Introductory Applied Machine Learning, Tutorial 3

School of Informatics, University of Edinburgh, Instructors: Chris Williams, Oisin Mac Aodha, Hiroshi Shimodaira

September 2020

1. Consider using logistic regression for a two-class classification problem in two dimensions:

$$p(y = 1|\mathbf{x}) = \sigma(w_0 + w_1x_1 + w_2x_2)$$

Here σ denotes the logistic (or sigmoid) function $\sigma(z) = 1/(1 + \exp(-z))$, y is the target which takes on values of 0 or 1, $\mathbf{x} = (x_1, x_2)$ is a vector in the two-dimensional input space, and $\mathbf{w} = (w_0, w_1, w_2)$ are the parameters of the logistic regressor.

- (a) Consider a weight vector $\mathbf{w}_A = (-1, 1, 0)$. Sketch the decision boundary in \mathbf{x} space corresponding to this weight vector, and mark which regions are classified with labels 0 and 1.
- (b) Consider a second weight vector $\mathbf{w}_B = (5, -5, 0)$. Again sketch the decision boundary in \mathbf{x} space corresponding to this weight vector, and mark which regions are classified with labels 0 and 1.
- (c) Plot $p(y = 1|\mathbf{x})$ as a function of x_1 for both \mathbf{w}_A and \mathbf{w}_B , and comment on any differences between the two.
- 2. Consider the logistic regression setup in the previous questions, but with a new weight vector $\mathbf{w}_A = (0, -1, 1)$. Consider the following data set: Compute the gradient of the log likelihood of the

Instance	x_1	x_2	Class
0	0.5	-0.35	_
1	-0.1	0.1	_
2	-1.2	1.0	+

logistic regression model for this data set. Suppose that we take a single gradient step with $\eta = 1.0$; what is the new parameter setting? Do the new parameters do a better job of classifying the training data?

It will help you to remember the following facts:

• The log-likelihood in logistic regression is

$$L(\boldsymbol{w}) = \sum_{i=1}^{n} \log p(y = y_i | \boldsymbol{x}_i)$$
$$= \sum_{i=1}^{n} \left[y_i \log p(y = 1 | \boldsymbol{x}_i) + (1 - y_i) \log p(y = 0 | \boldsymbol{x}_i) \right]$$

• The partial derivative of the log-likelihood with respect to a parameter w_i is

$$\frac{\partial L}{\partial w_i} = \sum_{i=1}^n (y_i - \sigma(\boldsymbol{w}^\top \boldsymbol{x}_i)) x_{ij}$$

• To maximize a function L(w), we use the gradient ascent rule, which is

$$\boldsymbol{w}' \leftarrow \boldsymbol{w} + \eta \nabla L$$