IPv6

Comunicaciones

LCC

UNR

bulacio@cifasis-conicet.gov. ar

- IPv6.br, Material Teórico, Curso IPv6 Básico, http://ipv6.br/download/
- TCP/IP Tutorial and Technical Overview, ibm.com/redbooks
- The ABCs of IP Version 6, www.cisco.com/go/abc
- Tutorial de IPv6, Consulintel, IPv6 Forum.
- Guía de administración del sistema: servicios IP, *SUN* Microsystems.

IPv6: Contenido

- Motivaciones y Orígenes de IPv6
- Objetivos de Diseño
- Datagrama Cabeceras
- Direcciones
- Funcionalidades
 - ICMP/
 - Neighbor Discovery/
 - Autoconfiguration/
 - PMTUD/ QoS/
 - Coexistence issues

Internet

• 1969 – Inicio de ARPANET (Advanced Research Projects Agency Network): 4 computadoras con cables dedicados

- 1981 Definición de IPv4 en la RFC 791
- 1983 ARPANET adopta TCP/IP
- **1990** Primeros estudios sobre el agotamiento de las direcciones
- 1993 Internet comienza a ser explotada comercialmente

THE ARPA NETWORK

DEC 1969

4 NODES

FIGURE 6.2 Drawing of 4 Node Network (Courtesy of Alex McKenzie)

IANA: Internet Assigned Numbers Authority

• 32 bits de direcciones (~ 4000 millones)

Clase	Net	Host	Dirs.#	Hosts
Α	1 oct.	3 oct.	126	16.387.064
В	2 oct.	2 oct.	16.383	64.516
С	3 oct.	1 oct.	1.097.151	254

Agotamiento del espacio total

Soluciones paliativas: Subneting, DHCP, NAT, ...

Dynamic Host Configuration Protocol, RFC 2131

Grupos

1992 – La IETF -**Internet Engineering Task Force -** crea el grupo IPng (IP *Next Generation*)

- Aspectos principales:
 - Escalabilidad;
 - Seguridad;
 - Configuración y administración de redes;
 - Soporte para QoS;
 - Movilidad;
 - Políticas de enrutamiento;
 - Transición.
- 1993 surge la RFC 1550 IP: Next Generation (IPng)
- 1994 se renombra como IPv6

Objetivos de Diseño (IETF) IPv6

Julio de 1999: Constitución oficial del IPv6 Forum.

- Datagrama Eficiente: Base + Extensión
- Direccionamiento: Mayor número de direcciones
- Fragmentación en origen-destino
- Identificador de flujos (QoS)
- Mecanismos que faciliten la configuración (plug ¬play)
- Seguridad incorporada: autenticación y cifrado
- Compatibilidad con IPv4

• ...

Cabeceras IPv4 - IPv6

IPv6.br, Material Teórico, Curso IPv6 Básico

IPv4 Header 20bytes+opt	IPv6 Header 40 bytes		
Version	=		
Internet Header Length	Removido, la longitud es fija (40 bytes)	•	
Type of Service	Remplazado por Traffic Class en IP	v6.	
Total Length	Remplazado por el campo Payload Length, que sólo indica la longitud del payload.		
Identification Fragmentation Flags Fragment Offset	Removido, la lx de fragmentación está en la cabecera de Fragmentation.		
Time to Live	Remplazado por el campo Hop Limit.		
Protocol	Remplazado por el campo Next Heade	r.	
Header Checksum	Removido puesto que la detección de bit-level Error es realizada en el paquete completo por la capa de enlace		
Source Address 32 bits	Incrementado a 128 bits.		
Destination Address	Incrementado a 128 bits.		
Options	Reemplazado por cabeceras de extensión		

Datagrama IPv6 (RFC2460)

+ **Simple:** 40 bytes fijos

+ **Flexible:** cabeceras opcionales

+ Eficiente: minimiza el overhead

Cabecera Base-Extensión IPv6

Cabeceras de Extensión

TCP/IP Tutorial and Technical Overview, Chap. 17, IBM.

- Son identificados por Next Header
- Cada tipo puede aparecer una vez en un paquete
- El orden es importante para el procesado eficiente en los routers intermedios
- En cada nodo sólo se analizan *Hop-by-Hop* y *Routing*

Cabeceras de Extensión:

IPv6 Header
Next Header = 43
(Routing)

Routing Header
Next Header = 51
(AH)

Authentication Header
Next Header = 6
(TCP)

TCP Segment
Next Header = 6

Extensión: Hop-by-Hop

Siguiente Encabezado	Tam. encab. de extensión				
Opciones					

- Identificado por Next Header = 0
- **Procesado** por todos los nodos en la ruta del paquete.
- **Tamaño del Encabezado** (1 byte): Tamaño del encabezado *Hop-by-Hop* en unidades de 8 bytes, excluyendo los ocho primeros.
- Opciones: Contiene una o más opciones.
 - **Type:** Los 2 primeros bits codifican qué hacer en caso que el nodo no reconozca la opción:
 - 00: ignorar y continuar el procesamiento.
 - 01: descartar el paquete.
 - 10: descartar el paquete y enviar mensaje ICMP *Parameter Problem* a la dirección de origen.
 - 11: descartar el paquete y enviar mensaje ICMP *Parameter Problem* a la dir. de origen, solamente si el destino no es una dirección *multicast*.

Ej.: Hop-by-Hop

- Opciones:
 - Router Alert: informa Mx con tratamiento especial (RSVP, Resourse Reservation Protocol)
 - Jumbogram: Payload $> 2^{16} = 65535$ bytes Jumbo

Payload Length=0

Type: 194 (8 bits) Length: 4 (8 bits)

value: Jumbo Payload length (4 bytes),

Total packet size menos los 40 bytes basic header

Extensión: Routing header

Identificado por Next Header: 43
Routing type 0: ruta predefinida

- El 1er salto es la dir. del header base.
- Cdo llega a esa dirección, el router cambia la dirección destino del header base con la próxima dirección (adderess[i]), y
- Decrementa addrs left.

Problemas de seguridad

Ej. Routing header

Figure 5: IPv6 Routing Header

Extensión: Fragment (ver Path MTU Discovery)

- Identificado por Next Header=44
- Requiere el Path MTU (maximum transmission unit), RFC 1191.
- IPv6 MTU \Rightarrow 1280 bytes.

Fragment offset, 13 bits: offset en unidades de 8 bytes la posición del fragmento actual respecto al datagrama original

Frag. ID: identificador de los fragmentos de un mismo datagrama

M: si hay más fragmentos

Identificación: valor único generado por el nodo origen para identificar el paquete original. Se usa para detectar los fragmentos del mismo paquete

IPv6: Cabeceras

- Resumen de Ventajas:
 - Escalable en el número/tipo de opciones
 - Procesamiento ordenado/eficiente
 - Distribución de la complejidad
 - Cabeceras procesadas por elementos de red intermedios (routers)
 - Cabeceras procesadas en destino

Actividad 1: Cabecera

- 1. Describa qué campos se eliminaron/modificaron respecto a la cabecera IPv4-IPv6. Por qué?
- 2. Cuál es el fin de separar en una cabecera base y posibles cabeceras de extensión?
- 3. Qué cabeceras son analizadas en los routers intermedios?
- 4. Describa las siguientes características de la cabecera base de IPv6: tamaño posible, información y utilidad de los campos Traffic class, Flow label, Next header.