Deterministic Scheduling of Periodic Messages for Cloud RAN

Dominique Barth, Maël Guiraud, Brice Leclerc, Olivier Marcé, Yann Strozecki

DAVID, Université de Versailles Saint Quentin - Nokia Bell Labs France

June 28, 2018

BBU/RRH

Fronthaul

Problematic

Constraints in Fronthaul network:

Current approaches:

- Highly loaded
- Periodic traffic
- Latency must be guaranteed

- E2E connections → Too expensive
- $\bullet \ \, {\sf Statistical \ multiplexing} \to {\sf No} \\ {\sf latency \ guarantees} \\$

Model

- Network : Weighted Directed Graph
- ullet RRH / BBU \to set of vertices A (Antennas) and C (Computation)
- \bullet Physical Delay of a link \to Weight of the arc

Routed Network

There is a route going from each RRH to the BBU.

A routed network : set of routes.

The communication process

Two parameters

- The period P
- The size of a message τ

The time is discretized and on each route of the network, every P units of time, a message of size τ is emitted.

The process is periodic: the message is emitted in each period at the same time, called offset.

Collisions

There is a collision between two routes when their messages go through the first vertex of a common arc at the same time.

Periodicity must be taken into consideration

Assignment¹

Choosing the offset such that there are no collisions.

An assignment is a choice of offsets for each route without collisions.

Full process

In each BBU, one can choose the waiting time before sending back the answer.

The process time of a route is defined by $PT(r) = 2 \times \lambda(r) + w_r$. $\lambda(r)$ is the length of the route r.

Full process

In each BBU, one can choose the waiting time before sending back the answer.

The process time of a route is defined by $PT(r) = 2 \times \lambda(r) + w_r$. $\lambda(r)$ is the length of the route r.

Periodic Assignment for Low Latency (PALL)

Input: A routed network (G, \mathcal{R}) , the integers P, τ and T_{max} .

Question: does there exist a (P, τ) -periodic assignment of (G, \mathcal{R}) such that for all $r \in \mathcal{R}$, $PT(r) \leq T_{max}$?

Problem PALL has been shown NP-hard and non-approximable.

Star network

One link shared by all routes.

No waiting times

Three solutions to solve PALL without waiting time :

- Send the message from the shortest to the longest route: works well on short routes
- Greedy algorithm: always a solution for mild loads
- Branch and bound: always ends but scales exponentially in the number of routes

Results

Not efficient under high loads: need to allow some waiting time.

A two stages approach

First step. We fix the offsets of the forward routes according to several heuristics.

Second step. Algorithms to schedule the backward routes.

- A greedy algorithm (GD)
- Scheduling algorithm adapted for periodicity (PMLS)
- FPT algorithm (FPT-PMLS)

Performances of the algorithms

Deterministic vs Stochastic

Conclusion

 Deterministic scheme outperforms traditional statistical multiplexing for our periodic schemes.

• Next steps : other topologies, fragmented messages, allowing jitter...

Thank you for your attention.