NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

AY2021, Semester 1 MA1508E Linear Algebra for Engineering Tutorial 8

- 1. For each of the following matrices \mathbf{A} ,
 - (i) Find a basis for the row space of **A**.
 - (ii) Find a basis for the column space of A.
 - (iii) Find a basis for the nullspace of **A**.
 - (iv) Hence determine $rank(\mathbf{A})$, $nullity(\mathbf{A})$ and verify the dimension theorem for matrices.
 - (v) Is A full rank?

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 5 & 3 \\ 1 & -4 & -1 & -9 \\ -1 & 0 & -3 & 1 \\ 2 & 1 & 7 & 0 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$

(b)
$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 7 \\ 2 & 1 & 8 \\ 3 & -5 & -1 \\ 2 & -2 & 2 \\ 1 & 1 & 5 \end{pmatrix}$$
.

2. Show that for any linear system Ax = b, the solution set is

$$\{ \mathbf{x}_p + \mathbf{u} \mid \mathbf{u} \in Null(\mathbf{A}) \},$$

where \mathbf{x}_p is a particular solution to the linear system, and $Null(\mathbf{A})$ is the nullspace of \mathbf{A} (See tutorial 5 question 6).

3. Suppose **A** and **B** are two matrices such that $\mathbf{AB} = \mathbf{0}$. Show that the column space of **B** is contained in the nullspace of **A**.

4. (MATLAB) Let
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, and $\mathbf{V} = (\mathbf{v}_1 \ \mathbf{v}_2)$.

- (a) Compute $\mathbf{v}_1 \cdot \mathbf{v}_1$, $\mathbf{v}_1 \cdot \mathbf{v}_2$, $\mathbf{v}_2 \cdot \mathbf{v}_1$, and $\mathbf{v}_2 \cdot \mathbf{v}_2$.
- (b) Compute $\mathbf{V}^T\mathbf{V}$. What does the entries of $\mathbf{V}^T\mathbf{V}$ represent?
- 5. Let W be a subspace of \mathbb{R}^n . The orthogonal complement of W, denoted as W^{\perp} , is defined to be

$$W^{\perp} := \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{v} \cdot \mathbf{w} = 0 \text{ for all } \mathbf{w} \in W \}.$$

Let
$$\mathbf{w}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\mathbf{w}_2 = \begin{pmatrix} 1 \\ 2 \\ -1 \\ -2 \\ 0 \end{pmatrix}$, and $\mathbf{w}_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ 0 \end{pmatrix}$, and $W = \text{span}\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

- (a) Show that $S = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ is linearly independent.
- (b) Show that S is orthogonal.
- (c) Show that W^{\perp} is a subspace of \mathbb{R}^5 by showing that it is a span of a set. What is the dimension? (**Hint**: See Tutorial 4 question 6.)
- (d) Obtain an orthonormal set T by normalizing $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3$.

(e) Let
$$\mathbf{v} = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$$
. Find the projection of \mathbf{v} onto W .

(f) Let \mathbf{v}_W be the projection of \mathbf{v} onto W. Show that $\mathbf{v} - \mathbf{v}_W$ is in W^{\perp} .

This exercise demonstrated the fact that every vector \mathbf{v} in \mathbb{R}^5 can be written as $\mathbf{v} = \mathbf{v}_W + \mathbf{v}_W^{\perp}$, for some \mathbf{v}_W in W and \mathbf{v}_W^{\perp} in W^{\perp} . In other words, $W + W^{\perp} = \mathbb{R}^5$ (see Tutorial 7 question 1).

6. Let $S = {\mathbf{u_1, u_2, u_3, u_4}}$ where

$$\mathbf{u_1} = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -1 \end{pmatrix}, \ \mathbf{u_2} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \ \mathbf{u_3} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ -1 \end{pmatrix}, \ \mathrm{and} \ \mathbf{u_4} = \begin{pmatrix} -2 \\ 1 \\ 1 \\ 2 \end{pmatrix}.$$

- (a) Check that S is an orthogonal set.
- (b) Is S a basis for \mathbb{R}^4 ?
- (c) Is it possible to find a nonzero vector \mathbf{w} in \mathbb{R}^4 such that $S \cup \{\mathbf{w}\}$ is an orthogonal set?
- (d) Obtain an orthonormal set T by normalizaing $\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}.$

(e) Let
$$\mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$
. Find $(\mathbf{v})_S$ and $(\mathbf{v})_T$.

(f) Suppose **w** is a vector in \mathbb{R}^4 such that $(\mathbf{w})_S = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 1 \end{pmatrix}$. Find $(\mathbf{w})_T$.

Supplementary Problems

- 7. Recall that a matrix **A** is an orthogonal matrix if $\mathbf{A}^T = \mathbf{A}^{-1}$ (see Tutorial 4 question 1(d)).
 - (a) Show that if **A** is an orthogonal matrix of order n, then the columns of **A** is an orthonormal basis of \mathbb{R}^n .
 - (b) Show that if **A** is an orthogonal matrix of order n, then the rows of **A** is an orthonormal basis of \mathbb{R}^n .