

Winning Space Race with Data Science

<Name> <Date>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodology
 - Launch Data is gathered from the SpaceX REST API including web scrapping from a Wiki page and data wrangling
 - Exploratory data analysis (EDA) using visualization and SQL including interactive visual analytics (Folium and Plotly Dash)
 - Predictive analysis using ML classification models including model building, tuning and performance evaluation of the classification models
- Summary of all results
 - A Decision Tree classifier has the highest accuracy of the tested models (88.9 accuracy on the test data

Introduction

In this capstone project for *the Applied Data Science Capstone* module, we will predict if the Falcon 9 first stage will land successfully. This has a direct application on determining the cost of a launch by knowing if the first stage will land

All the process is detailed from collecting the data, wrangling, analysing and machine learning building to final conclusions

Methodology

Executive Summary

- Data collection methodology:
 - SpaceX Launch Data is gathered from the SpaceX REST API
 - Web scrapping from a Wiki page is performed to collect Falcon 9 historical launch records
- Perform data wrangling
 - · Describe how data was processed
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- SpaceX Launch Data is gathered from the SpaceX REST API
 - Data about launches: rocket used, payload delivered, launch specifications, landing specifications, and landing outcome.
- Wrangling Data using an API to convert data (json) into a pandas Dataframe
 - Data = pd.json_normalize(response.json())
- Web scraping is performed to obtain Falcon 9 Launch data
 - Python BeautifulSoup package is used for web scraping HTML tables (wiki pages) with Falcon 9 launch records.

Data Collection – SpaceX API

- Helper functions are used to extract API information using identification numbers
- Data is requested from the URL (endpoint):
 - https://api.spacexdata.com/v4/launches/past
- Data is requested and parsed using the GET request (response = requests.get(url))
 - Response content is decoded as Json and turned into padas DF (.json_normalize())
- Only Falcon 9 launches data is kept
- Data wrangling using an API is also used to target targeting another endpoint to gather specific data for each ID number
 - the mean of PayloadMass is used to replace np.nan values in the data (*replace()* function)

Data Collection - Scraping

GitHub Link <u>here</u>

DataFrame

- Flight No
- Launch site
- Payload
- Payload mass
- Orbit
- Customer
- Launch outcome
- Version Booster
- Booster landing
- Date
- Time

- Web scrapping from a Wiki page is performed using Python's BeautifulSoup
 - to collect Falcon 9 historical launch records
 - Table is parsed and converted into a pandas DF
- https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=1027686922

- There are 17 different attributes in the Data Set
 - Numerical and categorical columns

FlightNumber Date BoosterVersion PayloadMass Orbit LaunchSite Flights	int64	Reused	bool
	object	Legs	bool
	object	LandingPad	object
	float64	Block	float64
	object	ReusedCount	int64
	object	Serial	object
	int64	Longitude	float64
GridFins	bool	Latitude	float64

- Missing values are identified for each attribute
- There are 3 types of launches for each site with different counts and 11 types of orbits

CCAFS SLC 40	55
KSC LC 39A	22
VAFB SLC 4E	13

True ASDS	41
None None	19
True RTLS	14
False ASDS	6
True Ocean	5
False Ocean	2
None ASDS	2
False RTLS	1

• The Outcome indicates if the first stage successfully landed. There are 8 of them

True ASDS	41
None None	19
True RTLS	14
False ASDS	6
True Ocean	5
False Ocean	2
None ASDS	2
False RTLS	1

- The Landing Outcomes are converted to Classes
 - O: bad outcome, the booster did not land.
 - 1: good outcome, the booster did land.
 - This is the classification variable that represents the outcome of each launch (66.6% of success rate)

EDA with Data Visualization

- Following charts were plotted
 - FlightNumber vs. PayloadMass
 - FlightNumber vs. LauchSite
 - Payload mass vs. LauchSite
 - Success rate vs. Orbit type
 - FlightNumber vs. Orbit type
 - Payload mass vs. Orbit type
 - Launch success yearly trend
- These are done to evaluate relationships between variables and with between variables and the outcome

EDA with SQL

- Following information was retrieved using SQL queries
 - Unique launch sites names in the space mission
 - 5 records where lauch sites name begin with the string 'CCA'
 - Total payload mass carried by boosters NASA (CRS)
 - Average payload mass carried by booster F9 v1.1
 - Date when the first successful landing outcome in ground pad was achieved
 - Boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
 - Total number of successful and failure mission outcomes
 - Booster versions which have carried the maximum payload mass

Build an Interactive Map with Folium

- For each Launch site, a circle marker is added into the map (folium.Circle and folium.Marker)
 - All launch sites are very close in proximity to the coast and relatively close to the Equator line (CCAFS LC-40, CCAFS SLC-40 and KSC LC-39A being the closest in Florida
- Markers are classified for all launch records:
 - Successful launch (class=1), a green marker is used; failed launch (class=0), a red marker is used
- For each launch result, a folium.Marker to marker_cluster is added
 - Marker clusters are used to simplify a map containing many markers with the same coordinates
- Proximities of launch sites are explored and analyzed:
 - MousePosition is added on the map to get coordinates for a mouse over a point on the map
 - PolyLine are added between a launch site to the selected points of interests (city, railway, highway)
 - Markers with distances are also added
 - Launch sites in Florida are close to highways, railways and coastlines but further apart from a major city (70 km from Orlando)

Build a Dashboard with Plotly Dash

- A dashboard completed so it can be used to analyze SpaceX launch data
 - It contains input components which allow to interact with a pie chart and a scatter point chart
- Launch Site Drop-down Input Component
 - To select one specific site and check its detailed success rate (class=0 vs. class=1)
- A callback function to render success-pie-chart based on selected site dropdown
 - To get the selected launch site from site-dropdown and render a pie chart visualizing launch success count
- Add a Range Slider to Select Payload
 - To easily select different payload range and see if some visual patterns can be identified
- Add a callback function to render the success-payload-scatter-chart scatter plot
 - To observe how payload may be correlated with mission outcomes for selected site(s)

Predictive Analysis (Classification)

GitHub Link <u>here</u>

- For the Predictive Analysis, a ML (machine learning) pipeline is built
 - The goal is to predict if the first stage of the Falcon 9 lands successfully
 - Scikit-learn Python library is used to preprocess the data

Standarize data
 Datasets splits
 Train

The model is trained and a Grid Search is performed

Confusion Matrix

Different ML algorithms are tested

- Logistic regression (LR)
- Support Vector Machine (SVM)
- Decision Tree Classifier (DT)
- K-nearest Neighbours (K-NN)

With these parameters we determine the model with the best accuracy using the test set

We find the best hyperparameters

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

- For the three launch sites, as Flight Number increases, the success rate also increases
- VAFB-SLC-4 has the highest success rate with the smallest number of flights

Payload vs. Launch Site

- For the VAFB-SLC launchsite there are no rockets launched for heavy payload mass (greater than 10000 Kg)
 - 96% and 86% of launches are below the 10,000 Kg mark for CCAFS-SLC and VAFB-SLC respectively

Success Rate vs. Orbit Type

- SSO has 100% success rate, with 5 launches (count)
 - Three orbits (ES-L1, GEO, HEO) have a 100% success rate, but with only one launch
- Orbits with highest number of launches are GTO and ISS (27 and 21), with 52% and 62% success rates, respectively

Flight Number vs. Orbit Type

- For LEO orbit the success appears related to the number of flights;
- No clear relationship between flight number and other orbits

Payload vs. Orbit Type

• LEO and ISS orbits show increasing number of success landing with heavier payloads

Launch Success Yearly Trend

- The success rate has been increasing since 2013
 - Except between 2017 and 2018 and between 2019 and 2020

All Launch Site Names

- There are 4 different Launch Sites
 - CCAFS SLC-40 has the higher count, VAFB the lowest

Launch Site Names Begin with 'CCA'

5 records where Launch sites begin with the string "CCA"

Total Payload Mass

• The total Payload Mass carried by boosters launched by NASA (CRS) is 45,596 Kg

```
%%sql

SELECT SUM("PAYLOAD_MASS__KG_") AS "Total Mass"
FROM SPACEXTBL
WHERE "Customer" IS 'NASA (CRS)'

* sqlite://my_datal.db
Done.
Total Mass

45596
```

Average Payload Mass by F9 v1.1

Average Payload Mass carried by booster version F9 v1.1 is 2,534.67 Kg

```
%%sql

SELECT AVG("PAYLOAD_MASS__KG_") AS "Avg Mass"
FROM SPACEXTBL
WHERE "Booster_Version" LIKE '%F9 v1.1%'

* sqlite://my_data1.db
Done.

Avg Mass

2534.66666666666665
```

First Successful Ground Landing Date

• The first successful landing outcome in ground pad was achieved in 22/12/2015

Successful Drone Ship Landing with Payload between 4000 and 6000

• These are the names of the boosters which have success in drone ship and have payload mass between 4,000 and 5,000 Kg

Total Number of Successful and Failure Mission Outcomes

- This is the total number of successful and failure mission outcomes
 - 100 success (3 types) and 1 failure

Boosters Carried Maximum Payload

• These are the booster versions which have carried the maximum payload mass (15,600 Kg)

(Booster Version), Pa
ASS_KG_ = (SELECT M
_data1.db
PAYLOAD_MASSKG_
15600
15600
15600
15600
15600
15600
15600
15600
15600
15600
15600
15600

2015 Launch Records

- These are the records for failure landing outcomes in drone ship versions for 2015
 - Displaying month and year

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- This is the rank of successful landing_outcomes between the date 04-06-2010 and 20-03-2017
 - in descending order

```
%%sql

SELECT "Landing _Outcome", COUNT("Landing _Outcome") AS "Count"
FROM SPACEXTBL
WHERE "Landing _Outcome" LIKE "%Success%" AND "Date" BETWEEN "2010-06-04" AND "2022-03-20"
GROUP BY "Landing _Outcome"

* sqlite:///my_data1.db
Done.

Landing _Outcome Count

Success 38

Success (drone ship) 14

Success (ground pad) 9
```


Folium Map Screenshot 1: Launch Sites on the map

All Launch sites are situated in two main locations:

Folium Map Screenshot 2: success/failed launches for each site

Folium Map Screenshot 3: distances between a launch site to its proximities

CCAFS LC-40 and CCAFS SLC-40 Launch sites are located 0.9 Km to the coastline and 75Km to a major city (Orlando)

Dashboard Screenshot 1: launch success count for all sites

KSC LC-39A Launch Site has the highest count of success launches (41.7%)

Dashboard Screenshot 2: launch site with highest launch success ratio

KSC LC-39A Launch Site has the highest launch success ratio (76.9%)

Dashboard Screenshot 3: Payload vs. Launch Outcome

KSC LC-39A Launch Site has the highest number of successful launches with 10 against 3 unsuccessful (all FT)

Classification Accuracy

The Decision Tree classifier has the highest accuracy of the models (test data set)

Confusion Matrix

This is the Confusion Matrix for the Decision Tree classifier:

- From the 18 test samples (test dataset):
 - Out of 6 labelled as "did not land"
 - 3 were classified as "did not land" (true negative)
 - 3 were classified as "landed" (false negative)
 - Out of 12 labelled as "landed"
 - 0 were classified as "did not land" (false positive)
 - 12 were classified as "landed" (true positive)

Conclusions

- Following are the key conclusions from this project
 - The Decision Tree classifier has the highest accuracy of the models with 88.9% on the test data
 - For the three launch sites, as Flight Number increases, the success rate also increases
 - Orbits with highest number of launches are GTO and ISS (27 and 21), with 52% and 62% success rates, respectively
 - KSC LC-39A Launch Site has the highest launch success ratio (76.9%)
 - The success rate on the launches has been increasing since 2013
 - All Launch sites are situated in two main locations
 - Launch sites are located close to the coastline

Appendix

- All Jupiter Notebooks containing code, SQL queries, charts and data sets created during this project are available at Github following the link below
 - https://github.com/mjbaldomir/Capstone_IBMDS

