московский физико-технический институт (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Задача № 1

Дисциплина: Линейная алгевра

Найдите ранг матрицы A в зависимости от параметров α и β , если

$$A = \begin{pmatrix} 0 & 0 & 1 & -2 & \alpha \\ 2 & -4 & 3 & -2 & 3 \\ 3 & -6 & 2 & 2 & 2 \\ -3 & 6 & -1 & -4 & \beta \end{pmatrix}.$$

ЗАДАЧА № 2

Дисциплина: Линейная алгебра

Найдите все значения параметров α и β , при которых система совместна, решите систему при найденных значениях параметров:

$$\begin{cases} x_3 - 2x_4 = \alpha; \\ 2x_1 - 4x_2 + 3x_3 - 2x_4 = 3; \\ 3x_1 - 6x_2 + 2x_3 + 2x_4 = 2; \\ -3x_1 + 6x_2 - x_3 - 4x_4 = \beta. \end{cases}$$

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: ________

Т

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Задача № 3

Дисциплина: Линейная алгебра

Подпространство U пространства \mathbb{R}^4 является линейной оболочкой векторов $(0\ 2\ 1\ -3)^{\mathrm{T}},\ (2\ -1\ -2\ 1)^{\mathrm{T}},\ (2\ 3\ 0\ -5)^{\mathrm{T}}$. Найдите систему линейных уравнений, для которой множеством решений является U. Единственное ли решение у этой задачи?

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено, на заседании кафедры 21 апреля 2015 г.

/ УТВЕРЖДАЮ: ______ Заведующий кафедрой Половинкин Е.С.

московский физико-технический институт (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ЗАДАЧА № 4

Дисциплина: Линейная алгебра

В пространстве \mathbb{R}^4 заданы подпространство U_1 , являющееся линейной оболочкой векторов $(0\ 1\ 1\ 2)^{\mathrm{T}}$ и $(1\ 2\ 2\ 3)^{\mathrm{T}}$, а также подпространство U_2 , заданное системой $\begin{cases} x_2 - 2x_3 + x_4 = 0; \\ x_1 - x_2 + x_3 - x_4 = 0. \end{cases}$

. Найдите размерности и базисы в подпространствах $U_1 + U_2$ и $U_1 \cap U_2$.

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: — Дете раз

Задача № 5

Дисциплина: Линейная алгебра

Найдите проекцию вектора $(0 - 1 - 1 \ 4)^{\mathrm{T}}$ пространства \mathbb{R}^4 на подпространство $x_1 + x_2 + x_3 + x_4 = 0$ вдоль линейной оболочки вектора $(1 - 1 \ 1 \ 0)^{\mathrm{T}}$.

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: — Негоров

ЗАДАЧА № 6

Лисциплина: Линейная алгебра

Пусть линейное отображение $\varphi: \mathbb{R}^5 \to \mathbb{R}^4$ задано матрицей

$$\begin{pmatrix} 0 & 0 & 1 & -2 & 1 \\ 2 & -4 & 3 & -2 & 3 \\ 3 & -6 & 2 & 2 & 2 \\ -3 & 6 & -1 & -4 & -1 \end{pmatrix}.$$

Найдите размерности и базисы $\operatorname{Ker} \varphi$ и $\operatorname{Im} \varphi$.

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: Детре в семестр, 2014—2015 уч. год Заведующий кафедрой Половинкин Е.С.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Задача № 7

Дисциплина: Линейная алгебра

Докажите, что преобразование пространства P_2 многочленов степени не выше двух, заданное правилом $\varphi(f(x)) = 2f(x) + f'(x)$, является изоморфизмом. Найдите матрицу φ^{-1} , выбрав базис в P_2 .

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

/утверждаю: — Заведующий кафедрой Половинкин Е.С.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ЗАДАЧА № 8

Дисциплина: Линейная алгебра

Преобразование $\varphi: \mathbf{M}_{2\times 2} \to \mathbf{M}_{2\times 2}$, где $\mathbf{M}_{2\times 2}$ — пространство матриц размера 2×2 , задано правилом $\varphi(X)=X^{\mathrm{T}}\begin{pmatrix}3&-6\\-1&2\end{pmatrix}$. Докажите, что φ линейно. Найдите базис $\ker\varphi$ и $\operatorname{Im}\varphi$. Найдите матрицу φ , выбрав базис в $\mathbf{M}_{2\times 2}$.

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: ЖЕ

Задача № 9 Дисциплина: Линейная алгебра

Найдите матрицу (в данном ортонормированном базисе пространства \mathbb{R}^3) преобразования отражения относительно плоскости $2x_1 - 2x_2 + x_3 = 0$.

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: _

ЗАДАЧА № 10 Дисциплина: Линейная алгебра

Выясните, существует ли базис, в котором преобразование, заданное матрицей $\begin{pmatrix} 2 & 2 & 1 \\ -2 & -3 & 2 \\ 3 & 6 & 0 \end{pmatrix}$, имеет диагональный вид. Если да, найдите этот базис и

диагональный вид.

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: — Нем регуппа до 2015 г. Заведующий кафедрой Половинкин Е.С.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Задача № 11 Дисциплина: Линейная алгебра

Найдите инвариантные подпространства и выясните геометрический смысл преобразования $\varphi: \mathbb{R}^3 \to \mathbb{R}^3$, заданного в ортонормированном базисе матри-

цей
$$\begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
.

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

/УТВЕРЖДАЮ: ______ Заведующий кафедрой Половинкин Е.С.

ЗАДАЧА № 12

Дисциплина: Линейная алгебра

Приведите квадратичную форму $8x_1^2 + 8x_2^2 + x_3^2 + 16x_1x_2 + 4x_1x_3 + 4x_2x_3$ (в \mathbb{R}^3) к каноническому виду, найдите положительный и отрицательный индексы инерции.

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

/утверждаю: _

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Задача № 13

Дисциплина: Линейная алгебра

Найдите все значения λ , при которых будет положительно определенной квадратичная форма $2x_1^2 + x_2^2 + 3x_3^2 + 2\lambda x_1x_2 - 2x_1x_3$ (заданная в \mathbb{R}^3).

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

/УТВЕРЖДАЮ: — Заведующий кафедрой Половинкин Е.С.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ЗАДАЧА № 14

Дисциплина: Линейная алгебра

Найдите ортогональную проекцию вектора $\boldsymbol{x}=(0\ 3\ -6\ 9)^{\mathrm{T}}$ на линейную оболочку векторов $\boldsymbol{a}=(1\ -1\ 1\ 0)^{\mathrm{T}}$ и $\boldsymbol{b}=(3\ -1\ 2\ 1)^{\mathrm{T}}$ (исходный базис ортонормированный).

1 курс, 2 семестр, 2014–2015 уч. год Одобрено на заседании кафедры 21 апреля 2015 г.

/ УТВЕРЖДАЮ: — Заведующий кафедрой Половинкин Е.С.

Задача № 15 Дисциплина: Линейная алгебра

В пространстве многочленов степени не выше второй скалярное произведение задано формулой $(f,g)=\int f(t)\,g(t)\,dt.$ Найдите некоторый ортонормированный базис в данном пространстве.

> 1 курс, 2 семестр, 2014-2015 уч. год Одобрено на заседании кафедры 21 апреля 2015 г.

/ УТВЕРЖДАЮ: _ Житороб

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ЗАДАЧА № 16

Дисциплина: Линейная алгебра

Найдите ортонормированный базис в ортогональном дополнении к линейной оболочке вектора $a = (1 - 1 - 1 \ 1)^{\mathrm{T}}$ (исходный базис в \mathbb{R}^4 ортонормированный).

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

/утверждаю: Жей Заведующий кафедрой Половинкин Е.С.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Задача № 17

Дисциплина: Линейная алгебра

Найдите (в исходном ортонормированном базисе в \mathbb{R}^4) матрицу ортогонального проектирования на подпространство, заданное уравнением

$$x_1 - x_2 - x_3 + x_4 = 0.$$

Является ли это преобразование самосопряженным? Является ли это преобразование ортогональным?

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

/УТВЕРЖДАЮ: Заведующий кафедрой Половинкин Е.С.

МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

ЗАДАЧА № 18

Дисциплина: ЛИНЕЙНАЯ АЛГЕБРА

Подпространство U задано системой $\begin{cases} x_1+x_2+x_3+x_4=0; \\ x_1+2x_2+3x_3+4x_4=0. \end{cases}$ Найдите систему линейных уравнений, задающую U^\perp (исходный базис в \mathbb{R}^4 ортонормированный).

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

Задача № 19 Дисциплина: Линейная алгебра

Найдите ортонормированный базис, в котором преобразование, заданное мат-

рицей
$$A = \begin{pmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{pmatrix}$$
 (в исходном ортонормированном базисе в \mathbb{R}^4),

имеет диагональный вид; укажите этот диагональный вид.

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: Завелующий кафедры Заведующий кафедрой Половинкин Е.С.

ЗАДАЧА № 20

Дисциплина: Линейная алгебра

Пусть $\varphi: \mathbb{R}^4 \to \mathbb{R}^4$ — ортогональное отражение относительно U^\perp , где подпространство U является линейной оболочкой вектора $(1 - 1 \ 1 \ -1)^{\mathrm{T}}$. Является ли φ ортогональным? Является ли φ самосопряженным? Найдите матрицу φ (в данном ортонормированном базисе).

1 курс, 2 семестр, 2014–2015 уч. год Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: — Заведующий кафедрой Половинкин Е.С.

Задача № 21

Дисциплина: Линейная алгебра

В евклидовом пространстве \mathbb{R}^3 дана квадратичная форма

$$x_1^2 + x_2^2 + x_3^2 - 4x_1x_2 - 4x_1x_3 - 4x_2x_3$$

(исходный базис — ортонормированный). Найдите ортонормированный базис, в котором эта форма имеет диагональный вид, и укажите этот диагональный вид.

1 курс, 2 семестр, 2014–2015 уч. год Одобрено на заседании кафедры 21 апреля 2015 г.

/УТВЕРЖДАЮ: Заведующий кафедрой Половинкин Е.С.

ЗАДАЧА № 22

Дисциплина: Линейная алгебра

Найдите базис в \mathbb{R}^2 , в котором квадратичные формы $13x_1^2 - 10x_1x_2 + 3x_2^2$ и $-9x_1^2 + 2x_1x_2 + x_2^2$ имеют диагональный вид. Укажите полученный диагональный вид каждой из форм.

1 курс, 2 семестр, 2014–2015 уч. год
Одобрено на заседании кафедры 21 апреля 2015 г.

Заведующий кафедрой Половинкин Е.С.

московский физико-технический институт (государственный университет) КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Задача № 23

Дисциплина: Линейная алгебра

Найдите все действительные λ , при которых преобразование, заданное мат-

рицей
$$\begin{pmatrix} 1 & 0 & \lambda^2 - \lambda \\ 0 & 1 & 0 \\ 0 & 0 & \lambda^2 \end{pmatrix}$$
, диагонализируемо.

1 курс, 2 семестр, 2014-2015 уч. год

Одобрено на заседании кафедры 21 апреля 2015 г. Заведующий кафедрой Половинкин Е.С.

ЗАДАЧА № 24

Дисциплина: Линейная алгебра

Преобразование $\varphi: \mathbf{M}_{2\times 2} \to \mathbf{M}_{2\times 2}$, где $\mathbf{M}_{2\times 2}$ — пространство матриц размера 2×2 , задано правилом $\varphi(X) = X\begin{pmatrix} 2 & 3 \\ -3 & 8 \end{pmatrix}$. Докажите, что φ линейно. Найдите собственные значения и собственные подпространства преобразования φ . Выясните, диагонализируемо ли φ ,

1 курс, 2 семестр, 2014—2015 уч. год
Одобрено на заседании кафедры 21 апреля 2015 г.
Заведующий кафедрой Половинкин Е.С.

Задача № 25 Дисциплина: Линейная алгевра

Приведите квадратичную форму $2x_1x_2 + 2x_2x_3 + 2x_3x_4$ (в \mathbb{R}^4) к каноническому виду и найдите канонический базис, положительный и отрицательный индексы инерции.

Одобрено на заседании кафедры 21 апреля 2015 г.

УТВЕРЖДАЮ: — Межфек