Corso di Laurea in Informatica - A.A. 2017 - 2018 Esame di Fisica - 18/06/2018

Esercizio 1

In un sistema di assi cartesiano (x, y) siano dati i punti A=(7,0) e B=(2,12). Scrivere il vettore \vec{r}_{AB} che va dal punto A al punto B e determinarne il modulo. Verificare se il vettore $\vec{v} = 24\vec{i} + 10\vec{j}$ sia perpendicolare o no al vettore \vec{r}_{AB} .

Esercizio 2

Si considerino due cariche puntiformi poste lungo l'asse x di un piano cartesiano (x, y): la prima carica vale 18Q e si trova nel punto di coordinate (-d, 0), la seconda carica vale 2Q e si trova nel punto di coordinate (+d, 0). Sia inoltre presente una terza carica puntiforme $q_0 = Q$ di massa m anch'essa posta lungo l'asse x.

Determinare:

- a) il punto (p,0) compreso tra le cariche 18Q e 2Q in cui la forza totale che agisce su q_0 è nulla;
- b) il valore dell'energia potenziale di q_0 nel punto (p,0) assumendo che l'energia potenziale di q_0 all'infinito sia nulla;
- c) la velocità minima che dovrebbe avere q_0 nel punto (p,0) per raggiungere il punto sull'asse x di coordinate (-p,0).

Esercizio 3

Il circuito in figura si trova inizialmente in condizioni stazionarie con l'interruttore T aperto. All'istante t=0 s l'interruttore T viene chiuso. Determinare la corrente i_0 erogata dalla f.e.m. e la differenza di potenziale ai capi dell'induttore $(V_A - V_B)$ nei seguenti istanti:

- a) immediatamente prima di chiudere l'interruttore T;
- b) subito dopo la chiusura di T;
- c) quando il circuito ha nuovamente raggiunto la stazionarietà.

Si assuma: V_0 =60 V e R=100 Ω . (Sostituire i valori numerici solo alla fine dello svolgimento).

