HLock: Locking IPs at the High-Level Language

Background

Results

Conclusion

HLock: Locking IPs at the High-Level Language

Rafid M., Roshanak M., Mark T. and Farimah F Design Automation Conference(DAC) 2021

March 18, 2022

Presented by Akshay Gopalakrishnan

Authors?

HLock: Locking IPs at the High-Level Language

Background

iviaiii

Results

onclusio

- Cybersecurity research group at University Of Florida
- Farimah and Mark professors.
- Rafid and Roshanak PhD students.

Outline

HLock: Locking IPs at the High-Level Language

Backgroun_t

Results

onclusio

- Security !
- Security from what ?
- Remedy ? "Lock" parts of the code.
- Lock at High Level description to avoid attackers from succeeding (resiliency).
- Results

Security Need

HLock: Locking IPs at the High-Level Language

Background

Main

Results

- Intellectual Property (IP) blocks of code.
- IP blocks used for Hardware synthesis.
- Attacks eg: Hardware Trojans, Reverse Engineering, etc.

Security Measures: Locking/Obfuscation

HLock: Locking IPs at the High-Level Language

Background

Main

Results

- Modify parts of the hardware specification at the RTL/netlist layer.
- The parts work correctly only with another extra input being correct.
- This way, "locking" of IP blocks can be achieved.

Problem?

HLock: Locking IPs at the High-Level Language

 ${\sf Background}$

Results

- RTL/netlist layer security not resilient enough.
- Obfuscating constant values and branches of RTL are hard to do.
- SAT based/ Machine learning based attacks can easily extract the original design.

Proposed Solution

HLock: Locking IPs at the High-Level Language

Background

Main

Results

- Perform locking/obfuscation at HLS level (C/C++ like) design.
- Previous approach exists in these lines, but do not measure resilience to attack and has more overhead.

Outline

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Locking Different Candidates

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Branch Obfuscation

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Function Obfuscation

HLock: Locking IPs at the High-Level Language

Background

Main

Results

onclusion

Own code sample here.

Constant Obfuscation

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Identifying Optimal Lock Key Size

HLock: Locking IPs at the High-Level Language

Background

Main

Results

onclusion

Model as ILP problem.

$$\gamma_{1c} \times L_{1c} + \gamma_{2c} \times L_{2c} + \dots + \gamma_{mc} \times L_{mc} \ge Res_{spec}$$
 (1)

$$\alpha_{1c} \times L_{1c} + \alpha_{2c} \times L_{2c} + \dots + \alpha_{mc} \times L_{mc} \le Ov_{spec} \quad (2)$$

Whole setup

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Fig. 3: The intermediate steps of HLock for hardware locking using HLS.

Lock Key Size compared to Previous Approaches

HLock: Locking IPs at the High-Level Language

Background

iviaiii

Results

Power consumption and SAT Resiliency

HLock: Locking IPs at the High-Level Language

Background

Main

Results

Locking Type	Mergesort		AES		NeedWun	
	Power Overhead	SAT Resiliency	Power Overhead	SAT Resiliency	Power Overhead	SAT Resiliency
inserts XOR and XNOR gates at randomly chosen locations (RND) [20]	69.09%	10.75s	35.59%	3.46s	56.47%	8.74s
inserts XOR/XNOR gates carefully to avoid fault-analysis attack (DAC) [19]	103.21%	190.20s	155%	245.50s	115.70%	156.40s
Maximizes HD between correct and incorrect outputs by MUX (ToC mux) [21]	42.10%	1.34s	67.21%	2.73s	53.39%	3.27s
Maximizes HD between correct and incorrect outputs by XOR (ToC xor) [21]	82.30%	19.34s	145.30%	26.59s	103.84%	16.23s
Minimizes low controllability locations by inserting AND, OR (IOLTS) [29]	14.67%	2.90s	13.54%	0.35s	15.74%	1.60s
HLock (Proposed Framework)	7.84%	1915s	8.08%	4579s	8.53%	1883s

ML Resiliency

HLock: Locking IPs at the High-Level Language

Backgrounc

iviaiii

Results

	Accuracy (%) for Locking Types								
Benchmark	TOCm'13	IOLTS'14	SARLock	Mux2	HLock				
Designs	[21]	[29]	[22]	[30]	HLOCK				
MergeSort	96.66	100	100	92.27	68.18				
AES	97.22	100	100	93.82	62.50				
NeedWun	98.86	99.32	100	92.74	65.87				
Avg.	97.58	99.77	100	92.95	65.51				

A few drawbacks

HLock: Locking IPs at the High-Level Language

Background

...

Results

- Resiliency is highly reliant on optimizations done by HLS tools to locked design.
- Comparison of results are with previous RTL/Netlist layer locking (not the previous work on HLL layer).
- Lack statistics about time taken to lock the design (potentially much slower than previous approaches).

Thank you

HLock: Locking IPs at the High-Level Language

ackgroun

Main

Results

Conclusion

Questions?