Roadmap for Benchmark Construction and Evaluation Framework

For Incoming PhD Students

Overview

This document provides a six-month, step-by-step guideline and timeline for constructing and evaluating a benchmark (LLM benchmark) in operations research and related fields. It is designed for first-year PhD students and includes literature review, data collection, framework development, and pilot evaluation.

Overall Timeline (6 Months)

Phase	Month	Main Objective
Phase 1: Preparation & Literature Review	1	Clarify goals; survey foundational textbooks and existing benchmarks.
Phase 2: Question Collection & Draft Bank	2	Gather 300–500 candidate problems; set up version control/database.
Phase 3: Categorization & Annotation Design	3	Group problems by topic; write reference solutions and common-error annotations.
Phase 4: Dia- logue Format- ting & Data Construction	4	Convert Q&A into multi-turn dialogue format; validate data schema.
Phase 5: Evaluation Framework Development	5	Define metrics; implement automated scoring scripts and unit tests.
Phase 6: Pilot Run & Refine- ment	6	Run pilot on 30–50 items; analyze results; refine data, scripts, and documentation.

1 Step-by-Step Guide

Phase 1: Preparation & Literature Review (Month 1)

1. Define Scope & Objectives

- Review the project brief: what constitutes a "benchmark" for LLM performance?
- Set specific goals (e.g., coverage of estimation, hypothesis testing, optimization, pricing).

2. Literature Survey

- Read foundational textbooks:
 - Casella & Berger (2002), Statistical Inference
 - Shreve (2004), Stochastic Calculus for Finance
 - Björk (2009), Arbitrage Theory in Continuous Time
- Study existing LLM benchmarks (e.g., MMLU, HumanEval): construction methods, strengths, weaknesses.

3. Source Identification

- List potential problem sources: qualifying exams, course assignments, published problem sets.
- Obtain access (with advisor) to these repositories.

Phase 2: Question Collection & Draft Bank (Month 2)

1. Multi-Channel Collection

- Extract problems from past qualifying exams, homework, and textbook exercises.
- Aim for 300–500 varied questions.

2. Version Control & Metadata

- Use Git (GitHub/GitLab) to manage the question bank.
- Maintain a spreadsheet or database with fields: ID, source, topic, difficulty, keywords.

3. Initial Filtering

- Remove duplicates, trivial or overly obscure questions.
- Ensure broad coverage: estimation, testing, optimization, pricing, etc.

Phase 3: Categorization & Annotation Design (Month 3)

1. Topic Classification

- Define domain tags: Estimation, Hypothesis Testing, Portfolio Optimization, Options Pricing, etc.
- Assign each problem one or more tags.

2. Reference Solutions

- Write a clear, concise standard solution for each problem.
- Identify and document 1–3 common errors or misconceptions per problem.

Phase 4: Dialogue Formatting & Data Construction (Month 4)

1. Multi-Turn Dialogue Design

- Structure each problem as a conversation:
 - (a) Student asks the question.
 - (b) Tutor (LLM) gives an initial answer.
 - (c) Student requests clarification or points out errors.
 - (d) Tutor provides a full, detailed derivation.

2. Data Schema & Validation

• Example JSON record:

```
{
   "id": "...",
   "topic": "Estimation",
   "dialogue": [
        {"role": "student", "text": "..."},
        {"role": "tutor", "text": "..."}
],
   "solution": "...",
   "common_errors": ["..."]
}
```

• Write a small validation script to enforce required fields and types.

Phase 5: Evaluation Framework Development (Month 5)

1. Define Evaluation Metrics

- Accuracy: correctness of numerical answers or conclusions.
- Completeness: presence and logical order of key solution steps.
- Error Detection: ability of the model to identify documented common errors.

2. Automation Scripts

- Implement Python scripts using SymPy or NumPy for symbolic/numeric checks.
- Write unit tests to verify scoring logic across different question types.

Phase 6: Pilot Run & Refinement (Month 6)

1. Pilot Execution

- Randomly select 30–50 problems.
- Generate responses with your target LLM (e.g., GPT-4, LLaMA).
- Run evaluation scripts and collect metrics.

2. Analysis & Iteration

- Review pilot results to identify weaknesses in problem set, dialogue design, or scoring.
- Update tags, solutions, common errors, and scripts accordingly.

3. Documentation

- $\bullet\,$ Prepare a README, data dictionary, and user guide.
- Schedule a review meeting with advisor/lab for feedback.