Answer the questions in the boxes provided on the question sheets. If you run out of room for an answer, add a page to the end of the document.

Name:	Wisc id:
D: :	1 1 C
1. Erickso	de and Conquer $(p.49, q. 6)$. Use recursion trees to solve each of the following recurrences. $(n) = 2C(n/4) + n^2$; $C(1) = 1$.
(b) E((n) = 3E(n/3) + n; E(1) = 1.

2.	Kleinberg, Jon. Algorithm Design $(p. 246, q. 1)$. You are interested in analyzing some hard-to-obtain data from two separate databases. Each database contains n numerical values—so there are $2n$ values total—and you may assume that no two values are the same. You'd like to determine the median of this set of $2n$ values, which we will define here to be the n th smallest value. However, the only way you can access these values is through queries to the databases. In a single query, you can specify a value k to one of the two databases, and the chosen database will return the k th smallest value that it contains. Since queries are expensive, you would like to compute the median using
	as few queries as possible. (a) Give an algorithm that finds the median value using at most $O(\log n)$ queries.
	(b) Give a recurrence for the runtime of your algorithm in part (a), and give an asymptotic solution to this recurrence.

	Prove correctness of your algorithm in part (a).
As ir	nberg, Jon. Algorithm Design (p. 246, q. 2). Recall the problem of finding the number of inversion in the text, we are given a sequence of n numbers $a_1,, a_n$, which we assume are all distinct, and we an inversion to be a pair $i < j$ such that $a_i > a_j$.
	motivated the problem of counting inversions as a good measure of how different two orderings are ever, this measure is very sensitive. Let's call a pair a significant inversion if $i < j$ and $a_i > 2a_j$.
	Give an $O(n \log n)$ algorithm to count the number of significant inversions between two ordering

b) Give a this rec	recurrence for currence.	the runtime of	your algorith	m in part (a),	and give an as	symptotic solution
c) Prove c	correctness of y	our algorithm	in part (a).			

4. Kleinberg, Jon. Algorithm Design (p. 246, q. 3). You're consulting for a bank that's concerned about fraud detection. They have a collection of n bank cards that they've confiscated, suspecting them of being used in fraud.

It's difficult to read the account number off a bank card directly, but the bank has an "equivalence tester" that takes two bank cards and determines whether they correspond to the same account.

Their question is the following: among the collection of n cards, is there a set of more than $\frac{n}{2}$ of them that all correspond to the same account? Assume that the only feasible operations you can do with the cards are to pick two of them and plug them in to the equivalence tester.

Cive a recurrer	nce for the runtime	e of your algor	ithm in part (a)	and give an a	symptotic soluti
this recurrence		or your aigor	ionni in pare (a)	,, and give an a	symptotic soluti

5. Implement the optimal algorithm for inversion counting in either C, C++, C#, Java, Python, or Rust. Be efficient and implement it in $O(n \log n)$ time, where n is the number of elements in the ranking.

The input will start with an positive integer, giving the number of instances that follow. For each instance, there will be a positive integer, giving the number of elements in the ranking. A sample input is the following:

```
2
5
5 4 3 2 1
4
1 5 9 8
```

The sample input has two instances. The first instance has 5 elements and the second has 4. For each instance, your program should output the number of inversions on a separate line. Each output line should be terminated by a newline. The correct output to the sample input would be:

10 1