1

GATE ASSIGNMENT 2

Dishank Jain AI20BTECH11011

Download all python codes from

Therefore option (A) is the correct option.

https://github.com/Dishank422/EE3900/blob/main/ Gate-Assignment2/codes

and latex-tikz codes from

https://github.com/Dishank422/EE3900/blob/main/ Gate-Assignment2/latex code.tex

1 EC 2019 Q.33

The DFT of a vector $(a \ b \ c \ d)$ is the vector $(\alpha \ \beta \ \gamma \ \delta)$. Consider the product

$$(p \ q \ r \ s) = (a \ b \ c \ d) \begin{pmatrix} a \ b \ c \ d \\ d \ a \ b \ c \\ c \ d \ a \ b \\ b \ c \ a \ d \end{pmatrix} (1.0.1)$$

The DFT of the vector $(p \ q \ r \ s)$ is a scaled version of

(A)
$$\left(\alpha^2 \quad \beta^2 \quad \gamma^2 \quad \delta^2\right)$$

(B)
$$(\sqrt{\alpha} \quad \sqrt{\beta} \quad \sqrt{\gamma} \quad \sqrt{\delta})$$

(B)
$$\left(\sqrt{\alpha} \quad \sqrt{\beta} \quad \sqrt{\gamma} \quad \sqrt{\delta}\right)$$

(C) $\left(\alpha + \beta \quad \beta + \delta \quad \delta + \gamma \quad \gamma + \alpha\right)$

(D)
$$(\alpha \beta \gamma \delta)$$

2 Solution

We note that $(p \ q \ r \ s)$ is the circular convolution of $\begin{pmatrix} a & b & c & d \end{pmatrix}$ with itself. Therefore

$$(p \ q \ r \ s) = (a \ b \ c \ d) \otimes (a \ b \ c \ d)$$

$$(2.0.1)$$

Therefore, the Fourier transform of $(p \ q \ r \ s)$ is given by the element-wise product of the Fourier transform of $\begin{pmatrix} a & b & c & d \end{pmatrix}$ with itself. Therefore

$$\mathcal{F}(p \ q \ r \ s) = \mathcal{F}(a \ b \ c \ d) \odot \mathcal{F}(a \ b \ c \ d)$$

$$= (\alpha \ \beta \ \gamma \ \delta) \odot (\alpha \ \beta \ \gamma \ \delta)$$

$$= (\alpha^2 \ \beta^2 \ \gamma^2 \ \delta^2)$$

$$(2.0.4)$$