

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE Department of Multidisciplinary Engineering

MD2201 Data Science Course Project

S.No	Div	Batch	Group	Roll	Gr.No	Name of Student
		No	No	No		
1	IT-B	1	1	2	12211665	Pranav Kale
2				13	12210893	Maitrey Katkar
3				17	12210313	Omkar Khanvilkar
4				18	12210610	Janvi Kharat
5				20	12210505	Gita Kolate
6				21	12210697	Babusha Kolhe

1. Project Title: OLX Car Price Prediction

2. Data Set Name: Used Cars Price Prediction

3. Data Set Source: Kaggle

4. Data set Link: https://kaggle.com/datasets/avikasliwal/used-cars-price-

prediction?select=train-data.csv

5. Data Set Description:

This Dataset consist features or columns like:

· Name: full name of the cars

Location: Location of the car owner

· Year: Launch Year of particular car model

· Kilometers_Driven: Kilometres Driven by particular car

Fuel_Type: Fuel Type of the car (Petrol, Diesel, Hybrid)

• **Transmission:** Type of transmission (manual, auto)

Owner_Type: Which type of owner (first, second, third)

Mileage: Mileage of the car

• **Engine:** Engine capacity of the car

• **Power:** Power of the car

Seats: Number of seats inside the car

· New_Price: Market price of new model of same car

Department of Multidisciplinary Engineering

Price: Actual Price of the car asked by the owner

Preview of dataset

	Name	Location	Year	Kilometers	Fuel_Type	Transmiss	Owner_Ty	Mileage	Engine	Power	Seats	New_Price F	Price
0	Maruti Wa	Mumbai	2010	72000	CNG	Manual	First	26.6 km/k	998 CC	58.16 bhp	5		1.75
1	Hyundai C	Pune	2015	41000	Diesel	Manual	First	19.67 kmp	1582 CC	126.2 bhp	5		12.5
2	Honda Jaz	Chennai	2011	46000	Petrol	Manual	First	18.2 kmpl	1199 CC	88.7 bhp	5	8.61 Lakh	4.5
3	Maruti Ert	Chennai	2012	87000	Diesel	Manual	First	20.77 kmp	1248 CC	88.76 bhp	7		6
4	Audi A4 No	Coimbato	2013	40670	Diesel	Automatic	Second	15.2 kmpl	1968 CC	140.8 bhp	5		17.74
5	Hyundai E	Hyderaba	2012	75000	LPG	Manual	First	21.1 km/k	814 CC	55.2 bhp	5		2.35
6	Nissan Mid	Jaipur	2013	86999	Diesel	Manual	First	23.08 kmp	1461 CC	63.1 bhp	5		3.5
7	Toyota Inn	Mumbai	2016	36000	Diesel	Automatic	First	11.36 kmp	2755 CC	171.5 bhp	8	21 Lakh	17.5
8	Volkswage	Pune	2013	64430	Diesel	Manual	First	20.54 kmp	1598 CC	103.6 bhp	5		5.2
9	Tata Indica	Chennai	2012	65932	Diesel	Manual	Second	22.3 kmpl	1248 CC	74 bhp	5		1.95
10	Maruti Cia	Kochi	2018	25692	Petrol	Manual	First	21.56 kmp	1462 CC	103.25 bh	5	10.65 Lakh	9.95

- Containing 6019 rows and 14 columns for training and for testing there are 1234 rows and 13 columns the training and testing data are provided by the author separately.
- There are total 1876 unique cars data is available in training dataset
- This data is collected on 1998 to 2019 car models

6. Description of Work Done:

Steps Perform:

Data Accumulation → Data Preprocessing → Model Training → Model Testing → Visualization → Deployment

7. Literature Survey: Give the tabular form of 20 papers with the following columns information.

S.	Title of paper	Name of	Data Set	Data preprocessing	Algorithm	Findings
No	Authors of	journal/confere	name ans	techniques done(class	s applied	(Quantitative)
	paper	nce and date	link	imbalance,		
				normalization,		
				missing values		
				handling etc)		
1	Used Car Price	International	https://ww	The primary data	K-Nearest	Accuracy: 85%
	Prediction	Journal of	w.kaggle.c	preprocessing	Neighbor	
	using K-	Innovative	om/dataset	technique used here is	(KNN)	
	Nearest	Research in	S	feature engineering,		
	Neighbor	Applied		which involves		
	Based Model	Sciences and		manipulating and		

	VIEHWAKARMA VI	Engineering Depa	rtment of Multi	disciplinary Engineering		
2	K. Samruddhi Dr. R. Ashok Kumar Predicting the Price of Used Cars using	Engineering Deput (IJIRASE) International Journal of Information &	https://www.kaggle.com/dataset	transforming raw data into a format suitable for machine learning algorithms. Normalizati on Handling	Multiple Linear Regression	Mean Error: Rs51,000
	Machine Learning TechniquesSam eerchand Pudaruth	Computation Technology.	S	missing values Data Reduction	Analysis K-Nearest Neighbors (KNN) Naive Bayes Decision Trees	
3	Prediction of The Prices of Second-Hand Cars Ozer Celik, U. Omer Osmanoglu	European Journal of Science and Technology	http://ikinc iyeni.com/	 Data Collection Data Labeling 	Linear Regression Analysis	R-squared values ranged from 0.71 to 0.92.
4	Used car price prediction using linear regression model Ashutosh Datt Sharma*1, Vibhor Sharma*2	International Research Journal of Modernization in Engineering Technology and Science	http://Kag gle.com	 Null-Entry Removal One-Hot Encoding Train-test split Feature Selection 	Linear regression model	R 2 value of 0.86

5	VISHWAKARMA	 Dep a	irtment of Multi	idisciplinary Engineering		
3	Used Cars	RIT Digital	Data was	Handling	Random	Random Forest
	Price	Institutional	collected	missing	Forest	Regressor:
	Prediction and	Repository	and	values	Regressor	Accuracy: Achieved
	Valuation using		Scrapped	 Converting 	Linear	an accuracy of 95%.
	Data Mining Techniques Abdulla AlShared		from a website BuyAnyC ar	 Converting	Regression Bagging Regressor	Mean Squared Error (MSE): 0.025. Mean Absolute Error (MAE): 0.0008. Root Mean Squared Error (RMSE): 0.03.
6	Price Prediction for Used Cars Marcus Collard	International Research Journal of Modernization in Engineering Technology and Science	http://kagg le.com/	 Data Cleaning and Normalizatio n Conversion of categorical variables to numeric 	Linear Regression Ridge regression Lasso Regression Random Forest Regression	Random Forest Regression RMSE value of 4799 MAPE value of 37.65%
7	Pre-owned car price prediction by employing machine learning techniques Mauparna Nandan Debolina Ghosh	Journal of Decision Analytics and Intelligent Computing	https://www.google.com/url?	 Label	Random Forest	MAE: 0.167132 MSE: 0.078840 RMSE: 0.078840 R2 Score: 0.867691 Accuracy: 86.769137
8	Advancing	2023	Data	Data cleaning	Linear	Random Forest

	Used Car Price —	International Depo	obtained <i>Multi</i>	disciplinary Engineering	-Regression-	(RF): R squared
	Prediction in	Conference on	from	Normalizatio	, Decision	value: 0.988 RMSE
	South Africa:	Artificial	Demo	n	Tree,	value: 0.019
	An Empirical	Intelligence	automobil	Handling	Random	
	Examination of	and its	es website	Outliers	Forest,	
	Machine	Applications			Gradient	
	Learning				Boosted	
	Techniques				Trees	
	Zenzele Abel				Regressor,	
	Msiza,Pius				Artificial	
	Adewale				Neural	
	Owolawi				Network,	
					and K-	
					Nearest	
					Neighbors.	
					The	
					Random	
					Forest	
					method	
9	Using Linear	International	http://Kag	Handling	Linear	R-squared value:
	Regression For	Journal of	gle.com	Missing or	regression	0.62
	Used Car Price	Computational		incorrect	model	
	Prediction	and		values		
	Sümeyra	Experimental		Handling		
	MUTİ1, Kazım	Science and		outliers		
	YILDIZ2	Engineering				
				• Feature		
				Transformati		
				on		

4.0	VISHWAKARMA	Depa	rtment of Multi	disciplinary Engineering -	I	
10	Used Car Price	KARUNYA -	https://ww	Removing	Random	Accuracy: 0.861908
	Prediction	INSTITUTE	w.kaggle.c	Outliers	Forest	
	Using Machine	OF	om/dataset			
	Learning	TECHNOLOG	s/lepchenk			
	VELURU	Y AND	ov/usedcar			
	RANJITH	SCIENCES	scatalog			
		Karunya Nagar,				
		Coimbatore –				
		641 114.				
		INDIA				
11	Prediction of Used Car Prices	International	http://Kag	• Feature	Linear	Random Forest
	using Machine	Research	gle.com	Renaming	Regression	Regression
	Learning Techniques	Journal of		Feature	Lasso	
	-	Engineering		Selection	Regression	R-squared (r2) score
	Eesha Pandit1, Hitanshu Parekh2,	and		 Exploratory 	Ridge	of 0.95.
	Pritam Pashte3,	Technology		Data Analysis	Regression	01 0.55.
	Aakash Natani4	(IRJET) e-		(EDA)		
		ISSN: 2395-			Bayesian	
		0056 Volume:		• One-Hot	Ridge	
		09 Issue: 12		Encoding	Regression	
		Dec 2022		 Correlation 	Random	
				Analysis	Forest	
				Feature	Regression	
				Allocation		
12	CAR PRICE PREDICTION	International	http://Kag	Applied	1. Simple	f random forest
	USING	Research	gle.com	machine	Linear	model
	MACHINE LEARNING	Journal of		learning	Regression	
	TECHNIQUES	Modernization		techniques to	2.	MAE:
		in Engineering		clean and pre-	Multiple	1.522771460587
	Abishek R*1	Technology		process the	Linear	
		and Science		dataset.	Regression	MSE:
				Removed	3.Clusterin	10.49007991840
				missing	g Methods	RMSE:
				values,		3.2388392856711

Бера	ement of mare	irrelevant features.	means) 4. Logistic	R-squared (r2): 0.910486881527
			4. Logistic	0.910486881527
		features.	Logistic	
				· I
			Regression	
			5. K-	
			nearest	
			Neighbors	
			(KNN)	
			6.	
			Random	
			Forest	
			7.	
			Decision	
			Tree	
Proceedings of the 3rd International Conference on Signal Processing and Machine Learning	https://tian chi.aliyun. com/datas et/?lang=e n-us	 Data cleaning missing values outliers duplicate values Data dimension reduction Linear – pca Non linear - ISOMAP Feature selections 	XGBoost SVM Neural network	R-squared (r2) score of 0.9823.
th In S P	ne 3rd International Conference on Ignal Processing and Machine	chi.aliyun. com/datas conference on ignal rocessing and Machine chi.aliyun. com/datas et/?lang=e n-us	chi.aliyun. com/datas conference on ignal rocessing and Machine earning Data dimension reduction Linear – pca Non linear - ISOMAP Feature	Neighbors (KNN) 6. Random Forest 7. Decision Tree Proceedings of the 3rd chi.aliyun. com/datas chi.aliyun. com/datas com/datas Processing and dachine the arring Processing and dachine the arring Neighbors (KNN) 6. Random Forest 7. Decision Tree **GBoost** **Outliers - outliers - duplicate values • Data dimension reduction - Linear – pca - Non linear - ISOMAP • Feature

14	Used Cars Price -	International		disciplinary Engineering		
14	Prediction using	Journal of	. The data	 Applied 	Lasso	Error rate:
	Supervised	Engineering and	was	machine	Regression	Multiple regression:
	Learning Techniques	Advanced Technology	collected	learning	Multiple	3.468 %
		(IJEAT)	from the	techniques to	Regression	3.400 /0
	Pattabiraman Venkatasubbu,		2005	clean and pre-	Regression	
	Mukkesh Ganesh		Central	process the	Tree	
			Edition of	dataset.	Tree	
			the Kelly	Removed		
			Blue Book	missing		
				values,		
				outliers, and		
				irrelevant		
				features.		
15	Price Prediction	Journal of	https://ww	Data Cleaning	Linear	Accuracy: 89%
	of Used Cars Using Linear	Online	w.kaggle.c	and	Regression	
	Regression	Engineering	om/dataset	Normalization		
	1Amit Kewat,	Education	S	Handling		
	2Nitesh Kanojiya			Outliers		
				Extracting		
				numeric values		
16	Car Price Prediction using	TEM Journal	autopijaca.	• Data	Random	For the Cheap
	Machine Learning		ba	Cleaning	Forest	subset, SVM
	Techniques Enis Gegic, Becir			Skewed Class	(RF)	achieved the highest
	Isakovic, Dino			Removal	Classifier	accuracy at 86.96%.
	Keco, Zerina Masetic, Jasmin				Artificial	For the Moderate
	Kevric				Neural	subset, ANN
					Network	performed better
				Normalizatio	(ANN)	with an accuracy of
				n Conversion	Classifier	86.11%. For the
				of Continuous	Support	Expensive subset,
				Attributes	Vector	SVM achieved the
				into	Machine	highest accuracy at
				Categorical		

	VIENWAKARMA	Depa	rtment of Multi	disciplinary Engineering	(SVM)	90.48%.
				Conversion of Regression Prediction Problem into Classification Problem	Classifier	
17	Used Car Price Prediction Using Random Forest Algorithm Prof. Dipti A. Gaikwad1 , Pratik S. Suwarnakar2 , Yash R. Mahajan3 , Amita U. Petkar4 , Shreyasi G. Theurkar5	International Journal for Multidisciplina ry Research (IJFMR)	https://ww w.kaggle.c om/dataset s	 Data Cleaning Feature Engineering Normalizatio n/Standardiza tion One-Hot Encoding Train-Test Split 	Linear Regression Lasso Regression Support Vector Machine (SVM) Random Forest	Random Forest R2 Score: 0.8697
18	Used Car Price Prediction Using Machine Learning Techniques Mrs Shyamali Das1, Mr Ananta Laha2, Mr Alok Jena3, Ms Priyadarshini Samal4	International Journal of Research Publication and Reviews	https://ww w.kaggle.c om/dataset s	1. Data Cleaning 2. Encoding Categorical Variables 3. Feature Scaling 4. Feature Engineering 5. Handling Skewed Data 6. Train-Test Split	Linear Regression Lasso Regression Support Vector Machine (SVM) Random Forest	Accuracy by Implementation of Random Forest 91. 435 %

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE

19	Used car price -	International Dept		disciplinary Engineering	Handom	A a a year av. 1 01 450/
	prediction	International Journal of	cardekho.c	Removing Outliers	Random	Accuracy: 91.45%
	Abhishek Jha, Dr. Ramveer Singh, Manish, Imran Saifi, Shipra Srivastava	Journal of Advance Research, Ideas and Innovations in Technology	om	Outliers	Forest Regression	
20	Prediction of prices for used car by using regression models	2018 5th International Conference on Business and Industrial	https://ww w.kaggle.c om/dataset s	• 1. Data Cleaning 2. Encoding Categorical Variables 3.	Gradient Boosted Regression Trees	Gradient Boosted Regression Trees MSE: 0.28
	Nitis Monburinon, Praj ak Chertchom, T. Kaewkiriya, Suwa t Rungpheung, Sabi r Buya, Pitchayakit Boonpou	Research (ICBIR)		Feature Scaling 4. Feature Engineering 5. Handling Skewed Data 6. Train-Test Split	Random Forest Regression Multiple Linear Regression	

8. Data Preprocessing (if any):

- While observing the structure of the dataset we observed datatypes of some variables or columns are not suitable for our further processes and also some columns contain NA values.
- And some string type columns contain empty strings. Like New_Price, Mileage, Engine, Power etc.
- There where total 42 rows containing "Na" values.
- And there are some columns which should be in datatype Integer or Double but they are present in dataset as a Character or String.

Columns -> Mileage, Engine, Power, New_Price

```
$ Mileage : chr "26.6 km/kg" "19.67 kmpl" "18.2 kmpl" "20.77 kmpl"
$ Engine : chr "998 CC" "1582 CC" "1199 CC" "1248 CC" ...
$ Power : chr "58.16 bhp" "126.2 bhp" "88.7 bhp" "88.76 bhp" ...
$ Seats : num 5 5 5 7 5 5 5 8 5 5 ...
$ New_Price : chr "" "" "8.61 Lakh" "" ...
```

 And above columns also contain some units in suffix which is not very useful for use in further process.

VIEHWAKARMA INSTITUTES

Bansilal RamnathAgarwal Charitable Trust's

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE Department of Multidisciplinary Engineering

And the New_Price column consists lots of Empty strings and so after converting it into integer
or float the empty string denoted by "Na" and due to high number of Na values in this column
we should impute this column.

So above are the some impurities or problems in our dataset and we clean and solve those as follows:

- 1) We first delete or remove the 42 rows from the dataset which contain "Na" values at start.
- 2) After that we convert all string type columns like Mileage, Engine, Power into double and also remove the suffix from it.
- 3) And also Imputed the New_Price values and converted into double datatype Imputation is done using rfImpute() function present in randomforest library uses Proximity Matrix concept to impute values

```
$ Mileage : num 26.6 19.7 18.2 20.8 15.2 ...
$ Engine : num 998 1582 1199 1248 1968 ...
$ Power : num 58.2 126.2 88.7 88.8 140.8 ...
$ Seats : num 5 5 5 7 5 5 5 8 5 5 ...
$ New_Price : num 5.06 14.03 8.61 13.03 49.07 ...
```

- 4) Now our data is ready for further process after data preprocessing there are total 5977 rows are remain in the training data.
- 5) Similarly we perform same data preprocessing on test data and there are 1192 rows are remain in the testing data.
- **9. Feature Selection (if any):** Explain the different feature selection techniques you have used in the project

10. Algorithms Implemented:

- As our problem statement is of Regression type so we are using following models:
 - 1) Multiple Linear Regression
 - 2) Decision Tree
 - 3) Random Forest
 - 4) SVM (Support Vector Machine as Regressor)
- Before training each model we perform some common processes for better results and accuracy
 - 1) As our car's names are too long which causes problems while training since we consider them as factors or categories so we first make it short till 2 String.
 - 2) And as we reduce the car name string we add one more extra feature into the data which is "Brand" which denotes the brand of the car and we found there are 32 different Brands of Cars present in the entire dataset.
 - 3) We convert some columns like Name, Brand, Owner_Type, Transmission, Location etc into a factor or category.

VIEHWAKARMA INSTITUTES

Bansilal RamnathAgarwal Charitable Trust's VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE Department of Multidisciplinary Engineering

- 4) And first separate out the price column from the testing dataset and as the dataset is already divided into 75:25 ratio for training and testing respectively.
- 5) And after all of this we send the training data to a different model.

• Multiple Linear Regression:

Here we use "lm()" function to train the linear model

```
lm_model <- lm(Price ~ ., data = train_data)</pre>
```

Here we train our model on all columns for price prediction. And after training of Model we predict the price of cars present in test data.

```
predicted_price <- predict(lm_model, newdata = test_data_filtered)</pre>
```

After Prediction we test model Accuracy using R^2, RMSE & MAE values.

```
[1] "Mean Absolute Error (MAE): 2.34933991485649"
[1] "Root Mean Squared Error (RMSE): 4.24773899332807"
```

[1] "R-squared-byModel: 0.851410356965969"

[1] "R-squared-byCalculation: 0.839165597575994"

• Decision Tree

Here we use "rpart()" function to train the decision tree model

```
dt_model <- rpart(Price ~ ., data = train_data, method = "anova")
```

Here we train our model on all columns for price prediction.

The method specified as "anova" indicates that the decision tree will employ analysis of variance to determine the splits at each node during the tree-building process.

```
And after training of Model we predict the price of cars present in test data.
```

```
predicted1_price <- predict(dt_model, newdata = test_data_filtered)</pre>
```

After Prediction we test model Accuracy using R^2, RMSE & MAE values

```
[1] "Mean Absolute Error (MAE): 2.89320014588467"
[1] "Root Mean Squared Error (RMSE): 4.77760670728731"
[1] "R-squared: 0.796537631947437"
```

• Random Forest

Here we use "randomForest()" function to train the random forest model rf_model <- randomForest(Price ~ ., data = train_data,iter=300)

VISHWAKARMA

Bansilal RamnathAgarwal Charitable Trust's

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE Department of Multidisciplinary Engineering

Here we train our model on all columns for price prediction.

The parameter iter = 300 specifies the number of trees to be grown in the random forest ensemble, with 300 trees being grown in this case.

And after training of Model we predict the price of cars present in test data.

predicted_price_rf <- predict(rf_model, newdata = test_data_filtered)</pre>

After Prediction we test model Accuracy using R^2, RMSE & MAE values

- [1] "Mean Absolute Error (MAE) with Random Forest: 1.24104022403177"
- [1] "Root Mean Squared Error (RMSE) with Random Forest: 2.4677110045158"
- [1] "R-squared with Random Forest: 0.949241942222172"

SVM

Here we use "svm()" function to train the SVM model

```
svr_model <- svm(Price ~ ., data = train_data, na.action = na.omit, scale = TRUE,kernel = 'radial')
```

Here we train our model on all columns for price prediction.

The parameter na.action = na.omit specifies the action to take if there are missing values in the data, instructing the model to omit observations with missing values. The parameter scale = TRUE indicates that the predictors should be scaled to have zero mean and unit variance, which is a common preprocessing step in SVM models to ensure that all features are on a similar scale

The kernel function used in this SVM model is specified as 'radial', which denotes a radial basis function (RBF) kernel. RBF kernels are commonly used in SVM models for non-linear regression tasks as they can effectively capture complex relationships between predictors and the target variable.

And after training of Model, we predict the price of cars present in test data.

```
predicted_price_svr <- predict(svr_model, newdata = test_data_filtered)
```

After Prediction, we test model Accuracy using R^2, RMSE & MAE values

- [1] "Mean Absolute Error (MAE): 1.90599776146066"
- [1] "Root Mean Squared Error (RMSE): 4.19691293029233"
- [1] "R-squared-byCalculation: 0.842991479190409"

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE Department of Multidisciplinary Engineering

Model	MAE	RMSE	R-Squared
Multiple Linear Regression	2.3493399	4.2477389	0.85141035
Decision Tree	2.920059	4.766653	0.8014424
Random Forest	1.24104022	2.46771	0.94924194
SVM (radial-kernel)	1.9045498	4.1931021	0.843276

After Checking Significance of each X-variables we get to know that "Seats" variable have least significance that of others

(Intercept)	0.00175 **
Age	< 2e-16 ***
Kilometers_Driven	0.00159 **

Owner_TypeSecond	0.00252	**
Owner_TypeThird	0.15400	
Mileage	1.58e-05	***
Engine	1.38e-06	***
Power	< 2e-16	***
Seats	0.35061	

But After removing "Seats" the accuracy or R^2 value decreases

Model	MAE	RMSE	R-Squared
Multiple Linear	2.87381	4.97619	0.766461
Regression			

11. Code:

Model Training code:

```
library(caret)
  library(randomForest)
  library(dplyr)

data<-read.csv("Final_TrainingDataSet.csv")</pre>
```

```
# Remove unnecessary columns
  data <- data[, !(names(data) %in% c("New_Price", "X", "Year"))]</pre>
  # Extract only the first string from the Name column
  # data$Name <- sapply(strsplit(data$Name, " "), function(x)</pre>
paste(x[1:min(length(x), 2)], collapse=""))
  data$Brand <- sapply(strsplit(data$Name, " "), function(x)</pre>
paste(x[1:min(length(x), 1)], collapse=" "))
  data <- data[, !(names(data) %in% c("Name","X.1"))]</pre>
  # Convert required columns to factor
  # This column has more than 53 levels or categories
  data$Location <- as.factor(data$Location)</pre>
  data$Fuel_Type <- as.factor(data$Fuel_Type)</pre>
  data$Transmission <- as.factor(data$Transmission)</pre>
  data$0wner_Type <- as.factor(data$0wner_Type)</pre>
  data$Brand<- as.factor(data$Brand)</pre>
  # Divide dataset into training and testing (75% train, 25% test)
  set.seed(123) # for reproducibility
  pd <- sample(2, nrow(data), replace = TRUE, prob = c(0.75,0.25))
  train_data <- data[pd == 1, ]</pre>
  test_data <- data[pd == 2, ]</pre>
  write.csv(train_data, file = "train_data.csv")
  Price = test_data$Price
  test_data <- test_data[, !(names(data) %in% c("Price"))]</pre>
  # Convert categorical variables to factors with levels from training data
  test_data$Location <- factor(test_data$Location, levels =</pre>
levels(train_data$Location))
  test_data$Fuel_Type <- factor(test_data$Fuel_Type, levels =</pre>
levels(train_data$Fuel_Type))
  test_data$Transmission <- factor(test_data$Transmission, levels =</pre>
levels(train_data$Transmission))
  test_data$Owner_Type <- factor(test_data$Owner_Type, levels =</pre>
levels(train_data$0wner_Type))
  test_data$Brand <- factor(test_data$Brand, levels = levels(train_data$Brand))</pre>
  # names(test_data)
  # is.numeric(test_data$Year)
```

```
# is.numeric(test_data$Age)
# is.numeric(test_data$Kilometers_Driven)
# is.numeric(test_data$Mileage)
# is.numeric(test_data$Engine)
# is.numeric(test_data$Power)
# is.numeric(test_data$Seats)
# is.factor(test_data$Location)
# is.factor(test_data$Fuel_Type)
# is.factor(test_data$Transmission)
# is.factor(test_data$Owner_Type)
# is.factor(test_data$Brand)
# Train a Random Forest model for price prediction
rf_model <- randomForest(Price ~ ., data = train_data,iter=300)</pre>
# Predict price using test data
predicted_price_rf <- predict(rf_model, newdata = test_data)</pre>
# Evaluate the model
# Calculate Mean Absolute Error (MAE)
MAE_rf <- mean(abs(predicted_price_rf - Price))</pre>
# Calculate Root Mean Squared Error (RMSE)
RMSE_rf <- sqrt(mean((predicted_price_rf - Price)^2))</pre>
# Calculate R-squared value
R_squared_rf <- cor(predicted_price_rf, Price)^2</pre>
print(paste("Mean Absolute Error (MAE) with Random Forest:", MAE_rf))
print(paste("Root Mean Squared Error (RMSE) with Random Forest:", RMSE_rf))
print(paste("R-squared with Random Forest:", R_squared_rf))
saveRDS(rf_model, file = "random_forest_model.rds")
```

Shiny Training Code:

```
library(shiny)
library(shinydashboard)
library(DT)
library(randomForest) # Assuming you trained your model using randomForest
```

```
# Load your trained model
price = "price"
car_data <- data.frame(</pre>
  car_name = c("Corolla", "Civic", "F-150", "Elantra", "Camaro"))
# Define UI for application
ui <- dashboardPage(</pre>
  dashboardHeader(
    title = div(
      "Used Car Price Prediction",
      tags$style(HTML("font-size: 24px;"))
    )
  Ο,
  dashboardSidebar(
    # Input fields
    width = "30%",
    tags$head(
      tags$style(
        HTML(".sidebar .form-group.shiny-input-container {
          width: 90%;
          align-item:center;
          margin-left:2rem;
        .img
        margin-bottom:3rem;
        )
      )
    ),
    sidebarMenu(
      menuItem("Home", tabName = "home", icon = icon("home")),
      numericInput("year" ,"Year", min = 1900, max = 2019, value = 2015),
      selectInput("brand", "Brand of Car",
                  choices <- c("Maruti", "Hyundai", "Honda", "Audi",</pre>
                                "Nissan", "Toyota", "Volkswagen", "Tata", "Land",
                                "Mitsubishi", "Renault", "Mercedes-Benz", "BMW",
                                "Mahindra", "Ford", "Porsche", "Datsun",
"Jaguar",
                                "Volvo", "Chevrolet", "Skoda", "Mini", "Fiat",
"Jeep",
                                "Smart", "Ambassador", "Isuzu", "Force",
"Bentley",
```

VISHWAKARIAGO

```
"Lamborghini")),
      selectInput("location", "Location of Car",
                  choices <- c("Mumbai", "Pune", "Chennai", "Coimbatore",
"Hyderabad", "Jaipur", "Kochi", "Kolkata", "Delhi", "Bangalore", "Ahmedabad")),
      numericInput("kilometer", "Kilometer Driven", value = 0),
      selectInput("fuel", "Fuel Type", choices = c("Petrol", "Diesel", "CNG",
"LPG")),
      selectInput("transmission", "Transmission", choices = c("Manual",
"Automatic")),
      selectInput("owner", "Owner Type",
                  choices = c("First", "Second", "Third", "Fourth", "Test Drive
Car")),
      numericInput("mileage", "Mileage (kmpl)", value = 0),
     numericInput("power", "Power (bhp)", value = 0),
      numericInput("engine", "Engine (CC)", value = 0),
     numericInput("seats", "Number of Seats", value = 0),
      selectInput("car_name", "Name of Car", choices = car_data$car_name)
    )
 ),
 dashboardBody(
    # Main panel for displaying results and the car image
    tabItems(
      tabItem(tabName = "home",
              fluidRow(
                box(
                  title = "Prediction",
                  status = "primary",
                  solidHeader = TRUE,
                  width = 12
                  height = "50%",
                  DTOutput("prediction")
                ),
                box(
                  title = "Car Image",
                  status = "primary",
                  solidHeader = TRUE,
                  width = 12,
                  height = "50%",
                  div(
                    style = "display: flex; justify-content: center; align-
items: flex-start;margin-bottom:6rem;margin-left:10rem;",
                    imageOutput("carImage")
                ),
                  title = "Price Prediction",
                 status = "primary",
```

VERMAAARAA

```
solidHeader = TRUE,
                  width = 12,
                  height = "50%",
                  textOutput("formatted_price"),
   )
  )
# Define server logic
server <- function(input, output) {</pre>
  car_data <- data.frame(</pre>
    car_name = c("Corolla", "Civic", "F-150", "Elantra", "Camaro"),
    image_file = c("corolla.jpg", "civic.jpg", "f150.jpg", "elantra.jpg",
"camaro.jpg")
  )
  # Server logic for prediction
  output$prediction <- renderDT({</pre>
    # Creating a data frame with parameters and values
    data <- data.frame(</pre>
      "Parameters" = c("Name of Car", "Year", "Brand", "Kilometer Driven", "Fuel
Type", "Transmission", "Owner Type", "Mileage", "Power", "Engine", "Seats",
"Price"),
      "Values" = c(input$car_name, input$year, input$brand, input$kilometer,
input$fuel, input$transmission, input$owner, input$mileage, input$power,
input$engine, input$seats, "A"),
      stringsAsFactors = FALSE
    # Highlighting the row with "Price" equal to "A"
    data$Parameters <- ifelse(data$Parameters == "Price", price,</pre>
data$Parameters)
    # Returning the data frame as a datatable
    datatable(data, rownames = FALSE, options = list(
      columnDefs = list(
        list(targets = "_all", className = "valueColumn")
    ))
```



```
# Dynamically render car image based on the selected car name
  output$carImage <- renderImage({</pre>
    # Get the selected car name
    selected_car <- input$car_name</pre>
    # Find the corresponding image file name based on the selected car name
    image_file <- car_data$image_file[car_data$car_name == selected_car]</pre>
    # If image file name is found, render the image
    if (!is.na(image_file) && file.exists(paste0("www/", image_file))) {
     list(src = paste0("www/", image_file), width = "70%" )
    } else {
      # If image file is not found, display a placeholder image
      list(src = "www/placeholder.jpg", width = "65%")
  }, deleteFile = FALSE)
  # Predict price using the trained model
  output$formatted_price <- renderText({</pre>
    # Prepare input data for prediction
    # Create new_data dataframe with proper data types and levels
    new_data <- data.frame(</pre>
      Age = as.integer(2024 - input$year), # Corrected the calculation of Age
      Location = factor(input$location, levels = levels(train_data$Location)),
      Kilometers_Driven = as.integer(input$kilometer),
      Fuel_Type = factor(input$fuel, levels = levels(train_data$Fuel_Type)),
      Transmission = factor(input$transmission, levels =
levels(train_data$Transmission)),
      Owner_Type = factor(input$owner, levels = levels(train_data$Owner_Type)),
      Mileage = as.numeric(input$mileage),
      Engine = as.integer(input$engine),
      Power = as.numeric(input$power),
      Seats = as.integer(input$seats),
      Brand = factor(input$brand, levels = levels(train_data$Brand))
    cat("\n", names(new_data), "\n")
    cat(is.numeric(new_data$Year))
    cat(is.numeric(new_data$Age))
    cat(is.numeric(new_data$Kilometers_Driven))
    cat(is.numeric(new_data$Mileage))
    cat(is.numeric(new_data$Engine))
    cat(is.numeric(new_data$Power))
    cat(is.numeric(new_data$Seats))
    cat(is.factor(new_data$Location))
    cat(is.factor(new_data$Fuel_Type))
```

VIEHWAKARMA

```
cat(is.factor(new_data$Transmission))
cat(is.factor(new_data$0wner_Type))
cat(is.factor(new_data$Brand))

# Make prediction using the loaded model
predicted_price <- predict(mymodel, new_data)
predicted_price = round(predicted_price,2)
# Format the predicted price with a range of +/- 2 Lacs
formatted_price <- paste(predicted_price, "Lacs")

# Return the formatted predicted price
formatted_price
}

# Run the application
shinyApp(ui = ui, server = server)</pre>
```


12. Shiny App

Fig; Interface of Shiny app

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE Department of Multidisciplinary Engineering

13. Evaluation Parameters: Explain which evaluation parameters you have used in your project.

14. Results and Discussions:

Data Visualization:

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE

Department of Multidisciplinary Engineering

VISHWAKARMA INSTITUTE OF TECHNOLOGY - PUNE

Department of Multidisciplinary Engineering

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE

Department of Multidisciplinary Engineering

VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE

Department of Multidisciplinary Engineering

Fig: Feature Correlation Diagram

15 .Conclusions:

After conducting a comprehensive evaluation of various machine learning algorithms, it is evident that Random Forest emerges as the optimal choice for the predictive modeling task at hand.

Random Forest surpasses Linear Regression, Decision Tree, and SVM (with radial) in accuracy. Its superiority is confirmed by lower MAE and RMSE, along with a higher R-squared value.

The values of metrics are:

Random Forest: MAE: 1.24104022 RMSE: 2.46771 R-Squared: 0.94924194 Based on this, the Random Forest algorithm has the lowest Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), and it also achieves the highest R-squared value. Therefore, it appears to be the most accurate algorithm among the ones tested.

VIEHWAKARMA INSTITUTES

Bansilal RamnathAgarwal Charitable Trust's VISHWAKARMA INSTITUTE OF TECHNOLOGY – PUNE Department of Multidisciplinary Engineering

References:

- [1] Kriswantara, B., & Sadikin, R. (2022). Used Car Price Prediction with Random Forest Regressor Model. *Journal of Information Systems, Informatics and Computing Issue Period*, 6(1), 40–49.
- [2] MUTİ, S., & YILDIZ, K. (2023). Using Linear Regression For Used Car Price

 Prediction. International Journal of Computational and Experimental Science and

 Engineering, 9(1), 11–16.
- [3] Gupta, V., M.L, S., & K.C, T. (2021). USED CAR PRICE PREDICTION. International Journal of Multidisciplinary Advanced Scientific Research and Innovation, 1(10), 256–262.
- [4] -, D. A. G., -, P. S. S., -, Y. R. M., -, A. U. P., & -, S. G. T. (2023). Used Car Price Prediction
 Using Random Forest Algorithm. *International Journal For Multidisciplinary Research*, *5*(3).
- [5] Cui, B., Ye, Z., Zhao, H., Renqing, Z., Meng, L., & Yang, Y. (2022). Used Car Price Prediction Based on the Iterative Framework of XGBoost+LightGBM. *Electronics (Switzerland)*, 11(18).
- [6] S, R., R, B. T., T, B. G., Hegde, R. P., & Ramesh, S. (2023). Used Car Price Prediction Using Machine Learning. *International Journal for Research in Applied Science and Engineering Technology*, 11(5), 1176–1180.
- [7] Dahiya, H., Aggarwal, C., Goyal, S., & Agarwal, M. (2021). USED CAR PRICE PREDICTION USING MACHINE LEARNING. International Journal of Multidisciplinary Advanced Scientific Research and Innovation, 1(10), 246–251.
- [8] Varshitha, J., Jahnavi, K., & Lakshmi, C. (2022). Prediction Of Used Car Prices Using

 Artificial Neural Networks And Machine Learning. In 2022 International Conference on Computer

 Communication and Informatics, ICCCI 2022. Institute of Electrical and Electronics Engineers

 Inc.

[9] Alhakamy, A., Alhowaity, A., Alatawi, A. A., & Alsaadi, H. (2023). Are Used Cars More
Sustainable? Price Prediction Based on Linear Regression. *Sustainability*, *15*(2), 911.
[10] Huang, J., Saw, S. N., Feng, W., Jiang, Y., Yang, R., Qin, Y., & Seng, L. S. (2023). A Latent
Factor-Based Bayesian Neural Networks Model in Cloud Platform for Used Car Price

Prediction. IEEE Transactions on Engineering Management.

- [11] PREDICTION PRICE OF USED CARS. (2023). International Research Journal of Modernization in Engineering Technology and Science. https://doi.org/10.56726/irjmets33331
- [12] Shaprapawad, S., Borugadda, P., & Koshika, N. (2023). Car Price Prediction:An Application of Machine Learning. 6th International Conference on Inventive Computation Technologies, ICICT 2023 Proceedings. https://doi.org/10.1109/ICICT57646.2023.10134142
- [13] Zhu, Y. (2023). Prediction of the price of used cars based on machine learning algorithms.
 Applied and Computational Engineering, 6(1). https://doi.org/10.54254/2755-2721/6/20230917
 [14] Venkatasubbu P., Ganesh M. Used Cars Price Prediction using Supervised Learning
 Techniques . International Journal of Engineering and Advanced Technology (2019)
- [15] 1Amit Kewat , Nitesh Kanojiya . Price Prediction of Used Cars Using Linear Regression.

 Journal of Online Engineering Education
- [16] Gegic, E., Isakovic, B., Keco, D., Masetic, Z., & Kevric, J. (2019). Car price prediction using machine learning techniques. TEM Journal, 8(1). https://doi.org/10.18421/TEM81-16
 [17] -, D. A. G., -, P. S. S., -, Y. R. M., -, A. U. P., & -, S. G. T. (2023). Used Car Price Prediction Using Random Forest Algorithm. International Journal For Multidisciplinary Research, 5(3).

https://doi.org/10.36948/ijfmr.2023.v05i03.3308

[18] Mrs Shyamali Das1, Mr Ananta Laha2, Mr Alok Jena3, Ms Priyadarshini Samal4. Used Car Price Prediction Using Machine Learning Techniques. International Journal of Research Publication and Reviews

[19] Cui, B., Ye, Z., Zhao, H., Renqing, Z., Meng, L., & Yang, Y. (2022). Used Car Price Prediction Based on the Iterative Framework of XGBoost+LightGBM. Electronics (Switzerland), 11(18). https://doi.org/10.3390/electronics11182932

[20] Monburinon, N., Chertchom, P., Kaewkiriya, T., Rungpheung, S., Buya, S., & Boonpou, P. (2018). Prediction of prices for used car by using regression models. Proceedings of 2018 5th International Conference on Business and Industrial Research: Smart Technology for Next Generation of Information, Engineering, Business and Social Science, ICBIR 2018. https://doi.org/10.1109/ICBIR.2018.8391177