Diabetes Prediction Using Bayesian Logistic Regression and Conventional Logistic Regression

FINAL PROJECT FOR BAYESIAN METHOD FOR DATA SCIENCE (DATS 6450)

PROJECT GROUP 11: LI DU, XIAOCHI LI, YUPENG YANG

DATA SCIENCE, GEORGE WASHINGTON UNIVERSITY

Introduction

What's Diabetes?

- A number of diseases that involve problems with the hormone insulin and high blood glucose. As yet, there is no cure for diabetes.
- In 2014, 8.5% of adults aged 18 years and older had diabetes. In 2015, diabetes was the direct cause of 1.6 million deaths.

 Early detection and treatments for potential patients are necessary to reduce the healthy risk of having diabetes.

Introduction

The Diabetes Dataset

- Pima Indians Diabetes Database from Kaggle.
- 768 observations, 8 variables as predictors and one target value.

1	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
2	6	148	72	35	0	33.6	0.627	50	1
3	1	85	66	29	0	26.6	0.351	31	0
4	8	183	64	0	0	23.3	0.672	32	1
5	1	89	66	23	94	28.1	0.167	21	0
6	0	137	40	35	168	43.1	2.288	33	1
7	5	116	74	0	0	25.6	0.201	30	0
8	3	78	50	32	88	31	0.248	26	1
9	10	115	0	0	0	35.3	0.134	29	0
10	2	197	70	45	543	30.5	0.158	53	1
11	8	125	96	0	0	0	0.232	54	1
12	4	110	92	0	0	37.6	0.191	30	0
13	10	168	74	0	0	38	0.537	34	1
14	10	139	80	0	0	27.1	1.441	57	0
15	1	189	60	23	846	30.1	0.398	59	1
16	5	166	72	19	175	25.8	0.587	51	1
17	7	100	0	0	0	30	0.484	32	1
4.0									

Introduction

What did we do?

- Methods & Ideas:
 - Bayesian logistic regression model
 - Conventional logistic regression model
- Results & Analysis:
 - Importance of Data Preprocessing
 - Posterior distributions of coefficients and intercept
 - Effect of different Prior distributions

Methods & Ideas

- Bayesian General Linear Model
- $\mu = f(lin(x), [parameters])$ (1)
- $y \sim pdf(\mu, [parameters])$ (2)
- See Chapter 15

Lin(x) : logistic(x) Pdf : Bernoulli Bayesian Logistic Model

- $\mu = logistic(\beta_0 + \sum \beta_i x_i)$ (3)
- $y \sim Bernoulli(\mu)$ (4)
- $logistic(x) = \frac{1}{1+e^{-x}}$ (5)
- See Chapter 21

Methods & Ideas

Train a conventional logistic model

Split

Compare with AUC and Hit Rate

Train a Bayesian logistic model

Use mode to build logistic function

 $y = logistic(mode(\beta_0) + \sum mode(\beta_j)x_j) (7)$

SELECTED DIAGNOSTICS OF MCMC CHAINS

• Preprocessing: Remove missing values and kept 392 observation and 9 variable in the final dataset

Diagnostic information suggests good representativeness of the posterior distribution

Experimental Results & Analysis

Priors $(\beta_0 - \beta_7) \sim \text{dnorm } (0, 0.25)$

Note that in JAGS this indicates a normal distribution with mean as 0 and standard deviation of 2

Lo	gistic regres	ssion	Bayesian logistic regression			
	(hit rate=82°	%)	(hit rate=83%)			
	[Pred] 0	[Pred] 1		[Pred] 0	[Pred] 1	
[Act] 0	74	17	[Act] 0	73	15	
[Act] 1	4	22	[Act] 1	5	24	

Model comparison

- Use the mode values of the posteriors from Bayesian logistic regression
- Test both models using the testing set

The two regression models agreed very well

Experimental Results & Analysis Sensitivity analysis I: Unbalanced classes

- The preprocessed dataset has unequal number of records in the 1 and 0 class.
- Parameter estimates become more uncertain (i.e. larger HDIs) when records are unbalanced.

Data	Label 0	Label 1
Original	262	130
Balanced	130	130

Experimental Results & Analysis Sensitivity analysis I: Unbalanced classes

Posterior without balanced data

Posterior with balanced data

Experimental Results & Analysis

Sensitivity analysis II: different priors

Vague prior

• Priors $(\beta_0 - \beta_7) \sim \text{Norm}(0, 2)$

 Priors come from the posteriors after running 50 random selected samples

Conclusion

- Bayesian logistic regression and conventional logistic regression only display marginally differences in their performance gauged by hit rates.
- Unbalanced number of records in the two classes is not a dictating factor to the posterior distributions of the coefficients, whereas samples size and selection of variables play a more significant role.
- The evaluation of various priors also suggests that the posterior is synergy of prior and likelihood that is determined by the dataset.
- Altering priors had a significant effect on the posterior distribution of the coefficients.

REFERENCE

- DIABETES HEALTH CENTER, https://www.webmd.com/diabetes/default.htm
- DIABETES WORLD HEALTH ORGANIZATION,

 http://www.who.int/mediacentre/factsheets/fs312/en/
- DIABETES DATABASE, https://www.kaggle.com/uciml/pima-indians-diabetes-database/data
- CASE STUDY ON PIMA INDIAN DIABETES. AVAILABLE AT
 <u>HTTPS://WWW.KAGGLE.COM/HINCHOU/CASE-STUDY-ON-PIMA-INDIAN-DIABETES</u>
- Kruschke, J.. Doing Bayesian data analysis, 2nd Edition: A Tutorial with R, JAGS and Stan. 2015 Academic Press/Elsevier.