Tuesday 5/3/19 Khan Academy ME / SHE Elosseup It lasticity of Demand > Elasticity & It is the percentage change in quantity demanded due to the percentage change in the price ED = 9. DAD/ 4. DP (OR) 9t is the percentage change in the quantity demanded due to the variables affecting demand Ed - 1.5 PD /1.5 in variable affecting demand or variable is generally "price" > Inclustic demand of goods: o- When quantity demanded of goods do not change much by price change eg: Vegetables such as poladoes, onions, mineral, salts, wheat .- The consumption is not affected by price.
- Wility of inelastic goods are high.

(32)
-> Elastic Demand of Goods:
C POLLEY COLO
goods - slight price change can affect quantity
stight price change
demanded.
NOIN 7 DI
Consumption is not rigid
* Baking, schools, educational institutes are inelastic
* For enterlainment, mobile & tv are elastic gods
* rov enla laminora i mosto
> Factors Affecting Elasticity?
O Price
① 9 ncome
3 Substitute /Complements.
(9) Used Goods
6 Cutture
(i) Habits
1 Utility 1 Real income / morney
(8) Real income = (mooney earned = constant)
Price = changes

(35)	
@ Habits:	
eg: Jogging habit.	> track suit 7 shoes
eg: Fast Good Lovers >	eating fail food required
O Utility : What is emportant	to you?
What is important	demand.
+landout #	
	BUILD NACHTON
D2 Point Elasticity:	
% change at one	point of the demand
curve	
GPT = slope	× P/Q => slope = SQ/DP
	Marie Contraction of
Q = 20 - 2P	
slope = -2	(derivative)
P = 5	P=9
Q= 20-2(5)	Q = 20 - 2(9)
= 10	= 2
Ept = -2 x 5/10	Ept = -2 x 9/2 = -9
= -1	(elastic demand b/c
(Unitary elastic)	% DQ > % DP).

=> price a /qo 96 4.DQY 1.DP -> demand is elasting (6) Arc Elasticity: Earc = (92-91) (P2-P1) (P2+P1)/2) mid paint P2 = 6 P, = 5 $Q_1 = 20 - 2P_2$ = 20 - 2(6)Q1=20-2P1 = 20 - 2(5) Q = 10 Q2 = 8 Earc = -2 : 1 1 Easc = -1.22 (C) Ept = 1 6/c 1.5Q = 1/0 DP see -> pg#48

$$Q = 30 - 2P$$
.

 $Q = 30 - 2P$.

 $Q = 30 - 2(7) = 16$
 $EPT = -2 \times 7_{16} = -7/8 = -0.815$
 $P_1 = 5$, $P_2 = 6$, $Eave = 3$
 $Q_1 = 20$
 $Q_2 = 18$
 $Eavo = -2 = 1$
 $Q_1 = 2 \times 11$
 $Q_2 = 2 \times 11$
 $Q_3 = 2 \times 11$
 $Q_4 = 2 \times 11$
 $Q_5 =$

$$Q_{1} = 3000$$
, monthly = \$25, similar sell = \$28

$$-3 = \frac{Q_2 - 3000}{(3000 + Q_2)/2} = \frac{-3}{47/2}$$

$$-3 \times -3 = Q_2 - 3000$$

$$47/2 \qquad (3000 + Q_2)/2$$

$$\frac{18}{47} = 2 (92 - 3000)$$

$$9(3000 + 92) = 47(92 - 3000)$$

$$29000 + 992 = 4792 - 191000$$

$$3892 = 168000$$

$$92 = 4421.0526$$

-> elastic 18pt > 1 18pr/ <1 - inelastic -> unitary elastic 1EpT 1 = 1

@ Point income elasticity.

Ερτ = ΔQ × 4 Δ4 Q $= 0.5 \times 50$ = 5/11

Q Y=70, P=8, Ερτ = ? Q=100-10(8)+0.5(70)

= 55

Ept = -10 x 8

= = 16/11.

Q = 2000 - 20P

(a) How many units sold at \$10?

Q = 2000 - 20(10)

9 = 1800 units.

(1) Equation for total revenue & marginal revenue?

Total Revenue = QXP

Marginal Revenue = change intotal revenue

$$17 = 2000 - 0$$
 20
 20

Mulliply "Q" on both sides

$$Q \cdot P = 100Q - 0.05Q^2 \rightarrow A$$

Total revenue in terms of Q.
 $d_{Q}(Q \cdot P) = d_{Q}(100Q - 0.05Q^2)$
 $(P \cdot Q) = 100 - 0.05(2)Q \rightarrow (1)$
Marginal Revenue in terms $Q \cdot Q \cdot Q$

* Q = 2000 - 20P |P.Q = 2000 P - 20P2] ->(B) gotal revenue in lerms of price * dap (P.Q) = d, (2000P - 20P2) (P.Q) = 2000 - 20(2) P. -> (ii)
Marginal Revenue in Terms of Price (d) P=\$70 TR=? MP=? T.R = 2000 (70) - 20 (70) = 42000 $M \cdot R = 2000 - 20(2)(70) = -800$ (e) Use point elasticity? Ept = Slope x P/Q slope = -20 Q = 2000 - 20(10) = 600 EPT = -20 x 79/600 = -7/3 Ept = - 2.33

P=\$60, TR = ? , MR=? , EM=?

T. R = (60)2000 - 20 (60) = 48000

MOR = 2000 - 20(2)(60) = -400

Q = 2000 - 20(60) = 800

Slope = -20 Ept = -20 x 64/8/9 = -1.5

(9) Negalive slope & unitary elastic

Ept = slope x P/Q -1 = -20 x P

200-20P

-1 = -20P

2020-20P

-2020 + 20P = -20P -2000 + 20P = -2000 -2000 + 20P = -2000

(44)

Q14 Earc = ? Ecross = ? Ept = ? Ex-?

(a) 9n month 1/2 me apply exoss clasticely

Price = same, Q = changes (200 - 210)

9 nume = same , Pgoods = changes (130-135)

(6) In morth 2, 3 we apply income elasticity.

Price = same , Q = changes Income = increase , Pgoods = same

Income élasticity = $\frac{\left(Q_2 - Q_1\right)}{\left(Q_2 + Q_1\right)/2} = \frac{\left(Y_2 - Y_1\right)}{\left(Y_2 + Y_1\right)/2}$

Y1= Morth 2 = 4000

12=Morth 3 = 4200

91=210

Q2-220

 $5 = 2Q_2 - 8000$ Q2 + 4000 5(Q2+4000) = 19(2Q2-8000) 7 5Q2 +20000 = 38Q2 - 152000 => 38 Qz - SQz = 20000 + 152000 =) 33Q2 = 172000 => Q2 = 5212·1212 TRA b/c E>-1 On Formula of Ecross Q13 (a) Eass =? (6) (0) (c) Factors other - Chan price that abbeet elasticity (a) Q16

-5	1.1	hat	1410	ud	(be	-the	6	udget	co	instraint
	3	then	e i	S	a	pri	ce	OY	incon	ne	change.

-> Shift And Movement In Budgel Constraints:

1 Is income improves budget constraints will shift rightwards

@ 98 income decreases budget constraints will shift left wards

29 If income is double $M = $12 \implies M = 24 $P_A = $1.50 + P_B = 1

Units of A	Units of B	M = Pa. A + PB. B
16	0	24 = 16(1:50)+0(1)
14	3	24 = 14(1.50) +3(1)
12	C	24 = 12(1.50) +6(1)
10	9	24 = 10(1.50)+9(1)
8	15	24 = 8 (1.50) + 121)
4	18	24 = G(1050) +15(1)
2	21	24 - 4 (1.50) +18(1)
0	24	24 = 0(1.50) +240
A District on a		1=0(120)+

* Consumer's Equilibrium & Deriving Demand Curve: Normal Goods: - Quantity demanded & /price . · - Quantity demanded a Year income Real income = income earned/ price of the good. Real income = income earned - inglation. * Utility At the Indifference Curve : Case 1: Assume price (good B) increases. . - Budget constraint will rotate inwards on -he horizontal axis individual is on U.

.- Equilibrium changes to E, and now the

TU, < TU,

. - Real income declined because of increase in price

m/ > m/

