Universitatea Politehnica din București Facultatea de Electronică, Telecomunicații si Tehnologia Informatiei

Anul universitar 2021-2022

Proiect 1 – DCAE

Proiectarea și realizarea unui stabilizator de tensiune

Coordonatori stiintifici:

Prof. dr. ing. Dragoș DOBRESCU

Prof. dr. ing. Mădălin MOISE

Autor:

Dragos-Ionut RADU

Grupa: 433B

1 CUPRINS

1.Cerinta temei de proiectare	2
2.Stabilizator-considerente teoretice	3
3.Proiectare	4
3.1 Schema de principiu	4
3.2 Dimensionarea componentelor	4
3.3 Proiectarea pe bucati a schemei in OrCad	5
3.4 Schema finală (după alegerea componentelor din lista dată și modificarea circuitului pentru proiectarea PCB)	6
3.5 Punct static de functionare	7
3.6 B.O.M(Bill of components)	8
4.Simulari	10
4.1 Stabilizare de tensiune	10
4.2 PSRR	10
4.3 Simularea protecției la scurt circuit cu o sursa variabila tip PWL	11
4.4 Simularea variației tensiunii de ieșire cu temperature	11
5. Realizarea structurii de interconectare PCB	12
5.1 PCB	12
5.2 TOP	13
5.3 BOTTOM	14
5.4 Solder Mask Top	14
5.5 Solder Mask Bottom	15
5.6 Solder Paste Top	15
5.7 Silskscreen Top	16
5.8 Drill	16
6. Verificare Gerbtool	17
6.1 BOT	17
6.2 TOP+SMTOP+SPTOP	17
6.3 Board	18
6.4 Board + Fab	18
6.5 TOP+SMTOP+SPTOP+SSTOP+BOT	19
6.6 TOP+SMTOP+SPTOP+SSTOP+BOT+Drill	19
7. Concluzii	20
8. Bibliografie	20

1. Cerinta temei de proiectare

Să se proiecteze și să se realizeze practic un stabilizator de tensiune având următoarele caracteristici:

- element de reglare serie transistor de tip NMOS.
- Tensiune de intrare și tensiune de ieșire stabilizată in conformitate cu datele din Tabel 1. Fiecare student va primi un număr în baza căruia va alege combinația VIN, VOUT.
- Protecție la supracurent de tip limitare de curent.
- Curentul de limitare va fi calculat astfel încăt puterea disipată pe elementul de reglare să nu depășască 1 W.
- Variația cu temperatura a tensiunii de ieșire nu trebuie sa depășască 2 mV/K pentru gama de temperatura 0° C ... 60° C.
- Semnalizarea cu dioda de tip LED a tensiunilor de intrare și de ieșire.

Numär temä	Tensiune de ieșire stabilizată, Vout [V]	Tensiune de intrare, VIN [V]
1	1.8	5
2	1.8	7
3	1.8	8
4	1.8	12
4 5	1.8	15
6	3.3	5
7	3.3	7
8	3.3	8
9	3.3	12
10	3.3	15
11	5	8
12	5	12
13	5	15
14	5	18
15	5	20
16	12	15
17	12	16
18	12	17
19	12	18
20	12	20

Tabel 1 Cerințele de proiectare în funcție de numărul temei.

Număr tema Tabel 1 =5

Tensiune de ieșire stabilizată VOUT=1.8V

Tensiune de intrare VIN=15V

2. Stabilizator-considerente teoretice

Stabilizatorul de tensiune este circuitul care, în mod ideal, asigură o tensiune de ieșire a sursei (tensiune stabilizată) să fie independentă de tensiunea laintrare, curentul prin sarcină sau temperatură. Acesta este ultimul bloc dintre cele care formează sursa de tensiune continuă stabilizată, interpunându-se între redresorul cu filtru și sarcină.

Principiul de funcționare:

Tensiunea de ieșire se compară cu o sursă de referință (de obicei tensiunea pe o diodă Zener) și dacă acestea nu sunt egale, diferența între ele (sau un curent proporțional cu această diferență de tensiuni) numit semnal de control, se aplică unui element regulator (eventual după o amplificare prealabilă). Elementul regulator (sau de reglaj) modifică tensiunea de ieșire în sensul potrivit până când aceasta devine egală cu tensiunea de referință, iar semnalul de control se anulează.

Stabilizatoarele cu reacție completează schema clasică a unui stabilizator cu un amplificator de eroare.În acest mod, crește valoarea factorului de stabilizare și scade cea a rezistenței de sarcină. Amplificatorul de eroare și elementul de reglaj alcătuiesc blocul de comandă și reglaj al stabilizatorului.

Fig.11.1. Schema bloc a umui stabilizator de tensiume. Ref. – referința de tensiume, Reg. – regulator serie, a – amplificator de eroare, R_L = rezistența (impedanța) de sarcină. Prot. – circuit de protecție.

3.Proiectare

3.1 Schema de principiu

Schema de principiu pentru bucla de regulare este prezentată în Figura 2.1. Tranzistorul M1 reprezintă elementul de reglare serie și se află în configurație de repetor pe sursă.

Figura 2.1. Schema de principiu a buclei de regulare.

3.2 Dimensionarea componentelor

3.3 PROIECTAREA PE BUCATI A SCHEMEI IN ORCAD

a) Referinta de tensiune

Referința de tensiune este formată dintr-o diodă Zener ce ofera o tensiune constanta de 2.7V, iar in paralel cu aceasta un condesantor ce va prelua evantualele variatii de tensiune la modificari ale curentului de polarizare.

Polarizarea diodei zener se face la curent constant furnizat de sursa prin R4 oferind un curent optim.

b) Amplificatorul de eroare:

Amplificatorul de eroare contine un amplificator diferențial alcatuit din tranzistoarele bipolare BC846B de tip NPN, Q3 și Q5 impreuna cu rezistența R96 prin care se scurge curentul din aplificatorul diferențial.

Polarizarea tranzistoarelor componente din diferential se face folosind oglinda de curent formata din tranzistaorele bipolare Q7 si Q6 de tip PNP impreuna cu rezistentele R93 si R3.

c) 3. Elementul de reglaj serie:

Elementul de reglaj serie este reprezentat prin tranzistorul de putere MOSFET IRFRU120N, U1, ce trebuie sa suporte cea mai mare parte a puterii circuitului. Conform cerintelor de proiectare puterea maxima pe acest tranzistor va fi de 1W.

d) Reteaua de reactie:

Rețeaua de reacție negativă este constituită dintr-un divizor de tensiune, iar tensiunea eșantionată de aceasta este comparată cu tensiunea de referință dată de dioda Zener.

Tensiunea de ieşire din acest circuit este dată de formula: Vout = (Vref + Vbe)*((R98 + R97)||(R99 + R2) + R1)/R1.

e) Protectia la supracurent:

Când circuitul de protectie, simte un curent destule de mare de mare astfel încat produsul Iout*(R91||R92) sa fie egal cu tensiunea de deschidere a tranzistorului bipolar BC846B de tip NPN Q5, va deschide acest tranzistor ce trage curentul de la intrare direct in ieșire pentru a evita distrugerea elementului de reglaj.

3.4 Schema finală (după alegerea componentelor din lista dată și modificarea circuitului pentru proiectarea PCB)

3.5 Punct static de functionare:

a) Tensiuni:

b) Curenti:

c) Puteri:

3.6 B.O.M(Bill of components)

Referinta	Valoare	Tip footprint	Tip capsula packag	Producator	Cod componenta	Distribuitor	Cod Distribuitor	Descriere	Catalog
Cdz1, C1	1nF	SMC0805	SMD CAP 0805	Samsung	CLC21C102JBCNNNC	TME ROMANIA	CLC21C102JBCNNNC	Condensator: ceramic; MLCC; 1nF; 50V; COG; ±5%; SMD; 0805	(LINK)
Cin1	1uF	SMC0805	SMD CAP 0805	Samsung	CL21A475KAQNNNG	TME ROMANIA	CL21A475KAQNNNG	Condensator: ceramic; MLCC; 1uF; 50V; X7R; ±10%; SMD; 0805	(LINK)
Co1	10uF	SMC0805	SMD CAP 0805	Samsung	CE10/50-SMD	TME ROMANIA	CE10/50-SMD	Condensator: electrolitic; SMD; 10uF; 50VDC; Ø6,3x5,5mm; ±20%	(LINK)
Co2	10nF	SMC0805	SMD CAP 0805	Samsung	CL21B103KBANNND	TME ROMANIA	CL21B103KBANNND	Condensator: ceramic; MLCC; 10nF; 50V; X7R; ±10%; SMD; 0805	(LINK)
D1	BZX84C2V7	SOT23	SOT23	ON Semiconductor	BZX84-C2V7LT1G	TME ROMANIA	BZX84-C2V7LT1G	Diodă: Zener; 0,3W; 2,7V; SMD; rolă,bandă; SOT23;	(LINK)
D2, D3	D1N3940	SMC080512	SMD 0805	Optoflash	OF-SMD2012Y	TME ROMANIA	OF-SMD2012Y		
Q3,Q4,Q5	QBC846B	SOT23	SOT23	DIOTEC	BC846B	TME ROMANIA	BC846B	Tranzistor: NPN; bipolar; 65V; 0,1A; 250mW; SOT23	(LINK)
Q1,Q2	QBC856B	SOT23	SOT23	DIOTEC	BC856B	TME ROMANIA	BC856B	Tranzistor: PNP; bipolar; 65V; 0,1A; 250mW; SOT23	(LINK)
RLED2	220ohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0221T5E	TME ROMANIA	SMD0805-220R-5%	Rezistor: thick film; SMD; 0805; 220Ω; 0,125W; ±1%; -55÷125°C	(LINK)
RLED3, R14, R15	510ohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0511T5E	TME ROMANIA	SMD0805-510R-5%	Rezistor: thick film; SMD; 0805; 510Ω; 0,125W; ±5%; -55÷125°C	(LINK)
R1, R2	100ohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0101T5E	TME ROMANIA	SMD0805-100R-5%	Rezistor: thick film; SMD; 0805; 100Ω; 0,125W; ±5%; -55÷125°C	(LINK)
R3	4,7kohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0472T5E	TME ROMANIA	SMD0805-4K7-5%	Rezistor: thick film; SMD; 0805; 4,7kΩ; 0,125W; ±5%; -55÷125°C	(LINK)
R4	2kohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0202T5E	TME ROMANIA	SMD0805-2K-5%	Rezistor: thick film; SMD; 0805; 2kΩ; 0,125W; ±5%; -55÷125°C	(LINK)
R5, R13	10ohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0100T5E	TME ROMANIA	SMD0805-10R-5%	Rezistor: thick film; SMD; 0805; 10Ω; 0,125W; ±5%; -55÷125°C	(LINK)
R6	22ohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8F220JT5E	TME ROMANIA	SMD0805-22R-1%	Rezistor: thick film; SMD; 0805; 22Ω; 0,125W; ±1%; -55÷125°C	(LINK)
R7, R11	2,2kohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0222T5E	TME ROMANIA	SMD0805-2K2-5%	Rezistor: thick film; SMD; 0805; 2,2kΩ; 0,125W; ±5%; -55÷125°C	(LINK)
R8	51ohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0510T5E	TME ROMANIA	SMD0805-51R-5%	Rezistor: thick film; SMD; 0805; 51Ω; 0,125W; ±5%; -55÷155°C	(LINK)
R9, R10	330ohm	SMR0805	SMD RES 0805	ROYAL OHM	0805S8J0331T5E	TME ROMANIA	SMD0805-330R-5%	Rezistor: thick film; SMD; 0805; 330Ω; 0,125W; ±5%; -55÷125°C	(LINK)
R12	1.5kohm	SMR0805	SMD RES 0805	ROYAL OHM	WF08P152JTL	TME ROMANIA	SMD0805-1K5-5%	Rezistor: thick film; de înaltă putere; SMD; 0805; 1,5kΩ; 250mW	(LINK)
U1	IRFRU120N	TO252AA	DPAK	International Rectifie	IRFR120NPBF	TME ROMANIA	IRFR120NPBF	Tranzistor: N-MOSFET; unipolar; 100V; 9,1A; 39W; DPAK	(LINK)
J4, J7	2 pin conn	JUMPER 2	2 pin, THD 2.54mm	NINIGI	ZL301-40P	TME ROMANIA	ZL301-40P	Şir pini; şiruri pini; tată; PIN: 40; verticale; 2,54mm; SMT; 1x40	(LINK)
J1, J2, J3, J5, J6, J8, J9, J10	1 pin conn	JUMPER 1		NINIGI	ZL301-40P	TME ROMANIA	ZL301-40P		

Item	Quantity		Reference	Part
1	2	Cdz1	1n	
		C1	1n	
2	1	Cin1	1u	
3	1	CO1	10u	
4	1	CO2	10n	
5	1	D1	BZX84C2V7	
6	2	D2	d	
		D3	d	
7	2	J1	VIN	
		34	VIN	
8	1	J2	VG	
9	1	33	V8	
10	2	35	VOUT	
		37	VOUT	
11	1	J6	VREF	
12	1	J8	VFB	
13	2	J9	GND	
		J10	GND	
14	2	Q1	QBC856B	
		Q2	QBC856B	
15	3	Q3	QBC846B	
		Q4	QBC846B	
		Q5	QBC846B	
16	1	RLED2	220	
17	3	RLED3	510	
		R14	510	
		R15	510	
18	2	R1	100	
		R2	100	
19	1	R3	4.7k	
20	1	R4	2k	
21	2	R5	10	
		R13	10	
22	1	R6	22	
23	2	R7	2.2k	
		R11	2.2k	
24	1	R8	51	
25	2	R9	330	
		R10	330	
26	1	R12	1.5k	
27	1	U1	IRFRU120N	

4.Simulari

4.1 Stabilizare de tensiune

4.2 PSRR

4.3 Simularea protecției la scurt circuit cu o sursa variabila tip PWL

4.4 Simularea variației tensiunii de ieșire cu temperature

Cele 2 linii corespund valorilor lui Vout la temperaturile de 0, respective 60 grade Celsius. Din graphic reiese o diferenta de 11mV, adica o variatie a tensiunii de iesire cu temperature de 0.18mV/gradC, deci stabilizatorul are o comportare foarte buna la variatia temperaturii de lucru.

5. Realizarea structurii de interconectare PCB

5.1 PCB

5.2 TOP

5.3 BOTTOM

5.4 Solder Mask Top

5.5 Solder Mask Bottom

5.6 Solder Paste Top

5.7 Silskscreen Top

5.8 Drill

6. Verificare Gerbtool

6.1 BOT

6.2 TOP+SMTOP+SPTOP

6.3 Board

6.5 TOP+SMTOP+SPTOP+SSTOP+BOT

6.6 TOP+SMTOP+SPTOP+SSTOP+BOT+Drill

7. Concluzii

- O Scopul proiectului a fost de a realiza si proiecta un stabilizator de tensiune cu element de reglaj serie. Stabilizatorul de tensiune este un circuit electronic care, ideal, asigura la iesire o tensiune constanta, si care nu depinde de alti parametrii ca: tensiunea de intrare, temperature ambianta, curent de sarcina. In realitate, tensiunea de la iesire este dependenta de acesti parametri, dar variatia ei poate fi controlata si minimizata printr-o proiectare corecta.
- O Datele de intrare sunt: tensiunea de intrare care va fi stabilizata Vin=15V, si tensiunea de iesire stabilizata, Vout=1.8V.
- Elementul de reglaj serie este reprezentat prin tranzistorul de putere MOSFET IRFRU120N, ce trebuie sa suporte cea mai mare parte a puterii circuitului.
- Circuitul prezinta protective la supracurent si 2 diode led care semnalizeaza Vin, respective Vout.

8. Bibliografie

- www.dce.pub.ro
- www.cetti.ro/v2/pdce.php
- https://wiki.dcae.pub.ro/index.php/Pagina_principal%C4%83
- Proiect1_v3_SeriaB_2021_2022.pdf Îndrumar realizat de ETTI în parteneriat cu Infineon România
- Note de curs Dispozitive Electronice, Gheorghe Brezeanu
- Note de curs Circuite Electronice Fundamentale, Florin Draghici