Monoides, monoides coloreados

Mario Román

<2019-04-13 Sat 23:48>

Contents

Monoides y monoides coloreados	1
Categorías monoidales	3

El plan será el siguiente: primero presentamos una *sintaxis*, ciertos símbolos que forman diagramas y que siguen ciertas reglas. Luego veremos que esta sintaxis toma *modelos* en objetos matemáticos con cierta estructura. ¿Cuál es la utilidad de estudiar la sintaxis? Cada vez que probemos algo sólo usando sus reglas, lo estaremos probando para todos sus modelos. ¿En qué se diferencia esto de una presentación axiomática de, digamos, un grupo? en que nuestra sintaxis viene dada, no por cadenas de caracteres como suele hacerse en lógica, ¡sino por diagramas! Vamos a ir un paso más allá, y, haciendo implícitamente uso de teoremas de coherencia y complitud, definir las nuestras estructuras de forma elemental usando diagramas. En lugar de definir diagramas, los tomamos como conceptos primitivos.

In this article I am drawing diagrams using tikz and following Marsden's [Mar14] macros for string diagrams. The general idea follows this paper, but also Vicary-Heunen-Reutter's notes for Categorical Quantum Mechanics, [HVR19].

Monoides y monoides coloreados

Definición 1. Un elemento de un **monoide** es una *cuerda* con *nodos*, un diagrama en una dimensión. Los siguientes diagramas representan elementos de un monoide.

A la cuerda vacía se le llama **identidad** o *elemento neutro* del monoide. A la **concatenación** de dos cuerdas se le llama tradicionalmente *multiplicación*.

Ejemplo 2. Los números naturales con la suma forman un monoide. ¹ La cuerda vacía es el cero y dos cuerdas con la misma suma se declaran iguales.

¿Cuál es la ventaja de escribir esto frente a la notación usual de un monoide? con esta notación, la asociatividad es transparente. No tenemos forma de distinguir ((3+2)+4) de (3+(2+4)) y esto es bueno, porque en un monoide no debería poder existir forma de distinguirlos. Además, cuando dibujamos la unidad como una cuerda vacía, estamos haciendo la unitalidad transparente. No tenemos forma de distinguir 9 de 0+9.

La estructura de un monoide es muy rica, pero podemos ir más allá. En un monoide, cualesquiera dos nodos pueden componerse sobre la cuerda, pero podemos limitar esta composición dando colores a las cuerdas. Cada nodo cambiará el color de la cuerda, y sólo podremos componer dos nodos si el color de salida del primero coincide con el color de entrada del segundo.

Definición 3. Una categoría es un monoide coloreado. Alternativamente, un monoide es una categoría monocroma. Normalmente, a los elementos de una categoría se les llama *morfismos*, a los colores se les llama *objetos*, se les pone una etiqueta en lugar de un color, y se dice que *un monoide es una categoría con un sólo objeto*. Los siguientes son morfismos en una categoría.

¹Y los dibujos describen un *ábaco*.

A la concatenación se le suele llamar **composición** y a la cuerda vacía de un determinado color se le llama **identidad** sobre ese objeto. Al color de entrada de un nodo se le llama **dominio** y al color de salida se le llama **codominio**.

Ahora la composición está limitada: podemos poner g después de f porque el dominio de g y el codominio de f coinciden, pero no podemos poner h después de g, por ejemplo, porque h tiene dominio B.

Ejemplo 4. Las funciones entre conjuntos forman una categoría, que suele notarse por **Set**. Cada color es un conjunto, y entre dos conjuntos A y B podemos considerar los nodos dados por las funciones $f:A\to B$. Al concatenar varias funciones, lo que hacemos es componerlas. Una cadena vacía sobre un conjunto representa la función identidad sobre ese conjunto.

La asociatividad de la composición de funciones y la neutralidad de la función se han vuelto invisibles con esta notación.

Categorías monoidales

Cuando los diagramas de verdad se vuelven interesantes es cuando pasamos de una a dos dimensiones. Nuestra siguiente definición usa dos dimensiones. En uno de los ejes tenemos un monoide, en el otro tenemos una categoría.

Definición 5. Los morfismos de **categoría monoidal** vienen dados por diagramas bidimensionales de cuerdas con distintos colores. Un morfismo puede tener como entrada y salida un número cualquiera de cuerdas.

Consideramos iguales cualesquiera dos diagramas que sean isotópicos, pero aun tenemos la restricción dada por los colores: el morfismo γ , por ejemplo, necesita tomar (¡en ese orden!) una entrada naranja y dos azules. Nuestro siguiente paso será colorear las regiones del diagrama, así que quizá es una buena idea cambiar los colores de las cuerdas por etiquetas, como implícitamente estamos haciendo con los morfismos.

Ejemplo 6. Las funciones sobre conjuntos no sólo forman una categoría, sino que forman una categoría monoidal con el producto dado por el producto cartesiano. Esto nos permite además expresar funciones no necesariamente unarias en nuestros diagramas.

References

[HVR19] Chris Heunen, Jamie Vicary, and David Reutter. Categorical Quantum Mechanics: an introduction. *Department of Computer Science*, Hilary Term 2019.

[Mar14] Daniel Marsden. Category theory using string diagrams. *arXiv preprint arXiv:1401.7220*, 2014.