

Prof. Dr.-Ing. Frank Neitzel, Dr.-Ing. Sven Weisbrich

E	xercise 5: Propagatio	n of observation erro	rs - part III
	- Propagation of	f variances and covariances	-
Group:	Surname, First name:	Matriculation number:	Signature*:
	* With my signature I declare that	I was involved in the elaboration of th	is homework.
	Subm	ission until: 10.12.2023	

Objective

This exercise deals with the propagation of variances of correlated and uncorrelated observations for one or several unknown parameters.

Task 1:

The angles α_1 and α_2 as well as the distances s_1 , s_2 and s_3 of the rectangle, depicted in Figure 1, were observed.

• Calculate the distance between point 2 and 4 and its standard deviation.

$$s_1 = 824,62 m$$
 $m_{s_1} = 1,2 cm$
 $s_2 = 1026,98 m$ $m_{s_2} = 1,9 cm$
 $s_3 = 802,00 m$ $m_{s_3} = 3,6 cm$
 $a_1 = 68,3582 gon$ $m_{a_1} = 1,5 mgon (15^{\infty})$
 $a_2 = 52,9212 gon$ $m_{a_2} = 4,1 mgon (41^{\infty})$

Figure 1: Observed rectangle

Task 2 (Homework):

A car is moving on a straight line in two dimensions (2D) with a constant velocity. The following quantities were observed in two individual positions, as depicted in Figure 2, with the accompanied standard deviations:

- azimuth angles $a_1 = 35.1550$ gon and $\alpha_2 = 55.1200$ gon, with $\sigma_{\alpha} = 0.001$ gon
- distances $\,s_1\,=\,20.005~{\rm m}$ and $\,s_2\,=\,30.001~{\rm m}$, with $\sigma_{\scriptscriptstyle S}\,=\,1~{\rm mm}$
- time $t_1 = 9.7 \, \mathrm{s}$ and $t_2 = 23.1 \, \mathrm{s}$, with $\sigma_t = 0.1 \, \mathrm{s}$

Your tasks are:

- Estimate the velocity of the object v, as well as the standard deviation σ_v . Explain clearly all the steps you needed for the results.
- Estimate the position of the object (coordinates y_3 and x_3 in 2D) at the time $t_3=30$ s as well as the standard deviations σ_{y_3} and σ_{x_3} .

Figure 2: Movement of a car in 2D