Project Development Phase

Sprint 1

MNIST Dataset pre processing

Date	27 November 2022
Team ID	PNT2022TMID06505
Project Name	A Novel Method For Handwritten Digit
	Recognition System
Maximum Marks	4 Marks

1. Understanding the Data

Importing the required libraries

import numpy as np import tensorflow from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten from tensorflow.keras.layers import Conv2D from keras.optimizers import Adam from keras.utils import np utils

2.Loading data

Input:

(X train,y train), (X test,y test)=mnist.load data()

Output:

Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11490434/11490434 [==========] - 0s 0us/step

3. Analyzing the data

Input:

X train[0]

Output:

0, 01,

- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 18, 18, 18, 126, 136, 175, 26, 166, 255, 247, 127, 0, 0,
- [0, 0, 0, 0, 0, 0, 0, 0, 30, 36, 94, 154, 170, 253, 253, 253, 253, 253, 225, 172, 253, 242, 195, 64, 0, 0, 0, 0],

- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 241, 225, 160, 108, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39, 148, 229, 253, 253, 253, 250, 182, 0, 0, 0, 0, 0, 0, 0, 0],
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 114, 221, 253, 253, 253, 253, 201, 78, 0, 0, 0, 0, 0, 0, 0,

0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 23, 66, 213, 253, 253, 253, 253, 198, 81, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 171, 219, 253, 253, 253, 253, [0, 0, 0, 0, 0, 195, 80, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 55, 172, 226, 253, 253, 253, 253, 244, 133,11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 136, 253, 253, 253, 212, 135, 132, 16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0], [0, 0]], dtype=uint8)

Input:

y_train[0]

Output:

5

Input:

Import matplotlib.pyplot **aspltplt.imshow**(X train[0])

Input:

plt.imshow(X_train[12])

Output:

4. Reshaping the data

X_train=X_train.reshape(60000, 28, 28, 1).astype('float32') X_test=X_test.reshape(10000, 28, 28, 1).astype('float32')

5. Apply one-Hot Encoding

number_of_classes= 10
y_train=np_utils.to_categorical(y_train, number_of_classes)
y_test=np_utils.to_categorical(y_test, number_of_classes)

Input:

y_train[0]

Output:

array([0., 0., 0., 0., 0., 1., 0., 0., 0., 0.], dtype=float32)