

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ**

ОТЧЕТ

по лабораторной работе № 3

Название:	Исследование синхронных счётчиков
Дисциплина:	Архитектура ЭВМ

 Студент
 ИУ7-45Б (Группа)
 (Подпись, дата)
 А.П. Бугаенко (И.О. Фамилия)

 Преподаватель
 $(\Pi \text{одпись, дата})$ (И.О. Фамилия)

Цель работы — изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

Задание №1. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на Т-триггерах.

Построим схему синхронного суммирующего счётчика с параллельным переносом на Т-триггерах:

Puc 1. Схема синхронного суммирующего счётчика с параллельным переносом на Т-триггерах.

Лампочки отражают двоичное представление числа, на hex-экране можно увидеть 16-ричное представление числа. Также стоит отметить, что порядок изменения состояния на данном счётчике является естественным.

Подключим к схеме импульсный генератор и логический анализатор сигналов:

Рис 2. Схема синхронного суммирующего счётчика с параллельным переносом на Т-триггерах с включёнными в неё импульсным генератором и логическим анализатором.

Рис 3. Результат работы счётчика в виде сигнала на логическом анализаторе. Мы можем наблюдать, как четырёхразрядный счётчик последовательно возвращает сигналы, соответствующие десятичным числам от 0 до 15. При этом стоит заметить, что комбинируя разное количество триггеров можно получать счётчики разной разрядности.

Задание №2. Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний.

Вариант №4:

Тогда в нашем случае последовательность состояний - 0, 1, 2, 3, 4, 5, 8, 9, 10, 11. Сборку схемы проведём на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ) и синхронных ЈК-триггерах.

Сначала определим количество триггеров для синтеза счётчика:

$$M = 10, L = 11, n_1 = log_2 M$$

Составим таблицу функционирования счётчика:

		1	t	Í		t+	-1			•						
Nº	Q3	Q2	Q1	Q0	Q3*	Q2*	Q1*	Q0*	J3	K3	J2	K2	J1	K1	J0	K0
0	0	0	0	0	0	0	0	1	0	а	0	а	0	а	1	а
1	0	0	0	1	0	0	1	0	0	а	0	а	1	а	а	1
2	0	0	1	0	0	0	1	1	0	а	0	а	а	0	1	а
3	0	0	1	1	0	1	0	0	0	а	1	а	а	1	а	1
4	0	1	0	0	0	1	0	1	0	а	а	0	0	а	1	а
5	0	1	0	1	1	0	0	0	1	а	а	1	0	а	а	1
8	1	0	0	0	1	0	0	1	а	0	0	а	0	а	1	а
9	1	0	0	1	1	0	1	0	а	0	0	а	1	а	а	1
10	1	0	1	0	1	0	1	1	а	0	0	а	а	0	1	а
11	1	0	1	1	0	0	0	0	а	1	0	а	а	1	а	1

Таблица 1. Таблица функционирования счётчика.

Q3 Q2 \ Q1 Q0	00	01	11	10		
00	1	a	a	1		
01	1	a	-	-		
11	-	-	-	-		
10	1	a	a	1		
J0 = 1						

Таблица 2.

Q3 Q2 \ Q1 Q0	00	01	11	10		
00	a	1	1	a		
01	a	1	-	-		
11	ı	-	1	ı		
10	a	1	1	a		
K0 = 1						

Таблица 3.

Q3 Q2 \ Q1 Q0	00	01	11	10			
00	0	1	a	a			
01	0	0	-	-			
11	-	ı	I	ı			
10	0	1	a	a			
$11 - (02 02 00) \parallel (02 02 00) - 00 02$							

$J1 = (\sim Q3 \sim Q2 \ Q0) \parallel (Q3 \sim Q2 \ Q0) = Q0 \sim Q2$

Таблица 4.

Q3 Q2 \ Q1 Q0	00	01	11	10		
00	a	a	1	0		
01	a	a	-	-		
11	-	-	-	-		
10	a	a	1	0		
K1 = Q0						

Таблица 5.

Q3 Q2 \ Q1 Q0	00	01	11	10		
00	0	0	1	0		
01	a	a	ı	-		
11	-	-	-	-		
10	0	0	0	0		
J2=~Q3 Q1 Q0						

Таблица 6.

Q3 Q2 \ Q1 Q0	00	01	11	10		
00	a	a	a	a		
01	0	1	-	-		
11	-	-	-	-		
10	a	a	a	a		
K2 = Q2Q0						

Таблица 7.

Q3 Q2 \ Q1 Q0	00	01	11	10		
00	0	0	0	0		
01	0	1	-	-		
11	-	-	-	-		
10	a	a	a	a		
J3=Q2Q0						

Таблица 8.

Q3 Q2 \ Q1 Q0	00	01	11	10		
00	a	a	a	a		
01	a	a	-	-		
11	-	-	-	-		
10	0	0	1	0		
K3 = Q1Q0						

Таблица 9.

Реализация комбинационной части счётчика:

Рис 4. Схема счётчика

Проверка корректности с помощью логического анализатора:

Рис 5. Результаты анализа.

Желтый указатель показывает начало счёта из состояния 0, а синий показывает конец счёта в состоянии 11. Также синтезированный счётчик является самовосстанавливающимся, так как при принятии состояния 15 следующее состояние будет 0, и при принятии состояния 6 переход в состояние 14.

Задание №3. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом. Проверить работу счётчика.

Рис 6. Четырёхразрядный синхронный суммирующий счётчик с параллельным переносом и ручным управлением.

Рис 7. Четырёхразрядный синхронный суммирующий счётчик с параллельным переносом и генератором.

Рис 8. Анализ сигналов счётчика с параллельным переносом.

Задание №4. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9, аналог ИС 74LS160. Проверить работу счётчика.

Рис 7. Схема четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9.

Как можно заметить из графика ниже, данный счётчик работает и выполняет счёт от одного до девяти.

Рис 8. Временной анализ счётчика.

Задание №5. Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями и по структуре «быстрого» счета.

Рис 8. Последовательный перенос между секциями.

Рис 9. структура «быстрого» счета.

Вывод:

В данной лабораторной работе мы исследовали различные виды счётчиков. Помимо этого был создан рабочий прототип счётчика с неестественным порядком счёта, что показывает громадный потенциал данных схем в области электроники и алгебры логики. Также были исследованы некоторые виды построений счётчиков, и мною была замечена ощутимая разница во времени выполнений операций между параллельной и последовательной конфигурацией, причём параллельная конфигурация существенно выигрывает у последовательной.