Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3207	К работе допущен	
Студент Пути	нцев Данил Денисович	Работа выполнена	11.12.2024
Преподаватель	Агабабаев В.А	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.03

Изучение центрального соударения двух тел. Проверка второго закона Ньютона

Цель работы.

- 1. Исследование упругого и неупругого центрального соударения тел на примере тележек, движущихся с малым трением.
- 2. Исследование зависимости ускорения тележки от приложенной силы и массы тележки.

Задачи, решаемые при выполнении работы.

- 1. Измерение скоростей тележек до и после соударения.
- 2. Измерение скорости тележки при ее разгоне под действием постоянной силы.
- 3. Исследование потерь импульса и механической энергии при упругом и неупругом соударении двух тележек.
- 4. Исследование зависимости ускорения тележки от приложенной силы и массы тележки. Проверка второго закона Ньютона.

Объект исследования.

Соударение двух тележек на рельсе.

Метод экспериментального исследования.

Будем сталкивать на рельсе две тележки, одна из которых покоится. При абсолютно упругом столкновении сохраняется и энергия и импульс системы

Рабочие формулы

 $\delta_W^{({
m T})} = -\frac{m_2}{m_1+m_2}$ — теоретическое значение относительного изменения механической энергии, вычисляемое по формуле;

$$a=rac{v_2^2-v_1^2}{2(x_2-x_1)}$$
; $T=m(g-a)$ — ускорение тележки и сила натяжения нити.

$$p_{10x} = m_1 v_{10x}$$
, $p_{1x} = m_1 v_{1x}$, $p_{2x} = m_2 v_{2x}$ – импульсы тел;

$$\delta_p = \frac{(p_{1x} + p_{2x}) - 1}{p_{10x}} - формула относительного изменения импульса системы при соударении;$$

 $\delta_W = \frac{m_1 v_{1x}^2 + m_2 v_{2x}^2}{m_1 v_{10x}^2} - 1$ — формула относительного изменения кинетической системы при соударении;

 $\overline{\delta_p} = \frac{\sum_{i=1}^N \delta_{pi}}{N}; \ \overline{\delta_W} = \frac{\sum_{i=1}^N \delta_{Wi}}{N} -$ средние значения относительных изменений импульса и энергии;

$$\Delta \bar{\delta}_p = t_{lpha_{ exttt{дов}},\ N} \sqrt{\frac{\sum_{i=1}^N (\delta_{pi} - \bar{\delta}_p)^2}{N(N-1)}}$$
 — доверительный интервал для $\delta_p, t_{lpha_{ exttt{дов}},\ N}$ — коэффициент

Стьюдента для доверительной вероятности $\alpha = 0,95$, количества измерений N и i – номер опыта;

$$\varDelta \bar{\delta}_W = \ t_{\alpha_{\mathsf{дов}},\ N} \sqrt{\frac{\sum_{i=1}^N \left(\delta_{Wi} - \bar{\delta}_W\right)^2}{N(N-1)}} \ - \mathsf{доверительный} \ \mathsf{интервал} \ \mathsf{для} \ \delta_p;$$

 $p_{10} = m_1 v_{10}$ – импульс системы до соударения;

 $p = (m_1 + m_2)v$ – импульс системы после соударения;

$$\delta_p = rac{p_1}{p_{10}} - 1$$
 — относительное изменение импульса;

 $\delta_W^{(3)} = \frac{(m_1 + m_2)v_2^2}{m_1v_{10}^2} - 1$ — экспериментальное значение относительного изменения механической энергии, вычисляемое по формуле;

Измерительные приборы.

Наименование средства измерения	Предел измерений	Цена деления	Погрешность
Линейка на рельсе	1.3 м	1 см / дел	0.5 см
ПКЦ-3 в режиме измерения скорости	9.99 м/с	0.01 m/c	0.01 m/c
Лабораторные весы	250 г	0.01 z	0.01 z

Схема установки.

Описание установки

Рис. 3 Общий вид экспериментальной установки

Общий вид экспериментальной установки для первой части работы изображен на рис. 3. В состав установки входят:

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Сталкивающиеся тележки
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1.1

№ опыта	<i>т</i> ₁ , г	<i>m</i> ₂ , г	U _{10x} , м/с	U _{1х} , м/с	U _{2х} , м/с
1			0,55	0	0,25
2			0,54	0	0,25
3	50,4	48,5	0,54	0	0,25
4			0,54	0	0,26
5			0,54	0	0,26

Таблица 1.2

№ опыта	<i>т</i> ₁ , г	<i>m</i> ₂ , г	U _{10x} , м/с	U _{1х} , м/с	U _{2x} , м/с
1	50,4	99,8	0,53	-0,06	0,14
2			0,55	-0,05	0,20
3			0,54	-0,10	0,08
4			0,55	-0,06	0,14
5			0,54	-0,04	0,15

Таблица 2.1

№ опыта	т, г	т2, г	U ₁₀ , м/с	U ₂ , м/с
1			0,53	0,11
2			0,52	0,10
3	52,9	51,6	0,52	0,11
4			0,53	0,14
5			0,53	0,13

Таблица 2.2

№ опыта	<i>т</i> ₁ , г	т2, г	U ₁₀ , м/с	U ₂ , м/с
1			0,52	0,06
2			0,52	0,06
3	52,9	103	0,51	0,08
4			0,52	0,06
5			0,52	0,07

Таблица 3.1 Масса тележки = 48,6 г

№ опыта	Состав гирьки	т, г	<i>U</i> ₁, м/с	<i>U</i> ₂ , м/с
1	Подвеска	2,1	0,24	0,32
2	Подвеска + одна шайба	2,8	0,30	0,39
3	Подвеска + две шайбы	3,4	0,35	0,45
4	Подвеска + три шайбы	4	0,40	0,52
5	Подвеска + четыре шайбы	4,6	0,43	0,56
6	Подвеска + пять шайб	5,4	0,47	0,62
7	Подвеска + шесть шайб	6,3	0,52	0,67

Таблица 3.2 Масса тележки = 99,9 г

№ опыта	Состав гирьки	т, г	<i>U</i> ₁ , м/с	<i>U</i> ₂, м/с
1	Подвеска	2,1	0,12	0,21
2	Подвеска + одна шайба	2,7	0,15	0,25
3	Подвеска + две шайбы	3,5	0,21	0,34
4	Подвеска + три шайбы	4,1	0,23	0,37
5	Подвеска + четыре шайбы	4,7	0,25	0,40
6	Подвеска + пять шайб	5,5	0,26	0,42
7	Подвеска + шесть шайб	6,1	0,28	0,46

Расчет результатов косвенных измерений (*таблицы, примеры расчетов*).

Таблица 4.1

№ опыта	Р _{10х} , мН*с	Р _{1х} , мН*с	Р _{2х} , мН*с	$\delta_{ m p}$	δ_{W}
1	27.72	0	12.125	-0.56259	-0.80118
2	27.216	0	12.125	-0.55449	-0.79374
3	27.216	0	12.125	-0.55449	-0.79374
4	27.216	0	12.61	-0.53667	-0.77691
5	27.216	0	12.61	-0.53667	-0.77691

Таблица 4.2

№ опыта	Р _{10х} , мН*с	Р _{1х} , мН*с	Р _{2х} , мН*с	$\delta_{ m p}$	δ_{W}
1	26.712	-3.024	13.972	-0.59015	-0.87465
2	27.72	-2.52	19.96	-0.37085	-0.74643
3	27.216	-5.04	7.984	-0.89183	-0.99083
4	27.72	-3.024	13.972	-0.60505	-0.8836
5	27.216	-3.528	14.97	-0.57959	-0.86401

Таблица 5.1 Масса тележки = 48,6 г

№ Опыта	р ₁₀ , мН*с	р, мН*с	$\delta_{ m p}$	$\delta_{\scriptscriptstyle W}^{\scriptscriptstyle (\mathfrak{I})}$	$\delta_{\scriptscriptstyle W}^{\scriptscriptstyle (T)}$
1	28.04	55.39	0.97895	-0.9149	
2	27.51	54.34	0.97528	-0.92694	
3	27.51	54.34	0.97528	-0.91160	-0.49378
4	28.04	55.39	0.97895	-0.86216	
5	28.04	55.39	0.97895	-0.88115	

Таблица 5.2 Масса тележки = 99,9 г

№ Опыта	р ₁₀ , мН*с	р, мН*с	$\delta_{ m p}$	$\delta_W^{(oldsymbol{artheta})}$	$oldsymbol{\delta}_W^{(T)}$
1	27.508	9.354	-0.65995	-0.96076	
2	27.508	9.354	-0.65995	-0.96076	
3	28.037	12.472	-0.55516	-0.92748	-0.66068
4	27.508	9.354	-0.65995	-0.96076	
5	27.508	10.913	-0.60328	-0.9466	

Таблица 6.1

№ опыта	т, г	а, м/c²	Т, мН
1	2,1	0.03446	20.54963
2	2,8	0.04777	27.36224
3	3,4	0.06154	33.17876
4	4	0.08492	38.94032
5	4,6	0.10038	44.71025
6	5,4	0.12577	52.34884
7	6,3	0.13730	61.00101

$$a_{cp} = \frac{\sum_{i=1}^{N} a_i}{N} = 0.08459$$
 $T_{cp} = \frac{\sum_{i=1}^{N} T_i}{N} = 39.72729$

T = 360.287*a + 9.2502

Таблица 6.2

№ опыта	т, г	а, м/c²	Т, мН
1	2,1	0.02285	20.57402
2	2,7	0.03077	26.43092
3	3,5	0.055	34.1775
4	4,1	0.06462	39.99706
5	4,7	0.075	45.8015
6	5,5	0.08369	53.54970
7	6,1	0.10246	59.277

$$a_{cp} = \frac{\sum_{i=1}^{N} a_i}{N} = 0.06206$$
 $T_{cp} = \frac{\sum_{i=1}^{N} T_i}{N} = 39.97253$

Расчет погрешностей измерений

Погрешности для $\delta_{\rm p}$ и $\delta_{\rm W}$ для таблицы 4.1

$$\delta_{p_{cp}} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N} = -0.548982 \qquad \delta_{W_{cp}} = \frac{\sum_{i=1}^{N} \delta_{W_{i}}}{N} = -0.788496$$

$$\Delta \delta_{p} = t_{\alpha_{ooe}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \delta_{p_{cp}})^{2}}{N(N-1)}} = 0.00524 * 2.78 = 0.01457$$

$$\Delta \delta_{W} = t_{\alpha_{ooe}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \delta_{W_{cp}})^{2}}{N(N-1)}} = 0.01368$$

$$\delta_{p} = (-0.55 \pm 0.01); \ \epsilon_{\delta p} = 1.81\%; \ \alpha = 0.95$$

$$\delta_{W} = (-0.79 \pm 0.01); \ \epsilon_{\delta W} = 1.27\%; \ \alpha = 0.95$$

Погрешности для $\delta_{\rm p}$ и $\delta_{\rm w}$ для таблицы 4.2

$$\delta_{p_{cp}} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N} = -0.607494 \qquad \delta_{wcp} = \frac{\sum_{i=1}^{N} \delta_{w_i}}{N} = -0.871904$$

$$\Delta \delta_{p} = t_{\alpha_{\partial os}, N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \delta_{p_{cp}})^{2}}{N(N-1)}} = 0.23$$

$$\Delta \delta_{W} = t_{\alpha_{oo},N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \delta_{W_{cp}})^{2}}{N(N-1)}} = 0.11241$$

$$\delta_{p} = (-0.61 \pm 0.23); \ \varepsilon_{\delta p} = 37.7\%; \ \alpha = 0.95$$

$$\delta_{w} = (-0.87 \pm 0.11); \ \varepsilon_{\delta W} = 12.64\%; \ \alpha = 0.95$$

$$\begin{split} &\delta_{p_{cp}} = \frac{\sum\limits_{i=1}^{N} \delta_{pi}}{N} = 0.977 \quad \delta_{W\ cp}^{(\Im)} = \frac{\sum\limits_{i=1}^{N} \delta_{W_{i}}^{(\Im)}}{N} = -0.89935 \\ &\Delta \delta_{p} = t_{\alpha_{\log},N} \sqrt{\frac{\sum\limits_{i=1}^{N} (\delta_{pi} - \delta_{p_{cp}})^{2}}{N(N-1)}} = 0.003 \ \Delta \delta_{W^{(\Im)}} = t_{\alpha_{\log},N} \sqrt{\frac{\sum\limits_{i=1}^{N} (\delta_{Wi} - \delta_{W_{cp}})^{2}}{N(N-1)}} = 0.033 \\ &\delta_{p} = (9.77 \pm 0.03) * 10^{-1}; \ \epsilon_{\delta p} = 0.31\%; \ \alpha = 0.95 \\ &\delta_{W}^{(\Im)} = (-9.00 \pm 0.33) * 10^{-1}; \ \epsilon_{\delta W} = 3.67\%; \ \alpha = 0.95 \end{split}$$

Погрешности для $\delta_{\rm p}$ и $\delta_{\rm w}$ для таблицы 5.2

$$\delta_{p_{cp}} = \frac{\sum_{i=1}^{N} \delta_{pi}}{N} = -0.628 \qquad \delta_{W \ cp}^{(\mathfrak{I})} = \frac{\sum_{i=1}^{N} \delta_{W_{i}}^{(\mathfrak{I})}}{N} = -0.95$$

$$\Delta \delta_{p} = t_{\alpha_{oos},N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{pi} - \delta_{p_{op}})^{2}}{N(N-1)}} = 0.058 \ \Delta \delta_{W \ cp}^{(9)} = t_{\alpha_{oos},N} \sqrt{\frac{\sum_{i=1}^{N} (\delta_{Wi} - \delta_{W_{op}})^{2}}{N(N-1)}} = 0.0183$$

$$\delta_{p} = (-6.28 \pm 0.58) * 10^{-1}; \ \epsilon_{\delta p} = 9.24\%; \ \alpha = 0.95$$

$$\delta_{W}^{(9)} = (-9.5 \pm 0.183) * 10^{-1}; \ \epsilon_{\delta W} = 1.93\%; \ \alpha = 0.95$$

Графики

Рисунок 1: Зависимость силы натяжения Т от ускорения а для легкой тележки

Рисунок 2: Зависимость силы натяжения Т от ускорения а для утяжеленной тележки

Рисунок 3: Зависимость силы натяжения Т от ускорения а - объединение рисунков

Окончательные результаты.

```
\begin{split} &\delta_{p1} = (\text{-}0.55 \pm 0.01); \; \epsilon_{\delta p} = 1.81\%; \; \; \alpha = 0.95 \\ &\delta_{W1} = (\text{-}0.79 \pm 0.01); \; \epsilon_{\delta W} = 1.27\%; \; \; \alpha = 0.95 \\ &\delta_{p2} = (\text{-}0.61 \pm 0.23); \; \epsilon_{\delta p} = 37.7\%; \; \; \alpha = 0.95 \\ &\delta_{W2} = (\text{-}0.87 \pm 0.11); \; \epsilon_{\delta W} = 12.64\%; \; \; \alpha = 0.95 \\ &\delta_{p3} = (9.77 \pm 0.03) * 10^{-1}; \; \epsilon_{\delta p} = 0.31\%; \; \; \alpha = 0.95 \\ &\delta_{W}^{(3)} = (\text{-}9.00 \pm 0.33) * 10^{-1}; \; \epsilon_{\delta W} = 3.67\%; \; \; \alpha = 0.95 \\ &\delta_{p4} = (\text{-}6.28 \pm 0.58) * 10^{-1}; \; \epsilon_{\delta p} = 9.24\%; \; \; \alpha = 0.95 \\ &\delta_{W}^{(3)} = (\text{-}9.5 \pm 0.183) * 10^{-1}; \; \epsilon_{\delta W} = 1.93\%; \; \; \alpha = 0.95 \end{split}
```

Вывод

В ходе лабораторной работы было проведено исследование центрального соударения двух тел, рассматривая как упругое, так и неупругое взаимодействие. В первом задании мы зафиксировали скорости тележек до и после столкновения, а также вычислили изменения импульса и кинетической энергии для каждого типа соударения. Полученные результаты продемонстрировали, что при упругом соударении суммарный импульс сохраняется с минимальными потерями, в то время как при неупругом столкновении наблюдаются более значительные потери энергии. Во втором задании была проверена зависимость ускорения тележки от приложенной силы, что подтвердило второй закон Ньютона. Ошибки в измерениях оказались незначительными, что свидетельствует о надежности полученных данных.