Introduction to Category Theory

Contents

Notation Preface				vii
				1
1	Basic Concepts			
	1.1	von Ne	eumann-Bernays-Gödel Set Theory	3
	1.2	Catego	ories	4
		1.2.1	Introduction	4
		1.2.2	Opposite Category	5
		1.2.3	Slice Category	6
		1.2.4	Product Category	7
	1.3	Functo	ors	9
		1.3.1	Introduction	9
		1.3.2	Category of Small Categories	10
		1.3.3	Comma Categories	13
	1.4	1.4 Natural Transformations		17
		1.4.1	Introduction	17
		1.4.2	Category of Functors	17
		1.4.3	Diagonal Functor	19
	1.5	Algebr	a of Morphisms	21
		1.5.1	Isomorphisms	21
		1.5.2	Initial and Final Objects	26
2	Universal Morphisms and Limits 29			
		2.0.1	Universal Morphisms	29
	2.1	Limits	·	30
		2.1.1	Products and Coproducts	31
		2.1.2	Equalizers and Coequalizers	31
\mathbf{A}	App)		33

vi CONTENTS

Notation

 $\begin{array}{ll} \mathcal{M}_+(X,\mathcal{A}) & \text{ finite measures on } (X,\mathcal{A}) \\ v & \text{ velocity} \end{array}$

viii Notation

Preface

cc-by-nc-sa

2 Notation

Chapter 1

Basic Concepts

1.1 von Neumann-Bernays-Gödel Set Theory

Definition 1.1.0.1. Let x be a class. Then x is said to be a set iff there exists a class A such that $x \in A$.

Note 1.1.0.2. We can define cartesion products, relations, and functions for classes just like for sets.

Axiom 1.1.0.3. Axiom of Replacement:

Let A, B be classes and $f: A \to B$. If A is a set, then f(A) is a set.

Axiom 1.1.0.4. Schema of Specification:

Let ϕ a propositional function on sets. Then there exists a class A such that for each set $x, x \in A$ iff $\phi(x)$.

Exercise 1.1.0.5. There exists a class A such that for each class $x, x \in A$ iff x is a set.

Proof. Define ϕ by

$$\phi(x): x = x$$

Axiom 1.1.4 implies that there exists a class A such that for each set $x, x \in A$ iff x = x. Let x be a class. If $x \in A$, then by definition, x is a set.

Conversely, if x is a set, then by construction, $x \in A$.

Exercise 1.1.0.6. There exists a class A such that for each class G and $*: G \times G \to G$, $(G, *) \in A$ iff (G, *) is a group.

Proof. Define ϕ_1 , ϕ_2 and ϕ_3 by

- $\phi_1(G,*):*:G\times G\to G$ is associative
- $\phi_2(G,*)$: there exists $e \in G$ such that for each $g \in G, e*g = g*e = g$
- $\phi_3(G,*)$: for each $g \in G$ there exists $h \in G$ such that g*h = h*g = e

Define ϕ by

$$\phi(G,*):\phi_1(G,*) \text{ and } \phi_2(G,*) \text{ and } \phi_3(G,*)$$

Then there exists a class A such that for each set G and $*: G \times G \to G$, $(G,*) \in A$ iff $\phi(G,*)$ (G,*) "is a group". Therefore, for each group (G,*), $(G,*) \in A$. **FINISH!!!**

1.2 Categories

1.2.1 Introduction

Definition 1.2.1.1. Let C_0 , C_1 be classes and dom, cod : $C_1 \to C_0$ class functions. Set $C = (C_0, C_1, \text{dom}, \text{cod})$. Then C is said to be a **category** if

- 1. (composition): for each $f, g \in C_1$, if cod(f) = dom(g), then there exists $g \circ f \in C_1$ such that $dom(g \circ f) = dom(f)$ and $cod(g \circ f) = cod(g)$
- 2. (associativity): for each $f, g, h \in C_1$, if cod(f) = dom(g) and cod(g) = dom(h), then

$$(h \circ g) \circ f = h \circ (g \circ f)$$

3. (identity): for each $X \in \mathcal{C}_0$, there exists $\mathrm{id}_X \in \mathcal{C}_1$ such that $\mathrm{dom}(\mathrm{id}_X) = \mathrm{cod}(\mathrm{id}_X) = X$ and for each $f, g \in \mathcal{C}_1$, if $\mathrm{dom}(f) = X$ and $\mathrm{cod}(g) = X$, then

$$f \circ \mathrm{id}_X = f$$
 and $\mathrm{id}_X \circ g = g$

We define the

- objects of \mathcal{C} , denoted $\mathrm{Obj}(\mathcal{C})$, by $\mathrm{Obj}(\mathcal{C}) = C_0$
- morphisms of \mathcal{C} , denoted $\operatorname{Hom}_{\mathcal{C}}$, by $\operatorname{Hom}_{\mathcal{C}} = C_1$

For $X, Y \in \text{Obj}(\mathcal{C})$, we define the **morphisms from** X **to** Y, denoted $\text{Hom}_{\mathcal{C}}(X, Y)$, by $\text{Hom}_{\mathcal{C}}(X, Y) = \{f \in \text{Hom}(\mathcal{C}) : \text{dom}(f) = X \text{ and } \text{cod}(f) = Y\}$.

Note 1.2.1.2. We typically define a category \mathcal{C} by specifying

- Obj(C)
- for $X, Y \in \text{Obj}(\mathcal{C})$, the class $\text{Hom}_{\mathcal{C}}(X, Y)$
- for $X,Y,Z\in \mathrm{Obj}(\mathcal{C}),\ f\in \mathrm{Hom}_{\mathcal{C}}(X,Y)$ and $g\in \mathrm{Hom}_{\mathcal{C}}(Y,Z),$ the composite morphism $g\circ f\in \mathrm{Hom}_{\mathcal{C}}(X,Z).$

and then show

- well-definedness of composition
- associativity of composition
- existence of identities

Definition 1.2.1.3. We define the **empty category**, denoted **0**, by

- $Obj(\mathbf{0}) = \emptyset$
- $\text{Hom}_0 = \emptyset$

Exercise 1.2.1.4. We have that $\mathbf{0}$ is a category.

Proof. Vacuously true.

Definition 1.2.1.5. We define the **trivial category**, denoted **1**, by

- $Obj(1) = \{*\}$
- $\text{Hom}_1 = \{ id_* \}$

Exercise 1.2.1.6. We have that **1** is a category.

1.2. CATEGORIES 5

Proof. Clear. \Box

Definition 1.2.1.7. We define **Set** by

- $Obj(\mathbf{Set}) = \{A : A \text{ is a set}\}\$
- for each $A, B \in \text{Obj}(\mathbf{Set}), \text{Hom}_{\mathbf{Set}}(A, B) = \{f : f : A \to B\}$
- for $A, B, C \in \mathbf{Set}$, $f \in \mathrm{Hom}_{\mathbf{Set}}(A, B)$ and $g \in \mathrm{Hom}_{\mathbf{Set}}(B, C)$, $g \circ_{\mathbf{Set}} f = g \circ f$.

Exercise 1.2.1.8. We have that **Set** is a category.

Proof.

- well-definedness of composition:
- associativity of composition:
- existence of identities:

FINISH!!!

Definition 1.2.1.9. Let \mathcal{C} be a category. Then \mathcal{C} is said to be

- small if $Obj(\mathcal{C})$ and $Hom_{\mathcal{C}}$ are sets
- locally small if for each $A, B \in \text{Obj}(\mathcal{C})$, $\text{Hom}_{\mathcal{C}}(A, B)$ is a set

Exercise 1.2.1.10. Let \mathcal{C} be a category. If \mathcal{C} is small, then \mathcal{C} is a set.

Proof. Suppose that \mathcal{C} is small. Then $\mathrm{Obj}(\mathcal{C})$ and $\mathrm{Hom}_{\mathcal{C}}$ are sets. Then $\mathcal{P}(\mathrm{Obj}(\mathcal{C}))$, $\mathcal{P}(\mathrm{Hom}_{\mathcal{C}})$ and $\mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}}$ are sets. Hence $\mathrm{Obj}(\mathcal{C}) \times \mathrm{Hom}_{\mathcal{C}} \times \mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}} \times \mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}}$ is a set. By definition, $\mathcal{C} = (\mathrm{Obj}(\mathcal{C}), \mathrm{Hom}_{\mathcal{C}}, \mathrm{dom}, \mathrm{cod}) \in \mathrm{Obj}(\mathcal{C}) \times \mathrm{Hom}_{\mathcal{C}} \times \mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}} \times \mathrm{Obj}(\mathcal{C})^{\mathrm{Hom}_{\mathcal{C}}}$. By definition, \mathcal{C} is a set.

Exercise 1.2.1.11. There exists a class A such that $C \in A$ iff C is a small category.

Proof. Exercise 1.2.10 implies that for each category \mathcal{C} , \mathcal{C} is small implies that \mathcal{C} is a set. Define ϕ by

$$\phi(\mathcal{C}):\mathcal{C}$$
 is a small category

Then Axiom 1.1.4 implies that there exists a class A such that $\mathcal{C} \in A$ iff \mathcal{C} is a small category.

1.2.2 Opposite Category

Definition 1.2.2.1. Let \mathcal{C} be a category, we define the dual of \mathcal{C} or the **opposite of** \mathcal{C} , denoted \mathcal{C}^{op} , by

- $Obj(\mathcal{C}^{op}) = Obj(\mathcal{C})$
- for $X, Y \in \text{Obj}(\mathcal{C}^{\text{op}})$, $\text{Hom}_{\mathcal{C}^{\text{op}}}(X, Y) = \text{Hom}_{\mathcal{C}}(Y, X)$
- for $X, Y, Z \in \text{Obj}(\mathcal{C}^{\text{op}})$ and $f \in \text{Hom}_{\mathcal{C}^{\text{op}}}(X, Y), g \in \text{Hom}_{\mathcal{C}^{\text{op}}}(Y, Z), g \circ_{\mathcal{C}^{\text{op}}} f = f \circ_{\mathcal{C}} g$

Exercise 1.2.2.2. Let \mathcal{C} be a category. Then \mathcal{C}^{op} is a category.

Proof.

• for $W, X, Y, Z \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}^{\text{op}}}(W, X)$ and $g \in \text{Hom}_{\mathcal{C}^{\text{op}}}(X, Y)$ and $h \in \text{Hom}_{\mathcal{C}^{\text{op}}}(Y, Z)$. Then

$$(h \circ_{\mathcal{C}^{\mathrm{op}}} g) \circ_{\mathcal{C}^{\mathrm{op}}} f = f \circ_{\mathcal{C}} (h \circ_{\mathcal{C}^{\mathrm{op}}} g)$$

$$= f \circ_{\mathcal{C}} (g \circ_{\mathcal{C}} h)$$

$$= (f \circ_{\mathcal{C}} g) \circ_{\mathcal{C}} h$$

$$= h \circ_{\mathcal{C}^{\mathrm{op}}} (f \circ_{\mathcal{C}} g)$$

$$= h \circ_{\mathcal{C}^{\mathrm{op}}} (g \circ_{\mathcal{C}^{\mathrm{op}}} f)$$

So composition is associative.

• Let $X \in \mathrm{Obj}(\mathcal{C})$ and $f, g \in \mathrm{Hom}_{\mathcal{C}^{\mathrm{op}}}$. Suppose that $\mathrm{dom}(f) = X$ and $\mathrm{cod}(g) = X$ Then

$$f \circ_{\mathcal{C}^{\mathrm{op}}} \mathrm{id}_X = \mathrm{id}_X \circ_{\mathcal{C}} f$$

= f

and

$$id_X \circ_{\mathcal{C}^{op}} g = g \circ_{\mathcal{C}} id_X$$
$$= g$$

So $(\mathrm{id}_X)_{\mathcal{C}^{\mathrm{op}}} = (\mathrm{id}_X)_{\mathcal{C}}$.

1.2.3 Slice Category

Definition 1.2.3.1. Let \mathcal{C} be a category and $X \in \text{Obj}(\mathcal{C})$. We define the **slice category of** \mathcal{C} **over** X, denoted \mathcal{C}/X , by

- $\operatorname{Obj}(\mathcal{C}/X) = \{ f \in \operatorname{Hom}_{\mathcal{C}} : \operatorname{cod}(f) = X \}$
- for $f, g \in \text{Obj}(\mathcal{C}/X)$,

$$\operatorname{Hom}_{\mathcal{C}/X}(f,g) = \{\alpha \in \operatorname{Hom}_{\mathcal{C}} : \operatorname{dom}(\alpha) = \operatorname{dom}(f), \operatorname{cod}(\alpha) = \operatorname{dom}(g) \text{ and } f = g \circ \alpha\}$$

i.e. for $f \in \operatorname{Hom}_{\mathcal{C}}(A, X)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(B, X)$, $\alpha \in \operatorname{Hom}_{\mathcal{C}/X}(f, g)$ iff the following diagram commutes:

• for $f, g, h \in \text{Obj}(\mathcal{C}/X)$, $\alpha \in \text{Hom}_{\mathcal{C}/X}(f, g)$ and $\beta \in \text{Hom}_{\mathcal{C}/X}(g, h)$,

$$\beta \circ_{\mathcal{C}/X} \alpha = \beta \circ_{\mathcal{C}} \alpha$$

Exercise 1.2.3.2. Let \mathcal{C} be a category and $X \in \text{Obj}(\mathcal{C})$. Then \mathcal{C}/X is a category.

Proof.

• $f, g, h \in \text{Obj}(\mathcal{C}/X)$, $\alpha \in \text{Hom}_{\mathcal{C}/X}(f, g)$ and $\beta \in \text{Hom}_{\mathcal{C}/X}(g, h)$. Then $f = g \circ_{\mathcal{C}} \alpha$ and $g = h \circ_{\mathcal{C}} \beta$, i.e. the following diagrams commute:

Therefore, we have that

$$f = g \circ_{\mathcal{C}} \alpha$$
$$= (h \circ_{\mathcal{C}} \beta) \circ_{\mathcal{C}} \alpha$$
$$= h \circ_{\mathcal{C}} (\beta \circ_{\mathcal{C}} \alpha)$$

i.e. the following diagram commutes:

1.2. CATEGORIES 7

which implies that

$$\beta \circ_{\mathcal{C}/X} \alpha = \beta \circ_{\mathcal{C}} \alpha$$
$$\in \operatorname{Hom}_{\mathcal{C}/X}(f, h)$$

and composition is well defined.

- Associativity of $\circ_{\mathcal{C}/X}$ follows from associativity of $\circ_{\mathcal{C}}$.
- Let $f \in \text{Obj}(\mathcal{C}/X)$ and $\alpha, \beta \in \text{Hom}_{\mathcal{C}/X}$. Since $f \circ \text{id}_{\text{dom}_{\mathcal{C}}(f)} = f$, i.e. the following diagram commutes:

we have that $id_{dom_{\mathcal{C}}(f)} \in Hom_{\mathcal{C}/X}(f, f)$. Suppose that $dom_{\mathcal{C}/X}(\alpha) = f$ and $cod_{\mathcal{C}/X}(\beta) = f$. Then

$$\alpha \circ_{\mathcal{C}/X} \mathrm{id}_{\mathrm{dom}_{\mathcal{C}}(f)} = \alpha \circ_{\mathcal{C}} \mathrm{id}_{\mathrm{dom}_{\mathcal{C}}(f)}$$
$$= \alpha$$

and

$$id_{\text{dom}_{\mathcal{C}}(f)} \circ_{\mathcal{C}/X} \beta = id_{\text{dom}_{\mathcal{C}}(f)} \circ_{\mathcal{C}} \beta$$

$$= \beta$$

So $id_f = id_{dom_{\mathcal{C}}(f)}$.

1.2.4 Product Category

Definition 1.2.4.1. Let \mathcal{C} and \mathcal{D} be categories. We define the **product category of** \mathcal{C} and \mathcal{D} , denoted $\mathcal{C} \times \mathcal{D}$ by

- $Obj(\mathcal{C} \times \mathcal{D}) = \{(A, B) : A \in Obj(\mathcal{C}) \text{ and } B \in Obj(\mathcal{D})\}$
- for each $(A, A'), (B, B') \in \text{Obj}(\mathcal{C} \times \mathcal{D})$, $\text{Hom}_{\mathcal{C} \times \mathcal{D}}((A, A'), (B, B')) = \{(f, g) : f \in \text{Hom}_{\mathcal{C}}(A, B) \text{ and } g \in \text{Hom}_{\mathcal{C}}(A', B')\}$
- for each $(A, A'), (B, B'), (C, C') \in \text{Obj}(\mathcal{C} \times \mathcal{D}), (f, f') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((A, A'), (B, B'))$ and $(g, g') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((B, B'), (C, C')),$ $(g, g') \circ_{\mathcal{C} \times \mathcal{D}} (f, f') = (g \circ_{\mathcal{C}} f, g' \circ_{\mathcal{D}} f')$

Exercise 1.2.4.2. Let \mathcal{C} and \mathcal{D} be categories. Then $\mathcal{C} \times \mathcal{D}$ is a category.

Proof.

• well-definedness of composition:

Let $(A, A'), (B, B'), (C, C') \in \text{Obj}(\mathcal{C} \times \mathcal{D}), (f, f') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((A, A'), (B, B'))$ and $(g, g') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((B, B'), (C, C'))$. Then $f \in \text{Hom}_{\mathcal{C}}(A, B), g \in \text{Hom}_{\mathcal{C}}(B, C), f' \in \text{Hom}_{\mathcal{D}}(A', B')$, and $g' \in \text{Hom}_{\mathcal{D}}(B', C')$. Hence $g \circ_{\mathcal{C}} f \in \text{Hom}_{\mathcal{C}}(A, C')$ and $g' \circ_{\mathcal{D}} f' \in \text{Hom}_{\mathcal{D}}(A', C')$. Thus

$$(g, g') \circ_{\mathcal{C} \times \mathcal{D}} (f, f') = (g \circ_{\mathcal{C}} f, g' \circ_{\mathcal{D}} f')$$

$$\in \operatorname{Hom}_{\mathcal{C} \times \mathcal{D}} ((A, A'), (C, C'))$$

Thus, composition is well defined.

• associativity of composition:

Let $(A, A'), (B, B'), (C, C'), (D, D') \in \text{Obj}(\mathcal{C} \times \mathcal{D}), (f, f') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((A, A'), (B, B')), (g, g') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}((B, B'), (C, C'), (D, D'))$. Then

$$\begin{split} \left[(h,h') \circ_{\mathcal{C} \times \mathcal{D}} (g,g') \right] \circ_{\mathcal{C} \times \mathcal{D}} (f,f') &= (h \circ_{\mathcal{C}} g,h' \circ_{\mathcal{D}} g') \circ_{\mathcal{C} \times \mathcal{D}} (f,f') \\ &= ((h \circ_{\mathcal{C}} g) \circ_{\mathcal{C}} f, (h' \circ_{\mathcal{D}} g') \circ_{\mathcal{D}} f') \\ &= (h \circ_{\mathcal{C}} (g \circ_{\mathcal{C}} f), h' \circ_{\mathcal{D}} (g' \circ_{\mathcal{D}} f')) \\ &= (h,h') \circ_{\mathcal{C} \times \mathcal{D}} (g \circ_{\mathcal{C}} f,g' \circ_{\mathcal{D}} f') \\ &= (h,h') \circ_{\mathcal{C} \times \mathcal{D}} \left[(g,g') \circ_{\mathcal{C} \times \mathcal{D}} (f,f') \right] \end{split}$$

Thus composition is associative.

• existence of identities:

Let $(A, B) \in \text{Obj}(\mathcal{C} \times \mathcal{D})$, $(f, f'), (g, g') \in \text{Hom}_{\mathcal{C} \times \mathcal{D}}$. Suppose that $\text{dom}_{\mathcal{C} \times \mathcal{D}}(f, f') = (A, B)$ and $\text{cod}_{\mathcal{C} \times \mathcal{D}}(g, g') = (A, B)$. Then $\text{dom}_{\mathcal{C}}(f) = A$, $\text{dom}_{\mathcal{D}}(f') = B$, $\text{cod}_{\mathcal{C}}(g) = A$ and $\text{cod}_{\mathcal{D}}(g') = B$. Hence

$$(f, f') \circ_{\mathcal{C} \times \mathcal{D}} (\mathrm{id}_A, \mathrm{id}_B) = (f \circ_{\mathcal{C}} \mathrm{id}_A, f' \circ_{\mathcal{D}} \mathrm{id}_B)$$

= (f, f)

and

$$\begin{split} (\mathrm{id}_A,\mathrm{id}_B) \circ_{\mathcal{C} \times \mathcal{D}} (g,g') &= (\mathrm{id}_A \circ_{\mathcal{C}} g,\mathrm{id}_B \circ g') \\ &= (g,g') \end{split}$$

Therefore $(id_{(A,B)})_{\mathcal{C}\times\mathcal{D}} = (id_A, id_B).$

1.3. FUNCTORS 9

1.3 Functors

1.3.1 Introduction

Definition 1.3.1.1. Let \mathcal{C} and \mathcal{D} be categories and $F_0: \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D}), F_1: \mathrm{Hom}_{\mathcal{C}} \to \mathrm{Hom}_{\mathcal{D}}$ class functions. Set $F = (F_0, F_1)$. Then F is said to be a functor from \mathcal{C} to \mathcal{D} , denoted $F: \mathcal{C} \to \mathcal{D}$, if

- 1. for each $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B), F_1(f) \in \text{Hom}_{\mathcal{D}}(F_0(A), F_0(B))$
- 2. for each $A, B, C \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$ and $g \in \text{Hom}_{\mathcal{C}}(B, C), F_1(g \circ f) = F_1(g) \circ F_1(f)$
- 3. for each $A \in \text{Obj}(\mathcal{C})$, $F_1(\text{id}_A) = \text{id}_{F_0(A)}$

Note 1.3.1.2. For $A \in \text{Obj}(C)$ and $f \in \text{Hom}_{\mathcal{C}}$, we typically write F(A) and F(f) instead of $F_0(A)$ and $F_1(f)$ respectively.

Definition 1.3.1.3. Let \mathcal{C} be a category. We define the **empty functor** from **0** to \mathcal{C} , denoted $E_{\mathcal{C}}: \mathbf{0} \to \mathcal{C}$ by $(E_{\mathcal{C}})_0 = (E_{\mathcal{C}})_1 = \emptyset$.

Exercise 1.3.1.4. Let \mathcal{C} be a category. Then $E_{\mathcal{C}}: \mathbf{0} \to \mathcal{C}$ is a functor.

Proof. Since $Obj(\mathbf{0}) = \emptyset$ and $Hom_{\mathbf{0}} = \emptyset$, this is vacuously true.

Definition 1.3.1.5. Let C, D be categories and $X \in D$. We define the **constant functor** from C onto X, denoted $\Delta_X^C : C \to D$ by

- $\Delta_X^{\mathcal{C}}(A) = X$
- $\Delta_X^{\mathcal{C}}(f) = \mathrm{id}_X$

Exercise 1.3.1.6. Let \mathcal{C}, \mathcal{D} be categories and $X \in \text{Obj}(\mathcal{D})$. Then $\Delta_X^{\mathcal{C}} : \mathcal{C} \to \mathcal{D}$ is a functor.

Proof.

1. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$\begin{split} \Delta_X^{\mathcal{C}}(f) &= \mathrm{id}_X \\ &\in \mathrm{Hom}_{\mathcal{D}}(X,X) \\ &= \mathrm{Hom}_{\mathcal{D}}(\Delta_X^{\mathcal{C}}(A), \Delta_X^{\mathcal{C}}(B)) \end{split}$$

2. Let $A, B, C \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$ and $g \in \text{Hom}_{\mathcal{C}}(B, C)$. Then

$$\Delta_X^{\mathcal{C}}(g \circ f) = \mathrm{id}_X$$

$$= \mathrm{id}_X \circ \mathrm{id}_X$$

$$= \Delta_X^{\mathcal{C}}(g) \circ \Delta_X^{\mathcal{C}}(f)$$

3. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$\Delta_X^{\mathcal{C}}(\mathrm{id}_A) = \mathrm{id}_X$$
$$= \mathrm{id}_{\Delta_Y^{\mathcal{C}}(A)}$$

So $\Delta_X^{\mathcal{C}}: \mathcal{C} \to \mathcal{D}$ is a functor.

1.3.2 Category of Small Categories

Definition 1.3.2.1. Let \mathcal{C} , \mathcal{D} and \mathcal{E} be categories and $F: \mathcal{C} \to \mathcal{D}$, $G: \mathcal{D} \to \mathcal{E}$ functors. We define the **composition of** G with F, denoted $G \circ F: \mathcal{C} \to \mathcal{E}$, by

- $G \circ F(A) = G(F(A))$
- $G \circ F(f) = G(F(f))$

Exercise 1.3.2.2. Let \mathcal{C} , \mathcal{D} and \mathcal{E} be categories and $F:\mathcal{C}\to\mathcal{D}$, $G:\mathcal{D}\to\mathcal{E}$ functors. Then $G\circ F:\mathcal{C}\to\mathcal{E}$ is a functor.

Proof.

1. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Since $F(f) \in \text{Hom}_{\mathcal{D}}(F(A), F(B))$, we have that $G(F(f)) \in \text{Hom}_{\mathcal{E}}(G(F(A)), G(F(B)))$. Then

$$G \circ F(f) = G(F(f))$$

$$\in \operatorname{Hom}_{\mathcal{E}}(G(F(A)), G(F(B)))$$

$$= \operatorname{Hom}_{\mathcal{E}}(G \circ F(A), G \circ F(B))$$

2. Let $A, B, C \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$ and $g \in \text{Hom}_{\mathcal{C}}(B, C)$. Then

$$\begin{split} G\circ F(g\circ f) &= G(F(g\circ f))\\ &= G(F(g)\circ F(f))\\ &= G(F(g))\circ G(F(f))\\ &= G\circ F(g)\circ G\circ F(f) \end{split}$$

3. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$G \circ F(\mathrm{id}_A) = G(F(\mathrm{id}_A))$$

$$= G(\mathrm{id}_{F(A)})$$

$$= \mathrm{id}_{G(F(A))}$$

$$= \mathrm{id}_{G \circ F(A)}$$

So $G \circ F : \mathcal{C} \to \mathcal{E}$ is a functor.

Exercise 1.3.2.3. Let \mathcal{C} , \mathcal{D} , \mathcal{E} , \mathcal{F} be categories and $F:\mathcal{C}\to\mathcal{D}$, $G:\mathcal{D}\to\mathcal{E}$, $H:\mathcal{E}\to\mathcal{F}$ functors. Then $(H\circ G)\circ F=H\circ (G\circ F)$.

Proof. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$(H \circ G) \circ F(A) = H \circ G(F(A))$$
$$= H(G(F(A)))$$
$$= H(G \circ F(A))$$
$$= H \circ (G \circ F)(A)$$

•

$$\begin{split} (H \circ G) \circ F(f) &= H \circ G(F(f)) \\ &= H(G(F(f))) \\ &= H(G \circ F(f)) \\ &= H \circ (G \circ F)(f) \end{split}$$

1.3. FUNCTORS

Hence $(H \circ G) \circ F = H \circ (G \circ F)$.

Definition 1.3.2.4. Let \mathcal{C} be a category. We define the **identity functor from** \mathcal{C} **to** \mathcal{C} , denoted $\mathrm{id}_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$, by

- $id_{\mathcal{C}}(A) = A, (A \in Obj(\mathcal{C}))$
- $id_{\mathcal{C}}(f) = f, (f \in Hom_{\mathcal{C}})$

Exercise 1.3.2.5. Let \mathcal{C} be a category. Then $\mathrm{id}_{\mathcal{C}}:\mathcal{C}\to\mathcal{C}$ is a functor.

Proof.

1. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$id_{\mathcal{C}}(f) = f$$

$$\in \operatorname{Hom}_{\mathcal{C}}(A, B)$$

$$= \operatorname{Hom}_{\mathcal{C}}(id_{\mathcal{C}}(A), id_{\mathcal{C}}(B))$$

2. Let $A, B, C \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$ and $g \in \text{Hom}_{\mathcal{C}}(B, C)$. Then

$$id_{\mathcal{C}}(g \circ f) = g \circ f$$

= $id_{\mathcal{C}}(g) \circ id_{\mathcal{C}}(f)$

3. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$id_{\mathcal{C}}(id_A) = id_A$$

= $id_{id_{\mathcal{C}}(A)}$

Exercise 1.3.2.6. Let \mathcal{C} and \mathcal{D} be categories and $F: \mathcal{C} \to \mathcal{D}$. Then

- 1. $id_{\mathcal{D}} \circ F = F$
- 2. $F \circ id_{\mathcal{C}} = F$

Proof.

1. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$id_{\mathcal{D}} \circ F(A) = id_{\mathcal{D}}(F(A))$$

= $F(A)$

and

$$id_{\mathcal{D}} \circ F(f) = id_{\mathcal{D}}(F(f))$$

= $F(f)$

Since $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$ are arbitrary, $\text{id}_{\mathcal{D}} \circ F = F$.

2. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$F \circ id_{\mathcal{C}}(A) = F(id_{\mathcal{C}}(A))$$
$$= F(A)$$

and

$$F \circ \mathrm{id}_{\mathcal{C}}(f) = F(\mathrm{id}_{\mathcal{C}}(f))$$
$$= F(f)$$

Since $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$ are arbitrary, $F \circ \text{id}_{\mathcal{C}} = F$.

Exercise 1.3.2.7. Let \mathcal{C} and \mathcal{D} be categories and $F:\mathcal{C}\to\mathcal{D}$. If \mathcal{C} is small, then F is a set.

Proof. Suppose that \mathcal{C} is small. Then $\mathrm{Obj}(\mathcal{C})$ and $\mathrm{Hom}_{\mathcal{C}}$ are sets. By definition, there exist $F_0: \mathrm{Obj}(\mathcal{C}) \to \mathrm{Obj}(\mathcal{D})$ and $F_1: \mathrm{Hom}_{\mathcal{C}} \to \mathrm{Hom}_{\mathcal{D}}$ such that $F = (F_0, F_1)$. Axiom 1.1.3 implies that $F_0(\mathrm{Obj}(\mathcal{C}))$ and $F_1(\mathrm{Hom}_{\mathcal{C}})$ are sets. Therefore, $\mathrm{Obj}(\mathcal{C}) \times F_0(\mathrm{Obj}(\mathcal{C}))$ and $\mathrm{Hom}_{\mathcal{C}} \times F_1(\mathrm{Hom}_{\mathcal{C}})$ are sets. Hence $\mathcal{P}(\mathrm{Obj}(\mathcal{C}) \times F_0(\mathrm{Obj}(\mathcal{C})))$ and $\mathcal{P}(\mathrm{Hom}_{\mathcal{C}} \times F_1(\mathrm{Hom}_{\mathcal{C}}))$ are sets. Since $F_0 \subset \mathrm{Obj}(\mathcal{C}) \times F_0(\mathrm{Obj}(\mathcal{C}))$ and $F_1 \subset \mathrm{Hom}_{\mathcal{C}} \times F_1(\mathrm{Hom}_{\mathcal{C}})$, we have that $F_0 \in \mathcal{P}(\mathrm{Obj}(\mathcal{C}) \times F_0(\mathrm{Obj}(\mathcal{C})))$ and $F_1 \in \mathcal{P}(\mathrm{Hom}_{\mathcal{C}} \times F_1(\mathrm{Hom}_{\mathcal{C}}))$. Hence F_0 and F_1 are sets. Thus $F = (F_0, F_1)$ is a set. □

Exercise 1.3.2.8. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. Then there exists a class A such that for each class $F, F \in A$ iff $F : \mathcal{C} \to \mathcal{D}$.

Proof. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. Define ϕ by

$$\phi(F):F:\mathcal{C}\to\mathcal{D}$$

Then there exists a class A such that for each set F, $F \in A$ iff $\phi(F)$. Let F be a class. Suppose that $F \in A$. By Definition 1.1.1, F is a set. Since F is a set and $F \in A$, we have that $\phi(F)$. Hence $F : \mathcal{C} \to \mathcal{D}$. Conversely, suppose that $F : \mathcal{C} \to \mathcal{D}$. Exercise 1.3.13 implies that F is a set. Since F is a set and $\phi(F)$ is true, we have that $F \in A$.

Definition 1.3.2.9. We define **Cat** by

- $Obj(Cat) = \{C : C \text{ is a small category}\}.$
- for $\mathcal{C}, \mathcal{D} \in \mathrm{Obj}(\mathbf{Cat})$,

$$\operatorname{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D}) = \{F : F : \mathcal{C} \to \mathcal{D}\}\$$

• for $C, D, E \in \text{Obj}(\mathbf{Cat})$, $F \in \text{Hom}_{\mathbf{Cat}}(C, D)$ and $G \in \text{Hom}_{\mathbf{Cat}}(D, E)$,

$$G \circ_{\mathbf{Cat}} F = G \circ F$$

Exercise 1.3.2.10. We have that Cat is

- 1. a category
- 2. locally small

Proof.

- 1. Exercise 1.3.8 implies that composition is well defined. Exercise 1.3.9 implies that composition is associative. Exercise 1.3.11 and Exercise 1.3.12 imply the existence of identities.
- 2. Let $\mathcal{C}, \mathcal{D} \in \mathrm{Obj}(\mathbf{Cat})$ and $F \in \mathrm{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$. Definition 1.2.9 implies that $\mathrm{Obj}(\mathcal{C})$, $\mathrm{Obj}(\mathcal{D})$, $\mathrm{Hom}_{\mathcal{C}}$ and $\mathrm{Hom}_{\mathcal{D}}$ are sets. Hence $\mathrm{Obj}(\mathcal{D})^{\mathrm{Obj}(\mathcal{C})} \times \mathrm{Hom}_{\mathcal{D}}^{\mathrm{Hom}_{\mathcal{C}}}$ is a set. Let $F \in \mathrm{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$. Then there exist $F_0 \in \mathrm{Obj}(\mathcal{D})^{\mathrm{Obj}(\mathcal{C})}$ and $F_1 \in \mathrm{Hom}_{\mathcal{D}}^{\mathrm{Hom}_{\mathcal{C}}}$ such that $F = (F_0, F_1)$. Therefore $F \in \mathrm{Obj}(\mathcal{D})^{\mathrm{Obj}(\mathcal{C})} \times \mathrm{Hom}_{\mathcal{D}}^{\mathrm{Hom}_{\mathcal{C}}}$. Since $F \in \mathrm{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$ is arbitrary,

$$\operatorname{Hom}_{\mathbf{Cat}}(\mathcal{C},\mathcal{D}) \subset \operatorname{Obj}(\mathcal{D})^{\operatorname{Obj}(\mathcal{C})} \times \operatorname{Hom}_{\mathcal{D}}^{\operatorname{Hom}_{\mathcal{C}}}$$

which implies that $\operatorname{Hom}_{\mathbf{Cat}}(\mathcal{C}, \mathcal{D})$ is a set. Therefore, \mathbf{Cat} is locally small.

1.3. FUNCTORS

1.3.3 Comma Categories

Definition 1.3.3.1. Let \mathcal{A} , \mathcal{B} , \mathcal{C} be a categories and $S : \mathcal{A} \to \mathcal{C}$, $T : \mathcal{B} \to \mathcal{C}$ functors. We define the **comma category of** S **to** T, denoted $(S \downarrow T)$, by

- $\operatorname{Obj}(S \downarrow T) = \{(A, B, h) : A \in \operatorname{Obj}(A), B \in \operatorname{Obj}(B), \text{ and } h \in \operatorname{Hom}_{\mathcal{C}}(S(A), T(B))\}$
- For $(A_1, B_1, h_1), (A_2, B_2, h_2) \in \text{Obj}(S \downarrow T),$

$$\operatorname{Hom}_{(S\downarrow T)}((A_1, B_1, h_1), (A_2, B_2, h_2)) = \{(\alpha, \beta) : \alpha \in \operatorname{Hom}_{\mathcal{A}}(A_1, A_2), \beta \in \operatorname{Hom}_{\mathcal{B}}(B_1, B_2) \text{ and } T(\beta) \circ_{\mathcal{C}} h_1 = h_2 \circ_{\mathcal{C}} S(\alpha)\}$$

i.e. for (A_1, B_1, h_1) , $(A_2, B_2, h_2) \in \text{Obj}(S \downarrow T)$, $\alpha \in \text{Hom}_{\mathcal{A}}(A_1, A_2)$ and $\beta \in \text{Hom}_{\mathcal{B}}(B_1, B_2)$, $(\alpha, \beta) \in \text{Hom}_{(S \downarrow T)}((A_1, B_1, h_1), (A_2, B_2, h_2))$ iff the following diagram commutes:

$$S(A_1) \xrightarrow{S(\alpha)} S(A_2)$$

$$\downarrow^{h_1} \qquad \qquad \downarrow^{h_2}$$

$$T(B_1) \xrightarrow{T(\beta)} T(B_2)$$

- For
 - $-(A_1, B_1, h_1), (A_2, B_2, h_2), (A_3, B_3, h_3) \in \text{Obj}(S \downarrow T)$
 - $-(\alpha_{12}, \beta_{12}) \in \text{Hom}_{(S \downarrow T)}((A_1, B_1, h_1), (A_2, B_2, h_2))$
 - $(\alpha_{23}, \beta_{23}) \in \text{Hom}_{(S \downarrow T)}((A_2, B_2, h_2), (A_3, B_3, h_3))$

we define

$$(\alpha_{23}, \beta_{23}) \circ_{(S\downarrow T)} (\alpha_{12}, \beta_{12}) = (\alpha_{23} \circ_{\mathcal{A}} \alpha_{12}, \beta_{23} \circ_{\mathcal{B}} \beta_{12})$$

Exercise 1.3.3.2. Let \mathcal{A} , \mathcal{B} , \mathcal{C} be a categories and $S: \mathcal{A} \to \mathcal{C}$, $T: \mathcal{B} \to \mathcal{C}$ functors. Then $(S \downarrow T)$ is a category.

Proof.

• well-definedness of composition:

Let

- $-(A_1, B_1, h_1), (A_2, B_2, h_2), (A_3, B_3, h_3) \in \text{Obj}(S \downarrow T)$
- $-(\alpha_{12}, \beta_{12}) \in \text{Hom}_{(S \downarrow T)}((A_1, B_1, h_1), (A_2, B_2, h_2))$
- $-(\alpha_{23}, \beta_{23}) \in \text{Hom}_{(S \downarrow T)}((A_2, B_2, h_2), (A_3, B_3, h_3))$

By definition, $\alpha_{12} \in \operatorname{Hom}_{\mathcal{A}}(A_1, A_2)$, $\alpha_{23} \in \operatorname{Hom}_{\mathcal{A}}(A_2, A_3)$, $\beta_{12} \in \operatorname{Hom}_{\mathcal{B}}(B_1, B_2)$, $\beta_{23} \in \operatorname{Hom}_{\mathcal{B}}(B_2, B_3)$, $T(\beta_{12}) \circ_{\mathcal{C}} h_1 = h_2 \circ S(\alpha_{12})$ and $T(\beta_{23}) \circ_{\mathcal{C}} h_2 = h_3 \circ_{\mathcal{C}} S(\alpha_{23})$, i.e. the following diagram commutes:

$$S(A_1) \xrightarrow{S(\alpha_{12})} S(A_2) \xrightarrow{S(\alpha_{23})} S(A_3)$$

$$\downarrow h_1 \qquad \qquad \downarrow h_2 \qquad \qquad \downarrow h_3$$

$$T(B_1) \xrightarrow{T(\beta_{12})} T(B_2) \xrightarrow{T(\beta_{23})} T(B_3)$$

Then $\alpha_{23} \circ_{\mathcal{A}} \alpha_{12} \in \operatorname{Hom}_{\mathcal{A}}(A_1, A_3), \beta_{23} \circ_{\mathcal{B}} \beta_{12} \in \operatorname{Hom}_{\mathcal{B}}(B_1, B_3)$ and

$$T(\beta_{23} \circ_{\mathcal{B}} \beta_{12}) \circ_{\mathcal{C}} h_1 = (T(\beta_{23}) \circ_{\mathcal{C}} T(\beta_{12})) \circ_{\mathcal{C}} h_1$$

$$= T(\beta_{23}) \circ_{\mathcal{C}} (T(\beta_{12}) \circ_{\mathcal{C}} h_1)$$

$$= T(\beta_{23}) \circ_{\mathcal{C}} (h_2 \circ_{\mathcal{C}} S(\alpha_{12}))$$

$$= (T(\beta_{23}) \circ_{\mathcal{C}} h_2) \circ_{\mathcal{C}} S(\alpha_{12})$$

$$= (h_3 \circ_{\mathcal{C}} S(\alpha_{23})) \circ_{\mathcal{C}} S(\alpha_{12})$$

$$= h_3 \circ_{\mathcal{C}} (S(\alpha_{23}) \circ_{\mathcal{C}} S(\alpha_{12}))$$

$$= h_3 \circ_{\mathcal{C}} S(\alpha_{23} \circ_{\mathcal{A}} \alpha_{12})$$

i.e. the following diagram commutes:

$$S(A_1) \xrightarrow{S(\alpha_{23} \circ_{\mathcal{A}} \alpha_{12})} S(A_3)$$

$$\downarrow^{h_1} \qquad \qquad \downarrow^{h_3}$$

$$T(B_1) \xrightarrow[T(\beta_{23} \circ_{\mathcal{B}} \beta_{12})]{} T(B_3)$$

Hence $(\alpha_{23} \circ_{\mathcal{A}} \alpha_{12}, \beta_{23} \circ_{\mathcal{B}} \beta_{12}) \in \text{Hom}_{(S \downarrow T)}((A_1, B_1, h_1), (A_3, B_3, h_3))$ and composition is well defined.

• associativity of composition:

Let

$$- (A_{1}, B_{1}, h_{1}), (A_{2}, B_{2}, h_{2}), (A_{3}, B_{3}, h_{3}), (A_{4}, B_{4}, h_{4}) \in \text{Obj}(S \downarrow T)$$

$$- (\alpha_{12}, \beta_{12}) \in \text{Hom}_{(S \downarrow T)}((A_{1}, B_{1}, h_{1}), (A_{2}, B_{2}, h_{2}))$$

$$- (\alpha_{23}, \beta_{23}) \in \text{Hom}_{(S \downarrow T)}((A_{2}, B_{2}, h_{2}), (A_{3}, B_{3}, h_{3}))$$

$$- (\alpha_{34}, \beta_{34}) \in \text{Hom}_{(S \downarrow T)}((A_{3}, B_{3}, h_{3}), (A_{4}, B_{4}, h_{4}))$$

Then

$$\begin{aligned} [(\alpha_{34},\beta_{34})\circ_{(S\downarrow T)}(\alpha_{23},\beta_{23})]\circ_{(S\downarrow T)}(\alpha_{12},\beta_{12}) &= (\alpha_{34}\circ_{\mathcal{A}}\alpha_{23},\beta_{34}\circ_{\mathcal{B}}\beta_{23})\circ_{(S\downarrow T)}(\alpha_{12},\beta_{12}) \\ &= ([\alpha_{34}\circ_{\mathcal{A}}\alpha_{23}]\circ_{\mathcal{A}}\alpha_{12},[\beta_{34}\circ_{\mathcal{B}}\beta_{23}]\circ_{\mathcal{B}}\beta_{12}) \\ &= (\alpha_{34}\circ_{\mathcal{A}}[\alpha_{23}\circ_{\mathcal{A}}\alpha_{12}],\beta_{34}\circ_{\mathcal{B}}[\beta_{23}\circ_{\mathcal{B}}\beta_{12}]) \\ &= (\alpha_{34},\beta_{34})\circ_{(S\downarrow T)}(\alpha_{23}\circ_{\mathcal{A}}\alpha_{12},\beta_{23}\circ_{\mathcal{B}}\beta_{12}) \\ &= (\alpha_{34},\beta_{34})\circ_{(S\downarrow T)}[(\alpha_{23},\beta_{23})\circ_{(S\downarrow T)}(\alpha_{12},\beta_{12})] \end{aligned}$$

So composition is associative.

• existence of identities:

Let

$$- (A_1, B_1, h_1), (A_2, B_2, h_2), \in \text{Obj}(S \downarrow T) - (\alpha, \beta) \in \text{Hom}_{(S \downarrow T)}((A_1, B_1, h_1), (A_2, B_2, h_2))$$

By definition,

$$-\alpha \in \operatorname{Hom}_{\mathcal{A}}(A_1, A_2), \ \beta \in \operatorname{Hom}_{\mathcal{B}}(B_1, B_2)$$
$$-h_1 \in \operatorname{Hom}_{\mathcal{C}}(S(A_1), T(B_1)), \ h_2 \in \operatorname{Hom}_{\mathcal{C}}(S(A_2), T(B_2))$$
$$-T(\beta) \circ h_1 = h_2 \circ S(\alpha)$$

Since $id_{A_1} \in Hom_{\mathcal{A}}(A_1, A_1)$, $id_{B_1} \in Hom_{\mathcal{B}}(B_1, B_1)$, and

$$T(\mathrm{id}_{B_1}) \circ_{\mathcal{C}} h_1 = \mathrm{id}_{T(B_1)} \circ_{\mathcal{C}} h_1$$
$$= h_1$$
$$= h_1 \circ_{\mathcal{C}} \mathrm{id}_{S(A_1)}$$
$$= h_1 \circ_{\mathcal{C}} S(\mathrm{id}_{A_1})$$

i.e. the following diagram commutes:

$$S(A_1) \xrightarrow{S(\mathrm{id}_{A_1})} S(A_1)$$

$$\downarrow^{h_1} \qquad \qquad \downarrow^{h_1}$$

$$T(B_1) \xrightarrow[T(\mathrm{id}_{B_1})]{} T(B_1)$$

1.3. FUNCTORS

we have that $(id_{A_1}, id_{B_1}) \in Hom_{(S\downarrow T)}((A_1, B_1, h_1), (A_1, B_1, h_1))$. Similarly $(id_{A_2}, id_{B_2}) \in Hom_{(S\downarrow T)}((A_2, B_2, h_2), (A_2, B_2, h_2))$. Therefore

$$(\alpha, \beta) \circ_{(S \downarrow T)} (\mathrm{id}_{A_1}, \mathrm{id}_{B_1}) = (\alpha \circ_{\mathcal{A}} \mathrm{id}_{A_1}, \beta \circ_{\mathcal{B}} \mathrm{id}_{B_1})$$
$$= (\alpha, \beta)$$

and

$$(\mathrm{id}_{A_2},\mathrm{id}_{B_2}) \circ_{(S\downarrow T)} (\alpha,\beta) = (\mathrm{id}_{A_2} \circ_{\mathcal{A}} \alpha,\mathrm{id}_{B_2} \circ_{\mathcal{B}} \beta)$$
$$= (\alpha,\beta)$$

Since (A_1, B_1, h_1) , (A_2, B_2, h_2) , \in Obj $(S \downarrow T)$ and $(\alpha, \beta) \in \text{Hom}_{(S \downarrow T)}((A_1, B_1, h_1), (A_2, B_2, h_2))$ are arbitrary, we have that for each $(A, B, h) \in \text{Obj}(S \downarrow T)$, $id_{(A,B,h)} = (id_A, id_B)$.

Definition 1.3.3.3. Let \mathcal{C}, \mathcal{D} be a categories, $X \in \text{Obj}(\mathcal{D})$ and $F : \mathcal{C} \to \mathcal{D}$. We define the **comma category** from X to F, denoted $(X \downarrow F)$, by $(X \downarrow F) = (\Delta_X^1 \downarrow F)$. We may make the following identification:

- $\operatorname{Obj}(X \downarrow F) = \{(A, f) : A \in \operatorname{Obj}(\mathcal{C}) \text{ and } f \in \operatorname{Hom}_{\mathcal{D}}(X, F(A))\}$
- For $(A_1, f_1), (A_2, f_2) \in \text{Obj}(X \downarrow F),$

$$\operatorname{Hom}_{(X \downarrow F)}((A_1, f_1), (A_2, f_2)) = \{ \alpha \in \operatorname{Hom}_{\mathcal{C}}(A_1, A_2) \text{ and } F(\alpha) \circ f_1 = f_2 \}$$

i.e. for $(A_1, f_1), (A_2, f_2) \in \text{Obj}(X \downarrow F)$ and $\alpha \in \text{Hom}_{A_1, A_2}, \alpha \in \text{Hom}_{(X \downarrow F)}((A_1, f_1), (A_2, f_2))$ iff the following diagram commutes:

- For
 - $-(A_1, f_1), (A_2, f_2), (A_3, f_3) \in \text{Obj}(X \downarrow F)$
 - $-\alpha \in \text{Hom}_{(X\downarrow F)}((A_1, f_1), (A_2, f_2))$
 - $-\beta \in \text{Hom}_{(X \downarrow F)}((A_2, f_2), (A_3, f_3))$

we define

$$\beta \circ_{(X \mid F)} \alpha = \beta \circ_{\mathcal{C}} \alpha$$

Definition 1.3.3.4. Let \mathcal{C}, \mathcal{D} be a categories, $X \in \text{Obj}(\mathcal{D})$ and $F : \mathcal{C} \to \mathcal{D}$. We define the **comma category** from F to X, denoted $(F \downarrow X)$, by $(F \downarrow X) = (F \downarrow \Delta_X^1)$. We may make the following identification:

- $\operatorname{Obj}(F \downarrow X) = \{(A, f) : A \in \operatorname{Obj}(\mathcal{C}) \text{ and } f \in \operatorname{Hom}_{\mathcal{D}}(F(A), X)\}$
- For $(A_1, f_1), (A_2, f_2) \in \text{Obj}(F \downarrow X),$

$$\operatorname{Hom}_{(X\downarrow F)}((A_1, f_1), (A_2, f_2)) = \{\alpha \in \operatorname{Hom}_{\mathcal{C}}(A_1, A_2) \text{ and } f_2 \circ F(\alpha) = f_1\}$$

i.e. for $(A_1, f_1), (A_2, f_2) \in \text{Obj}(F \downarrow X)$ and $\alpha \in \text{Hom}_{A_1, A_2}, \alpha \in \text{Hom}_{(F \downarrow X)}((A_1, f_1), (A_2, f_2))$ iff the following diagram commutes:

• For

$$- (A_1, f_1), (A_2, f_2), (A_3, f_3) \in \text{Obj}(F \downarrow X)$$

$$- \alpha \in \text{Hom}_{(F \downarrow X)}((A_1, f_1), (A_2, f_2))$$

$$- \beta \in \text{Hom}_{(F \downarrow X)}((A_2, f_2), (A_3, f_3))$$

we define

$$\beta \circ_{(F \downarrow X)} \alpha = \beta \circ_{\mathcal{C}} \alpha$$

1.4 Natural Transformations

1.4.1 Introduction

Definition 1.4.1.1. Let \mathcal{C} and \mathcal{D} be categories, $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Hom}_{\mathcal{D}}$. Then α is said to be a **natural transformation from** F **to** G, denoted $\alpha : F \Rightarrow G$, if

- 1. for each $A \in \text{Obj}(\mathcal{C}), \ \alpha_A \in \text{Hom}_{\mathcal{D}}(F(A), G(A))$
- 2. for each $A, B \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$, $G(f) \circ \alpha_A = \alpha_B \circ F(f)$, i.e. the following diagram commutes:

$$F(A) \xrightarrow{\alpha_A} G(A)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(B) \xrightarrow{\alpha_B} G(B)$$

1.4.2 Category of Functors

Definition 1.4.2.1. Let \mathcal{C} , \mathcal{D} be categories, $F, G, H : \mathcal{C} \to \mathcal{D}$ functors and $\alpha : F \Rightarrow G, \beta : G \Rightarrow H$ natural transformations. We define the **composition of** β **with** α , denoted $\beta \circ \alpha : F \Rightarrow H$, by

$$(\beta \circ \alpha)_A = \beta_A \circ \alpha_A$$

Exercise 1.4.2.2. Let C, D be categories, $F, G, H : C \to D$ functors and $\alpha : F \Rightarrow G$, $\beta : G \Rightarrow H$ natural transformations. Then $\beta \circ \alpha : F \Rightarrow H$ is a natural transformation.

Proof.

1. Let $A \in \text{Obj}(\mathcal{C})$. Since $\alpha_A \in \text{Hom}_{\mathcal{D}}(F(A), G(A))$ and $\beta_A \in \text{Hom}_{\mathcal{D}}(G(A), H(A))$, we have that

$$(\beta \circ \alpha)_A = \beta_A \circ \alpha_A$$

 $\in \operatorname{Hom}_{\mathcal{D}}(F(A), H(A))$

2. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Since $\alpha : F \Rightarrow G$ and $\beta : G \Rightarrow H$, $G(f) \circ \alpha_A = \alpha_B \circ F(f)$ and $H(f) \circ \beta_A = \beta_B \circ G(f)$. Therefore

$$H(f) \circ (\beta \circ \alpha)_A = H(f) \circ (\beta_A \circ \alpha_A)$$

$$= (H(f) \circ \beta_A) \circ \alpha_A$$

$$= (\beta_B \circ G(f)) \circ \alpha_A$$

$$= \beta_B \circ (G(f) \circ \alpha_A)$$

$$= \beta_B \circ (\alpha_B \circ F(f))$$

$$= (\beta_B \circ \alpha_B) \circ F(f)$$

$$= (\beta \circ \alpha)_B \circ F(f)$$

So $\beta \circ \alpha : F \Rightarrow H$ is a natural transformation.

Exercise 1.4.2.3. Let \mathcal{C} , \mathcal{D} be categories, $F, G, H, I : \mathcal{C} \to \mathcal{D}$ functors and $\alpha : F \Rightarrow G, \beta : G \Rightarrow H$ and $\gamma : H \Rightarrow I$ natural transformations. Then

$$(\gamma \circ \beta) \circ \alpha = \gamma \circ (\beta \circ \alpha)$$

Proof. Let $A \in \text{Obj}(\mathcal{C})$. By definition,

$$[(\gamma \circ \beta) \circ \alpha]_A = (\gamma \circ \beta)_A \circ \alpha_A$$
$$= (\gamma_A \circ \beta_A) \circ \alpha_A$$
$$= \gamma_A \circ (\beta_A \circ \alpha_A)$$
$$= \gamma_A \circ (\beta \circ \alpha)_A$$
$$= [\gamma \circ (\beta \circ \alpha)]_A$$

Since $A \in \text{Obj}(\mathcal{C})$ is arbitrary,

$$(\gamma \circ \beta) \circ \alpha = \gamma \circ (\beta \circ \alpha)$$

Definition 1.4.2.4. Let C, D be categories and $F : C \to D$. We define the **identity natural transformation from** F **to** F, denoted $\mathrm{id}_F : F \Rightarrow F$, by

$$(\mathrm{id}_F)_A = \mathrm{id}_{F(A)}$$

Exercise 1.4.2.5. Let \mathcal{C} , \mathcal{D} be categories and $F: \mathcal{C} \to \mathcal{D}$. Then $\mathrm{id}_F: F \Rightarrow F$ is a natural transformation from F to F.

Proof.

1. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\mathrm{id}_F)_A = \mathrm{id}_{F(A)}$$

 $\in \mathrm{Hom}_{\mathcal{D}}(F(A), F(A))$

2. Let $A, B \in \text{Obj}(\mathcal{C}), f \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$F(f) \circ (\mathrm{id}_F)_A = F(f) \circ \mathrm{id}_{F(A)}$$

$$= F(f)$$

$$= \mathrm{id}_{F(B)} \circ F(f)$$

$$= (\mathrm{id}_F)_B \circ F(f)$$

Exercise 1.4.2.6. Let \mathcal{C} , \mathcal{D} be categories, $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \Rightarrow G$. Then

- 1. $id_G \circ \alpha = \alpha$
- 2. $\alpha \circ \mathrm{id}_F = \alpha$

Proof.

1. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\mathrm{id}_G \circ \alpha)_A = (\mathrm{id}_G)_A \circ \alpha_A$$
$$= \mathrm{id}_{G(A)} \circ \alpha_A$$
$$= \alpha_A$$

Since $A \in \text{Obj}(C)$ is arbitrary, $\text{id}_G \circ \alpha = \alpha$

2. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\alpha \circ id_F)_A = \alpha_A \circ (id_F)_A$$
$$= \alpha_A \circ id_{F(A)}$$
$$= \alpha_A$$

Since $A \in \text{Obj}(C)$ is arbitrary, $\alpha \circ \text{id}_F = \alpha$.

Exercise 1.4.2.7. Let \mathcal{C} and \mathcal{D} be categories, $F, G: \mathcal{C} \to \mathcal{D}$ and $\alpha: F \Rightarrow G$. If \mathcal{C} is small, then α is a set.

Proof. Suppose that \mathcal{C} is small. Then $\mathrm{Obj}(\mathcal{C})$ is a set. Since $\alpha : \mathrm{Obj}(\mathcal{C}) \to \mathrm{Hom}_{\mathcal{D}}$, Axiom 1.1.3 implies that $\alpha(\mathrm{Obj}(\mathcal{C}))$ is a set. Then $\mathrm{Obj}(\mathcal{C}) \times \alpha(\mathrm{Obj}(\mathcal{C}))$ is a set. Therefore $\mathcal{P}(\mathrm{Obj}(\mathcal{C}) \times \alpha(\mathrm{Obj}(\mathcal{C})))$ is a set. Since $\alpha \subset \mathrm{Obj}(\mathcal{C}) \times \alpha(\mathrm{Obj}(\mathcal{C}))$, we have that $\alpha \in \mathcal{P}(\mathrm{Obj}(\mathcal{C}) \times \alpha(\mathrm{Obj}(\mathcal{C})))$ which implies that α is a set. \square

Exercise 1.4.2.8. Let \mathcal{C} and \mathcal{D} be categories and $F, G : \mathcal{C} \to \mathcal{D}$. If \mathcal{C} is small, then there exists a class A such that for each class α , $\alpha \in A$ iff $\alpha : F \Rightarrow G$.

Proof. Suppose that \mathcal{C} is small. Define ϕ by

$$\phi(\alpha): \alpha: F \Rightarrow G$$

Axiom 1.1.4 implies that there exists a class A such that for each set α , $\alpha \in A$ iff $\phi(\alpha)$. Let α be a class. Suppose that $\alpha \in A$. By Definition 1.1.1, α is a set. Since α is a set and $\alpha \in A$, we have that $\phi(\alpha)$. Hence $\alpha : F \Rightarrow G$.

Conversely, suppose that $\alpha : F \Rightarrow G$. Since \mathcal{C} is small, Exercise 1.4.8 implies that α is a set. Since $\phi(\alpha)$, we have that $\alpha \in A$.

Definition 1.4.2.9. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. We define the functor category from \mathcal{C} to \mathcal{D} , denoted $\mathcal{D}^{\mathcal{C}}$, by

- $Obj(\mathcal{D}^{\mathcal{C}}) = \{F : F : \mathcal{C} \to \mathcal{D}\}\$
- For $F, G \in \text{Obj}(\mathcal{D}^{\mathcal{C}})$, $\text{Hom}_{\mathcal{D}^{\mathcal{C}}}(F, G) = \{\alpha : \alpha : F \Rightarrow G\}$
- For $F, G, H \in \text{Obj}(\mathcal{D}^{\mathcal{C}})$, $\alpha \in \text{Hom}_{\mathcal{D}^{\mathcal{C}}}(F, G)$ and $\beta \in \text{Hom}_{\mathcal{D}^{\mathcal{C}}}(G, H)$, $\beta \circ_{\mathcal{D}^{\mathcal{C}}} \alpha = \beta \circ \alpha$

Exercise 1.4.2.10. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. Then $\mathcal{D}^{\mathcal{C}}$ is a category.

Proof. Exercise 1.4.3 implies that composition is well-defined. Exercise 1.4.4 implies that composition is associative. Exercise 1.4.6 and Exercise 1.4.7 imply the existence of identities. \Box

1.4.3 Diagonal Functor

Definition 1.4.3.1. Let \mathcal{C} , \mathcal{D} be categories, $X, Y \in \mathrm{Obj}(\mathcal{D})$ and $f \in \mathrm{Hom}_{\mathcal{D}}(X, Y)$. We define the **constant natural transformation on** \mathcal{C} **at** f, denoted $\delta_f^{\mathcal{C}} : \Delta_X^{\mathcal{C}} \Rightarrow \Delta_Y^{\mathcal{C}}$, by

$$(\delta_f^{\mathcal{C}})_A = f$$

Exercise 1.4.3.2. Let \mathcal{C} , \mathcal{D} be categories, $X, Y \in \mathrm{Obj}(\mathcal{D})$ and $f \in \mathrm{Hom}_{\mathcal{D}}(X, Y)$. Then $\delta_f^{\mathcal{C}} : \Delta_X^{\mathcal{C}} \Rightarrow \Delta_Y^{\mathcal{C}}$ is a natural transformation.

Proof.

1. By definition, for each $A \in \text{Obj}(\mathcal{C})$ $(\delta_f^{\mathcal{C}})_A \in \text{Hom}_{\mathcal{D}}(\Delta_X^{\mathcal{C}}(A), \Delta_Y^{\mathcal{C}}(A))$.

2. Let $A, B \in \text{Obj}(\mathcal{C})$ and $g \in \text{Hom}_{\mathcal{C}}(A, B)$. Then

$$\Delta_Y^{\mathcal{C}}(g) \circ (\delta_f^{\mathcal{C}})_A = \mathrm{id}_Y \circ f$$

$$= f$$

$$= f \circ \mathrm{id}_X$$

$$= (\delta_f^{\mathcal{C}})_B \circ \Delta_X^{\mathcal{C}}(g)$$

i.e. the following diagram commutes:

$$\begin{array}{cccc} \Delta_X^{\mathcal{C}}(A) & \xrightarrow{(\delta_f^{\mathcal{C}})_A} \Delta_Y^{\mathcal{C}}(A) & X & \xrightarrow{f} Y \\ \Delta_X^{\mathcal{C}}(g) \Big\downarrow & & & & \downarrow \mathrm{id}_X \Big\downarrow & & \downarrow \mathrm{id}_Y \\ \Delta_X^{\mathcal{C}}(B) & \xrightarrow{(\delta_f^{\mathcal{C}})_B} \Delta_Y^{\mathcal{C}}(B) & & X & \xrightarrow{f} Y \end{array}$$

So $\delta_f^{\mathcal{C}}: \Delta_X^{\mathcal{C}} \Rightarrow \Delta_Y^{\mathcal{C}}$ is a natural transformation.

Exercise 1.4.3.3. Let \mathcal{C}, \mathcal{D} be categories, $X, Y, Z \in \mathrm{Obj}(\mathcal{D}), f \in \mathrm{Hom}_{\mathcal{D}}(X, Y)$ and $g \in \mathrm{Hom}_{\mathcal{D}}(Y, Z)$. Then $\delta_{g \circ f}^{\mathcal{C}} = \delta_g^{\mathcal{C}} \circ \delta_f^{\mathcal{C}}$.

Proof. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\delta_{g \circ f}^{\mathcal{C}})_A = g \circ f$$

$$= (\delta_g^{\mathcal{C}})_A \circ (\delta_f^{\mathcal{C}})_A$$

$$= (\delta_g^{\mathcal{C}} \circ \delta_f^{\mathcal{C}})_A$$

Since $A \in \text{Obj}(\mathcal{C})$ is arbitrary, $\delta_{g \circ f}^{\mathcal{C}} = \delta_g^{\mathcal{C}} \circ \delta_f^{\mathcal{C}}$.

Exercise 1.4.3.4. Let \mathcal{C}, \mathcal{D} be categories and $X \in \text{Obj}(\mathcal{D})$. Then $\delta_{\text{id}_X}^{\mathcal{C}} = \text{id}_{\Delta_X^{\mathcal{C}}}$.

Proof. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\delta_{\mathrm{id}_X}^{\mathcal{C}})_A = \mathrm{id}_X$$
$$= \mathrm{id}_{\Delta_X^{\mathcal{C}}(A)}$$
$$= (\mathrm{id}_{\Delta_X^{\mathcal{C}}})_A$$

Since $A \in \text{Obj}(\mathcal{C})$ is arbitrary, $\delta_{\text{id}_X}^{\mathcal{C}} = \text{id}_{\Delta_X^{\mathcal{C}}}$

Definition 1.4.3.5. Let \mathcal{C} , \mathcal{D} be categories. Suppose that \mathcal{C} is small. We define the \mathcal{C} -ary diagonal functor on \mathcal{D} , denoted by $\Delta^{\mathcal{C}}: \mathcal{D} \to \mathcal{D}^{\mathcal{C}}$, by

- $\Delta^{\mathcal{C}}(X) = \Delta^{\mathcal{C}}_X$
- $\Delta^{\mathcal{C}}(f) = \delta_f^{\mathcal{C}}$

Exercise 1.4.3.6. Let \mathcal{C} , \mathcal{D} be categories. Suppose that \mathcal{C} is small. Then $\Delta^{\mathcal{C}}: \mathcal{D} \to \mathcal{D}^{\mathcal{C}}$ is a functor.

Proof.

- 1. Exercise 1.4.13 implies that for each $X, Y \in \text{Obj}(\mathcal{D})$ and $f \in \text{Hom}_{\mathcal{D}}(X, Y), \Delta^{\mathcal{C}}(f) \in \text{Hom}_{\mathcal{D}^{\mathcal{C}}}(\Delta^{\mathcal{C}}(X), \Delta^{\mathcal{C}}(Y))$
- 2. Exercise 1.4.14 implies that for each $X,Y,Z\in \mathrm{Obj}(\mathcal{D}),\ f\in \mathrm{Hom}_{\mathcal{D}}(X,Y)$ and $g\in \mathrm{Hom}_{\mathcal{D}}(Y,Z),$ $\Delta^{\mathcal{C}}(g\circ f)=\Delta^{\mathcal{C}}(g)\circ\Delta^{\mathcal{C}}(f)$
- 3. Exercise 1.4.15 implies that for each $X \in \mathrm{Obj}(\mathcal{D}), \, \Delta^{\mathcal{C}}(\mathrm{id}_X) = \mathrm{id}_{\Delta^{\mathcal{C}}(X)}$

So
$$\Delta^{\mathcal{C}}: \mathcal{D} \to \mathcal{D}^{\mathcal{C}}$$
 is a functor.

1.5 Algebra of Morphisms

1.5.1 Isomorphisms

Exercise 1.5.1.1. Uniqueness of Identities:

Let \mathcal{C} be a category. Then for each $A \in \mathrm{Obj}(\mathcal{C})$, there exists a unique $e_A \in \mathrm{Hom}_{\mathcal{C}}(A, A)$ such that for each $B \in \mathrm{Obj}(\mathcal{C})$, $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$ and $g \in \mathrm{Hom}_{\mathcal{C}}(B, A)$, $f \circ e_A = f$ and $e_A \circ g = g$.

Proof. Let $A \in \text{Obj}(\mathcal{C})$.

• Existence:

Since \mathcal{C} is a category, by definition there exists $\mathrm{id}_A \in \mathrm{Hom}_{\mathcal{C}}(A,A)$ such that for each $B \in \mathrm{Obj}(\mathcal{C})$, $f \in \mathrm{Hom}_{\mathcal{C}}(A,B)$ and $g \in \mathrm{Hom}_{\mathcal{C}}(B,A)$, $f \circ \mathrm{id}_A = f$ and $\mathrm{id}_A \circ g = g$.

• Uniqueness:

Let $e_A \in \operatorname{Hom}_{\mathcal{C}}(A, A)$. Suppose that for each $B \in \operatorname{Obj}(\mathcal{C})$, $f \in \operatorname{Hom}_{\mathcal{C}}(A, B)$ and $g \in \operatorname{Hom}_{\mathcal{C}}(B, A)$, $f \circ e_A = f$ and $e_A \circ g = g$. Then

$$e_A = e_A \circ \mathrm{id}_A$$
$$= \mathrm{id}_A$$

Definition 1.5.1.2. Let \mathcal{C} be a category, $A, B \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$. Then f is said to be an **isomorphism** if there exists $g \in \mathrm{Hom}_{\mathcal{C}}(B, A)$ such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

Exercise 1.5.1.3. Uniqueness of Inverses:

Let \mathcal{C} be a category, $A, B \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$. If f is an isomorphism, then there exists a unique $g \in \mathrm{Hom}_{\mathcal{C}}(B, A)$ such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

Proof. Suppose that f is an isomorphism.

• Existence:

By definition, there exists $g \in \text{Hom}_{\mathcal{C}}(B,A)$ such that $g \circ f = \text{id}_A$ and $f \circ g = \text{id}_B$.

• Uniqueness:

Let $g' \in \operatorname{Hom}_{\mathcal{C}}(B,A)$. Suppose that $g' \circ f = \operatorname{id}_A$, $f \circ g' = \operatorname{id}_B$. Then

$$g' = g' \circ id_B$$

$$= g' \circ (f \circ g)$$

$$= (g' \circ f) \circ g$$

$$= id_A \circ g$$

$$= g$$

Definition 1.5.1.4. Let \mathcal{C} be a category, $A, B \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$. Suppose that f is an isomorphism. We define the **inverse of** f, denoted f^{-1} , to be the unique $g \in \mathrm{Hom}_{\mathcal{C}}(B, A)$ such that $g \circ f = \mathrm{id}_A$ and $f \circ g = \mathrm{id}_B$.

Exercise 1.5.1.5. Let \mathcal{C} be a category and $A \in \mathrm{Obj}(\mathcal{C})$. Then id_A is an isomorphism and $(\mathrm{id}_A)^{-1} = \mathrm{id}_A$.

Proof. Since $id_A \circ id_A = id_A$, we have that id_A is an isomorphism and $(id_A)^{-1} = id_A$.

Exercise 1.5.1.6. Let \mathcal{C} be a category and $A, B \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$. If f is an isomorphism, then f^{-1} is an isomorphism and $(f^{-1})^{-1} = f$.

Proof. Suppose that f is an isomorphism. By definition, $f \circ f^{-1} = \mathrm{id}_B$ and $f^{-1} \circ f = \mathrm{id}_A$. Hence f^{-1} is an isomorphism and $(f^{-1})^{-1} = f$.

Exercise 1.5.1.7. Let \mathcal{C} be a category, $A, B, C \in \mathrm{Obj}(\mathcal{C})$, $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$ and $g \in \mathrm{Hom}_{\mathcal{C}}(B, C)$. If f and g are isomorphisms, then $g \circ f$ is an isomorphism and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. Suppose that f and g are isomorphisms. Then

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = ((f^{-1} \circ g^{-1}) \circ g) \circ f$$

$$= (f^{-1} \circ (g^{-1} \circ g)) \circ f$$

$$= (f^{-1} \circ id_B) \circ f$$

$$= f^{-1} \circ f$$

$$= id_A$$

and

$$\begin{split} (g \circ f) \circ (f^{-1} \circ g^{-1}) &= ((g \circ f) \circ f^{-1}) \circ g^{-1} \\ &= (g \circ (f \circ f^{-1})) \circ g^{-1} \\ &= (g \circ \mathrm{id}_B) \circ g^{-1} \\ &= g \circ g^{-1} \\ &= \mathrm{id}_C \end{split}$$

So $g \circ f$ is an isomorphism and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Definition 1.5.1.8. Let \mathcal{C} be a category and $A, B \in \mathrm{Obj}(\mathcal{C})$. Then A is said to be **isomorphic** to B if there exists $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$ such that f is an isomorphism.

Exercise 1.5.1.9. Let \mathcal{C} be a category. We define the relation \cong on $\mathrm{Obj}(\mathcal{C})$ by $A \cong B$ iff A is isomorphic to B. Then \cong is an equivalence relation on $\mathrm{Obj}(\mathcal{C})$.

Proof.

1. reflexivity:

Let $A \in \text{Obj}(\mathcal{C})$. Exercise 1.5.5 implies that id_A is an isomorphism. So $A \cong A$. Since $A \in \text{Obj}(\mathcal{C})$ is arbitrary, we have that for each $A \in \text{Obj}(\mathcal{C})$, $A \cong A$ and thus \cong is reflexive.

2. symmetry:

Let $A, B \in \mathrm{Obj}(\mathcal{C})$. Suppose that $A \cong B$. Then there exists $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$ such that f is an isomorphism. Exercise 1.5.6 implies that f^{-1} is an isomorphism. Since $f^{-1} \in \mathrm{Hom}_{\mathcal{C}}(B, A)$, $B \cong A$. Since $A, B \in \mathrm{Obj}(\mathcal{C})$ are arbitrary, we have that for each $A, B \in \mathrm{Obj}(\mathcal{C})$, $A \cong B$ implies that $B \cong A$ and thus \cong is reflexive.

3. **transitivity:** Let $A, B, C \in \text{Obj}(\mathcal{C})$. Suppose that $A \cong B$ and $B \cong C$. Then there exist $f \in \text{Hom}_{\mathcal{C}}(A, B)$ and $g \in \text{Hom}_{\mathcal{C}}(B, C)$ such that that f and g are isomorphisms. Exercise 1.5.7 implies that $g \circ f$ is an isomorphism. Since $g \circ f \in \text{Hom}_{\mathcal{C}}(A, C)$, $A \cong C$. Since $A, B, C \in \text{Obj}(\mathcal{C})$ are arbitrary, we have that for each $A, B, C \in \text{Obj}(\mathcal{C})$, $A \cong B$ and $B \cong C$ implies that $A \cong C$ and thus \cong is transitive.

Since \cong is reflexive, symmetric and transitive, \cong is an equivalence relation on $Obj(\mathcal{C})$.

Definition 1.5.1.10. Let \mathcal{C} be a category, $A, B \in \text{Obj}(\mathcal{C})$ and $f: A \to B$. Then

• f is said to be a **monomorphism** if for each $C \in \text{Obj}(C)$ and $g, h \in \text{Hom}_{\mathcal{C}}(C, A)$, $f \circ g = f \circ h$ implies that g = h, i.e. we have the following implication of commutative diagrams:

$$\begin{array}{ccc}
C & \xrightarrow{g} & A \\
h \downarrow & \downarrow f & \Longrightarrow & C & \xrightarrow{A} \\
A & \xrightarrow{f} & B & & & & & & & \\
\end{array}$$

• f is said to be an **epimorphism** if for each $C \in \text{Obj}(C)$ and $g, h \in \text{Hom}_{\mathcal{C}}(B, C)$, $g \circ f = h \circ f$ implies that g = h, i.e. we have the following implication of commutative diagrams:

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
f \downarrow & & \downarrow g \\
B & \xrightarrow{h} & C
\end{array}
\qquad B \xrightarrow{g} C$$

Exercise 1.5.1.11. Let $A, B \in \text{Obj}(\mathbf{Set})$ and $f \in \text{Hom}_{\mathbf{Set}}(A, B)$. Then

- 1. f is a monomorphism iff f is injective
- 2. f is an epimorphism iff f is surjective

Hint: consider $C = \{0\}$ and $C = \{0, 1\}$.

Proof.

1. Suppose that f is injective. Let $C \in \text{Obj}(\mathbf{Set})$ and $g, h \in \text{Hom}_{\mathbf{Set}}(C, A)$. Suppose that $f \circ g = f \circ h$. Let $x \in C$. Then f(g(x)) = f(h(x)). Injectivity of f implies that g(x) = h(x). Since $x \in C$ is arbitrary, g = h. Hence f is a monomorphism.

Conversely, suppose that f is a monomorphism. Let $a, b \in A$. Suppose that f(a) = f(b). Set $C = \{0\}$ and define $g, h : C \to A$ by g(0) = a and h(0) = b. Then

$$f \circ g(0) = f(g(0))$$

= $f(a)$
= $f(b)$
= $f(h(0))$
= $f \circ h(0)$

Therefore $f \circ g = f \circ h$. Since f is a monomorphism, we have that g = h. Hence

$$a = g(0)$$
$$= h(0)$$
$$= b$$

2. Suppose that f is surjective. Let $C \in \text{Obj}(\mathcal{C})$ and $g, h \in \text{Hom}_{\mathbf{Set}}(B, C)$. Suppose that $g \circ f = h \circ f$. Let $g \in B$. Surjective of f implies that there exists $x \in A$ such that y = f(x). Then

$$g(y) = g(f(x))$$

$$= g \circ f(x)$$

$$= h \circ f(x)$$

$$= h(f(x))$$

$$= h(y)$$

Since $y \in B$ is arbitrary, g = h. Hence f is an epimorphism.

Conversely, suppose that f is an epimorphism. Set $C = \{0,1\}$ and define $g,h: B \to C$ by $g = \chi_{f(A)}$ and $h = \chi_B$. Then $g \circ f = h \circ f$. Since f is an epimorphism, g = h and f(A) = B. Hence f is surjective.

Exercise 1.5.1.12. Let \mathcal{C} be a category, $A, B \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{C}}(A, B)$. If f is an isomorphism, then f is a monomorphism and f is an epimorphism.

Proof. Suppose that f is an isomorphism.

• (monomorphism) Let $C \in \text{Obj}(\mathcal{C})$ and $g, h \in \text{Hom}_{\mathcal{C}}(C, A)$. Suppose that $f \circ g = f \circ h$. Then

$$g = \mathrm{id}_A \circ g$$

$$= (f^{-1} \circ f) \circ g$$

$$= f^{-1} \circ (f \circ g)$$

$$= f^{-1} \circ (f \circ h)$$

$$= (f^{-1} \circ f) \circ h$$

$$= \mathrm{id}_A \circ h$$

$$= h$$

So f is a monomorphism.

• (epimorphism) Let $C \in \text{Obj}(\mathcal{C})$ and $g, h \in \text{Hom}_{\mathcal{C}}(B, C)$. Suppose that $g \circ f = h \circ f$. Then

$$g = g \circ id_B$$

$$= g \circ (f \circ f^{-1})$$

$$= (g \circ f) \circ f^{-1}$$

$$= (h \circ f) \circ f^{-1}$$

$$= h \circ (f \circ f^{-1})$$

$$= h \circ id_B$$

$$= h$$

So f is an epimorphism.

Definition 1.5.1.13. Let \mathcal{C} and \mathcal{D} be categories, $F,G:\mathcal{C}\to\mathcal{D}$ and $\alpha:F\Rightarrow G$. Then α is said to be a **natural isomorphism** if for each $A\in \mathrm{Obj}(\mathcal{C}),\ \alpha_A$ is an isomorphism.

Definition 1.5.1.14. Let \mathcal{C} and \mathcal{D} be categories, $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \Rightarrow G$. Suppose that α is a natural isomorphism. We define $\alpha^{-1} : G \Rightarrow F$ by $(\alpha^{-1})_A = \alpha_A^{-1}$.

Exercise 1.5.1.15. Let \mathcal{C} and \mathcal{D} be categories, $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \Rightarrow G$. Suppose that α is a natural isomorphism. Then $\alpha^{-1} : G \Rightarrow F$ is a natural transformation.

Proof.

1. Let $A \in \text{Obj}(\mathcal{C})$. Since $\alpha_A \in \text{Hom}_{\mathcal{D}}(F(A), G(A))$, we have that

$$(\alpha^{-1})_A = \alpha_A^{-1}$$

$$\in \operatorname{Hom}_{\mathcal{D}}(G(A), F(A))$$

2. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Since $G(f) \circ \alpha_A = \alpha_B \circ F(f)$, i.e. the following diagram commutes:

$$F(A) \xrightarrow{\alpha_A} G(A)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(B) \xrightarrow{\alpha_B} G(B)$$

we have that

$$F(f) \circ (\alpha^{-1})_A = F(f) \circ \alpha_A^{-1}$$

$$= \operatorname{id}_{F(B)} \circ (F(f) \circ \alpha_A^{-1})$$

$$= (\alpha_B^{-1} \circ \alpha_B) \circ (F(f) \circ \alpha_A^{-1})$$

$$= \alpha_B^{-1} \circ (\alpha_B \circ (F(f) \circ \alpha_A^{-1}))$$

$$= \alpha_B^{-1} \circ ((\alpha_B \circ F(f)) \circ \alpha_A^{-1})$$

$$= \alpha_B^{-1} \circ ((G(f) \circ \alpha_A) \circ \alpha_A^{-1})$$

$$= \alpha_B^{-1} \circ (G(f) \circ (\alpha_A \circ \alpha_A^{-1}))$$

$$= \alpha_B^{-1} \circ (G(f) \circ \operatorname{id}_{G(A)})$$

$$= \alpha_B^{-1} \circ G(f)$$

$$= (\alpha^{-1})_B \circ G(f)$$

i.e. the following diagram commutes:

$$G(A) \xrightarrow{(\alpha^{-1})_A} F(A)$$

$$G(f) \downarrow \qquad \qquad \downarrow^{F(f)}$$

$$G(B) \xrightarrow{(\alpha^{-1})_B} F(B)$$

So $\alpha^{-1}: G \Rightarrow F$.

Exercise 1.5.1.16. Let \mathcal{C} and \mathcal{D} be categories, $F, G : \mathcal{C} \to \mathcal{D}$ and $\alpha : F \Rightarrow G$. Suppose that α is a natural isomorphism. Then $\alpha^{-1} \circ \alpha = \mathrm{id}_F$ and $\alpha \circ \alpha^{-1} = \mathrm{id}_G$.

Proof. Let $A \in \text{Obj}(\mathcal{C})$. Then

$$(\alpha^{-1} \circ \alpha)_A = (\alpha^{-1})_A \circ \alpha_A$$
$$= \alpha_A^{-1} \circ \alpha_A$$
$$= id_{F(A)}$$
$$= (id_F)_A$$

and

$$(\alpha \circ \alpha^{-1})_A = \alpha_A \circ (\alpha^{-1})_A$$
$$= \alpha_A \circ \alpha_A^{-1}$$
$$= id_{G(A)}$$
$$= (id_G)_A$$

Since $A \in \text{Obj}(\mathcal{C})$ is arbitrary, $\alpha^{-1} \circ \alpha = \text{id}_F$ and $\alpha \circ \alpha^{-1} = \text{id}_G$.

Exercise 1.5.1.17. Let \mathcal{C} and \mathcal{D} be categories. Suppose that \mathcal{C} is small. Let $F, G \in \mathcal{D}^{\mathcal{C}}$ and $\alpha \in \operatorname{Hom}_{\mathcal{D}^{\mathcal{C}}}(F, G)$. Then α is an isomorphism iff α is a natural isomorphism.

Proof. Suppose that α is an isomorphism. Then there exists $\beta \in \operatorname{Hom}_{\mathcal{D}^{\mathcal{C}}}(G, F)$ such that $\beta \circ \alpha = \operatorname{id}_{F}$ and $\alpha \circ \beta - \operatorname{id}_{G}$. Let $A \in \operatorname{Obj}(\mathcal{C})$. Then

$$\beta_A \circ \alpha_A = (\beta \circ \alpha)_A$$
$$= (\mathrm{id}_F)_A$$
$$= \mathrm{id}_{F(A)}$$

and

$$\alpha_A \circ \beta_A = (\alpha \circ \beta)_A$$
$$= (\mathrm{id}_G)_A$$
$$= \mathrm{id}_{G(A)}$$

Hence α_A is an isomorphism. Since $A \in \mathrm{Obj}(\mathcal{C})$ is arbitrary, α is a natural isomorphism. Conversely, suppose that α is a natural isomorphism. Exercise 1.5.15 and Exercise 1.5.16 imply that α is an isomorphism.

1.5.2 Initial and Final Objects

Definition 1.5.2.1. Let \mathcal{C} be a category and $0 \in \text{Obj}(\mathcal{C})$. Then 0 is said to be **initial** if for each $A \in \text{Obj}(\mathcal{C})$, there exists $f \in \text{Hom}_{\mathcal{C}}(0, A)$ such that $\text{Hom}_{\mathcal{C}}(0, A) = \{f\}$.

Definition 1.5.2.2. Let \mathcal{C} be a category and $1 \in \text{Obj}(\mathcal{C})$. Then 1 is said to be **final** if for each $A \in \text{Obj}(\mathcal{C})$, there exists $f \in \text{Hom}_{\mathcal{C}}(A, 1)$ such that $\text{Hom}_{\mathcal{C}}(A, 1) = \{f\}$.

Exercise 1.5.2.3. Let \mathcal{C} be a category and $0 \in \mathrm{Obj}(\mathcal{C})$. If 0 is initial, then $\mathrm{Hom}_{\mathcal{C}}(0,0) = \{\mathrm{id}_0\}$.

Proof. Suppose that 0 is initial. Then there exists a $f \in \text{Hom}_{\mathcal{C}}(0,0)$ such that $\text{Hom}_{\mathcal{C}}(0,0) = \{f\}$. Since $\text{id}_0 \in \text{Hom}_{\mathcal{C}}(0,0)$, $f = \text{id}_0$ and therefore $\text{Hom}_{\mathcal{C}}(0,0) = \{\text{id}_0\}$.

Exercise 1.5.2.4. Let \mathcal{C} be a category and $1 \in \mathrm{Obj}(\mathcal{C})$. If 1 is final, then $\mathrm{Hom}_{\mathcal{C}}(1,1) = \{\mathrm{id}_1\}$.

Proof. Similar to Exercise 1.5.20

Exercise 1.5.2.5. Let \mathcal{C} be a category and $0, 0' \in \mathrm{Obj}(\mathcal{C})$. If 0 and 0' are initial, then 0 and 0' are isomorphic.

Proof. Suppose that 0 and 0' are initial. By definition, there exist $f \in \text{Hom}_{\mathcal{C}}(0,0')$ and $f' \in \text{Hom}_{\mathcal{C}}(0',0)$ such that $\text{Hom}_{\mathcal{C}}(0,0') = \{f\}$ and $\text{Hom}_{\mathcal{C}}(0',0) = \{f'\}$, i.e. we have the following commutative diagram:

Exercise 1.5.20 implies that $f' \circ f = \mathrm{id}_0$ and $f \circ f' = \mathrm{id}_{0'}$. Hence f is an isomorphism. Since $f \in \mathrm{Hom}_{\mathcal{C}}(0,0')$, we have that $0 \cong 0'$.

Exercise 1.5.2.6. Let \mathcal{C} be a category and $1, 1' \in \text{Obj}(\mathcal{C})$. If 1 and 1' are final, then 1 and 1' are isomorphic.

Proof. Similar to Exercise 1.5.22 \Box

Exercise 1.5.2.7. We have that \emptyset is initial in Set.

Proof. Let $A \in \text{Obj}(\mathbf{Set})$. Define $f \in \text{Hom}_{\mathbf{Set}}(\emptyset, A)$ by $f = \emptyset$. Let $g \in \text{Hom}_{\mathbf{Set}}(\emptyset, A)$. Then g = f. Since $g \in \text{Hom}_{\mathbf{Set}}(\emptyset, A)$ is arbitrary, $\text{Hom}_{\mathbf{Set}}(\emptyset, A) = \{f\}$. Hence \emptyset is initial.

Exercise 1.5.2.8. We have that $\{\emptyset\}$ is terminal in **Set**.

Proof. Let $A \in \text{Obj}(\mathbf{Set})$. Define $f \in \text{Hom}_{\mathbf{Set}}(A, \{\emptyset\})$ by $f(x) = \emptyset$. Let $g \in \text{Hom}_{\mathbf{Set}}(A, \{\emptyset\})$. Then g = f. Since $g \in \text{Hom}_{\mathbf{Set}}(A, \{\emptyset\})$ is arbitrary, $\text{Hom}_{\mathbf{Set}}(A, \{\emptyset\}) = \{f\}$. Hence $\{\emptyset\}$ is final.

Exercise 1.5.2.9. We have that 0 is initial in Cat.

Proof. Let $C \in \text{Obj}(\mathbf{Cat})$. It is clear that $\text{Hom}_{\mathbf{Cat}}(\mathbf{0}, C) = \{E_C\}$. Hence $\mathbf{0}$ is initial in \mathbf{Cat} .

Exercise 1.5.2.10. We have that 1 is final in Cat.

Proof. Let $C \in \text{Obj}(\mathbf{Cat})$. It is clear that $\text{Hom}_{\mathbf{Cat}}(C, \mathbf{1}) = \{\Delta_*^C\}$. Hence **1** is final in \mathbf{Cat} .

Definition 1.5.2.11. Let C, D be categories and $0 \in \text{Obj}(D)$ and $F : C \to D$. Suppose that 0 is initial in D. Then for each $A \in \text{Obj}(C)$, there exists $f_A \in \text{Hom}_D(0, F(A))$ such that $\text{Hom}_D(0, F(A)) = \{f_A\}$. We define the **initial natural transformation induced by** 0 from Δ_0^C to F, denoted $\zeta_0 : \Delta_0^C \Rightarrow F$, by $(\eta_0)_A = f_A$.

Definition 1.5.2.12. Let \mathcal{C} , \mathcal{D} be categories and $1 \in \text{Obj}(\mathcal{D})$ and $F : \mathcal{C} \to \mathcal{D}$. Suppose that 1 is final in \mathcal{D} . Then for each $A \in \text{Obj}(\mathcal{C})$, there exists $f_A \in \text{Hom}_{\mathcal{D}}(F(A), 1)$ such that $\text{Hom}_{\mathcal{D}}(F(A), 1) = \{f_A\}$. We define the **final natural transformation induced by** 1 from F to $\Delta_1^{\mathcal{C}}$, denoted $\phi_1 : F \Rightarrow \Delta_1^{\mathcal{C}}$, by $(\phi_1)_A = f_A$.

Exercise 1.5.2.13. Let \mathcal{C} , \mathcal{D} be categories and $0 \in \text{Obj}(\mathcal{D})$ and $F : \mathcal{C} \to \mathcal{D}$. Suppose that 0 is initial in \mathcal{D} . Then $\eta_0 : \Delta_0^{\mathcal{C}} \Rightarrow F$ is a natural transformation.

Proof.

- 1. By definition, for each $A \in \text{Obj}(\mathcal{C})$, $(\eta_0)_A \in \text{Hom}_{\mathcal{D}}(\Delta_0^{\mathcal{C}}(A), F(A))$
- 2. Let $A, B \in \text{Obj}(\mathcal{C})$ and $f \in \text{Hom}_{\mathcal{C}}(A, B)$. Since

$$F(f) \circ (\eta_0)_A \in \operatorname{Hom}_{\mathcal{D}}(0, F(B))$$
$$= \{(\eta_0)_B\}$$

we have that

$$F(f) \circ (\eta_0)_A = (\eta_0)_B$$
$$= (\eta_0)_B \circ id_0$$

i.e. the following diagram commutes:

$$\Delta_0^{\mathcal{C}}(A) \xrightarrow{(\eta_0)_A} F(A) \qquad 0 \xrightarrow{(\eta_0)_A} F(A)
\Delta_0^{\mathcal{C}}(f) \downarrow \qquad \downarrow F(f) = \mathrm{id}_0 \downarrow \qquad \downarrow F(f)
\Delta_0^{\mathcal{C}}(B) \xrightarrow{(\eta_0)_B} F(B) \qquad 0 \xrightarrow{(\eta_0)_B} F(B)$$

So $\eta_0: \Delta_0^{\mathcal{C}} \Rightarrow F$ is a natural transformation.

Exercise 1.5.2.14. Let \mathcal{C} , \mathcal{D} be categories and $1 \in \text{Obj}(\mathcal{D})$ and $F : \mathcal{C} \to \mathcal{D}$. Suppose that 1 is final in \mathcal{D} . Then $\phi_1 : F \Rightarrow \Delta_0^{\mathcal{C}}$ is a natural transformation.

Proof. Similar to Exercise 1.5.30

Exercise 1.5.2.15. Let \mathcal{C} , \mathcal{D} be categories and $0 \in \mathrm{Obj}(\mathcal{D})$. Suppose that \mathcal{C} is small. If 0 is initial in \mathcal{D} , then $\Delta_0^{\mathcal{C}}$ is initial in $\mathcal{D}^{\mathcal{C}}$.

Proof. Suppose that 0 is initial in \mathcal{D} . Let $F \in \mathrm{Obj}(\mathcal{D}^{\mathcal{C}})$, $\alpha \in \mathrm{Hom}_{\mathcal{D}^{\mathcal{C}}}(\Delta_0^{\mathcal{C}}, F)$ and $A \in \mathrm{Obj}(\mathcal{C})$. Then

$$\alpha_A \in \operatorname{Hom}_{\mathcal{D}}(\Delta_0^{\mathcal{C}}(A), F(A))$$

= $\operatorname{Hom}_{\mathcal{D}}(0, F(A))$
= $\{(\eta_0)_A\}$

Hence $\alpha_A = (\eta_0)_A$. Since $A \in \text{Obj}(\mathcal{C})$ is arbitrary, $\alpha = \eta_0$. Since $\alpha \in \text{Hom}_{\mathcal{D}^{\mathcal{C}}}(\Delta_0^{\mathcal{C}}, F)$ is arbitrary, $\text{Hom}_{\mathcal{D}^{\mathcal{C}}}(\Delta_0^{\mathcal{C}}, F) = \{\eta_0\}$. Therefore $\Delta_0^{\mathcal{C}}$ is initial in $\mathcal{D}^{\mathcal{C}}$.

Exercise 1.5.2.16. Let \mathcal{C} , \mathcal{D} be categories and $1 \in \mathrm{Obj}(\mathcal{D})$. Suppose that \mathcal{C} is small. If 1 is final in \mathcal{D} , then $\Delta_1^{\mathcal{C}}$ is final in $\mathcal{D}^{\mathcal{C}}$.

Proof. Similar to Exercise 1.5.32.

Chapter 2

Universal Morphisms and Limits

2.0.1 Universal Morphisms

Definition 2.0.1.1. Let \mathcal{C}, \mathcal{D} be a categories, $X \in \mathrm{Obj}(\mathcal{D})$, $F : \mathcal{C} \to \mathcal{D}$, $A \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{D}}(X, F(A))$. Then (A, f) is said to be a **universal morphism** from X to F if for each $A' \in \mathrm{Obj}(\mathcal{C})$ $f' \in \mathrm{Hom}_{\mathcal{D}}(X, F(A'))$, there exists a unique $\alpha \in \mathrm{Hom}_{\mathcal{C}}(A, A')$ such that $f' = F(\alpha) \circ f$, i.e. the following diagram commutes:

Definition 2.0.1.2. Let \mathcal{C}, \mathcal{D} be a categories, $X \in \mathrm{Obj}(\mathcal{D})$, $F : \mathcal{C} \to \mathcal{D}$, $A \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{D}}(F(A), X)$. Then (A, f) is said to be a **universal morphism** from F to X if for each $A' \in \mathrm{Obj}(\mathcal{C})$ $f' \in \mathrm{Hom}_{\mathcal{D}}(F(A'), X)$, there exists a unique $\alpha \in \mathrm{Hom}_{\mathcal{C}}(A', A)$ such that $f' = f \circ F(\alpha)$, i.e. the following diagram commutes:

$$X \xleftarrow{f} F(A) \qquad A$$

$$\uparrow^{f} F(\alpha) \qquad \uparrow^{\alpha}$$

$$F(A') \qquad A'$$

Exercise 2.0.1.3. Let \mathcal{C}, \mathcal{D} be a categories, $X \in \mathrm{Obj}(\mathcal{D})$, $F : \mathcal{C} \to \mathcal{D}$, $A \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{D}}(X, F(A))$. Then (A, f) is a universal morphism from X to F iff (A, f) is initial in $(X \downarrow F)$.

Exercise 2.0.1.4. Let \mathcal{C}, \mathcal{D} be a categories, $X \in \mathrm{Obj}(\mathcal{D})$, $F : \mathcal{C} \to \mathcal{D}$ $A \in \mathrm{Obj}(\mathcal{C})$ and $f \in \mathrm{Hom}_{\mathcal{D}}(F(A), X)$. Then (A, f) is a universal morphism from F to X iff (A, f) is terminal in $(F \downarrow X)$.

2.1 Limits

Definition 2.1.0.1. Let \mathcal{J} , \mathcal{C} be categories and $D: \mathcal{J} \to \mathcal{C}$. Then D is said to be a **diagram of type** \mathcal{J} in \mathcal{C} .

Note 2.1.0.2. We are usually interested in the case that \mathcal{J} is small. We will identify a diagram D with its image.

Example 2.1.0.3. Define \mathcal{J} by

- $\operatorname{Obj}(\mathcal{J}) = \{1, 2, 3\}$ and for $i, j \in \operatorname{Obj}(\mathcal{J})$, $\operatorname{Hom}_{\mathcal{J}}(i, j) = \{a_{i,j}\}$,
- for $i, j \in \text{Obj}(\mathcal{J})$, $\text{Hom}_{\mathcal{J}}(i, j) = \{a_{ij}\}$.

Let \mathcal{C} be a category and $D: \mathcal{J} \to \mathcal{C}$. Without including the identity morphisms or compositions, we can visualize D as follows:

Definition 2.1.0.4. Let \mathcal{J} , \mathcal{C} be categories. Suppose that \mathcal{J} is small. Let $D \in \text{Obj}(\mathcal{C}^{\mathcal{J}})$. We define the category of cones to D, denoted $\mathbf{Cone}(D)$, by $\mathbf{Cone}(D) = (\Delta^{\mathcal{J}} \downarrow D)$.

Example 2.1.0.5. Let $\mathcal J$

Definition 2.1.0.6. Let \mathcal{J} , \mathcal{C} be categories. Suppose that \mathcal{J} is small. Let $D \in \text{Obj}(\mathcal{C}^{\mathcal{J}})$. We define the category of cocones from D, denoted $\mathbf{Cocone}(D)$, by $\mathbf{Cocone}(D) = (D \downarrow \Delta^{\mathcal{J}})$.

Definition 2.1.0.7. Let \mathcal{J} , \mathcal{C} be categories. Suppose that \mathcal{J} is small. Let $D \in \mathrm{Obj}(\mathcal{C}^{\mathcal{J}})$ and $(X, \phi) \in \mathrm{Cone}(D)$. Then (X, ϕ) is said to be a **limit of** D if (X, ϕ) is a universal morphism from $\Delta^{\mathcal{J}}$ to D.

Note 2.1.0.8. Let \mathcal{J} , \mathcal{C} be categories. Suppose that \mathcal{J} is small. Let $D \in \text{Obj}(\mathcal{C}^{\mathcal{J}})$ and $(X, \phi) \in \mathbf{Cone}(D)$. Then

$$(X, \phi)$$
 is a limit of $D \iff (X, \phi)$ is terminal in $\mathbf{Cone}(D)$
 \iff for each $(Y, \psi) \in \mathbf{Cone}(D)$, there exists a unique $f \in \mathrm{Hom}_{\mathcal{C}}(Y, X)$ such that for each $j \in \mathcal{J}, \, \psi_j = \phi_j \circ f$

Definition 2.1.0.9. Let \mathcal{J} , \mathcal{C} be categories. Suppose that \mathcal{J} is small. Let $D \in \mathrm{Obj}(\mathcal{C}^{\mathcal{J}})$ and $(X, \phi) \in \mathbf{Cocone}(D)$. Then (X, ϕ) is said to be a **colimit of** D if (X, ϕ) is a universal morphism from D to $\Delta^{\mathcal{J}}$.

Note 2.1.0.10. Let \mathcal{J}, \mathcal{C} be categories. Suppose that \mathcal{J} is small. Let $D \in \text{Obj}(\mathcal{C}^{\mathcal{J}})$ and $(X, \phi) \in \mathbf{Cone}(D)$. Then

$$(X,\phi)$$
 is a colimit of $D \iff (X,\phi)$ is initial in $\mathbf{Cocone}(D)$
 \iff for each $(Y,\psi) \in \mathbf{Cocone}(D)$, there exists a unique
 $f \in \mathrm{Hom}_{\mathcal{C}}(X,Y)$ such that for each $j \in \mathcal{J}, \, \psi_j = f \circ \phi_j$

2.1. LIMITS 31

- 2.1.1 Products and Coproducts
- 2.1.2 Equalizers and Coequalizers

Appendix A

App