Due: Sept 23rd

- 1. Suppose $F: \mathbb{R}^3 \to \mathbb{R}^2$ is given by $F(x, y, z) = (x^2y + (z/y), z^2x y)$.
 - (a) Find $dF_{(3,2,4)}$.
 - (b) Using the differential, approximate F(3.01, 2.08, 3.98).
- 2. Suppose $F: \mathbb{R}^3 \to \mathbb{R}$ is given by $F(x, y, z) = \frac{x^2 y^{3/2} z}{z+1}$. Note that F(5, 4, 1) = 100.
 - (a) If we change x to 5.03 and y to 3.92, then how much should we change z in order to keep the value of F equal to 100?
 - (b) Suppose we want to increase the value of F but can only change one of the independent variables. Which variable should we change to get the biggest change in the value of F for the smallest change in the independent variable?

Of course, you should justify your answers to each of these questions.

3. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (a) Prove that f is continuous at (0,0). HINT: First show that $|xy| \le x^2 + y^2$ for all $x, y \in \mathbb{R}$.
- (b) For each direction vector $v \in \mathbb{R}^2$, show that $D_v f$ exists and compute it.
- (c) Show that f is **not** differentiable at (0,0). HINT: If it was, we could compute the directional derivatives using the partial derivatives at (0,0). Compare these formulae to your answer to part (b).
- 4. Consider $f: \mathbb{R} \to \mathbb{R}^n$ with $df_t \neq 0$ for all $t \in \mathbb{R}$. Suppose $p \in \mathbb{R}^n$. If there is $t \in \mathbb{R}$ so that q = f(t) the point of the image closest to p, show that p q is orthogonal to $df_t(1)$.

Here, "point of the image closest to p" means that $||p - f(t)|| \le ||p - f(s)||$ for all $s \in \mathbb{R}$.

HINT: Differentiate $\phi(s) = ||p - f(s)||^2$. Note that ϕ maps \mathbb{R} into \mathbb{R} .