Course:

CS2700 (Programming and Data Structures Theory)

Dr. Aritra Hazra (Assistant Professor, Dept. of CSE, IIT Madras) **Instructor:**

P	Course Details and Class Announcements An Introduction to Problem Solving		
02 P	Problem Solving Approaches using – (a) Algorithm Design and (b) Data Structuring		
03 A	Arguements on Correctness of Programs (Implementation): Pre/Post Conditions, Loop Invariants		
04	Complexity (Efficiency) of Computation / Algorithms: Time and Space		
08 A	Asymptotic Analysis of Programs using Asymptotic Growth Functions		
	Problem Decomposition using Recursion: (Examples: Factorial, Fibonacci, Sorting)		
	Problem Decomposition using Recursion: (Example: Tower of Hanoi)		
11 (T) <i>T</i>	Tutorial-01: Analyzing Program Complexity and Correctness		
(ADT Array: Searching Element in Array and its Complexity Analysis (a) Linear Search (b) Binary Search		
(ADT Array: Comparison based Sorting and its Complexity Analysis (a) Selection Sort (b) Bubble Sort		
(ADT Array: Comparison based Sorting and its Complexity Analysis (c) Insertion Sort (d) Merge Sort (Merging Technique)		
(ADT Array: Comparison based Sorting and its Complexity Analysis (e) Quick Sort A note on Lower Bound Complexity of Comparison based Sorting		
(ADT Array: Linear-Time Sorting Procedures (a) Counting Sort (b) Radix Sort		
(ADT Array: Linear-Time Sorting Procedures (c) Bucket Sort A note on Stable and In-place Sorting		
25 (T) 7	Tutorial-02: Array ADT		
(ADT Linked List: Basic Operations (a) Dynamic Structure based Implementation of Single Linked List (b) List Manipulation: Insertion, Deletion, Find-element		
(ADT Linked List: Basic Operations (c) Reversing List: Recursive and Non-recursive way (d) Cursor (Array-based) Implementation of Linked List		
	ADT Linked List: Variations (a) Double Linked List (b) Circular Linked List (c) Sparse Matric Implementation using Linked List		
September			
01 (T) T	Tutorial-03: Linked List ADT		

06	ADT Stack: Basic Operations (Empty, Full, Push and Pop) (a) Array based Implementation (b) Linked List based Implementation
07	ADT Queue: Basic Operations (Empty, Full, Enqueue and Dequeue) (a) Array based Implementation (b) Linked List based Implementation
08 (Q)	<i>Quiz-1</i> : 20 Marks, 45 Minutes (Time: 08:00AM – 08:50AM, Rooms: TBD); Syllabus: 01/08/2016 – 01/09/2016
13	ADT Stack and ADT Queue: Various Usage (a) Equality of Two Stacks / Queues (b) Parenthesis Matching (c) Expression Evaluation (d) Transformation of Infix to Postfix Expression
14	ADT Binary Trees: (a) Mathematical Properties of Tree / Binary Tree (b) Representation using Dynamic Data Structures (c) Tree travarsal: Pre-order, In-order, Post-order
15 (T)	Tutorial-04: Stack ADT
16	ADT Binary Trees: Various Operations (a) Recursive Travarsals: Determining Height / Depth, Number of Nodes (b) Binary Tree Construction from Travarsal Data: Inorder + Preorder and Inorder + Postorder
19	ADT Binary Trees: Applications (a) Huffman Coding (b) Expression trees and Evaluation
20	ADT Binary Search Tree (BST): (a) Basic Operations: Find a Key and Min-Max, Insert and Delete Element (b) BST Travarsal to Sort Data
21	Tree Height Balancing (AVL Tree): (a) Representation / Implementation (b) Rotation Techniques for Balancing Tree Height (Single and Double Rotation)
22 (T)	Tutorial-05: Queue ADT
26	ADT B-Tree: Few Variations (2-3 Tree, B+ Tree)
27	Hashing: (a) Hash Function: Properties and Examples (b) Collision and Prevention: Separate Chaining, Open Addressing (Linear Probing, Quadratic Probing, Double Hashing), Rehashing
28	ADT Heap (Priority Queue): Basic Operations and Complexity (a) Array based Implementation: Build-Heap (b) Find Min/Max, Insert and Delete Operations
29 (T)	Tutorial-06: Binary Tree ADT
	October
03	Heap-Sort: Algorithm and Analysis
04	ADT Disjoint Set: Tree based Implementation, Find and Union Operation
05	ADT Disjoint Set: Path Compression and Application (Equivalence Class)
06 (T)	Tutorial-07: Binary Search Tree ADT
10 (T)	Tutorial-08: Hashing
13 (T)	Tutorial-09: Heap (Priority Queue) ADT

17	Graph Representation: Matrix and Adjacency List Graph Travarsals: Depth-First and Breadth-First (using Stacks and Queues)			
18	Graph Travarsal Applications: (a) Topological Sort, (b) Connected Components, (c) Strongly Connected Components			
19	Shortest Path in Graph: (a) Single Source All Destinations, (a) All Pair Shortest Path			
20 (T)	Tutorial-10: Disjoint Set ADT			
24	Minimum Cost Spanning Tree: Prim's and Kruskals Approach			
25 (Q)	<i>Quiz-2</i> : 20 Marks, 45 Minutes (Time: 08:00AM – 08:50AM, Rooms: TBD); Syllabus: 06/09/2010 – 13/10/2016			
26	Advanced Data Structures and Analysis: (a) Red-Black Tree (b) Amortized Analysis			
27 (T)	Tutorial-11: Graphs and Travarsals			
31	Advanced Data Structures and Analysis: (c) Binomial Heap (d) Skew Heap			
November				
01	Advanced Data Structures and Analysis: (e) Fibonacci Heap (f) Splay Tree			
02	Algorithm Design Techniques: (a) Greedy Approach (b) Divide and Conquer Approach			
03 (T)	Tutorial-12: Graph Algorithms			
07	Algorithm Design Techniques: (c) Dynamic Programming (d) Branch and Bound / Backtracking			
80	Computational Intractability: P and NP, NP-Completeness			
09	Algorithm Design Techniques: (e) Approximate Algorithm (f) Randomized Algorithm			
10 (T)	Tutorial-13: Advanced Data Structures and Algorithm Design Techniques			
21 (E)	<i>End-Semester</i> : 50 Marks, 2 Hours (Time: 09:00AM – 11:00AM, Rooms: TBD); Syllabus: Full			

Course: CS2710 (Programming and Data Structures Laboratory)

Instructor: Dr. Aritra Hazra (Assistant Professor, Dept. of CSE, IIT Madras)

	August				
01	Course Details and Introduction to Programming Environment				
08	Assignment-01: Programming Basics	(5 Marks)			
18	Assignment-02: Problem Solving using Recursions	(5 Marks)			
22	Assignment-03: Manipulating Array – (a) Searching and (b) Sorting (5+	5 = 10 Marks)			
29	Assignment-04: Linked list	(5 Marks)			
	September				
16	Assignment-05: Stack and Queue	(5 Marks)			
19 (L)	LabTest-1: 20 Marks, 2 Hours 30 Minutes (Time: 02:00PM – 04:40PM, Room: DCF)				
26	Assignment-06: Binary Tree	(5 Marks)			
October					
03	Assignment-07: Binary Search Tree	(5 Marks)			
10	Assignment-08: Heap and Priority Queue	(5 Marks)			
17	Assignment-09: Set ADT and Hashing	(5 Marks)			
24	Assignment-10: Graph	(5 Marks)			
31 (L)	LabTest-2: 20 Marks, 2 Hours 30 Minutes (Time: 02:00PM – 04:40PM, Room: DCF)				
November					
07	Assignment-11: Advanced Data Structures and Algorithms	(5 Marks)			