Série d'exercices

Exercice 1

- 1 Répondre par vrai ou faux
 - Lorsqu'un solide en équilibre sous l'action de trois forces, alors leur somme vectorielle est nulle
 - Si le solide est en équilibre sous l'action de trois forces, alors il est pseudo-isolé.
 - Lorsqu'un solide est soumis à trois forces dont leurs directions sont coplanaires , alors il est en équilibre .
 - Si les lignes d'actions des forces exercées à un solide ne sont pas concourantes , alors le solide n'est pas en équilibre .
 - Si la ligne polygonale de trois forces est ouverte, alors les forces se compensent .
 - Lorsque le contact du solide et le support se fait avec frottement, alors le solide est en équilibre
 - Lorsqu'un solide est en contact avec frottement avec un support, alors la réaction du support est normale à la surface de contact du solide et le support.
 - **9** Si la somme vectorielle de trois forces non parallèles est nulle, alors leur ligne polygonale est fermée .

Exercice 3

On suspend une boule de fer à l'extrémité \underline{A} d'un fil et on fixe l'autre extrémité à un support fixe . On approche de la boule un aimant droit comme l'indique la figure ci-contre .

- **2** Donner les caractéristiques des vecteurs forces : \overrightarrow{T} , \overrightarrow{F} et \overrightarrow{P} .
- 3 Représenter ces forces en utilisant une échelle adéquate .
- Tracer la ligne polygonale des forces exercées sur la boule
- **5** La boule est-elle en équilibre ? Justifier la réponse .
 - \Box L'intensité de pesanteur est : g = 10N/Kg

Données

- ☐ Masse de la boule est : m = 400g☐ L'intensité de la force exercée par le fil sur la boule :T = 5N
- \Box L'intensité de la force exercée l'aimant sur la boule : F = 3N

Exercice 3

Un solide (S) de masse m est en équilibre sur un plan horizontal, et accroché par un ressort.

- Faire l'inventaire des forces exercées sur (S).
- Calculer le poids P du solide (S) .
- f 3 Calculer la tension m T du ressort.
- 4 Tracer la ligne polygonale des trois forces.
- Déduire les caractéristiques de 🏿 réaction du plan .
- Quelle est la nature du contact du solide (S) et le plan .

Données

- \square L'allongement du ressort : $\Delta L = 5cm$.
- \square La masse du solide : m = 500g.
- \square L'intensité de la pesanteur : g = 10N/Kg

Série d'exercices

Exercice 4

Une sphère (S) homogène de masse m=1,5kg et de rayon r=7cm, est attachée en un point A à un mur parfaitement lisse, par l'intermédiaire d'un fil fixé en un point B de sa surface. Cette sphère repose sur le mur au point -M.

- 1 Faire l'inventaire des forces appliquées sur la sphère (S)
- 2 Quelle est la relation entre ces forces à l'équilibre ?
- **8** Représenter ces forces sur la figure .
- **3** Sachant que AB = 20cm. Calculer la valeur de l'angle α
- **5** En utilisant les deux méthodes géométrique et analytique déterminer la réaction du mur et celle de l'intensité de la tension du fil T.

Donnée :L'intensité de la pesanteur : g = 10N/Kg

Exercice 5

Un solide (S) de masse m = 1200g est en équilibre sur un plan incliné d'un angle $\alpha = 60^{\circ}$ par rapport à horizontal, et accroché par un ressort.

- 1 Faire l'inventaire des forces exercées sur (S).
- 2 Calculer le poids P du solide (S) et déduire la valeur de la composant normale de la réaction.
- 3 Tracer la ligne polygonale des trois forces.
- **1** En se basant sur la méthode analytique, déterminer les caractéristiques de la tension du ressort .
- 6 Calculer la valeur de l'allongement du ressort.

 \Box La constante de raideur du ressort : K = 50N/m.

Données \square Coefficient de frottement : $\alpha = 0,4$.

 \square L'intensité de la pesanteur : g = 10N/Kg

Exercice 6

Un solide (S) de masse m = 0, 2kg est en équilibre sous l'action de deux ressorts (R_1) et (R_2) comme l'indique la figure ci-contre

- Faire l'inventaire des forces exercées sur le solide (S).
- 2 En se basant sur les conditions d'équilibre du solide (S), trouver les tensions des ressorts (R_1) et (R_2) .
- 3 Calculer l'allongement de chaque ressort
- Tracer le ligne polygonale

Données

- \square La constante de raideur du ressort : $K_1 = K_2 = 50N/m$.
- \Box Les angles: $\beta = 35^{\circ}$; $\alpha = 30^{\circ}$

