A posse ad esse non valet cosequentia

1.	Условная вероят	гность $P(A \mid$	B)	для	независимых	событий	равна
----	-----------------	-------------------	----	-----	-------------	---------	-------

1) $\frac{P(A)}{P(B)}$	$2) P(A) \cdot P(B)$	3) $\frac{P(A \cup B)}{P(B)}$	4) $\frac{P(B)}{P(A \cap B)}$	5) $P(A)$	Ответ:

2. События A и B называются независимыми, если

1) $P(A \cup B) = P(A) + P(B)$	Ответ:
$2) P(A) \cdot P(B) = P(A \cap B)$	
3) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
4) $P(A \cap B) = 0$	
5) нет верного	

3. Вероятность опечатки в одном символе равна 0.01. Событие A — в слове из 5 букв будет 2 опечатки. Вероятность P(A) примерно равняется

1) 0.0001	2) 0.001	3) 0.0004	4) 0.004	5) 0.04	Ответ:

4. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар, пусть X — число вынутых черных шаров. Величина $\mathrm{E}(X)$ равняется

1) 1	2) 0.5	3) 2/3	4) $2/5$	5) 1/5	Ответ:

5. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар, пусть X — число вынутых черных шаров. Величина $\mathrm{Var}(X)$ равняется

1) 6/25	2) 1/25	3) 2/5	4) 2/3	5) 2/25	Ответ:
, ,	, ,	, ,	, ,	, ,	

6. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар и откладывается в сторону, затем вынимается еще один шар. Событие A — второй шар — черный. Вероятность $\mathrm{P}(A)$ равняется

1) 6/95	2) 1/25	2) 2/5	4) 9/9	E) 2/2E	Отрот
1) 0/20	2) 1/20	3) 2/3	4) 2/3	3) 2/23	Ответ.

7. Если f(x) — функция плотности, то $\int_{-\infty}^{+\infty} f(u) \, du$ равен

1) 0 2) 1	3) E(X)	4) $Var(X)$	5) F(x)	Ответ:
-----------	---------	-------------	---------	--------

8. Если f(x) — функция плотности, то $\int_{-\infty}^x f(u) \, du$ равен

1) 0	2) 1	3) E(X)	4) $Var(X)$	5) F(x)	Ответ:

9. Если случайная величина X нормальна N(0,1) и F(x) — это ее функция распределения, то F(4) примерно равняется

1) 0	9) 0.95	0) 0 5	4) 0 75	F\ 1	
1 1 1 (1	1 / 1 11 / 3	131115	1/11/11/5	1 51 1	Ответ:
1 1 / 0	4 / 0.40	0,0.0	4/0.10	1 0 / 1	OIDCI.
/	,	,	,	,	

10	Дисперсия Vai	c(X) считает	ся по формуле			
20.	1) $E^{2}(X)$ 2) $E(X^{2})$ 3) $E(X^{2}) + E^{2}$ 4) $E(X^{2}) - E^{2}$ 5) $E^{2}(X) - E^{2}$	$^{2}(X)$ $^{2}(X)$	оп по формуло		Ответ:	
11.	Дисперсия раз	вности случаі	йных величин .	X и Y вычисля	ется по формуле	
	$4) \operatorname{Var}(X - Y)$		\ /	v(X,Y)	Ответ:	
12.	Известно, что $Var(2X + 3)$ ра		$(Y) = 2, \operatorname{Var}(X)$	$V(Y) = 4, \operatorname{Var}(Y) = 4$	$= 9, \operatorname{Corr}(X, Y) =$	0.5. Дисперсия
	1) 16	2) 8	3) 11	4) 4	5) 19	Ответ:
13.	Известно, что $Cov(X,Y)$ рав. 1) 0.5		$(Y) = 2, \operatorname{Var}(X)$	T(X) = 4, Var(Y) = 4	$= 9, \operatorname{Corr}(X, Y) = $	0.5. Дисперсия
14.	Известно, что $Corr(2X + 3, 1$			T(Y) = 4, $Var(Y) = 4$	= 9, $Corr(X, Y) =$	0.5. Дисперсия
	1) 1	2) -1	3) -0.5	4) 0.5	5) 0	Ответ:
15.	Совместная фу 1) $P(X \le x)/2$ 2) $P(X \le x) \cdot 3$ 3) $P(X \le x)/2$ 4) $P(X \le x, Y)/2$ 5) $P(X \le x)/2$	$P(Y \le y)$ $P(Y \le y)$ $Y \le y)$ $Y \le y)$	ределения $F(x,$	у) двух случай	ных величин Х и	Y это
16.		кцию плотно			ги $a(x)$, и случайн совместной функ	
	1) $f(x,y) = a$ 2) $f(x,y) = a$ 3) $f(x,y) = a$ 4) $f(x,y) = a$ 5) $f(x,y) = a$	$(x)/b(y) (x)b(y)/(a(x)) (x) \cdot b(y)$	+b(y))		Ответ:	
17.	Случайные вел $Z = X - 2Y$ из			и стандартно	нормально распре	еделены. Тогда

4) N(0,2)

5) U[0;2]

Ответ:

3) N(0,1)

1) N(0,1)

2) t_2

٥.	$Z_1, Z_2,, Z_n \sim$	N(0,1). Тогда в	величина $\frac{2}{\sqrt{\sum_{i=1}^{n}}}$	$\frac{Z_1}{Z_1 = 3} \frac{Z_2}{Z_i/n}$ имеет расі	гределение	
	1) $N(0,1)$	$2) t_n$	$(3) F_{1,n-2}$	$4) \chi_n^2$	$5) t_{n-2}$	Ответ:
١.	Если случайна $Z=X^2$ имеет		гандартно нор	мально распреде	лена, то случай	ная величин
	1) $N(1;0)$	(2) N(0;1)	3) $F_{1,1}$	4) t ₂	5) χ_1^2	Ответ:
	, , ,	, , , ,	, 1,1		7 701	
١.		$, X_n$ независи тремится по рас		рно распределен	ы $U[-\sqrt{3},\sqrt{3}]$ то	о при $n \to 0$
	1) вырождени 2) $U[-\sqrt{3}, \sqrt{3}]$ 3) $U[0;1]$ 4) $N(0,1)$ 5) $N(0,3)$	P(X = 0)	= 1		Ответ:	
	Если X_i незави распределение	исимы и имеют	нормальное ра	аспределение $N(\zeta)$	$\mu;\sigma^2)$, to $\sqrt{n}(\bar{X})$	$-\mu)/\hat{\sigma}$ име
	1) $N(0;1)$	$(2) t_{n-1}$	$3) \chi_{n-1}^2$	4) $N(\mu; \sigma^2)$	5) нет верно-	Ответ:
					го ответа	
	1) $E(\hat{\theta}_n) = \theta$ 2) $Var(\hat{\theta}_n) \rightarrow \theta$ 3) $P(\hat{\theta}_n - \theta > \theta)$ 4) $E(\hat{\theta}_n) \rightarrow \theta$ 5) $Var(\hat{\theta}_n) \ge Var(\hat{\theta}_n) \ge \theta$	(>t) o 0 для все	ex t		Ответ:	
3.				зке $[0;2a]$. Извес одом моментов н	v _	
	1) 1	2) 5	3) 10	4) 20	5) нет верного ответа	Ответ:
				для дисперсии г атистика, имеюш		
	1) $N(0;1)$	$(2) t_{n-1}$	$(3) \chi_{n-1}^2$	4) χ_n^2	$5) t_n$	Ответ:
ó.		у. Реализация 90		0 ответили, что н ного интервала д		
	1) [0.4;0.6]	2) [0.45;0.55]	3) [0.3;0.7]	4) [0.49;0.51]	5) [0.48;0.52]	Ответ:

26.	При построении доверительного интервала для отношения дисперсий по двум независи-
	мым нормальным выборкам из n наблюдений каждая, используется статистика, имеющая
	распределение

1) $F_{n-1,n-1}$	$(2) t_{n-1}$	3) χ_{n-1}^2	$4) \chi_n^2$	$5) t_n$	Ответ:

27. Функция правдоподобия, построенная по случайной выборке X_1,\dots,X_n из распределения с функцией плотности $f(x)=(\theta+1)x^\theta$ при $x\in[0;1]$ имеет вид

1) $(\theta+1)x^{n\theta}$	$2) \sum (\theta+1)x_i^{\theta}$	$(\theta+1)^{\sum x_i}$	4) $(\sum x_i)^{\theta}$	5)	Ответ:
				$(\theta+1)^n \prod x_i^{\theta}$	

28. Если P-значение меньше уровня значимости α , то гипотеза H_0 : $\mu=\mu_0$

1) отвергается	Ответ:
2) не отвергается	
(3) отвергается только если H_a : $\mu \neq \mu_0$	
(4) отвергается только если H_a : $\mu < \mu_0$	
5) недостаточно информации	

29. Смещенной оценкой математического ожидания по выборке независимых, одинаково распределенных случайных величин $X_1,\,X_2,\,X_3$ является оценка

1) $(X_1 + X_2)/2$	Ответ:
$(2) (X_1 + X_2 + X_3)/3$	
3) $0.7X_1 + 0.2X_2 + 0.1X_3$	
4) $0.3X_1 + 0.3X_2 + 0.3X_3$	
$(5) X_1 + X_2 - X_3$	

30. Ошибкой первого рода является

1) Принятие неверной гипотезы	Ответ:
2) Отвержение основной гипотезы, когда она верна	
3) Отвержение альтернативной гипотезы, когда она верна	
4) Отказ от принятия любого решения	
5) Необходимость пересдачи ТВ и МС	

Accesio cedit principali

1.	Дисперсия	разности	случайных	величин	X	и Ү	вычисляется по	формуле
----	-----------	----------	-----------	---------	---	-----	----------------	---------

1) $\operatorname{Var}(X - Y) = \operatorname{Var}(X) - \operatorname{Var}(Y) + 2\operatorname{Cov}(X, Y)$	Ответ:
2) $\operatorname{Var}(X - Y) = \operatorname{Var}(X) - \operatorname{Var}(Y) - 2\operatorname{Cov}(X, Y)$	
3) $Var(X - Y) = Var(X) - Var(Y)$	
4) $Var(X - Y) = Var(X) + Var(Y)$	
5) $\operatorname{Var}(X - Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{Cov}(X, Y)$	

2. Если случайная величина X, имеющая функцию плотности a(x), и случайная величина Y, имеющая функцию плотности b(y), независимы, то для их совместной функции плотности f(x,y) справедливо

1) f(x,y) = a(x) + b(y)	Ответ:
2) f(x,y) = a(x)/b(y)	
3) $f(x,y) = a(x) \cdot b(y)$	
4) $f(x,y) = \mathrm{E}(a(X)b(Y))$	
5) $f(x,y) = a(x)b(y)/(a(x) + b(y))$	

3. Величины X_1, \ldots, X_5 равномерны на отрезке [0;2a]. Известно, что $\sum_{i=1}^5 x_i=25$. При использовании первого момента оценка методом моментов неизвестного a равна

1) 1	2) 5	3) 10	4) 20	5) нет верно-	Ответ:
				го ответа	

4. Если случайная величина X нормальна N(0,1) и F(x) — это ее функция распределения, то F(4) примерно равняется

1) 0	2) 0.25	3) 0.5	4) 0.75	5) 1	Ответ:

5. Вероятность опечатки в одном символе равна 0.01. Событие A — в слове из 5 букв будет 2 опечатки. Вероятность P(A) примерно равняется

1) 0.0001	2) 0.001	3) 0.0004	4) 0.004	5) 0.04	Ответ:
1) 0.0001	-) 0.00±	0,0000	1) 0.001	0) 0.01	O I DOI.

6. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар, пусть X — число вынутых черных шаров. Величина Var(X) равняется

1) 6/25 2) 1/25	3) 2/5	4) 2/3	5) 2/25	Ответ:
-----------------	--------	--------	---------	--------

7. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар и откладывается в сторону, затем вынимается еще один шар. Событие A — второй шар — черный. Вероятность $\mathrm{P}(A)$ равняется

1) 6/25	2) 1/25	3) 2/5	4) 2/3	5) 2/25	Ответ:
1 = 1 = 0 = 0	-) =/ -0	0) =/0	-/ -/ -	0) =/=0	O IDOI.

8. Известно, что $\mathrm{E}(X)=1,~\mathrm{E}(Y)=2,~\mathrm{Var}(X)=4,~\mathrm{Var}(Y)=9,~\mathrm{Corr}(X,Y)=0.5.$ Дисперсия $\mathrm{Var}(2X+3)$ равняется

1) 16	2) 8	3) 11	4) 4	5) 19	Ответ:

9.	Условная вер	ominocib i (ii	_)	iiiiiiiii p		
	1) $\frac{P(A)}{P(B)}$	$2) P(A) \cdot P(A)$	$(B) 3) \frac{P(A \cup B)}{P(B)}$	4) $\frac{P(B)}{P(A \cap B)}$	5) P(A)	Ответ:
).	Если $f(x)$ —	функция плотн	ности, то $\int_{-\infty}^{+\infty} f$	(u) du равен		
	1) 0	2) 1	3) E(X)	$4) \operatorname{Var}(X)$	5) F(x)	Ответ:
	Дисперсия V	$\operatorname{ar}(X)$ считается	я по формуле			
	1) $E^{2}(X)$ 2) $E(X^{2})$ 3) $E(X^{2}) + 1$ 4) $E(X^{2}) - 1$ 5) $E^{2}(X) - 1$	$\mathrm{E}^2(X)$			Ответ:	
2.	Известно, что $Cov(X,Y)$ ра		$(Y) = 2, \operatorname{Var}(X)$	$= 4, \operatorname{Var}(Y) = 9$, $Corr(X, Y) =$	0.5. Дисперси
	1) 0.5	2) 18	3) 3	4) 12	5) 0	Ответ:
3.	мым нормали	ьным выборкам		для отношения ий каждая, испол		
	мым нормали распределени $1) F_{n-1,n-1}$ Известно, что	ыным выборкам не $(2) t_{n-1}$ о $\mathrm{E}(X) = 1, \; \mathrm{E}(X)$	из n наблюдени $(3) \chi^2_{n-1}$ $Y) = 2, Var(X)$		ызуется статио 5 t_n	Ответ:
	мым нормали распределени $1) F_{n-1,n-1}$ Известно, что	ьным выборкам ие $2) \ t_{n-1}$	из n наблюдени $(3) \chi^2_{n-1}$ $Y) = 2, Var(X)$	ий каждая, испол $4) \; \chi_n^2$	ызуется статио 5 t_n	Ответ:
:•	мым нормали распределени 1) $F_{n-1,n-1}$ Известно, что $Corr(2X+3, 1)$ 1	ьным выборкам пе $(2) \ t_{n-1}$ о $\mathrm{E}(X) = 1, \ \mathrm{E}(X) = 1$ (1-Y) равняет (2) -1	из n наблюдени (3) χ^2_{n-1} $(Y) = 2$, $\mathrm{Var}(X)$	ий каждая, испол 4) χ_n^2 $= 4, \mathrm{Var}(Y) = 9$ $= 40.5$	ызуется статио	Стика, имеющ Ответ: 0.5. Дисперс
	мым нормали распределени 1) $F_{n-1,n-1}$ Известно, что $Corr(2X+3, 1)$ 1 Если $f(x)$ — 1) 0	ыным выборкам пе $(2) \ t_{n-1}$ о $\mathrm{E}(X) = 1, \ \mathrm{E}(X) = 1, $	из n наблюдени (3) χ^2_{n-1} $(Y) = 2$, $Var(X)$ ся (3) -0.5 ности, то $\int_{-\infty}^x f(x) dx$ (3) (3) (3) (3) (3) (3) (3)	ий каждая, испол 4) χ_n^2 $= 4, \mathrm{Var}(Y) = 9$ $= 40.5$ $= 4 0.5$	взуется статио 5) t_n , $Corr(X,Y) = 5$) 0 5) $F(x)$ х величин X и	Ответ: Ответ: Ответ: Ответ:
Į. 5.	мым нормали распределени 1) $F_{n-1,n-1}$ Известно, что $Corr(2X+3, 1)$ 1 Если $f(x)$ — 1) 0	ыным выборкам пе	из n наблюдени (3) χ^2_{n-1} $(Y) = 2$, $Var(X)$ ся (3) -0.5 ности, то $\int_{-\infty}^x f(x) dx$ (3) (3) (3) (3) (3) (3) (3)	ий каждая, испол 4) χ_n^2 $= 4, \mathrm{Var}(Y) = 9$ $4) 0.5$ $u) du \mathrm{paseh}$ $4) \mathrm{Var}(X)$	БЗУЕТСЯ СТАТИО $ = 5 $ $ = 5$	Ответ: Ответ: Ответ: Ответ:
1 .	мым нормали распределения $(1) F_{n-1,n-1}$ Известно, что $(2X + 3, 1) 1$ Если $f(x)$ — $(1) 0$ Совместная $(1) P(X \le x)$ $(2) P(X \le x)$ $(3) P(X \le x)$ $(3) P(X \le x)$ $(4) P(X \le x)$ $(5) P(X \le x)$	ыным выборкам пе	из n наблюдени (X)	ий каждая, испол 4) χ_n^2 $= 4, \mathrm{Var}(Y) = 9$ $4) 0.5$ $u) du \mathrm{paseh}$ $4) \mathrm{Var}(X)$	взуется статио $(5) t_n$, $Corr(X,Y) = (5) 0$ $(5) F(x)$ х величин $(5) F(x)$ Ответ:	Ответ: Ответ: Ответ: Ответ: Ответ: Ответ: и У это п наблюдения

4) N(0,3)

5) U[0;3]

Ответ:

3) N(0,1)

Z=2X-Y имеет распределение

2) N(0,5)

1) t_2

	.;0)	2) $N(0;1)$	3) $F_{1,1}$	$(4) t_2$	$5) \chi_1^2$	Ответ:
			вня значимост	ги α , то гипотеза		
1 (ергается				Ответ:	
/	твергае		II /			
1 ′	_	только если д только если д				
1 ′	_	но информаци				
- / - / 1		TIT				
Если <i>X</i> распред		симы и имеют	г нормальное р	распределение $N($	$\mu; \sigma^2)$, to $\sqrt{n}(\bar{X} \cdot$	$-\mu)/\hat{\sigma}$ име
1) N(0); 1)	$2) t_{n-1}$	$3) \chi_{n-1}^2$	4) $N(\mu; \sigma^2)$	5) нет верно-	Ответ:
					го ответа	
4) 0.32	_	$X_2 + 0.1X_3$ $X_2 + 0.3X_3$				
,			$\hat{ heta}_1,\hat{ heta}_2,\dots$ назын	вается состоятель	ной, если	
1) $E(\hat{\theta}_i)$					Ответ:	
	$(\hat{\theta}_n) \to 0$		oor t			
		$(t) \to 0$ для во	ex t			
_ ^		$\operatorname{var}(\hat{\theta}_{n+1})$				
4) $E(\hat{\theta}_i)$	$(U_n) - V$					
_ ^	$(o_n) \geq v$	(* 16+1)				
$\begin{array}{c} 4) \ \mathrm{E}(\hat{\theta}_{i}) \\ 5) \ \mathrm{Var} \end{array}$			величина $\sqrt{\Sigma}$	$\frac{Z_1}{\sum_{i=3}^n Z_i^2/n}$ имеет рас	пределение	
$\begin{array}{c} 4) \ \mathrm{E}(\hat{\theta}_{i}) \\ 5) \ \mathrm{Var} \end{array}$	$,Z_n \sim 1$		величина $\sqrt{\Sigma}$	<i>i</i> =3 <i>i</i> ·	пределение	Ответ:
$Z_1, Z_2,$ 1) $N(0)$ Из 100 с колад т	$,Z_n \sim 1$	N(0,1). Тогда	$ \ 3 \ F_{1,n-2} $	<i>i</i> =3 <i>i</i> ·	$5) t_{n-2}$ предпочитают м	олочный п

26. Функция правдоподобия, построенная по случайной выборке X_1,\dots,X_n из распределения с функцией плотности $f(x)=(\theta+1)x^\theta$ при $x\in[0;1]$ имеет вид

 $\begin{array}{|c|c|} \hline 5) \\ (\theta+1)^n \prod x_i^{\theta} \\ \hline \end{array}$

Ответ:

1) $(\theta + 1)x^{n\theta}$ | 2) $\sum (\theta + 1)x_i^{\theta}$ | 3) $(\theta + 1)^{\sum x_i}$ | 4) $(\sum x_i)^{\theta}$

27. Если $X_1,\,X_2,\,\dots,\,X_n$ независимы и равномерно распределены $U[-\sqrt{3},\sqrt{3}]$ то при $n\to\infty$ величина \bar{X}_n стремится по распределению к

1) $N(0,1)$	Ответ:
(2) N(0,3)	
(3) вырожденному с $P(X=0)=1$	
4) $U[-\sqrt{3}, \sqrt{3}]$	
(5) U[0;1]	

28. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар, пусть X — число вынутых черных шаров. Величина $\mathrm{E}(X)$ равняется

$1) \ 2/5$	2) 1/5	3) 1	4) 0.5	5) 2/3	Ответ:

29. События A и B называются независимыми, если

1) $P(A \cup B) = P(A) + P(B)$	Ответ:
$2) P(A) \cdot P(B) = P(A \cap B)$	
3) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
$4) P(A \cap B) = 0$	
5) нет верного	

30. Ошибкой первого рода является

1) Принятие неверной гипотезы	Ответ:
2) Отвержение основной гипотезы, когда она верна	
3) Отвержение альтернативной гипотезы, когда она верна	
4) Отказ от принятия любого решения	
5) Необходимость пересдачи ТВ и МС	

Ad cogitandum et agendum homo natus est

1. Последовательность оценок $\hat{\theta}_1,\,\hat{\theta}_2,\,\dots$ называется состоятельной, если

1) $\operatorname{Var}(\hat{\theta}_n) \ge \operatorname{Var}(\hat{\theta}_{n+1})$	Ответ:
$2) E(\hat{\theta}_n) = \theta$	
3) $\operatorname{Var}(\hat{\theta}_n) \to 0$	
$ 4) \ \mathrm{P}(\hat{ heta}_n - heta > t) o 0$ для всех t	
$5) E(\hat{\theta}_n) \to \theta$	

2. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар и откладывается в сторону, затем вынимается еще один шар. Событие A — второй шар — черный. Вероятность $\mathrm{P}(A)$ равняется

1) $2/5$	2) 2/3	$3) \ 2/25$	4) $6/25$	5) 1/25	Ответ:

3. Известно, что $\mathrm{E}(X)=1,~\mathrm{E}(Y)=2,~\mathrm{Var}(X)=4,~\mathrm{Var}(Y)=9,~\mathrm{Corr}(X,Y)=0.5.$ Дисперсия $\mathrm{Cov}(X,Y)$ равняется

1) 0 5	2) 10	2\ 2	4) 19	E) 0	Ompomi
+ 1) 0.3	4) 10	1010	4)12	1 3) 0	OTBET:
/	/	/	,	/	

4. Вероятность опечатки в одном символе равна 0.01. Событие A — в слове из 5 букв будет 2 опечатки. Вероятность P(A) примерно равняется

1) 0.0001	2) 0.001	3) 0.0004	4) 0.004	5) 0.04	Ответ:

5. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар, пусть X — число вынутых черных шаров. Величина $\mathrm{Var}(X)$ равняется

			·		
1) 6/25	2) 1/25	$3) \ 2/5$	4) 2/3	$5) \ 2/25$	Ответ:

6. Если f(x) — функция плотности, то $\int_{-\infty}^x f(u) \, du$ равен

1) 0	2) 1	3) E(X)	4) $Var(X)$	5) F(x)	Ответ:

7. Если случайная величина X нормальна N(0,1) и F(x) — это ее функция распределения, то F(4) примерно равняется

1) 0	2) 0.25	3) 0.5	4) 0.75	5) 1	Ответ:

8.	Дисперсия Var	(X) считается і	по формуле			
	$ \begin{array}{c c} 1) E^{2}(X) \\ 2) E(X^{2}) \\ 3) E(X^{2}) + E^{2} \\ 4) E(X^{2}) - E^{2} \\ 5) E^{2}(X) - E(X^{2}) \\ \end{array} $	(X)			Ответ:	
9.	Дисперсия разн	ности случайны	іх величин X і	и Y вычисляет	гся по формуле	
		$\begin{aligned} & = \operatorname{Var}(X) - \operatorname{Var}(X) \\ & = \operatorname{Var}(X) + \operatorname{Var}(X) \\ & = \operatorname{Var}(X) + \operatorname{Var}(X) \\ & = \operatorname{Var}(X) - \operatorname{Var}(X) \\ & = \operatorname{Var}(X) - \operatorname{Var}(X) \\ & = \operatorname{Var}(X) - \operatorname{Var}(X) \end{aligned}$	$\operatorname{tr}(Y)$ $\operatorname{tr}(Y) - 2\operatorname{Cov}(X)$ $\operatorname{tr}(Y) + 2\operatorname{Cov}(X)$	(X,Y)	Ответ:	
10.	В урне 3 белых число вынутых	-	- "	-	нимается один ш	ар, пусть X —
	1) 1	2) 0.5	3) 2/3	4) 2/5	5) 1/5	Ответ:
11.	Var(2X+3) pa	вняется			$9, \operatorname{Corr}(X, Y) = 0$	
	1) 16	2) 8	3) 11	4) 4	5) 19	Ответ:
12.	4) отвергается	I	$T_a: \mu \neq \mu_0$ $T_a: \mu < \mu_0$	α , то гипотез	ва H_0 : $\mu = \mu_0$ Ответ:	
13.	Известно, что 1 $Corr(2X + 3, 1 + 3)$			$=4, \operatorname{Var}(Y)=$	$9, \operatorname{Corr}(X, Y) = 0$).5. Дисперсия
	1) 1	2) -1	3) -0.5	4) 0.5	5) 0	Ответ:
14.	при неизвестно	м ожидании ис	пользуется ста	атистика, имен	и по выборке из ощая распределе	ние
	(1) N(0;1)	$(2) t_{n-1}$	3) χ_{n-1}^2	$4) \chi_n^2$	$\int 5 t_n$	Ответ:
15.	Совместная фу 1) $P(X \le x)/F$ 2) $P(X \le x) \cdot 1$ 3) $P(X \le x \mid Y)$ 4) $P(X \le x, Y)$	$P(Y \le y)$ $P(Y \le y)$ $Y \le y)$	еления $F(x,y)$	двух случайн	ых величин Х и	Y это
	$\begin{array}{c} \text{5) } P(X \leq x) + \end{array}$					

16.		ным выборкам			я дисперсий по ользуется статис	
	1) $F_{n-1,n-1}$	$2) t_{n-1}$	3) χ_{n-1}^2	4) χ_n^2	$\int 5 t_n$	Ответ:
17.	имеющая фун $f(x,y)$ справе,	кцию плотнос дливо			и $a(x)$, и случайн совместной функ	
	1) $f(x, y) = a$ 2) $f(x, y) = a$ 3) $f(x, y) = a$ 4) $f(x, y) = a$ 5) $f(x, y) = B$	b(x)/b(y) b(x)b(y)/(a(x)) $b(x) \cdot b(y)$	+b(y))		Ответ:	
18.			атического ожид пичин X_1, X_2, X_3		ке независимых, нка	одинаково рас-
	1) $(X_1 + X_2)$, 2) $(X_1 + X_2 - 3)$ 0.7 $X_1 + 0.3$ 4) 0.3 $X_1 + 0.3$ 5) $X_1 + X_2 - 3$	$(+X_3)/3$ $(2X_2 + 0.1X_3)$ $(3X_2 + 0.3X_3)$			Ответ:	
19.	Случайные ве $Z = X - 2Y$ и			и стандартно н	ормально распр	еделены. Тогда
	1) N(0,5)	2) t_2	3) N(0,1)	4) N(0,3)	5) U[0;2]	Ответ:
20.	величина \bar{X}_n о		распределению		ены $U[-\sqrt{3},\sqrt{3}]$	то при $n \to \infty$
	1) ВВРОЖДЕН 2) $U[-\sqrt{3}, \sqrt{3}]$ 3) $U[0; 1]$ 4) $N(0, 1)$ 5) $N(0, 3)$		1		OTBEI.	
21.	Условная верс	оятность $P(A)$	В) для незави	симых событий	равна	
	1) $\frac{P(A)}{P(B)}$	2) P(A)·P(A	$B) \mid 3) \mid \frac{P(A \cup B)}{P(B)}$	4) $\frac{P(B)}{P(A \cap B)}$	5) P(A)	Ответ:
22.	События A и	B называются	н независимыми	т, если		
	$(2) P(A) \cdot P(B)$				Ответ:	

Величиспол 1) 1 Из 100 колад шокол 1) [0.	ьзовании 0 случай:	первого мом 2) 5 но выбранных у. Реализация	ента оценка мет 3) 10 х человек ровно	$(4) \ N(\mu; \sigma^2)$ езке $[0; 2a]$. Изветодом моментов н $(4) \ 20$ (50) ответили, что вного интервала ,	еизвестного <i>a</i> ра 5) нет верно- го ответа предпочитают ме	вна Ответ: олочный
ИСПОЛ (1) 1 Из 100 колад шокол (1) [0.	ьзовании 0 случай 1 темному пада раві	первого мом 2) 5 но выбранных у. Реализация на:	ента оценка мет 3) 10 х человек ровно	одом моментов н 4) 20 50 ответили, что	еизвестного <i>a</i> ра 5) нет верно- го ответа предпочитают ме	вна Ответ: олочный
Из 100 колад шокол (1) [0.	ц темному пада раві	но выбранных у. Реализация на:	х человек ровно	50 ответили, что	го ответа	ОЛОЧНЫЙ
колад шокол 1) [0.	ц темному пада раві	у. Реализация на:	_		-	
, <u>t</u>	.4;0.6]	2) [0.45:0.55				121 WIOVIO 1
Функі		<u> </u>	[6] 3) [0.3;0.7]	4) [0.49;0.51]	5) [0.48;0.52]	Ответ:
				$x \in [0;1]$ имеет в $x_i \mid 4$ $(\sum x_i)^{\theta}$		Ответ:
Z_1, Z_2	$Z_1,,Z_n \sim$	N(0,1). Тогд	а величина $\frac{1}{\sqrt{\sum_{i}^{2}}}$	$\frac{Z_1}{\sum_{i=3}^n Z_i^2/n}$ имеет расп	пределение	
1) N	(0,1)	$2) t_n$	3) $F_{1,n-2}$	4) χ_n^2	5) t_{n-2}	Ответ:
			$c+\infty$	(a) da nanar		
Если 1) 0	f(x) - d	рункция плотн 2) 1		(u) au pasen $(u) Var(X)$	5) F(x)	Ответ:
1) 0 Если с	случайнғ	2) 1	3) $E(X)$, , , ,	

Fortes fortuna adjuvat

1. Совместная функция распределения F	(x,y)	двух случайных величин .	X	И	Y	ЭТО
---	-------	--------------------------	---	---	---	-----

1) $P(X \le x, Y \le y)$	Ответ:
$2) P(X \le x) + P(Y \le y)$	
3) $P(X \le x)/P(Y \le y)$	
4) $P(X \le x) \cdot P(Y \le y)$	
$5) P(X \le x \mid Y \le y)$	

2. Если случайная величина X, имеющая функцию плотности a(x), и случайная величина Y, имеющая функцию плотности b(y), независимы, то для их совместной функции плотности f(x,y) справедливо

$1) f(x,y) = a(x) \cdot b(y)$	Ответ:
2) f(x,y) = E(a(X)b(Y))	
3) f(x,y) = a(x) + b(y)	
4) f(x,y) = a(x)/b(y)	
5) $f(x,y) = a(x)b(y)/(a(x) + b(y))$	

3. Если P-значение меньше уровня значимости α , то гипотеза H_0 : $\mu=\mu_0$

1) отвергается	Ответ:
2) не отвергается	
3) отвергается только если H_a : $\mu \neq \mu_0$	
$ \ 4)$ отвергается только если H_a : $\mu < \mu_0$	
5) недостаточно информации	

4. Если случайная величина X стандартно нормально распределена, то случайная величина $Z=X^2$ имеет распределение

4) 5		2) 2	1) 37/4 0)	T) 37/0 1)	
$+1) F_{1,1}$	$\mid 2 \mid t_2 \mid$	$(3) \chi_1^2$	4) $N(1;0)$	$ \ 5) \ N(0;1)$	Ответ:
/ 1,1) · <u>2</u>	- / / 1	/ () - /	- / (- / /	_

5. Если $X_1,\,X_2,\,\dots,\,X_n$ независимы и равномерно распределены $U[-\sqrt{3},\sqrt{3}]$ то при $n\to\infty$ величина \bar{X}_n стремится по распределению к

1) $U[0;1]$	Ответ:
(2) N(0,1)	
(3) N(0,3)	
4) вырожденному с $P(X = 0) = 1$	
5) $U[-\sqrt{3},\sqrt{3}]$	

6. Смещенной оценкой математического ожидания по выборке независимых, одинаково распределенных случайных величин $X_1,\,X_2,\,X_3$ является оценка

1) $(X_1 + X_2)/2$	Ответ:
$(2) (X_1 + X_2 + X_3)/3$	
3) $0.7X_1 + 0.2X_2 + 0.1X_3$	
4) $0.3X_1 + 0.3X_2 + 0.3X_3$	
$(5) X_1 + X_2 - X_3$	

7. В урне 3 белых и 2 черных шара. Случайным образом вынимается один шар, пусть X — число вынутых черных шаров. Величина $\mathrm{E}(X)$ равняется

- 1	1 \ 1	0) 0 =	$\Omega \setminus \Omega \setminus \Omega$	1) 0 / 5	F) 1 /F	
- 1	1 \ 1	21 (1 5	319/3	/11 7 / 5	h	Ответ:
- 1	1 / 1	4 0.0	0) 4/0	4/4/0	0) 1/0	OIBCI.
- 1	/	/	/ /	/ /	/ /	

v -	елых и 2 черных утых черных шар	- *	-		пар, пусть X -
1) 2/5	2) 2/3	3) 2/25	4) 6/25	5) 1/25	Ответ:
вается в ст	елых и 2 черных горону, затем выг ть $\mathrm{P}(A)$ равняетс	нимается еще од	_		_
1) 6/25	2) 1/25	3) 2/5	4) 2/3	5) 2/25	Ответ:
-	гь опечатки в од . Вероятность Р(-		е $A-$ в слове	из 5 букв буде
1) 0.0004	2) 0.004	3) 0.04	4) 0.0001	5) 0.001	Ответ:
мым норма		и из n наблюдені	ий каждая, испол	пьзуется статис	стика, имеюща
1) $F_{n-1,n-}$	$1 2) t_{n-1}$	3) χ_{n-1}^2	$4) \chi_n^2$	$5) t_n$	Ответ:
1) 0	— функция плот 2) 1 и <i>В</i> называются	3) E(X)	4) $Var(X)$	5) F(x)	Ответ:
 P(A ∪ B P(A ∩ B P(A ∩ B P(A ∪ B 	B) = P(A) + P(B) $B) = 0$	$)-P(A\cap B)$, если	Ответ:	
	айная величина 2 имерно равняетс		(0,1) и $F(x)$ — эх	го ее функция	распределения
1) 0	2) 0.25	3) 0.5	4) 0.75	5) 1	Ответ:
 Дисперсия 1) E²(X) 	$\operatorname{Var}(X)$ считаетс	я по формуле		Ответ:	
1) $E(X)$ 2) $E(X^2)$ 3) $E(X^2)$ - 4) $E(X^2)$ - 5) $E^2(X)$ -	$-\mathrm{E}^2(X)$			Olbel.	

16.	Дисперсия разв	ности случайны	${f x}$ величин ${f X}$ и	Y вычисляется	по формуле	
	$\begin{array}{c} 2) \operatorname{Var}(X - Y) \\ 3) \operatorname{Var}(X - Y) \\ 4) \operatorname{Var}(X - Y) \end{array}$	= Var(X) + Va $ = Var(X) - Va $ $ = Var(X) - Va $ $ = Var(X) - Va $ $ = Var(X) + Va $	x(Y) + 2Cov(X), x(Y) - 2Cov(X), x(Y)	(Y)	Ответ:	
17.	колад темному. шоколада равн	. Реализация 90	% доверительн	ответили, что п ого интервала д		
	1) [0.4;0.6]	(2) [0.45; 0.55]	3) [0.3;0.7]	4) [0.49;0.51]	5) [0.48;0.52]	Ответ:
18.	Известно, что $Var(2X + 3)$ ра		$=2, \operatorname{Var}(X)=$	4, Var(Y) = 9, 0	Corr(X,Y) = 0.	5. Дисперсия
	1) 16	2) 8	3) 11	4) 4	5) 19	Ответ:
19.	с функцией пло	отности $f(x) =$	$(\theta+1)x^{\theta}$ при x	айной выборке $2 \in [0;1]$ имеет ви	ід	
	1) $(\sum x_i)^{\theta}$	$ \begin{array}{ c } (2) \\ (\theta+1)^n \prod x_i^{\theta} \end{array} $	3) $(\theta+1)x^{n\theta}$	$4) \sum (\theta+1)x_i^{\theta}$	$(\theta+1)^{\sum x_i}$	Ответ:
20.	Z = 2X - Y им	еет распределе	ние	стандартно норм		елены. Тогда
	1) $N(0,5)$	$(2) t_2$	3) N(0,1)	4) N(0,3)	5) U[0;2]	Ответ:
21.			•	$\overline{Z_i^2/n}$ имеет расп	ределение	
	1) $N(0,1)$	$2) t_n$	3) $F_{1,n-2}$	$4) \chi_n^2$	$(5) t_{n-2}$	Ответ:
22.	Если X_i незави распределение 1) $N(0;1)$	симы и имеют t 2) t_{n-1}	нормальное рас $3) \chi_{n-1}^2$	епределение $N(\mu; \sigma^2)$	$(x; \sigma^2)$, то $\sqrt{n}(\bar{X})$ 5) нет верного ответа	$-\mu)/\hat{\sigma}$ имеет Ответ:
23.	Если $f(x) - \phi$	ункция плотнос	ти, то $\int_{-\infty}^{x} f(u)$	du равен		
	1) 0	2) 1	3) E(X)	4) $Var(X)$	5) F(x)	Ответ:
24.	1) $E(\hat{\theta}_n) = \theta$ 2) $Var(\hat{\theta}_n) \to 0$			тся состоятельн	ой, если	
	$\begin{array}{c} 4) \ \mathrm{E}(\hat{\theta}_n) \to \theta \\ 5) \ \mathrm{Var}(\hat{\theta}_n) \ge \mathrm{V} \end{array}$					

25.	Величины	$X_1, \ldots,$	X_5 p	оавномерны	на	отрезке	[0; 2a].	Известно,	ОТР	$\sum_{i=1}^5 x_i =$	25.	При
	использова	ании перв	вого м	момента оце:	нка	методом	и момен	тов неизве	СТНО	го а равна		

1) 10	2) 20	3) 1	4) 5	5) нет верно-	Ответ:
				го ответа	

26. Известно, что $\mathrm{E}(X)=1,\,\mathrm{E}(Y)=2,\,\mathrm{Var}(X)=4,\,\mathrm{Var}(Y)=9,\,\mathrm{Corr}(X,Y)=0.5.$ Дисперсия $\mathrm{Cov}(X,Y)$ равняется

` ' / -					
1) 3	2) 12	3) 0	4) 0.5	5) 18	Ответ:

27. При построении доверительного интервала для дисперсии по выборке из n наблюдений при неизвестном ожидании используется статистика, имеющая распределение

1) t_{n-1}	$(2) \chi_{n-1}^2$	3) χ_n^2	$4) t_n$	5) $N(0;1)$	Ответ:

28. Условная вероятность $P(A \mid B)$ для независимых событий равна

1) $\frac{P(A)}{P(B)}$	$2) P(A) \cdot P(B)$	3) $\frac{P(A \cup B)}{P(B)}$	4) $\frac{P(B)}{P(A \cap B)}$	5) $P(A)$	Ответ:

29. Известно, что $\mathrm{E}(X)=1,\,\mathrm{E}(Y)=2,\,\mathrm{Var}(X)=4,\,\mathrm{Var}(Y)=9,\,\mathrm{Corr}(X,Y)=0.5.$ Дисперсия $\mathrm{Corr}(2X+3,1-Y)$ равняется

1) 1	2) -1	3) -0.5	4) 0.5	5) 0	Ответ:

30. Ошибкой первого рода является

1) Принятие неверной гипотезы	Ответ:
2) Отвержение основной гипотезы, когда она верна	
3) Отвержение альтернативной гипотезы, когда она верна	
4) Отказ от принятия любого решения	
5) Необходимость пересдачи ТВ и МС	