Kosmologia - zadania

Szymon Cedrowski

Lekcja 12

1. (XL OA) Na tle widma kwazara QSO 1202–07 zidentyfikowano układ linii absorpcyjnych, należących do jakiegoś obiektu. Przesunięcie ku czerwieni dla kwazara wynosi $z_1=4,7$, a dla obiektu wytwarzającego układ linii absorpcyjnych $z_2=4,4$. Oszacuj odległość między tymi obiektami.

Załóż poprawność modelu Einsteina-de Sittera, a rachunki wykonaj dla skrajnych obecnie przyjmowanych wartości stałej Hubble'a.

Przypomnienie: w tym modelu $a(t) = At^{2/3}$.

2. W odległosci odpowiadajacej przesunieciu ku czerwieni z=0,1 zaobserwowano galaktyke o srednicy katowej $\alpha=12$ ". Udało sie rowniez zmierzyc przesuniecie ku czerwieni zewnetrznych fragmentow tej galaktyki. Rozniło sie ono od sredniego o $\Delta z=7\cdot 10^{-3}$. Przyjmujac, ze roznica ta jest spowodowana ruchem wokoł centrum, a os obrotu galaktyki jest prostopadła do linii widzenia, oblicz mase obserwowanej galaktyki. Zakładamy dodatkowo, ze rozkład materii w tej galaktyce jest sferycznie symetryczny, a ruch gwiazd jest kołowy z predkosciami nierelatywistycznymi.

Hint! Nierelatywistyczny efekt Dopplera dla światła: $z \approx \frac{v_{\parallel}}{c}$

- 3. (LI OA) Od pewnego czasu mierzy się promieniowanie kosmiczne o ekstremalnie wysokich energiach pojedynczych cząstek. Panuje dość powszechne przekonanie, że istnieje granica tej energii. Granica ta wynika stąd, że naładowana cząstka (a cząstki tego promieniowania są naładowane) o odpowiednio dużej energii będzie ją szybko tracić na generację par e^+/e^- w wyniku zderzeń z fotonami promieniowania tła, czyli w wyniku reakcji $p+\gamma \to p+e^++e^-$. Oszacuj wartość tej granicznej energii, zakładając, że cząstką promieniowania kosmicznego jest proton. Uwagi i wskazówki:
 - Zderzenia najwygodniej rozpatrywać w układzie zerowego pędu. W układzie tym, zderzenie fotonu z protonem można rozpatrywać nierelatywistycznie.
 - Temperatura promieniowania tła wynosi 3 K
 - Układy, w których pęd jest równy zero i ten, w którym temperatura wynosi 3 K są drastycznie różne i przejście między nimi jest relatywistyczne.
 - Użyteczne uproszczenie: $\sqrt{1+x} \approx 1 + \frac{x}{2}$.
 - Relatywistyczny wzór na efekt Dopplera (λ_0 to długość emitowana):

1

$$\frac{\lambda}{\lambda_0} = \frac{\sqrt{1 - \frac{v^2}{c^2}}}{1 - \frac{v}{c}}$$