EG1192 芯片数据手册

带使能降压开关电源芯片

版本变更记录

版本号	日期	描述
V1.0	2020年03月03日	EG1192 数据手册初稿

目 录

1.	特性.	
2.	描述.	1
3.		领域
		引脚定义
	4.2	引脚描述
5.	内部	电路图
6.		应用电路
7.		特性
	7.1	最大额定值
	7.2	典型参数
8.	应用i	设计
		PCB 板布局
	8.2	输出电感
	8.3	
	8.4	输出电容
	8.5	输出电压设置
		尺寸
		ESOP8 封装尺寸

EG1192 芯片数据手册 V1.0

1. 特性

- 通过使能脚关断实现零功耗
- 宽电压输入范围 10V 至 90V
- 最大输出电流 3A
- 集成 100V 功率 MOS 管
- 外围器件少
- 输出短路保护
- 温度保护
- 逐周期限流
- 输出电压灵活可靠
- ESOP8

2. 描述

EG1192 一款宽电压范围降压型 DC-DC 电源管理芯片,内部集成使能开关控制、基准电源、误差放大器、过热保护、限流保护、短路保护等功能,非常适合宽电压输入降压使用。

EG1192 零功耗使能控制,可以大大节省外围器件,更加适合电池场合使用,具有很高的方案性价比。

3. 应用领域

- 扭扭车控制器
- 快充电源
- 电动车控制器
- 逆变器系统
- 工业控制系统
- 平衡车控制器

4. 引脚

4.1 引脚定义

图 4-1. EG1192 管脚定义

4.2 引脚描述

引脚序号	引脚名称	I/O	描述
0	VIN	Power	芯片电源输入端 (芯片背面)。
1	VIN	Power	芯片电源输入端。
2	GND	Gnd	地
3	EN	Ι	使能脚,高电平有效,开关电源工作
4	VIA	0	输入电源电阻比例分压后输出
5	FB	Ι	输出电压反馈输入
6	VB	_	悬浮电源
7	VS	_	悬浮地。
8	IS	Ι	MOS 峰值电流保护输入端口

5. 内部电路图

图 5-1. EG1192 内部电路图

6. 典型应用电路

图 6-1. EG1192 按键使能零功耗控制典型应用图

图 6-2. EG1192 12V 输出典型应用图

图 6-3. EG1192 5V 输出典型应用图

图 6-4. EG1192 快充方案典型应用图

7. 电气特性

7.1 最大额定值

无另外说明,在TA=25℃条件下

符号	参数名称	测试条件	最小	最大	单位
VIN	电源输入端	_	-0.3	90	V
EN	使能脚	-	-0.3	7	V
VIA	输入电源电阻比例分 压后输出	-	-0.3	7	V
FB	电压反馈输入	_	-0.3	7	V
VB	悬浮电源	-	VS-0.3	VS+7V	V
VS	悬浮地	=	-0.3	90	V
IS	MOS 峰值电流保护输 入端口	-	VS-0.3	VS+6V	V
TA	环境温度	-	-45	125	$^{\circ}\!\mathbb{C}$
Tstr	储存温度	_	-55	150	$^{\circ}$
TL	焊接温度	T=10S	-	300	$^{\circ}\!\mathbb{C}$
ESD (HBM)	静电防护		2		KV

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明:VIN=48V;TA=25℃;

参数名称	符号	测试条件	最小	典型	最大	单位
输入电源	VIN	-	10	-	90	V
静态电流	ICC	EN>2.8V	-	2	5	mA
待机电流	Isd	EN<1V	-	-	10	uA
振荡频率	Fosc	EN>2.8V	-	135	-	KHZ
使能脚高电平	EN_on	-	2.8	-	7	V
使能脚低电平	EN_off	-	0	-	1	V
电压反馈输入	FB	EN>2.8V	1.21	1.25	1.29	V
电压反馈输入电流	Ifb	EN>2.8V	-	-	1	uA
限流电压	IS	EN>2.8V	-	0.18	-	V
温度保护	Тор	EN>2.8V	-	135	-	$^{\circ}$
功率 MOS 管耐压	VDS		-	100	-	V
功率 MOS 管内阻	Ron		-	0.12	-	Ω

8. 应用设计

8.1 PCB 板布局

输入电容 VIN、VB 跟 VS 之间自举电容尽量靠近芯片管脚;芯片背面尽量大面积铺铜,良好的散热,可以实现更大的电流输出,大电流路径(GND、VIN、VS、IS)走线尽量宽、短连接。

8.2 输出电感

EG1192 有两种工作模式分连续工作模式和不连续工作模式,电感的取值将影响降压器的工作模式,在 轻载时 EG1192 工作在不连续工作模式,同时电感值会影响到电感电流的纹波,电感的选取可根据下式公式:

Vout(Vin-Vout)

L= <u>Vin.Fs.Iripple</u> 式中 Vin 是输入电压,Vout 是输出电压,Fs 是 PWM 工作频率,Iripple 是电感中电流纹波的峰峰值,通常选择 Iripple 不超过最大输出电流的 30%。

8.3 续流二极管

续流二极管主要用于开关管关断时为电感电流提供一个回路,这个二极管的开关速度和正向压降直接 影响 DC-DC 的效率,采用肖特基二极管具有快速的开关速度和低的正向导通压降,能给 EG1192 降压器提供 高效率性能。

8.4 输出电容

输出电容 Co 用来对输出电压进行滤波,使 DC-DC 降压器输出比较平稳的直流电提供给负载,选取该电容时尽可能选取低 ESR 的电容,选取电容值的大小主要由输出电压的纹波要求决定,可由下式公式确定:

 Δ Vo= Δ IL(ESR+ $\frac{1}{8.Fs.Co}$)式中 Δ Vo 是输出电压纹波, Δ IL 是电感电流纹波,Fs 是 PWM 工作频率,ESR 是输出电容等效串联电阻。

8.5 输出电压设置

EG1192 的输出电压由 FB 引脚上的两个分压电阻进行设定,内部误差放大器基准电压为 1.25V,如图 8.5 所示,输出电压 Vout=(1+R1/R2)*1.25V,如需设置输出电压到 13.75V,可设定 R1 为 10K,R2 为 1K,输出电压 Vout=(1+10/1)*1.25V=13.75V。

图 8.5 EG1192 输出电压调整电路

9. <u>封装尺寸</u>

9.1 ESOP8 封装尺寸

⇒ ₩	Dimensions In Millimeters		Dimensions In Inches		
字符	Min	Max	Min	Max	
Α	1. 350	1. 750	0. 053	0.069	
A1	0. 050	0. 150	0. 004	0.010	
A2	1. 350	1. 550	0. 053	0.061	
b	0. 330	0. 510	0. 013	0.020	
С	0. 170	0. 250	0.006	0.010	
D	4. 700	5. 100	0. 185	0. 200	
D1	3. 202	3. 402	0. 126	0. 134	
Е	3. 800	4. 000	0. 150	0. 157	
E1	5. 800	6. 200	0. 228	0. 244	
E2	2. 313	2. 513	0. 091	0.099	
е	1. 270 (BSC)		0. 050 (BSC)		
L	0. 400	1. 270	0. 016	0.050	
θ	0°	8°	0°	8°	