## **ANN** Architecture

#### **ANN Architecture**

- ANN posess a large number of processing elements called nodes/neurons which operate in parallel.
- Neurons are connected with others by connection link.
- Each link is associated with weights which contain information about the input signal.
- Each neuron has an internal state of its own which is a function of the inputs that neuron receives- <u>Activation level</u>

# Neuron Modeling for ANN

$$o = f(\mathbf{w}^t \mathbf{x}), \text{ or}$$

$$o = f\left(\sum_{i=1}^n w_i x_i\right)$$

Is referred to activation function. Domain is set of activation values *net*.

$$net \stackrel{\Delta}{=} \mathbf{w}^t \mathbf{x}$$

Scalar product of weight and input vector

Neuron as a processing node performs the operation of summation of its weighted input.

#### Activation function

- Bipolar binary and unipolar binary are called as hard limiting activation functions used in discrete neuron model
- Unipolar continuous and bipolar continuous are called soft limiting activation functions are called <u>sigmoidal</u> characteristics.

#### **Activation functions**

#### **Bipolar continuous**

$$f(net) \stackrel{\Delta}{=} \frac{2}{1 + \exp(-\lambda net)} - 1$$

 $\lambda > 0$ 

$$f(net) \stackrel{\Delta}{=} \operatorname{sgn}(net) = \begin{cases} +1, & net > 0 \\ -1, & net < 0 \end{cases}$$

**Bipolar binary functions** 

#### **Activation functions**

Unipolar continuous

$$f(net) \stackrel{\Delta}{=} \frac{1}{1 + \exp(-\lambda net)}$$

**Unipolar Binary** 

$$f(net) \stackrel{\Delta}{=} \begin{cases} 1, & net > 0 \\ 0, & net < 0 \end{cases}$$

#### Common models of neurons





# Single layer Feedforward Network



#### Feedforward Network

Its output and input vectors are

respectively 
$$\mathbf{o} = \begin{bmatrix} o_1 & o_2 & \cdots & o_m \end{bmatrix}^t$$
  
 $\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^t$ 

 Weight w<sub>ij</sub> connects the *i'th* neuron with j'th input. Activation rule of ith neuron is

$$net_i = \sum_{j=1}^{n} w_{ij} x_j$$
, for  $i = 1, 2, ..., m$ 

$$o_i = f(\mathbf{w}_i^t \mathbf{x}), \quad \text{for } i = 1, 2, \dots, m$$

where

$$\mathbf{w}_{i} \stackrel{\Delta}{=} \begin{bmatrix} w_{i1} & w_{i2} & \cdots & w_{in} \end{bmatrix}^{t}$$

**EXAMPLE** 

## Multilayer feed forward network



Can be used to solve complicated problems

#### Feedback network



When outputs are directed back as inputs to same or preceding layer nodes it results in the formation of feedback networks



#### **Activation Function**

- Identity Function
   f(x)=x for all x
- 2. Binary Step function

$$f(x) = \begin{cases} 1 & \text{if } x \ge \theta \\ 0 & \text{if } x < \theta \end{cases}$$

3. Bipolar Step function

$$f(x) = \begin{cases} 1ifx \ge \theta \\ -1ifx < \theta \end{cases}$$

- 4. Sigmoidal Functions:- Continuous functions
- 5. Ramp functions:-

$$1 if x > 1$$

$$f(x) = x if \ 0 \le x \le 1$$

$$0 if x < 0$$

## Some learning algorithms

#### Supervised:

- Adaline, Madaline
- Perceptron
- Back Propagation
- multilayer perceptrons
- Radial Basis Function Networks

#### Unsupervised

- Competitive Learning
- Kohenen self organizing map
- Learning vector quantization
- Hebbian learning

# Neural processing

- Recall:- processing phase for a NN and its objective is to retrieve the information. The process of computing o for a given x
- Basic forms of neural information processing
  - Auto association
  - Hetero association
  - Classification

## Neural processing-Autoassociation



- Set of patterns can be stored in the network
- If a pattern similar to a member of the stored set is presented, an association with the input of closest stored pattern is made

## Neural Processing-Heteroassociation



- Associations between pairs of patterns are stored
- Distorted input pattern may cause correct heteroassociation at the output

# Neural processing-Classification



- Set of input patterns is divided into a number of classes or categories
- In response to an input pattern from the set, the classifier is supposed to recall the information regarding class membership of the input pattern.

## Important terminologies of ANNs

- Weights
- Bias
- Threshold
- Learning rate
- Momentum factor
- Vigilance parameter
- Notations used in ANN

## Weights

- Each neuron is connected to every other neuron by means of directed links
- Links are associated with weights
- Weights contain information about the input signal and is represented as a matrix
- Weight matrix also called <u>connection</u> <u>matrix</u>

## Weight matrix

```
W_{11}W_{12}W_{13}\cdots W_{1m}
W_{21}W_{22}W_{23}\cdots W_{2m}
W_{n1}W_{n2}W_{n3}\cdots W_{nm}
```

## Weights contd...

w<sub>ij</sub>\_is the weight from processing element "i" (source node) to processing element "j" (destination node)



#### **Activation Functions**

- Used to calculate the output response of a neuron.
- Sum of the weighted input signal is applied with an activation to obtain the response.
- Activation functions can be linear or non linear
- Already dealt
  - Identity function
  - Single/binary step function
  - Discrete/continuous sigmoidal function.

#### Bias

- Bias is like another weight. Its included by adding a component x<sub>0</sub>=1 to the input vector X.
- $X=(1,X_1,X_2...X_i,...X_n)$
- Bias is of two types
  - Positive bias: increase the net input
  - Negative bias: decrease the net input

## Why Bias is required?

 The relationship between input and output given by the equation of straight line y=mx+c



#### **Threshold**

- Set value based upon which the final output of the network may be calculated
- Used in activation function
- The activation function using threshold can be defined as

$$f(net) = \begin{cases} 1 \text{ ifnet } \geq \theta \\ -1 \text{ ifnet } < \theta \end{cases}$$

## Learning rate

- Denoted by α.
- Used to control the amount of weight adjustment at each step of training
- Learning rate ranging from 0 to 1 determines the rate of learning in each time step

# Other terminologies

- Momentum factor:
  - used for convergence when momentum factor is added to weight updation process.
- Vigilance parameter:
  - Denoted by ρ
  - Used to control the degree of similarity required for patterns to be assigned to the same cluster