Math 357 Expositional homework 02

Assigned: 2024-01-22 (M)

Due:

The goal of this homework is to recall ideas from general ring theory and engage them in the specific setting of polynomial rings. The exercises are adapted from Dummit & Foote, 3e, Exercises 9.2.1–5.

Let F be a field, let t be an indeterminate over F, and let $f \in F[t]$.

- (a) Let deg $f = n \geqslant 1$. For each $g \in F[t]$, let \overline{g} denote the residue of g under the natural projection map $\varphi : F[t] \to F[t]/(f)$. Prove that for each $\overline{g} \in F[t]/(f)$ there exists a unique polynomial $g_0 \in F[t]$ such that deg $g_0 \leqslant n-1$ and $\overline{g}_0 = \overline{g}$.
- (b) Prove that F[t]/(f) is a field if and only if f is irreducible.
- (c) Let $f = \prod_i p_i$ be a factorization of f into irreducible elements. Describe all ideals in the ring F[t]/(f), in terms of the p_i .
- (d) Prove that F[t] has infinitely many prime elements. *Hint:* Analyze the cases F infinite and F finite separately. See Exercise 9.2.4 (p 301).
- (e) Further assume that F is a finite field, of order q. Let $\deg f = n \ge 1$. Prove that F[t]/(f) has exactly q^n elements. *Hint:* Explain how to view the result of Exercise (a) in the framework of vector spaces. See Exercise 9.2.1 (p 301).