Machine Learning Lecture 9: Introduction to Deep Learning

Harbour.Space University February 2020

Radoslav Neychev

Outline

- Neural Networks in different areas. Historical overview.
- 2. Backpropagation.
- 3. Playground.
- 4. More on backpropagation.
- 5. Activation functions.
- 6. PyTorch practice

Deep Learning Timeline

Audio Features

Real world problems

- Object detection
- Action classification
- Image captioning
- •

"man in black shirt is playing guitar."

Logistic regression

$$P(y|x) = \sigma(w \cdot x + b)$$

$$L = -\sum_{i} y_{i} \log P(y|x_{i}) + (1 - y_{i}) \log (1 - P(y|x_{i}))$$

Problem: nonlinear dependencies

Logistic regression (generally, linear model) need feature engineering to show good results.

And feature engineering is an *art*.

Classic pipeline

Handcrafted features, generated by experts.

NN pipeline

Automatically extracted features.

NN pipeline: example

E.g. two logistic regressions one after another.

NN pipeline: example

Actually, it's a neural network.

XOR problem

Activation functions: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Some generally accepted terms

- Layer a building block for NNs :
 - o Dense layer: f(x) = Wx+b
 - Nonlinearity layer: $f(x) = \sigma(x)$
 - Input layer, output layer
 - A few more we will cover later
- Activation function function applied to layer output
 - Sigmoid
 - o tanh
 - ReLU
 - Any other function to get nonlinear intermediate signal in NN
- Backpropagation a fancy word for "chain rule"

"Train it via backprop!"

Actually, it can be deeper

Much deeper...

Much deeper...

How to train it?

Backpropagation and chain rule

Chain rule is just simple math: $\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$

Backprop is just way to use it in NN training.

source: http://cs231n.github.io

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Practice time: interactive playground

Backpropagation and chain rule

Chain rule is just simple math:

$$\frac{\partial L}{\partial x} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial x}$$

Backprop is just way to use it in NN training.

source: http://cs231n.github.io

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

32

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{array}{lll} f(x)=e^x &
ightarrow & rac{df}{dx}=e^x & f(x)=rac{1}{x} &
ightarrow & rac{df}{dx}=-1/x^2 \ f_a(x)=ax &
ightarrow & rac{df}{dx}=a & f_c(x)=c+x &
ightarrow & rac{df}{dx}=1 \end{array}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1 \ f_c(x)=c+x \hspace{1cm} o \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1 \ f_c(x)=c+x \hspace{1cm} o \hspace{$$

36

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=e^x \hspace{1cm} f(x)=rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx}=-1/x^2 \ f_a(x)=ax \hspace{1cm} o \hspace{1cm} rac{df}{dx}=a \hspace{1cm} f(x)=c+x \hspace{1cm} o \hspace{1cm} rac{df}{dx}=1 \$$

37

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad o \qquad rac{df}{dx}=e^x \ f_a(x)=ax \qquad \qquad o \qquad rac{df}{dx}=a$$

$$egin{aligned} rac{df}{dx} = e^x \ \hline rac{df}{dx} = a \end{aligned} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_0)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ & & & & & rac{df}{dx} = a \end{aligned}$$

$$f(x) = rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx} = -1/x^2 \ f_c(x) = c + x \qquad \qquad
ightarrow \qquad rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a$$

$$egin{aligned} rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x \ rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=rac{1}{x} \qquad \qquad
ightarrow \qquad rac{df}{dx}=-1/x \ f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

Another example:
$$f(w, y)$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

42

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

43

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$
 [local gradient] x [its gradient] x [its

45

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$
 $\sigma(x)=rac{1}{1+e^{-x}}$ sigmoid function $rac{d\sigma(x)}{dx}=rac{e^{-x}}{(1+e^{-x})^2}=\left(rac{1+e^{-x}-1}{1+e^{-x}}
ight)\left(rac{1}{1+e^{-x}}
ight)=(1-\sigma(x))\,\sigma(x)$

Gradient optimization

Stochastic gradient descent (and variations)

is used to optimize NN parameters.

 $x_{t+1} = x_t - \text{learning rate} \cdot dx$

47

Once more: nonlinearities

$$f(a) = \frac{1}{1 + e^a}$$

$$f(a) = \tanh(a)$$

$$f(a) = \max(0, a)$$

$$f(a) = \log(1 + e^a)$$

Sigmoid

$$f(a) = \frac{1}{1 + e^a}$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

3 problems:

- Saturated neurons "kill" the gradients
- Sigmoid outputs are not zerocentered
- 3. exp() is a bit compute expensive

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

$$f(a) = \tanh(a)$$

ReLU (Rectified Linear Unit)

$$f(a) = \max(0, a)$$

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid/tanh in practice (e.g. 6x)
- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

Leaky ReLU

$$f(x) = \max(0.01x, x)$$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into \alpha (parameter)

Exponential Linear Units (ELU)

$$f(x) = \begin{cases} x & \text{if } x > 0 \\ \alpha (\exp(x) - 1) & \text{if } x \le 0 \end{cases}$$

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs
- Computation requires exp()

Activation functions: sum up

- Use ReLU as baseline approach
- Be careful with the learning rates
- Try out Leaky ReLU or ELU
- Try out tanh but do not expect much from it
- Do not use Sigmoid

That's all. Time to build some NN.

Backup

Optimizers

Stochastic gradient descent is used to optimize NN parameters.

 $x_{t+1} = x_t - \text{learning rate} \cdot dx$

source: http://cs231n.github.io/neural-networks-3/

Optimizers

There are much more optimizers:

- Momentum
- Adagrad
- Adadelta
- RMSprop
- Adam
- ...
- even other NNs

Optimization: SGD

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W)$$

$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W)$$

Averaging over minibatches ---> noisy gradient

First idea: momentum

Simple SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

SGD with momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Momentum update:

Nesterov momentum

Momentum update:

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Nesterov Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t + \rho v_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

Comparing momentums

Second idea: different dimensions are different

Adagrad: SGD with cache

$$\operatorname{cache}_{t+1} = \operatorname{cache}_t + (\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Second idea: different dimensions are different

Adagrad: SGD with cache

$$\operatorname{cache}_{t+1} = \operatorname{cache}_t + (\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{\operatorname{cache}_{t+1} + \varepsilon}$$

Problem: gradient fades with time

Second idea: different dimensions are different

Adagrad: SGD with cache

$$cache_{t+1} = cache_t + (\nabla f(x_t))^2$$
$$x_{t+1} = x_t - \alpha \frac{\nabla f(x_t)}{cache_{t+1} + \varepsilon}$$

RMSProp: SGD with cache with exp. Smoothing

$$cache_{t+1} = \beta cache_t + (1 - \beta)(\nabla f(x_t))^2$$

Slide 29 Lecture 6 of Geoff Hinton's Coursera class

Adam

Let's combine the momentum idea and RMSProp normalization:

$$v_{t+1} = \gamma v_t + (1 - \gamma) \nabla f(x_t)$$

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta) (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{v_{t+1}}{\operatorname{cache}_{t+1} + \varepsilon}$$

Let's combine the momentum idea and RMSProp normalization:

$$v_{t+1} = \gamma v_t + (1 - \gamma) \nabla f(x_t)$$

$$\operatorname{cache}_{t+1} = \beta \operatorname{cache}_t + (1 - \beta) (\nabla f(x_t))^2$$

$$x_{t+1} = x_t - \alpha \frac{v_{t+1}}{\operatorname{cache}_{t+1} + \varepsilon}$$

Actually, that's not quite Adam.

Comparing optimizers

Once more: learning rate

Sum up: optimization

- Adam is great basic choice
- Even for Adam/RMSProp learning rate matters
- Use learning rate decay
- Monitor your model quality

Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?