

CONF PAPER-JIN/54

2061027965

515971
Pg 30

X-33 LH₂ Tank Failure Investigation Findings

Presented by

Mindy Niedermeyer

MSFC

*Aerospace Materials, Processes, and Environmental
Technology Conference*

September 18 - 20, 2000

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

Introduction

- **Tank History and Test Objectives**
- **Failure Description**
- **Investigation**
- **Conclusions**

X-33 LH₂ Tank Failure Investigation Findings

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

Tank Description

- Structural component of the aft body
- Quad-lobe design
- Sandwich - honeycomb graphite epoxy construction

9/29/00

Internal View

External View

X-33 LH₂ Tank Failure Investigation Findings

Geometry of sandwich structure

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

Test Objectives

- Verify structural integrity at 105% expected flight load limit varying the following parameters
 - Cryogenic temperature
 - Internal pressure
 - Mechanical loading

X-33 LH₂ Tank Failure Investigation Findings

- September 21, 1999 test aborted due to hydrogen leaks
 - 100% cryogen fill (LH₂)
 - 20 psig internal pressure
- November 3, 1999 test completed
 - 100% cryogen fill (LH₂) at 42 psig internal pressure
 - Load case 5 applied at 5 psig internal pressure
 - Tank drained of cryogen

X-33 LH₂ Tank Failure Investigation Findings

Timeline

- **Tank filled, 12:30 PM**
- **Tank pressurized to 42 psig, 2:00 PM**
- **Tank vented to 2 psig, 3:00 PM**
- **Loads applied, pressure increased to 5 psig, 4:40 PM**
- **Tank drained, 6:00 PM**
- **Lobe 1 failure, 6:24 PM**

X-33 LH₂ Tank Failure Investigation Findings

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

Initial Findings

- Peel Failure
 - Outer skin and core peeled away from inner skin
- Core Failure
 - Core is 'mangled'
 - Hydraulic fluid on test article
 - Foreign Object Debris (FOD)
 - Poor bondlines
- Pressure in core above ambient 13 hours after failure

9/29/00

17

9/29/00

18

9/29/00

19

9/29/00

9/29/00

20

21

9/29/00

22

9/29/00

24

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

Subsequent Findings

- Core pressures behaved unexpectedly
- Microcracking

Pressure vs T

9/29/00

X-33 LH₂ Tank Failure Investigation Findings

Conclusions

- The inner skin microcracked and hydrogen infiltrated
- The cracks grew larger under pressure
- When pressure was removed cracks closed slightly
- When tank was drained and warmed, cracks closed and blocked leak path
- FOD and debond areas provided an opportunity for a leak path
- There is still hydrogen in the other 3 lobes today