

AUDIOVERARBEITUNG MIT PYTHON

Projektarbeit im Modul Programmierparadigmen

23. Juni 2025

Ilyas Ouhmid und Leon Weiss

Dozent: Prof. Panitz Studiengang Angewandte Informatik Hochschule **RheinMain**

GLIEDERUNG

- 1. Grundlagen des Klangs
- 2. Audiosynthese: Klänge am Computer erzeugen
- 3. Audioanalyse: Die Sprache des Klangs verstehen
- 4. Zusammenfassung

- → Klang ist die Veränderung des Luftdrucks über die Zeit.
- → Unser Trommelfell nimmt diese Druckschwankungen als Schwingungen wahr.

AMPLITUDE UND FREQUENZ

- → **Amplitude:** Die Stärke der Schwingung, die wir als Lautstärke empfinden.
- → Frequenz: Die Anzahl der Schwingungen pro Sekunde (in Hertz), die wir als Tonhöhe wahrnehmen.
- → Das menschliche Ohr kann Frequenzen zwischen ca. 20 und 20.000 Hertz wahrnehmen.

- → Computer können keine kontinuierlichen, analogen Signale speichern, sie arbeiten in einer **diskreten Welt**
- → Schall wird daher als eine Folge von Messwerten (Samples) des Luftdrucks dargestellt
- → **Abtastrate:** Gibt an, wie oft pro Sekunde ein Sample genommen wird. (Der CD-Standard ist 44.100 Hz)
- → Problem: Eine zu niedrige Abtastrate kann Schwingungen nicht korrekt erfassen und zu falschen Messergebnissen führen.

DAS NYQUIST-SHANNON-ABTASTTHEOREM (1/5)

— Originalsignal (110 Hz)

DAS NYQUIST-SHANNON-ABTASTTHEOREM (2/5)

— Originalsignal • Korrekte Samples

DAS NYQUIST-SHANNON-ABTASTTHEOREM (3/5)

— Originalsignal • Zu wenige Samples

DAS NYQUIST-SHANNON-ABTASTTHEOREM (4/5)

— Originalsignal • Samples - - - Falsches Signal (Alias, 10.0 Hz)

DAS NYQUIST-SHANNON-ABTASTTHEOREM (5/5)

- → **Frage:** Wie oft müssen wir messen, um keine wichtigen Informationen zu verlieren?
- \rightarrow **Antwort:** "Die Abtastrate f_s muss mehr als doppelt so hoch sein wie die höchste im Signal enthaltene Frequenz f_{max} .
- → Formel:

$$f_s > 2 \cdot f_{max}$$

DIE VERLETZUNG DES THEOREMS: DER ALIASING-EFFEKT

- → Frage: Was passiert, wenn wir die Regel verletzen?
- → **Beobachtung:** Die wenigen Messpunkte können die schnelle Schwingung nicht korrekt erfassen. Es entsteht ein Trugbild: eine scheinbar viel langsamere Schwingung
- → Fachbegriff: Diesen Effekt nennt man Aliasing.

- \rightarrow Das menschliche Gehör reicht bis etwa 20.000 Hz ($f_{max} \approx 20.000$ Hz).
- \rightarrow Nach Nyquist-Shannon benötigen wir also: $f_s > 2 \cdot 20.000$ Hz, also $f_s > 40.000$ Hz.
- → Fazit: Die Rate von 44.100 Hz wurde gewählt, um das gesamte menschliche Hörspektrum abzutasten. So wird Aliasing im hörbaren Bereich vermieden.

→ Ein Ton wird als eine Liste von Zahlen repräsentiert, die eine mathematische Schwingung (z.B. Sinus) beschreiben.

```
import math
kammertonA = [10000*math.sin(2*440*math.pi*x/44100)
for x in range(0,5*44100)]
```

KLANGFARBE DURCH OBERTÖNE

- → Klänge von echten Instrumenten bestehen aus einer Grundschwingung und vielen Obertönen.
- → Dieses Frequenzgemisch bestimmt die Klangfarbe.
- → Wir erzeugen komplexere Klänge durch die Addition von Schwingungen.

```
import math
kammertonA = [10000*math.sin(2*440*math.pi*x/44100)]
for x in range(0,5*44100)]
```

- → **Ziel:** Einen Klang simulieren, der ausklingt
- → Realisierung:
 - → **Komplexe Klangfarbe:** Überlagerung von 10 Sinus-Funktionen (Grundton + 9 Obertöne)
 - → **Amplitudenhüllkurve:** Die Amplitude wird alle 5000 Samples halbiert, um das Ausklingen zu simulieren

ZUPFINSTRUMENT IN PYTHON

```
def pluggedTime( t, wv):
  samples = []
  sample rate = 44100
  initial_amplitude = 10000
  for x_n in range(t):
     current_amplitude = initial_amplitude / (2 **
         (x n // 5000))
     x_in_formula = wv * x_n / sample_rate
     sum = 0
     for i in range(1, 11):
        sum += (1 / i) * math.sin(2 * math.pi *
           x in formula * i)
     sample value = current amplitude * sum
     samples.append(sample value)
  return samples
```

VISUALISIERUNG: KLANGFARBE DES ZUPFINSTRUMENTS

AUFGABE 2 & 3: MELODIEN UND AKKORDE

- → **Melodien:** Eine Sequenz von Tönen, die durch das Aneinanderreihen der Sample-Listen erzeugt wird
- → **Akkorde:** Gleichzeitig erklingende Töne, die durch die elementweise Addition der Sample-Listen realisiert werden
- → Arpeggio: Ein zeitversetzter Einsatz der Töne wird durch das Voranstellen von Nullen in den Sample-Listen der späteren Töne erreicht.

```
def scale():
  lists = [pluggedH(a), pluggedH(b), pluggedH(cs),
      pluggedH(d), pluggedH(e), pluggedH(fs),
      pluggedH(gs), pluggedH(aP)]
  return list(itertools.chain.from iterable(lists))
def maj7():
  cs versetzt = 2000 * [0.0] + cs ton
  e \ versetzt = 4000 * [0.0] + e ton
  gs versetzt = 6000 * [0.0] + gs ton
  return [sum(werte) for werte in
      itertools.zip_longest(a_ton, cs_versetzt,
      e_versetzt, gs_versetzt, fillvalue=0.0)]
```

VISUALISIERUNG: A-DUR-TONLEITER

Gliederung

VISUALISIERUNG: A-MAJ7-AKKORD (ARPEGGIO)

- → Die generierte Liste von Fließkommazahlen muss für die WAV-Datei in 16-Bit-Integer (numpy.int16) konvertiert werden.
- → Die Funktion scipy.io.wavfile.write übernimmt das Schreiben.
- → Problem: Bei der Addition von Tönen (Akkorde) kann der Wertebereich von int16 überschritten werden.
- → Lösung: Die writeWav-Methode verwendet Normalisierung: Alle Werte werden um einen Faktor skaliert, sodass der höchste Wert genau dem Maximum von int16 entspricht

- → **Ziel:** Die in den rohen Sample-Werten "versteckten" Frequenzen finden.
- → **Grundlage:** Der Satz von **Joseph Fourier.** Jede periodische Schwingung lässt sich als eine Summe von Sinus- und Kosinus-Funktionen darstellen.
- → Das bedeutet: Wir können unser komplexes Signal wieder in seine Zutaten zerlegen.

	— Komplexes Signal (Rechteckwelle)			
Amplitude				
				Zeit t
			I	

SATZ VON FOURIER (2/5): 1. ANNÄHERUNG (GRUNDTON)

--- Originalsignal — 1. Harmonische

SATZ VON FOURIER (3/5): 2. ANNÄHERUNG

SATZ VON FOURIER (4/5): WEITERE ANNÄHERUNG

--- Originalsignal — Summe bis zur 13. Harmonischen

VON DER SYNTHESE ZUR ANALYSE (5/5): DIE ZEITDOMÄNE

Signal in der Zeitdomäne

WIE FUNKTIONIERT DIE DFT? (1/4)

Die DFT vergleicht das Signal mit reinen Sinustönen jeder Frequenz.

WIE FUNKTIONIERT DIE DFT? (2/4)

WIE FUNKTIONIERT DIE DFT? (3/4)

Das Ergebnis nach dem Test aller Frequenzen

Dieser Prozess wird für alle relevanten Frequenzen wiederholt und ergibt das finale Frequenzspektrum.

- → Die DFT ist der Algorithmus, der diese Zerlegung für eine diskrete Folge von Samples durchführt
- → Input: Eine Liste von Abtastwerten (Zeitdomäne)
- → Output: Eine Liste komplexer Zahlen (Frequenzdomäne). Der Betrag jeder komplexen Zahl gibt uns die Amplitude (Stärke) der jeweiligen Frequenz.

$$\hat{x}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-i\frac{2\pi kn}{N}}$$

mit N Abtastwerten in einer Sekunden und $\hat{x}[n]$ als n-ten Abtastwerten

$$\hat{x}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-i\frac{2\pi kn}{N}}$$

VISUALISIERUNG: ZEITDOMÄNE

VISUALISIERUNG: FREQUENZDOMÄNE

ZUSAMMENFASSUNG

→ Erkenntnisse:

- → Digitale Repräsentation: Klang wird als eine Folge von Messwerten (Samples) gespeichert.
- → Nyquist-Shannon-Theorem: Die Abtastrate muss mehr als doppelt so hoch sein wie die höchste Frequenz, um Informationsverlust zu vermeiden.
- → Synthese in Python: Komplexe Klänge, Melodien und Akkorde werden durch die Überlagerung und Addition mathematischer Schwingungen (z. B. Sinus) erzeugt.
- → Analyse durch DFT: Die Diskrete Fourier-Transformation ist der Algorithmus, der die in den Samples "versteckten" Frequenzen eines Signals aufdeckt.
- → **Zeit- vs. Frequenzdomäne:** Die DFT überführt das Signal von der Zeit- in die Frequenzdomäne und zeigt so die Amplitude jeder einzelnen Frequenz an

Offene Fragen?

Falls noch Fragen offengeblieben sind, wollen wir diese gerne noch beantworten

Ein Entwurf einer Webanwendung zur Audioverarbeitung

Der Quellcode ist unter der MIT-Lizenz verfügbar: https://github.com/leon-weiss/Python-Audio-Processor