Note Title

17/10/2024

Tabellina di limiti

(si dimostrano usando la definizione)

$$\lim_{m \to +\infty} d^m = \int_{0}^{\infty} +\infty \qquad \text{se } d > 1$$

Il caso d>1 si dimostra a partire da $d^m \ge 1 + (\alpha-1) n$ Il caso $d \in (0,1)$ si debluce dal precedente osservando che

$$d^{m} = \frac{1}{(\frac{1}{d})^{m}}$$
 ora se $d \in (0,1)$, allora $\frac{1}{d} > 1$,

quiudi $(\frac{1}{d})^{m} \rightarrow +\infty$ e $\frac{1}{+\infty} = 0$

[Caso speciale: (1) = 1 1 10 = 0]

Esempio 1 lim
$$m^3 - m^2$$
 $(+\infty - \infty = \text{forma indet.})$

Ossenso du $m^3 - m^2 = m^2 (m-1) \rightarrow +\infty$ per teo, algebrico

Escupio 2 live
$$\frac{n^2 + 7M}{7 n^2 + 4}$$
 [$\frac{+\infty}{+\infty}$ = forma indet.]

$$\frac{m^2 + 7m}{7m^2 + 4} = \frac{m^2 \left(1 + \frac{7}{m^2}\right)}{m^2} = \frac{1}{7} + \frac{4}{m^2}$$

$$\frac{1}{7} + \frac{4}{m^2} + \frac{4}{m$$

Escupio 6 Dius
$$\sqrt{12} = 1$$

Brutal mode: $\sqrt{12} = 2^{\frac{1}{2}} \rightarrow 2^{\frac{1}{2}} = 1$

Abbiamo modo de se au $\rightarrow 2$, allora $2^{\frac{1}{2}} \rightarrow 2^{\frac{1}{2}}$. Se volensi dimostrare questo, mi servivebbe prima sopre de la $\sqrt{12} \rightarrow 2$

Dimostrariam senera forti misteriosi. Fantiamo della Bornoulli $(1+x)^m \ge 1+mx$

Vogelio avere 2 a dx , quindi mno $x = m$. Viene $(1+\frac{1}{m})^m \ge 2$

Facendo la rabica m -entua . $1+\frac{1}{m} \ge \sqrt{2}$, ma allora $\sqrt{1} \le \sqrt{12} \le (1+\frac{1}{m})$

L'escupio 6-bis lim $\sqrt{12} \le (1+\frac{1}{m})$

Escupio 6-bis lim $\sqrt{12} \le (1+\frac{1}{m})$

Se $\sqrt{12} \le (1+\frac{1}{m})$
 $\sqrt{12} \le (1+\frac{1}{m})$
 $\sqrt{12} \le (1+\frac{1}{m})$

Se a ≈ 1 possiamo sorivere la Bernoulli con $x = \frac{2n-1}{m}$ e ottenere $(1+\frac{2n-1}{m})^m \ge n$
 $\sqrt{12} \le (1+\frac{2n-1}{m})^m \ge n$
 $\sqrt{12} \le (1$

lim TM = 1 / ~ Tabellina Escupio 7 Abbiano dinostrato in una lerione precedente che [un perso del binomio $(1+\times)^{m} \geq \frac{m(m-1)}{2} \times^{2}$ Voglio fere venire n a dx, quindi uso x = \frac{12}{\sqrt{n-1}} Così abbiamo ottembo de (1+ \frac{12}{\sqrt{n+1}})^m \geq n, cioè $1 \leq \sqrt{m} \leq 1 + \sqrt{2}$ $1 \leq \sqrt{m+1}$ Esempio 8 lim $\sqrt[n]{n^2} - 20n^{17} + \cos(n) = 1$ Brutal mode: $\sqrt{\dots} = \sqrt{m^{20}} = (\sqrt{m})^{20} \rightarrow 1 = 1$ Rigorosamente: raccolgo m² dentro la radice C'è da giustificare beue de , se au → 1, allora Man → 1 Se au -> 1, allora definitionmente $\frac{1}{2} \leq \alpha_{y} \leq \frac{3}{2}$ $\left(\sqrt{\frac{1}{2}}\right) \leq \left(\sqrt{\frac{3}{2}}\right)$ quiudi