DESIGN AND ANALYSIS OF ALGORITHMS (DAA)

Module1,2 Radhika Chapaneri

Notes Compiled by Radhika Chapaneri

An informal definition of an algorithm is:

Algorithm: a step-by-step method for solving a problem or doing a task.

Definition

- An algorithm is a finite set of instructions that, if followed, accomplishes a particular task.
- An algorithm is any well defined computational procedure that takes some value, or set of values, as input and produces some value, or set of values, as output.
- An algorithm is thus a sequence of computational steps that transform the input into the output.

Notes Compiled by Radhika Chapaneri

What is Analysis of algorithms

 Analysis of Algorithms is the area of computer science that provides tools to analyze the efficiency of different methods of solutions.

Properties of Algorithms

- Input: an algorithm accepts zero or more inputs
- Output: it produces at least one output.
- **Finiteness:** If we trace out the instructions of an algorithm, then for all cases, the terminates after a finite number of steps.
- **Definiteness:** Each step in algorithm is unambiguous. This means that the action specified by the step cannot be in multiple ways & can be performed without any confusion.

Effectiveness: It consists of basic instructions that are realizable. The operations are doable

Notes Compiled by Radhika Chapaneri

Algorithm design techniques

- **Brute force**: For many nontrivial problems, there is a natural brute-force search algorithm that checks every possible solution.
- Typically takes 2ⁿ time or worse for inputs of size n.
- · Unacceptable in practice.

Algorithm design techniques

Notes Compiled by Radhika Chapaner

Performance analysis

- When is a program / algorithm said to be better than another?
- The algorithms are correct, but which is the best?
- What are the measures for comparison?

Performance analysis

 The computational complexity of an algorithm addresses the resources needed to run the algorithm

Notes Compiled by Radhika Chapaneri

Space Complexity

 Space complexity = The amount of memory required by an algorithm to run to completion

Space Complexity

- Fixed Space Requirements (C): Independent of the characteristics of the inputs and outputs
 - instruction space
 - space for simple variables
 - fixed-size structured variable
 - Constants
- Variable Space Requirements (SP(I)): depend on the instance characteristic I
 - number, size, values of inputs and outputs associated with I
 - recursive stack space, local variables, return address

Notes Compiled by Radhika Chapaneri

Space Complexity

Total space complexity:

$$S(P) = C + S_P(I)$$

Where

C = Fixed Space Requirements

 $S_P(I)$ = Variable Space Requirements

S(P) = Total space complexity

.

Space Complexity: Simple Example

- // This algorithm computes addition of three elements
- // Input: a, b, c are of floating type
- // Output: The addition is returned

```
Algorithm:
Add (a, b, c)
{
 return a + b + c
}
```

Space Complexity:

$$S(P) = C + S_P(I)$$

$$S_{P}(I) = 0, S(P) = C$$

If we assume that a, b and c occupy one word size then S(P) = 3

Notes Compiled by Radhika Chapaner

Space Complexity: Using array

// This algorithm computes addition of all the elements in an array.

// Input: Array x of floating type, n is total number of elements

// Output: returns sum which is of data type float

```
Algorithm:

{

    sum = 0.0;
    for i = 1 to n do
        sum = sum + x[i]
    return sum
}
```

Space Complexity:

$$S(P) = C + S_P(I)$$

The 'n' space required for x[], one unit space for n, one unit for I and one unit for sum.

$$S(P) \ge (n+3)$$

Time Complexity

Notes Compiled by Radhika Chapaner

How to find time complexity?

$$T(P) = C + T_P(I)$$

- The compile time does not depend on the instance characteristics.
- We assume that a compiled program run several times without recompilation
- · Hence we are concern just about the running time of the program.

Time Complexity: Using array

- // Algorithm computes addition of all the elements in an array.
- // Input: Array x of floating type, n is total number of elements
- // Output: returns sum which is of data type float

```
Algorithm:

{
    sum = 0.0;
    for i = 1 to n do
        sum = sum + x[i];
    return sum;
}
```

Algorithm	Steps/ execution	Freque ncy	Total steps
Algorithm Sum(a[], n)	0	-	0
{	0	-	0
sum = 0.0;	1	1	1
for i = 1 to n do	1	n + 1	n + 1
sum = sum + x[i];	1	n	n
return sum;	1	1	1
}	0	-	0
Time Complexity step per execution ×	2n + 3		

Notes Compiled by Radhika Chapaner

Time Complexity: Matrix addition

- // This algorithm computes addition of all the elements in matrix
- // Input: two matrices a, b
- // Output: returns sum in matrix

```
Algorithm:
Add(a,b,c,m,n)

{
    for i = 1 to m do
        for j = 1 to n do
        c[i, j] = a[i, j] + b[i, j]
}
```

Algorithm	s/e	f	Total steps
Add(a,b,c,m,n)	0	-	0
{	0	-	0
for i = 1 to m do	1	m + 1	m + 1
for $j = 1$ to n do	1	m (n+1)	mn +m
c[i, j] = a[i, j] + b[i, j]	1	mn	mn
}	0	-	0
Time Complexity			2mn + 2m + 1

Order of growth

Time complexity of algorithm A and B

Input	Algo1 = 100n	Algo B = 10n ²	Algo C = 2 ⁿ
n	100n	10n ²	2 ⁿ
5	500	250	32
10	1000	1000	1024
20	2000	4000	1,048,57
50	5000	25,000	1.259X10 ¹⁵
1000	100,000	10,000,000	>10^300

Notes Compiled by Radhika Chapaneri

Order of growth

- If an algorithm need 2ⁿ steps for execution, then when n = 40, the number of steps needed is approximately 1.1* 10¹².
- On a computer performing one billion steps per second, this would require about 18.3 minutes for n = 40.
- If n = 50 the same algorithm would run for about 13 days on this computer.
- When n = 100 about 4 *10¹³ years are needed.
- So utility of algorithm with exponential complexity is limited to small n (n<40)