坐	모	
_	7	

姓名_____

7.4 基 础 题

	7.4.1 第七章练习一
→.	选择题 (以下每题仅有一个答案是正确的,请选出你的答案并填在下面的答题框内)
1.	设总体 $X \sim b(1,p)$, X_1, X_2, \cdots, X_n 为来自总体的样本,则 p 的最大似然估计量 \hat{p} 为(B)
	(A) $\min(X_1,,X_n)$ (B) \overline{X} (C) $\ln \overline{X}$ (D) $\max(X_1,,X_n)$
2.	设 X_1, X_2, \dots, X_n 是来自总体 X 的样本, $X \sim U(\theta, 5)$,则参数 θ 的矩估计量为 (D)
	(A) $2\overline{X}$ (B) $\overline{X}/5$ (C) $5\overline{X}$ (D) $2\overline{X}-5$
3.	设 $X \sim P(X = k) = (1 - p)^{k-1} p, k = 1, 2, \dots, 0 , X_1, X_2, \dots, X_n 是 X 的样本,则未知参$
	数 p 的矩估计量为 (C)
	(A) \overline{X} (B) $1-\overline{X}$ (C) $1/\overline{X}$ (D) $1-1/\overline{X}$
4.	设 $X_1, X_2, \cdots, X_n \ (n \ge 2)$ 为正态总体 $N(\mu, \sigma^2)$ 的一个样本,若统计量 $C\sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 为 σ
	的无偏估计,则 C 值应为 (C).
	(A) $\frac{1}{2n}$ (B) $\frac{1}{2n-1}$ (C) $\frac{1}{2n-2}$ (D) $\frac{1}{n-1}$
5.	若总体方差 σ^2 的最大似然估计为 $\hat{ heta}$,则参数 3σ 的最大似然估计为 (D)
	(A) $\hat{\theta}/3$ (B) $3\hat{\theta}$ (C) $3\sqrt{\hat{\theta}}$ (D) $\sqrt{3\hat{\theta}}$
6.	设总体服从 $[0,a]$ 上的均匀分布, $a>0$ 是未知参数,根据样本 X_1,X_2,\cdots,X_n , a 的最大
	似然估计为 (A).
	(A) $\max\{X_1, X_2, \dots, X_n\}$ (B) $\frac{1}{n} \sum_{i=1}^n X_i$

(C) $\max\{X_1, X_2, \cdots, X_n\} - \min\{X_1, X_2, \cdots, X_n\}$ (D) 1 + X

设总体分布为 $N(\mu,\sigma^2)$, μ , σ^2 为未知参数,则 σ^2 的最大似然估计量为 (A).

(A)
$$\sum_{i=1}^{n} (X_i - \overline{X})^2 / n$$

(B)
$$\sum_{i=1}^{n} (X_i - \overline{X})^2 / (n-1)$$

(C)
$$\sum_{i=1}^{n} (X_i - \mu)^2 / (n-1)$$
 (D) $\sum_{i=1}^{n} (X_i - \mu)^2 / n$

(D)
$$\sum_{i=1}^{n} (X_i - \mu)^2 / \mu$$

8. 设 X_1, X_2, X_3 为来自总体X的样本,下列关于E(X)的无偏估计中,最有效的为 (B).

(A)
$$(X_1 + X_2)/2$$

(B)
$$(X_1 + X_2 + X_3)/3$$

(C)
$$(2X_1 + X_2 + X_3)/4$$

(C)
$$(2X_1 + X_2 + X_3)/4$$
 (D) $(2X_1 + 2X_2 - X_3)/3$

二. 计算题 (请将每题答案填在答题框内,并在指定处列出主要步骤及推演过程)

9. 设总体 X 具有分布律

X	1	2	3
p_k	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 θ (0< θ <1) 为未知参数. 已知取得了样本值 x_1 =1, x_2 =2, x_3 =1, 试求 θ 的矩估计值和 最大似然估计值.

解:(1) 求 θ 的矩估计值

$$E(X) = 1 \times \theta^{2} + 2 \cdot 2\theta (1 - \theta) + 3(1 - \theta)^{2}$$
$$= [\theta + 3(1 - \theta)][\theta + (1 - \theta)] = 3 - 2\theta$$

$$\Rightarrow E(X) = 3 - 2\theta = \overline{X}$$

则得到
$$\theta$$
 的矩估计值为 $\hat{\theta} = \frac{3-\overline{X}}{2} = \frac{3-\frac{1+2+1}{3}}{2} = \frac{5}{6}$

(2) 求 θ 的最大似然估计值

似然函数
$$L(\theta) = \prod_{i=1}^{3} P\{X_i = x_i\} = P\{X_1 = 1\}P\{X_2 = 2\}P\{X_3 = 1\}$$

$$=\theta^{2} \cdot 2\theta (1-\theta) \cdot \theta^{2}$$
$$= 2\theta^{5} (1-\theta)$$

$$\ln L(\theta) = \ln 2 + 5 \ln \theta + \ln (1-\theta), \quad$$
求导
$$\frac{d \ln L(\theta)}{d\theta} = \frac{5}{6} - \frac{1}{1-\theta} = 0 \;, \quad$$
得到唯一解为 $\hat{\theta} = \frac{5}{6}$

	学号	_					
	7.4.2 第七章练习二						
- .	一. 选择题(以下每题仅有一个答案是正确的,请选出你的答案并填在下面的答题框内)						
1.	若 1, 1, 1, 0, 1, 1 是来自总体 $b(1, p)$ 的观察值,则参数 p 的矩估计值为 (D)						
	(A) $\frac{3}{5}$ (B) $\frac{2}{5}$ (C) $\frac{1}{2}$ (D) $\frac{5}{6}$						
2.	X_1, X_2, \cdots, X_n 是来自总体 X 的一个样本,且 $D(X) = \sigma^2$, \overline{X} , S^2 分别是样本均值和样	本					
方差	,则必有 (D)						
	(A) S 是 σ 的无偏估计量 (B) S 是 σ 的最大似然估计量						
	(C) \bar{X} 与 S^2 相互独立 (D) $E(S^2) = \sigma^2$						
3.	总体 X 服从 $(0,\theta)$ 上的均匀分布, $\theta>0$ 未知, X_1,X_2,\cdots,X_n 是来自总体的一个样本,则	θ					
的矩	后估计量为 (B)).					
(
4.	设总体 X 服从参数为 λ 的泊松分布, X_1, X_2, \cdots, X_n 为来自总体的一个样本,则 λ 的矩	估					
计量	:除了样本均值 \bar{X} 以外,还有一个矩估计量为 (B)						
((A) $\sum_{i=1}^{n} (X_i - \overline{X})^2 / n$ (B) S^2 (C) \overline{X}^2 (D) $\sum_{i=1}^{n} X_i^2 / n$						
5.	设 $X \sim N(\mu, \sigma^2)$, μ 和 σ^2 均未知,样本均值和样本方差分别为 \bar{X} 和 S^2 ,则 σ 的最大	似					
然估计量为 (D).							
	(A) $\sum_{i=1}^{n} (X_i - \overline{X})^2 / n$ (B) S^2 (C) S (D) $\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 / n}$						
6.	设总体 X 的期望 $E(X)=\theta$, $\theta\neq 0$, X_1,X_2,\cdots,X_n 为来自总体的一个样本,则下面哪个	不					
是参	数 θ 的无偏估计 (D)						
	(A) \overline{X} (B) X_1 (C) X_n (D) $X_1 + X_n$						

设 $X \sim N(\mu, \sigma^2)$ 且 σ^2 未知,若样本容量为n,则 μ 的 95%的置信区间为 (D).

(A)
$$(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{0.025})$$

(A)
$$(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{0.025})$$
 (B) $(\overline{X} \pm \frac{S}{\sqrt{n}} t_{0.05} (n-1))$

(C)
$$(\overline{X} \pm \frac{S}{\sqrt{n}} t_{0.025}(n))$$

(C)
$$(\overline{X} \pm \frac{S}{\sqrt{n}} t_{0.025}(n))$$
 (D) $(\overline{X} \pm \frac{S}{\sqrt{n}} t_{0.025}(n-1))$

设 $X \sim N(\mu, \sigma^2)$, μ , σ^2 均未知, 若样本容量为n, σ^2 的 95%的置信区间为 (B).

(A)
$$\left(\frac{(n-1)S^2}{x_{0.975}^2(n-1)}, \frac{(n-1)S^2}{x_{0.025}^2(n-1)}\right)$$
 (B) $\left(\frac{(n-1)S^2}{x_{0.025}^2(n-1)}, \frac{(n-1)S^2}{x_{0.975}^2(n-1)}\right)$

(B)
$$\left(\frac{(n-1)S^2}{x_{0.025}^2(n-1)}, \frac{(n-1)S^2}{x_{0.975}^2(n-1)}\right)$$

(C)
$$\left(\frac{(n-1)S^2}{t_{0.025}^2(n-1)}, \frac{(n-1)S^2}{t_{0.975}^2(n-1)}\right)$$
 (D) $\left(\overline{X} \pm \frac{S}{\sqrt{n}} t_{0.025}(n-1)\right)$

(D)
$$(\overline{X} \pm \frac{S}{\sqrt{n}} t_{0.025} (n-1)$$

二. 计算题

9. 假设生产一个零件所需时间(单位: 秒) $X \sim N(\mu, \sigma^2)$, 观察 25 个零件的生产时间得样本 均值 $\bar{x} = 5.5$, 样本标准差s = 1.73. 试求 μ 和 σ^2 的置信水平为95%置信区间.

解: μ 的置信度为 95%的置信区间为 $(\bar{x} \pm t_{\alpha/2}(n-1) \times \frac{s}{\sqrt{n}}) = (5.5 \pm t_{0.025}(24) \times \frac{1.73}{\sqrt{25}})$

=
$$(5.5 \pm 2.0639 \times \frac{1.73}{5})$$
 = $(4.79, 6.21)$.

 σ^2 的置信度为 95%的置信区间为

$$\left(\frac{(n-1)s^2}{\chi_{\alpha/2}^2(n-1)}, \frac{(n-1)s^2}{\chi_{1-\alpha/2}^2(n-1)}\right) = \left(\frac{24S^2}{\chi_{0.025}^2(24)}, \frac{24S^2}{\chi_{0.975}^2(24)}\right)$$
$$= \left(\frac{24 \times 1.73^2}{39.645}, \frac{24 \times 1.73^2}{12.401}\right) = (1.812, 7.792)$$