Introduction to Web Data Mining: Data

Outline

- Attributes and Objects
- Types of Data
- Data Quality
- Data Preprocessing

Quick Questions

What are the most time consuming part in DM?
Data Preprocessing

What are the most important steps for finishing a given DM task?

Data Understanding and Preprocessing

Domain Knowledge Discovery

Visualization

Algorithm

Simple Comparison

Medica	al Care	Data Mining		
First C	oncern	First Concern		
Patient & symptoms	Medicine	Data & Applications	Algorithms	

What is Data

- Collection of data objects
 and their attributes (属性)
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

		$\overline{}$		
Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Objects

Attributes

Attributes

- Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.
 - ► E.g., customer _ID, name, address

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute for a particular object
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different

Types of Attributes

- There are different types of attributes
 - ▶ Nominal (标称)
 - Examples: ID numbers, eye color, zip codes
 - Ordinal (序数)
 - Examples: rankings (e.g., taste of potato chips on a scale from I-I0), grades, height in {tall, medium, short}
 - ▶ Interval (区间)
 - Examples: calendar dates, temperatures in Celsius or Fahrenheit.
 - ▶ Ratio (比例)
 - Examples: temperature in Kelvin, length, time, counts

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
 - E.g., zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: **binary attributes** are a special case of discrete attributes
 - Nominal attribute with only 2 states (0 and 1)
 - Symmetric binary: both outcomes equally important
 - □ e.g., gender
 - Asymmetric binary: outcomes not equally important
 - □ e.g., medical test (positive vs. negative)
 - ☐ Convention: assign I to most important outcome (e.g., HIV positive)

Continuous Attribute

- Has real numbers as attribute values
 - E.g.:, temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Important Characteristics of Structured Data

Dimensionality

Curse of Dimensionality

Sparsity

Only presence counts

Resolution

Patterns depend on the scale

Types of data sets

Record

- Relational records
- Data matrix, e.g., numerical matrix, crosstabs
- Document data: text documents: term-frequency vector
- Transaction data

Graph and network

- World Wide Web
- Social or information networks
- Molecular Structures

Ordered

- Video data: sequence of images
- Temporal data: time-series
- Sequential Data: transaction sequences
- Genetic sequence data

Spatial, image and multimedia:

- Spatial data: maps
- Image data:
- Video data:

Record Data

Data that consists of a collection of records, each of which consists of a fixed set of attributes

Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Document Data

Bag-of-words

Document Data

- ▶ Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	play	ball	score	game	win	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph, a Molecule, and Webpages

Benzene Molecule: C6H6

Useful Links:

- Bibliography
- Other Useful Web sites
 - o ACM SIGKDD
 - KDnuggets
 - o The Data Mine

Book References in Data Mining and Knowledge Discovery

Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy uthurasamy, "Advances in Knowledge Discovery and Data Mining", AAAI Press/the MIT Press, 1996.

J. Ross Quinlan, "C4.5: Programs for Machine Learning", Morgan Kaufmann Publishers, 1993. Michael Berry and Gordon Linoff, "Data Mining Techniques (For Marketing, Sales, and Customer Support), John Wiley & Sons, 1997.

Knowledge Discovery and Data Mining Bibliography

(Gets updated frequently, so visit often!)

- <u>Books</u>
- General Data Mining

General Data Mining

Usama Fayyad, "Mining Databases: Towards Algorithms for Knowledge Discovery", Bulletin of the IEEE Computer Society Technical Committee on data Engineering, vol. 21, no. 1, March 1998.

Christopher Matheus, Philip Chan, and Gregory Piatetsky-Shapiro, "Systems for knowledge Discovery in databases", IEEE Transactions on Knowledge and Data Engineering, 5(6):903-913, December 1993.

Ordered Data

Sequences of transactions

sequence

Ordered Data

Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC CGCAGGCCCCCCCCCCCCCTC GAGAAGGCCCCCCCTGGCGGCG GGGGGAGGCGGGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG

Spatial Data

Spatio-Temporal Data

Average Monthly
Temperature of land
and ocean

Data Quality

- Poor data quality negatively affects many data processing efforts
 - "The most important point is that poor data quality is an unfolding disaster. Poor data quality costs the typical company at least ten percent (10%) of revenue; twenty percent (20%) is probably a better estimate."

—Thomas C. Redman, DM Review, August 2004

- Data mining example: a classification model for detecting people with loan risks is built using poor data
 - Some credit-worthy candidates are denied loans
 - More loans are given to individuals that default

Data Quality ...

- What kinds of data quality problems?
- How can we detect problems in the data?
- What can we do about these problems?

- Examples of data quality problems:
 - Noise and outliers
 - Missing values
 - Duplicate data

Noise

Noise refers to modification of original values

Examples: distortion of a person's voice when talking on a poor phone and "snow" on television screen

Two Sine Waves

Two Sine Waves + Noise

Outliers

- Outliers are data objects with characteristics that are considerably different than most of the other data objects in the data set
 - Case I: Outliers are noise that interferes with data analysis
 - Case 2: Outliers are the goal of our analysis
 - Credit card fraud
 - Intrusion detection

Missing Values

Reasons for missing values

- Information is not collected
 (e.g., people decline to give their age and weight)
- Attributes may not be applicable to all cases (e.g., annual income is not applicable to children)

Handling missing values

- Eliminate data objects
- Estimate missing values
 - Example: time series of temperature
 - ▶ Example: census results
- Ignore the missing value during analysis

Duplicate Data

- Data set may include data objects that are duplicates, or almost duplicates of one another
 - Major issue when merging data from heterogeneous sources

Examples:

Same person with multiple email addresses

Data cleaning

Process of dealing with duplicate data issues

Data Preprocessing

- Aggregation
- Sampling

- Dimensionality Reduction
- 8000 points

2000 Points

500 Points

- Feature subset selection
- Feature creation
- Discretization and Binarization
- Attribute Transformation

Aggregation

 Combining two or more attributes (or objects) into a single attribute (or object)

Purpose

- Data reduction
 - Reduce the number of attributes or objects
- Change of scale
 - Cities aggregated into regions, states, countries, etc
- More "stable" data
 - Aggregated data tends to have less variability

Sampling

- Sampling is the main technique employed for data selection.
 - It is often used for both the preliminary investigation of the data and the final data analysis.
- Statisticians sample because obtaining the entire set of data of interest is too expensive or time consuming.

Sampling

- ▶ The key principle for effective sampling is the following:
 - Using a sample will work almost as well as using the entire data sets, if the sample is representative
 - A sample is representative if it has approximately the same property (of interest) as the original set of data

Sample Size

Sample Size

• E.g., What sample size is necessary to get at least one object from each of 10 equal-sized groups?

Curse of Dimensionality

- When dimensionality increases, data becomes increasingly sparse in the space that it occupies
- Definitions of density and distance between points, which is critical for clustering and outlier detection, become less meaningful
- If $N_1 = 100$ represents a dense sample for a single input problem, then $N_{10} = 100^{10}$ is the sample size required for the same sampling density with dimension 10.
- The proportion of a hypersphere with radius r and dimension d, to that of a hyercube with sides of length 2r and dimension d converges to 0 as d goes to infinity nearly all of the high-dimensional space is "far away" from the center

- Randomly generate 500 points
- Compute difference between max and min distance between any pair of points

Curse of Dimensionality

- Typical text categorization problem:
 - TREC-AP headlines (Cohen&Singer,2000): 319,000+ documents, 67,000+ words, 3,647,000+ word 4-grams used as features.
- How can you learn with so many features?
 - For speed, exploit *sparse* features.
 - Use simple classifiers (linear or loglinear)

Dimensionality Reduction

Purpose:

- Avoid curse of dimensionality
- Reduce amount of time and memory required by data mining algorithms
- Allow data to be more easily visualized
- May help to eliminate irrelevant features or reduce noise

Techniques

- Principal Components Analysis (PCA)
- Singular Value Decomposition
- Others: supervised and non-linear techniques

Dimensionality Reduction: PCA

 Goal is to find a projection that captures the largest amount of variation in data

Dimensionality Reduction: PCA

Feature Subset Selection

- Another way to reduce dimensionality of data
- Redundant features
 - Duplicate much or all of the information contained in one or more other attributes
 - Example: purchase price of a product and the amount of sales tax paid

Irrelevant features

- Contain no information that is useful for the data mining task at hand
- Example: students' ID is often irrelevant to the task of predicting students' GPA
- Many techniques developed, especially for classification

Feature Creation

Create new attributes that can capture the important information in a data set much more efficiently than the original attributes

- Three general methodologies:
 - Feature extraction

Example: extracting edges from images

Feature construction

Example: dividing mass by volume to get density

Mapping data to new space

Example: Fourier and wavelet analysis

Mapping Data to a New Space

Fourier and wavelet transform

Two Sine Waves + Noise

Frequency

Attribute Transformation

- An attribute transform is a function that maps the entire set of values of a given attribute to a new set of replacement values such that each old value can be identified with one of the new values
 - Simple functions: x^k , log(x), e^x , |x|
 - Normalization
 - Refers to various techniques to adjust to differences among attributes in terms of frequency of occurrence, mean, variance, magnitude
 - In statistics, standardization refers to subtracting off the means and dividing by the standard deviation

Net Primary
Production (NPP) is a
measure of plant
growth used by
ecosystem scientists.

Correlations between time series

	Minneapolis	Atlanta	Sao Paolo
Minneapolis	1.0000	0.7591	-0.7581
Atlanta	0.7591	1.0000	-0.5739
Sao Paolo	-0.7581	-0.5739	1.0000

Normalized using monthly Z Score:

Subtract off monthly mean and divide by monthly standard deviation

Correlations between time series

	Minneapolis	Atlanta	Sao Paolo
Minneapolis	1.0000	0.0492	0.0906
Atlanta	0.0492	1.0000	-0.0154
Sao Paolo	0.0906	-0.0154	1.0000

Summary

Attributes and Objects

Attribute types: nominal / ordinal / interval / ratio; discrete / continuous

Types of Data

▶ Record, graph and network, ordered, spatial...

Data Quality

Noise, outliers, missing values, duplicate data

Data Preprocessing

- Sampling, dimensionality reduction, feature selection...
- Curse of dimensionality