

23.02.09 / 8기 한예림

CONTENTS

01. Clustering

- Overview
- Types

04. DBSCAN

- Mechanism
- Heuristic Approach
- Features

02. K-means Clustering

- Mechanism
- EM Algorithm
- Features

05. Issues for Clustering

- Proximity Measures
- Feature Normalization
- Algorithm

03. Hierarchical Clustering

- Mechanism
- Calculating Distance
- Features

06. Summary

O. INTRO

데이터셋의 특성을 어떻게 하면 효과적으로 파악할 수 있을까?

군집화 (Clustering)

레이블이 없는 데이터 집합을 유사한 데이터들의 그룹으로 나누는 것

- 같은 클러스터 내의 객체들은 유사해야 한다.
 - minimize the inner-cluster variance
- 서로 다른 클러스터의 객체들은 달라야 한다.
 - maximize the inter-cluster variance
- 군집 (Cluster): 나누어진 데이터 그룹

비지도학습의 한 형태

Clustering is DIFFERENT from Classification!

How can we design an algorithm to make clusters?

Hard Clustering

one sample \in one cluster

Soft Clustering

one sample ∈ multiple cluster

YONSEI DATA SCIENCE LAB | DSL

1. Clustering

Algorithms

Flat algorithms

- 전체 데이터의 영역을 특정 기준에 의해 한 번에 구분하는 클러스터링
- Partitioned
 - K-means clustering
 - Gaussian Mixture Models (GMM)

Hierarchical algorithms

- 개체들을 가까운 집단부터 계층적으로 차근차근 묶어 나가는 클러스터링
- Bottom-up (agglomerative)
- Top-down (divisive)

K-means Clustering

주어진 데이터를 k개의 클러스터를 중심으로 묶는 알고리즘

- (1) 임의로 k개의 중심점 (centroid)을 설정
 - k개의 중심점은 곧 k개의 클러스터
- (2) 각 개체는 가장 가까운 중심에 할당되어 하나의 클러스터를 형성
- (3) 각 클러스터에 할당된 포인트들의 평균 좌표를 이용해 중심점을 반복적으로 업데이트

YONSEI DATA SCIENCE LAB | DSL

2. K-means Clustering

$$\sum_{x_j \in S_2} d_j^2$$

$$\sum_{x_j \in S_1} d_j^2 = d_1^2 + d_2^2 + d_3^2 + d_4^2 + d_5^2$$

$$\sum_{x_j \in S_3} d_j^2$$

$$\min_{S} E(\mu_i) = \sum_{x_j \in S_1} d_j^2 + \sum_{x_j \in S_2} d_j^2 + \sum_{x_j \in S_3} d_j^2$$

$$X = S_1 \cup S_2 \cdots \cup S_K,$$

$$S_i \cap S_i = \emptyset$$

$$argmin \sum_{i=1}^{K} \sum_{x_j \in S_i} ||x_j - \mu_i||^2$$

- S Sets of observations
- k Number of clusters
- *x* Observation data point
- μ_i Mean of points in S_i

EM Algorithm을 기반으로 작동

- EM Algorithm: 잠재 변수가 포함된 우도 함수를 최적화하여 모수 (parameter)의 최대 가능도 추정치를 도출
 - 잠재 변수 (latent variable): 직접적으로 관찰 또는 측정이 불가능한 변수
- Expectation Step: log likelihood의 기댓값을 계산하는 단계 $\mathbb{E}_{q(\mathbf{z})} \ln p(\mathbf{x}, \mathbf{z} | \theta_n)$ 반복 Maximization Step: 기댓값을 최대화하는 모수의 추정값을 구하는 단계 $\theta_{n+1} = \arg \max_{\theta} \mathbb{E}_{q(\mathbf{z})} \ln p(\mathbf{x}, \mathbf{z} | \theta_n)$
- 1) 각 클러스터 중심의 위치 2) 각 개체가 속하는 클러스터 를 찾아야 함 (잠재 변수 존재)
- EM Algorithm을 통해 각 클러스터의 모수를 찾고자 함

1) E(expectation)-step

Arbitrary means Z are set

2) M(maximization)-step

Inputs are mapped to the nearest Z

1) E(expectation)-step

Means Z are updated to the mean in each cluster

2) M(maximization)-step

Inputs are mapped to updated Z

1) E(expectation)-step

Means Z are updated again to the mean in each cluster

* 해당 예시에서의 $Z = (Z_0, Z_1)$ 은 정해진 값이다.

2. K-means Clustering

input들을 계속 업데이트되는 클러스터에 할당하는 작업은 결국 MLE와 같음.

• MLE (Maximum Likelihood Estimation): 최대우도법. 확률밀도함수 $p(X \mid \theta)$ 를 최대화하는 θ 값을 찾는 것이 목표

• MLE의 핵심

데이터들은 주황색 커브로부터 나왔을 가능성이 더 크다

 θ_2 의 클러스터링 결과가 θ_1 보다 좋음 이는 곧 클러스터링도 θ_2 의 방향으로 나아가야 함을 의미

 초기에 정한 중심점에 따라 클러스터링 결과가 결정됨
 (중심점 영향 ↑)

• 클러스터 수 k가 커질수록 순도 높은 결과 도출

원점 근방에서 시작해 두 개의 나선으로 이루어진 데이터

단, 각 군집의 모양이 구 형태로 convex할 때에만 좋은 결과를 도출

유클리디안 거리로 거리 측정… 너무 차원이 높으면 클러스터링 성능 ↓

Curse of Dimensionality

차원의 저주. 차원이 증가하면서 학습 데이터 수가 차원 수보다 적어져 성능이 저하하는 현상

고차원 데이터의 특징

- 정보량이 많다.
- 데이터의 차원이 클수록 공간도 커져 필요한데이터의 수가 지수적으로 증가한다.

K-means는 outlier에 민감

• '평균'의 한계

K-medoids Clustering

• 클러스터를 대표할 수 있는 **실제 점** 하나를 중심점으로 잡음

=> robust to outliers

• 중앙자 (Medoid): 클러스터의 비유사성의 평균이 클러스터 내의 모든 객체에 대하여 최소가 되는 객체

KNN vs. K-means

두 방식 모두 K개의 점을 지정해 거리를 기반으로 구현되는 알고리즘. 그러나 둘은 목적부터가 다르다.

KNN (K-nearest Neighbors Algorithm)

해당 데이터와 가까이 있는 K개의 데이터를 확인한 뒤 더 많은 데이터가 포함되어 있는 범주로 분류

K-means Clustering

주어진 데이터를 k개의 클러스터를 중심으로 군집화

Hierarchical Clustering

계층적 트리 모형을 이용해 개별 객체들을 유사한 객체와 통합하는 알고리즘

덴드로그램을 통해 시각화 가능

• 덴드로그램 (Dendrogram): 개체들이 결합되는 순서를 나타내는 트리 형태의 구조

사전에 군집의 수를 정하지 않음

• 덴드로그램을 만든 뒤 적절한 수준에서 자르면 그에 해당하는 군집화 결과가 생성됨

Agglomerative Hierarchical Clustering

(각 개체를 하나의 군집으로 간주)

- (1) 모든 개체들 사이의 거리에 대한 유사도 행렬 계산
- (2) 거리가 인접한 관측치끼리 클러스터 형성
- (3) 유사도 행렬 업데이트

… 하나의 클러스터로 합쳐질 때까지 병합

- Pottom-up (agglomerative): 각 데이터 포인트를 순차적으로 병합하여 클러스터링
- Top-down (divisive): 전체를 하나의 클러스터로 보고 분할해 나가는 클러스터링

Distance in Similarity Matrix

1) Euclidean

- Single (최단연결법): 두 클러스터 간 가장 가까운 거리를 사용
- Complete (최장연결법): 두 클러스터 간 가장 먼 거리를 사용
- Average (평균연결법): 클러스터 내 모든 데이터와 다른 클러스터 내 모든 데이터 사이의 **거리 평균**을 사용

유사도 행렬 계산 시 사용할 거리 지정 가능

Centroids (중심연결법): 두 클러스터의 중심점 거리를 사용

2) Ward's Linkage

두 군집이 합쳐졌을 때의 오차제곱합 (SSE)의 증가분을 기반으로 계산

$$Ward_d = \sum_{i \in A \cup B} ||x_i - m_{A \cup B}||^2 - \left\{ \sum_{i \in A} ||x_i - m_A||^2 + \sum_{i \in B} ||x_i - m_B||^2 \right\}$$

각 군집 내에서 객체들의 중간에 해당하는 점과 각 개체 사이의 거리를 제곱하여 합한 값

'군집을 하나로 묶었을 때) 모든 개체의 중간에 해당하는 점과 각 개체 사이의 거리를 제곱하여 합한 값

- 클러스터 내의 분산을 가장 작게 증가시키는 두 클러스터를 합침
 - 모든 클러스터 내의 분산을 가장 작게 만드는 것이 목표
- 크기가 비교적 비슷한 클러스터를 생성할 수 있음

DS

3. Hierarchical Clustering

SSE before merge:

2) Ward's Linkage

$$1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 = 8$$

SSE after merge:

$$4 * 1.5^2 + 4 * 3^2 = 45$$

• Ward distance: 45 - 8 = 37

1)

 A
 B
 C
 D

 A
 20
 7
 2

 B
 10
 25

 C
 3

 D

2)

2 -{ A D B C

	Α	В	С	D
Α		20	7	2
В			10	25
С				3
D				

4)

В

	AD CB		
AD CB			

3)

	ADC	В	
ADC		10	
В			

Features

군집의 수를 미리 정하지 않아도 됨

random point에서 시작하지 않아 항상 동일한 결과가 나옴

• 클러스터의 수는 덴드로그램을 자르는 위치에 따라 상이하겠지만 결과는 같다

전체적인 군집 파악 가능

but 데이터가 큰 경우 연산 시간이 굉장히 오래 걸림

• 모든 데이터 간 거리 계산 … 데이터 개수가 커지면 연산이 기하급수적으로 늘어남

DBSCAN

점이 세밀하게 몰려 있어 밀도가 높은 부분을 클러스터링하는 알고리즘

- Density-Based Spatial Clustering of Applications with Noise
- 한 점을 기준으로 반경 x내에 점이 n개 이상 있으면 하나의 군집으로 인식

• 1) 점으로 부터의 반경 eps (epsilon) 2) eps 내에 필요한 점의 최소 개수 minPts 를 찾아야 함

점 p에서부터 거리 e(epsilon)내에 점이 m(minPts)개 있으면 하나의 군집으로 인식한다고 해보자.

조건을 만족하는 점 p를 core point (중심점) 이라고 한다.

YONSEI DATA SCIENCE LAB | DSL

P3를 중심으로 하는 반경 내에 다른 core point P가 포함되어 있다면 ···

core point P와 P3는 연결되어 있다고 보고 하나의 군집으로 묶임

(minPts = 4)

어느 군집에도 속하지 않는 outlier는 noise point가 된다.

*in "thinnest" cluster

Heuristic Approach to Determine eps and minPts

- Heuristic: problem solving or self-discovery to reach solutions that are not guaranteed to be optimal, but are sufficient for reaching an immediate goal
- sorted k-dist graph

figure 4: sorted 4-dist graph for sample database 3

*threshold point에서의 k-dist값이 eps가 된다.

- 1) minPts의 개수를 k라고 하면, KNN 하나의 점으로부터 k번째로 가까운 점과의 거리 k-dist를 구한다.
 - 점 p에 대한 KNN 거리를 d라 하자. p의 d-neighborhood는 모든 점 p에 대해 k+1 개 이상의 점을 포함할 것이다.
- 2) k-dist를 내림차순으로 정렬하면 데이터베이스의 밀도 분포에 대한 정보를 얻을 수 있다.
- 3) eps를 k-dist(p), minPts를 k로 설정하면 k-dist보다 작거나 같은 모든 포인트는 core point가 된다.
- 4) x축은 모든 포인트에 대해 k-dist를 내림차순 정렬한 포인트, y축은 각 포인트에 대한 k-dist 값이다.

4. DBSCAN

Heuristic Approach to Determine eps and minPts

minPts가 너무 작다면 ···

- noise로 구분되어야 할 점들도 core point나 border point로 잘못 구분될 수 있음
- 불필요한 군집 생성

논문에 의하면,

- 2차원 데이터에 대해 실험한 결과 minPts > 4 일 경우 k-dist graph는 의미 있는 변동을 하지 않는다.
- minPts가 커질수록 연산량이 상당히 커지게 됨.

2차원 데이터에서는 minPts = 4로 하자!

YONSEI DATA SCIENCE LAB | DS

4. DBSCAN

Features

군집의 수를 미리 정하지 않아도 됨

객체의 밀도에 따라 클러스터를 서로 연결하기 때문에 기하학적인 모양의 군집도 생성 가능

noise에 강함 (outlier 검출)

4. DBSCAN

단, '밀도기반'의 군집화

• 밀도가 높은 곳에만 집중하기 때문에 다른 밀도 분포를 가진 데이터의 클러스터링 결과 ↓

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

Things to consider...

클러스터링을 위한 척도

- 유사도(거리)에 대한 개념 필요
- 정규화 (Normalization)

클러스터 개수

클러스터링 결과를 평가할 수 있는 지표

... 등등

Proximity measures

데이터 포인트 간 비유사성 (dissimilarity)을 계산하는 지표

* L2 norm

(1) Euclidean Distance

$$d(X,Y) = \sqrt{\sum_{i=1}^{p} (x_i - y_i)^2}$$

두 관측치 사이의 직선, 즉 최단 거리를 의미

*L1 norm

(2) Manhattan Distance

$$d_{Manhattan}(X,Y) = \sum_{i=1}^{p} |x_i - y_i|$$

이동이 불가능한 요소를 배제하고 계산

… 만약 이와 같은 상황이라면?

(3) Cosine Similarity

$$\text{similarity} = \cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum\limits_{i=1}^{n} A_i \times B_i}{\sqrt{\sum\limits_{i=1}^{n} (A_i)^2} \times \sqrt{\sum\limits_{i=1}^{n} (B_i)^2}}$$

두 데이터(벡터)가 이루는 사잇각 θ 로 유사도를 측정하는 방식

• 사잇값은 벡터의 내적(inner product)으로부터 정의되므로 θ 의 코사인 값으로 유사도 측정

코사인 값이 크면 코사인 함수의 성질에 의해 사잇각은 작아지고, 유사도는 높아진다.

"pattern"

Then, how to validate the clustering?

Elbow method

일반적으로 elbow point에서 최적의 클러스터 수 'k'가 결정됨

• elbow point를 넘어서면 k가 증가하더라도 함숫값의 significant reduction을 불러오지 않는다

y축에는 다양한 지표가 올 수 있음

내부평가: Dunn Index, SSE, Silhouette ···

- 최적의 군집 개수를 평가
- 외부평가: Rand Index, Jaccard Coefficient …
 - 이미 정해진 정답을 바탕으로 클러스터링의 성능을 평가

Finding optimal 'k'

*between clusters

*within a cluster

Dunn Index 클러스터 내의 최대 거리에 대한 클러스터 간의 최소 거리의 비

$$I(C) = \frac{\min_{i \neq j} \left\{ d_c(C_i, C_j) \right\}}{\max_{1 \leq l \leq k} \left\{ \triangle(C_l) \right\}}$$

• 인덱스 값이 클수록 클러스터링이 잘 되었다고 판단

SSE

각 군집의 중심에서 해당 군집에 속해있는 관측치들의 거리 제곱의 합

$$SSE = \sum_{i=1}^{k} \sum_{x \in c_i} dist(x, c_i)^2$$

• 군집 내에서 중심과 관측치들의 거리는 작을수록 좋음. SSE는 작을수록 좋다.

그러나··· 클러스터링의 핵심 목표는 1) 군집 내 분산 최소화 2) 군집 간 분산 최대화

군집 간 분산 최대화는 어떻게 고려할까?

YONSEI DATA SCIENCE LAB | DSL

5. Issues for Clustering

No clear Elbow point?

(i) a(i) > 0. b(i) = 0.

$$\therefore$$
 s(i) = -1

(ii)
$$a(i) = 0. b(i) > 0.$$

$$\therefore$$
 s(i) = 1

Silhouette Coefficient!

각 군집 간의 거리가 얼마나 효율적으로 분리되어 있는지를 나타내는 지표

s(i) > 0.5 면 군집화 결과가 타당하다고 본다.

*클수록 좋다.

b(i): i번째 관측치로부터 **다른 군집 내**에 있는 모든 개체들 사이의 평균 거리 중 **최솟값**

a(i): i번째 관측치로부터 **같은 군집 내**에 있는 모든 개체들 사이의 평균 거리

*작을수록 좋다.

범위가 정해져 있지 않아 무한대까지 갈 수 있으므로 scaling 차원에서 max로 나눠준다. $s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}}$

 $-1 \leq s(i) \leq 1$ 클러스터 구분이 어려운,

군집화가 잘 되었을 경우

즉 군집화가 잘 안 된 경우

데이터의 패턴이 결과에 영향을 미치는 비지도학습

반드시 정규화가 선행되어야 한다.

Feature Normalization

데이터를 특정 구간으로 바꾸는 척도법

- 차원의 영향 제거
- 값을 일정한 범위 내로 통일

<K-means Clustering>

상대적인 거리는 유지하면서 일정한 범위 내에 있도록 변환

6. Summary

다양한 군집화 알고리즘을 알아야 하는 이유?

해당 데이터에 알맞은 클러스터링을 진행하기 위해

• 데이터의 형태에 따라 방법론 별 군집화 결과가 다르게 나타남

6. Summary

Before clustering...

데이터셋에 대한 정확한 이해가 중요

- Proximity measures
- Normalization
- Algorithm
- Missing values
- Outlier

… 등등 여러 사항을 고려해야 한다!

6. Summary

Recap

Why Clustering?

주어진 데이터를 효과적으로 파악하기 위해

- 데이터가 얼마나, 어떻게 유사하고 구조는 어떠한가?
- 비가시적인, 혹은 알지 못했던 새로운 군집 발견

Algorithms

K-means	Hierarchical	DBSCAN
■ 방대한 양의 자료, 빠른 연산	■ 다양한 형태의 거리 지표 사용	■ outlier가 있는 경우
■ 일반적으로는…	■ 모든 객체 군집 확인	■ Non-flat geometry
		■ 다양한 형태의 클러스터 모양

DATA SCIENCE LAB

발표자 한예림 E-mail: yerim.han@yonsei.ac.kr