Air Defense Architectural Review

Introductions

Sam Cooper

Harrison Doll

Jake Neau

Cullen Krasselt

Nathan Woolf

High Level State Machine

Idle

 Motor mount is centered and we are waiting for a signal from the object detector to start the tracking state

Tracking

 Once an object is detected, drive the motors to align our laser. We may need to lead the target by a small amount to compensate for any latency from the camera.

Locked

 Once the motors are on target for a to be determined amount of time, turn on the laser.
Keep tracking the target.

Return

• Once off screen, drive the motors to the start position, then move back to idle.

High-Level Block Diagram

External Hardware

- Camera detects scene
- Monitor displays tracked objects
- Motor and laser track and shoot target

FPGA Programmed Units

- GPIO and VGA managers handle external signal routing
- Display image generator takes frame data and position data to produce image
- Image pipeline tracks a thrown object
- Motor pipeline drives the laser to our desired location

FPGA Board Switches

Handle reset and setting other modes

Algorithms to Accelerate

Object Tracking

- We need object tracking to get the position of the object for targeting purposes
- We need object detection to set the board to the tracking state when a thrown object appears on screen
- Neural networks can take a (comparatively) long time to generate tracking data, so pipelining this section will be key

Coordinate Transformation and PWM Controller

- The target values in the detection module will be continuously changing throughout time
- We need to design a module that can react quickly to movement that may not be predictable

Accelerator Implementation

Object detection

- We need to base our hardware on an algorithm that does not take a long time to compute
- YOLO is a candidate for acceleration, but we will need to see if it will fit on our FPGA
- Pipelines can be inserted between layers of the CNN to increase throughput at the cost of latency

Coordinate Transformation

- Accumulate a complete image of pixels (frame) from DE1-SoC Camera module
- Processes frame to determine location of selected object as X and Y coordinates
- Virtual coordinates from the camera will be transformed to Physical coordinates through pre calculated look up table values

External Interfaces

Camera (input)

- Input pixel stream to board
- Camera refresh rate must be greater than the 15fps from minilab

Pan-tilt servo setup (output)

- Board must output 50Hz pwm with variable duty cycle for servo position.
- Exploring increasing pwm freq for quicker response times

Monitor (output)

 Relay camera image with image proc overlay for feedback

Laser Control Signal (output)

 Board will output wire for laser pointer enable

Plan Verification

Laser Movement

• After researching servo drivers, we realized that we no longer require a PID controller to interface with them. We will, however, need extensive drivers in order to produce the PWM signals needed for movement.

Object Identification

 We switched from an object detection model to an object tracking model on the graphical side as it will provide us with a more reliable means of following the object.