MATHEMATICS 1LS3 TEST 2

Day Class	E. Clements, G. Dragomir, M. Lovrić
Duration of Examination: 60 minutes	, ,
McMaster University, 28 October 2015	
First name	e (PLEASE PRINT):
Family nan	ne (PLEASE PRINT):
	Student No:

THIS TEST HAS 8 PAGES AND 7 QUESTIONS. YOU ARE RESPONSIBLE FOR ENSURING THAT YOUR COPY OF THE PAPER IS COMPLETE.

Total number of points is 40. Marks are indicated next to the problem number. Any non-graphing calculator is allowed.

USE PEN TO WRITE YOUR TEST. IF YOU USE A PENCIL YOUR TEST WILL NOT BE ACCEPTED FOR REMARKING (IF NEEDED).

You must show work to receive full credit.

Problem	Points	Mark
1	4	
2	6	
3	6	
4	7	
5	6	
6	6	
7	5	
TOTAL	40	

1. Multiple choice questions: circle ONE answer. No justification is needed.

(a)[2] If $f(x) = Ax \ln(B+x)$, then f'(0) is equal to

- (A) A
- (B) B
- (C) AB
- (D) B In B

- (E) AB In B
- (F) AB In A
- (G) A ln B
- (H) B In A

(b)[2] If $f(x) = \arctan\left(\frac{x}{3} + 1\right)$, then f'(1) is equal to

- (C) 1/75 (G) 9/5
- (D) 1/25

- (A) 9/75 (E) 1/15
- (B) 9/15 (F) 3/25
- (H) 3/17

2. Identify each statement as true or false, or yes or no (circle your choice). You do not need to justify your answer.

(a)[2] Let m(t) represent the mass of melting snow in kilograms, where t is time in days. The units of m'(t) are kilograms.

TRUE

OR

FALSE

(b)[2] Knowing that $g''(x) = (x-5) \arctan x$, we conclude that the function g(x) is concave up on (0,5).

TRUE

OR

FALSE

(c)[2] The function $g(x) = x \sin(\pi x)$ has a horizontal tangent at x = 1.

TRUE

OR

FALSE

Name:	
Student No.:	

Questions 3-7: You must show work to receive full credit.

3. (a)[3] Find
$$f'(1)$$
, if $f(x) = 3^{\ln x} + \sqrt{1 + \ln x} + 3^5$.

(b)[3] Find y'(x), if $\cos(x^2y) = \sin y + \tan x$.

Name:	
Student No.:	

4. (a)[3] In the article Migration behaviour of grizzly bears in Northern British Columbia: contribution to a modelling approach. G. Brown et al, Bear Science 4 (June 2012), we find the formula

$$P(t) = \arctan(1.7t) + 4.7$$

where t represents time.

Next, we read "initially, $P(t) \approx 1.7t + 4.7$, which gives a linear relationship." Explain why this statement is correct. [Hint: Think in terms of the linear approximation at t = 0.]

(b)[4] A simple model of diffusion states that the concentration of a substance diffusing in air is given by

$$c(x) = e^{-ax^2 + b}$$

where a and b are constants and x is the distance from the source. This formula is sometimes simplified using a quadratic approximation near x = 0. Find that approximation.

5. Drawn below is the derivative of a function f(x).

(a)[2] State all intervals where f(x) is increasing. Justify your answer.

(b)[2] Find all intervals where f(x) is concave down. Justify your answer.

(c)[2] Describe in words the graph of f(x) on the interval $(9, \infty)$.

6. The quadratic model for the percent S of cancer cells surviving radiation treatment states that

$$S(d) = e^{-d^2 - 0.2}$$

where $d \geqslant 0$ is the dose (in Gray) per treatment of radiation.

(a)[1] Show that S is a decreasing function of d when $d \ge 0$.

(b)[2] Find (if any) inflection points of S(d). for $\lambda \geqslant 0$

(c)[3] Based on information in (a) and (b), make a sketch of the function S(d) for $d \ge 0$. Label intercepts, if any.

Name:	
Student No.:	

7. The following excerpt is taken from *The laminar cortex model: a new continuum cortex model incorporating laminar architecture*. J. Du, V. Vegh, and D.C. Reutens. PLoS Computational Biology. 8.10 (Oct. 2012).

the average of membrane potentials of neurons in the element, that is

$$V = \underbrace{\frac{N_e V_c + N_i V_i}{N_e + N_i}}_{\text{Ne} + N_i}$$

where N_e , N_i are the numbers of excitatory and inhibitory neurons and V_e and V_i are the (average) membrane potentials of excitatory and inhibitory neuron populations respectively.

You know that the numbers N_e and N_i are positive, and the membrane potentials V_e and V_i are negative.

(a)[3] Assume that V is a function of N_e . Find the derivative of V and simplify.

(b)[2] Assume that $V_e > V_i$. What does your answer in (a) say about the dependence of V on N_e ? Justify your answer.