PROBLEM SOLVING

https://xkcd.com/1831/

LEARNING OBJECTIVES

- Examine some of the techniques used to solve problems
- The definition of an algorithm

PROBLEM SOLVING

- The Psychology of Problem Solving: https://www.youtube.com/watch?v=vg936IW9i7Q
 - problems such as these require "insight" i.e. they are not purely straightforward
 - many problems in computing require insight as well, but many are simple especially when you have seen similar examples previously
- George Polya "How to Solve It: A New Aspect of Mathematical Method"
 - Originally mathematical problems but general enough to apply to computing

HOW TO SOLVE IT

- https://en.wikipedia.org/wiki/How_to_Solve_It
- 1. Understand the problem
- 2. Make a plan
- 3. Carry out the plan
- 4. Look back on your work could it be better?

1. UNDERSTANDING THE PROBLEM

- Questions that may be helpful:
 - · Do you understand all of the terms in the problem?
 - Is there enough information in the specification to solve the problem?
 - · Can you state the problem in your ownwords?
- If any of these are "No", then you need to ask questions
- Other things
 - Would a diagram help understand the problem?

2. MAKE A PLAN

- Lots of good ways to solve problems, and the more problems you solve the better you get
- · Some strategies:
- Guess and check
- Make an orderly list
- · Eliminate possibilities
- Use symmetry
- Consider special cases
- ..

- Also
 - Solve a simpler problem
 - Use a model
 - Work backward
 - .

3. CARRY OUT THE PLAN

- Straightforward
 - but if the plan does not work go back to 2.

4. LOOK BACK ON YOUR WORK

- This can help either to generalise your approach for similar problems
- or just to help you to understand what works for the future

EXAMPLE - SOLVING A MAZE

- The problem Given a rectangular maze with one entrance you have to find your way to the centre of the maze.
- What further questions do you need to ask before you can produce an algorithm to solve this problem?

UNDERSTANDING THE PROBLEM

- How is the maze represented?
 - •walls
 - •paths
 - starting and ending points
- How do we perceive themaze?
 - •bird's eye view
 - •walking through the maze
- Would a diagram help?

WE WANT TO SOLVE MORE THAN ONE MAZE

- We can start by examining how we can solve this one
- · What would you do?
 - depth-first https://www.youtube.com/watch?v=Les1Pttd3xg
 - wall following https://www.youtube.com/watch?v=NA137qGmz4s
 - backwards
 - and of course bread crumbs (essential for many real solutions)
 - https://www.lesswrong.com/posts/CPBmbgYZpsGqkiz2R/problemsolving-with-mazes-and-crayon

DOESN'T WORK

• Say we chose left wall following as the technique - back to step 2

ALGORITHMS (1 OF 4)

- The Formal Definition of an Algorithm:
 - A well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time

ALGORITHMS (2 OF 4)

- Well-ordered collection
 - Upon completion of an operation, we always know which operation to do next
- · Unambiguous and effectively computable operations
 - It is not enough for an operation to be understandable, it must also be doable (effectively computable)
 - Ambiguous statements
 - Go back and do it again (Do what again?)
 - Start over (From where?)

14

ALGORITHMS (3 OF 4)

- Produces a result and halts in a finite amount of time
 - To know whether a solution is correct, an algorithm must produce a result that is observable to a user:
 - . A numerical answer
 - . A new object
 - A change in the environment

ALGORITHMS (4 OF 4)

- · Unambiguous operation, or primitive
 - Can be understood by the computing agent without having to be further defined or simplified
- It is not enough for an operation to be understandable
 - It must also be doable (effectively computable) by the computing agent
- · Infinite loop
 - Runs forever
 - Usually a mistake

1

16

WASHING HAIR ALGORITHM?

• From the back of a shampoo bottle

Step 1: Wet hair

Step 2: Lather

Step 3: Rinse

Step 4: Repeat

• What is wrong with this?

17

FIGURE 1.3 A CORRECT SOLUTION TO THE SHAMPOOING PROBLEM

Step	Operation	
1	Wet your hair	
2	Set the value of WashCount to 0	
3	Repeat Steps 4 through 6 until the value of WashCount equals 2	
4	Lather your hair	
5	Rinse your hair	
6	Add 1 to the value of WashCount	
7	Stop, you have finished shampooing your hair	

1

FIGURE 1.4 ANOTHER CORRECT SOLUTION TO THE SHAMPOOING PROBLEM

Step	Operation
1	Wet your hair
2	Lather your hair
3	Rinse your hair
4	Lather your hair
5	Rinse your hair
6	Stop, you have finished shampooing your hair

Which solution slide 18 or 19 do you prefer? Why?

19