# VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta informačních technologií



## Teorie obvodů

Semestrální projekt – Řešení zadaných obvodů

# Obsah:

| Príklad 1                  | 3  |
|----------------------------|----|
| Príklad 2                  | 6  |
| Príklad 3                  | 9  |
| Príklad 4                  | 12 |
| Príklad 5                  | 15 |
| Príklad 6                  | 18 |
| Záver a zhrnutie výsledkov | 21 |

## Príklad 1

## Zadanie:

Stanovte napätie  $U_{R7}$  a prúd  $I_{R7}$ . Použite metódu postupného zjednodušovania obvodu.

| sk. | U[V] | $R_1[\Omega]$ | $R_2[\Omega]$ | $R_3[\Omega]$ | $R_4[\Omega]$ | $R_5[\Omega]$ | $R_6[\Omega]$ | $R_7[\Omega]$ | $R_8[\Omega]$ |
|-----|------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| D   | 105  | 420           | 980           | 330           | 280           | 310           | 710           | 240           | 200           |



Začnem transfiguráciou trojuholníka na hviezdu a obvod prekreslím.

$$R_A = \frac{R_1 \cdot R_2}{R_1 + R_2 + R_3}$$

$$R_B = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3}$$

$$R_C = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3}$$



Podľa zadaného obvodu vypočítame R<sub>678</sub> paralelne:

$$R_{67} = \frac{R_6 \cdot R_7}{R_6 + R_7}$$

$$R_{678} = \frac{R_{67} \cdot R_8}{R_{67} + R_8} = \frac{\frac{R_6 \cdot R_7}{R_6 + R_7} \cdot R_8}{\frac{R_6 \cdot R_7}{R_6 + R_7} + R_8}$$

Prekreslíme obvod. Odpory  $R_B$  a  $R_4$  sú zapojené v sérii. Tak isto i  $R_C$  a  $R_5$ . Následne vypočítame  $R_{B4}$  a  $R_{C5}$  .



$$R_{B4} = R_B + R_4 = \frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} + R_4$$

$$R_{C5} = R_C + R_5 = \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} + R_5$$

Odpory  $R_{B4}$  a  $R_{C5}\,$  sú zapojené paralelne. Vypočítame  $R_{B4C5}\,$ 

$$R_{B4C5} = \frac{R_{B4} \cdot R_{C5}}{R_{B4} + R_{C5}} = \frac{\frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} + R_4 \cdot \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} + R_5}{\frac{R_1 \cdot R_3}{R_1 + R_2 + R_3} + R_4 + \frac{R_2 \cdot R_3}{R_1 + R_2 + R_3} + R_5}$$

Podľa obrázka sú všetky odpory zapojené sériovo. Môžeme vypočítať celkový odpor  $\mathbf{R}_{\mathrm{EKV}}$ .



$$R_{EKV} = R_A + R_{B4C5} + R_{678}$$

$$R_{EKV} = \frac{R_{1} \cdot R_{2}}{R_{1} + R_{2} + R_{3}} + \frac{\frac{R_{1} \cdot R_{3}}{R_{1} + R_{2} + R_{3}} + R_{4} \cdot \frac{R_{2} \cdot R_{3}}{R_{1} + R_{2} + R_{3}} + R_{5}}{\frac{R_{1} \cdot R_{3}}{R_{1} + R_{2} + R_{3}} + R_{4} \cdot \frac{R_{2} \cdot R_{3}}{R_{1} + R_{2} + R_{3}} + R_{5}} + \frac{\frac{R_{6} \cdot R_{7}}{R_{6} + R_{7}} \cdot R_{8}}{\frac{R_{6} \cdot R_{7}}{R_{6} + R_{7}} + R_{8}}$$

$$R_{EKV} = 541,2831 \ \Omega$$

#### Výpočet celkového prúdu v obvode:

Celkový prúd v obvode môžeme vypočítať pomocou Ohmovho zákona. Je to podiel napätia na zdroji a celkového odporu v obvode, ktorý vypočítame z rovnice vyššie.

$$I = \frac{U}{R_{EKV}}$$
$$I = 0.19398 A$$

## Konečný výpočet prúdu I<sub>R7</sub>:

Najskôr si vypočítame napätie  $\mathbf{U_{R7}}$ . Toto napätie je ekvivalentné s $\ \mathbf{U_{R678}}$ .

$$U_{R7} = U_{R678} = I \cdot R_{678}$$

Následne môžeme vypočítať prúd  $\mathbf{I}_{\mathbf{R7}}$ .

$$I_{R7} = \frac{U_{R678}}{R_7}$$

Po dosadení hodnôt do rovníc a úpravách získavame výsledok.

$$U_{R7} = 18,3434 V$$

$$I_{R7} = 0,0764 A$$

## Príklad 2

## Zadanie:

Stanovte napätie  $U_{\text{R5}}$  a prúd  $I_{\text{R5}}.$  Použite metódu Theveninovej vety.

| sk. | U[V] | $R_1[\Omega]$ | $R_2[\Omega]$ | $R_3[\Omega]$ | $R_4[\Omega]$ | $R_5[\Omega]$ |
|-----|------|---------------|---------------|---------------|---------------|---------------|
| D   | 150  | 200           | 660           | 200           | 220           | 330           |



Obvod prekreslíme.



$$I_{R5} = \frac{U_i}{R_i + R_5}$$

## Výpočet R<sub>i</sub>:

Náhradné zapojenie bez  $R_5$ .  $R_i$  je odpor medzi bodmy A B.



$$R_{12} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

$$R_i = \frac{(R_{12} + R_3) \cdot R_4}{(R_{12} + R_3) + R_4}$$

$$R_i = \frac{\left(\left(\frac{R_1 \cdot R_2}{R_1 + R_2}\right) + R_3\right) \cdot R_4}{\left(\left(\frac{R_1 \cdot R_2}{R_1 + R_2}\right) + R_3\right) + R_4}$$

Dosadíme hodnoty zo zadania a vypočítame.

$$R_i = \frac{167200}{1233} \Omega$$

#### Výpočet U<sub>i</sub>:

Obvod si prekreslíme na náhradný obvod. U<sub>i</sub> - napätie naprázdno bez R<sub>5</sub>



Najskôr si určíme rovnice pre smyčky.

$$\begin{split} R_1 : I_A + R_2 : I_A - R_2 : I_B - U &= 0 \\ R_3 : I_B + R_4 : I_B + R_2 : I_B - R_2 : I_A &= 0 \end{split}$$

Dosadíme hodnoty zo zadania a počítame dve rovnice pre dve neznáme.

$$I_B = 0,2008$$
 A

Pre náš výpočet nám stačí poznať  $I_{\rm B}$ , ktoré dosadíme. Potom môžeme dosadiť  $R_4$  zo zadania a vypočítame  $U_{\rm i}$ .

$$U_i = I_B \cdot R_4$$

$$U_i = 44,1784263$$
 V

## Konečný výpočet prúdu a napätia na odpore R<sub>5</sub>:

Poznáme  $U_i$  a  $R_i$ . Teraz môžme dosadiť a vypočítať prúd na odpore  $R_5$ .

$$I_{R5} = \frac{U_i}{R_i + R_5}$$
  
 $I_{R5} = 0,0948$  A

Keďže poznáme  $I_{\text{R5}}$  , môžme vypočítať napätie  $U_{\text{R5}}.$ 

$$U_{R5} = I_{R5} . R_5$$
 
$$U_{R5} = 31,3117 \quad V$$

## Príklad 3

## Zadanie:

Stanovte napätie  $U_{R4}$  a  $I_{R4}$ . Použite metódu uzlových napätí  $(U_A,\,U_{B_1}\,U_C)$ .

| sk. | U[V] | I <sub>1</sub> [A] | $I_2[\Omega]$ | $R_1[\Omega]$ | $R_2[\Omega]$ | $R_3[\Omega]$ | $R_4[\Omega]$ | $R_5[\Omega]$ |
|-----|------|--------------------|---------------|---------------|---------------|---------------|---------------|---------------|
| F   | 145  | 75                 | 0.85          | 480           | 440           | 530           | 360           | 255           |



Obvod prekreslíme a doplníme ho o smery prúdov, ktoré si vhodne určíme a budeme sa ich držať.



Pre každý uzol A, B ,C si vytvoríme rovnice. Z nich je potom možné vypočítať napätie  $U_A$ ,  $U_B$ ,  $U_C$ . Súčet prúdov, ktoré do uzlu vchádzajú a vychádzajú je rovný nule.

A: 
$$I_{R1} = I_{R2} + I_{R4}$$

B: 
$$I_{R4} = I_2 + I_{R5}$$

C: 
$$I_{R3} + I_1 = I_2 + I_{R5}$$

Určíme si náhradné obvody pre všetky uzle.





Pomocou II. Kirchhoffovho zákona zostavíme rovnice všetkých prúdov.

$$R_1 \cdot I_{R1} + U_A - U = 0$$
  $\Longrightarrow$   $I_{R1} = \frac{U - U_A}{R_1}$ 

$$R_2 . I_{R2} - U_A = 0$$
 =>  $I_{R2} = \frac{U_A}{R_2}$ 

$$R_3 . I_{R3} - U_C = 0$$
 =>  $I_{R3} = \frac{U_C}{R_3}$ 

$$R_4 \; . \; I_{R4} + U_B - U_A = 0 \qquad \implies \qquad I_{R4} = \frac{U_A - U_B}{R_4}$$

$$R_5 . I_{R5} + U_C - U_B = 0$$
 =>  $I_{R5} = \frac{U_B - U_C}{R_5}$ 

Dosadíme do rovníc pre uzle.

$$\frac{U - U_A}{R_1} = \frac{U_A}{R_2} + \frac{U_A - U_B}{R_A}$$

$$\frac{U_A - U_B}{R_4} = I_2 + \frac{U_B - U_C}{R_5}$$

$$\frac{U_C}{R_3} + I_1 = I_2 + \frac{U_B - U_C}{R_5}$$

Tieto tri rovnice zjednodušíme.

$$R_2 . R_4 . (U - U_A) = R_1 . R_4 . U_A + R_1 . R_2 . (U_A - U_B)$$
  
 $R_5 . (U_A - U_B) = R_4 . R_5 . I_2 + R_4 . (U_B - U_C)$   
 $R_5 . U_C + R_3 . R_5 . I_1 = R_3 . R_5 . I_2 + R_3 . (U_B - U_C)$ 

Máme tri rovnice pre tri neznáme. Doplníme hodnoty zo zadania a vypočítame. Výpočet môžeme riešiť vytvorením matice.

$$I_A = -6617,05 A$$
  
 $I_B = -17102,55 A$   
 $I_C = -24313,02 A$ 

#### Konečný výpočet prúdu a napätia na odpore R<sub>4</sub>:

Teraz môžme dosadiť do rovnice, ktorú sme si vyjadrili vyššie. Vypočítame I<sub>R4</sub>.

$$I_{R4} = \frac{U_A - U_B}{R_4}$$
$$I_{R4} = 29,12638 A$$

Pre výpočet  $\boldsymbol{U}_{R4}$  využijeme Ohmov zákon.

$$U_{R4} = I_{R4} . R_4$$
  
 $U_{R4} = 10 \ 485.4968 \ V$ 

## Príklad 4

#### Zadanie:

Pre napájacie napätie platí:  $u = U \cdot sin(2\pi ft)$ . Vo vzťahu napätia na kondenzátore  $C_1 : u_{C1} = U_{C1} \cdot sin(2\pi ft + \varphi_{C1})$  určte  $|C_1|$  a  $\varphi_{C1}$ . Použite metódu zjednodušovania obvodu.

Pozn: Pomocný "smer šípky napájacieho zdroja platí pre špeciálny časový okamžik  $(t = \frac{\pi}{2\omega})$ ".

| sk. | U[V] | $R_1[\Omega]$ | $R_2[\Omega]$ | $R_3[\Omega]$ | L <sub>1</sub> [mH] | L <sub>2</sub> [mH] | C <sub>1</sub> [μF] | C <sub>2</sub> [µF] | f[Hy] |
|-----|------|---------------|---------------|---------------|---------------------|---------------------|---------------------|---------------------|-------|
| D   | 50   | 190           | 180           | 220           | 420                 | 270                 | 120                 | 205                 | 90    |



Obvod si môžeme prekresliť tak, aby sa v ňom nachádzali len odpory. Tie môžu reprezentovať impedancie jednotlivých vetiev.



Z1 - impedancia R1

**Z2** - impedancia R2 a C1

**Z3** - impedancia R3 a L2

**Z4** - impedancia C2

**Z5** - impedancia L1

$$\omega = 2\pi f = 2\pi \cdot 90 = 180\pi \approx 565,48668 \ rad/s$$

$$Z1 = R1 = 190 \ \Omega$$

$$Z2 = R2 - j \frac{1}{\omega C1} = (180 - j14,7365688) \ \Omega$$

$$Z3 = R3 + j\omega L2 = (220 + j152,681403) \ \Omega$$

$$Z4 = -j \frac{1}{\omega C2} = -j8,62628 \Omega$$

$$Z5 = j\omega L1 = j237,5044 \Omega$$

 $\omega = 2 \cdot \pi \cdot f$  (uhlová rýchlosť)

Obvod zjednodušíme a vypočítame celkovú impedanciu  $Z_{\rm EKV}$ .

$$\frac{1}{Z_{234}} = \frac{1}{Z_2} + \frac{1}{Z_3} + \frac{1}{Z_4}$$

$$Z_{234} = (0,654142 - j8,70377662) \Omega$$

$$Z_{EKV} = Z_1 + Z_{234} + Z_5$$
  
 $Z_{EKV} = 190,6541423 + j228,8006384 \Omega$ 

Teraz môžeme vypočítať prúd I.

$$I = \frac{U}{Z} = (0, 107473 - j0, 128976)$$
 A

Vypočítame napätie na impedancii  $Z_2$ . Rovnaké napätie je i na  $Z_3$  a  $Z_4$ , preto vypočítame tento vzťah.

$$U_{Z234} = Z_{234}$$
 .  $I$   
 $U_{Z234} = (-1,05227 - j1,01979)$   $V$ 

Prúd prechádzajúci touto vetvou môžeme vypočítať následujúcim vzťahom.

$$I_{Z2} = \frac{U_{Z234}}{Z_2}$$
  
 $I_{Z2} = (-0,005346 - j0,0061032) A$ 

Teraz môžeme vypočítať napätie  $U_{\text{C1}}$  na kondenzátore  $C_{\text{1}}$ .

$$U_{C1} = -j \frac{1}{\omega C1} \cdot IZ2$$
  
 $U_{C1} = (0,0899402 - j0,0787817) V$ 



$$U_{C1} = Re + jIm$$

U<sub>C1</sub> môžeme vypočítať pomocou pytagorovej vety.

$$|U_{C1}| = \sqrt{0,0899402^2 + 0,0787817^2} = 0,119565 V$$

Fázový posun vypočítame vzťahom:

$$\varphi C_1 = arctan(\frac{Im}{Re})$$

$$\varphi C_1 = -41,2162^{\circ}$$
 to máme v IV. kvadrante  $\varphi C_1 = 360^{\circ} - 41,2162^{\circ} = 318,7838^{\circ}$ 

## Príklad 5

#### Zadanie:

Pre napájacie napätie platí:  $u_1 = U_1$ .  $sin(2\pi ft)$ ,  $u_2 = U_2$ .  $sin(2\pi ft)$ . Vo vzťahu pre napätie na cievke  $L_2$ :  $u_{L2} = U_{L2}$ .  $sin(2\pi ft + \varphi_{L2})$  určte  $|U_{L2}|$  a  $\varphi_{L2}$ . Použite metódu smyčkových prúdov.

Pozn: Pomocný "smer šípky napájacieho zdroja platí pre špeciálny časový okamžik  $(t = \frac{\pi}{20})$ ".

| sk. | $U_1[V]$ | $U_2[V]$ | $R_1[\Omega]$ | $R_2[\Omega]$ | $R_3[\Omega]$ | L <sub>1</sub> [mH] | L <sub>2</sub> [mH] | C <sub>1</sub> [μF] | C <sub>2</sub> [μF] | f[Hy] |
|-----|----------|----------|---------------|---------------|---------------|---------------------|---------------------|---------------------|---------------------|-------|
| D   | 45       | 50       | 135           | 155           | 200           | 180                 | 90                  | 210                 | 75                  | 85    |



Použijeme metódu smyčkových prúdov (smyčky  $I_A$ ,  $I_B$ ,  $I_C$ ). Bude potrebné zostaviť si 3 rovnice pre 3 neznáme (každú pre jednu smyčku). Prúd  $I_A$  preteká v smyčke bez zdroja. Prúd  $I_B$  preteká v smyčke so zdrojom  $u_1$ . Prúd  $I_C$  preteká v smyčke so zdrojom  $u_2$ .



V každej smyčke určíme smer a zostavíme rovnice.

$$X_L = \omega L$$

$$X_C = \frac{1}{\omega C}$$

$$\omega = 2\pi f = 2\pi \cdot 85 = 170\pi \approx 534,07075 \ rad/s$$

$$\begin{split} I_A: &\quad I_A \cdot (R_1 + R_2 + jX_{L2} + jX_{L1} - jX_{C1}) - I_B \cdot (R_2 + jX_{L1}) - I_C \cdot jX_{L2} = 0 \\ I_B: &\quad -I_A \cdot (R_2 + jX_{L1}) + I_B \cdot (R_2 + jX_{L1} - jX_{C2}) + I_C \cdot jX_{C2} = u_1 \\ I_C: &\quad -I_A \cdot jX_{L2} + I_B \cdot jX_{C2} + I_C \cdot (R_3 + jX_{L2} - jX_{C2}) = u_2 \end{split}$$

Dosadíme hodnoty zo zadania a vytvoríme si maticu.

$$I_A$$
 .  $(290 + j135,2822)$   $-I_B$  .  $(155 + j96,1327)$   $-I_C$  .  $(j48,06637)$   $= 0$   $-I_A$  .  $(155 + j96,1327)$   $+I_B$  .  $(155 + j71,1672)$   $+I_C$  .  $j24,9655$   $= 45$   $-I_A$  .  $j48,06637$   $+I_B$  .  $j24,9655$   $+I_C$  .  $(200 + j23,10087)$   $= 50$ 

Vypočítame hodnoty prúdov, I<sub>B</sub> nie je potrebné pre náš výpočet.

$$Ia = (0,3574 + j0,04634) A$$
  
 $Ic = (0,2317 - j0,01528) A$ 

$$I_2 = I_A - I_C$$

Hodnoty poznáme, dosadíme a prúd  $I_2$  na cievke  $L_2$  vypočítame. Následne počítame  $U_{\rm L2}$ .

$$I_2 = (0, 1257 + j0, 06162) A$$

$$U_{L2} = jX_{L2}$$
 .  $I_2 = (-2,9618 + j6,04194)$  V

$$|U_{L2}| = \sqrt{2,9618^2 + 6,04194^2} = 6,7289$$
 V

$$\varphi L_2 = \arctan(\frac{6,04194}{-2,9618}) = -63,8856^{\circ}$$
 v II. kvadrante  $\varphi L_2 = 180^{\circ} - 63,8856^{\circ} = 116,1144^{\circ}$ 

## Príklad 6

## Zadanie:

Zostavte diferenciálnu rovnici popisujúcu chovanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie  $u_C = f(t)$ .

Urobte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

| sk. | C[F] | $R[\Omega]$ | $u_c(0)[V]$ |
|-----|------|-------------|-------------|
| F   | 35   | 15          | 7           |



Tento obvod nám znázorňuje vybíjanie kondenzátoru.

Podľa II. Kirchhoffovho zákona je súčet napätí v smyčke rovný nule.

$$u_R + u_C = 0$$

Podľa Ohmovho zákona môžme zapísať:

$$u_R = R . I$$

$$u_C + R \cdot I = 0$$
 =>  $I = -\frac{u_C}{R}$ 

Zostavíme si diferenciálnu rovnicu. Použijeme axiom a následne dosadíme.

$$u'_{C} = \frac{1}{C} . I$$
 $u'_{C} = \frac{1}{C} . \left(-\frac{u_{C}}{R}\right)$ 
 $R . C . u'_{C} + u_{C} = 0$ 
 $525 . u'_{C}(t) + u_{C}(t) = 0$ 
 $u_{C}(0) = 7 V - \text{zo zadania}$ 

Následne riešime. Napíšeme si charakteristickú rovnicu, dosadíme.

$$a\lambda+b=0$$
 
$$\lambda=-\frac{b}{a} \qquad \text{a - koeficient derivovan\'eho } u_C=R \ . \ C \ , \quad b \text{ - nederivovan\'eho } u_C=1$$
 
$$\lambda=-\frac{1}{525}$$

Očakávaný tvar riešenia.

$$u_C(t) = c(t) \cdot e^{\lambda t}$$
  
$$u_C(t) = c(t) \cdot e^{-\frac{1}{525}t}$$

Derivujeme u<sub>C</sub> a následne dosadíme do pôvodnej diferenciálnej rovnice vyššie.

$$u'_{C} = c'(t) \cdot e^{-\frac{1}{525}t} + c(t) \cdot e^{-\frac{1}{525}t} \cdot (-\frac{1}{525})$$

$$525 \cdot (c'(t) \cdot e^{-\frac{1}{525}t} + c(t) \cdot e^{-\frac{1}{525}t} \cdot (-\frac{1}{525})) + c(t) \cdot e^{-\frac{1}{525}t} = 0$$

$$525 \cdot c'(t) \cdot e^{-\frac{1}{525}t} = 0$$

Zistíme kedy je súčin rovný nule.  $e^{-\frac{1}{525}t}$  nie je nikdy rovný nule. Uvažujme, že bude platiť  $\mathbf{c}'(\mathbf{t}) = \mathbf{0}$ . Derivácia je rovná nule práve vtedy, keď derivujeme konštantu. Môžme dosadiť do očakávaného riešenia.

$$c(t) = K$$

$$u_C(t) = K \cdot e^{-\frac{1}{525}t}$$

Pre naše riešenie použijeme hodnotu napätia v čase t = 0 (zo zadania).

$$7 = K \cdot e^{-\frac{1}{525} \cdot 0}$$

$$7 = K \cdot 1$$

$$K = 7$$

## Výsledok

Dosadíme a výsledok je:

$$u_C(t) = 7 \cdot e^{-\frac{1}{525}t}$$

## Skúška správnosti

Derivujeme výsledok.

$$u'_{C}(t) = 7 \cdot e^{-\frac{1}{525}t} \cdot (-\frac{1}{525})$$

Dosadíme do pôvodnej rovnice a vypočítame.

$$525 \cdot u'_{C}(t) + u_{C}(t) = 0$$

$$525 \cdot (7 \cdot e^{-\frac{1}{525}t} \cdot (-\frac{1}{525})) + 7 \cdot e^{-\frac{1}{525}t} = 0$$

$$-7 \cdot e^{-\frac{1}{525}t} + 7 \cdot e^{-\frac{1}{525}t} = 0$$

$$0 = 0$$

Záver

Tabuľka zadaní a zhrnutie výsledkov

| Príklad | Skupina | Výsledky                                                       |
|---------|---------|----------------------------------------------------------------|
| 1       | D       | $U_{R7} = 18,3434 \text{ V}$ $I_{R7} = 0,0764 \text{ A}$       |
| 2       | D       | $U_{R5} = 31,3117 \text{ V}$ $I_{R5} = 0,0948 \text{ A}$       |
| 3       | F       | $I_{R4} = 29,1264 \text{ A}$ $U_{R4} = 10 485,4968 \text{ V}$  |
| 4       | D       | $ U_{C1}  = 0,1196 V$<br>$\varphi C_1 = 318,7838^{\circ}$      |
| 5       | D       | $\varphi L_2 = 116,1144^{\circ}$ $ U_{L2}  = 6,7289 \text{ V}$ |
| 6       | F       | $u_C(t) = 7 \cdot e^{-\frac{1}{525}t}$                         |