Elektrikernas kokbok

Björn Ögren

2022-11-10

Contents

1	Lik	strömskretsar 5
	1.1	URI
2	Väx	kelströmskretsar 7
	2.1	Tidsintervall
	2.2	Toppvärden
3	Spä	inning 11
	3.1	Y-Koppling
	3.2	D-koppling
4	Str	öm 13
	4.1	Y-Koppling
		D-koppling
5	Effe	ekt 15
	5.1	Trefaskretsar
	5.2	Reaktiva kretsar
6	Väx	kelströmsmotstånd 19
	6.1	Impedans
	-	Kondensatorer
		Spolar

4 CONTENTS

Likströmskretsar

$$\begin{split} f &= 26, 3~Hz\\ f &= 26, 3~Hz\\ f &= 26, 3~Hz \end{split}$$

1.1 URI

Hello World

Växelströmskretsar

Hello World

2.1 Tidsintervall

Frekvens är en storhet för antalet repeterande händelser inom ett givet tidsintervall[1]. För att beräkna frekvensen fixerar man ett tidsintervall, räknar antalet förekomster av händelsen och dividerar detta antal med längden av tidsintervallet. Resultatet anges i enheten hertz (Hz) efter den tyske fysikern Heinrich Rudolf Hertz, där 1 Hz är en händelse som inträffar en gång per sekund. Alternativt kan man mäta tiden mellan två förekomster av händelsen ((tids)perioden) och därefter beräkna frekvensens reciproka värde.

2.1.1 Frekvens

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{Frekvens} = \frac{1}{Tid}$	f	Frekvens	Hertz	Hz

Exempel uträkning frekvens (1)
$$\frac{Frekvens = \frac{1}{T_i d}}{f = \frac{1}{38} \times 10^3}$$

$$f = 26, 3 \ Hz$$

2.1.2 Tid

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{Tid} =$	f	Frekvens	Hertz	Hz
$\frac{1}{Frekvens}$				

$$\frac{\text{Exempel uträkning tid (1)}}{Tid = \frac{1}{Frekvens}} \\ Tid = \frac{1}{400} \times 10^{3} \\ T = 2, 5 \ ms$$

2.2 Toppvärden

2.2.1 Toppspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$ \widehat{\hat{u}} = U_{eff} \times \sqrt{2} $	\hat{u}	Toppspänning	Volt	V

$$\frac{\text{Exempel uträkning toppspänning}}{\hat{u} = U_{eff} \times \sqrt{2}}$$

$$\hat{u} = 415 \times \sqrt{2}$$

$$\hat{u} \approx 587 \ V$$

2.2.2 Toppström

Samband	Beteckning	Storhet	Enhet	Förkortning
$\hat{I} =$	Î	Toppström	Amper	\overline{A}
$I_{eff} \times \sqrt{2}$				

Exempel uträkning toppström
$\hat{I} = I_{eff} \times \sqrt{2}$
$\hat{I} = 20 \times \sqrt{2}$
$\hat{I} \approx 28, 3 A$

2.2. TOPPVÄRDEN

9

2.2.3 Topp till toppspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{\hat{u}} = \hat{u} \times 2$	$\hat{ec{u}}$	Toppspänning	Volt	\overline{V}

Exempel uträkning topp till toppspänning

$$\hat{\tilde{u}} = 587 \times 2$$

$$\hat{\tilde{u}} = 1174 V$$

2.2.4 Topp till toppvärde av ström

$$\hat{\tilde{I}}=\hat{I}\times 2$$

Exemple

$$\hat{\tilde{I}} = \hat{I} \times 2 \approx 28, 3 \times 2 = 56 A$$

Topp till toppvärd är således

$$\hat{\tilde{I}}\approx 56~A$$

Spänning

3.1 Y-Koppling

3.1.1 Linjespänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$U_L =$	U_l	Spänning	Volt	V
$U_f^- \times \sqrt{3}$				

 $\frac{\text{Exempel uträkning fasspänning}}{U_L = U_f \times \sqrt{3}} \\ U_L = 230 \times \sqrt{3} \\ U_L = 400 \; V$

3.1.2 Fasspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$U_f = \frac{U_L}{\sqrt{3}}$	U_l	Spänning	Volt	V

Exempel uträkning fasspänning

$$U_f = \frac{U_L}{\sqrt{3}}$$

$$U_f = \frac{400}{\sqrt{3}}$$

$$\frac{\text{Exempel uträkning fasspänning}}{U_f = 230\ V}$$

3.2 D-koppling

3.2.1 Linjespänning

3.2.2 Fasspänning

Samband	Beteckning	Storhet	Enhet	Förkortning
$ U_f = U_L = 400V $	U_L	Spänning	Volt	V

Ström

4.1 Y-Koppling

4.1.1 Fasström

Samband	Beteckning	Storhet	Enhet	Förkortning
$I_f = \frac{U_f}{R}$	I_f	Ström	Ampere	A

Exempel uträkning	fasström
$I_f = \frac{U_f}{R}$ $I_f \frac{400}{100}$ $I_f = 4 A$	

4.1.2 Linjeström

$$I_L = I_f = Fastrm \,$$

4.2 D-koppling

4.2.1 Fasström

Samband	Beteckning	Storhet	Enhet	Förkortning
$I_f = \frac{U_h}{R}$	I_f	$\operatorname{Str\"{o}m}$	Ampere	A

Exempel uträkning fasström

$$I_f = \frac{U_h}{R}$$

$$I_f \frac{400}{100}$$

$$I_f = 4 A$$

4.2.2 Linjeström

Samband	Beteckning	Storhet	Enhet	Förkortning
$I_L = I_f \times \sqrt{3}$	I_L	Ström	Ampere	A
$I_L^{'} =$	I_L	Ström	Ampere	A
$\frac{P}{\sqrt{3} \times U_h}$				

Exempel uträkning linjeström (1)

$$\begin{split} I_L &= I_f \times \sqrt{3} \\ I_L &= 90 \times \sqrt{3} \\ I_L &= 2, 3~A \end{split}$$

Exempel uträkning linjeström (2)

$$I_{L} = \frac{P}{\sqrt{3} \times U_{h}}$$

$$I_{L} = \frac{6000^{h}}{\sqrt{3} \times 400}$$

$$I_{L} = 8,7 A$$

Effekt

5.1 Trefaskretsar

Det finns en formel för beräkning av effekt och strömmar i trefaskretsar som gäller både för Y- och D-koppling. I praktiken är vi oftast intresserade av strömmarna som går i ledarna till en belastning, det vi kallar huvudström. Men i en D-koppling är det fasströmmarna genom belastningen som ger effektutvecklingen. Därför komplettear vi effektformeln med:

 $\sqrt{3}$

som beskriver sambandet mellan huvudström och fasström. Formeln utgör även grunden för beräkningar av effekten i reaktiva belastningar och den kompletteras då med

 $cos\phi$

.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{P_{trefas} =} \\ \sqrt{3} \times U \times \\ I_f \end{array}$	P	Aktiv effekt	Watt	W

 $\frac{\text{Effekt i tre D-kopplade resistorer}}{P_{trefas} = \sqrt{3} \times U \times I_f} \\ P_{trefas} = \sqrt{3} \times U \times I_f} \\ P = 4800 \ W$

5.2 Reaktiva kretsar

5.2.1 Aktiv

Det är den aktivs effekt som vi kan omsätta till ljus, värme eller mekansik rörelse. Aktiva effekten har enheten watt och betecknas med P i effektriangeln.

Samband	Beteckning	Storhet	Enhet	Förkortning
$P = U \times$	P	Aktiv effekt	Watt	W
$I \times cos\phi$				
$P_{trefas} =$	P	Aktiv effekt	Watt	W
$\sqrt{3} \times U \times$				
$I \times cos\phi$				

Exempel uträkning aktiv effekt

$$P = U \times I \times cos\phi$$

$$P = 230 \times 0,78 \times 0,78$$

$$P = 1640 \ W$$

Exempel uträkning aktiv effekt trefas

$$\begin{split} P_{trefas} &= \sqrt{3} \times U \times I \times cos\phi \\ P_{trefas} &= \sqrt{3} \times ? \times ? \times ? \\ P_{trefas} &= W \end{split}$$

5.2.2 Skenbar

Skenbar effekt är produkten av strömmens och spänningens effektvärden. Skenbar effekt har enheten voltampere (VA).

Samband	Beteckning	Storhet	Enhet	Förkortning
S =	S	Skenbar effekt	Voltampere	VA
$U \times I = \\ \sqrt{P^2 + Q^2} \\ S_{trefas} = \\ \sqrt{3} \times U \times I$	S	Skenbar effekt	Voltampere	VA

17

Exempel uträkning skenbar effekt (1)

$$S = U \times I$$

$$S = 230 \times 9,05$$

$$S = 2081 \ W$$

Exempel uträkning skenbar effekt (2)

$$S = \sqrt{P^2 + Q^2} \\ S = \sqrt{2000^2 + 1000^2} \\ S = 2, 2 \; kVA$$

Exempel uträkning skenbar effekt trefas

$$S_{trefas} = \sqrt{3} \times U \times I$$

$$S_{trefas} = \sqrt{3} \times 230 \times 9,05$$

$$S_{trefas} = 2081 \; W$$

5.2.3 Reaktiv

Den reaktiva effekten uppstår på grund av fasförskjutningen som det reaktiva motståndet åstakomer. Den reaktiva effekten har enheten voltampere, VAr. Tillläget r står för reaktiv.

Samband	Beteckning	Storhet	Enhet	Förkortning
$Q = U \times I \times sin\phi = \sqrt{S^2 - P^2}$	Q	Reaktiv effekt	Voltampere reakt	VAr

Exempel uträkning reaktiv effekt (1)

$$\begin{aligned} Q &= U \times I \times sin\phi \\ Q &= U \times I \times sin\phi \\ Q &= VAr \end{aligned}$$

Exempel uträkning reaktiv effekt (2)

$$Q = \sqrt{S^2 - P^2} \\ Q = \sqrt{1000^2 - 607^2}$$

Exempel uträkning reaktiv effekt (2)

$$Q=795~VAr$$

Växelströmsmotstånd

6.1 Impedans

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{Z} =$	Z	Impedans	Ohm	Ω
$\sqrt{R^2 + (X_I)^2}$	$(X_L - X_L)^2$			
$R = \frac{U}{I}$	R	Resistans	Ohm	Ω
$X_L =$	X_L	Induktiv	Ohm	Ω
$2\pi f L$		$\operatorname{reaktans}$		
$X_C =$	X_C	kapacitiv	Ohm	Ω
$\begin{array}{c} X_C = \\ \frac{1}{2\pi fC} \end{array}$	-	reaktans		

$$\frac{Z = \sqrt{R^2 + (X_L)^2}}{Z = \sqrt{20^2 + (15,7)^2}}$$

$$Z = 25,4~\Omega$$

6.2 Kondensatorer

Kondensatorns förmåga att lagra elektrisk laddning kallas kapacitans, och betecknas C. Enheten för kapacitans är farad som betecknas F.

Prefixer	Förkortning	Tiopotens
$\begin{array}{c} \hline 1 \ mikrofarad \\ 1 \ nanofarad \end{array}$	$\mu F \\ n F$	$\frac{10^{-6}}{10^{-9}}$

Prefixer	Förkortning	Tiopotens
$\overline{1\ picofarad}$	pF	10^{-12}

6.2.1 Kapacitans

Kapacitans beskriver hur mycket energi kondensatorn kan innehålla vid en viss spänning.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{C} =$	C	Kapacitans	Farad	$F^{As/V}$
$f = \frac{1}{T}$ $2 \times \pi =$ 3.14	$f \\ Pi$	Hertz Omkrets	Hz Radies	π

Exempel uträkning kapacitans

$$L = \frac{L = \frac{X_L}{2\pi f}}{\frac{1000}{(2\times3.14\times1.0\times10^3~\sqrt{3})}} \\ L = 0.16~H$$

6.2.2 Kapacitiv reaktans

Växelströmsmotståndet i kondensatorn minskar när frekvensen ökar. Då kommer ekvationen att minska när frekvesen ökar.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{X_C} = \\ \frac{1}{2\pi fC} \\ f = \frac{1}{T} \\ 2 \times \pi = \end{array}$	X_C	kapacitiv reaktans	Ohm	Ω
$f = \frac{1}{T}$	f	Hertz	Hz	
$2 \times \pi = 3.14$	Pi	Omkrets	Radies	π

Exempel uträkning kapacitiv reaktans

$$\begin{array}{c} X_C = \frac{1}{2\pi f C} \\ X_C = \frac{1}{2\times \pi \times 50 \times 0,0002} \\ X_C = 15,91~\Omega \end{array}$$

6.3. SPOLAR 21

6.2.3 Seriekopplade

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{l} \overline{C_{tot}} = \\ C_1 + C_2 \end{array}$	C	Kapacitans	Farad	$F^{As/V}$

 $\frac{C_{tot} = C_1 + C_2}{C_{tot} = 12_1 + 12_2}$ $C_{tot} = 24 \ \mu F$

6.2.4 Parallellkopplade

Samband	Beteckning	Storhet	Enhet	Förkortning
$\begin{array}{c} \frac{1}{C_{tot}} = \\ \frac{1}{C_1} + \\ \frac{1}{C_2} + \frac{1}{C_3} \dots \end{array}$	C	Kapacitans	Farad	$F^{As/V}$

Exempel uträkning kapacitiv reaktans $\frac{\frac{1}{C_{tot}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \dots}{\frac{1}{C_{tot}} = \frac{1}{1,8_1} + \frac{1}{16_2} + \frac{1}{32_3}}$ $C_{tot} = 4.5 \ nF$

6.3 Spolar

Spolens egenskaper kallas induktans, betecknas i formler L och mäts i enheten Henry (H).

Prefixer	Enhet	Förkostning
1 millihenry	mH	10^{-3}
$1\ mikrohenry$	μH	10^{-6}

6.3.1 Induktans

Induktansen beror på hur många varv spolen har, diametern, avståndet mellan ledarna och om spolen är försedd med järnkärna. Flera lindningsvarv och större diameter ger spolen större indutans.

Samband	Beteckning	Storhet	Enhet	Förkortning
$L = \frac{X_L}{2\pi f}$ $f = \frac{1}{T}$ $2 \times \pi =$	L	Induktans	Henry	$H^{Vs/A}$
$f = \frac{1}{T}$	f	Frekvens	Hertz	Hz
$2 \times \pi =$	Pi	?	?	π
3.14				

$$L = \frac{X_L}{2 \times \pi f}$$

$$L = \frac{1000}{(2 \times 3.14 \times 1.0 \times 10^3 \ \sqrt{3})}$$

$$L = 0.16 \ H$$

6.3.2 Induktiv reaktans

Växelströmsmotståndet är frekvensberoende och motståndet ökar när frekvensen ökar.

Samband	Beteckning	Storhet	Enhet	Förkortning
$\overline{X_L} = 2\pi f L$	X_L	Induktiv reaktans	Ohm	Ω
$f = \frac{1}{T}$	f	Frekvens	Hertz	Hz
$2 \times \pi =$	Pi	?	?	π
3.14				

$$X_L = 2\pi f L$$

$$X_L = 2\times \pi \ 50 \ Hz \times 0,05 \ H$$

$$X_L = 15,7 \ \Omega$$