Lóp: IT006.014 MSSV: 22520077

Tên: Trần Ngọc Ánh

BÀI TẬP CHƯƠNG 1 NHỮNG KHÁI NIỆM VÀ CÔNG NGHỆ MÁY TÍNH – HIỆU SUẤT MÁY TÍNH

Bài 1:	
1. Máy tính được dùng để giải quyết các vấn đề lớn	2
và thông thường truy cập qua mạng.	3 – server
2. 10 ¹⁵ byte hoặc 2 ⁵⁰ byte.	7 – petabyte
3. Máy tính có sự kết hợp của hàng trăm ngàn bộ xử	5
lý và hàng terabyte bộ nhớ	5 – supercomputer
4. Các ứng dụng mang tính khoa học viễn tưởng ngày	1 '. 1 11
nay có lẽ sẽ được hiện diện trong tương lai gần.	1 – virtual worlds
5. Một loại bộ nhớ được gọi là bộ nhớ truy xuất ngẫu	12 DAM
nhiên.	12 – RAM
6. Một phần của một máy tính được gọi là đơn vị xử	12 CDU
lý trung tâm.	13 – CPU
7. Hàng ngàn bộ vi xử lý tạo thành một cluster (bó,	0 1
cụm) lớn.	8 – datacenters
8. Một vi xử lý chứa vài bộ xử lý trong cùng một	10 12
chip.	10 – multicore processors
9. Giống máy tính để bàn, nhưng không có màn hình	4 1 1
hoặc bàn phím thường được truy cập qua mạng.	4 – low-end server
10. Đây là lớp máy tính có số lượng lớn nhất hiện	
nay, và chỉ chạy một ứng dụng hoặc một nhóm ứng	9 – embedded computers
dụng liên quan.	1
11. Ngôn ngữ mô tả phần cứng.	11 – VHDL
12. Máy tính cá nhân có hiệu năng tốt cho người	2 1 1
dùng đơn lẻ với giá rẻ.	2 – desktop computers
13. Chương trình mà dịch từ ngôn ngữ cấp cao xuống	1.5
hợp ngữ.	15 – compiler
14. Chương trình mà chuyển từ hợp ngữ thành lệnh	
nhị phân/mã máy.	21 – assembler
15. Ngôn ngữ cấp cao cho xử lý dữ liệu thương mại.	25 – cobol
16. Ngôn ngữ nhị phân mà bộ xử lý có thể hiểu.	19 – machine language
17. Các lệnh mà các bộ xử lý có thể hiểu.	17 – instruction
18. Ngôn ngữ cấp cao cho tính toán khoa học.	26 – fortran
19. Ngôn ngữ mô tả lệnh nhị phân (mã máy) của máy	
tính thông qua kí hiệu biểu diễn (symbol).	18 – assembly language
20. Chương trình làm nhiệm vụ giao tiếp giữa	
chương trình người dùng cấp cao và phần cứng, cung	14 – operating system
cấp các dịch vụ khác nhau và chắc năng giám sát.	1
21. Phần mềm hoặc các chương trình được phát triển	
bởi các người dùng.	24 – application software
22. Số nhị phân (có giá trị 0 hoặc 1)	16 – bit
23. Lớp phần mềm giữa phần mềm ứng dụng và phần	
cứng chứa hệ điều hành và các trình biên dịch.	23 – system software
24. Ngôn ngữ cấp cao được sử dụng để viết ứng dụng	20 0
và phần mềm hệ thống.	20 – C
. 0	

25. Dạng ngôn ngữ linh động (có thể chạy trên nhiều nền tảng khác nhau), có thể kết hợp giữa từ và các công thức đại số toán học và phải được biên dịch sang hợp ngữ trước khi chạy trên máy tính.

26. 10¹² byte hoặc 2⁴⁰ byte.

29 byte hoặc 2⁴⁰ byte.

20 byte hoặc 2⁴⁰ byte.

Bài 2:

- **2.1.** Đô lớn nhỏ nhất của bô đêm: 8 x 3 x 1280 x 800 =24576000 bits ≈ 3Mbyte
- **2.2.** Bộ nhớ có thẻ chứa tối đa: $2048 / 3 \approx 682,67 \rightarrow 682$ khung ảnh
- **2.3.** Mạng 1 gigabyte có thể truyền 1 gb/s = 125 mb/s

Kích thước file: 256 kb = 0.256 mb

Thời gian truyền của 0.256 mb là: 0.256 / 125 = 2.048 ms

2.4.a) 2μs từ bộ nhớ cache tốn 20μs từ DRAM

20μs từ DRAM tốn 2 giây từ đĩa từ

 $20\mu s$ từ DRAM tốn 2ms từ bộ nhớ flash

b) 2µs từ bộ nhớ cache tốn 2µs từ DRAM

 $20\mu s$ từ DRAM tốn $4.28.10^{\text{-}3}$ giây từ đĩa từ

20μs từ DRAM tốn 2.71s từ bộ nhớ flash

Bài 3:

3.1. P1: IPS = 1.33×10^9 , MIPS = 1.33×10^3

P2: IPS = 1.5×10^9 , MIPS = 1.5×10^3

P3: IPS = 1.2×10^9 , MIPS = 1.2×10^3

- → Vậy bộ xử lý P2 có hiệu suất cao nhất.
- **3.2.** P1: Tổng số chu kỳ = 20.10^9 tổng số lệnh = 13.3×10^9

P2: Tổng số chu kỳ = 15.10^9 - tổng số lệnh = 15.10^9

P3: Tổng số chu kỳ = 30.10^9 - tổng số lệnh = 12.10^9

- **3.3.** P1: Tần số xung clock mới = 3.43 GHz
 - P2: Tần số xung clock mới = 2.57 GHz

P3: Tần số xung clock mới = 5.14 GHz

3.4. P1: IPC = 1.43

P2: IPC = 2

P3: IPC= 3.33

3.5. Tổng chu kỳ $P2 = 15.10^9$

Tần số xung clock mới = $(15.10^9) / 7 = 2.14 \times 10^9 = 2.14 \text{ GHz}$

3.6. Số lượng lệnh cho P2 mới = 27.10^9

Bài 4:

4.1. Class A: 10⁵

Class B: 2.10⁵

Class C: 5.10⁵

Class D: 2.10⁵

Tổng thời gian thực thi của P1: 18.667.10⁻⁴

- \Rightarrow Thời gian thực thi của A = 0.667. 10^{-4} s
- \Rightarrow Thời gian thực thi của B = 2,67. 10^{-4} s
- \Rightarrow Thời gian thực thi của $C = 10.10^{-4} s$
- \Rightarrow Thời gian thực thi của D = 5.33. 10^{-4} s

Tổng thời gian thực thi của P2: 11. 10^{-4}

- \Rightarrow Thời gian thực thi của A = 10^{-4} s
- \Rightarrow Thời gian thực thi của B = 2.10^{-4} s
- \Rightarrow Thời gian thực thi của C = 5.10⁻⁴s
- \Rightarrow Thời gian thực thi của D = 3.10⁻⁴s
- → Tổng thời gian thực thi của P2 lớn hơn P1 nên P2 sẽ chạy nhanh hơn với chương trình này.
- **4.2.** CPI P1 = $18.667.10^{-4} \text{ x } 1,5.10^{9} \div 10^{6} = 2,8$

CPI P2 =
$$11.10^{-4}$$
 x $2.10^{9} \div 10^{6} = 2.2$

4.3. P1 = 10^6 x $2.8 = 28.10^5$

$$P2 = 10^6 \times 2.2 = 22.10^5$$

- **4.4.** Ta có công thức: execution time = (instruction count x CPI) ÷ clock rate
 - ⇒ Execution time Arith = $500 \times 1 \div 2.10^9 = 2,5.10^{-7}$
 - ⇒ Execution time Store = $50 \times 5 \div 2.10^9 = 1,25.10^{-7}$
 - \Rightarrow Execution time Load = $100 \times 5 \div 2.10^9 = 2.5.10^{-7}$
 - \Rightarrow Execution time Branch = $50 \times 2 \div 2.10^9 = 0.5.10^{-7}$

Thời gian thực thi của chương trình = 675 ns

4.5. Ta có công thức: execution time = (instruction count x CPI) \div clock rate

CPI = execution time x clock rate
instruction count = 1.92

4.6. Số lượng lệnh load sau khi giảm một nửa = 50 => instruction count = 550

Execution time (new) = 5,5. 10^{-7} => Tăng tốc gấp 1,23 lần

CPI (new) = execution time x clock rate \div instruction count = 1,57

Bài 5:

5.1.a) IPS = clock rate \div CPI

IPS (P1) =
$$10^9 \div 1 = 10^9$$

IPS (P2) = 1,5.
$$10^9 \div 2 = 0.75.10^9$$

b) IPS = clock rate \div CPI

IPS (P1) =
$$10^9 \div 1 = 10^9$$

IPS (P2) = 1.5.
$$10^9 \div 1 = 1.5.10^9$$

5.2. Execution time = instruction count x CPI / clock rate

Gia sử số lệnh thực thi của chương trình là 100 lệnh: A = 33,33; B = C = D = E = 16,67

a)

- Execution time (P1) = $2,33.10^{-7}$
- Execution time $(P2) = 1.78.10^{-7}$
- → P2 chạy nhanh hơn P1 gấp 1,31 lần

b)

- Execution time (P1) = $1,67.10^{-7}$
- Execution time $(P2) = 1,55.10^{-7}$
- → P2 chạy nhanh hơn P1 gấp 1,56 lần
- **5.3.** Execution time = instruction count x CPI / clock rate

Gia sử số lệnh thực thi của chương trình là 100 lệnh: E = 33,33; A = B = C = D = 16,67

a)

- Execution time (P1) = $2,67.10^{-7}$
- Execution time (P2) = 2.10^{-7}
- → P2 chạy nhanh hơn P1 gấp 1,335 lần

b)

• Execution time $(P1) = 1.83.10^{-7}$

- Execution time $(P2) = 1,77.10^{-7}$
- ⇒ P2 chạy nhanh hơn P1 gấp 1,03 lần **5.4.** Execution time (P1) = $2,05.10^{-6}$
- - Execution time $(P2) = 1.93.10^{-6} \text{ s}$
- **5.5.** Execution time (P1) = $0.71 \times 10^9 \text{ s}$
 - Execution time $(P2) = 0.86 \times 10^9 \text{ s}$