SOUS-ALGÈBRES NILPOTENTES DE $\mathscr{L}(E)$)

Dans tout le problème, $\mathbb K$ désigne un corps commutatif arbitraire.

Si E et F sont des espaces vectoriels sur \mathbb{K} , on note $\mathscr{L}(E,F)$ l'espace vectoriel des applications linéaires de E dans F; pour tout élément T de $\mathscr{L}(E,F)$, on désigne par KerT et ImT respectivement le noyau de T dans E et son image dans F.

Lorsque E = F, l'espace vectoriel (E, E) est noté simplement $\mathcal{L}(E)$.

Un élément T de $\mathcal{L}(E)$ est dit *nilpotent* s'il existe un entier strictement positif r tel que $T^r = 0$.

On appelle ici sous-algèbre de $\mathcal{L}(E)$ tout sous-espace vectoriel de $\mathcal{L}(E)$ stable par multiplication (contrairement à la définition actuellement en vigueur dans le programme, on n'impose pas ici que cette sous-algèbre contienne Id_E).

Une sous-algèbre $\mathcal A$ est dite nilpotente s'il existe un entier strictement positif r tel que le produit de r éléments quelconques de $\mathcal A$ soit nul, et on appelle ordre de nilpotence de $\mathcal A$ le plus petit de ces entiers r.

Le but de ce problème est d'établir quelques propriétés des sous-algèbres nilpotentes.

Première partie

Dans cette partie, on note E l'espace vectoriel \mathbb{K}^2 .

- **I.1** Soit T un endomorphisme nilpotent non nul de E, r le plus petit entier positif tel que $T^r = 0$.
 - a) Déterminer les dimensions de KerT et ImT.
 - **b)** Démontrer que $\operatorname{Im} T = \operatorname{Ker} T$.
 - c) Construire une base de E dans laquelle T est représenté par la matrice $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et préciser la valeur de r.
- **I.2** Soit \mathscr{A} une sous-algèbre nilpotente non nulle de $\mathscr{L}(E)$. Montrer qu'il existe une base de E dans laquelle les matrices représentant les éléments de \mathscr{A} sont exactement les matrices $\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$ avec $c \in \mathbb{K}$.

Deuxième partie

Dans cette partie, on se donne un espace vectoriel E sur K et une décomposition de E en somme directe de sous-espaces vectoriels $E = E_1 \oplus E_2 \oplus \cdots \oplus E_n$; pour tout $i \in [1, n]$, on note P_i le projecteur sur E_i associé à cette décomposition; on écrit aussi x_i au lieu de $P_i(x)$ pour $x \in E$.

II.1 Étant donné un endomorphisme T de E, construire des applications linéaires $T_{i,j}$ appartenant à $\mathcal{L}(E_j, E_i)$ telles que l'on ait $(T(x))_i = \sum_i T_{i,j}(x_j)$ pour tout $x \in E$.

On dira que T est représenté par le tableau d'applications linéaires $(T_{i,j})$.

II.2 Étant donné deux endomorphismes S et T de E, exprimer les composantes $(ST)_{i,j}$ de ST en fonction de celles de S et T.

Troisième partie

Dans cette partie, on pose $E=K^n$, où n est un entier strictement positif; on considère un endomorphisme nilpotent non nul T de E et on note r le plus petit entier strictement positif tel que $T^r=0$. On pose $E_3=\operatorname{Im} T\cap \operatorname{Ker} T$.

- **III.1** Vérifier que E_3 est distinct de $\{0\}$ et de E.
- **III.2** Pour quelles valeurs de r a-t-on $E_3 = \text{Im T}$?

III.3 Dans cette question, on suppose $r \geqslant 3$ et on note E_1 (resp. E_2) un sous-espace vectoriel supplémentaire de Im T dans E (resp.de E_3 dans Im T). Vérifier que, dans la décomposition en somme directe $E = E_1 \oplus E_2 \oplus E_3$, T est représenté par un tableau de la forme

$$\begin{bmatrix} 0 & 0 & 0 \\ T_{2,1} & T_{2,2} & 0 \\ T_{3,1} & T_{3,2} & 0 \end{bmatrix}.$$

Montrer que $T_{2,2}$ est nilpotent et qu'il existe une base de E dans laquelle T est représenté par une matrice $(t_{i,j})$ telle que $t_{i,j}$ soit nul lorsque $i \le j$.

- **III.4** Comparer r et n.
- III.5 Appliquer ce qui précède au cas où n=4 et où T est représenté par la matrice

$$\begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

dans la base canonique de \mathbb{K}^4 .

Quatrième partie

Dans cette quatrième et dernière partie, nous utiliserons les notations suivantes : si X et Y sont deux espaces vectoriels sur \mathbb{K} et \mathscr{Z} un sous-ensemble de $\mathscr{L}(X,Y)$, nous désignerons par $\mathscr{K}(\mathscr{Z})$ l'intersection des noyaux des éléments de \mathscr{Z} , et par $\mathscr{I}(\mathscr{Z})$ le sous-espace vectoriel de Y engendré par les images des éléments de \mathscr{Z} .

On considère une sous-algèbre nilpotente non nulle \mathscr{A} de $\mathscr{L}(E)$, où $E=K^n$; on note r son ordre de nilpotence et on pose $E_3=\mathscr{I}(\mathscr{A})\cap\mathscr{K}(\mathscr{A})$.

- **IV.1** Vérifier que $\mathscr{I}(\mathscr{A})$ est distinct de E et que E_3 est distinct de $\{0\}$ et de E.
- **IV.2** Pour quelles valeurs de r a-t-on $E_3 = \mathcal{I}(\mathcal{A})$?

Dans la suite du problème on suppose $r \ge 3$; on note E_1 (resp. E_2) un sous-espace vectoriel supplémentaire de $\mathscr{I}(\mathscr{A})$ dans E (resp. de E_3 dans $\mathscr{I}(\mathscr{A})$).

On écrit les éléments T de $\mathscr A$ sous la forme $\begin{bmatrix} 0 & 0 & 0 \\ T_{2,1} & T_{2,2} & 0 \\ T_{3,1} & T_{3,2} & 0 \end{bmatrix}$; pour i,j=1,2,3, on note $\mathscr A_{i,j}$ l'espace vectoriel des $T_{i,j}$ où T parcourt $\mathscr A$.

IV.3 Démontrer, pour tout $T \in \mathcal{A}$, l'implication ¹

v.s Demontier, pour tout $1 \in \mathcal{A}$, i implication

$$T_{22} \neq 0 \Longrightarrow \exists (S,T) \in \mathcal{A}^2, STU \neq 0$$

- **IV.4** a) Vérifier que $\mathcal{A}_{2,2}$ est une sous-algèbre nilpotente de $\mathcal{L}(E_2, E_2)$ et dire pour quelles valeurs de r cette sous-algèbre est nulle.
 - **b)** Montrer qu'il existe une base de E dans laquelle tous les éléments T de \mathscr{A} sont représentés par des matrices $(t_{i,j})$ telles que $t_{i,j}$ soit nul lorsque $i \le j$.
 - c) Comparer r et n.
- **IV.5** On suppose ici $r \ge 4$. Soit r' l'ordre de nilpotence de $\mathcal{A}_{2,2}$. Montrer que r' = r 2.

^{1.} Cette question ne fait pas partie de l'énoncé original. Mais le résultat obtenu est indispensable pour la suite.

^{2.} Dans l'énoncé original, il y a juste : "déterminer r'"...