Balão

Maratona de Programação da SBC SP Brasil

Timelimit: 5

Uma das principais dificuldades de organizar uma Maratona de Programação é recolher os bal⁻oes que escapam e ficam presos no teto do salão: muitas vezes o contrato com o dono do salão exige que este seja entregue limpo logo após o evento, sob pena de multa.

Este ano a organização da Maratona está mais previdente: ela tem o desenho do teto do salão, e quer sua ajuda para determinar o que pode acontecer com um balão, dependendo da posição no solo onde ele é solto (isto é, se é bloqueado pelo teto ou se escapa para o exterior do salão).

O teto do salão é formado por vários planos que, vistos de lado, podem ser descritos por segmentos de reta, como mostrado na figura abaixo:

O balão pode ser considerado pontual. Quando um balão toca um segmento do teto que é horizontal, ele fica preso. Quando um balão toca um segmento que é inclinado, o balão desliza até o ponto mais alto do segmento e escapa, podendo escapar completamente do salão ou podendo tocar em mais segmentos. Não há pontos em comum entre os segmentos que formam o teto.

Por exemplo, se o balão for solto nas posições marcadas como a ou b, será bloqueado na posição de coordenadas (2, 5); se o balão for solto na posição marcada como c, será bloqueado na posição de coordenadas (6, 5); e se o balão for solto na posição marcada como d, não será bloqueado e escapará para fora do salão na posição de coordenada x = 7.

Escreva um programa que, dada a descrição do teto do salão como segmentos de reta, responde a uma série de consultas sobre a posição final de bal oes soltos do piso do salão.

Entrada

A entrada contém vários casos de teste. A primeira linha de um caso de teste contém dois inteiros \mathbf{N} ($1 \le \mathbf{N} \le 10^5$) e \mathbf{C} ($1 \le \mathbf{C} \le 10^5$) indicando, respectivamente, o número de segmentos de reta do teto e o n´umero de consultas. Cada uma das \mathbf{N} linhas seguintes contém quatro inteiros \mathbf{X}_1 , \mathbf{Y}_1 , \mathbf{X}_2 , \mathbf{Y}_2 , ($0 \le \mathbf{X}_1$, $\mathbf{X}_2 \le 10^6$, $0 < \mathbf{Y}_1$, $\mathbf{Y}_2 \le 10^6$, $\mathbf{X}_1 <> \mathbf{X}_2$) descrevendo um segmento de reta do perfil do teto, com extremos de coordenadas (\mathbf{X}_1 , \mathbf{Y}_1) e (\mathbf{X}_2 , \mathbf{Y}_2). Obs.: não há dois valores de coordenadas \mathbf{X} iguais, considerando todos os segmentos.

Cada uma das \mathbf{C} linhas seguintes descreve uma consulta e contém um inteiro \mathbf{X} ($0 \le \mathbf{X} \le 10^6$), indicando que a consulta quer determinar o que acontece com um balão solto no ponto de coordenada (\mathbf{X} , 0).

Saída

Para cada consulta da entrada, seu programa deve imprimir uma única linha. Se o balão escapar do salão, a linha deve conter um único inteiro **X**, indicando a coordenada x pela qual o balão escapa do salão. Caso contrário, a linha deve conter dois inteiros **X** e **Y** indicando a posição (x, y) em que o balão fica retido no teto.

Exemplo de Entrada	Exemplo de Saída
4 4	2 5
0 1 3 3	2 5
1 5 6 5	7
5 3 2 4	6 5
7 4 10 2	1
2	7
5	8 3
8	
6	
4 3	
1 3 4 2	
10 3 7 4	
2 3 8 3	
3 5 5 4	
4	
9	
8	

Maratona de Programação da SBC 2013.