

#### SCC.460 Data Science Fundamentals

#### **Modelling and Experimental Design**

Slides originally developed by Dr Yehia El Khatib and edited by Dr Ioannis Chatzigeorgiou. Lecture delivered by Dr Ignatius Ezeani.

# Today's learning outcomes



- ☐ Feature engineering
  - O What are features?
  - Different types
- Model fitting
  - Model quality
  - Over- and underfitting
- Experimental design
  - Different experimental setups
  - Splitting data

### Feature engineering





#### What are features?



- A dataset consists of:
  - Features/attributes: qualities that we are measuring
  - Feature value: actual measurement of the feature
  - Instance: a record made up of one of more features (e.g. person, session)
    - Normally represented as a vector
- Features can be of different types:
  - Categorical: Characteristics that have no mathematical meaning
    - *Nominal*: qualitative values, cannot be ordered (special case: dichotomous)
    - Ordinal: qualitative values, can be ordered
  - Numerical: quality measured using a set of numbers (real, integer)
    - Interval: Ordered, same distance, no true zero, ratios have no meaning
    - Ratio: Ordered, same distance, true zero exists, ratios have meaning

# Types of data





### Feature engineering



- Machine learning and statistical models require numerical features.
  - i.e. for inducing a hyperplane through an n-dimensional space
- Hence, we need to convert nominal and ordinal features to numerical values.
- In many (not all) cases, it is possible to add qualitative information to models as quantitative scales or factors.
- Various coding schemes exist to achieve this (one hot, hash, count, target, polynomial ...).
  - The choice is domain-specific.
- Feature engineering could be one of the most time consuming parts of your job.

# Feature engineering: nominal > 'numerical'



• Create a variable for each category (one hot encoding, here one of 2):

| PersonID | Hair Colour |
|----------|-------------|
| 123      | Blonde      |
| 456      | Black       |



| PersonID | BlondeHair | BlackHair |
|----------|------------|-----------|
| 123      | 1          | 0         |
| 456      | 0          | 1         |

- This is how a binary 'bag of words' model works.
  - Equivalent to an order-less representation of a document (e.g. word clouds)



| mi | casa | es | su |
|----|------|----|----|
| 1  | 2    | 1  | 1  |



### Feature engineering: bag-of-features models

- A form of capturing feature identity and frequency, not interrelationships.
- Bag-of-words is a special case of the bag-of-features.
- Popular example: Texture recognition







• Similar to converting nominal to numeric: we simply change the feature's value range to be {0,1}

| PersonID | Smokes |  |
|----------|--------|--|
| 123      | Yes    |  |
| 456      | No     |  |



| PersonID | Smokes |  |
|----------|--------|--|
| 123      | 1      |  |
| 456      | 0      |  |

- The only difference here is that we need to decide on the coding scheme.
  - i.e. what constitutes a 1, and what is a 0

# Feature engineering: ordinal -> 'numerical'



Choose a suitable coding scheme to change ordered discrete (categorical)
 values to numbers.

| PersonID | Grade |
|----------|-------|
| 123      | B+    |
| 456      | А     |

| Ordinal | Numeric |
|---------|---------|
| A+      | 10      |
| А       | 9.5     |
| A-      | 9       |
| B+      | 8.5     |



| PersonID | GradeValue |
|----------|------------|
| 123      | 8.5        |
| 456      | 9.5        |

• Important to choose a coding scheme that preserves the magnitude of differences (the ordering).

# Model fitting





# Model fitting



- Once the dataset is prepared with engineered features, we can fit a model to the data (hopefully).
  - e.g. linear regression, where we aim to find the best linear function y=f(x)
     (i.e. line) to explain the data.
- Goals of applying a model are two-fold:
  - 1. To predict/forecast labels/outcomes for unseen data
  - To analyse a model's diagnostics to understand the contribution of certain constructs
    - i.e. in terms of individual features' contributions and importance

### General model types



#### 1. Non-parametric Models

- Input: training dataset
- Output: model fitted to the dataset
  - i.e. induced parameter vector
- Examples: Naive Bayes, SVM, Perceptron, linear regression

#### Parametric Models

- Input: training dataset and hyperparameters  $(\theta)$
- Output: model fitted to the dataset,  $\theta$ -indexed
  - i.e. induced parameter vector specific to  $\theta$
- Examples: regularised linear models, singular value decomposition

# Examples of linear regression



- Let  $x_{i,1}, x_{i,2}, ..., x_{i,p}$  be the explanatory / predictor / independent variables.
- Let  $b_0$ ,  $b_1$ ,  $b_2$ , ...,  $b_p$  be the model / regression coefficients.
- Let  $y_i$  and  $\varepsilon_i$  be the dependent variable and the error variable, respectively.

Linear regression (for i=1,...,n):

$$y_{i} = b_{0} + b_{1}x_{i,1} + b_{2}x_{i,2} + \dots + b_{p}x_{i,p} + \varepsilon_{i}$$
  

$$\Leftrightarrow \varepsilon_{i} = y_{i} - b_{0} - b_{1}x_{i,1} - b_{2}x_{i,2} - \dots - b_{p}x_{i,p}$$

Objective of linear regression (non-parametric):

Objective of **regularised** linear regression (parametric):

$$\min_{b_0,\dots,b_p} \sum_{i=1}^n \varepsilon_i^2$$

$$\min_{b_0,\dots,b_p} \left( \sum_{i=1}^n \varepsilon_i^2 + \theta \sum_{j=0}^p g(b_j) \right)$$

# Model quality



- Almost every model optimizes some quality criterion:
  - Linear regression: Residual Sum-of-Squares
  - k-Means: Inertia = mean squared distance from each sample to cluster center
- The quality criterion is chosen to prove quality of fit (convexity) and provability (convergence).
- Other quality criteria:
  - Stability of the model (sensitivity to small changes)
  - Compactness (sparseness or many zero coefficients)
  - Silhouette score
  - Inter-cluster similarity
  - Intra-cluster entropy

y zero coefficients)

clustering models

### Example of stability





Overfitting may generate a smooth curve (red) but a small perturbation (change in the values of the points, from red to blue) will significantly affect the solution (blue). In the right-hand side figure, the solution varies only by a small amount.

### Fitting a model



- Two main methods for fitting, depending (non-/parametric) model type.
- 1. Maximising Model Fit to Data
  - Choose model parameters that maximise in-sample best fit criterion
    - i.e. using just the training set
  - Coefficient of determination (R<sup>2</sup>), Akaike Information Criterion (AIC),
     Bayesian Information Criterion (BIC)
- 2. Minimising Prediction Error
  - Learn from errors in prediction and update parameters accordingly
  - Use out-of-sample error calculation
    - i.e. learn over the training set, calibrate over the validation set
  - Derive the mean error and standard deviation to allow selection of best  $\theta$

### Overfitting



- Model fitting can be prone to overfitting, where our in-sample fit leads to poor generalisation.
- Ideally, the model would fit an infinite sample of features.
  - i.e. extend to represent out-of-sample predictions



- Higher order polynomial models will better fit the feature values.
- But it models the noise. Not good for inferring the trend (the signal).

# Overfitting





Without looking out-of-sample you could not be sure of the model.

# Controlling for overfitting



#### 1. Regularisation

- Penalise models for excessive complexity using secondary criteria next to the main quality criterion being optimised.
  - L<sub>1</sub> regularization adds the sum of absolute value of model coefficients.
  - L<sub>2</sub> regularization adds the sum of squares of model coefficients.
- 2. Data splitting for extrapolation
  - Training: to estimate a model
  - Validation: to choose and calibrate a model
  - Testing: to evaluate the model
- 3. Fine tune through cross-validation
  - Covered in extrapolation under Experimental Design (last part of the slides)

### **Underfitting**



- The model will learn what you teach it.
  - e.g. you can always fit a linear model to a dataset, but do you actually know if there is a real linear relationship? (bias)
- Easily detected using standard performance tests.







### **Experimental studies**



- Recall: an experimental study focuses on investigating cause-effect relationships.
  - Often done through a hypothesis.
  - Think of treatment experiments: alter treatment, examine impact.
- Experimental design ensures internal validity:
  - i.e. truth of cause-effect inference
  - e.g. teaching on Friday afternoon enables retention



- In its simplest form:
  - 1. Create two groups (e.g. of people) that are as similar as possible.
  - 2. Apply the treatment to one group, do not apply the treatment to another group (control).
  - 3. Observe the difference in the outcomes.
- Is this applicable in Data Science?



- Existing experiment design approaches assume ability to acquire observational data.
  - i.e. run an experiment where we apply a treatment, and observe the effect
- Often we don't have this:
  - Data is provided by other departments
  - External datasets are mined from the Web
  - Open data is used as a ground truth
- Often we are working with found data.



- A common approach to a data science task is:
  - 1. Engineer features from a dataset
  - Induce a model from the data
  - 3. Apply it to new data to see how well it performs
  - 4. If it's a good model, inspect which features were important. If not, go to 2.
- Key components to this:
  - 1. We fit the model using data
  - 2. We apply the model to new data
- Experimental design plays a crucial role here...

### Experimental design: example\*



- **Goal**: predict churners and non-churners
- Motivation: The identification of users who will drop out of a service is known as churn detection. It is important for telecoms, online games, social networks, etc. so that they propose countermeasures to reduce losses.
- **Data**: found online (four online community platforms)
- Process:
  - 1. Engineer features to capture user behaviour (social interactions to other users and by other users; language referred to as *lexical* information)
  - 2. Examine how churners and non-churners differ with varying lifecycle **fidelity**. The fidelity value determines the number of stages/periods that a given set of posts will be divided into (it is denoted by k in the following figures).

<sup>\*</sup> Matthew Rowe, "Mining User Development Signals for Online Community Churner Detection", ACM Trans. Knowledge Discovery from Data, 2015

### Experimental design: example (continued)



- **Lifecycle** is the period between a user's "birth" (earliest post within a set of posts) and "death" (final post within the same set of posts).
- The vertical axis in each graph represents the **entropy** (H), which describes the amount of variation within a random variable (i.e. it gauges how much a user is varying, including connections and terms used in posts).



# Experimental design: extrapolation



- In order to test the 'generalisation' capability of the model, we need to extrapolate to new (unseen) data.
- Methods for extrapolation:
  - 1. Retrospective
  - 2. Forecasting

MY HOBBY: EXTRAPOLATING



### Experimental design: Retrospective extrapolation



- Retrospective data analysis (hold out method)
  - Gather a dataset.
  - 2. Use one portion to induce (train) the model
    - This is used for analysing features, tuning model parameters, etc.
  - 3. Hold out another portion for testing the model
    - Evaluate how well the induced model does on this data

### Retrospective extrapolation: Regression example



- Perform the regression on the training set.
- Estimate future performance with test data.







Mean Squared Error = 0.9

# Retrospective extrapolation: Splitting



- Common splitting procedure for retrospective analysis:
  - Segment dataset into a training and test sets (and validation for parametric models)
    - Typically based on 80%/20% or 70%/30% random split
  - 2. Induce the model on the training set
  - 3. Apply the model to the test set
- If each instance in the dataset is time-sensitive: then we use the first 80% as training, the rest as test.
- Be cautious not to introduce bias by the way you split the data.

# Experimental design: Forecasting



- Forecasting:
  - 1. Gather a dataset up to the present
  - 2. Induce the model over this dataset
  - 3. Apply the model to data as it becomes available
  - 4. Continuously re-calibrate model based on its accuracy

# Experimental design: Repetition



- Repeating experiments allows us to see how much a model varies:
  - Large variance = poor generalisation capability
  - Small variance = Less deviation from future observations
- Repetition is 'hardcoded' into k-fold Cross-Validation:
  - For each i in {1,...,k} do:
    - Train a model on all the other folds
       A<sub>1</sub>,..., A<sub>i-1</sub>, A<sub>i+1</sub>,..., A<sub>k</sub>
    - Test the model on A<sub>i</sub>
  - Returns k performance measures
    - Measure the standard deviation in error
  - All data points are (eventually) used for both training and testing.





### **Experimental design: Randomised Controlled Trials**

- Sometimes you would have an experimental setting, which allows you to examine the efficacy of an intervention.
- Randomised Controlled Trials (RCTs) enable this.
  - Often referred to as A/B Testing in Data (and Computer) Science



### **Experimental design: Randomised Controlled Trials**



- "Randomised": Avoids selection bias and maximizes statistical power (i.e., the power of a hypothesis).
- "Controlled": Implies eligibility criteria, hypotheses, methods for enrollment and follow-up, rigorous monitoring, analysis plans and stopping rules.
- RCTs provide the "gold standard" for proof-of-concept and are widely used in medical trials.
- Key phases:
  - Eligibility and Enrollment
  - Randomisation and Blinding
  - Follow-up
  - Analysis, Monitoring and Stopping Rules

# Today's learning outcomes



- - O What are features?
  - Different types
- ☑ Model fitting
  - Model quality
  - Over- and underfitting
- ☑ Experimental design
  - Different experimental setups
  - Splitting data

### Further reading



- N. Silver, "The Signal and the Noise: Why So Many Predictions Fail-but Some Don't"
- W.M.K. Trochim, "<u>Experimental Design</u>" in "The Research Methods Knowledge Base".
- H.R. Varian, "Big Data: New Tricks for Econometrics", Journal of Economic Perspectives, 28(2):3-28, 2014.
- S.L. Scott, "Multi-armed bandit experiments in the online service economy".