

SECOND SEMESTER 2019-2020 Course Handout Part II

Date:

06-01-2020

In addition to Part-I (General Handout for all courses appended to the time table) this portion gives further details regarding the course.

Course No: CHEM F243

Course Title: Organic Chemistry-II

Instructor-in-charge: Anupam Bhattacharya

Instructor: Manab Chakravarty

- 1. Scope and objective of the course: Stereochemistry is highly important to the most of the life-saving drugs, many materials that cater our essential needs. Hence this course is to familiarize the students with stereochemical concepts and their applications in organic synthesis; important functional group transformations; and pericyclic reactions. Emphasis will be placed not only on the mechanistic and stereoelectronic features but also on the way in which they are utilized in target synthesis.
- **2. Text Books:** E. L. Eliel, S. H. Wilen & L. N. Mander, Stereochemistry of Organic Compounds, John Wiley & Sons, 1st Ed., 2004. **(T1)**

Michael B. Smith & Jerry March, Advanced Organic Chemistry, John Wiley & Sons, 6th ed., 2012. **(T2)**

Reference Books:

- J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry, OUP, 1st ed., 2000. (R1)
- R. T. Morrison, R. Boyd and S. K. Bhattacharjee, Organic Chemistry, 7th ed. (R2)

Subrata Sengupta, Basic Stereochemistry of organic molecules, Oxford University press **(R3)**

3. Course Plan:

Lec. No.	Topics to be Covered	Learning objectives	Chapter in the Text Book	
1-2	Enantiomers and diastereomers; also to understand their diff		T1 : Ch. 3, pg. 49-69.	
	Diastereomers			
3-5	Symmetry elements,	Introduction to symmetry elements; to identify symmetry	T1 : Ch. 4, pg. 71-87, 92-	
	symmetry operators,	elements in molecules; associate molecules with symmetry	97	
	symmetry and molecular properties.	point groups.		
6-8	Relative and absolute	What is meant by relative and absolute configuration? How	T1 : Ch. 5, pg. 101-112,	
	configuration, relative	relative configuration is determined? Rules governing R/S	117-123, 126-128, 130-	
	configuration and	nomenclature (absolute configuration).	144	
	notation, determination			
	of relative configuration			
9-10	Introduction,	Chirality in molecules devoid of chiral centers – 1. Why these	T1 : Ch. 14, pg. 1119-24,	
	nomenclature, allenes	molecules are considered as chiral? Important examples and their applications.	1132	
11-13	Alkylidenecycloalkanes,	Chirality in molecules devoid of chiral centers -2. Why these	T1 : Ch. 14, pg. 1133-50,	
	Spriranes, Biphenyl	molecules are considered as chiral? Important examples and	1166-76	
	atropisomersism,	their applications.		
	Molecules with planar			
	chirality			
14-15	cis-trans isomerism,	Stereochemistry of alkenes; E-Z nomenclature of alkenes;	T1 : Ch. 9, pg. 539-574	
	determination of	methods for the determination of configuration.		
	configuration of <i>cis-trans</i>			

	isomers by chemical & physical methods		
16-17	Conformation of unsaturated acyclic and miscellaneous molecules	What is conformation of a molecule? Importance and important examples. Conformation of acyclic molecules; identifying stable and unstable conformations. What are the various interactions leading to stable/unstable conformations?	T1 : Ch. 10, pg. 597-627
18-20	Conformational aspects of the chemistry of six membered ring compounds	Understanding the conformations of cyclic molecules; identifying stable and unstable conformations. What are the various interactions leading to stable/unstable conformations in cyclohexane?	T1 : Ch. 10, pg. 665-754
21-26	Different reaction mechanisms involved in organic transformations such as SN1/SN2/SN'/SNi, neighboring group mechanism E1, E2, E1cB, addition to C=C double bond.	Understand diverse reaction mechanism, ranging from substitution to elimination. Non-classical carbocations, reason for their stability and examples.	T2 : Ch. 10: 425-519, Ch. 17: 1477-1506, Lecture notes
27-31	Resolution and stereoselective synthesis	Asymmetric synthesis; common approaches	R1 : Ch.16, 399-404, Ch.34, 881-904, Lecture notes
32-41	Types of Pericyclic reactions (electrocyclic, cycloaddition & sigmatropic), correlation diagrams, FMO approach & PMO approach,	Pericyclic reactions; type; mechanism and applications	R2 : Ch. 20 1032-1048, Lecture notes

Woodward-Hofmann	
rules	

4. Evaluation Scheme:

Component	Duration	Weightage (%)	Date & Time	Nature of Component
Midsem Examination	90 min	30	6/3 11.00 -12.30 PM	Closed Book
Class tests*	15 min	20	Continuous	Closed Book
Assignment/HW/Seminar	-	10	Continuous	Open book
Comprehensive	3 hrs	40	12/05 AN	30% Closed book + 10% Open book
Examination				

^{*}There will be 4 class test before mid-semester examination and 4 class test after mid-semester examination. Best of 3 test will be considered for each half (pre and post mid-semester exam).

- 5. Make-up(s) will be granted only for genuine reasons.
- 6. Chamber consultation hours: To be announced in the class.
- 7. Notices: All the notices pertaining to this course will be displayed on Chemistry Department Notice Board and CMS.
- 8. Course Policies:
- (a) **Absences:** Students are responsible for all materials presented in the course as well as for acquiring missed information.
- (b) **Electronic Devices: Cell phones must be turned off in class.** All electronic devices must be off during class or exams. This includes laptop computers as well as programmable calculators. You will be allowed only a simple scientific calculator for exams (if required).
- **9. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge CHEM F243