Glass Breaking

Jingwei Huang

May 12, 2016

General overview of the project

Purpose

Inputs

Outputs

The Overall System Design

How to Execute

Some Test Cases

Purpose

The main **purpose** of this project is to develop a scientific software called Glass-BR following a rational document driven process. In the end, Glass-BR should be able to predict whether a *specified* glass slab is likely to resist a *specified* blast.

Inputs

The software will need the following inputs:

- 1. Glass Characteristics
 - Glass Type AN (Annealed Glass), FT (Fully Tempered Glass), HS (Heat Strengthened Glass)
 - Glass Dimensions a (length of the glass slab), b (breadth of the glass slab), t (nominal thickness of the glass slab)

Using these data we can calculate the **probability of glass** breakage.

- 2. Tolerable Probability of Glass Breakage
- 3. Blast Characteristics
 - SD (Stand Off Distance) SD_x , SD_y , SD_z
 - TNT (TNT Equivalent Factor)
 - w (Charge Weight)
- * NOTE: Be careful of the data constraints.

Outputs

The software should output the following quantities:

- 1. Input values & Known values
 - Input values GT, a, b, t, P_{btol}, SD_x, SD_y, SD_z, TNT, w
 NOTE: If any of these input data violates the input constraints, it will throw an error.
 - Known values $m \ k$ (surface flaw parameters), E (modulus of elasticity), t_d (duration of the load), LDF (Load Duration Factor), LSF (Load Share Factor)

2. Calculated values & Final result.

Calculated values

Probability of breakage
$$P_b$$
 $P_b = 1 - e^{-B}$ where B is the risk of failure

Actual thickness h $h = h(t)$

Stress Distribution Factor J $J = J(\hat{q}, \frac{a}{b})$

Dimensionless load \hat{q} $\hat{q} = \frac{q(ab)^2}{Eh^4GTF}$

Aspect Ratio AR $AR = \frac{a}{b}$

Load Resistance LR $LR = NFL \times GTF \times LSF$

Non-Factored Load NFL $NFL = \frac{\hat{q}_{tol}Eh^4}{(ab)^2}$

Tolerable load \hat{q}_{tol} $\hat{q}_{tol}(J_{tol}, \frac{a}{b})$

Tolerable Stress Distribution Factor J_{tol}
 $J_{tol} = In[In(\frac{1}{1-P_{btol}})\frac{(\frac{1}{1000})^2 \frac{1}{1000})^2 m^2 LDF}{k((E\times 1000)(\frac{h}{1000})^2)^m LDF}]$

Glass Type Factor GTF $AN \Rightarrow 1.0$ $FT \Rightarrow 4.0$ $HS \Rightarrow 2.0$

Applied load (demand) q $q = q(w_{TNT}, SD)$

2. Calculated values & Final result

- Final result Compare:
 - Tolerable probability of breakage (input) & Probability of breakage (calculated / output)
 if P_{btol} > P_b, then True; else, False.
 - Load Resistance (calculated / output) & Demand (calculated / output)
 if LR > q, then True; else, False.

Both *True*, output the message "For the given input parameters, the glass is considered safe"; Otherwise, output the message "For the given input parameters, the glass is **NOT** considered safe".

The Overall System Design

Decompose into modules.

Level 1	Level 2	Implemented by
Hardware-Hiding Module		OS
	Input Format Module	
	Input Parameters Module	
	Input Constraints Module	
Behaviour-Hiding Module	Output Format Module	Glass-BR
	Derived Values Module	
	Calculations Module	
	Interpolation Data Module	
	Control Module	
Software Decision Module	Interpolation Module	Glass-BR

Hardware-Hiding Module provides the interface between the hardware and the software.

Input Format Module converts the input data into the data structure used by the Input Parameters Module. (reads from a file)

Input Parameters Module stores the parameters needed for the program. (defines a class "Param")

Input Constraints Module defines the constraints on the input data.

Output Format Module outputs the results of the program. (writes to a file)

- Derived Values Module defines the equations transforming the initial inputs into derived quantities. (e.g. GTF: $AN \Rightarrow 1.0$)
- Calculations Module defines the equations for solving for P_b , q and LR.
- Control Module provides the main program.
- Interpolation Data Module converts the input interpolation data into the data structure used by Interpolation Module. (reads from a file)
- Interpolation Module provides the equations that take the input parameters and interpolation data and return an interpolated value.

How to Execute

Level 1	Level 2	Written in
Hardware-Hiding Module		-
	Input Format Module	Python
	Input Parameters Module	Python
	Input Constraints Module	Python
Behaviour-Hiding Module	Output Format Module	Python
	Derived Values Module	Python
	Calculations Module	Python
	Interpolation Data Module	Python (NumPy)
	Control Module	Python
Software Decision Module	Interpolation Module	Python (NumPy)

•0000

Some Test Cases

1 Safe:

• Inputs:

length a	1600	mm
breadth <i>b</i>	1500	mm
thickness t	10	mm
glass type	HS	-
weight of charge w	10	kg
TNT equivalent factor	1.0	-
SD_{\times}	0	m
SD_y	1.5	m
SD_z	11.0	m
Tolerable probability P_{btol}	0.008	-

Outputs:

E	7.17×10^{7}	SD	11.101802
а	1600	t_d	3
b	1500	TNT	1.0
AR	1.066667	W	10.0
glasstype	HS	WTNT	10.0
GTF	2	q	3.258286
t	10.0	J	9.548952
h	9.02	\hat{q}_{tol}	4.152349×10^{1}
k	2.86×10^{-53}	P_b	1.301525×10^{-4}
LDF	0.269649	LR	6.843002
LSF	1	NFL	3.421501
m	7	SafetyRequirement-1	1.000000
P_{btol}	0.008	SafetyRequirement - 2	1.000000
SD_{vect}	(0.0, 1.5, 11.0)		

[&]quot;For the given input parameters, the glass is considered safe."

2 NOT safe

Inputs

length a	1600	mm
breadth <i>b</i>	1500	mm
thickness t	5	mm
glass type	AN	-
weight of charge w	10	kg
TNT equivalent factor	1.0	-
SD_{\times}	0	m
SD_y	1.5	m
SD_z	11.0	m
Tolerable probability P_{btol}	0.008	-

Outputs

Ε	7.17×10^{7}	SD	11.101802
а	1600	t _d	3
b	1500	TNT	1.0
AR	1.066667	W	10.0
glasstype	AN	WTNT	10.0
GTF	1	q	3.258286
t	5.0	J	2.704263×10^{1}
h	4.57	\hat{q}_{tol}	2.966019×10^2
k	2.86×10^{-53}		3.149685×10^{-1}
LDF	0.269649	LR	1.610406
LSF	1	NFL	1.610406
m	7	SafetyRequirement-1	
P_{btol}	0.008	SafetyRequirement - 2	0.000000
SD_{vect}	(0.0, 1.5, 11.0)		

[&]quot;For the given input parameters, the glass is NOT considered safe."

Thank You!