Сценарное моделирование прогноза исходов у пораженных в челюстно-лицевую область при чрезвычайных ситуациях социального характера

A. B. Звонцов СПбГЭТУ «ЛЭТИ» avzvontsov@etu.ru

Р. Н. Лемешкин

Санкт-Петербургский государственный университет lemeshkinroman@rambler.ru

Аннотация. Рассматриваются концептуальные вопросы проведения сценарного моделирования для определения особенностей клинико-организационных поражений челюстно-лицевой области. Инструментом определения лечебно-эвакуационной характеристики раненых, а также оценки их влияния на длительность пребывания на этапах медицинской эвакуации послужил метод медико-статистического анализа с применением дискриминантного анализа и анализа выживаемости с построением линейных дискриминантных функций и модели функции убытия (завершения лечения). Разработана дискриминантная модель с включением факторов, значимо влияющих на исход лечения с определением отдаленного прогноза пораженных «перспективных к возвращению» при террористическом акте, и построена модель длительности пребывания в медицинских организациях.

Ключевые слова: сценарное моделирование; челюстнолицевая область; чрезвычайная ситуация социального характера; лечебно-эвакуационная характеристика; прогнозирование исходов раненых; медико-статистическая модель

І. Введение

Обзор публикаций в области ЧС (чрезвычайных ситуаций) социального характера имеют ряд общих черт и признаков характеризующих поражения людей: наличие устройств самодельных взрывных (начиненных металлическими болтами, обрезками арматуры, шариками стрелкового оружия, ручных гранат и зажигательных смесей [1]. В сценарной модели поражений ЧЛО (челюстно-лицевой области) предполагается, что террористы имеют цель уничтожить мирных граждан в местах массового их скопления, с использованием вышеуказанных средств поражения как заводского, так и кустарного производства [2, 3]. С целью повышения эффективности оказания медицинской помоши результате предлагаем определить

A. Г. Будрин¹, Д. В. Соловьева², А. В. Солдатова³ Университет ИТМО ¹agbudrin@corp.ifmo.ru; ²dvsoloveva@corp.ifmo.ru ³avsoldatova@corp.ifmo.ru

И. К. Солдатов

Санкт-Петербургский государственный университет Медицинский университет «РЕАВИЗ» i.soldatov@spbgu.ru

организационные особенности поражений челюстнолицевой области [4], используя метод сценарного моделирования.

II. МАТЕРИАЛЫ И МЕТОДЫ

Материалом исследования послужили данные, отраженные в учетно-отчетной документации медицинских организаций, принимавших непосредственное участие в оказании медицинской помощи пораженным в ЧС социального характера.

Методами исследования были выбраны: литературноаналитический, исторического сопоставления, сценарного моделирования террористической атаки, медикостатистического анализа с применением дискриминантного анализа и анализа выживаемости с построением линейных дискриминантных функций, и модели функции убытия (завершения лечения) [5].

III. Результаты и их обсуждение

Проведен анализ 178 случаев поражений и травм челюстно-лицевой области у пациентов, поступивших в медицинские организации, имеющих синдромосходные состояния [6], возникающие при ЧС социального характера.

Так, среди всех пострадавших 63% составляли лица мужского пола и 37% — женского. Средний возраст составил около 42 лет. Время оказания медицинской помощи от момента получения травмы по данным медицинской документации составило $18,9\pm0,4$ мин.

Все поступившие по окончательному диагнозу были распределены на три большие исследовательские группы на основании МКБ-10. Так, в 56,2% пострадавшие имели только внутричерепную травму, в 30,9% — закрытые переломы челюстей, скуловых костей и у 12,9% диагностирована открытая рана головы. Число

поврежденных областей тела в среднем составило 1,5±0,1. Виды ранений представлены в табл. 1.

ТАБЛИЦА I Виды ранений

Вид ранения	Абс.	%
Изолированные (одиночные) ранения (травмы) – повреждения одной анатомической области одним ранящим (травмирующим) агентом (предметом)	96	53,9
Множественные ранения (травмы) – множественные повреждения одной анатомической области одним или несколькими ранящими (травмирующими) агентами (предметами)	35	19,7
Сочетанные ранения (травмы) – повреждения нескольких анатомических областей одним или несколькими ранящими (травмирующими) агентами (предметами)	47	26,4

В результате проведённого лечения по данным выписных эпикризов состояние пациентов на момент завершения лечения составило (табл. 2).

ТАБЛИЦА II Состояние пациентов

Состояние больного в период и после лечения	Абс.	%
Легкая степень	141	79,2
Средняя степень	32	18,0
Тяжелая степень	5	2,8

По объективным данным, представленным в табл. 1 и 2, проведена оценка степени тяжести травм, используемой в военно-полевой хирургии (ВПХ) [7]. Так, 1 баллу соответствовало 24,2% случаев, 2 баллам – 75,3% и 3 баллам 0,5% случаев.

В специализированных больницах госпитальное лечение получили 147 человек (82,6%) со средним сроком лечения $22,2\pm1,1$ койко-дня, а в медицинских специализированных центрах 31 человек (17,4%) со средним сроком лечения $27,4\pm2,1$ койко-дня.

По результатам исхода лечения, в зависимости от степени тяжести ранения (травмы) определена достоверная взаимосвязь ($\chi 2=84,811$, df=3, p<0,05), которая представлена в табл. 3.

ТАБЛИЦА III ИСХОДЫ ЛЕЧЕНИЯ ТРАВМ ЧЛО

	легкая	средняя	тяжелая	Крайне тяжелая
перспектив	42	116	12	_
ные	24,7%	68,2%	7,1%	_
неперспект	_	_	6	2
ивные	-	_	75,0%	25,0%

Расчет результатов исхода лечения в зависимости от тяжести повреждения по классификатору объективной оценки степени тяжести травм, используемой в ВПХ с достоверной взаимосвязью (χ 2=26,298, df=2, p<0,05), представлен в табл. 4.

ТАБЛИЦА IV РЕЗУЛЬТАТЫ ИСХОДА ЛЕЧЕНИЯ В ЗАВИСИМОСТИ ОТ ТЯЖЕСТИ ПОВРЕЖДЕНИЯ

	1 балл	2 балла	3 балла
перспективные	35	134	1
	20,6%	78,8%	0,6%
неперспективные	8	-	-
	100.0%	_	_

Аналогичный расчет результатов исхода лечения в зависимости от вида травмы (ранения) с достоверной взаимосвязью ($\chi 2 = 10,438, df=2, p<0,05$) представлен в табл. 5.

ТАБЛИЦА V РЕЗУЛЬТАТЫ ИСХОДА ЛЕЧЕНИЯ В ЗАВИСИМОСТИ ОТ ВИДА ТРАВМЫ

	Изоллированные (одиночные) ранения	Множестве нные ранения	Сочетанные ранения
перспекти	94	35	41
вные	55,3%	20,6%	24,1%
неперспек	2	_	6
тивные	25,0%	-	75,0%

Результаты исхода лечения в зависимости от состояния больного (табл. 6) в ходе и после лечения (χ 2 = 69,747, df=2, p<0,05) рассчитывались подобным же образом.

ТАБЛИЦА VI РЕЗУЛЬТАТЫ ИСХОДА ЛЕЧЕНИЯ В ЗАВИСИМОСТИ ОТ СОСТОЯНИЯ БОЛЬНОГО В ХОДЕ И ПОСЛЕ ЛЕЧЕНИЯ

	Легкая	средняя	тяжелая
перспекти	139	30	1
вные	81,8%	17,6%	0,6%
неперспек	2	2	4
тивные	25,0%	25,0%	50,0%

В разрабатываемой сценарной модели были учтены данные по совершенным террористическим актам. Принятые ограничения и допущения в сценарной модели позволили каждому изучаемому фактору определить набор коэффициентов для линейных классификационных функций (табл. 7).

ТАБЛИЦА VII КОЭФФИЦИЕНТЫ ЛИНЕЙНЫХ КЛАССИФИКАЦИОННЫХ ФУНКПИЙ

Изучаемый признак	Код при знак а	G_1:1 p=0,9550 6	G_2:2 p=0,0449 4	Ур- нь знач., р
Степень тяжести ранения/травмы/заболевания: легкая, средней степени, тяжелая, крайне тяжелая	X_1	7,3264	11,2507	0,000
Тяжесть повреждения по классификатору объективной оценки степени тяжести травм используемой военно-полевой хирургией	X ₂	14,5270	10,0124	0,000
Вид ранящего агента	X_3	71,2855	63,4991	0,04
Состояние больного в ходе и после лечения	X_4	7,6946	11,5073	0,001
Число поврежденных областей тела	X_5	-0,6523	0,9758	0,001
Константа	-	-86,3217	-84,6545	_

Линейные дискриминантные функции представлены в следующем виде:

ЛДФ1 («перспективные...») =
$$-86,3217+7,3264X_1+$$

+ $14,5270X_2+71,2855X_3+7,6946X_4-0,6523X_5$ (1)

ЛДФ2 («неперспективные...») =
$$-84,6545+11,2507X_1+$$

+ $10,0124X_2+63,4991X_3+11,5073X_4+0,9758X_5$ (2)

Таким образом, дискриминантная модель выявления факторов, значимо влияющих на исход лечения с определением отдаленного прогноза, основана на 5 основных признаках: вид и причины повреждений, степень тяжести и состояние поражённых в период лечения и после него, число поврежденных областей тела.

Данная модель обладает высокой информационной способностью (98,28%) и является статистически значимой (p<0,001).

Наибольшей чувствительностью обладает группа «перспективные к возвращению» [8]. Так, из табл. 8 следует, что в данной группе предлагаемая модель обеспечивает совпадение прогнозируемого исхода с реальным результатом в 98,8% случаев (совпадение результатов лечения у 164 из 165 пораженных); в группе «неперспективные к возвращению» — совпадение прогнозируемого исхода с реальными результатами составило 87,5% (совпадение результатов у 7 из 9 пораженных).

ТАБЛИЦА VIII Классификационная матрица по модели ЛДФ

Исход лечения	%	Исход лечения – «перспективные к возвращению»	Исход лечения – «неперспективные к возвращению»
Исход лечения – «перспективные к возвращению»	98,80	164	2
Исход лечения – «неперспективные к возвращению»	87,50	1	7
Всего:	98,28	165	9

По строкам: классификация соответственно базе данных По столбцам: классификация соответственно прогнозу

Модель функции убытия (завершения лечения) регрессионного построена методом анализа предположении об экспоненциальном, нормальном или логнормальном распределении длительности пребывания в медицинской организации. Зависимой переменной в модели выступает койко-дни лечения, независимые переменные – факторы, влияющие на неё. Исходя из предшествующей полученной модели и анализа факторов исследовательской матрицы, были получены коэффициенты модели для трех наиболее значимых факторов (табл. 9).

По данным, полученным в результате регрессионного анализа, построена модель длительности пребывания в медицинской организации по критерию Хи-квадрат максимального правдоподобия как достоверная ($\chi 2=33,0209,\ df=13,\ p<0,001$). Все коэффициенты модели значимы с уровнем значимости p<0,05.

 $h(t;x) = h_0(t;x) \exp(0.056X_1 - 0.541X_2 + 0.2390X_3(3),$

где: X_1 и др. – центрированные значения факторов, т.е. разности текущих и средних значений данных факторов.

По знакам коэффициентов модели (3) видно, что фактор X_2 «Степень тяжести ранения/травмы/заболевания» отрицательно влиял на функцию убытия (завершения лечения).

ТАБЛИЦА IX КОЭФФИЦИЕНТЫ МОДЕЛИ ИССЛЕДУЕМЫХ ПОКАЗАТЕЛЕЙ, ВЛИЯЮЩИХ НА ДЛИТЕЛЬНОСТЬ ПРЕБЫВАНИЯ В МЕДИЦИНСКИХ ОРГАНИЗАЦИЯХ

№ показ ателя	Код показателя	Beta	Stand ard Error	t- value	expon ent beta	Wald Statist.	P
X_1	Уровень оказания медицинской помощи (медицинские специализированные центры; специализированные больницы)	0,056	0,017	3,305	1,058	10,921	0,0009
X ₂	Степень тяжести ране- ния/травмы/заболева ния: 1 — легкая, 2 — средней степени, 3 — тяжелая, 4 — крайне тяжелая	-0,541	0,237	-2,282	0,582	5,209	0,0225
X_3	Число поврежденных областей тела	0,2390	0,110	2,1711	1,2700	4,7137	0,0299

По данным ехр β (табл. 10) производим оценку относительной величины степени влияния k,% трех факторов, включенных в модель (3).

ТАБЛИЦА X ОТНОСИТЕЛЬНЫЕ ВЕЛИЧИНЫ СТЕПЕНИ ВЛИЯНИЯ ИССЛЕДУЕМЫХ ФАКТОРОВ НА ДЛИТЕЛЬНОСТЬ ПРЕБЫВАНИЯ В МЕДИЦИНСКИХ ОРГАНИЗАЦИЯХ

№ показателя	Код показателя	Степень влияния ki,/%
X_1	Уровень оказания медицинской помощи (медицинские специализированные центры; специализированные больницы)	36,4
X_2	Степень тяжести ранения/травмы/заболевания: 1 — легкая, 2 — средней степени, 3 — тяжелая, 4 — крайне тяжелая	20,0
X ₃	Число поврежденных областей тела	43,6

Из представленных данных (табл. 10) следует, что степень влияния на длительность пребывания на этапах медицинской эвакуации зависит в 100,0% в сумме от факторов «Уровень оказания медицинской помощи (медицинские специализированные центры; специализированные больницы)» X_1 и «Степень тяжести ранения/травмы/заболевания» X_2 и «Число поврежденных областей тела» X_3 . Остальные факторы в сумме имеют чуть меньшее значение.

Выявленные факторы повлияли на результаты анализа данных длительности пребывания в медицинских организациях с определяем вероятности (%) сроков выписки (рис. 1).

Рис. 1. Модель функции длительности пребывания (выписки) в медицинской организации по усредненным значениям

Представленные расчеты (рис. 1) показывают, что 51,0 % пациентов, получивших повреждения вследствие ЧС социального характера, продолжат свое лечение в медицинских организациях более 21 койко-дней.

IV. ЗАКЛЮЧЕНИЕ

Определение клинико-организационных особенностей поражённых в челюстно-лицевую область, используя метод сценарного моделирования позволил сформулировать следующие выводы:

- сценарное моделирование как метод научного познания позволяет смоделировать схожие условия ЧС на основе полученного опыта оказания медицинской помощи;
- особенность поражений челюстно-лицевой области

 это изолированные (одиночные) ранения
 (травмы) с легкой степенью тяжести после госпитального лечения с благоприятным прогнозом без утраты общей трудоспособности;
- дискриминантная модель позволила выявить факторы, влияющие на прогноз и исход лечения, такие как: вид и причины повреждений, степень тяжести и состояние поражённых в период лечения

- и после него, число поврежденных областей тела, что позволяет спрогнозировать затраты ресурсов на обслуживание данных контингентов в медицинских организациях (численность специалистов, коечного фонда, лекарственных средств и медицинского имущества);
- регрессионный анализ позволил степень влияния исследуемых факторов длительность пребывания В медицинских организациях, к которым были отнесены уровень оказания медицинской помощи, степень тяжести ранения/травмы/заболевания, число поврежденных областей тела. В полученной модели пораженных в челюстно-лицевую область при ЧС социального характера прогнозируемая длительность пребывания пациентов составит 21 койко-день для половины всех поступивших случаев.

Список литературы

- [1] Лемешкин Р.Н., Григорьев С.Г., Савченко И.Ф., Северин В.В., Крючков О.А., Акимов А.Г., Чеховских Ю.С., Дмитриев Г.В. // Вестн. Рос. воен.-мед. акад. 2017. № 2(58). С. 156–166.
- [2] Стажадзе Л.Л., Адамов В.Р., Крутиков В.А., Лукьянчук Э.М. Некоторые вопросы организации медицинского обеспечения пострадавших при криминальных взрывах // Воен.-мед. журн. 2012. №10. С. 16–22.
- [3] Расследование преступлений, совершенных с использованием взрывчатых веществ и взрывных устройств / Под ред. З.И. Брижак. М.: «КРЕДО», 2012. 234 с.
- [4] Семенов В.П., Будрин А.Г., Будрина Е.В., Солдатов И.К., Солдатова А.В. // Качество. Инновации. Образование. 2017. № 7(146). С. 31-37.
- [5] Юнкеров В.И., Григорьев С.Г., Резванцев М.В. Математикостатистическая обработка данных медицинских исследований: учеб. пособие. 3-е изд. СПб.: ВмедА, 2011. 318 с.
- [6] Структура челюстно-лицевых повреждений сочетанных с черепномозговой травмой / А.З. Шалумов, О.В. Левченко, Н.Ю. Кутровская // XI Всерос. науч.-практ.конф. нейрохирургов «Поленовские чтения»: сб. науч. трудов. М., 2012. С. 137.
- [7] Военно-полевая хирургия: национальное руководство / Под ред. И.Ю. Быкова, Н.А. Ефименко, Е.К. Гуманенко. М.: ГЭОТАР-Медиа, 2009. 816 с.
- [8] Приказ Минтруда России от 29 января 2014 № 59н «Об утверждении Административного регламента по предоставлению государственной услуги по проведению медико-социальной экспертизы» // Росс. газета. 2014. № 6423. 9 июля.