Höhere Mathematik 2

Jil Zerndt FS 2025

Numerische Lösung nichtlinearer Gleichungssysteme

In diesem Kapitel geht es um die Nullstellenbestimmung von nichtlinearen Funktionen $f:\mathbb{R}^n \to \mathbb{R}^n$. Abkürzung: NLGS = nichtlineares Gleichungssystem

Einleitendes Beispiel

$$f_1(x_1, x_2) = x_1^2 + x_2 - 11 = 0$$

$$f_2(x_1, x_2) = x_1 + x_2^2 - 7 = 0$$

Gesucht sind die Lösungen des Gleichungssystems. Diese lassen sich interpretieren als die Nullstellen der Funktion $\mathbf{f}:\mathbb{R}^2 \to \mathbb{R}^2$ gemäss:

$$\mathbf{f}(x) = \begin{pmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \end{pmatrix} = \begin{pmatrix} x_1^2 + x_2 - 11 \\ x_1 + x_2^2 - 7 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Offensichtlich lässt sich ein solches System nicht in die Form Ax=b bringen.

Geometrisch lassen sich die Lösungen als Schnittpunkte der beiden Funktionen interpretieren.

Explizite Darstellung der Kurven:

$$x_2 = 11 - x_1^2$$

$$x_2 = \sqrt{7 - x_1}$$

Schnittpunkte:

$$\overline{\mathbf{x}_1} = \begin{pmatrix} 3\\2 \end{pmatrix}, \quad \overline{\mathbf{x}_2} = \begin{pmatrix} -2.8\\3.2 \end{pmatrix}$$

$$\overline{\mathbf{x}_3} = \begin{pmatrix} -3.8 \\ -3.3 \end{pmatrix}, \quad \overline{\mathbf{x}_4} = \begin{pmatrix} 3.4 \\ -1.7 \end{pmatrix}$$

Funktionen mit mehreren Variablen

Funktion mit abhängiger Variable x, unabhängiger Variable y = f(x):

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x)$$

Skalarwertige Funktionen mit mehreren Variablen

$$f:D\subset\mathbb{R}^n\to W\subset\mathbb{R}$$

$$(x_1, x_2, \ldots, x_n) \mapsto y = f(x_1, x_2, \ldots, x_n)$$

Unter einer Funktion f mit n unabhängigen Variablen x_1,\ldots,x_n und einer abhängigen Variablen y versteht man eine Vorschrift, die jedem geordneten Zahlentupel (x_1,x_2,\ldots,x_n) aus einer Definitionsmenge $D\subset\mathbb{R}^n$ genau ein Element $y\in W\subset\mathbb{R}$ zuordnet.

Da das Ergebnis $y \in \mathbb{R}$ ein Skalar (eine Zahl) ist, redet man auch von einer skalarwertigen Funktion.

Vektorwertige Funktion Erweiterung der obigen Definition, gibt einen **Vektor** zurück (anstatt eines Skalars).

Sei $\mathbf{f}:\mathbb{R}^n \to \mathbb{R}^m$ eine Funktion mit n Variablen. Dann ist die Funktion \mathbf{f} definiert durch:

$$\mathbf{f}(x_1 \dots, x_n) = \begin{pmatrix} y_1 = f_1(x_1, x_2, \dots, x_n) \\ y_2 = f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ y_m = f_m(x_1, x_2, \dots, x_n) \end{pmatrix}$$

wobei die m Komponenten $f_i: \mathbb{R}^n \to \mathbb{R}$ für $i=1,2,\ldots,n$ von \mathbf{f} wieder skalarwertige Funktionen sind.

Eigenschaften von skalar- und vektorwertigen Funktionen

- Skalar- und vektorwertige Funktionen mit mehreren Variablen werden auch multivariat genannt.
- Wie bei einem Vektor x stellen wir zur besseren Unterscheidbarkeit vektorwertige Funktionen f fett dar, im Gegensatz zu Skalaren x und skalarwertigen Funktionen f.
- Wir werden uns bei der Lösung nichtlinearer Gleichungssysteme auf vektorwertige Funktionen $\mathbf{f} = \mathbb{R}^n \to \mathbb{R}^n$ konzentrieren.

Beispiele

Grundlegende Rechenoperationen können als Skalarwertige Funktionen $f:\mathbb{R}^2\to\mathbb{R}$ oder als Vektorwertige Funktionen $\mathbf{f}:\mathbb{R}^2\to\mathbb{R}^2$ interpretiert werden

$$f(x,y) = x + y$$
, $g(x,y) = x \cdot y$, $h(x,y) = x^2 + y^2$

$$\mathbf{f}(x,y) = \begin{pmatrix} x+y \\ x \cdot y \end{pmatrix}, \quad \mathbf{g}(x,y) = \begin{pmatrix} x \cdot y \\ x^2 + y^2 \end{pmatrix}$$

Zusammenhang mit der Elektrotechnik

Ohmsches Gesetz

Die an einem ohmschen Widerstand R abfallende Spannung U hängt vom Widerstand R und der Stromstärke I gemäss dem ohmschen Gesetz $U=R\cdot I$ ab. Also haben wir für die abhängige Variable U=f(R,I)=RI die skalarwertige Funktion $f:\mathbb{R}^2\longrightarrow\mathbb{R}$ mit den unabhängigen Variablen R und I. Häufig schreibt man auch direkt

$$U = U(R, I) = R \cdot I$$

und bringt dadurch die Abhängigkeit der Variable U von den unabhängigen Variablen R und I zum Ausdruck, wie wir es auch bereits vom eindimensionalen Fall kennen, z.B. y=y(x).

Reihenschaltung von Widerständen

Bei der Reihenschaltung von n ohmschen Widerständen R_1, R_2, \ldots, R_n ergibt sich der Gesamtwiderstand R gemäss

$$R = R(R_1, R_2, \dots, R_n) = R_1 + R_2 + \dots + R_n$$

lineare Funktionen von LGS Gebe die lineare Funktion $\mathbf{f}:\mathbb{R}^3\to\mathbb{R}^3$ an, für welche die Lösung x des LGS:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \text{ mit } \mathbf{A} = \begin{pmatrix} 4 & -1 & 1 \\ -2 & 5 & 1 \\ 1 & -2 & 5 \end{pmatrix} \text{ und } \mathbf{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

gerade f(x) = 0 ergibt.

Vorgehen:

$$\overrightarrow{\mathbf{f}}(x_1, x_2, x_3) = 0 \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{b}} \Rightarrow \underbrace{\overrightarrow{\mathbf{A}} \overrightarrow{\mathbf{x}} - \overrightarrow{\mathbf{b}} = \overrightarrow{\mathbf{0}}}_{\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}})}$$

$$\overrightarrow{\mathbf{f}}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{A}}\overrightarrow{\mathbf{x}} - \overrightarrow{\mathbf{b}} = \begin{pmatrix} 4 & -1 & 1 \\ -2 & 5 & 1 \\ 1 & -2 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - \begin{pmatrix} 5 \\ 11 \\ 12 \end{pmatrix}$$

Die Funktion f ist gegeben durch: (solved by copilot so no guarantees)

$$\mathbf{f}(x_1, x_2, x_3) = \begin{pmatrix} f_1 = 4x_1 - x_2 + x_3 - 5 \\ f_2 = -2x_1 + 5x_2 + x_3 - 11 \\ f_3 = x_1 - 2x_2 + 5x_3 - 12 \end{pmatrix}$$

Darstellungsformen ---

Analytische Darstellung

- Explizite Darstellung: $y = f(x_1, \dots, x_n)$
 - die Funktionsgleichung ist nach einer Variablen aufgelöst
- Beispiel: $y = 2 \cdot e^{(x_1^2 + x_2^2)}$
- Implizite Darstellung: F(x, y) = 0
 - die Funktionsgleichung ist nicht nach einer Variablen aufgelöst
 - daher handelt es sich um eine Funktion mit nur n-1 unabhängigen Variablen
 - Beispiel: $x_1^2 + x_2^2 1 = 0$
- Parameterdarstellung: x = x(t), y = y(t)
 - die Funktion wird durch eine Kurve im Raum beschrieben
 - Beispiel: $x(t) = \cos(t), y(t) = \sin(t)$

Darstellung durch Wertetabelle Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ eine Funktion.

Vorgehen:

1. unabhängige Variable

In die vorausgesetzte Funktionsgleichung z=f(x,y) werden die Werte der unabhängigen Variablen x und y eingesetzt (der Reihe nach). So erhält man eine Wertetabelle, bzw. Matrix:

2. unabhängige Variable y

x y	у1	у2		<i>y</i> _{<i>k</i>}		Уn
x_1	z ₁₁	z ₁₂		z_{1k}		z_{1n}
x_2	Z21	z ₂₂		z_{2k}		z_{2n}
:	:	:		:		:
x_i	Zi1	Zi2		$\overline{z_{ik}}$		Zin
:	:	:		:		:
x_m	Z m 1	Z m2		Z_{mk}		z_{mn}

 \leftarrow *i*-te Zeile

k-te Spalte

Grafische Darstellung Wir beschränken uns hier auf skalarwertige Funktionen mit zwei unabhängigen Variablen $f: \mathbb{R}^2 \to \mathbb{R}$.

Dazu betrachten wir die Funktion z=f(x,y) in einem dreidimensionalen kartesischen Koordinatensystem:

Darstellung einer Funktion als Fläche im Raum -

Die Funktion f ordnet jedem Punkt $(x,y)\in D$ in der Ebene einen Wert z=f(x,y) zu, der als Höhenkoordinate verstanden werden kann. Durch die Anordnung der Punkte (x,y,f(x,y)) im dreidimensionalen Koordinatensystem wird eine über dem Definitionsbereich D liegende Fläche ausgezeichnet:

Schnittkurvendiagramm

Wird die Fläche z=f(x,y) bei einer konstanten Höhe z= const. geschnitten, ergibt sich eine Schnittkurve. Wird diese in die (x,y)-Ebene projiziert, spricht man von einer Höhenlinie bzw. bei der Abbildung von einem Höhenliniendiagramm., wie wir es z.B. von Wanderkarten her kennen. Natürlich kann man auch andere Schnitte als z= const. (Schnittebene parallel zur (x,y)-Ebene) wählen, z.B. x= const. (Schnittebene parallel zur (x,z)-Ebene) oder y= const. (Schnittebene parallel zur (x,z)-Ebene):

