math108B hw4

Jonas Chen

October 10, 1000

Problem 1

Find the dual basis of the standard basis on $\mathbb{F}^{3,1}$

Solution

The standard basis $\left\{e_i\right\}_{i=1}^3$ on the set of 3×1 matrices (with real values) is $e_1=\begin{bmatrix}1\\0\\0\end{bmatrix}$, $e_2=\begin{bmatrix}0\\1\\0\end{bmatrix}$ and $e_3\begin{bmatrix}0\\0\\1\end{bmatrix}$

The dual basis for the dual space of $\mathbb{F}^{3,1}$ can be defined as

$$\varphi_{j\left(\left[\begin{smallmatrix}x_1\\x_2\\x_3\end{smallmatrix}\right]\right)}=x_j$$

for $j \in \{1,2,3\}$

This satisfies the definition of dual basis, that $\varphi_j(e_i)=1$ if i=j and 0 otherwise

Let $V=P(\mathbb{R})$ and let $\left\{v_k\right\}_{k=0}^n=\left\{x^k\right\}_{k=0}^n$ be the standard basis for V, and let $\left\{\varphi_j\right\}_{j=0}^n$ be the the corresponding dual basis for V'. Prove that

$$\varphi_j(p) = \frac{p^{(j)}(0)}{j!}$$

for every $p \in V$ and j = 0, 1, ..., n

Solution

Note that $p^{(j)}$ denotes the jth derivative of p

Note that for any polynomial p that the taylor expansion of p is p itself

Since the kth derivative for a degree n polynomial is 0 for all k > n we have:

$$p = \sum_{k=0}^{n} \frac{p^{(k)}(0)}{k!} x^{k}$$

And using LADR 3.114 we know that

$$p=\varphi_0(p)x^0+\ldots+\varphi_n(p)x^n$$

It is then natural to define the dual basis of V to be

$$\varphi_j(p) = \frac{p^{(j)}(0)}{j!}$$

source: "Taylor's Series of a Polynomial | MIT 18.01SC Single Variable Calculus, Fall 2010" at link: https://www.youtube.com/watch?v=19x213y uk4

In the textbook we define $\{\phi_1,...,\phi_n\}$ to be the dual basis of V where the basis of V is $\{v_1,...,v_n\}$ satisfying the following:

$$\phi_i(v_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Given a constant $\lambda \neq 0$ we define another set $\{T_1,...,T_n\}$ of elements in V' satisfying that

$$T_i(v_j) = \begin{cases} \lambda \text{ if } i = j\\ 0 \text{ if } i \neq j \end{cases}$$

Is the set $\{T_1,...,T_n\}$ a (nonstandard) dual basis? What is the relationship between T_i and ϕ_i ?

Solution

Note that $T_i \in \{T_1,...,T_n\}$ is a scalar multiple of $\phi_i \in \{\phi_1,...,\phi_n\}$ where the scalar multiple is λ

In general, if we have a basis $v_1,...,v_n$ for a n-dimensional vector space V then for any $\lambda \neq 0 \in \mathbb{F}$ the list $\lambda v_1,...,\lambda v_n$ is also a basis

To show this we can show that $\lambda v_1,...,\lambda v_n$ is linearly independent. (this list is of the "right length" n)

Consider $\alpha_1, \lambda v_1 + \ldots + \alpha_n \lambda v_n = \lambda (\alpha_1 v_1 + \ldots + \alpha_n v_n) = 0 \in V$

Since $\lambda \neq 0$ then it must be true that $\alpha_1 v_1 + ... + \alpha_n v_n = 0$ Since $v_1, ..., v_n$ are a basis and therefore linearly independent then this implies that $\alpha_1 = ... = \alpha_n = 0 \in \mathbb{F}$

Is L(V, W) isomorphic to L(W', V')?

Suppose that V and W are finite dimensional vector spaces over \mathbb{F} . Show that the map D: $L(V,W)\to L(W',V')$ defined by D(T)=T' is an isomorphism

Solution

We can try to show that L(V,W) and $L(W^{\prime},V^{\prime})$ have the same dimension.

Note that $\dim(W') = \dim(L(W,\mathbb{R})) = \dim(W)\dim(\mathbb{R}) = \dim(W)$

Similarly, $\dim(V') = \dim(V)$ (this result is also shown in LADR 3.111)

Then $\dim L(V,W) = \dim(V)\dim(W) = \dim(W')\dim(V') = \dim(W',V')$ implies that L(V,W) and L(V',W') are isomorphic.

Is the invertible operator equivalent to the invertible matrix that represents that operator?

Suppose that V is a finite dimensional vector space over \mathbb{F} . Let $\{v_k\}_{k=1}^n$ be a basis for V, let $T\in L(V)$ nand let A be the matrix of T relative to $\{v_k\}_{k=1}^n$

Prove that T is an invertible operator if and only if A is an invertible matrix.

Solution

Let $A = [T]_\beta^\beta$ be the matrix for T relative to $\beta = \left\{v_k\right\}_{k=1}^n$ then

If T is an invertible operator, then there exists some T^{-1} such that $TT^{-1}=T^{-1}T=I$

The matrix for T^{-1} is $\left[T^{-1}\right]_{\beta}^{\beta}$ and $\left[T \circ T^{-1}\right]_{\beta}^{\beta} = \left[T\right]_{\beta}^{\beta} \left[T^{-1}\right]_{\beta}^{\beta} = \left[I\right]_{\beta} = \left[T^{-1}\right]_{\beta}^{\beta} \left[T\right]_{\beta}^{\beta} = \left[T^{-1} \circ T\right]_{\beta}^{\beta}$

Therefore $[T]^{\beta}_{\beta}$ is invertible.

Conversely, suppose that $[T]^{\beta}_{\beta}$ is invertible then there exists some matrix $[T^{-1}]^{\beta}_{\beta}$ such that $[T]^{\beta}_{\beta}[T^{-1}]^{\beta}_{\beta} = [I]_{\beta} = [T^{-1}]^{\beta}_{\beta}[T]^{\beta}_{\beta}$ which implies that T is invertible since if $[T^{-1}]^{\beta}_{\beta}$ exists then so does T^{-1}

Note that in the above we use the fact that there is an isomorphism between linear maps and matrices which represent those linear maps i.e. $T \to [T]^\beta_\beta$ for each $T \in L(V)$ is an isomorphism

Prove that an operator $T \in L(V)$ on a finite dimensional vector space V is invertible if and only if 0 is not an eigenvalue of T

Solution

- \Rightarrow Suppose that 0 is an eigenvalue of T, then consider the equation $Tv = 0v = \mathbf{0}$. Then any $v \in V$ will satisfy this equation, which implies that the null space of T is not only $\{\mathbf{0} \in V\}$ and therefore T cannot be injective and therefore is not invertible. (this is the contrapositive statement)
- \Leftarrow Suppose that T is not invertible then T is no injective. Then $\exists v \in V$ such that $v \neq \mathbf{0}$ and $T(v) = \mathbf{0} = 0v$ so that v is an eigenvector with zero eigenvalue. (this is also the contrapositive statement)

Prove that the sum of two invariant subspaces is invariant

Solution

Suppose that U_1,U_2 are invariant subspaces under $T\in L(V)$

Then U_1+U_2 is invariant if $T(z\in U_1+U_2)\in U_1+U_2$ for all $z\in U_1+U_2$

let $z=u_1+u_2$ where $u_1\in U_1$ and $u_2\in U_2$ (by the definition of sums of subspaces)

Then $T(u_1 + u_2) = T(u_1) + T(u_2)$ by linearity and

Then we can conclude that $T(u_1)+T(u_2)$ is an element of U_1+U_2 since $T(u_1)\in U_1$ and $T(u_2)\in U_2$ by the assumption that U_1,U_2 are invariant subspaces under T

Let V be a vector space over \mathbb{F} , let $T \in L(V)$ and let $W \subset V$ be a subspace invariant under T. Prove that $\mathrm{null}(T|_W) = (\mathrm{null}T) \cap W$

Solution

Let $T|_W:W\to W$

Suppose that $v \in \operatorname{null}(T|_W)$ then $T|_W(v) = 0$ Clearly $v \in W$ and $v \in V$ and since $0 \in W \Rightarrow 0 \in V$ we have that v is in the null space of T. Then $v \in \operatorname{null}T \cap W$

Suppose that $v \in \text{null} T \cap W$ then $v \in \text{null} T \wedge v \in W$

Note that W and V share the same 0 element since W is a subspace of V. Then $T(v)=0\in W$ which is the same condition for v being in the null space of $T|_W$ (that a vector in W must map to $0\in W$)