СИСТЕМИ ЗА УПРАВЛЕНИЕ НА БАЗИ ОТ ДАННИ

MySQL Oracle

MySQL - възможности и функции

- Систем за управление на релационни бази от данни с отворен код
- Платформи Linux, Solaris, Windows, Mac OS X, BSD, NIX
- Собственост на Oracle създадена е през 1995 г., през 2008 е купен от Sun, а 2010 Oracle придобива Sun.

MySQL - възможности и функции

- Възможности за директна връзка с множество програмни езици - C, C++, Java, Perl, PHP, Python, Tcl
- Чрез ODBC връзка с всички програмни езици работещи в Windows среда
- Бързодействие едно от основните предимства

MySQL. Версии

- MySQL Community Edition безплатна версия
- MySQL Standard Edition (2 000\$) включва всички възможности на Community Edition и достъп до поддръжката на Oracle
- МуSQL Enterprise Edition (5 000\$) инструменти за извършване на пълни и частични архиви по време на работа, възстановяване на данните към определен момент от времето, инструменти за репликация, за одит, за виртуализация на ресурсите, както и за интеграция със съществуващата система за сигурност, като PAM (Pluggable Authentication Modules) и Windows Active Directory

MySQL. Версии

MySQL Cluster Carrier Grade Edition (10 000\$) - за бази от данни с големи размери.
 Автоматично разделя на части таблиците между различните възли на мрежата, като позволява базите от данни да променят размера си хоризонтално (увеличаване на броя редове в таблиците), без да е необходимо закупуване на скъпи сървъри

MySQL. Архитектура

Архитектурата на MySQL се разделя на 3 нива:

- Слой за връзка, който управлява комуникацията на сървъра с приложенията.
- SQL Engine анализира и оптимизира заявките изпратени към сървъра.
- Хранилища на данни (Storage Engine) извършват четене и запис от и на данни

MySQL. Архитектура

MySQL. Архитектура

- Програмистите взаимодействат с MySQL база от данни, като изпращат заявки чрез специални класове наречени "конектори" (Connector API). Заявките са анализирани и оптимизирани от SQL Engine и след това са препращани към хранилищата на данни.
- MySQL поддържа архитектура, която позволява избор на различни хранилища на данни за всяка таблица от базата данни. Хранилищата на данни са компонент, който обработва SQL операциите към таблиците в базата.

MySQL. Хранилища. InnoDB

- Използва се по подразбиране
- Поддържа транзакции и референтен интегритет
- Заключване на ниво запис докато се изпълнява транзакция върху дадени записи от таблицата, те остават заключени, но други транзакции могат да се изпълняват върху останалите записи

MySQL. Хранилища. InnoDB

MySQL. Хранилища. InnoDB

Използват се следните видове файлове:

- Ibdata1- файл, в който се съхранява информация за списъка от таблици във всяка база от данни
- За всяка таблица се създава файл с данни с разширение .ibd. В него се съхраняват и данните и индексите
- Речникът с данни за всяка таблица се записва във фалове с разширение.frm (структурата на таблицата)
- B ib_logfile0 и ib_logfile1 се съхраняват всички операции извършвани върху базата от данни

MySQL. Хранилища. MyISAM

- MyISAM е типът хранилище на данни по подразбиране в MySQL до версия 5.5
- Предлагат маханизъм за заключване само на ниво таблица, т.е. докато не приключи една транзакция към таблицата, не може да бъде изпълнена друга.

MySQL. Хранилища. MyISAM

- Всяка таблица от този тип се записва на три файла на твърдия диск. Файловете имат имена, които започват с името на таблицата и разширение, което да покаже типа на файла.
- Файловете с разширение .frm съхраняват структурата на таблицата.
- файловете с разширение .myd(MYData)
 съхраняват данните
- индексите се записват в .myi (MYIndex)

MySQL. Хранилища

- Memory записва всички данни в RAM паметта на компютъра
- Archive неиндексирани хранилища, които се използват за съхраняване на големи количества данни, които не се използват ежедневно и съдържат исторически данни, в това число и данни за извършени одити. Размерът на хранилището (за разлика от другите) е неограничен.

Групиране

TSQL:

SELECT column1, column2 from tablename GROUP BY column1

Резултат:

Msg 8120, Level 16, State 1, Line 2

MySQL:

SELECT column1, column2 from tablename GROUP BY column1

Резултат:

FULL OUTER JOIN

TSQL:

SELECT...FULL JOIN...ON...=...

MySQL:

Може да бъде симулиран с UNION на LEFT и RIGHT JOIN

Показване на част от резултата

TSQL:

SELECT **TOP** *n* columns

FROM tablename

MySQL:

SELECT columns

FROM tablename

LIMIT n, k

Долепване на стрингове – конкатенация

TSQL:

SELECT 'string1' + 'string2'

MySQL:

SELECT CONCAT(string1, string2)

ORACLE®

- Основана през 1977
- През 1979 се превръща в първата комерсиална релационна база данни с поддръжка на SQL
- Лидер на пазара на СУБД.
- Лари Елисън вдъхновен от публикациите на Едгар Код за релационните бази от данни - "A Relational Model of Data for Large Shared Data Banks"

Oracle. Версии

 Express Edition – подобно на Microsoft SQL Server, Oracle предлага безплатна, но с ограничени възможности версия на продукта

Standard Edition One – предлага повече възможности от Express Edition и може да работи с два процесора.

Oracle. Версии

 Standard Edition – може да работи на системи с до четири процесора и добавя възможност за разпределяне на една база от данни върху клъстер от сървъри.

 Enterprise Edition – включва повече възможности от Standard Edition и може да работи на системи с над четири процесора

Oracle - възможности и функции

Оracle Big Data. Възможност за вземане на решение на база изключително важна информация в неструктурирани данни като: блогове, социални мрежи, имейли, данни от сензори и снимки, съпътстващи дейностите, извършвани от организацията.

Oracle - възможности и функции

Oracle Advanced Analytics - платформа за анализ - откриване на смислени корелации, зависимости, повтарящи се образци, тенденции и аномалии в големи масиви от данни. Чрез Oracle Advanced Analytics потребителите могат да получават анализ в реално време за области като препоръки за управление на продукцията и пласмента, разкриване на измами, управление на потребителската ерозия (клиенти, които в скоро време ще предпочетат друга организация)

Oracle - възможности и функции

- Изчислителни облаци. използване на поевтина техника и по-лесно добавяне на нова изчислителна мощ. Oracle е първата СУБД, която поддържа мрежова (грид) архитектура – не е нужно да бъде инсталирана върху скъп и мощен сървър, а усугите и данните могат да бъдат разпределени между различни устройства в мрежата.
- Характерна за Oracle е възможността за записване на програмен код (PL/SQL или Java) директно в базата от данни

Oracle. Архитектура

- Oracle се състои от бази от данни и инстанции
- Всяка инстанция съдържа набор процеси и споделена оперативна памет с която те работят. За да бъде достъпвана информацията в база от данни, трябва да бъде стартирана инстанция за нея.

Oracle. Логическа и физическа структура

Oracle. Физическа структура на БД

Всяка БД се състои от

- 1 или повече физически файла, наречени файлове с данни. Един или повече физически файла формират логическа единица наречена таблично пространство (tablespace)
- ▶ 2 или повече лог файла (redo log files) в тях се записват всички промени правени по данните

Oracle. Физическа структура на БД

Всяка БД се състои от

 контролен файл - съдържа: името на базата данни, датата на създаване, имена и местоположения на файловете с данни и лог файловете (redo log). При всяко стартиране на инстанция на база от данни, контролният файл идентифицира файловете с данни и лог файловете, които трябва да бъдат отворени, за да протече успешно операцията

Oracle. Логическа структура на БД

- Oracle Data Blocks най-малката логическа единица за съхраняване на информация. Един блок представлява определено количество байтове на твърдия диск (размерът зависи от настройката на Oracle).
- Блоковете се групират в екстенти (Extents).

Oracle. Логическа структура на БД

- Сегмент (Segments) следващото ниво в йерархията – групира няколко екстента
- Таблици основната логическа единица за съхраняване на потребителска информация
- Таблично пространство (tablespace) логическа структура обединяваща логически свързани обекти

Oracle. Видове сегменти

- Сегмент за данни (data segment) в тях се съхраняват данните от таблиците. Таблиците имат по един сегмент за данни, освен в случаите в които са разделени на части – тогава всяка част на таблицата се съхранява в отделен сегмент.
- Сегменти за индекси съхраняват информация за индексите в базата от данни
- Временни сегменти създават се когато SQL заявка се нуждае от временно пространство за извършване на изчисления.
- Rollback сегмент съдържат данни позволяващи изпълнение на Undo – отмяна на действия