Определитель как ориентированный объём

Рассмотрим объём параллелепипеда, заданного n векторами в n-мерном пространстве. Как говорилось в предыдущем листке, он должен представлять собой полилинейную кососимметическую функцию векторов. Координаты векторов-аргументов принято записывать в столбы таблицы, такая таблица называется $mampuye\ddot{u}$, а ориентированный объём, называется onpedenumenem этой матрицы. Определитель квадратной матрицы A обозначается через $\det A$. Элемент матрицы A, стоящий на пересечении i-й строки и j-го столбца, принято обозначать a_{ij} .

1. Выведите формулу объёма параллелепипеда в *п*-мерном векторном пространстве.

Свойства определителей

Логично предположить, что объём параллелепипеда в n-мерном векторном пространстве ненулевой, если и только если векторы, на которых он построен, не лежат в пространстве меньшей размерности, т.е. линейно независимы.

- 2. Докажите, что определитель набора линейно зависимых векторов равен нулю.
- 3. Докажите, что определитель не изменится, если к одному из векторов прибавить произвольную линейную комбинацию остальных.
- 4. Докажите, что определитель линейно независимого набора векторов ненулевой.

Для элемента a_{ij} квадратной $n \times n$ матрицы M его алгебраическим дополнением называется определитель матрицы, получаемой из M вычёркиванием i-й строки и j-го столбца, умноженный на $(-1)^{i+j}$. Алгебраическое дополнение элемента a_{ij} принято обозначать A_i^j .

- 5. Докажите равенство $\sum_{j=1}^{n} a_{ij} A_i^j = \det M$.
- 6. Докажите, что при $i \neq k$ верно равенство $\sum_{j=1}^{n} a_{ij} A_k^j = 0$.

Нетрудно видеть, что определитель набора $(\vec{v}_1, \vec{v}_2, \vec{v}_3)$ равен скалярному произведению некоторого вектора \vec{v} и \vec{v}_3 . Вектор \vec{v} называется векторным произведением векторов \vec{v}_1 и \vec{v}_2 и обозначается $\vec{v}_1 \times \vec{v}_2$.

7. Опишите геометрический смысл векторного произведения двух векторов.

Ранг матрицы

Строчным (столбцовым) рангом прямоугольной матрицы называется размерность линейного пространства, порождённого строками (столбцами). Минором матрицы называется определитель любой квадратной матрицы, полученной из заданной удалением некоторых строк и столбцов, а размер соответствующей квадратной матрицы называется $nopsd\kappaom$ этого минора.

8. Докажите, что строчный и столбцовый ранги равны наибольшему порядку ненулевого минора.

Таким образом, строчный и столбцовый ранги любой матрицы совпадают, это число называется рангом матрицы, ранг матрицы M и обозначается $\operatorname{rank} M$. Для произвольной матрицы M размера $n \times n$ её $mpanconuposanhoй матрицей называется матрица <math>M^T$ размера $n \times m$, определённая равенствами $M_{ij}^T = M_{ji}$. Из определения ранга видно, что $\operatorname{rank} M = \operatorname{rank} M^T$.

- 9. Для любой квадратной матрицы M докажите тождество $\det M = \det M^T$.
- 10. Докажите неравенство ${\rm rank}(A+B)\leqslant {\rm rank}\, A+{\rm rank}\, B$ для любых двух матриц A и B одинакового размера.

¹Эта формула называется **разложением определителя по строке**. Верна ли аналогичная формула разложения по столбцу?

Упражнения

- 11. Выведите формулу для нахождения объёма треугольной пирамиды с вершиной в начале координат и боковыми рёбрами векторами \vec{v}_1 , \vec{v}_2 , \vec{v}_3 .
- 12. Рассмотрим систему из n линейных уравнений с m неизвестными. Докажите, что она имеет решение тогда и только тогда, когда ранг матрицы коэффициентов не изменится, если к ней дописать столбец правых частей.
- 13. На плоскости нарисованы два выпуклых многоугольника P и Q. Для каждой стороны многоугольника P многоугольник Q можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через h расстояние между этими прямыми, а через ℓ длину стороны и вычислим произведение ℓh . Просуммировав такие произведения по всем сторонам P, получим величину (P,Q). Докажите, что (P,Q) = (Q,P).
- 14. Пусть векторы $\vec{v_i}, i = \overline{1,n}$, имеют координаты $(1,x_i,x_i^2,\ldots,x_i^{n-1})$, где x_1,x_2,\ldots,x_n некоторые элементы поля. Найдите определитель набора $(\vec{v_1},\vec{v_2}\ldots,\vec{v_n})$.

²Такой определитель называется **определителем Вандермонда**.