Amendment under 37 C.F.R. §1.111

Attorney Docket No. 062610 Application No. 10/583,152

REMARKS

Claims 1, 3-16, 18 and 19 are pending in the present application. Claims 16, 18 and 19

are withdrawn. Claim 1 is herein amended. No new matter has been presented.

Claim Rejections - 35 U.S.C. § 112

Claims 1 and 3-15 were rejected under 35 U.S.C. § 112, first paragraph, as failing to

comply with the written description requirement. The Office Action states that the limitation

reciting that the minimum selectivity of the catalyst for each of CO and H2 is 90%, is not

supported in the original specification. (Office Action, page 2.)

Claim 1 has been amended to comply with the written description requirement. Support

for the amendment to claim 1 is in, e.g., Example 2 of the specification.

The Office Action also takes the position that the specification does not support the full

range of selectivity, i.e., up to 100% selectivity. (Office Action, page 3.)

Applicants respectfully submit that the specification emphasizes the importance of "high

selectivity" for CO and H₂ (see, e.g., specification, page 5), and thus, one of ordinary skill in the

art would understand that the specification implies that any selectivity above a certain threshold

value is beneficial for the catalyst of the present invention.

Withdrawal of the § 112 rejection is requested.

Claim Rejections - 35 U.S.C. § 103

A. Rejection based on Wu

Claims 1 and 3-15 were rejected under 35 U.S.C. § 103(a) as being unpatentable over

Wu (US 5,898,014). Favorable reconsideration is requested.

- 7 -

Application No. 10/583,152

Applicants respectfully submit that Wu does teach or suggest:

a catalyst for manufacturing synthesis gas containing carbon monoxide and

hydrogen as principal ingredients from feedstock gas containing hydrocarbon having 1 to 5 carbon atoms in each molecule and oxygen,

[and]

wherein the selectivity of the catalyst for CO is at least 90.7% and for H₂ is

at least 90.2%.

as recited in claim 1.

The Office Action takes the position that selectivity is affected by many factors which are

not claimed. (Office Action, page 9.) However, Applicants respectfully submit that there is no

requirement to claim factors that affect the selectivity. An anticipation rejection requires that a

reference teaches every element recited in the claim either expressly or inherently. If Applicants

provide evidence that the catalyst in Wu does not have the selectivity as recited in the claims,

then Wu does not anticipate the claims.

Based on the data in the declaration, Applicants have established that a catalyst

substantially equivalent to the catalyst in Wu does not satisfy the selectivity of the catalyst for

CO and H₂ as recited in claim 1, and thus, Wu does not teach all of the elements as recited in the

claim 1 either expressly or inherently.

The Office Action takes the position that the data in the declaration is not commensurate

in scope with the claims. (Office Action, page 9.) However, as pointed out in the Declaration,

Examples 1-6 demonstrating the present invention as recited in the claims are commensurate in

scope with the claims, and the data in the declaration demonstrates that the catalyst in Wu does

not satisfy the selectivity for CO and H₂ as recited in the claims.

- 8 -

be used for a process of partial oxidation if the reactants are given in an amount which only

The Office Action also takes the position that "a catalyst which can achieve oxidation can

allows for such, for example a less than stoichiometric amount of oxygen." (Office Action, page

5.) However, partial oxidation cannot be practically achieved by only adjusting the proportion

of reactants to be fed into the reaction furnace. To the contrary conditions must be optimized for

partial oxidation.

Ideally, partial oxidation is carried out at O_2 : $CH_4=1:2$ (for $CH_4+1/2O_2 \rightarrow CO+2H_2$). If the

oxygen content is higher than the ratio, CO and H₂ once formed (even under the ideal progress of

reaction) will be combusted to produce increased amounts of CO2 and H2O and lower the

methane conversion rate. On the other hand, if oxygen content is lower than the ratio, the

selectivity for CO and H₂ may be unchanged or even improved. However, even if the selectivity

for CO and H₂ is improved, since the amount of oxygen necessary for the reaction is absolutely

insufficient, the methane conversion rate will be lowered. Thus, even if the oxygen content is

lowered to improve the selectivity, the production efficiency of synthesis gas will be lowered. In

other words, a catalyst for partial oxidation must show a high methane conversion rate and a high

selectivity for CO and H₂ under the above ideal ratio of O₂:CH₄=1:2. In the examples of the

present application, the ratio of O₂:CH₄:Ar=15:30:55 is employed. Please note that Comparative

Example 15 demonstrates that a catalyst substantially corresponding to the catalyst of Wu

(CeO₂:ZrO₂=50:50) shows a lower performance than the catalysts having a composition within

the claimed range.

- 9 -

B. Rejection based on Niu, Yagi and Allison

Claims 1 and 3-15 were rejected under 35 U.S.C. § 103(a) as being unpatentable over Niu

(US 2003/0180215) in view of Yagi (US 6,376,423) and Allison (US 2002/0115730). Favorable

reconsideration is requested.

Applicants respectfully submit that the present invention as recited in the claims provides

unexpected results and thus, the molar ratios recited in the claims are critical. The results from

the Examples and Comparative Examples as summarized in Tables 1 and 2, demonstrate that

when the molar ratio of the second ingredient to the first ingredient and the molar ratio of the

third ingredient to the first ingredient go out of their respective ranges, the conversion rate and

the selectivity fall. (Specification, page 27.) The results also demonstrate that when the ratio of

the third ingredient to the first ingredient increases, the CO and H2 selectivity increase, but the

methane conversion rate and the resistance against carbon deposition are not satisfactory.

(Specification, page 27.) Additionally, the results demonstrate that when the ratio of the second

ingredient to the first ingredient increases, the methane conversion is improved, but the CO and

H₂ selectivity decrease and the resistance against carbon deposition is not satisfactory.

(Specification, pages 27-28.) Therefore, the results in Tables 1 and 2 demonstrate unexpected

results and the criticality of the recited molar ratios of the carrier ingredients.

For at least the foregoing reasons, claims 1 and 3-15 are patentable over the cited

references. Accordingly, withdrawal of the rejection of claims 1 and 3-15 is hereby solicited.

- 10 -

Amendment under 37 C.F.R. §1.111

Attorney Docket No. 062610

Application No. 10/583,152

In view of the aforementioned amendments and accompanying remarks, Applicants

submit that the claims, as herein amended, are in condition for allowance. Applicants request

such action at an early date.

If the Examiner believes that this application is not now in condition for allowance, the

Examiner is requested to contact Applicants' undersigned attorney to arrange for an interview to

expedite the disposition of this case.

If this paper is not timely filed, Applicants respectfully petition for an appropriate

extension of time. The fees for such an extension or any other fees that may be due with respect

to this paper may be charged to Deposit Account No. 50-2866.

Respectfully submitted,

WESTERMAN, HATTORI, DANIELS & ADRIAN, LLP

/Andrew G. Melick/

Andrew G. Melick

Attorney for Applicants

Registration No. 56,868

Telephone: (202) 822-1100

Facsimile: (202) 822-1111

AGM/adp/rer

- 11 -