An Introduction to Manifold

1 Smooth Functions on a Euclidean Space

Problem 1.1

Let $g(x) = \frac{3}{4}x^{\frac{3}{4}}$. Show that the function $h(x) = \int_0^x g(t) dt$ is C^2 but not C^3 at x = 0.

Solution

$$h(x) = \int_0^x g(t) dt$$
$$= \frac{9}{28} x^{\frac{7}{3}},$$

which is countinious at x = 0, thus h is C^0 at x = 0. $h'(x) = g(x) = \frac{3}{4}x^{\frac{3}{4}}$ is countinious at x = 0, thus h is C^1 at x = 0.

$$h''(x) = g'(x) = x^{\frac{1}{3}},$$

which is countinious at x = 0, thus h is C^2 at x = 0.

$$h'''(x) = g''(x) = \frac{1}{3}x^{-\frac{2}{3}},$$

which is not countinious at x = 0, thus h is not C^3 at x = 0.

Problem 1.2

Let

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & x > 0\\ 0 & x \le 0. \end{cases}$$

- (a) Show by induction that for x > 0 and k > 0, the k-th derivative $f^{(k)}(x)$ is of the form $p_{2k}e^{-\frac{1}{x}}$ for some polynomial $p_{2k}(y)$ of degree 2k in y.
- (b) Prove that f is C^{∞} on \mathbb{R} and that $f^{(k)}(0) = 0$ for all $k \geq 0$.

Solution

(a) Let k = 0, for x > 0, we have

$$f^{(x)} = f(x)$$

$$= e^{-\frac{1}{x}}$$

$$= p_0 \left(\frac{1}{x}\right) e^{-\frac{1}{x}},$$

where $p_0(y) = 1$. This is a polynomial of degree 0 in y. Thus the base case holds. Then assume the inductive hypothesis holds for k = n, i.e., $f^{(n)}(x) = p_{2n}(\frac{1}{x})e^{-\frac{1}{x}}$, where $p_{2n}(y)$ is a polynomial of degree 2n. We will show it holds for k = n + 1:

$$\begin{split} f^{(k+1)}(x) &= \frac{\mathrm{d}}{\mathrm{d}x} f^{(k)}(x) \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \bigg(p_{2n} \bigg(\frac{1}{x} \bigg) e^{-\frac{1}{x}} \bigg) \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \bigg(p_{2n} \bigg(\frac{1}{x} \bigg) \bigg) e^{-\frac{1}{x}} + p_{2n} \bigg(\frac{1}{x} \bigg) \frac{\mathrm{d}}{\mathrm{d}x} e^{-\frac{1}{x}} \\ &= \frac{\mathrm{d}}{\mathrm{d}x} \left[a_{2k} \bigg(\frac{1}{x} \bigg)^{2k} + \cdots \right] e^{-\frac{1}{x}} + \left[a_{2k} \bigg(\frac{1}{x} \bigg)^{2k} + \cdots \right] \frac{1}{x^2} e^{-\frac{1}{x}} \\ &= \left[-2ka_{2k} \bigg(\frac{1}{x} \bigg)^{2k+1} + a_{2k} \bigg(\frac{1}{x} \bigg)^{2k+2} + \cdots \right] e^{-\frac{1}{x}} \\ &= p_{2(k+1)} \bigg(\frac{1}{x} \bigg) e^{-\frac{1}{x}}, \end{split}$$

where $p_{2(k+1)}(y)$ is a polynomial of degree 2(k+1) in y. This completes the inductive step.

(b) From the result of part (a), we know that for any $k \geq 0$,

$$f^{(k)}(x) = p_{2k} \Big(\frac{1}{x}\Big) e^{-\frac{1}{x}},$$

where $p_{2k}(y)$ is a polynomial of degree 2k. Then we can evaluate the limit as x approaches 0 from the right:

$$\lim_{x \to 0^+} f((k))(x) = \lim_{x \to 0^+} p_{2k} \left(\frac{1}{x}\right) e^{-\frac{1}{x}}$$

$$= 0,$$

which implies that $f^{(k)}(0) = 0$ for all $k \geq 0$, and thus f is C^{∞} on \mathbb{R} .

Problem 1.3

Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^n$ be open subsets. A C^{∞} map $F: U \to V$ is called a diffeomorphism if it is bijective and has a C^{∞} inverse $F^{-1}: V \to U$.

- (a) Show that the function $f:]-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbb{R}, f(x) = \tan x, \text{ is a diffeomorphism.}]$
- (b) Let a, b be real numbers with a < b. Find a linear function $h :]a, b[\rightarrow] -1, 1[$, thus proving that any two finite open intervals are diffeomorphic.
- (c) The composite $f \circ h :]a, b[\to \mathbb{R}$ is then a diffeomorphism of an open interval with \mathbb{R} .
- (d) The exponential function $\exp : \mathbb{R} \to]0, \infty[$ is a diffeomorphism. Use it to show that for any real numbers a and b, the intervals \mathbb{R} , $]a, \infty[$, and $]-\infty, b[$ are diffeomorphic.

Problem 1.4

Show that the map

$$f:]-\frac{\pi}{2},\frac{\pi}{2}[n\rightarrow\mathbb{R}^n,f(x_1,\cdots,x_n)=(\tan x_1,\cdots,\tan x_n),$$

is a diffeomorphism.

Problem 1.5

Let B(0,1) be the open unit disk in \mathbb{R}^2 . To find a diffeomorphism between B(0,1) and \mathbb{R}^2 , we identify \mathbb{R}^2 with the xy-plane in \mathbb{R}^3 and introduce the lower open hemisphere

$$S: x^2 + y^2 + (z-1)^2 = 1, \quad z < 1,$$

in \mathbb{R}^3 as an intermediate space.

(a) The stereographic projection $g: S \to \mathbb{R}^2$ from (0,0,1) is the map that sends a point $(a,b,c) \in S$ to the intersection of the line through (0,0,1) and (a,b,c) with the xy-plane. Show that it is given by

$$(a,b,c)\mapsto (u,v)=\left(\frac{a}{1-c},\frac{b}{1-c}\right),\quad c=1-\sqrt{1-a^2-b^2},$$

with inverse

$$(u,v) \mapsto \left(\frac{u}{\sqrt{1+u^2+v^2}}, \frac{v}{\sqrt{1+u^2+v^2}}, 1 - \frac{1}{\sqrt{1+u^2+v^2}}\right).$$

(b) Composing the maps f and g gives the map

$$h = g \circ f : B(0,1) \to \mathbb{R}^2, \quad h(a,b) = \left(\frac{a}{\sqrt{1 - a^2 - b^2}}, \frac{b}{\sqrt{1 - a^2 - b^2}}\right).$$

Find a formula for $h^{-1}(u,v) = (f^{-1} \circ g^{-1})(u,v)$ and conclude that h is a diffeomorphism of the open disk B(0,1) with \mathbb{R}^2 .

(c) Generalize part (b) to \mathbb{R}^n .

Problem 1.6

Prove that if $f: \mathbb{R}^2 \to \mathbb{R}$ is C^{∞} , then there exist C^{∞} functions g_{11}, g_{12}, g_{22} on \mathbb{R}^2 such that

$$f(x,y) = f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + x^2g_{11}(x,y) + xyg_{12}(x,y) + y^2g_{22}(x,y).$$

Solution

Applying Taylor's theorem with remainder, we have

$$f(x,y) = f(0,0) + xf_1(x,y) + yf_2(x,y),$$

where
$$f_1(x,y) = \frac{\partial f}{\partial x}(x,y)$$
 and $f_2(x,y) = \frac{\partial f}{\partial y}(x,y)$.

As f is C^{∞} , $f_1(x,y)$ and $f_2(x,y)$ are also C^{∞} , we can expand $f_1(x,y)$ and $f_2(x,y)$ using Taylor's theorem with remainder around (0,0):

$$f_1(x,y) = f_1(0,0) + xf_{11}(x,y) + yf_{12}(x,y),$$

$$f_2(x,y) = f_2(0,0) + xf_{21}(x,y) + yf_{22}(x,y).$$

Then, we can substitute these expansions back into the expression for f(x, y):

$$\begin{split} f(x,y) &= f(0,0) + x(f_1(0,0) + xf_{11}(x,y) + yf_{12}(x,y)) + y(f_2(0,0) + xf_{21}(x,y) + yf_{22}(x,y)) \\ &= f(0,0) + \frac{\partial f}{\partial x}(0,0)x + \frac{\partial f}{\partial y}(0,0)y + x^2f_{11}(x,y) + 2xyf_{12}(x,y) + y^2f_{22}(x,y). \end{split}$$

Then by defining $g_{11}(x,y) = f_{11}(x,y)$, $g_{12}(x,y) = 2f_{12}(x,y)$, and $g_{22}(x,y) = f_{22}(x,y)$, we get the desired result.

Problem 1.7

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a C^{∞} function with $f(0,0) = \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Define

$$g(t,u) = \begin{cases} \frac{f(t,tu)}{t} & \text{for } t \neq 0\\ 0 & \text{for } t = 0. \end{cases}$$

Prove that g(t, u) is C^{∞} for $(t, u) \in \mathbb{R}^2$. (Hint: Apply Problem 1.6.)

Problem 1.8

Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$. Show that f is a bijective C^{∞} map, but that f^{-1} is not C^{∞} . (This example shows that a bijective C^{∞} map need not have a C^{∞} inverse. In complex analysis, the situation is quite different: a bijective holomorphic map $f: \mathbb{C} \to \mathbb{C}$ necessarily has a holomorphic inverse.)

2 Tangent Vectors in \mathbb{R}^n as Derivations

Problem 2.1

Let X be the vector field $x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}$ and f(x, y, z) the function $x^2 + y^2 + z^2$ on \mathbb{R}^3 . Compute Xf.

Solution

$$Xf = \left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)(x^2 + y^2 + z^2)$$
$$= 2x^2 + 2y^2$$

Problem 2.2

Define carefully addition, multiplication, and scalar multiplication in C_p^{∞} . Prove that addition in C_p^{∞} is commutative.

Solution

Let $[f]_p, [g]_p \in C_p^{\infty}$. We define the addition of two equivalence classes as follows:

$$[f]_p + [g]_p = [f+g]_p,$$

where f + g is the pointwise sum of the functions f and g. The multiplication of two equivalence classes is defined as:

$$[f]_p \cdot [g]_p = [fg]_p,$$

where fg is the pointwise product of the functions f and g.

The scalar multiplication of an equivalence class by a scalar $c \in \mathbb{R}$ is defined as:

$$c[f]_p = [cf]_p,$$

where cf is the pointwise product of the function f and the scalar c.

Problem 2.3

Let D and D' be derivations at p in \mathbb{R}^n , and $c \in \mathbb{R}$. Prove that

- (a) the sum D + D' is a derivation at p.
- (b) the scalar multiple cD is a derivation at p.

Solution

(a) Let $f, g \in C^{\infty(\mathbb{R}^n)}$, then we have

$$(D+D')(fg) = D(fg) + D'(fg)$$

$$= D(f)g(p) + f(p)D(g) + D'(f)g(p) + f(p)D'(g)$$

$$= (D(f) + D'(f))g(p) + f(p)(D(g) + D'(g))$$

$$= (D+D')(f)g(p) + f(p)(D+D')(g).$$
(b)
$$(cD)(fg) = cD(fg)$$

$$= c(D(f)g(p) + f(p)D(g))$$

$$= cD(f)g(p) + cf(p)D(g)$$

$$= (cD)(f)g(p) + f(p)(cD)(g).$$

Problem 2.4

Let A be an algebra over a field K. If D_1 and D_2 are derivations of A, show that $D_1 \circ D_2$ is not necessarily a derivation (it is if D_1 or $D_2 = 0$), but $D_1 \circ D_2 - D_2 \circ D_1$ is always a derivation of A.

Solution

Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x) = x, and let $D_1 = D_2 = \frac{\mathrm{d}}{\mathrm{d}x}$. Then, for the Lebniz rule, we have

$$\begin{split} D_1 \circ D_2(ff) &= \frac{\mathrm{d}}{\mathrm{d}x} \bigg(\frac{\mathrm{d}}{\mathrm{d}x}(x^2) \bigg) \\ &= \frac{\mathrm{d}}{\mathrm{d}x}(2x) \\ &= 2, \end{split}$$

but

$$\begin{split} (D_2\circ D_1)(f)f(p)+f(p)(D_2\circ D_1)(f)&=\mathrm{d}^2\frac{x}{\mathrm{d}x^2}p+p\mathrm{d}^2\frac{x}{\mathrm{d}x^2}\\ &=0. \end{split}$$

Therefore, $D_1 \circ D_2$ is not a derivation.

Next, for $D_1 \circ D_2 - D_2 \circ D_1$, we examine the Lebniz rule:

$$\begin{split} (D_1 \circ D_2 - D_2 \circ D_1)(fg) &= D_1 \circ D_2(fg) - D_2 \circ D_1(fg) \\ &= D_1[D_2(f)g(p) + f(p)D_2(g)] - D_2[D_1(f)g(p) + f(p)D_1(g)] \\ &= (D_1 \circ D_2(f)g(p) + f(p)D_1 \circ D_2(g)) \\ &- (D_2 \circ D_1(f)g(p) + f(p)D_2 \circ D_1(g)) \\ &= (D_1 \circ D_2 - D_2 \circ D_1)(f)g(p) + f(p)(D_1 \circ D_2 - D_2 \circ D_1)(g). \end{split}$$

Thus, $D_1 \circ D_2 - D_2 \circ D_1$ satisfies the Leibniz rule and is a derivation.

3 The Exterior Algebra of Multivectors

Problem 3.1

Let e_1, \dots, e_n be a basis for a vector space V and let $\alpha^1, \dots, \alpha^n$ be its dual basis in V^V . Suppose $[g_{ij}] \in \mathbb{R}^{n \times n}$ is an $n \times n$ matrix. Define a bilinear function $f: V \times V \to \mathbb{R}$ by

$$f(v,w) = g_{ij}v^iw^j$$

for $v = v^i e_i$ and $w = w^j e_j$ in V. Describe f in terms of the tensor products of α^i and α^j , $1 \le i, j \le n$.

Solution

Since $v^i = \alpha^i(v)$ and $w^j = \alpha^j(w)$, we can express f as follows:

$$\begin{split} f(v,w) &= g_{ij}v^iw^j \\ &= g_{ij}\alpha^i(v)\alpha^j(w) \\ &= g_{ij}(\alpha^i\otimes\alpha^j)(v,w), \end{split}$$

then $f = g_{ij}(\alpha^i \otimes \alpha^j)$.

Problem 3.2

Let V be a vector space of dimension n and $f: V \to \mathbb{R}$ a nonzero linear functional.

- (a) Show that dim ker f = n 1. A linear subspace of V of dimension n 1 is called a hyperplane in V.
- (b) Show that a nonzero linear functional on a vector space V is determined up to a multiplicative constant by its kernel, a hyperplane in V. In other words, if f and $g:V\to\mathbb{R}$ are nonzero linear functionals and $\ker f=\ker g$, then g=cf for some constant $c\in\mathbb{R}$.

Solution

(a)
$$\dim \ker f = \dim V - \dim \operatorname{im} f$$
$$= n - 1.$$

(b) Let $f,g:V\to\mathbb{R}$ be nonzero linear functionals with $\ker f=\ker g$. As f is nonzero, there exists $v_0'\in V$ such that $f(v_0')=b\neq 0$. Let $v_0=\frac{v_0'}{b}, f(v_0)=f\left(\frac{v_0'}{b}\right)=0$

 $\frac{1}{b}f(v_0')=1$. As $\ker f=\ker g$ and $f(v_0)\neq 0$, we have $g(v_0)\neq 0$. Then, let $v\in V, f(v)=a$, and $w=v-av_0$. As f is linear,

$$\begin{split} f(w) &= f(v - av_0) \\ &= f(v) - af(v_0) \\ &= a - a \\ &= 0, \end{split}$$

which means $w \in \ker f$, and thus $w \in \ker g$. Then,

$$\begin{split} 0 &= g(w) \\ &= g(v - av_0) \\ &= g(v) - ag(v_0) \\ &= g(v) - f(v)g(v_0). \end{split}$$

Therefore we have that g(v) = cf(v), where $c = g(v_0)$.

Problem 3.3

Let V be a vector space of dimension n with basis e_1, \dots, e_n . Let $\alpha^1, \dots, \alpha^n$ be the dual basis for V^{\vee} . Show that a basis for the space $L_k(V)$ of k-linear functions on V is $\{\alpha^{i_1} \otimes \dots \otimes \alpha^{i_k}\}$ for all multi-indices (i_1, \dots, i_k) (not just the strictly ascending multi-indices as for $A_k(L)$). In particular, this shows that dim $L_k(V) = n^k$.

Solution

(a) Let
$$T\in L_k(V)$$
 and $T\left(e_{i_1},\cdots,e_{i_k}\right)=T_{i_1,\cdots,i_k},$ For the function
$$T'=T_{i_1,\cdots,i_k}\alpha^{i_1}\otimes\cdots\otimes\alpha^{i_k},$$

we have

$$\begin{split} T'\Big(e_{j_1},\cdots,e_{j_k}\Big) &= T_{i_1,\cdots,i_k}\alpha^{i_1}\otimes\cdots\otimes\alpha^{i_k}\Big(e_{j_1},\cdots,e_{j_k}\Big) \\ &= T_{i_1,\cdots,i_k}\alpha^{i_1}\Big(e_{j_1}\Big)\cdots\alpha^{i_k}\Big(e_{j_k}\Big) \\ &= T_{i_1,\cdots,i_k}\delta^{i_1}_{j_1}\cdots\delta^{i_k}_{j_k} \\ &= T_{j_1,\cdots,j_k} \\ &= T\Big(e_{j_1},\cdots,e_{j_k}\Big), \end{split}$$

which means T=T'. Therefore, $\{\alpha^{i_1}\otimes\cdots\otimes\alpha^{i_k}\}$ spans $L_k(V)$.

(b) Suppose T = 0, then

$$\begin{split} 0 &= T\left(e_{j_1}, \cdots, e_{j_k}\right) \\ &= T_{i_1, \cdots, i_k} \alpha^{i_1} \otimes \cdots \otimes \alpha^{i_k} \left(e_{j_1}, \cdots, e_{j_k}\right) \\ &= T_{i_1, \cdots, i_k} \alpha^{i_1} \left(e_{j_1}\right) \cdots \alpha^{i_k} \left(e_{j_k}\right) \\ &= T_{i_1, \cdots, i_k} \delta^{i_1}_{j_1} \cdots \delta^{i_k}_{j_k} \\ &= T_{j_1, \cdots, j_k}, \end{split}$$

which means $T_{i_1,\cdots,i_k}=0$ for all j_1,\cdots,j_k . Therefore $\{\alpha^{i_1}\otimes\cdots\otimes\alpha^{i_k}\}$ is linearly independent.

Thus, $\{\alpha^{i_1} \otimes \cdots \otimes \alpha^{i_k}\}$ is a basis for $L_k(V)$.

Problem 3.4

Let f be a k-tensor on a vector space V. Prove that f is alternating if and only if f changes sign whenever two successive arguments are interchanged: $f(\cdots, v_{i+1}, v_i, \cdots) = -f(\cdots, v_i, v_{i+1}, \cdots)$ for $i = 1, \cdots, k-1$.

Solution

(a) If f is alternating, then for $\sigma = (i, i + 1)$,

$$\begin{split} f(\cdots, v_{i+1}, v_i, \cdots) &= f(\sigma(v_1), \cdots, \sigma(v_k)) \\ &= \operatorname{sgn}(\sigma) f(v_1, \cdots, v_k) \\ &= -f(\cdots, v_i, v_{i+1}, \cdots), \end{split}$$

which means
$$f(\cdots, v_{i+1}, v_i, \cdots) = -f(\cdots, v_i, v_{i+1}, \cdots)$$
.
(b) If $f(\cdots, v_{i+1}, v_i, \cdots) = -f(\cdots, v_i, v_{i+1}, \cdots)$, then for $\sigma = (i, i+1)$,
$$f(\sigma(v_1), \cdots, \sigma(v_k)) = f(\cdots, v_{i+1}, v_i, \cdots)$$
$$= -f(\cdots, v_i, v_{i+1}, \cdots)$$
$$= \operatorname{sgn}(\sigma) f(v_1, \cdots, v_k),$$

which means f is alternating.

Problem 3.5

Let f be a k-tensor on a vector space V. Prove that f is alternating if and only if $f(v_1, \dots, v_k) = 0$ whenever two of the vectors v_1, \dots, v_k are equal.

Solution

(a) If f is alternating, and $v_i = v_j$, then for $\sigma = (i, j)$,

$$\begin{split} f\big(\cdots,\sigma(v_i),\cdots,\sigma\big(v_j\big),\cdots\big) &= f\big(\cdots,v_j,\cdots,v_i,\cdots\big) \\ &= \operatorname{sgn}(\sigma)f(v_1,\cdots,v_k) \\ &= -f\big(\cdots,v_i,\cdots,v_i,\cdots\big), \end{split}$$

which means $f(v_1, \cdots, v_k) = 0$.

(b) If
$$f(v_1, \dots, v_k) = 0$$
 for $v_i = v_j$, then for $\sigma = (i, j)$,
$$0 = f(\dots, v_j, \dots, v_i, \dots)$$
$$= -f(\dots, v_i, \dots, v_j, \dots)$$
$$= \operatorname{sgn}(\sigma) f(v_1, \dots, v_k)$$
$$= f(\sigma(v_1), \dots, \sigma(v_k))$$

which means f is alternating.

Problem 3.6

Let V be a vector space. For $a, b \in \mathbb{R}$, $f \in A_k(V)$, and $g \in A_l(V)$, show that $af \wedge bg = (ab)f \wedge g$.

Solution

$$\begin{split} af \wedge bg &= \frac{1}{k!l!} A(af \otimes bg) \\ &= \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \sigma(af(v_1, \cdots, v_k) bg(v_{k+1}, \cdots, v_{k+l})) \\ &= \frac{ab}{k!l!} \sum_{\sigma \in S_{k+l}} \operatorname{sgn}(\sigma) \sigma(f(v_1, \cdots, v_k) g(v_{k+1}, \cdots, v_{k+l})) \\ &= \frac{ab}{k!l!} A(f \otimes g) \\ &= (ab) f \wedge g, \end{split}$$

Problem 3.7

Suppose two sets of covectors on a vector space $V, \beta^1, \dots, \beta^k$ and $\gamma^1, \dots, \gamma^k$, are related by

$$\beta^i=a^i_j\gamma^j,\quad i=1,\cdots\!,k,$$

for a $k \times k$ matrix $A = [a_j^i]$. Show that

$$\beta^1 \wedge \dots \wedge \beta^k = (\det A) \gamma^1 \wedge \dots \wedge \gamma^k.$$

Solution

$$\beta^{1} \wedge \dots \wedge \beta^{k} = \left(a_{j_{1}}^{1} \gamma^{j_{1}}\right) \wedge \dots \wedge \left(a_{j_{k}}^{k} \gamma^{j_{k}}\right)$$

$$= a_{j_{1}}^{1} \dots a_{j_{k}}^{k} \left(\gamma^{j_{1}} \wedge \dots \wedge \gamma^{j_{k}}\right)$$

$$= a_{\sigma(1)}^{1} \dots a_{\sigma(k)}^{k} (\operatorname{sgn} \sigma) \left(\gamma^{1} \wedge \dots \wedge \gamma^{k}\right)$$

$$= (\det A) \left(\gamma^{1} \wedge \dots \wedge \gamma^{k}\right).$$

Problem 3.8

Let f be a k-covector on a vector space V. Suppose two sets of vectors u_1, \dots, u_k and v_1, \dots, v_k in V are related by

$$u_i = a_i^i v_i, \quad j = 1, \dots, k,$$

for a $k \times k$ matrix $A = \begin{bmatrix} a_j^i \end{bmatrix}$. Show that

$$f(u_1,\cdots,u_k)=(\det A)f(v_1,\cdots,v_k).$$

Solution

$$\begin{split} f(u_1,\cdots,u_k) &= f\Big(a_1^{i_1}v_{i_1},\cdots,a_k^{i_k}v_{i_k}\Big) \\ &= a_1^{i_1}\cdots a_k^{i_k}f\Big(v_{i_1},\cdots,v_{i_k}\Big) \\ &= a_1^{\sigma(1)}\cdots a_k^{\sigma(k)}(\operatorname{sgn}\,\sigma)f(v_1,\cdots,v_k) \\ &= (\det A)f(v_1,\cdots,v_k). \end{split}$$

Problem 3.9

Let V be a vector space of dimension n. Prove that if an n-covector ω vanishes on a basis e_1, \dots, e_n for V, then ω is the zero covector on V.

Solution

Let $\{e_1, \dots, e_n\}$ be a basis for V, for $v_i = v_i^j e_j$ in V, we have

$$\begin{split} \omega(v_1, \cdots, v_n) &= \det \left[v_i^j \right] \omega(e_1, \cdots, e_n) \\ &= 0. \end{split}$$

Problem 3.10

Let $\alpha^1, \dots, \alpha^k$ be 1-covectors on a vector space V. Show that $\alpha^1 \wedge \dots \wedge \alpha^k \neq 0$ if and only if $\alpha^1, \dots, \alpha^k$ are linearly independent in the dual space V^V .

Problem 3.11

Let α be a nonzero 1-covector and γ a k-covector on a finite-dimensional vector space V. Show that $\alpha \wedge \gamma = 0$ if and only if $\gamma = \alpha \wedge \beta$ for some (k-1)-covector β on V.

4 Differential Forms on \mathbb{R}^n

Problem 4.1

Let ω be the 1-form z dx - dz and let X be the vector field $y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}$ on \mathbb{R}^3 . Compute $\omega(X)$ and $d\omega$.

Solution

$$\begin{split} \omega(X) &= (z \, \mathrm{d} x - \mathrm{d} z) \bigg(y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} \bigg) \\ &= z y \end{split}$$

$$d\omega = d(z dx - dz)$$
$$= \frac{\partial z}{\partial z} dz \wedge dx$$
$$= dz \wedge dx$$

Problem 4.2

At each point $p \in \mathbb{R}^3$, define a bilinear function ω_p on $T_p(\mathbb{R}^3)$ by

$$\omega_p(\boldsymbol{a},\boldsymbol{b}) = \omega_p\left(\begin{bmatrix} a^1\\a^2\\a^3\end{bmatrix},\begin{bmatrix} b^1\\b^2\\b^3\end{bmatrix}\right) = p^3\det\begin{bmatrix} a^1&b^1\\a^2&b^2\end{bmatrix},$$

for tangent vectors $a, b \in T_p(\mathbb{R}^3)$, where p^3 is the third component of $p = (p^1, p^2, p^3)$. Since ω_p is an alternating bilinear function on $T_p(\mathbb{R}^3)$, ω is a 2-form on \mathbb{R}^3 . Write ω in terms of the standard basis $\mathrm{d} x^i \wedge \mathrm{d} x^j$ at each point.

Solution

$$\begin{split} \text{Let } \omega &= \omega_{12} \, \mathrm{d} x^1 \wedge \mathrm{d} x^2 + \omega_{13} \, \mathrm{d} x^1 \wedge \mathrm{d} x^3 + \omega_{23} \, \mathrm{d} x^2 \wedge \mathrm{d} x^3, \\ \omega(\pmb{a}, \pmb{b}) &= \omega_{12} \big(a^1 b^2 - a^2 b^1 \big) + \omega_{13} \big(a^1 b^3 - a^3 b^1 \big) + \omega_{23} \big(a^2 b^3 - a^3 b^2 \big) \\ &= x^3 \, \mathrm{det} \begin{bmatrix} a^1 & b^1 \\ a^2 & b^2 \end{bmatrix} \\ &= x^3 \big(a^1 b^2 - a^2 b^1 \big), \end{split}$$

then, $\omega_{12} = x^3$, $\omega_{13} = \omega_{23} = 0$. Thus, we have

$$\omega = x^3 \, \mathrm{d} x^1 \wedge \mathrm{d} x^2$$
.

Problem 4.3

Suppose the standard coordinates on \mathbb{R}^2 are called r and θ (this \mathbb{R}^2 is the (r, θ) -plane, not the (x, y)-plane). If $x = r \cos \theta$ and $y = r \sin \theta$, calculate dx, dy, and $dx \wedge dy$ in terms of dr and $d\theta$.

Solution

$$dx = \frac{\partial x}{\partial r} dr + \frac{\partial x}{\partial \theta} d\theta$$

$$= \cos \theta dr - r \sin \theta d\theta,$$

$$dy = \frac{\partial y}{\partial r} dr + \frac{\partial y}{\partial \theta} d\theta$$

$$= \sin \theta dr + r \cos \theta d\theta,$$

$$dx \wedge dy = (\cos \theta dr - r \sin \theta d\theta) \wedge (\sin \theta dr + r \cos \theta d\theta)$$

$$= (r \cos^2 \theta + r \sin^2 \theta) dr \wedge d\theta$$

$$= r dr \wedge d\theta$$

Problem 4.4

Suppose the standard coordinates on \mathbb{R}^3 are called ρ , φ , and θ . If $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, and $z = \rho \cos \varphi$, calculate dx, dy, dz, and $dx \wedge dy \wedge dz$ in terms of $d\rho$, $d\varphi$, and $d\theta$.

Solution

$$dx = \frac{\partial x}{\partial \rho} d\rho + \frac{\partial x}{\partial \varphi} d\varphi + \frac{\partial x}{\partial \theta} d\theta$$

$$= \sin \varphi \cos \theta d\rho + \rho \cos \varphi \cos \theta d\varphi - \rho \sin \varphi \sin \theta d\theta,$$

$$dy = \frac{\partial y}{\partial \rho} d\rho + \frac{\partial y}{\partial \varphi} d\varphi + \frac{\partial y}{\partial \theta} d\theta$$

$$= \sin \varphi \sin \theta d\rho + \rho \cos \varphi \sin \theta d\varphi + \rho \sin \varphi \cos \theta d\theta,$$

$$dz = \frac{\partial z}{\partial \rho} d\rho + \frac{\partial z}{\partial \varphi} d\varphi + \frac{\partial z}{\partial \theta} d\theta$$

$$= \cos \varphi d\rho - \rho \sin \varphi d\varphi,$$

$$dx \wedge dy \wedge dz = (\sin \varphi \cos \theta d\rho + \rho \cos \varphi \cos \theta d\varphi - \rho \sin \varphi \sin \theta d\theta)$$

$$\wedge (\sin \varphi \sin \theta d\rho + \rho \cos \varphi \sin \theta d\varphi + \rho \sin \varphi \cos \theta d\theta)$$

$$\wedge (\cos \varphi d\rho - \rho \sin \varphi d\varphi)$$

$$\wedge (\sin \varphi \sin \theta \, d\rho + \rho \cos \varphi \sin \theta \, d\varphi + \rho \sin \varphi \cos \theta \, d\theta)$$

$$\wedge (\cos \varphi \, d\rho - \rho \sin \varphi \, d\varphi)$$

$$= \sin \varphi \cos \theta (0 + \rho \sin \varphi \cos \theta \rho \sin \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

$$+ \rho \cos \varphi \cos \theta (0 - \rho \sin \varphi \cos \theta \cos \varphi) \, d\varphi \wedge d\rho \wedge d\theta$$

$$- \rho \sin \varphi \sin \theta (-\sin \varphi \sin \theta \rho \sin \varphi - \rho \cos \varphi \sin \theta \cos \varphi) \, d\theta \wedge d\rho \wedge d\varphi$$

$$= [\rho^2 \sin^3 \varphi \cos^2 \theta - (-\rho^2 \sin \varphi \cos^2 \varphi \cos^2 \theta)$$

$$+ \rho^2 \sin \varphi \sin^2 \theta (\sin^2 \varphi + \cos^2 \varphi)] \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\sin^2 \varphi \cos^2 \theta + \cos^2 \varphi \cos^2 \theta + \sin^2 \theta) \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\sin^2 \varphi + \cos^2 \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\sin^2 \varphi + \cos^2 \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\sin^2 \varphi + \cos^2 \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\sin^2 \varphi + \cos^2 \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\sin^2 \varphi + \cos^2 \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\sin^2 \varphi + \cos^2 \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\sin^2 \varphi + \cos^2 \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

$$= \rho^2 \sin \varphi (\cos^2 \varphi + \cos^2 \varphi) \, d\rho \wedge d\varphi \wedge d\theta$$

Problem 4.5

Let α be a 1-form and β a 2-form on \mathbb{R}^3 . Then

$$\alpha = a_1 \operatorname{d} x^1 + a_2 \operatorname{d} x^2 + a_3 \operatorname{d} x^3,$$

$$\beta = b_1 \operatorname{d} x^2 \wedge \operatorname{d} x^3 + b_2 \operatorname{d} x^3 \wedge \operatorname{d} x^1 + b_3 \operatorname{d} x^1 \wedge \operatorname{d} x^2.$$

Simplify the expression $\alpha \wedge \beta$ as much as possible.

Solution

$$\begin{split} \alpha \wedge \beta &= \left(a_1 \, \mathrm{d} x^1 + a_2 \, \mathrm{d} x^2 + a_3 \, \mathrm{d} x^3\right) \wedge \left(b_1 \, \mathrm{d} x^2 \wedge \mathrm{d} x^3 + b_2 \, \mathrm{d} x^3 \wedge \mathrm{d} x^1 + b_3 \, \mathrm{d} x^1 \wedge \mathrm{d} x^2\right) \\ &= \left(a_1 b_1\right) \mathrm{d} x^1 \wedge \mathrm{d} x^2 \wedge \mathrm{d} x^3 + \left(a_2 b_2\right) \mathrm{d} x^2 \wedge \mathrm{d} x^3 \wedge \mathrm{d} x^1 + \left(a_3 b_3\right) \mathrm{d} x^3 \wedge \mathrm{d} x^1 \wedge \mathrm{d} x^2 \\ &= \left(a_1 b_1 + a_2 b_2 + a_3 b_3\right) \mathrm{d} x^1 \wedge \mathrm{d} x^2 \wedge \mathrm{d} x^3 \end{split}$$

Problem 4.6

The correspondence between differential forms and vector fields on an open subset of \mathbb{R}^3 in Subsection 4.6 also makes sense pointwise. Let V be a vector space of dimension 3 with basis e_1, e_2, e_3 , and dual basis $\alpha^1, \alpha^2, \alpha^3$. To a 1-covector $\alpha = a_1\alpha^1 + a_2\alpha^2 + a_3\alpha^3$ on V, we associate the vector $\mathbf{v}_{\alpha} = \langle a_1, a_2, a_3 \rangle \in \mathbb{R}^3$. To the 2-covector

$$\gamma = c_1\alpha^2 \wedge \alpha^3 + c_2\alpha^3 \wedge \alpha^1 + c_3\alpha^1 \wedge \alpha^2$$

on V, we associate the vector $\mathbf{v}_{\gamma} = \langle c_1, c_2, c_3 \rangle \in \mathbb{R}^3$. Show that under this correspondence, the wedge product of 1-covectors corresponds to the cross product of vectors in \mathbb{R}^3 : if $\alpha = a_1\alpha^1 + a_2\alpha^2 + a_3\alpha^3$ and $\beta = b_1\alpha^1 + b_2\alpha^2 + b_3\alpha^3$, then $\mathbf{v}_{\alpha\wedge\beta} = \mathbf{v}_{\alpha} \times \mathbf{v}_{\beta}$.

Solution

$$\begin{split} \boldsymbol{v}_{\alpha \wedge \beta} &= \left(a_1 \alpha^1 + a_2 \alpha^2 + a_3 \alpha^3\right) \wedge \left(b_1 \alpha^1 + b_2 \alpha^2 + b_3 \alpha^3\right) \\ &= \left(a_2 b_3 - a_3 b_2\right) \alpha^2 \wedge \alpha^3 + \left(a_3 b_1 - a_1 b_3\right) \alpha^3 \wedge \alpha^1 + \left(a_1 b_2 - a_2 b_1\right) \alpha^1 \wedge \alpha^2, \end{split}$$

which corresponds to the vector

$$\begin{aligned} \boldsymbol{v}_{\alpha \wedge \beta} &= \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle \\ &= \boldsymbol{v}_{\alpha} \times \boldsymbol{v}_{\beta} \end{aligned}$$

Problem 4.7

Let $A = \bigoplus_{k=-\infty}^{\infty} A^k$ be a graded algebra over a field K with $A^k = 0$ for k < 0. Let m be an integer. A superderivation of A of degree m is a K-linear map $D: A \to A$ such that for all k, $D(A^k) \subset A^{k+m}$ and for all $a \in A^k$ and $b \in A^l$,

$$D(ab) = (Da)b + (-1)^{km}a(Db).$$

If D_1 and D_2 are two superderivations of A of respective degrees m_1 and m_2 , define their *commutator* to be

$$[D_1,D_2]=D_1\circ D_2-(-1)^{m_1m_2}D_2\circ D_1.$$

Show that $[D_1, D_2]$ is a superderivation of degree $m_1 + m_2$. (A superderivation is said to be *even* or *odd* depending on the parity of its degree. An even superderivation is a derivation; an odd superderivation is an antiderivation.)

Solution

$$\begin{split} [D_1,D_2](ab) &= (D_1 \circ D_2 - (-1)^{m_1 m_2} D_2 \circ D_1)(ab) \\ &= (D_1 \circ D_2)(ab) - (-1)^{m_1 m_2} (D_2 \circ D_1)(ab) \\ &= D_1(D_2(ab)) - (-1)^{m_1 m_2} D_2(D_1(ab)) \\ &= D_1 \big[(D_2 a)b + (-1)^{k m_2} a(D_2 b) \big] - (-1)^{m_1 m_2} D_2 \big[(D_1 a)b + (-1)^{k m_1} a(D_1 b) \big] \\ &= (D_1(D_2 a))b + (-1)^{(k+m_2)m_1} (D_2 a)(D_1 b) + (-1)^{k m_2} \big[(D_1 a)(D_2 b) + (-1)^{k m_1} a(D_1(D_2 b)) \big] \\ &- (-1)^{m_1 m_2} \big\{ (D_2(D_1 a))b + (-1)^{(k+m_1)m_2} (D_1 a)(D_2 b) + (-1)^{k m_1} \big[(D_2 a)(D_1 b) + (-1)^{k m_2} a(D_2(D_1 b)) \big] \big\} \\ &= (D_1(D_2 a))b + \big[(-1)^{(k+m_2)m_1} - (-1)^{m_1 m_2 + k m_1} \big] (D_2 a)(D_1 b) \\ &+ \big[(-1)^{k m_2} - (-1)^{m_1 m_2 + (k+m_1)m_2} \big] (D_1 a)(D_2 b) + (-1)^{k m_2 + k m_1} a(D_1(D_2 b)) \\ &- (-1)^{m_1 m_2} (D_2(D_1 a))b - (-1)^{m_1 m_2 + k m_1 + k m_2} a(D_2(D_1 b)) \\ &= (D_1(D_2 a))b + (-1)^{k(m_1 + m_2)} a(D_1(D_2 b)) - (-1)^{m_1 m_2} (D_2(D_1 a))b - (-1)^{(k+1)(m_1 + m_2)} a(D_2(D_1 b)) \\ &= [D_1(D_2 a) - (-1)^{m_1 m_2} (D_2(D_1 a))]b + (-1)^{k(m_1 + m_2)} a[D_1(D_2 b) - (-1)^{m_1 m_2} (D_2(D_1 b))] \\ &= ([D_1, D_2](a))b + (-1)^{k(m_1 + m_2)} a([D_1, D_2](b)), \end{split}$$

which gives us the result that $[D_1, D_2]$ is a superderivation of degree $m_1 + m_2$.