

Coarse-grained simulations of the DNA nanopiston

Supervisor: Prof. E. Carlon Affiliation (optional)

Tutor: (optional) Affiliation (optional)

fulfillment of the requirements for the degree of Master of Science in Physics

© Copyright by KU Leuven Without written permission of the promoters and the authors it is forbidden to reproduce or adapt in any form or by any means any part of this publication. Requests for obtaining the right to reproduce or utilize parts of this publication should be addressed to KU Leuven, Faculteit Wetenschappen, Geel Huis, Kasteelpark Arenberg 11 bus 2100, 3001 Leuven (Heverlee), Telephone +32 16 32 14 01. A written permission of the promoter is also required to use the methods, products, schematics and programs described in this work for industrial or commercial use, and for submitting this publication in scientific contests.

Abstract

abstract

Vulgariserende Samenvatting

Summary in dutch. ___asdf

Summary in Layman's Terms

Summary in english.

List of Figures

List of Tables

Contents

Ab	ostract	i
Vu	Ilgariserende Samenvattings	iii
Su	mmary in Laymans's Terms	v
Lis	et of Figures	ix
Lis	et of Tables	хi
Со	ontents	xiii
1	Introduction1.1 Deoxyribonucleic Acid1.2 Polymer Physics1.3 Computer Simulations	1 2 2 2
2	nano pore	3
3	Rotaxane 3.1 Mixed Rotaxane	5
4	hybrydisation	7
5	Conclusions and Perspectives	9
Α	First appendix	11
Bil	bliography	13
Ac	knowledgements	15

CHAPTER 1

Introduction

...if we were to name the most powerful assumption of all, which leads one on and on in an attempt to understand life, it is that all things are made of atoms, and that everything that living things do can be understood in terms of the jigglings and wigglings of atoms.

— Richard P. Feynman, The Feynman Lectures on Physics²

1.1 Deoxyribonucleic Acid

1.2 Polymer Physics

1.3 Computer Simulations

1.3.1 Molecular Dynamics

- understanding many body - newtons algorithm - insight in the dynamics -> simulate trajectories - recent developments in techniques to simulate trajectories of rare event -increased computational power

1.3.2 Coarse Grained modelling

CHAPTER 2

nano pore

asldfkasdflj

Rotaxane

3.1 Mixed Rotaxane

3.1.1 Diffusion approximation

Studying the dynamics of the mixed rotaxane highlighted the importance of entropic interactions between the nano pore and the DNA strand. Here we observed that a fully double stranded DNA polymer represented a special case. The uniformity of the $\mathcal X$ histogram corresponding to this 0 nt mixed rotaxane suggests a free diffusive motion of the rotaxane in a bounded one-dimensional domain. This isotropic behaviour was previously also observed in the bead-spring simulations by Bayoumi et al. 1

$$\langle \Delta x^2 \rangle \simeq 2nDt.$$

$$\frac{\partial \psi}{\partial t} = D \frac{\partial^2 \psi}{\partial x^2}, P(x,t) = f(x)g(t)$$

Reflecting boundary conditions $j=-D\frac{\partial\psi}{\partial x}=0$. Current vanishes at the boundaries

$$t: \quad \dot{g} = -\alpha g(t) \Rightarrow g(t) = e^{-\alpha t}$$

$$x: \quad D\ddot{f} = -\alpha f(x) \Rightarrow f(x) = A\sin(Kx) + B\cos(Kx)$$

= $B\cos(\frac{\pi nx}{L})$

$$\frac{\alpha}{D} = \frac{\pi^2 n^2}{L^2}$$

The general solution is given by the linear combination,

$$\psi(x,t) = \sum_{n=0}^{+\infty} C_n \cos\left(\frac{\pi nx}{L}\right) e^{-\frac{D\pi^2 n^2}{L^2}t}$$

$$= \frac{1}{L} \left\{ 1 + \sum_{n=1}^{+\infty} \cos\left(\frac{\pi nx_0}{L}\right) \cos\left(\frac{\pi nx}{L}\right) e^{-\frac{D\pi^2 n^2}{L^2}t} \right\}$$

$$\langle \Delta x^2 \rangle = \langle (x - x_0)^2 \rangle$$

As expected, the mean squared distances saturates to $\langle \Delta x^2 \rangle = L^2/6$ in the long-time limit $t \gg L^2/D$.

 $=\frac{L^2}{6}\left(1-\frac{96}{\pi^4}\sum_{n=0}^{+\infty}\frac{1}{(2k+1)^4}e^{-\frac{D(2k+1)^2\pi^2}{L^2}t}\right)$

HAPTER 4

hybrydisation

asldfkasdflj

Conclusions and Perspectives

5.0.1 asdf

APPENDIX A

First appendix

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea

dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Autonomous and active transport operated by an entropic dna piston. Nano Letters, 21(1):762–768. PMID: 33342212.

Bibliography

[2] Feynman, Richard P. (Richard Phillips), .-. (c1963). The Feynman lectures on physics. Reading, Mass.: Addison-Wesley Pub. Co., c1963-1965. Vol. 2 has subtitle: The electromagnetic field; 3 has subtitle: Quantum mechanics.; Includes bibliographical references and indexes.

[1] Bayoumi, M., Nomidis, S. K., Willems, K., Carlon, E., and Maglia, G. (2021).

Acknowledgements

• • •

DEPARTEMENT NATUURKUNDE EN STERRENKUNDE

Celestijnenlaan 200d bus 2412
3000 LEUVEN, BELGIË
tel. + 32 16 32 71 24
fys.kuleuven.be