Math 310

Homework 6

Due: 10/9/2024

Name: Gianluca Crescenzo

Exercise 1. Let $(x_k)_k$ be a sequence of strictly positive numbers such that

$$(kx_k)_k \to L > 0.$$

Show that the infinite series $\sum_k x_k$ diverges.

Proof. By the limit comparison test,

$$\lim\inf\left(rac{x_k}{rac{1}{k}}
ight)=\lim\inf(kx_k)=L>0.$$

Hence $\sum_k x_k$ diverges.

Exercise 2. Let $(x_k)_k$ be a sequence of strictly positive numbers.

- (i) If $\limsup_{n\to\infty} \frac{x_{k+1}}{x_k} < 1$, then the infinite series $\sum_k x_k$ converges.
- (ii) If $\liminf_{n\to\infty} \frac{x_{k+1}}{x_k} > 1$, then the infinite series $\sum_k x_k$ diverges.

Proof. (i) Let $\limsup \frac{x_{k+1}}{x_k} = u$ and $r = \frac{u+1}{2}$. Then u < r < 1. There exists K large so that $r > \sup_{k \ge K} \frac{x_{k+1}}{x_k}$. Hence $rx_k > x_{k+1}$ for all $k \ge K$. Inductively, $r^jx_K > x_{K+j}$. Hence:

$$\sum_{k\geqslant K}x_k=\sum_{j=1}^\infty x_{K+j}< x_K\sum_{j=1}^\infty r^j<\infty.$$

Thus $\sum_k x_k$ converges.

(ii) Let $\liminf \frac{x_{k+1}}{x_k} = l$ and $r = \frac{l+1}{2}$. Then 1 < r < l. There exists K large so that $r < \inf_{k \geqslant K} \frac{x_{k+1}}{x_k}$. Hence $rx_k < x_{k+1}$ for all $k \geqslant K$. Inductively, $r^jx_K < x_{K+j}$. Hence:

$$\sum_{k\geqslant K}x_k=\sum_{j=1}^\infty x_{K+j}>x_K\sum_{j=1}^\infty r^j=\infty.$$

Thus $\sum_k x_k$ diverges.

Exercise 3. Consider the sequence of functions:

$$f_n: \mathbf{R} \to \mathbf{R}; \quad f_n(x) = \arctan(nx).$$

1

- (i) Show that $(f_n)_n \to \frac{\pi}{2} sgn$ point-wise.
- (ii) Show that the convergence in (i) is nonuniform on $(0, \infty)$.
- (iii) Show that the convergence in (i) is uniform on $[a, \infty)$ for a fixed a > 0.

Proof. Note that:

$$(\arctan(n))_n \to \frac{\pi}{2},$$

 $(\arctan(-n))_n \to -\frac{\pi}{2}.$

So given x > 0, there exists $N_x \in \mathbf{N}$ such that $n \ge N_x$ implies $|\arctan(nx) - \frac{\pi}{2}| < \epsilon$. Similarly, given x < 0, there exists $N_x \in \mathbf{N}$ such that $n \ge N_x$ implies $|\arctan(nx) + \frac{\pi}{2}| < \epsilon$. For x = 0, we have that $(\arctan(0))_n = (0)_n \to 0_{\mathcal{F}(\mathbf{R},\mathbf{R})}$. Hence $(\arctan(nx))_n \to \operatorname{sign} \frac{\pi}{2}$.

Let $(x_k)_k = \frac{1}{k}$ and $n_k = k$. Observe that:

$$|f_{n_k}(x_k) - f(x_k)| = |\arctan\left(k \cdot \frac{1}{k}\right) - \operatorname{sign}\left(\frac{1}{k}\right) \cdot \frac{\pi}{2}|$$

= $\arctan(1)$.

Picking $\epsilon_0 = \arctan(1)$ gives that $(\arctan(nx))_n$ does not converge uniformly on $(0, \infty)$.

Fix a > 0. Since $(d_u(f_n, f))_n = \left(\sup_{x \in [a, \infty)} \left| \arctan(nx) - \operatorname{sign}(x) \frac{\pi}{2} \right| \right)_n$, we have:

$$\begin{vmatrix} \sup_{x \in [a,\infty)} \left| \arctan(nx) - \operatorname{sign}(x) \frac{\pi}{2} \right| \le \sup_{x \in [a,\infty)} \left| \arctan(nx) - \operatorname{sign}(x) \frac{\pi}{2} \right| \\ = \sup_{x \in [a,\infty)} \left| \arctan(nx) - \frac{\pi}{2} \right| \\ = 0$$

Thus $(f_n)_n$ converges uniformly on $[a, \infty)$.

Exercise 4. Consider the sequence of functions:

$$f_n: [0,\infty) \to \mathbf{R}; \quad f_n(x) = \frac{\sin(nx)}{1+nx}.$$

- (i) Show that $(f_n)_n \to 0$ point-wise.
- (ii) Show that the convergence in (i) is nonuniform on $(0, \infty)$.
- (iii) Show that the convergence in (i) is uniform on $[a, \infty)$ for a fixed a > 0.

Proof. For x = 0, we have that $(f_n(0))_n = 0_{\mathcal{F}([0,\infty),\mathbb{R})}$. For x > 0:

$$\left|\frac{\sin(nx)}{1+nx}\right| \leqslant \frac{1}{1+n|x|} \leqslant \frac{1}{n|x|}.$$

Since $\left(\frac{1}{n|x|}\right)_n \to 0$, we have that $\left(\frac{\sin(nx)}{1+nx}\right)_n \to 0$. Hence $(f_n)_n \to 0_{\mathcal{F}([0,\infty),\mathbf{R})}$ pointwise. Consider $x_k = \frac{\pi}{2k}$ and $n_k = k$. We have:

$$|f_{n_k}(x_k) - f(x_k)| = \left| \frac{\sin(kx_k)}{1 + kx_k} \right|$$

$$= \frac{\sin\left(k \cdot \frac{\pi}{2k}\right)}{1 + k \cdot \frac{\pi}{2k}}$$

$$= \frac{\sin\left(\frac{\pi}{2}\right)}{1 + \frac{\pi}{2}}$$

$$= \frac{1}{1 + \frac{\pi}{2}}.$$

Picking $\epsilon_0 = \frac{1}{1+\frac{\pi}{n}}$ gives that $(f_n)_n$ does not converge uniformly on $(0,\infty)$.

Fix
$$a > 0$$
. Since $(d_u(f_n, f))_n = \left(\sup_{x \in [a, \infty)} \left| \frac{\sin(nx)}{1 + nx} \right| \right)$, we have:

$$\begin{vmatrix} \sup_{x \in [a,\infty)} \left| \frac{\sin(nx)}{1+nx} \right| \le \sup_{x \in [a,\infty)} \left| \frac{\sin(nx)}{1+nx} \right|$$

$$\le \sup_{x \in [a,\infty)} \left| \frac{1}{1+nx} \right|$$

$$= \frac{1}{1+na}$$

$$\le \frac{1}{na}.$$

Since $\left(\frac{1}{na}\right)_n \to 0$, then $(d_u(f_n, f))_n \to 0$. Thus f_n converges uniformly on $[a, \infty)$.

Exercise 5. Show that the sequence of functions:

$$f_n:[0,\infty)\to\mathbf{R};\quad f_n(x)=x^2e^{-nx}$$

converges uniformly to 0.

Proof. Note that $(f_n)_n \to 0_{\mathcal{F}([0,\infty),\mathbf{R})}$. We have that $(d_u(f_n,f))_n = \left(\sup_{x\in[0,\infty)} \left|x^2e^{-nx}\right|\right)_n$. Observe that:

$$\begin{vmatrix} \sup_{x \in [0,\infty)} |x^2 e^{-nx}| \end{vmatrix} \le \sup_{x \in [0,\infty)} |x^2 e^{-nx}|$$

$$\le \sup_{x \in [0,\infty)} \left| \frac{x^2}{1 + x + \frac{n^2 x^2}{2}} \right|$$

$$\le \sup_{x \in [0,\infty)} \left| \frac{x^2}{\frac{n^2}{2} x^2} \right|$$

$$= \sup_{x \in [0,\infty)} \left| \frac{2}{n^2} \right|$$

$$= \frac{2}{x^2}.$$

Since $\left(\frac{2}{n^2}\right)_n \to 0$, $(d_u(f_n, f))_n \to 0$. Thus $(f_n)_n$ converges uniformly on $[0, \infty)$.

Exercise 6. Let $f_n = \mathbf{1}_{[n,n+1]}$. Show that $(f_n)_n \to 0$ point-wise on \mathbf{R} . Is the convergence uniform?

Proof. Let $x \in \mathbf{R}$. Given $\epsilon > 0$, find N large so that N > x. Then if $n \ge N$, $|f_n(x) - \mathbf{0}(x)| = |\mathbf{1}_{[n,n+1]}(x)| = 0$. Thus $(f_n)_n \to \mathbf{0}$. However, $(f_n)_n \to \mathbf{0}$ uniformly, because $\sup_{x \in \mathbf{R}} |f_n(x) - \mathbf{0}(x)| = 1$ no matter how large n is.

Exercise 7. Let $(f_n)_n$ and $(g_n)_n$ be sequences in $\ell_\infty(\Omega)$ with $(f_n)_n \to f$ and $(g_n)_n \to g$ uniformly on Ω . Prove that $(f_ng_n)_n \to fg$ uniformly on Ω .

Proof. Since $(f_n)_n, (g_n)_n \in \ell_{\infty}(\Omega)$, let:

$$\sup_{x \in \Omega} |f_n(x)| \le U_1$$

$$\sup_{x \in \Omega} |g(x)| \le U_2.$$

Since $(f_n)_n \to f$ uniformly,

$$(\exists N_1 \in \mathbf{N}) \; \text{ s.t. } \; n \geqslant N_1 \implies \sup_{x \in \Omega} |f_n(x) - f(x)| < \frac{\epsilon}{2U_2}.$$

Since $(g_n)_n \to g$ uniformly,

$$(\exists N_2 \in \mathbf{N}) \text{ s.t. } n \geqslant N_2 \implies \sup_{x \in \Omega} |g_n(x) - g(x)| < \frac{\epsilon}{2U_1}.$$

If $n \ge \max\{N_1, N_2\}$, we have:

$$\begin{split} \sup_{x \in \Omega} |f_n(x)g_n(x) - f(x)g(x)| &= \sup_{x \in \Omega} |f_n(x)g_n(x) - f_n(x)g(x) + f_n(x)g(x) - f(x)g(x)| \\ &\leqslant \sup_{x \in \Omega} |f_n(x)(g_n(x) - g(x))| + \sup_{x \in \Omega} |g(x)(f_n(x) - f(x))| \\ &\leqslant \sup_{x \in \Omega} |f_n(x)| \sup_{x \in \Omega} |g_n(x) - g(x)| + \sup_{x \in \Omega} |g(x)| \sup_{x \in \Omega} |f_n(x) - f(x)| \\ &\leqslant U_1 \cdot \frac{\epsilon}{2U_1} + U_2 \cdot \frac{\epsilon}{2U_2} \\ &= \epsilon. \end{split}$$

Thus $(f_n g_n)_n \to f g$ uniformly on Ω .

Exercise 8. Find a sequence of functions $(f_n)_n$ defined on $[0, \infty)$ such that $||f_n||_u \ge n$ but with $(f_n)_n \to 0$ point-wise.