

Discrete Mathematics MH1812

Topic 9 - Functions Summary

UNIVERSITY SINGAPORE

Introduction to Functions: Definition

Let X and Y be sets. A function f from X to Y is a rule that assigns every element x of X to a unique y in Y. We write $f: X \to Y$ and f(x) = y.

$$(\forall x \in X \ \exists y \in Y, y = f(x)) \land (\forall x_1, x_2 \in X, f(x_1) \neq f(x_2) \rightarrow x_1 \neq x_2)$$

X =	Domain
<i>Y</i> =	Codomain
y =	Image of x under f
x =	Preimage of y under f
Range =	Subset of Y with preimages

Introduction to Functions: Functions vs. Non-functions

$$(\forall x \in X \ \exists y \in Y, y = f(x)) \land (\forall x_1, x_2 \in X, f(x_1) \neq f(x_2) \rightarrow x_1 \neq x_2)$$

(b has no image)

$$X = \{a,b,c\}$$
 to $Y = \{1,2,3,4\}$

No!

(c has two images)

Yes!

(Each element of *X* has exactly one image)

Introduction to Functions: Functions vs. Non-functions

$$(\forall x \in X \,\exists y \in Y, y = f(x)) \wedge (\forall x_1, x_2 \in X, f(x_1) \neq f(x_2) \rightarrow x_1 \neq x_2)$$

$$X = \{a,b,c\}$$
 to $Y = \{1,2,3,4\}$

Injectivity: One-to-one Example

One-to-one

(All elements in *A* have a different image)

Not one-to-one
(a and b have the same image)

$$f: \mathbb{R} - \{0\} \to \mathbb{R}, \ f(x) = \frac{x+1}{x}$$

Is f injective?

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x}{x^2 + 1}$$

Is f injective?

Surjectivity: Onto Example

Onto

(All elements in *Y* have a preimage)

Not onto

(1 has no preimage)

$$f: \mathbb{R} - \{0\} \to \mathbb{R} - \{1\}, \ f(x) = \frac{x+1}{x}$$

Is f surjective?

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x}{x^2 + 1}$$

Is f surjective?

$$f,g:\mathbb{R}\to\mathbb{R},\ f(x)=x+3;\qquad g(x)=-x^3$$

Find f^{-1} , g^{-1} , $g \circ f$, and $f \circ g$.