

Detección Automática de Misoginia en MEMES Mediante Técnicas de Deep Learning

Trabajo de Fin de Grado

Pablo Cordón Hidalgo

ÍNDICE

INTRODUCCIÓN

- Objetivos
- Definición de misoginia
- Definición de "meme"

PROPUESTAS DE MEJORA

- Marco de experimentación
- Optimización de hiperparámetros
- **Ensembles**

COMPETICIÓN SEMEVAL-2022

- Descripción de la tarea a resolver
 - Tecnologías utilizadas
 - Análisis del conjunto de datos
 - Soluciones propuestas y resultados

CONCLUSIONES

- Conclusión
 - Trabajo futuro

Introducción

1.1 Objetivos

- Participación tarea 5 de SemEval-2022: detección de misoginia en memes en inglés
- Implementación modelos Machine Learning y Deep Learning
- Publicación de un paper científico

1.2 ¿Qué es la misoginia?

1.2 ¿Qué es un meme?

- Imagen con texto superpuesto a posteriori con un significado conjunto
- Objetivo: ser divertido y/o irónico
- Gran valor como manifestación cultural
- Amplia difusión en entornos digitales

1.2 ¿Qué es un meme?

¿Cómo sabemos cuando un meme es misógino?

- Aunque en ocasiones hay características que nos dan pistas, **no siempre es tan sencillo**

NECESIDAD: Automatizar la detección de memes misóginos de la forma más precisa posible

Competición SemEval-2022

Subtarea A de la tarea 5 de SemEval2022

2.1 Descripción de la tarea a resolver

Clasificación binaria una sola etiqueta

Cada meme será misógino (1) o no misógino (0)

2.2 Tecnologías utilizadas

Conjuntos de train y test

	Train	Test	
Misógino	5.000	500	
No Misógino	5.000	500	
Total	10.000	1.000	

Fecha de publicación

- Conjunto de train (periodo de entrenamiento)
 1 de octubre de 2021
- Conjunto de test sin etiquetar (periodo de evaluación)
 10 de enero de 2022
- Conjunto de test etiquetado (post-evaluación)
 2 de Febrero de 2022

file_name	misogynous	shaming	stereotype	objetification	violence	Text Transcription
10.jpg	1	0	0	0	1	ROSES ARE RED, VIOLETS ARE BLUE IF YOU DON'T SAY YES, I'LL JUST RAPE YOU quickmeme.com

file_name	misogynous	shaming	stereotype	objetification	violence	Text Transcription
1.jpg	0	0	0	0	0	Milk Milk.zip

Palabras Frecuentes

Clase 1

Clase 0

Métricas utilizadas

Matriz de confusión

		Predi	cción
		Negativo	Positivo
Valor roal	Negativo	True Negative (TN)	False Positive (FP)
Valor real	Positivo	False Negative (FN)	True Positive (TP)

f1-score
$$f1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}$$

precision =
$$\frac{TP}{TP+FP}$$

recall
$$recall = \frac{TP}{TP + FN}$$

accuracy
$$acc = \frac{TP + TN}{TP + TN + FP + FN}$$

Preprocesamiento del texto

V1

- Caracteres a minúsculas
- Eliminación de páginas web
- signos de puntuación
- números.
- palabras < 2 caracteres</p>
- stopwords

V2

- Funcionalidades V1
- Eliminación de usuarios (@...)
- Hashtags (#...)
- Enlaces

V3

- Específico para modelos Transformer
- Funcionalidades V2 excepto:
- NO se eliminan stopwords
- NO se eliminan caracteres menores a cierta longitud

Nudenet

Umbral de inseguridad: 0.45

file_name	misogynous	Text Transcription	Unsαfe
10.jpg	1	roses are red	0.0005
1002.jpg	1	Its super rare	0.691
10029.jpg	0	just call me harry	0.003
10039.jpg	0	valentines days coming	0.102

Transformers

Técnica más usada actualmente para NLP

Modelos de Deep Learning que hacen uso de capas de atención

BERT es el modelo pre-entrenado más famoso, se desarrollan los modelos **BERT-based**

Transformers

19

Transformers

Modelo	accuracy	precision	recall	F1-score
BiLSTM BERT embedding + nudenet	0.670	0.66	0.65	0.665
BiLSTM BERT embedding	0.662	0.65	0.64	0.652
Clasificador BERT Fine-tuning + nudenet	0.658	0.69	0.66	0.649
Clasificador BERT Fine-tuning	0.654	0.67	0.65	0.645
Conv1D BERT embedding + nudenet	0.641	0.69	0.64	0.639
Conv1D BERT embedding	0.635	0.68	0.62	0.630

Transformers

Modelo	accuracy	precision	recall	F1-score
BiLSTM BERT embedding + nudenet	0.670	0.66	0.65	0.665

Posición **43** de 83 participantes

Propuestas de mejora

3.1 Marco de Experimentación

Parámetros elegidos

Parámetro	Valores
número de épocαs	[2, 3, 4]
batch size	[16, 32]
learning rate	[4e-5, 3e-5, 2e-5]

Modelos elegidos

Mejores Resultados

Modelo	Num epochs	Batch size	Learning rate	Acc nudenet	F1 Score nudenet	Acc	F1 Score
roberta- misogyny	3	32	3e-05	0.692	0.680	0.681	0.673
roberta- misogyny	4	32	4e-05	0.684	0.672	0.670	0.662
roberta- misogyny	3	16	3e-05	0.679	0.668	0.665	0.658
bert-base -uncased	3	32	2e-05	0.678	0.667	0.67	0.663
roberta- misogyny	4	16	4e-05	0.680	0.665	0.669	0.659

26

Mejores Resultados

Modelo	Num epochs	Batch size	Learning rate	Acc nudenet	F1 Score nudenet	Acc	F1 Score
roberta- misogyny	3	32	3e-05	 0.692 	0.680	0.681	0.673

Mejora 2.26%

Posición 38 (+ 5)

Peores Resultados

Modelo	Num epochs	Batch size	Learning rate	Acc nudenet	F1 Score nudenet	Acc	F1 Score
bert-large	2	16	4e-05	0.500	0.333	0.500	0.333
bert-large	2	32	4e-05	0.563	0.524	0.549	0.517
distilbert	2	16	3e-05	0.638	0.617	0.630	0.615
xlnet	2	32	4e-05	0.638	0.621	0.627	0.616
bert-large	2	16	3e-05	0.643 I	0.622	0.637	0.622

Soft voting

1º aproximación - Mejores modelos etapa de evaluación

0.665	0.639	0.658
BILSTM BERT	Conv 1D BERT	BERT classifier
embedding	embedding	BERT CLUSSITIET

Modelo	accuracy	F1-score
Hard Voting	0.674	0.667
Soft Voting + nudenet	0.659	0.645
Soft Voting	0.651	0.642

2ª aproximación - F1-scores complementarias

F1 media - 0.69	F1 clase 1 - 0.74	F1 clase 0 - 0.72
BiLSTM RoBERTa	RoBERTa misogyny	RoBERTa misogyny
misogyny	fine-tuning	puro

Modelo	accuracy	F1-score
Soft Voting + nudenet	0.717	0.717
Hard Voting	0.709	0.710
Soft Voting	0.674	0.669

2ª aproximación

F1-scores complementarias

Modelo	accuracy	F1-score
Soft Voting + nudenet	0.717	0.717

Mejora 5.44%

Posición 22 (+ 21)

4.1 Conclusiones

Paper científico

Eficacia de los transformers

	Competición	Mejoras
F1-score media	0.665	0.717
	MEJORA DEL 7.82%	

Recursos accesibles

Posición 22

4.1 Conclusiones

4.2 Trabajo Futuro

Experimentos con datasets desbalanceados

Uso de BD externas

Exploración de nuevas arquitecturas (Multimodales)

GRACIAS

Dudas y preguntas

Pablo Cordón Hidalgo pablo.cordon113@alu.uhu.es

GRACIAS

Dudas y preguntas

Pablo Cordón Hidalgo pablo.cordon113@alu.uhu.es

CREDITS: This presentation template was created by Slidesgo, including icons by **Flaticon**, infographics & images by **Freepik**