Contracting with Diversely Naïve Agents Kfir Eliaz & Ran Spiegler

Miguel Acosta²

Behavioral Economics w/ Mark Dean

October 2017

²With material taken from Silvio's slides marked with a †.

Outline

Introduction

Model

Results

Motivation

- ► Contracting with heterogeneous agents.
- ► Agents identical in preference in cost parameters.
- ▶ Different in their ability to forecast their future selves; they have a *time inconsistency problem*.
- ► Principal can exploit agents since she knows the truth; i.e., the principal and agent do not share a *common prior*.

Outline

Introduction

Model

Results

Key Features of the Model

- ► Agents utility changes over time
 - ► First period utility: *u*
 - ► Second period utility: *v*
- ► Agent *believes* that second period utility
 - ► is *v* w.p. *θ*
 - ▶ is u w.p. 1θ
- ▶ The higher θ is, the more naïve the agent is.
- ► The principal knows the truth. So, she can use this to extract the most surplus out of every type.
- ► Future actions evaluated according to (expected) u.

Toy Example

► Imagine two agents, Mark (sophisticated) and Miguel (naïve). They have identical utilities:

$$u = \begin{cases} \$6 & \text{First gamble} \\ -\$\infty & \text{Further gambles} \end{cases}$$

$$v = \$5 \text{ Second, third, ..., gambles}$$

- ► The casino knows this. Mark knows this. Miguel doesn't. The casino offers two options
 - 1. First gamble free! 10 more gambles for \$49.99
 - 2. All gambles \$6
- Miguel chooses the first. Mark chooses the second.
- ▶ Raises the issue that there's some "preferred" utility ex-ante. When this is over, Miguel gets utility of \$6.01, Mark gets \$0. From the "preferred" point of view, Miguel gets $$\infty$, and Mark gets \$0. Here, it's expected u utility.

More on the Model

- ▶ Principal offers agent the opportunity to choose an action $a \in [0,1]$ (cost of providing the action to the principal is c(a)).
- ► Contracts are transfers from the P to the A: $t: \{a: a \in [0,1]\} \to \mathbb{R}.$
- Quasi-linear utility over transfers and actions (transfers are the linear part). Define

$$a^{v} \equiv \underset{a}{\operatorname{argmax}}[v(a) - t(a)]$$

 $a^{u} \equiv \underset{a}{\operatorname{argmax}}[u(a) - t(a)]$

► Agent maximizes first-period expected utility, defined as:

$$\theta[u(a^u) - t(a^u)] + (1 - \theta)[u(a^v) - t(a^v)]$$

► Revelation principle implies that the principal's problem (maximizing profits) is equivalent to finding the optimal contracts, $\{t_{\theta}(a)\}_{\theta \in [0,1]}$, since agents will reveal their types.

Principal's Problem †

Maximization problem to obtain the optimal menu of contracts:

$$max_{t_{\theta}(a)} \int_{0}^{1} [t_{\theta}(a_{\theta}^{v}) - c(a_{\theta}^{v})] dF(\theta)$$

subject to

$$IR_{\theta}$$
 $\theta[u(a_{\theta}^u) - t_{\theta}(a_{\theta}^u)] + (1-\theta)[u(a_{\theta}^v) - t_{\theta}(a_{\theta}^v)] \ge 0$

$$IC_{\theta,\phi} \qquad \theta[u(a_{\theta}^{u}) - t_{\theta}(a_{\theta}^{u})] + (1 - \theta)[u(a_{\theta}^{v}) - t_{\theta}(a_{\theta}^{v})] = U(\theta,\theta) \ge U(\phi,\theta)$$

for all types ϕ and the (predicted) optimal actions are

$$UR_{\theta}$$
 $a^{u} = argmax_{a}[u(a) - t_{\theta}(a)]$

$$VR_{\theta}$$
 $a^{v} = argmax_{a}[v(a) - t_{\theta}(a)]$

Outline

Introduction

Model

Results

Threshold level for exploitative contract †

The type space can be partitioned into two intervals: (relatively) sophisticated and (relatively) naive agents. Only the latter are exploited (the principal extracts more than the agent's WTP).

There exists a type $\bar{\theta}$ such that for every $\theta > \bar{\theta}$ the contract is exploitative, while for every $\theta < \bar{\theta}$ the contract is not exploitative. Moreover, w.l.o.g., there is a unique non-exploitative contract $t(a^*) = u(a^*)$ and $t(a') = \infty$ for every $a' \neq a$.

As long as $max_a[u(a)-c(a)]>0$ (i.e. there is a positive surplus in the interaction with fully sophisticated agents), the optimal menu does not exclude any type.

Optimum

- Separating equilibrium: Sophisticated types choose contracts that accord with u, and naïve types choose exploitative contracts (in the sense of the preferred utility)
- ▶ As $\theta \uparrow$ (more naïve)
 - ► Principal profit ↑
 - ► Transfer associated with imaginary action³ ↓
 - ► First-period net utility ↓.

 $^{^3}$ The action you think, ex-ante, will happen, but doesn't when the time comes

Three examples †

Credit card teaser rates

- ► The second period self is tempted to increase the consumption level
- ► The non-exploitative contract charges a prohibitively high rate for $a>\frac{1}{2}$

► Negative option offers

- Reference point effect: difference between choosing and canceling a contract
- ► The optimal menu contains a single exploitative contract
- ► Low types opt out

► Casino players' clubs

- ► Consumption (gambling) increases the satiation point.
- ► A non exploitative contract represents a commitment device
- ► An exploitative contract contains a gift component that the principal uses to attract naive customers

Alternative models I †

► Restore time consistency, maintain biased beliefs

- ► Agents evaluate second period actions according to the state dependent utility function *u* or *v*
- ► The principal can no longer offer agents a commitment device
- ► The optimal menu may exclude some types

► Restore common priors, maintain time inconsistency

- ▶ Now θ is the objective probability (common prior)
- ► The optimal menu consists of a single contract: $t(a^*) = u(a)$ and $t(\cdot) = \infty$
- ▶ No discrimination, hence no space for exploitation

Alternative models II †

► Heterogeneity in stability of preferences

- ► Each agent is characterized by a pair (θ, p) (subjective and objective probability of taste change)
- ▶ p is not observable, the principal beliefs (θ, p) is distributed on $[0, 1]^2$ based on a joint cdf
- ► Both the "final" actions have a positive probability, hence smaller probability to try exploiting the agent (as in the casino example)
- ► Higher cutoff; higher to solve.

► Alternative notions of partial naivete

- ▶ O'Donoghue and Rabin (2001): time-inconsistent (β, δ) framework, a naive agent believes that her present bias is given by $\hat{\beta} \in (\beta, 1)$
- ► Loewenstein, O'Donoghue and Rabin (2003): same two-periods framework of this paper, naive agent believes that her second period utility will be w, that is between u and v (magnitude change instead of probability of change)