Structural Equation Modeling

P.02 - Path Analysis

27.10.2021

Lab description

The exercises for this lab are meant to help you understand how to conduct *path analysis* using the lavaan package in R. For this practical you will need two packages: lavaan and semPlot. You can install and load these packages using the following code:

```
# Install packages.
install.packages(c("lavaan", "semPlot"))

# Load the packages.
library(lavaan)
library(semPlot)
```

Lab exercises

Exercise 1

MacKinnon (2008, p. 113) provides a dataset from a hypothetical study of teacher expectancies and student achievement (sample size: N = 40). His path model is shown in Figure 1 and the covariances for the model are given in Figure 2. Your first task is to solve the exercise proposed by Beaujean (2014). More specifically you are asked to:

- a. Input the covariances into R.
 - Hint: consider using the lavaan function lav_matrix_lower2full to do this.
- b. Write the syntax for the model.
 - Hint: use the := operator to define both indirect effects from teacher expectancies to student achievement $(a_1 \times b_1 \text{ and } a_2 \times b_2)$.
- c. What are the indirect effects?

Figure 1: Path model

	Teacher Expectancies	Social Climate	Material Covered	$\begin{array}{c} {\rm Student} \\ {\rm Achievement} \end{array}$
Teacher Expectancies	84.85	71.28	18.83	60.05
Social Climate	71.28	140.34	-6.25	84.54
Material Covered	18.83	-6.25	72.92	37.18
Student Achievement	60.05	84.54	37.18	139.48

Figure 2: Covariances between observed variables (N = 40)

Answers

We start by inputing the covariances in R.

```
# Create the covariance matrix.

covariance_matrix <- law_matrix_lower2full(
    c(84.85, 71.28, 140.34, 18.83, -6.25, 72.92, 60.05, 84.54, 37.18, 139.48)
)

# Write down the names of the variables.
# - 'TeachExp' stands for "teaching expectancies".
# - 'SocClim' stands for "social climate".
# - 'MatCov' stands for "material covered".
# - 'StAch' stands for "student achievement".
names <- c("TeachExp", "SocClim", "MatCov", "StAch")

# Add names to the rows and columns of the covariance matrix.
rownames(covariance_matrix) <- colnames(covariance_matrix) <- names

# Print the covariance matrix for inspection.
print(covariance_matrix)

## TeachExp SocClim MatCov StAch
## TeachExp 84.85 71.28 18.83 60.05

## SocClim 71.28 140.34 -6.25 84.54
## MatCov 18.83 -6.25 72.92 37.18
## StAch 60.05 84.54 37.18 139.48
```

Now that we have the covariance matrix, we can write down the model syntax in lavaan. Note that we need to use the := operator, which as presented in the lavaan documentation:

'defines' new parameters which take on values that are an arbitrary function of the original model

parameters. The function, however, must be specified in terms of the parameter labels that are explicitly mentioned in the model syntax.

```
# The model syntax.
model_syntax <- '
    # Specify the regression equations and add labels.
    StAch ~ b1 * SocClim + b2 * MatCov + c * TeachExp
    MatCov ~ a2 * TeachExp
    SocClim ~ a1 * TeachExp

    # Specify the indirect effects.
    indirect1 := a1 * b1
    indirect2 := a2 * b2
'
# You can print the syntax to convince yourself that it's just text.
print(model_syntax)</pre>
```

[1] "\n # Specify the regression equations and add labels.\n StAch ~ b1 * SocClim + b2 * MatCov + c * TeachExp\n MatCov ~ a2 * TeachExp

And finally we can fit the model in order to obtain the parameter estimates.

```
# Fit the model.
fit <- sem(model_syntax, sample.cov = covariance_matrix, sample.nobs = 40)

# Visualize the model.
semPaths(fit, what = "path")</pre>
```



```
# Get fit summary.
summary(fit, standardized = TRUE)
```

```
## lavaan 0.6-9 ended normally after 17 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 8
```

##								
##						40		
##		.,						
##	Model Test Use	er Mod	del:					
##	Test statis	ti c				3.687		
##	Degrees of		om.			3.007		
##	P-value (Ch					0.055		
##	r varac (on	ı bqu	110)			0.000		
	Parameter Est:	imates	s:					
##								
##	Standard er	rors				Standard		
##	Information					Expected		
##	Information	satu	rated (h1)	model	St	ructured		
##								
##	Regressions:							
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	StAch ~							
##	SocClim	(b1)	0.569	0.142	4.006	0.000	0.569	0.545
##	MatCov	(b2)	0.530	0.154	3.446		0.530	0.366
##	TeachExp	(c)	0.112	0.186	0.603	0.546	0.112	0.084
##	MatCov ~							
##	TeachExp	(a2)	0.222	0.142	1.559	0.119	0.222	0.239
##	SocClim ~	(-4)	0.040	0.454	F 4F6	0.000	0.040	0.050
##	TeachExp	(a1)	0.840	0.154	5.456	0.000	0.840	0.653
	Variances:							
##	variances.		Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	.StAch		63.323	14.159	4.472	0.000	63.323	0.425
##	.MatCov		67.023	14.987	4.472	0.000	67.023	0.943
##	.SocClim		78.448	17.542	4.472	0.000	78.448	0.573
##								
##	Defined Parame	eters	:					
##			Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
##	indirect1		0.478	0.148	3.229	0.001	0.478	0.356
##	indirect2		0.118	0.083	1.421	0.155	0.118	0.088

The indirect effect through social climate is 0.478. The indirect effect through material covered is 0.118.

Exercise 2

In-class discussion of the code below and answer the following questions:

- a. Is the model multiple_mediation just-identified, over-identified or under identified? Show calculations that proof your position.
- b. How many degrees of freedom does the model constrained_mediation have? Motivate your answer.

The code is adapted from https://paolotoffanin.wordpress.com/2017/05/06/multiple-mediator-analysis-with-lavaan.

Answers

To answer Exercise 2, point (a) we need to look at the degrees of freedom (DF). We can, of course, take them directly from the lavaan summary output, but that wouldn't be any fun, so we calculate them ourselves

based on the following straightforward the formula:

$$DF = \#$$
 parameters $- \#$ free parameters,

where the symbol # stands for 'the number of.'

We proceed by first determining how many parameters are in the model (i.e., how many elements are in the covariance matrix). We can calculate the number of elements in the covariance matrix as follows:

parameters =
$$\frac{p \times (p+1)}{2}$$
,

where p represents the number of variables in the model. In our case, this translates to:

parameters =
$$\frac{4 \times (4+1)}{2} = 10$$

Next, we determine how many free parameters (i.e., parameters that need to be estimated) are in the model:

- 1 variance, 3 error variances
- 1 covariance (i.e., between the mediators)
- 5 structural path coefficients

In total that gives us # free parameters = 10. Therefore, we have DF = 10 - 10, i.e., DF = 0. In this case, we say that the model multiple mediation is just-identified as it contains 0 degrees of freedom.

To answer Exercise 2, point (b) we need to understand that when adding a constraint we are asking lavaan to estimate one fewer parameter. Therefore, compared to the multiple_mediation model, the constrained_mediation model has 1 degrees of freedom (i.e., given by the constrain we set on the indirect effects).

Overview for the code below.

The code below is used to fit and visualize a multiple mediation model. Then, we pretend that we are interested in determining whether the two indirect effects are significantly different. We test this scenario in three different ways:

- 1. First, in the contrast_mediation model we estimate a contrast parameter that is defined as the difference between the two indirect effects and we check the *p*-value provided by lavaan for that parameter.
- 2. Then, we estimate a new model constrained_mediation where we constraint the indirect effects to be equal (i.e., our null hypothesis). To test this hypothesis, we perform a Likelihood Ration Test (LRT) by comparing the constrained_mediation with the multiple_mediation model for which the constraint is not applied.
- 3. Finally, we can also investigate the difference between these two parameters by using the same approach as in the contrast_mediation scenario, but this time instructing lavaan to construct the standard errors based on bootstrapping, instead of relying on an assumption of normality. Then, we can consult the confidence intervals provided. In order to obtain valid results, make sure you use a sufficiently large number of bootstraps (e.g., 2000 or more).

```
# Set the seed to be able to replicate the results.

set.seed(03101972)

# Simulate data with two mediators.

x <- rnorm(100)

n2 <- -0.40 * x + rnorm(100)

n2 <- -0.40 * x + rnorm(100)

y <- 0.77 * m2 * 0.45 * -m1 * rnorm(100)

# Put the variables together in a data frame.

data <- data.frame(x = x, y = y, mi = mi, m2 = m2)

# Model syntax for the multiple mediation model.

multiple_mediation <- '

y - bi * mi + b2 * m2 + c * x

mi - ai * x

m2 - a2 * x

# Allow for covariance between the mediators (i.s., as in Preacher and Hayes, 2008).

mi -- m2

# Indirect effects.

indirect1 := ai * bi

indirect2 := a2 * b2

# Total effect.

total := c + (ai * bi) + (a2 * b2)

.

# Fit the model.

fit_mediation <- sem(model = multiple_mediation, data = data)

# Visualize the model.

semPathe(fit_mediation, what = "path", whatlabels = "label")
```


We can also see the values of the estimated parameters instead of the labels.
semPaths(fit_mediation, what = "path", whatLabels = "par")

Extract fit statistics. summary(fit_mediation)

##	lavaan 0.6	-9 ended	normal	ly af	ter 16	iteration	s
##							
##	Estimato	r					ML
##	Optimiza	tion meth	od				NLMINB
##	Number o	f model p	aramet	ers			9
##							
##	Number of observations						100
##							
##	Model Test	User Mod	el:				
##							
##	Test sta	tistic					0.000
##	Degrees	of freedo	m				0
##							
##	Parameter	Estimates	:				
##							
##	Standard	errors					Standard
##	Informat	ion					Expected
##	Informat	ion satur	ated (h1) m	odel	St	ructured
##							
##	Regression	s:					
##			Estima	te S	td.Err	z-value	P(> z)
##	у ~						
##	m1	(b1)	-0.4	50	0.093	-4.829	0.000
##	m2	(b2)	0.5	97	0.107	5.584	0.000
##	x	(c)	-0.2	09	0.122	-1.714	0.086
##	m1 ~						
##	x	(a1)	0.6	18	0.107	5.803	0.000
##	m2 ~						
##	x	(a2)	-0.3	26	0.093	-3.505	0.000

```
##
## Covariances:
##
                 Estimate Std.Err z-value P(>|z|)
## .m1 ~~
##
   .m2
                  0.189 0.112 1.685 0.092
##
## Variances:
##
                 Estimate Std.Err z-value P(>|z|)
##
                  1.072 0.152 7.071
                                        0.000
                   1.270 0.180
                                 7.071 0.000
##
   .m1
   .m2
##
                   0.966 0.137 7.071 0.000
##
## Defined Parameters:
                Estimate Std.Err z-value P(>|z|)
##
                 -0.278 0.075 -3.712 0.000
##
     indirect1
##
     indirect2
                  -0.194 0.066 -2.968 0.003
     total
                  -0.681 0.119 -5.748 0.000
##
```

Now include a contrast in the model to test the null hypothesis that the indirect effects are equal to each other

```
# Model syntax for multiple mediation model with contrast.
contrast_mediation <- '
    y - b1 * m1 + b2 * m2 + c * x
    m1 - a1 * x
    m2 - a2 * x

# Allow for covariance between the mediators.
    m1 -- m2

# Indirect effects.
    indirect1 := a1 * b1
    indirect2 := a2 * b2

# Total effect.
    total := c + (a1 * b1) + (a2 * b2)

# Contrast.
    contrast := indirect1 - indirect2

/

# Fit the model.
fit_contrast_mediation <- sem(model = contrast_mediation, data = data)

# Extract fit statistics.
summary(fit_contrast_mediation)</pre>
```

```
## lavaan 0.6-9 ended normally after 16 iterations
##
    Estimator
                                                      ML
                                                  NLMINB
##
    Optimization method
##
    Number of model parameters
##
##
    Number of observations
                                                    100
##
## Model Test User Model:
##
##
    Test statistic
                                                   0.000
##
   Degrees of freedom
                                                       0
##
## Parameter Estimates:
```

```
##
    Standard errors
                                            Standard
##
##
                                            Expected
    Information
##
    Information saturated (h1) model
                                          Structured
##
## Regressions:
                   Estimate Std.Err z-value P(>|z|)
##
##
    у ~
##
               (b1) -0.450
                              0.093 -4.829
                                              0.000
     m1
##
     m2
               (b2)
                     0.597
                              0.107
                                     5.584
                                              0.000
               (c) -0.209
                              0.122 -1.714
                                              0.086
##
      х
##
    m1 ~
               (a1) 0.618
                              0.107
                                              0.000
##
    х
                                      5.803
    m2 ~
##
##
               (a2) -0.326
                              0.093 -3.505
                                              0.000
##
## Covariances:
                   Estimate Std.Err z-value P(>|z|)
##
## .m1 ~~
##
                      0.189 0.112 1.685
                                              0.092
##
## Variances:
##
                   Estimate Std.Err z-value P(>|z|)
##
                      1.072 0.152 7.071
                                              0.000
##
                      1.270
                              0.180
                                     7.071
                                              0.000
##
                      0.966
                             0.137
                                     7.071
                                              0.000
##
## Defined Parameters:
##
                   Estimate Std.Err z-value P(>|z|)
##
                   -0.278 0.075 -3.712
                                              0.000
##
     indirect2
                     -0.194
                             0.066 -2.968
                                              0.003
##
                     -0.681 0.119 -5.748
                                              0.000
                     -0.084 0.101 -0.834
                                              0.404
```

Finally, add a constraint in the multiple mediation model specifying the two indirect effect to be equal.

```
constrained_mediation <- '
    y - b1 * m1 + b2 * m2 + c * x
    m1 - a1 * x
    m2 - a2 * x

# Allow for covariance between the mediators.
    m1 -- m2

# Indirect effects.
    indirect1 := a1 * b1
    indirect2 := a2 * b2

# Total effect.
    total := c + (a1 * b1) + (a2 * b2)

# Equality constraint.
    indirect1 == indirect2

/*

# Fit the model.

fit_constrained_mediation <- sem(model = constrained_mediation, data = data)

# Visualize the model.

semPaths(fit_constrained_mediation, what = "path", whatLabels = "par")</pre>
```


Extract fit statistics and check that the constrain is satisfied.
summary(fit_constrained_mediation)

## lavaan 0.6-	-9 ended 1	normally	after 230) iteratio	ns
##					
## Estimator	ſ				ML
## Optimizat	tion metho	od			NLMINB
## Number of	f model pa	arameters			9
##					
## Number of	fobserva	tions			100
##					
## Model Test	User Mode	el:			
##					
## Test stat	tistic				0.704
## Degrees o	of freedom	n			1
## P-value	(Chi-squa	re)			0.401
##					
## Parameter H	Estimates	:			
##					
## Standard					C
## Stalldard	errors				Standard
## Informati					Expected
## Informati		ated (h1)	model	St	
## Informati	ion ion satura	ated (h1)	model	St	Expected
## Informati	ion ion satura	ated (h1)			Expected
## Informati	ion ion satura	ated (h1) Estimate		St z-value	Expected
## Informati ## Informati ## ## Regressions ## ## y ~	ion ion satura s:	Estimate	Std.Err	z-value	Expected ructured P(> z)
## Informati ## Informati ## ## Regressions ## ## y ~ ## m1	ion saturation saturat	Estimate	Std.Err 0.083	z-value	Expected ructured P(> z) 0.000
## Informati ## Informati ## ## Regressions ## ## y ~	(b1) (b2)	-0.414 0.625	Std.Err 0.083 0.102	z-value -5.006 6.155	Expected ructured P(> z) 0.000 0.000
## Informati ## Informati ## ## Regressions ## ## y ~ ## m1 ## m2 ## x	ion saturation saturat	-0.414 0.625	Std.Err 0.083 0.102	z-value -5.006 6.155	Expected ructured P(> z) 0.000 0.000
## Informati ## Informati ## ## Regressions ## ## y ~ ## m1 ## m2 ## x ## m1 ~	(b1) (b2) (c)	-0.414 0.625 -0.222	Std.Err 0.083 0.102 0.121	z-value -5.006 6.155 -1.833	Expected ructured P(> z) 0.000 0.000 0.067
## Informati ## Informati ## ## Regressions ## ## y ~ ## m1 ## m2 ## x ## m1 ~ ## x	(b1) (b2)	-0.414 0.625	Std.Err 0.083 0.102 0.121	z-value -5.006 6.155 -1.833	Expected ructured P(> z) 0.000 0.000
## Informati ## Informati ## ## Regressions ## ## y ~ ## m1 ## m2 ## x ## m1 ~ ## x ## m2 ~	(b1) (b2) (c) (a1)	-0.414 0.625 -0.222 0.570	Std.Err 0.083 0.102 0.121 0.089	z-value -5.006 6.155 -1.833 6.365	P(> z) 0.000 0.000 0.067
## Informati ## Informati ## ## Regressions ## ## y ~ ## m1 ## m2 ## x ## m1 ~ ## x ## m2 ~ ## x	(b1) (b2) (c)	-0.414 0.625 -0.222	Std.Err 0.083 0.102 0.121 0.089	z-value -5.006 6.155 -1.833 6.365	Expected ructured P(> z) 0.000 0.000 0.067
## Informati ## Informati ## ## Regressions ## ## y ~ ## m1 ## m2 ## x ## m1 ~ ## x ## m2 ~	(b1) (b2) (c) (a1)	-0.414 0.625 -0.222 0.570	Std.Err 0.083 0.102 0.121 0.089	z-value -5.006 6.155 -1.833 6.365	P(> z) 0.000 0.000 0.067

10

```
Estimate Std.Err z-value P(>|z|)
##
##
   .m1 ~~
##
                      0.192
                              0.113
                                     1.705
                                               0.088
     .m2
##
## Variances:
##
                   Estimate Std.Err z-value P(>|z|)
##
                      1.075
                              0.152
                                      7.071
                                               0.000
                      1.272
                                      7.071
##
                              0.180
                                               0.000
     .m1
##
     .m2
                      0.969
                              0.137
                                      7.071
                                              0.000
##
## Defined Parameters:
##
                   Estimate Std.Err z-value P(>|z|)
                    -0.236 0.049 -4.805
                                               0.000
##
      indirect1
      indirect2
                     -0.236 0.049 -4.805
##
                                              0.000
                     -0.694 0.118 -5.894
                                              0.000
##
      total
##
## Constraints:
                                             |Slack|
##
      indirect1 - (indirect2)
                                               0.000
```

Test if the constrained model fits equally well as the model without the equality constraint using a Likelihood-Ratio Test (LRT). We can perform a LRT for two models fited with lavaan in R using the anova function.

```
# Perform LRT
anova(fit_mediation, fit_constrained_mediation)
## Chi-Squared Difference Test
##
                            Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
                            0 893.80 917.25 0.0000
## fit_mediation
## fit_constrained_mediation 1 892.51 913.35 0.7044
                                                       0.70441
                                                                           0.4013
# Note, you should use a sufficiently large number of bootstraps.
   model = contrast_mediation,
   se = "bootstrap",
    bootstrap = 2000
# Extract information.
## lavaan 0.6-9 ended normally after 16 iterations
##
##
     Estimator
                                                       ML
##
    Optimization method
                                                   NLMINB
##
    Number of model parameters
                                                       9
##
     Number of observations
                                                      100
## Model Test User Model:
                                                    0.000
     Test statistic
##
     Degrees of freedom
                                                        0
##
## Model Test Baseline Model:
##
    Test statistic
                                                  110.408
```

```
Degrees of freedom
                                                       6
##
                                                   0.000
##
    P-value
##
## User Model versus Baseline Model:
##
##
     Comparative Fit Index (CFI)
                                                   1.000
     Tucker-Lewis Index (TLI)
                                                   1.000
##
##
## Loglikelihood and Information Criteria:
##
##
    Loglikelihood user model (HO)
                                                -437.900
##
    Loglikelihood unrestricted model (H1)
                                                -437.900
##
    Akaike (AIC)
                                                 893.801
##
     Bayesian (BIC)
                                                 917.247
##
     Sample-size adjusted Bayesian (BIC)
                                                 888.823
##
##
## Root Mean Square Error of Approximation:
##
                                                   0.000
##
    RMSEA
                                                   0.000
##
    90 Percent confidence interval - lower
    90 Percent confidence interval - upper
                                                   0.000
##
    P-value RMSEA <= 0.05
                                                      NA
##
## Standardized Root Mean Square Residual:
##
##
     SRMR
                                                   0.000
##
## Parameter Estimates:
##
    Standard errors
                                               Bootstrap
    Number of requested bootstrap draws
                                                    2000
     Number of successful bootstrap draws
                                                    2000
##
## Regressions:
                     Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
##
    у ~
                       -0.450
                                 0.102
                                         -4.404
                                                   0.000
                                                           -0.646
                                                                    -0.248
##
      m1
                 (b1)
##
      m2
                 (b2)
                        0.597
                                 0.118
                                          5.043
                                                   0.000
                                                           0.379
                                                                    0.841
                       -0.209
##
      х
                 (c)
                                 0.102
                                         -2.054
                                                   0.040
                                                           -0.419
                                                                    -0.007
##
    m1 ~
                        0.618
                                 0.124
                                          5.002
                                                   0.000
                                                            0.393
##
      х
                 (a1)
                                                                    0.886
##
    m2 ~
                 (a2)
                       -0.326
                                 0.087 -3.747
                                                   0.000
                                                           -0.483
                                                                   -0.144
##
##
     Std.lv Std.all
##
##
      -0.450 -0.406
##
      0.597
              0.430
      -0.209
##
              -0.153
##
##
      0.618
              0.502
##
      -0.326 -0.331
##
##
## Covariances:
                     Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
##
##
   .m1 ~~
##
                        0.189 0.103 1.833
                                                   0.067 -0.024
                                                                     0.385
##
     Std.lv Std.all
##
```

##

0.189 0.171

```
##
## Variances:
##
               Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
##
                  1.072 0.146 7.368
                                      0.000 0.752 1.343
                                             0.925
                                                   1.563
##
                  1.270 0.162 7.838
                                      0.000
   .m1
##
    .m2
                  0.966 0.129 7.495 0.000 0.720 1.222
##
   Std.lv Std.all
##
    1.072
           0.513
    1.270
           0.748
##
##
    0.966 0.891
##
## R-Square:
##
                Estimate
                  0.487
##
##
                  0.252
   m1
   m2
                  0.109
##
##
## Defined Parameters:
##
              Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
##
               indirect1
##
   indirect2
                 -0.194
                         0.063 -3.103
                                      0.002 -0.327 -0.078
##
   total
                -0.681
                         0.113 -6.034 0.000 -0.910 -0.461
##
                -0.084 0.108 -0.776 0.438 -0.312 0.117
    contrast
##
   Std.lv Std.all
   -0.278 -0.204
##
##
   -0.194 -0.142
##
   -0.681 -0.498
  -0.084 -0.061
```

References

Beaujean, A. A. (2014). Latent variable modeling using R: A step by step guide. Routledge/Taylor & Francis Group.

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Lawrence Erlbaum Associates.