IMPERIAL COLLEGE LONDON DEPARTMENT OF MATHEMATICS

Question Sheet 6

MATH40003 Linear Algebra and Groups

Term 2, 2019/20

Problem sheet released on Wednesday of week 8. All questions can be attempted before the problem class on Monday Week 9. Questions 1 and 2 are suitable for tutorials. Solutions will be released on Wednesday of week 9.

Question 1 Suppose (G, \cdot) is a group and H is a subgroup of G. Prove that each of the following is an equivalence relation on G (where g, h are elements of G):

- (i) $g \sim_1 h$ if and only if there is $k \in G$ with $h = kgk^{-1}$;
- (ii) $g \sim_2 h$ if and only if $h^{-1}g \in H$.

In the case where (G,.) is the group $(\mathbb{R}^2,+)$ and H is the subgroup $\{(x,x)\in\mathbb{R}^2: x\in\mathbb{R}\}$, describe geometrically the \sim_2 -equivalence classes. What are the \sim_1 -equivalence classes?

Question 2 Which of the following subsets H are subgroups of the given group G?

(a)
$$G = (\mathbb{Z}, +), H = \{ n \in \mathbb{Z} \mid n \equiv 0 \mod 37 \}.$$

(b)
$$G = GL(2, \mathbb{C}), H = \{A \in G \mid A^2 = I\}.$$

(c)
$$G = GL(2, \mathbb{R}), H = \{A \in G \mid \det(A) = 1\}.$$

(d)
$$G = S_n$$
, $H = \{g \in G \mid g(1) = 1\}$ (for $n \in \mathbb{N}$).

(e)
$$G = S_n$$
, $H = \{g \in G \mid g(1) = 2\}$ (for $n \ge 2$).

(f)
$$G = S_n$$
, H is the set of all permutations $g \in G$ such that $g(i) - g(j) \equiv i - j \mod n$ for all $i, j \in \{1, ..., n\}$.

Question 3 Prove the following statements.

- (a) Every cyclic group is abelian.
- (b) The group S_n is *not* abelian, unless n < 3.

Question 4 Suppose (G, \cdot) is a group and H, K are subgroups of G.

- (i) Show that $H \cap K$ is a subgroup of G.
- (ii) Show that if $H \cup K$ is a subgroup of G then either $H \subseteq K$ or $K \subseteq H$.

Question 5 Which of the following groups are cyclic?

- (a) S_2 .
- (b) $GL(2,\mathbb{R})$.
- (c) $\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \{1, -1\} \right\}$ under matrix multiplication.

(d) $(\mathbb{Q}, +)$.

Question 6 Let G be a cyclic group of order n, and g a generator. Show that g^k is a generator for G if and only if gcd(k, n) = 1.

Question 7 Let G and H be finite groups. Let $G \times H$ be the set $\{(g,h) \mid g \in G, h \in H\}$ with the binary operation $(g_1,h_1)*(g_2,h_2)=(g_1g_2,h_1h_2)$.

- (a) Show that $(G \times H, *)$ is a group.
- (b) Show that if $g \in G$ and $h \in H$ have orders a, b respectively, then the order of (g, h) in $G \times H$ is the lowest common multiple of a and b.
- (c) Show that if G and H are both cyclic, and gcd(|G|, |H|) = 1, then $G \times H$ is cyclic. Is the converse true?

Question 8 Find an example of each of the following:

- (a) an element of order 3 in the group $GL(2, \mathbb{C})$.
- (b) an element of order 3 in the group $GL(2, \mathbb{R})$.
- (c) an element of infinite order in the group $GL(2,\mathbb{R})$.
- (d) an element of order 12 in the group S_7 .