МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

ЛАБОРАТОРНА РОБОТА №3

ДОСЛІДЖЕННЯ ВПЛИВУ ЧИСЕЛЬНОГО ЗНАЧЕННЯ КОЕФІЦІЄНТІВ ДИФЕРЕНЦІАЛЬНОГО РІВНЯННЯ ІІ-ГО ПОРЯДКУ <u>НА ЧАСТОТНІ ХАРАКТЕРИСТИКИ</u> <u>ЗА ДОПОМОГОЮ АНАЛОГОВОГО ОБЧИСЛЮВАЛЬНОГО</u> <u>КОМПЛЕКСУ АОК-6</u>

ДИСЦИПЛІНА «ТЕОРІЯ АВТОМАТИЧНОГО УПРАВЛІННЯ» ФАКУЛЬТЕТ ІНФОРМАТИКИ КАФЕДРА КОМП'ЮТЕРИЗОВАНИХ СИСТЕМ УПРАВЛІННЯ

Виконав:

Прийняв:

Ціль роботи

Отримати навички експериментального дослідження впливу коефіцієнтів диференціального рівняння на частотні характеристики.

Порядок виконання роботи

1. Зібрати схему ланки ІІ-го порядку для проведення дослідження (рис. 1).

2. Змінюючи частоту f, записати у відповідні колонки таблиць значення періоду T, кругової частоти ω , вхідної A_1 та вихідної A_2 амплітуд, комплексної амплітуди $A(\omega)$ та зсуву фаз між вихідним та вхідним сигналами φ .

3. По отриманим даним побудувати амплітудо-фазочастотні та амплітудочастотні

характеристики динамічних ланок у полярній системі координат.

4. Зробити висновки вплив параметрів ланки на частотні характеристики.

Рис.1. Схема для проведення досліджень

 k_1 , a_1 , k_2 , a_2 - параметри, що визначаються коефіцієнтами диференційного рівняння;

ГСС - генератор синхронних сигналів;

М1, М2 – лінійні модулі;

К – комутатор сигналів;

ЕПІ – електронно-променевий індикатор;

Е – еталонний елемент живлення;

 Π – подільник напруги елементу живлення;

Ц – цифровий вольтметр.

НЕОБХІДНО звернути увагу на те, що вимірювач тривалості вимірює час півперіоду. Для того, щоб отримати значення кругової частоти, потрібно зробити деякі підрахунки. Отже, спочатку знаходимо період в секундах

$$T = 2 \cdot \frac{T}{2}$$
. 1000.

Знаючи період, отримуємо частоту в герцах

$$f = \frac{1}{T}$$

Отримавши частоту f, отримуємо значення кругової частоти $\omega = 2 \cdot \pi f$.

Комплексна амплітуда А(ю) знаходиться наступним чином

$$A(\omega) = \frac{A_{\text{BHX.}}}{A_{\text{BX.}}}.$$

Экспериментальное получение частотных характеристик. Комментарии и пояснения

Частотные характеристики исследуются в режиме непрерывного интегрирования (нажатая клавиша 1 ГСС). На У-вход ЭЛИ с помощью коммутатора К подаются следующие сигналы: первый такт (1) — выходной сигнал; второй такт (2) — входной сигнал; третий такт (3) — измерительная линейка; на X-вход индикатора подается линейно нарастающее напряжение треугольной формы.

Схема для проведения исследований на АВК-6 приведена на рис. 1.

Если указанная схема составлена правильно и частота колебаний генератора находится в пределах 0,1-11 Гц (нажатая клавиша 0,1(диапазон колебаний 0,1-1,1 Гц); или клавиша 1,0 (диапазон колебаний 1,0-11 Гц)), на экране формируется следующее изображение (рис.2).

Рис. 2. Изображение на экране ЭЛИ: 1 – выходной сигнал; 2 – входной сигнал; 3 – измерительная линейка; φ - сдвиг фаз между выходным и входным сигналами.

Для определения амплитуд входного (A_1) (на рис. 2 – кривая 2) и выходного (A_2) (на рис. 2 – кривая 1) сигналов, используют измерительную линейку (на рис. 2 - линия 3), перемещая ее до точки соприкосновения с соответствующей кривой. Цифровой вольтметр покажет численные значения амплитуд сигналов.

Сдвиг фазы между выходным и входным сигналами измеряется с помощью сетки, которая нанесена на экран ЭЛИ.

Если амплитуду треугольных колебаний ГСС установить таким образом, чтобы полпериода колебаний занимали четыре клеточки, это будет соответствовать фазе 180°. В этом случае каждая клеточка составляет 45°.

Порядок выполнения исследований следующий:

- 1. Установить численные значения коэффициентов, которые приведены перед каждой таблицей.
- 2. Замерить и записать в таблицу значения амплитуды входного сигнала (желательно, чтобы A_1 = const на протяжении всего эксперимента).
- 3. Выбрать частоту ГСС таким образом, чтобы выходной и входной сигналы совпадали (φ = 0), измерить амплитуду A_2 и записать α соответствующую колонку таблицы значение полпериода колебаний.
- 4. Увеличить частоту ГСС таким образом, чтобы сдвиг по фазе составлял 22,5° (полклеточки на экране ЭЛИ) и провести следующие измерения. И так далее.

Обработка результатов исследования

- 1. Сделать расчет и записать в соответствующие колонки таблицы значения:
- периода колебаний (в секундах): $T = 2 \cdot \frac{T}{2} / 1000;$
- круговой частоты ω (рад/сек): $\omega = \frac{2 \cdot \pi}{T}$
- комплексной амплитуды $A(\omega)$ (B): $A(\omega) = \frac{A_{\text{вых.}}}{A_{\text{pv}}}$
- 2. По табличным данным построить амплитудно-частотные и амплитудно-фазочастотные характеристики. Для удобства сравнительного анализа необходимо строить несколько характеристик на одних координатных осях.

Краткие теоретические сведения

Большое количество элементов разной физической природы, конструктивного выполнения и назначения, описывается линейным дифференциальным уравнением второго порядка вида

$$a_0 \, \frac{d^2 y(t)}{dt^2} + a_1 \, \frac{dy(t)}{dt} + a_2 y(t) = b_0 x(t) \ , \label{eq:a0}$$

где y(t) -выходная переменная (выходной сигнал);

x(t) – входная переменная (входной сигнал);

а;; b₀ - постоянные коэффициенты.

Если входной сигнал изменяется по закону $x(t) = A_1 \sin \omega t$ (рис. 3 а), где A_1 - амплитуда, ω - круговая частота, то после окончания переходного процесса выходной сигнал y(t) также будет изменяться периодически по закону $x(t) = A_1 \sin(\omega t - \varphi)$ с той же частотой ω , что и входной, но отличаясь от входного сигнала амплитудой A_2 и сдвигом по фазе φ (рис. 3 б).

При изменении частоты входного сигнала ω (A₁ = const), будет изменяться амплитуда A₂ и сдвиг фазы φ выходного сигнала.

При этом для разных значений коэффициентов a_i дифференциального уравнения будут разные амплитуда A_2 и сдвиг фазы ϕ выходного сигнала при одной и тот же частоте ω_6 входного сигнала.

Рис. 3. a). входной сигнала x(t); б). выходной сигнал y(t):

Т - период колебаний (в секундах); $\omega = 2\pi \cdot \frac{1}{T}$ (рад/сек).

Частотные характеристики можно снять экспериментально или получить аналитически, используя передаточную функцию.

График зависимости отношения амплитуд $\frac{A_2}{A_1}=A(\omega)$ от частоты входного сигнала ω

называют амплитудной частотной характеристикой (AЧX), а график зависимости комплексной амплитуды $A(\omega)$ и фазы выходного сигнала φ от частоты входного сигнала ω называют амплитудно-фазочастотной характеристикой (АФЧХ).

Для элемента системы, описываемой дифференциальным уравнением II-го порядка, эти графики имеют вид (рис. 4):

Рис.4. Графики АЧХ (а) и АФЧХ (б).

В зависимости от численных значений коэффициентов a_i , график АЧХ принимает вид 1 или 2.

График АФЧХ можно построить как на комплексной плоскости, используя оси прямоугольной системы координат (рис. 4 б), так и в полярной системе координат, причем в обоих случаях частота ω будет фигурировать как параметр (рис. 5).

Рис. 5. АФЧХ в полярной системе координат.

Аналитическое получение частотных характеристик типового динамического звена II-го порядка.

Для получения частотных характеристик аналитическим путем, необходимо: 1.Применив преобразование Лапласа к дифференциальному уравнению звена,

$$a_0 \frac{d^2 y(t)}{dt^2} + a_1 \frac{dy(t)}{dt} + a_2 y(t) = b_0 x(t)$$
,

записать уравнение в изображениях

$${\rm Tp}^2 {\rm Y}_{\rm BHX}({\rm p}) + 2 {\rm T} \xi {\rm p} {\rm Y}_{\rm BHX}({\rm p}) + {\rm Y}_{\rm BHX}({\rm p}) = {\rm k} {\rm X}_{\rm BX}({\rm p}).$$

2. Из полученного уравнения вывести передаточную функцию. Она будет иметь вид

$$W(p) = \frac{k}{T^2p^2 + 2\xi Tp + 1} .$$

3. Сделать подстановку $p = j \omega$ в передаточную функцию, после чего выделить в полученном выражении действительную и мнимую части:

$$\begin{split} W(j\omega) &= \frac{k}{-T^2\omega^2 + j2T\xi\omega + 1} = \frac{k}{\left(1 - T^2\omega^2\right) + j2T\xi\omega} \cdot \frac{\left(1 - T^2\omega^2\right) - j2T\xi\omega}{\left(1 - T^2\omega^2\right) - j2T\xi\omega} = \frac{k\left(1 - T^2\omega^2\right) - jk2T\xi\omega}{\left(1 - T^2\omega^2\right)^2 + 4\xi^2T^2\omega^2} = \\ &= \frac{k - kT^2\omega^2 - j2k\xiT\omega}{1 - 2T^2\omega^2 + T^4\omega^4 + 4\xi^2T^2\omega^2} = \frac{k\left(1 - T^2\omega^2\right) - j2T\xi\omega}{T^4\omega^4 + T^2\omega^2\left(4\xi^2 - 2\right) + 1} \cdot - j\frac{2k\xiT\omega}{T^4\omega^4 + T^2\omega^2\left(4\xi^2 - 2\right) + 1}. \end{split}$$

Действительная и мнимая части W(j ω) соответственно
$$U(\omega) = \frac{k \left(1 - T^2 \omega^2 \right)}{T^4 \omega^4 + T^2 \omega^2 \left(4 \xi^2 - 2 \right) + 1} \; ; \; jV(\omega) = \frac{2k \xi T \omega}{T^4 \omega^4 + T^2 \omega^2 \left(4 \xi^2 - 2 \right) + 1}.$$

Задавая значения ω от 0 до $+\infty$, на комплексной плоскости строят график АФЧХ. Из графиков АФЧХ колебательного звена (рис. 4 б; рис. 5) видно, что с увеличением частоты ω амплитуда $A(\omega)$ увеличивается, пока не достигнет максимума. Это произойдет на частоте, которая носит название резонансная Фрез-

При дальнейшем увеличении частоты $A(\omega)$ уменьшается. При $\omega \to \infty$, $A\Phi \Psi X$ колебательного звена приближается к началу координат, то есть, комплексная амплитуда уменьшается до нуля. Из этого следует, что в области верхних частот (ω >> ω_{рез.}) колебательное звено вносит фазовые сдвиги, значения которых близки к - л. Такие фазовые сдвиги в элементах системы автоматического управления могут привести к неустойчивой работе всей системы.

Аналитическое выражение для АЧХ имеет следующий вид

$$A(\omega) = \sqrt{U^2(\omega) + V^2(\omega)}.$$

Графически зависимость $A(\omega)$ от ω представлена на рис. 4 а.

Чисельні значення параметрів: $k_1 = 1$, $a_1 = 1$, $k_2 = 1$, $a_2 = 1$.

Зсув по фазі ф(град.)	Т/2(мс.)	Т(сек.)	f(Гц.)	ω(рад/сек)	A ₁ (B)	A ₂ (B)	$\frac{A(\omega)}{A_2} = \frac{A_2}{A_1} (B)$
0		DE MERCE		edennie v	HIRZHINSE .	Prorone	
		ROMBERON B			er A. Tongie		
45					erroixe ao w		
67,5	Avyrmones	ar inthornie		MINE MEN	pryfion am	DUL METERS	
90					dest repri		
112,5		CONTROL SUCTION		Sound sign	STATE STATE		
135							
157,5							
180		177		1		and a	

Таблиця 2

Чисельні значення параметрів: $k_1 = 0,5, a_1 = 1, k_2 = 1, a_2 = 1.$

Зсув по фазі ф(град.)	Т/2(мс.)	Т(сек.)	f(Гц.)	ω(рад/сек)	A ₁ (B)	A ₂ (B)	$\frac{A(\omega)}{A_1} = \frac{A_2}{A_1} $ (B)
0 22	如上本	- 15	100			0.7	
45				GIA SIO. S.			
67,5 90					7 1 0 10 10 10 10 10 10 10 10 10 10 10 10		
112,5	ua etermini	व्यवस्थात माना		EDITORIE SERVE		igen - it is	
135				CHERRIED	онихродино		COL
157,5 180							ll ll l

Таблиця 3

Чисельні значення параметрів: $k_1 = 0,25$, $a_1 = 1$, $k_2 = 1$, $a_2 = 1$.

Зсув по фазі ф(град.)	Т/2(мс.)	Т(сек.)	f(Гц.)	ω(рад/сек)	A ₁ (B)	A ₂ (B)	$\frac{A(\omega)}{A_2} = \frac{A_2}{A_1} $ (B)
0			Out I			CONTRACTOR	
22,5							
45				DOT S YEARTON	FORENCE PROPERTY	Molgan Inc	3688
67,5							
112,5							
135		VIEW TORK		DEPPHE ON	burdar if Ar	TOUT MILENA	mq16)
157,5				F 10			
180		7		ROE IND A SEE	Charle, sugar	WHAT SHOUSE	moz

Для зручності порівняльного аналізу потрібно побудувати характеристики по табличним значенням на одних координатних осях (табл.1, табл.2, табл.3).

Чисельні значення параметрів: $k_1 = 1$, $a_1 = -0.5$; $k_2 = 1$, $a_2 = 1$.

Зсув по фазі ф(град.)	Т/2(мс.)	Т(сек.)	f(Гц.)	ω(рад/сек)	A ₁ (B)	A ₂ (B)	$\frac{A(\omega)}{A_2}$ (B)
0							
22							
45				3 - 1 - 1 - 1			
67,5							
90						100	
112,5	100						
135							
157,5					1		
180							

Таблиця 5

Чисельні значення параметрів: $k_1 = 1$, $a_1 = 0,25$; $k_2 = 1$; $a_2 = 1$.

Зсув по фазі ф(град.)	Т/2(мс.)	Т(сек.)	f(Гц.)	ω(рад/сек)	A ₁ (B)	A ₂ (B)	$\frac{A(\omega)}{A_2} = \frac{A_2}{A_1} (B)$
0				1			0
22,5							
45							
67,5				Harris III			
90	Towns of						
112,5		- 1					
135						The same	
157,5							
180				Mary San Li			

Таблиця 6

Чисельні значення параметрів: $k_1 = 1$; $a_1 = 1$, $k_2 = 0.5$; $a_2 = 1$.

Зсув по фазі ф(град.)	Т/2(мс.)	Т(сек.)	f(Гц.)	ω(рад/сек)	A ₁ (B)	A ₂ (B)	$\frac{A(\omega)}{A_2} = \frac{A_2}{A_1} (B)$
0	115						
22,5 45							1
67,5							
90							
112,5							7 332 4
135	- 4						RUHOHOM
157,5	- Allen	A ST VA					
180							

По значенням таблиць 4, 5, та 6 побудувати характеристики на одних координатних осях .

Чисельні значення параметрів: $k_1 = 1$, $a_1 = 1$, $k_2 = 0,25$; $a_2 = 1$.

Зсув по фазі ф(град.)	Т/2(мс.)	Т(сек.)	f(Гц.)	ω(рад/сек)	A ₁ (B)	A ₂ (B)	$\frac{A(\omega)}{A_2} = \frac{A_2}{A_1} $ (B)
0							
22,5							
45							
67,5							
90	La contraction						
112,5		har - 19					
135		1 1					
157,5							
180							

Таблиця 8

Чисельні значення параметрів: $k_1 = 1$, $a_1 = 1$, $k_2 = 1$, $a_2 = 0,5$.

Зсув по фазі ф(град.)	Т/2(мс.)	Т(сек.)	f(Гц.)	ω(рад/сек)	A _l (B)	A ₂ (B)	$\frac{A(\omega)}{A_2}$ (B)
0							
22							
45							
67,5							
90							
112,5							
135							
157,5							
180		-					

По значенням таблиць 7 та 8 побудувати характеристики. ${\rm A}\Phi{\rm Y}{\rm X}$ ${\rm A}\Psi{\rm X}$

