

維度災難 Curse of Dimensionality

維度災難 (Curse of Dimensionality)

決策邊界

2維

3維

>3維

- 無法作圖
- 維度越來越高
 - 資料距離: 越來越遠
 - 決策邊界: 越來越有效分割
 - 模型複雜度:越來越高
 - 模型準確度:訓練準確度越來越高、測試準確度越來越低
 - ▶ 過擬合(overfitting)

How to solve it?

- 增加資料量
- 正規化 (Regularization)
- · 降維技術/特徵提取(Feature Extraction)
 - e.g. 主成分分析(Principal Components Analysis, PCA)
- 深度學習
 - Good performance but slow and need more data

補充說明

- 雖然PCA和正規化都有降低維度災難/overfitting的效果,但使用正規化效果通常較好,因為正規化同時把y考慮進去,而PCA只有針對X做降維,PCA更好的應用時機是:
 - (1)資料壓縮、加速建模
 - (2) 降維後可以視覺化原本高維的資料
 - (3)特徵提取、去除雜訊(選擇前k高的主成分)
- ·所以如果遇到overfitting,還是請同學直接用正規化來解即可。

主成分分析

Principal Components Analysis

主成分分析(PCA)

- · 特徵降維/提取(Extraction)/壓縮
- 資料中有許多彼此相關的特徵

Python 中 xe-n 指的是x * 10-r
\bullet e.g. $5e-3 = 5 * 10^{-3} = 0.005$

Notes

	土地移轉總面積平方公尺	建物移轉總面積平方公尺	建物現況格局-房	建物現況格局-廳	車位移轉總面積平方公尺
土地移轉總面積平方公尺	1	0.678	0.34	0.22	0.39
建物移轉總面積平方公尺	0.678	1	0.197	0.06	0.736
建物現況格局-房	0.34	0.197	1	0.675	0.032
建物現況格局-廳	0.22	0.06	0.675	1	-0.043
車位移轉總面積平方公尺	0.39	0.736	0.032	-0.043	1

$$PCA(n=3)$$

	0	1	2
0	1.000000e+00	7.869562e-16	1.817497e-15
1	7.869562e-16	1.000000e+00	5.334096e-16
2	1.817497e-15	5.334096e-16	1.000000e+00

PCA algorithm

- n維降到p維 (m(列/資料筆數)*n(行/特徵數量))
 - 1. 標準化 features
 - 2. 求共變異數矩陣 (Covariance Matrix) (n*n)
 - 3. 矩陣分解成特徵向量(eigenvector)和特徵值(eigenvalue)
 - 4. 選取最大的p個eigenvalues和對應的eigenvectors (最多有n個eigenvalues: n*1)
 - 5. 合併p個eigenvectors成為「投影矩陣」(W) (W: n*p)
 - 6. X.dot(W) 即為新的X'矩陣 (m*p)

Covariance Matrix

期望値
$$x$$
平均
$$Cov(X,Y) = E((X - \mu_x)(Y - \mu_y))$$

$$= E(XY - X\mu_y - Y\mu_x + \mu_x\mu_y)$$

$$= E(XY) - \mu_y E(X) - \mu_x E(Y) + \mu_x \mu_y$$

$$= E(XY) - \mu_y \mu_x - \mu_x \mu_y + \mu_x \mu_y$$

$$= E(XY) - \mu_x \mu_y$$

$$ho(X,Y) = rac{Con(X,Y)}{\sigma_x \sigma_y}$$
相關係數 x,y 標準差

• 共變異數、相關係數越大,線性相關性越高

PCA algorithm (cont.)

• 矩陣分解: Decompose Covariance Matrix into 特徵向量(eigenvector) and 特徵值(eigenvalue)

$$\begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & \ddots & \vdots \\ A_{m1} & \dots & A_{mn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \qquad Av = w = \lambda v$$
eigenvector of A eigenvalue

PCA algorithm (cont.)

$$A = \begin{pmatrix} 1 & 4 \\ 1 & -2 \end{pmatrix}$$
 的eigenvector和eigenvalue?

行列式
$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 4 \\ 1 & -2 - \lambda \end{vmatrix} = 0 \qquad A = \begin{pmatrix} 1 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 2 \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$(1 - \lambda)(-2 - \lambda) - 4 \qquad v_1 + 4v_2 = 2v_1$$

$$(1-\lambda)(-2-\lambda)-4$$

$$= \lambda^2 + \lambda - 6$$

$$= (\lambda - 2)(\lambda + 3) = 0$$

$$\lambda = 2$$
 eigenvalues $\lambda = -3$

$$\lambda = -3$$

$$A = \begin{pmatrix} 1 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = 2 \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$v_1 + 4v_2 = 2v_1$$

$$v_1 - 2v_2 = 2v_2$$

$$v = \begin{pmatrix} 4 \\ 1 \end{pmatrix}$$

eigenvector

when eigenvalue=2

PCA algorithm

- n維降到p維 (m(列/資料筆數)*n(行/特徵數量))
 - 1. 標準化 features
 - 2. 求共變異數矩陣 (Covariance Matrix) (n*n)
 - 3. 矩陣分解成特徵向量(eigenvector)和特徵值(eigenvalue)
 - 4. 選取最大的p個eigenvalues和對應的eigenvectors (最多有n個eigenvalues: n*1)
 - 5. 合併p個eigenvectors成為「投影矩陣」(W) (W: n*p)
 - 6. X.dot(W) 即為新的X'矩陣 (m*p)

解釋變異數比率

iris dataset

- · 解釋變異數比率=特徵值 (eigenvalue)/特徵值總和
- 主成份1占92.5%的變異數

PCA examples

資料預處理(二)

Data Preprocessing- Part2

遺失值(missing data)處理

- 丟棄含遺失值的列:
 - DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
 - axis: 要丟棄的對象 {o or 'index', 1 or 'columns'}
 - how: {'any'(任一na即丟棄), 'all'(所有na才丟棄)}
 - · thresh: int, 超過(大於)多少個na才丟棄
 - subset: 要納入考慮的index/columns list (若丟棄index, 則考慮columns list)

遺失值(missing data)處理 (cont.)

- 補值: DataFrame.fillna()
 - DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
 - axis: 要丟棄的對象 {o or 'index', 1 or 'columns'}