Amendments to the Claims

This listing of the claims will replace all prior versions and listings of the claims in this application.

Listing of the Claims

Please amend the claims as follows:

- 1. (Cancelled)
- 2. (Cancelled)
- (Currently Amended) A compound of formula I according to claim 1 wherein said compound is selected from the group consisting of:
 - 4,8-dimethyl-2,3,4,9,10,11-hexahydro-1,6-dioxa-4,13-diaza-8-azonia-pentacen chloride; 8-ethyl-4-methyl-2,3,4,9,10,11-hexahydro-1,6-dioxa-4,13-diaza-8-azonia-pentacen chloride;
 - 4,8-dimethyl-3,8,9,10-tetrahydro-2H-1,6,11-trioxa-8,13-diaza-4-azonia-pentacen tetrafluoroborate:
 - 4,8-dimethyl-2,3,9,10-tetrahydro-4H-1,6-dioxa-11-thia-4,13-diaza-8-azonia-pentacen chloride: and
 - 8-(3-ethoxycarbonyl-propyl)-4-methyl-3,8,9,10-tetrahydro-2H-1,6,11-trioxa-8,13-diaza-4-azonia-pentacen chloride

in free base form or acid addition salt form.

- (Currently Amended) A composition comprising a compound according to <u>claim 3of claim 1</u> and a pharmaceutically acceptable excipient or diluent.
- (Currently Amended) A process for the production of a compound according to claim 3of
 formula 1 or a salt thereof, comprising the steps of reacting a phenol derivative of formula
 III

wherein the radicals and symbols A, X, R₁, R₂, R₅, R₆, R₁₄ and o have the <u>following meanings</u>: as defined in claim 1 for a compound of formula I,

p represents 0 or 1;

A represents (CR₃R₄)₀;

X represents CH, CH2 or a divalent or trivalent heteroatom.:

o represents 0 or 1;

R₁₇ represents hydrogen or (C₁₋₄)alkyl;

R₅, R₁₅ and R₁₆ are independently of each other hydrogen, (C₁₋₄)alkyl, (C₁₋₄)alkoxy, R₁₇OC(O)-(C₁₋₄)alkyl or (reactive group)-(C₁₋₄)alkyl;

R₆ and R₁₄ denote independently of each other hydrogen, halogen, (C₁₋₄)alkyl, (C₁₋₄) 4)alkylSO₂, SO₃H, carboxy, (C₁₋₄)alkoxy carbonyl, (C₁₋₄)alkoxy, OH or NR₁₅R₁₆, and

 R_1 and R_2 denote independently of each other hydrogen, $(C_{1:4})$ alkyl, carboxy, $(C_{1:4})$ alkoxy carbonyl or $(C_{1:4})$ alkoxy, or, when X is CH or CH_2 then R_1 and R_2 can also be OH or NR_1 5 R_1 6;

with a nitroso or diazo compound of formula IV

wherein the radicals and symbols Q, Y, R₇, R₈, R₁₁, R₁₂, R₁₃ and m have the <u>following meanings:</u> as defined in claim 1 for a compound of formula 1,

n represents 0 or 1:

O represents (CR₀R₁₀)_n;

Y represents CH, CH2 or a divalent or trivalent heteroatom;

m represents 0 or 1;

R₁₇ represents hydrogen or (C₁₋₄)alkyl;

- R₈, R₁₅ and R₁₆ are independently of each other hydrogen, (C₁₋₄)alkyl, (C₁₋₄)alkoxy, R₁₇OC(O)-(C₁₋₄)alkyl or (reactive group)-(C₁₋₄)alkyl;
- R₂ and R₁₃ denote independently of each other hydrogen, halogen, (C₁₋₄)alkyl, (C₁₋₄)alkylSO₂, SO₃H, carboxy, (C₁₋₄)alkoxy carbonyl, (C₁₋₄)alkoxy, OH or NR₁₅R₁₆;
- $$\begin{split} &R_{11} \text{ and } R_{12} \text{ denote independently of each other hydrogen, } (C_{1-4})\text{alkyl, } \text{ carboxy, } (C_{1-4})\text{alkoxy} \\ &\text{ carbonyl or } (C_{1-4})\text{alkoxy, } \text{ or, } \text{ when } Y \text{ is } \text{CH or } \text{CH}_2 \text{ then } R_{11}, R_{12} \text{ can also be } \text{OH or } \\ &NR_{15}R_{16}; \text{ and} \end{split}$$
- R₁₈ represents oxo or p-nitrophenyl-N= and R₁₉ represents hydroxy; and recovering the resulting compound of formula I in free base form or in form of an acid addition salt,
- (Withdrawn Currently Amended) A method of labeling target structures in the brain comprising:
- (i) applying a composition comprising a compound according to claim 3-of formula I

wherein X and Y represent CH, CH₂ or a divalent or trivalent heteroatom under the proviso that

X and Y are not simultaneously CH or CH₂:

- m and o represent independently of each other 0 or 1, with the proviso that
- if m is 0 then the dotted line between Y and the neighboring C atom represents a bond and Y is CH or a trivalent heteroatom.
- if m is 1 then the dotted line between Y and the neighboring C atom is absent and Y is CH₂ or a divalent heteroatom.
- if o is 0 then the dotted line between X and the neighboring C atom represents a bond and X is CH or a trivalent heteroatom.

— if o is 1 then the dotted line between X and the neighboring C atom is absent and X is CH₂ or a divalent heteroatom:

A represents (CR3R4)p and Q represents (CR3R10)n;

n and p represent independently of each other 0 or 1;

 R_6 , R_2 , R_{+3} , and R_{+4} denote independently of each other hydrogen, halogen, (C_{++}) alkyl, (C_{+-}) alkyl, (C_{++}) alkovy, (C_{++}) al

R₄, R₃, R₄, R₉, R₄₆, R₁₄ and R₁₂ denote independently of each other hydrogen, (C₁₋₄)alkyl, earboxy, (C₁₋₄)alkoxy carbonyl or (C₁₋₄)alkoxy, or, when X is CH or CH₂ then R₁ and R₂ ean also be OH or NR₁₆R₁₆, or when Y is CH or CH₂ then R₁₄, R₁₂ can also be OH or NR₁₅R₁₆;

 R_{57} , R_{87} , R_{47} and R_{16} are independently of each other hydrogen, (C_{1-4}) alkyl, (C_{1-4}) alkoxy, R_{12} OC(O)— (C_{1-4}) alkyl or (reactive group) (C_{1-4}) alkyl; and

R₁₇ represents hydrogen or (C₁₋₄)alkyl;

in free base or acid addition salt form, or

of formula II

wherein

 R_{67} , R_{137} , and R_{14} denote independently of each other hydrogen, halogen, (C_{1-a}) alkyl, (C_{1-a}) alkyl, (C_{1-a}) alkoxy, (C_{1-a}) alkoxy, (

Rad and Rad are hydrogen, (Cadalkyl, (Cadalkoxy, phenyl, phenylalkyl, carboxy or halogen;

R₁₄ and R_{2a} together with the carbon atoms to which they are attached can also form a saturated or unsaturated ring;

R₂₊ and R₁₊ together with the carbon atoms to which they are attached can also form a saturated or unsaturated ring:

R₅, R₈, R₂₀ and R₂₂ are hydrogen, (C₁₋₄)alkyl, (C1-4)alkoxy, polyoxyhydrocarbyl, phenyl, phenylalkyl:

- Rs. and Rsw together with the nitrogen atom to which they are attached can form a saturated or unsaturated ring.
- R_{2a} and R₅ together with the nitrogen atom to which they are attached can form a saturated or unsaturated ring.
- $R_{2\hat{a}}$ and $R_{2\hat{a}}$ together with the atoms to which they are attached can form a saturated or unsaturated ring.
- R_{δ} -together with R_{δ} -together with the atoms to which they are attached can form a saturated or unsaturated ring.
- R₂-together with R₃-together with the atoms to which they are attached can form a saturated or unsaturated ring.
- R₂₄-together with R₂₄-together with the atoms to which they are attached can form a saturated or unsaturated ring;
- (ii) allowing sufficient time for said compound to be chemically associated with the target structure in the brain, and
- (iii) detecting said compound using near-infrared radiation.
- (Withdrawn Currently Amended) The method according to claim 6 wherein said target structures <u>comprise</u> [[are]] amyloid plaques.
- (Withdrawn Currently Amended) The method according to claim 7, further comprising [[for]] identifying diseases related to amyloid plaque generation and/or aggregation.
- (Withdrawn Currently Amended) The method according to claim 7, <u>further comprising</u>
 [[for]] identifying Alzheimer's disease.
- 10. (Cancelled)
- 11. (Cancelled)
- 12. (Cancelled)

- (Withdrawn Currently Amended) A conjugate comprising a compound of formula I
 according to claim 3[[1]] covalently linked to a biomolecule through a reactive group.
- 14. (Withdrawn) A conjugate according to claim 13 wherein the biomolecule is selected from the group consisting of nucleoside, nucleotide, oligonucleotide, nucleic acid, protein, peptide, amino acid, polysaccharide, oligosaccharide, monosaccharide, drug or a small molecule having a molecular weight of less than 500.
- (Withdrawn) A conjugate according to claim 13 capable of being detected using nearinfrared radiation
- (New) A compound according to claim 3, wherein the compound is 4,8-dimethyl-2,3,4,9,10,11-hexahydro-1,6-dioxa-4,13-diaza-8-azonia-pentacen chloride.
- (New) A compound according to claim 3, wherein the compound is 8-ethyl-4-methyl-2,3,4,9,10,11-hexahydro-1,6-dioxa-4,13-diaza-8-azonia-pentacen chloride.
- (New) A compound according to claim 3, wherein the compound is 4,8-dimethyl-3,8,9,10tetrahydro-2H-1,6,11-trioxa-8,13-diaza-4-azonia-pentacen tetrafluoroborate.
- (New) A compound according to claim 3, wherein the compound is 4,8-dimethyl-2,3,9,10tetrahydro-4H-1,6-dioxa-11-thia-4,13-diaza-8-azonia-pentacen chloride.
- (New) A compound according to claim 3, wherein the compound is 8-(3-ethoxycarbonylpropyl)-4-methyl-3,8,9,10-tetrahydro-2H-1,6,11-trioxa-8,13-diaza-4-azonia-pentacen chloride.