#### RICERCA OPERATIVA

Prof. Marco Trubian 6 CFU

Luca Cappelletti

Lecture Notes Year 2017/2018



Magistrale Informatica Università di Milano Italy 2 novembre 2017

## **Indice**

| L | ntroduzione                                                       |  |  |  |  |  |
|---|-------------------------------------------------------------------|--|--|--|--|--|
|   | .1 Libri adottati                                                 |  |  |  |  |  |
|   | .2 Risorse extra                                                  |  |  |  |  |  |
|   | .3 Di cosa si occupa la Ricerca Operativa                         |  |  |  |  |  |
|   | .4 Programmazione matematica                                      |  |  |  |  |  |
|   | 1.4.1 Risoluzione di un problema di programmazione matematica     |  |  |  |  |  |
| 2 | Modelli di programmazione lineare e programmazione lineare intera |  |  |  |  |  |
|   | ioucin di programmazione inicare e programmazione inicare inicia  |  |  |  |  |  |
|   | .1 Problema di assegnamento                                       |  |  |  |  |  |
|   |                                                                   |  |  |  |  |  |
|   | .1 Problema di assegnamento                                       |  |  |  |  |  |
|   | .1 Problema di assegnamento                                       |  |  |  |  |  |

## Capitolo 1

## Introduzione

#### 1.1 Libri adottati

- 1. Lezioni di ricerca operativa (M. Fischetti)
- 2. 120 esercizi di ricerca operativa (M. Dell'Amico)

#### 1.2 Risorse extra

È possibile ottenere le video lezione all'indirizzo https://vc.di.unimi.it/?courseid=57.

#### 1.3 Di cosa si occupa la Ricerca Operativa

Vengono realizzati **modelli prescrittivi**, cioè modelli di problemi di ottimizzazione che ci suggeriscono cosa fare. La ricerca operativa affronta la risoluzione di processi decisionali complessi tramite modelli matematici ed algoritmi.

#### 1.4 Programmazione matematica

Significa ottimizzare una funzione di più variabili, spesso soggette ad un insieme di vincoli  $\min f(x_1,...,x_n)$  s.t.  $false \in \mathbb{X}$ .

#### 1.4.1 Risoluzione di un problema di programmazione matematica

- 1. Analisi del problema e scrittura di un modello matematico.
- 2. Definizione ed applicazione di un metodo di soluzione.

A seconda del tipo di modello si utilizzano tipi di programmazione distinti (in grassetto quelle prese in considerazione in questo corso):

- 1. Programmazione lineare continua
- 2. Programmazione lineare intera
- 3. Programmazione booleana
- 4. Programmazione non lineare
- 5. Programmazione stocastica

## Capitolo 2

# Modelli di programmazione lineare e programmazione lineare intera

In questo capitolo vedremo una serie di modelli che vengono risolto utilizzando la **programmazione lineare** (**PL**) e la **programmazione lineare intera**.

#### 2.1 Problema di assegnamento

Dati n lavoratori, n attività e considerando maggiore o uguale di zero il tempo impiegato dal lavoratore i per svolgere l'attività j ( $t_{ij} > 0$ ), assegnare a ciascun lavoratore una ed una sola attività in modo che tutte le attività vengano svolte.

**Obbiettivo:** minimizzare la somma dei tempi impiegati per svolgere le attività.

**Variabili:** utilizzo solo una variabile booleana per indicare se il lavoro i-esimo è svolto dal lavoratore j-esimo:

$$x_{ij} = \begin{cases} 1 & \text{se il lavoro } i \text{ è svolto da } j \\ 0 & \text{altrimenti} \end{cases}$$

#### 2.1.1 Modello

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} t_{ij} x_{ij}$$

Figura 2.1: Funzione di cui calcolare il minimo, pari alla somma dei tempi per eseguire ogni azione

$$\sum_{i=1}^{n} x_i j = 1 \forall j = 1...n$$

$$\sum_{j=1}^{n} x_i j = 1 \forall j = 1...n$$

Figura 2.2: Ogni attività viene svolta da un lavoratore.

Figura 2.3: Ogni lavoratore svolge un'attività.

### 2.2 Problema del mix produttivo

Dato un sistema produttivo caratterizzato da:

- 1. *m* risorse produttive limitate.
- 2.  $b_i$ , con i = 1...m quantità massima della risorsa i.
- 3. *n* diversi prodotti che ottengo dalle risorse.
- 4.  $a_{ij}$  assorbimento unitario di risorsa i per il prodotto j (quantità di risorsa i che utilizzo per produrre un'unità di j).
- 5.  $c_i$  profitto unitario per il prodotto j.

Sia data inoltre l'ipotesi aggiuntiva che tutta la produzione venga venduta e non sono costretto a produrre tutti i prodotti. Si chiede di determinare quali prodotti produrre e in quali quantità.

Obbiettivo: massimizzare il profitto complessivo.

Variabili: definisco una variabile intera che rappresenta il numero di unità di prodotte di un determinato prodotto.

$$X_j \geq 0$$

#### 2.2.1 Modello

$$\max \sum_{i=1}^{n} x_j c_j \qquad \qquad \sum_{j=1}^{n} x_j a_{ij} \le b_i \forall i = 1...m$$

Figura 2.4: Funzione da massimizzare.

Figura 2.5: Numero di unità per ogni prodotto.

#### 2.2.2 Esempio 1

|                   | Modello light | Modello plus | Ore uomo |
|-------------------|---------------|--------------|----------|
| Profitto unitario | 30            | 20           | #        |
| Assemblaggio      | 8             | 4            | 640      |
| Finitura          | 4             | 6            | 540      |
| Controllo qualità | 1             | 1            | 100      |