Deep Learning Based 5G mm-Wave beamforming management scheme

Presented by: Rigobert TSOUAPI

Supervised by: Ado Adamou ABBA ARI, Ph.D., MBA

LI-PaRAD Lab, University of Versailles Saint-Quentin-en-Yvelines, France LaRI Lab, University of Maroua, Cameroon

September 8, 2021

Overview

- Introduction
- 2 Mobile network concepts
- 3 Artificial intelligence concepts and methods
- 4 System model and problem formulation
- 5 Proposed approach solution
- 6 Results and discussions
- Conclusion and Perspectives

Figure 1: Ever-growing internet services.

Figure 1: Ever-growing internet services.

Figure 2: 5G mobile network.

Figure 1: Ever-growing internet services.

Figure 2: 5G mobile network.

 In 5G mm-Wave the beamforming technique was introduced for achieve the best SNR through the set of operations known as beam management

Problem statements

Beam management requires an intelligent algorithm that in an efficient way can select the most suitable beam based on some learning processes.

Problem statements

Beam management requires an intelligent algorithm that in an efficient way can select the most suitable beam based on some learning processes.

Those intelligent algorithms used for the complex optimization problem require a huge amount of iteration and also need a lot of computational resources to be solved.

Problem statements

Beam management requires an intelligent algorithm that in an efficient way can select the most suitable beam based on some learning processes.

Those intelligent algorithms used for the complex optimization problem require a huge amount of iteration and also need a lot of computational resources to be solved.

Deep Learning techniques has been applied in solving of several challenging problems in telecommunications.

Problem statements

Beam management requires an intelligent algorithm that in an efficient way can select the most suitable beam based on some learning processes.

Those intelligent algorithms used for the complex optimization problem require a huge amount of iteration and also need a lot of computational resources to be solved.

Deep Learning techniques has been applied in solving of several challenging problems in telecommunications.

Research objective

The objective is to propose a beamforming management (with centralized architecture) mechanism in the context of dense mm-Wave networks by using deep learning.

mm-Wave, MIMO, massive MIMO

- mm-Wave : Radio waves covering frequences from 30-300Ghz
- MIMO : Multiple Imput Multiple Output
- massive MIMO : extension of multi-users MIMO system

mm-Wave, MIMO, massive MIMO

- mm-Wave : Radio waves covering frequences from 30-300Ghz
- MIMO : Multiple Imput Multiple Output
- massive MIMO : extension of multi-users MIMO system

Figure 3: MIMO System.

$$H = \begin{pmatrix} h_{11} & h_{12} & \dots & h_{1N_t} \\ h_{21} & h_{22} & h_{23} & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ h_{N_t 1} & h_{N_t 2} & \dots & h_{N_t N_t} \end{pmatrix}$$
(1)

MIMO signal can be defined by:

$$Y = HX + n \tag{2}$$

$$H = \begin{pmatrix} h_{11} & h_{12} & \dots & h_{1N_t} \\ h_{21} & h_{22} & h_{23} & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ h_{N_r 1} & h_{N_r 2} & \dots & h_{N_r N_t} \end{pmatrix}$$
(1)

MIMO signal can be defined by:

$$Y = HX + n \tag{2}$$

Antenna selection

- process to select the suitable beam from transmitter With the perfect knowledge of the channel characteristic
- selection is based on Signal to Noise Ratio (SNR) at each receive antenna.

Beamforming

Signal processing techniques used in sensor array for directional signal transmission or reception

Beamforming

Signal processing techniques used in sensor array for directional signal transmission or reception

Figure 4: MIMO and Beamforming

Artificial intelligence concepts and methods

Figure 5: Venn diagram for AI, ML, DL

Artificial intelligence concepts and methods

Figure 5: Venn diagram for AI, ML, DL

(a) Mathematical model of neuron or perceptron

Artificial intelligence concepts and methods

Figure 5: Venn diagram for AI, ML, DL

- (a) Mathematical model of neuron or perceptron
- (b) A fully connected feed forward NN architecture

hidden layers

input layer

output laver

Deep Learning Algorithms

- Deep Neural Network (DNN)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Long Short Term Memory (LSTM) etc...

Deep Learning Algorithms

- Deep Neural Network (DNN)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Long Short Term Memory (LSTM) etc...

$$y = \sigma(Wx + b) \tag{3}$$

$$\sigma = \max(0, x) \tag{4}$$

Deep Learning Algorithms

- Deep Neural Network (DNN)
- Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)
- Long Short Term Memory (LSTM) etc...

Figure 7: ReLU Activation Function.

System model

Figure 8: Dense mm-Wave network architecture.

Beamforming Training(BFT) mechanism

$$G(\alpha, \theta) = \begin{cases} \frac{2\pi - (2\pi - \alpha)\epsilon}{\alpha} & \text{if } |\theta| \le \frac{\alpha}{2}, \\ \epsilon & \text{Otherwise} \end{cases}$$
 (5)

Beamforming Training(BFT) mechanism

$$G(\alpha, \theta) = \begin{cases} \frac{2\pi - (2\pi - \alpha)\epsilon}{\alpha} & \text{if } |\theta| \le \frac{\alpha}{2}, \\ \epsilon & \text{Otherwise} \end{cases}$$
 (5)

Figure 9: BFT mechanism in dense mm-Wave.

BFT Mechanism and Problem formulation

$$b_{ad/ay} = (b_{AP} + n.b_{AP} + n) + (b_{AP} + s.b_{STA} + s).(n+1)$$
 (6)

$$b_{pro} = (b_{AP} + n.b_{AP} + n) + b_{AP}.(n+1) + s.(b_{STA} + 2n + 1)$$
 (7)

$$b_{\mathsf{save}} = b_{\mathsf{ad/ay}} - b_{\mathsf{pro}} = s.n.(b_{\mathsf{STA}} - 1) \tag{8}$$

$$b_{AP} = \frac{2\pi}{\alpha_{AP}} \qquad \qquad b_{STA} = \frac{2\pi}{\alpha_{STA}}$$

BFT Mechanism and Problem formulation

$$b_{ad/ay} = (b_{AP} + n.b_{AP} + n) + (b_{AP} + s.b_{STA} + s).(n+1)$$
 (6)

$$b_{pro} = (b_{AP} + n.b_{AP} + n) + b_{AP}.(n+1) + s.(b_{STA} + 2n + 1)$$
 (7)

$$b_{\mathsf{save}} = b_{\mathsf{ad/ay}} - b_{\mathsf{pro}} = s.n.(b_{\mathsf{STA}} - 1) \tag{8}$$

$$b_{AP} = \frac{2\pi}{\alpha_{AP}} \qquad \qquad b_{STA} = \frac{2\pi}{\alpha_{STA}}$$

Directional transmit gain $G_{i,j}^t$ and directional received gain $G_{i,j}^r$ in In the dense mm-Wave network:

$$G_{i,j}^t = \frac{2\pi - (2\pi - \alpha_{i,j}^t)\epsilon}{\alpha_{i,j}^t} \tag{9}$$

$$G_{i,j}^{r} = \frac{2\pi - (2\pi - \alpha_{i,j}^{r})\epsilon}{\alpha_{i,j}^{r}},\tag{10}$$

$$h_{i,j}(\tau) = \sum_{k=1}^{K} G_{i,j}^{(k)} G_{i,j}^{(k)} \chi_{i,j}^{(k)} \delta(\tau - \tau_{i,j}^{(k)}), \tag{11}$$

$$G_{i,j}^{(k)} = |\chi_{i,j}^{(k)} \delta(\tau - \tau_{i,j}^{(k)})|^2,$$
(12)

$$h_{i,j}(\tau) = \sum_{k=1}^{K} G_{i,j}^{(k)} G_{i,j}^{(k)} G_{i,j}^{(k)}, \tag{13}$$

$$P_{i,j}^{r} = P_{i,j}^{t} \sum_{k=1}^{K} G_{i,j}^{(k)} G_{i,j}^{(k)} G_{i,j}^{(k)},$$
(14)

$$P_{a,b\to i,j}^{I} = P_{i,j}^{t} \sum_{k=1}^{K} G_{a,b\to i,j}^{(k)} G_{a,b\to i,j}^{(k)} G_{i,b}^{(k)}, \tag{15}$$

$$SINR_{i,j} = \frac{x_{i,j}P_{i,j}^r}{\sum_{a \in \mathbb{N}\setminus j} \sum_{b \in \mathbb{N}\setminus j} x_{a,b}P_{a,b\to i,j}^l + W.N_0}$$
(16)

$$Score = \frac{C_1 * level + C_2 * Skill}{\sum (C_1 + C_2)}$$

$$\begin{split} P_{1}: & \text{Maximize} \sum_{i \in \mathbb{S}} \sum_{j \in \mathbb{N}} x_{i,j} W log_{2}(1 + SINR_{i,j}) \\ & \text{subject to}: \\ C_{1}: x_{i,j} = \{0,1\}, \forall i \in \mathbb{S}, j \in \mathbb{N}, \\ C_{2}: & \sum_{j \in \mathbb{N}} x_{i,j} \leq 1, \forall i \in \mathbb{S}, \\ C_{3}: & \sum_{i \in \mathbb{S}} x_{i,j} \leq b_{AP}, \forall j \in \mathbb{N}, \\ C_{4}: & \sum_{i \in \mathbb{S}} x_{i,j} P_{i,j} \leq p_{j}^{max}, \forall j \in \mathbb{N}, \\ C_{5}: & \alpha^{min} \leq \alpha_{i,j} \leq \alpha^{max}, \forall i \in \mathbb{S}, j \in \mathbb{N}, \\ C_{6}: & \sum_{i \in \mathbb{S}} x_{i,j} \alpha_{i,j} \leq 2\pi, \forall j \in \mathbb{N}, \end{split}$$

$$P_2: egin{aligned} \mathsf{Maximize} \sum_{i \in \mathbb{S}} \sum_{j \in \mathbb{N}} x_{i,j} \mathit{Wlog}_2(1 + \mathit{SINR}_{i,j}) \end{aligned}$$

subject to:

$$C_1: x_{i,j} = \{0,1\}, \forall i \in \mathbb{S}_j, j \in \mathbb{N},$$

$$C_2: \sum_{j\in\mathbb{N}} x_{i,j} \leq 1, \forall i \in \mathbb{S},$$

$$C_3: \sum_{i \in \mathbb{S}_j} x_{i,j} \le b_{AP}, \forall j \in \mathbb{N}, \tag{19}$$

$$C_4: \sum_{i \in \mathbb{S}_j} x_{i,j} P_{i,j} \leq p_j^{max}, \forall j \in \mathbb{N},$$

$$C_5: \alpha^{\min} \leq \alpha_{i,j} \leq \alpha^{\max}, \forall i \in \mathbb{S}_j, j \in \mathbb{N},$$

$$C_6: \sum_{i \in \mathbb{S}_i} x_{i,j} \alpha_{i,j} \leq 2\pi, \forall j \in \mathbb{N},$$

Proposed approach solution

Block coordinate descent method

- 1 Initialize P and A to obtain the optimized X^* ;
- ② Use the optimized X^* and initialized P to get the optimized A^* ;
- **1** Use the optimized X^* and A^* to find the optimized P^* .

Deep Learning System setup approach solution

Linear sub-assignment problems (LSAP)

Figure 10: System model of DNN based LSAP

Deep Learning System setup approach solution

Fully connected neural network

Figure 11: DNN structure for j-th sub-assignment problem.

BFT: Impact of the number of AP and STA/UEs

(a) The overhead of IEEE802.11ad/ay BFT.

(b) The overhead of proposed BFT mechanism.

BFT: Impact of the number of AP and STA/UEs

Figure 13: The performance between BFT in IEEE802.11ad/ay and proposed efficient BFT mechanism

Data Generated

$$SINR_{i,j} = \frac{x_{i,j}P_{i,j}^r}{W.N_0} \tag{20}$$

	z0	z1	z2	z3	z4	z5	z6	z 7	z8	z9	 z19990	z19991
0	47.453710	738.315292	1976.976484	37.377212	30.890258	328.140130	219.664054	353.867093	54.916013	76.280024	 43.684104	76.280024
1	82.035032	95.685662	99.631051	40.346459	452.200670	598.035386	42.526961	85.159898	42.526961	1976.976484	 54.916013	24.907763
2	68.719952	64.287599	113.050168	46.144706	174.736417	37.377212	248.922117	542.435725	60.270636	738.315292	 85.159898	32.343720
3	1220.480380	452.200670	738.315292	50.244519	28.262542	38.329459	1661.209407	24.407117	85.159898	142.304673	 35.576168	118.130447
4	149.508847	68.719952	305.120095	56.618735	28.887110	29.532612	108.290699	157.274263	43.684104	62.230529	 79.079059	64.287599
5	195.276861	2392.141546	54.916013	66.448376	41.415193	39.318566	26.505723	44.889126	108.290699	79.079059	 25.956397	738.315292

6 rows × 20000 columns

Figure 14: SNR values Data Frame

Parameters selection and performance of DNN approach

(a) learning rate selection

Number of STA	Sum	n-rate	Ratio	Comput	Computational time		
	DNN	BM-IC	DNN/BM-IC	DNN	BM-IC		
10	2.624	2.792	93.997%	0.048	2.342		
20	3.368	3.655	92.136%	0.032	6.926		
30	3.549	4.124	86.053%	0.043	13.398		

Table 1: Sum-rate and computational time performance of DNN and BM-IC

Figure 16: Sum-rate and computational time performance of DNN and BM-IC when the number of STA increase

Conclusion and Perspectives

Conclusion

- Dense mm-Wave with centralized architecture and formulated the mathematical problem which was NP-hard optimization problem
- Increase of sum-rate of both classic and DNN model while the ratio is decrease cause by the augmentation of the interference in the network
- Computational time in DNN approach is more less than when we used the classic BM-IC method

Perspectives

- Conduct a comparative study of our proposed beam selection and other deep learning-based methods as convolutional neural networks and reinforcements learning
- Proceed the same when station are mobile in the network

Thank you for your attention