

DD2437 – Artificial Neural Networks and Deep Architectures (annda)

Lecture 2: From perceptron learning rules to backpropagation – supervised learning

Pawel Herman

Computational Science and Technology (CST)

KTH Royal Institute of Technology

KTH Pawel Herman DD2437 annda

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Lecture overview

- A quick recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron learning, delta rule
- Multi-layer perceptron
- Backpropagation

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

From biological inspirations to ANNs

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

nodes

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

nodes

activation function

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

nodes

activation

activation function

learning rule

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

nodes

learning rule

activation function

topologies, architectures

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

- Error correction
- Competitive learning
- Coincidence detection

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

- Error correction
- Competitive learning
- Coincidence detection

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

- Error correction
- Competitive learning
- Coincidence detection

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Learning approaches

- supervised
 - > with a teacher that provides a correct answer
 - > error correction paradigm

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
 Real/propagation
- Backpropagation
- System identification

Learning principles

Learning approaches

- supervised
- unsupervised (input data only)
 - > only input data is available
 - ability to organise information without any error signal to evaluate
 a potential solution an explorative approach
 - detecting statistical regularities of the input data and forming internal representations that encode features of the input data

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Learning approaches

- supervised
- unsupervised (input data only)
- reinforcement
 - > simple scalar "reward" signal gives feedback on success

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Linear networks

What can be computed?

$$y = \vec{w}^{\mathrm{T}} \cdot \vec{x}$$

 \overrightarrow{w} - weight vector

$$y = \mathbf{W} \cdot \vec{x}$$

W - weight matrix

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- I hresholded single-layer nePerceptron

- Multi-layer perceptron
 Deckgroungstion
- Backpropagation
- System identification

Linear networks

What happens when we concatenate several linear networks?

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- 15
- System identification

Backpropagation

Multi-layer perceptron

Perceptron

Linear networks

What happens when we concatenate several linear networks?

$$\vec{y} = W_3 (W_2 (W_1 \vec{x})) = (W_3 W_2 W_1) \vec{x}$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
 Deckpropagation
- Backpropagation
- System identification

Linear networks

What happens when we concatenate several linear networks?

$$\vec{y} = W_3 (W_2 (W_1 \vec{x})) = (W_3 W_2 W_1) \vec{x}$$

Let
$$W = W_3 W_2 W_1 \implies \vec{y} = W \vec{x}$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

Linear networks

What happens when we concatenate several linear networks?

$$\vec{y} = W_3 (W_2 (W_1 \vec{x})) = (W_3 W_2 W_1) \vec{x}$$

Let
$$W = W_3 W_2 W_1 \implies \vec{y} = W \vec{x}$$

It is still a linear mapping!

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Storing mappings (memorising)

The program "resides" in weights

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- System identification

Storing mappings (memorising)

The program "resides" in weights

But how do we find suitable weights?

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- System identification

Storing mappings (memorising)

The program "resides" in weights

But how do we find suitable weights?

Learning corresponds to adapting weights, often *iteratively*, to achieve better performance

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

Storing mappings (memorising)

The program "resides" in weights

But how do we find suitable weights?

Learning corresponds to adapting weights, often <u>iteratively</u>, to achieve better performance

$$w^{(new)} = w^{(old)} + \Delta w_{ij}$$

- Recap
- Linear feed-forward networks
- · Thresholded single-layer networks
- Multi-layer perceptron
- · Backpropagation
- System identification

Storing mappings (memorising)

The program "resides" in weights

But how do we find suitable weights?

Learning corresponds to adapting weights, often *iteratively*, to achieve better performance

Hebb's learning hypothesis

Simultaneous activation of two neurons strengthens their synaptic inter-connection

- Recar
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

Storing mappings (memorising)

The program "resides" in weights

But how do we find suitable weights?

Learning corresponds to adapting weights, often *iteratively*, to achieve better performance

Hebb's learning hypothesis

Simultaneous activation of two neurons strengthens their synaptic inter-connection

Common interpretation:

$$\Delta w_{ij} = x_j y_i$$

- Recar
- Linear feed-forward networks
- · Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

Storing mappings (memorising)

The program "resides" in weights

But how do we find suitable weights?

Learning corresponds to adapting weights, often *iteratively*, to achieve better performance

Hebb's learning hypothesis

Simultaneous activation of two neurons strengthens their synaptic inter-connection

Common interpretation:

covariance rule

$$\Delta w_{ij} = x_j y_i$$
 or ... $\Delta w_{ij} = (x_j - \bar{x}) (y_i - \bar{y})$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Backpropagation
- · System identification

• Multi-layer perceptron

Perceptron

- Recap
- Linear feed-forward networks
- · Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

Hebbian learning rule

$$\Delta w_{i,j} = x_j y_i$$

"Fire together, wire together"

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- System identification

Storing mappings (memorising)

Storing a mapping using Hebb's rule

$$\vec{x}_1 \rightarrow \vec{y}_1$$

$$\vec{x}_2 \rightarrow \vec{y}_2$$

$$\vec{x}_3 \rightarrow \vec{y}_3$$

$$\vec{x}_1 \rightarrow \vec{y}_1$$
 $\vec{x}_2 \rightarrow \vec{y}_2$ $\vec{x}_3 \rightarrow \vec{y}_3$... $\vec{x}_n \rightarrow \vec{y}_n$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

Storing mappings (memorising)

Storing a mapping using Hebb's rule

$$\vec{x}_1 \rightarrow \vec{y}_1$$

$$\vec{x}_2 \rightarrow \vec{y}_2$$

$$\vec{x}_3 \rightarrow \vec{y}_3$$

$$\vec{x}_1 \rightarrow \vec{y}_1$$
 $\vec{x}_2 \rightarrow \vec{y}_2$ $\vec{x}_3 \rightarrow \vec{y}_3$... $\vec{x}_n \rightarrow \vec{y}_n$

Hebb's rule

$$\Delta w_{ij} = x_i y_i$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

Storing mappings (memorising)

Storing a mapping using Hebb's rule

$$\vec{x}_1 \rightarrow \vec{y}_1$$

$$\vec{x}_2 \rightarrow \vec{y}_2$$

$$\vec{x}_3 \rightarrow \vec{y}_3$$

$$\vec{x}_1 \rightarrow \vec{y}_1$$
 $\vec{x}_2 \rightarrow \vec{y}_2$ $\vec{x}_3 \rightarrow \vec{y}_3$... $\vec{x}_n \rightarrow \vec{y}_n$

Hebb's rule

$$\Delta w_{ij} = x_i y_j$$

Result

$$\mathbf{W} = \sum_{p=1}^{n} \vec{y}_{p} \cdot \vec{x}_{p}^{\mathrm{T}}$$

(outer product of vector patterns)

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- · System identification

Storing mappings (memorising)

Storing a mapping using Hebb's rule

$$\vec{x}_1 \rightarrow \vec{y}_1$$

$$\vec{x}_2 \rightarrow \vec{y}_2$$

$$\vec{x}_3 \rightarrow \vec{y}_3$$

$$\vec{x}_1 \rightarrow \vec{y}_1$$
 $\vec{x}_2 \rightarrow \vec{y}_2$ $\vec{x}_3 \rightarrow \vec{y}_3$... $\vec{x}_n \rightarrow \vec{y}_n$

Hebb's rule

$$\Delta w_{ij} = x_i y_j$$

Result

$$\mathbf{W} = \sum_{p=1}^{n} \vec{y}_{p} \cdot \vec{x}_{p}^{\mathrm{T}}$$

Correlational memory!

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- · System identification

Backpropagation

Multi-layer perceptron

Perceptron

Storing mappings (memorising)

Retrieving a memory trace

$$\mathbf{W} = \sum_{p=1}^{n} \vec{y}_{p} \cdot \vec{x}_{p}^{\mathrm{T}}$$

$$\vec{x}_k \rightarrow ?$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Storing mappings (memorising)

Retrieving a memory trace

$$\mathbf{W} = \sum_{p=1}^{n} \vec{y}_{p} \cdot \vec{x}_{p}^{\mathrm{T}}$$

$$\vec{x}_k \rightarrow ?$$

$$\vec{y}_{out} = W \vec{x}_k = \sum_{p=1}^{n} (\vec{y}_p \vec{x}_p^T) \vec{x}_k = \sum_{p=1}^{n} \vec{y}_p (\vec{x}_p^T \vec{x}_k)$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Backpropagation
 - System identification

Multi-layer perceptron

Perceptron

Storing mappings (memorising)

Retrieving a memory trace

$$W = \sum_{p=1}^{n} \vec{y}_{p} \cdot \vec{x}_{p}^{T}$$

$$\vec{x}_{k} \rightarrow ?$$

$$\vec{y}_{out} = W \vec{x}_{k} = \sum_{p=1}^{n} (\vec{y}_{p} \vec{x}_{p}^{T}) \vec{x}_{k} = \sum_{p=1}^{n} \vec{y}_{p} (\vec{x}_{p}^{T} \vec{x}_{k}) =$$

$$= \vec{y}_{k} (\vec{x}_{k}^{T} \vec{x}_{k}) + \sum_{p \neq k}^{n} \vec{y}_{p} (\vec{x}_{p}^{T} \vec{x}_{k})$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- · Multi-layer perceptron
- Backpropagation
- System identification

Storing mappings (memorising)

Retrieving a memory trace

$$W = \sum_{p=1}^{n} \vec{y}_{p} \cdot \vec{x}_{p}^{T}$$

$$\vec{x}_{k} \to ?$$

$$\vec{y}_{out} = W \vec{x}_{k} = \sum_{p=1}^{n} (\vec{y}_{p} \vec{x}_{p}^{T}) \vec{x}_{k} = \sum_{p=1}^{n} \vec{y}_{p} (\vec{x}_{p}^{T} \vec{x}_{k}) =$$

$$= \vec{y}_{k} (\vec{x}_{k}^{T} \vec{x}_{k}) + \sum_{p \neq k}^{n} \vec{y}_{p} (\vec{x}_{p}^{T} \vec{x}_{k}) \approx \alpha \vec{y}_{k}$$

- Recap
- Linear feed-forward networks
- · Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Storing mappings (memorising)

Retrieving a memory trace

$$W = \sum_{p=1}^{n} \vec{y}_{p} \cdot \vec{x}_{p}^{T}$$

$$\vec{x}_{k} \to ?$$

$$\vec{y}_{out} = W \vec{x}_{k} = \sum_{p=1}^{n} (\vec{y}_{p} \vec{x}_{p}^{T}) \vec{x}_{k} = \sum_{p=1}^{n} \vec{y}_{p} (\vec{x}_{p}^{T} \vec{x}_{k}) =$$

$$= \vec{y}_{k} (\vec{x}_{k}^{T} \vec{x}_{k}) + \sum_{p \neq k}^{n} \vec{y}_{p} (\vec{x}_{p}^{T} \vec{x}_{k}) \approx \alpha \vec{y}_{k}$$

$$\approx \mathbf{0}$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
 Backpropagation
- Backpropagation
- · System identification

Storing mappings (memorising)

Retrieving a memory trace

$$W = \sum_{p=1}^{n} \vec{y}_{p} \cdot \vec{x}_{p}^{T}$$

$$\vec{x}_{k} \rightarrow ?$$

$$\vec{y}_{out} = W \vec{x}_{k} = \sum_{p=1}^{n} (\vec{y}_{p} \vec{x}_{p}^{T}) \vec{x}_{k} = \sum_{p=1}^{n} \vec{y}_{p} (\vec{x}_{p}^{T} \vec{x}_{k}) =$$

$$= \vec{y}_{k} (\vec{x}_{k}^{T} \vec{x}_{k}) + \sum_{p \neq k}^{n} \vec{y}_{p} (\vec{x}_{p}^{T} \vec{x}_{k}) \approx \alpha \vec{y}_{k}$$

Perfect memory only if the patterns \vec{x}_p are orthogonal

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

TLU – how it all started....

Threshold logic unit – McCulloch Pitts neuron (1942)

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

TLU – McCulloch Pitts

Threshold logic unit – McCulloch Pitts neuron (1942)

$$x_1 \xrightarrow{w_1} y'$$

$$x_n \xrightarrow{w_n} (\Sigma) \longrightarrow y$$

$$y' = w_1 x_1 + w_2 x_2$$
 $y = f_{step}(y')$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

TLU – McCulloch Pitts

Threshold logic unit – McCulloch Pitts neuron (1942)

$$y' = w_1 x_1 + w_2 x_2$$
 $y = f_{step}(y')$

If threshold is 0, then:

$$w_1 x_1 + w_2 x_2 > 0 \rightarrow y' > 0 \rightarrow y = 1$$

$$w_1 x_1 + w_2 x_2 \le 0 \rightarrow y' \le 0 \rightarrow y = 0$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

Geometrical interpretation

$$y' = w_1 x_1 + w_2 x_2$$

- Multi-layer perceptron
- Linear feed-forward networks
- Backpropagation
- Thresholded single-layer networks System identification

Perceptron

Geometrical interpretation

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

Threshold in TLU

THRESHOLDING with $\theta = 0$:

$$y = f_{step}(y')$$

$$w_1 x_1 + w_2 x_2 > 0 \rightarrow y' > 0 \rightarrow y = 1$$

$$w_1 x_1 + w_2 x_2 \le 0 \rightarrow y' \le 0 \rightarrow y = 0$$

 x_1

decision

boundary

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

Threshold in TLU

$$y' = w_1 x_1 + w_2 x_2$$

THRESHOLDING with $\theta \sim 0$:

$$y' > \theta \rightarrow y = 1$$

$$y' \leqslant \theta \rightarrow y = 0$$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

Threshold in TLU

$$y' = w_1 x_1 + w_2 x_2$$

THRESHOLDING with $\theta \sim 0$:

$$y' > \theta \rightarrow y = 1$$

$$y' \leqslant \theta \rightarrow y = 0$$

$$w_1 x_1 + w_2 x_2 > \theta \rightarrow y = 1$$

- Multi-layer perceptron
- · Linear feed-forward networks
- Backpropagation
- Thresholded single-layer networks System identification

Perceptron

Threshold in TLU – geometrical interpretation

$$w_1 x_1 + w_2 x_2 > \theta \rightarrow w_1 x_1 + w_2 x_2 - \theta > 0$$

$$y' = w_1 x_1 + w_2 x_2 - \theta$$

- Multi-layer perceptron
- Linear feed-forward networks
- Backpropagation
- Thresholded single-layer networks System identification

Perceptron

Threshold in TLU – bias trick

$$y' = w_1 x_1 + w_2 x_2 - \theta$$

$$y' = w_1 x_1 + w_2 x_2 + w_0 1$$

where: bias $w_0 = -\theta$

 x_1

- Multi-layer perceptron
- · Linear feed-forward networks
- Backpropagation
- Thresholded single-layer networks System identification

Perceptron

Threshold in TLU – bias trick

$$y' = w_1 x_1 + w_2 x_2 - \theta$$

$$y' = w_1 x_1 + w_2 x_2 + w_0 1$$

where: bias $w_0 = -\theta$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

Linear separability with TLU – geometrical interpret.

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks System identification
- Multi-layer perceptron
- Backpropagation

Linear separability with TLU – geometrical interpret.

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- System identification

Backpropagation

Multi-layer perceptron

Perceptron

Binary classification with perceptron

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Binary classification with perceptron

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Space of weights and inputs - perceptron

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Space of weights and inputs - perceptron

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Classification with perceptron – how does it work?

2D input space and 3D network's linear output

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Classification with perceptron

Linear output and perceptron's thresholded output

Separating hyperplane – network's linear output

Output surface – percpetron's thresholded output

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Classification with perceptron

Decision boundary in the input space

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Lilleai leed-loiwald lietworks
- Backpropagation
- System identification

Multi-layer perceptron

Perceptron

Perceptron learning for classification

Perceptron learning for thresholded single-layer networks

<u>Basic principle</u>: weights are modified if and only if a pattern is erroneously classified:

When the network output = 0 but it should be 1 (target = 1)

$$\Delta \vec{w} = \eta \vec{x}$$

When the network output = 1 but it should be 0 (target = 0)

$$\Delta \vec{w} = -\eta \vec{x}$$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Perceptron learning – geometrical interpretation

When the result is 0 but should be 1: $\Delta \vec{w} = \eta \Delta \vec{x}$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Perceptron learning – geometrical interpretation

When the result is 1 but should be 0: $\Delta \vec{w} = -\eta \Delta \vec{x}$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- · Multi-layer perceptron
- Backpropagation
- · System identification

Perceptron learning – convergence theorem

Convergence theorem

If a solution exists for a finite training dataset then perceptron learning always converges after a finite number of sets (independent of step size/learning rate, η)

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Perceptron learning

Problem: learning terminates prematurely.

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Perceptron learning

Problem: learning terminates prematurely.

- Recar
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Perceptron learning

Problem: learning terminates prematurely.

Negative consequences are likely when patterns are only approximately similar to those used for training

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Delta rule (Widrow-Hoff rule, ADALINE)

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Delta rule (Widrow-Hoff rule, ADALINE)

- 1. Symmetric target values: {-1, 1}
- 2. Error is measured before thresholding

$$e = t - \vec{w}^{\mathrm{T}} \vec{x}$$

3. Find weights that minimise the error cost function

$$\varepsilon = \frac{e^2}{2}$$

- Recap
- Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

The task is to minimise the cost function $\varepsilon = \frac{e^2}{2}$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

The task is to minimise the cost function $\varepsilon = \frac{e^2}{2}$

- Gradient defines the direction in which the error increases most
- Steepest descent implies that the move in the opposite direction in the weight space should be taken

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- · Multi-layer perceptron
- Backpropagation
- · System identification

The task is to minimise the cost function $\varepsilon = \frac{e^2}{2}$

- Gradient defines the direction in which the error increases most
- Steepest descent implies that the move in the opposite direction in the weight space should be taken

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

The task is to minimise the cost function $\varepsilon = \frac{e^2}{2}$

- Gradient defines the direction in which the error increases most
- Steepest descent implies that the move in the opposite direction in the weight space should be taken
- Gradient is calculated as follows:

$$\frac{\partial \varepsilon}{\partial \vec{w}} = e \frac{\partial e}{\partial \vec{w}} = e \frac{\partial (t - \vec{w}^{\mathrm{T}} \vec{x})}{\partial \vec{w}} = -e \vec{x}$$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

The task is to minimise the cost function $\varepsilon = \frac{e^2}{2}$

Simple algorithm: steepest descent

- Gradient defines the direction in which the error increases most
- Steepest descent implies that the move in the opposite direction in the weight space should be taken
- Gradient is calculated as follows:

$$\frac{\partial \mathcal{E}}{\partial \vec{w}} = e \frac{\partial e}{\partial \vec{w}} = e \frac{\partial (t - \vec{w}^{\mathrm{T}} \vec{x})}{\partial \vec{w}} = -e \vec{x}$$

Delta Rule:

$$\Delta \vec{w} = \eta e \, \vec{x}$$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Training of thresholded single-layer networks

Perceptron learning:

Delta rule:

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Training of thresholded single-layer networks

Perceptron learning:

$$\Delta \vec{w} = \eta e \vec{x}$$
 where $e = t - y$

Delta rule:

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- · System identification

Training of thresholded single-layer networks

Perceptron learning:

$$\Delta \vec{w} = \eta e \vec{x}$$

$$\Delta \vec{w} = \eta e \vec{x}$$
 where $e = t - y$

Delta rule:

$$\Delta \vec{w} = \eta e \vec{x}$$

$$\Delta \vec{w} = \eta e \vec{x}$$
 where $e = t - \vec{w}^T \vec{x}$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Separability with TLU / perceptron

Can all sets of patterns be separated?

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Separability with TLU / perceptron

Can all sets of patterns be separated?

Classical counter-example is Exclusive OR (XOR)

$$\left|\begin{array}{c}0\\0\end{array}\right|
ightarrow0$$

$$\left[egin{array}{c} 0 \ 1 \end{array}
ight]
ightarrow 1$$

$$\left[\begin{array}{c} 0 \\ 0 \end{array} \right]
ightarrow 0 \qquad \left[\begin{array}{c} 0 \\ 1 \end{array} \right]
ightarrow 1 \qquad \left[\begin{array}{c} 1 \\ 0 \end{array} \right]
ightarrow 1 \qquad \left[\begin{array}{c} 1 \\ 1 \end{array} \right]
ightarrow 0$$

$$\left[egin{array}{c} 1 \ 1 \end{array}
ight]
ightarrow 0$$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Multi-layer perceptron
- Backpropagation
- System identification

Separability with TLU / perceptron

Can all sets of patterns be separated?

Classical counter-example is Exclusive OR (XOR)

$$\left[\begin{array}{c} 0 \\ 0 \end{array}\right]
ightarrow 0$$

$$\left[egin{array}{c} 0 \\ 0 \end{array}
ight]
ightarrow 0 \qquad \left[egin{array}{c} 0 \\ 1 \end{array}
ight]
ightarrow 1 \qquad \left[egin{array}{c} 1 \\ 0 \end{array}
ight]
ightarrow 1 \qquad \left[egin{array}{c} 1 \\ 1 \end{array}
ight]
ightarrow 0$$

$$\left| egin{array}{c} 1 \\ 0 \end{array}
ight|
ightarrow 1$$

$$\left[\begin{array}{c}1\\1\end{array}\right]\to 0$$

- Recap
- · Linear feed-forward networks
- Thresholded single-layer networks
- Perceptron

- Multi-layer perceptron
- Backpropagation
- System identification

Separability with TLU / perceptron

Can all sets of patterns be separated?

Classical counter-example is Exclusive OR (XOR)

$$\left|\begin{array}{c}0\\0\end{array}\right|
ightarrow0$$

$$\left[egin{array}{c} 0 \ 1 \end{array}
ight]
ightarrow 1$$

$$\left[\begin{array}{c}1\\0\end{array}\right]
ightarrow 1$$

$$\left[\begin{array}{c} 0 \\ 0 \end{array} \right]
ightarrow 0 \qquad \left[\begin{array}{c} 0 \\ 1 \end{array} \right]
ightarrow 1 \qquad \left[\begin{array}{c} 1 \\ 0 \end{array} \right]
ightarrow 1 \qquad \left[\begin{array}{c} 1 \\ 1 \end{array} \right]
ightarrow 0$$

Not linearly separable!