Gradient Methods for unconstrained Optimization

K.Bouanane

April 24, 2023

Introduction

Consider the problem:

$$\min_{\mathbf{x}\in U}J(\mathbf{x})$$

where $J: \mathbb{R}^n \to \mathbb{R}$

We call unconstrained optimization problem the particular case $U = \mathbb{R}^n$.

Consider the problem:

$$\min_{\mathbf{x} \in U} J(\mathbf{x})$$

where $I: \mathbb{R}^n \to \mathbb{R}$

We call unconstrained optimization problem the particular case $U = \mathbb{R}^n$.

The problem is then given by:

Find
$$\mathbf{x}^* \in \mathbb{R}^n$$
 such that $J(\mathbf{x}^*) \leq J(\mathbf{x}), \quad \forall \mathbf{x} \in \mathbb{R}^n$

We aim here to give some numerical methods to construct the approximate sequence

$$\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}\subset\mathbb{R}^n$$

by recurrence.

We aim here to give some numerical methods to construct the approximate sequence

$$\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}\subset\mathbb{R}^n$$

by recurrence.

The general expression $x^{(k+1)}$ will be written as

We aim here to give some numerical methods to construct the approximate sequence

$$\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}\subset\mathbb{R}^n$$

by recurrence.

The general expression $x^{(k+1)}$ will be written as

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \rho_k d^{(k)}$$
 such that $J(\mathbf{x}^{(k+1)}) < J(\mathbf{x}^{(k)})$

We aim here to give some numerical methods to construct the approximate sequence

$$\{\mathbf{x}^{(k)}\}_{k\in\mathbb{N}}\subset\mathbb{R}^n$$

by recurrence.

The general expression $x^{(k+1)}$ will be written as

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \rho_k d^{(k)}$$
 such that $J(\mathbf{x}^{(k+1)}) < J(\mathbf{x}^{(k)})$

Vectors $d^{(k)} \in \mathbb{R}^n$ are called descent directions and $\rho_k \in \mathbb{R}$ are scalars called step size (learning rate).

General scheme of unconstrained optimization algorithms.

The algorithm is of the form

- Step 1: Select $\mathbf{x}^0 \in \mathbb{R}^n$ (for example $\mathbf{x}^0 = 0$). Select k_{max} the maximum number of iterations. Set k to 0.
- **Step 2:** While(Stop condition=False) and $(k < k_{max})$ do $\mathbf{x}^{(k+1)} \leftarrow \mathbf{x}^{(k)} + \rho_k d^{(k)}, k \leftarrow k+1$. End while.
- **Step 3:** If (Stop test =True) then $x^{(k)}$ is an approximation of x^* , otherwise the method doesn't converge.

As a stop condition, we often choose $\nabla J(\mathbf{x}^{(k)}) = 0$ (necessary condition for optimality).

As a stop condition, we often choose $\nabla J(\mathbf{x}^{(k)}) = 0$ (necessary condition for optimality). (In practice, $\|\nabla J(\mathbf{x}^{(k)})\| \le \epsilon$ where $\epsilon > 0$ is small.)

As a stop condition, we often choose $\nabla J(\mathbf{x}^{(k)}) = 0$ (necessary condition for optimality). (In practice, $\|\nabla J(\mathbf{x}^{(k)})\| \le \epsilon$ where $\epsilon > 0$ is small.)

Méthodes vary according to the choice of $d^{(k)}$ and ρ_k .

Gradient based optimization methods

Gradient Descent Method

Gradient Descent Method

The idea is to choose as direction of descent $d^{(k)} = -\nabla J(\mathbf{x}^{(k)})^{\top}$.

The idea is to choose as direction of descent $d^{(k)} = -\nabla J(\mathbf{x}^{(k)})^{\top}$. This is because $\nabla J(\mathbf{x}^{(k)})^{\top}$ is always orthogonal to the level curve of J in $\mathbf{x}^{(k)}$ and the function J decreases in the direction $-\nabla J(\mathbf{x}^{(k)})^{\top}$.

The idea is to choose as direction of descent $d^{(k)} = -\nabla J(\mathbf{x}^{(k)})^{\top}$. This is because $\nabla J(\mathbf{x}^{(k)})^{\top}$ is always orthogonal to the level curve of J in $\mathbf{x}^{(k)}$ and the function J decreases in the direction $-\nabla J(\mathbf{x}^{(k)})^{\top}$.

Using Taylor approximation, we have:

$$J(\mathbf{x}^{(k+1)}) = J(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}) = J(\mathbf{x}^{(k)}) + \left\langle \nabla J(\mathbf{x}^{(k)})^{\top}, -\rho \nabla J(\mathbf{x}^{(k)})^{\top} \right\rangle + o(\rho \nabla J(\mathbf{x}^{(k)}))$$

The idea is to choose as direction of descent $d^{(k)} = -\nabla J(\mathbf{x}^{(k)})^{\top}$. This is because $\nabla J(\mathbf{x}^{(k)})^{\top}$ is always orthogonal to the level curve of J in $\mathbf{x}^{(k)}$ and the function J decreases in the direction $-\nabla J(\mathbf{x}^{(k)})^{\top}$.

Using Taylor approximation, we have:

$$J(\mathbf{x}^{(k+1)}) = J(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}) = J(\mathbf{x}^{(k)}) + \left\langle \nabla J(\mathbf{x}^{(k)})^{\top}, -\rho \nabla J(\mathbf{x}^{(k)})^{\top} \right\rangle + o(\rho \nabla J(\mathbf{x}^{(k)}))$$

thus

$$J(\mathbf{x}^{(k+1)}) - J(\mathbf{x}^{(k)}) = -\rho \| J(\mathbf{x}^{(k)}) \|^2 + o(\rho)$$

The idea is to choose as direction of descent $d^{(k)} = -\nabla J(\mathbf{x}^{(k)})^{\top}$. This is because $\nabla J(\mathbf{x}^{(k)})^{\top}$ is always orthogonal to the level curve of J in $\mathbf{x}^{(k)}$ and the function J decreases in the direction $-\nabla J(\mathbf{x}^{(k)})^{\top}$.

Using Taylor approximation, we have:

$$J(\mathbf{x}^{(k+1)}) = J(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}) = J(\mathbf{x}^{(k)}) + \left\langle \nabla J(\mathbf{x}^{(k)})^{\top}, -\rho \nabla J(\mathbf{x}^{(k)})^{\top} \right\rangle + o(\rho \nabla J(\mathbf{x}^{(k)}))$$

thus

$$J(\mathbf{x}^{(k+1)}) - J(\mathbf{x}^{(k)}) = -\rho \| J(\mathbf{x}^{(k)}) \|^2 + o(\rho)$$

The right side of the equality is negative if $\rho > 0$ avec with ρ small and $\nabla I(\mathbf{x}^{(k)})^{\top} \neq 0$.

The gradient descent is then described by:

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \rho_k \nabla J(\mathbf{x}^{(k)})^{\top}$$

where $\rho_k \in \mathbb{R}$ are selected.

Compute the first two iterations for

$$f(x,y) = 3x^2y - y^2x = xy(3x - y)$$
$$(x,y)^{(0)} = (0,0)$$

Steepest Gradient

Steepest Gradient

We aim to find ρ_k such that

$$J\left(\mathbf{x}^{(k)} - \rho_k \nabla J(\mathbf{x}^{(k)})^{\top}\right) = \min_{\rho \in \mathbb{R}} J\left(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}\right)$$

Case of a quadratic function

We assume that $J: \mathbb{R}^n \mapsto \mathbb{R}$ is such that

$$J(\mathbf{x}) = \frac{1}{2} \langle \mathbf{A} \, \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$$

with $\mathbf{A} \in \mathbb{R}^{n \times n}$ symetric definite positive matrix , $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Steepest Gradient

We aim to compute ρ_k which minimizes $g: \mathbb{R} \mapsto \mathbb{R}$ given by

$$g(\rho) = J\left(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}\right)$$

 ρ_k satisfies necessarily $g'(\rho_k) = 0$

We aim to compute ρ_k which minimizes $g : \mathbb{R} \to \mathbb{R}$ given by

$$g(\rho) = J\left(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}\right)$$

 ho_k satisfies necessarily $g'(
ho_k) = 0$ We have $g'(
ho) = -\left\langle \nabla J\left(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}\right), \nabla J(\mathbf{x}^{(k)})^{\top}\right\rangle$ with $\nabla J(\mathbf{x}^{(k)})^{\top} = \mathbf{A}\,\mathbf{x}^{(k)} - \mathbf{b}$. We aim to compute ρ_k which minimizes $g : \mathbb{R} \to \mathbb{R}$ given by

$$g(\rho) = J\left(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}\right)$$

 ho_k satisfies necessarily $g'(
ho_k) = 0$ We have $g'(
ho) = -\left\langle \nabla J\left(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top}\right), \nabla J(\mathbf{x}^{(k)})^{\top}\right\rangle$ with $\nabla J(\mathbf{x}^{(k)})^{\top} = \mathbf{A}\,\mathbf{x}^{(k)} - \mathbf{b}$.

Therefore

$$g'(\rho) = -\left\langle \mathbf{A} \left(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^{\top} \right) - \mathbf{b}, \mathbf{A} \mathbf{x}^{(k)} - \mathbf{b} \right\rangle$$
$$= -\left\langle (\mathbf{A} \mathbf{x}^{(k)} - \mathbf{b}) - \rho \mathbf{A} (\mathbf{A} \mathbf{x}^{(k)} - \mathbf{b}), \mathbf{A} \mathbf{x}^{(k)} - \mathbf{b} \right\rangle$$
$$= - \| \mathbf{A} \mathbf{x}^{(k)} - \mathbf{b} \|^{2} + \rho \left\langle \mathbf{A} (\mathbf{A} \mathbf{x}^{(k)} - \mathbf{b}), \mathbf{A} \mathbf{x}^{(k)} - \mathbf{b} \right\rangle$$

Consequently

Consequently

$$g'(\rho) = 0 \Longleftrightarrow \rho = \frac{\parallel \mathbf{A} \mathbf{x}^{(k)} - \mathbf{b} \parallel^2}{\langle \mathbf{A} (\mathbf{A} \mathbf{x}^{(k)} - \mathbf{b}), \mathbf{A} \mathbf{x}^{(k)} - \mathbf{b} \rangle}$$

Consider $f: \mathbb{R}^3 \mapsto \mathbb{R}$ such that

$$f(x_1, x_2, x_3) = \frac{3}{2}x_1^2 + 2x_2^2 + \frac{3}{2}x_3^2 + x_1x_3 + 2x_2x_3 - 3x_1 - x_3$$

et
$$x^0 = (0, 0, 0)^T$$
.

Consider $f: \mathbb{R}^3 \mapsto \mathbb{R}$ such that

$$f(x_1, x_2, x_3) = \frac{3}{2}x_1^2 + 2x_2^2 + \frac{3}{2}x_3^2 + x_1x_3 + 2x_2x_3 - 3x_1 - x_3$$

et $x^0 = (0, 0, 0)^T$.

f is a quadratic function since

$$f(x_1, x_2, x_3) = \frac{1}{2} (3x_1^2 + 4x_2^2 + 3x_3^2) + x_1x_3 + 2x_2x_3 - 3x_1 - x_3$$

$$= \frac{1}{2} (x_1, x_2, x_3) \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} - (3, 0, 1) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$= \frac{1}{2} \langle \mathbf{A} \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, x \rangle$$

with
$$\mathbf{A} = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$.

Conjugate Gradient Method

Notations:

- Let $v_1, v_2, \ldots, v_l \in \mathbb{R}^n$. We note $\mathcal{L}(v_1, v_2, \ldots, v_l) = \{ \sum_{i=1}^l \alpha_i v_i, \alpha_1, \alpha_2, \ldots, \alpha_l \in \mathbb{R} \} \text{ the subspace from } \mathbb{R}^n \text{ spanned by } v_1, v_2, \ldots, v_l.$
- ② If $a \in \mathbb{R}^n$ and $M \subset \mathbb{R}^n$ then a + M is the set $\{a + x, x \in M\}$

Case of a quadratic function.

Suppose that $J: \mathbb{R}^n \mapsto \mathbb{R}$ can be written

$$J(\mathbf{x}) = \frac{1}{2} \langle \mathbf{A} \, \mathbf{x}, \mathbf{x} \rangle - \langle \mathbf{b}, \mathbf{x} \rangle + c$$

with $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symetric positive definite matrix, $\mathbf{b} \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

Recall that in Steepest descent we have

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \rho_k \nabla J(\mathbf{x}^{(k)})^\top = \min_{\rho \in \mathbb{R}} J(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^\top)$$

Recall that in Steepest descent we have

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \rho_k \nabla J(\mathbf{x}^{(k)})^\top = \min_{\rho \in \mathbb{R}} J(\mathbf{x}^{(k)} - \rho \nabla J(\mathbf{x}^{(k)})^\top)$$

which can be formulated as

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathcal{L}(\nabla J(\mathbf{x}^{(k)})^{\top})$$

is the element that minimizes J over the set $\mathbf{x}^{(k)} + \mathcal{L}(\nabla J(\mathbf{x}^{(k)})^{\top})$.

For $k \in \mathbb{N}$, we note:

$$G_k = \mathcal{L}(\nabla J(\mathbf{x}^{(0)})^\top, \nabla J(\mathbf{x}^{(1)})^\top, \dots, \nabla J(\mathbf{x}^{(k)})^\top) \subset \mathbb{R}^n$$

For $k \in \mathbb{N}$, we note:

$$G_k = \mathcal{L}(\nabla J(\mathbf{x}^{(0)})^\top, \nabla J(\mathbf{x}^{(1)})^\top, \dots, \nabla J(\mathbf{x}^{(k)})^\top) \subset \mathbb{R}^n$$

Conjugate gradients aims to find $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + G_k$ such that

$$J(\mathbf{x}^{k+1}) = \min_{v \in \mathbf{x}^{(k)} + G_k} J(v)$$

For $k \in \mathbb{N}$, we note:

$$G_k = \mathcal{L}(\nabla J(\mathbf{x}^{(0)})^\top, \nabla J(\mathbf{x}^{(1)})^\top, \dots, \nabla J(\mathbf{x}^{(k)})^\top) \subset \mathbb{R}^n$$

Conjugate gradients aims to find $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + G_k$ such that

$$J(\mathbf{x}^{k+1}) = \min_{v \in \mathbf{x}^{(k)} + G_k} J(v)$$

We therefore minimize in a larger space than in the optimal step gradient method. We then expect to find the minimum more quickly.

Conjugate Gradient Algorithm for quadratic function.

Step 1: We set k = 0 and choose $\mathbf{x}^{(0)} \in \mathbb{R}^n$. $d^{(0)} = \nabla I(\mathbf{x}^{(0)})^\top := \mathbf{A} \mathbf{x}^{(0)} - \mathbf{b}$.

Step 2: If $\nabla J(\mathbf{x}^{(k)})^{\top} = 0$ then Stop. The optimal solution is $\mathbf{x}^{(k)}$. Else go to Step 3.

Step 3: We set

$$\rho_k = -\frac{\left\langle \nabla J(\mathbf{x}^{(k)})^\top, d^{(k)} \right\rangle}{\left\langle \mathbf{A} d^{(k)}, d^{(k)} \right\rangle}$$
$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \rho_k d^{(k)}$$
$$\beta_k = \frac{\| \nabla J(\mathbf{x}^{(k+1)})^\top \|^2}{\| \nabla J(\mathbf{x}^{(k)})^\top \|^2}$$
$$d^{(k+1)} = \nabla J(\mathbf{x}^{(k+1)})^\top + \beta_k d^{(k)}$$

 $k \leftarrow k + 1$, Go to Step 2.

Let $J: \mathbb{R}^2 \mapsto \mathbb{R}$ be such that

$$J(x_1, x_2) = \frac{1}{2}(x_1^2 + x_2^2)$$

and
$$x^{(0)} = (1,1)$$
.