9주 2강

데이터 링크 계층 - 오류제어 (3), 데이터 링크 프로토콜

숭실사이버대학교의 강의콘텐츠는 저작권법에 의하여 보호를 받는바, 무단 전재, 배포, 전송, 대여 등을 금합니다.

* 사용서체 : 나눔글꼴

- ◆ 데이터 링크 계층
 - 오류 제어
 - 오류 정정 방식 : 해밍 부호 검사
 - 1비트의 오류를 검출하여 자동으로 정정해 주는 코드
 - 검사 비트 3개를 추가하여 오류를 줄이며, 비트 2개 이상을 검출하여 정정하려면 더 많은 비트(상황 비트)가 필요
 - 해밍 부호 검사 방식은 처리 속도가 빨라 실시간으로 처리할 수 있고, 오류 검출뿐만 아니라 정정도 가능
 - 단점은 중복 비트가 많이 필요해 전송 효율이 낮고, 계산량이 많이 요 구됨

- ◆데이터 링크 계층
 - 오류 제어

	12	11	10	9	8	7	6	5	4	3	2	1
	1	0	1	0	0	1	0	1	1	0	0	0
-						50	200					
	12	11	10	9	8	7	6	5	4	3	2	1
	1	0	1	0	H8	0	0	1	H4	0	H2	H1

오류 비트

- ◆ 데이터 링크 계층
 - 오류 제어
 - 국제 표준 오류 검출 방식과 오류 제어 방식

표 5-4 국제 표준 규약에서 오류를 검출하고 제어하는 방식

국제 표준	오류 검출 방식	오류 제어 방식
IEEE802	• CRC-32	• Go-Back N ARQ
ISO(IS1745)	CRC-16수평 패리티수직 패리티	• 정지 대기 ARQ
ISO(IS3309 외)	• CRC-16 • CRC-32	• Go-Back N ARQ • 선택적 ARQ
ITU-T X.25	• CRC-16	• Go-Back N ARQ
ITU-T V.41	• CRC-16	・정지 대기 ARQ ・Go-Back N ARQ

- 오류율
 - 전송매체로 인해 발생한 오류의 총합을 전송 정보의 총합으로 나눈 값
 - 비트 오류율, 문자 오류율, 블록 오류율이 있음

- ◆ 데이터 링크 계층
 - 동기화
 - 송수신 측의 각 비트의 전송률과 전송 시간, 간격 등을 규정하는 약속
 - 동기화는 데이터 통신 시스템에서 꼭 필요함
 - 송신 측에서는 비트를 구별하여 전송하는 데이터가 필요하며, 이런 데이터를 동기 정보라고 함
 - 수신 측에서 동기 정보를 얻는 방법에는 비동기식 전송과 동 기식 전송이 있음

- ◆ 데이터 링크 계층
 - 데이터 링크 프로토콜의 종류
 - 문자 지향 방식과 비트 지향 방식으로 분류
 - 문자 지향 방식
 - 데이터를 문자 단위로 전송
 - Kermit와 BSC가 있음
 - 비트 지향 방식
 - 데이터를 비트 단위로 전송
 - ISO의 HDLC와 MLP, CCITT의 X.25 LAPB, LAPD, LAPF 등이 있음

- ◆ 데이터 링크 계층
 - 데이터 링크 프로토콜의 종류

표 5-5 대표적인 데이터 링크 프로토콜의 종류와 특징

종류 특징	BSC	HDLC	무절차	
활용	DTE와 컴퓨터 사이	OSI 참조 모델 2계층, 공중 패킷 교환망	PC 통신, 각종 DB	
통신회선	저속-고속	2,400bps 이상의 회선	300bps 이하의 저속 회선	
신뢰성	약간 높음	높음	낮음	
전송 효율	보통	높음	낮음	
정보전송 단위	블록	프레임	구분된 부호까지	
단말장치 가격	보통	고가	저가	

- ◆ 데이터 링크 계층
 - 데이터 링크 프로토콜의 종류
 - BSC
 - IBM에서 개발
 - 컴퓨터와 단말기 사이에서 일정한 전송 제어 문자를 사용하여 오류 없이 전송해 주는 프로토콜
 - 주로 동기식 방식을 사용하지만 비동기식 전송 방식도 사용가능
 - 문자코드에 의존적이며 사용할 수 있는 코드가 제한적
 - 오류 검출이 어렵고 전송 효율이 나쁨

- ◆ 데이터 링크 계층
 - 데이터 링크 프로토콜의 종류
 - HDLC
 - IBM의 SDLC 프로토콜을 토대로 OSI에서 개발
 - 고속 전송 가능하고, 신뢰성이 높음
 - X.25나 ISDN의 D채널 방식 등에 이용됨
 - HDLC는 가장 대표적인 데이터 링크 프로토콜
 - HDLC의 구성요소
 - ① 국 : 개방 시스템에서 HDLC 절차를 실행하는 부분데이터를 제어 하는 명령을 전송하고 응답
 - ② 프레임: HDLC의 국 상호 간에 주고받는 정보의 기본 단위

그림 5-22 HDLC 프레임의 구성

- ◆ 데이터 링크 계층
 - 데이터 링크 프로토콜의 종류
 - HDLC의 구성요소
 - 플래그: 8비트이며 시작 플래그와 종료 플래그가 있음 프레임의 동기화를 맞추기 위해 사용
 - 주소: 1개 이상의 8비트로, 전송할 목적지 주소를 가리킴
 - 제어: 프레임의 종류를 나타내며, 8비트 또는 16비트로 구성
 - » I 프레임(정보전송 형식): 데이터와 제어 정보가 들어있는 프레임
 - » S 프레임(감시 형식): 정보 프레임에 대한 응답 기능을 하는 프레임
 - » U 프레임(비번호 형식): 연결 제어 기능을 수행하는 프레임
 - 실제 데이터 : 가변 길이의 전송 데이터가 실리는 부분
 - 프레임 검사 순서: 16비트 또는 32비트로 구성되며 오류 검출 등에 사용
 - HDLC의 동작 절차
 - 3단계(초기화, 데이터 전달, 연결 해제)로 구성
 - 두국 간에 정보 프레임을 교환하여 구성

- ◆ 데이터 링크 계층
 - 데이터 링크 프로토콜

표 5-7 HDLC 프로토콜의 특징

특징	내용		
비트 방식 프로토콜의 일종	 고속 데이터 전송에 적합한 비트 지향형 프로토콜 범용의 데이터 링크 전송 제어 절차 임의의 비트 패턴 전송이 가능 		
여러 통신 방식 모두를 지원 가능	• 단방향, 반이중, 전이중 전송에 모두 사용		
데이터 링크 형식	• Point to Point, Multi-point 및 Loop 가능		
오류 제어가 엄밀함	• CRC 필드 방식 사용 • 에러 발생시 재전송 요구(ARQ)		

수고하셨습니다.

