logistic regression \mathbb{Z} model

cost function

given a training set: $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(m)}, y^{(m)})\}$

with m examples denoted as $x \in \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix}$; where $x_0 = 1, y \in \{0,1\}$

and a hypothesis: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T X}}$

the parameters θ can be determined as follows:

linear regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2} \to \text{cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2}(h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

the simplified cost functions serves purpose as to measure the cost the training set will have to pay when $h_{\theta}(x^{(i)})$ is predicted in terms of actual $y^{(i)}$: being $\frac{1}{2}$ the squared error

the Linear Regression Cost Function cannot be applied to logistic regression as it would not create a Convex Function; Gradient Descent would fail to find the global minimum:

instead, logistic regression:
$$\operatorname{cost}(h_{\theta}(x^{(i)}), y^{(i)}) = \begin{cases} -\log\left(h_{\theta}(x^{(i)})\right) & \text{if } y = 1\\ -\log\left(1 - h_{\theta}(x^{(i)})\right) & \text{if } y = 0 \end{cases}$$

the cost function is illustrated in each class as follows:

cost
$$= 0$$
 if $y = 1, h_{\theta}(x) = 1$ but as $h_{\theta}(x) \to 0$ cost $\to \infty$

the illustration (left) captures the intuition if $h_{\theta}(x^{(i)}) = 0$, (predict $P(y = 1|x:\theta) = 0$), but y = 1, the learning algorithm will be heavily penalized with a significant measured cost

cost
$$= 0$$
 if $y = 0, h_{\theta}(x) = 0$ but as $h_{\theta}(x) \to 1$ cost $\to \infty$

the illustration (left) captures the intuition if $h_{\theta}(x^{(i)}) = 1$, (predict $P(y = 0 | x : \theta) = 0$), but y = 0, the learning algorithm will be heavily penalized with a significant measured cost

In logistic regression, the cost function for our hypothesis outputting (predicting) $h_{\theta}(x)$ on a training example that has label $y \in \{0,1\}$ is:

$$\mathrm{cost}(h_{ heta}(x),y) = egin{cases} -\log h_{ heta}(x) & ext{if } y=1 \ -\log(1-h_{ heta}(x)) & ext{if } y=0 \end{cases}$$

Which of the following are true? Check all that apply.

 $extbf{ extit{ extbf{ extit{ extit{\extit{\extit{\extit{ extit{ extit{ extit{ extit{ extit{ extit{\teit}}}}}}}} \extit{\extit}}}}}}}} \extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit$

Correct Response

lacksquare If y=0, then $\mathrm{cost}(h_{ heta}(x),y) o\infty$ as $h_{ heta}(x) o1$.

Correct Response

lacksquare If y=0, then $\mathrm{cost}(h_{ heta}(x),y) o\infty$ as $h_{ heta}(x) o0$.

Correct Response

 ${f ec{\mathscr{C}}}$ Regardless of whether y=0 or y=1, if $h_{ heta}(x)=0.5$, then $\mathrm{cost}(h_{ heta}(x),y)>0$.

Correct Response

simplified cost function and gradient descent

logistic regression:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{cost}(h_{\theta}(x^{(i)}), y^{(i)})$$

$$cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

note: y = 0 or y = 1 always

explanation of simplifying the cost function $cost(h_{\theta}(x^{(i)}), y^{(i)})$ above:

$$cost(h_{\theta}(x^{(i)}), y^{(i)}) = -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

if $\mathbf{y} = \mathbf{1}$: $cost(h_{\theta}(x), y) = -\log(h_{\theta}(x))$

if **y=0**: $cost(h_{\theta}(x), y) = -log(1 - h_{\theta}(x))$ -

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= \frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

principle of likelihood maximization derived function (statistical rational behind cost function used) to fit parameters θ :

the process of minimizing $J(\theta)$; $\min_{\theta} J(\theta)$ will provide the parameters θ

to make a prediction given a new x training example:

output
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T X}}$$
; $P(y = 1 | x : \theta)$

in order to minimize $J(\theta)$; $\min_{\theta} J(\theta)$ (gradient descent)

repeat until convergence {

$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$

updating all values of parameter θ is best performed as a vectorized

$$\theta_j \coloneqq \theta_j - a \frac{\partial}{\partial \theta_j} J(\theta) = \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

 \rightarrow (simultaneously update all θ_i)}

note the identical cosmetic similarity between the logistic and linear regression update rule is attributed to the altered definition of $h_{\theta}(x)$ from $h_{\theta}(x) = \theta^T X$ to $h_{\theta}(x) = \frac{1}{1+e^{-\theta^T X}}$

Suppose you are running gradient descent to fit a logistic regression model with parameter $\theta \in \mathbb{R}^{n+1}$. Which of the following is a reasonable way to make sure the learning rate α is set properly and that gradient descent is running correctly?

- Plot $J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) y^{(i)})^2$ as a function of the number of iterations (i.e. the horizontal axis is the iteration number) and make sure $J(\theta)$ is decreasing on every iteration.
- Plot $J(\theta) = -\frac{1}{m} \sum_{i=1}^m [y^{(i)} \log h_{\theta}(x^{(i)}) + (1-y^{(i)}) \log(1-h_{\theta}(x^{(i)}))]$ as a function of the number of iterations and make sure $J(\theta)$ is decreasing on every iteration.

Correct Response

- lacksquare Plot J(heta) as a function of heta and make sure it is decreasing on every iteration.
- O Plot $J(\theta)$ as a function of θ and make sure it is convex.

One iteration of gradient descent simultaneously performs these updates:

$$heta_0 := heta_0 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

$$heta_1 := heta_1 - lpha \, rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_1^{(i)}$$

:

$$heta_n := heta_n - lpha rac{1}{m} \sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)}) \cdot x_n^{(i)}$$

We would like a vectorized implementation of the form $\theta:=\theta-lpha\delta$ (for some vector $\delta\in\mathbb{R}^{n+1}$).

What should the vectorized implementation be?

$$ullet \; heta := heta - lpha rac{1}{m} \sum_{i=1}^m [(h_ heta(x^{(i)}) - y^{(i)}) \cdot x^{(i)}]$$

Correct Response

$$egin{aligned} \Theta := heta - lpha \, rac{1}{m} \, [\sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})] \cdot x^{(i)} \end{aligned}$$

$$igcup heta := heta - lpha rac{1}{m} \, x^{(i)} [\sum_{i=1}^m (h_ heta(x^{(i)}) - y^{(i)})]$$

advanced optimization

optimization algorithm

cost function $J(\theta)$ wanting to $\min_{\theta} J(\theta)$ given θ , code is written to compute

$$J(\theta)$$
 and $a \frac{\partial}{\partial \theta_i} J(\theta)$

$$(\text{for } j = 0, 1, ..., n)$$

gradient descent:

$$\theta_j \coloneqq \theta_j - a \frac{\partial}{\partial \theta_j} J(\theta)$$

optimization algorithms options:

- " gradient descent
- " conjugate gradient
- " bfgs
- " I-bfgs

advantages:

- " unnecessary to select α manually
- often faster than gradient descent

disadvantages:

" generally more complex

optimization through example:

```
goal to \min_{\theta} J(\theta) assuming \theta_1 = 5, \theta_2 = 5:
\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}
J(\theta) = (\theta_1 - 5)^2 + (\theta_2 - 5)^2
\frac{\partial}{\partial \theta_j} J(\theta) = 2(\theta_1 - 5)
\frac{\partial}{\partial \theta_i} J(\theta) = 2(\theta_2 - 5)
```

optimization in octave:

after implementing the cost function, call the advanced optimization function in octave:

'GrabObj' in reference to gradient objective set to 'on' in reference to the fact that a gradient is going to be provided to the algorithm. initialTheta initializes the parameters θ are at $\mathbf{0}$. the advanced function fminunc is called to compute optTheta, the learning rate α autonomously:

```
octave-3.2.4.exe:1> PS1('>> ')
>> cd 'C:\Users\ang\Desktop'
>>
>> options = optimset('GradObj','on', 'MaxIter', '100');
>> initialTheta = zeros(2,1)
initialTheta =

0
0

<ag] = fminunc(@costFunction, initialTheta, options)
<ag] = fminunc(@costFunction, initialTheta, options)
optTheta =

5.0000
5.0000
functionVal = 1.5777e-030
exitFlag = 1
>>
```

application of algorithm optimization to logistic regression

```
theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_n \end{bmatrix} \leftarrow \begin{array}{l} \text{theta (1)} \\ \text{theta (2)} \\ \vdots \\ \text{theta (n)} \end{array} \quad \begin{array}{l} \text{note the definition of theta} \\ \text{being indexed at 1 in octave} \\ \text{as annosed to 0 in the} \end{array} function [jVal, gradient] = costFunction(theta) \text{jVal} = \quad \text{[code to compute } J(\theta)\text{];} \text{gradient (1)} = \quad \text{[code to compute } \frac{\partial}{\partial \theta_0} J(\theta)\text{];} \text{gradient (2)} = \quad \text{[code to compute } \frac{\partial}{\partial \theta_1} J(\theta)\text{];} \vdots \text{gradient (n+1)} = \quad \text{[code to compute } \frac{\partial}{\partial \theta_n} J(\theta)\text{];}
```

the above code requires a user to input code to compute both a cost function and relative gradients

Suppose you want to use an advanced optimization algorithm to minimize the cost function for logistic regression with parameters θ_0 and θ_1 . You write the following code:

```
function [jVal, gradient] = costFunction(theta)
  jVal = % code to compute J(theta)
  gradient(1) = CODE#1 % derivative for theta_0
  gradient(2) = CODE#2 % derivative for theta_1
```

What should CODE#1 and CODE#2 above compute?

- \bigcirc CODE#1 and CODE#2 should compute $J(\theta)$.
- ODE#1 should be theta(1) and CODE#2 should be theta(2).
- ullet CODE#1 should compute $rac{1}{m}\sum_{i=1}^m[(h_ heta(x^{(i)})-y^{(i)})\cdot x_0^{(i)}](=rac{\partial}{\partial heta_0}\,J(heta))$ and

CODE#2 should compute
$$rac{1}{m}\sum_{i=1}^m[(h_{ heta}(x^{(i)})-y^{(i)})\cdot x_1^{(i)}](=rac{\partial}{\partial heta_1}J(heta))$$

Correct Response

multiclass classification

multiclass classification: one-vs-all

when classification problems have more than a binary classification of 0 or 1

this is possible by separating examples into individual binary classification problems

