Personalized Marketing with Latent Confounders

Leo Guelman

RBC Royal Bank

Inspiration for Personalized Marketing

- Personalization is founded on the premise that individuals have heterogenous response to actions.
- Personalization algorithms aim to improve decision-making by identifying and exploiting this heterogeneity.

Patients Effect | Thorapy | Thorapy

One Treatment Fits All

Personalized Treatments

Estimating Treatment Effects: Non-Personalized Paradigm

A/B Tests are 'gold standard' in the One-Treatment-Fits-All paradigm because they remove the influence of unobserved confounders (variables that influence both the treatment and the outcome).

Estimating Treatment Effects: Non-Personalized Paradigm

A/B Tests are 'gold standard' in the One-Treatment-Fits-All paradigm because they remove the influence of unobserved confounders (variables that influence both the treatment and the outcome).

Estimating Treatment Effects: Personalized Paradigm

- In the presence of unobserved confounders (most plausible scenario), experimental data is likely not 'gold standard' for estimating heterogenous treatment effects.
- A coherent fusion of experimental and observational data that results from a counterfactual-based decision criterion is likely to outperform other approaches.
- In what follows, I'll use a Personalized Marketing problem as a motivating example to discuss the statements above.

The Business Setting

- Business objective: Sell a credit card to new-to-RBC clients.
- Current campaign: One-Treatment-Fits-All paradigm. All new-to-RBC clients who visited the RBC public site, get a credit card offer + iPad incentive.

• Future campaign: Personalize the incentive. Identify which new-to-RBC clients should receive an iPad incentive in the future to maximize the expected profitability of the campaign.

Data Generating Process

Figure: 'True' Causal Graph (current campaign).

Data Generating Process

Figure: 'True' Causal Graph (current campaign).

$$P(m,r) = 0.25 \ \forall \ m \in M, r \in R$$

 $V := M \oplus R$
 $I := V$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
/ = 1	0.25	0.50	0.45	0.05
I = 0	0.50	0.10	0.05	0.30

Table: $E[\pi|M,R,I]$. Highlighted cells reflect (new-to-RBC) client's 'natural' choice to visit the Public site or not.

Four Approaches to Personalizing the Incentive

DS #1: Empirical Decision Criterion (EDC)

Associational Inference

$$EDC \to \underset{I \in 0,1}{\operatorname{argmax}} E[\pi|I, M]$$

DS #1: Empirical Decision Criterion (EDC)

Associational Inference

$$EDC \to \operatorname*{argmax}_{I \in [0,1]} E[\pi|I,M]$$

$$E[\pi|I=1, M=1] = 0.25$$

 $E[\pi|I=0, M=1] = 0.05$
 $E[\pi|I=1, M=0] = 0.05$
 $E[\pi|I=0, M=0] = 0.10$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M, R, I]$.

DS #1: Empirical Decision Criterion (EDC)

Associational Inference

$$\mathsf{EDC} \to \operatorname*{argmax}_{I \in [0,1]} E[\pi|I,M]$$

$$E[\pi|I=1, M=1] = 0.25$$

$$E[\pi|I=0, M=1]=0.05$$

$$E[\pi|I=1, M=0] = 0.05$$

$$E[\pi|I=0, M=0] = 0.10$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
1	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

Decision Rule:

- If Visit Site \land Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.25$
- If Visit Site \land Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.30$

Expected profit =
$$\boxed{0.275}$$
 = $(0.25+0.30)/2$.

DS #2: Post-Visit Randomization (PVR)

Interventional Inference

Figure: Causal DAG with post-visit randomization.

DS #2: Post-Visit Randomization (PVR) - cont'd

Interventional Inference

$$\mathsf{PVR} \to \operatorname*{argmax}_{I \in 0,1} E[\pi|do(I), M, V = 1]$$

DS #2: Post-Visit Randomization (PVR) - cont'd

Interventional Inference

$$\mathsf{PVR} \to \operatorname*{argmax}_{I \in 0,1} E[\pi | do(I), M, V = 1]$$

$$E[\pi|do(I=1), M=1, V=1] = 0.25$$

 $E[\pi|do(I=0), M=1, V=1] = 0.50$
 $E[\pi|do(I=1), M=0, V=1] = 0.05$
 $E[\pi|do(I=0), M=0, V=1] = 0.30$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

DS #2: Post-Visit Randomization (PVR) - cont'd

Interventional Inference

$$\mathsf{PVR} \to \operatorname*{argmax}_{I \in 0,1} E[\pi|do(I), M, V = 1]$$

$$E[\pi|do(I=1), M=1, V=1] = 0.25$$

 $E[\pi|do(I=0), M=1, V=1] = 0.50$
 $E[\pi|do(I=1), M=0, V=1] = 0.05$
 $E[\pi|do(I=0), M=0, V=1] = 0.30$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
= 1 = 0	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

Decision Rule:

- If Visit Site \land Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.50$
- If Visit Site \wedge Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.30$

Expected profit =
$$\boxed{0.40}$$
 = $(0.50+0.30)/2$.

DS #3: A/B Test on All New-to-RBC Clients

Interventional Inference

Figure: Causal DAG with A/B Test on all New-to-RBC clients.

DS #3: A/B Test on All New-to-RBC Clients - cont'd

Interventional Inference

$$\mathsf{ABT} \to \operatorname*{argmax}_{I \in 0,1} E[\pi|do(I), M]$$

$$E[\pi|do(I=1), M=1] = 0.350 = (0.25 + 0.45)/2$$

$$E[\pi|do(I=0), M=1] = 0.275 = (0.50 + 0.05)/2$$

$$E[\pi|do(I=1), M=0] = 0.275 = (0.50 + 0.05)/2$$

$$E[\pi|do(I=0), M=0] = 0.200 = (0.10 + 0.30)/2$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
/ = 1 / = 0	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

DS #3: A/B Test on All New-to-RBC Clients - cont'd

Interventional Inference

$$\mathsf{ABT} \to \operatorname*{argmax}_{I \in 0,1} E[\pi|do(I), M]$$

$$\begin{split} E[\pi|do(I=1), M=1] &= 0.350 = (0.25 + 0.45)/2 \\ E[\pi|do(I=0), M=1] &= 0.275 = (0.50 + 0.05)/2 \\ E[\pi|do(I=1), M=0] &= 0.275 = (0.50 + 0.05)/2 \\ E[\pi|do(I=0), M=0] &= 0.200 = (0.10 + 0.30)/2 \end{split}$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
/ = 1	0.25	0.50	0.45	0.05
I = 0	0.50	0.10	0.05	0.30

Table: $E[\pi|M,R,I]$.

Decision Rule:

- If Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.35$
- If Not Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.275$

Expected profit = $\boxed{0.315}$ = (0.35+0.275)/2.

DS #4: Regret Decision Criterion (RDC)

Counterfactual Inference

$$\mathsf{RDC} \to \operatorname*{argmax}_{a' \in \ 0,1} E[\pi_{a'} | I = a, M]$$

DS #4: Regret Decision Criterion (RDC)

Counterfactual Inference

$$\mathsf{RDC} \to \operatorname*{argmax}_{a' \in \ 0,1} E[\pi_{a'} | I = a, M]$$

$$P(\pi_{a'}, M) = P(\pi_{a'}, M, a') + P(\pi_{a'}, M, a)$$

$$= P(\pi_{a'} | M, a') P(M, a') + P(\pi_{a'} | M, a) P(M, a)$$

$$P(\pi_{a'} | M) = P(\pi_{a'} | M, a') P(a' | M) + P(\pi_{a'} | M, a) P(a | M)$$

$$= P(\pi | M, a') P(a' | M) + P(\pi_{a'} | M, a) P(a | M) \text{ (Consistency)}$$

$$P(\pi_{a'} | M, a) = \frac{1}{P(a | M)} \left[P(\pi_{a'} | M) - P(\pi | M, a') P(a' | M) \right]$$

$$= \underbrace{\frac{1}{P(a | M)} \left[P(\pi_{a'} | M, a') P(a' | M) \right]}_{\text{observational}}$$

DS #4: Regret Decision Criterion (RDC) - cont'd

Counterfactual Inference

$$P(\pi_{I=1}|M=1,I=0)$$

$$\frac{1}{P(I=0|M=1)} \Big[P\Big(\pi|M=1, do(I=1)\Big) - P(\pi|M=1, I=1) P(I=1|M=1) \Big].$$

$$= \frac{1}{1/2} (0.350 - 0.25 \times \frac{1}{1/2}) = \mathbf{0.45}$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
/ = 1 / = 0	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

$$P(\pi_{I=1}|M=0, I=0) = 0.50$$

$$P(\pi_{I=0}|M=1,I=1) = 0.50$$

$$P(\pi_{I=0}|M=0,I=1) = 0.30$$

Table: $E[\pi|M,R,I]$.

DS #4: Regret Decision Criterion (RDC) - cont'd

Counterfactual Inference

$$P(\pi_{I=1}|M=1, I=0)$$

$$\begin{split} \frac{1}{P(I=0|M=1)} \Big[P\Big(\pi|M=1, do(I=1)\Big) - \\ P(\pi|M=1, I=1) P(I=1|M=1) \Big]. \\ &= \frac{1}{1/2} (0.350 - 0.25 \times \frac{1}{1/2}) = \textbf{0.45} \end{split}$$

	R = 0		R = 1	
	M = 1	M = 0	M = 1	M = 0
= 1 = 0	0.25 0.50	0.50 0.10	0.45 0.05	0.05 0.30

Table: $E[\pi|M,R,I]$.

$$P(\pi_{I=1}|M=0,I=0) = 0.50$$

$$P(\pi_{I=0}|M=1,I=1) = 0.50$$

$$P(\pi_{I=0}|M=0, I=1) = 0.30$$

Decision Rule:

- If Visit Site \land Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.50$
- If Visit Site \wedge Not Married \rightarrow No Purchase Incentive \rightarrow $E[\pi] = 0.30$
- If Not Visit Site \wedge Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.45$
- If Not Visit Site \land Not Married \rightarrow Purchase Incentive \rightarrow $E[\pi] = 0.50$

Expected profit = |0.4375| = (0.50 + 0.30 + 0.45 + 0.50)/4

Summary of Methods

Criterion	Decision Rule	<i>E</i> [π]
EDC		.2750
	 If Visit Site ∧ Married → Purchase Incentive 	
	• If Visit Site \wedge Not Married \rightarrow No Purchase Incentive	
PVR	Never Purchase Incentive	.4000
ABT	Always Purchase Incentive	.3150
RDC		.4375
	 If Visit Site ∧ Married → No Purchase Incentive 	
	• If Visit Site \wedge Not Married \rightarrow No Purchase Incentive	
	• If Not Visit Site \wedge Married \rightarrow Purchase Incentive	
	• If Not Visit Site \wedge Not Married \rightarrow Purchase Incentive	
Oracle		.4375

Remarks

- If the goal is to learn personalized actions, experimental data alone is sub-optimal in the presence of unobserved confounders.
- Combining experimental and observational data under a Regret Decision Criterion (RDC) can provide information about the unobserved confounders, and hence outperform alternative optimization criteria.
- The expression derived from RDC works only in the binary treatment case.
 RDC-type randomization (Forney et al., 2017) was proposed to estimate counterfactual expressions empirically from an arbitrary number of treatments.

References

- Elias Bareinboim, Andrew Forney, and Judea Pearl. 2015. Bandits with unobserved confounders: a causal approach. In Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1 (NIPS'15).
 - ► Implementation: https://github.com/leoguelman/mabuc
- Forney, A., Pearl, J.; Bareinboim, E.. (2017). Counterfactual Data-Fusion for Online Reinforcement Learners. Proceedings of the 34th International Conference on Machine Learning, in Proceedings of Machine Learning Research 70:1156-1164