Лекция 11. Ортогональное дополнение.

Ортогональная проекция вектора на подпространство евклидова пространства. Расстояние и угол между вектором и подпространством.

Все события будут разворачиваться в евклидовом пространстве Е.

Определение 1. Пусть $L \subset E$ - непустое подмножество. Ортогональным дополнением к L в E называется подмножество $L^{\perp} = \{ y \in E : (x, y) = 0, \forall x \in L \}$. (1)

Так, если L –прямая в трехмерном векторном евклидовом пространстве, то ортогональным дополнением к L будет плоскость, перпендикулярная этой прямой.

Лемма 1. (а) L^{\perp} – линейное подпространство в Е;

(б) Если L содержит нулевой вектор o, то $L \cap L^{\perp} = o$.

Доказательство. (a) Если $(x,y) = 0, \forall x \in L$, то $\forall \lambda \in R, (x,\lambda y) = \lambda(x,y) = 0, \forall x \in L \Rightarrow \lambda y \in L^{\perp}$. Пусть также $(x,y_1) = 0, (x,y_2) = 0, \forall x \in L \Rightarrow (x,y_1+y_2) = (x,y_1) + (x,y_2) = 0 \Rightarrow y_1 + y_2 \in L^{\perp}$.

(б) Если вектор c принадлежит одновременно L и L^{\perp} , то (c,c)=0. Из определения скалярного произведения следует, что c=o, что и утверждалось. Ч.т.д.

Выясним, как искать ортогональное дополнение к подпространству. Пусть L — подпространство в E размерности m, $L = \langle a_1, \dots, a_m \rangle$.

Лемма 2. Вектор
$$y \in L^{\perp} \Leftrightarrow (a_i, y) = 0, \forall i = 1, ..., m$$
. (2)

Это утверждение напоминает признак перпендикулярности прямой и плоскости из школьной стереометрии.

Доказательство. Если $y \in L^{\perp}$, то $(x, y) = 0, \forall x \in L$, в частности, $(a_i, y) = 0, \forall i = 1, ..., m$.

Обратно, допустим, что $(a_i, y) = 0, \forall i = 1,...,m$, тогда для любого вектора

$$x \in L, \ x = \sum_{i=1}^{m} x_i a_i, \ (x, y) = \sum_{i=1}^{m} x_i (a_i, y) = 0$$
. Ч.т.д.

Условия леммы 2 дают систему уравнений (2) для нахождения ортогонального дополнения, если известны координаты векторов a_1, \ldots, a_m в некотором базисе $e = \{e_1, \ldots, e_n\}$. Если базис ортонормированный, то матрицу A этой системы составляют строки координат векторов, линейной оболочкой которых является подпространство L. Таким образом, чтобы найти базис в L^\perp , нужно найти фундаментальную систему решений системы уравнений AX=0 (2).

В случае, когда L дано не как линейная оболочка, а как множество векторов, координаты которых в ортонормированном базисе удовлетворяют однородной системе уравнений BX=0, причем строки матрицы В линейно независимы, то эти строки дают базис ортогонального дополнения L^{\perp} , поскольку любое уравнение $b_{i1}x_1+...+b_{im}x_m=0$ можно интерпретировать как скалярное произведение векторов $b_i=(b_{i1},...,b_{in})^T$ и $x=(x_1,...,x_n)^T$, равное нулю.

Последние два абзаца дают способы решения нескольких задач из задания (и экзаменационных билетов) на ортогональные дополнения.

Следствие из леммы 2. $\dim L + \dim L^{\perp} = n = \dim E$.

В самом деле, размерность L^{\perp} равна количеству базисных решений системы (2), а оно равно $n - rgA = n - \dim L$.

Прежде чем перейти к основному результату нашей темы, укажем некоторые свойства операции построения ортогонального дополнения.

Лемма 3. Для подпространств $L, L_1, L_2 \subset E$ справедливы равенства:

1)
$$(L^{\perp})^{\perp} = L$$
; 2) $(L_{\rm l} + L_{\rm 2})^{\perp} = L_{\rm l}^{\perp} \cap L_{\rm 2}^{\perp}$; 3) $(L_{\rm l} \cap L_{\rm 2})^{\perp} = L_{\rm l}^{\perp} + L_{\rm 2}^{\perp}$. (без доказательства)

%Доказательство. 1)
$$z \in (L^{\perp})^{\perp} \Leftrightarrow (z,y) = 0, \forall y \in L^{\perp}$$
, т.е. $(L^{\perp})^{\perp} \subseteq L$. Но $\dim(L^{\perp})^{\perp} = n - \dim L^{\perp} = n - (n - \dim L) = \dim L \Rightarrow (L^{\perp})^{\perp} = L$, ч.т.д.

2) Пусть $z \in L_1^{\perp} \cap L_2^{\perp}; \forall x = x_1 + x_2 \in L_1 + L_2, (x_1 + x_2, z) = (x_1, z) + (x_2, z) = 0 \Rightarrow$ $z \in (L_1 + L_2)^{\perp} \Rightarrow L_1^{\perp} \cap L_1^{\perp} \subseteq (L_1 + L_2)^{\perp}$. Ho
$$\dim(L_1 + L_2)^{\perp} = n - \dim(L_1 + L_2) = n - (\dim L_1 + \dim L_2 - \dim(L_1 \cap L_1)) = \dim(L_1 \cap L_1)^{\perp}$$
 $= (n - \dim L_1) + (n - \dim L_2) - (n - \dim(L_1 \cap L_1)) = \dim(L_1^{\perp} + \dim L_2^{\perp} - \dim(L_1 \cap L_1)^{\perp}$ %

Теорема. $E = L \oplus L^{\perp}$.

Любой вектор $x \in E$ можно единственным образом представить в виде x = y + z, где $y \in L, z \in L^{\perp}$.

Вектор y называется *ортогональной проекцией* вектора x на подпространство L, а вектор z называется *ортогональной составляющей* вектора x относительно подпространства L. Также применимы обозначения $y = x_{\parallel}, z = x_{\parallel}$, так что $x = x_{\parallel} + x_{\perp}$.

Доказательство теоремы. Согласно лемме 1(б), $L \cap L^{\perp} = o$, а по следствию из леммы 2, $\dim L + \dim L^{\perp} = n = \dim E$. По критерию прямой суммы, это и означает, что $E = L \oplus L^{\perp}$. Таким образом, любой вектор х из E единственным образом представляется в виде x = y + z, где $y \in L$, $z \in L^{\perp}$. Теорема доказана.

Следствие. Верна «теорема Пифагора»: если x=y+z, $y\in L$, $z\in L^\perp$, то $\left|x\right|^2=\left|y\right|^2+\left|z\right|^2$. Действительно, $\left|x\right|^2=(y+z,y+z)=(y,y)+2(y,z)+(z,z)=\left|y\right|^2+\left|z\right|^2$, так как (y,z)=0.

Укажем способы разложения вектора в сумму ортогональной проекции и ортогональной составляющей.

1 способ. Пусть L — линейная оболочка базисных векторов a_1,\dots,a_m : $L=\langle a_1,\dots,a_m\rangle$. (1)Дополнить a_1,\dots,a_m до базиса в E векторами a_{m+1},\dots,a_n ; (2) Ортогонализовать и нормировать базис a_1,\dots,a_n , получить ортонормированный базис b_1,\dots,b_n , при этом b_1,\dots,b_m - онб в L, а b_{m+1},\dots,b_n - онб в L^\perp .

Теперь
$$y = \sum_{i=1}^{m} (x, b_i) b_i, z = \sum_{j=m+1}^{n} (x, b_j) b_j = x - y$$
.

2 способ – без ортогонализации и поиска базиса в L^{\perp} . Разложение искать в виде

$$x = y + z = \sum_{i=1}^{m} \alpha_i a_i + z, (x, a_j) = (y, a_j) + (z, a_j) = \sum_{i=1}^{m} \alpha_i (a_i, a_j) + 0,$$

Система уравнений $\sum_{i=1}^m \alpha_i(a_i,a_j)=(x,a_j), j=1,...,m$ для нахождения α_i имеет единственное решение, так как ее основная матрица $G_a=(a_i,a_j)$ есть матрица Грама базиса a и потому невырожденна. Теперь $y=\sum_{i=1}^m \alpha_i a_i, \ z=x-y$.

Определение 2. Углом между вектором x и подпространством L называется наибольший среди углов между векторами x и $v \in L$.

Определение 3. Расстоянием от вектора x до подпространства L называется наименьшая из длин разностей x-v, $v \in L$. Стандартное обозначение : $\rho(x,L)$.

Утверждение 4. 1. Угол между вектором x и подпространством L равен углу между x и его ортогональной проекцией на L.

2. Расстояние от вектора x до подпространства L равно длине его ортогональной составляющей z относительно L .

Доказательство.

Запишем $x-v=(x-y)+(y-v)=z+(y-v), y,v\in L$ (см. чертеж).

По следствию, $|x-v|^2 = |z|^2 + |y-v|^2 \ge |z|^2$, причем минимальное значение $|z|^2$ достигается, если $|y-v|^2 = 0 \Rightarrow v = y, z \in L^{\perp}$. Поэтому $\cos \angle(x;v) = \frac{|(x,v)|}{|x||y|} \ge \frac{|y|}{|x|} = \cos \angle(x;y)$.

Пример. В евклидовом пространстве R^4 (со стандартным скалярным произведением) дано подпространство $L = \langle a_1 = (1,1,1,1)^T, a_2 = (1,2,2,-1)^T \rangle$. Разложить вектор $x = (4,-1,-3,4)^T$ на сумму ортогональной проекции на L и ортогональной составляющей. Найти расстояние от вектора x до L и угол φ между x и L.

Решение. (2-й способ). Разложение х будем искать в виде $x = \alpha_1 a_1 + \alpha_2 a_2 + z$, $(a_1, z) = (a_2, z) = 0$. Умножим желаемое равенство скалярно сначала на a_1 , потом на a_2 :

$$\begin{split} &(x,a_1) = \alpha_1(a_1,a_1) + \alpha_2(a_2,a_1) + (z,a_1) = \alpha_1(a_1,a_1) + \alpha_2(a_2,a_1) \,, \\ &(x,a_2) = \alpha_1(a_1,a_2) + \alpha_2(a_2,a_2) + (z,a_2) = \alpha_1(a_1,a_2) + \alpha_2(a_2,a_2) \,. \text{ Для нахождения } \alpha_1,\alpha_2 \text{ получим} \\ &\text{систему уравнений } \begin{cases} \alpha_1(a_1,a_1) + \alpha_2(a_2,a_1) = (x,a_1) \\ \alpha_1(a_1,a_2) + \alpha_2(a_2,a_2) = (x,a_2) \end{cases}. \text{ В нашей задаче} \end{split}$$

$$\begin{split} &(a_1,a_1)=4, (a_1,a_2)=(a_2,a_1)=4, (a_2,a_2)=10, (x,a_1)=4, (x,a_2)=-8 \text{ , так что } \begin{cases} 4\alpha_1+4\alpha_2=4\\ 4\alpha_1+10\alpha_2=-8 \end{cases} \Leftrightarrow, \\ &\alpha_1=3,\alpha_2=-2 \text{ , } y=3a_1-2a_2=(3,3,3,3)^T-(2,4,4,-2)^T=(1,-1,-1,5)^T \text{ , } \\ &z=x-y=(4,-1,-3,4)^T-(1,-1,-1,5)^T=(3,0,-2,-1)^T \text{ . Значит, } \rho(x,L)=\sqrt{9+4+1^2}=\sqrt{13} \text{ , } \\ &\cos \measuredangle(x,L)=\frac{|y|}{|x|}=\frac{\sqrt{1+1+1+25}}{\sqrt{16+1+9+16}}=\frac{\sqrt{28}}{\sqrt{42}}=\sqrt{\frac{2}{3}} \text{ . Итак, } \phi=arc\cos(\frac{\sqrt{6}}{3}) \text{ . } \end{split}$$

Если подпространство задано не как линейная оболочка, а системой однородных линейных уравнений, надо сначала найти в нем базис, а затем решать, как выше.