Базовые понятия

Фазовое пространство — совокупность всех начальных точек X или всех возможных состояний системы. Фазовая траектория — кривая в фазовом пространстве, составленная из точек, представляющих состояние динамической системы в последовательные моменты времени в течение всего времени эволюции.

Эволюция системы соответствует движению изображающей точки у фазовой плоскости вдоль траектории $\Gamma = \bigcup_t G^t X_0$. Для динамической системы с непрерывным временем траектории— непрерывные кривые для динамической системы с дискретным временем, траектория— дискретные, подмножество фазовой плоскости.

Динамическая система с непрерывным временем задается системой дифференциальных уравнений $\dot{x}=F(x)$. Она позволяет найти состояние в любой момент времени по начальному состоянию. Если правая часть явно от времени не зависит, то динамическая система - автономная, иначе - не автономная.

Динамическая система с дискретным временем: x(n+1) = F(x(n)).

1 Определение динамической системы

Рассмотрим систему, состояние которой определяется вектором $x(t) \in R^n$. Предположим, что эволюция системы определяется одно-параметрическим семейством операторов G^t , $t \in R$ или $t \in Z$, таких, что состояние системы в момент t: $x(t, x_0 = G^t x_0)$ где x_0 – начальное состояние (начальная точка). Предположим также, что эволюционные операторы удовлетворяют двум следующим свойствам, отражающим детерминистический характер описываемых процессов.

Первое свойство: G^0 – тождественный оператор, т.е. $x(0,x_0) = x_0$, для любых x_0 . Это свойство означает, что состояние системы не может изменяться самопроизвольно.

Второе свойство эволюционных операторов имеет вид: $x(t_1 + t_2, x_0) = x(t_1, x(t_2, x_0)) = x(t_2, x(t_1, x_0))$ Согласно ему, система приходит в одно и то же финальное состояние независимо от того, достигается ли оно за один временной интервал $t_1 + t_2$, или за несколько последовательных интервалов t_1 и t_2 , суммарно равных $t_1 + t_2$.

Совокупность всех начальных точек или всех возможных состояний системы называется фазовым пространством, а пара (X, G^t) , где семейство эволюционных операторов удовлетворяют условиям выше — динамической системой (ΠC) .

Иначе говоря, динамическая система — объект или процесс, для которого однозначно определено понятие состояния, как совокупности некоторых величин в данный момент времени и задан закон эволюции начального состояния с течением времени. По этому закону можно прогнозировать будущее состояние динамической системы.

2 Условия грубости динамических систем на плоскости

Так как динамические системы изменяются вместе со входящими в них параметрами, но при малости изменений качественные черты поведения сохраняются, вводится свойства грубости. Грубость — устойчивость структуры разбиения фазовой плоскости динамических систем на траектории по отношению к малым изменениям динамической системы. Для плоскости: пусть есть система:

$$\int \dot{x} = P(x, y)$$

$$\dot{y} = Q(x, y)$$

где P и Q - гладкие функции, система диссипативна.

Система — грубая, если существует число $\delta>0,$ что все динамические системы вида:

$$\begin{cases} \dot{x} = P(x, y) + p(x, y) \\ \vdots \\ \vdots \\ \end{cases}$$

$$\dot{y} = Q(x, y) + q(x, y)$$

в которых аналитические функции удовлетворяют условию $|p(x,y)| + |q(x,y)| + \left|\frac{\partial p}{\partial x}\right| + \left|\frac{\partial q}{\partial x}\right|$

 $\left| \frac{\partial p}{\partial y} \right| + \left| \frac{\partial q}{\partial y} \right| < \delta$, имеют такую же структуру разбиения на положительные полутраектории, что и начальная система.

Переход от одной грубой ДС к другой происходит через негрубую ДС.

ДС на прямой устойчива (структурно грубая), если для всех состоянии равновесия $\lambda_i(\mu) \neq 0$.

3 Бифуркация состояний равновесия динамических систем на прямой

Значение параметра, при котором ДС является негрубой, называется бифуркационным.

- 4 Метод линеаризации определения устойчивости состояний равновесия
- 5 Линейный осциллятор. Основные свойства

6 Резонанс в линейном осцилляторе

Резонанс — неограниченное возрастание амплитуды вынужденных колебаний, когда частота внешней силы близка к собственной частоте, линейного осциллятора.

1. Консервативный случай (без потери энергии)

$$W$$
 - не диссипирует. $a=\frac{F_0}{|\omega_0{}^2-\omega^2|}$ - амплитуда вынужденных колебаний переменной $\mathbf{x}(\mathbf{t})$.

При резонансе измерение переменных во времени - непереодическое: $x(t) = t \frac{F_0}{2\mu_0} sin(\omega_0 t)$

2. Диссипативный случай (с потерями энергии)

$$a_{max} \to \omega_{max} < \omega_0, \quad \omega_{max} = \sqrt{\omega_0^2 - 2\delta^2}, \quad a_{max} = \frac{F_0}{2\delta\sqrt{\omega_0^2 - 2\delta^2}}, \quad \delta \uparrow a_{max} \downarrow$$

Характеристики резонансных свойств

Добротность -
$$Q = \frac{\pi}{d} = \frac{\omega_0}{2\delta}$$

Логарифмический коэффициент затухания - $d = \delta T = \frac{2\pi\delta}{\omega}$

7 Определение предельного цикла. Характеристики

Предельный цикл — замкнутая изолированная фазовая траектория. Замкнутая фазовая траектория называется изолированный, если существует достаточно малое кольцеобразная окрестность этой траектории, внутри которой нет других замкнутых траекторий. Предельному циклу соответствует периодический процесс.

8 Автоколебания и автоколебательная система. Мягкий и жесткий режимы возбуждения

Автоколебательная система — диссипативная система, совершающая незатухающие колебания при отсутствии колебательного воздействия извне. В этих системах возникает баланс между действиями диссипативных потерь и внутренних механизмов, компенсирующих потери. Автоколебания — незатухающие колебания в нелинейной диссипативной системе, форма и свойства которых в определенных пределах не зависит от начальных условий и определяется параметрами самой системы.

1. Мягкий режим

 $\gamma < 0$ - автоколебаний нет, $\gamma = 0$ - суперкритическая бифуркация Андронова-Хопфа ($\lambda_i < 0$), $\gamma > 0$ - неустойчивое состояние равновесия + появление одного устойчивого предельного цикла на фазовой плоскости. $\gamma \uparrow A \uparrow$

Состояние равновесия $\gamma = 0$ - безопасная граница устойчивости, то есть при ее нарушении система переходят в качественно новое состояние, но не покидает при $0 < \gamma \ll 1$ окрестности предыдущего состояния. 2. Жесткий режим

Свойства автоколебательных систем

- Ж Источник энергии для компенсации диссипации постоянен и находится внутри самой системы
- * Система содержит колебательную подсистему и активный нелинейный элемент
- * В изолированной колебательной системе происходят затухающие колебательные процессы, а активный элемент может усиливать колебания и их нелинейно ограничивать
- * Между колебательной подсистемой активным элементом существует обратная связь, регулирующая поступление энергии от источника
- * Автоколебания в определенных пределах не зависят от начальных условиях и определяются
- * Математическим образом периодических автоколебаний является предельной цикл

9 Бифуркационные сценарии рождения периодических движений динамических систем на плос-

,	Значение параметра	μ < 0	$\mu = 0$	$\mu > 0$
Бифуркация		Фазовые портреты		
I	Андронова-Хопфа	(a)		
	Двукратный предельный цикл (седло-узловая циклов)	O		
II	Петля сепаратрис седла (седловая гомоклиническая бифуркация)			
	Петля сепаратрис седло-узла (седло-узловая гомоклиническая бифуркация)			

10 Дисперсия, ее физическая природа и проявления

Дисперсия — зависимость фазовой скорости волны от ее частоты. Связь между частотой и волновым числом гармонической волны определяется пространственными и временными масштабами среды и называется дисперсионным соотношением.

$$\omega^2 = {\omega_0}^2 + \frac{4\gamma}{m} sin^2(\frac{ka}{A})$$
 a - расстояние между маятниками

 γ - жесткость пружины

 \dot{k} - действительное волновое число

 У каждой компоненты волнового пакета будет своя V_{Φ} , возникает его деформация. Наличием собственных масштабов объясняется эффект частичного непропускания волны Область прозрачности: $k \in Re$ - распространение без искажения гармонической волны Область непрозрачности: $k \in Im$ - нераспространение.

11 Простые волны. Основные свойства и условия существования

 $U_t + \dot{C}(U)U_x = 0$ — нелинейное уравнение простой волны. C(U)— дифференцируемая функция (скорость от состояния среды). Характеристики — линии, вдоль которых переменная U(x,t) будет оставаться постоянной и равной по значению для каждого соответствующего значения x. В точке пересечения характеристик их значения одинаковы — появится точка разрыва (производная равна infty) - градиентная катастрофа. На переднем фронте образуется ударная волна. Уравнение перестает работать после точки разрыва.

12 Параметрические системы. Основные свойства

Параметрически системы — системы, где внешнее воздействие находится внутри системы и может изменять ее параметры.

Резонансные. Период изменения параметров находится в целочисленном соотношении с периодом собственных колебаний. В такт с изменением энергии, соответствующей собственным колебаниям, вносится энергия, вызванная работой внешнего воздействия. При определенных условиях может привести к эффекту раскачки колебаний за счет накапливающейся в системе энергии.

Hepesohahchie. Параметры изменяются очень быстро или очень медленно в сравнении с характерными временными масштабами изменения переменных системы.

Свойства

- 1. Параметрическая система, находящаяся в начальный момент в состоянии равновесия, останется в этом состоянии при t>0 (дергая за нитку, маятник нельзя раскачать)
- 2. Состояния равновесия параметрической системы могут быть как устойчивы, так и неустойчивы 3. Если параметры системы таковы, что она неустойчива и система выведена из состояния равновесия, то в ней возникают колебания, амплитуда которых $\uparrow exp$. Процесс возрастания размаха в колебаний при периодическом нарастании колебаний параметрический резонанс.
- 13 Релаксационные колебания
- 14 Локальные бифуркации состояний равновесия трехмерных систем
- 15 Локальные бифуркации периодических движений трехмерных систем