ABSTRACT

The detection of plant leaf is very important factor to prevent serious outbreak. Automatic detection of plant disease is essential research topic. Most plant diseases are caused by fungi, bacteria, and viruses. Fungi are identified primarily from their morphology, with emphasis placed on their reproductive structures. Bacteria are considered more primitive than fungi and generally have simpler life cycles. With few exceptions, bacteria exist as single cells and increase in numbers by dividing into two cells during a process called binary fission. Viruses are extremely tiny particles consisting of protein and genetic material with no associated protein. The term disease is usually used only for the destruction of live plants. Human society needs to increase food production by an estimated 70% by 2050 to feed an expected population size that is predicted to be over 9 billion people. Currently, infectious diseases reduce the potential yield by an average of 40% with many farmers in the developing world experiencing yield losses as high as 100%. The widespread distribution of smartphones among crop growers around the world with an expected 5 billion smartphones by 2025 offers the potential of turning the smartphone into a valuable tool for diverse communities growing food. The proposed processing scheme uses machine learning and dynamic plants image model to predict disease related to the leaf. Using machine learning makes platform generic and useful. Adding and updating new diseases and datasets is easy if machine learning is use. Using cloud computing for storing retrieving and serving data from machine learning model is efficient choice and both technologies can be used to create system.

Keywords: reproductive, machine learning, processing, disease, cloud computing

DECLARATION

We the members of the project team, studying in the VIII semester of Computer Science & Engineering, Jain College of Engineering and Research, hereby declare that the entire project entitled "Plant Disease Detection Using Machine Learning" has been carried out by us independently under the guidance of Prof. Sapana Yakkundi, Department of Computer Science & Engineering, Jain College of Engineering and Research. This project work is submitted to the Visvesvaraya Technological University, Belagavi, in partial fulfillment of the requirement for the award of the degree of Bachelor of Engineering in Computer Science & Engineering.

This dissertation has not been submitted previously for the award of any other degree or diploma to any other institution or university.

Date:

Place: Belagavi

Name of the Students USN Signature

1. Bhakti Chandilkar 2JR18CS011

2. Praveen Ukkoji 2JR18CS051

3. Shivani Shriguppi 2JR18CS068

4. Vishal Barale 2JR19CS437

ACKNOWLEDGEMENT

On the successful completion of this project work, we would like to acknowledge and extend our heartfelt gratitude to the following people who supported us to complete the project.

To our beloved Principal **Dr. S. V. Gorabal,** for providing an ideal atmosphere to pursue our objectives under his able administration.

We are also thankful to **Dr. Nandeesh Mathad**, Dean Academics, for creating right kind of milieu and giving moral support.

We are thankful to **Dr. Pritam Dhumale**, HOD, Department of Computer Science and Engineering, for motivating us and allowing us to use the facilities of the department to complete this Project successfully.

Our sincere gratitude to our project coordinators **Prof. Raghavendra Katagall** and **Prof. Abhilasha J**, for providing valuable advice that helped us in the preparation of the project work.

We are also thankful to our guide **Prof. Sapana Yakkundi**, Department of Computer Science and Engineering, her encouragement, effective guidance and valuable suggestions right from the beginning of the project till its completion without which this project work would not have been accomplished. We are in greatly indebted to her.

We would like to express our heartfelt thanks to all the staff members of the Department of Computer Science and Engineering, for their constructive suggestion and constant encouragement.

We also thank to our parents and all our friends whole heartedly who have rendered their help, motivation and support to accomplish this project.

CONTENTS

Abstract		i
Declaration		ii
Acknowledgemen	t	iii
Contents		iv
List of Figures		vi
List of Tables		vii
Chapter -1	Introduction	1-4
1.1	Overview	1
1.2	Background	2
1.3	Plant village: a tool for crop health	3
Chapter -2	Literature survey	5-9
Chapter -3	Problem definition	10-11
3.1	Objective	10
3.2	Aim of Project	10
Chapter -4	System design	12-21
4.1	Dataset	12
4.1.	1 Data Records	12
4.2	Image Processing and Labelling	14
4.3	System Architecture	17
4.4	Flow chart	17
4.5	Use Case Diagram	18
4.6	Class Diagram	19
4.7	Training and testing model	20
4.8	Sequence Diagram	20
Chapter -5	Requirements	22-29
5.1	Software Requirement	22
5.1.	1 Jupyter Notebook	22
5.1.	2 Python	22
5.1.	3 HTML and CSS	23
5.1.	4 MySQL	25
5.2	Libraries and Module	26

5.2.1	Numpy	26
5.2.2	Pickle	26
5.2.3	Sklearn	27
5.2.4	Keras	27
5.2.5	Matplotlib	28
5.3	Hardware Requirement	28
5.4	Functional Requirement	28
5.5	Non-Functional Requirement	29
Chapter -6	Implementation	30-39
6.1	Libraries	30
6.2	Data Preprocessing	30
6.3	Data Augmentation	34
6.4	Model	34
6.5	Training	35
6.6	Evaluation	36
6.7	Testing	37
6.8	Convolution Neural Network Algorithm	37
Chapter -7	Test Cases	40-42
7.1	Testing Objective	40
7.2	Types of testing	40
Chapter -8	Results	43-45
8.1	Screenshots	43
Chapter -9	Conclusion	46
Future Scope		47
References		48

LIST OF FIGURES

Figure No.	Caption	Page No.
3.2	CNN Architecture	10
4.3	System Architecture	17
4.4	Flow Chart	18
4.5	Use Case Diagram	18
4.6	Class Diagram	19
4.7.1	Training Model	20
4.7.2	Testing Model	20
4.8	Sequence Diagram	21
6.1	Importing Libraries	30
6.2.1	Defining Image Dataset Variables	31
6.2.2	Image Resizing Function	32
6.2.3	Loading Image Dataset	32
6.2.4	Plant Disease Classes	33
6.2.5	Creating Label Transform	33
6.2.6	Splitting Data into Training and Testing Set	33
6.3	Data Augmentation	34
6.4.1	Hyperparameter of Neural Network	34
6.4.2	Building Classification Model	35
6.5.1	Compiling Classification Model	35
6.5.2	Training Classification Model	36
6.6.1	Evaluation	36
6.6.2	Test Accuracy	37
6.7	Predict Function	37
6.8.1	Convoluting 5x5x1 Image with 3x3x1 Kernel	38
6.8.2	Selecting Maximum and Average Pooling Matrix	39
8.1.1	Home Page	43
8.1.2	About Us	43
8.1.3	Selecting Image	44
8.1.4	Scan Image	44
8.1.5	Result of Scanned Image	45

LIST OF TABLES

Table No.	Caption	Page No.
4.1.1	List of Crops and Their Disease Status in Plant	14
	Village Dataset	
7.2	Verification of Testcases	42