KEIL 分散加载说明

1. 将.c 文件加载到指定位置

要实现 keil 下的分散加载,需要修改.sct 文件,本工程要实现将 hw_config.c 文件加载到 0x08002000 起始位置,本工程的的.sct 文件为 "ScatterLoading\Project\KEIL\MDK-ARM\ Project.sct"。 打开如下:

```
. ********************
*** Scatter-Loading Description File generated by uVision ***
LR IROM1 0x08000000 0x00002000 { ; load region size region
  ER_IROM1 0x08000000 0x00002000 { ; load address = execution address
   *. o (RESET, +First)
   *(InRoot$$Sections)
  }
  RW_IRAM1 0x20000000 0x00002000 { ; RW data
   . ANY (+RW +ZI)
  }
}
 LR IROM2 0x08002000 0x0000050 {
   ER_IROM2 0x08002000 0x0000050 {;将 hw_config.c 文件分散加载到 0x08002000 以后的区域
   hw_config.o (+RO)
  }
 }
 LR_IROM3 0x0800dfb0 0x0000040 {
   ER_IROM3 0x0800dfb0 0x0000040 { ;将 main.c 中 delay()函数定义为 section "delay",然后分
                                     散加载到 0x0800dfb0 以后的区域
  main.o (delay)
 }
 LR_IROM4 0x08002050 0x000dfb0 {
   ER_IROM4 0x08002050 0x000dfb0 { ; load address = execution address
   .ANY (+RO)
  }
 }
```

红色部分为实现分散加载所添加部分, 想要实现将 hw_config.c 加载到 0x08002000 起始位置只需要在

sct 文件中加入以下代码即可:

```
LR_IROM2 0x08002000 0x0000050 {
    ER_IROM2 0x08002000 0x0000050 { ; 将 hw_config.c 文件分散加载到 0x08002000 以后 的区域 hw_config.o (+RO) }
}
```

2. keil 中添加上面修改的 sct 文件

3. 将函数加载到指定位置

本工程实现的是将 main.c 文件中的 delay 函数加载到 0x0800dfb0 起始位置。

1、 在.sct 文件中加入以下代码:

```
}

2、在函数的定义处添加__attribute__((section("delay"))),具体代码如下:
    void delay(void)__attribute__((section("delay")));
    void delay(void)
    {
        for(i=0;i<0xffff;i++);
    }
```

4. 将数组加载到指定位置

5. 结果

打开 "ScatterLoading\Project\KEIL\MDK-ARM\ list\Project.map" 文件,如下:

Execution Region ER IROM4	(Base: 0x08002050	, Size: 0x000094a0	, Max: 0x0000dfb0	, ABSOLUTE) S
---------------------------	-------------------	--------------------	-------------------	---------------

	gron_br_rronn	_ \Dabc.	0110000	Loco, Diffe.		rooograpo, imbonoin,
Base_Addr	Size	Type	Attr	Idx	E Section Name	Object\$
0x08002050	0x00000024	Code	RO	237	.text	startup_gd32f1x0.o\$
0x08002074	0x00000084	Code	RO	155	i.SystemInit	system_gd32f1x0.o\$
0x080020f8	0x00000054	Code	RO	3681	i.gd eval led init	gd32f1x0 eval.o\$
0x0800214c	0x00000024	Code	RO	3684	i.gd_eval_led_togo	gle gd32f1x0_eval.o\$
0x08002170	0x0000004e	Code	RO	1419	i.gpio_mode_set	gd32f1x0_gpio.o\$
0x080021be	0x00000042	Code	RO	1421	i.gpio_output_opti	ions_set gd32f1x0_gpio.o
0x08002200	0x00000018	Code	RO	126	i.main	main.o\$
0x08002218	0x00000014	Code	RO	1704	i.nvic vector tabl	le set gd32f1x0 misc.o\$
0x0800222c	0x00000020	Code	RO	1876	i.rcu_periph_clock	k_enable gd32f1x0_rcu.o\$
0x0800224c	0x000000a0	Code	RO	156	i.system_clock_72m	m_hxtal system_gd32f1x0.c
0x080022ec	0x00000008	Code	RO	157	i.system_clock_cor	nfig system_gd32f1x0.o\$
0x080022f4	0x00000d0c	PAD\$				
0x08003000	0x000084f0	Data	RO	111	.ARM. AT 0x080030	000 const-data.o