WORKSHEET DA Y 5

Questions based on Imaginary Numbers

- $i^{57} + 1/i^{125}$ is equal to -Q.1
 - (A) 0
- (B) -2i
- (C) 2i
- (D) 2
- Q.2 $\{1 + (-i)^{4n+3}\}\ (1 - i)\ (n \in N)\ equlas\ -$
 - (A) 2
- (B) 1
- (C) 2
- (D) i
- **Q.3**
 - (A) 1
- (B) i
- (C) i
- (D) 1
- **Q.4** The value of $(-i)^{-117}$ is -
 - (A) 1
- (B) i
- (C) 1
- (D) i
- $(i^{10} + 1)(i^9 + 1)(i^8 + 1)$(i + 1) equals-Q.5
- (B) 1
- (C) i
- (D) 0
- i243 equals -**Q.6**
 - (A) 1
- (B) 1
- (C) i
- (D) i
- $\frac{1+i^2+i^3+i^4+i^5}{1+i} \quad \text{equals -}$ Q.7
- (B) (1 + i)/2
- (C)(1 i)/2
- If $k \in N$, then $\frac{i^{4k+1}-i^{4k-1}}{2}$ is equal to -**Q.8**
 - (A) 1 (C) 1

- The value of $(1 + i)^{2n} + (1 i)^{2n}$ $(n \in N)$ is Q.9 zero, if -
 - (A) n is odd
- (B) n is multiple of 4
- (C) n is even
- (D) $\frac{n}{2}$ is odd
- Q.10 The value the expression $i^{592} + i^{590} + i^{588} + i^{586} + i^{584}$ $\frac{1}{i^{582} + i^{580} + i^{578} + i^{576} + i^{574}} \quad \text{is} \ \, -$
 - (A) 0
- (C) 1
- (D) -2

Complex Number

- The real and imaginary parts of $\frac{5+3i}{i-2}$ are-Q.11
- (A) -5 / 2, 3 (C) -7 / 5, -11/5
- (D) 7 / 5, -11/5
- The value of $\frac{1}{1-i} \frac{1}{1+i}$ is -Q.12
 - (A) purely rational
- (B) purely imaginary
- (C) purely real
- (D) None of these
- The conjugate of $\frac{(2+i)^2}{3+4i}$ is -Q.13
- (B) purely imaginary
- (C) 1
- (D) None of these
- $(x, y)^2$ is equal to-Q.14
 - (A) $(x^2-y^2,0)$ (C) (x^2, y^2)
- (B) $(x^2 y^2, 2xy)$ (D) (2x, 2y)

- The conjugate of $\frac{3+2i}{5-3i}$ is equal to-Q.15
 - (A) $-\frac{1}{34}$ (9 + 19i) (B) $\frac{1}{34}$ (9 19i) (C) $\frac{1}{34}$ (19i 9) (D) $\frac{1}{34}$ (9 + 19i)
- If $z^2 = (\overline{z})^2$, then which statement is true -Q.16
 - (A) z is imaginary
 - (B) z is real
 - (C) $z = -\overline{z}$
 - (D) z is real or imaginary
- If $z = \cos \theta + i \sin \theta$, then $\frac{1+z}{1-z}$ is equal to Q.17
 - (A) i tan θ
- (B) i cot θ /2
- (C) i cot θ
- (D) i tan θ /2
- If I $\left(\frac{2z+1}{iz+1}\right) = -2$, then the locus of z is -Q.18
 - (A) a parabola
- (B) a straight line
- (C) a circle
- (D) a coordinate axis
- Q.19 Which of the following is a complex number
 - (A) $\left(\tan \pi, \tan \frac{\pi}{2}\right)$ (B) $\left(\sqrt{e}, i^8\right)$
 - (C) $(0, \sqrt{-1})$
- (D) None of these

- Q.20 Which one is a complex number ?
 - (A) (i^4, i^5)
- (B) (i^8, i^{12})
- (C) $(\sqrt{-4}, 4)$
- (D) $\{\log 2, \log (-1)\}$
- Q.21 Which of the following is the correct statement?
 - (A) 1 i < 1 + i
- (B) 2i > i
- (C) 2i + 1 > -2i + 1 (D) None of these
- Q.22 a + ib > c + id is meaningful if -
 - (A) a = 0, d = 0
- (B) a = 0, c = 0
- (C) b = 0, c = 0
- (D) d = 0, b = 0
- The number $\frac{3+2i}{2-5i} + \frac{3-2i}{2+5i}$ is -Q.23
- (C) purely imaginary (D) complex
- If \sqrt{x} (i + \sqrt{y}) 15 = i (8 \sqrt{y}). Then x & y Q.24 equals to-
 - (A) 25 , 5 (C) 9 , 5

- If (x + iy) (2 3i) = 4 + i, then -Q.25
 - (A) $x = -\frac{5}{13}$, $y = \frac{14}{13}$
 - (B) $x = \frac{5}{13}$, $y = -\frac{14}{13}$
 - (C) $x = \frac{14}{13}$, $y = \frac{5}{13}$
 - (D) $x = \frac{5}{13}$, $y = \frac{14}{13}$
- The value of x and y which satisfies the Q.26 equation $\frac{(1+i)^2}{(1-i)^2} + \frac{1}{x+iy} = 1 + i$ is -

$$(1-i)^2$$
 X

- (A) $x = \frac{2}{5}$, $y = -\frac{1}{5}$
- (B) $x = -\frac{2}{5}$, $y = -\frac{1}{5}$
- (C) $x = -\frac{2}{5}$, $y = \frac{1}{5}$
- (D) $x = \frac{2}{5}$, $y = \frac{1}{5}$
- If z = -3 + 2i, then 1/z is equal to-
 - (A) $-\frac{1}{13}$ (3 + 2i) (B) $\frac{1}{13}$ (3 + 2i)
- - (C) $\frac{1}{\sqrt{13}}$ (3 + 2i) (D) $-\frac{1}{\sqrt{13}}$ (3 + 2i)

- If $2 \sin \theta 2i \cos \theta = 1 + i\sqrt{3}$, then value Q.28 of θ is-
 - (A) $\frac{\pi}{6}$
- (B) $\frac{5\pi}{6}$
- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$
- Q.29 If $z_1, z_2 \in C$, then which statement is true ?
 - (A) $R(z_1 z_2) = R(z_1) R(z_2)$
 - (B) $R(z_1 / z_2) = R(z_1) / R(z_2)$
 - (C) $R(z_1z_2) = R(z_1) R(z_2)$
 - (D) None of these
- Q.30 If z_1 , $z_2 \in C$, then wrong statement is-
 - (A) $\overline{z_1 + z_2} = \overline{z}_2 + \overline{z}_1$
 - (B) $| z_1 \overline{z_2} | = | z_2 | | z_1 |$
 - (C) $\overline{z_1 z_2} = \overline{z_2} \overline{z_1}$
 - (D) $|z_1 + \overline{z_2}| = |z_1 \overline{z_2}|$
- If z = x + iy, then $\frac{z \overline{z}}{z + \overline{z}}$ is equal to-
 - (A) i (y/x)
- (B) y/x
- (C) i(x/y)
- (D) x/y
- Q.32 For any complex number z which statement is true -
 - (A) $z \overline{z}$ is purely real number
 - (B) $z + \overline{z}$ is purely imaginary number
 - (C) $z\bar{z}$ is purely imaginary number
 - (D) z z is non-negaitve real number
- Q.33 If z and \overline{z} are equal then locus of the point z in the complex plane is
 - (A) real axis
- (B) circle
- (C) imaginary axis
- (D) None of these
- If $c^2 + s^2 = 1$, then $\frac{1+c+is}{1+c-is} =$ Q.34
 - (A) c + i s
- (B) s + i c
- (C) c i s
- (D) s ic

- Q.35 For any complex number z, $\bar{z} = (1/z)$, if -
 - (A) z is purely imaginary
 - (B) |z| = 1
 - (C) z is purely real
 - (D) z = 1
- If z = 1 + i, then multiplicative inverse of z^2 Q.36
 - (A) 2i
- (B) -i/2
- (C) i/2
- (D) 1 i

Questions based on Modulus of a Complex Number

Q.37 The modulus of complex number

$$z = -2i (1 - i)^2 (1 + i \sqrt{3})^3$$
 is -

- (A) 32
- (B) 0
- (C) 32
- (D) 1
- Q.38 The modulus of sum of complex numbers -4 + 3i and -8 + 6i is-
 - (A) equal to sum of moduli
 - (B) greater than or equal to sum of moduli
 - (C) less than or equal to sum of moduli
 - (D) none of these
- If $z_1 = 2 + i$, $z_2 = 3 2i$, then value of Q.39

$$\left| \frac{2z_2 + z_1 - 5 - i}{2z_1 - z_2 + 3 - i} \right|^2 \quad \text{is } -$$

- (A) 2
- (B) 1
- (C) 0
- (D) None of these
- Modulus of $\frac{\cos \theta i \sin \theta}{\sin \theta i \cos \theta}$ is -Q.40
 - (A) 0
- (B) 2θ
- (C) $\pi 2\theta$
- (D) None of these
- If z = x + iy and |z 3| = R(z), then locus Q.41 of z is-
 - (A) $y^2 = -3(2x + 3)$
 - (B) $y^2 = 3(2x + 3)$
 - (C) $y^2 = -3(2x 3)$
 - (D) $y^2 = 3(2x 3)$

Q.42 If z_1 and z_2 are any two complex numbers,

then
$$\frac{|z_2 + z_1|}{||z_2| - |z_1||}$$
 is -

- $(A) \leq 1$
- (B) \geq 1
- $(C) \ge -1$
- (D) None of these
- Q.43 If |z| + 2 = I(z), then z = (x, y) lies on -

 - (A) $y^2 = -4(x-1)$ (B) $y^2 = 4(x-1)$
 - (C) $x^2 = -4(y 1)$ (D) No locus
- Q.44 The complex number z which satisfy the condition |z| + z = 0 always lie on-
 - (A) y-axis
- (B) x-axis
- (C) x-axis and $x \le 0$ (D) x = y
- If $(-7-24i)^{1/2} = x iy$, then $x^2 + y^2$ is equal Q.45
 - (A) $\sqrt{25}$
- (B) 25
- (C) 15
- (D) None of these
- Q.46 If z_1 and z_2 be two complex numbers, then which statement is true -
- If $(\sqrt{3} + i)^{100} = 2^{99}$ (a + ib), then $a^2 + b^2$ is Q.47 equal to -
 - (A) 2
- (B) 1
- (C) 3
- (D) 4

Questions | Amplitude of a Complex Number

- If amp $(z_i) = \theta_i$, i = 1, 2, 3; then amp $\left(\frac{z_1}{z_2 \overline{z}_3}\right)$ Q.48 is equal to-
- (A) $\frac{\theta_1}{\theta_2\theta_3}$ (B) $\frac{\theta_1\theta_2}{\theta_3}$ (C) $\theta_1 \theta_2 \theta_3$ (D) $\theta_1 \theta_2 + \theta_3$
- The amplitude of $-1-i\sqrt{3}$ is-Q.49
 - $(A) \pi / 3$
- (B) $\pi / 3$
- (C) $2\pi / 3$
- (D) $-2\pi / 3$

- The amplitude of $\sin \frac{6\pi}{5} + i \left(1 + \cos \frac{6\pi}{5}\right)$ is-Q.50
 - (A) $3\pi / 5$
- (B) $9\pi / 10$
- (C) $3\pi / 10$
- (D) None of these
- The amplitude of $3 \sqrt{8}$ is -Q.51
 - (A) 0
- (B) $\pi/2$
- (C) π
- (D) $-\pi /2$
- Q.52 The amplitude of 1/i is equal to-
 - (A) π
- (B) π /2
- (C) $-\pi/2$
- (D) 0
- Q.53 If amp (z) = θ , then amp (1/z) is equal to-
- $(B) \theta$
- (C) $\pi \theta$
- (D) $\pi + \theta$
- Q.54 The amplitude of $1 - \cos \theta - i \sin \theta$ is-
 - (A) π + (θ /2)
- (B) $(\pi \theta)/2$
- (C) $(\theta \pi)/2$
- (D) θ /2
- The amplitude of complex number $z = \frac{(1+i\sqrt{3})^2}{4i(1-i\sqrt{3})}$ Q.55
 - (A) π
- (C) $\frac{\pi}{4}$
- (D) $-\frac{\pi}{2}$
- If $z = \frac{(1+i)\sqrt{3}-(1-i)}{2\sqrt{2}}$, then -Q.56
 - (A) |z| = 1, amp (z) = $-\pi/4$
 - (B) |z| = 1, amp(z) = $\pi /4$
 - (C) |z| = 1, amp(z) = $5\pi / 12$
 - (D) |z| = 1, amp (z) = $\pi / 12$
- The amplitude of $\frac{(1+i)(2+i)}{3-i}$ is -Q.57
 - (A) $-\pi /3$
- (B) π /2
- (C) $\pi / 3$
- (D) $-\pi/2$
- Q.58 If z₁, z₂ are two complex numbers such that $|z_1 + z_2| = |z_1 - z_2|$ then amp (z_1) -amp (z_2) is equal to-
 - (A) π /3
 - (B) $\pi/2$
 - (C) $\pi/4$
 - (D) 0

- Q.59 If $amp(z) = \alpha$, then amp(iz) is equal to -
 - (A) $\pi \alpha$
- (B) $(\pi/2) + \alpha$
- (C) $(\pi / 2) \alpha$
- (D) $-\alpha$
- Q.60 The amplitude of complex number $(1 + i\sqrt{3})$
 - $(1 + i) (\cos \theta + i \sin \theta)$ is -

 - (A) $\frac{\pi}{12} \theta$ (B) $\frac{7\pi}{12} + \theta$
 - (C) $\frac{7\pi}{12} \theta$ (D) $\frac{\pi}{12} + \theta$
- Q.61 If z₁ and z₂ are two conjugate complex numbers and $amp(z_1) = \theta$, then $amp(z_1) + amp(z_2)$ and amp (z₁/z₂) are equal to -
 - (A) 2θ , -2θ
- (B) $0, 2\theta$
- (C) 20, 0
- (D) None of these
- The amplitude of $\left| \frac{x+iy}{x-iy} \right|$ is -Q.62
 - (A) $tan^{-1} (y/x)$
- (B) 2tan-1 (y/x)
- (C) 0
- (D) π /2
- Q.63 amp (cot α – i) equals -
 - (A) $(\pi / 2) + \alpha$
- (B) $-\alpha$
- (C) α
- (D) $\alpha (\pi / 2)$
- The arg of $\frac{1}{4} (1 i\sqrt{3})^2$ is -Q.64
 - (A) $2\pi/3$
- (B) $-2\pi/3$
- (C) 2π
- (D) π
- If $\sqrt{3}$ + i = (a + ib) (c + id), then Q.65
 - $\tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right) =$
 - (A) $n\pi \frac{\pi}{3}$ (B) $n\pi + \frac{\pi}{6}$
 - (C) $\frac{\pi}{3} + 2n\pi$ (D) $2n\pi \frac{\pi}{3}$
- If amplitude of $\frac{2+i}{i-1}$ is θ , then -Q.66
 - (A) $0 < \theta < \pi / 2$
 - (B) $-\pi/2 < \theta < 0$
 - (C) $\pi / 2 < \theta < \pi$
 - (D) $-\pi < \theta < -\pi/2$

Polar form of Complex Number

- Q.67 The polar form of -5(cos 40° -i sin 40°) is -
 - (A) $5(\cos 140^{\circ} + i \sin 140^{\circ})$
 - (B) 5 (cos $140^{\circ} i \sin 140^{\circ}$)
 - (C) $5(\cos 40^{\circ} i \sin 40^{\circ})$
 - (D) $5(\cos 40^{\circ} + i \sin 40^{\circ})$
- The polar form of $\frac{1+7i}{(2-i)^2}$ is -Q.68
 - (A) $\sqrt{2} \left(\cos \frac{\pi}{2} i \sin \frac{\pi}{2} \right)$
 - (B) $\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$
 - (C) $\sqrt{2} \left(\sin \frac{\pi}{4} + i \cos \frac{\pi}{4} \right)$
 - (D) $\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$
- r (cos θ + i sin θ) form of $\frac{1-i}{1+i}$ is -Q.69
 - (A) $\sin \frac{\pi}{2} + i \cos \frac{\pi}{2}$ (B) $\cos \frac{\pi}{2} i \sin \frac{\pi}{2}$
 - (C) $\cos \frac{\pi}{2}$ + i $\sin \frac{\pi}{2}$ (D) None of these
- Q.70 - 3 - 4i equals -
 - (A) $5e^{i\{\pi-tan^{-1}(3/4)\}}$
- (B) $5e^{-i\{\pi-tan^{-1}(4/3)\}}$
- (C) $5e^{i\{\pi-tan^{-1}(4/3)\}}$
- (D) $5e^{i\{\pi-tan^{-1}(3/4)\}}$
- Q.71 If modulus and amplitude of a complex number are 2 and $2\pi/3$ respectively, then the number is-
 - (A) $1 i\sqrt{3}$
- (B) 1 + $i\sqrt{3}$
- (C) $-1 + i\sqrt{3}$ (D) $-1 i\sqrt{3}$

Square root of a Complex Number

- Q.72 The square root of -5 -12i is -
 - $(A) \pm (3 2i)$
- (B) \pm (2 3i)
- $(C) \pm (3 + 2i)$
- (D) \pm (2 i)

- Q.73 The square root of 8 - 6i is -
 - $(A) \pm (1 + 3i)$
- (B) \pm (3 i)
- $(C) \pm (1 3i)$
- $(D) \pm (3 + i)$
- Q.74 The square root of i is -

 - (A) $\pm \frac{1}{\sqrt{2}} (1 + i)$ (B) $\pm \frac{1}{\sqrt{2}} (1 i)$
 - (C) $\pm \sqrt{2}$ (1 i) (D) $\pm \sqrt{2}$ (1 + i)
- Q.75 The square root of -7 + 24i is -
 - $(A) \pm (3 + 4i)$
- (B) \pm (-3 + 4i)
- $(C) \pm (-4 + 3i)$
- $(D) \pm (4 + 3i)$

Cube roots of unity

Q.76 If ω is cube root of unity, then the value of

$$\frac{a+b\omega+c\omega^2}{b+c\omega+a\omega^2}+ \ \frac{a+b\omega+c\omega^2}{c+a\omega+b\omega^2} \ \text{is-}$$

- (A) 1
- (C) 1
- (D) 2
- The value of $(\sqrt{3} + i)^n + (\sqrt{3} i)^n$ is-Q.77
 - (A) $2^n \sin n\pi/6$
- (B) $2^n \cos n\pi/6$
- (C) $2^{n+1} \cos n\pi/6$
- (D) $2^{n+1} \sin n\pi/6$
- Q.78 If ω is cube root of unity and if n = 3k + 2then the value of $\omega^n + \omega^{2n}$ is-
 - (A) 0
- (B) -1
- (C)2
- (D) 1
- Q.79 If ω is cube root of unity then the value of $(1 + \omega) (1 + \omega^2) (1 + \omega^4) (1 + \omega^8) \dots 2n$ is-
 - (A) 0
- (B) n
- (C) -1
- (D) 1

Q.80
$$\left[\frac{-1+i\sqrt{3}}{2}\right]^{6} + \left[\frac{-1-i\sqrt{3}}{2}\right]^{6} + \left[\frac{-1+i\sqrt{3}}{2}\right]^{5} +$$

$$\left[\frac{-1-i\sqrt{3}}{2}\right]^5 =$$

- (A) 1
- (B) -1
- (C)2
- (D) None of these

- If $\boldsymbol{\omega}$ is cube root of unity, then the value of Q.81 $(1 + \omega) - (1 - \omega^2) - 3 (1 + \omega^2)^3$ is-
 - (A) 0
- (B) 1
- (C) -1
- (D) 2
- If ω is one imaginary nth root of unity, then Q.82 the value of 1 + ω + ω^2 + + ω^{n-1} is-
 - (A) 1
- (B) 1
- (C) 0
- (D) 2
- If roots of x^n –1 = 0 are ω_1, ω_2 ,, $\omega_n,$ then-Q.83 $\omega_1^{n-1} + \omega_2^{n-1} + \dots + \omega_n^{n-1}$ equals-
 - (A) 0
- (B) n 1
- (C) 1
- (D) n
- Q.84 If ω is a non real cube root of unity and n is a positive integer which is not a multiple of 3; then 1 + ω^n + ω^{2n} is equal to-
 - (A) 3ω
- (B) 0
- (C) 3
- (D) None of these
- The sum of squares of cube roots of unity is-Q.85
 - (A) 0
- (B) 1
- (C) 1
- (D) 3
- The product of n, nth roots of unity is-Q.86
 - (A) 1
- $(C) (-1)^n$
- (D) $(-1)^{n-1}$
- Q.87 If ω is an imaginary cube root of unity, then for positive integral value of n, the product of ω . $\omega^2.\omega^3....\omega^n$ will be-
 - (A) 1
- (B) $\frac{1-i\sqrt{3}}{2}$
- (C) $\frac{1+i\sqrt{3}}{2}$
- (D) 1, ω

Questions Geometry of complex number

- If $z = (k + 3) + i \sqrt{5 k^2}$, then locus of z is a -Q.88
 - (A) circle
 - (B) parabola
 - (C) straight line
 - (D) None of these

- Q.89 If $\overline{z} = 2 - z$, then locus of z is a
 - (A) line passing through origin
 - (B) line parallel to y-axis
 - (C) line parallel to x-axis
 - (D) circle
- Q.90 The value of z for which |z + i| = |z - i| is-
 - (A) any real number
 - (B) any natural number
 - (C) any complex number
 - (D) None of these
- Q.91 If |z| = 2, then locus of -1 + 5z is a circle whose centre is -
 - (A) (-1, 0)
- (B)(1,0)
- (C)(0, -1)
- (D)(0,0)
- Q.92 If centre of any circle is at point z, and its radius is a, then its equation is -
 - (A) $|z + z_1| = a$
 - (B) |z| = a
 - (C) $|z z_1| < a$
 - (D) $|z z_1| = a$
- Q.93 If 0, 3 + 4i, 7 + 7i, 4 + 3i are vertices of a quadrilateral, then its is -
 - (A) square
- (B) rectangle
- (C) parallelogram
- (D) rhombus
- Q.94 If complex numbers z_1 , z_2 , z_3 represent the vertices A, B, C of a parallelogram ABCD respectively, then the vertex D is -

(A)
$$\frac{1}{2} (z_1 + z_2 - z_3)$$

(B)
$$\frac{1}{2} (z_1 + z_2 + z_3)$$

(C)
$$z_1 + z_3 - z_3$$

(C)
$$z_1 + z_3 - z_2$$

(D) $2(z_1 + z_2 - z_3)$

- Q.95 If complex numbers 2i, 5 + i and 4 represent points A, B and C respectively, then centroid of AABC is-
 - (A) 2 + i
 - (B) 1 + 3i
 - (C) 3 + i
 - (D) 3 i

- Q.96 If complex numbers 1, -1 and $\sqrt{3}$ i are represented by points A, B and C respectively on a compex plane, then they are -
 - (A) vertices of an isosceles triangle
 - (B) vertices of right-angled triangle
 - (C) collinear
 - (D) vertices of an equilateral triangle
- Q.97 If 1 + 2i, -2 + 3i, -3 - 4i are vertices of a triangle, then its area is-
 - (A) 11
- (C) 16
- (D) 30
- Q.98 The length of a straight line segment joining complex numbers 2 and -3i is -
 - (A) $\sqrt{3}$
- (B) $\sqrt{2}$
- (C) $\sqrt{13}$
- (D) 13

- **Q.100** If |z| = 3, then point represented by 2 z lie on the circle -
 - (A) centre (2, 0), radius = 3
 - (B) centre (0, 2), radius = 3
 - (C) centre (2, 0), radius = 1
 - (D) None of these
- **Q.101** $z\overline{z} + a\overline{z} + \overline{a}z + b = 0$ is the equation of a circle,
 - (A) $|a|^2 < b$
- (B) $|a|^2 \ge b$
- (C) $|a|^2 \le b$
- (D) None of these
- Q.102 If z is a complex number, then radius of the circle $z\bar{z} - 2(1 + i) z - 2(1 - i)\bar{z} - 1 = 0$ is-
 - (A) 2
- (B) 1
- (C) 3
- (D) 4

- Q.99 If z = x + iy, then I(z) > 0 represents a region -
 - (A) above real axis
 - (B) below real axis
 - (C) right of imaginary axis
 - (D) None of these