Ferienkurs: Mechanik

Ferienkurs

Theoretische Physik: Mechanik

Sommer 2013

Übung 2 - Angabe

1 Schräger Wurf

Ferienkurs: Mechanik

Ein Massepunkt der Masse m werde mit der Anfangsgeschwindigkeit

$$\vec{v}^{(0)} = (v_x^{(0)}, 0, v_z^{(0)})^T \tag{1}$$

im homogenen Schwerefeld der Erde vom Koordinatenursprung aus abgeworfen.

- 1. Stellen Sie die Bewegungsgleichungen für den Massepunkt auf und bestimmen Sie die Bahnkurve $\vec{r}(t)$.
- 2. Eliminieren Sie t aus der x- und z-Komponente der Bahnkurve und diskutieren Sie die Spur z(x).
- 3. Berücksichtigen Sie ab jetzt die zusätzliche Bedingung, dass der Massepunkt im Punkt $P = (x_1, 0, z_1)$ auftreffen soll.
- 4. Bestimmen Sie die Flugzeit des Massepunktes in Abhängigkeit des Betrags der Anfangsgeschwindigkeit $v^{(0)} = |\vec{v}^{(0)}|$ und des Abwurfwinkels $\psi^{(0)}$.
- 5. Wie hängt die anfängliche, kinetische Energie $T^{(0)}$ des Massepunktes vom Abwurfwinkel $\psi^{(0)}$ ab? Für welchen Abwurfwinkel ist $T^{(0)}$ minimal?

2 Eisenbahn

Ein Zug der Masse $m = 5, 0 \cdot 10^5 kg$ mit 16 Achsen fährt mit einer Geschwindigkeit von $200 \frac{km}{h}$ von München (48° nördliche Breite) auf gerader Strecke in Richtung Norden.

- 1. Berechnen Sie die Coriolisbeschleunigung, die der Zug erfährt und vergleichen Sie den Betrag mit der Erdbeschleunigung *g*.
- 2. Mit welcher Kraft wird ein linkes bzw. ein rechtes Rad des Zuges gegen die Schiene gedrückt?
- 3. Was ändert sich bei einer Fahrt in Richung Süden, Osten oder Westen?

3 Drei Flugzeuge

Drei baugleiche Flugzeuge starten gleichzeitig an den Eckpunkten eines gleichseitigen Dreiecks mit Seitenlänge l, dessen Mittelpunkt im Koordinatenursprung liegt. Sie fliegen mit einer Geschwindigkeit konstanten Betrags v stets in Richtung des im Uhrzeigersinn nächsten Flugzeugs. Berechnen Sie die Zeit bis zum Zusammenstoß der drei Flugzeuge.

4 Foucaultsches Pendel

Ferienkurs: Mechanik

Betrachten Sie ein mathematisches Pendel der Länge $l \ll R_E$ und Masse m auf der mit konstanter Winkelgeschwindigkeit Ω rotierenden Erde. Vernachlässigen Sie die Rotation der Erde um die Sonne. Die z'-Achse des mitbewegten Koordinatensystems verbinde Erdmittelpunkt und Aufhängepunkt bei geographischer Breite ϕ . Die z'-Achse verlaufe längs des Breitengrades und die y'-Achse längs des Längengrades am Aufhängepunkt.

- 1. Stellen Sie die Bewegungsgleichungen für das Pendel auf. Begründen Sie, dass die vertikale Bewegung sowie die Zentrifugalterme vernachlässigt werden können.
- 2. Führen Sie die komplexe Koordinate Z' = x' + iy' ein und lösen Sie die Bewegungsgleichungen mit den Anfangsbedingungen x'(0) = a, y'(0) = 0 und $\dot{x}'(0) = \dot{y}'(0) = 0$. Interpretieren Sie das Ergebnis.

5 Gedämpfter, harmonischer Oszillator

Betrachten Sie einen gedämpften, harmonischen Oszillator mit Masse m. Die Eigenfrequenz des ungedämpften Oszillators sei ω_0 und die Dämpfunskonstante sei κ . Die Bewegungsgleichung lautet:

$$\ddot{x} + 2\kappa \dot{x} + \omega_0^2 x = 0 \tag{2}$$

- 1. Lösen Sie die Bewegungsgleichung (2) für den Fall $\omega_0 > \kappa$ mit Anfangsbedingungen $x(0) = \dot{x}(0)v_0$ über den Standardansatz $x(t) = exp(\lambda t)$.
- 2. Ermitteln Sie die Lösung für den Fall $\omega_0 = \kappa$ als Grenfall von 1.
- 3. Sei nun $\omega = \kappa$. Berechnen Sie für den Fall $x_0 = 0$ den Zeitpunkt t_1 , bei dem die maximale Auslenkung, also der Umkehrpunkt, erreicht wird.