MIS9

Xinhao Du

1.

1. From equation 15.10 that: AT (AAT + \(\Delta\I\) = (ATA + \(\Delta\I\) AT
$\hat{x} = A^{T} (A^{T}A + \lambda I)^{-1} b$
First, form AAT+ \I (m'n flops)
Then. LLT = AAT+XI (in flops)
For L'b and L-7 L'b, each
costs n2 flops
Last for ATL-7L-1b (2mnflops)
So, the result based on first
two steps, which is O(m2n+m3)26

2. (c) The characteristic polynomial
of Cisp(x) = det(xI-C)
det (xI-C) = [X 0 0 Co]
-1 X O C,
0 -1 0 62
[0 0 - x+cn-1]
TX0 0 C, 7]-1 x 07
$= \times \left -1 \times \cdots \circ C_{2} \right + (-1)^{n+1} C_{0} \circ -1 \cdots \circ$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$= x(x^{n-1} + C_{n-1}x^{n-2} + \cdots + C_1x + C_1) + (-1)^{n+1}C_0$
* (-1) n-1
·
$= \chi^{n} + C_{n-1} \chi^{n-1} + \cdots + C_{1} \chi + C_{0}$ $= \chi^{n} + \sum_{k=0}^{n-1} C_{k} \chi^{k}$
(b) For C has n distinct eigenvalues, we have $\lambda_i^n = \sum_{k=0}^{n-1} C_k \lambda_i^k = 0 \rightarrow \lambda_i^n = -\sum_{k=0}^{n-1} C_k \lambda_i^k$
Then we choose the ith row of V
$V_{i}^{T} = \left[\left(\begin{array}{c} \lambda_{i} \\ \lambda_{i} \end{array} \right)^{2} \cdots \left(\begin{array}{c} \lambda_{i} \\ \lambda_{i} \end{array} \right)^{n-1} \right]$
$V_{i}^{7} C = \left[\begin{array}{c} \lambda_{i} & \cdots & \lambda_{i}^{n-1} - \sum_{k=0}^{n-1} C_{k} \lambda_{i}^{k} \end{array} \right]$
$= [\lambda_1, \lambda_2, \dots, \lambda_n]$
$= \lambda_i V_i^{T}$
So. he can have VC=AV

(a) For $C = f^*\Lambda F$, we have $FC = \Lambda F$, and in the jth row $f_j^T C = \lambda \hat{j} \cdot f_j^T$ $\frac{1}{\sqrt{n}} \int_{d=1}^{k-1} W^{(\hat{j}-1)(d-1)} \cdot C_{n-k+d} + \frac{1}{\sqrt{n}} \int_{d=k}^{k-1} W^{(\hat{j}-1)(d-1)} \cdot C_{d-k+1}$ As we know that $w = e^{-\frac{1}{2} \frac{n+k-1}{n}} \cdot So W^d = W^{d+n}$ and $\frac{1}{\sqrt{n}} \int_{d=k}^{n+k-1} W^{(\hat{j}-1)(d-1)} \cdot C_{d-k+1}$ Set d with d-k+1, ne have $\frac{1}{\sqrt{n}} W^{k+1} \int_{d=k}^{\infty} W^{(\hat{j}-1)(d-1)} \cdot C_{d-k+1} \cdot C_{d-k+1}$ the kth entry of $f_j^T C$

Baced on $\Lambda = diag(F_c)$. $\lambda \hat{j} = \frac{1}{\tilde{A}_{=1}} W^{(\hat{j}-1)(d-1)} Cd$ Then we can have the kth entry

of $\lambda \hat{j} f \hat{j} i S$ $\frac{1}{\sqrt{n}} \lambda \hat{j} W^{k-1} = \frac{1}{\sqrt{n}} W^{k-1} \sum_{a=1}^{\infty} W^{(\hat{j}-1)(d-1)} Cd$ In the end of all $\hat{j} \cdot k = 1 \cdot \cdots \cdot n$. $[FC]_{jk} = [\Lambda F]_{jk}, so C = F^* \Lambda F$

(b) To solve Cx = b, we have $x = C^{-1}b$, so $x = F^{+}\Lambda^{-1} + b$, which $\Lambda = Diag(Fa)$ ① Compute Fb via FFT (nlogn)
② Compute Fc via FFT (nlogn)
③ Compute $\Lambda^{-1}Fb$ (n)
② Compute $F^{+}\Lambda^{-1}Fb$ (nlogn)
Therefore, the complexity is O(nlogn)

4.

(a) Replace A with UΣVT in A A x̂ = A b ATA x̂ = VΣUTUΣVT VΣT UTB

- V \(\S\S\S^{-1}U^{\tau_b}\)

= VIUTb

-ATb

(b) For $\hat{\chi}$ that satisfies $A^TA\hat{\chi} = A^{-1}b$ $||A\chi - b||^2 = ||A\chi - A\hat{\chi}| + A\hat{\chi} - b||^2$

= 11Ax-A文112-2(Ax-A文)T(A文力)+1/A文-b112

= 11Ax-A\(\hat{1}\)^+ 11A\(\hat{x}\)- \(\hat{b}\)^2 - \(\hat{x}\)^\(\hat{x}\)^\(\hat{x}\)

As we know 1TAX-ATb=0 and 11Ax-Ax112

>0

So, $|1AX-b||^2 \ge |1A\widehat{X}-b||^2$, any \widehat{X} satisfies $A^TA\widehat{X} = A^Tb$ is an optimal solution that minimizes $||AX-b||^2$.