Concepts and Models of Knowledge Engineering

Car Proposes Actions Based on the Current State

Group 5: Bobko Yuliia, Ligori Armela, Farkhondeh Mehran, Mühlbauer Thomas, Tekhov Oleksii

Problem: How to choose car actions?

- Multiple variables to consider
- Which action is more important?
- Client's input to consider
- Regular logic cannot properly handle ambiguity

Solution: Fuzzy Inference System

- Input: environmental values
- Output: proposed actions
- Rules that map input to output

Overview of the proposed system

Input variables

Variable name	Description		
Temperature	Current temperature in Celsius		
Ride time	Length of the current ride in minutes		
Fuel level	Current quantity of fuel in liters		
Traffic congestion	Mean average speed of the selected route in km/h		
Car's maintenance history	Condition of the car presented as a range (very poorly maintained – very well maintained)		
Points of interest (POI)	Number of POI in the area presented as a range (scarce – abundant)		
Visibility	Clarity of sight calculated by car's sensors		
Daytime	Time of the day in hours		

Output variables

Variable name	Description
Gas station	Refuel the car and provide intensive to the rider
Open windows	Open the windows based on POI and visibility
Supply customer with a snack and water	Provide snacks and water based on ride time and temperature
Adjust speed	Adjust speed of the car based on visibility and traffic congestion
Go to the maintenance	Fix the car based on ride time and maintenance history
Recommend a stop	Advise stop if area has POIs
Headlight intensity	Adjust headlight intensity based on visibility and daytime
Recommend car-sharing	Recommend to split ride with other rides based on daytime and traffic

Example input variable

- Ranges = Fuzzy Sets
- Describe variable with human language: "short ride time"
- Overlapping sets provide ambiguity

Ride time

Total time of the trip, in minutes.

Linguistic Values	Ranges	Description
Short	0-15	minutes
Average	10-30	
Long	20-40	
Very Long	30-60	

Example output variable (recommendation)

Route recalculation

Linguistic Values	Ranges	Description
Not Recommended	0-35	
Recommended	30-70	
Highly Recommended	60-100	

Rules:

Ride time/ Traffic congestion	Uncongested	Average	Highly congested	
Short	No	No	Rec	
Average	No	No	Highly	
Long	No	Rec	Highly	
Very Long	No	Rec	Highly	

- Same idea as input variables
- Rules based on two inputs
- Output is the plausibility of action
- Can be compared to other actions

Example output variable (value)

Speed adjustment

Determining the appropriate speed category, assuming real-time data on traffic congestion and weather conditions that affect visibility. The legal speed limit for urban areas in Vienna is 50 km/h.

Linguistic Values	Ranges	Description		
Very slow	0-25% of the legal speed limit	Significantly below the usual speed, prioritizes safety		
Slow	20-55% of the legal speed limit	Below the average speed		
Moderate	50 - 85% of the legal speed limit	Around the average speed for the given area		
Fast	80 - 100% of the legal speed limit	Close to the maximum legal speed for the current area		

- Different interpretation of the output value
- Output is specific to the action
- Cannot be compared to other actions

Rules:

Traffic Congestion/ Visibility	Clear	Hazy	Drizzle	Rainy	Foggy
Uncongested	Fast	Fast	Moderate	Moderate	Slow
Average	Moderate	Moderate	Moderate	Slow	Very slow
Highly Congested	Slow	Slow	Slow	Very slow	Very slow

Fuzzy Logic for Python

- Handles fuzzification
- Handles defuzzification using the COG (center of gravity) method
- Provides functions for fuzzy sets: linear, triangular, trapezoid, sigmoid...
- Provides hedges (very) and combinators (and, or)

```
# define the domain for Ride time
ride_time = Domain(DOMAIN_NAME, X_FROM, X_TO, res=0.1)
# define sets
ride_time.short = S(0,15)
ride_time.average = triangular(10,25)
ride_time.long = triangular(20,40)
ride_time.very = bounded_sigmoid(40, 50) # range is 30-60
```


https://github.com/Python-Fuzzylogic/fuzzylogic/blob/master/docs/Showcase.ipynb

Tools and technologies

- Docker
- Python
- Flask Framework
- Swagger API
- fuzzylogic
- matplotlib

Swagger API Endpoint


```
Code
             Details
200
             Response body
                "actions": [
                    "incentive": "25% for the ride",
                    "name": "ride_sharing",
                    "value": 85.4
                    "name": "headlight intensity",
                    "unit": "%",
                    "value": 54.95
                  },
                    "name": "speed_adjustment",
                    "unit": "km/h",
                    "value": 33.72
```

DEMO

Evaluation of the solution

What worked well:

- High ambiguity
- Meaningful output (including incentives)
- Easy to use
- Easy to modify (fine-tune variables and rules)

What can be improved:

- More fuzzy sets for output variables
- More complexity for the sets' functions
- Simulations can be done to analyse the results

Thank you!

Questions?