(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

SEMESTER - VI

Database Management Systems

Code: PCC-CS601

Nam	e of the Course:	Database Management Systems		
Cour	rse Code: PCC-CS601	Semester: VI		
Dura	tion:6 months	Maximum Marks	:100	
Teac	ching Scheme		Examination Scheme	
Theo	ory:3 hrs./week		Mid Semester exam: 15	
Tuto	rial: NIL		Assignment and Quiz: 10 marks	
			Attendance: 5 marks	
Pract	tical: hrs./week		End Semester Exam: 70 Marks	
Cred	it Points:	3		
Obje	Objective:			
1	To understand the diff	ferent issues involv	ed in the design and implementation of a	
	database system.			
2		To study the physical and logical database designs, database modeling, relational, hierarchical, and network models		
3	To understand and use database	To understand and use data manipulation language to query, update, and manage a		
4	To develop an unders	tanding of essential	DBMS concepts such as: database security,	
	*	•	ase, and intelligent database, Client/Server	
	(Database Server), Data Warehousing.			
5	To design and build a simple database system and demonstrate competence with the			
	fundamental tasks involved with modeling, designing, and implementing a DBMS.			
6	To understand the diff	ferent issues involv	ed in the design and implementation of a	
	database system.	database system.		

Unit	Content	Hrs/Unit	Marks/Unit
	Database system architecture:		
1	Data Abstraction, Data	9	
	Independence, Data Definition		
	Language(DDL),Data Manipulation		
	Language(DML).		
	Data models: Entity-		
	relationship model, network model,		
	relational and object oriented data		
	models, integrity constraints, data		
	manipulation operations.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

2	Relational query languages: Relational algebra, Tuple and domain relational calculus, SQL3, DDL and DML constructs, Open source and Commercial DBMS - MYSQL, ORACLE, DB2, SQLserver. Relational database design: Domain and data dependency, Armstrong's axioms, Normal forms, Dependency preservation, Losslessdesign. Query processing and	13
	optimization: Evaluation of relational algebra expressions, Query equivalence, Join strategies, Query optimization algorithms.	
3	Storage strategies: Indices, B-trees, hashing.	3
4.	Transaction processing: Concurrency control, ACID property, Serializability of scheduling, Locking and timestamp based schedulers, Multiversion and optimistic Concurrency Control schemes, Database recovery.	5
5	Database Security: Authentication, Authorization and access control, DAC, MAC and RBAC models, Intrusion detection, SQL injection.	3
6	Advanced topics: Object oriented and object relational databases, Logical databases, Web databases, Distributed databases, Data warehousing and data mining.	3

Text book and Reference books:

- 1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.
- 2. "Principles of Database and Knowledge Base Systems", Vol 1 by J. D. Ullman, Computer Science Press.
- 3. Database Management Systems, R.P. Mahapatra, Khanna Publishing House, New

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

Delhi (AICTE Recommended Textbook – 2018)

4. "Fundamentals of Database Systems", 5th Edition by R. Elmasri and S. Navathe, 5.PearsonEducation "Foundations of Databases", Reprint by Serge Abiteboul, Richard Hull, Victor Vianu, Addison-Wesley

Course Outcomes:

On completion of the course students will be able to

- 1. For a given query write relational algebra expressions for that query and optimize the developed expressions
- 2. For a given specification of the requirement design the databases using E R method and normalization.
- 3. For a given specification construct the SQL queries for Open source and Commercial DBMS -MYSQL, ORACLE, and DB2.
- 4. For a given query optimize its execution using Query optimizationalgorithms
- 5. For a given transaction-processing system, determine the transaction atomicity, consistency, isolation, and durability.
- 6. Implement the isolation property, including locking, time stamping based on concurrency control and Serializability of scheduling.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

Computer Networks Code: PCC-CS602 Contact: 3L

Name	of the Course:	Computer Networks	
Course	e Code: PCC-CS602	Semester: VI	
Durati	on:6 months	Maximum Marks:	100
Teach	ing Scheme	•	Examination Scheme
Theor	y:3 hrs./week		Mid Semester exam: 15
Tutori	al: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practio	cal: hrs./week		End Semester Exam:70 Marks
Credit	Points:	3	
Objec	Objective:		
1	To develop an understanding of modern network architectures from a design and performance perspective.		
2	To introduce the student to the major concepts involved in wide-area networks		
2	(WANs), local area networks (LANs) and Wireless LANs (WLANs).		
2			
3	To provide an opportunity to do network programming		
4	To provide a WLAN measurement ideas.		

Unit	Content	Hrs/Unit	Marks/Unit
1	Data communication Components: Representation of data and its flow Networks, Various Connection Topology, Protocols and Standards, OSI model, Transmission Media, LAN: Wired LAN, Wireless LANs, Connecting LAN and Virtual LAN, Techniques for Bandwidth utilization: Multiplexing - Frequency division, Time division and Wave division, Concepts on spread spectrum.	9	
2	Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction - Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols - Stop and Wait, Go back - N ARQ, Selective Repeat ARQ,	8	

 $(Formerly\ West\ Bengal\ University\ of\ Technology)$ Syllabus for B. Tech in Computer Science & Engineering

(Applicable from	the endomic session	2019 2010)
(Applicable from	the academic session	2016-2019)

	Sliding Window, Piggybacking,		
	Random Access, Multiple access protocols -		
	Pure ALOHA, Slotted		
	ALOHA,CSMA/CD,CDMA/CA		
	Network Layer: Switching, Logical	14	
3	addressing – IPV4, IPV6; Address mapping		
	- ARP, RARP, BOOTP and DHCP-		
	Delivery, Forwarding and Unicast Routing		
	protocols.		
	Transport Layer: Process to Process	8	
4.	Communication, User Datagram		
	Protocol (UDP), Transmission		
	Control Protocol (TCP), SCTP Congestion		
	Control; Quality of		
	Service, QoS improving techniques:		
	Leaky Bucket and Token Bucket		
	algorithm.		
5	Application Layer: Domain Name Space	8	
	(DNS), DDNS, TELNET,		
	EMAIL, File Transfer Protocol (FTP),		
	WWW, HTTP, SNMP, Bluetooth, Firewalls,		
	Basic concepts of		
	Cryptography.		

Text book and Reference books:

- 1. Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi

Course Outcomes:

On completion of the course students will be able to

- 1. Understand research problem formulation.
- 2. Analyze research related information
- 3. Follow research ethics

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

- 4. Understand that today's world is controlled by Computer, Information Technology, but tomorrow world will be ruled by ideas, concept, and creativity.
- 5. Understanding that when IPR would take such important place in growth of individuals & nation, it is needless to emphasis the need of information about Intellectual Property Right to be promoted among students in general & engineering in particular.
- 6. Understand that IPR protection provides an incentive to inventors for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.

Advanced Algorithms Code: PEC-IT601 A

Name of the Course:		Advanced Algorithms	
Course	e Code: PEC-IT601A	Semester: VI	
Durati	ion:6 months	Maximum Marks:	100
Teach	ning Scheme		Examination Scheme
Theor	y:3 hrs./week		Mid Semester exam: 15
Tutori	al: NIL		Assignment and Quiz: 10 marks
			Attendance: 5 marks
Practio	cal: NIL		End Semester Exam:70 Marks
Credit	Credit Points: 3		
Objec	Objective:		
1	Introduce students to the advanced methods of designing and analyzing algorithms.		
2	The student should be able to choose appropriate algorithms and use it for a specific		
	problem.		
3	To familiarize student	s with basic paradig	ms and data structures used to solve
	advanced algorithmic problems.		
4	Students should be able to understand different classes of problems concerning their		fferent classes of problems concerning their
	computation difficulties.		
5	5 To introduce the students to recent developments in the area of algorithmic design.		pments in the area of algorithmic design.
Pre-R	Pre-Requisite:		
1	Algorithm Design and	Analysis	

Unit	Content	Hrs/Unit	Marks/Unit
------	---------	----------	------------

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

topological sorting Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis. Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford- Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen			·	
Graph: Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge-weighted case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis. Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring, Fast Fourier Transform algorithm. Schonhage-Strassen		Sorting: Review of various sorting algorithms,	_	
Shortest path by BFS, shortest path in edge-weighted case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis. Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen	1		6	
case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis. Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths. Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis. Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
correctness proof of the algorithm and time/space analysis, example of amortized analysis. Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford- Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
analysis, example of amortized analysis. Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		1 2 2		
Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford- Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring, Fast Fourier Transform algorithm. Schonhage-Strassen				
algorithm to compute a maximum weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford- Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
weight maximal independent set. Application to MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen			8	
MST. Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen	2	algorithm to compute a maximum		
Graph Matching: Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		weight maximal independent set. Application to		
matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford- Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		MST.		
by augmenting paths, Edmond's Blossom algorithm to compute augmenting path. Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		Graph Matching: Algorithm to compute maximum		
The state of the s		matching. Characterization of maximum matching		
Flow-Networks: Maxflow-mincut theorem, Ford-Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		by augmenting paths, Edmond's Blossom algorithm		
Fulkerson Method to compute maximum flow, Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		to compute augmenting path.		
Edmond-Karp maximum-flow algorithm. Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		Flow-Networks: Maxflow-mincut theorem, Ford-	9	
Matrix Computations: Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		Fulkerson Method to compute maximum flow,		
introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
relation between the time complexities of basic matrix operations, LUP-decomposition. Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		-		
and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		matrix operations, LUP-decomposition.		
and introduction to dynamic programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		Shortest Path in Graphs: Floyd-Warshall algorithm	10	
programming paradigm. More examples of dynamic programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen	3	_ ,	10	
programming. Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		¥		
Modulo Representation of integers/polynomials: Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen				
modulo-representation. Extension to polynomials. Application: Interpolation problem. Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		Conversion between base-representation and		
Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		-		
DFT in modulo ring. Fast Fourier Transform algorithm. Schonhage-Strassen		Application: Interpolation problem. Discrete		
Fourier Transform algorithm. Schonhage-Strassen				
		<u> </u>		
Integer Multiplication algorithm				
integer vicinipheation argorithm		Integer Multiplication algorithm		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

	Linear Programming: Geometry of the feasibility	10	
4.	region and Simplex algorithm	10	
''	NP-completeness: Examples, proof of NP-hardness		
	and NP-completeness.		
	One or more of the following topics based on time		
	and interest		
	Approximation algorithms, Randomized Algorithms,		
	Interior Point Method,		
	Advanced Number Theoretic Algorithm		
5	Recent Trands in problem solving paradigms using	5	
	recent searching and sorting techniques by applying		
	recently proposed data structures.		

Text book and Reference books:

- 1. "Introduction to Algorithms" by Cormen, Leiserson, Rivest, Stein.
- 2. "The Design and Analysis of Computer Algorithms" by Aho, Hopcroft, Ullman.
- 3. "Algorithm Design" by Kleinberg and Tardos.
- 4. Design & Analysis of Algorithms, Gajendra Sharma, Khanna Publishing House, New Delhi Course Outcomes:

On completion of the course students will be able to

- 1. Analyze the complexity/performance of different algorithms.
- 2. Determine the appropriate data structure for solving a particular set of problems.
- 3. Categorize the different problems in various classes according to their complexity.
- 4. Students should have an insight of recent activities in the field of the advanced data structure.

Distributed Systems Code: PEC-IT601B

Name of the Course:	Distributed Systems	
Course Code: PEC-IT601B	Semester: VI	
Course Code: PEC-11001B	Semester: VI	
Duration:6 months	Maximum Marks:100	0
Teaching Scheme]	Examination Scheme
Theory:3 hrs./week	1	Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points: 3		
Objective:		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

1	To introduce the fundamental concepts and issues of managing large volume of shared			
	data in a parallel and distributed environment, and to provide insight into related			
	research problems.			
Pre-R	Pre-Requisite:			
1	Database Management Systems			

Unit	Content	Hrs/Unit	Marks/Unit
	INTRODUCTION		
1	Distributed data processing; What is a DDBS;	8	
	Advantages and disadvantages of DDBS; Problem		
	areas; Overview of database and computer network		
	concepts DISTRIBUTED DATABASE		
	MANAGEMENT SYSTEM ARCHITECTURE		
	Transparencies in a distributed DBMS; Distributed		
	DBMS architecture; Global directory issues		
	DISTRIBUTED DATABASE	11	
2	DESIGN		
	Alternative design strategies;		
	Distributed design issues;		
	Fragmentation; Data allocation		
	SEMANTICS DATA CONTROL		
	View management; Data security;		
	Semantic Integrity Control QUERY		
	PROCESSING ISSUES		
	Objectives of query		
	processing; Characterization of query processors; Layers of query processing;		
	Query decomposition; Localization of		
	distributed data		
	DISTRIBUTED QUERY OPTIMIZATION	11	
3	Factors governing query optimization; Centralized	11	
	query optimization; Ordering of fragment queries;		
	Distributed query optimization algorithms		
	TRANSACTION MANAGEMENT		
	The transaction concept; Goals of transaction		
	management; Characteristics of transactions;		
	Taxonomy of transaction models		
	CONCURRENCY CONTROL		
	Concurrency control in centralized database systems;		
	Concurrency control in DDBSs; Distributed		
	concurrency control algorithms; Deadlock		
	management		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

	Reliability issues in DDBSs; Types of failures;	8	
4.	Reliability techniques; Commit protocols; Recovery		
	protocols Algorithm		
5	PARALLEL DATABASE SYSTEMS	6	
	Parallel architectures; parallel query processing		
	and		
6	ADVANCED TOPICS Mobile	4	
	Databases, Distributed Object		
	Management, Multi-databases		

Text book and Reference books:

- 1. Principles of Distributed Database Systems, M.T. Ozsu and PValduriez, Prentice-Hall, 1991.
- 2. Distributed Database Systems, D. Bell and J. Grimson, Addison- Wesley, 1992.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

Course Outcomes:

On completion of the course students will be able to

- 1. Design trends in distributed systems.
- 2. Apply network virtualization.
- 3. Apply remote method invocation and objects.

Signals & Systems Code: PEC-IT601C Contacts: 3L

Name of the Course:	Signals & Systems		
Course Code: PEC-IT601C	Semester: VI		
Duration: 6 months	Maximum Mark	s: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points: 3			

Unit	Content	Hrs/Unit	Marks/Unit
	Introduction to Signals and Systems:		
1	Signals and systems as seen in everyday life, and in	3	
	various branches of engineering and science. Signal		
	properties: periodicity, absolute integrability,		
	determinism and stochastic character. Some special		
	signals of importance: the unit step, the unit impulse,		
	the sinusoid, the complex exponential, some special		
	time-limited signals; continuous and discrete time		
	signals, continuous and discrete amplitude signals.		
	System properties: linearity: additivity and		
	homogeneity, shift-invariance, causality, stability,		
	realizability.Examples.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

	(Applicable from the academic session 201	/	
	Behavior of continuous and discrete-time LTI systems		
2	(8 hours)	8	
	Impulse response and step response, convolution,		
	input-output behavior with periodic convergent		
	inputs, cascade interconnections. Characterization of		
	causality and stability of LTI systems. System		
	representation through differential equations and		
	difference equations. State-space Representation of		
	systems. State-Space Analysis, Multi-input, multi-		
	output representation. State Transition Matrix and its		
	Role. Periodic inputs to an LTI system, the notion of		
	a frequency response and its relation to the impulse		
	response.		
	response.		
	Formion I onlose and a Transforms		
2	Fourier, Laplace and z-Transforms	10	
3	Fourier series representation of periodic signals,	10	
	Waveform Symmetries, Calculation of Fourier		
	Coefficients. Fourier Transform,		
	convolution/multiplication and their effect in the		
	frequency domain, magnitude and phase response,		
	Fourier domain duality. The Discrete- Time Fourier Transform (DTFT) and the Discrete Fourier		
	, , , , , , , , , , , , , , , , , , ,		
	Transform (DFT). Parseval's Theorem. Review of		
	the Laplace Transform for continuous time signals		
	and systems, system functions, poles and zeros of		
	system functions and signals, Laplace domain		
	analysis, solution to differential equations and		
	system behavior. The z-Transform for discrete time		
	signals and systems, system functions, poles and		
	zeros of systems and sequences, z-domain analysis.		
	The Sampling Theorem and its		
4.	implications. Spectra of sampled signals.	9	
	Reconstruction: ideal interpolator, zero- order		
	hold, first-order hold. Aliasing and its effects.		
	Relation between continuous and discrete time		
	systems. Introduction to the applications of signal		
	and system theory: modulation for		
	communication, filtering, feedback control		
	systems.		
	3,555		

Text book and Reference books:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signalsand systems", Prentice Hall India, 1997.
- 2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson, 2006.
- 3. H. P. Hsu, "Signals and systems", Schaum'sseries, McGraw Hill Education, 2010.
- 4. S. Haykinand B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.
- 5. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
- 6. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 7. B. P. Lathi, "LinearSystems and Signals", Oxford University Press,2009.
- 8. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
- 9. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 10. B. P. Lathi, "LinearSystems and Signals", Oxford University Press,2009.
- 11. R. Anand, "Signals and Systems, Khanna Publishing House, 2018.

Course Outcomes:

- On completion of the course students will be able to
- Understand the concepts of continuous time and discrete time systems.
- Analyse systems in complex frequency domain.
- Understand sampling theorem and its implications.
- Understand the concepts of continuous time and discrete time systems.

Image Processing Code:PEC-IT601 D Contact: 3L

Name of the Course:	Image Processing	
Course Code: PEC-IT601D	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

Unit	Content Content	Hrs/Unit	Marks/Unit
1	Introduction [3L]	9	
	Background, Digital Image		
	Representation, Fundamental steps in		
	Image Processing, Elements of Digital		
	Image Processing - Image Acquisition,		
	Storage, Processing, Communication,		
	Display.		
	Digital Image Formation [4L]	4	
2	A Simple Image Model, Geometric Model- Basic		
	Transformation (Translation, Scaling, Rotation),		
	Perspective Projection, Sampling & Quantization -		
	Uniform & Non uniform.		
	Mathematical Preliminaries[9L]	9	
3	Neighbour of pixels, Connectivity, Relations,		
	Equivalence & Transitive Closure; Distance		
	Measures, Arithmetic/Logic Operations, Fourier		
	Transformation, Properties of The Two		
	Dimensional Fourier Transform, Discrete Fourier		
	Transform, Discrete Cosine & SineTransform.		
	Image Enhancement [8L]	8	
4.	Spatial Domain Method, Frequency Domain Method,		
	Contrast Enhancement -Linear &		
	Nonlinear Stretching, Histogram Processing;		
	Smoothing - Image Averaging, Mean Filter, Low-		
	pass Filtering; Image Sharpening. High- pass		
	Filtering, High- boost Filtering,		
	Derivative Filtering, Homomorphic Filtering;		
	Enhancement in the frequency domain - Low pass filtering, High pass filtering.		
5	Image Restoration [7L]	7	
	Degradation Model, Discrete Formulation,	,	
	Algebraic Approach to Restoration -		
	Unconstrained & Constrained; Constrained		
	Least Square Restoration, Restoration by		
	Homomorphic Filtering, Geometric		
	Transformation - Spatial Transformation,		
	Gray Level Interpolation.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

6	Image Segmentation [7L]	7	
	Point Detection, Line Detection, Edge		
	detection, Combined detection, Edge Linking		
	& Boundary Detection - Local		
	Processing, Global Processing via The		
	Hough Transform; Thresholding -		
	Foundation, Simple Global Thresholding,		
	Optimal Thresholding; Region Oriented		
	Segmentation - Basic Formulation, Region		
	Growing by Pixel Aggregation, Region		
	Splitting & Merging.		

Text book and Reference books:

- 1. Hearn, Baker "Computer Graphics (C version 2nd Ed.)" Pearson education
- 2. Z. Xiang, R. Plastock "Schaum's outlines Computer Graphics (2nd Ed.)" TMH
- 3. D. F. Rogers, J. A. Adams "Mathematical Elements for Computer Graphics (2nd Ed.)" TMH

Parallel and Distributed Algorithms

Code: PEC-IT602A

Name of the Course:	Parallel and Distributed Algorithms	
Course Code PEC-IT602A	Semester: VI	
Duration: 6 months	Maximum Marks	s: 100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

(Tippineasie from the academic session 2010 2017)			
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3		

Unit	Content	Hrs/Unit	Marks/Unit
	UNIT-I :Basic Techniques, Parallel Computers for		
1	increase Computation speed, Parallel & Cluster	8	
	Computing		
	UNIT-II :Message Passing Technique- Evaluating		
2	Parallel programs and debugging, Portioning and	8	
	Divide and Conquer strategies examples		
	UNIT-III :Pipelining- Techniques computing platform,		
3	pipeline programs examples	8	
	UNIT-IV:Synchronous Computations, load balancing,		
4.	distributed termination examples, programming with	11	
	shared memory, shared memory multiprocessor		
	constructs for specifying parallelist sharing data parallel		
	programming languages and constructs, open MP		
5	UNIT-V : Distributed shared memory systems and	9	
	programming achieving constant memory distributed		
	shared memory programming primitives, algorithms –		
	sorting and numerical algorithms.		

Text book and Reference books:

- 1. Parallel Programming, Barry Wilkinson, Michael Allen, Pearson Education, 2nd Edition.
- 2. Introduction to Parallel algorithms by Jaja from Pearson, 1992.

Data Warehousing and Data Mining

Code: PEC-IT602B

Name of the Course:	Data Warehousing and Data Mining	
Course Code PEC-IT602B	Semester: VI	

 $(Formerly\ West\ Bengal\ University\ of\ Technology)$

Syllabus for B. Tech in Computer Science & Engineering

Duration: 6 months	Maximu	Maximum Marks: 100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance: 5 marks	
Practical: NIL		End Semester Exam:70 Marks	
Credit Points:	3	·	

Unit	Content	Hrs/Unit	Marks/Unit
	Unit 1:		
1	Introduction to Data Warehousing; Data Mining: Mining frequent patterns, association and correlations; Sequential Pattern Mining concepts, primitives, scalable methods;	8	
2	Unit 2: Classification and prediction; Cluster Analysis – Types of Data in Cluster Analysis, Partitioning methods, Hierarchical Methods; Transactional Patterns and other temporal based frequent patterns,	8	
3	Unit 3: Mining Time series Data, Periodicity Analysis for time related sequence data, Trend analysis, Similarity search in Time-series analysis;	8	
4.	Unit 4: Mining Data Streams, Methodologies for stream data processing and stream data systems, Frequent pattern mining in stream data, Sequential Pattern Mining in Data Streams, Classification of dynamic data streams, Class Imbalance Problem; Graph Mining; Social Network Analysis; modulation for communication, filtering, feedback control systems.	11	
	Unit 5: Web Mining, Mining the web page layout structure, mining web link structure,	9	

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

mining multimedia data on the web, Automatic classification of web documents and web usage mining; Distributed Data Mining.		
Unit 6:	5	
Recent trends in Distributed Warehousing and Data		
Mining, Class Imbalance		
Problem; Graph Mining; Social Network Analysis		

Text book and Reference books:

- **1.** Data Warehousing Fundamentals for IT Professionals, Second Edition by Paulraj Ponniah, Wiley India.
- **2.** Data Warehousing, Data Mining, & OLAP Second Edition by Alex Berson and Stephen J. Smith, Tata McGraw Hill Education
- 3. Data warehouse Toolkit by Ralph Kimball, Wiley India
- 4. Data Mining & Warehousing by Ikvinderpal Singh, Khanna Publishing House
- **5.** Jiawei Han and M Kamber, Data Mining Concepts and Techniques,, Second Edition, Elsevier Publication, 2011.
- **6.** Vipin Kumar, Introduction to Data Mining Pang-Ning Tan, Michael Steinbach, Addison Wesley, 2006.
- 7. G Dong and J Pei, Sequence Data Mining, Springer, 2007.

Course Outcomes:

After completion of course, students would be:

- 1. Study of different sequential pattern algorithms
- 2. Study the technique to extract patterns from time series data and it application in real world.
- 3. Can extend the Graph mining algorithms to Web mining
- 4. Help in identifying the computing framework for Big Data

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

Human Computer Interaction

Code:PEC-IT602C

Name of the Course:	Human Computer Interaction		
Course Code: PEC-IT602C	Semester: VI		
Duration: 6 months	Maximum Marks	:100	
Teaching Scheme		Examination Scheme	
Theory:3 hrs./week		Mid Semester exam: 15	
Tutorial: NIL		Assignment and Quiz: 10 marks	
		Attendance : 5 marks	
Practical: NIL	Practical: NIL End Semester Exam :70 Marks		
Credit Points: 3			
Objective:			
1 Learn the foundations	Learn the foundations of Human Computer Interaction		
2 Be familiar with the de	Be familiar with the design technologies for individuals and persons with disabilities		
3 Be aware of mobile H	Be aware of mobile Human Computer interaction		
4 Learn the guidelines for	Learn the guidelines for user interface.		
Pre-Requisite:			
1 Computer Organization	Computer Organization & Architecture		

Unit	Content	Hrs/U	Marks/
		nit	Unit
		9	
1	Human: I/O channels – Memory – Reasoning and problem solving;		
	The computer: Devices – Memory – processing and networks;		
	Interaction: Models – frameworks – Ergonomics – styles – elements –		
	interactivity- Paradigms.		
	Interactive Design basics – process – scenarios – navigation – screen	11	
2	design –		
	Iteration and prototyping. HCI in software process – software life cycle		
	 usability engineering – Prototyping in practice – design 		
	rationale.		
	Design rules		
	 principles, standards, guidelines, rules. Evaluation 		
	Techniques – Universal Design.		

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

3.	Cognitive models –Socio-Organizational issues and stake holder requirements —Communication and collaboration models-Hypertext, Multimedia and WWW.	8	
4.	Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile Applications: Widgets, Applications, Games- Mobile Information Architecture, Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools.	8	
5.	Designing Web Interfaces – Drag & Drop, Direct Selection, Contextual Tools, Overlays, Inlays and Virtual Pages, Process Flow. Case Studies.	8	
6.	Recent Trends: Speech Recognition and Translation, Multimodal System	3	

Text book and Reference books:

- 1. Theodor Richardson, Charles N Thies, Secure Software Design, Jones & Bartlett
- 2. Kenneth R. van Wyk, Mark G. Graff, Dan S. Peters, Diana L. Burley, Enterprise Software Security,

Addison Wesley.

Course Outcomes:

On completion of the course students will be able to

- 1. Differentiate between various software vulnerabilities.
- 2. Software process vulnerabilities for an organization.
- 3. Monitor resources consumption in a software.
- 4. Interrelate security and software development process.

Pattern Recognition

Code: PEC-IT602D Contact:

3L

Name of the Course:	Pattern Recognition
Course Code: PEC-IT602D	Semester: VI
Duration:6 months	Maximum Marks:100

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Computer Science & Engineering

Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	-

Unit	Content	Hrs/Unit	Marks/Unit
1	Basics of pattern recognition	2	
2	Bayesian decision theory 8L Classifiers, Discriminant functions, Decision surfaces Normal density and discriminant functions Discrete features	8	
3	Parameter estimation methods 6L Maximum-Likelihood estimation Gaussian mixture models Expectation-maximization method Bayesian estimation	6	
4.	Hidden Markov models for sequential pattern classification 8L Discrete hidden Markov models Continuous density hidden models Markov	8	
5	Dimension reduction methods 3L 5.1. Fisher discriminant analysis 5.2Principal component analysis. Parzen-window method K-Nearest Neighbour method	3	
6	Non-parametric techniques for density estimation	2	
7	Linear discriminant function based classifier 5L Perceptron Support vector machines	5	
8	Non-metric methods for pattern classification 4L Non-numeric data or nominal data Decision trees	4	

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

9	Unsupervised learning and clustering 2L	2	
	Criterion functions for clustering		
	Algorithms for clustering: K-means,		
	Hierarchical and other methods		

Text book and Reference books:

- 1. R. O. Duda, P. E. Hart and D. G. Stork: Pattern Classification, John Wiley, 2001.
- 2. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009.
- 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Numerical Methods Code: OEC-IT601A

Name of the Course:	Numerical Methods	
Course Code: OEC-IT601A	Semester: VI	
Duration:6 months	Maximum Marks:1	00
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	'

Unit	Content	Hrs/Unit	Marks/Unit
1	Approximation in numerical computation: Truncation and rounding errors, Fixed and floating- point arithmetic, Propagation of errors.	2	
2	Interpolation: Newton forward/backward interpolation, Lagrange's and Newton's divided difference Interpolation.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

3	Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Expression for corresponding error terms.	3	
		0	
4	Numerical solution of a system of linear equations:	8	
4.	Gauss elimination method, Matrix inversion, LU		
	Factorization method, Gauss-Seidel iterative method.		
5	Numerical solution of Algebraic equation:	3	
	Bisection method, Regula-Falsi method,		
	Newton-Raphson method.		
6	Numerical solution of ordinary differential equation:	2	
	Euler's method, Runge-Kutta methods, Predictor-		
	Corrector methods and Finite		
	Difference method.		

Text book and Reference books:

- 1. R.S. Salaria: Computer Oriented Numerical Methods, Khanna Publishing House
- 2. C.Xavier: C Language and Numerical Methods.
- 3. Dutta & Jana: Introductory Numerical Analysis.
- 4. J.B.Scarborough: Numerical Mathematical Analysis.
- 5. Jain, Iyengar, & Jain: Numerical Methods (Problems and Solution).
- 6. Balagurusamy: Numerical Methods, Scitech.
- 7. Baburam: Numerical Methods, Pearson Education.
- 8. N. Dutta: Computer Programming & Numerical Analysis, Universities Press.

Human Resource Development and Organizational Behavior

Code: OEC-IT601 B

Name of the Course:	Human Resource Development and Organizational	
	Behavior	
Course Code: OEC-IT601 B	Semester: VI	
Duration:6 months Maximum Marks:1		00
Teaching Scheme		Examination Scheme

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	

Unit	Content	Hrs/Unit	Marks/Unit
	Organizational Behaviour: Definition, Importance,		
1	Historical Background, Fundamental Concepts of	4	
	OB,		
	Challenges and Opportunities for OB. [2]		
	Personality and Attitudes: Meaning of personality,		
	Personality Determinants and Traits, Development of		
	Personality, Types of Attitudes, Job Satisfaction.		
	Perception: Definition, Nature and Importance,	8	
2	Factors influencing Perception, Perceptual		
	Selectivity, Link between Perception and Decision		
	Making. [2]		
	4. Motivation: Definition, Theories of Motivation -		
	Maslow's Hierarchy of Needs Theory, McGregor's		
	Theory X &		
	Y, Herzberg's Motivation-Hygiene Theory,		
	Alderfer's ERG Theory, McClelland's Theory of		
	Needs, Vroom's		
	Expectancy Theory.		
	Group Behaviour: Characteristics of Group, Types	4	
3	of Groups, Stages of Group Development, Group		
	Decision		
	Making. [2]		
	Communication: Communication Process, Direction		
	of Communication, Barriers to Effective		
	Communication. [2]		
	Leadership: Definition, Importance, Theories of		
	Leadership Styles.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

	Organizational Politics: Definition, Factors	8	
4.	contributing to Political Behaviour. [2]		
	Conflict Management: Traditional vis-a-vis Modern		
	View of Conflict, Functional and Dysfunctional		
	Conflict,		
	Conflict Process, Negotiation – Bargaining		
	Strategies, Negotiation Process. [2]		
	Organizational Design: Various Organizational		
	Structures and their Effects on Human Behaviour,		
	Concepts of		
	Organizational Climate and Organizational Culture.		

Text book and Reference books:

- 1. Robbins, S. P. & Judge, T.A.: Organizational Behavior, Pearson Education, 15th Edn.
- 2. Luthans, Fred: Organizational Behavior, McGraw Hill, 12th Edn.
- 3. Shukla, Madhukar: Understanding Organizations Organizational Theory & Practice in India, PHI
- 4. Fincham, R. & Rhodes, P.: Principles of Organizational Behaviour, OUP, 4th Edn.
- 5. Hersey, P., Blanchard, K.H., Johnson, D.E.- Management of Organizational Behavior Leading Human Resources, PHI, 10th Edn.

Research Methodology Code: PROJ- CS601

Name of the Course:	Research Methodology	
Course Code: PROJ- CS601	Semester: VI	
Duration:6 months	Maximum Marks:	100
Teaching Scheme		Examination Scheme
Theory:3 hrs./week		Mid Semester exam: 15
Tutorial: NIL		Assignment and Quiz: 10 marks
		Attendance: 5 marks
Practical: NIL		End Semester Exam:70 Marks
Credit Points:	3	ı

 $(Formerly\ West\ Bengal\ University\ of\ Technology)$

Syllabus for B. Tech in Computer Science & Engineering

Unit	Content	Hrs/Unit	Marks/Unit
	RESEARCH FORMULATION AND DESIGN		
1	Motivation and objectives – Research methods vs. Methodology. Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical, concept of applied and basic research process, criteria of good research. Defining and formulating the research problem, selecting the problem, necessity of defining the problem, importance of literature review in defining a problem, literature review-primary and secondary sources, reviews, monograph, patents, research databases, web as a source, searching the web, critical literature review, identifying gap areas from literature and research database, development of working hypothesis.	9	
2	DATA COLLECTION AND ANALYSIS Accepts of method validation, observation and collection of data, methods of data collection, sampling methods, data processing and analysis strategies and tools,data analysis with statically package (Sigma	9	
	STAT,SPSS for student t-test, ANOVA, etc.), hypothesis testing.		
3	RESEARCH ETHICS, IPR AND SCHOLARY PUBLISHING Ethics-ethical issues, ethical committees (human &	9	
	animal); IPR- intellectual property rights and patent law, commercialization, copy right, royalty, trade related aspects of intellectual property rights (TRIPS); scholarly publishing- IMRAD concept and design of research paper, citation and acknowledgement, plagiarism, reproducibility and accountability.		

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

	INTERPRETATION AND REPORT WRITING	9	
4.	Meaning of Interpretation, Technique of Interpretation,		
	Precaution in Interpretation, Significance of Report		
	Writing, Different Steps in Writing Project Report,		
	Layout of the Project/Research Report, Types of		
	Reports, Oral Presentation, Mechanics of Writing a		
	Project/Research Report, Precautions for Writing		
	Research Reports, Conclusions.		

Text book and Reference books:

- 1. Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K., 2002. An introduction to Research Methodology, RBSA Publishers.
- 2. Kothari, C.R., 1990. Research Methodology: Methods and Techniques. New Age International. 418p.
- 3. Sinha, S.C. and Dhiman, A.K., 2002. Research Methodology, Ess Ess Publications. 2 volumes.
- 4. Trochim, W.M.K., 2005. Research Methods: the concise knowledge base, Atomic Dog Publishing. 270p.
- 5. Wadehra, B.L. 2000. Law relating to patents, trade marks, copyright designs and geographical indications. Universal Law Publishing.

Additional reading

- 1. Anthony, M., Graziano, A.M. and Raulin, M.L., 2009. Research Methods: A Process of Inquiry, Allyn and Bacon.
- 2. Carlos, C.M., 2000. Intellectual property rights, the WTO and developing countries: the TRIPS agreement and policy options. Zed Books, New York.
- 3. Coley, S.M. and Scheinberg, C. A., 1990, "Proposal Writing", Sage Publications.
- 4. Day, R.A., 1992. How to Write and Publish a Scientific Paper, Cambridge University Press.
- 5. Fink, A., 2009. Conducting Research Literature Reviews: From the Internet to Paper. Sage Publications
- 6. Leedy, P.D. and Ormrod, J.E., 2004 Practical Research: Planning and Design, Prentice Hall.
- 7. Satarkar, S.V., 2000. Intellectual property rights and Copy right. Ess Ess Publications.

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

PRACTICAL SYLLABUS

Database Management System Lab

Code: PCC-CS691 Contacts: 4P

Name of the Course:	Database Management System Lab	
Course Code: PCC-	Semester:VI	
CS691		
Duration:6 months	Maximum Marks:100	
Teaching Scheme:		
Theory hre /week	Continuous Internal Assessment	
Theory: hrs./week		
Tutorial: NIL	External Assesement:60	
Practical: 4 hrs./week	Distribution of marks:40	
Credit Points:	2	

Laboratory Experiments:

(Formerly West Bengal University of Technology)

Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

Structured Query Language

1. Creating Database

- Creating a Database
- Creating a Table
- Specifying Relational Data Types
- Specifying Constraints
- Creating Indexes

2. Table and Record Handling

- **INSERT** statement
- Using SELECT and INSERT together
- DELETE, UPDATE, TRUNCATE statements
- DROP, ALTER statements

3. Retrieving Data from a Database

- 1. The SELECT statement
- 2. Using the WHERE clause
- 3. Using Logical Operators in the WHERE clause
- 4. Using IN, BETWEEN, LIKE, ORDER BY, GROUP BY and HAVING Clause
- 5. Using Aggregate Functions
- 6. Combining Tables Using JOINS
- 7. Subqueries

4. Database Management

- Creating Views
- Creating Column Aliases
- Creating Database Users
- Using GRANT and REVOKE

Cursors in Oracle PL/SQL

Writing Oracle PL / SQL Stored Procedures

Any experiment specially designed by the college

(Detailed instructions for Laboratory Manual to be followed for further guidance)

Computer Networks Lab

Code: PCC-CS692 Contacts: 4P

Name of the Course:	Computer Networks Lab
Course Code: PCC- CS692	Semester:VI
Duration:6 months	Maximum Marks:100
Teaching Scheme:	

(Formerly West Bengal University of Technology)
Syllabus for B. Tech in Computer Science & Engineering

(Applicable from the academic session 2018-2019)

Theory: hrs./week	Continuous Internal Assessment
Tutorial: NIL	External Assesement:60
Practical: 4 hrs./week	Distribution of marks:40
Credit Points:	2

Laboratory Experiments: NIC Installation & Configuration (Windows/Linux) 1) 2) Understanding IP address, subnet etc Familiarization with Networking cables (CAT5, UTP) Connectors (RJ45, T-connector) Hubs, Switches TCP/UDP Socket Programming 3) Simple, TCP based, UDP based Multicast & Broadcast Sockets Implementation of a Prototype Multithreaded Server Implementation of 4) ☐ Data Link Layer Flow Control Mechanism (Stop & Wait, Sliding Window) ☐ Data Link Layer Error Detection Mechanism (Cyclic Redundancy Check) ☐ Data Link Layer Error Control Mechanism (Selective Repeat, Go Back N) 5) Server Setup/Configuration

Any experiment specially designed by the college (Detailed instructions for Laboratory Manual to be followed for further guidance)

FTP, TelNet, NFS, DNS, Firewall