Module Interface Specification for Sun Catcher

Author Name

November 20, 2019

1 Revision History

Date	Version	Notes
Date 1	1.0	Notes
Date 2	1.1	Notes

2 Symbols, Abbreviations and Acronyms

See SRS Documentation at [give url —SS] [Also add any additional symbols, abbreviations or acronyms —SS]

Contents

1	Revision History							
2	Symbols, Abbreviations and Acronyms							
3	Introduction							
4	Notation 1							
5	Mod	dule Decomposition	1					
6	Day	ADT Module	3					
	6.1	Template Module	3					
	6.2	Uses	3					
	6.3	Exported Types	3					
	6.4	Syntax						
		6.4.1 Exported Constants	3					
		6.4.2 Exported Access Programs	3					
	6.5	Semantics						
		6.5.1 State Variables	3					
		6.5.2 Environment Variables						
		6.5.3 Assumptions	4					
7	Ana	alemma ADT Module	4					
	7.1	Template Module	4					
	7.2	Uses						
	7.3	Exported Types						
	7.4	Syntax						
	• • •	7.4.1 Exported Constants						
		7.4.2 Exported Access Programs						
	7.5	Semantics						
	•••	7.5.1 State Variables						
		7.5.2 Environment Variables						
		7.5.3 Assumptions						
8	МТ	S of Optimum Tilt Angle Module	6					
O	8.1	Module	_					
	8.2	Uses						
	8.3	Syntax						
	0.0	8.3.1 Exported Constants						
		8.3.2 Exported Access Programs						
	Q A	· · · · · · · · · · · · · · · · · · ·						
	8.4	Semantics	6					
		O S I CHARE VALIABLES						

		8.4.2	Environment Variable	s			 	 					7
		8.4.3	Assumptions				 	 					7
		8.4.4	Access Routine Seman	ntics .			 	 					7
		8.4.5	Local Functions				 	 					7
9	MIS	of So	ar Energy Absorpti	ion Mo	dul	e.							8
	9.1	Module	e				 	 					8
	9.2												8
	9.3	Syntax	·				 	 					8
		9.3.1	Exported Constants				 	 					8
		9.3.2	Exported Access Prog										8
	9.4	Seman	tics				 	 					8
		9.4.1	State Variables										8
		9.4.2	Environment Variable	s			 	 					8
		9.4.3	Assumptions				 	 					8
		9.4.4	Local Functions				 	 					9
10	MIS	of Su	n Intensity Equation	n Mod	ule								9
10			9										9
													9
			· · · · · · · · · · · · · · · · · · ·										9
	10.0		Exported Constants										9
			Exported Access Prog										9
	10 4		tics	•									9
	10.1		State Variables										9
			Environment Variable										9
			Assumptions										9
			Local Functions										10
11	NATE	of 700	oith Angle Equation	. Mad	ula								10
11			$rac{1}{2}$										10
			9										10
	11.5		Exmanted Constants										10 10
			Exported Constants										10
	11 /		Exported Access Prog										
	11.4		State Veriebles										10
			State Variables										10
			Environment Variable										10
			Assumptions										11
		11.4.4	Local Functions				 	 					11

12 MIS of Sun Declination Module	12
12.1 Module	12
12.2 Uses	12
12.3 Syntax	12
12.3.1 Exported Constants	12
12.3.2 Exported Access Programs	12
12.4 Semantics	12
12.4.1 State Variables	12
12.4.2 Environment Variables	12
12.4.3 Assumptions	12
12.4.4 Local Functions	13
13 MIS of Days Module	13
13.1 Module	13
13.2 Uses	13
13.3 Syntax	13
13.3.1 Exported Constants	13
13.3.2 Exported Access Programs	13
13.4 Semantics	13
13.4.1 State Variables	13
13.4.2 Environment Variables	14
13.4.3 Assumptions	14
13.4.4 Local Functions	14
14 MIS of Count Days Module	14
14.1 Module	14
14.2 Uses	$\overline{14}$
14.3 Syntax	15
14.3.1 Exported Constants	15
14.3.2 Exported Access Programs	15
14.4 Semantics	15
14.4.1 State Variables	15
14.4.2 Environment Variables	15
14.4.3 Assumptions	15
14.4.4 Local Functions	15
15 Appendix	17

3 Introduction

The following document details the Module Interface Specifications for [Fill in your project name and description —SS]

Complementary documents include the System Requirement Specifications and Module Guide. The full documentation and implementation can be found at [provide the url for your repo —SS]

4 Notation

[You should describe your notation. You can use what is below as a starting point. —SS]

The structure of the MIS for modules comes from Hoffman and Strooper (1995), with the addition that template modules have been adapted from Ghezzi et al. (2003). The mathematical notation comes from Chapter 3 of Hoffman and Strooper (1995). For instance, the symbol := is used for a multiple assignment statement and conditional rules follow the form $(c_1 \Rightarrow r_1 | c_2 \Rightarrow r_2 | ... | c_n \Rightarrow r_n)$.

The following table summarizes the primitive data types used by Sun Catcher.

Data Type	Notation	Description
character	char	a single symbol or digit
integer	\mathbb{Z}	a number without a fractional component in $(-\infty, \infty)$
natural number	N	a number without a fractional component in $[1, \infty)$
real	\mathbb{R}	any number in $(-\infty, \infty)$
degree	\mathbb{R}	any number in $(-\infty, \infty)$

The specification of Sun Catcher uses some derived data types: sequences, strings, and tuples. Sequences are lists filled with elements of the same data type. Strings are sequences of characters. Tuples contain a list of values, potentially of different types. In addition, Sun Catcher uses functions, which are defined by the data types of their inputs and outputs. Local functions are described by giving their type signature followed by their specification.

5 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
	Control Module Input Parameters Module
	Input Verify Module
Behaviour-Hiding Module	Output Parameters Module
	Solar Energy Absorption Module
	Optimum Tilt Angle Module
	Sun Intensity Equation Module
	Zenith Angle Equation Module
	Sun Declination Module
	Days Module
	Count days Module
Software Decision Module	Table-layout Module
	Sequence Data Structure Module

Table 1: Module Hierarchy

6 Day ADT Module

6.1 Template Module

Day

6.2 Uses

N/A

6.3 Exported Types

DayT = ?

6.4 Syntax

6.4.1 Exported Constants

6.4.2 Exported Access Programs

Name	In	Out	Exceptions
initday	$\mathbb{N}, \mathbb{N}, \mathbb{N}$	DayT	-
day	-	natural number	-
month	-	natural number	-
year	-	natural number	

6.5 Semantics

6.5.1 State Variables

d1 :real m1 :real y1 :real

6.5.2 Environment Variables

N/A

```
6.5.3 Assumptions
initday(d,m,y):
   • transition: d1, m1, y1 := d,m,y
   \bullet output: out := self
day( ):
   • transition:
   • output: out := d1
month():
   • transition:
   • output: out := m1
```

- exception:
- year():
 - transition:
 - output: out := y1
 - exception:

Analemma ADT Module

Template Module 7.1

Analemma

7.2 Uses

N/A

7.3 **Exported Types**

AnalemmaT = ?

7.4 Syntax

7.4.1 Exported Constants

7.4.2 Exported Access Programs

Name	In	Out	Exceptions
initanale	real,real,real	AnalemmaT	-
X	-	real	-
У	-	real	-
Z	-	real	

7.5 Semantics

7.5.1 State Variables

x1:real

y1 :real

z1:real

7.5.2 Environment Variables

N/A

7.5.3 Assumptions

initanale(x,y,z):

• transition: x1, y1, z1 := x,y,z

 \bullet output: out := self

x():

• transition:

• output: out := x1

y():

• transition:

• output: out := y1

• exception:

z():

• transition:

• output: out := z1

• exception:

8 MIS of Optimum Tilt Angle Module

[Use labels for cross-referencing —SS]

8.1 Module

tile angle [Short name for the module —SS]

8.2 Uses

Sun Intensity, zenith angle

8.3 Syntax

8.3.1 Exported Constants

 $I_S := 1.35$

 $I_{S_{\text{total}}}$: real

 $I_{S_{\text{total}}} := \text{intenSum}(I_S)$

 $\theta_{S_{\text{date}}}$: a sequence of degree

 $\theta_{S_{\text{date}}} := \text{zenith}(\)$

8.3.2 Exported Access Programs

Name	In	Out	Exceptions
angle	-	degree	-
[accessProg	=	-	-
SS]			

8.4 Semantics

8.4.1 State Variables

max.inten: real

 $\label{eq:maxinten} \text{max.inten} := \text{intenSingle}(I_{S_{\text{total}}},\,\theta_{S_{\text{date}}}[0]),$

max.deg: degree

```
\max.\deg = \theta_{S_{\text{date}}}[0]
```

[Not all modules will have state variables. State variables give the module a memory.—SS]

8.4.2 Environment Variables

N/A [This section is not necessary for all modules. Its purpose is to capture when the module has external interaction with the environment, such as for a device driver, screen interface, keyboard, file, etc. —SS]

8.4.3 Assumptions

[Try to minimize assumptions and anticipate programmer errors via exceptions, but for practical purposes assumptions are sometimes appropriate. —SS]

8.4.4 Access Routine Semantics

```
[accessProg —SS] angle():
```

- transition:
 - $(\forall z: degree \mid z \in \theta_{S_{date}} \bullet max.inten = ifMax (max.inten, intenSingle(I_{S_{total}}, z)) \Rightarrow nothing change \mid otherwise \Rightarrow max.inten = intenSingle(I_{S_{total}}, z), max.deg = z)$
- output: max.deg
- exception: [if appropriate —SS]

[A module without environment variables or state variables is unlikely to have a state transition. In this case a state transition can only occur if the module is changing the state of another module. —SS]

[Modules rarely have both a transition and an output. In most cases you will have one or the other. —SS]

8.4.5 Local Functions

```
ifMax: real \times real \rightarrow real ifMax(x, y) = (x \geq y \Rightarrow x | y > x \Rightarrow y)
```

[As appropriate —SS] [These functions are for the purpose of specification. They are not necessarily something that is going to be implemented explicitly. Even if they are implemented, they are not exported; they only have local scope. —SS]

9 MIS of Solar Energy Absorption Module

9.1 Module

Energy Absorption

9.2 Uses

input parameter, solar intensity, tilt angle, zenith angle

9.3 Syntax

9.3.1 Exported Constants

 $I_S := 1.35$

 $I_{S_{\text{total}}}$: real

 $I_{S_{\text{total}}} := \text{intenSum}(I_S)$

 $I_{S_{\mathrm{max}}}$: real

 $I_{S_{\max}} := \operatorname{intenSingle}(I_S, \operatorname{angle}(\))$

 $\theta_{S_{\text{date}}}$: a sequence of degree

 $\theta_{S_{\text{date}}} := \text{zenith}()$

9.3.2 Exported Access Programs

Name	In	Out	Exceptions
energy	-	real[]	-

9.4 Semantics

9.4.1 State Variables

 $I_{S_{\text{daily}}}$: real[]

9.4.2 Environment Variables

N/A

9.4.3 Assumptions

energy():

- transition: $I_{S_{\text{daily}}} := (\forall \ \mathbf{x} : \text{degree} \mid \mathbf{x} \in \theta_{S_{\text{date}}} \bullet \text{intenSingle}(I_{S_{\text{max}}}, \ \mathbf{x}))$
- output: out := (\forall x: real | x $\in I_{S_{\text{daily}}}$ $P_{A_{\text{w}}} \times P_{A_{\text{h}}} \times 18.7 \times 0.75 \times x$)

• exception:

9.4.4 Local Functions

10 MIS of Sun Intensity Equation Module

[Use labels for cross-referencing —SS]

[You can reference SRS labels, such as R??. —SS]

[It is also possible to use LaTeXfor hypperlinks to external documents. —SS]

10.1 Module

Sun Intensity

10.2 Uses

zenith angle

10.3 Syntax

10.3.1 Exported Constants

 $I_S := 1.35$

 $\theta_{S_{\text{date}}}$: a squence of degree

 $\theta_{S_{\text{date}}} := \text{zenith}(\)$

10.3.2 Exported Access Programs

Name	In	Out	Exceptions
intenSum	real	real	-
intenSingle	real, degree	real	-

10.4 Semantics

10.4.1 State Variables

10.4.2 Environment Variables

N/A

10.4.3 Assumptions

intenSum(i):

• output: out := +(\forall d: degree | d $\in \theta_{S_{\text{date}}}$ • $I_S \cdot \frac{1.00}{i}^{sec(d)}$)

 \bullet exception:

intenSingle(i, d):

- output: out := $1.35 \cdot \frac{1.00}{i}^{sec(d)}$
- exception:

10.4.4 Local Functions

11 MIS of Zenith Angle Equation Module

11.1 Module

Zenith angle

11.2 Uses

Date Duration Module 14

11.3 Syntax

11.3.1 Exported Constants

 Φ_P : degree

 $\delta_{\rm date}$: a squence of degree

 $\delta_{\text{date}} := \text{declination}()$

11.3.2 Exported Access Programs

Name	In	Out	Exceptions
zenith	-	degree[]	-

11.4 Semantics

11.4.1 State Variables

zenithS: a squence of degree

11.4.2 Environment Variables

N/A

11.4.3 Assumptions

 $[accessProg -\!\!-\!\!SS]zenith($):

- transition: zenithS := (\forall d: degree | d $\in \delta_{date}$ $\Phi_P \times d \geq 0 \Rightarrow \Phi_P$ d | otherwise $\Rightarrow \Phi_P + d$)
- \bullet output: out := self
- \bullet exception:

11.4.4 Local Functions

12 MIS of Sun Declination Module

12.1 Module

Sun Declination

12.2 Uses

date duration

12.3 Syntax

12.3.1 Exported Constants

date: a squence of integer date := dateduration()

12.3.2 Exported Access Programs

Name	In	Out	Exceptions
intidec	-	AnalemmaT[]	-
declination	-	degree[]	-

12.4 Semantics

12.4.1 State Variables

declinationS: a squence of degree initdec: a squence of AnalemmaT

12.4.2 Environment Variables

file: Input a file that contains a sequence of (x: real, y: real, z: real) of 366 days

12.4.3 Assumptions

intidec():

- transition: initdec := $(\forall d: integer, \forall i: integer | d \in date, i \in [0...] \bullet dec.z[i] := file[d].z, dec.x[i] := file[d].x, dec.y[i] := file[d].y)$
- output: self
- exception:

declination():

• transition: declinationS := $(\forall: i:DayT \mid i \in intidec())$ • $arcsin \frac{i.z}{\sqrt{i.x^2+i.y^2+i.z^2}})$

• output: self

• exception:

12.4.4 Local Functions

13 MIS of Days Module

13.1 Module

Days

13.2 Uses

Input parameter

13.3 Syntax

13.3.1 Exported Constants

end: DayT $\begin{aligned} &\text{end.d} = day_{\text{End}} \\ &\text{end.m} = month_{\text{End}} \\ &\text{end.y} = year_{\text{End}} \end{aligned}$

13.3.2 Exported Access Programs

Name	In	Out	Exceptions
perihelion	DayT	DayT	-
dateduration	on -	$integer[\]$	-

 $(day.m = 12 \land day.d \ge 21 \Rightarrow fixday.y = day.y \mid otherwise \Rightarrow fixday.y := day.y - 1)$

13.4 Semantics

13.4.1 State Variables

 $\begin{array}{l} days: \ a \ sequence \ of \ integer \\ fixday: \ DayT \end{array}$

 $\begin{array}{l} \text{start: DayT} \\ \text{start.d} := day_{\text{Start}} \\ \text{start.m} := month_{\text{Start}} \end{array}$

```
start.y := year_{Start}
```

13.4.2 Environment Variables

None

13.4.3 Assumptions

perihelion(day):

- transition: fixday := $(\text{day.m} = 12 \land \text{day.d} \ge 21 \Rightarrow \text{fixday.d} = 21$, fixday.m = 12, fixday.y = day.y | otherwise \Rightarrow fixday.d = 21, fixday.m = 12, fixday.y := day.y 1)
- output: out := fixday
- exception:

dateduration(day):

- transition: days := (negetiveD(start, end) = $1 \Rightarrow$ countdays(perihelion(start), start)), start := adday(start)
- output: days
- exception:

13.4.4 Local Functions

```
negetiveD: DayT \times DayT \rightarrow integer negetiveD(day1, day2) := (countdays(day1, day2) \geq 0 \Rightarrow 1 | otherwise \Rightarrow -1)
```

14 MIS of Count Days Module

14.1 Module

Count days

14.2 Uses

N/A

14.3 Syntax

14.3.1 Exported Constants

14.3.2 Exported Access Programs

Name	In	Out	Exceptions
countdays	DayT, DayT	integer	-
addays	DayT	DayT	-

14.4 Semantics

14.4.1 State Variables

14.4.2 Environment Variables

None

14.4.3 Assumptions

countdays(day1, day2):

- transition:
- output: out := Count the days from the start date, day, to the end date, day, but not including the end date.
- exception:

adday(day):

- transition:
- output: out := the next day of the date, day.
- exception:

14.4.4 Local Functions

References

Carlo Ghezzi, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of Software Engineering. Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2003.

Daniel M. Hoffman and Paul A. Strooper. Software Design, Automated Testing, and Maintenance: A Practical Approach. International Thomson Computer Press, New York, NY, USA, 1995. URL http://citeseer.ist.psu.edu/428727.html.

15 Appendix

 $[{\bf Extra~information~if~required~-\!SS}]$