```
=> fil reg
```

FILE 'REGISTRY' ENTERED AT 10:39:45 ON 09 OCT 2009
USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.
PLEASE SEE "HELP USAGETERMS" FOR DETAILS.
COPYRIGHT (C) 2009 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 8 OCT 2009 HIGHEST RN 1187732-58-6
DICTIONARY FILE UPDATES: 8 OCT 2009 HIGHEST RN 1187732-58-6

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH June 26, 2009.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/support/stngen/stndoc/properties.html

=> d		
L2	38	SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON (463-79-6/BI OR
		10377-51-2/BI OR 105-58-8/BI OR 108-32-7/BI OR 108-88-3/BI
		OR 108554-72-9/BI OR 113187-28-3/BI OR 131651-65-5/BI OR
		1330-20-7/BI OR 14024-11-4/BI OR 14283-07-9/BI OR 18424-17-
		4/BI OR 21324-40-3/BI OR 24599-21-1/BI OR 25496-08-6/BI OR
		27359-10-0/BI OR 29935-35-1/BI OR 33454-82-9/BI OR
		35363-40-7/BI OR 37220-89-6/BI OR 41891-54-7/BI OR
		4437-85-8/BI OR 4472-22-4/BI OR 462-06-6/BI OR 4645-32-3/BI
		OR 4851-64-3/BI OR 56525-42-9/BI OR 616-38-6/BI OR
		623-53-0/BI OR 623-96-1/BI OR 682-30-4/BI OR 71-43-2/BI OR
		7439-93-2/BI OR 7447-41-8/BI OR 7791-03-9/BI OR 78-67-1/BI
	_	OR 90076-65-6/BI OR 96-49-1/BI)
L3		SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L2 AND P/ELS
L4		SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON (P(L)O)/ELS
L5		SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L4 AND PMS/CI
L7	16344	SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L4 AND PROPENOIC
		ACID?
T8	176900	SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L4 AND ETHYL
		ESTER?
L9	2397	SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L4 AND BUTENOIC
7.1.0	20005	ACID?
L10		SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L4 AND ETHENYL?
L11	1316/4	SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L4 AND METHYLETHY L?
L12	8	SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L3 AND (L7 OR L8
	4 4 0 0	OR L9 OR L10 OR L11)
L13		SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L12
L14		SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L5
L17	11355	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON "BATTERY ELECTROLY
T.21	26425	TES"+PFT,NT/CT SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON L5 AND (PHOSPHIN?
11/2/1	26435	
		OR PHOSPHON?)

		,
L22	203815	SEA FILE=REGISTRY SPE=ON ABB=ON PLU=ON (L7 OR L8 OR L9
		OR L10 OR L11) AND (PHOSPHIN? OR PHOSPHON?)
L23	16945	SEA FILE-HCAPLUS SPE-ON ABB-ON PLU-ON L21
L24	128988	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L22
L26	332	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON (L23 OR L24) AND
		BATTER?
L28	143	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L26 AND DEV/RL
L29	30	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L28 AND L23
L30	31	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L13 AND ELECTROCHE
		M?/SC,SX
L32	20	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L13 AND (ELECTRODE
		# OR ANODE# OR CATHODE# OR NEGATIVE ELECTRODE# OR POSITIVE
		ELECTRODE# OR BATTERY# OR BATTERIES#)
L33	12	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L30 AND (ELECTRODE
		# OR ANODE# OR CATHODE# OR NEGATIVE ELECTRODE# OR POSITIVE
		ELECTRODE# OR BATTERY# OR BATTERIES#)
L34	30	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L29 AND (ELECTRODE
		# OR ANODE# OR CATHODE# OR NEGATIVE ELECTRODE# OR POSITIVE
		ELECTRODE# OR BATTERY# OR BATTERIES#)
L35	49	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON (L32 OR L33 OR
		L34)
L37	25	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L35 AND (1840-2002
)/PRY, AY, PY
L38	851	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L14 AND (ELECTRODE
		# OR ANODE# OR CATHODE# OR NEGATIVE ELECTRODE# OR POSITIVE
		ELECTRODE# OR BATTERY# OR BATTERIES#)
L39		SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L38 AND DEV/RL
L41	118	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L39 AND ELECTROLYT
		?
L42	108	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L41 AND ELECTROCHE
		M?/SC,SX
L43	68	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L42 AND (1840-200
		2)/PRY, AY, PY
L44		SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L43 AND L17
L45	40	SEA FILE=HCAPLUS SPE=ON ABB=ON PLU=ON L37 OR L44

=> fil hoap FILE 'HCAPLUS' ENTERED AT 10:39:50 ON 09 OCT 2009 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" TOR DETAILS. COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1986), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

```
FILE COVERS 1907 - 9 Oct 2009 VOL 151 ISS 16
FILE LAST UPDATED: 8 Oct 2009 (20091008/ED)
REVISED CLASS FIELDS (/NCL) LAST RELOADED: Aug 2009
USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Aug 2009
```

HCAplus now includes complete International Patent Classification (IPC)

reclassification data for the third quarter of 2009.

CAS Information Use Policies apply and are available at:

http://www.cas.org/legal/infopolicy.html

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 145 1-40 ibib ed abs hitstr hitind

L45 ANSWER 1 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2004:118032 HCAPLUS Full-text

DOCUMENT NUMBER: 140:165063

TITLE: Anisotropically conductive films having good

storage stability and high adhesion both to silica

and to ITO

INVENTOR(S): Hiraoka, Hidetoshi; Sakurai, Ryo; Miura, Akio;

Morimura, Yasuhiro
PATENT ASSIGNEE(S): Bridgestone Corp., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 13 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2004043725	A	20040212	JP 2002-205799	20020715
			<	
JP 4259056	B2	20090430		
PRIORITY APPLN. INFO.:			JP 2002-205799	20020715

ED Entered STN: 13 Feb 2004

AB The films, useful for bonding of terminals of display panels and flexible printed circuit boards, are formed from conductive particle-dispersed photocurable resin compns. containing aliphatic unsatd. sidechain-containing poly(vinyl acetals) and phosphoryl (meth)acrylates. Thus, a composition of a reaction product of unsatd. sidechain-induced vinyl butyal resin and PIM (phosphoryl methacrylate) 100, (Bz0)2 2, Super Beckamine L 125-60 (melamine resin) 5, pentaerythritol tetraacrylate 20, 7-methacryloxypropyltrimethoxysilame 0.5, and 16GNR10MX (conductive particle) 4

methactyloxypropyltrimethoxysilane u.5, and technium (conductive particle) * parts was pasted on a separator film and dried to give an adhesive film which showed reliable boning of terminal-formed flexible printed circuit boards and good elec. interconnection.

IT 24599-21-1DP, Light Ester P 1M, reaction products with

sidechain-unsatd. vinyl butyral resins

(unsatd. sidechain-containing, reaction products with phosphoryl methacrylate; storage-stable conductive adhesive films containing phosphoryl methacrylate-modified vinyl acetal resins)

RN 24599-21-1 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 2-(phosphonooxy)ethyl ester (CA INDEX NAME)

10/617.811

IC CO9J007-00
ICS CO8F290-12; CO8J005-18; CO9J009-02; CO9J129-14; CO9J133-04; CO9J167-06; HO1B001-22; HO1B005-16; CO8L029-04
CO 38-3 (Plastics Fabrication and Uses)
Section cross-reference(s): 76
IT 50926-11-9, Indium tin oxide (adherend surface, terminal electrodes; storage-stable conductive adhesive films containing phosphoryl methacrylate-modified vinyl acetal resins)
IT 2459-21-1DP, Light Ester P 1M, reaction products with sidechain-unsatd. vinyl butyral resins (unsatd. sidechain-containing, reaction products with phosphoryl methacrylate; storage-stable conductive adhesive films containing phosphoryl hethacrylate-modified vinyl acetal resins)

L45 ANSWER 2 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2004:59637 HCAPLUS Full-text

DOCUMENT NUMBER: 140:79861

TITLE: Method of fabrication of lithium secondary

battery
INVENTOR(S): Lee, Jir

INVENTOR(S): Lee, Jin-young; Lee, Kyoung-hee

PATENT ASSIGNEE(S): S. Korea

SOURCE: U.S. Pat. Appl. Publ., 7 pp.

CODEN: USXXCO
DOCUMENT TYPE: Patent
LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20040013944	A1	20040122	US 2003-617811	20030714
KR 2004006781	A	20040124	KR 2002-41169	20020715
JP 2004039642	A	20040205	JP 2003-274506	20030715
JP 4202854	B2	20081224	ζ==	
CN 1501542	A	20040602	CN 2003-165003	20030715
CN 1288791	С	20061206	ζ	
PRIORITY APPLN. INFO.:			KR 2002-41169 A	20020715

ED Entered STN: 23 Jan 2004

AB A lithium secondary battery of the present invention comprises a pos. electrode; a neg. electrode; a separator interposed between the pos. and neg. electrodes; and an electrolyte on the separator, wherein the electrolyte includes a nonaq. organic solvent, a lithium salt, and a linear polymer having P=0 bonds. The electrolyte improves the swelling characteristics of lithium secondary batteries. A lithium secondary battery with the electrolyte and a method for preparing the electrolyte and battery is described.

method for preparing the electrolyte and battery is des IT 682-30-4, Diethyl vinyl phosphonate 4472-22-4, Dipropyl vinyl phosphonate 4645-32-3, Dimethyl vinyl phosphonate 4851-66-3, Diethyl vinyl phosphate 24599-21-1 41891-54-7, Triethyl 3-methyl-4-phosphonocrotonate 108554-72-9 113187-28-3, Allyl diethyl phosphonoacetate

(method of fabrication of lithium secondary battery)

- RN 682-30-4 HCAPLUS
- CN Phosphonic acid, P-ethenyl-, diethyl ester (CA INDEX NAME)

- RN 4472-22-4 HCAPLUS
- CN Phosphonic acid, ethenyl-, dipropyl ester (9CI) (CA INDEX NAME)

- RN 4645-32-3 HCAPLUS
- CN Phosphonic acid, P-ethenyl-, dimethyl ester (CA INDEX NAME)

- RN 4851-64-3 HCAPLUS
- CN Phosphoric acid, ethenyl diethyl ester (CA INDEX NAME)

- RN 24599-21-1 HCAPLUS
- CN 2-Propenoic acid, 2-methyl-, 2-(phosphonooxy)ethyl ester (CA INDEX NAME)

$${}^{\rm H_2O_3PO-CH_2-CH_2-O-C-C-Me}_{\rm C-Me}$$

- RN 41891-54-7 HCAPLUS
- CN 2-Butenoic acid, 4-(diethoxyphosphinyl)-3-methyl-, ethyl ester (CA INDEX NAME)

- 108554-72-9 HCAPLUS
- CN Phosphorodiamidous acid, N,N,N',N'-tetrakis(1-methylethyl)-, 2-propen-1-yl ester (CA INDEX NAME)

- 113187-28-3 HCAPLUS RN
- CN Acetic acid, 2-(diethoxyphosphinyl)-, 2-propen-1-yl ester (CA INDEX

- ICM H01M010-40
- INCL 429317000; 429307000; 429338000; 429342000; 429314000
- 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
- lithium secondary battery fabrication
- Aromatic hydrocarbons, uses
- (C1-10 alkyl substituted; method of fabrication of lithium
- secondary battery) Secondary batteries
 - (lithium; method of fabrication of lithium secondary
- battery)
- Battery electrolytes Swelling, physical
 - (method of fabrication of lithium secondary battery)
 - Esters, uses
 - Ethers, uses
 - Ketones, uses
 - (method of fabrication of lithium secondary battery)
- Lithium alloy, base
- (method of fabrication of lithium secondary battery)
- 71-43-2, Benzene, uses 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 108-88-3, Toluene,

```
uses 462-06-6, Fluorobenzene 463-79-6D, Carbonic acid, cyclic
compds. 463-79-6D, Carbonic acid, linear compound 463-79-6D,
Carbonic acid, organic compound 616-38-6. Dimethyl carbonate
Ethyl methyl carbonate 623-96-1, Dipropyl carbonate 1330-20-7,
Xylene, uses 4437-85-8, Butylene carbonate 7447-41-8, Lithium
chloride (LiCl), uses 7791-03-9, Lithium perchlorate 10377-51-2,
Lithium iodide (LiI) 14024-11-4, Lithium tetrachloroaluminate
14283-07-9, Lithium tetrafluoroborate 18424-17-4, Lithium
hexafluoroantimonate 21324-40-3, Lithium hexafluorophosphate
25496-08-6, Fluorotoluene 27359-10-0, Trifluorotoluene
Lithium hexafluoroarsenate 33454-82-9, Lithium triflate
35363-40-7, Ethyl propyl carbonate, uses 37220-89-6, Lithium
aluminate 56525-42-9, Methyl propyl carbonate, uses 90076-65-6
131651-65-5, Lithium nonafluorobutanesulfonate
   (method of fabrication of lithium secondary battery)
7439-93-2. Lithium, uses
   (method of fabrication of lithium secondary battery)
78-67-1, Azobisisobutyronitrile 682-30-4, Diethyl vinyl
phosphonate 4472-22-4, Dipropyl vinyl phosphonate
4645-32-3, Dimethyl vinyl phosphonate 4851-64-3,
Diethyl vinyl phosphate 24599-21-1 41891-54-7,
Triethyl 3-methyl-4-phosphonocrotonate 108554-72-9
113187-28-3, Allyl diethyl phosphonoacetate
   (method of fabrication of lithium secondary battery)
```

L45 ANSWER 3 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2003:276684 HCAPLUS Full-text

DOCUMENT NUMBER: 138:274124

Self-doped molecular composite battery TITLE:

electrolytes

INVENTOR(S): Harrup, Mason K.; Wertsching, Alan K.; Stewart,

Frederick F.

PATENT ASSIGNEE (S): Bechtel Bwxt Idaho, LLC, USA

SOURCE: U.S., 7 pp. CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6544690	B1	20030408	US 2000-627462	20000728
PRIORITY APPLN. INFO.:			US 2000-627462	20000728

ED Entered STN: 10 Apr 2003

This invention is in solid polymer-based electrolytes for battery AB applications. It uses mol. composite technol., coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the mol. composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte phys. properties associated with condensation agent loading

<--

levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

98973-15-0, MEEP

(self-doped mol. composite battery electrolytes

RN 98973-15-0 HCAPLUS

CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

ICM H01M006-18

INCL 429306000; 429320000; 429322000; 252062200

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 57

battery electrolyte self doped mol composite;

polymer ceramic composite battery electrolyte

Metal alkoxides

(ceramic precursor; self-doped mol. composite battery

electrolytes) Composites

(ceramic-polymer; self-doped mol. composite battery

electrolytes)

Fluoropolymers, uses

(molds; self-doped mol. composite battery electrolytes)

Polyphosphazenes

Polysiloxanes, processes

(polyether-; self-doped mol. composite battery electrolytes)

Polyethers, processes

(polyphosphazene-; self-doped mol. composite battery electrolytes)

Polythioethers

(polyphosphazenes-; self-doped mol. composite battery electrolytes)

Battery electrolytes

Membranes, nonbiological

Polymer electrolytes

Primary batteries

Secondary batteries

(self-doped mol. composite battery electrolytes

Polyphosphazenes

Polysiloxanes, processes

(self-doped mol. composite battery electrolytes

Polyethers, processes

(siloxane-; self-doped mol. composite battery

electrolytes)

78-10-4, Teos 546-68-9, Tetrakis(isopropyloxy)titanium 2269-22-9,

10/617,811 7429-90-5D, Aluminum, alkoxide Aluminum tris(sec-butoxide) 7440-21-3D, Silicon, alkoxide 7440-32-6D, Titanium, alkoxide 7440-67-7D, Zirconium, alkoxide 51278-20-7, 1-Butanol, zirconium salt (ceramic precursor; self-doped mol. composite battery electrolytes) 1309-42-8, Magnesium hydroxide 1310-65-2, Lithium hydroxide 1310-73-2, Sodium hydroxide, processes (condensation agent; self-doped mol. composite battery electrolytes) 9002-84-0, Teflon (molds; self-doped mol. composite battery electrolytes) 98973-15-0, MEEP (self-doped mol. composite battery electrolytes 14283-07-9, Lithium tetrafluoroborate (self-doped mol. composite battery electrolytes OS.CITING REF COUNT: 4 THERE ARE 4 CAPLUS RECORDS THAT CITE THIS RECORD (4 CITINGS) REFERENCE COUNT: THERE ARE 14 CITED REFERENCES AVAILABLE FOR 14 THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT L45 ANSWER 4 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN 2003:81076 HCAPLUS Full-text ACCESSION NUMBER: DOCUMENT NUMBER: 138:356122 TITLE: New directions in the development of polymer electrolytes for lithium batteries AUTHOR(S): Morris, R. Scott; Dixon, Brian G.; Dallek, Steven Phoenix Innovation, Inc., Wareham, MA, 02576, USA CORPORATE SOURCE: SOURCE: Proceedings of the Power Sources Conference (2002), 40th, 143-146 CODEN: PPOCFD National Technical Information Service PUBLISHER: DOCUMENT TYPE: Journal LANGUAGE: English ED Entered STN: 03 Feb 2003 Polymer electrolyte Li batteries represent the future of safe, high energy battery systems. Advancement of ambient temperature polymer electrolyte batteries will require new approaches. Hetero-atomic materials combine the better features of several elements to solubilize and transport select Li salts more efficiently than traditional ethylene oxide-type polymers. Ambient temperature ionic conductivities of >1 + 10-3 S/cm are common with this class of polymer electrolyte. Rationale of this approach and material properties are presented. 518359-81-4D, lithium complexes 518359-84-7D, lithium complexes

(phosphorous-containing polyester electrolytes for lithium

RN 518359-81-4 HCAPLUS

CN Phosphorous acid, trimethyl ester, polymer with 1,2-ethanediol (9CI) (CA INDEX NAME)

CM 1

ΔR

CRN 121-45-9 CMF C3 H9 O3 P

```
OMe
Meo-1-OMe
    CM
         2
    CRN 107-21-1
    CMF C2 H6 O2
HO-CH2-CH2-OH
RN
    518359-84-7 HCAPLUS
CN
    Phosphoric acid, trimethyl ester, polymer with
    α-hydro-ω-hydroxypoly(oxy-1,2-ethanediyl) (9CI) (CA INDEX
    NAME)
    CM 1
    CRN 25322-68-3
    CMF (C2 H4 O)n H2 O
    CCI PMS
HO___CH2__CH2__O___H
    CM 2
    CRN 512-56-1
    CMF C3 H9 O4 P
    52-2 (Electrochemical, Radiational, and Thermal Energy
CC
```

Technology)

ST

phosphorous polyester cond polymer electrolyte lithium battery Polyphosphoric acids (esters; phosphorous-containing polyester electrolytes for lithium batteries)

Battery electrolytes

Polymer electrolytes

(phosphorous-containing polyester electrolytes for lithium batteries)

Polvesters, uses

(phosphorus-containing; phosphorous-containing polyester electrolytes for lithium batteries)

90076-65-6, Lithium bis(trifluoromethyl sulfonyl)imide 132843-44-8, Lithium bis(perfluoroethyl sulfonyl)imide

(electrolyte containing; phosphorous-containing polyester

electrolytes for lithium batteries)

7439-93-2D. Lithium, complex with phosphorous-containing polyesters 7791-03-9, Lithium perchlorate (LiClO4)

(electrolyte; phosphorous-containing polyester

electrolytes for lithium batteries)

518359-84-7D. 518359-81-4D, lithium complexes

lithium complexes

(phosphorous-containing polyester electrolytes for lithium batteries)

L45 ANSWER 5 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2002:964987 HCAPLUS Full-text

DOCUMENT NUMBER: 138:26945

TITLE: New heteroatomic polymer for efficient solid

polymer electrolytes for lithium

batteries

INVENTOR(S):

Morris, Robert Scott; Dixon, Brian Gilbert

PATENT ASSIGNEE(S): Phoenix Innovation, Inc., USA SOURCE: U.S. Pat. Appl. Publ., 6 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 20020192563	A1	20021219	US 2001-837740	20010417
			<	
US 6727343	B2	20040427		
PRIORITY APPLN. INFO.:			US 2001-837740	20010417
			<	

ED Entered STN: 20 Dec 2002

A new type of polymer is described that represents a new composition of matter. This polymer contains alternating electroneg. group III-VI elements connected with hydrocarbon or fluorocarbon linkages to form a polyalkyl or polyfluoroalkyl heteroat. polymer. These polymers can be combined with lithium salts to form a solid polymer electrolyte for use in electrochem. systems such as batteries. These new solid polymer electrolytes exhibit lithium cation diffusion and lithium cation transport nos. that are superior to similar solid polymer electrolytes composed of polyethylene oxide.

TΨ 478309-19-2P 478309-21-6P

(heteroat. polymer for efficient solid polymer electrolytes for lithium batteries)

RN 478309-19-2 HCAPLUS

1,2-Ethanediol, polymer with 1,2-ethanediylbis[phosphine] (9CI) (CA CN INDEX NAME)

CRN 5518-62-7 CMF C2 H8 P2

H 2 P - C H 2 - C H 2 - P H 2

CM 2

CRN 107-21-1 CMF C2 H6 O2

HO-CH2-CH2-OH

RN 478309-21-6 HCAPLUS

CN Phosphoric trichloride, polymer with α-hydro-ω-hydroxypoly[oxy(dimethylsi]

 α -hydro- ω -hydroxypoly[oxy(dimethylsilylene)] and α -hydro- ω -hydroxypoly(oxy-1,2-ethanediyl) (CA INDEX NAME)

CM 1

CRN 31692-79-2

CMF (C2 H6 O Si)n H2 O

CCI PMS

CM 2

CRN 25322-68-3

CMF (C2 H4 O)n H2 O

CCI PMS

$$\texttt{HO} \qquad \boxed{ \texttt{CH}\,2} = \texttt{CH}\,2 = \texttt{O} \qquad \boxed{ \texttt{n}} \quad \texttt{H}$$

CM 3

CRN 10025-87-3

CMF Cl3 O P

IC ICM H01M010-40 ICS C08J005-20 INCL 429314000; 4293

INCL 429314000; 429317000; 429316000; 521025000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

T lithium battery heteroatomic polymer electrolyte

IT Polyoxyalkylenes, uses

(fluorine- and sulfo-containing, ionomers; heteroat. polymer for efficient solid polymer electrolytes for lithium batteries)

IT Battery electrolytes

Polymer electrolytes

(heteroat. polymer for efficient solid polymer electrolytes

for lithium batteries)

T Alkali metal salts

Phosphonium compounds Quaternary ammonium compounds, uses

(heteroat. polymer for efficient solid polymer electrolytes

for lithium batteries)

IT Primary batteries

(lithium; heteroat. polymer for efficient solid polymer electrolytes for lithium batteries)

IT Fluoropolymers, uses

(polyoxyalkylene-, sulfo-containing, ionomers; heteroat. polymer for efficient solid polymer electrolytes for lithium batteries)

IT Ionomers

(polyoxyalkylenes, fluorine- and sulfo-containing; heteroat. polymer for efficient solid polymer electrolytes for lithium batteries)

IT 66796-30-3, Nafion 117

(heteroat. polymer for efficient solid polymer electrolytes for lithium batteries)

IT 7791-03-9, Lithium perchlorate 90076-65-6 132843-44-8 (heteroat. polymer for efficient solid polymer electrolytes for lithium batteries)

478309-19-2P 478309-20-5P 478309-21-6P

(heteroat. polymer for efficient solid polymer electrolytes for lithium batteries)

L45 ANSWER 6 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2002:904593 HCAPLUS Full-text

ACCESSION NUMBER: 2002:904593 DOCUMENT NUMBER: 138:15239

TITLE: Ion conductive polymer electrolyte, its manufacture, and secondary nonaqueous

electrolyte battery

INVENTOR(S): Abe, Toshihiro; Sumita, Miwa
PATENT ASSIGNEE(S): Hitachi Maxell Ltd., Japan

Jpn. Kokai Tokkvo Koho, 9 pp. SOURCE:

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2002343133	A	20021129	JP 2001-149581	20010518
			<	
RIORITY APPLN. INFO.:			JP 2001-149581	20010518

PRIORITY APPLN. INFO.:

<--

Entered STN: 29 Nov 2002 ED AB The electrolyte is a polymer containing quaternary phosphonium salt units of the formula (PR1R2R3) + X - [R1-3 = Me, Et, n-Pr, iso-Pr, n-Bu, n-C5H13 (sic),Ph, p-methylphenyl, and/or p-fluorophenyl groups; X- = Cl, Br, I, NO3, ClO4, PF6, AsF6, SCN, BF4, (CF3SO2)2N, or (C2F5SO2)2N, p-

trifluoromethylphbenzenesulfonate, p-toluenesulfonate, benzotriazine, or EtPS2 groups] attached to the mol. The electrolyte is prepared by hardening a liquid mixture, containing a polymerizable monomer having the quaternary phosphonium salt group at the end, a compound having ≥2 polymerizable functional groups, and an electrolyte salt.

477247-59-9P 477281-67-7P 477281-68-8P

(compns. and manufacture of ion conductive quaternary phosphonium salt polymer electrolytes for secondary lithium batteries)

477247-59-9 HCAPLUS RN

CN Phosphonium, tributyl[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]-, tetrafluoroborate(1-), polymer with

1,2-ethanediylbis(oxy-2,1-ethanediyl) bis(2-methyl-2-propenoate) (9CI) (CA INDEX NAME)

CM

CRN 109-16-0

CMF C14 H22 O6

CM

CRN 477247-58-8

CMF C18 H36 O2 P . B F4

CM 3

CRN 477247-57-7

CMF C18 H36 O2 P

```
- 0- CH2-CH2-P+(Bu-n)3
         CM 4
         CRN 14874-70-5
         CMF B F4
         CCI CCS
RN
    477281-67-7 HCAPLUS
CN
     Phosphonium, tributyl[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]-,
    O, O-diethyl phosphorodithicate (1:1), polymer with
     1,2-ethanediylbis(oxy-2,1-ethanediyl) bis(2-methyl-2-propenoate) (9CI)
      (CA INDEX NAME)
    CM
    CRN 109-16-0
    CMF C14 H22 O6
           -CH2-CH2-O-CH2-CH2-O-CH2-CH2-O-CH2-O-CH2-O-MC
    CM
    CRN 477281-66-6
     CMF C18 H36 O2 P . C4 H10 O2 P S2
         CM
              3
         CRN 477247-57-7
         CMF C18 H36 O2 P
 H2C 0
Me_C_C_C_O_CH2_CH2_P+(Bu-n)3
```

```
10/617,811
                                        CM
                                                        4
                                        CRN 40898-92-8
                                        CMF C4 H10 O2 P S2
                  477281-68-8 HCAPLUS
                  Phosphonium, tributyl[2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl]-,
                 O, O-diethyl phosphorodithioate (1:1), polymer with
                  1,2-ethanediylbis(oxy-2,1-ethanediyl) bis(2-methyl-2-propenoate) and
                  2-(2-hydroxyethoxy)ethyl 2-propenoate (9CI) (CA INDEX NAME)
                 CM 1
                 CRN 13533-05-6
                 CMF C7 H12 O4
HO-CH2-CH2-O-CH2-CH2-O-
                 CM 2
                 CRN 109-16-0
                 CMF C14 H22 O6
H2C 0
                                  - O- CH2- CH2- O- CH2- CH2- O- CH2- CH2- O- CH
                 CM 3
                 CRN 477281-66-6
                  CMF C18 H36 O2 P . C4 H10 O2 P S2
                                        CM
                                        CRN 477247-57-7
```

CMF C18 H36 O2 P

RN CN

CM

CRN 40898-92-8 CMF C4 H10 O2 P S2

ICM H01B001-06

ICS H01B001-12; H01M010-40

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

secondary battery quaternary phosphoniumn salt polymer electrolyte manuf

Battery electrolytes

(compns. and manufacture of ion conductive quaternary phosphonium salt polymer electrolytes for secondary lithium batteries)

96-49-1P, Ethylene carbonate 108-32-7P, Propylene carbonate 112-36-7P, Diethylene glycol, diethyl ether 14283-07-9P, Lithium fluoroborate 30714-78-4P, Ethyl butyl carbonate 477247-59-9P 477281-67-7P 477281-68-8P

(compns. and manufacture of ion conductive quaternary phosphonium salt polymer electrolytes for secondary lithium

batteries)

OS.CITING REF COUNT: THERE ARE 1 CAPLUS RECORDS THAT CITE THIS

RECORD (1 CITINGS)

L45 ANSWER 7 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2002:886243 HCAPLUS Full-text

DOCUMENT NUMBER: 137:387083

TITLE: Nonaqueous gel composition containing crosslinked

> polymer having alkylammonium or piperazinium structure and electrochemical cell

INVENTOR(S): Aizawa, Wakana; Ikegami, Koshiro; Takada,

Masakazu; Takaoka, Kazuchiyo

PATENT ASSIGNEE(S): Mitsubishi Paper Mills, Ltd., Japan; Nippon Unicar

Co., Ltd.

SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF Patent

DOCUMENT TYPE: LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

JP 2002332417	A	20021122	JP 2001-138273	20010509
			<	
PRIORITY APPLN. INFO.:			JP 2001-138273	20010509
			<	

ED Entered STN: 22 Nov 2002

GΙ

$$\underbrace{\qquad \qquad }_{N} \underbrace{\overset{R^{5}}{\swarrow}}_{N} x^{-} \underbrace{\qquad \qquad }_{I} \underbrace{\qquad \qquad }_{R^{6}} \underbrace{N} \underbrace{\overset{R^{7}}{\swarrow}}_{N} x^{-} \underbrace{\qquad \qquad }_{II}$$

- AB The title gel composition comprises a polymer having a crosslinked structure RINX, RINYNXZ, RANYNX, I, or II [R1-R7 = (substituted) C1-9 alkyl; X = monovalent inorg. or organic acid or its equivalent; Y = C1-8 alkylene, alkylene oxide, or xylylene]. The composition, especially suitable for secondary Li batteries and capacitors, has high resistance to free acids generated in an electrolyte solution
- IT 476013-44-2P 476013-47-5P

(nonaq. gel electrolyte composition containing crosslinked polymer having alkylammonium or piperazinium structure for battery and capacitor)

RN 476013-44-2 HCAPLUS

CN Piperazinium, 1,4-bis[(4-ethenylphenyl)methyl]-1-methyl-, hexafluorophosphate(1-), polymer with

α,α'-[1,2-ethanediylbis[(dimethylsilylene)-3,1-

propanediyl]]bis[ω-[3-[[2-

(dimethylsilyl)ethyl]dimethylsilyl]propoxy]poly(oxy-1,2-ethanediyl)]
(9CI) (CA INDEX NAME)

CM :

CRN 455947-50-9

CMF (C2 H4 O)n (C2 H4 O)n C30 H74 O2 S16

CCI PMS

PAGE 1-C

CMF C23 H29 N2

$$H_2C$$
 CH CH_2 CH_2 CH_2 CH_3 CH_4 CH_2 CH_5 CH_5 CH_6 CH_7 CH_8 CH_8 CH_8 CH_8 CH_9 CH

RN 476013-47-5 HCAPLUS

CN Piperazinium, 4,4'-(1,3-propanediyl)bis[1-[(4-ethenylphenyl)methyl]-1ethyl-, bis[hexafluorophosphate(1-)], polymer with

a-(2-methyl-1-oxo-2-propenyl)-∞-[(2-methyl-1-oxo-2-propenyl)oxy]poly(oxy-1,2-ethanediyl) and a,a',a''-1,2,3-propanetriyltris(ω-[(1-oxo-2-propenyl)oxy]poly(oxy-1,2-ethanediyl)] (9CI) (CA INDEX NAME)

CM 1

CRN 101661-95-4

CMF (C2 H4 O)n (C2 H4 O)n (C2 H4 O)n C12 H14 O6

CCI FMS

PAGE 1-B

CM 2

CRN 25852-47-5

CMF (C2 H4 O)n C8 H10 O3

CCI PMS

CM 3

CRN 476013-46-4

CMF C33 H50 N4 . 2 F6 P

CM 4

CRN 476013-45-3

CMF C33 H50 N4

$$H_2C = CH$$

$$CH_2 = \frac{1}{2} + \frac{1}{$$

PAGE 1-B

___CH___CH2

CM 5

CRN 16919-18-9 CMF F6 P CCI CCS

IC ICM C08L101-02

ICS H01B001-06; H01G009-025; H01M010-40

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38, 76

alkylammonium crosslinked polymer electrolyte capacitor; piperazinium crosslinked polymer nonaq electrolyte batterv

IT Capacitors

(double layer; nonaq. gel electrolyte composition containing crosslinked polymer having alkylammonium or piperazinium structure

for battery and capacitor)

IT Secondary batteries

(lithium; nonaq. gel electrolyte composition containing

crosslinked polymer having alkylammonium or piperazinium structure

for battery and capacitor)

Battery electrolytes

Crosslinking agents

Electrolytic capacitors

Polymer electrolytes

(nonaq. gel electrolyte composition containing crosslinked polymer having alkylammonium or piperazinium structure for battery and capacitor)

Quaternary ammonium compounds, uses

(polymers; nonaq. gel electrolyte composition containing crosslinked polymer having alkylammonium or piperazinium structure for battery and capacitor)

IT 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 429-06-1, Tetraethylammonium tetrafluoroborate 21324-40-3, Lithium hexafluorophosphate

(composition containing; nonaq. gel electrolyte composition containing crosslinked polymer having alkylammonium or piperazinium structure for battery and capacitor)

IT 1072-63-5DP, N-Vinylimidazole, polymers with alkylammonium compound and piperazinium compound 1337-81-1DP, Vinylpyridine, polymers with vinyl monomer and piperazinium compound 52352-11-1DP, Vinylbenzylamine, alkylammonium fluorophosphates, polymers with piperazinium compound 476013-44-2P 476013-47-5P 476013-48-6DP,

polymers with vinyl monomer and piperazinium compound 476013-50-0DP, polymers with vinyl monomer

(nonaq. gel electrolyte composition containing crosslinked polymer having alkylammonium or piperazinium structure for battery and capacitor)

L45 ANSWER 8 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2002:711001 HCAPLUS Full-text

DOCUMENT NUMBER: 137:235232

TITLE: Fluoroalkyl-containing phosphonic acid polymers, their manufacture, and their use in polymer

electrolytes and secondary lithium ion

batteries

INVENTOR(S): Sawada, Hideo; Kyokane, Jun; Sugiya, Tadashi;

Ryukoku, Eiichi

PATENT ASSIGNEE(S): Nippon Chemical Industrial Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 11 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent
LANGUAGE: Japanese
FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2002265539	A	20020918	JP 2001-72303	20010314
			<	
PRIORITY APPLN. INFO.:			JP 2001-72303	20010314
			<	

ED Entered STN: 19 Sep 2002

AB The polymers are represented by R1[CH2C(COC2H4Z)R3]nAbR2 {R1, R2 = (CF2)nY, CF(CF3)[OC3CF(CF3)]pOC3F7; Y = H, F, Cl; Z = glucosyloxy; n = 1-10; p= 0-10; R3 = H, Me; A = phosphonoethylene; a:b mol ratio = 1:99-99:1] and munifactured by reacting fluoroalkanoyl peroxides with 2-glucosyloxyethyl (meth)acrylates and vinylphosphonic acids. The polymer electrolytes using the polymers show high ion conductivity

IT 459409-02-0DP, fluoroalkyl-terminated, Li complexes

(fluoroalkyl-containing phosphonic acid polymers and their manufacture for polymer electrolytes in secondary lithium ion batteries)

RN 459409-02-0 HCAPLUS

CN β-D-Glucopyranoside, 2-[(2-methyl-1-oxo-2-propenyl)oxy]ethyl, polymer with ethenylphosphonic acid (9CI) (CA INDEX NAME)

CM

CRN 47087-43-4

CMF C12 H20 O8

Absolute stereochemistry.

CM 2

CRN 1746-03-8 CMF C2 H5 O3 P

Hoc-CH-POSHo

IC ICM C08F220-20

ICS C08F230-02; H01B001-06; H01B001-12; H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38

ST fluoroalkyl phosphonic acid polymer electrolyte lithium battery; glycosyloxyethyl methacrylate polymer electrolyte lithium battery; vinylphosphonic acid polymer electrolyte lithium battery; fluoroalkanoyl peroxide polymer electrolyte lithium battery

Polymer electrolytes

(fluoroalkyl-containing phosphonic acid polymers and their manufacture for polymer electrolytes in secondary lithium ion batteries)

IT Secondary batteries

(lithium; fluoroalkyl-containing phosphonic acid polymers and their manufacture for polymer electrolytes in secondary lithium ion batteries)

7439-93-2DP, Lithium, fluoroalkyl-terminated methacrylic vinylphosphonic polymer complexes

(fluoroalkyl-containing phosphonic acid polymers and their manufacture for polymer electrolytes in secondary lithium ion batteries)

T 56347-79-6DP, Diperfluoro-2-methyl-3-oxahexanoyl peroxide, reaction

products with methacrylic vinylphosphonic acid polymers, Li complexes 459409-02-0DP, fluoroalkyl-terminated, Li complexes

(fluoroalkyl-containing phosphonic acid polymers and their manufacture for polymer electrolytes in secondary lithium ion batteries)

IIT 133414-70-7DP, reaction products with methacrylic vinylphosphonic acid bolymers

(fluoroalkyl-containing phosphonic acid polymers and their manufacture for polymer electrolytes in secondary lithium ion batteries)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

10/617.811

L45 ANSWER 9 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN 2002:575465 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER: 137:143037

Method for preparing thin fiber-structured polymer TITLE:

INVENTOR(S): Lee, Wha Seop; Jo, Seong Mu; Chun, Suk Won; Choi, Sung Won

PATENT ASSIGNEE (S): S. Korea

SOURCE: U.S. Pat. Appl. Publ., 8 pp.

CODEN: USXXCO

DOCUMENT TYPE: Patent English LANGUAGE:

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.		DATE
US 20020100725	Al	20020801	US 2001-14550		20011214
KR 2002063020	A	20020801	KR 2001-3685		20010126
JP 2002249966	A	20020906	JP 2001-382608		20011217
CN 1367276	A	20020904	CN 2002-102522		20020125
PRIORITY APPLN. INFO.:			KR 2001-3685 <	A	20010126

ED Entered STN: 02 Aug 2002

Disclosed is a method for preparing a thin fiber-structured polymer web suitable for a high-speed and large-scale production using electrospinning. The method uses an electrospinning process to spin a solution containing a polymer in a volatile solvent to obtain a thin fiber-structured polymer web on a collector, in which case the temperature of the polymer solution is in the range of from 40° to the b.p. of the solvent. The porous, thin fiberstructured polymer web thus obtained is applicable to the isolation layer or the electrolytic layer for lithium-ion secondary battery , lithium-metal secondary battery or sulfur-based secondary battery, the isolation layer for fuel cells, filter, and so forth.

98973-15-0, Poly(bis-(2-(2-methoxy-ethoxyethoxy))phosphazene (method for preparing thin fiber-structured polymer web)

RM 98973-15-0 HCAPLUS

CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidynel] (CA INDEX NAME)

Section cross-reference(s): 37, 47

IC ICM B01D039-08

INCL 210503000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

```
battery electrolyte layer fiber structured polymer
    web; sulfur based secondary battery fiber structured polymer
    web; lithium secondary battery fiber structured polymer web;
    fuel cell fiber structured polymer web; filter fiber structured
    polymer web
    Secondary batteries
        (lithium; method for preparing thin fiber-structured polymer web)
    Battery electrolytes
    Coal tar pitch
    Filters
    Fuel cells
    Petroleum pitch
    Secondary batteries
        (method for preparing thin fiber-structured polymer web)
    9002-86-2, Polyvinyl chloride 9002-88-4, Polyethylene 9002-89-5,
    Polyvinyl alcohol 9002-98-6, PolyAziridine 9003-20-7, Polyvinyl
    acetate 9003-55-8, Butadiene-styrene copolymer 9004-34-6,
    Cellulose, uses 9004-35-7, Cellulose acetate 9004-36-8 9011-08-9
    9011-14-7, Pmma
                    9011-17-0, Hexafluoropropylene-vinylidene fluoride
    copolymer 24937-16-4, Nylon 12 24937-79-9, Pvdf
                                                         24980-34-5.
    Ethylene sulfide polymer 24980-41-4, Caprolactone homopolymer
    25014-41-9, Polyacrylonitrile 25038-59-9, Polyethylene
    terephthalate, uses 25085-53-4, Isotactic polypropylene
    25086-89-9, Vinyl acetate-vinyl pyrrolidone copolymer 25233-30-1,
    Polyaniline 25322-69-4, Polypropylene oxide 25569-53-3,
    Poly(ethylene succinate) 25749-57-9 26063-00-3,
    Polyhydroxybutyrate) 26100-51-6, Polylactic acid 26124-68-5,
    Polyglycolic acid 27083-66-5, Poly(propylene fumarate) 34346-01-5,
    Glycolic acid-DL-lactic acid copolymer 50327-22-5
    98973-15-0, Poly(bis-(2-(2-methoxy-ethoxyethoxy))phosphazene
    98973-15-0, Meep
        (method for preparing thin fiber-structured polymer web)
OS.CITING REF COUNT: 5
                             THERE ARE 5 CAPLUS RECORDS THAT CITE THIS
                              RECORD (7 CITINGS)
L45 ANSWER 10 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN
                        2002:559863 HCAPLUS Full-text
ACCESSION NUMBER:
DOCUMENT NUMBER:
                        137:265521
TITLE:
                        Computational chemistry: Design and experimental
                        verification of pre-designed heteropolymer
                        electrolytes for rechargeable lithium
                        batteries
AUTHOR(S):
                        Dixon, Brian G.; Morris, R. Scott
CORPORATE SOURCE:
                        Phoenix Innovation, Inc., West Wareham, MA, 02576,
                        USA
SOURCE:
                        PMSE Preprints (2002), 87, 127-128
                        CODEN: PPMRA9; ISSN: 1550-6703
PUBLISHER:
                        American Chemical Society
DOCUMENT TYPE:
                        Journal; (computer optical disk)
LANGUAGE:
                        English
ED Entered STN: 29 Jul 2002
AB
     The use of computational chemical for designing and evaluating the performance
     of potential systems as a function of chemical structure (both the polymer and
     the salt), solvent, and temperature is described. New polymer structures were
     modeled using mol. dynamics simulations to estimate the rate of diffusion of
     lithium cations (as well as the anion) through a polymer matrix. Promising
```

candidates were screened by structure and then synthesized and electrochem. characterized. These predictive studies can significantly enhance the rate of

return of an associated exptl. program.

IT 59199-82-5 85337-87-7 159508-08-4

461671-69-2

(use of computational chemical for design and exptl. verification of pre-designed heteropolymer electrolytes for rechargeable lithium batteries

RN 59199-82-5 HCAPLUS

CN Poly[oxy(methoxyphosphinylidene)oxy-1,2-ethanediyl] (CA INDEX NAME)

RN 85337-87-7 HCAPLUS

CN Poly[oxy(phenoxyphosphinylidene)oxy-1,2-ethanediyl] (9CI) (CA INDEX NAME)

RN 159508-08-4 HCAPLUS

CN Phosphoric acid, monomethyl ester, polymer with 1,2-ethanediol (9CI) (CA INDEX NAME)

CM 1

CRN 812-00-0

CMF C H5 O4 P

CM 2

CRN 107-21-1

CMF C2 H6 O2

RN 461671-69-2 HCAPLUS CN Phosphoric acid, monophenyl ester, polymer with 1,2-ethanediol (9CI) (CA INDEX NAME) CM CRN 701-64-4 CMF C6 H7 O4 P CM 2 CRN 107-21-1 CMF C2 H6 O2 HO-CH2-CH2-OH 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38 mol dynamic simulation polymer electrolyte design lithium battery Simulation and Modeling (mol. dynamics; use of computational chemical for design and exptl. verification of pre-designed heteropolymer electrolytes for rechargeable lithium batteries) Battery electrolytes (use of computational chemical for design and exptl. verification of pre-designed heteropolymer electrolytes for rechargeable lithium batteries) Polyoxyalkylenes, uses Polyoxymethylenes, uses (use of computational chemical for design and exptl. verification of pre-designed heteropolymer electrolytes for rechargeable lithium batteries) 7447-41-8, Lithium chloride, uses 7791-03-9, Lithium perchlorate (electrolyte; use of computational chemical for design and exptl, verification of pre-designed heteropolymer electrolytes for rechargeable lithium batteries) 25322-68-3, Polyethylene oxide 25322-69-4, Polypropylene oxide 59199-82-5 85337-87-7 159508-08-4 461671-69-2

(use of computational chemical for design and exptl. verification of pre-designed heteropolymer electrolytes for rechargeable

lithium batteries)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS

RECORD (1 CITINGS)

L45 ANSWER 11 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN 2002:518117 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER: 137:81368

TITLE:

Alkaline battery containing surfactant film for electrolyte leakage prevention INVENTOR(S): Matsuhisa, Ichiro; Adachi, Koji; Umebayashi,

Takavuki

Matsushita Electric Industrial Co., Ltd., Japan PATENT ASSIGNEE(S):

SOURCE: Jpn. Kokai Tokkvo Koho, 5 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2002198015	A	20020712	JP 2000-396009	20001226
			<	
JP 3814480	B2	20060830		
PRIORITY APPLN. INFO.:			JP 2000-396009	20001226
			<	

Entered STN: 12 Jul 2002 ED

The title battery is equipped with a synthetic resin-made gasket for sealing an opening of a battery case, a current collector inserted in a boss part of the gasket, and an electrolyte solution filled in the case, where three-phase interface of the boss, the current collector, and the electrolyte solution is covered with a film containing a surfactant. Preferably, the surfactant is an anionic surfactant or a nonionic surfactant. The battery is prevented from electrolyte leakage caused by deterioration of the gasket.

9056-42-2D, Polyoxyethylene phosphate, potassium salt

25852-91-9D, Polyoxyethylene phosphate, potassium salt (alkaline battery containing surfactant film for preventing electrolyte leakage at gasket)

RN 9056-42-2 HCAPLUS

Poly(oxv-1,2-ethanedivl), α-hydro-ω-hydroxv-, phosphate CN (CA INDEX NAME)

CM

CRN 25322-68-3

CMF (C2 H4 O)n H2 O

CCI PMS

$$\texttt{HO} \qquad \boxed{ \texttt{CH}_2 \texttt{-} \texttt{CH}_2 \texttt{-} \texttt{O} } \\ \texttt{H}$$

CM

CRN 7664-38-2

CMF H3 O4 P

- RN 25852-91-9 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α-phosphono-ω-hydroxy- (CA INDEX NAME)

- IC ICM H01M002-08
 - ICS H01M002-08; H01M006-08
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
- ST alk battery surfactant film gasket leakage prevention
- IT Gaskets
- Primary batteries
 - (alkaline battery containing surfactant film for preventing electrolyte leakage at gasket)
- IT Surfactants
 - (anionic; alkaline battery containing surfactant film for preventing electrolyte leakage at gasket)
- IT Polyamides, uses
 (gaskets; alkaline battery containing surfactant film for
- preventing electrolyte leakage at gasket)
 IT Surfactants
 - (nonionic; alkaline battery containing surfactant film for
- preventing electrolyte leakage at gasket)
 IT 7664-38-2D, Phosphoric acid, alkyl esters, potassium salts
- 9056-42-2D, Polyoxyethylene phosphate, potassium salt
- 25852-91-9D, Polyoxyethylene phosphate, potassium salt (alkaline battery containing surfactant film for preventing
 - (alkaline battery containing surfactant film for preventine electrolyte leakage at gasket)
- L45 ANSWER 12 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:868873 HCAPLUS Full-text
- DOCUMENT NUMBER: 136:9101
- TITLE: Fabrication method for lithium secondary
- battery with polymer electrolyte
- prepared by spray method
- INVENTOR(S): Yun, Kyung Suk; Cho, Byung Won; Cho, Won Il; Kim,
- Hyung Sun; Kim, Un Seok
- PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S.
 - Korea
- SOURCE: PCT Int. Appl., 34 pp.
- CODEN: PIXXD2
 DOCUMENT TYPE: Patent
- LANGUAGE: English
- FAMILY ACC. NUM. COUNT: 1
- PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001091222	A1	20011129	WO 2000-KR515	20000522
			<	
W: JP, KR, US				
IORITY APPLN. INFO.:			WO 2000-KR515	20000522
			<	

ED Entered STN: 30 Nov 2001

PRI

The present invention provides a lithium secondary battery and its fabrication AB method. More particularly, the present invention provides a lithium secondary battery comprising a porous polymer electrolyte and its fabrication method, wherein the polymer electrolyte is fabricated by the following process: (a) dissolving at least one polymer with plasticizers and organic electrolyte solvents to obtain at least one polymeric electrolyte solution; (b) adding the obtained polymeric electrolyte solution to a barrel of a spray machine, and (c) spraying the polymeric electrolyte solution onto a substrate using a nozzle to form a porous polymer electrolyte film. The lithium secondary battary of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., and better compatibility with organic electrolytes of a lithium secondary battery.

98973-15-0, Poly[bis(2-(2-methoxyethoxyethoxy))-phosphazenel (fabrication method for lithium secondary battery with

polymer electrolyte prepared by spray method)

98973-15-0 HCAPLUS RN

CN Poly[nitrilo[bis[2-(2-methoxyethoxy]phosphoranylidyne]] (CA INDEX NAME)

TCM H01M010-38

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

polymer electrolyte lithium secondary battery; spray method fabrication polymer electrolyte lithium secondary battery

Inductance

(electrostatic, spray method; fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

Battery electrolytes

Lamination Plasticizers

Polymer electrolytes

(fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

Fluoropolymers, uses

Polyoxyalkylenes, uses

(fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

IT Fluoropolymers, uses

(filling agent; fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

IT Secondary batteries

(lithium; fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

IT Alcohols, uses

(plasticizer; fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

IT Coating process

(spray; fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

79-20-9, Methyl acetate 105-37-3, Ethyl propionate 109-99-9, Thf, 141-78-6, Ethyl acetate, uses 554-12-1, Methyl propionate 7782-42-5, Graphite, uses 7791-03-9, Lithium perchlorate 9002-86-2, Pvc 9002-88-4, Polyethylene 9003-07-0, Polypropylene 9003-20-7, Polyvinyl acetate 9004-34-6, Cellulose, uses 9004-35-7, Cellulose acetate 9004-36-8 9004-39-1, Cellulose acetate propionate 9010-76-8, Acrylonitrile-vinylidene chloride copolymer 9010-88-2, Ethyl acrylate-methylmethacrylate copolymer 9011-14-7, 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer 12190-79-3, Cobalt lithium oxide colio2 14283-07-9, Lithium tetrafluoroborate 21324-40-3, Lithium hexafluorophosphate 24937-79-9, Pvdf 24968-79-4, Acrylonitrile-methyl acrylate copolymer 24980-34-5, Polyethylenesulfide 25014-41-9, Polyacrylonitrile 25086-89-9, Vinyl acetate-vinyl pyrrolidone copolymer 25322-68-3, 25322-69-4, Polypropylene oxide 25667-11-2, Polyethylenesuccinate 26913-06-4, Poly[imino(1,2-ethanediyl)] 28726-47-8, Poly(oxymethylene-oxyethylene) 29935-35-1, Lithium hexafluoroarsenate 33454-82-9, Lithium triflate 98973-15-0 , Poly[bis(2-(2-methoxyethoxyethoxy))-phosphazene]

(fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

T 554-13-2, Lithium carbonate 1304-28-5, Barium oxide bao, uses 1309-48-4, Magnesia, uses 1310-65-2, Lithium hydroxide 1313-59-3, Sodium oxide, uses 1344-28-1, Alumina, uses 7631-86-9, Silica, uses 7789-24-4, Lithium fluoride, uses 9002-84-0, Ptfe 12003-67-7, Aluminum lithium oxide allio2 12047-27-7, Barium titanium oxide batio3, uses 12057-24-8, Lithia, uses 13463-67-7, Titania, uses 26134-62-3, Lithium nitride

(filling agent; fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

IT 67-64-1, Acetone, uses 67-68-5, Dmso, uses 68-12-2, Dmf, uses 80-73-9, 1,3-Dimethyl-2-imidazolidinone 96-48-0, Butyrolactone 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 110-71-4, 1,2-Dimethoxyethane 127-19-5, n,n-Dimethyl acetamide 143-24-8, Tetraethylene glycol dimethyl ether 616-38-6, Dimethyl carbonate 623-53-0, Ethyl methyl carbonate 872-50-4, n-Methyl-2-pyrrolidone, uses 4437-85-8, Butylene carbonate 26101-52-0

(plasticizer; fabrication method for lithium secondary battery with polymer electrolyte prepared by spray method)

10

REFERENCE COUNT:

THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L45 ANSWER 13 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN

ACCESSION NUMBER: 2001:868872 HCAPLUS Full-text

DOCUMENT NUMBER: 136:9100

TITLE: A lithium secondary battery comprising composite polymer electrolyte fabricated

by a spray method

INVENTOR(S): Yun, Kyung Suk; Cho, Byung Won; Cho, Won Il; Kim,

Hyung Sun; Kim, Un Seok

PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S.

Korea

SOURCE: PCT Int. Appl., 38 pp.
CODEN: PIXXD2

DOCUMENT TYPE: Patent
LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001091221	A1	20011129	WO 2000-KR514	20000522
			<	

W: JP, KR, US
PRIORITY APPLN. INFO.: WO 2000-KR514 20000522

ED Entered STN: 30 Nov 2001

AB The present invention provides a novel composite polymer electrolyte, lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods. More particularly, the present invention provides the composite polymer electrolyte comprising a porous polymer electrolyte matrix with particles, fibers or mixture thereof having diams, of 1-3000 nm, polymers and lithium salt-dissolved organic electrolyte solns, incorporated into the porous polymer matrix. The composite polymer electrolyte of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., better compatibility with organic electrolytes of lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.

98973-15-0, Poly[bis(2-(2-methoxyethoxy))]phosphazene] (lithium secondary battery comprising composite polymer electrolyte fabricated by spray method)

RN 98973-15-0 HCAPLUS

Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

TC TCM H01M010-38

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST lithium secondary battery composite polymer electrolyte; spray method fabrication composite polymer electrolyte

```
10/617,811
Inductance
   (electrostatic induction spray; lithium secondary battery
   comprising composite polymer electrolyte fabricated by
   spray method)
Fluoropolymers, uses
   (filling agent; lithium secondary battery comprising
   composite polymer electrolyte fabricated by spray method)
Battery electrolytes
Plasticizers
Polymer electrolytes
    (lithium secondary battery comprising composite polymer
   electrolyte fabricated by spray method)
Fluoropolymers, uses
Polyoxyalkylenes, uses
    (lithium secondary battery comprising composite polymer
   electrolyte fabricated by spray method)
Secondary batteries
   (lithium; lithium secondary battery comprising composite
   polymer electrolyte fabricated by spray method)
Alcohols, uses
   (plasticizer; lithium secondary battery comprising
   composite polymer electrolyte fabricated by spray method)
Coating process
   (spray; lithium secondary battery comprising composite
   polymer electrolyte fabricated by spray method)
554-13-2, Lithium carbonate 1304-28-5, Barium oxide bao, uses
1309-48-4, Magnesia, uses 1310-65-2, Lithium hydroxide 1313-59-3,
Sodium oxide na2o, uses 1344-28-1, Alumina, uses 7631-86-9,
Silica, uses 7789-24-4, Lithium fluoride, uses 9002-84-0, Ptfe
12003-67-7, Aluminum lithium oxide allio2 12047-27-7, Barium
titanium oxide batio3, uses 12057-24-8, Lithia, uses 13463-67-7,
Titania, uses 26134-62-3, Lithium nitride
    (filling agent; lithium secondary battery comprising
   composite polymer electrolyte fabricated by spray method)
79-20-9, Methyl acetate 96-48-0, y-Butyrolactone 96-49-1,
Ethylene carbonate 105-37-3, Ethyl propionate 105-58-8, Diethyl
carbonate 108-32-7, Propylene carbonate 109-99-9, Thf, uses
110-71-4, 1,2-Dimethoxyethane 127-19-5, Dimethyl acetamide 141-78-6, Ethyl acetate, uses 554-12-1, Methyl propionate
616-38-6, Dimethyl carbonate 623-53-0, Ethyl methyl carbonate
4437-85-8, Butvlene carbonate 7782-42-5, Graphite, uses 7791-03-9,
Lithium perchlorate 9002-86-2, Pvc 9002-88-4, Polyethylene
9003-07-0, Polypropylene 9003-20-7, Polyvinyl acetate 9004-34-6,
Cellulose, uses 9004-35-7, Cellulose acetate 9004-36-8
9004-39-1, Cellulose acetate propionate 9010-76-8,
Acrylonitrile-vinylidene chloride copolymer 9010-88-2, Ethyl
acrylate-methyl methacrylate copolymer 9011-14-7, Pmma 9011-17-0,
Hexafluoropropylene-vinylidenefluoride copolymer 12190-79-3, Cobalt
lithium oxide colio2
                     14283-07-9, Lithium tetrafluoroborate
21324-40-3, Lithium hexafluorophosphate
                                        24937-79-9, Pvdf
24968-79-4, Acrylonitrile-methylacrylate copolymer 24980-34-5,
Polyethylene sulfide 25014-41-9, Polyacrylonitrile 25086-89-9,
Vinyl acetate-vinylpyrrolidone copolymer 25322-68-3, Peo
25322-69-4, Polypropylene oxide 25667-11-2, Polyethylenesuccinate
25721-76-0, Polyethylene glycol dimethacrylate 26913-06-4,
Poly[imino(1,2-ethanediyl)] 28726-47-8,
Poly(oxymethylene-oxyethylene) 29935-35-1, Lithium
```

hexafluoroarsenate 33454-82-9. Lithium triflate

, Poly[bis(2-(2-methoxyethoxyethoxy))phosphazene] (lithium secondary battery comprising composite polymer

98973-15-0

electrolyte fabricated by spray method)

IT 67-64-1, Acetone, uses 67-68-5, Dmso, uses 68-12-2, Dmf, uses 80-73-9, 1,3-Dimethyl-2-imidazolidinone 143-24-8, Tetraethylene glycol dimethyl ether 872-50-4, n-Methyl-2-pyrrolidone, uses 26101-52-0

(plasticizer; lithium secondary battery comprising

composite polymer electrolyte fabricated by spray method)

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE

DE EORMAT

L45 ANSWER 14 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:868871 HCAPLUS Full-text

DOCUMENT NUMBER: 136:9099

TITLE: Fabrication of a lithium secondary battery
comprising a hybrid polymer electrolyte

prepared by a spray method

INVENTOR(S): Yun, Kyung Suk; Cho, Byung Won; Cho, Won Il; Kim,

Hyung Sun; Kim, Un Seok

PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S.

Korea

SOURCE: PCT Int. Appl., 39 pp.
CODEN: PIXXD2

DOCUMENT TYPE: Patent
LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001091220	A1	20011129	WO 2000-KR513	20000522
			<	

W: JP, KR, US

PRIORITY APPLN. INFO.: WO 2000-KR513 20000522

ED Entered STN: 30 Nov 2001

AB The present invention provides a novel hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte and their fabrication methods. More particularly, the present invention provides the hybrid polymer electrolyte comprising a porous polymer matrix with particles, fibers or mixture thereof having diams. of 1-3000 nm, polymers and lithium salt-dissolved organic electrolyte solns. incorporated into the porous polymer matrix. The hybrid polymer electrolyte has advantages of better adhesion with electrodes, good mech. strength, better performance at low- and high-temps., better compatibility with organic electrolytes of a lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.

IT 98973-15-0, Poly[bis(2-(2-methoxyethoxyethoxy))phosphazene]

(fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method)

RN 98973-15-0 HCAPLUS

CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

ICM H01M010-38 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38 lithium secondary battery hybrid polymer electrolyte : spray method hybrid polymer electrolyte lithium secondary battery Inductance (electrostatic, spray method; fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method) Battery electrolytes Plasticizers Polymer electrolytes (fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method) Fluoropolymers, uses Polyoxyalkylenes, uses (fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method) Fluoropolymers, uses (filling agent; fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method) Secondary batteries (lithium; fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method) Alcohols, uses (plasticizer; fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method) Coating process (spray; fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method) 79-20-9, Methyl acetate 96-48-0, y-Butyrolactone 96-49-1, Ethylene carbonate 105-37-3, Ethyl propionate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 109-99-9, Thf, uses 110-71-4, 1,2-Dimethoxyethane 127-19-5, Dimethyl acetamide 141-78-6, Ethyl acetate, uses 554-12-1, Methyl propionate 161-38-6, Dimethyl carbonate 623-53-0, Ethyl methyl carbonate 4437-85-8, Butylene carbonate 7782-42-5, Graphite, uses 7791-03-9, Lithium perchlorate 9002-86-7, Polyethylene 9003-07-0, Polypropylene 9003-20-7, Polyvinyl acetate Cellulose, uses 9004-35-7, Cellulose acetate 9004-39-1, Cellulose acetate propionate 9010-76-8, Acrylonitrile-vinylidene chloride copolymer 9010-88-2, Ethyl acrylate-methyl methacrylate copolymer 9011-14-7, Pmma 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer 12190-79-3, Cobalt lithium oxide colio2 14283-07-9, Lithium tetrafluoroborate 21324-40-3, Lithium hexafluorophosphate 24936-67-2, Polyethylene sulfide 24937-79-9, Polyvinylidene fluoride 24968-79-4, Acrylonitrile-methylacrylate copolymer 25014-41-9, Polyacrylonitrile 25086-89-9, Vinyl acetate-vinylpyrrolidone copolymer 25322-68-3, Peo 25322-69-4, Polypropylene oxide 25667-11-2, Polyethylene succinate

26570-48-9, Polyethylene glycol diacrylate 26913-06-4,

Poly[imino(1,2-ethanediyl)] 28726-47-8,
Poly(oxymethyleneoxyethylene) 29935-35-1, Lithium hexafluoroarsenate
33454-82-9, Lithium triflate 988973-15-0,
Poly|bis(2-(2-methoxyethoxyethoxy))phosphazene]
(fabrication of lithium secondary battery comprising
hybrid polymer electrolyte prepared by spray method)

IT 68-12-2, Dmf, uses 872-50-4, n-Methyl-2-pyrrolidone, uses 26101-52-0

(fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method)

IT 554-13-2, Lithium carbonate 1304-28-5, Barium oxide bao, uses 1309-48-4, Magnesia, uses 1310-65-2, Lithium hydroxide 1313-59-3, Sodium oxide naZo, uses 1344-28-1, Alumina, uses 7631-86-9, Silica, uses 7789-24-4, Lithium fluoride, uses 9002-84-0, Ptfe 12003-67-7, Aluminum lithium oxide allio2 12047-27-7, Barium titanium oxide batio3, uses 12057-24-8, Lithia, uses 13463-67-7, Titania, uses 26134-62-3, Lithium nitride

(filling agent; fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method)

IT 67-64-1, Acetone, uses 67-68-5, Dmso, uses 80-73-9, 1,3-Dimethyl-2-inidazolidinone 143-24-8, Tetraethylene glycol dimethyl ether

(plasticizer; fabrication of lithium secondary battery comprising hybrid polymer electrolyte prepared by spray method)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS

RECORD (1 CITINGS)

REFERENCE COUNT: 12 THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

I'M LOIWAIL

L45 ANSWER 15 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:851557 HCAPLUS Full-text

DOCUMENT NUMBER: 135:374196

TITLE: Fabrication of a lithium secondary battery

comprising a superfine fibrous polymer

electrolyte

INVENTOR(S): Yun, Kyung Suk; Cho, Byung Won; Jo, Seong Mu; Lee,
Wha Seop; Cho, Won Il; Park, Kun You; Kim, Hyung
Sun; Kim, Un Seok; Ko. Seok Ku; Chun, Suk Won;

Choi, Sung Won

PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S.

Korea

SOURCE: PCT Int. Appl., 33 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001089023	A1	20011122	WO 2000-KR501	20000519
W: JP, KR, US			Ç	

PRIORITY APPLN. INFO.: WO 2000-KR501 20000519

ED Entered STN: 23 Nov 2001

- The present invention provides a lithium secondary battery and its fabrication AB method. More particularly, the present invention provides a lithium secondary battery comprising super fine fibrous porous polymer electrolyte and its preparation method, wherein the polymer electrolyte is fabricated by the following process: (a) dissolving at least one polymer with plasticizers and y organic electrolyte solvents to obtain at least one polymeric electrolyte solution; (b) adding the obtained polymeric electrolyte solution to a barrel of an electrospinning machine; and, (c) electropinning the polymeric electrolyte solution onto a substrate using a nozzle to form a polymer electrolyte film. The lithium secondary battery of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., and better compatibility with organic electrolytes of a lithium secondary battery.
- IΤ 98973-15-0, Poly[bis(2-(2-methoxyethoxyethoxy)phosphazene] (fabrication of lithium secondary battery comprising superfine fibrous polymer electrolyte)
- RN 98973-15-0 HCAPLUS Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA CN INDEX NAME)

ICM H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

lithium secondary battery superfine fibrous polymer electrolyte

Battery electrolytes

Plasticizers

Polymer electrolytes

(fabrication of lithium secondary battery comprising

superfine fibrous polymer electrolyte)

Fluoropolymers, uses

Polyoxyalkylenes, uses

(fabrication of lithium secondary battery comprising superfine fibrous polymer electrolyte)

Fluoropolymers, uses

(filling agent; fabrication of lithium secondary battery comprising superfine fibrous polymer electrolyte)

Secondary batteries

(lithium; fabrication of lithium secondary battery comprising superfine fibrous polymer electrolyte)

Alcohols, uses

(plasticizer; fabrication of lithium secondary battery comprising superfine fibrous polymer electrolyte)

Fibers (spinning, electrospinning; fabrication of lithium secondary

battery comprising superfine fibrous polymer electrolyte)

79-20-9, Methyl acetate 105-37-3, Ethyl propionate 109-99-9, Thf, uses 141-78-6, Ethyl acetate, uses 554-12-1, Methyl propionate

```
7791-03-9, Lithium perchlorate 9002-86-2, Pvc 9002-88-4,
     Polyethylene 9003-07-0, Polypropylene 9003-20-7, Polyvinyl acetate
     9004-34-6, Cellulose, uses 9004-35-7, Cellulose acetate 9004-36-8
     9004-39-1, Cellulose acetate propionate 9010-76-8,
     Acrylonitrile-vinylidene chloride copolymer 9010-88-2, Ethyl
     acrylate-methyl methacrylate copolymer 9011-14-7, Pmma 9011-17-0,
     Hexafluoropropylene-vinylidene fluoride copolymer 12190-79-3, Cobalt
     lithium oxide colio2 14283-07-9, Lithium tetrafluoroborate
     21324-40-3, Lithium hexafluorophosphate 24936-67-2,
     Polvethylenesulfide 24937-79-9, Pvdf 24968-79-4,
     Acrylonitrile-methylacrylate copolymer 25014-41-9, Polyacrylonitrile
    25086-89-9, Vinyl acetate-vinylpyrrolidone copolymer 25266-14-2, Oxyethylene-oxymethylene copolymer 25322-68-3, Peo 25322-69-4,
     Polypropylene oxide 25569-53-3, Polyethylenesuccinate 26913-06-4,
     Poly[imino(1,2-ethanediyl)] 29935-35-1, Lithium hexafluoroarsenate
     33454-82-9, Lithium triflate 98973-15-0,
     Poly[bis(2-(2-methoxyethoxyethoxy)phosphazene]
        (fabrication of lithium secondary battery comprising
        superfine fibrous polymer electrolyte)
     7631-86-9, Silica, uses 26101-52-0
        (fabrication of lithium secondary battery comprising
        superfine fibrous polymer electrolyte)
     13463-67-7, Titania, uses
        (filling agent; fabrication of lithium secondary battery
        comprising superfine fibrous polymer electrolyte)
     554-13-2, Lithium carbonate 1304-28-5, Barium oxide bao, uses
     1309-48-4, Magnesia, uses 1310-65-2, Lithium hydroxide 1313-59-3,
     Sodium oxide, uses 1344-28-1, Alumina, uses 7789-24-4, Lithium
     fluoride, uses 9002-84-0, Ptfe 12003-67-7, Aluminum lithium oxide
     allio2 12047-27-7, Barium titanium oxide batio3, uses 12057-24-8,
     Lithia, uses 26134-62-3, Lithium nitride
        (filling agent; fabrication of lithium secondary battery
        comprising superfine fibrous polymer electrolyte)
     67-64-1, Acetone, uses 67-68-5, Dmso, uses 68-12-2, Dmf, uses
     80-73-9, 1,3-Dimethyl-2-imidazolidinone 96-48-0, Butyrolactone
     96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7,
     Propylene carbonate 110-71-4, 1,2-Dimethoxyethane 127-19-5,
     n,n-Dimethyl acetamide 143-24-8, Tetraethylene glycol dimethyl ether
     616-38-6, Dimethyl carbonate 623-53-0, Ethyl methyl carbonate
     872-50-4, N-Methyl-2-pyrrolidone, uses 4437-85-8, Butylene carbonate (plasticizer; fabrication of lithium secondary battery
        comprising superfine fibrous polymer electrolyte)
OS.CITING REF COUNT: 4
                              THERE ARE 4 CAPLUS RECORDS THAT CITE THIS
                               RECORD (4 CITINGS)
REFERENCE COUNT:
                         8
                               THERE ARE 8 CITED REFERENCES AVAILABLE FOR
                               THIS RECORD. ALL CITATIONS AVAILABLE IN THE
                               RE FORMAT
L45 ANSWER 16 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN
ACCESSION NUMBER:
                        2001:851555 HCAPLUS Full-text
DOCUMENT NUMBER:
                         135:374194
TITLE:
                        Fabrication of composite polymer
                        electrolyte and a lithium secondary
                         battery comprising the composite polymer
                        electrolyte
INVENTOR(S):
                        Yun, Kyung Suk; Cho, Byung Won; Jo, Seong Mu; Lee,
                         Wha Seop; Cho, Won Il; Park, Kun You; Kim, Hyung
                        Sun; Kim, Un Seok; Ko, Seok Ku; Choi, Sung Won
PATENT ASSIGNEE (S):
                        Korea Institute of Science and Technology, S.
                        Korea: Chun, Suk Won
```

SOURCE: PCT Int. Appl., 37 pp.

CODEN: PIXXD2 Patent

DOCUMENT TYPE:

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

WO 2001089021 A1 20011122 WO 2000-KR499 20000519

W: JP, KR, US
PRIORITY APPLN. INFO.: WO 2000-KR499 20000519

ED Entered STN: 23 Nov 2001

AB The present invention provides a novel composite polymer electrolyte, lithium secondary battery comprising the composite polymer electrolyte and their fabrication methods. More particularly, the present invention provides the composite polymer electrolyte comprising super fine fibrous porous polymer electrolyte matrix with particles having diameter of 1-3000 nm, polymers and lithium salt-dissolved organic electrolyte solns. Incorporated into the porous polymer electrolyte matrix. The composite polymer electrolyte of the present invention has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps, better compatibility with organic electrolytes of lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.

IT 98973-15-0

(fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer electrolyte)

RN 98973-15-0 HCAPLUS

CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

IC ICM H01M010-40

S 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

lithium secondary battery composite polymer

electrolyte

IT Battery electrolytes

Plasticizers

Polymer electrolytes

(fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer

electrolyte)

IT Fluoropolymers, uses

Polyoxyalkylenes, uses

(fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer

electrolyte)

Fluoropolymers, uses

(filling agent; fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer electrolyte)

IT Secondary batteries

(lithium; fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer electrolyte)

IT Alcohols, uses

(plasticizer; fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer electrolyte)

IT Fibers

(spinning, electro-; fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer electrolyte)

96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 616-38-6, Dimethyl carbonate 623-53-0, Ethyl methyl carbonate 7782-42-5, Graphite, uses 7791-03-9, Lithium perchlorate 9002-86-2, Pvc 9002-88-4, Polyethylene 9003-07-0, Polypropylene 9003-20-7, Polyvinyl acetate 9004-34-6, Cellulose, 9004-35-7, Cellulose acetate 9004-36-8 9004-39-1, Cellulose acetate propionate 9010-76-8, Acrylonitrile-vinylidene chloride 9010-88-2, Ethyl acrylate-methyl methacrylate copolymer copolymer 9011-14-7, Pmma 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer 12190-79-3, Cobalt lithium oxide colio2 14283-07-9, Lithium tetrafluoroborate 21324-40-3, Lithium hexafluorophosphate 24936-67-2, Polyethylene sulfide 24937-79-9, Pvdf 25014-41-9, Polyacrylonitrile 25086-89-9, Vinyl acetate-vinylpyrrolidone copolymer 25266-14-2 25322-68-3, Peo 25322-69-4, Polypropylene oxide 25569-53-3, Polyethylene succinate 25721-76-0, Polyethylene glycol dimethacrylate 25749-57-9, Acrylonitrile-methacrylic acid copolymer 26570-48-9, Polyethylene glycol diacrylate 26913-06-4, Poly[imino(1,2-ethanediyl)] 29935-35-1, Lithium hexafluoroarsenate 33454-82-9, Lithium triflate 98973-15-0

(fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer electrolyte)

IT 79-20-9, Methyl acetate 96-48-0, Y-Butyrolactone 105-37-3, Ethyl propionate 109-99-9, Thf, uses 110-71-4, 1,2-Dimethoxyethane 127-19-5, Dimethyl acetamide 141-78-6, Ethyl acetate, uses 554-12-1, Methyl propionate 4437-85-8, Butylene carbonate 12003-67-7, Aluminum lithium oxide allio2

(fabrication of composite polymer electrolyte and lithium secondary battery comprising composite polymer electrolyte)

IT 554-13-2, Lithium carbonate 1304-28-5, Baria, uses 1309-88-4, Magnesia, uses 1310-65-2, Lithium hydroxide 1313-59-3, Sodium oxide, uses 1344-28-1, Alumina, uses 7631-86-9, Silica, uses 789-24-4, Lithium fluoride, uses 9002-84-0, Ptfe 12047-27-7, Barium titanium oxide batio3, uses 12057-24-8, Lithia, uses 13463-67-7, Titania, uses 26134-62-3, Lithium nitride li3n (filling agent; fabrication of composite polymer

electrolyte and lithium secondary battery comprising composite polymer electrolyte)

IT 67-64-1, Acetone, uses 67-68-5, Dmso, uses 68-12-2, Dmf, uses 80-73-9, 1,3-Dimethyl-2-imidazolidinone 143-24-8, Tetraethylene glycol dimethyl ether 872-50-4, n-Methyl-2-pyrrolidone, uses 26101-52-0

(plasticizer; fabrication of composite polymer electrolyte and lithium secondary battery comprising composite

polymer electrolyte) OS.CITING REF COUNT:

THERE ARE 2 CAPLUS RECORDS THAT CITE THIS RECORD (2 CITINGS)

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE

RE FORMAT

L45 ANSWER 17 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN 2001:851554 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER:

135:374193

TITLE: Fabrication method of lithium secondary

battery with hybrid polymer

electrolyte

INVENTOR(S): Yun, Kyung Suk; Cho, Byung Won; Jo, Seong Mu; Lee, Wha Seop; Cho, Won Il; Park, Kun You; Kim, Hyung

Sun; Kim, Un Seok; Ko, Seok Ku; Chun, Suk Won; Choi, Sung Won

PATENT ASSIGNEE(S): Korea Institute of Science and Technology, S.

Korea

SOURCE: PCT Int. Appl., 41 pp. CODEN: PIXXD2

DOCUMENT TYPE: Patent

LANGUAGE: English FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
WO 2001089020	A1	20011122	WO 2000-KR498	20000519
W: JP, KR, US JP 2003533861	T	20031111	JP 2001-585342	20000519
JP 4108981 US 20090026662	B2 A1	20080625 20090129	US 2008-180509	20080725
PRIORITY APPLN. INFO.:			WO 2000-KR498 W	20000519
			US 2003-276878 B3	20030522

ED Entered STN: 23 Nov 2001

AB The present invention provides a novel hybrid polymer electrolyte, a lithium secondary battery comprising the hybrid polymer electrolyte polymer and their fabrication methods. More particularly, the present invention provides the hybrid polymer electrolyte comprising superfine fibrous porous polymer matrix with particles having diameter of 1-3000 nm, polymers and lithium saltdissolved organic electrolyte solns. incorporated into the porous polymer matrix. The hybrid polymer electrolyte has advantages of better adhesion with electrodes, good mech. strength, better performance at low and high temps., better compatibility with organic electrolytes of a lithium secondary battery and it can be applied to the manufacture of lithium secondary batteries.

TT 98973-15-0

(fabrication method of lithium secondary battery with

hybrid polymer electrolyte)

98973-15-0 HCAPLUS RN

CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

```
IC ICM H01M010-40
```

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST lithium secondary battery hybrid polymer electrolyte

T Battery electrolytes

Plasticizers Polymer electrolytes

lymer electrolytes

(fabrication method of lithium secondary battery with

hybrid polymer electrolyte)
T Fluoropolymers, uses

Polyoxyalkylenes, uses

(fabrication method of lithium secondary battery with

hybrid polymer electrolyte)
IT Fluoropolymers, uses

(filling agent; fabrication method of lithium secondary battery with hybrid polymer electrolyte)

IT Secondary batteries

(lithium; fabrication method of lithium secondary battery with hybrid polymer electrolyte)

IT Alcohols, uses

(plasticizer; fabrication method of lithium secondary battery with hybrid polymer electrolyte)

IT Fibers

(spinning, electro-; fabrication method of lithium secondary battery with hybrid polymer electrolyte)

79-20-9, Methyl acetate 96-48-0, y-Butyrolactone 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 109-99-9, Thf, uses 110-71-4, 1,2-Dimethoxyethane 127-19-5, Dimethyl acetamide 141-78-6, Ethyl acetate, uses 554-12-1, Methyl propionate 616-38-6, Dimethyl carbonate 623-53-0, Ethylmethyl carbonate 4437-85-8, Butylene carbonate 7782-42-5, Graphite, uses 7791-03-9, Lithium perchlorate 9002-86-2, Pvc 9002-88-4, Polyethylene 9003-07-0, Polypropylene 9003-20-7, Polyvinyl acetate 9004-34-6, Cellulose, uses 9004-35-7, Cellulose acetate 9004-36-8 9004-39-1, Cellulose acetate propionate 9010-76-8, Acrylonitrile-vinylidene chloride copolymer 9010-88-2, Ethyl acrylate-methyl methacrylate copolymer 9011-14-7, Pmma 9011-17-0, Hexafluoropropylene-vinylidene fluoride copolymer 12190-79-3, Cobalt lithium oxide colio2 14283-07-9, Lithium tetrafluoroborate 21324-40-3, Lithium hexafluorophosphate 24937-79-9, Pvdf 24980-34-5, Polyethylene sulfide 25014-41-9, Polyacrylonitrile 25086-89-9 25266-14-2, Oxyethylene-oxymethylene copolymer 25322-68-3, Peo 25322-69-4, Polypropylene oxide 25569-53-3, Polyethylene succinate 25721-76-0, Polyethylene glycol 25749-57-9, Acrylonitrile-methacrylic acid copolymer dimethacrylate 26570-48-9, Polyethylene glycol diacrylate 26913-06-4, Poly[imino(1,2-ethanedivl)] 29935-35-1, Lithium hexafluoroarsenate 33454-82-9, Lithium triflate 98973-15-0

(fabrication method of lithium secondary battery with hybrid polymer electrolyte)

IT 554-13-2, Lithium carbonate 1304-28-5, Baria, uses 1309-48-4, Magnesia, uses 1310-65-2, Lithium hydroxide 1313-59-3, Sodiumoxide, uses 1344-28-1, Alumina, uses 7631-86-9, Silica, uses 7789-24-4, Lithium fluoride, uses 9002-84-0, Ptfe 12003-67-7, Aluminum lithium oxide allio2 12047-27-7, Barium titahium oxide batio3, uses 12057-24-8, Lithia, uses 13463-67-7, Titania, uses 26134-62-3, Lithium nitride li3n

(filling agent; fabrication method of lithium secondary battery with hybrid polymer electrolyte)

T 67-64-1, Acetone, uses 67-68-5, Dmso, uses 68-12-2, Dmf, uses 80-73-9, 1,3-Dimethyl-2-inidazolidinone 143-24-8, Tetraethylene glycol dimethyl ether 872-50-4, n-Methyl-2-pyrrolidone, uses 26101-52-0

(plasticizer; fabrication method of lithium secondary battery with hybrid polymer electrolyte)

OS.CITING REF COUNT: 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS

RECORD (3 CITINGS)

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L45 ANSWER 18 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:840790 HCAPLUS Full-text

DOCUMENT NUMBER: 135:374144

TITLE: Nickel/hydrogen battery

INVENTOR(S): Maeda, Reizo; Harada, Yasuyuki; Tanaka, Tadayoshi;

Niiyama, Katsuhiko; Matsuura, Yoshinori; Noma,

Toshiyuki; Yonetsu, Ikuo

PATENT ASSIGNEE(S): Sanyo Electric Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001319684	A	20011116	JP 2000-136799	20000510
			<	
JP 4079573	B2	20080423		
PRIORITY APPLN. INFO.:			JP 2000-136799	20000510
			/	

ED Entered STN: 19 Nov 2001

AB The battery contains a phosphate ester and/or a phosphonate ester. The ester may exist in the battery anode or electrolyte.

IT 762-04-9, Di ethyl phosphonate 26912-43-6

(phosphate ester and phosphonate ester additives in electrolyte solns. and anodes for nickel/hydrogen batteries)

RN 762-04-9 HCAPLUS

CN Phosphonic acid, diethyl ester (CA INDEX NAME)

- RN 26912-43-6 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α,α'-phosphinicobis[ω-(4nonylphenoxy)- (9CI) (CA INDEX NAME)

PAGE 1-B

- IC ICM H01M010-30 ICS H01M010-30; H01M004-24; H01M004-62
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
- ST nickel hydrogen battery ester additive; anode ester additive nickel hydrogen battery; electrolyte ester additive nickel hydrogen battery; phosphate ester additive nickel hydrogen battery; phosphonate ester additive
- nickel hydrogen battery IT Battery electrolytes

(electrolyte solns. containing phosphate ester and phosphonate ester additives for nickel/hydrogen batteries

IT Battery anodes

(hydrogen absorbing alloy anodes containing phosphate ester and phosphonate ester additives in nickel batteries)

IT Secondary batteries

(phosphate ester and phosphonate ester additives in electrolyte solns. and anodes for nickel/hydrogen batteries)

- IT 1310-58-3, Potassium hydroxide, uses (electrolyte solns. containing phosphate ester and phosphonate ester additives for nickel/hydrogen batteries
- IT 1333-74-0, Hydrogen, uses 151974-13-9 (hydrogen absorbing allow anodes containing phosphate ester and phosphonate ester additives in nickel batteries)
- IT 126-73-8, Tributyl phosphate, uses 512-56-1, Trimethyl phosphate 762-04-9, Di ethyl phosphonate 838-85-7, Diphenyl phosphate 1623-19-4, Triallyl phosphate 1809-19-4, Dibutyl phosphonate 2197-63-9, Dihexadecyl phosphate 7423-32-7, Phosphoric acid monododecyl ester disodium sait 17176-77-1, Dibenzyl phosphonate 21302-09-0 2644-49-5, Cresyl diphenyl phosphate

26912-43-6 37310-83-1, Oleyl phosphate

(phosphate ester and phosphonate ester additives in electrolyte solms. and anodes for nickel/hydrogen batteries)

L45 ANSWER 19 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:771032 HCAPLUS Full-text

DOCUMENT NUMBER: 135:320499

TITLE: Separators for electrochemical cells

INVENTOR(S): Carlson, Steven A.; Ying, Qicong; Deng, Zhongyi;

Skotheim, Terje A.

PATENT ASSIGNEE(S): Moltech Corporation, USA

SOURCE: U.S., 18 pp., Cont.-in-part of U.S. 6,153,337.

CODEN: USXXAM DOCUMENT TYPE: Patent

LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2 PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
US 6306545	B1	20011023	US 1998-215112	19981217
			<	
US 6153337	A	20001128	US 1997-995089	19971219
			<	
US 20020092155	A1	20020718	US 2001-40651	20011022
			<	
PRIORITY APPLN. INFO	.:		US 1997-995089	A2 19971219
			<	
			US 1998-215112	A1 19981217

ED Entered STN: 24 Oct 2001

AB This invention pertains to separators for electrochem. cells which comprise a microporous pseudo-boehmite layer; electrolyte elements comprising such separators; elec. current producing cells comprising such separators; and methods of making such separators, electrolyte elements and cells.

<--

IT 211431-21-9, Escure kto

(separators for electrochem. cells)

RN 211431-21-9 HCAPLUS

CN 1-Propanone, 2-hydroxy-2-methyl-1-[4-(1-methylethenyl)phenyl]-, homopolymer, mixt. with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, (4-methylphenyl)phenylmethanone and phenyl(2,4,6-trimethylphenyl)methanone (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 1

CRN 75980-60-8 CMF C22 H21 O2 P

CM 2

CRN 954-16-5 CMF C16 H16 O

Me C-Ph

CM 3

CRN 134-84-9 CMF C14 H12 O

CM 4

CRN 115055-18-0 CMF (C13 H16 O2)x CCI PMS

CM 5

CRN 101649-40-5 CMF C13 H16 O2

IC ICM H01M002-16 ICS C04B035-10 INCL 429247000

```
10/617,811
    52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
    Section cross-reference(s): 38, 72
    separator electrochem cell; batterv separator microporous
ST
    pseudoboehmite layer
    Conducting polymers
    Crosslinking agents
    Crosslinking catalysts
    Dispersing agents
    Pigments, nonbiological
    Plasticizers
    Porosity
    Secondary batteries
    Secondary battery separators
    Surfactants
       (separators for electrochem. cells)
    57-55-6, Propylene glycol, uses 64-17-5, Ethanol, uses 67-56-1,
    Methanol, uses 67-63-0, Isopropanol, uses 71-23-8, 1-Propanol,
    uses 71-36-3, 1-Butanol, uses 78-92-2, 2-Butanol 107-21-1,
    Ethylene glycol, uses 109-86-4, 2-Methoxyethanol 110-80-5,
     2-Ethoxyethanol 111-76-2, 2-Butoxyethanol 7732-18-5, Water, uses
    25038-59-9, Melinex 516, uses 211431-21-9, Escure kto
    221629-51-2, CN984
       (separators for electrochem. cells)
OS.CITING REF COUNT:
                        13
                             THERE ARE 13 CAPLUS RECORDS THAT CITE THIS
                              RECORD (13 CITINGS)
                              THERE ARE 32 CITED REFERENCES AVAILABLE FOR
REFERENCE COUNT:
                        32
                              THIS RECORD. ALL CITATIONS AVAILABLE IN THE
                              RE FORMAT
L45 ANSWER 20 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN
ACCESSION NUMBER:
                        2001:614280 HCAPLUS Full-text
DOCUMENT NUMBER:
                        135:168869
TITLE:
                        Protective coating for separators for
                        electrochemical cells
INVENTOR(S):
                        Ying, Qicong; Carlson, Steven A.; Skotheim, Terje
PATENT ASSIGNEE(S):
                        Moltech Corporation, USA
SOURCE:
                        U.S., 29 pp., Cont.-in-part of U.S. 6,183,901.
                        CODEN: USXXAM
DOCUMENT TYPE:
                        Patent
LANGUAGE:
                        English
FAMILY ACC. NUM. COUNT: 4
PATENT INFORMATION:
```

			011.													
PA	PENT	NO.			KIN	D	DATE			APPL	ICAT	ION :	NO.		D	ATE
						-									-	
US	6277	514			B1		2001	0821		US 1	999-	4479	01		1	9991123
											<					
US	6194	098			B1		2001	0227		US 1	998-	2150	29		1	9981217
															_	
110	6183	001			В1		2001	0000			999-		c 7		- 1	9990921
US	0183	90T			BI		2001	0206		05 I			0/		Τ.	9990921
											<					
WO	2000	0366	70		A1		2000	0622		WO 1	999-	US30	136		1	9991216
											<					
	W:	AE,	AL.	AM.	AT.	AU.	AZ.	BA.	BB.	BG.	BR,	BY.	CA.	CH.	CN.	CR.
		CH	CZ	DE	DE	TOR4					CD.				HD.	

W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LZ, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW

```
RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF,
            BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
    WO 2000036671
                        A1 20000622 WO 1999-US30214 19991216
        W: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU,
            CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID,
            IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
            LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
            SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN,
            YU, ZA, ZW
        RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
            DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF,
            BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
    EP 1149425
                        A1 20011031 EP 1999-967395
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
            PT, IE, SI, LT, LV, FI, RO
    EP 1151486
                              20011107
                                         EP 1999-966420
                                                               19991216
                        A1
                                                 <--
    EP 1151486
                              20030521
                        В1
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
            PT, IE, SI, LT, LV, FI, RO
    JP 2002532852
                        T
                              20021002
                                          JP 2000-588826
                                                                19991216
                                                <--
                       C
                              20041027
                                         CN 1999-815869
    CN 1173424
                                                                19991216
                                                 <--
    CN 1175505
                       C
                              20041110
                                         CN 1999-815868
                                                                19991216
                                                 <--
                       A1 20011220
                                         US 2001-898884
    US 20010053475
                                                                20010702
                                                <--
                                          US 1998-215029
                                                            A2 19981217
PRIORITY APPLN. INFO.:
                                                <--
                                          US 1999-399967
                                                             A2 19990921
                                                 <--
                                          US 1999-447901
                                                             A2 19991123
                                                <--
                                          WO 1999-US30136
                                                             W 19991216
                                                <--
                                          WO 1999-US30214
                                                             W 19991216
```

ED Entered STN: 23 Aug 2001

IT 211431-21-9, Escure kto

RN 211431-21-9 HCAPLUS

CM 1

AB This invention pertains to separators for use in electrochem. cells which comprise at least one microporous pseudo-boehmite layer, which separator is in contact with at least one protective coating layer positioned on the auddefacing side of the separator opposite from the cathode active layer in the cell; electrolyte elements comprising such separators; elec. current producing cells comprising such separators; and methods of making such separators, electrolyte elements and cells.

⁽protective coating for separators for electrochem. cells)

CN 1-Propanone, 2-hydroxy-2-methyl-1-[4-(1-methylethenyl)phenyl]-, homopolymer, mixt. with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, (4-methylphenyl)phenylmethanone and phenyl(2,4,6-trimethylphenyl)methanone (CA INDEX NAME)

^{***} STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CRN 75980-60-8 CMF C22 H21 O2 P

CM 2

CRN 954-16-5 CMF C16 H16 O

CM 3

CRN 134-84-9 CMF C14 H12 O

CM 4

CRN 115055-18-0 CMF (C13 H16 O2)x CCI PMS

CM 5

CRN 101649-40-5 CMF C13 H16 O2

IC ICM H01M002-14

INCL 429129000

C 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38

ST battery separator pseudoboehmite protective coating

IT Coating process

Conducting polymers

Secondary batteries

Secondary battery separators

(protective coating for separators for electrochem. cells)
9003-19-4, Polyvinyl ether 9003-39-8, polyvinylpyrrolidone

9003-63-8, Poly(butyl methacrylate) 10377-52-3, Lithium phosphate 12627-14-4, Lithium silioate 12676-27-6 25067-58-7, Polyacetylene 25190-62-9, Poly(p-phenylene) 28774-88-3, Poly(naphthalene-2,6-diyl) 37220-89-6, Lithium aluminate 39302-37-9, Lithium titanium oxide

82451-56-7, Polyazulene 96638-49-2, Poly(phenylenevinylene) 114239-80-4, Poly(perinaphthalene) 146701-60-2, CAB-O-SIL TS-530

152747-89-2, Lanthanum lithium oxide 184905-46-2, Lithium nitrogen phosphorus oxide 211431-21-9, Escure kto 236388-73-1, Lithium silicide sulfide 236388-74-2, Lithium boride sulfide

236388-75-3, Aluminum lithium sulfide 236388-76-4, Lithium phosphide sulfide 342379-43-5, Germanium lithium sulfide

(protective coating for separators for electrochem. cells)
OS.CITING REF COUNT: 9 THERE ARE 9 CAPLUS RECORDS THAT CITE THIS

RECORD (9 CITINGS)

REFERENCE COUNT: 42 THERE ARE 42 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE

RE FORMAT

L45 ANSWER 21 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:479823 HCAPLUS Full-text

DOCUMENT NUMBER: 135:83350

TITLE: Hyperbranched polymers, their preparation, solid

electrolytes therefrom, and

electrochemical apparatus therewith

INVENTOR(S): Sato, Masahiro; Tanba, Atsushi; Osawa, Toshiyuki;
Oshima, Kentaro

PATENT ASSIGNEE(S): Kansai Research Institute Inc., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 10 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001181352	A	20010703	JP 1999-371750	19991227

<--

PRIORITY APPLN. INFO.:

JP 1999-371750

19991227

ED Entered STN: 03 Jul 2001

- AB The polymers, showing high ion conductivity and solid strength, are prepared by polymerization of R182c1cR3c02(CH2C)RR4 (R1-3 = H, C1-4 alkyl; R4 = H, C1-4 alkyl, C1-4 acyl; n = 1-20 integer), I (R5-7 = H, C1-4 alkyl; R8-12 = H, halo, C1-4 (halo)alkyl, where ≥ 1 of them is C1-4 α -haloalkyl), and optional R13R14c1cR15c02(CH2CH2O)mP(:0)(OH)2 (R13-15 = H, C1-4 alkyl; m = 1-20 integer). The polymers may be crosslinked with acrylic and/or styrenic crosslinkers. The polymers may be subjected to living radical polymerization offering dendritic graft polymers and may be cation exchanged with Li giving solid electrolytes for Li secondary batteries.
- IT 347188-26-5DP, Li complexes

(dendritic; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

RN 347188-26-5 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 2-(phosphonooxy)ethyl ester, polymer with 1-(chloromethyl)-4-ethenylbenzene and

 α -(2-methyl-1-oxo-2-propenyl)- ω -methoxypoly(oxy-1,2-ethanediyl) (9CI) (CA INDEX NAME)

CM

CRN 26915-72-0

CMF (C2 H4 O)n C5 H8 O2

CCI PMS

$$^{\text{H2C}}_{\text{Me}} = ^{\text{O}} = ^{\text{O}}_{\text{CH}_2} = ^{\text{CH}_2}_{\text{CH}_2} = ^{\text{O}}_{\text{n}} = ^{\text{O}}_{\text{Ne}}$$

CM

CRN 24599-21-1

CMF C6 H11 O6 P

CM 3

CRN 1592-20-7

CMF C9 H9 Cl

IT 347188-28-7DP, Li complexes

(graft; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

RN 347188-28-7 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 2-(2-methoxyethoxy)ethyl ester, polymer with 1-(chloromethyl)-4-ethenylbenzene, 4-ethenylbenzenesulfonic acid and 2-(phosphonooxy)ethyl 2-methyl-2-propenoate (9CI) (CA INDEX NAME)

CM 1

CRN 45103-58-0

CMF C9 H16 O4

CM 2

CRN 24599-21-1

CMF C6 H11 O6 P

CM 3

CRN 1592-20-7

CMF C9 H9 Cl

CM

CRN 98-70-4 CMF C8 H8 O3 S

ICM C08F220-28

ICS C08F004-10; C08F212-04; H01G009-028; H01M010-40

72-3 (Electrochemistry)

Section cross-reference(s): 38, 52, 76

lithium battery electrolyte ion cond strength; dendritic polyethylene branching polymer battery electrolyte

Crosslinking agents

(acrylic and/or styrenic; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes

Polvoxvalkvlenes, uses

(acrylic, graft, dendritic, Li complexes; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

Electric apparatus

(electrochem.; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

Polymerization

(graft, living radical; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes

Dendritic polymers

(graft; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

(lithium; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

Polymerization

(living, radical, graft; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes

Battery electrolytes

Solid electrolytes

Secondary batteries

(polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

152253-76-4DP, Li complexes 347188-26-5DP, Li complexes 347188-27-6DP, Li complexes

(dendritic; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

IT 347188-28-7DP, Li complexes

(graft; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

IT 553-26-4D, 4,4'-Bipyridyl, complexes with copper chloride

7758-89-6D, Copper(I) chloride, bipyridyl complexes

(living radical polymerization catalysts; polyethylene-branched hyperbranched graft polymers for high-ion-conductivity battery electrolytes)

IT 7439-93-2DP, Lithium, polyoxyethylene-branch-bearing dendritic polymer complexes, uses

(polyethylene-branched hyperbranched graft polymers for

high-ion-conductivity battery electrolytes)

OS.CITING REF COUNT: 1 THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

L45 ANSWER 22 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:91433 HCAPLUS Full-text

DOCUMENT NUMBER: 2001:91433 HCAPLOS Edi

TITLE: Protective coating for separators for electrochemical cells

INVENTOR(S): Ying, Qicong; Carlson, Steven A.; Skotheim, Terje

A.

PATENT ASSIGNEE(S): Moltech Corporation, USA

SOURCE: U.S., 27 pp., Cont.-in-part of U.S. Ser. No.

215,029. CODEN: USXXAM

DOCUMENT TYPE: Patent
LANGUAGE: English
FAMILY ACC. NUM. COUNT: 4

PATENT INFORMATION:

PATENT NO. KI						_				APPL			DATE				
US	6183	901					2001	0206		US 1	999-	1	9990921				
US	6194	194098 B1					2001	0227		US 1		2150	29		19981217		
US	JS 6277514 B				B1		2001	0821		US 1	999-		19991123				
WO	O 2000036670 A1						2000	0622		WO 1		US30	136		1	9991216	
WO.	RW:	CU, ID, LU, SD, VN, GH, DE, BJ,	CZ, IL, LV, SE, YU, GM, CF,	DE, IN, MA, SG, ZA, KE, ES, CG,	DK, IS, MD, SI, ZW LS, FI, CI,	DM, JP, MG, SK, MW, FR, CM,	AZ, EE, KE, MK, SL, SD, GB,	ES, KG, MN, TJ, SL, GR, GN,	FI, KP, MW, TM, SZ, IE, GW,	GB, KR, MX, TR, TZ, IT, ML,	GD, KZ, NO, TT, UG, LU, MR,	GE, LC, NZ, TZ, ZW, MC, NE,	GH, LK, PL, UA, AT, NL, SN,	GM, LR, PT, UG, BE, PT,	HR, LS, RO, US, CH, SE, TG	HU, LT, RU, UZ,	
WO	2000	0300	/ _		AI		2000	0022		WO I			214		1	9991210	
	W:	CZ, IL, LV, SE,	DE, IN, MA,	DK, IS, MD, SI,	DM, JP, MG,	EE, KE, MK,	BA, ES, KG, MN, TJ,	FI, KP, MW,	GB, KR, MX,	GD, KZ, NO,	GE, LC, NZ,	GH, LK, PL,	GM, LR, PT,	HR, LS, RO,	HU, LT, RU,	ID, LU, SD,	

```
RW: GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY,
           DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF,
           BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG
    EP 1149425
                      A1 20011031 EP 1999-967395 19991216
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
           PT, IE, SI, LT, LV, FI, RO
    EP 1151486
                      A1 20011107
                                      EP 1999-966420
                                                           19991216
                                             <--
    EP 1151486
                           20030521
                      B1
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC,
           PT, IE, SI, LT, LV, FI, RO
    JP 2002532852
                            20021002
                                       JP 2000-588826 19991216
                                             <--
                 C 20041027 CN 1999-815869
                                                           19991216
    CN 1173424
    CN 1175505
                    C
                           20041110
                                      CN 1999-815868
                                                           19991216
                                             <--
                     B1
    US 6410182
                           20020625 US 2000-641539
                                                           20000818
                                             <--
    US 20010000485 A1
                           20010426 US 2000-727160
                                                           20001130
                                             <--
    US 6423444 B2 20020723
US 20010053475 A1 20011220 US 2001-898884
                                                           20010702
                                             <--
                                       US 1998-215029 A2 19981217
PRIORITY APPLN. INFO.:
                                             <--
                                       US 1999-399967 A2 19990921
                                             <--
                                       US 1999-447901
                                                        A2 19991123
                                             <--
                                       WO 1999-US30136
                                                        W 19991216
                                             <--
                                       WO 1999-US30214 W 19991216
                                             <--
```

ED Entered STN: 07 Feb 2001

AB This invention pertains to separators for electrochem. cells which comprise (i) two microporous pseudo-boehmite layers and (ii) a protective coating layer comprising a polymer interposed between the microporous pseudo-boehmite layers; electrolyte elements comprising such separators; elec. current producing cells comprising such separators; and methods of making such separators, electrolyte elements and cells.

IT 211431-21-9, Escure KTO

(photosensitizer; protective coating for separators for electrochem, cells)

RN 211431-21-9 HCAPLUS

CN 1-Propanone, 2-hydroxy-2-methyl-1-[4-(1-methylethenyl)phenyl]-, homopolymer, mixt. with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, (4-methylphenyl)phenylmethanone and

phenyl (2, 4, 6-trimethylphenyl) methanone (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 1

CRN 75980-60-8

CMF C22 H21 O2 P

CM 2

CRN 954-16-5 CMF C16 H16 O

CM 3

CRN 134-84-9 CMF C14 H12 O

CM 4

CRN 115055-18-0 CMF (C13 H16 O2)x CCI PMS

CM 5

CRN 101649-40-5 CMF C13 H16 O2

IC ICM H01M002-14 ICS H01M002-16

INCL 429129000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST battery separator pseudoboehmite protective coating

IT Coating materials

Pigments, nonbiological Primary battery separators Secondary battery separators

(protective coating for separators for electrochem, cells)

IT 211431-21-9, Escure KTO

(photosensitizer; protective coating for separators for

electrochem. cells)

OS.CITING REF COUNT: THERE ARE 11 CAPLUS RECORDS THAT CITE THIS 11

RECORD (11 CITINGS)

THERE ARE 42 CITED REFERENCES AVAILABLE FOR REFERENCE COUNT: 42

THIS RECORD. ALL CITATIONS AVAILABLE IN THE

RE FORMAT

L45 ANSWER 23 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:62800 HCAPLUS Full-text

DOCUMENT NUMBER: 134:134086

TITLE: Nonaqueous electrolyte batteries

Fui, Samu; Tomita, Takashi; Segawa, Takeshi INVENTOR(S):

PATENT ASSIGNEE (S): Sony Corp., Japan Jpn. Kokai Tokkyo Koho, 13 pp. SOURCE:

CODEN: JKXXAF DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 2001023687	A	20010126	JP 1999-196532	19990709
			<	

PRIORITY APPLN. INFO.: JP 1999-196532 19990709

<--OTHER SOURCE(S): MARPAT 134:134086

ED Entered STN: 26 Jan 2001

$$\begin{array}{c} \operatorname{OR}_1 \\ \operatorname{C}_{P_2} \\ \operatorname{I} \end{array} \quad \begin{array}{c} \operatorname{OR}_1 \\ \operatorname{C}_{R_2} \\ \operatorname{I} \end{array} \quad \begin{array}{c} \operatorname{OR}_1 \\ \operatorname{C}_{R_2} \\ \operatorname{II} \end{array} \quad \begin{array}{c} \operatorname{R}_3 \\ \operatorname{R}_5 \\ \operatorname{R}_5 \\ \operatorname{R}_5 \end{array} \quad \begin{array}{c} \operatorname{R}_3 \\ \operatorname{R}_5 \\ \operatorname{R}_5 \\ \operatorname{R}_5 \end{array} \quad \begin{array}{c} \operatorname{R}_3 \\ \operatorname{R}_5 \\ \operatorname{R}$$

- AB Secondary Li batteries have a nonag, electrolyte solution containing a phosphazene I [Rl and R2 = linear or branched (substituted) alkyl, (substituted) cyclic alkyl, (substituted) alkylene, or(substituted) alkylene oxide groups; n = integer 1-100] and a radical polymerization inhibitor. The phosphazene may be cyclic compound II (m = integer 3-10), and the radical polymerization inhibitor is preferably a S and N containing heterocyclic compound, e.g., III [R3-5 = H, linear or branched (substituted) alkyl, (substituted) cyclic alkyl, (substituted) alkylene, or (substituted), and X = 0-2 atoms!
- IT 28212-48-8 28779-94-4 40081-32-1
 60495-46-7, Poly[nitrilo(diethoxyphosphoranylidyne)]

98973-15-0 321734-64-9 (electrolyte solns. containing phosphazanes and heterocyclic radical polymerization inhibitors for secondary lithium batteries

- RN 28212-48-8 HCAPLUS
- CN Poly[nitrilo(diphenoxyphosphoranylidyne)] (CA INDEX NAME)

- RN 28779-94-4 HCAPLUS
- CN Poly[nitrilo(dipropoxyphosphoranylidyne)] (9CI) (CA INDEX NAME)

- RN 40081-32-1 HCAPLUS
- CN Poly[nitrilo[bis(2,2,3,3,3-pentafluoropropoxy)phosphoranylidyne]] (9CI) (CA INDEX NAME)

- RN 60495-46-7 HCAPLUS
- CN Poly[nitrilo(diethoxyphosphoranylidyne)] (9CI) (CA INDEX NAME)

- RN 98973-15-0 HCAPLUS
- CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

- RN 321734-64-9 HCAPLUS

- IC ICM H01M010-40
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy
- Technology)
- ST secondary lithium battery electrolyte phosphazene polymn inhibitor; heterocyclic nitrogen sulfur compd lithium battery electrolyte
- IT Battery electrolytes
- (electrolyte solns. containing phosphazanes and heterocyclic radical polymerization inhibitors for secondary lithium batteries)

```
108-32-7. Propylene carbonate
                                   616-38-6. Dimethyl carbonate
TT
       (electrolyte solns, containing phosphazanes and heterocyclic
       radical polymerization inhibitors for secondary lithium batteries
    92-84-2, 10H-Phenothiazine 429-16-3 429-18-5 992-79-0
```

1207-72-3 1209-66-1 1256-55-9 5116-77-8 28212-48-8 28779-94-4 36409-59-3 40081-32-1 58378-20-4 60495-46-7, Poly[nitrilo(diethoxyphosphoranylidyne)] 98973-15-9 320618-62-0 320618-63-1 321734-64-9 321734-65-0

> (electrolyte solns, containing phosphazanes and heterocyclic radical polymerization inhibitors for secondary lithium batteries

THERE ARE 3 CAPLUS RECORDS THAT CITE THIS OS.CITING REF COUNT: 3 RECORD (3 CITINGS)

L45 ANSWER 24 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2001:12793 HCAPLUS Full-text

DOCUMENT NUMBER: 134:74037

TITLE: Improved lithium ion polymer electrolytes and methods of manufacturing an electrochemical

cell

INVENTOR(S): Munshi, M. Zafar A.

PATENT ASSIGNEE (S): Lithium Power Technologies, Inc., USA SOURCE: PCT Int. Appl., 43 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PA:	CENT I	NO.			KINI)	DATE		A	PP	LICAT.	ION I	NO.			DATE
							-										
	WO	2001	0015	07		A1 20010104			M	0	2000-1	JS16:	294			20000626	
											<						
		W:	AU,	BR,	CA,	CN,	ID,	IL,	IN,	JP,	KR	, MX,	SG,	VN			
		RW:				CY,	DE,	DK,	ES,	FI,	FR	, GB,	GR,	ΙE,	ΙT,	LU	, MC,
			NL,	PT,	SE												
	US	6413	676			B1		2002	0702	U	S	1999-	3409	44			19990628
												<					
	JΡ	2003	5038	22		T		2003	0128	J	P	2001-	5066	31			20000626
												<-					
	US	2003	0091	904		A1		2003	0515	U	S	2002-	1874	83			20020702
												<					
	US	6828	065			B2		2004	1207								
	US	2004	0151	985		A1		2004	0805	U	S	2002-	1883	39			20020702
												<					
PRIOR	IT	APP	LN.	INFO	. :					U	S	1999-	3409	44		A	19990628
												<					
										W	0	2000-1	JS16:	294	1	W	20000626
												<					

ED Entered STN: 05 Jan 2001

AB A dimensionally stable, highly resilient, hybrid copolymer solid-solution electrolyte-retention film for use in a lithium ion battery in one preferred embodiment has a predominantly amorphous structure and mech. strength despite contact with liquid solvent electrolyte. The film is a thinned (stretched), cast film of a homogeneous blend of two or more polymers, one of which is selected for its pronounced solvent retention properties. A very high surface area inorg, filler dispersed in the blend during formation thereof serves to increase the porosity of the film and thereby enhance electrolyte retention.

The film is soaked in a solution of liquid polymer with liquid organic solvent electrolyte and lithium salt, for absorption thereof. Use of a crosslinked liquid polymer enhances trapping of mols. of the electrolyte into pores of the film. The electrolyte film is sandwiched between flexible active anode and cathode layers to form the lithium ion battery. Novel methods are provided for forming the electrodes, the polymer substrate, and other elements of the battery.

98973-15-0

(improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell)

RN 98973-15-0 HCAPLUS

Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidynel] (CA CN INDEX NAME)

ICM H01M006-18

52-2 (Electrochemics), Radiational, and Thermal Energy CC

Technology)

Section cross-reference(s): 38

battery lithium ion polymer electrolyte

Conducting polymers

(Li-doped; improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell)

Polyacetylenes, uses

Polyanilines

(Li-doped; improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell)

Battery electrolytes Electron beams

Polymer electrolytes

UV radiation

(improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell)

Acrylic polymers, uses

Fluoropolymers, uses

Polycarbonates, uses

Polyesters, uses

Polyoxyalkylenes, uses

Polysiloxanes, uses

Polythiophenylenes

(improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell)

Secondary batteries

(lithium; improved lithium ion polymer electrolytes and

methods of manufacturing electrochem. cell)

Polyoxyalkylenes, uses

(oxymethylene-linked; improved lithium ion polymer

electrolytes and methods of manufacturing electrochem. cell)

Urethanes

(trifunctional, crosslinking agent; improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell)

10/617,811 25067-58-7, Polvacetylene 25233-30-1, Polyaniline 30604-81-0, Polypyrrole (Li-doped; improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell) 7631-86-9, Fumed silica, uses (colloidal, filler; improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell) 7429-90-5, Aluminum, uses 7440-02-0, Nickel, uses 7440-50-8, Copper, uses 7440-66-6, Zinc, uses 12597-68-1, Stainless steel, uses (current collector; improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell) 1344-28-1, Alumina, uses (filler; improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell) 1332-29-2, Tin oxide 7440-44-0D, Carbon, intercalation compds., uses 9002-84-0, Ptfe 9003-07-0, Polypropylene 9003-11-6, Ethylene oxide-propylene oxide copolymer 9011-14-7, Pmma 11126-15-1, Lithium vanadium oxide 12057-17-9, Lithium manganese oxide LiMn204 12423-04-0, Lithium vanadium oxide LiV308 24937-79-9, Pvdf 24968-11-4, Polyethylene naphthalate 25014-41-9, Polyacrylonitrile 25038-59-9, Polyethylene terephthalate, uses 25067-61-2, Polymethacrylonitrile 25230-87-9 25322-68-3, Peo 25322-68-3D. Peo, oxymethylene-linked 30871-57-9, Propylene-vinylidene fluoride copolymer 39300-70-4, Lithium nickel oxide 39457-42-6, Lithium manganese oxide 52627-24-4, Cobalt lithium oxide 61673-65-2, Lithium niobium selenide 74245-06-0, Lithium vanadium sulfide 98973-15-0 98973-15-0, Meep 131344-56-4, Cobalt lithium nickel oxide 162684-16-4, Lithium manganese nickel oxide 214536-41-1, Cobalt lithium manganese oxide (improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell) 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 616-38-6, Dimethyl carbonate 7791-03-9, Lithium perchlorate 14024-11-4, Lithium tetrachloroaluminate 14283-07-9, Lithium tetrafluoroborate 21324-40-3, Lithium hexafluorophosphate 29935-35-1, Lithium hexafluoroarsenate 33454-82-9, Lithium triflate 90076-65-6, Lithium bis(trifluoromethanesulfonyl)imide 132404-42-3 (improved lithium ion polymer electrolytes and methods of manufacturing electrochem. cell) OS.CITING REF COUNT: THERE ARE 8 CAPLUS RECORDS THAT CITE THIS 8 RECORD (8 CITINGS)

3 THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L45 ANSWER 25 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 2000:881475 HCAPLUS Full-text

DOCUMENT NUMBER: 134:44550

Methods of preparing electrochemical cells

THERE ARE 3 CITED REFERENCES AVAILABLE FOR

Carlson, Steven A. INVENTOR(S): PATENT ASSIGNEE(S): Moltech Corporation, USA SOURCE: PCT Int. Appl., 83 pp.

CODEN: PIXXD2 DOCUMENT TYPE: Patent

LANGUAGE: English FAMILY ACC. NUM. COUNT: 2

PATENT INFORMATION:

REFERENCE COUNT:

			40.			KIN	APPLICATION NO.								DATE			
									WO 2000-US15971									
WC								2001										
	W	:	CR, HR, LS, RO,	CU, HU, LT,	CZ, ID, LU, SD,	DE, IL, LV, SE,	DK, IN, MA, SG,	DM, IS, MD,	DZ, JP, MG,	EE, KE, MK,	ES KG MN	, F , K	I, P, W,	GB, KR, MX,	GD, KZ, NO,	GE, LC, NZ,	GH LK PL	, CN, , GM, , LR, , PT, , UG,
	R	w:	GH,	GM,	KE,	LS,	MW,											, CH,
E	12	14°		BJ,	CF,	CG,	CI,	CM,	GA,	GN,	GW	, M 200	L,	MR, 9427	NE,	SN,	TD	, TG 20000609
	R	:										, I		LI,	LU,	NL,	SE	, MC,
US	64	88.	PT, 721					FI, 2002						5904	58			20000609
US	64	97	780			В1		2002	1224		US	200	0-!	5904	57			20000609
US	3 20	03	0118	910		A 1		2003	0626		US				74			20021220
	71 20			335		B2 A1		2007 2004			US			7676	31			20040129
US	20	07	0111	070		Al		2007	0517		US	200		5506	73			20070108
US	20	07	0110	990		Al		2007	0517		US	200	7-		74			20070108
US	20	07	0108	120		A1		2007	0517		US	200	7-	6506	75			20070108
PRIORIT	Y A	PP:	LN.	INFO	.:						US		9-:	 1390:			P	19990609
											US			5904	57		A3	20000609
											WO	200		JS15	971		W	20000609
													2-3	3250	74		A1	20021220

ED Entered STN: 15 Dec 2000

AB Provided are methods of preparing a cathode/separator assembly for use in electrochem. cells in which a microporous separator layer is coated on a temporary carrier substrate and a cathode active layer is then coated or laminated on the separator layer prior to removing the temporary carrier substrate from the separator layer. The microporous separator layer may comprise one or more microporous xerogel layers. Optionally, the cathode/separator assembly may comprise one or more protective coating layers which are in contact with at least one of the microporous xerogel layers, and one of the protective coating layers may be coated on the temporary carrier substrate prior to coating the separator layer. Also, provided are methods of preparing electrochem. cells utilizing cathode/separator assemblies prepared by such methods, and cathode/separator assemblies and electrochem. cells prepared by such methods.

IT 211431-21-9, Esacure KTO 46

(photosensitizer; methods of preparing electrochem. cells)

RN 211431-21-9 HCAPLUS
CN 1-Propanone, 2-hydroxy-2-methyl-1-[4-(1-methylethenyl)phenyl]-,

homopolymer, mixt. with diphenyl(2,4,6-trimethylbenzoyl)phosphine

oxide, (4-methylphenyl)phenylmethanone and phenyl(2,4,6-trimethylphenyl)methanone (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

CM 1

CRN 75980-60-8

CMF C22 H21 O2 P

$$\underset{Me}{\underbrace{\text{Me}}} \overset{\text{Me}}{\underbrace{\text{Me}}} \overset{\text{O}}{\underset{\text{Ph}}{\text{Ph}}}$$

CM :

CRN 954-16-5

CMF C16 H16 O

CM 3

CRN 134-84-9 CMF C14 H12 O

CM 4

CRN 115055-18-0

CMF (C13 H16 O2)x

CCI PMS

CM 5

CRN 101649-40-5 CMF C13 H16 O2

ICM H01M002-16

ICS H01M004-04; H01M004-36

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 38

ST battery cathode separator assembly fabrication

Secondary batteries

(lithium; methods of preparing electrochem. cells)

Battery cathodes

Conducting polymers Electric insulators

Paper

Primary battery separators

Secondary battery separators

(methods of preparing electrochem. cells)

211431-21-9, Esacure KTO 46

(photosensitizer; methods of preparing electrochem. cells)

OS.CITING REF COUNT: 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS

RECORD (3 CITINGS) REFERENCE COUNT:

7 THERE ARE 7 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L45 ANSWER 26 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN 2000:49109 HCAPLUS Full-text ACCESSION NUMBER:

DOCUMENT NUMBER: 132:110582

TITLE: Nonaqueous secondary batteries

INVENTOR(S): Tomiyama, Hideki

PATENT ASSIGNEE(S): Fuji Photo Film Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 21 pp. CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE JP 2000021449 A 20000121 JP 1998-186328 19980701 <--JP 4003298 B2 20071107 JP 1998-186328 PRIORITY APPLN. INFO.: 19980701 <--

- ED Entered STN: 21 Jan 2000
- AB The batteries comprise a Li-containing transition metal oxide cathode, a Liintercalating Si-containing anode, and a electrolyte gel containing (a) organic polymer, (b) non-protonic solvent, and (c) ammonium, alkali metal, or alkaline earth metal salt. The batteries have excellent charge-discharge cycle characteristics.
- IT 98973-15-0 255897-46-2

(lithium secondary batteries with polymer gel electrolytes)

- RN 98973-15-0 HCAPLUS
- CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

- RN 255897-46-2 HCAPLUS
- CN Poly[nitrilo[bis[bis[2-(2-

methoxyethoxy)ethoxy]methyl]phosphoranylidyne]] (9CI) (CA INDEX NAME)

- CH2-CH2-O-CH2-CH2-OMe

PAGE 1-A

O_CH2_CH2_O_CH2_CH2_OMe

MeO_CH2_CH2_O_CH2_CH2_O_CH2_CH2_OMe

PAGE 1-B

_ln

- IC ICM H01M010-40
 - ICS H01M010-40; H01M004-02; H01M004-58
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38

10/617.811

```
nonaq secondary battery gel electrolyte;
    oxyalkylene vinyl polymer gel electrolyte battery
    Gels
        (electrolyte; lithium secondary batteries with
       polymer gel electrolytes)
    Battery electrolytes
    Polymer electrolytes
    Secondary batteries
        (lithium secondary batteries with polymer gel
       electrolytes)
    Fluoropolymers, uses
    Polvoxvalkvlenes, uses
        (lithium secondary batteries with polymer gel
       electrolytes)
    Polyphosphazenes
    Polyphosphazenes
    Polysiloxanes, uses
     Polysiloxanes, uses
        (polyoxyalkylene-, graft, lithium complex; lithium secondary
       batteries with polymer gel electrolytes)
    Polyoxyalkylenes, uses
     Polyoxyalkylenes, uses
        (polyphosphazene-, graft, lithium complex; lithium secondary
       batteries with polymer gel electrolytes)
    Polvoxvalkvlenes, uses
    Polyoxyalkylenes, uses
        (polysiloxane-, graft, lithium complex; lithium secondary
       batteries with polymer gel electrolytes)
    7440-02-0, Nickel, uses
        (-coated silicon anode; lithium secondary
       batteries with polymer gel electrolytes)
    7440-21-3, Silicon, uses 7631-86-9, Silica, uses 193072-79-6
        (anode; lithium secondary batteries with
       polymer gel electrolytes)
    12190-79-3, Cobalt lithium oxide (CoLiO2)
       (cathode; lithium secondary batteries with
       polymer gel electrolytes)
     96-49-1, Ethylene carbonate
                                  108-32-7, Propylene carbonate
        (electrolyte solvent; lithium secondary batteries
       with polymer gel electrolytes)
    21324-40-3, Lithium hexafluorophosphate
        (electrolyte; lithium secondary batteries with
       polymer gel electrolytes)
    9003-11-6, Ethylene oxide-propylene oxide copolymer
                                                          9011-17-0
    24937-79-9, Poly(vinylidene fluoride) 24968-79-4,
    Acrylonitrile-methyl acrylate copolymer 25014-41-9,
    Polvacrylonitrile
                       25067-61-2, Polymethacrylonitrile
                                                            25322-68-3
    25322-69-4 29613-70-5 50867-60-2, Acrylonitrile-methyl vinyl ether
    copolymer 98973-15-0 115401-75-7
                                          255897-37-1
    255897-39-3 255897-40-6 255897-42-8
                                             255897-44-0 255897-45-1
    255897-46-2 255897-47-3 255897-48-4
        (lithium secondary batteries with polymer gel
       electrolytes)
L45 ANSWER 27 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN
                        1999:492147 HCAPLUS Full-text
ACCESSION NUMBER:
DOCUMENT NUMBER:
                        131:243318
TITLE:
                       New type of lariat ethers: synthesis and cation
                       binding ability of phosphonoalkyl-azacrown ethers
AUTHOR(S):
                       Keglevich, Gyorgy; Novak, Tibor; Bako, Peter;
```

Ujszaszy, Kalman; Ludanyi, Krisztina; Toth, Klara;

Toke, Laszlo

CORPORATE SOURCE: Department of Organic Chemical Technology,

Technical University of Budapest, Budapest, 1521,

SOURCE: Journal of Inclusion Phenomena and Macrocyclic

Chemistry (1999), 34(3), 299-309

CODEN: JIPCF5

PUBLISHER: Kluwer Academic Publishers

DOCUMENT TYPE: Journal LANGUAGE: English ED Entered STN: 10 Aug 1999

GI

AB The synthesis of azacrown ethers with phosphonoalkyl side chains of two to five carbon atoms, e.g I (R = Bt, X = (CH2)n, n = 3-5; R = Me, X = (CH2)3), potentially useful as a new type of cation binding agent, is described. Introduction of the phosphonoalkyl moiety into the parent monoaza-15-crown-5 decreases the cation extraction ability, but results in an increase in the selectivity towards the cations examined The effect of the phosphonoalkyl-azacrown ethers on the properties of membranes used in ion-selective electrodes is also reported.

IT 682-30-4P

(synthesis and cation binding ability of new type of lariat phosphonoalkyl-azacrown ethers)

RN 682-30-4 HCAPLUS

CN Phosphonic acid, P-ethenyl-, diethyl ester (CA INDEX NAME)

CC 29-7 (Organometallic and Organometalloidal Compounds)

Section cross-reference(s): 80

IT Extraction

Ion-selective electrodes Membranes, nonbiological

(synthesis and cation binding ability of new type of lariat phosphonoalkyl-azacrown ethers)

TT 682-30-4P 1186-10-3P 5324-30-1P 42757-42-6P

63075-66-1P 121934-92-7P 177342-84-6P

(synthesis and cation binding ability of new type of lariat

phosphonoalkyl-azacrown ethers)

OS.CITING REF COUNT: 7 THERE ARE 7 CAPLUS RECORDS THAT CITE THIS

RECORD (7 CITINGS)

REFERENCE COUNT: THERE ARE 17 CITED REFERENCES AVAILABLE FOR

THIS RECORD. ALL CITATIONS AVAILABLE IN THE

RE FORMAT

L45 ANSWER 28 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1999:327017 HCAPLUS Full-text

DOCUMENT NUMBER: 131:7571

TITLE: Electrochemical power-generating elements

INVENTOR(S): Yoshitake, Masahiro; Yoshida, Naoki; Kunisa, Yasuhiro; Shimodaira, Satoshi

PATENT ASSIGNEE (S): Asahi Glass Co., Ltd., Japan SOURCE: Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF DOCUMENT TYPE: Patent

LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 11135135	A	19990521	JP 1997-297514	19971029
			<	
PRIORITY APPLN. INFO.:			JP 1997-297514	19971029

ED Entered STN: 27 May 1999

ΔR The element comprises an ion-exchange membrane made of phosphonic acid groupcontaining fluorocarbon polymer and containing nonconducting pillar particles, sandwiched between anode and cathode. The structure may be solid electrolyte fuel cells, air-Zn batteries, etc. The ion-exchange membranes can be made thin without causing short circuits.

225667-51-6P 225667-53-8P

(phosphonic acid group-containing fluoropolymers containing pillar particles as ion-exchange membranes in electrochem. power generating elements) 225667-51-6 HCAPLUS

Phosphonic acid, P-[2-[1-[difluoro](1,2,2-trifluoroethenvl)oxv]methvl]-1,2,2,2-tetrafluoroethoxy]-1,1,2,2-tetrafluoroethyl]-, dimethyl ester, polymer with 1,1,2,2-tetrafluoroethene (CA INDEX NAME)

CM 1

CRN 225667-50-5 CMF C9 H6 F13 O5 P

CM 2

CRN 116-14-3

CMF C2 F4

RN 225667-53-8 HCAPLUS

CN Phosphonic acid, [2-[1-[difluoro[(trifluoroethenyl)oxy]methyl]-1,2,2,2-tetrafluoroethoxy]-1,1,2,2-tetrafluoroethyl]-, dimethyl ester, polymer with 1,1,1,2,3,3-heptafluoro-3-[(trifluoroethenyl)oxy]propane and tetrafluoroethene (90I) (CA INDEX NAME)

CM 1

CRN 225667-50-5

CMF C9 H6 F13 O5 P

CM 2

CRN 1623-05-8

CMF C5 F10 O

CM 3

CRN 116-14-3

CMF C2 F4

ICM H01M008-02

ICS C08L027-12; H01B001-12; H01M004-94; H01M008-10; H01M012-08

52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38

fluoropolymer ion exchange membrane fuel cell; phosphonate contg fluoropolymer ion exchanger battery; pillar particle fluoropolymer ion exchanger battery; electrochem power

generation fluoropolymer ion exchanger

Primary batteries

(air-zinc; phosphonic acid group-containing fluoropolymers containing pillar particles as ion-exchange membranes in electrochem. power generating elements)

225667-51-6P 225667-53-89

> (phosphonic acid group-containing fluoropolymers containing pillar particles as ion-exchange membranes in electrochem. power generating elements)

L45 ANSWER 29 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1999:187781 HCAPLUS Full-text

DOCUMENT NUMBER: 130:198752

TITLE: Study on new system of lithium ion polymer

electrolyte AUTHOR(S): Yu, Oingchun; Zhu, Oinwei; Miao, Guoxiang; Zhang,

Rongyu; Wu, Yihua; Wang, Lei Department of Applied Chemistry, Shanghai Jiao CORPORATE SOURCE:

Tong University, Shanghai, 200240, Peop. Rep.

China

SOURCE:

Dianyuan Jishu (1999), 23(1), 5-6, 45

CODEN: DIJIFT; ISSN: 1002-087X

PUBLISHER: Dianvuan Jishu Bianjibu

DOCUMENT TYPE: Journal LANGUAGE: Chinese

ED Entered STN: 23 Mar 1999

- Three systems of lithium ion polymer electrolyte, i.e. single ion conductor AR electrolyte, MEEP and PVA plus plasticizer was studied. Single ion conductor could be prepared from grafting sulfonated polyether with polyurethane. With conductivity of 10-4 S/cm at room temperature and Na+ transport number of 0.99, cyclotriphosphazene could improve the mech. strength of MEEP while its conductivity became low. Lithium ion polymer alectrolyte could be prepared by adding LiClO4 to PVA. By adding plasticizer in that system, the conductivity was increased due to low tg of polymer.
- ΙT 98973-15-0, Poly(bis-(2(2-methoxyethoxy)ethoxy)phosphazene)

(lithium ion battery polymer electrolyte)

RN 98973-15-0 HCAPLUS

CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidynel] (CA INDEX NAME)

52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38

lithium battery polymer electrolyte ST

IT Battery electrolytes Electric conductivity

Polymer electrolytes

(lithium ion battery polymer electrolyte)

Polyurethanes, uses

(polyether-, sulfonated; lithium ion battery polymer electrolyte)

7791-03-9. Lithium perchlorate 9002-89-5. Pva 98973-15-0 , Poly(bis-(2(2-methoxyethoxy)ethoxy)phosphazene) 98973-15-0

, Meep

SOURCE:

(lithium ion battery polymer electrolyte)

291-37-2, Cyclotriphosphazene

(lithium ion battery polymer electrolyte)

L45 ANSWER 30 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1998:732039 HCAPLUS Full-text

DOCUMENT NUMBER: 130:41354

TITLE: Application of electrochemical impedance

spectroscopy and surface analysis to the study of

corrosion protection of carbon steels by

phosphonates

AUTHOR(S): To, X. T.; Pebere, N.; Pelaprat, N.; Boutevin, B.; Hervaud, Y.

Equipe Metallurgie Physique, E.N.S.C.T., ESA CNRS CORPORATE SOURCE: 5071, Toulouse, F-31077, Fr.

Materials Science Forum (1998). 289-292(Pt. 2), 1193-1203 CODEN: MSFOEP: ISSN: 0255-5476

PUBLISHER: Trans Tech Publications Ltd. DOCUMENT TYPE: Journal LANGUAGE: English

ED Entered STN: 18 Nov 1998

The corrosion protection afforded by the surface treatment of ${\tt C}$ steel in solns, containing a monoacid phosphonate (Et octodecyl phosphonate (EODP)) and a mixture of phosphates (methacryloxyethyl phosphate (MOP)) bearing 1 or 2 acid groups and acting as a film-structuring compound, was studied by steadystate current-voltage curves and electrochem. impedance measurements using a rotating disk electrode. High protection was obtained with the mixture 1% MOP and 1% EODP after a 2 h treatment. Surface analyses (Raman and FTIR spectroscopy, XPS) indicate that the film was essentially the Fe(EODP)2 complex. MOP plays a significant role at the interface as it forms a thin oxide layer which improves the development and adherence of the layer formed by EODP. Electrochem. impedance measurements obtained after 30 h immersion of the treated steel in 0.1 M NaCl solution showed that the C steel surface had remained undamaged.

24599-21-1

(corrosion protection of carbon steels by phosphonates)

RN 24599-21-1 HCAPLUS

2-Propenoic acid, 2-methyl-, 2-(phosphonooxy)ethyl ester (CA INDEX CN NAME)

H203PO-CH2-CH2-O-C-Me

Section cross-reference(s): 72 IT 12725-37-0, XC35, processes 16165-53-0 24599-21-1

32435-46-4

(corrosion protection of carbon steels by phosphonates)

OS.CITING REF COUNT: 3 THERE ARE 3 CAPLUS RECORDS THAT CITE THIS

RECORD (3 CITINGS)

REFERENCE COUNT: 13 THERE ARE 13 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT.

NE LORGIN

L45 ANSWER 31 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1998:526988 HCAPLUS Full-text

ACCESSION NUMBER: 1998:52698 DOCUMENT NUMBER: 129:163924

ORIGINAL REFERENCE NO.: 129:33297a,33300a

TITLE: Alkali metal ion conducting electrolytes
INVENTOR(S): Angell, C. Austen; Liu, Changle; Xu, Kang

PATENT ASSIGNEE(S): Arizona Board of Regents, USA

SOURCE: U.S., 18 pp., Cont.-in-part of U.S. 5,506,073.

CODEN: USXXAM
DOCUMENT TYPE: Patent
LANGUAGE: English

FAMILY ACC. NUM. COUNT: 4
PATENT INFORMATION:

PA	TENT	NO.			KIND			DATE			APPLICATION NO.						DA:	TE
US	5786	110			A	_	19980728			US 1995-471840				1			950606	
US	5506	06073			A		19960409			US 1992-901669					19	920622		
AT	1747	174727			T		19990115			AT 1993-304803		03			19	930618		
CA	2098	2098870			A1		19931223			CA 1993-2098870				1993			930621	
JP	0611	06119807			A		1994	0428	JP 1993-188613				19930622			930622		
WO	9639	9639725			A1		1996	WO 1996-US8770			70	1996060		960605				
			BE,				, JP, , ES,											NL,
AU	9660		25		A		1996	1224		AU	19	96-1		1			19	960605
US	5962	169			A		1999	1005		US	19	98-		64			19	980724
PRIORIT	Y APP	LN.	INFO	. :						US		92-		69		A2	19	920622
										US	19	95-4		40		A	19	950606
									,	WO	19	96-0		70		W	19	960605

OTHER SOURCE(S): MARPAT 129:163924

ED Entered STN: 21 Aug 1998

GI

I

AB High-conductivity alkali-metal-ion containing electrolytes comprise viscous liquid or rubbery solid alkali metal salts, whose conductivity is mainly the motion of cation ions which remain freely mobile at low temps. The electrolytes have conductivity 210-4 S/cm at \$100° and contain salts selected from MX [M = alkali metal ion; X = Fr, Cn-, NCO-, NCSe-, NO2-, Cl03-, BF04-, BF03-, I04-, I03-, CSC212N-, [OCC12]N-, [OFC2]N-, POC12]N-, COCC12]N-, COCC12]N-, GNC2]N-, MAIZ4, MAIZX7, MGAX4, MPX6, PASX6, MSDX6, MFeX4, and MMOX6 and are substantially non-crystalline and have glass transition temperature .ltorsim.20°. The electrolytes are suitable for solid state batteries.

IT 98973-15-0, Meep
 (compns. of alkali metal ion conducting electrolytes for
 solid electrolyte batteries)

RN 98973-15-0 HCAPLUS

CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

IC ICM H01M010-36

INCL 429199000

CC 52-2 (Electrochemical, Radiational, and Thermal Energy

Technology) ST alkali meta

alkali metal ion conducting battery electrolyte

IT Battery electrolytes

(compns. of alkali metal ion conducting electrolytes for solid electrolyte batteries)

IT Polyoxyalkylenes, uses

(compns. of alkali metal ion conducting electrolytes for solid electrolyte batteries)

Polyoxvalkylenes, uses

(disulfonic acid, lithium salt; compns. of alkali metal ion conducting electrolytes for solid electrolyte

batteries)
T 143-24-8D, Te

T 143-24-8D, Tetraglyme, magnesium perchlorate chelate 540-72-7, Sodium thiocyanate 546-89-4, Lithium acetate 556-65-0, Lithium thiocyanate 7446-70-0, Aluminum chloride, uses 7550-35-8, Lithium bromide 7790-69-4, Lithium nitrate 7791-03-9, Lithium perchlorate

10/617,811 10034-81-8, Magnesium perchlorate 10034-81-8D, Magnesium perchlorate, tetraglyme chelated 10377-51-2, Lithium iodide 13453-71-9, Lithium chlorate 14283-07-9, Lithium fluoroborate 25322-68-3, Peo 25322-68-3D, disulfonic acid, lithium salt 25322-69-4 33454-82-9, Lithium trifluoromethanesulfonate 90076-65-6 98973-15-0, Meep 182013-69-0 186350-23-2 (compns. of alkali metal ion conducting electrolytes for solid electrolyte batteries) OS.CITING REF COUNT: THERE ARE 5 CAPLUS RECORDS THAT CITE THIS RECORD (7 CITINGS) REFERENCE COUNT: 21 THERE ARE 21 CITED REFERENCES AVAILABLE FOR THIS RECORD, ALL CITATIONS AVAILABLE IN THE RE FORMAT L45 ANSWER 32 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1998:478263 HCAPLUS Full-text DOCUMENT NUMBER: 129:138434 ORIGINAL REFERENCE NO.: 129:28253a,28256a TITLE: Ionically conducting glasses with subambient glass transition temperatures Dillon, R. E.; Shriver, D. F. AUTHOR(S): CORPORATE SOURCE: Department of Chemistry and Materials Research Center, Northwestern University, Evanston, IL, 60208-3113, USA Materials Research Society Symposium Proceedings (SOURCE: 1998), 496 (Materials for Electrochemical Energy Storage and Conversion II -- Batteries, Capacitors and Fuel Cells), 505-510 CODEN: MRSPDH; ISSN: 0272-9172 PUBLISHER: Materials Research Society DOCUMENT TYPE: Journal LANGUAGE: English ED Entered STN: 03 Aug 1998 Cryptands and crown ethers along with the lithium salt, LiCF3SO2N(CH2)3OCH3 (LiMPSA) were employed to produce a new type of amorphous electrolyte. The key to producing an amorphous phase was the mismatch between the cavity size of the macrocycle and the diameter of the cation. The addition of poly(bis-(2(2-methoxyethoxy)ethoxy)phosphazene) (MEEP) to the amorphous complex, LiMPSA/2.2.2 Cryptand, imparts improved electrochem. and viscoelastic properties. Conversely, when poly(sodium-4-styrenesulfonate) (PS4SS) is added to the amorphous complex, LiMPSA/2.2.2 Cryptand, the product crystallizes. The ionic conductivity of the MEEP rubbery electrolyte is a full order of

magnitude higher when compared to the analogous PS4SS doped electrolyte (3.8+10-5 S cm-1 (MEEP), 1.7+10-6 S cm-1 (PS4SS) both at 305°K). IT 98973-15-0, Poly(bis-(2(2-methoxyethoxy)ethoxy)phosphazene)

(ionically conducting glasses with subambient glass transition

temps.)

98973-15-0 HCAPLUS RN

CN Poly[nitrilo[bis[2-(2-methoxyethoxy)ethoxy]phosphoranylidyne]] (CA INDEX NAME)

10/617.811

```
52-2 (Electrochemical, Radiational, and Thermal Energy
    Technology)
    Section cross-reference(s): 58, 72
    cryptand crown ether lithium salt electrolyte; ionically
    conducting glass lithium battery electrolyte
    Battery electrolytes
    Electric conductivity
    Electric conductors, glass
        (ionically conducting glasses with subambient glass transition
        temps.)
    294-93-9, 12-Crown-4 17455-13-9,
    1,4,7,10,13,16-Hexaoxacyclooctadecane 23978-09-8 31250-06-3
    31364-42-8 33100-27-5, 15-Crown-5
        (ionically conducting glass electrolytes with subambient
       glass transition temps.)
    25704-18-1, Poly(sodium-4-styrenesulfonate) 98973-15-0,
    Poly(bis-(2(2-methoxyethoxy)ethoxy)phosphazene) 159063-63-5
        (ionically conducting glasses with subambient glass transition
       temps.)
OS.CITING REF COUNT:
                        7
                              THERE ARE 7 CAPLUS RECORDS THAT CITE THIS
                              RECORD (7 CITINGS)
REFERENCE COUNT:
                        21
                              THERE ARE 21 CITED REFERENCES AVAILABLE FOR
                              THIS RECORD. ALL CITATIONS AVAILABLE IN THE
                              RE FORMAT
L45 ANSWER 33 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN
ACCESSION NUMBER:
                   1997:693822 HCAPLUS Full-text
DOCUMENT NUMBER:
                        127:320953
ORIGINAL REFERENCE NO.: 127:62871a,62874a
                        Electrodes for secondary nonaqueous
TITLE:
                        electrolyte batteries and their
                        manufacture
                        Miyanowaki, Shin; Sato, Koji; Miyazaki, Yuchi
INVENTOR(S):
PATENT ASSIGNEE(S):
                       Dai Nippon Printing Co., Ltd., Japan
SOURCE:
                        Jpn. Kokai Tokkyo Koho, 7 pp.
                        CODEN: JKXXAF
DOCUMENT TYPE:
                        Patent
LANGUAGE:
                        Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
```

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09274909	A	19971021	JP 1996-104809	19960403
			<	
IORITY APPLN. INFO.:			JP 1996-104809	19960403

ED Entered STN: 03 Nov 1997

PRT

AB The electrodes have a layer of an active mass-binder mixture coated on a collector and are prepared by using a nozzle spraying means to apply the mixture only to the required areas of the collector. The areas of the collector for connection with elec. leads are not coated. This method decreases material loss in the manufacture

IT 24599-21-1, Kayarad pm 1

(binders in manufacture of electrodes by nozzle spraying for secondary lithium batteries)

RN 24599-21-1 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 2-(phosphonooxy)ethyl ester (CA INDEX NAME)

TCM H01M004-04

ICS H01M004-02

52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

battery electrode manuf nozzle spraying

Fluoropolymers, uses

(binders in manufacture of electrodes by nozzle spraying for secondary lithium batteries)

Battery electrodes

Spraying

(manufacture of electrodes by nozzle spraying of active mass-binder mixts. for secondary lithium batteries)

Nitrile rubber, uses

(manufacture of electrodes by nozzle spraying of active mass-binder mixts. for secondary lithium batteries)

24937-79-9, Poly(vinylidene 24599-21-1, Kayarad pm 1 77641-99-7, Kayarad dpha

(binders in manufacture of electrodes by nozzle spraying for secondary lithium batteries)

7782-42-5, Graphite, uses

(manufacture of graphite anodes by nozzle spraying for secondary lithium batteries)

12190-79-3, Cobalt lithium oxide (CoLiO2)

(manufacture of lithium cobaltate cathodes by nozzle spraying for batteries)

9003-18-3

(nitrile rubber, manufacture of electrodes by nozzle spraying of active mass-binder mixts. for secondary lithium batteries)

L45 ANSWER 34 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1997:413762 HCAPLUS Full-text

DOCUMENT NUMBER:

127:53398

ORIGINAL REFERENCE NO.: 127:10129a,10132a

TITLE: Manufacture of electrodes for secondary

nonaqueous batteries

INVENTOR(S): Miyazaki, Yuchi; Sato, Koji; Shindo, Tadafumi PATENT ASSIGNEE (S):

Dai Nippon Printing Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 5 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PR

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09106809	A	19970422	JP 1995-286315	19951009
			<	
RIORITY APPLN. INFO.:			JP 1995-286315	19951009
			<	

- AB The electrodes are prepared by mixing an active mass and a binder to form a coating liquid, continuously applying the liquid on a collector, irradiating the coated layer under a mask with an electron beam, and removing the unirradiated part by using a solvent. The binder is preferably a compound having electron beam activating function groups.
 - IT 24599-21-1, Kayamer PM 1

(masked electron beam curing and removing of binders in manufacture of electrodes for secondary nonaq. batteries)

N 24599-21-1 HCAPLUS

CN 2-Propenoic acid, 2-methyl-, 2-(phosphonooxy)ethyl ester (CA INDEX NAME)

IC ICM H01M004-04

ICS H01M004-62; H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy

Technology)

ST battery electrode manuf electron beam irradn; electrode binder masked electron beam irradn

T Battery electrodes

Electron beams

(masked electron beam curing and removing of binders in manufacture of electrodes for secondary nonaq. batteries)

IT Fluoropolymers, uses

Nitrile rubber, uses

(masked electron beam curing and removing of binders in manufacture of electrodes for secondary nonaq. batteries)

T 7782-42-5, Graphite, uses 12190-79-3, Cobalt lithium oxide (CoLio2)

(masked electron beam curing and removing of binders in manufacture of

electrodes for secondary nonag. batteries)
T 24599-21-1, Kayamer PM 1 24937-79-9, Neoflon vdf-vp 850

77641-99-7, Kayarad dpha 83045-03-8, Kayarad r 167

(masked electron beam curing and removing of binders in manufacture of electrodes for secondary nonac, batteries)

IT 9003-18-3

(nitrile rubber, masked electron beam curing and removing of binders in manufacture of electrodes for secondary nonaq. batteries)

L45 ANSWER 35 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1997:380434 HCAPLUS Full-text

DOCUMENT NUMBER: 127:21003

ORIGINAL REFERENCE NO.: 127:4121a,4124a

TITLE: Fire-resistant cases for lithium battery containing organic electrolytes

INVENTOR(S): Nabeshima, Katsuki; Toyochi, Kaoru
PATENT ASSIGNEE(S): Asahi Chemical Industry Co., Ltd., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF
DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

10/617.811

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 09082293	A	19970328	JP 1995-235234	19950913
			<	
JP 3408676	B2	20030519		
PRIORITY APPLN. INFO.:			JP 1995-235234	19950913
			<	
D Enternal COM. 10 To	n 1007			

ED Entered STN: 18 Jun 1997

źΙ

- * STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY AVAILABLE VIA OFFLINE PRINT *
- AB Title cases contain polyphenylene ethers and phosphoric acid esters I and/or II (Q1-4 = C1-6 alkyl, H; R1-4 = Me, H; Q11-44 = H, C1-6 alkyl; n ≥1, n1, n2 = 0-2, m1-4 = 1-3). Title cases have good resistance for organic electrolytes. IT 61261-37-8 131640-20-5 172804-46-5
- (fireproofing agents; fire-resistant battery cases containing polyphenylene ethers and phosphates for organic electrolytes
- RN 61261-37-8 HCAPLUS
- CN Poly[oxy(phenoxyphosphinylidene)oxy-1,4-phenylene(1-methylethylidene)-1,4-phenylene] (CA INDEX NAME)

- RN 131640-20-5 HCAPLUS
- CN Poly[oxy[(methylphenoxy)phosphinylidene]oxy-1,4-phenylene(1methylethylidene)-1,4-phenylene], α-(methylphenyl)-ω-[[bis(methylphenoxy)phosphinyl]oxy]-(961) (CA INDEX NAME)
- *** STRUCTURE DIAGRAM IS NOT AVAILABLE ***
- RN 172804-46-5 HCAPLUS
- CN Poly[oxy[(2,6-dimethylphenoxy)phosphinylidene]oxy-1,4-phenylene(1-methylethylidene]-1,4-phenylene], α-(2,6-dimethylphenyl)-ω-[[bis(2,6-dimethylphenoxy)phosphinyl]oxy]-(9CI) (CA INDEX NAME)

IC ICM H01M002-10

ICS C08K005-521; C08L071-12; H01M010-40

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)

Section cross-reference(s): 37

If flame retardance battery case polyphenylene ether; polystyrene polyphenylene ether blend battery case; phosphate polyphenylene oxide electrolyte resistance case

IT Containers

(boxes; fire-resistant battery cases containing polyphenylene ethers and phosphates for organic electrolytes)

IT Battery electrolytes

Fireproofing agents

(fire-resistant battery cases containing polyphenylene ethers and phosphates for organic electrolytes)

IT Polyoxyphenylenes

(fire-resistant battery cases containing polyphenylene ethers and phosphates for organic electrolytes)

Secondary batteries

(lithium; fire-resistant battery cases containing polyphenylene ethers and phosphates for organic electrolytes

IT 24938-67-8, Poly(2,6-dimethyl-1,4-phenylene ether)
 (Fire-resistant battery cases containing polyphenylene ethers
 and phosphates)

IIT 9003-53-6, Polystyrene 685 25134-01-4, 2,6-Dimethyl-1,4-phenylene ether homopolymer

(fire-resistant battery cases containing polyphenylene ethers and phosphates for organic electrolytes)

T 61261-37-8 131640-20-5 172804-46-5

(fireproofing agents; fire-resistant battery cases containing polyphenylene ethers and phosphates for organic electrolytes

IT 96-49-1, Ethylene carbonate 105-58-8, Diethyl carbonate 108-32-7, Propylene carbonate 623-53-0, Methyl ethyl carbonate 21324-40-3, Lithium hexafluozophosphate

(organic electrolytes; fire-resistant battery cases containing polyphenylene ethers and phosphates for organic electrolytes)

L45 ANSWER 36 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1996:737868 HCAPLUS Full-text

DOCUMENT NUMBER: 126:34368

ORIGINAL REFERENCE NO.: 126:6889a,6892a

TITLE: Poly(phenylene ether) cases for sealed secondary

batteries
INVENTOR(S): Saito, Kunio; Toyochi, Kaoru

PATENT ASSIGNEE(S): Asahi Chemical Ind, Japan SOURCE: Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF
DOCUMENT TYPE: Patent

DOCUMENT TYPE: Patent
LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT:

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
JP 08250080	A	19960927	JP 1995-54270	19950314
			<	
ORITY APPLN. INFO.:			JP 1995-54270	19950314
			<	

OTHER SOURCE(S): MARPAT 126:34368

ED Entered STN: 14 Dec 1996

GI

PRI

$$(Q_1)_{m1} \longrightarrow (Q_1)_{m2} \longrightarrow (R_1)_{n1} \longrightarrow (R_2)_{n2} \longrightarrow (Q_4)_{m4} \longrightarrow (Q_$$

- AB The cases are composed of a mixture comprising 100 parts polymers and 3-30 parts fireproofing agents I (Q1-4 = C1-6 alkyl or H; R1-4 = Me or H; n 21; ni and n2 = 0, 1, or 2; mi-4 = 1, 2, or 3) or II (Q1'-4' = H or C1-6 alkyl). The heat-resistant cases have high rigidity and resistance to permeation of hot water or gases.
- IT 61261-37-8 131640-20-5

(poly(phenylene ether) cases containing phosphate ester fireproofing agents for sealed batteries)

- RN 61261-37-8 HCAPLUS
- CN Poly[oxy(phenoxyphosphinylidene)oxy-1,4-phenylene(1-methylethylidene)1,4-phenylene] (CA INDEX NAME)

RN 131640-20-5 HCAPLUS

CN Poly[oxy[(methylphenoxy)phosphinylidene]oxy-1,4-phenylene(1-methylethylidene)-1,4-phenylene],

 α -(methylphenyl)- ω -[[bis(methylphenoxy)phosphinyl]oxy]-

(9CI) (CA INDEX NAME)

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

C ICM H01M002-02

ICS C08K005-521; C08L071-12; C08L085-02

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38

ST polyphenylene ether sealed battery case; polyoxyphenylene fireproofing agent blend battery case; phosphate ester fireproofing agent battery case;

Fireproofing agents

(poly(phenylene ether) cases containing phosphate ester fireproofing agents for sealed batteries)

IT Polyoxyphenylenes

(poly(phenylene ether) cases containing phosphate ester fireproofing agents for sealed batteries)

IT Secondary batteries

(sealed; poly(phenylene ether) cases containing phosphate ester fireproofing agents for sealed batteries)

IT 7664-38-2D, Phosphoric acid, esters with bisphenols and phenols, uses 61261-37-8 131640-20-5

(poly(phenylene ether) cases containing phosphate ester fireproofing agents for sealed batteries)

IT 9003-53-6, Polystyrene 685 24938-67-8,

Poly[oxy(2,6-dimethyl-1,4-phenylene)] 25134-01-4, 2,6-Dimethylphenol homopolymer

(poly(phenylene ether) cases containing phosphate ester fireproofing agents for sealed batteries)

L45 ANSWER 37 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1995:759059 HCAPLUS Full-text

DOCUMENT NUMBER: 123:291796

ORIGINAL REFERENCE NO.: 123:52153a,52156a

TITLE: Ion-conductive polymer and electrolyte additives for electrochemical devices

INVENTOR(S): Fauteux, Denis G.; Massucco, Arthur A.; Powell,

John R.; Van, Buren Martin F.

PATENT ASSIGNEE(S): Little, Arthur D., Inc., USA
SOURCE: U.S., 12 pp. Cont.-in-part of U.S. Se

SOURCE: U.S., 12 pp. Cont.-in-part of U.S. Ser. No. 996,101.

CODEN: USXXAM

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 2 PATENT INFORMATION:

PATENT NO.			APPLICATION NO.	
US 5433876			US 1993-76005	
US 5453335	A	19950926	•	19921223
CA 2152381	A1	19940707	CA 1993-2152381	19931221
WO 9414828	A2	19940707	WO 1993-US12458 <	19931221
WO 9414828 W: CA, JP, KR,		19940818		
			GB, GR, IE, IT, LU, EP 1994-906450	
EP 675894 R: DE, DK, FR,			ζ	
JP 08505650			JP 1993-515399 <	19931221
JP 3236857	B2	20011210	JP 1994-515399 <	19931221
PRIORITY APPLN. INFO.:			US 1992-996101 <	A2 19921223
			US 1993-76005 <	A 19930609
			WO 1993-US12458 <	W 19931221

ED Entered STN: 26 Aug 1995

Compds. are provided for use in an electrolyte comprising repeating unit AB selected from the group consisting of cyclic and heterocyclic species having p C atoms and q heteroatoms, X = 0, S and N, and where p is 4, 5 or 6 and q is 0, 1 or 2. The repeating unit is further substituted by 4-6 pendant groups (CHR) mO(CHRCHR O)nY, where the majority of pendant groups comprises ≥2 O; m is 0 or 1; n is 0-25; R is the same or different and selected from H. Cl-18 alkyl, allylic and alkenyl radicals, and Q; and Q is the same or different and a functional group selected from the group consisting of polymerizable functionalities, plasticizing agents and ionic species. Electrolytes, plasticizers and macro-ions prepared from these compds. are described.

161484-16-8P 161484-17-9P 161875-50-9P 169480-11-9P

> (ion-conductive polymer and electrolyte additives for electrochem. devices)

RN 161484-16-8 HCAPLUS

CN Poly(oxy-1,2-ethanediyl), α -hydro- ω -

[(diethoxyphosphinyl)oxy]-, ether with methyl D-glucopyranoside (4:1)

(9CI) (CA INDEX NAME)

PAGE 1-A

$$\begin{array}{c} \text{MeO} \\ \text{EtO} \\ \text{EtO} \\ \text{EtO} \\ \text{EtO} \\ \text{O} \\ \text{CH2-CH2-O} \\ \text{In} \\ \text{CH2-CH2-O} \\ \text{O} \\ \text{CH2-CH2-O} \\ \text{O} \\ \text{O} \\ \text{CH2-CH2-O} \\ \text{O} \\ \text$$

PAGE 1-B

RN 161484-17-9 HCAPLUS

CN Poly(oxy-1,2-ethanediyl), α-hydro-ω-

[(diphenylphosphinyl)oxy]-, ether with methyl D-glucopyranoside (4:1) (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 1-B

$$-CH_2$$
 0 Ph

RN 161875-50-9 HCAPLUS

CN Poly(oxy-1,2-ethanediyl), α-hydro-φ-hydroxy-, ether with methyl D-glucopyranoside (4:1), tris(diphenyl phosphate) 2-propenoate (9CI) (CA INDEX NAME)

```
CM 1
CRN 53026-67-8
CMF (C2 H4 O)n (C2 H4 O)n (C2 H4 O)n (C2 H4 O)n C7 H14 O6
CCI PMS
CM
CRN 838-85-7
CMF C12 H11 O4 P
CM
     3
CRN 79-10-7
CMF C3 H4 O2
 - CH----- CH 2
169480-11-9 HCAPLUS
Poly(oxy-1,2-ethanediyl), \alpha-hydro-\omega-hydroxy-, ether with
methyl D-glucopyranoside (4:1), tris(diphenyl phosphate) 2-propenoate,
homopolymer (9CI) (CA INDEX NAME)
CM 1
CRN 161875-50-9
CMF (C2 H4 O)n (C2 H4 O)n (C2 H4 O)n (C2 H4 O)n C46 H43 O16 P3
```

RN CN

CCI IDS, PMS

CM 2

CRN 53026-67-8

CMF (C2 H4 O)n (C2 H4 O)n (C2 H4 O)n (C2 H4 O)n C7 H14 O6

CCI PMS

CM 3

CRN 838-85-7

CMF C12 H11 O4 P

CM

CRN 79-10-7

CMF C3 H4 O2

10_Û_0H_0H7

IC ICM H01M006-18

ICS C08F018-00; C08G002-00

INCL 252062200

CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology) Section cross-reference(s): 38, 76

ST ion conductive polymer electrochem device; electrolyte

additive electrochem device

IT Battery electrolytes

(lithium complexes of derivs. of ethoxylated Me glucoside)

7439-93-2DP, Lithium, Me glucoside ethoxylate derivs. complexes 161484-14-6DP, lithium complexes 161484-15-7DP, lithium complexes

161484-18-ODP, lithium complexes 169528-23-8DP, trimethylsilyl derivs., lithium complexes

(ion-conductive polymer and electrolyte additives for

electrochem. devices)

161484-14-6P 161484-15-7P 161484-16-8P

161484-17-9P 161484-18-0P 161484-19-1P 161875-50-9P 169480-11-9P 169528-23-8DP, 161484-20-4P

trimethylsilvl derivs.

(ion-conductive polymer and electrolyte additives for

electrochem. devices)

OS.CITING REF COUNT: THERE ARE 2 CAPLUS RECORDS THAT CITE THIS

RECORD (2 CITINGS)

REFERENCE COUNT: 25 THERE ARE 25 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE

RE FORMAT

L45 ANSWER 38 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1995:586414 HCAPLUS Full-text

DOCUMENT NUMBER: 122:318680

ORIGINAL REFERENCE NO.: 122:57863a,57866a

TITLE: Fire-resistant solid polymer electrolytes

INVENTOR(S): Chaloner-Gill, Benjamin

PATENT ASSIGNEE(S): Valence Technology, Inc., USA SOURCE: U.S., 9 pp.

CODEN: USXXAM DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 3

PATENT INFORMATION:

PA	TENT	NO.			KIN	D	DATE			APPL	ICAT	ION	NO.		D.	ATE
US	5393	621			A	-	1995	0228		US 1		1392	29		1	9931020
US	5521	025			A	A 19960528						19940420				
WO	9511	511528			A1	1 19950427			WO 1994-US12602				19941020			
	W:	GB, MN,	GE, MW,	HU,	JP, NO,	KE,	BR, KG, PL,	KP,	KR,	KZ,	LK,	LT,	LU,	LV,	MD,	MG,
	RW:	LU,	MC,		PT,		BE, BF,									
AU	9510	478			A		1995	0508		AU 1		1047	8		1	9941020
PRIORIT	Y APP	LN.	INFO	.:						US 1		1392	29		A2 1	9931020
										WO 1		JS12	602		W 1	9941020

ED Entered STN: 03 Jun 1995

AB The electrolytes for batteries comprise an organophosphorus polymer having a mol. weight of .apprx.1000-80,000, an inorg. salt, and an electrolyte solvent. The organophosphorus polymer is selected from polyphosphoroamides and polyphosphines. The polymer contains the repeating units [P(Z)(O)kR]n, where k is 0 or 1; R is selected from SR1S, OR1S, N(R2)R1N(R2), and N(R2)R1; Z is R2 or OR2; R1 is C1-40 hydrocarbylene or oxyhydrocarbylene; R2 is C1-40 hydrocarbyl, oxyhydrocarbyl, or poly(oxyalkylene); and n is an integer having a value between .apprx.10-500.

IT 26027-02-1P 56727-36-7P 163519-56-0P

163519-57-1P

(in fire-resistant solid polymer electrolytes for batteries)

RN 26027-02-1 HCAPLUS

CN Poly[oxy(phenoxyphosphinylidene)oxy-1,4-phenylene] (CA INDEX NAME)

RN 56727-36-7 HCAPLUS

CN Poly[oxy(methylphosphinylidene)oxy-1,2-ethanediyl] (CA INDEX NAME)

RN 163519-56-0 HCAPLUS

CN Phosphonic acid, cyclohexyl-, di-2-propenyl ester, homopolymer (9CI) (CA INDEX NAME)

CM 1

CRN 88616-17-5 CMF C12 H21 O3 P

RN 163519-57-1 HCAPLUS

CN Phosphorous acid, triphenyl ester, polymer with 1,6-hexanediol (9CI) (CA INDEX NAME)

CM 1

CRN 629-11-8 CMF C6 H14 O2

```
CM 2
    CRN 101-02-0
    CMF C18 H15 O3 P
     OPh
 Pho-P-OPh
IC ICM H01M006-18
INCL 429192000
CC 52-2 (Electrochemical, Radiational, and Thermal Energy
    Technology)
    Section cross-reference(s): 37, 38
ST battery organophosphorus polymer electrolyte;
    polyphosphoroamide battery electrolyte;
    polyphosphine battery electrolyte
    Battery electrolytes
      (organophosphorus polymers for)
    26027-02-1P 56727-36-7P 163519-56-0P
    163519-57-1P
       (in fire-resistant solid polymer electrolytes for
       batteries)
OS.CITING REF COUNT: 3
                           THERE ARE 3 CAPLUS RECORDS THAT CITE THIS
                            RECORD (3 CITINGS)
REFERENCE COUNT:
                      4
                            THERE ARE 4 CITED REFERENCES AVAILABLE FOR
                            THIS RECORD. ALL CITATIONS AVAILABLE IN THE
                            RE FORMAT
L45 ANSWER 39 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN
ACCESSION NUMBER: 1989:79395 HCAPLUS Full-text
                       110:79395
DOCUMENT NUMBER:
ORIGINAL REFERENCE NO.: 110:13077a,13080a
TITLE:
                      Alkaline zinc batteries containing
                      corrosion inhibitors
INVENTOR(S):
                      Takada, Kanji; Okazaki, Ryoji; Miura, Akira
                    Matsushita Electric Industrial Co., Ltd., Japan
PATENT ASSIGNEE(S):
SOURCE:
                      Jpn. Kokai Tokkyo Koho, 9 pp.
                       CODEN: JKXXAF
DOCUMENT TYPE:
                      Patent
LANGUAGE:
                      Japanese
FAMILY ACC. NUM. COUNT: 1
PATENT INFORMATION:
                 KIND DATE APPLICATION NO. DATE
    PATENT NO.
    -----
                             -----
                                       JP 1987-89544
    JP 63254671
                      A
                             19881021
                                                             19870410
                                              <--
```

В 19950531

TP 1987-89544

<--

19870410

ED Entered STN: 04 Mar 1989

JP 07050612

PRIORITY APPLN. INFO.:

- AB Polyoxyethylene monoalkyl ethers having their terminal groups substituted by phosphonic-, sulfonic-, or methylenecarboxylic-acid groups, or their alkali metal salts are used as anode corrosion inhibitors in the title batteries.

 Thus, the amount of H evolved by immersing 10 g Zn-1% Hg in 5 mL ZnO- and C9H190(C2H40)5PO3H2-saturated 40% KGH at 45° for 20 days was 72 µL/g, vs. 535 µL/g for immersion in a solution without the phosphonic acid. Zn batteries using electrolytes containing the invention inhibitors showed less electrolyte leak and less thickness increase than control batteries after stories.
 - IT 51294-00-9 70700-21-9 99724-89-7 108765-96-4 119036-26-9 119036-28-1 119036-31-6

(corrosion inhibitor, for zinc anodes, in alkaline batteries)

RN 51294-00-9 HCAPLUS

CN Poly(oxy-1,2-ethanediyl), α -phosphono- ω -(nonyloxy)- (CA INDEX NAME)

- RN 70700-21-9 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α -phosphono- ω -methoxy- (CA INDEX NAME)

- RN 99724-89-7 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α-phosphono-ω-(nonyloxy)-, disodium salt (9CI) (CA INDEX NAME)

- RN 108765-96-4 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α-phosphono-ω-(nonyloxy)-, dipotassium salt (9CI) (CA INDEX NAME)

●2 K

- RN 119036-26-9 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α-phosphono-ω-(nonyloxy)-, dilithium salt (9CI) (CA INDEX NAME)

- RN 119036-28-1 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α-phosphono-ω-(tetracontyloxy)(9CI) (CA INDEX NAME)

- RN 119036-31-6 HCAPLUS
- CN Poly(oxy-1,2-ethanediyl), α -phosphono- ω -(hexyloxy)-, dipotassium salt (9CI) (CA INDEX NAME)

●2 K

- IC ICM H01M006-06
- ICS H01M004-06; H01M004-42; H01M004-62
- CC 52-2 (Electrochemical, Radiational, and Thermal Energy Technology)
- ST battery zinc anode corrosion inhibitor;
- polyoxyethylene ether zinc anode anticorrosion
- IT Anodes

(battery, zinc, polyoxyethylene alkyl ether derivs. as corrosion inhibitors for)

- IT Zinc alloy, base
- (anodes, polyoxyethylene alkyl ether derivs. corrosion

inhibitors for, in alkaline batteries) 7440-66-6, Zinc, uses and miscellaneous

(anodes, polyoxyethylene alkyl ether derivs, corrosion

inhibitors for, in alkaline batteries) 51294-00-9 70700-21-9 81337-77-1

99724-89-7 105391-15-9 108765-96-4 119036-24-7 119036-25-8 119036-26-9 119036-27-0

119036-28-1 119036-29-2 119036-30-5 119036-31-6 (corrosion inhibitor, for zinc anodes, in alkaline

batteries) 39305-93-6

(microalloyed, anodes, alkaline battery containing,

polyoxyethylene alkyl ethers as corrosion inhibitors for)

1333-74-0, Hydrogen, properties

(prevention of evolution of, from zinc battery anodes, polyoxyethylene alkyl ethers derivs. for)

OS.CITING REF COUNT: THERE ARE 1 CAPLUS RECORDS THAT CITE THIS RECORD (1 CITINGS)

L45 ANSWER 40 OF 40 HCAPLUS COPYRIGHT 2009 ACS on STN ACCESSION NUMBER: 1987:101679 HCAPLUS Full-text

DOCUMENT NUMBER: 106:101679

ORIGINAL REFERENCE NO.: 106:16639a,16642a

TITLE: Reaction mechanism of cathodic crossed coupling of

acetone with unsaturated compounds in acidic solution

AUTHOR(S): Koizumi, Toshio; Fuchigami, Toshio; Kandeel,

Zaghloul El-Shahat; Sato, Norio; Nonaka, Tsutomu CORPORATE SOURCE: Dep. Electron. Chem., Tokyo Inst. Technol.,

Yokohama, 227, Japan

Bulletin of the Chemical Society of Japan (SOURCE:

1986), 59(3), 757-62

CODEN: BCSJA8; ISSN: 0009-2673

Journal DOCUMENT TYPE: LANGUAGE: English

OTHER SOURCE(S): CASREACT 106:101679

ED Entered STN: 05 Apr 1987

AB The cathodic crossed coupling of acetone with unsatd. compds. in aqueous sulfuric acid proceeded smoothly, when the compds. which had radicalacceptable double bonds and were adsorbed on a mercury cathoda, were used. The coupling occurs via the addition of a radical intermediate formed by the one-electron reduction of acetone to the double bonds on the cathode surface. Possibility of the addition of an anionic intermediate derived from acetone was excluded by no occurrence of the coupling of acetone with a polar acetylenic triple bond compound adsorbed on the cathode.

682-30-4

(cathodic crossed coupling of, with acetone)

RN 682-30-4 HCAPLUS

CN Phosphonic acid, P-ethenyl-, diethyl ester (CA INDEX NAME)

ST cathode crossed coupling acetone unsatd; mechanism cathode crossed coupling cathode crossed coupling
IT 107-11-9 107-18-6, reactions 119-65-3 682-30-4
1906-79-2 10603-92-6 18707-60-3 23326-27-4
(cathodic crossed coupling of, with acetone)
OS.CITING REF COUNT: 6 THERE ARE 6 CAPLUS RECORDS THAT CITE THIS RECORD (6 CITINGS)

=> d his nofile

```
(FILE 'HOME' ENTERED AT 09:16:54 ON 09 OCT 2009)
     FILE 'HCAPLUS' ENTERED AT 09:17:06 ON 09 OCT 2009
             1 SEA SPE=ON ABB=ON PLU=ON US20040013944/PN
L1
               SEL RN
     FILE 'REGISTRY' ENTERED AT 09:17:23 ON 09 OCT 2009
             38 SEA SPE=ON ABB=ON PLU=ON (463-79-6/BI OR 10377-51-2/BI
               OR 105-58-8/BI OR 108-32-7/BI OR 108-88-3/BI OR 108554-72-9
               /BI OR 113187-28-3/BI OR 131651-65-5/BI OR 1330-20-7/BI OR
               14024-11-4/BI OR 14283-07-9/BI OR 18424-17-4/BI OR
               21324-40-3/BI OR 24599-21-1/BI OR 25496-08-6/BI OR
               27359-10-0/BI OR 29935-35-1/BI OR 33454-82-9/BI OR
               35363-40-7/BI OR 37220-89-6/BI OR 41891-54-7/BI OR
               4437-85-8/BI OR 4472-22-4/BI OR 462-06-6/BI OR 4645-32-3/BI
                OR 4851-64-3/BI OR 56525-42-9/BI OR 616-38-6/BI OR
               623-53-0/BI OR 623-96-1/BI OR 682-30-4/BI OR 71-43-2/BI OR
               7439-93-2/BI OR 7447-41-8/BI OR 7791-03-9/BI OR 78-67-1/BI
               OR 90076-65-6/BI OR 96-49-1/BI)
T.3
             9 SEA SPE=ON ABB=ON PLU=ON L2 AND P/ELS
L4
        1417509 SEA SPE=ON ABB=ON PLU=ON (P(L)O)/ELS
          44384 SEA SPE=ON ABB=ON PLU=ON L4 AND PMS/CI
L5
L6
             O SEA SPE=ON ABB=ON PLU=ON L5 AND L3
T.7
         16344 SEA SPE=ON ABB=ON PLU=ON L4 AND PROPENOIC ACID?
L8
         176900 SEA SPE=ON ABB=ON PLU=ON L4 AND ETHYL ESTER?
T.9
          2397 SEA SPE=ON ABB=ON PLU=ON L4 AND BUTENOIC ACID?
         32885 SEA SPE=ON ABB=ON PLU=ON L4 AND ETHENYL?
         131674 SEA SPE=ON ABB=ON PLU=ON L4 AND METHYLETHYL?
L11
L12
             8 SEA SPE=ON ABB=ON PLU=ON L3 AND (L7 OR L8 OR L9 OR L10
               OR L11)
     FILE 'HCAPLUS' ENTERED AT 09:22:35 ON 09 OCT 2009
L13
          1409 SEA SPE=ON ABB=ON PLU=ON L12
L14
          41850 SEA SPE=ON ABB=ON PLU=ON L5
L15
          43102 SEA SPE=ON ABB=ON PLU=ON L13 OR L14
              1 SEA SPE=ON ABB=ON PLU=ON L15 AND L1
L16
               E BATTERY ELECTROLYTES/CT
L17
          11355 SEA SPE=ON ABB=ON PLU=ON "BATTERY ELECTROLYTES"+PFT,NT/C
             58 SEA SPE=ON ABB=ON PLU=ON L15 AND L17
L18
L19
             2 SEA SPE=ON ABB=ON PLU=ON L13 AND L17
L20
             6 SEA SPE=ON ABB=ON PLU=ON L13 AND BATTER?
     FILE 'REGISTRY' ENTERED AT 09:24:42 ON 09 OCT 2009
         26435 SEA SPE=ON ABB=ON PLU=ON L5 AND (PHOSPHIN? OR PHOSPHON?)
         203815 SEA SPE=ON ABB=ON PLU=ON (L7 OR L8 OR L9 OR L10 OR L11)
               AND (PHOSPHIN? OR PHOSPHON?)
     FILE 'HCAPLUS' ENTERED AT 09:26:40 ON 09 OCT 2009
L23
          16945 SEA SPE=ON ABB=ON PLU=ON L21
L24
         128988 SEA SPE=ON ABB=ON PLU=ON L22
L25
           138 SEA SPE=ON ABB=ON PLU=ON (L23 OR L24) AND L17
L26
           332 SEA SPE=ON ABB=ON PLU=ON (L23 OR L24) AND BATTER?
L27
            1 SEA SPE=ON ABB=ON PLU=ON L26 AND L1
L28
          143 SEA SPE=ON ABB=ON PLU=ON L26 AND DEV/RL
L29
            30 SEA SPE=ON ABB=ON PLU=ON L28 AND L23
```

L30	31	SEA SPE=ON	ABB=ON PLU=ON L13 AND ELECTROCHEM?/SC,SX
L31	14	SEA SPE=ON	ABB=ON PLU=ON L30 AND DEV/RL
L32	20	SEA SPE=ON	ABB=ON PLU=ON L13 AND (ELECTRODE# OR ANODE#
		OR CATHODE#	OR NEGATIVE ELECTRODE# OR POSITIVE ELECTRODE#
		OR BATTERY#	OR BATTERIES#)
L33	12	SEA SPE=ON	ABB=ON PLU=ON L30 AND (ELECTRODE# OR ANODE#
		OR CATHODE#	OR NEGATIVE ELECTRODE# OR POSITIVE ELECTRODE#
L34	3.0	SEA SPE=ON	ABB=ON PLU=ON L29 AND (ELECTRODE# OR ANODE#
201			OR NEGATIVE ELECTRODE# OR POSITIVE ELECTRODE#
			OR BATTERIES#)
- 0.5			
L35		SEA SPE=ON	ABB=ON PLU=ON (L32 OR L33 OR L34)
L36	1	SEA SPE=ON	ABB=ON PLU=ON L35 AND L1
L37	25	SEA SPE=ON	ABB=ON PLU=ON L35 AND (1840-2002)/PRY, AY, PY
L38	851	SEA SPE=ON	ABB=ON PLU=ON L14 AND (ELECTRODE# OR ANODE#
		OR CATHODE#	OR NEGATIVE ELECTRODE# OR POSITIVE ELECTRODE#
		OR BATTERY#	OR BATTERIES#)
L39	300	SEA SPE=ON	ABB=ON PLU=ON L38 AND DEV/RL
L40	15	SEA SPE=ON	ABB=ON PLU=ON L39 AND LITHIUM SECONDARY?
L41	118	SEA SPE=ON	ABB=ON PLU=ON L39 AND ELECTROLYT?
L42	108	SEA SPE=ON	ABB=ON PLU=ON L41 AND ELECTROCHEM?/SC.SX
L43	68	SEA SPE=ON	ABB=ON PLU=ON L42 AND (1840-2002)/PRY, AY, PY
L44		SEA SPE=ON	ABB=ON PLU=ON L43 AND L17
L45		SEA SPE=ON	ABB=ON PLU=ON L37 OR L44
пио	40	SEM SEE-ON	ABB-ON PBO-ON B37 OK B44