumed 180° wrong.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	n Angle.	dр		Dist	ance.	a	•	a st	n <i>dp</i>	Barrate.
Observer.	-Aber. Time.	0	c	0-C	Δt	0	С	0-C	•	0-0	,	Remarks
Pulkowa: Photographs.	1899 h m Feb. 4 5 21 Mar. 6 4 32 7 2 32 8 2 38 10 2 34 15 2 59 16 2 54	93.06 70.02 26.35 297.90 201.60 246.47 190.32	94.52 71.02 26.85 298.98 202.29 246.45 191.33	-1.46 -1.00 -0.50 -1.08 -0.69 +0.02 -1.01	m	" 15.31 16.43 11.49 11.68 11.41 15.99 10.85	" 15.19 16.46 12.14 12.13 11.71 16.22 10.91	" +.12 03 65 45 30 23 06	" +.18 +.09 37 27 +.06 05 +.31	"3929112314 +.0119	"020804 +.0602 +.1302	A .N.Vol. 15. 277.
Lick: Hussey.	1899-1900 Nov.30 19 28 Dec. 6 19 29 Jan. 3 12 1 11 11 30 18 11 19 19 11 40 25 15 53 Mar.28 12 43	101.7 96.0 222.2 79.4 24.7 297.0 280.6 93.4	297.09 280.45	+0.35 +0.31 -0.09	+ 8 +12 +11 +10 + 5 + 5 + 7	15.28 16.19 14.46 17.23 12.00 13.36 15.68 15.41	15.15 15.82 13.88 16.88 12.07 13.09 14.98 15.28	+.13 +.37 +.58 +.35 07 +.27 +.70 +.13	13 +.09 +.17 +.12 25 08 +.28 14	05 02 08 +.10 +.07 02 +.04 +.12	13 10 21 +.04 +.11 +.12 +.14 +.05	Lick Observatory Bu letin No. 1
Pulkowa: Photographs.	1899-1900 Nov.25 7 20 30 6 47 Feb. 24 2 13 Mar.11 1 57 20 1 52 24 2 6 25 1 52	85.95 133.26 278.95 85.44 258.77 25.93 301.05	85.80 134.91 278.10 85.28 258.21 26.70 300.60	-1.65 +0.85 +0.16 +0.56 -0.77		16.66 11.15 14.89 15.77 16.33 11.66 12.25	16.68 11.77 14.95 16.08 16.34 11.92 12.23	02 62 06 31 01 26 +.02	+.16 27 01 15 +.07 +.09 +.09	+.04 34 +.22 +.04 +.16 16 +.10	+.13 20 +.06 +.13 20 11 +.13	A. N. Vol. 15 287.
Yerkes: Barnard.	1899-1900 Aug. 12 17 32 13 17 36 14 17 35 15 17 43 16 17 45 18 17 22 18 17 15 20 17 13 20 17 48 21 17 27 26 17 11 27 17 35 28 16 44 28 18 3 29 17 23 Sept. 3 17 35 4 17 2 6 16 39 8 17 17 8 17 55 10 17 41 11 17 29 12 17 30 18 16 39 24 15 46 25 16 41 26 16 23 30 16 29 Oct. 1 16 8 2 16 41 7 16 6 8 16 46 9 17 7 14 17 50 15 14 11 17 15 30 21 17 12 23 14 42 28 16 0 29 13 59 30 15 29 Nov. 4 14 7 5 13 45 7 14 38	27.90 302.66 255.35 116.32 197.30 197.63 294.26 251.62 250.00 192.65 112.05 246.70 181.19 104.72 101.83 57.55 278.15 158.70 156.77 50.60 332.77 270.35 268.26 263.25 216.40 129.53 258.12 209.18 119.92 119.92 199.52 112.42 69.29 103.66 67.39 286.36 58.66 282.00 340.13 271.63 271.63 271.63 271.63 216.81 88.31	28.63 302.11 255.41 203.42 117.79 19.65 18.58 295.29 251.23 250.25 194.12 111.99 246.32 182.49 106.22 103.53 98.61 58.66 277.61 159.93 157.41 51.46 333.27 270.80 267.27 263.87 216.09 131.04 257.93 209.18 121.54 199.83 113.72 69.61 104.73 69.57 286.54 59.00 282.06 340.60 277.69 233.64 272.07 226.93 152.15 88.62	-1.23 -0.64 -0.86 -0.50 -0.45 +0.99 -0.62 +0.31 -1.51 +0.19 0.00 -1.62 -0.31 -1.30 -0.32 -1.07 -2.18 -0.18 -0.44 -0.04 -0.44 -0.54 -1.34		12.15 15.74 11.29 10.95 11.13 12.80 16.04 10.56 13.54 11.0.24 14.06 14.60 14.53 15.33 14.79 10.20 14.12 10.42 15.58 16.32 12.81 11.94 11.93 12.86 11.38 16.16 14.85 16.16 14.85 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.16 14.86 16.1	11.76 12.26 16.07 11.34 12.68 11.09 11.04 13.00 15.95 15.90 10.79 13.40 14.12 14.43 15.67 10.49 14.12 14.43 15.02 14.97 15.16 10.43 14.21 10.57 12.63 11.85 16.15 16.37 12.63 11.20 12.75 11.42 13.59 16.28 14.66 16.33 12.75 11.42 13.59 16.28 14.66 16.33 15.43 15.43 15.43 15.43 15.43 15.43 16.28 16.39 16.28 16.39 16.28 16.39 16.46 16.39 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46		04 27 +.07 12 +.11 13 +.20 11 +.12 05 09 +.14 +.27 +.35 01 +.01 +.01 +.01 +.02 +.11 +.02 +.11 +.02 +.11 +.02 +.14 +.05 09 21 01 +.04 05 09 09 09 +.10 00 00 00 00 00 00 00 -	15 +.1202 +.0232461823 +.110728 +.01 +.1024374329 +.14222109 +.14 +.0536063109276209020902090112132509	11 +.18 +.06 +.14 +.19 +.01 14 +.24 +.08 14 20 13 06 03 +.37 09 +.17 07 +.01 04 05 04 05 04 05 06 07 +.01 06 07 +.01 06 07 07 +.01 06 07 07 08 09 09 09 09 09 09 09 09	A. J. XXII, 2 Observed position angle Aug. 18, assumed 186 wrong.

TABLE I.—Comparison of Observations with Theory—Continued.

Observators and	Greenwich M. T.	Position	n Angle.	dp		Dist	ance.	•	ie	a si	n dp	
Observer. Observer.	-Aber. Time.	О	c	0-с	Δŧ	0	C	0-C		0-C		Remarks.
Yerkes: Barnard.	1899-1900 h m Nov.11 13 10 12 15 35 18 13 54 19 13 56 25 12 24 26 12 36 27 12 46 Dec. 4 11 45 Mar.30 10 8 31 9 31 Apr. 2 9 43 3 9 41 4 10 3 6 9 17 7 9 19 9 9 13 10 9 16 18 9 36 19 9 30 22 9 48 22 10 0 24 9 36 26 9 33 27 9 32 30 9 36	225.60 134.76 130.20 79.25 76.49 27.37 301.23 251.57 346.29 275.20 160.87 92.74 51.02 270.06 228.23 88.62 46.88 259.28 214.45 32.51 31.50 255.54 174.21 251.37	301.15 251.36 346.59 276.14 162.24 93.15 51.55 271.17 230.05 88.72 47.03 260.79 215.87 30.98 256.11 120.74 73.86 251.41	+0.21 -0.30 -0.94 -1.37 -0.41 -0.53 -1.11 -1.82 -0.10 -0.15 -1.51 -1.42 -2.08 +0.52 -0.57 -0.40 +0.35 -0.04	m898778766666535577091657867	" 13.96 11.87 12.26 16.84 17.11 12.18 12.72 17.09 10.20 14.98 10.26 15.26 14.32 15.29 14.38 15.99 13.66 11.78 11.78 15.84 12.16 16.34 15.99	" 14.05 11.79 12.10 16.88 16.92 12.30 10.19 14.92 10.18 15.19 14.47 15.61 13.84 16.04 12.57 12.06 12.01 16.07 12.14 16.03 15.94	"-09 +.08 +.16 04 +.19 12 24 +.29 +.01 +.08 +.07 15 12 +.14 +.88 18 22 +.21 23 +.31 +.05	" +.01 +.1807 +.161017 +.36 +.07 +.12 +.17 +.031506 +.23 +.341816 +.322117 +.02 +.11	06 03 14 20 32 10 +.02 +.06 05 24 11 13 30 04 45 03 44 +.11 16 05	" +.03 +.21 +.10021506 +.08 +.15031604 +.100522 +.17 +.033421 +.1508 +.1508 +.1508 +.1508 +.1508	,
U. S. Naval Obs.: Sec.	May 4 9 41 1899-1900 Oct. 6 14 37 9 14 46 10 14 59 18 15 14 20 13 41 21 13 50 24 14 58 25 13 57 26 13 54 Nov. 1 13 17 4 13 30 5 13 33 6 13 7 8 13 29 9 12 48 10 13 2 11 21 6 20 11 56 21 11 28 24 11 40 26 11 6 27 11 43 28 11 53 Dec. 2 11 53 Dec. 2 11 53 Dec. 2 11 53 11 58 4 11 3 6 10 57 8 11 11 12 10 7 15 12 22 17 10 42 20 10 58 21 10 43 22 10 19 24 10 47	254.17 72.16 20.90 245.15 106.57 61.84 239.09 173.82 104.10 96.24 273.77 231.14 153.73 46.81 329.15 268.52 145.82 86.63 35.75 311.56 126.14 20.40 294.39 252.71 113.28 12.34 104.28 279.64 178.64 351.08	256.16 73.50 18.54 245.24 107.27 65.09 240.40 174.78 100.71 96.23 273.14 231.53 154.59 48.47 330.13 268.80 145.57 37.99 313.99 128.66 32.23 304.12 256.00 23.41 295.49 252.50 114.33 13.09 109.22 281.20 178.31 351.32 278.57 238.37	+1.10 -1.99 -1.34 +2.36 -0.09 -3.25 -1.31 -0.96 +3.39 +0.01 +0.63 -0.39 -0.86 -0.28 +0.25 -2.24 -2.24 -2.43 -2.52 -0.84 +0.33 -0.59 -3.01 -1.05 -0.75 -1.56 +0.33 -0.24 +0.33 -0.24 +0.33 -0.24 +0.33 -0.24 +0.33 -0.24 +0.33	+ +++ ++ - + + + -+ + +++	17.08 16.81 11.47 15.90 16.80 15.76 10.62 15.18 11.10 11.15 11.10 11.15 11.80 12.26 11.80 12.25 12.57 17.10 11.21 12.86 11.28 11.28 11.28 11.28 11.28 11.29 11.29 11.21 12.86 11.79 11.21 12.86 11.79 11.29	10.66 16.55 16.50 11.38 16.05 14.39 16.05 15.63 10.61 15.71 16.04 14.72 10.81 14.38 10.96 16.44 11.15 12.27 11.85 12.27 12.64 16.92 12.00 13.52 12.64 11.36 14.18 10.82 10.71 15.16 10.82 10.74 15.80	37 +.53 +.31 +.0915 +.40 +.75 +.13 +.0126 +.27 +.16 +.29 +.16 +.050107 +.1879887 +.20 +.97 +.01 +.97 +.01 +.97	34 +.23 +.120044 +.5815080211 +.1004 +.01 +.2604122472472472478890 +.1806 +.32 +.8810 +.3299	+.205839 +.47031891361890 +.18101612525054176326251521210625252106252521062525252525252525	+.22 4314 +.71 +.026716 +1.12 +.23 +.39041018 +.07 +.12292440 +.3201392440 +.32013918 +.01302 +.2107 +.091.8 +.01020107031803180303030303030303	A. N.Vol. 153, 257.
	24 10 47 26 10 29 28 9 55 Jan. 2 8 30 3 9 16 4 9 18 6 9 12 8 8 15 8 12 9 9 7 43 9 11 44 14 9 33	94.23 340.82 272.25 227.90 150.75 44.30 266.15 260.35 224.60 215.22 256.60	271.61 228.68 148.85 45.59 266.87 260.45	-0.78 +1.90 -1.29 -0.72 -0.10 -1.00 -0.60	0	16.01 10.96 15.34 16.24 15.10 10.94 14.29 16.92 17.06 14.96 13.49 17.42	15.76 10.71 15.20 16.13 14.68 10.94 14.31 16.51 16.86 14.31 13.18 16.84	+.25 +.25 +.14 +.11 +.42 .00 02 +.41 +.20 +.65 +.31 +.58	+.07 +.12 13 19 +.17 06 14 +.11 11 +.42 +.10 +.27	38 13 +.18 20 +.36 32 21 03 25 14 94	15 +.12 39 14 +.44 09 02 +.16 21 76	

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	n Angle.	dp		Dist	ance.	d	á	* sin	n dp	
Observer.	-Aber. Time.	0	c	0-C	Δt	0	C	0-C	v	0-с	v	Remarks.
U. S. Naval Obs.: Sec.	1900 h m Jan. 15 10 5 15 13 27 21 8 14 21 12 35 22 7 39 23 8 3 23 12 33 26 8 43 27 8 35 27 13 21 29 8 9 29 12 32 Feb. 1 8 21 2 8 53 9 10 2 13 8 29 14 8 38 27 8 33	212.35 202.40 209.38 195.60 122.17 75.15 67.19 250.13 200.20 182.00 68.13 63.27 248.56 184.80 96.20 238.18 166.55 83.50	67.73 251.55 199.00 181.72 70.05 62.74 247.29 187.56 97.31 236.72 165.31	-2.10 +0.14 -0.54 -1.42 +1.20 +0.28 -1.92 +0.53 +1.27 -2.76 -1.11 +1.46	HO 000000000000000000000000000000000000	7 13.11 12.13 12.71 11.20 12.80 16.78 16.54 17.53 11.84 10.83 16.76 15.85 15.85 15.38 15.38 15.38 15.38 15.38	12.51 11.44 12.35 16.85 16.75 11.65 10.79 16.68 16.18 16.51 10.98 15.18	" + !29 + !2024 + .4507105 + .78 + .19 + .04 + .33 + !36 + .17 + !2010 + !29	" +.11 +.03 +.0439 +.362724 +.48 +.07071106 +.06 +.041116 +.10	".00 +.03 +.04 45 +.04 16 41 +.24 +.05 56 +.15 +.37 53 29 +.39 +.23 18	" +.01 +.04 +.0430 +.29 +.29 +.24 +.06325206 +.47 +.27 +.06	
Yerkes: Barnard.	1900-01 Sept. 6 16 42 10 17 14 11 17 26 13 17 27 19 16 18 24 15 27 25 15 44 Oct. 1 16 2 2 16 5 3 16 9 4 15 45 5 17 4 8 16 47 9 16 47 10 15 56 11 17 3 16 15 11 17 14 31 18 16 20 25 14 8 26 14 32 27 15 24 30 16 28 Nov. 1 17 46 2 17 52 3 14 15 4 13 21 5 14 42 8 17 41 13 14 21 22 12 7 26 12 10 Dec. 8 13 10	253.84 7.36 288.08 179.81 172.61 240.04 162.41 149.18 90.14 46.98 327.69 266.95 84.52 38.43 316.54 262.16 309.62 261.39 207.37 119.96 74.22 14.96 63.43 355.35 289.06 248.85 180.52 164.78 58.69 234.62 334.74 307.87 129.31 74.04 10.68 174.04 10.68 174.04 10.68 174.04 10.68 174.04 174	252.61 7.20 288.17 180.64 173.42 238.96 163.84 151.28 91.35 47.96 326.92 267.23 85.24 262.38 309.44 261.69 207.21 120.13 74.36 14.89 185.93 63.56 354.67 289.41 248.80 181.41 343.68 58.79 234.28 332.84 307.91 129.78 74.66 10.71 17.13 104.35 337.73 285.71 222.00 90.63 50.31 269.33 133.11 262.86 81.31 299.65	+0.16 -0.09 -0.83 -1.43 -2.10 -1.21 -0.98 +0.77 -0.28 +0.77 -0.22 +0.18 -0.30 +0.16 -0.17 +0.07 -0.13 +0.05 -0.89 +1.10 -0.10 +0.16 -0.17 +0.05 -0.89 +1.10 -0.10 +0.16 -0.17 -0.18 +0.05 -0.89 +1.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 -0.10 +0.10 +0.10 -0.10 +0.10	++++++++++++++++++++++++++++++++++++++	16.11 10.83 14.63 10.31 10.12 10.12 10.12 13.82 11.53 16.26 11.57 12.70 11.74 16.61 12.40 16.71 11.63 11.32 10.80 15.76 10.59 14.34 16.13 10.48 11.32 10.80 15.76 10.59 14.34 16.13 10.48 11.27 10.80 11.74 11.95	10.49 10.46 14.90 10.56 10.93 16.15 11.15 16.41 11.283 11.15 16.58 12.40 16.65 11.89 13.34 10.55 11.14 10.88 15.75 10.71 14.56 10.80 10.77 15.33 14.88 11.10 12.64 10.80 11.21 10.80 11.21 10.91 11.21	+ + 11 + + 121 + + 129 - 181 - 18	+.15 +.16 +.37 06 17 +.20 +.41 09 01 21 +.08 +.06 +.11 +.31 14 +.31 14 +.31 14 +.31 23 +.03 +.23 +.23 +.23 +.23 +.24 25 +.24 25 +.26 24 26 26 26 26 26 26 27 27 27 27 28 28 29 29 29 29 29 29 20 20 20 20 20 20 20 20	+.34 +.03 02 15 26 40 32 +.15 08 21 06 +.04 04 +.01 04 +.03 04 +.13 09 +.11 03 +.01 10 10 10 10 10 10 10 -	+.28 03 11 03 01 +.23 16 +.01 07 16 +.01 07 16 +.05 +.23 +.14 22 +.04 19 05 +.10 +.01 07 05 +.10 +.01 07 05 +.10 +.01 05 +.10 +.01 07 05 10 +.01 05 10 +.01 05 10 05	Observed patition angles Nov. 8, a sumed 18 wrong.
Pulkowa: Photographs.	1901 Jan. 24 4 58 29 4 2 Feb. 8 4 13 14 1 47 22 2 4	335.88 48.88 134.54 131.60 21.76	338.36 50.14 134.24 132.54 24.34	-1.26 + 0.30		10.33 13.99 11.16 10.82 11.60	10.78 14.57 11.76 11.83 11.85	45 58 60 -1.01 25	05 09 +.18 23 +.21	47 32 +.06 19 53	02 +.15 +.10 13 13	A. N. Vol. 18 287.

TABLE I .- Comparison of Observations with Theory-Continued.

Observatory and	Greenwich M. T.	Position	Angle.	dp		Dist	ance.	•	le .	a sti	ı <i>ëp</i>	
Observer.	-Aber. Time.	0	c	0-c	M	0	c	0-с	,	0-C	•	Remarks.
Yerkes: Barnard.	1901-02 h m Aug. 27 17 45 Sept. 3 17 31 16 17 12 22 17 27	92.11 42.05 302.75 295.16	93.40 43.06 302.41 294.74		m + 9 + 9 +11 + 7	15.94 12.90 12.87 13.56	" 15.83 12.81 13.16	" +.11 +.09 29	" 01 02 16	" 36 23 +.08 + 10	" 14 31 +.14 + 10	A. J. XXIII, 105.
	23 17 28 24 16 59 Oct. 1 17 8 20 18 32 21 15 34 29 15 11 Nov.12 18 18 18 16 44 19 12 56 26 17 20 Dec. 10 13 33 15 11 42 16 13 26 17 12 9 22 10 11 23 11 25 29 11 54 30 10 17	251.58 190.32 104.70 42.11 325.18 218.76 68.03 65.43 11.77 275.95 148.45 229.16 138.90 88.45 138.63 84.74 78.59 31.13	294.74 251.75 191.57 106.06 41.22 326.19 218.28 68.20 65.63 11.87 277.84 149.86 228.32 140.03 88.71 141.10 84.97 79.26 32.51	-0.17 -1.25 -1.36 +.89 -1.01 +0.48 -0.17 -0.20 -0.10 -1.89 -1.41 +0.84 -1.13 -0.26	+ 77 + 9 9 + 10 + 10 + 10 + 116 + 116 8 + 116 8 + 110	15.70 15.70 10.56 15.48 13.27 11.42 12.52 16.34 15.68 11.06 16.30 11.11 13.98 12.21 17.02 11.67 16.91 17.14	14.01 15.89 10.84 16.05 12.94 11.49 12.72 16.05 15.84 11.17 16.18 11.40 14.05 11.96 16.81 11.89 16.94 16.94	45 19 28 +.43 +.33 07 20 +.29 11 +.12 29 07 +.21 22 22 22 +.21	34 18 18 +.34 +.23 +.07 13 10 +.18 24 02 +.28 +.07 19 17 +.07 +.19	+.10 05 24 36 +.20 20 +.11 06 02 53 28 +.21 08 51 07	+.19 +.08 09 10 +.11 24 +.23 +.02 01 17 39 03 +.13 24 +.12 04	. 144
	Jan. 2 10 11 5 11 43 10 11 33 12 10 24 13 10 3 18 9 51 24 13 41 27 9 44 31 9 30 Feb. 2 9 23 7 9 10 8 8 46 15 8 57 17 8 38 24 8 44 25 8 40 Mar.17 10 26 18 10 12 24 9 35 25 9 45	206.83 19.16 69.51 291.85 249.83 286.27 273.06 97.15 233.19 93.12 145.63 88.66 37.53 261.50 204.25 120.49 341.65 274.38 270.59 227.00	208.32 18.34	-1.49 +0.82 -0.29 -0.10	++++++++++++++++++++++++++++++++++++++	11.93 11.49 16.57 14.02 16.42 16.37 16.30 14.52 16.50 11.33 16.76 13.12 16.59 11.71 13.10 10.22 15.66 15.99	12.20 11.56 16.44 14.47 16.44 15.02 16.31 15.88 14.75 16.27 11.33 16.49 12.89 16.62 11.80 13.16 10.62 12.71 15.98	27 07 +.13 45 02 20 +.06 +.42 23 00 +.27 +.23 09 06 40 05	18 09 03 33 01 +.11 +.31 19 +.11 +.05 +.14 +.13 09 28 +.01 +.04 +.34	32 +.17 08 03 +.01 13 21 12 14 23 02 24 18 00 +.35 23 16	22 +.02 00 +.07 +.15 01 08 06 10 +.11 +.12 02 12 06 +.28 +.25 09 06	
	Apr. 6 9 32 8 9 45 13 9 40 14 9 26 15 9 34	213.17 78.46 119.12 73.84 19.58	212.80 78.69 118.83 74.39	+0.37 -0.23	+ 7 + 7 + 7 + 7 + 6	12.53 16.24 13.38 16.15 10.91	12.11 16.21 13.03 16.03 11.05	+.42 +.03 +.35 +.12 14	+.50 12 +.32 03 16	+.08 07 +.07 15 +.23	+.19 +.03 +.34 04 +.09	
Lick: Photographs.	1902 Jan. 4 15 9 6 13 54 7 14 20 8 12 41 9 12 36 11 17 22 12 13 46 16 16 4	67.54 290.83 247.82 189.69 109.75 346.20 284.96 53.06	68.72 290.78 247.50 189.52 110.38 345.40 284.83 55.73	+0.32 +0.17 -0.63 +0.80		16.46 14.58 16.27 10.88 14.44 10.86 15.08 14.91	16.37 14.62 16.26 11.18 14.65 10.88 15.27 15.02	+.09 04 +.01 30 21 02 19 11	+.10 +.10 +.01 21 +.03 10 05 07	34 +.01 +.09 +.03 16 +.15 +.03 70	+.14 +.09 +.03 12 +.15 +.17 04 26	Lick Observa- tory Bulle- tin No. 39.
Lick: Aitken.	1901-02 Sept. 6 19 54 8 19 36 14 19 16 28 19 7 Oct. 5 17 57 8 17 42 12 18 9 19 17 15 Nov.12 15 30 16 15 55 Dec. 20 18 6 21 14 7 Jan. 11 12 47	209.80 79.95 75.85 284.85 237.65 56.85 152.55 89.70 72.40 182.65 256.15 211.95 4.35	211.96 80.53 76.19 285.08 239.86 57.31 152.75 89.95 73.11 186.10 256.43 214.22	-2.16 -0.58 -0.34 -0.23 -2.21 -0.46 -0.20 -0.25 -0.71 -3.45 -0.28 -2.27 +0.77	000000000000000000000000000000000000000	12.00 16.46 16.16 14.85 14.72 14.40 11.30 16.60 16.17 11.01 17.02 12.48 10.73	11.87 16.23 16.12 15.11 14.87 14.61 11.10 16.51 16.47 11.00 16.84 12.69	+.13 +.23 +.04 26 15 21 +.20 +.09 30 +.18 21 26	+.21 +.23 +.05 15 +.03 22 +.04 +.07 29 04 +.36 11 28	45 16 10 06 57 12 04 07 20 08 50 +.15	02 07 01 +.09 18 04 +.24 +.02 11 25 +.24 05 +.18	Lick Observa- tory Bulle- tin No. 51.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	n Angle.	dp		Dist	ance.		is	ə si	n dp	Damaska
Observer.	-Aber. Time.	0	С	0-c	Δŧ	0	c	0-C	,	0-C	•.	Remarks.
Strasburg: Wirtz.	1903 h m Feb. 17 6 46 18 6 20 19 5 48 20 5 32 24 5 22 26 5 39 Mar.12 4 37 17 5 35 21 4 43 23 4 42	239.94 166.74 99.23 60.06 158.10 53.55 269.46 306.64 75.12 302.64	158.90 52.52 264.64 304.36	+0.42 +0.19 -1.21 +1.03 -0.80 +1.03 +4.82 +2.28 -2.05 +3.54	m 0 0 0 0 0 0 0	" 14.81 11.44 15.63 14.83 10.30 13.89 17.18 12.29 16.60 13.03	" 15.09 10.80 15.72 15.01 10.93 14.25 16.49 12.93 16.30 13.43	"28 +.6409186336 +.6964 +.3040	"12 +.9314273747 +.8649 +.2422	" + .11 + .04 33 + .27 15 + .26 +1.39 + .52 58 + .83	"50 +.0813 +.2405 +.19 +.681650 +.14	A. N.Vol. 16
Yerkes: Barnard.	1902-03 Aug. 25 17 56 Sept. 1 17 10 8 18 11 9 17 12 15 17 10 16 17 3 18 17 30 30 16 34 Oct. 6 17 32 7 15 9 13 16 56 14 16 42 27 19 2 Nov.24 13 2 Dec. 1 16 51 30 11 20 Jan. 12 11 53 19 11 27 20 9 49 Feb. 2 14 28 9 11 22 16 10 43 17 10 31 23 10 38 24 11 35 Mar. 2 10 11 30 11 53	183.85 104.17 54.54 338.97 329.09 273.21 141.42 126.34 116.72 77.34 69.44 5.37 273.98 30.54 289.37 4261.86 202.34 123.08 239.03 344.22 272.99 231.00 223.58 136.30 132.06 175.82 235.44	338.74	-1.01 -1.47 -0.77 +0.23 +0.88 +0.40 -0.76 -1.22 -1.27 -1.45 -1.04 +0.25 -1.10 +1.18 -0.45 -0.90 +0.07 +0.12 -1.34 -0.49 -0.52 -0.21 -0.32 -0.30	7777410 ++110 ++11117711111111111111111111111	10.23 15.44 14.12 11.56 11.59 11.72 13.18 16.41 16.08 11.23 12.15 15.00 11.87 12.15 15.00 11.87 11.59 13.19 10.77 15.96 13.25 13.25 12.53 10.60 14.34	10.49 15.08 13.84 10.83 11.34 16.18 11.75 13.02 14.10 16.27 15.71 10.79 11.54 12.10 15.19 11.54 11.72 13.46 15.09 16.30 14.17 13.32 12.36 10.55 14.32	26 +.36 +.28 07 +.22 24 03 +.16 +.14 +.37 +.44 +.05 19 +.29 13 27 34 27 03 +.17 +.05 +.05 +.05	25 +.27 +.09 08 +.25 21 02 +.19 +.34 13 11 +.31 16 13 29 09 09 +.14 +.07	18 39 19 17 + .11 16 28 21 29 31 29 31 29 31 29 31 29 31 29 31 29 31 29 31 29 31 -	02 09 06 07 +.07 +.22 +.08 01 20 +.04 25 +.10 27 +.08 +.18 10 27 +.03 +.02 +.03 +.03 +.04 01	Observed position angle Feb. 2, a sumed 186 wrong.
U. S. Naval Obs.: Dinwiddie.	1902-03 Oct. 24 17 33 28 17 20 29 17 46 30 17 19 31 17 49 Nov. 1 17 8 2 17 9 21 15 50 Dec. 1 15 13 5 15 22 7 14 41 Jan. 6 12 16 22 11 12 Feb. 20 9 7 22 9 34 25 9 41 26 9 8 Mar. 3 8 38 12 8 30 17 8 34 18 8 53 26 8 41	101.99 235.03 154.10 96.33 50.96 327.27 272.43 205.87 291.17 69.20 286.28 263.97 19.61 52.00 269.53 88.07 43.24 84.92 257.50 295.24 251.43 108.42	288.85 266.50 18.54 51.33 271.19 88.53 44.14 85.37 258.24 296.92	+1.75 +0.35 +1.55 +0.82 -2.35 -0.79 -0.08 -2.78 +0.89 -2.57 -2.53 +1.07 -1.66 -0.46 -0.90 -0.45 -0.74 -0.168 -1.18 +1.48	+ ++++ + +++ ++++++++++++++++++++++++++	16.28 14.39 11.39 16.05 13.68 11.88 16.51 11.74 15.93 15.62 16.48 10.86 13.57 16.55 16.88 13.17 16.77 13.46 16.45 14.79	16.04 14.18 11.39 16.43 13.73 11.53 16.57 11.80 14.74 15.99 15.31 16.92 11.51 14.15 16.43 13.34 16.53 13.34 16.64 16.42 13.71 16.08 14.74	+.24 +.21 .00 38 06 06 +.31 44 65 58 +.12 +.35 17 +.21 45 25 +.37 +.05	33 +.16 +.47 19 11 +.48 +.05 34 38 38 41 +.07 +.28 56 35 +.28	+ .49 + .31 + .22 47 23 02 75 + .25 75 + .12 48 13 21 33 33 + .38	+.29 +.28 +.21 +.01 +.10 01 +.05 19 36 +.34 06 34 29 34 29 34 11 +.12 05 +.19	A. J. XXII 144:
Yerkes: Barnard, ,	1903 Aug. 31 18 28 Sept. 21 16 58 28 16 32 Oct. 13 15 14 19 16 37 20 13 33 26 16 48 27 15 33	119.97 283.56 235.59 308.99 24.00 312.51 296.46 256.16		-1.80 -0.27 +0.19 -0.21 -1.21 +1.22 +0.03 +0.17	+ 4 + 6 + 7 + 8 + 7 + 7	13.99 15.62 13.48 12.33 11.60 13.08 14.54 15.88	13.63 15.66 13.74 12.31 11.44 13.10 14.70 16.10	+.36 04 26 +.02 +.16 02 16 22	07 +.10 +.06 08	43 07 + .05 05 24 + .28 + .01 + .05	12 05 +.15 09 32 +.24 .00 +.11	A. J. XX 41. Observed p sition ang Oct. 13, s sumed 27 too large.

TABLE I .- Comparison of Observations with Theory-Continued.

Observatory and	Greenwich M. T.	Position	n Angle.	dр	Az	Dist	ance.	4		e sti	n dp	Remarks.
Observer.	-Aber. Time.	0	C	о-с	A	0	C	о-с	v	0-C	D	romarks.
Yerkes: Barnard.	1903-04 h m Nov. 9 14 43 21 16 7 24 14 27 Dec. 14 12 35 21 13 39 22 13 39 19 9 31 26 13 50 Feb. 2 10 54 15 13 33 16 13 34 Apr. 4 9 50 18 10 38 19 11 10	171.58 146.41 328.18 203.89 113.14 105.70 54.80 149.70 81.54 284.49 242.44 186.43 54.70 335.18	327.54 205.58 114.24 75.33 55.18 151.12 81.86 28.15 285.84 243.70 186.87 55.08 333.20	-1.10 +0.37 -0.38 -1.42 -0.32 +0.31 -1.35 -1.26 -0.44 -0.38	m + 9 + 8 + 6 + 6 + 12 + 8 + 6 + 7 + 6 + 6	" 10.92 12.11 12.18 11.33 15.24 16.92 11.00 17.11 12.02 15.42 10.86 13.92 10.62	" 10.95 11.99 11.95 11.77 15.02 16.45 14.40 11.65 16.78 11.92 15.54 10.69 13.84 11.00	"03 +.12 +.2344 +.22 +.4765 +.33 +.1014 +.17 +.0838	" +.04 +.10 +.3031 +.10 +.3765 +.19 +.0306 +.23 +.280332	"3410 +.133529 +.11102909 +.0637340809 +.38	"05 +.23 +.0515 +.02 +.2408 +.04 +.08013626 +.1607 +.29	Observed position angle, Dec. 22, assumed 30° too large.
Yerkes: Barnard.	1904 Oct. 15 15 52 17 15 38 22 18 30 29 14 58 31 15 26 Nov. 5 13 18 12 15 20 14 15 40 21 13 47 26 13 47 28 15 17 Dec. 5 13 10 10 13 33 12 14 22 31 11 21	153.39 231.25 88.41 38.20 266.71 311.32 257.72 115.02 71.06 107.28 343.27 280.25 328.81 226.08 125.21	154.89 53.53 89.22 38.89 266.87 311.54 256.70 115.86 71.26 107.95 343.90 281.01 329.39 226.18 126.18	-0.69 -0.16 -0.22 +1.02 -0.84 -0.20 -0.67 -0.63 -0.76	+12 + 6 + 6 + 7 +10 + 6 + 6 + 6 + 5 + 6 + 7 + 6	11.64 13.95 16.86 12.26 13.32 16.07 15.58 15.86 16.12 16.30 12.26 13.33 14.40	11.55 13.44 16.57 12.24 16.59 13.46 16.05 15.15 15.63 15.98 11.33 16.55 12.05 13.13 14.00	+.09 +.51 +.29 +.02 14 .00 +.43 +.23 +.14 +.11 25 +.21 +.20 +.40	04 +.36 +.11 27 25 05 +.22 +.07 07 04 +.08 +.20 +.20	30 54 23 15 05 +.29 22 05 19 12 22 12 22	02 37 +.01 02 01 07 +.36 +.05 +.16 +.01 11 21 13 +.14 +.04	A. J. XXV, 42. Observed po- sition angle, Oct. 17, as- sumed 180° wrong.
U. S. Naval Obs.: Hammond.	1904-05 Nov.21 16 43 30 15 43 Dec. 14 12 24 16 11 55 18 12 29 19 11 38 29 10 51 Jan. 1 10 30 Mar.13 8 45 25 9 21 31 9 51	65.05 235.91 93.70 325.04 221.68 141.52 264.50 81.53 63.57 50.26 41.26	264.69 82.74 64.52 49.84	-0.32 -1.83 -0.96 -0.13 -1.52 +0.03 -0.19 -1.21 -0.95 +0.42 +0.78	000000000000000000000000000000000000000	14.86 14.40 16.16 12.53 13.03 12.79 17.33 16.69 14.84 13.36 11.96	15.03 14.26 16.86 12.31 12.92 12.58 16.84 16.77 14.98 13.32 12.41	17 +.14 70 +.22 +.11 +.21 +.49 08 14 +.04 45	09 +.09 59 +.19 +.02 +.21 +.51 +.03 06 +.10	08 46 28 03 34 +.01 06 35 25 +.10 +.17	+.08 22 22 +.16 16 05 +.22 24 09 +.28 +.35	A. J. XXIV, 189.
U. S. Naval Obs.: Rice.	1905 Jan. 16 10 39 27 10 33 Feb. 7 9 38 10 9 26 24 9 26 Mar.10 10 5	247.77 280.36 324.89 139.54 21.76 242.92	249.05 280.50 324.61 140.62 21.54 244.82	+0.28 -1.08 +0.22		16.01 16.90 12.28 12.67 11.36 15.21	15.69 16.42 12.12 12.38 11.41 15.03	+.32 +.48 +.16 +.29 05 +.18	+.10 +.17 01 13 23 02	35 04 +.06 23 +.04 50	06 +.19 +.16 04 04 21	A. J. XXIV, 189.
Yerkes: Barnard.	1905-06 Dec. 9 18 44 16 16 53 19 13 9 23 17 21 26 13 10 30 15 46 Jan. 23 13 25 Feb. 6 14 8 27 11 45 Mar. 20 11 5 Apr. 17 9 17	341.68 277.84 102.60 223.97 52.78 137.18 115.45 337.87 132.00 290.16 41.19	225.28	-2.36 -1.49 -1.31 +0.10 -0.18 +0.45 -0.13	+14 + 8 - 1 + 7 + 8 + 5 + 7	16.01 11.42 13.40	11.62 16.75 16.55 12.88 13.61 13.20 15.40 11.58 13.20 15.29 12.13	01 +.52 +.47 +.38 17 +.61 16 +.20 26 11	+.07 +.25 +.20 01 32 +.41 07 +.06 30 42	+.23 69 43 30 +.02 04 +.12 03 31 31 +.02	+.19 16 21 +.05 08 +.12 +.33 05 15 +.13 14	A. J. XXV,
U. S. Naval Obs.: Hammond.	1905-06 Oct. 29 14 37 30 14 27 Nov. 1 13 45 Jan. 5 12 58 6 11 23 . 16 10 38 18 12 43	343.64 283.48 162.36 136.46 91.10 208.03 78.17	209.38	-0.68 $+1.56$ -0.50 -0.70	0 0 + 1 0 0 + 1	11.36 16.52 11.46 12.77 16.68 11.57 16.01	11.36 16.33 11.47 13.18 16.92 11.84 16.38	.00 +.19 01 41 24 27 37	04 +.23 +.07 25 08 34 25	+.13 19 +.31 12 21 28 31	+.34 +.07 +.30 04 +.15 24 +.09	A. J. XXV,

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Generation M. T.	Position	a Angle.	dp	A	Dist	ADOS.	4	•	ø sti	n dp	Describ-
Observer.	-Aber. Time.	0	С	0-0	Δť	0	O	0-0	,	0-C	,	Remarks.
U. S. Naval Obs.: Hammond.	1906 h m Jan. 24 9 47 24 11 47 28 11 48 29 9 29 29 12 38 31 9 36 31 11 53 Feb. 11 8 15 13 8 16 13 11 26 16 8 44 16 10 33 17 8 39 19 8 44 23 8 28 23 10 58 24 10 54 25 8 14 25 10 38 Mar. 6 9 14 10 9 16 20 9 2 23 9 26	78.17 74.06 184.01 115.24 109.93 5.73 355.88 63.51 2284.31 278.23 100.01 96.87 56.02 277.30 48.45 42.83 318.51 273.28 269.68 84.43 205.20 294.46 111.08	79.16 75.52 183.36 116.98 110.69 6.25 357.44 64.93 284.99 279.42 101.53 98.39 57.45 278.95 50.58 43.74 319.86 274.74 270.72 85.59 205.67 295.42 111.64	-0.68 -1.19 -1.52 -1.52 -1.43 -1.65 -2.13 -0.91 -1.35	m 8 0 1 1 2 1 1 0 6 1 1 0 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0	11.43 11.34 14.73 16.43 16.56 16.00 16.61 13.96 12.92 12.46 16.88 16.21 16.47 11.41	16.38 16.06 11.07 15.12 15.78 11.08 11.07 14.95 16.16 16.55 16.39 16.56 14.11 16.51 13.37 12.75 12.61 16.63 16.50 11.45 14.85 15.21	"252114 +.0414 +.35 +.2722 +.27 +.0139 +.05150201 +.1715 +.25460304 +.1735	"130914 +.23 +.05 +.31 +.2314 +.3209 +.02 +.2309 +.02 +.2014 +.281110 +.21	"-28 -41 +.13 46 21 10 30 37 19 34 43 44 35 42 30 30 30 30 30 30 30 35 30 35 30 35 35 30 35 35 35 35 35 35 30 30 30 30 30 30 30 30	" +.1201 +.1124 +.01 +.1505 +.02 +.08071213 +.032114 +.16091503 +.040601 +.08	,
Yerkes: Barnard.	1906-07 Oct. 30 17 51 Nov.13 15 12 Dec. 18 17 5 22 18 4 Jan. 8 12 46 Feb. 5 11 22 10 14 52 12 14 30 17 12 51 Mar. 3 13 58 5 11 57 10 13 1 26 9 58 Apr. 2 10 19 9 10 25 14 10 7 23 9 28	251.52 104.10 112.89 244.25 282.20 19.87 69.21 288.51 351.42 226.59 96.44 136.50 261.14 188.21 109.90 166.35 332.65	251.74 105.92 113.57 245.49 282.58 20.00 69.69 290.33 351.86 226.93 96.57 137.37 262.29 188.82 110.24 166.86 333.55	-1.82 -0.68 -1.24 -0.38 -0.48 -1.82 -0.44 -0.34 -0.13 -0.87 -1.15 -0.61 -0.34 -0.51	+104 ++75 ++66 ++66 ++66 ++65 ++66 ++66	14.90 16.70 16.00 14.70 16.42 11.27 15.12 15.76 11.00 12.89 16.52 12.80 15.98 10.86	14.90 16.46 15.98 14.63 16.74 11.32 15.17 15.98 16.59 13.02 16.02 10.80 15.49 10.97 11.53	.00 +.24 +.07 32 05 05 22 17 +.13 07 22 09 +.06	-00 +.28 +.08 +.07 25 01 08 13 07 +.12 05 16 +.08 +.08	06 52 19 32 11 03 13 09 08 04 20 32 11 09 10	+.20 31 +.01 07 +.20 01 +.01 23 +.10 +.17 05 03 00 +.11 .00 07	A. J. XXV,
U. S. Naval Obs.: Hammond.	1907-08 Dec. 27 10 37 31 12 54 Jan. 3 12 18 5 11 34 10 11 39 25 10 39 Feb. 20 10 31 24 10 40 Mar. 3 10 12 4 10 32 9 12 35 21 9 7 27 8 50	270.51 19.30 197.64 81.14 117.32 285.53 125.53 259.86 114.60 72.94 105.47 100.82 96.25	271.38 21.39 198.13 81.73 118.49 286.67 127.68 260.92 115.98 72.57 106.19 101.96 97.43	-0.87 -2.09 -0.49 -0.59 -1.17 -1.14 -2.15 -1.06 -1.38 +0.37 -0.72 -1.14 -1.18	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17.19 11.72 11.02 16.11 15.52 16.82 14.38 15.95 15.44 15.28 16.39 16.68	16.75 11.32 11.25 16.11 15.69 16.60 14.43 15.97 15.54 15.12 16.28 16.37 16.42	+.44 +.40 23 100 17 +.22 05 10 +.16 +.11 +.02 +.26	+.25 +.46 17 10 22 +.05 20 16 +.08 +.02 08 +.15	25 41 10 17 32 33 54 30 37 +.10 20 33 34	.00 21 04 +.08 +.02 +.01 22 12 03 +.31 +.14 01	A. J. XXVI, 29.
Yerkes: Barnard.	1907-08 Oct. 1 18 20 13 18 16 Nov. 5 19 32 12 17 18 24 16 13 26 13 58 28 15 54 Dec. 1 18 11 3 14 37 5 16 47 12 17 25 25 13 58 Feb. 23 12 44 Mar. 3 12 45 8 10 38 10 9 57	170.39 150.18 189.10 117.43 109.05 352.80 242.31 52.46 286.63 327.55 92.31 28.76 298.61 110.83 172.30 67.36	171.42 151.68 190.69 118.65 109.77 352.68 242.58 52.64 284.82 148.54 92.51 28.22 299.72 111.18 172.82 67.53	-1.50 -1.59	+ + + 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10.93 12.22 11.28 15.75 16.73 11.34 14.08 13.20 16.50 12.58 16.92 11.74 15.10 16.26 11.18 14.72	11.06 12.23 10.95 16.46 11.33 13.85 12.92 16.74 12.74 11.52 16.00 11.14 14.52	13 01 +.33 +.09 +.27 +.01 +.28 24 16 +.18 +.22 17 +.26 +.04 +.20	14 06 +.36 02 +.14 +.04 +.21 20 21 +.02 +.12 +.12 +.14 +.04 +.04	20 32 30 33 21 +.02 04 +.53 22 06 +.11 30 10 10	+.04 06 09 06 +.05 10 +.09 06 +.05 +.14 +.01 +.14 +.14 +.02	A. N. Vol. 181, 321. Observed position angle, Dec. 5, assumed 180° wrong.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	Angle.	dp		Dista	ance.	d	•	a sir	n dp	Db.
Observer.	-Aber. Time.	o	С	о-с	Δŧ	o	С	o-c	,	0-0	v	Remarks.
Yerkes: Barnard.	1908 h m Mar.29 9 46 Apr. 3 9 29 4 9 16 5 9 41 19 9 49 19 10 9 21 9 24 May 3 9 53 10 9 40	141.25 36.86 315.37 267.35 116.41 114.42 4.73 341.02 278.20	321.56 36.82 315.02 268.45 117.39 116.74 4.39 340.56 279.32	-1.10 -0.98 -2.32 +0.34 +0.46	+ 4 6 + 5 6 6 + 5 8	" 12.76 11.57 13.16 15.98 15.34 15.28 10.54 11.21 15.82	" 12.77 11.66 13.34 16.14 15.05 15.11 10.69 11.27 16.03	"01091816 + .29 + .17150621	" +.08 21 08 15 +.18 +.06 16 18	"07 +.01 +.08312661 +.06 +.0931	"1107 +.07160035070019	Observed position angle, Mar. 29, assumed 180° wrong.
Yerkes: Barnard.	1908-09 Sept.20 18 27 Nov. 3 17 1 3 17 20 17 13 43 20 18 41 Dec. 1 14 30 13 13 28 20 15 46 24 13 31 27 12 47 29 18 39 Jan. 12 14 13 19 12 9 24 11 49 26 14 7 31 14 44 Feb. 16 11 22 21 12 50 26 10 21 28 11 36 Mar. 2 10 34 14 10 24 16 9 27 21 9 22 23 11 49 28 12 4 Apr. 11 9 17	38.94 229.53 229.07 90.88 262.12 301.56 292.03 233.64 333.36 149.49 31.25 264.45 195.01 1258.00 113.60 163.87 280.43 138.53 41.05 269.43 133.37 120.25 13.51 73.67 289.42 341.76 229.29	38.63 229.11 228.14 93.11 261.48 300.50 291.48 234.02 332.34 150.11 30.51 264.54 196.50 257.82 113.20 164.58 279.88 318.83 40.61 269.39 133.38 120.72 11.91 74.32 289.69 340.09 229.56	+1.06 +0.55 -0.38 +1.02 -0.62 +0.74 -0.09 -1.49 +0.18 -0.71 +0.55 -0.30 +0.44 +0.04	++-++++++++++++++++++++++++++++++++++++	12.00 12.91 12.33 16.98 15.58 15.61 16.45 12.80 12.52 12.64 11.34 15.69 11.18 15.37 16.10 11.91 16.63 13.33 12.15 16.36 14.09 15.53 11.06 15.22 11.62 12.02	11.30 12.25 12.22 16.50 15.67 16.47 12.58 11.51 16.23 11.15 16.24 11.66 16.73 13.42 12.00 16.44 13.89 15.15 10.90 15.01 16.04 11.55 12.43	10 09 + .15 08 + .20 + .38	+.48 +.66 +.11 +.01 +.03 +.07 19 01 20 23 +.18 02 03 +.11 +.20 +.04 01 +.04 02 +.03 41	+.06 +.09 +.20 64 +.17 +.29 +.16 09 +.12 14 +.15 03 29 +.05 +.11 14 +.16 07 +.01 100 12 +.30 17 08 +.34 06	02 +.17 +.28 48 +.17 +.09 +.01 02 05 17 +.06 +.28 .00 +.07 34 +.02 03 +.16 +.09 23 +.06 +.02	A. N.Vol. 181, 323. Observed position angle, Feb. 21, assumed 180° wrong.
U. S. Naval Obs.: A. Hall, jr.	1908-09 Dec. 2 14 19 7 14 8 13 12 42 26 12 52 31 14 40 Jan. 1 14 32 17 11 42 18 9 44 20 15 4 Feb. 10 10 17 11 12 21 13 14 34 17 11 29 17 14 0 20 12 24 25 12 11 26 12 2 Mar. 5 11 29 11 10 50 15 9 16 17 9 1 20 8 51 21 11 0 21 12 01 22 9 9 23 10 42 26 8 36	257.06 295.28 292.27 234.20 272.42 218.28 307.03 267.77 116.34 285.99 *234.58 96.16 229.22 222.81 44.74 90.82 35.40 307.01 301.98 79.76 299.58 117.55 70.36 67.48 1.98 291.21 113.65	230.64 223.05 43.46 91.24 35.00 307.81 302.86 80.28 300.51 117.92 70.93 68.01 1.62	+0.55 -0.61 -0.79 -1.83 -0.85 -1.42 -0.24 +1.28 -0.42 +0.40 -0.88 -0.52 -0.93 -0.57 -0.57 -0.53 +0.36 -0.48	0	17.41 12.89 11.98 12.77 17.42 12.12 14.67 15.39 15.56 15.17 14.89 15.09 11.66 16.21	16.13 16.36 13.04 16.80 12.00 14.93 16.46 15.94 16.57 13.35 16.79 12.81 12.22 12.24 16.56 11.69 14.44 14.92 15.66 15.11 15.35 14.87 14.86 10.88	+ .40 + .20 05 + 1.05 + .56 + .36 36 + .62 + .08 24 + .53 + .53 24 + .54 24 + .54 24 + .54 24 + .55 + .36	+.818504 +.160528 +.85 +.31 +.0460 +.281547 +.23 +.51 +.154462 +.254812 +.39 +.58 +.1055	361016 +.075230 +.09 +.1617233205 +.2712 +.0820231415101513 +.0713 +.22	15 +.02 03 +.27 33 11 +.17 +.36 02 08 23 10 12 +.14 +.29 +.08 13 13 14 02 08 13 14 02 08 13 14 02 08 10 12 08 10 12 08 10 12 08 10 10 10 10 10 10 10 10	A. J. XXVI, 179.
Yerkes: Barnard.	1909-10 Sept.24 18 17 28 17 35 Oct. 26 16 52 Nov.14 16 14 30 15 20	104.72 234.20 301.99 239.43 318.40	234.26 301.33 239.10	-0.58 -0.06 +0.66 +0.33 +0.78	+ 6 + 6 + 4 + 5 +11	16.64 11.94 15.55 12.62 14.39	12.18 15.60	+ .44 24 05 30 + .28	+.29 .00 01 05 +.30	16 01 +.18 +.07 +.19	08 +.15 .00 +.20 +.02	A. J. XXVI,

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	Angle.	dp		Dist	ance.		la .	a si	n dp	
Observer.	-Aber. Time.	0	C	0-C	Δŧ	0	C	0-C		0-C	•	Remarks.
Yerkes: Barnard.	1909-10 h m Dec. 7 13 21 19 13 5 28 13 34 Jan. 6 13 23 8 13 10 9 14 57 Feb. 1 12 4 6 12 20 8 14 33 12 11 32 27 11 50 Mar. 1 8 38 5 13 27 8 10 42 12 11 56 13 12 8 15 8 57 22 10 9 Apr. 2 12 0 12 9 25	272.78 261.79 69.49 240.29 104.47 51.34 1.28 117.62 285.06 161.54 275.02 98.79 217.36 135.82 44.60 310.23 0.51 113.14	104.69 51.29 86.01 122.37 359.76 118.20 284.56 163.89 276.84 98.97 218.93 136.42 43.90 310.69	-0.58 +0.50 -2.35 -1.82 -0.18 -1.57 -0.60 +0.70 -0.46 +0.52	m5666775864716447055655116	" 16.18 14.74 14.84 12.95 17.07 12.52 16.24 15.76 11.34 16.22 16.50 11.36 16.06 16.70 12.00 14.24 12.00 14.32 10.72 16.36	13.35 16.90 12.61 16.13 15.57 11.18 15.93 16.66 11.69 16.62 16.63 11.69 13.77 14.30 10.89	"2075 + .4340 + .1709 + .16 + .19 + .16 + .2916 + .07 + .3156 + .07 + .3117 + .47 + .44	"-04 55 +.38 15 +.01 13 +.02 04 +.14 +.07 43 44 07 +.53 +.24 01 +.04 19 +.24	" +.35 +.2524 +.0906 +.012826 +.3016 +.154853053214 +.1511 +.10 +.37	" +.25 +.2228 +.2205280605080605 +.17 +.010805 +.15 +.072902 +.49	
U. S. Naval Obs. A. Hall, jr.	1909-10 Dec. 9 13 40 10 12 12 16 12 53 17 13 34 Jan. 7 13 52 8 10 31 8 12 14 10 11 126 10 14 13 19 13 41 29 9 37 29 10 40 29 12 33 Feb. 1 13 3 1 14 48 7 10 23 7 12 39 10 12 54 13 11 14 18 11 55 22 12 32 25 10 18 25 13 10 Mar. 3 11 24 4 10 58 8 10 11 8 10 55 14 9 47 15 10 5 17 11 9	130.77 92.42 87.77 12.59 156.39 111.94 107.71 336.62 328.07 139.26 272.48 271.32 266.58 83.31 79.81 84.14 79.13 255.00 77.05 112.91 243.09 65.02 57.27 52.16 331.44 100.57 99.42 98.16 39.77 271.87	12.56 154.76 109.17 106.26 337.79 329.36 138.97 272.98 271.16 267.83 84.19 80.86 79.23 255.71 76.09 112.11 243.05 64.92 57.57 54.28 331.59 99.83 98.60 95.53 40.21	+1.45 +3.52 +0.03 +1.63 +1.63 +2.77 +1.45 -1.17 -1.29 -0.50 +0.16 -1.25 -0.85 +0.53 -0.10 -0.71 +0.80 +0.04 +0.10 -0.212 -0.15 +0.74 +0.82 +2.63 -0.44	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14.57 15.47 11.51 16.39 16.25 12.17 13.28 13.65 16.91 16.98 16.16 15.65 16.08 15.36 16.15 13.64 13.99 13.47 12.53 16.47 16.41 11.96	12.48 16.75 16.86 12.26 12.92 13.88 16.65 16.54 15.92 15.48 15.10 15.14 16.36 13.72 13.90 13.17 12.85 16.63 16.63 16.63 16.11 17.76	23 + .26 + .44 14 + .50 27 + .60 14 + .22 21 08 + .09 + .30 17	1932 +.35305527 +.1724 +.10 +.2810 +.5423 +.6435 +.261533 +.11 +.31081104 +.17	15 +.41 +.97 +.01 +.36 +.81 +.43 25 +.07 15 +.05 29 +.15 29 +.15 29 +.103 +.25 +.23 +.01 +.25 +.23 +.02 +.23 +.24 +.24 +.24 +.24 +.24 +.24 +.24 +.24	55 +.26 +.87 +.15 06 +.51 +.15 35 08 +.12 29 35 37 +.05 14 +.20 14 +.20 02 +.04 02 +.04 02 +.04 02 +.04 02 +.04 02 04 06 +.04 06 06 06 06 06 06 06 06	A. J. XXVI,
Yerkes: Barnard.	17 11 9 26 9 19 27 10 2 8 9 22 9 9 10 9 9 52 13 9 28 14 9 36 1910-11 Sept.27 18 25 Oct. 2 17 37 7 17 52 9 17 35 16 18 18 18 25 17 25 25 17 38 30 18 18 18 25 17 25 25 17 38 30 11 16 1 11 16 47 24 15 19 29 16 55	271.87 85.69 7.08 356.95 295.25 67.14 343.80 254.33 295.60 343.03 242.20 146.50 44.53 320.48 319.27 28.76 272.19 6.66 294.35 336.34	358.75 294.88 293.62 67.73 346.99 254.68 294.45 341.31 241.93 146.68 46.12 318.49 317.99 27.51 272.12 7.47 293.89	-0.31 -0.49 -1.80 +0.37 -0.59 -3.19 -0.35 +1.72 +0.27 -0.18 -1.59 +1.28 +1.25 +0.07	+ + + + + + + + + + + + + + + + + + +	13.56 16.09 12.36 12.41 13.10 11.72 14.57 15.16 11.00 15.83 11.23	10.80 10.87 15.70 15.80 13.87 11.23 13.84 16.05 11.82 12.63 13.12 11.53 14.08 14.10 10.87 15.88 10.92	+ .24 + .27 + .06 00 + .17 28 + .04 + .54 122 02 + .49 + .13 05 + .13 05	+.27 +.13 +.14 14 10 +.01 19 09 +.21 13 38 +.07 +.21 +.78 02 +.01 22 25	+.35 09 34 +.10 14 63 08 +.35 +.06 04 +.31 +.24 +.21 +.21 15 +.13	+.42 21 +.06 20 +.17 14 50 10 01 +.23 +.15 16 +.22 +.03 +.38 18 10 21 16	A. J. XXVII, 111.

TABLE I .- Comparison of Observations with Theory-Continued .

Observatory and	Greenwich M. T.	Position	Angle.	dp		Dist	ance.			a si	n dp	
Observer.	-Aber. Time.	0	C	0-c	Δŧ	0	C	0-C	9	0-C	•	Remarks.
Yerkes: Barnard.	1910-11 h m Dec. 11 13 32 20 13 46 Jan. 3 15 55 22 14 7 29 11 58 Feb. 7 13 14 21 11 20 Mar. 7 10 48 12 10 14 14 9 27 19 10 36 Apr. 16 12 10	330.84 137.61 2.86 286.25 235.03 34.56 265.21 114.03 165.54 66.59 104.63 182.08	329.18 137.52 1.67 286.00 234.91 36.42 264.85 114.44 167.05 66.69 104.64 182.90	+1.66 +0.09 +1.19 +0.25 +0.12 -1.86 +0.36 -0.41 -1.51 -0.10 -0.01 -0.82	m 5 6 6 7 + 5 6 4 + 6 6 7 + 6 6 7 + 6 6 7 + 6 6 7 + 6 6 7 + 6 5	" 14.23 14.92 11.00 16.82 12.51 11.40 15.58 16.44 11.80 14.18 16.72 11.12	11.24 16.89 12.71 11.52 15.73 16.25 11.57 13.69	" +1.05 + .53 07 20 12 15 + .19 + .19 + .49 + .32	" +.72 +.1656151330090709 +.4401	" +.38 +.02 +.23 +.07 +.03 37 +.10 12 30 02 .00	" +.17 +.06 +.25 24 +.18 21 04 16 07 +.10 04 +.13	
U. S. Naval Obs.: A. Hall, jr.	1911 Jan. 28 11 18 Feb. 2 13 0 21 13 10 23 8 58 23 12 25 24 11 11 Mar. 1 10 45 3 11 1 4 12 15 8 11 0 10 10 21 16 9 49 21 9 35 24 10 10 25 11 13 28 9 14 30 11 4 31 9 13 31 10 50	286.34 322.93 261.07 128.98 122.55 82.92 120.50 359.60 295.10 69.34 291.85 288.42 333.57 150.77 99.62 279.84 139.10 96.17 94.15	82.27 119.89 0.23 294.50 70.04 292.64 288.46 334.76 148.72 98.63	-0.21 -0.27 +0.65 +0.61 -0.63 +0.60 -0.70 -0.70 -1.19 +2.05 +0.99 +0.36 +0.47	+23 + 7 +15 	16.78 13.51 15.11 16.08 15.66 16.19 11.22 16.35 16.36 16.48 12.47 13.35 16.69 16.45	16.42 16.43 13.66 16.31	10 07 22 + .35 + .24 + .28 + .09 + .05 02 + .13 + .527 + .02 + .15 + .13	14 25 17 12 +.19 +.06 05 05 08 05 +.22 +.16 .00	+.19 24 06 07 +.05 +.18 +.17 12 +.17 23 01 25 +.46 +.28 +.10 +.11 24 03	+.22 24 +.10 14 05 +.12 +.06 05 +.17 19 23 +.01 23 +.51 +.17 +.15 +.09 35 13	A. J. XXVIII, 42.
U. S. Naval Obs.: Burton.	1911 Jan. 30 11 51 Feb. 2 14 50 21 11 26 23 11 34 24 12 42 27 11 2 Mar. 1 12 1 2 10 54 8 11 46 10 11 49 11 10 6 16 11 24 20 10 34 21 10 59 23 9 44 24 11 45 25 9 35 28 10 59 30 9 57	147.76 318.88 264.60 125.37 79.65 259.13 117.80 77.76 295.85 69.81 290.00 247.94 285.46 56.31 329.16 234.18 146.30 102.59 275.42 142.24	259.61 117.57 78.07 296.90 68.24 290.12 248.68 285.79	-0.06 +1.39 +0.41 -0.48 +0.23 -0.31 -1.05 +1.57 -0.12 -0.74 -0.34 +0.42 +1.45 +0.14 +1.92 +1.21	+ 4 +50 +30 +27 +36 +23 +29 +23 +27 +22 +19 +23 +39 +20 +24 +19 +24 +23 +21	14.03 15.47 16.05 14.81 15.10 16.24 14.87 16.12 13.20 16.52 13.93 16.75 12.01 12.68 12.70 13.34 16.54 13.61	16.12 14.91 16.14 13.81 16.49 13.87 16.56 12.52 12.68 12.40 13.22	01 11 + .44 + .03 + .12 04 61 + .03 + .06 + .09 51 .00 + .30 + .10 + .13 + .15	16 07 +.32 12 +.10 +.02 +.18 41 10 +.15 +.09 27 08 +.39 01 +.08 +.09 +.02	75 11 02 +.38 +.11 13 +.06 30 +.38 03 18 10 +.09 32 +.03 +.44 +.35 31 +.20	75 +.21 +.07 +.21 11 04 15 30 +.23 +.13 07 +.04 +.03 +.02 +.16 +.40 +.08 20 +.14	A. J. XXVIII, 43.
Yerkes: Barnard.	1911-12 Dec. 19 12 41 Jan. 12 12 44 14 13 18 19 13 3 21 17 17 30 13 54 Feb. 3 12 8 Mar. 4 10 18 9 10 55 16 11 45 18 11 39 Apr. 8 11 16 21 11 20 22 10 17 27 10 19 May 5 10 25 7 10 19	162.38 132.74 22.09 83.28 296.55 114.29 250.65 323.23 207.89 266.61 182.02 75.47 226.40 130.07 90.70 126.63 0.73 255.06	133.09 21.34 84.23 296.20 114.30 249.83 323.15 209.38 265.90 181.10 75.18 228.21 131.18 90.51 127.26 1.67	-0.35 +0.75 -0.95 +0.35 +0.01 +0.82 +0.08 -1.49 +0.71 +0.29 -1.81 -1.11 +0.19 -0.63	+++++++++++++++++++++++++++++++++++++++	12.06 15.40 11.18 15.80 16.74 16.95 13.43 13.55 11.35 11.35 11.37 14.39 11.90 14.68 15.53 14.98 10.75	16.62 16.69 13.83 13.79 11.09 15.49 11.07 14.30 11.73 14.57 15.55 14.94 10.75	+ .42	19 +.15 +.06 +.372715 +.0503141005 +.10	29 09 +.14 26 +.10 .00 +.20 +.19 +.18 +.07 37 28 +.05 16 18	11 +.05 +.07 23 +.06 +.10 +.26 14 +.21 +.36 +.08 15 +.09 04 26 12	A. J. XXVII, 111.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	n Angle.	dp		Dist	ance.		la	a si	n dp	D
Observer.	-Aber. Time.	0	С	0-C	Δŧ	0	C	0-C	0	0-C		Remarks.
U. S. Naval Obs.: Burton.	1911-12 h m Dec. 18 13 42 19 14 15 Jan. 10 12 48 10 14 22 13 11 25 19 11 27 19 12 56 20 12 15 20 14 7 21 12 0 22 11 14 22 12 22 24 11 42	244.87 158.90 272.11 268.90 92.65 88.40 85.28 14.27 6.43 305.85 265.39 261.41 123.28	87.37 84.47 14.02 6.78 305.71 264.89 262.61 123.48	+0.03 -1.08 -1.42 -0.34 +1.03 +0.81 +0.25 -0.35 +0.14 +0.50 -1.20 -0.20	m 0 0 0 0 0 0 0 0	" 13.20 12.54 16.26 15.98 16.37 15.89 15.52 11.08 11.16 15.96 15.12 15.98	" 13.16 12.50 16.26 16.00 16.25 15.74 15.44 11.04 11.13 15.83 15.49 15.25 16.03	" +.04 +.04 00 02 +.12 +.15 +.08 +.04 +.03 13 09	" +.0213010301 +.0204 +.03 +.09101320	" +.01 +.01314010 +.28 +.22 +.0507 +.04 +.143206	" +.20 +.07162420 +.18 +.120112 +.12 +.311510	A. J. XXVIII, 45.
	Feb. 2 12 46 5 12 20 6 10 57 6 13 10 8 12 20 9 12 47 13 13 25 14 10 34 14 12 10 17 10 18 17 11 36 23 9 10 23 12 1 27 12 15 27 11 15 18 11 4 29 10 28 31 9 23 Apr. 6 9 9 11 10 10 7 11 9 39	120.92 297.08 293.28 112.01 69.44 63.89 289.05 238.84 333.44 329.37 287.21 284.41 105.54 103.63 102.29 97.61 213.21 135.43 313.03 19.90 192.47 10.58 181.61 119.16 76.74 110.52 343.85 333.52 150.16 101.67 49.54	120.53 297.30 293.68 111.80 69.09 63.32 289.37 240.31 333.99 330.02 287.33 284.66 105.30 103.12 102.18 97.34 213.08 135.75 313.56 19.68 193.12 10.31 182.55 119.27 76.49 110.33 343.38 332.91 150.57 101.03	+0.39 -0.22 -0.40 +0.21 -0.35 +0.57 -0.55 -0.12 -0.25 +0.24 +0.11 +0.27 +0.13 -0.53 +0.22 -0.65 +0.24 -0.94 -0.94 -0.11 +0.19 +0.41		16.55 16.77 16.75 16.83 13.83 13.18 16.90 13.18 12.68 13.06 16.81 16.56 16.94 16.94 16.94 11.20 14.74 10.77 11.22 10.90 11.15 16.16 14.48 16.52 11.88 12.48 12.40 13.22 16.48 12.20	16.29 16.52 16.69 16.75 13.78 13.21 16.81 12.93 12.77 13.12 16.81 16.80 16.70 16.76	+.26 +.25 +.08 +.05 09 +.25 09 06 24 +.17 +.18 +.23 +.15 03 +.03 +.15 +.32 09 +.15 +.32 09 +.15 +.32 +.15 +.32 +.16 +.32 +.16 +.16 +.16 +.16 +.16 +.16 +.16 +.16	+.11 +.21 +.02 06 05 12 +.06 +.23 10 03 27 +.04 +.09 +.01 11 15 00 17 +.20 01 +.02 09 02 +.11 10 +.38 +.05 +.38 +.05 10 10 10 10 10 10 10 10	+.11 06 12 +.08 +.13 09 33 15 04 07 +.07 +.03 +.08 +.03 14 +.04 12 +.05 +.05 +.18 09 +.18 +.18	+.06 +.04 01 03 +.02 +.02 14 11 13 +.08 +.06 01 +.07 05 01 +.21 09 08 08 04 02 +.10 +.08	
Yerkes: Barnard.	1912-13 Oct. 12 18 35 15 18 37 29 18 5 Nov. 9 16 4 10 16 2 16 14 23 17 16 18 Dec. 8 15 34 21 13 26 22 13 40 28 15 16 Jan. 3 17 2 4 13 37 18 14 25 26 12 57 28 12 3 Feb. 1 12 57 4 10 27 9 12 45 11 11 8 23 14 31 Mar. 4 10 34 9 12 45 11 12 0 15 13 14 30 12 11 Apr. 6 11 28 29 11 14 30 12 11 Apr. 6 11 28 13 11 13 14 9 12	273.41 90.11 300.64 344.22 294.21 291.88 235.09 20.63 303.38 260.30 246.99 233.50 158.80 37.57 273.62 133.43 267.99 88.99 121.28 5.58 334.56 151.61 220.08 97.64 208.78 136.35 84.05 4.70 296.44 244.45 165.86	344.19 293.16 290.99 235.05 19.73 302.93 259.30 248.04 234.14 159.73 37.74 273.19 134.43 267.54 89.51 121.78 5.22 334.32 153.01 220.38 97.80 208.40 136.34 82.50 3.09 296.85 245.04	+0.04 +1.02 +0.03 +1.05 +0.89 +0.04 +0.90 -1.05 -0.62 -0.17 +0.43 -0.17 +0.43 -1.00 +0.45 +1.00 -1.05 -0.52 -0.50 +0.36 +0.24 +0.93 -1.40	+54+55+66+7566655665597	15.17 15.83 12.72 16.47 16.62 11.58 10.88 16.32 14.00 12.93 12.10 11.26 15.31 15.26 15.35 16.24 11.36 12.73 11.25	14.98 16.24 12.06 16.55 16.62 11.84 10.86 13.21 12.07 12.62 11.29 16.04 15.14 15.48 16.31 11.15 12.95 11.33 16.29 10.93 14.57 14.73 10.97 16.18	13 +.19 41 +.66 08 00 26 28 +.03 33 73 +.12 07 +.21 27 +.28 +.18 +.54 +.32 +.03 14 +.25 28 +.19 +.28 +.32 +.32 +.32 +.32 +.32 +.32 +.32 +.32	02 +.14 35 +.62 .00 +.08 16 08 +.04 23 16 14 01 +.19 19 +.12 19 +.12 19 +.12 19 +.12 19 +.12 19 +.12 19 +.12 19 +.12 19 +.12 19 +.11 19 +.12 19 +.11 19 +.12 19 +.12 19 19 +.11 19 +.11 19 +.11 19 +.11 19 19 +.11 19 19 19 19 19 19 19 -	+.12 +.01 +.20 +.30 +.26 +.01 +.13 +.25 24 14 14 14 14 05 32 06 05 +.07 00 +.31 13 31	+.05 +.02 +.10 19 +.13 +.10 +.13 +.04 17 01 04 11 +.04 17 +.08 17 11 +.04 17 +.08 17 +.10 +.26 17 +.10 +.26 17 +.04 11 +.04 13 09 19 19 19 19 19 19 19 1	A. J. XXVIII, 10.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	n Angle.	dp		Dist	ance.	d	ls .	a sti	n <i>dp</i>	D
Observer.	-Aber. Time.	0	С	0-C	A	o	c	0-C	•	0-C	v	Remarks.
U. S. Naval Obs.: A. Hall, jr.	1912-13 h m Dec. 9 14 37 13 14 10 19 14 31 28 13 12 28 15 49 30 13 43 Jan. 1 12 10 8 13 38 9 14 54 14 15 9 14 16 18	311.29 88.63 82.78 254.57 245.86 116.20 348.71 286.96 229.72 279.26 276.35	311.70 87.72 80.72 253.38 246.55 114.80 348.92 287.51 231.50 279.90 277.90	-0.41 +0.91 +2.06 +1.19 -0.69 +1.40 -0.21 -0.55 -1.78 -0.64 -1.55	m 0 + 1 2 + 1 0 + 1 4 + 1 6 + 4 2 + 2	" 16.05 15.19 14.54 13.85 13.08 16.72 12.16 17.14 11.51 16.74	" 15.48 15.26 14.53 13.78 13.09 16.81 11.91 16.87 11.94 16.56 16.43	" +.57 07 +.01 +.07 01 09 +.25 +.27 43 +.18 +.05	" +.27 04 +.08 +.03 05 24 +.14 +.06 48 +.02 09	"11 +.24 +.52 +.29 16 +.41 04 16 37 18	" +.14 100 +.32 +.39 06 +.11 +.32 03 26 07	A. J. XXXII, 118.
	Feb. 4 12 44 6 12 33 7 11 14 12 12 34 13 9 56 15 12 17 18 11 43 25 11 26	86.06 303.78 264.60 298.94 261.60 117.10 295.24 242.29	84.99 304.83 265.02 299.48 261.53 117.41 295.82 243.44	+1.07 -1.05 -0.42 -0.54 +0.07 -0.31 -0.58 -1.15	+ 9 + 2 + 1 - 9 + 0	15.03 16.48 15.50 16.68 14.90 16.36 17.14 13.23	15.19 16.06 15.22 16.45 14.84 16.55 16.62 12.93	16 +.42 +.28 +.23 +.06 19 +.52 +.30	12 +.12 +.20 05 01 35 +.25	+.28 29 11 15 +.02 09 17 26	+.05 07 02 +.04 +.11 37 .00 16	
U. S. Naval Obs.: Burton.	1913 Feb. 28 9 16 28 11 17 Mar. 5 12 14 6 11 20 7 9 24 8 9 0 18 11 28 20 9 12 20 10 23 22 10 59 24 10 41 28 9 5 28 11 24 29 9 17 29 10 15 31 9 23 31 10 30 Apr. 1 9 48 1 10 53 5 9 8 7 9 1 17 10 47 19 9 46 21 9 38 22 9 28 24 9 6 May 1 9 30 3 9 18 8 9 31	65.88 60.50 102.08 50.66 332.60 285.48 28.62 275.21 272.60 131.78 22.29 129.46 124.61 86.08 83.84 306.17 304.00 262.32 259.18 4.56 257.40 338.01 240.90 107.10 57.56 285.72 222.68 98.01 135.08	332.17 285.42 28.69 274.89 272.76 131.16 20.28 129.06 124.66 86.44 84.51 305.67 303.60 262.41 [260.11 3.45 257.72 337.72 240.83 107.37 285.82 222.68	+0.06 -0.07 +0.32 -0.16 +0.62 +2.01 +0.40 -0.05 -0.36 -0.67 +0.50 +0.40 -0.93 +1.11 -0.32 +0.29 -0.27 +0.19 -0.10 0+0.01	21212002101101111011111101011111		15.83	+.09152803 +.18 +.09 +.01 +.16 +.15 +.05 +.01 +.11 +.120504 +.40 +.2407 +.20 +.14 +.3016 +.01 +.28121521	+.04 21 28 10 +.12 +.05 07 +.10 +.09 +.07 13 +.14 07 +.13 +.14 05 +.15 +.12 +.05 +.13 +.20 25 25 25 20	+.13 +.19 12 +.07 +.10 +.09 04 +.11 01 17 +.14 +.11 22 23 +.21 08 +.06 +.08 +.04 03 00 +.04	+.16 +.22 14 +.09 +.05 01 +.07 06 +.37 +.02 09 08 +.07 04 25 +.01 01 01 05 01 06	A. J. XXXII, 114.
Yerkes: Barnard.	1913-14 Oct. 26 16 9 Nov.11 17 38 15 16 20 22 15 29 22 15 47 23 16 7 Dec. 7 14 58 16 13 58 Jan. 24 14 11 29 15 37 31 14 13 Feb. 3 13 15 26 12 44 26 13 6 Mar. 1 12 56 8 12 13	99.90 180.12 303.91 254.79 253.84 164.77 52.94 218.43 333.99 42.80 281.53 102.27 261.18 121.54 121.48 299.76 247.62	100.51 182.25 302.96 253.88 253.10 167.31 53.38 221.21 333.13	-0.61 -2.13 +0.95 +0.91 +0.74 -2.54 -0.44 -2.78 +0.86 +0.24 +0.24 +1.18 +0.07 -0.51 +0.06 +0.60	++++++++++++++++++++++++++++++++++++++	16.17 11.05 16.10 13.22 13.25 12.01 12.09 10.73 13.90 11.28 16.40 16.37 14.32 16.75 16.48	15.79 11.08 16.30 13.18 13.10 12.02 11.61 11.11 13.37 11.31 16.53 16.47 14.45 16.35 16.40 16.51	+.38 03 20 +.04 +.15 01 +.48 +.53 03 13 13 +.40 +.08 +.04 21	+.24 14 25 +.31 21 +.39 26 +.42 14 09 27 +.01 +.12 20 01	17 41 +.27 +.21 +.17 59 54 +.20 +.05 09 +.34 +.02 +.15 +.02 +.17 27	13 04 +.05 +.25 +.22 18 10 27 +.03 25 +.38 00 02 +.15 04 19	A. J. XXIX, 39.
Yerkes: Barnard.	1915 Apr. 7 11 5 14 9 30 22 10 11 May 9 10 12 12 10 4	148.46 103.61 316.24 357.46 170.01	150.11 103.06 315.74 355.53 170.94	$+0.55 \\ +0.50$	+ 6 + 5 + 6 + 8 + 7	14.96	13.39 16.04 14.84 11.16 11.41	+.35 +.20 +.12 +.27 +.06	+.06 08 +.01 +.17 11	38 +.15 +.13 +.37 19	16 +.11 15 +.15 +.08	A. J.XXX, 2.

TABLE I.—Comparison of Observations with Theory—Continued.

		Position	n Angle.	dp		Dist	ance.		le	e si	n <i>dp</i>	
Observatory and Observer.	Greenwich M. T. —Aber. Time.	o	c	0-C	Δŧ	o	С	0-C	•	0-C		Remarks.
Yerkes: Barnard.	1915-16 h m Oct. 21 17 41 Nov. 21 8 0 Dec. 4 16 13 18 16 41 Jan. 1 19 57 5 12 53 15 15 48 Feb. 2 12 45 5 17 6 9 14 6 26 12 1 Mar. 4 10 58 8 11 17 15 11 25 18 12 24 22 12 50 29 13 23 Apr. 1 10 43 1 11 28 3 9 53 5 11 2 8 11 46 12 11 14 19 11 22 May 3 10 53 6 10 35 10 9 57	311.09 6.71 298.78 136.09 356.98 224.66 342.59 102.12 90.25 257.72 174.21 62.21 332.87 104.71 32.50 203.96 310.88 260.29 83.38 81.68 306.06 173.90 346.88 115.68 277.93 96.19 202.41	310.76 4.63 300.50 136.60 356.91 228.53 341.54 102.22 90.90 257.43 355.49 62.41 332.39 105.05 32.70 202.92 310.17 260.18 83.00 81.23 305.03 174.91 347.74 115.6.24 278.51 96.33 202.28	+0.33 +2.08 -1.72 -0.51 +0.07 -3.87 +1.05 -0.10 -0.65 +0.29 -1.28 -0.34 -0.34 -0.34 -1.01 +0.11 +0.11 +0.11 +0.35 +1.03 -1.01 -0.86 +0.24 +0.24 +0.13	m51077774756545595847755 5568455	15.65 11.01 16.18 15.83 11.67 11.25 13.66 16.30 15.03 13.36 11.84 11.93 13.57 16.56 10.95 15.72 13.71 11.05 11.85 16.94 11.481 14.81 15.20	"	"14 +.1322 +.24 +.07 +.16 +.77 +.12 +.13 .00 +.1205 +.28 +.28 +.26170615 +.094209 +.5347 +.18	"15 +.0621 +.09 .00 +.15 +.71 +.14 +.05 +.05 +.051710 +.19 +.17 +.200123 +.015715 +.432143 +.10	" +.09 +.3914 +.0175 +.240317 +.072604 +.111004 +.20 +.03 +.09 +.11 +.2918 +.091504 +.02	" +.05 +.3350090555 +.1715 +.2132 +.04 +.040806 +.16 +.16 +.11 +.12 +.2624 +.090902 +.21	A. J. XXX, 2. Observed position angle, Feb. 9, assumed 180° wrong.
Yerkes: Barnard.	1916-17 Sept.22 18 21 Oct. 3 18 29 10 18 10 21 17 28 26 18 35 31 17 25 Nov. 2 18 18 18 16 59 25 18 9 27 17 41 Dec. 2 17 47 9 16 18 37 27 14 24 30 16 34 Jan. 6 12 23 13 14 8 18 17 21 23 11 35 25 16 21 27 16 36 Feb. 8 16 0 10 13 0 13 11 6 17 12 55 20 11 49 27 10 6 Mar.17 14 30 20 10 34 22 11 31 24 12 33 27 10 14 Apr. 10 9 39 May 1 10 7 8 10 29	182.33 248.50 155.86 221.85 279.39 316.77 193.41 240.67 113.36 150.93 105.83 20.10 92.48 265.05 184.46 119.53 153.65 245.75 107.01 325.42 313.45 205.67 30.47 131.78 311.78 311.78 311.78 311.99 266.51 265.51 265.51 265.51 265.51 265.51 265.74 144.84 326.39 199.00 342.41 288.82	314.78 208.04 29.80 132.36	-0.39 +0.20 +0.41 -1.33 -2.37 +0.67 -0.58 +0.31 -0.50 -0.93 +0.07 -1.90 -0.13 -0.37 -0.97 -0.12	586979765177775579165577565556035555	16.49 14.88 16.10 10.40 10.61 16.38 15.99 13.87 10.78 11.24	14.89 16.00 10.63 10.63 16.17 16.21	33 +.04 37 37 +.20 +.02 +.02 +.55 +.23 18 +.30 38 +.20 101 23 02 +.21 25 25 25 25 26 26 26 26 26 26 26 26	35 +.1643 +.08 +.29 +.03 +.10 +.18 +.171719 +.2326 +.14 +.0918 +.03 +.1314130201111152	+.03 27 10 +.06 +.03 +.05 15 28 04 30 22 02 14 08 +.06 +.11 37 44 +.12 18 +.09 12 18 +.09 12 18 09 12 18 19 19 19 19 19 19 19 19	+.25 11 +.10 +.27 +.15 +.12 +.08 +.31 21 +.15 26 23 +.12 +.10 +.10 +.10 21 +.10 +.10 21 +.10 21 +.10 21 +.10 23 +.10 23 +.10 23 +.10 23 +.10 23 +.10 23 +.10 23 +.10 23 +.10 23 +.10 21 +.10 21 +.10 21 +.10 22 +.10 23 +.10 23 +.10 21 21 +.10 21 +.10 21 +.10 21 +.10 21 +.10 21 +.10 21 21 +.10 21 +.10 21 +.10 21 21 21 21 21 21 21 21	A. J. XXX, 214.
Yerkes: Barnard.	1917 Nov.10 18 26 Dec. 5 17 23 6 15 34 8 17 1 15 16 52 25 12 28	29.52 302.30 260.19 61.44 154.02	302.36 258.76 120.59 60.43	-0.06 +1.43 +1.01	+ 6 + 8 + 7 + 7 + 7	10.11 16.54 12.42 16.75 11.22 13.61	10.13 16.65 12.40 16.65 11.05 13.79	02 11 +.02 +.10 +.17 18	+.01 07 +.16 08 +.12 38	+.07 02 +.31 46	06 .00 +.48 +.05 23	A. J. XXXII, 103.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position	Angle.	dp		Dist	ance.		la	a si	n dp	
Observer.	-Aber. Time.	0	c	0-с	Δ¢	0	c	0-с	0	0-0		Remarks.
Yerkes: Barnard.	1918 h m Jan. 8 13 46 19 13 36 29 13 13 31 15 33 Feb. 16 11 49 23 12 22 28 15 6 Mar. 2 13 30 7 15 8 16 12 36 19 13 22 23 11 14 26 11 6 30 12 14 Apr. 4 13 23 13 10 54 23 10 16	26.18 88.58 167.17 65.97 153.52 103.75 134.17 17.71 85.58 258.20 76.72 169.34 346.22 113.70 148.04 325.27 97.69	171.07 66.59 151.70 103.60 133.85 18.11 85.49 260.72 74.57 169.85 345.90 114.29 149.15	+0.15 +0.32 -0.40 +0.09 -2.52 +2.15 -0.51 +0.32 -0.59 -1.11	m77+99+67+55+44+55+44+55+44	17.08 14.33	" 10.48 13.81 12.22 11.73 14.22 15.73 16.15 10.65 13.58 13.03 12.40 12.09 12.43 16.42 14.17 14.58 14.65	" +.18 +.0302 +.07 +.6425 +.3022 +.2831 +.40 +.1325 +.66 +.1614 +.07	" +.210918 .00 +.4340 +.0918 +.1717 +.310319 +.490410	" -02 +02 -83 -13 +45 +04 +09 -07 +02 -57 +47 -11 +07 -17 -27 +06 +22	"15085427 +.6701 +.21190941 +.34 +.17 +.011707 +.04 +.15	
Yerkes: Barnard.	1918-19 Nov.26 15 51 30 15 42 Dec. 5 15 36 7 15 4 Jan. 18 11 54 28 15 56 30 15 29 Feb. 1 10 35 4 11 40 6 14 26 11 14 5 15 10 51 18 13 11 25 12 1 Mar. 1 12 0 6 12 24 11 12 17 18 11 32 22 10 30 27 12 38 Apr. 1 10 22 12 12 18 22 9 47	107.36 279.79 137.39 108.71 189.93 91.28 318.57 132.31 359.70 79.46 175.54 345.82 296.98 57.24 109.71 145.02 100.41 201.16 266.88 311.23 342.20 114.67	107.80 279.81 138.25 109.82 189.96 90.89 318.77 134.40 359.76 79.28 177.12 345.78 297.17 57.24 109.12 144.30 99.81 202.10 267.79 309.57 341.51 113.93	-0.02 -0.86 -1.11 -0.03 +0.39 -0.209 -0.06 +0.18 -1.58 +0.04 +0.19 0.00 +0.72 +0.60 -0.94 -0.91 +1.69	5 45444	11.31 12.74 11.70 12.65 16.99 11.12 16.26 15.49 15.19 10.23 13.28 16.44	15.39 10.09 14.48 15.97 16.03 10.95 13.80 16.42 11.56 12.54 11.76 12.64 10.93 16.02 15.18 14.93 10.42 13.44 16.37 16.08	+.09 05 28 03 +.16 +.38 00 04 +.34 +.25 +.20 06 11 +.35 +.19 +.24 +.31 +.26 19 10 09 +.00 00 +.00 00 +.00 00 00 00	0602242100 +.341305 +.1623 +.091509 +.34 +.12 +.08 +.13 +.10 +.0511	1201243101 +.09066001 +.0432 +.010600 +.17 +.19 +.161721 +.47 +.15 +.21	11010929 +.23 +.041146110408071011 +.19 +.36 +.14 +.0518 +.42 +.07 +.25	A. J. XXXII, 103.
U. S. Naval Obs.: A. Hall, jr.	1918-19 Dec. 17 14 10 18 14 59 19 14 3 28 15 42 29 14 8 Jan. 6 14 13 20 12 36 21 11 36 24 12 30 26 13 39 27 11 59 29 15 3 30 11 53 31 15 0 Feb. 1 13 34 5 14 40 6 12 57 10 11 48 19 11 9 24 11 10 26 12 32 Mar. 3 10 55 24 10 23 25 10 27 Apr. 2 9 58	268.07 179.32 130.86 299.72 253.64 116.64 324.60 286.90 105.11 318.30 282.11 135.48 100.48 8.48 313.10 87.70 6.13 129.27 303.37 344.70 239.06 293.11 97.60 17.19 265.65	180.74 130.26 300.68 253.48 115.92 325.88 287.73 103.35 318.59 281.50 133.73 98.73 8.01 313.72 85.64	-0.96 +0.16 -1.28 -0.83 +1.76 +0.61 +1.75 +1.75 +0.62 +2.06 +1.25 -0.09 +1.42 -1.60 -1.00	+3 +2 +2 +1 +0 +1 -1 +5 +7 +1 +1 +5 -4 +1 +1 +5 -4 +1 +1	12.42 16.37 15.24 15.93 15.24 16.03 15.29 16.50 14.71 11.75 16.60 13.12 11.57	13.36 11.37 16.61 11.78 16.50 15.23 15.84 15.32 16.04 15.14 16.46 13.22 11.23 16.71 16.82 11.23 16.71 16.82 11.11 16.82 11.23 16.71 16.82 11.33 16.71 16.82 11.33 16.71 16.82 11.33 16.73 16.82 11.33 16.73 16.82 17.84	02 +.35 +.25 +.164 13 +.01 +.09 08 +.15 +.03 07 +.14 +.31 +.31 +.34 +.31 34 +.70 34 +.70 39 +.05	07 +.12 +.10 +.09 +.532908 +.0521111221 +.67 +.0521 +.32 +.164010 +.6434002	40 28 +.17 28 +.03 +.21 34 23 +.47 16 +.50 +.45 18 +.25 03 +.32 31 29 +.37 +.37 +.34	21391315 +.21102807 +.1800 +.34 +.20 +.17 +.0609 +.233333311514 +.1015	A. J. XXXII, 115.

TABLE I.—Comparison of Observations with Theory—Continued.

Observatory and	Greenwich M. T.	Position Angle.		dp	-		4		e sin dp		_	
O beerver.	-Aber. Time.	0	С	0-C	Δ,	0	O	0-0	,	0-0	•	Remarks.
Yerkes: Barnard.	1919-20 h m Dec. 30 13 33 Jan. 10 13 3 13 14 10 17 13 9 24 15 57 27 14 46 29 14 24	135.98 174.38 350.23 123.12 51.91 232.41 111.93	135.98 175.97 348.47 122.71 49.45 228.32 110.98	0.00 -1.59 +1.76 +0.41 +2.46 +4.09 +0.95	m + 4 0 + 4 + 9 + 7 + 3	16.46 11.80 12.80 16.71 10.04 16.04	" 16.43 11.87 12.64 16.77 10.36 10.33 15.93	" +.03 07 +.16 06	14 19 +.10 21 27 01	" [0033 +.39 +.12 +.45 +.74 +.26	" 10 29 +.23 02 +.32 +.76 +.11	Communi- cated by Prof. E. B. Frost.
	31 14 26 Feb. 10 13 0 12 15 56 19 13 44 26 13 42 28 11 4 Mar. 2 13 36 4 12 24 6 11 23 9 11 8 13 12 2 20 12 7 21 11 13	147.55 102.11 316.15 271.03 186.98 88.10 254.94 124.13 349.85 165.93 297.90 228.93 152.66	327.80 102.58 314.87 271.37 175.87 86.97 255.68 123.53 349.67 166.30	-0.25 -0.47 +1.28 -0.34 +0.11 +1.13 -0.74 +0.60 +0.18 -0.37 +0.36 -0.53 +0.57	+++++++++++++++++++++++++++++++++++++++	15.46 15.00 16.55 13.46 12.38 13.12 11.98 16.91 12.56 13.15 16.43 10.33 14.56	15.18 14.96 16.50 13.55 11.86 13.03 11.89 16.75 12.41 12.75 16.47 10.39 14.36	+.11 +.28 +.04 +.05 09 +.52 +.09 +.16 +.15 +.40 04 04 06 +.20	01 +.21 07 03 08 +.40 00 +.12 +.01 +.09 +.26 09 04 +.03	+.20 07 12 +.37 08 +.02 +.26 15 +.18 +.04 08 +.10 10 +.14	+.11 26 28 +.16 20 +.06 +.11 21 +.05 12 10 08 +.11	Observed position angle, Jan. 31, assumed 180° wrong. Observed position angle, Feb. 26, 11° too large; letter from Yerkes.
U. S. Naval Obs.: A. Hall, jr.	Apr. 13 9 9 1919-20 Nov. 5 17 23 16 16 44 22 16 31 24 16 17 Dec. 1 15 12 3 16 11 4 16 20 Jan. 14 12 24 29 12 1 Feb. 13 13 18 19 11 9 25 11 42 Mar. 21 11 1 22 11 17 23 11 21 24 12 28	274.43 307.85 304.19 165.05 118.52 334.92 294.56 305.82 113.52 278.82 276.53 268.08 153.27 112.90 45.39 326.31	275.33 308.33 304.13 165.43 119.26 335.33 295.03 306.17 114.97 278.95 277.19 269.08 152.51 111.42 46.61 326.60	-0.21 -0.90 -0.48 +0.06 -0.38 -0.74 -0.41 -0.47 -0.35 -1.45 -0.13 -0.06 -1.00 +0.76 +1.48 -1.22 -0.29	+ 6 + 4 + 4 + 2 + 2 + 10 - 13 - 10 - 12 + 1	10.53 13.52 16.65 16.84 13.10 16.52 13.76 16.52 16.88 16.40 14.22 14.72 13.58 13.76 15.92 10.29 15.23	10.54 13.30 16.42 16.43 12.74 16.28 14.07 15.94 16.84 16.34 14.47 14.29 13.30 14.21 10.31 14.99	+.22 +.23 +.41 +.36 +.24 31 +.58 +.04 +.06 25 05 05 05 +.24	08 00 +.07 +.24 +.32 +.13 43 12 06 47 +.05 48 17 14 +.12	040414 +.0208211013104103 +.19 +.4123 +.19 +.412208	+.02 13 .00 +.16 17 15 01 .00 +.04 34 +.07 07 17 +.13 +.48 17 17 17 17 17 17 17 17 17 17 19 	A. J. XXXIII, 62.
Yerkes: Barnard.	Apr. 10 10 30 May 4 9 56 1920-21 Nov. 4 15 51 13 17 18 27 18 11 Dec. 11 16 42 16 15 13 Jan. 3 14 23 8 18 6 11 14 26 22 14 30 27 15 7 Feb. 5 14 24 15 13 3 17 12 21 19 12 27 Mar. 1 14 12 8 14 35 10 13 30 10 13 41 15 14 43 17 12 44 19 11 6 22 10 16 24 12 29 29 10 36 31 13 55 Apr. 2 10 35 7 12 32	228.20 25.94 265.48 122.01 158.62 143.80 185.82 15.55 85.32 124.73 300.13 49.00 292.64 149.72 276.24 181.04 90.32 88.83 123.85 353.75 261.57 81.99	14.00 339.14 229.87 24.59 265.38 121.98 160.01 144.43 186.54 14.67 84.32 124.61 298.72 47.43 292.22 148.51 277.04 180.85 88.02 87.53 125.36 352.95 262.46 80.58	+1.36 -0.53 -1.67 +1.35 +0.10 +0.03 -1.39 -0.63	00 +++57 ++66 ++++	9.21 10.18 11.39 16.63 14.04 16.07 11.36 10.66 12.14 16.73 16.25 10.21 15.86 12.88 12.72 16.52 12.68 12.72 16.52 12.10 11.92	9.70 9.86 11.92 16.37 13.69 15.79 11.05 10.58 10.58 10.18 10	01 +.48 49 +.32 53 +.26 +.35 +.35 +.31 06 20 +.03 +.22 12 +.41 11 11 11 26 17 02 17	11 +.37 35 +.34 29 +.16 +.13 +.07 +.20 +.19 08 +.06 +.10 +.27 14 31 +.01 31 +.01 31 31 31 31	+.25 12 28 +.23 +.02 +.01 33 17 14 +.16 +.21 +.21 +.32 19 +.04 +.52 +.29 44 +.17 30	+.30 04 02 +.09 +.08 07 15 10 +.17 +.01 +.07 02 +.24 +.143 22 +.34 +.38 +.01 49 +.01 49 +.01 49 +.01 49 +.01 49 +.01 49 +.01 49 +.01 40 40 40 40 40 40 40 40	Communicated by Prof. E. B. Frost.
	24 12 29 29 10 36 31 13 55 Apr. 2 10 35 7 12 32	302.72 341.86 231.57 117.11 147.72	301.93 342.87 232.12 117.88 149.05	+0.79 -1.01 -0.55 -0.77 -1.33	+ 7 + 6 + 5 + 8	16.45 13.11 10.08 16.31 15.07	16.52 13.14 10.22 16.22 14.81	07 03 14 +.09 +.26	+.03 .00 +.02 01 +.04	+.23 23 10 22 34	+.05 41 +.16 30 20	

TABLE I.—Comparison of Observations with Theory—Continued.

		Position	Angle.	ф		Distance.		a		e ati	ı dp	
Observatory and Observer.	Greenwich M. T. -Aber. Time.	О	0	0-C	Δι	0	C	0-с	•	0-C	,	Remarks.
U. S. Naval Obs.: A. Hall, jr.	1920-21 h m Dec. 14 14 49 17 14 50 20 14 10 31 14 57 Jan. 3 12 43 6 13 3 12 13 25 27 11 37 Feb. 11 10 24 14 11 39 16 12 58 25 10 28 Mar. 1 9 48 7 10 7 13 13 29 18 11 41 25 9 16 29 9 18 Apr. 1 10 7 4 10 5 5 10 21 6 9 33	801.80 120.32 298.58 325.24 147.20 322.97 317.45 129.59 299.10 117.00 329.61 146.71 285.42 278.45 261.53 307.12 258.49 344.74 161.29 336.39 295.17 235.47	298.95 326.02 147.35 324.18 318.70 129.95 300.33 115.91 330.32 146.70 286.06 279.48 264.07 307.76 259.15 346.17 160.48 337.17 295.86 237.77	-0.37 -0.75 -0.15 -1.21 -1.25 -0.36 -1.23 +1.09 -0.71 +0.01 -0.64 -1.03 -2.54 -0.64 -0.66 -1.43 +0.81 -0.79 -0.79	# 8 5 5 8 1 - 10 2 - 1 1 1 4 4 - 10 3 1 2 2 - 1 2 2 - 1 2 2 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	15.84 14.55 12.38 17.38 12.18 13.36 13.40 14.17 16.42 10.57		" +.0531 +.23181737 +.0314 +.34 +.31 +.70 +.31 +.70 +.34 +.63 +.40 +.37 +.169	"16 37 +.02 45 25 20 +.12 +.15 +.24 +.54 +.07 +.35 07 +.12 +.16 13	"23 +.02 10 21 33 36 11 36 19 00 17 26 53 19 14 32 +.19 19	" +.04 +.08 +.17 +.04 10 11 09 +.06 10 +.06 10 +.09 05 +.08 +.02 06 +.08 +.08 36	A. J. XXXIV, 18.
Yerkes: Barnard.	11 10 23 1921-22 Dec. 3 15 12 24 14 39 27 13 31 31 13 40 Jan. 5 13 15 5 15 41 14 13 48 17 14 42 21 12 58 26 13 29 28 12 9 Feb. 9 12 59 14 11 13 16 12 51 18 10 36 25 11 46 Mar. 2 14 23 4 11 8 7 11 15 11 11	290.08 203.06 351.58 170.33 304.92 341.63 336.75 150.79 327.41 108.90 140.92 23.01 358.57 82.65 307.07 171.60 121.40 150.29 52.15 227.86 329.40	351.23 170.33 304.72 340.37 335.32 150.49 326.32 108.45 141.02 21.55 357.74 84.68 306.08 171.91 120.86 150.13	-1,51 +0.35 0.00 +0.20 +1.26 +1.43 +0.30 +1.09 +0.45 -0.10 +1.46 +0.83 -2.03 +0.99 -0.31 +0.54 +0.16 -1.30 +1.05	+ 6 711817768877668877668877	16.55 12.17 16.66	9.87 12.44 12.55 16.55 13.85 14.56 15.25 15.76 14.34 10.24 11.82 12.01 16.75 12.40 16.44	+.52 +.55 +.51 14 03 +.34 05 +.38 +.20 +.18 20 +.18 22 +.80 04 12 14	+.31 +.44 +.35 37 16 +.10 16 +.31 +.02 +.10 24 +.11 +.56 19 19 19 19	1926 +.0800 +.06 +.36 +.30 +.1203 +.1743 +.29 +.1743 +.29 +.15 +.0423 +.18	+.071013 +.0918 +.05 +.10 +.10 +.02 +.1304 +.170139 +.04 +.0622 +.33 +.04	Communi- cated by Prof. E. B. Frost.
	21 10 59 Apr. 15 10 8 18 10 52 29 10 34 May 4 12 26 6 12 20 9 10 15	101.24 343.79 157.90 217.95 281.98 138.08 321.01	100.86 343.06 158.00 219.13	+0.38 +0.73 -0.10 -1.18 +0.39	+ 7 + 5 + 8 + 6	14.07 12.77 13.96 9.65	14.00 13.13 13.76 9.71 13.83	+.07 36 +.20 06 15 +.30 07	51 01 12 11 +.10 16	+.09 +.17 02 20 +.09 26 +.28	+.12 07 +.04 04 01 27 +.01	
U. S. Naval Obs.: A. Hall, jr.	1923 Feb. 21 11 1 Mar. 5 10 8 10 13 18 14 9 57 17 9 42 Apr. 6 9 54 9 9 12 20 9 38 21 9 45 May 3 9 30 6 9 47 19 9 48	316.75 309.00 340.68 124.73 301.69 141.95 321.13 359.61 309.34 303.91 121.20 32.18	310.46 340.66 124.03 302.12 142.44 321.20 359.09 311.34 302.81	-1.46 +0.02 +0.70 -0.43 -0.49 -0.07 +0.52	+ 50 - 40 0 0 - 1 - 2 - 2 + 30 + 4	16.75 14.34 16.37 16.76 15.92 16.57 11.68 16.34 16.45 15.80	16.78 13.79 16.48 16.32 15.96 16.05 11.39 16.44 16.03 15.78	+.29 03 +.55 11 +.44 04 +.52 +.29 10 +.42 +.02 25	+.04 28 +.34 17 +.18 05 +.27 +.15 35 +.17 +.06 28	37 43 .00 +.20 12 14 02 +.10 57 +.31 +.31	20 29 +.22 +.08 01 32 +.16 +.32 43 +.42 +.21 01	A. J. XXXV, 108.

where

EQUATIONS OF CONDITION AND NORMAL EQUATIONS.

Each complete observation of Table I gave two equations of condition between the corrections to the assumed elements of the form:

$$s \sin dp = r \sin \tau \cdot \sin du_{\oplus}$$

$$+ (r \sin \tau \cos I + r \cos \tau \cos u_{\oplus} \sin I) \cdot \sin dN$$

$$- r \cos \tau \sin u_{\oplus} \cdot \sin dI$$

$$- r \sin \tau \cos u_{\oplus} \cdot 2e \sin Q$$

$$+ r \sin \tau \sin u_{\oplus} \cdot 2e \cos Q$$

$$ds = r \cos \sigma \cos \tau \cdot \sin du_{\oplus}$$

$$+ r \cos \sigma \sin p \cos \delta \cdot \sin dN$$

$$+ r \cos \sigma \sin \tau \sin u_{\oplus} \cdot \sin dI$$

$$- (r \cos \sigma \cos \tau \cos u_{\oplus} + \frac{1}{2}s \sin u_{\oplus}) \cdot 2e \sin Q$$

$$+ (r \cos \sigma \cos \tau \sin u_{\oplus} - \frac{1}{2}s \cos u_{\oplus}) \cdot 2e \cos Q$$

$$+ s \cdot \frac{da}{a}$$

$$\sin \tau = \frac{r}{s} \sin B$$

$$\cos \tau = \frac{r}{s} \cos B \sin (u_{\oplus} - U)$$

$$\cos \sigma = \cos B \cos (u_{\oplus} - U)$$

In the above e is the assumed unknown eccentricity of the satellite's orbit and Q is the longitude of the periastron measured from the same node as u_{\oplus} .

Before forming the normal equations, new unknowns were substituted for those contained in the above equations to facilitate the numerical work. The quantities substituted for the six unknowns, sin du_{\oplus} , sin dN, sin dI, $2e \sin Q$, $2e \cos Q$, and $\frac{da}{a}$, are given in the columns two to seven of Table II, one line being given to each set of equations of condition. The last column gives the probable error of a single equation.

TABLE II.—Transformation of Unknowns.

		Sin du⊕	Sin & N	Sin dI	2e sin Q	2e cos Q	da/e	r
1889, 1891-92, 1892-93,	Leander McCormick, Parrish. U. S. Naval, A. Hall, jr. Lick, Barnard.	1/2 x 1/2 x 9/20 x	4/5 y 4/5 y 7/10 y	9/10 z 4/5 z 4/5 z	7/10 u 7/10 u 1/2 u 11/20 u	7/10 v 3/5 v 1/2 v	3/5 w 9/20 w 1/3 w	0.392 0.265 0.155
1893–94, 1894–9 5 ,	Lick, Barnard. Lick, Barnard. Schaeberle.	$\begin{array}{c cc} 1/2 & x \\ 1/2 & x \\ 1/2 & x \end{array}$	4/5 y 4/5 y 1/1 y	4/5 z 4/5 z 7/10 z	7/10 u 9/10 u	1/2 v 3/5 v 1/2 v	3/10 w 9/20 w 1/2 w	0.130 0.113 0.097
1895–96, 1896–97,	Lick, Schaeberle. Lick, Schaeberle.	$\begin{array}{c cccc} 1/2 & x \\ 2/5 & x \\ 1/2 & x \end{array}$	9/10 y 3/5 y	4/5 z 3/4 z 4/5 z	1/5 u 1/2 u 4/5 u	3/5 v 9/20 v 1/2 v	1/2 w 1/3 w 1/2 w	0.077 0.096 0.261
1897–98,	Lowell, Drew. Lick, Schaeberle. Yerkes, Barnard.	$\frac{1/2}{2/5} \frac{x}{x}$	1/1 y 7/10 y	4/5 z 3/5 z	9/10 u 3/5 u	1/2 v 2/5 v	1/2 w 1/3 w	0.082 0.147
1898-99,	U. S. Naval, Brown. Yerkes, Barnard. Lick, Aitken. Hussey.	9/20 x 2/5 x 1/2 x 1/2 x	4/5 y 7/10 y 1/1 y 1/1 y	7/10 z 3/5 z 7/10 z 1/1 z	7/10 u 3/5 u 1/1 u 7/10 u	1/2 v 2/5 v 1/2 v 3/5 v	2/5 w 1/3 w 1/2 w 2/5 w	0.136 0.120 0.128 0.186
1899–1900,	Lowell, Drew. Pulkowa, photographs. Lick, Hussey. Pulkowa, photographs. Yerkes, Barnard. U. S. Naval, See.	1/2 x 2/5 x 1/2 x 1/2 x 1/2 x 1/2 x	9/10 y 4/5 y 9/10 y 4/5 y 9/10 y	4/5 z 3/5 z 1/1 z 1/1 z 4/5 z 3/4 z	4/5 u 4/5 u 7/10 u 7/10 u 4/5 u 3/4 u	1/2 v 1/2 v 3/5 v 3/5 v 1/2 v 1/2 v	1/2 w 2/5 w 2/5 w 2/5 w 2/5 w 2/5 w	0.170 0.147 0.127 0.128 0.118 0.215
1900-01,	Yerkes, Barnard. Pulkowa, photographs.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3/5 z 3/5 z	4/5 u 1/1 u	1/2 v 1/2 v	9/20 w 1/2 w	0.134 0.153
1901-02,	Yerkes, Barnard. Lick, photographs. Aitken.	1/2 x 1/2 x 1/2 x 1/2 x	9/10 y 1/1 y 1/1 y	4/5 z 3/4 z 4/5 z	4/5 u 3/4 u 4/5 u	1/2 v 1/2 v 1/2 v	2/5 w 2/5 w 2/5 w	0.126 0.136 0.131
1902–03,	Strasburg, Wirtz. Yerkes. Barnard.	$\begin{array}{c cccc} 1/2 & x \\ 1/2 & x \end{array}$	1/1 y 1/1 y	4/5 z 4/5 z	4/5 u 9/10 u	1/2 v 1/2 v	$\frac{2}{5}$ w $1/2$ w	0.339 0.119
1903-04,	U. S. Naval, Dinwiddie. Yerkes, Barnard.	9/20 x $1/2 x$	4/5 y 1/1 y	4/5 z 7/10 z	2/3 u 9/10 u	1/2 v 1/2 v	1/3 w 1/2 w	0.193 0.150
1904–05,	Yerkes, Barnard. U. S. Naval, Hammond. Rice.	$\begin{array}{c cccc} 1/2 & x \\ 1/2 & x \\ 1/2 & x \end{array}$	1/1 y 1/1 y 1/1 y	4/5 z 9/10 z 4/5 z	9/10 u 9/10 u	1/2 v 1/2 v 1/2 v	2/5 w 9/20 w 1/2 w	0.135 0.196 0.130
1905–06,	Yerkes, Barnard. U. S. Naval, Hammond.	$\begin{array}{ccc} 1/2 & x \\ 1/2 & x \\ 2/5 & x \end{array}$	1/1 y 3/4 y	3/4 z 3/4 z	9/10 u 7/10 u	1/2 v 9/20 v	1/2 w 1/3 w	0.170 0.123
1906–07,	Yerkes, Barnard.	1/2 x	1/1 y	9/10 z	9/10 u	3/5 ש	1/2 w	0.098

TABLE II.—Transformation of Unknowns—Continued.

		Sin du ⊕	Sin dN	Sin dI	2e sin Q	2e cos Q	da/a	7
								• • • • • • • • • • • • • • • • • • • •
1907–08,	U. S. Naval, Hammond.	2/5 x	2/3 y	4/5 z 4/5 z	1/2 u	2/5 v	3/10 w	0.126
	Yerkes, Barnard.	1/2 x	1/1 y	4/5 z	9/10 u	1/2 v	9/20 w	0.118
1908–09,	Yerkes, Barnard.	1/2 x	9/10 y	4/5 z	4/5 u	1/2 v	2/5 w	0.150
•	U. S. Naval, A. Hall, jr.	1/2 x	9/10 y	4/5 z	3/4 u	1/2 v	1/2 w	0.214
1909-10.	Yerkes, Barnard.	1/2 x	9/10 y	4/5 z	3/4 u	1/2 v	2/5 w	0.168
•	U. S. Naval, A. Hall, jr.	1/2 x	9/10 y	4/5 z	3/4 u	3/5 v	2/5 w	0.200
1910–11,	Yerkes, Barnard.	1/2 x	9/10 y	3/4 z	4/5 u	1/2 v	2/5 w	0.174
•	U. S. Naval, A. Hall, jr.	1/2 x	9/10 y	4/5 z	3/5 u	1/2 v	2/5 w	0.128
	Burton.	1/2 x	9/10 y	9/10 z	3/4 u	1/2 v	2/5 w	0.156
1911–12,	Yerkes, Barnard.	1/2 x	9/10 y	4/5 z	4/5 u	1/2 v	2/5 w	0.129
,	U. S. Naval, Burton.	1/2 x	9/10 y	4/5 z	3/4 u	1/2 v	2/5 w	0.086
912–13.	Yerkes, Barnard.	1/2 x	9/10 y	4/5 z	3/4 u	1/2 v	2/5 w	0.148
	U. S. Naval, A. Hall, jr.	1/2 x	9/10 y	9/10 z	3/5 u	1/2 v	2/5 w	0.14
	Burton.	1/2 x	9/10 y	4/5 z	3/5 u	1/2 v	2/5 w	0.104
1913–14,	Yerkes, Barnard.	1/2 x	9/10 y	4/5 z	3/4 u	3/5 v	2/5 w	0.150
914-15,	Yerkes, Barnard.	1/2 x	9/10 y	3/5 z	9/10 u	1/2 v	2/5 w	0.126
915–16.	Yerkes, Barnard.	1/2 x	9/10 v	4/5 z	3/4 u	1/2 v	2/5 w	0.167
916-17.	Yerkes, Barnard.	1/2 x	9/10 y	4/5 z	3/4 u	3/5 v	2/5 w	0.148
1917–18.	Yerkes, Barnard.	1/2 x	9/10 y	$\frac{7}{4}/5$ z	3/4 u	3/5 v	$\frac{2}{5}$ w	0.178
918–19,	Yerkes, Barnard.	1/2 x	9/10 y	$\frac{1}{4}/5$ z	3/4 u	3/5 v	2/5 w	0.13
	U. S. Naval, A. Hall, jr.	1/2 x	9/10 y	$\frac{1}{5}$ z	3/5 u	3/5 v	2/5 w	0.18
1919–20,	Yerkes, Barnard.	1/2 x	9/10 y	$\frac{3}{4}$ z	2/3 u	3/5 v	1/2 w	0.14
,	U. S. Naval, A. Hall, jr.	1/2 x	$\frac{3}{15}$ y	$\frac{6}{4}$ $\frac{1}{5}$ z	3/5 u	3/5 v	$\frac{1}{2}$ $\frac{1}{5}$ $\frac{1}{5}$	0.16
1920-21,	Yerkes, Barnard.	1/2 x	$\frac{1}{4}/5$ y	$\frac{1}{4}/5$ z	3/5 u	3/5 v	$\frac{2}{5}$ w	0.13
	U. S. Naval, A. Hall, jr.	1/2 x	9/10 y	$\frac{1}{4}/5$ z	3/5 u	3/5 v	2/5 w	0.166
1921–22,	Yerkes, Barnard.	1/2 x	9/10 y	$\frac{1}{2}$	7/10 u	1/2 v	2/5 w	0.16
1922–23,	U. S. Naval, A. Hall, jr.	1/2 x	9/10 y	$\frac{2}{5}$ $\frac{z}{z}$	3/5 u	1/2 v	1/3 w	0.18

In the case of the photographic observations made at the Lick Observatory in 1902, where the number of exposures on the satellite during a given night varied from 2 to 17, in the formation of the normal equations the result for each night was weighted as follows: 2 or 3 exposures, January 4 and 8, weight 1 each; 5, 6, or 7 exposures, January 6, 9, 11, 12, and 16, weight 2 each; 17 exposures, January 17, weight 4. For all the other observatories each result published in Table I was given weight 1.

Normal Equations and Solutions.

```
1889-90. LEANDER McCormick Observatory; Parrish.
           + 386.5x
                      -136.3y
                                      59.4z
                                                  32.5u
                                                              78.60
                                                                         73.1w
                                                                                      + 1.8
                                     37.4
                      +366.3
                                                 35.2
                                                             32.9
                                                                       187.4
                                                                                      - 1.7
                                  + 372.3
                                                 56.0
                                                              56.6
                                                                                        6.0
                                                                         82.1
                                              + 464.5
                                                          +
                                                            270.1
                                                                         52.8
                                                                                        2.6
                                                            406.6
                                                                                        8.8
                                                                        111.3
                                                                        333.8
                                                                                        3.3
                                                                                        2.70
                                                                         [nn]
                                                           du = -0.20 \pm 0.18
                            x = -0.0070 \pm 0.0238
                             y = -0.0166 \pm 0.0265
                                                          dN = -0.76 \pm 1.21
                             z = -0.0127 \pm 0.0228
                                                           dI = -0.65 \pm 1.17
                                                           Q = 156.3 \pm 41.7
                             u = +0.0117 \pm 0.0267
                             v = -0.0266 \pm 0.0307
                                                            e=0.0102 \pm 0.0128
                             w = -0.0137 \pm 0.0280
                                                           da = -0.134 \pm 0.274
                                                            r = 0.392
                           [vv] =
                                  2.37
                         [nn.6] =
                                  2.35
                         1891-92. U. S. NAVAL OBSERVATORY; A. HALL, JR.
           +1199.9x
                      -335.8y
                                  -442.0z
                                                168.3u
                                                            101.8v
                                                                         31.0w
                                                                                      +20.0
                      +1165.0
                                  + 117.8
                                                 13.2
                                                              84.3
                                                                     — 277.0
                                                                                      -6.0
                                  +1476.7
                                                   5.1
                                                             64.9
                                                                     -368.0
                                                                                      -23.1
                                                          +
                                              +1267.6
                                                          + 528.7
                                                                     + 153.8
                                                                                      +22.1
                                                         +1254.3
                                                                     + 184.2
                                                                                      — 3.3
                                                                     +1027.7
                                                                                      +37.6
                                                                                        9.38
                                                                         [nn]
                                                           du = +0.40 \pm 0.25
                             x = +0.0138 \pm 0.0087
                             y = +0.0089 \pm 0.0085
                                                          dN = +0.41 \pm 0.39
                             z = -0.0019 \pm 0.0078
                                                           dI = -0.09 \pm 0.36
                             u = +0.0171 \pm 0.0084
                                                            Q = 126^{\circ}6 \pm 16^{\circ}0
                                                            e=0.0074 \pm 0.0033
                             v = -0.0148 \pm 0.0084
                             w = +0.0380 \pm 0.0093
                                                           da = +0.279 \pm 0.068
                           [vv] = 7.26
                                                            r = 0.265
                         [nn.6] = 7.26
81470°-26-
```

1892-93. LICK OBSERVATORY; BARNARD.

```
+ 284.4x
              13.4y
                                                 16.6v
                      -114.7z
                                 +
                                     27.6u
                                                       +
                                                            23.2w
                                                                        +6.5
                                                 25.2
           + 287.0
                           0.9
                                 +
                                     11.4
                                                            78.7
                                                                        + 4.6
                      +395.7
                                     54.7
                                                 44.8
                                                            78.4
                                                                        + 0.2
                                  + 228.6
                                               76.3
                                                        +
                                                                        -0.1
                                             +
                                                            14.3
                                             +245.6
                                                            37.1
                                                                        - 1.7
                                                        + 219.3
                                                                        + 2.6
                                                                           1.00
                                                            [nn]
                x = +0.0272 \pm 0.0098
                                             du = +0.70 \pm 0.25
                y = +0.0231 \pm 0.0097
                                             dN = +0.93 \pm 0.39
                                              dI = +0.65 \pm 0.41
                z = +0.0142 \pm 0.0090
                                              Q = 177.4 \pm 72.0
                u = +0.0004 \pm 0.0112
                v = -0.0090 \pm 0.0110
                                              e=0.0022 \pm 0.0028
                w = +0.0239 \pm 0.0117
                                              da = +0.130 \pm 0.064
                                               r = 0.155
              [vv] = 0.64
            [nn.6] = 0.65
```

1893-94. LICK OBSERVATORY; BARNARD.

```
+ 347.0x + 50.6y
                      -179.2z
                                 - 148.8u
                                                 30.1v
                                                       +
                                                                        + 2.8
                                                            12.1w
                                    49.0
                                             +
                                                 90.4
                                                            52.1
                                                                        + 0.4
           + 346.0
                         79.6
                      +402.7
                                 + 41.7
                                                31.6
                                                            60.9
                                                                        -1.1
                                 + 279.2
                                               50.2
                                                            44.9
                                                                        +3.4
                                            +264.9
                                                       - 79.5
                                                                       -0.8
                                                        + 213.4
                                                                       -1.4
                                                                   =
                                                            [nn]
                                                                          0.66
                x = +0.0178 \pm 0.0093
                                              du = +0.51 \pm 0.26
                y = +0.0038 \pm 0.0077
                                             dN = +0.17 \pm 0.36
                                              dI = +0.11 \pm 0.37
                z=+0.0024\pm0.0080
                                              Q = 107^{\circ}0 \pm 19^{\circ}6
                u = +0.0227 \pm 0.0094
                v = -0.0077 \pm 0.0091
                                               e=0.0065 \pm 0.0026
                                              da = -0.018 \pm 0.051
                w = -0.0037 \pm 0.0102
                                               r = 0.130
              [vv] = 0.52
            [nn.6] = 0.53
```

1894-95. LICK OBSERVATORY; BARNARD.

```
+ 129.10
+ 628.9x - 164.9y
                      -167.4z
                                 +
                                      61.2u
                                                       +
                                                                         + 0.4
                                                           13.3w
                      + 102.2
                                      9.5
                                              - 81.2
                                                         - 146.2
                                                                         +7.3
           +573.8
                                                        — 266.7
                      + 761.5
                                             - 57.4
                                    99.6
                                                                         + 3.2
                                                             2.8
                                             + 232.6
                                                                        + 4.9
                                  + 615.7
                                             + 696.7
                                                            11.2
                                                                         + 1.9
                                                         ⊢ 547.0
                                                                         - 2.0
                                                                           0.75
                                                            [nn]
                                              du = +0.12 \pm 0.14
                x = +0.0042 \pm 0.0049
                y = +0.0141 \pm 0.0051
                                              dN = +0.65 \pm 0.23
                z = +0.0030 \pm 0.0048
                                              dI = +0.14 \pm 0.22
                u = +0.0067 \pm 0.0050
                                                Q = 78^{\circ}2 \pm 35^{\circ}5
                                               e=0.0025 \pm 0.0016
                v = +0.0016 \pm 0.0047
                w = +0.0017 \pm 0.0055
                                              da = +0.013 \pm 0.041
                                               r = 0.113
              [vv] = 0.62
            [nn.6] = 0.61
```

1894-95. LICK OBSERVATORY; SCHAEBERLE.

```
+489.7x - 259.0y
                      -135.6z
                                     49.4u
                                                80.9v
                                                           43.2w
                                                                        +5.4
                                             +
                                                38.4
                                                           58.6
           +616.9
                      + 112.7
                                     18.4
                                                                       - 1.4
                      + 550.6
                                      6.2
                                            + 21.0
                                                       -244.6
                                                                       +1.4
                                                                   =
                                 +621.2
                                            + 182.1
                                                        +
                                                           46.1
                                                                       + 0.8
                                             +410.3
                                                           41.2
                                                                       - 8.0
                                                          447.4
                                                                       - 3.4
                                                                          0.53
                                                            [nn]
                                             du = +0.34 \pm 0.15
                x = +0.0119 \pm 0.0053
                                             dN = +0.19 \pm 0.26
               y = +0.0033 \pm 0.0045
                z = +0.0049 \pm 0.0051
                                              dI = +0.19 \pm 0.21
                                              Q = 149.5 \pm 13.5
                u = +0.0073 \pm 0.0042
                v = -0.0226 \pm 0.0052
                                              e=0.0065 \pm 0.0017
                w = -0.0017 \pm 0.0056
                                              da = -0.013 \pm 0.046
                                               r = 0.097
              [vv] = 0.29
```

```
1895-96. LICK OBSERVATORY; SCHAEBERLE.
+721.4x - 215.8y - 105.7z + 144.6u - 352.1v + 26.9w =
                                                                     +12.8
           + 700.0
                                           + 181.2
                                                                     + 2.3
                     + 211.8
                                + 212.4
                                                      - 187.4
                      +762.8
                                - 279.0
                                           + 180.8
                                                     - 305.8
                                                                     - 5.4
                                                      + 180.1
                                           + 302.9
                                                                     + 6.5
                                + 861.6
                                           +755.5
                                                     + 242.6
                                                                     -10.4
                                                      + 559.6
                                                                     -3.0
                                                                        0.64
                                                          [nn]
                x = +0.0149 \pm 0.0047
                                            du = +0.43 \pm 0.14
                y = +0.0091 \pm 0.0039
                                           dN = +0.47 \pm 0.20
                z = -0.0057 \pm 0.0052
                                            dI = -0.26 \pm 0.24
                u = +0.0047 \pm 0.0048
                                             Q = 141.6 \pm 19.4
                                             e=0.0031 \pm 0.0025
                v = -0.0081 \pm 0.0062
               w = -0.0043 \pm 0.0053
                                            da = -0.036 \pm 0.042
              [va] = 0.27
                                             r = 0.077
            [nn.6] = 0.27
               1896-97. LICK OBSERVATORY; SCHAEBERLE.
+ 205.9x - 35.8y
                     - 33.9z
                                    61.4u
                                                9.50
                                                     +
                                                         12.60
           + 152.2
                     + 35.7
                                   20.1
                                                                     + 2.9
                                           +
                                               12.3
                                                          46.6
                     + 287.0
                                               26.3
                                + 26.8
                                                         93.9
                                                                     + 2.3
                                + 160.6
                                           + 56.7
                                                         18.6
                                                                     + 0.8
                                                                     + 0.5
                                           + 202.3
                                                         56.4
                                                                     - 0.5
                                                      + 157.8
                                                         [nn]
                                                                        0.30
                                            du = +0.44 \pm 0.17
                x = +0.0193 \pm 0.0075
                                           dN = +0.91 \pm 0.30
dI = +0.37 \pm 0.29
```

1896-97. LOWELL OBSERVATORY; DREW.

±26°2

 $\epsilon = 0.0039 \pm 0.0023$

 $da = +0.054 \pm 0.052$

Q = 91.5

r = 0.096

 $y = +0.0264 \pm 0.0086$

 $z = +0.0086 \pm 0.0067$

 $u = +0.0157 \pm 0.0090$ $v = -0.0004 \pm 0.0080$

 $w = +0.0100 \pm 0.0096$

[vv] = 0.16

[nn.6] = 0.16

```
+2126.2x - 727.1y - 442.0z + 25.1u + 404.0v +
                                                                    -11.8
                                                     - 433.0
                     + 376.4
          +2095.0
                                — 129.6
                                           - 302.3
                                                                     +16.7
                     +2386.0
                                + 304.8
                                           -193.9
                                                     -1005.6
                                                                    +21.7
                                +2343.5
                                           +637.8
                                                     -101.8
                                                                    + 5.8
                                           +1688.1
                                                                    -24.4
                                                     - 62.0
                                                      +1910.8
                                                                    -21.4
                                                                =
                                                                      12.72
                                                         [nn]
               x = -0.0009 \pm 0.0063
                                             du = -0.02 \pm 0.18
                y=+0.0054\pm0.0063
                                            dN = +0.18 \pm 0.33
                z=+0.0024\pm0.0063
                                            dI = +0.11 \pm 0.29
               u = + 0.0063 \pm 0.0058
                                             Q = 148.0 \pm 22.8
                v = -0.0161 \pm 0.0070
                                              e=0.0047 \pm 0.0022
              w = -0.0094 \pm 0.0070[vv] = 12.02
                                             da = -0.077 \pm 0.057
                                              \tau = 0.261
            [nn.6] = 11.97
```

1897-98. LICK OBSERVATORY; SCHAEBERLE.

```
+805.8x - 341.3y - 162.3z + 193.2u + 256.2v -
                                                      30.3w
                                                                  +14.7
                    + 125.7
                               + 25.3
                                          235.9
          + 905.2
                                                    - 92.7
                                                                  -0.2
                    + 998.6
                              + 222.4
                                                   -459.3
                                         - 50.9
                                                                  -5.4
                               + 984.4
                                         + 187.5
                                                   - 31.2
                                                                 +14.1
                                                                  + 7.9
                                          +691.3
                                                      40.7
                                                              =
                                                    + 757.9
                                                                   + 7.2
                                                                     0.91
                                                        [nn]
               x = +0.0186 \pm 0.0036
                                           du = + 0.53 \pm 0.10
                                          dN = + 0.50 \pm 0.18
               y = +0.0088 \pm 0.0034
               z = -0.0002 \pm 0.0029
                                           dI = -0.01 \pm 0.15
                                           Q = 77.7
               u = +0.0102 \pm 0.0033
                                                        ±11°4
               v = +0.0040 \pm 0.0031
                                            e = 0.0047 \pm 0.0018
               w = +0.0114 \pm 0.0035
                                           da = + 0.093 \pm 0.029
             [vv] = 0.38
                                            r = 0.082
           [nn.6] = 0.37
```

```
1897-98. YERKES OBSERVATORY; BARNARD.
```

```
+11.6
+1607.1x - 526.9y - 372.7z - 85.4y
                                           -42.2v
                                                         70.5w
           +1398.9
                      + 146.5
                                +
                                    7.9
                                           +
                                               28.9
                                                      - 99.4
                                                                     +24.2
                                - 49.4
                      +1759.5
                                           - 9.2
                                                      - 694.4
                                                                      +13.7
                                +1455.8
                                            + 307.1
                                                      - 27.2
                                                                     +11.4
                                            +1363.3
                                                      - 40.4
                                                                     -17.4
                                                      +1118.4
                                                                     -19.4
                                                          [nn]
                                                                        6.16
                x = +0.0152 \pm 0.0041
                                            du = +0.35 \pm 0.09
                                            dN = +0.88 \pm 0.17
                y = +0.0219 \pm 0.0042
                z = +0.0047 \pm 0.0042
                                             dI = +0.16 \pm 0.14
                                             Q = 131.6 \pm 10.6
                u = +0.0119 \pm 0.0040
                                             e=0.0048 \pm 0.0011
                v = -0.0157 \pm 0.0041
               w = -0.0118 \pm 0.0052
                                             da = -0.064 \pm 0.028
              [vv] = 4.75
                                              r = 0.147
            [nn.6] = 4.75
               1897-98. U. S. NAVAL OBSERVATORY; BROWN.
+1570.5x - 488.7y - 326.7z + 187.1u + 24.8v
                                                      -33.1w
                                                                     +26.9
                               + 136.4
                                                      - 184.0
           +1450.0
                      + 190.5
                                           — 47.5
                                                                     +2.2
                      +1765.2
                               + 13.0
                                           + 12.4
                                                      - 729.2
                                                                     -11.5
                                +1582.6
                                           + 377.1
                                                      + 74.5
                                                                     +13.0
                                           +1622.7
                                                      + 134.7
                                                                     +37.8
                                                      +1257.2
                                                                        0.0
                                                                        4.46
                                                          [nn]
                x = +0.0181 \pm 0.0038
                                            du = +0.46
                                                        ± 0°10
                y = +0.0087 \pm 0.0039
                                            dN = +0.40
                                                         ± 0°18
                                            dI = -0.24 \pm 0.15
                z = -0.0060 \pm 0.0038
                                            Q = 0.0 \pm 12.2
               u = -0.0001 \pm 0.0036
                v = +0.0237 \pm 0.0035
                                             e = 0.0059 \pm 0.0009
               w = -0.0042 \pm 0.0045
                                            da = -0.028 \pm 0.029
              [vv] = 3.00
                                             r = 0.136
            [nn.6] = 2.97
                 1898-99. YERKES OBSERVATORY; BARNARD.
+1065.1x - 549.4y - 305.3z - 108.9u + 136.8v - 48.6w =
                                                                     +13.9
                      + 152.2 - 128.0
                                           - 49.4
           +1411.0
                                                      -115.6
                                                                     + 0.8
                                           - 57.4
                      +1746.6
                               + 159.9
                                                      -728.5
                                                                     +14.4
                                           + 285.7
                                +1455.2
                                                      - 59.9
                                                                     -17.2
                                           +1424.6
                                                      -115.2
                                                                     -17.3
                                                      +1127.2
                                                                     -18.1
                                                                        4.05
                                                          [nn]
                                            du = +0.22 \pm 0.07
               x = +0.0095 \pm 0.0033
                                            dN = +0.05 \pm 0.14
               y = +0.0013 \pm 0.0035
               z = +0.0043 \pm 0.0035
                                            dI = +0.15 \pm 0.12
               u = -0.0098 \pm 0.0033
                                             Q = 230^{\circ}4 \pm 13^{\circ}3
                                             e=0.0038 \pm 0.0008
               v = -0.0120 \pm 0.0033
               w = -0.0146 \pm 0.0043
                                            da = -0.080 \pm 0.023
              [vv] = 3.22
                                             r = 0.120
           [nn.6] = 3.20
                   1898-99. LICK OBSERVATORY; AITKEN.
+699.6x -382.8y
                    -158.4z + 136.1u
                                           + 225.60
                                                         85.9w
                                                                        0.0
          +688.8
                     + 43.3
                                     4.2
                                           - 209.6
                                                         68.4
                                                                     +17.3
                      +738.9
                               + 172.5
                                           -35.2
                                                      - 392.5
                                                                     + 0.2
                                                                     +19.2
                                +820.2
                                           + 102.4
                                                         64.0
                                           +640.3
                                                      +
                                                         14.0
                                                                     -0.8
                                                      + 582.9
                                                                     -8.8
                                                                        2.04
                                                          [nn]
                                            du = + 0.07 \pm 0.19
               x = +0.0023 \pm 0.0066
                                            dN = + 1.86 \pm 0.34
               y = +0.0324 \pm 0.0060
                z = -0.0235 \pm 0.0067
                                            dI = -0.94 \pm 0.27
                                             Q = 85.5 \pm 6.4
                u = +0.0253 \pm 0.0048
                v = +0.0040 \pm 0.0055
                                            e=0.0126 \pm 0.0024
                                            da = -0.261 \pm 0.059
               w = -0.0319 \pm 0.0071
             [vv] = 0.72
                                             r = 0.128
```

```
1898-99. LICK OBSERVATORY; HUSSEY.
```

```
+ 513.7x + 89.6y - 121.5z -
                                    20.7u
                                          + 51.2v
                                                      +
                                                         19.0w
                                                                     +5.3
          +652.5
                     - 10.2
                               _
                                    53.2
                                           + 11.3
                                                      - 91.0
                                                                      + 1.8
                     +630.6
                               + 96.7
                                           - 17.0
                                                      - 177.7
                                                                     - 4.9
                                + 633.6
                                           + 81.9
                                                      - 24.8
                                                                      + 1.5
                                           + 526.0
                                                          64.5
                                                                      + 1.7
                                                         448.2
                                                                      + 5.6
                                                          [nn]
                                                                        1.60
                                            du = + 0.24 \pm 0.25
                x = +0.0083 \pm 0.0085
                y = +0.0036 \pm 0.0075
                                           dN = + 0.21 \pm 0.43
                z = -0.0030 \pm 0.0082
                                            dI = -0.17 \pm 0.47
                                             Q = 50.2 \pm 98.5
                u = +0.0035 \pm 0.0076
                                             e = 0.0016 \pm 0.0024
                v = +0.0034 \pm 0.0083
                                            da = + 0.080 \pm 0.062
               w = +0.0122 \pm 0.0096
              [00]= 1.44
                                             r = 0.186
            [nn.6] = 1.46
                  1898-99. LOWELL OBSERVATORY; DREW.
+ 586.1x - 182.9y
                    -6.0z - 15.3u
                                           + 138.70
                                                      + 57.8w
                                                                      +12.4
           + 568.1
                                           - 104.1
                                                      - 204.3
                      + 147.9
                               — 127.8
                                                                      -0.6
                      + 600.9
                                + 96.0
                                              7.4
                                                      -309.2
                                                                      - 6.7
                                           + 188.8
                                                                      -0.6
                                +644.6
                                                         77.0
                                            + 473.8
                                                          47.0
                                                                      + 9.1
                                                      + 558.8
                                                                      +11.2
                                                                        1.86
                                                          [nn]
                x = +0.0200 \pm 0.0078
                                            du = +0.57 \pm 0.22
                y = +0.0192 \pm 0.0085
                                           dN = +0.99 \pm 0.44
                                            dI = -0.11 \pm 0.38
Q = 4.6 \pm 35.3
                z = -0.0024 \pm 0.0084
                u = +0.0010 \pm 0.0076
                                             e=0.0050 \pm 0.0021
                v = +0.0199 \pm 0.0088
               w = +0.0255 \pm 0.0090
                                            da = +0.209 \pm 0.073
                                            r = 0.170
              [vv] = 1.14
            [nn.6] = 1.14
              1898-99. PULKOWA OBSERVATORY; PHOTOGRAPHS.
+ 209.8x - 76.6y - 48.1z - 11.6u -
                                               36.6
                                                          12.5w
                                                                      + 8.5
           + 232.2
                     + 17.8
                                - 26.8
                                            +
                                               37.2
                                                         12.3
                                                                      -0.5
                                                      12.3109.6
                      + 227.3
                                    21.3
                                            +
                                               14.7
                                                                      + 6.2
                                                                      -3.7
                                 + 326.5
                                               52.9
                                                           5.6
                                                                      -2.7
                                            + 282.6
                                                           2.4
                                                      + 210.5
                                                                      -8.0
                                                                         1.14
                                                          [nn]
                x = +0.0481 \pm 0.0115
                                            du = +1.10 \pm 0.26
                y = +0.0107 \pm 0.0105
                                           dN = +0.49 \pm 0.48
                z = +0.0263 \pm 0.0119
                                            dI = +0.90 \pm 0.41
                                             Q = 240^{\circ}2 \pm 67^{\circ}0
                u = -0.0052 \pm 0.0084
                v = -0.0047 \pm 0.0091
                                             e=0.0024 \pm 0.0029
                                            da = -0.130 \pm 0.078
               w = -0.0201 \pm 0.0120
              [vv] = 0.38
                                            r = 0.147
            [nn.6] = 0.39
                  1899-1900. LICK OBSERVATORY; HUSSEY.
                                               30.8v
+ 357.0x - 19.5y + 11.2z -
                                    65.0u
                                           +
                                                      + 48.1w =
                                                                      + 1.9
                      + 103.5
                                    96.8
                                               16.6
                                                      -134.5
                                                                      -8.2
           + 374.1
                                   12.8
                                                                      - 6.7
                                               2.8
                                                      - 148.6
                      + 439.9
                                                                      + 2.6
                                 + 396.8
                                            + 117.6
                                                         33.0
                                                                      + 2.3
                                            + 378.4
                                                          59.7
                                                      + 276.5
                                                                      +14.8
                                                                         1.24
                                                          [nn]
                                            du = -0.09 \pm 0.20
               x = -0.0030 \pm 0.0071
                y = +0.0009 \pm 0.0077
                                           dN = + 0.05 \pm 0.40
                                            dI = + 0.28 \pm 0.39
                z = +0.0049 \pm 0.0068
                                             Q = 30.3 \pm 32.1
                u = +0.0070 \pm 0.0072
                                            e = 0.0048 \pm 0.0019
                v = +0.0138 \pm 0.0071
                                            da = + 0.396 \pm 0.062
               w = +0.0608 \pm 0.0095
              [vv] = 0.36
                                             r = 0.127
            [nn.6] = 0.33
```

```
1899-1900. PULKOWA OBSERVATORY; PHOTOGRAPHS.
                                     1.8u + 62.8v
                                                     + 46.8w
+ 304.6x - 16.4y + 20.2z
                                                                      -0.8
           +256.4
                      + 88.4
                                    12.3
                                               39.6
                                                                      + 0.4
                                                      -113.2
                                    50.9
                                                                      + 7.6
                      +366.9
                                               24.6
                                                      -125.8
                                 + 335.0
                                            + 116.8
                                                                     - 4.9
                                                         9.1
                                            + 323.0
                                                                     + 3.1
                                                         18.7
                                                      + 233.1
                                                                      - 6.6
                                                           [nn]
                                                                        0.77
                                           du = -0.16 \pm 0.22
              x = -0.0057 \pm 0.0078
              y = -0.0144 \pm 0.0093
                                          dN = -0.66 \pm 0.42
                                         dI = +1.25 \pm 0.45
               s = +0.0219 \pm 0.0078
               u = -0.0261 \pm 0.0077
                                            Q=302.5 \pm 10.7
               v\!=\!+0.0192\pm0.0082
                                            e=0.0108 \pm 0.0030
              w = -0.0221 \pm 0.0107
                                           da = -0.143 \pm 0.070
             [vv] = 0.29
                                            r = 0.128
           [nn.6] = 0.27
                 1899-1900. YERKES OBSERVATORY; BARNARD.
+3260.6x
         -720.9y
                    - 388.8z
                               -39.4u - 309.6v
                                                     + 28.7w
                                                                      +57.5
                                + 289.4
                                                      - 358.6
           +2902.4
                      + 317.3
                                            + 179.1
                                                                      + 4.4
                                                                      +16.5
                      +3370.0
                                -324.6
                                              44.8
                                                      -1311.6
                                 +3667.5
                                            + 547.6
                                                      + 96.9
                                                                      -28.8
                                            +2699.3
                                                                      -31.1
                                                       + 50.1
                                                      +2228.6
                                                                     -14.6
                                                                         5.85
                                                          [nn]
                 x = +0.0189 \pm 0.0021
                                             du = +0.54 \pm 0.06
                 y = +0.0071 \pm 0.0023
                                            dN = +0.37 \pm 0.11
                 z=+0.0047\pm0.0023
                                             dI = +0.22 \pm 0.11
                                             Q=231^{\circ}1 \pm 12^{\circ}7
                 u = -0.0064 \pm 0.0020
                                              e=0.0033 \pm 0.0007
                 t = -0.0084 \pm 0.0023
                                             da = -0.016 \pm 0.018
                 w = -0.0025 \pm 0.0029
               [vv] = 4.17
                                              r = 0.118
             [nn.6] = 4.19
                1899-1900. U. S. NAVAL OBSERVATORY; SEE.
+3104.2x - 731.7y
                     -491.3z +
                                     6.2u
                                           -591.5v -78.0w
                                                                      +61.7
                      + 150.0
                                                      — 139.8
                                 + 203.1
           +2171.9
                                            + 370.7
                                                                      + 9.9
                      +3039.8
                                - 462.7
                                                      -12655
                                                                      -44.7
                                            + 101.2
                                 +2887.9
                                            + 402.8
                                                      + 152.0
                                                                      + 3.2
                                            +2646.5
                                                       + 162.8
                                                                      +31.9
                                                       +2111.7
                                                                      +72.4
                                                           [nn]
                                                                        17.34
                                           du = +0.78 \pm 0.12
               x = +0.0274 \pm 0.0042
               y = +0.0139 \pm 0.0049
                                           dN = +0.64 \pm 0.22
               s = +0.0037 \pm 0.0047
                                           dI = +0.16 \pm 0.20
                                            Q=341.6 \pm 21.9
               u = -0.0033 \pm 0.0041
                                            e=0.0038 \pm 0.0012
               v = +0.0143 \pm 0.0044
               w = +0.0375 \pm 0.0055
                                           da = +0.244 \pm 0.036
                                            r = 0.215
             [vv] = 12.53
           [nn.6] = 12.52
                 1900-01. YERKES OBSERVATORY; BARNARD.
+2439.5x - 833.9y - 150.1z + 167.5u
                                           + 176.7v + 44.6w
                                                                      +9.2
                                 + 25.2
                                                       - 315.5
           +2086.0
                      + 303.0
                                            - 123.1
                                                                      +7.0
                      +2697.4
                                 + 174.7
                                                 0.5
                                                       -1252.1
                                                                      +7.4
                                 +2349.7
                                            +419.0
                                                           4.9
                                                                      -43.5
                                            +2090.3
                                                                      -28.5
                                                       + 77.7
                                                       +1841.2
                                                                      -4.7
                                                                         4.74
                                                           [nn]
                 x = +0.0080 \pm 0.0029
                                             du = +0.23 \pm 0.08
                                             dN = +0.29 \pm 0.17
                 y = +0.0057 \pm 0.0032
                 z=+0.0045\pm0.0031
                                             dI = +0.21 \pm 0.14
                                              Q = 249.9 \pm 6.5
                 u = -0.0177 \pm 0.0028
                 v = -0.0105 \pm 0.0030
                                               e=0.0076 \pm 0.0010
                 w = +0.0016 \pm 0.0038
                                             da = +0.011 \pm 0.028
             [vv] = 3.56
[nn.6] = 3.54
                                              r = 0.134
```

```
1900-01. PULKOWA OBSERVATORY: PHOTOGRAPHS.
```

```
+304.6x - 216.7y - 10.9z - 134.4u + 61.1v -
                                                        1.3w
                                                                  + 8.5
                                         - 41.9
- 31.5
                    + 60.3 - 10.8
                                                              = + 3.9
          + 301.1
                                                   - 48.1
                     + 229.1
                               + 49.5
                                                    - 157.6
                                                                  +11.7
                               + 304.4
                                         + 94.7
                                                    -48.7
                                                                 - 0.9
                                         + 275.4
                                                   - 88.4
                                                               = +17.2
                                                    + 187.0
                                                                  -17.6
                                                              =
                                                        [nn]
                                                                     2.62
                x = +0.0411 \pm 0.0300
                                           du = +1.18 \pm 0.86
                y = +0.0375 \pm 0.0235
                                          dN = +2.15 \pm 1.35
                                           dI = +0.70 \pm 1.14
                s = +0.0204 \pm 0.0331
                u = -0.0092 \pm 0.0231
                                           Q = 339.6 \pm 39.9
                v = +0.0496 \pm 0.0247
                                           e=0.0132 \pm 0.0094
                                           da = -0.375 \pm 0.267
               w = -0.0461 \pm 0.0328
              [bv] = 0.20
                                           r = 0.153
            [nn.6] = 0.21
                1901-02. YERKES OBSERVATORY; BARNARD.
+2220.3x - 460.7y - 213.6z - 203.8u - 50.1v -
                                                        2.7w =
                                                                  +29.3
                    + 96.2 - 151.6
          +1894.6
                                         + 71.5 - 130.4
                                                                  +19.2
                     +2258.8
                               + 7.4
                                                   - 929.6
                                             4.3
                                                                  +13.4
                               +2460.2
                                          + 192.4
                                                   -- 4.9
                                                               =
                                                                  -16.0
                                         +1855.0
                                                   -108.8
                                                                  -36.8
                                                    +1525.8
                                                                   + 5.2
                                                        [nn]
                                                                     4.79
               x = +0.0166 \pm 0.0028
                                          du = +0.48 \pm 0.08
                                         dN = +0.76 \pm 0.15
               y = +0.0148 \pm 0.0030
               s = +0.0109 \pm 0.0031
                                          dI = +0.50 \pm 0.14
                                          Q = 192.9 \pm 12.1
               u = -0.0028 \pm 0.0026
               v = -0.0190 \pm 0.0030
                                           e=0.0049 \pm 0.0007
                                         da = +0.065 \pm 0.024
              w = +0.0099 \pm 0.0038
           [vv] = 3.09
[nn.6] = 3.06
                                           r = 0.126
               1901-02. LICK OBSERVATORY; PHOTOGRAPHS.
+750.8x - 110.0y - 65.2z + 194.3u + 129.4v +
                                                      7.2w
                                                             = + 5.5
                     + 37.2
          +812.5
                              + 107.1
                                         -128.3 - 69.3
                                                                  +10.3
                                         + 7.2
                                                   — 276.1
                     + 630.6
                              + 76.0
                                                                  - 2.2
                                         + 79.4
                                                   - 1.8
                               +811.5
                                                                  -19.1
                                          + 607.0
                                                   + 103.5
                                                              = + 4.7
                                                    + 553.5
                                                                  - 7.2
                                                                     1.50
                                                        [nn]
                                           du = +0.43 \pm 0.15
                x = +0.0150 \pm 0.0053
                y = +0.0200 \pm 0.0050
                                          dN = +1.15 \pm 0.29
                z = -0.0072 \pm 0.0063
                                           dI = -0.31 \pm 0.27
                u = -0.0308 \pm 0.0051
                                           Q=289.0 \pm 6.9
                v = +0.0160 \pm 0.0058
                                            e=0.0123 \pm 0.0019
               w = -0.0174 \pm 0.0067
                                           da = -0.114 \pm 0.044
              [vv] = 0.41
                                           r = 0.136
           [nn.6] = 0.42
                  1901-02. LICK OBSERVATORY; AITKEN.
                                                                  +20.5
+ 598.9x - 124.2y - 151.9z - 62.3u - 133.3v - 62.5w =
          + 597.7
                    — 93.7
                              - 100.4
                                         + 137.8 + 115.4
                                                                  - 5.5
                                                   - 253.3
                     +634.8
                              - 62.3
                                         + 20.9
                                                              = -9.6
                                         - 59.6
                                                              = + 5.5
                               +639.1
                                                   + 35.1
                                          + 516.6
                                                   – 27.5
                                                                  -15.2
                                                    + 428.7
                                                                  -2.8
                                                                     1.83
                                                        [nn]
                                          du = +0.76 \pm 0.18
               x = +0.0266 \pm 0.0062
               y = +0.0038 \pm 0.0059
                                       dN = +0.22 \pm 0.34
               z = -0.0119 \pm 0.0065
                                          dI = -0.55 \pm 0.30
               u = +0.0092 \pm 0.0054
                                           Q=147.0 \pm 17.5
                                          e=0.0068 \pm 0.0017
               v = -0.0227 \pm 0.0062
              w = -0.0128 \pm 0.0077
                                        da = -0.083 \pm 0.051
             [vv] = 0.75
                                           r = 0.131
```

```
1902-03. STRASBURG OBSERVATORY; WIRTZ.
```

```
+466.4x - 97.7y - 35.9z
                                    32.8u —
                                               15.70 +
                                                           1.1w
                                                                     -15.7
          + 486.9
                     + 22.2
                                                      — 30.1
                                — 19.6
                                              41.2
                                                                     - 1.4
                     + 463.6
                                + 37.1
                                               6.5
                                                      - 193.6
                                                                     + 4.6
                                                                     -25.7
                                +530.2
                                           + 44.6
                                                      + 16.8
                                           + 386.2
                                                      - 19.4
                                                                     - 8.8
                                                      + 324.0
                                                                     -4.3
                                                                        5.70
                                                          [nn]
                x = -0.0398 \pm 0.0162
                                             du = -1.14 \pm 0.46
                                            dN = -0.70 \pm 0.91
                y = -0.0123 \pm 0.0158
                                             dI = +0.36 \pm 0.84
                 z = +0.0079 \pm 0.0184
                u = -0.0503 \pm 0.0150
                                             Q=257.7 \pm 12.8
                                             e=0.0206 \pm 0.0058
                v = -0.0174 \pm 0.0175
                w\!=\!-0.0080\pm0.0220
                                             da = -0.052 \pm 0.143
            [vv] = 3.54
[nn.6] = 3.53
                                             r = 0.339
```

1902-03. YERKES OBSERVATORY; BARNARD.

```
+1429.1x - 566.5y -
                           8.6z - 57.7u - 110.8v
                                                      +
                                                          62.2w
                                                                       +21.2
                                                       - 238.9
           +1381.9
                      + 185.8
                                 + 102.9
                                            + 98.9
                                                                       + 8.2
                      +1598.0
                                 -105.7
                                            - 21.6
                                                      - 829.8
                                                                       - 2.7
                                            + 203.1
                                 +1651.5
                                                       +
                                                           43.6
                                                                       -17.2
                                                         23.3
                                            +1227.9
                                                                      -22.1
                                                       +1231.8
                                                                       + 6.2
                                                                         2.66
                                                           [nn]
                                            du = +0.56 \pm 0.10
                x = +0.0196 \pm 0.0034
                y = +0.0172 \pm 0.0036
                                            dN = +0.99 \pm 0.20
                                            dI = -0.01 \pm 0.17
                z = -0.0003 \pm 0.0037
                u = -0.0090 \pm 0.0030
                                             Q=224^{\circ}3 \pm 12^{\circ}0
               v = -0.0163 \pm 0.0034
                                             e=0.0057 \pm 0.0010
               w = +0.0079 \pm 0.0042
                                            da = +0.065 \pm 0.034
              [m] = 1.53
                                            r = 0.119
            [nn.6] = 1.54
```

1902-03. U. S. NAVAL OBSERVATORY; DINWIDDIE.

```
+778.6x - 15.7y
                         54.4s + 34.7u + 145.1v
                                                     +
                                                         8.2w
                                                                   +17.4
                                + 23.4
          +664.7
                        9.4
                                             98.0
                                                     - 41.2
                                                                   - 0.7
                     + 826.0
                               + 126.4
                                                     -288.2
                                              19.3
                                                                   +13.2
                                + 885.1
                                                     - 14.6
                                           + 40.4
                                                                   +40.3
                                           +766.7
                                                         9.2
                                                                   +16.7
                                                     + 538.6
                                                                    -1.2
                                                         [nn]
                                                                       5.57
                x = +0.0181 \pm 0.0071
                                            du = +0.47 \pm 0.18
                                           dN = +0.02 \pm 0.35
                y = +0.0004 \pm 0.0076
                z = +0.0129 \pm 0.0076
                                            dI = +0.59 \pm 0.35
                                             Q = 73.8 \pm 7.2
                u = +0.0422 \pm 0.0066
                v = +0.0164 \pm 0.0072
                                             e=0.0147 \pm 0.0021
                w = +0.0051 \pm 0.0092
                                            da = +0.028 \pm 0.051
              [vv] = 3.10
                                             r = 0.193
            [nn.6] = 3.12
```

1903-04. YERKES OBSERVATORY; BARNARD.

```
+1202.3x - 500.7y - 28.9z - 17.5u
                                          + 50.2v -
                                                         7.3w
                                                                   +14.8
          +1144.3
                     + 22.1 + 28.9
                                             12.8
                                                    — 17.0
                                                                   - 1.0
                              + 89.0
                                                    - 635.0
                     +1040.2
                                          - 12.6
                                                                  + 4.4
                                                                  -11.3
                               +1344.5
                                          + 39.1
                                                         3.9
                                                    - 12.8
                                          +1053.2
                                                                  -23.5
                                                    +1065.2
                                                                  + 0.3
                                                                      2.86
                                                        [nn]
               x = +0.0158 \pm 0.0048
                                          du = +0.45 \pm 0.14
               y = +0.0060 \pm 0.0049
                                          dN = +0.34 \pm 0.28
               s = +0.0080 \pm 0.0059
                                           dI = +0.32 \pm 0.24
               u = -0.0082 \pm 0.0041
                                           Q = 213.5 \pm 14.5
               v = -0.0224 \pm 0.0046
                                           e=0.0067 \pm 0.0014
                                          da = +0.041 \pm 0.047
              w = +0.0050 \pm 0.0058
                                           r = 0.150
             [vv] = 1.98
```

```
1904-05. YERKES OBSERVATORY; BARNARD.
```

```
69.6u
                                          + 84.2v
+730.8x - 162.5y
                     +
                         45.2z
                                                     + 20.5w
                                                                     +14.9
                                                                     -0.5
           +722.5
                     +
                        36.3
                                    13.5
                                              84.3
                                                         43.1
                     + 713.7
                                + 39.5
                                              12.7
                                                     -309.0
                                                                     - 6.6
                                + 808.1
                                           + 32.2
                                                     - 26.2
                                                                     -12.1
                                                     - 36.6
                                           +608.3
                                                                   - 7.9
                                                      + 495.3
                                                                     +11.2
                                                                       1.75
                                                         [nn]
                                            du = +0.61 \pm 0.15
                x = +0.0212 \pm 0.0052
                y = +0.0035 \pm 0.0052
                                           dN = +0.20 \pm 0.30
                 z = -0.0019 \pm 0.0060
                                            dI = -0.09 \pm 0.27
                u = -0.0119 \pm 0.0048
                                            Q = 234.7 \pm 15.9
                                             e=0.0059 \pm 0.0017
                v = -0.0136 \pm 0.0056
                w = +0.0195 \pm 0.0072
                                            da = +0.127 \pm 0.047
              [vv] = 0.96
                                             r = 0.135
            [nn.6] = 0.96
```

1904-05. U. S. NAVAL OBSERVATORY; HAMMOND.

```
+ 527.7x - 98.8y
                    -137.6z - 147.9u + 65.6v - 78.9w
                                                                     +11.2
                                                                     + 1.3
           + 523.8
                     - 155.3
                                -108.4
                                               40.0
                                                     + 192.0
                     +644.3
                                + 94.6
                                           - 24.2
                                                     - 272.8
                                                                     -7.0
                                +764.3
                                           - 141.0
                                                         11.0
                                                                 = + 1.0
                                                                    + 5.3
                                           +435.9
                                                         89.2
                                                      + 468.0
                                                                     - 2.6
                                                         [nn]
                                                                        1.75
                                            du = +0.60 \pm 0.28
                x = +0.0208 \pm 0.0098
                y = +0.0098 \pm 0.0098
                                           dN = +0.56 \pm 0.56
                                            dI = -0.45 \pm 0.51
                 z = -0.0088 \pm 0.0098
                u = +0.0096 \pm 0.0077
                                             Q = 58.8
                                                        \pm 28^{\circ}1
                 v = +0.0106 \pm 0.0100
                                             e = 0.0050 \pm 0.0035
                w = -0.0088 \pm 0.0117
                                            da = -0.065 \pm 0.086
               [vv] = 1.36
                                             r = 0.196
            [nn.6] = 1.35
```

1904-05. U. S. NAVAL OBSERVATORY; RICE.

```
+ 308.7x - 104.6y
                           7.7z + 138.7u
                                                24.2v
                                                             3.0w
                                                                      + 7.0
                                 + 120.4
                                                                        + 0.8
           + 296.3
                      +
                           0.9
                                                 38.2
                                                             2.2
                      + 329.2
                                 - 14.5
                                                 8.2
                                                                       -7.2
                                                        -177.1
                                 + 378.3
                                                 6.3
                                                          19.4
                                                                   = + 7.1
                                             + 264.8
                                                          88.6
                                                                      - 1.0
                                                        + 293.3
                                                      [nn] = 0.91
                                              du = +0.52 \pm 0.28
                 x = +0.0180 \pm 0.0099
                                             dN = +0.01 \pm 0.58
                 y = +0.0001 \pm 0.0101
                 z = +0.0035 \pm 0.0092
                                              dI = +0.16 \pm 0.42
                 u = +0.0149 \pm 0.0091
                                               Q = 127^{\circ}3 \pm 19^{\circ}6
                 v = -0.0205 \pm 0.0089
                                               e=0.0084 \pm 0.0037
                                              da = +0.367 \pm 0.083
                 w = +0.0450 \pm 0.0103
               [vv] = 0.22
                                               r = 0.130
             [nn.6] = 0.23
```

1905-06. YERKES OBSERVATORY; BARNARD.

```
+ 572.3x - 203.3y
                         87.5z
                                    90.8u
                                               60.3v
                                                      + 51.4w
                                                                      + 9.4
           + 532.2
                      + 75.2
                                    5.8
                                               57.2
                                                      — 111.7
                                                                      + 9.4
                                 + 27.2
                                            - 17.4
                                                                      - 0.1
                      +546.0
                                                      -312.0
                                            + 76.3
                                                                      + 7.9
                                 + 686.4
                                                      - 26.9
                                            + 476.7
                                                      - 90.4
                                                                      -10.3
                                                       +464.5
                                                                      +11.2
                                                                         2.20
                                                           [nn]
                 x = +0.0288 \pm 0.0083
                                            du = +0.83 \pm 0.24
                 y = +0.0324 \pm 0.0082
                                            dN = +1.86 \pm 0.47
                                             dI = +0.30 \pm 0.43
                 z = +0.0071 \pm 0.0101
                                              Q=118.7 \pm 12.8
                 u = +0.0186 \pm 0.0067
                 t = -0.0183 \pm 0.0084
                                              e=0.0096 \pm 0.0030
                 w = +0.0312 \pm 0.0110
                                             da = +0.254 \pm 0.090
               [vv] = 0.95
                                             r = 0.170
```

```
1905-06. U. S. NAVAL OBSERVATORY; HAMMOND.
```

```
+892.8x - 95.0y + 63.3z - 200.0u + 118.5v + 21.8w
                                                                     +36.4
          + 787.1 + 34.3
                                                      — 37.2
                               - 101.3
                                           — 62.8
                                                                     +18.5
                                + 172.7
                                               32.4
                                                      -427.8
                     +1110.7
                                                                     + 1.4
                                +1284.8
                                           + 18.5
                                                          0.4
                                                                    -- 19.2
                                           + 926.2
                                                      -119.4
                                                                     +21.1
                                                      +716.3
                                                                     -11.1
                                                                        4.45
                                                          [nn]
                                            du = +0.94 \pm 0.10
                x = +0.0412 \pm 0.0043
                 y = +0.0287 \pm 0.0045
                                            dN = +1.23 \pm 0.19
                                            dI = -0.30 \pm 0.19
                 z = -0.0071 \pm 0.0043
                u = -0.0056 \pm 0.0036
                                             Q=332^{\circ}9 \pm 15^{\circ}3
                 v = +0.0172 \pm 0.0042
                                             e=0.0044 \pm 0.0010
                w = -0.0167 \pm 0.0054
                                            da = -0.091 \pm 0.029
                                             r = 0.123
               [vv] = 1.79
            [nn.6] = 1.77
```

1906-07. YERKES OBSERVATORY; BARNARD.

```
+816.3x - 171.0y + 71.4z + 30.5u - 136.4c
                                                          1.5w
                                                                    +18.0
          + 777.6
                     - 2.6
                               - 21.6
                                          + 53.4
                                                     + 38.5
                                                                    + 9.7
                               - 203.6
                     +1007.9
                                              13.0
                                                     - 476.2
                                                                    +6.3
                                +1138.8
                                          - 24.6
                                                          2.6
                                                                    + 5.8
                                           +959.2
                                                        47.3
                                                                    - 5.7
                                                     + 804.4
                                                                    - 4.3
                                                                       1.28
                                                         [nn]
                x = +0.0250 \pm 0.0036
                                            du = +0.72 \pm 0.10
                y = +0.0185 \pm 0.0036
                                           dN = +1.06 \pm 0.21
                z = +0.0036 \pm 0.0038
                                           dI = +0.19 \pm 0.19
                u = +0.0053 \pm 0.0030
                                            Q=110.6 \pm 22.5
                v = -0.0031 \pm 0.0032
                                            e=0.0026 \pm 0.0013
                w = -0.0041 \pm 0.0041
                                            da = -0.033 \pm 0.034
               [vv] = 0.57
                                            r = 0.098
            [nn.6] = 0.55
```

1907-08. U. S. NAVAL OBSERVATORY; HAMMOND.

```
+ 348.6x + 46.3y + 67.4z - 111.8u -
                                               62.1v +
                                                            6.7w =
                                                                     +16.6
                      + 25.8 - 61.5
           + 256.3
                                            +
                                              17.6
                                                           1.2
                                                                      + 8.7
                      + 392.9
                               - 88.0
                                               34.3
                                                      -124.6
                                                                      +7.3
                                + 324.8
                                               2.1
                                                      + 12.4
                                                                      - 8.5
                                            + 263.3
                                                      - 81.0
                                                                      - 2.3
                                                       + 275.1
                                                                      + 5.0
                                                                         1.88
                                                           [nn]
                                             du = +0.94 \pm 0.17
                 x = +0.0409 \pm 0.0074
                 y = +0.0232 \pm 0.0081
                                            dN = +0.89 \pm 0.31
                 z = +0.0198 \pm 0.0074
                                             dI = +0.91 \pm 0.34
                 u = -0.0033 \pm 0.0077
                                              Q = 339^{\circ}1 \pm 51^{\circ}1
                 v = +0.0106 \pm 0.0086
                                              e=0.0022 \pm 0.0017
                 w = +0.0298 \pm 0.0089
                                             da = +0.145 \pm 0.044
               [vv] = 0.70
                                              r = 0.126
             [nn.6] = 0.69
```

1907-08. YERKES OBSERVATORY; BARNARD.

```
+1263.5x - 449.7y + 235.0z - 181.1u + 64.2v + 95.8w
                                                                    +16.6
          +1154.2
                     + 49.8
                               - 43.3
                                          - 82.1
                                                     - 129.0
                                                                    + 8.2
                     +1399.0
                              + 10.4
                                          - 41.2
                                                     - 667.6
                                                                    + 7.8
                                +1484.6
                                          + 13.6
                                                         8.0
                                                                    -8.1
                                           +1102.7
                                                     -102.5
                                                                    -25.2
                                                     +964.2
                                                                    +6.5
                                                                       2.39
                                                         [nn]
                                           du = +0.48 \pm 0.11
                x = +0.0166 \pm 0.0038
                y = +0.0126 \pm 0.0038
                                           dN = +0.72 \pm 0.22
                                           dI = +0.26 \pm 0.19
                z = +0.0057 \pm 0.0041
                                            Q = 193.5 \pm 14.1
                u = -0.0028 \pm 0.0031
                v = -0.0218 \pm 0.0036
                                            e=0.0056 \pm 0.0009
                w = +0.0083 \pm 0.0048
                                           da = +0.060 \pm 0.036
              [vv] = 1.34
                                            r = 0.118
            [nn.6] = 1.34
```

```
1908-09. YERKES OBSERVATORY: BARNARD.
```

```
+1372.4x - 389.1y + 87.4z + 287.3u - 38.6v - 17.3w = -5.0
                     -140.8 + 174.0 + 40.9 + 141.1
                                                              = + 6.9
           +1096.5
                                          + 17.2 - 608.3
                     +1399.5
                              - 41.4
                                                              = -13.1
                               +1429.0
                                         - 200.2 - 44.6
                                                                 -10.3
                                          +1145.2 + 149.8
                                                              = -25.1
                                                    + 847.0
                                                              = + 4.9
                                                                     3.28
                                                        [nn]
                                           du = +0.03 \pm 0.13
                x = +0.0010 \pm 0.0045
                                          dN = +0.42 \pm 0.26
                y = +0.0082 \pm 0.0050
                                          dI = -0.35 \pm 0.22
                z = -0.0076 \pm 0.0049
                                           Q = 218.2 \pm 10.4
                u = -0.0120 \pm 0.0042
                v = -0.0245 \pm 0.0046
                                            e=0.0078 \pm 0.0015
                                           da = +0.016 \pm 0.042
                w = +0.0025 \pm 0.0064
               [vv] = 2.38
                                           r = 0.150
            [nn.6] = 2.38
             1908-09. U. S. NAVAL OBSERVATORY; A. HALL, JR.
+1218.5x - 46.5y + 104.7z + 249.3u + 105.8v - 63.6w
                                                                 +17.7
          + 997.8
                    - 82.6 + 66.9
                                            0.5 + 223.4
                                                              = +19.8
                                                   - 527.6
                     +1025.8
                             + 159.4
                                          + 89.3
                                                                  -20.2
                               +1439.5
                                         - 134.3
                                                   - 36.6
                                                                  + 9.4
                                                              =
                                          + 916.8
                                                   + 125.3
                                                                   -4.3
                                                    +1354.0
                                                                  +48.6
                                                        [nn]
                                                                     7.00
                                           du = +0.50 \pm 0.18
                x = +0.0173 \pm 0.0063
                y = +0.0125 \pm 0.0069
                                          dN = +0.64 \pm 0.36
                z = -0.0019 \pm 0.0076
                                           dI = -0.09 \pm 0.35
                                           Q=156.0 \pm 43.1
                u = +0.0031 \pm 0.0059
                                           e=0.0030 \pm 0.0018
                v = -0.0108 \pm 0.0073
                                           da = +0.285 \pm 0.055
                w = +0.0350 \pm 0.0067
              [vv] = 4.61
                                           r = 0.214
            [nn.6] = 4.63
                1909-10. YERKES OBSERVATORY; BARNARD.
+1173.1x - 157.8y + 140.8z - 14.2u - 19.5v - 15.2w =
                                         — 17.6
                    - 74.3
          + 980.0
                              - 60.5
                                                  + 130.9
                                                                  -12.8
                     +1072.2
                              - 72.6
                                             0.7
                                                   -454.9
                                                                  + 1.8
                               +1284.0
                                         - 155.7
                                                   - 11.7
                                                                   - 4.9
                                          + 930.8
                                                   - 16.9
                                                                  -29.8
                                                    + 840.6
                                                                  + 1.4
                                                                     4.01
                                                        [nn]
                x = +0.0058 \pm 0.0050
                                          du = +0.17 \pm 0.14
                y = -0.0137 \pm 0.0055
                                          dN = -0.71 \pm 0.28
                z = +0.0008 \pm 0.0059
                                          dI = +0.04 \pm 0.27
                u = -0.0083 \pm 0.0048
                                           Q = 200^{\circ}3 \pm 10^{\circ}7
                v = -0.0334 \pm 0.0056
                                           e=0.0090 \pm 0.0015
                                          da = +0.023 \pm 0.044
               w = +0.0035 \pm 0.0067
              [vv] = 2.73
                                           r = 0.168
            [nn.6] = 2.74
            1909-10. U. S. NAVAL OBSERVATORY; A. HALL, JR.
+ 1644.6x - 77.8y + 46.8z - 674.6u + 635.2v - 86.1w = -9.2
                                          - 550.3
                     - 223.4
                               — 265.3
           +1373.7
                                                   + 302.1
                                                                  -12.8
                     +1271.9
                                + 345.6
                                          - 64.2
                                                    - 534.4
                                                                   -19.9
                                +1942.0
                                          - 366.7
                                                    - 53.1
                                                                   +19.9
                                                    - 263.3
                                          +1744.1
                                                                  +33.2
                                                    +1103.6
                                                                  + 8.8
                                                                      7.03
                                                        [nn]
                                          du = -0.25 \pm 0.16
                x = -0.0086 \pm 0.0057
                y = -0.0007 \pm 0.0061
                                          dN = -0.04 \pm 0.31
                z = -0.0153 \pm 0.0066
                                           dI = -0.70 \pm 0.30
                                           Q = 36.0 \pm 10.7
                u = +0.0149 \pm 0.0052
                                           e=0.0095 \pm 0.0019
                v = +0.0256 \pm 0.0057
                                          da = +0.046 \pm 0.046
                w = +0.0070 \pm 0.0070
              [vv] = 5.44
                                           r = 0.200
            [nn.6] = 5.43
```

-20.5

-38.0

-21.3

-11.6

+23.1

5.18

+ 748.3

```
1910-11. YERKES OBSERVATORY; BARNARD.
+1285.1x - 467.0y + 217.6z + 129.1u + 261.1v + 43.2w
                            + 176.5
         + 997.6
                                     — 170.3
                                             + 76.0
                  — 145.0
                  +1288.0
                           + 187.0
                                     + 70.9
                                              - 565.6
                            +1224.9
                                     -212.3
                                              - 134.6
                                     +1099.2
                                             + 126.5
```

[nn.6] = 2.94

```
[nn]
                               du = +0.09 \pm 0.16
 x = +0.0031 \pm 0.0057
 y = -0.0246 \pm 0.0063
                               dN = -1.27 \pm 0.33
                               dI = -0.97 \pm 0.27
  z = -0.0226 \pm 0.0062
 u = -0.0120 \pm 0.0053
                                Q=226.9 \pm 14.0
 v = -0.0179 \pm 0.0056
                                 e=0.0066 \pm 0.0020
 w = +0.0170 \pm 0.0081
                                da = +0.111 \pm 0.054
                                 r = 0.174
[vv] = 2.94
```

1910-11. U. S. NAVAL OBSERVATORY; A. HALL, JR.

```
+ 767.9x + 103.4y + 294.8z -
                                   96.5u + 90.6v +
                                                       48.810
                                                                   + 1.4
                                                                   - 7.0
                                              77.3
                                                        60.5
          + 531.9
                     + 113.8 +
                                  9.2
                               + 62.3
                     + 665.4
                                           - 57.0
                                                     - 199.5
                                                                = -8.4
                                +618.2
                                           +61.4
                                                     - 26.5
                                                                    + 5.8
                                                     + 24.6
                                           + 573.2
                                                                    -0.4
                                                                    +10.7
                                                     + 600.1
                                                         [nn]
                                                                       1.45
                x = +0.0105 \pm 0.0055
                                           du = +0.30 \pm 0.16
                y = -0.0123 \pm 0.0058
                                           dN = -0.63 \pm 0.30
                                           dI = -0.62 \pm 0.28
                z = -0.0135 \pm 0.0061
                u = +0.0139 \pm 0.0053
                                            Q=114.3 \pm 16.7
                                            \epsilon=0.0046 ±0.0017
                v = -0.0075 \pm 0.0056
                w = +0.0123 \pm 0.0057
                                            da = +0.080 \pm 0.037
                                            r = 0.128
               [vv] = 1.04
            [nn.6] = 1.00
```

1910-11. U. S. NAVAL OBSERVATORY; BURTON.

```
+ 885.0x - 27.7y + 193.5z + 21.0u - 52.0v - 19.7w
                                                                    + 7.2
                                + 81.1
                                                     + 113.0
                                           + 39.7
           + 733.9
                     - 61.1
                                                                    -13.0
                                - 12.6
                     + 923.4
                                           - 59.4
                                                     -317.9
                                                                   + 4.2
                                +1059.2
                                          - 79.4
                                                    - 12.0
                                                                    +20.8
                                          + 676.1
                                                     + 26.3
                                                                    + 7.1
                                                     + 669.8
                                                                    + 1.2
                                                         [nn]
                                                                       2.72
                x = +0.0067 \pm 0.0054
                                           du = +0.19 \pm 0.15
                                           dN = -1.12 \pm 0.30
                y = -0.0217 \pm 0.0059
                                            dI = +0.30 \pm 0.30
                 z = +0.0058 \pm 0.0058
                                            Q = 65.7 \pm 9.3
                u = +0.0224 \pm 0.0048
                v = +0.0151 \pm 0.0061
                                             e=0.0092 \pm 0.0018
                                            da = +0.055 \pm 0.044
                w = +0.0084 \pm 0.0067
               [vv] = 1.77
                                             r = 0.156
            [nn.6] = 1.79
```

1911-12. YERKES OBSERVATORY; BARNARD.

```
5.7u - 197.0v -
+ 899.8x - 257.6y + 124.4z -
                                                          7.5w
                                                                    + 8.0
          +746.2
                     — 142.0
                               - 84.7
                                           + 111.7
                                                     + 136.4
                                                                    -1.8
                                                                    - 1.9
                     +931.4
                               -202.9
                                          - 50.8
                                                     - 388.9
                                +992.7
                                          -200.4
                                                     + 56.0
                                                                    + 0.9
                                           +729.8
                                                     - 47.5
                                                                =
                                                                    -13.4
                                                                    + 6.7
                                                     + 557.4
                                                                =
                                                         [nn]
                                                                       1.44
                x = +0.0051 \pm 0.0047
                                            du = +0.15 \pm 0.13
                                           dN = -0.03 \pm 0.27
                y = -0.0005 \pm 0.0052
                 z = +0.0005 \pm 0.0053
                                            dI = +0.02 \pm 0.24
                u = -0.0031 \pm 0.0044
                                            Q = 195.9 \pm 21.3
                 v = -0.0168 \pm 0.0052
                                             e=0.0044 \pm 0.0014
                w = +0.0115 \pm 0.0067
                                            da = +0.075 \pm 0.044
               [vv] = 1.10
                                            r = 0.129
             [nn.6] = 1.10
```

```
Normal Equations and Solutions—Continued.
               1911-12. U. S. NAVAL OBSERVATORY; BURTON.
+2061.6x - 265.8y + 402.8z - 228.2u + 220.6v -
                                                          8.5w =
                                         -212.5 + 258.2
          +1751.3
                    — 127.9
                               — 121.5
                                                                = + 1.7
                                          + 33.6
                     +1944.2
                               + 104.3
                                                    - 780.6
                                                                = -8.8
                                +2296.0
                                          — 313.1
                                                    - 17.3
                                                                  +33.5
                                                    - 86.5
                                          +1627.3
                                                                    -16.4
                                                                    +20.2
                                                     +1500.0
                                                                      2.20
                                                        [nn]
               x = +0.0050 \pm 0.0020
                                           du = +0.14 \pm 0.06
               y = -0.0003 \pm 0.0021
                                          dN = -0.02 \pm 0.11
                                           dI = -0.06 \pm 0.10
               z = -0.0012 \pm 0.0022
                                           Q = 108.8 \pm 6.1
               u = +0.0141 \pm 0.0018
               v = -0.0072 \pm 0.0022
                                            e=0.0056 \pm 0.0006
               w = +0.0127 \pm 0.0025
                                           da = +0.083 \pm 0.016
                                            r = 0.086
              [vv] = 1.32
            [nn.6] = 1.33
                 1912-13. YERKES OBSERVATORY; BARNARD.
+1543.1x - 412.1y + 237.2z + 306.1u - 136.0v - 35.5w = +1.4
                              + 100.4
           +1360.8
                    - 281.9
                                          + 149.5 + 315.4
                                                                    -10.8
                                                    — 633.7
                     +1545.2
                               - 75.9
                                          + 6.2
                                                                    -10.6
                               +1603.3
                                          -391.3
                                                    - 56.7
                                                                    -0.6
                                                    + 132.6
                                                                    -28.4
                                          +1210.6
                                                                    -0.2
                                                     + 971.9
                                                                =
                                                                      3.55
                                                         [nn]
               x = -0.0004 \pm 0.0041
                                           du = -0.01 \pm 0.12
                                           dN = -0.34 \pm 0.23
               y = -0.0065 \pm 0.0044
                                           dI = -0.38 \pm 0.21
               z = -0.0083 \pm 0.0045
               u = -0.0063 \pm 0.0040
                                            Q = 201^{\circ}2 \pm 11^{\circ}6
               v = -0.0248 \pm 0.0045
                                            e=0.0066 \pm 0.0013
                                            da = -0.002 \pm 0.037
               w = -0.0003 \pm 0.0058
              [vv] = 2.70
                                            r = 0.148
            [nn.6] = 2.68
             1912-13. U. S. NAVAL OBSERVATORY; A. HALL, JR.
+823.8x + 81.1y + 115.6z + 301.3u - 11.5v - 92.3w
                                                                  + 7.5
           + 838.4
                     — 90.3
                                + 109.3
                                          + 86.2
                                                     + 291.5
                                                                    - 4.4
                      +685.2
                                + 47.8
                                           + 79.0
                                                     - 243.7
                                                                    + 0.7
                                + 793.2
                                           - 170.9
                                                                = +15.1
                                                    - 73.2
                                           + 546.1
                                                    + 206.3
                                                                   +12.6
                                                                =
                                                     + 699.3
                                                                    +14.4
                                                                       2.74
                                                         [nn]
               x = +0.0039 \pm 0.0056
                                           du = +0.11 \pm 0.16
                                           dN = -1.06 \pm 0.29
               y = -0.0205 \pm 0.0056
                                           dI = +0.10 \pm 0.32
                s = +0.0019 \pm 0.0062
                                           Q = 53^{\circ}1 \pm 8^{\circ}3

e = 0.0105 \pm 0.0020
               u = +0.0281 \pm 0.0059
               v = +0.0251 \pm 0.0072
               w = +0.0258 \pm 0.0069
                                           da = +0.168 \pm 0.046
              [vv] = 1.49
                                            r = 0.145
            [nn.6] = 1.51
               1912-13. U. S. NAVAL OBSERVATORY; BURTON.
+1332.2x - 174.8y + 150.6s - 114.0u + 264.8v - 80.7w =
                                                                    -6.3
                      - 216.4
           +1224.7
                                + 57.4
                                           — 232.3
                                                    + 348.9
                                                                = + 5.4
                                + 102.8
                                           + 23.0
                     +1148.6
                                                    480.9
                                                                    -10.2
                                           - 275.4
                                +1024.3
                                                     - 59.4
                                                                    - 2.9
                                            +989.6
                                                     - 20.3
                                                                = + 4.1
                                                     + 941.7
                                                                = + 6.9
                                                                      1.38
                                                         [nn]
                                           du = -0.13 \pm 0.08
                x = -0.0047 \pm 0.0030
               y = +0.0031 \pm 0.0032
                                           dN = +0.16 \pm 0.17
                s = -0.0068 \pm 0.0035
                                           dI = -0.31 \pm 0.16
                                           Q = 348.7 \pm 40.5
               u = -0.0010 \pm 0.0034
```

 $v = +0.0061 \pm 0.0036$ $w = +0.0023 \pm 0.0040$

[vv] = 1.23[nn.6] = 1.22 $e=0.0015 \pm 0.0008$

 $da = +0.015 \pm 0.026$ r = 0.104

1913-14. YERKES OBSERVATORY; BARNARD.

```
+824.7x - 162.0y + 120.1z + 184.8u - 179.2v - 47.2w
                                                                     + 9.1
                                           + 149.1
                                - 16.7
                                                                     -12.0
           + 801.4
                     - 175.4
                                                      + 241.6
                                             23.4
                                                      -300.4
                     +740.7
                                -110.5
                                                                     - 2.9
                                +991.7
                                           -310.9
                                                      +
                                                          0.6
                                                                     + 0.8
                                                                     -22.6
                                           +861.8
                                                         61.6
                                                                     +5.2
                                                      +548.5
                                                                 =
                                                                        2.34
                                                          [nn]
               x = +0.0058 \pm 0.0056
                                            du = +0.17 \pm 0.16
               y = -0.0150 \pm 0.0059
                                           dN = -0.77 \pm 0.30
                                            dI = -0.16 \pm 0.29
                z = -0.0034 \pm 0.0064
                                            Q = 203.4 \pm 11.0
                u = -0.0094 \pm 0.0052
                v = -0.0271 \pm 0.0056
                                             e=0.0089 \pm 0.0019
               w = +0.0177 \pm 0.0076
                                            da = +0.116 \pm 0.051
                                            r = 0.150
              [vv] = 1.39
            [nn.6] = 1.40
```

1914-15. YERKES OBSERVATORY; BARNARD.

```
+ 241.7x - 107.1y + 85.2z -
                                     45.0u - 12.7v
                                                       +
                                                            41.810
                                                                       + 1.3
                         10.2
                                     35.2
                                             +
                                                                        - 2.4
           + 158.9
                                                  2.4
                                                            38.3
                                                                       -3.2
                       +202.2
                                      7.9
                                             _
                                                  4.4
                                                            94.1
                                                                       + 0.7
                                 + 233.2
                                                20.6
                                                            24.9
                                             + 226.5
                                                          22.6
                                                                       -8.3
                                                                       + 5.3
                                                           145.7
                                                            [nn]
                                                                           0.61
                                           du = -0.32 \pm 0.39
                x = -0.0113 \pm 0.0137
                y = -0.0160 \pm 0.0131
                                           dN = -0.83 \pm 0.68
                z = +0.0017 \pm 0.0143
                                           dI = +0.06 \pm 0.49
                u = -0.0084 \pm 0.0095
                                            Q = 203.8 \pm 24.1
                                            e=0.0094 \pm 0.0027
                v = -0.0345 \pm 0.0085
                w = +0.0324 \pm 0.0160
                                           da = +0.212 \pm 0.104
               [vv] = 0.14
                                            r = 0.126
            [nn.6] = 0.14
```

1915-16. YERKES OBSERVATORY; BARNARD.

```
+ 5.8
+1392.5x - 444.0y
                    + 285.4z - 210.2u + 333.0v
                                                     -37.2w =
                                                                     + 2.1
           +1326.3
                      - 339.8
                                — 25.5
                                            — 251.3
                                                      + 361.4
                                            + 162.9
                                +288.5
                                                      -515.3
                                                                      -10.8
                      +1378.8
                                                                  =
                                            - 466.6
                                                      — 53.6
                                                                      +6.7
                                +1504.4
                                            +1028.1
                                                      - 12.2
                                                                  =
                                                                      -13.1
                                                       + 779.3
                                                                      +7.9
                                                                         3.34
                                                           [nn]
                                          du = +0.26 \pm 0.14
                x = +0.0090 \pm 0.0050
                y = -0.0014 \pm 0.0053
                                          dN = -0.07 \pm 0.27
                                          dI = -0.29 \pm 0.26
                z = -0.0064 \pm 0.0056
                u = +0.0030 \pm 0.0049
                                           Q = 162^{\circ}1 \pm 31^{\circ}6
                                           e=0.0036 \pm 0.0013
                v = -0.0135 \pm 0.0060
                w = +0.0070 \pm 0.0074
                                           da = +0.046 \pm 0.049
                                           r = 0.167
              [vv] = 2.94
            [nn.6] = 2.97
```

1916-17. YERKES OBSERVATORY; BARNARD.

```
+1712.4x - 572.1y + 505.8z + 478.2u - 457.8v + 26.4w
                                                                     +28.4
                                                     + 360.0
                      — 416.7
                                -108.4
                                           + 446.0
                                                                     -13.3
           +1661.5
                                                                 =
                                           - 83.5
                                                      — 689.1
                     +1976.6
                                -184.8
                                                                     +17.8
                                +1881.0
                                           - 669.2
                                                     + 39.2
                                                                     +24.5
                                                                     -33.3
                                           +1858.0
                                                     + 112.1
                                                                 =
                                                      +1058.3
                                                                 =
                                                                     -6.1
                                                                        4.05
                                                          [nn]
               x = +0.0098 \pm 0.0042
                                          du = +0.28 \pm 0.12
               y = +0.0012 \pm 0.0041
                                         dN = +0.06 \pm 0.21
                                          dI = +0.29 \pm 0.19
                z = +0.0064 \pm 0.0041
               u = +0.0066 \pm 0.0038
                                          Q=147.3 \pm 18.9
                                           \epsilon=0.0046 ±0.0010
               v = -0.0130 \pm 0.0038
                                          da = -0.007 \pm 0.036
               w = -0.0010 \pm 0.0055
                                          r = 0.148
              [vv] = 3.08
            [nn.6] = 3.08
```

```
Normal Equations and Solutions-Continued.
```

```
1917-18. YERKES OBSERVATORY: BARNARD.
+1133.4x - 440.7y + 262.9z - 481.3u + 135.7v - 11.6w = + 3.9
           + 1193.5 - 384.4 - 4.4
                                         -235.3 + 325.2
                                                              = -2.6
                    +1235.5
                             + 2.7
                                        - 70.8 - 451.2
                                                              = + 5.3
                              +1306.8
                                         -541.3 + 138.6
                                                              = +20.5
                                         +1178.5
                                                  - 253.4
                                                              = -28.9
                                                   + 678.7
                                                                  +10.1
                                                       [nn]
                                                                    3.62
               x = +0.0067 \pm 0.0068
                                        du = +0.19 \pm 0.19
                                       dN = -0.27 \pm 0.33
               y = -0.0052 \pm 0.0064
               z = +0.0041 \pm 0.0063
                                       dI = +0.19 \pm 0.29
               u = +0.0089 \pm 0.0063
                                       Q=150^{\circ}8 \pm 21^{\circ}7
               v = -0.0197 \pm 0.0062
                                        e=0.0068 \pm 0.0016
              w = +0.0109 \pm 0.0090
                                        da = +0.072 \pm 0.059
             [vv] = 2.70
                                       r = 0.178
           [nn.6] = 2.69
```

1918-19. YERKES OBSERVATORY; BARNARD.

```
+1001.6x - 205.3y + 366.2z - 242.5u + 33.5v - 15.5w = +3.4
                                                                  + 0.4
          +1114.5
                     - 205.9
                              -\phantom{0}72.2
                                         -109.4 + 299.8
                              - 56.2
                                         -29.9 - 363.8
                     +1197.8
                                                               = + 2.8
                                                               = + 9.2
                               +1316.7
                                         - 367.4
                                                   + 121.4
                                          +1011.4
                                                    - 108.8
                                                                   -20.6
                                                    + 732.2
                                                                   + 9.6
                                                                     2.04
                                                        [nn]
                                        du = +0.05 \pm 0.13
               x = +0.0018 \pm 0.0047
               y = -0.0041 \pm 0.0043
                                       dN = -0.21 \pm 0.22
               z = +0.0050 \pm 0.0044
                                        dI = +0.23 \pm 0.20
               u = +0.0007 \pm 0.0040
                                         Q = 177.0 \pm 15.2
                                         e=0.0057 \pm 0.0013
               \nu = -0.0189 \pm 0.0044
               w = +0.0144 \pm 0.0057
                                        da = +0.095 \pm 0.037
             [vv] = 1.48
                                         r = 0.131
           [nn.6] = 1.50
```

1918-19. U. S. NAVAL OBSERVATORY; A. HALL, JR.

```
+1105.7x - 127.9y + 401.0z + 65.4u + 188.8v - 62.2w
                                                             = -5.2
                                        - 99.3 + 373.0
          +1261.4
                                                              = + 3.6
                    — 107.9
                              + 48.9
                    +1134.7
                              + 95.9
                                         + 132.4
                                                  - 311.8
                                                                 -11.2
                                                              =
                                         - 326.5
                              +1017.8
                                                  — 98.7
                                                              =
                                                                 +26.1
                                         +1050.5
                                                  + 120.5
                                                                  + 3.8
                                                   + 846.0
                                                             = +13.9
                                                       [nn]
                                                                    4.40
                                         du = -0.16 \pm 0.17
               x = -0.0057 \pm 0.0059
              y = -0.0034 \pm 0.0056
                                         dN = -0.18 \pm 0.29
               z = -0.0081 \pm 0.0061
                                         dI = -0.37 \pm 0.28
                                         Q = 67.5 \pm 8.7
               u = +0.0330 \pm 0.0060
                                          e=0.0107 \pm 0.0020
               v = +0.0138 \pm 0.0061
              w = +0.0163 \pm 0.0072
                                          da = +0.106 \pm 0.047
                                          r = 0.181
             [vv] = 3.15
           [nn.6] = 3.15
```

1919-20. YERKES OBSERVATORY; BARNARD.

```
+1027.7x - 368.5y + 341.2z + 78.8u - 258.8v + 43.0w =
                                                                   - 9.2
                     - 237.4
                                          + 173.7
                                                   + 294.0
          +1027.4
                               -111.2
                                                              = -4.1
                               - 138.5
                                          - 121.1
                                                    - 430.5
                                                               = -12.9
                     +1097.5
                                          - 420.0
                                +956.9
                                                   + 138.1
                                                             = + 7.7
                                          +1053.4
                                                   - 49.6
                                                              = -10.1
                                                    +966.5
                                                               = +11.7
                                                                     2.19
                                                        [nn]
               x = -0.0151 \pm 0.0054
                                          du = -0.43 \pm 0.16
               y = -0.0127 \pm 0.0053
                                          dN = -0.65 \pm 0.27
               s = -0.0057 \pm 0.0054
                                          dI = -0.25 \pm 0.23
                                          Q = 180^{\circ}0 \pm 30^{\circ}2
               u = 0.0000 \pm 0.0054
                                           e=0.0034 \pm 0.0016
               v = -0.0112 \pm 0.0052
               w = +0.0136 \pm 0.0057
                                          da = +0.111 \pm 0.046
                                          r = 0.147
             [vv] = 1.67
```

```
1919-20. U. S. NAVAL OBSERVATORY; A. HALL, JR.
         -61.8y + 345.9z + 136.9u + 139.1v - 27.7w
+743.8x
                                                                      + 5.0
                                                      + 198.8
              665.3 - 13.9
                                + 77.2
                                                3.4
                                                                      +12.1
                     + 872.9
                                + 105.8
                                           + 120.6
                                                      -201.8
                                                                      +1.0
                                +688.8
                                            - 192.8
                                                      - 132.7
                                                                      - 1.5
                                                      + 143.1
                                           +7250
                                                                      +11.2
                                                      + 609.7
                                                                      +14.8
                                                                        2.45
                                                          [nn]
                x = +0.0053 \pm 0.0072
                                            du = +0.15 \pm 0.21
                y = +0.0130 \pm 0.0071
                                            dN = +0.60 \pm 0.33
                                            dI = +0.09 \pm 0.31
                z = +0.0020 \pm 0.0067
                                             Q = 8.8 \pm 36.5
                u = +0.0016 \pm 0.0071
                                             e=0.0032 \pm 0.0022
                v = +0.0108 \pm 0.0069
               w = +0.0188 \pm 0.0080
                                            da = +0.122 \pm 0.052
                                             r = 0.168
              [vv] = 1.87
            [nn.6] = 1.87
                 1920-21. YERKES OBSERVATORY; BARNARD.
+1311.3x - 393.2y + 391.6z - 78.5u - 107.0v - 41.1w
                                                                      + 4.2
                                – 28.5
                                                      + 421.1
           +1288.4
                     - 373.0
                                            - 11.8
                                                                      -17.6
                      +1425.9
                                -116.4
                                           -155.2
                                                      -431.2
                                                                      -0.5
                                            -532.6
                                                                      +20.6
                                +1144.1
                                                      + 82.0
                                                      - 118.5
                                           +1190.9
                                                                      -32.0
                                                       +793.5
                                                                      + 2.4
                                                          [nn]
                                                                         3.23
                x = -0.0020 \pm 0.0042
                                            du = -0.06 \pm 0.12
                y = -0.0175 \pm 0.0045
                                            dN = -0.80 \pm 0.21
                z = -0.0053 \pm 0.0043
                                            dI = -0.24 \pm 0.20
                                             Q=169\%6 \pm 11\%3
e=0.0077 \pm 0.0013
                u = +0.0048 \pm 0.0047
                v = -0.0253 \pm 0.0046
               w = +0.0051 \pm 0.0059
                                            da = +0.033 \pm 0.039
              [vv] = 2.00
                                             r = 0.138
            [nn.6] = 2.01
              1920-21. U. S. NAVAL OBSERVATORY; A. HALL, JR.
+ 873.4x
                0.2y + 564.0z + 389.0u + 11.1v -
                                                           0.6w
                                                                      +20.7
            +924.0
                     + 116.6
                                + 84.5
                                            + 210.0
                                                      + 189.3
                                                                      +20.5
                                                      – 221.5
                      +1244.7
                                            + 144.8
                                                                      + 8.3
                                 + 110.6
                                + 831.6
                                            -168.9
                                                      -196.0
                                                                      +5.8
                                           +895.9
                                                      + 258.3
                                                                      +30.3
                                                      + 835.4
                                                                      +27.1
                                                                         4.55
                                                          [nn]
                x = +0.0243 \pm 0.0081
                                            du = +0.70 \pm 0.23
                                            dN = +0.62 \pm 0.31
                y = +0.0120 \pm 0.0060
                z = -0.0052 \pm 0.0063
                                            dI = -0.24 \pm 0.29
                                             Q = 11.4 \pm 15.0
                u = +0.0055 \pm 0.0072
                                             e=0.0081 \pm 0.0019
                v = +0.0264 \pm 0.0061
                                            da = +0.140 \pm 0.046
                w = +0.0214 \pm 0.0069
              [vv] = 2.42
                                             r = 0.166
            [nn.6] = 2.44
                 1921-22. YERKES OBSERVATORY; BARNARD.
+1240.4x - 546.9y + 551.7z
                                    89.4u
                                               60.0v
                                                      + 149.7w
                                                                      -2.0
                                               56.6
           +1252.4
                      -347.8
                                    4.9
                                                       + 137.3
                                                                      - 1.8
                      +1422.8
                                + 35.9
                                              40.0
                                                      - 434.6
                                                                      -29.8
                                +1205.5
                                           -437.1
                                                      +
                                                           3.8
                                                                      + 1.0
                                           +946.7
                                                           0.6
                                                                      -20.5
                                                       +823.9
                                                                      +19.5
                                                                        4.09
                                                          [nn]
                                            du = +0.04 \pm 0.17
                x = +0.0015 \pm 0.0060
                                            dN = -0.45 \pm 0.27
                y = -0.0087 \pm 0.0052
                                            dI = -0.69 \pm 0.21
                z = -0.0180 \pm 0.0055
                                             Q = 203.5 \pm 12.6
                u = -0.0076 \pm 0.0051
                                             e=0.0068 \pm 0.0017
                v = -0.0250 \pm 0.0057
                                            da = +0.099 \pm 0.044
               w = +0.0152 \pm 0.0067
              [vv] = 2.70
                                             r = 0.160
            [nn.6] = 2.74
```

```
1922-23. U. S. NAVAL OBSERVATORY; A. HALL, JR.
                       + 273.42
                                              + 203.60
+401.6x
              15.7y
                                      40.24
                                                                          + 7.4
           + 379.5
                         83.7
                                  + 103.7
                                                  97.1
                                                             28.5
                                                                          - 1.8
                                                             65.0
                       + 437.2
                                                122.4
                                  + 115.0
                                                                          + 3.5
                                  + 369.0
                                                  55.7
                                                            101.2
                                                                            2.9
                                                319.7
                                                             72.1
                                                                          +13.4
                                                            310.5
                                                                          +10.4
                                                                             2.15
                                                             [nn]
                 x = -0.0044 \pm 0.0151
                                               du = -0.13 \pm 0.43
                                               dN = +0.08 \pm 0.59
                y = +0.0016 \pm 0.0114
                 z = +0.0029 \pm 0.0139
                                               dI = +0.10 \pm 0.48
                 u = +0.0035 \pm 0.0117
                                                Q = 5.9 \pm 20.8
                 v = +0.0384 \pm 0.0144
                                                e=0.0097 \pm 0.0036
                w = +0.0270 \pm 0.0122
                                               da = +0.147 \pm 0.067
               [vv] = 1.40
                                                r = 0.188
            [nn.6] = 1.39
```

GREENWICH OBSERVATIONS.

The photographic observations of the satellite of Neptune made at the Greenwich Observatory are discussed in the Greenwich Observations for 1904-1908 and 1911. The tabular places there given are computed from the same elements as given on page 282 of this volume, except that in the case of the Greenwich work Struve's value of a = 16.27 was used. As stated on page 850, Monthly Notices of the Royal Astronomical Society for June, 1905, the Greenwich results from the solution of the normal equations are to be subtracted from the tabular elements. Since all our results are additive, we have changed the signs of the Greenwich results, before entering them in the table below. The differences from the numerical values of the Greenwich results, as published in their annual volumes that occur in the following table, are due to changes made in the Greenwich data and published in our table of errata on pages 336-337.

Normal Equations and Solutions (Greenwich) **Opposition 1901-02**

sin du

sin dN

da

```
\sin dI
                                 2e \sin Q + 2e \cos Q
                                                         a
  9927
         - 1504
                          96
                                 1131
                                         + 1189
                                                        930
                                                                   +148.14
            2684
                         687
                                   139
                                              660
                                                                      4.44
                                                      1602
                       3935
                                   141
                                          +
                                                                      31.88
                                              120
                                                       3295
                                  4241
                                                                      19.34
                                            1516
                                                        169
                                            8059
                                                       1260
                                                                      15.47
                                                                      53.08
                                                       9526
                                                                       4.08
                                                      [pnn]
          \sin du = +0.01651 \pm 0.00125
                                            du = +0.95 \pm 0.07
         \sin dN = +0.00748 \pm 0.00250
                                           dN = +0.43 \pm 0.14
          \sin dI = +0.00182 \pm 0.00224
                                            dI = +0.10 \pm 0.13
        2e \sin Q = -0.00074 \pm 0.00189
                                             Q = 325.1 \pm 74.1
        2e \cos Q = +0.00106 \pm 0.00138
                                             e=0.0006 \pm 0.0009
              \frac{da}{dt} = -0.00545 \pm 0.00148
                                            da = -0.089 \pm 0.024
            [pvv] =
                     1.26
                                                   0.117
                                             r =
         [pnn.6] =
                     1.26
                           OPPOSITION 1902-03
 sin du
            \sin dN
                       \sin dI
                                 2e sin Q
                                            2e cos Q
              673
+11430
                                   406
                         400
                                          +
                                            1106
                                                        222
                                                                   +123.09
          + 3060
                         158
                                   280
                                              301
                                                        618
                                                                    + 18.17
                        4120
                               +
                                   528
                                               69
                                                       3471
                                                                    + 36.90
                                   5479
                                              628
                                                                       7.39
                                                          RR
                                            9307
                                                        590
                                                                        1.77
                                                    +13333
                                                                       93.48
                                                       [pnn]
                                                                        7.83
          \sin du = +0.01160 \pm 0.00189
                                            du = +0.66 \pm 0.11
          \sin dN = +0.00688 \pm 0.00364
                                           dN = +0.39 \pm 0.21
          \sin dI = +0.00512 \pm 0.00354
                                            dI = +0.29 \pm 0.20
         2e \sin Q = -0.00053 \pm 0.00273
                                             Q = 198.0 \pm 86.9
         2e\cos Q = -0.00163 \pm 0.00209
                                              e=0.0009 \pm 0.0010
              \frac{da}{=} -0.00563 \pm 0.00196
                                            da = -0.092 \pm 0.032
                                                   0.199
            [pvv] = 5.57
          [pnn.6] = 5.55
```

Normal Equations and Solutions (Greenwich)—Continued.

Opposition 1903-04

```
da
 sin du
            \sin dN
                      \sin dI
                                2e sin Q 2e cos Q
                                                       a
+10146
                        710
                                  108
                                       - 2758
         - 1547
                                                      581
                                                                 +127.67
          + 2468
                       175
                                  334
                                        + 1233
                                                      496
                                                                 +
                                                                   5.87
                    + 4232
                                  715
                                            230
                                                  - 3579
                                                                    8.18
                              + 3956
                                            210
                                                      563
                                                                    2.70
                                                  +
                                        + 8714
                                                       12
                                                                   26.23
                                                  +10074
                                                                 -34.39
                                                                     3.64
                                                     [pnn]
          \sin du = +0.01458 \pm 0.00132
                                          du = +0.84 \pm 0.08
         \sin dN = +0.01250 \pm 0.00264
                                          dN = +0.72 \pm 0.15
          \sin dI = +0.00349 \pm 0.00229
                                          dI = +0.20 \pm 0.13
        2e \sin Q = +0.00167 \pm 0.00197
                                           Q = 97.5 \pm 50.2
        2e \cos Q = -0.00022 \pm 0.00138
                                            e=0.0008 \pm 0.0010
              \frac{da}{dt} = -0.00201 \pm 0.00146
                                          da = -0.033 \pm 0.024
                                            r = 0.121
            [pvv] = 1.58
         [pnn.6] = 1.60
```

OPPOSITION 1904-05

```
2e sin Q 2e cos Q
 sin du
            \sin dN
                       \sin dI
                                                       a
                                        + 2071
+11304
        - 1643
                        209
                                  808
                                                      319
                                                                 +115.20
          + 2753
                       175
                                  368
                                            607
                                                      440
                                                                 + 34.81
                              + 1005
                                                  - 3933
                       4561
                                             43
                                        +
                                                                 +49.44
                              + 4506
                                            299
                                        +
                                                       59
                                                                 + 11.77
                                           9619
                                                      931
                                                                    27.46
                                                                    92.28
                                                  +11270
                                                                     5.86
                                                     [pnn]
          \sin du = +0.01395 \pm 0.00162
                                            du = +0.80 \pm 0.09
         \sin dN = +0.01916 \pm 0.00325
                                           dN = +1.10 \pm 0.19
          \sin dI = +0.00509 \pm 0.00295
                                            dI = +0.29 \pm 0.17
        2e \sin Q = -0.00240 \pm 0.00252
                                             Q = 210.7 \pm 29.3
        2e \cos Q = -0.00404 \pm 0.00168
                                             e=0.0023 \pm 0.0010
             \frac{da}{a} = -0.00574 \pm 0.00184
                                           da = -0.03 \pm 0.030
           [pvv] = 2.72
                                             r = 0.161
         [pnn.6] = 2.72
```

Opposition 1905-06

```
sin du
            \sin dN \sin dI
                               2e sin Q
                                          2e cos Q
                                                      a
+12447
            2913
                   +
                       114
                              +
                                 104
                                          1461
                                                      514
                                                                +148.97
          + 2898
                       314
                                  122
                                            431
                                                  +
                                                      655
                                                                 + 14.59
                                                     4835
                    + 5516
                                 702
                                       +
                                             54
                                                                   5.99
                                                                 + 15.40
                              + 3995
                                            690
                                                  +
                                                       75
                                        +11058
                                                       62
                                                                   46.25
                                                  +10464
                                                                   38.33
                                                    [pnn]
                                                           =
                                                                    5.34
          \sin du = +0.01695 \pm 0.00156
                                           du = +0.97 \pm 0.09
         \sin dN = +0.02358 \pm 0.00323
                                          dN = +1.35 \pm 0.19
          \sin dI = -0.00210 \pm 0.00269
                                           dI = -0.12 \pm 0.15
        2e \sin Q = +0.00342 \pm 0.00245
                                            Q = 127.4 \pm 25.7
        2e\cos\,Q = -0.00261 \pm 0.00146
                                            e=0.0022 ±0.0010
             \frac{da}{a} = -0.00528 \pm 0.00193
                                           da = -0.086 \pm 0.031
           [pvv] = 2.14
                                            r = 0.151
         [pnn.6] = 2.11
```

Normal Equations and Solutions (Greenwich)—Continued.

OPPOSITION 1906-07

```
da
                                2e sin Q
 sin du
            \sin dN
                                           26 cos Q
                       \sin dI
+ 5607
            709
                                   716
                                                                  +89.95
                        137
                                           1000
                                                         15
          + 1362
                         57
                                   307
                                             476
                                                   +
                                                       142
                                                                   +10.47
                    + 2167
                              + 265
                                              33
                                                   -1887
                                                                      7.42
                               + 2370
                                            192
                                                        139
                                                                     22.56
                                         + 4759
                                                       765
                                                                       6.26
                                                   +5829
                                                                       0.68
                                                                       2.57
                                                      [pnn]
          \sin du = +0.01785 \pm 0.00177
                                             du = +1.02 \pm 0.10
          \sin dN = +0.01622 \pm 0.00357
                                            dN = +0.93 \pm 0.20
          \sin dI = +0.00347 \pm 0.00314
                                             dI = +0.20 \pm 0.18
         2e \sin Q = -0.00244 \pm 0.00266
                                              Q = 250^{\circ}8 \pm 42^{\circ}1
         2e \cos Q = -0.00085 \pm 0.00185
                                              e=0.0013 \pm 0.0013
              \frac{da}{r} = +0.00049 \pm 0.00193
                                             da = +0.008 \pm 0.031
            [pvv] = 0.76
                                              r = 0.122
          [pnn.6] = 0.72
```

Opposition 1907-08

```
sin du
            \sin dN
                       \sin dI
                                2e sin Q
                                           2e cos Q
+ 5213
              906
                                   124
                                                        255
                                                                  +59.35
                          24
                        258
                                   176
                                             218
            1259
                               +
                                         +
                                                        534
                                                                       4.09
                                    74
                                                                  + 20.26
                    + 2095
                                              83
                                                      1850
                               + 2017
                                             579
                                                   +
                                                         90
                                                                     18.02
                                            4411
                                                       106
                                                                     26.01
                                                                     67.29
                                                      4871
                                                                       3.20
                                                      [pnn]
          \sin dz = +0.01297 \pm 0.00237
                                             du = +0.74 \pm 0.14
          \sin dN = +0.01497 \pm 0.00497
                                            dN = +0.86 \pm 0.28
          \sin dI = -0.00264 \pm 0.00427
                                             dI = -0.15 \pm 0.24
        2e \sin Q = -0.01237 \pm 0.00365
                                             Q = 241.6 \pm 10.1
        2e\cos{Q}\!=\!-0.00669\pm0.00246
                                              e=0.0070 \pm 0.0018
              \frac{da}{dt} = -0.01540 \pm 0.00283
                                             da = -0.251 \pm 0.046
            [pvv] = 1.11
                                              r = 0.159
         [pnn.6] = 1.11
```

Opposition 1909-10

```
da
 sin du
            \sin dN
                      \sin dI
                                2e sin Q
                                          2e cos Q
                                                       a
+11148
                                           2385
                                                       163
        - 1285
                    + 1026
                                  436
                                                            =
                                                                 +187.35
          + 2707
                       221
                                  649
                                         +
                                             851
                                                       516
                                                                  + 11.72
                                                   +
                    + 4333
                                  769
                                             156
                                                  -3675
                                                                  + 45.68
                                 4780
                                             822
                                                       712
                                                                     0.84
                                                      951
                                                                    28.52
                                         + 9257
                                                   +11627
                                                                    42.94
                                                                     4.85
                                                     [pnn]
                                            du = +1.06 \pm 0.06
          \sin du = +0.01846 \pm 0.00103
          \sin dN = +0.01526 \pm 0.00206
                                            dN = +0.87 \pm 0.12
          \sin dI = +0.00512 \pm 0.00184
                                            dI = +0.29 \pm 0.11
                                             Q= 84.7 \pm 11.5

e=0.0027 \pm 0.0008
         2e \sin Q = +0.00533 \pm 0.00153
        2e \cos Q = +0.00049 \pm 0.00110
              da
                 =-0.00330\pm0.00111
                                            da = -0.054 \pm 0.018
                                             r = 0.101
            [pvv] = 0.85
          [pnn.6] = 0.85
```

TABLE III.—Longitude of Node and Inclination of Orbit.

TABLE III.—Longuide of Node and Inclination of Orbit.											
Obs	Mean	N		Δ	N	1			ΔΙ		
Observer.	Epoch.	Obs.	Comp.	0-C	•	Obs.	Comp.	0-C	•		
Bond. O. Struve. Lassell (Starfield). Lassell (Malta). O. Struve.	1848.3 1848.6 1849.8 1852.9 1863.6	178.37 ± 0.86 182.39 ± 1.00 176.70 ± 0.50 179.02 ± 0.59 181.33 ± 0.77	179.87 179.90 180.01 180.33 181.54	[-1.50] [+2.49] [-3.31] [-1.31] -0.21	[-1.16] [+2.83] [-2.98] [-1.00] 0.00	$\begin{array}{c} \bullet & \bullet \\ 125.05 \pm 0.45 \\ 126.24 \pm 0.48 \\ 126.55 \pm 0.21 \\ 126.21 \pm 0.39 \\ 124.22 \pm 0.32 \\ \end{array}$	126.02 125.97 125.75 125.20 123.35	[-0.97] [+0.27] [+0.80] [+1.01] +0.87	[-1.59] [-0.35] [+0.20] [+0.46] +0.50		
Lassell and Marth. Newcomb. Hall. Holden. Hall.	1864.5 1874.5 1876.3 1876.5 1882.1	181.65 ± 0.42 183.03 ± 0.14 183.47 ± 0.33 182.79 ± 0.30 184.05 ± 0.15	181.65 182.96 183.21 183.24 184.06	0.00 +0.07 +0.26 -0.45 -0.01	+0.21 +0.18 +0.34 -0.37 +0.01	124.19±0.28 121.70±0.10 121.64±0.19 121.04±0.18 120.03±0.11	123.20 121.57 121.29 121.26 120.40	+0.99 +0.13 +0.35 -0.22 -0.37	+0.63 -0.08 $+0.17$ -0.40 -0.46		
Hall. H. Struve. H. Struve. Parrish. H. Struve.	1883-8 1887.6 1889.0 1889.93 1890.6	$\begin{array}{c} 184.67 \pm 0.21 \\ 184.48 \pm 0.15 \\ 185.05 \pm 0.11 \\ 184.38 \pm 1.21 \\ 185.51 \pm 0.12 \end{array}$	184.31 184.90 185.12 185.27 185.38	+0.36 -0.42 -0.07 -0.89 +0.13	+0.36 -0.47 -0.14 -0.97 $+0.04$	$\begin{array}{c} 120.13 \pm 0.23 \\ 119.38 \pm 0.13 \\ 119.53 \pm 0.09 \\ 118.71 \pm 1.17 \\ 119.26 \pm 0.10 \end{array}$	120.14 119.58 119.38 119.25 119.16	$\begin{array}{c} -0.01 \\ -0.20 \\ +0.15 \\ -0.54 \\ +0.10 \end{array}$	$ \begin{array}{r} -0.08 \\ -0.22 \\ +0.15 \\ -0.53 \\ +0.12 \end{array} $		
A. Hall, jr. H. Struve. Barnard. Barnard. Schaeberle.	1892.00 1892.6 1892.93 1894.00 1895.06	185.86 ± 0.39 185.56 ± 0.18 186.51 ± 0.39 185.91 ± 0.36 186.09 ± 0.26	185.60 185.70 185.75 185.93 186.10	+0.26 -0.14 $+0.76$ -0.02 -0.01	+0.16 -0.25 $+0.65$ -0.15 -0.15	$\begin{array}{c} 118.93 \pm 0.36 \\ 119.06 \pm 0.15 \\ 119.52 \pm 0.41 \\ 118.80 \pm 0.37 \\ 118.71 \pm 0.21 \end{array}$	118.96 118.88 118.83 118.68 118.54	-0.03 +0.18 +0.69 +0.12 +0.17	$+0.01 \\ +0.23 \\ +0.74 \\ +0.19 \\ +0.25$		
Barnard. Schaeberle. Schaeberle. Drew. Schaeberle.	1895.07 1895.91 1896.82 1897.09 1897.87	186.55 ± 0.23 186.49 ± 0.20 187.07 ± 0.30 186.38 ± 0.33 186.81 ± 0.18	186.10 186.24 186.40 186.44 186.57	+0.45 +0.25 +0.67 -0.06 +0.24	+0.31 +0.10 +0.50 -0.23 +0.06	$\begin{array}{c} 118.65 \pm 0.22 \\ 118.11 \pm 0.24 \\ 118.59 \pm 0.29 \\ 118.29 \pm 0.29 \\ 118.04 \pm 0.15 \end{array}$	118.54 118.43 118.30 118.27 118.16	$\begin{array}{c} +0.11 \\ -0.32 \\ +0.29 \\ +0.02 \\ -0.12 \end{array}$	+0.19 -0.23 $+0.40$ $+0.13$ 0.00		
Brown. Barnard. Drew. Aitken. Barnard.	1897.97 1898.02 1898.76 1898.89 1898.98	$186.73 \pm 0.18 \\ 187.22 \pm 0.17 \\ 187.44 \pm 0.44 \\ 188.33 \pm 0.34 \\ 186.53 \pm 0.14$	186.59 186.60 186.72 186.74 186.76	+0.14 +0.62 +0.72 +1.59 -0.23	$ \begin{array}{r} -0.04 \\ +0.44 \\ +0.53 \\ +1.39 \\ -0.42 \end{array} $	$\begin{array}{c} 117.79 \pm 0.15 \\ 118.19 \pm 0.14 \\ 117.79 \pm 0.38 \\ 116.94 \pm 0.27 \\ 118.02 \pm 0.12 \end{array}$	118.15 118.14 118.05 118.03 118.02	-0.36 +0.05 -0.26 -1.09 0.00	$ \begin{array}{r} -0.24 \\ +0.17 \\ -0.13 \\ -0.96 \\ +0.13 \end{array} $		
Hussey. Pulkowa, photo. Barnard. See. Hussey.	1898.98 1899.18 1899.88 1899.96 1900.04	$\begin{array}{c} \textbf{186} \ \textbf{59} \pm \textbf{0.43} \\ \textbf{187.00} \pm \textbf{0.48} \\ \textbf{186.98} \pm \textbf{0.11} \\ \textbf{187.26} \pm \textbf{0.22} \\ \textbf{186.69} \pm \textbf{0.40} \end{array}$	186.76 186.80 186.92 186.93 186.94	$ \begin{array}{r} -0.07 \\ +0.20 \\ +0.06 \\ +0.33 \\ -0.25 \end{array} $	$ \begin{array}{r} -0.26 \\ 0.00 \\ -0.15 \\ +0.12 \\ -0.46 \end{array} $	$\begin{array}{c} 117.70 \pm 0.47 \\ 118.74 \pm 0.41 \\ 117.94 \pm 0.11 \\ 117.87 \pm 0.20 \\ 117.97 \pm 0.39 \end{array}$	118.02 117.99 117.90 117.89 117.88	$ \begin{array}{r} -0.32 \\ +0.75 \\ +0.04 \\ -0.02 \\ +0.09 \end{array} $	-0.19 +0.88 +0.18 +0.13 +0.24		
Pulkowa, photo. Barnard. Pulkowa, photo. Aitken. Barnard.	1900.12 1900.86 1901.11 1901.82 1902.00	$\begin{array}{c} 185.99 \pm 0.42 \\ 187.05 \pm 0.17 \\ 188.94 \pm 1.35 \\ 187.12 \pm 0.34 \\ 187.69 \pm 0.15 \end{array}$	186.96 187.08 187.13 187.25 187.28	$ \begin{array}{r} -0.97 \\ -0.03 \\ +1.81 \\ -0.13 \\ +0.41 \end{array} $	$ \begin{array}{r} -1.18 \\ -0.25 \\ +1.59 \\ -0.36 \\ +0.17 \end{array} $	$\begin{array}{c} 118.93 \pm 0.45 \\ 117.77 \pm 0.14 \\ 118.22 \pm 1.14 \\ 116.85 \pm 0.30 \\ 117.87 \pm 0.14 \end{array}$	117.87 117.77 117.74 117.65 117.63	+1.06 0.00 +0.48 -0.80 +0.24	+1.21 $+0.16$ $+0.64$ -0.63 $+0.41$		
Lick, photo. Greenwich, photo. Barnard. Dinwiddie Greenwich, photo.	1902.02 1902.15 1902.92 1903.01 1903.10	$\begin{array}{c} 188.08 \pm 0.29 \\ 187.38 \pm 0.14 \\ 188.05 \pm 0.20 \\ 187.10 \pm 0.35 \\ 187.48 \pm 0.21 \end{array}$	187.28 187.31 187.44 187.46 187.47	+0.80 +0.07 +0.61 -0.36 +0.01	+0.56 -0.17 $+0.36$ -0.61 -0.24	$\begin{array}{c} 117.06 \pm 0.27 \\ 117.45 \pm 0.13 \\ 117.21 \pm 0.17 \\ 117.79 \pm 0.35 \\ 117.48 \pm 0.20 \end{array}$	117.63 117.61 117.51 117.50 117.49	$\begin{array}{r} -0.57 \\ -0.16 \\ -0.30 \\ +0.29 \\ -0.01 \end{array}$	$ \begin{array}{r} -0.40 \\ +0.01 \\ -0.12 \\ +0.47 \\ +0.17 \end{array} $		
Wirtz. Barnard. Greenwich, photo. Barnard. Hammond.	1903.17 1903.96 1904.10 1904.88 1905.03	$\begin{array}{c} 186.40 \pm 0.91 \\ 187.56 \pm 0.28 \\ 187.96 \pm 0.15 \\ 187.55 \pm 0.30 \\ 187.93 \pm 0.56 \end{array}$	187.48 187.62 187.65 187.78 187.81	$\begin{array}{c} -1.08 \\ -0.06 \\ +0.31 \\ -0.23 \\ +0.12 \end{array}$	$\begin{array}{c} -1.33 \\ -0.32 \\ +0.04 \\ -0.51 \\ -0.16 \end{array}$	$\begin{array}{c} 117.54 \pm 0.84 \\ 117.37 \pm 0.24 \\ 117.22 \pm 0.13 \\ 116.80 \pm 0.27 \\ 116.42 \pm 0.51 \end{array}$	117.48 117.38 117.36 117.27 117.25	+0.06 -0.01 -0.14 -0.47 -0.83	+0.24 $+0.18$ $+0.06$ -0.26 -0.62		
Greenwich, photo. Rice. Barnard. Hammond. Greenwich, photo.	1905.10 1905.11 1906.06 1906.09 1906.18	188.48 ± 0.19 187.40 ± 0.58 189.39 ± 0.47 188.76 ± 0.19 188.89 ± 0.19	187.82 187.83 187.99 188.00 188.02	$\begin{array}{r} +0.66 \\ -0.43 \\ +1.40 \\ +0.76 \\ +0.87 \end{array}$	+0.38 -0.71 $+1.11$ $+0.47$ $+0.58$	$\begin{array}{c} 117.15 \pm 0.17 \\ 117.02 \pm 0.42 \\ 117.00 \pm 0.43 \\ 116.40 \pm 0.19 \\ 116.56 \pm 0.15 \end{array}$	117.24 117.24 117.12 117.12 117.11	-0.09 -0.22 -0.12 -0.72 -0.55	+0.12 -0.01 $+0.10$ -0.50 -0.33		
Barnard Greenwich, photo. Barnard. Greenwich, photo. Hammond.	1907.11 1907.16 1908.08 1908.09 1908.11	$\begin{array}{c} 188.74 \pm 0.21 \\ 188.62 \pm 0.20 \\ 188.55 \pm 0.22 \\ 188.69 \pm 0.28 \\ 188.72 \pm 0.31 \end{array}$	188.18 188.19 188.36 188.36 188.36	+0.56 +0.43 +0.19 +0.33 +0.36	$+0.25 \\ +0.12 \\ -0.13 \\ +0.01 \\ +0.04$	$\begin{array}{c} 116.72 \pm 0.19 \\ 116.72 \pm 0.18 \\ 116.63 \pm 0.19 \\ 116.22 \pm 0.24 \\ 117.27 \pm 0.34 \end{array}$	117,00 116.99 116.88 116.88 116.87	-0.28 -0.27 -0.25 -0.66 +0.40	$ \begin{array}{r} -0.05 \\ -0.04 \\ -0.01 \\ -0.42 \\ +0.64 \end{array} $		
Barnard. A. Hall, jr. Barnard. A. Hall, jr. Greenwich, photo.	1909.05 1909.11 1910.06 1910.12 1910.20	189.40 ± 0.26 189.63 ± 0.36 188.48 ± 0.28 189.16 ± 0.31 189.01 ± 0.12	188.53 188.54 188.71 188.72 188.74	+0.87 +1.09 -0.23 +0.44 +0.27	+0.53 +0.75 -0.58 +0.09 -0.08	$\begin{array}{c} 116.22 \pm 0.22 \\ 116.47 \pm 0.35 \\ 116.49 \pm 0.27 \\ 115.74 \pm 0.30 \\ 116.31 \pm 0.11 \end{array}$	116.77 116.76 116.65 116.64 116.63	-0.55 -0.29 -0.16 -0.90 -0.32	-0.30 -0.04 $+0.10$ -0.63 -0.05		

	Mean	N		Δ	N	I			ΔΙ
Observer.	Epoch.	Obs.	Comp.	0- C	v	Obs.	Comp.	0-C	p
Barnard. A. Hall, jr. Burton. Burton. Barnard. A. Hall, jr. Burton. Barnard. Barnard. Barnard. Barnard. Barnard. Barnard. Barnard. Barnard. Barnard.	1910.96 1911.18 1911.18 1912.12 1912.17 1913.05 1913.05 1913.24 1914.01 1915.31 1916.13 1917.03 1918.12 1919.08 1919.12	$\begin{array}{c} .\\ 188.11 \pm 0.33 \\ 188.79 \pm 0.30 \\ 188.30 \pm 0.30 \\ 189.60 \pm 0.11 \\ 189.60 \pm 0.27 \\ \\ 189.48 \pm 0.23 \\ 188.76 \pm 0.29 \\ 190.02 \pm 0.17 \\ 189.25 \pm 0.30 \\ 189.47 \pm 0.68 \\ \\ 190.41 \pm 0.27 \\ 190.73 \pm 0.21 \\ 190.64 \pm 0.33 \\ 190.94 \pm 0.29 \\ 190.92 \pm 0.22 \\ \end{array}$	188.88 188.92 188.92 189.09 189.10 189.26 189.30 189.44 189.68 189.84 190.00 190.21 190.39 190.40	-0.77 -0.13 -0.62 +0.51 +0.50 +0.22 -0.50 +0.72 -0.19 -0.21 +0.57 +0.73 +0.43 +0.55 +0.52	-1.13 -0.50 -0.99 +0.13 +0.12 -0.17 -0.89 +0.32 -0.60 -0.64 +0.13 +0.28 -0.04 +0.07 +0.04	$\begin{array}{c} \bullet \\ 115.37 \pm 0.27 \\ 115.70 \pm 0.28 \\ 116.62 \pm 0.30 \\ 116.15 \pm 0.10 \\ 116.22 \pm 0.24 \\ \\ 115.73 \pm 0.21 \\ 116.21 \pm 0.32 \\ 115.78 \pm 0.16 \\ 115.84 \pm 0.29 \\ 115.93 \pm 0.49 \\ \\ 115.49 \pm 0.26 \\ 115.98 \pm 0.19 \\ 115.78 \pm 0.29 \\ 115.78 \pm 0.29 \\ 115.72 \pm 0.20 \\ \\ \end{array}$	116.54 116.52 116.52 116.41 116.31 116.31 116.28 116.20 116.06 115.97 115.87 115.65	-1.17 -0.82 +0.10 -0.26 -0.18 -0.50 -0.50 -0.36 -0.13 -0.48 +0.11 +0.03 -0.53 +0.07	-0.90 -0.54 +0.38 +0.03 +0.11 -0.28 +0.20 -0.20 -0.05 +0.19 -0.15 +0.45 +0.38 -0.17 +0.43
A. Hall, jr. Barnard. Barnard. A. Hall, jr. Barnard. A. Hall, jr.	1920.07 1920.13 1921.11 1921.13 1922.14 1923.26	191.94 ± 0.33 190.70 ± 0.27 190.77 ± 0.21 192.20 ± 0.31 191.35 ± 0.27 192.13 ± 0.59	190.58 190.59 190.78 190.78 190.98	+1.36 $+0.11$ -0.01 $+1.42$ $+0.37$ $+0.93$	+0.86 -0.39 -0.52 +0.90 -0.16 +0.38	$\begin{array}{c} 115.49 \pm 0.31 \\ 115.14 \pm 0.23 \\ 115.06 \pm 0.20 \\ 115.06 \pm 0.29 \\ 114.52 \pm 0.21 \\ \end{array}$	115.55 115.55 115.45 115.44 115.34	-0.06 -0.41 -0.39 -0.38 -0.82 -0.02	+0.31 -0.04 -0.01 0.00 -0.43 +0.38

THE POLE OF NEPTUNE'S EQUATOR.

The values of N and I collected together in columns 3 and 7 of Table III were obtained from the preceding pages and from Struve's discussion in Mémoires de l'Académie Impériale des Sciences de St.-Pétersbourg VII Serie, Tome XLII, No. 4. The computed values of N and I, columns 4 and 8, are obtained from the formulæ below on the following assumptions: That the plane of Neptune's equator intersects the plane of the Earth's equator of 1900.0 in longitude 23.56 and makes an angle with it of 49.24; that the plane of the orbit of Neptune's satellite at 1900.0 intersects the plane of Neptune's equator in longitude 151.72 measured on the Earth's equator of 1900.0 from the equinox of that date to the node of Neptune's equator and thence along Neptune's equator, and that it makes an angle of 161.24 with the plane of Neptune's equator; and that while the inclination, 161,24, is constant, the longitude of the node, 151,72, increases 60,08 per century.

- N=Longitude of ascending node of orbit of Neptune's satellite on the Earth's equator;
- I = Inclination of the orbit of Neptune's satellite to the Earth's equator;
- N_0 = Longitude of node of Neptune's equator on the Earth's equator;
- I_o = Inclination of Neptune's equator to the Earth's equator; θ = Longitude of ascending node of orbit of Neptune's satellite on Neptune's equator measured from the node of Neptune's equator on the Earth's equator;
- $\delta\theta$ = Increase of θ in a century;
- γ = Inclination of the orbit of Neptune's satellite to Neptune's equator;
- ψ = Distance from ascending node of orbit of Neptune's satellite on the Earth's equator to the ascending node on Neptune's equator;

we have

$$\begin{array}{l} \sin \ I \sin \ (N-N_{\rm o}) = \sin \ \gamma \sin \ \theta \\ \sin \ I \cos \ (N-N_{\rm o}) = \cos \ \gamma \sin \ I_{\rm o} + \sin \ \gamma \cos \ I_{\rm o} \cos \ \theta \\ \cos \ I = \cos \ \gamma \cos \ I_{\rm o} - \sin \ \gamma \sin \ I_{\rm o} \cos \ \theta \\ \sin \ I \sin \ \psi = \sin \ I_{\rm o} \sin \ \theta \\ \sin \ I \cos \ \psi = \sin \ \gamma \cos \ I_{\rm o} + \cos \ \gamma \sin \ I_{\rm o} \cos \ \theta \end{array}$$

and to reduce from the equinox of 1900.0 to that of date

$$\Delta N_{\rm o} = (46.08-20.05 \cos N_{\rm o} \cot I_{\rm o}) \ ({\rm T}-1900.0)$$

 $\Delta I_{\rm o} = -20.05 \ ({\rm T}-1900.0) \sin N_{\rm o}$
 $\Delta \theta = 20.05 \ ({\rm T}-1900.0) \cos N_{\rm o} \csc I_{\rm o}$

Columns 5 and 9, respectively, of Table III give the differences between the N and I thus computed and those derived from the observations of the satellite. Each pair of differences in N and I for a given date furnishes two equations of condition between the corrections to the assumed quantities, N_0 , I_0 , θ , θ , and γ . These equations have the form:

$$dN_{o} - \cot I \sin (N - N_{o}) dI_{o} + \csc I \sin \gamma \cos \psi (d\theta_{o} + t \cdot d\delta\theta) + \csc I \sin \psi d\gamma = \Delta N \text{ (O-C)}$$

$$\cos (N - N_{o}) dI_{o} - \sin \gamma \sin \psi (d\theta_{o} + t \cdot d\delta\theta) + \cos \psi d\gamma = \Delta I \text{ (O-C)}$$

where t is the fraction of a century from 1900.0

Because of the large value of several of the early residuals it was decided not to use those before 1860.

In forming the normal equations, weights were assigned to the equations of condition in accordance with the probable errors of N and I, respectively, weight unity corresponding to a probable error of 1?

The results of the solution of the normal equations are

$$dN_{\rm o}=+1.593\pm2.42$$
 $N_{\rm o}=25.153\pm2.42$ $dI_{\rm o}=-0.588\pm1.38$ $I_{\rm o}=48.652\pm1.38$ $d\theta_{\rm o}=-1.145\pm1.86$ $\theta_{\rm o}=127.015\pm1.86$ $d\theta_{\rm o}=+1.414\pm6.98$ $\theta_{\rm o}=127.015\pm1.86$ $\theta_{\rm o}=127.015\pm1.86$

giving for the position of the north pole of Neptune's equator

$$A = 295.2 \\ D = +41.3$$
 1900.0

the period of the revolution of the pole of the satellite's orbit around the pole of Neptune's equator, 585 years, and the radius of the circle described by the pole of the satellite's orbit, 20°1.*

Table IV gives the position of the plane of the satellite's orbit at 10-year intervals during the period of revolution, and the diagram below gives the observational positions of the pole of the satellite's orbit together with definitive path from 1848 to 1938.

Table IV.—Values of θ , N, I, and ψ at 10-year Intervals through One Revolution of the Node of the Satellite's Orbit on Neptune's Equator.

[Mean Equator and Equinox of 1900. 0.]

Date.	θ	N	I	¥	Date	θ	N	1	¥
1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 2020 2030 2040 2050 2050 2050 2060 2070 2080 2090 2110 2120 2130 2140	90.1 96.3 102.4 108.6 114.7 120.9 127.0 133.2 139.3 145.5 151.6 157.8 163.9 170.1 176.2 182.4 188.5 194.7 200.8 207.0 213.1 219.3 225.4 237.7 243.9 256.2 262.3 268.5 274.6	179.2 + 0.9 180.1 + 1.1 181.2 + 1.3 182.5 + 1.4 183.9 + 1.5 187.1 + 1.7 188.9 + 1.9 190.8 + 2.0 192.8 + 2.1 197.1 + 2.2 199.3 + 2.2 201.5 + 2.3 206.0 + 2.3 208.3 + 2.2 210.5 + 2.2 210.5 + 2.2 211.5 + 2.2 212.7 + 2.2 212.7 + 2.2 212.7 + 2.2 212.8 + 1.9 220.8 + 1.9 220.8 + 1.9 220.8 + 1.9 221.5 + 1.4 227.5 + 1.3 230.9 + 0.7 231.6	$\begin{array}{c} 128.3 \\ 126.3 \\ -2.0 \\ 124.4 \\ -1.8 \\ 122.6 \\ -1.7 \\ 120.9 \\ -1.7 \\ 119.2 \\ -1.4 \\ 115.2 \\ -1.4 \\ 116.4 \\ -1.1 \\ 116.2 \\ -1.2 \\ 114.1 \\ -0.9 \\ 112.5 \\ -0.6 \\ 111.3 \\ -0.2 \\ 111.5 \\ -0.2 \\ 111.5 \\ -0.2 \\ 111.5 \\ +0.3 \\ 111.5 \\ +0.3 \\ 111.5 \\ +0.3 \\ 111.8 \\ +0.5 \\ 112.0 \\ +0.7 \\ 113.9 \\ +0.9 \\ 114.9 \\ +1.0 \\ 115.4 \\ +1.2 \\ 115.4 \\ +1.3 \\ 118.9 \\ +1.6 \\ 120.5 \\ +1.7 \\ 124.0 \\ +1.8 \\ 125.9 \\ +2.0 \\ 129.9 \\ +2.0 \\ 129.9 \\ \end{array}$	73.1 - 5.2 67.9 - 5.2 62.7 - 5.2 57.6 - 5.0 47.6 - 5.0 47.6 - 5.0 37.7 - 5.0 32.7 - 4.9 27.8 - 5.0 17.9 - 4.9 13.0 - 5.0 358.1 - 4.9 353.2 - 5.0 348.2 - 5.0 348.2 - 5.0 348.3 - 4.9 333.4 - 4.9 333.4 - 4.9 333.5 - 5.0 318.5 - 4.9 318.5 - 5.0 22.8 - 4.9 32.7 - 5.0 34.8 - 5.0 34.8 - 5.0 34.8 - 5.0 34.8 - 5.0 32.7 - 5.0 34.8 - 5.0 34.8 - 5.0 32.7 - 5.0 34.8 - 5.0 34.8 - 5.0 32.7 - 5.0 34.8 - 5.0 34.8 - 5.0 32.8 - 5.0	2140 2150 2160 2170 2180 2190 2200 2210 2220 2230 2240 2250 2260 2270 2280 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400 2410 2420 2430 2440	274.6 280.8 286.9 293.1 2993.1 2993.1 2305.4 311.5 317.7 323.8 330.0 348.4 354.6 0.7 6.8 13.0 19.1 25.3 31.4 37.6 43.7 49.9 56.0 62.2 68.3 74.5 80.6 86.8 92.9 99.1	231.6 + 0.5 232.1 + 0.5 232.2 - 0.1 231.9 - 0.7 231.9 - 0.7 231.2 - 1.2 228.4 - 1.6 226.3 - 2.5 223.8 - 3.1 217.2 - 3.5 213.3 - 4.3 209.0 - 4.4 200.3 - 4.3 196.1 - 4.3 192.3 - 3.8 188.8 - 2.9 183.5 - 2.9 183.5 - 2.0 181.5 - 1.5 180.0 - 1.0 178.3 - 0.7 178.0 - 0.0 178.3 + 0.3 178.8 + 0.3 178.8 + 0.5 179.6 + 1.0 180.6 + 1.0	$\begin{array}{c} 129.9 \\ 132.0 \\ + 2.1 \\ 134.0 \\ + 2.2 \\ 136.2 \\ + 2.1 \\ 136.3 \\ + 2.0 \\ 144.2 \\ + 1.7 \\ 145.9 \\ + 1.6 \\ 148.9 \\ + 1.4 \\ 150.0 \\ + 0.8 \\ 151.3 \\ + 0.1 \\ 150.8 \\ + 0.5 \\ 151.3 \\ + 0.1 \\ 150.6 \\ - 0.9 \\ 148.6 \\ - 1.1 \\ 147.2 \\ - 1.4 \\ 145.6 \\ - 1.1 \\ 147.2 \\ - 1.4 \\ 145.6 \\ - 1.1 \\ 147.2 \\ - 1.2 \\ 135.7 \\ - 2.1 \\ 133.6 \\ - 2.1 \\ 133.6 \\ - 2.1 \\ 133.6 \\ - 2.1 \\ 133.6 \\ - 2.1 \\ 129.4 \\ - 2.0 \\ 127.4 \\ - 1.9 \\ 125.5 \\ \end{array}$	282.8 - 5.5 277.3 - 5.6 277.3 - 5.6 271.7 - 5.8 265.9 - 6.1 253.5 - 6.7 239.8 - 7.5 246.8 - 7.0 232.3 - 7.5 224.4 - 8.4 207.2 - 9.2 198.0 - 9.5 188.5 - 9.6 178.9 - 9.6 159.9 - 9.1 150.8 - 8.8 142.0 - 8.8 142.0 - 8.8 142.0 - 8.8 142.0 - 8.8 142.0 - 8.8 133.8 - 7.8 111.6 - 7.0 111.6 - 6.5 105.1 - 6.5 105.1 - 6.5 92.8 - 6.0 92.8 - 6.0 92.8 - 6.0 87.0 - 5.8 87.0 - 5.6 81.4 - 5.6 81.4 - 5.6 81.4 - 5.6

Previous determinations of this quantity are: By S. J. Brown in 1900, 18°; by Dyson and Edney in 1905, 22°; and by David Gibb in 1909, 21°2.

LONGITUDE AND MOTION OF SATELLITE.

In column 3 of Table V are collected the values of the corrections to the assumed mean angular distance of the satellite in its orbit from the ascending node of the orbit on the Earth's equator,

$$u_{\oplus} = 234.42 + 61.25748$$
 (t_{d} – Jan. 0, G. M. N., 1890)

From column 7 of Table VII can be obtained the distance, ψ , from the ascending node of the orbit of the satellite on the Earth's equator to the ascending node on Neptune's equator. If this is expressed in the form:

$$\psi = 47.31 - 0.00140 \ (t_d - Jan. 0, G. M. N., 1890) + d\psi$$

the values of $d\psi$ are those given in column 4 of Table V.

Subtracting ψ from u_{\oplus} , there results the mean angular distance of the satellite in its orbit from the ascending node of the orbit on Neptune's equator,

$$u_{_{\boldsymbol{\Psi}}} = 187?11 + 61?25888 \ (t_{\mathbf{d}} - \mathrm{Jan.} \ 0, \ \mathrm{G.} \ \mathrm{M.} \ \mathrm{N.}, \ 1890) + du_{_{\boldsymbol{\Psi}}}$$

The values of $du_{\Psi} = du_{\oplus} - d\psi$ are given in column 5 of Table V.

By the method of least squares the following value is obtained for du_{Ψ} :

$$du_w = -0.190 \pm 0.019 + (0.0000694 \pm 0.0000052)(t_d - Jan. 0, G. M. N., 1890)$$

and the residuals, v, are given in column 6 of Table V. The definitive value of u_w is therefore,

$$u_w = 186.92 + 61.2589494$$
 (t_d – Jan. 0, G. M. N., 1890)

Column 7 of Table V gives mean values of the residuals in longitude obtained from the groups into which the quantities in column 6 are divided as indicated in the table. The apparent systematic character of these nine mean residuals is probably due to systematic differences in the observations at the different observatories. For instance, it is noted that all the photographic results at Greenwich are included in the fifth, sixth, and seventh groups, the only ones that give positive residuals, and if the means of these groups are formed from the results from the other observatories, the fifth and sixth mean residuals become negative and the seventh is reduced to one-half its published value. To obtain the daily sidereal motion of the satellite, it is necessary to subtract from the daily motion of u_{ψ} , just given, the daily motion of θ multiplied by $\cos (180^{\circ} - \gamma)$, or 0.0015815. We thus have

Daily sidereal motion = 61°2573679

This value differs only 0,00008 from the first determination of this motion, that by S. J. Brown 25 years ago, when the position of Neptune's equator could be given only with great uncertainty.

TABLE V.—Longitude in Orbit and Mean Distance.

Observer.	Mean Epoch.	$du_{igoplus}$	ф	du _₩	•	r _m	а
		• •	•	•	•		" "
Bond.	1848.3	$+1.98 \pm 0.98$	+0.47	[+1.51]	[+2.76]		
Lassell.	1852.9	-0.13 ± 0.58	+0.40	-0.53	[+0.60]		
Lassell and Marth.	1864.5	$+0.59\pm0.51$	+0.31		+1.12		
				+0.28			
Newcomb.	1874.5	$+0.03\pm0.13$	+0.29	-0.26	+0.32		16.275 ± 0.018
Hall.	1876.3	-0.41 ± 0.27	+0.29	-0.70	-0.16		16.482 ± 0.033
Holden.	1876.5	0.00 ± 0.24	+0.29	-0.29	+0.24		16.598 ± 0.035
Hall.	1882.1	$+0.07\pm0.12$	+0.31	-0.24	± 0.15		16.368 ± 0.022
Hall.	1883.8	$+0.53\pm0.19$	+0.32	+0.21	+0.56		16.263 ± 0.028
H. Struve.	1887.6	-0.45 ± 0.11	+0.34	-0.79	-0.54		16.285 ± 0.028
H. Struve.							10.200 ± 0.020
	1889.0	0.00 ± 0.08	+0.35	-0.35	-0.13		16.272 ± 0.019
Parrish.	1889.93	-0.20 ± 0.68	+0.36	-0.56	-0.37	-0.04	16.166 ± 0.274
H. Struve.	1890.6	$+0.05 \pm 0.08$	+0.36	-0.31	-0.14		16.253 ± 0.021
A. Hall, jr.	1892.00	$+0.40\pm0.25$	+0.37	+0.03	+0.17		16.579 ± 0.068
H. Struve.	1892.6	$+0.17\pm0.12$	+0.38	-0.21	-0.09		16.293 ± 0.032
Barnard.	1892.93	$+0.70\pm0.25$	+0.38	+0.32	+0.44		
							16.430 ± 0.064
Barnard.	1894.00	$+0.51 \pm 0.26$	+0.39	+0.12	+0.21		16.282 ± 0.051
chaeberle.	1895.06	$+0.34 \pm 0.15$	+0.39	-0.05	+0.01		16.287 ± 0.046
Barnard.	1895.07	+0.12+0.14	+0.39	-0.27	-0.21		16.313 ± 0.041
Schaeberle.	1895.91	$+0.43 \pm 0.14$	+0.40	+0.03	+0.07		16.264 ± 0.042
schaeberle.	1896.82	$+0.44\pm0.17$	+0.41	+0.03	+0.05	-0.04	16.354 ± 0.053
Drew.	1897.09	-0.02 ± 0.18	+0.41	-0.43	-0.42		16.223 ± 0.057
Schaeberle.			+0.42	+0.11			
	1897.87	$+0.53 \pm 0.10$			+0.10		16.393 ± 0.029
Brown.	1897.97	$+0.46\pm0.10$	+0.42	+0.04	+0.03		16.272 ± 0.029
Barnard.	1898.02	$+0.35 \pm 0.09$	+0.42	-0.07	-0.08		16.236 ± 0.028
Drew.	1898.76	$+0.57 \pm 0.22$	+0.43	+0.14	+0.11		16.509 ± 0.073
Aitken.	1898.89	$+0.07\pm0.19$	+0.43	-0.36	-0.40		16.039 ± 0.059
Barnard.	1898.98	$+0.22\pm0.07$	+0.43	-0.21	-0.25		16.220 ± 0.023
Hussey.	1898.98		+0.43	-0.19	-0.23		
Pulkowa, photo.	1899.18	$+0.24 \pm 0.25 \\ +1.10 \pm 0.26$	+0.43	+0.67	+0.63	-0.10	$\begin{array}{c c} 16.380 \pm 0.062 \\ 16.170 \pm 0.078 \end{array}$
• •			·	'	•	0.10	
Barnard.	1899.88	$+0.54 \pm 0.06$	+0.44	+0.10	+0.04		16.284 ± 0.018
See.	1899.96	$+0.78 \pm 0.12$	+0.44	+0.34	+0.28		16.544 ± 0.036
Hussey.	1900.04	-0.09 ± 0.20	+0.44	-0.53	-0.59		16.696 ± 0.062
Pulkowa, photo.	1900.12	-0.16 ± 0.22	+0.44	-0.60	-0.67		16.157 ± 0.070
Barnard.	1900.86			-0.21	-0.29		
		$+0.23\pm0.08$	+0.44				16.311 ± 0.028
Pulkowa, photo.	1901.11	$+1.18 \pm 0.86$	+0.45	+0.73	+0.65		15.925 ± 0.267
Aitken.	1901.82	$+0.76 \pm 0.18$	+0.45	+0.31	+0.20		16.217 ± 0.051
Barnard.	1902.00	$+0.48 \pm 0.08$	+0.46	+0.02	-0.09		16.365 ± 0.024
Lick, photo.	1902.02	$+0.43 \pm 0.15$	+0.46	-0.03	-0.14	-0.07	16.186 ± 0.044
Greenwich, photo.	1902.15	$+0.95 \pm 0.07$	+0.46	+0.49	+0.37		16.182 ± 0.024
Barnard.			+0.46				16 265 1 0 00
	1902.92	$+0.56\pm0.10$		+0.10	-0.04		16.365 ± 0.034
Dinwiddie.	1903.01	$+0.47 \pm 0.18$	+0.46	+0.01	-0.13		16.328 ± 0.051
Greenwich, photo.	1903.10	$+0.66 \pm 0.11$	+0.46	+0.20	+0.06		16.179 ± 0.032
Wirtz.	1903.17	-1.14 ± 0.46	+0.47	-1.61	-1.75		16.248 ± 0.143
Barnard.	1903.96	$+0.45\pm0.14$	+0.47	-0.02	-0.18		16.341 ± 0.047
Greenwich, photo.	1904.10	$+0.84\pm0.08$	+0.47	+0.37	+0.20		16.238 ± 0.024
Barnard.		$+0.61\pm0.05$					
	1904.88		+0.48	+0.13	-0.05		16.427 ± 0.047
Hammond.	1905.03	$+0.60 \pm 0.28$	+0.48	+0.12	-0.07	+0.12	16.235 ± 0.086
Greenwich, photo.	1905.10	$+0.80 \pm 0.09$	+0.48	+0.32	+0.13		16.178 ± 0.030
Rice.	1905.11	$+0.52\pm0.28$	+0.48	+0.04	-0.15		16.667 ± 0.083
Barnard.	1906.06	$+0.83\pm0.24$	+0.49	+0.34	+0.12	l	16.554 ± 0.090
Hammond.	1906.09	$+0.94\pm0.10$	+0.49	+0.45	+0.23		
							16.209 ± 0.029
Greenwich, photo.	1906.18	$+0.97 \pm 0.09$	+0.49	+0.48	+0.26		16.185 ± 0.031
Barnard.	1907.11	$+0.72 \pm 0.10$	+0.50	+0.22	-0.02		16.267 ± 0.034
Greenwich, photo.	1907.16	$+1.02 \pm 0.10$	+0.50	+0.52	+0.28		16.279 ± 0.031
						1	
Barnard. Greenwich, photo.	1908.08	$+0.48 \pm 0.11$	+0.51	-0.03	-0.30		16.360 ± 0.036

TABLE V.—Longitude in Orbit and Mean Distance—Continued.

Observer.	Mean Epoch.	^{du} ⊕	ď∳	_{du} ₩	9	₽ _m	a
		0 0		•	•	0	,, ,,
Hammond.	1908.11	+0.94+0.17	+0.51	+0.43	+0.16	l	16.445 ± 0.044
Barnard.	1909.05	$+0.76\pm0.13$	+0.53	+0.23	-0.06		16.316 ± 0.042
A. Hall, jr.	1909.11	$+1.23\pm0.18$	+0.53	+0.70	+0.41		16.585 ± 0.055
Barnard.	1910.06	$+0.93\pm0.14$	+0.54	+0.39	+0.07		16.323 ± 0.044
A. Hall, jr.	1910.12	$+0.51\pm0.16$	+0.54	-0.03	-0.35	1	16.346 ± 0.046
Greenwich, photo.	1910.20	$+1.06\pm0.06$	+0.54	+0.52	+0.20		16.217 ± 0.018
Barnard.	1910.96	$+0.88 \pm 0.16$	+0.54	+0.34	0.00		16.411 ± 0.054
A. Hall, jr.	1911.18	$+1.09\pm0.16$	+0.55	+0.54	+0.20		16.380 ± 0.037
Burton.	1911.18	$+0.98\pm0.15$	+0.55	+0.43	+0.08	+0.12	16.355 ± 0.044
Burton.	1912.12	$+0.96 \pm 0.06$	+0.56	+0.40	+0.03		16.383 ± 0.016
Barnard.	1912.17	$+0.97\pm0.13$	+0.56	+0.41	+0.04		16.375 ± 0.044
Barnard.	1913.05	+0.84+0.12	+0.57	+0.27	-0.12		16.298 ± 0.037
A. Hall, jr	1913.05	$+0.96\pm0.16$	+0.57	+0.39	0.00		16.468 ± 0.046
Burton.	1913.24	$+0.72\pm0.08$	+0.57	+0.15	-0.25		16.315 ± 0.026
Barnard.	1914.01	$+1.05\pm0.16$	+0.58	+0.47	+0.05		16.416 ± 0.051
Barnard.	1915.31	$+0.60\pm0.89$	+0.59	+0.01	-0.44		16.512 ± 0.104
Barnard.	1916.13	$+1.20\pm0.14$	+0.60	+0.60	+0.13		16.346 ± 0.049
Barnard.	1917.03	$+1.25\pm0.12$	+0.61	+0.64	+0.15	-0.03	16.293 ± 0.036
Barnard.	1918.12	$+1.20\pm0.19$	+0.62	+0.58	+0.06		16.372 ± 0.059
A. Hall, jr.	1919.08	$+0.88 \pm 0.17$	+0.63	+0.25	-0.30		16.406 ± 0.047
Barnard.	1919.12	$+1.09\pm0.13$	+0.63	+0.46	-0.09		16.395 ± 0.037
A. Hall, jr.	1920.07	$+1.22\pm0.21$	+0.64	+0.58	+0.01		16.422 ± 0.052
Barnard.	1920.13	$+0.64\pm0.16$	+0.64	0.00	-0.57		16.411 ± 0.046
Barnard.	1921.11	$+1.04\pm0.12$	+0.66	+0.38	-0.22		16.333 ± 0.039
A. Hall, jr.	1921.13	$+1.80\pm0.23$	+0.66	+1.14	+0.54		16.440 ± 0.046
Barnard.	1922.14	$+1.18\pm0.17$	+0.67	+0.51	-0.11		16.399 ± 0.044
A. Hall, jr.	1923.26	$+1.04\pm0.43$	+0.68	+0.36	-0.29	-0.15	16.447 ± 0.067

MEAN DISTANCE OF SATELLITE AND MASS OF NEPTUNE.

In column 8 of Table V are collected 80 determinations of the mean distance of the satellite from its primary made from 1874 to 1923. These determinations range in value from 15.79 to 16.77 and indicate that, in addition to the accidental errors of the determinations, there are evident systematic differences between the determinations of different observers. Weighting the various determinations according to their probable errors, giving weight unity to a probable error of 0.71, the following results are obtained by observers.

			"	"
Hall,	3 determination	s, 1876–1884,	a = 16.360	± 0.015
Struve,	4 determination	is, 1887–1893,	a = 16.271	± 0.012
Schaeberle,	4 determination	ıs, 1895–1898,	a = 16.336	± 0.019
Hammond,	3 determination	s, 1905–1908,	a = 16.276	± 0.023
Burton,	3 determination			
Barnard (Lick),	3 determination	is, 1892–1895,	a = 16.322	± 0.029
Barnard (Yerkes),	5 determination	ıs, 1898–1922,	a = 16.321	± 0.009
A. Hall, jr.,	8 determination	is, 1909–1923,	a = 16.425	± 0.016
Greenwich, photo.,	8 determination	s, 1902–1910,	a = 16.201	± 0.013
All visual,	6 determination			
All photographic,	1 determination			
Final mean,	7 determination			

The probable error in each of the first six cases was determined from the sum of the weights of the individual determinations forming that mean; that in each of the last five cases was determined from the individual residuals.

From the last three values of a we obtain for the reciprocal of the mass of Neptune,

From Visual Observations, 19176 ± 25 .
From Photographic Observations, 19655 ± 36 .
From all Observations combined, 19331 ± 21 .

The value used by Newcomb in his tables of Uranus, A. P., Volume VII, is 19314.

THE ECCENTRICITY OF SATELLITE'S ORBIT AND LONGITUDE OF PERIASTRON.

Columns 3 and 4 of Table VI contain the values of the eccentricity, e, and the longitude of periastron, Q, of the satellite orbit as given by Struve and earlier in this treatise. Weighting the values of e according to their probable errors, we obtain as the weighted mean

$$e_0 = 0.0049 \pm 0.0002$$

This result must not be taken as definitely demonstrating that the orbit of the satellite is elliptical. An eccentricity of this size would produce a difference between the periastron and apastron distances of less than 0.2. Even though the orbit is circular, every set of elements deduced as above may be expected to exhibit an eccentricity due to the unavoidable errors of observation. The confirmation of the ellipticity of the orbit must be sought in the accordance of the various values of Q. During the entire period of observation there is not a single opposition when there are three independent determinations of elements that the range of the values of Q is not over 100° .

TABLE VI.—Eccentricity and Longitude of Periastron.

Observer.	Mean Epoch.	e	Q		ΔQ	Q.	ØĮ.	Đi	Dati	EIA
			• •	•	•	•	•	•	•	•
Newcomb.	1874.5	0.0088 ± 0.0020	182 ± 7	55.5	-14.7	141			+ 16.6	- 53.1
Hall.	1876.3	0.0090 ± 0.0031	202 ± 14	54.6	13.7	161			+ 41.7	- 28.5
Holden.	1876.5	0.0051 ± 0.0020	88 ±36	54.5	13.6	47	l		– 71.8	-142.0
Hall.	1882.1	0.0034 ± 0.0014	124 ± 24	51.7	10.3	83			- 20.3	- 91.7
Hall.	1883.8	0.0100 ± 0.0021	150 ±11	50.8	9.4	109			+ 10.6	- 61.3
H. Struve.	1887.6	0.0050 ± 0.0013	267 ±13	48.9	- 7.2	225				+ 64.4
H. Struve.	1889.0	0.0075 ± 0.0011	248 ± 8	48.2	6.4	206				+ 49.0
Parrish.	1889.93	0.0102 ± 0.0128	156.3 ± 41.7	47.7	5.8	114.4				-40.3
H. Struve.	1890.6	0.0072 ± 0.0009	271 ± 6	47.4	5.4	229				+ 76.0
A. Hall, jr.	1892.00	0.0072 ± 0.0003	126.6 ± 16.0	46.7	4.6	84.5			+ 8.9	- 64.9
H. Struve.	1892.6	0.0082 0.0014		46.4	- 4.3	206			!	1 50 1
		0.0083 ± 0.0014	248 ± 8							+ 58.1
Barnard.	1892.93	0.0022 ± 0.0028	177.4 ± 72.0	46.2	4.1	135.3				[-11.7]
Barnard.	1894.00	0.0065 ± 0.0026	107.0 ± 19.6	45.7	3.5	64.8			- 5.2	- 79.5
Schaeberle.	1895.06	0.0065 ± 0.0017	149.5 ± 13.5	45.1	2.9	107.3				- 34.3
Barnard.	1895.07	0.0025 ± 0.0016	78.2 ± 35.5	45.1	2.8	35.9			- 31.2	-105.7
Schaeberle.	1895.91	0.0031 ± 0.0025	141.6 ± 19.4	44.7	- 2.4	99.3			+ 34.5	- 40.1
Schaeberle.	1896.82	0.0039 ± 0.0023	91.5 ± 26.2	44.2	1.8	49.1			- 13.2	- 88.0
Drew.	1897.09	0.0047 ± 0.0022	148.0 ± 22.8	44.1	1.7	105.6				-30.8
Schaeberle.	1897.87	0.0047 ± 0.0013	77.7 ± 11.4	43.7	1.2	35.2			- 24 1	- 99.2
Brown.	1897.97	0.0059 ± 0.0009	0.0 ± 12.2	43.7	1.2	317.5			$-24.1 \\ -101.6$	-176.6
Barnard.	1898.02	0.0048 ± 0.0011	131.6±10.6	43.6	- 1.1	89.1	_948			- 44.9
Drew.					0.7		-04.0			
	1898.76	0.0050 ± 0.0021	4.6 ± 35.3	43.3		322.0				-170.1
Aitken.	1898.89	0.0126 ± 0.0024	85.5 ± 6.4	43.2	0.6	42.9			- 13.5	– 88.9
Barnard.	1898.98	0.0038 ± 0.0008	230.4 ± 13.3	43.1	0.6	187.9	+15.6		– 13.5	+ 56.3
Hussey.	1898.98	0.0016 ± 0.0024	50.2 ± 98.5	43.1	0.6	7.7				[-123.9]
Pulkowa, photo.	1899.18	0.0024 ± 0.0029	240.2 ± 67.0	43.0	- 0.5	197.7		 	-114.6	[+66.6]
Barnard.	1899.88	0.0033 ± 0.0007	231.1 ± 12.7	42.7	- 0.1	188.5	+17.6			+ 59.2
See.	1899.96	0.0038 ± 0.0012	341.6 ± 21.9	42.7	0.0	298.9			-114.6	-190.2
Hussey.	1900.04	0.0048 ± 0.0019	30.3 ± 32.1	42.6	0.0	347.7			- 65.5	-141.1
Pulkowa, photo.	1900.12	0.0108 ± 0.0030	302.5 ± 10.7	42.6	+ 0.1	259.8				+131.1
Barnard.	1900.86	0.0076 ± 0.0010	249.9 ± 6.5	42.2	+ 0.5	207.2	+37.8			+ 80.4
Pulkowa, photo.	1901.11	0.0132 ± 0.0094	339.6 ± 39.9	42.1	0.6	296.9	1 01.10			+170.7
Aitken.	1901.82	0.0068 ± 0.0017	147.0 ± 17.5	41.7	1.1	104.2			1 EE O	20.1
	1902.00				1.2		17 5		+ 55.9	-20.1 + 26.2
Barnard.		0.0049 ± 0.0007	192.9 ± 12.1	41.6		150.1	-17.5			+ 20.2
Lick, photo.	1902.02	0.0123 ± 0.0019	289.0 ± 6.9	41.6	1.2	246.2				+122.4
Greenwich, photo.	1902.15	0.0006 ± 0.0009	325.1 ± 74.1	41.6	+ 1.2	282.3				[+158.8]
Barnard.	1902.92	0.0057 ± 0.0010	224.3 ± 12.0	41.2	1.7	181.4	+15.2			+ 59.9
Dinwiddie.	1903.01	0.0147 ± 0.0021	73.8 ± 7.2	41.1	1.7	31.0	10.2		- 14.0	- 90.3
Greenwich, photo.	1903.10	0.0009 ± 0.0010	198.0±86.9	41.1	1.8	155.1			11.0	[+ 34.1]
Wirtz	1903.17	0.0206 ± 0.0018	257.7 ± 12.8	41.0	1.8	214.9				+ 94.0
Barnard.	1903.96	0.0067 ± 0.0014	919 5 1 14 5	40.6	+ 2.3	170.6	امها			1 51 7
	1004.10		213.5 ± 14.5		2.4		ן ש.ט דן			+ 51.7
Greenwich, photo.	1904.10	0.0008 ± 0.0010	97.5 ± 50.2	40.6		54.5	1 00 5			[- 64.0]
Barnard.	1904.88	0.0059 ± 0.0017	234.7 ± 15.9	40.2	2.8	191.7	+28.5		- 23.5	+ 75.2
Hammond.	1905.03	0.0050 ± 0.0035	58.8 ± 28.1	40.1	2.9	15.8			– 23.5	-100.4
Greenwich, photo.	1905.10	0.0023 ± 0.0010	210.7 ± 29.3	40.1	2.9	167.7				+ 51.8
Rice.	1905.11	0.0084 ± 0.0037	127.3 ± 19.6	40.1	+ 3.0	84.2			+ 45.1	- 31.7
Barnard.	1906.06	0.0096 ± 0.0030	118.7 ± 12.8	39.6	3.5	75.6	-85.8			— 37.9
Hammond.	1906.09	0.0044 ± 0.0010	332.9 ± 15.3	39.6	3.5	289.8			l — 106.6 l	-183.6
						-64.0			1 -00.0	
Greenwich, photo.	1906.18	0.0022 ± 0.0010	127.4 ± 25.7	39.5	3.6	84.3	1			- 28.9

58.3

+ 50.2

- 107.9

+ 86.7

- 108.1

Mean Epoch Observer. ΔQ 4.1 4.7 + 97.0 + 41.8 + 90.0 Greenwich, photo. 1907.16 0.0013 ± 0.0013 250.8 ± 42.1 39.0 + 207.7 1908.08 0.0056 ± 0.0009 193.5 ± 14.1 88.6 150.2 **– 8.1** Barnard. 38.6 198.3 1908.09 0.0070 ± 0.0018 241.6 ± 10.1 Greenwich, photo. 1908.11 0.0022 ± 0.0017 339.1 ± 51.1 38.6 - 172.51 295.8 Hammond. 0.0078 ± 0.0015 38.1 +69.01909.05 218.2 ± 10.4 174.9 +18.1Barnard. A. Hall, jr. 1909.11 0.0030 ± 0.0018 156.0 ± 43.1 38.1 5.3 112.6 +87.4 + 84.6 6.8 1910.06 200.3 ± 10.7 37.6 156.9 + 1.7 53.6 Barnard. 0.0090 ± 0.0015 5.8 -110.5 36.0 ± 10.7 1910.12 0.0095 ± 0.0019 37.6 5.8 352.6 -30.132.5 A. Hall, jr. 0.0027 ± 0.0008 Greenwich, photo. 1910.20 84.7 ± 11.5 37.5 5.9 41.3 61.7 0.0066 ± 0.0020 +29.7+ 82.5 226.9 ± 14.0 37.1 6.3 183.5 1910.96 Barnard. +50.6 1911.18 0.0046 ± 0.0017 37.0 6.5 70.8 48.6 29.7 114.3 + 16.7+ A. Hall, jr. 6.5 7.0 78.3 22.2 1911.18 0.0092 ± 0.0018 65.7 ± 9.3 37.0 0.0 Burton. 108.8 ± 6.1 195.9 ± 21.3 1912.12 1912.17 0.0056 ± 0.0006 36.6 65.2 + 32.8 45.7 Burton. + 54.4 + 61.9 7.0 152.4 + 0.4 + 7.0 0.0044 ± 0.0014 36.5 Barnard 1913.05 0.0066 ± 0.0013 201.2 ± 11.6 36.1 7.5 157.6 Barnard. 7.5 7.6 8.1 A. Hall, jr. 1913.05 0.0105 ± 0.0020 9.5 6.3 7.5 86.2 53.1 + 8.336.1 348.7 ± 40.5 203.4 ± 11.0 203.8 ± 24.1 305.1 159.7 0.0015 ± 0.0008 36.0 71.4 1913.24 -150.2Burton. 1914.01 1915.31 $+10.6 \\ +12.9$ + 66.5 + 70.1 0.0089 ± 0.0019 35.6 Barnard. 8.8 9.3 160.0 0.0094 ± 0.0027 35.0 Barnard. 0.0036 ± 0.0013 30.3 162.1 ± 31.6 118.2 -27.7 1916.13 34.6 Barnard. 1917.03 0.0046 ± 0.0010 147.3 ± 18.9 9.8 103.4 -41.117.9 Barnard. 34.1 1918.12 150.8 ± 21.7 33.6 10.5 106.7 24.0 0.0068 ± 0.0016 -36.1Barnard. - 56.9 + 52.7 0.0107 ± 0.0020 11.0 +22.0+ 23.2 33.1 23.4 1919.08 67.5 ± 8.7 177.0 ± 15.2 A. Hall, jr. - 8.4 0.0057 ± 0.0013 33.1 11.0 132.9 1919.12 Barnard. 324.6 32.8 0.0032 ± 0.0022 8.8 ± 36.5 32.6 -34.5 1920.07 11.6 -113.2 A. Hall, jr.

TABLE VI.—Eccentricity and Longitude of Periastron—Continued.

The values of Q given in column 4 of Table VI are measured from the ascending node of the satellite's orbit on the Earth's equator. If from these values we subtract ψ , obtained from column 7 of Table VII, and $\Delta Q = (T-1900) \ \Delta\theta \cos(180-\gamma)$ we will obtain

 180.0 ± 30.2

 169.6 ± 11.3

 11.4 ± 15.0 203.5 ± 12.6

 5.9 ± 20.8

1920.13

1921.11

1921.13

1922.14

1923.26

Barnard.

Barnard.

Barnard

A. Hall, jr.

A. Hall, jr.

 0.0034 ± 0.0016

 0.0077 ± 0.0013

 0.0081 ± 0.0019

 0.0068 ± 0.0017

 0.0097 ± 0.0036

 $\frac{32.5}{32.1}$

32.0

31.5

31.0

+11.6 12.2

12.2 12.8

+13.4

135.9

125.3 327.2

159.2

321.5

3.8

-29.4

-30.0

- 27.2

27.0

-12.9

+22.6

$$Q_{\mathbf{F}} = Q - \psi - \Delta Q,$$

the longitude of periastron referred to a fixed point in the satellite's orbit, its node on Neptune's equator at 1900.0. The values of Q_r are given in column 7 of Table VI.

Giving to each value of $Q_{\mathbb{P}}$ a weight in accordance with its probable error, weight unity corresponding to a probable error of 31.6, we obtain from the 25 determinations by Barnard at Yerkes (the largest number of determinations by a single observer at a single instrument),

$$Q_{\text{F}} = 155^{\circ}3 \pm 5^{\circ}3 - (1^{\circ}54 \pm 0^{\circ}69) (\text{T}-1910.0)$$

Similarly, from the 8 determinations by A. Hall, jr., at Washington, 1909 to 1923, we obtain

$$Q_{F} = 11.1 \pm 7.8 - (2.38 \pm 1.83) (T-1915.0)$$

While the difference between the values of Q_r from these two series at 1915.0, 148° and 11°, is many times its probable error, 10°, indicating a large systematic difference between the results from these two observers, the difference between the annual motions of Q_r as determined by them is less than half of its probable error.

A comparison of the values of Q_r obtained by the other observers with the results from the observations of Barnard and A. Hall, jr., respectively, shows that all the Washington results agree fairly well among themselves and with the results from the visual observations at the Lick Observatory. These two series include 32 determinations with probable errors less than 50°, from 1874 to 1923, and yield for the value of Q_r

$$Q_F = 53.4 \pm 4.7 - (2.79 \pm 0.36) (T-1900.0)$$

Finally, a solution including all the values of Table VI, except the seven whose probable errors exceed 50°, gives

$$Q_{\rm F} = 129.0 \pm 6.5 - (2.55 \pm 0.57) (T-1900.0)$$

Reducing to 1900.0 the first expressions obtained, we have:

```
I, Q_F = 170.7 - 1.54 (T-1900.0), 25 determinations by Barnard at Yerkes; II, \dot{Q}_F = 46.8 - 2.38 (T-1900.0), 8 determinations by A. Hall, jr., at Washington; III, \dot{Q}_F = 53.4 - 2.79 (T-1900.0), 32 determinations at Washington and Lick; IV, \dot{Q}_F = 129.0 - 2.55 (T-1900.0), 73 determinations at various places.
```

The residuals from these four solutions, $v_{\rm I}$, $v_{\rm II}$, $v_{\rm II}$, $v_{\rm II}$, and $v_{\rm IV}$, are given in columns 8, 9, 10, and 11 of Table VI. The above expressions for the longitude of periastron indicate an annual motion of the periastron between -1.5 and -3.0, a value considerably larger than one would be led to expect from the determination of the annual motion of the node, $\delta\theta = +0.6$, and they also show an exceedingly large range in the values of the longitude of periastron itself for the mean epoch of the observations. These results indicate that the existence of an ellipticity in the satellite's orbit is extremely uncertain.

Table VII gives annual values of the elements of Neptune s equator and of the orbit of its satellite, considered circular, from 1840 to 1960. This is accompanied by auxiliary tables to facilitate the computation of the position of the satellite in its orbit at any desired time.

ADDENDUM.

On the occasion of the presentation of the results of the above paper to the Royal Astronomical Society, Dr. J. Jackson of the Royal Observatory at Greenwich presented a Note on the Figure and Rotation Period of Neptune based on the results of this paper. The Note is published in full in Monthly Notices of the Royal Astronomical Society for March, 1926, pp. 294-6.

Doctor Jackson obtains a difference between the equatorial and polar diameters of 0.04, and for the period of rotation of Neptune 19h, with an error not to exceed 3h or 4h.

An Example of the Computation of Position Angle, Distance, and Time of Elongation.

For the computation of the position angle and distance for February 20, 1929, 20^h 39^m, Greenwich Civil Time = February 20, 1929, 16^h 37^m, corrected for light time.

Table VII gives-

G. C. T.	<i>N</i>	Į.	, \(\psi\)	u _w	Part of Year.
1929 Jan. 0.0	192.952	114.246	28.115	88.766	
1930 Jan. 0.0	193.166	114.149	27.616		
Feb. 0.0				99.027	.085
20 day	8			145.179	.055
16 hou	rs			40.839	.002
37 min	utes			1.574	.000
	•				
				15.385	.142

Interpolating N, I, and ψ for the part of the year, 0.7142, there is obtained

$$N=192.98$$
 $I=114.23$
 $\psi=28.044$
 $u_{\psi}=15.385$
 $u_{\oplus}=u_{\psi}+\psi=43.43$

Using the final value of a = 16.289 from page 329, the value of r given on page 282 becomes

$$r = \frac{[2.69003]}{\rho}$$

Taking the values of α , δ , and ρ from one of the national Almanacs and using the values of N, I, and u_{\oplus} just given, the formulæ on page 282 give

$$\log r = 1.2254$$

$$\log \sin B = 9.6954n$$

$$P = 232.77$$

$$U = 31.37$$

$$u_{\oplus} - U = 12.06$$

$$p = 29.46$$

$$u_{\oplus} = 8.87$$

Western elongation occurs when $u_{\oplus} - U = 90^{\circ}$ and eastern elongation when $u_{\oplus} - U = 270^{\circ}$; therefore, having $u_{\oplus} - U$ for a given date, to find the number of hours to the next following western elongation of the satellite, divide $90^{\circ} - (u_{\oplus} - U)$ by the hourly motion of $u_{\oplus} - U$; and to find the number of hours to the next following eastern elongation divide $270^{\circ} - (u_{\oplus} - U)$ by the hourly motion of $u_{\oplus} - U$; in either case, adding or subtracting 360° whenever necessary in order that the dividend may be between 0° and 360°.

In the present example, dividing $90^{\circ} - (u_{\oplus} - U) = 77.94$ by 2.5513,* the result is $+30^{\circ}55$ and a western elongation will occur on February 20, $20^{\circ}65 + 30^{\circ}55$ or 1929, February 22, $3^{\circ}20$, G. C. T.

A series of earlier western elongations may next be computed by successive subtractions of the period, 5^4 21*044, from February 22, 3^2 20; and a series of later western elongations by successive additions of the period. The time of elongation, February 22, 3^2 20 is correct as computed, but the other times will require a small correction in order to take account of the change in the motion of U and in the value of the light time.

Finally, the eastern elongations may be obtained from the western elongations by interpolation to the middle.

^{*}The hourly motion of u_{\bigoplus} is very nearly a constant, namely, 275524; that of U, however, varies both throughout each opposition of Neptune and from opposition to opposition. The hourly motion of U for the date of the present example is +070011; and that of $u_{\bigoplus} - U$ is therefore 275513.

TABLE VII.—Elements of Neptune's Equator and Satellite's Orbit.

[Mean Equator and Equinox of Date.]

Greenwich Civil Time.	N _o	I.	0	· N	I	*	пФ	F	Reduction to Beg	inning of M	onths.
B 1840 Jan. 1.0 1841 Jan. 0.0 1842 Jan. 0.0	24.651 24.660 24.668	48.792 48.790 48.788	89.718 90.339 90.960	178.732 178.817 178.905	128.325 128.123	73.530 72.993	325.357 4.873		Month.	Part of Year.	"Ф
1842 Jan. 0.0 1843 Jan. 0.0 B 1844 Jan. 1.0	24.685 24.685	48.785 48.783	91.581 92.204	178.995 179.088	127.921 127.721 127.520	72.458 71.924 71.389	44.390 83.906 184.682	Jan. 0 Feb. 0	0.0 1.0	0.000 0.085	0.000 99.027
1845 Jan. 0.0 1846 Jan. 0.0 1847 Jan. 0.0	24.693 24.701 24.710	48.781 48.779 48.776	92.825 93.446 94.068	179.182 179.278 179.377	127.320 127.122 126.923	70.857 70.326 69.796	224.198 263.715 303.231	Mar. Apr. May June	0.0 0.0 0.0 0.0	0.162 0.247 0.329 0.414	14.278 113.305 151.074 250.101
B 1848 Jan. 1.0 1849 Jan. 0.0 1850 Jan. 0.0 1851 Jan. 0.0	24.718 24.726 24.735 24.743	48.774 48.772 48.769 48.767	94.691 95.312 95.933 96.554	179.478 179.581 179.686 179.792	126.725 126.529 126.332 126.137	69.265 68.737 68.210 67.684	44.007 83.523 123.040	July Aug. Sept. Oct.	0.0 0.0 0.0 0.0	0.496 0.581 0.666 0.748	287.870 26.897 125.925 163.693
B 1852 Jan. 1.0 1853 Jan. 0.0 1854 Jan. 0.0	24.752 24.760 24.768	48.765 48.762 48.760	97.177 97.798 98.420	179.901 180.012 180.125	125.942 125.748 125.555	67.157 66.633 66.109	162.556 263.332 302.848 342.365	Nov. Dec.	0.0 0.0	0.833 0.915	262.721 300.489
1855 Jan. 0.0 B 1856 Jan. 1.0	24.777 24.785	48.758 48.755	99.041	180.239	125.363 125.171	65.586 65.063	21.881 122.657				
1857 Jan. 0.0 1858 Jan. 0.0 1859 Jan. 0.0	24.793 24.802 24.810	48.753 48.751 48.748	100.285 100.906 101.528	180.475 180.595 180.718	124.980 124.790 124.602	64.542 64.022 63.502	162.173 201.690 241.206				
B 1860 Jan. 1.0 1861 Jan. 0.0 1862 Jan. 0.0 1863 Jan. 0.0	24.818 24.827 24.835 24.844	48.746 48.744 48.741 48.739	102.150 102.772 103.393 104.014	180.842 180.968 181.096 181.225	124.413 124.226 124.040 123.854	62.982 62.464 61.947	341.982 21.498 61.015		Reduction	for Days.	
B 1864 Jan. 1.0	24.852	48.737	104.637	181.357	123.669	61.430 60.913	100.532 201.307	Day.	Part of Year.	_	n A
1865 Jan. 0.0 1866 Jan. 0.0 1867 Jan. 0.0	24.860 24.869 24.877	48.734 48.732 48.730	105.258 105.880 106.501	181.490 181.625 181.761	123.486 123.303 123.121	60.397 59.882 59.368	240.824 280.340 319.857	1 2	0.003 0.005	1:	31.259 22.518
B 1868 Jan. 1.0 1869 Jan. 0.0 1870 Jan. 0.0 1871 Jan. 0.0	24.885 24.894 24.902 24.910	48.727 48.725 48.723 48.720	107.124 107.745 108.366 108.987	181.900 182.040 182.182 182.325	122.940 122.760 122.582 122.404	58.853 58.340 57.828 57.316	60.632 100.149 139.665 179.182	3 4 5 6 7	0.008 0.011 0.014 0.016 0.019	183.777 245.036 306.295 7.554	
B 1872 Jan. 1.0 1873 Jan. 0.0 1874 Jan. 0.0 1875 Jan. 0.0	24.919 24.927 24.936 24.944	48.718 48.716 48.713 48.711	109.610 110.232 110.853 111.474	182.470 182.617 182.765 182.914	122.227 122.051 121.877 121.703	56.803 56.292 55.782 55.272	279.957 319.474 358.990 38.507	8 9 10 11	0.022 0.025 0.027 0.030	022 130.072 025 191.331 027 252.589 030 313.848	30.072 91.331 52.589 13.848
B 1876 Jan. 1.0 1877 Jan. 0.0 1878 Jan. 0.0 1879 Jan. 0.0	24.952 24.961 24.969 24.977	48.708 48.706 48.704 48.701	112.097 112.718 113.340 113.961	183.066 183.219 183.373 183.529	121.531 121.360 121.189 121.020	54.761 54.252 53.744 53.236	139.282 178.799 218.315 257.832	12 13 14 15 16	0.033 0.036 0.038 0.041 0.044	1: 1: 2:	15.107 76.366 37.625 98.884 30.143
B 1880 Jan. 1.0 1881 Jan. 0.0 1882 Jan. 0.0 1883 Jan. 0.0	24.986 24.994 25.002 25.011	48.699 48.697 48.694 48.692	114.584 115.205 115.826 116.447	183.687 183.846 184.006 184.168	120.852 120.685 120.519 120.355	52.727 52.220 51.713	358.607 38.124 77.640	17 18 19 20 21	0.047 0.049 0.052 0.055 0.058	14	21.402 22.661 33.920 45.179 06.438
B 1884 Jan. 1.0 1885 Jan. 0.0 1886 Jan. 0.0 1887 Jan. 0.0	25.019 25.028 25.036 25.044	48.690 48.687 48.685 48.683	117.070 117.691 118.313 118.934	184.332 184.496 184.662 184.830	120.191 120.029 119.868 119.709	51.206 50.699 50.193 49.687 49.182	117.157 217.932 257.449 296.965 336.482	21 0.060 22 0.060 23 0.063 24 0.066 25 0.068 26 0.071 27 0.074 28 0.077 29 0.079 30 0.082 31 0.085	32	37.697 28.956 30.215 91.474 52.733	
B 1888 Jan. 1.0 1889 Jan. 0.0 1890 Jan. 0.0 1891 Jan. 0.0	25.053 25.061 25.069 25.078	48.680 48.678 48.675 48.673	119.557 120.178 120.799 121.420	184.999 185.170 185.341 185.514	119.550 119.393 119.237 119.082	48.676 48.171 47.667 47.163	77.257 116.774 156.291 195.807		33	13.992 75.251 36.510 37.768 99.027	
B 1892 Jan. 1.0 1893 Jan. 0.0 1894 Jan. 0.0 1895 Jan. 0.0	25.086 25.094 25.103 25.111	48.671 48.668 48.666 48.664	122.043 122.665 123.286 123.907	185.689 185.865 186.042 186.220	118.928 118.776 118.626 118.476	46.658 46.154 45.651 45.148	296.583 336.099 15.616 55.132			<u> </u>	
B 1896 Jan. 1.0 1897 Jan. 0.0 1898 Jan. 0.0 1899 Jan. 0.0	25.120 25.128 25.136 25.145	48.661 48.659 48.657 48.654	124.530 125.151 125.773 126.394	186.400 186.581 186.763 186.946	118.328 118.181 118.035 117.891	44.644 44.141 43.639 43.137	155.908 195.424 234.941 274.457				

TABLE VII.—Elements of Neptune's Equator and Satellite's Orbit—Continued.

[Mean Equator and Equinox of Date.]

Greenwich Civil Time.	N _o	I _o	0	N	1	*	u_{Ψ}	Redu	ection for Hours.
1900 Jan. 0.0 1901 Jan. 0.0 1902 Jan. 0.0 1903 Jan. 0.0	25.153 25.161 25.170 25.178	48.652 48.650 48.647 48.645	127.015 127.636 128.257 128.879	187.130 187.316 187.503 187.691	117.748 117.607 117.467 117.329	42.635 42.133 41.631 41.129	313.974 353.490 33.007 72.523	Hour.	^u _Ψ , 2.552
B 1904 Jan. 1.0 1905 Jan. 0.0 1906 Jan. 0.0 1907 Jan. 0.0	25.186 25.195 25.203	48.643 48.640 48.638 48.635	129.502 130.123 130.744 131.365	187.880 188.071 188.262 188.455	117.191 117.055 116.921 116.788	40.627 40.125 39.624 39.123	173.299 212.815 252.332 291.848	2 3 4 5 6 7	5.105 7.657 10.210 12.762 15.315 17.867
B 1908 Jan. 1.0 1909 Jan. 0.0 1910 Jan. 0.0 1911 Jan. 0.0	25.237	48.633 48.631 48.628 48.626	131.988 132.610 133.231 133.852	188.649 188.844 189.040 189.237	116.656 116.526 116.398 116.271	38.621 38.120 37.620 37.119	32.624 72.140 111.657 151.173	8 9 10 11 12 13	20.420 22.972 25.525 28.077 30.629
B 1912 Jan. 1.0 1913 Jan. 0.0 1914 Jan. 0.0 1915 Jan. 0.0	25.262	48.624 48.621 48.619 48.617	134.475 135.096 135.717 136.338	189.435 189.634 189.834 190.035	116.145 116.021 115.898 115.777	36.618 36.117 35.617 35.117	251.949 291.465 330.982 10.499	14 15 16 17	33.182 35.734 38.287 40.839 43.392
B 1916 Jan. 1.0 1917 Jan. 0.0 1918 Jan. 0.0 1919 Jan. 0.0	25.287 25.295 25.304 25.312	48.614 48.612 48.609 48.607	136.962 137.583 138.204 138.825	190.238 190.441 190.645 190.850	115.657 115.539 115.423 115.308	34.615 34.115 33.616 33.116	111.274 150.791 190.307 229.824	18 19 20 21 22	45.944 48.497 51.049 53.602 56.154
B 1920 Jan. 1.0 1921 Jan. 0.0 1922 Jan. 0.0 1923 Jan. 0.0	25.320 25.329 25.337 25.346	48.605 48.602 48.600 48.597	139.448 140.069 140.690 141.312	191.057 191.264 191.471 191.680	115.195 115.083 114.973 114.864	32.614 82.115 31.615 31.115	330.599 10.116 49.632 89.149	23 24	58.706 61.259
B 1924 Jan. 1.0 1925 Jan. 0.0 1926 Jan. 0.0 1927 Jan. 0.0	25.354 25.362 25.371 25.379	48.595 48.593 48.590 48.588	141.935 142.556 143.177 143.798	191.890 192.101 192.312 192.524	114.757 114.652 114.548 114.446	30.614 30.115 29.615 29.116	189.924 229.441 268.957 308.474		
B 1928 Jan. 1.0 1929 Jan. 0.0 1930 Jan. 0.0 1931 Jan. 0.0		48.585 48.583 48.581 48.578	144.421 145.042 145.664 146.285	192.738 192.952 193.166 193.382	114.345 114.246 114.149 114.053	28.615 28.115 27.616 27.116	49.249 88.766 128.282 167.799		
B 1932 Jan. 1.0 1933 Jan. 0.0 1934 Jan. 0.0	25.421 25.429 25.438	48.576 48.573 48.571	146.908 147.529 148.150	193.598 193.815 194.033	113.959 113.867 113.776	26.615 26.116 25.616	268.574 308.091 347.607	Reduc	tion for Minutes.
1935 Jan. 0.0	25.446	48.569	148.772	194.251	113.688	25.117	27.124	Minute.	u _w
B 1936 Jan. 1.0 1937 Jan. 0.0 1938 Jan. 0.0 1939 Jan. 0.0	25.454 25.463 25.471 25.479	48.566 48.564 48.562 48.559	149.394 150.016 150.637 151.258	194.471 194.691 194.911 195.132	113.600 113.515 113.431 113.349	24.616 24.117 23.617 23.118	127.899 167.416 206.932 246.449	1 2	0.043 0.085
B 1940 Jan. 1.0 1941 Jan. 0.0 1942 Jan. 0.0 1943 Jan. 0.0	25.488 25.496 25.504 25.513	48.557 48.554 48.552 48.550	151.881 152.502 153.124 153.745	195.355 195.578 195.801 196.025	113.268 113.189 113.112 113.037	22.617 22.118 21.618 21.119	347.224 26.741 66.258 105.774	3 4 5 6 7	0.128 0.170 0.213 0.255 0.298
B 1944 Jan. 1.0 1945 Jan. 0.0 1946 Jan. 0.0 1947 Jan. 0.0	25.521 25.530 25.538 25.546	48.547 48.545 48.542 48.540	154.368 154.989 155.610 156.231	196.250 196.475 196.700 196.927	112.963 112.891 112.821 112.753	20.618 20.119 19.619 19.120	206.550 246.066 285.583 325.099	8 9 10 20 30	0.340 0.383 0.425 0.851 1.276
B 1948 Jan. 1.0 1949 Jan. 0.0 1950 Jan. 0.0 1951 Jan. 0.0	25.555 25.563 25.571 25.580	48.538 48.535 48.533 48.530	156.854 157.476 158.097 158.718	197.154 197.381 197.609 197.837	112.686 112.621 112.558 112.497	18.619 18.119 17.620 17.120	65.875 105.391 144.908 184.424	40 50 60	1.702 2.127 2.552
B 1952 Jan. 1.0 1953 Jan. 0.0 1954 Jan. 0.0 1955 Jan. 0.0	25.588 25.596 25.605 25.613	48.528 48.526 48.523 48.521	159.341 159.962 160.583 161.204	198.067 198.296 198.526 198.756	112.438 112.380 112.324 112.270	16.619 16.120 15.620 15.120	285.200 324.716 4.233 43.749		
B 1956 Jan. 1.0 1957 Jan. 0.0 1958 Jan. 0.0 1959 Jan. 0.0	25.622 25.630 25.638 25.647	48.518 48.516 48.514 48.511	161.827 162.449 163.070 163.691	198.988 199.219 199.450 199.682	112.218 112.167 112.118 112.072	14.619 14.120 13.620 13.120	144.525 184.041 223.558 263.074		
B 1960 Jan. 1.0	25.655	48.509	164.314	199.915	112.026	12.619	3.850		

Errata in Greenwich Annual Volumes.

GREENWICH OBSERVATIONS 1904.

Page 153, Solutions. Page 154, Solutions. Page 155, Solutions. Substitute values on page 321 of this volume, changing + to - and - to +.

Change value of Q 180°. Change value of Q 180°.

GREENWICH OBSERVATIONS 1905.

Page 175, Mar. 9, Tabular Position Angle. For 296.18 read 297.06 For +0.42 read +1.30For 14.51 read 14.40Tab. - Obs. Position Angle. Tabular Distance. For +0.33 read +0.22Tab. - Obs. Distance. Page 177, Dec. 7, sin dI Position Angle. 0.0 read - 0.6For read = 0.0 read + 16.9 read + 0.4 read = 0.42c cos Q Position Angle. sin du Distance. sin dN Distance. For 0.0 0.0 For For 0.0 sin dI Distance. 0.0 For read -12.8 $\begin{array}{c} \text{read} + 5.5 \\ \text{read} - 0.5 \end{array}$ 2e sin Q Distance. 2e cos Q Distance. For 0.0 For -0.1Feb. 17, sin dN Position Angle. sin dI Position Angle. read -For +4.9 - 6.3 0.0 read + 0.5For Mar. 9, s sin dp. ds. For +0.11 read +0.33 For +0.33 read +0.22 Normal Equations. Substitute values on page 322 of this volume, changing the signs of the right-Substitute values on page 322 of this volume, changing + to - and - to +. Solutions. Read from top to bottom: +.19, -.12, +.27, +.10, +.06, -.17, -.07, -.01, -.07, +.16, -.14, -.17, +.17, -.24, +.18, -.29, |+.03, +.14, +.18, +.05, -.05, +.02, -.09, -.06, +.18, -.01, -.17.

Read from top to bottom: <math>+.09, -.01, +.43, -.20, +.12, +.12, -.02, +.02, -.06, -.09, -.04, +.02, +.38, +.14, -.40, +.10, -.06, +.03, +.10, +.16, -.04, -.27, +.01, -.26, -.08, -.04, +.35.Column Residual, Position Angle. Column Residual, Distance.

GREENWICH OBSERVATIONS 1906.

Page 180, Normal Equations.

Solutions.

Column Residual, Position Angle.

Column Residual, Distance.

Substitute for right-hand members values on page 322 of this volume with their signs changed.

Substitute values on page 322 of this volume, changing + to - and - to +. Read from top to bottom; -.22, +.14, +.07, -.14, +.01, -.03, -.06, -.10, -.02, +.07, .00, -.01, -.05, -.07, +.13, +.16, -.06, +.12, -.11, +.01, +.04, -.02, -.14, +.25.

Read from top to bottom: +.34, +.38, +.06, +.04, +.07, +.07, +.01, -.06, -.06, +.50, +.07, +.09, +.01, -.39, -.08, -.10, -.28, +.02, +.02, -.08, +.05, -.28, -.14, -.01.

+.05, -.28, -.14,

336

Errata in Greenwich Annual Volumes—Continued.

GREENWICH OBSERVATIONS 1907.

Page 211, Solutions, Q.

For 69° 37' read 250° 48'

GREENWICH OBSERVATIONS 1908.

```
Page 195, Dec. 10, sin dN, Distance.
                                                      For -
                                                                 read +.
           Feb. 3, \sin dN, Distance.
                                                      For +
                                                                 read -.
           Feb. 6, \sin dN, Distance.
                                                      For +
                                                                 read - .
                                                      For -785 \text{ read } -906.
           Normal equations, \sin dN.
                                                      For -198 read -258.
                                \sin dI.
                                                     No change.
For + 89 read +218.
                                2e sin Q
                                2e cos Q.
                                da
                                                      For +560 \text{ read } +534.
                             Right-hand number.
                                                     For +5.60 read +4.09.
                                                      Substitute values on page 323 of this volume, changing + to - and - to +.
           Solutions.
                                                      Read from top to bottom: +.22, -.16, +.04, -.09, -.14, -.17, -.34, -.03, +.07, -.02, +.26, +.14.
           Column Residual, Position Angle.
                                                      Read from top to bottom: -.04, -.11, +.28, +.31, -.27, +.01, -.04, +.08, .00, -.07, +.03, +.16, -.08.
           Column Residual, Distance.
```

GREENWICH OBSERVATIONS 1911.

```
Page C70, sin dI, Position Angle.
                                                                                         Change all signs.
                     2e sin Q, Position Angle.
                                                                                         Change all sings.
                     2e sin Q, Distance.
                                                                                         Change all signs.
                    Feb. 11, sin du Position Angle.
sin dN Position Angle.
sin dI Position Angle.
2e sin Q Position Angle.
2e cos Q Position Angle.
sin du Distance.
sin dN Distance.
sin dI Distance.
2e sin Q Distance.
                                                                                        For - 16.42 read - 16.50.

For - 9.19 read + 6.19.

For - 3.95 read + 2.87.

For + 16.04 read - 6.24.

For + 3.48 read + 15.27.

For - 0.13 read - 2.30.
                                                                                         For - 0.15 read - 2.50.

For - 0.05 read + 5.17.

For + 0.02 read - 11.32.

For + 1.33 read + 4.34.

For - 5.50 read + 4.26.
                                       2e sin Q Distance.
2e cos Q Distance.
                                       da Distance.
                                                                                         For +11.33 read +11.28.
                                                                                         For + 0.03 read - 0.02.
                      Apr. 1, 2e sin Q Distance.
                                                                                         For + 5.59 read + 1.95.
                      Normal Equations.
                                                                                         Substitute values on page 323 of this volume, changing the signs of the right-hand
                                                                                         Substitute values on page 323 of this volume, changing + to - and - to +.
                      Solutions.
                                                                                        Read from top to bottom: -.04, +.09, -.17, +.02, -.05, +.06, +.45, -.04, .00, -.03, +.06, -.07, +.05, -.05, +.05, +.06, -.10, .00, +.06, -.06, +.03, -.13.

Read from top to bottom: -.29, +.04, -.04, +.07, +.22, -.05, -.10, +.03, -.03, -.01, -.03, -.01, +.02, -.06, +.16, -:01, -.13, +.04, +.12, +.02, -.03, +.15.
                      Column Residual, Position Angle.
                      Column Residual, Distance.
```


