$$\begin{cases} g(u) = f(\cdot, \cdot, \dots, \cdot) \\ CB + CI \end{cases}$$

1) Forma Debole

$$\alpha(u,v) = F(v) \quad \forall v \in V$$

- Si utilizza integrasione per parti

2) Definisione Spazio V

$$H'(x) = \{ v \in L^2(x) \text{ tale che } v' \in L^2(x) \}$$

- Full-Dirichlet (Omogeneo)

$$\nabla = H'_0(\Omega) = \{ v \in H'(\Omega) \text{ tale } v(a) = 0 \in v(b) = 0 \}$$

- Misto

$$\nabla = H'_s(\Omega) = \left\{ v \in H'(\Omega) \right\} \quad \text{tale che} \quad v(c) = 0 \right\} \quad c = \left\{ c \in V(c) = 0 \right\}$$

- Full-Neumann

Identità:

0	$ a+b \leq a + b $
1	H'(x) c C°(x)
2	
2a	V _{L²(~2)} ≤ V _H (~2)
26	$\ v'\ _{L^2(\mathcal{R})} \leq \ v\ _{H^1(\mathcal{R})}$
3	$f_{g} \in L^{2}(\Omega) \Rightarrow \left \int_{\Omega} f \cdot g d\Omega \right \leq \left\ f \right\ _{L^{2}(\Omega)} \cdot \left\ g \right\ _{L^{2}(\Omega)}$
4	$\ v\ _{L^2(n)} \leq C_p \ v'\ _{L^2(n)}$ solve $v \in H'_s(\mathcal{R})$
4a	$\ V\ _{H}^{2} \leq \ V\ _{L^{2}(\Omega)}^{2} + \ V'\ _{L^{2}(\Omega)}^{2} \leq (C_{p}^{2} + 1) \ V'\ _{L^{2}(\Omega)}^{2}$
5	\(\(a \) \ \in C_T \ \v \ \(\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
6	$f \in L^{p}(x), g \in L^{q}(x) con \frac{1}{p} + \frac{1}{9} = x$
11	$\Rightarrow \ f \cdot g\ _{L^{1}(\Omega)} = \int_{\Omega} fg dx \leq \ f\ _{L^{p}(\Omega)} \cdot \ g\ _{L^{q}(\Omega)}$

Condisioni:

Vspasis di Hilbert

Bilineanità di a(u,v)Continuità di $a(u,v) \Rightarrow |a(u,v)| \leq |M||u||_{V}||v||_{V}$ Coercività di $a(u,v) \Rightarrow |a(v,v)| \leq |M||u||_{V}||v||_{V}$ dineanità di F(v) F(v) limitato $\Rightarrow |F(v)| \leq C \cdot ||v||_{V}$