Lab 1 Building Circuits using Logism Evolution

Shi Ran 1004793495

September 23, 2020

Part I

1. Below is the gate diagram for f = xs' + ys

2. The truth table for the function:

у	S	X	f
0	0	0	0
0	0	1	1
0	1	0	0
1	0	0	0
0	1	1	0
1	0	1	1
1	1	0	1
1	1	1	1

Part II

1. Below is the gate diagram for f = (a + b)' + cb'

2. The truth table for the function:

a	b	С	f
0	0	0	1
0	0	1	1
0	1	0	0
1	0	0	0
0	1	1	0
1	0	1	1
1	1	0	0
1	1	1	0

 $3.\ \,$ The diagram in section 1 can be simplified. Perform the following calculation:

$$f = (a + b)' + cb'$$

 $= (a'b') + cb'$
 $= (a'b' + c)(a'b' + b')$ (by distributive law)
 $= (a'b' + c)b'$ (since b' being true is equivalent to a'b'+b' being true)
 $= (a' + c)b'$ (since b' is satisfied by the second part, it can be removed)

Re-draw the diagram:

Note there are five gates in the diagram in section 1, but there are only four gates in this diagram, so this is a cheaper implementation of the design.