Your function can be plotted symmetrically in the coordinate system defined by the principal axes of the ellipse. Your function is minimized at $x=x_0=19/10$ and $y=y_0=9/5$ with $f(x_0,y_0)=-10.1=:z_0$. So the first step is a translation

$$x' = x - x_0$$
, $y' = y - y_0$ and $z' = z - z_0$.

The second step is to rotate to the principal axes, which can be achieved by diagranalizing the Hesse matrix of f,

$$H = \begin{pmatrix} 4 & -2 \\ -2 & 6 \end{pmatrix} .$$

This yields a rotation angle of 31.8° . The perhaps simplest way to produce the figure is thus to plot the function in the principal axes system and draw the unrotated axes by hand.

