

IV. Multiple Choice Questions

Question 1. The equilibrium expression, $K_c = [CO_2]$ represents the reaction.

(a)
$$C(s) + O_2(g) \rightleftharpoons CO_2(g)$$

(b)
$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

$$\begin{array}{lll} (a) & \mathsf{C}(s) + \mathsf{O}_2(g) & \Longrightarrow \mathsf{CO}_2(g) & (b) & \mathsf{CaCO}_3(s) & \Longrightarrow \mathsf{CaO}(s) + \mathsf{CO}_2(g) \\ (c) & \mathsf{CO}(g) + \frac{1}{2} & \mathsf{O}_2(g) & \Longrightarrow \mathsf{CO}_2(g) & (d) & \mathsf{CaO}(s) + \mathsf{CO}_2(g) & \Longrightarrow \mathsf{CaCO}_3(s) \\ \end{array}$$

(d)
$$CaO(s) + CO_2(g) \rightleftharpoons CaCO_3(s)$$

Question 2. Hydrogen molecule (H₂) can be dissociated into hydrogen atoms (H). Which one of the following changes will not increase the number of atoms present at equilibrium?

- (a) adding H atoms
- (b) increasing the temperature
- (c) increasing the total pressure
- (d) increasing the volume of the container

Question 3. What is the expression for K_{eq} ? for the reaction

$$2N_2O(g) + O_2(g) \Rightarrow 4NO(g)$$
?

(a)
$$\frac{[N_2][O_2]}{[NO]}$$

(b)
$$\frac{[NO]^4}{[N_2O]^2}$$

$$(a) \ \frac{[N_2][O_2]}{[NO]} \qquad (b) \ \frac{[NO]^4}{[N_2O]^2} \qquad \qquad (c) \ \frac{[NO]^4}{[N_2O]^2[O_2]} \qquad \qquad (d) \ \frac{[N_2O]^2[O_2]}{[NO]^4}$$

(d)
$$\frac{[N_2O]^2[O_2]}{[NO]^4}$$

Question 4. A catalyst will increase the rate of a chemical reaction by

- (a) shifting the equilibrium to the right
- (b) shifting the equilibrium to the left
- (c) lowering the activation energy
- (d) increasing the activation energy

Question 5. What is the correct expression for the representation of the solubility product constant of $Ag_2 CrO_4$?

(a) [Ag]
$$[CO_4]$$
 [(b) [2Ag] $[CO_4]$]
Ouestion 6. In a closed sustem

(a)
$$[Ag^+]^2 [CrO_4^{2-}](b) [2Ag^+] [CrO_4^{2-}]$$
 (c) $[Ag^+] [CrO_4^{2-}]$ (d) $[2Ag^+]^2 [CrO_4^{2-}]$

Question 6. In a closed system

$$A(S) \rightleftharpoons 4 B(g) + 3 C(g)$$

If partial pressure of C is doubled, then partial pressure of B will be

- (a) $2\sqrt{2}$ times the original value
- (b) $\frac{1}{2}$ times the original value
- (c) 2 times of the original value (d) $\frac{1}{2\sqrt{2}}$ times of the original value

Question 7. $H_2 + S \rightarrow H_2S + energy$.

In this reversible reaction, select the factor which will shift the equilibrium to the right.

- (a) adding heat
- (b) adding H_2S
- (c) blocking hydrogen gas reaction
- (d) removing hydrogen sulphide gas

Question 8. What effect does a catalyst have on the equilibrium position of a reaction?

- (a) a catalyst favours the formation of products
- (b) a catalyst favours the formation of reactants
- (c) a catalyst does not change the equilibrium position of a reaction
- (d) a catalyst may favour reactants or product formation,

depending upon the directiofi in which the reaction is written.

Question 9. A chemist dissolves an excess of BaSO₄ in pure water at

25°C if its K_{sp} = 1 x 10⁻¹⁰ what is the concentration of barium in the

- (a) 10^{-4} M (b) 10^{-5} M
- (c) 10^{-15} M (d) 10^{-6} M

Question 10. If in a mixture where Q = k is combined, then what happens?

- (a) the reaction shift towards products
- (b) the reaction shift towards reactants
- (c) nothing appears to happen, but forward and reverse are continuing at the same rate
- (d) nothing happens

Answer:

1.(b)

2.(c)

3.(c)

4.(c)

5.(a)

6.(d)

7.(a)

8.(c)

9.(c)

10.(c)

V. Hots Questions

Question 1. For the equilibrium 2 NOCl(g) \rightarrow 2NO(g) + C½(g) the value of the equilibrium constant Kc is 3.75 x 10⁻⁶ at 1069 K. Calculate the K_p for the reaction at this temperature? Answer:

We know that $K_p = K_c(RT)^{\Delta n}$

For the above reaction, $\Delta n = (2 + 1) - 2 = 1 \text{ K}_p = 3.75 \times 10^{-6} (0.0831 \times 1069)$

 $K_D = 0.033$.

Question 2. The values of Ksp of two sparingly soluble salts ${\rm Ni(OH)_2}$ and AgCN are 2.0 x ${\rm 10^{-15}}$ and 6 x ${\rm 10^{-17}}$ respectively. Which salt is more soluble? Explain.

AgCN
$$\Rightarrow$$
 Ag⁺ + CN⁻
Ksp = [Ag⁺][CN⁻] = 6 × 10⁻¹⁷
Ni(OH)₂ \Rightarrow Ni²⁺ + 2OH⁻
Ksp = [Ni²⁺][OH⁻]² = 2 × 10⁻¹⁵
Let [Ag⁺] = S₁, then [CN⁻] = S₁
Let [Ni²⁺] = S₂, then [OH⁻] = 2S₂
S₁² = 6 × 10⁻¹⁷, S₁ = 7.8 × 10⁻⁹
(S₂) (2S₂)² = 2 × 10⁻¹⁵, S₂ = 0.58 × 10⁻⁴
Ni(OH)₂ is more soluble than AgCN.

Question 3. The value of Kc for the reaction $2A \rightarrow B + C$ is 2×10^3 . At a given time, the composition of reaction mixture is $[A] = [B] = [C] = 3 \times 10^{-4}$ M. In which direction the reaction will proceed? Answer: For the reaction the reaction quotient Q is given by $Q_C = [B] [C]/[A]2$ as $[A] = [B] = [C] = 3 \times 10^{-4}$ M $Q_C = (3 \times 10^{-4})$ (3×10^{-3})/(3×10) = 1 as $Q_C > K_C$, so, the reaction will proceed in the reverse direction.

Question 4. PCl₅, PCl₃ and Cl₂ are at equilibrium at 500 K and having

concentration 1.59M PCl $_5$ 1.59M Cl $_2$ and 1.41M PCl $_5$. Calculate K $_c$ for

the reaction $PCl_5 \rightarrow PC_{13} + Cl_2$

Answer: The equilibrium constant Kc for the above reaction can be written as:

$$Kc = \frac{[PCl_3][Cl_2]}{[PCl_5]}$$
$$= \frac{(1.59)^2}{1.41} = 1.79$$

Question 5. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction: $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3 H_2(g)$

- (a) Write an expression for K_p for the above reaction.
- (b) How will the values of $\rm K_p$ and composition of equilibrium mixture be affected by (i) increasing the pressure (ii) increasing the temperature (iii) using a catalyst? Answer:

(a)
$$K_p = \frac{[p_{CO}][p_{H_2}]^3}{[p_{CH_4}][p_{H_2O}]}$$

- (b) (i) value of $K_{\rm p}$ will not change, equilibrium will shift in backward direction.
- (ii) value of $\mathbf{K}_{\mathbf{p}}$ will increase and reaction will proceed in forward direction.
- (iii) no effect.

