ТВиМС-2025

6 июня 2025 г.

Содержание

\mathbf{C}	одер	жание		1
1	Teo	рия ве	роятностей.	3
		-	ы теории вероятностей и схема Бернулли	3
		1.1.1	Классическое и геометрическое определение веро-	
			ЯТНОСТИ	3
		1.1.2	Основные комбинаторные формулы	4
		1.1.3	Аксиоматика Колмогорова	5
		1.1.4	Условная вероятность. Независимость. Формулы сло-	
			жения и умножения	6
		1.1.5	Формула полной вероятности	8
		1.1.6	Формула Байеса	8
		1.1.7	Испытания Бернулли. Формула Бернулли	9
		1.1.8	Пуассоновское приближение для схемы Бернулли	10
		1.1.9	Локальная теорема Муавра – Лапласа	10
		1.1.10	Интегральная теорема Муавра – Лапласа	11
	1.2	Случа	йные величины и их распределения	11
		1.2.1	Случайная величина. Функция распределения слу-	
			чайной величины, ее свойства	11
		1.2.2	Непрерывная случайная величина. Плотность рас-	
			пределения, ее свойства. Примеры	13
		1.2.3	Дискретная случайная величина. Способы задания.	
			Примеры	15
		1.2.4	Математическое ожидание и дисперсия. Их свойства.	15
		1.2.5	Распределение функций от случайных величин	16
		1.2.6	Случайные векторы. Совместные распределения слу-	
			чайных величин. Вычисление распределений компо-	
			нент.	19

3	Спи	исок во	опросов.	25
2	Ma	гемати	ическая статистика.	24
		1.3.9	Эргодическая теорема	23
		1.3.8	Классификация состояний цепи Маркова	23
			вероятностей, матрица перехода за n шагов	23
		1.3.7	Цепи Маркова. Определение, матрица переходных	
		1.3.6	ленных случайных величин	23 23
		1.3.5	их свойства	23
		1.3.4	Характеристические функции случайных величин,	
		1.3.3	Закон больших чисел в форме Чебышева	23
			ду ними	23
		1.3.2	Типы сходимости в теории вероятностей, связь меж-	
	1.5	1.3.1	Неравенство Чебышева	$\frac{-3}{23}$
	1.3		льные теоремы и марковские цепи	$\frac{23}{23}$
		1 2 10	Условные характеристики для нормального вектора.	$\frac{23}{23}$
		1.2.9	Условное математическое ожидание. Условная плотность. Условная дисперсия	23
		1 2 0	мости компонент	23
			ция. Необходимое и достаточное условие независи-	
			(в невырожденном случае), характеристическая функ-	
		1.2.8	Многомерное нормальное распределение. Плотность	
		1.2.1	корреляции	22
		1.2.7	Независимость случайных величин. Коэффициент	

Теория вероятностей. 1

Основы теории вероятностей и схема Бернулли. 1.1

1.1.1 Классическое и геометрическое определение вероятности.

Определение 1.1.1 (Пространство элементарных событий).

 Ω - пространство элементарных событий.

 $\omega_1, \, \omega_2, \, \dots$ - элементарные события.

 $A\subset\Omega$ - случайное событие. $\mathscr{A}=\{A\subset\Omega\}$ - σ -алгебра подмножеств.

Определение 1.1.2 (σ -алгебра событий).

Свойства алгебры событий:

- 1. $\Omega \in \mathscr{A}$ достоверное событие.
- 2. Если $A \subset \mathscr{A}$, то $\overline{A} \subset \mathscr{A}$
- 3. ∅ невозможное событие.
- 4. Если A, B события (т.е. принадлежат \mathscr{A}), то $A \cup B$ и $A \cap B$ события.

Свойства σ -алгебра событий:

- 1. Все свойства алгебры событий.
- 2. Если $A_1, A_2, \dots, A_n \in \mathscr{A}$, то:
 - (a) $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$ (b) $\bigcap_{i=1}^{\infty} A_i \in \mathscr{A}$

Алгебра событий - семейство подмножеств Ω , замкнутое относительно операций конечного объединения, пересечения и дополнения. σ -алгебра событий - семейство подмножеств Ω , замкнутое относительно операций счетного объединения, пересечения и дополнения.

Минимальная σ -алгебра - это σ -алгебра, из которой при убирании одного любого элемента, пересатет быть σ -алгеброй.

05	Термины		
Обозначения	теории множеств	теории вероятностей	
Ω	Множество, пространство	Пространство элементарных событий, достоверное событие	
ω	Элемент множества	Элементарное событие	
A, B	Подмножество А, В	Случайное событие А, В	
$A+B=A\cup B$	Объединение (сумма) мно- жеств <i>A</i> и <i>B</i>	Сумма случайных событий А и В	
$AB = A \cap B$	Пересечение множеств A и B	Произведение событий A и B	
\bar{A}	Дополнение множества A	Событие, противоположное для А	
$A \backslash B$	Разность множеств A и B	Разность событий А и В	
φ	Пустое множество	Невозможное событие	
$AB = A \cap B = \phi$	Множества A и B не пересекаются (не имеют общих элементов)	События А и В несовместимы	
A = B	Множества A и B равны	События А и В равносильны	
$A \subset B$	A есть подмножество В	Событие А влечет событие В	

Рис. 1: Таблица соответствий

Определение 1.1.3 (Класическое определение вероятности). Пусть $|\Omega| = n \ P(\omega_i) = \frac{1}{n}$ (т.е. события равновероятны). $A \subset \Omega$ - событие (подмножество элементарных событий). $|A| = k \to P(A) = \frac{k}{n}$ Следовательно, $0 \le P(A) \le 1$.

Определение 1.1.4 (Геометрическое определение вероятности). Рассматриваем Лебегову σ -алгебру \to mes (мера) - существует и конечна.

Mepa Лебега - мера, обобщающая понятия длины отрезка, площади фигуры и объёма тела на произвольное n-мерное евклидово пространство.

$$0 < mes(\Omega) < +\infty$$

$$mes(\omega_i) = 0$$

$$A \subset \Omega \to P(A) = \frac{mes(A)}{mes(\Omega)}$$

Проще говоря: Ω - плоское, значит у Ω \exists площадь, и она конечна. $0 < S(\Omega) < +\infty$ $S(\omega_i) = 0$ $A \subset \Omega \to P(A) = \frac{S(A)}{S(\Omega)}$

1.1.2 Основные комбинаторные формулы.

Определение 1.1.5 (Размещения).

Размещения - способ расположить в определенном порядке некоторого

числа элементов из заданного конечного множества.

Формулы:

- 1. Размещения без повторений: $A_n^k = n(n-1)(n-2)...(n-k+1) =$
- 2. Размещения с повторениями: $U_n^k = n \cdot n \cdot ... \cdot n = n^k$

Определение 1.1.6 (Сочетания).

Сочетания - способ расположения с несущественной последовательностью выбора некоторого числа элементов из заданного конечного множества.

Формулы:

- 1. Сочетания без повторений: $C_n^k = \frac{A_n^k}{k!} = \frac{n!}{(n-k)! \cdot k!}$ 2. Сочетания с повторениями: $V_n^k = C_{n+k-1}^{n-1} = \frac{(n+k-1)!}{k! \cdot (n-1)!}$

1.1.3 Аксиоматика Колмогорова.

Определение 1.1.7 (Несовместные события).

События A и B - несовместные $\leftrightarrow A \cap B = AB = 0$.

Т.е. события не могут наступить одновременно.

Определение 1.1.8 (Вероятность как функция).

 Ω - пространство элементарных событий.

 $\omega_i \in \Omega$ - элементарное событие.

 \mathscr{A} - σ -алгебра событий.

Тогда вероятность P - функция на множестве событий: $P: \mathscr{A} \to [0;1]$

Со следующими аксиомами:

- 1. $P(\Omega) = 1$
- 2. $\forall A, B : A \cap B = \emptyset \rightarrow P(A \cup B) = P(A) + P(B)$
- 3. (Счетная аддитивность) $\forall A_1, ..., A_n \in \mathscr{A} P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i),$ причем $A_iA_j=\emptyset$, если $i\neq j$

Из аксиом можно получить данные следствия:

- 1. $P(\emptyset) = 0$
- 2. $P(\overline{A}) = 1 P(A)$
- 3. $A \subset B \to P(A) < P(B)$

1.1.4 Условная вероятность. Независимость. Формулы сложения и умножения.

Определение 1.1.9 (Условная вероятность).

A, B - события, причем: P(A) > 0.

Тогда вероятность события В при условии А:

$$P(B|A) = \frac{P(AB)}{P(A)} = P_A(B)$$

Определение 1.1.10 (Формула умножения).

A, B - события: P(A) > 0 и P(B) > 0.

Формула умножения: $P(AB) = P(B|A) \cdot P(A) = P(A|B) \cdot P(B)$

Пример:

В колоде 36 карт. На удачу вытащили 2 карты. Какова вероятность, что обе карты - пики?

- 1. Класическая вероятность: $=\frac{C_9^2}{C_{36}^2}=\frac{9.8}{36.35}$
- 2. Формула умножения: А первая карта пики, В вторая карта - пики. Тогда $P(AB) = P(A) \cdot P(B|A) = \frac{9}{36} \cdot \frac{8}{35}$

Теорема 1.1.1 (Условная вероятность и аксиоматика Колмогорова). Зафиксируем $A \subset \Omega$: $P(A) \neq 0$.

Тогда $P_A(B)$ - подчиняется аксиоматике Колмогорова, т.е. для нее выполняются те же аксиомы.

Доказательство 1ой аксиомы:

$$P_A(\Omega) = \frac{P(\Omega A)}{P(A)}$$

Т.к.
$$A \subset \Omega$$
, то $\Omega A = A$

Следовательно,
$$P_A(\Omega) = \frac{P(A)}{P(A)} = 1$$

Доказательство 2ой аксиомы:

Пусть В, С - события:
$$BC = \emptyset$$
, тогда: $P_A(B \cup C) = \frac{P(A(B \cup C))}{P(A)} = \frac{P(AB \cup AC)}{P(A)}$

Т.к. $BC = \emptyset$, получаем: $ABAC = ABC = \emptyset$, т.е. события AB и AC несовместны.

Следовательно, $\frac{P(AB \cup AC)}{P(A)} = \frac{P(AB) + P(AC)}{P(A)}$ Значит, $P_A(B \cup C) = \frac{P(AB) + P(AC)}{P(A)}$

Значит,
$$P_A(B \cup C) = \frac{P(AB) + P(AC)}{P(A)}$$

$$P_A(B) = \frac{P(AB)}{P(A)}$$

$$P_A(B) = \frac{P(AB)}{P(A)}$$
$$P_A(C) = \frac{P(AC)}{P(A)}$$

Значит,
$$P_A(B) + P_A(C) = \frac{P(AB) + P(AC)}{P(A)}$$

Итог:
$$P_A(B \cup C) = \frac{P(AB) + P(AC)}{P(A)} = P_A(B) + P_A(C)$$

Зяя аксиома доказывается аналогичным образом.

Определение 1.1.11 (Независимые события. Попарно независимые события. Независимые в совокупности события).

Пусть А и В - события.

Тогда A и B называют **независимыми событиями** $\leftrightarrow P(AB) = P(A) \cdot P(B)$

Пусть $A_1, ..., A_n$ - события.

Тогда они **попарно независимы**, если $\forall i \neq j, A_i$ и A_j независимы.

Пусть $A_1, ..., A_n$ - события.

Тогда они **независимы в совокупности**, если $\forall k \in \overline{[2..n]}$ и \forall набора $1 \leq i_1 < i_2 < ... < i_k \leq n$, выполняется: $P(A_{i_1}A_{i_2}...A_{i_k}) = P(A_{i_1})P(A_{i_2})...P(A_{i_k})$

Определение 1.1.12 (Формула сложения).

Пусть А, В - события, тогда:

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

 $P(A \cup B) = P(A\overline{B} \cup AB \cup B\overline{A}) = P(A\overline{B}) + P(AB) + P(B\overline{A})$

$$A = A\Omega = A(\overline{B} \cup B) = A\overline{B} \cup AB$$
$$B = AB \cup B\overline{A}$$

$$P(A \cup B) = P(A\overline{B}) + P(AB) + P(B\overline{A}) + P(BA) - P(AB) = P(A) + P(B) - P(AB)$$

 $P(A \cup B) = P(A) + P(B) - P(AB)$
 $P(A \cup B) = P(A) + P(B) - P(AB)$

Пусть А, В, С - события.

Аналогично (через разбиения на несовместные), доказывается следующее:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(AB) - P(BC) - P(AC)$$

Формула сложения в общем виде:

 $A_1, ..., A_n$ - события.

$$P(A_1 \cup ... \cup A_n) = \sum_{i=1}^n P(A_i) + ... + (-1)^{r+1} \sum_{1 \le i_1 < i_2 < ... < i_r \le n} P(A_{i_1} A_{i_2} ... A_{i_r}) + ... + (-1)^n P(\bigcap_{i=1}^n A_i)$$

Если, дополнительно, $A_1, ..., A_n$ - независимы в совокупности, то:

$$P(\bigcup_{i=1}^{n} A_i) = 1 - P(\bigcap_{i=1}^{n} \overline{A_i}) = 1 - \bigcap_{i=1}^{n} (1 - P(A_i))$$

1.1.5 Формула полной вероятности.

Определение 1.1.13 (Формула полной вероятности).

Разобъем множество элементарных событий Ω на независимые попарно гипотезы $H_1...H_n$.

T.e.
$$\Omega = \bigcup_{i=1}^n H_i$$
 u $\forall i \neq j \rightarrow H_i H_j = \emptyset$.

Причем $\forall i H_i > 0$, иначе объединим эту гипотизу с другой.

Формула полной вероятности: $P(A) = \sum_{i=1}^{n} P(A|H_i) P(H_i)$

$$\forall A \in \mathscr{A} \to P(A) = P(A\Omega) = \bigcup_{i=1}^{n} (AH_i)$$

По попарной независимости и правилу умножения: $\bigcup_{i=1}^n (AH_i) = \sum_{i=1}^n (AH_i) =$ $\sum_{i=1}^{n} P(A|H_i)P(H_i)$

Формула Байеса. 1.1.6

Определение 1.1.14 (Формула Байеса).

Для получения вероятности наступления конкретной гипотезы используется формула Байеса.

А - событие:
$$P(A) \neq 0, H_1, ..., H_i$$
 - гипотезы, тогда: Формула Байеса: $P(H_i|A) = \frac{P(A|H_i) \cdot P(H_i)}{P(A)} = \frac{P(A|H_i) \cdot P(H_i)}{\sum_{j=1}^n P(A|H_j) \cdot P(H_j)}$

1.1.7Испытания Бернулли. Формула Бернулли.

Определение 1.1.15 (Испытания Бернулли).

Испытания Бернулли - последовательность независимых испытаний с бинарным исходом.

Пространство элементарных событий - набор двоичных слов. Например: Подбрасываются 3 монеты: 0 - решка (неудача), 1 - орел (успех). P(выпал (pen) = p и P(pen) = q.

События:

- 0 0 0 (вероятность q^3)
- 0 0 1 (вероятность $p \cdot q^2$)
- 0 1 0 (вероятность $p \cdot q^2$)
- 0 1 1 (вероятность $p^2 \cdot q$)
- 1 0 0 (вероятность $p \cdot q^2$)
- 1 0 1 (вероятность $p^2 \cdot q$)
- 1 1 0 (вероятность $p^2 \cdot q$)
- 1 1 1 (вероятность p^3)

Введем дополнительные обозначения:

Пусть S_n - число успехов в n-испытаниях Бернулли, тогда:

$$P(S_n = k) := P_n(k), \forall k \in \overline{[0..n]}$$

$$P(S_n = k) := P_n(k), \forall k \in [0..n]$$

$$P(m_1 \le S_n \le m_2) = \sum_{k=m_1}^{k=m_2} P_n(k) \ \forall \ m_1 \ge 0, \ m_2 \le n, \ m_1 \le m_2$$

Тогда легко можно получить формулу Бернулли:

- 1. Для точного числа успехов: $P_n(k) = C_n^k p^k q^{n-k}$ 2. Для промежутка: $P(m_1 \le S_n \le m_2) = \sum_{k=m_1}^{m_2} C_n^k p^k q^{n-k}$

Лемма 1.1.1 (Наиболее вероятное число успехов).

Число успехов, что наиболее вероятны, ограничено значением p(n+1)-1. Причем для целого p(n+1)-1 существует два таких числа, а для нецелого - одно.

Пусть даны n и p. Найдем k, при котором $P(S_n = k)$ - максимальное. Сравним $P_n(k)$ и $P_n(k+1)$:

$$\frac{C_n^{k+1}p^{k+1}q^{n-k-1}}{C_n^kp^kq^{n-k}} = \frac{\frac{n!}{(k+1)!(n-k-1)!} \cdot p}{\frac{n!}{k!(n-k)!} \cdot q} = \frac{n-k}{k+1} \cdot \frac{p}{1-p}$$

Найдем решение неравенства: $\frac{n-k}{k+1} \cdot \frac{p}{1-p} \ge 1$

$$(n-k)p \ge (k+1)(1-p)$$

$$pn - pk \ge k - kp + 1 - p$$

$$k \le pn + p - 1$$

$$k \le p(n+1) - 1$$

T.к. значения p и n даны, то можно подсчитать значение для k - наиболее вероятного числа успехов.

Рассмотрим два варианта:

- 1. $p(n+1)-1 \in \mathbb{Z}$: два наиболее вероятных числа успехов k и k+1.
- 2. $p(n+1) 1 \notin \mathbb{Z}$: одно наиболее вероятное значение.

1.1.8 Пуассоновское приближение для схемы Бернулли.

Определение 1.1.16 (Пауссоновское приближение).

При фиксированном числе успехов и $n\to\infty$, верно следующее: $C_n^k p^k q^{n-k} \to \frac{\lambda^k \cdot e^{-\lambda}}{k!}$

1.1.9 Локальная теорема Муавра – Лапласа.

Теорема 1.1.2 (Локальная теорема Муавра-Лапласа).

Пусть:

1.
$$x_n = \frac{k-np}{\sqrt{npq}}$$
: $n, k \to \infty$, x_n - ограничено.

2.
$$\phi(x) = \frac{1}{\sqrt{2\Pi}} \cdot e^{-\frac{x^2}{2}}$$
 - функция Гаусса.

Тогда:

$$P_n(k) \sim \frac{1}{\sqrt{npq}} \cdot \phi(x_n)$$
, при $n \to \infty$

- 1. Пользуемся формулой Стирлинга: $n! \sim e^{-n} n^n \sqrt{2 \Pi n}$.
- 2. Пользуемся разложением в ряд Тейлора: $ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n+1} \frac{x^n}{n} + o(x^n)$

Аккуратно расписываем $C_n^k p^n q^{n-k}$. При переходе от факториала к экспоненте необходимо будет прологарифмировать.

1.1.10 Интегральная теорема Муавра – Лапласа.

Теорема 1.1.3 (Интегральная теорема Муавра-Лапласа). Пусть:

- 1. $x_{n}^{'}=\frac{k_{1}-np}{\sqrt{npq}}$: $n \to \infty, \; k_{1}$ левая граница интервала.
- 2. $x_n'' = \frac{\dot{k_2} np}{\sqrt{npq}}$: $n \to \infty$, k_2 правая граница интервала.
- 3. $\Phi(x) = \frac{1}{\sqrt{2\Pi}} \cdot \int_0^x e^{-\frac{x^2}{2}} dx$.

Тогда: $P_n(k_1; k_2) = \Phi(x'') - \Phi(x')$

1.2 Случайные величины и их распределения.

1.2.1 Случайная величина. Функция распределения случайной величины, ее свойства.

Определение 1.2.1 (Борелевские множество и - σ -алгебра). Борелевское множество относительно \mathbb{R}^n - элемент $\mathscr{B}(\mathbb{R})$ (борелевской σ -алгебры относительно \mathbb{R}^n).

Борелевская σ **-алгебра относительно** \mathbb{R}^n - это система множеств, которое:

- 1. Содержит все открытые подмножества \mathbb{R}^n (параллелепипед в общем случае; интервал для \mathbb{R}).
- 2. Замкнута относительно операций счетного объединения, пересечения и дополнения: точки, конкретные параллелепипеды, полуплоскости ... (обычное свойство σ -алгебры).
- 3. Является минимальной σ -алгеброй: если выкинуть хотя бы один элемент из данного множества, то оно перестает быть σ -алгеброй.

Определение 1.2.2 (Случайная величина).

Случайная величина ξ - есть измеримая функция: $\Omega \to \mathbb{R}$.

$$\xi = \xi(\omega), \, \forall \omega \in \Omega.$$

Значит, $\forall c \in \mathbb{R} \to P\{\xi \neq c\} = 0$ или, что $P\{\xi = c\} = 1$.

 $\xi = \xi(\omega)$ - **случайная величина**, если функция $\xi(\omega)$ измерима относительно введенной в рассматриваемом множестве Ω вероятности.

Иначе говоря, мы требуем, чтобы для каждого измеримого по Борелю

множества (т.е. являющееся Борелевским множеством) A_{ξ} значений ξ множество A_{ω} тех ω , для которых $\xi(\omega) \subset A_{\xi}$ принадлежало множеству \mathscr{A} случайных событий и, следовательно, для него была бы определена вероятность: $P\{\xi \subset A_{\xi}\} = P\{A_{\omega}\}$.

Т.е. если для любого борелевского множества A_{ξ} прообраз $A_{\omega} \in \mathscr{A} \to \xi$ является случайной величиной.

Если существует хотя бы одно борелевское множество A_{ξ} , для которого $A_{\omega} \notin \mathscr{A} \to \xi$ не является случайной величиной.

В частности, если множество A_{ξ} совпадает с полупрямой $\xi < x$, то вероятность $P\{A_{\omega}\}$ есть функция распределения переменного x: $P\{\xi < x\} = P\{A_{\omega}\} = F(x)$ - функция распределения случайной величины ξ .

Максимально неформальное определение:

Случайная величина - величина, значения которой зависят от случая и для которой определена функция распределения вероятностей.

Примеры:

- 1. Константа: $\forall \omega \ \xi(\omega) = a \in \mathbb{R}$
- 2. Монета: орел +1, решка -1 $\mathscr{A} = \{\emptyset, O, P, \Omega\}$ $\xi(O) = 1, \, \xi(P) = -1, \, \Omega = \{O, P\}$ $P(\xi = 1) = \frac{1}{2}, \, P(\xi = -1) = \frac{1}{2}$
- 3. Число успехов в испытаниях Бернулли: $\omega \in \Omega$ наборы длины n из 0 и 1.
- 4. Ошибки измерений.
- 5. Срок службы прибора.

Если ξ_1 и ξ_2 являются случайными величинами (т.е. измеримыми относительно введенной вероятности функциями $\xi_1(\omega)$ и $\xi_2(\omega)$), то любая борелевская функция от них также является случайной величиной.

Например: $\zeta = \xi_1 + \xi_2$ измерима относительно введенной вероятности и потому является случайной величиной.

Определение 1.2.3 (Измеримая функция).

Функция ξ называется **измеримой** относительно σ -алгебры \mathscr{A} , если $\forall x \in \mathbb{R}$ все прообразы интревалов $(-\infty, x)$ принадлежат σ -алгебре \mathscr{A} (т.е. являются случайными событиями).

Пусть ξ - измеримая функция, тогда:

- 1. $\xi^{-1}([-\infty,a])$ и $\xi^{-1}([-\infty,b])$ события.
- 2. $\xi^{-1}([a,b])$ есть симметричная разность событий $\to \xi^{-1}([a,b])$ тоже событие.

$$\xi$$
 - измерима относительно \mathscr{A} , если $\forall x \in \mathbb{R} \to \xi^{-1}((-\infty, x)) \in \mathscr{A}$. $\xi^{-1}(B) = \{\omega \in \Omega | \xi(\omega) \in B, B \in \mathscr{B}(\mathbb{R}) \}$ и $\xi^{-1}(B) \in \mathscr{A}$.

Определение 1.2.4 (Функция распределения).

Пусть ξ - случайная величина и $x \in \mathbb{R}$ - произвольное вещественное число.

Функция распределения случайной величины ξ - вероятность того, что ξ примет значение, меньшее чем x: $F(x) = P\{\xi < x\} \ \forall x \in \mathbb{R}$. $P\{x_1 \le \xi < x_2\} = F(x_2) - F(x_1)$

Случайные величины могут быть заданы на разных пространствах, но их распределения могут совпадать. Это не означает, что сами случайные величины совпадают.

Лемма 1.2.1 (Свойства функции распределения).

Свойства (необходимые и достаточные):

- 1. $\forall x \ F(x) \in [0, 1]$.
- 2. F(x) не убывает.
- 3. $F(-\infty) = 0$ и $F(+\infty) = 1$.
- 4. F(x) непрерывна слева в любой точке, имеет предел справа в любой точке.
- 5. Число разрывов (а именно скачков) F(x) конечно или счетно.

Teopema 1.2.1 (Линейно выпуклая комбинация функций распределения).

Возьмем множество $\lambda_1, \, \lambda_2, \, ..., \, \lambda_n$: $\Sigma_{k=1}^n = 1$, а также множество функций распределений $F_1(x), \, F_2(x), \, ..., \, F_n(x)$.

Тогда $\Sigma_{k=1}^n \lambda_k F_k(x) = F(x)$ - тоже функция распределения.

1.2.2 Непрерывная случайная величина. Плотность распределения, ее свойства. Примеры.

Определение 1.2.5 (Абсолютно непрерывная С.В.).

Абсолютно непрерывные случайные величины - класс случайных

величин, для которых существует неотрицательная функция p(x), удовлетворяющая при любых x равенству: $F(x) = \int_{-\infty}^{x} p(z) dz$. Где p(z) - функция плотности распределения.

Определение 1.2.6 (Плотность абсолютно непрерывной С.В.).

Пусть ξ - абсолютно непрерывная случайная величина, тогда функция распределения ξ можно выразить через функцию плотности распредления: $F(x) = \int_{-\infty}^{x} p(z) dz$.

Лемма 1.2.2 (Свойства плотности С.В.).

Свойства:

- 1. $p(x) \ge 0$.
- 2. $\forall x_1 \ \text{ii} \ x_2$: $Px_1 \le \xi \le x_2 = \int_{x_1}^{x_2} p(z) \, dz = F(x_2) F(x_1)$.
- 3. $\int_{-\infty}^{+\infty} p(z) dz = 1$.

Теорема 1.2.2 (Примеры С.В. абсолютно непрерывного типа).

Примеры распределений:

1. Равномерное:

(a) на
$$[0,1]$$
:
$$p(x) = \begin{cases} 1, & \text{если } x \in (0,1) \\ 0, & \text{иначе} \end{cases}$$

$$F(x) = \begin{cases} 0, & x \leq 0 \\ x, & x \in [0,1] \\ 1, & x \geq 1 \end{cases}$$

(b) на [a,b]: a < b: $p(x) = \begin{cases} 1, & \text{если } x \in (a,b) \\ 0, & \text{иначе} \end{cases}$ $F(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & x \in [a,b] \\ 1, & x \ge b \end{cases}$

2. Показательное (с параметром $\lambda > 0$):

$$p(x) = \begin{cases} 0, & x \le 0 \\ \lambda e^{-\lambda x}, & x > 0 \end{cases}$$
$$F(x) = \begin{cases} 0, & x \le 0 \\ 1 - e^{-\lambda x}, & x > 0 \end{cases}$$

- 3. Нормальное (Гауссовское):
 - (а) Стандартное:

$$\phi(x) = \frac{1}{\sqrt{2\Pi}} e^{\frac{-x^2}{2}}$$

$$\Phi(x) = \frac{1}{\sqrt{2\Pi}} \int_{-\infty}^{x} e^{\frac{-t^2}{2}} dt$$

(b) Общее (с параметрами
$$a$$
 и σ^2):
$$p(x) = \frac{1}{\sigma\sqrt{2\Pi}}e^{\frac{-(x-a)^2}{2\sigma^2}} = \frac{1}{\sigma}\phi(\frac{x-a}{\sigma})$$
$$F(x) = \frac{1}{\sigma\sqrt{2\Pi}}\int_{-\infty}^{x}e^{\frac{-(t-a)^2}{2\sigma^2}}dt = \frac{1}{\sigma}\Phi(\frac{x-a}{\sigma})$$

Дискретная случайная величина. Способы задания. При-1.2.3 меры.

Определение 1.2.7 (Дискретная С.В.).

Дискретные случайные величины - класс случайных величин, которые могут принимать только конечное или счетное множество значений.

Способы задать дискретную С.В.

- 1. Построить ряд распределения: состоит из x_k и p_k : p_k вероятность того, что ξ примет значение x_k . Причем $\sum_{i=1}^n p_i = 1$.
- 2. Задать функцию распределения: $F(x) = \sum p_k$ для таких k, при которых $x_k < x$.

Теорема 1.2.3 (Примеры С.В. дискретного вида). Примеры:

- 1. Вырожденное: $P(\xi = c) = 1$.
- 2. Распределение Бернулли (с вероятностью успеха p):
 - (a) $P(\xi = 0) = 1 p$.
 - (b) $P(\xi = 1) = p$.
- 3. Биномиальное распределение (с параметрами m и k): $P(\xi = k) =$ $C_m^k p^k (1-p)^{m-k}, \forall k \in \overline{[0,m]}.$
- 4. Равномерное дискретное: $P(\xi = k) = \frac{1}{n}, \forall k \in [0, m].$
- 5. Пуассоновское распределение (с параметром λ): $P(\xi = k) = \frac{\lambda^k e^{-\lambda}}{k!}$, $k = \{0\} \cup \mathbb{N}.$
- 6. Геометрическое (с параметром $p \in (0,1)$): $P(\xi = k) = p(1-p)^k$, $k = \{0\} \cup \mathbb{N}.$

1.2.4Математическое ожидание и дисперсия. Их свойства.

Определение 1.2.8 (Математическое ожидание).

Лемма 1.2.3 (Свойства математического ожидания).

Определение 1.2.9 (Дисперсия).

Лемма 1.2.4 (Свойства дисперсии).

1.2.5 Распределение функций от случайных величин.

Теорема 1.2.4 (Распределение функций от случайных величин).

Пусть ξ - случайная величина.

 $F_{\xi}(x)$ - функция распределения $\xi.$

Пусть \exists функция $g(x):\mathbb{R}\to\mathbb{R}$ (на самом деле из МЗФ ξ , т.е. $g(x):E(\xi)\to\mathbb{R}$)

Пусть $\eta = g(\xi)$ - некоторая функция от случайной величины. Тогда:

- 1. $P{\eta \in A} = P{g(\xi(\omega)) \in A}$.
- 2. $P\{\eta < x\} = F_{\eta}(x)$ функция распредления для η .

Лемма 1.2.5 (g(x) монотонно возрастает).

Если g(x) монотонно возрастает, то: \exists функция $h(u) = g^{-1}(u)$: h(u) - монотонно возрастающая функция.

Тогда: $h(g(x)) = x \ \forall x \ \mathsf{u} \ g(h(u)) = u \ \forall u.$

Итог: $P\{g(\xi) < x\} = P\{h(g(\xi)) < h(x)\} = P\{\xi < g^{-1}(x)\} = F_{\xi}(g^{-1}(x))$ (применили к обеим частям неравенства строго монотонно возрастающую функцию \rightarrow знак не изменился).

Пример:

$$g(x)=ax+b, a>0$$
, тогда: $g^{-1}(u)=rac{u-b}{a}$. Если $\eta=a\xi+b$, то $F_{\eta}(x)=F_{\xi}(rac{x-b}{a})$.

Лемма 1.2.6 (g(x)) монотонно убывает).

Если g(x) монотонно убывает, то аналогично \exists функция $h(u) = g^{-1}(u)$: h(u) - монотонно убывающая.

$$h(g(x)) = x \ \forall x$$
 и $g(h(u)) = u \ \forall u$.

Итог:
$$P\{g(\xi) < x\} = P\{h(g(\xi)) > h(x)\} = P\{\xi > g^{-1}(x)\} = 1 - F_{\xi}(g^{-1}(x) + 0)$$
 (предел справа) (знак поменялся).

Пример:

$$g(x)=ax+b, a<0$$
, тогда: $g^{-1}(u)=rac{u-b}{a}$.
Если $\eta=a\xi+b$, то $F_{\eta}(x)=1-F_{\xi}(rac{x-b}{a}+0)$.

Если у ξ есть плотность, то пределы слева и справа совпадают. $p_{\xi}(x) = F_{\xi}^{'}(x)$ - плотность ξ , тогда:

- 1. g(x) монотонно возрастает: $F'_{\xi}(g^{-1}(x)) = \frac{p_{\xi}(g^{-1}(x))}{g'(g^{-1}(x))}$
- 2. g(x) монотонно убывает: $F'_{\xi}(g^{-1}(x)) = \frac{p_{\xi}(g^{-1}(x))}{-g'(g^{-1}(x))}$

Примеры:

1. Равномерное распределение на $[0,1],\ p(x)=\mathbf{1}_{\{0\leq x\leq 1\}}$ (индикаторная функция).

g(x) = -ln(1-x) - монотонно возрастающая функция.

$$g^{-1}(u) = 1 - e^{-u}, u > 0.$$

$$P\{\xi < x\} = \begin{cases} x, & 0 \le x \le 1\\ 0, & \text{иначе} \end{cases}$$

Тогда:
$$P\{g(\xi) < x\} = F_{\xi}(g^{-1}(x)) = \begin{cases} 1 - e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

2. Нормальное распределение $(a=0,\sigma=1), p_{\xi}(x)=\phi(x)=\frac{1}{\sqrt{2\Pi}}e^{\frac{-x^2}{2}}$.

$$\Phi(x) = \int_{-\infty}^{x} \phi(t) dt$$

 $\Phi(x)=\int_{-\infty}^x\phi(t)\,dt$ $\sigma>0,a\in\mathbb{R}:\eta=\sigma\xi+a\to g(x)=\sigma x+a$ - монотонно возрастающая функция.

$$p_{\eta}(x) = \frac{1}{\sigma\sqrt{2\Pi}}e^{\frac{-(x-a)^2}{2\sigma^2}}.$$

Теорема 1.2.5 (Преобразование Смирнова).

Преобразование применимо к случайной величине ее же функции нормального распределения.

Пусть $F_{\xi}(x)$ - строго монотонная функция.

$$\eta = F_{\xi}(x)$$
. Тогда:

$$F_{\eta}(x) = F_{\xi}(F_{\xi}^{-1}(x)) = x$$
 при $0 < x < 1$.

Итог: случайная величина всегда равномерно распределена по отрезку.

Теорема 1.2.6 (Распределение функций случайных векторов).

Пусть $g(\vec{x}): \mathbb{R}^n \to \mathbb{R}^k$. Тогда при наличии совместной плотности:

$$P\{g(\vec{\xi}) \in A\} = P\{\vec{\xi} \in g^{-1}(A)\} = \int ... \int_{g^{-1}(A)} p_{\vec{\xi}}(t_1, ..., t_n) dt_n ... dt_1$$

Пусть $g(\vec{x})$ обратима из $\mathbb{R}^n \to \mathbb{R}^n$, тогда:

$$p_{g(\vec{\xi})}(\vec{x}) = \frac{1}{\det(J(g^{-1}(\vec{x})))} p_{\vec{\xi}}(g^{-1}(\vec{x}))$$

Теорема 1.2.7 (Свертки распределений).

Случайные величины должны подчиняться одному закону распределения, а также быть независимыми.

Лемма 1.2.7 (Свертки для дискретных С.В.).

Пусть X, Y - дискретные независимые случайные величины, тогда свертка в общем виде равна:

$$P\{Z = m\} = \sum_{k=-\infty}^{\infty} P\{X = k\} P\{Y = m - k\}$$

Примеры:

1. Равномерное распредление: 2 кубика независимо бросают.

$$X \sim U[1:6], Y \sim U[1:6]$$
 - равномерное дискретное распределение. $P\{X=k\}=\frac{1}{6}, \ P\{Y=k\}=\frac{1}{6}, \ \forall k \in \overline{[1..6]}$ Тогда $P\{X+Y=k\}=\sum_{m=\max(1,k-6)}^{\min(6,\ k-1)} P\{X=m,Y=k-m\}=\sum_{m=\max(1,\ k-6)}^{\min(6,\ k-1)} P\{X=m\}P\{Y=k-m\}$

2. Пуассоновское распрделение:

 $X \sim \mathrm{Pois}(\lambda), \ Y \sim \mathrm{Pois}(\nu)$ (Пуассоновские распределения с параметрами λ и ν).

$$P\{X=k\} = \frac{\lambda^k e^{-\lambda}}{k!}, \ P\{Y=k\} = \frac{\nu^k e^{-\nu}}{k!}$$
 Тогда $P\{X+Y\} = \sum_{m=0}^k P\{X=m,Y=k-m\} = \sum_{m=0}^k (\frac{\lambda^m e^{-\lambda}}{m!} \cdot \frac{\nu^{k-m} e^{-\nu}}{(k-m)!}) = \frac{e^{-\nu-\lambda}}{k!} \cdot \sum_{m=0}^k \frac{\lambda^k \nu^{k-m} k!}{m!(k-m)!} = \frac{e^{-(\nu+\lambda)}}{k!} \cdot \sum_{m=0}^k C_k^m \lambda^m \nu^{k-m} = \frac{e^{-(\nu+\lambda)}}{k!} (\lambda + \nu)^k$

Лемма 1.2.8 (Свертки для непрерывных С.В.).

Пусть X и Y - абсолютно непрерывные независимые случайные величины, причем $X \sim p_X(x), \, Y \sim p_Y(y),$ тогда свертка в общем виде равна: $P\{X+Y < t\} = \int \int_{x+y < t} p_X(x) p_Y(y) \, dx \, dy = \int_{-\infty}^{+\infty} \int_{-\infty}^{t-x} p_X(x) p_Y(y) \, dy \, dx = \int_{-\infty}^{+\infty} p_X(x) \int_{-\infty}^{t-x} p_Y(y) \, dy \, dx = \int_{-\infty}^{+\infty} p_X(x) F_Y(t-x) \, dx,$ где: $F_Y(y)$ - функция распределения от плотности $p_Y(y)$. $p_Z(t) = \int_{-\infty}^{+\infty} p_X(x) p_Y(t-x) \, dx$

Примеры:

1. Равномерное распределение на интервале:

$$X \sim U[0,1]$$
 и $Y \sim U[0,1]$. $p_X(x) = \mathbf{1}_{\{0 \leq x \leq 1\}}$ и $p_Y(y) = \mathbf{1}_{\{0 \leq y \leq 1\}}$ - индикаторные функции плотности. $Z = X + Y$ - хотим найти распределение. $p_Z(t) = (p_X * p_Y)(t) = \int_{-\infty}^{+\infty} \mathbf{1}_{\{0 \leq x \leq 1\}} \mathbf{1}_{\{0 \leq t - x \leq 1\}} \, dx = \int_{-\infty}^{+\infty} \mathbf{1}_{\{0 \leq x \leq 1; 0 \leq t - x \leq 1\}} \, dx = \int_{\max(0,t-1)}^{\min(1,t)} 1 \, dx = \begin{cases} t, & t \in [0,1] \\ 1 - (t-1), & t \in [1,2] \end{cases}$

1.2.6 Случайные векторы. Совместные распределения случайных величин. Вычисление распределений компонент.

Определение 1.2.10 (Случайный вектор).

Рассмотрим вероятностное пространство $\{\Omega, \mathscr{A}, P\}$, на котором опрделены n случайных величин: ξ_1, \ldots, ξ_n (функции $\xi_i(\omega)$ - измеримы).

Случайный вектор $\vec{\xi}$ - есть измеримая функция: $\Omega \to \mathbb{R}^n$. $\vec{\xi} = (\xi_1, \xi_2, ..., \xi_n)$ (все $\xi_i(\omega)$ - измеримы).

Определение 1.2.11 (Функция распределения случайного вектора). Пусть $\vec{\xi} = (\xi_1, \xi_2, ..., \xi_n)$ - случайный вектор.

Обозначим через $\{\xi_1 < x_1, \xi_2 < x_2, ..., \xi_n < x_n\}$ множество тех элементарных событий ω , для которых одновременно выполняются все неравенства: $\xi_1(\omega) < x_1, \xi_2(\omega) < x_2, ..., \xi_n(\omega) < x_n$

Событие $\{\xi_1 < x_1, \xi_2 < x_2, ..., \xi_n < x_n\}$ - это произведение событий $\xi_k(\omega) < x_k, \ 1 \le k \le n.$

Следовательно, оно принадлежит множеству \mathscr{A} : $\{\xi_1 < x_1, \xi_2 < x_2, ..., \xi_n < x_n\} \in \mathscr{A}$.

Таким образом, при любом наборе чисел $x_1, x_2, ..., x_n$ определена вероятность $F_{\xi}(x_1, x_2, ..., x_n) = P\{\xi_1 < x_1, \xi_2 < x_2, ..., \xi_n < x_n\}$ - n-мерная функция распределения случайного вектора (или функция совместного распределения) $(\xi_1, \xi_2, ..., \xi_n)$.

В евклидовом пространстве, функция распределения даст вероятность попадания точки $(\xi_1, ..., \xi_n)$, которая попадает в угол n-мерного параллелепипеда $x_1, x_2, ..., x_n$ с ребрами, параллельным осям координат.

Определение 1.2.12 (Совместное распределение).

Совместная распределение - это распределение совместных исходов $(\xi_1, \xi_2, ..., \xi_n)$, образованных из нескольких случайных величин $\xi_1, \xi_2, ..., \xi_n$.

Пример: если случайная величина ξ_1 - результат кидания первой игральной кости, а случайная величина ξ_2 - результат кидания другой игральной кости, то вектор (ξ_1, ξ_2) совместного кидания игральных костей является составной величиной и имеет совместное распределение.

Т.е. совместное распределение - множество вероятностей, которые получаются путем приема функций (компонент вектора) случайных величин конкретных значений.

Определение 1.2.13 (Маргинальная функция распределения). Если функция распределения принимает такой вид: $F_{\vec{\xi}}(x_1,...,x_{n-1},\infty)$, то будет выполнена следующая система неравенств: $\xi_1 < x_1, \xi_2 < x_2, ..., \xi_{n-1} < x_{n-1}$

T.e. произойдет переход от n-мерной функции распределения к n-1мерной. Такие функции распределения $F_{\vec{\xi}}(x_1,...,x_{n-1},\infty)$ называются маргинальными.

Они необходимы для получения распределений отдельных компонент случайного вектора (свести вектор к функции распределения для отдельной компоненты: все остальные взять за ∞).

Лемма 1.2.9 (Свойства многомерной функции распределения). С помощью функции распределения легко вычислить вероятность того, что точка $(\xi_1,...,\xi_n)$ окажется внутри параллелепипеда: $a_i \leq \xi_i < b_i \ (i \in \overline{[1..n]})$ (через формулу включения-исключения).

Для двумерного случая:

$$P\{a_1 \le \xi_1 < b_1, a_2 \le \xi_2 < b_2\} = F(b_1, b_2) - F(a_1, b_2) - F(a_2, b_1) + F(a_1, a_2).$$

Дополнительные свойства:

- 1. Неубывание по каждой из компонент.
- 2. Непрерывность слева по каждой из компонент.
- 3. $\lim_{x_k \to +\infty} F_{\vec{\xi}}(x_1, ..., x_n) = 1.$ 4. $\lim_{x_k \to -\infty} F_{\vec{\xi}}(x_1, ..., x_n) = 0.$

Определение 1.2.14 (Абсолютно непрерывный случайный вектор).

 $ec{\xi}$ - абсолютно непрерывный случайный вектор, если \exists функция $p(x_1,x_2,...,x_n)$: $\mathbb{R}^n \to \mathbb{R}^+$.

$$F_{\vec{\xi}}(x_1, x_2, ..., x_n) = \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_n} p_{\vec{\xi}}(t_1, ..., t_n) dt_n ... dt_1.$$

Где $p_{\vec{\xi}}(x_1, x_2, ..., x_n)$ - совместная функция плотности.

$$p_{\xi}(x_1, x_2, ..., x_n) = \frac{\partial^n F(x_1, x_2, ..., x_n)}{\partial x_1 \partial x_2 ... \partial x_n}$$

Лемма 1.2.10 (Свойства совместной функции плотности). Если $F_{\vec{\xi}}(x_1,x_2,...,x_n)=\int_{-\infty}^{x_1}...\int_{-\infty}^{x_n}p_{\vec{\xi}}(t_1,...,t_n),dt_n...dt_1$, то:

 $p_{\vec{\xi}}(t_1,t_2,...,t_n)$ - **совместная функция плотности**, со следующими свойствами:

1.
$$p_{\vec{\epsilon}}(x_1, x_2, ..., x_n) \ge 0$$
.

2.
$$\int ... \int_{\mathbb{R}^n} p_{\xi}(t_1, ..., t_n), dt_n ... dt_1 = 1.$$

Плотность i-ой компоненты вычисляется путем интегрирования по всем остальным переменным:

$$p_{\xi_i}(x_i) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} p(x_1, ..., x_i, ..., x_n), dx_1...dx_{i-1}, dx_{i+1}...dx_n$$

Плотность распределения i-ой компоненты при условии j-ой вычисляется по формуле:

$$p_{\xi_i|\xi_j=y}(x) = \frac{\int \cdots \int p(x_1, \dots, x_i, \dots, y, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_{j-1} dx_{j+1} \dots dx_n}{p_{\xi_i}(y)}$$

Для двумерного случая:
$$p_{\xi_i|\xi_j=y}(x)=rac{p_{\xi_i,\xi_j}(x,y)}{p_{\xi_j}(y)}$$

Условная плотность описывает "сечение" совместного распределения при фиксированном значении $\xi_j=y$. Это позволяет рассуждать о распределении ξ_i , когда мы точно знаем значение ξ_i .

Условное распределение именно "отсекает" срез совместного распределения при фиксированном значении одной переменной и нормирует его для получения плотности.

Определение 1.2.15 (Дискретный случайный вектор).

 $ec{\xi_i}$ - **дискретный** случайный вектор, если множество его возможных значений конечно или счетно.

Из определения следует, что случайный вектор является дискретным тогда и только тогда, когда все его компоненты $\xi_1, \xi_2, ..., \xi_n$ - дискретные случайные величины.

Лемма 1.2.11 (Таблица распределения двумерного дискретного вектоpa).

Двумерный дискретный случайный вектор можно задать через таблицу распределения:

Пусть векторы $(a_1,a_2,...,a_n)$ и $(b_1,b_2,...,b_m)$ - значения, что принимают компоненты (случайные величины) двумерного случайного вектора.

Тогда ячейка таблицы совместного распределения примет вид: $p_{kl} =$ $P(\xi = a_k, \eta = b_l).$ Причем $\sum_{k=1}^n \sum_{l=1}^m p_{kl} = 1.$

Причем
$$\sum_{k=1}^{n} \sum_{l=1}^{m} p_{kl} = 1.$$

Правила заполнения:

- 1. По строкам откладывается принимаемые значения одной случайной величины, по столбцам - другой.
- 2. Внутри заданы совместные вероятности: сумма всех совместных вероятность равна единице.

Распределение компонент получается суммированием по конкретным строкам или столбцам таблицы.

$$P\{X=X_i\} = \sum_j P\{X=X_i, Y=Y_i\}, i=1,...,n$$
 - для случайных величин X и Y .

Условная вероятность определяется следующим образом: $P\{Y=Y_j|X=X_i\}=rac{P\{X=X_i,Y=Y_i\}}{P\{X=X_i\}}$

$$P\{Y = Y_j | X = X_i\} = \frac{P\{X = X_i, Y = Y_i\}}{P\{X = X_i\}}$$

1.2.7Независимость случайных величин. Коэффициент корреляции.

Определение 1.2.16 (Независимость случайных величин).

Случайные величины $\xi_1, \xi_2, ..., \xi_n$ независимы \leftrightarrow если для любой группы $\xi_{i_1}, \xi_{i_2}, ..., \xi_{i_k}$ этих величин имеет место равенство:

$$P\{\xi_{i_1} < x_{i_1}, \xi_{i_2} < x_{i_2}, ..., \xi_{i_k} < x_{i_k}\} = P\{\xi_{i_1} < x_{i_1}\}P\{\xi_{i_2} < x_{i_2}\}...P\{\xi_{i_k} < x_{i_k}\}$$

При произвольных $x_{i_1}, x_{i_2}, ..., x_{i_k}$ и любом $k: 1 \le k \le n$.

В терминах функций распределения (для произвольной группы $x_1, x_2, ..., x_n$): $F(x_1, x_2, ..., x_n) = F_1(x_1)F_2(x_2)...F_n(x_n)$, где: $F_k(x_k)$ - функция распределения величины ξ_k .

Для дискретных случайных величин:

$$\xi_1,\xi_2...,\xi_n$$
 - независимы $\leftrightarrow P\{\xi_1=x_1,\xi_2=x_2,...,\xi_n=x_n\}=P\{\xi_1=x_1\}P\{\xi_2\}...P\{\xi_n=x_n\}$

Для абсолютно непрерывных случайных величин:

$$\xi_1, \xi_2..., \xi_n$$
 - независимы $\leftrightarrow p(x_1, x_2, ..., x_n) = p_{\xi_1}(x_1)p_{\xi_2}(x_2)...p_{\xi_n}(x_n)$

- 1.2.8 Многомерное нормальное распределение. Плотность (в невырожденном случае), характеристическая функция. Необходимое и достаточное условие независимости компонент.
- 1.2.9 Условное математическое ожидание. Условная плотность. Условная дисперсия.
- 1.2.10 Условные характеристики для нормального вектора.
- 1.3 Предельные теоремы и марковские цепи.
- 1.3.1 Неравенство Чебышева.
- 1.3.2 Типы сходимости в теории вероятностей, связь между ними.
- 1.3.3 Закон больших чисел в форме Чебышева.
- 1.3.4 Характеристические функции случайных величин, их свойства.
- 1.3.5 Формулы обращения для непрерывных и целочисленных случайных величин.
- 1.3.6 Центральная предельная теорема Леви.
- 1.3.7 Цепи Маркова. Определение, матрица переходных вероятностей, матрица перехода за п шагов.
- 1.3.8 Классификация состояний цепи Маркова.
- 1.3.9 Эргодическая теорема.

2 Математическая статистика.

3 Список вопросов.

- 1. Классическое и геометрическое определение вероятности.
- 2. Основные комбинаторные формулы.
- 3. Аксиоматика Колмогорова.
- 4. Условная вероятность. Независимость. Формулы сложения и умножения.
- 5. Формула полной вероятности.
- 6. Формула Байеса.
- 7. Испытания Бернулли. Формула Бернулли.
- 8. Пуассоновское приближение для схемы Бернулли.
- 9. Локальная теорема Муавра Лапласа.
- 10. Интегральная теорема Муавра Лапласа.
- 11. Случайная величина. Функция распределения случайной величины, ее свойства.
- 12. Непрерывная случайная величина. Плотность распределения, ее свойства. Примеры.
- 13. Дискретная случайная величина. Способы задания. Примеры.
- 14. Математическое ожидание и дисперсия. Их свойства.
- 15. Распределение функций от случайных величин.
- 16. Случайные векторы. Совместные распределения случайных величин. Вычисление распределений компонент.
- 17. Независимость случайных величин. Коэффициент корреляции.
- 18. Многомерное нормальное распределение. Плотность (в невырожденном случае), характеристическая функция. Необходимое и достаточное условие независимости компонент.
- 19. Неравенство Чебышева.
- 20. Типы сходимости в теории вероятностей, связь между ними.
- 21. Закон больших чисел в форме Чебышева.
- 22. Характеристические функции случайных величин, их свойства.
- 23. Формулы обращения для непрерывных и целочисленных случайных величин.
- 24. Центральная предельная теорема Леви.
- 25. Условное математическое ожидание. Условная плотность. Условная дисперсия.
- 26. Условные характеристики для нормального вектора.
- 27. Цепи Маркова. Определение, матрица переходных вероятностей, матрица перехода за n шагов.
- 28. Классификация состояний цепи Маркова.
- 29. Эргодическая теорема.
- 30. Задачи математической статистики. Оценка параметров, проверка

гипотез.

- 31. Основные выборочные характеристики.
- 32. Эмпирическая функция распределения. Теорема Гливенко-Кантелли.
- 33. Свойства статистических оценок (с примерами и доказательствами).
- 34. Оценивание по методу максимального правдоподобия.
- 35. Регулярный эксперимент. Неравенство Рао Крамера.
- 36. Оценивание по методу моментов.
- 37. Распределение функций от нормальной выборки. Лемма Фишера.
- 38. Доверительные интервалы для параметров нормального распределения.
- 39. Проверка гипотез: понятие ошибок I и II рода, уровень значимости, мощность критерия; критическая область; простые и сложные гипотезы.
- 40. Проверка простой гипотезы по методу хи-квадрат.
- 41. Проверка согласия с помощью критерия Колмогорова.
- 42. Постановка задачи линейной регрессии. Метод наименьших квадратов.
- 43. Несмещенная оценка дисперсии в задаче линейной регрессии.