Université Bordeaux 1 Licence, module Compilation, 2017/2018

TD5-Sémantique

Sémantique de IMP

Exercice 5.1

On considère les deux définitions de sémantique pour le langage IMP :

- la sémantique opérationnelle à petits pas : $[\![c]\!]_p:\mathbb{Z}^V\to\mathbb{Z}^V$
- la sémantique opérationnelle à grands pas $[c]_q: \mathbb{Z}^V \to \mathbb{Z}^V$.
- 1- On introduit la relation \vdash_n définie par :

$$\rho/e \hspace{0.2cm} \models_{\hspace{0.2cm} p} \rho/v \Leftrightarrow \llbracket e \rrbracket \rho = v$$

$$\rho/c \vdash_{p} \rho' \Leftrightarrow (c,\rho) \to^* (\varepsilon,\rho')$$

Montrer que \vdash_p vérifie les neuf clauses (fin de la page 3 du document "sémantique") qui définissent la sémantique à grands pas. Que peut-on en déduire sur $\llbracket c \rrbracket_p$ et $\llbracket c \rrbracket_g$?

2- Montrer par récurrence sur n que :

$$(c, \rho) \to^n (\varepsilon, \rho') \Rightarrow \rho/c \vdash \rho'.$$

Que peut-on en déduire sur $[\![c]\!]_p$ et $[\![c]\!]_g$?

3- Montrer que, pour toute commande c de IMP, $[\![c]\!]_p = [\![c]\!]_q$.

Exercice 5.2

Pour chacune des instructions c suivantes sur l'ensemble de variables $V = \{x\}$, quelle est la fonction $[\![c]\!]: \mathbb{Z}^V \to \mathbb{Z}^V$?

if 1 then x := 1 else Skip while 1 do Skip if 1 then x := 1 else while 1 do Skip if 0 then x := 1 else while 1 do Skip while 1 do Skip Se if 1 then x := 1 else x := 1

Exercice 5.3

Parmi les programmes c_i ($i \in [1, 10]$) de l'exercice précédent, lesquels sont équivalents i.e. définissent la même fonction $[c_i]$?

Sémantique de Léa

Exercice 5.4

On considère trois programmes qui comportent la déclaration de fonction puis la déclaration de variables globales :

```
function foo ( z: integer ) : type integer
  begin while true do z := z+1; end
var x,y:integer;
```

1- Quelle sera la sémantique du programme, si le corps est contitué de :

```
begin
x:= 10; if false then x:= foo(0) else y:=x+1; write(y);
end
2- Reprendre la question 1 avec

begin
x:= 10; if false then y:=x+1 else x:= foo(0); write(y);
end
3-Reprendre la question 1 avec

begin
x:= 10; y:=x+1; if (foo(2)= 3) then write(x) else write(y);
end
```

Attributs

Exercice 5.5

Soient D, I deux ensembles. Soit $\mathcal{F}(D, I)$ l'ensemble des fonctions de D dans I. On définit une relation binaire $\sqsubseteq \operatorname{sur} \mathcal{F}(D, I)$ par

$$f \sqsubseteq g \Leftrightarrow (\mathrm{Dom}(f) \subseteq \mathrm{Dom}(g) \text{ et } \forall x \in \mathrm{Dom}(f), f(x) = g(x))$$

Vérifier que \sqsubseteq est une relation d'ordre sur $\mathcal{F}(D,I)$. On considère l'ensemble ordonné $(\mathcal{F}(D,I),\sqsubseteq$).

- 1- Est-ce un treillis?
- 2- Est-ce que toute suite croissante admet une borne supérieure?
- 3- Montrer que toute application continue $F: \mathcal{F}(D,I) \mapsto \mathcal{F}(D,I)$ admet un plus petit point fixe.

Exercice 5.6

Soit $\mathcal{G} := \langle X, N, P, \mathcal{A}, (V_{\alpha})_{\alpha \in \mathcal{A}}, R \rangle$ une grammaire d'attributs. Soit T un arbre de dérivation qui induit un graphe de dépendance (des attributs) sans-cycle.

1- Montrer que le système d'équations (4) 1 admet une plus petite solution $(\hat{\alpha})_{\alpha \in \mathcal{A}}$.

Cette plus petite solution est appelée la pp-décoration de T.

2- Donner un exemple de grammaire d'attributs et d'arbre de dérivation tel que le système d'équations (4) admet plusieurs solutions.

Admet-il une plus grande solution? Plusieurs solutions maximales?

3- Soit T un arbre de dérivation de $\langle X, N, P \rangle$, soit $S = T(\varepsilon)$ (i.e. S est le non-terminal qui étiquette la racine de T) et $\alpha_0 \in \mathcal{A}_0(S)$ (i.e. un attribut synthétisé de S).

Comment peut-on tester, par un calcul sur le graphe de dépendance des attributs de T, si dans la pp-décoration $(\hat{\alpha})_{\alpha \in \mathcal{A}}$, $\varepsilon \in \text{Dom}(\hat{\alpha}_0)$? (i.e. si l'attribut α_0 est "bien-défini" à la racine?)

*4- Connaissant la grammaire d'attributs \mathcal{G} , le non-terminal S et l'attribut α_0 , peut-on tester que *tout* arbre de dérivation de racine S satisfait la condition de la question 3?

NB: C'est un problème difficile; on ne demande que des idées (informelles) de départ.

Exercice 5.7

Soit $G(X, N, P, \sigma)$ une grammaire en forme normale quadratique de Chomsky. On suppose

^{1.} donné en annexe

que σ n'apparait dans aucun membre droit de règle. Un non-terminal $S \in N$ est dit binaire (resp. unaire) ssi il est membre gauche d'une règle de la forme $S \to TU$ où $T, U \in N$ (resp. $S \to s$ où $s \in X$). On suppose qu'aucun non-terminal n'est à la fois binaire et unaire et que σ est binaire

Ecrire des règles de calcul d'attributs qui permettent de calculer, en chaque noeud, son numero dans l'ordre de parcours en profondeur, de gauche à droite.

Exercice 5.8

Considérons le schéma de traduction suivant pour les If-Then ["Le dragon", page 403].

Règle syntaxique : S -> if(B)S

Règle sémantique :

l'attribut trad de structured_statement est défini comme le code :

```
B.true = newlabelQ
B.false = Si.next = S.next
S.code = B.code || label(B.true) || Si.code
```

- "... We assume that newlabelQ creates a new label each time it is called, ..."
- 1- Ces règles sont-elles conformes a la définition [Knuth 68] d'une grammaire d'attributs?
- 2- Pouvez-vous, en ajoutant un attribut supplémentaire, obtenir une grammaire d'attributs, au sens de [Knuth 68]?

Exercice 5.9

Une instruction

if (A and B) then I else J où A,B sont des expressions et I,J des instructions, est traduite en code à trois adresses par :

où trad(A),trad(B), trad(I),trad(J) sont les traductions de A, B, I, J et resA,resB sont les adresses où sont stockés les résultats des évaluations de A (resp. B).

- 1- Cette traduction est-elle correcte si le langage de départ est IMP, dans lequel on a ajouté un opérateur and qui est interprété comme le produit des entiers?
- 2- Cette traduction est-elle correcte si le langage de départ est Léa?

Bisimulations

Exercice 5.10

Parmi les automates de la Figure 1, lesquels sont bisimilaires?

Figure 1 – exercice 5.10 : trois automates

Exercice 5.11

- 1- Montrer que, si deux états d'un automate sont bisimilaires, alors ils reconnaissent le même langage.
- 2- La réciproque est-elle vraie?
- 3- Soit \mathcal{A} un automate déterministe. Reprendre la question 2 avec cette hypothèse supplémentaire.

Exercice 5.12

- 1- Montrer que tout automate (non-déterministe) a une plus grande bisimulation.
- 2- Proposer, pour les automates finis, non-déterministes, un algorithme de calcul de cette plus grande bisimulation.
- 3- Reprendre la question 1 pour une structure de Kripke.
- 4- Reprendre la question 2 pour une structure de Kripke, finie, non-déterministe.
- 5- Calculer la plus grande bisimulation du premier automate de l'exercice 5.10.

Exercice 5.13

Soit V un ensemble fini. On considère l'ensemble d'actions

$$A := \{c \mid c \text{ programme IMP sur l'ensemble de variables } V\}$$

et la signature propositionnelle \mathcal{P} formée des expressions de IMP n'utilisant que des variables de V. On définit une structures de Kripke \mathcal{K} sur A et \mathcal{P} par :

$$Q := \mathbb{Z}^V, \quad \delta = \{(\rho, c, \rho') \mid \rho, \rho' \in \mathbb{Z}^V, c \in A, \llbracket c \rrbracket \rho = \rho', e^{\mathcal{K}}(\rho) = 0 \Leftrightarrow \llbracket e \rrbracket \rho = 0, e^{\mathcal{K}}(\rho) = 1 \Leftrightarrow \llbracket e \rrbracket \rho \neq 0.$$

On définit une structure de Kripke \mathcal{K}' sur A et \mathcal{P} par : \mathcal{E} est l'ensemble des expressions correctes en IMP (i.e. l'ensemble des mots engendrées par le non-terminal E de la grammaire

de IMP dans lequel les occurrences du symbole I sont remplacées par des suites de 0 et de 1). On note $\mu: \mathbb{N} \to \{0\} \cup \{1, \dots, 9\}\{0, \dots, 9\}^*$ l'écriture d'un nombre entier naturel en base 2. On étend μ à \mathbb{Z} en posant, pour tout $n \in \mathbb{N}: \mu(-n) := 0 - \mu(n)$ (il s'agit de la concatenation du mot de longueur 2, "0-", avec le mot $\mu(n)$).

 $Q' = \mathcal{E}^V$. Les transitions de \mathcal{K}' sont définies par l'ensemble de règles :

Parenthèses Séquence Skip
$$\frac{\rho/c \models \rho'}{\rho/(c) \models \rho'} \frac{\rho/c_1 \models \rho_1, \ \rho_1/c_2 \models \rho_2}{\rho/c_1 \text{ Se } c_2 \models \rho_2} \frac{\rho}{\rho/\text{Sk } \rho}$$
Affectation de valeur Affectation d'expression
$$\frac{\llbracket e \rrbracket \rho = v}{\rho/x \text{ Af } e \models \rho[x \mapsto \mu(v)]} \frac{\rho/x \text{ Af } e \models \rho[x \mapsto e]}{\rho/x \text{ Af } e \models \rho[x \mapsto e]}$$
If true If false
$$\frac{\llbracket e \rrbracket \rho \neq 0, \ \rho/c_1 \models \rho_1}{\rho/\text{If } e \text{ Th } c_1 \text{ El } c_2 \models \rho_2} \frac{\llbracket e \rrbracket \rho = 0, \ \rho/c_2 \models \rho_2}{\rho/\text{If } e \text{ Th } c_1 \text{ El } c_2 \models \rho_2}$$
While true While false
$$\frac{\llbracket e \rrbracket \rho \neq 0, \ \rho/\text{Wh } e \text{ Do } c \models \rho_1}{\rho/\text{Wh } e \text{ Do } c \models \rho_1} \frac{\llbracket e \rrbracket \rho = 0, \ \rho/\text{Wh } e \text{ Do } c \models \rho}{\rho/\text{Wh } e \text{ Do } c \models \rho_1}$$

$$e^{\mathcal{K}}(\rho) = 0 \Leftrightarrow \llbracket e \rrbracket \rho = 0, \ e^{\mathcal{K}}(\rho) = 1 \Leftrightarrow \llbracket e \rrbracket \rho \neq 0.$$

- 1- \mathcal{K}' est-elle déterministe?
- 2- Montrer que, pour tout $\rho \in \mathbb{Z}^V$, il existe une bisimulation R de \mathcal{K} vers \mathcal{K}' telle que $(\rho, \rho \circ \mu) \in \mathbb{R}^2$.
- 3- Soit \mathcal{K}'' obtenue à partir de \mathcal{K}' en faisant un choix déterministe de transition à chaque action d'affectation (selon une stratégie quelconque, que l'on se fixe). Montrer que, pour tout $\rho \in \mathbb{Z}^V$, il existe une bisimulation R de \mathcal{K} vers \mathcal{K}'' telle que $(\rho, \rho) \in R$.
- 4- Que peut-on en conclure sur ce que calculent $\mathcal{K}, \mathcal{K}''$?
- 5- On enrichit le langage IMP d'un opérateur unaire tow dont la sémantique est donnée par :

si
$$n < 0$$
, $[tow](n) = 0$, $[tow](0) := 1$, si $n \ge 0$ $[tow](n+1) = 2^{[tow](n)}$.

Un interpréteur qui simule une structure \mathcal{K}'' peut-il présenter un intérêt ? (du point de vue de la complexité du calcul).

^{2.} où $\forall x \in V, \rho \circ \mu(x) = \mu(\rho(x))$

ANNEXE

Grammaire d'attributs.

Une grammaire d'attributs [Knuth, 68] est un tuple

$$\mathcal{G} := \langle X, N, P, \mathcal{A}, (V_{\alpha})_{\alpha \in \mathcal{A}}, R \rangle$$

οù

- $\langle X, N, P \rangle$ est une grammaire algébrique,
- \mathcal{A} est un ensemble, appelé ensemble des attributs;
- pour chaque $\alpha \in \mathcal{A}$, V_{α} est un ensemble, appelé l'ensemble des valeurs de l'attribut α
- l'ensemble R est constitué des règles sémantiques, décrites ci-dessous.

À chaque non-terminal $S \in N$ sont associés deux ensembles disjoints d'attributs $\mathcal{A}_0(S)$, $\mathcal{A}_1(S) \subseteq \mathcal{A}$; les membres de $\mathcal{A}_0(S)$ (resp. $\mathcal{A}_1(S)$) sont appelés attributs synthétisés (resp. hérités) du non-terminal S.

À chaque règle (syntaxique) $p \in P$

$$S_{p,0} \to S_{p,1} S_{p,2} \dots S_{p,n_p}$$
 (1)

est associé un ensemble de règles (sémantiques) $R_{p,\alpha,i}$, pour $i \in [0, n_p], \alpha \in \mathcal{A}(S_{p,i})$; chacune de ces règles est de la forme

$$(R_{p,\alpha,i}): (\alpha,i) = f_{p,\alpha,i}((\alpha_1,i_1),\dots,(\alpha_t,i_t))$$
(2)

avec $t \in \mathbb{N}, i_j \in [0, n_p], \alpha_j \in \mathcal{A}(S_{p,i_j})$, et d'applications

$$f_{p,\alpha,i}: V_{\alpha_1} \times V_{\alpha_2} \times \ldots \times V_{\alpha_t} \to V_{\alpha}$$
 (3)

Les indices doivent respecter la convention que :

- si i = 0, alors $\alpha \in \mathcal{A}_0(S_{p,0})$ et $\forall j \in [1, t], i_j \in [1, n_p]$
- si $i \in [1, n_p]$, alors $\alpha \in \mathcal{A}_1(S_{p,i})$.

R est l'ensemble de ces règles $(R_{p,\alpha,i})$.

L'idée intuitive est que la valeur de l'attribut α de la variable $S_{p,i}$:

- sur un noeud père de la règle p (i.e. i=0) et si α est synthétisé, est l'image par $f_{p,\alpha,0}$ des attributs de ses fils
- sur un noeud fils de la règle p (i.e. $i \ge 1$), et si α est hérité, est l'image par $f_{p,\alpha,i}$ des attributs de son père, de ses frères et de lui-même.

NB1 : Pour un attribut α , le fait d'être "synthétisé" ou "hérité" dépend du non-terminal $S \in V$ considéré, mais pas de la règle p où apparait S.

NB2 : Il est possible que $\mathcal{A}_0(S_1) \cap \mathcal{A}_1(S_2) \neq \emptyset$ i.e. que α soit synthétisé pour un non-terminal S_1 mais hérité pour un autre non-terminal S_2 ; on peut cependant normaliser l'ensemble des attributs de façon que tout attribut α soit :

- membre d'au moins un ensemble $\mathcal{A}(S)$
- synthétisé (pour tous les non-terminaux S tels que $\alpha \in \mathcal{A}(S)$)
- ou bien hérité (pour tous les non-terminaux S tels que $\alpha \in \mathcal{A}(S)$).

Une décoration d'un arbre de dérivation T par la grammaire \mathcal{G} est une famille de fonctions

$$\hat{\alpha}: \mathrm{Dom}(T) \to V_{\alpha}$$

vérifiant, pour tout noeud $u \in \text{Dom}(T) \subseteq (\mathbb{N} \setminus \{0\})^*$, tel que u possède n_p fils et

$$p = (T(u), T(u1)T(u2) \dots T(un_p))$$

on a

$$\hat{\alpha}(u \odot i) = f_{p,\alpha,i}(\hat{\alpha}_1(u \odot i_1), \dots, \hat{\alpha}_t(u \odot i_t)) \tag{4}$$

où $u \odot 0$ dénote le mot u et $u \odot i$ dénote le mot u suivi de la lettre i (si $i \neq 0$). Structure de Kripke.

Une structure de Kripke, sur l'alphabet d'actions A et la signature propositionnelle \mathcal{P} est un tuple

$$\mathcal{K} := \langle A, Q, \delta, (P^{\mathcal{K}})_{P \in \mathcal{P}} \rangle$$

tel que

- A est un ensemble, l'ensemble des actions
- Q est un ensemble, l'ensemble des états
- $\delta \subset Q \times A \times Q$ est l'ensemble des transitions
- pour tout $P \in \mathcal{P}, \ P^{\mathcal{K}}: Q \to \{0,1\}$ est une application à valeurs booléennes.

Un automate \mathcal{A} sur l'alphabet d'entrée A et l'ensemble d'états Q peut être vu comme une structure de Kripke en choisissant une structure propositionnelle à un seul prédicat F, interprété par

$$F^{\mathcal{A}}(q) := 1 \text{ ssi } q \text{ est final } .$$

Bisimulation.

Soit A un alphabet, \mathcal{P} une signature propositionnelle et, pour chaque $i \in \{0,1\}$, $\mathcal{K}_i := \langle A, Q, \delta, (P)_{P \in \{\mathcal{P}\}}^{\mathcal{K}_i} \rangle$ une structure de Kripke sur A, \mathcal{P} . Une relation binaire $R \subseteq Q_0 \times Q_1$ est une bisimulation de \mathcal{K}_1 vers \mathcal{K}_2 ssi :

$$(B1)\forall (p,q) \in R, \forall P \in \mathcal{P}, P^{\mathcal{K}_0}(p) = P^{\mathcal{K}_1}(q)$$

$$(B2)\forall (p,q) \in R, \forall (p,a,p') \in \delta_0, \exists q' \in Q_1, (q,a,q') \in \delta_1 \text{ et } (q,q') \in R$$

$$(B3) \forall (p,q) \in R, \forall (q, a, q') \in \delta_1, \exists p' \in Q_0, (p, a, p') \in \delta_0 \text{ et } (p, p') \in R$$