Système de numération Portes logiques - Fonctions logiques

Yannick CHISTEL

Lycée Dumont d'Urville - CAEN

9 septembre 2020

1/11

Les transistors

Présentation

Dans le processeur et d'autres composants électroniques, on a des transistors qui sont des semi-conducteurs. Ils ont la particularité de laisser passer ou non le courant électrique. Il existe deux types de transistor : les PNP et les NPN.

En les associant, ils vont modifier les courants électriques et donc les valeurs des bits 0 et 1 (qui représentent le courant électrique).

Exemple

La porte logique NOT

Définition

La porte NOT a un seul bit d'entrée et un seul bit de sortie.

- Si le bit d'entrée vaut 1, alors il vaut 0 en sortie.
- Si le bit d'entrée vaut 0, alors il vaut 1 en sortie.

On donne les symbolisations de la porte NOT et la table logique :

Р	Q
0	1
1	0

3/11

La porte logique ET

Définition

La porte ET a 2 bits en entrée et un seul bit de sortie.

- Si les 2 bits d'entrée valent 1, alors le bit de sortie vaut 1.
- Si un bit d'entrée ou les 2 valent 0, alors le bit de sortie vaut 0.

On donne les symbolisations de la porte ET et la table logique :

Р	Q	P ET Q
0	0	0
0	1	0
1	0	0
1	1	1

La porte logique OU

Définition

La porte OU a 2 bits en entrée et un seul bit de sortie.

- Si les 2 bits d'entrée valent 0, alors le bit de sortie vaut 0.
- Si un bit d'entrée ou les 2 valent 1, alors le bit de sortie vaut 1.

On donne les symbolisations de la porte OU et la table logique :

Р	Q	P OU Q
0	0	0
0	1	1
1	0	1
1	1	1

Fonctions booléennes

Définition

Les portes logiques vues précédemment sont associées à des fonctions booléennes élémentaires.

- La porte NOT est associée à la fonction notée $\neg(x)$ ou \overline{x} .
- La porte ET est associée à la fonction notée $x \wedge y$ ou x.y.
- La porte OU est associée à la fonction notée $x \lor y$ ou x + y.

On obtient les tables de vérité :

NOT/NON

Х	$\neg(x) = \overline{x}$
0	1
1	0

AND/ET

X	У	$x \wedge y = x.y$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR/OU

X	У	$x \lor y = x + y$
0	0	0
0	1	1
1	0	1
1	1	1

Expressions booléennes

Définition

Les fonctions booléennes élémentaires NON, ET ,OU sont aussi appelées des opérateurs booléens et permettent d'écrire des expressions booléennes plus complexes.

Exemple

Soit x et y deux variables booléeennes. On souhaite déterminer la table de vérité de l'expression booléenne $\neg(x \lor y)$.

On écrit la table de vérité de chaque variable puis de l'expression :

X	у	$x \lor y$	$\neg(x\vee y)=\overline{x+y}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

L'opérateur OU EXCLUSIF

Définition

L'opérateur booléen (ou fonction booléenne) **ou** exclusif prend deux valeurs en entrée et donne en sortie :

- 0 si les deux valeurs entrées sont égales
- 1 si les deux valeurs en entrée sont différentes

Cet opérateur booléen se note par \oplus et se dit XOR.

On donne les symbolisations de la porte XOR et la table logique :

Р	Q	$P \oplus Q$
0	0	0
0	1	1
1	0	1
1	1	1

Algèbre booléenne

Propriétés

Une expression booléenne peut être transformée en suivant certaines propriétés. Pour toutes variables booléennes x, y et z:

- Involution : $\neg(\neg x) = \overline{\overline{x}} = x$,
- Neutralité : $1 \land x = 1.x = x$ et $0 \lor x = 0 + x = x$,
- Élément absorbant : $0 \land x = 0$, x = 0, $1 \lor x = 1 + x = 1$,
- Complément : $x \land \neg x = x.\overline{x} = 0$ et $x \lor \neg x = x + \overline{x} = 1$
- La commutativité : $x \land y = y \land x$ et $x \lor y = y \lor x$
- La distributivité du ET sur le OU : $x \land (y \lor z) = (x \land y) \lor (x \land z)$
- La distributivité du OU sur le ET : $x \lor (y \land z) = (x \lor y) \land (x \lor z)$

Lois de Morgan

Soit x et y deux variables booléennes :

- $\neg (x \land y) = \neg x \lor \neg y$
- $\neg (x \lor y) = \neg x \land \neg y$

9/11

Exercices

Exercice 1

Soit x et y deux variables booléennes.

- **1** Donner la table de vérité de l'expression booléenne $(\neg x \land y) \lor x$.
- 2 Donner une expression simplifiée équivalente.

Exercices

Solution

1 La table de vérité de l'expression booléenne $(\neg x \land y) \lor x$ est :

X	у	$\neg x$	$\neg x \wedge y$	$(\neg x \land y) \lor x = \overline{x}y + x$
0	0	1	0	0
0	1	1	1	1
1	0	0	0	1
1	1	0	0	1

② D'après la table de vérité, l'expression $x \lor y$ est une expression booléenne équivalente à $(\neg x \land y) \lor x$. En utilisant la distributivité :

$$(\neg x \land y) \lor x = (\neg x \lor x) \land (y \lor x) = 1 \land (y \lor x) = y \lor x = x \lor y$$