Digital Design & Computer Architecture Sarah Harris & David Harris

Chapter 5: Digital Building Blocks

Chapter 5 :: Topics

- Introduction
- Arithmetic Circuits
- Number Systems
- Sequential Building Blocks
- Memory Arrays
- Logic Arrays

Introduction

Digital building blocks:

- Gates, multiplexers, decoders, registers, arithmetic circuits, counters, memory arrays, logic arrays
- Building blocks demonstrate hierarchy, modularity, and regularity:
 - Hierarchy of simpler components
 - Well-defined interfaces and functions
 - Regular structure easily extends to different sizes
- We'll use these building blocks in Chapter
 7 to build a microprocessor

Chapter 5: Digital Building Blocks

Adders

1-Bit Adders

Half Adder

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = C_{out} = C_{out}$$

Full Adder

C_{in}	Α	В	C_{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = C_{out} =$$

Multibit Adders: CPAs

Multibit adders

- Types of carry propagate adders (CPAs):
 - Ripple-carry (slow)
 - Carry-lookahead (fast)
 - Prefix (faster)
- Carry-lookahead and prefix adders are faster for large adders but require more hardware

Chapter 5: Digital Building Blocks

Ripple Carry Addition

Ripple-Carry Adder

- Chain 1-bit adders together
- Carry ripples through entire chain
- Disadvantage: slow

Ripple-Carry Adder Delay

$$t_{\text{ripple}} = Nt_{FA}$$

where t_{FA} is the delay of a 1-bit full adder

Chapter 5: Digital Building Blocks

Carry Lookahead Addition

Carry-Lookahead Adder

Compute C_{out} for k-bit blocks using generate and propagate signals

Some definitions:

- Column i produces a carry out by either generating a carry out or propagating a carry in to the carry out
- Calculate generate (G_i) and propagate (P_i) signals for each column:
 - **Generate:** Column *i* will generate a carry out if A_i and B_i are both 1.

$$G_i = A_i B_i$$

• **Propagate:** Column *i* will propagate a carry in to the carry out if A_i or B_i is 1.

$$\boldsymbol{P}_i = \boldsymbol{A}_i + \boldsymbol{B}_i$$

• Carry out: The carry out of column *i* (*C_i*) is:

$$C_i = A_i B_i + (A_i + B_i) C_{i-1} = G_i + P_i C_{i-1}$$

Propagate and Generate Signals

Examples: Column propagate and generate signals:

Column propagate:

 $P_i = A_i + B_i$

Column generate:

 $G_i = A_i B_i$

1111 P_3, P_2, P_1, P_0 0010 G_3, G_2, G_1, G_0

1011
$$P_3, P_2, P_1, P_0$$

1001 G_3, G_2, G_1, G_0

$$C_i = G_i + P_i C_{i-1}$$

Now use column Propagate and Generate signals to compute **Block Propagate** and **Block Generate** signals for *k*-bit blocks, i.e.:

- Compute if a k-bit group will propagate a carry in (of the block) to the carry out (of the block)
- Compute if a k-bit group will generate a carry out (of the block)

- Example: 4-bit blocks
 - Block propagate signal: P_{3:0} (single-bit signal)
 - A carry-in would propagate through all 4 bits of the block:

$$P_{3:0} = P_3 P_2 P_1 P_0$$

Examples:

$$P_{3:0} = P_3 P_2 P_1 P_0 = 1$$

$$P_{3:0} = P_3 P_2 P_1 P_0 = 0$$

- Example: 4-bit blocks
 - Block propagate signal: P_{3:0} (single-bit signal)
 - A carry-in would propagate through all 4 bits of the block:

$$P_{3:0} = P_3 P_2 P_1 P_0$$

- Block generate signal: G_{3:0} (single-bit signal)
 - A carry is generated:
 - in column 3, or
 - in column 2 and propagated through column 3, or
 - in column 1 and propagated through columns 2 and 3, or
 - in column 0 and propagated through columns 1-3

$$G_{3:0} = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3$$

$$G_{3:0} = G_3 + P_3 [G_2 + P_2 (G_1 + P_1 G_0)]$$

- Example: 4-bit blocks
 - Block generate signal: G_{3:0} (single-bit signal)
 - A carry is: generated in column 3, or generated in column 2 and propagated through column 3, or ...

$$G_{3:0} = G_3 + G_2P_3 + G_1P_2P_3 + G_0P_1P_2P_3$$

- Example: 4-bit blocks
 - Block propagate signal: P_{3:0} (single-bit signal)
 - A carry-in would propagate through all 4 bits of the block:

$$P_{3:0} = P_3 P_2 P_1 P_0$$

- Block generate signal: G₃₋₀ (single-bit signal)
 - A carry is generated:
 - in column 3, or
 - in column 2 and propagated through column 3, or
 - in column 1 and propagated through columns 2 and 3, or
 - in column 0 and propagated through columns 1-3

$$G_{3:0} = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3$$

$$G_{3:0} = G_3 + P_3 [G_2 + P_2 (G_1 + P_1 G_0)]$$

$$C_3 = G_{3:0} + P_{3:0} C_{-1}$$

• **Example:** Block propagate and generate signals for 4-bit blocks ($P_{3:0}$ and $G_{3:0}$):

$$P_{3:0} = P_3 P_2 P_1 P_0$$

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

$$C_3 = G_{3:0} + P_{3:0} C_{-1}$$

32-bit CLA with 4-bit Blocks

- Step 1: Compute G_i and P_i for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: C_{in} propagates through each k-bit propagate/generate logic (meanwhile computing sums)
- Step 4: Compute sum for most significant kbit block

• Step 1: Compute G_i and P_i for all columns

$$G_i = A_i B_i$$
$$P_i = A_i + B_i$$

- Step 1: Compute G_i and P_i for all columns
- Step 2: Compute G and P for k-bit blocks

$$P_{3:0} = P_3 P_2 P_1 P_0$$

$$G_{3:0} = G_3 + P_3 (G_2 + P_2 (G_1 + P_1 G_0))$$

- Step 1: Compute G_i and P_i for all columns
- Step 2: Compute G and P for k-bit blocks
- Step 3: C_{in} propagates through each k-bit propagate/generate logic (meanwhile

computing sums) $\begin{array}{c} B_{31:28}A_{31:28} & B_{27:24}A_{27:24} \\ C_{out} & B_{0ck} & B_{0ck} \\ B_{0ck} & B_{0ck} & B_{0ck} \\ C_{0t} & B_{0ck} \\ C_{0t} & B_{0ck} & B_{0ck} \\ C_{0t} & B_{0ck}$

- Step 1: Compute G_i and P_i for all columns
- **Step 2:** Compute *G* and *P* for *k*-bit blocks
- **Step 3:** C_{in} propagates through each k-bit propagate/generate logic (meanwhile computing sums)
- **Step 4:** Compute sum for most significant *k*-

bit block

32-bit CLA with 4-bit Blocks

Carry-Lookahead Adder Delay

For *N*-bit CLA with *k*-bit blocks:

$$t_{CLA} = t_{pg} + t_{pg_block} + (N/k - 1)t_{AND_OR} + kt_{FA}$$

- $-t_{pg}$: delay to generate all P_i , G_i
- $-t_{pg_block}$: delay to generate all $P_{i:j}$, $G_{i:j}$
- $t_{
 m AND_OR}$: delay from $C_{
 m in}$ to $C_{
 m out}$ of final AND/OR gate in k-bit CLA block

An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for N > 16

Chapter 5: Digital Building Blocks

Subtractors & Comparators

Subtractor

$$A - B = A + \overline{B} + 1$$

Symbol

Implementation

Comparator: Equality

Symbol

Implementation

Comparator: Signed Less Than

A < B if A-B is negative Beware of overflow

Chapter 5: Digital Building Blocks

ALU:

Arithmetic Logic Unit

ALU should perform:

- Addition
- Subtraction
- AND
- OR

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A OR B

 $ALUControl_{1:0} = 11$

Result = A OR B

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A OR B

 $ALUControl_{1:0} = 11$

Mux selects output of OR gate as *Result*, so:

Result = A OR B

ALUControl _{1:0}	Function
00	Add
01	Subtract
10	AND
11	OR

Example: Perform A + B

 $ALUControl_{1:0} = 00$

 $ALUControl_0 = 0$, so:

 C_{in} to adder = 0

2nd input to adder is B

Mux selects Sum as Result, so

Result = A + B

ALU with Status Flags

Flag	Description
N	Result is Negative
Z	Result is Zero
С	Adder produces Carry out
V	Adder oVerflowed

ALU with Status Flags

ALU with Status Flags: Negative

ALU with Status Flags: Zero

ALU with Status Flags: Carry

ALU with Status Flags: oVerflow

ALU with Status Flags: oVerflow

$$V = 1$$
 if:

ALU is performing addition or subtraction $(ALUControl_1 = 0)$

AND

A and Sum have opposite signs

AND

A and B have same signs for addition $(ALUControl_0 = 0)$

OR

A and B have different signs for subtraction $(ALUControl_0 = 1)$

Comparison based on Flags

Compare by subtracting and checking flags
Different for signed and unsigned

Comparison	Signed	Unsigned
==	Z	Z
!=	~Z	~Z
<	N ^ V	~C
<=	Z (N ^ V)	Z ~C
>	~Z & ~(N ^ V)	~Z & C
>=	~(N ^ V)	С

Chapter 5: Digital Building Blocks

Shifters,
Multipliers,
& Dividers

Shifters

Logical shifter: shifts value to left or right and fills empty spaces with 0's

```
Ex: 11001 >> 2 = 00110
Ex: 11001 << 2 = 00100</li>
```

Arithmetic shifter: same as logical shifter, but on right shift, fills empty spaces with the old most significant bit (msb)

```
Ex: 11001 >>> 2 = 11110Ex: 11001 <<< 2 = 00100</li>
```

Rotator: rotates bits in a circle, such that bits shifted off one end are shifted into the other end

```
Ex: 11001 ROR 2 = 01110
Ex: 11001 ROL 2 = 00111
```

Shifter Design

Shift Left

Logical Shift Right

Arithmetic Shift Right

$$shamt_{1:0}$$
 $\downarrow 2$
 $A_{3:0} \xrightarrow{4} \xrightarrow{4} Y_{3:0}$

$$A_{3:0} \xrightarrow{4} Y_{3:0}$$

Shifters as Multipliers and Dividers

- $A << N = A \times 2^{N}$
 - **Example:** $00001 << 3 = 01000 (1 \times 2^3 = 8)$
 - **Example:** $11101 << 2 = 10100 (-3 \times 2^2 = -12)$
- $A >>> N = A \div 2^N$
 - **Example:** $01000 >>> 1 = 00100 (8 \div 2^1 = 4)$
 - **Example:** $10000 >>> 2 = 11100 (-16 \div 2^2 = -4)$

Chapter 5: Digital Building Blocks

Counters & Shift Registers

Counters

- Increments on each clock edge
- Used to cycle through numbers. For example,
 - 000, 001, 010, 011, 100, 101, 110, 111, 000, 001...

Example uses:

- Digital clock displays
- Program counter: keeps track of current instruction executing

Symbol

Implementation

N-bit binary counter

Shift Registers

- Shift a new bit in on each clock edge
- Shift a bit out on each clock edge
- Serial-to-parallel converter: converts serial input (S_{in}) to parallel output $(Q_{0:N-1})$

Symbol:

Implementation:

Shift Register with Parallel Load

- When Load = 1, acts as a normal N-bit register
- When *Load* = 0, acts as a shift register
- Now can act as a serial-to-parallel converter (S_{in} to $Q_{0:N-1}$) or a parallel-to-serial converter ($D_{0:N-1}$ to S_{out})

Chapter 5: Digital Building Blocks

Memory

Memory Arrays

- Efficiently store large amounts of data
- M-bit data value read/written at each unique N-bit address
- 3 common types:
 - Dynamic random access memory (DRAM)
 - Static random access memory (SRAM)
 - Read only memory (ROM)

Memory Arrays

- 2-dimensional array of bit cells
- Each bit cell stores one bit
- N address bits and M data bits:
 - -2^N rows and M columns
 - Depth: number of rows (number of words)
 - Width: number of columns (size of word)
 - Array size: depth \times width = $2^N \times M$

Address	С	at	а	
11	0	1	0	
10	1	0	0	depth
01	1	1	0	
00	0	1	1	▼
'	▼ W	/idt	► :h	•

Memory Array Example

- $2^2 \times 3$ -bit array
- Number of words: 4
- Word size: 3-bits
- For example, the 3-bit word stored at address 10 is 100

Memory Arrays

Memory Array Bit Cells

Memory Array

• Wordline:

- like an enable
- single row in memory array read/written
- corresponds to unique address
- only one wordline HIGH at once

Types of Memory

- Random access memory (RAM): volatile
- Read only memory (ROM): nonvolatile

RAM: Random Access Memory

- Volatile: loses its data when power off
- Read and written quickly
- Main memory in your computer is RAM (DRAM)

Historically called *random access* memory because any data word is accessed using its address with the same delay as any other (in contrast to sequential access memories such as a tape recorder)

ROM: Read Only Memory

- Nonvolatile: retains data even if power off
- Read quickly, but writing is impossible or slow
- Flash memory in cameras, thumb drives, and digital cameras are all ROMs

Historically called *read only* memory because ROMs were written at time of fabrication or by burning fuses. Once a ROM was configured, it could not be written again. This is no longer the case for Flash memory and other types of ROMs.

Chapter 5: Digital Building Blocks

RAM

Types of RAM

- DRAM (Dynamic random access memory)
- SRAM (Static random access memory)
- Differ in how they store data:
 - DRAM uses a capacitor
 - SRAM uses cross-coupled inverters

DRAM

- Data bits stored on capacitor
- Dynamic: the value needs to be refreshed (rewritten) periodically since
 - Reading destroys the stored value on the capacitor
 - Charge leakage from the capacitor degrades the value

DRAM

SRAM

Static: the value do not need to be refreshed

Memory Arrays Review

SRAM vs. DRAM

	SRAM	DRAM
Speed	Faster	Slower
Density	Low	High
Capacity	Small	Large
Power consumption	Low	High
Cost	Expensive	Cheap
Used as	Cache memory	Main memory

Chapter 5: Digital Building Blocks

ROM

ROM: Dot Notation

- Stores a bit as the presence or absence of a transistor
- When a bitline is pulled HIGH and the wordline is turned ON,
 - if a transistor is present, it pulls the bitline LOW
 - otherwise, the bitline remains HIGH

 A dot at the intersection of a row and a column indicates that the data bit is 1.

ROM Storage

ROM Logic

$$Data_{2} = A_{1} \oplus A_{0}$$

$$Data_{1} = \overline{A}_{1} + A_{0}$$

$$Data_{0} = \overline{A}_{1}\overline{A}_{0}$$

Example: Logic with ROMs

Implement the following logic functions using a $2^2 \times 3$ -bit ROM:

$$-X=AB$$

$$-Y=A+B$$

$$-Z=A\overline{B}$$

Logic with Any Memory Array

$$Data_{2} = A_{1} \oplus A_{0}$$

$$Data_{1} = \overline{A}_{1} + A_{0}$$

$$Data_{0} = \overline{A}_{1}\overline{A}_{0}$$

Logic with Memory Arrays

Implement the following logic functions using a $2^2 \times 3$ -bit memory array:

Logic with Memory Arrays

Can be used as *lookup tables* (LUTs) that look up output at each input combination (address)

Chapter 5: Digital Building Blocks

Logic Arrays: PLAs & FPGAs

Logic Arrays

- Programmable gate arrays of which connections can be configured to perform any function
- Mass-produced in large quantities, so they are inexpensive
- Reconfigurable, allowing designs to be modified without replacing the hardware
 - Reconfigurability is valuable during development and is also useful in the field because a system can be upgraded by simply downloading the new configuration.

Types of Logic Arrays

- PLAs (Programmable logic arrays)
 - AND array followed by OR array
 - Combinational logic only
 - Fixed internal connections
- FPGAs (Field programmable gate arrays)
 - Array of Logic Elements (LEs)
 - Combinational and sequential logic
 - Programmable internal connections

PLAs: Programmable Logic Arrays

- $X = \overline{ABC} + AB\overline{C}$
- $Y = A\overline{B}$

PLAs: Dot Notation

- $X = \overline{ABC} + AB\overline{C}$
- $Y = A\overline{B}$

- Dots in the AND array: literals comprising an implicant
- Dots in the OR array: implicants being part of the output function

FPGAs: Field Programmable Gate Arrays

Composed of:

- LEs (Logic elements): perform combinational or sequential functions
- IOEs (Input/output elements): interface with outside world
- Programmable interconnection: connect LEs and IOEs
- Some FPGAs include other building blocks such as multipliers and RAMs

General FPGA Layout

LE: Logic Element

- Composed of:
 - LUTs (lookup tables): perform combinational logic
 - Flip-flops: perform sequential logic
 - Multiplexers: connect LUTs and flip-flops

Altera Cyclone IV LE

From Cyclone IV datasheet

Altera Cyclone IV LE

- The Altera Cyclone IV LE has:
 - 1 four-input LUT
 - 1 registered output
 - 1 combinational output

LE Configuration Example

Show how to configure a Cyclone IV LE to perform the following functions:

$$-X = \overline{ABC} + AB\overline{C}$$

$$-Y = A\overline{B}$$

(A)	(B)	(C)		(X)
data 1	data 2	data 3	data 4	LUT output
0	0	0	X	0
0	0	1	X	1
0	1	0	X	0
0	1	1	X	0
1	0	0	X	0
1	0	1	X	0
1	1	0	X	1
1	1	1	X	0

(A)	(B)			(Y)
data	1 data 2	data 3	data 4	LUT output
0	0	X	X	0
0	1	X	X	0
1	0	X	X	1
1	1	X	X	0

Logic Elements Example 1

How many Cyclone IV LEs are required to build

$$Y = A1 \oplus A2 \oplus A3 \oplus A4 \oplus A5 \oplus A6$$

Solution:

2 LEs

First computes Y1 = A1 \oplus A2 \oplus A3 \oplus A4 (function of 4 variables) Second computes Y = Y1 \oplus A5 \oplus A6 (function of 3 variables)

Logic Elements Example 2

How many Cyclone IV LEs are required to build

32-bit 2:1 multiplexer

Solution:

32 LEs

A 1-bit mux is a function of 3 variables and fits in one LE

A 32-bit mux requires 32 copies

Logic Elements Example 3

How many Cyclone IV LEs are required to build

Arbitrary FSM with 2 bits of state, 2 inputs, 3 outputs

Solution:

5 LEs

One LE can hold a bit of state and the next state logic, which is a function of 4 variables (2 bits of state, 2 inputs)

One LE can compute a bit of output, which is a function of at most 4 variables (2 bits of state, 2 inputs)

Thus 2 LEs are needed for state and 3 LEs for outputs

About these Notes

Digital Design and Computer Architecture Lecture Notes

© 2021 Sarah Harris and David Harris

These notes may be used and modified for educational and/or non-commercial purposes so long as the source is attributed.