Análise LR(1)

Construção de compiladores I

Objetivos

Objetivos

• Apresentar o algoritmo de análise sintática LR(1).

Introdução

Introdução

• Nas aulas anteriores, vimos o as funções de fechamento e goto, utilizadas para a construção de itens LR(0), do autômato LR(0) e do algoritmo de análise sintática LR(0) e SLR.

Introdução

- \bullet Nesta aula, vamos conhecer outro algoritmo de análise ascendente: LR(1)
- O algoritmo LR(1) será um algoritmo que usará o conceito de lookahead.

Introdução

• Lookahead: primeiro símbolo da entrada, ainda não processado pelo algoritmo.

Introdução

- Um item LR(1) é formado por uma produção, contendo um marcador, e um símbolo de lookahead.
- Se $A \to \alpha$ é uma regra, então $[A \to .\alpha, a]$ é um item e a é o lookahead.

Construção dos itens LR(1)

Construção dos itens LR(1)

- \bullet Fechamento de conjunto de itens I.
 - $-I \subseteq closure(I).$
 - Para cada item $[A \to \alpha . B\beta, a]$ em I
 - * Para cada regra $B \to \gamma$ em G'
 - · Para cada $b \in first(\beta a)$
 - Adicione $[B \to .\gamma, b]$ em I
- \bullet Repita enquanto houver alterações em I.

Construção dos itens LR(1)

- Função de goto(I, X)
 - Inicialize J como \emptyset .
 - Para cada item $[A \to \alpha.X\beta, a]$ em I
 - * Adicione o item $[A \to \alpha X.\beta, a]$ ao conjunto J.
 - retorne closure(J)

Construção dos itens LR(1)

- $\bullet\,$ Função de construção de itensG'
 - inicializa Ccomo closure({[S \rightarrow .S, \$]})
 - * Para cada conjunto $I \in C$
 - Para cada símbolo X de G'
 - · se $goto(I, X) \neq \emptyset \land goto(I, X) \notin C$
 - Adicione goto(I,X) em C
 - repetir enquanto houver alterações em C.

Construção da tabela LR(1)

Construção da tabela LR(1)

- Se $[A \to \alpha.a\beta, b] \in I_i$ e $goto(I_i, a) = I_j$,
 - -A[i,a] = shift j.

Construção da tabela LR(1)

- Se $[A \to \alpha, a] \in I_i \in A \neq S'$
 - $-A[i,a] = reduce A \rightarrow \alpha$

Construção da tabela LR(1)

- $\bullet \ \operatorname{Se} \left[S' \to S., \, \$ \right] \in I_i$
 - A[i,\$] = accept

Construção da tabela LR(1)

ullet Se goto $(I_{i,A})=I_{j}$ então G[i,A]=j

Exemplo

Exemplo

• Construção da tabela para a gramática

$$S \rightarrow (L) \mid x$$

$L \rightarrow L, S \mid S$

Concluindo

Concluindo

- Nesta aula apresentamos a construção de tabelas LR(1).
- Próxima aula: Analisadores sintáticos LALR.

Exercícios

Exercícios

 \bullet Determine se a seguinte gramática possui conflitos, utilizando o algoritmo de construção de tabelas LR(1).

$$\begin{array}{ccc} E & \rightarrow & T{+}E \,|\, T \end{array}$$

$$T \rightarrow \mathbf{x}$$