13.8 Cont... Absolute Maximum and Minimum Values

Def. Let f be defined on a set R in R^2 containing the point (a_1b) . If $f(a_1b) \geqslant f(x_1y)$ $\forall (x_1y)$ in R then $f(a_1b)$ is an absolute maximum value of f in R. If $f(a_1b) \leq f(x_1y)$ $\forall (x_1y)$ in R, then $f(a_1b)$ is an absolute minimum value of f in R.

Ex. $f(x,y) = x^2 + y^2 - 2x - 2y$; R is the closed region bounded by the triangle with vertices [0,0], [2,0], [0,2].

rirst we look for critical points in the interior of R:

the interior of
$$x = 2x - 2$$

for $x = 2x - 2$

for $x = 2x - 2$
 $x = 2x - 2$

$$2x=2=0 \Rightarrow x=1$$
 $2y-2=0 \Rightarrow y=1$

(1,1) is inside the region R actually is on the boundary

Now, we look at the boundary of the region.

region.

$$L_1: y=-x+2$$
 $0 \le x \le 2$, $0 \le y \le 2$

$$P(x,y) = x^{2} + y^{2} - 2x - 2y$$

$$= x^{2} + (-x+2) - 2x - 2(-x+2)$$

Line the between the points
$$(0|2)$$
 and $(2,0)$ is:
 $y = -x + 2$ $0 \le y \le 2$

Line between (0|2) and (0|0)x=0 $0 \le y \le 2$

Line between lopol and (z,0)y=0 $0 \le x \le 2$

for abs max or abs min	The function evaluated at the candidates
	N. N = 2 -

WHIND WHIND

$$f(0,0) = 0$$

Table (*)