UT1. Representación de la información

EJERCICIOS 2

 Haz un esquema de cómo se realizan los cambios de binario a decimal, octal y hexadecimal y viceversa

De binario a decimal

$$10011001 = 1*2^7 + 0*2^6 + 0*2^5 + 1*2^4 + 1*2^3 + 0*2^2 + 0*2^1 + 0*2^0$$

Cada uno de los datos en el número binario van a ser multiplicados por 2 y elevados por su posición en el número.

De decimal a binario

$$23 = 10111$$

El número decimal va a ser dividido por dos. Si esta división no tiene resto se cuenta como 0. En caso de que si tenga resto se toma como 1 y el cociente de la operación es dividido por dos.

Se realizará esta operación hasta que el cociente no pueda volver a ser dividido por 2 y se tomará el último valor de cociente como primer número del binario creado. Los demás serán los números 1 y 0 que hemos ido tomando dependiendo del resto de la división.

Tomándose estos desde abajo hacia arriba.

De binario a octal

El número binario se agrupará en grupos de 3 números.

Tras esto se utilizará la misma técnica que para pasar de binario a decimal solo que solo se hará en cada grupo. Teniendo como número máximo posible el 7 y mínimo el 0

Para después unir estos números conseguidos en uno solo, como si se unieran dos textos

De octal a binario

5 5 2 = 101 101 010

Se toman parejas binarias de 3 en 3

De binario a hexadecimal

1001 1110 1100 = 9 D C

A = 1010 B = 1011 C = 1100 D = 1101 E = 1110 F = 1111

Se toman parejas binarias de 4 en 4

Estas agrupaciones llegarán hasta el número 15 pero como el sistema binario sólo utiliza números del 0-9 se usarán letras para suplantar los números superiores a 9

- 2. Realiza los siguientes cambios a binario a.
 - a. 1030₍₁₀

0110000001(2

b. 7301₍₈₎

111 011 000 001 -> 111011000001(2

c. FEO(16

No pertenece 'O', no es un número hexadecimal

Si fuese 0 en vez de O:

1111 1110 0000 -> 1111111100000(2

- 3. Transforma este número binario 1111100000 en:
 - 1. Decimal

992(10

2. Octal

001 111 100 000 -> 1 7 4 0(8

3. Hexadecimal

0011 1110 0000 -> 3 E 0(16

4. Realiza una tabla de correspondencia como la siguiente entre los sistemas decimal, binario, octal y hexadecimal:

DECIMAL	BINARIO	OCTAL	HEXADECIMAL
0	0000	000	0000
1	0001	001	0001
2	0010	010	0010
3	0011	011	0011
4	0100	100	0100
5	0101	101	0101
6	0110	110	0110
7	0111	111	0111
8	1000	*	1000
9	1001	*	1001
10	1010	001 000	А
11	1011	001 001	В
12	1100	001 010	С
13	1101	001 011	D
14	1110	001 100	Е
15	1111	001 101	F