

ロボットに真の視覚機能を!

3D視覚カメラ「YCAM3D」による ロボットビジョンプラットフォーム「RoVI」と ビジュアルティーチングアプリケーション「VT」

> 株式会社YOODS 代表取締役 原田 寛

世界唯一のハンドアイ高精度3DカメラYCAM3D 🥼

3D視覚センサー

YCAM3D リリース

2019/4より

- ► 幅115mm,<1kg, 耐環境性</p>
- 高精度点群
 - ▶ 位相シフト方式を採用
- ROS/RoVIによるロボットビジョンプラットフォームをGithubにオープンソース公開
- ロボットに視覚機能をティーチングできる ソフトウェアプラットフォーム(ビジュア ルティーチング)をオープンソース提供

世界唯一のハンドアイ高精度3DカメラYCAM3D

- ・アーム搭載前提設計
- ·小型軽量(幅110mm,940g)
- 高精度点群

Photoneo社 Phoxi

LMI社 Gocator

IDS社 Ensenso

競合する製品は・・・

ビジュアルコントローラに搭載するソフトウェア〜Githubに公開

ロボットビジョンプラットフォーム【RoVI】

rovi master teach

3D視覚センサーによる視覚ティーチングソフトウェアパッケージ

rovi utils

1.ランチャー(manager)

2.config tf

3.ロボットキャリブ(r-calib)

4.品種(レシピ)管理

5.その他

1.cropper

2.searcher

3....

GUI

rviz

rqt_param_manager

WEB GUI

rovi_industrial

KAWASAKI FANUC YASKAWA DENSO NACHI EPSON MITSUBISHI UR KUKA ...

RoVI

3Dカメラ制御〜露光時間、ゲイン、プロジェクタ制御 データアクセス〜カメラパラメータ, RAW画像, Rectify画像, 3D点群(binary)

ロボットビジョン新基準 ビジュアルティーチ

ロボット導入の課題

ロボット自体より、ロボットに合わせた周辺設備のシステムアップが

ロボットビジョンの導入

ロボットビジョンを付加すれば、人と同じ作業環境でも稼働できる

従来ロボットビジョンの手法

従来のロボットビジョンは、ビジョンで認識した物体の位置(姿勢)情報から、ロボットへ座標を指示している

ロボットビジョンの課題(1)

ビジョンとロボット(ツール)の座標の間には誤差があるため、ワ ークとツールにズレが生じる

ロボットビジョンの課題(2)

また経路点座標はビジョンから指示されているため、ロボットの 教示でそのズレを修正できない

教示&再生方式のメリットデメリット

○較正不要(「現物」にアームを合わせるので繰返精度のみでOK) ○現物で教示ができる

×周辺設備にて対象の位置がズレない工夫が要る(治具、位置決めパレットなど)

ロボットビジョン方式のメリットデメリット

○周辺設備が簡素化できる

×現物では教示できない→PCでのオフライン教示

×ビジョンとロボットおよび作業平面の較正が必要

×外乱光による動作不良が起きる

一長一短でござるな

ビジョンと教示の共存 **VT**

「目」と「手」を同時に教示

対象物の視覚情報と、アームの軌道をペアリング

ボクは「目」でこれを覚えるよ

ペアリングを保って再生

再生時に対象物が移動しても、それに追従するベース(基準座標)変換が 、対象物と教示点の位置関係を維持する。

高精度測位技術

対象物と教示点の位置関係を正確に再現

VTはピッキング専用じゃないんだ だからこんなこともできるよ

VT やるでござるな

ピッキング

組立

パレタイズ