Music & the Internet MUMT301

Gabriel Vigliensoni
Schulich School of Music
McGill University

Plan

- Review of the last class and assignment
- Internet technologies
- Introduction to CSS
- In-class exercise
- Assignment #3

Review last class

- History of Internet
- History of the WWW and HTML
- History of web browsers
- Set up server accounts
- Code editor and FTP software
- Introduction to HTML
 - basic tags and elements
 - basic webpage template
 - Assignment 2

Assignment 2

- music.mcgill.ca/~backer
- music.mcgill.ca/~davis
- music.mcgill.ca/~hecht
- music.mcgill.ca/~hiebert
- music.mcgill.ca/~smith
- music.mcgill.ca/~szeto
- music.mcgill.ca/~akdag
- What did we learn?

Internet technologies and protocols

- Ethernet
- TCP/IP
- OSI Model
- IP Addresses
- DNS
- Ports
- DHCP
- FTP
- SSH
- HTTP

Ethernet

- Computer networking technology
- Specifies a protocol and frame format for data communication
- Invented by Bob Metcalf. First documented in internal XEROX PARC memo (1973)

Metcalf's original sketch of Ethernet

Ethernet

- Stream of data is divided into shorter pieces called frames.
 - Each frame contains source and destination addresses
 - Damaged data can be detected and re-transmitted by means of errorchecking data (CRC)
- Each hardware is given a 6 octets (48 bit) MAC address
- Originally based on inexpensive and ubiquitous coaxial cable and twisted pair wiring
- Standardized in <u>IEEE 802.3</u> (1983) with a data rate of 10Mbps (10BASE-T)
- In 1995 was standardized to 100Mbps ("Fast Ethernet")
- Contemporary alternative to wired Ethernet is IEEE 802.11, also known as WiFi

Ethernet packet and frame

802.3 Ethernet packet and frame structure

Layer	Preamble	Start of frame delimiter	MAC destination		802.1Q tag (optional)	Ethertype (Ethernet II) or length (IEEE 802.3)	Payload	Frame check sequence (32-bit CRC)	Interpacket gap
	7 octets	1 octet	6 octets	6 octets	(4 octets)	2 octets	46(42) ^[b] -1500 octets	4 octets	12 octets
Layer 2 Ethernet frame					•	- 64-1518(1522) octets	ş →		
Layer 1 Ethernet packet					⊢ 72–1526(⁻	1530) octets →			
				1			/	\	
80 Dest	00 20 7/ ination MA		80 00 2 Source M MAC Header (14 bytes)			08 00 EtherType	IP, ARP, etc. Payload Data (46 - 1500 bytes)	CRC Ch	20 3A necksum
					Ethernet T (64 to 15	ype II Frame 518 bytes)			

Ethernet standards

Name	Connector	Speed	Distance
10BASE-2	AUI	10 Mbps	500m
10BASE-5	BNC	10 Mbps	200m
10BASE-T	RJ-45	10 Mbps	100m
100BASE-TX	RJ-45	100 Mbps	100m
100BASE-FX	ST, SC, LC	100 Mbps	2000m
1000BASE-T	RJ-45	1 Gbps	100m
1000BASE-X	ST, SC, LC	1 Gbps	2000m
10GBASE-X	ST, SC, LC	10 Gbps	2000m

Internet Protocol Suite (TCP/IP)

- The Internet Protocol Suite (TCP/IP) works on top of Ethernet frame
 - provides end-to-end connectivity
 - specifyies how data is packetized, addressed, transmitted, routed and received at the destination.
- Web browsers use these protocols when they connect to servers on the WWW
- HTTP, HTTPS, SMTP, POP3, IMAP, SSH, FTP, SFTP are protocols encapsulated within TCP/IP

Complete Ethernet Packet

Taken from openmicrolab.com

IP Headers

IPv4 Header Format

IPv4 (20 bytes)

Offsets	Octet				(0								1								2									3				
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	0 11	12	13	14	15	16	17	18	19	2	0 2	1 2	2 2	23	24	25	5 2	6 2	7 2	28	29	30	31
0	0	,	Version IHL DSCP ECN Total Length																																
4	32		Identification Flags Fragment Offset																																
8	64			Tim	ne T	Го	Live	9					Pro	toco	ol								Н	ead	ler	r C	he	cks	sun	n					
12	96														S	our	e II	P A	ddı	ress	8														
16	128													[Des	tina	tior	ı IP	Ad	ldre	ss														
20	160														0	ptio	ns ((if II	HL	> 5)														

Taken from wikipedia.com

Fixed header format

Offsets	Octet				0								1							:	2							3			
Octet	Bit	0	1	2	3 4	4	5 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23 2	24	25 2	6 27	7 2	28 29	30	31
0	0	1	Ver	sioi	7		Tı	affi	c C	lass	s										FI	ow l	Lab	el							
4	32						Pay	/loa	d L	eng	gth								Ne	xt F	lead	der					Нор	o L	.imit		
8	64																														
12	96														Sai	ıro	e Ad	Idro	ee												
16	128													•	500	110	6 AL	iuie	100												
20	160																														
24	192																														
28	224													De	etir	nat	ion .	Ado	Irac												
32	256													De	Sui	iai	ion	Auu	1165	3											
36	288																														

IPv6 (36 bytes)

Taken from wikipedia.com

TCP Header (20 bytes)

TCP Header

Offsets	Octet		0					1	l							:	2								3			
Octet	Bit	0 1 2 3	4 5 6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	2	7 2	8 29	30	31
0	0		So	urc	e po	ort)es	tina	tior	р	ort					
4	32									Se	que	nce	nu	mb	er													
8	64						Ac	kno	owle	edg	me	nt n	uml	ber	(if	ACI	se	t)										
12	96	Data offset	Reserved 0 0 0	N S	C W R	E C E	U R G	A C K	P S H	R S T	s Y N	F I N							W	indo	w S	Size	•					
16	128		Ch	necl	ksur	m											Urg	gen	t p	oint	er (if U	RG :	set	1)			
20	160	Options (if data offset > 5. Padded at the end with "0" bytes if necessary.)																										
•••	•••																											

Taken from wikipedia.com

UDP Header

Offsets	Octet				0)								1							:	2					port								
Octet	Bit	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		
0	0							Sc	ource	e po	ort													Des	tina	tion	por								
4	32								Len	gth														С	hec	ksu	m								

Taken from wikipedia.com

MAC and IP Addresses

- IPv4 (32 bits = 4 bytes)
 - 4,294,967,296 possible IP addresses
 - one billion already used
- IPv6 (128 bits)
 - 3.4*10³⁸ (340 trillion trillion trillion)
 - Bacterial cells on earth: 5*10³⁰
- MAC (Media Access Control)
 - MAC-48: $2^{48} = 281,474,976,710,656$ addresses (281 x 10^{12} , trillions)
 - All fish in the ocean: 3.5*10¹²

OSI Model

- The Open System Interconnection model conceptualizes all functions in a communication system
- OSI model is an ISO standard for worldwide communications that defines a framework for implementing protocols in seven layers
- Transmitting bits from one device to another is not enough to establish comprehensible communications
- All information must be organised in a hierarchical manner to convey a message
- It defines what a transmitting device must do to pack up a message for transmission and what the receiving device must do to unpack the transmission to recreate the original message
- Ethernet-based communication protocols do obey the OSI model

OSI Model

Taken from http://www.escotal.com/osilayer.html

OSI (Open Source Interconnection) 7 Layer Model

Layer	Application/Example	Central Pro	Devic tocols	e/	DOD4 Model
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	Use Applicat	ions		
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation	JPEG/AS EBDIC/TIF PICT	F/GIF	G	Process
Session (5) Allows session establishment between processes running on different stations.	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.	RPC/SQL NetBIOS n	/NFS	A	
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX	/UDP	E W A	Host to Host
Network (3) Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting	Route		Y Can be	Internet
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	Switch Bridge WAP PPP/SLIP	Land Based	on all layers	Network
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	Hub	Layers		Helwork

OSI Model

Taken from http://www.escotal.com/osilayer.html

Complete Ethernet Packet

Taken from openmicrolab.com

Domain Name System (DNS)

- Domain name servers translate domain names to IP addresses (they are aliases for IP addresses)
- Defined by P. Mockapetris (1982) in <u>RFC882</u>
 - Defined syntax of domain name
 - Righmost label conveys the top-level domains, e.g., .edu, .org, or .com
 - Restriction on the length of domain names to 63 characters, excluding the top-level domain
 - Subdivision of domain names can go up until 127 levels
 - Maximum total length of 255 characters
 - Domain names are also limited to a subset of ASCII characters, preventing many languages from representing their names and words correctly
- Obsoleted in RFC1034, RFC1035 (1987)
 - It is based on thirteen "root servers" worldwide, all but three were located in the US. Nowadays they are spread across multiple countries

Ports

- Virtual pathways on which Internet data travels
- If we think of IP addresses as telephone numbers, ports are telephone number extensions
- The port number added to the IP address completes the address for a communication session
- All data sent to an IP address is sent on specific ports
- Ports identify unique applications or processes running on a computer and enable them to share a single physical connection in the Internet
- 16 bits are dedicated for port numbers: 65535 different ports
- Syntax: (IP Address): (Port Number)
- Typical system ports: 21 (FTP), 22 (SSH), 25 (SMTP), 53(DNS), 80 (HTTP), 194 (IRC), 443(HTTPS)
- Registered ports: 5050 (Yahoo! Messenger), 9293 (Sony Playstation remote play), 19294 Google
 Talk, ... partial list here
 What's in 8888?

DHCP

- How does the Internet find me when I move around with my laptop/tablet/ phone?
 - By using a Dynamic Host Configuration Protocol
- Protocol standardized in 1993 by which computers on a network requesting IP addresses and network parameters are assigned from DHCP servers

FTP (File Transfer Protocol)

- Protocol that computers on a TCP/IP network use to transfer files to and from each other
 - Can be used with a client application or from command line
 - Usually works on port 21
 - Data is transmitted on plain text
- SFTP (Secure File Transfer Protocol) is similar to FTP but performs over an encrypted SSH transport
 - Used to access 132.206.14.130
 - Usually works on port 22
 - Data is encrypted

SSH (Secure Shell)

- Network protocol that runs over TCP/IP
- Allows to make a remote login over TCP/IP network via port 22
- Provides access to the shell of a computer
- A shell is an interface to an operating system, e.g.:
 - Finder (GUI)
 - Bash (CLI)

HTTP (Hypertext transfer protocol)

- Hypertext concept introduced by Ted Nelson (1965)
- Hypertext is structured text that uses logical links (hyperlinks) between nodes containing text
- HTTP is the protocol to exchange or transfer hypertext
- First Hypertext Transfer Protocol documented in 1991 by Tim Berners-Lee and his group@CERN
- HTTP works over TCP/IP and default port 80
- At the heart of web communications using HTTP is the request message
- These request messages are sent using URLs (Uniform Resource Locators)
- URLs have the following components:

Taken from http://code.tutsplus.com/

HTTP

 "The first version of the protocol had only one method, namely GET, which would request a page from a server. The response from the server was always an HTML page." (T. Berners-Lee)

- However, these days there are some other HTTP "verbs" that allow us to perform other actions on resources:
 - GET: fetch an existing resource
 - POST: create a new resource
 - PUT: update an existing resource
 - DELETE: delete an existing resource

BREAK

HTML/CSS

"HTML was intended to define the content of a document, CSS defines how HTML elements are to be displayed." -

http://www.w3schools.com/css/css_intro.asp

A HTML document has two big parts: head, and body.

HEAD - Internal (hidden) information, metadata

- Title http://www.w3schools.com/tags/tag_title.asp
- Base href setting up your base reference link
- Link to favicon http://www.favicon.cc/
- Meta tags (keywords, description, copyright, publisher-email, author)
- Styles/link stylesheet
- Javascript

BODY - Perceived (rendered) information

- Content
- Footer

HTML5 SEMANTIC ELEMENTS

A semantic element **clearly describes its meaning** to both the browser and the developer

Examples of non-semantic elements: <div> and These elements tell nothing about their content

Examples of semantic elements: <form>, , and
These elements clearly define their content

CSSCascading Style Sheets

CSS defines how the HTML elements will be displayed!

CSS is designed primarily to enable the separation of document content from document presentation

http://www.w3schools.com/css/demo_default.htm

CSS SYNTAX

A CSS rule has two main parts: a selector, and one or more declarations

Example:

```
p {
font-family: arial, helvetica, sans-serif;
font-size: 12px;
color: black;
line-height: auto;
}
```

SOME SELECTORS

```
2. #X
                                   #container {
                                     width: 960px;
margin: 0;
                                     margin: auto;
padding: 0;
                                   4. X Y
3. .X
                                   li a {
.error {
                                    text-decoration:
color: red;
                                   none;
```

Three Ways to Insert CSS

- External style sheet
- Internal style sheet
- Inline style

External style sheet

```
<head>
k rel="stylesheet" type="text/css" href="mystyle.css">
</head>
```

Internal style sheet

```
<head>
<style>
body {
    background-color: blue;
}
h1 {
    color: red;
    margin-left: 40px;
}
</style>
</head>
```

Inline styles

<h1 style="color:blue;margin-left:30px;">This is a heading.</h1>

CSS Styles

Position
Borders
Backgrounds
Gradients
Text Effects
Fonts
2D Transforms
3D Transforms
Transitions
Animations
Multiple Columns
User Interface

grids
grids
grids

In-class demo

https://mumt301.github.io/2016/code/18plus.html

Today's class

- Internet technologies
- Introduction to CSS
- In-class demo
- Assignment #3