EE-379 Linear Control Systems

Week No. 3: Response and Stability of Systems

- Continuous Time Systems Response
- Response of a First Order System
- Response of a Second Order System
- Stability Analysis

EE-379 Linear Control Systems

Chapter 2: Continuous Time Systems Response

- What to expect in this chapter:
 - The characteristic polynomial can be factored into first and secondorder systems
 - If the behavior of first-order and second-order systems are understood behavior of higher-order systems follows as a combination of the first and second-order building blocks.
 - Definitions will be presented that clarify the quality of performance in terms of a system's stability.
 - Routh and Horwitz Criterion even though it is ancient it remains a valuable tool for determining a range of values for an unknown parameter so that stability is ensured.
 - Example, that illustrates the power of the analytical methods

Chapter 2: Continuous Time Systems Response

Standard Inputs

- Next important step after a mathematical model of a system is obtained, is to analyze the system's performance.
- Normally use the standard input signals to identify the characteristics of system's response
 - Step function
 - Ramp function
 - Impulse function
 - Parabolic function
 - Sinusoidal function

Standard Inputs

Input	Function	Description	Sketch	Use
Impulse	$\delta(t)$	$\delta(t) = \infty for 0 - < t < 0 + $ = 0 elsewhere	$f(t)$ $ \uparrow \delta(t) $	Transient response modeling
		$\int_{0-}^{0+} \delta(t)dt = 1$	$\longrightarrow t$	
Step	u(t)	u(t) = 1 for t > 0 $= 0 for t < 0$	f(t) $u(t)$ t	Transient response Steady — state error
Ramp	tu(t)	$u(t) = t \text{ for } t \ge 0$ = elsewhere	$f(t)$ $\downarrow u(t)$ $\downarrow t$	Steady — state error

Transient and Steady State Response

- Output response consists of the sum of **forced response** (from the input) and **natural response** (from the nature of the system).
- The natural response determines how good the system is.
- The **transient response** is the **change in the output response** from the beginning of the response to the final state of the response.
- The steady-state response is the output response as time is approaching infinity or no more changes at the output

Transient and Steady State Response

Response of First Order Systems

 In a first-order system, the output y(t) and input r(t) are related by a differential equation of the form:

$$\frac{d_y}{d_t} + a_0 y = b_0 r \rightarrow T(s) = \frac{Y(s)}{R(s)} = \frac{b_0}{s + a_0} \cong \frac{k}{1 + \tau s}$$
 \[\begin{aligned} k = \text{system const.} \\ \tau = \text{system time const.} \end{aligned} \]

- System is stable if the natural response decays to zero (roots of the characteristic polynomial must lie in the LHP of s-plane)
- Above-mentioned first order system is stable if and only if $a_0 > 0$.
- Laplace transforming the first-order system equation.

$$sY(s) - y(0^{-}) + a_0Y(s) = b_0R(s)$$

$$Y(s) = \frac{b_0}{s + a_0} R(s) + \frac{Y(0^-)}{s + a_0}$$

A system with only one pole

Basic Equations

$$L[m\dot{v}] = L[f(t) - cv]$$

$$mL[\dot{v}] = L[f(t)] - cL[v]$$

$$m[sV(s) - v(0)] = F(s) - cV(s)$$

$$V(s) = \frac{F(s)}{ms + c} + \frac{mv(0)}{ms + c}$$

Step Input Response

$$V(s) = \frac{F(s)}{ms + c} + \frac{mv(0)}{ms + c}$$
Zero state response

- Zero state response is the result of a driving function with zero initial conditions.
 - For a step input signal $F(s) = f(\frac{1}{s})$

Zero input response is the result of a zero-driving function with only non-zero initial conditions.

$$0 L^{-1} \left[\frac{mv(0)}{ms+c} \right] = v(0)L^{-1} \left[\frac{1}{s+\frac{c}{m}} \right] = v(0)e^{-\frac{ct}{m}}$$

Total response or velocity

$$v(t) = \frac{f}{c} \left(1 - e^{-\frac{ct}{m}} \right) + v(0)e^{-\frac{ct}{m}}$$

Step Input Response

Transfer function for a first-order system:

$$G(s) = \frac{b_0}{s + a_0} \cong \frac{k}{1 + \tau s} \cong \frac{k/\tau}{s + 1/\tau} \to b_0 = k/\tau$$

$$Y(s) = \frac{b_0}{s + a_0} R(s) + \frac{Y(0^-)}{s + a_0}$$

Zero state component Zero input component

• For a step input signal and zero initial conditions Y(s) contains only **zero state** terms.

$$r(t) = Au(t) \Rightarrow R(s) = \frac{A}{s}$$

$$Y(s) = T(s)R(s) = \frac{b_0}{(s+a_0)} \cdot \frac{A}{s} = \frac{k/\tau}{s+1/\tau} \cdot \frac{A}{s}$$

 Partial fraction and inverse Laplace transform with A=1 give:

$$y(t) = \left(k - ke^{-\frac{t}{\tau}}\right)u(t)$$

 k represents the steady-state response, when the time approaches infinity the transient response will die out and the system will come to its steady state.

$$k = \frac{b_0}{a_0}$$

Step Input Response

Transfer function for a first-order system:

$$G(s) = \frac{b_0}{s + a_0} \cong \frac{k}{1 + \tau s} \cong \frac{k/\tau}{s + 1/\tau} \to b_0 = k/\tau$$

$$Y(s) = \frac{b_0}{s + a_0} R(s) + \frac{Y(0^-)}{s + a_0}$$

Zero state component Zero input component

• For a step input signal with initial conditions Y(s) contains zero state and zero input terms.

$$r(t) = Au(t) \Rightarrow R(s) = \frac{A}{s}$$

$$Y(s) = \left(\frac{b_0}{(s+a_0)}\right) \cdot \frac{A}{s} + \left(\frac{Y(0^-)}{s+a_0}\right) \Rightarrow \frac{k/\tau}{s+1/\tau} \cdot \frac{A}{s} + \left(\frac{Y(0^-)}{s+1/\tau}\right)$$

 Partial fraction and inverse Laplace transform with A=1 give:

$$y(t) = \left\{ k + [y(0^{-}) - k]e^{-\frac{t}{\tau}} \right\} u(t)$$

Amplitude of the exponential term is changed

Example

Consider a system with transfer function:

$$G(s) = \frac{Y(s)}{R(s)} = \frac{s+2}{s+5}$$

• Applying a unit step function R(s) and substituting this input into the transfer function and applying the partial fraction, gives

$$Y(s) = \frac{s+2}{s+5} \cdot \frac{1}{s}$$

$$Y(s) = \frac{2}{5} \cdot \frac{1}{s} + \frac{3}{5} \cdot \frac{1}{s+5}$$

The steady-state response can be obtained by putting t to infinity, which will give $y(\infty) = 2/5$

Applying the inverse Laplace transform, gives the output response

$$c(t) = \frac{2}{5} + \frac{3}{5}e^{-5t}$$

Example

- Output response consists of the sum of forced response (from the input) and natural response (from the nature of the system)
- Any input to a system will have a forced response at the output.
- The poles in the transfer function of a system will give the natural response at the output

Output transform:
$$Y(s) = \frac{3/5}{s+5} + \frac{2/5}{s}$$

Output time response =
$$y(t) = \frac{2}{5} + \frac{3}{5}e^{-5t}$$

Important Terms – Time Constant

• Time constant, $T_c = \frac{1}{a}$ is the time for $e^{-\alpha t}$ to rise to 63% of its final value, or the time when $t = \frac{1}{a}$. t= one time const.

Slope=1/T = aStep Response

$$T_c = \frac{1}{a}$$

$$y(t) = 1 - e^{-at}$$

Important Terms – Rise Time

• Rise Time, T_r is the time taken for the output waveform to go from 10% to 90% of its final output value.

Step Response

$$T_r = \frac{2.2}{a}$$

$$y(t) = 1 - e^{-at}$$

Important Terms – Settling Time

• **Settling Time**, T_s is the time taken for the output waveform to reach and stay within 2% of its output value.

$$T_S = \frac{4}{a} = 4T_C$$

$$y(t) = 1 - e^{-at}$$

Significance of Response Time

- In some cases, it is hard to obtain a system's transfer function analytically.
- We could obtain the transfer function through experiments or testing.
- For example, a simple general first-order system would have a transfer function of

$$\frac{Y(s)}{R(s)} = \frac{K}{s+a} \text{ for step input} \Rightarrow \frac{k/a}{s} - \frac{k/a}{s+a}$$

- After applying a unit step function, the output response waveform is obtained.
- From the output waveform we could determine the time constant when output rises to 63% of its final value, which in this case is 0.63 x 0.72 =0.45.
 This is about 0.13s hence a =1/0.13 = 7.7

$$\frac{Y(s)}{R(s)} = \frac{K}{s+a} \Rightarrow \frac{5.54}{s+7.7}$$

Characteristics of Second Order Response

- A system with two poles.
- When tested with a unit step input, the second-order system will give several types of an output response, which we can analyze.
- This will depend on the location of the system's poles.
- In a second-order system, the output **y(t)** and input **r(t)** are related by a differential equation of the form:

$$\frac{d^2y}{dt^2} + a_1 \frac{d_y}{d_t} + a_0 y = b_1 \frac{d_r}{d_t} + b_0 r \rightarrow T(s) = \frac{Y(s)}{R(s)} = \frac{b_1 s + b_0}{s^2 + a_1 s + a_0} + \frac{Initial \ Conditions}{s^2 + a_1 s + a_0}$$
Zero state component

This characteristic polynomial is.

$$s^{2} + a_{1}s + a_{0} = 0 \implies roots \ s_{1} \ and \ s_{2} = \frac{-a \pm \sqrt{a_{1}^{2} - 4a_{0}}}{2}$$

Over-damped Response

Roots of the characteristic polynomial are **real** and distinct

$$c(t) = 1 + 0.171e^{-7.854t} - 1.171e^{-1.146t}$$

Under-damped Response

Un-damped Response

Critically-damped Response

22

Time 't' (sec)

General Form

The second-order response can be obtained from the general closed-loop transfer function.

$$\frac{Y(s)}{R(s)} = \frac{b}{s^2 + as + b} \Rightarrow \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

ζ (zeta) is referred to as:

 damping ratio of a second-order system, which is a measure of the degree of resistance to change in the system output.

•
$$a = 2\zeta\omega_n \Rightarrow \zeta = \frac{a}{2\omega_n} = \frac{a}{2\sqrt{b}}$$

• Equation for pole:

$$s_{1,2} = -\zeta \boldsymbol{\omega_n} \pm \omega_n \sqrt{\zeta^2 - 1}$$

 ω_n is referred to as:

- The undamped natural frequency of a second order system.
- Frequency of oscillations in the system without damping.

•
$$\omega_n^2 = b$$
 \Rightarrow $\omega_n = \sqrt{b}$

 ω_n determines the systems output response

s-plane

General Form – Case 1

- For $\zeta = 0$ and K = 1.
- Roots $s_{1,2} = \pm j\omega_n$
- Applying unit step function at the input gives the output as:

$$Y(s) = \frac{\omega_n^2}{s^2 + \omega_n^2} \cdot \frac{1}{s}$$

$$y(t) = 1 - A\cos(\omega_n t - \emptyset)$$

 the output response is oscillating and in an un-damped condition

$$\frac{Y(s)}{R(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$s_{1,2} = -\zeta \boldsymbol{\omega_n} \pm \omega_n \sqrt{\zeta^2 - 1}$$

General Form – Case 2

• For $0 < \zeta < 1$ and K = 1.

$$s_{1,2} = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$

$$s_{1,2} = -\zeta \boldsymbol{\omega_n} \pm \omega_n \sqrt{1 - \zeta^2}$$

 Applying unit step function at the input gives the output as:

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$

$$y(t) = 1 - Ae^{-\sigma_d t} cos(\omega_d t - \phi)$$

$$\frac{Y(s)}{R(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$s_{1,2} = -\zeta \boldsymbol{\omega_n} \pm \omega_n \sqrt{\zeta^2 - 1}$$

 the output response is oscillating and in an under-damped condition

General Form – Case 2

• For $0 < \zeta < 1$ and K = 1.

General Form – Case 3

• For $\zeta = 1$ and K = 1.

$$s_{1,2} = -\omega_n$$

 Applying unit step function at the input gives the output as:

$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$
$$= \frac{\omega_n^2}{(s + \omega_n)^2} \cdot \frac{1}{s}$$

$$y(t) = 1 - K_1 e^{-\omega_n t} + K_2 t e^{-\omega_n t})$$

 the output response is nonoscillating and in criticallydamped condition

$$\frac{Y(s)}{R(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$s_{1,2} = -\zeta \boldsymbol{\omega_n} \pm \omega_n \sqrt{\zeta^2 - 1}$$

Critically-damped

General Form – Case 4

For $\zeta > 1$ and K = 1.

$$s_{1,2} = -\zeta \boldsymbol{\omega_n} \pm \omega_n \sqrt{\zeta^2 - 1}$$

Applying unit step function at the input gives the output as:

the input gives the output as:
$$Y(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \cdot \frac{1}{s}$$

$$-\zeta\omega_n - \omega_n \sqrt{\zeta^2 - 1}$$

$$\frac{Y(s)}{R(s)} = \frac{K\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$s_{1,2} = -\zeta \boldsymbol{\omega_n} \pm \omega_n \sqrt{\zeta^2 - 1}$$

$$=\frac{\omega_n^2}{(s+\zeta\omega_n+\omega_n\sqrt{\zeta^2-1})(s+\zeta\omega_n-\omega_n\sqrt{\zeta^2-1})}\cdot\frac{1}{s}$$

$$y(t) = 1 - (K_1 e^{-s_1 t} + K_2 e^{-s_2 t})$$

the output response is non-oscillating and in **overdamped-damped** condition

General Form – Summary of all cases

General Form – Summary of all cases

Important Terms – Delay Time

• $Delay\ Time,\ T_d$: The time needed for the output response to reach 50% of the final output

value.

Important Terms – Rise Time

• Rise Time, T_r : The time needed for the output response to go from 10% to 90% of its final

output value.

Important Terms – Settling Time

• Settling Time, T_s : The time taken for the output response to reach and stay within 2% of its final output value.

Important Terms – Peak Time

• $Peak\ Time$, T_p : The time required for the output response to reach the first or maximum peak.

$$T_p = \frac{\pi}{\omega_d}$$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

 $\omega_d = damped \ natural \ frequency$

Important Terms – Percentage Overshoot

% age Overshoot, % OS: The percentage difference between the maximum and the steady state values of the response.

Types of Stability

Asymptotic Stability

• A system is asymptotically stable when the zero input response decays to zero as time approaches ∞ , for all possible initial conditions

Bounded Input Bounded Output BIBO) Stability

 A system is BIBO stable if, for every bounded input, the output remains bounded with increasing time (all system poles must lie in the left half of the s-plane or be canceled by zeros)

Marginal Stability

A system is marginally stable if some of the poles lie on the imaginary axis, while all
others are in the LHS of the s-plane. Some inputs may result in the output becoming
unbounded with time.

Test of Stability

- To test the stability of an LTI system we only need to examine the poles of the system, i.e. the roots of the characteristic equation.
- $3s^2 + s + 10$ Stable system
- A first or second-order polynomial has all roots in the LHP if all polynomial coefficients have the same algebraic sign.
- Methods are available for testing for roots with positive real parts, which do not require the actual solution of the characteristic equation.
- Also, methods are available for testing the stability of a closed-loop system based only on the loop transfer function characteristics.
- $3s^2 + s 10$ Unstable system

For higher order systems:

Properties of polynomial coefficients	Conclusion about roots
Differing algebraic signs	At least one RHP root
Zero-valued coefficients	Imaginary axis or RHP roots or both
All of the same algebraic sign none zero	No direct information

Routh-Hurwitz Criterion

- A numerical procedure to determine the numbers of RHP and imaginary axis (IA) roots of polynomial.
- Assume the characteristic polynomial is:

$$Q(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0$$
where, $a_0 \neq 0$

- A necessary (but not sufficient) condition for all roots to have non-positive real parts is that all coefficients have the same sign.
- For the necessary and sufficient conditions, we first have to form the Routh Array.

Routh-Hurwitz Criterion - Array

$$b_{1} = \frac{-\begin{vmatrix} a_{n} & a_{n-2} \\ a_{n-1} & a_{n-3} \end{vmatrix}}{(a_{n-1})} = \frac{a_{n-1}a_{n-2} - a_{n}a_{n-3}}{a_{n-1}}$$

$$b_{2} = \frac{-\begin{vmatrix} a_{n} & a_{n-4} \\ a_{n-1} & a_{n-5} \end{vmatrix}}{\begin{vmatrix} a_{n-1} & a_{n-5} \end{vmatrix}} = \frac{a_{n-1}a_{n-4} - a_{n}a_{n-5}}{a_{n-1}}$$

$$c_{1} = \frac{-\begin{vmatrix} a_{n-1} & a_{n-3} \\ b_{1} & b_{2} \end{vmatrix}}{\begin{vmatrix} b_{1} & b_{1} \end{vmatrix}} = \frac{b_{1}a_{n-3} - b_{2}a_{n-1}}{b_{1}}$$

$$c_{2} = \frac{-\begin{vmatrix} a_{n-1} & a_{n-5} \\ b_{1} & b_{3} \end{vmatrix}}{(\bar{b}_{1})} = \frac{b_{1}a_{n-5} - b_{3}a_{n-1}}{b_{1}}$$

^{*} Elements in the subsequent rows are calculated based on the two previous rows.

Routh-Hurwitz Criterion

Necessary and sufficient conditions:

- If all elements in the first column of the Routh array have the same sign, then all roots of the characteristic equation have negative real parts (LHP).
- If there are **sign changes** in these elements, then the number of roots with **non-negative real parts** is equal to the number of sign changes
- Elements in the first column which are zero define a special case.

Routh-Hurwitz Criterion-Example 1

$$Q(s) = 2s^4 + s^3 + 3s^2 + 5s + 10$$

s^4	2	3	10	0
s^3	1	5	0	0
s^2	b_1	b_2	0	
s^1	c_1	0		
s^0	d_1			

$$b_1 = \frac{(1)(3) - (1)(10)}{1} = -7$$
 $c_1 = \frac{(-7)(5) - (1)(10)}{-7} = 6.43$

$$b_2 = \frac{(1)(10) - (1)(0)}{1} = 10$$
 $d_1 = \frac{(6.43)(10) - (-7)(0)}{6.43} = 10$

s^4	2	3	10
s^3	1	5	0
s^2	- 7	10	0
s^1	6.43	0	
s^0	10		

 The characteristic equation has two roots with positive real parts since the elements of the first column have two sign changes. (2,1,-7,6.43,10)

Routh-Hurwitz Criterion-Special Case I

- A zero in the first column:
- Remedy: substitute ϵ for the zero element, finish the Routh array, and then let $\epsilon \to 0$.

$$Q(s) = s^3 - 3s + 2$$

s^3	1	- 3	0
s^2	$0(\varepsilon)$	2	0
s^1	$-2/\varepsilon$	0	
s^0	2		

$$b_1 = \frac{(\varepsilon)(-3) - (1)(2)}{\varepsilon} = \frac{-2}{\varepsilon} \quad (neagtive)$$

$$c_1 = \frac{(b_1)(2) - (\varepsilon)(0)}{b_1} = 2$$

• The characteristic equation has two roots with positive real parts since the elements of the first column have two sign changes. $(1,\epsilon,-2/\epsilon,2)$

Routh-Hurwitz Criterion-Special Case II

- An all-zero row in the Routh array which corresponds to pairs of roots with opposite signs.
- Remedy:
 - Form an auxiliary polynomial from the coefficients in the row above.
 - Replace the zero coefficients from the coefficients of the differentiated auxiliary polynomial.
 - If there is no sign change, the roots of the auxiliary equation define the roots of the system on the imaginary axis.

Routh-Hurwitz Criterion-Special Case II-Example I

$$Q(s) = s^4 + s^3 - s - 1$$

s^4	1	0	-1	0
s^3	1	-1	0	0
s^2	1	-1	0	
s^1	<i>8</i> 2	0		
s^0	-1			

$$b_1 = \frac{(1)(0) - (1)(-1)}{1} = 1$$

$$b_2 = \frac{(1)(-1) - (1)(0)}{1} = -1$$

$$c_1 = \frac{(1)(-1) - (1)(-1)}{1} = 0$$

- Obtain the **auxiliary polynomial** from the row above the all zero row s^2-1 .
- Differentiate the **auxiliary polynomial** and replace the all zero row with the values obtained from the differentiation
- Complete the array.
- System has one root with a positive real part (1, 1, 1, 2, -1).
- The root is found from the auxiliary eq. $s^2 1 = 0$, $s = \pm 1$

Auxiliary polynomial : $(s^2 - 1)$

$$\frac{d}{d(s)}(s^2 - 1) = 2s$$

$$d_1 = \frac{(2)(-1) - (1)(0)}{2} = -1$$

Concept of Symmetry

- A: Real and symmetrical about the origin
- B: Imaginary and symmetrical about the origin
- C: Quadrantal and symmetrical about the origin

Routh-Hurwitz Criterion-Special Case II-Example II

$$Q(s) = s^{8} + s^{7} + 12s^{6} + 22s^{5} + 39s^{4} + 59s^{3} + 48s^{2} + 38s + 20(8^{th} - order)$$

<i>s</i> ⁸	1	12	39	48	20
s^7	1	22	59	38	0
s^6	-1/0 - 1	$-2\sqrt{0}-2$	1 01	20 2	0
s^5	2,01	% 0 3	462	0	0
s^4	1	3	2	0	
s^3	0 / 2	0 \$ 3	0		
s^2	3/3 2/3	1 /4	0		
s ¹	$\frac{1}{3}$	0			
s^0	4				

Auxiliary polynomial: $P(s) = s^4 + 3s^2 + 2$

$$\frac{d}{d(s)}P(s) = 4s^3 + 6s$$

Interpretation of the Routh Array

- s^4 is the auxiliary polynomial row.
- $s^4 to s^0 \Rightarrow even polynomial case$
 - $s^4 to s^0 \Rightarrow No sign change exist$
 - no RHP roots and no LHP roots becasue of symmetery
 - Even polynomial = all 4 poles on imaginary axis
- $s^8 to s^4 \Rightarrow Remaining roots$
 - s^8 to $s^4 \Rightarrow$ two sign changes
 - two RHP roots and two LHP roots becasue of symmetery

Routh-Hurwitz Criterion-Parameter Range

• The Routh Hurwitz stability criterion may be used to find the range of a parameter for which the closed-loop systems is stable.

• Leave the parameter as an unknown coefficient in the characteristic polynomial, form the Routh array, check the range of the parameter such that the first column does not change sign.

Routh-Hurwitz Criterion-Parameter Range

$$Q(s) = s^4 + 6s^3 + 11s^2 + 6s + K$$

s^4	1	11	K	0
s^3	6	6	0	0
s^2	10	K	0	
s^1	c_1	0		
s^0	d_1			

$$b_1 = \frac{(6)(11) - (1)(6)}{6} = 10$$

$$b_2 = \frac{(6)(K) - (1)(0)}{6} = K$$

$$b_1 = \frac{(6)(11) - (1)(6)}{6} = 10$$
 $c_1 = \frac{(10)(6) - (6)(K)}{10} = \frac{60 - 6K}{10}$

$$b_2 = \frac{(6)(K) - (1)(0)}{6} = K$$
 $d_1 = \frac{(c_1)(K) - (10)(0)}{c_1} = K$

- Then for stability:
 - c_1 should be positive $i e_1$, $60 6K > 0 \Rightarrow K < 10$
 - d_1 should be positive $i e_i$, K > 0
 - Therefore, 0 < K < 10