5

10

15

20



A method, apparatus, and computer program product for determining a drop probability for use in a congestion control module located in a node in a network is disclosed. A weight value for determining a weighted moving average of a queue in a node is first systematically calculated. The weighted moving average is calculating and an average queue size for the node is determined based upon the weighted moving average. A control function associated with the congestion control module is evaluated using the average queue size to determine the drop probability. The weight value may be calculated by first determining a sampling period for measuring the queue size. Next, a time period for which samples significantly contribute to the average queue size is calculated. The weight is determined based upon the sampling period and the time period. In a further embodiment, the control function is calculated based upon a queue function where the queue function is calculated based upon predetermined system parameters. The control function may be selected based upon a queue policy for management of the queue. From the queue policy a threshold value which lies along the queue function curve is determined. This point provides a minimum value for the maximum point of the control function so as to avoid oscillations within the buffer. A maximum point may then be selected which resides outside of the curve for the queue function. The control function may then be selected so that the control function crosses through the maximum point. Thus, when the congestion control module drops packets based upon the drop probability determined by the control function the queue will not oscillate.

115003