

UTAustinX: UT.7.20x Foundations of Data Analysis - Part 2

- ▶ Important Pre-Course Survey
- Contact Us
- How To Navigate the Course
- Discussion Board
- Office Hours
- Week 0: Introduction to Data (Optional Review)
- ▶ Week 1: Sampling
- Week 2: Hypothesis Testing (One Group Means)
- ▼ Week 3: **Hypothesis Testing (Two Group Means**)

Readings

Reading Check due May 03, 2016 at 17:00

Lecture Videos

Comprehension Check due May 03, 2016 at 17:00 UTC

Week 3: Hypothesis Testing (Two Group Means) > Pre-Lab > Prepare for the Analysis

Analyze the Data

■ Bookmark

Primary Research Questions

- 1. Who is happier at the beginning of the semester: under-classmen or upper-classmen?
- 2. Does student happiness change from the beginning of the semester to the end?

Breakdown Your Analysis

Let's break this analysis into its required steps:

Question 1: Independent t-test

- 1. Make a vector of happiness scores for each sample (under- and upperclassmen).
- 2. Generate histograms to check the Normality assumption.
- 3. Run an independent t-test.
- 4. Interpret the results.

Question 2: Dependent t-test

- 1. Make a vector of difference scores for student happiness from the beginning to the end of semester.
- 2. Generate a histogram of the difference scores to check the Normality assumption.
- 3. Run a dependent t-test.
- 4. Interpret the results.

Here is the code you will use:

R Tutorial Videos

Pre-Lab

Pre-Lab due May 03, 2016 at 17:00 UTC

Lab

Lab due May 03, 2016 at 17:00 UTC

Problem Set

Problem Set due May 03, 2016 at 17:00 UT

Week 4: Hypothesis Testing (Categorical Data)

Lab Question 1

Make a vector of happiness scores for each sample
underclass_happy <post\$happy[post\$classification=='Freshman'|post\$classification=='Sopho
more']
upperclass_happy <post\$happy[post\$classification=='Junior'|post\$classification=='Senior']

Check the normality assumption

hist(underclass_happy, xlab='Underclassman Happiness', main='Percent of Time Happy')

hist(upperclass_happy, xlab='Upperclassman Happiness', main='Percent of Time Happy')

Run independent t-test
t.test(underclass_happy, upperclass_happy)

Lab Question 2

Make a vector of difference scores post\$diff_happy <- post\$happy - post\$post_happy

Check the normality assumption hist(post\$diff_happy, xlab= 'Difference in Happiness over the Semester', main = 'Happy-Post Happy')

Run dependent t-test
t.test(post\$happy, post\$post_happy, paired=T)

(1/1 point)

- 1. Which classifications of students are considered **upper**classmen, according to the code above?
 - seniors only
 - juniors and seniors
 - sophomores, juniors and seniors

Click here for a video explanation of how to answer this question.	
You have	used 1 of 1 submissions
(1/1 point 2. How ma Question	any sample means are being compared in the t-test for Lab
O thre	e
• two	✓
one one	
Click he	re for a video explanation of how to answer this question.
You have	used 1 of 1 submissions
	c) oes this line of code do? Ef_happy <- post\$happy - post\$post_happy
O Calc	culates how happy each student was at the end of the semester
Crea	ates a new variable for each student in the dataset 💙
O Find	ls the average difference in happiness for all students in the
Click he	re for a video explanation of how to answer this question.
You have	used 1 of 1 submissions

(1/1 point)

4. A student was happy 75% of the time at the beginning of the semester and 90% at the end of the semester. What will be the value of post\$diff_happy for this student?

- 0
- -15
- +15

Click here for a video explanation of how to answer this question.

You have used 1 of 1 submissions

(1/1 point)

Suppose we wanted to test the happiness scores of those who live on campus against those who live off campus. What has caused the error below?

```
post <- PostSurvey</pre>
```

```
on campus <- post[post$live campus == 'yes',]
off campus <- post[post$live campus == 'no',]
on campus happy <- on campus$happy
off campus happy <- off campus$happy
t.test(on campus happy, off campus happy, paired = T)
```

Error in complete.cases(x, y) : not all arguments have the same length

- We ran the wrong type of test.
- We told R to look in the wrong dataset for the "happy" variable.
- We did not specify the value of mu.
- The responses for the "live_campus" variable have "Y" and "N" as responses, not "yes" and "no".

Click here for a video explanation of how to answer this question.

You have used 1 of 1 submissions

© All Rights Reserved

© edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

