## 4. Linear Regression

Dongwoo Kim

dongwookim.ac.kr

CSED515 - 2023 Spring

### Regression

Regression aims at modeling the dependence f of output y on input x, e.g., given height and weight (x), how long is s/he going to live (y)?:

$$y=f(x)+\varepsilon ,$$

where we also use:

- x: input, independent variable, predictor, regressor, covariate
- y: output, dependent variable, response
- ε: noise or some unobserved factors

The dependence of output on input is captured via a conditional distribution  $p(y \mid x)$ .

### Regression Function: Conditional Mean

Consider the minimization of mean squared error (MSE):

$$\mathcal{E}(f) = \mathbb{E}[\|y - f(x)\|^2]$$

$$= \int \int \|y - f(x)\|^2 p(x, y) dx dy$$

$$= \int \int \|y - f(x)\|^2 p(x) p(y \mid x) dx dy$$

$$= \int p(x) \underbrace{\int \|y - f(x)\|^2 p(y \mid x) dy}_{\text{to be minimized}} dx .$$

Then, by taking derivative w.r.t. f(x) and setting that to 0, i.e.,  $\frac{\partial}{\partial f(x)} \left( \int \|y - f(x)\|^2 p(y \mid x) dy \right) = 0$ , the minimum MSE (MMSE) estimate is

$$f(x) = \int yp(y \mid x)dy = \mathbb{E}[y \mid x].$$

## Function Approximation and Curve Fitting

Regression can be seen as function approximation or curve fitting of  $\mathbb{E}[y \mid x]$  using a class of functions f with few parameters:

- Linear function:  $y = \mathbf{w}^{\top} \mathbf{x}$
- Neural networks:  $f(x) = G_w(x)$ , e.g., a fully connected linear network of L layers has  $G_w(x) = w_L w_{L-1} \dots w_1 x$  where  $w_\ell$  is a  $d_\ell \times d_{\ell-1}$  matrix.

#### Table of Contents

- 1 Linear regression and least square (LS) methods
- 2 Interpretation of LS method: maximum likelihood estimate (MLE)
- 3 Overfitting issue and regularization (ridge regression)
- 4 Interpretation of ridge regression: maximum a posteriori (MAP)
- 5 Lasso regression
- 6 Non-linear regression and gradient method

#### Linear Models

Linear models tackle the regression problem with the following assumption: there exists a linear relation between input  $\mathbf{x} \in \mathbb{R}^d$  and output  $\mathbf{y} \in R$ 

$$y = \mathbf{w}^{\top} \mathbf{x} = \mathbf{x}^{\top} \mathbf{w}$$

▶ Given a collection of  $\{(x_1, y_1), ..., (x_N, y_N)\}$ , the relation can be

$$y = Xw$$

where  $\mathbf{y} \in \mathbb{R}^N$ ,  $\mathbf{X} \in \mathbb{R}^{N \times d}$ .

Are linear model too simple to capture complex relations?

## Basis (Feature) Functions

- **B**asis function  $\phi$  extracts useful information from observation  $\boldsymbol{x}$ .
- ▶ It needs to be manually crafted according to domain.
- ▶ For example, given basis function  $\phi$  with input  $x \in \mathbb{R}$ :

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix} ,$$

basis function replaces the input in linear model as

$$\mathbf{w}^{\top}\phi(x) = w_1 + w_2 x + w_3 x^2 + w_4 x^3$$

Therefore, with basis function, linear model can models non-linear relation between inputs and outputs.

### Linear Regression

Let  $\mathbf{x} \in \mathbb{R}^D$ . Linear regression refers to a model of which f is a linear combination of basis functions  $\{\phi_\ell : \mathbb{R}^D \to \mathbb{R}\}_{\ell \in [L]}$ :

$$f(\mathbf{x}) = \sum_{\ell=1}^{L} w_{\ell} \phi_{\ell}(\mathbf{x}) = \mathbf{w}^{\top} \phi(\mathbf{x}) ,$$

where

$$m{w} = egin{bmatrix} w_1 \ w_2 \ dots \ w_L \end{bmatrix} \;, \quad ext{and} \quad m{\phi}(m{x}) = egin{bmatrix} \phi_1(m{x}) \ \phi_2(m{x}) \ dots \ \phi_L(m{x}) \end{bmatrix} \;.$$

Note that using nonlinear basis functions, we allow the function f(x) to be nonlinear w.r.t. x, while f(x) is linear w.r.t. w.

## Polynomial Regression



#### **Basis Functions**

- Polynomial basis:  $\phi_{\ell}(x) = x^{\ell-1}$
- Gaussian basis:  $\phi_\ell(x) = \exp\left(-\frac{\|x-\mu_\ell\|^2}{2\sigma^2}\right)$
- Spline basis: Piecewise polynomials, i.e., we divide the input space into several regions and fit a different polynomial in each region



 Fourier basis, hyperbolic tangent basis, sigmoidal basis, wavelet basis, ..., etc.

## Least Square Method

Given a set of training data  $\{\mathbf{x}_n \in \mathbb{R}^D, y_n \in \mathbb{R}\}_{n \in [N]}$ , we determine the weight vector  $\mathbf{w} = [w_1, \dots, w_L]^\top$  to minimize

$$\mathcal{E}_{LS}(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} (y_n - \boldsymbol{w}^{\top} \phi(\boldsymbol{x}_n))^2 = \frac{1}{2} \|\boldsymbol{y} - \Phi \boldsymbol{w}\|^2$$

where  $\mathbf{y} = [y_1, ..., y_N]^{\top}$  and design matrix  $\Phi$ 

$$\Phi = \begin{bmatrix} \phi_1(\mathbf{x}_1) & \phi_2(\mathbf{x}_1) & \dots & \phi_L(\mathbf{x}_1) \\ \phi_1(\mathbf{x}_2) & \phi_2(\mathbf{x}_2) & \dots & \phi_L(\mathbf{x}_1) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\mathbf{x}_N) & \phi_2(\mathbf{x}_N) & \dots & \phi_L(\mathbf{x}_N) \end{bmatrix} \in \mathbb{R}^{N \times L}$$

## Least Square Error

Assuming model  $y = w_1x + w_2$ . Least square method minimizes

$$\arg\min_{w_1,w_2} \frac{1}{2} \sum_{n=1}^{N} (y_n - (w_1 x_n + w_2))^2.$$



### Least Square Estimate

The stability condition  $\frac{\partial}{\partial \mathbf{w}} \mathcal{E}_{LS}(\mathbf{w}) = \frac{\partial}{\partial \mathbf{w}} \frac{1}{2} \|\mathbf{y} - \Phi \mathbf{w}\|^2 = 0$  gives:  $\Phi^\top \Phi \mathbf{w} = \Phi^\top \mathbf{y} \ .$ 

Hence, the least square (LS) estimate  $\mathbf{w}_{LS}$  is given by

$$\mathbf{w}_{\mathsf{LS}} = \left(\Phi^{\top}\Phi\right)^{-1}\Phi^{\top}\mathbf{y} = \Phi^{\dagger}\mathbf{y} \; ,$$

where  $\Phi^{\dagger}$  is known as the Moore-Penrose pseudo-inverse.

#### Table of Contents

- 1 Linear regression and least square (LS) methods
- 2 Interpretation of LS method: maximum likelihood estimate (MLE)
- 3 Overfitting issue and regularization (ridge regression)
- 4 Interpretation of ridge regression: maximum a posteriori (MAP)
- 5 Lasso regression
- 6 Non-linear regression and gradient method

### An Understanding of LS: MLE

We assume that output  $y_n$  is given by a deterministic function  $f(\mathbf{x}_n) = \mathbf{w}^{\top} \phi(\mathbf{x}_n)$  with additive Gaussian noise  $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ :

$$\mathbf{y} = \Phi \mathbf{w} + \boldsymbol{\varepsilon}$$
.

The log-likelihood  $\mathcal{L}$  is given as:

$$\mathcal{L} = \log p(\mathbf{y} \mid \Phi, \mathbf{w}) = \sum_{n=1}^{N} \log p(y_n \mid \phi(\mathbf{x}_n), \mathbf{w})$$

$$= -\frac{N}{2} \log \sigma^2 - \frac{N}{2} \log 2\pi - \frac{1}{\sigma^2} \underbrace{\left(\frac{1}{2} \sum_{n=1}^{N} (y_n - \mathbf{w}^{\top} \phi(\mathbf{x}_n))^2\right)}_{=\mathcal{E}_{1S}}.$$

Therefore, under the assumption of additive Gaussian noise,

$$\mathbf{w}_{\mathsf{LS}} = \mathbf{w}_{\mathsf{MLE}}$$
 .

### An Understanding of LS: MLE

We assume that output  $y_n$  is given by a deterministic function  $f(\mathbf{x}_n) = \mathbf{w}^{\top} \phi(\mathbf{x}_n)$  with additive Gaussian noise  $\varepsilon \sim \mathcal{N}(0, \sigma^2 I)$ :

$$\mathbf{y} = \Phi \mathbf{w} + \boldsymbol{\varepsilon}$$
.

e.g., assuming  $y = w_1 x + w_2 + \varepsilon$ ,



#### Table of Contents

- 1 Linear regression and least square (LS) methods
- Interpretation of LS method: maximum likelihood estimate (MLE)
- 3 Overfitting issue and regularization (ridge regression)
- 4 Interpretation of ridge regression: maximum a posteriori (MAP)
- 5 Lasso regression
- 6 Non-linear regression and gradient method

## Overfitting

When the number of parameters is large, an overfitting issue can occur:

- The function approximation focuses on memorizing training data rather than extracting patterns
- Trade-off between training and test errors, e.g., polynomial curve fitting  $f(x) = \sum_{\ell=1}^{L} w_{\ell} \phi_{\ell}(x) = \sum_{\ell=1}^{L} w_{\ell} x^{\ell-1}$





### Regularization

We often observe overfitting issues when the magnitude of parameters is large (or the function complexity is high):



|               | M = 0 | M = 1 | M = 6  | M = 9       |
|---------------|-------|-------|--------|-------------|
| $w_0^{\star}$ | 0.19  | 0.82  | 0.31   | 0.35        |
| $w_1^{\star}$ |       | -1.27 | 7.99   | 232.37      |
| $w_2^{\star}$ |       |       | -25.43 | -5321.83    |
| $w_3^{\star}$ |       |       | 17.37  | 48568.31    |
| $w_4^{\star}$ |       |       |        | -231639.30  |
| $w_5^{\star}$ |       |       |        | 640042.26   |
| $w_6^{\star}$ |       |       |        | -1061800.52 |
| $w_7^{\star}$ |       |       |        | 1042400.18  |
| $w_8^{\star}$ |       |       |        | -557682.99  |
| $w_9^{\star}$ |       |       |        | 125201.43   |
|               |       |       |        |             |

### Regularization

We often observe overfitting issues when the magnitude of parameters is large (or the function complexity is high):



Ridge regression minimizes the fitting error with a regularization term:

$$\mathcal{E} = \underbrace{\frac{1}{2} \| \mathbf{y} - \Phi \mathbf{w} \|^2}_{\text{Fitting error}} + \underbrace{\frac{\lambda}{2} \| \mathbf{w} \|^2}_{\text{Regularizer}},$$

where  $\lambda$  controls the trade-off.

## Ridge Regression

Ridge regression minimizes

$$\mathcal{E} = \underbrace{\frac{1}{2} \| \boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{w} \|^2}_{\text{Fitting error}} + \underbrace{\frac{\lambda}{2} \| \boldsymbol{w} \|^2}_{\text{Regularizer}} \; ,$$

where  $\lambda$  controls the trade-off.

Solving  $\frac{\partial \mathcal{E}}{\partial \mathbf{w}} = 0$  for  $\mathbf{w}$  leads to

$$\mathbf{w}_{\mathsf{ridge}} = \left(\lambda \mathbf{I} + \Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{y} .$$







#### Table of Contents

- 1 Linear regression and least square (LS) methods
- 2 Interpretation of LS method: maximum likelihood estimate (MLE)
- 3 Overfitting issue and regularization (ridge regression)
- 4 Interpretation of ridge regression: maximum a posteriori (MAP)
- 5 Lasso regression
- 6 Non-linear regression and gradient method

## Ridge Regression: MAP Perspective

From the observation, we believe that a good choice of parameter  $\boldsymbol{w}$  may have a small magnitude, i.e., we assume a zero-mean Gaussian prior with covariance  $\Sigma$  for parameters  $\boldsymbol{w}$ :

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0, \Sigma)$$
.

Recall that  $\mathbf{y} = \Phi \mathbf{w} + \boldsymbol{\varepsilon}$  with  $\boldsymbol{\varepsilon} \sim \mathcal{N}(0, \sigma^2 I)$ , i.e.,

$$p(\mathbf{y}|\Phi,\mathbf{w}) = \mathcal{N}(\mathbf{y} \mid \Phi \mathbf{w}, \sigma^2 \mathbf{I}) .$$

Then the posterior over  $\boldsymbol{w}$  is given as:

$$p(\mathbf{w}|\mathbf{y},\Phi) = \frac{p(\mathbf{y}|\Phi,\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\Phi)},$$

From the Gaussian identities, it can be seen that the posterior is still Gaussian with mean and mode at

$$\mathbf{w}_{MAP} = \left(\sigma^2 \Sigma^{-1} + \Phi^\top \Phi\right)^{-1} \Phi^\top \mathbf{y} .$$

### Lemma (Gaussian identities<sup>1</sup>)

Consider an augmented random vector  $z = [x^{\top}, y^{\top}]^{\top}$  of which joint distribution is

$$z = \begin{bmatrix} x \\ y \end{bmatrix} \sim \mathcal{N}\left( \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} A & C \\ C^\top & B \end{bmatrix} \right) \quad \textit{with cross-covariance } C = \mathbb{E}[xy^\top] \;,$$

so that  $x \sim \mathcal{N}(a, A)$  and  $y \sim \mathcal{N}(b, B)$ . Then, the conditional distributions are given as:

$$p(x \mid y) = \mathcal{N}(x \mid a + CB^{-1}(y - b), A - CB^{-1}C^{\top}),$$
  

$$p(y \mid x) = \mathcal{N}(y \mid b + C^{\top}A^{-1}(x - a), B - C^{\top}A^{-1}C).$$

<sup>&</sup>lt;sup>1</sup>c.f. Pattern Recognition and Machine Learning, Sec 2.3.1

## Ridge Regression: MAP Perspective

Based on the belief that good parameter has small magnitude, i.e., prior  $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0,\Sigma)$ , the posterior over  $\mathbf{w}$  is given as:

$$p(\mathbf{w}|\mathbf{y},\Phi) = \frac{p(\mathbf{y}|\Phi,\mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\Phi)}$$
,

which is maximized at

$$\mathbf{w}_{\mathsf{MAP}} = \left(\sigma^2 \mathbf{\Sigma}^{-1} + \mathbf{\Phi}^{\top} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\top} \mathbf{y} \ .$$

Recall

$$\mathbf{w}_{\mathsf{ridge}} = \left(\lambda \mathbf{I} + \Phi^{\top} \Phi\right)^{-1} \Phi^{\top} \mathbf{y} \ .$$

When  $\Sigma = \frac{\sigma^2}{\lambda}I$ , the MAP becomes equivalent to ridge regression.

#### Table of Contents

- 1 Linear regression and least square (LS) methods
- 2 Interpretation of LS method: maximum likelihood estimate (MLE)
- 3 Overfitting issue and regularization (ridge regression)
- 4 Interpretation of ridge regression: maximum a posteriori (MAP)
- 5 Lasso regression
- 6 Non-linear regression and gradient method

### Lasso Regression

- ▶ In ridge regression, we use  $\ell_2$  norm to regularize the weight of parameter  $\boldsymbol{w}$ .
- ▶ What if we use  $\ell_1$  norm as a regularization?
- Lasso regression minimizes

$$\mathcal{E}(\mathbf{w}) = \underbrace{\frac{1}{2} \|\mathbf{y} - \Phi \mathbf{w}\|^2}_{\text{Fitting error}} + \underbrace{\lambda |\mathbf{w}|}_{\text{Regularizer}},$$

where  $\lambda$  controls the trade-off.

### Lasso Regression

- In ridge regression, we use  $\ell_2$  norm to regularize the weight of parameter  $\boldsymbol{w}$ .
- ▶ What if we use  $\ell_1$  norm as a regularization?
- Lasso regression minimizes

$$\mathcal{E}(\mathbf{w}) = \underbrace{\frac{1}{2} \|\mathbf{y} - \Phi \mathbf{w}\|^2}_{\text{Fitting error}} + \underbrace{\lambda |\mathbf{w}|}_{\text{Regularizer}},$$

where  $\lambda$  controls the trade-off.

- ▶ Note that the objective is not differentiable.
  - You can use subgradient method instead.

# Comparison between $\ell_2$ and $\ell_1$ Regularization



$$\begin{split} \mathcal{E}_{\mathsf{Ridge}}(\boldsymbol{w}) &= \frac{1}{2}\|\boldsymbol{y} - \Phi \boldsymbol{w}\|^2 + \frac{\lambda}{2}\|\boldsymbol{w}\|^2 \\ \mathcal{E}_{\mathsf{Lasso}}(\boldsymbol{w}) &= \underbrace{\frac{1}{2}\|\boldsymbol{y} - \Phi \boldsymbol{w}\|^2}_{\mathsf{Quadratic}} + \lambda |\boldsymbol{w}| \end{split}$$

### Example: Lasso as Feature Selection

| $\operatorname{Term}$ | OLS    | Best Subset | Ridge  | Lasso |
|-----------------------|--------|-------------|--------|-------|
| intercept             | 2.465  | 2.477       | 2.467  | 2.465 |
| lcalvol               | 0.676  | 0.736       | 0.522  | 0.548 |
| lweight               | 0.262  | 0.315       | 0.255  | 0.224 |
| age                   | -0.141 | 0.000       | -0.089 | 0.000 |
| lbph                  | 0.209  | 0.000       | 0.186  | 0.129 |
| svi                   | 0.304  | 0.000       | 0.259  | 0.186 |
| lcp                   | -0.287 | 0.000       | -0.095 | 0.000 |
| gleason               | -0.021 | 0.000       | 0.025  | 0.000 |
| pgg45                 | 0.266  | 0.000       | 0.169  | 0.083 |
| Test error            | 0.521  | 0.492       | 0.487  | 0.457 |
| Std error             | 0.176  | 0.141       | 0.157  | 0.146 |

Figure: Results of different methods on the prostate cancer data, which has 8 features and 67 training cases. Methods are: OLS = ordinary least squares, Subset = best subset regression, Ridge, Lasso. Rows represent the coefficients; we see that subset regression and lasso give sparse solutions. Bottom row is the mean squared error on the test set (30 cases). (source: pp. 385,textbook)

#### Table of Contents

- 1 Linear regression and least square (LS) methods
- 2 Interpretation of LS method: maximum likelihood estimate (MLE)
- 3 Overfitting issue and regularization (ridge regression)
- 4 Interpretation of ridge regression: maximum a posteriori (MAP)
- 5 Lasso regression
- 6 Non-linear regression and gradient method

### Learning as Continuous Optimization

- ▶ We have defined a model with unknown parameters
- Many parameter estimation problem can be formulated as a continuous optimization problem.
- To find a maximum or minimum of a loss (or risk) function.

$$\arg\min_{\theta} L(\theta) = \arg\min_{\theta} \sum_{i=1}^{N} \ell(y_i, f(x_i, \theta))$$

## Simple Example



**Say** some cost function parameterized by  $\theta$  with training set is:

$$L(\theta) = \sum_{i=1}^{N} \ell(y_i, f(x_i, \theta)) = \theta^4 + 7\theta^3 + 5\theta^2 - 17\theta + 3$$

► To find the parameter which minimizes the empirical risk, we need to find a point where the gradient is zero.

$$\frac{dL(\theta)}{d\theta} = 0$$

Use the second order derivative to check minimum or maximum.

### Limitations



Closed-form (or analytic) expression <sup>2</sup> of derivative is not available for some models with loss, i.e.:

$$\frac{dL(\theta)}{d\theta} = 0$$

is not tractable.

Abel-Ruffini theorem says there's no algebraic solution for polynomials of degree 5 or more.

 $<sup>^2 \</sup>verb|https://en.wikipedia.org/wiki/Closed-form_expression\#| Analytic_expression |$ 

# Gradient Descent (GD)

- ▶ Given objective function  $L: \mathbb{R}^n \to \mathbb{R}$
- ▶ We will assume that *L* is *differentiable*, but unable to find a solution in analytic form.
  - Instead, we can evaluate the derivative at a given input point.
- ▶ To minimize the objective function, we start from initial point  $\theta_0$  and follow the gradient path as

$$\theta_1 = \theta_0 - \gamma ((\nabla L)(\theta_0))^\top,$$
Derivative at  $\theta_0$ 

where  $\gamma \geq 0$  is a small step-size.

► A simple gradient descent algorithm is:

$$\theta_{t+1} = \theta_t - \gamma_t ((\nabla L)(\theta_t))^\top,$$



## **Example with Linear Regression**

From the least square objective

$$\mathcal{L}(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \left( \boldsymbol{\phi}_{n}^{\top} \boldsymbol{w} - y_{n} \right)^{2} = \frac{1}{2} \| \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{y} \|_{2}^{2}$$

The gradient is

$$oldsymbol{g}_t = \sum_{n=1}^N \left( oldsymbol{w}_t^{ op} \phi_n - y_n 
ight) \phi_n$$

The update becomes

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \gamma_t \sum_{n=1}^{N} \left( \mathbf{w}_t^{\top} \phi_n - y_n \right) \phi_n$$

## Example with Quadratic Function

$$L\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \frac{1}{2}\begin{bmatrix}x_1\\x_2\end{bmatrix}^\top \begin{bmatrix}2 & 1\\1 & 20\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix} - \begin{bmatrix}5\\3\end{bmatrix}^\top \begin{bmatrix}x_1\\x_2\end{bmatrix}$$

- With  $\mathbf{x}_0 = [-3, -1]^{\top}$  and  $\gamma = 0.085$ , GD converges to the minimum.
- GD converges slowly (ill-conditioned).



Figure: GD converges to the minimum

# Stepsize $\gamma_i$



Figure: GD with different learning rates.

- ▶ Good step-size is important in gradient descent.
- ▶ If it is too small, GD can be slow.
- If it is too large, GD can overshoot, fail to converge, or even diverge.

### Simple Heuristics to Find Good Stepsize

- ▶ When the function value increases after a gradient step, the step-size was too large.
  - Undo the step and decrease the step-size
- ▶ When the function value decreases, the step could have been larger
  - Try to increase the step-size.
- ▶ Is this a good solution?
  - What if it takes too much time to evaluate the objective function?
- Let's talk about some techniques to improve.

### Gradient Descent with Momentum

- ► The GD update oscillates along the second axis.
- Give gradient descent some memory to avoid this behavior.
- Momentum is an additional term to remember what happened in the previous iteration.



#### Momentum Methods

$$\theta_{i+1} = \theta_i - \gamma_i ((\nabla f)(\theta_i))^{\top} + \alpha \Delta \theta_i \qquad \alpha \in [0, 1]$$

$$\Delta \theta_i = \theta_i - \theta_{i-1} = \alpha \Delta \theta_{i-1} - \gamma_{i-1} ((\nabla f)(\theta_{i-1}))^{\top}$$

- The momentum-based method remembers the previous update.
- Determines the next update as a linear combination of the current and previous gradients.
- ► The memory dampens oscillations and smoothes out the gradient updates.
  - ► It also accelerates some updates along the way<sup>3</sup>.

<sup>&</sup>lt;sup>3</sup>Illustrative example: https://distill.pub/2017/momentum/

# Stochastic Gradient Descent (SGD)

► Note that the (batch) gradient given a model is a sum of gradient with respect to individual data points

$$L(\theta) = \sum_{i=1}^{N} L_i(\theta) = \sum_{i=1}^{N} \ell(y_i, f_{\theta}(x_i))$$
$$\frac{dL(\theta)}{d\theta} = \sum_{i=1}^{N} \frac{dL_i(\theta)}{d\theta}$$

- ▶ If the dataset is too large, computing a single estimate of gradient take too much time.
- We may approximate the gradient with only a few number of data points (mini-batch).

### **Noisy Gradient**

If we take a few data points and computes the gradient:

$$\frac{dL_{\mathcal{B}}(\theta)}{d\theta} = \sum_{i:x_i \in \mathcal{B}} \frac{dL_i(\theta)}{d\theta}$$

where  $\mathcal{B}$  is a subset of data  $\mathcal{D} = \{(x_1, y_1), ..., (x_N, y_N)\}.$ 

- ▶ This makes sense because the batch gradient is expectation of gradient w.r.t data distribution p(x, y).
- Likewise, the SGD is an expectation of gradient w.r.t data distribution

$$\mathbb{E}\left[\frac{dL(\theta)}{d\theta}\right] = \mathbb{E}\left[\sum_{i=1}^{N} \frac{dL_{i}(\theta)}{d\theta}\right] = N \,\mathbb{E}\left[\frac{dL_{i}(\theta)}{d\theta}\right]$$
$$= N \,\mathbb{E}\left[\frac{1}{|\mathcal{B}|} \sum_{i:x_{i} \in \mathcal{B}} \frac{dL_{i}(\theta)}{d\theta}\right] = \frac{N}{|\mathcal{B}|} \,\mathbb{E}\left[\sum_{i:x_{i} \in \mathcal{B}} \frac{dL_{i}(\theta)}{d\theta}\right]$$

### Why Stochastic Gradient?

- Stochastic gradient descent often results a better solution than the batch gradient descent
- The noise in the gradient allow us to escape some bad local optima (sometimes!).
- ► The batch gradient cannot escape from the local optima.



#### Remark

SGD converges when the learning rate decreases at an appropriate rate.

## Summary

- Linear regression and least square (LS) method
- Interpretation of LS method: maximum likelihood estimate (MLE)
- Overfitting issue and regularization (ridge regression)
- Interpretation of ridge regression: maximum a posteriori (MAP)
- Non-linear regression and gradient method

## Further Readings

- ► Chapter 11 (Linear Regression) of Textbook
  - Chapter 11.2 Least squares linear regression
  - Chapter 11.3 Ridge regression
  - Chapter 11.4 Lasso regression
- Chapter 8 (Optimization) of Textbook
  - ► Chapter 8.2 First-order methods
  - Chapter 8.4 Stochastic gradient descent