Зодача^{ТМ} 10 Эффект Бабочки

Артем Семидетнов, ЛНМО

Полезные факты и определения

Теорема 0.1. Теорема Римана : пусть $\sum_{n=1}^{\infty} a_n$ - условно расходящийся ряд, тогда $\forall \psi \in \mathbb{R}$ существует такая перестановка индексов $n \to \pi(n)$, что ряд будет сходиться к ψ . Доказано в [1]

Определение 0.2. $\alpha \in \mathbb{R}$ определим $\mathcal{O}_{\varepsilon}(\alpha) = (\alpha - \varepsilon, \alpha + \varepsilon), \quad \varepsilon > 0$

Замечание 0.3. Из теоремы Римана следует Пункт 1: ряд $a_n = \frac{(-1)^{n+1}}{n}$ сходится к нулю, в то время, как ряд его абсолютных значений - канонический, расходится, что значит, ряд $\sum a_n$ условно сходится. В доказательстве теоремы представлен алгоритм нахождения перестановки для любого вещественного числа, в том числе $\ln(p/q)$

Теорема 0.4. Для последовательности (a_n)

$$\forall L \in \mathbb{R} \quad \exists (\lambda_n) \ , \forall n \quad \lambda_n \in \{1, -1\} \quad L = \sum_{n=1}^{\infty} \lambda_n \cdot a_n$$

$$\iff \sum_{n=1}^{\infty} a_n$$
 не сходится абсолютно & $a_n \xrightarrow[n \to \infty]{} 0$

Доказательство.

Достаточность (\Rightarrow) очевидна, докажем необходимость.

←:

Зафиксируем $L \in \mathbb{R}$, возьмем $\lambda_n = \mathrm{sign}(L - S_{n-1}^{\lambda}) \cdot \mathrm{sign}(a_n)$, где $S_{n-1}^{\lambda} = \sum_{k=1}^{n-1} \lambda_k \cdot a_k$. Считаем, что $S_0^{\lambda} = 0$. Докажем, что тогда

$$b_i = L - S_i^{\lambda} \longrightarrow 0 \iff S_i^{\lambda} \longrightarrow L$$

Зафиксируем $\varepsilon > 0$

$$a_i \longrightarrow 0 \implies \exists N \ \forall n \geqslant N \ |a_n| < \varepsilon \implies \forall n \geqslant N \ |\lambda_n \cdot a_n| < \varepsilon$$

Замечание 0.5. $\exists M \geqslant N \ sign(b_M) \neq sign(b_N)$

Доказательство.

Пусть это не так. Не умаляя общности, пусть $b_N > 0$ (второй случай докажется аналогично) Тогда

$$\forall n \geqslant N \ b_{n+1} = b_n - \operatorname{sign}(L - S_n^{\lambda}) \cdot \operatorname{sign}(a_n) \cdot a_n = b_n - \operatorname{sign}(b_n) \cdot |a_n| = b_n - |a_n|$$

То есть,

$$b_k = b_N - \sum_{i=1}^{k-1} |a_i|$$

,при этом $b_k > 0$ (т.к мы предпологаем, что знак не изменится) Заметим, что

$$\lim_{k \to \infty} \sum_{i=N}^{k-1} |a_i| = +\infty$$
, т.к $\sum |a_i|$ расходится

То есть

$$\exists M \geqslant N \quad \sum_{i=N}^{M} |a_i| > 2 \cdot b_N$$

И тогда $b_k \leqslant b_N - 2b_N = -b_N < 0$ - Противоречие.

Таким образом $\exists M \quad \mathrm{sign}(b_M) \neq \mathrm{sign}(b_{M+1}) \quad$ и $\forall n \geqslant M \quad |b_{n+1} - b_n| = |a_{n+1}| < \varepsilon$.

Предложение 0.6. Докажем, что $\forall n \geqslant M \quad |b_n| < \varepsilon$

Доказательство.

По индукции:

- 1) $|b_M| < \varepsilon \& |b_{M+1}| < \varepsilon$
- 2)Зафиксируем $n\geqslant M$, считаем, что $|b_n|<\varepsilon$. Заметим, что $\forall n\geqslant M$ справедливо либо $\mathrm{sign}(b_n)=\mathrm{sign}(b_{n+1})$ и тогда $|b_{n+1}|=|b_n|-|a_{n+1}|<|b_n|<\varepsilon$, либо $\mathrm{sign}(b_n)\neq\mathrm{sign}(b_{n+1})$ и тогда $|b_n|,\,|b_{n+1}|<\varepsilon$

То есть $\forall n \geqslant M \quad |b_n| < \varepsilon \Rightarrow b_n \longrightarrow 0$

Следствие 0.7. Решен Пункт 3 - приведены необходимые и достаточные условия.

Следствие 0.8. Поскольу Пункт 3 является обобщением Пункта 2 - он тоже решен. Ответ - ∂a , так как последовательность $(a_n) = 1 \setminus n$ удовлетворяет условиям **Теоремы 0.3**

Список литературы

[1] Riemann's Rearrangement Theorem. — Stewart Galanor, 134 West Ninety-third Street, New York, NY 10025