Adaptive Robust Pooling and Feature Projections in Deep Declarative Networks

Wenbo Du Supervisor: Professor Stephen Gould

Outlines

- Background
- Adaptive Robust Pooling
- Adaptive Feature Projections
- Conclusion & Future Work

Background: Pooling in Convolutional Neural Networks

By algorithms:

Max pooling

Average pooling

1	2	7	3			
6	7	0	2	2 × 2 average pooling	4	3
4	1	3	6		2	5
1	2	6	5	' '		

By operation region:

- Local pooling:
 one value for each patch of features.
- Global pooling:
 a single value for all features.

Pooling in this project refers to global pooling.

Background: A General and Adaptive Robust Loss Function

Robustness: a model's sensitivity to outliers.

Robust loss function: loss functions that are less influenced by outliers.

$\alpha = -\infty$ $\alpha = -2$ $\alpha = 0$ $\alpha = 1/2$ $\alpha = 1$ $\alpha = 3/2$ $\alpha = 2$

-6c -5c -4c -3c -2c -c 0 c 2c 3c 4c 5c 6c

 $\rho(x,\alpha,c)$

Function definition:

$$f(x,\alpha,c) = \frac{|\alpha-2|}{\alpha} \left(\left(\frac{(x/c)^2}{|\alpha-2|} + 1 \right)^{\alpha/2} - 1 \right)$$

- Generalise many existing loss functions with different α.
- Gradient-based learning for α (robustness) and c (outlier threshold).

Background: Deep Declarative Networks (DDN)

Traditional Neural Network Nodes

Forward

Explicitly defined function eg.

ReLU: y = max(0, x)

Backward

Explicit differentiation

Deep Declarative Networks Nodes

Implicitly defined argmin problem eg.

$$y \in \operatorname{arg\,min}_{u \in \mathbb{R}^m} \quad f(x,u)$$
 subject to $h_i(x,u) = 0, \quad i = 1,\dots,p$

Implicit function theorem

Adaptive Robust Pooling: Previous Work

 Robust pooling, as an instance of DDN, is more robust to outliers than max pooling and average pooling.

Forward
$$y \in \arg\min_{u \in \mathbb{R}} \sum_{i=1}^n \phi(u - x_i, c)$$
 Backward Dy(x)

- Outlier threshold c in robust pooling is a predetermined constant.
- φ can be one of loss functions:

Adaptive Robust Pooling: My Work

Adaptive robust pooling

General and adaptive robust pooling

$$y \in \arg\min_{u \in \mathbb{R}} \sum_{i=1}^{n} \phi(u - x_i, c)$$

subject to $c > 0$

$$y \in \underset{u \in \mathbb{R}}{\operatorname{arg\,min}} \sum_{i=1}^{n} \frac{|\alpha - 2|}{\alpha} \left(\left(\frac{\left(\frac{u - x_i}{c} \right)^2}{|\alpha - 2|} + 1 \right)^{\frac{\alpha}{2}} - 1 \right)$$
subject to
$$c > 0$$

$$0 < \alpha < 3$$

Backward

$$Dy(x)$$
, $Dy(c)$, $Dy(\alpha)$

Gradient calculations use DDN theory.

c and α are updated in end-to-end backpropagation in networks.

Adaptive Robust Pooling: Experiments

- Point cloud classification with PointNet and ModelNet40.
- Robust pooling with constant c as baselines [Gould, 2020].
- Outliers are added to point clouds for robustness evaluation.

Adaptive Robust Pooling: Results

Train without outliers, test with outliers.

Adaptive Robust Pooling: Summary

- Our methods outperform baselines in most cases.
- The runtime and memory increases are acceptable.

Pooling type	Forwar	rd (ms)	Backward (ms)	
	baseline	ours	baseline	ours
Pseudo-Huber	3.75	6.78	0.20	0.25
Huber	5.63	9.825	0.23	0.15
Welsch	19.95	24.23	0.23	0.28

• The improvement in general and adaptive robust pooling is not significant.

Adaptive Feature Projections: Previous Work

- Euclidean projections onto L2 ball and sphere are common operations in deep learning.
- With DDN theory, we can embed projections onto L1, L∞ ball and sphere as network nodes.

Forward $y_p \in \underset{\text{subject to}}{\operatorname{arg\,min}}_{u \in \mathbb{R}^n} \quad \frac{1}{2} \|u - x\|_2^2 \\ \text{subject to} \quad ||u||_p = r \end{cases} \quad y_p \in \underset{\text{subject to}}{\operatorname{arg\,min}}_{u \in \mathbb{R}^n} \quad \frac{1}{2} \|u - x\|_2^2 \\ \text{subject to} \quad ||u||_p \leq r$

• Currently, the parameter radius r in projections is set as a constant.

Hand tuning for constant r is required for different models/datasets.

Adaptive Feature Projections: My Work

We introduce gradient-based learning for r.

Gradient calculations use DDN theory.

Now, parameter r is updated within networks.

Adaptive Feature Projections: Experiments

- Prior work has shown feature projections increase mean average precision significantly.
- Image classification with several convolutional neural networks: eg. ResNet18.
- Two datasets: CIFAR10 and Imagewoof (10-class subset of ImageNet)
- Original networks and projection-inserted networks are set as baselines.

layer name	output size	ResNet-18
conv1	112×112×64	7×7, 64, stride 2
	56×56×64	3×3 max pooling, stride 2
conv2_x		$\begin{bmatrix} 3\times3, 64 \\ 3\times3, 64 \end{bmatrix} \times 2$
conv3_x	28×28×128	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$
conv4_x	14×14×256	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$
conv5_x	7×7×512	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$
average pool	512	7×7 average pooling
batchnorm	512	
(adaptive) projection	512	
fully connected	10	512×10 full connections
softmax	10	

Adaptive Feature Projections: Results on ResNet18

CIFAR10

- We measure top-1 accuracy and mean average precision(mAP)
- Baselines outperform original ResNet18.
- Our methods outperform baselines and original ResNet18.
- Experiments on DenseNet121 and GoogLeNet have the same trend.
- Adaptive L∞ ball and sphere projections fail to work.

Adaptive Feature Projections: Summary

- Our methods outperform baselines consistently and significantly.
- The runtime and memory increases are negligible.

Model	Runtime (ms)		
	baseline	ours	
ResNet-18	1.110	-	
ResNet-18 L ₁ Sphere	1.170	1.166	
ResNet-18 L2 Sphere	1.634	1.656	
ResNet-18 L_1 Ball	1.164	1.156	
ResNet-18 L ₂ Ball	1.151	1.174	

• In future, expriments on larger dataset like ImageNet.

Conclusion & Future Work

- Our adaptive methods outperform state-of-the-arts in most cases.
- The runtime and memory increases are small.
- Migrate from global pooling to local pooling.
- Parametric DDN in general:
 eg. parametric robust batchnorm for adversarial attack.

source code: https://github.com/WenboDu1228/ddn_pooling_and_projections

Thanks!

Reference

- Gould, S.; Hartley, R.; and Campbell, D., 2020. Deep declarative networks: A new hope. In *CVPR*.
- Barron, J. T., 2019. A general and adaptive robust loss function.
 In CVPR.
- He, K.; Zhang, X.; Ren, S.; and Sun, J., 2016. Deep residual learning for image recognition. In CVPR.
- Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J., 2016. PointNet: Deep learning on point sets for 3d classification and segmentation. In CVPR.
- Zhou, B.; Aditya Khosla, A. L.; Oliva, A.; and Torralba, A., 2016a. Learning deep features for discriminative localization. In CVPR.
- Lin, M.; Chen, Q.; and Yan, S., 2014. Network in network. In ICLR.