Теория конечных графов

Увеличение потока в графе

Лектор: к.ф.-м.н., доцент кафедры
прикладной информатики и теории вероятностей РУДН
Маркова Екатерина Викторовна
markova_ev@pfur.ru

Литература

- 1. Зарипова Э.Р., Кокотчикова М.Г. Лекции по дискретной математике: Теория графов. Учебное пособие. М., изд-во: РУДН, 2013, 162 с.
- 2. Харари Ф. «Теория графов», М.: КомКнига, 2006. 296 с.
- 3. Судоплатов С.В., Овчинникова Е.В. «Элементы дискретной математики». Учебник. М.: Инфра-М; Новосибирск: НГТУ, 2003. 280 с.
- 4. Шапорев С.Д. «Дискретная математика. Курс лекций и практических занятий». СПб.: БХВ-Петербург, 2007. 400 с.: ил.
- 5. Сайт кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс). Режим доступа: http://api.sci.pfu.edu.ru/ свободный.
- 6. Учебный портал кафедры прикладной информатики и теории вероятностей РУДН (информационный ресурс) Режим доступа: http://stud.sci.pfu.edu.ru для зарегистрированных пользователей.
- 7. Учебный портал РУДН, раздел «Теория конечных графов» http://web-local.rudn.ru/web-local/prep/rj/index.php?id=209&p=26342

Задачи на потоки в графах

Поток определяет способ пересылки некоторых объектов из одного пункта в другой.

Задачи на оптимизацию потоков могут возникнуть

- при транспортировке товаров,
- при передвижении людей,
- при денежном обороте.

Применительно к графам поток задает способ пересылки некоторых объектов (единиц потока) из одной вершины графа (из источника) в другую вершину (сток) по дугам в направлении их ориентации.

Задачи в теории графов:

- найти максимальный поток на графе.
- найти поток минимальной стоимости для пересылки k единиц потока

Пример дуги, на которой задан поток из источника V_1 в сток V_2

Максимальное число единиц потока, которые могут проходить по дуге, называется пропускной способностью дуги. Обозначение $c(V_i, V_j)$. Реальное число единиц потока, проходящих по дуге $\langle V_i, V_j \rangle$ обозначается $f(V_i, V_j)$.

Отметим, что реальное число единиц потока не превосходит пропускную способность дуги: $f(V_i, V_i) \le c(V_i, V_i)$.

Условия существования потока

Пусть на графе $G=<\mathbf{V,E}>$ заданы значения $f(V_i,V_j)$ и $c(V_i,V_j)$ для каждой дуги $<\!V_i,\!V_i>\in\!\mathbf{E}$, $V_s\in\!\mathbf{V}$ — источник и $V_T\in\!\mathbf{V}$ — сток.

1)
$$\forall \langle V_i, V_j \rangle \in \mathbf{E}$$
; $0 \leq f(V_i, V_j) \leq c(V_i, V_j)$.

Число единиц потока, проходящих по дуге $\langle V_i, V_j \rangle$ ограничено пропускной способностью этой дуги.

2)
$$\forall V_i \in \mathbf{V}, V_i \neq V_S, V_i \neq V_T : \sum_{V_i \in \mathbf{V}} f(V_i, V_j) = \sum_{V_i \in \mathbf{V}} f(V_j, V_i).$$

Условие 2 (правило Кирхгофа) запрещает утечку потока в промежуточных вершинах, число приходящих единиц потока в вершину должно быть равно числу выходящих из этой вершины единиц потока.

Условия существования потока

3)
$$\sum_{V_j \in \mathbf{V}} f(V_S, V_j) - \sum_{V_j \in \mathbf{V}} f(V_j, V_S) = K = \sum_{V_j \in \mathbf{V}} f(V_j, V_T) - \sum_{V_j \in \mathbf{V}} f(V_T, V_j)$$
.

Распишем каждую суммы в этом уравнении.

$$\sum_{V_j \in \mathbf{V}} f(V_s, V_j)$$
 — количество единиц потока, выходящего из V_s .

$$\sum_{V_j \in \mathbf{V}} f(V_j, V_{_S})$$
 — количество единиц потока, входящего в $V_{_S}$.

$$\sum_{V_i \in \mathbf{V}} f(V_{_j}, V_{_T})$$
 — количество единиц потока, входящего в сток $V_{_T}$.

$$\sum_{V_i \in \mathbf{V}} f(V_{_T}, V_{_j})$$
 — количество единиц потока, выходящего из стока $V_{_T}$.

Из источника V_s выходит всего (суммарно) K единиц потока, и в сток V_{τ} входит всего (суммарно) K единиц потока.

Условие 3 задает баланс единиц потока, выходящего из источника и входящего в сток.

Если условия 1—3 соблюдаются, то говорят, что в графе $G = \langle \mathbf{V}, \mathbf{E} \rangle$ задан поток величины K (то есть из источника в сток передается K единиц потока).

Пример графа, в котором задан поток из источника V_1 в сток V_6

Пример 1. Определить, соблюдены ли на графе условия существования потока 1-3.

Увеличивающая цепь

Пусть в графе $G = \langle \mathbf{V}, \mathbf{E} \rangle$, $|\mathbf{V}| = n$, существует поток из вершины $V_s \in \mathbf{V}$ в вершину $V_T \in \mathbf{V}$. При решении транспортных задач часто возникает вопрос возможности увеличения потока из источника в сток. Для решения удобно применить алгоритм поиска увеличивающей цепи в графе.

Увеличивающей цепью называется цепочка дуг, по которой могут быть переданы дополнительные единицы потока из источника в сток.

Группы дуг графа

Дуги графа могут быть разделены на несколько групп.

N (neutral) – группа дуг графа, в которых поток не может изменяться (дуги с нулевой пропускной способностью или дуги, в которых по каким-либо причинам, например техническим, число проходящих единиц потока должно быть постоянным).

I (increase)— дуги, в которых поток может увеличиваться, то есть дуги $< V_i, V_j > \in \mathbf{E}$, в которых число проходящих единиц потока $f(V_i, V_j)$ меньше пропускной способности $c(V_i, V_j)$.

R (reduce) — дуги, в которых поток может уменьшаться, то есть дуги $< V_i, V_j > \in \mathbf{E}$, в которых число проходящих единиц потока $f(V_i, V_j)$ больше нуля.

Алгоритм поиска

увеличивающей цепи в орграфе

<u>Начало.</u> В орграфе $G = \langle \mathbf{V}, \mathbf{E} \rangle$, $|\mathbf{V}| = n$, существует поток, и соблюдены условия существования потока 1–3.

<u>Шаг 1.</u> Разбить множество дуг графа $G = \langle \mathbf{V}, \mathbf{E} \rangle$ на группы: $\mathbf{N}, \mathbf{I}, \mathbf{R}$ (дуги в группах \mathbf{I}, \mathbf{R} могут повторяться).

<u>Шаг 2.</u> 1) Исключить из рассмотрения дуги группы ${\bf N}$. 2) окрасить вершину V_s .

<u>Шаг 3.</u> Окрашивать дуги и вершины в соответствии с правилами (правила представлены после алгоритма) до тех пор, пока

1) будет окрашена вершина $V_{\scriptscriptstyle T}$, 2) окраска новых вершин и дуг станет невозможной.

Шаг 4. 1) Если вершина $V_{\scriptscriptstyle T}$ окрашена, то для цепи выбираются окрашенные дуги, соединяющие вершины $V_{\scriptscriptstyle S}$ и $V_{\scriptscriptstyle T}$. Такая цепь называется увеличивающей. 2) В обратном случае увеличивающей цепи в графе нет.

Конец алгоритма.

Правила окрашивания дуг $<\!V_i, V_j\!>$, $<\!V_j, V_i\!>$ и вершины V_j при уже окрашенной вершине V_i

- 1) Если дуга $<\!V_i,\!V_j>\in\!\mathbf{I}$, то дуга $<\!V_i,\!V_j>$ и вершина V_j окрашиваются. Дуга $<\!V_i,\!V_j>$ называется прямой дугой.
- 2) Если дуга $<\!V_{_j},\!V_{_i}\!>\in\!{\bf R}\,,$ то окрашивается дуга $<\!V_{_j},\!V_{_i}\!>\,$ и вершина $V_{_j}.$ Дуга $<\!V_{_j},\!V_{_i}\!>\,$ называется обратной дугой.
- 3) В остальных случаях дуга $< V_i, V_j >$ и вершина V_j не окрашиваются.

Упражнение: найти увеличивающую цепь для примера 1

Поиск увеличивающей цепи для

примера 1

<u>Начало.</u> Граф $G = \langle \mathbf{V}, \mathbf{E} \rangle$, $|\mathbf{V}| = n = 6$.

<u>Шаг 1.</u> Разбиваем множество дуг графа $G = \langle \mathbf{V}, \mathbf{E} \rangle$ на группы: $\mathbf{N}, \mathbf{I}, \mathbf{R}$ (дуги в группах \mathbf{I}, \mathbf{R} могут повторяться).

$$\mathbf{N} = \{ \langle V_5, V_4 \rangle \},$$

$$\mathbf{I} = \{ < V_1, V_2 >, < V_1, V_5 >, < V_2, V_3 >, < V_2, V_4 >, < V_3, V_5 >, < V_4, V_6 >, < V_5, V_6 > \},\$$

$$\mathbf{R} = \{ < V_1, V_2 >, < V_1, V_5 >, < V_2, V_3 >, < V_2, V_4 >, < V_3, V_5 >, < V_4, V_3 >, < V_5, V_6 > \}.$$

<u>Шаг 2.</u> Закрашиваем вершины и дуги. Исключаем дугу $< V_5, V_4 >$ и закрашиваем начальную вершину $V_{\rm S} = V_1$.

Поиск увеличивающей цепи для примера 1

Шаг 3. По правилу 1.

- 1) Дуга $< V_1, V_2 >$ и вершина V_2 окрашиваются.
- 2) Дуга $< V_2, V_3 >$ и вершина V_3 окрашиваются. По правилу 2.
- 3) Дуга $< V_4, V_3 >$ и вершина V_4 окрашиваются. По правилу 1.
- 4) Дуга $< V_4, V_6 >$ и вершина V_6 окрашиваются.

Шаг 4. Вершина $V_T = V_6$ окрашена, следовательно, существует увеличивающая цепь от вершины $V_S = V_1$ до $V_T = V_6$. Одна из увеличивающих цепей: $V_1 \to V_2 \to V_3 \to V_4 \to V_6$.

Конец алгоритма.

Ответ. Увеличивающая цепь – $E' = \left\{ < V_1, V_2>, < V_2, V_3>, < V_4, V_3>, < V_4, V_6> \right\}.$

Увеличение потока вдоль увеличивающей цепи

Увеличение потока вдоль найденной увеличивающей цепи находится по следующим правилам.

1) Определяется величина $t = \min \{ \gamma(V_i, V_j) \}$ $\forall \ \gamma(V_i, V_j) \in E'$ где $\gamma(V_i, V_j)$ — разница на дуге $< V_i, V_j >$.

Если $<\!V_{\!_i},\!V_{\!_j}\!>-$ прямая дуга (окрашена по правилу 1), то $\gamma(V_{\!_i},\!V_{\!_j})\!=\!c(V_{\!_i},\!V_{\!_j})\!-\!f(V_{\!_i},\!V_{\!_j})$.

Если $<\!V_{\!_{i}},\!V_{\!_{j}}\!>-$ обратная дуга (окрашена по правилу 2), то $\gamma(V_{\!_{i}},\!V_{\!_{i}})=f(V_{\!_{i}},\!V_{\!_{i}})$.

Увеличение потока вдоль увеличивающей цепи

2) С помощью величины t из предыдущего пункта, изменяем поток.

Для каждой прямой дуги $<\!V_{_i},\!V_{_j}\!>\in\!E'$ $f(V_{_i},\!V_{_j})\!\coloneqq\!f(V_{_i},\!V_{_j})\!+\!t$, поток увеличивается на t единиц.

Для каждой обратной дуги $<V_i,V_j>\in E'$ $f(V_i,V_j)\coloneqq f(V_i,V_j)-t \text{ , поток уменьшается на } t \text{ единиц.}$

Увеличение потока вдоль увеличивающей цепи для примера 1

1) $< V_1, V_2 > -$ прямая, $< V_2, V_3 > -$ прямая, $< V_4, V_3 > -$ обратная, $< V_4, V_6 > -$ прямая.

$$t=\min\left\{\gamma(V_1,V_2);\gamma(V_2,V_3);\gamma(V_4,V_3);\gamma(V_4,V_6)\right\}=\\=\min\left\{\begin{matrix}c(V_1,V_2)-f(V_1,V_2);c(V_2,V_3)-f(V_2,V_3);\\f(V_4,V_3);c(V_4,V_6)-f(V_4,V_6)\end{matrix}\right\}=\\=\min\left\{(6-2);(3-1);1;(3-0)\right\}=\min\left\{4;2;1;3\right\}=1.$$
 Получаем $t=1$.

2) $f(V_1, V_2) := 2 + 1 = 3$, $f(V_2, V_3) := 1 + 1 = 2$, $f(V_4, V_3) := 1 - 1 = 0$, $f(V_4, V_6) := 0 + 1 = 1$.

Результирующий граф для примера 1

Тема следующей лекции:

«Максимальный поток в графе»