Math 488, Assignment 6

- 1. Suppose M is a ctm and $\mathbb{P} \in M$ is a forcing notion. Show that if $G \subseteq \mathbb{P}$ is \mathbb{P} -generic over M, then G is an ultrafilter.
- 2. Let M be a ctm and $\mathbb{P} \in M$ be a forcing notion. Show that $G \subseteq \mathbb{P}$ is \mathbb{P} -generic over M if and only if G is a filter and for every maximal antichain A in \mathbb{P} such that $A \in M$ we have $G \cap A \neq \emptyset$.
- 3. (Maximal Principle) Let \mathbb{P} be a forcing notion. Suppose $p \in \mathbb{P}$ and $\varphi(x)$ is a formula in the forcing language. Show that if $p \Vdash \exists x \varphi(x)$, then there is a name \dot{x} such that $p \Vdash \varphi(\dot{x})$.
- 4. Let κ be an uncountable cardinal. Write $\operatorname{Coll}(\omega, \kappa)$ for the set of all finite partial functions from ω to κ , ordered by reverse inclusion. Show that κ is countable in V[G] and all cardinals from V which are bigger than κ remain cardinals in V[G].
- 5. A forcing \mathbb{P} is σ -closed if for any sequence p_n in \mathbb{P} such that $p_{n+1} \leq p_n$ there exists $p \in \mathbb{P}$ with $p \leq p_n$ for all n. Show that if \mathbb{P} is σ -closed then \mathbb{P} does not add reals, i.e. $V \cap 2^{\omega} = V[G] \cap 2^{\omega}$ for any \mathbb{P} -generic G.
- 6. (0-1 law) A forcing \mathbb{P} is weakly homogeneous if for any $p, q \in \mathbb{P}$ there is an automorphism φ of \mathbb{P} such that $\varphi(p)$ and q are compatible. Show that if \mathbb{P} is weakly homogeneous and σ is a sentence in the forcing language which involves only standard names (i.e. \check{x}), then either $\mathbb{1} \Vdash \sigma$ or $\mathbb{1} \Vdash \neg \sigma$.
- 7. Given two forcing notions \mathbb{P} and \mathbb{Q} in a ctm M satisfying ZFC*, consider $\mathbb{P} \times \mathbb{Q} \in M$ ordered coordinatewise. Let $G \subseteq \mathbb{P}$ and $H \subset \mathbb{Q}$. Show that the following are equivalent:
 - (i) G is \mathbb{P} -generic over M and H is \mathbb{Q} -generic over M[G],
 - (ii) $G \times H$ is $\mathbb{P} \times \mathbb{Q}$ -generic over M.