

Teaching Computers to Read (Part 2)

Classification with Bag of Words and TF-IDF

NLP Tasks

Text data is difficult to work with. It requires a lot of

Pre Processing

Regular Expressions

Before

```
<h1>Donald J. Trump - @realDonaldTrump</h1>
Despite the constant negative press covfefe
```

After

Donald J. Trump

Despite the constant negative press covfefe

Tokenization

Before

The greatest wealth is to live content with little

After

```
['The',
'greatest',
'wealth',
is',
'to',
'live',
'content',
'with',
'little']
```

Stop-Words

Before

Be kind, for everyone you meet is fighting a hard battle.

After

Be kind, everyone meet fighting hard battle.

Stemming

Before After

Magical, Magician, Magically Magic

Hunters, Hunting, Hunted Hunt

Airline, Airliner, Airlines Airlin

Part of Speech (PoS) Tagging

Lemmatization

Before

Was, is, are

Meeting, meet, met (verb)

Meeting (noun)

After

Be

Meet

Meeting

N-grams

Only the dead have seen the end of war.

```
(Only, the) (seen, the)
(the, dead) (the, end)
(dead, have) (end, of)
(have, seen) (of, war)
```

Sometimes called the Unigram Model, bag of words is interested in

Word Frequency

There are two owls wearing two hats made for owls


```
{ "There": 1,
   "Are": 1,
  "Two": 2,
  "0wls": 2,
"Wearing": 1,
  "Hats": 1,
 "Made": 1,
  "For": 1 }
```

Sentence 1: There are two owls wearing two hats made for owls

Sentence 2: The owls were having great fun in their hats

Sentence 3: Owls love wearing hats

	There	are	two	owls	wearing	hats	made	for	the	were	having	great	fun	in	their	love
Sentence 1	1	1	2	2	1	1	1	1	0	0	0	0	0	0	0	0
Sentence 2	0	0	0	1	0	1	0	0	1	1	1	1	1	1	1	0
Sentence 3	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	1

TF - IDF

This model uses
Term Frequency
and
Inverse Document
Frequency

TF-IDF

Term Frequency

How often each term (or word) occurs within a document

Document Frequency

How often each term (or word) appears across all documents in the corpus

Inverse Document Frequency

Combining TF and IDF

Term Frequency * Inverse Document Frequency

TF-IDF Example

	the warm water	the cold water	the murky water
the	1	1	1
warm	1.693	0	0
water	1	1	1
cold	0	1.693	0
murky	0	0	1.693

How do I get started?

Watson NLU (Natural Language Understanding)

IBM Developer - developer.ibm.com

Thanks!

Do you have any questions?

edmundshee@uk.ibm.com

@ukcloudman

