CONTENTS

1	Simplicial Homology		
	1.1	Graphs	1
	1.2	Simplicial Complexes	2
	1.3	Simplicial Homology	3
	1.4	Functoriality of Simplicial Homology	5
2	Pers	sistent Homology	6
	2.1	Persistence Modules	6
	2.2	Interval Decomposition	7
	2.3	Idk where to put this stuff	7

1 SIMPLICIAL HOMOLOGY

1.1 GRAPHS

Definition 1. A (simple undirected) graph G is a set of vertices V and undirected edges E, where E has no self-loops or duplicate edges.

Definition 2. A **path** between vertices x and y is a sequences of vertices

$$x = u_0, \quad u_1, \quad \dots, \quad u_m = y$$

such that $[u_i, u_{i+1}]$ is an edge for all i.

Definition 3. A graph is **connected** if there is a path between every pair of vertices.

A **separation** of G is two nonempty subsets of G with no edges going between them. We can then equivalently define a graph to be connected if it has no separation.

Proposition 1. Let $x \sim_p y$ if there is a path from x to y. Then $x \sim_p y$ is an equivalence relation.

We call the equivalence classes of \sim_p connected components. Since equivalence relations naturally form partitions, the connected components of a graph union to the entire graph.

Example 1. Let V be a vector space with subspace N, then $x \sim y \iff x - y \in N$ is an equivalence relation (since N has 0 and is closed under addition and additive inverse). The quotient V/N can then be defined as the equivalence classes of \sim , which is also a vector space with the operations $\alpha[x] = [\alpha x]$ and [x] + [y] = [x + y].

1.2 SIMPLICIAL COMPLEXES

Definition 4. An abstract simplicial complex is a collection K of nonempty subsets of a finite set V such that

- 1. If $\{v\} \in K$, then $v \in V$;
- 2. If $\sigma \in K$ and $\tau \subset \sigma$ is nonempty, then $\tau \in K$.

In this setting, each singleton $\{v\}$ represents a vertex, and V represents all the vertices in the complex. Then for a simplex σ , any subset $\tau \subset \sigma$ is one of its **faces**. Note that a face need not be 1 dimension lower (e.g. a vertex is a face of a tetrahedron).

We say that the **dimension** of a complex $\sigma \in K$ is dim $\sigma = |\sigma| - 1$. The dimension of the whole simplex K is then $\max_{\sigma \in K} \{\dim \sigma\}$. We need the -1 in the definition to make edges 1-dimensional, triangles 2-dimensional, etc.

1.3 SIMPLICIAL HOMOLOGY

Definition 5. Suppose X is a simplicial complex, then let $C_n(X)$ be the vector space over \mathbb{Z}_2 with basis the n-simplices in X. Elements of $C_n(X)$ are called n-chains.

- C_0 : vertices
- C_1 : edges
- C_2 : triangles

Note 1. The choice to do this over \mathbb{Z}_2 was pretty arbitrary. It makes lots of things nicer from a computation viewpoint, and it simplifies a few things later on since -1 = 1, but we can also get more information by taking homology with coefficients in more complicated rings. In general, C_n will be some module. Then if they're over \mathbb{Z} , they're abelian groups.

Definition 6. The **boundary map** ∂_n is the linear map

$$C_n(X) \to C_{n-1}(X)$$

 $[v_0, \dots, v_n] \mapsto \sum_i [v_0, \dots, \hat{v}_i, \dots, v_n],$

where \hat{v}_i indicates that v_i has been removed from the simplex.

Proposition 2. $\partial^2 = 0$.

Proof. Applying the defintion of ∂ gives

$$\partial^{2}([v_{0}, \dots, v_{n}]) = \sum_{i} \partial([v_{0}, \dots, \hat{v}_{i}, \dots, v_{n}])$$

$$= \sum_{j < i} [v_{0}, \dots, \hat{v}_{j}, \dots, \hat{v}_{i}, \dots, v_{n}] + \sum_{i < j} [v_{0}, \dots, \hat{v}_{i}, \dots, \hat{v}_{j}, \dots, v_{n}].$$

Now we can swap the roles of i and j in the second sum to get a sum identical to the first. This gives

$$= 2\sum_{j < i} [v_0, \dots, \hat{v}_j, \dots, \hat{v}_i, \dots, v_n]$$
$$= 0$$

since we're working over \mathbb{Z}_2 .

This result shows that

$$\cdots \longrightarrow C_2(X) \xrightarrow{\partial_2} C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\partial_0} 0$$

is a chain complex. Thus we call $Z_k(X) \doteq \operatorname{Ker} \partial_k$ the space of k-cycles and $B_k(X) \doteq \operatorname{Im} \partial_{k+1}$ the space of k-boundaries.

Definition 7. The k-th homology of X is $H_k(X) \doteq Z_k(X)/B_k(X)$, and its dimension β_k is the k-th Betti number.

Proposition 3. β_0 is the number of connected components of X. Infinite case?

Proof. Suppose X has connected components X_1, \ldots, X_ℓ . Then since the homology functor commutes with direct sums,

$$H_0(X) = H_0\left(\bigoplus_{i=1}^{\ell} X_i\right) = \bigoplus_{i=1}^{\ell} H_0(X_i).$$

Show that $\beta_0 = 1$ when X is connected. Then since β_0 of a connected complex is 1,

$$\beta_0 = \dim \left(\bigoplus_{i=1}^{\ell} H_0(X_i) \right) = \sum_{i=1}^{\ell} \dim H_0(X_i) = \sum_{i=1}^{\ell} 1 = \ell.$$

1.4 FUNCTORIALITY OF SIMPLICIAL HOMOLOGY

I think I can build in the chain map-ness of all the functors better.

Suppose K and L are simplicial complexes, then we can turn morphisms between them into morphisms between homologies. This boils down to defining two covariant functors, then composing them.

Definition 8. Let K, L be simplicial complexes. We say $f: K \to L$ is a **simplicial map** if

- 1. $f:V(K) \rightarrow V(L)$;
- 2. it's determined by where it sends vertices: $f([x_0, \ldots, x_p]) = [f(x_0), \ldots, f(x_p)];$
- 3. $f(\sigma) \in L$ when $\sigma \in K$.

Theorem 1. Fix $p \in \mathbb{N}_0$, then taking p-th chain groups is a functor. It sends simplicial maps $f: K \to L$ to the morphism $f_{\#}: C_p(K) \to C_p(L)$ uniquely determined by

$$\sigma \mapsto \begin{cases} f(\sigma) & \text{if } |f(\sigma)| = |\sigma|, \\ 0 & \text{else.} \end{cases}$$

Proof. Do this.

Proposition 4. $f_{\#}$ respects ∂ , i.e. the following diagram commutes.

$$C_{p}(K) \xrightarrow{\partial} C_{p-1}(K)$$

$$\downarrow^{f_{\#}} \qquad \downarrow^{f_{\#}}$$

$$C_{p}(L) \xrightarrow{\partial} C_{p-1}(L)$$

Proof. Do this.

Theorem 2. Taking p-th homology is a functor. It sends $f_{\#}: C_p(K) \to C_p(L)$ to the morphism $f_*: H_p(K) \to H_p(L)$ uniquely determined by

$$[x] \mapsto [f_{\#}(x)].$$

Want a similar commutative diagram prop.

2 PERSISTENT HOMOLOGY

2.1 PERSISTENCE MODULES

The following definition of a persistence module is restricted, but it's all we'll need for our purposes (in general, you can define it to be a functor from a specific poset to the category of R-modules). You should read more about this.

Definition 9. A persistence module V is a collection of vector spaces $\{V_r\}_{r\in\mathbb{R}}$ over \mathbb{Z}_2 with functorial maps $v_i^j:V_i\to V_j$ whenever $i\leq j$. Covariant functor from \mathbb{R} to Vector spaces over \mathbb{Z}_2 ...

The functoriality condition means

- 1. $v_i^i = id;$
- 2. $v_i^k = v_j^k v_i^j$ whenver $i \le j \le k$.

Suppose we're indexing our vectors spaces via \mathbb{Z} instead of \mathbb{R} , then the situation looks as follows.

$$\cdots \longrightarrow V_{i-1} \xrightarrow{v_{i-1}^i} V_i \xrightarrow{v_{i+1}^{i+1}} V_{i+1} \longrightarrow \cdots$$

2.2 INTERVAL DECOMPOSITION

2.3 **IDK WHERE TO PUT THIS STUFF**

Given a function $f: G \to \mathbb{R}$, we can think of f(x) as the time at which x appears.

Definition 10. $F: G \to \mathbb{R}$ is **monotonic** if $f(v) \leq f(e)$ whenever e is an edge containing vertex v. **gen to complexes...**

Thus for monotonic functions, no edge will appear until both its vertices have also appeared. 0 dim Persistent Homology stuff...

Note that every birth-death pair is an element of

$$\overline{\mathbb{R}}_{<}^{2} \doteq \{(x,y) \mid x \in \mathbb{R}, \ y \in \mathbb{R} \cup \{\infty\}\}.$$

Figure.

Definition 11. A partial mapping between multisets $P, Q \subset \overline{\mathbb{R}}^2_{<}$ is a bijection $\eta: P_0 \to Q_0$, where $P_0 \subset P$ and $Q_0 \subset Q$. We denote it

$$\eta: P \leftrightarrow Q$$
.

We define the cost of a partial matching $\eta: P \leftrightarrow Q$ finish...