MATH 127 Calculus for the Sciences

Lecture 17

Today's lecture

Last time

Calculus of trig functions

- 1. Factorial Function
- 2. Implicitly Defined Functions

This time

Course note coverage Section 2.7.2

Logarithmic differentiation

- Derivative of x^x : I taught you how to do this, but there is an alternative way to do this called...
- Logarithmic differentiation
- my way is better, but they still want you to know this. rip

Recap

Suppose we are given an implicit function

(something about
$$x, y$$
) = (something else about x, y)

We can take derivative on both sides with respect to x and get

(thing about
$$x, y, y'$$
) = (another thing about x, y, y')

Then we isolate y' and get the derivative

$$y' = \frac{dy}{dx} =$$
 (whatever you get in terms of x, y)

Now if you want the tangent line at (x,y) = (a,b), you use the point-slope formula:

$$y = \text{slope} \cdot (x - a) + b$$

The slope is just the derivative at (x, y) = (a, b), i.e.

slope =
$$\frac{dy}{dx}\Big|_{x=a,y=b}$$
.

Motivation

Example

- 1. What is the derivative of x^2 ?
- 2. What is the derivative of 2^x ?
- 3. What is the derivative of x^x ? What is the domain of this function?

(1)
$$(x^{2})^{2} = \frac{d(x^{2})}{dx} = 2x$$

(2) $2^{x} = e^{x \cdot \ln 2}$ $(e^{x \ln 2})^{2} = \ln 2 \cdot e^{x \ln 2}$
 $= (\ln 2) 2^{x}$
(3) $x^{x} = e^{x \ln x}$
 $(e^{x \ln x})^{2} = e^{x \ln x} (x \ln x)^{2}$
 $= e^{x \ln x} (\ln x + x \frac{1}{x})$
 $= e^{x \ln x} (\ln x + 1) = x^{x} (\ln x + 1)$

Logarithmic differentiation

Example Here is another way of taking derivative of $y = x^x$ for x > 0.

1. Take ln of both sides and get

$$\ln y = \ln x^{x} = x \ln x$$

- 2. This is an implicit function now, remember how to take derivative of this?
 - 2.1 The derivative of LHS with respect to x is

$$(\ln y)' = \frac{1}{y} \cdot \boxed{\mathbf{y'}} = \boxed{\frac{1}{x^x} \cdot \boxed{\mathbf{y'}}}$$

by | Cham | rule.

2.2 The derivative of RHS with respect to x is

$$(\boxed{x \ln x})' = (\boxed{x})' \boxed{\ell_{nx}} + (\boxed{\ln x})' \boxed{x} = \boxed{\ell_{nx} + 1}$$

by product rule.

Logarithmic differentiation

Example Here is another way of taking derivative of $y = x^x$ for x > 0.

3. Combining the previous two steps, we get

$$rac{y'}{x^x} = \ln x + 1$$
 , thus makes sense because $x^x \neq 0$ by $x > 0$.

4. Hence

$$y' = x^x (\ln x + 1)$$

Example

Example Determine the derivative of $y = \cos(x)^{\sin(x)}$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$

$$\ln y = \ln \log(x) \sin(x) = \sin(x) \ln \cos x$$

$$\frac{1}{y} \cdot \frac{dy}{dx} = \cos(x) \ln \cos x + \sin(x) \left(\ln \cos x \right)'$$

$$= \cos(x) \ln \cos x + \sin(x) \left(\frac{-\sin(x)}{\cos x} \right)$$

$$= \cos(x) \ln \cos(x) - \frac{\sin^2(x)}{\cos(x)}$$

$$\frac{dy}{dx} = y \left(\cos x \ln \cos x - \frac{\sin^2 x}{\cos x} \right)$$

$$= \cos(x)^{\sin x} \left(\cos x \ln \cos x - \frac{\sin^2 x}{\cos x} \right)$$

Example

Example Consider
$$y = \frac{(x+1)^2(x-2)^3}{x^5\sqrt{x-1}}$$
 where $x > 2$.

- 1. What is the domain of this function if I don't say x > 2?
- 2. Take its derivative directly using quotient and product rule.

Example

Example Consider $y = \frac{(x+1)^2(x-2)^3}{x^5\sqrt{x-1}}$ where x > 2.

- 3. Take log of both sides and see what happens.
- 4. Why did I say x >?

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2x_1} + \frac{1}{3 \cdot \frac{1}{x_2}} - 5 \cdot \frac{1}{x} - \frac{1}{2} \cdot \frac{1}{x_1}$$

$$\frac{dy}{dx} = \frac{y}{x_1} \left(\frac{2}{x_1} + \frac{3}{x_2} - \frac{5}{x} - \frac{1}{2(x_1)} \right) \checkmark$$