

TOPIC 4 REINFORCEMENT LEARNING

- NN's work like regression
 - $\min \sum_{t} (predicted \ v(s_t) true \ v(s_t))^2$
- $predicted v(s_t)$ is like \hat{y} in OLS
 - In training you just tell TF the set of s_t's
 - TF then tries to wiggle weights and biases to make predicted close to truth

- TF wants to minimize
 - $(v_0(s_t) truth_{0,t})^2 + (v_2(s_t) truth_{2,t})^2 + (v_3(s_t) truth_{3,t})^2$
- If after state t we push button 2 then we only want to minimize
 - $\left(v_2(s_t) truth_{2,t}\right)^2$
- $truth_{3,t}$ represents future rewards if we were to have pushed button 3 at time t, but we didn't we pushed button 2!
- Let's trick TF and minimize
 - $0*(v_0(s_t) truth_{0,t})^2 + 1*(v_2(s_t) truth_{2,t})^2 + 0*(v_3(s_t) truth_{3,t})^2$
- To do this we have to give TF the 0,1,0
- And it doesn't matter what we tell TF for $truth_{0,t}$ or $truth_{3,t}$

- The problem is we don't know the true value of $v(s_t)$!
- Fake it till you make it!
 - Pretend like $r_t + \max_{x} \delta v(S_{t+1}, t+1)$ is the truth
- To do this, for each t, take the current weights and biases of the NN and plug s_{t+1} into the NN and see what you get out
- Tell this to TF as the 'true' y variable when it's time to update your weights and biases