# **FUROPEAN PATENT OFFICE**

# Patent Abstracts of Japan

PUBLICATION NUMBER

. 2002368020

PUBLICATION DATE

: 20-12-02

APPLICATION DATE

: 30-04-02

APPLICATION NUMBER

: 2002127948

APPLICANT: SUMITOMO ELECTRIC IND LTD;

INVENTOR: CHIKUGI YASUSHI;

INT.CL.

: H01L 21/52 H01S 5/022

TITLE

: SUBMOUNT AND SEMICONDUCTOR

DEVICE



ABSTRACT: PROBLEM TO BE SOLVED: To provide a submount that can mount a light-emitting semiconductor device with high connection strength.

> SOLUTION: The submount has a submount substrate, a solder layer formed on the main surface of the submount substrate, and a solder layer where a transition element layer using at least one kind of transition element as a main constitutent and a precious metal layer using at least one kind of precious metal as a main constituent are laminated from the side of the submount substrate between the submount substrate and solder layer. The semiconductor device has a light-emitting semiconductor device mounted on the solder layer of the submount.

COPYRIGHT: (C)2003,JPO

# (19)日本(新育 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開2002-368020 (P2002-368020A)

(43)公開日 平成14年12月26日(2002, 12, 20)

|              |       | *************************************** |
|--------------|-------|-----------------------------------------|
| (51) Int.CL7 | 被別部1号 | PΙ                                      |
| HO 1 L 21/52 |       | HAI                                     |

ゲーマコート\*(参考) E 5F047

HO1S 5/022

H01L 21/62 H01S 5/022

5F073

# 審佐前求 有 請求項の数10 OL 公開請求 (全 9 頁)

| (21)出稿番号   | 特额2002-127948(P2002-127948) | (71)出額人 | 000002130               |
|------------|-----------------------------|---------|-------------------------|
|            |                             |         | 住友電気工業株式会社              |
| (22) BIKEE | 平成14年4月30日(2002.4.30)       |         | 大阪府大阪市中央区北浜四丁目 5 番33号   |
|            |                             | (72)発明者 | 石井 隆                    |
|            |                             |         | 兵庫県伊丹市尾陽北一「目1番1号 住友     |
|            |                             |         | 電気工業株式会社伊丹製作所内          |
|            |                             | (72)発明者 | <b>拾垣</b> 寶次郎           |
|            |                             |         | 兵庫累伊丹市星陽北一丁目 1 掛 1 号 住友 |
|            |                             |         | 電気工業株式会社伊丹製作所內          |
|            |                             | (74)代理人 | 100078813               |
|            |                             |         | <b>弁理士 上代 哲司 (外4名)</b>  |
|            |                             |         |                         |
|            |                             |         | 43.8km)~82.c            |

# (54) 【発明の名称】 サブマウントおよび半導体装置

#### (57)【要約】

【課題】 高い接合強度で半導体発光素子を取りつける ことができるサブマウントを提供する。

【解決手段】 サブマウントは、サブマウント基板と、 サブマウント基板の主表面上に形成されたはんだ層と、 それらの間に、サブマウント基板側から遷移元業の少な くとも 1 種を主成分とする適移元素層と貴金属の少なく とも1種を主成分とする貴金風磨とが積層されたはんだ 密着層を備える。半導体装置は、サブマウントのはんだ 層上に搭載された半導体発光素子を備える。



#### 「特許諸求の海囲」

【請求項1】サブマワント基板と、前記サブマウント基 板の主表面上に形成されたは人が限とを備えたサブマウ ントにおいて、前記サブマウント基板と前記は人な帰め 間に、前記サブマウント基板医師かる遷移元素の少なくと も1種を主成分とする賞を展開から獲得されたは人だ密着 環を備え、認なんだ密密層の前記は人だ陽側の部が前記 はんだ層に面接触するように形成された、サブマウン

【請求項2】前記遷移元素署および前記貴金經階の騰厚が、0を超え1μm以下である、請求項1に記載のサブマウント。

【精味項3 1 前記運移元米階は、チタン、パナジウム、 クロム、ジルコニウム、ニオブおよびその合金からなる 群から選ばれた少なくとも1 種を主成分とし、前配資金 窓階は、魚、白金、パラジウムおよびその合金からなる 群から選ばれた少なくとも1 種を主成分とする、請求項 1 またはるに影像のサブマウント。

【請求項4】前記はんだ層は、銀錫系はんだを主成分と する、請求項1~3のいずれか1項に記載のサブマウン ト。

【論求項5】前記はんだ層の溶酸前の形態が、銀を主成 分とする層と錫を主成分とする層の積層からなる、請求 項4に記載のサブマウント。

【請求項6】前記サブマウント基板と前記はんだ密省僧との欄に形成された電極層をさらに備えた、請求項1~5のいずれか1項に記載のサブマウント。

【臨床項子】 前記サブマウント基板と前記まただがリア 層との間において、前記サブマウント基板の主映面に接 除するように形成された粉密環と、前記除電標上に形成 された拡散防止層ともさらに備え、前記電格型は前記拡 散防止層上に配置されている、請求項6に記載のサブマ ウント

【請求項8】前記營養層はチタンを含み、前記拡散防止 層は白金を含み、前記電極層は金を含む、請求項7に記 載のサブマウント。

【請求項9】前記サブマウント基板は簡化アルミニウム 競結体を含む、請求項1~8のいずれか1項に記載のサ ブマウント

【請求項10】請求項1~9のいずれか1項に記載のサ ブマウントを用いた半導体装置であって、前記はんだ層 上に搭載された半導体発光素子を備える、半導体装置。 【発明の難線な説明】

### [0001]

【発明の属する技術分野】この発明は、サブマウントおよびそれを用いた半端体表面に関し、より特定的には、 半導体売出業子を搭載するサブマウントおよびこのサブ マウントを用いた半導体装置に関する。 たお、本発明の 「半導体売業子」とは、例えばレーザーダイオードや 発光ダイオードのようなものを指す。

#### [00002]

【従来の技術】従来、半端体策光業子を備える半導体装 置が知られている。このような半導体装置の一種は、図 7に示すようにサブマウント 8に半導体発光者を指載 することにより製造される。図7は、従来の半導体装置 の製造方法を説明するためた単面横式図である。図7を 整個上、従来の半線体製産の整合方法を設明する。

【0003】図7に示すように、従来の半導体表置1の 動造方法では、まず半導体光光等子2を指載するための サブマウント5を準備する、サブマウントは、ナラミッ クの基板4と、四基板上に形成されたチタン(「1)を 台む般および自会(Pb)を含む股からなる積層数(T 「ノトも積原限ち)と、この根周肢上に形成された電極 層としての金(Au)脈6と、この限上に形成された電極 屋としての金(Au)脈6と、この限上に形成された電極 を(Pt)を含むはんだが19第107年107年2 人だ潤多とからなる。丁1/Pt積層版、Au酸、はん ただり丁層かよびは人た需要を放する方法は、従来の脈 着法、スパックリング法あるいはかっき法などの成骸方 法およびフォトリソグラフィ法あるいはメラルマスク法 などのパターエング方法を用いるととができる

【0004】関アに示したようなサブマウントを増備した後、サブマウントのはんだを加熱溶離し、半導体死光素子としてのレーザーダイオードをはんだ上の所定の位置に搭載する(ダイボンド工程を実施する)、この後、図示したいヒートシンクにサブマウントの英国関をはんなとで検接・固定することにより、半導体発光素子を構える半等体を接渡・径とたができる。

【〇〇〇5】また、半導体発光業子のダイボンド工程に といて、加熱によって発生する半導体発光業子の指ងを 放減するために、上配金線系はんだより溶散温度の低い 総(Pb)類(Sn)系はんだや類(As)類(Sn) 無はんだが、ほんだ増として用いられることもある。類 網系はんだを用いた場合、同時に鉛フリー化も達成する ことができる。

#### [0006]

【発明が解決しようとする課題】一方、例えばCD 粘重 やDVD装置の書き込み速度の高速化やレーザ加工機の 急出力化などに伴う半導体発光素子の高出力化が進めら れており、それらに用いられる半導体装置にはより高い 実用信頼性が必要とされている。その実現のための1つ 要選事項をして、半導体発光素子とサブマウントの高い 接合権能がある。

【0007】この発明は、上記のような課題を解決する ためになされたものであり、この発明の目的は、半峰体 発光素子を高い強度で接合することが可能なサブマウン トおよびそのサブマウントを用いた半導体装置を提供す ることである。

[0008]

【課題を解析するための手段】この売別に第一たサブマ シントは、サブマウント基板と、サブマウント基板の主 表面上に売成されたはんだ別と、それらの間に、サブマ ウント基度側から漂移元素の少なくとも1種を主成分と も高薄移正素面と貴金属の少なくとも1種を主成分とす るまうに形成されている。このように指成されたサブマ ウントでは、はんだ層の値下にはんだの発荷を提固なる。この はんだ密部層の引えただ層のの面は、はんた際に直接検す るように形成されている。このように指成されたサブマ ウントでは、はんだ層の値下にはんだの発冷を提固なる のとするはんだ密菊層が形成されているため、半端体発 光奈子とサブマウントの接合強度を高めることができ は6 A 約元素およびその含金からなる群から遅ばれた少 なくとも1種を主成分とする原であってもよく、また組 成の興なる後数の越布構像されていてもよく、また組 成の興なる後数の越布構像されていてもよく、また組 成の興なる後数の越布構像されていてもより、

【0009】接合验度を添めるためおよび結結面から、 変砂元素層および資金層の観味は0を超え1μm以下 であるのが望とい、より毎ましくは、護療汚濃層の観 厚は、0.01μm以上0.2μm以下であり、資金属 層の観呼は、0.01μm以上0.1μm以下である。 (00101) 好ましくは、護砂元素層には、チタン(て i)、パナシウム(V)、クロム(Cr)、シルコニウム(Zr)、ニオブ(Nb) およびその合金からなる群から選ばれた少なくとも1種が主成分として含まれ、貴金属層には、金(Au)、白金(Pt)、パラジウム(Pd) およびその合金からなる群から選ばれた少なくとも1種が主成分として含まれる。この場合、はんだの 接合物度をより一幅高めることができる。

【〇〇11】 算ましくは、はんだ原は機構系は人だを主 成分とする。この場合、鉛フリー化を実現できるととも に、半導体発光素子の接合温度を低く設定できるため、 加熱によって発生する半導体発光素子の損傷を低減する ことができる。

【0012】また、溶整前のはんだ層は銀を主成分とする層と網を主成分とする層が装層された構成であってもよい。

【〇〇13】また、サブマウント基板とはんだ密着層と の間に電旋層をさらに備えていてもよい、この場合、電 値関をはんだ密着層の下地機として利用することもでき っ

【0014】また、サブマウント基級とはんだ密着層と の隔の、サブマウント基板の表面に接触するように形成 された密着層と、密着層上に形成された拡散防止層とを 備えていてもよい、この場合、電極層は拡散防止層上に 極麗されている。

【0015】また、密着層はチタンを含み、鉱散防止層は白金を含み、電極層は金を含む構成としてもよい。 【0016】新生しくは、サブロント基板は踏化アルミニウム検結体を含む。この場合、窒化アルミニウムは熱活体を含む。この場合、窒化アルミニウムは熱に薄率が高いため、放射特性の優れたサブマウントを 得ることができる。

【0017】この発明に従った半導体装置は、上述のいずれかのサブマウントと、はんだ限上に落積された半導体発光素子を削える。このような半導体速置では、半導体発光素子を高い壊度でサブマウントに接合することが可能であり、半導体装置の実用活準性を向上させることができる。

[0018]

【発明の実施の形態】以下、図面に基づいて本発明の実施の形態】以下、図面に基づいて本発明の実施の開始を関する。図1、図3および図5は、本発明による半導体送置の実施の形態の一個を示す市間鉄式図である。また、図2、図4および図6は、それぞれ図1、図3および図5に下した半導体接近の実施方法を観明するための部間鉄は図であり、はんな発酵が大き聴き示したものである。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明法終表されい。

【0019】図1に示すように、半導体装置1は、サブマウント3に半導体発光素子としてのレーザーゲイオーとが構造をたれ構造を看している。サブマウントは、例えば強化アルミニウム(A1N)焼結体からなるサブマウント用の基板4と、密着圏としてのチタン(T1)販うしまが販売が出た。第一個販売したの金(A1)頭6と、この11人と特別では、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人は、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人は、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、200円1人とは、20

【0020】図1および図2に示すように、レーザーダ イオードと、サブマウントとは、はんだ側によって接続 されている、レーザーダイオードの個と。はんだ側の個 と、はんだ密着層の幅は、ほぼ等しい、また、図3~6 に示すように、ほんだ溶液側または溶散接の状態におい て、はんだ脚を繰りよび長さは、レーザーダイオードの 幅および長さより大きくても小さくても良く、はんだ溶 着層の個および長さは、はんだ畑の幅および長さよりも 大きくても小さくてもかまかい。

【0021】園1に示した半線体設置においては、サブ ヤットを構成する基級の材料として、セラミックス、 半導体、あるいは金属を用いてもよい。セラミックスと しては、例えば上述した空化アルミニウム(A1N)、 酸化アルミニッム(A12Og)、炭化ウイ素(Si C)、築化ケイ素(SigNa)などを主成分としたも のが、半導体としては、例えばシリコン(S1)を主成 かとしたものが、金属としては、例えば新(Cu)、タ ングステシ(W)、モリブデン(Mの)、鉄(Pe)お よびこれらをむむ合金ならびに約ータングステン(Cu 一W)のような物を針繋が、モルデも線等とれる。

【0023】高級4にセラミックを用いび場合、その上 園と考れに対向する下面との間を接続するようなスルー ホールあるいはその内部に等体(ビアフィル)が充填さ れたビアホールが形成されていてもよい。ビアホールに 売填される部体(ビアフィル)の主成分としては、認ま しくは高限点金属、特にタングステン(W)やモリブデ ン(Mo)を用いることができる。なお、これらにさら にチタン(T1)などの運移金属、あるいはガラス成分 や基板材料(例えば寝化アルミニウム(A1N))が含 まれていてもよい。

【0024】 基税の表面間をは、好ましくはむって1 ル m以下、より好ましくは日 a での・1 ル m以下である。 また、その平面度は、好ましくほう u m以下、より好ま しくは1 ル m以下である。 R a が1 ル m を超えるか平面 底が5 ル m を超える場合。 レーザーダイオードの接合時 にサブマウントとの間に動間が発生し易くなり、それに よってレーザーダイオードを冷切する効果が低下するこ とがある。なお、表面担きR a および平面度はJ I S 思 緒(それぞれ・1 I S B 0 6 0 1 およびJ I S B 0 6 2 ) に 知 使されている。

(チタン (「1)を含む膜)は、基板との密衛性を高めるための密衛間であり、基板の上部表面に整触するように形成される。その材料としては、例えば(丁1)、パナジウム(V)、クロム(Cr)、ニッケルクロム合金(N1Сr)、ジルコニウム(Zr)、ニオブ(Nb)、タンタル(丁a)、およびこれらの化合物を用いることができる。また、速板が金属、合金あるいは全属を合む複合材料である場合には、密衛限は接成しなくて

【0025】また、Ti/Pt務階騰を構成するTi膜

【0026】また、下1/Pも積層酸を構成する白金 (Pt) 膜は球球防止層であり、下1機の上部疾由上、 形成される。その材料としては、例えば白金(Pt)、 バラジウム(Pd)、ニッケルクロム合金(NiC r)、ニッケル(Ni)、モリアデン(Mo)などを用 いることができる。なお、電極層の主成分は、通常Au が用いられる。

【0027】また、はんだ密着層と電極層との間にはん だバリア圏が形成されていても良い。その材料として は、例えば白金(Pt)、ニッケルクロム含金(NiC r)、ニッケル(Ní)などを用いることができる。は んだパリア層の幅および長さは、はんだ密参響のそれら より大きくても小さくてもかまわない。

【0028】また、は人工網の材料としては、上述の類似(AgSn)済はんだの他に、例えば傷(Sn)、インジウム(In)などの化能点金属はんだ、または、金錫(AuSn)系はんだ、金ゲルマニウム(AnGe)系はんだ、新錫(PbSn)系はんだ、インジウム錫(InSn)系はんだを見かる合金はんだ。あるいはこれらを組み合むせたはんだを用いることができる。また、溶液前のはんだ地の形態としては、例えば図2の8a、8bに示したように、上記した合金はんだの例の金銭移が報酬されていてもよい、なお、はんだ環に銀錫(AgSn)系はんだを用いる場合の銀(Ag)環は、0質を以上で1分割以下である。

【0029】なお、上述のTi/Pも復層族、Au)族、はんだ警衛。 はんだいリア間およびは人だ間を、総称した以下原うイズ帽とも高り、メタライズの形成方法としては、従来から用いられている成族方法を適用できる。 例えば、薬智法、スパッテリンプ法などの階級が、成方法、あるいはかっき法などがある。また、上述のTi/Pも積層族、Au 膜、はんだ特着間およびはんだ層のバターニング方法には、例えばフォトリングラフィを用いなリフトオフ法、化学エッチング法、ドライエッチング法、またはメクルマスク法などがある。

【0030】上途の下」/Pは積層額のチタン(下)) 機の厚さは、0、01μm以上1、0μm以下、白金 (Pt) 腕の原さは、0、01μm以上1、5μm以下 が、それぞれ好ましい、電低層としてのAu 腕の厚さ は、0、1μm以上10μm以下が、はただ陽の厚さは 好ましくは0、1μm以上10μm以下が、それぞれず ましい、はただいり下層を形成する場合、その厚さは好 ましくは0、1μm以上10μm以下で、それぞれず ましくは0、01μm以上1.5μm以下である。

【0031】本発明の半導体を光索子の材料としては、 例えばGahs、1nPのような、化合物半導体が挙げ られる。発光部は、上面もしくは下面のいずれでもよ い、なお、下面後だ型レーザーデイオード(レーザーダ イオードとはんだ層との接合部に対向するレーザーダイ オードの側面側においてレーザーダイオートの形光部が 形成されている方式)の場合、発熱部である発光部が基 板により近い位置に配置されることから、半導体装置の 放触性をより向上させることができる。

【0032】レーザーダイオードの表面にはシリコン酸 化謝(SiO<sub>2</sub>)をどの純粋層および電極層などのメタ ライズ層が形成される。電極層としての金(Au)層の 摩さは、はんだ層との良好な離れ性を確保するために、 0.1 μ加以上10 μ加以下であることが好ましい。

A. RUS.

【0033】なお、図1に示した半導体装置は、図示されていないが、ヒートシンクにはんだなどを用いて接続されていてもい。具体的はは、基板の丁1/Pも積層 勝が形成された面とは反対側の面上に密着層、설散防止 磨などを形成した後、例えば途板の両面とヒートシンクとの間にシート状のはんだ(はんだるを含される。なお、はんだ浴は、あらかじめ透板裏面のメタライズ層上に形成してもよい。その場合は、レーザーダイオードとレートシングを目的に基板に移することができる。

【0034】ヒートシンクの材料としては、例えば金属 あるいはなウミックスなどを用いることができる。金属 としては、例えば頭(Cu)、アルミニウム(A1)、 タングステン(W)、モリブデン(Mo)、鉄(F e)、これらの金属を含む合金および複合材料を用いる ことができる。なお、ほんだ混合を容易にするために、

としたとい。また、はれた坂市とするからかんかん。 ヒートシンクの映画にはニッケル(NI)。全 (Au) またはこれらの金属を含む概を形成するのが程ましい。 これらの限は、蒸着法やめっき法で形成することができ る。ヒートシンクの熱伝導率は、好ましくは100W/ mK以上である。

【0035】次に、図2を用いて、図1に示した半導体 装置の製造方法を、豎化アルミニウム焼結体を基板とし た場合を想定して説明する。

【00361まず第1工程として基板を製造する、この種のサブマウントは長さ、幅がせいぜい級加州程度と小さいため、通路は倒えば異さ、総が50加州程度と外サイズに組かく切断分割する方法で製造される。以下、反の手欄に沿って説明する。従って、この工程で逃した。 母様のサイズは、例えば縦を50加加、長を50加加、原さを0、4加加とする。なお、基板材料である電のケボーンの大型である。位の大型である電が、単立を100元を10元を10元を10元を10元といる。なが、上板材料である電化アルミニウム(A1N)抗結体の製造方法には、通常の打活が適用できる。

【0037】次に、第2工程で基核の表面を研磨する。 研磨後の基板の表面相ざは、対ましては48で71、0分 加以下、より好ましては6.1人の加以下と5.5分 法としては、例えば研削線、サンドプラスト、サンドペ ーパーまたは減路による側的などの通常の方法を適用す ることができる。

【0038】次に、関2で示すように、密審層としての 丁 i 脱 5 b、 拡散防止層としてのP t 脱 5 a b よ b び a 能 超としてのA u 服 6 を 所定のパターンで形成するため、 第 3 工程としてパターニングを行なう。このパターニン グにおいては、例えばフォトリソグラフィ波を用いて、 それぞれの膜が形成されるべき領域かの基板部分にレジ スト版を形成する。

【0039】第4工程は、密着層であるTi膜を蒸着する工程である。膜の厚さは、例えば0.1µmとする。 【0040】第5工程は、密着層上に拡散防止層である P t 腕を形成する。膜の厚さとしては、例えば O、 2 μ mとする。

【0041】第6工程では、電極層であるAu膜を紊着 する、膜の厚さは、例えば0、6μmとする。

【0042】第7工程はリフトオフ工程である。この工程では第3工程のパターニング工程において形成したレジスト制能放によって、そのレジスト版上に載った管着層、拡強的点程および電極層をおでれの膜の部分とともに除去する。この結果、基板上に所定のパターンを有する3つの腰を形成することができる。【0043】第8工程では、はんび歌奏順を参考する。

【0043】第8工程では、はんだ密管層を素管する。 ここでは、メタルマスク独を用いて電陸職上に選移元素 理としての「服界」を、放いて変食無限としてのPも限 フαをそれぞれ素着する。このとき形成されるT1膜と Pも脳の呼ぎば、それぞれ例えばO.08μmおよび O.05μmとする。

【0044】はんだ密勢層を形成する工程において、成 腺等間気から水分や酸素などの不純物ガスを低減するた めに、成膜前のチャンバ内の圧力(到達真空度)は、

5. 0×10-4 Pa以下が好ましく、より好ましくは 1. 0×10-4 Pa以下である。また、はんだ密着層 の下地に対する密巻性を他上させるために、はんだ密着 個の成瞬時の悲核の表面温度は、20℃以上350℃以 下、さらには100℃以上250℃以下が好ましい。

【0045】秋に、第9工程として真空薬管法により、 はんだ蓄着阻止はんた潤皂を形成する。ここでは、メ タルマスク法を削いて、図2に示したように、はんだ密 着階上にAg/Sn積陽はんだ淵としてのAg陽8bを 業着も、歳いてSn積陽はんだ淵としてのAg陽8bを れるAg限とSn酸の厚さは、それぞれ別えば1.5μ 加および3.0μmとする。

【0046】はんだ固を形成する工程において、成肥雰 囲気から水分や微染などの不締結ガスを低値するため、 に、成態順のチャンパ内の圧力「砂定気定波」は、5・ 0×10-4Pa以下とするのが好ましく、より好まし くは1・0×10-4Pa以下である。また、ほんだ同 のはんだ恋春度に対する密達を向上させるために、は んだ題の成態時の建板の表面温度は、20℃以上であ り、はんだの滞租性成温度よりも10℃低い温度以下と するのが軽ましい。

【0047】なお、所定のパターンを有するほんだ密整層およびはんだ隔め形成方法としては、上述のメタルマスク法に代えて前述のフォトリソグラフィ法を用いてもよい。

【0048】次に、第10工程で、その母材基板を所望のサブマウントの長さ、幅に切断分割し、図2に示すサブマウント3を得る。

【0049】次の第11工程では、半導体発光索子としてのレーザーゲイオード2を接合する。具体的には、図2に示すように、加熱により溶離したはんだ類8の上

に、矢印9に示すように関索子を配置し、はんだ欄によってサブマウントに接合する。このようにして、図1の 半率体装置1が完成する。

【0050】以上のような未発明のサブマウントおよび 半導体決選では、はんだ層の直下にはんだの接合を強闘 なものとする選移元素型と妻金異種とが領域をれたはん だ密着層が形成されているため、半導体発光電子とサブ マウントの接合強度をより一層高めることができる。そ の結果、半導体装置の実用信頼性をより一層向上させる ことができる。

#### 100511

【実施例】 (サンプルの作製と評価) 以下の手法によ り、表しおよび2に示される試料1から29のサブマウ ントを製造した。試料1から25が実施例に対応し、試 料26から29が比較例に対応する。

【0052】まず、表」に示した特質の基板を準備した。 寸法はいずれも、続く機、厚みが50mm×50mm×50mm×0.4mmとした。この基板の疾頭を研磨して、主 装備 4 で動程 FR を 0 5 μm とした。この基板の疾頭を研磨して、注 より、厚みが0.1 μmの71 振5 b と厚みが0.2 μmの P に 聴きると厚みが0.6 μmのAu 漏6 からなるメクライズ隔を形成した。なお、試料7 については、上記メクライズ隔の代わりに厚みが1.0 μmのNiメッキ 歳と厚みが1.0 μmのAu メッキ腺からなるメクライズ隔で低れた。

【0053】次に、はんだ密着欄7となる進移元素層お なび資金属層をメタルマスク法と真空素着でメタライズ 関上に形成した。遷移元素網および資金属層の組成、膜 塵および寒漆の条件は表1に示した通りである。

【0054】その後、すべての試料に対し、はんだ層8

をメタルマスク法と真空張着で形成した。は人だ隋の組 成、服厚および薫着の条件は表1に示した通りである。 表1中の「は人だ組成」は、ほんだ層を構成する元素の 智聞仕を示す。

【0055】さらに、基板4を切断することにより、縦 ×横×厚みが1、2mm×1、5mm×0、3mmのサ プマウントを、それぞれの試料1から29について、1 の値ずつ件製した。そして、それぞれの試料について、 はんだ層を置象雰囲気中で加熱により溶散をせてレーザ ーダイオード2を接合した。その接合温度は表1に示し た適りである。

【0056】このようにして得られた半端体装置1(図 1参照)の、レーザーダイオードのサフマウントに対す る接合強度を増1LーSTDー883C METHOD 2019、4に基づいたグイシアー試験(DIE S HEAR STRENGTHTEST)により測定し、 各試料番号の10個の試料の接合強度の平均値を求め た、その結果後末に示す。

【0057】奏1の結果より、本発明によるサブマウントおよび半導体装置においては、比較例のそれらに比べ、半導体発光素子とサブマウントの接合強度が向上していることが分かる。

[0058] 今回開示された実施の形態および実施例は すべての点で得示であって初限的なものではないと考え られるべきである。本発明の発照は上記した実施を形態 および実施的ではなくて特許的求の範囲によって示さ れ、特許請求の範囲と均率の意味および範囲内でのすべ ての変更が多まれることが認定され。

【0059】 【表1】

. .

|            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | Ħ  | はんだ医薬器 |               |        |                                                | はんだ環                              |            |      | 14-4 | オーキンダールーハ |
|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----|--------|---------------|--------|------------------------------------------------|-----------------------------------|------------|------|------|-----------|
| 故故         | 報後            | 議移完業                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | おお事                                                                   | 4  | な物部部   | 紫海条件          | **     |                                                |                                   | S.         | 44   |      |           |
| 泰泰         |               | 18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00<br>18.00 | \$1 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>10 | 器器 | 遊戲     |               | #      | はんだ電気比                                         | (() (() () ()                     | 1000       | 基配温度 | 物色温度 |           |
|            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (g.m)                                                                 |    | (10 m) | (x16 %)       | (2)    | (質量化)                                          |                                   | C = 10"Pe) | (2)  | (2)  | (Mps)     |
| -          | ANSSESS       | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 80 C                                                                  | åd | 9079   | 8.0           | 230    | Ag: 55=32: 68                                  | Ag: Sh#32:68 1.8/4.0(Ag/Sn循環)     | B.0        | 621  | 250  | 25        |
| ĩ          | ないを結び         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 930                                                                   | ×  | 80.8   | 0.8           | 230    | Ag: Sn=32: 68                                  | Ag: Sn=32:68 1.5/4.9(Ag/Sn@)      | 8.6        | 150  | 250  | 30        |
| 6          | AN機能器         | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                   | å  | 900    | 3.0           | 233    | Ag: Shr 32; 88                                 | Ag:Sam32:88 1.3/4.0 (Ag/S.接爾)     | .0.8       | 150  | 250  | 10        |
| -          | ANNERSK       | ð                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900                                                                   | ã. | 900    | 0.8           | 230    | Ag:5h=32:68                                    | Ag: Sh=32:68 1.3/4.8(Ag/Sn(B))    | 9.0        | 383  | 250  | 6.8       |
|            | SC施特家         | - 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200                                                                   | Υn | 0.05   | 3.0           | 230    | Ag. Sy=32.68                                   | 1.5/4.0 (Ag. '3n(@(B))            | 8.0        | 150  | 250  | 63        |
|            | ALO、既籍株       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900                                                                   | č  | 305    | 8.0           | 333    | Ag. Se = 32:63                                 | 1.3/4.0(Ag/Sn機器)                  | 8,0        | 283  | 250  | 37        |
| -          | M-PO          | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900                                                                   | ã  | 800    | 80            | 233    | Ag:57=32:68                                    | Ag:Sn=32:68 1,5/4,D(Ag/Sn段)湯      | 8.0        | 150  | 253  | 4.7       |
| 60         | ANXXXX        | ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 930                                                                   | ď  | 90.0   | 9.6           | 233    | Au: Se=\$5:28                                  | 3.5                               | 8,0        | 150  | 200  | 67        |
| 6          | AIN機能能        | j.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90'0                                                                  | ď  | 80.05  | 80            | Γ.     | Au: Sn=18:90                                   | 30.00                             | 8.3        | 3    | 250  | 27        |
| 9          | 地域機とで         | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 900                                                                   | ñ  | 50'0   | 80            | 230    | Ag: Sn=18;90                                   |                                   | 03         | - 65 | 250  | ĩ         |
| Ξ          | 数据機会で         | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.00.0                                                                | đ. | 900    | 8.0           | C87    | Ag: Sn=32:68                                   | : 3/4公(Ag/Sn(数(型)                 | 08         | ĝ    | 780  | 53        |
| 22         | AIN機能体        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 53                                                                    | å  | 800    | 30            | 230    | Ag: Sn=12:08                                   | 1 ~                               | 0.3        | 120  | 250  | 38        |
| 12         | AIN技術は        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.0                                                                   | å  | 0.05   | 8.0           | 233    | Ag: Sn=32:58                                   | Ag: Sn=12:56 1.5/4.0(Ag/Sn)指揮3    | 0.3        | 550  | 250  | 87        |
| =          | AINの独立が       | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900                                                                   | å  | 900.0  | 9.0           | 233    | Ag: Sn=32:68                                   | Ag: Sn=22:68 1.5/4.0(Ag/Sn摄像)     | 0,3        | 150  | 250  | 99        |
| 12.5       | 女が縁がな         | Ľ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90'0                                                                  | ă  | 6.2    | 8.0           | 239    | Ag: Sec. 12:68                                 | Ag:Swe12:68 1.5/4.0; Ag. S. 选商)   | 0.3        | 93   | 250  | 89        |
| 16         | 本語線MIV        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.08                                                                  | ă  | 3,5    | 8.0           | 232    | Ag. Srt=32:68                                  | Ag. Sn=32: 68 1.5/40! Ag/Sn(5/8)  | 8,0        | 28   | 253  | 1,7       |
| 13         | 彩雕號/NIT       | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90'0                                                                  | ĭď | 900    | 0.33          | 230    | Ag: Sr~72:68                                   | 1,5/4,0(Ag/Sn程(限)                 | 6.0        | 120  | 520  | ÷         |
| <b>6</b> 2 | を記録は          | μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 833                                                                   | á  | 3      | 46.5          | 230    | Ag: Sn=32:68                                   | Ag: Sn=12:68 1.8/4.0(Ag/Sn链層)     | 6.0        | 130  | 230  | 3         |
| 63         | AN語語以下        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900                                                                   | ã  | 0,05   | 9.0           | 230    | Ag: Sn-32:88                                   | Ag: Snr 32: 88 1.6/40(Ag/Sn極度)    | 15.0       | 653  | 250  | 23        |
| 22         | 女婦様人"女        | į.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900                                                                   | Œ  | 0.03   | 9.0           | 530    | Ag: Snr32:68                                   | A4:Snr32:88 1,5/4,0(Ap/Sn级图)      | 40.0       | 130  | 250  | 23        |
| 17         | <b>対機器Niv</b> | Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90'0                                                                  | ã  | 900    | 9.0           | 8      | Ag: Don 12:32                                  | Ag: Ban 12:38 1.8/4.0 (Ag. Sn 翻圖) | 0,3        | 38   | 255  | 2         |
| 23         | Aと結婚が         | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900                                                                   | ã  | 6.05   | 9.0           | 8      | Ag:5~=32:68                                    | Ag: Swe32:68 1.8/40(Ag/Sn健陽)      | 0.3        | 150  | 355  | 83        |
| 8          | AIN強結体        | ī                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 300                                                                   | å  | 6.33   | 9.0           | 300    | Ag: Sy#32:68                                   | (劉健48/24)69/91                    | 6.0        | 150  | 220  | 43        |
| 24         | AINSESS       | Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900                                                                   | ã. | 90'0   | 80            | 230    | Ag: Sn=32:68                                   | 1,5/4,0(Ag/5n(%))                 | 6.3        | 8    | 230  | \$        |
| g          | AIA           | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 900                                                                   | 16 | 0.05   | 80            | 087    | Ag: Sn=32:66                                   | 1.5/4.0(Ag/3nB                    | 8.0        | 200  | 250  | 67        |
| #26        | AIN AES       | ĭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 930                                                                   |    | î      | 8.0           | 330    | Ag: Syz32,38                                   | 1.5/4.0(Ag/Sn限)                   | 83         | 93   | 280  | 28        |
| 124        | A心療器体         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | į                                                                     | 1  | 3      | ş             | 3      | At . S-=80.20                                  | 3.5                               | 6.0        | 180  | 296  | 30        |
| +28        | ARVana        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ì                                                                     | ď  | 8,35   | 6,5           | 233    | Au: Sn=80:20                                   |                                   | 93         | 130  | 290  | 왕         |
| +28        | ANNEWS        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                     | ŭ  | 6.35   | 5.0           | 230    | Ag. Sn=32, 38                                  | 人名: Shr32:38 1.5/4.8 (Ag/Sn機器)    | 0.35       | 8    | 255. | ě         |
|            | 注)* 印は広敷的である。 | 数例で                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , 2 Q                                                                 |    |        |               |        |                                                |                                   |            |      |      |           |
|            | Ti-Drine      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                    | A  | 大田田    | W-17 17 25 25 | 第12日本学 | <b>建进户,其余时,并分分分的指挥并有一种人,为他的非常心理和整治的不合,才介持不</b> | 70.50                             |            |      |      |           |

## [0060]

【発明の効果】このように、未発明によれば、はんだ層の直下にはんだの接合を傾消かものとする高彩元業層と 資金期間とが構図されたはんだって審査制を知することにより、半単体発光素子とサブマウントの接合地度をより一層高めることができる。その結果、半準体装置の実用信頼性をより、円層のよさせることができる。

#### 【図面の簡単な説明】

- 【図1】 本発明による半導体装置の実施の形態1を示す断面模式図である、
- 【図2】 図1に示した半導体装置の製造方法を説明するための簡面模式図である。
- 【図3】 本発明による半導体装置の実施の形態の一例 を示す断面模式図である。
- \* 【図4】 図3に示した半導体装置の製造方法を説明す

#### るための断龍模式閉である。

- 【図5】 本発明による半導体装置の実施の形態の他の 一例を示す断面模式図である。
- 【図6】 図5に示した半導体装置の製造方法を説明するための断面模式図である。
- 【図7】 従来の半導体装置の製造方法を説明するため の橱面模式図である。

#### 【符号の説明】

1 半郷株装蔵 2 レーザーダイオード、3 サブマ ウント、4 紫板、4 f 主表面、5 Ti/P t 積層 版、5a P t 眼、5b T i 酸、6 A u 眼、7 は んだ密着欄、7a P t 腺、7b T i 酸、8 はんだ 服、8a S n 服、8b A g 阪、8f 楽面、9 矢 f 1、107 はんだりア間。



【手統補正書】

【提出日】平成14年9月18日(2002.9.1 8)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 請求項7

【補正方法】変更

【辅正内容】

【請求項7】 前記サブマウント基板と前記はんだ密着 **隠との間において、前部サブマウント基板の主奏前に接** 触するように形成された密着層と、前記密着層上に形成 された拡散防止器とをさらに備え 前部電極機は前部拡 散防止層上に配置されている、請求項6に記載のサブマ ウント

【手統補正2】

【補正対象密類名】明趨盡

【補正対象項目名】0004

【補正方法】変更

【補正内容】

【0004】関7に示したようなサブマウントを準備し

た後、サブマウントのはんだを加熱溶融し、半導体発光 業子としてのレーザーダイオード 2をはんだ上の所定の 位置に搭載する(ダイボンド工程を実施する)。この 後、図示しないヒートシンクにサブマウントの源面側を はんだなどで接続・国定することにより、半趣体発光器 子を備える半導体装置を得ることができる。

【手続補正3】

[補正対象書類名] 明細書

【補正対象項目名10006

【補正方法】空車

【補正内容】 [0006]

【発明が解決しようとする課題】一方、例えばCD装置 やDVD装置の書き込み速度の高速化やレーザ加工機の 高出力化などに伴う半導体発光素子の高出力化が進めら れており、それらに用いられる単縁体装置にはより高い 実用信頼性が必要とされている。その実現のための1つ の要望事項として、半導体発光器子とサブマウントの高 い接合強度がある。

フロントページの続き

(72)発明者 鎮木 保法

兵庫県伊丹市開陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内

Fターム(参考) 5F047 AA19 BA05 BA15 BA19 BA41 8816 8007 BC13 BC14 CA08 5F073 BA05 BA09 BA29 FA15 FA18 FA21 FA30

