Linear Systems

Retinal Receptive Fields

Receptive field structure in bipolar cells

A bit of history:

Neurocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...)

simple cells: modifiable parameters

complex cells: perform pooling

Linear Systems

One important class of systems is the set of linear systems.

A function f is linear if it satisfies:

$$f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$$
$$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$$

Linear system: y = f(x)

A linear function f can be written as a matrix multiplication:

Linear system: y = f(x)

A linear function f can be written as a matrix multiplication:

It can also be represented as a fully connected linear neural network

h[n,k] Is the strength of the connection between x[k] and y[n]

Linear system: y = f(x)

A linear function f can be written as a matrix multiplication:

It can also be represented as a fully connected linear neural network

h[n,k] Is the strength of the connection between x[k] and y[n]

Images are turned into column vectors by concatenating all image columns

Column vector of length 16

Quiz: what operation is linear?

Quiz: what operation is linear?

We need translation invariance

Sky	Sky	Sky	Sky	Sky	Sky	Sky	Bird
Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Sky	Sky	Sky	Sky	Sky	Sky	Sky	Sky
Bird	Bird	Bird	Sky	Bird	Sky	Sky	Sky
Sky	Sky	Sky	Bird	Sky	Sky	Sky	Sky

Moving Average

- basic idea: define a new function by averaging over a sliding window
- a simple example to start off: smoothing

Moving Average

- Can add weights to our moving average
- Weights [..., 0, 1, 1, 1, 1, 1, 0, ...] / 5

In 2D: box filter

$$h[\cdot,\cdot]$$

$$\frac{1}{9} \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$$

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$

$$g[\cdot,\cdot]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	Ο	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	О

$$h[\cdot,\cdot]^{\frac{1}{9}}^{\frac{1}{1}}^{\frac{1}{1}}^{\frac{1}{1}}$$

$$g[\cdot,\cdot]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[\cdot,\cdot]^{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	О	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	О	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	O	0	О	0	0	0	0
0	0	0	0	0	0	0	Ο	0	0

0	10	20	30	30			
					?		
					•		
			50				

$$h[\cdot,\cdot]$$
 $\frac{1}{9}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	О	0	0	0	0	0	0	0	0
0	O	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$g[m,n] = \sum_{k,l} h[k,l] f[m+k,n+l]$$

Credit: S. Seitz

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

Linear filters: examples

Original

Blur (with a mean filter)

Source: D. Lowe

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a cross-correlation operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Cross-correlation vs. Convolution

cross-correlation:

$$G = H \otimes F$$

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

A **convolution** operation is a cross-correlation where the filter is flipped both horizontally and vertically before being applied to the image:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

It is written:

$$G = H \star F$$

Convolution

Convolution is nice!

Notation:

$$b = c \star a$$

- Convolution is a multiplication-like operation
 - commutative

$$a \star b = b \star a$$

associative

$$a \star (b \star c) = (a \star b) \star c$$

distributes over addition

$$a \star (b+c) = a \star b + a \star c$$

scalars factor out

$$\alpha a \star b = a \star \alpha b = \alpha (a \star b)$$

- identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...]

$$a \star e = a$$

- Conceptually no distinction between filter and signal
- Usefulness of associativity
 - often apply several filters one after another: $((a * b_1) * b_2) * b_3)$
 - this is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$

Quiz: what operation is the result of a convolution?

Quiz: what operation is the result of a convolution?

Defocus/blurring

Computes the local average over windows of size 5 x 5 pixels

In the 1D case, it helps to make explicit the structure of the matrix:

In the 1D case, it helps to make explicit the structure of the matrix:

In the 1D case, it helps to make explicit the structure of the matrix:

In the 1D case, it helps to make explicit the structure of the matrix:

Linear translation invariant system:

A LTI function f can be written as a matrix multiplication:

It can also be represented as a convolutional layer of neural net:

 $h[n-k]^{\!\!\! ext{ls}}$ the strength of the connection $h[n-k]^{\!\!\! ext{ls}}$

Fully Connected Layer

Locally Connected Layer

Locally Connected Layer

Convolutional Layer

Rectangular filter

Rectangular filter

 \otimes

h[m,n]

f[m,n]

g[m,n]

Rectangular filter

f[m,n]

g[m,n]

The identity

Ashift

"naturally" occurring filters

When we take a picture from a moving car, the resulting picture can be affected by motion blur

Input image

"naturally" occurring filters

When we take a picture from a moving car, the resulting picture can be affected by motion blur

Input image

Motion blur

Handling boundaries

Handling boundaries

Zero padding

Handling boundaries

Figure 1. Stimulus presentation scheme. The stimuli were originally calibrated to be seen at a distance of 150 cm in a 19" display.

Campbell & Robson chart

Let's define the following image:

What do you think you should see when looking at this image?

$\mathbf{I}[n,m] = A[n]\sin(2\pi f[m]m/M)$

 $\mathbf{I}[n,m] = A[n]\sin(2\pi f[m]m/M)$

Contrast Sensitivity Function

Blackmore & Campbell (1969)

Maximum sensitivity

~ 6 cycles / degree of visual angle

Things that are very close and/or large are hard to see

Things far away are hard to see