PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-035624

(43) Date of publication of application: 12.02.1993

(51)Int.CI.

G06F 13/00

H04L 12/56

H04L 29/00

(21)Application number: 03-209873

(71)Applicant: MELCO:KK

(22)Date of filing:

25.07.1991

(72)Inventor: NOZUE HISAHIRO

(54) DATA TRANSFER METHOD, DATA TRANSMITTING DEVICE AND RESTORING DEVICE

(57)Abstract:

PURPOSE: To increase a transfer speed in the case of executing a data transfer between each computer or to a peripheral equipment

by using radio.

CONSTITUTION: In a data transmitting device 1 and a data restoring device 5, a data communication control part 7 and plural radio communication control parts 8 are provided. The data communication control part 7 of the data transmitting device 1 divides data sent from a computer into prescribed bytes, and constitutes them to a packet to which management information such as the packet number, data length, an error correction code, etc., is added. Each packet thereof is allocated to one radio communication control part 8, and plural packets are transmitted in parallel. On the data restoring device 5 side, the packet number is recognized from the management information of the packets received in parallel, and in accordance therewith, the data is reconstituted.

LEGAL STATUS

[Date of request for examination]

16.06.1993

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

2109799

[Date of registration]

21.11.1996

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C): 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開平5-35624

(43)公開日 平成5年(1993)2月12日

(51)Int Cl. ⁵ C 0 6 F 13/00 H 0 4 L 12/56 29/00	識別記号 351 L	庁内整型番号 7368-5B 8529-5K 8020-5K	F I	技術表示箇所	
	· ·		H 0 4 L	11/20102F13/00S審査請求未請求請求項の数4(全 11	頁)
(21)出願番号	特願平3-209873		(71)出願人	. 390040187 株式会社メルコ	·
(22)出顧日	平成3年(1991)7月	₹25日	(72)発明者	愛知県名古屋市中区大須4丁目11番50	
		,	(74)代理人	弁理士 五十嵐 孝雄 (外1名)	

(54)【発明の名称】 データ転送方法ならびにデータ送信装置および復元装置

(57)【要約】

【目的】 無線を用いてコンピュータ相互もしくは周辺 装置との間のデータ転送を行なう場合の転送速度を高め る。

【構成】 データ送信装置1およびデータ復元装置5にデータ通信制御部7と複数の無線通信制御部8とを設ける。データ送信装置1のデータ通信制御部7は、コンピュータ2から送られてきたデータを所定バイトに分割し、パケット番号やデータ長,誤り訂正符号などの管理情報を付加したパケットに構成する。このそれぞれのパケットをいずれかの無線通信制御部8に割り当て、複数のパケットを並列的に送信する。データ復元装置5側では、並列的に受け取ったパケットの管理情報からパケット番号を認識し、これに従って、データを再構成する。

【特許請求の範囲】

【請求項1】 コンピュータ相互もしくは周辺機器との データの転送を行なうデータ転送方法であって、 送信側では、

出力するデータを、該データの管理情報を付加した複数 のパケットに分割し、

該複数のパケットを、無線通信による複数のチャンネル を介して各々出力し、

受信側では、

該複数のチャンネルを介して複数のパケットを受信し、 該受信したパケットからデータと管理情報とを抽出し、 該抽出したデータを、該管理情報に基づいて、元の並び に組み立てることを特徴とするデータ転送方法。

【請求項2】 コンピュータもしくは周辺機器にデータ を無線で送信するデータ送信装置であって、

出力するデータを、該データの管理情報を付加したパケ ットに分割するデータ分割手段と、

複数のチャンネルから空きチャンネルを選定し、該チャ ンネルを用いてデータを無線で出力する複数の出力手段

該複数の送信手段の使用状況を判断し、前記分割された パケットを、順次複数の出力手段により出力させる出力 制御手段とを備えたデータ送信装置。

【請求項3】 コンピュータもしくは周辺機器に無線で 送信されたデータを復元するデータ復元装置であって、 複数のチャンネルの一を介して送信されたパケットを受 信する複数の受信手段と、

. 該受信されたパケットから、データとその管理情報とを 分離するデータ分離手段と、

びに組み立てるデータ組立手段とを備えたデータ復元装 價。

【請求項4】 請求項1記載のデータ転送方法であっ

管理情報には、誤り検出符号もしくは誤り訂正符号が含 まれ、

各パケットに含まれるデータの長さが、誤りの発生頻度 などのパケットの送受信の状況に応じて可変されるデー タ転送方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、無線によりデータを転 送する技術に関し、詳しくはコンピュータ相互もしくは コンピューター周辺機器間のデータの転送方法とこの方 法を適用可能なデータ送信装置およびデータ復元装置と に関する。

[0002]

【従来の技術】コンピュータ相互もしくは周辺機器と間 でデータを転送する場合、通常はケーブルで両者を接続 の携帯性に優れたコンピュータの普及等に伴い、いちい ちケーブルを接続する必要がない無線によるデータ転送 が試みられている。また、レーザプリンタなどの高速デ バイスを複数のコンピュータで共有し、印字データなど を一括して処理したいとする要求も高まっており、配線 の煩雑な取り回しを嫌って、無線によりデータを転送し ようとするものも提案されている。

[0003]

【発明が解決しようとする課題】しかしながら、無線に よるデータ転送は本質的にシリアル通信であるため、デ ータ転送の速度が遅く、データ転送に長時間を要するな ど、実際の使用に大きな障害となっていた。例えば、コ ンピュータからプリンタへの印字データを無線で転送し ようとすると、一般の使用に開放された特定小電力無線 ではたかだか数千bps (ビットパーセコンド)程度の転 送速度しか得られず、ケーブルにより直結されたセント ロニス規格の8ビットのパラレル転送と較べて数分の1 から十数分の1程度のパフォーマンスしか得られない。 【0004】また、データ転送の間、コンピュータは占 有されるから、コンピュータの使用効率も低下してしま う。更に、レーザプリンタ等を複数のコンピュータで共 有する場合、データ転送に時間がかかってレーザプリン 夕が輻輳状態となり、それ自身高速のデバイスを用いて いるにもかかわらず、全体としての使用効率が極端に低 下するという問題も生じる。

【0005】無線によりデータ転送の速度を上げるため に、使用する周波数帯域を上げたり変調方法を変更した りすることが考えられるが、一般の使用に解放された特 定小電力無線局では周波数は定められており、データ転 該分雕されたデータを、該管理情報に基づいて、元の並 30 送を目的としたデータ無線の通信速度は上限が定められ ているので(400MHzで4800bps、1.2G Hzで32Kbps)、使用周波数の変更による転送速 度の向上は事実上望めない。一方、データを圧縮してか ら転送する手法も提案されているが、圧縮率はたかだか 1/2程度であり、データ圧縮と復元にかなりの手間を 要することも併せて、現実的な解決とはなっていない。

> 【0006】本発明のデータ転送方法ならびにデータ送 信装置および復元装置は、こうした問題を解決し、コン ピュータ相互もしくは周辺機器との間のデータ転送の速 度を向上することを目的としてなされ、次の構成を採っ 40 た。

[0007]

【課題を解決するための手段】コンピュータ相互もしく は周辺機器とのデータの転送を行なう本発明のデータ転 送方法は、送信側では、出力するデータを、該データの 管理情報を付加した複数のパケットに分割し、該複数の パケットを、無線通信による複数のチャンネルを介して 各々出力し、受信側では、該複数のチャンネルを介して 複数のパケットを受信し、該受信したパケットからデー して有線で転送を行なっているが、近年、ブック型など 50 夕と管理情報とを抽出し、該抽出したデータを、該管理 3

情報に基づいて、元の並びに組み立てることを特徴とする。

【0008】本発明のデータ送信装置は、上記のデータ 転送方法を適用可能であり、コンピュータもしくは周辺 機器にデータを無線で送信するものであって、出力する データを、該データの管理情報を付加したパケットに分割するデータ分割手段と、複数のチャンネルから空きチャンネルを選定し、該チャンネルを用いてデータを無線 で出力する複数の出力手段と、該複数の送信手段の使用 状況を判断し、前記分割されたパケットを、順次複数の出力手段により出力させる出力制御手段とを備えたことを要旨とする。

【0009】一方、本発明のデータ復元装置は、上記のデータ転送方法が適用可能であり、コンピュータもしくは周辺機器に無線で送信されたデータを復元するものであって、複数のチャンネルの一を介して送信されたパケットを受信する複数の受信手段と、該受信されたパケットから、データとその管理情報とを分離するデータ分離手段と、該分離されたデータを、該管理情報に基づいて、元の並びに組み立てるデータ組立手段とを備えたことを要旨とする。

【0010】なお、本発明のデータ転送方法であって、管理情報には、誤り検出符号もしくは誤り訂正符号が含まれ、各パケットに含まれるデータの長さが、誤りの発生頻度などのパケットの送受信の状況に応じて可変される構成をとることも差し支えない。本発明における無線とは、ケーブルによって直結された有線方式でないことを意味し、特定小電力通信に限らず、特定微弱通信でもよいし、その他の帯域を用いた通信でも差し支えない。また、赤外線、遠赤外線あるいはマイクロ波等を用いた 30 光通信を利用することもできる。

[0011]

【作用】以上のように構成された本発明のデータ転送方法においては、受信側では、出力しようとするデータをそのデータの管理情報を付加したパケットに分割し、これを複数のチャンネルを介して無線で出力する。受信側では、このパケットを受信して、パケットからデータと管理情報を抽出し、この管理情報に基づいてデータを元の並びに組み立てる。従って、データは一旦パケットの形態にバラバラにされ、複数のチャンネルによりあたか 40 も並列転送されているかのように転送される。

【0012】一方、本発明のデータ送信装置は、この転送方法の送信側を実現可能なものであり、本発明のデータ復元装置は、この転送方法の受信側を実現可能なものである。このデータ送信装置とデータ復元装置は、通常ペアで用いるが、例えば管理情報のひとつとして「転送順序フリー」に対応したデータを予め決めておき、このデータが載っていない場合にはデータ転送の順番が固定であると決めておけば、一方もしくは両方が管理情報を持たない送信装置、復元装置との間で各々データ転送を50

行なうことも可能である。本発明において、更に管理情報に誤り検出符号もしくは誤り訂正符号を含ませておき、各パケットに含まれるデータの長さを、誤りの発生頻度などのパケットの送受信の状況に応じて可変することも、転送速度の向上とデータ転送の信頼性の確保を両立する上で望ましい。

[0013]

【実施例】以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の好適な実施例について説明する。図1は、本発明の一実施例としてのデータ送信装置1およびデータ復元装置5の概略構成図、図2はこのデータ送信装置1の内部構成を示すブロック図、である。図示するように、データ送信装置1はコンピュータ2の印字用出力に接続して用いられ、データ復元装置5はプリンタ6の印字入力に接続して用いられる。

【0014】図1に示すように、データ送信装置1およびデータ復元装置5は、データ通信制御部7,複数の無線通信制御部8およびアンテナ9を中心に構成されている。本実施例では、データは、コンピュータ2からデータ送信装置1、データ復元装置5を介してプリンタ6に送られるので、データ送信装置1がマスタとして、データ復元装置5がスレーブとして、各々機能するが、データ送信装置1もデータ復元装置5も内部構成は同一であり、データ復元装置5からデータ送信装置1へデータを転送することも可能である。本実施例でも、データ長を可変にするために、データ復元装置5からデータ送信装置1にデータが送られている。データ転送の実際については後述する。

【0015】データ送信装置1の内部構成について説明する。データ送信装置1は、図2に示すように、8ビットのマイクロプロセッサ11と、このマイクロプロセッサ11から出力されるデータをシリアル信号に変換する8個のSIO12と、SIO12の各々に接続された送信ユニット14とを中心に構成され、マイクロプロセッサ11のデータバス16,アドレスバス17等には、メモリコントローラ20やIOデコード回路22,送信ユニットコントローラ25などが接続されている。また、データバス16には、メモリ27のデータ入出力も接続されている。マイクロプロセッサ11,メモリコントローラ20,IOデコード回路22,送信ユニットコントローラ25,メモリ27が、データ通信制御部7を構成する。また、SIO12,送信ユニット14が無線通信制御部8を構成する。

【0016】このデータ送信装置1は、ケーブル29、コネクタ30を介してコンピュータ2の印字用出力ポート32に接続されている。データ送信装置1のマイクロプロセッサ11は、データの受け渡し用の制御信号(ストローブSTRB、受信応答ACK、ビジーBUSY)を用いて印字データを受け取り、メモリコントローラ20を用いて、この印字データを順次メモリ27に蓄え

る。所定量以上の印字データが蓄えられると、マイクロ プロセッサ11は、このデータをパケットに構成し、こ れを複数のSIO12の内のひとつに送り出す。同時 に、送信ユニットコントローラ25を制御して、印字デ ータを送り出したSIO12に対応する送信ユニット1 4を送信可能状態に切り換える。

【0017】印字データを受け取ったSIO12は、パ ラレル信号で送られてくる印字データをシリアル信号に 変換し、送信ユニット14に出力する。通信方式は、キ ャラクタ同期 (BISYNC同期) 通信であり、SIO12 は、通信するデータに同期キャラクタを付与して出力し ている。送信ユニット14は、このシリアル信号を予め 割り当てられたチャンネルの周波数に乗せてアンテナ9 から外部に送信する。本実施例では、SIO12および 送信ユニット14は各8台設けられており、各送信ユニ ット14が利用できるチャンネルは最大10である。図 1には、各チャンネルを周波数f1ないしfnで示し た。なお、SIO12とマイクロプロセッサ11とのデ ータのやり取りは、送信割込Txおよび受信割込Rxを 利用して行なわれる。

00MHz帯データ伝送用無線設備の規格に合致したも のであり、通信方式は単信方式、全使用チャンネル数は 10、変調方式は2値FSK変調方式、変調速度は48 00bpsである。本実施例における8台の送信ユニッ ト14は同一の構成を有し、送信ユニットコントローラ 2.5の制御の下でキャリアセンスを行ない、その指示に より混信の生じないチャンネルを用いて送信を行なう。 【0019】データ送信装置1と同一の構成を有するデ ータ復元装置5は、各送信ユニット14によりパケット を受け取ると、これをSIO12を介してマイクロプロ セッサ11に出力する。マイクロプロセッサ11は、受 信割込Rxを受けてSIO12をアクセスし、受信した データを読み取ってデータを順次メモリ27に蓄える。

【0018】送信ユニット14は、特定小電力無線局4

【0020】次に、データ送信装置1とデータ復元装置 5とが実行する送受信の処理について、図3等のフロー チャートを参照しつつ説明する。コンピュータ2から印 字データが送られてくると、データ送信装置1のマイク 40 ロプロセッサ11は、図3に示した送信処理ルーチンを 起動し、まず相手局との接続が完了しているか否かの判 断を行なう (ステップS100)。

その後、メモリ27上に構成されたデータをプリンタ6

に出力し、印字を行なわせる。

【0021】接続が完了していないと判断された場合に は、相手局と接続する処理を行なう(ステップS12 0)。データの送信を行なおうとするデータ送信装置1 の送信ユニット14を発呼局、発呼局からのデータを受 け取るデータ復元装置5の送信ユニット14を被呼局と 呼ぶが、両局間の回線接続手順の一例を図4に示した。

手順である。図示するように、発呼局は、発呼およびキ ャリアセンスの後、制御信号としてチャンネル番号であ る呼出名称を含む接続要求信号を送信する。この制御信 号を受けた被呼局がキャリアセンスの後、接続応答信号 である信号を返すことにより、回線の接続が行なわれ

【0022】相手局との接続が完了していれば(ステッ プS100)、コンピュータ2から送られてきたデータ をメモリ27に格納する処理を行なう (ステップS12 0)。この場合のデータの格納場所は、予め印字データ の保存場所として定められたアドレスから順に行なわ れ、格納番地を示すポインタの値は、データの格納が行 なわれる度に値1ずつインクリメントされる。従って、 コンピュータ2からのデータの送信が継続すると、印字 データが順にメモリ27に蓄えられることになる。

【0023】データの格納が済むと、マイクロプロセッ サ11は格納されたデータがパケットにできる状態か否 かの判断を行なう (ステップS130)。データの送信 はパケットの状態で行なわれるため、マイクロプロセッ サ11は、パケットを構成するのに十分なデータがメモ リ27に蓄えられるのを待っており、データ量が不足し ている場合には、何も行なわずそのまま「NEXT」に 抜けて本ルーチンを一旦終了する。

【0024】パケットを構成するのに十分なデータがメ モリ27に蓄えられたと判断された場合には(ステップ S130)、このデータにパケット番号、誤り訂正符号 を付加してパケットを構成する処理を行なう(ステップ S140)。例えば、図5に示すように、所定バイト数 のデータD1の前後に、パケット番号やデータ長を示す 管理情報PD1と誤り訂正符号HC1とを付加して、パ ケットP1を構成するのである。誤り訂正符号HC1と しては、種々のものが知られているが、本実施例では、 予め定められた多項式の係数や剰余多項式で表わされる 63個の符号として定義されている。

【0025】パケットを構成した後、このパケットをど の送信ユニット14により送信するかを指定する (ステ ップS150)。更に、送信ユニット14の番号と共 に、パケットを構成するデータの開始番地と終了番地、 およびこのパケットについての送信用アドレスポインタ などのテーブルを作成し、送信割込マスクを解除する処 理を行なった後(ステップS160)、「NEXT」に 抜けて本ルーチンを終了する。

【0026】以上の処理が行なわれパケットの準備がな されると、送信割込マスクも解除されるから、マイクロ プロセッサ11は、SIO12からの送信割込Txを受 けて、図6に示す送信割込処理ルーチンを実行する。こ の割込処理では、まず、割込要求を起こしたSIO12 を知り、そのSIO12に割り当てられたパケットの番 号をテーブルを参照して特定する処理を行なう(ステッ 図4は、単信方式、固定・手動チャンネル切換の場合の 50 プS200)。続いて、送信データが残っているか否か の判断を行ない(ステップS21.0)、そのパケットの 全データの送信が完了していれば、そのままリターンに 抜けて本ルーチンを一旦終了する。

【0027】パケットの送信データが残っている場合に は、送信用アドレスポインタを参照してメモリ27から 1 バイトのデータを読み出す処理を行なう (ステップS 220)。1バイトのデータが読み出されると、上述し たアドレスポインタは自動的にインクリメントされ、マ イクロプロセッサ11は次の送信割込Txに備える。メ モリ27から読み出されたデータは、SIO12に出力 され(ステップS230)、送信ユニット14により、 所定のチャンネルを介してデータ復元装置5に送信され

【0028】以上の処理(図3,図6)を繰り返すこと により、コンピュータ2から大量の印字データが送られ てくると、マイクロプロセッサ11は、このデータを所 定の長さに切り分けこれをパケットにしてゆく。構成さ れたパケットは、順次、SIO12,送信ユニット14 によりデータ復元装置5に送信されるが、コンピュータ 2からのデータはパラレル転送されていることからその 転送速度は、送信ユニット14の送信速度と較べて数倍 から数十倍である。従って、ひとつのパケットを送信し 終わる以前に次のパケットが構成される。この場合、次 のパケットは、先のパケットとは異なるSIO12,送 信ユニット14により送信されることになる。その場合 の送信チャンネルは当然異なる。

【0029】コンピュータ2から転送される印字データ が複数のパケットに分けられて、異なるチャンネルで送 信される様子を図7に示した。コンピュータ2から転送 されメモリ27に記憶されたデータは、あるデータ長の 30 データD1, D2…に区分され、管理情報と誤り訂正符 号を付加されてパケットP1, P2…に構成される。そ の後、パケットP1から順次使用されていないS1O1 2, 送信ユニット14に割り当てられ、空きチャンネル f1, f2…を介して送信される。図7に示した例で は、コンピュータ2からのデータ転送の速度と無線によ るデータ送信の速度との差がさほど大きくないことか ら、3チャンネルの使用で足りるものとして示したが、 転送速度の差が大きければ、更に多くのチャンネルを利 用しても差し支えない。

【0030】なお、送信ユニット14によるデータの送 信は、図4に「通信」として示したように、40秒以内 という制限が存在する。これは、本実施例で用いた周波 数帯域が開放されたものであることから、ある送信ユニ ット14が、ひとつのチャンネルを占有できる時間を制 限し、チャンネルを使用しようとする他の無線局に使用 の機会を与えているのである。送信の休止時間は、2秒 以上と定められており、この間に他の無線局がこのチャ ンネルを使用しなければ、次の通信に入ることができ

の間では、図8に示したように、通信が行なわれる区間 A (最大40秒)と、通信が行なわれない区間B (最小 2秒)とを繰り返す形で通信が行なわれる。

【0031】次に、データ復元装置5側の処理について 説明する。データ復元装置5の送信ユニット14、SI O12は、所定のチャンネルを介してデータを受け取る と、受信割込Rxをマイクロプロセッサ11に出力す る。マイクロプロセッサ11は、この受信割込Rxを受 けると、図9に示した受信処理割込ルーチンを起動し、 まず受け取ったデータがパケットの始まりを示すデータ であるか否かの判断を行なう(ステップS300)。 【0032】パケットの始まりであると判断されると、

そのデータからパケット番号とデータ長の情報を抽出し

(ステップS310)、データ復元装置5のメモリ27 上にパケットからのデータの受け取りに必要な領域を確 保し、メモリテーブルを更新する処理を行なう (ステッ プS320)。パケットの先頭に付加された管理情報か らデータ長を知ることができるので、メモリ27上に必 要なバイト数の領域を確保することは容易である。ま た、メモリテーブルとは、どのパケット番号のデータが どの領域に展開されるかを記憶するテーブルであり、複 数のパケットのデータを並行に受け取るために、新たな パケットの受信を行なう場合には、このテーブルを更新

するのである。

【0033】新たなパケットの受信を開始するのに必要 な以上の処理を行なった後、あるいは後述するデータ受 信の処理を行なった後、プリンタ6に出力して印字でき るデータがメモリ27上に存在するか否かの判断を行な う (ステップS330)。データの送信は、パケットを 単位としてバラバラに行なわれるので、あるチャンネル を介した通信に障害を生じた場合などには、全体のデー タの先頭から送信されてくるとは限らない。また、パケ ットの先頭の管理情報や末尾の誤り訂正符号も送られて くるから、受信割込Rxを受け取ったからといって、常 時印字できるデータがメモリ27上に存在するとは限ら ない。そこで、印字できるデータが存在するか否かを判 断し、データがあれば、そのデータをプリンタ6に出力 し、更に出力用のポインタを更新する処理を行なう (ス テップS340)。

【0034】送信ユニット14, SIO12により受信 され受信割込Rxを起こしたデータがパケットの始まり を示すものでない場合には(ステップS300)、パケ ットの終了を示すデータであるか否かの判断を行なう (ステップS350)。パケットの終了を示すデータで あると判断された場合には、既に受け取った誤り訂正符 号HCによるチェックを行なう(ステップS360)。 メモリ27上に展開されたデータDと誤り訂正符号HC とを突き合わせ、誤りがあるか否かの判断を行ない (ス テップS370)、誤りがなければそのまま印字データ ´る。この結果、データ送信装置1とデータ復元装置5と 50 がある場合にこれを印字する上述した処理(ステップS

330,340) に移行する。

【0035】受け取ったデータに誤りがあったと判断さ れた場合には(ステップS370)、データ復元装置5 は予め定められたデータを送信し、データの再送を要求 する処理を行なう(ステップS380)。この処理によ り、データ送信装置1は、送信を完了したパケットを再 度送信する。なお、本実施例では、各チャンネルにデー タ再送要求の機能を設けたが、複数のチャンネルのうち 一部にのみ再送機能をもたせ他は受信専用のチャンネル とすることもできる。データの誤りが検出された場合に は、特定のチャンネルを利用して再送要求を出し、デー タを再送させることになる。 データの送受信の方向を切 り換えるためには、所定の時間を要するので、誤りがあ る頻度以上生じる場合には、再送を行なうチャンネルを 特定することで、全体としてのデータ転送の効率が向上 する。

【0036】ステップS300、S350の判断によ り、受信したデータがパケットの始まりでも終わりでも ないと判断されたとき、即ちパケット内のデータDであ ると判断された場合には、SIO12から受信した1バ 20 イトのデータを読み込む処理を行なう(ステップS39 0)。こうして読み込んだ1バイトのデータをメモリテ ーブルに基づいてメモリ27の所定の領域に展開する (ステップS400)。先に、データ送信装置1におい てメモリ27上のデータをパケットに構成する様子を図 7に拠って説明したが、データ復元装置5では、逆にパ ケットから読み取ったデータをメモリ27に展開するの である。データの通信は、複数のチャンネルを利用して 同時に行なわれるから、受信したデータは、メモリテー ブルを参照して、パケット番号に対応して定まるアドレ 30 スに展開する。

【0037】以上説明した処理が実行されることによ り、データ送信装置1から、複数のパケットに分割され 複数のチャンネルを介して送信されるデータは、順次メ モリ27上の所定の領域に展開され、印字可能な状態に 展開されると順次プリンタ6に出力される。各パケット には、パケット番号とデータ長が付加されているので、 パケットの受信が完了しなくとも印字データの出力は可 能となるが、送信後に誤りが見いだされることもありえ るので、パケットの全データの受信が完了してから印字 40 を開始させることも差し支えない。

【0038】本実施例では、コンピュータ2の印字デー タを無線によってプリンタ6に伝送するので、煩瑣な接 続の手間がなく、コンピュータ2とプリンタ6とを自由 に配置することができる。しかも、パケットを単位とし て行なわれるデータの転送は、複数のSIO12,送信 ユニット14を用い並列に行なわれるので、転送速度が 極めて高く、無線を利用したデータ転送における転送速 度の低さという問題を解消している。また、パケット単 位で誤り訂正符号を付加しているので、データ転送に高 50 い信頼性を得ている。しかも、誤りの生じたパケットの 再送を行なっている間にも、他のパケットの転送は実行

10

できるので、全体としての転送効率を高くすることがで きる。

【0039】以上本発明の一実施例について説明した が、本発明はこの実施例に限定されるものではなく、本 発明の要旨を逸脱しない範囲内において、種々なる態様 で実施し得ることは勿論である。例えば、パケットの送 信における誤りの発生頻度を検出し、誤りの発生頻度が 高い場合にはパケットに含まれるデータの長さを短くし て誤りの発生に伴うデータの再送による転送効率の低下 を防止する構成とすることもできる。また、誤りの発生 頻度が低い場合には、パケットに含まれるデータの長さ を長くして転送効率を高めることもできる。

【0040】この他、送信ユニット14の送信周波数に 1. 2GHzの帯域を用いた構成、コンピュータとコン ピュータ間の通信に適用した構成、複数のコンピュータ やプリンタを含むLAN(ローカルネットワーク)に適 用した構成、送信するデータの全体量に応じて使用チャ ンネルの数を決定する構成など種々の構成を考えること ができる。また、本発明のデータ送信装置は、通常は本 発明のデータ復元装置と組み合わせて用いられるが、デ ータ送信のチャンネルとパケットの順序を固定するもの とすれば、パケットの管理情報を認識できないデータ受 信装置によって受信することも可能である。同様に、パ ケットの管理情報を付加しないデータ送信装置と本発明 のデータ復元装置を組み合わせても用いることも可能で

[0041]

【発明の効果】以上説明したように本発明のデータ転送 方法では、コンピュータ相互もしくはプリンタ等の周辺 装置との間のデータの転送を無線によって高速に行なう ことができるという優れた効果を奏する。従って、コン ピュータ等の各装置を自由に配置することができる。し かも、並列に転送されるデータはパケットを単位として おり、これに管理情報が付加されていることから、パケ ットの転送順序などの制約がなく、高速なデータ転送を 容易に行なうことができる。

【0042】また、このデータ転送方法を用いたデータ 送信装置とデータ復元装置は、極めて簡易な構成で実現 でき、それぞれ高速なデータ送信、復元を実現すること ができる。

【図面の簡単な説明】

【図1】本発明の一実施例であるデータ送信装置1とデ ータ復元装置5との概略構成図である。

【図2】データ送信装置1の内部構成を示すブロック図 である。

【図3】データ送信装置1が行なう送信処理ルーチンを 示すフローチャートである。

【図4】2つの無線局間のデータ通信までの制御の全体

12

を示す説明図である。

【図5】パケットの構成例を示す説明図である。

【図6】データ送信装置1が実行する送信割込処理ルーチンを示すフローチャートである。

【図7】印字データを複数のパケットに分割する様子および複数のパケットのデータを再構成する様子を示す説明図である。

【図8】無線局間でのデータ通信と送信休止期間の関係を示す説明図である。

【図9】データ復元装置5が実行する受信処理割込ルー 10 チンを示すフローチャートである。

【符号の説明】

- 1 データ送信装置
- 2 コンピュータ

- 5 データ復元装置
- 6 プリンタ
- 7 データ通信制御部
- 8 無線通信制御部
- 9 アンテナ
- 11 マイクロプロセッサ
- 12 SIO
- 14 送信ユニット
- 16 データバス
-) 17 アドレスバス
 - 20 メモリコントローラ
 - 22 IOデコード回路
 - 25 送信ユニットコントローラ
 - 27 メモリ

【図4】

【図9】

