

Aufgabenseminar Himmelsmechanik

pankratius.github.io/rolf

Gravitationskraft $\mathbf{F} = \frac{mMG}{r^2}\hat{\mathbf{r}}$; Gravitationspotential $U(r) = -\frac{mMG}{r}$; Gesamtenergie auf einer elliptischen Flugbahn $E = \frac{mMG}{2a}$; Fläche einer Ellipse $A = \pi ab$; für Punkt auf Ellipse bleibt Summe der Abstände zu den Brennpunkten konstant, Runge-Lenz-Vektor $\varepsilon = \frac{\mathbf{L}^{N}\mathbf{v}}{Cr^{N}\mathbf{v}} + \hat{\mathbf{r}} = \text{const.}$

Vektor $\varepsilon = \frac{\mathbf{L}^{\times}\mathbf{V}}{GmM} + \hat{\mathbf{r}} = \text{const.}$ Kepler I: Bewegung von HK auf Kegelschnitten, Brennpunkt im Schwerpunkt; Kepler II: Radiusvektor überschreitet gleiche Flächen in gleichen Zeiten; Kepler III: für zwei Bahnen gilt $T^2/T^2 = a_1^2/a_2^3$

wichtige Größen: Abstand von Schwerpunkt (r), Gravitationskraft (\mathbf{F}) , Gravitationspotential (U(r)), Energie (E(r)), Drehimpuls (\mathbf{L}) , Umlaufzeit (T), große Halbachse (a), kleine Halbachse (b), Masse eines Körpers im gegebenen Gravitationsfeld (m), Masse des Gravitationsfeld erzeugenden Körpers (M), Gravitationskonstante (G)

Aufgabe 1 (Polygon)

Wir betrachten ein regelmäßiges n-Eck, bei dem an jeder Ecke eine Masse m sitzt. Wie bewegt sich das System, wenn nur die Gravitationskraft zwischen den Körpern wirkt? Wie viel Zeit (in Abhänigkeit von n) vergeht, bis das System seinen Endzustand erreicht hat?

Aufgabe 2 (Ballistische Rakete)

Eine Rakete wird vom Nordpol der Erde (Radius r) mit der ersten kosmischen Geschwindigkeit gestartet, sodass sie am Äquator landet.

- 1. Wie groß ist die große Halbachse a der Flugbahn?
- 2. Was ist der größte Abstand h der Rakete von der Erdoberfläche?
- 3. Wie lang ist die Flugzeit T der Rakete?

Aufgabe 3 (Starrer Körper)

Drei (nicht-kolineare) Massen m_i ($i \in \{1,2,3\}$) an Punkten P_i wechselwirken ausschließlich über durch ihre Gravitationskraft. Die durch die drei Punkte aufgespannte Ebene sei ν , und die dazu senkrecht stehende Rotationsachse σ . Welche Bedingungen müssen die drei Seitenlängen des Dreiecks $\Delta P_1 P_2 P_3$ erfüllen, sodass dieses sich nicht verändert, also wie ein starrer Körper um σ rotiert?

Aufgabe 4 (Komet)

Ein Komet bewegt sich auf einer parabolischen Bahn um die Sonne. Im sonnennächsten Punkt beträgt sein Abstand von der Sonne $r_e/3$, wobei r_e der Radius der als kreisförmig angenommenen Erdbahn ist. Alle anderen Wechselwirkungen als die mit der Sonne vernachlässigendend, wie lang ist die Zeit τ , die sich der Komet innerhalb der Erdbahn befindet?