Formelsammlung

Grundlagen der Elektrotechnik Peter Lindmoser

Quelle: https://xkcd.com/730/

0.1 Einheiten in der Physik

SI-Basisgröße		SI-Basiseinheit	
Name	Formelzeichen	Name	Einheitenzeichen
Länge	1	Meter	m
Masse	m	Kilogramm	kg
Zeit	t	Sekunde	s
Stromstärke	I	Ampere	A
Temperatur	Т	Kelvin	K
Stoffmenge	n	Mol	mol
Lichtstärke	I	Candela	cd

0.2 SI-Vorsilben

Vorsatz	Vorsatzzeichen	Faktor
Exa	E	10^{18}
Peta	Р	10^{15}
Tera	T	10^{12}
Giga	G	10^{9}
Mega	M	10^{6}
Kilo	k	10^{3}
Hekto	h	10^{2}
Deka	da	10^{1}
Dezi	d	10^{-1}
Zenti	c	10^{-2}
Milli	m	10^{-3}
Mikro	μ	10^{-6}
Nano	n	10^{-9}
Piko	р	10^{-12}
Femto	f	10^{-15}

0.3 Das griechische Alphabet

Symbol	Name	Symbol	Name
Γ	Gamma	α	alpha
Δ	Delta	β	beta
Θ	Theta	γ	gamma
Λ	Lambda	δ	delta
Σ	Sigma	ϵ	epsilon
Φ	Phi	η	eta
Ψ	Psi	ϑ	theta
Ω	Omega	κ	kappa
		λ	lambda
		μ	mü
		ν	nü
		ξ	xi
		π	pi
		ρ	rho
		σ	sigma
		au	tau
		φ	phi
		ψ	psi

0.4 Elektrische Ladung Q und Stromstärke I

im Allgemeinen gilt::

$$\mathbf{Q} = \mathbf{n} \cdot \mathbf{q}$$

q... Elementar
ladung $q=1.602\cdot 10^{-19} As$

n... Anzahl der Elementarladungen, dimensionslos

für I = konstant gilt:

$$\mathbf{Q} = \mathbf{I} \cdot \mathbf{t} \longrightarrow \mathbf{I} = \frac{\mathbf{Q}}{\mathbf{t}}$$

I... Strom in A (Ampere)

Q... Ladungsmenge in As (Amperesekunden)

t... Zeitspanne in s (Sekunden)

für i=f(t) gilt:

$$\mathbf{Q_{12}} = \int_{\mathbf{t_1}}^{\mathbf{t_2}} \mathbf{i} \cdot \mathbf{dt} \longrightarrow \mathbf{i} = \frac{\mathbf{dq}}{\mathbf{dt}}$$

0.5 Stromdichte J

$$\mathbf{J}=rac{\mathbf{I}}{\mathbf{A}}$$

J... Stromdichte in A/mm^2

I... Stromstärke in A

A... Querschnittsfläche des Leiters in mm^2

0.6 Elektrisches Potential φ und Spannung U

$$\mathbf{U_{12}} = \varphi_1 - \varphi_2$$

Die el. Spannung lässt sich immer als Potentialdifferenz angeben. Wobei Potentiale Spannungen gegen einen Bezugspunkt darstellen. Das Bezugspotential beträgt typischerweise 0 Volt und nennt sich Erdpotential, Ground oder Masse.

 $\mathbf{0.7}$ Widerstand R und Leitwert G

$$\mathbf{R} = rac{\mathbf{1}}{\mathbf{G}} \longrightarrow \mathbf{G} = rac{\mathbf{1}}{\mathbf{R}}$$

R ... elektrischer Widerstand in Ω (Ohm)

 $G \dots$ elektrischer Leitwert in S (Siemens)

0.8 Ohmsches Gesetz

$$\mathbf{U} = \mathbf{R} \cdot \mathbf{I} \longrightarrow \mathbf{I} = \frac{\mathbf{U}}{\mathbf{R}} \longrightarrow \mathbf{R} = \frac{\mathbf{U}}{\mathbf{I}}$$

U ... elektrische Spannung inn V (Volt)

 $I \dots$ Stromstärke in A (Ampere)

R ... elektrischer Widerstand in Ω (Ohm)

0.9 Widerstandsberechnung

$$\mathbf{R} = \frac{\varrho \cdot \mathbf{l}}{\mathbf{A}}$$

 ϱ ... spezifischer Widerstand in $\frac{\Omega \cdot mm^2}{m}$

l ... Länge des Leiters in m (Meter)

A ... Leiter-Querschnittsfläche im mm^2

$$\mathbf{R} = \frac{1}{\gamma \cdot \mathbf{A}}$$

 γ ... spezifischer Leitwert in $\frac{S \cdot m}{mm^2}$

l ... Länge des Leiters in m (Meter)

A ... Leiter-Querschnittsfläche im mm^2

Wird der spezifische Widerstand ρ in der Einheit $\Omega \cdot m$, beziehungsweise der spezifische Leitwert in $\frac{S}{m}$ angegeben, so muss die Querschnittsfläche im m^2 (Quadratmetern) eingesetzt werden.

$$\varrho = \frac{1}{\gamma} \longrightarrow \gamma = \frac{1}{\varrho}$$

$$\varrho$$
 ... spezifischer Widerstand in $\frac{\Omega\cdot mm^2}{m}$ γ ... spezifischer Leitwert in $\frac{S\cdot m}{mm^2}$

0.10 Widerstand und Temperatur

Im Temperaturbereich von $-40...+1000^{\circ}C$ gilt näherungsweise eine lineare Beziehung zwischen ohmschen Widerstand und der Temperatur.

$$\mathbf{R}_{\vartheta} = \mathbf{R_{20}} + \mathbf{\Delta}\mathbf{R}$$

 $R_{\vartheta}...$ Wert des Widerstandes bei der Temperatur ϑ $R_{20}...$ Widerstand bei $20^{\circ}C$ in Ω

$$\mathbf{R}_{\vartheta} = \mathbf{R_{20}} \cdot [\mathbf{1} + \alpha_{\mathbf{20}} \cdot (\vartheta - \mathbf{20}^{\circ} \mathbf{C})]$$

 $\alpha_{20}...$ Temperaturkoeffizient in K^{-1} bei 20°C ϑ ... Temperatur des Widerstandes in °C

Beträgt die Ausgangstemperatur nicht $20^{\circ}C$, so ist folgende Formel zu verwenden.

$$\frac{\mathbf{R}_{\mathbf{W}}}{\mathbf{R}_{\mathbf{K}}} = \frac{\tau + \vartheta_{\mathbf{W}}}{\tau + \vartheta_{\mathbf{K}}}$$

 R_W ... Warmwiderstand in Ω R_K ... Kaltwiderstand in Ω ϑ_W ... Warmtemperatur in ${}^{\circ}C$

 ϑ_K ... Kalttemperatur in °C

wobei

$$\tau = \frac{1}{\alpha_{20}} - 20^{\circ} C$$

 $\tau...$ Temperaturbeiwert in °C $\alpha_{20}...$ Temperaturkoeffizient in K^{-1} bei 20°C

0.11 Reihenschaltung von n Widerständen

Alle in Reihe geschaltenen Widerstände werden von demselben Strom I durchflossen. Dies ist die gemeinsame Größe aller seriellen Widerstände.

$$R_{\mathbf{ges}} = R_1 + R_2 + R_3 + ... + R_n \label{eq:Rges}$$

 $R_{ges}...$ Gesamt- oder Ersatzwiderstand der Reihenschaltung

$$R_{\mathbf{ges}} = \sum_{i=1}^n R_i$$

n...höchster Index (letzter Widerstand der Reihenschaltung)

0.12 Parallelschaltung von n Widerständen

Alle parallel geschaltenen Widerstände mit derselben Spannung U versorgt. Dies ist die gemeinsame Größe aller parallelen Widerstände.

$$\mathbf{G_{ges}} = \mathbf{G_1} + \mathbf{G_2} + \mathbf{G_3} + ... + \mathbf{G_n}$$

 $G_{ges}...$ Gesamt- oder Ersatzleitwert der Parallelschaltung in S (Siemens)

n... höchster Index (letzter Leitwert der Parallelschaltung)

$$\frac{1}{R_{ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + ... + \frac{1}{R_n}$$

R_{ges}... Gesamt- oder Ersatzwiderstand der Parallelschaltung

n... höchster Index (letzter Widerstand der Parallelschaltung)

Für zwei parallele Widerstände gilt:

$$R_{ges} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

0.13 Spannungsteilerregel

In **reinen Reihenschaltungen** gilt die Spannungsteilerregel. Diese besagt, dass die Spannungsabfälle an den Widerständen direkt proportional zu den Widerstandswerten, an denen sie abfallen, sind. Dass heißt:

$$\mathbf{U_1}: \mathbf{U_2}: \mathbf{U_3}: \mathbf{U_{ges}} = \mathbf{R_1}: \mathbf{R_2}: \mathbf{R_3}: \mathbf{R_{ges}}$$

z.B.:

$$\frac{U_1}{U_{ges}} = \frac{R_1}{R_{ges}}$$

0.14 Stromteilerregel

In **reinen Parallelschaltungen** gilt die Stromteilerregel. Diese besagt, dass die Ströme in den Widerständen indirekt proportional zu den Widerstandswerten, welche sie durchströmen, sind. Dass heißt:

$$I_1:I_2:I_3:I_{ges} = \frac{1}{R_1}:\frac{1}{R_2}:\frac{1}{R_3}:\frac{1}{R_{ges}}$$

z.B.:

$$rac{
m I_1}{
m I_{
m ges}} = rac{
m R_{
m ges}}{
m R_1}$$

0.15 Kirchhoffsche Gesetze

Knotenregel:

$$\sum I_{\mathbf{z}\mathbf{u}} = \sum I_{\mathbf{a}\mathbf{b}}$$

Maschenregel:

$$\sum \mathbf{U} = \mathbf{0}$$

Die Summe der zufließenden Ströme zu einem Knoten muss der Summe der abfließenden Ströme dieses Knoten sein.

Die Summe aller Quellspannungen und Spannungsabfälle in einem beliebigen geschlossenen Umlauf (=Masche) muss Null sein.

Elektrische Leistung P 0.16

Die elektrische Leistung P ist wie folgt definiert:

$$\mathbf{P} = \mathbf{U} \cdot \mathbf{I} = \frac{\mathbf{U^2}}{\mathbf{R}} = \mathbf{I^2} \cdot \mathbf{R}$$

 $P \dots Power = Leistung$ in der Einheit W (Watt)

0.17Elektrische Arbeit W

Bei konstanter Leistung gilt:

$$\mathbf{W} = \mathbf{P} \cdot \mathbf{t}$$

 $W \dots Work = Arbeit$ in der Einheit Ws = J (Joule)

Bei veränderbarer Leistung p(t) gilt:

$$\mathbf{W} = \int \mathbf{p}(\mathbf{t}) \cdot \mathbf{dt}$$

0.18 Wirkungsgrad η

Bei konstanter Leistung gilt:

$$\eta = \frac{\mathbf{P_{ab}}}{\mathbf{P_{zu}}} = \frac{\mathbf{W_{ab}}}{\mathbf{W_{zu}}}$$

 P_{ab} ... abgegebene Leistung (=Nutzleistung) in W

 P_{zu} ... zugeführte Leistung in W

 W_{ab} ... abgegebene Arbeit (=Nutzarbeit in Ws

 W_{zu} ... zugeführte Arbeit in Ws

wobei

$$P_{zu} = P_{ab} + P_{v}$$

 P_{zu} ... zugeführte Leistung in W

 P_{ab} ... abgegebene Leistung (=Nutzleistung) in W

 P_v ... Verlustleistung in W

0.19 Grundgrößen des elektrischen Feldes

Elektrische Feldstärke E

Für das homogene Feld gilt:

$$\mathbf{E} = \frac{\mathbf{U}}{\mathbf{d}}$$

E...el. Feldstärke in $\frac{V}{m}$ U...el. Spannung in V

d ... Länge der Feldlinie (=Abstand der Platten) in m

Für den Zylinderkondensator gilt:

$$E = \frac{U}{r \ln \frac{r_a}{r_i}}$$

E...el. Feldstärke in $\frac{V}{m}$ U...el. Spannung in V

r ... Abstand des Feldpunktes vom Mittelpunkt in m

 r_a ... Radius des Außenleiters in m

 r_i ... Radius des Innenleiters in m

Für die Umgebung einer geladenen Kugel gilt:

$$\mathbf{E} = rac{\mathbf{U} \cdot \mathbf{r_0}}{\mathbf{r^2}}$$

E ...el. Feldstärke in $\frac{V}{m}$ U ...el. Spannung in V

r ... Abstand des Feldpunktes vom Mittelpunkt in m

 r_0 ... Radius der Kugel in m

Elektrische Flussdichte D

$$\mathbf{D} = \epsilon_{\mathbf{0}} \cdot \epsilon_{\mathbf{r}} \cdot \mathbf{E}$$

D ... el. Flussdichte in $\frac{As}{m^2},\,\frac{C}{m^2}$ ϵ_0 ... el. Feldkonstante, $\epsilon_0=8.854\cdot 10^{-12}\frac{As}{Vm}$, oder $\frac{F}{m}$

 ϵ_r ... relative Permittivität, dimensionslos

E ...el. Feldstärke in $\frac{V}{m}$

Verschobene Ladungsmenge Q

$$\mathbf{Q} = \mathbf{D} \cdot \mathbf{A}$$

Q ... verschobene Ladungsmenge in As oder C

D ... el. Flussdichte in $\frac{As}{m^2}$, $\frac{C}{m^2}$ A ... Plattenfläche in m^2

Elektrische Kapazität C

$$\mathbf{Q} = \mathbf{C} \cdot \mathbf{U} \longrightarrow \mathbf{C} = \frac{\mathbf{Q}}{\mathbf{U}}$$

Q ... verschobene Ladungsmenge in AS oder C

C ... el. Kapazität in $\frac{As}{V}$, F (Farad)

U ... el. Spannung in V

Für einen Zweiplattenkondensator gilt:

$$\mathbf{C} = \frac{\epsilon_{\mathbf{0}} \cdot \epsilon_{\mathbf{r}} \cdot \mathbf{A}}{\mathbf{d}}$$

C ... el. Kapazität in $\frac{As}{V}$, F (Farad)

 ϵ_0 ... el. Feldkonstante, $\epsilon_0 = 8.854 \cdot 10^{-12} \frac{As}{Vm}$, oder $\frac{F}{m}$

 ϵ_r ... relative Permittivität, dimensionslos

 $A \dots$ Plattenfläche in m^2

d ... Dicke des Dielektrikums in m

Reihenschaltung von n Kondensatoren

Alle in Reihe geschaltenen Kondensatoren werden von demselben Strom geladen, dass heißt Ladungen werden verschoben. Die Ladungsmenge Q ist die gemeinsame Größe aller seriellen Kondensatoren.

$$\frac{1}{C_{ges}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + ... + \frac{1}{C_n}$$

 C_{ges} ... Gesamt- oder Ersatzkapazität der Reihenschaltung

n... höchster Index (letzter Kondensator der Reihenschaltung)

Für zwei in Reihe geschaltene Kondensatoren gilt:

$$\mathbf{C_{ges}} = \frac{\mathbf{C_1} \cdot \mathbf{C_2}}{\mathbf{C_1} + \mathbf{C_2}}$$

Parallelschaltung von n Kondensatoren

Alle parallel geschaltenen Kondensatoren liegen an derselben Sapnnung U. Dies ist die gemeinsame Größe aller parallelen Kondensatoren.

$$\mathbf{C_{ges}} = \mathbf{C_1} + \mathbf{C_2} + \mathbf{C_3} + ... + \mathbf{C_n}$$

 C_{qes} ... Gesamt- oder Ersatzkapazität der Parallelschaltung n... höchster Index (letzter Kondensator der Parallelschaltung)

$$\mathbf{C_{ges}} = \sum_{i=1}^{n} \mathbf{C_i}$$

Kräfte im elektrischen Feld

Kraft zwischen zwei Punktladungen

$$F = \frac{\mathbf{Q_1Q_2}}{4\pi\epsilon_0 \mathbf{r^2}}$$

 $F \dots \text{Kraft in } N \text{ (Newton)}$

 Q_1,Q_2 ... Ladungsmengen in Asoder Ce $_0$... el. Feldkonstante, $\epsilon_0=8.854\cdot 10^{-12}\frac{As}{Vm}$, oder $\frac{F}{m}$

r ... Punktabstand in m

Kraft zwischen zwei geladenen Platten

$$\mathbf{F} = \frac{\epsilon_0 \epsilon_r \mathbf{U^2 A}}{2\mathbf{d^2}}$$

 $F \dots \text{Kraft in } N \text{ (Newton)}$

 ϵ_0 ... el. Feldkonstante, $\epsilon_0^{'}=8.854\cdot 10^{-12}\frac{As}{Vm}$, oder $\frac{F}{m}$ ϵ_r ... relative Permittivität, dimensionslos

A ... Plattenfläche in m^2

Kraft auf eine Punktladung im homogenen Feld

$$\mathbf{F} = \mathbf{Q} \cdot \mathbf{E}$$

 $F \dots \text{Kraft in } N \text{ (Newton)}$

Q ... Ladungsmenge in As oder C

E ... elektrische Feldstärke in $\frac{V}{m}$

Energie im elektrischen Feld

Kraft zwischen zwei Punktladungen

$$\mathbf{W} = \frac{\mathbf{C} \cdot \mathbf{U^2}}{\mathbf{2}}$$

 $W \dots \text{Arbeit in } Ws \text{ oder } J(\text{Joule})$

C ... Kapazität in F (Farad)

U ... el. Spannung in V

Ein- und Ausschaltvorgänge an Kondensatoren

Einschaltvorgang

$$\mathbf{i} = \frac{\mathbf{U}}{\mathbf{R}} \cdot \mathbf{e}^{-\frac{\mathbf{t}}{\tau}}$$

i ... Stromstärke i(t) in A

U ... Gleichspannung in V

 $R\ldots$ ohmscher Widerstand der Spule in

t ... Zeitpunkt in s

wobei

$$\tau = \mathbf{R} \cdot \mathbf{C}$$

 τ ... Zeitkonstante in s

 ${\cal C}$... Kapazität des Kondensators in ${\cal F}$

R... ohmscher Widerstand der Spule in Ω

$$\mathbf{u_c} = \mathbf{U} \cdot (\mathbf{1} - \mathbf{e}^{-rac{\mathbf{t}}{ au}})$$

 u_c ... Spannung am Kondensator in V

Ausschaltvorgang

$$\mathbf{i} = -\frac{\mathbf{U}}{\mathbf{R}} \cdot \mathbf{e}^{-\frac{\mathbf{t}}{\tau}}$$

$$\mathbf{u_c} = \mathbf{U} \cdot \mathbf{e}^{-\frac{\mathbf{t}}{\tau}}$$

Grundgrößen des magnetischen Feldes 0.20

Durchflutung Θ (Theta)

$$\Theta = \mathbf{I} \cdot \mathbf{N}$$

 Θ ...Durchflutung in A

I ...Stromstärke in A

 $N \dots$ Windungszahl, dimensionslos

Magnetische Feldstärke H

$$\mathbf{H} = \frac{\mathbf{\Theta}}{\mathbf{l_m}}$$

H ... magn. Feldstärke in $\frac{A}{m}$

 Θ ...Durchflutung in A

 l_m ... mittlere Länge der Feldlinie in m

Magnetische Flussdichte ${\cal B}$

$$\mathbf{B} = \mu_{\mathbf{0}} \cdot \mu_{\mathbf{r}} \cdot \mathbf{H}$$

B... magn. Flussdichte in $T(\text{Tesla}),~\frac{Vs}{m^2}$ μ_0 ... magn. Feldkonstante $\mu_0=4\pi 10^{-7}$ in $\frac{Vs}{Am}$ μ_r ... relative Permeabilität, reine Zahl, dimensionslos

Für unmagnetisches Material gilt: $\mu_r = 1$, $\mu_0 = 4\pi 10^{-7}$

Für ferromagnetische Materialien wird typischerweise eine Magentsierungskennlinie angegeben, aus welcher der Zusammenhang B = f(H) zwischen den Größen B und H ersichtlich wird.

Magnetischer Fluss Φ

$$\mathbf{\Phi} = \mathbf{B} \cdot \mathbf{A}$$

 Φ ... magn. Fluss in Wb (Weber), VsB ... magn. Flussdichte in T(Tesla), $\frac{Vs}{m^2}$ A ... Querschnittsfläche des magn. Kreises in m^2

Magnetischer Widerstand R_m

$$\mathbf{R_m} = \frac{\mathbf{\Theta}}{\mathbf{\Phi}} = \frac{\mathbf{l_m}}{\mu_0 \mu_r \mathbf{A}}$$

 R_m ... magn. Widerstand in $\frac{A}{Vs}$, $\frac{1}{H}$ H...Henry

Magnetischer Leitwert Λ

$$\boldsymbol{\Lambda} = \frac{1}{\mathbf{R_m}} = \frac{\mu_0 \mu_r \mathbf{A}}{\mathbf{l_m}}$$

 Λ ... magn. Leitwert in $\frac{Vs}{A}$, H (Henry)

Induktivität L

$$\mathbf{L} = \frac{\mu_0 \mu_r \mathbf{N^2 A}}{l_m} = \Lambda \mathbf{N^2}$$

 $\Psi = \mathbf{N} \cdot \mathbf{\Phi} = \mathbf{L} \cdot \mathbf{I}$

L ... Induktitvität in H(Henry)

 μ_0 ... magn. Feldkonstante $\mu_0 = 4\pi 10^{-7}$ in $\frac{Vs}{Am}$

 μ_r ... relative Permeabilität, reine Zahl, dimensionslos

 $N \dots$ Windungszahl, dimensionslos

 l_m ... mittlere Feldlinienlänge in m

Spulenfluss Ψ Psi

$$\Psi$$
 ... Spulenfluss in Wb (Weber), Vs

 $N \dots$ Windungszahl, dimensionslos

 Φ ... magn. Fluss in Wb (Weber), Vs

L ... Induktitvität in H(Henry)

I ...Stromstärke in A

Induktionsvorgänge

Ruheinduktion

Eine ruhende Spule wird von einem zeitlich veränderlichen magnetischen Fluss durchsetzt

$$\mathbf{u_q} = -\mathbf{N} \cdot \frac{\mathbf{d}\Phi}{\mathbf{d}t}$$

 $\mathbf{u_q} = \mathbf{B} \cdot \mathbf{l} \cdot \mathbf{v}$

 u_q ...induzierte Spannung in V $\frac{d\Phi}{dt}$... Änderungsgeschwindigkeit des magn. Flusses N... Windungszahl der Spule, dimensionslos

Bewegungsinduktion

Leiterstäbe einer rotierenden Spule schneiden ein statisches Magnetfeld ($v \perp B$)

 u_q ...induzierte Spannung in V

 \vec{B} ... magn. Flussdichte in $T(\text{Tesla}), \frac{Vs}{m^2}$

l ... Länge des Leiters im Magnetfeld in m

v ... Geschwindigkeit des Leiters in $\frac{m}{s}$

Kraftwirkung des magnetischen Feldes

Kraftwirkung auf einen stromdurchflossenen Leiter in einem Magnetfeld

$$\mathbf{F} = \mathbf{B} \cdot \mathbf{I} \cdot \mathbf{l}$$

 ${\cal F}$... Kraft auf den Leiter in ${\cal N}$ Newton $B \dots$ magn. Flussdichte in $T(\text{Tesla}), \frac{Vs}{m^2}$

 $I \dots$ Stromstärke in A

 $l\,\dots$ Länge des Leiters im Magnetfeld in m

Kraftwirkung zwischen zwei parallelen Stromleitern

$$\mathbf{F} = \frac{\mu_{\mathbf{0}}\mathbf{I_{1}I_{2}l}}{\mathbf{2}\pi\mathbf{a}}$$

F ...Kraft auf den Leiter in N Newton μ_0 ... magn. Feldkonstante $\mu_0 = 4\pi 10^{-7}$ in $\frac{V_s}{Am}$ I_1, I_2 ... Leiterströme in A

 $l\,\dots$ Länge des Leiters im Magnetfeld in ma ... Abstand der Leiter von einander in m

Zugkraft von Magneten

$$\mathbf{F} = \frac{\mathbf{B^2 A}}{\mathbf{2}\mu_\mathbf{0}} = \frac{\mathbf{\Phi^2}}{\mathbf{2}\mu_\mathbf{0}\mathbf{A}}$$

F ...Zugkraft in N Newton

 μ_0 ... magn. Feldkonstante $\mu_0 = 4\pi 10^{-7}$ in $\frac{V_s}{Am}$

B... magn. Flussdichte in $T(\text{Tesla}), \frac{Vs}{m^2}$ Φ ... magn. Fluss in Wb (Weber), Vs

A ... Polfläche in m^2

Energie des magnetischen Feldes

Die im Magnetischen Feld gespeicherte Energie beträgt:

$$\mathbf{W} = \mathbf{L}\frac{\mathbf{I^2}}{\mathbf{2}}$$

 $W \dots$ Arbeit in Ws

L ...Induktivität der Spule in H Henry

 $I \dots$ Stromstärke in A

Ein- und Ausschaltvorgänge an Spulen

Einschaltvorgang

$$\mathbf{i} = \frac{U}{R}(1-e^{-\frac{\mathbf{t}}{\tau}})$$

i ... Stromstärke i(t) in A

U ... Gleichspannung in V

R ... ohmscher Widerstand der Spule in

 $t \dots$ Zeitpunkt in s

wobei

$$au = rac{\mathbf{L}}{\mathbf{R}}$$

 τ ... Zeitkonstante in s

L... Induktivität der Spule in ${\cal H}$

R ... ohmscher Widerstand der Spule in Ω

Ausschaltvorgang

$$\mathbf{i} = \frac{\mathbf{U}}{\mathbf{R}}(\mathbf{e}^{-\frac{\mathbf{t}}{\tau}})$$

i ... Stromstärke i(t) in A

U ... Gleichspannung in V

R ... ohmscher Widerstand der Spule in

 $t\,\dots$ Zeitpunkt in s