Chapter 3

2. 유한 오토마타 : Part II

목차

01 형식언어

02 형식문법

03 유한 오토마타

NFA versus DFA

■ For every NFA, there *is* a DFA that accepts the same set of strings

- NFA may have transitions labeled by ε (spontaneous transitions)
- ullet All transitions labels in a DFA belongs to Σ
- For some string x, there may be many accepting paths in an NFA
- For all strings x, there is **one unique** accepting path in a DFA
- Usually, an input string can be recognized faster with a DFA
- NFAs are typically smaller than the corresponding DFAs

From Regular Expressions to DFAs

Regular Expression to NFA

■ Thompson' Construction

개별 정규표현에 대한 NFA를 구성

- $\rightarrow \lambda$ (ϵ -) transition 을 사용하여 이들을 연결
 - → 완전한 NFA를 구성

For *basic* regular expressions, $a \in \Sigma$

Concatenation: rs

Uses λ -transition to "glue together" the NFAs of each piece of regular expression

RE → NFA변환 : Example 1(a)

Choice Among Alternatives: r | s

RE → NFA변환 : Example 1(b)

Repetition: r*

RE → NFA변환 : Example 1(c)

RE → NFA변환: Example 1(d)

RE → NFA변환: Example 2 (1/3)

RE → NFA변환: Example 2 (2/3)

RE → NFA변환: Example 2 (3/3)

letter(letter|digit)*

Quiz #1

아래 정규 표현을 NFA로 변환하시오.

From an NFA to DFA

■ Subset construction (부분집합 구성)

- Eliminate <u>ε-transition</u>
 - ϵ -transition으로 도달할 수 있는 상태(ϵ closure)는 독립적인 상태가 아니라 하나의 상태로 취급
 - $-\varepsilon$ closure 를 구함 \rightarrow {q₀, q₁, q₂, ..., q_N} \rightarrow Q
 - 없앤다(eliminate)는 ...
 - NFA의 여러 개의 상태들이 DFA에서는 하나의 상태로 묶임
- Eliminate *multiple transition* on a single input character
 - 같은 입력 문자로 도달할 수 있는 상태들 역시 독립 상태가 아니라 이들을 묶 어 하나의 상태로 취급

From an NFA to DFA

■ Subset construction (부분집합 구성)

From NFA to DFA : ε -transition 제거

- $lacksymbol{\blacksquare}$ ϵ -transition 제거 : ϵ -closure $lacksymbol{\blacksquare}$ 구하면 됨
 - ϵ -closure(s: state)
 - the set of states reachable by a series of <u>zero or more ε-transitions</u> from s (자신을 포함)

From NFA to DFA: ε -transition 제거 예(1)

$$\epsilon$$
-closure(1) = {1,2,4}
 ϵ -closure(2) = {2}
 ϵ -closure(3) = {2,3,4}
 ϵ -closure(4) = {4}

$$\epsilon$$
-closure(S) = $\bigcup_{s \text{ in S}} \epsilon$ -closure(s)
 ϵ -closure({1,3})
= ϵ -closure(1) \cup ϵ -closure(3)
= {1,2,3,4}

From NFA to DFA: ε -transition 제거 예(2)


```
\epsilon-closure(1) = {1, 2, 4}

\epsilon-closure(3) = {1, 2, 3, 4, 6, 7, 8}

\epsilon-closure(5) = {1, 2, 4, 5, 6, 7, 8}

\epsilon-closure(9) = {9, 10}

\epsilon-closure(11) = {11, 12}

\epsilon-closure(0, 9) = \epsilon-closure(0) \cup \epsilon-closure(9) = {0, 1, 2, 4, 7, 8, 9, 10}

\epsilon-closure(5, 11) = \epsilon-closure(5) \cup \epsilon-closure(11) = {1, 2, 4, 5, 6, 7, 8, 11, 12}
```

From NFA to DFA: The Subset Construction

- The start state of DFA = ε -closure (the start state of NFA)
- ■새로운 상태가 만들어지지 않거나 *transition*이 나타나지 않을 때까지 아래 과정을 반복 실행
 - $S' = transition(S, a) = \{t \mid \text{ for some } s \text{ in } S \}$ there is a transition from s to t on a, where $a \in \Sigma$
 - ε -closure (S') = S''
 - 5" 은 DFA의 새로운 상태.
 - 상태 천이 함수 *T(S, a) = S*" 추가.
- ■NFA의 accepting state를 하나라도 포함하고 있는 DFA의 상태는 모두 accepting state 가 됨.

NFA → DFA변환: Example 3 (1/2)

$$\epsilon$$
-closure(1) = {1,2,4}
 $transition({1,2,4}, \mathbf{a}) = {3}$

NFA → DFA변환: Example 3 (2/2)

- ε -closure(1) = {1,2,4}
- $transition(\{1,2,4\}, \mathbf{a}) = \{3\}$
- ϵ -closure({3}) = {2,3,4}
- $transition(\{2,3,4\}, \mathbf{a}) = \{3\}$

NFA → DFA변환: Example 4 (1/2)

$$\epsilon$$
-closure(1) = {1,2,6}
transition({1,2,6}, **a**) = {3,7}

 ϵ -closure({3,7}) = {3,4,7,8}

NFA → DFA변환: Example 4 (2/2)

 $transition(\{3,4,7,8\}, \mathbf{b}) = \{5\}$ \varepsilon-closure(\{5\}) = \{5,8\}

NFA → DFA변환: Example 5 (1/4)

letter(letter|digit)*

NFA → DFA변환: Example 5 (2/4)


```
\epsilon-closure(1) = {1}
transition({1},letter) = {2}, \epsilon-closure({2}) = {2,3,4,5,7,10}
transition({2,3,4,5,7,10}, letter) = {6}
\epsilon-closure({6}) = {4,5,6,7,9,10}
```

NFA -> DFA변환: Example 5 (3/4)

 $transition(\{2,3,4,5,7,10\}, digit) = \{8\}$ ϵ - $closure(\{8\}) = \{4,5,7,8,9,10\}$

 $transition(\{4,5,6,7,9,10\}, letter) = \{6\}$ $transition(\{4,5,6,7,9,10\}, digit) = \{8\}$ $transition(\{4,5,7,8,9,10\}, letter) = \{6\}$ $transition(\{4,5,7,8,9,10\}, digit) = \{8\}$

NFA → DFA변환: Example 5 (4/4)

 ε -closure({6}) = {4,5,6,7,9,10}

$$\epsilon$$
-closure(1) = {1}
transition({1},letter) = {2}, ϵ -closure({2}) = {2,3,4,5,7,10}
transition({2,3,4,5,7,10}, letter) = {6}

NFA → DFA변환: Example 6

■ 아래 상태 전이 테이블에서 정의하는 NFA를 DFA로 변환하시오.

δ	0	1
q_0	{q ₀ , q ₁ }	{q ₀ }
q_1	φ	${q_0, q_1}$

NFA $M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$

$$A = \{q_0\}$$

 $B = \{q_0, q_1\}$

Quiz #2

아래 NFA를 DFA로 변환하시오.

$$\begin{array}{llll} \varepsilon\text{-closure}(\{1\}) & = & \{1\} \\ \gcdo(\{1\}, \mathbf{a}) & = & \{1, 2\} \\ \gcdo(\{1\}, \mathbf{b}) & = & \{1\} \\ \gcdo(\{1, 2\}, \mathbf{a}) & = & \{1, 2, 3\} \\ \gcdo(\{1, 2\}, \mathbf{b}) & = & \{1, 3\} \\ \gcdo(\{1, 2, 3\}, \mathbf{a}) & = & \{1, 2, 3\} \\ \vdots & & \vdots & & \vdots \end{array}$$

Quiz #3

아래 NFA를 DFA로 변환하시오.

	а	b
1	{3}	{1 }
2	{4,5}	{}
3	{}	{4 }
4	{5 }	{5 }
5*	{}	{}

DFA 상태 최소화(1/2)

■상태 수가 작으면

- 상태 전이 횟수가 줄어들어 인식 속도가 빨라짐
- 상태 수가 줄어든 만큼 case 문이 줄어들어 프로그램 복잡도를 줄이고 실행 속도를 줄일 수 있음
- minimum DFA는 존재하며, 유일하다

DFA 상태 최소화(2/2)

■ How?

- The Big Picture
 - **동치 상태**(equivalent states) 집합을 찾아
 - 동치 상태 집합에 속한 상태들을 하나의 상태로 간주
- ■두 개의 상태 p, q 가 동치임을 어떻게 판단하는가?
 - 모든 $\alpha \in \Sigma$ 에 대한 상태 천이 결과가 같을 때 p, q 는 동치 $\delta(p, \alpha) = \delta(q, \alpha) = r$

Key Idea: Splitting S around α

처음 시작할 때 상태 집합 S를 2개로 나눌 수 있다.

 $T = \{$ 종결 상태 $\}$

 $Q = S - T = \{$ 종결 상태 집합에 속하지 않는 상태 $\}$

S: 상태 집합

Q, $T \subseteq S$

 $\alpha \in \Sigma$

Key Idea: Splitting S around α

기호 α 에 대한 상태 천이 결과에 따라 상태 집합 T와 Q를 쪼갤 수 있다.

DFA Minimization: Hopcroft algorithm

- 상태 집합을 초기에 최대 크기를 갖는 2개의 집합으로 나눈다
 - Initial partition, P_0 , has two sets: $\{F\}$ & $\{Q-F\}$
 - $D = (Q, \Sigma, \delta, q_0, F)$
- 반복해서 이 집합을 분할한다.

■ 더 이상 분할되지 않을 경우, 남아있는 상태는 하나의 상태로 묶인다.

상태 최소화 : Example 7 (1/2)

상태 최소화 : Example 7 (2/2)

0134	1	4	3	2
입력	1	2 5	3 6	4 7
а	4			
b		3 3		
С			2 2	
d	4			

DFA 상태 최소화 : Example 8 (1/4)

상태	
입력	ABCDE
а	ввввв
b	CDCEC

 $final \ states = \{E\},$ $non-final \ states = \{A, B, C, D\}$

OL EN		{Q-	F}:1		{F}:2
입력	A	В	С	D	E
а	1	1	1	1	1
b	1	1	1	2	1

DFA 상태 최소화 : Example 8 (2/4)

Α	В	C	D	Ε	
В	В	В	В	В	
С	D	С	Ε	С	
	В	ВВ	в в в	B B B B	A B C D E B B B B B C D C

					2
입력	A	В	С	D	E
а	1	1	1	1	1
b	1	1	1	2	1

		1		3	2
입력	A	В	С	D	E
а	1	1	1	1	1
b	1	3	4	2	1

DFA 상태 최소화 : Example 8 (3/4)

A B C D E	
B B B B B	
C D C E C	
	B B B B B

	1	3	2
입력	A B C	D	E
а	1 1 1	1	1
b	1 3 1	2	1

	1	4	3	2
입력	A C	В	D	E
а	4 4	4	4	4
b	1 1	3	2	1

DFA 상태 최소화 : Example 8 (4/4)

	1	4	3	2
입력	A C	В	D	E
а	4 4	4	4	4
b	1 1	3	2	1

상태 최소화 : Example 9 (1/2)

상태 최소화 : Example 9 (2/2)

The accepting states {2,3,4} cannot be distinguished.

→ *combine* these into one

Quiz #4

(a|b)* abb

(a | b)* abb 에 대한 NFA를 DFA로 변환하고, 상태 수를 최소화하시오.

