作业一

Noflowerzzk

2025.02.19

1

(1) 证明. 设 $x \in (A^o)^c$, 则 $x \notin A^o$. 故 $x \in A'$ 或 $x \in A^c$. 若 $x \in A'$, 则 $x \in (A^c)' \subseteq \overline{A^c}$; 若 $x \in A^c$, 则显然 $x \in \overline{A^c}$. 因此 $(A^o)^c \subseteq \overline{A^c}$ 设 $x \in \overline{A^c}$, 则 $x \in A^c$ 或 $x \in (A^c)' = A'$. 若 $x \in A^c$, 则由于 $A^c \subseteq (A^o)^c$, 故 $x \in (A^o)^c$; 若 $x \in (A^c)' = A'$, 则 $x \notin A^o$, 即 $x \in (A^o)^c$. 因此 $\overline{A^c} \subseteq (A^o)^c$

(2) 证明. 由于 $\overline{A} = ((A^c)^o)^c$, 故 $(\overline{A})^c = (A^c)^o$.

$\mathbf{2}$

- (1) 证明. $\forall a \in B(x,r)$, 取 $\varepsilon = r d(a,x) > 0$, 构造球 $B(a,\varepsilon/2)$, 有 $\forall a_0 \in B(a,\varepsilon/2)$, $d(a_0,x) \leq d(a,x) + \varepsilon/2 < r$, 故 $a_0 \in B(x,r)$, 即 $B(a,\varepsilon) \subseteq B(x,r)$, 因此 B(x,r) 是开集.
- (2) 证明. 由于对任意闭球内的点列 $\{x_n\}$, 有 $d(x_n,x) \leq r$. 因此对任意收敛点列,设其收敛到 x_0 , 有 $d(x,x_0) \leq r$, 即 $x_0 \in \overline{B}(x,r)$. 因此 $(\overline{B}(x,r))' \in \overline{B}(x,r)$, 即 $\overline{B}(x,r)$ 是闭集.

3

- (1) 证明.
 - 取一族开集 $\{U_i\}_{i\in I}$. 任取 $x\in\bigcup_{i\in I}U_i$, 不妨 $x\in U_1$. 则存在 $\varepsilon>0$, $B(x,\varepsilon)\subseteq U_1$. 因此 $B(x,\varepsilon)\subseteq\bigcup_{i\in I}U_i$, 即 $\bigcup_{i\in I}U_i$ 是开集.
 - 当 I 为有限集时,任取 $x \in \bigcap_{i \in I} U_i$,对任意 $i \in I$ 有存在 $\varepsilon_i > 0$, $B(x, \varepsilon_i) \subseteq U_i$. 取 $\varepsilon = \min_{i \in I} \varepsilon_i, \text{ f } B(x, \varepsilon) \subseteq \bigcap_{i \in I} U_i, \text{ 即 } \bigcap_{i \in I} U_i \text{ 是开集.}$

(2) 证明.

- 取一族闭集 $\{U_i\}_{i\in I}$. 令 $S_i = U_i^c$, 则 S_i 是开集. 由于 $\bigcup_{i\in I} S_i$ 是开集,则 $\bigcap_{i\in I} U_i = \left(\bigcup_{i\in I} S_i\right)^c$ 为闭集. 作业一 2025.02.19

$$-$$
 当 I 是有限集时,由于 $\bigcap_{i \in I} S_i$ 是开集,则 $\bigcup_{i \in I} U_i = \left(\bigcup_{i \in I} S_i\right)^c$ 为闭集.

4

- (1) 证明. 任取 Cauchy 列 $\{x_n\}_{n=1}^{\infty}$, 由于 Y 列紧,其存在收敛子列收敛到 Y 内. 即存在 $x \in Y$,任意 $\varepsilon > 0$,存在 N > 0, $\forall n > N$ 有 $d(x_{k_n}, x) < \varepsilon/2$. 又由于其为 Cauchy 列,存在 N' > 0, $\forall m > n > N'$, $d(x_m, x_n) < \varepsilon/2$. 因此任意 $n > \max\{k_N, N'\}$,有 $d(x_n, x) < \varepsilon$,即 $\{x_n\}$ 收敛到 $x \in Y$. 因此 Y 完备.
- (2) 证明. 取 Y 中 Cauchy 列 $\{x_n\}$, 由于 X 完备,有 $\{x_n\}$ 收敛到 $x \in X$. 而由于 Y 是闭集, $\{x_n\}$ 若收敛,必收敛到 Y 内,即 $x \in Y$. 故 Y 中 Cauchy 列收敛,即 Y 完备.

5

证明. 任取 Cauchy 列 $\{x_n\}$, 取 $A_n=\{a\mid d(a,x_n)\leqslant \frac{1}{n}\}\cap X$. 由于 A_n 是闭球, A_n 是闭集. 且由于 $\{x_n\}$ 是 Cauchy 列,任意 m>n,有 $x_m\in A_n$. 因此 A_n 构成闭集套,且 $\lim_{n\to\infty} \operatorname{diam}(A_n)=0$. 故由闭集套定理,存在唯一 $\zeta\in A_n(\forall n)$. 此时任意 $\varepsilon>0$,存在 $N=1/\varepsilon+1$,任意 $n>N,\zeta\in A_n\Rightarrow d(x_n,\zeta)<\varepsilon$,即 $\{x_n\}$ 收敛到 $\zeta\in X$. 故 X 完备.