Examenul de bacalaureat 2012 Proba E. d) Proba scrisă la FIZICĂ

Filiera teoretică - profilul real, Filiera tehnologică - profilul tehnic și profilul resurse naturale și protecția mediului, Filiera vocațională – profilul militar

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ Se acordă 10 puncte din oficiu.
- Timpul efectiv de lucru este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 3

I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect.

(15 puncte)

1. În graficul din figura alăturată este reprezentată dependența randamentului η , al unui circuit simplu, de rezistența electrică variabilă a circuitului exterior sursei. Valoarea rezistenței interne a sursei ce alimentează acest circuit este:

a. 0.5Ω

b. 1 Ω

c. 2Ω

(3p)

2. Coeficientul de temperatură al rezistivitătii filamentului unui bec electric este α . Dacă temperatura filamentului becului electric este t, variația relativă a rezistenței electrice a filamentului față de temperatura $t_0 = 0^{\circ}$ C este:

a. $1+\alpha \cdot t$

(3p)

3. Sursa de tensiune electromotoare E = 6 V şi rezistență internă $r = 1 \Omega$, este parcursă de un curent electric de intensitate I = 1 A având sensul indicat în figura alăturată. Valoarea tensiunii U_{AB} este :

a. 1 V

c. 6 V

d. 7 V

(3p)

4. Un conductor este străbătut de un curent electric a cărui intensitate variază în timp după legea I = 2t. Dacă intensitatea curentului electric și timpul sunt exprimate în unități de măsură ale S.I., sarcina electrică care trece prin secțiunea conductorului în intervalul de timp cuprins între $t_1 = 0$ s şi $t_2 = 2$ s este:

b. 5 C

c. 4 C

5. Știind că simbolurile mărimilor fizice și ale unităților de măsură sunt cele utilizate în manualele de fizică, unitatea de măsură în S.I. a raportului $\frac{R}{}$ este:

a. $\Omega \cdot m$

b. m

c. $\Omega \cdot m^{-1}$

d. m⁻¹

(3p)

(15 puncte)

II. Rezolvati următoarea problemă:

Se consideră circuitul electric a cărui schemă este reprezentată în figura alăturată. Se cunosc: $R_1 = 30\,\Omega$, $R_2 = 120\,\Omega$, $R_3 = 20\,\Omega$. Cele două surse sunt identice, rezistența internă a unei surse fiind $r = 2\Omega$. Când întrerupătorul K este închis, intensitatea curentului electric indicată de ampermetrul ideal ($R_A \cong 0$) are valoarea $I_A = 0.25 \,\mathrm{A}$. Rezistența electrică a conductoarelor de legătură se neglijează. Determinați:

- **a.** rezistența echivalentă a grupării formate din rezistoarele R_1 , R_2 , R_3 ;
- **b.** valoarea tensiunii electromotoare a unei surse;
- c. intensitatea curentului electric care trece prin rezistorul R₁ dacă întrerupătorul K este închis;
- d. tensiunea dintre punctele A și B dacă întrerupătorul K este deschis.

III. Rezolvați următoarea problemă:

(15 puncte)

Un elev are la dispoziție o baterie cu tensiunea electromotoare E = 12 V și rezistența internă $r = 1\Omega$ și două rezistoare având rezistențele electrice $R_1 = 1 \Omega$ şi respectiv $R_2 = 10 \Omega$. Elevul conectează la bornele bateriei cele două rezistoare grupate în serie.

- a. Calculați rezistența echivalentă a grupării de rezistoare.
- **b.** Determinați energia consumată de circuitul exterior în timpul $t_1 = 10 \text{ min}$.
- c. Calculati randamentul circuitului electric.
- d. Desenați schema electrică a circuitului pe care elevul trebuie să-l realizeze astfel încât sursa să debiteze puterea maximă pe circuitul exterior și calculați valoarea acestei puteri maxime.