香港考試及評核局 2016年香港中學文憑考試

化學 試卷二

本試卷必須用中文作答 一小時完卷(上午十一時四十五分至下午十二時四十五分)

考生須知

- (一) 本試卷共有甲、乙和丙三部。考生須選答任何兩部中的全部試題。
- (二) 答案須寫在所提供的 DSE(D) 答題簿內,每題(非指分題)必須另起新頁作答。
- (三) 本試卷的第 8 頁印有周期表。考生可從該周期表得到元素的原子序及相對原子質量。

考試結束前不可將試卷攜離試場

甲部 工業化學

回答試題的所有部分。

- 1. (a) 回答以下短問題:
 - (i) 参考以下在工業上使用某催化劑生產乙醇的反應:

 $C_2H_4(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$

 $\Delta H = -45 \text{ kJ mol}^{-1}$

根據平衡位置及反應速率,論證為什麼在 65 atm 壓強下,把操作溫度設定在 $300^{\circ}\mathrm{C}$ 。

(2分)

(ii) 麥克斯韋一波爾茲曼分佈曲線下的面積代表什麼?

(1分)

- (iii) 在很多工業過程中,合成氣是一個重要的起始物料。
 - (1) 寫出合成氣的兩種主要成分氣體。
 - (2) 提出一個可從合成氣經催化過程直接製成的重要化學品。

(2分)

- (b) 考慮在一所化工廠藉哈柏法生產氨。
 - (i) 提出在工業上如何能獲取氦氣。

(1分)

(ii) 解釋為什麼有需要在這所化工廠內安裝熱交換器。

(2分)

(iii) 若把 420 kg 的氮及 96 kg 的氫注入反應室,而氨的產率為 15%,計算所生產氨的質量。 (3 分)

(3.21)

- (iv) 這所化工廠也可生產硝酸。首先,氨被氧化以得出一氧化氮,而一氧化氮被進 一步氧化為二氧化氮。最後,把二氧化氮氧化得出硝酸。為以下各反應寫出一 條化學方程式:
 - (1) 把氨氧化以得出一氧化氮
 - (2) 把二氧化氢氧化以得出硝酸

(2分)

以下反應式可代表蔗糖的水解:

(i) 在相同實驗條件下,進行了三次實驗來研習該水解的動力學。下表列出所得的 數據:

			·
	C ₁₂ H ₂₂ O ₁₁ (aq) 的	HCl(aq) 的	C ₁₂ H ₂₂ O ₁₁ (aq) 消失的
	初始濃度/moldm ⁻³	初始濃度 / mol dm ⁻³	初速 / mol dm ⁻³ s ⁻¹
第1次	0.010	0.10	6.0×10^{-7}
第2次	0.020	0.20	2.4×10^{-6}
第3次	0.010	0.30	1.8 x 10 ⁻⁶

- (1) 已知對應 $H_2O(l)$ 的反應級數是零,推定對應 $C_{12}H_{22}O_{11}(aq)$ 及對應 HCl(aq) 的反應級數。
- (2) 寫出該反應的速率方程。
- (3) 基於第1次實驗的結果,計算在實驗條件下的速率常數。 (4 分)
- (ii) 蔗糖也可藉某一種酶的作用而進行水解。寫出該酶在這水解的功用。 (1 分)
- (iii) 澱粉經酶水解後最終的唯一生成物是葡萄糖。根據綠色化學原理,提出**兩項**理由,說明為什麼澱粉被視為較蔗糖更適合於作為葡萄糖的來源。 (2分)

甲部完

甲部 工業化學

回答試題的所有部分。

- 1. (a) 回答以下短問題:
 - (i) 参考以下在工業上使用某催化劑生產乙醇的反應:

 $C_2H_4(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g)$

 $\Delta H = -45 \text{ kJ mol}^{-1}$

根據平衡位置及反應速率,論證為什麼在 65 atm 壓強下,把操作溫度設定在 $300^{\circ}\mathrm{C}$ 。

(2分)

(ii) 麥克斯韋一波爾茲曼分佈曲線下的面積代表什麼?

(1分)

- (iii) 在很多工業過程中,合成氣是一個重要的起始物料。
 - (1) 寫出合成氣的兩種主要成分氣體。
 - (2) 提出一個可從合成氣經催化過程直接製成的重要化學品。

(2分)

- (b) 考慮在一所化工廠藉哈柏法生產氨。
 - (i) 提出在工業上如何能獲取氦氣。

(1分)

(ii) 解釋為什麼有需要在這所化工廠內安裝熱交換器。

(2分)

(iii) 若把 420 kg 的氦及 96 kg 的氫注入反應室,而氨的產率為 15%,計算所生產氨的質量。

(3分)

- (iv) 這所化工廠也可生產硝酸。首先,氨被氧化以得出一氧化氮,而一氧化氮被進一步氧化為二氧化氮。最後,把二氧化氮氧化得出硝酸。為以下各反應寫出一條化學方程式:
 - (1) 把氨氧化以得出一氧化氮
 - (2) 把二氧化氮氧化以得出硝酸

(2分)

1. (c) 以下反應式可代表蔗糖的水解:

(i) 在相同實驗條件下,進行了三次實驗來研習該水解的動力學。下表列出所得的 數據:

	C ₁₂ H ₂₂ O ₁₁ (aq) 的 初始濃度 / mol dm ⁻³	HCl(aq) 的 初始濃度 / mol dm ⁻³	C ₁₂ H ₂₂ O ₁₁ (aq) 消失的 初速 / mol dm ⁻³ s ⁻¹
第1次	0.010	0.10	6.0 x 10 ⁻⁷
第2次	0.020	0.20	2.4 x 10 ⁻⁶
第3次	0.010	0.30	1.8 x 10 ^{−6}

- (1) 已知對應 $H_2O(l)$ 的反應級數是零,推定對應 $C_{12}H_{22}O_{11}(aq)$ 及對應 HCl(aq) 的反應級數。
- (2) 寫出該反應的速率方程。
- (3) 基於第1次實驗的結果,計算在實驗條件下的速率常數。 (4分)
- (ii) 蔗糖也可藉某一種酶的作用而進行水解。寫出該酶在這水解的功用。 (1 分)
- (iii) 澱粉經酶水解後最終的唯一生成物是葡萄糖。根據綠色化學原理,提出**兩項**理由,說明為什麼澱粉被視為較蔗糖更適合於作為葡萄糖的來源。 (2分)

甲部完

回答試題的所有部分。

- 2. (a) 回答以下短問題:
 - (i) 纖維素是一種天然聚合物,它的結構顯示如下:

解釋為什麼纖維素被視為對環境友善。

(1分)

(ii) 寫出液晶的**兩個**結構特徵。

(2分)

(iii) 凱庫勒的部分結構顯示如下:

参照以上結構,給出**兩項**理由說明為什麼凱庫勒是剛性的。

(2分)

(b) 金是一種貴重金屬,下圖顯示金晶體的晶胞。

(i) 寫出這類晶體結構的名稱。

(1分)

(ii) 計算這晶胞中金原子的數目。

(2分)

(iii) 標示為「X」的金原子的配位數是什麼?

(1分)

- 某 18-克拉金樣本由 75% 金、 15% 銀和 10% 銅組成。從科學的觀點,解釋用這 (iv) (b) 2. 18-克拉金樣本較用純金來製造以鑽石鑲嵌的首飾的優勝之處。 (2分)
 - 不同大小的金納米粒子呈不同顏色。提出在建築上使用金納米粒子的一個例 (v) 子。

(1分)

考慮以下聚合物: (c)

聚對苯二甲酸丁二酯 (PBT)、 聚四氟乙烯 (PTFE)、 聚(對亞苯基亞乙烯基) (PPV)

某電腦鍵盤的鍵蓋是以 PBT 製造。 PBT 的結構顯示如下: (i)

- 繪出PBT不同單體的結構。 (1)
- 寫出形成PBT所涉及聚合作用的類別名稱。 (2)
- 建議一個製造電腦鍵盤的鍵蓋的成型方法。 (3) (4分)
- 某滴定管活栓是以 PTFE 製造。提出 PTFE 的 兩項性質讓它適合製造滴定管活 (ii) 栓。 (2分)
- 某 OLED 顯示屏的導電層是以 PPV 製造。 PPV 的結構顯示如下: (iii)

- 繪出 PPV 含**三個**重複單位的部分結構。 (1)
- 你會預期 PPV 展示旋光性嗎?解釋你的答案。 (2) (2分)

乙部完

丙部 分析化學

回答試題的所有部分。

- 3. (a) 回答以下短問題:
 - (i) 寫出氫氧化鈉固體的一項性質,使它<u>不</u>適合藉稱重來配製標準溶液。

(1分)

(ii) 建議一個化學測試以顯示次氯酸根離子存在於一個水溶液中。

(2分)

(iii) 纖維素及甲殼素均是天然聚合物,它們的結構顯示如下:

参照下表所給的數據,提出在纖維素及甲殼素的紅外光譜中一項相似之處及一項相異之處。

特徵紅外吸收波數域 (伸展式)

鍵合	化合物類別	波數域/cm ⁻¹
C=C	烯	1610至1680
C=O	醛、酮、羧酸及其衍生物	1680至1800
C≡C	炔	2070 至 2250
C≡N	腈	2200至2280
O-H	帶「氫鍵」的酸	2500至3300
О-Н	帶「氫鍵」的醇及酚	3230至3670

(2分)

- (b) 利用容量分析測定一個 $Na_2Cr_2O_7(aq)$ 樣本 A 的濃度;並利用比色法測定另一個 $Na_2Cr_2O_7(aq)$ 樣本 B 的濃度。
 - (i) 把 25.00 cm³ 的樣本 A 轉移到一錐形瓶,並用稀 $H_2SO_4(aq)$ 酸化。然後在適當的指示劑下以 0.0642 mol dm⁻³ $Fe^{2+}(aq)$ 溶液滴定該混合物,需用 26.88 cm³ 的該 $Fe^{2+}(aq)$ 溶液來達到終點。
 - (1) 寫出所涉及反應的平衡方程式。
 - (2) 計算在 A 中 Na₂Cr₂O₇(aq) 的濃度。

(3分)

3. (b) (ii) 在比色法中,先配製不同的標準 $Cr_2O_7^{2-}(aq)$ 溶液,然後用裝了藍色濾片的比色計來量度這些溶液的吸光度。以下的校準曲線顯示吸光度隨 $Cr_2O_7^{2-}(aq)$ 離子濃度的變化。

- (1) 提出為什麼要用藍色濾片。
- (2) 参考以上的校準曲線,寫出吸光度與 $[Cr_2O_7^{2-}(aq)]$ 的關係。
- (3) 把樣本 $\bf B$ 稀釋 100 倍。用該比色計量度得這稀釋溶液的吸光度為 0.26。根據上述校準曲線所給的資料,計算在 $\bf B$ 中 $Na_2Cr_2O_7(aq)$ 的濃度。

(4分)

(iii) 解釋在測定一個非常稀(如大概 $10^{-4} \, \text{mol dm}^{-3}$) 的 $Na_2Cr_2O_7(aq)$ 的濃度時,使用容量分析抑或比色法較為恰當。

(1分)

(c) X 和 Y 是同分異構化合物,它們的結構顯示如下:

$$X$$
OH
 Y

(i) 提出並解釋如何利用 X 和 Y 各自的質譜來分辨它們。

(2分)

- (ii) X 的熔點是 50 °C 而 Y 的是 77 °C。它們均不溶於水但溶於二氯甲烷。當以 稀 Na₂CO₃(aq) 處理時, X 不發生反應但 Y 發生反應以生成一可溶的鹽。
 - (1) 你獲提供稀 $Na_2CO_3(aq)$ 和稀 $H_2SO_4(aq)$ 。根據溶劑提取,概述把固體 Y 從 X 和 Y 在二氯甲烷的溶液中分離出來的實驗步驟。
 - (2) 提出如何能鑑定在 (1) 中所得的固體是純化合物 Y。 (5 分)

PERIODIC TABLE 周期表

		0	2	He	4.0	10	Ne	20.2	18	Ar	40.0	36	Kr	83.8	54	Xe	131.3	98	R	(222)			
		•			VIII	6	ĵ±,	19.0	17	こ	35.5	35	Br	6.62	53	—	126.9	85	At	(210)			
					ΛΙ	8	0	16.0	16	S	32.1	34	Se	79.0	52	Te	127.6	84	Po	(506)			
					>	7			┪									83					
					IV	9	ပ	12.0	14	Si	28.1	32	ge	72.6	50	Sn	118.7	82	Pb	207.2			
					Ш	5	В	10.8	13	Ψ	27.0	31	gg	69.7	49	щ	114.8	81	I	204.4			
					•							30	Zn	65.4	48	ಶ	112.4	80	Hg	200.6			
												29	Ö	63.5	47	Ag	107.9	79	Αu	197.0			
									質量			28	Z	58.7	46	Pd	106.4	78	P	195.1			
14	脐								相對原子質量			27	ට	58.9	45	Z Z	102.9	11	ų	192.2	-		
	number 原子序								oic mass			26	Fe	55.8	44	Ra	101.1	92	ő	190.2			
	mic numb								relative atomic mass			25	Mn	54.9	43	Tc	(88)	75	Re	186.2			
	atomic						/	/	rel			24	ڻ	52.0	42	Mo	95.9	74	*	183.9			
		1	4	H	1.0	_					- 1			- 1			- 1			1		ορ	(262)
		_										22	Ξ	47.9	40	Zr	91.2	72	H	178.5	104	R	(261)
											1						- 1			- 1			(227)
松						4	Be	9.0	12	Mg	24.3	70	Ca	40.1	38	Sr	87.6	26	Ba	137.3	88	Ra	(226)
GROUP 族					I	m	I	6.9	Ξ	Na	23.0	19	×	39.1	37	Rb	85.5	55	ර	132.9	87	Fr	(223)
					_									1									

	173.0	05	-	
E		1	ž	(259
Ξ	168.9	101	Md	(258)
臣	167.3	100	Fm	(257)
Ho	164.9	66	Es	(252)
Dy	162.5	86	C	(251)
T	158.9	26	Bķ	(247)
<u>B</u>	157.3	96	Cm	(247)
E	152.0	95	Am	(243)
Sm	150.4	94	Pa	(244)
Pm	(145)	93	Np	(237)
PN	144.2	92	D	238.0
P	140.9	91	Pa	(231)
ర	140.1	96	T	232.0
	Nd Pm Sm Eu Gd Tb Dy Ho Er	Nd Pm Sm Eu Gd Tb Dy Ho Er 144.2 (145) 150.4 152.0 157.3 158.9 162.5 164.9 167.3	Pm Sm Eu Gd Tb Dy Ho Er (145) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 93 94 95 96 97 98 99 100	Nd 144.2 92 U