AMENDMENTS TO THE CLAIMS:

The listing of claims will replace all prior versions, and listings, of claims in the application: 1. (original) A multi-channel integrator comprising: an integrator input; an integrator output; an adder comprising: a first adder input connected to the integrator input; a second adder input; and an adder output; a delay section comprising: a delay section input; a delay section output; and a plurality of delay elements connected in series between the delay section input and the delay section output; and a feedback line connecting the delay section output to the second adder input; wherein the adder output is connected to the delay section input; and further wherein the delay section output is connected to the integrator output.

2. (original) A multi-channel numerically controlled oscillator comprising the integrator of Claim 1.

3. (original) The multi-channel numerically controlled oscillator of Claim 2 further

comprising:

a phase incrementer input multiplexer connected to the integrator input; and

a sine/cosine generation unit connected to the integrator output.

4. (original) The multi-channel numerically controlled oscillator of Claim 2 wherein the

numerically controlled oscillator is an M channel numerically controlled oscillator and further

wherein the delay section of the integrator comprises at least M delay elements in series.

5. (original) An M channel decimator, wherein M>1, the decimator comprising:

the integrator of Claim 1 wherein the plurality of delay elements comprises at least M delay

elements.

6. (original) The M channel decimator of Claim 5 further comprising:

a down-sampler having a down-sampler input connected to the integrator output and a down-

sampler output; and

a differentiator connected to the down-sampler output.

7. (original) An N stage multi-channel decimator wherein the decimator comprises an

integrator section comprising at least N instances of the integrator of Claim 1 in series.

8. (original) The N stage multi-channel decimator of Claim 7 wherein the decimator is an M

channel decimator and further wherein the plurality of delay elements in each integrator

comprises at least M delay elements.

9. (original) An M channel interpolator, wherein M>1, the interpolator comprising:

the integrator of Claim 1 wherein the plurality of delay elements comprises at least M delay elements.

10. (original) The M channel interpolator of Claim 9 further comprising:

an up-sampler having an up-sampler output connected to the integrator input and an up-sampler

input; and

a differentiator connected to the up-sampler input.

11. (original) An N stage multi-channel interpolator wherein the interpolator comprises an

integrator section comprising at least N instances of the integrator of Claim 1 in series.

12. (original) The N stage multi-channel interpolator of Claim 11 wherein the interpolator is an

M channel interpolator and further wherein each integrator in the integrator section comprises

the integrator of Claim 1 and further wherein the plurality of delay elements comprises at least M

delay elements.

13. (original) The integrator of Claim 1 wherein the integrator is implemented in a

programmable device.

14. (original) The integrator of Claim 1 wherein the delay section is implemented in one or

more embedded memory blocks in a programmable device.

Appln. Serial No.: 10/804,294 Docket No.: ALTRP092/A1035 Page 4

15. (original) A multi-channel differentiator comprising:

a differentiator input;

a differentiator output:

a subtractor comprising:

a first subtractor input;

a second subtractor input; and

a subtractor output;

a delay section comprising:

a delay section input connected to the differentiator input;

a delay section output; and

a plurality of delay elements connected in series between the delay section input and the delay section output; and

a feedforward line connecting the differentiator input to the first subtractor input;

wherein the delay section output is connected to the second subtractor input; and

wherein the subtractor output is connected to the differentiator output.

16. (original) An M channel decimator, wherein M>1, the decimator comprising:

the differentiator of Claim 15 wherein the plurality of delay elements comprises at least M delay

elements.

17. (original) The M channel decimator of Claim 16 further comprising:

a down-sampler having a down-sampler output connected to the differentiator input and a down-

sampler input; and

an integrator connected to the down-sampler input.

18. (original) An N stage multi-channel decimator wherein the decimator comprises a

differentiator section comprising at least N instances of the differentiator of Claim 15 in series.

19. (original) The N stage multi-channel decimator of Claim 18 wherein the decimator is an M

channel decimator and further wherein the plurality of delay elements in each differentiator

comprises at least M delay elements.

20. (original) An M channel interpolator, wherein M>1, the interpolator comprising:

the differentiator of Claim 15 wherein the plurality of delay elements comprises at least M delay

elements.

21. (original) The M channel interpolator of Claim 20 further comprising:

an up-sampler having an up-sampler input connected to the differentiator output and an up-

sampler output; and

an integrator connected to the up-sampler output.

22. (original) An N stage multi-channel interpolator wherein the interpolator comprises a

differentiator section comprising at least N instances of the differentiator of Claim 15 in series.

Appln. Serial No.: 10/804,294 Docket No.: ALTRP092/A1035 Page 6

23. (original) The N stage multi-channel interpolator of Claim 22 wherein the interpolator is an

M channel interpolator and further wherein the plurality of delay elements in each differentiator

comprises at least M delay elements.

24. (original) The differentiator of Claim 15 wherein the integrator is implemented in a

programmable device.

25. (original) The differentiator of Claim 15 wherein the delay section is implemented in one or

more embedded memory blocks in a programmable device.

26. (original) An N stage, M channel decimator, where M>1, the decimator comprising:

an integrator section comprising:

an integrator section input comprising a multiplexer comprising M multiplexer

inputs and a multiplexer output;

an integrator section output; and

N integrators connected in series between the integrator section input and the

integrator output, wherein each integrator comprises:

an integrator input;

an integrator output;

an adder comprising:

a first adder input connected to the integrator input;

a second adder input; and

an adder output;

a delay section comprising:

```
a delay section input;
                              a delay section output; and
                              M delay elements connected in series between the delay section
                                  input and the delay section output; and
                      a feedback line connecting the delay section output to the second adder
                          input;
                      wherein the adder output is connected to the delay section input; and
                      further wherein the delay section output is connected to the integrator
                          output;
a differentiator section comprising:
               a differentiator section input;
               a differentiator output; and
               N differentiators connected in series between the differentiator input and the
                   differentiator output, wherein each differentiator comprises:
               a differentiator input;
               a differentiator output:
               a subtractor comprising:
                      a first subtractor input;
                      a second subtractor input; and
                      a subtractor output;
               a delay section comprising:
```

a delay section input connected to the differentiator input;

a delay section output; and

M delay elements connected in series between the delay section

input and the delay section output; and

a feedforward line connecting the differentiator input to the first subtractor

input;

wherein the delay section output is connected to the second subtractor

input; and

wherein the subtractor output is connected to the differentiator output; and

a down-sampler comprising a down-sampler input connected to the integrator section

output and a down-sampler output connected to the differentiator section input.

27. (original) An N stage, M channel interpolator, where M>1, the interpolator comprising:

a differentiator section comprising:

a differentiator section input comprising a multiplexer comprising M multiplexer

inputs and a multiplexer output;

a differentiator output; and

N differentiators connected in series between the differentiator input and the

differentiator output, wherein each differentiator comprises:

a differentiator input;

a differentiator output:

a subtractor comprising:

a first subtractor input;

a second subtractor input; and

a subtractor output;

a delay section comprising:

a delay section input connected to the differentiator input;

a delay section output; and

M delay elements connected in series between the delay section input and the delay section output; and

a feedforward line connecting the differentiator input to the first subtractor input;

wherein the delay section output is connected to the second subtractor input; and

wherein the subtractor output is connected to the differentiator output;

an integrator section comprising:

an integrator section input;

an integrator section output; and

N integrators connected in series between the integrator section input and the integrator output, wherein each integrator comprises:

an integrator input;

an integrator output;

an adder comprising:

a first adder input connected to the integrator input;

a second adder input; and

an adder output;

a delay section comprising:

a delay section input;

a delay section output; and

M delay elements connected in series between the delay section

input and the delay section output; and

a feedback line connecting the delay section output to the second adder

input;

wherein the adder output is connected to the delay section input; and

further wherein the delay section output is connected to the integrator

output; and

an up-sampler comprising an up-sampler input connected to the differentiator section

output and an up-sampler output connected to the integrator section input.

28. (original) An M channel numerically controlled oscillator, where M>1, the numerically

controlled oscillator comprising:

an oscillator input comprising a multiplexer comprising M multiplexer inputs and a

multiplexer output;

a sine/cosine generator having a generator input; and

an integrator comprising:

an integrator input connected to the multiplexer output;

an integrator output connected to the generator input;

an adder comprising:

a first adder input connected to the integrator input;

a second adder input; and

an adder output;

a delay section comprising:

a delay section input;

a delay section output; and

M delay elements connected in series between the delay section input and the delay section output; and

a feedback line connecting the delay section output to the second adder input; wherein the adder output is connected to the delay section input; and further wherein the delay section output is connected to the integrator output.

29. (currently amended) A computer program product for performing multi-channel integration, the computer program product stored on a computer storage media and comprising: a computer usable medium having computer readable code embodied therein, the computer readable code comprising:

computer code that, when executed by a processor, programs a device to create a programmed device for programming a device to create a programmed device, wherein the programmed device comprises:

a multi-channel integrator comprising:

an integrator input;

an integrator output;

an adder comprising:

a first adder input connected to the integrator input;

a second adder input; and

an adder output;

a delay section comprising:

a delay section input;

a delay section output; and

a plurality of delay elements connected in series between the delay

section input and the delay section output; and

a feedback line connecting the delay section output to the second adder

input;

wherein the adder output is connected to the delay section input; and

further wherein the delay section output is connected to the integrator

output.

30. (currently amended) A computer program product for performing multi-channel

differentiation, the computer program product stored on a computer storage media

having comprising:

a computer usable medium having computer readable code embodied therein, the computer

readable code comprising:

computer code that, when executed by a processor, programs for programming a device to

create a programmed device, wherein the programmed device comprises:

a multi-channel differentiator comprising multi-channel differentiator comprising:

a differentiator input;

a differentiator output:

a subtractor comprising:

a first subtractor input;

a second subtractor input; and

a subtractor output;

a delay section comprising:

a delay section input connected to the differentiator input;

a delay section output; and

a plurality of delay elements connected in series between the delay section input and the delay section output; and

a feedforward line connecting the differentiator input to the first subtractor input;

wherein the delay section output is connected to the second subtractor input; and

wherein the subtractor output is connected to the differentiator output.