Fall 2015

Homework # 8

(Due Monday, November 30)

Problem 1. Consider the Banach space C([0,1]) with the supremum norm. For $x \in [0,1]$ let δ_x denote the linear functional on C([0,1]) given by

$$\delta_x(f) = f(x), \quad \text{for all } f \in C([0,1]).$$

- a) Show that $\|\delta_x\| = 1$.
- b) Show that there does not exist a Riemann integrable function $k:[0,1]\to\mathbb{R}$, such that

$$\delta_x(f) = \int_0^1 k(y)f(y)dy, \quad \text{for all } f \in C([0,1]).$$

Problem 2. Prove that there does not exist an inner product on C([0,1]) such that the supremum norm is derived from this inner product.

Problem 3. Let \mathcal{H} be a Hilbert space and let M be a subset of \mathcal{H} .

- a) Prove that M^{\perp} is a closed linear subspace of \mathcal{H} .
- **b)** Prove that $M \cap M^{\perp} \subset \{0\}$.
- c) If M is a linear subspace of \mathcal{H} , prove that $(M^{\perp})^{\perp} = \overline{M}$.

Problem 4. Let \mathcal{H} be a Hilbert space and $A \in \mathcal{B}(\mathcal{H})$. If (x, Ay) = 0 for all $x, y \in \mathcal{H}$, prove that A = 0.

Problem 5. Let \mathcal{H} be a Hilbert space and P and Q two orthogonal projections on \mathcal{H} .

- a) Prove that PQ is an orthogonal projection if and only if PQ QP = 0, i.e., if and only if P and Q commute.
- b) Prove that for commuting orthogonal projections P and Q, one has ran $PQ = \operatorname{ran} P \cap \operatorname{ran} Q$.
- c) Prove that P+Q is an orthogonal projection if and only if PQ=0.
- d) Prove that if PQ = 0, we have ran $(P + Q) = \operatorname{ran} P \oplus \operatorname{ran} Q$.

Problem 6. Let \mathcal{H} be a Hilbert space and $P \in \mathcal{B}(\mathcal{H})$ such that $P^2 = P$ and dim ran P = 1.

- a) Show that $||P|| \ge 1$.
- b) Suppose dim $\mathcal{H} \geq 2$. Find

$$\sup \{ ||P|| \mid P \in \mathcal{B}(\mathcal{H}), P^2 = P, \dim \text{ran } P = 1 \}.$$

Problem 7. Let $\{e_1, e_2, \ldots\}$ be an orthonormal basis of a separable Hilbert space \mathcal{H} .

a) Let $(a_n) \in \ell^1(\mathbb{N})$. Show that $\sum_{n=1}^{\infty} a_n e_n$ converges absolutely to a limit in \mathcal{H} .

b) Let $\alpha \in (0, \infty)$ and define $a_n = n^{-\alpha}$, $n \ge 1$. For which values of α does $\sum_{n=1}^{\infty} a_n e_n$ converge unconditionally but not absolutely?

Problem 8. Define the Legendre polynomials P_n by

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$

- a) Show that the Legendre polynomials are orthogonal in $L^2([-1,1])$, and that they are obtained by Gram-Schmidt orthogonalization of the monomials.
- **b)** Show that

$$\int_{-1}^{1} P_n(x)^2 dx = \frac{2}{2n+1}.$$

- c) Prove that the Legendre polynomials form an orthogonal basis of $L^2([-1,1])$.
- d) Prove that the Legendre polynomial P_n is an eigenfunction of the differential operator

$$L = -\frac{d}{dx} \left(1 - x^2 \right) \frac{d}{dx}$$

with eigenvalue $\lambda_n = n(n+1)$, meaning that

$$LP_n = \lambda_n P_n.$$