Problem of S2 right tail

Campaign V Oleynikov Vladislav 23 Nov 2018

Algorithm:

11713f949ea5bffcc2f0ceb22d1267b5f314a5af Merge branch 'barycenter' into 'master'

Cut list:

```
bool cls0 is S1 = clusters.at(0)->f90 > 0.2;
bool cls0 is full = clusters.at(0)->rep == 1;
bool S1 Am peak = (clusters.at(0)->charge > 440) &&
(clusters.at(0)->charge < 630); // mean +- 1.5 sigma using run 537
//bool S1 Am peak = (clusters.at(0)->charge > 419) &&
(clusters.at(0)->charge < 587); // mean +- 1.5sigma using run 542
//bool S1 Am peak = (clusters.at(0)->charge > 342) &&
(clusters.at(0)->charge < 482); // mean +- 1.5sigma using run 544
bool cls0 = nc i == 0;//cluster 0
bool cls1 = nc i == 1;//cluster 1
bool is_S1 = nc == 2 && cls0 && cls0 is full && cls0 is S1;
bool is S2 = nc == 2 \&\& cls1 \&\& cls0 is full && cls0 is S1;
bool is S2 v2 = is S2 && clusters.at(\overline{0})->f90 < 0.2;
bool is S1 only = nc == 1 && cls0 is_full && cls0_is_S1;
bool is S1 S2 = nc == 2 && cls0 is full && cls0 is S1;
```


C0.nc == 2 && C0.cls0_is_full

C0.nc == 2 && C0.cls0_is_full && C0.cls0_is_S1

C2.is_S1

C1.is_S2 && Tdrift > 30 && Tdrift > 30 && Tdrift < 40

1000

1000

) 2000 3000 4000 clusters.at(nc i)->tot charge bottom [PE] 2000

3000

clusters.at(nc i)->tot charge top [PE]

500

1500

clusters.at(nc_i)->charge [PE]

CIAL SE AR CHANNE APPLICATION CHANGE SEGO O BE CHANNE APPLICATION CHANGE SEGO O BE CHANNE APPLICATION OF CHANGE SEGO OF CHANNE APPLICATION OF CHANNE APPLICATION

0 < tot_charge_top < 300 [PE] C2.is_S1

300 < tot_charge_top < 700 [PE] C2.is_S1

14.52 AA CLUMM AND P. DOUGH CHANGE 200 > 700 AA CHANN AND P. DOUGH CHANGE 200 A CHANN AND P. DOUGH CHANGE 200 > 700 AA CHANN AND P. DOUGH CHANN AND P. DOUGH CHANGE 200 > 700 AA CHANN AND P. DOUGH CHANN AN

700 < tot_charge_top < 1000 [PE] C2.is_S1

1000 < tot_charge_top < 1300 [PE] C2.is_S1

1600 < tot_charge_top < 2000 [PE] C2.is S1

392

1771

108.2

199

32.56

13.74

h1 Tdrift
Entries 163
Mean 30.46
Std Dev 12.16

10

8

6

4

2

0 10 20 30 40 50 60 70
clusters.at(1)->cdf_time - clusters.at(0)->cdf_time) * 2./1000 [us]

C0.is S1 S2

Am241, run 537, 1000 Column 100 - 1500 Ga clumn 100 - 1-30 chung 100 - 1500 Ga clumn 100 - 1-30 chung 100 - 1500 Ga clumn 100

2500 < tot_charge_top < 4000 [PE] C2.is S1

Ph2, Am241, run 542

Ph2, Am241, run 542

C0.nc == 2

Ph2, Am241, run 542

C0.nc == 2 && C0.cls0_is_full

Ph2, Am241, run 542
C0.nc == 2 && C0.cls0_is_full && C0.cls0_is_S1

Ph2, Am241, run 542 C0.is_S1_S2

Ph2, Am241, run 542

C0.is_S1_S2 && clusters.at(1)->f90 < 0.2

clusters.at(nc_i)->tot_charge_top [PE]

clusters.at(nc_i)->charge [PE]

clusters.at(nc_i)->tot_charge_bottom [PE]

clusters.at(nc_i)->tot_charge_top [PE]

clusters.at(nc_i)->charge [PE]

clusters.at(nc_i)->tot_charge_bottom [PE]

clusters.at(nc_i)->tot_charge_top [PE]

clusters.at(nc_i)->charge [PE]

clusters.at(nc_i)->tot_charge_bottom [PE]

C0.nc == 2

357 < charge < 622 [PE] C2.is S1

clusters.at(nc_i)->tot_charge_bottom [PE]

100

60

1000

2.6

1.8

C1.is_S2 && C1.region_of_S2_uniformity, Am241, run_1542&& C1.region_of_S2_uniformity

C2.is_S1

C1.is_S2 && C1.region_of_S2_uniformity && Tdrift > 10 && Tdrift < 20, Am 241, runc1.524, 2 region_of_S2_uniformity && Tdrift > 10 && Tdrift < 20

h1 S2 bot 1023 Entries Mean 1150 Std Dev 744.7 35 χ^2 / ndf 23.1 / 23 Constant 39.76 ± 2.09 30 1095 ± 12.1 Mean 25 Sigma 248.5 ± 15.6 20 1000 clusters.at(nc_i)->tot_charge_bottom [PE]

C2.is_S1

master cut

C1.1s_S2 && C1.region_of_S2_uniformity && Tdrift > 20 2 & Am 241, run: 524 2 egion_of_S2_uniformity && Tdrift > 20 && Tdrift < 30

C2.is_S1

h1 S1 **Entries** Mean Std Dev

C2.is_S1

2.6

1.8

C1.is_S2 && C1.region_of_S2_uniformity, Am241, run_1542&& C1.region_of_S2_uniformity

C2.is_S1

Ph2, Am241, run 544

300 h1 Tdrift
Entries 2293
Mean 20.9
Std Dev 6.154

200 50 60 70
clusters.at(1)->cdf_time - clusters.at(0)->cdf_time) * 2./1000 [us]

C2.is_S1

1511 Ph. 2:19 Am241, run. 1.5.4.4.4.01.71111.15.15.16.11.011.15.701.1.011

C2.is S1

E. De Children De Service Am 241, run 5544 de Children Lipe John Charge Lope 2 1573 44 charlen Lipe John Charge Lope 2 2457

C2.is_S1

300 < charge < 510 [PE] C2.is_S1

LUCULA DE CELUPATRIO DE LA CAMPA A SE CALUMAN ANTICO DE LA CAMPA A SE CALUMAN A

Ph2, bkg, run 534

Ph2, bkg, run 534

C1.nc == 2 && C1.cls1

Ph2, bkg, run 534

C1.nc == 2 && C1.cls1 && C1.cls0_is_full

Ph2, bkg, run 534

C1.nc == 2 && C1.cls1 && C1.cls0_is_full && C1.cls0_is_S1

C1.nc == 2

Ph2, bkg, run 534

C1.nc == 2 && C1.cls0

Ph2, bkg, run 534

C1.nc == 2 && C1.cls0 && C1.cls0_is_full

event number

1011

5608

1106

4000 < tot_charge_top < 8000 [PE] C2.is_S1

174_52 && cluster any per post of the grant was a cluster and per post of the cluster and the period of the period

on the property of the propert

14000 < tot_charge_top < 25000 [PE] C2.is S1

event number

C13L52 da clummanipe_hote_charge_top> 25000 da c

25000 < tot_charge_top < 40000 [PE] C2.is_S1

