Cresmetric mean 5 اجز

A.M > G.M.

* The C.M of 10 observations on a Centain Variable was Calculated as (6.2.T) was later discovered that one of the observation was unough relanded as 12.9 inspead of 21.9.

Calculate the correct C.M.

Solve $C = (x_1 x_2 - \cdots x_n) = (b_2 x_1 - x_1 - x_1 - x_2 - x_1)$ (12.9.72.73-...710) = 16.2 $(x_2x_3...x_10) = \frac{16.2}{(12.9)^{1/0}}$ (M=162 (21.9)) (12.9) (

* S.T in finding the A.M. of a Set of readings on a thermometer it loss not matter whether we measure temperature in centigrade on Fahrenheit, but that in finding the GM is loss matter which Scale we use. (F-32 C) She suppose $C_1, C_2, \cdots C_n$ are in centiquode. $\begin{cases} \frac{F-32}{180} = \frac{C}{180} \end{cases}$ AM $C = \frac{1}{N} \{ C_1 + C_2 + \cdots + C_n \}$. GM = Gc = (C1C2 - - - Cn). F= 32+ 9 C the observations corresponding to Fahrenheit 32+9C1, 32+9C2, ---, 32+9Cn.

$$\frac{1}{4} = \frac{1}{2} \left\{ (32 + \frac{9}{5}c_1) + (32 + \frac{9}{5}c_1) + (32 + \frac{9}{5}c_n) \right\}$$

$$= 321 + \frac{9}{5} \left\{ \frac{c_1 + c_2 + \cdots + c_n}{n} \right\} = 32 + \frac{9}{5}c_n$$

$$\frac{1}{5} \left\{ (32 + \frac{9}{5}c_1) (32 + \frac{9}{5}c_2) - (32 + \frac{9}{5}c_n) \right\}$$

$$+ \frac{9}{5} (4c_2 - c_n)^n + 32$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$$

> In a frequency table, the upper bound of each CI has a const vario to the lower bound. S. T GM is given by log G = (70+ C Stfi (i-1) No > log of mid value of first CI; (> log of varior upper lound & lower bound. Son Lep the it classiteral is denoted as Ii - Titie the frequency in bi 40-80 Civen $\frac{T_2}{T_1} = \frac{T_3}{T_2} = - \cdots = \frac{T_i}{T_{i-1}} = \frac{T_i}{T_{i-1}} = \frac{T_i}{T_i} = \frac{T_i}{T$ エューンエン

$$T_{i} = \lambda T_{i-1}$$

$$= \lambda (\lambda T_{i-2}) = -i = \lambda T_{i-1}$$

$$= \lambda (\lambda T_{i-2}) = -i = \lambda T_{i-1}$$

$$= \lambda (\lambda T_{i-2}) = -i = \lambda T_{i-1}$$

$$= \lambda (\lambda T_{i-2}) = \lambda T_{i-1}$$

$$= \lambda (\lambda T_{i-2}) = \lambda T_{i-1}$$

$$= \lambda T_{i-1}$$

$$\chi_{i} = \frac{1}{2} \left(\frac{1}{1+12} \right) = \frac{1}{2} \left($$

$$\chi_{i} = \frac{(H\lambda)}{2} I_{i} = \frac{1}{2} \frac{1}{\lambda} I_{i} (H\lambda)$$

$$\chi_{i} = \frac{1}{\lambda} I_{i} (H\lambda)$$

$$\chi_{i} = \frac{1}{\lambda} I_{i} (H\lambda)$$

$$\log G_{i} = \frac{1}{\lambda} I_{i} (H\lambda)$$

$$\log G_{i} = \frac{1}{\lambda} I_{i} (H\lambda)$$

$$= \frac{1$$

$$\log G = \frac{1}{N} + \frac{1}{N}$$

Harmonic mean Harmonic mean of a number of observations, none are sero, in the neciprocal of A.M. the neciprocal of the given ie di, di, ... de i the given data. HM= $\frac{1}{2}\left(\frac{1}{\alpha_{i}}\right)$

Discrete (entiruous

$$\frac{1}{N} = \frac{1}{N} \left(\frac{f_i}{a_i} \right)$$
 $N = \frac{1}{N} \frac{f_i}{a_i}$

-> A Cyclist pedals from his house to his college at a speed of 10 km ph2 lack from college to his house of 15 km ph. Find the average speed. En let a le the distance blu house & collège. Howe to college > The distance travelled in $\frac{\chi}{10}$ house college to house > The distance travelled in $\frac{\chi}{10}$ hrs. The total distance 27 in Convered in (7x + 7x) has

average speed = Total distance Total fine take

 $= \frac{1}{2} \times \frac{1}{10} \times \frac{1}{15} = 12 \text{ My}$