

Analoge Modulationsverfahren

Amplitudenmodulation AM

- Einfache Implementation
- Geringe Bandbreite

Beispiel: m=0.5, $s(t) = cos(2\pi f_m t)$, $f_m = 1$ kHz, A=1, $f_0 = 20$ kHz

Modulationsindex m:

$$\mathbf{m} = \frac{Y - y}{Y + y}$$

AM Enveloppendetektor

Ri entspricht dem Innenwiderstand der Quelle

Schaltung: Spitzenwert-Gleichrichter mit Entladung

Dimensionierungsgleichungen:

 $\tau_1 = R_i \cdot C$ Aufladezeitkonstante $\tau_2 = R \cdot C$ Entladezeitkonstante

$$T_T << R \cdot C << T_m$$

AM Synchron- & I/Q-Demodulator

I/Q-Demodulator

AM power efficiency

• Bei maximaler Modulation macht die Leistung in den Seitenbändern zusammen nur etwa 33% der abgestrahlten Leistung aus.

f_m: Modulationsfrequenz

$$P_T = P_c \left(1 + \frac{m^2}{2} \right)$$

Bandbreite B = $2 \cdot f_m$

Effizienz < 33%

Why it is still widely used?

AM wird immer noch benutzt weil:

- es einfachste Technologie ist und kleinen Bedarf an Bandbreite hat
- es Träger für empfangsseitige Energiegewinnung liefert (RFID)
 - Military and Amateur Short Wave Radio
 - CB Radio 27 MHz
 - Air Traffic Control Radios (civil), Air and Sea Navigation
 - Garage door opens, keyless remotes
 - RFID LF, HF, UHF

DSB, SSB: time & frequency domain

Effizienz 50%

Effizienz 100%

Zürcher Hochschule

DSB, SSB

DSB Modulator = Mixer/Multiplizierer

SSB Modulator = Hilbert und I/Q-Mixer

Demodulation: Genauer Lokaloszillator im Empfänger oder Pilotton

Trick: Ein schwacher Pilotton wird im Sender bei der Trägerfrequenz wieder zugefügt zwecks Rückgewinnung im Empfänger

DSB mit I/Q-Demodulator

I/Q-Demodulator für DSB

Phasen-/Frequenzmodulation PM/FM

$$v = A_0 \sin(2\pi f_c t + \phi(t))$$

- Phase des Carrier ändert in Übereinstimmung mit dem Modulationssignal
- phasen-moduliertes Signal

$$v = A_0 \sin(2\pi f_c t + \varphi)$$

 Momentane Frequenz des Carrier ändert in Übereinstimmung mit dem Modulationssignal

frequenz-moduliertes Signal

Erzeugung PLL, DDS:

School of Engineering

PM Mathe

PM-Signal: s(t) = Nachrichtensignal mit Spitzenwert S_{peak}

$$\phi(t) = k_{PM} s(t)$$

$$y_{PM}(t) = A_0 \cos[\omega_0 t + \phi(t)] = A_0 \cos[\omega_0 t + k_{PM} s(t)]$$

Phasenhub:

$$\Delta \phi = k_{PM} S_{peak}$$

$$\Delta \phi < \pi$$

Analog phase modulated signal:

Digital phase modulated signal: Binary Phase Shift Keying BPSK

FM Mathe

FM-Signal: s(t) = Nachrichtensignal mit Spitzenwert S_{peak}

Momentanfrequenz:

$$\omega_{FM}(t) = d\phi(t) / dt = \omega_0 + k_{FM} \cdot s(t)$$

$$y_{FM}(t) = A_0 \cdot \cos[\phi(t)] = A_0 \cdot \cos\left[\omega_0 t + k_{FM} \cdot \int_0^t s(\tau) d\tau\right]$$

$$\Delta \omega = k_{FM} \cdot S_{peak}$$

$$\Delta f = \frac{\Delta \omega}{\Delta t} = \frac{k_{FM} \cdot S_{peak}}{\Delta t}$$

Frequenzhub* / Max. Deviation:

Bedeutung Hub: "Sagt wie weit der Spitzenwert die Frequenz auslenkt"

Analog frequency modulated signal

Digital frequency modulated signal Frequency Shift Keying FSK

FM Spektrum

Das cosinusförmig modulierte **FM-Signal** lautet:

$$y_{FM}(t) = A_0 \cos[\omega_0 t + (k_{FM}/\omega_m) S_{peak} \sin(\omega_m t)]$$

• Man definiert den Modulationsindex β_{FM} wie folgt:

$$eta_{\mathsf{FM}} = rac{\mathsf{k}_{\mathsf{FM}}}{\omega_{\mathsf{m}}} \mathsf{S}_{\mathsf{peak}} = rac{\Delta \omega}{\omega_{\mathsf{m}}}$$

$$\beta_{\text{FM}} = \frac{\Delta f}{f_{\text{m}}}$$

Spektrallinien beidseitig vom Träger im Abstand n ω_{m}

• Techn. Bandbreite: $B \approx 2 \cdot (\beta_{FM} + 1) \cdot f_m = 2 \cdot (\Delta f + f_m)$ Carson Formel

Note: Allg. Signale: für f_m die max. Frequenz des gefilterten Spektrums einsetzen

Δf und f_m am Beispiel FSK

Bessel Tabelle

Modulation			Sidebands (Pairs)														
Index	Carrier	1st	2d	3d	4th	5th	6th	7th	8th	9th	10th	11th	12th	13th	14th	15th	16th
0.00	1.00	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.25	0.98	0.12	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0.5	0.94	0.24	0.03	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1.0	0.77	0.44	0.11	0.02	_	_	_	_	_	-	_	—	_	_	—	_	_
1.5	0.51	0.56	0.23	0.06	0.01	_	_	_	_	_	_	_	_	_	_	_	_
2.0	0.22	0.58	0.35	0.13	0.03	_	_	_	_	_	_	l —	_	_	_	_	_
2.5	-0.05	0.50	0.45	0.22	0.07	0.02	_	_	_	_	_	—	_	_	_	_	_
3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01	_	_	_	_	_	_	_	_	_	_
4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02	_	_	_	—	_	_	_	_	_
5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.05	0.02	_	_	_	_	_	_	_	_
6.0	0.15	-0.28	-0.24	0.11	0.36	0.36	0.25	0.13	0.06	0.02	_	_	_	_	_	_	_
7.0	0.30	0.00	-0.30	-0.17	0.16	0.35	0.34	0.23	0.13	0.06	0.02	—	_	_	<u> </u>	_	_
8.0	0.17	0.23	-0.11	-0.29	-0.10	0.19	0.34	0.32	0.22	0.13	0.06	0.03	_	_	_	_	_
9.0	-0.09	0.24	0.14	-0.18	-0.27	-0.06	0.20	0.33	0.30	0.21	0.12			0.01	—	l —	_
10.0	-0.25	0.04	0.25	0.06	-0.22	-0.23	-0.01	0.22	0.31	0.29	0.20	0.12	0.06	0.03	0.01	—	_
12.0	-0.05	-0.22	-0.08	0.20	0.18	-0.07	-0.24	-0.17	0.05	0.23	0.30	0.27	0.20	0.12	0.07	0.03	0.01
15.0	-0.01	0.21	0.04	0.19	-0.12	0.13	0.21	0.03	-0.17	-0.22	-0.09	0.10	0.24	0.28	0.25	0.18	0.12

Terme bis ≤ 2%

Beispiel

Welche Bandbreite besitzt ein FM-Signal mit einem Hub (deviation) von 30 kHz und maximale modulierende Signalfrequenz von 5 kHz :

BW = 70 kHz (Carson's rule)

UKW FM-Radio

Deviation = 75 kHz Max Mod. Freq: 15 kHz

BW = 180 kHz (Carson's rule)

Weltweit wird UKW-Rundfunk im VHF-Band II zwischen 87,5 MHz und 108,0 MHz betrieben mit FM analog. Senderabstand ursprünglich 300 kHz, heute 100 kHz mit geogr. Planung.

7ukunft DAB+ oder DRM+ im UKW Bereich?

- Kompromisslose Qualität
- Lokalradio: Kosten Sendeanlagen.
- Nutzbandbreite von 100 kHz zur Beibehaltung des jetzigen UKW-Rasters
- MPEG4 Codierung und COFDM Modulation

UKW Digital Radio

D. Transmission Signal

- RF channel bandwidth of 96 kHz, nominal 100 kHz
 - The narrow bandwidth of DRM+ allows the insertion in small frequency gaps
- Frequency range up to 174 MHz including
 - Curr. analogue TV Band I (47MHz to 68MHz)
 - **OIRT FM band** (65.8MHz to 74MHz)
 - Japanese FM band (76MHz to 90MHz)
 - FM Band II (87.5MHz to 107.9MHz)

VHF III Digital Radio

- VHF III Band 174 230 MHz
- 1.5 MHz Raster mit 6...16 Rundfunksender multiplexed
- DAB: MPEG1(160 kBit/s), DAB+: MPEG 4 Coder (80 kbit/s)

http://www.worlddab.org

Note: DAB+ inkompatibel zu DAB!

FM Modulator Schmalband

FM Modulator UKW

Zürcher Hochschule

Modern PM/FM Modulator

Direct Digital Synthesis DDS

2^N Points

- $f = \frac{d\phi}{dt} = \frac{\frac{M}{2^N}}{\frac{1}{f_{clk}}} = \frac{f_{clk}}{2^N} \cdot M$
- Realisierbar mit DSP, FPGA
- Standard IC
- Bis Frequenzen von einigen 100 MHz

Modern PM/FM Modulator

Variante DSP, Software Defined Radio

Flanken Detektor (Foster-Sealy)

Typ: FM → AM

Bei f_c wirkt Parallelschwingkreis wie ein Differenzierer:

$$\frac{d\sin(\omega_{in} \cdot t)}{dt} = \omega_{in} \cos(\omega_{in} t)$$

 $f_o \neq f_c$

Quadraturdetektor

Typ: Phase Shift (digital)

Für PM Demod: Integrator nachschalte

und wie könnte es damit gehen?

$$\theta = \arctan\left[\frac{Q}{I}\right]$$

$$\omega_{FM} - \omega_{0} = k_{FM}s(t) = \frac{d\theta}{dt} = \frac{\Delta\theta}{T_{s}} = \frac{\theta_{2} - \theta_{1}}{T_{s}}$$

PM / FM Verstärker / Limiter

Verstärker: Sättigung ist erlaubt solange keine Phasenverzerrung eintritt → Limiter

Vorteil: Keine AGC nötig, Class C Verstärker sparen Strom

IF Limiter

Note: S, N sind hier Spannungen!

Limiter eliminiert N in Richtung S

Worst Case für Phasenfehler

Phasenfehler

FM: relativer Frequenzfehler

Worst Case S/N Verbesserung durch FM Spreizung

$$\phi_{\text{noise}} = \arcsin\left[\frac{N}{S}\right]$$

$$\delta_{\text{noise}} = \phi_{\text{noise}} \cdot f_{\text{m}}$$

maximal bei max. f_m

$$\frac{S_{\text{out}}}{N_{\text{out}}} = \frac{\Delta f}{\delta_{\text{noise}}} = \frac{\Delta f}{f_{\text{m}}} \frac{1}{\arcsin\!\left[\frac{N}{S}\right]} = \beta_{\text{FM}} \frac{1}{\arcsin\!\left[\frac{N}{S}\right]}$$

Beispiel UKW Radio

Gegeben: S, N (hier Spannungen)

S/N am Empfänger Eingang: S/N = 10

max. Modulationsfrequenz: $f_m = 15 \text{ kHz}$,

Hub (max. deviation): $\Delta f = 75 \text{ kHz}$.

$$\phi_{\text{noise}} = \arcsin \left\lceil \frac{N}{S} \right\rceil$$

max. Phasenfehler

$$\delta_{\text{noise}} = \phi_{\text{noise}} \cdot f_{\text{m}}$$

rel. Frequenzfehler für f_m

$$\frac{S_{\text{out}}}{N_{\text{out}}} = \frac{\Delta f}{\delta_{\text{noise}}} = \frac{\Delta f}{f_{\text{m}}} \frac{1}{\arcsin\!\left[\frac{N}{S}\right]} = \beta_{\text{FM}} \frac{1}{\arcsin\!\left[\frac{N}{S}\right]}$$

Lösung:
$$\beta_{FM} = 5$$

 $\phi_{\text{noise}} = \arcsin(1/10) = 0.100 \text{ rad} (5.74^{\circ})$

 $\delta_{\text{noise}} = 1500 \text{ Hz}$

$$S_{out}/N_{out} = 50$$

Verbesserung in dB: 20 log (50/10) = 14 dB

FM Rauschunterdrückung

Der Limiter führt auch zum so genannten Capture Effect: Bei zwei Signalen wird das schwächere unterdrückt (wie Noise)