Tabellenanhang

zu den Vorlesungen

Organische Chemie I und II

für Studierende der Studiengänge Biologie Pharmazeutische Wissenschaften Gesundheitswissenschaften und Technologie

1. und 2. Semester

ETH Zürich

Prof. Dr. Carlo Thilgen

Bindungslehre

Tabelle 1. Mittlere Bindungenthalpien (mBE) in kJ/mol

1 kJ/mol = 0.24 kcal/mol

Einfachbindungen R–X (fett: homonukleare Einfachbindungen)

X R	Н	С	N	0	F	Si	Р	S	CI	Br	I
Н	434	414	389	464	564	317	318	347	431	363	297
С	414	347	305	359	485	301	263	272	339	284	217
N	389	305	163	222	272	418	209		192	242	
0	464	359	222	146	188	451	372		209	200	234
F	564	485	272	188	155	564	502	326	251	247	242
Si	317	301	418	451	564	222	213		380	310	234
Р	318	263	209	372	502	213	171	230	322	263	184
S	347	272			326		230	251	255	217	
CI	431	339	192	209	251	380	322	255	243	217	213
Br	363	284	242	200	247	310	263	217	217	192	180
1	297	217		234	242	234	184		213	180	151
Se	276	242									
Te	242										

Mittlere Bindungsenthalpien mBE [kJ/mol] (Fortsetzung von Tabelle 2)

Doppelbindungen:	Dreifachbindungen:
N = N : 418	N≡N : 946
O = O : 498	C≡O : 1075
C = C : 610	C≡N: 890
N = O: 606	C≡C : 836
C = O: 736	
C = N: 614	
C = S: 477	

Mittlere Bindungenthalpien (mBE) in kcal/mol

1 kcal/mol = 4.18 kJ/mol

Einfachbindungen R–X (fett: homonukleare Einfachbindungen)

X R	Н	С	N	0	F	Si	Р	S	CI	Br	I
Н	104	99	93	111	135	76	76	83	103	87	71
С	99	83	73	86	116	72	63	65	81	68	52
N	93	73	39	53	65	100	50		46	58	
0	111	86	53	35	45	108	89		50	48	56
F	135	116	65	45	37	135	120	78	60	59	58
Si	76	72	100	108	135	53	51		91	74	56
Р	76	63	50	89	120	51	41	55	77	63	44
S	83	65			78		55	60	61	52	
CI	103	81	46	50	60	91	77	61	58	52	51
Br	87	68	58	48	59	74	63	52	52	46	43
1	71	52		56	58	56	44		51	43	36
Se	66	58									
Те	58										

Mittlere Bindungsenthalpien mBE [kcal/mol] (Fortsetzung von Tabelle 2)

Doppelbindungen:	Dreifachbindungen:
N = N : 100	N≡N : 226
O = O : 119	C≡O : 257
C = C : 146	C≣N : 212
N = O: 145	C≣C : 200
C = O: 176	
C = N: 147	
C = S: 114	

Tabelle 2. Strukturabhängigkeit der Bindungsdissoziationsenthalpien BDE

Angaben in kJ/mol. Nach: K. W. Egger, A. T. Cocks, Helv. Chim. Acta 1973, 56, 1516.

1 kJ/mol = 0.24 kcal/mol

 ΔH° für die Reaktion R–X \longrightarrow R• + X•

X	Η	Me	Et	i-Propyl	<i>t</i> Butyl	F	CI	Br	I	ОН	NH ₂
Н	436	435	410	397	385	568	431	365	298	497	460
Me	435	367	355	352	342	455	349	292	234	381	362
Et	410	355	342	336	325	448	338	283	222	380	352
i-Propyl	397	352	336	327	310	443	339	284	222	385	352
tert-Butyl	385	342	325	310	288	453	338	276	211	381	352
Cyclopropyl	421	375	360	357	346	464	357	308	245	410	381
Cyclopentyl	396	349	336	333	322	440	336	284	222	381	353
Cyclohexyl	399	355	337	336	325	443	343	287	216	381	360
Vinyl	451	408	394	388	378	496	371	319	263	420	
Allyl	370	316	303	299	285	408	298	239	184	334	314
Propargyl	393	339	324	319	307	431	321	267	206	363	337
Benzyl	355	300	287	283	272	403	290	229	167	319	301
Acetyl	366	335	321	313	297	500	341	278	208	445	415

Angaben in kcal/mol. 1 kcal/mol = 4.18 kJ/mol

X	Н	Me	Et	i-Propyl	<i>t</i> Butyl	F	CI	Br	I	ОН	NH ₂
Н	104	104	98	95	92	136	103	87	71	119	110
Ме	104	88	85	84	82	109	83	70	56	91	86
Et	98	85	82	80	78	107	81	68	53	91	84
i-Propyl	95	84	80	78	74	106	81	68	53	92	84
tert-Butyl	92	82	78	74	69	108	81	66	50	91	84
Cyclopropyl	100	89	86	85	83	111	85	74	58	98	91
Cyclopentyl	95	83	80	79	77	105	80	68	53	91	84
Cyclohexyl	95	85	80	80	78	106	82	68	52	91	86
Vinyl	108	97	94	93	90	118	89	76	63	100	
Allyl	88	75	72	71	68	97	71	57	44	80	75
Propargyl	94	81	77	76	73	103	77	64	49	87	80
Benzyl	85	72	68	68	65	96	69	55	40	76	72
Acetyl	87	80	77	75	71	119	81	66	50	106	99

Tabelle 3. Mittlere Bindungslängen

Angaben in pm $(1 \text{ Å} = 100 \text{ pm} = 0.1 \text{ nm} = 10^{-10} \text{ m})$

C–H	109
N–H	104
O–H	97
C-C	154
C-N	148
C-O	143
C-S	181
C-F	140
C-CI	177
C–Br	193
C–I	214

C=C	134
(C=C) _{Ar}	139
C=N	128
C=O	123
C=S	171
C≡C	120
C≡N	116

Tabelle 4. van-der-Waals-Radien

Angaben in pm

Bemerkung: Zur Beurteilung von sterischer Hinderung sind die *Interferenzradien* besser geeignet. Diese betragen 60-70% der *van-der-Waals*-Radien. Falls der Abstand von zwei Gruppen die Summe der beiden Interferenzradien unterschreitet, steigt die Repulsion (abstossende WW) sehr steil an.

Tabelle 5. Elektronegativitäten nach Pauling

	I	II											Ш	IV	٧	VI	VII	VIII
1	H 2.2																	He
2	Li 0.98	Be 1.57		D. R.		RC Har							B 2.04	C 2.55	N 3.04	O 3.44	F 3.98	Ne
3	Na 0.93	Mg 1,31				ence bo C Taylo							Al 1.61	Si 1.9	P 2.19	S 2.58	CI 3.16	Ar
4	K 0.82	Ca 1	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.9	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr
5	Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2.2	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	l 2.66	Xe
6	Cs 0.79	Ba 0.89	La 1.1	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.2	Pt 2.2	Au 2.4	Hg 1.9	TI 1.8	Pb 1.8	Bi 1.9	Po 2	At 2.2	Rn
7	Fr 0.7	Ra 0.9	Ac 1.1	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn						

Gruppen-Elektronegativitäten:

CH ₃	CH ₂ CI	CHCl ₂	CCI ₃	CF ₃
2.3	2.5	2.6	2.8	3.3

Tabelle 6. Dipolmomente einiger Verbindungen in der Gasphase

Angaben in Debye (D). Aus Handbook of Chemistry and Physics.

1 D (Debye) = 10^{-18} esu·cm = $3.34 \cdot 10^{-30}$ C·m (C = Coulomb). Elementarladung: $1.602 \cdot 10^{-19}$ C = $4.80 \cdot 10^{-10}$ esu (elektrostat. Einheiten).

$$\begin{array}{c}
100 \text{ pm} \\
+ \times \\
\mu = 4.8 \text{ D}
\end{array}$$

- Zwei Elementarladungen im Abstand von 100 pm erzeugen ein Dipolmoment von 4.8 D.
- Elementarladung e = Ladung eines Elektrons (-e) oder eines Protons $(+e) = 1.602 \cdot 10^{-19} \text{ C}$

			Mo	oleküld	lipolmon	nente (Ga	asph	nase)				
p = 0	$\mathbf{p} = 0 \ \mathbf{D}$ (aus Symmetriegründen): BF ₃ , CH ₄ , CCl ₄ , CO ₂ , SO ₃ , CS ₂ , SF ₆ , NC–CN, (<i>E</i>)-But-2-en, Benzol, <i>p</i> -Dichlorbenzol,											
AC	NH ₃ 1.4 PH ₃ 0.5 AsH ₃ 0.3 SbH ₃ 0.1	58 30	H_2O H_2S H_2O_2 O_3 CO	1.85 0.97 2.2 0.53 0.11	SO ₂ SiH ₃ Cl	1.63 0.86	LiF LiC LiBi LiI		NaF NaCl	8.16 9.00	KF KCI KBr	8.60 10.27 10.41
OC	CH ₃ F CH ₃ CI CH ₃ Br CH ₃ OH CH ₃ OCH ₃ CH ₃ NH ₂ CH ₃ NO ₂ CH ₃ N ₃ CH ₃ CN CH ₃ CCH	1.85 1.87 1.81 1.62 1.70 1.30 1.31 3.46 2.17 3.92 0.78	HCOO CH ₃ C CH ₂ C EtOH Butar Et ₃ N	COCI	1.41 2.72 1.74 2.33 1.69 1.66 0.66	Ph-CI Ph-NC Ph-OH Ph-CC Ph-CH Ph-CN	- I I ₂ DMe	1.69 4.22 1.45 1.53 3.02 0.36 4.18	DMF Acetor DMSC Pyridir Pyrrol Furan Thioph	n 2.:	38 96 19 34	

Tabelle 7. Bindungsdipolmomente

Angaben in Debye (D).

Bdg.	[D]	Teil-Ldg. auf X	BdgLänge
H – X		[-e]	[Å]
+-			
H-C	0.4	0.08	1.07
H – N	1.3	0.27	1.008
H – O	1.5	0.30	1.029
H – F	1.82	0.39	0.917
H – CI	1.08	0.18	1.275
H – Br	0.82	0.12	1.415
H-I	0.44	0.05	1.609

Bdg.	[D]	Teil-Ldg. auf X	
C – X		[-e]	[Å]
+			
C – C	0.0	0.00	1.54
C – N	0.2	0.03	1.47
C – O	0.7	0.10	1.43
C – F	1.6	0.24	1.38
C – CI	1.5	0.18	1.77
C – Br	1.4	0.15	1.94
C – I	1.2	0.12	2.14

Tabelle 8. Ionisationspotentiale einiger funktioneller Gruppen [eV]

Angaben in eV (Elektronenvolt). Aus Handbook of Chemistry and Physics, Tab. E 72.

Die **Ionisierungsenergie** (Ionisationsenergie, Ionisierungspotential) ist die Energie, die benötigt wird, um ein Elektron aus einem Atom oder Molekül zu entfernen.

Ein **Elektronenvolt** ist der Gewinn eines Elektrons an kinetischer Energie, wenn es eine Beschleunigungsspannung von 1 Volt durchläuft (1 eV = $1.602 \cdot 10^{-19}$ J).

Bezogen auf 1 Mol Teilchen ergibt sich daraus die Gesamtenergie: 1 eV \times N_A = 1.602·10⁻¹⁹ \times 6.022·10²³ J/mol = 96.485 kJ/mol oder 23.045 kcal/mol.

Freie Elek Heteroato	tronenpaare a	an einfach (gebundenen	Freie Elektronenp Heteroatomen	paare an do	ppelt gebunde	nen
CH₃F	12.9	Zum Vergl	eich:	H ₂ C=O	10.9	Zum Vergleic	h:
CH₃CI	11.3	CH ₄	12.6	CH₃CHO	10.2	C ₂ H ₄	10.5
CH₃Br	10.5	C_2H_6	11.5	CH ₃ COCH ₃	9.7	Allen	10.2
CH ₃ I	9.5			НСООН	11.1	Benzol	9.2
CH₃OH	10.8	CH ₃ OCH	3 10.0	CH₃COOH	10.7	Naphthalin	8.1
CH₃SH	9.4	CH ₃ SCH ₃	8.3	HCOOCH ₃	10.8		
CH ₃ NH ₂	9.0	$(CH_3)_3N$	7.8	CH₃COOCH₃	10.3		
CH ₃ PH ₂	9.7	$(CH_3)_3P$	8.6	CH3COCI	11.0		
				CH ₃ CONH ₂	9.8		
Freie Elek Heteroato	tronenpaare	an dreifach	gebundener	CH ₃ CON(CH ₃) ₂	8.8		
		- ·		CH ₃ NCS	9.3		
HCN	13.8	Zum Vergl	leicn:	CH₃SCN	10.1		
CH₃CN	12.2	C ₂ H ₂	11.4				
		CH ₃ CCH	10.4				
	leich: Werte a	norganisch	er Verbindur	ngen			
_		0	10.0	110011 44.0	00	40.0	
-	12.1	H ₂ O	12.6	HOOH 11.0	CO ₂	13.8	
-	15.6	NH ₃	10.2	H_2NNH_2 8.7	COS	11.2	
F ₂	15.7	HF	15.8		CS ₂	10.1	
Cl ₂	11.5	HCI	12.7		NO_2	9.8	
Br ₂	10.5	HBr	11.6		SO ₂	12.3	
l ₂	9.3	HI	10.4		O ₃	12.3	

Bindungsgeometrien und deren Beschreibung mit hybridisierten Atomorbitalen

σ - und π -Bindungen

Verschieden hybridisierte Zentren und zugehörige Bindungsgeometrien

Hybridisierte Atomorbitale

Deshalb "verschwenden" Moleküle keinen s-Charakter an leere Orbitale

Kombination von Atomorbitalen (AOs) zu lokalisierten Molekülorbitalen (MOs)

Je näher die Energien der kombinierenden Orbitale beieinander liegen, umso grösser die energetische Aufspaltung

Für die Bindungsenergie im Molekül zählt nur die Absenkung/Anhebung der mit Elektronen besetzten Orbitale (MO) gegenüber dem ungebundenen Zustand (AO).

Elektronen in **bindenden** Orbitalen **stärken** die Bindung. Elektronen in **antibindenden** Orbitalen **schwächen** die Bindung. Elektronen in **nichtbindenden** Orbitalen haben in erster Näherung **keinen Einfluss**.

Die Anhebung des antibindenden Orbitals ist stets grösser als die Absenkung des bindenden:

die Wechselwirkung zwischen zwei doppelt besetzten Orbitalen ist ungünstig!

Bindungsverhältnise an typischen Zentren organischer Moleküle

Isoelektronische Zentren haben gleichviele Valenzelektronen

Als Valenzelektronen sind hier diejenigen Elektronen des zentralen Atoms gemeint, die in der Berechnung der formalen Ladung berücksichtigt werden: Formalladung = {Anzahl Valenz-e⁻ des neutralen Atoms} – {Anzahl e⁻ in einsamen Elektronenpaaren} – {Hälfte der e⁻ in Bindungselektronenpaaren}.

Teilchen in eckigen Klammern sind sehr energiereich und kommen i. d. R. nur als kurzlebige Zwischenstufen vor. Die Verhältnisse bei P sind ähnlich wie bei N, bei S ähnlich wie bei O; zusätzlich gibt es aber bei den Elementen der 3. Periode oktetterweiterte Formen.

3 Valenzelektronen:

3 sp² + 1 p (leer) → trigonal planar
→ Elektronensextett
$$\begin{bmatrix} R \\ R \end{bmatrix} B - R \end{bmatrix} \begin{bmatrix} R \\ C - R \end{bmatrix}$$
Carbeniumion

4 Valenzelektronen:

4 sp³
→ 4 σ-Bindungen
→ tetraedrisch
$$\Rightarrow$$
 tetraedrisch
 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisch

 \Rightarrow Tetraedrisc

5 Valenzelektronen:

6 Valenzelektronen:

4 sp³ → 2 σ -Bindungen +

2 nichtbindende e⁻-Paare

→ gewinkelt

 $3 \text{ sp}^2 + 1 \text{ p}$

 \rightarrow 1 σ -Bindung + 1 π -Bindung +

2 nichtbindende e--Paare

→ endständig

 $\begin{bmatrix} \bigcirc \bigcirc \\ \bigcirc \\ \bigcirc \\ N = X \end{bmatrix}$

7 Valenzelektronen:

4 sp³ \rightarrow 1 σ -Bindung +

3 nichtbindende e⁻-Paare

→ endständig

R-0 S

auch Cl, Br, I

X: eine mindestens zweiwertige Gruppe

Y: eine mindestens dreiwertige Gruppe

R: eine mindestens einwertige Gruppe (hauptsächlich C oder H)

Thermodynamik

Tabelle 9. Chemisches Gleichgewicht – Zusammenhang zwischen Gleichgewichtslage und Gibbs-Reaktionsenergie

$$\Delta G^0 = -RT \cdot \ln K$$
 Bei 25°C gilt näherungsweise: ΔG^0 [kcal/mol] = -1.363 log K ΔG^0 [kJ/mol] = -5.7 log K

% der stabileren Komponente	К) _{25°C} [kcal/mol]	Δ <i>C</i> [kJ/mol]	G ⁰ 80° C [kcal/mol]
50	1.00	0	0	0	0
60	1.50	1.00	0.240	1.19	0.285
75	3.00	2.72	0.651	3.22	0.771
90	9.00	5.44	1.302	6.45	1.542
95	19.00	7.29	1.745	8.64	2.066
99	99.00	11.38	2.723	13.48	3.225
99.9	999.00	17.10	4.092	20.37	4.847
99.99	9999.00	22.81	5.457	27.02	6.464

Tabelle 10. Typische Spannungsenergien von Ringen

	ΔH [kcal/mol]	ΔΗ [kJ/mol]
Cyclopropan	28	117
Cyclobutan	26	109
Cyclopentan	6	25

Tabelle 11. Konjugative Stabilisierung ("Resonanzenergien")

	ΔH [kcal/mol] (approx. Werte)	ΔH [kJ/mol] (approx. Werte)
Benzol	-37	-155
Pyridin	-28	-117
Naphthalin	-25	-105
Allyl-Kation	–1 5	-63
Allyl-Radikal	-13	- 54
Amid	-14	-58

Tabelle 12. Thermodynamische Stabilität isomerer Alkene

Angaben in kcal/mol

Formel	Isomer	ΔG_{f}°	ΔH_{f}°	% im Gleich- gewicht	Hydrierwärme $\Delta extit{H}^{'}$ Hydrierung
C ₄ H ₈	1-Buten	17.1	-0.0	0.4	-30.1
	cis-2-Buten	15.8	-1.7	3.7	-28.6
	trans-2-Buten	15.1	-2.7	11.7	-27.6
	2-Methyl-1-propen	13.9	-4.0	84.3	-28.4
C ₅ H ₁₀	1-Penten	19.0	-5.0	0.0	-30.1
	cis-2-Penten	17.2	-6.7	0.3	
	trans-2-Penten	16.7	-7.6	1.4	
	2-Methyl-1-buten	15.7	-8.7	8.2	-26.7
	2-Methyl-2-buten	14.3	-10.2	89.5	-26.9
	3-Methyl-1-buten	17.9	-6.9	0.2	
C ₆ H ₁₂	1-Hexen	21.0	-10.0	0.0	-30.1
	cis-2-Hexen	18.3	-12.5	0.3	
	trans-2-Hexen	18.3	-12.9	0.3	
	cis-3-Hexen	19.9	-11.4	0.0	
	trans-3-Hexen	18.6	-13.0	0.2	
	2-Methyl-1-penten	16.9	-14.2	3.2	
	3-Methyl-1-penten	19.7	-11.8	0.0	
	4-Methyl-1-penten	19.9	-12.2	0.0	
	2-Methyl-2-penten	15.4	-16.0	41.0	
	cis-3-Methyl-2-penten	16.5	-14.9	6.2	
	trans-3-Methyl-2-penten	16.0	-15.1	13.7	
	cis-4-Methyl-2-penten	18.0	-13.8	0.5	-27.3
	trans-4-Methyl-2-penten	17.4	-14.7	1.4	-26.4
	3,3-Dimethyl-1-buten	19.1	-14.7	0.0	
	2,3-Dimethyl-1-buten	16.4	-15.9	7.1	
	2,3-Dimethyl-2-buten	15.7	-16.7	25.6	-26.6
	2-Ethyl-1-buten	18.1	-13.4	0.4	

Tabelle 13. Hydrierwärmen ausgewählter Alkene

Angaben in kcal/mol. Aus: J. Am. Chem. Soc. 1958, 80, 1430.

Die katalytische Hydrierung einer olefinischen Doppelbindung ist ein exothermer Prozess, dessen Wärmetönung kalorimetrisch gemessen werden kann (ΔH_{Hydr}), hier im System H₂/Pt in Essigsäure bei 25° C.

Je gespannter (energiereicher) das Ausgangsalken, umso grösser ist die beobachtete Hydrierwärme. Falls bei isomeren Alkenen das gleiche Hydrierungsprodukt entsteht, kann aus dem $\Delta\Delta H_{\text{Hydr}}$ direkt auf das $\Delta\Delta H_{\text{f}}^{\circ}$ der Reaktanten geschlossen werden

Alken	Δ <i>H</i> _{Hydr} [kcal/mol]	Alken	Δ <i>H</i> _{Hydr} [kcal/mol]	Spannung ^{Alkan} *)
	26.4		26.9	6.5
	27.3		27.1	0
	25.1		25.8	6.3
	26.7	cis-Cycloocten trans-Cycloocten	23.5 32.2	9.6
\	26.5	cis-Cyclononen trans-Cyclononen	23.6 26.5	12.6
	30.8	cis-Cyclodecen trans-Cyclodecen	20.7 24.0	12.0
\	26.8		25.7	
	25.5		27.8	
XXX	26.9		33.1	
	36.2		28.5	

^{*)} Spannung des entstehenden Cycloalkans relativ zu Cyclohexan.

Tabelle 14. Präferenz eines Substituenten am Cyclohexan für die äquatoriale im Vergleich zur axialen Stellung

Der A-Wert entspricht der Zunahme der Gibbs-Energie des Systems beim Wechsel eines Substituenten von der äquatorialen in die axiale Position am Cyclohexangerüst. Anders ausgedrückt gilt für das gezeigte Gleichgewicht (links axial, rechts äquatorial):

$$A = -\Delta G^{\circ} = RT \ln K$$

Drückt man A in kcal/mol aus, so gilt bei T = 25 °C die Näherung:

$$A = 1.363 \log K$$

R	A [kcal/mol]	<i>K</i> [25 °C]	% äq. [25 °C]
Н	0	1.0	50
CH ₃	1.74	18.9	95
CH₂CH₃	1.79	20.6	95
CH(CH ₃) ₂	2.21	41.8	98
C(CH ₃) ₃	4.8	3323.9	99.97
Ph	2.8	113.3	99
CO ₂ H	1.4	10.6	92
CO ₂ CH ₃	1.3	9.0	90
COCH ₃	1.2	7.6	88
Vinyl	1.5	12.6	93
Ethinyl	0.5	2.3	70
CN	0.2	1.4	58
F	0.3	1.7	62
CI	0.6	2.8	71
Br	0.6	2.8	71
1	0.6	2.8	71
ОН	0.8	3.9	78
NH ₂	1.4	10.6	92
NH ₃ ⁺	1.8	20.6	95
OAc	0.7	3.3	77

Tabelle 15. Rotationsbarrieren um Einfachbindungen

	R	Me	Et	<i>t</i> Bu	Vinyl	ОН	NH ₂	SCH ₃
R Me	∆ G [‡] [kcal/mol]	2.93	3.57	4.30	1.98	1.07	1.98	2.00
	R	Me	ОН	OMe	NH_2	NMe ₂	Ph	
R-(Y)O	Δ <i>G</i> [‡] [kcal/mol]	1.16	10.9	11.5	20.2	22.0	7.8	

Tabelle 16. Rotationsbarrieren um partielle Doppelbindungen

	ΔG^{\dagger} [kcal/mol]	ΔG^{\ddagger} [kJ/mol]
Amide	18 - 22	75 - 92
Ester	≈ 12	≈ 50
Butadien	6.8 ± 0.4	28 ± 1.7
Styrol (Vinylbenzol)	3.2	13.5
Acrolein (2-Propenal)	5 - 6.5	21 - 27
2-Propensäure	4	16.7
Benzaldehyd	7.8	32

Tabelle 17. Inversionsbarrieren für pyramidale Zentren mit einem freien e⁻-Paar

	ΔG^{\ddagger} [kcal/mol]	ΔG^{\dagger} [kJ/mol]
NH ₃	5.7	24
CH ₃ NH ₂	4.8	20
Ph-NH ₂	≈1.0	5
N-Methyl-aziridin	17	70
Phosphine	30	125
Sulfoniumionen	>35	>150

Tabelle 18. Ringinversionsbarrieren

	ΔG^{\ddagger} [kcal/mol]	ΔG^{\dagger} [kJ/mol]
Cyclobutan	1.5	6
Cyclopentan (Pseudorotation)	0.25	1
Cyclohexan	11	45

Tabelle 19. Aktivierungsenergie, Halbwertszeit und Geschwindigkeitskonstanten für Kinetik 1. Ordnung

Säuren und Basen

Tabelle 20. Gegenüberstellung organischer und anorganischer Säuren/Basen auf der p $K_{\rm a}$ -Skala für den wässrigen Bereich

<u>Merke</u>: Bei pH = p K_a liegen Säure und konjugierte Base im Verhältnis 1 : 1 im Gleichgewicht vor. Bei pH = p K_a + 1 ist das Gleichgewichtsverhältnis 1 : 10, bei pH = p K_a - 1 ist es 10 : 1.

p <i>K</i> a	Anorgan	nische Verb.	Organische Verbindungen			
-3 -2	H ₂ SO ₄		protonierte Ether und Alkohole			
– 1	HNO ₃	H₃O⁺	austonianto Amida			
0			protonierte Amide			
1	H ₂ CrO ₄	HIO ₃	CF ₃ COOH protonierte Oxime und Harnstoffe			
2	HSO ₄ -	Ca _{aq.} 2+	Oxalsäure			
3	H₃PO₄	Fe _{aq.} 3+	Glyoxylsäure prot. Aminosäuren			
4	HNO ₂	HF	НСООН			
	HN ₃	Al _{aq.} 3+	CH₃COOH prot. Anilin			
5	HONH3	Zn _{aq.} ²⁺	prot. Pyridin			
6 7	H ₂ CO ₃	Fe _{aq.} ²⁺	Thiophenol (Ph–SH) prot. Imidazol			
8	H ₂ S	H_2N-NH_3	org. Persäuren			
9	HOBr		O OH			
10	B(OH) ₃	HCN $\stackrel{\scriptscriptstyle +}{\rm NH}_4$	Hydroxamsäuren (RCONHOH) Phenol Glycin Aminosäuren			
11	HCO ₃ -		Ét ₃ NH Ph-SO ₂ -NH ₂ Alkyl-SH			
12	H ₂ O ₂	HS-	CH ₃ OOH CH ₂ (CN) ₂			
13			Oxime prot. Amidine			
14			prot. Guanidine			
15			Pyrrol			
16		H ₂ O	CH ₃ OH Cyclopentadien			

Tabelle 21. p K_a -Werte an-/organischer Verbindungsklassen auf der erweiterten Skala

⊕ R-C≡N-H	–12 bis –10	H ₂ O 1	6
Þ0´H	–8 bis –6	CH ₂	16
R _O-H R ⊕	-4 bis −2	O R—	17
PhSO₃H	-3	NH ₂	1 /
O-H R-√⊕	-2 bis 0	ROH 15.5	bis 18
N-R R		Ar-NH ₂ 18 k	ois 28
⊕ Ar–NH ₃	4 bis 5	R O 19 t	ois 20
R-COOH	4 bis 5		
N-H ⊕	5.2	R O CH ₂ SR 2	20
H ₂ CO ₃	6.3	_ 0	
H ₂ S	7.0	R O CH ₂ OR	25
H.N.N.N.H	7	R H 2	25
Ar-SH	6 bis 8	CH ₃ –CN ≈2	25
R R	9	(Ph) ₃ CH	
HCN	9.2	(11)3 011	31
⊕ NH ₄	9.2	O H ₃ C ^{'S} CH ₃	35
ArOH	8 bis 11		35
⊕ R ₃ NH	10 bis 12		
R H C-NO ₂	10	(DN	12 1SO)
HCO ₃ -	10.3	$pK_a > 42$ (nur Reihenfolge):	
R-SH	10 bis 11	\square CH ₃ \square CH ₃	<
O O O	11		<
CF ₃ CH ₂ OH	12.4		
$\begin{array}{c} NH_2\\ R \longrightarrow \begin{pmatrix} NH_2\\ NH_2 \end{pmatrix} \end{array}$	12.5	CH ₄ < CH ₃ -CH ₃ < [1
$\begin{array}{c} & \\ \text{R-NH} & \xrightarrow{\text{NH}_2} \\ \text{NH}_2 \end{array}$	13.5	< CH ₂ < -	—н

Tabelle 22. pK_A -Werte ausgewählter Vertreter verschiedener Verbindungsklassen (erweiterte Skala)

Die untenstehenden Werte sind diversen Tabellenwerken entnommen und wurden nach verschiedenen Verfahren, z. T. auch bei unterschiedlichen Temperaturen (etwa Raumtemperatur) bestimmt. Sie sind deshalb mit einer mehr oder weniger grossen Unsicherheit behaftet. Dies gilt insbesondere für die weniger gängigen Verbindungen sowie diejenigen mit extremen Dissoziationskonstanten.

Kohlenwasserstoffe

	Cyclopentadien 16	PhCH ₃	Toluol 41	CH₄	Methan 49
	Fluoren 23		Propen 43	H ₃ C-CH ₃	Ethan 50
H -= -H	Acetylen 25		Benzol 43		Cyclohexan 51
Ph₃CH	Triphenylmethan 32	H H H H	Ethen 44		
Ph ₂ CH ₂	Diphenylmethan 33.5	\triangle	Cyclopropan 46	H ₂	Wasserstoff 36

Aktivierte CH-acide Verbindungen

	Acetylaceton 9.0	EtO ₂ C CO ₂ Et	Diethylmalonat 12.7	H₃C-CN	Acetonitril 25
H-CN	Blausäure 9.2	O Ph CH₃	Acetophenon 15.8	CHCl ₃	Chloroform 25
H ₃ C-NO ₂	Nitromethan 10.2	O H ₃ C H	Acetaldehyd 17	O NMe ₂	N,N-Dimethyl- acetamid 30
OEt	Acetessigester 11.0	O H ₃ C CH ₃	Aceton 20	O, O H ₃ C S CH ₃	Dimethylsulfon ~ 31
NC CN	Malonitril 11.2		Essigsäureethylester 24.5	O H ₃ C ^{'S} CH ₃	Dimethylsulfoxid ~ 35

Organische Carbon-, Sulfon-, und Phosphonsäuren

F ₃ C-SO ₃ H	Trifluormethansulfonsäure ~ -13	Cl ₃ C-CO ₂ H	Trichloressigsäure 0.7	O Et-P-OH	Ethylphos- phonsäure
	Benzolsulfonsäure	Cl ₂ HC-CO ₂ H	Dichloressigsäure 1.29	ÖН	2.4, 8
SO₃H	~ -2.5		Chloressigsäure	HCO ₂ H	Ameisensäure 3.7
H ₃ C-SO ₃ H	Methansulfonsäure	CIH ₂ C-CO ₂ H	2.86	<u></u>	Benzoesäure
1130 00311	~ -2	Q.	Phenylphos-	CO₂H	4.2
F ₃ C-CO ₂ H	Trifluoressigsäure 0.2	Ph-P-OH OH	phonsäure 2.2, 7.2	H ₃ C−CO ₂ H	Essigsäure 4.76

OH- und SH-acide Verbindungen

pethan·H ⁺	OH H_2N N N N	Uronium 0.1	—ОН	Phenol 10.0
ton·H⁺	NO ₂		MeSH	Methanthiol 10.0
	O_2N- OH	Pikrinsäure 0.25	EtSH	Ethanthiol 10.6
gsaurerr	<u></u>		F ₂ C-CH ₂ OH	Trifluor- ethanol
hyloxonium		2,4-Dinitrophenol 4.0	. 30 01.2011	12.4
rloxonium	-	Schwefelwasserstoff	H ₂ O	Wasser 15.74
nium			MeOH	Methanol 15.5
ıronium	SH	7	EtOH	Ethanol 16
	O_2N —OH	<i>p</i> -Nitrophenol 7.2	^t BuOH	<i>tert</i> -Butanol
tamid·H ⁺	PhB(OH) ₂	Phenylboronsäure 8.8		
	gsäure·H ⁺ hyloxonium loxonium nium 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Thiophenol ronium H_2N H_2N H_2 H_2N

NH-acide	Verbindungen				
	_	H ₂ N-NH ₃	Hydrazinium 8.1	+ NH ₂	Benzamidinium
+ H ₃ C-C≣NH	Acetonitril·H ⁺ ~ -10		Morpholinium	NH ₂	11.4
Ph ₂ NH ₂ +	Diphenylammonium	N+ H ₂	8.3	(N)	DBU·H ⁺ 12
N N+ H	0.8 Pyrimidinium 1.3	NMe ₂	4-(Dimethylamino)- pyridinium 9.2	N H O H ₃ C-S-NH ₂	Methan- sulfonamid ~12
N N+	Naphthyridinium 3.4	NH ₄ ⁺	Ammonium- 9.2 Phthalimid	O $+ NH_2$ $H_3C = \langle NH_2 \rangle$ NH_2	Ethanamidinium 12.4
NH ₃	Anilinium, mit X = H: 4.60 NO ₂ : 1.00 CN: 1.74 CF ₃ : 2.75	O O Ph-S-NH ₂	9.6 Benzolsulfonamid 10	$^{^{\dagger}}$ NH $_2$ $^{\frown}$ NH $_2$	Guanidinium 13.4 Imidazol
X	Cl: 3.98 CH ₃ : 5.10 OCH ₃ : 5.34	Ö EtNH ₃ ⁺	Ethylammonium 10.6	N _≫ NH O ∐	14.5 Acetamid
HN ₃	Stickstoffwasserstoff- säure	Et ₃ NH ⁺	Triethylammonium 10.7	∕NH ₂	15 Hexamethyldi-
H	4.7 <i>N,N</i> -Dimethylanilinium	Et ₂ NH ₂ +	Diethylammonium 10.9	(Me ₃ Si) ₂ NH	silazan (HMDS) 30 (in DMSO)
PhNMe ₂	5.1 Pyridinium	N+ H ₂	Piperidinium 11.1	\sim NH ₂	Anilin 30.6 (in DMSO)
N+ H	5.2	H ₂ + ⁱ Pr ₂ EtNH	<i>Hünig-</i> Base⋅H⁺	NH ₃	Ammoniak 35
HN → NH	Imidazolium 6.95	1120011	11.4	ⁱ Pr ₂ NH	Diisopropylamin 36 (in DMSO)

Tabelle 23. Relativ starke CH-Säuren

Erweiterte Skala für H₂O, aus diversen Quellen

Säure	p <i>K</i> a	Säure	p <i>K</i> a
CH(NO ₂) ₃	<< 0	CH ₂ (COMe) ₂	9
CH ₂ (NO ₂) ₂	3.6	CH ₂ (COOMe) ₂	13
CH ₃ NO ₂	10.2	CH ₂ (COMe)(COOMe)	10.7
CH(CN) ₃	- 5	Cyclohexan-1,3-dion	5.2
CH ₂ (CN) ₂	11.2	CH ₂ (NO ₂)(COOEt)	5.8

Tabelle 24. Bordwell-Skala für CH-Säuren in Dimethylsulfoxid

Aus: F. G. Bordwell, *Pure Appl. Chem.* 1977,49, 963.

Säure	p <i>K</i> a	Säure	p <i>K</i> a
Ph-SO ₂ -C H ₂ -NO ₂	7.1	(PhS) ₃ C H	22.8
CH ₂ (NO ₂)(COOEt)	9.2	Ph-CO-C H 3	24.7
CH ₂ =CH–C H ₂ –NO ₂	11.1	Cyclohexanon (α - H 's)	26.4
(PhSO ₂) ₂ C H ₂	12.1	Aceton	26.5
(CH ₃ CO) ₂ C H ₂	13.4	Ph-SO-C H ₂ Ph	27.2
CH ₂ (COOMe) ₂	15.7	Ph-C≡C-H	28.8
CH ₃ NO ₂	17.2	Ph-SO ₂ -C H 3	29.0
Cyclopentadien	18.0	(Ph) ₃ C H	30.6
(p - NO ₂ - Ph)C H ₃	20.5	(PhS) ₂ C H ₂	30.8
PhS-C H ₂ -CN	21.9	CH ₃ SO ₂ CH ₃	31.1
Me ₂ C H -SO ₂ -CF ₃	21.9	CH ₃ -CN	31.3
Ph-C H ₂ -CN	21.9	(Ph) ₂ C H ₂	32.2
Fluoren	22.6	DMSO	35.1

Tabelle 25. Protonierte funktionelle Gruppen

Aus: E. M. Arnett, *Progr. Phys. Org. Chem.* 1963, 1, 324. (Erweiterte Skala für H₂O))

Funkt. Gruppe	Verbindung	protonierte Form	p <i>K</i> a	% H₂SO₄ für Halbionisierung
Nitro	CH ₃ - NO ₂	+ ,∕O CH ₃ −N, OH	-11.9	> 100
Aldehyd	Ph - CHO	+O-H Ph(H	-7.1	81
Keton	CH ₃ - CO - CH ₃	Me O H	-7.2	82
	Ph - CO - CH ₃	Me Ph O H	-6.2	74
Carbonsäure	СН ₃ - СООН	+O H	-6.1	74
	Ph - COOH		-7.2	82
Thiol	CH ₃ - SH	+ CH ₃ - SH ₂	-6.8	78
Phenol	Ph - OH	Ph-OH ₂	-6.7	78
Sulfid	Me ₂ S	H Me ₂ SH	-5.4	68
Ether	Et ₂ O	+ Et ₂ OH	-3.6	52
	THF	О-н	-2.1	36
	(Ph)(Me)O	Me O-H Ph	-6.5	77
Alkohol	CH₃ - OH	+ CH ₃ - OH ₂	-2	34
Amid	CH ₃ - CONH ₂	+ O H Me NH ₂	0	6.5
Sulfoxid	$Me_2S = O$	H Me ₂ S=OH	0	6.5
Phosphinoxid	$Me_3P = O$	H Me ₃ P=OH	0	6.5
Aminoxid	Me ₃ N - O	He ₃ N–OH	4.7	< 1

Tabelle 26. Enolisierung von Carbonylverbindungen (Tautomerengleichgewichte)

Aus: S. Patai (Ed.), The Chemistry of the Carbonyl Group, Vol. II

	R	R'	Lsgsm.	% Enol	К	ΔG° [kcal/mol]
Ketone	CH ₃	CH ₃	neat*	0.00025	2.5 10 ⁻⁶	7.6
	CH ₃	CH ₂ CH ₃	п	0.012	1.2 10 ⁻⁴	5.3
O K OH	CH ₃	n-Bu	п	0.11	1.1 10 ⁻³	4.0
R R' R'	Phenyl	CH ₃	II	0.035	3.5 10-4	4.7
Enol	- (CH	₂) ₄ –	п	0.0048	4.8 10 ⁻⁵	5.9
	– (CH	₂) ₅ –	п	0.02	2.0 10-4	5.0
α-Diketone	CH ₃	CH ₃	neat	0.56	5.6 10 ⁻³	3.1
О. О. К. О. ОН	PhCH ₂	CH ₃	ıı	60	1.5	- 0.24
	– (CH	₂) ₃ –	H ₂ O	100	> 10 ²	<-2.7
Ř Ř' Ř Ř	– (CH	₂) ₄ –	11	40	0.67	0.24

	_	D DI			% Er	ol in:	
	R	R'	R"	neat	H ₂ O	Hexan	DMSO
β-Diketone	CH ₃	Н	CH ₃	80	12	92	
H .	CH ₃	CH ₃	CH ₃	31	3	59	
	– (CI	H ₂) ₃ –	Н		41		98
$R'' \stackrel{\sim}{\longrightarrow} R''$	– (CI	H ₂) ₃ –	CH ₃		15		
H H R'	– (CI	H ₂) ₄ –	Н	100	48		98
	- (CI	H ₂) ₄ –	CH ₃		29		100
		Н	CH ₃	54	8	49	
β-Ketoester		CH ₃	CH ₃	14	4	12	
н		CHMe ₂	CH ₃	6	5	6	
		Ph	CH ₃	80	31	67	
EtO R" EtO R"		Н	Ph		18		
H R' R'		Н	COOEt	94			
		CH ₃	COOEt	69			
		– (CH	₂) ₃ –	5			0
	- (C		₂) ₄ –	74			100
		– (CH	2)5 -	18			

^{*} Mit neat (engl.) bezeichnet man den Zustand der reinen Flüssigkeit ohne Lösungsmittel (= pur, unverdünnt).

Tabelle 27. HSAB-Prinzip – harte und weiche Säuren und Basen: Einteilung

HSAB - Prinzip: Einteilung der wichtigsten Elektrophile (Lewis -Säuren).					
Hart	Grenzgebiet	Weich			
H+ L i ⁺ , Na ⁺ , K ⁺ Be ²⁺ , C a ²⁺ , Mn ²⁺ Al ³⁺ , Fe ³⁺ , Cr ³⁺ Ti ⁴⁺ , Sn ⁴⁺ BF ₃ , BCl ₃ , BBr ₃ , B(OR) ₃ , AlR ₃ , AlCl ₃ SO ₃ , CO ₂ HCl, HF, HBr R-CO ⁺	NO+ Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺ , Sn ²⁺ BR ₃ SO ₂ $C_6H_5^+, R_3C^+$	Cu+, Ag+, TI+, Hg+,R-Hg+ Hg ²⁺ , Pd ²⁺ , Cd ²⁺ , Pt ²⁺ TI ³⁺ BH ₃ , GaCl ₃ , TIR ₃ I ₂ , Br ₂ , ICN Chinone, Carbene R-S+, I+, Br+, OH+ C-Radikale			
HSAB - Prinzip: Einteilung der wichtigsten Nucleophile (Lewis - Basen).					
Hart	Grenzgebiet	Weich			
OH· F-, Ac-, C I-, NO ₃ -, CIO ₄ - SO ₄ ²⁻ , CO ₃ ²⁻ PO ₄ ³⁻ H ₂ O, NH ₃ , N ₂ H ₄ R - OH, R - NH ₂ , R - O - R R - O -	N ₃ ⁻ , Br ⁻ , NO ₂ ⁻ , SO ₃ ⁻ N ₂ Anilin, Pyridin	H- I ⁻ , SCN ⁻ , CN ⁻ , HS ⁻ $S_2O_3^{2-}$ R_3P , (RO) $_3P$, CO R –S–R, Olefine, Benzol R –S ⁻ , R ⁻			

Solvatation

Tabelle 28. Eigenschaften einiger wichtiger Lösungsmittel

Lit.: Swain et al. J. Am. Chem. Soc. 1983, 105, 502.

Name	A+B	Α	В	μ	ε	Smp. [° C]	Sdp. [° C]
Wasser	2.00	1.00	1.00	1.8	78.5	0	100
Trifluoressigsäure	1.72	1.72	0.00			-15	72
Ameisensäure	1.69	1.18	0.51	1.5	58.5	8	100
Anilin	1.56	0.36	1.19	1.6	7.0	-6	184
Dimethylsulfoxid	1.41	0.34	1.08	3.9	48.9	18	189
<i>n-</i> Butylamin	1.32	0.15	1.17			-50	78
Nitromethan	1.31	0.39	0.92	3.1	38.6	-29	101
Methanol	1.25	0.75	0.50	1.7	32.6	-98	65
Dimethylformamid	1.24	0.27	0.97	3.8	3.8	-61	153
Acetonitril	1.22	0.37	0.86	3.5	37.5	-44	82
Pyridin	1.20	0.24	0.95	2.2	12.3	-42	116
Chloroform	1.15	0.42	0.73	1.1	4.7	-64	61
Methylenchlorid	1.13	0.33	0.80	1.5	8.9	-97	40
Ethanol	1.11	0.66	0.45	1.7	24.3	-117	78
Essigsäure	1.06	0.93	0.13	1.2	6.2	17	118
HMPT	1.07	0.00	1.07	5.5	29.6	7	235
Aceton	1.06	0.25	0.81	2.7	20.7	- 95	56
tert-Butanol	0.95	0.45	0.50	1.7	12.2	26	82
1,4-Dioxan	0.86	0.19	0.67	0.4	2.2	12	101
Tetrahydrofuran	0.84	0.17	0.67	1.7	7.4	-65	65
Ethylacetat	0.79	0.21	0.59	1.9	6.0	-84	77
Benzol	0.73	0.15	0.59	0.0	2.3	5	80
Diethylether	0.46	0.12	0.34	1.3	4.2	-116	35
Tetrachlorkohlenstoff	0.43	0.09	0.34	0.0	2.2	-23	77
Triethylamin	0.27	0.08	0.19	8.0	2.4	-115	89
<i>n-</i> Heptan	0.00	0.00	0.00	0.0	1.9	-91	98

A+B: Mass für Polarität

A: Mass für Solvatationsvermögen von AnionenB: Mass für Solvatationsvermögen von Kationen

 μ : elektrisches Dipolmoment [D]

 ε : Dielektrizitätskonstante

Tabelle 29. Solvatationseigenschaften von Lösungsmitteln

Diverses

Tabelle 30. Bestimmungsschlüssel zur Stereochemie

Topizität
Bestimmungsschlüssel für den Vergleich zweier isomorpher Liganden X und Y

Tabelle 31. Wichtige Schutzgruppen auf Acetalbasis

Für Aldehyde und Ketone:

Derivat	Herstellung	Spaltung		
R O R' O 1,3-Dioxolane	HOCH ₂ CH ₂ OH, Oxalsäure, MeCN, 25° C Synth. Commun. 1973 , <i>3</i> , 125.	Aceton, <i>p</i> -TsOH, 12 h 20° C Tetrahedron 1978 , <i>34</i> , 3269.		
	, p-TsOH	5 % HCl / THF, 20 h 25° C J. Am. Chem. Soc. 1977 , 99, 5773.		
	CHCl ₃ , 20° C Chem. Commun. 1975 , 432.	SiO ₂ , H ₂ O / CH ₂ Cl ₂ , 25° C Synthesis 1978 , 63.		
R SR" R' SR" Dithioacetale R" = Me, Et, Bu -CH ₂ CH ₂ -	R"SH, Me ₃ SiCl, CHCl ₃ , 20° C	AgNO ₃ / Ag ₂ O, MeCN / H ₂ O, 2 h 0° C <i>Tetrahedron Lett.</i> 1977 , 785.		
	Synth. Commun. 1977, 7, 283.	HgCl ₂ / CdCO ₃ , Aceton / H ₂ O <i>J. Am. Chem. Soc.</i> 1945 , <i>67</i> , 2039.		
	R"S–SiMe ₃ , ZnI ₂ , Et ₂ O, 0° C <i>J. Am. Chem. Soc.</i> 1977 , <i>99</i> , 5009.	SO ₂ Cl ₂ , SiO ₂ , H ₂ O / CH ₂ Cl ₂ , 2 h 25° C Synthesis 1976 , 678.		

Für Alkohole:

Derivat	Herstellung	Spaltung		
RO-CH ₂ -OCH ₃ Methoxymethylether "MOM"	CH ₂ (OMe) ₂ , P ₂ O ₅ , CHCl ₃ Synthesis 1975 , 276.	PhSH, BF ₃ , Et ₂ O <i>J. Am. Chem. Soc.</i> 1978 , <i>100</i> ,1938.		
RO-CH ₂ -SCH ₃ Methylthiomethylether "MTM"	 NaH, Dimethoxyethan MeSCH₂Cl / Nal Tetrahedron Lett. 1975, 3269. 	HgCl ₂ , MeCN / H ₂ O, 2 h 25° C Tetrahedron Lett. 1975 , 3269.		
RO O 2-Methoxyethoxymethylether "MEM"	MEM-CI, CH ₂ CI ₂ EtN(<i>i</i> -Prop) ₂ Tetrahedron Lett. 1976 , 809.	ZnBr ₂ , CH ₂ Cl ₂ , 25° C Tetrahedron Lett. 1976 , 809.		
RO O Tetrahydropyranylether "THP"	("DHP") Pyridiniumtosylat, CH ₂ Cl ₂ , 3 h 20° C	Pyridiniumtosylat,EtOH, 3 h 55° C <i>J. Org. Chem.</i> 1977 , <i>42</i> , 3772.		

Strukturformeln biologisch wichtiger Verbindungen

Tabelle 32. Coenzyme

Coenzyme (Fortsetzung)

Liponsäure:

 $E^0 = -0.29 \text{ V } (pH = 7)$

reduzierte Form

Biotin:

Thiaminpyrophosphat (TPP):

(ohne Pyrophosphat: **Thiamin** = **Vitamin** B₁)

Pyridoxalphosphat (PLP):

(ohne Phosphat: Vitamin B₆)

Tetrahydrofolsäure (FH₄):

Tabelle 33. Zuckerstammbaum

Tabelle 34. Proteinogene Aminosäuren

Тур	Name	Abk.	R	p <i>K</i> _a ¹	pK _a ²	р <i>К</i> а ³	pH _i
	Glycin	Gly	Н	2.34	9.60		5.97
	Alanin	Ala	CH ₃	2.34	9.69		6.01
	Serin	Ser	CH₂OH	2.21	9.15		5.68
	Cystein	Cys	CH₂SH	1.71	8.27	10.78 ^{a)}	5.02
	Threonin	Thr *	CH(OH)-CH ₃	2.71	9.62		6.16
<u>a</u>	Valin	Val *	CH(CH ₃) ₂	2.32	9.62		5.96
neutral	Leucin	Leu *	CH ₂ -CH(CH ₃) ₂	2.36	9.60		5.98
	Isoleucin	lle *	CH(CH ₃)-CH ₂ -CH ₃	2.36	9.68		6.02
	Methionin	Met *	CH ₂ -CH ₂ -S-CH ₃	2.28	9.21		5.74
	Phenylalanin	Phe *	CH ₂ -Ph	1.83	9.13		5.48
	Tyrosin	Tyr	CH ₂ -p-Ph-OH	2.20	9.11	10.07 b)	5.66
	Asparagin	Asn	CH ₂ -C(=O)-NH ₂	2.02	8.80		5.41
	Glutamin	Gln	CH ₂ -CH ₂ -C(=O)-NH ₂	2.17	9.04		5.65
basisch	Arginin	Arg *	(CH ₂) ₃ -NH-C(=NH)-NH ₂	2.17	9.12	12.84 ^{c)}	10.76
basi	Lysin	Lys *	(CH ₂) ₄ -NH ₂	2.18	3.65	10.53 ^{d)}	9.82
er	Asparaginsäure	Asp	CH ₂ -COOH	1.88	3.65 e)	9.60	2.77
sauer	Glutaminsäure	Glu	CH ₂ -CH ₂ -COOH 2.16 4.32 e) 9.96		9.96	3.24	
	Prolin	Pro	COOH	1.99	10.60		6.30
heterocyclisch			Ĥ				
	Histidin	His *	N NH ₂ COOH	1.82	6.00 ^{f)}	9.17	7.59
	Tryptophan	Trp *	H CH(NH ₂)-COOH	2.38	9.39		5.89

Legende zu Tabelle 34

Der isoelektrische Punkt (pH_i) ist der pH-Wert, bei dem die AS weitestgehend als Zwitterion vorliegt.

- * Essentielle AS (werden vom menschlichen Organismus nicht synthetisiert und müssen deshalb mit der Nahrung aufgenommen werden).
- a) Dissoziation von -SH
- b) Dissoziation von Ph-OH
- c) Dissoziation der Guanidin-Gruppe
- d) Dissoziation von ω -NH₂
- e) Dissoziation von ω-COOH
- f) Dissoziation des Imidazolrings

Tabelle 35. Nukleoside

