LAB 05 - Laboratório de Sistemas Operacionais Alunos: Paulo Vinícius Soares Hugo Gabriel Silva

De acordo com Tanenbaum a classificação dos algoritmos de reposição de páginas: os mais eficientes são o WSClock (melhoria do Working set) e o Aging (uma aproximação mais eficiente do LRU). Em ordem, a eficiência dos algoritmos é a seguinte:

- Ótimo
- Aging e WSClock
- LRU (não implementável sem hardware dedicado)
- Clock (melhoria do Second Chance por não precisar mover os elementos da fila)
- Second Chance
- NRU
- FIFO

Algorithm	Comment
Optimal	Not implementable, but useful as a benchmark
NRU (Not Recently Used)	Very crude approximation of LRU
FIFO (First-In, First-Out)	Might throw out important pages
Second chance	Big improvement over FIFO
Clock	Realistic
LRU (Least Recently Used)	Excellent, but difficult to implement exactly
NFU (Not Frequently Used)	Fairly crude approximation to LRU
Aging	Efficient algorithm that approximates LRU well
Working set	Somewhat expensive to implement
WSClock	Good efficient algorithm

Figura 1: Algoritmos de reposição de páginas discutidos no Tanenbaum

Figura 2: Resultado do plot utilizando como input trace.1

Para entradas aleatórias e poucos page frames o Aging torna-se menos eficiente porque as entradas não representam um working-set real, que baseia-se no princípio da localidade de acesso.

Figura 3: Resultado do plot utilizando como input trace.2

Nesse caso, o input representa um ambiente de utilização real, onde há maior probabilidade de acesso à páginas que foram referenciadas há pouco tempo. Dessa forma, o Aging apresenta o melhor desempenho haja visto que este considera o histórico de acesso às páginas mais recentes. O second-chance apresenta um desempenho relativamente pior do que o Aging por não atualizar a cada clock e considerar a atualização dos bits R somente quando ocorre um Page Fault. FIFO nunca considera o bit R, ignorando o princípio da localidade de acesso e, consequentemente, piorando o desempenho.

NRU apresenta o pior desempenho inicial pois para o working set dado inicialmente as operações realizadas são praticamente todas de leitura, assim, as páginas serão agrupadas todas é uma única classe (referenced, not modified), logo

a evict será realizado aleatoriamente sobre esta mesma classe aumentando a chance de remover uma página que será usada novamente.