Theorem 1 (Dominated convergence of Lebesgue) Assume that g is an integrable function defined on the measurable set E and that $(f_n)_{n\in\mathbb{N}}$ is a sequence of measurable functions so that $|f_n| \leq g$. If f is a function so that $f_n \to f$ almost everywhere then $\lim_{n\to\infty} \int f_n = \int f.$

that
$$\int (g - f) \le \liminf \int (g - f_n)$$
. Since $|f| \le g$ and $|f_n| \le g$ the functions f and f_n are integrable and we have
$$\int g - \int f \le \int g - \limsup \int f_n,$$

Proof: The function $g - f_n$ is non-negative and thus from Fatou lemma we have

so
$$\int f \geq \limsup \int f_n.$$
 Θεώρημα 2 (Κυριαρχημένης σύγκλισης του Lebesgue) Έστω ότι ης είναι

μια ολοκληρώσιμη συνάρτηση ορισμένη στο μετρήσιμο σύνολο E και η $(f_n)_{n\in\mathbb{N}}$

είναι μια ακολουθία μετρήσιμων συναρτήσεων ώστε $|f_n| \leq g$. Υποθέτουμε ότι υπάρχει μια συνάρτηση f ώστε η $(f_n)_{n\in\mathbb{N}}$ να τείνει στην f σχεδόν παντού. Τότε

$$\lim \int f_n = \int f.$$

$$Aπόδειξη: H συνάρτηση $g - f_n$ είναι μη αρνητική και άρα από το Λήμμα του Fatou ισχύει $\int (f - g) \le \liminf \int (g - f_n).$ Επειδή $|f| \le g$ και $|f_n| \le g$ οι f και $f_n$$$

Fatou ισχύει $\int (f-g) \le \liminf \int (g-f_n)$. Επειδή $|f| \le g$ και $|f_n| \le g$ οι f και f_n είναι ολοκληρώσιμες, έχουμε

$$g - \int f \le \int g - \limsup \int_{n} f_n$$

άρα

$$\int f \ge \limsup \int f_n.$$