

T48 µController Integration Manual

Author: Arnim Läuger arniml@opencores.org

Rev 1.4 January 4, 2023 This page has been intentionally left blank.

Revision History

Rev.	Date	Author	Description
0.1	19-Jun-2005	A. Läuger	First Draft
0.2	12-Sep-2005	A. Läuger	Added design hierarchy, memory integration,
			I/O interfaces and sample systems.
0.3	31-Oct-2005	A. Läuger	Description of Wishbone Master, added index.
0.4	05-Jul-2006	A. Läuger	Clocking concept revised.
		_	Architectural overview added.
			Description of generic parameter list.
1.0	17-Dec-2006	A. Läuger	T8243 added.
1.1	01-May-2008	A. Läuger	Hierarchy update, RAM and ROM clarifica-
			tion.
1.2	29-Dec-2022	A. Läuger	Add support for UPI.
1.4	04-Jan-2023	A. Läuger	Add support for 8021/8022.

Contents

INTRODUCTION	1
ARCHITECTURE	2
CLOCKS	4
PORT LIST	6
GENERIC PARAMETERS	11
MEMORY INTEGRATION	13
I/O INTERFACES	14
T8243 I/O EXPANDER	15

Introduction

The T48 μ Controller core is an implementation of the MCS-48 and UPI-41/UPI-42 micro controller family architecture. While being a controller core for SoC, it also aims for code-compatibility and cycle-accuracy so that it can be used as a drop-in replacement for any MCS-48 controller.

The core can be configured to better suit the requirements and characteristics of the integrating system. On the other hand, nearly the full functionality of a stock 8048/8049 is available. This flexibility is achieved by separating system aspects from the core's functionality. Among others, this includes memory sizes, memory implementation and clock generation.

For reference and to enable quick setup, this core is accompanied by several sample systems. They demonstrate how the configuration features can be utilized to tailor the core to one's needs.

The T48 µController project is maintained at

https://opencores.org/projects/t48

Updates of the core can be obtained via the project pages.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Architecture

Based on the original MCS-48 architecture specification, the T48 μ Controller includes all modules of this family as depicted in figure 1. For functional details refer to the "MCS-48 Microcomputer User's Manual".

Figure 1: Block Diagram

This architectural structure has been partitioned into sub-modules as shown in 2.

Figure 2: T48 μController Hierarchy

The upi41_core architecture replaces t48_db_bus with upi41_db_bus.

The t21_core and t22_core architectures skip t48_db_bus and adds p0_b/t48_p1. The t22_core furthermore adds t48_adc.

Clocks

The T48 μ Controller core operates on one single clock. However, due to the characteristics of the MCS-48 clocking system, this main clock is derived by a clock divider. This section explains the details.

Name Source Rates (MHz) **Description** Max Min Clock input from external crystal / clock genxtal_i Input $n \times f_{max}$ Pad eration circuit. Main system clock. Synchronously enabled by clk i Clock f_{xtal} $_{i}/3$ f_{xtal} i former en clk i.

Table 1: List of clocks

The main clock is applied at input xtal_i. To support system integration, this main clock can be synchronously enabled/disabled with the xtal_en_i input. A '1' on this pin qualifies the next rising edge on xtal_i as a valid edge for the whole core logic. In contrast, a '0' will cause the core to ignore this edge and halt operation until xtal_en_i is '1'.

The clocking system of the MCS-48 family establishes a circuit that divides the incoming external clock on XTAL by 3 to generate the base clock for all system operations. The T48 μ Controller core needs to mimic this scheme because most of the control signals like psen_n_o, rd_n_o etc. are generated with the clock on xtal_i. This is all done inside the clock ctrl module.

All other logic of the T48 μ Controller operates with the main system clock applied to clk_i. It is the responsibility of the system to provide a suitable clock waveform at this input. The core supports this task by providing the xtal3_o output which indicates that the next rising edge of xtal_i is the third in a row. So most of the dividing is already prepared inside the core (namely clock_ctrl). What is left to the integrating system is the final clock shaping.

There are two methods to generate the required clock at clk_i:

1. Use clock enable input en_clk_i

All modules that operate on clk_i also use en_clk_i as a synchronous clock enable. It is therefore possible to apply the external clock (connected to xtal_i) to clk_i as well, while the divider output xtal3_o is connected to en_clk_i.

This scenario is the more simple one and should work with any FPGA technology.

2. Shape external XTAL clock by clock gating

In case your technology provides valid clock gating circuitry, you can gate the external XTAL, thus generating a divided clock at clk_i. Use xtal3_o as the clock gate enable signal. As clk_i is already supplied with the required clock, the synchronous clock enable at en_clk_i has to be tied constantly to '1'.

This option is the most elegant one as it will result in reduced area (synchronous clock enables optimized away from each flip-flop) and reduced power consumption (flip-flops are only clocked every third clock). However, dedicated clock gating support from the underlying technology is required to safely gate the incoming clock without glitches.

Note that t21_core and t22_core include clock prescaling logic to divide the xtal_i/xtal_en_i by 2. This replicates the cycle timing of the 8021 and 8022 devices that operate on /2 effective clock frequency compared other chips of the family.

Port List

This section specifies the I/O ports of the T48 μ Controller.

Table 2: List of MCS-48 IO ports

Port	W	Dir	Description		
	T48 Interface				
xtal_i	1	In	Clock from external crystal/clock generation circuit.		
xtal_en_i	1	In	Synchronous clock enable for xtal_en_i		
reset_i	1	In	Asynchronous reset input.		
t0_i	1	In	Test 0 input.		
t0_o	1	Out	Test 0 output (derived clock output).		
t0_dir_o	1	Out	Direction selector for T0 pad.		
			0 T0 is operated in input direction		
			1 T0 is in output mode		
int_n_i	1	In	Interrupt input. (Active low)		
ea_i	1	In	External Access input which forces all program memory		
			fetches to reference external memory.		
rd_n_o	1	Out	Output strobe activated during a BUS read. (Active low)		
psen_n_o	1	Out	Program Store Enable. This output occurs only during a		
			fetch to external program memory. (Active low)		
wr_n_o	1	Out	Output strobe during a BUS write. (Active low) Used as		
			a write strobe to external data memory.		
ale_o	1	Out	Address Latch Enable. This signal occurs once during		
			each cycle. The negative edge of ALE strobes address		
			into external data and program memory.		
db_i	8	In	Data Bus or general purpose input/output bus. Read		
db_o	8	Out	while rd_n_o is active, written while wr_n_o active.		
			Contains the 8 low order program counter bits during an		
			external program memory fetch, and receives the ad-		
			dressed instruction under the control of PSEN'. Also		
			contains the address and data during an external RAM		
			data store instruction, under control of ALE, RD' and		
			WR'.		
db_dir_o	1	Out	Direction of DB pads		
			0 DB[70] are operated in input direction		
			1 DB[70] are in output mode		

Port	W	Dir	Description		
t1_i	1	In	Test 1 input.		
p2_i	8	In	8-bit general purpose input/output port.		
p2_o	8	Out	P2[30] contain the four high order program counter bits		
			during an external program memory fetch and serve as a		
			4-bit I/O expander bus for 8243.		
p2_low_imp_o	1	Out	Low impedance output driver enable for Port 2.		
p1_i	8	In	8-bit general purpose input/output port.		
p1_o	8	Out			
p1_low_imp_o 1 Out Low impedance output driver enable for Port 1.					
prog_n_o 1 Out		Out	Output strobe for 8243 I/O expander.		
Core Interface					
clk_i 1 In Main core clock.					
en_clk_i	1	In	Clock enable.		
xtal3_o	1	Out	Indication of third XTAL clock state.		
dmem_addr_o	8	Out	Data Memory address.		
dmem_we_o	1	Out	Data Memory write enable.		
dmem_data_i	8	In	Data Memory data input.		
dmem_data_o	8	Out	Data Memory data output.		
pmem_addr_o	12	Out	Program Memory address.		
pmem_data_i	8	In	Program Memory data input.		

Table 3: List of UPI-41 IO ports

Port	W	Dir	Description		
1011	VV	DII	•		
UPI-41 Interface					
xtal_i	1	In	Clock from external crystal/clock generation circuit.		
xtal_en_i	1	In	Synchronous clock enable for xtal_en_i		
reset_i	1	In	Asynchronous reset input.		
t0_i	1	In	Test 0 input.		
cs_n_i	1	In	Chip select input. (Active low)		
rd_n_i	1	In	Read strobe input. (Active low)		
a0_i	1	In	Command/data select input.		
wr_n_i	1	In	Write strobe input. (Active low)		
sync_o	1	Out	Output clock.		
db_i	8	In	Data Bus.		
db_o	8	Out	Data on db_i is expected when cs_n_i and wr_n_i are active or DACK' (P2[7]) and wr_n_i are active.		
			Data on db_o is valid when cs_n_i and rd_n_i are active or DACK' (P2[7]) and rd_n_i are active.		
db_dir_o	1	Out	Direction of DB pads		
			0 DB[70] are operated in input direction		
			1 DB[70] are in output mode		
t1_i	1	In	Test 1 input.		
p2_i	8	In	8-bit general purpose input/output port.		
p2_o	8	Out	P2[30] contain the four high order program counter bits		
			during an external program memory fetch and serve as a 4-bit I/O expander bus for 8243.		
p2_low_imp_o	1	Out	Low impedance output driver enable for Port 2.		
p1_i	8	In	8-bit general purpose input/output port.		
p1_o	8	Out	2 8 kkk kk		
p1_low_imp_o	1	Out	Low impedance output driver enable for Port 1.		
prog_n_o	1	Out	Output strobe for 8243 I/O expander.		
	Core Interface				
clk_i	1	In	Main core clock.		
en_clk_i	1	In	Clock enable.		
xtal3_o	1	Out	Indication of third XTAL clock state.		
dmem_addr_o	8	Out	Data Memory address.		
dmem_we_o	1	Out	Data Memory write enable.		
dmem_data_i	8	In	Data Memory data input.		
dmem_data_o	8	Out	Data Memory data output.		
pmem_addr_o	12	Out	Program Memory address.		
pmem_data_i	8	In	Program Memory data input.		

Table 4: List of 8021 IO ports

Port	W	Dir	Description			
	8021 Interface					
xtal_i	1	In	Clock from external crystal/clock generation circuit.			
xtal_en_i	1	In	Synchronous clock enable for xtal_en_i			
reset_i	1	In	Asynchronous reset input.			
ale_o	1	Out	Address Latch Enable. This signal occurs once during each cycle.			
t1_i	1	In	Test 1 input.			
p2_i	4	In	8-bit general purpose input/output port.			
p2_o	4	Out	P2[30] contain the four high order program counter bits			
			during an external program memory fetch and serve as a			
			4-bit I/O expander bus for 8243.			
p1_i	8	In	8-bit general purpose input/output port.			
p1_o	8	Out				
p0_i	8	In	8-bit general purpose input/output port.			
p0_o	8	Out				
prog_n_o	1	Out	Output strobe for 8243 I/O expander.			
	Core Interface					
clk_i	1	In	Main core clock.			
en_clk_i	1	In	Clock enable.			
xtal3_o	1	Out	Indication of third XTAL clock state.			
dmem_addr_o	8	Out	Data Memory address.			
dmem_we_o	1	Out	Data Memory write enable.			
dmem_data_i	8	In	Data Memory data input.			
dmem_data_o	8	Out	Data Memory data output.			
pmem_addr_o	12	Out	Program Memory address.			
pmem_data_i	8	In	Program Memory data input.			

Table 5: List of 8022 IO ports

Port	W	Dir	Description			
	8022 Interface					
xtal_i	1	In	Clock from external crystal/clock generation circuit.			
xtal_en_i	1	In	Synchronous clock enable for xtal_en_i			
reset_i	1	In	Asynchronous reset input.			
ale_o	1	Out	Address Latch Enable. This signal occurs once during			
			each cycle.			
t0_i	1	In	Test 1 input, interrupt input (active low).			
t1_i	1	In	Test 1 input.			
p2_i	8	In	8-bit general purpose input/output port.			
p2_o	8	Out	P2[30] contain the four high order program counter bits			
			during an external program memory fetch and serve as a			
			4-bit I/O expander bus for 8243.			
p1_i	8	In	8-bit general purpose input/output port.			
p1_o	8	Out				
p0_i	8	In	8-bit general purpose input/output port.			
p0_o	8	Out				
prog_n_o	1	Out	Output strobe for 8243 I/O expander.			
			ADC Interface			
adc_sel_an_o	1	Out	Analog input selection			
			0 AN0			
			1 AN1			
adc_sh_o	1	Out	Sample & hold enable.			
			Indicates the clock cycle when the external converter			
			shall sample the analog input.			
adc_sar_o	8	Out	Successive approximation value.			
			Comparison value for the external converter.			
adc_comp_i	1	In	Comparator result.			
			0 adc_sar_o < analog value			
			1 adc_sar_o ≥ analog value			
	Core Interface					
clk_i	1	In	Main core clock.			
en_clk_i	1	In	Clock enable.			
xtal3_o	1	Out	Indication of third XTAL clock state.			
dmem_addr_o	8	Out	Data Memory address.			
dmem_we_o	1	Out	Data Memory write enable.			
dmem_data_i	8	In	Data Memory data input.			
dmem_data_o	8	Out	Data Memory data output.			
pmem_addr_o	12	Out	Program Memory address.			
pmem_data_i	8	In	Program Memory data input.			

Generic Parameters

This section describes the generic parameters of the T48 μ Controller.

Table 6: List of MCS-48 Generic Parameters

Generic Name	Value	Description
xtal_div_3_g	1	Divide xtal_i by 3 to derive internal clock states.
		This setting is mandatory to maintain the original
		MCS-48 timing.
	0	Use xtal_i directly.
register_mnemonic_g	1	Register mnemonic output from opcode decoder,
		recommended.
	0	Do not register mnemonic information.
include_port1_g	1	Include Port 1 module.
	0	Do not include Port 1 module.
include_port2_g	1	Include Port 2 module.
	0	Do not include Port 2 module.
include_bus_g	1	Include BUS module.
_	0	Do not include BUS module.
include_timer_g	1	Include timer module.
	0	Do not include timer module.
sample_t1_state_g	4	Sample T1 input in machine state 4.
		Default setting.
	3	Sample T1 input in state 3.
		Valid for old MCS-48 devices.

Table 7: List of UPI-41 Generic Parameters

Generic Name	Value	Description
xtal_div_3_g	1	Divide xtal_i by 3 to derive internal clock states.
		This setting is mandatory to maintain the original
		MCS-48 timing.
	0	Use xtal_i directly.

Generic Name	Value	Description
register_mnemonic_g	1	Register mnemonic output from opcode decoder,
		recommended.
	0	Do not register mnemonic information.
sample_t1_state_g	4	Sample T1 input in machine state 4.
		Default setting.
	3	Sample T1 input in state 3.
		Valid for old MCS-48 devices.
is_upi_type_a_g	1	Implement STS, flags and DMA features of UPI-41A
		and UPI-42.
	0	Do not implement STS, flags and DMA.

Table 8: List of 8021/8022 Generic Parameters

Generic Name	Value	Description
xtal_div_3_g	1	Divide xtal_i by 3 to derive internal clock states.
		This setting is mandatory to maintain the original
		MCS-48 timing.
	0	Use xtal_i directly.
register_mnemonic_g	1	Register mnemonic output from opcode decoder,
		recommended.
	0	Do not register mnemonic information.
sample_t1_state_g	4	Sample T1 input in machine state 4.
		Default setting.
	3	Sample T1 input in state 3.
		Valid for old MCS-48 devices.

Memory Integration

The typical configuration of the T48 μ Controller contains one ROM and one RAM module used for the Program Memory and the Data Memory, respectively. Both components have the same characteristics in that they are synchronous memories clocked by the global system clock clk_i. Read and write operations require a single rising clock edge, while the read-during-write characteristic does not matter.

Maximum memory sizes are constrained by the architecture of the MCS-48 family. The Data Memory can contain up to 256 bytes and the Program Memory up to 4096 bytes. The minimum size for the Data Memory is 32 bytes, whereas the members of the MCS-48 family contain at least 64 bytes. Implementation of a Program Memory component is optional. It is in the responsibility of the integrator to choose suitable memory sizes.

The T48 µController's interface to the Data Memory consists of the ports dmem_addr_o, dmem_we_o, dmem_data_i and dmem_data_o. The Program Memory is interfaced via ports pmem_addr_o and pmem_data_i. Refer also to table 2.

Apart from the memories' interface signals, the port ea_i has to be considered when integrating the Program Memory. Logic controlling ea_i has to implement the following scheme:

- 1. Port ea_i is set to '1' whenever the Program Memory is disabled globally. This implements the behavior of the MCS-48 EA pin.
- 2. Port ea_i is set to '1' whenever an access to a Program Memory location is announced by pmem_address_o that is beyond the implemented ROM size. This implements the automatic Program Memory extension of the MCS-48 family.
- 3. Port ea_i is set to '0' in all other situations.

For more details on generating ea_i control refer to the sample systems that come with the source code release.

Note that UPI and 8021/8022 devices do not support external memory.

I/O Interfaces

The MCS-48 family micro controllers contain three types of I/O interfaces.

- 1. Two pseudo-bidirectional general purpose I/O ports called Port 1 and Port 2.
- 2. One bidirectional port called BUS.
- 3. Two test inputs called T1 and T2.

Each of the bidirectional port is implemented as two unidirectional buses at the T48 μ Controller interface together with output enable signals. For BUS, the signal db_dir_o indicates, when set to '1', that all bits of BUS are operated in output mode.

The situation at Port 1 and Port 2 is a bit more complex. MCS-48 controllers implement open-drain type output drivers with pull-up resistors. This behavior can easily be built in FPGA devices with three-state drivers where the output enable control for each pin is derived from the state of the respective data bit. In addition, a high level is driven actively when the port register is written to with a '1' by the CPU. This ensures a proper transition from low to high in contrast to loading the parasitic capacitance at the pin with the pull-up resistor. To enable this behavior, dedicated control signals are available that indicate when Port 1 or Port 2 outputs should be driven actively.

Figure 3 shows a sample circuit for a bidirectional implementation of Port 1 and Port 2.

Figure 3: Pseudo-Bidirectional Port Circuit

Note that 8021 and 8022 devices do not drive active '1'. Therefore, the t21_core and t22_core do not provide low imp outputs.

T8243 I/O Expander

The T8243 core implements the functionality of the 8243 I/O expander component. Like the T48 μ Controller, it consists of a core design called t8243_core that is embedded in several top levels. They differ in the used clocking style: synchronous or asynchronous.

The more simple synchronous clocking used by t8243_sync_notri allows seamless integration in SoC designs. On the other hand, it requires an additional clock input for synchronous operation.

When choosing the asynchronous t8243_async_notri and t8243 top levels, the sequential elements inside the core are clocked exclusively by the PROG input. This is closer to the original 8243 chip but imposes significant effort to obtain a robust t8243 top level with bidirectional P2 port. Due to P2 output data being enabled as soon as PROG is asserted low, there might happen bus contention on P2 while P2 input data is being sampled by the core control logic (upon falling PROG).

Table 9 shows the port list of the t8243_core.

Table 9: List of t8243_core IO ports

Port	W	Dir	Description			
	Generic Parameters					
clk_fall_level_g			Active edge of flip-flops clocked by falling clk_i:			
			0 : falling edge			
			1 : rising edge			
			System Interface			
clk_i	1	In	Clock input.			
clk_rise_en_i	1	In	Clock enable for rising edge triggered flip-flops.			
clk_fall_en_i	1	In	Clock enable for falling edge triggered flip-flops.			
reset_n_i	1	In	Asynchronous reset, low active.			
	Control Interface					
cs_n_i	1	In	Chip select.			
prog_n_i	1	In	PROG input.			
	Port 2 Interface					
p2_i	4	In	Port 2 input bus.			
p2_o	4	Out	Port 2 output bus.			

Donat	T A 7	D:	D		
Port	W	Dir	Description		
p2_en_i	1	Out	Port 2 output enable.		
Port 4 Interface					
p4_i	4	In	Port 4 input bus.		
p4_o	4	Out	Port 4 output bus.		
p4_en_i	1	Out	Port 4 output enable.		
Port 5 Interface					
p5_i	4	In	Port 5 input bus.		
p5_o	4	Out	Port 5 output bus.		
p5_en_i	1	Out	Port 5 output enable.		
Port 6 Interface					
p6_i	4	In	Port 6 input bus.		
p6_o	4	Out	Port 6 output bus.		
p6_en_i	1	Out	Port 6 output enable.		
Port 7 Interface					
p7_i	4	In	Port 7 input bus.		
p7_o	4	Out	Port 7 output bus.		
p7_en_i	1	Out	Port 7 output enable.		

Appendix A

Sample Systems

Included in the release of the T48 μ Controller project, several sample systems are available. Systems building an MCS-48 compatible chip have a two-level hierarchical structure. The lower level (marked by the "notri" infix) instantiates the T48 μ Controller core and attaches the memories to the core. This level provides the unidirectional interface ports towards the system top level. Here, the interfaces are combined to bidirectional buses by three-state drivers. Chapter I/O Interfaces describes the characteristics of these drivers.

The following sample systems are available:

Name	RAM Size	ROM Size	Remark
t8039	128	None	8039HL alike top level
t8048	64	1024	8048H alike top level
t8041	64	1024	UPI-41 alike top level
t8041a	64	1024	UPI-41A alike top level
t8042ah	256	2048	UPI-42AH alike top level
t8021	64	1024	8021 alike top level
t8022	64	2048	8022 alike top level
t8050_wb	256	4096	8050AH alike top level with Wishbone Interface

Appendix B

Wishbone Master

The Wishbone master is an optional module that can be attached to the T48 μ Controller core and enables interfacing to Wishbone compatible peripherals. Characteristics are as follows:

- Data bus 8 bit
- Address bus 24 bit
- Standard read/write cycles with wait states

The current implementation of the Wishbone master module requires exclusive access to the BUS interface of the T48 μ Controller. Refer to the t8050_wb sample system for information on how the Wishbone master module is connected to BUS. All MOVX read and write operations generate Wishbone bus cycles at the specified address. This address is built as follows:

Wishbone address = adr2 & adr1 & address of MOVX

Address components adr1 and adr2 are specified via the configuration range of the module. Table 10 summarizes the access scheme.

adr_iMOVX AddressDescription1000hRead/write adr1Configuration Range001hRead/write adr200XXhWishbone cycle @ 0XXhWishbone Range

Table 10: Wishbone Master Access Matrix

The range selection input adr_i is controlled by P2.4.

Index

Index	
8	Ports
8021 5, 13f., 17	Port 1 14
8022 5, 13f., 17	Port 2 14f.
8039HL 17	Port 4 16
8048H 17	Port 5 16
8050AH 17	Port 6 16
8243 15	Port 7 16
В	PROG 15
BUS 14, 18	pull-up 14
С	S
Clock	Sample System
asynchronous 15	t8039 17
divider 4	t8048 17
gating 5	t8050_wb 17
synchronous 15	SoC 1
system 4	T
E	T1 14
EA 13	T2 14
G	t8021 17
general purpose I/O 14	t8022 17
M	t8041 17
Memory	t8041a 17
Data 13	t8042ah 17
Program 13	three-state 14, 17
MOVX 18	U
0	UPI 13, 17
open-drain 14	W
P	Wishbone Master 18
peripherals 18	X

XTAL 4