Fizyka układów złożonych Model Kuramoto

Małgorzata Krawczyk

Model Tworzymy układ składający się z N oscylatorów, oscylujących z częstością własną ω_i i powiązanych z pozostałymi oscylatorami stałą sprzężenia K. Zmiana fazy θ każdego z oscylatorów w czasie opisana jest równaniem:

$$\frac{d\theta_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j - \theta_i), \qquad i = 1 \dots N,$$

Parametr porządku:

$$re^{i\psi} = \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$$

Zadanie 1 (50p) Przyjmujemy:

- N = 10, 20, 50
- $K \in (0.25, 5)$ z krokiem 0.5
- ω_i losujemy z rozkładu normalnego $\mu=0, \sigma=1$
- początkowe θ_i losujemy z rozkładu jednorodnego w przedziale $[0,2\pi)$

W każdym przypadku rozwiązujemy układ równań. Na wykresach proszę przedstawić zależność θ_i oraz r od czasu.

$$N=50,\,K=0.75$$

$$N = 50, K = 2.25$$

$$N = 50, K = 4.75$$

Zadanie 2 (25p) Dla parametrów jak wcześniej proszę utworzyć wykres zależności wartości końcowej r od K, wynik proszę uśrednić po 10 powtórzeniach.

Zadanie 3 (25p) Możemy także zobaczyć jak wygląda proces desynchronizacji. Tworzymy układ N=50 oscylatorów. Dla połowy z nich losujemy θ z rozkładu jednorodnego w przedziale $[0,2\pi)$, a dla drugiej w przedziale $[0,\pi/12]$, ω_i losujemy z rozkładu normalnego $\mu=0,\sigma=0.5$. Dla K=0.01,0.8 i 2 proszę narysować zależność r od czasu.

