Cursul 8

(plan de curs)

§1 Exemplu de calcul pentru e^{tA} . Vom calcula, pe baza definiției, matricea e^{tA} pentru

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \in \mathcal{M}_{n \times n}(\mathbb{R})$$

În acest scop asociem matrice
iAnumărul complex $\lambda=a+ib$ și îl scriem sub forma trigonometrică

$$\lambda = a + ib = \rho(\cos\theta + i\sin\theta).$$

Prin calcul direct se constată că

$$A = \rho \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, A^2 = \rho^2 \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}, \dots,$$
$$A^n = \rho^n \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix}.$$

Aşadar

$$e^{tA} = \sum_{n=0}^{\infty} \frac{t^n}{n!} A^n = \begin{pmatrix} \sum_{n=0}^{\infty} \frac{t^n \rho^n}{n!} \cos n\theta & -\sum_{n=0}^{\infty} \frac{t^n \rho^n}{n!} \sin n\theta \\ \sum_{n=0}^{\infty} \frac{t^n \rho^n}{n!} \sin n\theta & \sum_{n=0}^{\infty} \frac{t^n \rho^n}{n!} \cos n\theta \end{pmatrix} = \begin{pmatrix} e^{at} \cos bt & -e^{at} \sin bt \\ e^{at} \sin bt & e^{at} \cos bt \end{pmatrix}.$$

Aici am folosit formulele

$$\sum_{n=0}^{\infty} \frac{t^n \rho^n}{n!} \cos n\theta = e^{at} \cos bt, \ \sum_{n=0}^{\infty} \frac{t^n \rho^n}{n!} \sin n\theta = e^{at} \sin bt$$

care provin din dezvoltarea în serie a funcției

$$e^{\lambda t} = e^{at+ibt} = e^{at}(\cos bt + i\sin bt),$$

și anume

$$e^{\lambda t} = \sum_{n=0}^{\infty} \frac{t^n}{n!} \lambda^n = \sum_{n=0}^{\infty} \frac{t^n \rho^n}{n!} (\cos n\theta + i \sin n\theta).$$

Concluzie. Sistemul liniar omogen

$$\begin{cases} x' = ax - by \\ y' = bx + ay \end{cases}$$

are solutia generală

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} e^{at}\cos bt & -e^{at}\sin bt \\ e^{at}\sin bt & e^{at}\cos bt \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix},$$

adică

$$\begin{cases} x(t) = c_1 e^{at} \cos bt - c_2 e^{at} \sin bt \\ y(t) = c_1 e^{at} \sin bt + c_2 e^{at} \cos bt. \end{cases}$$

§2 Determinarea matricei e^{tA} cu forma canonică Jordan

Prezentăm aici o metodă de determinare a matricei e^{tA} utilizând forma canonică Jordan a unei matrice. Începem prin a reaminti că, pentru orice matrice cu elemente complexe $A \in \mathcal{M}_{n \times n}(\mathbb{C})$, există o matrice nesingulară $Q \in \mathcal{M}_{n \times n}(\mathbb{C})$, astfel încât

$$A = Q^{-1}JQ, (1)$$

unde J este forma canonică Jordan a matricei A şi, prin urmare,

$$e^{tA} = Q^{-1}e^{tJ}Q, (2)$$

pentru orice $t \in \mathbb{R}$.

Mai precis, dacă $\lambda_1, \lambda_2, \dots \lambda_s \in \mathbb{C}$ sunt rădăcinile ecuației caracteristice

$$\det(\lambda I - A) = 0$$

cu ordinele de multiplicitate $m_1, m_2, \dots m_s, \sum_{p=1}^s m_p = n$, atunci J este o matrice diagonală de blocuri : $J_{pj}, p = 1, 2, \dots, s, j = 1, 2, \dots, h_p$,

$$J = \text{diag}(J_{11}, \dots, J_{1h_1}, J_{21}, \dots, J_{2h_2}, \dots, J_{s1}, \dots, J_{sh_s})$$

astfel că \boldsymbol{e}^{tJ} este, de asemenea, o matrice diagonală de blocuri

$$e^{tJ} = \text{diag}\left(e^{tJ_{11}}, \dots, e^{tJ_{1h_1}}, e^{tJ_{21}}, \dots, e^{tJ_{2h_2}}, \dots, e^{tJ_{s_1}}, \dots, e^{tJ_{sh_s}}\right)$$
 (3)

Aici, J_{pj} , pentru $p=1,2,\ldots,s$ și $j=1,2,\ldots,h_p$, sunt celulele Jordan corespunzătoare rădăcinii caracteristice λ_p , adică

$$J_{pj} = \begin{pmatrix} \lambda_p & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_p & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_p & 1 & \dots & 0 \\ 0 & 0 & 0 & \lambda_p & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & \lambda_p \end{pmatrix} \in \mathcal{M}_{m_{pj} \times m_{pj}}(\mathbb{C}).$$

Notând cu

$$I_{pj} = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix} \quad \Si \ E_{pj} = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix},$$

avem că $J_{pj} = \lambda_p I_{pj} + E_{pj}$. Cum tE_{pj} şi $t\lambda_p I_{pj}$ comută, urmează că

$$e^{tJ_{pj}} = e^{tE_{pj} + t\lambda_p I_{pj}} = e^{t\lambda_p I_{pj}} e^{tE_{pj}} = e^{t\lambda_p} I_{pj} e^{tE_{pj}} = e^{t\lambda_p} e^{tE_{pj}}.$$
 (4)

Este ușor de văzut că puterile matricei E_{pj} sunt de forma

$$E_{pj}^{2} = \begin{pmatrix} 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \ E_{pj}^{3} = \begin{pmatrix} 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}, \ \cdots$$

cu $E_{pj}^{m_{pj}}$ matricea nulă. Așadar seria care definește matricea exponențială $e^{tE_{pj}}$ are numai primii m_{pj} termeni nenuli și suma lor este

$$e^{tE_{pj}} = \begin{pmatrix} 1 & \frac{t}{1!} & \frac{t^2}{2!} & \dots & \frac{t^{m_{pj}-1}}{(m_{pj}-1)!} \\ 0 & 1 & \frac{t}{1!} & \dots & \frac{t^{m_{pj}-2}}{(m_{pj}-2)!} \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

pentru orice $t \in \mathbb{R}$. Din (4) urmează

$$e^{tJ_{pj}} = e^{\lambda_p t} \begin{pmatrix} 1 & \frac{t}{1!} & \frac{t^2}{2!} & \dots & \frac{t^{m_{pj}-1}}{(m_{pj}-1)!} \\ 0 & 1 & \frac{t}{1!} & \dots & \frac{t^{m_{pj}-2}}{(m_{pj}-2)!} \\ \vdots & & & & \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
 (5)

iar din (3) obţinem forma explicită a matricei e^{tJ} . În final, matricea e^{tA} se determină din produsul (2).

Teorema 1. (structura matricei e^{tA}) $Dacă A \in \mathcal{M}_{n \times n}(\mathbb{R})$ $iar \lambda_k = \alpha_k + i\beta_k$, $k = 1, 2, \ldots, s$, sunt rădăcinile ecuației caracteristice

$$\det(\lambda I - A) = 0,$$

având multiplicitățile m_k , $k=1,2\ldots,s$, atunci toate elementele matricei e^{tA} sunt de forma

$$\sum_{k=1}^{s} e^{\alpha_k t} \left(P_k(t) \cos \beta_k t + Q_k(t) \sin \beta_k t \right),\,$$

unde P_k şi Q_k sunt polinoame cu coeficienți reali de grad cel mult $m_k - 1$.

Demonstrație. Fie $\lambda = \alpha + i\beta$ o rădăcină a ecuației $\det(A - \lambda I) = 0$. Ținând cont de faptul că

$$e^{\lambda t} = e^{\alpha t + i\beta t} = e^{\alpha t} (\cos \beta t + i \sin \beta t),$$

utilizând (5), (3) și observând că, deși $Q^{-1},\ e^{tJ}$ și Q sunt matrici cu elemente numere complexe, produsul $Q^{-1}e^{tJ}Q = e^{tA}$ este în mod necesar o matrice cu elemente numere reale, obținem concluzia teoremei.

Observație. Funcțiile de forma

$$\sum_{k=1}^{s} e^{\alpha_k t} \left(P_k(t) \cos \beta_k t + Q_k(t) \sin \beta_k t \right),\,$$

sunt numite cvasi-polinoame.

Ecuații diferențiale liniare de ordin n

§1 Ecuații liniare de ordin n. Existența și unicitatea globală

Fie $a_1, a_2, \ldots, a_n, f: I \to \mathbb{R}$ continue. Considerăm ecuația diferențială liniară de ordinul n neomogenă

$$y^{(n)} + a_1(t)y^{(n-1)} + \dots + a_n(t)y = f(t),$$
 (E.L.N)

și ecuația omogenă atașată

$$y^{(n)} + a_1(t)y^{(n-1)} + \dots + a_n(t)y = 0.$$
 (E.L.O)

Prin soluție înțelegem o funcție $y: \tilde{I} \subset I \to \mathbb{R}$ de clasă C^n care verifică ecuația pe un interval $I \subset I$.

Știm că orice ecuație scalară de ordin n în variabila y este echivalentă cu un sistem de n ecuații de ordinul întâi în variabilele $x_1 = y, x_2 = y', \dots, x_n = y^{(n-1)}$.

In cazul nostru, ecuația (E.L.N) se rescrie sub forma sistemului liniar neomogen

$$\begin{cases} x_1' = x_2 \\ x_2' = x_3 \\ \vdots \\ x_{n-1}' = x_n \\ x_n' = -a_n(t)x_1 - a_{n-1}(t)x_2 - \dots - a_1(t)x_n + f(t), \end{cases}$$
 ma matriceală

care are forma matriceală

$$x' = A(t)x + b(t), (S.L.N)$$

cu

$$A(t) = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_n(t) & -a_{n-1}(t) & -a_{n-2}(t) & \dots & -a_1(t) \end{pmatrix}$$

$$\S i \ b(t) = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f(t) \end{pmatrix}.$$

Evident că ecuația diferențială liniară omogenă (E.L.O) se transformă în sistemul liniar omogen atașat

$$x' = A(t)x \tag{S.L.O}$$

Teorema 1. (de existență și unicitate globală) Pentru orice $a \in I$ și orice $\xi \in \mathbb{R}^n$ problema Cauchy

$$\begin{cases} y^{(n)} + a_1(t)y^{(n-1)} + \dots + a_n(t)y = f(t) \\ y(a) = \xi_1, y'(a) = \xi_2, \dots, y^{(n-1)}(a) = \xi_n \end{cases}$$

are o soluție globală unică.

§2 Ecuații liniare omogene de ordin n. Spațiul soluțiilor

Notăm

$$S_n = \{y : I \to \mathbb{R} \text{ soluție pentru (E.L.O)}\} \subset C^n(I, \mathbb{R})$$

şi

$$S = \{x : I \to \mathbb{R}^n \text{ solutie pentru (S.L.O)}\} \subset C^1(I, \mathbb{R}^n).$$

Ştim că S este subspațiu vectorial în $C^1(I, \mathbb{R}^n)$ cu dim(S) = n.

Lema 1. S_n este subspațiu vectorial în $C^n(I,\mathbb{R})$, iar operatorul $T:S_n\to S$ definit de

$$T(y) = (y, y', \dots, y^{(n-1)})$$

pentru orice $y \in S_n$, este un izomorfism de spații vectoriale.

Demonstrație. S_n este un subspațiu vectorial al lui $C^n(I; \mathbb{R})$ deoarece orice combinație liniară a două soluții a ecuației omogene (E.L.O) este soluție pentru aceeași ecuație.

Liniaritatea lui T rezultă imediat din liniaritatea operației de derivare, adică din proprietatea

$$(\alpha y(t) + \beta z(t))' = \alpha y'(t) + \beta z'(t),$$

pentru orice $t \in I$. În plus, din T(y) = 0 rezultă imediat y = 0, deci nucleul său este subspațiul nul,

$$Ker(T) = \{ y \in S_n | T(y) = 0 \} = \{ 0 \},$$

de unde rezultă că T este un operator liniar injectiv.

A mai rămas de arătat că $\operatorname{Im}(T) = S$. Dacă $x \in \operatorname{Im}(T)$ atunci există o soluție y = y(t) a ecuației (E.L.O) astfel încât x = T(y), adică $x_1(t) = y(t)$, $x_2(t) = y'(t), \ldots, x_n(t) = y^{(n-1)}(t)$, pentru orice $t \in I$. Sistemul (S.L.O) a fost astfel construit încât, în acest caz, $x = x(t) = (x_1(t), \ldots, x_n(t))$ să fie o soluție a sa, deci $x \in S$.

Reciproc, dacă $x \in \mathcal{S}$, adică dacă $x(t) = (x_1(t), \dots, x_n(t))$ este o soluție a sistemului (S.L.O) atunci se constată uşor că prima componentă a sa, $x_1 = x_1(t)$, este de clasă C^n ca funcție de la I în \mathbb{R} , având derivatele

$$x_1' = x_2, x_1'' = x_3, \dots, x_1^{(n-1)} = x_n$$

şi

$$x_1^{(n)} = -a_n(t)x_1 - a_{n-1}(t)x_1' - \dots - a_1(t)x_1^{(n-1)}$$

adică $T(x_1) = x$ și $x_1 \in S_n$, de unde urmează că $x \in \text{Im}(T)$.

Am arătat că Im(T) = S şi, prin urmare, $T : S_n \to S$ este un operator liniar bijectiv, adică un izomorfism de spații linare.

Teorema 2. Mulțimea soluțiilor saturate ale ecuației omogene (E.L.O) este un spațiu vectorial de dimensiune n peste \mathbb{R} . Mai mult, pentru orice $a \in I$, aplicația $S_a : S_n \to \mathbb{R}^n$ dată de

$$S_a(y) = (y(a), y'(a), \dots, y^{(n-1)}(a)),$$

pentru orice $y \in S_n$, este un izomorfism de spații liniare.

Demonstrație. Știm deja că spațiile S_n și S sunt izomorfe, deci dim (S_n) = dim (S) = n. Pentru a doua parte a teoremei, este suficient să observăm că S_a este compunerea a două izomorfisme de spații liniare, mai precis

$$S_a(y) = \Gamma_a(T(y)),$$

pentru orice $y \in S_n$, unde $\Gamma_a : S \to \mathbb{R}^n$ este dat de

$$\Gamma_a(x) = x(a),$$

pentru orice $x \in \mathcal{S}$.

Observația 1. Dacă $y_1, y_2, \ldots, y_n \in \mathcal{S}_n$ este o bază, orice element $y \in \mathcal{S}_n$ se exprimă în mod unic ca o combinație liniară de elementele bazei,

$$y(t) = \sum_{i=1}^{n} c_i y_i(t) \tag{1}$$

pentru orice $t \in I$.

Pentru orice sistem de n soluții $y_1,y_2,\ldots,y_n\in \mathbb{S}_n$ definim matricea asociată $Y:I\to \mathcal{M}_{n\times n}(\mathbb{R})$ prin

$$Y(t) = \begin{pmatrix} y_1(t) & y_2(t) & \dots & y_n(t) \\ y'_1(t) & y'_2(t) & & y'_n(t) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(t) & y_2^{(n-1)}(t) & & y_n^{(n-1)}(t) \end{pmatrix}$$

pentru orice $t \in I$.

Observație. Matricea Y(t) a fost definită astfel încât să aibă loc egalitatea

$$Y(t) = X(t)$$
,

unde

$$X(t) = [T(y_1), T(y_2), \dots, T(y_n)]$$

este matricea asociată sistemului de soluții

$${x^1 = T(y_1), x^2 = T(y_2), \dots, x^n = T(y_n)} \subset S.$$

Definiția 1. Sistemul $y_1, y_2, \ldots, y_n \in S_n$ poartă numele de sistem fundamental de soluții al ecuației (E.L.O) dacă el constituie o bază în spațiul liniar S_n . Matricea asociată unui sistem fundamental de soluții poartă numele de matrice fundamentală a ecuației (E.L.O).

Definiția 2. Dacă Y este matricea asociată unui sistem de soluții y_1, y_2, \ldots, y_n din S_n , determinantul său

$$W(t) = \det Y(t), \ t \in I,$$

se numește wronskianul asociat acestui sistem de soluții.

Observație. Întrucât aplicația T este un izomorfism între S_n și S, rezultă că un sistem de soluții y_1, y_2, \ldots, y_n ale ecuației (E.L.O) este fundamental dacă și numai dacă $x^1 = T(y_1), x^2 = T(y_2), \ldots, x^n = T(y_n)$, este un sistem fundamental de soluții pentru sistemul omogen (S.L.O).

Teorema 3. Fie y_1, y_2, \ldots, y_n un sistem de soluții saturate ale ecuației (E.L.O), fie Y matricea și respectiv W wronskianul, asociate sistemului de soluții. Următoarele condiții sunt echivalente:

- (i) matricea Y este fundamentală;
- (ii) $W(t) \neq 0$ pentru orice $t \in I$;
- (iii) există $a \in I$ astfel încât $W(a) \neq 0$.

Concluzia rezultă din teorema corespunzătoare de la sisteme liniare omogene, aplicată sistemului (S.L.O).

Teorema 4. (Liouville) Fie W wronskianul unui sistem de n soluții saturate ale ecuației (E.L.O). Atunci

$$W(t) = W(a) \exp\left(-\int_{a}^{t} a_1(s) ds\right)$$
 (2)

pentru orice $t \in I$, unde $a \in I$ este fixat.

Concluzia rezultă din Teorema lui Liouville aplicată sistemului (S.L.O), observând că, în acest caz, urma matricei A(t) este egală cu $-a_1(t)$.

$\S 3$ Ecuații liniare neomogene de ordin n. Metoda variației constantelor

Considerăm ecuația diferențială liniară de ordinul n neomogenă

$$y^{(n)} + a_1(t)y^{(n-1)} + \dots + a_n(t)y = f(t),$$
 (E.L.N)

si ecuația omogenă atașată

$$y^{(n)} + a_1(t)y^{(n-1)} + \dots a_n(t)y = 0,$$
 (E.L.O)

cu $a_1, a_2, \ldots, a_n, f: I \to \mathbb{R}$ funcții continue.

Fie y_1, y_2, \ldots, y_n un sistem fundamental de soluții ale ecuației (E.L.O). Știm că soluția generală a ecuației omogene este dată de formula

$$y_{S.G.O}(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t),$$

unde constantele c_i sunt arbitrare, ele reprezentând coordonatele lui y = y(t) în baza $\{y_1, y_2, \dots, y_n\}$ a spațiului liniar S_n .

Teorema 5. Fie y_1, y_2, \ldots, y_n un sistem fundamental de soluții pentru (E.L.O) și fie $\tilde{y}: I \to \mathbb{R}$ o soluție oarecare a ecuației (E.L.N). Funcția $y: I \to \mathbb{R}$ este o soluție a ecuației (E.L.N) dacă și numai dacă are forma

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t) + \tilde{y}(t)$$
(3)

pentru orice $t \in I$, unde $c_1, c_2, \ldots, c_n \in \mathbb{R}$.

Demonstrație. Se repetă raționamentul de la teorema corespunzătoare în cazul sistemelor liniare, arătând că diferența a două soluții pentru (E.L.N) este o soluție pentru (E.L.O).

Observație. Teorema afirmă că soluția generală a ecuației neomogene este dată de formula

$$y_{\text{S.G.N}} = y_{\text{S.G.O}} + \tilde{y}_{\text{S.P.N}}.$$

Teorema 6. (metoda variației constantelor) Fie y_1, y_2, \ldots, y_n un sistem fundamental de soluții ale ecuației (E.L.O). Atunci ecuația neomogenă (E.L.N) admite o soluție particulară de forma

$$\tilde{y}(t) = \sum_{i=1}^{n} c_i(t) y_i(t),$$

unde $c_i:I\to\mathbb{R}$ pentru $i=1,2,\ldots,n$ sunt funcții de clasă C^1 care verifică sistemul

$$\begin{cases}
y_1(t)c_1'(t) + y_2(t)c_2'(t) + \dots + y_n(t)c_n'(t) = 0 \\
y_1'(t)c_1'(t) + y_2'(t)c_2'(t) + \dots + y_n'(t)c_n'(t) = 0 \\
\vdots \\
y_1^{(n-2)}(t)c_1'(t) + y_2^{(n-2)}(t)c_2'(t) + \dots + y_n^{(n-2)}(t)c_n'(t) = 0 \\
y_1^{(n-1)}(t)c_1'(t) + y_2^{(n-1)}(t)c_2'(t) + \dots + y_n^{(n-1)}(t)c_n'(t) = f(t)
\end{cases}$$
(4)

pentru orice $t \in I$.

Demonstrație. Se observă că $y(t) = \sum_{i=1}^{n} c_i(t)y_i(t)$, este o soluție a ecuației (E.L.N) dacă și numai dacă x(t) = Y(t)c(t) este o soluție a sistemului (S.L.N) corespunzător, unde c(t) este vectorul coloană ale cărui componente sunt $c_1(t)$, $c_2(t), \ldots, c_n(t)$. Atunci, din demonstrația formulei variației constantelor de la sisteme liniare, rezultă că c trebuie să satisfacă relația

$$Y(t)c'(t) = b(t),$$

pentru orice $t \in I$, adică exact sistemul (4). Cum, pentru orice $t \in I$, avem $W(t) = \det Y(t) \neq 0$, sistemul liniar algebric (4) în necunoscutele $c'_1(t)$, $c'_2(t)$, ..., $c'_n(t)$ este de tip Cramer şi, prin urmare, acestea sunt bine determinate.

Exemplu. Considerăm ecuația liniară neomogenă

$$y'' - y = \frac{e^t}{e^t + 1}.$$

Se observă că ecuația omogenă atașată

$$y'' - y = 0$$

admite soluții
e $y_1(t)=e^t$ și $y_2(t)=e^{-t}$ care formează un sistem fundamental de soluții de
oarece

$$W(t) = \det Y(t) = \begin{vmatrix} e^t & e^{-t} \\ e^t & -e^{-t} \end{vmatrix} = -2 \neq 0.$$

Prin urmare, soluția generală a ecuației omogene este

$$y_{S.G.O} = c_1 e^t + c_2 e^{-t}.$$

Căutăm o soluție particulară pentru ecuația neomogenă sub forma

$$\tilde{y}(t) = c_1(t)e^t + c_2(t)e^{-t},$$

unde c_1' și c_2' se determină din sistemul variației constantelor:

$$\begin{pmatrix} e^t & e^{-t} \\ e^t & -e^{-t} \end{pmatrix} \begin{pmatrix} c_1' \\ c_2' \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{e^t}{e^t+1} \end{pmatrix}.$$

Sistemul liniar algebric de mai sus se rezolvă prin regula lui Cramer, de exemplu, și se obține

$$\begin{cases} c_1' = \frac{1}{2(e^t + 1)} \\ c_2' = -\frac{e^{2t}}{2(e^t + 1)} \end{cases}$$

de unde, prin alegerea unor primitive convenabile, urmează

$$\begin{cases} c_1 = \int \frac{1}{2(e^t + 1)} dt = \frac{1}{2} (t - \ln(e^t + 1)) \\ c_2 = -\int \frac{e^{2t}}{2(e^t + 1)} dt = \frac{1}{2} (\ln(e^t + 1) - e^t), \end{cases}$$

și, prin urmare,

$$\tilde{y}(t) = \frac{1}{2} (te^t - 1 + (e^{-t} - e^t) \ln(e^t + 1)).$$

În final, obținem soluția generală a ecuației neomogene:

$$y_{S.G.N} = c_1 e^t + c_2 e^{-t} + \frac{1}{2} (te^t - 1 + (e^{-t} - e^t) \ln(e^t + 1)).$$