TECHNICAL REPORT NO. 309

4092835

MOVING TARGET LOCATION ERRORS FOR GROUND VEHICLES

Best Available Copy

JULIAN A. CHERNICK

AUGUST 1980

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

ARMY MATERIEL SYSTEMS ANALYSIS ACTIVITY
ABERDEEN PROVING GROUND, MARYLAND

linger of the square when his design received by not return it to

GISCLAIMER

The Ibadance in this report are not to be construed as an enforcial Department of the Army position unless so specified by other official documentation.

WARNING

information and data contained in this document are based on the input available at the time of preparation. The results may be subject to change and should not be construed as representing the DARCOM position unless so specified.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of such commercial hardware or suftware. The report may not be cited for purposes of advertisement.

Best Available Copy

Best Available Copy

ABSTRACT (Continue as reverse side if necessary and identify by block number)

This report documents AMSAA's current methodology and data base for estimating the target location errors associated with moving ground vehicles.\ Starting from basic principles, the equations for the heading and cross-heading components of the moving target location error are derived. Reviewing the available data provides estimates for the parameters of the problem. The speed variability error component is found to increase with the mean target speed while the direction errors are found to decrease as the mean speed increases. The target location error, and its two orthogonal components.

DD 1 JAN 73 1473 EDITION OF 1 NO

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)	
20 Abstract - Continued	
\mathcal{Y}_{a} nearly linear increase with prediction time.	ı
	ļ
	Ì

CONTLNES

		PAGE
ACK	MOWLEDGLMENTS	4
1.	BASIC CONSIDERATIONS	5
2.	GENERAL EXPRESSION FOR THE MOVING TARGET LOCATION ERROR	5
3.	ESTIMATES OF THE MAP ERROR	13
4.	TARGET DIRECTION ERROR	14
5.	TARGET SPEED ERRORS	21
6.	RESULTS	24
7.	RECOMMENDATIONS	28
	APPENDIX A: RELATION BETWEEN BIVARIATE DISTRIBUTION PARAMETERS	29
	APPENDIX B: HELBAT-5 DIRECTION ERRORS	33
REF	ERENCES	39
ois	FRIBUTION LIST	40

Acces	sion For
NTIS	GRA&I
DDC TA	IB T
Unanno	unced
Ju stif	io. tion
Ву	resources and resources a best or a contract to a second to be a second to be a second to be a second to be a
Distri	but! /
Avai?	C * * * * * * * * * * * * * * * * * * *
	Artiland/or
Dist	special
	1

ACKNOWLEDGEMENT

The author acknowledges the helpful discussions on some of the mathematical points in this report with Arthur Groves, Tactical Operations Analysis Office, and Richard Sandmeyer, Ground Warfare Division, both of AMSAA.

MOVING TARGET LOCATION ERRORS FOR GROUND VEHICLES

BASIC CONSIDERATIONS

This report documents the available data base and methodology for estimating target location errors for ground vehicles. It is an update of a letter response given in August 1978 to a request for such information from the Project Manager CAWS COPPERHEAD Office. While the basic results and trends have not changed significantly from what was already provided, a more general expression of the problem has been developed. This provides a clearer understanding of both the underlying factors that drive the results and the limitations of the current data base. This effort also provides results that are readily extendable to systems other than COPPERHEAD.

The target location error (TLE) for moving targets is the difference between a target's predicted location and its actual location at a particular time. This time is generally associated with the arrival of the first round in the target's vicinity. The total time from target acquisition until first round impact is usually referred to as the response time. The principal relevant components of the response time are shown in Figure 1. Estimates of the total response time are required for computing the predicted target intercept time and point, so that guns may be properly aimed. For this reason, part of the TLE may be due to the error in predicting the correct total response time, owing for instance, to unusual delays in the transmittal of targeting data.

Other components of TLE are due to errors in estimating target speed and direction during the observation time; errors induced by the variations of target speed and direction during the prediction time; and finally, map errors associated with the observer location.

2. GENERAL EXPRESSION FOR THE MOVING TARGET LOCATION ERROR

In the most basic description of the problem, the target is considered to be moving with a speed S_1 , and in a direction D_1 , during the observation period from which estimates of target speed and direction $(\tilde{S} \text{ and } \tilde{D})$ are derived. These estimates include the effects of measurement noise. During the prediction time, the target's speed and direction change to S_2 and D_2 . The ideal situation from an analytical viewpoint would be to have sufficiently accurate test data from which both the variability component $(S_2 \text{-} S_1)^*$ and the estimation component $(S_1 \text{-} \tilde{S})$ could

^{*}Although the speed errors are used in the example, the same arguments apply to the direction errors.

Figure 1. Components of Response Time.

be obtained individually. Unfortunately, none of the data currently available (References 1 through 4) allow this degree of refinement. Instead, the best that can be done is to combine the estimation errors with the variability errors.

To the extent to which the estimation and variability errors are independent of one another, the total error variance is given by:

$$\sigma^2(s_2-\tilde{s})$$
 [1]

This is easily shown since $\sigma^2(S_2 - \tilde{S}) = \sigma^2 \left[(S_2 - S_1) + (S_1 - \tilde{S}) \right]$ is known that σ^2 (U+V) = σ^2 (U) + σ^2 (V) when U, V are independent random variables.

The geometry of the situation is depicted in Figure 2, where the subscript in Equation [1] has been dropped for simplicity, and $\tilde{\Gamma}$ is the estimated prediction time. The estimated direction of movement is taken to be along the X-axis so that the coordinates of the predicted target intercept point are given by:

$$X_D = \tilde{S} \tilde{T}$$
 [2a]

$$Y_D = 0$$
 [2b]

¹Horley, G., W. Dousa, Jr., and J. Lenoci; HELBAT 2-Forward Observers (U); TM-17-72, June 1972, US Army Human Engineering Laboratory, Aberdeen Proving Ground, MD, CONFIDENTIAL report.

²Horley, G., and W. Dousa, Jr.; HELBAT 4-Automated Fire Direction on
Moving Targets (U); TM-19-76, May 1976, US Army Human Engineering Laboratory,
Aberdeen Proving Ground, MD, CONFIDENTIAL report.

3Horley, G., et.al.; HELBAT 5-Automated Fire Direction Techniques (U);
TR 1-77, March 1978, US Army Human Engineering Laboratory, Aberdeen Proving

Ground, MD, CONFIDENTIAL report.

⁴Chernick, Julian and M. Chernick; <u>Forecasting Ground Target Speeds</u>; <u>Technical Report No. 111</u>, August 1974, US Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD, UNCLASSIFIED report.

Figure 2. Target Location Error Geometry.

However, the combination of target movement variability and measurement error result in the target moving along the line \overline{OA} which makes an angle D with respect to the predicted direction, and with speed S not necessarily equal to S. At the expected time of first round impact, the target is not at the position (X_p, Y_p) but rather at a distance S T along the line \overline{OA} . Similarly, by the actual time of first round impact, the target has progressed a distance S T along \overline{OA} , reaching the point A whose coordinates (X_A, Y_A) are given by:

$$X_A = S T \cos D$$
 [3a]

$$Y_A = S T \sin D$$
 [3b]

The relative target location error is therefore, the difference between these actual coordinates and the predicted coordinates, and is given by:

$$\sigma^2 (X_A - X_p) = \sigma^2 (S T \cos D - \widetilde{S} T)$$
 [4a]

$$\sigma^2 (Y_A - Y_p) = \sigma^2 (S T \sin D)$$
 [4b]

By adding the map error variance to the relative target location error variances shown in Equations [4a] and [4b], the total target location errors are obtained.

In order to evaluate Equations [4a] and [4b], it is first necessary to evaluate the quantity \tilde{S} \tilde{T} . Now, \tilde{T} will most likely be taken to be the mean prediction time, μ_T , since the distribution of prediction times will presumably be known in advance.

The determination of the predicted speed \tilde{S} , however, raises some questions. If the observation time is relatively long, then the observed speed would approach a value equal to the mean speed, $u_{\tilde{S}}$, assuming target speeds are random fluctuations about a mean speed (see Reference 4 on this subject). On the other hand, if the observation time is relatively short, the observed speed would be just another random speed sample drawn independently from the same distribution as the target speed during the prediction time.* The above arguments lead to two different estimates for the speed error. When the predicted speed equals the mean speed, the following expression results:

$$\sigma^2(\mathsf{S}\mu_\mathsf{T} - \widetilde{\mathsf{S}}\mu_\mathsf{T}) = \sigma^2(\mathsf{S}\mu_\mathsf{T}) + \sigma^2(\mu_\mathsf{S}\mu_\mathsf{T}) = \mu_\mathsf{T}^2 \,\sigma_\mathsf{S}^2$$

^{*}This is assuming measurement errors are small compared to variability errors for this calculation. This also assumes the prediction time is long enough that correlation between the speeds during the observation time and prediction time is not significant.

However, when the predicted speed is an independent random sample, the result is:

$$\sigma^{2}(S\mu_{T} - \tilde{S}\mu_{T}) = \sigma^{2}(S\mu_{T}) + \sigma^{2}(S\mu_{T}) = 2\mu_{T}^{2}\sigma_{S}^{2}$$

The net result of the above considerations means that the predicted target intercept point $(X_p,\,Y_p)$ can be taken to be equal to $(\nu_S\mu_T,0)$ for both cases above. When the observation times are short however, the predicted speed errors will be found to be larger by a factor of up to $\sqrt{2}$, than when the observation times are long.

Combining the above arguments with the map error variance gives:

$$\sigma^2_{\text{TLF},X} = \sigma^2_{\text{MAP}} + \sigma^2(\text{S T cos D})$$
 [5a]

$$\sigma^2_{\text{TLE,Y}} = \sigma^2_{\text{MAP}} + \sigma^2(\text{S T sin D})$$
 [5b]

In order to evaluate Equations [5a] and [5b], it is necessary to work out the variance of products of random variables. Using the method of Goodman (Reference 5) allows this to be accomplished in closed form. First, applications of this method will be shown for three general expressions which will be helpful in evaluating Equations [5a] and [5b]. These expressions involve products and squares of the independent random variables U, V, W and a multiplier constant C. The results are:

$$\sigma^{2}(CUV) = C^{2}(\mu^{2}_{U}\sigma^{2}_{V} + \mu^{2}_{V}\sigma^{2}_{U} + \sigma^{2}_{U}\sigma^{2}_{V})$$
[6]

$$\sigma^{2}(CUVW) = C^{2} \left[\mu^{2}_{U} (\mu^{2}_{W} \sigma^{2}_{V} + \mu^{2}_{V} \sigma^{2}_{W} + \sigma^{2}_{V} \sigma^{2}_{W}) + \mu^{2}_{V} \right]$$
[7]

$$(\mu^{2}_{W}\sigma^{2}_{U} + \sigma^{2}_{U}\sigma^{2}_{W}) + \mu^{2}_{W}(\sigma^{2}_{U}\sigma^{2}_{V}) + \sigma^{2}_{U}\sigma^{2}_{V}\sigma^{2}_{W}]$$

$$\sigma^{2}(CU^{2}) = 4C^{2}\mu^{2}_{U}\sigma^{2}_{U} + 2C^{2}\sigma^{4}_{U}$$
[8]

⁵Goodman, L.A.; On The Exact Variance of Products; pages 708-713, December 1960, American Statistical Association Journal (also see same journal, Corrigenda, page 917, December 1962).

Applying Equation [7] to Equations [3a] and [3b] and taking the mean direction error to be 0 degrees (hence μ_{COSD} = 1; μ_{SinD} = 0) gives:

$$\sigma^{2}_{XA} = \sigma^{2}(S T \cos D) = \sigma^{2}_{S}\sigma^{2}_{T} + \mu^{2}_{T}\sigma^{2}_{S} + \mu^{2}_{S}\sigma^{2}_{T} + \sigma^{2}_{\cos D}$$

$$(\sigma^{2}_{S}\sigma^{2}_{T} + \mu^{2}_{S}\sigma^{2}_{T} + \mu^{2}_{T}\sigma^{2}_{S} + \mu^{2}_{S}\mu^{2}_{T}) \qquad [9]$$

and $\sigma^2_{YA} = \sigma^2(S T \sin D) = \sigma^2_{\sin D} (\mu^2_S \mu^2_T + \mu^2_S \sigma^2_T + \mu^2_T \sigma^2_S + \sigma^2_S \sigma^2_T)$ [10]

Now assuming the direction errors are within about ± 0.50 radians (~ 30 degrees) the small angle approximations

$$\cos D = 1 - \frac{1}{2}D^2$$
 [11a]

$$sin D = D$$
 [11b]

can be used to evaluate the variance of the sines and cosines, giving

$$\sigma^2 (\cos D) = \sigma^2 (1 - \frac{1}{2} D^2) = \sigma^2 (-\frac{1}{2} D^2)$$
 [12]

$$\sigma^2 \left(\sin D \right) = \sigma^2 \left(D \right) = \sigma^2_D \tag{13}$$

Equation [12] can be evaluated using Equation [8] with C = -1/2 giving

$$\sigma^2 (\cos D) = \mu^2_D \sigma^2_D + \frac{1}{2} \sigma^4_D$$

For $\mu_D = 0$ this gives

$$\sigma^2 (\cos D) = \frac{1}{2} \sigma_D^4$$
 [14]

By substituting Equations [13] and [14] into Equations [9] and [10] and after rearrangement, the following expressions for the variance of the actual target location are obtained:

$$\sigma^2_{XA} = \sigma^2 (S T \cos D) = \mu^2_{S} \mu^2_{T} \left[(1+K_1)(1+K_2)(1+K_3)-1 \right]$$
 [15a]

$$\sigma^2_{YA} = \sigma^2 (S \ I \ sin \ D) = \mu^2_{S} \mu^2_{T} \sigma^2_{D} (1+K_1)(1+K_2)$$
 [15b]

where

$$K_1 = (\sigma_S/\mu_S)^2$$
 $K_2 = (\sigma_T/\mu_T)^2$
 $K_3 = \frac{1}{2} \sigma_D^4$

From Equations [15a] and [15b], it is seen that K $_{\parallel}$ constitutes a speed error, K $_{2}$ a time error, K $_{3}$ a direction error, and that these errors act through multiplication in a compounding manner.

Finally, substituting Equation [15] into Equation [5] gives:

$$\sigma^2_{TLE,X} = \sigma^2_{MAP} + \mu^2_{S} \mu^2_{T} \left[(1+K_1)(1+K_2)(1+K_3)-1 \right]$$
 [16a]

$$\sigma^2_{\text{TLE,Y}} = \sigma^2_{\text{MAP}} + \mu^2_{\text{S}} \mu^2_{\text{T}} \sigma^2_{\text{D}} (1+K_1)(1+K_2)$$
 [16b]

The following sections of this report will attempt to develop the current best estimates for the various quantities that constitute Equation [16] and justify some of the assumptions made above.

ESTIMATES OF THE MAP ERROR

Estimates of the component of the TLE due to map error are obtained by combining data on the ability of the forward observer to locate his own position in relation to reference points in the surrounding terrain with estimates on the accuracy with which the reference points are plotted on standard Army maps. In HELBAT 2, a number of techniques using the laser designator/rangefinder were tried and found to significantly reduce the forward observer location error compared with the standard map spot techniques. Results are summarized in Table 1 below:

TABLE 1 ABILITY OF FORWARD OBSERVER TO LOCATE HIS POSITION (FROM REFERENCE 1)*

FO Location Technique	σ MAP(M)	Sample Size
Laser (2 Reference Points)	2	10
Laser (1 Reference Point and Gyro Compass)	6	12
Laser (White Phosphorus Rounds)	46	19
Laser (Illuminating Rounds)	42	20
Map Spot	74	42

^{*}Converting from reported mean radial errors to standard deviations for the circular normal distribution (see Appendix A).

Estimates of reference point map errors from AMSAA analysts experienced with the use of CLASS A maps (1:50,000 scale) for parts of the world with fairly frequent terrain contours or that have been fairly well surveyed (like most of W. Europe) indicate that these errors are equal to about 30m (l σ). The total map error is the root mean square value of these two components. This is about 30-31m for the laser reference point methods. In parts of the world where terrain is very flat and survey points are scarce, map errors associated with lasing the position of an illumination or white phosphorus round would be appropriate, which from Table 1 is about 42-46m.

4. TARGET DIRECTION ERROR

Discussions with the US Army Human Engineering Laboratory personnel indicated that data were available from the HELBAT-5 files from which target direction errors could be estimated. Data from 224 missions were received and analyzed by AMSAA. A listing of the data is included in Appendix B.

These data are based on three successive lasings of target position. The line connecting the first and second lased positions determines the nominal heading. The line from the second and third lased positions is then compared to the nominal heading to obtain the direction error.

Naturally, measurement errors (or noise) in this case due to the laser ranging error, also contributes to the direction errors obtained in this manner. Measurement errors of one type or another, however, will exist in any real target sensing system, and the use of the laser for this purpose is currently a strong possibility.

The existence of a laser ranging error contribution can be deduced by examining the standard deviation of the direction error (σ_0) as a function of the time between the second and third target lasing. This relation is shown in Table 2. An intuitive concept of target movement paths would hold that they might be similar to a random walk process about a moving mean. The general increase in σ_D between about 30 seconds and 70 seconds would appear to be consistent with such an intuitive target movement concept.

On the other hand, the rise in σ_D for times <u>less</u> than 30 seconds would not fit this picture, except for either of two possiblities: confounding of the data associated with the short time intervals by being cross-correlated with other supposedly "independent" variables, or the presence of measurement noise. The first **possibility can be discounted** since the other independent variable, the target mean velocity, is nearly the same for times less than 30 seconds, as seen in Table 2.

TABLE 2 RELATION BETWEEN DIRECTION ERRORS AND THE TIME BETWEEN TARGET LASINGS

Mean Time Between Lasings (Sec)	σ _D (Deg)	Mean Velocity (M/S)	Sample Size
8	33	5 .4	31
22	14	5.1	71
33	7	5.3	56
44	21	5.1	35
56	17	5.9	13
69	22	5.0	8
77	21	4.0	6
92	9	4.5	2

This leaves the measurement noise as the likely culprit. The manner in which shortening the time between measurements serves to increase the relative importance of the measurement noise can be quickly grasped through the use of a simplified diagram as depicted in Figure 4. The target is predicted to travel along the line P_1P_2 but after passing P_2 the target changes direction along P_2P_3 . The uncertainty in measuring target position at time T₃ is represented by the circle around P₃ and the resulting estimated direction is shown by the longer dashed line. However, at a later time, T4, the same amount of measurement uncertainty (same size circle about P4) does not lead to such a large error in estimating the actual direction P_2P_4 , as seen by the short dashed line.* To put it another way, what is important is the ratio of the size of the measurement error to the distance between measurements. As this ratio increases the accuracy of the measurements becomes poorer. Since some amount of measurement error will probably always exist, this sets a lower limit on the time between measurements in order for resulting predictions to be reasonably accurate.** Based on the plot of data in Figure 3, the time between target lasing should not be any shorter than about 15-20 seconds, if possible. This would insure reasonably accurate predictors, given the current magnitude of laser measurement errors for target speeds of about 5 m/s. Slower target speeds would cause this required observation (waiting) time to increase. Naturally, requiring a deliberate delay of any type in engaging a moving target runs counter to the basic desire of shortening the response time as much as possible, indicating that a comprehensive trade-off study of this problem is needed before definitive answers can be obtained.

For times between 40 seconds and 80 seconds, the data of Figure 3 indicate σ_D levels off at about 20 degrees. For times greater than 80 seconds, the data gives an indication that the σ_D may be decreasing but the sample size is so meager that this trend may not be real.

A complete lack of data exists for prediction times larger than about 90 seconds. The significance of this data void for long prediction times can be critical as the following example shows. Assuming the decrease in σ_D between 80 and 90 seconds is not real but instead σ_D remains at about 20 degrees for all prediction times greater than 40 seconds, then for a target speed of 5 m/s and a prediction time of 3 minutes the σ_{TLE} in the direction perpendicular to the predicted heading would be about 315m based on Equation [16b]. However, if the decrease is real and a σ_D of 9 degrees is appropriate the error would amount to only 140m. Naturally even smaller direction errors would result if the decreasing trend is real and is extrapolated even beyond 90 seconds.

^{*}The true situation is more involved in that there is measurement error involved in the positions P₁ and P₂ but the conclusions are the same.

**The idential argument and conclusion also apply when speed estimates are considered.

Figure 3. Direction Error vs. Prediction Time.

P_i = POSITIONS OF MOVING TARGET

T_i = TIMES OF MEASURING TARGET POSITION

= UNCERTAINTY IN POSITION DUE TO

MEASUREMENT ERROR

Figure 4. Effect Time Between Measurements has on Measurement Error.

Obviously, data appropriate for longer prediction times are badly needed, particularly for analyses of second-generation guided projectiles which are more sensitive to target location errors than are the current generation projectiles, due to their relatively smaller acquisition radii.

Next, the relation between the σ_D and the mean target speed is examined. In order to reduce the effect of the measurement noise somewhat, data for prediction times less than a parametric minimum time, T_{MIN} , have been deleted. The results are shown in Figure 5 and Table 3, for T_{MIN} = 0, 20, 30 seconds.

The σ_D is found to be very sensitive to the mean target speed regardless of the value of T_{MIN} . As the target speed increases from 3 m/s to 8 m/s, the σ_D decreases from about 27 degrees to 2 degrees. The decrease is basically monotonic although noise is superimposed on the curves. Some noise is expected even for the cases where T_{MIN} = 20 and 30 seconds, because the short times between the first two target lasings were not filtered out (since they were not part of the HELBAT-5 data package), but the reduction in the σ_D for these cases compared to the T_{MIN} = 0 case is apparent, particularly for the 4 and 7 m/s target speeds.

TABLE 3 RELATION BETWEEN TARGET DIRECTION ERROR AND MEAN TARGET SPEED

Mean Target Speed (m/s)	σ _D (Deg)	Mean Time Between Lasings (Sec)	Sample Size
3	27	46	5
4	19	41	37
5	19	38	67
6	9	36	53
7	5	39	8
8	2	31	5

Examination of Table 3 for a cross-correlation between the mean target speed and time between lasings indicates that such a cross-correlation does exist. As the speeds increases the average time between lasings happens to show a general decrease. Looking back to Figure 3 indicates that this cross-correlation could be significant.

To determine whether this (indirect) time effect alone is sufficient to account for the trend of Figure 5, the $\,^\circ\!\!\!\!$ b values corresponding to the times shown in Table 3 were estimated through the use of Figure 3. These results are plotted in Figure 6 along with a re-plot of the T_{MIN} = 20 sec. (least noisy) data from Figure 5. The indication from Figure 6 is that the time effect accounts for a significant portion of the decrease in $\,^\circ\!\!\!\!\!$ b with target speeds, but not all of the effect.

Figure 5. Direction Error vs. Target Speed.

Figure 6. Comparison of Indirect Time Effect With Speed Effect on Direction Errors.

The direction errors appear to be slightly larger for the lower velocities than what would be obtained by the time effect alone, while for the higher speeds, the direction errors are significantly smaller than what would be estimated based only on the times associated with the higher speeds.

The fact that a strong inverse relation appears to exist between direction error and mean target speed is indeed logical. If a driver is fairly certain of where he is going with few obstacles or hills in the terrain ahead of him, he would tend to keep up his speed and turn less often. But, if the terrain becomes more difficult and he is less sure about the area immediately in front of his vehicle, he would tend to slow down and more turning would be expected.

A mathematical expression that appears to fit the data of Table 3, within the noise, for the interval $3 \le \mu_S \le 8$ m/s is given by:

$$\sigma_{D} = 0.70 \exp \left(-\left[\mu_{S}/5\right]^{2}\right)$$
 [17]

for σ_D in radians

μ_S in m/sec

TARGET SPEED ERRORS

While many estimates of the speed of ground vehicles are available, including the manner in which the average speed depends on the terrain characteristics, data on the variability of target speed over the course of time is less readily available. A calculation based on Equation [16], however, shows that even a 1 m/s speed error can result in an error in target location of 180m when maintained over a 3 minute prediction time.

In Reference 4, some data on target speed variability is presented, based on a measurement procedure which involved clocking a vehicle's odometer readings. The vehicle was part of a mixed convoy of tanks and armored personnel carriers in a road march on hard surfaced tank trails at Fort Hood, Texas.

Various mathematical techniques of predicting future target speeds based on past data were employed and it was found that for prediction times greater than about 1 minute, the use of the mean value of all past speed estimates gave the smallest prediction errors, while the use of only the most recent speed estimates yielded the worst prediction errors.

As seen in Table 4, the differences in these two sets of speed errors are nearly equal to the factor $\sqrt{2}$, for the reasons previously discussed in Section 2. Other prediction methods generally were found to give results between these two extremes.

TABLE 4 STANDARD DEVIATIONS OF TARGET SPEED ERRORS (M/S) (FROM REFERENCE 4, TABLE 4.1)*

	Pr	ediction Time	e (Minutes)	
Prediction Technique	2.5	5.0	10.0	15.0
Most Recent Speed Estimate	1.1 - 1.5	1.1 - 1.5	1.0 - 1.4	1.1 - 1.5
Mean of All Past Speed Estimates	0.9 - 1.2	0.9 - 1.0	0.9 - 0.9	0.8 - 0.9

^{*}Converting from displayed mean radial errors to standard deviations for the univariate normal distribution (see Appendix A).

The spread of speed errors within each category results from using two different series of target movement where each series lasted between 40-50 minutes. The different speed series were separated by an interval during which the vehicles stopped. The reason for this stopping period was not known to the operations analyst recording the movement times.

The speed predictions were based on a part of only one of the series. When these predictions were compared with the remainder of the same series, the smaller set of prediction errors resulted, while the larger set of prediction errors occurred when the speed estimates from one series were compared to the actual speeds for the other series.

The overall trend from the data in Table 4 indicates that the standard deviation of speed error (σ_s) remains fairly constant even for relatively long prediction times. For example, for the most recent speed estimate prediction technique, the σ_s only varies between 1.0 - 1.1 m/s when predicting the same series, and between 1.4 - 1.5 m/s when predicting a different series.

Since the mean target speeds for either series were nearly the same, and equal to about 7.5 m/s, the ratio of σ_S to the mean speed varies from about 0.13 for predicting the same series to about 0.20 for predicting a different series.

A very rough estimate of the variability of speed for the case of a maneuvering vehicle, as opposed to the previous data on vehicles in a convoy, can be made using the HELBAT-5 data reported in Reference 3. By comparing the previously derived HELBAT-5 direction error and map error variances with the reported aimpoint-to-target miss distance variance, the component of the error due to speed variation can be determined. The results indicate a $\sigma_{\rm S}$ of between 1.1 - 1.5 m/s depending on the type of fire control used. While this is very close to the previous values $\sigma_{\rm S}$ for convoy movements, when considered in relation to the average target speed of 5.2 m/s for the HELBAT test, the ratios are actually quite larger. These ratios are summarized in Table 5 below.

TABLE 5 STANDARD DEVIATION OF TARGET SPEEDS

1.1 - 1.5
5.2
0.21 - 0.28

Currently there is an insufficient data base to determine how much of the change in the ratio (σ_S/μ_S) from Table 5, is due to the type of vehicle movement as opposed to the difference in the average target speeds. Perhaps these two factors are inevitably confounded together. These relationships are expected to be terrain and weather dependent, as well.

6. RESULTS

In section 2, the general expressions for the σ_{TLE} were derived (Equation [16]) and in sections 3 through 5 the current best available estimates of the various components that contribute to the σ_{TLE} were presented. No data were presented on the time variability error, σ_{TLE} since this is highly dependent on the particular system being considered, including the communications equipment and the scenario in which the system is to be employed. This quantity will be treated parametrically, as will the target mean speed, μ_{SLE} , and mean prediction time, ω_{TLE}

In Tables 6 and 7, the σ_{TLE} components in the directions parallel and perpendicular to the nominal target heading are displayed for the convoy and maneuvering target cases, respectively. The variability of the prediction time has been assumed to be 15 seconds, a map error of 30m was assumed, and the higher estimates of the speed variability have been used. In all cases the σ_{TLE} 's for the maneuvering targets are higher than for the convoy targets, but in some cases only slightly so.

It is clear that the σ_{TLE} 's are strong functions of the mean prediction time. The σ_{TLE} in the direction parallel to the nominal heading increases with mean target speed.

This occurs because the direction error term, (the K3 term in Equation [16a]) which decreases with the mean speed, is never large enough to make up for the other parts of the expression which increase with the mean speed. The σ_{TLE} in the direction perpendicular to the nominal heading decreases markedly with mean speed, due to the relatively greater significance of the direction error term on this axis.

At the bottom of Tables 6 and 7, the circularized σ_{TLE} are shown, where σ_{TLE} is computed by averaging the two component σ_{TLE} 's. Since one component increases while the other decreases with the mean speed, the circularized σ_{TLE} is a fairly weak function of the mean speed. It is important to realize that in certain applications the use of the circularized TLE can result in larger than desirable computation errors, when the ratio of the two σ 's differs significantly from unity. For further discussion of this point, see Reference 6.

Finally in Table 8, the sensitivity of the σ_{TLE} to the variation of prediction time, σ_T , is displayed for the maneuvering target case when the mean speed = 5 m/s. It is apparent that the component of σ_{TLE} in the nominal heading direction is very sensitive to the time error, while the perpendicular component is nearly independent of this error, over the range of values considered.

Groves, A.D.; Handbook on the Use of the Bivariate Normal Distribution in Describing Weapon Accuracy; MR 1372, September 1961, US Army Ballistic Research Laboratory, UNCLASSIFIED report.

TABLE 6 CONVOY TARGET TLE'S ($\sigma_T = 15$ SEC; $\sigma_{FO/MAP} = 30m$; MOST RECENT SPEED ESTIMATE)

OTIF X =	Standard	Deviation	of	TLE	in Nominal	Heading Dir	ection	(M)
----------	----------	-----------	----	-----	------------	-------------	--------	-----

Target Mean Speed	100				
$\mu_{S}(m/s)$	100	150	200	250	300
3 5 8	134 160 206	191 221 275	250 285 350	309 351 427	369 418 505

 $\sigma_{\text{TLE,Y}}$ = Standard Deviation of TLE in Perpendicular Direction (M)

	μ _T = Mean Prediction Time (Sec)						
Target Mean Speed 15(m/s)	100	150	200	250	300		
3 5	154 136	227 200	301 265	375 330	450 396		
8	54	73	93	115	136		

 $\sigma_{TLE}^* = Standard Deviation of Circularized TLE (M)$

	μ	T = Mean	Predictio	n Time (S	ec)
Target Mean Speed μ _S (m/s)	100	150	200	250	300
3	144 148	209 211	276 275	342 341	410 407
5 8	130	174	222	271	321

^{*} $\sigma_{TLE} = (\sigma_{TLE}, \chi + \sigma_{TLE}, \gamma)/2$.

TABLE 7 MANEUVERING TARGET TLE'S ($\sigma_T = 15$ SEC; $\sigma_{FO/MAP} = 30m$; MOST RECENT SPEED ESTIMATE)

	RECENT SPEED ESTIMATE)					
$\sigma_{TLE,X}$ = Standard	Deviation	of TLE in	Nominal He	ading Di	rection (M)	
		μŢ = Mear	n Predictio	n Time (Sec)	
Target Mean Speed µ _S (m/s)	100	150	200	250	300	
3 5 8	148 189 260	213 267 363	279 348 470	346 431 580	414 514 691	
σ _{TLE} ,γ = Standard	Deviation	of TLE in	Perpendicu	lar Direc	ction (M)	
		μŢ = Mea	an Predicti	on Time	(Sec)	
Target Mean Speed µS(m/s)	100	150	200	250	300	
3 5 8	157 138 54	231 204 74	307 270 95	382 336 117	458 403 138	
۳۲۲٤* = Standard	Deviation o	f Circular	rized TLE (M)		
		μτ = Mea	ın Predicti	on Time ((Sec)	
Target Mean Speed μ _S (m/s)	100	150	200	250	300	
3 5 8	153 164 157	222 236 219	293 309 283	364 384 349	436 459 415	

^{*} $\sigma_{TLE} = (\sigma_{TLE}, \chi + \sigma_{TLE}, \gamma)/2$

TABLE 8 VARIATION OF OTLE WITH OT

(MANEUVERING TARGET; μ_S = 5 m/s; σ_{MAP} = 30m; MOST RECENT SPEŁD ESTIMATE)

OTLE . X = St	andard	Deviation	of	TLE	in	Nominal	Heading	Direction	(M)
---------------	--------	-----------	----	-----	----	---------	---------	-----------	-----

	μ _T = Mean Prediction Time (Sec)					
Prediction Time Deviation $\sigma_T(\sec)$	100	150	200	250	300	
0	171	255	339	423	508	
10 20	180 201	261 276	343 355	427 436	510 519	
30	233	300	374	452	532	

 $\sigma_{TLE,Y}$ = Standard Deviation of TLE in Perpendicular Direction (M)

	μ_T = Mean Prediction Time (Sec)					
Prediction Time Deviation $\sigma_T(sec)$	100	150	200	250	300	
0	137	203	269	336	402	
10 20	138 140	203 205	269 270	336 337	402 403	
30	143	207	272	338	404	

 $\sigma_{TLE}*$ = Standard Deviation of Circularized TLE (M)

	µт = Mean Prediction Time (Sec)					
Prediction Time Deviation $\sigma_T(\sec)$	100	150	200	250	300	
0	154	229	304	380	455	
10 20	159 171	232 241	306 313	382 387	456 461	
30	188	254	323	395	468	

^{*} $\sigma_{TLE} = (\sigma_{TLE,X} + \sigma_{TLE,Y})/2$

7. RECOMMENDATIONS

As discussed previously, considerable improvements can be made in the data base which drives the current estimates of moving target location errors. The availability of improved estimates is of relatively greater importance for studies of "second generation" guided projectiles such as SADARM, which are more sensitive to TLE due to smaller acquisition radii, than for studies of the first generation projectiles (i.e., COPPERHEAD).

First, it is imperative to obtain data on target movements for longer periods of time than were available from the HELBAT-5 missions. This is of particular concern in the estimates of target direction errors. The 10-20 degree direction errors for prediction times less than 90 seconds may not be maintained over longer times, as attacking targets may find they are able to maneuver around relatively small terrain obstacles and "return" more or less to the intended heading.

Secondly, better quality data are needed, in order to better separate components of errors due to noisy measurement procedures from the inherent vehicle movement variabilities. This would allow more confidence to be placed in TLE estimates, and a greater ability to extrapolate results to other types of target observation/measurement systems.

Third, new data are required in order to substantiate correlations between the variables discussed in this paper, such as the relation between speed variability and mean speed, only very roughly estimated at the current time.

Finally, the effects on target location error of terrain type, weather, vehicle mobility, evasive maneuvers, and tactical considerations, while intuitively of importance, are currently a long way from being quantified.

With regard to these considerations, target movement data from the CDEC RMS Range at Hunter Liggett, ought to be examined. These data are of far greater quality than anything examined in this paper. Data from various tests (TMAWS, TASVAL, and ARMVAL) should have sufficiently long time histories to be pertinent for the indirect fire problem. The quantities of data that exist should allow a stratified approach which could yield more of the possible interactive effects of the variables. Some insights into the effects of terrain and tactics may be developed from such an effort, particularly as more data becomes available on vehicle movements under simulated battlefield conditions.

APPENDIX A

RELATION BETWEEN BIVARIATE DISTRIBUTION PARAMETERS

APPENDIX A

RELATION BETWEEN BIVARIATE DISTRIBUTION PARAMETERS

In this appendix, relations are presented between parameters of the bivariate distribution which were found to be useful in converting from one type of error to another (i.e., mean radial errors and standard deviation errors). References to the derivation of some of these relations were found while others were not and are therefore derived here. The required relations are summarized in a two-way classification shown in Table A.1 below.

TABLE A.1 RELATIONS BETWEEN BIVARIATE DISTRIBUTION PARAMETERS

Type of Bivariate Distribution	Mean Radius (r)	Median Radius*(r _m)
Circular $(\sigma_{MIN} = \sigma_{MAX} = \sigma)$	$\overline{r} = \sqrt{\pi/2} \sigma$	$r_{\rm m} = \sqrt{2 \ln 2} \sigma$
Univariate (~ _{MIN} = 0)	$\overline{r} = \sqrt{2/\pi} \sigma_{MAX}$	$r_{\rm m}$ = 0.6745 $\sigma_{\rm MAX}$

^{*}Sometimes called circular probable error (CPE or CEP)

$\frac{\text{Derivation of Mean Radius Relations}}{\text{Circular Distribution}} (\sigma_{\text{MIN}} = \sigma_{\text{MAX}} = \sigma)$

Starting with the known density of the circular normal distribution:*

$$f(r) = \frac{r}{\sigma^2} e^{-r^2/2\sigma^2}$$

The mean radius \overline{r} is defined by:

$$\bar{r} = \int_{0}^{\infty} rf(r)dr = \int_{0}^{\infty} \frac{r^2}{\sigma^2} e^{-r^2/2\sigma^2} dr$$

^{*}For derivation to this point, see Reference 6, page 10.

Let $t = r/\sigma$, $dr = \sigma dt$ gives:

$$\bar{r} = \sigma \int_{0}^{\infty} t^2 e^{-t^2/2} dt = \sigma I_1$$

Now I_1 , is a known definite integral (see for example Reference 7, 860.13) with the value

$$I_1 = \sqrt{\pi/4}K^3$$

where $K^2 = 1/2$ in this case.

Therefore, the resulting relation is:

$$\bar{r} = \sqrt{\pi/2} \sigma$$

Univariate Distribution ($\sigma_{MIN} = 0$)

Since the radius is always a positive quantity $(r = +\sqrt{(\pm X)^2 + (\pm Y)^2})$ for the univariate distribution, the following change of variable is made:

Now,
$$\overline{r} = \int_{0}^{\infty} rf(r)dr$$
,

but f(r)dr = 2f(x)dx for r = |X| on the interval $(0 \le r < \infty)$ where

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma_x} e^{-x^2/2\sigma_x^2}$$

This gives

$$\bar{r} = \sqrt{\frac{2}{2\pi} \sigma_{x}} \int_{0}^{\infty} x e^{-x^{2}/2\sigma_{x}^{2}} d_{x}$$

Let $t = x^2/2 \sigma_x^2$, dt = (x/σ_x^2) dx giving the desired relation

$$\bar{r} = \left(\frac{2}{\sqrt{2\pi} \sigma_X} \right) \quad \sigma_X^2 \int_0^\infty e^{-t} dt = \sqrt{2/\pi} \quad \sigma_X \left[-e^{-t} \int_0^\infty \right] = \sqrt{2/\pi} \sigma_X$$
 Median Radius

The derivations of the median radii (i.e., radius containing 50 percent of the distribution within it) can be found in Reference 6.

⁷Dwight, H.B.; <u>Tables of Integrals and Other Mathematical Data</u>; 4th Edition, 1968, <u>MacMillan Co.</u>, <u>New York</u>.

APPENDIX B

HELBAT-5 DIRECTION ERRORS

	PREDICTION TIME	TARGET SPEED	DISTANCE	HEADING ERROR
HEL ID.	(SEC)	(M/SEC)	(M)	(DEG)
3 030004	4.0	6• 0	24.0	-12.8
20_0003	4.0	7.0	28.0	-40.7
27140004	4.0	6.0	24.0	. 3
9040013	5.0	4 • 0	20.0	-76.0
5100012	5•∪	6•0	30.0	-17.0
3020010	5•∪	4.0	20.0	50.5
5100014	5.0	6.0	30.0	3 6.∪
2/140005	5•∪	5.0	25.0	10.0
27130001	0.0	4 • 0	24.0	43.1
3030005	v • 0	6.0	36.0	1.9
3110010	b∗ú	8 • u	48.0	1.0
27130004	6 • U	6.0	36.0	-8.3
25190004	7 • U	5• 0	35.0	-2.6
4090012	7•u	5•U	35 •0	-4.2
5100007	8•0	5•υ	40.0	38.7
90 9 0007	ხ• ∪	6.0	48•U	-38.8
2140003	ბ •∪	5• 0	40.0	-6.6
2140006	8•0	5•∪	40.0	-2.6
3000010	b•u	3•ຍ	24•∪	-117.6
3070072	8• ∪	4 • u	32.0	. 6
2150005	9• ∪	6• ∪	54. 0	8.5
5080006	9•∪	5•û	45.0	6.9
10000003	10.0	6• ŭ	60.0	.1
2030005	11.U	4.0	44.0	5
4020005	11.u	6 • U	66.0	-8.3
4040003	11 • U	4 • 0	44.0	-21.7
2/140003	10	5•0	55.0	•₺
4090007	12.0	4 • Ü	48.0	9.0
3090003	10.0	8.0	104.0	•6
25190001	14.0	7 • 0	98•0	3.5
9690005	14.0	6•0	84.0	36.ს
10050006	10.0	4 • 0	64.0	-4.3
4090001	10.0	5.0	80.0	3.5
4050003 27130003	16.0	5•0	80.0	-2.8
25190003	10•U	5.0	80.0	2.9
9100010	16•ú	3 • ∪	48.0	-7.1
9040011	17•∪ 17•∪	3• 0	51.0	2.0
9040012	10.0	4 • 0	68.0	-3.7
2100010	18•J	4 • U	72•0	-1.2
2020004	TR+Ω 10+Ω	6•0 5•∪	108∙∪ 90•∪	-18.1
4046004	18.0	5•∪	90.0	-10.1 -1.4
9000000	18.0	3. 0	54 • U	3.3
10110007	19•u	5•U	95.0	9.2
27150004	19.0	6.0	114.0	9.2 4.4
27150002	19.0	5.0	95.0	-5.8
5080004	20.0	5.0	100.0	-23.2
10120003	20.0	6.0	120.0	-23.2
27100003	20.0	7.0	140.0	-2.2
11050006	20.0	6.0	1<0.0	1.4
				,

	PREDICTION TIME	TARGET SPEED	DISTANCE	HEADING ERROR
HEL ID.	(SEC)	(M/SEC)	(M)	_(DEG)
3120003	20.0	5 •∪	100.0	-10.6
9090013	20.0	4 • U	80.0	-62.5
2140005	20.0	4 • 0	80.0	1.7
4090008	21.0	5.0	105.0	16.6
27150001	21.0	5•0	105.0	6.7
4040008	21.0	8.0	168.0	5.6
9066002	21.0	5• 0	105.0	-16.3
9040006	∠1.0	5•U	105.0	- 5.1
9100002	22.0	6.0	132.0	-3. 2
3110007	22.0	4.0	88.U	-2.6
9100007	22·U	6.0	132.0	3.7
3030006	22.0	4 • U	88.0	2.6
5080002	22•U	5•U	110.0	-4.U
4690005	22.0	5∙0	110.0	-5.7
9030002	22.0	5• 0	110.0	- 6.5
11050007	22.0	6 • U	132.0	1
2140008	23.0	5.0	115.0	* • U
5100011	23.u	5• 0	115.0	-42.7
3110003	23.0	6 • U	138.0	-5.3
5080u09 86700u2	23.0	5.0	115.0	4.7
51,0000	23. u	5 • U	115.0	• 6
3100008 8000008	23. 0	5•U	115.0	-2.9
∠/15ŭuu3	24 • U	6.0	144.0	2.8
9090002	24•0 24•0	6 • 0	144.0	4.7
8080002	24•u	3•∪ 4•∪	72. 0	- 3.0
9090012	24.0	5.0	96.0	8
2140005	24.0	5.0	120.0 120.0	7.0
3090005	24.ú	8.0	192.0	2.2
9070002	24.0	6.0	144.0	2.3 7.3
2020001	24•u	6•0	144.0	5.5
2030007	24•Ü	5•û	120.0	-1. 5
9036003	24.0	4.0	96.0	-5.9
9040005	25.0	4.0	100.0	41.3
9030007	∠ 5•0	5.0	125.0	2.6
3110002	25.0	6.0	150.0	1.0
5080008	25 • ú	4 • Ü	100.0	7.9
27150005	25.∪	6.0	150.0	9
11040006	25.0	5 • 0	125.0	4
3110005	25. 0	5•0	125.0	-52.0
27050001	26.0	8.0	208.0	3.9
8000006	20•∪	6.0	156.0	-1.2
9040008	26.0	4 • 0	104.0	-23.6
6080004	26.0	6.0	156.0	.6
4040007	26.0	6 • U	156.0	7.6
11040004	26 • U	5•U	130.0	- 3.3
9100005	26.0	5• 0	130.0	-26.0
25190002	26•U	6•0	156.0	-6.2
8080003	20.0	6.0	156.0	2
9090003	∠7. ∪	4.0	108.0	-9.6

	PREDICTION	TARGET	DICTANCE	HEAD ING
HEL ID.	TIME (SEC)	SPEED (M/SEC)	DISTANCE (M)	ERROR (DEG)
9040014	47.0	5.0	135.0	2.4
8070001	27·U	5.0	135.0	2.0
4030007	28 • U	6.0	168.0	2.3
5100004	∠ 8∙0	5•0	140.0	-4.6
10120002	∠B•U	5•0	140.0	-6.7
1,0000005	28•0	4 • U	112.0	-2.0
2100002	∠B • U	5.0	140.0	10.9
10050004	29.0	4.0	116.0	1.0
4000001	29.0	6.0	174.0	2.1
309000 4	29.0	8.0	232.0	2.1
4090001	29.0	3• ∪	87.0	4 4.9
10120006	29.0	6• 0	174.0	-7.U
AT11000Q	30.0	5•0 5 0	150.0 150.0	1.0
2030001	30 • 0 40 € 0	5•0 6•0	180.0	6.1
9030009	პა∙მ პ⊍•ս	6•U	180.0	- 5.u
5080005 508000 7	30.0	4 • i)	120.0	3.1
2000007	31.0	7•U	217.0	- 7.0
9070002	31.0	5.0	155.0	-1.1
2020002	31.0	7.0	217.0	• 4
8070003	32 • Ü	5.0	160.0	1.0
50800 03	32.0	4.0	128.0	7.1
4030003	32.0	5.0	160.0	13.4
4040002	32.0	6•0	192.0	9.4
10110000	3∠• ∪	6.0	192.0	1.0
9090006	32·U	6•6	192.0	-2.6
211009ā	32.0	3.0	96 • 0	(1.9
9040007	32.0	5•0	160.0	-21.0
91,0003	33.0	4.0	132.0	- 8.3 3.3
4100009	33.0	4 • Ŭ 7 • Ŭ	132.0 231.0	4.6
11040001	33.U	4 • U	132.0	-7. /
4090004	პ3•∪ პ4•∪	b• U	204.0	4.3
9046663 9160804	34•U	5.0	170.0	13.7
9040001	34+0	5.0	170.0	1.2
27150006	34.0	6•Ü	204.0	9.0
4050004	34.0	6 • Ü	204.0	-1.6
10110000	34.0	5• U	170.0	14.3
4100002	35 · U	6 • U	210.0	ن .
4096009	35.0	5• 0	175.0	9.5
4100008	35• ∪	6•0	210.0	-3.3
3030002	35•∪	6•0	210.0	-4.1
11050002	ა5•∪	5•0	175.0	-3.5
27130002	35• 0	5∙0	175.0	-1.6
4090010	35.0	6.0	210.0	2.4
10120001	35.0	6.0	210.0	-4.4 -7.0
9040004	30.0	4.0	144.0	- 7.9
3030003	36 • 0	6.0	216 • 0	6 9
9060003	36 • U	4.0	144.0 144.0	-4.6
4090006	36.0	4.0	7440	.4.0

	PREDICTION	TARGET	DICTANCE	HEADING
HEL ID.	TIME (SEC)	SPEED (M/SEC)	DISTANCE (M)	ERROK (DEG)
9090004	36.0	5.0	180.0	5,5
4100003	37.0	4.0	148.0	- 8.0
5100008	37.0	6.0	222.0	-10.2
10110005	38.0	5.0	190.0	2
9100006	38.0	6.0	226.0	1.6
4100005	36.0	4.0	152.0	-22.4
3030007	59.0	6.0	234 • ∪	6.5
10110002	59·U	6.0	234.0	1
4100007	40.0	4.0	160.0	 8
2030006	40.0	4.0	160.0	-49.3
4040006	40•0	6.0	240.0	.6
4030002	41.0	6.0	246.0	-22.8
11040003	41.0	5.0	205.0	1.6
10110004	42.0	6• 0	252.0	47.2
9090014	42.0	5.0	210.0	1.3
9100001	43.0	6.0	258.0	5.8
10060002	43.0	5.0	215.0	-2.2
5100001	43.0	7.0	301.0	3.4
9060005	43.0	4 • 0	172.0	14.7
9070001	43.0	5•U	215.0	4.0
5100013 3120001	43•U 44•U	6• 0	258 • 0	3.7
21400 0 4		6.0	264.0	-5. 0
2/100001	ተተ• በ ታታ• በ	5 •∪	220.0	- 4.5
311666	44.0	6•0	264 • 0	-2. 2
10050001	44 • U	4 • U 4 • U	176.0 176.0	19.4
25190008	45•U	5•U	225.0	-37.5 -18.6
10000001	45•U	5•u	225.0	4.1
10050002	45.0	5.0	225.0	56.2
9090009	45.0	4.0	180.0	-18.7
27140001	46.0	5.0	230.0	3.2
9000008	46.0	5.0	230.0	-55.6
4050002	40.0	6• 0	276.0	3
25190005	46.0	5.0	230.0	10.9
11050001	46 • U	5•0	230.0	-6.4
1000001	46.0	4.0	184.0	-1.9
2140007	47 • U	5.0	235.0	-6.7
9050004	47.0	5.0	2 3 5.0	-9,6
27140002	48.0	5.0	240.0	-1.7
27050002	48 • C	7. 0	336.0	2.0
4050001	49•u	6.0	294 · D	-2. 6
4090011	49•U	4 • U	196.0	.9
9090008	49•U	5•U	245.0	23.5
4050005	52.0	6.0	312.0	1.7
JU70004	5≥•0	7•u	364.0	9.9
9040009	53∙ ∪	5.0	265∙D	-1.1
8080005	54 • U	6• ₩	324.0	1.0
27100002	54 • u	8.0	432.0	6
3110004	56 • u	7.u	392.0	1.7
11050004	56 • Ü	6•∪	336.6	-4.5

HEL ID.	PREDICTION TIME (SEC)	TARGET SPEED (M/SEC)	DISTANCE (M)	HEADING ERROR (DEG)
4046685	56∙0	6•0	336.0	-1./
4090003	57•U	4 • U	228.0	3.5
2030002	58∙∪	5.0	290.0	-1.7
10060004	5 9 •∪	5.0	295.0	-4.8
4030000	59.0	5.0	295.0	-58.0
4040001	01.0	6.0	366.0	-16.9
2140001	65•∪	5.0	325.0	2.4
5000001	05•U	5•U	325.0	8.8
3110006	66 • U	3.0	198.0	-56.1
11040002	66 • Ü	6.0	396.0	.t
4100001	ხ 8•0	6.0	408.0	-4.4
9660001	71.0	5.0	355.0	6.9
9000007	74•∪	4 • Ú	296.0	11.5
9 030005	74 • U	6•0	444.0	-1. t
9030006	75 •0	4.0	300.0	-35.4
4100004	70•∪	4.0	304.0	7.6
309000 1	77. J	3.0	231.0	-33.9
25190007	77.0	4 • 0	308.0	16.5
ამამცი1	79∙0	5•0	395.0	-5.3
2030003	79•u	4.0	316.0	-4.9
9030001	91 • U	4 • U	364.0	-4.6
10050003	92.0	5.0	460.0	-17.0
→ 4 050004	93•u	_15.U.	(1395.0	. - 01.9
10110001	121.0	5.0	605.0	64.8

REFERENCES

- Horley, G., W. Dousa, Jr., J. Lenoci; <u>HELBAT 2- Forward Observers</u> (9); TM-17-72, June 1972, US Army Human Engineering Laboratory, Aberdeen Proving Ground, MD, CONFIDENTIAL report.
- 2. Horley, G., W. Dousa, Jr.; HELBAT 4- Automated Fire Direction on Moving Targets (U); TM-19-76, May 1976, US Army Human Engineering Laboratory, Aberdeen Proving Ground, MD, CONFIDENTIAL report.
- 3. Horley, G., et. al.; <u>HELBAT 5- Automated Fire Direction Techniques</u> (U); TM-1-77, March 1978, US Army Human Engineering Laboratory, Aberdeen Froving Ground, MD, CONFIDENTIAL report.
- 4. Chernick, Julian, M. Chernick; <u>Forecasting Ground Target Speeds</u>; Technical Report No. 111, August 1974, US Army Materiel Systems Analysis Activity, Aberdeen Proving Ground, MD 21005, UNCLASSIFIED report.
- 5. Goodman, L.A.; On the Exact Variance of Products; pages 708-713, December 1960, American Statistical Association Journal, (also see same journal, "Corrigenda", page 917, December 1962).
- 6. Groves, A.D.; <u>Handbook on the Use of the Bivariate Normal Distribution</u> in <u>Describing Weapon Accuracy</u>; MR-1372, September 1961, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, UNCLASSIFIED report.
- 7. Dwight, H.B.; <u>Tables of Integrals and Other Mathematical Data</u>; 4th Edition, 1968, <u>Macmillan Co.</u>, New York.

DISTRIBUTION LIST

No. of Copies	Organization	No. of Copies	Organization
12	Commander The Defense Technical Information Center ATTN: TCA Cameron Station Alexandria, VA 22314	1	Commander US Army Concepts Analysis Agency 8120 Woodmont Avenue Bethesda, MD 200 1
1	Commander US Army Materiel Development & Readiness Command ATTN: DRCPA-S 5001 Eisenhower Avenue Alexandria, VA 22333	1	Reliability Analysis Center ATTN: Mr. I.L. Krulac Griffiss AFB, NY 13441 Aberdeen Proving Ground Director, BRL, Bldg. 328
1	Commander US Army Materiel Development & Readiness Command ATTN: DRCBSI-L 5001 Eisenhower Avenue Alexandria, VA 22333	1	Director, BRL ATTN: DRDAR-TSB-S Bldg. 305 Director, HEL, Bldg. 520
1	Commander US Army Electronics R&D Command ATTN: DRDEL-AP-OA 2800 Powder Mill Road Adelphi, MD 20783		
1	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-SL White Sands Missile Range, NM 88	3002	
ì	Director US Army TRADOC Systems Analysis Activity ATTN: ATAA-T White Sands Missile Range, NM 88	002	
2	Chief Defense Logistics Studies Informa Exchange US Army Logistics Management Cent ATTN: DRXMC-D FT Lee, VA 23801		