Quiz 3 Math 2202

Guidelines

- This quiz is for you to test yourself on what we've been studying recently.
- Full credit is given for taking the quiz, if you arrive on time to start. No credit otherwise.
- You have 10 minutes. As a section, we will go over the quiz (or part of it). Solutions will be posted online as well.
- 1. Write the equation for the following planes in linear equation form. Are any of these planes are parallel? Are any perpendicular to each other?
 - (a) xy-plane
 - (b) zy-plane
 - (c) y = 5
 - (d) $y = \frac{3}{5}x 2z + 1$

Solution:

- (a) z = 0
- (b) x = 0
- (c) y 5 = 0
- (d) $\frac{3}{5}x y 2z + 1 = 0$
- 2. Find the equation of a plane parallel to the plane $y = \frac{3}{5}x 2z + 1$ and containing the point (0,3,4). Is the vector (0,3,4) parallel to this plane?

Solution:

Let P be the plane parallel to the plane $y = \frac{3}{5}x - 2z + 1$ and containing the point (0,3,4).

The plane $y = \frac{3}{5}x - 2z + 1$ can be written in linear equation form as $\frac{3}{5}x - y - 2z + 1 = 0$, so it has normal vector $\mathbf{n} = \langle \frac{3}{5}, -1, -2 \rangle$. Since parallel planes have parallel normal vectors, \mathbf{n} is also a normal vector to P.

Since P contains the point (0,3,4) and has normal vector $\mathbf{n} = \langle \frac{3}{5}, -1, -2 \rangle$,

$$P = \{(x, y, z) | \frac{3}{5}(x - 0) + (-1)(y - 3) + (-2)(z - 4) = 0\} = \{(x, y, z) | \frac{3}{5}x - (y - 3) - 2(z - 4) = 0\}$$

The vector $\mathbf{v} = \langle 0, 3, 4 \rangle$ is parallel to P if \mathbf{v} is perpendicular to the normal vector \mathbf{n} . And,

$$\mathbf{v} \cdot \mathbf{n} = \langle 0, 3, 4 \rangle \cdot \langle \frac{3}{5}, -1, -2 \rangle$$
$$= 0 \cdot \frac{3}{5} + 3 \cdot (-1) + 4 \cdot (-2)$$
$$= -11$$

Since $\mathbf{v} \cdot \mathbf{n} = -11 \neq 0$, \mathbf{v} and \mathbf{n} are not perpendicular, and so $\mathbf{v} = \langle 0, 3, 4 \rangle$ is not parallel to the plane P.

1

Continued on next page.

- 3. Let \mathbf{a} , \mathbf{b} and \mathbf{c} be non-zero vectors. Which of the following is a meaningful quantity? If so, is it a scalar or a vector?
 - (a) $|\mathbf{a} \times \mathbf{b}|$
 - (b) $|\mathbf{a}| \times |\mathbf{b}|$
 - (c) $|\mathbf{a} \cdot \mathbf{b}|$
 - (d) $\left| \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} \right|$
 - (e) $\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{b}|}$
 - (f) $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$
 - (g) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$

For those that are meaningful quantities, what do they measure? Sketch a picture of vectors \mathbf{a} , \mathbf{b} and \mathbf{c} to illustrate, when appropriate.

Solution:

- (a) $|\mathbf{a} \times \mathbf{b}|$ is a scalar, equal to the area of the parallelogram determined by \mathbf{a} and \mathbf{b} .
- (b) $|\mathbf{a}| \times |\mathbf{b}|$ is not a meaningful quantity, because we can only take cross products of two vectors, and $|\mathbf{a}|$, $|\mathbf{b}|$ are real numbers.
- (c) $|\mathbf{a} \cdot \mathbf{b}|$ is a scalar. Since $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$, $0 \le |\mathbf{a} \cdot \mathbf{b}| \le |\mathbf{a}| |\mathbf{b}|$. Also, $|\mathbf{a} \cdot \mathbf{b}| = 0$ exactly when \mathbf{a} and \mathbf{b} are orthogonal, and $|\mathbf{a} \cdot \mathbf{b}| = |\mathbf{a}| |\mathbf{b}|$ exactly when \mathbf{a} and \mathbf{b} are parallel.

(d) $|\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|}|$ is a scalar, equal to the length of the projection vector $\text{proj}_{\mathbf{b}}\mathbf{a}$:

$$|\mathrm{proj}_{\mathbf{b}}\mathbf{a}| = \left| \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} \right) \frac{\mathbf{b}}{|\mathbf{b}|} \right| = \left| \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} \right|$$

You can also see that like this:

$$||\mathbf{a}|\cos\theta| = \frac{|\mathbf{a}||\mathbf{b}|\cos\theta|}{|\mathbf{b}|} = \left|\frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{b}|}\right|$$

(e) $\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{b}|}$ is a scalar, equal to the length of the orthogonal projection of \mathbf{a} onto \mathbf{b} :

$$||\mathbf{a}|\sin\theta| = \frac{|(|\mathbf{a}||\mathbf{b}|\sin\theta)|}{|\mathbf{b}|} = \frac{|\mathbf{a}\times\mathbf{b}|}{|\mathbf{b}|}$$

- (f) $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{c}$ is not a meaningful quantity, because we can only take cross products of two vectors, and $(\mathbf{a} \cdot \mathbf{b})$ is a scalar.
- (g) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is a scalar, and $|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}| = \pm (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$ is the volume of the parallelepiped determined by the vectors \mathbf{a}, \mathbf{b} , and \mathbf{c} :

Think about it... Find the distance from the point Q = (2, -3, 1) to the line L : x = 3 - t, y = 1 + 4t, z = 6. (By 'distance', remember we mean the shortest distance between Q and any point on L.) Can you find the coordinates of the point on L which is closest to Q?