OR 과제 - 2

20192208 김형훈

2025-03-22

4.3-5

수식을 다시 재구성해보면 아래와 같다.

$$\begin{array}{ll} \text{Maximize} & Z-3x_1-4x_2-5x_3=0\\ \text{Subject to} & x_4=150-3x_1-x_2-5x_3\\ & x_5=120-x_1-4x_2-x_3\\ & x_6=105-2x_1-2x_3\\ & x_1,x_2,x_3,x_4,x_5,x_6\geq 0 \end{array}$$

reduce cost 중 가장 작은 값은 x_3 . 따라서 x_3 를 pivot variable로 선택한다. 이후 min ratio test를 진행한다.

선택하지 않은 x_1 과 x_2 는 0을 대입하고 진행한다.

$$\begin{aligned} x_4 &= 150 - 5x_3 \ge 0 & x_3 \le 30 \\ x_5 &= 120 - x_3 \ge 0 & x_3 \le 120 \\ x_6 &= 105 - 2x_3 \ge 0 & x_3 \le 52.5 \end{aligned}$$

$$x_4$$
 채택. $x_3 = 30 - \frac{3}{5}x_1 - \frac{1}{5}x_2 - \frac{1}{5}x_4$.

다시 수식을 재구성하면 아래와 같다.

$$\begin{split} Z - 3x_2 + x_4 - 150 &= 0 \\ x_3 = 30 - \frac{3}{5}x_1 - \frac{1}{5}x_2 - \frac{1}{5}x_4 \\ x_5 = 90 - \frac{2}{5}x_1 - \frac{19}{5}x_2 + \frac{1}{5}x_4 \\ x_6 = 45 - \frac{4}{5}x_1 + \frac{2}{5}x_2 + \frac{2}{5}x_4 \end{split}$$

reduce cost 중 x_2 가 가장 작다. 따라서 x_2 를 pivot variable로 선택한다. 다시 한번 min ratio test 진행.

$$x_3 = 30 - \frac{1}{5}x_2 \ge 0 \qquad x_2 \le 150$$

$$x_5 = 90 - \frac{19}{5}x_2 \ge 0 \qquad x_2 \le 23.68$$

$$x_6 = 45 + \frac{2}{5}x_2 \ge 0 \qquad x_2 \le 112.5$$

$$x_5$$
 채택. $x_2 = \frac{450}{19} - \frac{2}{19}x_1 + \frac{1}{19}x_4 - \frac{5}{19}x_5$.

다시 수식을 재구성 해보자.

$$Z + \frac{6}{19}x_1 + \frac{16}{19}x_4 + \frac{15}{19}x_5 - \frac{1500}{19}$$

$$x_2 = \frac{450}{19} - \frac{2}{19}x_1 + \frac{1}{19}x_4 - \frac{5}{19}x_5$$

$$x_3 = \frac{480}{19} - \frac{11}{19}x_1 - \frac{4}{19}x_4 + \frac{1}{19}x_5$$

$$x_6 = \frac{630}{19} - \frac{16}{19}x_1 + \frac{8}{19}x_4 - \frac{2}{19}x_5$$

이제 reduced cost를 확인해보면, 모든 변수의 계수가 음수가 아니므로 최적해에 도달했다. 따라서 최적해는 아래와 같다.

- $x_1 = 0$
- $x_2 = \frac{450}{19}$ $x_3 = \frac{480}{19}$
- $x_4 = 0$
- $x_5 = 0$
- $x_6 = \frac{630}{19}$ $Z = \frac{1500}{19}$

4.3-6

a

수식을 다시 재구성해보면 아래와 같다.

$$\begin{array}{ll} \text{Maximize} & Z-5x_1-3x_2-4x_3=0 \\ \text{Subject to} & x_4=20-2x_1-x_2-x_3 \\ & x_5=30-3x_1-x_2-2x_3 \\ & x_1,x_2,x_3,x_4,x_5\geq 0 \end{array}$$

 x_1 은 기저 변수가 아니므로, 초기 enter 변수를 정할 때 x_2 혹은 x_3 를 선택해서 iteration을 최소화한다.

b

		Z	x_1	x_2	x_3	x_4	x_5	RHS
		1	-5	-3	-4	0	0	0
(x_4	0	1	1	1	1	0	20
4	x_5	0	3	1	2	0	1	30

 x_1 이 제일 작지만, 기저변수가 아니므로, x_3 선택.

 $\min\{\frac{20}{1}, \frac{30}{2}\}$ = 15. x_5 선택.

	Z	x_1	x_2	x_3	x_4	x_5	RHS
	1	1	-1	0	0	2	60
x_4	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	1	$-\frac{1}{2}$	5
x_3	0	$\frac{3}{2}$	$\frac{1}{2}$	1	0	$\frac{1}{2}$	15

 x_2 선택.

 $\min\{10, 30\} = 10. x_4$ 선택.

	Z	x_1	x_2	x_3	x_4	x_5	RHS
	1	0	0	0	2	1	70
x_2	0	-1	1	0	2	-1	10
x_3	0	2	0	1	-1	1	10

종료.

4.3-7

a

수식을 다시 재구성해보면 아래와 같다.

$$\begin{array}{ll} \text{Maximize} & Z-2x_1-4x_2-3x_3=0\\ \text{Subject to} & x_1+3x_2+2x_3+x_4=30\\ & x_1+x_2+x_3+x_5=24\\ & 3x_1+5x_2+3x_3+x_6=60\\ & x_1,x_2,x_3,x_4,x_5,x_6\geq 0 \end{array}$$

 x_2 는 기저 변수가 아니므로, 초기 enter 변수를 정할 때 x_1 혹은 x_3 를 선택해서 iteration을 최소화한다.

b

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	-2	-4	-3	0	0	0	0
x_4	0	1	3	2	1	0	0	30
x_5	0	1	1	1	0	1	0	24
x_6	0	3	5	3	0	0	1	60

 x_2 가 제일 작지만, 기저변수가 아니므로, x_3 선택.

 $\min\{\frac{30}{2},\frac{24}{1},\frac{60}{3}\}$ = 15. x_4 선택.

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	$-\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{3}{2}$	0	0	45
x_3	0	$\frac{1}{2}$	$\frac{3}{2}$	1	$\frac{1}{2}$	0	0	15
x_5	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	1	0	9
x_6	0	$\frac{3}{2}$	$\frac{1}{2}$	3	$-\frac{3}{2}$	0	1	15

 $\min\{30, 18, 10\}$ = 10. x_6 선택.

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	0	$\frac{2}{3}$	1	$\frac{1}{2}$	0	$\frac{1}{3}$	50
x_3	0	0	$\frac{4}{3}$	0	1	0	$-\frac{1}{3}$	10
x_5	0	0	$-\frac{2}{3}$	-1	0	1	$-\frac{1}{3}$	4
x_1	0	1	$\frac{1}{3}$	2	-1	0	$\frac{2}{3}$	10

종료.

4.4-6

a

수식을 다시 재구성해보면 아래와 같다.

$$\begin{array}{ll} \text{Maximize} & Z-3x_1-5x_2-6x_3=0\\ \text{Subject to} & x_4=4-2x_1-x_2-x_3\\ & x_5=4-x_1-2x_2-x_3\\ & x_6=4-x_1-x_2-2x_3\\ & x_7=3-x_1-x_2-x_3\\ & x_1,x_2,x_3,x_4,x_5,x_6,x_7\geq 0 \end{array}$$

reduce cost 중 가장 작은 값은 x_3 . 따라서 x_3 를 pivot variable로 선택한다. 이후 min ratio test를 진행한다.

선택하지 않은 x_1 과 x_2 는 0을 대입하고 진행한다.

$$\begin{aligned} x_4 &= 4 - x_3 \ge 0 & x_3 \le 4 \\ x_5 &= 4 - x_3 \ge 0 & x_3 \le 4 \\ x_6 &= 4 - 2x_3 \ge 0 & x_3 \le 2 \\ x_7 &= 3 - x_3 \ge 0 & x_3 \le 3 \end{aligned}$$

$$x_6$$
 채택. $x_3=2-rac{1}{2}x_1-rac{1}{2}x_2-rac{1}{2}x_6.$

다시 수식을 재구성하면 아래와 같다.

$$\begin{split} Z-2x_2+3x_6-12&=0\\ x_3&=2-\frac{1}{2}x_1-\frac{1}{2}x_2-\frac{1}{2}x_6\\ x_4&=2-\frac{3}{2}x_1-\frac{1}{2}x_2+\frac{1}{2}x_6\\ x_5&=2-\frac{1}{2}x_1-\frac{3}{2}x_2+\frac{1}{2}x_6\\ x_7&=1-\frac{1}{2}x_1-\frac{1}{2}x_2+\frac{1}{2}x_6 \end{split}$$

역시 한 번에 끝나지 않았다. 다음 pivot variable은 x_2 . 부연설명 없이 계속 진행해보겠다.

• min ratio test

$$\begin{split} x_3 &= 2 - \frac{1}{2} x_2 \ge 0 \qquad x_2 \le 4 \\ x_4 &= 2 - \frac{1}{2} x_2 \ge 0 \qquad x_2 \le 4 \\ x_5 &= 2 - \frac{3}{2} x_2 \ge 0 \qquad x_2 \le \frac{4}{3} \\ x_7 &= 1 - \frac{1}{2} x_2 \ge 0 \qquad x_2 \le 3 \end{split}$$

• x₅

$$Z - \frac{44}{3} + \frac{2}{3}x_1 + \frac{7}{3}x_6 + \frac{4}{3}x_5 = 0$$

$$x_2 = \frac{4}{3} - \frac{1}{3}x_1 + \frac{1}{3}x_6 - \frac{2}{3}x_5$$

$$x_3 = \frac{4}{3} - \frac{1}{3}x_1 - \frac{4}{6}x_6 + \frac{1}{3}x_5$$

$$x_4 = \frac{4}{3} - \frac{4}{3}x_1 + \frac{1}{3}x_6 + \frac{1}{3}x_5$$

$$x_7 = \frac{1}{3} - \frac{1}{3}x_1 + \frac{1}{3}x_6 + \frac{1}{3}x_5$$

종료.

•
$$x_1 = 0$$

•
$$x_2 = \frac{4}{3}$$

•
$$x_2 = \frac{4}{3}$$

• $x_3 = \frac{4}{3}$
• $x_4 = \frac{4}{3}$

•
$$x_4 = \frac{4}{3}$$

•
$$x_5 = 0$$

•
$$x_6 = 0$$

•
$$x_7 = \frac{1}{3}$$

• $Z = \frac{44}{3}$

•
$$Z = \frac{44}{3}$$

b

	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
	1	-3	-5	-6	0	0	0	0	0
x_4	0	2	1	1	1	0	0	0	4
x_5	0	1	2	1	0	1	0	0	4
x_6	0	1	1	2	0	0	1	0	4
x_7	0	1	1	1	0	0	0	1	3

 $\min\{\frac{4}{1}, \frac{4}{1}, \frac{4}{2}, \frac{3}{1}\}$ = 2. x_6 선택.

	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
	1	0	-2	0	0	0	3	0	12
x_4	0	$\frac{3}{2}$	$\frac{1}{2}$	0	1	0	$-\frac{1}{2}$	0	2
x_5	0	$\frac{1}{2}$	$\frac{3}{2}$	0	0	1	$-\frac{1}{2}$	0	2
x_3	0	$\frac{1}{2}$	$\frac{1}{2}$	1	0	0	$\frac{1}{2}$	0	2
x_7	0	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	$-\frac{1}{2}$	1	1

 $\min\{4, \frac{4}{3}, 4, 2\} = \frac{4}{3}$. x_5 선택.

	Z	x_1	x_2	x_3	x_4	x_5	x_6	x_7	RHS
	1	$\frac{2}{3}$	0	0	0	$\frac{4}{3}$	$\frac{7}{3}$	0	$\frac{44}{3}$
x_4	0	$\frac{4}{3}$	0	0	1	$-\frac{1}{3}$	$-\frac{1}{3}$	0	$\frac{4}{3}$
x_2	0	$\frac{1}{3}$	1	0	0	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{4}{3}$
x_3	0	$\frac{1}{3}$	0	1	0	$-\frac{1}{3}$	$\frac{2}{3}$	0	$\frac{4}{3}$
x_7	0	$\frac{1}{3}$	0	0	0	$-\frac{1}{3}$	$-\frac{1}{3}$	1	$\frac{1}{3}$

종료.

C

gurobi를 이용해서 최적해를 구해보자.

```
from gurobipy import *

model = Model("ex4.4-6")

model.setParam('OutputFlag', 0)
```

CPU랑 OS 정보가 출력되서 로그는 꺼줬습니다.

```
x1 = model.addVar(vtype=GRB.CONTINUOUS, name="x1")
x2 = model.addVar(vtype=GRB.CONTINUOUS, name="x2")
x3 = model.addVar(vtype=GRB.CONTINUOUS, name="x3")

model.setObjective(3 * x1 + 5 * x2 + 6 * x3, GRB.MAXIMIZE)

model.addConstr(2 * x1 + x2 + x3 <= 4)
model.addConstr(x1 + 2 * x2 + x3 <= 4)
model.addConstr(x1 + x2 + 2 * x3 <= 4)
model.addConstr(x1 + x2 + x3 <= 3)</pre>
```

```
model.optimize()

for var in model.getVars():
    print(f"{var.varName}: {var.x}")

print("Obj: ", model.objVal)
```

x1: 0.0

알맞게 나오는 모습.

4.4-8

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	1	-1	-2	0	0	0	0
x_4	0	1	2	-1	1	0	0	20
x_5	0	-2	4	2	0	1	0	60
x_6	0	2	3	1	0	0	1	50

 $\min\{\frac{60}{2},\frac{50}{1}\}$ = 30. x_5 선택.

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	-1	3	0	0	1	0	60
x_4	0	0	4	0	1	$\frac{1}{2}$	0	50
x_3	0	-1	2	1	0	$\frac{1}{2}$	0	30
x_6	0	3	1	0	0	$-\frac{1}{2}$	1	20

 x_6 선택.

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	0	$\frac{10}{3}$	0	0	$\frac{5}{6}$	$\frac{1}{3}$	$\frac{200}{3}$
x_4	0	0	4	0	1	$\frac{1}{2}$	0	50
x_3	0	0	$\frac{7}{3}$	1	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{110}{3}$
x_1	0	1	$\frac{1}{3}$	0	0	$-\frac{1}{6}$	$\frac{1}{3}$	$\frac{20}{3}$

종료. Z는 66.6666666667