Corrigé Exercice 1 : LIAISONS ÉLÉMENTAIRES.

Question 1 : Compléter le tableau ci-dessous. Pour la <u>géométrie du contact</u>, indiquer soit contact ponctuel, soit contact linéique rectiligne (ligne droite) ou linéique annulaire (suivant un cercle), soit contact surfacique plan ou cylindrique ou sphérique.

Pour les <u>schémas</u>, représenter en 2 couleurs les symboles normalisés

	7 54	ur ies <u>scriemas</u> , representer en 2 ca	Validité	symboles m	Ormanses	Représentation	Représentation 2D
\vec{z}	Géométrie du contact	Forme générale du Torseur cinématique	de la forme générale du Torseur	Degrés de liberté	Nom	3D Z X X	\vec{z} \vec{z} \vec{z} \vec{z} \vec{z}
	Surfacique cylindrique	$ \left\{ \begin{array}{ll} \omega_{X,2/1} & V_{X,A \in 2/1} \\ 0 & 0 \\ 0 & 0 \end{array} \right\} $	Tout point A de l'axe	2	Pivot glissant d'axe (O, \vec{x})		•
	Surfacique cylindrique + Surfacique plan	$ \begin{cases} \omega_{x,2/1} & 0 \\ 0 & 0 \\ 0 & 0 \end{cases} $	Tout point A de l'axe	1	Pivot d'axe (O, \vec{x})		
		$\begin{cases} \omega_{x,2/1} & \pm \omega_{x,2/1}.\frac{p}{2\pi} \\ 0 & 0 \\ 0 & 0 \end{cases}$ $\frac{2\pi \to \pm p}{\theta \to x} \Rightarrow x = \pm \theta.\frac{p}{2\pi} \Rightarrow v_x = \pm \omega_x.\frac{p}{2\pi}$ Pas à droite + et pas à gauche -	Tout point A de l'axe	1	Hélicoïdale d'axe $\left(O, \vec{x} \right)$ et de pas p		
	Surfacique sphérique	$\begin{cases} \omega_{x,2/1} & 0 \\ \omega_{y,2/1} & 0 \\ \omega_{z,2/1} & 0 \end{cases}$	Seuleme nt en O	3	Rotule de centre O		
2	Surfacique sphérique + linéique rectiligne	$\begin{cases} \omega_{x,2/1} & 0 \\ 0 & 0 \\ \omega_{z,2/1} & 0 \end{cases}$	Seuleme nt en O	2	Rotule à doigt de centre O et de rotation interdite (O, \vec{y})		
Contract of the contract of th	Linéique annulaire	$\begin{cases} \omega_{x,2/1} & v_{x,O \in 2/1} \\ \omega_{y,2/1} & 0 \\ \omega_{z,2/1} & 0 \end{cases}$	Seuleme nt en O	4	Linéaire annulaire de centre O et de direction \vec{X}		
	Plusieurs surfaciques plans	$\begin{cases} 0 & v_{x,A \in 2/1} \\ 0 & 0 \\ 0 & 0 \end{cases}$	Tout point A de l'espace	1	Glissière de direction \vec{X}		\times
	Surfacique plan	$ \begin{cases} 0 & v_{x,A \in 2/1} \\ 0 & v_{y,A \in 2/1} \\ \omega_{z,2/1} & 0 \end{cases} $	Tout point A de l'espace	3	Appui plan de normale \vec{z}		_
	Linéique rectiligne	$\begin{cases} \omega_{x,2/1} & v_{x,A \in 2/1} \\ 0 & v_{y,A \in 2/1} \\ \omega_{z,2/1} & 0 \end{cases}$	Tout point A du plan	4	Linéaire rectiligne de ligne de contact $\left(O, \vec{x}\right)$ et de normale \vec{z}		+ -
9	Ponctuel	$\begin{cases} \omega_{x,2/1} & \forall_{x,A \in 2/1} \\ \omega_{y,2/1} & \forall_{y,A \in 2/1} \\ \omega_{z,2/1} & 0 \end{cases}$	Tout point A de la normale (O,z)	5	Ponctuelle de point de contact O et de normale Z		

Corrigé Exercice 2 : LIAISONS COMPOSÉES.

Question 1 : Compléter la désignation des liaisons dans le tableau suivant : NB : Le centre de la liaison de gauche sera nommé le point A et celui de la liaison de droite le point B.

	Schéma	Liaison à gauche	Liaison à droite	Liaison équivalente
		Rotule de centre A	Linéaire annulaire de centre B et de direction \vec{x}	Pivot d'axe (A, \vec{x})
		Pivot glissant d'axe (A, x)	Ponctuelle de point de contact B et de normale \vec{x}	Pivot d'axe (A, \vec{x})
y ♠		Pivot glissant d'axe (A, y)	Ponctuelle de point de contact B et de normale z	Glissière de direction \vec{y}
\vec{z} \vec{x}	4	Ponctuelle de point de contact A et de normale ÿ	Linéaire rectiligne de ligne de contact (B, z) et de normale ÿ	Appui plan de normale ÿ
		Rotule de centre A	Linéaire rectiligne de ligne de contact (B, z) et de normale ÿ	Pivot d'axe (A, \vec{y})
		Linéaire annulaire de centre A et de direction z	Linéaire rectiligne de ligne de contact (B, z) et de normale y	Liaison non normalisée
		Appui plan de normale ÿ	Linéaire annulaire de centre B et de direction y	Pivot d'axe (B, \vec{y})
	Q	Pivot d'axe (A, z)	Linéaire annulaire de centre B et de direction \vec{x}	Encastrement
→ ÿ		Linéaire rectiligne de ligne de contact (A, z) et de normale y	Ponctuelle de point de contact B et de normale ÿ	Appui plan de normale ÿ
Z X		Rotule de centre A	Linéaire rectiligne de ligne de contact (B, z) et de normale y	Pivot d'axe (A, \vec{y})
		Pivot glissant d'axe (A, z̄)	Ponctuelle de point de contact B et de normale ÿ	Glissière de direction \vec{z}

Corrigé Exercice 3 : CAPTEUR PNEUMATIQUE.

Question 1 : Indiquer le repère des pièces sur la perspective éclatée du dessin d'ensemble.

Question 2 : Repérer et colorier chaque classe d'équivalence cinématique (CEC) :

En noir: $A = \{1, 4, 9, 10, 11, 12, 13\}$

En bleu: $B = \{2, 3\}$ En vert: $C = \{5\}$

En rouge: $D = \{6\}$ Pièces déformables: $\{7, 8\}$

Question 3 : Réaliser le graphe de liaison.

Question 4 : Réaliser le schéma cinématique dans le plan (O, x, y).

Question 5 : Réaliser le schéma cinématique en perspective en prenant la même orientation que celle cidessous.

NB : Un trait parallèle à un axe dans une vue plane, doit être parallèle à ce même axe dans la perspective.

Corrigé Exercice 4 : SCIE SAUTEUSE.

Question 1 : Repérer et colorier chaque classe d'équivalence cinématique (CEC) :

En noir: $A = \{1, 2, 3, 4, 5\}$ En bleu: $B = \{6, 7, 14\}$

En jaune: $C = \{8\}$

En rouge: $D = \{9, 10, 11, 12, 13\}$

Question 2 : Réaliser le graphe de liaison.

Question 3 : Réaliser le schéma cinématique dans le plan (O, x, y).

Question 4 : Réaliser le schéma cinématique en perspective en positionnant les axes comme :

NB : Un trait parallèle à un axe dans une vue plane, doit être parallèle à ce même axe dans la perspective.