

Real-Time Design Patterns for LVC Simulation

Douglas D. Hodson douglas.hodson@wpafb.af.mil Simulation & Analysis Facility ASC/XRA, WPAFB, OH Timothy E. Menke timothy.menke@wpafb.af.mil Simulation & Analysis Facility ASC/XRA, WPAFB, OH Rusty O. Baldwin, PhD rusty.baldwin@afit.edu Air Force Institute of Technology WPAFB, OH

ITEA LVC Conference Jan 12-15, 2009

The views expressed in this article are those of the authors and do not reflect this official policy or position of the United States Air Force, Department of Defense, or the US Government.

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate ormation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	his collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE JAN 2009 2. REPORT		2. REPORT TYPE	3. DATES COVERED 00-00-2009		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Real-Time Design Patterns for LVC Simulation				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ASC/XRA,Simulation & Analysis Facility,Wright Patterson AFB,OH,45433				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT ic release; distributi	on unlimited			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	25	3.000

Report Documentation Page

Form Approved OMB No. 0704-0188

Agenda

- Frame of Reference
- What is a Design Pattern?
- Real-Time Concepts
- Model-View-Controller
- Components
- Estimating Performance
 - Computing Utilization
 - Rate Monotonic Analysis

Frame of Reference

- Higher Throughput Does NOT Guarantee Real-time Performance
 - Real-time ≠ Fast, Real-time = Predictable
 - HP Computing Oriented Towards Improving Throughput
 - Completing More Work/Unit Time
 - Real-time Computing Oriented Towards Improving Timeliness
 - Completing Work on Time
 - Deterministic Response Times
- LVC Applications
 - Involves Real People and Systems Hardware-in-the-loop
 - A Class of Interactive Applications
 - Falls into the Domain of Real-time Computing
- Paper Oriented at Incorporating Real-time Concepts into Well Documented Design Patterns
 - Introduces Concepts that Leverage Multiple CPUs to Improve Real-time Performance

What is a Design Pattern?

- Is a General Reusable Solution to a Commonly Occurring Problem in Software Design.
- It is Not a "Finished" Design that can be Transformed Directly into Code.
- It is a Description or Template for How to Solve a Problem that can be Used in Many Different Situations.
- Gained Popularity After Gamma's Book was Published in 1994.
- How Do we Apply this to Modeling and Simulation Execution?
 - What About Real-time Issues?

Real-Time Concepts

- Software Systems with Timing Constraints
 - Virtual Simulation
 - Executes in Sync with Wall-clock
 - Interaction Response Characteristics
 - Time to Generate Outputs from Inputs
- Real-time Paradigm: Partitioning of Code
 - A Design Pattern of Sorts!
 - Foreground
 - Jobs that have Time Deadlines
 - Example: Model Mathematics, Redrawing Interface Displays, etc
 - Executed on a Periodic Basis
 - Example: 50 Hz for Models, 20 Hz for Interface Displays
 - Background
 - Jobs Without Timing Constraints
 - Example: Logging Data to a Hard Drive
 - Execute Whenever Possible. (But Must Get Done at Some Point)

MVC Pattern

(Tailored for LVC)

MVC Pattern

- Model is the Application's Domain Logic
 - It's the Simulation!
- View is the Application's Graphical Displays
- Controller Connects Model to View(s)

Adapted MVC Pattern

- Asynchronous
 Execution of
 Simulated System,
 Graphics and
 Network I/O
- Architecture Maps to Real-time Design Paradigms
 - Good "Fit" for LVC Requirements
- Leverages Multi-CPU& Multi-core Systems

Player Pattern

Component Pattern (Tailored for LVC)

Composite Pattern

- Pattern from Gamma
 - 3 Classes
 - It has "Problems"
- We Modify
 - Models are <u>Always</u>
 Abstractions
 - Delete "Leaf"
 - operation() Method Replaced by Foreground & Background Methods
 - A Component is a Composite

Real-Time Component For Hierarchical Modeling

- updateTC Update Time Critical Jobs
- updateData Background Processing

Support for Cyclic Scheduler

Added Attributes to Support a Cyclic Scheduler

Scheduling Model Code

(Cyclic Scheduler)

- Provides More Modeling Flexibility
 - Code can be Scheduled to Execute in Different Frames
 - Phases Provide Order
 - Example: Player Dynamics Computed in First Phase of Each Frame
 - Example: Sensor Calculation Performed in Second Phase

Hierarchical Model of a Player

Player Implementation (An Object Tree)

Extending Component (Graphics and I/O)

- Specialized Classes for Graphics and Interoperability
 - Each Organized to Support An Thread

A Simulation

- Simulation Application
 - Simulation Consists of a List of Players (Object Trees)
 - Interfaces (Graphics/IO) Implemented with Specialized Components (Object Trees)
- Each Tree can be Associated with a Thread
- For Example
 - Time Critical Simulation State Space Updates can be Associated with a High Priority Thread
 - Graphics and Network "View-Controllers" can be Associated with Individual Threads as Needed
 - Background Processing (Logging Data to Disk, etc) is Executed when No Other Higher Priority Thread is Ready

Beyond 4 CPUs

- Typically, the Simulation Serially Processes the Player List
- Right Level of Granularity for Additional Parallelism
- Independent Threads can Process Individual Players
 - For Example: 2 CPUs can Each Process Half the Player List
- But! Care Must be Taken to Sync with Phases
 - Data Dependencies Limit Scalability
- Must Determine Breakpoint where Performance of Additional Parallelism Exceeds Cost of Overhead to Implement

Putting it All Together

Estimating Performance

Total Utilization

$$U = \sum_{i=1}^{n} e_i / p_i$$

Rate Monotonic Analysis

Theorem 1 (Rate Monotonic) [8] Given a set of periodic tasks and preemptive priority scheduling, then assigning priorities such that the tasks with shorter periods have higher priorities (rate-monotonic), yields an optimal scheduling algorithm.

Theorem 2 (RMA Bound) Any set of n periodic task is RM schedulable if the processor utilization, U, is no greater than $n(2^{1/n}-1)$.

Example Calculation

$$U = e_{sim}/p_{sim} + e_{draw}/p_{draw} + e_{net}/p_{net}$$

If this computed utilization is not greater than the RMA bound, $n(2^{1/n} - 1)$, or 780 ms/s (for n = 3), then the system is schedulable.

Summary

- LVC Simulations are Real-time Systems
- Design Patterns Provide a General Solution to a Commonly Occurring Problem
- Adapted Both the MVC and Component to the Domain of LVC
 - By Incorporating Real-time Concepts
- Big Picture
 - Organized Software Code So Performance Estimates Can be Made
- EAAGLES Framework is Based Upon these Patterns