Functions of One dimensional random variables

If X is a discrete random variable and Y = H(X) is a continuous function of X, then Y is also a Discrete Random Variable.

Eg:

X	-1	0	1
P(x)	1	1	1
	$\frac{\overline{3}}{3}$	$\frac{\overline{2}}{2}$	$\frac{\overline{6}}{6}$

Suppose Y = 3X + 1, then pmf of Y is given by

Y	-2	1	4
P(y)	1	1	1
	3	$\frac{\overline{2}}{2}$	$\frac{\overline{6}}{6}$

Suppose $Y = X^2$, then pmf of Y is

Y	1	0
P(y)	1	1
,	$\frac{\overline{2}}{2}$	$\frac{\overline{2}}{2}$

Suppose X is a continuous random variable with pdf f(x) and H(X) is a continuous function of X. Then Y is a continuous random variable. To obtain pdf of Y we follow the following steps.

- 1. Obtain cdf of Y, i.e., $G(y) = P(Y \le y)$.
- 2. Differentiate G(y) with respect to y to get pdf of y i.e., g(y).
- 3. Determine the range space of Y such that g(y) > 0.

Problems:

1. If
$$f(x) = \begin{cases} 2x; & 0 < x < 1 \\ 0; & Otherwise' \end{cases}$$
 and $Y = 3X + 1$, find pdf of Y . Soln: $G(y) = P(Y \le y) = P(3X + 1 \le y) = P\left(X \le \frac{y-1}{3}\right)$
$$G(y) = \int_0^{\frac{y-1}{3}} 2x dx = \left(\frac{y-1}{3}\right)^2.$$

$$g(y) = G'(y) = \frac{2(y-1)}{9}.$$

$$0 < x < 1 \Longrightarrow 0 < \frac{y-1}{3} < 1 \Longrightarrow 1 < y < 4.$$
 Therefore, $g(y) = \begin{cases} \frac{2(y-1)}{9}; & 1 < y < 4 \\ 0; & Otherwise \end{cases}$

2. If
$$f(x) = \begin{cases} 2x; & 0 < x < 1 \\ 0; & Otherwise', \text{ and } Y = e^{-X}, \text{ find pdf of } Y. \end{cases}$$

$$Soln: G(y) = P(Y \le y) = P(e^{-X} \le y) = P\left(\log_e \frac{1}{y} \le X\right)$$

$$G(y) = \int_{\log_e \frac{1}{y}}^1 2x dx = 1 - \left(\log_e \frac{1}{y}\right)^2 .$$

$$g(y) = G'(y) = \frac{2}{y} \log_e \frac{1}{y}.$$

$$0 < x < 1 \Longrightarrow 0 < \log_e \frac{1}{y} < 1 \Longrightarrow \frac{1}{e} < y < 1.$$
Therefore, $g(y) = \begin{cases} \frac{2}{y} \log_e \frac{1}{y}; & \frac{1}{e} < y < 1 \\ 0; & Otherwise \end{cases}$

Result: Let X be a continuous random variable with pdf f(x). Let $Y = X^2$.

Then pdf of
$$Y$$
 is $g(y) = \frac{1}{2\sqrt{y}} \left(f\left(\sqrt{y}\right) + f\left(-\sqrt{y}\right) \right)$

Example 1: Suppose $f(x) = \begin{cases} 2xe^{-x^2}; & 0 < x < \infty \\ 0; & Otherwise \end{cases}$. Find pdf of $Y = X^2$.

Soln:

$$g(y) = \frac{1}{2\sqrt{y}} \left(f(\sqrt{y}) + f(-\sqrt{y}) \right) = \frac{1}{2\sqrt{y}} \left(2\sqrt{y}e^{-y} + 0 \right) = e^{-y}; 0 < x < \infty.$$

Example 2: Suppose $f(x) = \begin{cases} \frac{2}{9}(x+1); & -1 < x < 1 \\ 0; & Otherwise \end{cases}$. Find pdf of $Y = X^2$.

Soln

$$g(y) = \frac{1}{2\sqrt{y}} \left(f\left(\sqrt{y}\right) + f\left(-\sqrt{y}\right) \right) = \frac{1}{2\sqrt{y}} \left(\frac{2(\sqrt{y}+1)}{9} + \frac{2(-\sqrt{y}+1)}{9} \right) = \frac{2}{9\sqrt{y}}; 0 < x < 1.$$

Theorem: Let X be a continuous random variable with pdf f(x). Suppose Y = H(X) is a strictly monotone (increasing or decreasing) function of X, then pdf of Y is given by

$$g(y) = f(x) \left| \frac{dx}{dy} \right|$$
 where $x = H^{-1}(y)$.

Example:

1. Suppose X is uniformly distributed over (0,1), find pdf of $Y = \frac{1}{X+1}$. Soln: We know that Y is strictly monotone.

$$f(x) = \begin{cases} 1; & 0 < x < 1 \\ 0; & Otherwise \end{cases}$$

Note that $X = \frac{1}{y} - 1$. $\Rightarrow f(x) = f\left(\frac{1}{y} - 1\right) = 1$.

$$\left| \frac{dx}{dy} \right| = \frac{1}{y^2}.$$
 Therefore, $g(y) = \frac{1}{y^2}$; $\frac{1}{2} < y < 1$.

2. If X is uniformly distributed over $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, find the pdf of Y=tanX. (Or show that Y=tanX follows Cauchy's distribution).

Soln: Given
$$f(x) = \begin{cases} \frac{1}{\pi}; & -\frac{\pi}{2} < x < \frac{\pi}{2}. \\ 0; & Otherwise \end{cases}$$

We know that Y is strictly monotone.

Then
$$X = \tan^{-1} Y \Rightarrow f(\tan^{-1} Y) = \frac{1}{\pi}$$
. And $\left| \frac{dx}{dy} \right| = \frac{1}{1+y^2}$.

Therefore,
$$g(y) = \frac{1}{\pi} \frac{1}{1+y^2}$$
; $-\infty < y < \infty$.

3. If $X \sim N(\mu, \sigma^2)$, then show that $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ and $Y = Z^2 \sim \chi^2(1)$.

Soln:
$$G(z) = P(Z \le z) = P\left(\frac{x-\mu}{\sigma} \le z\right) = P(\sigma z + \mu \ge x)$$

$$G(z) = F(\sigma z + \mu).$$

$$g(z) = G'(z) = F'(\sigma z + \mu)\sigma = f(\sigma z + \mu)\sigma = \frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}} \sim N(0,1).$$

Now,
$$g(y) = \frac{1}{2\sqrt{y}} \left(f(\sqrt{y}) + f(-\sqrt{y}) \right) = \frac{1}{2\sqrt{y}} \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} + \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} \right)$$

$$g(y) = \frac{1}{\sqrt{y}\sqrt{2\pi}}e^{-\frac{y}{2}}.$$

Hence, $g(y) \sim \chi^2(1)$.

Extra Problem:

1. A random variable X having Cauchy distribution. Show that 1/X also has Cauchy distribution.