

Round 1A 2014

A. Charging Chaos

B. Full Binary Tree

C. Proper Shuffle

Contest Analysis

Questions asked

Submissions

Charging Chaos

8pt Not attempted 3389/5678 users correct (60%)

17pt Not attempted 1703/2910 users correct (59%)

Full Binary Tree

9pt | **Not attempted 1853/2731 users** correct (68%)

21pt Not attempted 1531/1764 users correct (87%)

Proper Shuffle

45pt Not attempted 333/2186 users correct (15%)

Top Scores

Top Scores	
Kaizero	100
winger	100
Gennady.Korotkevich	100
SnapDragon	100
PavelKunyavskiy	100
exod40	100
ffao	100
rankalee	100
CLDP	100
aquamongoose	100

Problem B. Full Binary Tree

This contest is open for practice. You can try every problem as many times as you like, though we won't keep track of which problems you solve. Read the <u>Quick-Start Guide</u> to get started.

Small input 9 points

Solve B-small

Large input 21 points

Solve B-large

Problem

A tree is a connected graph with no cycles.

A rooted tree is a tree in which one special vertex is called the root. If there is an edge between ${\bf X}$ and ${\bf Y}$ in a rooted tree, we say that ${\bf Y}$ is a child of ${\bf X}$ if ${\bf X}$ is closer to the root than ${\bf Y}$ (in other words, the shortest path from the root to ${\bf X}$ is shorter than the shortest path from the root to ${\bf Y}$).

A full binary tree is a rooted tree where every node has either exactly 2 children or 0 children.

You are given a tree ${\bf G}$ with ${\bf N}$ nodes (numbered from ${\bf 1}$ to ${\bf N}$). You are allowed to delete some of the nodes. When a node is deleted, the edges connected to the deleted node are also deleted. Your task is to delete as few nodes as possible so that the remaining nodes form a full binary tree for some choice of the root from the remaining nodes.

Input

The first line of the input gives the number of test cases, \mathbf{T} . \mathbf{T} test cases follow. The first line of each test case contains a single integer \mathbf{N} , the number of nodes in the tree. The following \mathbf{N} -1 lines each one will contain two space-separated integers: $\mathbf{X_i}$ $\mathbf{Y_i}$, indicating that \mathbf{G} contains an undirected edge between $\mathbf{X_i}$ and $\mathbf{Y_i}$.

Output

For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the minimum number of nodes to delete from G to make a full binary tree.

Limits

 $\begin{array}{l} 1 \leq \textbf{T} \leq 100. \\ 1 \leq \textbf{X_i}, \, \textbf{Y_i} \leq \textbf{N} \end{array}$

Each test case will form a valid connected tree.

Small dataset

2 < **N** < 15.

Large dataset

 $2 \le N \le 1000$.

Sample

Input	Output
3 3 2 1 1 3 7 4 5 4 2 1 2 3 1 6 4 3 7 4 1 2 3 1 2 3 1 2 3 1 4 2 3 1 4 2 3 1 4 2 3 1 4 4 2 3 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Case #1: 0 Case #2: 2 Case #3: 1
3 4	

In the first case, ${\bf G}$ is already a full binary tree (if we consider node 1 as the root), so we don't need to do anything.

In the second case, we may delete nodes 3 and 7; then 2 can be the root of a full binary tree.

In the third case, we may delete node 1; then 3 will become the root of a full binary tree (we could also have deleted node 4; then we could have made 2 the root).

All problem statements, input data and contest analyses are licensed under the <u>Creative Commons Attribution License</u>.

 $@ \ 2008-2017 \ Google \ \ \underline{Google \ Home} - \underline{Terms \ and \ Conditions} - \underline{Privacy \ Policies \ and \ Principles}$

Powered by

