Quiz: Chapter 1+2 definitions

Definition 1. Let $\mathbf{x}_1,, \mathbf{x}_N \in \mathcal{X}$. The <i>dichotomies</i> generated by a hypothesis class \mathcal{H} on these points a defined by	ıre
Definition 2. The growth function for a hypothesis class \mathcal{H} is defined to be	
Definition 3. We say that a hypothesis class \mathcal{H} can <i>shatter</i> a dataset $\mathbf{x}_1,, \mathbf{x}_N$ if any of the following equivalent statements are true:	ng
	_
Definition 4. The integer k is said to be a <i>break point</i> for hypothesis class \mathcal{H} if	

Definition 5. The $Vapnik$ -Chervonenkis dimension (VC dimension) of a hypothesis class \mathcal{H} , denoted by $d_{\text{VC}}(\mathcal{H})$ or simply d_{VC} , is
Theorem 1 (VC generalization bound). For any tolerance $\delta > 0$, we have that with probability at least $1 - \delta$,
Theorem 2 (Finite Hypothesis Class Generalization Theorem). For any tolerance $\delta > 0$, we have that with probability at least $1 - \delta$,
Theorem 3 (Hoeffding Inequality). Let $a_1,, a_N$ be N independent and identically distributed random variables satisfying $0 \le a_i \le 1$. Let $\nu = \frac{1}{n} \sum_{i=1}^{N} a_i$ be the empirical average and $\mu = \mathbb{E}\nu$ be the true mean of the underlying distribution.