FU08 - Automata and Languages Exercise 8

 $\begin{array}{c} {\rm NGUYEN~Tuan~Dung} \\ {\rm s}1312004 \end{array}$

January 14, 2025

Question 1: Construct a DFA that accepts the language generated by the grammar

 $S \longrightarrow abA$,

 $A \longrightarrow baB$,

 $B \longrightarrow aA|bb$

Solution:

We sketch the DFA out, with the start state S, final state F.

Split the transitions, we obtain the final DFA.

Fast conversion from DFA to regular expression, we obtain abba(aba)*bb.

Question 2: Construct right- and left-linear grammars for the language

$$L=\left\{ a^{n}b^{m}:n\geqslant2,m\geqslant3\right\}$$

Solution:

Fast conversion to regular expression, we obtain $aaa^*bbbb^* = aaa^*b^*bbb$.

• Right-linear grammar: start from left to right

 $S \longrightarrow aaA$

 $A \longrightarrow aA|B$

 $B \longrightarrow bbbC$

 $C \longrightarrow bC|\lambda$

• Left-linear grammar: start from right to left

 $S \longrightarrow Abbb$

 $A \longrightarrow Ab|B$

 $B \longrightarrow Caa$

 $C \longrightarrow \lambda$

Question 3: Answer the following question

Construct right- and left-linear grammars for the language generated by the following regular expression. $r = (aab^*ab)^*$

Solution:

 \bullet Right-linear grammar: start from left to right

 $S \longrightarrow \lambda |aaA$

 $A \longrightarrow bA|abS$

 $A \longrightarrow Ab|Saa$

Question 4: Construct a context-free grammar for the language

$$\{a^ib^jc^k : i \neq j \text{ or } j \neq k\}$$

that is the language of strings of a's followed by b's followed by c's, such that there are either a different number of a's and b's or a different number of b's and c's, or both.

Solution:

Since $i \neq j$ or $j \neq k \Leftrightarrow i < j$ or i > j or j > k or j < k.

$$S \longrightarrow X_{i < j}C \mid X_{i > j}C \mid AY_{j < k} \mid AY_{j > k}$$

$$A \longrightarrow aA \ | \ \lambda$$

$$B \longrightarrow bB \mid \lambda$$

$$C \longrightarrow cC \mid \lambda$$

$$X_{i>j} \longrightarrow aX_{i>j}b \mid aA$$

$$X_{i < j} \longrightarrow aX_{i < j}b \mid bB$$

$$Y_{j < k} \longrightarrow bY_{j < k}c \mid cC$$

$$Y_{j>k} \longrightarrow bY_{j< k}c \mid bB$$