

±
•

	. 1	
		1
		,
· ·		
		1
		- (
-2		

THE

SCIENTIFIC PAPERS

OF

JOHN COUCH ADAMS.

#London: C. J. CLAY AND SONS,
CAMBRIDGE UNIVERSITY PRESS WAREHOUSE,
AVE MARIA LANE.

Glasgow: 50, WELLINGTON STREET.

Leipzig: F. A. BROCKHAUS, New York: THE MACMILLAN COMPANY. Bombag: E. SEYMOUR HALE.

THE

SCIENTIFIC PAPERS

OF

JOHN COUCH ADAMS,

M.A., Sc.D., D.C.L., LL.D., F.R.S.,
LATE LOWNDEAN PROFESSOR OF ASTRONOMY AND GEOMETRY
IN THE UNIVERSITY OF CAMBRIDGE.

VOL. II.

6/16/2

CAMBRIDGE:
AT THE UNIVERSITY PRESS.

1900

[All Rights reserved.]

CAMBRIDGE:

PRINTED BY J. AND C. F. CLAY, AT THE UNIVERSITY PRESS.

PART I.

EXTRACTS

FROM

UNPUBLISHED MANUSCRIPTS

EDITED BY

RALPH ALLEN SAMPSON, M.A., F.R.A.S.,

PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF DURHAM.

PART II.

TERRESTRIAL MAGNETISM

EDITED BY

WILLIAM GRYLLS ADAMS, Sc.D., F.R.S.,

PROFESSOR OF NATURAL PHILOSOPHY IN KING'S COLLEGE, LONDON.

				·

PREFACE TO PART I.

The Manuscripts left by Professor John Couch Adams were a mass of notes, studies, and rough work,—the accumulation of his lifetime. What they contained was not known, but anyone familiar with his published work could recall more than one occasion when chance drew from him an unexpected description of results or researches of which it seemed we might otherwise never have heard. Hence it seemed right to examine the store from which these were drawn so that fresh matter of interest should not needlessly be lost.

The result of this search is contained in the following pages, of which lecture courses and elucidations of his published work form the greater part.

It is clear that he had not kept unpublished any completed work of great importance; yet these extracts may be read with interest for many reasons: some he had himself promised to publish at a convenient time; others contain the methods of investigations of which he has merely stated the results; and others, again, though fragmentary, are significant, because they indicate the plan he approved for attacking certain large problems.

The papers, as they reached me, and indeed as Adams left them, were almost devoid of arrangement, except that they were folded in parcels of a few pages each, the product of a day's or a few days' sitting; each parcel was generally very clear in itself, but carried no indication of its purpose or relations to others. It would have been a hopeless task to discover whether such a mass contained matter of value had not almost every page been dated. This permitted reference to a diary, which was sometimes very useful, though it was often silent at his most active seasons.

As a guide in the lecture courses I had notes taken by Mr A. Graham of Cambridge Observatory, by the late Rev. A. Freeman, by myself, and by others, which were of considerable value. But in most cases the purpose

of each new set of papers was little more than a guess until all the writings in any one subject were collected. When this was done it was possible to decide upon their bearing and importance, and then the work of transcription was generally straightforward, though here and there it became anything but easy. For example, in his lectures on the Lunar Theory there were in most cases many drafts of each lecture, differing substantially, and these had to be united; or again, it was often very hard to find the source of some formula or number quoted without reference.

At first it seemed that there was a danger that some considerable work might be overlooked altogether, but I am confident that such is not the case; and that no lacuna worth mention is to be found in the following pages is the best proof that I can offer. One which I was obliged to pass at first is mentioned on p. 127, but, as will be seen on p. 237, I was able to fill it up after the earlier sheets were printed off.

Very few, probably, have written their studies in a form so finished as Adams; "he never blotted a line;" it is impossible to exaggerate the impression left by a study of these unrevised papers of his absolute mastery of every detail of this most intricate and difficult subject, of freedom and ease in handling it from any standpoint, and of certainty and exactness in his operations, seeming indeed to symbolize as well as to calculate the motions of the stars. But it will easily be understood that from such material it was impossible in all cases to reproduce his own words and order; to do so would have done unnecessary violence to the matter, burdening it with any crudity that chanced to accompany its conception; and such a course would have been most repugnant to Adams's own fastidious care. It was in fact necessary that I should rewrite the papers. In doing so I have tried not to disturb what was characteristic. and have added nothing to the matter but an occasional explanatory sentence, and this is enclosed in brackets. Where a paper proved incomplete, it either appears with its defects, or is suppressed altogether.

R. A. SAMPSON.

Durham, 2 May, 1900.

PREFACE TO PART II.

I PROPOSE to give in this Preface a short account of Professor John Couch Adams's Theory of Terrestrial Magnetism, and of his determination of the Gaussian magnetic constants. This work was first taken in hand by him just fifty years ago, not long after the discovery of the planet Neptune. I find from his papers that the earliest work which he did on this subject was begun in the year 1849, and that he was led to it by the study of the translation of Gauss's Memoir on the Theory of Terrestrial Magnetism given in Taylor's Scientific Memoirs which was published in 1841. Gauss himself says in that memoir that he was stimulated to undertake the work on the publication of Sabine's map of the total intensity in the seventh Report of the British Association (i.e. in 1837), but that the data were very scanty for the accurate determination of the magnetic constants. For their accurate determination data should be supplied from accurate observations of magnetic declination, horizontal intensity, and dip, taken at stations uniformly distributed, as in a network, over the surface of the Earth.

Not only fifty years ago, when Gauss wrote, but even to the present day, the progress made in the theory of terrestrial magnetism has suffered from the lack of data derived from observations, because even now there are very few magnetic Observatories in existence, and those few are for the most part grouped very close together, leaving other parts of the Earth, and especially the southern hemisphere, almost entirely wanting in the facts of observation without which all theories can be but visionary.

In his calculations on the magnetic potential of the Earth and on the theoretical expression of the magnetic components X, Y and Z, to the north, to the west, and vertically downwards respectively, Gauss expressed

them for any point of the Earth's surface in series consisting of quantities to which he gave the name of magnetic constants, with coefficients involving Legendre's coefficients, and which are functions of the colatitude of the point.

From the very imperfect data which he possessed, Gauss determined the numerical values of the magnetic constants by his equations up to terms of the fourth order—i.e. he determined the values of the first twenty-four magnetic constants, i.e. three of the first order, five of the second, seven of the third, and nine of the fourth order.

No one could be more conscious of the fact than Gauss himself was that his data were so meagre and so insufficient that he could by no means rely on the values derived from them, and I fear that even now, at the end of this nineteenth century, we must say with him that the observed facts are far too scanty and that our stock of observations is still too small to enable us to get out trustworthy values of the magnetic potential and the magnetic elements for a given epoch. For this purpose the observations should be strictly contemporaneous, and so we require more Observatories where continuous records are taken.

For Gauss's method, which was also the method followed in practice by my brother, it is important for the accuracy and trustworthiness of the resulting values of the magnetic constants that the observations shall be taken from stations distributed as uniformly as possible over the Earth's surface; whereas we see that in the northern hemisphere the Observatories which exist are very unequally distributed, and that in the southern hemisphere there are only three first-class magnetic Observatories where continuous records are taken, viz. those of Batavia, Mauritius, and Melbourne.

This work on 'Terrestrial Magnetism' has been arranged under eight Sections. The first two sections treat of and establish simple and convenient relations between successive Legendre's coefficients and their derived differential coefficients regarded as functions of the colatitude $\theta = \cos^{-1} \mu$.

Taking P_n to represent Legendre's coefficient and Q_n^m to denote the value of

$$\frac{d^m P_n}{d\mu^m} \left(1-\mu^2\right)^{\frac{m}{2}},$$

certain simple and useful relations are found between successive values of Q for different values of n and m.

The symbol G_n^m is taken to represent the Gaussian function

$$\mu^{n-m} - \frac{(n-m)(n-m-1)}{2(2n-1)}\mu^{n-m-2} + \&c.,$$

and the symbol H_n^m is taken to represent $G_n^m (1-\mu^2)^{\frac{m}{2}}$.

Very simple relations are found between successive values of G for different values of n and m, and the numerical values of these functions are determined (1) for every degree of latitude on a sphere, and (2) for every degree of the geographical colatitude on a spheroid of eccentricity equal to that of the Earth itself. Very simple relations are also obtained between successive values of H and its differential coefficients for different values of n and m, and the magnetic potential V and the magnetic forces X, Y and Z are expressed in terms of these symbols H_n^m . The values of these functions H_n^m are determined for belts of latitude 5° apart (1) on a sphere, and (2) on a spheroid whose eccentricity equals that of the Earth's surface. The numerical values of G_n^m and also of H_n^m have been determined for all values of n and m from 0 to 10. Two distinct schemes of calculation were employed, and the calculations were made by different people and compared so as to ensure the accuracy of the results.

In the case of the spheroid, the functions G_n^m and H_n^m are regarded as functions of the geographical colatitude θ , and $\mu = \cos \theta$; and the symbols $G_n'^m$ and $H_n'^m$ are the same functions of the geocentric colatitude θ' of the same point, where $\mu' = \cos \theta'$.

A new theorem giving the values of G'-G for different values of n and m is established, by means of which the accuracy of the calculated values of G and G' may readily be tested.

Section III. treats of the definite integrals of the product of two Legendre's coefficients, which enter largely into the Theory of Terrestrial Magnetism, and in Section IV. the product of any two Laplace's coefficients is similarly dealt with. Section V. treats of the Theory of Terrestrial Magnetism for the Earth regarded as a sphere, and contains new and useful relations between the definite integrals of the products of the expressions of the magnetic forces, which simplify the determination of the magnetic constants.

Taking V to represent the potential of the Earth's magnetic field, where λ is the longitude, θ the colatitude of a point on its surface, and r the

distance from the Earth's centre, X, Y and Z the magnetic forces in three directions at right angles to one another, X being the force towards the north perpendicular to the Earth's radius, Y the force perpendicular to the geographical meridian towards the west, and Z the force towards the Earth's centre; also taking $\cos \theta = \mu$, we have

$$\begin{split} X &= -\frac{dV}{rd\theta} = \frac{\sin\theta}{r} \frac{dV}{d\mu} = \frac{(1-\mu^2)^{\frac{1}{2}}}{r} \cdot \frac{dV}{d\mu}, \\ Y &= -\frac{dV}{r\sin\theta} d\lambda = -\frac{(1-\mu^2)^{-\frac{1}{2}}}{r} \cdot \frac{dV}{d\lambda}, \\ Z &= -\frac{dV}{dr}, \end{split}$$

if east longitudes be considered positive.

There are two systems of values of V corresponding to magnetic forces whose origin is situated inside and outside the Earth's surface respectively, and by a convenient notation we may readily distinguish these two systems of values.

Making use of the functions denoted by H_n^m which I have above defined, and taking g_n^m and h_n^m to represent the Gaussian magnetic constants, g_n^m and h_n^m are coefficients of $\cos m\lambda$ and $\sin m\lambda$ respectively in the series of terms representing the magnetic potential.

The value of the magnetic potential V for magnetic forces whose origin is situated in the interior of the Earth is expressed by a series of terms of the form

$$\frac{1}{r^{n+1}} [H_n^m (g_n^m \cos m\lambda + h_n^m \sin m\lambda)].$$

Taking g_{-n}^m and h_{-n}^m to represent the values of the magnetic constants corresponding to this term of the series for forces situated outside the Earth's surface, the corresponding term in the magnetic potential will be

$$r^n [H_n^m (g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda)].$$

Hence

$$V = \sum_{n=1}^{\infty} \left[H_n^m \left(g_n^m \cos m\lambda + h_n^m \sin m\lambda \right) \right] + \sum_{n=1}^{\infty} \left[H_n^m \left(g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda \right) \right].$$

In the values of X, Y and Z there will be terms arising from each of these series of terms for V, and we may conveniently express them by modifying the notation in the same sense by using n subscript to refer to

internal forces, and -n subscript to refer to external magnetic forces, whose origin is outside the Earth's surface, *i.e.* forces corresponding to negative powers of $\left(\frac{1}{r}\right)$.

The corresponding terms are:

in the value of X,

$$\frac{1}{r^{n+2}} (1 - \mu^2)^{\frac{1}{2}} \frac{dH_n^m}{d\mu} (g_n^m \cos m\lambda + h_n^m \sin m\lambda)$$

$$r^{n-1} (1 - \mu^2)^{\frac{1}{2}} \frac{dH_n^m}{d\mu} (g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda);$$

and

in the value of Y,

$$\frac{1}{r^{n+2}}(1-\mu^2)^{-\frac{1}{2}}mH_n^m (g_n^m \sin m\lambda - h_n^m \cos m\lambda)$$

and

$$r^{n-1}(1-\mu^2)^{-\frac{1}{2}} m H_n^m (g_{-n}^m \sin m\lambda - h_{-n}^m \cos m\lambda);$$

in the value of Z,

$$\frac{n+1}{r^{n+2}}H_n^m\left(g_n^m\cos m\lambda+h_n^m\sin m\lambda\right) \text{ and } -nr^{n-1}H_n^m\left(g_{-n}^m\cos m\lambda+h_{-n}^m\sin m\lambda\right).$$

It is also proved that

$$(1-\mu^{2})^{\frac{1}{2}}\frac{dH_{n}^{m}}{d\mu} = (n-m)H_{n}^{m+1} - m\mu(1-\mu^{2})^{-\frac{1}{2}}H_{n}^{m}$$

$$(1-\mu^{2})^{\frac{1}{2}}\frac{dH_{n}^{m}}{d\mu} = \frac{1}{2}(n-m)H_{n}^{m+1} - \frac{1}{2}(n+m)H_{n}^{m-1};$$

and

and these relations are often useful in expressing the terms in the value of X.

It is found convenient to employ the notation with n and -n subscript more generally to refer to internal and external forces respectively, and in this sense the following notation is employed:

Let

$$V_n^m = \frac{1}{r^{n+1}} H_n^m \text{ and } V_{-n}^m = r^n H_n^m,$$

and let

$$X_n^m = \frac{1}{r^{n+2}} \left[\frac{1}{2} (n-m) H_n^{m+1} - \frac{1}{2} (n+m) H_n^{m-1} \right]$$

be the coefficient of $(g_n^m \cos m\lambda + h_n^m \sin m\lambda)$ in the expression for X, the

force towards the north, and let X_{-n}^m be the corresponding coefficient of $(g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda)$ in the expression for X arising from forces outside the Earth's surface.

Then
$$X_{-n}^{m} = r^{n-1} \left[\frac{1}{2} (n-m) H_{n}^{m+1} - \frac{1}{2} (n+m) H_{n}^{m-1} \right]$$

Using the notation Y_n^m and Y_{-n}^m , and also Z_n^m and Z_{-n}^m in the same way for the forces Y and Z, we have the potential

$$V = \Sigma \left[V_n^m \left(g_n^m \cos m\lambda + h_n^m \sin m\lambda \right) \right] + \Sigma \left[V_{-n}^m \left(g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda \right) \right]$$

$$X = \Sigma \left[X_n^m \left(g_n^m \cos m\lambda + h_n^m \sin m\lambda \right) \right] + \Sigma \left[X_{-n}^m \left(g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda \right) \right]$$

$$Y = \Sigma \left[Y_n^m \left(g_n^m \sin m\lambda - h_n^m \cos m\lambda \right) \right] + \Sigma \left[Y_{-n}^m \left(g_{-n}^m \sin m\lambda - h_{-n}^m \cos m\lambda \right) \right]$$

$$Z = \Sigma \left[Z_n^m \left(g_n^m \cos m\lambda + h_n^m \sin m\lambda \right) \right] + \Sigma \left[Z_{-n}^m \left(g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda \right) \right].$$

Collecting coefficients of $\cos m\lambda$ and $\sin m\lambda$ in the values of V, X, Y and Z respectively:

The coefficient of $\cos m\lambda$ in V is $\Sigma (V_n^m g_n^m + V_{-n}^m g_{-n}^m)$, X, $\Sigma (X_n^m g_n^m + X_{-n}^m g_{-n}^m)$,

$$Y, \Sigma (Y_n^m h_n^m + Y_{-n}^m h_{-n}^m)$$

,,
$$Z_{n}$$
, $\sum (Z_{n}^{m}g_{n}^{m}+Z_{-n}^{m}g_{-n}^{m})$.

The coefficient of $\sin m\lambda$ in V is $\Sigma \left(V_n^m h_n^m + V_{-n}^m h_{-n}^m\right)$,

,,
$$X_{n}$$
, $\Sigma (X_{n}^{m} h_{n}^{m} + X_{-n}^{m} h_{-n}^{m})$,

$$Y, \Sigma (Y_n^m g_n^m + Y_{-n}^m g_{-n}^m),$$

,,
$$Z_{n}$$
, $\sum (Z_{n}^{m} h_{n}^{m} + Z_{-n}^{m} h_{-n}^{m})$,

in which n takes all integral values for a given value of m.

In a portion of his work, in which he treats of the definite integral of the product of two Legendre's coefficients, Professor Adams proves the well-known formulæ that when n and n_1 are different from one another

$$\int_{-1}^{1} P_n P_{n_1} d\mu = 0,$$

and that when $n_1 = n$,

$$\int_{-1}^{1} (P_n)^2 d\mu = \frac{2}{2n+1}.$$

He then proves that if

$$\begin{split} Q_n^m &= (1 - \mu^2)^{\frac{1}{2}} \cdot \frac{d^m P_n}{d\mu^m}, \\ \int_{-1}^1 Q_n^m Q_{n_1}^m d\mu &= \frac{(n+m)!}{(n-m)!} \int_{-1}^1 P_n P_{n_1} d\mu. \end{split}$$

Hence if n and n_1 are not equal

$$\int_{-1}^{1} Q_{n}^{m} Q_{n_{1}}^{m} d\mu = 0.$$

But if $n_1 = n$, then

$$\int_{-1}^{1} (Q_n^m)^2 d\mu = \frac{(n+m)!}{(n-m)!} \cdot \frac{2}{2n+1}.$$

Hence if

$$\Pi_{n}^{m} = \left[\frac{(n-m)!}{(n+m)!}\right]^{\frac{1}{2}} Q_{n}^{m} \text{ and } \Pi_{n_{1}}^{m} = \left[\frac{(n_{1}-m)!}{(n_{1}+m)!}\right]^{\frac{1}{2}} Q_{n_{1}}^{m}$$

it follows that

$$\int_{-1}^{1} \Pi_{n}^{m} \Pi_{n_{1}}^{m} d\mu = 0,$$

and, when $n = n_1$, we have

$$\int_{-1}^{1} (\Pi_{n}^{m})^{2} d\mu = \frac{(n-m)!}{(n+m)!} \int_{-1}^{1} (Q_{n}^{m})^{2} d\mu = \frac{2}{2n+1} = \int_{-1}^{1} (P_{n})^{2} d\mu.$$

It is also shewn that

$$H_n^m = \frac{(n-m)!}{1 \cdot 3 \cdot 5 \dots (2n-1)} Q_n^m.$$

And therefore, when n and n_1 are not equal, we have

$$\int_{-1}^{1} H_{n}^{m} H_{n_{1}}^{m} d\mu = 0,$$

and, when $n_1 = n$, we have

$$\int_{-1}^{1} (H_n^m)^2 d\mu = \frac{(n-m)! (n+m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^2} \cdot \frac{2}{2n+1}.$$

We have seen that, on a sphere of radius unity,

$$X_{n}^{m} = (n-m) H_{n}^{m+1} - m\mu (1-\mu^{2})^{-\frac{1}{2}} H_{n}^{m} = (1-\mu^{2})^{\frac{1}{2}} \frac{dH_{n}^{m}}{d\mu}$$

$$= m\mu (1-\mu^{2})^{-\frac{1}{2}} H_{n}^{m} - (n+m) H_{n}^{m-1},$$
also
$$Y_{n}^{m} = m (1-\mu^{2})^{-\frac{1}{2}} H_{n}^{m} \text{ and } Z_{n}^{m} = (n+1) H_{n}^{m}.$$
Hence
$$\mu Y_{n}^{m} - X_{n}^{m} = (n+m) H_{n}^{m-1},$$
and
$$\mu Y_{n}^{m} + X_{n}^{m} = (n-m) H_{n}^{m+1},$$

$$(1-\mu^{2})^{\frac{1}{2}} Y_{n}^{m} = mH_{n}^{m}.$$

From these formulæ we find

$$\int_{-1}^{1} (Y_{n}^{m})^{2} d\mu + \int_{-1}^{1} (X_{n}^{m})^{2} d\mu = \int_{-1}^{1} (1 - \mu^{2}) \left(\frac{dH_{n}^{m}}{d\mu} \right)^{2} d\mu + \int_{-1}^{1} \frac{m^{2}}{1 - \mu^{2}} (H_{n}^{m})^{2} d\mu,$$

and also

$$= \frac{1}{2} (n+m)^2 \int_{-1}^1 (H_n^{m-1})^2 d\mu + \frac{1}{2} (n-m)^2 \int_{-1}^1 (H_n^{m+1})^2 d\mu + m^2 \int_{-1}^1 (H_n^m)^2 d\mu.$$

These definite integrals reduce to

$$n(n+1)\int_{-1}^{1} (H_n^m)^2 d\mu.$$

Hence since $Z_n^m = (n+1) H_n^m$, we have

$$\int_{-1}^{1} (X_{n}^{m})^{2} d\mu + \int_{-1}^{1} (Y_{n}^{m})^{2} d\mu + \int_{-1}^{1} (Z_{n}^{m})^{2} d\mu = (n+1)(2n+1) \int_{-1}^{1} (H_{n}^{m})^{2} d\mu$$

$$= 2 \frac{(n-m)! (n+m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^{2}} (n+1).$$

Putting n_1 for n in the above equations we get

$$\mu Y_{n_1}^m - X_{n_1}^m = (n_1 + m) H_{n_1}^{m-1},$$

$$\mu Y_{n_1}^m + X_{n_1}^m = (n_1 - m) H_{n_1}^{m+1},$$

$$(1 - \mu^2)^{\frac{1}{2}} Y_{n_1}^m = m H_{n_1}^m.$$

and

Hence

$$\begin{split} \frac{1}{2} \left(\mu \, Y_{n}^{m} - X_{n}^{m} \right) \left(\mu \, Y_{n_{1}}^{m} - X_{n_{1}}^{m} \right) + \frac{1}{2} \left(\mu \, Y_{n}^{m} + X_{n}^{m} \right) \left(\mu \, Y_{n_{1}}^{m} + X_{n_{1}}^{m} \right) + \left(1 - \mu^{2} \right) \, Y_{n}^{m} \, Y_{n_{1}}^{m} \\ &= X_{n}^{m} X_{n_{1}}^{m} + Y_{n}^{m} \, Y_{n_{1}}^{m} \\ &= \frac{1}{2} \left(n + m \right) \left(n_{1} + m \right) \, H_{n}^{m-1} H_{n_{1}}^{m-1} + \frac{1}{2} \left(n - m \right) \left(n_{1} - m \right) \, H_{n}^{m+1} H_{n_{1}}^{m+1} + m^{2} H_{n}^{m} H_{n_{1}}^{m} \, ; \end{split}$$

hence

$$\int_{-1}^{1} X_{n}^{m} X_{n_{1}}^{m} d\mu + \int_{-1}^{1} Y_{n}^{m} Y_{n_{1}}^{m} d\mu = 0,$$

since we have seen that for any value of m and different values of n and n_1 , the value of

$$\int_{-1}^{1} H_{n}^{m} H_{n_{1}}^{m} d\mu = 0.$$

For the same reason

$$\int_{-1}^{1} Z_{n}^{m} Z_{n_{1}}^{m} d\mu = 0.$$

Now let us consider the application of these formulæ to the determination of the numerical values of the magnetic constants of terrestrial magnetism. For a given value of μ (i.e. for a given latitude) we have a series of terms forming the coefficients of $\cos m\lambda$ and $\sin m\lambda$, in the values of the magnetic potential and of the magnetic forces X, Y, and Z, which are of the forms

$$a_n H_n^m + a_{n_1} H_{n_1}^m + \&c.$$
 $a_n X_n^m + a_{n_1} X_{n_1}^m + \&c.$
 $a_n Y_n^m + a_{n_1} Y_{n_1}^m + \&c.$
 $a_n Z_n^m + a_{n_1} Z_{n_1}^m + \&c.$

where a_n , a_{n_1} , &c., are the magnetic constants to be determined.

The numerical values of H_n^m , X_n^m , Y_n^m , and Z_n^m for different values of n and m must be calculated, and in any belt of latitude of breadth corresponding to the numerical value taken for $\delta\mu$, these coefficients must be equated to the values of the forces as derived from the magnetic observations taken in that belt of latitude.

The values of the magnetic forces X, Y, and Z are derived for every 10° of longitude and every 5° of latitude from the declination (δ) , the dip (ι) , and the horizontal force (ω) , as given in the charts from which the observations are obtained. These values of the forces X, Y, and Z are analysed for belts of latitude 5° in breadth around the Earth's surface by a formula of the type $a_0 + a_1 \cos \lambda + b_1 \sin \lambda + a_2 \cos 2\lambda + b_2 \sin 2\lambda + \&c$.

If we take x_m to represent the coefficient of $\cos m\lambda$ in the expansion of the value of the force X for a given belt of latitude corresponding to the colatitude $\theta = \cos^{-1}\mu$:

then

$$a_n X_n^m + a_{n_1} X_{n_1}^m + a_{n_2} X_{n_3}^m + &c. = x_m,$$

where x_m is derived from the observations. Similar equations, involving on one side the magnetic constants a_n , a_{n_1} , &c., and on the other the values derived from the observations, must be formed for all the successive different belts of latitude from the north pole to the south pole—*i.e.*, for all values of μ between 1 and -1.

The numerical values of X_n^m , $X_{n,}^m$, &c., as well as the values of H_n^m (as above defined), have been determined for every degree of latitude and recorded for future use, but, in the actual determinations of the magnetic constants which have been made, belts of latitude 5° in breadth have been taken, or $\delta\theta$ has been taken as 5° , and the area of the belt is proportional to $\delta\mu$.

Supposing the observations equally distributed over the surface of the globe, or supposing the weight of any determination proportional to the surface of the corresponding element about the point of observation, then the weight of each of the above equations is proportional to $\delta\mu$, and multiplying the equation in X for each value of μ by X_n^m , and summing up the separate equations for the whole surface of the Earth, we get the final equation—

$$a_n \int_{-1}^{1} (X_n^m)^2 d\mu + a_{n_1} \int_{-1}^{1} X_n^m X_{n_1}^m d\mu + \&c. = \int_{-1}^{1} X_n^m x_m d\mu.$$

Similarly, the final equation for a_{n_1} is found by multiplying the above equations by $X_{n_1}^m$, $Y_{n_1}^m$, and $Z_{n_1}^m$ respectively, and we get

$$a_n \int_{-1}^1 X_n^m X_{n_1}^m d\mu + a_{n_1} \int_{-1}^1 (X_{n_1}^m)^2 d\mu + \&c. = \int_{-1}^1 X_{n_1}^m x_m d\mu.$$

Similarly, if y_m denote the coefficient of $\sin m\lambda$ or $-\cos m\lambda$ in the value of the force Y as derived from observations, we have

$$\Sigma (\alpha_n Y_n) = y_m,$$

and the final equations for finding a_n and a_{n_1} respectively will be

$$a_n \int_{-1}^{1} (Y_n^m)^2 d\mu + a_{n_1} \int_{-1}^{1} Y_n^m Y_{n_1}^m d\mu + \&c. = \int_{-1}^{1} Y_n^m y_m d\mu,$$

$$a_n \int_{-1}^{1} Y_n^m Y_{n_1}^m d\mu + a_{n_1} \int_{-1}^{1} (Y_{n_1}^m)^2 d\mu + \&c. = \int_{-1}^{1} Y_{n_1}^m y_m d\mu.$$

and

Combining the final equations for a_n from X and Y together, we have

$$a_n \int_{-1}^{1} \left[(X_n^m)^2 + (Y_n^m)^2 \right] d\mu = \int_{-1}^{1} X_n^m x_m d\mu + \int_{-1}^{1} Y_n^m y_m d\mu,$$

since the coefficients of α_{n_1} and all the other terms on the left-hand side of this equation vanish when the integration is taken all over the Earth's surface.

Hence
$$a_n \cdot n \cdot (n+1) \int_{-1}^1 (H_n^m)^2 d\mu = \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu$$
i.e.
$$a_n \times 2n \cdot (n+1) \frac{(n-m)! \cdot (n+m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^2 \cdot (2n+1)}$$

$$= \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu.$$

Similarly, by putting n_1 for n, we may get the value of a_{n_1} .

In the same way the final equation for finding a_n from the equations for Z would give us

$$\alpha_{n} \int_{-1}^{1} (Z_{n}^{m})^{2} d\mu + \alpha_{n_{1}} \int_{-1}^{1} Z_{n}^{m} Z_{n_{1}}^{m} d\mu + \&c. = \int_{-1}^{1} Z_{n}^{m} z_{m} d\mu ;$$
or
$$\alpha_{n} (n+1)^{2} \int_{-1}^{1} (H_{n}^{m})^{2} d\mu = \int_{-1}^{1} Z_{n}^{m} z_{m} d\mu,$$
since
$$\int_{-1}^{1} Z_{n}^{m} Z_{n_{1}}^{m} d\mu = 0 ;$$
i.e.

$$\alpha_{n} 2(n+1)^{2} \frac{(n-m)! (n+m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^{2} (2n+1)} = \int_{-1}^{1} Z_{n}^{m} z_{m} d\mu.$$

If we take into account separately the parts of the magnetic force at a point due to the internal and external centres of magnetic force, the general terms of the coefficient of $\cos m\lambda$ in the potential function will be of the form

$$\left(\frac{\alpha_n}{r^{n+1}} + \beta_n r^n\right) H_n^m,$$

and the corresponding coefficients in X, Y, and Z will be-

$$\begin{split} & \text{in } X = \left(\frac{\alpha_n}{r^{n+2}} + \beta_n \, r^{n-1}\right) \left[\frac{1}{2} \left(n-m\right) \, H_n^{m+1} - \frac{1}{2} \left(n+m\right) \, H_n^{m-1}\right]; \\ & \text{in } \left(1-\mu^2\right)^{\frac{1}{2}} \, Y = \left(\frac{\alpha_n}{r^{n+2}} + \beta_n \, r^{n-1}\right) m H_n^m; \\ & \text{in } Z = \left[\frac{(n+1) \, \alpha_n}{r^{n+2}} - n \beta_n r^{n-1}\right] H_n^m. \end{split}$$

If then, as before, we put r=1, we shall have the final equation for a_n as follows:

$$\begin{aligned} \mathbf{a}_{n} \left[\int_{-1}^{1} (X_{n}^{m})^{2} d\mu + \int_{-1}^{1} (Y_{n}^{m})^{2} d\mu + (n+1)^{2} \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \right] \\ + \beta_{n} \left[\int_{-1}^{1} (X_{n}^{m})^{2} d\mu + \int_{-1}^{1} (Y_{n}^{m})^{2} d\mu - n (n+1) \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \right] \\ = \int_{-1}^{1} X_{n}^{m} x_{m} d\mu + \int_{-1}^{1} Y_{n}^{m} y_{m} d\mu + (n+1) \int_{-1}^{1} H_{n}^{m} z_{m} d\mu, \end{aligned}$$

where the coefficient of $\beta_n = 0$.

And
$$a_n \left[\int_{-1}^1 (X_n^m)^2 d\mu + \int_{-1}^1 (Y_n^m)^2 d\mu - n (n+1) \int_{-1}^1 (H_n^m)^2 d\mu \right]$$

$$+ \beta_n \left[\int_{-1}^1 (X_n^m)^2 d\mu + \int_{-1}^1 (Y_n^m)^2 d\mu + n^2 \int_{-1}^1 (H_n^m)^2 d\mu \right]$$

$$= \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu - n \int_{-1}^1 H_n^m z_m d\mu,$$

where the coefficient of $a_n = 0$.

Hence a_n and β_n are separately determined from the equations

$$2a_{n}(n+1)\frac{(n-m)!(n+m)!}{[1\cdot 3\cdot 5\cdots (2n-1)]^{2}}$$

$$=\int_{-1}^{1}X_{n}^{m}x_{m}d\mu+\int_{-1}^{1}Y_{n}^{m}y_{m}d\mu+(n+1)\int_{-1}^{1}H_{n}^{m}z_{m}d\mu,$$

$$2\beta_{n}\cdot n\frac{(n-m)!(n+m)!}{[1\cdot 3\cdot 5\cdots (2n-1)]^{2}}$$

$$=\int_{-1}^{1}X_{n}^{m}x_{m}d\mu+\int_{-1}^{1}Y_{n}^{m}y_{m}d\mu-n\int_{-1}^{1}H_{n}^{m}z_{m}d\mu.$$

and

Thus generally from the values of X and Y we derive

$$(a_n + \beta_n) 2n (n+1) \frac{(n-m)! (n+m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^2}$$

$$= (2n+1) \left[\int_{-1}^{1} X_n^m x_m d\mu + \int_{-1}^{1} Y_n^m y_m d\mu \right],$$

and from the values of Z we derive

$$[(n+1) a_n - n\beta_n] \int_{-1}^1 (H_n^m)^2 d\mu = \int_{-1}^1 H_n^m z_m d\mu.$$

The above theory assumes that the integration is taken over the whole surface of the Earth, and that the observations are uniformly distributed over the Earth's surface, otherwise the coefficients of the neglected terms on the left-hand side of these equations will not vanish, and each equation may have other terms which are too important to be neglected, and so it will not be so easy to separate the magnetic constants from one another.

Section VI. contains the Theory of Terrestrial Magnetism for the Earth regarded as a spheroid and gives the theory of the determination of the magnetic constants. Let r, θ' , λ be the polar coordinates of a point on the spheroidal surface referred to the Earth's centre as origin and axis of figure as initial line; let θ be the geographical colatitude (the angle which the normal makes with the axis) and let $\mu = \cos \theta$ and $\mu' = \cos \theta'$.

The angle of the vertical $\psi = \theta' - \theta$.

The values of the sines and cosines of these angles for values of θ differing by 1° from 0° to 90° have been computed, the eccentricity e of the elliptic section in the plane of the meridian being derived from Bessel's dimensions of the Earth as given in Encke's tables in the Berliner Jahrbuch, 1852.

The expressions for the magnetic potential and for the magnetic forces X, Y, and Z, in terms of the Gaussian magnetic constants g_n^m , h_n^m , will be of the same form as those given above for the sphere.

Where X is the total force towards the north perpendicular to the Earth's radius, Y the total force perpendicular to the geographical meridian towards the west, Z the force towards the Earth's centre, where $X = -\frac{dV}{rd\theta'}$,

$$Y = -\frac{1}{r \sin \theta} \cdot \frac{dV}{d\lambda}$$
, and $Z = -\frac{dV}{dr}$ (east longitudes being considered positive).

If X' be the horizontal force in the meridian towards the north,

Y' the horizontal force perpendicular to the meridian towards the west,

Z' the vertical force on the spheroidal surface of the Earth,

$$X' = X \cos \psi + Z \sin \psi,$$

$$Y' = Y,$$

$$Z' = -X \sin \psi + Z \cos \psi.$$

The values of the coefficients of $g_n^m \cos m\lambda$ and $h_n^m \sin m\lambda$ in the potential function and in the forces X', Y', and Z' are denoted by the symbols V_n^m , X_n^m , Y_n^m , and Z_n^m respectively.

If r be the radius vector, $\mu = \cos \theta$ and $\mu' = \cos \theta'$.

Then
$$V'^{m}_{n} = \frac{1}{2^{n+1}} H'^{m}_{n}$$
, and $V'^{m}_{-n} = r^{n} H'^{m}_{-n}$,

 $H_n^{\prime m}$ being the same function of μ' that H_n^m is of μ .

The expressions for the magnetic forces on the spheroidal surface of the Earth will be as follows:—

Taking a_n and β_n to represent magnetic constants depending on internal and external sources of magnetic force respectively, the coefficient of $\cos m\lambda$ in the general term of the potential function V is

$$\left(\frac{a_n}{r^{n+1}}+eta_n\,r^n
ight)H'^m_n.$$

The coefficients of $\cos m\lambda$ in the general terms of the forces X, Y, and Z are—

For
$$X$$
,
$$\left(\frac{\alpha_n}{r^{n+2}} + \beta_n r^{n-1}\right) (1 - \mu'^2)^{\frac{1}{2}} \frac{dH'^n_n}{d\mu'}.$$
For Y ,
$$\left(\frac{\alpha_n}{r^{n+2}} + \beta_n r^{n-1}\right) m (1 - \mu'^2)^{-\frac{1}{2}} H'^n_n.$$
For Z ,
$$\left(\frac{\alpha_n (n+1)}{r^{n+2}} - \beta_n . n . r^{n-1}\right) H'^n_n.$$

Taking the equatorial radius = 1, δS an element of the Earth's surface and e the eccentricity, and taking into account only the terms to the order e^2 , we have $\frac{1}{r^2} = 1 + e^2 \mu^2$, $\sin \psi = e^2 \mu (1 - \mu^2)^{\frac{1}{2}}$ to the order e^2 ,

$$\mu' = \cos \theta - \sin \theta \sin \psi = \mu - e^2 \mu \left(1 - \mu^2\right) \frac{d\mu'}{d\mu} = 1 - e^2 \left(1 - 3\mu^2\right),$$
 and
$$\frac{dS}{d\mu'} = -2\pi \left(1 - e^2 \mu^2\right);$$
 also
$$\frac{1}{r^{n+2}} = 1 + \frac{n+2}{2} e^2 \mu^2,$$
 and
$$r^{n-1} = 1 - \frac{n-1}{2} e^2 \mu^2.$$

Regarding H_{n}' and $\frac{dH_{n}'}{d\mu'}$, &c., as functions of μ' , we have by Taylor's theorem—

$$H_n' = H_n - e^2 \mu \left(1 - \mu^2\right) \frac{dH_n}{d\mu} \text{ to the order } e^2,$$

$$\frac{dH_n'}{d\mu'} = \frac{dH_n}{d\mu} - e^2 \mu \left(1 - \mu^2\right) \frac{d^2 H_n}{d\mu^2},$$

and

from which we derive the value of X_n for the spheroidal surface—

$$\begin{split} X_n &= (1 - \mu'^2)^{\frac{1}{2}} \frac{dH_n'}{d\mu'} \\ &= (1 - \mu^2)^{\frac{1}{2}} \frac{dH_n}{d\mu} \left(1 - e^2 \mu^2\right) + e^2 \mu \left(1 - \mu^2\right)^{\frac{1}{2}} \left[n \left(n + 1\right) - \frac{m^2}{1 - \mu^2}\right] H_n. \end{split}$$

If now we substitute the values of X, Y, and Z in terms of H_n' , dH_n' , &c., in the equations for X', Y', Z', the expressions for the magnetic forces become—

$$\begin{split} X' &= \left(\frac{a_n}{r^{n+2}} + \beta_n \, r^{n-1}\right) \frac{dH_n'}{d\mu'} (1 - \mu^2)^{\frac{1}{2}} \cos \psi \\ &\quad + \left[\frac{(n+1)\, a_n}{r^{n+2}} - n\beta_n r^{n-1}\right] H_n' \sin \psi + \text{similar terms,} \\ Y' &= \left(\frac{a}{r^{n+2}} + \beta_n \, r^{n-1}\right) m H_n' (1 - \mu^2)^{-\frac{1}{2}} + \text{similar terms,} \\ Z' &= -\left(\frac{a_n}{r^{n+2}} + \beta_n \, r^{n-1}\right) \frac{dH_n'}{d\mu'} (1 - \mu^2)^{\frac{1}{2}} \sin \psi \\ &\quad + \left[\frac{(n+1)\, a_n}{r^{n+2}} - n\beta_n r^{n-1}\right] H_n' \cos \psi + \text{similar terms.} \end{split}$$

In these expressions for the magnetic forces the values of H_n' , $\frac{dH_n'}{d\mu'}$, &c., in terms of H_n , $\frac{dH_n}{d\mu}$, &c., are substituted for each belt of latitude, and these theoretical expressions derived from the potential function for a given belt of latitude, and containing the magnetic constants, are equated to the corresponding coefficients derived from the magnetic observations taken in that belt of latitude.

In the case of the spheroid, as in the case of the sphere, the values of the forces X, Y, and Z derived for every 10° of longitude from the

observations of declination, inclination, and horizontal force are analysed for belts of latitude 5° in breadth around the Earth's surface by a formula of the type

$$a_0 + a_1 \cos \lambda + b_1 \sin \lambda + a_2 \cos 2\lambda + b_2 \sin 2\lambda + \delta_3 \sin$$

and the coefficients of $\cos m\lambda$, $\sin m\lambda$, in this expansion are equated respectively to the coefficients of $\cos m\lambda$ and $\sin m\lambda$ in the expansion in terms of the potential function and magnetic constants as given above: thus for the force X, if α_n , α_{n_1} , α_{n_2} , &c., stand for the magnetic constants, and if x_m' be the coefficient of $\cos m\lambda$ as derived directly from the observations, then

$$a_n X'_n^m + a_{n_1} X'_{n_1}^m + a_{n_2} X'_{n_2}^m + , &c. = x_m',$$

and similar equations are obtained from the expressions for the forces Y' and Z'.

The values X_n^m , Y_n^m , and Z_n^m , taken in these equations, are the values derived for the spheroidal surface of the Earth from the potential function, and these equations include not only the magnetic constants which were determined by Gauss, of the class indicated by α in the above equation, but they also include magnetic constants which may be spoken of for distinction as the β class (i.e. including, e.g., the class answering to forces of external origin), those forces which depend upon sources outside the surface of the Earth.

The full values, then, of the coefficients of the magnetic constants will be of this form:

For the a class-

$$\begin{split} X'^{m}_{n} &= \frac{1}{r^{n+2}} \bigg[\frac{1}{2} \left(n - m \right) \, H'^{m+1}_{n} - \frac{1}{2} \left(n + m \right) \, H'^{m-1}_{n} \bigg] \cos \psi + \frac{n+1}{r^{n+2}} \, H'^{m}_{n} \sin \psi, \\ Y'^{m}_{n} &= \frac{1}{r^{n+2}} \Big[m \left(1 - \mu'^{2} \right)^{-\frac{1}{2}} H'^{m}_{n} \Big], \\ Z'^{m}_{n} &= -\frac{1}{r^{n+2}} \bigg[\frac{1}{2} \left(n - m \right) \, H'^{m+1}_{n} - \frac{1}{2} \left(n + m \right) \, H'^{m-1}_{n} \bigg] \sin \psi + \frac{n+1}{r^{n+2}} \, H'^{m}_{n} \cos \psi. \\ \text{For the } \beta \text{ class, which may be denoted by } X'^{m}_{-n}, \, \, Y'^{m}_{-n}, \, \text{ and } Z'^{m}_{-n} - X'^{m}_{-n} &= r^{n-1} \left[\frac{1}{2} \left(n - m \right) \, H'^{m+1}_{n} - \frac{1}{2} \left(n + m \right) \, H'^{m-1}_{n} \right] \cos \psi - n r^{n-1} H'^{m}_{n} \sin \psi, \\ X'^{m}_{-n} &= r^{n-1} \left[m \, \left(1 - \mu'^{2} \right)^{-\frac{1}{2}} H'^{m}_{n} \right], \\ Z'^{m}_{-n} &= -r^{n-1} \left[\frac{1}{2} \left(n - m \right) \, H'^{m+1}_{n} - \frac{1}{2} \left(n + m \right) \, H'^{m-1}_{n} \right] \sin \psi - n r^{n-1} H'^{m}_{n} \cos \psi. \end{split}$$

In Section VII. is given the numerical calculation of the coefficients of the magnetic constants for the Earth's spheroidal surface.

The numerical values of these expressions for all values of m from 0 to 10, and for all values of n from 1 to 10, for the spheroidal surface of the Earth, have been calculated from the values of μ for every 5° of colatitude, and form the coefficients of the magnetic constants g_n^m , h_n^m , and g_{-n}^m , h_{-n}^m of the α and β class respectively in the equations for the determination of these constants.

The number of magnetic constants contained in these equations which have been completely formed is thus 120 of each class, or 240 magnetic constants in all, in place of the 24 constants of the α class which were previously determined by Gauss.

Regarding the Earth as a spheroid of revolution, the values of $\mu' = \cos \theta'$, where θ' is the geocentric colatitude, have been determined for every 5° of geographical colatitude. Also the values of $\cos \psi$, $\sin \psi$, $\frac{\alpha}{r}$, G'_{n}^{m} , and H'_{n}^{m} have been calculated for every 5° of geographical colatitude (i.e. for the above values of μ') for all values of n and m from 0 to 10.

The weights of the observations of the magnetic elements for these belts of latitude have also been determined on the assumption that the weight is proportional to the area of the corresponding portion of the Earth's surface.

The values of $H_n^{\prime m}$ as a function of the geocentric colatitude having been determined for every 5° of geographical colatitude on the spheroid, we next proceed to determine from them the values of

$$Y'_{n}^{m}$$
, Y'_{-n}^{m} , X'_{n}^{m} (= $X_{n}^{m} \cos \psi + Z_{n}^{m} \sin \psi$), X'_{-n}^{m} , Z'_{n}^{m} (= $-X_{n}^{m} \sin \psi + Z_{n}^{m} \cos \psi$) and Z'_{-n}^{m} ,

the resolved parts of the expressions for the horizontal and vertical forces in the plane of the meridian on the spheroid.

These values are required in the formation of the equations of condition, and their numerical values are calculated for every 5° of geographical colatitude as well as for the Equator and the Poles. These values of X'_n^m , &c., have been calculated and recorded in tables for all values of n and m from 0 to 10, and have been employed as the theoretical coefficients of the magnetic constants g_n^m , h_n^m , &c., in the equations of condition.

Section VIII. treats of the mode of formation of the Equations of Condition and the Final Equations for determining the magnetic constants, the solution of the equations and the discussion of the results.

Formation of the Equations of Condition.

When n-m is even, the value of X_n^m contains only odd powers of μ , and the values of Y_n^m and Z_n^m only even powers, and similarly when n-m is odd, the value of X_n^m contains only even powers of μ , and the values of Y_n^m and Z_n^m only odd powers. Hence, if the coefficient of $\cos m\lambda$ in either of the quantities X, Y, Z be denoted by α_m and the coefficient of $\sin m\lambda$ by b_m for a given north latitude, and if a_m' , b_m' denote the similar quantities for the corresponding south latitude, then we have, when n-m is even,

$$\Sigma \left(X_{n}^{m} g_{n}^{m} + X_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left(a_{m} - a_{m}' \right) \quad \text{and} \quad \Sigma \left(X_{n}^{m} h_{n}^{m} + X_{-n}^{m} h_{-n}^{m} \right) = \frac{1}{2} \left(b_{m} - b_{m}' \right),$$

$$\Sigma \left(Y_{n}^{m} g_{n}^{m} + Y_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left(b_{m} + b_{m}' \right) \quad \text{and} \quad \Sigma \left(Y_{n}^{m} h_{n}^{m} + Y_{-n}^{m} h_{-n}^{m} \right) = -\frac{1}{2} \left(a_{m} + a_{m}' \right),$$

$$\Sigma \left(Z_{n}^{m} g_{n}^{m} + Z_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left(\alpha_{m} + \alpha_{m}' \right) \quad \text{and} \quad \Sigma \left(Z_{n}^{m} h_{n}^{m} + Z_{-n}^{m} h_{-n}^{m} \right) = \frac{1}{2} \left(b_{m} + b_{m}' \right);$$

and when n-m is odd,

and

$$\Sigma (X_n^m g_n^m + X_{-n}^m g_{-n}^m) = \frac{1}{2} (\alpha_m + \alpha_{m'}) \quad \text{and} \quad \Sigma (X_n^m h_n^m + X_{-n}^m h_{-n}^m) = \frac{1}{2} (b_m + b_{m'}),$$

$$\Sigma \left(Y_{n}^{m} g_{n}^{m} + Y_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left(b_{m} - b_{m}' \right) \quad \text{and} \quad \Sigma \left(Y_{n}^{m} h_{n}^{m} + Y_{-n}^{m} h_{-n}^{m} \right) = -\frac{1}{2} \left(a_{m} - a_{m}' \right),$$

$$\Sigma \left(Z_{n}^{m} g_{n}^{m} + Z_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left(a_{m} - a_{m}' \right) \quad \text{and} \quad \Sigma \left(Z_{n}^{m} h_{n}^{m} + Z_{-n}^{m} h_{-n}^{m} \right) = \frac{1}{2} \left(b_{m} - b_{m}' \right).$$

Hence the equations for the quantities h_n^m and h_{-n}^m will be found from the equations for g_n^m and g_{-n}^m , when n-m is even, by substituting

$$\frac{1}{2}(b_m - b_{m'}) \text{ for } \frac{1}{2}(a_m - a_{m'}) \text{ in the equations for } X,$$

$$-\frac{1}{2}(a_m + a_{m'}) \text{ for } \frac{1}{2}(b_m + b_{m'}) \text{ in the equations for } Y,$$

$$\frac{1}{2}(b_m + b_{m'}) \text{ for } \frac{1}{2}(a_m + a_{m'}) \text{ in the equations for } Z.$$

And similarly the equations for h_n^m and h_{-n}^m will be found from the equations for g_n^m and g_{-n}^m , when n-m is odd, by substituting

$$\frac{1}{2}(b_m + b_{m'}) \text{ for } \frac{1}{2}(a_m + a_{m'}) \text{ in the equations for } X,$$

$$-\frac{1}{2}(a_m - a_{m'}) \text{ for } \frac{1}{2}(b_m - b_{m'}) \text{ in the equations for } Y,$$

$$\frac{1}{2}(b_m - b_{m'}) \text{ for } \frac{1}{2}(a_m - a_{m'}) \text{ in the equations for } Z.$$

and

Thus each equation for the determination of magnetic constants is separated into two equations, each of which contains only one-half the number of magnetic constants to be determined.

In the first solution of the equations, the absolute terms (i.e. the terms derived from the observed values of the magnetic elements) are taken from Sabine's magnetic charts for the period about 1845, as published in the Philosophical Transactions of the Royal Society. In the second solution, the observed values of the magnetic elements are taken from the Admiralty charts for 1880 prepared by Captain Creak, kindly lent by the Lords of the Admiralty.

The values of X, Y and Z are calculated for every 10° of longitude and every 5° of latitude from the declination (δ), the dip (ι) and the horizontal force (ω) as given in the charts. Then the values of X, Y and Z are analysed for belts of latitude 5° in breadth around the earth by the formula

$$a_0 + a_1 \cos \lambda + b_1 \sin \lambda + a_2 \cos 2\lambda + b_2 \sin 2\lambda + \lambda$$
, &c.

The values of these coefficients for the different belts of latitude were obtained and tabulated. Then if a_m and b_m denote the values of two of these coefficients for a given northern latitude, and $a_{m'}$, $b_{m'}$ the corresponding values for an equal southern latitude, then the values of $\frac{1}{2}(a_m + a_{m'})$, $\frac{1}{2}(a_m - a_{m'})$, and $\frac{1}{2}(b_m - b_{m'})$ and of their logarithms are determined. The values of these quantities are determined for each of the periods for which the magnetic constants are required.

The numerous tables contained in this work have been calculated with the utmost care, under Professor Adams' minute supervision and instructions, by Mr Graham, who has done a great part of the work, and by Mr Todd and other Assistants at the Observatory of Cambridge; these tables have also been calculated by Mr Roberts and by Mr T. Wright and other Assistants at the *Nautical Almanack* Office and have been compared and tested most carefully in a variety of ways for their accuracy.

A short account of the method and the results of the investigation was given by Professor Adams in the Mathematical Section of the British Association at the Manchester Meeting in 1887, but unfortunately no record was made of this communication and no account of any part of the work was at any time written or published. Under these circumstances it has been no easy task to piece together into this connected whole the detached portions of the work which were delivered into my hands, without any explanation as to any part of them or as to their connection with one another, during my brother's last illness, when he was no longer able to give me any hints as to his theory or mode of treatment.

To the unravelling and the publication of this work, which was begun in 1849, and no part of which was published until 1887, I have devoted whatever leisure I could command during the past eight years,—as a tribute to the memory of one whose accuracy of work has probably never been surpassed.

I desire to acknowledge the very great assistance which I have received from Dr C. Chree, the Superintendent of the Kew Observatory, whom I have consulted on various parts of the work.

My best thanks are due to the Lords of the Admiralty and to Captain Creak for the permission to use and to reproduce the Charts of the magnetic elements for 1880; from which the observations for that period are taken. There is found to be a remarkable agreement on comparing the theoretical results for the mean vertical and horizontal forces over the polar areas at the north and south poles with the values deduced by Captain Creak from the observations and given in the polar Charts at the end of this volume.

W. GRYLLS ADAMS.

Physical Laboratory,
King's College, London.
February 16th, 1900.

CONTENTS.

PART I. ASTRONOMY.

1.	Lectur	res on the Lunar Theory $$		•		PAGE 1
	LECT. I.	Historical Sketch				3
	II.	Accelerations of the Moon relative to the Earth	i.			6
	III.	The Sun's coordinates in terms of the time				12
	IV.	The Variation				15
	V.	The Variation (continued)				19
	VI.	The Variation (continued)			•	24
	VII.	Correction of approximate solutions				29
	VIII.	The Parallactic Inequality				33
	IX.	The Parallactic Inequality (continued) .				38
	X.	The Annual Equation				41
	XI.	The Equation of the Centre and the Evection	•			46
	XII.	The Evection and the Motion of the Apse .				51
	YIII	The Motion of the Anse and the Change of the	Ecce	ntrici	tai	58

CONTENTS.

	$egin{array}{lll} ext{XIV.} & ext{\it The Latitude and the Motion of the Node} & . & . & . \end{array}$	PAGE 64
	XV. Motion in an Orbit of Any Inclination	68
	XVI. Motion in an Orbit of Any Inclination (continued) .	72
	XVII. On Hill's method of treating the lunar theory	77
	XVIII. On Hill's method of treating the lunar theory (continued)	81
2.	Development of a certain infinite determinant arising in relation to the motion of the node of the Moon's orbit	85
3.	Numerical developments in the lunar theory	104
4.	The secular acceleration of the Moon's mean motion	120
5.	Neison's lunar inequality	130
6.	A method of solving the equation $\frac{d^2w}{dt^2} + Qw = 0$, where	
	$Q = q_0^2 + 2q_1 \cos 2t + 2q_2 \cos 4t + 2q_3 \cos 6t + \dots$	132
7.	Theory of Jupiter's Satellites	136
8.	Masses of Jupiter's Satellites consistent with Damoiseau's constants	188
9.	Repetition of some numerical calculations in the Mécanique Céleste relating to the theory of Jupiter's Satellites	192
0.	Perturbation of the orbit of the November meteors	194
1.	Theory of the figure of the Earth	201
12.	Effect of the long inequality of Jupiter and Saturn upon the motions of Jupiter's Satellites	224
l 3.	Studies on Newton's lunar theory	227
l 4.	Various errata	233
l 5 .	Addendum to paper on the secular acceleration of the Moon's mean motion, No. 4, p. 120	237
l 6.	Laplace's theorems on the development of functions in series	239

PART II. TERRESTRIAL MAGNETISM.

SECT. I.	Useful formulæ connecting Legendre's coefficients	PAGE 243
	Computation of the values of G_n^m for a spherical surface.	265
II.	Computation of the values of G'^n for the spheroidal surface of the Earth	297
III.	On the definite integral of the product of two Legendre's coefficients	343
IV.	On the product of any two Laplace's coefficients of the form $\left(\frac{d^mP_n}{d\mu^m} \times \frac{d^pP_q}{d\mu^p}\right)$ or $D^mP_n \times D^pP_q$	372
	On the product of two Laplace's coefficients of the form $Q_n^m \times P_q^p$, where $Q_n^m = (1 - \mu^2)^{\frac{m}{2}} D^m P_n$	396
V.	The theory of Terrestrial Magnetism, giving the expressions of the magnetic forces on the Earth's surface, the Earth being regarded as a sphere	401
	On the relation of the functions Q_n^m and H_n^m to one another and to the magnetic forces	411
	On the relation of the above definite integrals to the magnetic forces	420
	On the relation of these definite integrals to the determination of the magnetic constants	436
VI.	The theory of Terrestrial Magnetism, giving the expressions for the magnetic forces on the Earth's surface, taking into account the spheroidal figure of the Earth	446
	Form of the final equations for the determination of the magnetic constants	459

	• •
vv	X11
$\Delta \Delta$	$\Delta \Pi$

CONTENTS.

SECT.	N : 1 1 1 i i i i i i i i i i i i i i i i	PAGI
VII.	Numerical calculation of the functions H_n^m and of the magnetic forces on the Earth's spheroidal surface	467
	Tables of equations of condition for finding Gauss's magnetic constants	520
	Tables of equations leading to the final equations for the	
	magnetic constants	554
VIII.	Mode of formation of the equations of condition and of the final equations of the type	
	$\Sigma [(X_{n}^{\prime m})^{2} w] g_{n}^{m} + \Sigma [X_{n}^{\prime m} X_{n_{1}}^{\prime m} w] g_{n_{1}}^{m} + \&c. = \Sigma [X_{n}^{\prime m} w x_{m}^{\prime}]$	588
	Solution of the final equations	600
	Formation of equations for the polar regions	612
	Tables of final equations for the determination of the magnetic	
	constants	616
Index		641
Magnet	tic Charts.	

LECTURES ON THE LUNAR THEORY.

[Lectures on the Lunar Theory were given by Adams from 1860 with few intermissions until 1889. Originally their aim was to illustrate geometrically the analytical processes and thereby render them more comprehensible, and they included some elegant theorems on the geometry of conics which have since become common property; but every year several lectures were rewritten, and thus the whole fabric gradually changed into the form in which it is here presented,—the form, practically, in which he gave them last.

Perhaps it is superfluous to say that these Lectures stand upon a different footing to treatises that are intended to form the basis of Tables. With such, completeness is the first object and manner of presentation is secondary. Immense as is the labour of forming a treatise of this description, there exist several that leave little to desire in respect to fulness Indeed it may be suspected that their very perfection in the quality they profess has stifled to some degree the proper development of the subject, because at first sight it suggests that there is little left to do in the Lunar Theory, unless one is prepared to track down the inconsiderable errors that have eluded his Masters. This seems a mistake; the methods most suitable for the whole task adapt themselves comparatively ill to each detail of it, and there seems much that remains to be done in respect to inventing methods suitable for attacking separately, as far as they permit of separate attack, the many difficulties into which the theory divides at the outset, and thence perhaps approximating to a more adequate knowledge than we now possess of the relative motion of Three Bodies. So far, with the notable exception of Dr G. W. Hill and those that have followed him, we have seen comparatively little effort in this direction.

1

This was the cardinal feature of Adams's plan, and his lectures shew the methods he had gradually elaborated to accomplish it. They separate the inequalities from one another as far as possible, and are content with indicating the manner in which these separate inequalities afterwards combine. To shew that, with so slight an apparatus and within so small a compass, the result is no mere sketch, we need but set side by side the coefficients of longitude found in these Lectures and the corresponding terms in Delaunay's *Théorie*.

v		Adams.	Delaunay.
Variation, coeff. of	$\sin 2D$	2106.4	2106.25
	$\sin 4D$	8.74	8.75
Parallactic inequality,	$\sin D$	-124.90*	-127·62
	$\sin 3D$	0.73	0.84
	$\sin 5D$	0.01	0.01
Annual equation,	$\sin l'$	-658·9	-659.23
	$\sin(2D-l')$	152.09	152.11
	$\sin\left(2D+l'\right)$	-21.57	-21.63
Evection,	$\sin(2D-l)$	4596.6	4607.77
	$\sin(2D+l)$	175.1	174.87
Further,			
Motion of Apse,	1-c	.008554	008572
Motion of Node,	g-1	.003997	

For those to whom the difficulties of the Lunar Theory are known, these numbers need no comment.

No Manuscript exists of Lecture I. It is taken substantially from my own notes of 1889.]

^{*} With Delaunay's value of the Sun's Parallax, viz. 8".75.

LECTURE I.

HISTORICAL SKETCH.

[The Lunar Theory may be said to have had its commencement with Newton. Many irregularities in the Moon's motion were known before his time, but it was he that first explained the cause of those irregularities and calculated their amounts from theory.

Of the inequalities which are due to the action of the Sun, the first,—which is called the Evection,—was discovered by Ptolemy, who lived at Alexandria in the first half of the second century of our era, under the reigns of Hadrian and Antoninus Pius. At a very early period the relative distance of the Moon at different times could be told from the angle it subtended, and its orbit could thus be mapped out. By such means Ptolemy found that its form was not the same from month to month, and that the longer axis moved continually though not uniformly in one direction. He represented this change by a motion of the centre of the ellipse, as we would put it, in an epicycle round the focus, obtaining thus a variable motion for the longer axis and a variable eccentricity.

The representation of position by means of epicycles is intimately related to the modern method of developing the coordinates in harmonic series; thus if we have

$$x = A_1 \cos (n_1 t + a_1) + A_2 \cos (n_2 t + a_2) + \dots$$

$$y = A_1 \sin (n_1 t + a_1) + A_2 \sin (n_2 t + a_2) + \dots$$

the motion of the point (x, y) is that on a circle of radius A_1 with angular velocity n_1 , around a centre which moves on a circle of radius A_2 with angular velocity n_2 , and so on; and if, more generally, we have

$$x = A_1 \cos (n_1 t + a_1) + \dots$$

$$y = B_1 \sin (n_1 t + a_1) + \dots$$

we may reduce this case to the former by rewriting

$$x = \frac{1}{2} (A_1 + B_1) \cos (n_1 t + a_1) + \frac{1}{2} (A_1 - B_1) \cos (-n_1 t - a_1) + \dots,$$

$$y = \frac{1}{2} (A_1 + B_1) \sin (n_1 t + a_1) + \frac{1}{2} (A_1 - B_1) \sin (-n_1 t - a_1) + \dots$$

Probably we have here the reason why circular motions and epicycles were first employed.

Tycho Brahe (1546—1601) discovered the existence of another inequality in the Moon's Longitude quite different from the Elliptic Inequality and the Evection. He found it bore reference to the position of the Sun with regard to the Moon; so that when the Sun and the Moon were in conjunction or opposition or quadratures the position of the Moon was quite well represented by the existing theory, but from conjunction to the quadrature following, her position was more advanced than the place assigned to it, reaching a maximum of some 35' about half-way; and in the second quadrant it was just as much behind. This inequality he called the Variation; it was the first that Newton accounted for theoretically, and if we were to suppose the Moon and Sun to move, except for mutual disturbance, in pure circles in the same plane, it is the only one that would present itself.

The next significant step was made by Horrox (1619—1641) who represented the Evection geometrically by motion in a variable ellipse, and gave very approximately the law of variation of the eccentricity and the motion of the apse. He supposed the focus of the orbit to move in an epicycle about its mean place.

Newton's *Principia* did not profess to be and was not intended for a complete exposition of the Lunar Theory. It was fragmentary; its object was to shew that the more prominent irregularities admitted of explanation on his newly discovered theory of universal gravitation. He explained the Variation completely, and traced its effects in Radius Vector as well as in Longitude; and he also saw clearly that the change of eccentricity and motion of the apse that constitute the Evection could be explained on his principles, but he did not give the investigation in the *Principia*, even to the extent to which he had actually carried it. The approximations are more difficult in this case than in that of the Variation, and require to be carried further in order to furnish results of the same accuracy as had already been obtained by Horrox from observation. He was more

successful in dealing with the motion of the node and the law of change of inclination. He shewed that when Sun and Node were in conjunction, then for nearly a month the Moon moved in a plane very approximately, and that the inclination of the orbit then reached its maximum, namely, 5° 17′ about; but as the Sun moved away from the Node the latter also began to move, attaining its greatest rate when the separation was a quadrant, and that at this instant the inclination was 5° very nearly. He also assigned the law for intermediate positions. The fact that there was no motion when the Sun was at the Node, that is, in the plane of the Moon's orbit, confirmed his theory that these inequalities were due to the Sun's action.

When we spoke of Newton's results as fragmentary and incomplete, let it not be understood that he gave only very rude approximations to the truth. His results are far more accurate than those arrived at in elementary works of the present day upon the subject.

After Newton, Clairaut (1713—1765) treated the Lunar Theory analytically. He readily found the Variation and many other inequalities, but met with a difficulty in determining the motion of the apse. At first he made its mean motion only about one-half of the observed value, and supposed that this indicated a failure of Newton's law of the inverse square of the distance; but soon he recognized an error, caused by omission of terms which he had imagined would not affect the result. When these were included the calculated amount was nearly doubled.

The first Tables of the Moon which were sufficiently accurate for use in determining longitudes at sea by observation of Lunar Distances were those of Mayer. They obtained a prize offered by our Board of Longitude, and were published in 1770 by Maskelyne, the Astronomer Royal.

The first Theories which gave the Moon's place with an accuracy equal to that of observation were those of Damoiseau and Plana. The former was published in 1827, preceded in 1824 by Tables; the latter was published in 1832.

Hansen's Tables, which are those now used, were constructed from theory and were published in 1857 at the expense of the British Government.

LECTURE II.

ACCELERATIONS OF THE MOON RELATIVE TO THE EARTH.

When three bodies move under their mutual attraction, their motions are unknown to us except in the cases when they are approximately elliptical; but this restriction includes almost all the most important cases in the Solar System.

If one body of the system is greatly predominant and if the lesser bodies are not close together, the centre of gravity of the greater body may be taken as a common focus around which the others move in approximate ellipses. Or again, if two bodies lie close together, their relative motion may be approximately the same as though they were isolated, although the system contains a third greatly predominant body; for their relative motion is affected by the difference of the attractions of the central body upon them and not by the absolute value of those attractions.

The Sun and Planets are an example of the first kind; the Earth, Moon and Sun of the second. The Earth and Moon describe orbits round the Sun which are approximately ellipses, and the Moon might be regarded as one of the planets; but this point of view would not be a simple one; the disturbing action of the Earth would be too great, though it is never so great as the direct attraction of the Sun, that is to say, never great enough to make the Moon's path convex to the Sun. The more convenient method is to refer the motion of the Moon to the Earth, and counting only the difference of the attractions of the Sun upon the Earth and upon the Moon, to find how this distorts the otherwise elliptical relative orbit. This is the method of the Lunar Theory.

The position of the Sun must be referred to the same origin; but since the Earth describes an ellipse about the Sun which is disturbed by

the action of the Moon, if we choose as origin the Earth's centre, we must allow for the disturbance of the Sun's position by the Moon. This correction may be evaded by choosing as origin, not the Earth's centre, but the centre of gravity of the Earth and Moon, with respect to which

the Sun describes a curve so closely elliptical that no allowance is required. For, if S, E, M denote respectively the Sun, Earth, and Moon, and G the centre of gravity of E and M, the accelerating forces of S are

on
$$E$$
 S/SE^2 in ES ,
on M S/SM^2 in MS ;

and these imply accelerations of G of amount

$$\frac{E}{E+M} \frac{S}{SE^2}$$
 parallel to ES , $\frac{M}{E+M} \frac{S}{SM^2}$ parallel to MS ;

now the accelerations of S are

or

$$E/SE^2$$
 in SE , M/SM^2 in SM ;

hence the acceleration of G relative to S is

$$\frac{S+E+M}{E+M} \frac{E}{SE^2} \text{ parallel to } ES,$$

$$\frac{S+E+M}{E+M} \frac{M}{SM^2} \text{ parallel to } MS;$$

$$\frac{S+E+M}{E+M} \left(E \cdot \frac{GE}{SE^3} - M \cdot \frac{GM}{SM^3}\right) \text{ in } GM,$$

$$\frac{S+E+M}{E+M} \left(E \cdot \frac{SG}{SE^3} + M \cdot \frac{SG}{SM^3}\right) \text{ in } GS.$$
Let
$$EM=r, SG=r', SGM=\omega; \text{ then}$$

$$GM=\frac{E}{E+M}r, \quad GE=\frac{M}{E+M}r.$$

Hence

$$\frac{1}{SM^3} = \frac{1}{r'^3} \left[1 + \frac{E}{E+M} \frac{r}{r'} 3 \cos \omega + \left(\frac{E}{E+M} \frac{r}{r'} \right)^2 \left(-\frac{3}{2} + \frac{15}{2} \cos^2 \omega \right) + \dots \right],$$

$$\frac{1}{SE^3} = \frac{1}{r'^3} \left[1 - \frac{M}{E+M} \frac{r}{r'} 3 \cos \omega + \left(\frac{M}{E+M} \frac{r}{r'} \right)^2 \left(-\frac{3}{2} + \frac{15}{2} \cos^2 \omega \right) + \dots \right];$$

and the accelerations of G are

$$\frac{S+E+M}{r'^2} \left[-\frac{EM}{(E+M)^2} \frac{r^2}{r'^2} 3 \cos \omega + \dots \right] \text{ in } GM.$$

$$\frac{S+E+M}{r'^2} \left[1 + \frac{EM}{(E+M)^2} \frac{r^2}{r'^2} \left(-\frac{3}{2} + \frac{15}{2} \cos^2 \omega \right) + \dots \right] \text{ in } GS.$$

Now r/r' is approximately $\frac{1}{400}$; neglecting the square of this quantity, we see that S moves about G in a pure ellipse.

Consider now the accelerations of the Moon relative to the Earth; subtracting the accelerations of the Earth from those of the Moon, we find

$$egin{aligned} rac{E+M}{ME^2} + S\left(rac{MG}{SM^3} + rac{EG}{SE^3}
ight) & ext{in } MG, \ S\left(rac{SG}{SM^3} - rac{SG}{SE^3}
ight) & ext{parallel to } GS \,; \end{aligned}$$

let $E + M = \mu$, S = m'; then these become

$$\frac{\mu}{r^2} + \frac{m'r}{r'^3} \left[1 + \frac{E - M}{E + M} \frac{r}{r'} 3 \cos \omega + \dots \right] \text{ in } ME,$$

$$\frac{m'r}{r'^3} \left[3 \cos \omega + \frac{E - M}{E + M} \frac{r}{r'} \left(-\frac{3}{2} + \frac{15}{2} \cos^2 \omega \right) + \dots \right] \text{ parallel to } GS.$$

In the accompanying spherical triangle, let G be the centre of the sphere, SM' the ecliptic, and M' the projection of M.

Let 1/u be the projection of ME on the plane of the ecliptic;

 θ the longitude of the Moon as seen from the Earth,

 θ' the longitude of the Sun as seen from G,

s the tangent of the Moon's latitude MM'.

Then

$$SM = \omega$$
, $SM' = \theta - \theta'$, $r = (1 + s^2)^{\frac{1}{2}} u^{-1}$, $\cos \omega = \cos (\theta - \theta') (1 + s^2)^{-\frac{1}{2}}$

and the accelerations of M relative to E are

$$\frac{\mu u^2}{1+s^2} + \frac{m' \left(1+s^2\right)^{\frac{1}{2}}}{r'^3 u} \left[1 + \frac{E-M}{E+M} \frac{1}{r' u} 3 \cos \left(\theta - \theta'\right) + \dots \right] \text{ in } ME,$$

$$\frac{m'}{r'^3 u} \left[3 \cos \left(\theta - \theta'\right) + \frac{E-M}{E+M} \frac{1}{r' u} \left(-\frac{3}{2} \left(1+s^2\right) + \frac{15}{2} \cos^2 \left(\theta - \theta'\right) \right) + \dots \right]$$
parallel to GS .

Call these quantities U and V respectively; then if we resolve parallel to M'G, perpendicular to M'G in the plane of the ecliptic, and perpendicular to the plane of the ecliptic, we have the following quantities which we call P, T, S; viz.:—

$$P = U (1 + s^{2})^{-\frac{1}{2}} - V \cos (\theta - \theta'),$$

$$T = -V \sin (\theta - \theta'),$$

$$S = Us (1 + s^{2})^{-\frac{1}{2}};$$

and also

$$S - Ps = Vs \cos(\theta - \theta').$$

From these we find

$$P = \frac{\mu u^2}{(1+s^2)^{\frac{3}{2}}} - \frac{m'}{r'^3 u} \left[\frac{1}{2} + \frac{3}{2} \cos 2 \left(\theta - \theta' \right) + \frac{E - M}{E + M} \frac{1}{r' u} \left\{ \left(\frac{9}{8} - \frac{3}{2} s^2 \right) \cos \left(\theta - \theta' \right) + \frac{15}{8} \cos 3 \left(\theta - \theta' \right) \right\} + \dots \right],$$

$$T = -\frac{m'}{r'^5 u} \left[\frac{3}{2} \sin 2 \left(\theta - \theta' \right) + \frac{E - M}{E + M} \frac{1}{r' u} \left\{ \left(\frac{3}{8} - \frac{3}{2} s^2 \right) \sin \left(\theta - \theta' \right) + \frac{15}{8} \sin 3 \left(\theta - \theta' \right) \right\} + \dots \right],$$

$$S - Ps = \frac{m's}{r'^5 u} \left[\frac{3}{2} + \frac{3}{2} \cos 2 \left(\theta - \theta' \right) + \frac{E - M}{E + M} \frac{1}{r' u} \left\{ \left(\frac{33}{8} - \frac{3}{2} s^2 \right) \cos \left(\theta - \theta' \right) + \frac{15}{8} \cos 3 \left(\theta - \theta' \right) \right\} + \dots \right].$$

$$A \quad \text{II}$$

A. II.

Hence with the time as independent variable we have the equations of motion

$$\frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2 = -P,$$

$$\frac{1}{r}\frac{d}{dt}\left(r^2\frac{d\theta}{dt}\right) = T,$$

$$\frac{d^2}{dt^2}(rs) = -S,$$

Or we may write these with θ as independent variable; let

$$r^{2} \frac{d\theta}{dt} = H,$$

$$\frac{d\theta}{dt} = Hu^{2}.$$

so that

Then

$$H\frac{dH}{d\theta} = \frac{T}{u^3}$$
,

$$\frac{d^2r}{dt^2} = -H^2u^2\frac{d^2u}{d\theta^2} - u^2\frac{du}{d\theta}H\frac{dH}{d\theta},$$

$$r\left(\frac{d\theta}{dt}\right)^2 = H^2u^3$$
,

whence

$$H^2u^2\left(\frac{d^2u}{d\theta^2}+u\right)+H\frac{dH}{d\theta}u^2\frac{du}{d\theta}=P;$$

again, $\frac{d^2}{dt^2}(rs) = H^2u^2\left(u\,\frac{d^2s}{d\theta^2} - s\,\frac{d^2u}{d\theta^2}\right) + H\,\frac{dH}{d\theta}\,u^2\left(u\,\frac{ds}{d\theta} - s\,\frac{du}{d\theta}\right),$

whence

$$H^2u^3\left(\frac{d^2s}{d\theta^2}+s\right)+H\frac{dH}{d\theta}u^3\frac{ds}{d\theta}=Ps-S$$
;

or the equations of motion may be written

$$\begin{split} H^2 u^3 \left(\frac{d^2 u}{d\theta^2} + u \right) &= P - T \frac{du}{u d\theta}, \\ H \frac{dH}{d\theta} &= \frac{T}{u^3}, \\ H^2 u^3 \left(\frac{d^2 s}{d\theta^2} + s \right) &= Ps - S - T \frac{ds}{d\theta}. \end{split}$$

Our problem is to discuss these equations and to obtain from them expressions for the Moon's position at any time. The integration is best effected by observing what kinds of terms will disappear on substitution in the equations, and then assuming for the desired expressions for the coordinates a series of such terms multiplied by undetermined coefficients. Our procedure will be to discuss one by one the irregularities which can be isolated from one another. This will permit a survey of the entire field without involving needless complexity; but if the Lunar Theory is to be accurate, the combinations of such terms with one another must also be included, and the number of terms employed and the labour of manipulating them becomes very great.

LECTURE III.

THE SUN'S COORDINATES IN TERMS OF THE TIME.

To obtain the Moon's coordinates in terms of the time from the equations found in Lecture II., we must substitute in the expressions for the forces the developments of the Sun's coordinates which we now proceed to give.

Employing as coordinates r', θ' , of the last lecture, we have seen that the Sun's motion may be regarded as purely elliptical, so that

$$\frac{a'}{r'} = \frac{1 + e' \cos\left(\theta' - \varpi'\right)}{1 - e'^2},$$

$$\theta' - \varpi' = n't - \varpi' + 2e' \sin(n't - \varpi') + \frac{5}{4}e'^2 \sin 2(n't - \varpi') + \dots$$

in which we have written for convenience n't in place of $n't + \epsilon'$.

The quantities that enter the equations are

$$\left(\frac{\alpha'}{r'}\right)^{3},
\left(\frac{\alpha'}{r'}\right)^{3} \cos 2 (\theta - \theta'),
\left(\frac{\alpha'}{r'}\right)^{4} \cos (\theta - \theta'),
\left(\frac{\alpha'}{r'}\right)^{4} \cos (\theta - \theta'),
\left(\frac{\alpha'}{r'}\right)^{4} \cos 3 (\theta - \theta').$$

Making the substitutions we find without difficulty

$$\left(\frac{\alpha'}{r'}\right)^3 = 1 + \frac{3}{2}e'^2 + 3e'\cos(n't - \varpi') + \frac{9}{2}e'^2\cos 2(n't - \varpi') + \dots$$

$$\frac{\left(\frac{\alpha'}{r'}\right)^3 \cos 2 \left(\theta - \theta'\right)}{\sin 2} = \left(1 - \frac{5}{2}e'^2\right) \frac{\cos 2}{\sin 2} \left(\theta - n't\right)$$

$$+ \frac{7}{2}e' \frac{\cos 2}{\sin 2} \left(2\left(\theta - n't\right) - \left(n't - \varpi'\right)\right)$$

$$- \frac{1}{2}e' \frac{\cos 2}{\sin 2} \left(2\left(\theta - n't\right) + \left(n't - \varpi'\right)\right)$$

$$+ \frac{17}{2}e'^2 \frac{\cos 2}{\sin 2} \left(2\left(\theta - n't\right) - 2\left(n't - \varpi'\right)\right)$$

$$+ \dots$$

These quantities are to be substituted where they occur in the expressions for the forces found in Lecture II.

Let us now make a few general remarks upon the result of the substitution.

It will be observed that the disturbing forces all involve the coefficient $m'a'^{-3}$. It is very important to notice that the Sun's parallax is not required for the evaluation of this quantity. By Kepler's Third Law it is derivable from observations of the Sun's mean motion alone. Other terms however, namely those with the coefficient $m'/a'^{4}u$, involve the Sun's parallax directly; and that constant may be obtained by comparing the observed with the theoretical values of the coefficients of those inequalities, with an accuracy probably greater than that of any other method.

The mean disturbing force is radial, and is equal to

$$-\frac{1}{2} \frac{m'a}{a'^3} \left(1 + \frac{3}{2} e'^2 \right);$$

or the mean effect of the Sun's disturbance is to diminish the Moon's gravity towards the Earth; and to diminish it more, the greater is the eccentricity of the Sun's orbit. Now e' has been diminishing for ages; hence the Moon's gravity towards the Earth has been increasing, and its average time for accomplishing a revolution about the Earth has been diminishing.

This is one cause of the Secular Acceleration of the Moon's mean motion which Halley derived from the records of ancient eclipses.

It may also be noticed that the coefficient of the chief periodic part of the disturbing force, which involves $1-\frac{5}{2}e'^2$, increases as e' diminishes.

Finally let it be observed that the term with argument

$$2(\theta - n't) + 2(n't - \varpi'),$$

which does not involve the Sun's Mean Longitude, is absent from the development of $\left(\frac{\alpha'}{r'}\right)^s \frac{\cos}{\sin} 2 \left(\theta - \theta'\right)$.

LECTURE IV.

THE VARIATION.

THE Variation is the first inequality we shall consider; this is the inequality which is independent of eccentricities and mutual inclination in the orbits of the Sun and Moon.

Let us first take the equations in the first form in which they are given in Lecture II., namely with t as independent variable:

$$\frac{d^{2}r}{dt^{2}} - r\left(\frac{d\theta}{dt}\right)^{2} = -P,$$

$$\frac{1}{r}\frac{d}{dt}\left(r^{2}\frac{d\theta}{dt}\right) = T;$$

we omit the equation of motion in latitude, and in the expressions for P, T we suppose s=0; moreover it is possible and convenient to discuss separately the terms that involve the Sun's parallax; let these be omitted and we have

$$\frac{1}{r} \frac{d^{2}r}{dt^{2}} - \left(\frac{d\theta}{dt}\right)^{2} + \frac{\mu}{r^{3}} = \frac{1}{2} \frac{m'}{r'^{3}} + \frac{3}{2} \frac{m'}{r'^{3}} \cos 2 \left(\theta - \theta'\right),$$

$$\frac{d^{2}\theta}{dt^{2}} + \frac{2}{r} \frac{dr}{dt} \frac{d\theta}{dt} = -\frac{3}{2} \frac{m'}{r'^{3}} \sin 2 \left(\theta - \theta'\right);$$
and if
$$e' = 0, \quad r' = \alpha', \quad m'/\alpha'^{3} = n'^{2}, \quad \theta' = n't + \epsilon',$$

$$\frac{1}{r} \frac{d^{2}r}{dt^{2}} - \left(\frac{d\theta}{dt}\right)^{2} + \frac{\mu}{r^{3}} = \frac{1}{2} n'^{2} + \frac{3}{2} n'^{2} \cos 2 \left(\theta - n't - \epsilon'\right),$$

$$\frac{d^{2}\theta}{dt^{2}} + \frac{2}{r} \frac{dr}{dt} \frac{d\theta}{dt} = -\frac{3}{2} n'^{2} \sin 2 \left(\theta - n't - \epsilon'\right);$$

these are the equations to discuss.

Assume as a first approximation

$$\theta = nt + \epsilon + b_2 \sin \{2 (nt + \epsilon) - 2 (n't + \epsilon')\}$$

$$\equiv nt + \epsilon + b_2 \sin 2\psi, \text{ say };$$

$$\frac{1}{r} = \frac{1}{r} [1 + \alpha_2 \cos 2\psi],$$

and we shall suppose a_2 , b_2 so small that in the first instance we may neglect their squares and products.

Substitute in the equations; then

$$4 (n - n')^{2} \alpha_{2} \cos 2\psi - \{n^{2} + 4n (n - n') b_{2} \cos 2\psi\} + \frac{\mu}{\alpha^{3}} \{1 + 3\alpha_{2} \cos 2\psi\}$$

$$= \frac{1}{2} n'^{2} + \frac{3}{2} n'^{2} \cos 2\psi$$

$$-4 (n - n')^{2} b_{2} \sin 2\psi + 4 (n - n') n\alpha_{2} \sin 2\psi = -\frac{3}{2} n'^{2} \sin 2\psi.$$

Hence, equating the coefficients of similar terms, we have

$$\frac{\mu}{\alpha^3} = n^2 + \frac{1}{2} n'^2,$$

which gives the relation between n the Moon's mean motion, and $\frac{1}{a}$, the mean of the reciprocal of the distance; also

$$\left[4 (n-n')^{2} + \frac{3\mu}{\alpha^{3}}\right] \alpha_{2} - 4n (n-n') b_{2} = \frac{3}{2} n'^{2} \dots (1),$$

$$-4 (n-n')^{2} b_{2} + 4n (n-n') \alpha_{2} = -\frac{3}{2} n'^{2} \dots (2).$$
From (2)
$$4n (n-n') b_{2} - 4n^{2} \alpha_{2} = \frac{3}{2} \frac{nn'^{2}}{n-n'}.$$

Add to (1), and substitute for μ/a^3 ;

$$\left[4(n-n')^{2}-n^{2}+\frac{3}{2}n'^{2}\right]\alpha_{2}=\frac{3}{2}n'^{2}\frac{2n-n'}{n-n'},$$

$$\alpha_{2}=\frac{3}{2}n'^{2}\cdot\frac{2n-n'}{n-n'}\cdot\frac{1}{3n^{2}-8nn'+\frac{11}{2}n'^{2}},$$

$$\begin{split} b_2 &= \frac{n}{n-n'} \alpha_2 + \frac{3}{8} \frac{n'^2}{(n-n')^2} \\ &= \frac{3}{2} n'^2 \cdot \frac{n (2n-n')}{(n-n')^2} \cdot \frac{1}{3n^2 - 8nn' + \frac{11}{2} n'^2} + \frac{3}{8} \frac{n'^2}{(n-n')^2}. \end{split}$$

Calling
$$\frac{n'}{n} = m$$
, we have
$$a_2 = \frac{3}{2} m^2 \cdot \frac{2 - m}{1 - m} \cdot \frac{1}{3 - 8m + \frac{11}{2} m^2},$$

$$b_2 = \frac{3}{2} m^2 \cdot \frac{2 - m}{(1 - m)^2} \cdot \frac{1}{3 - 8m + \frac{11}{2} m^2} + \frac{3}{8} \frac{m^2}{(1 - m)^2},$$

or, calling $\frac{n'}{n-n'}$, or $\frac{m}{1-m} = m_1$, we have

$$a_2 = \frac{3}{2} m_1^2 \cdot \frac{2 + m_1}{3 - 2m_1 + \frac{1}{2} m_1^2},$$

$$b_2 = \frac{3}{2} m_1^2 \cdot \frac{(1+m_1)(2+m_1)}{3-2m_1+\frac{1}{2} m_1^2} + \frac{3}{8} m_1^2.$$

These are convenient expressions, and, as it happens, very approximate. If we wish to develope in ascending powers of m or m_1 , it appears that the latter development will be the more convergent.

We find by observation $\frac{n'}{n} = .07480$, very nearly.

Hence

$$a_2 = .00717,95,$$

$$b_2 = .01021, 2 = 2106'' \cdot 4.$$

Hence the ratio of the greatest and least distances will be

1.00717,95 : 0.99282,05,

and the greatest angular deviation from the mean longitude will be 35'.6".4.

a very close approximation to the truth.

A. II.

Also we have found

$$\frac{\mu}{a^3} = n^2 + \frac{1}{2} n'^2 = n^2 \left(1 + \frac{1}{2} m^2 \right)$$
$$= n^2 \times 1.00280,$$

which is the relation between the actual mean motion and the actual mean distance (or rather mean reciprocal distance) of the Moon.

Without the Sun's disturbing action, the relation between the mean distance and the mean motion, or rather between the radius of the orbit supposed circular and the uniform rate of angular motion along it would be

$$\frac{\mu}{a^3} = n^2.$$

Hence in the actual orbit, the mean motion for a given mean distance is smaller than it would be without disturbance;

Or, for a given mean motion, the mean distance is smaller than it would be without disturbance.

In fact, the relation between the mean distance and the mean motion is the same as it would be if the sum of the masses of the Earth and Moon were diminished in the ratio of 1.00280 to 1.

LECTURE V.

THE VARIATION, (continued).

WE will now proceed to substitute in the differential equations the values of 1/r and θ which we have obtained, retaining terms of the order of the squares and products of a_2 , b_2 and m^2 or m_1^2 .

The values to be thus substituted are

$$\frac{1}{r} = \frac{1}{\alpha} \left(1 + a_2 \cos 2\psi \right),$$

$$\theta = nt + \epsilon + b_a \sin 2\psi,$$

where

$$\psi = nt + \epsilon - (n't + \epsilon'),$$

$$\alpha_{\scriptscriptstyle 2} = \frac{3}{2} \, m_{\scriptscriptstyle 1}^{\, 2} \frac{2 + m_{\scriptscriptstyle 1}}{3 - 2 m_{\scriptscriptstyle 1} + \frac{1}{2} \, m_{\scriptscriptstyle 1}^{\, 2}},$$

$$b_2 = (1 + m_1) \alpha_2 + \frac{3}{8} m_1^2.$$

Hence

$$r = \alpha \left[1 - a_2 \cos 2\psi + \frac{1}{2} a_2^2 (1 + \cos 4\psi) \right],$$

$$\frac{d^2r}{dt^2} = 4\alpha (n - n')^2 \left[\alpha_2 \cos 2\psi - 2\alpha_2^2 \cos 4\psi\right],$$

$$\frac{1}{r}\frac{d^2r}{dt^2} = 4(n-n')^2 \left[\frac{1}{2}\alpha_2^2 + \alpha_2\cos 2\psi - \frac{3}{2}\alpha_2^2\cos 4\psi \right];$$

LECT.

again,
$$\frac{d\theta}{dt} = n + 2 (n - n') b_2 \cos 2\psi,$$

$$\left(\frac{d\theta}{dt}\right)^2 = n^2 + 4n (n - n') b_2 \cos 2\psi + 2 (n - n')^2 b_2^2 \left[1 + \cos 4\psi\right],$$

$$\frac{1}{r^3} = \frac{1}{a^3} \left[1 + 3a_2 \cos 2\psi + \frac{3}{2} a_2^2 (1 + \cos 4\psi)\right].$$
Also,
$$\frac{1}{r} \frac{dr}{dt} = 2 (n - n') \left[a_2 \sin 2\psi - \frac{1}{2} a_2^2 \sin 4\psi\right],$$

$$\frac{1}{r} \frac{dr}{dt} \frac{d\theta}{dt} = 2 (n - n') \left[na_2 \sin 2\psi + \left\{(n - n') a_2 b_2 - \frac{1}{2} na_2^2\right\} \sin 4\psi\right],$$

$$\frac{d^2\theta}{dt^2} = -4 (n - n')^2 b_2 \sin 2\psi.$$
And
$$\cos 2 (\theta - n't - \epsilon') = \cos 2\psi - b_2 (1 - \cos 4\psi),$$

Substitute these in the differential equations, and we get, on transposing all the terms to the left-hand sides from the first equation

 $\sin 2 (\theta - n't - \epsilon') = \sin 2\psi + b_a \sin 4\psi$.

$$\begin{aligned} 4 & (n-n')^{2} \left[\frac{1}{2} \alpha_{2}^{2} + \alpha_{2} \cos 2\psi - \frac{3}{2} \alpha_{2}^{2} \cos 4\psi \right] \\ & - \left[n^{2} + 2 \left(n - n' \right)^{2} b_{2}^{2} + 4n \left(n - n' \right) b_{2} \cos 2\psi + 2 \left(n - n' \right)^{2} b_{2}^{2} \cos 4\psi \right] \\ & + \frac{\mu}{\alpha^{3}} \left[1 + \frac{3}{2} \alpha_{2}^{2} + 3\alpha_{2} \cos 2\psi + \frac{3}{2} \alpha_{2}^{2} \cos 4\psi \right] \\ & - \frac{1}{2} n'^{2} - \frac{3}{2} n'^{2} \left[-b_{2} + \cos 2\psi + b_{2} \cos 4\psi \right], \end{aligned}$$

and from the second equation

$$-4 (n-n')^{2} b_{2} \sin 2\psi$$

$$+4 (n-n') \left[na_{2} \sin 2\psi + \left\{ (n-n') \alpha_{2} b_{2} - \frac{1}{2} na_{2}^{2} \right\} \sin 4\psi \right]$$

$$+\frac{3}{2} n'^{2} \left[\sin 2\psi + b_{2} \sin 4\psi \right].$$

The coefficient of $\cos 2\psi$ in the first of these expressions, and that of $\sin 2\psi$ in the second, are respectively

$$4(n-n')^2\alpha_2-4n(n-n')b_2+3\frac{\mu}{\alpha^3}\alpha_2-\frac{3}{2}n'^2$$
,

and

$$-4(n-n')^{2}b_{2}+4n(n-n')\alpha_{2}+\frac{3}{2}n'^{2},$$

and these are evidently reduced to zero by giving a_2 , b_2 the values previously found, if we substitute for μ/a^3 the approximate value $n^2 + \frac{1}{2}n'^2$. To find the more correct value of μ/a^3 , equate to zero the constant term in the first expression;

$$2(n-n')^2\alpha_2^2-n^2-2(n-n')^2b_2^2+\frac{\mu}{\alpha^3}\left(1+\frac{3}{2}\alpha_2^2\right)-\frac{1}{2}n'^2+\frac{3}{2}n'^2b_2=0,$$

that is

$$\begin{split} \frac{\mu}{\alpha^3} \left(1 + \frac{3}{2} \, \alpha_2^2 \right) &= n^2 + \frac{1}{2} \, n'^2 - 2 \, (n - n')^2 \, \alpha_2^2 + 2 \, (n - n')^2 \, b_2^2 - \frac{3}{2} \, n'^2 b_2 \\ &= n^2 + \frac{1}{2} \, n'^2 + 2 \, (n - n')^2 \, \left[\, (2 m_1 + m_1^2) \, \alpha_2^2 - \frac{9}{64} \, m_1^4 \, \right]. \end{split}$$

Hence we see that μ/α^3 differs from $n^2 + \frac{1}{2}n'^2$ only in terms of the fourth order, if we consider m_1 a quantity of the first order and consequently α_2 , b_2 quantities of the second order. Hence also by taking

$$\frac{\mu}{\alpha^3} = n^2 + \frac{1}{2} n'^2,$$

in the multiplier of a_2 , when we equate to zero the coefficient of $\cos 2\psi$, we only neglected a quantity of the sixth order in m_1 , and the error in the resulting values of a_2 , b_2 is of that order.

We see that the substitution just made in our equations leaves outstanding terms of the fourth order in $\cos 4\psi$ and $\sin 4\psi$. In order to get rid of these we must add terms of this form to the assumed values of 1/r and θ , respectively. Suppose that

$$\frac{1}{r} = \frac{1}{a} \left[1 + \alpha_2 \cos 2\psi + \alpha_4 \cos 4\psi \right],$$

$$\theta = nt + \epsilon + b_2 \sin 2\psi + b_4 \sin 4\psi,$$

where, as we shall find, a_4 and b_4 are small quantities of the fourth order.

It may be readily seen that the additional terms introduced are the following:—

in
$$\frac{1}{r} \frac{d^2r}{dt^2}$$

$$-\left(\frac{d\theta}{dt}\right)^2$$

$$-8n (n-n') b_4 \cos 4\psi,$$

$$\frac{\mu}{r^3}$$

$$\frac{\mu}{dt^3} 3a_4 \cos 4\psi,$$

$$\frac{d^2\theta}{dt^2}$$

$$-16 (n-n')^2 b_4 \sin 4\psi,$$

$$\frac{2}{r} \frac{dr}{dt} \frac{d\theta}{dt}$$

$$8n (n-n') a_4 \sin 4\psi,$$

and also that we may neglect the terms added in the expressions for

$$\frac{3}{2}n'^2\cos 2(\theta-n't-\epsilon'), \qquad \frac{3}{2}n'^2\sin 2(\theta-n't-\epsilon').$$

If we write the terms thus produced along with the several terms left outstanding in our equations and then equate the whole to zero, we have

$$\begin{aligned} 16 & (n-n')^2 \, \alpha_4 - 8n \, (n-n') \, b_4 + \frac{\mu}{\alpha^3} \, 3\alpha_4 - 6 \, (n-n')^2 \, \alpha_2^2 - 2 \, (n-n')^2 \, b_2^2 \\ & + \frac{\mu}{\alpha^3} \, \frac{3}{2} \, \alpha_2^2 - \frac{3}{2} \, n'^2 b_2 = 0, \\ & - 16 \, (n-n')^2 \, b_4 + 8n \, (n-n') \, \alpha_4 + 4 \, (n-n')^2 \, \alpha_2 b_2 - 2n \, (n-n') \, \alpha_2^2 + \frac{3}{2} \, n'^2 b_2 = 0, \end{aligned}$$

from which we must determine a_4 and b_4 .

Put
$$\frac{\mu}{\alpha^3} = n^2 + \frac{1}{2}n'^2,$$

$$b_2 = (1 + m_1)\alpha^2 + \frac{3}{8}m_1^2,$$

and divide both equations by $(n-n')^2$; we get

$$\left[16 + 3\left(1 + 2m_{1} + \frac{3}{2}m_{1}^{2}\right)\right]\alpha_{4} - 8\left(1 + m_{1}\right)b_{4} - \left[6 + 2\left(1 + m_{1}\right)^{2} - \frac{3}{2}\left(1 + 2m_{1} + \frac{3}{2}m_{1}^{2}\right)\right]\alpha_{2}^{2} - 3\left(1 + m_{1}\right)m_{1}^{2}\alpha_{2} - \frac{27}{32}m_{1}^{4} = 0,$$

$$8 \left(1+m_{\scriptscriptstyle 1}\right) a_{\scriptscriptstyle 4}-16 b_{\scriptscriptstyle 4}+\left[4 \left(1+m_{\scriptscriptstyle 1}\right)-2 \left(1+m_{\scriptscriptstyle 1}\right)\right] a_{\scriptscriptstyle 2}^{\; 2}+3 m_{\scriptscriptstyle 1}^{\; 2} \left(1+\frac{1}{2} \, m_{\scriptscriptstyle 1}\right) a_{\scriptscriptstyle 2}+\frac{9}{16} \, m_{\scriptscriptstyle 1}^{\; 4}=0.$$

Simplify and multiply the last equation by $\frac{1}{2}(1+m_1)$,

$$\left(19+6m_{1}+\frac{9}{2}m_{1}^{2}\right)\alpha_{4}-8\left(1+m_{1}\right)b_{4}-\left(\frac{13}{2}+m_{1}-\frac{1}{4}m_{1}^{2}\right)\alpha_{2}^{2}$$

$$-3\left(1+m_{1}\right)m_{1}^{2}\alpha_{2}-\frac{27}{32}m_{1}^{4}=0,$$

$$\left(4+8m_{1}+4m_{1}^{2}\right)\alpha_{4}-8\left(1+m_{1}\right)b_{4}+\left(1+2m_{1}+m_{1}^{2}\right)\alpha_{2}^{2}$$

$$+\frac{3}{2}(1+m_1)\left(1+\frac{1}{2}m_1\right)m_1^2\alpha_2+\frac{9}{32}(1+m_1)m_1^4=0.$$

Subtract the latter from the former and b_4 will be eliminated; we get

$$\left(15 - 2m_{1} + \frac{1}{2}m_{1}^{2}\right)\alpha_{4} - \left(\frac{15}{2} + 3m_{1} + \frac{3}{4}m_{1}^{2}\right)\alpha_{2}^{2} - \frac{3}{2}(1 + m_{1})\left(3 + \frac{1}{2}m_{1}\right)m_{1}^{2}\alpha_{2} - \frac{9}{32}(4 + m_{1})m_{1}^{4} = 0,$$

which gives a_4 ; and this being known b_4 is found from

$$b_4 = \frac{1}{2} \left(1 + m_1 \right) \alpha_4 + \frac{1}{8} \left(1 + m_1 \right) \alpha_2^2 + \frac{3}{16} \left(1 + \frac{1}{2} m_1 \right) m_1^2 \alpha_2 + \frac{9}{256} m_1^4.$$

Taking m = 07480 as in Lecture IV, we find

$$a_4 = .00004,580,$$

$$b_4 = .00004,237 = 8''.740.$$

LECTURE VI.

THE VARIATION, (continued).

Let us consider the problem of the Variation over again, taking now θ as independent variable.

The equations of motion are given in Lecture II:-

$$\begin{split} \frac{d^2u}{d\theta^2} + u &= \frac{P}{H^2u^2} - \frac{T}{H^2u^3} \frac{du}{d\theta}, \\ H \frac{dH}{d\theta} &= \frac{T}{u^3}, \end{split}$$

where

$$\begin{split} \frac{P}{u^2} &= \mu - \frac{1}{2} \frac{n'^2}{u^3} - \frac{3}{2} \frac{n'^2}{u^3} \cos 2(\theta - \theta'), \\ \frac{T}{u^3} &= -\frac{3}{2} \frac{n'^2}{u^4} \sin 2(\theta - \theta'), \end{split}$$

so that the second equation may be written

$$\frac{1}{H^2} \frac{d(H^2)}{d\theta} = -3n'^2 \left(\frac{dt}{d\theta}\right)^2 \sin 2(\theta - \theta').$$

Our aim is to express t and u in terms of θ and constant quantities. Now since the orbit of the Moon does not differ widely from a circle we may write the difference of $nt+\epsilon$ from θ , and the difference of αu from unity as series of small periodic terms depending upon θ . Inspecting the form of the equations, it is evident that these periodic terms are of argument $2(\theta-\theta')$ and its multiples; that is

 $nt + \epsilon = \theta + \text{periodic terms of argument } 2(\theta - \theta'), \&c.;$

but

$$n't + \epsilon' = \theta'$$
:

therefore

$$\theta - \theta' = (1 - m) \theta - \beta + \text{periodic terms of argument } 2 (1 - m) \theta - 2\beta$$
, &c.,

where we have written

$$\beta = \epsilon' - m\epsilon$$
;

this constant β is associated with $(1-m)\theta$ wherever the latter occurs; for brevity in writing, we shall omit it.

We may then assume as a first approximation

$$au = 1 + a_2 \cos(2 - 2m) \theta,$$

$$nt + \epsilon = \theta + b_2 \sin(2 - 2m) \theta;$$

whence

$$2 (\theta - \theta') = (2 - 2m) \theta - 2mb_2 \sin (2 - 2m) \theta,$$

$$\cos 2 (\theta - \theta') = mb_2 + \cos (2 - 2m) \theta - mb_2 \cos (4 - 4m) \theta,$$

$$\sin 2 (\theta - \theta') = \sin (2 - 2m) \theta - mb_2 \sin (4 - 4m) \theta,$$

$$n \frac{dt}{d\theta} = 1 + (2 - 2m) b_2 \cos (2 - 2m) \theta.$$

Substitute in the right-hand member of the second equation:—

$$\frac{1}{H^2} \frac{d(H^2)}{d\theta} = -3m^2 \left[\sin(2-2m) \theta + (2-3m) b_2 \sin(4-4m) \theta \right].$$

Therefore

$$\log_e\left(\frac{H^2}{h^2}\right) = \frac{3}{2} \frac{m^2}{1-m} \cos(2-2m) \theta + \frac{3}{4} \frac{2-3m}{1-m} m^2 b_2 \cos(4-4m) \theta$$

which we may write

$$\log_e\left(\frac{H^2}{h^2}\right) = 2h_2\cos\left(2-2m\right)\theta + 2h_4\cos\left(4-4m\right)\theta,$$

where h is an arbitrary constant of integration, h_2 is a known quantity. and h_4 involves b_2 . If we take as a second approximation

$$\alpha u = 1 + \alpha_2 \cos(2 - 2m) \theta + \alpha_4 \cos(4 - 4m) \theta,$$

$$nt + \epsilon = \theta + b_3 \sin(2 - 2m) \theta + b_4 \sin(4 - 4m) \theta,$$

the above value of $\log_e(H^2/h^2)$ will not require modification and will supply equations of condition for determining the coefficients a_2 , b_2 , a_4 , b_4 .

Thus

$$n\frac{dt}{d\theta} = \frac{n}{Hu^2} = \frac{na^2}{h} \frac{h}{H} \frac{1}{(au)^2},$$

so that

$$\log_e\left(n\frac{dt}{d\theta}\right) = \log_e\left(\frac{n\alpha^2}{h}\right) - \frac{1}{2}\log_e\left(\frac{H^2}{h^2}\right) - 2\log_e\alpha u;$$

but

$$\log_{e} \left(n \frac{dt}{d\theta} \right) = -(1-m)^{2} b_{2}^{2} + (2-2m) b_{2} \cos (2-2m) \theta$$

$$+ \left[(4-4m) b_{4} - (1-m)^{2} b_{2}^{2} \right] \cos (4-4m) \theta,$$

$$\log_{e} \alpha u = -\frac{\alpha_{2}^{2}}{4} + \alpha_{2} \cos (2-2m) \theta + \left(\alpha_{4} - \frac{\alpha_{2}^{2}}{4} \right) \cos (4-4m) \theta.$$

Hence we find

$$-(1-m)^{2} b_{2}^{2} = \log_{e} \left(\frac{n\alpha^{2}}{h}\right) + \frac{1}{2} \alpha_{2}^{2},$$

$$(2-2m) b_{2} = -h_{2} - 2\alpha_{2},$$

$$(4-4m) b_{4} - (1-m)^{2} b_{2}^{2} = -h_{4} - 2\alpha_{4} + \frac{1}{2} \alpha_{2}^{2}.$$

The remaining equations of condition that we require are obtained from the first equation of motion; this may be written

$$\frac{d^{2}(au)}{d\theta^{2}} + au \left[1 + \frac{1}{2} \left(n' \frac{dt}{d\theta} \right)^{2} + \frac{3}{2} \left(n' \frac{dt}{d\theta} \right)^{2} \cos 2 \left(\theta - \theta' \right) \right] - \frac{d(au)}{d\theta} \frac{3}{2} \left(n' \frac{dt}{d\theta} \right)^{2} \sin 2 \left(\theta - \theta' \right) = \frac{\mu \alpha}{H^{2}}.$$

Now

$$au = 1 + a_2 \cos(2 - 2m) \theta + a_4 \cos(4 - 4m) \theta$$

whence

$$\frac{d(au)}{d\theta} = -(2-2m) a_2 \sin(2-2m) \theta - (4-4m) a_4 \sin(4-4m) \theta,$$

$$\frac{d^2(au)}{d\theta^2} = -(2-2m)^2 a_2 \cos(2-2m) \theta - (4-4m)^2 a_4 \cos(4-4m) \theta,$$

and

$$\left(n'\frac{dt}{d\theta}\right)^{2} = m^{2} \left[1 + (4 - 4m) b_{2} \cos(2 - 2m) \theta\right],$$

$$\left(n'\frac{dt}{d\theta}\right)^{2} \sin 2 (\theta - \theta') = m^{2} \left[\sin(2 - 2m) \theta + (2 - 3m) b_{2} \sin(4 - 4m) \theta\right],$$

$$\left(n'\frac{dt}{d\theta}\right)^{2}\cos 2\left(\theta - \theta'\right) = m^{2}\left[\left(2 - m\right)b_{2} + \cos\left(2 - 2m\right)\theta + \left(2 - 3m\right)b_{2}\cos\left(4 - 4m\right)\theta\right],$$

$$\frac{1}{H^{2}} = \frac{1}{h^{2}}\left[1 + h_{2}^{2} - 2h_{2}\cos\left(2 - 2m\right)\theta + \left(h_{2}^{2} - 2h_{4}\right)\cos\left(4 - 4m\right)\theta\right].$$

Substitute these in the equation above, and equate the coefficients of corresponding terms,

$$\begin{aligned} 1 + \frac{1}{2} \, m^2 + \frac{3}{2} \, m^2 \, (2 - m) \, b_2 + \frac{3}{4} \, m^2 \alpha_2 + \frac{3}{4} \, m^2 \, (2 - 2m) \, \alpha_2 &= \frac{\mu \alpha}{h^2} \, (1 + h_2^2) \\ - (2 - 2m)^2 \, \alpha_2 + \left(1 + \frac{1}{2} \, m^2\right) \, \alpha_2 + \frac{3}{2} \, m^2 + (2 - 2m) \, m^2 b_2 &= \frac{\mu \alpha}{h^2} \, (-2h_2) \\ - (4 - 4m)^2 \, \alpha_4 + \left(1 + \frac{1}{2} \, m^2\right) \, \alpha_4 + \frac{3}{2} \, m^2 \, (2 - 3m) \, b_2 + \frac{3}{4} \, m^2 \alpha_2 - \frac{3}{4} \, m^2 \, (2 - 2m) \, \alpha_2 \\ &= \frac{\mu \alpha}{h^2} \, (h_2^2 - 2h_4). \end{aligned}$$

If we neglect at first terms of the fourth order, we find from the first of these equations

$$\frac{\mu \alpha}{h^2} = 1 + \frac{1}{2} m^2.$$

From the earlier set of equations we have

$$(2-2m) b_2 = -h_2 - 2\alpha$$
;

substitute this in the second equation above. We get

$$\left[-(2-2m)^2+1+\frac{1}{2}m^2-2m^2\right]a_2-m^2h_2+\frac{3}{2}m^2=\left(1+\frac{1}{2}m^2\right)(-2h_2),$$

or

$$\left(3-8m+\frac{11}{2}\,m^2\right)\alpha_2=\frac{3}{2}\,m^2+2h_2=\frac{3}{2}\,m^2+\frac{3}{2}\,\frac{m^2}{1-m}=\frac{3}{2}\,m^2\,\frac{2-m}{1-m}\,,$$

so that

$$a_2 = \frac{3}{2} m^2 \frac{2-m}{1-m} \frac{1}{3-8m+\frac{11}{2} m^2}$$

and

$$b_2 = -\frac{1}{1-m} \alpha_2 - \frac{1}{2-2m} h_2$$
$$= -\frac{1}{1-m} \alpha_2 - \frac{3}{8} \frac{m^2}{(1-m)^2}.$$

These are numerically equal to the quantities denoted by the same symbols in Lecture IV, but b_2 bears the contrary sign. We further find

$$\left(15 - 32m + \frac{31}{2}m^2\right)\alpha_4 = \frac{3}{4}\frac{m^2}{1 - m}\left\{\left(1 + 3m - 2m^2\right)\alpha_2 + \left(8 - 15m + 6m^2\right)b_2\right\},$$

$$b_4 = -\frac{1}{2 - 2m}\alpha_4 - \frac{3}{8}\alpha_2b_2 - \frac{3}{64}\left(\frac{m^2}{1 - m}\right)^2\left\{\alpha_2 + \left(6 - 8m\right)b_2\right\};$$

or reduced to numbers

$$\alpha_4 = -0.0002,210,$$
 $b_1 = 0.00005,414 = 11''.17.$

Finally let us exhibit the relation between the constants employed in this investigation and those of Lectures IV, V; to distinguish them, attach accents to the latter, so that

$$\theta = nt + \epsilon + b_2' \sin 2\psi + b_4' \sin 4\psi,$$

$$\frac{\alpha'}{r} = 1 + a_2' \cos 2\psi + a_4' \cos 4\psi,$$

and, omitting the constant β as before,

$$(1-m) \theta = \psi + (1-m) b_2' \sin 2\psi + (1-m) b_4' \sin 4\psi.$$

Then

$$2\psi = (2 - 2m) \theta - (2 - 2m) b_2' \sin (2 - 2m) \theta,$$

$$\sin 2\psi = \sin (2 - 2m) \theta - (1 - m) b_2' \sin (4 - 4m) \theta,$$

$$\cos 2\psi = (1 - m) b_2' + \cos (2 - 2m) \theta - (1 - m) b_2' \cos (4 - 4m) \theta.$$

Substitute in the equation for θ ; we find

$$nt + \epsilon = \theta - b_2' \sin(2 - 2m) \theta - [b_4' - (1 - m) b_2'] \sin(4 - 4m) \theta$$

and similarly

$$a'u = 1 + (1 - m) a_2'b_2' + a_2' \cos(2 - 2m) \theta + [a_4' - (1 - m) a_2'b_2'] \cos(4 - 4m) \theta.$$

We observe that a' differs from a by quantities of the fourth order.

LECTURE VII.

CORRECTION OF APPROXIMATE SOLUTIONS.

WE may simplify the equations we have been dealing with, by a proper choice of units. Let the unit of distance be the radius of the circular orbit which the Moon, if undisturbed, would describe about the Earth in its actual periodic time; then

$$\mu = n^2$$
.

Also choose the unit of time so that

$$n-n'=1$$
,

so that, if we take as the result of observation of the mean motions of the Sun and Moon,

n': n = .07480,13,

we get

$$n' = .08084.9 = m_1$$

where m_1 is the quantity so called in Lecture IV; and

$$\mu = 1.16823,4.$$

We shall frequently adopt these simplifications in what follows.

Now let

$$l = \log_e(r/a),$$

so that

$$\frac{1}{r}\frac{dr}{dt}=\frac{dl}{dt}\,,\quad \frac{1}{r}\frac{d^{2}r}{dt^{2}}=\frac{d^{2}l}{dt^{2}}+\left(\frac{dl}{dt}\right)^{\!\!2},\quad \frac{\mu}{r^{\!\!3}}=\frac{\mu}{a^{\!\!3}}\,e^{-{\scriptscriptstyle 3}l}\,;$$

and the equations discussed in Lecture IV become

$$\begin{split} \frac{d^{2}l}{dt^{2}} + \left(\frac{dl}{dt}\right)^{2} - \left(\frac{d\theta}{dt}\right)^{2} + \frac{\mu}{\alpha^{3}} e^{-3l} - n'^{2} \left[\frac{1}{2} + \frac{3}{2}\cos 2\omega\right] &= 0, \\ \frac{d^{2}\theta}{dt^{2}} + 2\frac{dl}{dt}\frac{d\theta}{dt} + n'^{2} \left[\frac{3}{2}\sin 2\omega\right] &= 0, \end{split}$$

where

$$\omega = \theta - \theta'$$

Now these equations are defective, for they have been formed by omitting certain terms from the complete equations as given in Lecture II. Hence, calling l_0 , θ_0 the values of l, θ , which we have proved in Lecture IV to be solutions of the above equations, if we substitute l_0 , θ_0 in the complete equations of Lecture II, residuals are left, say X and Y respectively. And if l, θ be solutions of the complete equations, and if we write

$$l = l_o + \delta l,$$

$$\theta = \theta_o + \delta \theta,$$

where δl , $\delta \theta$ are small quantities whose squares and products may be neglected in the first instance, we obtain the following equations for determining δl , $\delta \theta$, the corrections to approximate solutions l_0 , θ_0 already found:—

$$X + \frac{d^2 \delta l}{dt^2} + 2 \frac{dl_0}{dt} \frac{d\delta l}{dt} - 2 \frac{d\theta_0}{dt} \frac{d\delta \theta}{dt} - 3 \frac{\mu}{a^3} e^{-3l_0} \delta l + 3n'^2 \sin 2\omega \delta \theta = 0,$$

$$Y + \frac{d^2 \delta \theta}{dt^2} + 2 \frac{dl_0}{dt} \frac{d\delta \theta}{dt} + 2 \frac{d\theta_0}{dt} \frac{d\delta l}{dt} + 3n'^2 \cos 2\omega \delta \theta = 0.$$

Now let us write

$$\frac{d\theta_0}{dt} = 1 + n' + v, \qquad \frac{\mu}{r_0^3} = \frac{\mu}{\alpha^3} e^{-3l_0} = c + w,$$

$$c = (1 + n')^2 + \frac{1}{2} n'^2.$$

where

The quantity v consists wholly of periodic terms of the form $\cos 2i\psi$ multiplied by small coefficients; w contains, besides periodic terms, a small constant term, which however might be removed if we were to choose c as the constant part of μ/r_0^3 in place of according to the definition above.

Let $\delta'l$, $\delta'\theta$ be quantities defined by the equations

$$X + \frac{d^2 \delta' l}{dt^2} - 2(1 + n')\frac{d\delta' \theta}{dt} - 3c\delta' l = 0,$$

$$Y + \frac{d^2 \delta' \theta}{dt^2} + 2(1 + n')\frac{d\delta' l}{dt} = 0$$

then $\delta'l$, $\delta'\theta$ are approximations to the complete corrections δl , $\delta\theta$, which if substituted in the equations that give those corrections will leave residuals, say X' and Y', where

$$X' = 2\frac{dl_0}{dt}\frac{d\delta'l}{dt} - 2v\frac{d\delta'\theta}{dt} - 3w\delta'l + 3n'^2\sin 2\omega\delta'\theta,$$

$$Y' = 2\frac{dl_0}{dt}\frac{d\delta'\theta}{dt} + 2v\frac{d\delta'l}{dt} + 3n'^2\cos 2\omega\delta'\theta.$$

We see that their value is known when $\delta'l$, $\delta'\theta$ are determined.

Now $\delta'l$, $\delta'\theta$ may be determined as follows.

Let $X = p_0 + \sum p_i \cos i\psi$, $Y = \sum q_i \sin i\psi$,

where i takes all positive integral values; and assume

$$\delta' l = a_0 + \Sigma a_i \cos i \psi, \quad \delta' \theta = \Sigma b_i \sin i \psi.$$

Then substituting and equating coefficients, the constant term gives

$$p_0 - 3c\alpha_0 = 0,$$

and the terms in it give

$$p_{i} - i^{2}a_{i} - 2(1 + n') ib_{i} - 3ca_{i} = 0,$$

$$q_{i} - i^{2}b_{i} - 2(1 + n') ia_{i} = 0;$$

the second of these may be written

$$2(1+n')\frac{q_i}{i}-4(1+n')^2\alpha_i-2(1+n')ib_i=0;$$

subtract from the first and we have

$$p_{i}-2(1+n')\frac{q_{i}}{i}-a_{i}[i^{2}-4(1+n')^{2}+3c]=0,$$

$$a_{i}=\frac{p_{i}-2(1+n')\frac{q_{i}}{i}}{i^{2}-(1+n')^{2}+\frac{3}{2}n'^{2}};$$

or

and

$$b_i = -2 (1 + n') \frac{a_i}{i} + \frac{q_i}{i^2}.$$

We see that a_i , b_i will be of the same order of small quantities as p_i , q_i , in general. And therefore the coefficients of the terms of X', Y' will be of order higher than those of X, Y. Proceed then to determine further corrections $\delta''l$, $\delta''\theta$ satisfying the equations

$$X' + \frac{d^2 \delta'' l}{dt^2} - 2(1+n')\frac{d\delta'' \theta}{dt} - 3c\delta'' l = 0,$$

$$Y' + \frac{d^2 \delta'' \theta}{dt^2} + 2(1+n')\frac{d\delta'' l}{dt} = 0;$$

then if $\delta'l + \delta''l$, $\delta'\theta + \delta''\theta$ are substituted in the complete equations for δl , $\delta\theta$ the residuals become

$$X'' = 2\frac{dl_0}{dt}\frac{d\delta''l}{dt} - 2v\frac{d\delta''\theta}{dt} - 3w\delta''l + 3n'^2\sin 2\omega\delta''\theta,$$

$$Y'' = 2\frac{dl_0}{dt}\frac{d\delta''\theta}{dt} + 2v\frac{d\delta''l}{dt} + 3n'^2\cos 2\omega\delta''\theta,$$

expressions which, if developed in series of cosines and sines of multiples of ψ , will have coefficients of higher order than the corresponding coefficients in X', Y'. The like process may be repeated until the residuals become insensible; we then have sensibly correct values of δl , $\delta \theta$, giving

$$l = l_0 + \delta l = l_0 + \delta' l + \delta'' l + \dots,$$

$$\theta = \theta_0 + \delta \theta = \theta_0 + \delta' \theta + \delta'' \theta + \dots$$

We may now take into account squares and products of the small quantities δl , $\delta \theta$ by treating $l_0 + \delta l$, $\theta_0 + \delta \theta$ as given approximate solutions just as we have here treated l_0 , θ_0 ; substitute them in the complete equations of motion, and determine the residuals X, Y which they leave. These residuals will form the basis of a second approximation, and the operation may be repeated until no further correction is necessary. It is to be observed that if δl , $\delta \theta$ depend upon some such constant as the eccentricity of the Earth's orbit around the Sun, or the parallax of the Sun, then successive approximations yield correctly and separately the terms which depend upon the first, second, powers of that constant.

LECTURE VIII.

THE PARALLACTIC INEQUALITY.

WE shall now apply the method of the last lecture to find the terms in the Moon's coordinates which depend upon the parallax of the Sun.

The values of l, θ found in Lecture IV are

$$l_0 = \log_e(r/\alpha) = -\alpha_2 \cos 2\psi,$$

$$\theta_0 = nt + \epsilon + b_2 \sin 2\psi,$$

and these satisfy the equations of motion in which the terms involving the Sun's parallax are omitted. Hence the residuals they leave from the complete equations are

$$X = -\lambda n'^2 \frac{r}{a} \left\{ \frac{9}{8} \cos \left(\theta_{\circ} - \theta'\right) + \frac{15}{8} \cos 3 \left(\theta_{\circ} - \theta'\right) \right\},$$

$$Y = -\lambda n'^2 \frac{r}{a} \left\{ \frac{3}{8} \sin \left(\theta_{\circ} - \theta'\right) + \frac{15}{8} \sin 3 \left(\theta_{\circ} - \theta'\right) \right\},$$

where

$$\lambda = \frac{E - M}{E + M} \frac{a}{a'}$$

Now from above

$$\theta_0 - \theta' = \psi + b_2 \sin 2\psi \; ;$$

hence we have

$$\sin (\theta_0 - \theta') = \sin \psi + \frac{1}{2} b_2 (\sin \psi + \sin 3\psi),$$

$$\cos (\theta_0 - \theta') = \cos \psi - \frac{1}{2} b_2 (\cos \psi - \cos 3\psi),$$

$$\sin 3 (\theta_0 - \theta') = \sin 3\psi + \frac{3}{2} b_2 (\sin \psi + \sin 5\psi),$$

$$\cos 3 (\theta_0 - \theta') = \cos 3\psi - \frac{3}{2} b_2 (\cos \psi - \cos 5\psi);$$

and

$$\frac{r}{a} \left\{ \frac{9}{8} \cos \left(\theta_{0} - \theta'\right) + \frac{15}{8} \cos 3 \left(\theta_{0} - \theta'\right) \right\} = \left(\frac{9}{8} - \frac{27}{8} b_{2} - \frac{3}{2} a_{2} \right) \cos \psi \\
+ \left(\frac{15}{8} + \frac{9}{16} b_{2} - \frac{9}{16} a_{2} \right) \cos 3\psi + \left(\frac{45}{16} b_{2} - \frac{15}{16} a_{2} \right) \cos 5\psi, \\
\frac{r}{a} \left\{ \frac{3}{8} \sin \left(\theta_{0} - \theta'\right) + \frac{15}{8} \sin 3 \left(\theta_{0} - \theta'\right) \right\} = \left(\frac{3}{8} - \frac{21}{8} b_{2} - \frac{3}{4} a_{2} \right) \sin \psi \\
+ \left(\frac{15}{8} + \frac{3}{16} b_{2} - \frac{3}{16} a_{2} \right) \sin 3\psi + \left(\frac{45}{16} b_{2} + \frac{15}{16} a_{2} \right) \sin 5\psi.$$

Assume

$$-\delta l = \lambda \alpha_1 \cos \psi + \lambda \alpha_3 \cos 3\psi,$$

$$\delta \theta = \lambda b, \sin \psi + \lambda b, \sin 3\psi,$$

neglecting for the present the terms in 5ψ . In the present case it happens that it is more advantageous to substitute these expressions directly in the complete equations for δl , $\delta \theta$ given in the last lecture than to follow exactly the process for finding them by successive approximation. Omitting the factor λ , we get

$$a_{1}\cos\psi + 9a_{3}\cos3\psi + 4a_{2}\sin2\psi \left[a_{1}\sin\psi + 3a_{3}\sin3\psi\right] \\ + 3\frac{\mu}{a^{3}}\left[a_{1}\cos\psi + a_{3}\cos3\psi\right] + 3\frac{\mu}{a^{3}}\left[3a_{2}\cos2\psi\right]\left[a_{1}\cos\psi + a_{3}\cos3\psi\right] \\ - \left[2\left(1 + n'\right) + 4b_{2}\cos2\psi\right]\left[b_{1}\cos\psi + 3b_{3}\cos3\psi\right] \\ + 3n'^{2}\left[\sin2\psi + b_{2}\sin4\psi\right]\left[b_{1}\sin\psi + b_{3}\sin3\psi\right] \\ - n'^{2}\left(\frac{9}{8} - \frac{27}{8}b_{2} - \frac{3}{2}a_{2}\right)\cos\psi - n'^{2}\left(\frac{15}{8} + \frac{9}{16}b_{2} - \frac{9}{16}a_{2}\right)\cos3\psi \\ - n'^{2}\left(\frac{45}{16}b_{2} - \frac{15}{16}a_{2}\right)\cos5\psi = 0, \\ -b_{1}\sin\psi - 9b_{3}\sin3\psi + 4a_{2}\sin2\psi\left[b_{1}\cos\psi + 3b_{3}\cos3\psi\right] \\ + 3n'^{2}\left[-b_{2} + \cos2\psi + b_{2}\cos4\psi\right]\left[b_{1}\sin\psi + b_{3}\sin3\psi\right] \\ + \left[2\left(1 + n'\right) + 4b_{2}\cos2\psi\right]\left[a_{1}\sin\psi + 3a_{3}\sin3\psi\right] \\ + n'^{2}\left(\frac{3}{8} - \frac{21}{8}b_{2} - \frac{3}{4}a_{2}\right)\sin\psi + n'^{2}\left(\frac{15}{8} + \frac{3}{16}b_{2} - \frac{3}{16}a_{2}\right)\sin5\psi = 0.$$

If we equate to zero the coefficients of $\cos \psi$ and $\cos 3\psi$ in the first, and those of $\sin \psi$ and $\sin 3\psi$ in the second, we obtain the following equations for α_1 , b_1 , α_3 , b_3 ; the terms in 5ψ remain outstanding, and the effect of α_5 , b_5 in modifying the other coefficient is neglected.

$$\begin{split} \alpha_1 \left[1 + 2\alpha_2 + 3\frac{\mu}{a^3} \left(1 + \frac{3}{2} \alpha_2 \right) \right] - b_1 \left[2 \left(1 + n' \right) + 2b_2 - \frac{3}{2} n'^2 \right] \\ + \alpha_3 \left[6a_2 + \frac{9}{2} \frac{\mu}{a^3} \alpha_2 \right] - b_3 \left[6b_2 - \frac{3}{2} n'^2 \left(1 + b_2 \right) \right] = \frac{3}{8} n'^2 \left(3 - 9b_2 - 4\alpha_2 \right), \\ \alpha_1 \left[2 \left(1 + n' \right) - 2b_2 \right] - b_1 \left[1 + \frac{3}{2} n'^2 - 2\alpha_2 + 3n'^2 b_2 \right] \\ + \alpha_3 \left[6b_2 \right] - b_3 \left[6a_2 - \frac{3}{2} n'^2 + \frac{3}{2} n'^2 b_2 \right] = -\frac{3}{8} n'^2 \left(1 - 7b_2 - 2\alpha_2 \right), \\ \alpha_1 \left[-2\alpha_2 + \frac{9}{2} \frac{\mu}{a^3} \alpha_2 \right] + b_1 \left[-2b_2 - \frac{3}{2} n'^2 + \frac{3}{2} n'^2 b_2 \right] \\ + \alpha_3 \left[9 + 3\frac{\mu}{a^3} \right] - b_3 \left[6 \left(1 + n' \right) \right] = \frac{3}{8} n'^2 \left(5 + \frac{3}{2} b_2 - \frac{3}{2} \alpha_2 \right), \\ \alpha_1 \left[2b_2 \right] + b_1 \left[2\alpha_2 + \frac{3}{2} n'^2 - \frac{3}{2} n'^2 b_2 \right] \\ + \alpha_3 \left[6 \left(1 + n' \right) \right] - b_3 \left[9 + 3n'^2 b_2 \right] = -\frac{3}{8} n'^2 \left(5 + \frac{1}{2} b_2 - \frac{1}{2} a_2 \right). \end{split}$$

If we require the formal values of a_1 , b_1 , a_3 , b_3 , we must substitute for a_2 , b_2 , μ/a^3 the expressions we have found for them, and it will then be best to develope the coefficients in ascending powers of n'. But it is difficult to obtain by this process such good numerical results as we can get by substituting the numerical values of a_2 , b_2 , μ/a^3 immediately in the equations above. If we do so we get the equations

$$4 \cdot 5667 2a_1 - 2 \cdot 17232b_1 + 08093a_3 - 05137b_3 = \frac{3}{8} n'^2 \times 2 \cdot 87937,$$

$$2 \cdot 14128a_1 - 0 \cdot 99564b_1 + 06127a_3 - 03338b_3 = -\frac{3}{8} n'^2 \times 0 \cdot 91416,$$

$$02349a_1 - 03012b_1 + 12 \cdot 51451a_3 - 6 \cdot 48508b_3 = \frac{3}{8} n'^2 \times 5 \cdot 00455,$$

$$02042a_1 + 02406b_1 + 6 \cdot 48508a_3 - 9 \cdot 00020b_3 = -\frac{3}{8} n'^2 \times 5 \cdot 00152.$$

We notice that the first equation is not very different from the second doubled; it is this fact that makes successive approximation a disadvantageous method and renders it advisable to include small quantities from the beginning.

Eliminate a_3 , b_3 in succession from the third and fourth equations, thus:—

Multiply the third equation by

 $9.00020 \div [12.51451 \times 9.00020 - 6.48508 \times 6.48508] = 0.127523$, and the fourth by

 $-6.48508 \div \left[12.51451 \times 9.00020 - 6.48508 \times 6.48508\right] = -0.091887,$ and add; b_3 will be eliminated.

Again multiply the third equation by '091887 and the fourth by - '177317 and add; α_3 will be eliminated. Hence we find

$$\cdot 001119a_{1} - \cdot 006052b_{1} + a_{3} = \frac{3}{8} n'^{2} \times 1 \cdot 09776,$$
$$- \cdot 001463a_{1} - \cdot 007034b_{1} + b_{3} = \frac{3}{8} n'^{2} \times 1 \cdot 34669.$$

Multiply these by -.08093 and .05137 respectively and add to the first equation:—

$$\begin{aligned} 4 \cdot 56672 a_1 - 2 \cdot 17232 b_1 + \cdot 08093 a_3 - \cdot 05137 b_3 &= \frac{3}{8} \, n'^2 \times \\ -0 \cdot 00009 a_1 + 0 \cdot 00049 b_1 - \cdot 08093 a_3 &= \frac{3}{8} \, n'^2 \times \\ -0 \cdot 00008 a_1 - 0 \cdot 00036 b_1 &+ \cdot 05137 b_3 &= \frac{3}{8} \, n'^2 \times \\ \end{aligned}$$

hence

$$4.56665a_1 - 2.17219b_1 = \frac{3}{8}n'^2 \times 2.85971.$$

Eliminate a_3 , b_3 in a similar manner from the second equation;

$$2 \cdot 14128a_1 - 0 \cdot 99546b_1 + 06127a_3 - 03338b_3 = -\frac{3}{8}n'^2 \times 0.91416,$$

$$-0 \cdot 00007a_1 + 0 \cdot 00037b_1 - 06127a_3 = -\frac{3}{8}n'^2 \times 0.06726,$$

$$-0 \cdot 00005a_1 - 0 \cdot 00023b_1 + 03338b_3 = -\frac{3}{8}n'^2 \times -0.04495;$$

hence

$$2.14116a_1 - 0.99550b_1 = -\frac{3}{8}n^2 \times 0.93647.$$

From these equations we find

$$a_1 = -\frac{3}{8} n'^2 \times 46.4814 = -.11392.8,$$
 $b_1 = -\frac{3}{8} n'^2 \times 99.0336 = -.24273.4,$
 $a_3 = -\frac{3}{8} n'^2 \times ...55042 = ...00134.9,$
 $b_4 = -\frac{3}{8} n'^2 \times ...58209 = ...00142.7.$

LECTURE IX.

THE PARALLACTIC INEQUALITY, (continued).

Let us now consider the terms in 5ψ which have been left outstanding.

Include additional terms $\lambda a_s \cos 5\psi$, $\lambda b_s \sin 5\psi$ in $-\delta l$, $\delta \theta$, and equate to zero the coefficients of $\cos 5\psi$, $\sin 5\psi$ in the differential equations that give δl , $\delta \theta$.

We have

$$25a_5 + \frac{3\mu}{\alpha^3}a_5 - 10(1+n')b_5 - 6a_2a_3 - 6b_2b_3 + \frac{9\mu}{2\alpha^3}a_2a_3 - \frac{3}{2}n'^2b_3 - n'^2\left(\frac{45}{16}b_2 - \frac{15}{16}a_2\right) = 0,$$

$$-25b_5 + 10(1+n')a_5 + 6a_2b_3 + 6a_3b_2 + \frac{3}{2}n'^2b_3 + n'^2\left(\frac{45}{16}b_2 - \frac{15}{16}a_2\right) = 0.$$

In these equations substitute

$$\frac{\mu}{a^3} = 1 + 2n' + \frac{3}{2}n'^2.$$

Then

$$\left(28 + 6n' + \frac{9}{2}n'^{2}\right)\alpha_{5} - 10\left(1 + n'\right)b_{5} = \left(\frac{3}{2} - 9n' - \frac{27}{4}n'^{2}\right)\alpha_{2}\alpha_{3} + \left(6b_{2} + \frac{3}{2}n'^{2}\right)b_{3}$$

$$+ n'^{2}\left(\frac{45}{16}b_{2} - \frac{15}{16}\alpha_{2}\right),$$

$$-25b_{5} + 10\left(1 + n'\right)\alpha_{5} = -6\alpha_{2}b_{3} - 6b_{2}\alpha_{3} - \frac{3}{2}n'^{2}b_{3} - n'^{2}\left(\frac{45}{16}b_{2} - \frac{15}{16}\alpha_{2}\right).$$

Eliminate $b_{\mathfrak{s}}$:

$$\left(24 - 2n' + \frac{1}{2}n'^{2}\right)\alpha_{s} = \left[\left(\frac{3}{2} - 9n' - \frac{27}{4}n'^{2}\right)\alpha_{2} + \frac{12}{5}(1 + n')b_{2}\right]\alpha_{3}$$

$$+ \left[6b_{2} + \frac{3}{2}n'^{2} + \frac{12}{5}(1 + n')\alpha_{2} + \frac{3}{5}(1 + n')n'^{2}\right]b_{3}$$

$$+ \left(7 + 2n'\right)n'^{2}\left(\frac{9}{16}b_{2} - \frac{3}{16}\alpha_{2}\right),$$

and then $b_{\scriptscriptstyle 5}$ is given by

$$b_{5} = \frac{2}{5} (1 + n') \alpha_{5} + \frac{6}{25} b_{2} \alpha_{3} + \left(\frac{6}{25} \alpha_{2} + \frac{3}{50} n'^{2} \right) b_{3} + \frac{1}{5} n'^{2} \left(\frac{9}{16} b_{2} - \frac{3}{16} \alpha_{2} \right).$$

From these we find

$$a_5 = \frac{3}{8} n'^2 \times .00595, 3 = .00001, 4591,$$

$$b_5 = \frac{3}{8} n'^2 \times .00710, 3 = .00001, 7410.$$

These numbers being so small, we see that we may safely ignore, as we have done, their effect in modifying the earlier coefficients.

To find the effect of these coefficients upon the Moon's coordinates we must multiply by the factor $\lambda = \frac{E - M}{E + M} \cdot \frac{a}{a'}$.

We shall take in accordance with the results given in Monthly Notices, Vol. 13, p. 177, and Appendix to the Nautical Almanac, 1856,

$$\frac{E}{M} = 81.5.$$

Constant of Moon's Parallax = 3422".325.

Also we shall take in the first place, the Sun's Mean Parallax to be 8".8, and in the next place 8".9, and we will find the corresponding values of the coefficients of the Parallactic Inequalities.

We find

$$\lambda = 0.00250,9 \qquad \lambda = 0.00253,76$$

$$\lambda a_1 = -0.00028,585 \qquad \lambda a_2 = -0.00028,910$$

$$\lambda b_1 = -0.00060,903 = -125''.62 \qquad \lambda b_1 = -0.00061,596 = -127''.05$$

$$\lambda a_3 = 0.0000,3385 \qquad \lambda a_3 = 0.0000,3423$$

$$\lambda b_3 = 0.0000,3580 = 0''.7384 \qquad \lambda b_3 = 0.0000,3620 = 0''.7468$$

$$\lambda a_5 = 0.0000,00366 \qquad \lambda a_5 = 0.0000,00370$$

$$\lambda b_5 = 0.0000,00437 = 0''.00901 \qquad \lambda b_5 = 0.0000,00442 = 0''.00911.$$

These results are very fairly accurate; but in order to get good values for a_1 , b_1 , we were obliged to discuss a_1 , b_1 , a_2 , b_3 simultaneously. Let us consider the peculiarity of the equations from which this difficulty arose.

Following the method of approximation of Lecture VII, if we neglect at first the products of δl , $\delta \theta$, $d\delta l/dt$, $d\delta \theta/dt$ with the small quantities a_2 , b_2 , n'^2 , the equations become

$$\frac{d^2 \delta l}{dt^2} - 2n \frac{d \delta \theta}{dt} - 3 \frac{\mu}{\alpha^3} \delta l + X = 0,$$

$$\frac{d^2 \delta \theta}{dt^2} + 2n \frac{d \delta l}{dt} + Y = 0.$$

Now suppose the following is a set of terms that appear

in
$$X p_i \cos(it + \gamma)$$
, in $Y q_i \sin(it + \gamma)$,
 $\delta l a_i \cos(it + \gamma)$, $\delta \theta b_i \sin(it + \gamma)$;

then as in Lecture VII, we find

$$a_{i} = \frac{p_{i} - 2\frac{n}{i}q_{i}}{i^{2} - n^{2} + \frac{3}{2}n'^{2}},$$

$$b_{i} = -2\frac{n}{i}a_{i} + \frac{1}{i^{2}}q.$$

Therefore if i differs little from n, the divisor in α_i will be small, and a small error or omission in the numerator of α_i will appear magnified in the values of both α_i and b_i . In the case of the first term of the Parallactic Inequality,

$$i = n - n$$
,
 $i^2 - n^2 + \frac{3}{2} n'^2 = -2nn' + \frac{5}{2} n'^2$;

and if we take

$$p_i = -\frac{9}{8}n'^2$$
, $q_i = \frac{3}{8}n'^2$,

which differ from the correct values by quantities of the fourth order, then

$$p_i - 2\frac{n}{i}q_i = -\frac{3}{8}n'^2\frac{5n - 3n'}{n - n'},$$

and the formulae give

$$\begin{split} \alpha_i &= \frac{3}{4} \frac{n' \left(5n - 3n'\right)}{\left(n - n'\right) \left(4n - 5n'\right)}\,, \\ b_i &= -\frac{2n}{n - n'} \,\alpha_i + \frac{3}{8} \frac{n'^2}{(n - n')^2}. \end{split}$$

Now if we develope these expressions in ascending powers of m, i.e. n'/n, the first terms are

$$a_i = \frac{15}{16}m, \quad b_i = -\frac{15}{8}m,$$

and these are the only terms which the formulae derived from our method of approximation will give correctly.

LECTURE X.

THE ANNUAL EQUATION.

Let us next take into account the effect of the first power of the eccentricity of the Earth's orbit. We shall find that it produces an inequality in the Moon's coordinates, the chief part of which has a period of one year, and is therefore called the Annual Equation.

In the formulae of Lecture VII, let the known approximate solutions l_0 , θ_0 , include the Variation only; then the equations for the corrections δl_0 , $\delta \theta$ are

$$\begin{split} X + \frac{d^2 \delta l}{dt^2} + 4a_2 \sin 2\psi \, \frac{d\delta l}{dt} - 3 \, \frac{\mu}{a^3} \left(1 + 3a_2 \cos 2\psi \right) \, \delta l \\ - 2 \left[\left(1 + n' \right) + 2b_2 \cos 2\psi \right] \, \frac{d\delta \theta}{dt} + 3n'^2 \left(\sin 2\psi + b_2 \sin 4\psi \right) \, \delta \theta = 0, \\ Y + \frac{d^2 \delta \theta}{dt^2} + 4a_2 \sin 2\psi \, \frac{d\delta \theta}{dt} + 3n'^2 \left(-b_2 + \cos 2\psi + b_2 \cos 4\psi \right) \, \delta \theta \\ + 2 \left[\left(1 + n' \right) + 2b_2 \cos 2\psi \right] \, \frac{d\delta l}{dt} \end{split} = 0,$$

where a_2 , b_2 , μ/a^3 are known quantities whose values are given in Lectures IV, V.

Refer now to Lecture III, and we find that the terms that are left outstanding when the terms of the Variation are substituted, and the parallactic terms omitted are the following:—

$$X = -\frac{3}{2} n'^{2}e' \cos (n't - \varpi') - \frac{21}{4} n'^{2}e' \cos \left\{ 2 (\theta - n't) - (n't - \varpi') \right\}$$

$$+ \frac{3}{4} n'^{2}e' \cos \left\{ 2 (\theta - n't) + (n't - \varpi') \right\}$$

$$Y = + \frac{21}{4} n'^{2}e' \sin \left\{ 2 (\theta - n't) - (n't - \varpi') \right\}$$

$$- \frac{3}{4} n'^{2}e' \sin \left\{ 2 (\theta - n't) + (n't - \varpi') \right\}.$$

Write a for
$$n't - \varpi'$$
; then

$$\cos \{2 (\theta - n't) - a\} = \cos (2\psi - a) - (2b_2 \sin 2\psi) \sin (2\psi - a)$$

$$= -b_2 \cos \alpha + \cos (2\psi - a) + b_2 \cos (4\psi - a),$$

$$\sin \{2 (\theta - n't) - a\} = +b_2 \sin \alpha + \sin (2\psi - a) + b_2 \sin (4\psi - a),$$

$$\cos \{2 (\theta - n't) + a\} = -b_2 \cos \alpha + \cos (2\psi + a) + b_2 \cos (4\psi + a),$$

$$\sin \{2 (\theta - n't) + a\} = -b_2 \sin \alpha + \sin (2\psi + a) + b_2 \sin (4\psi + a).$$

Hence

$$X = -\frac{3}{2} n'^{2} (1 - 3b_{2}) e' \cos \alpha - \frac{21}{4} n'^{2} e' \cos (2\psi - \alpha) + \frac{3}{4} n'^{2} e' \cos (2\psi + \alpha)$$

$$-\frac{21}{4} n'^{2} b_{2} e' \cos (4\psi - \alpha) + \frac{3}{4} n'^{2} b_{2} e' \cos (4\psi + \alpha),$$

$$Y = 6n'^{2} b_{2} e' \sin \alpha + \frac{21}{4} n'^{2} e' \sin (2\psi - \alpha) - \frac{3}{4} n'^{2} e' \sin (2\psi + \alpha)$$

$$+\frac{21}{4} n'^{2} b_{2} e' \sin (4\psi - \alpha) - \frac{3}{4} n'^{2} b_{2} e' \sin (4\psi + \alpha).$$

For our present purpose we shall ignore the small terms in $4\psi - a$ and $4\psi + a$ which are of the sixth order.

Assume

$$-\delta l = a_s e' \cos \alpha + a_s e' \cos (2\psi - \alpha) + a_r e' \cos (2\psi + \alpha),$$

$$\delta \theta = b_s e' \sin \alpha + b_s e' \sin (2\psi - \alpha) + b_r e' \sin (2\psi + \alpha).$$

Now the terms which arise in the left-hand members of the equations owing to terms $-a_n \cos pt$ in δl , and $b_n \sin pt$ in $\delta \theta$, will be

$$\begin{split} p^{2}a_{p}\cos pt + 2a_{2}pa_{p} \left[\cos \left(pt - 2\psi\right) - \cos \left(pt + 2\psi\right)\right] \\ + \frac{3\mu}{a^{3}}\,a_{p} \left[\cos pt + \frac{3}{2}\,a_{2}\cos \left(pt - 2\psi\right) + \frac{3}{2}\,a_{2}\cos \left(pt + 2\psi\right)\right] \\ - 2\left(1 + n'\right)pb_{p}\cos pt - 2b_{2}pb_{p} \left[\cos \left(pt - 2\psi\right) + \cos \left(pt + 2\psi\right)\right] \\ + \frac{3}{2}\,n'^{2}b_{p} \left[\cos \left(pt - 2\psi\right) - \cos \left(pt + 2\psi\right)\right], \end{split}$$

and

$$\begin{split} -p^3b_p \sin pt + 2a_2pb_p \big[-\sin (pt - 2\psi) + \sin (pt + 2\psi) \big] \\ + \frac{3}{2}n'^3b_p \big[\sin (pt - 2\psi) - 2b_2 \sin pt + \sin (pt + 2\psi) \big] \\ + 2(1 + n') pa_p \sin pt + 2b_2pa_p \big[\sin (pt - 2\psi) + \sin (pt + 2\psi) \big], \end{split}$$

respectively, neglecting the very small quantities in 4\psi.

Hence we get the equations following:—

Equate to zero the coefficients of $\cos \alpha$, $\sin \alpha$:

$$\left(n'^2 + \frac{3\mu}{\alpha^3}\right) \alpha_5 - 2n' \left(1 + n'\right) b_5 + 2 \left(2 - n'\right) \alpha_2 \alpha_6 + \frac{3\mu}{\alpha^3} \cdot \frac{3}{2} \alpha_2 \alpha_6$$

$$- 2 \left(2 - n'\right) b_2 b_6 + \frac{3}{2} n'^2 b_6 + 2 \left(2 + n'\right) \alpha_2 \alpha_7 + \frac{3\mu}{\alpha^3} \cdot \frac{3}{2} \alpha_2 \alpha_7$$

$$- 2 \left(2 + n'\right) b_2 b_7 + \frac{3}{2} n'^2 b_7 = \frac{3}{2} n'^2 \left(1 - 3b_2\right)$$

$$- n'^2 b_5 - 3n'^2 b_2 b_5 + 2 \left(1 + n'\right) n' \alpha_5 + 2 \left(2 - n'\right) \alpha_2 b_6$$

$$- 2 \left(2 - n'\right) b_2 \alpha_6 - \frac{3}{2} n'^2 b_6 - 2 \left(2 + n'\right) \alpha_2 b_7$$

$$+ 2 \left(2 + n'\right) b_2 \alpha_7 + \frac{3}{2} n'^2 b_7 = -6n'^2 b_2.$$

Equate the coefficients of $\cos(2\psi - a)$, $\sin(2\psi - a)$:—

$$(2-n')^{2} a_{5} + 3 \frac{\mu}{a^{3}} \alpha_{6} - 2 (1+n') (2-n') b_{6} + 2n' a_{2} a_{5} + 3 \frac{\mu}{a^{3}} \cdot \frac{3}{2} \alpha_{2} a_{5}$$

$$-2n' b_{2} b_{5} + \frac{3}{2} n'^{2} b_{5} = \frac{21}{4} n'^{2},$$

$$-(2-n')^{2} b_{6} - 3n'^{2} b_{2} b_{6} + 2 (1+n') (2-n') \alpha_{6} + 2n' \alpha_{2} b_{5} - 2n' b_{2} \alpha_{5}$$

$$-\frac{3}{2} n'^{2} b_{5} = -\frac{21}{4} n'^{2}.$$

Equate the coefficients of $\cos(2\psi + a)$, $\sin(2\psi + a)$:—

$$(2+n')^{2} \alpha_{7} + 3 \frac{\mu}{\alpha^{3}} \alpha_{7} - 2 (1+n') (2+n') b_{7} - 2n' \alpha_{2} \alpha_{5} + 3 \frac{\mu}{\alpha^{3}} \cdot \frac{3}{2} \alpha_{2} \alpha_{5}$$

$$-2n' b_{2} b_{5} - \frac{3}{2} n'^{2} b_{5} = -\frac{3}{4} n'^{2},$$

$$-(2+n')^{2} b_{7} - 3n'^{2} b_{2} b_{7} + 2 (1+n') (2+n') \alpha_{7} + 2n' \alpha_{2} b_{5} + 2n' b_{2} \alpha_{5}$$

$$+ \frac{3}{2} n'^{2} b_{5} = \frac{3}{4} n'^{2}.$$

In equations of this class, as a general rule we would determine a_s , b_s approximately from the first pair, substitute them in the second pair and determine a_s , b_s approximately, and similarly a_7 , b_7 from the third pair, and repeat this approximation as often as might be necessary.

But if we refer to the second equation, we see that b_s must be determined by means of a small divisor, and this puts any method of approximation at a disadvantage. In order to obtain readily satisfactory values for the new coefficients, we shall treat the six equations simultaneously, substituting first the numerical values of the known quantities.

We have found

$$a_2 = .00717,95, \quad b_2 = .01021,20, \quad \mu/\alpha^3 = 1.17150,3.$$

Hence

$$3 \cdot 52105a_5 - 0 \cdot 174763b_5 + \cdot 065405a_6 - \cdot 029393b_6 + \cdot 067727a_7 - \cdot 032695b_7$$

$$= \frac{3}{2} n'^2 \times 0 \cdot 969364,$$

$$0 \cdot 174763a_5 - 0 \cdot 006736b_5 - \cdot 039197a_6 + \cdot 017753b_6 + \cdot 042499a_7 - \cdot 020075b_7$$

$$= \frac{3}{2} n'^2 \times -0 \cdot 040848,$$

$$\cdot 039009a_5 + \cdot 008153b_5 + 7 \cdot 19766a_6 - 4 \cdot 14858b_6 = \frac{3}{2} n'^2 \times 3 \cdot 50,$$

$$- \cdot 001651a_5 - \cdot 008643b_5 + 4 \cdot 14858a_6 - 3 \cdot 68335b_6 = \frac{3}{2} n'^2 \times -3 \cdot 50,$$

From the second and third pairs we find

$$\cdot 016186a_5 + \cdot 007084b_5 + a_6 = \frac{3}{2}n'^2 \times 2 \cdot 94739,$$

$$\cdot 018678a_5 + \cdot 010326b_5 + b_6 = \frac{3}{2}n'^2 \times 4 \cdot 26994,$$

$$\cdot 011026a_5 - \cdot 007203b_5 + a_7 = \frac{3}{2}n'^2 \times -0 \cdot 321398,$$

$$\cdot 011072a_5 - \cdot 010015b_5 + b_7 = \frac{3}{2}n'^2 \times -0 \cdot 449338.$$

Eliminate a_{ϵ} , b_{ϵ} , a_{γ} , b_{γ} from the first pair.

Hence

$$3.52015\alpha_{5} - .174762b_{5} = \frac{3}{2}n'^{2} \times 0.909170,$$
$$0.174819\alpha_{5} - .006536b_{5} = \frac{3}{2}n'^{2} \times 0.003516.$$

Hence

$$a_s = \frac{3}{2} n'^2 \times -0.70619,8 = -.00692,37,$$

$$b_s = \frac{3}{2} n'^2 \times -19.4268 = -.19046,3.$$

Now e' is a constant found by observation; taking $e' = 3459'' \cdot 28$, its value in 1850, we get

$$a_s e' = -.00011,61,$$

 $b_s e' = -.00319,4 = -.658''.9,$

and further

$$a_6 = 0.03035,8, \quad a_6 e' = 0.00050,9,$$

$$b_6 = 0.04396,7, \quad b_6 e' = 0.00073,73 = 0.152''\cdot09,$$

$$a_7 = -0.00444,7, \quad a_7 e' = -0.0007,457,$$

$$b_7 = -0.00623,6, \quad b_7 e' = -0.0010,46 = -0.21''\cdot57.$$

LECTURE XI.

THE EQUATION OF THE CENTRE AND THE EVECTION.

WE have seen that the equations of motion

$$\frac{d^2l}{dt^2} + \left(\frac{dl}{dt}\right)^2 - \left(\frac{d\theta}{dt}\right)^2 + \frac{\mu}{r^3} - n'^2 \left[\frac{1}{2} + \frac{3}{2}\cos 2\left(\theta - n't\right)\right] = 0,$$

$$\frac{d^2\theta}{dt^2} + 2\frac{d\theta}{dt}\frac{dl}{dt} + n'^2 \left[\frac{3}{2}\sin 2\left(\theta - n't\right)\right] = 0,$$

are satisfied very approximately by the values

$$l = \log \frac{r}{a} = -a_2 \cos 2\psi,$$

$$\theta = nt + \epsilon + b_2 \sin 2\psi,$$

$$\psi = nt + \epsilon - (n't + \epsilon'),$$

where

and a_2 , b_2 are small quantities depending upon the ratio n'/n, and a is a quantity depending upon n in such a way that

$$\frac{\mu}{\alpha^3} = n^2 + \frac{1}{2} n'^2 - \frac{9}{32} \frac{n'^4}{(n-n')^2} + 2n' (2n-n') \alpha_2^2,$$

while n, ϵ are arbitrary, though subject to the assumption that the ratio n'/n is small.

This solution, then, expresses a possible case of motion; nevertheless it is no more than a particular case because it involves only two arbitrary constants, whereas the complete and general solution must contain four, in order that it may be able to satisfy any given initial conditions, that is, in order that the initial coordinates and their initial velocities may have any given values.

When there is no disturbance the four arbitrary constants are n and ϵ ,—which denote quantities similar to those expressed by the same symbols above,—and the two elliptic elements e and ϖ , of which e denotes the eccentricity of the orbit and ϖ the longitude of the apse.

We will now shew how to complete the solution by introducing into $\log(a/r)$ and θ additional terms depending on quantities similar to e, ϖ , of which the former is constant and the latter varies slowly and uniformly with t; and for the sake of simplicity we will suppose at first that e is so small that its square and higher powers may be neglected though it is otherwise arbitrary in magnitude.

Let us assume then

$$\log \frac{a}{r} = a_2 \cos 2\psi + e \cos (nt - \varpi),$$

$$\theta = nt + \epsilon + b_2 \sin 2\psi + 2e (1 + b_0) \sin (nt - \varpi),$$

in which the elliptic terms are of the same form as in the undisturbed orbit, and ϖ is supposed to be slowly variable, so that

$$\frac{d\mathbf{w}}{dt} = p,$$

where p is supposed to be a small quantity of the order of the disturbing force.

We will now substitute these assumed values in the differential equations. We have

$$\begin{split} \frac{dl}{dt} &= 2 (n - n') \, a_2 \sin 2\psi + (n - p) \, e \sin (nt - \varpi), \\ \frac{d^2l}{dt^2} &= 4 (n - n')^2 \, a_2 \cos 2\psi + (n - p)^2 \, e \cos (nt - \varpi), \\ \frac{d\theta}{dt} &= n + 2 (n - n') \, b_2 \cos 2\psi + 2 (n - p) (1 + b_0) \, e \cos (nt - \varpi), \\ \frac{d^2\theta}{dt^2} &= -4 (n - n') \, b_2 \sin 2\psi - 2 (n - p)^2 (1 + b_0) \, e \sin (nt - \varpi). \end{split}$$

Hence

$$4 (n-n')^{2} \alpha_{2} \cos 2\psi + (n-p)^{2} e \cos (nt-\varpi)$$

$$+ 2 (n-n') (n-p) \alpha_{2} e \left[\cos (2\psi - nt + \varpi) - \cos (2\psi + nt - \varpi)\right]$$

$$- \left\{n^{2} + 4n (n-n') b_{2} \cos 2\psi + 4n (n-p) (1+b_{0}) e \cos (nt - \varpi) + 4 (n-n') (n-p) (1+b_{0}) b_{2} e \left[\cos (2\psi - nt + \varpi) + \cos (2\psi + nt - \varpi)\right]\right\}$$

$$\begin{split} & + \frac{\mu}{\alpha^3} \{ 1 + 3\alpha_2 \cos 2\psi \} \{ 1 + 3e \cos (nt - \varpi) \} \\ & - n'^2 \left\{ \frac{1}{2} + \frac{3}{2} \cos 2\psi - 3 \sin 2\psi \left[2 (1 + b_0) e \sin (nt - \varpi) \right] \right\} = 0, \end{split}$$

and

$$-4 (n-n')^{2} b_{2} \sin 2\psi - 2 (n-p)^{2} (1+b_{0}) e \sin (nt-\varpi)$$

$$+4n (n-n') \alpha_{2} \sin 2\psi + 2n (n-p) e \sin (nt-\varpi)$$

$$+4 (n-n') (n-p) (1+b_{0}) e \alpha_{2} \left[\sin (2\psi - nt + \varpi) + \sin (2\psi + nt - \varpi)\right]$$

$$+2 (n-n') (n-p) e b_{2} \left[-\sin (2\psi - nt + \varpi) + \sin (2\psi + nt - \varpi)\right]$$

$$+n'^{2} \left\{\frac{3}{2} \sin 2\psi + 3 \cos 2\psi \left[2 (1+b_{0}) e \sin (nt - \varpi)\right]\right\} = 0.$$

It will of course be found that with the values of a_2 , b_2 of Lecture IV, the terms independent of e vanish identically.

Equating to zero the coefficients of $\cos(nt-\varpi)$ in the first equation and $\sin(nt-\varpi)$ in the second, we get

$$(n-p)^{2}-4n(n-p)(1+b_{0})+\frac{3\mu}{a^{3}}=0,$$

$$-2(n-p)^{2}(1+b_{0})+2n(n-p)=0.$$

Therefore

$$(n-p)(1+b_0)=n,$$

and

$$(n-p)^2 = 4n^2 - \frac{3\mu}{a^3}$$

$$=n^2-\frac{3}{2}n'^2$$
, approximately,

or

$$\frac{p}{n} = \frac{3}{4} m^2 = b_0$$
, approximately.

Now terms have been left outstanding with the arguments $2\psi - nt + \varpi$, $2\psi + nt - \varpi$. These may be removed by assuming

$$\log \frac{a}{r} = a_2 \cos 2\psi + e \cos (nt - \varpi) + a_{21} e \cos (2\psi - nt + \varpi) + a_{22} e \cos (2\psi + nt - \varpi),$$

$$\theta = nt + \epsilon + b_2 \sin 2\psi + 2e (1 + b_0) \sin (nt - \varpi) + b_{21} e \sin (2\psi - nt + \varpi)$$

$$+ b_{22} e \sin (2\psi + nt - \varpi).$$

Hence in place of the former equations, we get the following

$$\begin{split} &(n-p)^2 - 4n \left(n-p\right) \left(1+b_0\right) + \frac{3\mu}{\alpha^3} \\ &+ \left[2 \left(n-n'\right) \left(n-2n'+p\right) + \frac{9}{2} \frac{\mu}{\alpha^3}\right] \alpha_2 \alpha_{21} + \left[2 \left(n-n'\right) \left(3n-2n'-p\right) + \frac{9}{2} \frac{\mu}{\alpha^3}\right] \alpha_2 \alpha_{22} \\ &+ \left[-2 \left(n-n'\right) \left(n-2n'+p\right) b_2 + \frac{3}{2} n'^2\right] b_{21} \\ &+ \left[-2 \left(n-n'\right) \left(3n-2n'-p\right) b_2 + \frac{3}{2} n'^2\right] b_{22} = 0 \\ &-2 \left(n-p\right)^2 \left(1+b_0\right) + 2n \left(n-p\right) - 6n'^2 b_2 \left(1+b_0\right) \\ &-2 \left(n-n'\right) \left(n-2n'+p\right) b_2 \alpha_{21} + 2 \left(n-n'\right) \left(3n-2n'-p\right) b_2 \alpha_{22} \\ &+ \left[2 \left(n-n'\right) \left(n-2n'+p\right) \alpha_2 - \frac{3}{2} n'^2\right] b_{21} \\ &+ \left[-2 \left(n-n'\right) \left(3n-2n'-p\right) \alpha_2 + \frac{3}{2} n'^2\right] b_{22} = 0. \end{split}$$

Multiply the second by $-\frac{2n}{n-p}$, and add to the first; this will eliminate $1+b_0$.

$$(n-p)^{2}-4n^{2}+\frac{3\mu}{\alpha^{3}}+\frac{12nn'^{2}}{n-p}b_{2}(1+b_{0})+2(n-n')(n-2n'+p)[a_{2}a_{21}-b_{2}b_{21}]$$

$$+\frac{9}{2}\frac{\mu}{\alpha^{3}}[a_{2}a_{21}+a_{2}a_{22}]+\frac{3}{2}n'^{2}[b_{21}+b_{22}]+2(n-n')(3n-2n'-p)[a_{2}a_{22}-b_{2}b_{22}]$$

$$+4\frac{n}{n-p}(n-n')(n-2n'+p)[b_{2}a_{21}-a_{2}b_{21}]$$

$$-4\frac{n}{n-p}(n-n')(3n-2n'-p)[b_{2}a_{22}-a_{2}b_{22}]+3n'^{2}\frac{n}{n-p}[b_{21}-b_{22}]=0.$$

Also the equations obtained by equating the coefficients of $e \cos(2\psi - nt + \varpi)$ and $e \sin(2\psi - nt + \varpi)$ to zero are

$$\begin{split} \left[2\left(n-n' \right) \left(n-p \right) + \frac{9}{2} \frac{\mu}{a^3} \right] \alpha_2 - 4\left(n-n' \right) \left(n-p \right) \left(1+b_0 \right) b_2 + 3n'^2 \left(1+b_0 \right) \\ + \left[\left(n-2n'+p \right)^2 + \frac{3\mu}{a^3} \right] \alpha_{21} - 2n \left(n-2n'+p \right) b_{21} = 0, \\ 4\left(n-n' \right) \left(n-p \right) \left(1+b_0 \right) \alpha_2 - 2 \left(n-n' \right) \left(n-p \right) b_2 - 3n'^2 \left(1+b_0 \right) - \left(n-2n'+p \right)^2 b_{21} \\ + 2n \left(n-2n'+p \right) \alpha_{21} = 0. \\ \text{A. II.} \end{split}$$

Multiply the second by $-\frac{2n}{n-2n'+p}$, and add to the first; this will eliminate b_n , and gives

$$\begin{split} \left[2 \left(n - n' \right) \left(n - p \right) + \frac{9}{2} \frac{\mu}{\alpha^3} - \frac{8n}{n - 2n' + p} \left(n - n' \right) \left(n - p \right) \left(1 + b_0 \right) \right] \alpha_2 \\ + \left[-4 \left(n - n' \right) \left(n - p \right) \left(1 + b_0 \right) + 4n \frac{n - n'}{n - 2n' + p} \left(n - p \right) \right] b_2 \\ + \left[3n'^2 + \frac{6nn'^2}{n - 2n' + p} \right] \left(1 + b_0 \right) + \left[\left(n - 2n' + p \right)^2 - 4n^2 + \frac{3\mu}{\alpha^3} \right] \alpha_{21} = \mathbf{0}. \end{split}$$

Lastly the equations obtained by equating the coefficients of $e \cos(2\psi + nt - \varpi)$ and $e \sin(2\psi + nt - \varpi)$

to zero are

$$\left[-2(n-n')(n-p) + \frac{9}{2}\frac{\mu}{\alpha^{3}}\right]\alpha_{2} - 4(n-n')(n-p)(1+b_{0})b_{2} - 3n'^{2}(1+b_{0})$$

$$+ \left[(3n-2n'-p)^{2} + \frac{3\mu}{\alpha^{3}}\right]\alpha_{22} - 2n(3n-2n'-p)b_{22} = 0,$$

and

$$4 (n-n') (n-p) (1+b_0) \alpha_2 + 2(n-n') (n-p) b_2 + 3n'^2 (1+b_0) - (3n-2n'-p)^2 b_{22} + 2n (3n-2n'-p) \alpha_{22} = 0.$$

Multiply the second by $-\frac{2n}{3n-2n'-p}$ and add to the first; this will eliminate b_{22} , and gives

$$\begin{split} & \left[-2\left(n-n' \right) \left(n-p \right) + \frac{9}{2} \frac{\mu}{a^3} - \frac{8n}{3n - 2n' - p} \left(n-n' \right) \left(n-p \right) \left(1+b_0 \right) \right] a_2 \\ & + \left[-4\left(n-n' \right) \left(n-p \right) \left(1+b_0 \right) - \frac{4n}{3n - 2n' - p} \left(n-n' \right) \left(n-p \right) \right] b_2 \\ & + \left[-3n'^2 - \frac{6nn'^2}{3n - 2n' - p} \right] \left(1+b_0 \right) + \left[\left(3n - 2n' - p \right)^2 - 4n^2 + \frac{3\mu}{a^3} \right] a_{22} = 0. \end{split}$$

These six equations are to be solved by successive approximation; taking the first rough values of p/n and b_0 , we find from the last two pairs values for a_{21} , b_{21} , a_{22} , b_{22} ; these are substituted in the first pair and yield more approximate values of p/n and b_0 , and so on.

It will be noticed that this complexity is made necessary by the fact that a_n , b_n are found by means of a small divisor $(n-2n'+p)^2-4n^2+\frac{3\mu}{a^2}$.

LECTURE XII.

THE EVECTION AND THE MOTION OF THE APSE.

WE proceed to the conversion into numbers of the formulae of Lecture XI.

Take
$$n-n'=1,$$
 $n=1.08084,9,$ $n'=-08084,9,$ $\frac{\mu}{a^3}=1.17150,3,$ $\log a_2=7.85609,$ $\log b_2=8.00911.$

First approximation.

$$(n-p)^{2}-4n^{2}+3\frac{\mu}{\alpha^{3}}=0,$$

$$4n^{2} \qquad 4.67293,7,$$

$$-3\frac{\mu}{\alpha^{3}} \qquad -3.51450,9,$$

$$(n-p)^{2}= \qquad 1.15842,8,$$

$$n-p= \qquad 1.07630,3,$$

$$p= \qquad .00454,6,$$

$$n-2n'+p= \qquad .92369,7,$$

$$3n-2n'-p= \qquad 3.07630,3,$$

$$1+b_{0}= \qquad 1.00422,4=n/(n-p).$$

Substitute in the equation for a_{21} ,

$$\[(n-2n'+p)^2 - 4n^2 + \frac{3\mu}{\alpha^3} \] \alpha_{21} + 2(n-n')(n-p) \alpha_2 + \frac{9}{2} \frac{\mu}{\alpha^3} \alpha_2$$

$$-8 \frac{n}{n-2n'+p} (n-n')(n-p)(1+b_0) \alpha_2 - 4(n-n')(n-p)(1+b_0) b_2$$

$$+4 \frac{n}{n-2n'+p} (n-n')(n-p) b_2 + 3n'^2 (1+b_0) + 6 \frac{nn'^2}{n-2n'+p} (1+b_0) = 0.$$

The various terms give

$$2 (n-n') (n-p) \alpha_{2} \qquad 01545,45$$

$$\frac{9}{2} \frac{\mu}{a^{3}} \alpha_{2} \qquad 03784,83$$

$$-8 \frac{n}{n-2n'+p} (n-n') (n-p) (1+b_{0}) \alpha_{2} \qquad -07264,10$$

$$-4 (n-n') (n-p) (1+b_{0}) b_{2} \qquad -04415,05$$

$$4 \frac{n}{n-2n'+p} (n-n') (n-p) b_{2} \qquad 05144,47$$

$$3n'^{2} (1+b_{0}) \qquad 01969,25$$

$$6 \frac{nn'^{2}}{n-2n'+p} (1+b_{0}) \qquad 04608,58$$

$$05373,43$$

$$(n-2n'+p)^{2} \qquad 085321,6$$

$$-4n^{2}+3 \frac{\mu}{a^{3}} \qquad -1.15842,8$$

$$-30521,2$$

$$\alpha_{21} = .17605,6.$$

The equation for b_n is

$$b_{21} = \frac{2n}{n - 2n' + p} a_{21} + 4 \frac{n - n'}{(n - 2n' + p)^2} (n - p) (1 + b_0) a_2 - 2 \frac{n - n'}{(n - 2n' + p)^2} (n - p) b_2$$
$$-3 \frac{n'^2}{(n - 2n' + p)^2} (1 + b_0),$$

$$\frac{2n}{n-2n'+p} a_{21} \qquad \cdot 41201,8$$

$$4 \frac{n-n'}{(n-2n'+p)^2} (n-p) (1+b_0) a_2 \qquad \cdot 03637,95$$

$$-2 \frac{n-n'}{(n-2n'+p)^2} (n-p) b_2 \qquad - \cdot 02576,42$$

$$-3 \frac{n'^2}{(n-2n'+p)^2} (1+b_0) \qquad - \cdot 02308,03$$

$$b_2 = 39955,3$$

The equation for a_{22} is

$$\left[(3n-2n'-p)^2 - 4n^2 + 3\frac{\mu}{a^3} \right] a_{22} - 2(n-n')(n-p) a_2 + \frac{9}{2} \frac{\mu}{a^3} a_2$$

$$- 8\frac{n}{3n-2n'-p} (n-n')(n-p) (1+b_0) a_2 - 4(n-n')(n-p) (1+b_0) b_2$$

$$- 4\frac{n}{3n-2n'-p} (n-n')(n-p) b_2 - 3n'^2 (1+b_0) - 6\frac{nn'^2}{3n-2n'-p} (1+b_0) = 0.$$
Here
$$- 2(n-n')(n-p) a_2 - 01545,45$$

$$- \frac{9}{2} \frac{\mu}{a^3} a_2 - 03784,83$$

$$- 8\frac{n}{3n-2n'-p} (n-n')(n-p) (1+b_0) a_2 - 02181,13$$

$$- 4(n-n')(n-p) (1+b_0) b_2 - 04415,05$$

$$- 4\frac{n}{3n-2n'-p} (n-n')(n-p) b_2 - 01544,69$$

$$- 3n'^2 (1+b_0) - 01969,25$$

$$- 6\frac{nn'^2}{3n-2n'-p} (1+b_0) - 01969,25$$

$$- 6\frac{nn'^2}{3n-2n'-p} (1+b_0) - 01383,78$$

$$- \frac{09254,52}{946363,4}$$

$$- 4n^2 + 3\frac{\mu}{a^3} - 115842,8$$

$$- \frac{830520,6}{830520,6}$$

$$a_{22} = 01114,30.$$

And

$$b_{22} = 2 \frac{n}{3n - 2n' - p} a_{22} + 4 \frac{n - n'}{(3n - 2n' - p)^{2}} (n - p) (1 + b_{0}) a_{2}$$

$$+ 2 \frac{n - n'}{(3n - 2n' - p)^{2}} (n - p) b_{2} + 3 \frac{n'^{2}}{(3n - 2n' - p)^{2}} (1 + b_{0}),$$

$$2 \frac{n}{3n - 2n' - p} a_{22} \qquad 00783,011$$

$$4 \frac{n - n'}{(3n - 2n' - p)^{2}} (n - p) (1 + b_{0}) a_{2} \qquad 00327,988$$

$$2 \frac{n - n'}{(3n - 2n' - p)^{2}} (n - p) b_{2} \qquad 00232,283$$

$$3 \frac{n'^{2}}{(3n - 2n' - p)^{2}} (1 + b_{0}) \qquad 00208,086$$

$$b_{22} = 01551,37$$

Second Approximation. The complete equation for n-p is,

$$(n-p)^{2}-4n^{2}+3\frac{\mu}{a^{3}}+12\frac{nn'^{2}}{n-p}b_{2}(1+b_{0})+2(n-n')(n-2n'+p)[a_{2}a_{21}-b_{2}b_{n}]$$

$$+\frac{9}{2}\frac{\mu}{a^{3}}[a_{3}a_{21}+a_{2}a_{22}]+\frac{3}{2}n'^{2}[b_{21}+b_{22}]+2(n-n')(3n-2n'-p)[a_{2}a_{22}-b_{2}b_{22}]$$

$$+4\frac{n}{n-p}(n-n')(n-2n'-p)[b_{2}a_{21}-a_{2}b_{21}]$$

$$-4\frac{n}{n-p}(n-n')(3n-2n'-p)[b_{2}a_{22}-a_{2}b_{22}]$$

$$+3\frac{nn'^{2}}{n-p}[b_{21}-b_{22}]=0.$$

$$-4n^{2}+3\frac{\mu}{a^{3}} -1\cdot15842.8$$

$$12\frac{nn'^{2}}{n-p}b_{2}(1+b_{0}) \cdot 00080.8$$

$$2(n-n')(n-2n'+p)[a_{2}a_{21}-b_{2}b_{21}] -00520.1$$

$$\frac{9}{2}\frac{\mu}{a^{3}}[a_{2}a_{21}+a_{2}a_{22}] \cdot 00708.4$$

$$\frac{3}{2}n'^{2}[b_{21}+b_{22}] \cdot 00406.9$$

$$2(n-n')(3n-2n'-p)[a_{2}a_{22}-b_{2}b_{22}] -00048.2$$

$$4\frac{n}{n-p}(n-n')(n-2n'+p)[b_{2}a_{21}-a_{2}b_{21}] -00397.5$$

$$-4\frac{n}{n-p}(n-n')(3n-2n'-p)[b_{2}a_{2}-a_{2}b_{2}] - 00003,0$$

$$3\frac{nn'^{2}}{n-p}[b_{2}-b_{2}] - 00756,1$$

$$(n-p)^{2} = 1.14859,4$$

$$n-p=1.07172,5$$

$$p=00912,4$$

$$p:n=00844,2.$$

Apply these numbers in the equation for $1 + b_0$:—

$$1 + b_{0} = \frac{n}{n - p} - 3 \frac{n^{2}}{(n - p)^{2}} b_{2} (1 + b_{0}) - \frac{n - n'}{(n - p)^{2}} (n - 2n' + p) [b_{2}a_{21} - a_{2}b_{21}]$$

$$+ \frac{n - n'}{(n - p)^{2}} (3n - 2n' - p) [b_{2}a_{22} - a_{2}b_{22}] - \frac{3}{4} \frac{n^{2}}{(n - p)^{2}} [b_{21} - b_{22}],$$

$$\frac{n}{n - p} \qquad 1 \cdot 00851, 33$$

$$- 3 \frac{n^{2}}{(n - p)^{2}} b_{2} (1 + b_{0}) \qquad - 00017, 51$$

$$- \frac{n - n'}{(n - p)^{2}} (n - 2n' + p) [b_{2}a_{21} - a_{2}b_{21}] \qquad 00086, 55$$

$$\frac{n - n'}{(n - p)^{2}} (3n - 2n' - p) [b_{2}a_{22} - a_{2}b_{22}] \qquad 00000, 64$$

$$- \frac{3}{4} \frac{n^{2}}{(n - p)^{2}} [b_{21} - b_{22}] \qquad - 00163, 92$$

$$1 + b_{0} = \frac{1 \cdot 00757, 1}{1 \cdot 00757, 1}$$

Continuing the approximation for a_{21} , b_{21} , a_{22} , b_{22} the various terms found are the following:—

.01538,88	divisor	01538,88	divisor
03784,83	.86169,5	03784,83	9.43549,4
-07221,53	-1.15842,8	-02182,34	-1.15842,8
04410,93	$- \cdot 29673,3$	-0.04410,93	8.27706,6
.05097,33		-0.01540,41	
.01975,81		-01975,82	
· 04 601,14	$\alpha_{21} = .18082,0$	-0.01390,46	$a_{22} = .01118,03$
05365,53		09254,01	

42108,0	.00786,805
03598,79	.00328,659
-02540,22	.00231,985
-02292,94	.00209,403
$b_{21} = -40873,6$	$b_{22} = 01556,85$

Third Approximation. We find

$$\begin{array}{cccc} \cdot 42128,90 & \cdot 00786,881 \\ \cdot 03597,92 & \cdot 00328,671 \\ - \cdot 02539,43 & \cdot 00231,978 \\ - \cdot 02292,60 & \cdot 00209,430 \\ b_{21} = & \cdot 40894,8 & b_{22} = \cdot 01556,96 \end{array}$$

Fourth Approximation.

The values already found for the remaining quantities are sufficiently exact.

These numbers give, taking after Hansen,

$$e (1+b_0) = .05491$$

$$e = .05449$$

$$2 (1+b_0) e = .10982, 0 = .22651'' \cdot 9$$

$$a_{21} e = .00986, 03$$

$$b_{22} e = .02228, 44 = .4596'' \cdot 6$$

$$a_{22} e = .00060, 93$$

$$b_{22} e = .00084, 85 = .175'' \cdot 1,$$

and taking the Moon's mean annual motion 17325593", the annual motion of the apse is

$$148202'' = 41^{\circ} 10' 2''$$
.

LECTURE XIII.

THE MOTION OF THE APSE, AND THE CHANGE OF THE ECCENTRICITY.

WE have seen that when the eccentricity of the Moon's orbit is not considered we may write

$$\frac{1}{r} = \frac{1}{a} \left[1 + a_2 \cos 2 \left(\theta - \theta' \right) \right],$$

$$H = na^2 \left[1 + h_2 \cos 2 \left(\theta - \theta' \right) \right],$$

$$a_2 = \frac{3}{2} m^2 \cdot \frac{2 - m}{1 - m} \cdot \frac{1}{3 - 8m + \frac{11}{2} m^2}; \quad h_2 = \frac{3}{4} \frac{m^2}{1 - m}.$$

where

Let us introduce the two new arbitraries e, w by writing

$$\begin{split} H &= h n \alpha^2 \left[1 + h_2 \cos \left(2 - 2m \right) \theta \right], \\ \frac{1}{r} &= \frac{1}{h^2 \alpha} \left[1 + a_2 \cos \left(2 - 2m \right) \theta + e \cos \left(\theta - \varpi \right) \right], \end{split}$$

where h is a third arbitrary, which may be chosen to suit our convenience; it must be unity when e=0.

Then
$$\begin{aligned} \frac{dH}{d\theta} &= \frac{dH}{dt} \cdot \frac{dt}{d\theta} = -\frac{3}{2} \, m^2 n^2 r^2 \sin 2 \, (\theta - \theta') \frac{dt}{d\theta} \\ &= -\frac{3}{2} \, m^2 n^2 \frac{r^4}{H} \left[\sin \left(2 - 2m \right) \theta + 4me \cos \left(2 - 2m \right) \theta \sin \left(\theta - \varpi \right) \right] \\ &= -\frac{3}{2} \, m^2 n^2 \, \frac{h^3 a^4}{h n a^3} \left[1 - \left(4a_2 + h_2 \right) \cos \left(2 - 2m \right) \theta - 4e \cos \left(\theta - \varpi \right) \right] \\ &\times \left[\sin \left(2 - 2m \right) \theta + 4me \cos \left(2 - 2m \right) \theta \sin \left(\theta - \varpi \right) \right], \end{aligned}$$

and also

$$\frac{dH}{d\theta} = \frac{dh}{d\theta} n\alpha^{2} \left[1 + h_{2} \cos \left(2 - 2m \right) \theta \right] - n\alpha^{2} h \left(2 - 2m \right) h_{2} \sin \left(2 - 2m \right) \theta.$$

Now we may put $h = 1 + \eta$, where η vanishes with e. Neglecting powers of e above the first

$$\frac{d\eta}{d\theta} = \frac{dh}{d\theta} = 3m^2 (1+m) e \sin \left(\overline{1-2m}\theta + \varpi\right) + 3m^2 (1-m) e \sin \left(\overline{3-2m}\theta - \varpi\right) - 9m^2 \eta \sin \left(2-2m\right)\theta.$$

Neglect at first the last term:

$$\eta = -3m^2 \frac{1+m}{1-2m} e \cos\left(\overline{1-2m}\theta + \varpi\right) - 3m^2 \frac{1-m}{3-2m} e \cos\left(\overline{3-2m}\theta - \varpi\right).$$

Substitute this in the last term, and we get

$$\frac{d\eta}{d\theta} = 3m^{2} (1+m) e \sin \left(\overline{1-2m}\theta + \varpi \right) + 3m^{2} (1-m) e \sin \left(\overline{3-2m}\theta - \varpi \right) \\
+ \frac{27}{2} m^{4} \frac{2+4m-4m^{2}}{(1-2m)(3-2m)} e \sin \left(\theta - \varpi \right).$$

Now consider the other equation

$$\frac{d^{2}r}{dt^{2}} = \frac{H^{2}}{r^{3}} - \frac{\mu}{r^{2}} + \frac{1}{2}m^{2}n^{2}r + \frac{3}{2}m^{2}n^{2}r \cos 2(\theta - \theta')$$

$$= \frac{H^{2}}{r^{3}} - \frac{\mu}{r^{2}} + \frac{1}{2}m^{2}n^{2}r + \frac{3}{2}m^{2}n^{2}r \left[\cos(2 - 2m)\theta - 2me\cos(\overline{1 - 2m}\theta + \varpi) + 2me\cos(\overline{3 - 2m}\theta - \varpi)\right].$$

Differentiate the assumed expression for $\frac{1}{r}$, and let h be chosen so that the first differential coefficient shall have the same form as if h, e, ϖ were constant.

Thus

$$\frac{1}{r^2}\frac{dr}{dt} = \frac{1}{h^2\alpha}(2-2m)\,\alpha_2\sin\left(2-2m\right)\,\theta\,\frac{d\theta}{dt} + \frac{1}{h^2\alpha}\,e\sin\left(\theta-\varpi\right)\frac{d\theta}{dt}\,,$$

where

$$-\frac{2}{h}\frac{dh}{d\theta}\left[1+a_{2}\cos\left(2-2m\right)\theta\right]+\frac{de}{d\theta}\cos\left(\theta-\varpi\right)+e\frac{d\varpi}{d\theta}\sin\left(\theta-\varpi\right)=0,$$

or

$$\frac{de}{d\theta}\cos(\theta - \varpi) + e\frac{d\varpi}{d\theta}\sin(\theta - \varpi) = 6m^{2}(1+m)e\sin(\overline{1-2m}\theta + \varpi) + 6m^{2}(1-m)e\sin(\overline{3-2m}\theta - \varpi) + \left\{27m^{4}\frac{2+4m-4m^{2}}{(1-2m)(3-2m)} - 6m^{2}\alpha_{2}\right\}e\sin(\theta - \varpi),$$

$$8-2$$

and

$$\begin{split} \frac{dr}{dt} &= \frac{H}{h^2 a} \left(2 - 2m \right) a_2 \sin \left(2 - 2m \right) \theta + \frac{H}{h^2 a} e \sin \left(\theta - \varpi \right) \\ &= \frac{na}{h} \left(2 - 2m \right) a_2 \sin \left(2 - 2m \right) \theta + \frac{na}{h} \left[1 + h_2 \cos \left(2 - 2m \right) \theta \right] e \sin \left(\theta - \varpi \right), \\ \frac{d^2 r}{dt^2} &= \frac{na}{h} \left(2 - 2m \right)^2 a_2 \cos \left(2 - 2m \right) \theta \frac{d\theta}{dt} - \frac{na}{h} \left(2 - 2m \right) h_2 \sin \left(2 - 2m \right) \theta e \sin \left(\theta - \varpi \right) \frac{d\theta}{dt} \\ &+ \frac{na}{h} \left[1 + h_2 \cos \left(2 - 2m \right) \theta \right] e \cos \left(\theta - \varpi \right) \frac{d\theta}{dt} \\ &- \frac{na}{h^2} \frac{dh}{d\theta} \left(2 - 2m \right) a_2 \sin \left(2 - 2m \right) \theta \frac{d\theta}{dt} \\ &+ \frac{na}{h} \left[1 + h_2 \cos \left(2 - 2m \right) \theta \right] \left[\frac{de}{d\theta} \sin \left(\theta - \varpi \right) - e \frac{d\varpi}{d\theta} \cos \left(\theta - \varpi \right) \right] \frac{d\theta}{dt}. \end{split}$$

Multiply by r^2/n^2a^3 ; then since

$$r^{2}\frac{d\theta}{dt} = H = hn\alpha^{2} \left[1 + h_{2} \cos \left(2 - 2m \right) \theta \right]$$

we have

$$\begin{split} \frac{r^2}{n^2 a^3} \frac{d^2 r}{dt^2} &= (2 - 2m)^2 a_2 \cos \left(2 - 2m\right) \theta - (2 - 2m) h_2 \sin \left(2 - 2m\right) \theta e \sin \left(\theta - \varpi\right) \\ &+ e \cos \left(\theta - \varpi\right) + 2h_2 \cos \left(2 - 2m\right) \theta e \cos \left(\theta - \varpi\right) \\ &- \frac{1}{h} \frac{dh}{d\theta} \left(2 - 2m\right) a_2 \sin \left(2 - 2m\right) \theta \\ &+ \left[1 + h_2 \cos \left(2 - 2m\right) \theta\right]^2 \left[\frac{de}{d\theta} \sin \left(\theta - \varpi\right) - e \frac{d\varpi}{d\theta} \cos \left(\theta - \varpi\right)\right], \end{split}$$

and this is equal to

$$\begin{split} \frac{H^2}{n^2\alpha^3r} - \frac{\mu}{n^2\alpha^3} + \frac{1}{2}m^2\frac{r^3}{\alpha^3} + \frac{3}{2}m^2\frac{r^3}{\alpha^3} \big[\cos{(2-2m)}\theta - 2me\cos{(\overline{1-2m}\theta+\varpi)} \\ &+ 2me\cos{(\overline{3-2m}\theta-\varpi)}\big] \\ = \Big[1 + \frac{h_2^2}{2} + 2h_2\cos{(2-2m)}\theta\Big] \big[1 + \alpha_2\cos{(2-2m)}\theta + e\cos{(\theta-\varpi)}\big] \\ - \frac{\mu}{n^2\alpha^3} + \frac{1}{2}m^2h^6\big[1 - 3\alpha_2\cos{(2-2m)}\theta - 3e\cos{(\theta-\varpi)}\big] \\ + \frac{3}{2}m^2h^6\Big[\cos{(2-2m)}\theta + 6\alpha_2e\cos{(\theta-\varpi)} \\ - \left(\frac{3}{2} + 2m\right)e\cos{(\overline{1-2m}\theta+\varpi)} - \left(\frac{3}{2} - 2m\right)e\cos{(\overline{3-2m}\theta-\varpi)}\Big]. \end{split}$$

The terms in these two expressions which are independent of e give no new information; equating the others:—

$$-(2-2m) h_{2}e \sin (2-2m) \theta \sin (\theta-\varpi) - \frac{1}{h} \frac{dh}{d\theta} (2-2m) a_{2} \sin (2-2m) \theta$$

$$+ \left[1 + h_{2} \cos (2-2m) \theta\right]^{2} \left[\frac{de}{d\theta} \sin (\theta-\varpi) - e \frac{d\varpi}{d\theta} \cos (\theta-\varpi)\right]$$

$$= 3m^{2}\eta - \frac{3}{2} m^{2}e \cos (\theta-\varpi) + \frac{3}{2} m^{2} \left[6a_{2}e \cos (\theta-\varpi) - \frac{3}{2}e^{2m} \cos (\theta-\varpi)\right]$$

$$-\left(\frac{3}{2} + 2m\right) e \cos \left(\overline{1-2m} \theta + \varpi\right) - \left(\frac{3}{2} - 2m\right) e \cos \left(\overline{3-2m} \theta - \varpi\right)\right]$$

$$+9m^{2}\eta \cos (2-2m) \theta.$$

Reducing this expression

$$-\frac{de}{d\bar{\theta}}\sin\left(\theta - \varpi\right) + e\frac{d\varpi}{d\theta}\cos\left(\theta - \varpi\right) = \left(\frac{3}{2}m^2 - \frac{3}{8}m^4\right)e\cos\left(\theta - \varpi\right)$$

$$+\left(\frac{3}{2}m^2 + 3m^3 + \frac{63}{8}m^4\right)e\cos\left(1 - 2m\theta + \varpi\right)$$

$$+\left(3m^2 - 3m^3 + \frac{15}{8}m^4\right)e\cos\left(3 - 2m\theta - \varpi\right)$$

and from before

$$\frac{de}{d\theta}\cos(\theta - \varpi) + e\frac{d\varpi}{d\theta}\sin(\theta - \varpi) = 18m^4e\sin(\theta - \varpi) + (6m^2 + 6m^3)e\sin(\overline{1 - 2m}\theta + \varpi) + (6m^2 - 6m^3)e\sin(\overline{3 - 2m}\theta - \varpi).$$

Hence,

$$\begin{split} \frac{de}{d\theta} &= \left(-\frac{3}{4} \ m^2 \right. \right. \\ &+ \left(\frac{147}{16} \ m^4 \right) e \sin 2 \left(\theta - \varpi \right) \\ &+ \left(\frac{27}{4} \ m^2 - 3 m^3 - 3 \ m^4 \right) e \sin \left(2 - 2 m \right) \theta \\ &+ \left(-\frac{15}{4} \ m^2 - \frac{9}{2} \ m^3 - \frac{63}{16} \ m^4 \right) e \sin \left(2 m \theta - 2 \varpi \right) \\ &+ \left(\frac{3}{2} \ m^3 - \frac{3}{2} \ m^3 - \frac{15}{16} \ m^4 \right) e \sin \left(\overline{4 - 2 m} \theta - 2 \varpi \right), \end{split}$$

$$\begin{split} \frac{d\varpi}{d\theta} &= \frac{3}{4} \, m^2 + \frac{141}{16} \, m^4 + \left(-\frac{3}{4} \, m^2 \right) - \frac{147}{16} \, m^4 \right) \cos 2 \, (\theta - \varpi) \\ &+ \left(-\frac{9}{4} \, m^2 - 6 \, m^3 + \frac{39}{8} \, m^4 \right) \cos \left(2 - 2m \right) \, \theta \\ &+ \left(-\frac{15}{4} \, m^2 + \frac{9}{2} \, m^3 + \frac{63}{16} \, m^4 \right) \cos \left(2m\theta - 2\varpi \right) \\ &+ \left(-\frac{3}{2} \, m^2 + \frac{3}{2} \, m^3 + \frac{15}{16} \, m^4 \right) \cos \left(\overline{4 - 2m} \, \theta - 2\varpi \right). \end{split}$$

We notice that among these terms, one is of long period, approximately semiannual, and will become of greater relative importance than the others on integration.

To effect this integration, assume

$$\Pi = \varpi + \alpha \sin 2 (\theta - \varpi) + \beta \sin (2 - 2m) \theta + \gamma \sin \{(4 - 2m) \theta - 2\varpi\},\$$

so that the mean motion of π is the same as that of ϖ , and substitute in the equation.

Then

$$\begin{split} \frac{d\Pi}{d\theta} &= \frac{3}{4} m^2 + \frac{141}{16} m^4 - \frac{3}{4} m^2 \alpha + \frac{3}{2} m^2 \gamma \\ &+ \left[\frac{3}{4} m^2 - \frac{147}{16} m^4 + 2\alpha - \frac{3}{2} m^2 \alpha + \frac{15}{4} m^4 \beta - \frac{9}{4} m^2 \gamma \right] \cos 2 \left(\theta - \varpi \right) \\ &+ \left[\frac{9}{4} m^2 - 6 m^3 + \frac{39}{8} m^4 + (2 - 2m) \beta - 6 m^2 \alpha - \frac{3}{4} m^2 \gamma \right] \cos \left(2 - 2m \right) \theta \\ &+ \left[\frac{15}{4} m^2 + \frac{9}{2} m^3 + \frac{63}{16} m^4 - \frac{9}{4} m^2 \alpha \right] \cos \left(2 m \theta - 2 \Pi \right) \\ &+ \left[-\frac{3}{2} m^2 + \frac{3}{2} m^3 + \frac{15}{16} m^4 + (4 - 2m) \gamma - \frac{9}{4} m^2 \alpha - \frac{3}{2} m^2 \gamma \right] \cos \left\{ (4 - 2m) \theta - 2\varpi \right\}, \end{split}$$

so that if we take

$$\alpha = -\frac{3}{8} m^{2} + \frac{219}{32} m^{4},$$

$$\beta = -\frac{9}{8} m^{2} + \frac{15}{8} m^{3} - \frac{99}{64} m^{4},$$

$$\gamma = \frac{3}{8} m^{2} - \frac{3}{16} m^{3} - \frac{51}{128} m^{4},$$

we have

$$\frac{d\Pi}{d\theta} = \frac{3}{4} m^2 + \frac{309}{32} m^4 + \left\lceil \frac{15}{4} m^2 + \frac{9}{2} m^3 + \frac{45}{8} m^4 \right\rceil \cos{\left(2m\theta - 2\Pi\right)}.$$

If we write

$$m\theta - \Pi = \psi$$
,

this becomes

$$\frac{d\psi}{d\theta} = a - b \cos 2\psi,$$

where

$$a = m - \frac{3}{4}m^2 - \frac{309}{32}m^4$$
, $b = \frac{15}{4}m^2 + \frac{9}{2}m^3 + \frac{45}{8}m^4$,

and the solution is

$$\tan^{-1}\left(\sqrt{\frac{a+b}{a-b}}\tan\psi\right) = \theta\sqrt{a^2-b^2} + \text{constant.}$$

Hence if we denote by $\frac{d\boldsymbol{\varpi}_{\boldsymbol{\theta}}}{d\theta}$ the mean rate of change of $\boldsymbol{\varpi}$, we have

$$m - \frac{d\mathbf{\omega}_0}{d\theta} = \sqrt{a^2 - b^2}$$

$$= m - \frac{3}{4} m^2 - \frac{225}{32} m^3 - \frac{4071}{128} m^4,$$

$$\frac{d\mathbf{\omega}_0}{d\theta} = \frac{3}{4} m^2 + \frac{225}{32} m^3 + \frac{4071}{128} m^4.$$

or

We observe that a+b and a-b are the rates of separation of the Sun from the apse when the Sun and the apse are at quadratures and syzygies with one another, respectively,—that is if we take Π for the longitude of the apse, or, what is the same thing, if we ignore small terms of short period. Hence the mean rate of separation of the Sun from the apse is a mean proportional between its rates when at quadratures and syzygies respectively with the apse*.

[* This is the analogue for the case of the apse of Machin and Pemberton's theorem on the motion of the node, inserted in the third edition of the *Principia* as a scholium to prop. XXXIII., lib. III. See some notes by Adams in Brewster's *Life of Newton*, Appendix XXX.]

LECTURE XIV.

THE LATITUDE AND THE MOTION OF THE NODE.

Let us first treat this problem on the supposition that the latitude is so small that its square may be neglected. The equation of motion, taken from Lecture II., may be written

$$\frac{d^2z}{dt^2} = -\frac{z}{r} \left[\frac{\mu}{r^2} + \frac{m'r}{r'^3} \left(1 + \frac{E - M}{E + M} \frac{r}{r'} 3 \cos \omega \right) \right],$$

where $z = r \sin (\text{latitude})$ and the cube of s is omitted; or neglecting the parallactic terms

 $\frac{d^2z}{dt^2} = -z \left[\frac{\mu}{r^3} + \frac{m'}{r'^3} \right].$

The value of μ/r^3 may be considered known by the operations which have determined the motion in an orbit coinciding with the ecliptic; that is to say,

$$\frac{\mu}{r^3} = \frac{\mu}{\alpha^3} \left[1 + \frac{3}{2} \alpha_2^2 + 3\alpha_2 \cos 2\psi + \left(\frac{3}{2} \alpha_2^2 + 3\alpha_4 \right) \cos 4\psi \right],$$

where a has the definition of Lectures IV, V; or numerically, taking

$$n-n'=1,$$

$$\frac{\mu}{r^3}$$
 = 1.17150,3 + .02523,0 cos 2t + .00025,15 cos 4t.

And

$$\frac{m'}{x'^3} = n'^2 = .00653,6.$$

Hence

$$\frac{d^3z}{dt^2} = -z \left[1.17803.9 + 0.02523.0 \cos 2t + 0.00025.15 \cos 4t \right].$$

Let us now consider the equation

$$\frac{d^2z}{dt^2} + Pz = 0,$$

where

$$P = q_0 + 2q_1 \cos 2t + 2q_2 \cos 4t,$$

in which q_1 , q_2 are supposed small.

Suppose a term in z to be $c\cos(kt+\beta)$; when this is substituted in Pz there will arise terms

$$c\cos(\overline{k-2}t+\beta)$$
 $c\cos(\overline{k+2}t+\beta)$
 $c\cos(\overline{k-4}t+\beta)$ $c\cos(\overline{k+4}t+\beta)$.

Let us therefore assume

$$z = c \left[\cos (kt + \beta) + c_1 \cos (k + 2t + \beta) + c_2 \cos (k + 4t + \beta) + \dots + c_{-1} \cos (k - 2t + \beta) + c_{-2} \cos (k - 4t + \beta) + \dots \right]$$

c is arbitrary; we have to determine k, c_1 , c_{-1} , &c.

Substitute and equate coefficients:

$$\dots + [-(k-4)^{2} + q_{0}] c_{-2} + q_{1}c_{-1} + q_{2} + \dots$$

$$= 0$$

$$\dots + q_{1}c_{-2} + [-(k-2)^{2} + q_{0}] c_{-1} + q_{1} + q_{2}c_{1} + \dots$$

$$= 0$$

$$\dots + q_{1}c_{-2} + q_{1}c_{-1} + [-k^{2} + q_{0}] + q_{1}c_{1} + q_{2}c_{2} + \dots$$

$$= 0$$

$$\dots + q_{2}c_{-1} + q_{1} + [-(k+2)^{2} + q_{0}] c_{1} + q_{1}c_{2} + \dots$$

$$= 0$$

$$\dots + q_{2}c_{-1} + q_{1} + [-(k+2)^{2} + q_{0}] c_{1} + q_{1}c_{2} + \dots$$

$$= 0$$

$$\dots + q_{2}c_{-1} + q_{2}c_{-1} + q_{1}c_{1} + [-(k+4)^{2} + q_{0}] c_{2} + \dots$$

$$= 0$$

If q_1, q_2, \ldots are neglected, we have simply

$$-k^2+q_0=0$$
,

this is a first approximation to the value of k.

Taking q_1 into account and neglecting q_2

$$c_{-1} = -\frac{q_1}{q_0 - (k-2)^2},$$

$$c_1 = -\frac{q_1}{q_0 - (k+2)^2}.$$

In the actual case considered we notice that q_0 does not differ widely from unity. Hence k is nearly equal to unity also, and the denominator in c_{-1} is small, and makes c_{-1} much more important than c_1 .

If we substitute these values in the third equation above, we have

$$k^{2}-q_{0}+q_{1}^{2}\left\{\frac{1}{q_{0}-(k+2)^{2}}+\frac{1}{q_{0}-(k-2)^{2}}\right\}=0,$$

whence

$$(k^2 - q_0)^3 - 8(k^2 - q_0)^2 - \{16(q_0 - 1) + 2q_1^2\}(k^2 - q_0) - 8q_1^2 = 0,$$

which may be put under the form

$$(k^2 - q_0)^2 + 2(q_0 - 1)(k^2 - q_0) = -q_1^2 + \frac{1}{4}q_1^2(k^2 - q_0) + \frac{1}{8}(k^2 - q_0)^3,$$

whence

$$(k^2 - 1)^2 = (q_0 - 1)^2 - q_1^2 - \frac{1}{4} q_1^2 (k^2 - q_0) + \frac{1}{8} (k^2 - q_0)^3.$$

With this equation we can approximate very rapidly to the value of k. Taking as a first approximation

$$k^2 - q_0 = 0,$$

substitute this value of k in the small terms and we get as a second approximation

k = 1.08516,9.

Whence the ratio of the retrograde motion of the node to the Moon's mean motion is

$$k/n - 1 = g - 1 = 00399,7,$$

where g is written for k/n. This value is very correct. Taking the Moon's mean annual motion as 17325593", the resulting annual retrograde motion of the node is

Next find the values of the coefficients c_{-1} , c_1 , c_{-2} , c_2 . We have

$$q_1 = 01261,5,$$
 $q_0 - (k-2)^2 = 34112,3,$
 $q_0 - (k+2)^2 = -8.34022,8;$

whence as a first approximation

$$c_{-1} = -.03698,19,$$
 $c_{1} = .00151,26.$

xiv.]

THE LATITUDE AND THE MOTION OF THE NODE.

67

Hence

$$q_1c_{-1} + q_2 = -.00034,02,$$
 $q_1c_1 + q_2 = .00014,49,$

and

$$q_0 - (k-4)^2 = -7.31821,$$
 $q_0 - (k+4)^2 = -24.6809,$

whence

$$c_{-2} = -.00004,650,$$

 $c_{3} = .00000,587.$

A second approximation to c_{-1} , c_1 gives

$$[-(k-2)^{2} + q_{0}] c_{-1} = -(q_{1} + q_{2}c_{1} + q_{1}c_{-2}),$$

$$[-(k+2)^{2} + q_{0}] c_{1} = -(q_{1} + q_{2}c_{-1} + q_{1}c_{2});$$

with the above values

$$q_1 + q_2c_1 + q_1c_{-2} = .01261,47,$$
 $q_1 + q_2c_{-1} + q_1c_2 = .01261,03,$
$$c_{-1} = -.03698,00,$$

$$c_{1} = .00151,20.$$

so that

LECTURE XV.

MOTION IN AN ORBIT OF ANY INCLINATION.

Let us consider the change in the plane of the orbit produced in an indefinitely small time dt by the action of a given disturbing force. Let Z be the resolved part of the disturbing force at any time in a direction perpendicular to the plane in which the body is moving at the instant. Imagine the force Z to act by impulses at the small intervals of time dt, then Zdt will be the indefinitely small velocity generated by the force Z in the time dt, in the direction perpendicular to the plane of orbit at the instant.

Let FP be the radius vector and P the position of the body at the instant. Also let PT represent the velocity at the instant in magnitude

and direction; then if Tt be taken perpendicular to the plane FPT and equal to Zdt, the velocity and its direction after the impulse will be represented by Pt, and the new plane of the orbit by FPt. Draw Tm perpendicular to FP and join tm; then tmT is the angle through which the plane of the orbit has been turned about the radius vector FP in the indefinitely short time dt.

$$tmT = \frac{tT}{Tm} = \frac{Zdt}{v},$$

where v is the resolved part of the velocity at P perpendicular to the radius vector. But

$$H = vr$$
;

hence the angle through which the orbit is turned in an indefinitely short time dt is

$$\frac{rZ}{H}dt$$
.

To find the corresponding changes in the elements that determine the plane of the orbit, namely, the inclination of the orbit to a fixed plane, and the longitude of the node on that plane. Let NPQ be the great circle which

represents the plane of the orbit at the time t, NR the plane of reference, usually the plane of the ecliptic, P the position of the body at the same time, and let i = PNR, the inclination, and let N be the longitude of the node.

Let nPq be the position of the orbit at time t+dt.

Take $NQ = 90^{\circ}$; draw nm perpendicular to NPQ and qQR perpendicular to NR; then QR = i; and by what we have just proved

$$NPn = \frac{Zr}{H}dt.$$

Therefore

$$nm = \frac{Zr}{H} dt \cdot \sin \theta, \quad qQ = \frac{Zr}{H} dt \cdot \cos \theta,$$

where

$$\theta = nP$$
.

But

$$nm = Nn \sin i = \sin i \, dN$$
; $qQ = di$.

Therefore

$$\begin{split} \frac{di}{dt} &= \frac{Zr\cos\theta}{H}\,,\\ \frac{dN}{dt} &= \frac{Zr\sin\theta}{H\sin i}\,, \end{split}$$

which give the changes of the elements required.

Now let NMS be a spherical triangle, the centre of the sphere being G, the centre of gravity of the Earth and Moon; and let GS, GM, GN

point respectively to the Sun, the Moon, and the node of the Moon's orbit upon the ecliptic, so that NM is the plane of the Moon's orbit and NS the ecliptic. Let $MS = \omega$, $NS = \theta'$, $NM = \theta$, of which the first is identical with the quantity denoted by the same symbol in Lecture II, but the second and third are not so.

Then, following Lecture II, the forces on the Moon are

$$\frac{\mu}{r^2} + \frac{m'r}{r'^3} \qquad \text{in } MG$$

$$-\frac{m'r}{a'^3} 3 \cos \omega, \quad \text{in } SG,$$

if we ignore the parallactic terms.

This latter may be resolved into

$$-\frac{m'r}{r'^{s}} 3 \cos \omega \times (\cos \theta \cos \theta' + \sin \theta \sin \theta' \cos i)$$

$$\frac{m'r}{r'^{s}} 3 \cos \omega \times (\sin \theta \cos \theta' - \cos \theta \sin \theta' \cos i)$$

$$\frac{m'r}{r'^{s}} 3 \cos \omega \times \sin \theta' \sin i$$

in MG,

perpendicular to MG in the plane of the orbit, perpendicular to the

perpendicular to the plane of the orbit.

Now

$$\cos \omega = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos i = \cos (\theta - \theta') \cos^2 \frac{i}{2} + \cos (\theta + \theta') \sin^2 \frac{i}{2},$$
$$\sin \theta \cos \theta' - \cos \theta \sin \theta' \cos i = \sin (\theta - \theta') \cos^2 \frac{i}{2} + \sin (\theta + \theta') \sin^2 \frac{i}{2}.$$

Hence we have the following expressions for the three forces:

$$P = \frac{\mu}{r^{2}} + \frac{m'r}{r'^{3}}$$

$$-\frac{3}{2} \frac{m'r}{r'^{3}} \left[\left\{ 1 + \cos 2 \left(\theta - \theta' \right) \right\} \cos^{4} \frac{i}{2} + \left\{ \cos 2 \theta + \cos 2 \theta' \right\} 2 \cos^{2} \frac{i}{2} \sin^{2} \frac{i}{2} + \left\{ 1 + \cos 2 \left(\theta + \theta' \right) \right\} \sin^{4} \frac{i}{2} \right],$$

$$T = \frac{3}{2} \frac{m'r}{r'^{3}} \left[\sin 2 \left(\theta - \theta' \right) \cos^{4} \frac{i}{2} + \sin 2 \theta \cdot 2 \cos^{2} \frac{i}{2} \sin^{2} \frac{i}{2} + \sin 2 \left(\theta + \theta' \right) \sin^{4} \frac{i}{2} \right],$$

$$Z = \frac{3}{2} \frac{m'r}{r'^{3}} \sin i \left[-\sin \left(\theta - 2 \theta' \right) \cos^{2} \frac{i}{2} + \sin \theta \cos i + \sin \left(\theta + 2 \theta' \right) \sin^{2} \frac{i}{2} \right].$$

Now we have seen

$$\frac{di}{dt} = -\frac{Zr\cos\theta}{H}, \qquad \frac{dN}{dt} = -\frac{Zr\sin\theta}{H\sin i};$$

also, the rate of advance of the node along the orbit is

$$-\frac{Zr\sin\theta}{H\tan i}.$$

Thus the equations of motion become

$$\frac{H}{r^2} = \frac{d\theta}{dt} - \frac{Zr \sin \theta}{H \tan i},$$
 together with
$$\frac{d^2r}{dt^2} - \frac{H^2}{r^3} = -P,$$

$$\frac{dH}{dt} = -rT.$$

LECTURE XVI.

MOTION IN AN ORBIT OF ANY INCLINATION, (continued).

To satisfy the equation at the end of Lecture XV, assume

$$r = \alpha \left[1 + A_1 \cos 2 \left(\theta - \theta' \right) + A_2 \cos 2 \theta + A_3 \cos 2 \theta' + A_4 \cos 2 \left(\theta + \theta' \right) \right],$$

neglecting the square of the disturbing force and the eccentricity; thus in the small terms we write

$$r = \alpha$$
, $\frac{d\theta}{dt} = n$, $r' = \alpha'$, $\frac{d\theta'}{dt} = n'$.

Hence

$$-\frac{d^{2}r}{dt^{2}} = n^{2}a \left[(2-2m)^{2} A_{1} \cos 2 (\theta - \theta') + 4A_{2} \cos 2\theta + 4m^{2} A_{3} \cos 2\theta' + (2+2m)^{2} A_{4} \cos 2 (\theta + \theta') \right];$$

substitute in the equation

$$H^2 = r^3 P + r^3 \frac{d^2 r}{dt^2};$$

therefore

$$\begin{split} H^2 &= \quad \mu \alpha \left[1 + A_1 \cos 2 \left(\theta - \theta' \right) + A_2 \cos 2 \theta + A_3 \cos 2 \theta' + A_4 \cos 2 \left(\theta + \theta' \right) \right] \\ &+ m^2 n^2 \alpha^4 \\ &- \frac{3}{2} \, m^2 n^2 \alpha^4 \left[\left\{ 1 + \cos 2 \left(\theta - \theta' \right) \right\} \cos^4 \frac{i}{2} + \left\{ \cos 2 \theta + \cos 2 \theta' \right\} 2 \cos^2 \frac{i}{2} \sin^2 \frac{i}{2} \right. \\ &\qquad \qquad + \left\{ 1 + \cos 2 \left(\theta + \theta' \right) \right\} \sin^4 \frac{i}{2} \right] \\ &- n^2 \alpha^4 \left[\left(2 - 2 m \right)^2 A_1 \cos 2 \left(\theta - \theta' \right) + 4 A_2 \cos 2 \theta + 4 m^2 A_3 \cos 2 \theta' \right. \\ &\qquad \qquad + \left. \left(2 + 2 m \right)^2 A_4 \cos 2 \left(\theta + \theta' \right) \right]. \end{split}$$

Again, we have the equation

$$\frac{dH}{dt} = -rT$$
,

which may be written

$$H\frac{dH}{dt} = -\frac{3}{2}n^3m^2\alpha^4\left[\sin 2\left(\theta - \theta'\right)\cos^4\frac{i}{2} + \sin 2\theta \cdot 2\sin^2\frac{i}{2}\cos^2\frac{i}{2} + \sin 2\left(\theta + \theta'\right)\sin^4\frac{i}{2}\right].$$

Substitute for μa its approximate value n^2a^4 in the small terms; and we find from these two equations

$$-(1-m)A_1 + 4(1-m)^3 A_1 + \frac{3}{2} m^2 (1-m) \cos^4 \frac{i}{2} = -\frac{3}{2} m^2 \cos^4 \frac{i}{2},$$

$$-A_2 + 4A_2 + \frac{3}{2} m^2 \cdot 2 \cos^2 \frac{i}{2} \sin \frac{i}{2} = -\frac{3}{2} m^2 \cdot 2 \cos^2 \frac{i}{2} \sin^2 \frac{i}{2},$$

$$-mA_3 + 4m^3 A_3 + \frac{3}{2} m^3 \cdot 2 \cos^2 \frac{i}{2} \sin^2 \frac{i}{2} = 0,$$

$$-(1+m)A_4 + 4(1+m)^3 A_4 + \frac{3}{2} m^2 (1+m) \sin^4 \frac{i}{2} = -\frac{3}{2} m^2 \sin^4 \frac{i}{2}.$$

Therefore

$$\begin{split} A_1 &= -\frac{3}{2} \, m^2 \cos^4 \! \frac{i}{2} \, \frac{2-m}{(1-m) \, (1-2m) \, (3-2m)} \,, \\ A_2 &= -2 \, m^2 \cos^2 \! \frac{i}{2} \sin^2 \! \frac{i}{2} \,, \\ A_3 &= 3 \, m^2 \cos^2 \! \frac{i}{2} \sin^2 \! \frac{i}{2} \, \frac{1}{(1-2m)(1+2m)} \,, \\ A_4 &= -\frac{3}{2} \, m^2 \sin^4 \! \frac{i}{2} \, \frac{2+m}{(1+m) \, (1+2m) \, (3+2m)} \,, \end{split}$$

and

$$\begin{split} H^{2} &= n^{2}\alpha^{4} \bigg[1 + m^{2} - \frac{3}{2} \, m^{2} \bigg(\cos^{4} \frac{i}{2} + \sin^{4} \frac{i}{2} \bigg) \\ &+ \frac{3}{2} \, \frac{m^{2}}{1 - m} \cos^{4} \frac{i}{2} \cos 2 \, (\theta - \theta') + 3m \, \cos^{2} \frac{i}{2} \sin^{2} \frac{i}{2} \cos 2 \theta + \frac{3}{2} \, \frac{m^{2}}{1 + m} \sin^{4} \frac{i}{2} \cos 2 \, (\theta + \theta') \bigg]; \end{split}$$

where α is defined by

$$\mu = n^2 \alpha^3.$$

If we preferred to define a so that the constant term in H^2 were equal to n^2a^4 , we should have

$$n^{2}\alpha^{4} = \mu\alpha + m^{2}n^{2}\alpha^{4} - \frac{3}{2}m^{2}n^{2}\alpha^{4} \left(\cos^{4}\frac{i}{2} + \sin^{4}\frac{i}{2}\right),$$

$$\mu = n^{2}\alpha^{3} \left[1 + \frac{1}{2}m^{2} - 3m^{2}\sin^{2}\frac{i}{2}\cos^{2}\frac{i}{2}\right].$$

or

Let us next find the latitude and the motion of the node.

Suppose that

$$i=i_0+\Delta i,$$

$$N = N_0 + \Delta N_1$$

in which Δi , ΔN are small, i_0 is a constant, and N_0 varies slowly in proportion to the time, so that we may assume

$$\begin{split} \frac{dN_0}{dt} &= -qn, \\ \Delta N &= N_1 \sin 2 \left(\theta - \theta'\right) + N_2 \sin 2\theta + N_3 \sin 2\theta' + N_4 \sin 2 \left(\theta + \theta'\right), \\ \Delta i &= I_1 \cos 2 \left(\theta - \theta'\right) + I_2 \cos 2\theta + I_3 \cos 2\theta' + I_4 \cos 2 \left(\theta + \theta'\right). \end{split}$$

Then remembering that

$$\frac{d\theta'}{dt} = mn - \frac{dN}{dt},$$

an expression that must be used in the terms of chief importance, we have

$$\frac{di}{dt} = \frac{d\Delta i}{dt} = -2 (1 - m) n I_1 \sin 2 (\theta - \theta') - 2n I_2 \sin 2\theta$$

$$-2 \left(m - \frac{1}{n} \frac{dN}{dt}\right) n I_3 \sin 2\theta' - 2 (1 + m) n I_4 \sin 2 (\theta + \theta'),$$

$$\frac{dN}{dt} = \frac{dN_0}{dt} + \frac{d\Delta N}{dt} = -qn + 2 (1 - m) n N_1 \cos 2 (\theta - \theta') + 2n N_2 \cos 2\theta$$

$$+2 \left(m - \frac{1}{n} \frac{dN}{dt}\right) n N_3 \cos 2\theta' + 2 (1 + m) n N_4 \cos 2 (\theta + \theta')$$

$$+ \frac{dN_3}{di} \frac{di}{dt} \sin 2\theta',$$

in which the last term will be found to be required to get the constant q correctly to the order m^s .

These must be equated to $-\frac{Zr\cos\theta}{H}$, $-\frac{Zr\sin\theta}{H\sin i}$ respectively.

Hence

$$-q - 2mN_{s}^{2} - mI_{s}\frac{dN_{s}}{di} = -\frac{3}{4}m^{2}\cos i;$$

therefore as a first approximation

$$q = \frac{3}{4} m^2 \cos i;$$

hence

$$-2(1-m) I_{1} = \frac{3}{4} m^{2} \sin i \cos^{2} \frac{i}{2}, \qquad I_{1} = -\frac{3}{8} \frac{m^{2}}{1-m} \sin i \cos^{2} \frac{i}{2},$$

$$-2I_{2} = -\frac{3}{4} m^{2} \sin i \cos i, \qquad I_{2} = \frac{3}{8} m^{2} \sin i \cos i,$$

$$-2\left(m + \frac{3}{4} m^{2} \cos i\right) I_{3} = -\frac{3}{4} m^{2} \sin i, \qquad I_{3} = \frac{3}{8} \frac{m \sin i}{1 + \frac{3}{4} m \cos i},$$

$$-2(1+m) I_{4} = -\frac{3}{4} m^{2} \sin i \sin^{2} \frac{i}{2}, \qquad I_{4} = \frac{3}{8} \frac{m^{2}}{1+m} \sin i \sin^{2} \frac{i}{2},$$

and

$$2(1-m)N_1 = -\frac{3}{4}m^2\cos^2\frac{i}{2}, \qquad N_1 = -\frac{3}{8}\frac{m^2}{1-m}\cos^2\frac{i}{2}, \qquad \qquad N_2 = -\frac{3}{8}m^2\cos i, \qquad N_2 = \frac{3}{8}m^2\cos i, \qquad \qquad N_3 = \frac{3}{8}\frac{m\cos i}{1+\frac{3}{4}m\cos i}, \qquad \qquad N_4 = \frac{3}{8}\frac{m\cos i}{1+\frac{3}{4}m\cos i}, \qquad \qquad N_4 = \frac{3}{8}\frac{m^2}{1+m}\sin^2\frac{i}{2}.$$

Substitute above for the quantities I_3 , N_3 and we get the second approximation to q,

$$q = \frac{3}{4} m^2 \cos i - \frac{9}{32} m^3 \cos^2 i + \frac{9}{64} m^3 \sin^2 i.$$

It will be observed that I_3 , N_3 are of lower order than the other coefficients, so that in order to obtain them correctly to the same order as the others we were obliged to retain small terms in $\frac{d\theta'}{dt}$ arising from the variability of N.

If we take the variable plane defined by the longitude of the node N_0 and the inclination i_0 as the plane to which the position of the Moon is referred, we have the latitude of the Moon above this plane

$$= \Delta i \sin \theta - \Delta N \sin i \cos \theta$$

$$= \frac{3}{8} m \sin i \cos^2 \frac{i}{2} \left[\frac{1}{1 + \frac{3}{4} m \cos i} + \frac{m}{1 - m} \right] \sin (\theta - 2\theta')$$

$$- \frac{3}{8} m^2 \sin i \cos i \sin \theta$$

$$+ \frac{3}{8} m \sin i \sin^2 \frac{i}{2} \left[\frac{1}{1 + \frac{3}{4} m \cos i} - \frac{m}{1 + m} \right] \sin (\theta + 2\theta').$$

LECTURE XVII.

ON HILL'S METHOD OF TREATING THE LUNAR THEORY.

Let us suppose the Moon to move in the plane of the ecliptic, and let us refer its motion to rectangular axes in rotation, the rotation being such that the axis of x passes always through the mean position of the Sun; that is, the axes rotate with angular velocity n', and if we suppose the Sun describes a circular orbit about the origin, its coordinates are

$$x' = \alpha'$$
, $y' = 0$.

Let x, y be the coordinates of the Moon.

Then the disturbing forces of the Sun upon the Moon, relative to the Earth are

$$-\frac{m'}{\rho^2}\frac{x-\alpha'}{\rho}-\frac{m'}{\alpha^{\frac{1}{2}}}, \quad -\frac{m'}{\rho^2}\frac{y}{\rho}$$

parallel to the axes of x and y respectively, where

$$\rho^2 = (x - a')^2 + y^2,$$

and the forces of the Earth on the Moon relative to the Earth are

$$-\frac{\mu}{r^2}\frac{x}{r}, \quad -\frac{\mu}{r^2}\frac{y}{r},$$

where

$$r^2 = x^2 + y^2.$$

Now these forces may be written

$$\frac{d\Omega}{dx}$$
, $\frac{d\Omega}{dy}$,

where

$$\Omega = \frac{\mu}{r} + \frac{m'}{\rho} - \frac{m'x}{\alpha'^2}.$$

But
$$\frac{1}{\rho} = \frac{1}{\alpha'} + \frac{x}{\alpha'^2} + \frac{1}{\alpha'^3} \left(x^2 - \frac{1}{2} y^2 \right) + \frac{1}{\alpha'^4} \left(x^3 - \frac{3}{2} x y^2 \right) + \dots$$
Hence
$$\Omega = \frac{\mu}{r} + \frac{m'}{\alpha'^3} \left(x^2 - \frac{1}{2} y^2 \right) + \frac{m'}{\alpha'^4} \left(x^3 - \frac{3}{2} x y^2 \right) + \dots$$

We have tacitly assumed the origin to be at the centre of the Earth; if we prefer to place it at the centre of gravity of the Earth and Moon, the necessary change is effected by multiplying the last terms, which correspond to the Parallactic Inequalities, by (E-M)/(E+M).

Equating these forces to the accelerations of the Moon parallel to the coordinate axes, we have the equations of motion in the form

$$\frac{d^2x}{dt^2} - 2n'\frac{dy}{dt} - n'^2x = \frac{d\Omega}{dx},$$
$$\frac{d^2y}{dt^2} + 2n'\frac{dx}{dt} - n'^2y = \frac{d\Omega}{dy},$$

or, as they may be written,

$$\frac{d^{2}x}{dt^{2}} - 2n'\frac{dy}{dt} = \frac{dR}{dx},$$

$$\frac{d^{2}y}{dt^{2}} + 2n'\frac{dx}{dt} = \frac{dR}{dy},$$

$$R = \Omega + \frac{1}{2}n'^{2}(x^{2} + y^{2})$$

$$= \frac{\mu}{y} + \frac{3}{2}n'^{2}x^{2} + \frac{n'^{2}}{y}(x^{3} - \frac{3}{2}xy^{2}) + \dots$$

where

Now suppose we have found values of x and y which satisfy this pair of equations and which involve two arbitrary constants. This may be accomplished by taking assumed developments

$$x = \sum a_i \cos i (t + \gamma),$$

$$y = \sum b_i \sin i (t + \gamma),$$

substituting in the equations, and equating coefficients of the various terms. The solution found will include the Variation and the Parallactic Inequalities. Let it be required to amend this solution by the introduction of the remaining two arbitrary constants that are required for a complete solution.

Let the additional terms that we seek be δx , δy , which we shall suppose so small that their squares and products may be neglected, let us consider first the terms which are multiplied by the first power of one of the new arbitraries, the original particular solution corresponding to the case in which this arbitrary is zero.

Then δx , δy are determined by the equations

$$\begin{split} \frac{d^2 \delta x}{dt^2} - 2n' \frac{d \delta y}{dt} &= \frac{d^2 R}{dx^2} \, \delta x + \frac{d^2 R}{dx \, dy} \, \delta y + X, \\ \frac{d^2 \delta y}{dt^2} + 2n' \frac{d \delta x}{dt} &= \frac{d^2 R}{dx \, dy} \, \delta x + \frac{d^2 R}{dy^2} \, \delta y + Y, \end{split}$$

where X, Y are supposed known functions of x, y or of t, and have been added here to include disturbing causes not allowed for in the above form of R.

Multiply the original equations by $\frac{dx}{dt}$, $\frac{dy}{dt}$ and add:

$$\begin{split} \frac{d^2x}{dt^2}\frac{dx}{dt} + \frac{d^2y}{dt^2}\frac{dy}{dt} &= \frac{dR}{dx}\frac{dx}{dt} + \frac{dR}{dy}\frac{dy}{dt} \\ &= \frac{dR}{dt}\,, \end{split}$$

since x, y are the only functions of t that R involves; whence

$$\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 = 2R + C,$$

where C is an arbitrary constant; this is the integral known as Jacobi's Integral.

Let us write

$$\frac{dx}{dt} = V \cos \phi, \quad \frac{dy}{dt} = V \sin \phi ;$$

then we have

$$V^2 = 2R + C;$$

and from the original equations themselves

$$\begin{split} \frac{dV}{dt} &= \frac{d^2x}{dt^2}\cos\phi + \frac{d^2y}{dt^2}\sin\phi \\ &= \left(\frac{d^2x}{dt^2} - 2n'\frac{dy}{dt}\right)\cos\phi + \left(\frac{d^2y}{dt^2} + 2n'\frac{dx}{dt}\right)\sin\phi \\ &= \frac{dR}{dx}\cos\phi + \frac{dR}{dy}\sin\phi \; ; \end{split}$$

LECT. XVII.

and

$$\begin{split} V\frac{d\phi}{dt} &= -\frac{d^2x}{dt^2}\sin\phi + \frac{d^2y}{dt^2}\cos\phi \\ &= -\left(\frac{d^2x}{dt^2} - 2n'\frac{dy}{dt}\right)\sin\phi + \left(\frac{d^2y}{dt^2} + 2n'\frac{dx}{dt}\right)\cos\phi \\ &+ 2n'\left(\frac{dx}{dt}\cos\phi + \frac{dy}{dt}\sin\phi\right), \\ V\left(\frac{d\phi}{dt} + 2n'\right) &= -\frac{dR}{dx}\sin\phi + \frac{dR}{dy}\cos\phi. \end{split}$$

or

And from these, differentiating and substituting for $\frac{dx}{dt}$, $\frac{dy}{dt}$, we get

$$\begin{split} \frac{d^2V}{dt^2} - V \frac{d\phi}{dt} \left(\frac{d\phi}{dt} + 2n' \right) &= V \left[-\frac{d^2R}{dx^2} \cos^2\phi + 2 \frac{d^2R}{dxdy} \cos\phi \sin\phi + \frac{d^2R}{dy^2} \sin^2\phi \right], \\ V \frac{d^2\phi}{dt^2} + 2 \frac{dV}{dt} \left(\frac{d\phi}{dt} + -n' \right) &= V \left[-\frac{d^2R}{dx^2} \sin\phi \cos\phi + \frac{d^2R}{dxdy} (\cos^2\phi - \sin^2\phi) \right. \\ &+ \frac{d^2R}{dy^2} \sin\phi \cos\phi \right]. \end{split}$$

LECTURE XVIII.

ON HILL'S METHOD OF TREATING THE LUNAR THEORY, (continued).

The equations for δx , δy are

$$\begin{split} \frac{d^{2}\delta x}{dt^{2}} - 2n'\frac{d\delta y}{dt} &= \frac{d^{2}R}{dx^{2}}\,\delta x + \frac{d^{2}R}{dx\,dy}\,\delta y + X,\\ \frac{d^{2}\delta y}{dt^{2}} + 2n'\frac{d\delta x}{dt} &= \frac{d^{2}R}{dx\,dy}\,\delta x + \frac{d^{2}R}{dy^{2}}\,\delta y + Y; \end{split}$$

the equations for x, y are

$$\begin{split} \frac{d^2x}{dt^2} - 2n' \, \frac{dy}{dt} &= \frac{dR}{dx} \,, \\ \frac{d^2y}{dt^2} + 2n' \, \frac{dx}{dt} &= \frac{dR}{dy} \,. \end{split}$$

Multiply the former pair by $\frac{dx}{dt}$, $\frac{dy}{dt}$ respectively, and the latter pair by $\frac{d\delta x}{dt}$, $\frac{d\delta y}{dt}$, and add all together; we get

$$\frac{dx}{dt}\frac{d^2\delta x}{dt^2} + \frac{d^2x}{dt^2}\frac{d\delta x}{dt} + \frac{dy}{dt}\frac{d^2\delta y}{dt^2} + \frac{d^2y}{dt^2}\frac{d\delta y}{dt}$$

$$= \left(\frac{d^2R}{dx^2}\frac{dx}{dt} + \frac{d^2R}{dxdy}\frac{dy}{dt}\right)\delta x + \left(\frac{d^2R}{dxdy}\frac{dx}{dt} + \frac{d^2R}{dy^2}\frac{dy}{dt}\right)\delta y$$

$$+ \frac{dR}{dx}\frac{d\delta x}{dt} + \frac{dR}{dy}\frac{d\delta y}{dt} + X\frac{dx}{dt} + Y\frac{dy}{dt}.$$
Now
$$\frac{d^2R}{dx^2}\frac{dx}{dt} + \frac{d^2R}{dxdy}\frac{dy}{dt} = \frac{d}{dt}\frac{dR}{dx},$$

$$\frac{d^2R}{dxdy}\frac{dx}{dt} + \frac{d^2R}{dy^2}\frac{dy}{dt} = \frac{d}{dt}\frac{dR}{dy}.$$

Then our equation may be integrated

$$\frac{dx}{dt}\frac{d\delta x}{dt} + \frac{dy}{dt}\frac{d\delta y}{dt} = \frac{dR}{dx}\delta x + \frac{dR}{dy}\delta y + T,$$

$$T = \left\{ \left\langle \frac{dx}{dt} + \frac{dx}{dt} \right\rangle \right\}_{dt}$$

where

or

$$T = \int \left(X \frac{dx}{dt} + Y \frac{dy}{dt} \right) dt,$$

so that T is a known function of t, which involves an arbitrary constant.

Now let us assume

$$\delta x = v \cos \phi - w \sin \phi,$$

$$\delta y = v \sin \phi + w \cos \phi.$$

Substitute above for $\frac{dx}{dt}$, $\frac{dy}{dt}$, $\frac{d\delta x}{dt}$, $\frac{d\delta y}{dt}$; we find

$$V\left(\frac{dv}{dt} - w\frac{d\phi}{dt}\right) = \left(\frac{dR}{dx}\cos\phi + \frac{dR}{dy}\sin\phi\right)v + \left(-\frac{dR}{dx}\sin\phi + \frac{dR}{dy}\cos\phi\right)w + T.$$

But
$$\frac{dR}{dx}\cos\phi + \frac{dR}{dy}\sin\phi = \frac{dV}{dt},$$
$$-\frac{dR}{dx}\sin\phi + \frac{dR}{dy}\cos\phi = V\left(\frac{d\phi}{dt} + 2n'\right).$$

 $\label{eq:therefore} {\cal V} \begin{pmatrix} dv \\ \bar{dt} - w \frac{d\phi}{\bar{dt}} \end{pmatrix} = \frac{d\,V}{dt}\,v + \,V \left(\frac{d\phi}{dt} + 2n'\right)w + T,$

 $V \frac{dv}{dt} - \frac{dV}{dt}v = 2wV\left(\frac{d\phi}{dt} + n'\right) + T,$

whence $\frac{v}{V} = \int \frac{2}{V} \left(\frac{d\phi}{dt} + n' \right) w dt + \int \frac{T}{V^2} dt.$

An arbitrary constant is included on the right. This equation shews that when w is known, v can be found; it remains to determine w.

Now by actual differentiation

$$\cos \phi \, \frac{d \, \delta x}{dt} + \sin \phi \, \frac{d \, \delta y}{dt} = \frac{dv}{dt} - w \frac{d \phi}{dt}$$
$$-\sin \phi \, \frac{d^2 \delta x}{dt^2} + \cos \phi \, \frac{d^2 \delta y}{dt^2} = \frac{d^2 w}{dt^2} + 2 \, \frac{dv}{dt} \frac{d \phi}{dt} - w \left(\frac{d \phi}{dt}\right)^2 + v \frac{d^2 \phi}{dt^2}.$$

Also multiplying the differential equations for δx , δy by $-\sin \phi$, $\cos \phi$, respectively and adding

$$-\sin\phi \frac{d^2\delta x}{dt^2} + \cos\phi \frac{d^2\delta y}{dt^2} + 2n'\left(\cos\phi \frac{d\delta x}{dt} + \sin\phi \frac{d\delta y}{dt}\right)$$

$$= \left(-\frac{d^2R}{dx^2}\sin\phi + \frac{d^2R}{dxdy}\cos\phi\right)\delta x + \left(-\frac{d^2R}{dxdy}\sin\phi + \frac{d^2R}{dy^2}\cos\phi\right)\delta y$$

$$-X\sin\phi + Y\cos\phi.$$

Substitute and we find

$$\frac{d^{2}w}{dt^{2}} + 2\frac{dv}{dt}\frac{d\phi}{dt} - w\left(\frac{d\phi}{dt}\right)^{2} + v\frac{d^{2}\phi}{dt^{2}} + 2n'\left(\frac{dv}{dt} - w\frac{d\phi}{dt}\right)$$

$$= v\left[-\frac{d^{2}R}{dx^{2}}\sin\phi\cos\phi + \frac{d^{2}R}{dxdy}\left(\cos^{2}\phi - \sin^{2}\phi\right) + \frac{d^{2}R}{dy^{2}}\sin\phi\cos\phi\right]$$

$$+ w\left[\frac{d^{2}R}{dx^{2}}\sin^{2}\phi - 2\frac{d^{2}R}{dxdy}\sin\phi\cos\phi + \frac{d^{2}R}{dy^{2}}\cos^{2}\phi\right]$$

$$- X\sin\phi + Y\cos\phi.$$

Now we have seen

$$\frac{dv}{dt} = \frac{v}{V}\frac{dV}{dt} + 2\left(\frac{d\phi}{dt} + n'\right)w + \frac{T}{V}.$$

Substitute for $2\left(\frac{d\phi}{dt}+n'\right)\frac{dv}{dt}$ on the left.

We get

$$\frac{d^{2}w}{dt^{2}} + v \left[\frac{d^{2}\phi}{dt^{2}} + \frac{2}{V} \frac{dV}{dt} \left(\frac{d\phi}{dt} + n' \right) \right] + w \left[4 \left(\frac{d\phi}{dt} + n' \right)^{2} - \left(\frac{d\phi}{dt} \right)^{2} - 2n' \frac{d\phi}{dt} \right]
+ 2 \left(\frac{d\phi}{dt} + n' \right) \frac{T}{V}
= v \left[-\frac{d^{2}R}{dx^{2}} \sin \phi \cos \phi + \frac{d^{2}R}{dxdy} (\cos^{2}\phi - \sin^{2}\phi) + \frac{d^{2}R}{dy^{2}} \sin \phi \cos \phi \right]
+ w \left[\frac{d^{2}R}{dx^{2}} \sin^{2}\phi - 2 \frac{d^{2}R}{dxdy} \sin \phi \cos \phi + \frac{d^{2}R}{dy^{2}} \cos^{2}\phi \right]
- X \sin \phi + Y \cos \phi.$$
11—2

But by the equations proved at the end of Lecture XVII., the terms in v cancel one another, and we are left with the equation for w:

$$\begin{split} \frac{d^2w}{dt^2} + w \left[3 \left(\frac{d\phi}{dt} \right)^2 + 6n' \frac{d\phi}{dt} + 4n'^2 - \frac{d^2R}{dx^2} \sin^2\phi + 2 \frac{d^2R}{dxdy} \sin\phi \cos\phi - \frac{d^2R}{dy^2} \cos^2\phi \right] \\ &= -2 \left(\frac{d\phi}{dt} + n' \right) \frac{T}{V} - X \sin\phi + Y \cos\phi. \end{split}$$

Or since

$$\cos \phi = \frac{1}{V} \frac{dx}{dt}, \quad \sin \phi = \frac{1}{V} \frac{dy}{dt}$$
$$\frac{d\phi}{dt} + 2n' = \frac{1}{V} \left(-\frac{dR}{dx} \sin \phi + \frac{dR}{dy} \cos \phi \right)$$

the coefficient of w is

$$\begin{split} &\frac{3}{V^4}\bigg(-\frac{dR}{dx}\frac{dy}{dt}+\frac{dR}{dy}\frac{dx}{dt}\bigg)^2-6\frac{n'}{V^2}\bigg(-\frac{dR}{dx}\frac{dy}{dt}+\frac{dR}{dy}\frac{dx}{dt}\bigg)+4n'^2\\ &-\frac{1}{V^2}\bigg\{\frac{d^2R}{dx^2}\bigg(\frac{dy}{dt}\bigg)^2-2\frac{d^2R}{dxdy}\frac{dx}{dt}\frac{dy}{dt}+\frac{d^2R}{dy^2}\bigg(\frac{dx}{dt}\bigg)^2\bigg\}\\ &=P, \text{ say}. \end{split}$$

This function P is a known function of t; it may be seen that if

$$x = \sum a_i \cos i \ (t + \gamma),$$

$$y = \sum b_i \sin i \ (t + \gamma),$$

then P may be developed in the form

$$P = \Sigma A_i \cos i (t + \gamma).$$

Hence if we omit the terms X, Y, due to other disturbances not yet allowed for, the equation for w assumes the form

$$\frac{d^2w}{dt^2} + w[A_0 + A_1\cos(t+\gamma) + A_2\cos 2(t+\gamma) + \dots] = 0.$$

This is identical in form with the equation treated in Lecture XIV., to find the motion of the node. The value of w may be found by the method there employed, and the value of v deduced from it.

DEVELOPMENT OF A CERTAIN INFINITE DETERMINANT ARISING IN RELATION TO THE MOTION OF THE NODE OF THE MOON'S ORBIT.

[The aim of the following pages will be made clear by an extract from a paper of Adams "On the Motion of the Moon's Node" (Mon. Not. XXXVIII. Nov. 1877; Works, Vol. I., p. 181). This paper was evoked by Dr G. W. Hill's now famous work on the Lunar Perigee. It appears that one part of the process invented by Dr Hill for evaluating the motion of the perigee had already been found by Adams to yield the motion of the node to a high order with rapid approximation. After describing, in the paper in question, his views of the most advantageous method of treating the Lunar Theory, and mentioning his early determination of the Variation terms, he continues:—"In the next place I proceeded to consider the inequalities of latitude, or rather the disturbed value of the Moon's coordinate perpendicular to the Ecliptic, omitting the eccentricities as before, and taking account only of the first power of γ .

"In this case the differential equation for finding z presents itself naturally in the form to which Mr Hill reduces, with so much skill, the equations depending on the first power of the eccentricity of the Moon's orbit.

"In solving this equation I fell upon the same infinite determinant as that considered by Mr Hill, and I developed it in a similar manner in a series of powers and products of small quantities, the coefficient of each such term being given in a finite form.

"The terms of the fourth order in the determinant were thus obtained by me on the 26th December, 1868. I then laid aside the further investigation of this subject for a considerable time, but resumed it in 1874 86

and 1875, and on the 2nd of December in the latter year I carried the approximation to the value of the determinant as far as terms of the twelfth order, or to the same extent as that which has been attained by Mr Hill......

"The equation which I had obtained by equating the above-mentioned determinant to zero differed in form from Mr Hill's, and on making the reductions required to make the two results immediately comparable, I found that there was an agreement between them except in one of the twelfth order. On examining my work I found that this arose from a simple error of transcription in a portion of my work, and that when this had been rectified my result was in entire accordance with Mr Hill's.

"The calculations by which I have found the value of the determinant are very different in detail from those required by Mr Hill's method, and appear to be considerably more laborious. I have not yet had time to copy out and arrange the details of the calculations from my old papers, but I hope soon to do so, thinking that they may not be without interest for the Society."

This intention was not fulfilled; the details referred to appear for the first time in the following pages.]

[With the date 26 Dec. 1868 we find the following.]

If we call $\frac{1}{r^3} + \frac{m'}{r^{/3}} = 1 + a_0 + a_1 \cos kt$, where k = 2 - 2m, the equation for finding z is*

$$\frac{d^2z}{dt^2} + z\left(1 + a_0 + a_1\cos kt\right) = 0.$$

If now

$$z = c_0 \sin gt + c_1 \sin (g+k) t + c_2 \sin (g+2k) t + \dots$$
$$+ c_{-1} \sin (g-k) t + c_{-2} \sin (g-2k) t + \dots$$

we obtain by equating to zero the coefficient of each sine in the result of substituting in the above differential equation

$$\begin{split} 0 &= \ldots \left[(g-2k)^2 - (1+\alpha_{\scriptscriptstyle 0}) \right] c_{\scriptscriptstyle -2} - \frac{1}{2} \, \alpha_{\scriptscriptstyle 1} c_{\scriptscriptstyle -1} \\ 0 &= \qquad -\frac{1}{2} \, \alpha_{\scriptscriptstyle 1} c_{\scriptscriptstyle -2} \qquad \qquad + \left[(g-k)^2 - (1+\alpha_{\scriptscriptstyle 0}) \right] c_{\scriptscriptstyle -1} \qquad -\frac{1}{2} \, \alpha_{\scriptscriptstyle 1} c_{\scriptscriptstyle 0} \end{split}$$

* [See Lecture XIV. on Lunar Theory, p. 64.]

$$0 = -\frac{1}{2} \alpha_1 c_{-1} + [g^2 - (1 + \alpha_0)] c_0 - \frac{1}{2} \alpha_1 c_1$$

$$0 = -\frac{1}{2} \alpha_1 c_0 + [(g + k)^2 - (1 + \alpha_0)] c_1 - \frac{1}{2} \alpha_1 c_2$$

$$0 = -\frac{1}{2} \alpha_1 c_1 + [(g + 2k)^2 - (1 + \alpha_0)] c_2 \dots$$

•••••••••••••

Or if
$$\frac{1+\alpha_0}{k^2} = \kappa^2, \quad \frac{1}{2} \frac{\alpha_1}{k^2} = \alpha, \quad \frac{g}{k} = \gamma,$$

the equations become

......

$$0 = \dots [(\gamma - 2)^{2} - \kappa^{2}] c_{-2} - ac_{-1} \dots$$

$$0 = -ac_{-2} + [(\gamma - 1)^{2} - \kappa^{2}] c_{-1} - ac_{0}$$

$$0 = -ac_{-1} + [\gamma^{2} - \kappa^{2}] c_{0} - ac_{1}$$

$$0 = -ac_{0} + [(\gamma + 1)^{2} - \kappa^{2}] c_{1} - ac_{2}$$

$$0 = -ac_{1} + [(\gamma + 2)^{2} - \kappa^{2}] c_{2} - \dots$$

Now the determinant which equated to zero gives the values of γ , is, omitting terms of the order α^4 ,

$$1 - \frac{\alpha^2}{[(\gamma - 2)^2 - \kappa^2][(\gamma - 1)^2 - \kappa^2]} - \frac{\alpha^2}{[(\gamma - 1)^2 - \kappa^2][\gamma^2 - \kappa^2]} - \frac{\alpha^2}{[\gamma^2 - \kappa^2][(\gamma + 1)^2 - \kappa^2]} - &c. ad inf.,$$

whence we find on separating each term into partial fractions

$$0 = 1 + \frac{\alpha^2}{\kappa (2\kappa - 1)(2\kappa + 1)}$$

$$\left[\dots \frac{1}{\gamma - 3 - \kappa} + \frac{1}{\gamma - 2 - \kappa} + \frac{1}{\gamma - 1 - \kappa} + \frac{1}{\gamma - \kappa} + \frac{1}{\gamma + 1 - \kappa} + \dots \right]$$

$$\dots - \frac{1}{\gamma - 3 + \kappa} - \frac{1}{\gamma - 2 + \kappa} - \frac{1}{\gamma - 1 + \kappa} - \frac{1}{\gamma + \kappa} - \frac{1}{\gamma + 1 + \kappa} - \dots \right].$$

But we have

$$\cot \theta = \frac{1}{\theta} + \frac{1}{\theta + \pi} + \frac{1}{\theta + 2\pi} + \dots$$
$$+ \frac{1}{\theta - \pi} + \frac{1}{\theta - 2\pi} + \dots$$

Hence the above equation becomes

$$0 = 1 + \frac{\alpha^2}{\kappa (2\kappa - 1)(2\kappa + 1)} \{ \pi \cot (\gamma - \kappa) \pi - \pi \cot (\gamma + \kappa) \pi \},$$

which gives

88

$$\cos 2\gamma \pi = \cos 2\kappa \pi + \frac{2\pi\alpha^2}{\kappa (2\kappa - 1)(2\kappa + 1)} \sin 2\kappa \pi.$$

(26 Dec. 68.)

[On comparing the above with the paper "On the Motion of the Moon's Node, &c." Mon. Not. Nov. 1877, it will be seen that in addition to the convention there adopted as to the unit of distance, the unit of time is so chosen that n=1; also $2\kappa=q$, $4\alpha=q_1$, $2\gamma=g$. In the subsequent work this change of notation will be introduced.

The subject was resumed in 1874, when we find the following entries in the Diary:—

Feb. 4.—Both yesterday and this morning while in bed thought over the mode of treating the linear differential equations which occur in my way of investigating the lunar inequalities. Think I see my way. In the morning worked at one part of the subject.

Feb. 7.—Worked nearly all the morning at formation of terms of 4th order of my determinant. In evening finished calculation of terms of 4th order.

Feb. 10.—Thought over method of treating mean motion of apse similarly to that of node by means of a differential equation of 2nd order. Began operations by transforming fundamental equations into one with $\phi = \theta - n't$ for independent variable.

Feb. 11.—Went on with my investigation so as to form the differential equation of 3rd order in Δv and the theory of its reduction to the 2nd order.

Feb. 23.—Thought of a simpler mode of treating the differential equation for $\Delta\theta$. In evening worked out reduction of equation to 2nd order in another way.

With respect to the method adopted for developing the determinant to higher orders, we notice that we may either proceed entirely along the diagonal, which gives unity, or forming a minor determinant with any number of consecutive constituents of the diagonal of the infinite

determinant for its diagonal, we may replace the unit which the diagonal of this minor would contribute by any other element of the minor.]

If (p) denote the term

$$\frac{\alpha^2}{[(\gamma+p)^2-\kappa^2][(\gamma+p+1)^2-\kappa^2]} = \frac{q_1^2}{[(g+2p)^2-q^2][(g+2p+2)^2-q^2]},$$

and (p, q) the product of two such terms, in which we suppose $p \neq q$, then the terms of the fourth order in the determinant will be given by

$$\Sigma(p, q) - \Sigma(p, p+1),$$

and it is easy to see that this is

$$\frac{1}{2} \{ \Sigma(p) \}^2 - \frac{1}{2} \Sigma(p, p) - \Sigma(p, p+1).$$

We then find by separating into partial fractions the different expressions that occur

$$\begin{split} \Sigma\left(\,p,\,p\right) &= \frac{q_{_{1}}^{_{4}}}{32q^{_{2}}} \frac{q^{_{2}}+1}{(q^{_{2}}-1)^{_{2}}} \left\{ \Sigma \frac{1}{(g+2p-q)^{_{2}}} + \Sigma \frac{1}{(g+2p+q)^{_{2}}} \right\} \\ &- \frac{q_{_{1}}^{_{4}}(5q^{_{2}}-1)}{32q^{_{3}}(q^{_{2}}-1)^{_{3}}} \left\{ \Sigma \frac{1}{g+2p-q} \right. \\ &- \Sigma \frac{1}{g+2p+q} \right\}, \end{split}$$

and
$$\Sigma(p, p+1) = \Sigma \frac{q_1^4}{[(g+2p-2)^2-q^2][(g+2p)^2-q^2]^2[(g+2p+2)^2-q^2]}$$

$$= -\frac{q_1^4}{64q^2(q^2-1)} \left\{ \Sigma \frac{1}{(g+2p-q)^2} + \Sigma \frac{1}{(g+2p+q)^2} \right\}$$

$$-\frac{q_1^4(5q^2-2)}{32q^3(q^2-4)(q^2-1)^2} \left\{ \Sigma \frac{1}{g+2p-q} - \Sigma \frac{1}{g+2p+q} \right\}.$$

[The method by which these expressions were obtained involved considerable labour,—probably the reason why the developments were carried no further at this date; for another method, see below.]

Now substitute

$$\begin{split} \Sigma \frac{1}{g+2p-q} &= \frac{\pi}{2} \cot (g-q) \frac{\pi}{2} \; ; \qquad \qquad \Sigma \frac{1}{g+2p+q} &= \frac{\pi}{2} \cot (g+q) \frac{\pi}{2} \; ; \\ \Sigma \frac{1}{(g+2p-q)^2} &= \frac{\pi^2}{4} \csc^2 (g-q) \frac{\pi}{4} \; ; \qquad \qquad \Sigma \frac{1}{(g+2p+q)^2} &= \frac{\pi^2}{4} \csc^2 (g+q) \frac{\pi}{2} \; ; \\ &= \frac{\pi^2}{4} \left(1 + \cot^2 (g-q) \frac{\pi}{4} \right) \; ; \qquad \qquad = \frac{\pi^2}{4} \left(1 + \cot^2 (g+q) \frac{\pi}{4} \right) \; . \end{split}$$

Thus

$$\begin{split} \Sigma(p,p) &= \frac{\pi^2 q_1^4 (q^2+1)}{128 q^2 (q^2-1)^2} & \left\{ \csc^2(\mathbf{g}-q) \frac{\pi}{2} + \csc^2(\mathbf{g}+q) \frac{\pi}{2} \right\} \\ & - \frac{\pi q_1^4 (5q^2-1)}{64 q^3 (q^2-1)^3} & \left\{ \cot(\mathbf{g}-q) \frac{\pi}{2} - \cot(\mathbf{g}+q) \frac{\pi}{2} \right\}; \\ \Sigma(p,p+1) &= -\frac{\pi^2 q_1^4}{256 q^2 (q^2-1)} & \left\{ \csc^2(\mathbf{g}-q) \frac{\pi}{2} + \csc^2(\mathbf{g}+q) \frac{\pi}{2} \right\} \\ & - \frac{\pi q_1^4 (5q^2-2)}{64 q^3 (q^2-4) (q^2-1)^2} \left\{ \cot(\mathbf{g}-q) \frac{\pi}{2} - \cot(\mathbf{g}+q) \frac{\pi}{2} \right\}; \\ \text{and} \\ \{ \Sigma(p) \}^2 &= \frac{\pi^2 q_1^4}{64 q^2 (q^2-1)^2} \left\{ \cot^2(\mathbf{g}-q) \frac{\pi}{2} + \cot^2(\mathbf{g}+q) \frac{\pi}{2} - 2\cot(\mathbf{g}-q) \frac{\pi}{2} \cot(\mathbf{g}+q) \frac{\pi}{2} \right\} \end{split}$$

$$= \frac{\pi^{2}q_{1}^{4}}{64q^{2}(q^{2}-1)^{2}} \left\{ \csc^{2}(g-q) \frac{\pi}{2} + \csc^{2}(g+q) \frac{\pi}{2} - \cot(g-q) \frac{\pi}{2} - \cot(g+q) \frac{\pi}{2} \right\}.$$

Hence

$$\Sigma(p, q) - \Sigma(p, p+1) = \frac{\pi q_1^4 (15q^4 - 35q^2 + 8)}{128q^3 (q^2 - 1)^3 (q^2 - 4)} \left\{ \cot(g - q) \frac{\pi}{2} - \cot(g + q) \frac{\pi}{2} \right\},\,$$

the terms in $\csc^2(g-q)\frac{\pi}{2} + \csc^2(g+q)\frac{\pi}{2}$ disappearing, as might have been expected.

Hence the determinant, to the fourth order in α , or the eighth order in m, equated to zero gives

$$0 = 1 + \frac{\pi q_1^2}{8q(q^2 - 1)} \qquad \left\{ \cot \left(g - q \right) \frac{\pi}{2} - \cot \left(g + q \right) \frac{\pi}{2} \right\}$$

$$+ \frac{\pi q_1^4 \left(15q^4 - 35q^2 + 8 \right)}{128q^3 (q^2 - 1)^3 (q^2 - 4)} \left\{ \cot \left(g - q \right) \frac{\pi}{2} - \cot \left(g + q \right) \frac{\pi}{2} \right\}$$

$$- \frac{\pi^2 q_1^4 \cot q\pi}{64q^2 (q^2 - 1)^2} \qquad \left\{ \cot \left(g - q \right) \frac{\pi}{2} - \cot \left(g + q \right) \frac{\pi}{2} \right\}.$$

But

$$\cot (g-q)\frac{\pi}{2} - \cot (g+q)\frac{\pi}{2} = \frac{2\sin q\pi}{\cos q\pi - \cos g\pi};$$

therefore we have

$$\cos g\pi = \cos q\pi \left\{ 1 - \frac{\pi^2 q_1^4}{32q^2 (q^2 - 1)^2} \right\}$$

$$+ \sin q\pi \left\{ \frac{\pi q_1^2}{4q (q^2 - 1)} + \frac{\pi q_1^4 (15q^4 - 35q^2 + 8)}{64q^3 (q^2 - 1)^3 (q^2 - 4)} \right\}.$$
(9 Feb. 74.)

[The work was resumed in 1875 when we find the following.]

We will now try the simpler mode of finding $\Sigma(p, p)$, &c., which occurred to me on the evening of Wednesday November 3, when on my way to attend the Ray meeting.

We have

$$(p) = \frac{a^2}{[(\gamma+p)^2-\kappa^2][(\gamma+p+1)^2-\kappa^2]},$$

so that

$$(p, p) = \frac{a^4}{[(\gamma+p)^2 - \kappa^2]^2 [(\gamma+p+1)^2 - \kappa^2]^2}.$$

Let $\gamma + p - \kappa = x$; then

$$(p, p) = a^4x^{-2}(2\kappa + x)^{-2}(1+x)^{-2}(2\kappa + 1+x)^{-2}$$

Develope this in ascending powers of x,

coefficient of
$$x^{-2} = \frac{\alpha^4}{4\kappa^2 (2\kappa + 1)^2}$$
,

$$\text{coefficient of } x^{\scriptscriptstyle -1} = \frac{\alpha^{\scriptscriptstyle 4}}{4\kappa^{\scriptscriptstyle 2}\left(2\kappa+1\right)^{\scriptscriptstyle 2}} \left[\, -\frac{2}{2\kappa} - 2 - \frac{2}{2\kappa+1} \, \right] = -\frac{\alpha^{\scriptscriptstyle 4}\left(4\kappa^{\scriptscriptstyle 2} + 6\kappa + 1\right)}{4\kappa^{\scriptscriptstyle 3}\left(2\kappa+1\right)^{\scriptscriptstyle 3}} \, .$$

Next let $\gamma + p + 1 + \kappa = x$; then

$$(p, p) = a^4 (x-1)^{-2} (x-2\kappa-1)^{-2} x^{-2} (x-2\kappa)^{-2}$$

In this

coefficient of
$$x^{-2} = \frac{\alpha^4}{4\kappa^2 (2\kappa + 1)^2}$$
,

coefficient of
$$x^{-1} = \frac{\alpha^4}{4\kappa^2 (2\kappa + 1)^2} \left[2 + \frac{2}{2\kappa + 1} + \frac{2}{2\kappa} \right] = \frac{\alpha^4 (4\kappa^2 + 6\kappa + 1)}{4\kappa^3 (2\kappa + 1)^3}.$$

Also it is evident that the other two pairs of terms merely differ from the above in having $-\kappa$ in place of κ .

Again

$$\Sigma \frac{1}{\gamma + p + 1 + \kappa} = \Sigma \frac{1}{\gamma + p + \kappa},$$

$$\Sigma \frac{1}{\gamma + p + 1 - \kappa} = \Sigma \frac{1}{\gamma + p - \kappa}.$$

Hence we have

$$\begin{split} \Sigma\left(p,\;p\right) &= \left\{ \begin{array}{cc} \frac{\alpha^4}{4\kappa^2(2\kappa+1)^2} &+ \frac{\alpha^4}{4\kappa^2(2\kappa-1)^2} \end{array} \right\} \Sigma \frac{1}{(\gamma+p-\kappa)^2} \\ &+ \left\{ \begin{array}{cc} \frac{\alpha^4}{4\kappa^2(2\kappa+1)^2} &+ \frac{\alpha^4}{4\kappa^2(2\kappa-1)^2} \end{array} \right\} \Sigma \frac{1}{(\gamma+p+\kappa)^2} \\ &+ \left\{ -\frac{\alpha^4(4\kappa^2+6\kappa+1)}{4\kappa^3(2\kappa+1)^3} + \frac{\alpha^4(4\kappa^2-6\kappa+1)}{4\kappa^3(2\kappa-1)^3} \right\} \Sigma \frac{1}{(\gamma+p-\kappa)} \\ &+ \left\{ \begin{array}{cc} \frac{\alpha^4(4\kappa^2+6\kappa+1)}{4\kappa^3(2\kappa+1)^3} - \frac{\alpha^4(4\kappa^2-6\kappa+1)}{4\kappa^3(2\kappa-1)^3} \right\} \Sigma \frac{1}{(\gamma+p+\kappa)}, \end{split} \end{split}$$

or

$$\begin{split} \Sigma\left(p,\ p\right) &= \frac{\alpha^4 \left(4\kappa^2 + 1\right)}{2\kappa^2 \left(4\kappa^2 - 1\right)^2} \left\{ \Sigma \frac{1}{(\gamma + p - \kappa)^2} + \Sigma \frac{1}{(\gamma + p + \kappa)^2} \right\} \\ &- \frac{\alpha^4 \left(20\kappa^2 - 1\right)}{2\kappa^3 \left(4\kappa^2 - 1\right)^3} \left\{ \Sigma \frac{1}{\gamma + p - \kappa} - \Sigma \frac{1}{\gamma + p + \kappa} \right\} \,, \end{split}$$

which agrees with the result of p. 89.

[This method was employed throughout. The details of the subsequent work will not generally be given.

To find the terms of the sixth order in α or q_1 , or of the twelfth order in m, we must find the sum of the products of the quantities (p) three together, no quantity (p) being multiplied either by itself or by a consecutive quantity, that is to say we require

$$\Sigma(p, q, r) - \Sigma(p, p+1) \Sigma(p) + \Sigma(p, p, p+1) + \Sigma(p-1, p, p) + \Sigma(p-1, p, p+1),$$

where p, q, r are all different, and therefore

$$\Sigma(p, q, r) = \frac{1}{6} \{\Sigma(p)\}^{s} - \frac{1}{2} \Sigma(p, p) \Sigma(p) + \frac{1}{3} \Sigma(p, p, p).$$

We have

$$(p, p, p) = \frac{q_1^6}{[(g+2p)^2-q^2]^3[(g+2p+2)^2-q^3]^3}.$$

Whence as above

$$\begin{split} \Sigma\left(p,\ p,\ p\right) &= -\frac{q_1^6 \left(3q^2 + 1\right)}{256q^3 \left(q^2 - 1\right)^3} & \left\{\Sigma\frac{1}{(g + 2p - q)^3} - \Sigma\frac{1}{(g + 2p + q)^3}\right\} \\ &- \frac{3q_1^6 \left(q^2 + 1\right) \left(q^4 - 6q^2 + 1\right)}{512q^4 \left(q^2 - 1\right)^4} \left\{\Sigma\frac{1}{(g + 2p - q)^2} + \Sigma\frac{1}{(g + 2p + q)^2}\right\} \\ &- \frac{3q_1^6 \left(21q^4 - 6q^2 + 1\right)}{512q^5 \left(q^2 - 1\right)^5} & \left\{\Sigma\frac{1}{(g + 2p - q)} - \Sigma\frac{1}{(g + 2p + q)}\right\}. \end{split}$$

Let us call

$$\begin{split} \Sigma \frac{1}{(g+2p-q)} - \Sigma \frac{1}{(g+2p+q)} &= \frac{\pi}{2} \left(\cot (g-q) \frac{\pi}{2} - \cot (g+q) \frac{\pi}{2} \right) = A, \\ \Sigma \frac{1}{(g+2p-q)^2} + \Sigma \frac{1}{(g+2p+q)^2} &= \frac{\pi^2}{4} \left(\csc^2 (g-q) \frac{\pi}{2} + \csc^2 (g+q) \frac{\pi}{2} \right) = B, \\ \Sigma \frac{1}{(g+2p-q)^3} - \Sigma \frac{1}{(g+2p+q)^3} &= \frac{\pi^3}{8} \left(\cot (g-q) \frac{\pi}{2} \csc^2 (g-q) \frac{\pi}{2} \right) \\ &- \cot (g+q) \frac{\pi}{2} \csc^2 (g+q) \frac{\pi}{2} \right) = C. \end{split}$$

Then we have

$$\Sigma(p) = -\frac{q_1^2}{4q(q^2-1)}A, \quad \Sigma(p, p) = \frac{q_1^4(q^2+1)}{32q^2(q^2-1)^2}B - \frac{q_1^4(5q^2-1)}{32q^3(q^2-1)^3}A;$$

hence

$$\begin{split} \Sigma\left(p,\ q,\ r\right) &= -\frac{q_1^6}{384q^3\left(q^2-1\right)^3}A^3 + \frac{q_1^6\left(q^2+1\right)}{256q^3\left(q^2-1\right)^3}AB - \frac{q_1^6\left(5q^2-1\right)}{256q^4\left(q^2-1\right)^4}A^2 \\ &- \frac{q_1^6\left(3q^2+1\right)}{768q^3\left(q^2-1\right)^3}C - \frac{q_1^6\left(q^2+1\right)\left(q^4-6q^2+1\right)}{512q^4\left(q^2-1\right)^4}B - \frac{q_1^6\left(21q^4-6q^2+1\right)}{512q^5\left(q^2-1\right)^6}A. \end{split}$$

And we further find

$$\begin{split} &\Sigma\left(p,\;p,\;p+1\right) + \Sigma\left(p-1,\;p,\;p\right) + \Sigma\left(p-1,\;p,\;p+1\right) \\ &= \frac{q_1^6}{256q^3\left(q^2-1\right)^2}C + \frac{q_1^6\left(q^6-8q^4+37q^2-12\right)}{512q^4\left(q^2-1\right)^3\left(q^2-4\right)}B \\ &- \frac{3q_1^6\left(63q^8-586q^6+1307q^4-640q^2+144\right)}{512q^5\left(q^2-1\right)^4\left(q^2-4\right)^2\left(q^2-9\right)}A, \end{split}$$

and together with

$$\Sigma(p, p+1)\Sigma(p) = \frac{q_1^6}{256q^3(q^2-1)^2}AB + \frac{q_1^6(5q^2-2)}{128q^4(q^2-1)^3(q^2-4)}A^2$$

we have the materials for forming the expression

$$\Sigma(p, q, r) - \Sigma(p, p+1) \Sigma(p) + \Sigma(p, p, p+1) + \Sigma(p-1, p, p) + \Sigma(p-1, p, p+1).$$

Before doing so, substitute

$$B = A^{2} + \pi \cot q\pi A,$$

$$2C = 2A^{3} + 3\pi \cot q\pi A^{2} - \pi^{2}A.$$

Then in the resulting expression,

coefficient of
$$A^3 = -\frac{q_1^6}{384q^3(q^2-1)^3} + \frac{q_1^6(q^2+1)}{256q^3(q^2-1)^3} - \frac{q_1^6(3q^2+1)}{768q^3(q^2-1)^3} - \frac{q_1^6}{256q^3(q^2-1)^2} + \frac{q_1^6}{256q^3(q^2-1)^2} = 0,$$

coefficient of
$$A^2 = \frac{q_1^6 (q^2 + 1)}{256q^3 (q^2 - 1)^3} \pi \cot q \pi - \frac{q_1^6 (5q^2 - 1)}{256q^4 (q^2 - 1)^4}$$

$$- \frac{q_1^6 (3q^2 + 1)}{512q^3 (q^2 - 1)^2} \pi \cot q \pi - \frac{q_1^6 (q^2 + 1) (q^4 - 6q^2 + 1)}{512q^4 (q^2 - 1)^4}$$

$$- \frac{q_1^6}{256q^3 (q^2 - 1)^2} \pi \cot q \pi - \frac{q_1^6 (5q^2 - 2)}{128q^4 (q^2 - 1)^3 (q^2 - 4)}$$

$$+ \frac{3q_1^6}{512q^3 (q^2 - 1)^2} \pi \cot q \pi - \frac{q_1^6 (q^6 - 8q^4 + 37q^2 - 12)}{512q^4 (q^2 - 1)^3 (q^2 - 4)}$$

$$= \pi \cot q \pi \frac{q_1^6}{512q^3 (q^2 - 1)^3} [2q^2 + 2 - 3q^2 - 1 - 2q^2 + 2 + 3q^2 - 3]$$

$$+ \frac{q_1^6}{512q^4 (q^2 - 1)^4 (q^2 - 4)} [-2 (5q^2 - 1) (q^2 - 4)$$

$$- (q^2 + 1) (q^4 - 6q^2 + 1) (q^2 - 4)$$

$$- 4 (5q^2 - 2) (q^2 - 1) + (q^8 - 8q^4 + 37q^2 - 12) (q^2 - 1)]$$

and these supplementary terms of the determinant reduce to

$$\begin{split} Aq_{\scriptscriptstyle 1}^{\,6} \left\{ & \frac{15q^{\scriptscriptstyle 4} - 35q^{\scriptscriptstyle 2} + 8}{256q^{\scriptscriptstyle 4} \, (q^{\scriptscriptstyle 2} - 1)^{\scriptscriptstyle 4} \, (q^{\scriptscriptstyle 2} - 4)} \, \boldsymbol{\pi} \cot q \boldsymbol{\pi} + \frac{\pi^{\scriptscriptstyle 2}}{384q^{\scriptscriptstyle 3} \, (q^{\scriptscriptstyle 2} - 1)^{\scriptscriptstyle 8}} \right. \\ & \left. - \frac{105q^{\scriptscriptstyle 10} - 1155q^{\scriptscriptstyle 8} + 3815q^{\scriptscriptstyle 6} - 4705q^{\scriptscriptstyle 4} + 1652q^{\scriptscriptstyle 2} - 288}{256q^{\scriptscriptstyle 5} \, (q^{\scriptscriptstyle 2} - 1)^{\scriptscriptstyle 5} \, (q^{\scriptscriptstyle 2} - 4)^{\scriptscriptstyle 2} \, (q^{\scriptscriptstyle 2} - 9)} \right\} \, . \end{split}$$

Adding these terms, with a negative sign, to the value of the determinant found on p. 90, and completing the solution as it is there completed, we find

$$\begin{split} \cos g \pi &= & \cos q \pi \left\{ 1 - \frac{\pi^2 q_1^4}{32 q^2 (q^2 - 1)^2} - \frac{15 q^4 - 35 q^2 + 8}{256 q^4 (q^2 - 1)^4 (q^2 - 4)} \pi^2 q_1^6 \right\} \\ &+ \sin q \pi \left\{ \frac{\pi q_1^2}{4 q (q^2 - 1)} + \frac{15 q^4 - 35 q^2 + 8}{64 q^3 (q^2 - 1)^3 (q^2 - 4)} \pi q_1^4 - \frac{\pi^3 q_1^6}{384 q^3 (q^2 - 1)^3} \right. \\ &+ \frac{105 q^{10} - 1155 q^8 + 3815 q^6 - 4705 q^4 + 1652 q^2 - 288}{256 q^5 (q^2 - 1)^5 (q^2 - 4)^2 (q^2 - 9)} \pi q_1^6 \right\}. \end{split}$$

This value of $\cos g\pi$ may be put under the form

$$\begin{split} \cos g \pmb{\pi} &= \cos q \pmb{\pi} + \sin q \pmb{\pi} \left\{ \frac{\pi q_1^2}{4q \ (q^2-1)} + \frac{15q^4 - 35q^2 + 8}{64q^3 \ (q^2-1)^3 \ (q^2-4)} \pi q_1^4 - \frac{\pi^2 q_1^4}{32q^2 \ (q^2-1)^2} \cot q \pmb{\pi} \right. \\ &- \frac{\pi^3 q_1^6}{384q^3 \ (q^2-1)^3} + \frac{105q^{10} - 1155q^8 + 3815q^6 - 4705q^4 + 1652q^2 - 288}{256q^5 \ (q^2-1)^5 \ (q^2-4)^2 \ (q^2-9)} \pi q_1^6 \\ &- \frac{15q^4 - 35q^2 + 8}{256q^4 \ (q^2-1)^4 \ (q^2-4)} \pi^2 q_1^6 \cot q \pmb{\pi} \right\}. \end{split}$$

We will now substitute in it the value of $\cot q\pi$ in terms of q. We have, namely,

$$\cot q\pi = -\cot (1-q)\pi = \frac{1}{(q-1)\pi} - \frac{1}{3}(q-1)\pi - \frac{1}{45}(q-1)^3\pi^3 - \frac{2}{945}(q-1)^5\pi^5 - \frac{1}{4725}(q-1)^7\pi^7 - \frac{2}{93555}(q-1)^9\pi^9 - \dots$$

Then we have, picking out terms of highest negative power of q,

in coefficient of
$$\pi q_1^4$$
,
$$\frac{1}{64q^3(q^2-1)^3(q^2-4)} \left[15q^4-35q^2+8-2q(q+1)(q^2-4)\right]$$

$$=\frac{1}{64q^3(q^2-1)^3(q^2-4)} \left[13q^4-2q^3-27q^2+8q+8\right]$$

$$=\frac{(q-1)^2(13q^2+24q+8)}{64q^3(q^2-1)^3(q^2-4)} = \frac{13q^2+24q+8}{64q^3(q-1)(q+1)^3(q^2-4)},$$
in coefficient of πq_1^6 ,
$$\frac{1}{256q^5(q^2-1)^5(q^2-4)^2(q^2-9)} \left[105q^{10}-1155q^8+3815q^6\right]$$

$$-4705q^4+1652q^2-288-(15q^4-35q^2+8)q(q+1)(q^2-4)(q^2-9)\right],$$
numerator = $90q^{10}-15q^9-925q^8+230q^7+2812q^6-1003q^5$

$$-3341q^4+1364q^3+1364q^2-288q-288$$

$$=(q-1)^4(90q^6+345q^5-85q^4-1820q^3$$

$$-2668q^2-1440q-288),$$

and

$$\text{expression} = \frac{90q^6 + 345q^5 - 85q^4 - 1820q^3 - 2668q^2 - 1440q - 288}{256q^5(q-1)(q+1)^5(q^2-4)^2(q^2-9)}.$$

Also,

in coefficient of
$$\pi^3 q_1^6$$
,
$$\frac{1}{768q^4 (q^2-1)^3 (q+1) (q^2-4)} \left[-2q (q+1) (q^2-4) + 15q^4 -35q^2 + 8 \right]$$
$$= \frac{13q^2 + 24q + 8}{768q^4 (q-1) (q+1)^4 (q^2-4)}.$$

In this way we see that no higher power of q-1 than the first occurs in the denominator of the multiplier of $\sin q\pi$. In the case from which we have derived our equations, this is a small quantity. Hence the degree of approximation attained by the above formula is most satisfactory.

[It will be observed that in writing originally (p. 86)

$$\frac{1}{r^3} + \frac{m'}{r^{3}} = 1 + \alpha_0 + \alpha_1 \cos kt,$$

we are ignoring orders of m above the second, corresponding to the fourth order in our determinant. We now proceed to include the neglected terms.

Let the equation for z be

$$0 = \frac{d^2z}{dt^2} + z\left(1 + a_0 + a_1\cos kt + a_2\cos 2kt + a_3\cos 3kt + \ldots\right).$$

Assume as before

$$z = c_0 \sin gt + c_1 \sin (g+k) t + c_2 \sin (g+2k) t + \dots$$
$$+ c_{-1} \sin (g-k) t + c_{-2} \sin (g-2k) t + \dots$$

Then by equating to zero the coefficient of each sine in the result of substitution in the above differential equation we obtain

$$\begin{split} 0 &= \dots \left[\left(g - 2k \right)^2 - \left(1 + \alpha_0 \right) \right] c_{-2} - \frac{1}{2} \, \alpha_1 c_{-1} - \frac{1}{2} \, \alpha_2 c_0 - \frac{1}{2} \, \alpha_3 c_1 - \frac{1}{2} \, \alpha_4 c_2 - \dots \right. \\ \\ 0 &= \dots \qquad - \frac{1}{2} \, \alpha_1 c_{-2} + \left[\left(g - k \right)^2 - \left(1 + \alpha_0 \right) \right] c_{-1} - \frac{1}{2} \, \alpha_1 c_0 - \frac{1}{2} \, \alpha_2 c_1 - \frac{1}{2} \, \alpha_3 c_2 - \dots \\ \\ 0 &= \dots \qquad - \frac{1}{2} \, \alpha_2 c_{-2} - \frac{1}{2} \, \alpha_1 c_{-1} + \left[g^2 - \left(1 + \alpha_0 \right) \right] c_0 - \frac{1}{2} \, \alpha_1 c_1 - \frac{1}{2} \, \alpha_2 c_2 - \dots \end{split}$$

$$0 = \dots \qquad -\frac{1}{2} \alpha_3 c_{-2} - \frac{1}{2} \alpha_2 c_{-1} - \frac{1}{2} \alpha_1 c_0 + \left[(g+k)^2 - (1+\alpha_0) \right] c_1 - \frac{1}{2} \alpha_1 c_2 - \dots$$

$$0 = \dots \qquad -\frac{1}{2} \alpha_4 c_{-2} - \frac{1}{2} \alpha_3 c_{-1} - \frac{1}{2} \alpha_2 c_0 - \frac{1}{2} \alpha_1 c_1 + \left[(g+2k)^2 - (1+\alpha_0) \right] c_2 - \dots$$

Or if, as before, we put

$$\frac{g}{k} = \gamma = \frac{g}{2}$$
, $\frac{1+\alpha_0}{k^2} = \kappa^2 = \frac{q^2}{4}$, $\frac{1}{2}\frac{\alpha_1}{k^2} = \alpha = \frac{q_1}{4}$, $\frac{1}{2}\frac{\alpha_2}{k^2} = b = \frac{q_2}{4}$, etc.,

the equations become

$$\begin{array}{lll} 0 = \dots \left[(\gamma - 2)^2 - \kappa^2 \right] c_{-2} - \alpha c_{-1} - b c_0 - c c_1 - d c_2 - \dots \\ 0 = \dots & - \alpha c_{-2} & + \left[(\gamma - 1)^2 - \kappa^2 \right] c_{-1} - \alpha c_0 - b c_1 - c c_2 - \dots \\ 0 = \dots & - b c_{-2} & - \alpha c_{-1} & + \left[\gamma^2 - \kappa^2 \right] c_0 - \alpha c_1 - b c_2 - \dots \\ 0 = \dots & - c c_{-2} & - b c_{-1} & - \alpha c_0 & + \left[(\gamma + 1)^2 - \kappa^2 \right] c_1 - \alpha c_2 - \dots \\ 0 = \dots & - d c_{-2} & - c c_{-1} & - b c_0 & - \alpha c_1 & + \left[(\gamma + 2)^2 - \kappa^2 \right] c_2 - \dots \end{array}$$

Divide each of these equations by the coefficient of the term in the diagonal line, and form as before the determinant that gives the value of γ .

With a view to determining which terms it is necessary to consider, write down all the elements of the minors up to those of four rows and columns, together with the powers of a, b, c, &c. which they involve. In the notation below the position of each figure represents the row it is drawn from, and its value represents the column, thus 123 represents the diagonal element for three rows and columns. The sign of each term is also given.

	Two	Three		Four	Four
(1)	12 1	(3) 123	1	(9) 1234 1	(21) $1423 \ \alpha^2 b$
(2)	$-21 a^2$	(4) - 213	a^{2}	(10) $-2134 \alpha^2$	(22) $-2413 \ a^2b^2$
` '		(5) - 132	a^{2}	(11) $-1324 \alpha^2$	(23) $-1432 b^2$
		(6) 231	a^2b	(12) $2314 \ a^2b$	(24) 2431 abc
		(7) 312		(13) 3124 a^2b	(25) 3412 b^4
		(8) - 321		$(14) - 3214 b^2$	$(26) -3421 \ ab^2c$
		、 /		$(15)' - 1243 \alpha^2$	$(27) - 4123 \ a^3c$
				(16) 2143 a^4	(28) 4213 abc
				(17) 1342 a^2b	(29) 4132 abc
				$(18) - 2341 \ a^3c$	$(30) - 4231 c^2$
				$(19)' - 3142 \ \alpha^2 b^2$	$(31) - 4312 \ ab^2c$
				(20) 3241 abc	(32) $4321 \ \alpha^2 c^2$
				,	13

We have already considered the following

$$(1) = (3) = (9),$$

$$(2) = (4) = (5) = (10) = (11) = (15),$$

(16).

We must therefore now consider

(6) = (12) = (17) involving
$$a^2b$$
,

$$(7) = (13) = (21) \qquad ,, \qquad a^2b,$$

$$(8) = (14) = (23) , b2,$$

(30) ,, c2, with two constituents of the diagonal,

(20), (28) ,, abc, with constituent 2 of the diagonal,

(18), (27) ,, $\alpha^3 c$, with no constituent of the diagonal,

$$a^2b^2$$
, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,

We thus omit (25), (26), (31), (32) each of which is of the eighth order in α ; further it is easily seen that no new element involving five constituents not of the diagonal is of as low order as α^s except terms compounded out of (6), (7), (8) in the forms

(33)
$$-23154$$
 involving a^4b ,

$$(34) -31254$$
 ,, $a^{4}b$,

(35)
$$32154$$
 ,, a^2b^2 ,

the constituents 5, 4 being not necessarily drawn from rows consecutive to the rows 1, 2, 3.

Consider the terms (6), 231, and (7), 312.

These will be equal to one another, and their sum

$$=-\frac{2\alpha^2b}{[(\gamma+p-1)^2-\kappa^2][(\gamma+p)^2-\kappa^2][(\gamma+p+1)^2-\kappa^2]}.$$

The sum of these terms

(6) and (7) =
$$-\frac{24\alpha^2bA}{q(q^2-1)(q^2-4)}$$
.

Now consider the terms (33), -23154, and (34), -31254.

Each of such terms will be of the form

$$\frac{2a^2b}{\lfloor (\gamma+p-1)^2-\kappa^2\rfloor \big\lceil (\gamma+p)^2-\kappa^2\big\rceil \big\lceil (\gamma+p+1)^2-\kappa^2\big\rceil \cdot \big\lceil (\gamma+s)^2-\kappa^2\big\rceil \big\lceil (\gamma+s+1)^2-\kappa^2\big\rceil \big\rceil},$$

where both s and s+1 are integers other than p-1, p, p+1. Now we have

$$\Sigma \frac{\alpha^2}{\left[(\gamma+s)^2-\kappa^2\right]\left[(\gamma+s+1)^2-\kappa^2\right]} = -\frac{4\alpha^2 A}{q (q^2-1)}.$$

Hence the sum will be

$$\frac{24a^{2}bA}{q(q^{2}-1)(q^{2}-4)} \cdot \frac{-4a^{2}A}{q(q^{2}-1)}$$

$$-2a^{4}b \cdot \Sigma \left\{ \frac{1}{[(\gamma+p-2)^{2}-\kappa^{2}][(\gamma+p-1)^{2}-\kappa^{2}]^{2}[\gamma^{2}-\kappa^{2}][(\gamma+1)^{2}-\kappa^{2}]} \right.$$

$$+ \frac{1}{[(\gamma+p-1)^{2}-\kappa^{2}]^{2}[(\gamma+p)^{2}-\kappa^{2}]^{2}[(\gamma+p+1)^{2}-\kappa^{2}]}$$

$$+ \frac{1}{[(\gamma+p-1)^{2}-\kappa^{2}][(\gamma+p)^{2}-\kappa^{2}]^{2}[(\gamma+p+1)^{2}-\kappa^{2}]^{2}}$$

$$+ \frac{1}{[(\gamma+p-1)^{2}-\kappa^{2}][(\gamma+p)^{2}-\kappa^{2}][(\gamma+p+1)^{2}-\kappa^{2}]^{2}}$$

$$+ \frac{1}{[(\gamma+p-1)^{2}-\kappa^{2}][(\gamma+p)^{2}-\kappa^{2}][(\gamma+p+1)^{2}-\kappa^{2}]^{2}[(\gamma+p+2)^{2}-\kappa^{2}]}$$

We find this latter sum

$$=\frac{96B}{q^{2}(q^{2}-1)^{2}(q^{2}-4)}-\frac{32\left(35q^{6}-280q^{4}+497q^{2}-108\right)}{q^{3}\left(q^{2}-1\right)^{3}\left(q^{2}-4\right)^{2}\left(q^{2}-9\right)}A.$$

Substitute for B its value $A^2 + \pi \cot q\pi A$, and we find the terms of the determinant

(33) and (34) =
$$a^4bA \left\{ \frac{96\pi \cot q\pi}{q^2(q^2-1)^3(q^2-4)} - \frac{32(35q^6-280q^4+497q^2-108)}{q^3(q^2-1)^3(q^2-4)^2(q^2-9)} \right\}$$

the terms in A^2 cancelling one another.

In this formula it may be shewn that q-1 appears in only the first power in the denominator.

Next consider the term (8), -321.

Each term is of the form

$$-\frac{b^2}{[(\boldsymbol{\gamma}+p-1)^2-\boldsymbol{\kappa}^2][(\boldsymbol{\gamma}+p+1)^2-\boldsymbol{\kappa}^2]},$$

and the sum

$$(8) = \frac{4b^2 A}{q(q^2 - 4)}.$$

Now take (35), 32154. Each such element is of the form

$$\frac{b^2}{\left[(\gamma+p-1)^2-\kappa^2\right]\left[(\gamma+p+1)^2-\kappa^2\right]}\cdot\left[(\gamma+s)^2-\kappa^2\right]\left[(\gamma+s+1)^2-\kappa^2\right],$$

where s and s+1 are both different from p-1 and p+1, so that s must not be equal to p-2, p-1, p, p+1.

Hence the sum of all these elements is

$$\begin{split} &-\frac{4b^2A}{q\,(q^2-4)}\cdot\frac{-4a^2A}{q\,(q^2-1)} \\ &-a^2b^2\Sigma\left\{\frac{1}{\left[(\gamma+p-2)^2-\kappa^2\right]\left[(\gamma+p-1)^2-\kappa^2\right]^2\left[(\gamma+p+1)^2-\kappa^2\right]} \right. \\ &+\frac{1}{\left[(\gamma+p-1)^2-\kappa^2\right]^2\left[\gamma^2-\kappa^2\right]\left[(\gamma+p+1)^2-\kappa^2\right]} \\ &+\frac{1}{\left[(\gamma+p-1)^2-\kappa^2\right]\left[(\gamma+p)^2-\kappa^2\right]\left[(\gamma+p+1)^2-\kappa^2\right]^2} \\ &+\frac{1}{\left[(\gamma+p-1)^2-\kappa^2\right]\left[(\gamma+p+1)^2-\kappa^2\right]^2\left[(\gamma+p+2)^2-\kappa^2\right]} \right\} \,. \end{split}$$

This latter sum we find to be

$$\frac{16B}{q^{2}\left(q^{2}-1\right)\left(q^{2}-4\right)}-\frac{160q^{8}-1360q^{4}+2544q^{2}-576}{q^{3}\left(q^{2}-1\right)^{2}\left(q^{2}-4\right)^{2}\left(q^{2}-9\right)}A.*$$

Substitute for B, and we get

$$(35) = -\alpha^2 b^2 A \frac{16\pi \cot q\pi}{q^2 (q^2 - 1) (q^2 - 4)} + \alpha^2 b^2 A \frac{160q^6 - 1360q^4 + 2544q^2 - 576}{q^3 (q^2 - 1)^2 (q^2 - 4)^2 (q^2 - 9)}.$$

^{* [}It was in the reduction of the coefficient of A that the error occurred alluded to M. N., Nov. 1877, p. 45; Works, Vol. I., p. 184. The above is the correct value, bearing the date Aug. 30, 1877.]

We will now consider the remaining terms consisting of four elements.

First take the terms (30), -4231, involving two constituents of the diagonal.

These are of the form

$$-\frac{c^2}{[(\boldsymbol{\gamma}+\boldsymbol{p}-1)^2-\boldsymbol{\kappa}^2][(\boldsymbol{\gamma}+\boldsymbol{p}+2)^2-\boldsymbol{\kappa}^2]};$$

hence their sum

$$(30) = \frac{4c^2A}{q(q^2-9)}.$$

Next take the terms (20) and (28), 3241 and 4213, which involve the constituent 2 of the diagonal.

These terms are equal, and their sum is

$$-\frac{2abc}{[(\gamma+p-1)^2-\kappa^2][(\gamma+p+1)^2-\kappa^2][(\gamma+p+2)^2-\kappa^2]}.$$

Along with these consider (24), 2431, and (29), 4132, which involve the constituent 3 of the diagonal. These are likewise equal, and their sum is

$$-\frac{2abc}{[(\gamma+p-2)^2-\kappa^2][(\gamma+p-1)^2-\kappa^2][(\gamma+p+1)^2-\kappa^2]}.$$

Resolving these terms into partial fractions and effecting the summation, we find

(20), (28), (24), and (29) =
$$-\frac{16(3q^2-7)}{q(q^2-1)(q^2-4)(q^2-9)}abcA$$
.

Now take the terms (18), -2341, and (27), -4123, which involve no constituent of the diagonal. These are equal, and their sum is

$$-\frac{2\alpha^3c}{\left[(\boldsymbol{\gamma}\!+\!p\!-\!1)^2\!-\!\kappa^2\right]\left[(\boldsymbol{\gamma}\!+\!p)^2\!-\!\kappa^2\right]\left[(\boldsymbol{\gamma}\!+\!p\!+\!1)^2\!-\!\kappa^2\right]\left[(\boldsymbol{\gamma}\!+\!p\!+\!2)^2\!-\!\kappa^2\right]}.$$

Along with these take (19), -3142, and (22), -2413, which also contain no constituent of the diagonal. These are also equal and their sum is

$$-\frac{2a^2b^2}{\left[(\gamma+p-1)^2-\kappa^2\right]\left[(\gamma+p)^2-\kappa^2\right]\left[(\gamma+p+1)^2-\kappa^2\right]\left[(\gamma+p+2)^2-\kappa^2\right]},$$

NUMERICAL DEVELOPMENTS IN THE LUNAR THEORY.

[In a paper "On the Motion of the Moon's Node," Mon. Not. xxxvIII., Nov. 1877, p. 43; Works, Vol. 1, p. 181, Adams gave expression to his views on the most advantageous treatment of the lunar problem, as follows:—

"I have long been convinced that the most advantageous way of treating the Lunar Theory is, first, to determine with all desirable accuracy the inequalities which are independent of the eccentricities e and e', and the inclination $2 \sin^{-1} \gamma$, and then, in succession, to find the inequalities which are of one dimension, two dimensions, and so on, with respect to those quantities.

"Thus the coefficient of any inequality in the Moon's coordinates would be represented by a series arranged in powers and products of e, e' and γ , and each term in this series would involve a numerical coefficient which is a function of m alone and which may be calculated for any given value of m without the necessity of developing it in powers of m. The variations of these coefficients which would result from a very small change in m might be found either independently or by making the calculation for two values of m differing by a small quantity.

"This method is particularly advantageous when we wish to compare our results with those of an analytical theory such as Delaunay's, in which the eccentricities and the inclination are left indeterminate, since each numerical coefficient so obtained could be compared separately with its analytical development in powers of m.

"It is to be remarked that it is only the series proceeding by powers of m in Delaunay's Theory which have a slow rate of convergence, so that it is probable that all the sensible corrections required by Delaunay's coefficients would be found among the terms of low order in e, e', and γ .

"The differential equations which would require solution in these successive operations after the determination of the inequalities independent of eccentricities and inclination would be all linear and of the same form.

"It is many years since I obtained the values of these last-named inequalities to a great degree of approximation, the coefficients of the longitude expressed in circular measure, and those of the reciprocal of the radius vector, or of the logarithm of the radius vector, being found to ten or eleven places of decimals.

"In the next place I proceeded to consider the inequalities of latitude.....

"..... I have also succeeded in reducing the determination of the inequalities of longitude and radius vector which involve the first power of the lunar eccentricity to the solution of a differential equation of the second order, but my method is much less elegant than that of Mr Hill."

This pronouncement explains the purpose of the following developments.]

Taking the equations of Lecture IV.,

$$\frac{1}{r} \frac{d^2r}{dt^2} - \left(\frac{d\theta}{dt}\right)^2 + \frac{\mu}{r^3} = \frac{1}{2} n'^2 + \frac{3}{2} n'^2 \cos 2 \left(\theta - n't - \epsilon'\right),$$

$$\frac{d^2\theta}{dt^2} + \frac{2}{r} \frac{dr}{dt} \frac{d\theta}{dt} = -\frac{3}{2} n'^2 \sin 2(\theta - n't - \epsilon').$$

Suppress the epochs ϵ , ϵ' , and define α so that

$$\mu=n^2$$
,

and take the value of m,

$$m = \frac{n'}{n} = 0.0748013,$$

then the following quantities substituted in the equations satisfy them to ten or eleven places of decimals:—

NUMERICAL DEVELOPMENTS IN THE LUNAR THEORY.

[In a paper "On the Motion of the Moon's Node," Mon. Not. xxxvIII., Nov. 1877, p. 43; Works, Vol. 1, p. 181, Adams gave expression to his views on the most advantageous treatment of the lunar problem, as follows:—

"I have long been convinced that the most advantageous way of treating the Lunar Theory is, first, to determine with all desirable accuracy the inequalities which are independent of the eccentricities e and e', and the inclination $2 \sin^{-1} \gamma$, and then, in succession, to find the inequalities which are of one dimension, two dimensions, and so on, with respect to those quantities.

"Thus the coefficient of any inequality in the Moon's coordinates would be represented by a series arranged in powers and products of e, e' and γ , and each term in this series would involve a numerical coefficient which is a function of m alone and which may be calculated for any given value of m without the necessity of developing it in powers of m. The variations of these coefficients which would result from a very small change in m might be found either independently or by making the calculation for two values of m differing by a small quantity.

"This method is particularly advantageous when we wish to compare our results with those of an analytical theory such as Delaunay's, in which the eccentricities and the inclination are left indeterminate, since each numerical coefficient so obtained could be compared separately with its analytical development in powers of m.

"It is to be remarked that it is only the series proceeding by powers of m in Delaunay's Theory which have a slow rate of convergence, so that it is probable that all the sensible corrections required by Delaunay's coefficients would be found among the terms of low order in e, e', and γ .

"The differential equations which would require solution in these successive operations after the determination of the inequalities independent of eccentricities and inclination would be all linear and of the same form.

"It is many years since I obtained the values of these last-named inequalities to a great degree of approximation, the coefficients of the longitude expressed in circular measure, and those of the reciprocal of the radius vector, or of the logarithm of the radius vector, being found to ten or eleven places of decimals.

"In the next place I proceeded to consider the inequalities of latitude.....

"..... I have also succeeded in reducing the determination of the inequalities of longitude and radius vector which involve the first power of the lunar eccentricity to the solution of a differential equation of the second order, but my method is much less elegant than that of Mr Hill."

This pronouncement explains the purpose of the following developments.]

Taking the equations of Lecture IV.,

$$\frac{1}{r}\frac{d^2r}{dt^2} - \left(\frac{d\theta}{dt}\right)^2 + \frac{\mu}{r^3} = \frac{1}{2}n'^2 + \frac{3}{2}n'^2\cos 2(\theta - n't - \epsilon'),$$

$$\frac{d^2\theta}{dt^2} + \frac{2}{r} \frac{dr}{dt} \frac{d\theta}{dt} = -\frac{3}{2} n'^2 \sin 2 (\theta - n't - \epsilon').$$

Suppress the epochs ϵ , ϵ' , and define α so that

$$\mu=n^2$$
,

and take the value of m,

$$m = \frac{n'}{n} = 0.0748013,$$

then the following quantities substituted in the equations satisfy them to ten or eleven places of decimals:—

$$\theta = nt + 0.01021,13629,5 \sin 2(n-n')t$$

$$+ 0.00004,23732,7 \sin 4(n-n')t$$

$$+ 0.00000,02375,7 \sin 6(n-n')t$$

$$+ 0.00000,00015,1 \sin 8(n-n')t$$

$$+ 0.00000,00000,1 \sin 10(n-n')t.$$

$$\frac{1}{r} = 1.00090,73880,5$$

$$+ 0.00718,64751,6 \cos 2(n-n')t$$

$$+ 0.00004,58428,9 \cos 4(n-n')t$$

$$+ 0.00000,03268,6 \cos 6(n-n')t$$

$$+ 0.00000,00024,3 \cos 8(n-n')t$$

$$- 0.00000,00000,3 \cos 10(n-n')t.$$

[These are the values quoted from an older MS in 1877 (Mon. Not. XXXVIII., p. 46; Works, Vol. I., p. 184). The original calculation has not been found, but it must have had a date earlier than 1860, for the above numbers are referred to in a MS of that year.]

In order to obtain corresponding series in which θ is the independent variable, first transform these two functions or rather the functions nt and $\log \frac{1}{r}$, by means of Lagrange's Theorem; use these results as approximations and emend them by substitution in the equations of Lecture VI., viz.:—

$$\frac{d^{2}(au)}{d\theta^{2}} + au \left[1 + \frac{1}{2} \left(n' \frac{dt}{d\theta} \right)^{2} + \frac{3}{2} \left(n' \frac{dt}{d\theta} \right)^{2} \cos 2 \left(\theta - \theta' \right) \right]
+ \frac{d(au)}{d\theta} \left[\qquad \qquad -\frac{3}{2} \left(n' \frac{dt}{d\theta} \right)^{2} \sin 2 \left(\theta - \theta' \right) \right] = \frac{\mu a}{H^{2}},
\frac{1}{H^{2}} \frac{d(H^{2})}{d\theta} = -3n'^{2} \left(\frac{dt}{d\theta} \right)^{2} \sin 2 \left(\theta - \theta' \right),
\frac{dt}{d\theta} = \frac{1}{Hu^{2}},$$

in which we take $\theta' = n't$, and α has the same definition as before. We find

$$u = 1.00097,52861,50$$

$$+0.00718,66609,56 \cos 2 (1-m) \theta$$

$$-0.00002,20516,12 \cos 4 (1-m) \theta$$

$$+0.00000,01410,92 \cos 6 (1-m) \theta$$

$$-0.00000,00011,34 \cos 8 (1-m) \theta$$

$$+0.00000,00000,10 \cos 10 (1-m) \theta.$$

$$nt = \theta - 0.01021,13075,60 \sin 2 (1-m) \theta$$

$$+0.00005,40981,47 \sin 4 (1-m) \theta$$

$$-0.00000,04037,26 \sin 6 (1-m) \theta$$

$$+0.00000,00034,98 \sin 8 (1-m) \theta$$

$$-0.000000,000034,98 \sin 8 (1-m) \theta$$

Forming the functions required for a second approximation, it appears that they all agree with the former values to 11 or 12 places of decimals; hence no corrections are required.

Dec./60 and Jan./61.

[The next investigations were the papers on the latitude, which lead to an infinite determinant, and are abstracted on p. 85 et seqq. The formulae, including the determination of the motion of the node as far as it is independent of e, e' and γ , as well as the corresponding parts of the coefficients of the evection in latitude, were reduced numerically and determined, the former to 15 places of decimals and the latter to 11 or 12, in 1877.

In 1880 Adams availed himself of an offer of a friend and former pupil, Miss Fanny Harrison, in order to carry on these calculations. The calculations were made by Miss Harrison from formulae supplied by Adams, and were examined and, where necessary, corrected, refined, or transformed by Adams.]

If we take the numbers given on p. 106 as approximations to the values of θ and $\frac{1}{r}$ in terms of t and correct the solution by the method

given in Lecture VII., we at length obtain the values of the following functions to 15 places of decimals.

$$\begin{array}{lllll} \theta = nt + 0.01021, 13629, 54071, 22 & \sin & 2 \left(n - n' \right) t \\ & + & 4,23732, 68757, 73 & \sin & 4 \left(n - n' \right) t \\ & + & 2375, 68231, 26 & \sin & 6 \left(n - n' \right) t \\ & + & 15,07977, 03 & \sin & 8 \left(n - n' \right) t \\ & + & 10246, 17 & \sin 10 \left(n - n' \right) t \\ & + & 72, 68 & \sin 12 \left(n - n' \right) t . \\ \\ \frac{1}{r} = & 1.00090, 73880, 47512, 46 \\ & + & 718, 64751, 59794, 38 & \cos & 2 \left(n - n' \right) t \\ & + & 4,58429, 07983, 33 & \cos & 4 \left(n - n' \right) t \\ & + & 3268, 81854, 41 & \cos & 6 \left(n - n' \right) t \\ & + & 24,50530, 00 & \cos & 8 \left(n - n' \right) t \\ & + & 18904, 15 & \cos 10 \left(n - n' \right) t \\ & + & 148,58 & \cos 12 \left(n - n' \right) t \\ & - & ,21 & \cos 14 \left(n - n' \right) t. \end{array}$$

Moreover

$$\cos (\theta - nt) = 1 - 0.00002,60682,62341,65$$

$$- 2163,47566,91 \cos 2(n - n') t$$

$$+ 2,60665,43862,72 \cos 4(n - n') t$$

$$+ 2163,33894,18 \cos 6(n - n') t$$

$$+ 17,18369,39 \cos 8(n - n') t$$

$$+ 13671,84 \cos 10(n - n') t$$

$$+ 109,54 \cos 12(n - n') t$$

$$+ 88 \cos 14(n - n') t$$

$$+ 38 \cos 14(n - n') t$$

$$+ 4,23721,64162,51 \sin 4(n - n') t$$

$$+ 2819,24397,22 \sin 6(n - n') t$$

$$+ 20,60200,05 \sin 8(n - n') t$$

$$+ 15691,70 \sin 10(n - n') t$$

$$+ 122,40 \sin 12(n - n') t$$

$$+ 99 \sin 14(n - n') t$$

```
\cos 2(\theta - nt) = 1 - 0.00010,42710,10699,69
                            8653,67708,37 \cos 2(n-n')t
                        10,42634,57455,66 \cos 4(n-n')t
                 +
                            8653,01740,04 \cos 6(n-n')t
                 +
                              75,52669,46 \cos 8(n-n')t
                +
                                 65963,35 \cos 10 (n-n') t
                +
                                    574,57 \cos 12(n-n')t
                +
                                      4,99 \cos 14 (n-n') t.
                +
                   0.02042,16611,56191,75 \sin 2(n-n') t
\sin 2 (\theta - nt) =
                         8.47377,00897,68 \sin 4(n-n')t
                 +
                            8299,78852,47 \sin 6(n-n')t
                +
                              74,33623,08 \sin 8 (n-n') t
                +
                                 65443,01 \sin 10 (n-n') t
                +
                                    571.94 \sin 12 (n-n') t
                +
                                       5.01 \sin 14 (n-n') t.
                +
\cos 3 (\theta - nt) = 1 - 0.00023,46021,29250,49
                           19469,92748,85 \cos 2(n-n')t
                        23,45825,87058,84 \cos 4(n-n')t
                +
                           19468,02031,45 \cos 6(n-n')t
                +
                             195,40369,67 \cos 8(n-n')t
                +
                               1,90700,27 \cos 10 (n-n') t
                +
                                   1821,98 \cos 12 (n-n') t
                +
                                     17.13 \cos 14 (n-n') t
                +
                 0.03063,04954,02444,10 \sin 2(n-n') t
\sin 3(\theta - nt) =
                        12,70899,83498,03 \sin 4(n-n') t
                +
                           19102,58735,98 \sin 6 (n-n') t
                 +
                             194,32916,16 \sin 8 (n-n') t
                 +
                                1,90245,35 \sin 10 (n-n') t
                 +
                                   1819,71 \sin 12 (n-n') t
                 +
                                     17,17 \sin 14 (n-n') t.
                 +
```

[3

and

```
r = 1 - 0.00088,08126,20166,16
           717,33998,43971,66 \cos 2(n-n')t
              2,00071,48305,31 \cos 4(n-n')t
                  901,86346,92 \cos 6 (n-n') t
                    4,92764,82 \cos 8(n-n')t
                       2987,04 \cos 10 (n-n') t
                          19,33 \cos 12(n-n')t
                            ,13 \cos 14 (n-n') t.
r^2 = 1 - 0.00173,51203,76652,70
          1433,40193,24640,23 \cos 2(n-n')t
              1,42495,71899,85 \cos 4(n-n')t
                  366,91009,90 \cos 6(n-n')t
                    1,37554,46 \cos 8 (n-n') t
                        629,54 \cos 10 (n-n') t
                           3,27 \cos 12 (n-n') t
                              2 \cos 14 (n-n') t.
       1.00280,21783,19040,9
          2159,98364,46032,2 \cos 2(n-n')t
     +
            21,53274,03812,3 \cos 4(n-n')t
     +
               20644,79748,4 \cos 6(n-n')t
     +
     +
                  192,87144,3 \cos 8(n-n')t
     +
                      31254,1 \cos 10 (n-n') t
                        127.2 \cos 12 (n-n') t
     +
                            ,7 \cos 14 (n-n') t.
\frac{\mu}{r^3} =
       1.17150,79521,90228,408
     +
          2523,36709,16780,19
                                \cos 2(n-n')t
                                \cos 4(n-n')t
     +
            25,15529,33585,67
                                 \cos 6 (n-n')t
     +
               24118,73874,61
     +
                  226,05776,09
                                 \cos 8(n-n')t
     +
                                 \cos 10 (n-n') t
                    2,08748,11
                                \cos 12 (n-n') t
     +
                       1907,29
     +
                                \cos 14 (n-n') t.
                         17,32
```

These numbers have been calculated from the datum m = 0.0748013. It is important to find how they are modified by a small change in m.

Start from the equations of Lecture VII.,

$$\frac{d^2l}{dt^2} + \left(\frac{dl}{dt}\right)^2 - \left(\frac{d\theta}{dt}\right)^2 + \mu e^{-3l} - n'^2 \left[\frac{1}{2} + \frac{3}{2}\cos 2\left(\theta - n't\right)\right] = 0,$$

$$\frac{d^2\theta}{dt^2} - \frac{dl}{dt}\frac{d\theta}{dt} - \frac{dl}$$

$$\frac{d^2\theta}{dt^2} + 2\frac{dl}{dt}\frac{d\theta}{dt} + n'^2 \left[\frac{3}{2}\sin 2\left(\theta - n't\right) \right] = 0,$$

where $l = \log_e r$ and the unit of length is taken as before, and suppose there is a small increase in m, introducing increases δl , $\delta \theta$ in l, θ , the squares of all these quantities being supposed negligible. Let us take as coordinates δl , $\delta \omega$, in place of δl , $\delta \theta$ where

$$\omega = \theta - n't$$

and therefore

$$\delta\theta = \delta\omega + \frac{\delta n'}{n'}$$
. $n't$.

[Now we have developed $\frac{1}{r}$ and $\omega = \theta - n't$ in series of the shape $\sum f_i(n) \frac{\cos}{\sin} 2i (n - n') t$, and we wish to find the changes in the coefficients, the arguments being unchanged. Hence we take

$$\delta\left(n-n'\right)=0,$$

and therefore

$$\frac{\delta m}{m} = (1 - m) \frac{\delta n'}{n'},$$

and

$$\delta \mu = \delta (n^2) = 2nn' \frac{\delta n'}{n'}.$$

Hence we find the equations

$$0 = X + \frac{d^2 \delta l}{dt^2} + 2 \frac{dl}{dt} \frac{d \delta l}{dt} - 2 \frac{d\theta}{dt} \frac{d \delta \omega}{dt} - 3\mu e^{-sl} \delta l + 3n'^2 \sin 2\omega \delta \omega,$$

$$0 = Y + \frac{d^2 \delta \omega}{dt^2} + 2 \frac{dl}{dt} \frac{d \delta \omega}{dt} + 2 \frac{d\theta}{dt} \frac{d \delta l}{dt} + 3n'^2 \cos 2\omega \delta \omega,$$

where

$$X = \frac{\delta n'}{n'} \left\{ -2n' \frac{d\theta}{dt} + 2nn'e^{-st} - 2n'^2 \left[\frac{1}{2} + \frac{3}{2} \cos 2\omega \right] \right\},$$

$$Y = \frac{\delta n'}{n'} \left\{ 2n' \frac{dl}{dt} + 2n'^2 \left[\frac{3}{2} \sin 2\omega \right] \right\};$$

the coefficients of $\frac{\delta n'}{n'}$, δl , $\delta \omega$, and their differential coefficients being known as functions of (n-n')t.

Now these equations are of the form discussed in Lecture VII., and we may approach their solution in the way that is shewn there; or still more simply, let P_1 and Q_1 be the most important parts of X and Y, and c the constant part of μe^{-st} , and determine $\delta_1 l$, $\delta_1 \omega$ from the equations

$$\begin{split} 0 &= P_1 + \frac{d^2 \delta_1 l}{dt^2} - 2n \frac{d \delta_1 \omega}{dt} - 3c \delta_1 l, \\ 0 &= Q_1 + \frac{d^2 \delta_1 \omega}{dt^2} + 2n \frac{d \delta_1 l}{dt}. \end{split}$$

Then let

$$X_{1} = X - P_{1} + 2 \frac{dl}{dt} \frac{d\delta_{1}l}{dt} - 2 \left(\frac{d\theta}{dt} - n\right) \frac{d\delta_{1}\omega}{dt} - 3 \left(\mu e^{-st} - c\right) \delta_{1}l + 3n'^{2} \sin 2\omega \delta_{1}\omega,$$

$$Y_{1} = Y - Q_{1} + 2 \frac{dl}{dt} \frac{d\delta_{1}\omega}{dt} + 2 \left(\frac{d\theta}{dt} - n\right) \frac{d\delta_{1}l}{dt} + 3n'^{2} \cos 2\omega \delta_{1}\omega,$$

and repeat the approximation with X_1 , Y_1 in place of X, Y; whence finally if $\delta_1 l$, $\delta_2 l$, $\delta_3 l$... $\delta_1 \omega$, $\delta_2 \omega$, $\delta_3 \omega$... are the successive corrections found, the complete corrections are

$$\delta l = \delta_1 l + \delta_2 l + \delta_3 l + \dots$$

$$\delta \omega = \delta_1 \omega + \delta_2 \omega + \delta_3 \omega + \dots$$

We find

$$X = \frac{dn'}{n'} \begin{bmatrix} -0.00584,65667,60159,44 \\ -1913,50693,01356,20 \cos 2(n-n')t \\ -18,99962,11544,85 \cos 4(n-n')t \\ -17227,86035,84 \cos 6(n-n')t \\ -151,90731,94 \cos 8(n-n')t \\ -132276,48 \cos 10(n-n')t \\ -1144,15 \cos 12(n-n')t \\ -9,85 \cos 14(n-n')t \end{bmatrix}$$

$$Y = \frac{\delta n'}{n'} \begin{bmatrix} 0.02192,93435,69543,96 & \sin & 2(n-n')t \\ + & 22,15097,16543,17 & \sin & 4(n-n')t \\ + & 20403,69529,98 & \sin & 6(n-n')t \\ + & 182,50089,05 & \sin & 8(n-n')t \\ + & 1,61025,56 & \sin & 10(n-n')t \\ + & 1409,92 & \sin & 12(n-n')t \\ + & 12,29 & \sin & 14(n-n')t \end{bmatrix},$$

and thence

$$\delta l = \frac{\delta n'}{n'} \left[-0.00157,07440,23063,65 \right.$$

$$- 1503,04573,28666,23 \cos 2(n-n')t$$

$$- 13,85178,94754,61 \cos 4(n-n')t$$

$$- 12198,71210,26 \cos 6(n-n')t$$

$$- 106,12235,10 \cos 8(n-n')t$$

$$- 91844,94 \cos 10(n-n')t$$

$$- 9792,73 \cos 12(n-n')t$$

$$- 6,89 \cos 14(n-n')t$$

$$+ 17,93852,23118,97 \sin 4(n-n')t$$

$$+ 15064,30388,89 \sin 6(n-n')t$$

$$+ 127,41426,27 \sin 8(n-n')t$$

$$+ 1,08179,31 \sin 10(n-n')t$$

$$+ 920,61 \sin 12(n-n')t$$

$$+ 7,92 \sin 14(n-n')t$$

In the values of δl , $\delta \omega$ the fifteenth figure is in some cases doubtful, especially in the coefficients with the argument 2(n-n')t.

Dec. 1881.

We next find the parallactic inequalities. We have the equations

$$\begin{split} \frac{d^2l}{dt^2} + \left(\frac{dl}{dt}\right)^2 - \left(\frac{d\theta}{dt}\right)^2 + \frac{\mu}{\alpha^3}e^{-3t} - n'^2 \left[\frac{1}{2} + \frac{3}{2}\cos 2\omega\right] - \lambda n'^2 \frac{r}{a} \left[\frac{9}{8}\cos\omega + \frac{15}{8}\cos 3\omega\right] = 0, \\ \frac{d^2\theta}{dt^2} + 2\frac{dl}{dt}\frac{d\theta}{dt} & + n'^2 \left[\frac{3}{2}\sin 2\omega\right] + \lambda n'^2 \frac{r}{a} \left[\frac{3}{8}\sin\omega + \frac{15}{8}\sin 3\omega\right] = 0, \end{split}$$
where
$$\lambda = \frac{E - M}{E + M}\frac{a}{a'},$$

where

restoring α which was taken as unit, and is defined by

$$\mu=n^2\alpha^3.$$

We have found values of l, θ which reduce to zero the sum of all the terms in each equation excluding those multiplied by λ ; let the result of substituting these values of l, θ in those terms be X, Y; then our equations for correcting l and θ will be of the form we have just discussed, and we might proceed in a like manner. But we can see that the approximations would be comparatively tedious; for, taking the equations

$$0 = P_1 + \frac{d^2 \delta_1 l}{dt^2} - 2n \frac{d \delta_1 \omega}{dt} - 3c \delta_1 l,$$

$$0 = Q_1 + \frac{d^2 \delta_1 \omega}{dt^2} + 2n \frac{d \delta_1 l}{dt},$$

suppose

$$P_1 = \sum p_j \cos j (n - n') t,$$

$$Q_1 = \sum q_j \sin j (n - n') t,$$

where j takes all positive odd integral values; then let

$$\delta_{\mathbf{i}} l = \sum a_j \cos j (n - n') t,$$

$$\delta_{\mathbf{i}} \omega = \sum b_j \sin j (n - n') t,$$

and we have

$$0 = p_{j} - j^{2} (n - n')^{2} \alpha_{j} - 2jn (n - n') b_{j} - 3c\alpha_{j},$$

$$0 = q_{j} - j^{2} (n - n')^{2} b_{j} - 2jn (n - n') \alpha_{j}.$$

Multiply the second equation by $2\frac{n}{j(n-n')}$ and subtract from the first;

then

$$a_{j} = \frac{p_{j} - \frac{2}{j} \frac{n}{n - n'} q_{j}}{j^{2} (n - n')^{2} - 4n^{2} + 3c},$$

$$b_{j} = \frac{q_{j}}{j^{2}(n-n')^{2}} - \frac{2}{j} \frac{n}{n-n'} a_{j}.$$

Now choosing the unit of time so that

$$n - n' = 1$$
,

and calling

$$C_j = j^2 - 4n^2 + 3c,$$

we find the following numerical values for $\frac{1}{C_i}$ and $\frac{2n}{j}$:

j	$rac{1}{C_{m{j}}}$	$rac{2n}{\dot{j}}$
1	-6.31259, 13816, 12770, 45	2.16169,78061,03705,0
3	+0.12752,52152,30991,45	0.72056,59353,67901,7
5	0.04194, 35175, 60279, 42	0.43233,95612,20741,0
7	0.02090,23168,78861,83	0.30881,39723,00529,3
9	0.01252, 48012, 27559, 34	0.24018,86451,22633,9
11	0.00834, 43488, 15871, 11	0.19651,79823,73064,1
13	0.00595, 79989, 74753, 66	0.16628,44466,23361,9
15	0.00446,74451,06389,87	0.14411,31870,73580,3.

Hence the values of a_1 , b_1 will be considerably larger than the coefficients p_1 , q_1 in consequence of the large values of $\frac{1}{C_j}$ and $\frac{2n}{j}$ for j=1; and since the same multipliers will reappear in the successive corrections to the first values found for a_1 , b_1 , our approximation to those quantities will be slow. It will be better to avoid this inconvenience, as we may by the following device.

Assume

$$\delta l = \alpha_1 \cos \phi + \delta_1 l + \delta_2 l + \dots = \alpha_1 \cos \phi + [\delta l],$$

$$\delta \omega = b_1 \sin \phi + \delta_1 \omega + \delta_2 \omega + \dots = b_1 \sin \phi + [\delta \omega],$$

where $\delta_1 l$, $\delta_2 l$, ..., $\delta_1 \omega$, $\delta_2 \omega$, ... consist of cosines and sines of higher odd multiples of ϕ than the first, and ϕ is written for (n-n')t.

Then writing as in Lecture VII.,

$$\frac{d\theta}{dt} = n + v, \ \mu e^{-3t} = c + w,$$

v, w consisting of periodic terms alone, we shall obtain the following equations to determine $[\delta l]$ and $[\delta \omega]$,

$$0 = X_1 + \left[\frac{d^2 \delta l}{dt^2}\right] + 2\frac{dl}{dt} \left[\frac{d\delta l}{dt}\right] - 2(n+v) \left[\frac{d\delta \omega}{dt}\right] - 3(c+w) \left[\delta l\right] + 3n'^2 \sin 2\omega \left[\delta \omega\right],$$

$$0 = Y_1 + \left\lceil \frac{d^2 \delta \omega}{dt^2} \right\rceil + 2 \frac{dl}{dt} \left\lceil \frac{d \delta \omega}{dt} \right\rceil + 2 (n+v) \left\lceil \frac{d \delta l}{dt} \right\rceil + 3n'^2 \cos 2\omega \left\lceil \delta \omega \right\rceil,$$

where

$$X_{1} = X - a_{1} \cos \phi \left(1 + 3c + 3w\right) - a_{1} \sin \phi \left(2\frac{dl}{dt}\right) - 2b_{1} \cos \phi \left(n + v\right) + b_{1} \sin \phi \left(3n^{2} \sin 2\omega\right),$$

$$Y_{1} = Y - b_{1} \sin \phi \left(1 - 3n^{2} \cos 2\omega\right) + b_{1} \cos \phi \left(2\frac{dl}{dt}\right) - 2a_{1} \sin \phi \left(n + v\right),$$

and the coefficients a_1 and b_1 are to be so determined that $[\delta l]$ and $[\delta \omega]$ may contain no terms involving $\cos \phi$ and $\sin \phi$ respectively. Now let P_1 and Q_1 represent the terms in X_1 and Y_1 respectively that have the largest coefficients, excluding all terms in $\cos \phi$ and $\sin \phi$; then if $\delta_1 l$, $\delta_1 \omega$ be determined by the conditions

$$0 = P_1 + \frac{d^2 \delta_1 l}{dt^2} - 2n \frac{\partial \delta_1 \omega}{\partial t} - 3c \delta_1 l,$$

$$0 = Q_1 + \frac{d^2 \delta_1 \omega}{\partial t^2} + 2n \frac{\partial \delta_1 l}{\partial t},$$

and X_2 , Y_2 be the results of substituting $\delta_i l$ and $\delta_i \omega$ instead of $[\delta l]$ and $[\delta \omega]$ in the right-hand members of the equations that determine $[\delta l]$ and $[\delta \omega]$, we shall have as before

$$\begin{split} X_2 &= X_1 - P_1 + 2 \frac{dl}{dt} \frac{d\delta_1 l}{dt} - 2v \frac{d\delta_1 \omega}{dt} - 3w \delta_1 l + 3n'^2 \sin 2\omega \delta_1 \omega, \\ Y_2 &= Y_1 - Q_1 + 2 \frac{dl}{dt} \frac{d\delta_1 \omega}{dt} + 2v \frac{d\delta_1 l}{dt} + 3n'^2 \cos 2\omega \delta_1 \omega. \end{split}$$

Repeat the step with X_2 , Y_2 in place of X_1 , Y_1 , and continue until the terms in X_n , Y_n which involve odd multiples of ϕ above the first, are insensible.

The coefficients of the several terms in $\delta_1 l$, $\delta_2 l$, ..., $\delta_1 \omega$, $\delta_2 \omega$, ... thus found will involve linearly the constants a_1 and b_1 , and the same will be the case with regard to the coefficients of $\cos \phi$ and $\sin \phi$ in the final values obtained for the quantities X_n and Y_n respectively. Hence by equating these latter coefficients to zero we shall have two simple equations for determining a_1 and b_1 , whence by substitution all the other coefficients in the values of $[\delta l]$ and $[\delta \omega]$ may be found.

Nov. 8/81.

(n-n')t

[On this plan the calculations were carried out by Miss Harrison, taking the expressions

 $X = \lambda \left[-0.00705, 27630, 94721, 5 \right] \cos \theta$

```
1225,34903,49610,6 \cos 3(n-n')t
              14,36155,36056,7 \cos 5(n-n')t
                 14187,55306,0 \cos 7(n-n')t
                   132,36321,5 \cos 9(n-n')t
                      1,20188,9 \cos 11 (n-n') t
                         1074,7 \cos 13(n-n')t
                            9,4 \cos 15 (n-n') t],
Y = \lambda \int 0.00223,75651,99439,7 \sin \theta
                                       (n-n')t
           1224,60664,99386,0 \sin 3(n-n')t
      +
              14,35867,21138,5 \sin 5(n-n')t
      +
                 14186,08099,5 \sin 7 (n-n') t
      +
                   132,35462,5 \sin 9 (n-n') t
                      1,20183,4 \sin 11 (n-n') t
      +
                         1074.7 \sin 13 (n-n') t
      +
                             9,4 \sin 15 (n-n') t].
      +
```

Thence we find the expressions

```
\delta l = \lambda \left[ 0.11388,97944,95676,6 \cos (n-n') t \right]
               134,75546,22715,5 \cos 3(n-n') t
                  1,31065,61724,1 \cos 5(n-n')t
                     1161,73856,5 \cos 7 (n-n') t
                       10,10844,5 \cos 9(n-n')t
                            8740.2 \cos 11 (n-n') t
                               75.3 \cos 13 (n-n') t
                                  ,6 \cos 15 (n-n') t],
\delta\omega = \lambda \left[ -0.24265, 37811, 19304, 3 \right] \sin \omega
                                          (n-n') t
               142,30587,09590,8 \sin 3 (n-n') t
        +
                  1,47053,22766,2 \sin 5 (n-n') t
                   1313,75623,3 sin 7(n-n')t
        +
                        11,41511,3 \sin 9(n-n')t
                             9832,9 \sin 11 (n-n') t
        +
                               84.4 \sin 13 (n-n') t
        +
                                  ,7 \sin 15 (n-n') t].
        +
```

If these values are substituted in the equations which δl , $\delta \omega$ should satisfy they leave small residuals, in one case reaching 12 units of the fifteenth place of decimals. It does not appear that Adams amended these results as he amended the others; there is no MS. reference of his to them except an entry in the Diary of 1884:—

March 27. A large mass of calculations arrived from Miss F. Harrison: apparently very well done.

Thus these discrepancies remain, as well as others arising from the fact that the values of $\frac{1}{r}$, θ , &c. which Miss Harrison employs, differ from the definitive values which we have just given, in general slightly, but in one case by nearly a unit in the twelfth place.

We learn from the words in his paper on the motion of the Moon's node, quoted above, that he had reduced the determination of the inequalities of longitude and radius vector which involve the first power of

e to the solution of a differential equation of the second order; but I cannot find that he has anywhere made a numerical application of his method, which, as he says, is much less elegant than that of Mr Hill. He proposed to continue the foregoing calculations with Mr Hill's method of finding these terms, and his next and last communication to Miss Harrison consists in directions for computing the function P, where

$$P = \frac{\mu}{r^{3}} + 4n'^{2} + 3 \quad \left\{ \frac{1}{V^{2}} \left[\frac{\mu}{r^{3}} \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) - 3n'^{2}x \frac{dy}{dt} \right] \right\}^{2}$$
$$-6n' \left\{ \frac{1}{V^{2}} \left[\frac{\mu}{r^{3}} \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right) - 3n'^{2}x \frac{dy}{dt} \right] \right\}$$
$$-\frac{3\mu}{r^{3}} \frac{1}{r^{2}} \left(x \frac{dy}{dt} - y \frac{dx}{dt} \right)^{2} - 3n'^{2} \frac{1}{V^{2}} \left(\frac{dy}{dt} \right)^{2},$$

this being the quantity to which the coefficient of w reduces (Lecture XVIII. p. 84) if we ignore the parallactic terms, and the unspecified disturbances X, Y.

These calculations were not completed.

July 24/84.

THE SECULAR ACCELERATION OF THE MOON'S MEAN MOTION.

[In the paper "Reply to Various Objections," Monthly Notices, April, 1860; Works, Vol. I., p. 174, Adams mentions that he has determined the secular acceleration of the Moon's mean motion without recourse to developments in series. The following is the method employed.]

If we ignore the parallactic inequalities and the inclination of the orbit, the equations of motion become

$$\begin{split} \frac{d^2l}{dt^2} + \left(\frac{dl}{dt}\right)^2 - \left(\frac{d\theta}{dt}\right)^2 + \mu e^{-3l} - \frac{m'}{r'^3} \left[\frac{1}{2} + \frac{3}{2}\cos 2\left(\theta - \theta'\right)\right] &= 0, \\ \frac{d^2\theta}{dt^2} + 2\frac{d\theta}{dt}\frac{dl}{dt} & -\frac{m'}{r'^3} \left[-\frac{3}{2}\sin 2\left(\theta - \theta'\right)\right] &= 0, \\ l &= \log r. \end{split}$$

where

These may be satisfied, if e' be constant, by assumptions of the form

$$\log \frac{\alpha}{r} = \alpha_0 + \alpha_2 \cos \phi' + \alpha_5 \cos 2\xi + \alpha_8 \cos (2\xi - \phi') + \alpha_9 \cos (2\xi + \phi'),$$

$$\theta = nt + \epsilon + b_2 \sin \phi' + b_5 \sin 2\xi + b_8 \sin (2\xi - \phi') + b_9 \sin (2\xi + \phi),$$

where

$$\boldsymbol{\mu} = n^2 \alpha^3, \quad \boldsymbol{\phi}' = n't + \boldsymbol{\epsilon}' - \boldsymbol{\varpi}', \quad \boldsymbol{\xi} = nt + \boldsymbol{\epsilon} - (n't + \boldsymbol{\epsilon}'),$$

and a_2 , b_2 , a_8 , b_8 , a_9 , b_9 involve e' in the first power, and a_9 , n, a_5 , b_5 involve e'^2 .

Thus if the variation of e' be taken into account, we must assume

$$\begin{split} \log \frac{\alpha}{r} &= a_{0} + a_{2} \cos \phi' + a_{5} \cos 2\xi + a_{8} \cos (2\xi - \phi') + a_{9} \cos (2\xi + \phi') \\ &+ \delta a_{2} \sin \phi' + \delta a_{5} \sin 2\xi + \delta a_{8} \sin (2\xi - \phi') + \delta a_{9} \sin (2\xi + \phi'), \\ \theta &= \int n dt + b_{2} \sin \phi' + b_{5} \sin 2\xi + b_{8} \sin (2\xi - \phi') + b_{9} \sin (2\xi + \phi') \\ &+ \delta b_{2} \cos \phi' + \delta b_{5} \cos 2\xi + \delta b_{8} \cos (2\xi - \phi') + \delta b_{9} \cos (2\xi + \phi'), \end{split}$$

—where ξ now denotes $\int ndt - (n't + \epsilon')$,—in order to cancel the terms which are introduced by differentiating the coefficients a, b. Here δa_2 , δb_2 , δa_3 , δb_3 , δa_4 , δb_5 , δa_5 , δb_5 , δa_5 ,

Hence we get

$$\frac{d}{dt}\left(\log\frac{a}{r}\right) = -mna_{2}\sin\phi' - (2-2m)na_{3}\sin2\xi - (2-3m)na_{3}\sin(2\xi-\phi') \\
-(2-m)na_{3}\sin(2\xi+\phi') \\
+\frac{da_{6}}{dt} + \left[mn\delta a_{2} + \frac{da_{2}}{dt}\right]\cos\phi' + \left[(2-2m)n\delta a_{3} + \frac{da_{6}}{dt}\right]\cos2\xi \\
+ \left[(2-3m)n\delta a_{3} + \frac{da_{6}}{dt}\right]\cos(2\xi-\phi') \\
+ \left[(2-m)n\delta a_{4} + \frac{da_{6}}{dt}\right]\cos(2\xi+\phi');$$

$$\frac{d\theta}{dt} = n+mnb_{2}\cos\phi' + (2-2m)nb_{3}\cos2\xi + (2-3m)nb_{6}\cos(2\xi-\phi') \\
+ (2-m)nb_{6}\cos(2\xi+\phi') \\
+ \left[-mn\delta b_{2} + \frac{db_{2}}{dt}\right]\sin\phi' + \left[-(2-2m)n\delta b_{5} + \frac{db_{6}}{dt}\right]\sin2\xi \\
+ \left[-(2-3m)n\delta b_{6} + \frac{db_{6}}{dt}\right]\sin(2\xi-\phi') \\
+ \left[-(2-m)n\delta b_{6} + \frac{db_{6}}{dt}\right]\sin(2\xi+\phi');$$

$$\begin{split} \frac{d^2}{dt^2} \Big(\log \frac{a}{r} \Big) &= -m^2 n^2 a_2 \cos \phi' - (2 - 2m)^2 n^2 a_3 \cos 2\xi - (2 - 3m)^2 n^2 a_8 \cos (2\xi - \phi') \\ &- (2 - m)^2 n^2 a_9 \cos (2\xi + \phi') \\ &+ \Big[-m^2 n^2 \delta a_2 - 2mn \frac{da_2}{dt} \Big] \sin \phi' \\ &+ \Big[-(2 - 2m)^2 n^2 \delta a_3 - 2 (2 - 2m) n \frac{da_3}{dt} - 2a_3 \frac{dn}{dt} \Big] \sin 2\xi \\ &+ \Big[-(2 - 3m)^2 n^2 \delta a_3 - 2 (2 - 3m) n \frac{da_3}{dt} - 2a_3 \frac{dn}{dt} \Big] \sin (2\xi - \phi') \\ &+ \Big[-(2 - m)^2 n^2 \delta a_3 - 2 (2 - m) n \frac{da_9}{dt} - 2a_9 \frac{dn}{dt} \Big] \sin (2\xi + \phi') ; \\ \frac{d^2\theta}{dt^2} &= -m^2 n^2 \delta_2 \sin \phi' - (2 - 2m)^2 n^2 \delta_3 \sin 2\xi - (2 - 3m)^2 n^2 \delta_3 \sin (2\xi - \phi') \\ &- (2 - m)^2 n^2 \delta_9 \sin (2\xi + \phi') \\ &+ \frac{dn}{dt} + \Big[-m^2 n^2 \delta b_2 + 2mn \frac{db_2}{dt} \Big] \cos \phi' \\ &+ \Big[-(2 - 2m)^2 n^2 \delta b_3 + 2 (2 - 2m) n \frac{db_3}{dt} + 2b_3 \frac{dn}{dt} \Big] \cos 2\xi \\ &+ \Big[-(2 - 3m)^2 n^2 \delta b_3 + 2 (2 - 3m) n \frac{db_3}{dt} + 2b_3 \frac{dn}{dt} \Big] \cos (2\xi - \phi') \\ &+ \Big[-(2 - m)^2 n^2 \delta b_9 + 2 (2 - m) n \frac{db_9}{dt} + 2b_9 \frac{dn}{dt} \Big] \cos (2\xi + \phi'). \end{split}$$

Hence observing that

$$\frac{1}{a}\frac{da}{dt} = -\frac{2}{3n}\frac{dn}{dt},$$

and substituting in the equations, and further writing

$$\mu e^{-st} = u_0 + u_2 \cos \phi' + u_5 \cos 2\xi + u_8 \cos (2\xi - \phi') + u_9 \cos (2\xi + \phi'),$$

$$\frac{3}{2} \frac{m'}{r'^3} \cos 2(\theta - \theta') = p_0 + p_2 \cos \phi' + p_5 \cos 2\xi + p_8 \cos (2\xi - \phi') + p_9 \cos (2\xi + \phi'),$$

$$\frac{3}{2} \frac{m'}{r'^3} \sin 2(\theta - \theta') = q_2 \sin \phi' + q_5 \sin 2\xi + q_8 \sin (2\xi - \phi') + q_9 \sin (2\xi + \phi'),$$

we obtain the following equations by equating to zero the coefficients of the different new terms introduced.

4] THE SECULAR ACCELERATION OF THE MOON'S MEAN MOTION.

Non-Periodic Term in Second Equation,

$$0 = \frac{dn}{dt}$$

$$-\frac{4}{3}\frac{dn}{dt} - 2n\frac{da_0}{dt} - mb_2 \left[mn^2\delta a_2 + n\frac{da_2}{dt} \right] - (2 - 2m)b_5 \left[(2 - 2m)n^2\delta a_5 + n\frac{da_5}{dt} \right]$$

$$- (2 - 3m)b_8 \left[(2 - 3m)n^2\delta a_8 + n\frac{da_8}{dt} \right] - (2 - m)b_9 \left[(2 - m)n^2\delta a_9 + n\frac{da_9}{dt} \right]$$

$$+ ma_2 \left[-mn^2\delta b_2 + n\frac{db_2}{dt} \right] + (2 - 2m)a_5 \left[-(2 - 2m)n^2\delta b_5 + n\frac{db_5}{dt} \right]$$

$$+ (2 - 3m)a_8 \left[-(2 - 3m)n^2\delta b_8 + n\frac{db_8}{dt} \right] + (2 - m)a_9 \left[-(2 - m)n^2\delta b_9 + n\frac{db_9}{dt} \right]$$

$$+ n^2p_2\delta b_2 + n^2p_5\delta b_5 + n^2p_8\delta b_8 + n^2p_9\delta b_9.$$

Coefficient of $\sin \phi'$ in First Equation,

$$0 = m^{2}n^{2}\delta a_{2} + 2mn\frac{da_{2}}{dt}$$

$$-2ma_{2}\left[\frac{2}{3}\frac{dn}{dt} + n\frac{da_{0}}{dt}\right] + \left\{(2 - 3m)a_{8} - (2 - m)a_{9}\right\}\left[(2 - 2m)n^{2}\delta a_{5} + n\frac{da_{5}}{dt}\right]$$

$$-(2 - 2m)a_{5}\left[(2 - 3m)n^{2}\delta a_{8} + n\frac{da_{8}}{dt}\right] + (2 - 2m)a_{5}\left[(2 - 2m)n^{2}\delta a_{9} + n\frac{da_{9}}{dt}\right]$$

$$+2mn^{2}\delta b_{2} - 2n\frac{db_{2}}{dt} + \left\{(2 - 3m)b_{8} - (2 - m)b_{9}\right\}\left[(2 - m)n^{2}\delta b_{5} - n\frac{db_{5}}{dt}\right]$$

$$-(2 - 2m)b_{5}\left[(2 - 3m)n^{2}\delta b_{8} - n\frac{db_{8}}{dt}\right] + (2 - 2m)b_{5}\left[(2 - m)n^{2}\delta b_{9} - n\frac{db_{9}}{dt}\right]$$

$$+3n^{2}u_{0}\delta a_{2} + \frac{3}{2}n^{2}(u_{8} - u_{9})\delta a_{5} - \frac{3}{2}n^{2}u_{5}\delta a_{8} + \frac{3}{2}n^{2}u_{5}\delta a_{9}$$

$$+n^{2}(-q_{8} + q_{9})\delta b_{5} + n^{2}q_{5}\delta b_{8} - n^{2}q_{5}\delta b_{9}.$$

Coefficient of $\cos \phi'$ in Second Equation,

$$\begin{split} 0 &= -m^2 n^2 \delta b_2 + 2mn \, \frac{db_2}{dt} \\ &- 2m b_2 \left[\frac{2}{3} \, \frac{dn}{dt} + n \, \frac{da_0}{dt} \right] - 2 \left[mn^2 \delta a_2 + n \, \frac{da_2}{dt} \right] \end{split}$$

$$\begin{split} &-\{(2-3m)\,b_{8}+(2-m)\,b_{9}\}\left[\left(2-2m\right)n^{2}\delta a_{5}+n\,\frac{da_{5}}{dt}\right]\\ &-(2-2m)\,b_{5}\left[\left(2-3m\right)n^{2}\delta a_{8}+n\,\frac{da_{8}}{dt}\right]\\ &-(2-2m)\,b_{5}\left[\left(2-m\right)n^{2}\delta a_{9}+n\,\frac{da_{9}}{dt}\right]\\ &+\{(2-3m)\,a_{8}+(2-m)\,a_{9}\}\left[-(2-2m)\,n^{2}\delta b_{5}+n\,\frac{db_{5}}{dt}\right]\\ &+(2-2m)\,a_{5}\left[-(2-3m)\,n^{2}\delta b_{8}+n\,\frac{db_{8}}{dt}\right]\\ &+(2-2m)\,a_{5}\left[-(2-m)\,n^{2}\delta b_{9}+n\,\frac{db_{9}}{dt}\right]\\ &+2n^{2}p_{0}\delta b_{2}+n^{2}(p_{8}+p_{9})\,\delta b_{5}+n^{2}p_{5}\delta b_{8}+n^{2}p_{5}\delta b_{9}. \end{split}$$

Coefficient of $\sin 2\xi$ in First Equation,

124

$$0 = (2 - 2m)^{2} n^{2} \delta a_{5} + 2 (2 - 2m) n \frac{da_{5}}{dt} + 2a_{5} \frac{dn}{dt}$$

$$-2 (2 - 2m) n a_{5} \left[\frac{2}{3} \frac{dn}{dt} + n \frac{da_{0}}{dt} \right] - \{ (2 - 3m) a_{8} + (2 - m) a_{9} \} \left[mn^{2} \delta a_{2} + n \frac{da_{2}}{dt} \right]$$

$$- m a_{2} \left[(2 - 3m) n^{2} \delta a_{8} + n \frac{da_{8}}{dt} \right] + m a_{2} \left[(2 - m) n^{2} \delta a_{9} + n \frac{da_{9}}{dt} \right]$$

$$+ \{ (2 - 3m) b_{8} - (2 - m) b_{9} \} \left[mn^{2} \delta b_{2} - n \frac{db_{2}}{dt} \right] + 2 \left[(2 - 2m) n^{2} \delta b_{5} - n \frac{db_{5}}{dt} \right]$$

$$+ m b_{2} \left[(2 - 3m) n^{2} \delta b_{8} - n \frac{db_{8}}{dt} \right] + m b_{2} \left[(2 - m) n^{2} \delta b_{9} - n \frac{db_{9}}{dt} \right]$$

$$+ \frac{3}{2} n^{2} (u_{8} - u_{9}) \delta a_{2} + 3n^{2} u_{0} \delta a_{5} + \frac{3}{2} n^{2} u_{2} \delta a_{8} + \frac{3}{2} n^{2} u_{2} \delta a_{9}$$

$$+ n^{2} (q_{8} + q_{9}) \delta b_{2} + n^{2} q_{2} \delta b_{8} - n^{2} q_{2} \delta b_{9}.$$

Coefficient of $\cos 2\xi$ in Second Equation,

$$0 = -(2-2m)^{2} n^{2} \delta b_{5} + 2(2-2m) n \frac{db_{5}}{dt} + 2b_{5} \frac{dn}{dt}$$

$$-2(2-2m) b_{5} \left[\frac{2}{3} \frac{dn}{dt} + n \frac{da_{0}}{dt} \right] - \{(2-3m) b_{8} + (2-m) b_{9} \} \left[mn^{2} \delta a_{2} + n \frac{da_{2}}{dt} \right]$$

$$-2 \left[(2-2m) n^{2} \delta a_{5} + n \frac{da_{5}}{dt} \right] - mb_{2} \left[(2-3m) n^{2} \delta a_{8} + n \frac{da_{8}}{dt} \right]$$

4] THE SECULAR ACCELERATION OF THE MOON'S MEAN MOTION.

$$\begin{split} &-mb_{2}\left[\left(2-m\right)n^{2}\delta a_{9}+n\frac{da_{9}}{dt}\right]\\ &+\left\{-\left(2-3m\right)a_{8}+\left(2-m\right)a_{9}\right\}\left[-mn^{2}\delta b_{2}+n\frac{db_{2}}{dt}\right]\\ &-ma_{2}\left[-\left(2-3m\right)n^{2}\delta b_{8}+n\frac{db_{8}}{dt}\right]\\ &+ma_{2}\left[-\left(2-m\right)n^{2}\delta b_{9}+n\frac{db_{9}}{dt}\right]\\ &+n^{2}\left(p_{8}+p_{9}\right)\delta b_{2}+2n^{2}p_{0}\delta b_{5}+n^{2}p_{2}\delta b_{8}+n^{2}p_{2}\delta b_{9}. \end{split}$$

Coefficient of $\sin(2\xi - \phi')$ in First Equation,

$$0 = (2-3m)^{2} n^{2} \delta a_{8} + 2 (2-3m) n \frac{da_{8}}{dt} + 2a_{8} \frac{dn}{dt}$$

$$-2 (2-3m) a_{8} \left[\frac{2}{3} \frac{dn}{dt} + n \frac{da_{0}}{dt} \right] - (2-2m) a_{5} \left[mn^{2} \delta a_{2} + n \frac{da_{2}}{dt} \right]$$

$$-ma_{2} \left[(2-2m) n^{2} \delta a_{5} + n \frac{da_{5}}{dt} \right]$$

$$-(2-2m) b_{5} \left[mn^{2} \delta b_{2} - n \frac{db_{2}}{dt} \right] + mb_{2} \left[(2-2m) n^{2} \delta b_{5} - n \frac{db_{5}}{dt} \right]$$

$$+2 \left[(2-3m) n^{2} \delta b_{8} - n \frac{db_{8}}{dt} \right]$$

$$-\frac{3}{2} n^{2} u_{5} \delta a_{2} + \frac{3}{2} n^{2} u_{2} \delta a_{5} + 3n^{2} u_{0} \delta a_{8}$$

$$+n^{2} q_{5} \delta b_{2} - n^{2} q_{2} \delta b_{5}.$$

Coefficient of $\cos(2\xi - \phi')$ in Second Equation,

$$0 = -(2 - 3m)^{2} n^{2} \delta b_{8} + 2 (2 - 3m) n \frac{db_{8}}{dt} + 2 b_{8} \frac{dn}{dt}$$

$$-2 (2 - 3m) b_{8} \left[\frac{2}{3} \frac{dn}{dt} + n \frac{da_{0}}{dt} \right] - (2 - 2m) b_{5} \left[mn^{2} \delta a_{2} + n \frac{da_{2}}{dt} \right]$$

$$-mb_{2} \left[(2 - 2m) n^{2} \delta a_{5} + n \frac{da_{5}}{dt} \right] - 2 \left[(2 - 3m) n^{2} \delta a_{5} + n \frac{da_{8}}{dt} \right]$$

$$+ (2 - 2m) a_{5} \left[-mn^{2} \delta b_{2} + n \frac{db_{2}}{dt} \right] - ma_{2} \left[-(2 - 2m) n^{2} \delta b_{5} + n \frac{db_{5}}{dt} \right]$$

$$+ n^{2} p_{5} \delta b_{2} + n^{2} p_{2} \delta b_{5} + 2n^{2} p_{0} \delta b_{8}.$$

Coefficient of $\sin(2\xi + \phi')$ in First Equation,

$$0 = (2-m)^{2} n^{2} \delta a_{9} + 2 (2-m) n \frac{da_{9}}{dt} + 2 a_{9} \frac{dn}{dt}$$

$$-2 (2-m) a_{9} \left[\frac{2}{3} \frac{dn}{dt} + n \frac{da_{0}}{dt} \right] - (2-2m) a_{5} \left[mn^{2} \delta a_{2} + n \frac{da_{2}}{dt} \right]$$

$$-ma_{2} \left[(2-2m) n^{2} \delta a_{5} + n \frac{da_{5}}{dt} \right]$$

$$+ (2-2m) b_{5} \left[mn^{2} \delta b_{2} - n \frac{db_{2}}{dt} \right] + mb_{2} \left[(2-2m) n^{2} \delta b_{5} - n \frac{db_{5}}{dt} \right]$$

$$+ 2 \left[(2-m) n^{2} \delta b_{9} - n \frac{db_{9}}{dt} \right]$$

$$+ \frac{3}{2} n^{2} u_{5} \delta a_{2} + \frac{3}{2} n^{2} u_{2} \delta a_{5} + 3n^{2} u_{0} \delta a_{9}$$

$$+ n^{2} q_{5} \delta b_{2} + n^{2} q_{2} \delta b_{5}.$$

Coefficient of $\cos(2\xi + \phi')$ in Second Equation,

$$0 = -(2-m)^{2} n^{2} \delta b_{9} + 2 (2-m) n \frac{db_{9}}{dt} + 2 b_{9} \frac{dn}{dt}$$

$$-2 (2-m) b_{9} \left[\frac{2}{3} \frac{dn}{dt} + 2n \frac{da_{0}}{dt} \right] - (2-2m) b_{5} \left[mn^{2} \delta a_{2} + n \frac{da_{2}}{dt} \right]$$

$$-m b_{2} \left[(2-2m) n^{2} \delta a_{5} + n \frac{da_{5}}{dt} \right] - 2 \left[(2-m) n^{2} \delta a_{9} + n \frac{da_{9}}{dt} \right]$$

$$-(2-2m) a_{5} \left[-mn^{2} \delta b_{2} + n \frac{db_{2}}{dt} \right] - m a_{2} \left[-(2-2m) n^{2} \delta b_{5} + n \frac{db_{5}}{dt} \right]$$

$$+ n^{2} p_{5} \delta b_{2} + n^{2} p_{2} \delta b_{5} + 2n^{2} p_{9} \delta b_{9}.$$

We now proceed to form these equations numerically with the following values for the known quantities:—

$$a_0 = .00089,40892$$
 $a_2 = e'(-.00692,95)$
 $b_3 = e'(-.19057,67)$
 $a_5 = .00717,9892$
 $b_6 = .01021,1346$
 $a_8 = e'(.03036,04)$
 $b_8 = e'(.04396,33)$
 $a_9 = e'(-.00445,12)$
 $b_9 = e'(-.00624,23)$

$$\frac{da_0}{dt} = (-.00169,774) \frac{dn}{ndt} + (.00101,356) \frac{d(e^{t^2})}{dt}$$

$$\frac{da_5}{dt} = (-.01624,57) \frac{dn}{ndt} + (-.02411,57) \frac{d(e^{t^2})}{dt}$$

$$\frac{db_5}{dt} = (-.02348,36) \frac{dn}{ndt} + (-.03435,74) \frac{d(e^{t^2})}{dt}$$

$$u_0 = 1.00280,21804 \qquad p_0 = -.00008,57021$$

$$u_2 = e^t(-.02000,72) \qquad p_2 = e^t(-.00057,37) \qquad q_2 = e^t(-.00004,59)$$

$$u_5 = .02159,9810 \qquad p_5 = .00839,2060 \qquad q_5 = .00839,1893$$

$$u_8 = e^t(.09111,95) \qquad p_8 = e^t(.03096,86) \qquad q_8 = e^t(.03096,70)$$

$$u_9 = e^t(-.01360,74) \qquad p_9 = e^t(-.00579,81) \qquad q_9 = e^t(-.00579,85).$$

[The MS. in which these numbers were derived has not been found; the Variation terms will be found to agree closely with the more accurate values of p. 106; the coefficient b_s is comparable directly; a_0 and a_5 may be found by forming $\log 1/r$; u_0 and u_3 shew that μ is taken equal to unity; the errors are in the eighth place of decimals. The terms in e' may have been found by the method of Lecture X.; they are somewhat more correct than the values there given; the terms in e'^2 would result from a second application of that method; they appear to be far more correct than can be found by transformation of e.g. Delaunay's expression for the longitude. The coefficients of $\frac{dn}{ndt}$ in $\frac{da_0}{dt}$, &c. may be derived from the results of p. 113; e.g. we have

$$\frac{da_0}{dt} = \frac{dn'}{n'dt} (0.00157,0744) = \frac{1}{1-m} \frac{dm}{mdt} (0.00157,0744)$$
$$= -\frac{dn}{ndt} (0.00169,7737).$$

We now observe that the coefficients given by the non-periodic term and the coefficients of $\cos 2\xi$, $\sin 2\xi$ involve e'^2 as the lowest order, while all the rest involve e' in the first power and after that the cube and other odd powers. Clearly we may omit from our equations all terms except those of lowest order.

128

Hence our equations are the following:-

Non-periodic Term,

$$\begin{split} 0 = & \frac{dn}{ndt} \left(- \cdot 329943 \right) + \frac{e'de'}{dt} \left(- \cdot 00405583 \right) \\ & + n\delta a_s e' \left(\cdot 0010663 \right) + n\delta a_s \left(- \cdot 0349633 \right) + n\delta a_s e' \left(- \cdot 1386050 \right) \\ & + n\delta a_s e' \left(\cdot 0231365 \right) \\ & + n\delta b_s e' \left(- \cdot 0005349 \right) + n\delta b_s \left(- \cdot 0161916 \right) + n\delta b_s e' \left(- \cdot 0647496 \right) \\ & + n\delta b_s e' \left(\cdot 0106998 \right). \end{split}$$

Coefficient of $\sin \phi'$,

$$0 = \frac{de'}{dt} (3806029) + n\delta a_2 (3.01400) + n\delta a_3 (-0.0559897) + n\delta a_9 (0.0579772) + n\delta b_2 (1496026) + n\delta b_3 (-0.0251580) + n\delta b_9 (0.0279848).$$

Coefficient of $\cos \phi'$,

$$0 = \frac{de'}{dt} \left(-.0146402 \right) + n\delta a_2 \left(-..1496026 \right) + n\delta a_8 \left(-..0335499 \right) + n\delta a_9 \left(-..0363767 \right) + n\delta b_2 \left(-..00576663 \right) + n\delta b_8 \left(-..0151979 \right) + n\delta b_9 \left(-..0171854 \right).$$

Coefficient of $\sin 2\xi$,

$$0 = \frac{dn}{ndt} \left(-.0164641 \right) + \frac{e'de'}{dt} \left(-.0230823 \right)$$

$$+ n\delta a_2 e' \left(.1536989 \right) + n\delta a_3 \left(6.43238 \right) + n\delta a_3 e' \left(-.0290904 \right) + n\delta a_4 e' \left(-.0310087 \right)$$

$$+ n\delta b_3 e' \left(.0319065 \right) + n\delta b_3 \left(3.70079 \right) + n\delta b_3 e' \left(-.0253577 \right) + n\delta b_4 e' \left(-.0273986 \right).$$

Coefficient of $\cos 2\xi$,

$$0 = \frac{dn}{ndt} \left(-0591231 \right) + \frac{e'de'}{dt} \left(-01451536 \right)$$

$$+ n\delta a_s e' \left(-0049402 \right) + n\delta a_s \left(-3.70079 \right) + n\delta a_s e' \left(0253118 \right) + n\delta a_s e' \left(0274445 \right)$$

$$+ n\delta b_s e' \left(0298439 \right) + n\delta b_s \left(-3.42414 \right) + n\delta b_s e' \left(-0014941 \right) + n\delta b_s e' \left(0004242 \right).$$
Coefficient of $\sin \left(2\xi - \phi' \right)$,

$$0 = \frac{de'}{dt} (.0163800) + n\delta a_s (-.0332935) + n\delta a_s (6.16115) + n\delta b_s (.0069785) + n\delta b_s (3.55119).$$

4] THE SECULAR ACCELERATION OF THE MOON'S MEAN MOTION.

129

Coefficient of $\cos(2\xi - \phi')$,

$$0 = \frac{de'}{dt} (.0930002) + n\delta a_2 (-.0014134) + n\delta a_8 (-3.55119) + n\delta b_2 (.0073983) + n\delta b_8 (-3.15291).$$

Coefficient of $\sin(2\xi + \phi')$,

$$0 = \frac{de'}{dt} (-0.009612) + n\delta a_2 (0.0314059) + n\delta a_3 (6.71480) + n\delta b_3 (0.098053) + n\delta b_4 (3.85040).$$

Coefficient of $\cos(2\xi + \phi')$,

$$0 = \frac{de'}{dt} (-0.0124702) + n\delta a_2 (-0.0014134) + n\delta a_9 (-0.0014134) + n\delta b_2 (-0.0093859) + n\delta b_9 (-0.0093859).$$

These equations give

$$\delta a_2 = \frac{de'}{ndt} \ (\cdot 0017349), \qquad \delta b_2 = \frac{de'}{ndt} \ (-2 \cdot 58480),$$

$$\delta a_8 = \frac{de'}{ndt} \ (-0377033), \quad \delta b_8 = \frac{de'}{ndt} \ (\cdot 0658969),$$

$$\delta a_9 = \frac{de'}{ndt} \ (\cdot 0237240), \qquad \delta b_9 = \frac{de'}{ndt} \ (-0345550),$$

$$e'de'$$

and

$$\delta a_s = \frac{e'de'}{ndt} (\cdot 1420895), \qquad \delta b_s = \frac{e'de'}{ndt} (-\cdot 2184587),$$

$$\frac{dn}{ndt} = \frac{e'de'}{dt} (-\cdot 00898284).$$

If we take

$$\int (e'^2 - E'^2) \, n dt = -1270'' \left(\frac{t}{100}\right)^2,$$

the last gives the secular acceleration

The value found by including terms of the series which represents the same up to m^7 or m^8 , and estimating the remainder is 5'''.70.

Dec. 1859.

NEISON'S LUNAR INEQUALITY.

DIARY, 1877, August 13. "In the course of the day while in the train and also while walking about in London thought out a way of deriving a very approximate value of the coefficient of Neison's inequality due to Jupiter from the coefficient of the Lunar Evection."

In a comparison of Hansen's "Tables de la Lune" with observations made at Greenwich and Washington, Professor Newcomb discovered an inequality of eccentricity and longitude of perigee which may be expressed*

$$ed\varpi = +0".75 \sin N,$$

$$de = -0 .75 \cos N,$$

where

$$N = 253^{\circ} \cdot 2 + 21^{\circ} \cdot 6 (t - 1868 \cdot 1).$$

The explanation of this was found by Mr Neison, whose researches revealed an inequality due to the action of Jupiter

$$\delta l = 2'' \cdot 20 \sin(2\varpi - 2J),$$

$$e \delta \varpi = 0 \cdot 58 \sin(2\varpi - 2J),$$

$$\delta e = -0 \cdot 58 \cos(2\varpi - 2J),$$

$$2\varpi - 2J = 261^{\circ} \cdot 4 + 20^{\circ} \cdot 85 (t - 1868 \cdot 1).$$

and

* See Mon. Not. xxxvII., p. 428.

It follows from the equation

$$\theta = nt + \epsilon + 2e \sin(nt + \epsilon - \varpi) + \dots,$$

that the inequality in longitude

=
$$-1'' \cdot 16 \sin (2\varpi - 2J + A)$$

= $-1'' \cdot 16 \sin (2\overline{M} - J - A)$,

where M, J are the mean longitudes of the Moon and Jupiter, and A is the Moon's mean anomaly.

Thus the argument of the inequality is analogous to that of the Evection, and the inequality may be considered an Evection produced by Jupiter. From this point of view a very approximate value of its coefficient may be deduced from the coefficient of the solar evection, as follows.

The Sun makes a complete revolution with respect to the Moon's perigee in about 1·127 years; and the Moon's perigee makes a complete revolution with respect to Jupiter in about $34\cdot532$ years. The ratio of these is $30\cdot631$. The mass of Jupiter is $\frac{1}{1050}$ of that of the Sun; if Jupiter were at his mean distance, the inverse cube of the distance would be about $\frac{1}{140\cdot6}$ that of the Sun. The average inverse cube of his distance is greater than this in the ratio 1·088 to 1, and is therefore about $\frac{1}{129\cdot2}$ that of the Sun.

Therefore the coefficient of the evection being about 4600", that of the analogous inequality due to Jupiter will be

$$\frac{30.63}{129.2} \cdot \frac{4600}{1050} = \frac{4600}{4430} = 1''.04$$
 nearly.

Also the sign will be opposite to that of the Evection since the Moon's perigee advances faster than Jupiter.

[A paper probably including among other remarks upon recent advances in Lunar Theory some such matter as the above, was read at the British Association Meeting, 1877. Its title only is published in the Report.]

A METHOD OF SOLVING THE EQUATION
$$\frac{d^3w}{dt^2} + Qw = 0$$
, WHERE
$$Q = q_0^2 + 2q_1\cos 2t + 2q_2\cos 4t + 2q_3\cos 6t + \dots$$

[This is the equation which Adams employed to discuss the Lunar Inequalities depending upon the first power of the inclination, and to which Hill reduced the problem of finding those depending on the first power of the eccentricity. From this double claim to the first rank of importance the following method of solving it derives its interest.]

Two methods of solution have been given already; firstly it may be solved by evaluation of an infinite determinant as in p. 86 et seqq; or again by the method employed in the Lectures on the Lunar Theory, XIV. But in both the important cases to which the equation applies, q_0 is not very different from unity. Hence if we write

$$w = c \cos(kt + \beta) + \&c.,$$

k will also be nearly equal to unity, and it is desirable to find a method which avoids the introduction of the two small quantities $q_0^2 - k^2$, $q_0^2 - (k-2)^2$, as divisors.

Let us assume, omitting c,

$$w = \cos(kt + \beta) + c_{-1}\cos(\overline{k-2}t + \beta) + c_{-2}\cos(\overline{k-4}t + \beta) + \dots$$
$$+ c_{1}\cos(\overline{k+2}t + \beta) + c_{2}\cos(\overline{k+4}t + \beta) + \dots$$
$$= w_{0} + \delta_{1}w + \delta_{2}w + \dots$$

where, in the first place,

$$w_0 = \cos(kt + \beta) + c_{-1}\cos(\overline{k-2}t + \beta).$$

Let the result of substituting w_0 on the left-hand of the equation for w be

$$Q_0 \cos (kt + \beta) + Q_{-1} \cos (\overline{k-2} t + \beta) + \dots$$
$$+ Q_1 \cos (\overline{k+2} t + \beta) + \dots$$

and let $\delta_1 w$ be determined from the equation

$$0 = \frac{d^2 \delta_1 w}{dt^2} + q_0^2 \delta_1 w + Q_{-2} \cos(\overline{k-4} t + \beta) + Q_1 \cos(\overline{k+2} t + \beta)$$

so that $\delta_1 w$ contains only terms involving the angles

$$\overline{k-4}t+\beta$$
, $\overline{k+2}t+\beta$.

Now let the result of substituting $\delta_1 w$ in the product

$$\left[2q_1\cos 2t + 2q_2\cos 4t + \ldots\right]\delta_1 w$$

be

$$\delta_{1}Q_{0}\cos(kt+\beta) + \delta_{1}Q_{-1}\cos(k-2t+\beta) + \dots + \delta_{1}Q_{1}\cos(\overline{k+2t+\beta}) + \dots$$

And again let $\delta_2 w$ be determined by means of the equation

$$0 = \frac{d^2 \delta_2 w}{dt^2} + q_0^2 \delta_2 w + \delta_1 Q_{-2} \cos(\overline{k-4} t + \beta) + (Q_{-3} + \delta_1 Q_{-3}) \cos(\overline{k-6} t + \beta) + \delta_1 Q_1 \cos(\overline{k-2} t + \beta) + (Q_2 + \delta_1 Q_2) \cos(\overline{k-4} t + \beta),$$

so that $\delta_2 w$ contains only terms involving the angles

$$k-4t+\beta$$
, $k-6t+\beta$, $k+2t+\beta$, $k+4t+\beta$.

Similarly let the result of substituting $\delta_2 w$ in the product

$$[2q_1\cos 2t + 2q_2\cos 4t + \dots]\delta_2 w$$

be

$$\delta_{2}Q_{0}\cos(kt+\beta) + \delta_{2}Q_{-1}\cos(\overline{k-2}t+\beta) + \dots + \delta_{2}Q_{1}\cos(\overline{k+2}t+\beta) + \dots,$$

and determine $\delta_{i}w$ by means of the equation

$$0 = \frac{d^2 \delta_3 w}{dt^2} + q_0^2 \delta_3 w + \delta_2 Q_{-2} \cos(\overline{k-4}t+\beta) + \dots + (Q_{-4} + \delta_1 Q_{-4} + \delta_2 Q_{-4}) \cos(\overline{k-8}t+\beta) + \delta_2 Q_1 \cos(\overline{k+2}t+\beta) + \dots + (Q_3 + \delta_1 Q_3 + \delta_2 Q_3) \cos(\overline{k+6}t+\beta),$$

the angles involved being

$$k-4t+\beta$$
, $k-6t+\beta$, $k-8t+\beta$, $k-2t+\beta$, $k+4t+\beta$, $k+6t+\beta$.

Proceed in this way as far as may be necessary for the degree of approximation desired. Then the result of substituting

$$w = w_0 + \delta_1 w + \delta_2 w + \dots$$

in the equation

$$\frac{d^2w}{dt^2} + Qw = 0,$$

will be

$$(Q_0 + \delta_1 Q_0 + \delta_2 Q_0 + ...) \cos(kt + \beta) + (Q_{-1} + \delta_1 Q_{-1} + \delta_2 Q_{-1} + ...) \cos(kt + \beta)$$

where the coefficients $\cos(kt+\beta)$, $\cos(\overline{k-2}t+\beta)$ involve k and c_{-1} . If these coefficients be equated to zero we have means of determining k and c_{-1} .

[30 May 1884.]

[To illustrate this method somewhat further; substitute

$$w_0 = \cos kt + c_{-1} \cos (k-2) t$$

in the differential equation; then we get

$$\begin{split} Q_{\text{o}} &= q_{\text{o}}^{\text{ 2}} - k^{2} + q_{\text{1}} c_{\text{-1}}, \quad Q_{\text{-1}} = q_{\text{1}} + c_{\text{-1}} q_{\text{o}}^{\text{ 2}} - c_{\text{-1}} (k-2)^{\text{2}}, \\ Q_{\text{1}} &= q_{\text{1}} + c_{\text{-1}} q_{\text{2}}, \qquad Q_{\text{-2}} = q_{\text{2}} + c_{\text{-1}} q_{\text{1}}; \end{split}$$

then take the equation

$$\frac{d^2 \delta_1 w}{dt^2} + q_0^2 \delta_1 w + Q_{-2} \cos(k-4) t + Q_1 \cos(k+2) t,$$

whence

$$\delta_1 w = \frac{Q_{-2}}{(k-4)^2 - q_0^2} \cos(k-4) t + \frac{Q_1}{(k+2)^2 - q_0^2} \cos(k+2) t;$$

substitute this in the expression

$$(2q_1\cos 2t + 2q_2\cos 4t + \dots)\delta_1 w,$$

and we get

$$\delta_{1}Q_{0} = \frac{q_{1}Q_{1}}{(k+2)^{2} - q_{0}^{2}} + \frac{q_{2}Q_{-2}}{(k-4)^{2} - q_{0}^{2}}, \quad \delta_{1}Q_{-1} = \frac{q_{1}Q_{-2}}{(k-4)^{2} - q_{0}^{2}} + \frac{q_{2}Q_{1}}{(k+2)^{2} - q_{0}^{2}},$$

and so on. If we stop at this stage the equations to determine k and c_1 are

$$Q_0 + \delta_1 Q_0 = 0$$
, $Q_{-1} + \delta_1 Q_{-1} = 0$.

For example, take the equation of Lecture XIV. for finding the Moon's latitude; here with our present notation

$$q_0^2 = 1.17803,9, q_1 = .01261,5, q_2 = .00012,6.$$

Hence

$$Q_1 = .01261, 5 + .00012, 6c_{-1}, \quad Q_{-2} = .00012, 6 + .01261, 5c_{-1},$$

and taking $k = q_0$ as sufficient approximation in $\delta_1 Q_0$, $\delta_1 Q_1$ we have

$$\delta_1 Q_0 = .00001,9$$
, $\delta_1 Q_{-1} = .00002,2c_{-1}$,

and the equations for k and c_{-1} are

$$k^2 - .01261, 5c_{-1} = 1.17805, 8,$$

$$c_1[(k-2)^2-1.17806,1]=.01261,5,$$

whence

$$k = 1.08517,1, \quad c_{-1} = -.03698,3,$$

which may be compared with the results of p. 103.]

THEORY OF JUPITER'S SATELLITES.

[Lectures on the Theory of Jupiter's Satellites were given in 1878 and again in 1880. They included matter which did not differ from Laplace, and this has been omitted. Moreover as it did not seem to add to clearness to preserve the division into lectures, what remained, that was original and characteristic, has been cast into the form of three essays.

As an account of the whole problem these are incomplete in detail, and would require much development before they could be applied to such questions as the determination of the masses and other constants from observation; but they are of interest because they seem to indicate some outlines of the plan upon which Adams would have attacked the entire problem.]

T.

MOTION OF A SATELLITE ABOUT AN OBLATE PRIMARY, IN AN APPROXIMATELY ELLIPTICAL ORBIT INCLINED AT A FINITE 'ANGLE TO THE EQUATOR OF THE PRIMARY.

The potential at any external point of an oblate spheroid of slight ellipticity, whose free surface is a level surface under the attractions of its body and the centrifugal forces due to a rotation about its axis of symmetry, is of the form

 $\frac{\mu}{r} + \frac{\nu}{r^3} \left(\frac{1}{3} - \frac{z^2}{r^2} \right),$

where r, z are the distances of the point from the centre and the equatoreal plane of the spheroid, respectively. In this expression, the

square of the ellipticity is neglected, μ is equal to the mass of the spheroid, and

$$\nu = \mu A^2 \left(\rho - \frac{1}{2} \phi \right),$$

where A is the equatoreal radius, ρ the ellipticity, and ϕ the ratio of centrifugal force to gravity at the equator.

The equations of motion of a small body moving under the attraction of this spheroid are the following:—

$$\begin{split} \frac{d^2x}{dt^2} &= -\frac{\mu}{r^2} \frac{x}{r} - \frac{\nu}{r^4} \frac{x}{r} + 5 \frac{\nu}{r^4} \frac{xz^2}{r^3}, \\ \frac{d^2y}{dt^2} &= -\frac{\mu}{r^2} \frac{y}{r} - \frac{\nu}{r^4} \frac{y}{r} + 5 \frac{\nu}{r^4} \frac{yz^2}{r^3}, \\ \frac{d^2z}{dt^2} &= -\frac{\mu}{r^2} \frac{z}{r} - \frac{\nu}{r^4} \frac{z}{r} + 5 \frac{\nu}{r^4} \frac{z^3}{r^3} - 2 \frac{\nu}{r^4} \frac{z}{r}. \end{split}$$

From these we derive immediately

$$\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} + \left(\frac{dz}{dt}\right)^{2} = 2\frac{\mu}{r} + \frac{2}{3}\frac{\nu}{r^{3}} - 2\frac{\nu z^{2}}{r^{5}} - C,$$

where C is a constant, and

$$x \frac{d^2x}{dt^2} + y \frac{d^2y}{dt^2} + z \frac{d^2z}{dt^2} = -\frac{\mu}{r} - \frac{\nu}{r^2} + 3 \frac{\nu z^2}{r^5}.$$

Add these together:-

$$\frac{d}{dt}\left(x\frac{dx}{dt} + y\frac{dy}{dt} + z\frac{dz}{dt}\right) = \frac{\mu}{r} - \frac{1}{3}\frac{\nu}{r^3} + \frac{\nu z^2}{r^5} - C,$$

or

$$\frac{d}{dt}\left(r\frac{dr}{dt}\right) = \frac{\mu}{r} - \frac{1}{3}\frac{\nu}{r^3} + \frac{\nu z^2}{r^5} - C,$$

or again

$$\frac{1}{2} \frac{d^2}{dt^2} (r^2) = \frac{\mu}{r} - \frac{1}{3} \frac{\nu}{r^3} + \frac{\nu z^2}{r^5} - C.$$

$$\frac{d^2 z}{dt^2} = -\frac{\mu z}{r^3} - 3 \frac{\nu z}{r^5} + 5 \frac{\nu z^3}{r^7}.$$

Also

Thus we have eliminated one coordinate, and have obtained a pair of simultaneous equations between r and z; we proceed to integrate these equations. To integrate completely we must introduce four new arbitrary constants. We shall first consider the case in which two only are present, namely the inclination, and the longitude of the node.

Assume

$$z = ac \left[\sin \left(qt + \gamma \right) + c_1 \sin 3 \left(qt + \gamma \right) + c_2 \sin 5 \left(qt + \gamma \right) \right],$$

$$\frac{1}{r} = \frac{1}{a} \left[1 + a_1 \cos 2 \left(qt + \gamma \right) + a_2 \cos 4 \left(qt + \gamma \right) \right],$$

where c, γ determine the inclination and the position of the node, while a is a third arbitrary which, it will appear, is involved in C already introduced. For brevity we shall omit the constant γ , and write

$$\frac{\nu}{\mu a^2} = f.$$

Considering f as a small quantity of the first order, we shall find that a_1 , c_1 , are of the first order and a_2 , c_2 , of the second.

Substitute for r and z, and we find to the second order

$$\begin{split} r^2 &= a^2 \left[1 - 2a_1 \cos 2qt - 2a_2 \cos 4qt + \frac{3}{2} \, a_1^2 \left(1 + \cos 4qt \right) \right], \\ \frac{1}{2} \, \frac{d^2}{dt^2} (r^2) &= a^2 \left[4q^2 a_1 \cos 2qt + \left(16q^2 a_2 - 12a_1^2 q^2 \right) \cos 4qt \right], \\ \frac{\mu}{r} &= \frac{\mu}{a} \left[1 + a_1 \cos 2qt + a_2 \cos 4qt \right], \\ -\frac{1}{3} \, \frac{\nu}{r^3} &= -\frac{1}{3} \, \frac{\nu}{a^3} \left[1 + 3a_1 \cos 2qt \right], \\ \frac{\nu z^2}{r^5} &= \frac{\nu c^2}{a^3} \left[\frac{1}{2} - \frac{5}{4} \, a_1 + \left(-\frac{1}{2} + c_1 + \frac{5}{2} \, a_1 \right) \cos 2qt + \left(-c_1 - \frac{5}{4} \, a_1 \right) \cos 4qt \right]. \end{split}$$

The constant term merely gives the relation between a and C; equate the coefficients of the periodic terms and we get, after dividing throughout by a^2 ,

$$4q^{2}\alpha_{1} = \frac{\mu}{\alpha^{3}} \left[\alpha_{1} - f\alpha_{1} - \frac{1}{2} fc^{2} + \frac{5}{2} fc^{2}\alpha_{1} + fc^{2}c_{1} \right].$$

This gives a_1 to the second order when c_1 is known to the first order,

$$(16a_2 - 12a_1^2)q^2 = \frac{\mu}{a^3} \left[a_2 - \frac{5}{4}fc^2a_1 - fc^2c_1 \right].$$

This gives a_2 when a_1 and c_1 are known to the first order.

Again

$$\begin{split} -\frac{d^2z}{dt^2} &= acq^3 \left[\sin qt + 9c_1 \sin 3qt + 25c_2 \sin 5qt \right], \\ \frac{\mu z}{r^3} &= \frac{\mu c}{a^2} \left[1 + 3a_1 \cos 2qt + 3a_2 \cos 4qt + \frac{3}{2} a_1^2 (1 + \cos 4qt) \right] \\ &\qquad \times \left[\sin qt + c_1 \sin 3qt + c_2 \sin 5qt \right] \\ &= \frac{\mu c}{a^2} \left[\sin qt + c_1 \sin 3qt + c_2 \sin 5qt \right] \\ &\qquad + \frac{3}{2} a_1 \left(-\sin qt + \sin 3qt \right) + \frac{3}{2} a_1 c_1 \left(\sin qt + \sin 5qt \right) \\ &\qquad + \frac{3}{2} a_2 \left(-\sin 3qt + \sin 5qt \right) + \frac{3}{2} a_1^2 \sin qt + \frac{3}{4} a_1^2 \left(-\sin 3qt + \sin 5qt \right) \right], \\ \frac{3\nu z}{r^2} &= \frac{3\nu c}{a^4} \left[1 + 5a_1 \cos 2qt \right] \left[\sin qt + c_1 \sin 3qt \right] \\ &= \frac{3\nu c}{a^4} \left[\sin qt + c_1 \sin 3qt + \frac{5}{2} a_1 \left(-\sin qt + \sin 3qt \right) \right], \\ -\frac{5\nu c^3}{r^7} &= -\frac{5\nu c^3}{a^4} \left[1 + 7a_1 \cos 2qt \right] \left[\frac{1}{4} \left(3\sin qt - \sin 3qt \right) + \frac{3}{2} \left(1 - \cos 2qt \right) c_1 \sin 3qt \right] \\ &= -\frac{5\nu c^3}{a^4} \left[1 + 7a_1 \cos 2qt \right] \left[\frac{3}{4} \sin qt - \frac{1}{4} \sin 3qt + \frac{3}{2} c_1 \sin 3qt \right] \\ &= -\frac{5\nu c^3}{a^4} \left[\left(\frac{3}{4} - \frac{3}{4} c_1 \right) \sin qt - \left(\frac{1}{4} - \frac{3}{2} c_1 \right) \sin 3qt - \frac{3}{4} c_1 \sin 5qt \right] \\ &= -\frac{5\nu c^3}{a^4} \left[\left(\frac{3}{4} - \frac{3}{4} c_1 \right) \sin qt - \left(\frac{1}{4} - \frac{3}{2} c_1 \right) \sin 3qt - \frac{3}{8} c_1 \sin 5qt \right] \\ &= -\frac{5\nu c^3}{a^4} \left[\left(\frac{3}{4} - \frac{3}{4} c_1 - \frac{7}{2} a_1 \right) \sin qt - \left(\frac{1}{4} - \frac{3}{2} c_1 - \frac{21}{8} a_1 \right) \sin 3qt - \left(\frac{3}{4} c_1 + \frac{7}{8} a_1 \sin 5qt \right) \right]. \\ &= -\frac{5\nu c^3}{a^4} \left[\left(\frac{3}{4} - \frac{3}{4} c_1 - \frac{7}{2} a_1 \right) \sin qt - \left(\frac{1}{4} - \frac{3}{2} c_1 - \frac{21}{8} a_1 \right) \sin 3qt - \left(\frac{3}{4} c_1 + \frac{7}{8} a_1 \sin 5qt \right) \right]. \\ &= -\frac{5\nu c^3}{a^4} \left[\left(\frac{3}{4} - \frac{3}{4} c_1 - \frac{7}{2} a_1 \right) \sin qt - \left(\frac{1}{4} - \frac{3}{2} c_1 - \frac{21}{8} a_1 \right) \sin 3qt - \left(\frac{3}{4} c_1 + \frac{7}{8} a_1 \sin 5qt \right) \right]. \\ &= -\frac{5\nu c^3}{a^4} \left[\left(\frac{3}{4} - \frac{3}{4} c_1 - \frac{7}{2} a_1 \right) \sin qt - \left(\frac{1}{4} - \frac{3}{2} c_1 - \frac{21}{8} a_1 \right) \sin 3qt - \left(\frac{3}{4} c_1 + \frac{7}{8} a_1 \sin 5qt \right) \right]. \\ &= -\frac{5\nu c^3}{a^4} \left[\left(\frac{3}{4} - \frac{3}{4} c_1 - \frac{7}{2} a_1 \right) \sin qt - \left(\frac{1}{4} - \frac{3}{2} c_1 - \frac{21}{8} a_1 \right) \sin 3qt - \left(\frac{3}{4} c_1 + \frac{7}{8} a_1 \sin 5qt \right) \right]. \\ &= -\frac{5\nu c^3}{a^4} \left[\left(\frac{3}{4} - \frac{3}{4} c_1 - \frac{7}{2} a_1 \right) \sin qt - \left(\frac{1}{4} - \frac{3}{2} c_1 - \frac{21}{8} a_1 \right) \sin 3qt - \left(\frac{3}{4} c_1 - \frac{21}{8} a_1 \right) \sin 3qt - \left(\frac{3}{4} c_$$

Now equate coefficients of corresponding terms, dividing throughout by ac

$$\begin{split} q^2 &= \frac{\mu}{\alpha^3} \left[\ 1 \ -\frac{3}{2} \, \alpha_1 \ + \frac{3}{2} \, \alpha_1 c_1 + \frac{3}{2} \, \alpha_1^2 + 3 f \left(1 - \frac{5}{2} \, \alpha_1 \right) - 5 f c^2 \left(\frac{3}{4} - \frac{3}{4} \, c_1 - \frac{7}{2} \, \alpha_1 \right) \right], \\ 9 q^2 c_1 &= \frac{\mu}{\alpha^3} \left[\ c_1 + \frac{3}{2} \, \alpha_1 \ -\frac{3}{2} \, \alpha_2 \ -\frac{3}{4} \, \alpha_1^2 + 3 f \left(c_1 + \frac{5}{2} \, \alpha_1 \right) + 5 f c^2 \left(\frac{1}{4} - \frac{3}{2} \, c_1 - \frac{21}{8} \, \alpha_1 \right) \right], \\ 25 q^2 c_2 &= \frac{\mu}{\alpha^3} \left[\ c_2 + \frac{3}{2} \, \alpha_1 c_1 + \frac{3}{2} \, \alpha_2 \ +\frac{3}{4} \, \alpha_1^2 + 5 f c^2 \left(\frac{3}{4} \, c_1 + \frac{7}{8} \, \alpha_1 \right) \right]. \end{split}$$

The first of these gives the relation between q^2 and $\frac{\mu}{a^3}$ when a_1 and c_1 are known;

the second gives c_1 in terms of a_1 and a_2 ; the third gives c_2 in terms of c_1 , a_1 , a_2 .

Now substitute the value of q^2 given by the first of these latter equations in all the rest and divide out by the common factor μ/a^3 , and we have the following equations for the determination of the coefficients a_1 , a_2 , c_1 , c_2 , taking into account terms of the second order,

$$4\alpha_{1} - 6\alpha_{1}^{2} + 12f\alpha_{1} - 15fc^{2}\alpha_{1} = \alpha_{1} - f\alpha_{1} - \frac{1}{2}fc^{2} + \frac{5}{2}fc^{2}\alpha_{1} + fc^{2}c_{1},$$
or
$$3\alpha_{1} - 6\alpha_{1}^{2} + 13f\alpha_{1} - \frac{35}{2}fc^{2}\alpha_{1} = -\frac{1}{2}fc^{2} + fc^{2}c_{1} \qquad (1),$$

$$16\alpha_{2} - 12\alpha_{1}^{2} = \alpha_{2} - \frac{5}{4}fc^{2}\alpha_{1} - fc^{2}c_{1},$$

or $15a_2 = 12a_1^2 - \frac{5}{4}fc^2a_1 - fc^2c_1 - \dots$ (2),

$$\begin{aligned} 9c_1 - \frac{27}{2} \ \alpha_1 c_1 + 27 f c_1 - \frac{135}{4} \ f c^2 c_1 &= c_1 + \frac{3}{2} \ \alpha_1 - \frac{3}{2} \ \alpha_2 - \frac{3}{4} \ \alpha_1^2 + 3 f \left(c_1 + \frac{5}{2} \ \alpha_1 \right) \\ &+ 5 f c^2 \left(\frac{1}{4} - \frac{3}{2} \ c_1 - \frac{21}{8} \ \alpha_1 \right), \end{aligned}$$

or

$$8c_{1} = \frac{3}{2}\alpha_{1} - \frac{3}{2}\alpha_{2} - \frac{3}{4}\alpha_{1}^{2} + \frac{27}{2}\alpha_{1}c_{1}$$

$$-24fc_{1} + \frac{15}{2}f\alpha_{1} + \frac{5}{4}fc^{2} + \frac{105}{4}fc^{2}c_{1} - \frac{105}{8}fc^{2}\alpha_{1}...(3),$$

$$25c_2 = c_2 + \frac{3}{2}\alpha_1c_1 + \frac{3}{2}\alpha_2 + \frac{3}{4}\alpha_1^2 + 5fc^2\left(\frac{3}{4}c_1 + \frac{7}{8}\alpha_1\right)$$

or

$$24c_2 = \frac{3}{2}\alpha_1c_1 + \frac{3}{2}\alpha_2 + \frac{3}{4}\alpha_1^2 + 5fc^2\left(\frac{3}{4}c_1 + \frac{7}{8}\alpha_1\right) \dots (4).$$

From (1) neglecting terms of the second order

$$a_1 = -\frac{1}{6}fc^2.$$

Substitute this in (3), still neglecting the second order

$$c_1 = \frac{1}{8} f c^2.$$

Substitute these values of α_1 , c_1 in the terms of the second order in (1);

$$3a_1 = -\frac{1}{2}fc^2 + \frac{1}{6}f^2c^4 + \frac{13}{6}f^2c^3 - \frac{35}{12}f^2c^4 + \frac{1}{8}f^2c^4$$

$$= -\frac{1}{2}fc^2 + \frac{13}{6}f^2c^2 - \frac{21}{8}f^2c^4,$$

$$a_1 = -\frac{1}{6}fc^2 + \frac{13}{18}f^2c^2 - \frac{7}{8}f^2c^4.$$

or

Substitute the same values in (2),

$$15a_2 = \frac{1}{3}f^2c^4 + \frac{5}{24}f^2c^4 - \frac{1}{8}f^2c^4 = \frac{5}{12}f^2c^4,$$

$$a_2 = \frac{1}{36}f^2c^4.$$

Now substitute the above found values of α_1 and α_2 in (3) and also the approximate values of α_1 , c_1 in terms of the second order;

$$8c_{1} = -\frac{1}{4}f c^{2} + \frac{13}{12}f^{2}c^{2} - \frac{21}{16}f^{2}c^{4} - \frac{1}{24}f^{2}c^{4} - \frac{1}{48}f^{2}c^{4} - \frac{9}{32}f^{2}c^{4} - 3f^{2}c^{2}$$

$$-\frac{5}{4}f^{2}c^{2} + \frac{5}{4}f c^{2} + \frac{105}{32}f^{2}c^{4} + \frac{35}{16}f^{2}c^{4} = fc^{2} - \frac{19}{6}f^{2}c^{2} + \frac{61}{16}f^{2}c^{4},$$

$$c_{1} = \frac{1}{8}f c^{2} - \frac{19}{48}f^{2}c^{2} + \frac{61}{128}f^{2}c^{4}.$$

Also

$$24c_2 = -\frac{1}{32}f^2c^2 + \frac{1}{24}f^2c^4 + \frac{1}{48}f^2c^4 + \frac{15}{32}f^2c^4 - \frac{35}{48}f^2c^4 = -\frac{11}{48}f^2c^4,$$

$$c_2 = -\frac{11}{1152}f^2c^4.$$

Finally substituting for a_1 , c_1 in the equation which gives the relation between q^2 and $\frac{\mu}{a^3}$ we have

$$\begin{split} q^2 = & \frac{\mu}{\alpha^3} \bigg[1 + \frac{1}{4} f c^2 - \frac{13}{12} f^2 c^2 + \frac{21}{16} f^2 c^4 - \frac{1}{32} f^2 c^4 + \frac{1}{24} f^2 c^4 + 3f + \frac{5}{4} f^2 c^2 \\ & - \frac{15}{4} f c^2 + \frac{15}{32} f^2 c^4 - \frac{35}{12} f^2 c^4 \bigg] \,, \end{split}$$

 \mathbf{or}

$$q^2 = \frac{\mu}{\alpha^3} \left[1 + 3f - \frac{7}{2}fc^2 + \frac{1}{6}f^2c^2 - \frac{9}{8}f^2c^4 \right].$$

Hence the particular case of our problem is solved to the second order in f.

Now suppose new terms be added to $\frac{1}{r}$ and to z, which involve two new arbitrary constants. If the principal periodic term in $\frac{1}{r}$ be taken as $\frac{1}{a}e\cos(pt+\beta)$ these constants may be supposed to be e, β . We will suppose e small, so that its square may be neglected, and we will omit β in writing, remembering that it always accompanies pt.

Let δr and δz be the increments of the former values of r and z, due to these terms involving e.

Then since the new values must satisfy the same differential equations, we must have

$$\begin{aligned} \frac{d^{2}}{dt^{2}}(r\delta r) &= -\frac{\mu}{r^{2}}\delta r + \frac{\nu}{r^{4}}\delta r - \frac{5\nu z^{2}}{r^{6}}\delta r + \frac{2\nu z}{r^{5}}\delta z, \\ \frac{d^{2}}{dt^{2}}(\delta z) &= -\frac{\mu}{r^{8}}\delta z - \frac{3\nu}{r^{5}}\delta z + \frac{15\nu z^{2}}{r^{7}}\delta z \\ &+ \frac{3\mu z}{r^{4}}\delta r + \frac{15\nu z}{r^{6}}\delta r - \frac{35\nu z^{3}}{r^{8}}\delta r, \end{aligned}$$

or making $r\delta r$ and δz our new variables, the equations are

$$\begin{split} \frac{d^2}{dt^2}(r\delta r) &= \left(-\frac{\mu}{r^3} + \frac{\nu}{r^5} - \frac{5\nu z^2}{r^3}\right) r\delta r + \frac{2\nu z}{r^5} \delta z, \\ \frac{d^2}{dt^2}(\delta z) &= \left(-\frac{\mu}{r^3} - \frac{3\nu}{r^5} + \frac{15\nu z^2}{r^7}\right) \delta z + \left(\frac{3\mu z}{r^5} + \frac{15\nu z}{r^7} - \frac{35\nu z^3}{r^9}\right) r\delta r, \end{split}$$

in which the values of r and z already determined are to be substituted in the coefficients of $r\delta r$ and δz .

To find the coefficients in our equations:-

$$\begin{split} \frac{\mu z}{r^{s}} &= \frac{\mu c}{a^{s}} \Big[1 + 5a_{1}\cos 2qt + 5a_{2}\cos 4qt + 5a_{1}^{2} \left(1 + \cos 4qt \right) \Big] \\ &\times \Big[\sin qt + c_{1}\sin 3qt + c_{2}\sin 5qt \Big] \\ &= \frac{\mu c}{a^{s}} \Big[\left(1 + 5a_{1}^{2} \right) \sin qt + c_{1}\sin 3qt + c_{2}\sin 5qt \\ &\quad + \frac{5}{2} a_{1} \left(-\sin qt + \sin 3qt \right) + \frac{5}{2} a_{1}c_{1} \left(\sin qt + \sin 5qt \right) \\ &\quad + \left(\frac{5}{2} a_{2} + \frac{5}{2} a_{1}^{2} \right) \left(-\sin 3qt + \sin 5qt \right) \Big] \\ &= \frac{\mu c}{a^{s}} \Big[\left(1 - \frac{5}{2} a_{1} + 5a_{1}^{2} + \frac{5}{2} a_{1}c_{1} \right) \sin qt + \left(c_{1} + \frac{5}{2} a_{1} - \frac{5}{2} a_{2} - \frac{5}{2} a_{1}^{2} \right) \sin 3qt \\ &\quad + \left(c_{2} + \frac{5}{2} a_{1}c_{1} + \frac{5}{2} a_{2} + \frac{5}{2} a_{1}^{2} \right) \sin 5qt \Big] \\ &= \frac{\mu c}{a^{s}} \Big[\left(1 + \frac{5}{12} fc^{2} - \frac{65}{36} f^{2}c^{2} + \frac{35}{16} f^{2}c^{4} + \frac{5}{36} f^{2}c^{4} - \frac{5}{96} f^{2}c^{4} \right) \sin qt \\ &\quad + \left(\frac{1}{8} fc^{2} - \frac{19}{48} f^{2}c^{2} + \frac{61}{128} f^{2}c^{4} - \frac{5}{12} fc^{2} + \frac{65}{36} f^{2}c^{2} - \frac{35}{16} f^{2}c^{4} - \frac{5}{72} f^{2}c^{4} \right) \sin 3qt \\ &\quad + \left(-\frac{11}{1152} f^{2}c^{4} - \frac{5}{36} f^{2}c^{2} + \frac{655}{288} f^{2}c^{4} \right) \sin 3qt \\ &\quad + \left(-\frac{7}{24} fc^{2} + \frac{203}{144} f^{2}c^{2} - \frac{2131}{1152} f^{2}c^{4} \right) \sin 3qt + \frac{89}{1152} f^{2}c^{4} \sin 5qt \Big]; \end{split}$$

 $\frac{\nu z}{r^s}$ is found by multiplying this by $f\alpha^2$.

$$\begin{aligned} \frac{15\nu z}{r^7} &= \frac{15\nu c}{a^6} \left[1 + 7a_1 \cos 2qt \right] \left[\sin qt + c_1 \sin 3qt \right] \\ &= \frac{15\nu c}{a^6} \left[\sin qt + c_1 \sin 3qt + \frac{7}{2} a_1 \left(-\sin qt + \sin 3qt \right) \right] \end{aligned}$$

$$\begin{split} &=\frac{15\nu c}{a^8}\left[\left(1-\frac{7}{2}\,a_1\right)\sin qt + \left(c_1+\frac{7}{2}\,a_1\right)\sin 3qt\right] \\ &=\frac{15\nu c}{a^8}\left[\left(1+\frac{7}{12}\,fc^2\right)\sin qt + \left(\frac{1}{8}\,fc^2-\frac{7}{12}\,fc^2\right)\sin 3qt\right] \\ &=\frac{15\mu cf}{a^4}\left[\left(1+\frac{7}{12}\,fc^2\right)\sin qt - \frac{11}{24}\,fc^2\sin 3qt\right], \\ &=\frac{35\nu c^3}{a^8}=\frac{35\nu c^3}{a^8}\left[1+9a_1\cos 2qt\right]\left[\frac{1}{4}\left(3\sin qt-\sin 3qt\right) + \frac{3}{2}\left(1-\cos 2qt\right)c_1\sin 3qt\right] \\ &=\frac{35\nu c^3}{a^8}\left[1+9a_1\cos 2qt\right]\left[\left(\frac{3}{4}-\frac{3}{4}\,c_1\right)\sin qt + \left(-\frac{1}{4}+\frac{3}{2}\,c_1\right)\sin 3qt - \frac{3}{4}\,c_1\sin 5qt\right] \\ &=\frac{35\nu c^3}{a^8}\left[\left(\frac{3}{4}-\frac{3}{4}\,c_1\right)\sin qt + \left(-\frac{1}{4}+\frac{3}{2}\,c_1\right)\sin 3qt - \frac{3}{4}\,c_1\sin 5qt\right] \\ &=\frac{35\nu c^3}{a^8}\left[\left(\frac{3}{4}-\frac{3}{4}\,c_1\right)\sin qt + \left(-\frac{1}{4}+\frac{3}{2}\,c_1\right)\sin 3qt - \frac{3}{4}\,c_1\sin 5qt\right] \\ &+\frac{27}{8}\,a_1\left(-\sin qt + \sin 3qt\right) - \frac{9}{8}\,a_1\left(\sin qt + \sin 5qt\right)\right] \\ &=\frac{35\mu fc^3}{a^4}\left[\left(\frac{3}{4}-\frac{9}{2}\,a_1-\frac{3}{4}\,c_1\right)\sin qt + \left(-\frac{1}{4}+\frac{27}{8}\,a_1+\frac{3}{2}\,c_1\right)\sin 3qt + \left(-\frac{3}{4}\,c_1-\frac{9}{8}\,a_1\right)\sin 5qt\right]. \end{split}$$

Hence the coefficient of $r\delta r$ in the first differential equation is μ/α^3 multiplied by

$$\begin{split} &-1-\frac{1}{24}f^{2}c^{4}+f-5fc^{2}\left(\frac{1}{2}+\frac{7}{24}fc^{2}\right)\\ &+\cos{2qt}\left[\frac{1}{2}fc^{2}-\frac{13}{6}f^{2}c^{2}+\frac{21}{8}f^{2}c^{4}-\frac{5}{6}f^{2}c^{2}+5fc^{2}\left(\frac{1}{2}+\frac{11}{24}fc^{2}\right)\right]\\ &+\cos{4qt}\left[-\frac{1}{8}f^{2}c^{4}-5fc^{2}\cdot\frac{1}{6}fc^{2}\right], \end{split}$$

or

$$-1+f-\frac{5}{2}fc^2-\frac{3}{2}f^2c^4+\cos 2qt\left[3fc^2-3f^2c^2+\frac{59}{12}f^2c^4\right]+\cos 4qt\left[-\frac{23}{24}f^2c^4\right];$$

the coefficient of δz in the same equation is μ/α^2 multiplied by

$$\sin qt \left[2fc + \frac{5}{6}f^{\imath}c^{\imath} \right] + \sin 3qt \left[-\frac{7}{12}f^{\imath}c^{\imath} \right].$$

Also the coefficient of δz in the second differential equation is μ/α^{s} multiplied by

$$\begin{split} &-1 - \frac{1}{24} f^2 c^4 - 3 f + 15 f c^2 \left(\frac{1}{2} + \frac{7}{24} f c^2 \right) \\ &+ \cos 2 q t \left[\frac{1}{2} f c^2 - \frac{13}{6} f^2 c^2 + \frac{21}{8} f^2 c^4 + \frac{5}{2} f^2 c^2 - 15 f c^2 \left(\frac{1}{2} + \frac{11}{24} f c^2 \right) \right] \\ &+ \cos 4 q t \left[-\frac{1}{8} f^2 c^4 + 15 f c^2 \cdot \frac{1}{6} f c^2 \right], \end{split}$$

or

$$-1-3f+\frac{15}{2}fc^2+\frac{13}{3}f^2c^4+\cos 2qt\left[-7fc^2+\frac{1}{3}f^2c^2-\frac{17}{4}f^2c^4\right]+\cos 4qt\left[\frac{19}{8}f^2c^4\right];$$

the coefficient of $r\delta r$ in the second equation is μ/α^4 multiplied by

$$\sin qt \left[3c + \frac{5}{4}fc^3 - \frac{65}{12}f^2c^3 + \frac{655}{96}f^2c^5 + 15fc + \frac{35}{4}f^2c^3 - 35fc^3 \left(\frac{3}{4} + \frac{3}{4}fc^2 - \frac{3}{32}fc^2 \right) \right]$$

$$+ \sin 3qt \left[-\frac{7}{8}fc^3 + \frac{203}{48}f^2c^3 - \frac{2131}{384}f^2c^5 - \frac{55}{8}f^2c^3 - 35fc^3 \left(-\frac{1}{4} - \frac{9}{16}fc^2 + \frac{3}{16}fc^2 \right) \right]$$

$$+ \sin 5qt \left[\frac{89}{384}f^2c^5 - 35fc^3 \left(\frac{3}{16}fc^2 - \frac{3}{32}fc^2 \right) \right],$$

or

$$\begin{split} \sin qt \left[3c + 15fc - 25fc^3 + \frac{10}{3} f^2c^3 - \frac{775}{48} f^2c^5 \right] \\ + \sin 3qt \left[\frac{63}{8} fc^3 - \frac{127}{48} f^2c^3 + \frac{2909}{384} f^2c^5 \right] + \sin 5qt \left[-\frac{1171}{384} f^2c^5 \right]. \end{split}$$

Now we have seen that

$$q^{2} = \frac{\mu}{a^{3}} \left[1 + 3f - \frac{7}{2} f c^{2} + \frac{1}{6} f^{2} c^{2} - \frac{9}{8} f^{2} c^{4} \right],$$

whence

$$\frac{\mu}{a^{\mathrm{s}}} = q^{\mathrm{s}} \left[1 - 3f + \frac{7}{2} f c^{\mathrm{s}} + 9f^{\mathrm{s}} - \frac{127}{6} f^{\mathrm{s}} c^{\mathrm{s}} + \frac{107}{8} f^{\mathrm{s}} c^{\mathrm{s}} \right].$$

Substitute the above coefficients, and divide the first equation by $q^2\alpha^2$ and the second by $q^2\alpha$; the equations then become

$$\begin{split} \frac{1}{q^2} \, \frac{d^2}{dt^2} \left(\frac{r \delta r}{a^2} \right) &= - \left(\frac{r \delta r}{a^2} \right) \left[1 - 4 f + 6 f c^2 + 12 f^2 - \frac{193}{6} \, f^2 c^2 + \frac{189}{8} \, f^2 c^4 \right. \\ &\quad + \cos 2 q t \left(- 3 f c^2 + 12 f^2 c^2 - \frac{185}{12} \, f^2 c^4 \right) + \cos 4 q t \left(\frac{23}{24} \, f^2 c^4 \right) \right] \\ &\quad + \left(\frac{\delta z}{a} \right) \left[\sin q t \left(2 f c - 6 f^2 c + \frac{47}{6} \, f^2 c^3 \right) + \sin 3 q t \left(- \frac{7}{12} \, f^2 c^3 \right) \right], \\ \\ \frac{1}{q^2} \, \frac{d^2}{dt^2} \left(\frac{\delta z}{a} \right) &= - \left(\frac{\delta z}{a} \right) \left[1 - 4 f c^2 + \frac{71}{6} \, f^2 c^2 - \frac{413}{24} \, f^2 c^4 \right. \\ &\quad + \cos 2 q t \left(7 f c^2 - \frac{64}{3} \, f^2 c^2 + \frac{115}{4} \, f^2 c^4 \right) + \cos 4 q t \left(- \frac{19}{8} \, f^2 c^4 \right) \right] \\ \\ &\quad + \left(\frac{r \delta r}{a^2} \right) \left[\sin q t \left(3 c + 6 f c - \frac{29}{2} \, f c^3 - 18 f^2 c + \frac{202}{3} \, f^2 c^3 - \frac{3049}{48} \, f^2 c^5 \right) \right. \\ \\ &\quad + \sin 3 q t \left(\frac{63}{8} \, f c^3 - \frac{1261}{48} \, f^2 c^3 + \frac{13493}{384} \, f^2 c^5 \right) + \sin 5 q t \left(- \frac{1171}{384} \, f^2 c^5 \right) \right]. \end{split}$$

Now suppose a term in $\frac{r\delta r}{a^2}$ to be $-e\cos(pt+\beta)$, for which we shall simply write $-e\cos pt$.

If we substitute this term for $\frac{r\delta r}{a^2}$ in the second equation and at first omit all the terms of the equation containing f as a factor, we have

$$\frac{1}{q^2} \frac{d^2}{dt^2} \left(\frac{\delta z}{a} \right) + \frac{\delta z}{a} = -3ce \sin qt \cos pt = -\frac{3}{2} ce \left[\sin \left(q - p \right) t + \sin \left(q + p \right) t \right].$$

Hence

$$\frac{\delta z}{\alpha} = -\frac{3}{2} ce \left[\frac{q^2}{p (2q-p)} \sin (q-p) t - \frac{q^2}{p (2q+p)} \sin (q+p) t \right].$$

Now again substitute this value of $\delta z/\alpha$ in the terms which contain 19-2

the first power of f, and also take into account the first powers of f in the multiplier of $r\delta r/a^2$, and we shall have

$$\begin{split} \frac{1}{q^2} \frac{d^3}{dt^2} \left(\frac{\delta z}{a}\right) + \left(\frac{\delta z}{a}\right) &= -\frac{3}{2} ce \left(1 + 2f - \frac{29}{6} fe^2\right) \left[\sin \left(q - p\right) t + \sin \left(q + p\right) t\right] \\ &- \frac{63}{16} c^2 ef \left[\sin \left(3q - p\right) t + \sin \left(3q + p\right) t\right] \\ &- 6c^2 ef \left[\frac{q^2}{p \left(2q - p\right)} \sin \left(q - p\right) t - \frac{q^2}{p \left(2q + p\right)} \sin \left(q + p\right) t\right] \\ &+ \frac{21}{4} c^3 ef \frac{q^2}{p \left(2q - p\right)} \left[-\sin \left(q + p\right) t + \sin \left(3q - p\right) t\right] \\ &- \frac{21}{4} c^2 ef \frac{q^2}{p \left(2q + p\right)} \left[-\sin \left(q - p\right) t + \sin \left(3q + p\right) t\right] \\ &= -\frac{3}{2} ce \left[1 + 2f - \frac{29}{6} fc^2 + 4 \frac{q^2}{p \left(2q - p\right)} fc^2\right] \sin \left(q - p\right) t \\ &- \frac{3}{2} ce \left[1 + 2f - \frac{29}{6} fc^2 - 4 \frac{q^2}{p \left(2q + p\right)} fc^2\right] \sin \left(q - p\right) t \\ &- \frac{3}{2} ce \left[1 + 2f - \frac{29}{6} fc^2 - 4 \frac{q^2}{p \left(2q + p\right)} fc^2\right] \\ &+ \frac{7}{2} \frac{q^2}{p \left(2q - p\right)} fc^2\right] \sin \left(q + p\right) t \\ &- \frac{21}{4} c^2 ef \left[\frac{3}{4} - \frac{q^2}{p \left(2q - p\right)}\right] \sin \left(3q - p\right) t \\ &- \frac{21}{4} c^2 ef \left[\frac{3}{4} + \frac{q^2}{p \left(2q + p\right)}\right] \sin \left(3q + p\right) t. \end{split}$$

Whence again,

$$\begin{split} \frac{\delta z}{a} &= -\frac{3}{2} ce \frac{q^2}{p \left(2q - p\right)} \left[1 + 2f - \frac{29}{6} fc^2 + 4 \frac{q^2}{p \left(2q - p\right)} fc^2 \right. \\ & \left. - \frac{7}{2} \frac{q^2}{p \left(2q + p\right)} fc^2 \right] \sin \left(q - p\right) t \\ & + \frac{3}{2} ce \frac{q^2}{p \left(2q + p\right)} \left[1 + 2f - \frac{29}{6} fc^2 - 4 \frac{q^2}{p \left(2q + p\right)} fc^2 \right. \\ & \left. + \frac{7}{2} \frac{q^2}{p \left(2q - p\right)} fc^2 \right] \sin \left(q + p\right) t \end{split}$$

$$\begin{split} & + \frac{21}{4} \, c^3 e f \, \frac{q^2}{\left(2q - p\right) \left(4q - p\right)} \left[\frac{3}{4} - \frac{q^2}{p \left(2q - p\right)} \right] \sin \left(3q - p\right) t \\ & + \frac{21}{4} \, c^3 e f \, \frac{q^2}{\left(2q + p\right) \left(4q + p\right)} \left[\frac{3}{4} + \frac{q^2}{p \left(2q + p\right)} \right] \sin \left(3q + p\right) t. \end{split}$$

Now substitute this value of $\delta z/\alpha$ in the first equation and also $-e\cos pt$ for $r\delta r/\alpha^2$ and we shall thus include all the terms which are of the second order in f which arise from the assumed term in $r\delta r/\alpha^2$.

Hence if we transpose all the terms of the equation

$$\frac{d^2}{dt^2} \left(\frac{r \delta r}{\alpha^2} \right) = -q^2 \left(\frac{r \delta r}{\alpha^2} \right) \left[1 + \&c. \right] + q^2 \frac{\delta z}{\alpha} \left[\sin qt \left(2fc + \&c. \right) \dots \right]$$

to the left-hand side, the terms arising from the assumed term in $r \delta r/a^2$ will be

$$\begin{split} e\left[p^{2}-q^{2}\left(1-4f+6fc^{2}+12f^{2}-\frac{193}{6}f^{2}c^{2}+\frac{189}{8}f^{2}c^{4}\right)\right]\cos pt \\ +eq^{2}\left[\frac{3}{2}fc^{2}-6f^{2}c^{2}+\frac{185}{24}f^{2}c^{4}\right]\left[\cos\left(2q-p\right)t+\cos\left(2q+p\right)t\right] \\ +eq^{2}\left[\begin{array}{c}-\frac{23}{48}f^{2}c^{4}\right]\left[\cos\left(4q-p\right)t+\cos\left(4q+p\right)t\right] \\ +\frac{3}{2}c^{2}ef\frac{q^{2}}{p\left(2q-p\right)}q^{2}\left[1+2f-\frac{29}{6}fc^{2}+4\frac{q^{2}}{p\left(2q-p\right)}fc^{2}-\frac{7}{2}\frac{q^{2}}{p\left(2q+p\right)}fc^{2} \\ -3f+\frac{47}{12}fc^{2}\right]\left[\cos pt-\cos\left(2q-p\right)t\right] \\ -\frac{7}{16}c^{4}ef^{2}\frac{q^{2}}{p\left(2q+p\right)}q^{2}\left[\cos\left(2q+p\right)t-\cos\left(4q-p\right)t\right] \\ -\frac{3}{2}c^{2}ef\frac{q^{2}}{p\left(2q+p\right)}q^{2}\left[1+2f-\frac{29}{6}fc^{2}-4\frac{q^{2}}{p\left(2q+p\right)}fc^{2}+\frac{7}{2}\frac{q^{2}}{p\left(2q-p\right)}fc^{2} \\ -3f+\frac{47}{12}fc^{2}\right]\left[\cos pt-\cos\left(2q+p\right)t\right] \\ +\frac{7}{16}c^{4}ef^{2}\frac{q^{2}}{p\left(2q+p\right)}q^{2}\left[\cos\left(2q-p\right)t-\cos\left(4q+p\right)t\right] \\ -\frac{21}{4}c^{4}ef^{2}\frac{q^{2}}{(2q+p)\left(4q-p\right)}q^{2}\left[\frac{3}{4}-\frac{q^{2}}{p\left(2q+p\right)}\right]\left[\cos\left(2q-p\right)t-\cos\left(4q+p\right)t\right] \\ -\frac{21}{4}c^{4}ef^{2}\frac{q^{2}}{(2q+p)\left(4q+p\right)}q^{2}\left[\frac{3}{4}+\frac{q^{2}}{p\left(2q+p\right)}\right]\left[\cos\left(2q+p\right)t-\cos\left(4q+p\right)t\right]; \end{split}$$

the coefficient of $e \cos pt$ in this is

$$\begin{split} p^2 - q^2 \left(1 - 4f + 6fc^2 + 12f^2 - \frac{193}{6}f^2c^2 + \frac{189}{6}f^2c^4 \right) \\ + \frac{3}{2}fc^2 \frac{q^2}{p\left(2q - p\right)}q^2 \left[1 - f - \frac{11}{12}fc^2 + 4\frac{q^2}{p\left(2q - p\right)}fc^2 - \frac{7}{2}\frac{q^2}{p\left(2q + p\right)}fc^2 \right] \\ - \frac{3}{2}fc^2 \frac{q^2}{p\left(2q + p\right)}q^2 \left[1 - f - \frac{11}{12}fc^2 - 4\frac{q^2}{p\left(2q + p\right)}fc^2 + \frac{7}{2}\frac{q^2}{p\left(2q - p\right)}fc^3 \right]; \end{split}$$

the coefficient of $e \cos(2q-p)t$ in the same is

$$\begin{split} q^2 \bigg[\frac{3}{2} f c^2 - 6 f^2 c^2 + \frac{185}{24} f^2 c^4 \bigg] \\ & - \frac{3}{2} c^2 f \frac{q^2}{p \left(2q - p\right)} q^2 \bigg[1 - f - \frac{11}{12} f c^2 + 4 \frac{q^2}{p \left(2q - p\right)} f c^2 - \frac{7}{2} \frac{q^2}{p \left(2q + p\right)} f c^2 \bigg] \\ & + \frac{7}{16} c^4 f^2 \frac{q^2}{p \left(2q + p\right)} q^2 - \frac{21}{4} c^4 f^2 \frac{q^2}{\left(2q - p\right) \left(4q - p\right)} q^2 \bigg[\frac{3}{4} - \frac{q^2}{p \left(2q - p\right)} \bigg]; \end{split}$$

the coefficient of $e \cos(2q+p) t$ is

$$q^{2} \left[\frac{3}{2} f c^{2} - 6 f^{2} c^{2} + \frac{185}{24} f^{2} c^{4} \right]$$

$$+ \frac{3}{2} c^{2} f \frac{q^{2}}{p (2q+p)} q^{2} \left[1 - f - \frac{11}{12} f c^{2} - 4 \frac{q^{2}}{p (2q+p)} f c^{2} + \frac{7}{2} \frac{q^{2}}{p (2q-p)} f c^{2} \right]$$

$$- \frac{7}{16} c^{4} f^{2} \frac{q^{2}}{p (2q-p)} q^{2} - \frac{21}{4} c^{4} f^{2} \frac{q^{2}}{(2q+p) (4q+p)} q^{2} \left[\frac{3}{4} + \frac{q^{2}}{p (2q+p)} \right];$$

the coefficient of $e \cos (4q - p) t$ is

$$q^{2}\left[-\frac{23}{48}f^{2}c^{4}\right]+\frac{21}{4}f^{2}c^{4}\frac{q^{2}}{\left(2q-p\right)\left(4q-p\right)}q^{2}\left[\frac{3}{4}-\frac{q^{2}}{p\left(2q-p\right)}\right]+\frac{7}{16}f^{2}c^{4}\frac{q^{2}}{p\left(2q-p\right)}q^{2},$$

and the coefficient of $e \cos(4q+p) t$ is

$$q^{2} \left[-\frac{23}{48} f^{2} c^{4} \right] - \frac{7}{16} f^{2} c^{4} \frac{q^{2}}{p (2q+p)} q^{2} + \frac{21}{4} f^{2} c^{4} \frac{q^{2}}{(2q+p) (4q+p)} q^{2} \left[\frac{3}{4} + \frac{q^{2}}{p (2q+p)} \right].$$

If for the sake of simplification we first confine our attention to the term in the above found coefficients which involves the first power of f,

we see that the result of substituting the term $-e\cos pt$ for $r\delta r/a^2$ is to produce the following terms on the left-hand side of the final equation

$$\begin{split} e\cos pt \left[\, p^2 - q^2 \left(1 - 4f + 6fc^2 \right) + 3fc^2 \, \frac{q^4}{4q^2 - p^2} \right] \\ + e\cos \left(2q - p \right) t \left[\, -\frac{3}{2}fc^2 \, \frac{(q - p)^2}{p \left(2q - p \right)} \, q^2 \right] \\ + e\cos \left(2q + p \right) t \left[\, -\frac{3}{2}fc^2 \, \frac{(q + p)^2}{p \left(2q + p \right)} \, q^2 \right]. \end{split}$$

It is to be especially remarked that if p is nearly equal to q the coefficient of the term $e\cos(2q-p)t$ arising from the term $-e\cos pt$ in $r\delta r/a^2$ will be very small.

Now suppose another term in $r\delta r/a^2$ to be $-e_1\cos(2q-p)t$, then the result of substituting this term will be found at once by putting e_1 in place of e, and 2q-p in place of p; hence will arise the following additional terms on the left-hand side of the final equation, viz.:—

$$\begin{aligned} &e_{_{1}}\cos\left(2q-p\right)t\left[\left(2q-p\right)^{_{2}}-q^{_{2}}\left(1-4f+6fc^{_{2}}\right)+3fc^{_{2}}\frac{q^{_{4}}}{p\left(4q-p\right)}\right]\\ &+e_{_{1}}\cos pt & \left[-\frac{3}{2}fc^{_{2}}\frac{\left(q-p\right)^{_{2}}}{p\left(2q-p\right)}q^{_{2}}\right]\\ &+e_{_{1}}\cos\left(4q-p\right)t\left[-\frac{3}{2}fc^{_{2}}\frac{\left(3q-p\right)^{_{2}}}{\left(2q-p\right)\left(4q-p\right)}q^{_{2}}\right].\end{aligned}$$

Again suppose another term in $r\delta r/a^2$ to be $-e_2\cos(2q+p)t$, then the terms on the left-hand side of the final equation arising from this will be

$$\begin{aligned} &e_{2}\cos\left(2q+p\right)t\left[\left(2q+p\right)^{2}-q^{2}\left(1-4f+6fc^{2}\right)-3fc^{2}\frac{q^{4}}{p\left(4q+p\right)}\right]\\ &+e_{2}\cos pt & \left[\frac{3}{2}fc^{2}\frac{(q+p)^{2}}{p\left(2q+p\right)}q^{2}\right]\\ &+e_{2}\cos\left(4q+p\right)t\left[\frac{3}{2}fc^{2}\frac{(3q+p)^{2}}{(2q+p)\left(4q+p\right)}q^{2}\right] \end{aligned}$$

which may also be derived from the last by changing p into -p.

Now if p and the ratios of e, e_1 , e_2 be so chosen as to make the coefficients of $\cos pt$, $\cos (2q-p)t$, $\cos (2q+p)t$ vanish, we have

$$\begin{split} 0 &= e \left[p^2 - q^2 \left(1 - 4f + 6fc^2 + 12f^2 - \frac{193}{6} f^2 c^2 + \frac{189}{8} f^2 c^4 \right) \right. \\ &+ 3fc^2 \frac{q^4}{4q^2 - p^2} \left(1 - f - \frac{11}{12} fc^2 \right) + 12f^2 c^4 \frac{q^6 \left(4q^2 + p^2 \right)}{p^2 \left(4q^2 - p^2 \right)^2} - \frac{21}{2} f^2 c^4 \frac{q^6}{p^2 \left(4q^2 - p^2 \right)} \right] \\ &+ e_1 \left[-\frac{3}{2} fc^2 \frac{\left(q - p \right)^2 q^2}{p \left(2q - p \right)} \right] + e_2 \left[\frac{3}{2} fc^2 \frac{\left(q + p \right)^2 q^2}{p \left(2q + p \right)} \right], \\ 0 &= e \left[q^2 \left(\frac{3}{2} fc^2 - 6f^2 c^2 + \frac{185}{24} f^2 c^4 \right) - \frac{3}{2} c^2 f \frac{q^4}{p \left(2q - p \right)} \left(1 - f - \frac{11}{12} fc^2 \right) \right. \\ &- 6f^2 c^4 \frac{q^6}{p^2 \left(2q - p \right)^2} + \frac{21}{4} f^2 c^4 \frac{q^6}{p^2 \left(4q^2 - p^2 \right)} + \frac{7}{16} f^2 c^4 \frac{q^4}{p \left(2q + p \right)} \right. \\ &+ \frac{21}{4} f^2 c^4 \frac{q^6}{p \left(2q - p \right)^2 \left(4q - p \right)} - \frac{63}{16} f^2 c^4 \left(2q - p \right) \left(4q - p \right) \right] \\ &+ e_1 \left[\left(2q - p \right)^2 - q^2 \left(1 - 4f + 6fc^2 \right) + 3fc^2 \frac{q^4}{p \left(4q - p \right)} \right], \end{split}$$

and

$$\begin{split} 0 = e \left[\, q^2 \left(\frac{3}{2} f c^2 - 6 f^2 c^2 + \frac{185}{24} f^2 c^4 \right) + \frac{3}{2} \, c^2 f \frac{q^4}{p \, (2q+p)} \left(1 - f - \frac{11}{12} f c^2 \right) \right. \\ \left. - 6 f^2 c^4 \frac{q^6}{p^2 \, (2q+p)^2} + \frac{21}{4} \, f^2 c^4 \frac{q^6}{p^2 \, (4q^2-p^2)} - \frac{7}{16} f^2 c^4 \frac{q^4}{p \, (2q-p)} \right. \\ \left. - \frac{21}{4} \, f^2 c^4 \frac{q^6}{p \, (2q+p)^2 \, (4q+p)} - \frac{63}{16} f^2 c^4 \left(\frac{q^4}{2q+p} \right) \left(4q+p \right) \right] \right. \\ \left. + e_2 \left[\left(2q+p \right)^2 - q^2 \left(1 - 4f + 6f c^2 \right) - 3f c^2 \frac{q^4}{p \, (4q+p)} \right] \right]. \end{split}$$

These two last equations give the ratios of e_1 and e_2 respectively to e in terms of p, and the substitution of the results in the first equation gives the final equation for determining p.

It is readily seen from a remark made before that the term in e_1 in the first equation contributes nothing of the order of f^2 ; and the approximate value of e_2/e given by the third equation is

$$\frac{e_2}{e} = -\frac{3}{2} f c^2 \frac{(q+p) q^2}{p (2q+p) (3q+p)},$$

which is nearly equal to $-\frac{1}{4}fc^2$, and this is to be substituted in the first equation in order to obtain the final equation for p to the second order in f.

We may see that with the values thus found for e_1/e , e_2/e terms of the second order in f will be left outstanding involving cosines of the angles (4q-p)t and (4q+p)t. In order to get rid of these terms suppose $-e_3\cos(4q-p)t$ and $-e_4\cos(4q+p)t$ to be two additional terms in $r\delta r/a^2$; in forming the left-hand side of the final equation due to these terms we may omit all quantities involving f, so that the equations for determining e_3 , e_4 will be

$$\begin{split} 0 &= e \left[q^2 \left(-\frac{23}{48} f^2 c^4 \right) - \frac{21}{4} f^2 c^4 \frac{q^6}{p \left(2q - p \right)^2 \left(4q - p \right)} + \frac{63}{16} f^3 c^4 \frac{q^4}{\left(2q - p \right) \left(4q - p \right)} \right. \\ &\qquad \qquad + \frac{7}{16} f^2 c^4 \frac{q^4}{p \left(2q - p \right)} \right] \\ &\qquad \qquad + e_1 \left[\frac{3}{2} f c^2 \frac{\left(3q - p \right)^2 q^2}{\left(2q - p \right) \left(4q - p \right)} \right] + e_3 \left[\left(4q - p \right)^2 - q^2 \right], \\ 0 &= e \left[q^2 \left(-\frac{23}{48} f^2 c^4 \right) + \frac{21}{4} f^2 c^4 \frac{q^6}{p \left(2q + p \right)^2 \left(4q + p \right)} + \frac{63}{16} f^2 c^4 \frac{q^4}{\left(2q + p \right) \left(4q + p \right)} \right. \\ &\qquad \qquad \qquad - \frac{7}{16} f^2 c^4 \frac{q^4}{p \left(2q + p \right)} \right] \\ &\qquad \qquad \qquad + e_2 \left[\frac{3}{2} f c^2 \frac{\left(3q + p \right)^2 q^2}{\left(2q + p \right) \left(4q + p \right)} \right] + e_4 \left[\left(4q + p \right)^2 - q^2 \right], \end{split}$$

and the determination of these quantities will complete the solution of our problem.

At first neglect the terms in f^2 in the first equation (divided throughout by e), and put p=q in the terms containing f in the first power, and we have approximately

$$p^2 = q^2 (1 - 4f + 6fc^2) - q^2 (fc^2) = q^2 (1 - 4f + 5fc^2).$$

Next take into account terms in f^2 , putting p=q in these terms, and in the terms which involve f in the first power, putting

$$\frac{q^2}{4q^2 - p^2} = \frac{q^2}{q^2(3 + 4f - 5fc^2)} = \frac{1}{3} - \frac{1}{9}(4f - 5fc^2).$$

Hence to the second order in f

$$\begin{split} \frac{p^2}{q^2} &= 1 - 4f + 6fc^2 + 12f^{*2} - \frac{193}{6}f^2c^2 + \frac{189}{8}f^2c^4 \\ &- fc^2 + \frac{1}{3}fc^2\left(4f - 5fc^2\right) + f^2c^2 + \frac{11}{12}f^2c^4 \\ &- \frac{20}{3}f^2c^4 + \frac{7}{2}f^2c^4 + \frac{1}{2}f^2c^4, \end{split}$$

or

$$\frac{p^2}{q^2} = 1 - 4f + 5fc^2 + 12f^2 - \frac{179}{6}f^2c^2 + \frac{485}{24}f^2c^4.$$

Next in the second equation make the same substitutions, and in the coefficient of e_1 put

$$(2q-p)^2 - q^2 = (q-p)(3q-p) = (q^2-p^2)\frac{3q-p}{q+p} = q^2(4f-5fc^2).$$

Hence

$$\begin{split} &\frac{e_1}{e} \left[4f - 5fc^2 + 4f - 6fc^2 + fc^2 \right] \\ &= -\frac{3}{2} fc^2 + 6f^2c^2 - \frac{185}{24} f^2c^4 + \frac{3}{2} fc^2 - \frac{3}{2} f^2c^2 - \frac{33}{24} f^2c^4 \\ &\quad + 6f^2c^4 - \frac{7}{4} f^2c^4 - \frac{7}{48} f^2c^4 - \frac{7}{4} f^2c^4 + \frac{21}{16} f^2c^4 \\ &= \frac{9}{2} f^2c^2 - \frac{65}{12} f^2c^4, \end{split}$$

so that

$$\frac{e_1}{e} = \frac{9}{16}fc^2 \frac{1 - \frac{65}{54}c^2}{1 - \frac{5}{4}c^2};$$

if $1 - \frac{5}{4}c^2 = 0$, the approximation becomes insufficient, and the terms in the denominator of e_1/e must be carried to one order higher in f; and e_1/e becomes finite, that is, contains a term which is independent of f.

We have already found $e_2/e = -\frac{1}{4}fc^2$ to the first order in f, and by again substituting in the third equation we may find e_2/e to the second order.

Substituting the above values in the equation for e_3 we have

$$\begin{split} &8\,\frac{e_{\scriptscriptstyle 3}}{e} = \frac{23}{48}f^{\scriptscriptstyle 2}c^{\scriptscriptstyle 4} + \frac{7}{4}f^{\scriptscriptstyle 2}c^{\scriptscriptstyle 4} - \frac{21}{16}f^{\scriptscriptstyle 2}c^{\scriptscriptstyle 4} - \frac{7}{16}f^{\scriptscriptstyle 2}c^{\scriptscriptstyle 4} - 2fc^{\scriptscriptstyle 2} \cdot \frac{9}{16}fc^{\scriptscriptstyle 2}\frac{1 - \frac{65}{54}\,c^{\scriptscriptstyle 2}}{1 - \frac{5}{4}\,c^{\scriptscriptstyle 2}} \\ &= \frac{23}{48}f^{\scriptscriptstyle 2}c^{\scriptscriptstyle 4} - \frac{9}{8}f^{\scriptscriptstyle 2}c^{\scriptscriptstyle 4}\frac{1 - \frac{65}{54}\,c^{\scriptscriptstyle 2}}{1 - \frac{5}{4}\,c^{\scriptscriptstyle 2}}, \\ &\frac{e_{\scriptscriptstyle 3}}{e} = \frac{23}{384}f^{\scriptscriptstyle 2}c^{\scriptscriptstyle 4} - \frac{9}{64}f^{\scriptscriptstyle 2}c^{\scriptscriptstyle 4}\frac{1 - \frac{65}{54}\,c^{\scriptscriptstyle 2}}{1 - \frac{5}{5}\,c^{\scriptscriptstyle 2}}, \end{split}$$

and from the equation for e_4 ,

$$24\frac{e_4}{e} = \frac{23}{48}f^2c^4 - \frac{7}{60}f^2c^4 - \frac{21}{80}f^2c^4 + \frac{7}{48}f^2c^4 + \frac{8}{5}fc^2 \cdot \frac{1}{4}fc^2$$

$$= \frac{31}{48}f^2c^4,$$

$$\frac{e_4}{e} = \frac{31}{1152}f^2c^4.$$

or

or

We have already found the terms in $\delta z/\alpha$ which depend on the term $-e\cos pt$ in $r\delta r/\alpha^2$; similarly the terms which depend on the term

$$-e_1\cos(2q-p)t$$

may be found by writing 2q - p instead of p and e_1 instead of e. If we neglect terms multiplied by f in the coefficients involving e_1 , we have

$$\frac{\delta z}{a} = \frac{3}{2} c e_1 \sin(q - p) t + \frac{1}{2} c e_1 \sin(3q - p) t,$$

and similarly the terms depending upon e_2 will be found by writing 2q+p for p,

$$\frac{\delta z}{a} = -\frac{1}{2} c e_2 \sin(q+p) t + \frac{1}{10} c e_2 \sin(3q+p) t,$$

and by substituting for e_1 and e_2 in terms of e, and adding the new terms to the terms in $\delta z/\alpha$ previously found, we find the complete value of $\delta z/\alpha$ to the first order in e and the first order in f.

Thus we have determined our assumed expressions so that they satisfy the differential equations to a specified degree of approximation; and since they contain four arbitrary constants, viz. c, e, β , γ , they are competent to express any initial conditions, subject only to the proviso that e is small.

[We ought now to proceed and discuss the third coordinate which was eliminated from our equations at the beginning, and deduce the motions of node and apse. Adams has left no indication of the method he would have adopted. The following method may be indicated:—

We have

$$x\ddot{y} - y\ddot{x} = 0,$$

hence

$$x\dot{y} - y\dot{x} = (r^2 - z^2)\dot{\phi} = \text{constant},$$

where

$$\phi = EM$$
,

ENM is the equator,

NP the orbit,

PM perpendicular to EM,

E a fixed point.

Hence we find EM.

Again

$$\frac{z}{r} = \sin MP = \sin i \sin NP,$$

where i is the angle PNM.

We may take $\sin i = c$. Hence we find NP, and

$$\tan NM = \cos i \tan NP$$
;

and EM being known, this gives the position of the node at any time.

Again p is the mean rate of separation of P from A, where A is the apse of the orbit; and the mean motion of P itself is the non-periodic part of $\frac{d}{dt}(NP) + \cos i \frac{d}{dt}(EN)$. Hence we find the motion of the apse.]

II.

DEVELOPMENT OF THE DISTURBING FUNCTION.

In the mutual disturbances of the Satellites hereafter considered, the disturbing forces are obtained from a function of which the expression

$$\left[a^2 - 2aa'\cos\left(nt - n't + \epsilon - \epsilon'\right) + a'^2\right]^{-\frac{1}{2}}$$

is the chief part. Write

$$a/a' = a$$
, $nt - n't + \epsilon - \epsilon' = \phi$,

and let us consider the development of the expression

$$(1-2a\cos\phi+a^2)^{-s}$$

according to cosines of multiples of ϕ . We may evidently take α to be less than unity.

Write

$$S^{-s} \equiv (1 - 2\alpha \cos \phi + \alpha^2)^{-s} \equiv \frac{1}{2} b_0 + b_1 \cos \phi + b_2 \cos 2\phi + \dots,$$

then our investigation deals with the coefficients b.

Now

$$S = (1 - ae^{\iota\phi}) (1 - ae^{-\iota\phi});$$

develope S^{-s} by the Binomial Theorem and pick out the coefficient of $\cos i\phi \equiv \frac{1}{2} (e^{i\phi} + e^{-i\phi})$, and we get

$$b_i = 2 \; \frac{s \; (s+1) \ldots (s+i-1)}{1 \; . \; 2 \ldots i} \; \alpha^i \left[\; 1 \; + \frac{s}{1} \; \frac{s+i}{i+1} \; \alpha^2 \; + \; \frac{s \; (s+1)}{1 \; . \; 2} \; \frac{(s+i) \left(s+i+1\right)}{\left(i+1\right) \left(i+2\right)} \; \alpha^4 \; + \; \ldots \; \right].$$

Such a series as this may be transformed with advantage in certain cases, so as to proceed by powers of a different quantity to a. For example if

$$f(a) = A_1 a^2 + A_2 a^4 + \dots + A_n a^{2n} + \dots,$$

then

$$f(\alpha) = \frac{\alpha^2}{1 - \alpha^2} [A_1 + (A_2 - A_1) \alpha^2 + (A_3 - A_2) \alpha^4 + \dots],$$

or writing

$$\beta^2 = \frac{\alpha^2}{1 - \alpha^2},$$

$$A_{n+1} - A_n = \delta A_n,$$

$$f(\alpha) = A_1 \beta^2 + \beta^2 \left[\delta A_1 \alpha^2 + \delta A_2 \alpha^4 + \dots \right].$$

In the same way if we write

$$\delta A_{n+1} - \delta A_n = \delta^2 A_n,$$

$$\delta^2 A_{n+1} - \delta^2 A_n = \delta^3 A_n,$$

we obtain

$$f(a) = A_{1}\beta^{2} + \delta A_{1}\beta^{4} + \beta^{4} [\delta^{2}A_{1}\alpha^{2} + \delta^{2}A_{2}\alpha^{4} + \dots]$$

$$= A_{1}\beta^{2} + \delta A_{1}\beta^{4} + \delta^{2}A_{1}\beta^{6} + \beta^{6} [\delta^{3}A_{1}\alpha^{2} + \dots]$$

$$= \dots$$

$$= A_{1}\beta^{2} + \delta A_{1}\beta^{4} + \delta^{2}A_{1}\beta^{6} + \delta^{3}A_{1}\beta^{6} + \dots$$

This series may prove more advantageous to deal with than the original. In the case of the quantities b_i , Legendre has given a transformation which facilitates some calculations.

Denote the series of coefficients

1,
$$\frac{s+i}{i+1}$$
, $\frac{(s+i)(s+i+1)}{(i+1)(i+2)}$, $\frac{(s+i)(s+i+1)(s+i+2)}{(i+1)(i+2)(i+3)}$, ...

by the symbols

1,
$$1 + \Delta_1$$
, $1 + 2\Delta_1 + \Delta_2$, $1 + 3\Delta_1 + 3\Delta_2 + \Delta_3$, ...

respectively, so that in fact Δ_1 , Δ_2 , etc., are the same as δA_1 , $\delta^2 A_1$, etc., A_1 being unity. Substitute in the expression for b_i . Then within the square brackets, we have the following terms:—

independent of Δ

$$1 + \frac{s}{1} \alpha^2 + \frac{s(s+1)}{1 \cdot 2} \quad \alpha^4 + \dots = \frac{1}{(1 - \alpha^2)^s};$$

multiplied by Δ_1

$$\frac{s}{1}\alpha^{2} + \frac{s(s+1)}{1 \cdot 2}2\alpha^{4} + \frac{s(s+1)(s+2)}{1 \cdot 2 \cdot 3}3\alpha^{6} + \dots = \frac{1}{(1-\alpha^{2})^{6}}\frac{s\alpha^{2}}{1-\alpha^{2}};$$

multiplied by Δ_2

$$\frac{s(s+1)}{1 \cdot 2} \alpha^{4} + \frac{s(s+1)(s+2)}{1 \cdot 2 \cdot 3} \frac{3 \cdot 2}{1 \cdot 2} \alpha^{6} + \frac{s(s+1)(s+2)(s+3)}{1 \cdot 2 \cdot 3 \cdot 4} \frac{4 \cdot 3}{1 \cdot 2} \alpha^{8} + \dots \\
= \frac{1}{(1-\alpha^{2})^{8}} \frac{s(s+1)}{1 \cdot 2} \frac{\alpha^{4}}{(1-\alpha^{2})^{2}};$$

and so on, the transformed expression being

$$\frac{1}{(1-a^2)^s} \left[1 + \frac{s}{1} \frac{a^2}{1-a^2} \Delta_1 + \frac{s(s+1)}{1 \cdot 2} \frac{a^4}{(1-a^2)^2} \Delta_2 + \frac{s(s+1)(s+2)}{1 \cdot 2 \cdot 3} \frac{a^6}{(1-a^2)^3} \Delta_3 + \dots \right].$$

But taking the first differences of the coefficients

1,
$$\frac{s+i}{i+1}$$
, $\frac{(s+i)(s+i+1)}{(i+1)(i+2)}$, $\frac{(s+i)(s+i+1)(s+i+2)}{(i+1)(i+2)(i+3)}$, ...

we have

$$\frac{s-1}{i+1}$$
, $\frac{s-1}{i+1} \frac{s+i}{i+2}$, $\frac{s-1}{i+1} \frac{(s+i)(s+i+1)}{(i+2)(i+3)}$,

Taking second differences

$$\frac{(s-1)(s-2)}{(i+1)(i+2)}$$
, $\frac{(s-1)(s-2)}{(i+1)(i+2)} \frac{s+i}{i+3}$, $\frac{(s-1)(s-2)}{(i+1)(i+2)} \frac{(s+i)(s+i+1)}{(i+3)(i+4)}$,

The law of succession is evident; we have

$$\Delta_1 = \frac{s-1}{i+1}, \quad \Delta_2 = \frac{(s-1)(s-2)}{(i+1)(i+2)}, \quad \Delta_3 = \frac{(s-1)(s-2)(s-3)}{(i+1)(i+2)(i+3)}, \quad \dots,$$

and

$$\begin{split} b_i &= 2 \, \frac{s \, (s+1) \, \ldots \, (s+i-1)}{1 \, . \, 2 \, \ldots \, i} \, \frac{\alpha^i}{(1-\alpha^2)^s} \, \bigg[\, 1 + \frac{(s-1) \, s}{1 \, . \, (i+1)} \, \frac{\alpha^2}{1-\alpha^2} \\ &\qquad \qquad + \frac{(s-2) \, (s-1) \, s \, (s+1)}{1 \, . \, 2 \, (i+1) \, (i+2)} \, \frac{\alpha^4}{(1-\alpha^2)^2} + \ldots \bigg] \, . \end{split}$$

This expression is very useful for computing b_i for large values of i.

We observe that the expression within square brackets is unchanged if we write 1-s for s. Hence if

$$S^{-1+\theta} = \frac{1}{2} \boldsymbol{\beta}_0 + \boldsymbol{\beta}_1 \cos \phi + \boldsymbol{\beta}_2 \cos 2\phi + \dots,$$

we have

$$\beta_{i} = \frac{(1-s)(2-s)\dots(i-s)}{s(s+1)\dots(s+i-1)}(1-\alpha^{2})^{2s-1}b_{i}.$$

We can exhibit b_i as the solution of a differential equation; thus it may be verified that

$$\alpha^{2} \frac{d^{2}}{d\alpha^{2}} (S^{-s}) + \frac{d^{2}}{d\phi^{2}} (S^{-s}) + \frac{1 - (4s + 1)\alpha^{2}}{1 - \alpha^{2}} \alpha \frac{d}{d\alpha} (S^{-s}) - \frac{4s^{2}\alpha^{2}}{1 - \alpha^{2}} S^{-s} = 0;$$

substitute for S^{-s} its development, and equate to zero the coefficient of $\cos i\phi$; then

$$\mathbf{a}^2 \frac{d^2 b_i}{d\mathbf{a}^2} + \frac{1 - \left(4s + 1\right)\mathbf{a}^2}{1 - \mathbf{a}^2} \mathbf{a} \frac{db_i}{d\mathbf{a}} - \frac{i^2 + \left(4s^2 - i^2\right)\mathbf{a}^2}{1 - \mathbf{a}^2} b_i = 0.$$

An expression for b_i in the form of a definite integral is of frequent use; we have

$$S^{-s} = \frac{1}{2} b_0 + b_1 \cos \phi + b_2 \cos 2\phi + \dots + b_i \cos i\phi + \dots$$

Multiply both members of this equality by $\cos i\phi$ and integrate with respect to ϕ between the limits 0 and 2π ; then

$$b_i = \frac{1}{\pi} \int_0^{2\pi} \frac{\cos i\phi \, d\phi}{S^s} \, .$$

This leads to a Sequence Equation connecting the quantities b_i for consecutive values of i. We have

$$\begin{split} \frac{d}{d\phi} \left(\frac{\sin i\phi}{S^{s-1}} \right) &= \frac{i \cos i\phi}{S^{s-1}} - 2 \frac{(s-1) a \sin i\phi \sin \phi}{S^s} \\ &= \frac{i \left(1 + a^2 \right) \cos i\phi}{S^s} - 2 \frac{i a \cos \phi \cos i\phi}{S^s} - 2 \frac{(s-1) a \sin \phi \sin i\phi}{S^s} \\ &= \frac{i \left(1 + a^2 \right) \cos i\phi}{S^s} - \frac{a \left(i + s - 1 \right) \cos \left(i - 1 \right) \phi}{S^s} - \frac{a \left(i - s + 1 \right) \cos \left(i + 1 \right) \phi}{S^s}. \end{split}$$

Integrate with respect to ϕ between the limits 0 and 2π ; observing that the right-hand member vanishes,

$$0 = (1 + a^2) i b_i - a (i + s - 1) b_{i-1} - a (i - s + 1) b_{i+1}.$$

This equation enables us to deduce the values of all the quantities b_i when the values are known for any two consecutive values of i.

Consider next the relations between the coefficients that arise by giving different related values to the quantity s. Let us write

$$S^{-s-1} = \frac{1}{2} c_0 + c_1 \cos \phi + c_2 \cos 2\phi + \dots,$$

then it is required to investigate the relations between the quantities b and c.

We have

$$c_i = \frac{1}{\pi} \int_0^{2\pi} \frac{\cos i\phi \, d\phi}{S^{s+1}};$$

hence from the equation

$$\begin{aligned} \frac{d}{d\phi} \left(\frac{\sin i\phi}{S^s} \right) &= \frac{i \cos i\phi}{S^s} - 2 \frac{sa \sin i\phi \sin \phi}{S^{s+1}} \\ &= \frac{i \cos i\phi}{S^s} - \frac{sa \cos (i-1) \phi}{S^{s+1}} + \frac{sa \cos (i+1) \phi}{S^{s+1}}, \end{aligned}$$

we deduce

$$ib_{i}\!=\!sa\,\big[\,c_{i-1}\!-\!c_{i+1}\big].$$

For the case i=0, we must replace this by

$$b_0 = (1 + \alpha^2) c_0 - 2\alpha c_1$$
.

In virtue of the sequence equation connecting the quantities c,

$$(1+a^2)ic_i-a(i+s)c_{i-1}-a(i-s)c_{i+1}$$

we may write this result in the two forms

$$(i+s) b_i = s [(1+\alpha^2) c_i - 2\alpha c_{i+1}],$$

$$(i-s) b_i = s [2\alpha c_{i-1} - (1+\alpha^2) c_i].$$

Change i into (i+1) in the latter expression; then

$$s (1-a)^{2} [c_{i}+c_{i+1}] = (i+s) b_{i} - (i-s+1) b_{i+1},$$

$$s (1+a)^{2} [c_{i}-c_{i+1}] = (i+s) b_{i} + (i-s+1) b_{i+1}.$$

Thus from two consecutive members of either of the series of quantities b, c, we can obtain the values of all the members of the other series.

Let us now investigate the relations between the functions b, and their derived functions with respect to a.

We have

$$b_i = \frac{1}{\pi} \int_0^{2\pi} \frac{\cos i\phi \, d\phi}{S^s} \,;$$

$$\frac{db_{i}}{da} = \frac{2s}{\pi} \int_{0}^{2\pi} \frac{(\cos \phi - a) \cos i\phi}{S^{s+1}} d\phi,
= \frac{s}{\pi} \int_{0}^{2\pi} \frac{\cos (i-1) \phi + \cos (i+1) \phi - 2a \cos i\phi}{S^{s+1}} d\phi,
\frac{db_{i}}{da} = s \left[c_{i-1} + c_{i+1} - 2ac_{i} \right].$$

or

Substitute for the quantities c in terms of b;

$$(1-a^{2})\frac{db_{i}}{da} = (i+s-1)b_{i-1} - (i-s+1)b_{i+1} + 2asb_{i}$$

$$= \left\{2as - \left(a + \frac{1}{a}\right)i\right\}b_{i} + 2(i+s-1)b_{i-1}$$

$$= \left\{2as + \left(a + \frac{1}{a}\right)i\right\}b_{i} - 2(i-s+1)b_{i+1}.$$

These equations are sufficient for determining $\frac{db_i}{da}$, and thence derived functions of higher order; but we can find others which it will generally be preferable to employ. We have

$$ib_{i} = sa[c_{i-1} - c_{i+1}];$$

therefore

$$i\frac{db_i}{d\mathbf{a}} = s\left[c_{i-1} - c_{i+1}\right] + s\mathbf{a}\left[\frac{dc_{i-1}}{d\mathbf{a}} - \frac{dc_{i+1}}{d\mathbf{a}}\right].$$

Substitute for $\frac{db_i}{da}$ the expression in terms of the quantities c found above; then

$$a\left[\frac{dc_{i-1}}{da} - \frac{dc_{i+1}}{da}\right] = (i-1)c_{i-1} + (i+1)c_{i+1} - 2aic_i,$$

and in exactly the same way,

$$a\left[\frac{db_{i-1}}{da} - \frac{db_{i+1}}{da}\right] = (i-1)b_{i-1} + (i+1)b_{i+1} - 2aib_i.$$

Differentiate this, and we find

$$a \left[\frac{d^{3}b_{i-1}}{da^{2}} - \frac{d^{3}b_{i+1}}{da^{2}} \right] = (i-2)\frac{db_{i-1}}{da} + (i+2)\frac{db_{i+1}}{da} - 2ia\frac{db_{i}}{da} - 2ib_{i};$$

$$a \left[\frac{d^{3}b_{i-1}}{da^{3}} - \frac{d^{3}b_{i+1}}{da^{3}} \right] = (i-3)\frac{d^{3}b_{i-1}}{da^{2}} + (i+3)\frac{d^{3}b_{i+1}}{da^{3}} - 2ia\frac{d^{3}b_{i}}{da^{3}} - 4i\frac{db_{i}}{da},$$

and so on. By these formulae we find the derived functions of any order from those of orders next below. We require to calculate independently two of these functions, say the derived functions of b_0 and b_1 .

Thus in the case of first derived functions we find $\frac{db_0}{da}$ and $\frac{db_1}{da}$ from the formulae

$$\begin{split} &(1-\alpha^2)\frac{db_0}{da} = 2sab_0 + 2\left(s-1\right)b_1,\\ &(1-\alpha^2)\frac{db_1}{da} = 2sb_0 + \left(2as - a - \frac{1}{a}\right)b_1, \end{split}$$

which may be written more simply

$$\frac{db_0}{da} - a \frac{db_1}{da} = (2s - 1) b_1,$$

$$\frac{db_1}{da} - a \frac{db_0}{da} = 2sb_0 - \frac{1}{a} b_1;$$

and by differentiating these we can find the values of $\frac{d^2b_0}{da^2}$, $\frac{d^2b_1}{da^2}$, etc.

Let us now return to the case from which we started, that is to say, the case when $s = \frac{1}{2}$. The quantities b_0 and b_1 are then expressible by means of elliptic functions.

We have

$$b_0 = \frac{1}{\pi} \int_0^{2\pi} \frac{d\phi}{(1 - 2a\cos\phi + a^2)^{\frac{1}{2}}}, \quad b_1 = \frac{1}{\pi} \int_0^{\pi} \frac{\cos\phi d\phi}{(1 - 2a\cos\phi + a^2)^{\frac{1}{2}}}.$$
Assume
$$\sin(\theta - \phi) = a\sin\theta,$$
so that
$$\cos(\theta - \phi) = (1 - a^2\sin^2\theta)^{\frac{1}{2}}, \quad = \Delta, \text{ suppose.}$$
Then
$$\cos(\theta - \phi)(d\theta - d\phi) = a\cos\theta d\theta,$$
or
$$\Delta d\phi = (\Delta - a\cos\theta) d\theta.$$
Also
$$\cos\phi = \cos(\theta - \phi)\cos\theta + \sin(\theta - \phi)\sin\theta$$

$$= \Delta\cos\theta + a\sin^2\theta.$$

so that

$$(1 - 2\alpha \cos \phi + \alpha^2)^{\frac{1}{2}} = (1 - 2\Delta\alpha \cos \theta - 2\alpha^2 \sin^2 \theta + \alpha^2)^{\frac{1}{2}}$$
$$= (\Delta^2 - 2\Delta\alpha \cos \theta + \alpha^2 \cos^2 \theta)^{\frac{1}{2}}$$
$$= \Delta - \alpha \cos \theta.$$

Hence

$$\frac{d\phi}{\left(1 - 2\alpha\cos\phi + \alpha^2\right)^{\frac{1}{2}}} = \frac{d\theta}{\Delta},$$

$$\frac{\cos\phi d\phi}{\left(1 - 2\alpha\cos\phi + \alpha^2\right)^{\frac{1}{2}}} = \left(\cos\theta + \frac{\alpha\sin^2\theta}{\Delta}\right)d\theta,$$

Now let θ vary from 0 to 2π ; then since $\theta - \phi$ can never exceed the angle whose sine is α , it varies from 0 continuously to 0 again, and therefore ϕ will vary with θ from 0 to 2π . Hence, remarking that

$$\int_0^{2\pi} \cos\theta d\theta = 0,$$

we have

$$b_0 = \frac{1}{\pi} \int_0^{2\pi} \frac{d\theta}{\Delta}, \quad b_1 = \frac{1}{a\pi} \int_0^{2\pi} \left(\frac{d\theta}{\Delta} - \Delta d\theta \right),$$

or writing as is usual

$$F(a) = \int_0^{\frac{\pi}{2}} \frac{d\theta}{(1 - a^2 \sin^2 \theta)^{\frac{1}{2}}}, \ E(a) = \int_0^{\frac{\pi}{2}} (1 - a^2 \sin^2 \theta)^{\frac{1}{2}} d\theta,$$

we have

$$b_0 = \frac{4}{\pi} F(a), b_1 = \frac{4}{a\pi} [F(a) - E(a)].$$

From these expressions b_0 , b_1 may be computed; thus it is known that if a, a', a'', ... be a set of moduli derived in succession by the formula

$$\alpha' = \frac{1-\beta}{1+\beta};$$

where

$$\alpha^2 + \beta^2 = 1,$$

then

$$F(a) = \frac{\pi}{2} (1 + a') (1 + a'') \dots,$$

and

$$\frac{F(a)-E(a)}{a}=F(a)\left[\frac{1}{2}a+\frac{1}{4}aa'+\frac{1}{8}aa'a''+\dots\right].$$

An alternative method of reaching these results is given by Gauss (Determinatio Attractionis etc., §§ 16, 17).

Write

$$\frac{1}{\mu} = \frac{1}{2\pi} \int_0^{2\pi} \frac{dT}{(m^2 \cos^2 T + n^2 \sin^2 T)^{\frac{1}{2}}}, \quad -\frac{\nu}{\mu} = \frac{1}{2\pi} \int_0^{2\pi} \frac{(\cos^2 T - \sin^2 T) dT}{(m^2 \cos^2 T + n^2 \sin^2 T)^{\frac{1}{2}}};$$

then if

$$m' = \frac{1}{2}(m+n) , \quad n' = \sqrt{mn} ,$$

$$m'' = \frac{1}{2} (m' + n'), \quad n'' = \sqrt{m'n'},$$

and we proceed till we find a common limit to the quantities m and n, we shall see that this limit is μ . μ is called the arithmetico-geometric mean of m and n. Again if

$$\frac{1}{4} (m^2 - n^2)^{\frac{1}{2}} = \lambda, \quad \frac{1}{4} (m'^2 - n'^2)^{\frac{1}{2}} = \lambda', \dots,$$

so that

$$\lambda' = \frac{\lambda^2}{m'}, \quad \lambda'' = \frac{\lambda'^2}{m''}, \dots$$

then it will appear further that

$$\nu = \frac{2\lambda'^2 + 4\lambda''^2 + 8\lambda'''^2 + \dots}{\lambda^2}.$$

The first of these may be proved by making the substitution

$$\sin T = \frac{2m \sin T'}{(m+n) \cos^2 T' + 2m \sin^2 T'},$$

when we find

$$\frac{dT}{(m^2\cos^2T + n^2\sin^2T)^{\frac{1}{2}}} = \frac{dT'}{(m'^2\cos^2T' + n'^2\sin^2T')^{\frac{1}{2}}};$$

making a second similar substitution

$$\frac{dT'}{(m'^2\cos^2 T' + n'^2\sin^2 T')^{\frac{1}{2}}} = \frac{dT''}{(m''^2\cos^2 T'' + n''^2\sin^2 T'')^{\frac{1}{2}}}$$

$$= \dots = \frac{d\Theta}{(\mu^2\cos^2\Theta + \mu^2\sin^2\Theta)^{\frac{1}{2}}} = \frac{d\Theta}{\mu},$$

where μ is the arithmetico-geometric mean between m and n; and in all cases 0 and 2π are corresponding, limits for the quantities T, T', ... Θ . Hence integrating between these limits, we get the first theorem. Again by the same transformation we find

$$\frac{m'(\cos^2 T - \sin^2 T) dT}{(m^2 \cos^2 T + n^2 \sin^2 T)^{\frac{1}{2}}} = -\frac{1}{2} \frac{(m-n) \sin^2 T' dT'}{(m'^2 \cos^2 T' + n'^2 \sin^2 T')^{\frac{1}{2}}} + d \left(\sin T' \cos T \right);$$

substituting $\sin^2 T' = \frac{1}{2} - \frac{1}{2} (\cos^2 T' - \sin^2 T')$, and integrating from 0 to 2π , we have

$$\frac{m^{2}-n^{2}}{2\pi} \int_{0}^{2\pi} \frac{(\cos^{2}T - \sin^{2}T) dT}{(m^{2}\cos^{2}T + n^{2}\sin^{2}T)^{\frac{1}{2}}} = -\frac{2(m'^{2}-n'^{2})}{\mu} + 2\frac{(m'^{2}-n'^{2})}{2\pi} \int_{0}^{2\pi} \frac{(\cos^{2}T' - \sin^{2}T') dT'}{(m'^{2}\cos^{2}T' + n'^{2}\sin^{2}T')^{\frac{1}{2}}},$$

whence

$$-\frac{\nu}{\mu} = -\frac{2(m'^2 - n'^2) + 4(m''^2 - n''^2) + \dots}{(m^2 - n^2)\mu},$$

which is the second theorem.

To apply these results to the calculation of the quantities b_0 and b_1 , for the case when $s=\frac{1}{2}$, we notice that if

$$\phi = \pi - 2T,$$

then

$$b_0 = \frac{2}{\pi} \int_0^{\pi} \frac{d\phi}{(1 - 2\alpha \cos \phi + \alpha^2)^{\frac{1}{2}}} = \frac{1}{\pi} \int_0^{2\pi} \frac{dT}{\{(1 + \alpha)^2 \cos^2 T + (1 - \alpha)^2 \sin^2 T\}^{\frac{1}{2}}},$$

$$b_1 = \frac{2}{\pi} \int_0^{\pi} \frac{\cos \phi d\phi}{(1 - 2\alpha \cos \phi + \alpha^2)^{\frac{1}{2}}} = -\frac{2}{\pi} \int_0^{2\pi} \frac{(\cos^2 T - \sin^2 T) dT}{\{(1 + \alpha)^2 \cos^2 T + (1 - \alpha)^2 \sin^2 T\}^{\frac{1}{2}}},$$

or

$$b_0 = \frac{2}{\mu}, \quad b_1 = \frac{2\nu}{\mu},$$

where

$$m=1+\alpha$$
, $n=1-\alpha$.

Let us illustrate these formulae by computing a few of the quantities b for the first and second Satellites of Jupiter, for the case $s=\frac{1}{2}$.

Here

$$a = 0.6285152$$
.

Let us first compute b_0 and b_1 by Gauss's method of the arithmeticogeometric mean.

m = 1.6285152	$\log m$ 0.2117918
	_ 0
n = 0.3714848	$\log n$ 9.5699410
$2)\overline{2.0000000}$	$2)\overline{9.7817328}$
m' = 1.0000000	$\log n' = 9.8908664$
n' = 0.7777973	$\log m' \qquad 0.0000000$
2) 1.7777973	2) 9.8908664
m'' = 0.8888986	$\log n''$ 9.9454332
n'' = 0.8819282	$\log m''$ 9.9488522
2)1.7708268	2)9.8942854
m''' 0.8854134	$\log n''' \qquad 9.9471427$
n''' 0.8854065	$\log m''' \qquad 9.9471461$
$2)\overline{1.7708199}$	$2)\overline{9.8942888}$
$m^{\text{iv}} = 0.8854100$	$\log n^{\text{iv}} = 9.9471444$
$u = n^{\text{iv}}$ 0.8854100	

Hence

$$b_0 = 2.2588406$$
 $\log b_0 = 0.3538856.$

Again for ν ,

$$\lambda^2 = \frac{1}{4} \alpha = 0.1571288,$$

$\log \lambda^2$	9.1962558	$2\lambda'^2$	0.04937892
$\log m'$	0.0000000	$4\lambda''^2$	0.00308588
	9.1962558	8 λ''' 2	0.00000607
$\log \lambda'^2$	8.3925116		0.05247087
$\log m''$	9.9488522	\log	8.7199182
Ü	8.4436594	$\log \lambda^2$	9.1962558
$\log \lambda''^2$	6.8873188	$\log \nu =$	9.5236624
$\log m'''$	9.9471461	$\log \mu =$	9.9471444
O	$\overline{6.9401727}$		9.5765180
$\log \lambda'''^2$	3.8803454		
$\log m^{\mathrm{iv}}$	9.9471444		
$\log \lambda^{iv}$	3.9332010		

Hence

$$b_1 = 0.7543069$$
 $\log b_1 = 9.3775480.$

Next compute b_9 and b_{10} for the same value of s from Legendre's formula.

We have

$$\begin{aligned} b_i &= 2 \frac{1 \cdot 3 \cdot 5 \cdot \dots 2i - 1}{2 \cdot 4 \cdot 6 \cdot \dots 2i} \frac{\alpha^i}{(1 - \alpha^2)^{\frac{1}{2}}} \left[1 - \frac{1^2}{4 \cdot (i+1)} \frac{\alpha^2}{1 - \alpha^2} + \frac{1^2 \cdot 3^2}{4 \cdot 8 \cdot (i+1) \cdot (i+2)} \frac{\alpha^4}{(1 - \alpha^2)^2} - \dots \right], \end{aligned}$$

and

$$\alpha = 0.6285152$$

$$\beta^2 = \frac{\alpha^2}{1 - \alpha^2} = 0.6529783$$
 (9.8148988).

We find

$$\frac{1 \cdot 3 \cdot ... \cdot 17}{2 \cdot 4 \cdot ... \cdot 18} \frac{\alpha^{9}}{(1 - \alpha^{2})^{\frac{1}{2}}} = (7.5622508).$$

Also computing the terms of the series within brackets, in succession

	_			
$\frac{1}{40}$	8:3979400		101	4·5552311 2·0827854
β^2	9.8148988		121 1	
	8.2128388 n		360	7.4436975
9	0.9542425		$oldsymbol{eta}^{\scriptscriptstyle 2}$	9.8148988
1	8.0555173			3.8966128
88			169	2.2278867
$\beta^{\scriptscriptstyle 2}$	9.8148988		1	7:3487220
	7.0374974	4	148	
25	1.3979400		β^{2}	9.8148988
1_	7.8416375			3.2881203 n
144	, 04100,0	9	225	2:3521825
$oldsymbol{eta}^{\scriptscriptstyle 2}$	9.8148988		1	7.2644011
	6·0919737 n		$\overline{544}$	7 2044011
49	1.6901961		$oldsymbol{eta}^{\scriptscriptstyle 2}$	9.8148988
1	7.6819367			2.7196027
$\overline{208}$	1.0019901		289	2.4608978
β^{2}	9.8148988		1	F-1004050
	5.2790053		348	7.1884250
81	1.9084850		β^2	9.8148988
$\frac{1}{280}$	7.5528420			$\frac{2\cdot 1838243}{2\cdot 1838243}$
$\beta^{\scriptscriptstyle 2}$	9.8148988		ı.	
	$\overline{4.5552311} n$			

Collecting separately the positive and negative terms

From the above we may deduce the corresponding terms in b_{10} by multiplying the successive terms we have found by $\frac{10}{11}$, $\frac{10}{12}$, ..., $\frac{10}{19}$ respectively and the multiplier outside the bracket by $\frac{19}{20}\alpha$.

The terms become

and

$$\frac{b_{10}}{b_{9}} = (9.7766240).$$

Now compute b_2 , b_3 ... b_8 by successive steps from the sequence equation, which when $s = \frac{1}{2}$ assumes the form

$$(2i+1) \frac{b_{i+1}}{b_i} - 2i\left(a + \frac{1}{a}\right) + (2i-1)\frac{b_{i-1}}{b_i} = 0,$$

and we have the choice of proceeding backwards from b_{10} and b_{9} , or forwards from b_{0} and b_{1} . If we try the latter method,

given

 $b_0 = 2.2588406$ $b_1 = 0.7543069$

we derive

 $b_2 = 0.3632098$

 $b_{\rm s} = 0.1923505$

 $b_1 = 0.1065085$

 $b_5 = 0.0605299$

 $b_6 = 0.03499318$

 $b_7 = 0.02047747$

 $b_8 = 0.01209361$

 $b_9 = 0.00719524$

 $b_{10} = 0.00430918.$

The agreement with the values of b_9 and b_{10} already calculated is not very good, and we can trace the reason for this; for if in the sequence equation

$$0 = (i - s + 1) \frac{b_{i+1}}{b_i} - i \left(a + \frac{1}{a}\right) + (i + s - 1) \frac{b_{i-1}}{b_i},$$

we denote b_i/b_{i-1} by p_i , and a small error in this ratio by Δp_i , we have the relation

$$\Delta p_{i+1} = \frac{i+s-1}{i-s+1} \frac{\Delta p_i}{p_i^2},$$

so that

$$\Delta p_i = \frac{s(s+1)\dots(s+i-2)}{(2-s)(3-s)\dots(i-s)} \frac{\Delta p_1}{p_1^3 p_2^2 \dots p_{i-1}^2},$$

but

$$p_1p_2...p_{i-1}=\frac{b_{i-1}}{b_0};$$

therefore

$$b_{i-1}^{s} \Delta p_{i} = \frac{s(s+1) \dots (s+i-2)}{(2-s)(3-s) \dots (i-s)} b_{0}^{s} \Delta p_{1}.$$

Hence if we take i large enough, an original error is increased if we derive p_i from p_1 , but it is diminished if we derive p_1 from p_i . Let us then derive b_8 , b_7 , etc. from b_{10} and b_9 ;

given $b_{10} = 0.004297246$ $b_{9} = 0.007187308,$ we find $b_{8} = 0.01208930$ $b_{7} = 0.02047389$ $b_{6} = 0.03499074$ $b_{5} = 0.06052825$ $b_{4} = 0.1065074$ $b_{3} = 0.1923497$ $b_{2} = 0.3632093$ $b_{1} = 0.7543069$ $b_{0} = 2.2588406.$

In this case the agreement with the values of b_1 and b_2 already calculated is perfect.

Consider now the application of the foregoing results to the disturbing function

$$R = \frac{m'}{\left\{r^2 + r'^2 - 2rr'\cos\left(\theta - \theta'\right)\right\}^{\frac{1}{2}}} - \frac{m'r\cos\left(\theta - \theta'\right)}{r'^2},$$

for the disturbances of a body m at the position (r, θ) by a body m' at (r', θ') in the same plane.

Let
$$r = \alpha (1+x), \qquad \theta = nt + \epsilon + y = l + y,$$
$$r' = \alpha' (1+x'), \qquad \theta' = n't + \epsilon' + y' = l' + y',$$

where x, y, x', y' are supposed small; also let

$$Q = \frac{1}{\{\alpha^2 + \alpha'^2 - 2\alpha\alpha'\cos(l - l')\}^{\frac{1}{2}}} - \frac{\alpha\cos(l - l')}{\alpha'^2}.$$

Then if

$$Q = \frac{1}{2} A_0 + A_1 \cos(l - l') + A_2 \cos 2(l - l') + \dots$$

where α refers to the inferior satellite and α' to the superior we have

$$A_i = \frac{1}{\alpha'} b_i$$

in general, but

$$A_1 = \frac{1}{\alpha'}b_1 - \frac{\alpha}{\alpha'^2},$$

where b_i is that function of a or a/a' which we have been considering;

and where a refers to the superior satellite and a' to the inferior, taking a = a'/a which is less than unity, we have

$$A_i = \frac{1}{a} b_i$$

in general, but

$$A_1 = \frac{1}{a} b_1 - \frac{a}{a^{\prime 2}}.$$

Hence for the perturbations of an inferior satellite, we have

$$a \frac{dA_i}{da} = \frac{1}{a'} a \frac{db_i}{da},$$

$$a' \frac{dA_i}{da'} = -\frac{1}{a'} \left(a \frac{db_i}{da} + b_i \right);$$

we notice that A_i is a homogeneous function of a and a', of -1 dimension.

Also
$$a^2 \frac{d^2 A_i}{da^2} = \frac{1}{a'} a^2 \frac{d^2 b_i}{da^2},$$

$$aa' \frac{d^2 A_i}{da da'} = -\frac{1}{a'} \left(a^2 \frac{d^2 b_i}{da^2} + 2a \frac{db_i}{da} \right),$$

$$a'^2 \frac{d^2 A_i}{da'^2} = \frac{1}{a'} \left(a^2 \frac{d^2 b_i}{da^2} + 4a \frac{db_i}{da} + 2b_i \right).$$

In the case i=1, we must add to the differential coefficients of A_i , given by the above formulae, the corresponding differential coefficients of $-\alpha/\alpha'^2$.

For the perturbations of a superior satellite disturbed by an inferior we have, where $a = \alpha'/a$,

$$\begin{split} a\frac{dA_i}{da} &= -\frac{1}{a}\left(a\frac{db_i}{da} + b_i\right),\\ a'\frac{dA_i}{da'} &= -\frac{1}{a}\left(a\frac{db_i}{da}\right), \end{split}$$

and so on.

Now the functions with which we shall have to deal are $\frac{1}{r}\frac{dR}{dr}$, $\frac{1}{r^2}\frac{dR}{d\theta}$, that is to say

$$\frac{1}{a}\frac{dQ}{da} + xa\frac{d}{da}\left(\frac{1}{a}\frac{dQ}{da}\right) + x'a'\frac{d}{da'}\left(\frac{1}{a}\frac{dQ}{da}\right) + (y-y')\frac{d}{dl}\left(\frac{1}{a}\frac{dQ}{da}\right) + \dots,$$

and

$$\frac{1}{a^2}\frac{dQ}{dl} + xa\frac{d}{da}\left(\frac{1}{a^2}\frac{dQ}{dl}\right) + x'a'\frac{d}{da'}\left(\frac{1}{a^2}\frac{dQ}{dl}\right) + (y-y')\frac{d}{dl}\left(\frac{1}{a^2}\frac{dQ}{dl}\right) + \dots$$

Now

$$\frac{1}{a}\frac{dQ}{da} = \sum \frac{1}{a}\frac{dA_i}{da}\cos i (l-l'),$$

$$a\frac{d}{da}\left(\frac{1}{a}\frac{dQ}{da}\right) = \sum \left(\frac{d^2A_i}{da^2} - \frac{1}{a}\frac{dA_i}{da}\right)\cos i (l-l'),$$

$$a'\frac{d}{da'}\left(\frac{1}{a}\frac{dQ}{da}\right) = \sum \frac{a'}{a}\frac{d^2A_i}{dada'}\cos i (l-l'),$$

$$\frac{d}{dl}\left(\frac{1}{a}\frac{dQ}{da}\right) = -\sum \frac{1}{a}\frac{dA_i}{da}i\sin i (l-l').$$

Again

$$\begin{split} \frac{1}{a^2} \frac{dQ}{dl} &= \Sigma \, \frac{1}{a^2} \, A_i \, i \sin i \, (l-l'), \\ a \, \frac{d}{da} \left(\frac{1}{a^2} \, \frac{dQ}{dl} \right) &= \Sigma \left(\frac{2}{a^2} \, A_i - \frac{1}{\alpha^2} \, \frac{dA_i}{da} \right) i \sin i \, (l-l'), \\ a' \, \frac{d}{da'} \left(\frac{1}{a^2} \, \frac{dQ}{dl} \right) &= \Sigma - \frac{a'}{a^2} \frac{dA_i}{da'} i \sin i \, (l-l'), \\ \frac{d}{dl} \left(\frac{1}{a^2} \, \frac{dQ}{dl} \right) &= \Sigma - \frac{1}{a^2} A_i i^2 \cos i \, (l-l'). \end{split}$$

In these formulae, under the sign Σ , $\frac{1}{2}A_0$ stands in place of A_0 .

We have thus shewn completely how to express numerically the coefficient of any periodic term in the disturbing function.

III.

ON THE INEQUALITIES OF JUPITER'S SATELLITES WHICH ARE INDEPENDENT OF THE ECCENTRICITIES AND INCLINATIONS OF THEIR ORBITS.

Let μ denote the mass of Jupiter, or more strictly the sum of the masses of Jupiter and the satellite whose motion we are investigating;

 ρ the ellipticity of Jupiter,

 ϕ the ratio of centrifugal force to gravity at his equator,

u the quantity $\mu A^2 \left(\rho - \frac{1}{2} \phi \right)$ where A is his equatoreal radius;

then if the motion be supposed to take place in the plane of his equator, the potential due to the attraction of the planet will be

$$V = \frac{\mu}{r} + \frac{1}{3} \frac{\nu}{r^3}$$
.

Let m, r, θ denote the mass and the coordinates of the satellite under consideration,

m', r', θ' , &c., corresponding quantities for the satellites by which it is disturbed,

S, D, L, the like quantities for the Sun, which is supposed to move in the plane of Jupiter's equator;

then the disturbing function due to the action of the other satellites and the Sun is

$$R = \sum \left[\frac{m'}{\{r^2 + r'^2 - 2rr'\cos(\theta - \theta')\}^{\frac{1}{2}}} - \frac{m'r\cos(\theta - \theta')}{r'^2} \right] + \frac{Sr^2}{4D^2} \left[1 + 3\cos 2(\theta - L) \right],$$

where the sign Σ includes all the disturbing satellites. And the equations of motion of the satellite are

$$\begin{split} &\frac{1}{r}\,\frac{d^2r}{dt^2} - \left(\frac{d\theta}{dt}\right)^2 + \frac{\mu}{r^3} + \frac{\nu}{r^3} = \frac{1}{r}\,\frac{dR}{dr}\,,\\ &\frac{d^3\theta}{dt^2} + 2\,\frac{1}{r}\,\frac{dr}{dt}\,\frac{d\theta}{dt} &= \frac{1}{r^2}\,\frac{dR}{d\theta}\,. \end{split}$$

But if we omit the disturbances due to eccentricity and also those due to the square of the disturbing force, we may write

$$\frac{1}{r} \frac{dR}{dr} = \frac{1}{2} \frac{S}{D^3} [1 + 3\cos 2(\theta - L)] + \sum \frac{m'}{a} \frac{dQ}{da},$$

$$\frac{1}{r^2} \frac{dR}{d\theta} = \frac{3}{2} \frac{S}{D^3} [-3\sin 2(\theta - L)] + \sum \frac{m'}{a^2} \frac{dQ}{dl},$$

$$Q = \frac{1}{\{a^2 + a'^2 - 2aa'\cos(l - l')\}^{\frac{1}{2}}} - \frac{a\cos(l - l')}{a'^2},$$

$$l = nt + \epsilon, \qquad l' = n't + \epsilon'.$$

where

To satisfy these equations, assume

$$r = a \left[1 - c \cos 2 \left(l - L \right) - \sum a_i \cos i \left(l - l' \right) \right],$$

$$\theta = l + k \sin 2 \left(l - L \right) + \sum g_i \sin i \left(l - l' \right),$$

where i includes all positive integers.

Then neglecting squares and products of the coefficients a_i , g_i , c, k, or M in places where it will afterwards appear that its would not modify the result to the order we are considering, retention we have

$$\begin{split} \frac{1}{r} \frac{d^3 r}{dt^2} &= 4n^2 c \cos 2 \; (l-L) + \Sigma i^2 \; (n-n')^2 \; a_i \cos i \; (l-l') \\ &- \left(\frac{d\theta}{dt}\right)^2 = -n^2 - 4n^2 k \cos 2 \; (l-L) - 2n \; (n-n') \; \Sigma i g_i \cos i \; (l-l') \\ &\frac{\mu}{r^3} + \frac{\nu}{r^5} = \frac{\mu}{a^3} \left[1 + 3c \cos 2 \; (l-L) + 3\Sigma a_i \cos i \; (l-l') \right] \\ &+ \frac{\nu}{a^5} \left[1 + 5c \cos 2 \; (l-L) + 5\Sigma a_i \cos i \; (l-l') \right] \\ &= \frac{\mu}{a^3} \left[1 + f + (3+5f) \; c \cos 2 \; (l-L) + (3+5f) \; \Sigma a_i \cos i \; (l-l') \right] \end{split}$$
 where
$$f = \nu/\mu a^2.$$
 Also

$$\begin{aligned} \frac{d^2\theta}{dt^2} &= -4n^2k\sin 2\left(l-L\right) - \Sigma i^2\left(n-n'\right)^2 g_i \sin i\left(l-l'\right), \\ 2\frac{1}{r}\frac{dr}{dt}\frac{d\theta}{dt} &= 4n^2c\sin 2\left(l-L\right) + \Sigma 2n\left(n-n'\right)ia_i \sin i\left(l-l'\right). \end{aligned}$$

Substitute in the equations of motion and write

$$\frac{S}{\overline{D}^3} = M^2,$$

where M is the mean motion of Jupiter about the Sun, and equate coefficients of the various terms.

We obtain the following equations:—
constant term in the first equation:—

$$\frac{\mu}{a^3}(1+f) = n^2 + \frac{1}{2}M^2 + \frac{1}{2}\sum \frac{m'}{\alpha}\frac{dA_0}{d\alpha};$$

this gives the relation between α and n;

coefficient of $\cos 2(l-L)$ in the first equation:—

$$4n^2c - 4n^2k + \frac{\mu}{\alpha^3}(3+5f) = \frac{3}{2}M^2;$$

coefficient of $\sin 2(l-L)$ in the second equation:—

$$-4n^2k + 4n^2c = \frac{3}{2}M^2;$$

hence

$$c = \left(1 - \frac{2f}{3+5f}\right) \frac{M^2}{n^2}, \quad k = \left(\frac{11}{8} - \frac{2f}{3+5f}\right) \frac{M^2}{n^2},$$

these stand for the inequality which is called the Variation in Lunar Theory. We now see that in omitting $\frac{dL}{dt}$ when forming the differential equations we have omitted quantities of the order of M^3 in the values of c and k;

coefficient of $\cos i (l-l')$ in the first equation:—

$$i^{2}(n-n')^{2}\alpha_{i}-2n(n-n')ig_{i}+\frac{\mu}{\alpha^{3}}(3+5f)\alpha_{i}=\frac{m'}{\alpha}\frac{dA_{i}}{d\alpha};$$

coefficient of $\sin i(l-l')$ in the second equation:—

$$-i^{2}(n-n')^{2}g_{i}+2n(n-n')i\alpha_{i} = -\frac{m'}{\alpha^{2}}iA_{i}.$$

Multiply the second of these equations by 2n/i(n-n'), and subtract from the first:—

$$\[i(n-n')^2 - 4n^2 + \frac{\mu}{a^3}(3+5f)\]a_i = \frac{m'}{a^2}\left[a\frac{dA_i}{da} + \frac{2n}{n-n'}A_i\right].$$

Making use of the relation

$$\frac{\mu}{\alpha^3}(1+f) = n^2 + \frac{1}{2}M^2 + \frac{1}{2}\sum \frac{m'}{\alpha}\frac{dA_0}{d\alpha},$$

we may write the coefficient of a_i ,

$$i^2(n-n')^2-N^2$$

where

$$N^2 = n^2 - \frac{3}{2} M^2 - 2f \frac{\mu}{a^3} - \frac{3}{2} \sum \frac{m'}{a} \frac{dA_0}{da}$$
.

Where the highest accuracy is not required we may put

$$-2fn^2$$
 in place of $-2f\mu/\alpha^3$,

$$\frac{m'n^2}{\mu} \alpha^2 \frac{dA_0}{da}$$
 in place of $\frac{m'}{a} \frac{dA_0}{da}$;

but if we wish to be as exact as possible, we must include a further small correction to the value of N^2 for the following reason. The quantity $\frac{m'}{a}\frac{dQ}{da}$ contains the constant term $\frac{1}{2}\frac{m'}{a}\frac{dA_0}{da}$; hence a small correction xa

to the value of r will introduce a correction $xa \frac{d}{da} \left(\frac{1}{2} \frac{m'}{a} \frac{dA_0}{da} \right)$ in $\frac{m'}{a} \frac{dQ}{da}$, which contains the term

$$a_i \cos i \left(l-l'
ight) \left[-rac{1}{2} \, m' \left(rac{d^2 A_o}{dlpha^2} -rac{1}{a} \, rac{dA_o}{da}
ight)
ight],$$

to be added to the right-hand member of the first equation. Terms multiplied by α_{i-1} , α_{i+1} , etc., are also introduced, but we shall ignore them; thus we get the more exact value of N^2 ,

$$N^{2} = n^{2} - \frac{3}{2} M^{2} - 2f \frac{\mu}{\alpha^{3}} - \frac{1}{2} \sum m' \left(\frac{d^{2} A_{0}}{d\alpha^{2}} + 2 \frac{1}{\alpha} \frac{dA_{0}}{d\alpha} \right),$$

and then a_i , g_i are found from

$$\begin{split} \left[i^2\left(n-n'\right)^2-N^2\right]\alpha_i &= \frac{m'}{\alpha^2}\left[\alpha\,\frac{dA_i}{d\alpha} + \frac{2n}{n-n'}\,A_i\right],\\ g_i &= \frac{2n}{i\left(n-n'\right)}\,\alpha_i + \frac{1}{i\left(n-n'\right)^2}\,\frac{m'}{\alpha^2}\,A_i. \end{split}$$

The coefficients a_i , g_i gain in importance if the divisor $i^2(n-n')^2-n^2$ be small. Now $i^2(n-n')^2-n^2=\{i(n-n')-n\}\{i(n-n')+n\}$, and in the case of A. II.

the first and second satellites, and also in the case of the second and third, the quantity n-2n' is small. Hence in the case of the first satellite disturbed by the second, and also in that of the second disturbed by the third, a_2 , a_3 will be considerable, while a_1 , a_2 , will be considerable for the cases of the second satellite disturbed by the first, and the third disturbed by the second.

The difference n-2n' is positive, and the term $-2f\mu/a^3$ in the expression for N^2 , which depends upon the ellipticity of Jupiter, increases the divisor $i^2(n-n')^2-N^2$ algebraically; hence the ellipticity of Jupiter will diminish a_2 , a_2 where these are considerable, and increase a_1 , a_2 .

Let us now compute the mutual perturbations of the first and second satellites; the foregoing formulae apply without distinction to the perturbations of Satellite I by Satellites II, III, IV, and Satellite II by Satellites I, III, IV; but as we are conducting the computations simultaneously, let us slightly change the notation, so that where heretofore a, a_i , g_i &c. referred always to the body whose motion was under consideration, they shall now refer always to Satellite I, the corresponding quantities for Satellite II being denoted by accented letters.

Then we have $fa^2 = f'a'^2,$ $A_i = \frac{1}{a} a b_i = A_i',$ $A_1' = -\frac{1}{a} \left(a b_1 - a^2 \right), \qquad A_1' = -\frac{1}{a} \left(a b_1 - \frac{1}{a} \right),$ $\frac{dA_i}{da} = \frac{1}{a^2} \left(a^2 \frac{db_i}{da} \right), \qquad \frac{dA_i'}{da'} = -\frac{1}{a'^2} \left(a \frac{db_i}{da} + b_i \right),$ $\frac{dA_1}{da} = \frac{1}{a^2} \left(a^2 \frac{db_1}{da} - a^2 \right), \qquad \frac{dA_1'}{da'} = -\frac{1}{a'^2} \left(a \frac{db_1}{da} + b_1 + \frac{1}{a^2} \right),$ $a^2 \left(\frac{d^2 A_0}{da^2} + \frac{2}{a} \frac{dA_0}{da} \right) = \frac{1}{a'} \left(a^2 \frac{d^2 b_0}{da^2} + 2a \frac{db_0}{da} \right) = a'^2 \left(\frac{d^2 A_0'}{da'^2} + \frac{2}{a'} \frac{dA_0'}{da'} \right).$

Now let us employ the following data:—

The mean motions of the several satellites and of Jupiter in 365.25 days, expressed in centesimal seconds, are*,

[* These are derived from the synodic periods of the satellites, the mean tropical motion of Jupiter, and the precession of the equinoxes adopted in Damoiseau's 'Tables,' Introduction, p. iii.]

$$n = 825826010^{\circ}423,$$

 $n' = 411412421^{\circ}501,$
 $n'' = 204205627^{\circ}040,$
 $n''' = 87542597^{\circ}800,$
 $M = 337212^{\circ}092;$

these satisfy the condition

$$n - 3n' + 2n'' = 0,$$

making

$$n-2n'=n'-2n''=3001167.421.$$

Laplace gives the following values for the masses*:

$$m = 0.0000173281,$$

 $m' = 0.0000232355,$
 $m'' = 0.0000884972,$
 $m''' = 0.0000426591,$

the unit being the mass of Jupiter;

also

$$\rho - \frac{1}{2}\phi = 0.0219013,$$

$$\frac{a}{A} = 5.698491, \quad \frac{a'}{A} = 9.066548;$$

so that

$$f = \left(\rho - \frac{1}{2}\phi\right) \frac{A^2}{\alpha^2} = 0.0006744505, \quad f' = \left(\rho - \frac{1}{2}\phi\right) \frac{A^2}{\alpha^{f_2}} = 0.0002664317,$$

$$(1+m)f = 0.000674462, \qquad (1+m')f' = 0.000266438.$$

First from the equations

$$\frac{\mu}{\alpha^{3}}(1+f) = n^{2} + \frac{1}{2}M^{2} + \frac{1}{2}\sum \frac{m'}{\alpha}\frac{dA_{0}}{d\alpha},$$

$$\frac{\mu'}{\alpha'^{3}}(1+f') = n'^{2} + \frac{1}{2}M^{2} + \frac{1}{2}\sum \frac{m}{\alpha'}\frac{dA_{0}'}{d\alpha'},$$

let us find the exact values of α and α' that satisfy them.

[* To elicit these values from the observations a more elaborate theory is required than the one here developed.]

	Assum	ing the values for	or a*			
		I and II	I an	d III	I and	IV
		a 0.6285152	a 0:39	40191	a 0.22401	.97
we		77	77		77	
	$\log a^2$	$rac{db_{ exttt{o}}}{doldsymbol{a}}$ 9.6379872	$\log \mathbf{a}^2 \frac{db_0}{d\mathbf{a}}$	8.8686957	$\log \mathbf{a}^2 \frac{db_0}{d\mathbf{a}} \ \log m'''$	8.0759879
	$\log m'$	5.3661520	$\log m''$	5.9469295	$\log m'''$	5.6300117
	$\log rac{1}{2}$	9.6989700	$\log \frac{1}{2}$	9.6989700	$\log \frac{1}{2}$	9.6989700
		4.7031092		4.5145952		3.4049696
		0000050479	.0	000032704	.00	000002541
	Again					
	C	II and I	II ar		II and I	
	_	a 0.6285152	a 0.62	269046	a 0.35642	69
we	have				77	
		2.258841	$\log a^2 \frac{db_0}{dt}$	9.6330469	$\log a^2 \frac{db_0}{d}$	8.7221062
	a $rac{db_{ exttt{o}}}{doldsymbol{a}}$	0.691308	log m"	9·6330469 5·9469295	log m'''	8·7221062 5·6300117
	au	2.950149				
	log	0.4698440	$\log \frac{1}{2}$	9.6989700	$\log \frac{1}{2}$	9.6989700
	_	5.2387509		5.2789464		4.0510879
	$\log \frac{1}{2}$	9.6989700		0000190084		0000011248
		5.4075649				
	.0	0000255602				

Hence we have the following terms multiplying $\frac{1}{a^s}$ and $\frac{1}{a^{r_s}}$ respectively,

	Satellite I	Satellite	· II
1+m	1.0000173281	1+m'	1.0000232355
(1+m)f	$\cdot 000674462$	(1+m')f'	.000266438
$-\frac{1}{2}m'a^2\frac{dA_0}{da}$	- '0000050479	$-rac{1}{2}\mathit{ma'^{2}}rac{dA_{\mathfrak{o}}}{dar{oldsymbol{a}}}$.0000255602
$-rac{1}{2}m''a^2rac{dA_{ullet}}{da}$	- '0000032704	$-rac{1}{2}m^{\prime\prime}a^{\prime\prime}rac{dA_{ exttt{o}}}{da^{\prime}}$	- '0000190084
$-rac{1}{2}m^{\prime\prime\prime}a^2rac{dA_0}{da}$	- '0000002541	$-rac{1}{2}m^{\prime\prime\prime}a^{\prime\imath}rac{dA_{\scriptscriptstyle 0}}{da^\prime}$	- '0000011248
	1.0006832177		1.0002951005

^{[*} These are taken from the values of a, a', a'', a''' found on p. 192.] [† These quantities are taken from Runkle's 'Tables.']

$$1 + \frac{1}{2} \frac{M^2}{n^2} = 1.00000000834, \qquad 1 + \frac{1}{2} \frac{M^2}{n^{2}} = 1.00000003359;$$

hence

$$n^2\alpha^3 = 1.0006831343,$$

 $n^{2}\alpha^{3} = 1.0002947645$

These results give

$$\frac{a}{a'} = 0.6285146,$$

which agrees pretty closely with the value assumed for a for these two satellites.

Now let us compute the values of a_i , g_i , a'_i , g'_i for the values i=1, 2, 3, 4.

The equations are

$$[i^{2}(n-n')^{2}-N^{2}]a_{i} = \frac{m'}{a^{2}}\left[a\frac{dA_{i}}{da} + \frac{2n}{n-n'}A_{i}\right],$$

$$g_{i} = \frac{2n}{i(n-n')}a_{i} + \frac{1}{i(n-n')^{2}}\frac{m'}{a^{2}}A_{i},$$

where

$$N^{2} = n^{2} - \frac{3}{2} M^{2} - 2f \frac{\mu}{a^{3}} - \frac{1}{2} \Sigma m' \left(\frac{d^{2} A_{0}}{da^{2}} + 2 \frac{1}{a} \frac{dA_{0}}{da} \right).$$

First compute N^2/n^2 .

I and II		I and III		I and IV	
$oldsymbol{a}^2rac{d^2b_0}{doldsymbol{a}^2}$	1.686485	$oldsymbol{a^2} rac{d^2 b_{oldsymbol{o}}}{d oldsymbol{a^2}}$	0.264603	$oldsymbol{lpha^2} rac{d^2 b_{_0}}{d oldsymbol{lpha}^2}$	0.0594822
2 a $rac{db_{ exttt{o}}}{da}$	1.382614	2 a $rac{db_{ exttt{o}}}{da}$	0.375153	$2 oldsymbol{a} rac{db_{\scriptscriptstyle 0}}{doldsymbol{a}}$	0.1063486
~~~	3.069099		0.639756		0.1658308
log	0.4870109	log	9.8060144	$\log$	9.2196652
log a	9.7983158	log a	9.5955173	$\log a$	9.3502863
$\log m'$	5.3661520	$\log m''$	5.9469295	$\log m'''$	5.6300117
$\log 1/n^2 \alpha^3$	9.9997034	$\log 1/n^2 a^3$	9.9997034	$\log 1/n^2a^3$	9.9997034
$\log \frac{1}{2}$	9.6989700	$\log \frac{1}{2}$	9.6989700	$\log \frac{1}{2}$	9.6989700
23	5:3501521	-	5.0471346	-	3.8986366
0	000022395	0	0.000011146	0	.000000792

Also

Hence collecting the terms we have

$$-\frac{3}{2} \frac{M^2}{n^2} - 0.000000250$$

$$-2 \frac{\mu}{n^2 \alpha^3} f - 0.001348004$$
term in  $m' - 0.000022395$ 

$$, ... m'' - 0.000011146$$

$$, ... m''' - 0.000000792$$

$$\frac{N^2}{n^2} = 0.998617413$$

Hence we have the following divisors, dividing the equation throughout by  $n^2$ :—

$$i = 1 D_1 = \left(1 - \frac{n'}{n}\right)^2 - \frac{N^2}{n^2} = -0.74679706,$$

$$i = 2 D_2 = 4 \left(1 - \frac{n'}{n}\right)^2 - \frac{N^2}{n^2} = 0.008664072,$$

$$i = 3 D_3 = 9 \left(1 - \frac{n'}{n}\right)^2 - \frac{N^2}{n^2} = 1.2677656,$$

$$i = 4 D_4 = 16 \left(1 - \frac{n'}{n}\right)^2 - \frac{N^2}{n^2} = 3.0305086.$$

Thus completing the calculations

i = 1		i	= 2
$\frac{2n}{n-n'}(b_1-a)$	0.5013457	$\frac{2n}{n-n'}b_{\scriptscriptstyle 2}$	1.4475767
$a \frac{db_1}{da} - a$	0.4713909	$oldsymbol{a}rac{db_{_2}}{doldsymbol{a}}$	0.9130762
	0.9727366		2.3606529
log	9.9879953	$\log$	0.3730321
log a	9.7983158	log a	9.7983158
$\log m'/n^2 a^3$	5.3658554	$\logm'/n^2lpha^3$	5.3658554
$-\log D_{\scriptscriptstyle 1}$	-9.8732026n	$-\log D_{\scriptscriptstyle 2}$	-7.9377221
	5.2789639n		7:5994812
$a_1 = -0.0$	0000190092	$a_2 = 0$	.003976319

i = 3		i = 4		
$\frac{2n}{n-n'}b_{\scriptscriptstyle 3}$	0.7666132	$\frac{2n}{n-n'}b_*$	0.4244872	
$a \frac{db_{s}}{da}$	0.6816803	$oldsymbol{a}rac{db_{\scriptscriptstyle 4}}{doldsymbol{a}}$	0.4859961	
	1.4482935		0.9104833	
log	0.1608565	$\log$	9.9592720	
log a	9.7983158	log a	9.7983158	
$\log m'/n^2a^3$	5.3658554	$\log m'/n^2 a^3$	5.3658554	
$-\log D_{\scriptscriptstyle 3}$	-0.1030389	$-\log D_{\scriptscriptstyle 4}$ -	-0.4815155	
	5:2219888		4.6419277	
$a_3 = 0$	00001667205	$a_4 = 0.00$	0000438458	

Next to find  $g_i$ .

i=1		i=2		
$\log a_{_1}$	5.2789639n	$\log a_{\scriptscriptstyle 2}$	7.5994812	
$\log \frac{2n}{n-n'}$	0.6004846	$\log 2n/2 (n-n')$	0.2994546	
n-n	5.8794485n		7.8989358	
	0000757615	0	007923842	
$\log(b_1-a)$	9.0996527	$\log b_{\scriptscriptstyle 2}$	9.5601570	
log a	9.7983158	log a	9.7983158	
$\logm'/n^2lpha^3$	5.3658554	$\log m'/n^2 lpha^3$	5.3658554	
$\log n^2/(n-n')^2$	0.5989092	$\log n^2/2 (n-n')^2$	0.2978792	
	4.8627331		5.0222074	
0.	0000072901	0	.000010525	
$g_1 = -0$	0000684714	$g_2 = 0.007934367$		
= -43	3``.5902	= 5051":175		
$=-14'' \cdot 1232$		= 1636"·581		
i =	3	i=4		
$\log a_{s}$	5.2219889	$\log a_{\scriptscriptstyle 4}$	4.6419277	
$\log 2n/3 \ (n-n')$	0.1233633	$\log 2n/4 (n-n')$	9.9984246	
	5.3453522		4.6403523	
	0.0000221489	0.0	0000043687	
$\log b_{i}$	9.2840917	$\log b_{\scriptscriptstyle 4}$	9.027380	
logα	9.7983158	$\log a$	9.7983158	
$\logm'/n^2a^3$	5.3658554	$\logm'/n^2lpha^3$	5.3658554	
$\log n^2/3 (n-n')$	0.1217879	$\log n^2/4  (n-n')^2$	9.9968492	
	4.5700508		4.1884004	
	0.0000037158	0.0	0000015431	
$g_{s}$ =	0.0000258647	$g_4 = 0$	0000059118	
= 16".4660		= 3 ^{\cdots} · 5942		
=	<b>5″·</b> 3350	=1".2194		

Next consider the perturbations of Satellite II under the influence of Satellite I.

First compute  $N'^2/n'^2$ .

II and I		II a	II and III		II and IV	
$oldsymbol{a}^2rac{d^2b_{\scriptscriptstyle 0}}{doldsymbol{a}^2}$	1.686485	$oldsymbol{a^2} rac{d^2 b_{ extsf{o}}}{d oldsymbol{a}^2}$	1.663501	$oldsymbol{lpha}^2rac{d^2b_{\scriptscriptstyle 0}}{doldsymbol{lpha}^2}$	0.196132	
$2arac{db_{ exttt{o}}}{da}$	1·382614 3·069099	$2 oldsymbol{a} rac{db_{ exttt{o}}}{doldsymbol{a}}$	1·370488 3·033989	$2$ a $rac{db_{ ext{o}}}{da}$	0·295914 0·492046	
$\log \log m$ $\log 1/n'^2 \alpha'^3$ $\log \frac{1}{2}$	0.4870109 $5.2387509$ $9.9998720$ $9.6989700$ $5.4246038$ $0.00026583$	$\log \alpha$ $\log m''$ $\log 1/n'^2\alpha'^3$ $\log \frac{1}{2}$	0·4820140 9·7972015 5·9469295 9·9998720 9·6989700 5·9249870	$\log a$ $\log m'''$ $\log 1/n'^2 \alpha'^3$ $\log \frac{1}{2}$	9·6920057 9·5519705 5·6300117 9·9998720 9·6989700 4·5728299	
Also		$\log \mu' f' \log 1/n'^2 lpha'^3 \log 2$	$\begin{array}{c} 6.000084137 \\ \hline 6.4255960 \\ 9.9998720 \\ \hline 0.3010300 \\ \hline 6.7264980 \\ .000532719 \\ \end{array}$		.000003740	

Collecting the terms,

Next find the divisors in the final equation for  $a_i$ , first dividing throughout by  $n'^2$ :—

$$i = 1 D_1' = \left(1 - \frac{n}{n'}\right)^2 - \frac{N'^2}{n'^2} = 0.015290982,$$

$$i = 2 D_2' = 4 \left(1 - \frac{n}{n'}\right)^2 - \frac{N'^2}{n'^2} = 3.059219364,$$

$$i = 3 D_3' = 9 \left(1 - \frac{n}{n'}\right)^2 - \frac{N'^2}{n'^2} = 8.13243333,$$

$$i = 4 D_4' = 16 \left(1 - \frac{n}{n'}\right)^2 - \frac{N'^2}{n'^2} = 15.23493289.$$

Hence to determine  $a_i'$ :—

$$i = 1$$

$$-\frac{n+n'}{n-n'}\left(b_1 - \frac{1}{a^2}\right) \quad 5 \cdot 305673$$

$$-\left(a\frac{db_1}{da} + \frac{2}{a^2}\right) \quad -6 \cdot 162795$$

$$-0.857122$$

$$\log m/n'^2a'^3 \quad 5 \cdot 2386229$$

$$-\log D_1 \quad -8 \cdot 1844354$$

$$6 \cdot 9872301n$$

$$a_1' = -0 \cdot 0009710243$$

$$i = 3$$

$$-a\frac{db_3}{da} \quad -0 \cdot 6816803$$

$$-a\frac{db_3}{da} \quad -0 \cdot 6816803$$

$$-1 \cdot 259438$$

$$\log m/n'^2a'^3 \quad 5 \cdot 2386229$$

$$-\log D_2 \quad -0 \cdot 3179798$$

$$-a\frac{db_3}{a} \quad -0 \cdot 6816803$$

$$-1 \cdot 259438$$

$$\log m/n'^2a'^3 \quad 5 \cdot 2386229$$

$$-\log D_3 \quad -0 \cdot 3179798$$

$$-a\frac{db_4}{da} \quad -0 \cdot 4859961$$

$$-0 \cdot 8039759$$

$$\log m/n'^2a'^3 \quad 5 \cdot 2386229$$

$$-\log D_3 \quad -0 \cdot 9102205$$

$$-\log D_4 \quad -1 \cdot 1828406$$

$$3 \cdot 9610253n$$

$$a_3' = -0 \cdot 00000026753$$

$$a_4' = -0 \cdot 0000009142$$

In conclusion we compute  $g_i'$ :

i	= 1	i=2		
$\log a_i{}'$	6.9872301n	$\log a_{\scriptscriptstyle 2}{}'$	5.0534868n	
$\log - 2n'/(n-n')$	0.2978735n	$\log - 2n'/2 (n-n')$	9.9968435n	
	7.2851036		5.0503303	
	0.001927985		0.0000112287	
$\log\left(b_{\scriptscriptstyle 1}\!-\!rac{1}{oldsymbol{lpha}^{\scriptscriptstyle 2}} ight)$	0.2497210n	$\logb_{\scriptscriptstyle 2}$	9.5601570	
$\log m/n'^2 a'^3$	5.2386229	$\log m/n'^2 lpha'^3$	5.2386229	
$\log n'^2/(n-n')^2$	9.9936870	$\log n'^2/2 (n-n')^2$	9.6926570	
	5.4820309n		4.4914369	
-(	0.000030341		0.0000031005	
$g_1' = 0.001897644$ = 1208".078 = 391".4172		$g_2' = 0.0000143292$ = 9".1223 = 2".9556		
i =	= 3	i=4		
$\log a_{\scriptscriptstyle 3}{}'$	$4 \cdot 4273726n$		3.9610253n	
$\log - 2n'/3 (n-n')$	9.8207522n	$\log - 2n'/4 (n-n')$	9.6958135n	
	4.2481248		3.6568388	
0.0	0000017706	0.4	0000004538	
$\log b_{\scriptscriptstyle 3}$	9.2840917	$\log b_{\scriptscriptstyle 4}$	9.027380	
$\log m/n'^2\alpha'^3$	5.2386229	$\log m/n'^2 a'^3$	5.2386229	
$\log n'^2/3 (n-n')^2$	9.5165657	$\log n'^2/4 (n-n')^2$	9:3916270	
	4.0392803		3.6576299	
0.000010947		0.0	0000004546	
$g_{s}' = 0.0000028653$		$g_4' = 0.0000009084$		
=1".8241		= 0'``·5783		
=0''.5910		=0''.1874		

# MASSES OF JUPITER'S SATELLITES CONSISTENT WITH DAMOISEAU'S CONSTANTS.

[In Damoiseau's "Tables Ecliptiques des Satellites de Jupiter" the following masses are attached to the Satellites, that of Jupiter being unity.

I 0.0000168770

II 0.00002322696

III 0.0000884370

IV 0:0000424751

Jupiter's Compression  $\frac{1}{13\cdot 492}$ .

These results as well as others whose determination depends upon theory are based upon constants which Delambre derived from the observations. Damoiseau's own reduction of the observations educed constants sensibly different, and, as he remarks, it is to be expected that the values of the masses, &c., which are consistent with them will also differ sensibly from the above. However he does not consider the degree of exactness to be expected from such tables warrants a new computation. It appears from the following note that his constants imply very considerable departures from the above values.]

The process followed is that of the *Mécanique Céleste*, l. VIII. ch. IX., with certain modifications.

The first equation is derived from the coefficient of the great inequality of I which depends upon the action of II. In his *Introduction*, p. iv, Damoiseau gives this the value  $3^m \ 13^s \cdot 079 = 0^d \cdot 00223471$ . This is the

value employed by Laplace; hence the mass of II which is found thence is the same as that which Laplace gives, or

$$m' = 0.232355.$$

We next take the great inequality of II which the actions of I and III jointly produce. Damoiseau's coefficient (p. vi) is

$$15^{\text{m}} 6^{\text{s}} \cdot 331 = 0^{\text{d}} \cdot 01048995,$$

or in angle 11806":03. Hence on the model of Laplace's equation (1), we find

$$m + m'' \cdot 1.7419336 = 1.6983516,$$

and if we take Laplace's value of m'' as an approximation, this equation is satisfied by

$$m = 0.1567892, \qquad m'' = 0.884972,$$

with corrections to be presently determined

$$\frac{\delta m}{m} = -\frac{\delta m''}{m''}$$
. 9.832069.

By p. ii, the annual sidereal motion of the perijove of IV is 41' 51"·57 or 7751"·759. We substitute this in the third and fourth equations for g of Ch. vII., and thus form equations analogous to Laplace's (5) and (2) of Ch. IX. The values of the ratios of the eccentricities which refer to the perijove of IV are then evaluated thus:—Damoiseau gives the terms

I - 
$$0^{8} \cdot 709 \sin(u_{1} - \varpi_{4})$$
,  
II -  $12^{8} \cdot 022 \sin(u_{2} - \varpi_{4})$ ,  
III -  $1^{m}$   $5^{8} \cdot 073 \sin(u_{3} - \varpi_{4})$ ,  
IV -  $55^{m}$   $37^{8} \cdot 390 \sin(u_{4} - \varpi_{4})$ .

These are values at conjunction, and represent the sum of two terms

$$-2h\sin(u-\varpi_{\bullet})-\frac{15}{4}\frac{M}{n}h\sin(u-2u_{0}+\varpi_{\bullet}).$$

Hence we find

$$h = 9$$
"·28,  $h' = 78$ "·42,  $h'' = 210$ "·85,  $h''' = 4644$ "·74,  $\frac{h}{h'''} = [7 \cdot 30059]$ ,  $\frac{h'}{h'''} = [8 \cdot 22747]$ ,  $\frac{h''}{h'''} = [8 \cdot 65700]$ .

and

We also take Laplace's m''' as an approximation. We then find the equations between the residuals:—

Laplace's (5), 
$$0 = 804.05 - 970.68 \frac{\delta \mu}{\mu} - 31.45 \frac{\delta m}{m} + 1.05 \frac{\delta m''}{m''} + 1590.24 \frac{\delta m'''}{m'''}$$

Laplace's (2), 
$$0 = -298.48 - 2963.45 \frac{\delta \mu}{\mu} - 56.90 \frac{\delta m}{m} - 3807.27 \frac{\delta m''}{m''}$$
.

Finally the annual sidereal motion of the node of II as derived from Damoiseau's p. iii, is 134207°·06. Another value is given on p. i, namely  $12^{\circ}4'40''\cdot 4 = 134198$ °·76, but the former appears to be that employed in constructing the tables. Substitute this in the second equation for p of Ch. vII., and we get an equation corresponding to Laplace's (6) of Ch. IX.; and the quantities l must be evaluated from Damoiseau's coefficients. l is the coefficient of a term in s which refers to the node of II. And disregarding inequalities the semi duration of an eclipse is, by Ch. vIII.  $T\sqrt{1-(1+\rho')^2\frac{s^2}{\beta^2}}$ , where we may also take  $\beta=T\times$  synodic motion. The value of  $\rho'$  is given in the same chapter. Hence by comparison with Damoiseau we find  $(1+\rho')\frac{s}{\beta}=$  Damoiseau's M; also

Concerning  $\rho'$  there is some doubt as to the value used by Damoiseau as his coefficients are not consistent with each other. We take  $1 + \rho' = 1.0796$ , which is consistent with several of his coefficients.

We then find

$$l = -108$$
°·235,  $l' = -5216$ °·0,  $l'' = 178$ °·59,  $l''' = 4$ °·865, whence  $\frac{l}{l'} = \cdot 020750$ ,  $\frac{l''}{l'} = - \cdot 034239$ ,  $\frac{l'''}{l'} = - \cdot 000933$ ,

differing very little from the values in the *Mécanique Céleste*. With these constants the equation for p yields

$$0 = 859.8 - 109613.2 \frac{\delta \mu}{\mu} - 4847.7 \frac{\delta m}{m} - 17908.8 \frac{\delta m''}{m''} - 770.3 \frac{\delta m'''}{m'''}.$$

Hence by solving the four equations found

$$\frac{\delta\mu}{\mu} = -0.0109117,$$

$$\frac{\delta m}{m} = 0.805692,$$

$$\frac{\delta m''}{m''} = -0.0819453,$$

$$\frac{\delta m'''}{m'''} = -0.496287,$$

and the results will be, restoring Jupiter's mass as the unit;

$$\rho - \frac{1}{2}\phi = 0.0216623,$$

$$m = 0.0000283113,$$

$$m' = 0.0000232355,$$

$$m'' = 0.0000812453,$$

$$m''' = 0.0000214880.$$

(August 31, 1875.)

## REPETITION OF SOME NUMERICAL CALCULATIONS IN THE MÉCANIQUE CÉLESTE RELATING TO THE THEORY OF JUPITER'S SATELLITES.

The calculations in question are those of Livre VIII., Nos. 20, 22, 23. In No. 20 Laplace calculates the ratios of the mean distances of the Satellites by help of a formula of No. 3, but neglects the corrections to those ratios that are produced by the mutual perturbations of the Satellites. Employing the exact formula, with Damoiseau's values of the masses, and  $\rho - \frac{1}{2}\phi = 0.0220021$ , which results from substituting Damoiseau's value of p for Satellite II, together with his values of the masses and the values of l:l', &c. found by Adams from Damoiseau's constants (see p. 188) in the second equation for p of Livre VIII., No. 23, we find

 $\alpha = 5.698464,$   $\alpha' = 9.066548,$   $\alpha'' = 14.462403,$   $\alpha''' = 25.437328,$ 

where the value found by Laplace is that ascribed to a', for the following reason: that the compression of Jupiter is found from the motion of the node of Satellite II, and the form under which this compression enters the perturbations of that Satellite is  $(\rho - \frac{1}{2}\phi)/a'^2$ , and this is the only considerable term in which the absolute value of the distance appears (see the formal equation for p in No. 9); hence as one of the four distances is indeterminate by our method, we may save a correction to the equation for p that we employ, by choosing the unit of length so that a' has the value Laplace ascribes to it.

Conducting the remaining calculations of No. 20 with the values of  $\alpha$  or  $\alpha:\alpha'$  derived from these results, there appears no difference to mention except for Satellites III and IV, where we should have

$$\frac{db_{\frac{1}{2}}^{\circ}}{da} = 0.879085, \qquad \frac{db_{\frac{1}{2}}^{\prime}}{da} = 1.546154,$$

in place of

0.878931,

1.545882.

(12-23 April, 1862.)

In No. 22, Laplace takes n-2n'=3001300"; employing the mean motions derived from Damoiseau which are given on p. 179, its value is 3001167":4; further Q'' is erroneous; each term is too great by the factor 1.0001686;

in the second equation for g, for 143201 read 143401,

for -196037 read -193744,

for 34596 read 34590,

for 22518 read 22005,

for -94603 read -94587;

in the third equation for g, for 28176 read 28171,

for -10279 read -10302;

in the third equation for p, for -15494.62 read -15492.62.

If these corrections are made it is verified that the value of g associated with the perijove of Satellite IV, and that of p associated with the node of Satellite II, together with the other constants adopted or derived by Laplace, still satisfy closely the equations for g and p. This amounts to a verification of Laplace's calculation of the masses.

(20-24 August, 1875.)

#### PERTURBATION OF THE ORBIT OF THE NOVEMBER METEORS.

[In a paper "On the Orbit of the November Meteors" (Mon. Not. 1867 April) Adams considers the problem of discriminating between a number of possible periods deduced by Professor H. A. Newton as consistent with the observed recurrences of the display of meteors, by computing the perturbation of the node of the orbit corresponding to each period, and comparing it with the observed perturbation. After excluding a number of orbits by this test, the only remaining and, as it appears, the true orbit is highly elliptical, with eccentricity 0.9047. It remains to compute the perturbation of the node of this orbit, and the method and result of his investigation Adams states as follows:—"In order to determine the secular "motion of the node in this orbit, I employed the method given by Gauss "in his beautiful investigation 'Determinatio attractionis &c.'

"It may be proved that if two planets revolve about the Sun in "periodic times that are incommensurable with each other, the secular "variations which either of these bodies produces in the elements of the "orbit of the other would be the same as if the whole mass of the "disturbing body had been distributed over its orbit in such a manner "that the portion of the mass distributed over any given are should be "always proportional to the time which the body takes to describe that "arc. In the memoir just referred to, Gauss shews how to determine the "attraction of such an elliptic ring on a point in any given position. "When this attraction has been calculated for any point in the orbit of "the meteors, we can at once deduce the changes which it would produce "in the elements of the orbit, while the meteors are describing any small "arc contiguous to the given point. Hence, by dividing the orbit of the "meteors into a number of small portions, and summing up the changes

"corresponding to these portions, we may find the total secular changes "of the elements produced in a complete period of the meteors.

"In this manner I have found that during a period of 33.25 years, "the longitude of the node is increased 20' by the action of *Jupiter*, nearly "7' by the action of *Saturn*, and about 1' by that of *Uranus*. The other "planets produce scarcely any sensible effects, so that the entire calculated "increase of the longitude of the node in the above-mentioned period is "about 28'.

"As already stated, the observed increase of longitude in the same "time is 29'. This remarkable accordance between the results of theory "and observation appears to me to leave no doubt as to the correctness "of the period of 33:25 years.

"In order to attain a sufficient degree of approximation it is requisite "to break up the orbit of the meteors into a considerable number of "portions, for each of which the attractions of the elliptic rings corre-"sponding to the several disturbing planets have to be determined; hence "the calculations are necessarily very long, although I have devised a "modification of Gauss's formulae which greatly facilitates their application "to the present problem."

The following extracts from MSS. give a sketch of the mathematical details of this remarkable calculation.]

Let NAP be the orbit of the disturbed body, and NA' that of the disturber;

A, A' are the perihelia;

$$NP = \theta$$
,  $NA = \omega$ ,  $NA' = \omega'$ ,  $ANA' = i$ ;



S the force at P perpendicular to the orbit;

N the longitude of the node;

then as in Lectures on the Lunar Theory, xv.,

$$\frac{dN}{dt} = \frac{Sr}{H} \frac{\sin \theta}{\sin i};$$

but if u be the eccentric anomaly of the disturbed body, n its mean motion, and a its semi-axis major, and the square of the disturbing force is ignored, we may put

$$\frac{dt}{du} = \frac{1}{n} \left( 1 - e \cos u \right) = \frac{r}{\alpha n},$$

$$H = na^2 \left( 1 - e^2 \right)^{\frac{1}{2}};$$

or taking the Sun's mass unity, so that

$$n^2\alpha^3=1,$$

we get

$$\frac{dN}{du} = \frac{Sr^2}{(1-e^2)^{\frac{1}{2}}} \frac{\sin \theta}{\sin i}.$$

Now the quantities which Gauss has shewn how to compute are the components of the whole attraction at P of the disturbing ring of matter NA', resolved parallel to the major and minor axes of this ring and perpendicular to its plane. Call these components X, Y, Z respectively; then in the above formula

$$S = -X \sin \omega' \sin i - Y \cos \omega' \sin i + Z \cos i.$$

[2 March, 1867.]

Take the origin at the centre of the orbit of the disturbing body and the axes parallel to the above-mentioned directions;

let A, B, C be the coordinates of P;

a', b', e', u' refer with the usual meanings to the disturbing body;

then by Gauss's formulae the elements of X, Y, Z, due to the attraction of that portion of the ring into which the disturbing body is distributed which lies between u' and u' + du', are given by

$$\begin{split} dX &= \frac{\left(A - a' \cos u'\right) \left(1 - e' \cos u'\right) du'}{2\pi D^{s}} \,, \\ dY &= \frac{\left(B - b' \sin u'\right) \left(1 - e' \cos u'\right) du'}{2\pi D^{s}} \,, \\ dZ &= \frac{\left(C - \frac{1}{2\pi D^{s}}\right) \left(1 - e' \cos u'\right) du'}{2\pi D^{s}} \,, \end{split}$$

197

$$D^{2} = (A - a' \cos u')^{2} + (B - b' \sin u')^{2} + C^{2}$$

If we ignore the square of e', we have

$$a'=b'$$

and

$$D^{2} = A^{2} + B^{2} + C^{2} - 2\alpha' (A \cos u' + B \sin u') + \alpha'^{2}$$
$$= \kappa^{2} [1 - 2\alpha \cos (u' - \beta) + \alpha^{2}],$$

if

$$\kappa^{2} (1 + \alpha^{2}) = A^{2} + B^{2} + C^{2} + \alpha'^{2},$$

$$\kappa^{2} \alpha \cos \beta = A \alpha', \qquad \kappa^{2} \alpha \sin \beta = B \alpha'.$$

Hence

$$dX = \frac{A - (Ae' + a')\cos u' + \frac{1}{2}a'e' (1 + \cos 2u')}{\kappa^{3} \left[1 - 2\alpha\cos(u' - \beta) + \alpha^{2}\right]^{\frac{3}{2}}} \frac{du'}{2\pi}$$

$$dY = \frac{B - Be'\cos u - b'\sin u' + \frac{1}{2}b'e'\sin 2u'}{\kappa^{3} \left[1 - 2\alpha\cos(u' - \beta) + \alpha^{2}\right]^{\frac{3}{2}}} \frac{du'}{2\pi},$$

$$dZ = \frac{C - Ce'\cos u'}{\kappa^{3} \left[1 - 2\alpha\cos(u' - \beta) + \alpha^{2}\right]^{\frac{3}{2}}} \frac{du'}{2\pi};$$

and to obtain the complete values of X, Y, Z, these expressions must be integrated between the limits u'=0 and  $u'=2\pi$ . Change the variable from u' to  $\phi$  when

$$\phi = u' - \beta$$
;

then the limits of  $\phi$  are also 0 and  $2\pi$ ; further write

$$\frac{1}{(1-2\alpha\cos\phi+\alpha^2)^{\frac{3}{2}}} = \frac{1}{2}b_0 + b_1\cos\phi + b_2\cos2\phi + \dots,$$

so that

$$b_n = \frac{1}{\pi} \int_0^{2\pi} \frac{-\cos n\phi \, d\phi}{(1 - 2a\cos \phi + a^2)^{\frac{3}{2}}};$$

then noticing that

$$0 = \int_0^{2\pi} \frac{\sin n\phi d\phi}{\left(1 - 2a\cos\phi + a^2\right)^{\frac{3}{2}}},$$

198 PERTURBATION OF THE ORBIT OF THE NOVEMBER METEORS.

we have

$$\begin{split} X &= \frac{1}{2\kappa^3} \left[ \left( A + \frac{1}{2} \alpha' e' \right) b_0 - \left( A e' + \alpha' \right) \cos \beta b_1 + \frac{1}{2} \alpha' e' \cos 2\beta b_2 \right], \\ Y &= \frac{1}{2\kappa^3} \left[ B b_0 - \left( B e' \cos \beta + \alpha' \sin \beta \right) b_1 + \frac{1}{2} \alpha' e' \sin 2\beta b_2 \right], \\ Z &= \frac{1}{2\kappa^3} \left[ C b_0 - C e' \cos \beta b_1 \right]. \end{split}$$

Now writing, after Gauss,

$$P = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\cos^{2}\theta \, d\theta}{(m^{2}\cos^{2}\theta + n^{2}\sin^{2}\theta)^{\frac{3}{2}}}, \quad Q = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\sin^{2}\theta \, d\theta}{(m^{2}\cos^{2}\theta + n^{2}\sin^{2}\theta)^{\frac{3}{2}}},$$

put

$$2\theta = \pi + \phi,$$

$$m^2 = \kappa^2 (1 + \alpha)^2, \qquad n^2 = \kappa^2 (1 - \alpha)^2.$$

and we have

$$P = \frac{1}{4\pi\kappa^{3}} \int_{0}^{2\pi} \frac{(1-\cos\phi) d\phi}{(1-2\alpha\cos\phi + \alpha^{2})^{\frac{3}{2}}} = \frac{1}{4\kappa^{3}} (b_{0} - b_{1}),$$

$$Q = \frac{1}{4\pi\kappa^{3}} \int_{0}^{2\pi} \frac{(1+\cos\phi) d\phi}{(1-2\alpha\cos\phi + \alpha^{2})^{\frac{3}{2}}} = \frac{1}{4\kappa^{3}} (b_{0} + b_{1});$$

moreover we know that

$$b_2 - 2\left(a + \frac{1}{a}\right)b_1 + 3b_0 = 0.$$

Hence

$$\begin{split} & \frac{b_0}{\kappa^3} = 2 \ (P + Q), \\ & \frac{b_1}{\kappa^3} = 2 \ (Q - P), \\ & \frac{b_2}{\kappa^3} = 4 \ \left(\alpha + \frac{1}{\alpha}\right) (Q - P) - 6 \ (P + Q). \end{split}$$

Now returning to the formula for S,

$$S = -X \sin \omega' \sin i - Y \cos \omega' \sin i + Z \cos i,$$

and remarking that the focus of the orbit of the disturber lies in the

plane of the disturbed orbit, that is in the plane of which the direction cosines of the normal are

$$-\sin \omega' \sin i$$
,  $-\cos \omega' \sin i$ ,  $\cos i$ ,

we have

$$0 = -(A - a'e')\sin \omega' \sin i - B\cos \omega' \sin i + C\cos i,$$

we get

$$S = \alpha' \sin(\omega' + \beta) \sin i \frac{b_1}{2\kappa^3} - \frac{3}{2} \alpha' e' \sin \omega' \sin i \frac{b_0}{2\kappa^3} - \frac{1}{2} \alpha' e' \sin(\omega' + 2\beta) \sin i \frac{b_2}{2\kappa^3}$$

$$= \alpha' \sin(\omega' + \beta) \sin i (Q - P) + 3\alpha' e' \sin \beta \cos(\omega' + \beta) (P + Q)$$

$$- \alpha' e' \sin(\omega' + 2\beta) \sin i \left(\alpha + \frac{1}{\alpha}\right) (Q - P).$$

[13 March, 1867.]

We substitute this value of S in the right-hand member of the equation for dN/du. The right-hand member is thus expressed as a function of known quantities and the co-ordinates of the disturbed body. Taking n the eccentric anomaly in the disturbed orbit to define what is variable in these co-ordinates, we compute the value of dN/du for a sufficient number of different values of u. Thus for instance we find

Perturbations by Jupiter.

				-	
u	$rac{dN}{du}$	u	$rac{dN}{du}$	u	$\frac{dN}{du}$
	"		//		"
$0^{\circ}$	0.04	$90^{\circ}$	11.90	270	31.54
$22\frac{1}{2}$	9.97	$112\frac{1}{2}$	1.62	281:	$\frac{1}{4}$ 79.5
$33\frac{3}{4}$	34.3	135	0.76	292-	$\frac{1}{2}$ 263.59
45	126:39	$157\frac{1}{2}$	0.00	298	495.32
$50\frac{5}{8}$	286.83	180	0.50	303	$\frac{3}{4}$ 642·1
$56\frac{1}{4}$	698.4	$202\frac{1}{2}$	0.65	309-	$\frac{3}{8}$ 414.04
$61\frac{7}{8}$	634.50	225	2.43	315	194.14
$67\frac{1}{2}$	223.60	$247\frac{1}{2}$	7.68	326	1 45·1
$78\frac{3}{4}$	40.5	270	31.54	337	$\frac{1}{2}$ 9.93
90	11.90			360	0.04

To deduce from these figures the change in N while u ranges from

200 PERTURBATION OF THE ORBIT OF THE NOVEMBER METEORS. [10 0° to 360° is a problem of Mechanical Quadrature; the following are the results.

Range of $u$	Change in $N$	Range of u	Change in $N$
$0^{\circ}$ to $33\frac{3}{4}^{\circ}$	" 11:23	0° to 202½°	566.00
$33\frac{3}{4} \dots 50\frac{5}{8}$	82.62	$202\frac{1}{2} \dots 247\frac{1}{2}$	6.02
$50\frac{5}{8}$ $61\frac{7}{8}$	306.34	$247\frac{1}{2} \dots 281\frac{1}{4}$	38:36
$61\frac{7}{8} \dots 78\frac{3}{4}$	149.78	$281\frac{1}{4}$ $298\frac{1}{8}$	169.78
$78\frac{3}{4} \dots 112\frac{1}{2}$	14.00	$298\frac{1}{8} \dots 309\frac{3}{8}$	286.23
$112\frac{1}{2} \dots 157\frac{1}{2}$	1.55	$309\frac{3}{8} \dots 326\frac{1}{4}$	123.15
$157\frac{1}{2} \dots 202\frac{1}{2}$	0.48	$326\frac{1}{4} \dots 360$	11.19
$0^{\circ} \text{ to } 202\frac{1}{2}^{\circ}$	566.00	0° to 360°	1200.73

Thus the change in the longitude of the node produced by the action of Jupiter during one complete revolution of the meteors is 20'.

### 11.

#### THEORY OF THE FIGURE OF THE EARTH.

[Lectures on the Theory of the Figure of the Earth were delivered by Adams in the Lent Term of 1871 and were repeated once or twice with little alteration. They were prefaced by a historical sketch of the problem, translated from Laplace (Mécanique Céleste, livre XI. ch. 1), continued by Chasles (Recueil des Savans Etrangers, t. IX.). It does not seem proper to reprint this matter here, and it has been omitted. The concluding lectures have also been omitted; these dealt with attractions of ellipsoids and ellipsoidal shells; the greater part has since become familiar in current text-books, and what was most interesting and original in it was published by Adams himself (Camb. Phil. Soc. Proc., II. p. 213), and has been reprinted in the first volume of his papers, No. 53, p. 414. The form of lectures, never very marked, has not been preserved in the remainder. It divides roughly into three portions. §§ 1-5 make an informal commentary upon certain propositions in Newton's Principia, lib. I. sect. xii. xiii. It should be remarked that these propositions by no means represent all that Newton contributed to the theory of the Figure of the Earth. § 6-10 give a characteristic discussion of the potential and attraction of a spheroid of small ellipticity on any point. \$\\$ 11-15 demonstrate Clairaut's theorem, deducing it from hypotheses as to the internal strata of equal density, and these hypotheses are further considered in a theory of the internal state of a fluid earth of heterogeneous structure, supposed to rotate as if solid.]

### ATTRACTION OF SPHERES AND SPHEROIDS BY METHODS ANALOGOUS TO NEWTON'S.

§ 1. Attraction of a uniform spherical shell.

Let O be the centre of a spherical shell,  $\alpha$  its radius; M an attracted point, MO = r.



Join MO meeting the surface in A, A'. Through M draw any line MP cutting the surface in P, P', and let Mp be drawn in the plane OMP making an indefinitely small angle with MP and cutting the surface in p, p'.

Also draw OK, Ok perpendicular to MP, Mp respectively; PN, pn perpendicular to MO, Pq perpendicular to Mp and Pr perpendicular to pn; let Ok meet MP in h.

The surface of the elementary zone of the shell generated by revolution of the arc Pp about MO is

 $2\pi \cdot PN \cdot Pp$ ;

but by similar triangles

Pp: Pr = OP: PN.

Therefore

$$PN \cdot Pp = OP \cdot Pr = OP \cdot Nn$$
,

and the surface of the elementary zone is

$$2\pi \cdot OP \cdot Nn = 2\pi a \cdot Nn$$
,

and the surface of the whole sphere, obtained by summing all such elements,  $2\pi a \cdot 2a = 4\pi a^2$ .

The zone in question evidently attracts M in the direction MO, and since each element of the zone attracts M in a direction making the same angle with MO, we have, resolving the attractions in this direction and measuring the mass of the zone by its surface,

Attraction of zone = 
$$2\pi \cdot PN \cdot Pp \cdot \frac{MN}{MP^{\bar{s}}}$$
.

But by similar triangles

$$PN: MP = OK: MO, MN: MP = MK: MO.$$

Therefore

Attraction = 
$$2\pi \frac{OK \cdot MK}{MO^2}$$
.  $\frac{Pp}{MP}$ .

Also by similar triangles

$$Pp: Pq = OP: PK$$
 and  $Pq: hk = MP: MK$  ultimately.

Hence

$$\frac{Pp}{hk} = \frac{OP \cdot MP}{PK \cdot MK}$$
 and  $\frac{Pp}{MP} = \frac{OP \cdot hk}{PK \cdot MK}$ ;

and

Attraction of zone = 
$$2\pi \frac{OP \cdot OK}{MO^2} \cdot \frac{hk}{PK}$$
.

But

$$Ok^2 - OK^2 = PK^2 - pk^2;$$

therefore ultimately

$$hk. OK = (PK - pk) PK.$$

Hence the attraction of the zone is

$$2\pi \frac{OP}{MO^2} (PK - pk) = -\frac{2\pi a}{r} \cdot \delta PK.$$

Similarly the attraction of the zone generated by revolution of P'p' may be shewn equal to the same quantity, and

Attraction of the two zones = 
$$-\frac{2\pi\alpha}{r^2}$$
.  $\delta PP'$ .

Now if we sum the attractions of all the elements that make up the entire shell, since PP' varies from  $2\alpha$  when MP passes through O to zero when MP becomes a tangent, we have

Attraction of spherical shell = 
$$\frac{2\pi a}{r^2}$$
.  $2a = \frac{4\pi a^2}{r^2} = \frac{M}{r^2}$ ,

since the mass is supposed to be measured by its surface.

Again, the potential at M of the zone generated by Pp

$$=2\pi\,\frac{PN}{MP}\,Pp=2\pi\,\frac{OK\,.\,OP\,.\,MP}{MO\,.\,PK\,.\,MK}\,.\,hk\;;$$

and the potential of the zone generated by P'p'

$$=2\pi \frac{OK \cdot OP \cdot MP'}{MO \cdot PK \cdot MK} \cdot hk.$$

Together, the potential of the two zones is

$$2\pi \ \frac{OK \cdot OP \left(MP + MP'\right)}{MO \cdot PK \cdot MK} \cdot hk = 4\pi \frac{OP \cdot OK}{MO \cdot PK} \cdot hk,$$

or, as above,

$$=-\frac{2\pi\alpha}{r}.\delta PP',$$

and the potential of the whole shell  $=\frac{2\pi a}{r}$ .  $2a = \frac{M}{r}$ .

In the same way we may prove that the attraction at an internal point is zero and the potential constant*.

§ 2. Attraction of a sphere, supposing the law of attraction to be any whatever.

Let O be the centre of the sphere,  $\alpha$  its radius, M an attracted point, OM=r, and let the attraction at distance  $\rho$  be denoted by  $f(\rho)$ .

Let a sphere described with centre M and any radius  $MQ = \rho$  cut the attracting sphere in the spherical segment which is generated by revolution of the arc QR about MO. Let Pp be an element of the arc RQ and imagine an indefinitely thin shell of the attracting matter included between

^{*} Compare Newton's Principia, Book 1. Prop. LXXI.

two spherical surfaces with the common centre M, their radii being  $\rho$  and  $\rho + \delta \rho$ .



Then the elementary surface generated by  $Pp = 2\pi PN$ .  $Pp = 2\pi \rho$ . Nn,

and the volume corresponding to this surface contained between the surfaces of the shell  $=2\pi\rho\delta\rho$ . Nn.

The attraction of this matter upon M

$$=2\pi\rho\,\delta\rho\,.\,\,Nn\,.\,f\left(\rho\right)\,MN/\rho=\pi f\left(\rho\right)\,\delta\rho\,\left(MN^{2}-Mn^{2}\right)=\pi f\left(\rho\right)\,\delta\rho\,.\,\,\delta\left(MN^{2}\right).$$

Hence if QS be drawn perpendicular to MO, the attraction of the whole shell whose internal and external radii are  $\rho$  and  $\rho + \delta \rho$  is

$$\pi f(\rho) \,\delta\rho \,(MR^2 - MS^2) = \pi f(\rho) \,\delta\rho \,.\, QS^{2*}.$$

Now in the triangle MQO, since QS is drawn perpendicular to MO, we have

 $MS = \frac{\rho^2 + r^2 - \alpha^2}{2r};$ 

hence

$$\begin{split} QS^2 &= \rho^2 - \left(\frac{\rho^2 + r^2 - \alpha^2}{2r}\right)^2 \\ &= \frac{\left[(\rho + r)^2 - \alpha^2\right] \left[\alpha^2 - (\rho - r)^2\right]}{4r^2} \\ &= \frac{(\rho + r + \alpha) \left(\rho + r - \alpha\right) \left(\alpha + \rho - r\right) \left(\alpha + r - \rho\right)}{4r^2}, \end{split}$$

and the attraction of the whole sphere

$$= \frac{\pi}{4r^2} \int_{r-a}^{r+a} f(\rho) \left(\rho + r + \alpha\right) \left(\rho + r - \alpha\right) \left(\rho + \alpha - r\right) \left(\alpha + r - \rho\right) d\rho$$

$$= \frac{\pi}{4r^2} \int_{r-a}^{r+a} f(\rho) \left[ (r+\alpha)^2 - \rho^2 \right] \left[ \rho^2 - (r-\alpha)^2 \right] d\rho.$$

* This is equivalent to Newton's Prop. LXXIX.

The value of the integral in this expression may be written down in several cases.

Ex. 1. 
$$f(\rho) = 1/\rho$$
. Integral =  $2ar(r^2 + a^2) - (r^2 - a^2)^2 \log_e \frac{r + a}{r - a}$ .

2. 
$$f(\rho) = 1/\rho^2$$
. Integral =  $\frac{16}{3} a^3$ .

3. 
$$f(\rho) = 1/\rho^3$$
. Integral =  $-4ra + 2(r^2 + a^2) \log_e \frac{r+a}{r-a}$ .

4. 
$$f(\rho) = 1/\rho^4$$
. Integral  $= \frac{16}{3} \frac{\alpha^3}{r^2 - \alpha^2}$ .

§ 3. Comparison of the attractions of a solid sphere upon any external point and a related internal point.

Let M be the external point and O the centre of the sphere. In OM take M' so that OM, OA, OM' are in continued proportion; thus if

$$OM' = r', \quad r' = a^2/r.$$



Let Q be any point of the circle with centre O and radius OA, and let Qq be an indefinitely small arc of this circle. Join MQ, M'Q.

Then since

$$M'O: OQ = OQ: OM$$
,

the triangles M'OQ, QOM are similar, and we have

$$M'Q: MQ = OQ: OM;$$

so that M'Q is to MQ in the constant ratio OQ:OM or a:r.

Let shells be described in the sphere with centres M, M' and internal and external radii respectively MQ, Mq, M'Q, M'q. Call MQ, Mq,  $\rho$ ,  $\rho + \delta \rho$  respectively, and M'Q, M'q,  $\rho'$ ,  $\rho' + \delta \rho'$ . Then if we take the attraction of a particle to vary inversely as the *n*th power of the distance, we have

Attraction on M of shell with centre  $M = \frac{\pi}{\rho^n} \delta \rho$ .  $QS^2$ ,

and again, Attraction on 
$$M'$$
 of shell with centre  $M' = \frac{\pi}{\rho'^n} \delta \rho'$ .  $QS^2$ . But we have seen 
$$\frac{\rho'}{\rho} = \frac{\rho' + \delta \rho'}{\rho + \delta \rho} = \frac{\delta \rho'}{\delta \rho} = \frac{\alpha}{r} = \frac{r'}{\alpha} = \sqrt{\frac{r'}{r}}.$$
 Hence

Attraction of former shell on M: attraction of latter shell on M'

$$= \left(\frac{\alpha}{r}\right)^n \cdot \frac{r}{\alpha} : 1$$
$$= \left(r'/r\right)^{\frac{n-1}{2}} : 1,$$

and it is immediately clear that the attractions of the whole sphere are in the same ratio*.

§ 4. Attraction of a segment of a sphere upon a particle in the axis of the segment.

First, let the particle M lie at the centre of the sphere, and let a shell be described in the segment, M being the common centre of its internal and external surfaces, and MK, Mk the radii of these surfaces; call MK, Mk respectively  $\rho$ ,  $\rho + \delta \rho$ . Then the attraction of this shell upon M

$$= \pi f(\rho) \, \delta \rho \, . \, KS^2 = \pi f(\rho) \, \delta \rho \, (\rho^2 - c^2),$$

where c stands for MS; and the value of this integrated from  $\rho = c$  to  $\rho = r$  gives the attraction of the whole segment.



Secondly † , let the point M lie anywhere on the axis.

With M as centre describe a spherical segment QB. The attraction of such a segment we have just found. To find the attraction of the

^{*} Compare Principia, Prop. LXXXII.

[†] Compare Principia, Prop. LXXXIII.

[‡] Compare Principia, Prop. LXXXIV.

remainder, divide it into shells with centre M. The attraction of a shell with inner and outer radii MK, Mk, say  $\rho$ ,  $\rho + \delta \rho$ , is

$$\pi f(
ho) \, \delta 
ho$$
 .  $KN^2$ ,

where KN is perpendicular to MO; that is

$$\pi f(\rho) \, \delta \rho \, \cdot \frac{1}{4 \, r^2} [(r+a)^2 - \rho^2] [\rho^2 - (r-a)^2],$$

in which r stands for MO.

This expression summed from  $\rho = (r^2 + \alpha^2 + 2rc)^{\frac{1}{2}}$  to  $\rho = r + \alpha$ .

§ 5. Attraction of a solid of revolution upon any point in its axis.

Let us find the attraction of a circular lamina on a point situated anywhere on a straight line through its centre perpendicular to its plane.



Let M be the point, O the centre of the circle, MO=a, AO=r. Let Pp be an element of AO,  $MP=\rho$ , and let the attraction at distance  $\rho$  be  $f(\rho)$ .

Join MP, Mp; draw Pq perpendicular to Mp.

The area generated by revolution of Pp about O is

$$2\pi$$
.  $OP$ .  $Pp$ .

But by similar triangles Pp:

Pp:pq=MP:PO;

therefore

 $OP \cdot Pp = MP \cdot pq$ 

and the area in question is  $2\pi MP \cdot pq$ .

The attraction of this elementary area upon M is in the direction MO and is equal to

 $2\pi$ . MP. pq.f(MP).  $\frac{MO}{MP} = 2\pi\alpha f(\rho) \delta \rho$ ;

and the attraction of the whole circular lamina is the integral of this taken from  $\rho = a$  to  $\rho = (r^2 + a^2)^{\frac{1}{2}}$ .

If  $f(\rho) = \frac{1}{\rho^2}$ , the expression for the attraction of the circular lamina is

$$2\pi\alpha\left[1-\frac{\alpha}{(\alpha^2+r^2)^{\frac{1}{2}}}\right].$$

To deduce the attraction of a solid of revolution divide it into plates by planes perpendicular to its axis. The attraction of any plate is found as above, and the sum of the attractions for all the plates gives the attraction of the whole solid.

1. Let the body be a cylinder of radius a; let b, c be the distances of the attracted point from its two ends. Then if  $f(\rho) = 1/\rho^2$ , the attraction of the whole cylinder is

$$2\pi [c-b-(c^2+\alpha^2)^{\frac{1}{2}}+(b^2+\alpha^2)^{\frac{1}{2}}].$$

2. Let the body be a spheroid, its equatorial and polar axes being respectively a and c, and the distance of the attracted point from the centre being r; the attraction of a slice at distance x from the centre is

$$2\pi \cdot \left\{1 - \frac{r+x}{\sqrt{(r+x)^2 + \frac{c^2}{\alpha^2} \left(\alpha^2 - x^2\right)}}\right\} dx.$$

The integral is to be taken from x=-c to x=c; its expression requires circular or logarithmic functions according as c is less or greater than  $\alpha$ ; in the former case, the oblate spheroid, we find the attraction

$$2\pi \left\{ \frac{2a^2c}{a^2-c^2} - \frac{ra^2c}{\left(a^2-c^2\right)^{\frac{\alpha}{2}}} \left(\phi - \phi'\right) \right\},\,$$

where

$$\sin \phi = \frac{rc + a^2 - c^2}{a\sqrt{r^2 + a^2 - c^2}}, \quad \sin \phi' = \frac{rc - a^2 + c^2}{a\sqrt{r^2 + a^2 - c^2}}.$$

It may be verified that this agrees with the result of Newton's Prop. xci. Cor. 2, when his conic KRM is an ellipse.

§ 6. Attraction and potential of a spheroid differing little from a sphere, upon a point situated upon the axis of revolution.

Let M be the point; draw MP intersecting the inscribed sphere in P; let  $MP = \rho$ , and take  $\rho$  as independent variable; draw Mp a consecutive, P'PN perpendicular to the axis, OPL passing through O the centre, OK, pq perpendicular to MP. Let OP = c, OM = r.

The surface of the elementary zone generated by revolution of Pp about the axis is  $2\pi \cdot PN \cdot Pp$ ;

but Pp:Pq::OP:OK,

and PN: OK:: MP: MO;

thus the elementary surface is

$$2\pi PN \cdot \frac{OP}{OK} \cdot Pq = 2\pi \frac{OP}{MO} \cdot MP \cdot Pq = 2\pi \frac{c}{r} \rho d\rho.$$



Now the thickness of the shell at P is PL.

Thus if  $\alpha$  be the equatorial axis of the spheroid and  $\alpha = c(1 + \epsilon)$ , then  $NP' = NP(1 + \epsilon)$ , or  $PP' = \epsilon \cdot NP$ ; so that

$$PL = \frac{PN}{c} \cdot PP' = \frac{\epsilon}{c} PN^{2}$$

but

$$PN^2 = PO^2 - ON^2$$

$$=c^2-\left(\frac{\rho^2-r^2-c^2}{2r}\right)^2=\frac{1}{4r^2}\left\{(r+c)^2-\rho^2\right\}\left\{\rho^2-(r-c)^2\right\}.$$

Hence the volume of the elementary zone of the shell is

$$\frac{\pi\epsilon}{2x^3} \rho \left\{ (r+c)^2 - \rho^2 \right\} \left\{ \rho^2 - (r-c)^2 \right\} d\rho.$$

To find the potential, divide by  $\rho$ , and integrate from  $\rho = r - c$  to  $\rho = r + c$ . This gives

$$V = \frac{8}{15} \pi \epsilon c^3 \left( \frac{5}{r} - \frac{c^2}{r^3} \right),$$

and the attraction,

$$-rac{dV}{dr} = rac{8}{15} \pi \epsilon c^3 \left(rac{5}{r^2} - rac{3c^2}{r^4}
ight)$$
 ,

consisting of two parts, one varying inversely as the square of the distance, and the other inversely as the fourth power.

The method of § 1 may also be adapted to find this quantity.

To find the potential of the whole spheroid add for the inscribed sphere the quantity

$$\frac{4}{3}\pi c^3\frac{1}{r}.$$

Now the volume of the spheroid =  $\frac{4}{3}\pi a^{2}c$ ; call this M. Hence the potential of the whole spheroid at any point upon its axis is

$$V = \frac{M}{r} - \frac{8}{15} \pi \epsilon \frac{c^5}{r^3}.$$

§ 7. Attraction and potential of the same at any point in the equatorial plane.

We can find this without further integration. Let the equation of the spheroid be

$$\frac{x^2+y^2}{a^2}+\frac{z^2}{c^2}=1,$$

where the axis of revolution is that of z, and the point considered lies in the axis of x. Put as before

$$a = c \ (1 + \epsilon),$$

where  $\epsilon$  is supposed small; then

$$r = a - \frac{\epsilon}{a} z^2,$$

so that the thickness at any point, measured from the circumscribed sphere, is  $\frac{\epsilon}{a}z^2$ . Let V be the potential of this shell at a point on the axis of x; then it is clear that V is also the value of the potential at the same point of the shell

$$\frac{x^2 + z^2}{\alpha^2} + \frac{y^2}{c^2} = 1,$$

which is the same shell turned through a right angle about Ox. Hence the potential of these two shells together is 2V.

But together these shells make up a shell of thickness  $\frac{\epsilon}{a}(y^2+z^2)$ , that is to say a shell having yz for its equatorial plane; this is the case we have already discussed, the polar radius being a, and the equatorial radius  $a(1-\epsilon)$ . Hence

$$2V = \frac{8}{3}\pi\epsilon \frac{\alpha^3}{r} - \frac{8}{15}\pi\epsilon \frac{\alpha^5}{r^3}, \text{ or } V = \frac{4}{3}\pi\epsilon \frac{\alpha^3}{r} - \frac{4}{15}\pi\epsilon \frac{\alpha^3}{r^3},$$

which, subtracted from the potential of the circumscribed sphere  $\left(\frac{4}{3}\pi\frac{a^3}{r}\right)$ , gives for the potential of the spheroid

$$\frac{4}{3}\pi\alpha^{3}\left(1-\epsilon\right)\frac{1}{r}+\frac{4}{15}\pi\epsilon\frac{\alpha^{5}}{r^{3}};$$

the volume of the spheroid,  $M = \frac{4}{3} \pi a^3 (1 - \epsilon)$ ; hence

$$V = \frac{M}{r} + \frac{4}{15} \pi \epsilon \frac{a^5}{r^3}.$$

§ 8. We will now proceed to the more general case of a point situated anywhere with respect to the spheroid.

Let the line OM intersect the surface of the spheroid in L, and describe a sphere with centre O and radius OL. This sphere will in general



lie partly within and partly without the spheroid; we shall take the thickness of the shell between them as negative in one case and positive in the other. Let CLA be the meridian through L, and P any point on the surface of the sphere. Join PL with an arc of a great circle, and call the angle PLa between PL and the meridian of the sphere,  $\phi$ .

Also let 
$$OA = a = c (1 + \epsilon)$$
,  $OM = r$ ,  $\cos CL = \lambda$ ,  $\cos LP = \mu$ .

Then  $\cos CP = \cos CL \cos LP - \sin CL \sin LP \cos \phi$ 

$$= \lambda \mu - (1 - \lambda^2)^{\frac{1}{2}} (1 - \mu^2)^{\frac{1}{2}} \cos \phi.$$

At the point L the radius vector of the spheroid exceeds c by

$$\epsilon c \sin^2 CL = \epsilon c (1 - \lambda^2).$$

Similarly at P the radius vector of the spheroid exceeds c by  $\epsilon c \sin^2 CP = \epsilon c (1 - \cos^2 CP)$ . Hence the thickness between the sphere  $c\alpha$  and the spheroid is, at P,

$$\epsilon c \left(\lambda^2 - \cos^2 CP\right)$$

$$= \epsilon c \left\{ \lambda^2 (1 - \mu^2) + 2 \lambda \mu \left( 1 - \lambda^2 \right)^{\frac{1}{2}} (1 - \mu^2)^{\frac{1}{2}} \cos \phi - (1 - \lambda^2) \left( 1 - \mu^2 \right) \cos^2 \phi \right\}.$$

It is to be remarked that all the elements of the shell for which LP or  $\mu$  remain the same may be considered to be at equal distances from M, and the directions of the attractions make equal angles with MO. Consequently the potential of the shell at M and its attraction in the direction MO will not be affected if we replace any two elements

corresponding to equal elements of the spherical surface by two other elements the thickness of each of which is equal to the mean of the thickness of the two former.

If  $\phi$  be increased by  $\pi$  all the terms are the same as before except the term involving  $\cos \phi$ ; therefore the potential at M and the attraction in OM will not be altered if we suppose the thickness of the shell at any point P to be the mean of the two, or

$$\epsilon c \left\{ \lambda^2 \left( 1 - \mu^2 \right) - \left( 1 - \lambda^2 \right) \left( 1 - \mu^2 \right) \cos^2 \phi \right\}.$$

But if  $\phi$  be increased by  $\frac{\pi}{2}$ , the thickness of the shell at each of these points will now be represented by

$$\epsilon c \left\{ \lambda^2 \left( 1 - \mu^2 \right) - \left( 1 - \lambda^2 \right) \left( 1 - \mu^2 \right) \sin^2 \phi \right\};$$

we may suppose the thickness at the four points referred to, to be equal to the mean of these two quantities, that is to

$$\epsilon c \left\{ \lambda^2 \left( 1 - \mu^2 \right) - \frac{1}{2} \left( 1 - \lambda^2 \right) \left( 1 - \mu^2 \right) \right\}$$
$$= \epsilon c \left( 1 - \mu^2 \right) \left\{ \frac{3}{2} \lambda^2 - \frac{1}{2} \right\}.$$

We have thus brought down the shell to one of uniform thickness, and the same law applies as in the case of a shell included between a spheroid of revolution and a sphere touching it at the poles, the quantity  $\epsilon$  being replaced by

$$\epsilon \left(\frac{3}{2}\lambda^2 - \frac{1}{2}\right)$$
.

In the term multiplied by  $\epsilon$  it matters not whether we take c or OL. Thus we have

$$V = \frac{M}{r} - \frac{8}{15} \pi \epsilon \frac{c^5}{r^3} \left( \frac{3}{2} \lambda^2 - \frac{1}{2} \right),$$

where M is the volume either of the original spheroid or of its substitute.

The attraction in the direction MO is

$$-\frac{dV}{dr} = \frac{M}{r^2} - \frac{8}{5} \pi \epsilon \frac{c^5}{r^4} \left( \frac{3}{2} \lambda^2 - \frac{1}{2} \right),$$

and perpendicular to MO it is -dV/ds, where it is easily seen

$$d\lambda = -\sin CM \, ds/r$$
,

so that it is

$$-\frac{dV}{ds} = \frac{8}{5} \pi \epsilon \frac{c^5}{r^4} \lambda \left(1 - \lambda^2\right)^{\frac{1}{2}},$$

or it varies as the sine of twice the latitude and is positive towards the equator.

§ 9. From these expressions we can deduce the potential or attraction exerted at any point within the spheroid.

First consider the solid sphere of radius OL=r'. The potential of this at any point M (OM=r) may be divided into two parts, first, the consecutive shell outside M, and second, the sphere of radius r within M. The potential of the latter is the same as if the whole were concentrated in O, that of the former is the same at M as it is at O; hence the potential of the sphere at M is

$$\frac{4}{3}\pi r^2 + 2\pi \left(r'^2 - r^2\right) = 2\pi \left(r'^2 - \frac{1}{3}r^2\right).$$

Next consider the spheroidal shell surrounding the inscribed sphere.

Employ the construction of  $\S$  3, and take a point M' in OM produced such that

$$OM:OL::OL:OM'$$
;

then

and for a particle at P,

Potential at M: Potential at M':: r': r,



therefore it is independent of the position of P, and the potential of the whole shell at M may be found by multiplying the potential at M' by r'/r. But if L be the point the sine of whose latitude is  $\lambda$ , the potential of the spheroidal shell at M' is

$$\left\{\frac{8}{3}\pi r'^{3}\frac{r}{r'^{2}}-\frac{8}{15}\pi r'^{5}\left(\frac{r}{r'^{2}}\right)^{3}\right\}\epsilon\left(\frac{3}{2}\lambda^{2}-\frac{1}{2}\right)=\left\{\frac{8}{3}\pi rr'-\frac{8}{15}\pi\frac{r^{3}}{r'}\right\}\epsilon\left(\frac{3}{2}\lambda^{2}-\frac{1}{2}\right).$$

Multiply this by r'/r, and we have the potential of the shell at M

$$\left\{\frac{8}{3}\pi r'^{2} - \frac{8}{15}\pi r^{2}\right\} \epsilon \left(\frac{3}{2}\lambda^{2} - \frac{1}{2}\right);$$

add the potential of the sphere of radius r', and we have the potential at M of the solid spheroid

$$V = 2\pi \left(r^{2} - \frac{1}{3}r^{2}\right) + \left\{\frac{8}{3}\pi r^{2} - \frac{8}{15}\pi r^{2}\right\} \epsilon \left(\frac{3}{2}\lambda^{2} - \frac{1}{2}\right).$$

The attraction in the direction MO is

$$-\frac{dV}{dr} = \frac{4}{3}\pi r + \frac{16}{15}\pi r \epsilon \left(\frac{3}{2}\lambda^2 - \frac{1}{2}\right),$$

from which r' has disappeared, so that the attraction is independent of the dimensions of the spheroid, and varies directly as the distance MO.

It will be convenient to eliminate r', which varies with  $\lambda$ , from the expression for V. We have seen in § 6,

$$r' = c + \frac{\epsilon}{c} P N^2$$
 where  $PN = c (1 - \lambda^2)^{\frac{1}{2}}$ ,

or if we introduce a quantity  $\kappa$ , the radius of a sphere of volume equal to the spheroid, so that  $\kappa = c \left(1 - \frac{2}{3} \epsilon\right)$ , then

$$r' = c \left\{ 1 + \epsilon \left( 1 - \lambda^2 \right) \right\} = \kappa \left( 1 - \frac{2}{3} \; \epsilon \right) \left\{ 1 + \epsilon \left( 1 - \lambda^2 \right) \right\} \\ = \kappa \; \left\{ 1 + \epsilon \left( \frac{1}{3} - \lambda^2 \right) \right\} \; .$$

Substitute above for r', and collect the terms in  $\epsilon$ ; we find

$$V = 2\pi \left( \kappa^2 - \frac{1}{3} r^2 \right) - \frac{8}{15} \pi r^2 \epsilon \left( \frac{3}{2} \lambda^2 - \frac{1}{2} \right).$$

The potential at an external point expressed in a parallel manner is

$$V = \frac{4}{3}\pi \frac{\kappa^3}{r} - \frac{8}{15}\pi \frac{\kappa^5}{r^3} \epsilon \left(\frac{3}{2}\lambda^2 - \frac{1}{2}\right).$$

We have supposed the density uniform and have taken it as unit. If it be called  $\rho$ , these expressions must be multiplied throughout by  $\rho$ .

§ 10. Let us now consider the case of a heterogeneous spheroid, the surfaces of equal density being also spheroidal, concentric and coaxial with the external surface, but not necessarily similar to it.

Take a shell of homogeneous matter of density  $\rho$  contained between two spheroidal surfaces; let the semiaxes of the interior surface be c,  $c(1+\epsilon)$ , and the semiaxes of the exterior surface c',  $c'(1+\epsilon')$ ; also let  $\kappa$ ,  $\kappa'$  be the radii of the spherical surfaces enclosing volumes equal to the spheroidal. Then for an attracted particle inside this shell

$$V = 2\pi\rho\left(\kappa'^2 - \kappa^2\right) - \frac{8}{15}\pi\rho r^2\left(\epsilon' - \epsilon\right)\left(\frac{3}{2}\lambda^2 - \frac{1}{2}\right),$$

and for an attracted particle outside

$$V = \frac{4}{3} \pi \rho \left( \kappa'^{3} - \kappa^{3} \right) \frac{1}{r} - \frac{8}{15} \pi \rho \left( \kappa'^{5} \epsilon' - \kappa^{5} \epsilon \right) \frac{1}{r^{3}} \left( \frac{3}{2} \lambda^{2} - \frac{1}{2} \right).$$

These expressions hold whether the shell is indefinitely thin or of finite thickness.

In the former case, let  $\kappa' = \kappa + \delta \kappa$ ; then for a point within the shell

$$\delta V = 4\pi \rho \kappa \delta \kappa - \frac{8}{15} \pi \rho r^2 \frac{d\epsilon}{d\kappa} \delta \kappa \left(\frac{3}{2} \lambda^2 - \frac{1}{2}\right);$$

for a point outside

$$\delta V = 4\pi\rho\kappa^2 \delta\kappa \frac{1}{r} - \frac{8}{15}\pi\rho \frac{d\left(\kappa^5\epsilon\right)}{d\kappa} \delta\kappa \frac{1}{r^3} \left(\frac{3}{2}\lambda^2 - \frac{1}{2}\right).$$

If  $\kappa_0$ ,  $\epsilon_0$  refer to the stratum passing through the attracted particle we may express r thus

 $r = \kappa_0 \left\{ 1 + \epsilon_0 \left( \frac{1}{3} - \lambda^2 \right) \right\},$ 

and then to obtain the potential of a solid heterogeneous spheroid at any internal point we must take the sum of the latter expression for  $\delta V$  integrated from  $\kappa = 0$  to  $\kappa = \kappa_0$ , and of the former expression integrated from  $\kappa = \kappa_0$  to its value at the bounding surface; but for an external point the former expression must be used exclusively. Thus at any point of the bounding surface or external to it

$$V = \frac{4\pi}{r} \int \! \rho \kappa^2 d\kappa - \frac{8}{15} \frac{\pi}{r^3} \left( \frac{3}{2} \lambda^2 - \frac{1}{2} \right) \int \! \rho \, \frac{d \left( \kappa^5 \epsilon \right)}{d\kappa} \, d\kappa.$$

But the whole mass of the spheroid is

$$M = 4\pi \int \rho \kappa^2 d\kappa$$
;

and we may write  $E = \frac{4}{5} \pi \int \rho \frac{d (\kappa^5 \epsilon)}{d\kappa} d\kappa$ , a constant depending only upon the structure of the spheroid; thus

$$V = \frac{M}{r} - \frac{E}{r^3} \left( \lambda^2 - \frac{1}{3} \right).$$

§ 11. Let us apply this result to demonstrate Clairaut's theorem on the variation of gravity at the surface of the earth.

Consider the equilibrium of the fluid portions at the surface of the earth. The equilibrium of this requires that at the surface

$$V + \frac{\omega^2}{2} r^2 (1 - \lambda^2) = C,$$

where

$$V = \frac{M}{r} - \frac{E}{r^3} \left( \lambda^2 - \frac{1}{3} \right),$$

if we suppose the analysis of § 10 to be applicable to the earth; that is to say, if we suppose the surfaces of equal density within the earth to be concentric coaxial spheroids of small ellipticity.

Substitute for V; then

$$\frac{M}{r} - \frac{E}{r^3} \left( \lambda^2 - \frac{1}{3} \right) + \frac{\omega^2}{2} r^2 \left( 1 - \lambda^2 \right) = C.$$

Now let  $\kappa_0$ ,  $\epsilon_0$ , refer to the surface, so that

$$r = \kappa_0 \left\{ 1 + \epsilon_0 \left( \frac{1}{3} - \lambda^2 \right) \right\};$$

substitute for r, neglecting  $\epsilon_0$  when multiplied by the small quantities E or  $\omega^2$ ; then

$$\frac{M}{\kappa_0}\left\{1+\epsilon_0\left(\lambda^2-\frac{1}{3}\right)\right\}-\frac{E}{\kappa_0^3}\left(\lambda^2-\frac{1}{3}\right)+\frac{\omega^2}{2}\kappa_0^2\left(1-\lambda^2\right)=C;$$

this must be true for all values of  $\lambda$ ; we get the two equations

$$\frac{M}{\kappa_{\scriptscriptstyle 0}} + \frac{\omega^{\scriptscriptstyle 2}}{3} \kappa_{\scriptscriptstyle 0}^{\scriptscriptstyle 2} = C, \qquad \frac{M}{\kappa_{\scriptscriptstyle 0}} \epsilon_{\scriptscriptstyle 0} - \frac{E}{\kappa_{\scriptscriptstyle 0}^{\scriptscriptstyle 3}} - \frac{\omega^{\scriptscriptstyle 2}}{2} \kappa_{\scriptscriptstyle 0}^{\scriptscriptstyle 2} = 0 ;$$

the latter equation gives  $\epsilon_0$  in terms of E and  $\omega$ .

Now gravity at the Earth's surface is the resultant of the attraction of the body of the earth and the centrifugal force; that is to say, at any latitude, writing g for gravity,

$$\begin{split} g &= -\frac{d}{dr} \left\{ V + \frac{\omega^2}{2} r^2 \left( 1 - \lambda^2 \right) \right\} \\ &= \frac{M}{r^2} - \frac{3E}{r^4} \left( \lambda^2 - \frac{1}{3} \right) - \omega^2 r \left( 1 - \lambda^2 \right) \\ &= \frac{M}{\kappa_0^2} - \frac{2}{3} \omega^2 \kappa_0 + \left\{ 2 \frac{M}{\kappa_0^2} \epsilon_0 - \frac{3E}{\kappa_0^4} + \omega^2 \kappa_0 \right\} \left( \lambda^2 - \frac{1}{3} \right). \end{split}$$

Eliminate E by means of the relation found above; we find

$$g = \frac{M}{\kappa_0^2} - \frac{2}{3} \omega^2 \kappa_0 + \left(\frac{5}{2} \omega^2 \kappa_0 - \frac{M}{\kappa_0^2} \epsilon_0\right) \left(\lambda^2 - \frac{1}{3}\right)$$
$$= \frac{M}{\kappa_0^2} \left(1 + \frac{1}{3} \epsilon_0\right) - \frac{3}{2} \omega^2 \kappa_0 + \left(\frac{5}{2} \omega^2 \kappa_0 - \frac{M}{\kappa_0^2} \epsilon_0\right) \lambda^2.$$

Let  $G_0$  denote gravity at the equator, where  $\lambda = 0$ ; then

$$G_{\scriptscriptstyle 0} = \frac{M}{\kappa_{\scriptscriptstyle 0}^{\, 2}} \left( 1 + \frac{1}{3} \, \epsilon_{\scriptscriptstyle 0} \right) - \frac{3}{2} \, \omega^2 \kappa_{\scriptscriptstyle 0}.$$

Also the centrifugal force at the equator is  $\omega^2 \kappa_0 \left(1 + \frac{1}{3} \epsilon_0\right)$ ; let  $\phi$  be the ratio this bears to  $G_0$ ; then

$$\phi = \frac{\omega^2 \kappa_0 \left(1 + \frac{1}{3} \epsilon_0\right)}{\frac{M}{\kappa_0^2} \left(1 + \frac{1}{3} \epsilon_0\right) - \frac{3}{2} \omega^2 \kappa_0} = \frac{\omega^2 \kappa_0^3}{M}$$

to the range of approximation we have used.

$$g = G_0 \left\{ 1 + \left( \frac{5}{2} \phi - \epsilon_0 \right) \lambda^2 \right\},$$

or the coefficient of  $\lambda^2$  in this expression + the compression of the earth  $=\frac{5}{2}\phi$ . This is Clairaut's Theorem.

§ 12. In this discussion we have not made any supposition as to the internal fluidity or otherwise of the spheroid. Let us now suppose the interior fluid, and let us consider what forms the surfaces of equal density would assume.

In the position of relative equilibrium, when the whole rotates as if solid, the surfaces of equal density will coincide with the surfaces of equal pressure.

Let us consider the following problem:-

Suppose a spheroid which is rotating as if solid to be made up of a number of different fluids that do not mix, to find the ellipticity of the bounding surfaces, given the volume and density of each different mass of fluid.

Thus we are given the quantities  $\kappa_1$ ,  $\rho_1$ ,  $\kappa_2$ ,  $\rho_2$ , ... for each stratum, and it is required to determine  $\epsilon_1$ ,  $\epsilon_2$ , ....

The advantage of employing  $\kappa$  rather than c will be obvious in this case. Since the common surfaces are surfaces of equal pressure

$$V + \frac{\omega^2}{2} r^2 \left(1 - \lambda^2\right)$$

must be constant over each such surface.

Let us first solve the case of three fluids, and afterwards proceed to the general case of any number.

It is to be observed that the portions of V which are due to the different layers of fluid assume different forms according as the point lies within or without that layer.

Thus if  $V_1$ ,  $V_2$ , ... be the parts contributed by the first, second, ... layer (beginning at the inmost layer), the first surface of separation is external to the first fluid and internal to all the rest; hence at the first surface of division V is the sum of  $V_1$ ,  $V_2$ ,  $V_3$ , where

$$\begin{split} V_{_{1}} &= \frac{4}{3} \, \pi \rho_{_{1}} \kappa_{_{1}}^{_{3}} \frac{1}{r} - \frac{8}{15} \, \pi \rho_{_{1}} \, \frac{1}{r^{_{3}}} \, \kappa_{_{1}}^{_{5}} \epsilon_{_{1}} \left( \frac{3}{2} \, \lambda^{_{2}} - \frac{1}{2} \right) \\ &= \frac{4}{3} \, \pi \rho_{_{1}} \kappa_{_{1}}^{_{3}} \frac{1}{\kappa_{_{1}}} + \frac{4}{3} \, \pi \rho_{_{1}} \kappa_{_{1}}^{_{3}} \frac{1}{\kappa_{_{1}}} \, \epsilon_{_{1}} \left( \lambda^{_{2}} - \frac{1}{3} \right) - \frac{4}{5} \, \pi \rho_{_{1}} \, \frac{1}{\kappa_{_{1}}} \kappa_{_{1}}^{_{5}} \epsilon_{_{1}} \left( \lambda^{_{2}} - \frac{1}{3} \right), \end{split}$$

$$\begin{split} &V_{_{2}}=2\pi\rho_{_{2}}\left(\kappa_{_{2}}{^{2}}-\kappa_{_{1}}{^{2}}\right)-\frac{4}{5}\,\pi\rho_{_{2}}\kappa_{_{1}}{^{2}}\left(\epsilon_{_{2}}-\epsilon_{_{1}}\right)\left(\lambda^{_{2}}-\frac{1}{3}\right),\\ &V_{_{3}}=2\pi\rho_{_{3}}\left(\kappa_{_{3}}{^{2}}-\kappa_{_{2}}{^{2}}\right)-\frac{4}{5}\,\rho_{_{3}}\kappa_{_{1}}{^{2}}\left(\epsilon_{_{3}}-\epsilon_{_{2}}\right)\left(\lambda^{_{2}}-\frac{1}{3}\right). \end{split}$$

In addition to V there is the term

$$\frac{1}{2} \omega^2 r^2 \left(1 - \lambda^2\right) = \frac{1}{3} \omega^2 \kappa_1^2 - \frac{1}{2} \omega^2 \kappa_1^2 \left(\lambda^2 - \frac{1}{3}\right).$$

Now  $V + \frac{1}{2}\omega^2 r^2 (1 - \lambda^2)$  is constant; equate to zero the coefficient of  $\lambda^2 - \frac{1}{3}$  in it; we get the equation

(I) 
$$\frac{M_1}{\kappa_1} \epsilon_1 - \frac{4}{5} \pi \frac{\rho_1}{\kappa_1^3} \kappa_1^5 \epsilon_1 - \frac{4}{5} \pi \rho_2 \kappa_1^2 (\epsilon_2 - \epsilon_1) - \frac{4}{5} \pi \rho_3 \kappa_1^2 (\epsilon_3 - \epsilon_2) - \frac{1}{2} \omega^2 \kappa_1^2 = 0$$

where  $M_1 = \frac{4}{3} \pi \rho_1 \kappa_1^3$ , the mass of the inmost fluid. This is the condition of equilibrium of the first stratum.

For the second stratum, any point of it is external to two fluids and internal to the third;

$$\begin{split} V_{_{1}} &= \frac{4}{3} \pi \kappa_{_{1}}^{_{3}} \rho_{_{1}} \frac{1}{\kappa_{_{2}}} + \frac{4}{3} \pi \kappa_{_{1}}^{_{3}} \rho_{_{1}} \frac{\epsilon_{_{2}}}{\kappa_{_{2}}} \left( \lambda^{_{2}} - \frac{1}{3} \right) - \frac{4}{5} \pi \rho_{_{1}} \kappa_{_{1}}^{_{5}} \epsilon_{_{1}} \frac{1}{\kappa_{_{2}}^{_{3}}} \left( \lambda^{_{2}} - \frac{1}{3} \right), \\ V_{_{2}} &= \frac{4}{3} \pi \rho_{_{2}} \left( \kappa_{_{2}}^{_{3}} - \kappa_{_{1}}^{_{3}} \right) \frac{1}{\kappa_{_{2}}} + \frac{4}{3} \pi \rho_{_{2}} \left( \kappa_{_{2}}^{_{3}} - \kappa_{_{1}}^{_{3}} \right) \frac{\epsilon_{_{2}}}{\kappa_{_{2}}} \left( \lambda^{_{2}} - \frac{1}{3} \right) - \frac{4}{5} \pi \rho_{_{2}} \left( \kappa_{_{2}}^{_{5}} \epsilon_{_{2}} - \kappa_{_{1}}^{_{5}} \epsilon_{_{1}} \right) \frac{1}{\kappa_{_{2}}^{_{3}}} \left( \lambda^{_{2}} - \frac{1}{3} \right), \\ V_{_{3}} &= 2 \pi \rho_{_{3}} \left( \kappa_{_{3}}^{_{2}} - \kappa_{_{2}}^{^{_{2}}} \right) - \frac{4}{5} \pi \rho_{_{3}} \kappa_{_{2}}^{_{2}} \left( \epsilon_{_{3}} - \epsilon_{_{2}} \right) \left( \lambda^{_{2}} - \frac{1}{3} \right); \end{split}$$

in addition there is the term

$$\frac{1}{2} \omega^2 r^2 (1 - \lambda^2) = \frac{1}{3} \omega^2 \kappa_2^2 - \frac{1}{2} \omega^2 \kappa_2^2 \left(\lambda^2 - \frac{1}{3}\right).$$

Then, as before, these give the condition of equilibrium of the second stratum

$$(\text{II}) \quad (M_{\scriptscriptstyle 1} + M_{\scriptscriptstyle 2}) \frac{\epsilon_{\scriptscriptstyle 2}}{\kappa_{\scriptscriptstyle 2}} - \frac{4}{5} \, \pi \rho_{\scriptscriptstyle 1} \kappa_{\scriptscriptstyle 1}^{\, 5} \epsilon_{\scriptscriptstyle 1} \frac{1}{\kappa_{\scriptscriptstyle 2}^{\, 3}} - \frac{4}{5} \, \pi \rho_{\scriptscriptstyle 2} \left(\kappa_{\scriptscriptstyle 2}^{\, 5} \epsilon_{\scriptscriptstyle 2} - \kappa_{\scriptscriptstyle 1}^{\, 5} \epsilon_{\scriptscriptstyle 1}\right) \frac{1}{\kappa_{\scriptscriptstyle 2}^{\, 3}} - \frac{4}{5} \, \pi \rho_{\scriptscriptstyle 3} \left(\epsilon_{\scriptscriptstyle 3} - \epsilon_{\scriptscriptstyle 2}\right) \kappa_{\scriptscriptstyle 2}^{\, 2} - \frac{1}{2} \, \omega^{\scriptscriptstyle 3} \kappa_{\scriptscriptstyle 2}^{\, 2} = 0,$$

where  $M_2 = \frac{4}{3} \pi \rho_2 (\kappa_2^3 - \kappa_1^3)$ , the mass of the second layer.

Lastly, for the exterior surface

$$\begin{split} V_{_{1}} &= \frac{4}{3} \pi \rho_{_{1}} \kappa_{_{1}}^{_{3}} \frac{1}{\kappa_{_{3}}} + \frac{4}{3} \pi \rho_{_{1}} \kappa_{_{1}}^{_{3}} \frac{\epsilon_{_{3}}}{\kappa_{_{3}}} \left( \lambda^{_{2}} - \frac{1}{3} \right) - \frac{4}{5} \pi \rho_{_{1}} \kappa_{_{1}}^{_{5}} \epsilon_{_{1}} \frac{1}{\kappa_{_{1}}^{_{3}}} \left( \lambda^{_{2}} - \frac{1}{3} \right), \\ V_{_{2}} &= \frac{4}{3} \pi \rho_{_{2}} \left( \kappa_{_{2}}^{_{3}} - \kappa_{_{1}}^{_{3}} \right) \frac{1}{\kappa_{_{3}}} + \frac{4}{3} \pi \rho_{_{2}} \left( \kappa_{_{2}}^{_{2}} - \kappa_{_{1}}^{_{2}} \right) \frac{\epsilon_{_{3}}}{\kappa_{_{3}}} \left( \lambda^{_{2}} - \frac{1}{3} \right) - \frac{4}{5} \pi \rho_{_{2}} \left( \kappa_{_{2}}^{_{5}} \epsilon_{_{2}} - \kappa_{_{1}}^{_{5}} \epsilon_{_{1}} \right) \frac{1}{\kappa_{_{3}}^{_{3}}} \left( \lambda^{_{2}} - \frac{1}{3} \right), \\ V_{_{3}} &= \frac{4}{3} \pi \rho_{_{3}} \left( \kappa_{_{3}}^{_{3}} - \kappa_{_{2}}^{_{3}} \right) \frac{1}{\kappa_{_{1}}} + \frac{4}{3} \pi \rho_{_{3}} \left( \kappa_{_{3}}^{_{3}} - \kappa_{_{2}}^{_{3}} \right) \frac{\epsilon_{_{3}}}{\kappa_{_{5}}} \left( \lambda^{_{2}} - \frac{1}{3} \right) - \frac{4}{5} \pi \rho_{_{3}} \left( \kappa_{_{3}}^{_{5}} \epsilon_{_{3}} - \kappa_{_{2}}^{_{5}} \epsilon_{_{2}} \right) \frac{1}{\kappa_{_{3}}^{_{3}}} \left( \lambda^{_{2}} - \frac{1}{3} \right), \end{split}$$

and the term

$$\frac{1}{3} \omega^2 \kappa_3^2 - \frac{1}{2} \omega^2 \kappa_3^2 \left( \lambda^2 - \frac{1}{3} \right)$$

must be added. We obtain the condition

$$\begin{split} \text{(III)} \quad & (M_{\scriptscriptstyle 1} + M_{\scriptscriptstyle 2} + M_{\scriptscriptstyle 3}) \, \frac{\epsilon_{\scriptscriptstyle 3}}{\kappa_{\scriptscriptstyle 3}} - \frac{4}{5} \, \pi \rho_{\scriptscriptstyle 1} \kappa_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 5} \epsilon_{\scriptscriptstyle 1} \, \frac{1}{\kappa_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 2}} - \frac{4}{5} \, \pi \rho_{\scriptscriptstyle 2} \left( \kappa_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 5} \epsilon_{\scriptscriptstyle 2} - \kappa_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 5} \epsilon_{\scriptscriptstyle 1} \right) \frac{1}{\kappa_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 3}} \\ & - \frac{4}{5} \, \pi \rho_{\scriptscriptstyle 3} \left( \kappa_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 5} \epsilon_{\scriptscriptstyle 3} - \kappa_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 5} \epsilon_{\scriptscriptstyle 2} \right) \frac{1}{\kappa_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 3}} - \frac{1}{2} \, \omega^{\scriptscriptstyle 2} \kappa_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 2} = 0. \end{split}$$

The three equations (I), (II), (III) serve to determine the quantities  $\epsilon_1$ ,  $\epsilon_2$ ,  $\epsilon_3$ . Write

$$S_1 = M_1$$
,  $S_2 = M_1 + M_2$ ,  $S_3 = M_1 + M_2 + M_3$ ,

and divide the equations by  $\kappa_1^2$ ,  $\kappa_2^2$ ,  $\kappa_3^2$  respectively. Then

$$\begin{split} &\frac{S_{1}}{\kappa_{1}^{3}}\epsilon_{1} - \frac{4}{5}\pi\rho_{1}\epsilon_{1} - \frac{4}{5}\pi\rho_{2}\left(\epsilon_{2} - \epsilon_{1}\right) - \frac{4}{5}\pi\rho_{3}\left(\epsilon_{3} - \epsilon_{2}\right) - \frac{1}{2}\omega^{2} = 0,\\ &\frac{S_{2}}{\kappa_{2}^{3}}\epsilon_{2} - \frac{4}{5}\pi\rho_{1}\epsilon_{1}\frac{\kappa_{1}^{5}}{\kappa_{2}^{5}} - \frac{4}{5}\pi\rho_{2}\left(\epsilon_{2} - \frac{\kappa_{1}^{5}}{\kappa_{2}^{5}}\epsilon_{1}\right) - \frac{4}{5}\pi\rho_{3}\left(\epsilon_{3} - \epsilon_{2}\right) - \frac{1}{2}\omega^{2} = 0,\\ &\frac{S_{3}}{\kappa_{3}^{3}}\epsilon_{3} - \frac{4}{5}\pi\rho_{1}\epsilon_{1}\frac{\kappa_{1}^{5}}{\kappa_{2}^{5}} - \frac{4}{5}\pi\rho_{2}\left(\frac{\kappa_{2}^{5}}{\kappa_{2}^{5}}\epsilon_{2} - \frac{\kappa_{1}^{5}}{\kappa_{2}^{5}}\epsilon_{1}\right) - \frac{4}{5}\pi\rho_{3}\left(\epsilon_{3} - \frac{\kappa_{2}^{5}}{\kappa_{2}^{5}}\epsilon_{2}\right) - \frac{1}{2}\omega^{2} = 0. \end{split}$$

Take the differences (II)-(I), (III)-(II):

$$\begin{split} \frac{S_{2}}{\kappa_{2}^{3}} \epsilon_{2} - \frac{S_{1}}{\kappa_{1}^{3}} \epsilon_{1} - \frac{4}{5} \, \pi \rho_{1} \epsilon_{1} \kappa_{1}^{5} \left( \frac{1}{\kappa_{2}^{5}} - \frac{1}{\kappa_{1}^{5}} \right) + \frac{4}{5} \, \pi \rho_{2} \epsilon_{1} \kappa_{1}^{5} \left( \frac{1}{\kappa_{2}^{5}} - \frac{1}{\kappa_{1}^{5}} \right) &= 0, \\ \frac{S_{3}}{\kappa_{3}^{3}} \epsilon_{3} - \frac{S_{2}}{\kappa_{2}^{3}} \epsilon_{2} - \frac{4}{5} \, \pi \rho_{1} \epsilon_{1} \kappa_{1}^{5} \left( \frac{1}{\kappa_{3}^{5}} - \frac{1}{\kappa_{2}^{5}} \right) - \frac{4}{5} \, \pi \rho_{2} \epsilon_{2} \kappa_{2}^{5} \left( \frac{1}{\kappa_{3}^{5}} - \frac{1}{\kappa_{2}^{5}} \right) \\ + \frac{4}{5} \, \pi \rho_{2} \epsilon_{1} \kappa_{1}^{5} \left( \frac{1}{\kappa_{2}^{5}} - \frac{1}{\kappa_{2}^{5}} \right) + \frac{4}{5} \, \pi \rho_{3} \epsilon_{2} \kappa_{2}^{5} \left( \frac{1}{\kappa_{2}^{5}} - \frac{1}{\kappa_{2}^{5}} \right) &= 0, \end{split}$$

or, as they may be written,

$$\begin{split} \frac{S_{2}}{\kappa_{2}^{3}} \, \epsilon_{2} - \frac{S_{1}}{\kappa_{1}^{3}} \, \epsilon_{1} - \frac{4}{5} \, \pi \epsilon_{1} \kappa_{1}^{5} \left( \rho_{1} - \rho_{2} \right) \left( \frac{1}{\kappa_{2}^{5}} - \frac{1}{\kappa_{1}^{5}} \right) &= 0, \\ \frac{S_{3}}{\kappa_{3}^{3}} \, \epsilon_{3} - \frac{S_{2}}{\kappa_{2}^{3}} \, \epsilon_{2} - \frac{4}{5} \, \pi \epsilon_{1} \kappa_{1}^{5} \left( \rho_{1} - \rho_{2} \right) \left( \frac{1}{\kappa_{2}^{5}} - \frac{1}{\kappa_{2}^{5}} \right) - \frac{4}{5} \, \pi \epsilon_{2} \kappa_{2}^{5} \left( \rho_{2} - \rho_{3} \right) \left( \frac{1}{\kappa_{3}^{5}} - \frac{1}{\kappa_{2}^{5}} \right) &= 0. \end{split}$$

From the former we find  $\epsilon_2$  in terms of  $\epsilon_1$  and known quantities; substitute in the latter and  $\epsilon_3$  is found in terms of  $\epsilon_1$ , and  $\epsilon_1$  is then found from (I). The case when there is a solid nucleus may be dealt with in the same way. If  $\epsilon_0$  be the ellipticity of its outer surface,  $\epsilon_0$  is known and there is no condition of uniformity of pressure at its surface. Proceeding with the series,  $\epsilon_1$  may be found in terms of  $\omega^2$  and  $\epsilon_0$ ,  $\epsilon_2$  in terms of  $\epsilon_1$ ,  $\epsilon_0$ ,  $\omega^2$ , and so on.

§ 13. Now take the more general case of any number of fluids whose 28—2

densities  $\rho_1$ ,  $\rho_2$ , ...  $\rho_n$  are known, and also their volumes, and let them rest upon a solid nucleus of known ellipticity  $\epsilon_0$ . Let  $M_0$  be the mass of the nucleus,  $\frac{4}{3}\pi\kappa_0^3$  its volume, and let  $E_0 = \frac{4}{5}\pi\int_0^{\kappa_0} \rho \frac{d}{d\kappa} (\kappa^5 \epsilon) d\kappa$ . Further, take

$$M_1 = \frac{4}{3} \pi \rho_1 (\kappa_1^3 - \kappa_0^3), \quad M_2 = \frac{4}{3} \pi \rho_2 (\kappa_2^3 - \kappa_1^3), \dots M_n = \frac{4}{3} \pi \rho_n (\kappa_n^3 - \kappa_{n-1}^3).$$

Then exactly as before we have the equations

$$\begin{split} (M_{0}+M_{1})\frac{\epsilon_{1}}{\kappa_{1}}-\frac{E_{0}}{\kappa_{1}^{3}}-\frac{4}{5}\pi\rho_{1}\left(\kappa_{1}^{5}\epsilon_{1}-\kappa_{0}^{5}\epsilon_{0}\right)\frac{1}{\kappa_{1}^{3}}-\frac{4}{5}\pi\rho_{2}\left(\epsilon_{1}-\epsilon_{1}\right)\kappa_{1}^{2}-\ldots\\ &-\frac{4}{5}\pi\rho_{n}\left(\epsilon_{n}-\epsilon_{n-1}\right)\kappa_{1}^{2}-\frac{1}{2}\omega^{2}\kappa_{1}^{2}=0,\\ (M_{0}+M_{1}+M_{2})\frac{\epsilon_{2}}{\kappa_{2}}-\frac{E_{0}}{\kappa_{2}^{3}}-\frac{4}{5}\pi\rho_{1}\left(\kappa_{1}^{5}\epsilon_{1}-\kappa_{0}^{5}\epsilon_{0}\right)\frac{1}{\kappa_{2}^{3}}-\frac{4}{5}\pi\rho_{2}\left(\kappa_{2}^{5}\epsilon_{2}-\kappa_{1}^{5}\epsilon_{1}\right)\frac{1}{\kappa_{2}^{3}}-\ldots\\ &-\frac{4}{5}\pi\rho_{n}\left(\epsilon_{n}-\epsilon_{n-1}\right)\kappa_{2}^{2}-\frac{1}{2}\omega^{2}\kappa_{2}^{2}=0,\\ (M_{0}+M_{1}+M_{2}+M_{3})\frac{\epsilon_{3}}{\kappa_{3}}-\frac{E_{0}}{\kappa_{3}^{3}}-\frac{4}{5}\pi\rho_{1}\left(\kappa_{1}^{5}\epsilon_{1}-\kappa_{0}^{5}\epsilon_{0}\right)\frac{1}{\kappa_{3}^{3}}-\frac{4}{5}\pi\rho_{2}\left(\kappa_{2}^{5}\epsilon_{2}-\kappa_{1}^{5}\epsilon_{1}\right)\frac{1}{\kappa_{3}^{3}}\\ &-\frac{4}{5}\pi\rho_{3}\left(\kappa_{3}^{5}\epsilon_{3}-\kappa_{2}^{5}\epsilon_{2}\right)\frac{1}{\kappa_{3}^{3}}-\frac{4}{5}\pi\rho_{1}\left(\kappa_{1}^{5}\epsilon_{1}-\kappa_{0}^{5}\epsilon_{0}\right)\frac{1}{\kappa_{3}^{3}}-\frac{4}{5}\pi\rho_{n}\left(\epsilon_{n}-\epsilon_{n-1}\right)\kappa_{3}^{2}-\frac{1}{2}\omega^{2}\kappa_{3}^{2}=0,\\ &\dots\\ &\dots\\ &(M_{0}+M_{1}+\dots+M_{n-1})\frac{\epsilon_{n-1}}{\kappa_{n-1}}-\frac{E_{0}}{\kappa_{n-1}^{3}}-\frac{4}{5}\pi\rho_{1}\left(\kappa_{1}^{5}\epsilon_{1}-\kappa_{0}^{5}\epsilon_{0}\right)\frac{1}{\kappa_{n-1}^{3}}-\dots\\ &-\frac{4}{5}\pi\rho_{n-1}\left(\kappa_{n-1}^{5}\epsilon_{n-1}-\kappa_{n-1}^{5}-\kappa_{n-2}^{5}\epsilon_{n-2}\right)\frac{1}{\kappa_{n-1}^{3}}-\frac{4}{5}\pi\rho_{n}\left(\epsilon_{n}-\epsilon_{n-1}\right)\kappa_{n-1}^{2}-\frac{1}{2}\omega^{2}\kappa_{n-1}^{2}=0,\\ &(M_{0}+M_{1}+\dots+M_{n})\frac{\epsilon_{n}}{\kappa_{n}}-\frac{E_{0}}{\kappa_{n}^{3}}-\frac{4}{5}\pi\rho_{1}\left(\kappa_{1}^{5}\epsilon_{1}-\kappa_{0}^{5}\epsilon_{0}\right)-\dots\\ &-\frac{4}{5}\pi\rho_{n}\left(\kappa_{n}^{5}\epsilon_{n}-\kappa_{n-1}^{5}-\epsilon_{n-1}\right)\frac{1}{\kappa_{n}^{3}}-\frac{1}{9}\omega^{2}\kappa_{n}^{2}=0. \end{split}$$

By means of these equations the n quantities  $\epsilon_1$ ,  $\epsilon_2$ , ...  $\epsilon_n$  may be determined. The process of solution may be simplified if we divide in succession by  $\kappa_1^2$ ,  $\kappa_2^2$ , ...  $\kappa_n^2$  respectively, and write for brevity  $M_0 + M_1 + ... + M_i = S_i$ . Then we shall have

$$\begin{split} \frac{S_{_{2}}}{\kappa_{_{3}}^{_{3}}} \epsilon_{_{2}} - \frac{S_{_{1}}}{\kappa_{_{1}}^{_{3}}} \epsilon_{_{1}} - E_{_{0}} \left( \frac{1}{\kappa_{_{2}}^{^{5}}} - \frac{1}{\kappa_{_{1}}^{^{5}}} \right) - \frac{4}{5} \pi \rho_{_{1}} \left( \kappa_{_{1}}^{^{5}} \epsilon_{_{1}} - \kappa_{_{0}}^{^{5}} \epsilon_{_{0}} \right) \left( \frac{1}{\kappa_{_{2}}^{^{5}}} - \frac{1}{\kappa_{_{1}}^{^{5}}} \right) + \frac{4}{5} \pi \epsilon_{_{1}} \kappa_{_{1}}^{^{5}} \rho_{_{2}} \left( \frac{1}{\kappa_{_{2}}^{^{5}}} - \frac{1}{\kappa_{_{1}}^{^{5}}} \right) = 0, \\ \frac{S_{_{3}}}{\kappa_{_{3}}^{^{3}}} \epsilon_{_{3}} - \frac{S_{_{2}}}{\kappa_{_{2}}^{^{3}}} \epsilon_{_{2}} - E_{_{0}} \left( \frac{1}{\kappa_{_{3}}^{^{5}}} - \frac{1}{\kappa_{_{2}}^{^{5}}} \right) - \frac{4}{5} \pi \rho_{_{1}} \left( \kappa_{_{1}}^{^{5}} \epsilon_{_{1}} - \kappa_{_{0}}^{^{5}} \epsilon_{_{0}} \right) \left( \frac{1}{\kappa_{_{3}}^{^{5}}} - \frac{1}{\kappa_{_{2}}^{^{5}}} \right) \\ - \frac{4}{5} \pi \rho_{_{2}} \left( \kappa_{_{2}}^{^{5}} \epsilon_{_{2}} - \kappa_{_{1}}^{^{5}} \epsilon_{_{1}} \right) \left( \frac{1}{\kappa_{_{3}}^{^{5}}} - \frac{1}{\kappa_{_{2}}^{^{5}}} \right) + \frac{4}{5} \pi \epsilon_{_{2}} \rho_{_{3}} \kappa_{_{2}}^{^{5}} \left( \frac{1}{\kappa_{_{3}}^{^{5}}} - \frac{1}{\kappa_{_{2}}^{^{5}}} \right) = 0, \end{split}$$

$$\begin{split} \frac{S_{n}}{\kappa_{n}^{3}} & \epsilon_{n} - \frac{S_{n-1}}{\kappa_{n-1}^{3}} \epsilon_{n-1} - E_{0} \left( \frac{1}{\kappa_{n}^{5}} - \frac{1}{\kappa_{n-1}^{5}} \right) - \frac{4}{5} \pi \rho_{1} \left( \kappa_{1}^{5} \epsilon_{1} - \kappa_{0}^{5} \epsilon_{0} \right) \left( \frac{1}{\kappa_{n}^{5}} - \frac{1}{\kappa_{n-1}^{5}} \right) - \dots \\ & - \frac{4}{5} \pi \rho_{n-1} \left( \kappa_{n-1}^{5} \epsilon_{n-1} - \kappa_{n-2}^{5} \epsilon_{n-2} \right) \left( \frac{1}{\kappa_{n}^{5}} - \frac{1}{\kappa_{n-1}^{5}} \right) + \frac{4}{5} \pi \rho_{n} \epsilon_{n-1} \kappa_{n-1}^{5} \left( \frac{1}{\kappa_{n}^{5}} - \frac{1}{\kappa_{n-1}^{5}} \right) = 0. \end{split}$$

The first of these gives  $\epsilon_2$  in terms of  $\epsilon_1$  and  $\epsilon_0$ , the second gives  $\epsilon_3$  in terms of  $\epsilon_2$ ,  $\epsilon_1$ ,  $\epsilon_0$ , and so on; by this means we may express all in terms of  $\epsilon_1$ , which may then be determined from the equation

$$\frac{S_{_{1}}}{\kappa_{_{1}}{^{3}}} \epsilon_{_{1}} - \frac{E_{_{0}}}{\kappa_{_{1}}{^{5}}} - \frac{4}{5} \pi \rho_{_{1}} \left(\kappa_{_{1}}{^{5}} \epsilon_{_{1}} - \kappa_{_{0}}{^{5}} \epsilon_{_{0}}\right) \frac{1}{\kappa_{_{1}}{^{5}}} - \frac{4}{5} \pi \rho_{_{2}} \left(\epsilon_{_{2}} - \epsilon_{_{1}}\right) - \dots - \frac{4}{5} \pi \rho_{_{n}} \left(\epsilon_{_{n}} - \epsilon_{_{n-1}}\right) - \frac{1}{2} \omega^{2} = 0.$$

§ 14. Let us now pass to the case where each layer of fluid outside the nucleus is indefinitely thin. We shall then pass from sums to integrals and from difference equations to differential equations.

Let  $\kappa$  be taken as independent variable, and let  $\rho$  be known in terms of  $\kappa$ ; then if M be the mass interior to the stratum defined by  $\kappa$ ,

$$M = M_0 + \int_{\kappa_0}^{\kappa} 4\pi \kappa^2 \rho d\kappa$$
;

and it is required to determine  $\epsilon$  in terms of  $\kappa$ . Then we have at any point

$$\begin{split} V = \frac{M}{r} - \frac{E_{\scriptscriptstyle 0}}{r^{\scriptscriptstyle 3}} \left(\lambda^{\scriptscriptstyle 2} - \frac{1}{3}\right) - \frac{4}{5} \frac{\pi}{r^{\scriptscriptstyle 3}} \left(\lambda^{\scriptscriptstyle 2} - \frac{1}{3}\right) \int_{\kappa_{\scriptscriptstyle 0}}^{\kappa} \rho \, \frac{d}{d\kappa} \left(\kappa^{\scriptscriptstyle 5} \epsilon\right) \, d\kappa \\ + 4\pi \int_{\kappa}^{\kappa} \rho \kappa d\kappa - \frac{4}{5} \, \pi r^{\scriptscriptstyle 2} \left(\lambda^{\scriptscriptstyle 2} - \frac{1}{3}\right) \int_{\kappa}^{\kappa} \rho \, \frac{d\epsilon}{d\kappa} \, d\kappa, \end{split}$$

where K is the value  $\kappa$  assumes at the external surface; the second term on the right being obtained from the nucleus, the third from the mass internal to the point, and the fourth and fifth from the mass external to the point. Substitute for 1/r its value

$$\left\{1+\epsilon\left(\lambda^2-\frac{1}{3}\right)\right\}/\kappa,$$

and we get

$$\begin{split} \frac{M}{\kappa} \left\{ 1 + \epsilon \left( \lambda^2 - \frac{1}{3} \right) \right\} &- \frac{E_0}{\kappa^3} \left( \lambda^2 - \frac{1}{3} \right) - \frac{4}{5} \frac{\pi}{\kappa^3} \left( \lambda^2 - \frac{1}{3} \right) \int_{\kappa_0}^{\kappa} \rho \, \frac{d}{d\kappa} \left( \kappa^5 \epsilon \right) d\kappa \\ &+ 4\pi \int_{\kappa}^{K} \rho \kappa d\kappa - \frac{4}{5} \pi \kappa^2 \left( \lambda^2 - \frac{1}{3} \right) \int_{\kappa}^{K} \rho \, \frac{d\epsilon}{d\kappa} d\kappa + \frac{1}{2} \omega^2 \kappa^2 (1 - \lambda^2) = C, \end{split}$$

where C is a quantity independent of  $\lambda$ , but varying with  $\kappa$ . Hence we have the two equations

$$\begin{split} \frac{M}{\kappa} + 4\pi \int_{\kappa}^{\kappa} \rho \kappa d\kappa + \frac{1}{3} \omega^{2} \kappa^{2} &= C, \\ M\frac{\epsilon}{\kappa} - \frac{E_{o}}{\kappa^{3}} - \frac{4}{5} \frac{\pi}{\kappa^{3}} \int_{\kappa_{o}}^{\kappa} \rho \, \frac{d}{d\kappa} \left(\kappa^{5} \epsilon\right) d\kappa - \frac{4}{5} \pi \kappa^{2} \int_{\kappa}^{\kappa} \rho \, \frac{d\epsilon}{d\kappa} \, d\kappa - \frac{1}{2} \, \omega^{2} \kappa^{2} &= 0. \end{split}$$

Just as we formerly divided by  $\kappa_1^2$ ,  $\kappa_2^2$ , ... and took the difference of two successive equations, so here divide the second equation by  $\kappa^2$ , and then differentiate it with respect to  $\kappa$ :

$$\frac{d}{d\kappa} \left( \frac{M}{\kappa^3} \epsilon \right) + 5 \frac{E_0}{\kappa^6} + 4 \frac{\pi}{\kappa^6} \int_{\kappa_0}^{\kappa} \rho \, \frac{d}{d\kappa} \left( \kappa^5 \epsilon \right) d\kappa - \frac{4}{5} \frac{\pi}{\kappa^5} \rho \, \frac{d}{d\kappa} \left( \kappa^5 \epsilon \right) + \frac{4}{5} \pi \rho \, \frac{d\epsilon}{d\kappa} = 0;$$
or since
$$\frac{d}{d\kappa} \left( \kappa^5 \epsilon \right) = \kappa^5 \frac{d\epsilon}{d\kappa} + 5 \kappa^4 \epsilon,$$

the equation becomes

$$\begin{split} \frac{d}{d\kappa} \begin{pmatrix} M \\ \kappa^3 \epsilon \end{pmatrix} + 5 \frac{E_0}{\kappa^6} + 4 \frac{\pi}{\kappa^6} \int_{\kappa_0}^{\kappa} \rho \, \frac{d}{d\kappa} \left( \kappa^5 \epsilon \right) d\kappa - 4\pi \rho \frac{\epsilon}{\kappa} = 0, \\ \frac{M}{\kappa^3} \frac{d\epsilon}{d\kappa} - 3 \frac{M}{\kappa^4} \epsilon + 5 \frac{E_0}{\kappa^6} + 4 \frac{\pi}{\kappa^6} \int_{\kappa_0}^{\kappa} \rho \, \frac{d}{d\kappa} \left( \kappa^5 \epsilon \right) d\kappa = 0, \end{split}$$

or

remembering that

$$\frac{dM}{d\kappa} = 4\pi\rho\kappa^2.$$

Multiply by  $\kappa^{6}$  and differentiate again; we shall thus remove the remaining definite integral and obtain

$$\frac{d^2\epsilon}{d\kappa^2} + \frac{8\pi\rho\kappa^2}{M} \frac{d\epsilon}{d\kappa} + \left(\frac{8\pi\rho\kappa}{M} - \frac{6}{\kappa^2}\right)\epsilon = 0.$$

This will determine  $\epsilon$ , when  $\rho$  (and therefore M) is known in terms of  $\kappa$ . Its solution will introduce two arbitrary constants, but we must remember that this equation has been derived by two differentiations from the actual equation which we have to satisfy, and the two constants must be adapted so as to satisfy this; they will evidently depend upon  $E_0$  and  $\omega^2$ . The equation may be put under a simpler form; for

$$\frac{4\pi\rho\kappa^2}{M} = \frac{1}{M} \frac{dM}{d\kappa};$$

therefore the equation may be written

$$M\frac{d^{2}\epsilon}{d\kappa^{2}} + 2\frac{dM}{d\kappa}\frac{d\epsilon}{d\kappa} + \left(8\pi\rho\kappa - \frac{6M}{\kappa^{2}}\right)\epsilon = 0,$$

$$\frac{d^{2}M}{d\kappa^{2}} = 8\pi\rho\kappa + 4\pi\kappa^{2}\frac{d\rho}{d\kappa},$$

or since

$$\frac{d^2}{d\kappa^2}(M\epsilon) - \left(\frac{4\pi\kappa^2}{M}\frac{d\rho}{d\kappa} + \frac{6}{\kappa^2}\right)M\epsilon = 0.$$

We cannot treat this equation further unless we know  $\rho$  in terms of  $\kappa$ ; but it is worth while to shew how it will solve the inverse problem, viz.: Given the law of ellipticity, to find what the law of density must be.

Return to the earlier form of the equation and replace  $8\pi\rho\kappa$  by

$$2\frac{dM}{d\kappa}/\kappa$$
;

$$\frac{d^2\epsilon}{d\kappa^2} + \frac{2}{M}\frac{dM}{d\kappa}\frac{d\epsilon}{d\kappa} + 2\frac{dM}{d\kappa}\frac{\epsilon}{M\kappa} - \frac{6\epsilon}{\kappa^2} = 0,$$

or

$$\frac{2}{M}\frac{dM}{d\kappa} = \frac{\frac{6\epsilon}{\kappa^2} - \frac{d^2\epsilon}{d\kappa^2}}{\frac{d\epsilon}{d\kappa} + \frac{\epsilon}{\kappa}};$$

the right-hand member is supposed known in terms of  $\kappa$ . Integrating we get

$$2\log M = \int \frac{\frac{6\epsilon}{\kappa^2} - \frac{d^2\epsilon}{d\kappa^2}}{\frac{d\epsilon}{d\kappa} + \frac{\epsilon}{\kappa}} d\kappa;$$

this will give M, and  $\rho$  then follows from the equation

$$\rho = \frac{1}{4\pi\kappa^2} \frac{dM}{d\kappa}.$$

§ 15. Let us assume a particular law of density and find the associated law of ellipticity; let us take

$$\rho = A \, \frac{\sin \, q \kappa}{\kappa} \, ;$$

at the centre where  $\kappa = 0$ , this gives  $\rho = Aq$ , and a gradual diminution as we ascend. Then

$$\frac{d\rho}{d\kappa} = \frac{A}{\kappa^2} \left( q\kappa \cos q\kappa - \sin q\kappa \right);$$

and

$$\frac{dM}{d\kappa} = 4\pi\rho\kappa^2 = 4\pi A\kappa \sin q\kappa,$$

 $M = \frac{4\pi A}{q^2} \left\{ \sin q \kappa - q \kappa \cos q \kappa \right\},\,$ 

 $\frac{4\pi\kappa^2}{M}\frac{d\rho}{d\kappa} = -q^2.$ 

and

Therefore the equation becomes

$$\frac{d^{2}\left(M\epsilon\right)}{d\kappa^{2}}+\left(q^{2}-\frac{6}{\kappa^{2}}\right)M\epsilon=0,$$

a case of Riccati's equation of which the solution is

$$M\epsilon = \frac{A}{q^4 \kappa^2} \left\{ (3 - \kappa^2 q^2) \sin (q\kappa + \alpha) - 3q\kappa \cos (q\kappa + \alpha) \right\}.$$

The two arbitrary constants must be adapted to the values of  $E_0$  and  $\omega^2$ .

# EFFECT OF THE LONG INEQUALITY OF JUPITER AND SATURN UPON THE MOTIONS OF JUPITER'S SATELLITES.

[In his "Continuation of Damoiseau's Tables" (Supplement to Nautical Almanac, 1881; Works, vol. 1. p. 113), Adams remarks:—

"The terms which involve  $\sin{(5u-2u_0-34^\circ\cdot542)}$  in Damoiseau's formulae for Table III. of each Satellite are sufficiently accurate as they stand."

These are the terms that express the effect of the long inequality of Jupiter and Saturn upon the Satellites, and Damoiseau's values do not differ much from those of the *Mécanique Céleste*, l. XVI. ch. VII.

In Oct. 1878, after the publication of the above, M. Souillart wrote to Adams to remark that he believed Laplace's determinations to be vitiated by an error of theory, and Adams re-examined them and detected the curious sequence of numerical errors detailed below, whose removal produced a close accordance with the results of M. Souillart; subsequently, at the request of M. Puiseux, the corrections were communicated to him and are given in a note at the end of t. v. of the new edition of the *Mécanique Céleste*, 1882.

When it became necessary to continue the Tables from 1890 to 1900, Adams derived values of these inequalities from Le Verrier's Tables of Jupiter, and Souillart's theory, and used them for calculating the continuation of Table III.; but no communication of the adopted expressions was made to the *Nautical Almanac* office, and the approximate values given in vol. I. p. 124 are not Adams's own, but were derived à posteriori.]

In the *Mécanique Céleste*, l. xvi. ch. vi. Laplace finds the effect of the great inequality of Saturn and Jupiter upon the satellites of the latter, but his numbers are in fault at several points and require substantial corrections.

In t. v. p. 462, line 6 from bottom, quoting from the new edition, the number -44'',334, being the coefficient of the inequality of the fourth satellite, is not consistent with the formula preceding it, which gives -42'',863, and the coefficients of the inequalities of the first three satellites should be diminished in the same ratio; but in the formula itself a term is

225

wrong, viz.:  $-0.000264 \cos(x+48^{\circ}.27)$ , which is taken from t. iv. p. 341, line 8 from bottom, and represents the term of t. III. p. 138, last line but one,

$$-(1+\mu^{\mathsf{v}}) \cdot 0,0003042733 \cos(5n^{\mathsf{v}}t - 2n^{\mathsf{i}\mathsf{v}}t + 5\epsilon^{\mathsf{v}} - 2\epsilon^{\mathsf{i}\mathsf{v}} - 13^{\circ},4966),$$

modified by the change in the mass of Saturn introduced in t. IV. p. 337; the correctly modified coefficient is -0.000290, and it is curious to notice that the same mistake occurs again in t. IV. p. 341, line 16, where the coefficient of  $\cos(q^{iv}-2q^{v}-24^{\circ},88+t.58^{\prime\prime},0)$  should be -0,000290 in place of -0.000264, the two terms from which this is derived (t. III. p. 128, lines 4, 5) uniting to give a coefficient -0.00030503 which modifies into -0,000290; finally the term above upon which all depends

$$-(1+\mu^{v}) \cdot 0,0003042733 \cos(5n^{v}t - 2n^{iv}t + 5\epsilon^{v} - 2\epsilon^{iv} - 13^{\circ},4966)$$

is got by taking with wrong sign the term (t. III. p. 138, line 7 from bottom)  $-a^{iv}e^{iv}H\cos(5n^{v}t-2n^{iv}t+5\epsilon^{v}-2\epsilon^{iv}-\varpi^{iv}+A).$ 

To correct these errors, read in t. III. p. 138, last line but one,

$$-(1+\mu^{v}) 0.0002465 \cos(5n^{v}t - 2n^{iv}t + 5\epsilon^{v} - 2\epsilon^{iv} + 32^{\circ},41),$$

using centesimal degrees;

in t. IV. p. 341, line 16, 
$$-0.000290$$
 for  $-0.000264$ ;  
,, ,, 25,  $-0.0002343\cos(5q^{v}-2q^{iv}+32^{\circ},41)$ ;  
t. V. p. 462, line 6,  $-0.0002343\cos(x+94^{\circ},18)$ ;

and for the coefficients of the inequalities of the satellites

$$-0^{\prime\prime},618$$
  $-8^{\prime\prime},788$   $-12^{\prime\prime},872$   $-30^{\prime\prime},404$ 

each being multiplied into  $\sin(x+48^{\circ},09)$  or  $\sin(5q^{\circ}-2q^{i\circ}-13^{\circ},68)$ ; or if we employ Laplace's values of the ratios which deduce I, II, III from IV (values which are only approximate), we get

$$-0'',682$$
  $-8'',810$   $-12'',874$   $-30'',404$ 

in place of the values of the Mécanique Céleste:-

$$-0$$
",994  $-12$ ",847  $-18$ ",774  $-44$ ",334.

The degrees and seconds are centesimal.

[Oct. 1881.

If we take the formula of M. Souillart*

$$\frac{d\Delta l}{dt} = -\frac{3N^2}{n} \left( -\frac{\delta A}{A} + E\delta E \right),$$

and use Le Verrier's formulae (Mém. Ob. Paris, t. XII. pp. 14, 23), we have

$$-\frac{\delta A}{A} + E\delta E = (12''\cdot119 - 0''\cdot112v + 0''\cdot022v^2)\cos(5l' - 2l) - 16^{\circ}\cdot63 - 11^{\circ}\cdot57v + 0^{\circ}\cdot27v^2),$$

* Théorie...des Satellites de Jupiter, Mem. R. A. S. XLV. p. 89.

where  $v = \frac{t-1850}{500}$  and the degrees, &c. are sexagesimal; and (*ibid*. tome xI. pp. 106, 273),

$$\begin{array}{l} l = 160^{\circ} \quad 1'20''\cdot 3 + 109256''\cdot 719t \\ l' = \quad 14^{\circ} 50' 40''\cdot 6 + \quad 43996''\cdot 127t \end{array} \} \quad \text{Epoch } 1850.$$

If we integrate we obtain for Satellite IV the inequality  $(11''\cdot0525-0''\cdot1332v+0''\cdot0201v^2)\sin(5l'-2l-16^{\circ}\cdot835-11^{\circ}\cdot508v+0^{\circ}\cdot2696v^2)$ , or in seconds of synodic time, the coefficients are for epoch 1850:—

	IV	coefficient $12^{\mathfrak{s}} \cdot 344$	change in 500 years $-0^{8}\cdot1488$ ,
whence we derive	Ī	$0^{s} \cdot 0265$	-0°.0003,
	II	$0^{s}.757$	$-0^{s} \cdot 0091$ ,
	III	2*.235	$-0^{s} \cdot 0269.$

[June, 1885.

## STUDIES ON NEWTON'S LUNAR THEORY.

[IT appears from an undated fragment among his papers that Adams at one time proposed to give an outline of Newton's methods and results in the Lunar Theory, of which he says "there is no part of Newton's great work which displays more conspicuously the genius of the author, or better illustrates his manner of working." His attention was directed to the subject in relation to the Portsmouth papers*, and the second investigation below is an analytical parallel to a method of obtaining the motion of the apse, found among those papers and described and, in part, published in the Catalogue (pp. xii, xxvi).]

## ANALYTICAL INTERPRETATION OF NEWTON'S INVESTIGATION OF THE LUNAR INEQUALITY OF THE VARIATION.

Let  $\alpha$  be the actual mean distance of the Moon from the Earth;  $\alpha(1-x)$  and  $\alpha(1+x)$  the least and greatest distances;  $\alpha'$ , n, n', m,  $\mu$ , r,  $\theta$ ,  $\theta'$  have the meanings attached to these symbols in the Lectures, passim; e, e', i are supposed to vanish;

then as in Lecture VI. p. 24, we have

$$\frac{1}{H}\frac{dH}{d\theta} = -\frac{3}{2}n'^{2}\left(\frac{dt}{d\theta}\right)^{2}\sin 2(\theta - \theta').$$

Put for  $\frac{dt}{d\theta}$  its approximate value  $\frac{1}{n}$ ; then

$$\frac{1}{H}\frac{dH}{d\theta} = -\frac{3}{2}m^2 \sin 2(\theta - \theta').$$

Integrate, considering  $\frac{d\theta'}{d\theta} = m$ , as it is, very nearly;

$$\log \frac{H}{h} = \frac{3}{2} \frac{m^2}{2 - 2m} \cos 2(\theta - \theta'),$$

or putting  $h = n\alpha^2$ ,

$$H = n\alpha^2 \left\{ 1 + \frac{3}{4} \frac{m^2}{1-m} \cos 2 (\theta - \theta') \right\}.$$

This agrees exactly with the result of Prop. xxvi. Lib. III.

* See "A Catalogue of the Portsmouth Collection of Books and Papers written by or belonging to Sir Isaac Newton," Cambridge, 1888.

Now assume, as in Newton's Proposition xxvIII., that the orbit is an ellipse, with shorter axis in the line of syzygy, that is to say, that its equation is of the form

$$\frac{1}{r^2} = \frac{\cos^2{(\theta - \theta')}}{\alpha^2 (1 - x)^2} + \frac{\sin^2{(\theta - \theta')}}{\alpha^2 (1 + x)^2} = \frac{1}{\alpha^2 (1 - x^2)^2} \left[ 1 + x^2 + 2x \cos{2(\theta - \theta')} \right].$$

If the line of syzygy were fixed in direction the curvature at the extremity of the minor axis (A) would be

$$\left(\frac{1-x}{1+x}\right)^2 \frac{1}{a(1-x)} = \frac{1}{a(1-x)} \left[1 - \frac{4x}{(1+x)^2}\right];$$
$$\frac{d\theta'}{d\theta} = m,$$

but if we take

the curvature at the same apse of the (now revolving) ellipse appears by differentiation of the above value of r,

at *A*, the nearer apse 
$$\frac{1}{a(1-x)} \left[ 1 - \frac{4x}{(1+x)^2} (1-m)^2 \right]$$
, at *C*, the further apse  $\frac{1}{a(1+x)} \left[ 1 + \frac{4x}{(1-x)^2} (1-m)^2 \right]^*$ ,

and the former curvature is to the latter as

$$(1-x) \left[ (1-x)^2 (1-m)^2 + (1+x)^2 (2m-m^2) \right] \\ \hspace{1cm} : (1+x) \left[ (1+x)^2 (1-m)^2 + (1-x)^2 (2m-m^2) \right],$$

which agrees with Newton's result, p. 401 (Second Ed.), line 4.

Now the forces upon the Moon at the points A and C, according to Lecture II. p. 8, are

at 
$$A$$
,  $\frac{\mu}{r^2} - 2 \frac{m'r}{r'^3}$ ,  
at  $C$ ,  $\frac{\mu}{r^2} + \frac{m'r}{r'^3}$ ,  
 $\frac{\mu}{a^3} = n^2 \left(1 + \frac{1}{2} m^2\right)$ ,  $\frac{m'}{r'^3} = n^2 m^2$ ,  
 $\frac{1 + \frac{1}{2} m^2}{(1 - x)^2} - 2m^2 (1 - x)$  :  $\frac{1 + \frac{1}{2} m^2}{(1 + x)^2} + m^2 (1 + x)$ ,

or if

these are as

a ratio which Newton gives, not quite correctly (p. 399, line 9) as

$$\frac{1}{\alpha^{2}(1-x)^{2}} - \frac{2m^{2}}{\alpha^{2}(1+x)} : \frac{1}{\alpha^{2}(1+x)^{2}} + \frac{m^{2}}{\alpha^{2}(1-x)}.$$

^{* [}This is the analytical verification of Newton's "Rationes autem ineundo invenio quod differentia inter curvaturam &c." Prop. xxvIII.]

Again, the velocities at A and C are the values of H/r; that is to say, they are in the proportion

$$\frac{1}{1-x}\left\{1+\frac{3}{4}\frac{m^2}{1-m}\right\}:\frac{1}{1+x}\left\{1-\frac{3}{4}\frac{m^2}{1-m}\right\}.$$

Hence the curvatures of the orbit at A and C are as

$$\left[ (1+x)^2 - 2m^2 (1-x)^2 (1+x) \right] (1-x)^2 / \left( 1 + \frac{3}{4} \frac{m^2}{1-m} \right)^2$$

$$: \left[ (1-x)^2 + m^2 (1+x)^2 (1-x) \right] (1+x)^2 / \left( 1 - \frac{3}{4} \frac{m^2}{1-m} \right)^2.$$

This ratio must be equal to the ratio of the curvatures already found, viz.

$$(1-x) \left[ (1-x)^2 (1-m)^2 + (1+x)^2 (2m-m^2) \right] \\ \hspace{1cm} : (1+x) \left[ (1+x)^2 (1-m)^2 + (1-x)^2 (2m-m^2) \right].$$

Hence we have a proportion, from which, multiplying extremes and means, we obtain the equation

$$\left(1 - \frac{3}{4} \frac{m^2}{1 - m}\right)^2 \left[ (1 + x)^3 (1 - m)^2 + (1 - x)^2 (1 + x) (2m - m^2) - 2m^2 (1 - m)^2 (1 - x)^2 (1 + x)^2 - 2m^2 (2m - m^2) (1 - x)^4 \right] \\
= \left(1 + \frac{3}{4} \frac{m^2}{1 + m}\right)^2 \left[ (1 - x)^3 (1 - m)^2 + (1 - x) (1 + x)^2 (2m - m^2) + m^2 (1 - m)^2 (1 - x)^2 (1 + x)^2 + m^2 (2m - m^2) (1 + x)^4 \right],$$

which is Newton's equation of p. 401, expressed symbolically.

This equation may be developed into the form

$$\begin{split} \left\{1 + \frac{9}{16} \frac{m^4}{(1-m)^2}\right\} \left[ -3m^2 + x \left\{6 - 4 \left(2 - m^2\right) \left(2m - m^2\right)\right\} \\ + x^2 \left\{6m^2 - 24m^2 \left(2m - m^2\right)\right\} + x^3 \left\{2 + 4m^2 \left(2m - m^2\right)\right\} - x^4 3m^2 \right] \\ = \frac{3}{2} \frac{m^2}{1-m} \left[2 - m^2 + x \left\{12m^2 \left(2m - m^2\right)\right\} \\ + x^2 \left\{6 - 8 \left(2m - m^2\right) + 2m^2 - 8m^2 \left(2m - m^2\right)\right\} + x^3 \left\{12m^2 \left(2m - m^2\right)\right\} - x^4 m^2 \right]. \end{split}$$

Neglecting at first all terms of the fourth order or of the order  $m^2a_1$ , we get

$$x = \frac{3}{2} m^2 \frac{2 - m}{(1 - m)(3 - 2m)(1 - 2m)}.$$

Taking as Newton does,  $m^2 = \frac{1}{178.725}$ , i.e. m = .0748011, this gives x = .00720475.

In the first edition Newton gives .0072036, thus apparently taking account of the first power of x only. The complete equation for x is  $0 = .03487783 - 4.851179x + .02978676x^2 - 2.003176x^3 + .016735x^4$ ,

which will be found to agree closely with that given by Cotes. (See Edleston, Correspondence of Newton and Cotes, p. 98.) Taking '00719, the value given in the second edition of the Principia as an approximation, we find x = 00718973.

Cotes's coefficients give

x = .00719000.

June, 1873.

#### A METHOD OF NEWTON'S FOR FINDING THE MOTION OF THE APSE.

["Two lemmas are first established* which give the motion of the apogee in an elliptic orbit of very small eccentricity due to given small disturbing forces acting (1) in the direction of the radius vector, and (2) in the direction perpendicular to it...... Newton assumes that the form of the orbit in which the moon really moves will be related to the form of the oval orbit [which the Variation produces] nearly as an elliptic orbit of small eccentricity with the earth in its focus is related to a circular orbit about the earth in the centre." Catalogue, p. xii.]

If  $\frac{\mu}{r^2} + P$ , Q be the forces in the direction of the radius vector and perpendicular to it, we have the equations for the changes in the elliptic elements, e,  $\varpi$ , of an orbit,

$$\frac{de}{dt}\cos(\theta - \varpi) + e\sin(\theta - \varpi)\frac{d\varpi}{dt} = 2\frac{h}{\mu}Q,$$

$$-\frac{de}{dt}\sin(\theta - \varpi) + e\cos(\theta - \varpi)\frac{d\varpi}{dt} = \frac{h}{\mu}P - \frac{h}{\mu}Q\frac{e\sin(\theta - \varpi)}{1 + e\cos(\theta - \varpi)};$$

$$e\frac{d\varpi}{dt} = \frac{h}{\mu}P\cos(\theta - \varpi) + \frac{h}{\mu}Q\sin(\theta - \varpi)\frac{2 + e\cos(\theta - \varpi)}{1 + e\cos(\theta - \varpi)},$$

whence

a result which becomes identical with Newton's two lemmas, provided that we neglect e in the second member on the right.

Now we will attempt from this result to find the motion of the Moon's apogee in a way similar to that which was in Newton's mind.

Let  $\theta_0$ ,  $r_0$  be coordinates of the moon moving in an elliptic orbit; let  $\theta$ , r be the actual coordinates; and let us assume that  $\theta$ , r are related to  $\theta_0$ ,  $r_0$  by the equations

$$\theta = \theta_0 + \frac{11}{8} m^2 \sin 2\theta_0, \quad r = r_0 \{1 - m^2 \cos 2\theta_0\},$$

an assumption which reduces to a known result when the elliptic orbit  $(r_0, \theta_0)$  degenerates into a circle.

For simplicity we will suppose the Sun stationary.

^{* [}Published in the Catalogue, p. xxvi.]

Also let  $h_0$ , h be the double areal velocity in the two orbits; then

$$h_0 = n\alpha^2$$
,

and since

$$\begin{split} \frac{d\theta}{dt} &= \left\{ 1 + \frac{11}{4} \, m^2 \cos 2\theta_{\scriptscriptstyle 0} \right\} \frac{d\theta_{\scriptscriptstyle 0}}{dt} = \frac{h_{\scriptscriptstyle 0}}{r_{\scriptscriptstyle 0}^{\, 2}} \left\{ 1 + \frac{11}{4} \, m^2 \cos 2\theta_{\scriptscriptstyle 0} \right\} \,, \\ r^2 &= r_{\scriptscriptstyle 0}^{\, 2} \left\{ 1 - 2 m^2 \cos 2\theta_{\scriptscriptstyle 0} \right\} \,; \\ \therefore \quad h &= h_{\scriptscriptstyle 0} \left\{ 1 + \frac{3}{4} \, m^2 \cos 2\theta_{\scriptscriptstyle 0} \right\} \,. \end{split}$$

The force on the Moon perpendicular to the Radius Vector would be, if  $h_0$  were constant,

$$\frac{1}{r}\frac{dh}{dt} = \frac{h_{\rm o}^{\ 2}}{r_{\rm o}^{\ 3}} \left\{ -\frac{3}{2}\,m^{\rm 2}\sin\,2\theta_{\rm o} \right\}.$$

But the actual force in this direction is

$$-\frac{3}{2}m^{2}n^{2}r\sin 2\theta = \frac{h_{o}^{2}}{a^{4}}r_{o}\left\{-\frac{3}{2}m^{2}\sin 2\theta_{o}\right\}, \text{ approximately}.$$

The latter minus the former quantity

$$= n^2 a \left\{ 6m^2 e \sin 2\theta_0 \cos \left(\theta_0 - \varpi\right) \right\}$$

if we write  $r_0 = a/\{1 + e\cos(\theta - \varpi)\}$ , and neglect  $e^2$ . If this difference were zero, the elliptic elements, e,  $\varpi$ , would not be liable to change in respect to forces perpendicular to the radius vector; hence it measures Q, the force perpendicular to the radius vector which disturbs the elliptic orbit  $(r_0, \theta_0)$ .

Again, in the direction of the radius vector the force is

$$\frac{h^{2}}{r^{3}}-\frac{d^{2}r}{dt^{2}}=n^{2}\alpha\left\{1+2e\cos\left(\theta_{\mathrm{o}}-\varpi\right)+\frac{1}{2}\,m^{2}\cos2\theta_{\mathrm{o}}+\frac{5}{2}\,m^{2}e\cos2\theta_{\mathrm{o}}\cos\left(\theta_{\mathrm{o}}-\varpi\right)\right\},$$

if the elements of the elliptic orbit be constant; but the actual force is

$$\begin{split} \frac{\mu}{r^2} - \frac{1}{2} n'^2 r - \frac{3}{2} n'^2 r \cos 2\theta &= \frac{\mu}{a^2} \{ 1 + 2m^2 \cos 2\theta_0 \} \{ 1 + 2e \cos (\theta_0 - \varpi) \} \\ &- \frac{1}{2} m^2 n^2 a \{ 1 - e \cos (\theta_0 - \varpi) \} - \frac{3}{2} m^2 n^2 a \cos 2\theta_0 \{ 1 - e \cos (\theta_0 - \varpi) \}, \end{split}$$

putting  $r_0$  for r,  $\theta_0$  for  $\theta$  in terms multiplied by  $m^2$ . If

$$\frac{\mu}{\alpha^2} = n^2 \alpha \left( 1 + \frac{1}{2} m^2 \right),$$

the terms independent of e agree with the like terms in the expression above, and the latter force minus the former

$$=n^2a\left\{\frac{3}{2}\,m^2e\,\cos\left(\theta_0-\varpi\right)+3m^2e\,\cos\,2\theta_0\cos\left(\theta_0-\varpi\right)\right\}.$$

This is the quantity P.

Hence we have the equation

$$\begin{split} \frac{d\boldsymbol{\varpi}}{d\boldsymbol{\theta}} &= \cos\left(\theta_{\scriptscriptstyle 0} - \boldsymbol{\varpi}\right) \left\{\frac{3}{2} \, m^2 \cos\left(\theta_{\scriptscriptstyle 0} - \boldsymbol{\varpi}\right)\right\} \left\{1 + 2 \, \cos 2\theta_{\scriptscriptstyle 0}\right\} \\ &+ 2 \sin\left(\theta_{\scriptscriptstyle 0} - \boldsymbol{\varpi}\right) \left\{6 m^2 \sin 2\theta_{\scriptscriptstyle 0} \cos\left(\theta_{\scriptscriptstyle 0} - \boldsymbol{\varpi}\right)\right\} \\ &= \frac{3}{4} \, m^2 + \frac{3}{4} \, m^2 \cos 2 \, \left(\theta_{\scriptscriptstyle 0} - \boldsymbol{\varpi}\right) + \frac{3}{2} \, m^2 \cos 2\theta_{\scriptscriptstyle 0} + \frac{15}{4} \, m^2 \cos 2\boldsymbol{\varpi} - \frac{9}{4} \, m^2 \cos \left(4\theta_{\scriptscriptstyle 0} - 2\boldsymbol{\varpi}\right). \end{split}$$

If we compare this with the result of p. 62 it will be seen that while the periodic terms of short period are in error, the coefficients of the terms which produce most effect are correct to the order to which we have carried them, remembering that at the beginning we neglected the Sun's motion. If we simply take

$$\frac{d\varpi}{d\theta} = \frac{3}{4} m^2 + \frac{15}{4} m^2 \cos 2\varpi,$$

we find the mean rate of change of  $\varpi$  with respect to  $\theta$ , by the methods of Lecture XIII.,

$$\frac{3}{4}\,m^2 + \frac{225}{32}\,m^3.$$

## 14.

### VARIOUS ERRATA.

[The errata in Plana and Pontécoulant seem to have been noticed by Adams in course of his scrutiny of those authors when constructing his tables of the Moon's parallax, and later in the controversy upon the Secular Acceleration.]

### DAMOISEAU, Théorie de la Lune.

p. 321, to the value of  $\left(\frac{dQ}{du}\right)$  add the terms  $-\frac{3m'u'^4}{u^4} \left[3\left(1-4s^2\right)\cos\left(\nu-\nu'\right)+5\cos\left(3\nu-3\nu'\right)\right]$ , but the equations for u, s, and t just below are correct.

p. 329, last line, for  $\int \frac{u'^3 d\nu}{u} \delta u \sin(2\nu - 2\nu')$  read  $\int \frac{u'^3 d\nu}{u'^5} \delta u \sin(2\nu - 2\nu')$ 

p. 332, the terms in the equations for s which depend on the Sun's parallax, should be  $\frac{33}{8} \frac{m' u'^4 s}{h^2 u^5} \cos{(\nu - \nu')} - \frac{3}{8} \frac{m' u'^4}{h^2 u^5} \frac{ds}{d\nu} \sin{(\nu - \nu')} + \frac{15}{8} \frac{m' u'^4 s}{h^2 u^5} \cos{(3\nu - 3\nu')} - \frac{15}{8} \frac{m' u'^4}{h^2 u^5} \frac{ds}{d\nu} \sin{(3\nu - 3\nu')}$ 

p. 338, last line but one, for  $1 - \frac{1.5}{2} \gamma^2$  read  $1 - \frac{1.5}{2} s^2$ 

,, last line, for  $u_0+$ &c. read  $\frac{\alpha}{\alpha_1}\{u_0+$ &c.}

- p. 452, line 1, the argument corresponding to  $C_{92}$  should be  $(\nu m\nu + c\nu + c'm\nu \varpi \varpi')$
- p. 559, in the value of  $b^{(122)}$  the term  $-\frac{1}{8}(4-4m+c)^2C_1C_{30}^2$  has been omitted.
- p. 589, in the value of  $g^2-1$ , for  $-\frac{3}{2}e'^2$  read  $+\frac{3}{2}e'^2$ , but the work is correct.

#### DAMOISEAU, Tables de la Lune.

Introduction, p. iii, second edition, for  $1^{"\cdot 3}\sin(\bar{x}+\bar{y})$  read  $-1^{"\cdot 3}\sin(\bar{x}+\bar{y})$ , but the Table in p. 68 is correct.

p. vi, line 6, first edition, for t-x read t+x

#### PLANA, Théorie du Mouvement de la Lune.

for 2061269 read 1605365 Tome I., p. 488, in coefficient of  $\sin(c\nu + c'm\nu) ee'm^4$  $\sin (cnt + c'mnt) e \epsilon' m^4$ " p. 545, " "

for  $-4\frac{173895}{6144}$  read  $-\frac{2806183}{6144}$ pp. 545, 576,

A. II.

```
Tome I., p. 490, in coefficient of \sin 2E\nu m^5 \epsilon'^2 for \frac{19729}{256} read \frac{19729}{256}
                                           \sin 2Ent \, m^5 \epsilon'^2 ,
           p. 548,
                                                             " 65051 " 85513
768 " 864
                           22
                                   22
                                                              " 70043
" 768 "
            p. 577,
                                           \cos 2E_{\nu} m^3 \epsilon'^2 for \frac{67}{4} read \frac{33}{3}
            p. 511,
     "
                                           \sin 2Ent \, m^3 \epsilon'^2 \, , \, , \, ,
            p. 548,
                           "
                                   "
     22
                                              ", for \frac{697}{24} read \frac{691}{24}
            pp. 548, 577,
                                   77
                                            \sin 2Ent \, m^4 \epsilon'^2 \quad \text{add} \quad -(\frac{1}{4})
            p. 548,
     ,,
                                                   ", for \frac{15949}{144} read \frac{15985}{144}
                                   "
     "
                                                            \frac{16543}{144} \frac{16579}{144}
            p. 577,
                                   22
     "
                                            \sin c\nu \, em^4 \epsilon'^2 for \frac{1005}{32} read \frac{990}{32}
            p. 523,
                                             \frac{33621}{64} \frac{33591}{64}
     ,,
                                            \sin cnt \ em^4 \epsilon'^2 \ \text{for} \ -\frac{11207}{128} \ \text{read} \ -\frac{11197}{128}
            p. 542,
                           22
                                    22
     22
                                                   "
            p. 574,
                                   "
     "
                                            \sin(2E\nu-c\nu) em^{3}\epsilon'^{2} for \frac{67}{4} read \frac{33}{2}
            p. 529,
     22
                                   22
                                               "
                                                                    " 16 " <u>63</u>
                                           \sin\left(2E\nu+c\nu\right)em^{3}\epsilon^{\prime2}\quad ,
                                                                         67 "
            p. 530,
     ,,
                                              "
                                                                     , 199 ,,
     "
                                            \sin (2Ent-cnt) em^3 \epsilon'^2 add -\frac{1}{24}
            p. 550,
                                    77
                                                   ,, ,, for \frac{331001}{1536} read \frac{330937}{1536}
                                    "
     ,,
                                                                       for -\frac{326681}{1536} read -\frac{326617}{1536}
            p. 578,
                                                            ,,
                           12
                                    22
     22
                                            \sin(2Ent-cnt)em^4\epsilon'^2 add +\frac{1}{6}
            p. 550,
                                    22
                                                  " "
                                                                       for 36136889 read 36138425
      ,,
             p. 578,
                                                                       for -\frac{36126953}{9218} read -\frac{36128489}{9218}
                                    99
      22
                                            \sin (2Ent + cnt) em^3 \epsilon'^2 add +\frac{3}{8}
            p. 551,
      ,,
                                    22
                                                                      for -\frac{1579}{549} read -\frac{785}{19}
            pp. 551, 578,
      ,,
                                            \sin(2Ent+cnt)em^4\epsilon^2 add -\frac{1}{2}
             p. 551,
                                   "
      22
                                              " "
                                                                       for -\frac{934399}{2304} read -\frac{935551}{2304}
      ,,
                                   22
             p. 578,
                                                                        \frac{967447}{2304} , \frac{968599}{2304}
      "
                                            \sin 5c\nu e^5 for \frac{91}{16} read \frac{91}{96}
             p. 524, ", "
      23
             p. 530,
                                            \sin(2E\nu + c\nu)em^5 read -(\frac{1815}{512} + \frac{1815}{024} = \frac{5445}{624})
      "
                                   22
                                            \sin (2Ent+cnt) em^5 for -\frac{5445}{512} read -\frac{16335}{2048}
             p. 550,
                                                   " " 1869001 " 126001 " 126001 " 3456
             pp. 550, 578,
                                   22
      23
                                            \sin(2E\nu + 3c\nu)e^3m^2 for -\frac{191}{32} read -\frac{291}{32}
             p. 531,
      "
                                   22
                                            \sin(2Ent+3cnt)e^3m^2 for -\frac{4775}{192} read -\frac{7275}{192}
             p. 557,
                                                " " \frac{1093}{64} " \frac{779}{192}
             pp. 557, 580,
                                   "
      22
                                            \sin(2E\nu + 3c\nu)e^3m^3 for \frac{9.5.5}{4.8} read \frac{14.5.5}{4.8}
             p. 622 (note)
      "
                                    22
                                                           " " 2317 " 8317
" 576 " 576
               " (text)
      "
                                            \sin(2Ent + 3cnt) for 3'' \cdot 252 + 0'' \cdot 057 = 3'' \cdot 309 read 0'' \cdot 773 + 0'' \cdot 206 = 0'' \cdot 979
                                    "
      99
                                            \sin (2E\nu + 2g\nu) \gamma^2 me^2 add -\frac{15}{18}
             p. 531, "
      23
                                    22
                                               ", " for -\frac{15}{8} read -\frac{45}{6}
      ,,
             p. 554, ,,
                                            \sin(2Ent+2gnt)\gamma^2me^2 for 5 read 15
                                    "
      22
                                               " " 35 <u>195</u>
             pp. 554, 579,
      "
                                    "
                                            \sin(2Ent + 2gnt) m^3 \gamma^2 for -\frac{59}{48} read -\frac{59}{24}
             p. 554, ,,
                                                        " " " 0 " – <del>59</del>
             pp. 554, 579,
                                   22
      22
                                            \sin(2Ent + 2gnt) read \{-3^{"\cdot}218(4) - 1^{"\cdot}960(5) - 0^{"\cdot}6 \text{ (ind.)}\} = -5^{"\cdot}778
             p. 621, "
                                  "
      22
                                            \sin c' mnt \ \epsilon' m^7 for \frac{9644444099}{53296} read \frac{964445099}{53296}
             p. 544,
                        22 22 .
                                              ,, \qquad ,, \frac{964470235}{55296} \quad ,, \frac{964471285}{55296}
             p. 575, ", "
      23
             р. 559, """
                                            \sin(2Ent-4cnt) me<sup>4</sup> omit \frac{1.5}{8}
      ,,
                                            " " " for 25 read 35
             pp. 559, 582,
             p. 624, "
                                          \sin(2Ent-4cnt) for 0".873 read 0".611
                                   "
      "
             pp. 581, 624, for 2Ent+2c'mnt+2cnt read 2Ent+2c'mnt-2cnt
      22
             p. 624, for -0''\cdot190 read +0''\cdot190
```

```
Tome I., p. 615, in coefficient of \sin(g\nu - c\nu + c'm\nu) for 0"·144 read 0"·431
                                                \sin(2E\nu + g\nu) for -1''.059 read +1''.059
                                                       " +0"·605
      "
                                       22
                                                \cos c' m \nu \epsilon' m^4 for +\frac{1}{4} read -\frac{1}{4}
              p. 637,
      ,,
              p. 638,
                                                \cos 2E\nu \ mg^4 \ \text{add} \ -(-\frac{3}{128})
      22
                                                       ,, for \frac{3}{128} read 0
                                                \cos 2Ent \, mg^4 for -\frac{3}{128} read 0
              p. 667,
      "
             p. 640,
                                                \cos(2E\nu - c'm\nu - 2g\nu) m^2\epsilon'\gamma^2 for \frac{7}{4} read \frac{7}{2}
             p. 643,
                                                \cos(4E\nu - c\nu) for \frac{4.5}{2.56}m^2\gamma^2 read \frac{4.5}{2.56}m^3\gamma^2
                                       "
             p. 645,
                                                \cos(2E\nu - 2g\nu) read -0''\cdot 1552 - 0''\cdot 0275 = -0''\cdot 1827
                                                \cos(2E\nu + 2g\nu) , 0'' \cdot 0388 + 0'' \cdot 0063 = 0'' \cdot 0451
              p. 646,
                                                \cos(2E\nu + 2g\nu - c\nu) read 0"·0267 + 0"·0084 = 0"·0351
                                                \cos(2E\nu - 2g\nu + c\nu) ,, -0'' \cdot 0907 + 0'' \cdot 0005 = -0'' \cdot 0902
                 22
                                                \cos(2E\nu - c'm\nu - 2g\nu) read +0"\cdot0305 - 0"\cdot0091 = 0"\cdot0214
                                       "
      99
             p. 647,
                                                \cos(E\nu + c'm\nu) read +0''\cdot1812 - 0''\cdot0610 + 0''\cdot0236 = +0''\cdot1438
             p. 648,
                                                \cos(4E\nu - c\nu) read -0^{\prime\prime}\cdot0920 - 0^{\prime\prime}\cdot0279 = -0^{\prime\prime}\cdot1199
                                                \cos (4E\nu + c\nu) for +0".0546 read +0".00546
                                                \cos(2g\nu+2c\nu)e^2\gamma^2 for \frac{5}{8} read \frac{1}{2}
             p. 651,
             p. 665,
                                                \cos(2gnt + 2cnt) e^2 \gamma^2 read \frac{1}{2} - \frac{1}{2} = 0
                                                \cos(2gnt+2cnt) for +0"·0104 read 0
             p. 675,
             p. 656,
                                                \cos(E\nu - c'm\nu) \epsilon' b^2 m^2 for -\frac{305}{32} read -\frac{305}{64}
                                      ,,
             p. 672,
                                                \cos(Ent-c'mnt)\epsilon'b^2m^2 for \frac{30.5}{32} read \frac{30.5}{64}
                                                        "," ", \frac{641}{32} ", \frac{977}{64}"
             p. 662,
                                                \sin(2E\nu + c'm\nu - 3c\nu) e^3\epsilon'm for -\frac{4.5}{8} read -\frac{4.5}{16}
                                                \cos(2Ent + c'mnt - 3cnt)e^{3\epsilon'm} read -\frac{15}{8} + \frac{45}{64} + \frac{45}{16} = \frac{105}{64}
             p. 671,
                                                \cos(2Ent + c'mnt + 2cnt)e^{2\epsilon'} for -\frac{7}{2} read -\frac{7}{4}
             p. 670,
                                                \cos(2Ent + c'mnt + 2cnt) for -0'' \cdot 0034 read -0'' \cdot 0017
             p. 677,
                                                \cos(2Ent-4cnt) for \frac{15}{16} read \frac{25}{16}
             p. 671,
                                                2g - 2f for -10'' \cdot 608 read -0'' \cdot 0608
             p. 735,
             p. 748,
                                                                                                     in order to agree with p. 727
             pp. 746, 756, in all terms with coefficient x^2, for + read -
Tome II., p. 76, in coefficient of \cos(2E\nu-2c\nu) me<sup>4</sup> for -\frac{4.5}{5} read +\frac{4.5}{5}, which is given correctly in
                           Tome III., p. 847.
Tome III., p. 286, line 3, in coefficient of m^6 for \frac{230401}{192} read \frac{230401}{334}
                p. 289, line 2, , , , for -\frac{230401}{192} read -\frac{230401}{384}
                                                          \cos(c\nu + c'm\nu)e\epsilon'm^4 for -\frac{1351233}{4008} read -\frac{1351333}{4008}
                pp. 381, 845,
                                      11 11
                p. 567, in coefficient of \sin(c\nu + c'm\nu) e \epsilon' m^4 for \frac{2061269}{2048} read \frac{1605365}{2048}
                p. 840,
                                                 \cos 2E_{VY}^2m^4 for \frac{2047}{2048} read \frac{2947}{2048}
                                ,,
                                         "
                                                  \cos(2E\nu - c'm\nu - 2g\nu)\epsilon'\gamma^2 for -\frac{7}{8}m read +\frac{7}{8}m
                p. 841,
                                                  \cos(2E\nu - c'm\nu + 2g\nu) \epsilon'^2\gamma^2 for -\frac{51}{32}m read +\frac{51}{32}m
                p. 842, add the term \cos(E\nu - c'm\nu + c\nu) e\epsilon' \gamma^2 b^2 (\frac{195}{84} m)
                p. 844, in coefficient of \cos(2g\nu + c\nu) e\gamma^2 m^4 for -\frac{971}{2048} read -\frac{9903}{2048}
                                                  \cos(2E\nu + 3c'm\nu - 2g\nu)\epsilon'^3\gamma^2 for -\frac{1}{128}m^2 read -\frac{1}{128}m
                p. 851,
```

#### Pontécoulant, Système du Monde.

```
Tome III., p. 418, line 3 from bottom, for +0.0000263449 read +0.000016349 Tome IV., p. 248, line 7 from bottom, for +\frac{33}{128}m^2 read +\frac{33}{128}m^3 , p. 263, in value of \left(\delta\frac{1}{r}\right)^3 omit -\frac{215}{16}m^5e'^2 , p. 303, ,, ,, \frac{1}{r^3} + \frac{m^2\alpha'^3}{r'^3} for +\frac{1056}{82}m^5e'^2 read +\frac{1485}{82}m^5e'^2 , for \frac{153}{64}m^3e'^2 read \frac{153}{64}m^4e'^2 , p. 304, in coefficient of \sin\eta \, m^5e'^2\gamma for -\frac{10131}{64} read -\frac{9275}{64}
```

```
Tome IV., p. 306, in value of g^2 for -\frac{80869}{512}m^5e^{\prime 2} read -\frac{73989}{512}m^5e^{\prime 2}
                                              ", g ", -\frac{79753}{1024}m^5e^{\prime 2} ", -\frac{72873}{1025}m^5e^{\prime 2}
                    p. 307, "
                    p. 281, "
                                              ,, a_8 and a_9 for m^2 read m
                                  "
                                            ", a_{34} for \frac{1}{5} \frac{5}{2} me^2e' read \frac{1}{5} \frac{5}{2} me^2e'^2
                                               ,, \quad \frac{1}{r^3} + \frac{m^2 \alpha'^2}{r'^3} \quad \text{for} \quad + \frac{15.3}{6.4} m^3 e'^2 \quad \text{read} \quad + \frac{15.3}{6.4} m^4 e'^2
                   p. 303, "
                    p. 317, in coefficient of \sin \phi' m^5 e' \gamma^2 for -\frac{23209}{512} read -\frac{10897}{512}
                    pp. 319, 344, ,, \cos \phi' m^4 e' \gamma^2 ,, +\frac{23209}{512} ,, \frac{10897}{512}
                   p. 345, "
                    p. 345, ,, ,, ,, ,, ,, +\frac{6.83.7}{512} ,, -p. 352, in value of mb_6 for -\frac{6.78.5}{512}m^4 read -\frac{1.90.9.7}{512}m^4
                                                                                            +\frac{6837}{512} ,, -\frac{5475}{512}
                   p. 354, ,, ,, b_6 ,, -\frac{6785}{512}m^3 ,, -\frac{19097}{512}m^3
                   p. 573, in coefficient of \sin \phi' m^3 e' \gamma^2 for -\frac{6785}{512} read -\frac{19097}{512}
                   p. 336, in value of a_{18} for -\frac{m^2}{2} read +\frac{m^2}{2}
                                          ", ", for +\frac{135}{32}m^2e^2 read +\frac{135}{32}me^2"
                   p. 437, ,, , for +\frac{135}{42}m^2e^2 read +\frac{135}{435}me^2
p. 437, ,, , c for \frac{2475}{4275}m^3e^2e'^2 read \frac{2475}{415}m^3e^2e'^2
p. 439, ,, , q' for -\frac{84527}{415}m^5 read -\frac{7475}{1024}m^5
                    p. 566, in the Secular Equation of the nodes for -\frac{84517}{1024}m^5 read -\frac{79753}{1024}m^5 but this is
                                  not the true value.
                   p. 509, in value of b_{44} for \frac{779}{182}m^2 read \frac{779}{192}m^2
                    p. 534, ,, ,, A for \frac{31.9}{3024} read -\frac{5}{32}
                   p. 572, in coefficient of \sin \phi \ em^4 for -\frac{26659}{256} read -\frac{6659}{256}
                  p. 573, ,, , , \sin(\phi+\phi')ee'm^5 for -\frac{19\frac{96}{22}\frac{24}{16}02}{16} read -\frac{19\frac{96}{22}\frac{24}{16}02}{92\frac{16}{16}} p. 588, ,, , \sin(3\xi-\eta) for -\frac{9.5}{192} read -\frac{9.5}{128} p. 603, ,, , \sin(2\xi+3\phi) read 0''.768+0''.181=0''.949 p. 620, ,, ,, \sin(\xi+\phi') for -13''.7 read +13''.7
                   p. 625, line 6 from bottom, for 2\xi - \phi - 2\phi' read 2\xi - \phi + 2\phi'
```

# ADDENDUM TO PAPER ON THE SECULAR ACCELERATION OF THE MOON'S MEAN MOTION, No. 4, p. 120.

[Since the sheets of the paper No. 4 were printed off, I have found details of the calculations referred to on p. 127. Start with the equations

$$-\frac{d^{2}l}{dt^{2}} + \left(\frac{dl}{dt}\right)^{2} - \left(\frac{d\theta}{dt}\right)^{2} + \frac{1}{r^{3}} = \frac{1}{2}m^{2}\left\{1 + \frac{3}{2}e'^{2} + 3e'\cos mt\right\}$$

$$+ \frac{3}{2}m^{2}\left\{\left(1 - \frac{5}{2}e'^{2}\right)\cos\left(2\theta - 2mt\right) + \frac{7}{2}e'\cos\left(2\theta - 3mt\right) - \frac{1}{2}e'\cos\left(2\theta - mt\right)\right\},$$

$$-\frac{d^{2}\theta}{dt^{2}} + 2\frac{dl}{dt}\frac{d\theta}{dt}$$

$$= \frac{3}{2}m^{2}\left\{\left(1 - \frac{5}{2}e'^{2}\right)\sin\left(2\theta - 2mt\right) + \frac{7}{2}e'\sin\left(2\theta - 3mt\right) - \frac{1}{2}e'\sin\left(2\theta - mt\right)\right\},$$

$$+ \frac{7}{2}e'\sin\left(2\theta - 3mt\right) - \frac{1}{2}e'\sin\left(2\theta - mt\right),$$

where  $l = \log(1/r)$ , and for simplicity n has been taken equal to unity, and m = 0.0748013 (1+f), where f is an undetermined small quantity equal to  $-(1-m) \, \delta n'/n'$  of p. 111. We then proceed in the manner of Lecture VII. from an approximate numerical solution. In this way Adams obtained the numbers of p. 127 on Dec. 6, 1859. The work seems to have suggested to him the general method which he outlined in  $Mon.\ Not.\ xxxvIII.$ ; see p. 104; for MSS. of various dates in 1860, 1861, 1863, exist which are preliminary to the developments of p. 108 et seqq. Among them are the numbers below, not included in those developments:—]

```
l = \log \frac{1}{m} = 0.00089,40885, +0.00169,77375f + 0.00101,3438e^{t/2}
         +\{-0.00692,91739,6e'\}\cos\phi'
         +\{0.00717,98881,+0.01624,5654f-0.02411,1402e^{2}\}\cos 2\xi
         +\{0.03036,07348,e'\}\cos(2\xi-\phi')
         +\{-0.00445,13839,5e'\}\cos(2\xi+\phi')
         +\{0.00003,29131,+0.00014,9717f-0.00039,3997e^{2}\}\cos 4\xi
         +\{0.00027,99970,e'\}\cos(4\xi-\phi')
         +\{-0.00004,06265,e'\}\cos(4\xi+\phi').
   \theta - nt = \{-0.19057, 0.2812, e'\} \sin \phi'
         +\{0.01021,13626,0+0.02348,38286,f-0.03435,26286e'^2\}\sin 2\xi
         +\{0.04396,36669,5e'\}\sin(2\xi-\phi')
         +\{-0.00624,23804,1e'\}\sin(2\xi+\phi')
         +\{0.00004,23730,4+0.00019,38852,5f-0.00050,76714,e'^2\}\sin 4\xi
         +\{0.00036,27788,6e'\}\sin(4\xi-\phi')
         +\{-0.00005,20361,2e'\}\sin(4\xi+\phi').
                                                                   [19 Sep. 1863.
```

## LAPLACE'S THEOREMS ON THE DEVELOPMENT OF FUNCTIONS IN SERIES.

Let  $x = \xi + aP,$   $y = \eta + bQ,$   $z = \zeta + cR,$ 

where P, Q, R are functions of x, y, z. It is required to develop a function of x, y, z, in powers of a, b, c.

We may prove that if D be the Jacobian

$$\begin{split} \frac{d\left(\xi,\ \eta,\ \zeta\right)}{d\left(x,\ y,\ z\right)} &= 1 \left/ \frac{d\left(x,\ y,\ z\right)}{d\left(\xi,\ \eta,\ \zeta\right)} \right. \\ &= 1 - a\frac{dP}{dx} - b\frac{dQ}{dy} - c\frac{dR}{dz} + bc\frac{d\left(Q,\ R\right)}{d\left(y,\ z\right)} \\ &+ ca\frac{d\left(R,\ P\right)}{d\left(z,\ x\right)} + ab\frac{d\left(P,\ Q\right)}{d\left(x,\ y\right)} - abc\frac{d\left(P,\ Q,\ R\right)}{d\left(a,\ b,\ c\right)}, \end{split}$$

then for any function F(x, y, z)

$$\frac{d}{da} \begin{pmatrix} F \\ \overline{D} \end{pmatrix} = \frac{d}{d\xi} \begin{pmatrix} PF \\ \overline{D} \end{pmatrix}, \qquad \frac{d}{db} \begin{pmatrix} F \\ \overline{D} \end{pmatrix} = \frac{d}{d\eta} \begin{pmatrix} QF \\ \overline{D} \end{pmatrix}, \qquad \frac{d}{dc} \begin{pmatrix} F \\ \overline{D} \end{pmatrix} = \frac{d}{d\zeta} \begin{pmatrix} RF \\ \overline{D} \end{pmatrix},$$

and generally

$$\frac{d^{l+m+n}}{da^ldb^mdc^n}\binom{F}{D} = \frac{d^{l+m+n}}{d\xi^ld\eta^md\zeta^n}\left(P^lQ^mR^n\,\frac{F}{D}\right).$$

Hence by Maclaurin's Theorem

$$\begin{split} & \frac{F}{D} = \Sigma \, \frac{\alpha^l b^m c^n}{l \, ! \, m \, ! \, n \, !} \left[ \frac{d^{l+m+n}}{d\alpha^l db^m dc^n} \left( \frac{F}{D} \right) \right]_{a=b=c=0} \\ & = \Sigma \, \frac{\alpha^l b^m c^n}{l \, ! \, m \, ! \, n \, !} \left[ \frac{d^{l+m+n}}{d\xi^l d\eta^m d\zeta^n} \left( P^l Q^m R^n \, \frac{F}{D} \right) \right]_{a=b=c=0} \\ & = \Sigma \, \frac{\alpha^l b^m c^n}{l \, ! \, m \, ! \, n \, !} \, \frac{d^{l+m+n}}{d\xi^l d\eta^m d\zeta^n} \left( P^l Q^m R^n F \right), \end{split}$$

when  $\xi$ ,  $\eta$ ,  $\zeta$  replace x, y, z, in P, Q, R, F on the right. Now

$$F = \frac{F}{D} \left\{ 1 - \alpha \frac{dP}{dx} - \&c. \right\}.$$

Collect the developments of

$$F/D$$
,  $-aF\frac{dP}{dx}/D$ , &c.

we have

$$F = \sum \frac{a^{i}b^{m}c^{n}}{l! \ m! \ n! \ \frac{d^{l+m+n}}{d\xi^{i}d\eta^{m}d\zeta^{n}}} \left[ P^{l}Q^{m}R^{n}F\left\{1 - a\frac{dP}{d\xi} - \dots - abc\frac{d(P, Q, R)}{d(\xi, \eta, \zeta)}\right\} \right].$$

If we collect the coefficients of  $a^lb^mc^n$  from the different terms, the result agrees with that given by Laplace, *Mémoires de l'Académie*, 1777.

[March, 1869.

## PART II.

TERRESTRIAL MAGNETISM.



### SECTION I.

USEFUL FORMULAE, CONNECTING LEGENDRE'S COEFFICIENTS, WHICH ARE EMPLOYED IN THE THEORY OF TERRESTRIAL MAGNETISM.

1. If r be less than unity, and if

$$V = (1 - 2r\cos\theta + r^2)^{-\frac{1}{2}}$$

be expanded in a series of ascending powers of r, then

$$V = P_0 + P_1 r + P_2 r^2 + \dots + P_n r^n + \dots = \sum (P_n r^n),$$

where  $P_0$ ,  $P_1$ , &c. are functions of  $\theta$  only, and are known as Legendre's Coefficients or as Zonal Surface Harmonics.

When r is greater than unity,

$$V = \frac{1}{r} \left( 1 - \frac{2}{r} \cos \theta + \frac{1}{r^{2}} \right)^{-\frac{1}{2}} = \frac{1}{r} \left[ P_{0} + P_{1} \cdot \frac{1}{r} + \&c. + P_{n} \cdot \frac{1}{r^{n}} + \dots \right]$$

$$= P_{0} \cdot \frac{1}{r} + P_{1} \cdot \frac{1}{r^{2}} + \dots + P_{n} \cdot \frac{1}{r^{n+1}} + \dots = \Sigma \left( P_{n} \cdot \frac{1}{r^{n+1}} \right).$$

Putting  $\cos \theta = \mu$ , we get from Laplace's equation

$$\frac{d}{d\mu} \left\{ (1 - \mu^2) \frac{dP_n}{d\mu} \right\} + n (n+1) P_n = 0 \dots (1).$$

2. Let  $\mu$  be a variable which changes between the limits -1 and 1, and let  $f(\mu)$  be a function of  $\mu$  of n dimensions, such that when multiplied by any function of lower dimensions the integral of the product taken between the limits -1 and 1 shall always vanish, so that

$$\int f(\mu) d\mu = 0, \int \mu f(\mu) d\mu = 0, &c., \int \mu^{n-1} f(\mu) d\mu = 0,$$

the limits being -1 and 1 in each case.

## 244 USEFUL FORMULAE, CONNECTING LEGENDRE'S COEFFICIENTS, WHICH

Let the indefinite integral of  $f(\mu) = f_1(\mu)$ , the integral being supposed to vanish when  $\mu = -1$ ; also let the indefinite integral of  $f_1(\mu)$  on the same supposition be  $f_2(\mu)$  and so on, till we come to

$$\int f_{n-1}(\mu) d\mu = f_n(\mu).$$

Then integrating by parts we have

$$\int f(\mu) d\mu = f_1(\mu), \quad \int \mu f(\mu) d\mu = \mu f_1(\mu) - f_2(\mu),$$

$$\int \mu^2 f(\mu) d\mu = \mu^2 f_1(\mu) - 2\mu f_2(\mu) + 2f_3(\mu), \quad &c. = &c.,$$

$$\int \mu^{n-1} f(\mu) d\mu = \mu^{n-1} f_1(\mu) - (n-1) \mu^{n-2} f_2(\mu) + (n-1) (n-2) \mu^{n-3} f_3(\mu) + \dots$$

$$+ (-1)^{n-1} (n-1) (n-2) \dots 2 \cdot 1 f_n(\mu),$$

all the integrals on the left-hand sides of equations being supposed to vanish when  $\mu = -1$ .

Now put  $\mu = 1$  in these integrals, and we have

$$f_1(\mu) = 0$$
,  $f_2(\mu) = 0$ , ...  $f_n(\mu) = 0$ ,

so that  $f_n(\mu)$  and its first n-1 differential coefficients vanish when  $\mu=1$ , as well as when  $\mu=-1$ .

Hence  $f_n(\mu)$  is divisible both by  $(1-\mu)^n$  and by  $(1+\mu)^n$ , and since it is of 2n dimensions in  $\mu$  it must be of the form

$$c (1-\mu)^n (1+\mu)^n = c (1-\mu^2)^n$$

Hence

$$f(\mu) = c \frac{d^n}{d\mu^n} (1 - \mu^2)^n.$$

If c be chosen so that  $f(\mu) = 1$  when  $\mu = 1$ , we have

$$e^{\frac{d^n}{d\mu^n}\left[(1-\mu)^n.\left\{2-(1-\mu)\right\}^n\right]}=2^n(-1)^n n.(n-1)...2.1.c=1;$$

therefore

$$c = \frac{(-1)^n}{2^n} \cdot \frac{1}{n!};$$

or 
$$f(\mu) = \frac{(-1)^n}{2^n} \cdot \frac{1}{n!} \cdot \frac{d^n}{d\mu^n} (1 - \mu^2)^n$$
$$= \frac{1}{2^n \cdot n!} \cdot \frac{d^n}{d\mu^n} (\mu^2 - 1)^n = \frac{1}{n!} \cdot \frac{d^n}{d\mu^n} (\frac{\mu^2 - 1}{2})^n;$$

245

 $f(\mu)$  is the coefficient of  $r^n$  in the development of

$$V = (1 - 2\mu r + r^2)^{-\frac{1}{2}}$$

in ascending powers of r.

3. Let 
$$(1 - 2\mu r + r^2)^{\frac{1}{2}} = 1 - rx,$$
 then 
$$1 - 2\mu r + r^2 = 1 - 2rx + r^2x^2;$$
 
$$\therefore 2\mu r = 2rx + r^2(1 - x^2),$$

or  $\mu = x + \frac{r}{2} (1 - x^2);$ 

$$\frac{d\mu}{dx} = 1 - rx,$$

so that

$$\frac{dx}{d\mu} = \frac{1}{1 - rx} = (1 - 2\mu r + r^2)^{-\frac{1}{2}} = V.$$

Since

$$x = \mu - \frac{r}{2} \left( 1 - x^2 \right),$$

we may develop x in terms of  $\mu$  by Lagrange's theorem and get

$$x = \mu - \frac{r}{2} (1 - \mu^2) + \frac{1}{1 \cdot 2} \left(\frac{r}{2}\right)^2 \frac{d}{d\mu} (1 - \mu^2)^2 - \&c.$$

Differentiating with respect to  $\mu$  we get

$$(1 - 2\mu r + r^2)^{-\frac{1}{2}} = \frac{dx}{d\mu} = 1 - \frac{r}{2} \frac{d}{d\mu} (1 - \mu^2) + \frac{1}{1 \cdot 2} \left(\frac{r}{2}\right)^2 \frac{d^2}{d\mu^2} (1 - \mu^2)^2 - \&c.$$

Hence the equation

$$f(\mu) = \frac{1}{2^n \cdot n!} \cdot \frac{d^n}{d\mu^n} (\mu^2 - 1)^n = P_n \cdot \dots (2)$$

gives the value of the Legendre's coefficient.

4. Several convenient relations may be found between successive Legendre's coefficients, which are useful for determining or checking the values of these coefficients.

Thus 
$$V = (1 - 2\mu r + r^2)^{-\frac{1}{2}},$$
 
$$\log V = -\frac{1}{2}\log(1 - 2\mu r + r^2).$$

Differentiating we get

$$\frac{1}{V} \cdot \frac{dV}{dr} = \frac{\mu - r}{1 - 2\mu r + r^2}.$$

246 USEFUL FORMULAE, CONNECTING LEGENDRE'S COEFFICIENTS, WHICH For V put  $\Sigma(r^n, P_n)$ , then

$$(1-2\mu r+r^2)\frac{d}{dr}\Sigma(r^n.P_n)+(r-\mu)\Sigma(r^n.P_n)=0.$$

The coefficient of  $r^n$  in this equation becomes

$$(n+1) P_{n+1} - 2\mu n P_n + (n-1) P_{n-1} - \mu P_n + P_{n-1}$$

Equating this to zero we get

$$(n+1) P_{n+1} - (2n+1) \mu P_n + n P_{n-1} = 0....(3).$$

5. If we express the values of the Legendre's coefficients by means of equation (2) we get

$$\begin{split} 2^{n} \cdot n! \left\{ P_{n+1} - P_{n-1} - (2n+1) \int P_{n} d\mu \right\} \\ &= \frac{1}{2 (n+1)} \cdot \frac{d^{n+1}}{d\mu^{n+1}} (\mu^{2}-1)^{n+1} - 2n \frac{d^{n-1}}{d\mu^{n-1}} (\mu^{2}-1)^{n-1} - (2n+1) \frac{d^{n-1}}{d\mu^{n-1}} (\mu^{2}-1)^{n}, \\ &= \frac{d^{n}}{d\mu^{n}} \{ \mu (\mu^{2}-1)^{n} \} - 2n \frac{d^{n-1}}{d\mu^{n-1}} (\mu^{2}-1)^{n-1} - (2n+1) \frac{d^{n-1}}{d\mu^{n-1}} (\mu^{2}-1)^{n}, \\ &= \frac{d^{n-1}}{d\mu^{n-1}} \{ (\mu^{2}-1)^{n} + 2n\mu^{2} (\mu^{2}-1)^{n-1} \} \\ &\qquad \qquad - 2n \frac{d^{n-1}}{d\mu^{n-1}} \{ (2n+1) (\mu^{2}-1)^{n} + 2n (\mu^{2}-1)^{n-1} \} \\ &\qquad \qquad - 2n \frac{d^{n-1}}{d\mu^{n-1}} \{ (2n+1) (\mu^{2}-1)^{n} + 2n (\mu^{2}-1)^{n-1} \} \\ &\qquad \qquad - 2n \frac{d^{n-1}}{d\mu^{n-1}} (\mu^{2}-1)^{n-1} - (2n+1) \frac{d^{n-1}}{d\mu^{n-1}} (\mu^{2}-1)^{n}, \end{split}$$

= 0 identically.

Hence  $P_{n+1} - P_{n-1} - (2n+1) \int P_n d\mu = 0$ .....(4).

Differentiating the left-hand side of (4) with respect to  $\mu$  we get

$$\frac{dP_{n+1}}{d\mu} - \frac{dP_{n-1}}{d\mu} = (2n+1)P_n.$$

6. A very short and simple proof connects the relations expressed by equations (1) and (2)—

$$\begin{split} \frac{d^{n+1}}{d\mu^{n+1}} \left(\mu^2 - 1\right)^{n+1} &= \frac{d^n}{d\mu^n} \left\{ 2 \left(n+1\right) \mu \left(\mu^2 - 1\right)^n \right\} = 2 \left(n+1\right) \frac{d^n}{d\mu^n} \left\{ \mu \left(\mu^2 - 1\right)^n \right\} \\ &= 2 \left(n+1\right) \left\{ \mu \frac{d^n \left(\mu^2 - 1\right)^n}{d\mu^n} + n \frac{d^{n-1} \left(\mu^2 - 1\right)^n}{d\mu^{n-1}} \right\}. \end{split}$$

Dividing by  $2^{n+1} \cdot (n+1)!$  we get from equation (2)

$$P_{n+1} = \mu P_n + n \int P_n d\mu,$$

where  $\int P_n d\mu$  vanishes when  $\mu = 1$ .

But we have also by Leibnitz' theorem

$$\begin{split} \frac{d^{n+1}}{d\mu^{n+1}} (\mu^2 - 1)^{n+1} &= \frac{d^{n+1}}{d\mu^{n+1}} \{ (\mu^2 - 1) (\mu^2 - 1)^n \} \\ &= (\mu^2 - 1) \frac{d^{n+1}}{d\mu^{n+1}} (\mu^2 - 1)^n + (n+1) 2\mu \frac{d^n}{d\mu^n} (\mu^2 - 1)^n + (n+1) n \frac{d^{n+1}}{d\mu^{n-1}} (\mu^2 - 1)^n. \end{split}$$

Equating the above expressions for

$$\frac{d^{n+1}}{d\mu^{n+1}}(\mu^2-1)^{n+1},$$

and omitting the term common to both sides, we get

$$(\mu^{2}-1)\frac{d^{n+1}}{d\mu^{n+1}}(\mu^{2}-1)^{n} + (n+1)n \cdot \frac{d^{n-1}}{d\mu^{n-1}}(\mu^{2}-1)^{n} = 2(n+1)n \cdot \frac{d^{n-1}}{d\mu^{n-1}}(\mu^{2}-1)^{n},$$

$$(\mu^{2}-1)\frac{d^{n+1}}{d\mu^{n+1}}(\mu^{2}-1)^{n} = n(n+1)\frac{d^{n-1}}{d\mu^{n-1}}(\mu^{2}-1)^{n}.$$

$$(\mu^{2}-1)\frac{dP_{n}}{d\mu^{n}} = n(n+1)\int P_{n}d\mu,$$

Hence

or

or differentiating

$$\frac{d}{d\mu}\left\{ \left(1-\mu^2\right)\frac{dP_n}{d\mu}\right\} + n\left(n+1\right)P_n = 0.$$

From the above equations we also obtain

$$P_{n+1} = \mu P_n + \frac{\mu^2 - 1}{n+1} \cdot \frac{dP_n}{d\mu}$$

which also is a simple and elegant formula.

## 248 USEFUL FORMULAE, CONNECTING LEGENDRE'S COEFFICIENTS, WHICH

7. Equation (3) gives

$$(n+1) P_{n+1} - (2n+1) \mu P_n + n P_{n-1} = 0.$$

Differentiating this m times with respect to  $\mu$  we have

$$(n+1)\frac{d^{m}P_{n+1}}{d\mu^{m}} = (2n+1)\left\{\mu \frac{d^{m}P_{n}}{d\mu^{m}} + m \frac{d^{m-1}P_{n}}{d\mu^{m-1}}\right\} - n \frac{d^{m}P_{n-1}}{d\mu^{m}}....(\alpha),$$

but from equation (4),

$$(2n+1)\int P_n d\mu = P_{n+1} - P_{n-1};$$

therefore

$$(2n+1)\frac{d^{m-1}P_n}{d\mu^{m-1}} = \frac{d^mP_{n+1}}{d\mu^m} - \frac{d^mP_{n-1}}{d\mu^m}....(5),$$

or

$$m \frac{d^m P_{n+1}}{d\mu^m} = (2n+1) m \frac{d^{m-1} P_n}{d\mu^{m-1}} + m \frac{d^m P_{n-1}}{d\mu^m} \dots (\beta).$$

Subtracting  $(\beta)$  from (a) we get

$$(n-m+1)\frac{d^{m}P_{n+1}}{d\mu^{m}} = (2n+1)\,\mu\,\frac{d^{m}P_{n}}{d\mu^{m}} - (n+m)\frac{d^{m}P_{n-1}}{d\mu^{m}}\dots\dots(6).$$

8. Let 
$$Q_n^m = (1 - \mu^2)^{\frac{m}{2}} \frac{d^m P_n}{d\mu^m}.$$

Then multiplying by  $(1-\mu^2)^{\frac{m}{2}}$  in equation (5), we get

$$Q_{n+1}^m - Q_{n-1}^m = (2n+1) \left(1 - \mu^2\right)^{\frac{1}{2}} Q_n^{m-1} \qquad \dots (7),$$

or putting n for n+1 we get

$$Q_n^m = Q_{n-2}^m + (2n-1) (1 - \mu^2)^{\frac{1}{2}} Q_{n-1}^{m-1} \dots (7').$$

Also let

$$H_n^m = \frac{1 \cdot 2 \cdot 3 \cdot \dots (n-m)}{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)} \cdot Q_n^m$$

Multiplying in equation (6) by  $(1-\mu^2)^{\frac{m}{2}}$ , we get

$$(n-m+1) Q_{n+1}^m = (2n+1) \mu Q_n^m - (n+m) Q_{n-1}^m \dots (8).$$

Multiplying this equation by  $\frac{1 \cdot 2 \cdot 3 \dots (n-m)}{1 \cdot 3 \cdot 5 \dots (2n+1)}$ , we get

$$H_{n+1}^{m} = \mu H_{n}^{m} - \frac{(n-m)(n+m)}{(2n-1)(2n+1)} H_{n+1}^{m} \dots (9).$$

In the case when m=0,

$$H_{n+1}^{0} = \mu H_{n}^{0} - \frac{n^{2}}{(2n-1)(2n+1)} H_{n-1}^{0}.$$

Differentiating equation (8) with respect to  $\mu$ , we have

$$(n-m+1)\frac{dQ_{n+1}^m}{d\mu} = (2n+1) \mu \frac{dQ_n^m}{d\mu} - (n+m)\frac{dQ_{n-1}^m}{d\mu} + (2n+1) Q_n^m.$$

9. From equation (1) we get

$$\frac{d}{d\mu}\left\{ \left(1-\mu^{2}\right)\frac{dP_{n}}{d\mu}\right\} + n\left(n+1\right)P_{n} = 0.$$

Differentiating m-1 times with regard to  $\mu$ , we have

$$(1-\mu^2)\frac{d^{m+1}P_n}{d\mu^{m+1}}-2\mu m\frac{d^mP_n}{d\mu^m}+(n-m+1)(n+m)\frac{d^{m-1}P_n}{d\mu^{m-1}}=0.$$

Multiplying by  $(1-\mu^2)^{\frac{m-1}{2}}$  we get

$$Q_n^{m+1} - 2\mu m (1 - \mu^2)^{-\frac{1}{2}} Q_n^m + (n - m + 1)(n + m) Q_n^{m-1} = 0 \dots (10).$$

Also we get from the same equation by multiplying by  $(1 - \mu^2)^{m-1}$ ,

$$(1-\mu^{2})^{m} \frac{d^{m+1}P_{n}}{d\mu^{m+1}} - 2\mu m (1-\mu^{2})^{m-1} \frac{d^{m}P_{n}}{d\mu^{m}} + (n-m+1) (n+m) (1-\mu^{2})^{m-1} \frac{d^{m-1}P_{n}}{d\mu^{m-1}} = 0,$$

or  $\frac{d}{d\mu} \left\{ (1 - \mu^2)^m \frac{d^m P_n}{d\mu^m} \right\} + (n - m + 1) (n + m) (1 - \mu^2)^{m-1} \frac{d^{m-1} P_n}{d\mu^{m-1}} = 0.$ 

Hence integrating with respect to  $\mu$ , we get

$$(n-m+1)(n+m)\int (1-\mu^2)^{m-1}\frac{d^{m-1}P_n}{d\mu^{m-1}}d\mu = -(1-\mu^2)^m\frac{d^mP_n}{d\mu^m}.$$

Giving to m the several values 2, 3, &c. we get by integration:

$$(n-1)(n+2)\int (1-\mu^2)\frac{dP_n}{d\mu}d\mu = -(1-\mu^2)^2\frac{d^2P_n}{d\mu^2},$$

$$(n-2)(n+3)\int (1-\mu^2)^2 \frac{d^2 P_n}{d\mu^2} d\mu = -(1-\mu^2)^3 \frac{d^3 P_n}{d\mu^3}, &c.$$

Hence, employing  $\int_{-\infty}^{\infty} P_n d\mu^m$  to express the *m*th integral of  $P_n$  with regard to  $\mu$ , we get by successive substitution

$$(-1)^m (n+m) (n+m-1) \dots (n-m+2) (n-m+1) \int_{-\infty}^{\infty} P_n d\mu^m = (1-\mu^2)^m \frac{d^m P_n}{d\mu^m}.$$

10. Let 
$$(1-\mu^2)^m \frac{d^m P_n}{d\mu^m} = S^m$$
.

Then

$$\frac{dS^{m}}{d\mu} + (n-m+1)(n+m)S^{m-1} = 0.$$

Putting m+1 for m we have

$$\frac{dS^{m+1}}{d\mu} + (n-m)(n+m+1)S^m = 0.$$

Now 
$$\frac{dS^m}{d\mu} = (1 - \mu^2)^m \frac{d^{m+1}P_n}{d\mu^{m+1}} - 2m\mu (1 - \mu^2)^{m-1} \frac{d^m P_n}{d\mu^m};$$

therefore

$$(1 - \mu^2) \frac{dS^m}{d\mu} + 2m\mu S^m = S^{m+1},$$

and

$$\frac{d}{d\mu} \left\{ (1 - \mu^2) \frac{dS^m}{d\mu} + 2m\mu S^m \right\} + (n - m)(n + m + 1) S^m = 0,$$

or

$$(1-\mu^2)\frac{d^2S^m}{d\mu^2} + 2\mu (m-1)\frac{dS^m}{d\mu} + (n+m)(n-m+1)S^m = 0.$$

Multiplying by  $(1-\mu^2)^{-m}$  we get

$$\frac{d}{d\mu}\left\{ (1-\mu^2)^{-m+1} \frac{dS^m}{d\mu} \right\} + (n+m)(n-m+1)(1-\mu^2)^{-m}S^m = 0,$$

the differential equation for  $S^m$ .

11. From Art. 9 it appears that  $S_m$  and  $\int_{-m}^{m} P_n d\mu_m$  differ by merely a constant multiplier, so that the differential equation for  $\int_{-m}^{m} P_n d\mu^m$  is of the same form as the differential equation for  $S_m$ , hence we get

$$\frac{d}{d\mu}\left\{(1-\mu^2)^{-m+1}\frac{d}{d\mu}\left[\int^m P_n d\mu^m\right]\right\} + (n+m)(n-m+1)(1-\mu^2)^{-m}\int^m P_n d\mu^m = 0.$$

When m = n, the equation

$$\frac{dS^{m+1}}{d\mu} + (n-m)(n+m+1)S^m = 0 \text{ (see Art. 10)}$$

fails to give any value of  $S^m$  or of  $\frac{d^m P_n}{d\mu^m}$ , since the factor n-m then vanishes. Hence we have

$$(1-\mu^2)^{n+1}\frac{d^{n+1}P_n}{d\mu^{n+1}} = \text{constant}.$$

This constant = 0, since  $P_n$  is of the *n*th order.

Also when m=n+1, the factor n-m+1 vanishes and we have

$$\frac{d}{d\mu} \left\{ (1 - \mu^2)^{-n} \int_0^n P_n d\mu^n \right\} = 0,$$

$$\int_0^n P_n d\mu^n = c \left( 1 - \mu^2 \right)^n,$$

$$P_n = c \frac{d^n \left( 1 - \mu^2 \right)^n}{d\mu^n}.$$

 $\mathbf{or}$ 

and

The value of c is given above in Art. 2.

12. We have seen above that

$$(1-\mu^2)\frac{d^{m+1}P_n}{d\mu^{m+1}}-2\mu m\frac{d^mP_n}{d\mu^m}+(n-m+1)(n+m)\frac{d^{m-1}P_n}{d\mu^{m-1}}=0;$$

therefore by means of formulae (6) and (5) above, we get

$$(2n+1)(1-\mu^{2})\frac{d^{m+1}P_{n}}{d\mu^{m+1}} = 2m(2n+1)\mu\frac{d^{m}P_{n}}{d\mu^{m}} - (2n+1)(n-m+1)(n+m)\frac{d^{m-1}P_{n}}{d\mu^{m-1}}$$

$$= 2m(n-m+1)\frac{d^{m}P_{n+1}}{d\mu^{m}} + 2m(n+m)\frac{d^{m}P_{n-1}}{d\mu^{m}}$$

$$-(n-m+1)(n+m)\frac{d^{m}P_{n+1}}{d\mu^{m}} + (n-m+1)(n+m)\frac{d^{m}P_{n-1}}{d\mu^{m}}$$

$$= -(n-m)(n-m+1)\frac{d^{m}P_{n+1}}{d\mu^{m}} + (n+m)(n+m+1)\frac{d^{m}P_{n-1}}{d\mu^{m}}.$$

$$32-2$$

If  $P_n$  contain only even or only odd powers of  $\mu$ , and if  $\int P_n d\mu$  vanishes when  $\mu = 1$ , then it also vanishes when  $\mu = -1$ , and  $\int P_n d\mu$  will contain only odd or even powers of  $\mu$  respectively.

First suppose n to be even and therefore  $P_n$  to contain only even powers of  $\mu$ , then  $\int P_n d\mu$  will contain odd powers of  $\mu$  together with a constant term, but since  $\int P_n d\mu$  vanishes both when  $\mu = 1$  and when  $\mu = -1$  this constant is zero, because the value of the remaining terms, if finite, would change sign when  $\mu$  is changed from 1 to -1.

Hence  $\int P_n d\mu$  contains only odd powers of  $\mu$  and is divisible by  $(1-\mu^2)$ .

Secondly, suppose n to be odd and  $P_n$  to contain only odd powers of  $\mu$ , then  $\int P_n d\mu$  will contain even powers of  $\mu$  with a constant term and will be divisible by  $(1-\mu^2)$ .

13. We have taken 
$$Q_n^m = \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m}{2}},$$
hence 
$$\frac{dQ_n^m}{d\mu} = \frac{d^{m+1} P_n}{d\mu^{m+1}} (1 - \mu^2)^{\frac{m}{2}} - m\mu \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m}{2} - 1}$$

and 
$$\frac{d^2 Q_n^m}{d\mu^2} = \frac{d^{m+2} P_n}{d\mu^{m+2}} (1 - \mu^2)^{\frac{m}{2}} - 2m\mu \frac{d^{m+1} P_n}{d\mu^{m+1}} (1 - \mu^2)^{\frac{m}{2} - 1}$$

+ 
$$m(m-2)\mu^2 \frac{d^m P_n}{d\mu^m} (1-\mu^2)^{\frac{m}{2}-2} - m \frac{d^m P_n}{d\mu^m} (1-\mu^2)^{\frac{m}{2}-1}$$
.

From these equations we get

$$(1 - \mu^2) \frac{d^2 Q_n^m}{d\mu^2} - 2\mu \frac{dQ_n^m}{d\mu} = \frac{d^{m+2} P_n}{d\mu^{m+2}} (1 - \mu^2)^{\frac{m}{2}+1}$$

$$- 2\mu (m+1) \frac{d^{m+1} P_n}{d\mu^{m+1}} (1 - \mu^2)^{\frac{m}{2}} + m^2 \mu^2 \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m-1}{2}} - m \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m}{2}}$$

$$= \frac{d^{m+2} P_n}{d\mu^{m+2}} (1 - \mu^2)^{\frac{m+1}{2}} - 2\mu (m+1) \frac{d^{m+1} P_n}{d\mu^{m+1}} (1 - \mu^2)^{\frac{m}{2}}$$

$$+ m^2 \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m-1}{2}} - m (m+1) \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m}{2}}$$

$$= m^2 \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m-1}{2}} - n (n+1) \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m}{2}} ,$$
or
$$(1 - \mu^2) \frac{d^2 Q_n^m}{d\mu^2} - 2\mu \frac{dQ_n^m}{d\mu} + n (n+1) Q_n^m - \frac{m^2}{1 - \mu^2} Q_n^m = 0,$$
i.e.
$$(1 - \mu^2) \frac{d^2 Q_n^m}{d\mu^2} - 2\mu \frac{dQ_n^m}{d\mu} + \left\{ n (n+1) - \frac{m^2}{1 - \mu^2} \right\} Q_n^m = 0.$$

$$(1 - \mu^2) \frac{d^2 Q_n^m}{d\mu^2} - 2\mu \frac{dQ_n^m}{d\mu} + \left\{ n (n+1) - \frac{m^2}{1 - \mu^2} \right\} Q_n^m = 0.$$

the differential equation for  $Q_n^m$ 

Since  $Q_n^m = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{(n-m)!} H_n^m$ 

equation (12) gives

$$(1-\mu^{2})\frac{d^{2}H_{n}^{m}}{d\mu^{2}}-2\mu\frac{dH_{n}^{m}}{d\mu}+\left\{n(n+1)-\frac{m^{2}}{1-\mu^{2}}\right\}H_{n}^{m}=0,$$

$$\frac{d}{d\mu}\left\{(1-\mu^{2})\frac{dH_{n}^{m}}{d\mu}\right\}+\left\{n(n+1)-\frac{m^{2}}{1-\mu^{2}}\right\}H_{n}^{m}=0.$$

Hence if we have a function of  $\mu$  and  $\lambda$  of the form  $R = Q_n^m \cos(m\lambda + a)$  where m is a positive integer, we shall have

$$\frac{d}{d\mu}\left\{\left(1-\mu^2\right)\frac{dR}{d\mu}\right\}+n\left(n+1\right)R-\frac{m^2}{1-\mu^2}R=0,$$

$$\frac{d^2R}{d\lambda^2}=-m^2R;$$

but

or

## 254 USEFUL FORMULAE, CONNECTING LEGENDRE'S COEFFICIENTS, WHICH

hence 
$$\frac{d}{d\mu}\left\{(1-\mu^2)\frac{dR}{d\mu}\right\} + n\left(n+1\right)R + \frac{1}{1-\mu^2}\frac{d^2R}{d\lambda^2} = 0,$$
 where 
$$R = \left(1-\mu^2\right)^{\frac{m}{2}}\frac{d^mP_n}{d\mu^m}\cos\left(m\lambda + a\right).$$

14. Since 
$$Q_n^m = \frac{d^m P_n}{d\mu^m} (1 - \mu^2)^{\frac{m}{2}}$$
,

we have 
$$\frac{dQ_n^m}{d\mu} (1-\mu^2)^{\frac{1}{2}} = \frac{d^{m+1}P_n}{d\mu^{m+1}} (1-\mu^2)^{\frac{m+1}{2}} - m\mu \frac{d^mP_n}{d\mu^m} (1-\mu^2)^{\frac{m-1}{2}}.$$

Combining this with equation (10), we get

a very simple formula for expressing  $\frac{dQ_n^m}{d\mu}(1-\mu^2)^{\frac{1}{2}}$  in terms of  $Q_n^{m+1}$  and  $Q_n^{m-1}$ .

15. Multiplying equation (4) by n and adding to equation (3), we get

$$(2n+1) P_{n+1} = (2n+1) \mu P_n + n (2n+1) \int P_n d\mu,$$

$$P_{n+1} = \mu P_n + n \int P_n d\mu.$$

 $\mathbf{or}$ 

Multiplying equation (4) by (n+1) and subtracting from equation (3), we get, similarly,

$$P_{n-1} = \mu P_n - (n+1) \int P_n d\mu.$$

Hence differentiating we get

$$\frac{dP_{n+1}}{d\mu} = \mu \frac{dP_n}{d\mu} + (n+1) P_n \text{ and } \frac{dP_{n-1}}{d\mu} = \mu \frac{dP_n}{d\mu} - nP_n,$$
therefore
$$n \frac{dP_{n+1}}{d\mu} + (n+1) \frac{dP_{n-1}}{d\mu} = (2n+1) \mu \frac{dP_n}{d\mu}.....(14).$$

16. Differentiating the expressions for  $P_{n+1}$  and  $P_{n-1}$  (with respect to  $\mu$ ) m times, we get

$$\frac{d^{m}P_{n+1}}{d\mu^{m}} = \mu \frac{d^{m}P_{n}}{d\mu^{m}} + (m+n) \frac{d^{m-1}P_{n}}{d\mu^{m-1}},$$

and

$$\frac{d^{m} P_{n-1}}{d \mu^{m}} = \mu \frac{d^{m} P_{n}}{d \mu^{m}} - (n-m+1) \frac{d^{m-1} P_{n}}{d \mu^{m-1}}.$$

Multiplying by  $(1 - \mu^2)^{\frac{m}{2}}$  we have

$$Q_{n+1}^{m} = \mu \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}}{d\mu^{m}} + (m+n) \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m-1} P_{n}}{d\mu^{m-1}},$$

and 
$$Q_{n-1}^{m} = \mu \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}}{d \mu^{m}} - (n - m + 1) \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m-1} P_{n}}{d \mu^{m-1}};$$

or  $Q_{n+1}^m = \mu Q_n^m + (m+n) (1-\mu^2)^{\frac{1}{2}} Q_n^{m-1}$ 

and 
$$Q_{n-1}^m = \mu Q_n^m - (n-m+1) (1-\mu^2)^{\frac{1}{2}} Q_n^{m-1}$$

Hence, combining these two equations, we get

$$Q_{n+1}^m = \frac{2n+1}{n-m+1} \mu Q_n^m - \frac{n+m}{n-m+1} Q_{n-1}^m \dots (15),$$

whence the quantities  $Q_{n+1}^m$ , &c., may be successively determined.

17. Putting 
$$Q_n^m = \frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3} \cdot \dots \cdot (2n-1) H_n^m$$

in equation (13), we have

$$\frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{1 \cdot 2 \cdot 3 \cdot \dots (n-m)} (1-\mu^2)^{\frac{1}{2}} \frac{dH_n^m}{d\mu}$$

$$= \frac{1}{2} \cdot \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{1 \cdot 2 \cdot 3 \cdot \dots (n-m-1)} H_n^{m+1}$$

$$- \frac{1}{2} (n-m+1) (n+m) \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{1 \cdot 2 \cdot 3 \cdot \dots (n-m+1)} H_n^{m-1},$$
or
$$(1-\mu^2)^{\frac{1}{2}} \frac{dH_n^m}{d\mu} = \frac{n-m}{2} H_n^{m+1} - \frac{n+m}{2} H_n^{m-1}......................(16),$$

256 USEFUL FORMULAE, CONNECTING LEGENDRE'S COEFFICIENTS, WHICH which is a very elegant formula for finding

$$(1-\mu^2)^{\frac{1}{3}}\frac{dH_n^m}{d\mu};$$

but when m=0,

$$(1-\mu^2)^{\frac{1}{2}}\frac{dH_n^0}{d\mu}=nH_n^1.$$

Making the same substitution in equation (7'), we have

$$\begin{split} \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{1 \cdot 2 \cdot 3 \cdot \dots (n-m)} (1-\mu^2)^{-\frac{1}{2}} H_n^m \\ &= \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-5)}{1 \cdot 2 \cdot 3 \cdot \dots (n-m-2)} (1-\mu^2)^{-\frac{1}{2}} H_{n-2}^m + (2n-1) \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-3)}{1 \cdot 2 \cdot 3 \cdot \dots (n-m)} H_{n-1}^{m-1}, \\ \text{or} &\qquad (1-\mu^2)^{-\frac{1}{2}} H_n^m = \frac{(n-m-1)(n-m)}{(2n-3)(2n-1)} (1-\mu^2)^{-\frac{1}{2}} H_{n-2}^m + H_{n-1}^{m-1} \cdot \dots (17), \end{split}$$

which is a convenient formula.

In order to complete the determination of the quantities  $H_n^m$ , &c. we must remember that, when m is greater than n, the quantity  $H_n^m$  vanishes; when m=n we have

$$H_m^m = (1-\mu^2)^{\frac{m}{2}},$$

and when n = m + 1, we have

$$H_{m+1}^m = \mu \left(1 - \mu^2\right)^{\frac{m}{2}}$$

Also  $(1 - \mu^2)^{\frac{1}{2}} \frac{dH_m^m}{d\mu} = -m\mu \left(1 - \mu^2\right)^{\frac{m-1}{2}},$ 

and

$$(1 - \mu^2)^{\frac{1}{2}} \frac{dH_{m+1}^m}{d\mu} = (1 - \mu^2)^{\frac{m+1}{2}} - m\mu^2 (1 - \mu^2)^{\frac{m-1}{2}} = (m+1) (1 - \mu^2)^{\frac{m+1}{2}} - m (1 - \mu^2)^{\frac{m-1}{2}}.$$

18. Let 
$$G_n^m (1-\mu^2)^{\frac{m}{2}} = H_n^m$$

Then from equation (9) we get

$$G_{n+1}^{m} = \mu G_{n}^{m} - \frac{(n-m)(n+m)}{(2n-1)(2n+1)} G_{n-1}^{m} \dots (18).$$

ARE EMPLOYED IN THE THEORY OF TERRESTRIAL MAGNETISM. 257

Also from equation (17) we get

$$G_{n}^{m} = \frac{(n-m-1)(n-m)}{(2n-3)(2n-1)}G_{n-2}^{m} + G_{n-1}^{m-1},$$

or putting (n+1) for n and (m+1) for m, we get

$$G_{n+1}^{m+1} = G_n^m + \frac{(n-m-1)(n-m)}{(2n-1)(2n+1)} G_{n-1}^{m+1} \dots (19).$$

We have

$$G_n^n = 1$$
,  $G_{n+1}^n = \mu$ , and  $G_{n+1}^{n-1} = G_n^{n-2} + \frac{1 \cdot 2}{(2n-1)(2n+1)}$ .

Equation (10) gives us

$$Q_n^{m+1} - 2m\mu (1-\mu^2)^{-\frac{1}{2}} Q_n^m + (n-m+1) (n+m) Q_n^{m-1} = 0.$$

Hence since

$$Q_n^m = \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{1 \cdot 2 \cdot 3 \cdot \dots (n-m)} H_n^m,$$

we get

$$(n-m) H_n^{m+1} - 2m\mu (1-\mu^2)^{-\frac{1}{2}} H_n^m + (n+m) H_n^{m-1} = 0 \dots (20).$$

Again since

$$H_n^m = G_n^m (1 - \mu^2)^{\frac{m}{2}},$$

we get  $(n-m)(1-\mu^2)G_n^{m+1}-2m\mu G_n^m+(n+m)G_n^{m-1}=0$  .....(21).

Putting m=0, we get

$$(1-\mu^2) G_n^1 + G_n^{-1} = 0.$$

We have also (see Art. 14)

$$(1-\mu^2)^{\frac{1}{2}}\frac{dQ_n^m}{d\mu} = \frac{d^{m+1}P_n}{d\mu^{m+1}}\left(1-\mu^2\right)^{\frac{m+1}{2}} - m\mu \frac{d^mP_n}{d\mu^m}\left(1-\mu^2\right)^{\frac{m-1}{2}};$$

therefore  $(1-\mu^2)^{\frac{1}{2}} \frac{dH_n^m}{d\mu} = (n-m) H_n^{m+1} - m\mu (1-\mu^2)^{-\frac{1}{2}} H_n^m....(22);$ 

hence from equation (16)

$$(1-\mu^2)^{\frac{1}{2}}\frac{dH_n^m}{d\mu} = m\mu (1-\mu^2)^{-\frac{1}{2}}H_n^m - (n+m) H_n^{m-1}.$$

19. We have seen that

$$P_n = \frac{1}{2^n \cdot 1 \cdot 2 \cdot 3 \cdot \dots \cdot n} \frac{d^n (\mu^2 - 1)^n}{d\mu^n}.$$

The coefficient of  $\mu^n$  in this expression is

$$\frac{2n\left(2n-1\right)\left(2n-2\right)\ldots\left(n+1\right)}{2^{n}\cdot 1\cdot 2\cdot 3\cdot \ldots\cdot n}=\frac{2n\left(2n-1\right)\ldots 3\cdot 2\cdot 1}{2^{n}\left(1\cdot 2\cdot 3\cdot \ldots\cdot n\right)^{2}}=\frac{1\cdot 3\cdot 5\cdot \ldots\cdot \left(2n-1\right)}{1\cdot 2\cdot 3\cdot \ldots\cdot n}.$$

Hence the coefficient of  $\mu^{n-m}$  in  $\frac{d^m P_n}{d\mu^m}$  is

$$n(n-1)\dots(n-m+1)\times \frac{1\cdot 3\cdot 5\dots(2n-1)}{1\cdot 2\cdot 3\dots n} = \frac{1\cdot 3\cdot 5\dots(2n-1)}{1\cdot 2\cdot 3\dots(n-m)}$$

Also the coefficient of  $\mu^{n-m}$  in the value of  $G_n^m$  is unity.

20. 
$$2^{n} n! P_{n} = \frac{d^{n}}{d \mu^{n}} (\mu^{2} - 1)^{n}.$$

Differentiating m times with respect to  $\mu$ , then

$$2^{n} n! \frac{d^{m} P_{n}}{d \mu^{m}} = \frac{d^{n+m}}{d \mu^{n+m}} (\mu^{2} - 1)^{n},$$

hence

$$2^{n} n! Q_{n}^{m} = (1 - \mu^{2})^{\frac{m}{2}} \frac{d^{n+m}}{d\mu^{n+m}} (\mu^{2} - 1)^{n},$$

or 
$$\frac{(2n)!}{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)} Q_n^m = (1-\mu^2)^{\frac{m}{2}} \frac{d^{n+m}}{d\mu^{n+m}} (\mu^2 - 1)^n;$$

therefore  $\frac{(2n)!}{(n-m)!}H$ 

$$\frac{(2n)!}{(n-m)!}H_n^m = (1-\mu^2)^{\frac{m}{2}}\frac{d^{n+m}}{d\mu^{n+m}}(\mu^2-1)^n,$$

or 
$$H_n^m = \frac{(n-m)!}{(2n)!} (1-\mu^2)^{\frac{m}{2}} \frac{d^{n+m}}{d\mu^{n+m}} (\mu^2 - 1)^n \dots (23),$$

or 
$$H_n^m = \left\{ \mu^{n-m} - \frac{(n-m)(n-m-1)}{2(2n-1)} \mu^{n-m-2} + \frac{(n-m)(n-m-1)(n-m-2)(n-m-3)}{2 \cdot 4 \cdot (2n-1)(2n-3)} \mu^{n-m-4} - &c. \right\} (1-\mu^2)^{\frac{m}{2}}.$$

This is the function represented by  $P^{n,m}$  in Gauss's Allgemeine Theorie des Erdmagnetismus. (See Gauss's Werke, Band v. p. 142.)

Also 
$$G_{n}^{m} = \mu^{n-m} - \frac{(n-m)(n-m-1)}{2(2n-1)} \mu^{n-m-2} + \frac{(n-m)(n-m-1)(n-m-2)(n-m-3)}{2 \cdot 4 \cdot (2n-1)(2n-3)} \mu^{n-m-4} - \&c.,$$

$$\frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{(n-m)!} \cdot G_{n}^{m} = \frac{d^{m}P_{n}}{d\mu^{m}}.$$

and

21. When  $\mu = 1$ , we have

$$P_n = 1$$
, and  $\frac{d^m P_n}{d\mu^m} = \frac{(n+m)!}{(n-m)! \ m!} \cdot \frac{1}{2^m}$ ,

and in particular

$$\frac{dP_n}{d\mu} = \frac{n(n+1)}{2}.$$

Hence, when  $\mu = 1$ ,  $H_n^0$  or  $G_n^0 = \frac{1 \cdot 2 \cdot 3 \cdot ... \cdot n}{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)} P_n$ 

$$= \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)} = \frac{(n!)^2 \cdot 2^n}{(2n)!}.$$

And 
$$G_n^m = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot (n-m)}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)} \frac{d^m P_n}{d\mu^m} = \frac{(n-m)! \cdot n! \cdot 2^n}{(2n)!} \cdot \frac{(n+m)!}{(n-m)! \cdot m! \cdot 2^m}$$
$$= \frac{2^{n-m} \cdot (n+m)! \cdot n!}{(2n)! \cdot m!} = \frac{(n+m)!}{2^m \cdot m! \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}.$$

And in particular when m=1,

$$G_n^1 = \frac{2^{n-1}(n+1)! \ n!}{(2n)!} = \frac{n+1}{2} \cdot \frac{2^n (n!)^2}{(2n)!} = \frac{n+1}{2} \cdot G_n^0 = \frac{1}{2} \cdot \frac{1 \cdot 2 \cdot 3 \dots (n+1)}{1 \cdot 3 \cdot 5 \dots (2n-1)}.$$

22. Again, when  $\mu = 0$ , first, suppose m = 0 and n = 2r.

Then the coefficient of  $\mu^n$  in  $(\mu^2-1)^n$  is

$$\frac{n(n-1)...(r+1)}{1.2.3...r}(-1)^r;$$

260 USEFUL FORMULAE, CONNECTING LEGENDRE'S COEFFICIENTS, WHICH therefore the constant term in  $P_n$  is

$$\frac{1}{2^{n} n!} \cdot \frac{n! (-1)^{r} n (n-1) \dots (r+1)}{1 \cdot 2 \cdot 3 \dots r} = \frac{(-1)^{r} n!}{2^{n} (r!)^{2}}$$

$$= \frac{(-1)^{\frac{n}{2}} n!}{(2 \cdot 4 \cdot 6 \cdot ... \cdot n)^{2}} = \frac{(-1)^{\frac{n}{2}} 1 \cdot 3 \cdot 5 \cdot ... \cdot (n-1)}{2 \cdot 4 \cdot 6 \cdot ... \cdot n},$$

or when  $\mu = 0$ , the value of  $G_n^0$  is

$$\frac{1 \cdot 2 \cdot 3 \cdot ... \cdot n}{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)} P_n = \frac{(-1)^{\frac{n}{2}} \{1 \cdot 3 \cdot 5 \cdot ... \cdot (n-1)\}^2}{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}.$$

Next, let n-m=2r, so that

$$n+m=2\ (n-r).$$

Then the coefficient of  $\mu^{n+m}$  in  $(\mu^2-1)^n$  is

$$\frac{n(n-1)...(n-r+1)}{1.2.3...r}(-1)^r;$$

therefore when  $\mu = 0$ , the value of

$$\frac{d^{m}P_{n}}{d\mu^{m}} = \frac{1}{2^{n} n!} \frac{d^{n+m}}{d\mu^{n+m}} (\mu^{2} - 1)^{n} = \frac{(n+m)!}{2^{n} n!} \cdot \frac{n(n-1) \dots (n-r+1)}{1 \cdot 2 \cdot 3 \dots r} (-1)^{r}.$$

And  $G_n^m = \frac{(n-m)!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)} \frac{d^m P_n}{d\mu^m}$ 

$$= (-1)^{\frac{n-m}{2}} \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (n-m-1) \cdot 1 \cdot 3 \cdot 5 \cdot ... \cdot (n+m-1)}{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)};$$

when m=0, this reduces to

$$G_n^0 = (-1)^{\frac{n}{2}} \frac{\{1 \cdot 3 \cdot 5 \dots (n-1)\}^2}{1 \cdot 3 \cdot 5 \dots (2n-1)},$$

as before.

The same values for  $G_n^m$  and  $G_n^0$ , when  $\mu = 0$  and n - m = 2r, may also be obtained from equation (18), thus

$$G_{m+2r}^{m} = (-1)^{r} \cdot \frac{1(2m+1)}{(2m+1)(2m+3)} \cdot \frac{3(2m+3)}{(2m+5)(2m+7)} \cdots \frac{(2r-1)(2m+2r-1)}{(2m+4r-3)(2m+4r-1)}$$

$$= (-1)^{r} \cdot \frac{1 \cdot 3 \cdot 5 \cdots (2r-1)\{(2m+1)(2m+3) \cdots (2m+2r-1)\}}{(2m+1)(2m+3) \cdots (2m+4r-1)}$$

$$= (-1)^{\frac{n-m}{2}} \cdot \frac{1 \cdot 3 \cdot 5 \cdots (n-m-1) \cdot 1 \cdot 3 \cdot 5 \cdots (n+m-1)}{1 \cdot 3 \cdot 5 \cdots (2n-1)}.$$

23. We have seen above (in Art. 16) that

$$Q_{n+1}^{m} = \mu \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}}{d\mu^{m}} + \left(m + n\right) \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m-1} P_{n}}{d\mu^{m-1}},$$

and

$$Q_{n-1}^{m} = \mu \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m} P_{n}}{d\mu^{m}} - (n - m + 1) \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m-1} P_{n}}{d\mu^{m-1}},$$

therefore

$$\frac{dQ_{n+1}^{m}}{d\mu} = \mu \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m+1}P_{n}}{d\mu^{m+1}} + \left\{ \left(1 - \mu^{2}\right)^{\frac{m}{2}} - m\mu^{2} \left(1 - \mu^{2}\right)^{\frac{m}{2}-1} + \left(m+n\right) \left(1 - \mu^{2}\right)^{\frac{m}{2}} \right\} \frac{d^{m}P_{n}}{d\mu^{m}} - m\left(m+n\right) \mu \left(1 - \mu^{2}\right)^{\frac{m}{2}-1} \frac{d^{m-1}P_{n}}{d\mu^{m-1}}.$$

But 
$$(1-\mu^2) \frac{d^{m+1}P_n}{d\mu^{m+1}} - 2m\mu \frac{d^mP_n}{d\mu^m} + (n+m)(n-m+1) \frac{d^{m-1}P_n}{d\mu^{m-1}} = 0$$
,

therefore

$$\mu \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m+1}P_{n}}{d\mu^{m+1}} - 2m\mu^{2} \left(1 - \mu^{2}\right)^{\frac{m}{2} - 1} \frac{d^{m}P_{n}}{d\mu^{m}} + \left(n + m\right)\left(n - m + 1\right)\mu \left(1 - \mu^{2}\right)^{\frac{m}{2} - 1} \frac{d^{m-1}P_{n}}{d\mu^{m-1}} = 0.$$

Combining these equations, we see that

$$\frac{dQ_{n+1}^{m}}{d\mu} = \left\{ (1-\mu^{2}) + m\mu^{2} + (m+n)(1-\mu^{2}) \right\} (1-\mu^{2})^{\frac{m}{2}-1} \frac{d^{m}P_{n}}{d\mu^{m}} - (n+m)(n+1)\mu(1-\mu^{2})^{\frac{m}{2}-1} \frac{d^{m-1}P_{n}}{d\mu^{m-1}}.$$

262 USEFUL FORMULAE, CONNECTING LEGENDRE'S COEFFICIENTS, WHICH Similarly

$$\frac{dQ_{n-1}^{m}}{d\mu} = \mu \left(1 - \mu^{2}\right)^{\frac{m}{2}} \frac{d^{m+1}P_{n}}{d\mu^{m+1}} + \left\{ \left(1 - \mu^{2}\right)^{\frac{m}{2}} - m\mu^{2} \left(1 - \mu^{2}\right)^{\frac{m}{2}-1} - \left(n - m + 1\right) \left(1 - \mu^{2}\right)^{\frac{m}{2}} \right\} \frac{d^{m}P_{n}}{d\mu^{m}} + m\left(n - m + 1\right) \mu \left(1 - \mu^{2}\right)^{\frac{m}{2}-1} \frac{d^{m-1}P_{n}}{d\mu^{m-1}},$$

and reducing as before

$$\frac{dQ_{n-1}^{m}}{d\mu} = \left\{ (1-\mu^{2}) + m\mu^{2} - (n-m+1)(1-\mu^{2}) \right\} (1-\mu^{2})^{\frac{m}{2}-1} \frac{d^{m}P_{n}}{d\mu^{m}} - n(n-m+1)\mu(1-\mu^{2})^{\frac{m}{2}-1} \frac{d^{m-1}P_{n}}{d\mu^{m-1}}.$$

Again, 
$$\frac{dQ_n^m}{d\mu} = (1 - \mu^2)^{\frac{m}{2}} \frac{d^{m+1}P_n}{d\mu^{m+1}} - m\mu \left(1 - \mu^2\right)^{\frac{m}{2} - 1} \frac{d^m P_n}{d\mu^m},$$

or reducing by the expression

$$(1 - \mu^2)^{\frac{m}{2}} \frac{d^{m+1} P_n}{d\mu^{m+1}} - 2m\mu (1 - \mu^2)^{\frac{m}{2} - 1} \frac{d^m P_n}{d\mu^m} + (n+m) (n-m+1) (1 - \mu^2)^{\frac{m}{2} - 1} \frac{d^{m-1} P_n}{d\mu^{m-1}} = 0,$$
 we get

$$\frac{dQ_n^m}{d\mu} = m\mu \left(1 - \mu^2\right)^{\frac{m}{2} - 1} \frac{d^m P_n}{d\mu^m} - (n + m) \left(n - m + 1\right) \left(1 - \mu^2\right)^{\frac{m}{2} - 1} \frac{d^{m-1} P_n}{d\mu^{m-1}}.$$

Test of the above,

$$(n-m+1)\frac{dQ_{n+1}^{m}}{d\mu} + (n+m)\frac{dQ_{n-1}^{m}}{d\mu} - (2n+1)\mu\frac{dQ_{n}^{m}}{d\mu}$$

$$= (1-\mu^{2})^{\frac{m}{2}-1}\frac{d^{m}P_{n}}{d\mu^{m}}\{(n-m+1)(1-\mu^{2}) + m(n-m+1)\mu^{2} + (n-m+1)(m+n)(1-\mu^{2}) + (n+m)(1-\mu^{2}) + m(n+m)\mu^{2} - (n-m+1)(m+n)(1-\mu^{2}) - (2n+1)m\mu^{2}\}$$

$$-\mu(1-\mu^{2})^{\frac{m}{2}-1}\frac{d^{m-1}P_{n}}{d\mu^{m-1}}\{(n+1)(n-m+1)(n+m) + n(n-m+1)(n+m) - (2n+1)(n-m+1)(n+m)\}$$

$$= (2n+1)(1-\mu^{2})^{\frac{m}{2}}\frac{d^{m}P_{n}}{d\mu^{m}} = (2n+1)Q_{n}^{m},$$

agreeing with the relation found in Art. 8.

24. To abridge, put

$$(1-\mu^2)^{\frac{m}{2}-1}\frac{d^m P_n}{d\mu^m} = X,$$

and

$$(1-\mu^2)^{\frac{m}{2}-1}\frac{d^{m-1}P_n}{d\mu^{m-1}}=Y.$$

Then we have

$$\begin{split} \frac{dQ_{n+1}^m}{d\mu} &= \{m+n+1-(n+1)\,\mu^2\}\,X - (n+1)\,(n+m)\,\mu\,Y, \\ \frac{dQ_{n-1}^m}{d\mu} &= \{-(n-m)+n\mu^2\}\,X - n\,(n-m+1)\,\mu\,Y, \\ \frac{dQ_n^m}{d\mu} &= m\mu X - (n+m)\,(n-m+1)\,Y. \end{split}$$

Hence 
$$(n-m+1) n \frac{dQ_{n+1}^m}{d\mu} - (n+1) (n+m) \frac{dQ_{n-1}^m}{d\mu}$$
  
=  $\{n (n+1) (1-\mu^2) - m^2\} (2n+1) X$ ,

and similarly 
$$\{n(1-\mu^2)-m\}\frac{dQ_{n+1}^m}{d\mu} + \{(n+1)(1-\mu^2)+m\}\frac{dQ_{n-1}^m}{d\mu}$$
  
=  $-\{n(n+1)(1-\mu^2)-m^2\}(2n+1)\mu Y$ .

Substitute for X and Y in the equation for  $\frac{dQ_n^m}{d\mu}$ , then

$$(2n+1)\left\{n\left(n+1\right)\left(1-\mu^{2}\right)-m^{2}\right\}\mu\frac{dQ_{n}^{m}}{d\mu}$$

$$=\left(n-m+1\right)nm\mu^{2}\frac{dQ_{n+1}^{m}}{d\mu}-\left(n+1\right)\left(n+m\right)m\mu^{2}\frac{dQ_{n-1}^{m}}{d\mu}$$

$$+\left\{n\left(n+m\right)\left(n-m+1\right)\left(1-\mu^{2}\right)-m\left(n+m\right)\left(n-m+1\right)\right\}\frac{dQ_{n+1}^{m}}{d\mu}$$

$$+\left\{\left(n+1\right)\left(n+m\right)\left(n-m+1\right)\left(1-\mu^{2}\right)+m\left(n+m\right)\left(n-m+1\right)\right\}\frac{dQ_{n-1}^{m}}{d\mu}.$$
Or,
$$=\left\{n^{2}\left(1-\mu^{2}\right)-m^{2}\right\}\left(n-m+1\right)\frac{dQ_{n+1}^{m}}{d\mu}$$

$$+\left\{\left(n+1\right)^{2}\left(1-\mu^{2}\right)-m^{2}\right\}\left(n+m\right)\frac{dQ_{n-1}^{m}}{d\mu}.$$

When m=0, then  $Q_n^m$  is reduced to  $P_n$  and we should have

$$n(n+1)(2n+1)\mu \frac{dP_n}{d\mu} = n^2(n+1)\frac{dP_{n+1}}{d\mu} + n(n+1)^2\frac{dP_{n-1}}{d\mu},$$

or  $(2n+1)\mu \frac{dP_n}{d\mu} = n \frac{dP_{n+1}}{d\mu} + (n+1) \frac{dP_{n-1}}{d\mu}$ ,

which is identical with equation (14).

25. From equation (19) we may derive a scheme of calculation, by means of which the numerical values of  $G_n^m$  for different values of n and m may be obtained.

This is the equation employed by Mr Graham in the calculation of these functions.

From equation (18) we may also derive a scheme of calculation by means of which the numerical values of  $G_n^m$  for different values of n and m may be obtained.

In the latter case the value of each function is derived from the values of the two previous functions with the same value of m.

This is the equation employed by Mr Wright in 1873—74 in the calculation of all the values of  $G_n^m$  up to  $G_{10}^{10}$  to ten places of decimals for all values of  $\mu$  differing by '01 from 0 to 1.

The functions  $G_n^m$ ,  $H_n^m$ , &c. are functions of  $\mu$ , the cosine of the geocentric co-latitude.

The values of  $G_n^m$  for different values of n and m up to  $G_{10}^{10}$  have been determined for every degree of latitude on a sphere of radius unity. They have also been determined for every degree of the geographical co-latitude, taking into account the spheroidal figure of the Earth.

The values of these functions are given in the tables.

Collection of the values of the quantities  $G_n^m$  in powers of  $\mu$  for the several values of n and m.

$$m=0, \qquad G_0^0=1, \qquad G_1^0=\mu, \qquad G_2^0=\mu^2-\frac{1}{3}$$
 
$$G_3^0=\mu^3-\frac{3}{5}\mu$$
 
$$G_4^0=\mu^4-\frac{3}{7}\mu^2+\frac{3}{35}$$
 
$$G_5^0=\mu^5-\frac{10}{9}\mu^3+\frac{5}{21}\mu$$
 
$$G_6^0=\mu^5-\frac{15}{11}\mu^4+\frac{5}{11}\mu^2-\frac{5}{231}$$
 
$$G_7^0=\mu^7-\frac{21}{13}\mu^5+\frac{105}{143}\mu^3-\frac{35}{429}\mu$$
 
$$G_8^0=\mu^8-\frac{28}{15}\mu^9+\frac{14}{13}\mu^4-\frac{28}{143}\mu^2+\frac{7}{1287}$$
 
$$G_9^0=\mu^9-\frac{36}{17}\mu^7+\frac{126}{85}\mu^5-\frac{84}{221}\mu^3+\frac{63}{2431}\mu$$
 
$$G_{10}^0=\mu^{10}-\frac{45}{19}\mu^8+\frac{630}{323}\mu^6-\frac{210}{323}\mu^4+\frac{315}{4199}\mu^2-\frac{5}{46189}$$
 
$$m=1, \qquad G_2^1=\mu, \qquad G_3^1=\mu^2-\frac{1}{5}$$
 
$$G_4^1=\mu^3-\frac{3}{7}\mu$$
 
$$G_5^1=\mu^4-\frac{2}{3}\mu^2+\frac{1}{21}$$
 
$$G_6^1=\mu^5-\frac{10}{11}\mu^3+\frac{5}{33}\mu$$
 
$$G_7^1=\mu^6-\frac{15}{13}\mu^4+\frac{45}{143}\mu^2-\frac{5}{429}$$
 
$$G_8^1=\mu^7-\frac{7}{5}\mu^5+\frac{7}{13}\mu^3-\frac{7}{143}\mu$$
 
$$G_9^1=\mu^8-\frac{28}{17}\mu^6+\frac{14}{17}\mu^4-\frac{28}{221}\mu^2+\frac{7}{2431}$$
 
$$G_9^1=\mu^8-\frac{28}{16}\mu^7+\frac{378}{3328}\mu^6-\frac{84}{223}\mu^3+\frac{63}{4199}\mu$$

$$m=2, \qquad G_3^2=\mu, \qquad G_4^2=\mu^2-\frac{1}{7}$$
 
$$G_5^2=\mu^3-\frac{1}{3}\mu$$
 
$$G_6^2=\mu^4-\frac{6}{11}\mu^2+\frac{1}{33}$$
 
$$G_7^2=\mu^5-\frac{10}{13}\mu^3+\frac{15}{143}\mu$$
 
$$G_8^2=\mu^6-\frac{10}{13}\mu^3+\frac{15}{143}\mu$$
 
$$G_9^2=\mu^5-\frac{10}{17}\mu^6+\frac{7}{17}\mu^2-\frac{7}{221}\mu$$
 
$$G_{0}^2=\mu^5-\frac{28}{19}\mu^6+\frac{233}{323}\mu^4-\frac{28}{323}\mu^2+\frac{7}{4199}$$
 
$$m=3, \qquad G_3^3=\mu^2-\frac{1}{9} \qquad m=4, \qquad G_3^4=\mu, \qquad G_6^4=\mu^2-\frac{1}{11}$$
 
$$G_6^2=\mu^3-\frac{3}{13}\mu \qquad \qquad G_7^4=\mu^3-\frac{3}{13}\mu$$
 
$$G_7^3=\mu^4-\frac{6}{13}\mu^2+\frac{3}{143} \qquad \qquad G_7^4=\mu^3-\frac{3}{13}\mu$$
 
$$G_7^4=\mu^4-\frac{2}{5}\mu^2+\frac{1}{65}$$
 
$$G_8^3=\mu^5-\frac{3}{17}\mu^4+\frac{3}{17}\mu^2-\frac{1}{221} \qquad \qquad G_{10}^4=\mu^6-\frac{15}{19}\mu^4+\frac{45}{323}\mu^2-\frac{1}{323}$$
 
$$G_{10}^4=\mu^5-\frac{15}{19}\mu^5+\frac{13}{323}\mu$$
 
$$m=5, \qquad G_6^5=\mu, \qquad G_7^5=\mu^2-\frac{1}{13} \qquad m=6, \qquad G_7^9=\mu, \qquad G_8^6=\mu^2-\frac{1}{15}$$
 
$$G_8^5=\mu^3-\frac{1}{19}\mu^3+\frac{15}{323}\mu \qquad m=6, \qquad G_7^9=\mu, \qquad G_{10}^9=\mu^4-\frac{6}{19}\mu^2+\frac{3}{323}$$
 
$$G_{10}^5=\mu^3-\frac{1}{19}\mu^3+\frac{15}{323}\mu \qquad m=9, \qquad m=10$$
 
$$G_{10}^7=\mu^3-\frac{1}{19}\mu \qquad G_{10}^9=\mu \qquad m=9$$
 
$$G_{10}^{10}=\mu^3-\frac{1}{19}\mu \qquad G_{10}^9=\mu \qquad m=9$$

Formula employed by Mr Wright for the determination of the numerical values of  $G_n^m$  for values of n and m from 0 to 10

$$G_{n+1}^m = \mu G_n^m - \frac{(n-m)(n+m)}{(2n-1)(2n+1)} G_{n-1}^m$$

## Scheme of Calculation employed by Mr Graham.

Let  $G_n^m$  denote the number in the n-mth vertical line and in the nth horizontal line of the following scheme, where m varies from n-1 to -1 and n takes successive integral values

$$G_{n+1}^{m+1} = G_n^m + \frac{(n-m-1)(n-m)}{(2n-1)(2n+1)} G_{n-1}^{m+1} \text{ and } (\mu^2 - 1) G_n^1 = G_n^{-1}.$$

 $n \quad n-m=1 \quad n-m=2$ 

.OI, .O2, ETC., TO I'OO. 000 S 3 Computation of the Values of  $G_0^0$ ,  $G_1^0$ ,  $G_2^0$ , .....  $G_{10}^0$ , when

.0007979467 .0013404694 .0013456443 .0012963431 .0012306297 8696606000. 0000522889 0013925290 0013340578 0012455890 .0011804495 .0005480292 0001290350 +.0000164157 0008383915 .0011473132 .0012906768 .0013937938 .0008177724 0006823153 + 0003826899 .0013564658 026962100 0011022322 0004127972 .0002726273 .0003064867 .0004478764 0005846957 + .0007153747 .0010556897 1066522100. + .0013781794 .0011490597 .0010523901 0000415773 +.0005367252 - 0001109847 98/06/2000 .0002220521 +.0000267931 G100 -.0021938083 .0020511501 .0018620754 .0016540806 .0012487133 .0026715644 2692515000. 0007672313 .0016861712 0023682414 .0024891670 .0025876457 .0027134702 .0027394113 926231200. .0026652978 + .0025900873 .0024902482 .0023664896 .0022197412 .0014289260 0011885563 1908029000. .0004442968 .0015207802 .0025380193 0000000000 .0018834276 .0020639398 .0026626811 .0027401117 .0001621262 .0009987034 2208780100 + .0002587727 0010124361 +.0022260484 1521865000.+ .0001195957 .0007241067 .0012652158 0017625657 300 .0012578633 .0054194357 .0053608559 .0052636526 .0055097043 .0055926733 .0056302621 .0055654450 .0054619535 .0053109418 .0051127763 .0045783911 .0042448729 .0038696173 .0050035515 0047479803 .0039226606 .0028372050 .0006353620 + .0001630728 .0021738667 0026120620 .0030324964 .0038068516 .0044715673 .0047554853 0052133542 0053827139 0051284681 9961926400. .0045052027 7184622400 1664985500. .0032241614 .0020010464 0011013023 - .0003121897 0034318383 961441400. .0056214247 .0024285661 1265255100. 266982000.  $G_{80}$ 0106703354 .0093704286 0016258326 .0032165755 .0039879749 .0047377568 .00569314560 .0003887555 0032027214 0080228723 ·0104872744 0108558833 .0083570343 0049140451 .0005441642 .0054618093 .0061561347 0085612362 0102127616 .0109470135 .0109745607 0109378226 .0108364262 .0077664477 0023670729 0014646410 .0022683491 0000000000 .0008151167 .0074402963 0004929114 1925088600 7291207010 0101456477 0071235404 0032461154 .0090522294 .0097887164 898918900 G,0 .0083152276 .0016815053 .0129747963 0154119940 0205171651 .0202691631 .0221017823 0212370346 0209212358 0180521402 0143478448 0108855536 .0096234432 .0041658146 .0012675449 .0046318398 .0075323335 0215995807 0214634216 0194503722 1625162310 0172349307 0163429000 0153793447 0132522557 2069960210. 7120185500. .0027260417 +.0002036814 .0000015595 .0089476147 .0103308320 0116754111 9922165/10. 0185686057 0590186020. o21593610I 0225008922 Eg G .0435640106 .0438506050 .0307491232 .0287406855 .0266046382 .0243456696 0417661855 .0431370305 .0425549678 .0418248122 .0425791195 00094528008 0162872362 0206244763 0303382268 0336489846 0351592873 0378645940 0431392609 0439965923 0439998450 0438585714 .0435713278 0409466319 0359695628 +.0326257788 0000000000 + .0023798414 161052400. 0184820069 0266763117 0320402232 0365660997 + .0390501587 0410652044 0387485227 + .0343669841 0071128814 + .0227084127 .0247276924 0401184101 ·0418866501 0399209033 0374308184 0285483991 600 .0857142857 0815382957 0301138186 0343687543 0385834186 0427476114 0468508929 .0843454171 .0835776786 .0826415314 0431698386 .0360491071 .0323411886 .0285429814 .0042794643 .0085752686 .0128869614 0258285714 0853715886 .0849436671 .0788370386 0735787886 0715141814 0692984457 .0644267886 .0560746386 + .0530285714 0498590957 .0246608457 0207013814 +.0166714286 +.0042306386 0172057829 .0215227329 .0772428571 1.0754892671 0669348214 - .0000080686 1290822190. 719266850 + .012578067 7198428617 6.75 1784930000 1788160000 1788750000 1258330000 1343750000 0179730000 .0298750000 0357840000 0474880000 0758030000 0866250000 1213520000 1423170000 1460480000 1620630000 .1671250000 .1693440000 1731280000 0000000000 00000665500. 0000266110 0239360000 0416570000 0532710000 0200000650. 0646690000 0702720000 0812560000 .0019040000 0000280260 1021680000 0000624911. 1496110000 .1530000000 -1562090000 1592320000 .1646960000 1713470000 1746810000 1779120000 1071410000 1120000000 0000000921. 0000640441. 630 1569333333 3324333333 3044333333 1397333333 2177333333 3332333333 3329333333 3308333333 3297333333 3284333333 3269333333 325233333 3189333333 3164333333 3108333333 297233333 2892333333 2849333333 2804333333 2708333333 2657333333 2604333333 2549333333 2492333333 2309333333 2244333333 203733333 1964333333 1889333333 1812333333 1652333333 323333333 3212333333 3137333333 3009333333 2757333333 2433333333 2372333333 £30  $G_{10}$ 144444 E C 3 44444

*m* = 0.

- 0010432467	- 001645135 0012700471 001378290 0014729521 001477525 0014777885 0014777885 0014777887 0014737527 0014737527	- '001214932 '001284522 '000825733 '0008155383 '0004271570 - '000116151 + '000134848 '0002440545 + '0004755740	+ 0007031320 0009214807 001251031 0013082983 0014652812 001509304 0016777976 0017225325 0017225325 + 0016656701	+ '0015571428 '0013925127 '001716281 '00085962409 '0005703859 + '0002007980 - '000205124 '0010524712	0018161803 0020423308 0022423308 0022423308 0019669045 0019669045 000464307 0002825649 0005825649
.0028513759 .0028942975 .0029041319 .0028799447	- 0027275075 - 0025991967 - 002412712 - 002412712 - 00214771437 - 0011577437 - 0014727688 - 0014727688 - 0014727688	- 0001240860 + 0002461920 - 000933552 - 0009336548 - 0017110923 - 0020443124 - 0023519576 - 0023519576 - 0023519576	+ .0030576900 + .003097708	+ 0015051113 - 0003781793 + 0003781793 + 0002500921 - 0002500921 - 0002500921 - 0002509356 - 0003829356 - 0038997	
- 0034549985 - 0030038039 - 0025192318 - 0020048861	2003251343 -003251343 -0032651343 -003265135 -001456291 -0020466694 -002051138 -0037202694 -0037202694	+ .006286869 -0051085490 -0057864588 -0060317348 -0062060957 -006328073 -006328073 -006328073	+ .0058531904 .0055123511 .0050776136 .0050776136 .0050244197 .0024344197 .0024344282 .0015742618 + .0005312943	0013478377 0023844129 0034203680 003420368532 0052651121 0070224370 0070244370 0070244370	
.0050285863 .0059068746 .0057531194 .0075605529 + .0083224067	+ 0090319508 0090825366 0107809161 0117607502 0118299434 0118299434 0118299434 0118299434 0118299434 0118299434	+ '0118901121 '0116387912 '0112754767 '0107087672 '010708740370 '0086879437 '0077624843 '0077624843 '0077624843	+ 0043751433 0030644706 0016779329 + 0002270241 - 0012749092 004364901 0059231080 0043644380	- 0103468633 - 0116511059 - 0128180718 - 0138120219 - 0145940226 - 0153277563 - 0147031657 - 0137184146	- 0122119679 - 007365786 - 0038802788 + 0004187304 - 0056166170 - 018040923 - 0190774396 - 027588288 + 0372960373
4.02238933954 0230021800 022022535566 02227217064 + 0223890693	+ '0219257980 '0213308244 '0206036895 '0197445805 '0187445805 '018744487 '016384487 '016384487 '016384487 '016384487 '016384487 '016384487 '016384489 '016384489	+ '0102047936 '0083869958 '0064744669 '004474669 '004474669 + '000265284 + '000265284 - '0019291986 '0064148722 '0086778398	- 0109312968 - 0131562613 - 0153322635 - 0174472951 - 0113447261 - 0213384022 - 023082916 - 0246507301 - 0271373852	- 0279889533 - 028516592 - 0287272073 - 0285152082 - 0279131197 - 026101865 - 02510733797 - 0230073348 - 0201042897	- '0124797832 - '0074622385 - '0015893973 + '0052034503 '0129838007 '0218220045 '031791333 '042968052 '0554314777 + '0692640693
0194893737 01648861111 0141930804 + 0114087301	1,23828610. – 605538650. – 605538650. – 605538650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 60553650. – 6055560. – 6055560. – 6055560. – 6055600. – 6055600. – 6055600. – 6055600. – 6055600. – 6055600. – 6055600. – 6055600. – 6055600. – 6	- 0225033858 0255765581 0285863457 0315159764 034379216 037053885 0396447909 0420707702 044311508	- 0482083348 0497996654 0511244279 0528738840 0528416226 0532411399 0528482775 052022331 0520202331	°0489544170 °0466531726 °0403480576 °0403480576 °0352348462 °0315399065 °0261062222 °0129831820 °0129881820	+ '0033977007 '0129202534 '023369408 '0348424351 '04735247 '060941262 '0756052956 '0756052956 '0756052956 '0756052956 '0756052956 '0756052956
.0508825829 .0548317614 .0586872686 .0624377043		10047701614 0960086686 0969561043 0975992685 09759928324 097999828 09799828 09799828 09799828 09799828 09799828 09799828 09799828	- 0922546186 - 0898900114 - 0870747329 - 0837013829 - 080223214 - 0757496686 - 0709553304 - 0592277614 - 0532571429	- '0461899329 '038568114 '0301882186 '021143543 '0215651786 - '0115651786 + '0095404671 '0216382171 '0347585514	+ '0616638957 '0766215314 '0924234386 '109091817 '1266491071 '1451179886 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '1645313814 '164531814 '1645313814 '1645313814 '1645313814 '1645313814 '164531814 '1645313814 '1645313814 '1645313814 '1645313814 '1645318181 '1645318181 '1645318181 '1645318181 '1645318181 '16453
178640000 1777408000 17753510000 1763510000	171349000 171392000 171392000 165123000 16536000 16386000 15288000 15288000 1548021000	133672000 133672000 121856000 115375000 1018376000 1018376000 1018376000 1018376000 1018376000 1018376000	- '0680890000 058752000 0489830000 0387760000 0170240000 - '0054670000 + '0065520000 + '0065520000 + '0320000000	059368000 059368000 073787000 073787000 104115000 136503000 13650300 153472000 153472000 153472000	1.2075710000 2266880000 2465570000 22873750000 3387360000 3387360000 3387360000 3387360000 3387360000 4.4000000000
112433333 112433333 1029333333 093233333 -0633333333	- '073233333 '062933333 '052433333 '041733333 '041733333 - '03633333 + '003066667 + '026666667	793766667 051066667 051066667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 053566667 05356667 05356667 05356667 05356667 05356667 0535667 0535667 0535667 0535667 0535667 0535667 0535667 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567 053567	1.1707666667 1.185066667 2.142666667 2.242666667 2.2595666667 2.2595666667 2.259566667 2.259566667 2.259566667 2.259566667	+ 3227666667 3390666667 3555666667 3722666667 4002666667 4235666667 4410666667 4587666667 + 476666667	+ +947666667 513066667 531566667 530566667 530566667 607566667 647666667 647666667 647666667 647666667
<b>4</b> 44449	<u>rvvvvv</u>	24444444444444444444444444444444444444	r	<u>**************</u>	1,25,66,66,66,66,66,66,66,66,66,66,66,66,66
<b>2</b> 4 4 4 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i 2 2 2 4 2 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5	1995 1995 1995 1995 1995 1995 1995 1995	17. 17. 17. 17. 17. 17. 17. 18. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	1 2 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,68,88,48,88

Computation of the Values of  $G_1$ ,  $G_2$ ,  $G_3$ , .....  $G_{10}$ , when  $\mu$  is .00, .01, .02, etc., to 1.00.

m = 1.

	<u> </u>				
$G_{10}$	000000000. 000497754 0004431139 0005836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 00078836184 0007886184 0007886184 0007886184 0007886184 0007886184 0007886184 0007886184 0007	+ '0013227311 '0013794882 '0014478540 '00145849611 '00143936131 '0014314296 '0013336924 '00133409728 + '0013709677	0615170000 - 1010869388 0010887109 0005333504 0007184449 0007737804 00072811365 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 000728171 00	- 0002408408 - 000405046 - 0005758308 - 0005775108 - 0005775108 - 0010775107 - 0010791173 - 001079127	- °001576583 °0016328938 °0016687776 °0016831018 °0016749747
$G_{\mathfrak{g}}^{1}$	+ '0028794735 + '0028468121 - '0028489263 - '002661122 - '0026788601 - '002678867 - '002678867 - '0022782387 - '0022782387 - '0022782387 - '0021019154	+ 0001401183 - 0012200311 - 0005656368 - 0007003287 - 0001485392 - 0001485392 - 0001485393 - 0001333034 - 000159138 - 000159138		-0030671064 -0031775153 -0031378863 -0031273648 -003014819 -0029057103 -002596548 -002596548	-0021724998 0019166090 0016347759 0013291138
$G_8^{-1}$	000000000 0009747177 0014540270 0019237236 0023280815 0023442259 0035442259 003649582 003649582	- 0046902754 - 0049781425 - 0052319899 - 0052498496 - 005299536 - 005970456 - 0059292984 - 0059451067	- '0058467912 '005/342572 '005/34521 '005/34621 '005/39453 '005/39453 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '004/24882 '0	0028664724 .0023740511 .0018559244 .001153902 .0007559982 0004039690 .0009962952 .0015910131	+ '0027690523 '0033427188 '0038995145 '0044343529
$G_7$	- 0116550117 011529320 0113727288 0111544649 0105754943 0105754943 010575617 0101406398 0090880250 0091812330	- '0080144824 '0073598187 '00501531 '0051473360 '0051473360 '0051724 '0026544567 '0026544567	+ .0000643653 0000861836 0019109428 0028337808 0037497496 004549567 0054409567 0072439120 + .0080495129	+ '0088177393 '0095435526 '0102219833 '010448528 '011473011 '0119248028 '0123661998 '0127372226 '0130338185	+ '013387594 '0134403250 '0134039622 '0132771176
$G_6^1$	.000000000 +.0015142425 .0030230335 .004520334 .004523246 .007452437 .010595923 .0110590344 .0129795413	+ '0154727118  '0166357923  '0177368262  '0187713581  '0197350285  '0206331979  '0221598659  '0222598659	+ '0238075010 '0241686965 '0244312100 '024592626 '024598049 '02445989156 '0241889156 '0241889156	+ '0227498848 '0220312008 '0212435393 '0203277848 '0181775267 '0169468199 '016568199 '016568199 '01641868199 '01641868199 '01641868199 '01641868199	+ 10110513777 + 10093527596 + 10095732685 + 10095732685 + 10095737777 + 100957377777 + 100957377777 + 100957377777 + 10095737777 + 10095737777 + 10095737777 + 1009573777 + 1009573777 + 1009573777 + 1009573777 + 1009573777 + 1009573777 + 1009573777 + 1009573777 + 100957377 + 100957377 + 10095737 + 10095737 + 10095737 + 10095737 + 10095737 + 10095737 + 100957 + 100957
$G_5$	+ '0476190476 '04735230 '04735249 '047318549 '045958639 '0453390 '0453393410 '0433333410 '0422846576	+ '039687999 '0382544076 '0386379910 '031152977 '031152977 '031252977 '0291875999 '0291875999 '0270688076 '0270688076	+ '0201638576 '0176649410 '0151507909 '0125368076 '0071221409 '004334577 + '0014334577 + '0014389410 - '0013748090	- '0072124091 '0101618591 '0131217424 '0160842590 '0190413690 '0219847923 '0249060091 '0277962591 '0306465424	- 0361900090 .0388639924 .0414596090 .043966691
$G_4^1$	000000000 0042847143 .0085634286 .01283501429 .0170788571 .0213035714 .0254982857 .0254982857 .0254982857 .0254982857 .0254982857 .0254982857 .0254982857		- '0807390000 '0839377143 '084044286 '0890331429 '0915178571 '09383525714 '0960312857 '0980480000 '0998967143	- 1030661429 1043748571 1054915714 1064102857 107125000 107299143 1070184286 1079851429 1078238571	-1067932857 1059120000 1047787143 1033874286 1017321429
$G_3^1$	00000. – 00000. – 00000. – 00000. – 00000. – 00000. – 00000. – 000000. – 0000000. – 00000000	- 18790 18560 18560 18310 17750 17750 17740 17760 16390	- 15590 15160 14710 13750 13240 12210 12500 - 11590	- 10390 09760 09110 08440 07750 07040 06310 04790 - 04000	- 03190 .02360 .01510 00640 + .00250
$G_2^1$	00 00 00 00 00 00 00 00 00 00 00 00 00	113 113 119 119 119 119 119	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	**************************************	.41 .43 .44 .45
$G_1$	н				
н	90,000,000,000,000,000,000,000,000,000,	112211132202	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13.85.45.85.45.85.45.45.45.45.45.45.45.45.45.45.45.45.45	.41 .43 .44 .45

Control   Cont						
44         CONTRACTOR	.0015497442 .0015890179 .0015106837 .0014089282	- 0011374893 - 000568106 - 0007827411 - 0005781626 - 000128035 + 000128035 + 000165134 + 0008668263	+ .0011118052 .0013470031 .0015677731 .001563173 .0019467454 .00220951427 .0022095461 .0022855334 .0023183208 + .0023038735	+ .0022385296 .0021192355 .0019436975 .0019105438 .0017105438 .0019710387 .000694815 + .0002784523 0002784523	- 0013641227 - 0019357874 - 0024860483 - 0030150398 - 0038844287 - 0041614946 - 0042871111 - 0042028578 - 0038703603	- 0032267231 - 0022059267 - 0027337906 + 0012727014 - 003961135 - 001476233 - 01652833 - 0229377498 + 0304834489
46         00106         00908668571         0050859094         00175341741           48         00200         0091210000         0041753629         00175341741           49         00200         00912110000         0044754679         0004759134         0017594144           40         00200         00912110000         0044754679         0004759134         0017594144           51         00200         0020000         0017592454         0017592454         0007599134           52         00200         0020000         0020000         0020000         0020000         0020000           52         00200         0020000         0020000         0020000         00200000         0020000           53         00200         0020000         0020000         0020000         00200000         00200000         00200000         00200000         00200000         00200000         002000000         002000000         002000000         0020000000         0020000000         0020000000000000         0020000000000000000000000000000000000	.0006563723 -0002951216 +0000783164 -0004602746 +0008468095	+ '0012337207 '0016165739 '0019907274 '002513628 '0026935203 '003302052 '0033622052 '0033622052 '0033622052 '0033622052 '0033622052		+ '0018709174 '0012758900 + '0006202350 - '000897136 '0016379242 '0016379242 '0016379242 '0016379242 '0016379242 '0016379242 '0016379242 '0016379242 '001637924	-005619914 -0062786945 -006295463 -0072387349 -007476330 -007476330 -007476330 -007476330 -007476330 -007476330	- '0023647353 + '0001304652 '0032031340 '0072127125 '0119862817 '0177190003 '0245245597 '032526667 '0318544821 + '0526532297
44         02000         0305058949         02030513           48         02000         0205058091         02030503           49         02000         020505744         02030503         0203051           40         02000         020305743         02030503         0203051           50         02000         020305744         02030503         02030503           50         02000         020305744         02030503         02030503           50         02000         020305744         02030503         02030503           50         02000         020305744         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         02030503         0203	.0054175697 .0058556295 .0062511629 .0065991435 + .0068946679	+ '0071329982 '0073096071 '0074202249 '0074280014 '0073183740 '00711202968 '0068585935 '0065046865 + '006666630	+ '0055443448 '004938688 '004250219 '003484000 '003484000 '0017228925 + '0007417060 - '0003979862 '0013876185	- 0036748446 .0048474013 .0060196113 .0071743624 .0082925009 .0093527118 .010373955 .0112025412 .0119375962	- '0128717028 '0129997086 '0123769462 '0123769462 '015360485 '015360485 '0005762123 '0005733682 '00062795486 '00062795486 '00062795486	+ '0043395616 '0053710421 '0153779858 '0222355152 '0302039486 '0393290022 '0497119990 '041600821 '0746864319 + '08951044901
46         00100         046           47         02009         00100         046         02885774         058867924           48         03009         0301222857         058867924         03009         03009           49         03009         03009         03009         03009         03009         03009           49         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009         03009	010.	+ .0097399149 .0088417071 .0078604428 .005899528 .0056338020 .0043963287 .0030826828 .0016988669 + .0002517762	00599355 0079757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 00793757 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 007937 0079	- '0181335645 '0192910288 '0202969928 '0211257970 '0217501411 '0220776655 '0215964628 '0215964628	017732888 0177328885 0177328885 0155239366 012781975 012781975 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 012781985 01278198	+ '025555995 '034423784 '044395659 '0554065287 '0676254716 '0811015026 '0959127021 '1121401916 '1298682031 + '1491841492
46         00160         099808857143           47         03040         09923122285           48         03040         09923122281           49         03040         09923122281           53         03040         0992312281           54         03040         0992312281           55         07040         082404286           55         07040         082404286           56         07840         078404000           57         11360         0784405143           58         11360         0747418143           69         11360         07434475143           60         11428571         0744478143           60         114280         0744478143           60         114280         0744478143           61         11428571         0744478143           62         114280         0744478143           63         114280         0744478143           64         12480         0744478143           65         12480         07545645744           77         13440         0744478143           78         144000         1244475714           78         144000 </td <td>+ .0018059945 0002379236 0044636872 0066287880</td> <td>0088165658 0110171725 0132201477 0154144067 017882292 0197292466 0218844307 0258218126 0258218126</td> <td>- 0294624912 0311091410 032672548 033968479 0351451799 0361257424 036832469 0374236130 0376559560</td> <td>- 0373749438 0357385983 0357385983 0345035806761 03035816761 027649176 0228146632</td> <td>- '0117224690 '0062613689 '002447236 + '0066628515 '014197367 '0224973206 '0316000116 '0415452502 '0523735207 + '0641263637</td> <td>+ '0768463876 '0905772807 '1053638239 '1053638239 '1255217886 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '176000095 '176000095 '176000095 '176000095 '176000095 '176000095 '1760000095 '176000000000000000000000000000000000000</td>	+ .0018059945 0002379236 0044636872 0066287880	0088165658 0110171725 0132201477 0154144067 017882292 0197292466 0218844307 0258218126 0258218126	- 0294624912 0311091410 032672548 033968479 0351451799 0361257424 036832469 0374236130 0376559560	- 0373749438 0357385983 0357385983 0345035806761 03035816761 027649176 0228146632	- '0117224690 '0062613689 '002447236 + '0066628515 '014197367 '0224973206 '0316000116 '0415452502 '0523735207 + '0641263637	+ '0768463876 '0905772807 '1053638239 '1053638239 '1255217886 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '176000955 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '17600095 '176000095 '176000095 '176000095 '176000095 '176000095 '176000095 '1760000095 '176000000000000000000000000000000000000
447		- '0581289424 '05953144591 '0607428091 '0607428091 '0607428091 '0634209424 '0634209424 '0634209424 '0634209424 '0634209424 '0634209424	- '0619892091 '0608842590 '0594513424 '0576754591 '0555413691 '0553335924 '0501394091 '048338591 '048338591 '048338591	- 0343308091 - 0292433924 - 0236652091 - 0175818591 - 0109747023 - 0038258590 + 0038257910 - 0121696076 - 0210531909 + 0305523809		+ '1813019910 '1997453409 '2199710576 '2333013409 '2604586310 '2825656077 '3297265410 '33727265410 '3548150576 + '3809523809
444440       1222222222222222222222222222222222222	.0998068571 .0976055714 .0951222857 .0923510000 0892857143	0859224286 0822491429 0782658571 073045714 064384000 0590927143 0534594286 0534594286 0474781429	- 0344475714 0273862857 0199530000 0121417143 - 0039464286 + 0046388571 0136201429 023034286 0327947143 + 043000000	+ 053652857 0646765714 0761598571 0880511429 1132617142 1132617143 1126533000 1402662857 154475714	+ '1842981429 '1999394286 '2160727143 '2327040000 '2498392857 '2674845714 '2856458571 '3043291429 '3235404286 + '3432857143	+ 3635710000 3844022857 4057855714 4577268571 45031429 4733074286 4969587143 5460132857 + 5714285714
F C C C C C C C C C C C C C C C C C C C			+ 17210 18440 19690 20960 23560 23560 24890 26240 + 29000		+ 45610 47240 48890 50560 53250 53960 55690 57440 + 61000	
************************************	<b>4</b> 4444600	**************************************	1 2 6 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	17. 17. 17. 17. 17. 17. 17. 17. 17. 17.	**************************************	188888888888888888888888888888888888888
	<b>4</b> 444499	<b>iv</b> iviviviviviviviv	166645666666666666666666666666666666666	17. 17. 17. 17. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	**************************************	16.38.83.83.83.83.83.83.83.83.83.83.83.83.

Computation of the Values of  $G_2^2$ ,  $G_4^2$ ,  $G_4^2$ , .....  $G_{10}^2$ , when  $\mu$  is '00, '01, '02, etc., to 1'00.

4
-
u

$G_{10}^{2}$	+ '0016670636 '0016324926 '0015324926 '001530223 '001530223 '001347335 '001247732 '001247732 '001247732	+ .0007107471 .0005492251 .0003807072 .0002088072 000203102 0001503408 .0003300573 .0005081199 .000526924		- 0018818815 0018647546 0018254369 001797109 0017732811 0014453036 001274443 0011274443	- 0007349131 - 0005145707 - 0002807935 - 0000358658
$G_9^2$	- 'coccoccoccoccoccoccoccoccoccoccoccoccoc	- 002958037 - 0031197553 - 0032582381 - 0033698898 - 0034535219 - 0033529061 - 0035272407 - 0035272407 - 00343907378	- 0033247265 0031955368 003031651 0026300352 0026300352 002115180 002115180 002115180 001165681	- '0008135382 - '0004444026 - '0004444026 - '00042373915 - '0007238356 - '0017228697 - '00152094973 + '002694973	+ .0030287042 .0033648384 .0036765866 .0039598871
$G_8^{-1}$	00000000000000000000000000000000000000	- 0043453377 - 0038743041 - 0033737902 - 0022955587 - 0017238975 - 0017388975 - 0017348486 - 0005318317 + 0000518317 + 0000518317	+ '001348723 '0019470437 '0025643111 '0031726437 '0037679606 '0043461488 '0049030804 '0054346309 '0059366987 + '0064052238	+ .0068362097 .0072257441 .0075700203 .0081082395 .008081082395 .0084234171 .008426463 + .0084266699	+ .0082917949 .0080867571 .0078095768
$G_{7}^{-2}$	00000000000000000000000000000000000000	+ '0105307205 0112830650 0112834929 0126283379 0132140494 0137373051 0141949228 0145839218 0149015259 + '0151451748	+ '0153125360 '0154015171 '0154102776 '0153372414 '0151811080 '0161811080 '0161811080 '0161811080 '0161811080 '0161811080 '01709261 + '0131293007	+ '0124642437 '0117157230 '0108850778 '0099740320 '0099847050 '00999196246 '0067817383 '0055744259 '0043015108 + '0029672727	+ .0015764593 + .0001342981 0013534914 .0028806853
Ge 22	+ '0393030333 '0302484949 '0300850085 '0300850085 '0294328631 '0294328631 '02945440 '02945440 '0259504584 + '0249484849	+ '0238494403 '0226558448 '0213704585 '0199962812 '019962812 '019962812 '019962812 '019962812 '019964640 '015746040 '015746040 '015746040 '015746040	+ .0081932948 .006245593 .0042468949 .0022026084 + .0001183712 0019999369 .0041461961 .0041461961 .0041461961 .0041461961	0.128799415 0.150657551 0.150657551 0.150881551 0.021508015 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0.02150805 0	- 0331302687 - 0347981915 - 0363635051 - 0378160097
G ₅	- 00333333 - 00332333 - 00558667 009973000 013269333 016541667 022990333 022590333 022390333	- '0353356667 '0382720000 '0411363333 '0411363333 '0411363333 '0517536667 '054743333 - '0586666667	- '0607390000 '0626853333 '064996667 '067768333 '0699906667 '0703170000 '071381333 '0722776667 - '0730000000	- '073542333 '0738986667 '0740630000 '074029333 '0737916667 '073344000 '073344000 '071946667 '071946667 '0706810000	- 0677456667 - 065912000 - 0638263333 - 0614826667
G.2	. 1428571429 .1427571429 .1424571429 .1419571429 .1413571429 .1403571429 .139571429 .1379571429 .134571429	- '1307571429 '1284571429 '123571429 '1232571429 '1723571429 '172571429 '1139571429 '1104571429	- '0987571429 '094451429 '089571429 '0852571429 '0752571429 '0752571429 '0699571429 '0695771429	- '0467571429 '0404571429 '0339571429 '0272571429 '023571429 - '035571429 + '015428571 + '015428571 + '0171428571	+ '0252428571 '0335428571 '0420428571
$G_3^2$	000000000000000000000000000000000000000	11. 12. 11. 11. 11. 11. 11. 11. 11. 11.	1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E 2 2 4 2 6 2 8 6 4 8 6 4 8 6 4 8 6 4 8 6 4 8 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	1444
$G_2^2$	H				
#	8 1 2 2 2 2 3 5 4 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	112 113 114 115 116 116 116 116 116 116 116 116 116	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33. 23. 33. 33. 33. 33. 33. 33. 33. 33.	14444

Computation of the Values of  $G_3$ ,  $G_4$ ,  $G_5$ , .....  $G_{10}$ , when  $\mu$  is '00, '01, '02, etc., to 1'00.

m = 3.

$G_{10}^{3}$	.000000000 .0002163933 .0004308395 .000444045 .00043013 .0012399496 .0012399496 .001249313 .001249313 .001249313 .0015799972	- 0019688284 0020660296 002135526 0022338601 0022358601 0022358601 0022358601 0022358601 0022358601 0022358601 0022358601 0022358601 0022358601	- 0019739316 0018510461 001704644 001356457 001356457 0011540011 0009342231 0009422317 0004510400	+ 00003521013 0003521013 00053521013 00053221013 001190879 001735563 0019089376 0022314157	+ .0026615941 .0028427401 .0029969278 .0031209849
	- ''' co45248869 ''' co44544398 ''' co4366777 ''' co43692094 ''' co39009814 ''' co39009814 ''' co3903814 ''' co39132486 ''' co39133481 ''' co34313541	- '002\$17006\$ '0017897160 '001397498\$ '0003959292 '0003687214 - '000137693 + '000305136 '007428561	+ '0016272234 '0020627048 '0024892578 '0033019744 '0033112995 '0040380542 '004038052 '00403982 + '0049394072	+ '005172725 '005367302 '0055202194 '005602170 '005702425 '0056229484 '0055701436 '0055701436 '0055701436	+ .0049567379 .0046374154 .0042599967 .0038246976
$G_8^3$	00000000000000000000000000000000000000	+ '0075903102 '0081036525 '0085724626 '008936798 '009364832 '009943775 '0102903279	+ '0103882563 '0103397735 '0102246087 '0100418008 '0097906651 '00979065121 '009081214 '0080248317 '0080248317	+ .0068484023 .0061254945 .0053401547 .004947219 .00253919311 .0016272675 + .0005729527 0005235801	- 0028232517 0040151845 0052268992 0064515571
$G_7^3$	+ '0209790210 '0207945656 '0207945656 '020791195 '01931195 '0193194455 '0193194455 '018744925 '0180601348 '0180601348 '0180601348	+ '0155408156 '0145402271 '0134046310 '0123170272 '011006556 '0098189053 '0084757694 '0070749348 '0056206925	+ .0005(5948 + .000379536 000379536 000579536 00057829 000735722 00735722 00735722 00735722	- '0141396152 '0157967575 '0157967575 '015714651 '0205531906 '02050314651 '0234539844 '0248157729 '0260865690 '0272671328	- °0283479844 °0293194036 °0301714305 °0308938652 °0314762675
$G_6^3$		- '028669000 '0309992727 '0354378182 '0354378182 '0354378182 '0375340909 '0375340909 '0449591818 '0449591818	- '0480117273 - '0493520000 '0505602727 '0510305455 '0552568182 '053333339099 '053953333636 '0547116364 '0547019091	- '054/544545 '0549630000 '0540630000 '0534232727 '052795455 '051828182 '0502560909 '0487643636 '0470446364	0428971818 .0404574545 .0377657273 .0348160000
$G_5^3$	HIHIHIO. – HIHIOSOL.	0.09011111 0.0942111111 0.0915111111 0.0915111111 0.091511111 0.091511111 0.0915111111 0.0915111111	0.627111111 0.627111111 0.535111111 0.435111111 0.435111111 0.327111111 0.270111111	- '015011111 '0087111111 '0087111111 '0087111111 + '004488889 '01388889 '025788889 '033288889 '033288899 '033288899 '045888899	+ 056988889 065288889 073788889 082488889
$G_4^3$	00 00 00 00 00 00 00 00 00 00 00 00 00	11. 14. 15. 16. 17. 17. 17. 17. 17. 17. 17. 17. 17. 17	1 2 2 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	# # # # # # # # # # # # # # # # # # #	4444
$G_8$	H				
¥	8 2 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2	112 113 114 116 117 118	1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	£25,84,85,85,85,4	4444

.0032665411 .003256226 .0032566226 .0031871181 +.0030717880	- 0007989475 - 0026972992 - 0024359842 - 001746349 - 0013331639 - 0003952863 - 0001331639 - 000133404 - 0001338984		0075018413 .007624131 .0080147791 .0075120837 .00759745 .0069093340 .006909335 .004901545	- 0014082306 - 0038802748 - 0038802748 - 001383058 - 011383058 - 0215784676 - 0215858896 - 0358588896 - 0358588896 - 0358588896 - 0358588896 - 0358588896 - 0358588896 - 03585888896 - 0358588896 - 0358588896 - 0358588896 - 0358588896 - 0358588896 - 0358588896 - 0358588896 - 0358588896 - 03585888896 - 0358588896 - 035858896 - 0358588896 - 0358588896	+ '052288186 '0622838650 '0741056296 '0866530864 '1012307336 '1170487998 '1345234572 '1537770364 '1749382495
.0027836218 .00218866726 .0015255624 .0008210974 + .0000707013	-0007215491 -0015508890 -0024118286 -0032981168 -0042027022 -006343308 -006942338 -00694238 -006943368 -006943368	0109553399 0109553399 0109553399 010553399 010553399 010553399 010553399 010553399 010553399 010553399	- '0116864942 '0108597232 '0097221987 '0082705379 '00469862 + '001468624 '0050206775 '0050206775	+ '0138629937 '0192096434 '0252361836 '0319925331 '0395308789 '0577740112 '0577740112 '057395687 '0786307482 '0786307482	+ '1044064739 '1190833850 '1350488172 '1523781647 '1711497243 '1914447615 2133475798 '2369455881 '2623293714 + '2895927602
.0089097537 .0101269864 .0113245262 .0124928341 0136217949	- 0147007056 - 0157182635 - 0166625533 - 0175310361 - 0188285369 - 0198236053 - 0198236653 - 0200561539	- 0199379597 01959797424 0189928073 0181577151 0170542708 0150615116 0139576944 0119202841 0119202841	+ 0.035690136 + 0.00443786 + 0.0041163389 + 0.005744060 + 0.0137469952 + 0.013740962 + 0.013740 +	+ '0566921324 '0662380996 '0765588848 '0876913271 '12543534 '1263419976 '1411095578 '1568881500	+ '1916514783 '2107254207 '230988309 '252480480 '2752745273 '299348515 '3249007436 '3518440788 '3518440788 '362778961 + '4102564103
.0319679575 .0322752805 .0321883537 .0319059944	- 0314151228 0397048190 0297623229 0225750344 0254144805 0234148152 0234148152 0211175575 0185089074	- 0123010306 0086730036 0046759844 - 004852710 - 004852710 - 004852710 - 004852710 - 00153056156 0213773964 - 0213773964 - 0213773964 - 0213773964	+ '0424342925 '0504560425 '05090075849 '0681051195 '0777998864 '0880161656 '098863771 '1103395810 '1224336771 + '1351944055	+ '1486308464 '1627623194 '1776083848 '1931888426 '2095337326 '2260333348 '2445581694 '2828168156 + '3032328672	+ '3245286309 3467258272 3698464157 3698464157 3939125963 4189468095 4449717349 4720102925 5500856424 5292211848 + '5594405595
	- 0064399091 - 0012101818 + 0043315455 016375000 022888273 02297384545 0369301818 0369301818 044469991	+ 0606173636 0692370909 0782288182 0875985455 097322727 1074960000 1180357273 1289774545 1403271818	+ '1642745364 '1768843636 '1899260909 '2034058182 '2173955455 '2317032727 '246533000 '261847273 '2775844545 + '293818188	+ '3105319091 '3277116364 '3454233636 '3636130909 '3823068182 '4015105455 '4212302727 '4414720000 '4622417273 + 483545455	+ '5053891818 '5277789091 '557203636 '5582803636 '55829178182 '648175455 '67819527 '7002990000 + '727272737
1192888899 1192888899 1192888899 11388888899	+ '1489888889 '159288889 '169788889 '169788889 '2034888889 '2137888889 '2137888889 '2137888889 + '248888889 + '248888889	+ .260988889 27,3288889 28,788889 31,1388889 31,1388889 33,7788889 33,7788889 33,77888889 35,4088889 35,4088889 35,4088889 35,40888889	+ '392988889 '407288889 '416488889 '451388889 '466488889 '481788889 '497288889 '512988889 + '52888889	+ .544988889 561288889 577788889 577788889 601388889 645788889 663288889 680388889 680388889 680388889 680388889	+716988889 7735288889 775488889 775488889 7791388889 810488889 829788889 849288889 868088889 868088889
<b>44.</b> 44. 60. 60. 60. 60. 60. 60. 60. 60. 60. 60	<u>vvvvvvvvv</u>	10000000000000000000000000000000000000	1 4 5 7 7 7 7 7 8 6 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	<u>*************************************</u>	16,63,63,75,75,75,75,75,75,75,75,75,75,75,75,75,
<b>44</b> .44.46.000000000000000000000000000000	i 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	19 29 49 49 69 69 69 69 69	17.5.4.7.7.7.7.8.6.8 6.0.8.7.7.8.6.8	<u>*************************************</u>	91 93 94 95 96 97 1.00

Computation of the Values of  $G_4$ ,  $G_5$ ,  $G_6$ , ......  $G_{10}$ , when  $\mu$  is '00, '01, '02, etc., to 1'00.

m = 4.

G ₁₀ 4	- 0030959752 - 003082051270 - 0020942373 - 0020942373 - 0020972270 - 002097270 - 002	- '0015240320 '0012505026 '0009621408 '000519798 - '0003495808 - '0003951018 '000623110 '0009516324 + '0012776223	+ (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***) + (***	+ .0038891181 .0039657889 .0040047852 .0040040713 .0039618144 .0039716083 .0033716083 .0033716083	+.0027649942 .0024028868 .001949155 .0015422432
$G_{\mathfrak{d}}^{*}$	0000000000 + 0005876472 0017488479 0017488479 0023153965 0023153965 00230175631 0044079827 0044079827 0044079827	+ '00\$7037522 '0060918352 '0063918352 '006749589 '006749589 '007071085 '0073466039 '0073466039 '0073483746		+ '0035740916 '0029036785 '0014235423 + '0001935463 - '0002216177 '0010967868 '0020299330	0048384976 .0058061709 .0067738616 .0077342599
G ₈ 4	+ '0153846154 '01532446254 '0153244753 '0150254254 '0147471754 '0143908654 '0139575754 '0139575754 '013865254 '0128655754 '012865754	4.0106910253 00098319754 000982854 0008908654 0008908654 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 000890854 0008	- '0003105746 '0016328246 '0029769746 '0057091346 '0070856246 '0084009746 '0084009746 '0084009746 '0084009746 '0084009746	'0138201746 '0150896246 '0174920246 '0174920246 '0196592246 '0206337746 '02053379746 '0223209746	- 0235977746 0240584246 0243873747 0245744246 0245744246
$G_{7}$		- '0240536154 '0259643077 '027803000 '0295636923 '031403846 '03131037069 '0343177692 '0357064615 '0359084615 '0381538462	- '0392005385 '0401212308 '0409090231 '0415605154 '042653077 '042653077 '042653377 '0426533846 '0425340769 '0425340769	- '0417474615 '0410781538 '0402168462 '0301575385 '0378942308 '034280321 '0347316154 '0328203077 '0306810000	0228350769 0228350769 0197237692 0163544615
$G_6^4$	6060606080. – 60606087.80. 60606051780. 60606061780. 60606061780. 606060608060. 6060606060. 6060606060.	- ''0788090909 ''0740090909 ''0713090909 ''0740090909 ''074009099 ''074090909 ''074090909 ''074090909 ''074090909	00000000000000000000000000000000000000	1606060690.+ 1006061190. 1006066110. 1006066110. 1006066110. 1006066110. 100606110. 100606110.	
$G_{5}$	00.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.0000	11.22.1.33.1.1.00.00.00.00.00.00.00.00.00.00.00.00	322222222	######################################	14444
64	ped				
n	8 <u>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>	112 113 115 116 118 118 119	12 12 12 12 12 12 12 12 12 12 12 12 12 1	£2248848864 £38848864	14444

+ .coc5o98610 coc650155 coc6748610 co13158105 co19833592	203768231 0033768231 0040902103 0040902103 0040902103 00625131481 0062053512 006871672 006871672 006871672		- '0053835754 '0037210165 '0037210165 - '0017153544 + '0034550056 '0068889415 '0104045642 '0104045642 '0104397572 + '0248436903	+ '0308981478 '0376504832 '0451502232 '0534491248 '0526012377 '072650262 '083631032 '0957529513 + '1232196338	+ '1387619748 '1556051414 '1738237359 '1934952152 '2146999594 '2375213415 '2375213415 '2375213415 '2375213415 '2375213415 '2375213415 '2375213415 '2375213415 '2375213415 '2375213415 '2467492259
.0096013495 01034907934 0113384268 0121342398	- '0135274748 '0141019497 '0145786860 '0145786860 '0151862684 '01523891754 '015238413 '0150184403 '016128643	- '0131762523 '0121090698 '0107839928 '0072797610 '0050585071 - '002491364 + '0004333568 '003757820 + '0074817648	+ '0116517586 '0162870573 '0214148063 '0270630154 '040372434 '04047427099 '0554515545 '0554515545 '0516332870 + '0735623529	+ '0837131460 '0946410196 '1063822997 '1189742951 '134553124 '146866666 '1622456853 '1786307404 '1960712390 + '2146076471	+ '342844980 251474056 '272430752 '3006193166 '325326051 '3789263786 '407925026 '4384612263 + '4705882352
.0244808247 .0241785746 .0236912247 .0230073746	- 0210033746 0196592246 0162248246 0162248246 017104247 0090133746 000014246 0026817747 0000846154	+ '0050030253 + '00938/9754 '0193107754 '0193107754 '0304908654 '03049754 '0373338254 '042383754 '0516158255 + '0594846155	+ '0678614254 '0767631753 '0862070254 '0962103754 '1105796854 '1179663753 '1297550254 '1421751754 + '1524544254	+ '1834118254 '1985463754 '2144078255 '2310159754 '2483908653 '265527754 '2855222253 '3053199754 '3259670254 + '3474846154	+ 3698942254 3932175754 4174766254 4426935754 4688908654 4960911755 5535927753 5839460254 + 6153846153
.0088178462 .0046385385 0001772308 +.0045720769 +.0096153846	+ 0149586923 0206080000 0206080000 0328486154 03284819231 0463852308 053645385 0612658463 0692251538	+ '0862117692 '095210769 '1046623846 '1144516923 '1246250000 '135183977 '1461476154 '1575089231 '1692782308 + '1814615385	+ '1940648462 '2070941538 '2205554615 '234447692 '2487980769 '2635913846 '278846923 '2945520000 '3107313077 + '3273846154	+ 3445179231 3621372308 3802485385 3988578462 43159411538 4375944615 4577337692 4783950769 4995843846 + 5213076923	+ '5435710000 '5663803077 '5897416154 '613660231 '638144308 '6631975385 '688268462 '7150381538 '7418734615 + '7692307692
1606060651.+ 16060666167. 16060666167.	179499991 179499991 1899999991 220699991 2226999991 233999999999999999999999999999999	2934999991 2934999991 3955999991 3315999991 344999991 3714999991 3714999991 38519999991 38519999991	4274999991 4274999991 4419999991 4715999991 4866999991 50199999991 5331999991 5331999991	2814999991 2814999991 5814999991 5979999991 6815999991 6834999991 6834999991 6834999991	+ '7371999991 '7554909091 '773990991 '8115909091 '8105090991 '849990991 '849909091 '8891999991 '8891999991
.46 .48 .49 .50	2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26666666666666666666666666666666666666	1 4 5 4 7 5 7 5 7 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8	**************************************	9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9
50 50 50 50 50	i 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	1 2 £ 4 7 7 7 7 7 8 0 8 0 8	**************************************	16,66,66,66,66,66,66,66,66,66,66,66,66,6

Computation of the Values of  $G_5$ ,  $G_6$ ,  $G_7$ , .....  $G_{10}$ , when  $\mu$  is '00, '01, '02, etc., to 1'00.

m=5.

$G_{10}^{5}$			+ .0052865216 .0051278709 .0049210646 .004920548 .0049119147 .0036141167 .0031704448 .0031704483 .0031704483	+ '0015797262 '0009698085 + '000353297 '0010597320 '0017909056 '0025424154 '0033094244 '004866513	- 0056483427 0064199170 0071759049 0079086253
G ₉ s	+ '0117647059 '011623684 '0114478688 '0112025600 '0108886029 '01085970776 '0100593341 '0095468424 '00959414924	+ '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  - '''  -	- '0018551900 '0029750871 '0041074724 '0053878676 '00752459459 '0053878676 '0075245376 '009759324 '0108448371	0138907106 0138907106 0148113782 0166719341 0164643382 0178113312 017813312 0187832371 0187832371	- 0193070959 - 0193771576 - 0193061076 - 0198696534
$G_8^{5}$	00000000000000000000000000000000000000	0.000000000000000000000000000000000000	0337352000 033352000 033417000 03417000 03417000 03417000 03417000 03417000 03417000 03417000 03417000	0.0322000000000000000000000000000000000	0000312000 - 0000618200 - 0000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818200 - 000818000 - 000818000 - 0008180000 - 0008180000 - 00081800000 - 00081800000 - 0008180000000000
$G_7^5$	9069230769 9765230769 9765230769 9765230769 9762230769 9772330769 9722330769 9722330769 988230769	0648239769 0625230769 0625230769 0554230769 0554230769 0482230769 0482230769 048230769	- '0328230769 0285230769 0240230769 0144230769 0144230769 0040230769 + '0014769231 + '0130769231		+ '0911769231' '0994769231 '1079769231 '1166769231
$G_6^5$	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 E E E E E E E E E E E E E E E E E E E	4444;
$G_{5}^{\circ}$	н				
7 H	000000000000000000000000000000000000000	112 113 114 117 117 118 118	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15.5.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	14444

0002709470 0008825581 0104348974 0109175835 0109175835 0119237634 0119237634 0119237634 0119237634 0119237634 0119237634 0119237634 0119237634 0119237634 0119237634 0119237634 0119237636 0109220398 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 0109203935 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 010920395 0	+ '0953580185 + '0953580185 + '0953580185 1315984296 1452717596 1599553125 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 175598722 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 17559872 1
0154887812 015488812 015488812 0154884666 015544282 015544282 0105544282 0084716606 0084716606 0084716606 0084716606 0084716606 0084716606 0084716606 0084716606 0084716606 00860123812 00860123812 00860123812 00860123812 00860123812 00860123812 00860128812 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 008601889 0086018	1.869949276 + 1.954823529 2265688188 2432667394 2432667318 2432667318 2432667318 2432667318 27877075718 3175211394 3175211394 3175211394 3175211394 3175211394 3175211394 3175211394 3175211394 4294282541 4294282541 4294282541 4294282541 4294282541 4294282541 4294282541 4295737276 429482541 537546544 507737629 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 537546578 53754678 537546578 537546578 537546578 537546578 537546578 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 53754678 537
000823000 014992000 014992000 014992000 014992000 014992000 014992000 014992000 014992000 014992000 014992000 014992000 014992000 014992000 0141328000 014447000 0144447000 0144447000 0144447000 0144447000 0144447000 015549000 017843000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 017843017000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 0178432000 017843200 017843200 017843200 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320 01784320	3350390000 + 3520000000 387368000 387368000 444125000 444125000 444125000 444125000 444125000 444125000 444125000 444125000 444503000 444503000 4556990000 + 571571000 6625750000 6625750000 7752990000 7752990000 7752990000 7752990000
1346769231 1439769231 1634769231 1634769231 2039769231 2039769231 2365769231 2365769231 24769231 254769231 254769231 3199769231 3199769231 3326769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3455769231 3516769231 3516769231 3516769231 3516769231 3516769231 3516769231 3516769231	+ '5471769231 + '5630769231 - 5626769231 - 6455769231 - 6455769231 - 6455769231 - 6455769231 - 6455769231 - 6799769231 - 6799769231 - 7151769231 - 7151769231 - 7151769231 - 7694769231 - 7694769231
<b>444448</b> 1288888888888888888888888888888888888	
<b>444 458 658 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758 758</b>	7.58 <u>2.88888888888</u> 899 199999999999999999999999

-					
O.B.	40051939 4005195342752 4005242752 4005242752 6005411347 6015247935 6015247935 6015247935 6015247935 601525037152	+ 0.902410725 0.356618120 0.414806936 0.477127172 0.0543731230 0.0543731230 0.0540712410 0.056117672 + 0.946510835	+ 1042152(22) 1143212226 11432273699 1480625967 1605096856 1735867568 1873121699 2017045252 + 2167826615	+ 232565619 2490728435 2653237673 284335231 284335231 3031302810 3431644830 364439173 365734936 + 4095984520	+ 433532726 4583966752 4842136199 5387941757 567629068 5974544199 6283718751 6603786725 + 6934984520
97	0426510000 0488432941 05544758824 067944767 0840047647 101548329	119339412 1289462353 1388705294 1492028235 1599191176 1710254118 1822277059 19442241 1 2104705882	+ -2360168824 -2461891765 -2601934766 -2746357647 -28952828 -30458823 -320656471 -3369049412 -3530272353 + 3708235294	+ .3884998235 4066621176 4253164118 4444687059 464125000 464212941 504973582 5261778824 5479101765 + .5701764706	+ '5920827647 '6163350588 '6402393529 '640216471 '6897279412 '715242353 '7414965294 '76825031176 + '8235294118
(1 s	2012   10   10   10   10   10   10   10	1.2054333333 347733333 34293333 34293333 3558333 3693333 40943333 142333333 442333333	+ 437433333 - 454733333 - 466233333 - 466933333 - 540933333 - 547733333 + 573333333 + 573333333 + 573333333	+ · · · · · · · · · · · · · · · · · · ·	77673333 776233333 816933333 816933333 856933333 87923333 89733333 + 97333333
67.8	2324252855 2324552855	<u> </u>	17.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.9.88	**************************************	19 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Us.					
μ	*************	1334346645 13245 1325 1325 1325 1325 1325 1325 1325 132	- 4 x 4 x 5 r x 2 0	**************************************	. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
Q ₁₀	Guliantagen, I Gutaglican, olf glutlan, of totalgen, ordboggen, oralbogen, oralbogen, oralbogen, dualtation, lystogram, lystogram, lystogram,	FEGFFLION. FORGUSENO.	0421860110. 16512600. 041281500. 041281500. 041281500. 041281500. 04128500. 04128500. 04128500. 041285000. 041285000.	018242327 012563354 013423380 0138539775 0148622339 015602432 0156092433 0156092433	015386748 0153003775 014913379 014913379 014913379 01365994 0116731591 0013858091 0013858091
я <i>‡)</i>	38\$04*0910, 6258 \$15 10, 12*0908 10, 2 166000210, 5 2 2 6 10, 6 5 2 2 6 10, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 2 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 5 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6 6 0, 6 6	9/11462/zo 8/1140/9/zo. 6/50/ze/f/5/zo. 14626/e/zo. 14626/e/zo. 28/2/20/20/zo.	0277978335 0284212353 0284212353 0284212353 0284212353 028426471 028456470 02745974706 02745974706	0237025882 0237025882 0222052941 020060000 0168734118 0140411176 011868235 0005045294	- '0014319412 + '0016246471 + '0016246471 + '001639412 '010159412 '0101595294 '0208818235 '028861176 '0311784118
O.s.	Δορησηροξο. Δορησημέξο. Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημέτος Δορησημετος Δορησημέτος Δορησημέτος Δορησημέτος Δορηση Δορησημέτο	Laggagges. — Laggagetto.	0.023566667 0.03266667 0.03766667 0.03766667 0.04166667 0.00533333 0.005333333 0.07433333 0.07433333	+ '020433333 '045733333 '045033333 '055833333 '050333333 '077733333 + '0977733333 + '097733333	+ 101433333 109733333 118433333 1184933333 1184933333 1154333333 1154333333 1154333333 1154333333 1154333333 1154333333
U,s	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11111111111	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	######################################	1444444444 12444444444 1444444444444444
G#	-				
#	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	11111111111111111111111111111111111111	######################################	EEEEEEEE	444444444 4444444

11 11

	- 111	- 7.	æ   ≅		944	六ー	3. 3.
p (4)	40 H	16 pm	n 4,4)	1	3	14	***
=	POSKI SHREIT.		0426114280				
111	Pricht Edylor	12Pitth 1111	08/2112/20	-	and property of	Ch804016401	1161801206 1
#11	十七十日 1日 1日 111 111 11 11 11 11 11 11 11 11	Constitution	DENGINE SET		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7:27:57:57:57:57:57:57:57:57:57:57:57:57:57	116181116
-	Property of the	THI PINING A	こととことと	- :	THE PARTY OF A	LON COLDIN	110 200000
-	the streether	THE STATE OF THE S	OK. Litter ha	-	AMAZ PARZ LA TA	To Printer Str	110 1000
<u> </u>	the late than	111/2/11/2/11	1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E ^{ar}	141/11/11	TONE TONE	
ç	1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	141037761414	111/11/11/11/11	-	1412/11/2/16	1.10101.51	114 18000000
11.7	too the cot her	and a property of the	D8/211//10	9 ~ 4"	ALCHOOL TOWN	THE PRESENT	
×	160 21 6 1 6 211	011 111 101, 180	tiller 11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 20 20	いいだけいだないだん	11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	110 200 20
111	Bill his friger.	111 11 11 11 11 11 11 11 11 11 11 11 11	UN11111111	411	1900 1 20 4 1 20 40	1111111111	THE WALL SHE
Ξ	11 HA S 12 1151	21 / 10W/ 1 10	11 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- E	o pullyed you	0.5110.111	The Wat Link
=	trible at the first	111/1/1111111	11/2/2018/2019/19	Ξ	and market at a	triberry bling	The Parison of the Pa
40	11141414111	I Katata / Ha	111/11/11/11/11	11.3	1111/1111/2011	1101111011	116/30/111
-	line the order	14181401134	0h241424141	=	11/20/10/11/11	25111 251151	111/1/06/11
-	10441440111	1110 101 10111	111 11 11 11 11 11 11 11 11 11 11 11 11	-	million beat	11.11.11.11.11.11.11.11.11.11.11.11.11.	1400 1800 1911
	Translation of the	41114 (3) (1) (4) (1)	market neter	r .	the feet of the	11.00110111	tre kowant
'C	1111441441111	02417911411	OB. FIFTHER	1111	111111111111111111111111111111111111111	-11-12-11-11	1111810181
5	114111111111111111111111111111111111111	11 11 11 11 11 11 11 11 11 11 11	01: 11: 11: 140	9.	TORRIGO STATE	1 110 24 - 114 114	THE MARCHET
-7	119(11919)	11-0 5 Mill 12 611	116116111 2111	7	this his haid	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	110-111-111
	114444411	11-0 11 111111111	111111111111111111111111111111111111111	183	10.1.10.1.11	1 Shirthfullian	
	111 11 1 1 2 2 2 2 1 1 1	114 12 / NU17 1	DHARAMAN IN	5.			2000
-	1414744444	114 1HtHIHLY	11118 1111 11111	3-	millionett i	· · · · · · · · · · · · · · · · · · ·	1141 201 201 2
7.5	1619 68 4 111111	110 publishing 11	OHILL SEE BURN	4	This is the	111111111111111111111111111111111111111	TIP NOT BUT
*	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	114   I   N / Huy	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.	This was a file	141316.17	11 1 2 3 1 3 1 1 2 1 2 1
_	the state of the state of	Mill british per	the Profit to	-	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- TON 17 77	Tir bandal
4	the perfect prefe	** * * * * * * * * * * * * * * * * * * *	111 Harman	#F.	that he will take	1. Tarkitia	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-	1414 / 111 / 1111	1141 1111 1111 1111	tri bood to	-	1817 THE PROPERTY OF	144441-1444	114 18181111111111111111111111111111111
5.4	1111/11/11/11	114 10 14 14 14 14 14 14 14 14 14 14 14 14 14	1111 21111111	* = 6	3111-11111	11. 2. 11 2.11 11	1111801112
=	111111111111111111111111111111111111111	1114 4 2 2 1 1 1 1 1 1 1 1	110 1 211/2011	<b>=</b>	THE PROPERTY IN	Thinlest the	111 1 711- 222
411	11117 1117 1111	The board good	111 Part 111	17.	1111- 1111- 1 1111	Oakhind Sid	411 1511 112
	milliphilin i	110 1 110 110 110 11	the light of the	14.4	A AMERICAN PROPERTY.	tille   Bith	14. 17.11 - 72 -
			2				
=	111/2/11/11/11	Third all hind		7 :	1111-111-1-116		11. 17.111
+	14 12 /14 1/1 11	75117111111	110 12.11.1111	·	1111-111-11111	7	
=	11911/119/119/11	of the British	110 1 2000 11201	7	1111-111-1111	1 11 11 11 11 11 11 11	
_	1911/14/11/61	411111111111111111111111111111111111111	141 1111111111111	7	1111-111-11111	Here to the self	11. 17,111, 2,11
2"	1 161 161 161 161 161	111 114411111	the bugging	2,2	this bit off the	1.111111111	The Party Committee
-	11/21/22/14/21/01	till of William	1 to 1 Soundary	ż	11:11-111-1111	lile kilder til	1 to I hadrony of
	117 High 1 21161	they stelling of	110 1200 1200	7	141-411-114111	4 - 1 1 1 1 2 - 411	11.12111111
9	Charles and Charles	1000	0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, nn	101 - 101 - 11 11 0		
2	1111/11/2011						
=	111111111111	1.1800	the beat more		16 - 1 a - 1 1	a Train of the same	
=	111111111111111111111111111111111111111	Thirt binni	1111 1111 1111 1	1111	1111-11-11-	512 - 1 117 117 C	114 111 - 1 - 1
-	111111111111111111111111111111111111111	11.00 11.00 11.00 1	1 trapporture	111	1111-111-1111-1	1 1111144111-41113	11. thill 1 1
Ŧ	1117271111111	2119 1 2 2 2 1 1 1 2	1 . 1 . 1 . 1 . 1	. 11	いいしんいしたーカー	1.151.111,1	111-114-111
-	1 4641 2963 4 71 411	111 1111 4 411 111	11.141411	1111	411 4 11 - 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1		41 - 111 4 1 - 1 1
	1 2 4 9 9 6 4 8 9 1 4 6	11 2 - 11111 54	Title Building	1 41	4.1-141-14		A nonnika vita
- 2	101000000000000000000000000000000000000	1111111111111			4111-111-1111		Kanakaika
	100000000000000000000000000000000000000		The state of the s		W		The state of the s
			The state of the		Chi and the country of the country o	the Bart Bart Bart	ממפי אוויים אוויים
_	the last of the same		the book body	0 :	that I do not be a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Market Comments of the Com
x	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1114 1410 111	7	X	1111-111-2111	11-11-11-11-11	111 22 - 111

Table of Log  $G_0$ ,  $G_1$ ,  $G_2$ , .....  $G_{10}$ , for Values of  $\theta$  from 0° to 90°.

 $\mu = \cos \theta$ . m = 0.

$\operatorname{Log} G_{10}$	7.7437014, 1 7.7400554, 2 7.7290254, 1 7.7103162, 6 7.6474563, 2 7.6474563, 2 7.547263, 3 7.4689833, 3 7.4689833, 3 7.4689833, 3 7.4689833, 4 7.3748344, 7	7.0760904,0 67882178,8 5.7962273,1 6.6539742,7 6.9013309,0 7.1205476,1 7.2196578,7 7.249200,4 7.3249200,5 7.3249200,5	7.353558, on 7.3453756, gn 7.3226802, 3 n 7.2284463, 1 n 7.2283413, 2 n 7.039283, 1 n 6.8765584, 4 n 6.5985935, 5 n	64905624,2 68045959,9 69712201,7 7074769,2 71488061,8 71959771,0 772243284,3 77376229,1 77374146,9 772169624,8
$\operatorname{Log} G_{9}^{0}$	8.0224550,1 8.0194731,5 8.0104657,5 7.995-375,7 7.9734456,0 7.944591,6 7.8620198,1 7.8620198,1 7.8659477,6 7.8655477,6 7.7357960,5	7.5364902,7 7.3844788,6 7.1536502,7 6.6632296,3 6.6535694,5 7.111195,8 7.3115864,7 7.3129757,0 7.5137581,3 7.5137581,3 7.5686229,0 7.5686229,0	7.6046115,7 n 7.6254853,1 n 7.6293761,0 n 7.6293761,0 n 7.547517,4 n 7.5420212,4 n 7.4851277,7 n 7.405929,7 n	7.146998, 6 <i>n</i> 6.8967796, 7 <i>n</i> 6.2297842, 0 <i>n</i> 6.6406106, 1 7.0971885, 5 7.1915991, 1 7.3891104, 1 7.3899524, 2 7.4464905, 7 7.4848718, 7
Log G [®]	8.2986614, 2 8.29862761, 9 8.28962761, 9 8.2766569, 5 8.2596827, 4 8.2596827, 4 8.268462, 0 8.172265, 2 8.1301722, 5 8.1301722, 5 8.0785612, 2	7'9401248,4 7'8454069,0 7'723065,4 7'5538065,9 7'2817671,8 6'4937228,7 7'7079334,3 7'71588876,9 7'5888876,9 7'6997848,4	7.7765748, on 7.8309766, 1 n 7.8937650, 9 n 7.9074323, 3 n 7.9051274, 7 n 7.8897570, 5 n 7.845413, 4 n 7.8285735, 5 n	7.7802308, 8 n 7.7107685, 3 n 7.5213120, 3 n 7.5213120, 3 n 7.3610172, 8 n 6.2903685, 6 n 6.2903685, 6 n 6.2903685, 6 n 7.2618264, 9 7.2618264, 9
$\log G_7^0$	8:5716626,9 8:5642220,7 8:5642220,7 8:5548289,6 8:544829,6 8:5415012,4 8:5240480,3 8:522039,1 8:475082,9 8:4437775,8 8:4060569,2	8'3090025.4 8'2465872,0 8'1715254,9 8'0792937,9 7'9617868,8 7'8021447,5 7'5545557.9 6'9656202,7 7'7507416,4"	7.7928215,7 n 7.914299,1 n 7.9997984,4 n 8.0622171,0 n 8.1083285,3 n 8.148750,8 n 8.151214,1 n 8.1794802,6 n 8.1858211,2 n	8.1761109, 4 n 8.1601677, 0 n 8.1364421, 5 n 8.1042374, 5 n 8.0624074, 8 n 7.9414866, 3 n 7.7384431, 6 n 7.7388431, 6 n
$\log G_{6}$	8.8405080, 0 8.8391178, 3 8.8391178, 3 8.8270136, 7 8.8179870, 4 8.8050493, 4 8.7880544, 4 8.7695040, 2 8.7695040, 2 8.769504, 2 8.769504, 2	8.6523071,7 8.6106918,8 8.5625605,0 8.5056511,8 8.4407249.4 8.352287,2 8.2654848,0 8.1419618,5 7.9717650,9	6-8654356.4 7-5228991.5 n 7-8565343.6 n 8-033125.9 n 8-1501000.5 n 8-234885.1 n 8-298995.3 n 8-3848857.8 n 8-3848857.8 n 8-134067.3 n	8.432142,9 n 8.458487.5 n 8.4561316,6 n 8.4582538.4 n 8.4548227,6 n 8.454894,3 n 8.4113520.2 n 8.4109477,1 n 8.3842230,9 n
Log (7,0	9.1037494,4 9.1027566,7 9.0997713,6 9.0947723,0 9.0877234,4 9.0787527,4 9.0572503,9 9.0530662,7 9.0193300,3	8'9739777, 3 8'9467096, 2 8'9159113, 0 8'881434, 7 8'8418367, 5 8'795377, 6 8'795377, 6 8'6876579, 8 8'6876579, 8	8.4373146.2 8.3083784.9 8.1279356.5 7.8249353.2 7.7927592.8 8.0879364.5 8.2545509.8 8.3683762.9 8.4525840.1 III	8-5178622,7 n 8-5696163,9 n 8-6111037,1 n 8-6413982,1 n 8-6708894,9 n 8-7070297,9 n 8-7178416,9 n 8-7243134,0 n 8-7266698,4 n
Log $G_4^0$	9.3590219, 4 9.3583602, 3 9.3583602, 3 9.3530475, 5 9.3483710, 9 9.3423197, 2 9.3423197, 2 9.3423197, 2 9.3423197, 3 9.325931, 8 9.325931, 8 9.325931, 8	9.27,48220,7 9.25,77683,8 9.23,8988,4 9.21,77724,9 9.16883,6,2 9.16883,6,2 9.16459,8 9.1090954,6 9.0743394,1	8'992\$124, 3 8'9439231, 6 8'8887346, 2 8'825432, 8 8'750895, 2 8'605086, 5 8'5502332, 4 8'4024226, 8 8'187821, 5 7'7289329, 9	7.6255768, 6n 8.1304177, 2n 8.3511362, 5n 8.4915996, 5n 8.5330941, 4n 8.6712804, 3n 8.7337969, 9n 8.7849412, 9n 8.8273659, 8n
$\log G_3$	9.6020599, 9 9.6016630, 2 9.6004709, 4 9.5984803, 0 9.5920775, 1 9.582782, 1 9.582782, 1 9.582782, 1 9.582382, 1 9.562568, 0	9.5525608, 1 9.5427960, 6 9.5320431, 2 9.5202615, 1 9.5974045, 9 9.493189, 0 9.4782429, 2 9.4618057, 6 9.440253, 6	9'4040374,1 9'3815874,5 9'3573014,6 9'330939,4 9'3024411,5 9'2713599,7 9'277359,7 9'277442,2 9'2002327,0	9°0625485, 2 9°004641, 4 8°9379788, 7 8°8596049, 6 8°746845, 0 8°44219, 4 8°480051, 1 8°179432, 7 7'4877434, 2
$\operatorname{Log} G_{s}^{0}$	9.8237027,4 9.8237102,8 9.8231104,8 9.8221307,4 9.8207272,2 9.8183319,0 9.8167319,9 9.8141240,4 9.8111039,5 9.8076668,7	97995187,8 97947942,5 97896256,1 97784039,1 97779191,1 977713601,5 97643147,4 97567693,2 97487089,1	9'7309752.3 9'7212635,4 9'7109596,2 9'6884736,4 9'676338,4 9'6632855,6 9'6495910,0 9'631279,0	9'6035800, 2 9'5884210, 2 9'5882428, 0 9'5489664, 3 9'5285011, 5 9'50674, 0 9'483564, 0 9'48395, 9 9'4325039, 3
$G_1^{\circ}$	L. µ			
G ₀ °	0			
9	0 - 4 2 4 2 0 C 2 0 0	11 12 12 12 12 12 13 14 13 15 16 16 16 16 16 16 16 16 16 16 16 16 16	22 52 52 53 52 53 53 53 53 53 53 53 53 53 53 53 53 53	453 33 33 33 33 33 33 33 33 33 33 33 33 3

7.1842654.4 7.0611621.0 6.9578274.9 6.8048274.9 6.8048274.9 6.726320.2 5.726329.2 6.726329.0 6.7064275.9.1 6.7064275.9.1	6'9970279,7 n 7'0736157,2 n 7'1252697,7 n 7'1576712,9 n 7'1749780,4 n 7'165267,1 n 7'1626438,5 n 7'0862815,1 n	6'9210618,9 m 6'7771657,3 m 6'5387496,3 m 5'9221023,7 m 6'8273259,1 6'8273628,1 6'9474729,3 7'0290427,1	7.1206528,9 7.1400238,3 7.1443718,1 7.1340750,7 7.054752,0 7.0057552,0 7.0021098,9 69103041,7 67748963,5	6'0423392.0 6'149!883.1" 6'5876211,8" 6'79!9782,1" 7'0060722,3" 7'0656992.0" 7'1050194,2" 7'1274838,3"
7.5084421, 8 7.5190347, 8 7.5175284, 2 7.5040710, 4 7.4781161, 0 7.3819846, 0 7.3045486, 9 7.1970433, 6 7.1970433, 2	67744512,7 5'9282421,8 6'6240447,7 11 6'9582101,9 11 7'350158,6 11 7'3303569,5 11 7'3870746,7 11 7'4260507,0 11	7.4619170, 111 7.4613259, 211 7.4235260, 311 7.3842369, 011 7.3842369, 011 7.3842369, 011 7.3842369, 211 7.3842369, 211 7.3842369, 211 6.9797167, 811 6.999330, 711	5.568788.1 n 6.6286239.0 6.9411634.6 7.1123234.3 7.2252007.0 7.3045680,7 7.3045680,7 7.400209,2 7.400209,7 7.449044.9	7.4366459, 9 7.4244553. 0 7.3995543. 2 7.3604040, 5 7.3041457, 1 7.2256450, 3 7.1147443, 9 6.9485841, 1 6.6534633, 7
7.5573435, 6 7.6399534, 1 7.6999738, 0 7.7733731, 6 7.7733731, 6 7.700509, 4 7.8005342, 5 7.7093371, 0 7.7886307, 2 7.7680161, 8	7.736665, 6 7.6930556, 4 7.6345921, 3 7.5568161, 1 7.4514594, 4 7.7057833, 8 6.4144886, 7 6.7879985, 8, 8 7.1657694, 4	7.3570444,0 n 7.4812290,1 n 7.5692263,9 n 7.6336805,0 n 7.6809380,3 n 7.7145468,5 n 7.736572,6 n 7.748305,2 n 7.7502955,2 n	7.7253210, 1 n 7.6973017, 2 n 7.6572480, 9 n 7.627499, 8 u 7.5296715, 6 n 7.28934540, 1 n 7.2893548, 1 n 7.0644654, 8 n 6.5448862, 3 n 6.5448862, 3 n	7.1021832,1 7.3089995,6 7.4412834,2 7.5347556,7 7.634659,2 7.6543190,4 7.6911460,5 7.7161884,1 7.7307394,9
7.3000822, 1 n 6.3810970, 2 n 7.171293, 7 7.4987873, 2 7.675656, 4 7.7935543, 2 7.78787945, 8 7.9426671, 8 7.9910044, 4	8°0532225,5 8°0704619,8 8°0706872,6 8°0755849,2 8°0523044,0 8°0112823,7 7°9716237,0 7°9716237,0	7.8541073.7 7.7679865.4 7.6520702.6 7.4844692.5 7.1971730.1 5.9206450.0 7.1453923.0.1 7.626595.4.1 7.7434650.8.1	7.8289194, 9 " 7.8935881, 2 " 7.9430307, 9 " 7.9804737, 9 " 8.0079051, 7 " 8.0372555, 4 " 8.0403699, 2 " 8.0360533, 2 " 8.0360533, 2 "	8°0043566, 4 n 7'9758199, 8 n 7'9373528, 7 n 7'8870188, 9 n 7'7359970, 0 n 7'7359970, 0 n 7'14496557, 8 n 7'1522730, 5 n
8.3086649, 2 n 8.2572202, 9 n 8.193733, 0 n 8.1142986, 7 n 8.0120518, 4 n 7.8732671, 1 n 7.6536180, 1 n 7.2397748, 2 n 7.0463195, 4	7.8200220, 5 7.9632101, 2 8.0650816, 5 8.1419618, 5 8.22017124, 9 8.28589031, 0 8.3140798, 3 8.3353084, 3 8.353084, 3	8.3587603,7 8.3617799,5 8.3592287,5 8.3510907,8 8.3371986.1 8.3172152,2 8.2905943,8 8.2565106,5 8.2137317,9	8.0935939.7 8.0084494; 3 7.896045; 3 7.7369292; 8 7.474989; 8 7.6878677; 0 7.0628392; 8 7.649683; 2 7.8360201; 3 7.9614813; 7 7.9614813; 7	8°0539803, o n. 8'1253244, 4 n. 8'1253244, 4 n. 8'2263436, 4 n. 8'2263436, 4 n. 8'2892631, 1 n. 8'3098474, 7 n. 8'325737, 8 n. 8'3325737, 8 n. 8'335560, 2 n. 2 n.
8.7250431. 6n 8.7194836. 8n 8.6963786, 8n 8.6963786, 8n 8.626334, on 8.6264318, 5n 8.595786, 9n 8.5564061, 2n 8.5564061, 2n	8.4530759, on 8.3847131, 7 in 8.2999877, 5 in 8.1911490, 8 in 8.422261, 2 in 7.8107572, 5 in 7.2808173, 1 in 7.4175812, 9 7.8492670, 5 8.0572369, 2	8.1932008, 6 8.2925792, 4 8.3694210, 8 8.4307372, 9 8.4307372, 9 8.512564, 5 8.54757, 7 8.5816023, 4 8.6031265, 0	8.6317602,4 8.6335468,5 8.6432499,9 8.6429622,4 8.6386988,7 8.6133987,8 8.6170397,1 8.6010297,1 8.5724827,8	8.5196495, 3 8.4799133, 2 8.4318823, 6 8.3734850, 4 8.3014812, 1 8.2104041, 4 8.0899778, 4 7.9170967, 5 7.6179884, 4
8-8925059, 3 n 8-9172915, 7 n 8-9378088, 6 n 8-9545310, 7 n 8-9578153, 5 n 8-9779314, 3 n 8-9580816, 4 n 8-989138, 2 n 8-9910301, 6 n 8-989930, 6 n	8-9863289, 8 "8-9800294.3 "8-9710508, 9 "8-953129, 6 "8-9446934, 0 "8-9270223, 7 "8-8815390, 1 "8-8530282, 5 "8-8530282, 5 "8-8530037, 1 "8-8530037, 1 "8-8530037, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-85300337, 1 "8-853003037, 1 "8-853003037, 1 "8-853003037, 1 "8-853003037, 1 "8-853003037, 1 "8-8530030037, 1 "8-8530030037, 1 "8-8530030037, 1 "8-8550030037, 1 "8-8550000000000000000000000000000000000	8-7817996, 9n 8-7373939, 9n 8-6854633, 4n 8-6240055, 4n 8-5490415, 1m 8-4581579, 7n 8-3392134, 6n 8-1724896, 7n 7-8961325, 3n 6-9388148, 3n	7.7850891, 2 8.1133767, 3 8.2956047, 0 8.4210175, 6 8.515666, 1 8.590781, 0 8.522556, 3 8.7033573, 0	8-8151616,5 8-8419055,6 8-8445375,4 8-8544818,3 8-890597,1 8-9115152,4 8-9210308,0 8-9277387,4 8-9377387,4
8.3608453, 3 n 8.5499172, 6 n 8.67785524, 1 n 8.8494850, 2 n 8.916233, 6 n 8.9637252, 2 n 9.0081088, 0 n 9.0463343, 4 n	9.1084079, 5 n 9.1336575, 0 n 9.1557089, 8 n 9.1740210, 0 n 9.2059020, 8 n 9.2180789, 7 n 9.2282529, 6 n 9.2365414, 7 n	9.2478160, 6 n 9.250314, 5 n 9.2524246, 2 n 9.2523219, 2 n 9.2506364, 0 n 9.2473683, 4 n 9.242505, 8 n 9.2360214, 8 n 9.278775, 6 n	9.2063735, 7 n 9.1928508, 6 n 9.1773366, 0 n 9.1596892, 8 n 9.1397337, 9 n 9.0919743, 5 n 9.0633568, 7 n 9.0315636, 2 n	8-9543991, 2 n 8-9074554, 3 n 8-8531600, 6 n 8-7129139, 1 n 8-6181993, 9 n 8-4949642, 5 n 8-3200878, 9 n 8-0197861, 2 n
9.3733777.4 9.340300.7 9.304378.3 9.2650925.2 9.2214487.7 9.1738180.7 9.1198772.8 9.0584352.8	8'6599705, 5 8'6599705, 5 8'4601155, 5 8'4601155, 5 8'348682, 1 8'348883, 3 8'344685, 9 8'544685, 9 8'7203156, 2 8'329500, 7 8'9329500, 7 8'9329500, 7	8'992524, 1n 9'0528084, 8n 9'1045757, 3n 9'149741, 7n 9'1895664, 8n 9'259050, 7n 9'2586860, 7n 9'2586860, 7n 9'2585645, 8n 9'2585645, 8n	9.3566733, 9 n 9.35682.4 n 9.3941926, 3 n 9.4105366, 3 n 9.4254402, 3 n 9.4513724, 3 n 9.4513724, 3 n 9.45157000, 3 n 9.4517000, 3 n	9.4897639, 1 n 9.4968801, 0 n 9.503037, 8 n 9.508404, 4 n 9.5128673, 7 n 9.5104242, 2 n 9.5192953, 3 n 9.512889, 6 n 9.5224817, 2 n 9.5224817, 2 n
144444444 64444444444444444444444444444	555 557 557 558 558 559 559 559	65 65 67 68 68 68	122422	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Table of Log  $G_1$ ,  $G_2$ ,  $G_3$ , .....  $G_{10}$ , for Values of  $\theta$  from 0 to 90°.  $\mu = \cos \theta. \quad m=1.$ 

g G7 I Log	9.1737226,8 8.9518739,3 9.1737226,8 8.9507158,9 9.1701454,4 8.947249114,4 9.1503498,7 8.9312116,4 9.1511889,9 8.9225870,0 9.1411381,3 8.9094728,6 9.1291486,6 8.8937859,5 9.1151607,1 8.854226,8 9.080817,2 8.8301217,9	9°0603970, 9°8°028317, 2 9°0375202, 5°7721440, 0 9°0120990, 6°7377610, 7 8°9528598, 8°656320, 6 8°9185282, 9°656320, 6 8°8387768, 2°8549778, 1 8°8387768, 2°8492933, 2 8°7923830, 0°84231767, 0 8°7407577, 9°87425780, 1	8-6829572,9 8-6176786,4 8-1343125,4 8-5430499,8 8-3526459,1 8-25246428,1 8-25240428,1 8-253721,1 7-7934117,8 7-7934117,8 7-773777,5 7-7478339,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	7.8257895, on 8.028179, 8n 8.0067419, 4n 8.0693520, 7n 8.1198785, 1n 8.0955156, 1n 8.1972283, 8n 8.1095147, on 8.2527831, 5n 8.1139122, 8n 8.2922062, 1n 8.1087550, 8 8.3195089, 3n 8.0947830, 3n 8.3459308, on 8.0400680, 5n 8.3459308, on 8.0400680, 5n
Log G to Log	93845760, 5 93845760, 5 9383914, 2 9389271, 8 91789027, 8 91739448, 9 91739448, 9 91759223, 4 91759223, 4 91759223, 4 91759223, 4 9175923, 3 917596, 5 917596, 5 917597300, 3 917597300, 3 917597300, 3 917597300, 3 917597300, 3 917597300, 3 917597300, 3 917597300, 3	9;3016446,7 9;285,1699,2 9;2669781,3 9;22609781,3 9;2250797,7 9;2011506,1 9;91750525,5 9;1750526,0 9;1156392,0 9;1156392,0 9;1156392,0 9;1156392,0 9;1156392,0 9;1156392,0 9;1156392,0 8;792	9.0450232, 5 9.0047094, 0 8.9004617, 8 8.9116723, 8 8.8575406, 7 8.7569606, 7 8.7284667, 7 8.7284667, 7 8.728467, 7 8.5573542, 7 8.5573542, 7 8.453455, 8 8.4453455, 8	8.3024707, 7.825 8.1027121, 6. 8.006 6.8824619, 2.0. 8.197 7.8292661, 7.0. 8.252 8.2349351, 8.0. 8.319 8.3343192, 2.0. 8.319 8.4060182, 0.0. 8.345 8.4594276, 3.0. 8.345
$\operatorname{Log} G_5^1$ 1	808706, 9 8084075, 9 790170, 5 774380, 5 734380, 5 734380, 7 744380, 7 508420, 9 427287, 0	9.5231002,6 9.5121300,0 9.4997453,5 9.4862076,4 9.4714725,7 9.454866,8 9.482012,3 9.4195411,1 9.399433,1 9.377902,5	9.3545103, 6 9.3294753, 8 9.325467, 0 9.2735600, 9 9.2423201, 7 9.265910, 8 8.77 9.1324476, 9 9.082399, 1 8.55 9.082399, 1 8.55 9.082399, 1 8.55 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.77 8.7	89895915,7 89314664,6 89314664,6 87916071,7 87916071,7 87935794,6 87935794,6 87656693,6 87841504,5 87841504,5 87841504,5 87841504,5 87841504,5 87841504,5 87841504,6 87841504,6 87841504,6 87841504,6 87841504,6 87841504,6
$\operatorname{Log} G_4^{_1}$	97569619, 5 97566642, 7 97557706, 3 97542796, 6 97521887, 0 9749443, 0 97461918, 0 97461918, 0 97422755, 2 97742275, 2 977325729, 9 977325729, 9	97203170, 1 97132038, 7 97054162, 5 970569388, 3 97057543, 9 97057543, 9 97057185, 5 97057185, 7 97057185, 7 97057185, 7 97057558, 7 97057558, 7 97057558, 7 97057558, 7	9.6165564,4 9.6017423,4 9.5859889,8 9.5692496,3 9.5514719,5 9.5325564,4 9.912730,1 9.4486600,1	94190202,0 973917372,3 873626032,1 873626032,1 87296033,1 9729963,7 9723008,3 9723008,3 973008,3 973008,3 973008,3 973008,3 973008,3 973008,3 973008,3
$\operatorname{Log} G_3^{1}$	9.9030899, 9 9.9032846, 1 9.9024284, 8 9.9016005, 0 9.808465, 0 9.8871176, 2 9.88949514, 5 9.88949514, 5 9.88949514, 5 9.88949514, 5 9.88949514, 3	9.8828613,3 9.8789654,8 9.8747119,6 9.8651115,0 9.8651115,0 9.8540136,5 9.8478862,4 9.8413628,4 9.8413628,4 9.8413628,4 9.8413628,4	9.8270928, 5 9.8193266, 7 9.8111252, 0 9.8024763, 2 9.7333669, 2 9.733366, 2 9.7733079, 3 9.7631257, 1 9.7520174, 1	97281392,4 97153226,1 97018858,8 9767393,5 97673931,9 976412942,9 976412942,9 976412943,1 97663333,0
$\operatorname{Log} G_2^1$	0°000000, 0 9'999338, 5 9'9997353, 6 9'999404, 1 9'9983442, 3 9'9977143, 5 9'9977527, 8 9'9957527, 8	9'9919465, 8 9'9904043, 9 9'9887239, 3 9'9869041, 2 9'9849437, 8 9'9828416, 4 9'9825963, 3 9'9782063, 3	999701517,4 9'9671658,6 9'9640260,8 9'9607301,6 9'9572757,1 9'9458868,8 9'9459349,3 9'9418102,6	9'9330656,0 9'9284204,8 9'9235914,0 9'9185742,1 9'9133645,2 9'9079576,4 9'89053486,2 9'8905321,4 9'8905925,9
$G_1^1$ Log	•			
θ	% = 4 w 4 v 0 c ∞ e 0	12 12 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	1 2 2 4 2 2 2 4 8 8 8	1888 1888 1888 1888 1888 1888 1888 188

7.1012795, 5 7.2109148, 3 7.2822866, 9 7.3281409, 8 7.354556, 9 7.3609094, 6 7.3426516, 1 7.3097217, 0	7.1912609.3 7.0956748.7 6.9599043.5 6.7487925.2 6.7487925.2 6.1612781.5 6.6793642.9 III 6.6793443.9 III 7.034747.0 III 7.036529.7 III 7.1086529.7 III	7.1657308, 9 n 7.2214950, 9 n 7.2258982, 8 n 7.2159863, 4 n 7.1914398, 4 n 7.1908454, 4 n 7.0912201, 2 n 7.0068595, 1 n 6.8861747, 6 n	6.7012311.3 n 6.3506162,4 n 5.7545012,3 6.7205097,3 6.7718225,7 6.91817825,7 6.9181781,2 7.0149781,2 7.012356,6 7.1254975,4 7.1521415,2	7.1634148, 4 7.1602463, 8 7.1425333, 8 7.1091160, 0 7.0573960, 1 6.9823797, 9 6.841337, 8 6.7097955, 5 6.4157577, 1
7.0846048, 8 11 6.5091447, 11 6.7219347, 1 7.1196220, 5 7.3077248, 9 7.72441708, 4 7.5558909, 3 7.5910512, 4 7.6114758, 3	7.6191350, 9 7.6150163, 1 7.5993819, 2 7.5718299, 1 7.5712054, 8 7.4752966, 9 7.4001406, 4 7.2983617, 7 7.1545426, 5	64169731.7 64976896.9n 69376131.7n 7.1400143.9n 7.3521979.6n 7.412645.1n 7.4542806.7n 7.4542806.7n 7.4542806.7n	7.4959091, on 7.4858023, 1 n 7.4636765, 4 n 7.4284182, 9 n 7.30718778, 9 n 7.3081822, 4 n 7.2121476, 4 n 7.70748091, 3 n 6.8569825, 1 n	6.3951341,1 6.858979,6 7.0096903,0 7.2017629,8 7.2931127,4 7.3583670,2 7.404525,7 7.453363,8 7.4534651,2 7.4534651,2
7.9445034,0 n 7.8768474,6 n 7.7908022,1 n 7.6785019,9 n 7.5234499,0 n 6.7033031,9 n 6.9187849,8 7.3205388,5 7.3205388,5	7.6334219, 9 7.7169602, 4 7.7765046, 3 7.8476929, 3 7.8451116, 8 7.8724470, 6 7.8724470, 6	7.8078575,8 7.765992,0 7.7106241,7 7.638,344,1 7.5428677,4 7.7133742,9 6.8301072,8 6.4411607,7,1	7.3198.386, 4 n 7.464.356, 5 n 7.5638.144, 0 n 7.635.785.2, 4 n 7.7688.5977, 8 n 7.75.277.57, 1 n 7.75.277.57, 1 n 7.75.277.57, 1 n 7.75.277.57, 0 n 7.7768.28.3 n 7.774.1160, 6 n	7.757861, 1n 7.7350588, 9n 7.7014160, 0n 7.655057, 9n 7.592402, 7n 7.5097655, 3n 7.3953718, 3n 7.2267416, 4n 6.9301642, 5n
8:3417341, 8 n 8:3293067, 2 n 8:2837310, 2 n 8:2837310, 2 n 8:2673103, 5 n 8:0573103, 5 n 8:090303, 8 n 8:090303, 8 n 8:090303, 8 n 8:0908870, 9 n	7.7699471, 5 " 7.5674957, 1 " 7.1843364, 8 " 6.7614316, 5 7.4142193, 6 7.7958331. 4 7.8959040, 9 7.9682297, 7	8°0625917,6 8°0919562,7 8°1230538,7 8°1283805,2 8°1283805,2 8°1285912,1 8°1156930,4 8°0985090,9 8°0735853,0	7.9968390, 2 7.9417111, 4 7.8714614, 2 7.7804568, 5 7.6578601, 4 7.657861, 8 7.159581, 8 6.1048966, 3 n 7.2250894, 9 n 7.2034910, 7 n	7.6656241,4 n 7.7770960,8 n 7.859284,4 n 7.9218497,6 n 7.95218497,0 2 n 8.005071,2 n 8.0334925,2 n 8.0520568,5 n 8.0520568,7 n 8.0665127,1 n
8-4995993.9 n 8-5295375.9 n 8-5511483.3 n 8-5656902.4 n 8-5740091.4 n 8-5740240.7 n 8-5662686.9 n 8-5634514.3 n 8-534514.3 n	8.5121441, 3 n° 8.4830267, 1 n° 8.4475253, 2 n° 8.4475253, 2 n° 8.4047391, 6 n° 8.21533400, 6 n° 8.215335, 6 n° 7.9966994, 5 n° 7.8214342, 6 n° 7.8214342, 6 n° 8.514342, 6 n° 7.8214342, 6 n° 8.514342, 6 n° 7.8214342, 6 n° 8.514342, 6 n° 7.8214342, 6 n° 7.8214342, 6 n° 8.514342, 6 n° 7.8214342, 6 n° 7.8214242, 6 n° 7.	7.5252962, 3 n 6.1093422, 7 n 7.4782374, 1 7.7799815, 6 7.9491191, 0 8.0639845, 0 8.1485650, 3 8.2134991, 0 8.2640777, 1 8.3038390, 3	8.3347528,4 8.3581761,2 8.3750203,9 8.3858973,1 8.3911991,4 8.3911447,9 8.3751121,3 8.3751121,3 8.3751121,3	8.3078311,6 8.2715730,6 8.2265086,6 8.100606,0 8.100606,1 8.0112421,7 7.8920812,4 7.7200939,5 7.4215178,8
7.8851621, 3 <i>n</i> 8.1920464, 3 <i>n</i> 8.352986, 3 <i>n</i> 8.4711920, 7 <i>n</i> 8.5538420, 2 <i>n</i> 8.513155, 0 <i>n</i> 8.653928, 4 <i>n</i> 8.7024662, 9 <i>n</i> 8.7329363, 7 <i>n</i>	8.7849504, 6 n 8.7881899, 4 n 8.7969893, 5 n 8.8017071, 3 n 8.7997966, 0 n 8.7934065, 7 n 8.7834306, 7 n 8.7834306, 7 n 8.7834306, 7 n 8.7834306, 7 n 8.7834306, 7 n	8.7310289, on 8.7055412.2 n 8.6749127, 4 n 8.6391354, 3 n 8.5971638, 4 n 8.4892990, 6 n 8.4892990, 9 n 8.4189939, 5 n 8.3325535, 9 n	8'0722197,4n 7'8403144,0n 7'3141601,6n 7'4378710,1 7'8720484,2 8'801537,0 8'2160177,7 8'3153291,4 8'3922140,4	8.5038372,4 8.5450774,1 8.5790767,2 8.6069646,9 8.6295387,5 8.6473706,5 8.6608703,2 8.6702251,9 8.677251,9
9.0270455,8 8.9654179,1 8.8906885,6 8.8057299,0 8.7033569,0 8.73945,5 8.3966745,4 8.1080048,8 7.0822394,7	8-3111195, 4 n 8-4842310, 6 n 8-6015663, 6 n 8-6881148, 3 n 8-7557700, 3 n 8-8155700, 3 n 8-8564844, 3 n 8-8564844, 3 n 8-8564844, 3 n 8-8564844, 3 n 8-9248446, 9 n	8.9723219, on 8.9900229, 7 n 9.0043066, 3 n 9.0154934, 2 n 9.0238278, 5 n 9.03294947, 3 n 9.03294947, 3 n 9.0316585, 8 n 9.0316585, 8 n	9'0212750,7 n 9'0125308,5 n 9'0013436,7 n 8'9876148,0 n 8'9712055,9 n 8'921943,7 n 8'9237376,5 n 8'8740658,2 n	8.8008209, 6 n 8.7554933, 5 n 8.7026002, 6 n 8.56450420, 5 n 8.4700486, 0 n 8.3480387, 6 n 8.173663, 7 n 7.8735699, 4 n
9'5677161,6 9'546868,4 9'5248869,3 9'5016749,9 9'4711212,5 9'4274453,7 9'3930887,2 9'3625078,2	9.2923538, 8 9.2529477, 7 9.2100008, 4 9.1628376, 2 9.105558, 1 9.05109112, 1 8.9851195, 3 8.9074889, 1 8.8146751, 5	8'5445686, 9 8'3097057, 4 7'785842, 3 7'8938028, 1 n 8'3302879, 3 n 8'5751290, 7 n 8'7757553, 1 n 8'8547456, 4 n	8.9731527, 1n 9°0191516, 2n 9°0588767, 6n 9°093559, 2n 9°1238931, 1n 9°1760760, 1n 9°1743419, 2n 9°1952705, 2n 9°2137618, 7n	9.2443470, 5 n 9.25675187, 0 n 9.2675187, 0 n 9.2842183, 3 n 9.2903330, 1 n 9.2950411, 2 n 9.2983771, 3 n 9.3003680, 8 n 9.301300, 0 n
9.8777798, 6 9.8710734, 6 9.8641274, 6 9.8569340, 9 9.8494850, 0 9.8337833, 3 9.8355109, 0 9.8169429, 2 8.8080675, 0	9'7988718, 0 9'7893419, 8 9'7794630, 2 9'759513, 0 9'7475616, 5 9'7361087, 6 9'742097, 1 9'7118393, 4	9.6855712, 3 9.6716692, 9 9.6570467, 6 9.6418419, 6 9.629482, 6 9.6093133, 0 9.5918780, 1 9.573578, 2 9.5543291, 6	9.5126419, 2 9.4899823, 6 9.4659353, 4 9.4403380, 8 9.4129962, 3 9.3837571, 8 9.352680, 3 9.2805988, 1 9.2805988, 1	9'1943324 4 9'1435553 0 9'0858944,7 9'0192345,7 8'9402960,1 8'8435845,2 8'7188001,6 8'5428191,6 8'5428191,6
44444444 H W 4 N 0 1 0 0 0	555 55 55 55 55 55 55 55 55 55 55 55 55	0 6 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	77 73 74 74 77 77 80 80	28 8 8 8 8 8 8 8 8 9 9

Table of Log  $G_3$ ,  $G_4$ ,  $G_5$ , .....  $G_{10}$ , for Values of  $\theta$  from o to 90.  $\mu = \cos \theta$ .

m=2.

7.5852768, 2 n 7.74934775, 7 n 7.372138, 2 n 7.2022812, 1 n 6.9286109, 0 n 6.7118493, 9 7.0427369, 2 7.2078416, 4 7.3091381, 2	7.3746695.4 7.4160544.0 7.4390372.7 7.446458.8 7.4403769.0 7.43800.6 7.380718,4 7.2705996.5	7.0515113,9 6.860583,4 6.5060312,4 5.8831502,011 6.6575912,211 7.09050183,111 7.1396398,511 7.2019785,211	7:261399, 3 n 7:2747073, 0 n 7:2693868, 5 n 7:2502125, 7 n 7:162398, 2 n 7:0931238, 2 n 6:9916070, 2 n 6:8429834, 7 n 6:5969378, 0 n	5'935576, 5 " 6'3450795, 3 6'7145057, 9 6'9007002, 3 7'1005332, 7 7'1005335, 1 7 1566914, 8 7'1938033, 5 7'2150344, 7 7'2219521, 7
7.9954921,7 n 7.9711862,1 n 7.9711862,1 n 7.8324520,9 n 7.8324520,7 n 7.758947,6 n 7.7644501,6 n 7.5408573,2 n 7.3676466,0 n	6.1687625, 8 R 6.9208530, 0 7.2460970, 9 7.410323, 1 7.5143883, 5 7.5446703, 8 7.6631353, 2 7.6601341, 9 7.6801341, 9 7.6801341, 9	7.6789688, 3 7.6619991, 8 7.633532, 9 7.5928260, 5 7.5376919, 3 7.4645506, 5 7.366374, 4 7.2312197, 5 7.0243707, 1 6.6097117, 7	6'3680822,4 n 6'928938,8 n 7'1541591,2 n 7'2904931,6 n 7'3830519,9 n 7'443568,9 n 7'5247647,0 n 7'5247647,0 n 7'5423809,5 n	7.5430792.2 " 7.5265589,5 " 7.4979823,0 " 7.4557369,2 " 7.3969243,1 " 7.316337,1 " 7.2038919,2 " 7.2038919,2 " 7.0366169,3 " 6.7408362,1 "
8:1815148,9n 8:2265591,1n 8:2228517,7n 8:2249578,3n 8:2203278,0n 8:207236,9n 8:1867255,8n 8:1577679,5n	8'0140692,1 n 7'9413370,4 n 7'8499578,0 n 7'7315243,0 n 7'568373,7 n 7'368225,6 n 6'632629,6 n 7'0404836,6 7'4017536,9	7.6978968.5 7.7786393.5 7.8354039.1 7.8762952.2 7.904333.5 7.921383.8 7.9284488.6 7.9274617.3 7.9174388.2 7.8980571.8	7.8705946,7 7.832284,5 7.7818278,7 7.7165141,8 7.5109569,1 7.3528614,1 7.3528614,1 7.0772552,3 6.1191568,7	7.2855325, 5 n 7.4610631, 1 n 7.5778248, 6 n 7.724056, 7 n 7.7703843, 5 n 7.8040303, 3 n 7.8040303, 1 n 7.8402824, 2 n 7.8446639, 6 n
7.8232270,1 n 8.17492682,0 n 8.1749260,8 n 8.2615785,4 n 8.325380,7 n 8.366720,1 n 8.3467017,3 n 8.4471286,1 n 8.4450528,2 n	8.4313621,6 n 8.4223387,6 n 8.4081644,6 u 8.3873004,7 n 8.3559958,9 n 8.3257604,5 n 8.22837942,8 n 8.2328640,3 n 8.1710688,2 n	8'0007268,4" 7'8775803.8" 7'7050525.0" 7'4198764.8" 6'3998121.2" 7'508289,6 7'5038289,5 7'7947661,0 7'7947661,0	8.0516633, 3 8.0980668, 2 8.1328962, 6 8.1522116, 7 8.1753273, 9 8.1850807, 0 8.189714, 3 8.184367, 4 8.1738858, 2	8.1321991, 5 8.0905839, 7 8.0575923, 2 8.0575923, 2 7.9364121, 9 7.8486607, 3 7.7307750, 1 7.559840, 4 7.2616387, 0
8.6439290, 5 8.3322927, 1 8.3917462, 7 8.1980854, 3 7.8794256, 4 5.7113853, 8, 8 8.1289969, 6, 8 8.2835773, 3, 8 8.2835773, 3, 8	8-5155419, 1 m 8-5572075, 4 m 8-588359, 1 m 8-6118469, 0 m 8-6281802, 1 m 8-638462, 1 m 8-6435685, 4 m 8-6436642, 4 m 8-6436042, 4 m	8-629985, 8 n 8-615937, 5 n 8-5981219, 2 n 8-5579440, 2 n 8-547590, 1 n 8-72235, 6 n 8-424339, 4 n 8-365114, 9 n 8-2970867, 8 n	8-2115839, 7 n 8-1025918, 2 n 7-9550163, 1 n 7-7296547, 2 n 7-245911, 2 n 7-254675, 8 7-721157, 9 7-9341508, 8 8-0707628, 1	8.2443679, 3 8.3034811, 7 8.3506830, 7 8.3506830, 7 8.4155894, 5 8.420490, 3 8.450413, 9 8.4700997, 3
9.2511576, o 9.264992, 8 9.1220266, 1 9.0713337, 6 9.0713337, 6 8.953666, o 8.8839462, 2 8.8839462, 2 8.8839462, 2 8.88404731, 6	8-5962143.1 8-4463125.2 8-2395787.4 7-8540867.1 7-3964208.0 n 8-3007943.8 8-4445253.9 n 8-5447893.7 n 8-5447893.7 n	8-6780936, 2n 8-7244177, 7n 8-7616225, 3n 8-791561, 6n 8-815147, 3n 8-8343604, 8n 8-8457400, 7n 8-85591400, 4n 8-8658832, 8n 8-8658832, 8n	8-8693152, 9 n 8-8662706, 1 n 8-8601279, 9 n 8-834424, 9 n 8-834424, 9 n 8-8247031, 6 n 8-7804357, 0 n 8-733459, 9 n 8-7332459, 9 n	8:6840963, 6n 8:6404354, 2n 8:589783, 3n 8:5289783, 3n 8:4531652, 5n 8:3600768, 3n 8:2380953, 1n 8:0641081,7n 77643375, 6n
9'6301525, 8 9'613553, 6 9'5933094, 4 9'5735592, 1 9'5728419, 7 9'513867, 4 9'5082126, 3 9'4841269, 9 9'4587229, 0	9'4034414.3 9'373466.3 9'3410865,2 9'3607130,9 9'2508228,9 9'250828,6 9'1868844.3 9'1397446,5 9'0878065,4	8°9646519, 2 8°8895617, 0 8°8010621, 1 8°6929536, 8 8°5532446, 3 8°553247, 0 7′9918314, 5 7′4026121, 2 8°1592527, 9 n 8°1592527, 9 n	8.5665850;2n 8 6754734.1n 8 7587297.4n 8 8253039,9n 8 9253869,4n 8 926859,6n 8 9983895,6n 9 9271418,8n	9°0732981, 5 n 9°0916247, 2 n 9°107269, 4 n 9°1203466, 5 n 9°131726, 6 n 9°1398512, 9 n 9°151833, 8 n 9°151833, 8 n 9°1539749, 9 n
14444444444444444444444444444444444444	1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	17.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table of Log  $G_4^3$ ,  $G_5^3$ ,  $G_6^3$ , .....  $G_{10}^3$ , for Values of  $\theta$  from 0° to 90°.

m = 3.	$\log G_8$	9.6130553,8
$\mu = \cos \theta$ . $m$	${\rm Log}\ G_7^{_3}$	9.7477539, 5
щ	$\operatorname{Log} G_6^3$	9.8616973, o 9.8614492, 2
		8 th 0

$Log\ G_{10}^{\circ}$	9.2969774, 5 9.2961669, 8 9.293333, 9 9.2839662, 3 9.2966662, 2 9.2675695, 8 9.2568397, 3 9.2443388, 7 9.2443388, 7	9.1961400, 2 9.1762951, 8 9.1364577, 6 9.1305483, 0 9.1044744, 5 9.0761297, 7 9.0121080, 1 8.9761140, 6	8.8951345, 8 8.8496110, 3 8.8002725, 2 8.7466692, 2 8.6882319, 2 8.5353696, 3 8.4751946, 5 8.3868963, 4 8.2858490, 7	8'228583, 3 8'0228583, 3 7'5537204, 4 6'883954, 6'883959, 0'7'554954, 0'0'7'7'7'36954, 0'0'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7'7
$\log G_9^s$ I	94617877,0 94611426,5 94520260,7 94559736,8 94514382,1 94455895,6 94384142,7 94200140,3 94200140,3 94200140,3 97200140,3 97200140,3 97200140,3	9:3819303,7 9:3663150,7 9:3491730,5 9:3304557,4 9:2280654,6 9:2385993,6 9:2385993,6 9:2109975,5 9:1813416,9	91495045,7 91153377,0 90786666,7 90392843,6 89969422,9 80951422,8 89921135,2 8487959,7 87908039,6 87273747,4	8.6574882,1 8.5797321,7 8.4920672,0 8.3913806,5 8.255123,3 8.252512,3 7.7320534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.7220534,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8 7.722054,8
$\log G_8$	9.6125591, 9 9.6125591, 9 9.6125591, 9 9.6085844, 9 9.6080660, 8 9.5950984, 1 9.5950984, 1 9.585053, 6 9.585054, 9 9.5850546, 8 9.5850546, 8 9.5850546, 8 9.5850546, 8	9.5518985, o 9.5400067, o 9.5269788, 8 9.5127866, 3 9.4973977, 8 9.4628816, 6 9.4436680, 8 9.4230841, 7 9.4210717, 7	9.3775652, 2 9.3524899, 0 9.3257609, 0 9.2972808, 8 9.2972801, 8 9.2346019, 8 8.9 9.20123, 4 8.9 9.1239862, 6 9.1239862, 6 8.7 9.1239862, 8 9.0818853, 1	9°956500,6 8°9879608,8 8°985318,2 8°878145,4 8°87815717,1 8°87815517,1 8°878592,1 8°765692,1 8°58696773,7 8°582644,2 8°582644,2 8°582644,2 8°582644,2 8°582644,2 8°582644,2 8°582644,2 8°582644,2 8°582644,2 8°582644,2
$\operatorname{Log} G_7^3$	9.7477539, 5 9.7473900, 9 9.7462980, 2 9.7444761, 6 9.7444761, 6 9.746218, 7 9.736001, 6 9.7242898, 4 9.7179953, 5 9.7109289, 1	9.7030795, 0 9.6944346, 5 9.6849803, 5 9.66747009, 7 9.6535789, 0 9.6535789, 0 9.6387268, 6 9.6387268, 6 9.6387268, 6 9.6387268, 6 9.6387268, 6 9.6387268, 6 9.6387268, 6	9.5778975,5 9.5601944,1 9.5414179,2 9.5215228,8 9.504587,6 9.478888,8 9.4296488,0 9.4232646,4 9.3753438,0	9.3457791, 5 9.3144468, 3 9.2812026, 6 9.2458775, 7 9.2082708, 8 9.1252008, 8 9.0790377, 6 9.0293546, 8
$\operatorname{Log} G_6^3$	98616973.0 98614492,2 98607447.3 98594629,8 98577225,9 98577225,1 98527375,1 98457268,9 98414522,9 98414522,9	9*8313395, 6 9*8254993, 5 9*8191006, 8 9*8121656, 7 9*8046755, 0 977867903, 0 97787730, 4 97689561, 3	97474662,8 97357615,0 97233931,5 97103413,0 9696541,9 96682641,3 9668864,3 9668864,3 96598398,2	9.5971155, 7 9.5782013, 8 9.5577068, 2 9.5361784, 0 9.5361784, 0 9.5135560, 7 9.4897722, 2 9.4647502, 3 9.4384029, 1
$\log G_{\rm b}$	9'9488474, 8 9'9486986, 3 9'9486986, 3 9'9475071, 6 9'9464635, 2 9'943760, 6 9'9392794, 5 9'9338794, 5 9'9338723, 7 9'9338592, 7	9'9306846, 2 9'9271966, 2 9'9233921, 6 9'9192678, 3 9'91044198, 2 9'9100440, 4 9'9049359, 8 9'8994937, 6 9'8937031, 2	9.8810771, 2 9.874229, 1 9.8570064, 8 9.8594110, 4 9.8514312, 4 9.8430580, 4 9.842817, 6 9.8250918, 9	97949234.8 97839567.7 97785103.6 977481096.6 97351175.5 97215695.6 97974423.9
G43 Log	D			
0	0 - 4 & 4 & 0 C & 0 O	20 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 20 20 20 20 20 20 20 20 20 20 20 20 20	33.33.33.33.33.33.33.33.33.33.33.33.33.

7.8906618, 6 n 7.9047244, 5 n 7.9046944, 5 n 7.8923695, 7 n 7.8685562, 8 n 7.7863033205, 5 n 7.7860099, n 7.7251018, 8 n 7.6477828, 4 n	7.4188529, 3 n 7.2352344, 6 n 6.9283241, 5 n 5.4684950, 2 n 6.8575495, 9 7.2929734, 0 7.3870871, 4 7.484728, 8 7.484728, 8	7.5090398,0 7.5162047,3 7.5102969,7 7.4917761,8 7.41620737,6 7.318843,2 7.3518843,2 7.2676854,3 7.1526277,0	67052134,9 57010496,3 65915543,0n 69050021,0n 770714696,1n 77250940,1n 73003367,5n 7303367,5n 73484742,7n	7.3516030,7 n 7.3417391,2 n 7.3184911,6 n 7.2250843,6 n 7.1471257,3 n 7.0366488,6 n 6.8707,74,0 n 6.5757649,8 n
7.7387845, 2 n 7.888621, 5 n 7.9797891, 2 n 8.0380078, 3 n 8.09747367, 4 n 8.1040649, 1 n 8.1017200, 1 n 8.0896918, 0 n 8.0884356, 0 n	8°0379342, 2 n 7'9976941, 0 n 7'9466585, 6 n 7'8829762, 4 n 7'78235076, 4 n 7'7570668, 1 n 7'7570668, 1 n 7'757068, 1 n 7'757068, 1 n 7'757068, 1 n 7'757068, 1 n 7'757068, 1 n 7'757068, 1 n	7.0765312, 2 7.3451501, 5 7.4941434, 5 7.5910111, 5 7.6574584, 0 7.7331246, 8 7.7502722, 9 7.7501665, 7 7.7516047, 2	7.7370152,3 7.711933,3 7.675272,2 7.6261288,2 7.568161,3 7.474202,5 7.3570214,9 7.1862413,4 6.8913813,3	6.8573028, 1n 7.1555060, 8n 7.3212420, 7n 7.434876, 0n 7.508568, 3n 7.606669, 1n 7.6072533, 8n 7.6346041, 2n 7.656047, 3n
8.2127872,0 8.0091456,8 7.6724940,9 63180842,1 n 7.6563599,5 n 7.9181331,3 n 8.0596050,4 n 8.1497956,4 n 8.2107547,4 n	8-295833, 6n 8-295833, 6n 8-3026345, 7n 8-3012110, 6n 8-292255, 1n 8-255256, 7n 8-255556, 2n 8-255556, 2n 8-255556, 2n 8-255556, 2n 8-215514, 2n 8-1824648, 8n	8°0752074, 2n 8°0027309, 2n 7°9123575, 9n 7°795942, 4n 7°6365691, 3n 7°3873257, 4n 6′781969, 2n 7°0596088, 5 7°4463305, 4 7°6351689, 7	7.755516, 9 7.8398562, 4 7.9011846, 9 7.9460949, 6 7.9782796, 1 7.999504, 9 8.0124639, 1 8.0128043, 4 8.0128043, 4	7.9811365, 2 7.9523433, 9 7.9135367, 7 7.70228305, 8 7.77110678, 8 7.5944665, 7 7.4242754, 8 7.1267643, 6
8°9165684,3 8°8517696,0 8°7796459,7 8°6981901,8 8°693319,1 8°4930153,1 8°354987,6 8°1702344,2 7°8798061,2	7.6954492, 8 n 8.0124778, 3 n 8.1762730, 4 n 8.3546482, 8 n 8.4076170, 9 n 8.476170, 9 n 8.4737919, 6 n 8.4925580, 0 n 8.5038669, 2 n	8.5086262, 6 n 8.5074236, 6 n 8.5006098, 0 n 8.4706227, 4 n 8.472636, 4 n 8.417942, 8 n 8.3819482, 0 n 8.3384885, 6 n	8'2228912, on 8'1453627, on 8'0479291, 3 n 7'9198340, 5 n 7'7364674, 2 n 7'4162678, 2 n 6'2659022, o 7'4618840, 3 7'7404290, 2 7'79015226, 2	8 '0121295, 5 8 '0939320, 3 8 '1566935, 9 8 '2656249, 2 8 '2438022, 4 8 '2731603, 7 8 '2949586, 6 8 '3100210, 7 8 '3188670, 8 8 '317852, 2
9.3503304, 6 9.3175127, 1 9.2826789, 1 9.265033, 4 9.2650343, 2 0.1179759, 8 9.0685700, 7 9.0147365, 5	8.8898942,9 8.8159233,2 8.7310630,2 8.6311366,2 8.5088116,2 8.349280,8 8.1145866,4 7.6320055,5 7.5847502,6 8.0555170,9	8'2617615,9n 8'3903079,3n 8'4806507,2n 8'5479507,2n 8'5396350,9n 8'6712635,8n 8'6712635,8n 8'6712635,8n 8'6712635,8n 8'6712635,8n	87346626, 4 n 87385337, 0 n 87383480, 3 n 87342557, 0 n 87163148, 9 n 87163148, 9 n 87163148, 9 n 8716415, 7	8:5892313, 6n 8:5472900, 7n 8:4973040, 4n 8:4372060, 8n 8:377660, 1n 8:1501452, 3n 7:9766039, 7n 7:6770984, 6n
9.6613160,7 9.6445893.5 9.6271272,7 9.608881,2 9.5898255,4 9.5698876,7 9.5490163,3 9.5271459,3 9.5042021,0	9.4547428,1 9.4280180,0 9.3997951,8 9.369212,7 9.3382150,2 9.3044594,9 9.2683920,7 9.2296903,4 9.1879522,9	9.0931738, 6 9.0385901, 3 8.9777065, 1 8.9287966, 8 8.734984, 7 8.6186724, 1 8.4656651, 9 8.2384596, 2 7.7683916, 6	7.7089721, 3 n 8.1936701, 8 n 8.4087469, 1 n 8.5475419, 4 n 8.7446730, 0 n 8.7208131, 3 n 8.7818137, 3 n 8.8317664, 0 n 8.873382, 7 n 8.9082566, 6 n	8.9377152, 8 n 8.9625680, 1 n 8.9834412, 1 n 9.008023, 2 n 9.0150032, 8 n 9.0263090, 8 n 9.0349173, 3 n 9.0449766, 8 n 9.0445653, 2 n 9.0445653, 2 n
1 4 4 4 4 4 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 3 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6	12224222	2 8 8 8 8 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6

Table of Log  $G_5$ ,  $G_6$ ,  $G_7$ , .....  $G_{10}$ , for Values of  $\theta$  from o' to 90°.  $\mu = \cos \theta. \quad m = 4.$ 

G ₅ 4 I	0 1 4 2 4 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		99999999999999999999999999999999999999	00000000000000000000000000000000000000
Log Ge	99586073.1 9°9584617.8 9°9580250.3 9°9572968.3 9°9572968.3 9°957335.9 9°9514535.0 9°99514535.0	9'9408564, 3 9'937495, 1 9'937341, 9 9'9297053, 3 9'927049, 4 9'9157214, 6 9'9157214, 6 9'9157214, 6 9'9157214, 6 9'9157214, 6 9'9157214, 6 9'9157214, 6 9'9157214, 6	9°8924637, 8 9°8857912, 4 9°8787630, 6 9°8713722, 1 9°8536111, 3 9°854717, 0 9°8546451, 6 9°8380221, 1 9°8286924, 6	9.8087689, 7 9.7981508, 0 9.7850771, 9 9.755334, 2 9.7503765, 0 9.7509705, 3 9.7379155, 4 9.7379155, 4 9.7379155, 4 9.7379155, 4 9.7379155, 4 9.7379155, 4
$\operatorname{Log} G_7^4$	9.8850566, 5 9.8858184, 9 9.8851038, 3 9.8839118, 8 9.880009, 3 9.87074580, 3 9.874450, 1 9.8707339, 1 9.866357, 0	9.8569454, 9 9.8452279, 4 9.838593.3 9.8314314, 9 9.827345, 4 9.8154933, 8 9.7973382, 6 9.7874019, 0	9.7768764, 1 9.7657479, 2 9.7540014, 0 9.7416204, 4 9.7285872, 3 9.71048823, 1 9.700444, 5 9.6853705, 4 9.6695153, 4	9.6354673, 0 9.6172106, 6 9.5980843, 0 9.5780474, 2 9.5570548, 6 9.5350503, 4 9.5119957, 9 94878101, 9 94624286, 5
$\text{Log } G_8^4$	97891466, 3 97888026, 2 9787702, 2 9786480, 7 97893340, 1 97892350, 9 97767712, 4 97722056, 4 97712056, 4 97712056, 4 97712056, 4 97712056, 4	9.7469899, 5 9.738811, 6 9.729585, 2 9.7202982, 7 9.709866, 5 9.6986184, 7 9.6986184, 7 9.6986184, 7 9.6986184, 7 9.6989429, 1 9.6453279, 1	9.6298112, 2 9.6133649, 9 9.5959586, 0 9.575581, 1 9.5581261, 7 9.5376212, 0 9.5159970, 3 9.4697796, 7 9.4697796, 7	94171842, 973890566, 973892824 97389718, 97289942, 97259950, 97228979, 971835338, 971835338, 971835338,
$\log G_{\mathfrak{g}}^{4}$	9'6726410, 7 9'6721779, 5 9'6721779, 5 9'6684690, 6 9'6652175, 2 9'6610284, 4 9'651884, 4 9'651884, 4 9'651888, 6 9'641889, 3 9'641889, 6 9'641889, 6 9'641889, 6 9'641889, 6 9'641889, 6 9'641889, 6 9'641889, 6 9'641889, 6	9.6157272, 3 9.6047004, 6 9.526359, 1 9.5795119, 9 9.549861, 8 9.549861, 8 9.54335271, 3 9.5158935, 5 9.4769483, 3	9.455499, 6 9.4327980, 5 9.4086350, 3 9.382948, 7 9.3558033, 1 9.32964164, 3 9.2964164, 3 9.2296445, 3	9.1543824, 6 9.1131149, 4 9.0601124, 4 9.020813, 8 8.9716623, 7 8.9174080, 7 8.7949549, 9 8.7949549, 9 8.7949549, 9
$\operatorname{Log}  G_{10}^{4}$	9'5400155,0 9'5394200,6 9'5376327,6 9'5346502,7 9'5304670,4 9'5304651,3 9'5164651,3 9'5166237,3 9'5105360,7 9'511842,7	9.466622, 8 9.436623, 8 9.496218, 9 9.4011296, 2 9.3811510, 0 9.3811510, 0 9.385262, 3 9.385269, 0	9.2269482, 8 9.2267276, 0 9.1944902, 3 9.1601111, 9 9.0843250, 3 9.0425493, 3 8.950367, 2 8.8986662, 3	8.8433390, 6 8.7835118, 3 8.7184840, 1 8.6473292, 7 8.567837, 6 8.4810531, 7 8.3814587, 7 8.265722, 9 8.1263421, 7 7.948157, 7

1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	60 60 60 60 60 60 60 60 60 60 60 60 60 6	27.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9.6800429, 8 9.640353, 6 9.6403527, 9 9.6299664, 3 9.528883, 3 9.524883, 3 9.524457, 2 9.5308457, 3 9.5308457, 3	9.4844921, 1 9.4595884, 2 9.4334053, 4 9.405828, 9 9.3767244, 4 9.34572, 8 9.3132812, 9 9.2785371, 7 9.2414347, 3	9.158758.5 9.1122511,9 9.0614460,0 9.0054386,5 8.9420852,8 8.8723055,4 8.7907193,8 8.6939122,7 8.5742454,7 8.4161192,1	8.1785605,7 7.6610939,5 7.7346302,4 n 8.1781511,4 n 8.5103105,1 n 8.6053705,1 n 8.6053705,1 n 8.6733528,3 n 8.6733528,3 n 8.7364046,3 n 8.7364046,3 n	8-824123.0n 8-8545485,8n 8-8811389,1n 8-922970,9n 8-927126,2n 8-9453210,4n 8-9537494,5n 8-957494,5n 8-957494,5n
9.4077454, 6 9.3782476, 9 9.3471567, 5 9.3143323, 5 9.2127942, 6 9.2036529, 8 9.1019035, 9 9.1171996, 6	9'0170787,3 8'9603947,6 8'8980983,5 8'8288663,6 8'7507943,4 8'6604912,0 8'5547466,3 8'433722,1 8'2495952,8	7.3161150, 8 7.6872069, 1 m 8.0490722, 0 m 8.2284288, 5 m 8.4244559, 5 m 8.4444559, 5 m 8.4544550, 5 m 8.5299314, 8 m 8.5299314, 8 m 8.5643814, 9 m	8.6687681, 4 m 8.6212087, 0 m 8.6281651, 8 m 8.6320901, 8 m 8.612621, 0 m 8.6195168, 3 m 8.6577614, 9 m 8.5999774, 0 m 8.599378, 0 m 8.5692082, 3 m 8.5692082, 3 m	8-508264, 2 n 8-4686605, 3 n 8-4201814, 3 n 8-3613473, 9 n 8-1075066, 9 n 8-10767922, 2 n 7-9036986, 5 n 7-6044604, 2 n
9'0491359, 0 8'9977126, 4 8'871472, 6 8'871472, 8 8'815475, 4 8'7420905, 1 8'6596705, 7 8'6596705, 7 8'6596705, 7 8'6596705, 7 8'6596705, 7 8'6596705, 7 8'6596705, 7	8.1404426, 8 7.8715495, 9 7.2272154, 8 7.5375181, 3 n 8.0766885, 1 n 8.1840579, 8 n 8.2573043, 5 n 8.3086918, 0 n 8.3446946, 0 n	8.3689849, 2 n 8.3837988, 6 n 8.3905470, 5 n 8.3901234, 9 n 8.365985, 7 n 8.3497695, 7 n 8.3233529, 8 n 8.2898737, 8 n	8.1980624, 1 n 8.1365097, 1 n 8.0607295, 6 n 7.9653625, 9 n 7.6628097, 6 n 7.36028097, 6 n 7.36028097, 6 n 7.36028097, 7.3018199, 1 7.3018199, 1	7.7920258,9 7.9037444,4 7.9851726,5 8.045632,0 8.1291063,6 8.155229,2 8.155229,2 8.1731545,0
8.5608398, 9 8.4616700, 2 8.453405, 9 8.2032002, 0 8.0169757, 1 7.7352650, 7 7.7352650, 7 7.7352650, 7 7.7352650, 7 7.7352650, 7 7.7352650, 7 7.7352650, 7 7.7352650, 7 7.7352650, 8 7.73526192, 8 7.736281, 4 7.9386192, 8 8.8	8'0367334,7" 8'1004595,2" 8'1421149,7" 8'1678942,4" 8'1812729,2" 8'1843040,9" 8'1782017,2" 8'1636163,1" 8'1407697,4"	8°0692347, on 8°0188980, 5 n 7°956812, 1 n 7°8795918, 6 n 7′7824597, 2 n 7′47655110, 8 n 7′4769257, 8 n 7′1789742, 1 n 5°9131778, 3 n 7′1018844, 9	7.3996166, 3 7.5607839, 0 7.6658960, 5 7.7392811, 3 7.7392811, 3 7.78220186, 1 7.86220186, 1 7.868675, 8 7.8628710, 8	7.8478082, 5 7.8230292, 7 7.7875277, 7 7.7395240, 9 7.6759981, 8 7.5916544, 0 7.4763460, 7 7.3070572, 5 7.0100793, 7
7.6920048, 2 7.1752160, 0 7.1509865, 7 n 7.15034954, 4 n 7.7637992, 3 n 7.8654705, 7 n 7.9649765, 6 n 7.9649762, 1 n 7.9649762, 0 n 7.9899919, 0 n	7'9835969, 8 n 7'9664261, 7 n 7'9684261, 7 n 7'9608115, 7 n 7'888963, 0 n 7'710535, 8 n 7'710533, 8 n 7'4808283, 4 n	6'9910133.1" 5'52801634.1" 6'9227929.1 1" 7'2092361.9 7'3618146.9 7'362880.7 7'5648281.5 7'5093245.6 7'6019448.9	7.6012220, 8 7.5887903, 1 7.5645560, 0 7.4763402, 7 7.4072396, 0 7.3142844, 5 7.1852502, 7 6.9903965, 8	6.1605585, 6 n 6.8365836, 0 n 7.0783371, 8 n 7.2218548, 4 n 7.3186475, 7 n 7.4367890, 7 n 7.4564909, 7 n 7.4548149, 9 n 7.4907974, 8 n

Table of Log  $G_6$ ,  $G_7$ , .....  $G_{10}$ , for Values of  $\theta$  from 0° to 90°.  $\mu = \cos \theta. \quad m = 5.$ 

9	တိ	- 0	N 69	ر د		9	1	00	6	0	11	12	3	4	201	0 !	~×	01	02	21	22	~	24	2	·		29	0	-	4	3	4,	2	2,00	-00	0	C
G.s. Log	0					_	-	_					_																								
${\rm Log}~G_{r}^{s}$	9.9652378,9	9.9650945, 7	0.0620472.0	0.0620424.7	9.9616492, 4	0.9990096.6	9.9581933, 5	9.9560280, 1	9.9535689, 1	9.9508141,2		9.6444084,6	9.9407524,6	9.6367904,8	9.9325192, 3	9.9279351, 8	0.0178128	9,9122658,0	9.9063884, 5	9.9001755, 2		9.8867197, 1	9.8794641,7	9.0710470, 2	9.85550023, 1	9.8467534,9	9.8376115, 1	9.8280647,0	9.8181022, 5	9.8077125,6	9.7968831, 1	9.7850004, 5	9.7738500, 4	0.7488820.4	0.7356291.3	9.7218376, 2	1010110110
Log G8	6,6680506.6	9.9028584, 6	0.0010048.0	0.8003811.3	9.8972908, 2	9.8947319,7	9.8917021,6	9.8881984,9	9.8842175.4	1		9.8693698, 5		9.8269999, 3	9.8500552, 8	9.8425940, 3	0.8360035 7	9.8170329,0		9.7972445,7			9.7632064,8		0.7235888.3			9.6778933, 1	9.6612048,4	9.6437430,9	9.6254772,7	9.6063735, 7	9.5803947, 1	9.5054990, 5	0.5207739,5	9.4968365,0	0
$\operatorname{Log} G_{\mathfrak{g}}^{5}$	9.8187691,0	9.8184383,4	0.8157800.6	0.8134603.5	9.8104811,8	9.8068219,9	9.8024875,8	9.7974729, 2	9.7917720, 1	9.7853781,4	9.7782835,8	9.7704795,6	9.7619564,7	527034,	9.7427085,0	9.7319584, 0	0.7081225	9.6950252, 6	9.6810946, 8	9.6663207, 9			9.6166975,7	9.5962900, 1	9.5585070,5	9.5370425, 1	9.5144709,7	9.4907431,7	9.4658033,7	9.4395890,7	9.4120303, 2	9.3830482, I	9.3525532, 3	0.2866021.8	0.2508043, 5		90000
Log $G_{10}^5$	9.7161067,6	9.7150057,4	0.7121330.3	0.7000383,7	9.7050511,6	9.7001667, 5	9.6943784, 5	9.6876781, 5	562,	9.6715018, 9	9.6620025, 2		9.6401102, 1		5142443,	5997702,	0.5676176.6	9.5498820,7	5309972,	9.5109262, 5			9.4431663, 2	9.41/0952, 5		3331402,	3016405,	3557,	9.2331680,0		9.1565183, 2		9.0703100, 8	8.0726017.7	8.9184915, 7	8.8605275,6	00011010

8.7295643.0 8.6447629,7 8.7718635,5 8.4786493.1 8.4786493.1 8.245446,1 8.0884946,8 7.8769160,8 7.75297587,8	7.5109898, on 7.7617301, 8n 7.8936341, 7n 7.9742504, 8n 8.0252599, 9n 8.0724076, 5n 8.0724076, 8n 8.0764055, 8n 8.0699269, 7n 8.0699269, 7n 8.06938333, 9n	8.0284248, 5 n 7.9935080, 9 n 7.9483640, 6 n 7.8916043, 5 n 7.7319423, 5 n 7.6173914, 5 n 7.6173914, 5 n 7.6173916, 3 n 6.6935686, 8 n	6788666,9 7.2142237,4 7.4082688,0 7.5275744,8 7.6080776,0 7.608336,7 7.701698,4 7.7253888,6 7.7370112,5	7.7278331, 3 7.7072797, 0 7.652108, 3 7.6529831, 8 7.5686791, 9 7.372665, 1 7.2036854, 7 6.9072447, 1
08577, 9 58030, 8 77406, 7 72406, 7 52772, 9 90190, 9 10332, 4 57885, 3 40605, 0 42710, 0	99258, 4 355946, 9 3321, 2 33585, 1 33899, 0 33899, 0 35931, 0 2 88831, 3 2 24281, 2 2	8.2026719, 1 m 8.2417223, 5 m 7.82671442, 7 m 7.8287313, 2 m 7.828751881, 3 m 7.8244056, 5 m 7.8250826, 7 m 7.8252088, 4 m 7.8212088, 4 m 7.8	5.1586733, 2 n 6 5.1078727, 9 n 7 5.0452482, 4 n 7 7.0574539, 0 n 7 7.376918, 8 n 7 7.2104202, 9 n 7 7.3808260, 6 7 7.3707125; 6 7 7.3078125; 6 7	7.5712999, 6 7.7245789, 5 7.8288763, 4 7.9645954, 6 7.9610141, 4 8.0330717, 4 8.0330717, 4 8.0330440, 6 8.0544721, 0 8.0565979, 8 8.0665979, 8
9.4454960, I 9.4179419, 9 9.386096, 9 9.3266062, 5 9.2272287, 0 9.2772287, 0 9.2194996, 2 9.1794507, 0 9.1368056, 4 8.807, 9 9.2194996, 2 9.1794507, 0 9.1368056, 4	2256,9 (6)897,3 (6)84,4 (471,4 (7128,9 (7282,6 (9)986,9 (145,2	99, 6 13, 2 13, 2 66, 4 n 35, 1 n 07, 7 n 61, 5 n	946,5 n 120,4 n 120,4 n 893,4 n 512,8 n 298,9 n 607,1 n	795, 0 n 130, 1 n 658, 3 n 097, 5 n 174, 7 n 961, 1 n 239, 6 n
10 H 10 H 10 4 10 5 10 10		V Q Q 4 V Q U N Q 8		22222222
9.6925503, 9.6770054, 9.6608229, 9.6439722, 9.624193, 9.6081270, 9.5890540, 9.5891545, 9.5483775,	9.5039554 9.4801736. 9.4552382, 9.420549, 9.3724952, 9.3724952, 9.3749452, 9.2749452, 9.2749452,	9.1989793, 9.1567927, 9.1112097, 9.0616265, 9.0072488, 8.9470002, 8.8793096, 8.8021373, 8.7118452, 8.6026534,	8.4634680, 8.2687749, 7.9323788, 6.9764095, 8.26474018, 8.4202875, 8.5275759, 8.6076159, 8.609617,	8.7197565, 8.7600749, 8.792883, 8.819234, 8.8499021, 8.8769164, 8.8701251, 8.8843335, 8.8843335,
1444444 244444 24444 2444 2444 2444 244	1288283 28888 800 800 800 800 800 800 800 800 8	60 60 60 60 60 60 60 60 60 60 60 60 60 6	17.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	88.8 8.8 8.8 8.8 8.8 8.8 8.8 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9

Table of Log  $G_7^{\epsilon},~G_8^{\epsilon},......G_{10}^{\epsilon},$  for Values of  $\theta$  from 0° to 90°.  $\mu = \cos\theta, \quad m = 6.$ 

	9 9	2 N	П	7	2	20	00	7	0 1	n ~	≈ o		~	-	2 2 2 3	7,4 n	2 2	2 7	3 n	4 %	2 2 2		4 n	4 n	2 7 7 2 7 7	no	200	200	3 n	4		) H	1/2		mod	7	.00	6.0	3
$\operatorname{Log} G_{10}^{6}$	8.9530749,6	8.8348338,	8.7680727,	8.6948302,	8-6125402	8.5219481,0	8.4164770,	8.2911407,	345197,	7.5569197,	6.7271914,	7.6143297, 31	7.8549792,	7.0863856.		8.1244507,	8.1822204 2 2	8.1927338.	8.1935567, 3 n	8.1856642,	8.1451538.		8.1122429,4	8.0699883,4 n	7.0500550.	7.8679775,on	7.7610794,61	7.3969295.	6.9463638, 3n	6.8292780,	1.33400KE	7.5498024.1	7.6828992,		7.8006002		7.9496236,		7.9079187,
$\log G_{\mathfrak{g}}$		- 0	-		-		-	8.9971590, 9		-		4	0.5054310, 3	8.4532447,6	8.3143996, 5	8.1288775,7		2 2			8.3085161,8 n	· ·	8.3606829, 5 n	8.3983553, 5 n	: =	29	8.4553524, 6 n	2 2	- 2	8.4049646, 7 n	8.2761727 72	8.3397353,82	8.2943853, 2n	8.2381492,7n	8.0781122.82	7.9586785, 3n	7.7864852, 3n	773,	8
Log Gg	9.6189717,8	9.5810037,3	9.2607991,6	9.5397148, 2	0.4176030,0		9.4705790, 1	9.4453314,4	0.2000881.2	9.3616617,6	9.3307135.4	9.2979738, 9	9 2032414, 3			9.1443895, 5	0.0480824.8		8.9345193,6	8.8672519, 4	8.7016639,0		8-5947013, I	8.2744026 =	7.9689160, 9		7.9100494,9 n		3		8.6252602.72	8-6748383,7 n	8.7144515,611	8.7461706, 2n	8.7000034.01	8.8056885, 3 n	8.8159010, 3 n	8.8220087 4 20	0.0239007,4%
G,e Log	0																													_									
θ	946	48	46	20	15	5.2	53	54	200	57	200	59	3	19	62	63	9.0	99	29	89	2 3		71	72	74	75	70	78.	62	000	8	82	83	× 5	\$ \$	87	00 o	60	3
$\operatorname{Log} G_{10}^{6}$	9.8410455,0	9.8397599, 1	9.8381516,6	0.8220057 2	9.8294426,0	9.8252345, 1	9.8203669, 5	9.8148345, 4	9 0000312, 4	9.8017501,4	9.7941834,6	9.7859225.0	0.7672783.8	9.7568728, 4	9.7457282,0	9.7338304, 3	0.7077123.0	10-11-11	9.6934569,8	9.6783777, 5		1,629629,1	9.6093531, 9	0.5697520, 2	9.5476331,6	9.5249745,7	0.6012000.6	9.4762584, 1	9.4500929, 2	9.4226400, 5			9.2983890, 3	9.2632280,7	9 2201011,0	9.1870899,3	9.1457694,9	0.0666107.2	9 0555197, 5
Log G	9.9156791, 1	9.9147716,9	9.9136366,6	0.0000088.7	9.9074928,8	9.9045259,4	9.9010954,0	9.8971980,6	9 0940303,0	9.8879882,6	9.8826671,9	9.8768620, 8	9.8637768.9	9.8564839,0	9.8486810, 4	9.8403603,2	9.8221297. I		9.8122001,7	9.8017132,9	9.7790185,6	9.7667837,2		0.7263428.8	9.7115576, 5	9.6960863,3	0.6700061.4	9.6629922, 8		9.6268529,0	874199,	5663773,	443944,	9.5214237,4		9.4723005,2	9.4460228,7	0.2806610.2	9,30,001,9,5
$\operatorname{Log} G_8^6$	9.9700367,8	9.9694696, 7	9.9687603, 8	9.90//000,4	9.9649226, 5			9.9584977, 5	+11+11666	9.9527562,6	9.646417,6	9.9458280,0	9.9376913, 9	9.9331618,9	9.9283201, 1	9.9231620,4	9.9118793, 5		9.9057450, 3	0.8024622.2	9.8853038,9	9.8217899, 6	9.0099143, 0	9.8530467.6	9.8440376,6	9.8346326, 1	0.8248213.0	9.8145930,9	9.8039359,8	9.7920374,0	9.7692604,8	9.7567517, 1	7437403,	9.7302080,9	9 / 101340,0	9.7014988,0	9.6862764, 9	9.6530676.1	0.626604
G7° Log	0																																						
0	°o =	61	<i>د</i> ر ،	4 v	9	~	00	0 5	2	11	12	13	1 1	10	17	0 0	20.		21	2 2 2	24	25	2 2	>00	50	2	12	25	33	4 % 24 %	200	37	20.00	6, 9		41	2 4 5	54	tt

8.632513.5 8.5165304.8 8.3681821.5 8.1570249.8 7.7704558.1 7.3771964.2 n 7.9733269.3 n 8.2101448.3 n 8'4496301,9 n 8'5219539,8 n 8'5219539,2 n 8'621920,9 n 8'6531546,1 n 8'6791153,3 n 8'6781153,3 n 8'7110781,0 n 8'7127251,0 n 9.5358161, 9 9.5137600, 9 9.4907304, 5 9.4666599, 4 9.4414725, 9 9.4150821, 1 9.3873900, 1 9.3582830, 0 9.3276299, 3 9.6154136, 1 9.5967116, 4 9.5772411, 1 9.5569586, 7 9.0523211,2 9.0001703,4 8.9429922,7 8.8796463,5 8.8085229,0 9.2610457,7 9.2247194,9 9.1860398,8 8.7272405,7 8.6320513,5 8.5165304,8 8.3681821,5  $G_{10}^{8}$ 9.1446915, 0 9.6333863, 00  $\mu = \cos \theta$ .  $\log ($ II 7.3098749, 2 n. 7.8182146, 7 n. 8.0236676, 2 n. 8:2278103,7 n 8:281894,3 n 8:357551,2 n 8:357216,3 n 8:377216,3 n 8:380239,9 n 8:380543,2 n 8:3773190,0 n 8:3611274,9 n 8:3460007,0 n 8-3195630, 3 n 8-2850854, 0 n 8-2413596, 8 n 8-1864587, 9 n 8-1172507, 4 n 8-0283577, 2 n 7-9095678, 0 n 7-378237, 4 n 7-4393848, 1 n 8.1459552, 2 n 9'3531940,5 9'3212427,6 9'2876707,7 9'2523392,4 9'2150863,0 9°0424440,3 8°9918291,0 8°9373380,7 8°8783008,6 8°8138311,5 8°7427201,9 8.5728826, 3 8.4675505, 4 8.3402074, 7 8.1768133, 2 7.9421589, 1 7.4866826, 2 9.1757213, 2 9.1340177, 5 9.0897028, 9 G107 Table of Log G, G, G, G, AND G, FOR VALUES OF \$\theta\$ FROM 0° TO 90°. Borl 1 8.5359493,7 n 8.5960952,2 n 8.6431701,9 n 8.6803113,0 n  $\parallel$ 8.1930204,9 n 8.3505476,5 n 8.4574252,7 n 8.7604644, o n 8.7672964, 5 n 8.7695510, 8 n 6.4732387, 3 n 7.9149008, 7 n 8.7320523, 1 n 8.7488427, 0 n 9.5279141, 2 9.5054423, 8 9.4819551, 6 9.4573791, 8 9.4316313,4 9.4046168,0 9.3762267,0 9.3463351,7 9.3147953,0 9'1249791,2 9'0783939,9 9'0278027,1 8'9724216,9 8'9111926,2 8'8426345,7 8'7645814,6 8.642868,7 8.5642868,7 8.4258223,5 8.2343254,0 7.9118907,6 7095024,0 11 9.2460474, I 9.2083876, 5 9.1681551, 0 33 9.6270858, 5 9.6088449, 3 9.5898516, 1 9.5700639, 2 9.5494353, 6 G.7 Log ( ò Log  $G_8^7$ 8 655 657 668 668 67 67 67 67 12247373 9.7546001,0 9.7414071,1 9.7276977,9 9.9765189, o 9.9763792, 5 9.9759602, o 9.9752614, 5 9.9675476,4 9.9651530,8 9.9624710,2 9.9594994, 8
9.9562362, 3
9.9526788, 6
9.9488246, 8
9.9446707, 2 9.9132525, 2 9.9068941, 6 9.9002019, 1 9°8338507, 2
9°8238353, 3
9°8134053, 3
9°8025491, 5
9'7912543, 7
9'7795076, 9 9.7134527, 2 9.6986508, 1 9.6832692, 3 9.6672830, 9 9.6506653, 2 9.9714809,9 9.9696564,2  $G_{10}^{\circ}$ 9.9742824, 9.9730226, 4 9.9354504, 3 9.9303768, 5 9.9249889, 8 9.8931699, 5 9.8857920, 3 9.8780614, 9 9.8615134, 3 9.8526800, 5 9.8434622, 7 9.9192824, 9.8699711, 00 11 Log 33 9'9251431, 2
9'9251431, 2
9'924531, 4
9'923358, 9
9'921903, 9
9'9197753, 3
9'9143891, 2
9'9110133, 5
9'9110133, 5
9'9110133, 5
9'971786, 1
9'9028816, 0 9.892848, 5 9.892848, 5 9.8871760, 9 9.887115, 9 9.8671437, 2 9.8594764, 6 9.813023, 1 9.8426131, 7 9.843402, 0 9°8236538,4 9°8133638,6 9°825190,6 9°7911044,5 9°7791160,2 9°7665307,8 9°7665307,8 9°753356,6 9°7395170,0 9°7250543,7 9°729053,6 9'6941217, 5 9'6776684, 3 9'663561, 1 9'642361, 7 9'6235795, 1 9'6337764, 0 9'5835210, 2 9'5835210, 2 9'5835210, 2 9'5835210, 2 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'5835210, 3 9'58352 9.4923521, 0 9.4669767, 5 9.4404498, 2 9.4126994, 3 9.3836447, 6  $G_{10}$ Log 7 11 9.9736710, 6
9.973534, 9
9.9731086, 8
9.9724053, 1
9.9701517, 0
9.9655998, 1
9.9667630, 7
9.96676401, 5 9'9035492, 1 9'9035492, 1 9'9035493, 1 9'80809171, 8 9'8827798, 7 9'8744860, 0 9'8547881, 7 9'8777881, 7 9'8777881, 1 9'8458884, 6 9'8298903, 2 9'8197821, 0 9'8092531, 0 9'7862213, 0 9'7868837, 8 9'7750166, 4 9'7750166, 4 9'7750166, 4 9'7750160, 3 9'775019, 3 9'7082194, 5 9'6932349, 7 9'6776568, 7 9'6614588, 8 9.9565374, 2 9.9532517, 7 9.9496697, 6 9.9457886, 6 9.9416054, 3 9.9371167, 7 9.9323191, 3 B 9.9595292, 4 9.9217810, 5 S Log Log  $G_8^7$ 0 = 4 w 4 m 0 r ∞ 0 0 1222222222 44444 6

[The following is a specimen of the mode of testing the correctness of the results of the calculations.]

Since  $G_{10}^{4}$ ,  $G_{10}^{5}$ ,  $G_{10}^{6}$ , &c. are the respective successive differential coefficients of a function, each multiplied by a constant, and since  $G_{10}^{4}$  is of six dimensions in  $\mu$  and the coefficient of the highest power of  $\mu$  in each of them is 1; it is clear that the coefficients of the successive terms in the expansion of  $G_{10}^{4} + \delta G_{10}^{4}$  in powers of  $\delta \mu$  will be the same as those of a binomial raised to the sixth power.

Thus 
$$G_{10}{}^4 + \delta G_{10}{}^4 = G_{10}{}^4 + 6 G_{10}{}^5 \cdot \delta \mu + 15 G_{10}{}^6 \cdot \delta \mu^2$$
 
$$+ 20 G_{10}{}^7 \cdot \delta \mu^3 + 15 G_{10}{}^8 \cdot \delta \mu^4 + 6 G_{10}{}^9 \cdot \delta \mu^5 + G_{10}{}^{10} \cdot \delta \mu^6,$$
 where 
$$G_{10}{}^9 = \mu \quad \text{and} \quad G_{10}^{10} = 1.$$

Now take  $\delta\mu$  successively = 01 and -01 and  $\mu$  = 80.

## SECTION II.

## COMPUTATION OF THE VALUES OF LOG G" FOR THE EARTH'S SURFACE.

1. Taking into account the spheroidal figure of the Earth, let r,  $\theta'$ ,  $\lambda$  be polar coordinates of a point referred to the Earth's centre as origin and axis of figure as initial line.

Also let  $\alpha$  be the semi-axis major of the terrestrial meridian,  $\theta'$  the angle from the axis of rotation, and  $\theta$  the geographical colatitude of the point.

Then 
$$r^{2} = \frac{\alpha^{4} \sin^{2} \theta + b^{4} \cos^{2} \theta}{\alpha^{2} \sin^{2} \theta + b^{2} \cos^{2} \theta},$$

$$r \sin \theta' = \frac{\alpha^{2} \sin \theta}{\sqrt{\alpha^{2} \sin^{2} \theta + b^{2} \cos^{2} \theta}},$$

$$r \cos \theta' = \frac{b^{2} \cos \theta}{\sqrt{\alpha^{2} \sin^{2} \theta + b^{2} \cos^{2} \theta}}.$$
Also 
$$\tan \theta' = \frac{\alpha^{2}}{b^{2}} \tan \theta,$$
or 
$$\tan \theta = \frac{b^{2}}{\alpha^{2}} \tan \theta' = \frac{b^{2} \sin \theta'}{\alpha^{2} \cos \theta'};$$

$$\therefore \sin \theta = \frac{b^{2} \sin \theta'}{\sqrt{\alpha^{4} \cos^{2} \theta' + b^{4} \sin^{2} \theta'}},$$

$$\cos \theta = \frac{\alpha^{2} \cos \theta'}{\sqrt{\alpha^{4} \cos^{2} \theta' + b^{4} \sin^{2} \theta'}},$$
and 
$$r^{2} = \frac{\alpha^{2} b^{2}}{b^{2} \sin^{2} \theta' + a^{2} \cos^{2} \theta'}.$$

If e be the eccentricity of the terrestrial meridian,

$$b^2 = a^2 (1 - e^2),$$

and we have

$$r^2 = \frac{\alpha^2 (1 - e^2)}{1 - e^2 \sin^2 \theta'}$$
,

also 
$$\frac{r^2}{\alpha^2} = \frac{\sin^2\theta + (1 - e^2)^2 \cos^2\theta}{\sin^2\theta + (1 - e^2) \cos^2\theta} = \frac{1 - 2e^2 \cos^2\theta + e^4 \cos^2\theta}{1 - e^2 \cos^2\theta},$$

$$\frac{r}{\alpha} \sin\theta' = \frac{\sin\theta}{\sqrt{\sin^2\theta + (1 - e^2) \cos^2\theta}} = \frac{\sin\theta}{\sqrt{1 - e^2 \cos^2\theta}},$$

$$\frac{r}{\alpha} \cos\theta' = \frac{(1 - e^2) \cos\theta}{\sqrt{\sin^2\theta + (1 - e^2) \cos^2\theta}} = \frac{(1 - e^2) \cos\theta}{\sqrt{1 - e^2 \cos^2\theta}},$$
and 
$$\tan\theta' = \frac{1}{1 - e^2} \tan\theta.$$

These formulae give the radius vector and the geocentric colatitude in terms of the geographical colatitude.

2. Now 
$$\frac{r}{\alpha}\cos\left(\theta'-\theta\right) = \frac{(1-e^2)\cos^2\theta + \sin^2\theta}{\sqrt{1-e^2\cos^2\theta}} = \sqrt{1-e^2\cos^2\theta},$$
and 
$$\frac{r}{\alpha}\sin\left(\theta'-\theta\right) = \frac{\sin\theta\cos\theta}{\sqrt{1-e^2\cos^2\theta}}\left\{1-(1-e^2)\right\} = \frac{e^2\sin\theta\cos\theta}{\sqrt{1-e^2\cos^2\theta}}.$$
Also 
$$\cos\left(\theta'-\theta\right) = \frac{\cos^2\theta' + (1-e^2)\sin^2\theta'}{\sqrt{\cos^2\theta' + (1-e^2)^2\sin^2\theta'}};$$

$$= \frac{1-e^2\sin^2\theta'}{\sqrt{1-2e^2\sin^2\theta' + e^4\sin^2\theta'}};$$
and 
$$\sin\left(\theta'-\theta\right) = \frac{e^2\sin\theta'\cos\theta'}{\sqrt{1-2e^2\sin^2\theta' + e^4\sin^2\theta'}}.$$
Also 
$$\frac{\alpha}{r} = \frac{\sqrt{1-e^2\cos^2\theta}}{\sqrt{1-2e^2\cos^2\theta + e^4\cos^2\theta}},$$

$$\sin\theta' = \frac{\sin\theta}{\sqrt{1-2e^2\cos^2\theta + e^4\cos^2\theta}},$$

$$\cos\theta' = \frac{(1-e^2)\cos\theta}{\sqrt{1-2e^2\cos^2\theta + e^4\cos^2\theta}}.$$

Also we get, taking  $\psi$  as the angle of the vertical, i.e.  $(\theta' - \theta)$ ,

$$\cos \psi = \cos (\theta' - \theta) = \frac{1 - e^2 \cos^2 \theta}{\sqrt{1 - e^3 (2 - e^2) \cos^3 \theta}},$$
  

$$\sin \psi = \sin (\theta' - \theta) = \frac{e^2 \sin \theta \cos \theta}{\sqrt{1 - e^3 (2 - e^2) \cos^2 \theta}}.$$

If N be the length of the normal PN terminated by the axis of rotation,

$$\sin \theta' = \frac{N}{r} \sin \theta;$$
hence
$$\frac{N}{a} = \frac{r}{a} \frac{\sin \theta'}{\sin \theta} = \frac{1}{\sqrt{1 - e^2 \cos^2 \theta}},$$

$$\frac{N}{r} = \frac{1}{\sqrt{1 - e^2 (2 - e^2) \cos^2 \theta}},$$
and
$$\cos \theta' = \frac{N}{r} (1 - e^2) \cos \theta;$$

$$\cos (\theta' - \theta) = \frac{\alpha^2}{Nr},$$
and
$$\sin (\theta' - \theta) = \frac{N}{r} \cdot e^2 \sin \theta \cos \theta.$$

By these formulae the values of  $\cos \theta'$ ,  $\sin \theta'$ ,  $\cos (\theta' - \theta)$ ,  $\sin (\theta' - \theta)$  for values of  $\theta$  differing by 1° from 0° to 90° have been computed, employing Bessel's dimensions of the Earth, as given in Encke's paper and tables in the Berliner Jahrbuch, 1852.

Encke gives 
$$\log_{10} e = 8.9122052075,$$
 
$$\log_{10} \sqrt{1 - e^2} = 9.9985458202,$$
 also,  $n \text{ being} = \frac{a - b}{a + b},$  
$$\log_{10} n = 7.2238033861,$$
 
$$\log_{10} (1 + n^2) = 0.0000012173.$$
 Now 
$$n = \frac{e^2}{(1 + \sqrt{1 - e^2})^2},$$
 also 
$$e^2 = \frac{4n}{(1 + n)^2} \text{ and } \frac{e^2}{2 - e^2} = \frac{2n}{1 + n^2}.$$
 Hence 
$$2 - e^2 = \frac{e^2}{2n} (1 + n^2),$$
 also 
$$\log_{10} 2 = 0.3010299957;$$
 therefore 
$$\log_{10} (2 - e^2) = 0.2995782505,$$
 and 
$$\log_{10} e^2 (2 - e^2) = 8.1239886655.$$

These agree with the results obtained by Bessel, whose tables extend only to the seventh place of decimals.

Or

3. The value of  $\psi$  the angle of the vertical has also been determined by another approximate method depending on the development of

$$\log_{\epsilon} \frac{1}{2} \left( 1 + \epsilon^x \right)$$

in powers of x.

To develope  $\log_{\epsilon} \frac{1}{2} (1 + \epsilon^{x})$  in powers of x.

$$\frac{1}{2}(1+\epsilon^{x}) = 1 + \frac{1}{2}(\epsilon^{x} - 1);$$

$$\therefore \log_{\epsilon} \frac{1}{2}(1+\epsilon^{x}) = \frac{1}{2}(\epsilon^{x} - 1)$$

$$-\frac{1}{2} \cdot \frac{1}{2^{2}}(\epsilon^{x} - 1)^{2} + \frac{1}{3} \cdot \frac{1}{2^{3}}(\epsilon^{x} - 1)^{3} - \&c.$$

$$-\frac{(-1)^{n}}{n} \cdot \frac{1}{2^{n}}(\epsilon^{x} - 1)^{n} + \&c.$$

$$\log_{\epsilon} \frac{1}{2}(1+\epsilon^{x}) = \frac{1}{2}(\epsilon^{x} - 1) - \frac{1}{2} \cdot \frac{1}{2^{2}}(\epsilon^{2x} - 2\epsilon^{x} + 1)$$

$$+\frac{1}{3} \cdot \frac{1}{2^{3}}(\epsilon^{3x} - 3\epsilon^{2x} + 3\epsilon^{x} - 1)$$

$$-\frac{1}{4} \cdot \frac{1}{2^{4}}(\epsilon^{4x} - 4\epsilon^{2x} + 6\epsilon^{2x} - 4\epsilon^{x} + 1) + \&c.$$

$$-\frac{(-1)^{n}}{n} \cdot \frac{1}{2^{n}}(\epsilon^{nx} - n\epsilon^{(n-1)x} + \frac{n(n-1)}{12}\epsilon^{(n-2)x} - \&c.) + \&c.$$

Now substitute for  $\epsilon^x$ ,  $\epsilon^{2x}$ ,  $\epsilon^{2x}$ , &c. their developments in powers of x and we have

$$\log_{\epsilon} \frac{1}{2} (1 + \epsilon^{x}) = \frac{1}{2} \left\{ x + \frac{x^{2}}{1 \cdot 2} + \frac{x^{3}}{1 \cdot 2 \cdot 3} + \&c. \right\}$$
$$- \frac{1}{2} \cdot \frac{1}{2^{3}} \left\{ \frac{1}{1 \cdot 2} \left[ 2^{2} - 2 \cdot 1^{2} + 1 \cdot 0^{2} \right] x^{2} + \frac{x^{3}}{1 \cdot 2 \cdot 3} \left[ 2^{3} - 2 \cdot 1^{3} + 1 \cdot 0^{3} \right] + \&c. \right\}$$

$$+ \frac{1}{3} \cdot \frac{1}{2^{3}} \left\{ \frac{x^{3}}{1 \cdot 2 \cdot 3} \left[ 3^{3} - 3 \cdot 2^{3} + 3 \cdot 1^{3} - 1 \cdot 0^{3} \right] \right.$$

$$+ \frac{x^{4}}{1 \cdot 2 \cdot 3 \cdot 4} \left[ 3^{4} - 3 \cdot 2^{4} + 3 \cdot 1^{4} - 1 \cdot 0^{4} \right] + \&c. \right\}$$

$$- \frac{1}{4} \cdot \frac{1}{2^{4}} \left\{ \frac{x^{4}}{1 \cdot 2 \cdot 3 \cdot 4} \left[ 4^{4} - 4 \cdot 3^{4} + 6 \cdot 2^{4} - 4 \cdot 1^{4} + 1 \cdot 0^{4} \right] \right.$$

$$+ \frac{x^{5}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} \left[ 4^{5} - 4 \cdot 3^{5} + 6 \cdot 2^{5} - 4 \cdot 1^{5} + 1 \cdot 0^{5} \right] + \&c. \right\}$$

$$+ \&c.$$

$$- \frac{(-1)^{n}}{n} \cdot \frac{1}{2^{n}} \left\{ \frac{x^{n}}{n!} \left[ n^{n} - n(n-1)^{n} + \frac{n(n-1)}{1 \cdot 2} (n-2)^{n} - \&c. \right] \right.$$

$$+ \frac{x^{n+1}}{(n+1)!} \left[ n^{n+1} - n(n-1)^{n+1} + \&c. \right] \right\} + \&c.$$

Or, employing the symbol of operation  $\Delta^n 0^m$  in the usual sense,

$$\log_{\epsilon} \frac{1}{2} \left( 1 + \epsilon^{x} \right) = \frac{1}{2} \left\{ x + \frac{x^{2}}{1 \cdot 2} + \frac{x^{3}}{1 \cdot 2 \cdot 3} + \&c. \right\}$$

$$- \frac{1}{2} \cdot \frac{1}{2^{2}} \left\{ \frac{x^{2}}{1 \cdot 2} \Delta^{2} 0^{2} + \frac{x^{3}}{1 \cdot 2 \cdot 3} \Delta^{2} 0^{3} + \frac{x^{4}}{1 \cdot 2 \cdot 3 \cdot 4} \Delta^{2} 0^{4} + \&c. \right\}$$

$$+ \frac{1}{3} \cdot \frac{1}{2^{3}} \left\{ \frac{x^{3}}{1 \cdot 2 \cdot 3} \Delta^{3} 0^{3} + \frac{x^{4}}{1 \cdot 2 \cdot 3 \cdot 4} \Delta^{3} 0^{4} + \&c. \right\}$$

$$- \frac{1}{4} \cdot \frac{1}{2^{4}} \left\{ \frac{x^{4}}{1 \cdot 2 \cdot 3 \cdot 4} \Delta^{4} 0^{4} + \&c. \right\} + \&c.$$

$$- \frac{(-1)^{n}}{n} \cdot \frac{1}{2^{n}} \left\{ \frac{x^{n}}{n!} \Delta^{n} 0^{n} + \frac{x^{n+1}}{(n+1)!} \Delta^{n} 0^{n+1} + \&c. \right\}$$

$$+ \&c.$$

where the first line may be expressed similarly to the rest, viz.

$$\frac{1}{2}\left\{x\Delta 0^{1}+\frac{x^{2}}{1\cdot 2}\Delta 0^{2}+\frac{x^{3}}{1\cdot 2\cdot 3}\Delta 0^{3}+\&c.\right\},\,$$

since  $\Delta 0^1$ ,  $\Delta 0^2$ ,  $\Delta 0^3$ , &c. are all = 1.

Hence, we have

$$\log_{\epsilon} \frac{1}{2} (1 + \epsilon^{x}) = \Delta 0^{1} \left( \frac{1}{2} x \right) + \frac{x^{2}}{1 \cdot 2} \left\{ \frac{1}{2} \Delta 0^{2} - \frac{1}{2} \cdot \frac{1}{2^{2}} \Delta^{2} 0^{2} \right\}$$

$$+ \frac{x^{3}}{1 \cdot 2 \cdot 3} \left\{ \frac{1}{2} \Delta 0^{3} - \frac{1}{2} \cdot \frac{1}{2^{2}} \Delta^{3} 0^{3} + \frac{1}{3} \cdot \frac{1}{2^{3}} \Delta^{2} 0^{3} \right\}$$

$$+ \frac{x^{4}}{1 \cdot 2 \cdot 3 \cdot 4} \left\{ \frac{1}{2} \Delta 0^{4} - \frac{1}{2} \cdot \frac{1}{2^{2}} \Delta^{2} 0^{4} + \frac{1}{3} \cdot \frac{1}{2^{3}} \Delta^{3} 0^{4} - \frac{1}{4} \cdot \frac{1}{2^{4}} \Delta^{4} 0^{4} \right\} + \&c.$$

$$+ \frac{x^{n}}{n!} \left\{ \frac{1}{2} \Delta 0^{n} - \frac{1}{2} \cdot \frac{1}{2^{2}} \Delta^{2} 0^{n} + \frac{1}{3} \cdot \frac{1}{2^{3}} \Delta^{3} 0^{n} - \&c. - \left( \frac{-1}{n} \right)^{n} \frac{1}{2^{n}} \Delta^{n} 0^{n} \right\}$$

$$+ \&c.$$

observing that  $\Delta^n 0^m = 0$  when n is greater than m.

The above may be symbolically expressed thus

$$\begin{split} \log \frac{1}{2} \left( 1 + \epsilon^x \right) &= x \log \left( 1 + \frac{1}{2} \Delta \right) 0^1 + \frac{x^2}{1 \cdot 2} \log \left( 1 + \frac{1}{2} \Delta \right) 0^2 + \frac{x^3}{1 \cdot 2 \cdot 3} \log \left( 1 + \frac{1}{2} \Delta \right) 0^3 + \&c. \\ &+ \frac{x^n}{n!} \log \left( 1 + \frac{1}{2} \Delta \right) 0^n + \&c. ; \end{split}$$

or

$$= \log\left(1 + \frac{1}{2}\Delta\right) \left\{0^{1}x + 0^{2} \frac{x^{2}}{1 \cdot 2} + 0^{3} \frac{x^{3}}{1 \cdot 2 \cdot 3} + &c. + 0^{n} \frac{x^{n}}{n!} + &c.\right\},\,$$

where the symbols of operation  $\Delta$ ,  $\Delta^2$ , &c. act only on the quantities denoted by  $0^1$ ,  $0^2$ ,  $0^3$ , &c.

This again may be symbolically represented thus

$$\log\frac{1}{2}\left(1+\epsilon^x\right) = \log\left(1+\frac{1}{2}\,\Delta\right)\left[\epsilon^{0^*x}-1\right], \text{ or by } \log\left(1+\frac{1}{2}\,\Delta\right)\epsilon^{0^*x} \text{ simply,}$$

since  $\Delta$ ,  $\Delta^2$ , &c. performed on the constant 1 produce zero.

If we substitute the known values of  $\Delta^{n_0m}$  as given in Herschel's "Examples of Finite Differences," p. 9, we have

$$\log_{\epsilon} \frac{1}{2} (1 + \epsilon^{x}) = x \left[ \frac{1}{2} \right] + \frac{x^{2}}{1 \cdot 2} \left[ \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2^{2}} 2 \right] + \frac{x^{3}}{1 \cdot 2 \cdot 3} \left[ \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2^{2}} 6 + \frac{1}{3} \cdot \frac{1}{2^{3}} 6 \right]$$
$$+ \frac{x^{4}}{1 \cdot 2 \cdot 3 \cdot 4} \left[ \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2^{2}} 14 + \frac{1}{3} \cdot \frac{1}{2^{3}} 36 - \frac{1}{4} \cdot \frac{1}{2^{4}} 24 \right] + \&c.$$

The coefficient of 
$$\frac{x^2}{1\cdot 2}$$
 is  $\frac{1}{2} - \frac{1}{4} = \frac{1}{4}$ ,

the coefficient of 
$$\frac{x^3}{1.2.3}$$
 is  $\frac{1}{2} - \frac{3}{4} + \frac{1}{4} = 0$ ,

the coefficient of 
$$\frac{x^4}{1 \cdot 2 \cdot 3 \cdot 4}$$
 is  $\frac{1}{2} - \frac{7}{4} + \frac{3}{2} - \frac{3}{8} = -\frac{1}{8}$ , &c., &c.

Hence to the 4th power of x we have

$$\log_{\epsilon} \frac{1}{2} \left( 1 + \epsilon^x \right) = \frac{1}{2} x + \frac{1}{8} x^2 - \frac{1}{192} x^4.$$

If  $x = -\log \cos \psi = \log \sec \psi$ , where  $\psi$  is the angle of the vertical, we have

$$\log_{\epsilon} \frac{1}{2} (1 + \cos \psi) = \log_{\epsilon} \frac{1}{2} (1 + \epsilon^{-x}) = -\frac{1}{2} x + \frac{1}{8} x^{2} - \frac{1}{192} x^{4} + \&c.$$

4. Also 
$$1 - \cos \psi = \frac{\sin^2 \psi}{1 + \cos \psi}$$
,

hence  $\log (1 - \cos \psi) = 2 \log \sin \psi - \log 2 - \log \frac{1}{2} (1 + \cos \psi)$ 

= 
$$2 \log \sin \psi - \log 2 + \frac{1}{2} \log (\sec \psi)$$
 nearly,

neglecting the square of log (sec  $\psi$ ).

Or if a is the modulus of common logarithms, we have

$$\log_{10} \frac{1}{2} (1 + \cos \psi) = \alpha \log_{\epsilon} \frac{1}{2} (1 + \cos \psi) = -\frac{1}{2} ax + \frac{1}{8} ax^{2} - \frac{1}{192} ax^{4} \text{ nearly}$$

$$= -\frac{1}{2} ax + \frac{1}{8} \frac{(ax)^{2}}{a} - \frac{1}{192} \frac{(ax)^{4}}{a^{3}},$$

or 
$$-\log_{10}\frac{1}{2}(1+\cos\psi) = \frac{1}{2}\log_{10}\sec\psi - \frac{1}{8}\frac{(\log_{10}\sec\psi)^2}{\alpha} + \frac{1}{192}\frac{(\log_{10}\sec\psi)^4}{\alpha^3}$$
.

By these formulae the values of  $\log (1 - \cos \psi)$  and  $\log (1 + \cos \psi)$  for every 5th degree of geographical colatitude have been determined.

5. Taking  $\mu = \cos \theta$  and  $\mu' = \cos \theta'$ , the following formula is convenient as a test of accuracy in the determination of  $\mu - \mu'$ .

$$\mu - \mu' = \cos \theta \left\{ 1 - \cos \left( \theta' - \theta \right) \right\} + \sin \theta \sin \left( \theta' - \theta \right)$$

$$= \sin \theta \sin \left( \theta' - \theta \right) + \cos \theta \frac{\sin^2 \left( \theta' - \theta \right)}{1 + \cos \left( \theta' - \theta \right)}$$

$$= e^2 \sin \theta' \sin \theta \cos \theta + \frac{e^4 \sin^2 \theta' \cos^3 \theta}{1 + \cos \left( \theta' - \theta \right)}$$

$$= e^2 \sin \theta' \sin \theta \cos \theta \left[ 1 + \frac{e^2 \sin \theta' \cos^2 \theta}{\sin \theta \left\{ 1 + \cos \left( \theta' - \theta \right) \right\}} \right].$$

Also  $\sin \psi = e^2 \sin \theta' \cos \theta$ ,

hence  $\mu - \mu' = \sin \psi \sin \theta \left[ 1 + e^2 \frac{N}{r} \cos^2 \theta \left( \frac{1}{1 + \cos \psi} \right) \right].$ 

6. The following theorem is also useful for testing the accuracy of numerical determinations of similar functions of  $\mu$  and  $\mu'$ .

Let G be any function of  $\mu$ , and G' the same function of  $\mu'$ .

Since  $\mu = \mu' + (\mu - \mu')$  and  $\mu' = \mu - (\mu - \mu')$ , we get from Taylor's Theorem,

$$\begin{split} 2\left(G-G'\right) &= (\mu-\mu')\left(\frac{dG'}{d\mu} + \frac{dG'}{d\mu'}\right) - \frac{1}{2}\left(\mu-\mu'\right)^2\left(\frac{d^2G}{d\mu^2} - \frac{d^2G'}{d\mu'^2}\right) \\ &+ \frac{1}{6}\left(\mu-\mu'\right)^3\left(\frac{d^3G}{d\mu^3} + \frac{d^3G'}{d\mu'^3}\right) - \frac{1}{24}\left(\mu-\mu'\right)^4\left(\frac{d^4G}{d\mu^4} - \frac{d^4G'}{d\mu'^4}\right) \\ &+ \frac{1}{120}\left(\mu-\mu'\right)^5\left(\frac{d^8G}{d\mu^5} + \frac{d^5G'}{d\mu'^5}\right) + \&c. \end{split}$$

But by the same formula

$$2\left(\frac{d^{3}G}{d\mu^{2}} - \frac{d^{2}G'}{d\mu^{\prime 2}}\right) = (\mu - \mu')\left(\frac{d^{3}G}{d\mu^{3}} + \frac{d^{3}G'}{d\mu^{\prime 3}}\right) - \frac{1}{2}(\mu - \mu')^{2}\left(\frac{d^{4}G}{d\mu^{4}} - \frac{d^{4}G'}{d\mu^{\prime 4}}\right)$$

$$+ \frac{1}{6}(\mu - \mu')^{3}\left(\frac{d^{5}G}{d\mu^{5}} + \frac{d^{5}G'}{d\mu^{\prime 5}}\right) + \&c.,$$

$$2\left(\frac{d^{4}G}{d\mu^{4}} - \frac{d^{4}G'}{d\mu^{\prime 4}}\right) = (\mu - \mu')\left(\frac{d^{5}G}{d\mu^{5}} + \frac{d^{5}G'}{d\mu^{\prime 5}}\right) + \&c.$$

and

Combining these formulae we get

$$G - G' = \left(\frac{dG}{d\mu}\right)(\mu - \mu') - \frac{1}{12}\left(\frac{d^3G}{d\mu^3}\right)(\mu - \mu')^3 + \frac{1}{120}\left(\frac{d^5G}{d\mu^5}\right)(\mu - \mu')^5 - \&c.,$$
where for
$$\begin{pmatrix} dG \\ d\overline{\mu} \end{pmatrix} \text{ we must put } \frac{1}{2}\left[\frac{dG}{d\mu} + \frac{dG'}{d\mu'}\right],$$
for
$$\begin{pmatrix} \frac{d^3G}{d\mu^3} \end{pmatrix} ,, \quad ,, \quad ,, \quad \frac{1}{2}\left[\frac{d^3G}{d\mu^3} + \frac{d^3G'}{d\mu'^3}\right], \&c.$$

Now if  $G_n^m$ ,  $G_n^{m+1}$ , &c., have the signification given them in Section I. (see p. 259), each of these quantities is proportional to the differential coefficient of the one immediately preceding taken with respect to  $\mu$ , also the highest powers of  $\mu$  in these quantities are respectively n-m, n-m-1, &c., and the coefficients of these highest powers are in every case unity.

Hence 
$$\frac{d}{d\mu}(G_n^m) = (n-m) G_n^{m+1},$$
 
$$\frac{d^2}{d\mu^2}(G_n^m) = (n-m)(n-m-1) G_n^{m+2}, &c.$$

Hence if as above we denote by  $(G_n^{m+1})$ ,  $(G_n^{m+3})$ , &c., the means of the several quantities obtained by substituting  $\mu$  and  $\mu'$  for  $\mu$  in the respective functions, we have

$$\begin{split} G_{n}^{m} - G_{n}^{\prime m} &= \left(n - m\right) \left(G_{n}^{m+1}\right) \left(\mu - \mu'\right) - \frac{\left(n - m\right) \left(n - m - 1\right) \left(n - m - 2\right)}{12} \left(G_{n}^{m+3}\right) \left(\mu - \mu'\right)^{3} \\ &+ \frac{\left(n - m\right) \left(n - m - 1\right) \left(n - m - 2\right) \left(n - m - 3\right) \left(n - m - 4\right)}{120} \left(G_{n}^{m+5}\right) \left(\mu - \mu'\right)^{5} \\ &- \&c., \&c., \end{split}$$

which is a convenient test formula for examining the values of  $G_n^m$  and  $G_n^m$  by taking their difference.

for

Table of the Values of Log cos  $\psi$  and Log sin  $\psi$ ;  $\psi$  being the Angle of the Vertical, and  $\theta$  the Geographical Colatitude.

θ	Log cos ψ	$\operatorname{Log} \sin \psi$	θ	Log cos ψ	$\operatorname{Log}\sin\psi$	Ð	Log cos ψ	$\operatorname{Log}\sin\psi$
0° 1 2 3 4 5 6 7 8 9 10 11 12	0.0000000, 0 0.0000000, 0 9.9999999, 9 9.9999999, 7 9.9999999, 3 9.9999998, 9 9.9999998, 1 9.9999998, 1 9.9999997, 7 9.9999997, 1	- & 6:0691071 6:3698697 6:5455153 6:6698298 6:7659368 6:8441357 6:9099205 6:9665701 7:0161995 7:0602522 7:0997576 7:1354755	31° 32 33 34 35 36 37 38 39 40 41 42	9'9999981, 0 9'9999980, 3 9'9999979, 6 9'9999978, 5 9'9999977, 9 9'9999977, 0 9'9999976, 7 9'9999976, 4	7.4714484 7.4791283 7.4861522 7.4925410 7.4983135 7.5034859 7.5086726 7.5120859 7.5155367 7.5184338 7.5207850 7.5225961	61° 62 63 64 65 66 67 68 69 70	9'9999982,6 9'9999983,3 9'9999984,1 9'9999984,9 9'9999986,6 9'9999987,5 9'9999988,3 9'9999989,2 9'9999990,0	7'4524810 7'4425923 7'4319343 7'4204684 7'4081510 7'3949323 7'3807560 7'3655575 7'3492627 7'3317861 7'3130288 7'2928752
13 14 15 16 17 18 19	9'999995, 3 9'9999994, 6 9'999993, 9 9'9999993, 1 9'9999992, 3 9'9999990, 7 9'9999989, 9	7·1679826 7·1977268 7·2250627 7·2502761 7·2736003 7·2952281 7·3153206 7·3340140	43 44 45 46 47 48 49 50	9'9999975, 8 9'9999975, 7 9'9999975, 7 9'9999975, 7 9'9999975, 8 9'9999976, 1 9'9999976, 4	7·5238720 7·5246158 7·5248297 7·5245143 7·5236691 7·5222921 7·5203802 7·5179288	73 74 75 76 77 78 79 80	9'999992,4 9'999993,2 9'999994,0 9'9999994,7 9'9999995,3 9'9999996,0 9'9999996,6	7·2711892 7·2478997 7·2225440 7·1951589 7·1653686 7·1328186 7·0970610 7·0575192
21 22 23 24 25 26 27 28 29 30	9°999989, 0 9°999988, 2 9°999987, 3 9°999986, 5 9°999985, 7 9°999984, 8 9°9999984, 0 9°999983, 2 9°999983, 2	7:3514240 7:3676496 7:3827763 7:3968784 7:4100204 7:4222590 7:4336438 7:4442186 7:4540222 7:4630887	51 52 53 54 55 56 57 58 59 60	9'9999976, 7 9'9999977, 1 9'9999977, 5 9'9999978, 5 9'9999979, 1 9'9999979, 7 9'9999980, 4 9'9999981, 8	7.5149320 7.5113823 7.5072709 7.5025872 7.4973188 7.4914515 7.4849692 7.4778534 7.4700830 7.4616345	81 82 83 84 85 86 87 88 89	9'999997'7 9'9999998,2 9'9999998,6 9'9999999,0 9'9999999,3 9'9999999,7 9'9999999,9 0'00000000,0	7.0134335 6.9637745 6.9070985 6.8412909 6.7630726 6.6669498 6.3669685 6.0662005

Table of the Values of Log  $\mu'$ , or Log cos  $\theta'$ ;  $\theta'$  being the Geocentric, and  $\theta$  the Geographical Colatitude.

θ	$\operatorname{Log}\mu'$	θ	$\operatorname{Log}\mu'$	θ	$\operatorname{Log}\mu'$
0° 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	0.0000000, 0 9.9999329, 6 9.9997317, 9 9.9993963, 9 9.9983219, 9 9.9975823, 6 9.9967072, 3 9.9956960, 7 9.9945482, 9 9.9932631, 9 9.9918400, 0 9.9902778, 6 9.9885758, 2 9.9867328, 3 9.9866193, 0 9.986193, 0 9.9903461, 8 9.9779269, 1 9.9753599, 4 9.9726435, 8	31° 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	9'9322903, I 9'9275998, 3 9'927246, 2 9'9176605, 9 9'9124033, 9 9'9012907, 6 9'8954251, 7 9'8893460, 9 9'885232, 9 9'862364, 6 9'862364, 8 9'8622698, 8 9'8555258, 0 9'8480259, 5 9'8492614, 8 9'8322228, 7 9'8238999, 0 9'8152815, 8 9'8063560, 8	61° 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 81 82 83	9.6833429, 6 9.6693386, 1 9.6547346, 6 9.6394894, 8 9.6235565, 0 9.6068834, 0 9.5894111, 6 9.5710728, 5 9.5517921, 4 9.5314815, 3 9.5100399, 9 9.4873500, 5 9.4632740, 7 9.4376493, 2 9.4102814, 8 9.3809359, 6 9.3493259, 1 9.3150954, 7 9.2777956, 9 9.2368490, 0 9.1914947, 9 9.1407029, 1 9.0830290, 2 9.0163577, 7
				84 85 86 87 88 89 90	

Table of the Values of  $\operatorname{Log} H'_1{}^1$  or  $\operatorname{Log} \sin \theta', \ \theta = \operatorname{Geographical}$  Colatitude,  $\theta' = \operatorname{Geocentric}$  Colatitude.

θ	$\log H_1^{\prime 1}$	θ	$\operatorname{Log} H'_{1}^{1}$	θ	$\operatorname{Log} H_{1}^{\prime 1}$
1° 3 4 5 6 7 8 9 10 11 12 13 14 15	8'2447627, 9 8'5457239, 6 8'7217005, 0 8'8464786, 3 8'9431821, 3 9'0221109, 4 9'0887593, 5 9'1464069, 6 9'1971691, 6 9'2424903, 2 9'2834006, 3 9'3548482, 8 9'3548482, 8 9'4157085, 4 9'4157085, 4	31° 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	9.7139724,1 9.7262974,2 9.7381503,4 9.7495563,8 9.7605385,3 9.7711178,2 9.7813135,3 9.7911433,7 9.8006236,6 9.8097694,7 9.8185947,0 9.8271122,6 9.8353341,0 9.8432713,4 9.8509343,1 9.8583326,6	61° 62 63 64 655 66 67 68 69 70 71 72 73 74 755 76	9'9424993, 5 9'9465726, 0 9'9504771, 4 9'9542160, 7 9'9577923, 1 9'9612086, 3 9'9644675, 9 9'96575716, 5 9'9705230, 8 9'9705230, 8 9'9733240, 2 9'9759765, 0 9'9784823, 7 9'9808434, 1 9'9851373, 9 9'9851373, 9
17	9.4685935, 6	47	9.8654753, 6	77	9.9888701,7
18	9.4926113, 1	48	9.8723708, 2	78	9.9905293,1
19	9.5152401, 5	49	9.8790268, 9	79	9.9920517,8
20	9.5366178, 1	50	9.8854509, 1	80	9.9934385,9
21	9.5568618, 2	51	9.8916497, 8	81	9'9946906, 4
22	9.5760732, 9	52	9.8976299, 5	82	9'9958087, 4
23	9.5943398, 2	53	9.9033974, 8	83	9'9967936, 2
24	9.6117378, 2	54	9.9089580, 6	84	9'9976459, 2
25	9.6283343, 0	55	9.9143170, 5	85	9'9983661, 7
26	9.6441883, 9	56	9.9194794, 7	86	9'9989548, 5
27	9.6593524, 9	57	9.9244500, 6	87	9'9994123, 2
28	9.6738732, 8	58	9.9292332, 7	88	9'9997388, 8
29	9.6877925, 0	59	9.9338332, 9	89	9'999347, 3
30	9.7011476, 1	60	9.9382540, 8	90	0'00000000, 0

Table of the Values of  $\text{Log } H'_{_2}{}^2 = \text{Log } (\sin^2 \theta'), \ \theta = \text{Geographical Colatitude},$   $\theta' = \text{Geocentric Colatitude}.$ 

	_				
θ	$\operatorname{Log} H'_{2}^{2}$	θ	$\operatorname{Log} H_{\mathfrak{g}}^{\prime 2}$	θ	$\operatorname{Log} H'_{{}_{\mathbf{S}}}^{2}$
1° 2 3 4 5 6 7 8 9	6'4895255,7 7'0914479,1 7'4434010,1 7'6929572,6 7'8863642,6 8'0442218,7 8'1775187,0 8'2928139,2 8'3943383,2 8'3849806,4	31° 32 33 34 35 36 37 38 39 40	9'4279448, 2 9'4525948, 3 9'4763006, 8 9'4991127, 7 9'5210770, 7 9'5422356, 4 9'5626270, 5 9'5822867, 3 9'6012473, 2 9'6195389, 3	61° 62 63 64 65 66 67 68 69	9.8849986, 9 9.8931452, 0 9.9009542, 8 9.9084321, 4 9.9155846, 3 9.9224172, 5 9.9289351, 9 9.9351433, 0 9.9410461, 6
11 12 13 14 15 16 17 18	8·5668012, 6 8·6413214, 8 8·7096965, 6 8·7728244, 9 8·8314170, 9 8·860481, 9 8·9371871, 2 8·9852226, 2 9·0304803, 1 9·0732356, 2	41 42 43 44 45 46 47 48 49 50	9.6371894,0 9.6542245,2 9.6706682,0 9.6865426,8 9.7018686,3 9.7166653,1 9.7309507,2 9.7447416,4 9.7580537,8	71 72 73 74 75 76 77 78 79	9.9519529, 9 9.9569647, 5 9.9616868, 2 9.9661224, 8 9.9702747, 8 9.9741465, 3 9.9777403, 5 9.9810586, 2 9.9841035, 7 9.9868771, 8
21 22 23 24 25 26 27 28 29 30	9'1137236, 4 9'1521465, 8 9'1886796, 4 9'2234756, 4 9'22566866, 0 9'2883767, 8 9'3187049, 9 9'3477465, 7 9'3755849, 9 9'4022952, 3	51 52 53 54 55 56 57 58 59 60	9'7832995,6 9'7952598,9 9'8067949,5 9'8179161,2 9'8286340,9 9'8389589,4 9'8489001,2 9'8584665,3 9'8676665,8	81 82 83 84 85 86 87 88 89	9'9893812,7 9'9916174,8 9'9935872,4 9'9952918,3 9'9967323,4 9'9979097,0 9'9988246,4 9'9994777,6 9'9998694,6

Table of the Values of Log  $H'_{s}^{s}$  = Log (sin^s  $\theta'$ ),  $\theta$  = Geographical Colatitude,  $\theta'$  = Geocentric Colatitude.

θ	$\operatorname{Log} {H'}_3{}^3$	θ	$\operatorname{Log} H_3^{'3}$	θ	$\operatorname{Log} H_3^{'3}$
1° 2 3 4 5 6 7 8 9 10	4'7342883, 6 5'6371718, 7 6'1651015, 1 6'5394358, 9 6'8295463, 8 7'0663328, 1 7'2662780, 5 7'4392208, 8 7'5915074, 8 7'7274709, 6	31° 32 33 34 35 36 37 38 39 40	9'1419172, 2 9'1788922, 5 9'2144510, 2 9'2486691, 5 9'2816156, 0 9'3133534, 6 9'3439405, 8 9'3734301, 0 9'4018709, 8 9'4293084, 0	61° 62 63 64 65 66 67 68 69 70	9'8274980, 4 9'8397178, 0 9'8514314, 2 9'8626482, 1 9'8733769, 4 9'8836258, 8 9'8934027, 8 9'9027149, 5 9'9115692, 4 9'9199720, 7
11 12 13 14 15 16 17 18 19	7.8502018, 9 7.9619822, 2 8.0645448, 4 8.1592367, 3 8.2471256, 3 8.3290722, 9 8.4057806, 8 8.4778339, 4 8.5457204, 6 8.6098534, 4	41 42 43 44 45 46 47 48 49 50	9'4557841, 0 9'4813367, 8 9'5060023, 1 9'5298140, 2 9'5528029, 4 9'5749979, 7 9'5964260, 8 9'6171124, 6 9'6370806, 6	71 72 73 74 75 76 77 78 79 80	9'9279294,9 9'9354471,2 9'9425302,3 9'9491837,2 9'9554121,7 9'9612197,9 9'9666105,2 9'9715879,4 9'9761553,5
21 22 23 24 25 26 27 28 29 30	8.6705854, 6 8.7282198, 7 8.7830194, 7 8.8352134, 6 8.8850029, 1 8.9325651, 8 9.9780574, 8 9.0216198, 5 9.0633774, 9 9.1034428, 4	51 52 53 54 55 56 57 58 59 60	9'6749493, 4 9'6928898, 4 9'7101924, 3 9'7268741, 8 9'7429511, 4 9'7584384, 1 9'7733501, 7 9'7876998, 0 9'8014998, 7 9'8147622, 3	81 82 83 84 85 86 87 88 89	9'9840719, I 9'9874262, 2 9'9903808, 6 9'9929377, 5 9'9950985, 2 9'9968645, 4 9'9982369, 6 9'9992166, 3 9'9998041, 9

Table of the Values of Log  ${H'}_4{}^4={
m Log}\,(\sin^4\theta'),\;\theta={
m Geographical}$  Colatitude,  $\theta'={
m Geocentric}$  Colatitude.

θ	$\operatorname{Log} {H'_4}^4$	θ	$\operatorname{Log} {H'_4}^4$	θ	$\operatorname{Log} H'_4$
1° 2 3 4 5 6 6 7 8 9 10 11 12 13	2'9790511,4 4'1828958,3 4'8868020,1 5'3859145,2 5'7727285,1 6'0884437,5 6'3550374,0 6'5856278,4 6'7886766,5 6'9699612,8	31° 32 33 34 35 36 37 38 39 40 41 42 43	8.8558896, 3 8.9051896, 7 8.9526013, 7 8.9982255, 3 9.0421541, 4 9.0844712, 8 9.1252541, 0 9.1645734, 7 9.2024946, 5 9.2390778, 6 9.2743788, 1 9.3084490, 4 9.3413364, 1	61° 62 63 64 65 66 67 68 69 70 71 72 73	9'7699973,9 9'7862904,1 9'8019085,6 9'8168642,8 9'8311692,5 9'8448345,0 9'8578703,7 9'8702866,0 9'8820923,1 9'8932961,0
14 15 16 17 18 19 20	7-5456489,7 7-6628341,8 7-7720963,9 7-8743742,4 7-9704452,5 8-0609606,2 8-1464712,5 8-2274472,8 8-3042931,6	44 45 46 47 48 49 50	9'3730853,6 9'4037372,5 9'4333306,3 9'4619014,4 9'4894832,8 9'5161075,5 9'5418036,5	74 75 76 77 78 79 80 81 82	9'9322449, 6 9'9405495, 5 9'9482930, 6 9'9554806, 9 9'9621172, 5 9'9682071, 4 9'9737543, 6
23 24 25 26 27 28 29 30	8-3773592, 9 8-4469512, 8 8-5133372, 1 8-5767535, 7 8-6374099, 8 8-6954931, 3 8-7511699, 9 8-8045904, 6	53 54 55 56 57 58 59 60	9.6135899, 1 9.6358322,4 9.6572681,9 9.6779178,8 9.6978002,3 9.7169330,7 9.7353331,6 9.7530163,1	83 84 85 86 87 88 89 90	9-9871744, 9 9-9905836, 7 9-9934646, 9 9-9958193, 9 9-9976492, 8 9-9989555, 1 9-9997389, 2 0-0000000, 0

Table of the Values of Log  ${H'}_5^5=$  Log (sin^5  $\theta'$ ),  $\theta=$  Geographical Colatitude,  $\theta'=$  Geographic Colatitude.

θ	$\operatorname{Log} H_{5}^{5}$	Ð	$\operatorname{Log} H_{5}^{5}$	θ	$\operatorname{Log} H_{5}^{\prime 5}$
1° 3 4 56 7 8 9	1'2238139, 3 2'7286197, 9 3'6085025, 2 4'2323931, 6 4'7159106, 4 5'1105546, 8 5'4437967, 5 5'7320348, 0 5'9858458, 1	31° 32 33 34 35 36 37 38 39	8-5698620, 4 8-6314870, 8 8-6907517, 1 8-7477819, 2 8-8026926, 7 8-8555891, 1 8-9065676, 3 8-9557168, 4 9-0031183, 1	61° 62 63 64 65 66 67 68 69	9'7124967, 4 9'7328630, 1 9'7523857, 0 9'7710803, 5 9'7889615, 7 9'8660431, 3 9'8223379, 6 9'8378582, 4 9'8526153, 9
10 11 12 13 14 15 16 17 18	6°2124516, 0 6°4170031, 5 6°6033037, 0 6°7742414, 1 6°9320612, 2 7°0785427, 2 7°2151204, 8 7°3429678, 1 7°4630565, 6 7°5762007, 7 7°6830890, 6	40 41 42 43 44 45 46 47 48 49 50	9'0488473, 3 9'0929735, 1 9'1355613, 0 9'1766705, 1 9'2163567, 0 9'2546715, 6 9'2916632, 9 9'3273768, 1 9'3618541, 1 9'3951344, 4 9'4272545, 6	70 71 72 73 74 75 76 77 78 79 80	9'8666201, 2 9'8798824, 8 9'8924118, 7 9'9042170, 4 9'9153062, 0 9'9256869, 4 9'9353663, 2 9'9443508, 6 9'9526465, 6 9'9525465, 6 9'9602589, 2 9'96071929, 5
21 22 23 24 25 26 27 28 29 30	7.7843091, 0 7.8803664, 5 7.9716991, 1 8.0586890, 9 8.1416715, 1 8.2209419, 6 8.2967624, 7 8.3693664, 1 8.4389624, 8 8.5057380, 7	51 52 53 54 55 56 57 58 59 60	9'4582488, 9 9'4881497, 3 9'5169873, 8 9'5447903, 0 9'5715852, 4 9'5973973973, 5 9'6222502, 9 9'6461663, 4 9'6691664, 5 9'6912703, 9	81 82 83 84 85 86 87 88 89 90	9'9734531,8 9'9790437,0 9'9839681,1 9'9882295,8 9'9918308,6 9'9947742,4 9'9970616,0 9'9986943,9 9'9996736,5

Table of the Values of  $\operatorname{Log} H'_{_6}{}^{_6} = \operatorname{Log} (\sin^6 \theta'), \ \theta = \operatorname{Geographical}$  Colatitude,  $\theta' = \operatorname{Geocentric}$  Colatitude.

θ	$\operatorname{Log} {H'_6}^6$	θ	$\operatorname{Log} H'_{6}$	θ	$\operatorname{Log} H'_{6}$
1° 2 3 4 5 6 7 8 9 10	89:4685767, 2 1:2743437.4 2:3302030, 2 3:0788717.9 3:6590927, 7 4:1326656, 2 4:5325561, 0 4:8784417.6 5:1830149, 7 5:4549419, 2	31° 32 33 34 35 36 37 38 39	8·2838344, 5 8·3577845, 0 8·4289020, 5 8·4973383, 0 8·5632312, 0 8·6267069, 3 8·6878811, 6 8·7468602, 0 8·8037419, 7 8·8586168, 0	61° 62 63 64 65 66 67 68 69	9.6549960, 8 9.6794356, 1 9.7028628, 4 9.7252964, 1 9.7467538, 8 9.7672517, 5 9.7868055, 6 9.8054298, 9 9.8231384, 7 9.8399441, 5
111 122 133 144 155 166 177 188 199	5-7004037, 8 5-9239644, 4 6-1290896, 9 6-3184734, 6 6-4942512, 7 6-6581445, 8 6-8115613, 7 6-9556678, 7 7-0914409, 3 7-2197068, 7	41 42 43 44 45 46 47 48 49 50	8.9115682, 1 8.9626735, 6 9.0120046, 1 9.0596280, 4 9.1056058, 8 9.1499959, 4 9.1928521, 7 9.2342249, 3 9.2741613, 3	71 72 73 74 75 76 77 78 79	9.8558589, 8 9.8708942, 4 9.8850604, 5 9.8983674, 4 9.9108243, 3 9.9224395, 9 9.9332210, 4 9.9431758, 7 9.9523107, 0 9.9606315, 4
21 22 23 24 25 26 27 28 29 30	7'3411709, 2 7'4564397, 3 7'5660389, 3 7'6704269, 1 7'7700058, 1 7'8651303, 5 7'9561149, 7 8'0432397, 0 8'1267549, 8 8'2068856, 8	51 52 53 54 55 56 57 58 59 60	9'3498986, 7 9'3857796, 8 9'4203848, 6 9'4537483, 6 9'4859022, 8 9'5168768, 1 9'5467003, 5 9'5753996, 0 9'6029997, 5 9'6295244, 7	81 82 83 84 85 86 87 88 89 90	9'9681438,2 9'9748524,4 9'9807617,3 9'9858755,0 9'9901970,3 9'9937290,9 9'9964739,2 9'9984332,7 9'9996083,8

Table of the Values of Log  $H'_7{}^7=$  Log (Sin 7   $\theta'$ ),  $\theta=$  Geographical Colatitude,  $\theta'=$  Geocentric Colatitude.

θ	$\operatorname{Log} H'_{7}$	θ	$\operatorname{Log} H'_{7}$	θ	$\operatorname{Log} H'_{7}{}^{7}$
1° 3 4 5 6 7 8	87.7133395, 0 89.8200677, 0 1.0519035, 3 1.9253504, 2 2.6022749, 0 3.1547765, 5 3.6213154, 5 4.0248487, 2 4.3801841, 3	31° 32 33 34 35 36 37 38 39 40	7'9978068, 6 8'0840819, 2 8'1670523, 9 8'2468946, 8 8'3237697, 4 8'3978247, 5 8'4691946, 8 8'5380035, 7 8 6043656, 3	61° 62 63 64 65 66 67 68 69	9'5974954, 3 9'6260082, 1 9'6533399, 8 9'6795124, 8 9'7045461, 9 9'7284603, 8 9'7512731, 5 9'7730015, 4 9'7936615, 5 9'8132681, 7
11 12 13 14 15 16 17 18 19 20	4'6974322, 4 4'9838044, 1 5'2446251, 8 5'4839379, 7 5'7048857, 1 5'9099598, 1 6'1011686, 8 6'2801549, 3 6'4482791, 8 6'6066810, 8 6'7563246, 8	41 42 43 44 45 46 47 48 49 50	8.7301629, I 8.7897858, 2 8.8473387, I 8.9028993, 7 8.9565401, 9 9.0083286, 0 9.0583275, 3 9.1065957, 5 9.1531882, 2 9.1981563, 8	71 72 73 74 75 76 77 78 79	9.8318354,8 9.8493766,1 9.8659038,6 9.8814286,8 9.8959617,2 9.9095128,5 9.9220912,1 9.9337051,9 9.9443624,9 9.9540701,3
21 22 23 24 25 26 27 28 29 30	6.8980327, 4 7.0325130, 2 7.1603787, 6 7.2821647, 3 7.3983401, 2 7.5093187, 4 7.6154674, 6 7.7171129, 8 7.8145474, 8 7.9080333, 0	51 52 53 54 55 56 57 58 59 60	9'2415484, 5 9'2834096, 3 9'3237823, 3 9'3627064, 2 9'4002193, 3 9'4363562, 8 9'4711504, 0 9'5046328, 7 9'5368330, 4	81 82 83 84 85 86 87 88 89	9'9628344, 6 9'9706611, 8 9'9775553, 5 9'9835214, 2 9'9885632, 0 9'9926839, 4 9'9958862, 4 9'995721, 4 9'9995431, 1

Table of the Values of Log  $H'_8{}^8=$  Log (sin⁸  $\theta'$ ),  $\theta=$  Geographical Colatitude,  $\theta'=$  Geocentric Colatitude.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
2 88-3657916, 6 32 7.8103793, 4 62 9.5725 3 89.7736040, 3 33 7.9052027, 3 63 9.6038 4 0.7718290, 5 34 7.9964510, 7 64 9.6337 5 1.5454570, 2 35 8.0843082, 7 65 9.6623 6 2.1768874, 9 36 8.1689425, 7 66 9.6896 7 2.7100747, 9 37 8.2505082, 1 67 9.7157 8 3.1712556, 8 38 8.3291469, 4 68 9.7405 9 3.5773532, 9 39 8.4049892, 9 69 9.7641 0 3.9399225, 6 40 8.4781557, 3 70 9.7865  11 4.2672050, 4 41 8.5487576, 1 71 9.8078 12 4.5552859, 2 42 8.6168980, 8 72 9.8278 13 4.8387862, 5 43 8.6826728, 1 73 9.8467 14 5.0912979, 5 44 8.7461707, 1 74 9.8644 15 5.325683, 6 45 8.8074745, 0 75 9.8810 16 5.5441927, 7 46 8.8666612, 6 76 9.865	$H'_{8}^{8}$
17 5.7487484, 9 47 8.9238028, 9 77 9.9109 18 5.9408904, 9 48 8.9238028, 9 77 9.9242 19 6.1219212, 4 49 9.0322151, 0 79 9.9364 20 6.2929425, 0 50 9.0836073, 0 80 9.9475  21 6.4548945, 6 51 9.1331982, 3 81 9.9575 22 6.6085863, 1 52 9.1810395, 7 82 9.9664 23 6.7547185, 8 53 9.2271798, 1 83 9.9743 24 6.8939025, 5 54 9.2716644, 8 84 9.9811 25 7.0266744, 2 55 9.3145363, 8 85 9.9869 26 7.1535071, 4 56 9.3558357, 5 86 9.9916 27 7.2748199, 6 57 9.3956004, 6 87 9.9952 28 7.3909862, 6 58 9.4338661, 4 88 9.997979	947, 8 808, I 171, 2 285, 5 385, I 690, 0 407, 4 731, 9 846, 3 922, 0 119, 7 589, 8 472, 7 891, I 861, 2 861, 2 861, 2 942, 0 142, 7 087, 2 250, 9 699, 2 489, 7 223, 8

Table of the Values of Log  $H'_{\mathfrak{g}}$  = Log (sin $^{\mathfrak{g}}$   $\theta'$ ),  $\theta$  = Geographical Colatitude,  $\theta'$  = Geographical Colatitude.

θ	$\operatorname{Log} H'_{\mathfrak{g}}$	θ	$\operatorname{Log} H'_{\mathfrak{g}}$	θ	$\operatorname{Log} H'_{\mathfrak{g}}$
1° 3 4 5 6 7 8 9	84.2028650, 7 86.9115156, 2 88.4953045, 3 89.6183076, 8 0.4886391, 5 1.1989984, 3 1.7988341, 4 2.3176626, 4 2.7745224, 5	31° 32 33 34 35 36 37 38	7'4257516, 7 7'5366767, 5 7'6433530, 7 7'7460074, 5 7'8448468, 0 7'9400603, 9 8'0318217, 3 8'1202903, 1 8'2056129, 5	61° 62 63 64 65 66 67 68	9'4824941, 2 9'5191534, 1 9'5542942, 6 9'5879446, 2 9'6201308, 2 9'6508776, 3 9'6802083, 3 9'7081448, 4
10 11 12 13 14 15 16 17 18 19	2*7745224, 5 3*1824128, 8  3*5506056, 8 3*8859466, 6 4*1936345, 3 4*4777101, 9 4*7413769, 0 4*9872168, 7 5*2173420, 5 5*4335018, 1 5*6371613, 9 5*8295603, 1	39 40 41 42 43 44 45 46 47 48 49 50	8·2879252, 0 8·3673523, 1 8·4440103, 4 8·5180069, 2 8·5894420, 5 8·6584088, 2 8·7249939, 1 8·7892782, 5 8·8513373, 9 8·9112419, 9 8·9690582, 1	70 71 72 73 74 75 76 77 78 79 80	9'734/07/,1 9'7599162,2 9'7837884,7 9'8063413,6 9'8275906,8 9'8475511,6 9'8662365,0 9'8836593,8 9'898315,5 9'9147638,1 9'9284660,5 9'949473,1
21 22 23 24 25 26 27 28 29 30	6.0117563,8 6.1846596,0 6.3490584,0 6.5056403,7 6.6550087,2 6.7976955,3 6.9341724,5 7.0648595,5 7.1901324,7 7.3103285,3	51 52 53 54 55 56 57 58 59 60	9°0248480, 1 9°0786695, 2 9°1305772, 9 9°1806225, 4 9°2288534, 3 9°2753152, 2 9°3200505, 2 9°3630994, 0 9°4044996, 2 9°44442867, 0	81 82 83 84 85 86 87 88 89 90	9'9522157, 3 9'9622786, 6 9'9711425, 9 9'9788132, 5 9'9852955, 5 9'9905936, 3 9'9947108, 8 9'9976499, 0 9'9994125, 7

Table of the Values of  $\text{Log}\,H'_{10}{}^{10} = \text{Log}\,(\sin^{10}\theta'),\;\theta = \text{Geographical Colatitude},\;\theta' = \text{Geocentric Colatitude}.$ 

$\theta$	$\operatorname{Log} H'_{10}^{10}$	θ	$\operatorname{Log} H'_{10}^{10}$	$\theta$	$oxed{\operatorname{Log} H'_{10}{}^{10}}$
ı°	82*4476278,6	31°	7.1397240, 8	61°	9.4249934,7
2	85.4572395,7	32	7.2629741,7	62	9°4657260, I
3	87.2170050,4	33	7.3815034, 2	63	9.2047714,0
4	88.4647863, 1	34	7.4955638, 4	64	9.5421606, 9
4 5 6 7 8	89.4318212, 8	35 36	7.6053853, 4 7.7111782, 1	65 66	9.5779231,.3
7	0.8875934,9	37	7.8131352,6	67	9.6446759, 3
8	1.4640696,0	38	7.9114336, 7	68	9.6757164,9
9	1'9716916, 1	39	8.0062366, 2	69	9.7052307,8
10	2.4249032,0	40	8.0976946,6	70	9.7332402, 5
11	2.8340063, 1	41	8.1859470,2	71	9.7597649, 7
12	3·2066074, I	42	8.2711226,0	72	9.7848237, 3
13	3.5484828, 1	43	8.3533410, 2	73	9.8084340, 9
14	3.8641224,4	44	8.4327133,9	74	9.8306124,0
15 16	4·1570854, 5 4·4302409, 7	45 46	8·5093431, 3 8·5833265, 7	75 76	9.8513738, 9 9.8707326, 5
17	4.6859356, I	47	8·6547536, I		9.8887017, 3
18	4.9261131, 2	48	8·7237082, I	77 78	9.9052931,2
19	5.1524015, 5	49	8.7902688,8	79 80	9.9205178,4
20	5.3661781, 2	50	8.8545091,2	80	9.9343859, 0
21	5.5686182,0	51	8.9164977, 9	18	9.9469063,7
22	5.7607328,9	52	8.9762994,7		9.9580874,0
23	5 9433982, 2	53	9.0339747,6	83	9.9679362, I
24	6·1173781,9 6·2833430,2	54	9.0895806, 0	84 85	9 [,] 9764591, <b>7</b> 9 [,] 983661 <b>7, 2</b>
25 26	6.4418839, 2	55 56	9·1431704, 7 9·1947946, 9	86	9.9895484,8
27	6.5935249, 5	57	9.2445005,8	87	9.9941232,0
28	6.7387328, 3	58	9.2923326,7	88	9.9973887,8
29	6.8779249,7	59	9.3383329, 1	89	9.9993473,0
30	7.0114761,4	60	9.3825407,8	90	0.00000000

Table of Multiples of Log  $\frac{a}{r}$  for every Degree of Geographical Colatitude  $\theta$ .

9° 9° 9° 9° 9° 9° 9° 9° 9° 9° 9° 9° 9° 9	19° 100.25974 100.25974 100.25974 100.25974 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 100.25976 10	29° 29° 29° 29° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20
8°  0014257 0028514 0042771 0057028 0085542 0099799 0114056 0128313 014257 0156827	18° 20033141 20033423 20033423 20033423 20033423 20033423 20033423 20033423 20033423 2003343 2003343 2003343 2003343 2003343 2003343 2003343 2003343 2003343 2003343 2003343 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 200334 2003	28° 0011312 0022624 0033936 0045448 0056872 0059872 0079184 0079184 0079184 0079184 0079184 0079184 0079184
7 .co.14324 .co.28648 .co.28648 .co.27296 .co.27296 .co.27296 .co.268 .co.14592 .co.14592 .co.14592 .co.14592 .co.14592	0013287 0025574 0039861 0053148 0066435 009722 009722 009722 0019583 0119583 0119583	27° 0011521 0023042 0034563 0034563 0059168 0069168 0092168 0103689 0115210 0115210
6° 0014381 0025762 0043143 0057524 0071905 0086286 0109667 0115048 0119429 0143810 0143810	16°  10°  10°  10°  10°  10°  10°  10°	26° 26° 26° 27° 20° 20° 20° 20° 20° 20° 20° 20° 20° 20
5°  '0014430, 2'  '0028860, 4'  '0043290, 6'  '0057720, 8'  '0072151, 0'  '0086581, 2'  '0101011, 4'  '0115441, 6'  '0129871, 8'  '0144302, 0'  '0144302, 0'  '0158732, 2'  '0173102, 4'	15°  001358,5°  0027117,0°  004075,5°  0054234,0°  0067792,5°  0064999,5°  01022026,5°  0135585,0°  0149143,5°  0162702,0°	25°  """ """ """ """ """ """ """ """ """
4°  10014470  10028940  10029410  10057880  10057880  10057880  10057800  1015760  10130230  1014700  1013040	14°  0013683  0027366  0041049  0054732  0068415  0068415  0019464  0119830  0136830  0136830	24°  0012116  0024232  0036348  0036348  00056580  00056580  00056580  00056580  00056580  00056580  00056580  00056580  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  0005680  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  00056800  000568
3° 3° 3° 0014502 0029004 0043506 0058008 0072510 0087012 010514 0105164 0116016 0139518 0145020 0159522	13°  0013799  0027598  0027598  00271397  0052799  0052799  0052799  00102992  0110392  0117899  0157789	23° 0012303 0024606 0036909 0049212 0061216 0073818 0086121 0073818 0010727 0110727 0110727 0123030
2 0014524 0029048 0043572 0058299 0072620 0072620 001668 0116192 013716 0145240 0145240 0145240	21 0013907 0027814 0041721 0054721 0054721 0054721 0054721 0013070 011256 011256 011256 011256 011256 0113070	22° 0012483 0024966 0037449 0049932 00674898 0067381 0112347 0112347 0112347
1 0014537 0020074 0043611 0058148 0072685 0072685 010206 0116296 0116296 0116296 0116296	11°  11°  11°  11°  11°  11°  11°  11°	21° 0012658 0025316 0037974 0037977 005032 005032 0075948 0013922 0113922 0139238 0139238
0°0014541,8 0°029083,6 0°043025,4 0°072709,0 0°072709,0 0°072709,0 0°072709,0 0°072709,0 0°072709,0 0°073709,0 0°07109,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°0740,0 0°07	10°  10°  10°  10°  10°  10°  10°  10°	20° 0012825,6 0025651,2 0038476,8 0051302,4 0064128,0 007695,3 0102604,8 0115430,4 012825,6 015825,6
1 4 W 4 N/O V W Q D H I	1 4 2 4 7 7 0 0 0 0 1 1 1	1 4 2 4 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

39° 0008748 0017496 0034992 0043740 005248 0061236 006984 0078732 0087480	49°  0006223  0012446  0018669  0023669  0037338  0043561  0043561  0043561  0043563  0052230  0062230	59°
38° 38° 00000000000000000000000000000000	48°  000475  0012950  0013975  0013975  0013850  0038850  0045325  0058275  0058275  0058275  0058275	58°  '0004054  '0008108  '0012162  '0012162  '001234324  '0028378  '00324324  '00324324  '0034866  '0045540  '0045640
37° .0009241 .0009241 .001625 .0026467 .0073928 .0073928 .0073928 .0073928 .0073928	47°	57° .0004283 .0005666 .0012849 .0017132 .0021415 .0021415 .0025981 .0034264 .0034264 .0034264 .0034264 .0034264
36°  '0009485  '0018970  '0028455  '0037940  '0037940  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '0047425  '	46°  '000981  '0013962  '0013962  '0013962  '0014965  '0014886  '00148867  '00148867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '00168867  '0	\$6° .0004516 .0009032 .0013548 .0013548 .0013548 .0013548 .0013548 .0013548 .0013548 .0013548 .0013548 .0013548 .0013548 .001569 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0016128 .0
35°  '0009725,4  '0019450,8  '0029176,2  '0038901,6  '0048627,0  '0048835,4  '0048837,8  '0048837,8  '0048837,8  '0048837,8  '0048837,8  '0048837,8  '0048837,8  '0048837,8  '0048837,8  '004883,2  '0068877,8  '0068877,8  '0068877,8  '0068877,8  '0068877,8  '0077803,2  '0087784,0  '006979,4	45°	55°  "0004751, 9  "0004253, 8  "014255, 7  "001907, 6  "0023759, 5  "0023759, 5  "0023759, 5  "002476, 1  "004767, 1  "004767, 1  "004761, 0  "0052270, 9  "0052270, 9
34°  .coco963 .coco9889 .coco9889 .coco9889 .coco9885 .coco9778 .coco97741 .coco97741 .coco9630 .coco9630 .coco9630	44°  .0007488  .0014976  .0014976  .0023464  .0037440  .0059416  .0059904  .0059385  .0074880  .0074880	54°  10004991  1000982  10014973  10019964  10029946  10039928  10039929  10039929  10039929  10039929  10039929
33° 0010198 0020396 0030594 0040792 00610188 0091386 0091782 0091782 00112178	43°  0007742  0015484  0015484  0015484  00329266  0038710  0046452  0046452  0046452  0046452  0046452  0046452  0046452  0046452  0056678	53° .0005233 .001666 .0015699 .0020932 .0020165 .0031398 .0047097 .0057563
32°  0010429  0020858  0031287  0041716  0052145  0062574  0073003  0063432  0093861  0104290  0114719	42°  0007995  0015990  0015990  0031985  0031985  0031975  0047970  0047970  0047970  0047970  0047970  0047970  0047970  0047970	\$2° .0005478 .0010956 .0010434 .0021912 .0021390 .0038346 .0043824 .0043302 .0043302 .0054780
31°  0010656  0021312  0031968  0042624  0053280  0053280  0053280  0053280  0053280  0053280  0053280  0053280  0053280  0053280  0074592	41°  0008247  0016494  0016494  0049482  0049482  0057729  0057423  0074223  0074223  007422	51° 0005724 0011448 0017172 0028520 0038520 0038520 0038520 0045792 0045792 0045792 0045792 0055264 0065264
30° 0010878,9 0021757,8 0032636,7 0043515,6 0054394,5 0054394,5 0054394,5 0054391,2 0097910,1 0108789,0 0119667,9	40°  "0026498, 0  "0016996, 0  "0015996, 0  "0013992, 0  "001998, 0  "0019976, 0  "00101976, 0	50° .0005972,9 .0011945,8 .0017918,7 .0023891,6 .0023891,6 .002584,5 .0035837,4 .0047783,2 .0047783,2 .0047783,2
1 2 2 4 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 2 4 4 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 8 4 5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table of Multiples of Log $\frac{a}{r}$  for every Degree of Geographical Colatitude  $\theta$ , continued.

69°  '0001851  '0001853  '0001100  '0012957  '0014808  '0018510  '0018510	79°  '000524  '0001548  '0001572  '0001572  '0002620  '0002620  '0002620  '0003144  '0003144  '0003168  '0004716  '0005764  '0005764	0000000 00000000 00000000 0000000 000000
68°  '0002023  '0004046  '0004046  '000609  '0010115  '0010115  '0010118  '0010118  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0010184  '0	78°  '0000623  '0001869  '0002492  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '0003115  '	89°
67°  0002201  000402  0004402  0004402  0004402  0004402  0004402  0004402  0004402  0004402  0004402  0004402  0004402  0004402  0015609  0017608  0017608  0017608  0017608  0017608  0017608  0017608  0017608  0017608  0017608  0017608	77°  17°  1000729  1000729  1000729  1000729  10007290  10005832  10005832  10005832  10005832  10005832	88° .0000018 .0000036 .0000036 .00000000000000000000
66°  0002386  0003772  0003158  0001938  0014316  0016702  0016702  0016702  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703  0016703	76°  76°  76°  76°  76°  76°  76°  76°	87°  """  """  """  """  """  """  """
		86°  000001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/00001/000001/000000
65°	75°  '0000965, 0  '0001930, 0  '0002895, 0  '0003860, 0  '000475, 0  '00057720, 0  '000575, 0  '000575, 0  '000575, 0  '000575, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '00057, 0  '	85°
64°  0002772  0005544  0001088  0011088  0013860  0016832  0019404  0022176  0024948  0027720  0039492	74°  .coo1095  .coo1095  .coo13285  .coo4386  .coo4386  .coo4386  .coo5475  .coo5476  .coo9865  .coo9865  .coo9865  .coo9865  .coo9865  .coo10950	84°  0000157  0000314  00000471  00000942  00001099  0001099  0001099  0001170  0001170  0001184
63°  0002973  0005946  0005946  0011892  0011892  0017838  00203784  00205757  00205757  0032703	73° .0001232 .0002464 .0003466 .0004928 .0004928 .0005166 .0001088 .0011088 .0012320 .001352	83° 83° 83° 83° 80° 80° 80° 80° 80° 80° 80° 80° 80° 80
62°  '0003180  '0003540  '0012720  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '0015900  '	72° .cco1376 .cco252 .cco4128 .ccc5204 .ccc6326 .ccc6326 .ccc6326 .ccc11cc68 .ccc1284 .cc11cc8 .cc11cc	82° 8  82° 8  0000279 00  0000558 00  0000837 00  0001951 00  0001953 00  0002790 00  0002790 00  0003348 00
61°  0003392  0005784  001568  001568  0027344  0027136  0037312  0037312	71°  'coo1528  'coo1686  'coo16888  'coo18336  'coo15280  'coo15280  'coo15280  'coo15280  'coo15280  'coo15280  'coo16888  'coo18336	8
60°  0003608,1  00010824,3  0010432,4  0018040,5  0021864,6  00218256,7  0023864,8  0023864,8  0039889,1  0039889,1  0039889,1	70°  coo1686, 0  coo1686, 0  coo50372, 0  coo5058, 0  coo50744, 0  coo50744, 0  coo10116, 0  coo11862, 0  coo13488, 0  coo13488, 0  coo13546, 0  coo18546, 0  coo16866, 0  coo	
		80° 2
12 2 2 4 4 3 2 2 1 1 1 0 0 0 0 1 2 1 1 2 1	1 2 2 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

TABLES OF THE VALUES OF LOG  $G'^m_n$  FOR THE EARTH'S SURFACE, REGARDED AS A SPHEROID,  $\mu'$  BEING THE COSINE OF THE GEOCENTRIC COLATITUDE CORRESPONDING TO EACH DEGREE OF THE GEOGRAPHICAL COLATITUDE.

Table of Log  $G'_{0}, \dots G'_{10},$  for Values of  $\theta$  from 0° to 90°.  $\theta = \text{Geographical Colatitude}, \ \theta' = \text{Geocentric Colatitude}, \ \mu' = \cos \theta'.$ 

		1319378796	20000000000000000000000000000000000000	
$\operatorname{Log} G'_{10}$	77437014.1 77400072.1 77288251, 6 77288290, 9 76805829, 2 76406859, 8 775991207, 6 775991207, 6 77596694, 0 77596685, 0 77596685, 0 77596685, 0 77596855, 0	7.0604258, 6 67557376, 9 5.2455126, 7 6.6945086, 8 n 7.1237718, 3 n 7.2279971, 9 n 7.3284489, 3 n 7.3284489, 3 n	7.3533102, 2n 7.3431977, 9n 7.315355, 0n 7.275183, 8n 7.1253076, 5n 7.0182176, 8n 6.8429273, 6n 6.593405, 1n	6.564411.7 6.8398361, 5 6.9931848, 4 7.1589050, 2 7.2024501, 7 7.2277504, 9 7.2372596, 5 7.2372596, 5
Log G',	8.0224550, I 8.0194332, 7 8.0103025, I 7.9948659, 5 7.9471673, 3 7.9434028, 6 7.9061469, 5 7.8596443, 8 7.73011510, 3 7.7420755, 6	7.5271270, 1 7.3700798, 7 7.1275971, 5 6.5749452, 2 6.7280289, 5 7.1377053, 3 7.1377053, 3 7.14437650, 7 7.5214283, 8 7.5739965, 2	7.6080883, 1n 7.627252, 2n 7.6334240, 1n 7.6275112, 8n 7.6096701, 7n 7.535063, 8n 7.74741914, 9n 7.3918539, 2n	7.1138097, 0 n 6.8334467, 4 n 5.7919712, 0 n 6.7346118, 4 7.2481542, 6 7.3262948, 9 7.4020893, 5 7.4540545, 7
Log G',	8:2986614,2 8:2962447,4 8:2889531,0 8:2766614,4 8:2766614,4 8:2360747,6 8:2360747,6 8:21711470,1 8:1711470,1 8:177696,6 8:07317697,5	7.9339956, 9 7.8369877, 1 7.7110019, 8 7.5348963, 7 7.2445121, 5 6.1845778, 7 7.1330500, 7 7.4403816, 3 7.6044539, 4 7.7108025, 5 7.7108025, 5	7.7846686, 4n 7.8369074, 2n 7.8736920, 6n 7.8963691, 2n 7.9083761, 6n 7.9107513, 7n 7.9033624, 3n 7.8864140, 2n 7.8594451, 4n	7.7706274, 4n 7.7039745, 3n 7.6161918, 4n 7.4971425, 9n 7.3238623, 6n 7.022907, 1n 7.0106687, 9 7.305971, 4
$\operatorname{Log} G'_{7}^{0}$	8.5716626,9 8.5697836,6 8.5641212,6 8.554003,5 8.5243908,1 8.52133908,2 8.724337,7 8.47470,1 8.443309,8 8.4433010,6	8:3048593,9 8:2412131,6 8:1644905,5 8:0698829,7 7:9480545,0 7:75177446,9 6:7994715,1 7:2798357,0 7:6310588,4 n	7.8113061,7 n 8.0096051,2 n 8.0096954,7 n 8.1139911,3 n 8.1460166,5 n 8.1460166,5 n 8.1810104,9 n 8.1861327,2 n	8.1739350, on 8.1566412, 1n 8.1314293, 8n 8.0975339, 1n 8.0577056, on 7.997960, 2n 7.72270745, 7n 7.7354958, 9n 7.7126160, 3n
Log G',	8-8405080, 0 8-8390900, 8 8-837429, 8 8-8176801, 8 8-8176801, 8 8-788463, 6 8-788463, 8 8-788365, 8 8-7483365, 8 8-7458349, 9 8-7458349, 9 8-6861531, 0	8.6495025, I 8.6071743, I 8.5581633, 2 8.5010541, 9 8.4337735, I 8.3531120, 7 8.2537147, 0 8.1256094, 2 7.94666694, 1 7.6480417, 4	6.2996162,4 7.5865369,2n 7.8865561,4n 8.0526381,7n 8.164208,2n 8.305769,1 8.305769,7n 8.353926,5n 8.353926,5n 8.353926,5n	8.4370519,7 n 8.4500357,6 n 8.4560128,1 n 8.4580457,5 n 8.4330184,2 n 8.436184,2 n 8.436579,8 n 8.4280378,7 n 8.404652,4 n 8.3784475,1 n 8.3784475,1 n
$\operatorname{Log} G'_{\mathfrak{s}}$	9.1037494, 4 9.1027432, 7 9.0991175, 8 9.094508, 6 9.085505, 9 9.078229, 3 9.0667508, 8 9.0529768, 8 9.0529768, 8	8.9721220, 8 8.944313, 9 8.9131388, 5 8.8777890, 8 8.8377902, 0 8.7923501, 8 8.680423, 7 8.6102353, 5 8.5262703, 8	8.4226343,2 8.2880312,9 8.0962347,7 7.7572813,6 6.9215,48,0n 8.1191321,1n 8.2753413,0n 8.3836577,7 n 8.4645795,6 n	8.5274856,7 n 8.5774445,8 n 8.6174932,0 n 8.6495831,2 n 8.6750255,5 n 8.709365,9 n 8.7193682,5 n 8.725045,0 n
$\operatorname{Log} {G'}_4^0$	9.35592219, 4 9.3553512, 9 9.3563361, 1 9.3529668, 6 9.3482269, 6 9.3482269, 6 9.345359, 3 9.3255128, 5 9.3149785, 0 9.302891267, 2	9.2736540,3 9.2563543,9 9.2371068,1 9.192157662,8 9.1921577,8 9.1372386,0 9.10553486,0 9.1055346,2 9.0609769,9	8-9865839, 2 8-9369634, 9 8-8804937, 0 8-8153588, 2 8-7388103, 5 8-7388103, 5 8-7381701, 0 8-3737029, 5 8-1328303, 8 7-5732998, 8	7.7648580, 6 n 8.178114, 7 n 8.3798125, 9 n 8.5119090, 2 n 8.6086415, 5 n 8.637114, 0 n 8.7937114, 0 n 8.7937440, 0 n 8.3345127, 7 n 8.8345127, 7 n
$\operatorname{Log} {G'}_{3}^{0}$	9.6020599, 9 9.6016576, 6 9.6004494, 9 9.5955991, 9 9.595122, 1 9.5874117, 0 9.5681122, 7 9.5759078, 3	9:5518891, o 9:5519905, 3 9:5310896, 5 9:5191450, 5 9:501091, 2 9:4910272, 6 9:476365, 6 9:459864, 7 9:418264, 4 9:423350, 3	9'4012455,7 9'3784530,8 9'3537875,3 9'3270573,0 9'2980304,4 9'266432,8 9'1939662,3 9'1939662,3	9°0532497, 9°8993841, 0°89251770, 4°8440935, 9°87452100, 6°8418533, 0°841859300, 8°1459300, 8°1459300, 8°0986067, 0°8
Log G'	9.8239087, 4 9.8237076, 0 9.8231038, 7 9.8220966, 5 9.8260843, 6 9.81806354, 9 9.819926, 1 9.8199321, 2 9.803331, 2	9.7991928, 5 9.7944058, 1 9.7891690, 3 9.7834734, 5 9.7773089, 2 9.7706643, 4 9.755840, 2 9.755840, 2 9.7477794, 9	9,7297578,4 9,7199218,3 9,7094663,4 9,6984263,5 9,6867140,8 9,6743187,5 9,6743187,5 9,6473371,6 9,6326695,0	9.6007376, 1 9.583368, 1 9.549416, 5 9.5454113, 8 9.5246729, 7 9.752186, 9 9.4791226, 4 9.4540366, 8 9.4271848, 8
$\left  \left  \left$	Iμ',			
G, Lo	0 = 4 to 4 to 6 to 6 o 0	1125443321	30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	433333333333333333333333333333333333333
θ			пипипипипи	

7.1761346, 9 7.1218191, 0 7.04413191, 4 6.9332391, 9 6.765595, 1 4.715557, 3 4.715557, 3 6.7476525, 8 6.7476525, 8 6.7476525, 8 6.7476525, 8 6.7476525, 8 6.7476525, 8	7.0136965, 3 n 7.0848871, 5 n 7.1325702, 5 n 7.1150767, 2 n 7.173664, 2 n 7.1576229, 6 n 7.1259884, 6 n 7.054656, 7 n 7.0045792, 9 n	6'9015400, 5 n 6'7477690, 4 n 6'7477690, 4 n 5'6410773, 1 n 6'710339, 3 6'710339, 2 6'8469923, 9 6'9601614, 8 7'0374504, 1 7'0901169, 1	7.1237536,7 7.1412459,1 7.1439729,4 7.1221988,3 7.1051932,9 7.0509734,3 6.9956351,9 6.9016272,1 6.7627385,7 6.5346732,6	5'9795483, 7 6'1879998, 7 n 6'1999267, 2 n 6'7981394, 1 n 6'9229122, 1 n 7'0079780, 9 n 7'0056687, 5 n 7'12754216, 2 n 7'1275842, 0 n 7'1375842, 0 n
7:5114167, 5 7:5196665, 8 7:5158843, 3 7:500037, 0 7:4716085, 2 7:4288715, 0 7:3689968, 0 7:2867527, 0	6.6985615,8 5.0004340,8 n 6.7095497,9 n 6.9974606,5 n 7.1592512,8 n 7.2655115,7 n 7.3417687,7 n 7.349382,3 n 7.4311385,2 n	7.4626330, 5 n 7.46501352, 8 n 7.445684, 7 n 7.4185498, 6 n 7.371495, 6 n 7.3785558, 2 n 7.2374708, 4 n 7.2374708, 1 n 6.9529667, 1 n 6.9529667, 1 n	5.2489536,2 666781084,7 6'9637359,0 7.1258139,6 7.340082,9 7.310423,9 7.3649878,8 7.4266711,8 7.4267111,8	7.4362644, 5 7.4234687, 0 7.3380377, 5 7.3585173, 3 7.301945, 6 7.2231453, 5 7.1120785, 7 6.9457836, 1 6.6505891, 9
7:5752028,7 7:76529199,9 7:709434,9 7:7777935,4 7:794524,9 7:794524,9 7:7980516,1 7:785442,6 7:785442,6	7.7294831, 0 7.6834064, 0 7.6218905, 2 7.5400064, 5 7.4284603, 9 7.26603, 9 6.9930215, 8 6.9355498, 0 6.8806821, 4 n 7.2047926, 2 n	7.3805711,9 n 7.4971702.4 n 7.5805440,9 n 7.686586,1 n 7.783521,9 n 7.7388035.4 n 7.7491230,8 n 7.749845,8 n	7.7225927, 9 n 7.6934314, 6 u 7.6934314, 5 u 7.5962781, 3 u 7.514754, 5 u 7.7146896, 1 u 7.0404638, 9 u 6.465745, 2 n 6.465745, 2 u	7.1178908,1 7.3173486,7 7.4463118,8 7.5378996,6 7.6554117,1 7.6554117,1 7.6917558,5 7.7164407,6 7.7308032,6 7.7308032,6
7.2203879, 3 n 7.2575878, 3 7.2575873, 9 7.7016828, 0 7.8119615, 5 7.8924402, 3 7.9529575, 1 7.9529575, 1 8.0328149, 1	8°0570968, I 8°0727662, 6 8°0805532, 6 8°0808453, 8 8°0737564, 7 8°059138, 4 8°051968, 2 7°9638337, 0	7.8416622,4 7.751932,6 7.6303424,4 7.4518386,1 7.132336,5 7.1032409,7 7.2040249,8 7.7818466,3 u 7.6439291,5 u	7.8374792, 2n 7.8998336, 3n 7.9475670, 3n 7.9836849, 1n 8.0100539, 0n 8.0378032, 3n 8.0403000, 5n 8.0354589, 6n 8.0354589, 6n	8°0029216, 5 n 7°9740533, 1 n 7°935346, 8 n 7°8847342, 0 n 7°8847342, 0 n 7°7333224, 8 n 7°168796, 9 n 7°468151, 1 n 7°1493823, 3 n
8.2996874, 7 n 8.2461259, 2 n 8.1799190, 2 n 7.9888607, 7 n 7.9888607, 7 n 7.6084650, 5 n 7.0757658, 8 n 7.2170178, 2	7.8513427,5 7.9846114,6 8.0808215,8 8.1539690,5 8.2110222,4 8.259337,5 8.2911443,2 8.3182274,2 8.3182274,9	8.3596332,7 8.3617455,9 8.3583361,9 8.3493996,3 8.3346595,9 8.3138486,7 8.22863677,6 8.2513571,4 8.2575398,6	8°0846406,2 7'9973959,9 7'7166118,2 7'4388649,8 7'418749,8 7'3451235,0 n 7'6676751,8 n 7'8465362,8 n 7'8465362,8 n	8.0587064, 8 n 8.1286283, 1 n 8.12839064, 4 n 8.2279180, 5 n 8.2627839, 2 n 8.2898919, 2 n 8.3101929, 0 n 8.3242972, 8 n 8.3326107, 3 n 8.33580, 2 n
8.7242889, on 8.7179747, 3 n 8.707681, 5 n 8.6932945, 5 n 8.672840, 2 n 8.6228440, 2 n 8.5288807, 1 n 8.5481125, 4 n	8.4412735, 1 n 8.3703633, 7 n 8.2820642, 2 n 8.1676920, 9 n 80087449, 2 n 7.752600, 0 n 7.7529905, 2 n 7.8926734, 0	8.2113232,2 8.3060491,3 8.3798102,4 8.4389130,5 8.5264179,8 8.5286497,8 8.5586497,8 8.6055162,1	8.632846,0 8.6401647,9 8.6434089,5 8.6427114,7 8.6380811,3 8.61667518,1 8.5995216,3 8.5776350,5 8.5776350,5	8.5175044,1 8.4776032,0 8.4294289,4 8.3789206,1 8.298626,6 8.2076421,6 7.914246,5 7.914246,5 7.6150900,7
8-8975721.7 n 8-9215207,9 n 8-9215307,9 n 8-9573353.7 n 8-959946,0 n 8-975567,5 n 8-9869292,8 n 8-9809300,1 n	8'9853492,7 n 8'978540,9 n 8'956897,0 n 8'956873,0 n 8'9417424,3 n 8'941744,3 n 8'9020400,5 n 8'8769264,0 n 8'8769264,0 n	8'7750303,7 n 8'729652.6 n 8'6766288,7 n 8'613351,9 n 8'5377516,2 n 8'3198020,5 n 8'144667,9 n 7'8435541,8 n	7.8396477,1 8.1383395,5 8.3110599,2 8.4317589,5 8.5235702,4 8.5659111,1 8.7071915,0 8.7497316,0	8.8168657,8 8.8431968,9 8.8654925,3 8.8841635,1 8.895221,9 8.9118058,5 8.9211919,8 8.9278096,7 8.9378096,7
8-4041526, 8 n 8-5777609, 1 n 8-6981772, 2 n 8-7894949, 0 n 8-8623293, 9 n 8-9723339, 9 n 8-972582, 2 n 9-0158359, 2 n 9-0520936, 2 n	9.1134059,7n 9.1379891,6n 9.1594527,7n 9.1781399,7n 9.202015,5n 9.2200005,4n 9.2200005,9n 9.2377638,7n	9'2484338, 5 n 9'2512759, 4 n 9'2512759, 4 n 9'2521268, 6 n 9'2502563, 1 n 9'247743, 0 n 9'247743, 0 n 9'2350354, 7 n 9'2257121, 6 n 9'2257121, 6 n 9'2166844, 2 n	9.2048801,4n 9.1912078,7n 9.157533,0n 9.1577746,8n 9.1376966,4n 9.0891175,2n 9.0891175,2n 9.0801201,6n 8.9929032,4n	8'9518011,5 n 8'9047920,2 n 8'8504390,8 n 8'7866335,4 n 8'7101010,2 n 8'615320,2 n 8'4920902,8 n 8'3171947,2 n 8'0168813,1 n
9.3672938, 5 9.337828, 6 9.2371284, 7 9.2571297, 5 9.2130349, 6 9108762, 8 9108761, 6 90456867, 4 8.9722014, 5	8.7746023, 6 8.6289859, 0 8.4109419, 8 7.9607484, 8 7.8629228, 8 n 8.3712132, 8 n 8.5964702, 0 n 8.7420639, 2 n 8.8492429, 0 n 8.9336704, 3 n	9'0029971,7 n 9'0615373,3 n 9'1119640,5 n 9'1560482,7 n 9'1950235,1 n 9'2297830,2 n 9'2609940,9 n 9'2891678,7 n	9'3590784, 9'n 9'3783841, 1'n 9'3960133, 0'n 9'4268011, 7'n 9'4501585, 6'n 9'45333, 2'n 9'4733296, 2'n	9'4902104, 1 n 9'4972295, 9 n 9'5033492, 1 n 9'5085983, 0 n 9'5135010, 8 n 9'5165774, 0 n 9'5234870, 0 n 9'5228787, 5 n
444 445 60 644 645	609 87 57 57 57 57 57 57 57 57 57 57 57 57 57	10000000000000000000000000000000000000	122422	20 8 8 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Table of Log  $G'_{31}, \dots G'_{10},$  for Values of  $\theta$  from 0° to 90°.  $\theta = \text{Geographical Colatitude}, \ \theta' = \text{Geocentric Colatitude}, \ \mu' = \cos \theta'.$ 

				•
$\mathrm{Log}G'_{10}$	8.4840641,0 8.4822527,0 8.4768028,0 8.4676672,9 8.4547628,7 8.4379711,4 8.4379711,4 8.3920177,8 8.3920177,8 8.3633593,7 8.3633593,2	8°2419109, 0 8°1891589, 2 8°1284710, 0 8°128635, 2 7°9761972, 7 7°5793006, 1 7°7593006, 1 7°759006, 1 7°75900	6'3704575, 7 n 7'1254617, 5 n 7'3540892, 2 n 7'4781392, 1 n 7'593284, 0 n 7'6540024, 5 n 7'6319204, 2 n 7'6522970, 2 n	7.5711251, 1 n 7.5224011, 9 n 7.4564616, 8 n 7.386921, 6 n 7.260782, 9 n 6.7996782, 0 n 5.8786366, 7 n 6.6490816, 1
$\log G_{\mathfrak{g}}'$	8.7214250,1 8.7199493,0 8.7155114,8 8.7080803,9 8.6976006,9 8.6639945,2 8.6671551,9 8.646944,4 8.6231866,2 8.595655,4	8.5281005, 4 8.4872603, 0 8.489037, 5 8.388407, 9 8.3286804, 4 8.2601477, 4 8.2601477, 4 8.2670141, 1 7.9736773, 0 7.8301901, 2	7-6334937,0 7-3101025,2 4-8419848,0 7-253458,6 n 7-554554,9 n 7-755980,8 n 7-755980,8 n 7-813208,8 n 7-813208,8 n 7-8491158,6 n	7.8752361, 1 n 7.8698135, 2 n 7.8532697, 9 n 7.7862385, 5 n 7.733746, 5 n 7.5764668, 9 n 7.4582706, 2 n 7.2912822, 5 n
$\operatorname{Log} G'_{s}$	8.9518739, 3 8.957002, 3 8.947771, 9 8.9412700, 7 8.922587, 7 8.9221892, 9 8.8229912, 2 8.873712, 9 8.852934, 1	8*8007361,8 8*7695002,1 8*7546806,4 8*6519243,2 8*6519243,2 8*6519243,2 8*6029512,2 8*5478603,3 8*5478603,3 8*5478603,3 8*3317054,0	8.2340751,7 8.1148659,8 7.9614277,4 7.7433184,5 7.3450814,9 7.54347824,5 7.7674364,0 n 7.8960619,1 n 7.9798437,2 n	8°036524, 6 n 8°0748201, 0 n 8°0748201, 0 n 8°1112564, 7 n 8°1136474, 7 n 8°1068556, 1 n 8°067801, 2 n 8°057801, 2 n 8°0329824, 0 n 7'9888887, 9 n
$\operatorname{Log} G'_7$	9.1737226,8 9.1728173,5 9.1728173,5 9.165550.2,2 9.15085,6,0 9.1508838,2 9.1268838,2 9.126842,0 9.1143614,4 9.0980788,5	9°058295, 0 9°0356243, 9 9°0356243, 1 8°9820538, 1 8°949693, 5 8°948693, 5 8°948352, 5 8°948352, 5 8°83376344, 9 8°83376344, 9 8°736368, 1	8.6750085,7 8.6082999,5 8.5318480,3 8.4426025,1 8.325473,6 8.2015148,4 8.0207498,3 7.7354368,1 6.8889204,8	7.8641163, 6 n 8.0297833, 9 n 8.135592, 8 n 8.2687656, 1 n 8.260345, 8 n 8.324189, 8 n 8.3324189, 8 n 8.3468, 6 n 8.3468, 6 n 8.3468, 6 n
$\operatorname{Log} G'_{6}^{1}$	9.3845760, 5 9.3839054, 8 9.3839054, 6 9.3738013, 3 9.3679973, 5 9.3670973, 6 9.360097, 6 9.3408738, 9 9.3589849, 2	9°305127,0 9°2838090,1 9°2655024,2 9°2456856,2 9°2428678,6 9°1985917,0 9°1721089,3 9°1721089,3 9°1717014,5	9°0400382,3 8°9990377,5 8°9539993,8 8°9042862,3 8°8490557,9 8°711590,6 8°711590,6 8°5406448,8 8°5406448,8	8-2737177, 9 8-0582380, 7 7-6575109, 5 7-2708487, 9n 7-8907506, 7n 8-1195544, 5n 8-2560501, 6n 8-344044, on 8-344044, on
$\operatorname{Log}  G'_{\mathfrak{s}_1}$	9'5808706,9 9'57804013,4 9'57804013,4 9'57663920,7 9'57663920,7 9'576639787,9 9'569787,9 9'559781,5 9'55504310,4 9'5574311,5	9.5226242, 5 9.5112013, 0 9.4986485, 3 9.4849264, 4 9.4699900, 7 9.4537878, 6 9.436269, 1 9.4173415, 7 9.396921, 9 9.3750029, 5	9.3513897, 0 9.3259908, 9 9.2986638, 0 9.2375150, 9 9.2375150, 9 9.166130, 9 9.165140, 7 9.0818111, 4 9.0335268, 9	8.9801693,7 8.9206644,5 8.7555034,0 8.75764694,5 8.7764694,5 8.776483,7 8.776483,9 8.4368188,4 8.43681327,8 7.2040888,0 6.9406111,0 n
Log G',1	97569619, 5 9755662, 5 9755545, 8 975443, 9 975443, 0 9754243, 0 9742078, 0 97342078, 0 9732457, 7	97198264,6 97126188,4 97047280,3 9706738,7 9668138,6 96767917,4 9655993,4 9654137,9 9654137,9	96147011,6 95996931,6 95837333,7 95487624,0 95296371,5 9593296,6 94877612,5 94648416,6	9.4145145.0 9.3868434.7 9.3572853.2 9.2556239,7 9.255629,7 9.254690,7 9.174198,7 9.1733335,9
$\operatorname{Log} G'_{\scriptscriptstyle 3}$	9'9030899, 9 9'902923, 8 9'9024193, 7 9'9015804, 3 9'9004046, 8 9'80808, 9 9'8970374, 4 9'8970374, 4 9'8948423, 3 9'8948423, 3 9'894173, 9 9'8894173, 9	9.8825923,3 9.8786455,2 9.8743366,6 9.8696607,6 9.859183,1 9.859183,4 9.8471686,4 9.8471686,4 9.8471686,4	98261174, 2 9818264, 8 9809557, 9 98012032, 0 97919855, 2 97782986, 4 9772096, 4 97613913, 9	97260073,0 97130474,0 96994616,1 96852193,2 96702891,3 96546323,9 9652655,5 96028711,2
0	0 H W W W W W W W D D	1 2 2 4 5 9 1 6 8 6 9	1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	45 33 33 34 33 34 33 34 35 4 35 4 35 4

7.1260761, 8 7.2927919, 7 7.3345944, 7 7.3378319, 8 7.365325, 5 7.365325, 5 7.355116, 2 7.375391, 2 7.3016939, 6 7.2490148, 1	7.1756277, 6 7.040773, 7 6.9284112, 2 6.6554116, 2 6.1493115, 1 6.743115, 1 6.7273134, 8n 6.9210358, 5n 7.0403570, 5n	7.1729122, 1n 7.2662239, 2n 7.2231297, 6n 7.2253144, 5n 7.186935, 4n 7.0815993, 1n 6.9937844, 1n	6.6723195,7 n 6.2845435,2 n 5.9378186,8 6.5546950,5 6.7889457,3 6.7284726,7 7.021548,6 7.0853940,5 7.1279563,5 7.1279563,5	7.1636234, 6 7.1596814, 7 7.1413494, 3 7.1074338, 5 7.0553133, 3 6.9799942, 0 6.7070248, 4 6.4128803, 6
7.0183634, 2 n 6.1955399, 0 n 6.8347702, 9 7.1644539, 9 7.3340836, 1 7.415741, 7 7.5143325, 4 7.563871, 6 7.6138587, 3	7.6192425.9 7.6129829, 5 7.5952238, 8 7.5054475, 6 7.5223516, 3 7.463503.0 7.272377, 8 7.1239202, 1 6.8748411, 7	6'2217792, 6 6'6064673, 6 n 6'9770877, 0 n 7'1625584, 4 n 7'2807149, 2 n 7'419385, 3 n 7'4586212, 4 n 7'4832562, 8 n 7'4832562, 8 n	7.4953250, 611 7.4839266, 111 7.424039), 911 7.3721218, 211 7.3721218, 211 7.2025210, 1111 7.0015806, 411 6.8357856, 611	6.4421974,6 6.8733554,8 7.0770807,1 7.295642,6 7.3598221,1 7.4053531,9 7.4535446,1 7.4535446,1
7.9328287,7 n 7.7520198,1 n 7.7520198,1 n 7.652845,2 n 7.2144199,4 n 6.3984608,5 n 7.0322157,0 7.3656639,2 7.5392568,1	7.6513846,4 7.7295996,8 7.7855241,6 7.825025,7 7.8516221,5 7.8727223,7 7.8690996,6 7.853385,6 7.853385,6	7.8018583,5 7.7581136,9 7.7006596,0 7.6256766,1 7.5262785,3 7.7384990,6 7.71769300,8 67394694,9 67394694,9 67394694,0 7.1190182,2 n	7:3402675, 8 n 7:4773658, 4 n 7:5726311, 7 n 7:6419151, 2 n 7:6928284, 2 n 7:7544045, 8 n 7:7544045, 0 n 7:7747745, 0 n 7:7747745, 0 n	7.7567250,8n 7.7335703,9n 7.6995697,9n 7.5929122,6n 7.5905554,3n 7.3926477,1n 7.3239162,8n 6.9272728,2n
8.3398932,7 n 8.3251641,6 n 8.325792,0 n 8.2423301,9 n 8.1986871,9 n 8.1956371,9 n 8.0763294,5 n 7.9923754,3 n	7.7384340, 9 n 7.5169542, 7 n 7.0551450, 6 n 6.9788877, 8 7.469479, 2 7.6833568, 8 7.8167058, 4 7.9099543, 0 7.9784945, 9	8°0680522,1 8°095733,5 8°1144224,8 8°1251174,1 8°124160,7 8°124683,3 8°137666,0 8°0956550,2 8°0956550,6 8°0573604,9	7.9910093,1 7.9346433,6 7.7697007,1 7.7697030,4 7.4579817,6 7.1179337,0 6.3962865,5 7.2525957,7 7.2525957,7 7.3164586,8 7.3164586,8	7.6733140, 2n 7.7820452, 9n 7.8625654, 6n 7.9713036, 9n 8.0073427, 3n 8.0339430, 0n 8.0522509, 6n 8.0665127, 1n
8.5060078.2n 8.5544483.3n 8.567740.0n 8.5774944.1n 8.5765643.2n 8.5765643.2n 8.5765643.2n 8.5765643.2n	8.5071388, 3n 84769294, 0n 84402223, 3n 8.3960604, 9n 8.3430288, 9n 8.2430288, 9n 8.205076, 8n 8.1017745, 6n 7.9716079, 4n	7.4508508, 5 n 6'5750838, 8 7'5420407, 5 7'8107082, 1 7'9085305, 7 8'1585044, 8 8'2208744, 9 8'2697258, 4	8.378803,7 8.3603851,1 8.3764607,0 8.386640,6 8.390435,0 8.3908814,3 8.3851166,1 8.374595,4 8.3574587,7	8.3059067,8 8.2694319,2 8.2241809,8 8.1681334,3 8.0980491,6 8.0085,188,4 7.78892770,4 7.7172318,3 7.4186194,3
7.9646645, on 8.2304857, 1 m 8.488448, 3 m 8.5660741, 1 m 8.6224465, 3 m 8.6720111, 8 m 8.77088490 m 8.7379371, 5 m	8.7977921, 6 n 8.7901503, 6 n 8.7981567, 0 n 8.8023451, 7 n 8.8023553, 7 n 8.7919221, 8 n 8.7919221, 8 n 8.791923, 8 n 8.791923, 8 n 8.791923, 8 n 8.791923, 8 n	87271594,9 n 87008407,4 u 86697389,7 u 8633247,8 n 85904217,1 u 850058,5 u 840853,3 u 84085543,8 u 83199829,3 u	8°555174, 1n 7'8044590, 7n 7'1886923, 0 n 7'5082414, 5 8'971969, 8 8'2254463, 1 8'3219961, 0 8'370717, 7 8'4573064, 9	8.505,020,5 8.5470387,3 8.5804945,7 8.6079591,6 8.632042,0 8.6477839,0 8.6610982,1 8.6704449,1 8.6704449,1
9°0155473,8 8°8759162,6 8°8754941,9 8°7876610,0 8°6810470,3 8°5547148,7 8°5536266,4 8°0240643,1 6°9731555,7 8°0767813,0 n	8.3500996, 8 n 8.509142, 8 n 8.6194528, 3 n 8.702353, 1 n 8.7674922, 6 n 8.8201774, 1 n 8.8635121, 0 n 8.9295095, 7 n 8.9295095, 7 n	8'9754452,3 n 8'9925094,3 n 9'0062352,3 n 9'0169283,4 n 9'0248220,5 n 9'0328700,6 n 9'0328700,4 n 9'0312747,3 n	9°0203694, 9 n 9°0113961, 4 n 8°9999984, 0 n 8°9860761, 3 n 8°9694893, 6 n 8°9275157, 7 n 8°9015042, 9 n 8°8717795, 2 n 8°8717750, 2 n 8°8717750, 2 n 8°8717	87983246, 3n 87529091, 1n 8699391, 4n 86373147, 8n 8517696, 5n 84678202, 5n 84678202, 5n 84578203, 5n 8757754, 6n 87707180, 8n 778706660, 4n
9°5638369.4 9°5267834.1 9°5205420.2 9°4970744.7 9°4722468,1 9°479559.7 9°4179551.9 9°3881480.3 9°3881480.3	9.2852084,5 9.245455,7 9.2016513,2 9.1537229,0 9.1005085,3 9.902085,3 8.9724105,8 8.8927481,7 8.797046,7	8.5137610,6 8.2579381,1 7.5937799,1 7.9956557,3 n 8.3682917,2 n 8.501754,7 u 8.6906722,1 n 8.7873038,1 n 8.8637043,3 n 8.9263353,0 n	8'9789464, In 9'0239068, 3 n 9'0528075, 7 n 9'0967075, 4 n 9'156020, 3 n 9'156020, 3 n 9'176197, 8 n 9'1967930, 2 n 9'2149997, 9 n	9'2451324, 3n 9'2573992, 2n 9'257951, 6n 9'2769615, 4n 9'284401, 6n 9'2951211, 2n 9'2984124, 6n 9'3003768, 9n 9'3003768, 9n
144443 444445 644445 644465 644665 644665 644665 644665 644665 644665 644665 644665 644665 644665 644665 644665 644665 644665 644665 644665 64465 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 64665 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 6465 646	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	122422	8888 888 888 888 888 89 90 90

Table of Log  $G'_n$ ? for Values of  $\theta$  from 0° to 90°.  $\mu' = \cos \theta'.$ 

$\operatorname{Log} {G'_{10}}^{2}$	8'9611853,5 8'9560229,8 8'9565304,6 8'9565304,6 8'918658,8 8'918658,8 8'918789,0 8'9031929,6 8'8641969,7 8'8641069,7	8*8137598,7 87839963,6 877509145,7 87142673,8 86289940,6 85795205,4 85247265,6 84638217,9	8'3190075, 3 8'2314698, 4 8'1298284, 6 8'085984, 6 7'8575911, 8 7'3277516, 3 5'7254215, 5 7'2322615, 0, 0	7.6352414, on 7.7151849, 3 n 7.7630669, 2 n 7.7930800, 9 n 7.7930153, 7 n 7.7751384, on 7.7448302, 4 n 7.7016344, 6 n
$\log G_{\mathfrak{g}}^2$	915697377, 0 91598189, 4 9156989, 9 91522898, 8 91456682, 8 914566, 8 91255975, 5 91265975, 5 909949131, 2 90827938, 4	9°0427421, I 9°0192006, S 8°9931608, 8 8°9544792, 7 8°9329851, 8 8°8984732, S 8°806963, 8 8°8193517, 5 8°7740655, 6	8-6696573,9 8-6091480,4 8-5417831,1 8-4660908,3 8-3799314,0 8-2800148,8 8-1608660,2 8-0123060,5 7-8116896,0	5'8627871,0 7'4024350,7 n 7'6745019,9 n 7'8153359,7 n 7'90450,2 n 7'905398,2 n 7'9962038,4 n 8'0083335,5 n 8'013615,0 n
$\operatorname{Log} G''_{8}$	93498139,4 93468613,9 93468613,7 93431626,4 93379690,9 93312655,1 9323314,7 9323314,7 931849,2 9288845,3	9'2578095,7 9'2396440,3 9'21953,1 9'1976874,2 9'1737212,0 9'1737212,0 9'1737212,0 9'173212,0 9'173212,0 9'0884832,2 9'0551128,2	8-9796817,8 8-9370422,6 8-839049,5 8-839949,5 8-722892,2 8-6545892,7 8-5777563,1 8-777563,1	8.2641829,2 8.1073083,5 7.8873995,4 7.4944426,4 6.988442,3 7.6602733,7 7.8853318,2 8.0128443,9 8.0128443,9 8.0551062,1 8.1504383,5
$\operatorname{Log} {G'}_7$	9.5259052,0 9.5253464,6 9.5236688,7 9.5208666,8 9.5169392,9 9.5118117,4 9.5056339,5 9.4982710,6 9.4897050,3 9.4793346,0	9.4566761, 9 9.4431259, 8 9.4282457, 2 94119917, 1 9.3943139, 3 9.3751554, 6 9.3544508, 6 9.3321254, 9 9.308933, 8	9.2544958, 8 9.2246809, 9 9.1926526, 3 9.158237, 7 9.081211702, 5 9.0812213, 6 9.0380444, 3 8.9912262, 6 8.9402426, 2	8.8228434, o 8.7542925, 9 8.67542925, 9 8.683469, 1 8.4841050, 1 8.356867, 9 8.1917250, 9 7.9501457, o 7.4551145, o 7.4551145, o
$\log G'_{6}$	9.6856060, 4 9.6832037, 5 9.6839912, 3 9.6819812, 3 9.675134, 6 9.675134, 6 9.655744, 5 9.655744, 5 9.655744, 5 9.6547815, 8	9'6369501,4 9'6264213,4 9'6158755,5 9'6043966,7 9'5919418,2 9'5785011,0 9'5640371,1 9'5485147,9 9'5318946,6	9.4951780,7 9.4749753,1 9.4534602,9 9.4305604,9 9.4061930,5 9.3826604,3 9.3226604,3 9.3226604,3 9.2219065,2	9.2226175, 9 9.1842168, 3 9.1429181, 9 9.0983384, 0 9.0499338, 7 8.9972625, 9 8.9393240, 7 8.8750639, 2 8.8029127, 4
$\operatorname{Log} G'_{\mathfrak{s}}$	9.8239087,4 9.8238405,5 9.8228356,6 9.8214939,4 9.8196109,1 9.8171869,1 9.8171869,1 9.8106998,2 9.806282,0 9.8019975,1	97910328,5 97846836,9 97777448,5 97702262,5 977532836,3 97533836,3 9743874,4 977338109,6 977337109,6	9.6995338,7 9.6866772,1 9.6739658,8 9.6586726,6 9.6243674,9 9.624170,2 9.6104641,3 9.5926277,0 9.5738016,7	9'5332279, o 9'5109566, 3 9'4876662, 6 9'430719, 6 9'430719, 6 9'4304134, 3 9'3804134, 3 9'3804134, 3 9'3804134, 3
$\operatorname{Log} {G'}_4^2$	9.9330532, 1 9.9328967, 7 9.9328967, 7 9.9324473, 3 9.9316444, 6 9.9291353, 2 9.9274068, 0 9.9229933, 8 9.9229939, 8	9.9139525, 8 9.9102818, 8 9.9062771, 4 9.9019344, 7 9.892177, 9 9.882137, 9 9.8868339, 5 9.8810925, 1 9.8749873, 5	9.8616590, 1 9.8544209, 5 9.8467893, 3 9.8387550, 9 9.8393084, 3 9.821337, 3 9.822332, 6 9.7921715, 8	9'7703070, 1 9'7586209, 4 9'7464077, 7 9'733469, 6 9'7203160, 4 9'7063904, 3 9'6918431, 8 9'676445, 4 9'6607617, 9
θ	0 H 4 W 4 W 0 V 0 0 0	11 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 4 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6	128888888888 2888888888 2004

7.5696243, 5 n 7.4729757, 3 n 7.3442763, 2 n 7.1608975, 2 n 6.8507503, 6 n 4.9995554, 9 n 7.0817340, 5 7.2307349, 5 7.2307349, 5	7.3840432,3 7.4216055,8 7.4415349,0 7.445107,6 7.4578218,8 7.4578218,8 7.379680,1 7.3278899,0 7.2570110,3 7.1607235,7	7.0259977,3 6.8202868,6 6.4122084,7 6.130128,9 n 6.7057012,5 n 7.0620897,7 n 7.1494192,8 n 7.2082773,9 n 7.2464247,1 n	7:2678965, 1 n 7:2747949, 6 n 7:2680043, 1 n 7:2474675, 3 n 7:1597536, 2 n 7:0858936, 2 n 6:9820721, 4 n 6:8296124, 9 n	6.8318697,7 n 6.3753709,4 6.7255359,5 6.90633997,0 7.10231706 7.1576078,5 7.1941867,6 7.2151271,1
7'9916473, 1 n 7'9653926, 9 n 7'9287250, 9 n 7'8807101, 5 n 7'8195919, 6 n 7'7423159, 2 n 7'7423159, 2 n 7'7126043, 3 n 7'7256839, 3 n 7'0039299, 1 n	5.6584883,8 7.0117007,0 7.2832175,3 7.4326486,6 7.5291004,0 7.5291004,0 7.6569855,0 7.6669801,1 7.6817882,9 7.6848543,3	7.656431,4 7.6581812,6 7.6280935,1 7.5282068,6 7.4528000,0 7.350825,1 7.2090026,8 6.9887283,6	6-4878168,7 n 6-9619571,1 n 7.1717381,5 n 7.3014792,6 n 7.4531898,7 n 7.457126,0 n 7.5265783,3 n 7.5483129,1 n 7.5483120,1 n	7.5424220, 5 n 7.5253449, 0 n 7.4954469, 8 n 7.4953402, 0 n 7.3940355, 1 n 7.3138265, 1 n 7.2011976, 9 n 7.0338056, 1 n 6.738038, 1 n
8.1873545, 8 n 8.2104359, 8 n 8.222545, 8 n 8.2247236, 2 n 8.2184942, 8 n 8.2184942, 9 n 8.1818276, 0 n 8.1512803, 4 n 8.1119077, 6 n 8.0620150, 7 n	8.0016039, 2 n 7.9259249, 4 n 7.8305200, 2 n 7.7058850, 8 n 7.725310150, 0 n 6.1910745, 3 n 7.1305974, 8 7.4395490, 0	7.7128617,4 7.7884490,9 7.8427047,0 7.8812762,1 7.9073882,5 7.92297763,2 7.9291761,7 7.9266253,7 7.9155296,3	7.8666364,1 7.8272225,0 7.7756171,3 7.708931,8 7.6218583,6 7.547141,1 7.335351,3 7.0466618,3 5.7463227,7 6.9929244,8 n	7.2984884 6n 7.4683443, 8n 7.5823145, 5n 7.6646203, 5n 7.7258267, 3n 7.7714338, 9n 7.8045884, 9n 7.8451831, 2n 7.8403407, 5n
7.8775895,9 n 8-0746449,6 n 8-1941092,8 n 8-2749264,3 n 8-3728420,7 n 8-4013364,3 n 8-4200188,3 n 8-4304543,3 n 8-4304543,3 n	8.4302370, 0n 8.4205732, 3n 8.4047901, 2n 8.3828446, 2n 8.3543616, 4n 8.2155711, 8 8.2230648, 0n 8.1593509, 0n 8.1593509, 0n	7.9830161,3 n 7.8543169,8 n 7.6711283,9 n 7.355522,4 n 5.9576551,7 7.652466,0 7.8123604,5 7.9203550,3 7.9203550,3	8°0578235,1 8°102150,0 8°1360308,6 8°1603038,2 8°1765684,3 8°1856155,3 8°1879111,3 8°1830703,5 8°1728859,5	8'1305071,3 8'0976182,0 8'0553936,3 8'0018613,1 7'9338571,5 7'7279915,8 7'7279915,8 7'7279915,8
8.6243627,6 8.5081518,2 8.3000120,1 8.1518581,2 7.7828315,3 7.79207456,118 8.1642505,118 8.3061246,718	8.4720078.5 n 8.5241010.7 n 8.5636955.7 n 8.5934324.0 n 8.6152048.4 n 8.6303430.3 n 8.6339797.0 s 8.6439268.8 n 8.6439268.8 n 8.6439140.5 n 8.643140.5 n	8.6280844, 1 n 8.6137802, 2 n 8.5948707, 8 n 8.5711220, 8 n 8.5421559, 2 n 8.5421559, 2 n 8.4660740, 0 n 8.466090, 2 n 8.3583537, 0 n 8.3583537, 0 n	8.2001599, 5 n 8.0883289, 2 n 7.9357606, 1 u 7.6987336, 8 n 7.1476917, 8 n 7.740284, 2 7.740284, 2 7.9467528, 2 8.0788394, 7	8.2482560, 8 8.3662394, 7 8.3526245, 0 8.4194698, 2 8.4194698, 2 8.425994, 4 8.4599369, 8 8.472094, 7 8.472094, 7 8.472094, 7 8.472094, 7
9.2438171, 0 9.2034491, 4 9.1598083, 2 9.1126555, 0 9.0610609, 1 8.9042377, 8 8.8055807, 0 8.7874830, 8	8.5717130, 2 8.4165173, 6 8.1885454, 6 7.7280590, 1 7.6195397, 4 8.3305392, 3 8.4641779, 5 8.5589416, 2 8.5304555, 4 8.6304555, 4 8.6304555, 4 8.6304555, 4 8.6304555, 4 8.6304555, 4 8.6304555, 4 8.6304555, 4 8.6304555, 4	8-6863401, 2 n 8-7308759, 0 n 8-7955377, 3 n 8-8185799, 8 n 8-836064, 2 n 8-850405, 1 n 8-860407, 1 n 8-860405, 8 n	8-8691184, 4n 8-865341, 6n 8-8592873, 6n 8-8497608, 2n 8-83770826, 4n 8-8010797, 1n 8-7784757, on 8-7784757, on 8-77191062, 9n	8-6817051,4n 8-6379325,1n 8-5863782,1n 8-5249560,0n 8-5249560,0n 8-3572470,9n 8-3572470,9n 8-352427,9n 7-7614354,1n
9-6267948,3 9-6686255,4 9-5696636,3 9-5696636,3 9-5487511,2 9-7267909,8 9-7267909,8 9-7267909,8 9-47937400,2 9-4537400,5	9.3979189,7 9.3674205,1 9.3349279,0 9.3001867,1 9.2628049,3 9.1226340,6 9.12311704,4 9.0784746,6	8'9531974,0 8'8765277,4 8'7858088,7 8'674334,9 8'5288216,1 8'3167386,0 7'9079007,7 7'6164786,6 n 8'2019782,5 n 8'4354581,4 n	8.5812098, 5n 8.6858869, 6n 8.7665403, 7n 8.8848072, 6n 8.9297487, 6n 9.000728, 9n 9.0290428, 7n 9.0290428, 7n	9°0744621,0 n 9°0925127,4 n 9°120870,1 n 9°1208197,7 n 9°134945,9 n 9°1400540,3 n 9°1512329,9 n 9°1512329,9 n
14444444444444444444444444444444444444	12224225 25245 2525 2525 2535 2535 2535 2	66 65 66 66 67 70 69	172 774 775 774 80 80 80 80	% % % % % % % % % % % % % % % % % % %

Table of Log  $G'_n$  for Values of  $\theta$  from 0° to 90°.

 $\mu' = \cos \theta$ .

G', 3 Log G', 3	9.4617877,0 9.4617339,4 9.4591712,8 9.455905,3 9.455895,2 9.2835716,8 9.2835716,8 9.2837907,6 9.4453712,6 9.276314,3 9.4453712,6 9.276314,3 9.4453712,6 9.260287,5 9.4194512,4 9.4194512,4 9.42936,6 9.2292130,3 9.3951760,8	93808547,6 91740588,6 91740588,6 91740588,6 91740588,6 91740588,6 91740581,2 9178081,2 9178081,1 9175081,1 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0 91775264,0	
Log G'' s Log	9.6130553,8 9.6125524,9 9.6125524,9 9.6085242,2 9.6084914,5 9.604914,5 9.604934,5 9.504567,2 9.582359,9 9.582359,9 9.582353,6 9.582353,6 9.582353,6 9.582353,6 9.582359,9 9.582369,9 9.582369,9 9.582369,9 9.582369,9 9.582369,9 9.582369,9 9.582369,9 9.582369,9 9.582369,9	9.5510786,3 9.5390283,5 9.5258271,1 9.5114401,5 9.4958529,2 9.4790108,9 9.4790108,9 9.47414103,4 9.4205530,6 9.3982478,7 9.3744279,2 9.3490168,9 9.3219281,0 9.3219281,0	
$\log G'_{i}$ I	9.7477539, 5 9.7473851, 8 9.7462784, 0 9.7444320, 2 9.7444320, 2 9.744433, 5 9.735087, 4 9.735087, 4 9.7239751, 1 9.7239751, 1 9.723975	9'7024830, 3 9'6937240, 6 9'6737311, 4 9'6524637, 7 9'6524637, 7 9'650328, 3 9'650328, 3 9'6503335, 7 9'650335, 7 9'5925614, 0 9'5925614, 0 9'5925614, 0 9'592583, 7 9'59258, 4 9'59258, 6 9'59258, 6 9'59258, 6 9'59258, 6	
Log $G'_{\mathfrak s}$	9°8616973, 0 9°8616973, 0 9°8606913, 6 9°8594329, 0 9°8576690, 9 9°8553980, 4 9°8553980, 4 9°845130, 7 9°845130, 7 9°8411817, 5	98309356,5 98550083,3 9815369,0 9815369,0 97857672,0 97957672,0 97957672,0 97957624,0 97776933,5 97677532,0 97771926,8 9771926,8 9771926,9 97716289,5 97084192,7	
$\log G_5$	9.9488474, 8 9.9486966, 3 9.948439, 7 9.947481, 5 9.9450701, 2 9.9450701, 2 9.94140136, 8 9.9414116, 8 9.931515, 5 9.9365616, 7	9°9304436,7 9°9269103,0 9°9230566,6 9°918393,7 9°9143747,0 9°9095385,4 9°9094364,7 9°808386,7 9°808988,6 9°8089436,7 9°80808158,3 9°8732829,5 9°859784,3	
θ	0 = 4 w 4 m 0 v 8 0 0	11111111111111111111111111111111111111	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

_				
78945431,2 n 79057322,2 n 79032511,9 n 78886820,4 n 78626917,8 n 77552196,3 n 77754788,2 n 77711736,9 n 76308843,0 n	7.3895399, 5 n 7.1913671, 7 n 6.8404824, 9 n 6.0523476, 0 6.9278834, 1 7.7578834, 1 7.3125539, 2 7.3125539, 2 7.3996045, 1 7.4564480, 2 7.4920811, 9	7.5111384,1 7.5161187,3 7.5082535,7 7.4878747,8 7.4054088,2 7.405408,3 7.3417292,3 7.2544489,8 7.1348366,6	6.656310, 9 3.544680, 4 n 6.5396159, 6 n 6.9260593, 4 n 7.0836674, 3 n 7.185980, 3 n 7.2558897, 3 n 7.3033818, 2 n 7.3490811, 2 n	7.3513826, 8 n 7.3408544, 2 n 7.3170725, 2 n 7.278666, 3 n 7.222895, 9 n 7.144670, 0 n 7.0339903, 9 n 6.8679445, 4 n 6.5728948, 3 n
7.7742541, 2 n 7.9096111, 1 n 7.9930026, 0 n 8.0464904, 8 n 8.0798560, 5 n 8.1044044, 8 n 8.10015.29, 9 n 8.0863594, 8 n 8.0863594, 8 n	8°0311530,7 n 7°9890620,7 n 7°9359478,9 n 7°897833,1 n 7°7871521,8 n 7°5819427,8 n 7°5421442,1 n 7°3389622,1 n 6°9666438,2 n	7.1353877,5 7.3739615,1 7.5117764,4 7.6026675,8 7.7625303,6 7.7625303,6 7.7362171,7 7.7362171,7 7.7516785,6 7.7516785,6	7.7346134,3 7.7084243,0 7.6709023,6 7.6202074,6 7.45535135,7 7.7453501,3 7.3452286,2 7.1693775,5 6.8599184,9 5.4418521,8	6-8825814, 5 n 7-1663916, 3 n 7-327255, 7 n 7-5325194, 0 n 7-5679422, 4 n 7-607923, 1 n 7-6578881, 9 n 7-656077, 3 n
8.1794047,1 7.9597623,9 7.5703128,9 7.0344279,1 n 7.723953,5 n 7.723953,6 n 8.975858,8 n 8.1632794,8 n 8.1632794,8 n 8.1632794,8 n 8.1632794,8 n	8.2834900, 6 n 8.2977655.4 n 8.3029654, 5 n 8.3021233, 3 n 8.2898334, 6 n 8.272353, 6 n 8.215458, 5 n 8.215464, 6 n 8.174964, 6 n	8°0644411, 4 n 7°9897300, 6 n 7°8963156, 3 n 7°7675558, 1 n 7°373853, 7 n 6°5546102, 9 n 7°1375693, 1 7°4766852, 9 7°6526862, 1	7.7670095,9 7.847416,6 7.9050916,0 7.9498918,4 7.9187798,6 8.014329,7 8.0131259,6 8.0160651,1 8.0122283,8	7.9796993,8 7.9505605,3 7.9114718,9 7.78605314,5 7.7946337,1 7.7084234,5 7.5917044,4 7.4214328,1 7.1238745,0
8'9047452,4 8'8386204,3 8'7648510,7 8'6812737,3 8'6812737,3 8'5845354,3 8'3241953,8 8'126259,3 7'7981891,8 6'2455126,7	7.7786475.1 n 8'0497935, 6 n 8'198879, 2 n 8'2966311, 7 n 8'4153995, 9 n 8'4517385, 6 n 8'4776668, 2 n 8'4949649, 4 n 8'5950902, 6 n	8.508248, on 8.5067103, 6 n 8.4990651, 5 n 8.4860239, 1 n 8.4675563, 1 n 8.4134645, 2 n 8.4133619, 8 n 8.3766271, 4 n 8.3323180, 5 n	8.2145808,0 n 8.135534,9 u 8.0359565,8 n 7.9043055,0 n 7.7141268,2 u 7.7141268,2 u 7.7141269,5 n 6.6184037,6 7.7545455.6 7.7545455.6	8°0176355,0 8°0976567,1 8°1592339,2 8°2449101,6 8°2738338,6 8°2953233,8 8°3101788,6 8°3189062,5
9.3442390, 2 9.3110261, 4 9.2757633, 1 9.2382224, 9 9.1981273, 7 9.10551384, 7 9.10551384, 7 9.058678, 5 9.0039450, 6 8.9437261, 9	8.8767178,5 8.8010618,3 8.7139454,3 8.6108044,8 8.4834667,7 8.3149110,1 8.587038,2 7.4537188,1 7.7125217,6 "	8.2863405, 8 n 8.4066619, 3 n 8.4923408, 4 u 8.5566201, 4 n 8.6061783, 6 u 8.6448413, 8 n 8.6749907, 7 n 8.6981944, 4 n 8.7155240, 1 u	8.7353366, 5 n 8.7380950, 6 n 8.7380950, 6 n 8.735253, 9 n 8.735233, 9 n 8.7372424, 9 n 8.6971707, 3 n 8.6521521, 3 n 8.6521521, 3 n	8-5869491, on 8-5448768, 7 n 8-4947662, 1 n 8-4345681, 1 n 8-3610346, 8 n 8-2687045, 8 n 8-1473027, 7 n 7-9737248, 2 n 7-6741977, 2 n
9.6581916, 7 9.6413145, 1 9.623693, 6 9.6052981, 6 9.5659607, 2 9.5659607, 2 9.522851, 7 9.4997172, 2	9'4498391, 4 9'4228863, 0 9'3944201, 3 9'3642846, 3 9'3322945, 8 9'298229, 1 9'261818, 1 9'227339, 1 9'1805586, 6 9'1847698, 9	9°0846824,7 9°0293826,1 8°9676104,5 8°8975584,2 8°8164973,5 8°7602160,1 8°6002605,1 8°410821,4 8°1993365,8	7.8047505, 6 8.2245379, 8.1 8.4260412, 5 11 8.5571474, 6 11 8.7268783, 4 11 8.7863803, 3 11 8.8352744, 7 11 8.8760446, 1 11 8.9103396, 7 11	8'9393049, 5 n 8 9637629, 0 n 8'9843187, 6 n 9'0014260, 9 n 9'0154238, 5 n 9'0265723, 6 n 9'0350629, 4 n 9'03410345, 2 n 9'0445811, 8 n
144 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3	190 190 190 190 190 190 190 190 190 190	1227477	888888888

Table of Log  $G'_n{}^4$  for Values of  $\theta$  from 0° to 90°.  $\mu' = \cos\theta'.$ 

$\operatorname{Log} {G'_{10}}^{\sharp}$	9.5400155, 0 9.5394121, 0 9.5376066, 0 9.5345779, 5 9.5248741, 8 9.5181750, 3 9.5181750, 3 9.5102283, 6 9.5010187, 6 9.501	9,4656177,1 9,451457,1 9,435287,7 9,4180112,8 9,3992730,1 9,3572270,4 9,3572270,4 9,3572270,4 9,357220,4 9,357220,4 9,357220,4 9,357220,4	9.225403.0 9.2225403.0 9.1898654,3 9.1550157,9 9.0781724,8 9.0357994,7 8.9904788,4 8.9419149,3 8.8897460,3	8-8335229, 6 8-7726767, 7 8-7064703, 6 8-5339245, 3 8-533926, 5 8-4538468, 7 8-3614753, 0 8-2418564, 0 8-2418564, 0
$\operatorname{Log} G'_{\mathfrak g}$	9'6726410, 7'9'672171, 7'9'6684128, 4'9'6681175, 3'9'668721, 4'9'658721, 4'9'658721, 4'9'658721, 4'9'658721, 4'9'634231, 5'9'642816, 8'9'6342342, 7'9'6251076, 2	9.6149665, 5 9.6037938, 3 9.5915701, 1 9.5782734, 7 9.538794, 9 9.5316850, 0 9.5316871, 7 9.538242, 8 9.4947343, 4 9.4743750, 5	9.4526989, 5 9.4296531, 6 9.4051779, 6 9.3792063, 5 9.3516625, 0 9.324603, 0 9.2915015, 6 9.238463, 8 9.238463, 8	9.1475628, o 9.1057193, S 9.0610868, 3 9.0133612, 2 8.9621686, 7 8.9970423, 2 8.8473873, 7 8.784281, 2 8.784281, 2 8.784281, 2 8.784281, 2
$\operatorname{Log} G'_{8}$	97891466, 3 97887980, 1 97877516, 5 9786063, 2 9783598, 0 9784091, 0 97765502, 2 97719783, 2 97766574, 9 97666709, 9	9'746428', 2 9'738128, 4 9'7291734, 6 9'7193873, 6 9'7088104, 8 9'6974272, 9 9'697227111, 6 9'6582583, 0 9'6434589, 0	9.6277474, 5 9.6110959, 6 9.5934734, 0 9.574845, 8 9.574845, 3 9.551746, 3 9.5124184, 9 9.51254184, 9 9.51254184, 9 9.51254184, 9 9.51254184, 9 9.51254184, 9 9.512554, 9 9.5125584, 9 9.512584, 9 9.5125844, 9 9.512584, 9 9.5125844, 9 9.512584, 9 9	94125165, 6 93840462, 8 93540147, 3 9322134, 1 9288130, 2 9253369, 1 92158100, 0 91759301, 7 9134859, 0
$\operatorname{Log} {G'}_7$	9.8860566,5 9.8858152,9 9.8858090,7 9.8828090,2 9.8821901,2 9.8773425,8 9.8773425,8 9.8741830,4 9.8741830,4 9.8753288,7 9.8663763,8	9.8565586, 2 9.850830, 4 9.846884, 4 9.8379680, 5 9.8307144, 3 9.820194, 1 9.8145739, 9 9.8056681, 7 9.7861327, 7	9.7754783,8 9.7642148,3 9.7523270,1 9.7397985,0 9.7266114,2 9.7127462,5 9.698.816,8 9.66828944,4 9.6668590,7 9.6500476,7	9.6324295,7 9.6139710,7 9.5946349,3 9.5743799,4 9.5531604,3 9.5576181,6 9.5676181,6 9.4831745,8 9.4575226,4 9.4575226,4
$\operatorname{Log} G'^{4}$	99586073.1 99584598.2 9958072.2 99562451.8 99562451.3 99549142.6 99313576.9 99413576.9	9'9406210, 7 9'9371698, 6 9'9334065, 9 9'9293281, 4 9'929317, 1 9'9202117, 1 9'9151659, 2 9'999789, 1	9°8916247,9 9°8848730,8 9°8777625,1 9°8702860,8 9°864363,2 9°8542651,2 9°8456837,9 9°8365629,7 9°8271326,1	9.8069990, 1 9.7962715, 0 9.7850857, 2 9.7744269, 5 9.7744269, 3 9.7486256, 2 9.7354471, 4 9.7217235, 7 9.7074328, 1
θ	0 1 4 W 4 W 0 V 8 Q 0	11 2 2 4 5 5 5 7 8 6 9 8	122242222	33.33.33.33.33.33.33.33.33.33.33.33.33.

7.6262869, 8 6.953413, 3 7.2826153, 2n 7.6286453, 4n 7.7875554, 0n 7.959318, 9n 7.959328, 1n 7.969525, 8n 7.9865325, 8n	7.9811768, 8 n 7.9526854, 5 n 7.9326852, 8 n 7.8326805, 1 n 7.8411353, 8 n 7.764855, 9 n 7.5912895, 9 n 7.4544850, 8 n 7.2585487, 0 n	6'9145969,9 n 6'0410372,1 6'9842482,0 7'2376543,2 7'3786558,5 7'786558,5 7'5091369,1 7'509139,6 7'509139,6 7'509139,6	7.6003618,4 7.5866626,8 7.521373,8 7.5231713,7 7.4705677,8 7.79050935,2 7.7050933,0 7.1730583,1 6.9721611,7	6'5488556, 8n 6'8538259, 3n 7'0864950, 8n 7'2264246, 1n 7'321308, 9n 7'488305, 9n 7'468201, 9n 7'468201, 9n
8'5430560, 8 8'4409853, 9 8'3204991, 8 8'1717615, 5 7'9731287, 7 7'6582451, 8 6'468450, 2 7'5305288, 2n 7'8147848, 1n 7'9007380, 3n	8.0508014,7 n 8.1096399,6 n 8.1479287,9 n 8.1711821,4 n 8.1825384,8 n 8.183620,8 n 8.176291,9 n 8.1602713,0 n 8.1360829,2 n	8:0617818, 5 n 8:0098743, 7 n 7:9458116, 5 u 7:8663913, 3 u 7:7660386, 3 n 7:4540367, 1 n 7:4540367, 1 n 7:453050, 2 u 5:9800488, 5	7.4230704, 8 7.5747429, 3 7.6750107, 7 7.7454214, 6 7.7956249, 3 7.8535199, 6 7.8558238, 5 7.8658238, 5 7.8685651, 0	7.846209, 8 7.8214375, 4 7.7856010, 0 7.7373198, 9 7.6735701, 2 7.589049, 4 7.4736081, 2 7.3042254, 8 7.0071928, 2
9°0396532,9 8°874465,1 8°9399819,7 8°8695039,5 8°7270614,8 8°6426553,1 8°5456533,1 8°5456533,3 8°5456533,3	8'0994672,5 7'8008915,9 6'8421222,6 7'6352745,9 n 7'940789,2 n 8'0987734,8 n 8'1988912,2 n 8'2674779,7 n 8'3157365,6 n 8'3157365,6 n	8:3519901, 8 n 8:3853806, 7 n 8:390349, 3 n 8:384735, 3 n 8:3614788, 0 n 8:367116, 1 n 8:3465111, 5 n 8:3455111, 5 n 8:2850399, 0 n 8:2850399, 0 n	8'1914348, 1 n 8'1287726, 1 n 8'0515873, 8 n 7'0542729, 1 n 7'042703, 6 n 7'042703, 6 n 7'331282, 9 n 6'1310730, 5 7'3617165, 1	77997828, 9 7.9086721, 0 7.9086721, 0 7.9084024, 2 8.0487489, 7 8.0949066, 1 8.1556648, 3 8.1556648, 3 8.183421, 8 8.1836823, 0
9,4022556,7 9,3724406,1 9,3410122,1 9,3078267,9 9,2327156,1 9,1958763,1 9,1536172,6 9,1083439,1	9°0068288, 2 8°9492663, 9 8°8559109, 3 8°8153637, 3 8°7355953, 1 8°6434945, 3 8°3974189, 2 8°3974189, 2 8°2133918, 3	6'955530, 6 7'7717175, 3 n 8'0835943, 5 n 8'2487702, 1 n 8'434093, 6 u 8'491539, 2 u 8'550830, 0 u	8.622545,5 n 8.622545,5 n 8.6286052,1 n 8.6300166,8 n 8.6267488,1 n 8.6267488,1 n 8.6565384,0 n 8.5894670,3 n 8.5894670,3 n 8.5674473.9 n	8.506570, 8 n 8.4663270, 1 n 8.1177074, 7 n 8.3587544, 7 n 8.2862466, 8 n 8.1947365, 8 n 7.9008246, 8 n 7.6015602, 7 n
96770508, 9 9'6609044, 3 9'6609044, 3 9'6265411, 8 9'6082505, 9 9'5091648, 2 9'509239, 9 9'5484100, 2 9'5266286, 4	94799148, 1 94548185, 0 94284328, 7 94006417, 3 93713097, 9 9307382, 2 93073586, 6 927322, 8	9.1514670, 9 9.1044930, 2 9.0531375, 1 8.9954658, 3 8.8514430, 0 8.778420, 1 8.6795461, 4 8.6795461, 4 8.5566252, 0	8.1406038, 8 7.535257, 7 7.8108438, 6 n 8.2005246, 5 n 8.5200448, 1 n 8.6122084, 1 n 8.6122084, 1 n 8.6833386, 9 n 8.7401098, 5 n 8.7401098, 5 n	8.8244841, 9n 8.8560802, 8n 8.822492, 1n 8.9037772, 0n 8.912351, 5n 8.9350412, 3n 8.945000, 0n 8.9528277, 8n 8.9571691, 8n
1444444 144444 144444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 1444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 1444 14444 14444 14444 14444 14444 14444 14444 14444 14444 14444 1444	1,2,2,4,2,2,2,2,0 1,2,2,4,2,2,2,2,0 1,2,2,4,2,2,2,2,0 1,2,2,4,2,2,2,2,2,0 1,2,2,4,2,2,2,2,2,2,0 1,2,2,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	1224427778	888 887 888 888 90

Table of Log  $G'_n$  for Values of  $\theta$  from 0° to 90°.

 $\mu' = \cos \theta'$ .

$\operatorname{Log} G'_{10}{}^5$	97161067, 6 97156598, 0 97143182, 7 97143182, 7 97089431, 0 97049024, 1 97099525, 1	9.67/2/37, 2 9.67/2/37, 2 9.67/29/37, 2 9.650(843, 8 9.650(8115, 2 9.620(8115, 2 9.6128971, 9 9.5982355, 0		9'226998, 7 9'1892953, 1 9'1493597, 3 9'1070029, 6 9'0619995, 3 9'0140792, 2 8'9059136, 9 8'9059136, 9 8'905988, 6 8'9059136, 9
$\log G_{\mathfrak{g}}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,7,7,5 4112,2 3328,1 3385,4 2042,8 3112,2 1094,7 1194,7		9.4614475,2 9.4349282,1 9.4070493,7 9.377335,4 9.3468805,6 9.343354,8 9.2801558,5 9.2440335,0
$\log G'_8$	9'903889,9 9'9028533.4 9'9021511,6 9'9009768,2 9'899312.3 9'8946197,8 9'8946197,8	9.8839656,8 9.8839656,8 9.874448,1 9.868923,4 9.8629124,7 9.8563935,9 9.8493601,0 9.8418046,9	9.8159236.2 9.8061933,2 9.8061933,2 9.7585018,6 9.778353.1 9.7487389,1 9.721373866,2 9.7213748,8 9.7066819,5 9.6912878,9	9.658.281, 1 9.6406472, 2 9.621862, 3 9.602865, 1 9.5826925, 1 9.5615808, 1 9.515993, 9 9.5165972, 9
$\text{Log } G'_7$	99652378,9 9965026,3 99646567,5 99630299,1 99629115,9 99616010,2 99580990,2	20000011		98163700,0 9805842,6 97949362,0 9783543,7 97716782,7 97759382,5 977464753,5 97731012,3
0	0 - 4 w 4 v 0 v 0	0 1 1 2 2 4 5 1 7 5 5 7 5 6	30 22 22 23 25 24 33 25 25 25 25 25 25 25 25 25 25 25 25 25	333333333333333333333333333333333333333

8'5549023,3 8'5549026,7 8'5549026,7 8'4593395,5 8'3491795,8 8'033468,8 7'8258848,4 7'4254510,7	7.5748065,1 n 7.7920041,6 n 7.9114261,0 n 7.9833779,7 n 8.0321378,7 n 8.0501540, n 8.0739231,8 n 8.0760047,4 n 8.0578661,5 n	8'0234129, 8 n 7'98'0510, 3 n 7'94'03790, 0 n 7'88'19'019, 6 n 7'7174541, 7 n 7'598'9042, 7 n 7'43'0703, 7 n 7'1807937, 3 n 6'548'3157, 0 n	6*8691671, 6 7*2422133, 5 7*4236324, 8 7*5371753, 6 7*6143381, 8 7*6743915, 7 77267068, 3 77374145, 1 77374145, 1	7.7269202, 8 7.7058867, 9 7.6278787, 1 7.5663149, 1 7.4835059, 9 7.3693569, 0 7.2008614, 4 6.9043584, 4
9.1225101, 5 9.078728, 6 9.0281061, 7 8.9759812, 9 8.9198335, 4 8.7926669, 6 8.7195229, 5 8.6380347, 6	8.4383956,6 8.30945.3,7 8.1453151,5 7.9126667,6 7.202390.2 n 7.748221,5 7.9564124,1 n 8.0773024,8 n 8.1563186,2 n	8'2465788,3 n 8'2465788,3 n 8'2831075,7 n 8'2831075,7 n 8'2835578,8 n 8'2724373,7 n 8'2541181,6 n 8'254181,6 n	8.1532280,9 n 8.1014680,0 n 8°0377264,2 n 7'8577930,9 n 7'75280279,3 n 7'1691922,7 n 6'5698068,2	7.5824236,1 7.7310389,1 7.8329130,0 7.9671645,8 8.0040245,7 8.0341518,0 8.0341518,0 8.056689,7 8.056880,7
9'4403602,1 9'412529',6 9'3833119,1 9'322602',6 9'3203727',6 9'2861874',6 9'22120479,2 9'1715618',9	9°0823190, 6 9°0327769, 9 8'9792548, 3 8'9210316, 3 8'571440, 2 8'7862015, 0 8'7064996, 8 8'6148623, 2 8'5067033, 2	81971040,5 7'9272764,1 7'2485151,8 7'6351850,7 n 7'991842,6 n 8'1680588,4 n 8'2806832,5 n 8'3583765,4 n 8'4154965,2 n 8'4548169,8 n	8-4889864, 8 n 8-5112570, 9 n 8-5260816, 0 n 8-5348169, 3 n 8-536835, 4 n 8-525531, 8 n 8-5118884, 4 n 8-4927954, 4 n 8-4678992, 2 n	8.436272,4n 8.3981020,6n 8.3510040,8n 8.293192.3n 8.2218496,2n 8.1311668,2n 8.0110207,8n 7.838269,9n 7.5393258,1n
9'6896435' o 9'6579669, z 9'6576500.4 9'622085, 6 9'622985, 6 9'58534.5 9'5852612, o 9'5843285, o	94995798, 0 94756277, 3 94505108, 6 94241399, 1 93964033, 0 9357739, 1 9353023, 0 9305158, 7 92689030, 6 92319129, 9	91923380,9 91497969,9 91038084,4 970537525,9 89388112,7 89378723,6 87909816,6 86990809,1	8'441863,1 8'2409943,0 7'8760393,5 7'2746380,9 n 8'0321366,6 n 8'4307190,8 n 8'5346143,4 n 8'5346143,4 n 8'6125929,4 n	87223792, 7 n 87619781, 0 n 87942484, 6 n 87942486, 6 n 8815300, 3 n 88580640, 3 n 88705231, 2 n 88872180, 0 n 8887356, 4 n 88843565, 4 n
14444444446	555 555 555 555 555 555 555 555 555 55	62 63 64 65 67 67 69 69	722 722 724 728 728 738 748 758	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Table of Log  $G'{}_n{}^s$  for Values of  $\theta$  from 0° to 90°.  $\mu' = \cos\theta'.$ 

θ	$\operatorname{Log} G'_{s}$	$\operatorname{Log} G'_{\mathfrak{g}}$	$\operatorname{Log} G'_{10}{}^6$	θ	$\operatorname{Log} G'^{\mathfrak{s}}$	$Log G'_{g}$	$\operatorname{Log} G'_{10}{}^6$
°o	9.6200367,8	9.9156791, 1	9.8410455,0	46°	9.6154661,9	9.3213258,4	8.9424973, 1
-	9.9698931, 1	9.9154492,6	9.8407198,6	47	9.5967340,9	9.2875561,3	8.8848536.
0 0	9.9694620, 2	9.9147594,7	9.8397425, 9	40	9.5772150,0	9.2519030,1	8-7547072
· .	9.900/431,9	9.9130091,0	9.0301120,9	64	9 5500047,5	0.1745717.8	8.6801552
4 n	0.0064400.2	0.0000025.4	0.8228874	2	9 333030313	n	1265
20	0.0648540.5		0.8202868.1	7	0.5134551.5	9.1323186,0	8.5972432,
7		9.9043765,3	9.8250225, 5	22	9.4902747,7	9.0873027, 5	8.5035168, 2
.00	9.0608074.9	9.0000003,7	9.8200901,6			6.0361577, 6	8.3951159,
0	0.0583430,6		9.8144844.5	42		8.9874151,3	8.2654051,
01	9.9555845,7	9.8925262,9	9.8081992,4	25.	9.4139253,8	8.9314783, 1	8.1014036,
				92		8.8705674, 1	7.8715799,
11	9.9525272,6	9.8876207,4	9.8012276,9	57	9.3563666,7	8.8036320, 3	7.4532587,0
12	9.9491697,4	9.8822303, 5		25	9.3252093, 3	8.7292082,2	7.0752987,
13	9.9455094.6	9.8763501, 1		59		8.6451630,0	7.6690033,
14	9.9415436, 1	9.8699744,4	9.7761128,7	9	9.2572716, 1	8.5482057, I	7.8816245,
15	9.9372691, 1	9.8630972,4	90,				(
91	9.9326826,2	-	9.222206, 6	19	9.2200404, 5	8.4328492, 5	8.0024183,
17	9.9277804,7	9.8478109,2	9.7444846,7	62			8.0797906,
18	9.9225587,2	9.8393865,2	324370,	63	9.1375370,0	8.0933383, 2	8.1311077,
19	9.6170130,8	9.8304299,7		64	6.0614275, 6	7.7739224,2	8.1645232,
20	9.9111389,4	9.8209318, 9	9.7059938,7	65	9.0413258,4	5.8767949,8	8.1844378,
				99	8.9864453, 1	-	8.1934123,011
21	9.9049313, 3	9.8108820, 9	9.6915630, 5	67	8.9257221,0		8.1929725,
22	9.8983848, 9	9.8002695, I		8	8.8570007,7	8.1479723, 4 "	8.1839877,00
23	9.5914935, 5	9.7890821, 9	9.0001820,9	60	0.7000952, 9	8.240/019,0%	0.1000553
77	9.8842521,0		9.0431059, 0	2	0.00001/1,1	0.3130/90, / 11	0.1415/00,
25	9.8700529, 3	9.7049304, 8	9.0252950, 9		0,10	0.050=0.0	0
50	9.5050505,0			71	0.5005311, 9	0.305/910,976	0.06177/14,7
700	9.0003534,0	9.7303100, 2	9.5000511, 3	7.5	0.4420/50,0	8.4373067.00	8.0106060 6.11
0 0		9.7240319,0	9 5050517,2	2:	7.02307.00 8	8.4478120 0 11	7.0422000, 0 10
6	9.822023	9 /09054, 3	9.5440143, 0	4,1		8.45.20181 22	7.8580270.23
2		9 0934434, 0	7 32109001/	2,7	7.0481348 1 2		7.7400202
2.1	0.8221167 8	8 08802290	0.4020201	1 0	. 0	0	7.6013700.02
33	0.81318316		0.4718303 0	20	8.2800205 2 22	l V	7.2742128
, ,	0.80202010	9.6494933, 4		2 2	8.4874000 5 2		6.8865606
25	9 0020203, 0		2,00,00,00	200	0.0	8.4022047	6-8800428
\$ ;	9 /900134,1	9.0234/90,0	9 41/0103, /	8	_		0.0030430
35	0,16101910	9 0039941,0	6,6//5006	0	O		7.7500744
300	970/0125,3	9.5030440, 1	9.3570910, 1	100	0.0203100,01	8.3377813 7 8	7.5509/44
ر د د د	343003,	9.5023917,3	9 353/309, 0	200	8.7160804.72	8.2020428 7.2	7.6878063
30		9.5401914, 0	9 2919750,0	0		0.0216.00 7 0	1 00/09021
39	9.7270072,4	9.5109958,0	9.2504194, 0	\$4	8.7472095, on	0.2350493, 7 "	7.7700940,
0	9.7134110,1	9.4927512,0	9.2199531, 2	S S	0.7721070, 1 11		7.0430099,4
				တ္တ လ	8.7914459, 3 "		7.8917994,
41	9.6986514,2	9.4073979, 2	9.1794140,7	87			7.9204324,
42	9.6833024,0	9.4408689, 2	9.1376120,8	× ×	8.8160083, 8 11	7.7830192,0	7.9498704,
43	9.0073329,8	9.4130888,3	9.0933216, 5	68	8.8219404,9 n		7.9034024,
4	9.6507329, 1	9.3839721, 1	9.0462716,0	8	8.8239087, 4 n	8	7.9079187,

## Table of Log $G'_n$ and Log $G'_n$ for Values of $\theta$ from 0° to B

COS

11

90°

8 4545026, 3 n 8 5252416, 8 n 8 62704879, 5 n 8 6262492, 7 n 8 6797007, 4 n 8 678317, 4 n 8 7112147, 5 n 7.7127321,7 7.4262183,8 n 7.9980355,9 n 8.2224688,3 n 8.3592114,7 n 9°0934852', 9°0451751', 0°8°0926183', 3°8°0349553', 8°8°8710137', 7°8°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7991323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7971323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323', 9°7712323' 3000 9.6299956, 1 9.6118928, 7 9.5930586, 4 9.5734535, 1 9.5530339, 2 9.5095522, 5 9.4863759, 4 9.4621547, 2 9.4368119, 9.4102606, 1 9.3324012, 5 9.3531193, 8 9.3222823, 2 9.2897351, 0 9.2187435, 3 9.1798184, 9 9.1381985, 8.7168423, 9 8.6202333, 2 8.5025419, 6 8.3504306, 2 8.1310878, 2  $\text{Log}\ G'_{10}$ 9.0934852, 5317514, 9.2552948, 600 8-3177583,9 n 8-2830247,4 n 8-2390851,6 n 8-1840068,1 n 8-1146543,5 n 8-0256457,9 n 7-7349645,6 n 7-7349645,6 n 7.4313010, 3 n 7.8537547, 7 n 8.0425774, 8 n 8.1577533, 5 n 8-2356458,4 n 8-2904918,3 n 8-3592758,1 n 8-355493,2 n 8-372838,9 n 8-3813795,5 n 8-3813795,6 n 8-3756160,0 n 8-3539994,6 n 9.1680866, o 9.1259820, 6 9.0812279, 2 8.5569314, i 8.4490511, 4 8.3177730, i 8.1473977, 3 7.8966739, 0 7.3626860, 0 3445007, 4n9°0334823;1 8°9823201,8 8°9272041,6 8°8674386,7 8°8021006,9 8'7299244,7 8'6491047,0 0 4 10 400 G' 10 9.3471885, c 9.3149486, 2 9.2810724, 5 9.2454184, 4 9.2078213, 8 9.1680866, Log 7.0132460, 3 n 7.9474410, 7 n 8.2080870, 1 n 8.5399475, 8n 8.5988686, 1n 8.6450889, 6n 8.6816132, 2n 8.7103518, 9n .3595020, 4 n .4632817, 2 n 8.7605870, 5 n 8.7673265, 1 n 8.7695510, 8 n 8.7491240, 11 9.6236454, 2 9.6052703, 0 9.5861402, 1 9.5662129, 4 9.5454417, 0 9.4775113, I 9.4527761, 2 9.4268632, 9 9'3711073, 1 9'3410266, 3 9'3092862, 7 9'2757111, 6 9.2400929,7 9'1616701, 9 9'1181823, 3 9'0712419, 2 9'0202380, 2 8'9643667, 5 8'9025390, 6 8'8332256, 7 8'7541790, 2 8.6618941, 4 8.5504410, 5 8.4085191, 1 8.2099831, 1 9.5237744, 2 9.5011527, 8 9.3996770,4 Log G',7 71 72 77 73 77 75 77 75 77 75 77 75 77 80 80 80 888883 887 887 889 889 0 9'822641,7 9'8115312,5 9'805700,1 9'7891681,2 9'7743122,9 9'764982,4 9'7521805,5 9.6957605,5 9.6802566,9 9.6641464,2 9.6474026,3 9°9124527,9 9°9060195,9 9°892495,9 9°8921370,5 9°8846757,9 9°8768592,0 9.9765189, o 9.9763773, 7 9.9759526, 6 9.9752445, 1 9'9729756,7 9'9714134,1 9'9695645,5 9'9674277,9 9'9650016,3 9.9592737,7 9.9559684,4 9.9523652,5 9.9484617,9 9.9397422,5 9.9349195,9 9.9297834,8 9.9742524,0 9 9.9442551,9 9.8601312, 4 9.8321802,8 9.9243299, I 9.8512041, 5 10 9.9185545, 9.7250465, 9.7106828, Š Log ( 9.6913704,8 9.6746836,5 9.6572616,8 9.6390778,3 9.6201028,9 9.8223596,8 9.8119474,6 9.8009746,0 9.7894298,1 9'9253663,8 9'9251401,2 9'9244611,1 9'9233288,2 9'9217422,7 9'4876146, 3 9'4620047, 7 9'4352347, 9 9'4072318, 9 9'3779141, 5 9.9197001, 9 9.9172008, 3 9.9142420, 8 5356057, 5 29 0 0.0 200 N 00 9.9142420, 8 9.9108214, 3 9.9069360, 2 9°8977569, 1 9°8924552, 3 9°8866726, 6 9°873435, 3 9°8736435, 3 9°866215, 1 9°8503458, 0 9°8415496, 4 9°8322253, 5 9.7773001, 2 9.7645715, 2 9.7512289, 3 9.7372559,8 9.7226349,7 9.7073467,3 .5796491, 3 .5580968, 2 10 9.9025824,  $\log G'_{16}$ 9.8282045, 3 9.8179943, 0 9.8073609, 8 9.7847763, 1 9.7727983, 6 9.7727983, 6 9.7739386, 2 9.7739386, 2 9.7739386, 2 9.7054159, 2 9.6903083, 0 9.6746050, 1 9.6582797, 1 9.6413036, 9 9'9736710, 6 9'9735286, 0 9'9731011, 0 9'9723882, 7 9'9713896, 1 9'9701044,2 9'9685317,8 9'9666705,8 9'9645195,0 9'9620769,9 9.9563104, I 9.9529821, 3 9.9493539, 7 9.8886760, 3 9.8811545, 5 9.8732737, 5 9.8650263, 1 9.8564043, 8 9.8473995, 6 0000 200 9.9091505, 5 9.9026678, 7 9.8958450, 1 9.8886760, 3 9.9454232, 3 9.9411869, 4 9.9366418, 5 9.9317844,4 9.9211170, 8 6,2 Log 0 = 4 w 4 m 0 r × 0 0 12884888888 **44444** Θ

42

Values of  $G'_0$ ,  $G'_1$ ,  $G'_2$ ,  $G'_3$ ,  $G'_3$ , ...  $G'_{10}$ , with  $\theta$  from 0° to 90°.  $\theta = \text{Geographical Colatitude}$ ,  $\theta' = \text{Geogentric Colatitude}$ .  $\mu' = \cos \theta$ .

$G_{10}^{\prime}$	+ 0.00554245 .00549550 .00535581 .00512695 .0042676 .0042676 .00346473 .00231673 + 0.00174259	+ 0°00114928 °00056982 + 0°0001760 • 0°005650 °0013760 °00194924 °00194924 °0013034	- 0.00225588 - 0.00220393 - 0.0028140 - 0.018954 - 0.018954 - 0.003383 - 0.0003383 - 0.0003383	+ 0.00036681 .00095443 .00123687 .00123687 .00144180 .00158947 .00172687 .00172687
6,0	+ 0.01053065 + 0.01053065 - 0.01045763 - 0.008248 - 0.0083248 - 0.00832845 - 0.00834155 - 0.00834155 - 0.00834155 - 0.00834155 - 0.00834155	+ 0.00336100 + 0.00234466 + 0.00237579 + 0.00237311 0.002778211 0.00374970	+ 1000000000000000000000000000000000000	+ 000223000 + 00028300 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 000283000 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 00028300 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 0002800 + 000
6,0	+0.01989122 0.1978084 0.1978084 0.1890869 0.1816128 0.1721165 0.1610520 0.1483020 0.1341744 0.1388986 +0.01027208	+0.00859005 -0.0015595 +0.0015595 +0.0015595 +0.0015595 +0.0015595 -0.00135847 -0.00135847 -0.00135847 -0.00135847	20000000000000000000000000000000000000	-0.00589695 .00505795 .00413230 .00314154 .00210796 .00105415 +0.00102487 .00200723 +0.002092494
6,10	+0°03729604 03713502 03385399 03372507 0337266 03171274 02980211 02766502 02766502 02766502	+ + + + + + + + + + + + + + + + + + +	0.00647599 0.0846317 0.1022363 0.1174074 0.1390641 0.1472010 0.1535086 0.1535086	0.01492571 0.1434304 0.1354410 0.1251797 0.1131633 0.0095314 0.0084524 0.0084524 0.0084593 0.00515960
6,8	+0°06926407 °06903973 °06903973 °06725785 °0571737 °0571737 °0570224 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °0570737 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077 °057077	+0.04461722 .04047383 .04047383 .03165458 .03169963 .02715023 .02754821 .01793555 .01335394 .00884437 +0.00444674	+0.00019935 -0.00386133 -0.00386133 -0.01128855 -0.1458489 -0.1458489 -0.1759475 -0.2026007 -0.2026007 -0.0225949	0.022735596 0.02818615 0.0287183 0.02871963 0.02777525 0.0254953 0.02390273 0.02390273
<i>G</i> ′′ ₈	+0'12698413 +0'1269027 +1269027 +1269027 +1243545 +1243543 +11973743 +11973743 +11297358 +0'12694057 +0'12694057 +0'12694057 +0'12694057 +0'12694057	-0.09378256 -0.8708961 -0.8187265 -0.547256 -0.6199493 -0.5500662 -0.47791289 -0.03359467	+0.02646271 01949981 01248058 +0.00571849 -0.00033467 00713888 01315625 01835130 02419122	-0.0336881 03779589 0444701 04462540 04731791 04951513 05121130 05121130 05309633 05309633
6',	+0.22857143 -22821873 -22716222 -22546672 -21983327 -21169463 -20552779 -20552779 -0.19459278	+0'18778203 '18044896 '17262624 '16444870 '16565310 '14657798 '13716351 '12745111 '17748353 +0'10730437	+0.09695806 08648952 07594404 05336704 05480376 04429918 03389769 02364302 01357783 +0.00374369	0.00581913 0.1507202 0.3397798 0.33250192 0.4061080 0.4827379 0.6215641 0.6831448
<i>G</i> ,°	+0'40000000 '39962961 '3996243 '39667243 '39078943 '38076904 '38076904 '38076904 '3762236 '40'36376540	+0.35636012 .34832972 .33496999 .32070750 .32070750 .26959637 .28831303 .27658361	+0.25191009 23903037 22583307 21235246 19862341 18630261 1193858 +0.12750697	+0'11304459 '00858801 '06417382 '0693829 '04561732 '04154639 '01399362 +0'00057960
$G_2'$	+ 0.6666667 - 66535798 - 665389080 - 665389080 - 6617340 - 6617340 - 6617340 - 6617340 - 6618833 - 6618833 - 661883 - 661883	+0.62978578 62288204 62288204 60739812 59883740 58974509 58013262 57001204 55939617 +0.54829829	+0.53673244 .52471301 .51225516 .49937449 .48608709 .47260964 .45835911 .44395317 .44395317	+0°39878389 '38723296 '36723296 '3108428 '31708428 '31817330 '31817330 '30138570 '28447014 '26741446
G',º	3			•
G'o	н			
0	0 = 4 w 4 m 0 r \infty \infty 0	111 112 113 115 117 118 119	30 52 52 52 52 52 52 52 52 52 52 52 52 52	33. 33. 33. 40. 40. 40. 40. 40. 40. 40. 40. 40. 40

•				
+0.00150015 00132379 001005 000585751 00058500 00000356 00000356 00000356 000055931	-0.00103204 .00121587 .00135697 .00149134 .00149650 .00149164 .00143755 .00119252	2000019315 -0.0004935 -0.00046376 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.00046385 -0.000465 -0.000465 -0.000465 -0.000465 -0.000465 -0.0	+0.00132970 +0.00138435 0.0130307 0.013581 0.0127407 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.0009000 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.0009000 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.000900 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.00000000	+ 0.00009540 - 0.00015417 0.0039804 0.0052286 0.0052236 0.010592 0.0127474 0.0136396
+0.00324651 .00330877 .00328008 .00316296 .00296216 .00296455 .00193532 .00193532 +0.001002666	+0°00049953 -0°0001031 °00051233 °00144295 °00144719 °00248278 °00248278 °00248278	-0.00290157 .00288493 .00279049 .0028314 .0028236 .00172771 .00172771 .00172771	+0°0001774 °00133602 °00133602 °00171399 °00204396 °00267793 °00252709 °0026791	+0.00273064 .00265136 .00250077 .00228306 .00129443 .00088264 .00044729
+000376013 00449697 00512194 0052407 0052407 0062249 006221479 00628133 +000579367	+0.00536393 .00482399 .00418688 .00248201 .00184813 .000184813 .000184813 -0.00016853 -0.00075977	-0.00240199 .00314174 .00380666 .00486025 .0052822 .00548029 .00561207 .00561207	- 0.00527950 .0049364 .00448914 .00394710 .0032225 .00262928 .00109765 - 0.00029225 + 0.00029225	+000131187 00207658 00279455 00345064 00403102 00491763 00520524 00538026 +000543901
-0.00166107 +0.00009200 -0.0180962 .00346466 .00503133 .00648577 .00780621 .00897341 +0.01078487	+0°01140504 °01182405 °01203796 °01204607 °01185104 °01185104 °01018586 °01018586 °01012038 °0920076 °0920076	+0°0064484 °00564849 °00426916 °00283034 +0°00135624 -0°0012860 °0012860 °0013282 °00303282 °00303282 °0040483	-0°00687827 °00794024 °00886272 °00963130 °01023420 °01096234 °01097236 °01085072	-0.01006750 .00942005 .00942005 .00861598 .0056892 .0056892 .0056892 .0056892 .0056892 .00579779 .00279779
-0°01993827 01762487 01513279 01249539 00974722 00692341 00405943 +0°0164823 +0°0142312	+0.00710138 .00965187 .01204541 .01425506 .01625632 .01802751 .01954989 .02080786 .02178911	+0.02288934 .02300094 .02282108 .02285108 .02161024 .0205912 .01933605 .01783845 .01783845 .01783845	+0.01215180 .00994022 .00761598 .00520825 +0.00221377 .00465238 .00702322	-0.01144739 01527237 01690122 01831403 01949383 02042645 02110072 02150853
0.05300159 0.05223658 0.04935084 0.04935084 0.048505 0.048575 0.03879727 0.03532747	-0.02762317 .02346191 .01914539 .01471269 .01620340 .00565718 -0.00111356 +0.00338843 .00781051	+0°01626759 °0203248 °02397785 °02397785 °023609131 °0360609 °03019510 °03019510 °03019510 °03019510 °03019510	+ 0.04294322 .04366815 .04399557 .04392497 .0436914 .0436914 .04136924 .03976689 .03781247 + 0.03552429	+0.03292338 -03003331 -02688998 -0249146 -019899769 -01613029 -00520776 -00412183
-0.07899001 -0.07899001 -0.0973557 -0.09332427 -0.09332427 -0.0973555 -0.0977078 -0.09795712	-0.0968281 .09518403 .09518405 .0954559 .0954559 .0874650 .08785858 .07532279 .07532279 .07532279	-0°05957038 °05366551 °04749292 °04108991 °03449464 °02774603 °0208344 °01394655 °0697516	+ o o o o o o o o o o o o o o o o o o o	+0.0659424 07336561 07058849 07058849 08162174 08162174 08346498 08468562 08545678
-0.02536020 0.3782343 0.3782343 0.058817 0.058270 0.08361881 0.09392003 11297793 11297793	-012983924 13740077 14436196 15070927 15643090 16151685 16595891 17288761 17288761	-0'1718781 '17835116 '17885977 '17871823 '17651203 '1746547 '17180457 '17180457 '17180457	-0.16028030 '15531302 '14981431 '14380523 '13730825 '13034712 '152294688 '11513376 '10693507	-0°08949549 °08031414 °07086619 °0718339 °05129807 °04124317 °03105205 °03105205 °03105205 °03105205 °03105305 °03105305 °03105305 °03105305 °03105305 °03105305 °03105305 °03105305 °03105305 °03105305 °03105305 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105 °03105
+0.23296670 -21561683 -19821133 -18877141 -116331834 -111093301 -09379970 +0.0765989	9115650.0+ 61115650.0+ 6111560.0+ 6111560.0+ 6111560.0+ 6111560.0+ 6111560.0+ 6111560.0+	-0.10069251 115,22251 115,22251 124,23471 1568359 15676359 164,0122 20639748 -0.21773194	- 0.22860119 - 23899241 - 24889335 - 25829232 - 25117829 - 27554077 - 2834695 - 29065662 - 29739223 - 0.30356887	-0.30917930 31421694 31867589 32255093 32255093 32253179 3305362 33213154 33213154

Values of  $G'_1, G'_2, G'_3, G'_4, \dots G'_{10}$ , with  $\theta$  from 0° to 90°.  $\theta = \text{Geographical Colatitude}, \ \theta' = \text{Geographic Colatitude}. \ \mu' = \cos \theta'.$ 

	25H 0 2 2 0 0 5 5 H	4022714000	2484848585	87.28 6 4 5 2 4 5
$G_{10}^{\prime}$	+ 0.03048345 0.3035657 0.0293540 0.0293540 0.0241392 0.0241392 0.0241392 0.0241392 0.0241392 0.0241392	+0.01745464 01545820 01344222 01143572 00756161 00774514 00403940 +0.00103478	79525900 00133494 00225900 002357730 00357730 00357730 00420779 00420470	-0.00372499 -0.0332967 -0.02386633 -0.0237186 -0.020374 -0.0004574 -0.00092020
$G_{\mathfrak{g}}^{\prime,1}$	+ 0°05265323 °05247462 °05194114 °05105995 °04984260 °04984260 °04984260 °0443519 °0443519 °0443519 °0443519 °0443519	+0°03373654 °03070862 °02760411 °02446047 °0131474 °01820320 °01516070 °01522009 °01522009	+ 0.00430025 .00204222 + 0.0000095 - 0.00179228 .00334622 .00464966 .00550442 .00706506	- 0'00750302 '0074092 '00713296 '00603306 '00511277 '00541595 '00462709 '00377109 '00377109
$G_{s}^{\prime,1}$	+0°08951049 °08926891 °08925466 °0873544 °08569565 °08359673 °08107651 °07816120 °07816120 °07888094 °07126945 †0°07365	+ 0.06320278 .0582883 .05828810 .0542810 .04486672 .04486672 .04486672 .04550569 .03530696 .0353454 + 0.02595686	+0°01714254 °01302762 °00915014 °0053756 +0°00221351 °00085378 °0058758 °0058758 °00587158 °00787158	0.000000-00000000000000000000000000000
$G_7^{\prime 1}$	+ 0'14918415 '1488748 '1488748 '14464398 '14426318 '14426318 '13825979 '1344424 '13012521 '13012521 '13012521	+0.11450633 10854864 10228991 09577802 08510308 07522124 06819764 +0.05419616	+0°04731606 °04057887 °03402891 °02770783 °02165446 °01590431 °01048938 °00543797 +0°0077432	0.0073133 0.1366373 0.1366373 0.157207 0.152220 0.105809 0.2105809 0.2105809 0.212320055
$G'_{\delta}^{1}$	+ 0.24242424 - 24205022 - 24005032 - 23907123 - 2348376 - 2318325 - 22918899 - 2245443 - 21921683 - 21921683 - 21921683 - 21921683	+0'19976192 19222462 18423088 17582621 16705822 15797621 14863084 113907379 12935745	+0'10965747 '09977868 '08994963 '08022066 '07064083 '05211538 '05211538 '054325791 '03472521	+0.01878096 +0.0045476 -0.00186573 -0.0077590 01316905 01803226 02235652 02235652
6"3	+038095238 38054090 37725893 37440168 37074797 36631246 36111302 35517062 34850908 +034115507	+0.3313806 32448999 31524523 30544037 28511417 28430720 27306177 26142166 24943201 +0.23713898	+0.22458963 '21183167 '19891329 '18588280 '17278860 '15967879 '14660102 '13360234 '12072887 +0.10802565	+0.0955361 .0833037 .07136798 .05976810 .05976810 .0372119 .02734128 .01743120 -0.000801842
6'1	+ o'57142857 57103173 56984217 5659881 5659881 5615569 55724597 55217672 55216767 553981602 + o'5325525	+0.52459779 51596334 50667331 49675068 48622005 47510734 46343993 45124644 43855681 +0.42540198	+0.41181405 '39782600 '3878175 '36878587 '35380372 '33856117 '32309457 '32744062 '29163635 +0.27571888	+0.25972545 24369323 22765926 21166636 19573296 17991310 14873729 1334531 +0.11840868
$G_3'$	+0.8000000 79969131 79972412 7972412 79506875 79230224 78892811 78892811 78037481 77520647 +0.76545215	+ o'76311912 '75621539 '74874968 '7487442 '73217074 '73307842 '7134693 '70334538 '69272950 + o'68163164	+0.67006575 -65804635 -64558850 -63270782 -61942043 -60574295 -59169246 -57728649 -56254299 +0.54748032	+0°53211721 °51647273 °5005630 °48441761 °4684464 °45147363 °45147363 °47780347 °4074780
$G_2^{'1}$	,#			
$G_1^{'1}$	H			
9	°0 = 4 € 4 ₹ ₹ ₹ € € €	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 22 23 23 24 33 25 24 33 25 24 33 25 25 25 25 25 25 25 25 25 25 25 25 25	438373333

+ 0.00133683 .00168640 .0016842 .002242 .00227946 .00221933 .00228303 .00217540 .0020306	+0.00149840 0.0118598 0.0084803 0.0004592 +0.0001103 -0.00053375 0.00093375 0.00109738	-0.00148906 -0.0168777 -0.016802 -0.0163426 -0.0134271 -0.0130271 -0.0005579	-0.00047024 -0.00019255 +0.00035867 .00051510 .00051510 .0013463 +0.00142342	+0.00145755 0013468 0013866 00128066 0013583 0005498 00074391 0005036 +0.00000000
- 0.00104319 - 0.00015687 + 0.00068355 - 0.0016034 - 0.00326838 - 0.00326838 - 0.003445 - 0.00411016	+0.00416143 .00410188 .00393753 .0036761 .00332029 .00242403 .00189338 .00189338	+0°00016664 -0°0040408 °00145398 °00195860 °0019586 °0019586 °00287489 °00287489 °00287489	-0.00312842 .00304738 .00288775 .00235571 .00159412 .00115234 .00115234 .00115234	+0.00027682 00074706 00119421 001160707 00128993 00228993 00228993 00228404 002872840
0.00856700 0.00727813 0.00727813 0.00749623 0.00763840 0.00763840 0.00763840 0.00763840 0.00763840 0.00763840 0.00763840 0.00763840 0.00763840 0.00763840 0.00763840 0.00763840	+0.00448110 .00536537 .00510273 .00510295 .00710595 .00710595 .00739775 .00739775 .00739775	+0.00633663 .00572946 .00501949 .00422354 .00335953 .00244624 .00150290 +0.00039672 -0.00039672	-0.00218911 -0.0030169 -0.00373793 -0.00492979 -0.0058453 -0.00587593 -0.005885961	-0.00571117 -0.00541465 -0.0049689 -0.00389543 -0.00167462 -0.00000000
-0.02187224 0.02119162 0.0221060 0.015270 0.01577928 0.01391760 0.01391760 0.01391760 0.01391760	-0.00547563 -0.00328817 -0.00113539 +0.0005255 -0.0294746 -0.0052344 -0.0655701 -0.0655701 -0.0655701 -0.0655701	+0.01169640 01301435 01333882 01334052 01344052 01344052 01239471 01246393 01246393 01246393	00729203 00729203 00729203 00729203 00740274 0025809 0078200 00778994 00778994 00778994 00778994 00778994	- 0.00471318 0.0053428 0.0053428 0.0053428 0.00517051 0.01127849 0.01127849 0.01127849 0.01127849
-0.03206327 .03421839 .03584663 .03757893 .03757893 .03740522 .037666193 .03551739	-0.03214688 0.0298675 0.02489204 0.02203073 0.01900997 0.01586747 0.01586747 0.0396716	- 0.00282391 + 0.00037591 0.00348370 0.00330102 0.1195463 0.1140472 0.1662932 0.1860912 + 0.02032758	+ 0.02177110 0.022920 0.02379363 0.0245038 0.0245069 0.0247262 0.02377502 + 0.02162456	+0°02022585 01859653 01875641 01253283 01019809 00774956 00774956 002621473 002621473
0.0021859 0.01700144 0.02420433 0.03681377 0.03681378 0.04221303 0.04699062 0.05115040	-0.05995041 .06168085 .0628285 .0628285 .0629386 .06293386 .06293372 .05844327 .05844327	-0.05335308 0.5021584 0.4674541 0.4297588 0.3894231 0.3468054 0.3022702 0.2561854 0.2089214	-0.01123356 -0.00537469 -0.005322286 -0.00789218 -0.0789218 -0.00789218 -0.0088047 -0.0088047 -0.0088047	+0.03209978 03524023 03806226 04054704 04267802 04444107 04582455 04582455 04681930 04741878
+0.10364477 '08919002 '07507480 '06132831 '04797854 '03505221 '02257463 +0.01056974 -0.01193387	-0.02239236 03229790 04163445 04163445 05038779 0505653 07303183 07303183 08502949 08502880	-0.09450292 .09829002 .10144607 .10397486 .10717478 .1071478 .10786239 .10795559 .10746690	-0.10480198 10265879 10265879 09999963 099321576 08913555 08462833 07971945 079443540	0.06285280 0.05661208 0.04338252 0.04438252 0.02936434 0.02213989 0.0213989 0.0213989 0.0213989
+0.36630002 34895017 3154465 3410472 22965168 22179129 24442635 +0.2093232	+0.19284503 17589179 11246917 112604004 112604004 10382545 00384488 07811747 06266206 +0.04749714	0.03264082 0.01811082 0.00392446 0.00335026 0.0527789 0.07306127789 0.0730615	-0.09526786 110565908 11556001 11356001 113384496 114220744 11503362 1150362 1150362 1150362	-0.17584597 -186883361 -18534256 -18534256 -19526418 -19729729 -19729729 -19729729 -19729729 -19729729 -19729729
14444444444444444444444444444444444444	1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 6 8 4 5 6 5 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	17.55 27.75 27.78 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00 87.00	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Values of  $G_2'$ ,  $G_3'$ ,  $G_4'$ ,  $G_5'$ , ...  $G_{10}'$ , with  $\theta$  from 0° to 90°.  $\theta = \text{Geographical Colatitude}, \ \theta' = \text{Geogenitric Colatitude}, \ \mu' = \cos \theta'.$ 

		<del></del>		
$G_{10}^{''}$	+0.09145035 0.0912035 0.0924733 0.0926741 0.0875958 0.0824802 0.0801897 0.0973358 0.07313192	20021500.0+ 20081209 20081209 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 2017926 201792	+0.02084527 01704001 01348430 01019996 00720429 00451001 00212516 +0.0005314 -0.001707111	91717500. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700. 10071700.
<i>G</i> ′, 2	+0.14479638 14448373 14354861 14199988 13985187 13712470 13712470 1338458 13003885 12100236 12100236	+ 0'11034232 '1045230 '1045230 '0921459 '08570086 '07915407 '0725989 '05943819 '05943819	+0.04673663 .04065819 .03481634 .02924764 .02338454 .01905526 .01448325 .01028741 .00648171	163(2000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000) 1000)
G', 2	+0°22377622 22339651 °22339651 °22337516 °21775548 °21775548 °21775548 °20570348 °20570348 °20570348 °20570348 °20570348	+0'18105460 '17363770 '16581748 '15764762 '14918364 '14048224 '13160107 '12259795 '1353057	+0.09542931 08650521 07773548 06085387 05283179 04514288 03782303 03090389 +0.02441293	0.01837312 0.0280290 0.0280290 0.0280290 0.0280290 0.0280290 0.02878780 0.02878780 0.02878780 0.02878780 0.02878780 0.02878780
G',2	+ o'3356634 3352276 33352476 33179412 32880566 32499130 3249130 310497156 308817136 308817136 40'29439783	+ 0.28620432 2774144 26806846 25822109 24792135 2372227 22617826 21484512 20327940	+0'17967840 1677573 15583056 14395401 1321837 12056503 10915520 09800004 08714503	0.05659333 0.05679271 0.04753404 0.03875671 0.03048632 0.02274473 0.0554981 0.0654981 0.0654981
G', 2	+0.4848484 4443957 4830455 48081857 47770005 47771099 46886652 46318496 45688652 46318496 4568790 44939993 +0.44134842	+0.43256376 .42307887 .41292916 .40215241 .39078854 .37887449 .3566688 .35360206 .34032563 +0.32668740	+0.31273614 -29852129 -28409284 -26950107 -26950107 -26950107 -2754773 -21050287 -19584231 +0.18131332	1,528,3289 1,528,3289 1,389,6908 1,122,0218 0,99,37167 0,99,37167 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500 0,05,500
G', 2	+ o·6666667 ·6662510 ·6623681 ·6620146 ·6629681 ·6620180 ·6542773 ·65195536 ·64669547 ·64066987 ·64386607 + o·62632743	+ 0.61806314 '60909311 '59943880 '58912337 '57817146 '56660921 '5544411 '54176502 '52854192 + 0'51482603	+0.50064959 -48604582 -47104877 -4556332 -44001500 -44001500 -4788466 -39140620 -37480180 +0.35805882	+ 0'34121483 '32430723 '30737338 '29045039 '27357498 '25678349 '24011176 '22359489
$G_4^{\prime 2}$	+0°85714286 85683417 8559848 85436698 85221161 84944510 84207097 84209348 83731467 83234933 +0°82659501	+0°82026198 °81335825 °80589254 79787428 778931360 77602128 77060879 76048824 74987236 +0°7387450	+0.72720861 71518921 7027336 68985068 66288581 6488532 63442935 +0.60462318	+ 0.58926007 57361559 55770916 5515047 5218950 50861649 47494633 47494633 4779966
G'3	,a			
G'2	Ind	•		
0	0 = 4 W 4 W 0 V 8 Q 0	111 112 113 114 115 116 116 116 116 116 116 116 116 116	22 22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	33.33.33.33.33.33.33.33.33.33.33.33.33.

-0.00371214 -0.00297150 -0.0020941 -0.0000999 -0.000999 -0.0012107 -0.0012107 -0.0012107 -0.0012107	+0.00242127 .0024001 .00276398 .00279583 .00279583 .00279583 .00279583 .0023758 .0023758	6561300000000000000000000000000000000000	2000.0 – 85290.0 – 862910.0 – 862910.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862980.0 – 862	0.00006790 0.00053134 0.00053154 0.0005318 0.0105318 0.0105318 0.014315 0.0164107
-0.00980951 -0.00923406 -0.00524843 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.0052483 -0.	201048400.0+ 00270800.00270800.00338143.00333172.00435367.0044354940.004435494940.0044354000.0+	+0.00475273 .00452771 .00452771 .00424711 .00385032 .00337448 .00223374 .00161809 .00161809	-0°00030748 °00148504 °00148504 °00200207 °0024548 °00314277 °00349289 °00349289	-0.00348676 .00313547 .00313547 .0024276 .00248105 .00158078 .00158095 .00008095 .00054702
114853179 101623439 1016633439 1016633843 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 101600133 1016000133 1016000133 1016000133 1016000133 1016000133 1016000133 10160000133 10160000000000000000000000000000000000	- 0.01003700 - 0.00843189 - 0.00576893 - 0.00339637 - 0.00174594 - 0.0015548 - 0.0015548 - 0.0015548	+0.00\$162\$2 .00\$14397 .00\$0153 .00\$0153 .00\$0157 .00\$162\$2 .00\$49\$2 .00\$49\$2 .00\$23246 +0.00\$86\$2	247175000 - 25717500 - 25717500 - 25717500 - 25717500 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 - 2571750 -	-0.00198833 .00293998 .00382221 .00461977 .00531896 .00531896 .00571712 .00692374
-0.00754379 0.1187531 0.1187531 0.1188334 0.2188339 0.218136 0.2259620 0.2259620 0.2259382 0.22694352 0.22694352	0.02693004 0.02533742 0.02539745 0.02414430 0.02684004 0.1886128 0.1671340 0.1443281	-0.00961648 .00715018 .00468952 -0.00226596 +0.00035265 .0044914 .00649173 .00832444 +0.00997384	+0°01142414 °01266237 °01367826 °0146448 °01501649 °01531385 °01541385 °015488970 °01488970	+ 0.01350539 0.10252040 0.1036040 0.00358731 0.0036439 0.0036439 0.0036439 0.0036439
+ 0.04210782 0.3222195 0.0229931 0.1418594 + 0.0060501 - 0.00144334 0.1459656 0.0223600	-0°02964885 °0343421 °03661808 °04520385 °04123489 °04123489 °0430119 °04307583 °04344687	-0.04247021 04109417 03934330 03724964 03216701 022924652 022111975 02282200 02282200	0.01585477 0.0225544 0.00862503 0.00499728 0.00109728 0.00554662 0.00554662 0.00554662 0.00584612 0.0199056	+ 0.01771153 '02024135 '02252291 '02453798 '02627059 '02770706 '02883613 '02964896 '03013919
+0.17531420 15975304 14451014 12961507 11509618 10098056 08722930 07406051 06130319 +0.04904323	+0.03730036 .02609260 .01543638 +0.00534037 -0.00416447 .01308495 .02141910 .03621943 .03621943	-0.04856687 .05381160 .05843845 .06245076 .06585367 .06585367 .070860607 .07248376 .07353342	-0.07398070 07346644 07232482 07075560 06871992 0634023 063484 06004484 05638003	-0.04805130 0434447 03858142 03349315 02821050 02776500 01718869 01151395 00577345
+ 0.42344288 40609303 340609303 37124758 33534965 31893415 30156921 30156921 28427590 + 0.26707518	+0.24998789 -23303465 -21623595 -19961203 -184318290 -1669631 -15098774 -13526033 -11980492 +0.10464000	+0°08978368 °07525368 °07525368 °0700732 °0724448 °04724448 °0737260 °0727260 °0729129 °0759129	0.03812500 04851622 05841715 06781614 07670210 085504458 09289376 10018044 1001804	-0'11870311 '12374075 '12819970 '13203474 '13536132 '13805560 '14014443 '14165535 '14255660
144444444460 1444444444	12224222220 1222422222	1989883335	1777778 000 874 879 18	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

Values of  $G'_3, G'_4, G'_5, G'_5 \dots G'_{10},$  with  $\theta$  from 0° to 90°.  $\theta = \text{Geographical Colatitude}, \ \theta' = \text{Geocentric Colatitude}. \ \mu' = \cos \theta'.$ 

$G_{10}^{\prime}$	+0'19814241 19776801 19664805 19479225 19221654 18894327 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 18500040 185	+0.1565937 1495668 14207646 11833345 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013716 11013	218153123 06970270 06970270 0547740 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 10548540 105485	0.007396201 0.00986808 0.0052302 0.00304549 0.00304549 0.0053054 0.0054779 0.0055783 0.0055783
<i>G</i> ′,³	+0'28959276 '28915715 '28915715 '28785335 '2885637 '27885039 '27885039 '2782276 '26882276 '26882276 '2688276 '2688276 '2688276	+0.2403588 -23175497 -22266694 -2315007 -20326460 -19307241 -1826363 -17201952 -17201953 -17201953 -17201953	+0'13971456 12899948 '11840929 '10799951 '09782619 '08792818 '07836164 '06037543 +0'05202645	+0°0414659 °03675965 °02988482 °02353635 °01772372 °0772052 +0°00352571 °0°001129
$G'_8$	+041025641 40978163 40835083 40599830 40270911 39850928 39342026 38740814 38068324 37310005 +036475688	+0.3559571 34596196 33560399 32467298 31322247 30130816 27631874 25336197 +0.25017728	+0.23682520 .22336591 .20985924 .19636408 .18293798 .16963700 .15651521 .13101430 +0.11873105	+0.10681839 09531651 07482631 0736897 06536259 05409868 05409868 05409868 05409868 0536784 0053678 002892786
6',8	+0.55944056 •55896573 •5576774 •55187833 •54765712 •54765712 •54765712 •54765712 •54765712 •54765712 •54765713 •52963309 •52963309 •52963309	+0.50406092 '49399671 '48322050 '47177089 '45968864 '44770158 '4337939 '42008325 '40591598 +039134645	+0'37642464 '36120116 '34572730 '33005465 '31423481 '29831937 '28235945 '26640570 '25050792 +0'23471493	+0.21907440 "20363246 "17352144 "1589361 "14771678 "1752008 "1752008 "10466872
6',8	+0.727273 72685183 72559012 72349061 72055824 71680007 7006837 70066927 69371606	+0.67754110 -66835751 -65847138 -64790597 -63668599 -6248767 -61238863 -59936772 -58580516 +0.57173224	+0.55718131 -54218569 -52677961 -51099508 -49487672 -47845186 -46176618 -44483885 +2772525 +0.41045698	+0.39307172 *37560706 *37560706 *34058950 *32311080 *32570102 *28839614 *27123153 *25424189 +0.23746107
6',1	+0°8888889 °88858020 °8876451 °88761301 °88119113 °87781700 °8738951 °86926370 °86926370	+0.85200801 -84510428 -83763857 -82105963 -81196731 -80234482 -79223427 -78161839 +0.77052053	+0.75895464 74693524 73447739 72159671 70830932 69463138 66617538 +0.65143188	+0.62100610 50536162 53945519 57330650 5569553 5403625 52360792 5069236 48993669 48993669
G'8	**			
G, s	-			
0	0 - 4 w 4 m 0 r x 0 0	111 122 133 144 115 117 118	22 22 22 22 30 30 30	33 33 33 40 33 34 33 35 40

-0°00784110 0°0804882 0°0804982 0°0773895 0°0728940 0°0596311 0°0514916 0°05144916 0°0437449	- 0.00245211 - 0.00155370 - 0.00069260 + 0.00011281 - 0.00249726 - 0.00249726 - 0.00250960 - 0.00250960 - 0.00250960 - 0.00250960 - 0.00250960 - 0.00250960	+0.00324443 .00328185 .00322295 .00307521 .00219649 .00179659 .00136407	+ 0.00045293 - 0.0000035 - 0.0043613 - 0.0012445 - 0.01854545 - 0.001854545 - 0.0015545 - 0.0015545	- 0.00224586 .00219207 .00207526 .00189962 .00167069 .00139531 .00033781 .00033781
- 0.00594640 0.00812103 0.00812103 0.01112988 0.01219109 0.012593109 0.01259369 0.01259369	-0.01074368 0.00975129 0.00740949 0.00740949 0.00740949 0.00740949 0.00348453 0.00348453 0.00348453	+0.00136582 .00236571 .00324920 .00402560 .00402704 .0054775 .0054775 .0054775 .0054775	+0.00542767 00511004 00468708 00417155 00217745 00221426 00147699 +0.00072430 -0.00002766	- 0.000/6310 - 0.0146687 - 0.0212469 - 0.0272345 - 0.0325126 - 0.0325126 - 0.0325126 - 0.0325126 - 0.0434408 - 0.0447193 - 0.0042436
+ 0.01511488 + 0.00371803 + 0.00371803 + 0.00371803 - 0.001805 0.0059350 0.0059350 0.0059350 0.0059350 0.0059350 0.0059350	-0'01920835 '01985023 '02008933 '02008933 '01995829 '0189213 '01768719 '01768719 '01496189	- 0.01159955 - 0.0076630 - 0.00787618 - 0.00787618 - 0.00787618 - 0.00787618 - 0.0078768 - 0.00037268 - 0.00037268 - 0.00037268 - 0.00037268	+0.00584803 .00704274 .00806662 .00891029 .01030685 .01038975 .01028557	+0.00954312 .00892402 .00815590 .00725323 .00523209 .00511003 .00263896 .00133007
+ 0.08030549 .06896338 .05819043 .05819043 .03841806 .02944581 .02109577 .01337394 + 0.06028332	- 0.00000889 0.1580840 0.1979854 0.01979854 0.02319889 0.02319889 0.02319889 0.03103356 0.0312527	- 0.03227193 0311518 03155478 03062132 02934650 02776288 02590371 02380275 02180278	- 0'01639007 01366273 01366273 01086317 00502414 00517758 000235449 00310338 00310338 00568258 00568258	+ 0.01041443 01252151 0142889 010157560 01878598 01973892 02042579 02042579
+ 0.22092203 20465678 18866027 173805028 14293496 1284788 11446372 + 0.08784685	+0.07528663 06325019 05175418 04081356 04081356 020644155 01144732 +0.00284262 +0.00284262	-0.01933484 .02550715 .03106997 .03602634 .04038112 .04041412 .04091079 .05194265 .05194265	0.05436716 0.5479131 0.5471357 0.5415342 0.5313166 0.5313166 0.6475448 0.6475463 0.6475463	0.03863217 0.3506476 0.3124397 0.22119995 0.22963332 0.1856541 0.0472278
+0.45518891 43783906 42043354 4029351 38554057 3608018 3508018 3508018 3508018 4 91602193 +0.29882121	+0.28173392 -2647808 -24798198 -23135806 -21492893 -19871377 -16700536 -15155995 +0.13638603	+ 0.12152971 10699971 09281335 07898551 06553863 05528268 0398314 02761100 01582474 + 0°05449028	-0.00637897 01677019 02667112 03607112 04495607 05131855 06114773 06843440 07517001	-0.08695708 -0.0869478 -0.09199472 -0.0945367 -1.093871 -1.0630957 -1.0630957 -1.0630932 -1.0630932 -1.0630932
#444444444 #8450 #8450 #8450 #850 #850 #850 #850 #850 #850 #850 #8	7 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	26 65 45 65 65 65 65 65 65 65 65 65 65 65 65 65	17.2.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4.2.4.	2222222222 22222222222

Values of  $G'_{4}$ ,  $G'_{5}$ ,  $G'_{7}$ ,  $G'_{7}$ ,  $G'_{10}$ , with  $\theta$  from 0° to 90°.

= Großraphical. Colatitude  $\theta' = \text{Geogentric Colatitude}$ .

0	00 1 4 2 4 3 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 12 13 14 16 16 16 17 17 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	30 22 23 23 23 24 33 25 25 25 25 25 25 25 25 25 25 25 25 25	384333333333333333333333333333333333333
G',4	H			
G's	,#			
G'4	+ 0.9090901 908/8222 908/85653 906/1506 904/1506 904/1506 904/1506 89404/153 88429738 + 0.87854306	+0.87221003 -86530630 -85784059 -84126165 -84126165 -8225684 -81243629 -80182041 +0.79072255	+0.77915666 76713726 75467941 74179873 72851134 71078338 768637740 668637740 67163390	+0.64120812 .62556364 .60965721 .59350852 .57713755 .56056454 .54380994 .54380994 .52689438 .50983878
G',4	+ 0.76923077 76880340 76752225 7652225 76541271 7539505 74848489 742448489 74241353 73515071 + 0.72731282	+0.71871816 -70938669 -60934011 -68860164 -67719606 -66514970 -65244893 +0.61112882	+0'59531864 '58105177 '56536251 '54928596 '53285792 '51011473 '49909323 '48183067 +0'44673262	+ 0.42897262 41112234 39321939 37530119 33956699 33182380 33182380 33421076
<i>G</i> , 8	+ 0.61538462 - 61489082 - 61341113 - 61035091 - 60751891 - 60312746 - 59779216 - 59779216 - 597532969 + 0.56744121	+ 0.55773541 54724631 53601070 52406766 51145860 49822703 47007933 45525875 + 0.44000630	+0'42437272 '48840962 '39216913 '37570379 '35906628 '3453913 '32548458 '30864432 '30864432 +0'27511933	+ 0.2585334 -24212870 22595124 21004503 -1944527 -17921304 -1643652 -14994437 -13598340
G',4	+0.47058824 4700799 4660288 4660288 4660288 46525016 4525360 44617286 43889605 43889605 43889605 43075891	+0'41206578 '40160012 '39045421 '37868096 '37868096 '33440679 '31241677 +0'29810897	+0'2835952 '26893861 '25420141 '23944532 '22473075 '210565978 '18141519 '16743505 +0'15376891	+0.14046328 112756142 11510305 10312435 09165764 08073137 07036997 06059379
G'10	+0.34674923 34626780 3442444 33910826 33910826 33940826 3297638 3297638 31697045 31697045	+0°29115795 28258279 27245123 27245123 25076852 239376852 2393783 22752871 21568014 20356946 +0°19136398	+0'17912996 '15483368 '15483368 '14289459 '13117250 '1972159 '10892215 '09783153 '08748124	+ 0.06815896 '05024841 '05087101 '04304518 '03578431 '0209663 '01745245 '01745245 '01745245

+ 0.00422948 + 0.00090228 + 0.00191697 • 00425251 • 00513134 • 00513134 • 00513134 • 00953309 • 00933094 • 00999466	-0.00957584 .00916405 .00956417 .0058417 .00593642 .00597373 .00495282 .00390202 .00390202	- 0.00082148 + 0.00010991 .00172844 .00239142 .00239143 .00338499 .00370768 .00391331	+0°0398439 °03386067 °0334114 °0333558 °0225507 °0221182 °021880 °0148956 °00148956 °00037773	- 0.00017736 .00071421 .00122038 .00168432 .0020566 .0024512 .00272518 .00292968 .00395417
+003491854 '02760485 '02291699 '01485120 '00455120 +00029410 -000339257 '00652807	-0.01124091 01287182 01405817 01522434 01527081 01527081 0150549 01367990	-0.01152874 .01022997 .00882697 .00583497 .00430563 .00279096 -0.00131621 +0.000142339	+0.00264893 .00375615 .00473163 .00473163 .005644 .0057444 .00713707 .00713707 .00738865 +0.00728066	+0.0000000+ 0.00502884 0.005028195 0.005028195 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.0050205 0.00
+0.10956032 '09715083 '08530647 '07404640 '05338683 '05334104 '043912885 '03512885 +0.02697403	+ 0.01257382 - 0.00632254 + 0.0069522 - 0.00431792 - 0.00431792 - 0.00431792 - 0.00431792 - 0.00431792 - 0.00431792 - 0.0063885 - 0.00235941	- 0.02354996 .02428738 .0245999 .02407015 .02328998 .022220911 .02086040 .01927702	-0.01553942 .01345154 .01345157 .00500063 .00570091 .00499242 -0.00210440 +0.00013523 .00229994	+0.00630642 .00810349 .00973649 .01118791 .01244247 .01348706 .01431083 .01526449 +0.01538462
+0.25249668 -23574398 -201928666 -20315466 -18737671 -15699156 -14243518 -12833438 +0.11471089	+0.10158482 .08897467 .05536778 .05439955 .04400424 .03419171 .02496997 .01634526 +0.00832198	+ 0.00090272 - 0.00591177 - 0.01773251 - 0.02717027 - 0.3101266 - 0.3428333 - 0.3699382 - 0.3915730	-0.04078856 .04190391 .04252117 .04255959 .04158373 .04041461 .03885680 .03693579	-0.03211124 0.02926355 0.029264307 0.01933066 0.01565801 0.01785663 0.0795838 0.0399540
+ 0.47539093 -4406355 -4406355 -4219563 -40574259 -38899770 -37088220 -3531726 -3531726 -33522395 + 0.31902323	+0.30193594 -28498270 26818400 25156028 23513095 21891636 202033579 118720838 17175297	+ 0.14173173 1.12722173 1.1301537 0.9918953 0.7268470 0.7268470 0.7268470 0.7268470 0.726870 0.72694530 0.72694530	+0.01382305 +0.00343183 +0.00343183 +0.0044540 -0.00475405 -0.0044571 -0.004823238 -0.00444571 -0.00444571	60606060.0 – 0.00675506 0.007267170. 0.007267180. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0.0072670. 0
14444444444444444444444444444444444444	2 2 2 2 2 2 3 2 3 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	61 62 63 63 64 65 65 65 65 65 65 65 65 65 65 65 65 65	12244277	885 448 885 885 885 885 885

Values of  $G'_{5}$ ,  $G'_{5}$ ,  $G'_{7}$ , ...  $G'_{10}$ , and  $G'_{6}$ ,  $G'_{7}$ ,  $G'_{8}$ , ...  $G'_{10}$ , with  $\theta$  from 0° to 90°.  $\theta = \text{Geographical Colatitude}, \ \theta' = \text{Geogentric Colatitude}, \ \ \mu' = \cos \theta.$ 

$G_{10}^{\prime}$	+0.69349845 69297866 69142103 68883101 68521749 68593966 674939362 66837862 66837862 66837862 66837862	+0.63274350 (2167303 (2167303 (21686875 (2586875 (258695 (258695 (258695 (258695 (258695) (258695 (258695) (258695 (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695) (258695)	+0.49154473 47456945 45727988 43972988 -42197341 40406448 38605673 36800330 34995669 +0.33196834	+0.31408862 29636656 27884961 2461213 22797730 21171857 19587323 18647601
6,8	+0.82352041 .82309365 .82178337 .81967730 .81657730 .81268555 .80794727 .80237342 .79597673 .78877201	+0.77200611 76248331 7522295 74126661 72962085 71731819 70438633 69085439 67675266	+0.64696694 -63134901 -61529330 -59883502 -58201004 -56485492 -54740559 -52970243 -51178014 +0.49367757	+0.47543263 45708326 43866727 42022221 40178336 3839356 36508310 34688974 3388974
G,8	+0.9333333 93302464 933024745 93057745 92840208 92265557 9226144 91828395 91370814 90853980	+0.89645245 .88954872 .88208301 .87406475 .86550407 .85611175 .84679926 .83667871 .82606283 +0.81496497	79137968 779137968 77892183 77892183 778764115 77892183 773907628 773907628 773907628 77390768 77390768 77390768	+ o·66545054 64980606 63389963 61775094 60137997 584805236 55113680 55113680 55113680
G',6	E,			
G'e	-			
θ	°0 - 1 2 2 4 20 7 8 9 0 1	11 12 13 14 16 16 16 16 16 16 16 16 16 16 16 16 16	22 22 22 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25	33 33 33 33 33 33 33 33 33 33 33 33 33
$G'_{10}$	+ 0.52013383 51958882 51958882 51573403 51161489 5013344 5013344 4940404 48473995 47816053 + 0.46871175	+ 0.45843820 44738894 443561275 42316673 19049298 13823858 13628483 13529440 + 0.33773866	+0.32229618 -30668186 -29096034 -25151944 -2514968 -24378433 -2225585 -19785197 +0.18307755	15463055 15463055 14104566 12793300 11534520 1015329408 09181501 08092786
G' 5	1	+ +	+ +	0 + +
G', 5	+ 0-65883352 -65833521 -65873521 -65072576 -64071004 -63688479 -63688479 -63688479 -63686479	+0'59943875 58862478 '57703783 '541746 '5547056 '5384608 '523784965 '50896080 '49344965 +0'47787493	+0.46169709 -44516836 -42834161 -41127012 -39400732 -37400654 -37160258 -37160258 -374160258 -37416370 -40.30667494	- 4-0.28936601 - 2722251 - 2522915 - 23863302 - 23863302 - 20653675 - 17539754 - 17539754
10 00 2.	+ 0.8000000 79956787 79956787 79911686 79911686 78924688 778544848 777267933 77267933 772679344	73947478 72931051 72931051 72931051 71844511 7069345 69411183 68189799 66849099 65452105 66400967	+ 0.62501933 -60955354 -59365662 -57739375 -56071079 -54373416 -52647079 -6123340 -647333475	+ 0.45529997 43716684 41897318 4007694 3825379 3640205 3640205 3633340 32839550
ď	08.0+ 07.097. 07.00+ 07.00+ 07.00+ 07.00+	47.0+ 17.7.7.99999999999999999999999999999999	+ 0.62 5.53 5.54 5.54 5.54 5.54 5.54 5.54 5.54	+ 0 4.4.4.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
G',5 G	+0.92307692 92276823 92276823 92282424 79230104 91814567 91802504 90802505 90802525 90845173 77 77 77 77 77 77 77 77 77	+0.88619604 -87929231 -87182660 -8638834 -85544766 -84615534 -83642230 -81586423 -96470856 -96470856	+0.79314267 +0.62 .78112327	
G', 5 G', 5	0 0 +	+ +	0 + +	
5 G's	+ 0.92307692 + 0.923076823 92164254 92164254 92030104 91644567 91644567 91644567 90802754 90345173 9082828333 9082828333 908252907	+ +	0 + +	

+0.15115206 13728152 12397144 11124272 129911344 108759861 107671029 106645754 105684644 105684644	+ 0.03955881 .03187989 .02483796 .01842490 .01263001 .00744012 + 0.00283961 - 0.00118932 .00466663	-0.01005584 '01352408 '01460573 '0152107 '01561034 '01527523 '01468437 '01468437	- 0.01281656 - 0.1160374 - 0.1024722 - 0.0277808 - 0.027808 - 0.002365 - 0.00236763 - 0.00236763 - 0.00236763 - 0.0077014	+ 0.00224375 .00361661 .00487412 .0059921 .00697702 .00779470 .00844175 .00890985 .00919311
+0°29335799 *27897448 *25887424 *24208736 *22564288 *20956842 *1938932 *17863354 +0°14947611	+0.13561777 12226517 10943539 09714381 08540402 07422794 0636262 05360536 06362402 06360536 06360536 06360536 06360536 06360536 06360536 06360536 06360536 06360536 06360536 06360536 06360536 06360536 06360536 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063605 063	- 0.02709251 0.1944696 0.1239762 0.0294186 0.0594186 0.00920824 0.00991667 0.0146826 0.01764826	-0.02321624 .02522610 .02674277 .0277823 .02837384 .028533029 .028253029 .028233029 .028233029 .028233029	-0.02367238 -0.1959038 -0.1959038 -0.1720479 -0.185954 -0.00000000000000000000000000000000000
+0.49963335 -48228350 -46487798 -44743805 -42995801 -41254012 -39512662 -37775968 -36046637 +0.34326565	+ 0°32617836 °30922312 °29242642 °27580250 °2593333 °2717821 °2717821 °2717821 °2717830 °19599539 + 0°18083047	+0'16597415 '15144415 '13725779 '12343195 '10998397 '09692772 '08422958 '07205544 '06026918 +0'04893472	+0.03806547 0.2767425 0.01777332 +0.00837433 -0.00587411 0.01670329 0.02398996 0.02398996 0.02398996	- 0.04251264 04755028 0520023 05588427 05915085 06186513 06396396 0639613 0630613
1 2 £ 4 4 4 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 4 2 5 5 7 8 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	12 2 2 4 2 4 2 4 3 5 5 4 4 4 5 6 5 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8	<b>288888888888</b> 8888

+0.05198671 04361359 04361359 023588415 022879649 01052026 01130964 00669707 +0.00266349 +0.00266349	-0.00375670 -0.00375670 -0.0015504 -0.0056892 -0.0076897 -0.0076897 -0.0076897 -0.00769139 -0.001722697	-0.01055390 -0.0970624 -0.0971724 -0.0971724 -0.05172942 -0.00397104 -0.00397104 -0.0035133 -0.0035344	+0.00073989 00174668 00265236 00344489 00411470 00465475 00506048 00532975 00532975	+ 0.00533337 .00508027 .00471439 .00424501 .00368396 .0034443 .00234076 .00158804 .00158804
+0'132\$8981 '11936386 '10670043 '09461954 '08313876 '07227204 '05203074 '05242313 '04345450 +0'03512721	+0.02744073 0.02039165 0.01397382 0.0817837 +0.00299386 0.0056004 0.0056004 0.0056004 0.0056004 0.0056004 0.0056004	-0.01622226 01764326 01862345 01919144 01937713 01875567 01795222 01692347	-0.01423076 01263188 01090753 00008020 00522269 00337399 +0.000147636 +0.00037137	0.00382317 .0053838 .00538318 .0080031 .01000310 .01000310 .01000310 .01000310 .01000310
+0°27565140 °2585126 °24171962 °2521653 °20906087 °19328024 °17790087 °16294758 °16294758 °14844374	+0.12087015 10783928 09533554 08337419 07196876 06113100 05087093 04119669 03211466	+0.01574360 .00845817 +0.00177221 -0.00431703 .00981405 .01472512 .01905826 .02282320 .02282320	0.03083092 0.3245316 0.3358007 0.3442576 0.3448578 0.3448578 0.3448578 0.3448678 0.3358038 0.3258038 0.3258038	0.002732922 0.02500933 0.02500933 0.0243903 0.0243903 0.0243903 0.0346670 0.0355701 0.0346199 0.0346199
+048937694 47202709 45462157 43718164 43718166 41872860 41872860 418728621 36750327 35020954 4033300924	+ 0'31 592195 -29896871 '28217001 '26554609 '23290237 '21692180 '21692180 '21693898 + 0'17057406	+0.15571774 -14118774 -12700138 -1317554 -09972666 -08667071 -07402317 -06179903 -05001277 +0°03867831	+ 0.02780906 - 01741784 + 0.00751691 - 0.00188208 - 01013052 - 01013052 - 0269570 - 03424637 - 04098198	- 0.05276905 .05780669 .05780669 .06514068 .06942726 .07212134 .07572129 .07572129
144444444460 000000000000000000000000000	52 52 52 52 52 52 52 52 52 52 52 52 52 5	<b>2384886</b> 865	122427248	<b>28888888</b> 889 89 8

Values of  $G'_7$ ,  $G'_1$ , ...  $G'_{10}$ , and  $G'_8$  ...  $G'_{10}$ , with  $\theta$  from 0° to 90°.  $\theta = \text{Geographical}$  Colatitude,  $\theta' = \text{Geogentric}$  Colatitude.  $\mu' = \cos \theta'$ .

G' 8	+ 0.42657521 - 4.0957521 - 3917947 - 37450146 - 32326021 - 32326021 - 32346845 - 22548589 - 22548589 - 22548589 - 22548589 - 22548589 - 22548589 - 112401816 - 112401816 - 112401816 - 112401816 - 112401816 - 112401816 - 112401816 - 11240288 - 0.02260953 - 0.02260953 - 0.0226082 - 0.0226682 - 0.0226682 - 0.02286712 - 0.02286712 - 0.03351519 - 0.05133104
6,8	, z
G's	pd.
θ	\$ 448 40 1252455578 60 1252456 60 12524557578 60 128888888 80 8
$G_{10}^{\prime\prime}$ 8	+0.94736842 94705973 94459254 94459254 94459254 94243717 93231994 922774323 922774323 92257489 +0.91048754 88809984 87054884 87054386 40.81743417 80541477 77295698 77295698 77295698 77295698 77295698 77295698 7729568 7729568 7729568 8507138 80541477 77390608 7729568 7729568 872511137 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 77390608 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773908 773
G's	, , , , , , , , , , , , , , , , , , ,
G'8	H
θ	01-424-400 112124-12121 2224-1222 12224-1224-1224-
$G_{10}^{\prime}$	17596182 17596183 1910101719 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 17596182 1759
6,1	+ 0.42038326 - 40296776 - 38560282 - 38560282 - 38590951 + 0.35110879 + 0.35103995 - 28344564 - 2672165 - 28344564 - 2672165 - 2672165 - 2672165 - 2672165 - 2672165 - 2672165 - 27502195 - 1752021 - 1752
G',7	, a
G'7	T T T T T T T T T T T T T T T T T T T
θ	\$448400 128848888888888888888888888888888888888
$G'_{10}$	+0.84210526 8416664 84031176 83810364 83118977 82680894 81436938 81436938 82642001 82680894 81436938 +0.79905559 +0.79905559 7752428 77524265 77524265 77524265 77524265 7752655 7752655 775265 775265 775265 775265 775265 775265 775265 775265 775265 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77575 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526 77526
6,2	+ 0.94117647 94086778 939428778 939428778 939426278 93144522 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128 92151128
$G_8'$	E'
G''7	-
0	0424707000 1122112112122 22222222222 20 EXXXXXXXXXXXXXXXXXXXXX

## SECTION III.

## ON THE DEFINITE INTEGRAL OF THE PRODUCT OF TWO LEGENDRE'S COEFFICIENTS.

1. Let 
$$V = \frac{1}{\rho} = (1 - 2\mu r + r^2)^{-\frac{1}{2}}$$
.

Then 
$$\frac{1}{\rho} = 1 + P_1 r + P_2 r^2 + \&c. + P_n r^n + \&c.,$$

$$VP_m = \frac{P_m}{\rho} = P_m + P_1 P_m r + P_2 P_m r^2 + \&c. + P_n P_m r^n + \&c.$$

P

and

Integrating from  $\mu = 0$  to  $\mu = 1$ , we get

$$\int_{0}^{1} V P_{m} d\mu = \int_{0}^{1} \frac{P_{m}}{\rho} d\mu = \int_{0}^{1} P_{m} d\mu + r \int_{0}^{1} P_{1} P_{m} d\mu + \dots + r^{n} \int_{0}^{1} P_{n} P_{m} d\mu + \&c.$$

Hence  $\int_0^1 P_n P_m d\mu$  is the coefficient of  $r^n$  in the expansion of  $\int_0^1 \frac{P_m}{\rho} d\mu$  or  $\int_{x_0}^1 P_m dx$ , where  $\mu = x + \frac{r}{2}(1 - x^2)$  and  $\frac{dx}{d\mu} = \frac{1}{(1 - 2\mu r + r^2)^{\frac{1}{2}}} = \frac{1}{\rho}$ ; (see p. 245)

 $x_0$  is the value of x when  $\mu = 0$ ;

 $\int_0^1 P_m P_n d\mu$  is the coefficient of  $r^m r_1^n$  in the expansion of

$$\int_0^1 \frac{d\mu}{(1-2r\mu+r^2)^{\frac{1}{2}}(1-2r\mu+r_1^2)^{\frac{1}{2}}},$$

in powers of r and  $r_1$ .

2. Now if  $P_m^x$  be what  $P_m$  becomes when x is substituted for  $\mu$ , we get

$$P_{m} = P_{m}^{x} + \frac{r}{2} (1 - x^{2}) \frac{dP_{m}^{x}}{dx} + \left(\frac{r}{2}\right)^{2} \frac{1}{1 \cdot 2} (1 - x^{2})^{2} \frac{d^{2}P_{m}^{x}}{dx^{2}} + \dots + \left(\frac{r}{2}\right)^{n} \frac{1}{n!} (1 - x^{2})^{n} \frac{d^{n}P_{m}^{x}}{dx^{n}} + \&c.$$

Integrating with respect to x, we get

$$\int P_{m}dx = \int P_{m}^{x}dx + \frac{r}{2} \int (1-x^{2}) \frac{dP_{m}^{x}}{dx} dx + \dots + \left(\frac{r}{2}\right)^{n} \frac{1}{n!} \int (1-x^{2})^{n} \frac{d^{n}P_{m}^{x}}{dx^{n}} dx + \&c.$$
but
$$\int (1-x^{2})^{n} \frac{d^{n}P_{m}^{x}}{dx^{n}} dx = -\frac{(1-x^{2})^{n+1}}{(m-n)(m+n+1)} \frac{d^{n+1}P_{m}^{x}}{dx^{n+1}}, \text{ (see p. 249)}$$
hence
$$\int P_{m}dx = -\frac{(1-x^{2})}{m(m+1)} \frac{dP_{m}^{x}}{dx} - \frac{r}{2} \frac{(1-x^{2})^{2}}{(m-1)(m+2)} \frac{d^{2}P_{m}^{x}}{dx^{2}} - \dots$$

$$-\left(\frac{r}{2}\right)^{n} \frac{1}{n!} \frac{(1-x^{2})^{n+1}}{(m-n)(m+n+1)} \frac{d^{n+1}P_{m}^{x}}{dx^{n+1}} - \&c.$$

When  $\mu = 1$ , x = 1 and all the terms vanish; also when  $\mu = -1$ , x = -1 and all the terms vanish.

3. By means of equation (4) of Section I., viz.,

$$P_{n+1} = (2n+1) \int P_n d\mu + P_{n-1},$$

we may at once prove the theorem

 $\int_{0}^{1} P_{2n} P_{2n-1} d\mu = \int_{0}^{1} P_{2n} P_{2n+1} d\mu,$   $\int_{0}^{1} P_{n} \cdot P_{n-1} d\mu = \int_{0}^{1} P_{n} \cdot P_{n+1} d\mu \text{ when } n \text{ is even.}$ 

or

Write  $S_n$  for  $\int P_n d\mu$ , which vanishes when  $\mu = 1$ .

Then  $P_{n+1} = (2n+1) S_n + P_{n-1}$ .

Multiply by  $P_n = \frac{dS_n}{d\mu}$  and integrate;

If n be even,  $S_n$  will involve only odd powers of  $\mu$  and will consequently vanish when  $\mu = 0$ .

Therefore in this case

$$\int_0^1 P_n P_{n+1} d\mu = \int_0^1 P_n P_{n-1} d\mu.$$

But if n be odd, since

$$S_n = \frac{1}{2^n \cdot n!} \frac{d^{n-1}}{d\mu^{n-1}} (\mu^2 - 1)^n,$$

and the coefficient of  $\mu^{n-1}$  in  $(\mu^2-1)^n$  is

$$\frac{n!\left(-1\right)^{\frac{n+1}{2}}}{\left(\frac{n-1}{2}\right)!\left(\frac{n+1}{2}\right)!},$$

the term independent of  $\mu$  in  $S_n$  is

$$\frac{1}{2^n} \frac{(n-1)! (-1)^{\frac{n+1}{2}}}{(\frac{n-1}{2})! (\frac{n+1}{2})!},$$

or

$$(S_n)_{\mu=0} = \frac{(-1)^{\frac{n+1}{2}} \cdot 1 \cdot 2 \cdot 3 \dots (n-1)}{2 \cdot 4 \cdot 6 \dots (n-1) \cdot 2 \cdot 4 \cdot 6 \dots (n+1)}$$
$$= \frac{(-1)^{\frac{n+1}{2}} \cdot 1 \cdot 3 \cdot 5 \dots (n-2)}{2 \cdot 4 \cdot 6 \dots (n+1)}, \text{ when } n \text{ is odd.}$$

Hence we see that, when n is odd

$$\int_{0}^{1} P_{n} P_{n+1} d\mu = -\frac{2n+1}{2} \left( \frac{1 \cdot 3 \cdot 5 \dots (n-2)}{2 \cdot 4 \cdot 6 \dots (n+1)} \right)^{2} + \int_{0}^{1} P_{n} P_{n-1} d\mu \dots (1),$$

and when n is even

$$\int_{0}^{1} P_{n} P_{n+1} d\mu = \int_{0}^{1} P_{n} P_{n-1} d\mu^{*}.$$

4. Now take the general case, and suppose m > n,

$$\int_{0}^{1} P_{m} P_{n} d\mu = \frac{1}{2^{m+n} \cdot m! \, n!} \int_{0}^{1} \frac{d^{m}}{d\mu^{m}} (\mu^{2} - 1)^{m} \cdot \frac{d^{n}}{d\mu^{n}} (\mu^{2} - 1)^{n} d\mu.$$

* This result was given by Lord Rayleigh in *Phil. Trans.* Vol. clx. p. 579, Part II. (1870).

A. II.

Integrating repeatedly by parts we have

$$\begin{split} \int & \frac{d^m}{d\mu^m} (\mu^2 - 1)^m \frac{d^n}{d\mu^n} (\mu^2 - 1)^n d\mu \\ &= \frac{d^{m-1}}{d\mu^{m-1}} (\mu^2 - 1)^m \frac{d^n}{d\mu^n} (\mu^2 - 1)^n - \frac{d^{m-2}}{d\mu^{m-2}} (\mu^2 - 1)^m \frac{d^{n+1}}{d\mu^{n+1}} (\mu^2 - 1)^n \\ &+ \frac{d^{m-3}}{d\mu^{m-3}} (\mu^2 - 1)^m \frac{d^{n+2}}{d\mu^{n+2}} (\mu^2 - 1)^n - \&c. \\ &+ (-r)^r \frac{d^{m-r-1}}{d\mu^{m-r-1}} (\mu^2 - 1)^n \frac{d^{n+r}}{d\mu^{n+r}} (\mu^2 - 1)^n + \&c. \\ &+ (-1)^n \frac{d^{m-n-1}}{d\mu^{m-n-1}} (\mu^2 - 1)^m \frac{d^{2n}}{d\mu^{2n}} (\mu^2 - 1)^n, \end{split}$$

since the following terms vanish.

Now the last term is  $(-1)^n \frac{d^{m-n-1}}{d\mu^{m-n-1}} (\mu^2 - 1)^m (2n)!$ .

We may observe that all the quantities like  $\frac{d^{m-r-1}}{d\mu^{m-r-1}}(\mu^2-1)^m$  vanish when  $\mu=1$ ; we have therefore only to find the values of the terms on the right-hand side of the equation when  $\mu=0$ , and this with the sign changed will be the value of

$$\int_0^1 \frac{d^m}{d\mu^m} (\mu^2 - 1)^m \frac{d^n}{d\mu^n} (\mu^2 - 1)^n d\mu.$$

5. If both of the quantities m and n be even or both be odd, we have

$$\int_{0}^{1} P_{m} P_{n} d\mu = \frac{1}{2} \int_{-1}^{1} P_{m} P_{n} d\mu = 0, \text{ unless } m = n.$$

In the case when m and n are both even or both odd the integrated terms being of the form

$$(-1)^{r} \frac{d^{m+r}}{d\mu^{m+r}} (\mu^{2}-1)^{m} \frac{d^{n-r-1}}{d\mu^{n-r-1}} (\mu^{2}-1)^{n}$$

will consist of two factors, one consisting entirely of even and the other entirely of odd powers of  $\mu$ , and therefore the product will consist entirely of odd powers of  $\mu$  and will vanish when  $\mu = 0$ .

Also the last factor vanishes when  $\mu = 1$ .

If m=n, the last term becomes

$$\frac{n}{(-1)^n}(2n)!\int (\mu^2-1)^n d\mu.$$

By integration by parts

$$\int (\mu^{2}-1)^{n} d\mu = \mu (\mu^{2}-1)^{n} - 2n \int (\mu^{2}-1)^{n} d\mu - 2n \int (\mu^{2}-1)^{n-1} d\mu ;$$

$$(2n+1) \int (\mu^{2}-1)^{n} d\mu = \mu (\mu^{2}-1)^{n} - 2n \int (\mu^{2}-1)^{n-1} d\mu ;$$

$$\int (\mu^{2}-1)^{n} d\mu = \frac{1}{2n+1} \mu (\mu^{2}-1)^{n} - \frac{2n}{2n+1} \int (\mu^{2}-1)^{n-1} d\mu .$$

Continuing this process we find

$$\int (\mu^{2}-1)^{n} d\mu = \frac{1}{2n+1} \mu (\mu^{2}-1)^{n} - \frac{2n}{(2n+1)(2n-1)} \mu (\mu^{2}-1)^{n-1} + \frac{2n(2n-2)}{(2n+1)(2n-1)(2n-3)} \mu (\mu^{2}-1)^{n-2} &c. + (-1)^{n} \frac{2n(2n-2) \dots 4 \cdot 2}{(2n+1)(2n-1) \dots 5 \cdot 3} \mu.$$

Hence between the limits 0 and 1

$$\int_{0}^{1} (\mu^{2} - 1)^{n} d\mu = (-1)^{n} \frac{2n (2n - 2) \dots 4 \cdot 2}{(2n + 1) (2n - 1) \dots 5 \cdot 3}.$$

$$\int_{0}^{1} (P_{n})^{2} d\mu = \frac{(-1)^{n} (2n)! (-1)^{n}}{2^{2n} \{n!\}^{2}} \frac{\{2^{n} n!\}^{2}}{(2n + 1)!} = \frac{1}{2n + 1} \dots (2).$$

Hence

6. We will now consider the case when one of the quantities m, n is even and the other odd.

First then let m—the greater of the two quantities m and n—be even and n odd, and let m=2p and n=2q-1, then q may be equal to p, but cannot be greater than it.

The general term on the left-hand side of the equation is now

$$(-1)^r \frac{d^{2p-r-1}}{d\mu^{2p-r-1}} (\mu^2 - 1)^{2p} \frac{d^{2q+r-1}}{d\mu^{2q+r-1}} (\mu^2 - 1)^{2q-1}.$$

In order that this may not vanish when  $\mu=0$ , since all the powers of  $\mu$  contained in  $(\mu^2-1)^{2p}$  or  $(\mu^2-1)^{2q-1}$  are even, we must have r odd and therefore r+1 and r-1 even, or 2p-r-1 and 2q+r-1 even.

$$\therefore$$
  $(-1)^r = -1$  in this case.

The coefficient of  $\mu^{2p-r-1}$  in  $(\mu^2-1)^{2p}$  is

$$\frac{(2p)!}{\left(p-\frac{r+1}{2}\right)!\left(p+\frac{r+1}{2}\right)!}\left(-1\right)^{p+\frac{r+1}{2}};$$

and therefore the absolute term in  $\frac{d^{2p-r-1}}{d\mu^{2p-r-1}}(\mu^2-1)^{2p}$  is

$$\frac{(2p)! (2p-r-1)!}{\left(p-\frac{r+1}{2}\right)! \left(p+\frac{r+1}{2}\right)!} (-1)^{p+\frac{r+1}{2}}.$$

Again the coefficient of  $\mu^{2q+r-1}$  in  $(\mu^2-1)^{2q-1}$  is

$$\frac{(2q-1)!}{\left(q+\frac{r-1}{2}\right)!\left(q-\frac{r+1}{2}\right)!}\left(-1\right)^{q-\frac{r+1}{2}};$$

and therefore the absolute term in  $\frac{d^{2q+r-1}}{d\mu^{2q+r-1}}(\mu^2-1)^{2q-1}$  is

$$\frac{(2q-1)!(2q+r-1)!}{\left(q+\frac{r-1}{2}\right)!\left(q-\frac{r+1}{2}\right)!}(-1)^{q-\frac{r+1}{2}};$$

therefore the value of the above general term when  $\mu = 0$  is

$$(-1)^{p+q+r} \frac{(2p)! (2p-r-1)! (2q-1)! (2q+r-1)!}{\left(p-\frac{r+1}{2}\right)! \left(p+\frac{r+1}{2}\right)! \left(q-\frac{r+1}{2}\right)! \left(q+\frac{r-1}{2}\right)!},$$

i.e. 
$$(-1)^{\frac{m+n-1}{2}} \frac{m! \ n! \ (m-r-1)! \ (n+r)!}{\left(\frac{m-r-1}{2}\right)! \left(\frac{m+r+1}{2}\right)! \left(\frac{n-r}{2}\right)! \left(\frac{n+r}{2}\right)!}$$
.

Dividing by  $2^{m+n}m! n!$  and changing the sign, we have

$$\int_{0}^{1} P_{m} P_{n} d\mu = \frac{\left(-1\right)^{\frac{m+n+1}{2}}}{2^{m+n}} \sum \frac{\left(m-r-1\right)! \left(n+r\right)!}{\left(\frac{m-r-1}{2}\right)! \left(\frac{m+r+1}{2}\right)! \left(\frac{n-r}{2}\right)! \left(\frac{n+r}{2}\right)!} \dots (3),$$

where r is to be taken equal to the odd numbers from 1 to n.

This general term may be put under the form

$$(-1)^{\frac{m+n+1}{2}} \frac{1 \cdot 3 \cdot 5 \cdots (m-r-2) \cdot 1 \cdot 3 \cdot 5 \cdots (n+r-1)}{2 \cdot 4 \cdot 6 \cdots (m+r+1) \cdot 2 \cdot 4 \cdot 6 \cdots (n-r)}$$

7. Now let m=2p+1 and n=2q, then q may be equal to but not greater than p.

Hence by reasoning similar to that in the last case it may be as readily proved that the value of the above general term when  $\mu = 0$  is

$$(-1)^{p+q+1} \frac{(2p+1)! \ (2p-r)! \ (2q)! \ (2q+r)!}{\left(p-\frac{r}{2}\right)! \left(p+\frac{r}{2}+1\right)! \left(q+\frac{r}{2}\right)! \left(q-\frac{r}{2}\right)!} \, ,$$

r being even; we may put this under the form

$$(-1)^{\frac{m+n+1}{2}} \frac{m! \ n! \ (m-r-1)! \ (n+r)!}{\binom{m-r-1}{2}! \ \binom{m+r+1}{2}! \ \binom{n+r}{2}! \ \binom{n-r}{2}!}.$$

Hence

$$\int_{0}^{1} P_{m} P_{n} d\mu = \frac{(-1)^{\frac{m+n-1}{2}}}{2^{m+n}} \sum \frac{(m-r-1)! (n+r)!}{\left(\frac{m-r-1}{2}\right)! \left(\frac{m+r+1}{2}\right)! \left(\frac{n+r}{2}\right)! \left(\frac{n-r}{2}\right)!} \dots (4),$$

where m is odd and greater than n, and n is even, and r is equal to the even numbers in succession up to n, bearing in mind that (0)!=1.

The above is of exactly the same form as in the former case, except that the sign is changed, and the general term may be put under the form

$$(-1)^{\frac{m+n-1}{2}} \frac{1 \cdot 3 \cdot 5 \dots (m-r-2) \cdot 1 \cdot 3 \cdot 5 \dots (n+r-1)}{2 \cdot 4 \cdot 6 \dots (m+r+1) \cdot 2 \cdot 4 \cdot 6 \dots (n-r)}.$$

8. If m be large compared with n and even, the greatest term will be that for which r=1, which

$$= (-1)^{\frac{m+n+1}{2}} \frac{1 \cdot 3 \cdot 5 \dots (m-3) \cdot 1 \cdot 3 \cdot 5 \dots n}{2 \cdot 4 \cdot 6 \dots (m+2) \cdot 2 \cdot 4 \cdot 6 \dots (n-1)},$$

and all the other terms will be small compared with this term.

If m be large compared with n and odd, the greatest term will be that for which r=0, which

$$= (-1)^{\frac{m+n-1}{2}} \frac{1 \cdot 3 \cdot 5 \dots (m-2) \cdot 1 \cdot 3 \cdot 5 \dots (n-1)}{2 \cdot 4 \cdot 6 \dots (m+1) \cdot 2 \cdot 4 \cdot 6 \dots n},$$

and all the other terms will be small compared with this term.

Now we have approximately when m is very large and even,

$$\frac{1 \cdot 3 \cdot 5 \dots (m-3)}{2 \cdot 4 \cdot 6 \dots (m+2)} = \frac{1}{(m-1)(m+2)} \frac{1 \cdot 3 \cdot 5 \dots (m-1)}{2 \cdot 4 \cdot 6 \dots m} = \frac{1}{m^2} \frac{1}{\left(\frac{\pi m}{2}\right)^{\frac{1}{2}}},$$

and when m is very large and odd,

$$\frac{1 \cdot 3 \cdot 5 \dots (m-2)}{2 \cdot 4 \cdot 6 \dots (m+1)} = \frac{1}{m+1} \frac{1}{\left\{\frac{\pi (m-1)}{2}\right\}^{\frac{1}{2}}} = \frac{1}{\left(\frac{\pi}{2}\right)^{\frac{1}{2}} m^{\frac{8}{2}}}.$$

If n be also large though very small compared with m, we have

$$\int_{0}^{1} P_{m} P_{n} d\mu = \frac{1}{\left(\frac{\pi}{2}\right)^{\frac{1}{2}} m^{\frac{n}{2}}} \cdot \frac{n}{n^{\frac{1}{2}} \left(\frac{\pi}{2}\right)^{\frac{1}{2}}} = \frac{2n^{\frac{1}{2}}}{\pi m^{\frac{n}{2}}}$$

approximately when m is even, and

$$\int_{0}^{1} P_{m} P_{n} d\mu = \frac{1}{\left(\frac{\pi}{2}\right)^{\frac{1}{2}} m^{\frac{3}{2}}} \cdot \frac{1}{\left(\frac{\pi}{2}\right)^{\frac{1}{2}} n^{\frac{1}{2}}} = \frac{2}{\pi m^{\frac{3}{2}} n^{\frac{1}{2}}}$$

when m is odd.

9. The equation  $P_{n+1} = (2n+1) \int P_n d\mu + P_{n-1}$  enables us to express  $\int_{-\infty}^{\infty} P_n d\mu^m$  by means of Legendre's Coefficients.

For 
$$\int P_n d\mu = \frac{1}{2n+1} P_{n+1} - \frac{1}{2n+1} P_{n-1}.$$
Similarly 
$$\iint P_n d\mu d\mu = \frac{1}{2n+1} \int P_{n+1} d\mu - \frac{1}{2n+1} \int P_{n-1} d\mu$$

$$= \frac{1}{(2n+1)(2n+3)} P_{n+2} - \frac{2}{(2n-1)(2n+3)} P_n + \frac{1}{(2n-1)(2n+1)} P_{n-2}.$$

Integrate again and by the same relation we get

$$\begin{split} \iiint P_n d\mu d\mu d\mu &= \frac{1}{(2n+1)\left(2n+3\right)\left(2n+5\right)} P_{n+3} - \frac{3}{(2n-1)\left(2n+1\right)\left(2n+3\right)} P_{n+1} \\ &+ \frac{3}{(2n+1)\left(2n-3\right)\left(2n+3\right)} P_{n-1} - \frac{1}{(2n-3)\left(2n-1\right)\left(2n+1\right)} P_{n-3}. \end{split}$$

Following out the law of formation of the terms, we see that the terms are alternately positive and negative, the numerical coefficients are those of a binomial raised to the power indicated by the number of integrations, the denominators are products of factors

$$(2n+1)(2n+3)(2n+5)$$
.....,

and of those factors all diminished by 2, 4, 6 &c. with the omission in the case of any term involving  $P_{n+r}$  of the factor 2n+2r+1.

Thus if we have m integrations the factors for the first denominator are

$$(2n+1)(2n+3)\dots(2n+2m-1),$$

and the factors for the (r+1)th denominator would be

$$(2n-2r+1)(2n-2r+3)\dots(2n+2m-2r+1),$$

of which the factor (2n+2m-4r+1) is omitted.

Hence taking r from 0 to m, the general term of the expression of  $\int_{-\infty}^{m} P_n d\mu^m$  is

$$(-1)^r \frac{m!}{r! (m-r)!} \frac{2n+2m-4r+1}{(2n-2r+1)(2n-2r+3)\dots(2n+2m-2r+1)} P_{n+m-2r}...(5).$$

Hence we can find

$$\int_{-1}^1 \{P_p \int^m P_n d\mu^m\} d\mu,$$

for if p=n+m-2r, where r is not greater than m or less than 0, and if  $S_n^m$  be written for shortness instead of  $\int_{-\infty}^{\infty} P_n d\mu^m$ , we shall have

$$\begin{split} \int_{-1}^{1} P_{p} S_{n}^{m} d\mu &= \frac{2}{2p+1} (-1)^{r} \frac{m!}{r! (m-r)!} \frac{2n+2m-4r+1}{(2n-2r+1)(2n-2r+3)...(2n+2m-2r+1)} \\ &= 2 (-1)^{r} \frac{m!}{r! (m-r)!} \frac{1}{(2n-2r+1)(2n-2r+3)...(2n+2m-2r+1)}...(6). \end{split}$$

Hence we see that n+m-p must be an even number not greater than 2m in order that

$$\int_{-1}^{1} P_{p} S_{n}^{m} d\mu \text{ may not vanish.}$$

10. We will now return to the consideration of the value of  $\int_0^1 S_m P_n d\mu$ , where  $S_m = \int P_m d\mu$ , the integral vanishing when  $\mu = 1$ .

First, consider the case when m = n,

$$\therefore \int S_n P_n d\mu = \int S_n \frac{dS_n}{d\mu} d\mu = \frac{1}{2} (S_n)^2,$$

$$\therefore \int_0^1 S_n P_n d\mu = -\frac{1}{2} (S_n)^2_{\mu=0};$$

therefore as before, if n be even there will be no term in  $S_n$  independent of  $\mu$  and therefore  $(S_n)_{\mu=0}$  vanishes;

$$\therefore \int_0^1 S_n P_n d\mu = 0,$$

but if n be odd, the constant term in  $S_n$  will be, as already shewn,

$$(-1)^{\frac{n+1}{2}} \frac{1 \cdot 3 \cdot 5 \dots (n-2)}{2 \cdot 4 \cdot 6 \dots (n+1)};$$

$$\therefore \int_0^1 S_n P_n d\mu = (-1)^n \cdot \frac{1}{2} \cdot \left(\frac{1}{2} \cdot \frac{3 \cdot 5 \dots (n-2)}{4 \cdot 6 \dots (n+1)}\right)^2 = -\frac{1}{2} \left(\frac{1 \cdot 3 \cdot 5 \dots (n-2)}{2 \cdot 4 \cdot 6 \dots (n+1)}\right)^2.$$

Next, suppose m=n+1 and consider

$$\begin{split} \int_0^1 S_m P_n d\mu &= \frac{1}{2m+1} \int_0^1 P_{m+1} P_n d\mu - \frac{1}{2m+1} \int_0^1 P_{m-1} P_n d\mu \\ &= \frac{1}{2n+3} \int_0^1 P_{n+2} P_n d\mu - \frac{1}{2n+3} \int_0^1 (P_n)^2 d\mu \\ &= -\frac{1}{(2n+1)(2n+3)}, \text{ since } \int_0^1 P_{n+2} P_n d\mu = 0, \text{ as before proved.} \end{split}$$

Similarly

$$\begin{split} \int_0^1 S_n P_m d\mu &= \frac{1}{2n+1} \int_0^1 P_{n+1} P_m d\mu - \frac{1}{2n+1} \int_0^1 P_{n-1} P_m d\mu \\ &= \frac{1}{2n+1} \int_0^1 (P_{n+1})^2 d\mu - \frac{1}{2n+1} \int_0^1 P_{n-1} P_{n+1} d\mu \\ &= \frac{1}{(2n+1)(2n+3)}, \text{ since } \int_0^1 P_{n-1} P_{n+1} d\mu = 0. \end{split}$$

This should evidently be the case since

$$\int (S_m P_n + S_n P_m) d\mu = S_m S_n;$$

and since m=n+1, one of the quantities m and n will be even and the corresponding quantity  $S_m$  or  $S_n$  will be of odd dimensions in  $\mu$  and will therefore vanish when  $\mu=0$ , and both  $S_m$  and  $S_n$  vanish when  $\mu=1$ ; therefore  $S_mS_n$  taken between the limits vanishes,

or 
$$\int_0^1 (S_m P_n + S_n P_m) d\mu = 0$$
, or  $\int_0^1 S_m P_n d\mu = -\int_0^1 S_n P_m d\mu$ , as above found.

11. Now take the more general case in which m > n + 1. We have

$$\int_{0}^{1} S_{m} P_{n} d\mu = \frac{1}{2m+1} \int_{0}^{1} P_{m+1} P_{n} d\mu - \frac{1}{2m+1} \int_{0}^{1} P_{m-1} P_{n} d\mu;$$

here m-1 and n are not the same quantities, therefore by what we have proved, both these definite integrals vanish unless one of the quantities m+1 and n is odd and the other even, i.e. unless m and n are both even or both odd.

First suppose m and n to be both even and m > (n+1). Then by what has been before proved we have

$$\int_{0}^{1} P_{m+1} P_{n} d\mu = \frac{\left(-1\right)^{\frac{m+n}{2}}}{2^{m+n+1}} \sum \frac{(m-2r)! (n+2r)!}{\left(\frac{m}{2}-r\right)! \left(\frac{m}{2}+r+1\right)! \left(\frac{n}{2}-r\right)! \left(\frac{n}{2}+r\right)!}$$

for all values of r from 0 to  $\frac{n}{2}$  and 0!=1.

Similarly

$$\int_{0}^{1} P_{m-1} P_{n} d\mu = \frac{\left(-1\right)^{\frac{m+n}{2}-1}}{2^{m+n-1}} \Sigma \frac{\left(m-2r-2\right)! \ \left(n+2r\right)!}{\left(\frac{m}{2}-r-1\right)! \ \left(\frac{m}{2}+r\right)! \ \left(\frac{n}{2}-r\right)! \ \left(\frac{n}{2}+r\right)!}.$$

Now generally 
$$\frac{1}{4} \frac{(m-2r)(m-2r-1)}{(\frac{m}{2}-r)(\frac{m}{2}+r+1)} + 1 = \frac{1}{2} \frac{(2m+1)}{\frac{m}{2}+r+1}$$
.

Hence

$$\int_{0}^{1} S_{m} P_{n} d\mu = \frac{(-1)^{\frac{m+n}{2}}}{2^{m+n}} \Sigma \frac{(m-2r-2)! (n+2r)!}{\left(\frac{m}{2}-r-1\right)! \left(\frac{m}{2}+r+1\right)! \left(\frac{n}{2}-r\right)! \left(\frac{n}{2}+r\right)!} \dots (7).$$

A. II. 45

$$\int_{0}^{1} S_{n} P_{m} d\mu + \int_{0}^{1} S_{m} P_{n} d\mu = \left[ S_{m} S_{n} \right]_{0}^{1};$$

and  $S_m$ ,  $S_n$ , being of odd dimensions in  $\mu$ , will vanish when  $\mu = 0$ , and they also vanish when  $\mu = 1$ ;

$$\therefore \int_0^1 S_n P_m d\mu = -\int_0^1 S_m P_n d\mu.$$

Next suppose m and n to be both odd, m being > n+1. By what has been before proved, since m+1 and m-1 are even, we may prove that

$$\int_{0}^{1} S_{m} P_{n} d\mu = \frac{(-1)^{\frac{m+n}{2}+1}}{2^{m+n}} \Sigma \frac{(m-2r-1)! (n+2r-1)!}{\left(\frac{m-2r-1}{2}\right)! \left(\frac{m+2r+1}{2}\right)! \left(\frac{n-2r+1}{2}\right)! \left(\frac{n+2r-1}{2}\right)!} \dots (8),$$

for all values of r from 1 to  $\frac{n+1}{2}$ .

Also

$$\int_{0}^{1} S_{n} P_{m} d\mu + \int_{0}^{1} S_{m} P_{n} d\mu = \left[ S_{m} S_{n} \right]_{0}^{1} = \frac{\left(-1\right)^{\frac{m+n}{2}}}{2^{m+n}} \frac{(m-1)! (n-1)!}{\left(\frac{m-1}{2}\right)! \left(\frac{m+1}{2}\right)! \left(\frac{n-1}{2}\right)! \left(\frac{n+1}{2}\right)!}$$

Hence  $\int_0^1 S_n P_m d\mu$  is found from  $\int_0^1 S_m P_n d\mu$  by changing the sign and adding another term at the beginning, i.e. taking all values of r from 0 to  $\frac{n+1}{2}$ .

12. Having expressed the values of

$$\int_0^1 P_m P_n d\mu \text{ and } \int_0^1 S_m P_n d\mu$$

in series, we will now determine their values in the form of a single term.

The theory of these operations may perhaps be presented in a still more simple form.

First, suppose m to be even and n odd, and let m be the greater.

Then if 
$$f(r) = \frac{1 \cdot 3 \cdot 5 \dots (m-r-2)}{2 \cdot 4 \cdot 6 \dots (m+r+1)} \frac{1 \cdot 3 \cdot 5 \dots (n+r-1)}{2 \cdot 4 \cdot 6 \dots (n-r)}$$
,

we have 
$$\int_0^1 P_n P_n d\mu = (-1)^{\frac{m+n+1}{2}} \{f(1) + f(3) + f(5) + &c. + f(n)\}.$$

It is to be observed that the operation denoted by f, as above defined, has no meaning unless the subject of the operation is an odd integer.

Also let 
$$\phi(r) = \frac{1 \cdot 3 \cdot 5 \dots (m-r-1)}{2 \cdot 4 \cdot 6 \dots (m+r+2)} \frac{1 \cdot 3 \cdot 5 \dots (n+r)}{2 \cdot 4 \cdot 6 \dots (n-r+1)}$$

so that the operation or sign of functionality  $\phi$  has no meaning unless the subject (r) of the operation be an *even* integer.

We have evidently

$$\phi(r-1) = \frac{1 \cdot 3 \cdot 5 \dots (m-r)}{2 \cdot 4 \cdot 6 \dots (m+r+1)} \cdot \frac{1 \cdot 3 \cdot 5 \dots (n+r-1)}{2 \cdot 4 \cdot 6 \dots (n-r+2)},$$

and

$$\phi(r+1) = \frac{1 \cdot 3 \cdot 5 \dots (m-r-2)}{2 \cdot 4 \cdot 6 \dots (m+r+3)} \frac{1 \cdot 3 \cdot 5 \dots (n+r+1)}{2 \cdot 4 \cdot 6 \dots (n-r)},$$

where r-1, r+1 must be even and therefore r odd.

We may observe that

$$\phi(r-1) = f(r) \left\{ \frac{m-r}{n-r+2} \right\},\,$$

and

$$\phi(r+1) = f(r) \left\{ \frac{n+r+1}{m+r+3} \right\}.$$

Assume

$$f(r) = \lambda \phi(r-1) - \mu \phi(r+1),$$

and therefore

$$f(r) = f(r) \left\{ \lambda \frac{m-r}{n-r+2} - \mu \frac{n+r+1}{m+r+3} \right\},$$

or

$$1 = \lambda \frac{m-r}{n-r+2} - \mu \frac{n+r+1}{m+r+3},$$

and determine  $\lambda$  and  $\mu$  by the condition that  $\mu$  is the same function of r+1 that  $\lambda$  is of r-1.

This will evidently be the case if

$$\lambda = (n-r+2)(m+r+1)c$$
 and  $\mu = (m+r+3)(n-r)c$ ,

where c is some quantity which remains the same when r-1 is changed into r+1.

Substituting, we have

$$1 = c \{ (m-r) (m+r+1) - (n+r+1) (n-r) \}$$

$$= c \{ m (m+1) - r - r^2 - n (n+1) + r + r^2 \}$$

$$= c \{ m (m+1) - n (n+1) \} = c (m+n+1) (m-n),$$

so that c is independent of r and 
$$=\frac{1}{(m-n)(m+n+1)}$$
.

Hence 
$$\lambda = \frac{(n+2-r)(m+r+1)}{(m-n)(m+n+1)}$$
 and  $\mu = \frac{(m+r+3)(n-r)}{(m-n)(m+n+1)}$ ;  
or calling  $\psi(r) = \frac{(n+1-r)(m+2+r)}{(m-n)(m+n+1)}$ ,  
we have  $\lambda = \psi(r-1)$  and  $\mu = \psi(r+1)$ ;  
 $\therefore f(r) = \psi(r-1) \phi(r-1) - \psi(r+1) \phi(r+1)$ .

Hence we can at once sum the series

$$f(1) + f(3) + &c. + f(n).$$
For 
$$f(1) = \psi(0) \phi(0) - \psi(2) \phi(2),$$

$$f(3) = \psi(2) \phi(2) - \psi(4) \phi(4),$$
&c. = &c.,
$$f(n) = \psi(n-1) \phi(n-1) - \psi(n+1) \phi(n+1).$$
Hence 
$$f(1) + f(3) + &c. + f(n) = \psi(0) \phi(0) - \psi(n+1) \phi(n+1).$$

In this case evidently  $\psi(n+1)$  vanishes and  $\psi(0) = \frac{(n+1)(m+2)}{(m-n)(m+n+1)}$ ;

$$\therefore f(1) + f(3) + &c. + f(n) = \frac{(n+1)(m+2)}{(m-n)(m+n+1)} \phi(0)$$

$$= \frac{(n+1)(m+2)}{(m-n)(m+n+1)} \frac{1 \cdot 3 \cdot 5 \dots (m-1)}{2 \cdot 4 \cdot 6 \dots (m+2)} \frac{1 \cdot 3 \cdot 5 \dots n}{4 \cdot 6 \dots (n+1)}$$

$$= \frac{1}{(m-n)(m+n+1)} \frac{1 \cdot 3 \cdot 5 \dots (m-1)}{2 \cdot 4 \cdot 6 \dots m} \frac{1 \cdot 3 \cdot 5 \dots n}{2 \cdot 4 \cdot 6 \dots (n-1)}$$

the sum required, whence

$$\int_{0}^{1} P_{m} P_{n} d\mu = (-1)^{\frac{m+n+1}{2}} \frac{1}{(m-n)(m+n+1)} \frac{1 \cdot 3 \cdot 5 \dots (m-1)}{2 \cdot 4 \cdot 6 \dots m} \frac{1 \cdot 3 \cdot 5 \dots n}{2 \cdot 4 \cdot 6 \dots (n-1)} \dots (9).$$

Next, suppose m to be odd and n even, m being still the greater. Assume f(r) and  $\phi(r)$  to be of the same forms as before in m, n and r. Then since m and n are here changed as regards being even and odd,

f(r) will now be unmeaning unless r be even,

and  $\phi(r)$  will be unmeaning unless r be odd.

As before, it may be shewn that if

$$\psi(r) = \frac{(n+1-r)(m+2+r)}{(m-n)(m+n+1)}$$
, the same function as before,

then

$$f(r) = \psi(r-1)\phi(r-1) - \psi(r+1)\phi(r+1)$$
.

But in this case we have

$$\int_{0}^{1} P_{m} P_{n} d\mu = (-1)^{\frac{m+n-1}{2}} \{ f(0) + f(2) + &c. + f(n) \}$$

$$= (-1)^{\frac{m+n-1}{2}} \{ \psi(-1) \phi(-1) - \psi(n+1) \phi(n+1) \}, \text{ as before };$$

but  $\psi(n+1)$  vanishes and  $\psi(-1) = \frac{(n+2)(m+1)}{(m-n)(m+n+1)}$ ,

also 
$$\phi(-1) = \frac{1 \cdot 3 \cdot 5 \dots m}{2 \cdot 4 \cdot 6 \dots m+1} \cdot \frac{1 \cdot 3 \cdot 5 \dots (n-1)}{2 \cdot 4 \cdot 6 \dots (n+2)};$$

13. We will now return to the consideration of

$$\int_0^1 S_m P_n d\mu \text{ and } \int_0^1 S_n P_m d\mu,$$

where m and n are either both even or both odd.

First suppose m and n to be even.

Then 
$$\int_0^1 S_m P_n d\mu = \frac{1}{2m+1} \int_0^1 P_{m+1} P_n d\mu - \frac{1}{2m+1} \int_0^1 P_{m-1} P_n d\mu ;$$

$$\cdot \cdot \cdot \int_{0}^{1} S_{m} P_{n} d\mu = \frac{(-1)^{\frac{m+n}{2}}}{2m+1} \frac{1 \cdot 3 \cdot 5 \dots (m-1) \cdot 1 \cdot 3 \cdot 5 \dots (n-1)}{2 \cdot 4 \cdot 6 \dots (m-2) \cdot 2 \cdot 4 \cdot 6 \dots n}$$

$$\times \left[ \frac{m+1}{m (m-n+1) (m+n+2)} + \frac{1}{(m-n-1) (m+n)} \right].$$

Now 
$$\frac{m+1}{m(m-n+1)(m+n+2)} + \frac{1}{(m-n-1)(m+n)}$$

$$= \frac{2m+1}{m(m-n+1)(m+n+2)} + \frac{1}{(m-n-1)(m+n)} - \frac{1}{(m-n+1)(m+n+2)}$$

$$= \frac{2m+1}{m(m-n+1)(m+n+2)} + \frac{4m+2}{(m-n-1)(m+n)(m-n+1)(m+n+2)}$$

$$= (2m+1) \left\{ \frac{(m-n-1)(m+n)+2m}{m(m-n+1)(m+n+2)(m-n-1)(m+n)} \right\}$$

$$= \frac{(2m+1)(m-n)(m+n+1)}{m(m-n+1)(m+n+2)(m-n-1)(m+n)}.$$

Hence 
$$\int_{0}^{1} S_{m} P_{n} d\mu = (-1)^{\frac{m+n}{2}} \frac{(m-n)(m+n+1)}{(m-n-1)(m-n-1)(m+n)(m+n+2)} \times \frac{1 \cdot 3 \cdot 5 \dots (m-1) \cdot 1 \cdot 3 \cdot 5 \dots (n-1)}{2 \cdot 4 \cdot 6 \dots m \cdot 2 \cdot 4 \cdot 6 \dots n} = -\int_{0}^{1} S_{n} P_{m} d\mu...$$
(11).

Next suppose m and n to be both odd and m to be greater than n.

Then 
$$\int_{0}^{1} S_{n} P_{m} d\mu = \frac{1}{2n+1} \left\{ \int_{0}^{1} P_{m} P_{n+1} d\mu - \int_{0}^{1} P_{m} P_{n-1} d\mu \right\}$$

$$= \frac{\left(-1\right)^{\frac{m+n}{2}}}{\left(2n+1\right)} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot m \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (n-2)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (m-1) \cdot 2 \cdot 4 \cdot 6 \cdot \dots \cdot (n+1)}$$

$$\times \left\{ \frac{n}{(m-n-1) \cdot (m+n+2)} + \frac{n+1}{(m-n+1) \cdot (m+n)} \right\}.$$
Now 
$$\frac{n}{(m-n-1) \cdot (m+n+2)} + \frac{n+1}{(m-n+1) \cdot (m+n)}$$

Hence 
$$\int_{0}^{1} S_{n} P_{m} d\mu = (-1)^{\frac{m+n}{2}} \frac{m (m+1) - n (n+1) - 2}{(m-n-1) (m+n+2) (m-n+1) (m+n)} \times \frac{1 \cdot 3 \cdot 5 \dots m \cdot 1 \cdot 3 \cdot 5 \dots (n-2)}{2 \cdot 4 \cdot 6 \dots (m-1) 2 \cdot 4 \cdot 6 \dots (n+1)} \dots (12).$$

 $=\frac{(2n+1)\{m^2-n^2+m-n-2\}}{(m-n-1)(m+n+2)(m-n+1)(m+n)}.$ 

In the same way it may be shewn that

$$\begin{split} \int_{0}^{1} S_{m} P_{n} d\mu = & \left(-1\right)^{\frac{m+n}{2}+1} \frac{m \left(m+1\right) - n \left(n+1\right) + 2}{\left(m-n+1\right) \left(m-n-1\right) \left(m+n\right) \left(m+n+2\right)} \\ & \times \frac{1 \cdot 3 \cdot 5 \dots \left(m-2\right) 1 \cdot 3 \cdot 5 \dots n}{2 \cdot 4 \cdot 6 \dots \left(m+1\right) 2 \cdot 4 \cdot 6 \dots \left(n-1\right)}, \end{split}$$

which may also be found from  $\int_0^1 S_n P_m d\mu$  by interchanging m and n.

$$\begin{split} \text{Hence } \int_0^1 \left( S_m P_n + S_n P_m \right) d\mu &= \left[ S_m S_n \right]_0^1 = - \left[ S_m S_n \right]_{\mu=0} \\ &= \left( -1 \right)^{\frac{m+n}{2}} \frac{1 \cdot 3 \cdot 5 \dots (m-2)}{2 \cdot 4 \cdot 6 \dots (m+1)} \quad \frac{1 \cdot 3 \cdot 5 \dots (n-2)}{2 \cdot 4 \cdot 6 \dots (n+1)} \\ &\times \frac{m \left( m+1 \right) \left[ m \left( m+1 \right) - n \left( n+1 \right) - 2 \right] - n \left( n+1 \right) \left[ m \left( m+1 \right) - n \left( n+1 \right) + 2 \right]}{\left( m-n-1 \right) \left( m-n+1 \right) \left( m+n \right) \left( m+n+2 \right)}. \end{split}$$

If m+1=n or if n+1=m the numerator of the last fraction vanishes, hence (m-n+1) and (m-n-1) are factors of it, also (m+n) is a factor and the remaining factor is (m+n+2); hence the fraction = 1,

and 
$$\int_{0}^{1} S_{m} P_{n} d\mu + \int_{0}^{1} S_{n} P_{m} d\mu = \left[ S_{m} S_{n} \right]_{0}^{1}$$

$$= \left( -1 \right)^{\frac{m+n}{2}} \frac{1 \cdot 3 \cdot 5 \dots (m-2) \cdot 1 \cdot 3 \cdot 5 \dots (n-2)}{2 \cdot 4 \cdot 6 \dots (m+1) \cdot 2 \cdot 4 \cdot 6 \dots (n+1)}.$$

14. We will take an example of the application of these last formulæ. Let then m=3 and n=1.

Then by formulæ just found

$$\int_0^1 S_3 P_1 d\mu = -\frac{1}{48} \text{ and } \int_0^1 S_1 P_3 d\mu = \frac{1}{12}.$$

By actual formation of  $S_1P_3$  and  $S_3P_1$  and integration,

$$P_{1} = \frac{1}{2} \frac{d}{d\mu} (\mu^{2} - 1) = \mu,$$

$$S_{1} = \int P_{1} d\mu = \frac{1}{2} (\mu^{2} - 1),$$

$$P_{3} = \frac{1}{2 \cdot 4 \cdot 6} \frac{d^{3}}{d\mu^{3}} (\mu^{6} - 3\mu^{4} + 3\mu^{2} - 1) = \frac{5}{2} \mu^{3} - \frac{3}{2} \mu,$$

$$S_{3} = \frac{1}{2 \cdot 4 \cdot 6} \frac{d^{2}}{d\mu^{2}} (\mu^{6} - 3\mu^{4} + 3\mu^{2} - 1) = \frac{5}{8} \mu^{4} - \frac{3}{4} \mu^{2} + \frac{1}{8}.$$

$$\therefore \int_0^1 S_3 P_1 d\mu = \int_0^1 \left( \frac{5}{48} \mu^6 - \frac{3}{16} \mu^4 + \frac{1}{16} \mu^2 \right) d\mu = -\frac{1}{48}, \text{ as before,}$$

$$\int_0^1 P_3 S_1 d\mu = \int_0^1 \left( \frac{5}{24} \mu^6 - \frac{1}{2} \mu^4 + \frac{3}{8} \mu^2 \right) d\mu = \frac{1}{12}, \text{ as before.}$$

and

Hence our results are confirmed.

But we must be careful to note the paradoxical result that

$$1.3.5...(-1)=1$$
 and  $2.4...(0)=1$ .

If we call 1.3.5...m = f(m), the characteristic mark of f is that mf(m-2) = f(m); applying this when m=1, we have  $1 \times f(-1) = f(1) = 1$ , f(-1) = 1. Similarly in the other case  $n\phi(n-2) = \phi(n)$ , make n=2,  $2\phi(0) = \phi(2) = 2$ ,  $\phi(0) = 0$ .

15. We have seen above that the general term of the expression  $\int_{-\infty}^{\infty} P_n d\mu^n$  will be

$$(-1)^r \frac{m!}{r!(m-r)!} \frac{2n+2m-4r+1}{(2n-2r+1)(2n-2r+3)\dots(2n+2m-2r+1)} P_{n+m-2r}$$

r being taken from 0 to m and 0! being = 1.

Now generally 
$$(2x+1)\int P_x d\mu = P_{x+1} - P_{x-1}$$
.

Integrating each term of  $\int_{-m}^{m} P_n d\mu^m$  by means of this formula, we have  $\int_{-m}^{m+1} P_n d\mu^{m+1} = \dots$ 

$$\begin{split} &+ (-1)^r \frac{m!}{r!} \frac{P_{n+m-2r+1} - P_{n+m-2r-1}}{(2n-2r+1)\left(2n-2r+3\right) \dots \left(2n+2m-2r+1\right)} \\ &+ (-1)^{r+1} \frac{m!}{(r+1)! \left(m-r-1\right)!} \frac{P_{n+m-2r-1} - P_{n+m-2r-3}}{(2n-2r-1)\left(2n-2r+1\right) \dots \left(2n+2m-2r-1\right)} \end{split}$$

+.....

The coefficient of  $P_{n+m-2r-1}$  is

$$(-1)^{r+1}\frac{m!}{(r+1)!(m-r)!}\frac{(r+1)(2n-2r-1)+(m-r)(2n+2m-2r+1)}{(2n-2r-1)(2n-2r+1)\dots(2n+2m-2r+1)}$$

$$= (-1)^{r+1} \frac{m!}{(r+1)! (m-r)!} \times \frac{(r+1) (2n-2r-1+2m-2r) + (m-r) (2n+2m-2r+1-2r-2)}{(2n-2r-1) (2n-2r+1) \dots (2n+2m-2r+1)} = (-1)^{r+1} \frac{(m+1)!}{(r+1)! (m-r)!} \frac{2n+2m-4r-1}{(2n-2r-1) (2n-2r+1) \dots (2n+2m-2r+1)},$$
 which is the same in form as the expression for  $\int_{-\infty}^{\infty} P_n d\mu^m$ , taking  $r+1$  in place of  $r$ , and  $m+1$  in place of  $m$ .

Hence the law is generally true and may be written

$$\begin{split} \int^m P_n d\mu^m &= \Sigma \; (-1)^r \; \frac{m!}{r! \; (m-r)!} \\ &\times \frac{1 \cdot 3 \cdot 5 \, \ldots \, (2n-2r-1)}{1 \cdot 3 \cdot 5 \, \ldots \, (2n+2m-2r+1)} \left( 2n + 2m - 4r + 1 \right) P_{n+m-2r}. \end{split}$$

16. Differentiating this expression m times we get

$$P_n = \Sigma \left(-1\right)^r \frac{m!}{r! \left(m-r\right)!} \frac{1 \cdot 3 \cdot 5 \dots \left(2n-2r-1\right)}{3 \cdot 5 \dots \left(2n+2m-2r+1\right)} \left(2n+2m-4r+1\right) \frac{d^m P_{n+m-2r}}{d\mu^m}.$$

From the equation

$$(2x+1) P_x = \frac{dP_{x+1}}{d\mu} - \frac{dP_{x-1}}{d\mu},$$

we get

$$(2n+2m-4r+1)\frac{d^{m}P_{n+m-2r}}{d\mu^{m}} = \frac{d^{m+1}P_{n+m-2r+1}}{d\mu^{m+1}} - \frac{d^{m+1}P_{n+m-2r-1}}{d\mu^{m+1}}.$$

Substituting in the expression for  $P_n$ , we get

$$P_{n} = \dots + (-1)^{r-1} \frac{m!}{(r-1)! (m-r+1)!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r+1)}{1 \cdot 3 \cdot 5 \dots (2n+2m-2r+3)} \times \left[ \frac{d^{m+1}P_{n+m-2r+3}}{d\mu^{m+1}} - \frac{d^{m+1}P_{n+m-2r+1}}{d\mu^{m+1}} \right] + (-1)^{r} \frac{m!}{r! (m-r)!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2m-2r+1)} \left[ \frac{d^{m+1}P_{n+m-2r+1}}{d\mu^{m+1}} - \frac{d^{m+1}P_{n+m-2r-1}}{d\mu^{m+1}} \right] + \dots$$

$$= \Sigma (-1)^{r} \frac{m!}{r! (m-r+1)!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2m-2r+3)} \times \left[ r (2n-2r+1) + (m-r+1) (2n+2m-2r+3) \right] \frac{d^{m+1}P_{n+m-2r+1}}{d\mu^{m+1}}.$$
A. II.

The factor

$$[r(2n-2r+1)+(m-r+1)(2n+2m-2r+3)] = (m+1)(2n+2m-4r+3).$$

Hence 
$$P_n = \sum (-1)^r \frac{(m+1)!}{r! (m-r+1)!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2m-2r+3)} \times (2n+2m-4r+3) \frac{d^{m+1}P_{n+m-2r+1}}{d\mu^{m+1}},$$

which is of the same form as before with m+1 written in place of m, so that the law of formation is generally true.

17. We have seen above (p. 249) that

$$\frac{d}{d\mu} \left\{ (1 - \mu^2)^{m+1} \frac{d^{m+1} P_n}{d\mu^{m+1}} \right\} + (n-m) (n+m+1) (1 - \mu^2)^m \frac{d^m P_n}{d\mu^m} = 0.$$
If  $m = 0$ , 
$$\frac{d}{d\mu} \left\{ (1 - \mu^2) \frac{dP_n}{d\mu} \right\} + n (n+1) P_n = 0.$$
If  $m = 1$ , 
$$\frac{d}{d\mu} \left\{ (1 - \mu^2)^2 \frac{d^2 P_n}{d\mu^2} \right\} + (n-1) (n+2) (1 - \mu^2) \frac{dP_n}{d\mu} = 0.$$

Hence by successive integration we get

$$(1-\mu^2)^m \frac{d^m P_n}{d\mu^m} = (-1)^m (n-m+1) (n-m+2) \dots (n+m) \int_0^m P_n d\mu^m.$$

Hence the general term in  $(1 - \mu^2)^m \frac{d^m P_n}{d\mu^m}$  or  $S^m$  (see p. 250) is

$$(-1)^{m+r} \frac{m!}{r! (m-r)!} \frac{(n+m)!}{(n-m)!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2m-2r+1)} \times (2n+2m-4r+1) P_{n+m-2r} \dots (13).$$

18. Adopting the notation of Section I., Art. 8 (p. 248), we have

$$Q_n^m Q_{n_1}^m = (1 - \mu^2)^m \frac{d^m P_n}{d\mu^m} \frac{d^m P_{n_1}}{d\mu^m}.$$

Integrating by parts between the limits 1 and -1, the part outside the sign of integration vanishes and we get by the above equation in Art. 17,

$$\int_{-1}^{1} (1-\mu^2)^m \frac{d^m P_n}{d\mu^m} \frac{d^m P_{n_1}}{d\mu^m} d\mu = (n+m)(n-m+1) \int_{-1}^{1} (1-\mu^2)^{m-1} \frac{d^{m-1} P_n}{d\mu^{m-1}} \frac{d^{m-1} P_{n_1}}{d\mu^{m-1}} d\mu.$$

Or 
$$\int_{-1}^{1} Q_{n}^{m} Q_{n_{1}}^{m} d\mu = (n+m) (n-m+1) \int_{-1}^{1} Q_{n}^{m-1} Q_{n_{1}}^{m-1} d\mu$$

$$= (n+m) (n+m-1) (n-m+2) (n-m+1) \int_{-1}^{1} Q_{n}^{m-2} Q_{n_{1}}^{m-2} d\mu$$

$$= (n+m) (n+m-1) (n+m-2) \dots (n+1) n \dots (n-m+1) \int_{-1}^{1} P_{n} P_{n_{1}} d\mu$$

$$= \frac{(n+m)!}{(n-m)!} \int_{-1}^{1} P_{n} P_{n_{1}} d\mu.$$

Hence if n and  $n_1$  are not equal,  $\int_{-1}^{1} Q_n^m Q_{n_1}^m d\mu = 0.$ 

But if  $n = n_1$ , then

$$\int_{-1}^{1} (Q_n^m)^2 d\mu = 2 \frac{(n+m)!}{(n-m)!} \frac{1}{2n+1} \dots (14).$$

19. The position of a point on the unit sphere may be determined by the coordinates

$$\mu$$
,  $(1-\mu^2)^{\frac{1}{2}}\cos\phi$ ,  $(1-\mu^2)^{\frac{1}{2}}\sin\phi$ ;

 $2\pi\delta\mu$  is the surface of an elementary zone and therefore  $\delta\phi\delta\mu$  is an element of the surface at the point defined by  $\mu$  and  $\phi$ .

Any rational and integral function of the coordinates of the point may be expressed in terms of the form

$$M\left(1-\mu^2\right)^{\frac{r}{2}}\cos\left(r\phi+a\right)$$

where M is a rational and integral function of  $\mu$ .

Let  $q = \cos \gamma = \mu \mu_1 + (1 - \mu^2)^{\frac{1}{2}} (1 - \mu_1^2)^{\frac{1}{2}} \cos \phi$ ,

then if

 $V = (1 - 2h\cos\gamma + h^2)^{-\frac{1}{2}},$ 

and if  $Q_n$  be the coefficient of  $h^n$  in its expansion so that  $Q_n$  is the same function of q that  $P_n$  is of  $\mu$ ; then since

$$P_{n+1} = \mu P_n + \frac{\mu^2 - 1}{n+1} \frac{dP_n}{d\mu},$$

we have

$$Q_{n+1} = qQ_n + \frac{q^2 - 1}{n+1} \frac{dQ_n}{dq}$$
,

and similar relations for  $Q_n$  to those which have been found above for  $P_n$ .

* Note. For  $\mu_1$  read  $\mu'$  in Articles 19—22 of this Section.

*

Suppose  $\delta q$  to be an increment of q corresponding to increments  $\delta \mu$ ,  $\delta \mu_1$  and  $\delta \phi$ , then

$$\begin{split} \delta q &= \delta \mu \, \left\{ \mu_1 - \frac{\mu}{\left(1 - \mu^2\right)^{\frac{1}{2}}} \left(1 - \mu_1^2\right)^{\frac{1}{2}} \cos \phi \right\} + \delta \mu_1 \, \left\{ \mu - \frac{\mu_1}{\left(1 - \mu_1^2\right)^{\frac{1}{2}}} \left(1 - \mu^2\right)^{\frac{1}{2}} \cos \phi \right\} \\ &\qquad \qquad - \delta \phi \, \left(1 - \mu^2\right)^{\frac{1}{2}} \left(1 - \mu_1^2\right)^{\frac{1}{2}} \sin \phi. \end{split}$$

Now let 
$$\delta \mu = \epsilon \mu_1 (1 - \mu^2), \quad \delta \mu_1 = \epsilon \mu (1 - \mu_1^2),$$
$$\delta \phi = -\epsilon (1 - \mu^2)^{\frac{1}{2}} (1 - \mu_1^2)^{\frac{1}{2}} \sin \phi.$$

and Then

$$\begin{split} & \delta q = \epsilon \left\{ \mu_1^2 \left( 1 - \mu^2 \right) + \mu^2 \left( 1 - \mu_1^2 \right) - 2\mu \mu_1 \left( 1 - \mu^2 \right)^{\frac{1}{2}} \left( 1 - \mu_1^2 \right)^{\frac{1}{2}} \cos \phi + \left( 1 - \mu^2 \right) \left( 1 - \mu_1^2 \right) \sin^2 \phi \right\} \\ & = \epsilon \left\{ 1 - \mu^2 \mu_1^2 - 2\mu \mu_1 \left( 1 - \mu^2 \right)^{\frac{1}{2}} \left( 1 - \mu_1^2 \right)^{\frac{1}{2}} \cos \phi - \left( 1 - \mu^2 \right) \left( 1 - \mu_1^2 \right) \cos^2 \phi \right\} \\ & = \epsilon \left( 1 - q^2 \right). \end{split}$$

Hence the increment of  $Q_n$  corresponding to these increments will be

$$\frac{dQ}{dq} \, \delta q = \epsilon \left( 1 - q^2 \right) \frac{dQ_n}{dq},$$

but if  $Q_n$  be regarded as a function of  $\mu$ ,  $\mu_1$  and  $\phi$ , the same increment will be represented by

$$\begin{split} \frac{dQ_n}{d\mu} \, \delta\mu + \frac{dQ_n}{d\mu_1} \, \delta\mu_1 + \frac{dQ_n}{d\phi} \, \delta\phi \\ = \epsilon \left\{ \mu_1 \left( 1 - \mu^2 \right) \frac{dQ_n}{d\mu_1} + \mu \left( 1 - \mu_1^2 \right) \frac{dQ_n}{d\mu_1} - \left( 1 - \mu^2 \right)^{\frac{1}{2}} \left( 1 - \mu_1^2 \right)^{\frac{1}{2}} \sin\phi \, \frac{dQ_n}{d\phi} \right\} \,. \end{split}$$

Hence equating the coefficients of  $\epsilon$  we have

$$(1-q^2)\frac{dQ_n}{dq} = \mu_1 (1-\mu^2) \frac{dQ_n}{d\mu} + \mu (1-\mu_1^2) \frac{dQ_n}{d\mu_1} - (1-\mu^2)^{\frac{1}{2}} (1-\mu_1^2)^{\frac{1}{2}} \sin \phi \frac{dQ_n}{d\phi}.$$

Substituting in the above equation for  $Q_{n+1}$  we have

$$Q_{n+1} = (\mu \mu_1 + (1 - \mu^2)^{\frac{1}{2}} (1 - \mu_1^2)^{\frac{1}{2}} \cos \phi) Q_n - \frac{1}{n+1} \mu_1 (1 - \mu^2) \frac{dQ_n}{d\mu}$$
$$- \frac{1}{n+1} \mu (1 - \mu_1^2) \frac{dQ_n}{d\mu_1} + \frac{1}{n+1} (1 - \mu^2)^{\frac{1}{2}} (1 - \mu_1^2)^{\frac{1}{2}} \sin \phi \frac{dQ_n}{d\phi}.$$

This equation may be made use of to prove that the general term of the series for  $Q_n$  is

$$2\frac{(n-m)!}{(n+m)!}(1-\mu^2)^{\frac{m}{2}}(1-\mu_1^2)^{\frac{m}{2}}\frac{d^mP_n}{d\mu^m}\frac{d^mP_n'}{d\mu_1^m}\cos m\phi.$$

This expression may more readily be proved as follows:--

20. We see that, when n=1 and m=1,

$$Q_{1} = q = \mu \mu_{1} + (1 - \mu^{2})^{\frac{1}{2}} (1 - \mu_{1}^{2})^{\frac{1}{2}} \cos \phi$$

$$= P_{1} P_{1}' + \frac{dP_{1}}{d\mu} \frac{dP_{1}'}{d\mu_{1}} (1 - \mu^{2})^{\frac{1}{2}} (1 - \mu_{1}^{2})^{\frac{1}{2}} \cos \phi$$

$$= P_{1} P_{1}' + \frac{2}{n(n+1)} \frac{dP_{1}}{d\mu} \frac{dP_{1}'}{d\mu_{1}} (1 - \mu^{2})^{\frac{1}{2}} (1 - \mu_{1}^{2})^{\frac{1}{2}} \cos \phi.$$

Now assume that

$$Q_{n} = P_{n} P_{n}' + \frac{2}{n(n+1)} \frac{dP_{1}}{d\mu} \frac{dP_{1}'}{d\mu_{1}} (1 - \mu^{2})^{\frac{1}{2}} (1 - \mu_{1}^{2})^{\frac{1}{2}} \cos \phi + \&c.$$

$$+ 2 \frac{(n-m)!}{(n+m)!} (1 - \mu^{2})^{\frac{m}{2}} (1 - \mu_{1}^{2})^{\frac{m}{2}} \frac{d^{m} P_{n}}{d\mu_{1}^{m}} \frac{d^{m} P_{n}'}{d\mu_{1}^{m}} \cos m\phi + \&c. \dots (15).$$

From equation (3) of Section I. we have

$$Q_{n+1}(n+1) = (2n+1) q Q_n - n Q_{n-1}.$$

The coefficient of  $2\cos m\phi$  in  $qQ_n$  is

$$\begin{split} &\frac{(n-m)!}{(n+m)!} \mu \mu_1 \left(1-\mu^2\right)^{\frac{m}{2}} (1-\mu_1^2)^{\frac{m}{2}} \frac{d^m P_n}{d\mu^m} \cdot \frac{d^m P_{n'}}{d\mu_1^m} \\ &+ \frac{1}{2} \frac{(n-m+1)!}{(n+m-1)!} (1-\mu^2)^{\frac{m}{2}} (1-\mu_1^2)^{\frac{m}{2}} \frac{d^{m-1} P_n}{d\mu^{m-1}} \frac{d^{m-1} P_{n'}}{d\mu_1^{m-1}} \\ &+ \frac{1}{2} \frac{(n-m-1)!}{(n+m+1)!} (1-\mu^2)^{\frac{m}{2}+1} \left(1-\mu_1^2\right)^{\frac{m}{2}+1} \frac{d^{m+1} P_n}{d\mu^{m+1}} \cdot \frac{d^{m+1} P_{n'}}{d\mu_1^{m+1}} \cdot \end{split}$$

Substituting for  $\mu \frac{d^m P_n}{d\mu^m}$ ,  $\frac{d^{m-1} P_n}{d\mu^{m-1}}$  and  $(1-\mu^2) \frac{d^{m+1} P_n}{d\mu^{m+1}}$  in terms of

$$\frac{d^m P_{n+1}}{d\boldsymbol{\mu}^m} \frac{d^m P_{n-1}}{d\boldsymbol{\mu}^m},$$

and similarly for  $\mu_1 \frac{d^m P_n'}{d\mu_1^m}$ , &c. by means of equations (1), (5) and (6) given above. Hence the coefficient of  $2\cos m\phi$  in  $qQ_n$  becomes

$$\begin{split} \frac{1}{(2n+1)^{2}} \frac{(n-m-1)!}{(n+m+1)!} \left(1-\mu^{2}\right)^{\frac{m}{2}} \left\{\frac{1}{2} \left[-(n-m)(n-m+1) \frac{d^{m}P_{n+1}}{d\mu^{m}} + (n+m)(n+m+1) \frac{d^{m}P_{n-1}}{d\mu^{m}}\right] \right. \\ & \left. + (n+m)(n+m+1) \frac{d^{m}P_{n-1}}{d\mu^{m}_{1}} \right] \\ \times \left[-(n-m)(n-m+1) \frac{d^{m}P'_{n+1}}{d\mu^{m}_{1}} + (n+m)(n+m+1) \frac{d^{m}P'_{n-1}}{d\mu^{m}_{1}}\right] \end{split}$$

$$+ (n-m)(n+m+1) \left[ (n-m+1) \frac{d^{m} P_{n+1}}{d\mu^{m}} + (n+m) \frac{d^{m} P_{n-1}}{d\mu^{m}} \right]$$

$$\times \left[ (n-m+1) \frac{d^{m} P'_{n+1}}{d\mu^{m}_{1}} + (n+m) \frac{d^{m} P'_{n-1}}{d\mu^{m}_{1}} \right]$$

$$+ \frac{1}{2} (n-m)(n-m+1)(n+m)(n+m+1) \left[ \frac{d^{m} P_{n+1}}{d\mu^{m}_{1}} - \frac{d^{m} P_{n-1}}{d\mu^{m}_{1}} \right]$$

$$\times \left[ \frac{d^{m} P'_{n+1}}{d\mu^{m}_{1}} - \frac{d^{m} P'_{n-1}}{d\mu^{m}_{1}} \right] \right\} .$$

The coefficient of  $\frac{d^m P_{n+1}}{d\mu^m} \frac{d^m P'_{n+1}}{d\mu^m_1}$  within the large brackets is

$$\frac{1}{2}(n-m)^{2}(n-m+1)^{2}+(n-m)(n-m+1)^{2}(n+m+1)$$

$$+\frac{1}{2}(n-m)(n-m+1)(n+m)(n+m+1).$$

Unite half the middle term to each of the other two and this reduces to

$$\frac{1}{2}(n-m)(n-m+1)[(n-m+1)(n-m+n+m+1) + (n+m+1)(n-m+1+n+m)] = (n-m)(n-m+1)(n+1)(2n+1).$$

Also it may readily be seen that the coefficient of

$$\frac{d^{m}P_{n+1}}{d\mu^{m}}\frac{d^{m}P'_{n-1}}{d\mu^{m}_{1}} + \frac{d^{m}P_{n-1}}{d\mu^{m}}\frac{d^{m}P'_{n+1}}{d\mu^{m}_{1}}$$

is equal to 0 identically.

And the coefficient of 
$$\frac{d^{m}P_{n-1}}{d\mu^{m}} \frac{d^{m}P'_{n-1}}{d\mu^{m}_{1}}$$
 is 
$$\frac{1}{2}(n+m)(n+m+1)[(n+m)(n+m+1+n-m)+(n-m)(n+m+n-m+1)]$$
$$=(n+m)(n+m+1)n(2n+1).$$

Hence the coefficient of  $2\cos m\phi$  in  $(2n+1) Q_nq$  is

$$(1-\mu^{2})^{\frac{m}{2}} \left(1-\mu_{1}^{2}\right)^{\frac{m}{2}} \left\{ (n+1) \frac{(n-m+1)!}{(n+m+1)!} \frac{d^{m}P_{n+1}}{d\mu^{m}} \frac{d^{m}P'_{n+1}}{d\mu_{1}^{m}} + n \frac{(n-m-1)!}{(n+m-1)!} \frac{d^{m}P_{n-1}}{d\mu^{m}} \frac{d^{m}P'_{n-1}}{d\mu_{1}^{m}} \right\}.$$

And the coefficient of  $2\cos m\phi$  in  $-nQ_{n-1}$  is

$$(1-\mu^2)^{\frac{m}{2}}(1-\mu_1^2)^{\frac{m}{2}}\left\{-n\frac{(n-m-1)!}{(n+m-1)!}\frac{d^mP_{n-1}}{d\mu^m}\frac{d^mP'_{n-1}}{d\mu_1^m}\right\}.$$

Hence adding these last results and dividing by (n+1), the coefficient of  $2\cos m\phi$  in  $Q_{n+1}$  is

$$=\frac{(n-m+1)!}{(n+m+1)!}(1-\mu^2)^{\frac{m}{2}}(1-\mu^2)^{\frac{m}{2}}\frac{d^mP_{n+1}}{d\mu^m}\frac{d^mP'_{n+1}}{d\mu^m}.$$

Hence the same law holds good for  $Q_{n+1}$ , and since the expression assumed is evidently true when n=0 and when n=1, it is true generally.

21. (The same proof is applicable to the term independent of  $\phi$ , i.e. when m=0.)

The term independent of  $\phi$  in  $Q_nq$  is

$$\mu \mu_1 P_n P_{n'} + \frac{(n-1)!}{(n+1)!} (1-\mu^2) (1-\mu_1^2) \frac{dP_n}{d\mu} \frac{dP_{n'}}{d\mu_1}.$$

Now

$$\mu P_n - \frac{1 - \mu^2}{n+1} \frac{dP_n}{d\mu} = P_{n+1},$$

and

$$(2n+1) \mu P_n = (n+1) P_{n+1} + n P_{n-1};$$

hence

$$(2n+1)\frac{1-\mu^2}{n+1}\frac{dP_n}{d\mu} = n\left(P_{n-1} - P_{n+1}\right);$$

$$\therefore (2n+1)^2 \mu \mu_1 P_n P_n' = [(n+1) P_{n+1} + n P_{n-1}] [(n+1) P'_{n+1} + n P'_{n-1}]$$

and 
$$\frac{(2n+1)^2}{(n+1)^2} (1-\mu^2) (1-\mu_1^2) \frac{dP_n}{d\mu} \frac{dP_n'}{d\mu_1} = n^2 (-P_{n+1} + P_{n-1}) (-P'_{n+1} + P'_{n-1});$$

therefore the term independent of  $\phi$  in  $(2n+1)^2 Q_n q$  is

$$\begin{split} & \big[ (n+1) \, P_{n+1} + n P_{n-1} \big] \big[ (n+1) \, P'_{n+1} + n P'_{n-1} \big] \\ & \qquad \qquad + \frac{(n-1)!}{(n+1)!} \, n^2 (n+1)^2 \big[ - P_{n+1} + P_{n-1} \big] \big[ - P'_{n+1} + P'_{n-1} \big] \\ & \qquad \qquad = \big[ (n+1)^2 + n \, (n+1) \big] \, P_{n+1} P'_{n+1} + \big[ n^2 + n \, (n+1) \big] \, P_{n-1} P'_{n-1} \\ & \qquad \qquad = (2n+1) \big[ (n+1) \, P_{n+1} P'_{n+1} + n P_{n-1} P'_{n-1} \big]; \end{split}$$

therefore the term independent of  $\phi$  in

$$(n+1) Q_{n+1}$$
 or  $[(2n+1) Q_n q - n Q_{n-1}]$  is  $(n+1) P_{n+1} P'_{n+1}$ .

Hence the first term of  $Q_{n+1}$  is  $P_{n+1}P'_{n+1}$ , and the law is true generally.

Also

The last term of  $Q_n$ , when m=n, is

$$\frac{1}{2n!} (1 - \mu^2)^{\frac{n}{2}} (1 - \mu_1^2)^{\frac{n}{2}} \frac{d^n P_n}{d\mu^n} \frac{d^n P_n'}{d\mu_1^n} 2 \cos n\phi.$$

$$\frac{d^n P_n}{d\mu^n} = \frac{d^n P_n'}{d\mu_1^n} = \frac{1}{2^n} \frac{1}{n!} \frac{d^{2n} (\mu^2 - 1)^n}{d\mu^{2n}}$$

$$= \frac{1}{2^n} \frac{1}{n!} 2n! = 1 \cdot 3 \cdot 5 \dots (2n - 1).$$

And the last term becomes

$$\frac{2n!}{2^{2n}(n!)^2} (1 - \mu^2)^{\frac{n}{2}} (1 - \mu_1^2)^{\frac{n}{2}} 2 \cos n\phi$$

$$= \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots (2n)} (1 - \mu^2)^{\frac{n}{2}} (1 - \mu_1^2)^{\frac{n}{2}} 2 \cos n\phi.$$

22. Since 
$$\int_{-\infty}^{m} P_{n} d\mu^{m} = \frac{d^{-m} P_{n}}{d\mu^{-m}} = (-1)^{m} \frac{(n-m)!}{(n+m)!} (1-\mu^{2})^{m} \frac{d^{m} P_{n}}{d\mu^{m}},$$

where  $\int_{-\infty}^{\infty} P_n d\mu^m$  is so taken that at each successive integration the result is divisible by  $1-\mu^2$  without remainder, we have

$$\frac{d^{-m}P_{n}}{d\mu^{-m}} \frac{d^{-m}P_{n'}}{d\mu_{1}^{-m}} = \begin{cases} (n-m)! \\ (n+m)! \end{cases}^{2} (1-\mu^{2})^{m} (1-\mu_{1}^{2})^{m} \frac{d^{m}P_{n}}{d\mu^{m}} \frac{d^{m}P_{n'}}{d\mu_{1}^{m}},$$
or
$$\frac{(n+m)!}{(n-m)!} (1-\mu^{2})^{-\frac{m}{2}} (1-\mu_{1}^{2})^{-\frac{m}{2}} \frac{d^{-m}P_{n}}{d\mu^{-m}} \frac{d^{-m}P_{n'}}{d\mu_{1}^{-m}}$$

$$= \frac{(n-m)!}{(n+m)!} (1-\mu^{2})^{\frac{m}{2}} \frac{d^{m}P_{n}}{d\mu^{m}} \frac{d^{m}P_{n'}}{d\mu_{1}^{m}}.....(16).$$

Hence  $Q_n$  may be put under the symmetrical form

$$\begin{split} Q_{n} &= \Sigma \frac{(n+m)!}{(n-m)!} \left(1-\mu^{2}\right)^{-\frac{m}{2}} \left(1-\mu_{1}^{2}\right)^{-\frac{m}{2}} \frac{d^{-m}P_{n}}{d\mu^{-m}} \frac{d^{-m}P_{n}'}{d\mu_{1}^{-m}} \cos\left(-m\phi\right) + P_{n}P_{n}' \\ &+ \Sigma \frac{(n-m)!}{(n+m)!} \left(1-\mu^{2}\right)^{\frac{m}{2}} \left(1-\mu_{1}^{2}\right)^{\frac{m}{2}} \frac{d^{m}P_{n}}{d\mu^{m}} \frac{d^{m}P_{n}'}{d\mu^{m}_{1}} \cos m\phi. \end{split}$$

We observe that 0!=1 and  $(-1)!=\frac{0!}{0}=\infty$ , so that there is no term before that involving  $\frac{2n!}{0!}$ .

Also there is no term after that involving  $\frac{0!}{2n!}$  since  $\frac{d^{n+1}P_n}{d\mu^{n+1}} = 0$ .

23. If now we put  $\mu = \mu_1$ , and if we put

$$2\cos\phi = x + \frac{1}{x} \text{ and } 2\cos m\phi = x^m + \frac{1}{x^m}$$
,

the value of  $Q_n$  becomes

$$\begin{split} Q_n &= \frac{0!}{2n!} (1 - \mu^2)^n \left( \frac{d^n P_n}{d\mu^n} \right)^2 \left( x^n + \frac{1}{x^n} \right) + \dots \\ &+ \frac{(n-m)!}{(n+m)!} (1 - \mu^2)^m \left( \frac{d^m P_n}{d\mu^m} \right)^2 \left( x^m + \frac{1}{x^m} \right) + \dots \\ &+ (P_n)^2. \end{split}$$

The value of  $Q_n$  may also be put under the form

$$\begin{split} Q_n &= (-1)^n \left(1 - \mu^2\right)^{-\frac{n}{2}} \left(1 - \mu_1^2\right)^{\frac{n}{2}} \frac{d^{-n} P_n}{d\mu^{-n}} \frac{d^n P_n'}{d\mu^{-n}} \frac{1}{x^n} + \dots \\ &+ (-1)^m \left(1 - \mu^2\right)^{-\frac{m}{2}} \left(1 - \mu_1^2\right)^{\frac{n}{2}} \frac{d^{-m} P_n}{d\mu^{-m}} \frac{d^m P_n'}{d\mu^{-m}} \frac{1}{x^m} + \dots \\ &+ P_n P_n' + \dots \\ &+ (-1)^m \left(1 - \mu^2\right)^{\frac{m}{2}} \left(1 - \mu_1^2\right)^{-\frac{m}{2}} \frac{d^m P_n}{d\mu^{-m}} \frac{d^{-m} P_n'}{d\mu^{-m}} x^m + \dots \\ &+ (-1)^n \left(1 - \mu^2\right)^{\frac{n}{2}} \left(1 - \mu_1^2\right)^{-\frac{n}{2}} \frac{d^n P_n}{d\mu^{-n}} \frac{d^{-n} P_n'}{d\mu^{-n}} x^n. \end{split}$$

If now we put  $\mu = \mu_1$ , the value of  $Q_n$  becomes

$$Q_{n} = (-1)^{n} \frac{d^{-n} P_{n}}{d\mu^{-n}} \frac{d^{n} P_{n}}{d\mu^{n}} \frac{1}{x^{n}} + \dots + (-1)^{m} \frac{d^{-m} P_{n}}{d\mu^{-m}} \frac{d^{m} P_{n}}{d\mu^{m}} \frac{1}{x^{m}} + \dots + (P_{n})^{2} + \dots + (-1)^{m} \frac{d^{m} P_{n}}{d\mu^{m}} \frac{d^{-m} P_{n}}{d\mu^{-m}} x^{m} + \dots + (-1)^{n} \frac{d^{n} P_{n}}{d\mu^{n}} \frac{d^{-n} P_{n}}{d\mu^{-n}} x^{n}.$$

24. When  $\mu = \mu_1$ ,

$$\cos \gamma = \mu \mu_1 + (1 - \mu^2)^{\frac{1}{2}} (1 - \mu_1^2)^{\frac{1}{2}} \cos \phi = \mu^2 + (1 - \mu^2) \cos \phi,$$

and

$$V = \{1 - 2h \left[\mu^2 + (1 - \mu^2)\cos\phi\right] + h^2\}^{-\frac{1}{2}}$$
$$= \{(1 - h)^2 + 2h \left(1 - \mu^2\right) \left(1 - \cos\phi\right)\}^{-\frac{1}{2}}.$$

47

Expanding by the Binomial Theorem, we get

$$V = \frac{1}{1-h} \left\{ 1 - \frac{1}{2} \frac{2h (1 - \cos \phi)}{(1-h)^2} (1 - \mu^2) + \frac{1 \cdot 3}{2 \cdot 4} \left[ \frac{2h (1 - \cos \phi)}{(1-h)^2} \right]^2 (1 - \mu^2)^2 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \left[ \frac{2h (1 - \cos \phi)}{(1-h)^2} \right]^3 (1 - \mu^2)^3 + \&c.,$$

the (r+1)th term being

$$+ (-1)^r \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot 2r - 1}{2 \cdot 4 \cdot 6 \cdot ... \cdot 2r} \left[ \frac{2h (1 - \cos \phi)}{(1 - h)^2} \right]^r (1 - \mu^2)^r + \&c. \right\}.$$

Now multiply by  $d\mu$  and integrate from  $\mu = -1$  to  $\mu = 1$ , observing that

$$\int_{-1}^{1} (1 - \mu^{2})^{r} d\mu = 2 \int_{0}^{1} (1 - \mu^{2})^{r} d\mu = 2 \int_{0}^{\frac{\pi}{2}} (\sin \theta)^{2r+1} d\theta, \quad \text{[if } \mu = \cos \theta\text{]}$$

$$\int_{-1}^{1} (1 - \mu^{2})^{r} d\mu = 2 \left\{ \frac{2r 2r - 2 \dots 2}{2r + 1 2r - 1 \dots 3} \right\}.$$

or

Hence we have

$$\int_{-1}^{1} V d\mu = \frac{2}{1-h} \left\{ 1 - \frac{1}{3} \left[ \frac{2h (1 - \cos \phi)}{(1-h)^{2}} \right] + \frac{1}{5} \left[ \frac{2h (1 - \cos \phi)}{(1-h)^{2}} \right]^{2} - \&c.,$$

the (r+1)th term being

$$+ (-1)^r \frac{1}{2r+1} \left[ \frac{2h \left( 1 - \cos \phi \right)}{(1-h)^2} \right]^r + \&c. \right\}.$$

Now if 
$$\frac{2h(1-\cos\phi)}{(1-h)^2} = \tan^2\theta \text{ or } \tan\theta = \frac{h^{\frac{1}{2}} 2\sin\frac{1}{2}\phi}{1-h}$$
,

we have

$$\frac{2}{1-h} = \frac{\tan \theta}{h^{\frac{1}{2}} \sin \frac{1}{2} \phi},$$

and

$$\int_{-1}^{1} V d\mu = \frac{1}{h^{\frac{1}{2}} \sin \frac{1}{2} \phi} \left\{ \tan \theta - \frac{1}{3} \tan^{3} \theta + \frac{1}{5} \tan^{5} \theta - \&c. + (-1)^{r} \frac{1}{2r+1} \tan^{2r+1} \theta + \&c. \right\}$$

$$= \frac{1}{h^{\frac{1}{2}} \sin \frac{1}{2} \phi} \{\theta\}, \text{ as before found.}$$

Now 
$$\tan \theta \sqrt{(-1)} = \frac{h^{\frac{1}{2}} 2 \sqrt{(-1)} \sin \frac{1}{2} \phi}{1-h} = \frac{h^{\frac{1}{2}} (x^{\frac{1}{2}} - x^{-\frac{1}{2}})}{1-h}, \text{ if } 2 \cos \phi = x + \frac{1}{x};$$

$$\therefore \frac{\cos \theta - \sqrt{(-1)} \sin \theta}{\cos \theta + \sqrt{(-1)} \sin \theta} = \frac{1 - \sqrt{(-1)} \tan \theta}{1 + \sqrt{(-1)} \tan \theta} = \frac{1 - h - h^{\frac{1}{2}} (x^{\frac{1}{2}} - x^{-\frac{1}{2}})}{1 - h + h^{\frac{1}{2}} (x^{\frac{1}{2}} - x^{-\frac{1}{2}})},$$
or
$$\epsilon^{-2\theta \sqrt{(-1)}} = \frac{(1 - h^{\frac{1}{2}} x^{\frac{1}{2}}) (1 + h^{\frac{1}{2}} x^{-\frac{1}{2}})}{(1 + h^{\frac{1}{2}} x^{\frac{1}{2}}) (1 - h^{\frac{1}{2}} x^{-\frac{1}{2}})}.$$

Take logarithms of both sides and change signs;

where the law is manifest.

## SECTION IV.

ON THE PRODUCT OF ANY TWO LAPLACE'S COEFFICIENTS OF THE

$$\text{FORM } \frac{d^m P_n}{d\mu^m} \times \frac{d^p P_q}{d\mu^p}.$$

1. We have already shewn (see Vol. I. p. 487) how to exhibit the product of two Legendre's coefficients,  $P_n P_q$ , by means of a series of Legendre's coefficients. In order to complete the theory, we must shew how to multiply together any two Laplace's coefficients, so as to exhibit the product as a sum of Laplace's coefficients. There can be little doubt that a method similar to that which has been already employed will be equally successful in the more general case.

The general form of two Laplace's coefficients, whose product we wish to express, may be denoted by

$$R_n^m = \frac{d^m P_n}{d\mu^m} \left(1 - \mu^2\right)^{\frac{m}{2}} \cos m\lambda$$

and

$$R_q^p = \frac{d^p P_q}{d\mu^p} \left(1 - \mu^2\right)^{\frac{p}{2}} \cos p\lambda,$$

where  $\lambda$  is the longitude. The product is of the form

$$\begin{split} R_n^m R_q^p &= \frac{1}{2} \frac{d^m P_n}{d\mu^m} \frac{d^p P_q}{d\mu^p} (1 - \mu^2)^{\frac{m+p}{2}} \{ \cos (m+p) \lambda + \cos (m-p) \lambda \} \\ &= \frac{1}{2} \frac{d^m P_n}{d\mu^m} \frac{d^p P_q}{d\mu^p} (1 - \mu^2)^{\frac{m+p}{2}} \cos (m+p) \lambda \\ &+ \frac{1}{2} \frac{d^m P_n}{d\mu^m} \frac{d^p P_q}{d\mu^p} (1 - \mu^2)^p (1 - \mu^2)^{\frac{m-p}{2}} \cos (m-p) \lambda. \end{split}$$

Hence in order to solve our problem, we must find how to express  $\frac{d^m P_n}{d\mu^m} \frac{d^p P_q}{d\mu^p}$  in terms of the form  $\frac{d^{m+p} P}{d\mu^{m+p}}$  and also to express  $\frac{d^m P_n}{d\mu^m} \frac{d^p P_q}{d\mu^p} (1-\mu^2)^p$  in terms of the form  $\frac{d^{m-p} P}{d\mu^{m-p}}$ , multiplied by constants.

We will now try how far a priori considerations will guide us to the form of the coefficient of  $\frac{d^{m+p}P_{n+q-2r}}{d\mu^{m+p}}$  in the value of  $\frac{d^mP_n}{d\mu^m}\frac{d^pP_q}{d\mu^p}$ .

The highest index of  $P_x$  will be n+q, when r=0.

The coefficient of the corresponding term, where p=q and r=0, is

$$\frac{1 \cdot 3 \cdot 5 \dots (2p-1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-1)}.$$

But in passing from the value of  $\frac{d^p P_{q-1}}{d\mu^p} \frac{d^m P_n}{d\mu^m}$  to that of  $\frac{d^p P_q}{d\mu^p} \frac{d^m P_n}{d\mu^m}$ , the coefficient of the term with the highest index of P will be multiplied by

$$\frac{2q-1}{q-p} \frac{n+q-m-p}{2n+2q-1},$$

which equals

$$\frac{(q-p-1)!\ 1\cdot 3\cdot 5\ldots (2q-1)\,(n+q-m-p)!\ 1\cdot 3\cdot 5\ldots (2n+2q-3)}{(q-p)!\ 1\cdot 3\cdot 5\ldots (2q-3)\,(n+q-m-p-1)!\ 1\cdot 3\cdot 5\ldots (2n+2q-1)}.$$

The coefficient of the term which has the highest value of the subscribed index, viz. n+q, will be

$$\frac{(n+q-m-p)! \ 1 \cdot 3 \cdot 5 \dots (2q-1) (1 \cdot 3 \cdot 5 \dots 2n-1)}{(n-m)! \ (q-p)! \ 1 \cdot 3 \cdot 5 \dots (2n+2q-1)}.$$

The general term must reduce to this, when r=0.

Also when

$$p=0$$
 and  $m=0$ ,

the form of the general term must reduce to

$$\frac{(n+q-r)!}{r!\;(n-r)!\;(q-r)!} \frac{1 \cdot 3 \cdot 5 \ldots (2r-1) \cdot 1 \cdot 3 \cdot 5 \ldots (2q-2r-1) \cdot 1 \cdot 3 \cdot 5 \ldots (2n-2r-1)}{1 \cdot 3 \cdot 5 \ldots (2n+2q-2r-1)} \times \frac{(2n+2q-4r+1)}{(2n+2q-2r+1)},$$

i.e. to 
$$\frac{A\left(r\right)A\left(n-r\right)A\left(q-r\right)}{A\left(n+q-r\right)}\frac{2n+2q-4r+1}{2n+2q-2r+1},$$
 where 
$$A\left(r\right)=\frac{1\cdot3\cdot5\,\ldots\,(2r-1)}{1\cdot2\cdot3}\,,$$

as in a previous paper (see Vol. 1. p. 492).

Also if p=q, the coefficient of the general term reduces to

$$(-1)^r \frac{q!}{r! (q-r)!} \frac{1 \cdot 3 \cdot 5 \dots (2q-1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2q-2r+1)} (2n+2q-4r+1).$$

Also if p is greater than q, or if m is greater than n, the whole expression vanishes. This seems to imply that  $\frac{1}{(q-p)!}$  and  $\frac{1}{(n-m)!}$  occur in every term.

If m+p is greater than n+q, the values of the terms become indeterminate, since whatever their coefficients may be, they will be made to disappear by differentiation.

This would seem to imply that (n+q-m-p)! is a factor.

The expression 
$$A(r) = \frac{1 \cdot 3 \cdot 5 \dots (2r-1)}{r!} = \frac{2r!}{2^r (r!)^2}$$
.

Hence

or

2. Let us now express  $\frac{d^m P_n}{d\mu^m}$  or  $D^m P_n$  in terms of  $P_{n-m-2r}$ , adopting the notation  $D^m$  for  $\left(\frac{d}{d\mu}\right)^m$  as an operator. We have

$$DP_n - DP_{n-2} = (2n-1) P_{n-1}.$$

Hence by successive additions we get

$$DP_n = (2n-1) P_{n-1} + (2n-5) P_{n-3} + \&c. + 3P_1 \text{ if } n \text{ be, even,}$$

$$DP_n = (2n-1) P_{n-1} + (2n-5) P_{n-3} + \&c. + P_0 \text{ if } n \text{ be odd.}$$

By differentiating and substituting for the first differential coefficients

$$\begin{split} D^{2}P_{n} &= (2n-1) \left\{ (2n-3) \; P_{n-2} + (2n-7) \; P_{n-4} + \&c. + P_{0} \right\} \\ &+ (2n-5) \left\{ (2n-7) \; P_{n-4} + (2n-11) \; P_{n-6} + \&c. + P_{0} \right\} \\ &+ \&c. \\ &+ 3P_{0}, \; \text{if} \; n \; \text{be even.} \end{split}$$

The coefficient of  $P_{\circ}$  is

$$(2n-1)+(2n-5)+&c.+3 \text{ to } \frac{n}{2} \text{ terms} = \frac{n(n+1)}{2}$$

The coefficient of  $P_2$  is

$$5\left\{ (2n-1) + (2n-5) + &c. + 7 \right\} = 5\left\{ \frac{n(n+1)}{2} - 3 \right\} = \frac{5(n+3)(n-2)}{2}.$$

The coefficient of  $P_4$  is  $\frac{9(n+5)(n-4)}{2}$ , and so on.

The coefficient of  $P_{n-2}$  is  $(2n-3)\frac{2(2n-1)}{2} = (2n-3)(2n-1)$ .

Hence when n is even we have

$$\begin{split} 2D^{2}P_{n} &= 2\left(2n-1\right)\left(2n-3\right)P_{n-2} + 4\left(2n-3\right)\left(2n-7\right)P_{n-4} + \&c. \\ &+ 2\left(r+1\right)\left(2n-2r-1\right)\left(2n-4r-3\right)P_{n-2-2r} + \&c. \text{ to } + n\left(n+1\right)P_{o}. \end{split}$$

Similarly when n is odd we have

$$2D^{2}P_{n} = 2(2n-1)(2n-3)P_{n-2} + &c. + 2(r+1)(2n-2r-1)(2n-4r-3)P_{n-2-2r} + &c. to (n-1)(n+2)3P_{1}.$$

Following the same method of expansion we get values for the successive differential coefficients,

$$\begin{split} 2D^{3}P_{n} &= \Sigma\left\{ (r+1)\left(2n-2r-1\right)\left(2n-4r-3\right)DP_{n-2-2r}\right\} \\ &= 2\left(2n-1\right)\left(2n-3\right)\left\{ \left(2n-5\right)P_{n-3} + \left(2n-9\right)P_{n-5} + \&c. + P_{0}\right\} \\ &+ 4\left(2n-3\right)\left(2n-7\right)\left\{ \left(2n-9\right)P_{n-5} + \&c. + P_{0}\right\} + \&c. \\ &+ 2\left(r+1\right)\left(2n-2r-1\right)\left(2n-4r-3\right)\left\{ \left(2n-4r-5\right)P_{n-2r-3} + \&c. + P_{0}\right\} \\ &+ \&c. + \left(n-1\right)\left(n+2\right)3P_{0}, \text{ when } n \text{ is odd.} \end{split}$$

The coefficients of the successive terms when collected give the law of formation as follows:

The coefficient of  $(2n-4r-1) P_{n-2r-1}$  is

$$r(r+1)(2n-2r+1)(2n-2r-1),$$

and the last term is that when n-2r-1=0 or 1, so that the coefficient of  $P_0$  is  $\frac{(n-1)(n+1)(n+2)n}{2\cdot 2}$  when n is odd, and the coefficient of  $P_1$  is  $\frac{(n-2)n(n+3)(n+1)3}{2\cdot 2}$  when n is even.

Hence

$$2D^{3}P_{n} = \sum \{(r+1)(r+2)(2n-2r-1)(2n-2r-3)(2n-4r-5)P_{n-2r-3}\}.$$

Continuing the same method of reasoning and applying the method of induction to prove the law for successive terms, we get

$$3! \ D^*P_n = \Sigma \left\{ (r+1) \left( r+2 \right) \left( r+3 \right) \left( 2n-2r-1 \right) \left( 2n-2r-3 \right) \right. \\ \left. \times \left( 2n-2r-5 \right) \left( 2n-4r-7 \right) P_{n-2r-4} \right\},$$

writing down only the (r+1)th term.

When n is odd, the last term is when n-2r-4=1, so that the term is  $\frac{n-3}{2} \frac{n-1}{2} \frac{n+1}{2} (n+4) (n+2) n \cdot 3P_1.$ 

When n is even, the last term is when n-2r-4=0, so that the last term is

$$\frac{n-2}{2}\frac{n}{2}\frac{n+2}{2}(n+3)(n+1)(n-1)P_{o}$$
.

Hence we get the (r+1)th term in the expression for

$$(m-1)! \ D^m P_n = \Sigma \left\{ (r+1) \left( r+2 \right) \dots \left( r+m-1 \right) \left( 2n-2r-1 \right) \left( 2n-2r-3 \right) \dots \right. \\ \left. \times \left( 2n-2r-2m+3 \right) \left( 2n-4r-2m+1 \right) P_{n-m-2r} \right\},$$

the last value for n-m-2r being 0 or 1, according as n-m is even or odd.

$$D^{m}P_{n} = \Sigma \left. \begin{cases} (r+m-1)! & 1 \cdot 3 \cdot 5 \dots (2n-2r-1) \\ r! & (m-1)! & 1 \cdot 3 \cdot 5 \dots (2n-2m-2r+1) \end{cases} (2n-2m-4r+1) P_{n-m-2r} \right\}.$$

Putting n+1 for n and m+1 for m we get

$$D^{m+1}P_{n+1} = \Sigma \left\{ \frac{(m+r)!}{r! \ m!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r+1)}{1 \cdot 3 \cdot 5 \dots (2n-2m-2r+1)} \left( 2n-2m-4r+1 \right) P_{n-m-2r} \right\}.$$

3. We have seen above that  $(2n+1) D^m P_n = D^{m+1} P_{n+1} - D^{m+1} P_{n-1}$ , and also that  $(2n+1) \mu D^m P_n = (n-m+1) D^m P_{n+1} + (n+m) D^m P_{n-1}$ .

Hence substituting the values given from the above series for  $D^{m+1}P_{n+1}$  and  $D^{m+1}P_{n-1}$ , and taking the term involving  $P_{n-m-2r}$  in the series for  $\mu D^{m+1}P_n$ , we get

$$\begin{split} &(2n+1)\,\mu D^{m+1}P_{n} = (n-m)\,D^{m+1}P_{n+1} + (n+m+1)\,D^{m+1}P_{n-1},\\ &(2n+1)\,\mu D^{m+1}P_{n} = \Sigma\,\left\{\frac{(m+r-1)\,!}{m\,!\,\,(r-1)\,!}\,\frac{1\,.\,3\,.\,5\,\ldots\,(2n-2r-1)}{1\,.\,3\,.\,5\,\ldots\,(2n-2m-2r-1)}\right.\\ &\qquad \times \left[\frac{m+r}{r}\,\frac{(2n-2r+1)\,(n-m)}{(2n-2m-2r+1)} + (n+m+1)\right](2n-2m-4r+1)\,P_{n-m-2r}\right\}. \end{split}$$

The quantity in brackets = (2n+1)  $\left[\frac{(n-m)m+r(2n-2m-2r+1)}{r(2n-2m-2r+1)}\right]$ ;

hence

$$\begin{split} \mu D^{m+1} P_{n} &= \Sigma \left\{ \frac{\left(m+r-1\right)!}{m \mid r \mid} \; \frac{1 \cdot 3 \cdot 5 \, \ldots \left(2n-2r-1\right)}{1 \cdot 3 \cdot 5 \, \ldots \left(2n-2m-2r+1\right)} \right. \\ & \left. \times \left(2n-2m-4r+1\right) P_{n-m-2r} \! \left\{ \left(n-m\right) \left(m+2r\right) - r \left(2r-1\right) \right\} \right\}. \end{split}$$

4. To express the value of  $(1-\mu^2)^p D^{m+p} P_n$ .

We have 
$$(2n+1) D^m P_n = D^{m+1} P_{n+1} - D^{m+1} P_{n-1}$$
.

Also 
$$(2n+1) \mu D^{m+1} P_n = (n-m) D^{m+1} P_{n+1} + (n+m+1) D^{m+1} P_{n-1}$$

From the fundamental differential equation we get

$$(1-\mu^2) D^{m+2} P_n - 2(m+1) \mu D^{m+1} P_n + (n-m)(n+m+1) D^m P_n = 0.$$

Hence

$$(2n+1) (1-\mu^2) D^{m+2} P_n + (n-m) (n-m-1) D^{m+1} P_{n+1} - (n+m+1) (n+m+2) D^{m+1} P_{n-1} = 0.$$

Or

$$(1-\mu^2) D^{m+2} P_n = -\frac{(n-m)(n-m-1)}{2n+1} D^{m+1} P_{n+1} + \frac{(n+m+1)(n+m+2)}{2n+1} D^{m+1} P_{n-1}.$$

Multiply by  $(1-\mu^2)$  and repeat the above process on the right side of the equation, then

$$\begin{split} (1-\mu^2)^2 \, D^{m+2} P_n &= \frac{(n-m+2) \, (n-m+1) \, (n-m) \, (n-m-1)}{(2n+1) \, (2n+3)} \, D^m P_{n+2} \\ &- 2 \, \frac{(n-m) \, (n-m-1) \, (n+m+1) \, (n+m+2)}{(2n-1) \, (2n+3)} \, D^m P_n \\ &+ \frac{(n+m+2) \, (n+m+1) \, (n+m) \, (n+m-1)}{(2n-1) \, (2n+1)} \, D^m P_{n-2}. \end{split}$$

By repeating the above process we get

$$(1-\mu^2)^3 D^{m+3} P_n = -\frac{(n-m+3)\left(n-m+2\right)\ldots\left(n-m-2\right)}{(2n+1)\left(2n+3\right)\left(2n+5\right)} D^m P_{n+3} \\ + \frac{(n-m+1)(n-m)\ldots(n-m-2)\left(n+m+3\right)(n+m+2)}{(2n+1)\left(2n+3\right)} \left[\frac{1}{2n+5} + \frac{2}{2n-1}\right] D^m P_{n+1} \\ \text{A. II.}$$

$$-\frac{(n-m-1)(n-m-2)(n+m+3)(n+m+2)(n+m+1)(n+m)}{(2n-1)(2n+1)} \times \left[\frac{2}{2n+3} + \frac{1}{2n-3}\right] D^m P_{n-1} + \frac{(n+m+3)(n+m+2)\dots(n+m-2)}{(2n-3)(2n-1)(2n+1)} D^m P_{n-3}.$$

$$+\frac{(n-m+3)(n-m+2)\dots(n+m-2)}{(2n+1)(2n+3)(2n+5)} D^m P_{n-3}.$$

$$+3\frac{(n-m+1)(n-m)(n-m-1)(n-m-2)(n+m+3)(n+m+2)}{(2n-1)(2n+1)(2n+5)} D^m P_{n+1} - 3\frac{(n-m-1)(n-m-2)(n+m+3)(n+m+2)(n+m+1)(n+m)}{(2n-3)(2n+1)(2n+3)} D^m P_{n-1} + \frac{(n+m+3)(n+m+2)(n+m+1)(n+m-1)(n+m-2)}{(2n-3)(2n-1)(2n+1)} D^m P_{n-3}.$$

The law which is here observed is also found to hold for  $(1 - \mu^2)^4 D^{m+4} P_n$ , and is true generally.

The general term of  $(1-\mu^2)^p D^{m+p} P_n$  is

$$\begin{split} &(-1)^{p+r} \frac{p \ (p-1) \ (p-2) \dots (p-r+1)}{r!} \\ &\times \frac{(n-m+p-2r) \dots (n-m-p+1) \ (n+m+p) \dots (n+m+p-2r+1)}{(2n-2r+1) (2n-2r+3) \dots (2n+2p-2r+1)} \\ &\qquad \qquad \times (2n+2p-4r+1) \ D^m P_{n+p-2r}. \end{split}$$

This may be expressed under the form

$$\begin{split} (-1)^{p+r} \frac{p!}{r!} \frac{p!}{(p-r)!} & \frac{(n-m+p-2r)!}{(n-m-p)!} \frac{(n+m+p)!}{(n+m+p-2r)!} \\ & \times \frac{1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-2r+1)} (2n+2p-4r+1) D^m P_{n+p-2r}. \end{split}$$

As a test of the correctness of this result, when m=0, this reduces to the expression previously found for  $(1-\mu^2)^p D^p P_n$ .

Hence the general or (r+1)th term in  $(\mu^2-1)^p D^{m+p} P_n$  is

$$(-1)^{r} \frac{p!}{r! (p-r)!} \frac{(n-m+p-2r)! (n+m+p)! 1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{(n-m-p)! (n+m+p-2r)! 1 \cdot 3 \cdot 5 \dots (2n+2p-2r+1)} \times (2n+2p-4r+1) D^{m} P_{n+v-2r}$$

$$= (-1)^{r} \frac{p! 2^{r}}{(n-m+p-2r)! (n-m+p-2r)! (n+m+p)! (n+p-r)!}$$

$$= (-1)^{r} \frac{p! \ 2^{r}}{r! \ (p-r)!} \ \frac{(2n-2r)! \ (n-m+p-2r)! \ (n+m+p)! \ (n+p-r)!}{(n-r)! \ (n-m-p)! \ (n+m+p-2r)! \ (2n+2p-2r+1)!} \\ \times (2n+2p-4r+1) D^{m} P_{n+p-2r}.$$

Hence putting m-p for m, the general term in  $(\mu^2-1)^p D^m P_n$  is

$$= (-1)^r \frac{p! \ 2^p}{r! \ (p-r)!} \ \frac{(2n-2r)! \ (n-m+2p-2r)! \ (n+m)! \ (n+p-r)!}{(n-r)! \ (n-m)! \ (n+m-2r)! \ (2n+2p-2r+1)!} \\ \times (2n+2p-4r+1) \ D^{m-p} P_{n+p-2r}.$$

5. From the expression for  $P_n$  we get

$$\int_{-r}^{p} P_{n} d\mu^{p} = \sum_{r=0}^{p} \left(-1\right)^{r} \frac{p!}{r! (p-r)!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-2r+1)} \left(2n+2p-4r+1\right) P_{n+p-2r} \cdot \frac{p!}{r! (p-r)!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-2r+1)} \left(2n+2p-4r+1\right) P_{n+p-2r} \cdot \frac{p!}{r!} \frac{1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-2r+1)} \left(2n+2p-4r+1\right) P_{n+p-2r} \cdot \frac{p!}{n+p-2r} \cdot \frac{$$

Now differentiating m+p times we get

$$\begin{split} D^{n}P_{n} = & \Sigma \left(-1\right)^{r} \frac{p!}{r! \; (p-r)!} \frac{1 \cdot 3 \cdot 5 \, \ldots \left(2n-2r-1\right)}{1 \cdot 3 \cdot 5 \, \ldots \left(2n+2p-2r+1\right)} \\ & \times \left(2n+2p-4r+1\right) D^{m+p} P_{n+p-2r}. \end{split}$$

We have also

$$D^{p}P_{p}=1.3.5...(2p-1),$$

and

$$D^{p}P_{p+1}=1.3.5...(2p+1)\mu$$
.

Now by formulae obtained in an earlier part of the work (see p. 255) we have

$$DP_{p+1} = \mu DP_p + (p+1)P_p$$

and

$$DP_{p-1} = \mu DP_p - pP_p;$$

hence we have

$$DP_{n+1} - DP_{n-1} = (2p+1) P_n$$

Putting p+1 for p in this equation we get

$$DP_{p+2} - DP_p = (2p+3) P_{p+1}$$
.

Differentiating this equation successively we get

$$D^{2}P_{p+2}-D^{2}P_{p}=(2p+3)DP_{p+1},$$

and similar equations until we come to

$$D^p P_{p+2} - D^p P_p = (2p+3) D^{p-1} P_{p+1};$$

and differentiating once more (since  $D^{p+1}P_p=0$ ) we get

$$D^{p+1}P_{p+2} = (2p+3)D^pP_{p+1}.$$

We have also from the above equations,

$$(2p+1)\mu DP_{p} = pDP_{p+1} + (p+1)DP_{p-1},$$

or 
$$(2n+2p-4r+1)\mu DP_{n+p-2r} = (n+p-2r)DP_{n+p-2r+1} + (n+p-2r+1)DP_{n+p-2r-1}$$

We have also from equation (6) in a previous part of the paper (p. 248),

$$(2n + 2p - 4r + 1) \mu D^{m+p} P_{n+p-2r} = (n - m - 2r + 1) D^{m+p} P_{n+p-2r+1}$$

$$+ (n + m + 2p - 2r) D^{m+p} P_{n+p-2r-1}.$$

Making use of the above equations we get

$$D^{n}P_{n} \times D^{p}P_{p} = \sum (-1)^{r} \frac{p!}{r! (p-r)!} \frac{1 \cdot 3 \cdot 5 \dots (2p-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-2r+1)} \times (2n+2p-4r+1) D^{n+p}P_{n+p-2r}$$

and

$$\begin{split} D^{m}P_{n} \times D^{p}P_{p+1} &= \Sigma \, (-1)^{r} \frac{p\,!}{r\,! \, (p-r)\,!} \, \frac{1 \, \cdot \, 3 \, \cdot \, 5 \, \ldots \, (2p+1) \, 1 \, \cdot \, 3 \, \cdot \, 5 \, \ldots \, (2n-2r-1)}{1 \, \cdot \, 3 \, \cdot \, 5 \, \ldots \, (2n+2p-2r+1)} \\ &\qquad \qquad \times (2n+2p-4r+1) \, \mu D^{m+p} P_{n+p-2r}. \end{split}$$

Writing down the (r+1)th and the rth term of this series we have

$$(-1)^r \frac{p!}{r! (p-r+1)!} \frac{1 \cdot 3 \cdot 5 \dots (2p+1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-2r+3)}$$

$$\begin{split} \times \left[ \left( 2n + 2p - 4r + 1 \right) \mu D^{^{m+p}} P_{^{n+p-2r}} \left( p - r + 1 \right) \left( 2n + 2p - 2r + 3 \right) \right. \\ \left. - \left( 2n + 2p - 4r + 5 \right) \mu D^{^{m+p}} P_{^{n+p-2r+2}} \times r \left( 2n - 2r + 1 \right) \right] . \end{split}$$

But we have

$$\begin{split} \left(2n+2p-4r+1\right)\mu D^{m+p}P_{n+p-2r} &= \left(n-m-2r+1\right)D^{m+p}P_{n+p-2r+1} \\ &+ \left(n+m+2p-2r\right)D^{m+p}P_{n+p-2r-1}, \end{split}$$

and

$$\begin{split} \left(2n+2p-4r+5\right)\mu D^{m+p}P_{_{n+p-2r+2}} &= \left(n-m-2r+3\right)D^{^{m+p}}P_{_{n+v-2r+3}} \\ &\quad + \left(n+m+2p-2r+2\right)D^{m+p}P_{_{n+p-2r+1}}. \end{split}$$

Substituting these expressions, the coefficient of  $D^{m+p}P_{n+p-2r+1}$  in the above square brackets becomes

$$(n-m-2r+1) (p-r+1) (2n+2p-2r+3) - (n+m+2p-2r+2) r (2n-2r+1)$$

$$= \{(2n+2p-4r+3)+2r\} (n-m-2r+1) (p-r+1)$$

$$- \{(2n+2p-4r+3)-2 (p-r+1)\} (n+m+2p-2r+2) r$$

$$= (2n+2p-4r+3) \{n (p-2r+1)-m (p+1)-(p-r+1) (2r-1)\}$$

$$= (2n+2p-4r+3) \{(n-m-2r+1) (p+1)-r (2n-2r+1)\}$$

$$= (2n+2p-4r+3) \{(n-m-2r+1) (p-r+1)-r (n+m)\}.$$

Hence the coefficient of  $(2n+2p-4r+3) D^{m+p} P_{n+p-2r+1}$  in  $D^m P_n \times D^p P_{p+1}$  is

$$(-1)^r \frac{p!}{r! (p-r+1)!} \frac{1 \cdot 3 \cdot 5 \dots (2p+1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-2r-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-2r+3)} \times \{ (n-m-2r+1) (p-r+1) - r (n+m) \}.$$

In the expression for  $D^m P_n \times D^p P_{n+1}$ , the coefficient of

$$D^{m+p}P_{n+p-2r+1} \times (2n+2p-4r+3)$$

expressed in factorials is

$$(-1)^{r} \frac{2(2p+1)! \times (2n-2r)! (n+p-r+1)!}{r! (p-r+1)! (n-r)! (2n+2p-2r+3)!} \\ \times [(n-m+1)(p+1)-r(2n+2p-2r+3)] \\ = (-1)^{r} \frac{(2p+1)! (2n-2r)! (n+p-r+1)!}{r! (p-r+1)! (n-r)! (2n+2p-2r+3)!} \\ \times [(n-m+1)2(p+1)-2r(2n+2p-2r+3)] \\ = (-1)^{r} \frac{(q+p)! (2n-2r)! (n+q-r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)!} [(2n-2r+1)(2q-2r)-2q(n+m)].$$

Hence in the value of  $D^m P_n \times D^p P_q$ , when q = p, the coefficient of  $(2n + 2q - 4r + 1) D^{m+p} P_{n+q-2r}$ 

expressed in factorials is

$$(-1)^r \frac{(q+p)! (2n-2r)! (n+q-r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)!}$$
.

Similarly in the expression for  $D^m P_n \times D^p P_q$ , when q = p + 1, the coefficient of  $(2n + 2q - 4r + 1) D^{m+p} P_{n+q-2r}$  is

$$(-1)^{r} \frac{(q+p)! (2n-2r)! (n+q-r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)!} [(2n-2r+1) (2q-2r) - 2q (n+m)].$$

NOTE. In the last expression the quantity in the square brackets may be stated in either of the following forms:

$$[(n-m+1)2q-2r(2n+2q-2r+1)] = [(n-m-2r+1)2q-2r(2n-2r+1)],$$
or
$$= [\{(n+q-2r)-(m+p)\}2q-2r(2n-2r+1)],$$
or
$$= [\{(n+q)-(m+p)\}2q-2r\{2(n+q)-2r+1\}],$$
or
$$= [(j-i)(j+i+1)-(n+m)(n-m+1)],$$

where j = n + q - 2r and i = m + p.

6. From the equation

$$(2n+1) \mu D^m P_n = (n-m+1) D^m P_{n+1} + (n+m) D^m P_{n-1},$$

we get, by putting n+p-2r for n and m+p for m,

$$\begin{split} \left(2n+2p-4r+1\right)\mu D^{^{m+p}}P_{^{n+p-2r}} &= \left(n-m-2r+1\right)D^{^{m+p}}P_{^{n+p-2r+1}} \\ &\quad + \left(n+m+2p-2r\right)D^{^{m+p}}P_{^{n+p-2r-1}}. \end{split}$$

If we put n+p-2r+1 for n and m+p for m, we get

$$\begin{split} \left(2n+2p-4r+3\right)\mu D^{m+p}P_{n+p-2r+1} &= \left(n-m-2r+2\right)D^{m+p}P_{n+p-2r+2} \\ &\quad + \left(n+m+2p-2r+1\right)D^{m+p}P_{n+p-2r}. \end{split}$$

The successive equations may be obtained from these two formulae by changing r into r-1, r-2, &c. in the two formulae alternately. Thus putting r-1 for r in the last formula, we get

$$\begin{split} (2n+2p-4r+7)\,\mu D^{^{m+p}}P_{^{n+p-2r+3}} &= \left(n-m-2r+4\right)D^{^{m+p}}P_{^{n+p-2r+4}} \\ &\quad + \left(n+m+2p-2r+3\right)D^{^{m+p}}P_{^{n+p-2r+2}}. \end{split}$$

Again, putting p+1 for n and p for m in the above equation, transposing and multiplying the result by  $D^m P_n$ , we get

$$\begin{split} 2D^{m}P_{n}\times D^{p}P_{p+2} &= (2p+3)\,\mu D^{m}P_{n}\times D^{p}P_{p+1} - (2p+1)\,D^{m}P_{n}\times D^{p}P_{p} \\ &= \mu D^{m}P_{n}\times D^{p+1}P_{p+2} - D^{m}P_{n}\times D^{p+1}P_{p+1}. \end{split}$$

From the series obtained for  $D^m P_n \times D^p P_{p+1}$  by means of two of the above equations and by putting p+1 for p, we may get the value of the coefficient of  $D^{m+p} P_{n+p-2r+2}$  in the expression for  $\mu D^m P_n \times D^{p+1} P_{p+2}$ .

We can also get the coefficient of  $D^{m+p}P_{n+p-2r+2}$  in the expression for  $D^mP_n\times D^{p+1}P_{p+1}$ , and hence we may obtain the value of  $2D^mP_n\times D^pP_{p+2}$  in the form of a series.

Our object is to find the law of formation of the coefficients of the successive terms.

Following the same process of successive substitution we obtain in the same manner, when q = p + 2,

$$\begin{split} 2\times D^{m}P_{n}\times D^{p}P_{q} &= \Sigma\left(-1\right)^{r}\frac{(q+p)!\;(2n-2r)!\;(n+q-r)!}{r!\;(q-r)!\;(n-r)!\;(2n+2q-2r+1)!} \\ &\qquad \qquad \times\left(2n+2q-4r+1\right)D^{m+p}P_{n+q-2r} \\ &\qquad \times\left[\left(2n-2r+1\right)\left(2n-2r+2\right)\left(2q-2r\right)\left(2q-2r-1\right) \\ &\qquad \qquad -2\left(2n-2r+1\right)\left(2q-2r\right)\left(2q-1\right)\left(n+m\right)+\left(2q-1\right)2q\left(n+m\right)\left(n+m-1\right)\right]. \end{split}$$

The quantity in square brackets may be expressed in the form

$$\left[ \frac{(2n-2r+2)! \ (2q-2r)!}{(2n-2r)! \ (2q-2r-2)!} - 2 \, \frac{(2n-2r+1)! \ (2q-2r)! \ (2q-1)! \ (n+m)!}{(2n-2r)! \ (2q-2r-1)! \ (2q-2)! \ (n+m-1)!} \right. \\ \left. + \frac{2q! \ (n+m)!}{(2q-2)! \ (n+m-2)!} \right].$$

Here the law of formation is clear.

7. Applying the same process to the equation

$$3D^{m}P_{n}\times D^{p}P_{p+3} = (2p+5)\,\mu D^{m}P_{n}\times D^{p}P_{p+2} - (2p+2)\,D^{m}P_{n}\times D^{p}P_{p+1},$$

it appears that, when q = p + 3, we have the corresponding coefficient in

$$\begin{split} &3! \; D^m P_n \times D^p P_q = \Sigma \; (-1)^r \frac{(q+p)! \; (2n-2r)! \; (n+q-r)!}{r! \; (q-r)! \; (n-r)! \; (2n+2q-2r+1)!} \\ &\times \left[ \frac{(2n-2r+3)! \; (2q-2r)!}{(2q-2r-3)! \; (2n-2r)!} - 3 \frac{(2n-2r+2)! \; (2q-2r)! \; (2q-2)! \; (n+m)!}{(2q-2r)! \; (2q-3)! \; (n+m-1)!} \right. \\ &+ 3 \frac{(2n-2r+1)! \; (2q-2r)! \; (2q-1)! \; (n+m)!}{(2q-2r-1)! \; (2n-2r)! \; (2q-3)! \; (n+m-2)!} - \frac{2q! \; (n+m)!}{(2q-3)! \; (n+m-3)!} \right]. \end{split}$$

Each of the above quantities is included in the expression

$$(q-p)! \ D^{m}P_{n} \times D^{p}P_{q} = \Sigma \ (-1)^{r} \frac{(q+p)! \ (2n-2r)! \ (n+q-r)!}{r! \ (q-r)! \ (n-r)! \ (2n+2q-2r+1)!} \\ \times \left[ \frac{(2n-2r+q-p)! \ (2q-2r)!}{(2q-2r-(q-p))! \ (2n-2r)!} \right. \\ \left. \times \left[ \frac{(2n-2r+q-p)! \ (2q-2r)!}{(2q-2r-(q-p-1))! \ (2n-2r)! \ (q+p+1)! \ (n+m)!} \right. \\ \left. + (q-p) \frac{(2n-2r+q-p-1)! \ (2q-2r)! \ (q+p+1)! \ (n+m-1)!}{(2q-2r)! \ (q-p)! \ (2n-2r)! \ (q+p)! \ (n+m-1)!} \right. \\ \left. + (-1)^{s} \frac{(q-p)! \ (2n-2r+q-p-s)! \ (2q-2r)! \ (q+p+s)! \ (n+m)!}{s! \ (q-p-s)! \ (2q-2r-(q-p-s))! \ (2n-2r)! \ (q+p)! \ (n+m-s)!} \right. \\ \left. + (-1)^{s} \frac{(q-p)! \ (2n-2r+q-p-s)! \ (2q-2r)! \ (q+p+s)! \ (n+m-s)!}{(2q-2r)! \ (q+p)! \ (n+m-s)!} \right. \\ \left. + (-1)^{s} \frac{(q-p)! \ (2n-2r-q-p-s)! \ (2q-2r-q-p-s)! \ (2n-2r)! \ (q+p+s)! \ (n+m-s)!}{(2n-2r)! \ (q+p)! \ (n+m-s)!} \right. \\ \left. + (-1)^{s} \frac{(q-p)! \ (2n-2r-q-p-s)! \ (2q-2r-q-p-s)! \ (2n-2r)! \ (q+p+s)! \ (n+m-s)!}{(2n-2r)! \ (q+p-s)! \ (n+m-s)!} \right. \\ \left. + (-1)^{s} \frac{(q-p)! \ (2n-2r-q-p-s)! \ (2n-2r-q-p-s)! \ (2n-2r)! \ (q+p-s)! \ (n+m-s)!}{(2n-2r-q-p-s)! \ (2n-2r-q-p-s)! \ (2n-2r-q-p-s)! \ (2n-2r-q-p-s)!} \right] \right. \\ \left. + (-1)^{s} \frac{(q-p)! \ (2n-2r-q-p-s)! \ (2n-2$$

From which it appears that the general term in the expansion of  $D^n P_n \times D^p P_q$  is

$$\frac{(-1)^{r+s} (q+p)! \; (2n-2r)! \; (n+q-r)! \; (q-p)! \; (2q-2r)! \; (n+m)! \; (2n-2r+q-p-s)! \; (q+p+s)!}{(q-p)! \; r! \; (q-r)! \; (n-r)! \; (2n+2q-2r+1)! \; s! \; (q-p-s)! \; (2n-2r)! \; (2q-2r-(q-p-s))! \; (q+p)! \; (n+m-s)!}{\times (2n+2q-4r+1) \; D^{m+p} P_{n+q-2r}}$$

where s takes all values from 0 to (q-p).

Cancelling common terms in numerator and denominator we may reduce this to

8. Now let m=0 and p=0, so as to reduce to the case of the product  $P_n \times P_q$ .

Then the coefficient of  $(2n+2q-4r+1) P_{n+q-2r}$  will become

$$(-1)^{r} \frac{(n+q-r)! (2q-2r)! n!}{r! (q-r)! (n-r)! (2n+2q-2r+1)!} \times \Sigma (-1)^{s} \frac{(q+s)! (2n-2r+q-s)!}{s! (q-s)! (n-s)! (q-2r+s)!}.$$

But by a former investigation (see p. 374) the coefficient in this case is

$$\frac{A(n-r)A(r)A(q-r)}{A(n+q-r)(2n+2q-2r+1)},$$

where

$$A(r) \times 2^r \times (r!)^2 = 2r!.$$

Hence this coefficient

$$=\frac{(2n-2r)!}{(r!(n-r)!(q-r)!)^2(2n+2q-2r+1)!} \times 2^{n+q-r}$$

Comparing these expressions we see that

$$\Sigma (-1)^{s} \frac{(q+s)! (2n-2r+q-s)!}{s! (q-s)! (n-s)! (q-2r+s)!} = (-1)^{r} \frac{2r! (2n-2r)! (n+q-r)!}{n! r! (n-r)! (q-r)!},$$

which is a remarkable expression.

It will be well to test this formula numerically.

For instance let n=3, q=3, r=0.

Then the series is

$$\frac{1.2.3.1.2.3.4.5.6.7.8.9}{1.2.3.1.2.3.1.2.3} = \frac{1.2.3.4.1.2.3.4.5.6.7.8}{1.1.2.1.2.1.2.1.2.3.4} + \frac{1.2.3.4.5.1.2.3.4.5.6.7}{1.2.1.1.1.2.3.4.5} = \frac{1.2.3.4.5.6.1.2.3.4.5.6}{1.2.3.1.2.3.4.5.6}$$

$$= 20.7.8.9 - 30.6.7.8 + 60.6.7 - 120 = 2400.$$

Also the other expression

$$= \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3}$$
$$= 20 \cdot 120 = 2400, \text{ which agrees.}$$

Next let r=1.

Then the series is

$$\frac{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 1} - \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 1 \cdot 2 \cdot 1 \cdot 2 \cdot 1 \cdot 2} + \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 3} - \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 4} = 20 \cdot 6 \cdot 7 - 108 \cdot 20 + 60 \cdot 20 - 120$$

$$= 20 \left[ 42 - 108 + 60 - 6 \right] = -240,$$

and the other expression =  $-\frac{1 \cdot 2 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 2} = -12 \cdot 4 \cdot 5 = -240$ , which agrees.

Next let r=2.

Then s=0 gives zero since f(-1) is infinity; and the series is

$$-\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 1 \cdot 2 \cdot 1 \cdot 2} + \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 1 \cdot 2 \cdot 3}{1 \cdot 2 \cdot 1 \cdot 1 \cdot 1} - \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 1 \cdot 2}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2}$$

$$= -144 + 360 - 120$$

$$= 96;$$

and the other expression is

$$\frac{1.2.3.4.1.2.1.2.3.4}{1.2.3.1.2.1.1} = 96$$
, which agrees.

Next let r=3.

Then s=0, 1, 2 give zero results; also when s=3 the series is reduced to the single term

$$-\frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 2 \cdot 3} = -120,$$

and the other expression is  $-\frac{1.2.3.4.5.6.1.2.3}{1.2.3.1.2.3} = -120$ , which agrees.

Hence there can be no doubt of the accuracy of this result, which is very curious.

9. We may obtain the first and last terms in the value of

$$D^m P_n \times D^p P_q$$

in a more convenient form.

The first and last terms in the value of  $D^m P_n$  in  $D^{m+p} P$  will be

$$\begin{split} D^{m}P_{n} = & \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{1 \cdot 3 \cdot 5 \cdot \dots (2n+2p-1)} D^{m+p}P_{n+p} + \&c. \\ & + (-1)^{p} \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-2p-1)}{1 \cdot 3 \cdot 5 \cdot \dots (2n+1)} (2n-2p+1) D^{m+p}P_{n-p}. \end{split}$$

Hence in  $D^m P_n \times D^p P_p$  the first and last terms are

$$\frac{1 \cdot 3 \cdot 5 \dots (2p-1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-1)} D^{m+p} P_{n+p}$$

and 
$$(-1)^p \frac{1 \cdot 3 \cdot 5 \dots (2p-1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-2p-1)}{1 \cdot 3 \cdot 5 \dots (2n+1)} (2n-2p+1) D^{m+p} P_{n-p}$$
.

Multiplying by  $(2p+1)\mu$  we get the value of  $D^mP_n \times D^pP_{p+1}$ 

$$= \frac{1 \cdot 3 \cdot 5 \dots (2p+1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-1) (n-m+1)}{1 \cdot 3 \cdot 5 \dots (2n+2p-1) (2n+2p+1)} D^{m+p} P_{n+p+1} + \&c.$$

$$-(-1)^{p} \frac{1 \cdot 3 \cdot 5 \dots (2p+1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-2p+1) (n+m)}{1 \cdot 3 \cdot 5 \dots (2n+1) (2n-2p+1)} D^{m+p} P_{n-p-1}.$$

Now  $2D^nP_n \times D^pP_{p+2} = (2p+3) \mu D^pP_{p+1} + \text{terms}$  which do not affect the result wanted.

Hence  $2D^m P_n \times D^p P_{p+2}$ 

$$=\frac{1\cdot 3\cdot 5\, \ldots\, (2p+3)\, 1\cdot 3\cdot 5\, \ldots\, (2n-1)}{1\cdot 3\cdot 5\, \ldots\, (2n+2p+1)\, (2n+2p+3)}\, (n-m+1)\, (n-m+2)\, D^{m+p} P_{n+p+2} + \&c.$$

$$+(-1)^{p}\frac{1\cdot 3\cdot 5\ldots (2p+3)\ 1\cdot 3\cdot 5\ldots (2n-2p-1)}{1\cdot 3\cdot 5\ldots (2n+1)\left(2n-2p-1\right)}(n+m)\left(n+m-1\right)D^{m+p}P_{n-p-2}.$$

Again 3!  $D^m P_n \times D^p P_{p+3} = (2p+5) \mu D^m P_n \times D^p P_{p+2} + \text{terms not required}$ 

$$=\frac{1\cdot 3\cdot 5\dots (2p+5)1\cdot 3\cdot 5\dots (2n-1)}{1\cdot 3\cdot 5\dots (2n+2p+3)(2n+2p+5)}$$

$$\times (n-m+1)(n-m+2)(n-m+3)D^{m+p}P_{n+p+3} + \&c.$$

$$-(-1)^{p} \frac{1 \cdot 3 \cdot 5 \dots (2p+5) \cdot 1 \cdot 3 \cdot 5 \dots (2n-2p-3)}{1 \cdot 3 \cdot 5 \dots (2n+1) \cdot (2n-2p-3)}$$

$$\times (n+m)(n+m-1)(n+m-2)D^{m+p}P_{n-p-3}$$

This may be conveniently written in the form  $(q-p)! D^m P_n \times D^p P_q$ 

$$=\frac{1\cdot 3\cdot 5\, \ldots\, (2q-1)\; 1\cdot 3\cdot 5\, \ldots\, (2n-1)\, (n-m+q-p)\,!}{1\cdot 3\cdot 5\, \ldots\, (2n+2q-1)\, (n-m)\,!}\, D^{\scriptscriptstyle m+p} P_{\scriptscriptstyle n+q} + \&c.$$

$$+(-1)^{q}\frac{1\cdot 3\cdot 5\cdots (2q-1)1\cdot 3\cdot 5\cdots (2n-2q+1)(n+m)!}{1\cdot 3\cdot 5\cdots (2n+1)(n+m-q+p)!}D^{m+p}P_{n-q}.$$

Putting it in this form we see that this expression is general and includes the previous results for q-p=2 and q-p=1 and q=p.

Hence it is true for all values of q-p.

Expressing this result in factorials we get

$$\begin{split} (q-p)!.D^{m}P_{n}\times D^{p}P_{q} &= \frac{2q!\ 2n!\ (n+q)!\ (n-m+q-p)!}{q!\ n!\ (2n+2q)!\ (n-m)!}D^{m+p}P_{n+q} + \&c. \\ &+ (-1)^{q}\frac{2q!\ (2n-2q+1)!\ n!\ (n+m)!}{q!\ (n-q)!\ (2n+1)!\ (n+m-q+p)!}D^{m+p}P_{n-q}. \end{split}$$

10. The following is a simple method of determining the coefficient of  $D^{m+p}P_{n+q}$  in the product  $D^mP_n \times D^pP_q$ .

The coefficient of 
$$\mu^{n-m}$$
 in  $D^m P_n$  is  $\frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{(n-m)!}$ .

Hence the coefficient of  $\mu^{n-m+q-p}$  in the product  $D^m P_n \times D^p P_q$ 

is 
$$\frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \dots (2q-1)}{(n-m)! \cdot (q-p)!}$$
.

Similarly the coefficient of  $\mu^{n-m+q-p}$  in  $D^{m+p}P_{n+q}$ 

is 
$$\frac{1 \cdot 3 \cdot 5 \dots (2n+2q-1)}{(n+q-m-p)!}$$
.

Hence the coefficient of  $D^{m+p}P_{n+q}$  in the value of  $D^mP_n \times D^pP_q$ 

is 
$$\frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \dots (2q-1)}{1 \cdot 3 \cdot 5 \dots (2n+2q-1)} \frac{(n+q-m-p)!}{(n-m)! \cdot (q-p)!}$$

Also the coefficient of  $\mu^{n-m+q+p}$  in  $(\mu^2-1)^p D^m P_n \times D^p P_q$ 

is 
$$\frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \dots (2q-1)}{(n-m)! \cdot (q-p)!}$$

but the coefficient of the same power of  $\mu$  in  $D^{m-p}P_{n+q}$ 

is 
$$\frac{1 \cdot 3 \cdot 5 \dots (2n+2q-1)}{(n+q-m+p)!}$$
,

therefore the coefficient of  $D^{m-p}P_{n+q}$  in the value of  $(\mu^2-1)^pD^mP_n\times D^pP_q$ 

is 
$$\frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \dots (2q-1) \cdot (n+q-m+p)!}{1 \cdot 3 \cdot 5 \dots (2n+2q-1) \cdot (n-m)! \cdot (q-p)!},$$

supposing m to be not less than p.

NOTE. In the value of  $2D^mP_n$ .  $D^pP_q$  given in Art. 6 above (when q=p+2) the quantity contained in brackets [] may also be expressed in either of the following equivalent forms:

$$[2q(2q-1)(n-m-2r+1)(n-m-2r+2) -2(2q-1)(n-m-2r+2)(2n-2r+1) +2r(2r-1)(2n-2r+1)(2n-2r+2)],$$
or
$$[(n-m-2r+2)(n-m-2r+1)(2q-2r)(2q-2r-1) -2(n-m-2r+2)(2q-2r)(2r(n+m) +2r(2r-1)(n+m)(n+m-1)],$$
or
$$[(n-m-2r+2)(n-m-2r+1)(n+m+2q-2r)(n+m+2q-2r-1) -2(n-m-2r+2)(n+m+2q-2r-1)(n+m+2q-2r-1) +(n+m)(n+m-1)(n-m+1)(n-m+2)].$$

Hence using this last expression the coefficient of

$$(2n+2q-4r+1)D^{m+p}P_{n+q-2r}$$

in  $2D^mP_n \times D^pP_q$  will be

$$\begin{aligned} &(-1)^r \frac{(q+p)! \; (2n-2r)! \; (n+q-r)!}{r! \; (q-r)! \; (n-r)! \; (2n+2q-2r+1)!} \\ &\times \left[ \frac{(n-m+q-p-2r)! \; (n+m+2q-2r)!}{(n-m-2r)! \; (n+m+2q-2r-2)!} \right. \\ &- 2 \frac{(n-m+q-p-2r)! \; (n+m+2q-2r-1)! \; (n+m)! \; (n-m+1)!}{(n-m-2r+1)! \; (n+m+2q-2r-2)! \; (n+m-1)! \; (n-m)!} \\ &+ \frac{(n+m)! \; (n-m+2)!}{(n+m-2)! \; (n-m)!} \right] \\ &= (-1)^r \frac{(q+p)! \; (2n-2r)! \; (n+q-r)! \; (n-m+q-p-2r)! \; (n+m)!}{r! \; (q-r)! \; (n-r)! \; (2n+2q-2r+1)! \; (n+m+q+p-2r)! \; (n-m)!} \\ &\times \left[ \frac{(n+m+2q-2r)! \; (n-m)!}{(n-m-2r)! \; (n+m)!} - 2 \frac{(n+m+2q-2r-1)! \; (n-m+1)!}{(n-m-2r+1)! \; (n+m-1)!} \right. \\ &+ \frac{(n+m+q+p-2r)! \; (n-m+2)!}{(n-m+q-p-2r)! \; (n+m-2)!} \right]. \end{aligned}$$

Taking the first of the expressions in the above note, the coefficient of  $(2n+2q-4r+1) D^{m+p} P_{n+q-2r}$  in  $2D^m P_n . D^p P_q$  will be

$$(-1)^{r} \frac{(q+p)! (2n-2r)! (n+q-r)! 2r! (n-m+q-p-2r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)! (q+p)! (2n-2r)!}$$

$$\times \left[ \frac{2q! (2n-2r)!}{2r! (n-m-2r)!} - 2 \frac{(2q-1)! (2n-2r+1)!}{(2r-1)! (n-m-2r+1)!} + \frac{(2q-2)! (2n-2r+2)!}{(2r-2)! (n-m-2r+2)!} \right]$$

$$= (-1)^{r} \frac{2r! (n+q-r)! (n-m+q-p-2r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)!}$$

$$\times \left[ \frac{2q! (2n-2r)!}{2r! (n-m-2r)!} - 2 \frac{(2q-1)! (2n-2r+1)!}{(2r-1)! (n-m-2r+1)!} + \frac{(2q-2)! (2n-2r+2)!}{(2r-2)! (n-m-2r+2)!} \right] .$$

The general term arising from this square bracket is

$$(-1)^s \frac{(q-p)!}{s! (q-p-s)!} \frac{(2q-s)! (2n-2r+s)!}{(2r-s)! (n-m-2r+s)!},$$

where s has all values from 0 to q-p.

11. Again from the expression for  $(\mu^2 - 1)^p D^m P_n$  we may find the value of  $(\mu^2 - 1)^p D^m P_n \times D^p P_q$  in terms of the form  $D^{m-p} P_n$  multiplied by constants.

Thus from Art. 4 (p. 379) we have  $(\mu^2-1)^p D^m P_n \times D^p P_p$ 

$$= \Sigma \left(-1\right)^r \frac{p! \, 2^p \cdot 1 \cdot 3 \cdot 5 \dots (2p-1)! \, (2n-2r)! \, (n+m)! \, (n-m+2p-2r)! \, (n+p-r)!}{r! \, (p-r)! \, (n-r)! \, (n-m)! \, (n+m-2r)! \, (2n+2p-2r+1)!}$$

$$\times (2n+2p-4r+1) D^{m-p} P_{n+p-2r}$$

$$= \sum (-1)^r \frac{2p! (2n-2r)! (n+m)! (n-m+2p-2r)! (n+p-r)!}{r! (p-r)! (n-r)! (n-m)! (n+m-2r)! (2n+2p-2r+1)!} \times (2n+2p-4r+1) D^{m-p} P_{n+p-2r}.$$

Now multiply by  $(2p+1)\mu$  and we get

$$\times (\mu^2 - 1)^p D^m P_n \times D^p P_{p+1} = \text{terms of the form}$$

$$(-1)^{r-1}\frac{(2p+1)!\ (2n-2r+2)!\ (n+m)!\ (n-m+2p-2r+2)!\ (n+p-r+1)!}{(r-1)!\ (p-r+1)!\ (n-r+1)!\ (n-m)!\ (n+m-2r+2)!\ (2n+2p-2r+3)!}$$

$$\times \left[ \left( n - m + 2p - 2r + 3 \right) D^{^{m-p}} P_{n+p-2r+3} + \left( n + m - 2r + 2 \right) D^{^{m-p}} P_{n+p-2r+1} \right]$$

$$+ (-1)^r \frac{(2p+1)! \ (2n-2r)! \ (n+m)! \ (n-m+2p-2r)! \ (n+p-r)!}{r! \ (p-r)! \ (n-r)! \ (n-m)! \ (n+m-2r)! \ (2n+2p-2r+1)!}$$

$$\times \big[ \big( n - m + 2p - 2r + 1 \big) \, D^{m-p} P_{n+p-2r+1} + \big( n + m - 2r \big) \, D^{m-p} P_{n+p-2r-1} \big].$$

Taking only the coefficient of  $D^{m-p}P_{n+p-2r+1}$  in the result we have

$$(-1)^{r} \frac{(2p+1)! (2n-2r)! (n+m)! (n-m+2p-2r+1)! (n+p-r+1)!}{r! (p-r+1)! (n-r)! (n-m)! (n+m-2r+1)! (2n+2p-2r+3)!} \times [-2r (2n-2r+1) (n-m+2p-2r+2) + (p-r+1) (n+m-2r+1) (2n+2p-2r+3) 2].$$

The quantity in square brackets is

$$\begin{aligned} \left\{ \left(2n+2p-4r+3\right)+2r \right\} \left(2p-2r+2\right) \left(n+m-2r+1\right) \\ &- \left\{ \left(2n+2p-4r+3\right)-\left(n+m-2r+1\right) \right\} \left(2n-2r+1\right) 2r \\ &= \left(2n+2p-4r+3\right) \left\{ \left(n+m-2r+1\right) \left(2p-2r+2\right)-2r \left(2n-2r+1\right) \right\} \\ &+ \left(n+m-2r+1\right) 2r \left(2n+2p-4r+3\right) \\ &= \left(2n+2p-4r+3\right) \left\{ \left(n+m-2r+1\right) \left(2p+2\right)-2r \left(2n-2r+1\right) \right\}. \end{aligned}$$

Putting q for p+1 we see that the coefficient of

$$(2n+2q-4r+1)D^{m-p}P_{n+q-2r}$$

in 
$$(\mu^2-1)^p D^m P_n \times D^p P_q$$
 (when  $q=p+1$ ) is

$$(-1)^{r} \frac{(q+p)! (2n-2r)! (n+m)! (n-m+2p-2r+1)! (n+q-r)!}{r! (q-r)! (n-r)! (n-m)! (n+m-2r+1)! (2n+2q-2r+1)!} \times \left[ (n+m-2r+1) 2q - 2r (2n-2r+1) \right].$$

Note. The quantity in square brackets in this expression

$$= [(2n-2r+1)(2q-2r)-2q(n-m)],$$
or
$$[(n+m+1)2q-2r(2n+2q-2r+1)]$$
or
$$[\{(n+q-2r)+(m-p)\}2q-2r(2n-2r+1)]$$
or
$$[(n+q+m-p)2q-2r\{2(n+q)-2r+1\}]$$
or
$$[(n+m+q-p-2r)(n-m+q+p-2r+1)-(n-m)(n+m+1)].$$

Hence the coefficient of  $(2n+2q-4r+1) D^{m-r} P_{n+q-2r}$  in

$$(\mu^2-1)^p D^m P_n \times D^p P_q$$
 (when  $q=p+1$ ) is

$$(-1)^{r} \frac{(q+p)! (2n-2r)! (n+m)! (n+q-r)! (n-m+q+p-2r)!}{r! (q-r)! (n-r)! (n-m)! (2n+2q-2r+1)! (n+m+q-p-2r)!} \times [(2n-2r+1) (2q-2r) - (q+p+1) (n-m)]$$

$$= (-1)^{r} \frac{(n+m)! (n+q-r)! (n-m+q+p-2r)! (2q-2r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)! (n+m+q-p-2r)!} \times \left[ \frac{(2n-2r+1)! (q+p)!}{(2q-2r-1)! (n-m)!} - \frac{(2n-2r)! (q+p+1)!}{(2q-2r)! (n-m-1)!} \right].$$

This may also be put in the form

$$(-1)^{r} \frac{(q+p)! (2n-2r)! (n+q-r)!}{2r! (q-r)! (n-r)! (2n+2q-2r+1)!} \times \left[ \frac{(n-m+q+p-2r+1)! (n+m)!}{(n+m+q-p-2r-1)! (n-m)!} - \frac{(n-m+q+p-2r)! (n+m+1)!}{(n+m+q-p-2r)! (n-m-1)!} \right].$$

There are several other forms in which this system of factorials may be arranged.

12. Putting r-1 for r in the general term of the expression for  $(\mu^2-1)^p D^m P_n \times D^p P_p$ , we have

$$(-1)^{r-1} \frac{2p! (2n-2r+2)! (n+m)! (n-m+2p-2r+2)! (n+p-r+1)!}{(r-1)! (p-r+1)! (n-r+1)! (n-m)! (n+m-2r+2)! (2n+2p-2r+3)!} \times (2n+2p-4r+5) D^{m-p} P_{n+p-2r+2}.$$

Multiply by -(2p+1) and we get

$$(-1)^{r} \frac{(2p+1)! (2n-2r+2)! (n+m)! (n-m+2p-2r+2)! (n+p-r+1)!}{(r-1)! (p-r+1)! (n-r+1)! (n-m)! (n+m-2r+2)! (2n+2p-2r+3)!} \times (2n+2p-4r+5) D^{m-p} P_{n+p-2r+2}.$$

Also writing down two terms of  $(\mu^2 - 1)^p D^m P_n \times D^p P_{p+1}$  multiplied by  $(2p+3) \mu$ ,

we have

$$(-1)^{r-1}\frac{(2p+1)!(2n-2r+2)!(n+m)!(n-m+2p-2r+3)!(n+p-r+2)!}{(r-1)!(p-r+2)!(n-r+1)!(n-m)!(n+m-2r+3)!(2n+2p-2r+5)!}\\ \times \left[(2n-2r+3)(2p-2r+4)-2(p+1)(n-m)\right]\\ \times (2p+3)\{(n-m+2p-2r+4)D^{m-p}P_{n+p-2r+4}+(n+m-2r+3)D^{m-p}P_{n+p-2r+2}\}\\ +(-1)^{r}\frac{(2p+1)!(2n-2r)!(n+m)!(n-m+2p-2r+1)!(n+p-r+1)!}{r!(p-r+1)!(n-r)!(n-m)!(n+m-2r+1)!(2n+2p-2r+3)!}\\ \times \left[(2n-2r+1)(2p-2r+2)-2(p+1)(n-m)\right]\\ \times (2p+3)\{(n-m+2p-2r+2)D^{m-p}P_{n+p-2r+2}+(n+m-2r+1)D^{m-p}P_{n+p-2r}\}.$$

Now take the coefficient of  $D^{m-p}P_{n+p-2r+2}$  in the sum of these terms and we get the corresponding term in  $2(\mu^2-1)^pD^mP_n\times D^pP_{p+2}$ 

$$= (-1)^{r} \frac{(2p+1)! (2n-2r)! (n+m)! (n-m+2p-2r+2)! (n+p-r+2)!}{r! (p-r+2)! (n-r)! (n-m)! (n+m-2r+2)! (2n+2p-2r+5)!}$$

$$\times 2 \{ (2p+3) (p-r+2) (n+m-2r+2) (2n+2p-2r+5)$$

$$\times [(n+m-2r+1) (2p+2) - 2r (2n-2r+1)]$$

$$- (2n-2r+1) (n-m+2p-2r+3) r [(2n-2r+3) (2p-2r+4) - (2p+2) (n-m)]$$

$$\times (2p+3) + 2 (2n-2r+1) r (p-r+2) (2n+2p-2r+5) (2n+2p-4r+5) \}.$$

The expression in large brackets may be arranged as follows, in order to separate out the factors (2p+2) and (2n+2p-4r+5), which are factors of this expression—

$$(2p+2)(2n+2p-4r+5)(2p+3)(p-r+2)(n+m-2r+2)(n+m-2r+1) \\ + (2p+2)(2p+3)2r(p-r+2)(n+m-2r+2)(n+m-2r+1) \\ - (2p+3)(2n+2p-4r+5)2r(p-r+2)(2n-2r+1)(n+m-2r+2) \\ - (2p+3)2r(p-r+2)(2n-2r+1)2r(n+m-2r+2) \\ - (2p+3)2r(p-r+2)(2n-2r+1)(2n-2r+3) \\ \times \{(2n+2p-4r+5)-(n+m-2r+2)\} \\ + (2p+2)(2p+3)r(2n-2r+1)(n-m)\{(2n+2p-4r+5)-(n+m-2r+2)\} \\ + (2n+2p-4r+5)2r(p-r+2)(2n-2r+1)(2n+2p-2r+5) \\ = (2p+2)(2n+2p-4r+5) \left[ (2p+3)(p-r+2)(n+m-2r+2)(n+m-2r+1) \\ + (2p+3)r(2n-2r+1)(n-m) \\ - 2r(p-r+2)(2n-2r+1)(n-m) \right] \\ = (2p+2)(2n+2p-4r+5) \left[ (2p+3)(p-r+2)(n+m-2r+2)(n+m-2r+1) \\ + (2p+3)r(n+m-2r+2)(n-m) \right] \\ = (2p+2)(2n+2p-4r+5) \left[ (2p+3)(p-r+2)(n+m-2r+2)(n+m-2r+1) \\ + (2p+3)r(n-m)(n-m-1) \\ - (2p+3)r(n-m)(n-m-1) \\ + (2p+3)r(n-m)(n-m-1) \\ - (2r+2)(2n-2r+1)(2n-2r+2) \right] \\ + (2p+3)r(n-m)(n-m-1) \\ + (2p+3)r(n-m$$

also

$$= (2p+2)(2n+2p-4r+5) \begin{bmatrix} (2p+3)(p+2)(n+m-2r+2)(n+m-2r+1) \\ -(2p+3)(n+m-2r+2) 2r (2n-2r+1) \\ +r (2r-1)(2n-2r+1)(2n-2r+2) \end{bmatrix}.$$

Hence the coefficient of

Or substituting 2q for (2p+4) and q+p for (2p+2) we get:—the coefficient of

$$(2n+2q-4r+1) D^{n-p} P_{n+q-2r}$$

in the expansion of

$$2 (\mu^2 - 1)^p D^m P_n \times D^p P_n$$

is 
$$(-1)^r \frac{(q+p)! (2n-2r)! (n+m)! (n-m+q+p-2r)! (n+q-r)!}{r! (q-r)! (n-r)! (n-m)! (n+m-2r+q-p)! (2n+2q-2r+1)!}$$

$$\times \begin{bmatrix} 2q (2q-1) (n+m-2r+1) (n+m-2r+2) \\ -2 (2q-1) (n+m-2r+2) 2r (2n-2r+1) \\ +2r (2r-1) (2n-2r+1) (2n-2r+2) \end{bmatrix}.$$

NOTE. It is readily shewn that the expression in this large bracket is equivalent to

$$[(2n-2r+2)(2n-2r+1)(2q-2r)(2q-2r-1) -2(2n-2r+1)(2q-2r)(2q-1)(n-m) +2q(2q-1)(n-m)(n-m-1)],$$

and also that it

$$= \begin{bmatrix} (n+m-2r+2) (n+m-2r+1) (2q-2r) (2q-2r-1) \\ -2 (n+m-2r+2) (2q-2r) 2r (n-m) \\ +2r (2r-1) (n-m) (n-m-1) \end{bmatrix}.$$

This expression is also

$$= \begin{bmatrix} (n+m-2r+2) \left(n+m-2r+1\right) \left(n-m+2q-2r\right) \left(n-m+2q-2r-1\right) \\ -2 \left(n+m-2r+2\right) \left(n-m+2q-2r-1\right) \left(n-m\right) \left(n+m+1\right) \\ + \left(n-m\right) \left(n-m-1\right) \left(n+m+1\right) \left(n+m+2\right) \end{bmatrix}.$$

Substituting this last expression in the coefficient of

$$(2n+2q-4r+1) D^{m-p} P_{n+q-2r}$$

in the expansion of

$$2 (\mu^2 - 1)^p D^m P_n \times D^p P_q,$$

we get 
$$(-1)^r \frac{(q+p)! (2n-2r)! (n+m)! (n+q-r)! (n-m+q+p-2r)!}{r! (q-r)! (n-r)! (n-m)! (2n+2q-2r+1)! (n+m+q-p-2r)!}$$

$$\times \begin{bmatrix} (n+m-2r+2) (n+m-2r+1) (n-m+2q-2r-1) (n-m+2q-2r) \\ -2 (n+m-2r+2) (n-m+2q-2r-1) (n-m) (n+m+1) \\ + (n-m) (n-m-1) (n+m+1) (n+m+2) \end{bmatrix}.$$

And since q = p + 2, this is

$$= (-1)^{r} \frac{(q+p)! (2n-2r)! (n+q-r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)!} \times \begin{bmatrix} \frac{(n+m)! (n-m+q+p-2r+2)!}{(n-m)! (n+m+q-p-2r-2)!} - 2 \frac{(n+m+1)! (n-m+q+p-2r+1)!}{(n-m-1)! (n+m+q-p-2r-1)!} \\ + \frac{(n+m+2)! (n-m+q+p-2r)!}{(n-m-2)! (n+m+q-p-2r)!} \end{bmatrix}.$$

This last square bracket [ ] is equivalent to

$$\begin{bmatrix} \frac{(n+m)! \; (n-m+q+p-2r+2)!}{(n-m)! \; (n+m-2r)!} - 2 \; \frac{(n+m+1)! \; (n-m+q+p-2r+1)!}{(n-m-1)! \; (n+m-2r+1)!} \\ + \frac{(n+m+2)! \; (n-m+q+p-2r)!}{(n-m-2)! \; (n+m-2r+2)!} \end{bmatrix}.$$

Note. This square bracket differs from the corresponding square bracket in the value of  $2D^mP_n \times D^pP_q$  only in the sign of m, and the law of formation of the terms is clearly seen.

13. Adopting the form for  $D^m P_n \times D^p P_q$  as given in Arts. 6 and 7 above, we arrive at the conclusion that

$$\begin{split} (q-p)! \ D^m P_n \times D^p P_q &= \Sigma \ \left\{ (2n+2q-4r+1) \ D^{m+p} P_{n+q-2r} \\ &\times (-1)^r \frac{(q+p)! \ (2n-2r)! \ (n+q-r)! \ (2q-2r)! \ (n+m)!}{(q+p)! \ (2n-2r)! \ r! \ (q-r)! \ (n-r)! \ (2n+2q-2r+1)!} \\ &\times \left[ \Sigma \ (-1)^s \frac{(q-p)! \ (2n-2r+q-p-s)! \ (q+p+s)!}{s! \ (q-p-s)! \ (q+p-2r+s)! \ (n+m-s)!} \right] \right\} \\ &= \Sigma \left\{ (2n+2q-4r+1) \ D^{m+p} P_{n+q-2r} \times (-1)^r \frac{(n+q-r)! \ (2q-2r)! \ (n+m)!}{r! \ (q-r)! \ (n-r)! \ (2n+2q-2r+1)!} \\ &\times \left[ \Sigma \ (-1)^s \frac{(q-p)! \ (q+p+s)! \ (2n-2r+q-p-s)!}{s! \ (q-p-s)! \ (q+p-2r+s)! \ (n+m-s)!} \right] \right\}. \end{split}$$

From note to Art. 12 we see that another form of this coefficient to  $(2n+2q-4r+1) D^{m+p} P_{n+q-2r}$  is

$$(-1)^{r} \frac{(q+p)! (2n-2r)! (n+q-r)! (n+m)! (n-m+q-p-2r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)! (n-m)! (n+m+q+p-2r)!}$$

$$\times \left[ \Sigma (-1)^{s} \frac{(q-p)! (n-m+s)! (n+m+2q-2r-s)!}{s! (q-p-s)! (n-m-2r+s)! (n+m-s)!} \right].$$

$$50-2$$

Similarly for the coefficient of  $(2n+2q-4r+1) D^{m-p} P_{n+q-2r}$  in

$$(q-p)! (\mu^2-1)^p D^m P_n \times D^p P_q$$

we should get from Art. 12 either the expression

$$(-1)^{r} \frac{(n+q-r)! (2q-2r)! (n+m)! (n-m+q+p-2r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)! (n+m-2r+q-p)!} \times \left[ \Sigma (-1)^{s} \frac{(q-p)! (q+p+s)! (2n-2r+q-p-s)!}{s! (q-p-s)! (q+p-2r+s)! (n-m-s)!} \right],$$

or the equivalent expression

$$(-1)^{r} \frac{(q+p)! (2n-2r)! (n+q-r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)!} \times \left[ \Sigma (-1)^{s} \frac{(q-p)! (n+m+s)! (n-m+2q-2r-s)!}{s! (q-p-s)! (n+m-2r+s)! (n-m-s)!} \right].$$

14. Hence referring to Art. 1 we see that

$$2R_{\scriptscriptstyle n}^{\scriptscriptstyle m}R_{\scriptscriptstyle q}^{\scriptscriptstyle p} = 2Q_{\scriptscriptstyle n}^{\scriptscriptstyle m}\times Q_{\scriptscriptstyle q}^{\scriptscriptstyle p}\cos m\lambda\cos p\lambda$$

$$\begin{split} &= \Sigma \, (-1)^r \, (2n+2q-4r+1) \, Q_{n+q-2r}^{m+p} \, \frac{(n+q-r)! \, (2q-2r)! \, (n+m)!}{(q-r)! \, (n-r)! \, (2n+2q-2r+1)! \, (q-p)!} \\ & \times \left[ \Sigma \, (-1)^s \, \frac{(q-p)! \, (q+p+s)! \, (2n-2r+q-p-s)!}{s! \, (q-p-s)! \, (q+p-2r+s)! \, (n+m-s)!} \right] \cos \left( m+p \right) \lambda \\ &+ \Sigma \, (-1)^r \, (2n+2q-4r+1) \, Q_{n+q-2r}^{m-p} \\ &\times \frac{(n+q-r)! \, (2q-2r)! \, (n+m)! \, (n-m+q+p-2r)!}{r! \, (q-r)! \, (n-r)! \, (2n+2q-2r+1)! \, (n+m+q-p-2r)! \, (q-p)!} \\ &\times \left[ \Sigma \, (-1)^s \, \frac{(q-p)! \, (2n-2r+q-p-s)! \, (q+p+s)!}{s! \, (q-p-s)! \, (q+p-s)! \, (n-m-s)!} \right] \cos \left( m-p \right) \lambda, \end{split}$$

where r has all values from 0 to 2q, and s has all values from 0 to q-p.

We also see that another form of this expression is

$$2R_n^m R_q^p = 2Q_n^m \times Q_q^p \cos m\lambda \cos p\lambda$$

$$= \sum (-1)^{r} (2n + 2q - 4r + 1) Q_{n+q-2r}^{m+p} \times \frac{(q+p)! (2n-2r)! (n+q-r)! (n+m)! (n-m+q-p-2r)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)! (q-p)! (n-m)!}$$

$$\times \frac{1}{(n+m+q+p-2r)!} \times \left[ \sum (-1)^{s} \frac{(q-p)!}{s! (q-p-s)!} \frac{(n+m+2q-2r-s)! (n-m+s)!}{(n-m-2r+s)! (n+m-s)!} \right] \cos(m+p) \lambda$$

$$\begin{split} &+ \Sigma \left(-1\right)^{r+p} \left(2n + 2q - 4r + 1\right) \, Q_{n+q-2r}^{m-p} \, \frac{(q+p)! \, \left(2n - 2r\right)! \, \left(n + q - r\right)!}{(q-p)! \, r! \, \left(q - r\right)! \, \left(n - r\right)! \, \left(2n + 2q - 2r + 1\right)!} \\ &\times \left[ \Sigma \left(-1\right)^s \, \frac{(q-p)!}{s! \, \left(q - p - s\right)!} \, \frac{(n - m + 2q - 2r - s)! \, \left(n + m + s\right)!}{(n + m - 2r + s)! \, \left(n - m - s\right)!} \right] \cos \left(m - p\right) \lambda, \end{split}$$

where s takes all values from 0 to q-p.

Simplifying these expressions we see that

$$\begin{split} 2R_{n}^{m}R_{q}^{p} &= \Sigma\left(-1\right)^{r}\left(2n+2q-4r+1\right)\frac{\left(n+q-r\right)!\left(2q-2r\right)!\left(n+m\right)!}{r!\left(q-r\right)!\left(n-r\right)!\left(2n+2q-2r+1\right)!} \\ &\times \left\{R_{n+q-2r}^{m+p}\left[\Sigma\left(-1\right)^{s}\frac{\left(q+p+s\right)!\left(2n-2r+q-p-s\right)!}{s!\left(q-p-s\right)!\left(q+p-2r+s\right)!\left(n+m-s\right)!}\right] \\ &+ R_{n+q-2r}^{m-p}\frac{\left(n-m+q+p-2r\right)!}{\left(n+m+q-p-2r\right)!} \\ &\times \left[\Sigma\left(-1\right)^{s}\frac{\left(q+p+s\right)!\left(2n-2r+q-p-s\right)!}{s!\left(q-p-s\right)!\left(q+p-2r+s\right)!\left(n-m-s\right)!}\right]\right\}, \end{split}$$

and also that

$$\begin{split} 2R_{n}^{m}R_{q}^{p} &= \Sigma \left(-1\right)^{r} \left(2n+2q-4r+1\right) \frac{\left(q+p\right)! \left(2n-2r\right)! \left(n+q-r\right)!}{r! \left(q-r\right)! \left(n-r\right)! \left(2n+2q-2r+1\right)!} \\ &\times \left\{ R_{n+q-2r}^{m+p} \frac{\left(n+m\right)! \left(n-m+q-p-2r\right)!}{\left(n-m\right)! \left(n+m+q+p-2r\right)!} \right. \\ &\times \left[ \Sigma \left(-1\right)^{s} \frac{\left(n+m+2q-2r-s\right)! \left(n-m+s\right)!}{s! \left(q-p-s\right)! \left(n-m-2r+s\right)! \left(n+m-s\right)!} \right] \\ &+ \left(-1\right)^{p} R_{n+q-2r}^{m-p} \left[ \Sigma \left(-1\right)^{s} \frac{\left(n-m+2q-2r-s\right)! \left(n+m+s\right)!}{s! \left(q-p-s\right)! \left(n+m-s\right)!} \right] \right\}. \end{split}$$

15. From the relation between the functions  $Q_n^m$  and  $H_n^m$ , as given in Section I. (p. 248), we get

$$\begin{split} Q_{n+q-2r}^{m+p} &= \frac{1 \cdot 3 \cdot 5 \dots (2n+2q-4r-1)}{(n-m+q-p-2r)!} H_{n+q-2r}^{m+p} \\ &= \frac{(2n+2q-4r)!}{(n+q-2r)! (n-m+q-p-2r)!} \times \frac{H_{n+q-2r}^{m+p}}{2^{n+q-2r}}, \\ Q_{n+q-2r}^{m-p} &= \frac{1 \cdot 3 \cdot 5 \dots (2n+2q-4r-1)}{(n-m+q+p-2r)!} H_{n+q-2r}^{m-p} \\ &= \frac{(2n+2q-4r)!}{(n+q-2r)! (n-m+q+p-2r)!} \times \frac{H_{n+q-2r}^{m-p}}{2^{n+q-2r}}. \end{split}$$

and

Hence we get  $2Q_n^m \times Q_q^p \cos m\lambda \cos p\lambda$ 

$$\begin{split} &= \Sigma \; (-1)^r \frac{(2n+2q-4r+1)! \; (q+p)! \; (2n-2r)! \; (n+q-r)! \; (n+m)!}{(2n+2q-2r+1)! \; r! \; (q-r)! \; (n-r)! \; (n+q-2r)! \; (n-m)! \; (n+m+q+p-2r)!} \\ &\times \left[ \Sigma \; (-1)^s \; \frac{(n+m+2q-2r-s)! \; (n-m+s)!}{s! \; (q-p-s)! \; (n-m-2r+s)! \; (n+m-s)!} \right] \frac{H_{n+q-2r}^{m+p}}{2^{n+q-2r}} \cos \left( m+p \right) \lambda \\ &+ \Sigma \; (-1)^{r+p} \; \frac{(2n+2q-4r+1)! \; (q+p)! \; (2n-2r)! \; (n+q-r)!}{(2n+2q-2r+1)! \; r! \; (q-r)! \; (n-r)! \; (n+q-2r)! \; (n-m+q+p-2r)!} \\ &\times \left[ \Sigma \; (-1)^s \; \frac{(n-m+2q-2r-s)! \; (n+m+s)!}{s! \; (q-p-s)! \; (n+m-2r+s)! \; (n-m-s)!} \right] \frac{H_{n+q-2r}^{m-p}}{2^{n+q-2r}} \cos \left( m-p \right) \lambda, \end{split}$$

where r has all values from 0 to 2q, and s has all values from 0 to q-p.

16. From Art. 14 it appears that the product

$$2R_n^m R_q^p$$
 or  $Q_n^m Q_q^p [\cos(m+p)\lambda + \cos(m-p)\lambda]$ 

when integrated with respect to  $\lambda$  between  $\lambda = 0$  and  $\lambda = 2\pi$  will vanish, hence

$$\int_0^{2\pi} \int_{-1}^1 R_n^m R_q^p d\mu d\lambda = 0.$$

Also if  $R_i^k$  be another Laplacian coefficient of the same form, then

$$\int_0^{2\pi} \int_{-1}^1 R_t^k R_n^m R_q^p d\mu d\lambda = 0,$$

except when k=m+p or when k=m-p.

For  $R_n^m$ ,  $R_q^p$  let us take the value of the Laplacian coefficient in its more general form, viz.:  $Q_n^m \cos(m\lambda + \beta)$  and  $Q_q^p \cos(p\lambda + \gamma)$ ,

where

$$Q_n^m = (1 - \mu^2)^{\frac{m}{2}} D^m P_n,$$

and

$$Q_q^p = (1 - \mu^2)^{\frac{p}{2}} D^p P_q,$$

then

$$Q_i^k \cos(k\lambda + \alpha), \quad Q_n^m \cos(m\lambda + \beta), \quad Q_q^p \cos(p\lambda + \gamma)$$

represent any three such Laplace's coefficients.

Then since 
$$2Q_n^m \cos(m\lambda + \beta) \times Q_q^p \cos(p\lambda + \gamma)$$
  
=  $Q_n^m \times Q_q^p \{\cos[(m+p)\lambda + \beta + \gamma] + \cos[(m-p)\lambda + \beta - \gamma]\},$ 

it is evident that the product of the three Laplace's coefficients when integrated with respect to  $\lambda$  between  $\lambda = 0$  and  $\lambda = 2\pi$  will vanish except when k = m + p or k = m - p.

First let k=m+p and n+q-2r=l, and let K be the coefficient of  $Q_{n+q-2r}^{m+p}$  in the above product.

Then 
$$\int_{0}^{2\pi} \int_{-1}^{1} Q_{l}^{k} \cos(k\lambda + a) Q_{n}^{m} \cos(m\lambda + \beta) Q_{q}^{p} \cos(p\lambda + \gamma) d\mu d\lambda$$
will be 
$$= \int_{0}^{2\pi} \int_{-1}^{1} K(Q_{l}^{k})^{2} \frac{1}{2} \cos(k\lambda + \beta + \gamma) \cos(k\lambda + a) d\mu d\lambda$$

$$= \frac{2\pi}{4} \cos(\beta + \gamma - a) K \int_{-1}^{1} (Q_{l}^{k})^{2} d\mu = \pi \cos(\beta + \gamma - a) \frac{K(l+k)!}{(2l+1)(l-k)!},$$
where 
$$K = (-1)^{r} (2l+1) \frac{(n+q-r)! (2q-2r)! (n+m)!}{r! (n-r)! (q-r)! (2n+2q-2r+1)!}$$

$$\times \left[ \Sigma (-1)^{s} \frac{(q+p+s)! (2n-2r+q-p-s)!}{s! (q-p-s)! (q+p-2r+s)! (n+m-s)!} \right].$$

Another value determined above for

$$\begin{split} K &= (-1)^r (2l+1) \, \frac{(q+p)! \, (2n-2r)! \, (l+r)! \, (n+m)! \, (l-k)!}{r! \, (q-r)! \, (n-r)! \, (n-m)! \, (2n+2q-2r+1)! \, (l+k)!} \\ & \times \left[ \Sigma \, (-1)^s \, \frac{(n-m+s)! \, (n+m+2q-2r-s)!}{s! \, (q-p-s)! \, (n-m-2r+s)! \, (n+m-s)!} \right]. \end{split}$$

Hence using this latter form for K we have

$$\begin{split} \int_{0}^{2\pi} \int_{-1}^{1} Q_{l}^{k} \cos\left(k\lambda + a\right) & Q_{n}^{m} \cos\left(m\lambda + \beta\right) Q_{q}^{p} \cos\left(p\lambda + \gamma\right) d\mu d\lambda \\ &= \pi \cos\left(\beta + \gamma - a\right) (-1)^{r} \frac{(q+p)! \left(2n-2r\right)! \left(l+r\right)! \left(n+m\right)!}{r! \left(q-r\right)! \left(n-r\right)! \left(n-m\right)! \left(n+q+l+1\right)!} \\ &\times \left[ \Sigma \left(-1\right)^{s} \frac{(l+k+q-p-s)! \left(n-m+s\right)!}{s! \left(q-p-s\right)! \left(n-m-2r+s\right)! \left(n+m-s\right)!} \right]. \end{split}$$

Now let k=m-p and n+q-2r=l, and let K' be the coefficient of  $Q_{n+q-2r}^{m-p}$  in the above product.

Then 
$$\int_{0}^{2\pi} \int_{-1}^{1} Q_{l}^{k} \cos(k\lambda + a) Q_{n}^{m} \cos(m\lambda + \beta) Q_{q}^{p} \cos(p\lambda + \gamma) d\mu d\lambda$$
will be 
$$= \int_{0}^{2\pi} \int_{-1}^{1} K'(Q_{l}^{k})^{2} \frac{1}{2} \cos(k\lambda + \beta - \gamma) \cos(k\lambda + a) d\mu d\lambda$$

$$= \frac{2\pi}{4} \cos(\beta - \gamma - a) K' \int_{-1}^{1} (Q_{l}^{k})^{2} d\mu = \pi \cos(\beta - \gamma - a) \frac{K'(l+k)!}{(2l+1)(l-k)!},$$
where 
$$K' = (-1)^{r} (2l+1) \frac{(n+q-r)! (2q-2r)! (n+m)! (l-k)!}{r! (q-r)! (n-r)! (2n+2q-2r+1)! (l+k)!}$$

$$\times \left[ \Sigma (-1)^{s} \frac{(q+p+s)! (2n-2r+q-p-s)!}{s! (q-p-s)! (q+p-2r+s)! (n-m-s)!} \right].$$

Another value determined above for

$$\begin{split} K' &= (-1)^{r+p} \left(2l+1\right) \frac{(q+p)! \left(2n-2r\right)! \left(l+r\right)!}{r! \left(q-r\right)! \left(n-r\right)! \left(2n+2q-2r+1\right)!} \\ &\times \left[ \Sigma \left(-1\right)^s \frac{(n+m+s)! \left(n-m+2q-2r-s\right)!}{s! \left(q-p-s\right)! \left(n+m-2r+s\right)! \left(n-m-s\right)!} \right]. \end{split}$$

Hence using the first of these values of K' we have

$$\begin{split} \int_{0}^{2\pi} \int_{-1}^{1} Q_{r}^{k} \cos \left(k\lambda + \alpha\right) Q_{n}^{m} \cos \left(m\lambda + \beta\right) Q_{q}^{p} \cos \left(p\lambda + \gamma\right) d\mu d\lambda \\ &= \pi \cos \left(\beta - \gamma - \alpha\right) (-1)^{r} \frac{(n+q-r)! \left(2q-2r\right)! \left(n+m\right)!}{r! \left(q-r\right)! \left(n-r\right)! \left(n+q+l+1\right)!} \\ &\times \left[ \Sigma \left(-1\right)^{s} \frac{(q+p+s)! \left(2n-2r+q-p-s\right)!}{s! \left(q-p-s\right)! \left(q+p-2r+s\right)! \left(n-m-s\right)!} \right]. \end{split}$$

## SECTION V.

THE THEORY OF TERRESTRIAL MAGNETISM, GIVING THE EXPRESSIONS OF THE MAGNETIC FORCES ON THE EARTH'S SURFACE, THE EARTH BEING REGARDED AS A SPHERE.

1. Let V represent the magnetic potential, and let X, Y, Z be the magnetic forces in three directions at right angles to one another, X being the force towards the north perpendicular to the Earth's radius, Y the force perpendicular to the meridian towards the west, and Z the force towards the Earth's centre.

 $\lambda$  being the longitude and  $\theta$  the colatitude, and r the distance from the Earth's centre,

$$\cos \theta = \mu \text{ and } \frac{d\mu}{d\theta} = -\sin \theta = -(1 - \mu^2)^{\frac{1}{2}};$$

$$X = -\frac{dV}{rd\theta} = \frac{(1 - \mu^2)^{\frac{1}{2}}}{r} \frac{dV}{d\mu},$$

$$Y = -\frac{dV}{r\sin \theta d\lambda} = -\frac{(1 - \mu^2)^{-\frac{1}{2}}}{r} \frac{dV}{d\lambda},$$

$$Z = -\frac{dV}{dx};$$

hence

if east longitudes be considered positive. We may distinguish the two systems of values of V corresponding to magnetic forces whose origin is situated inside and outside the Earth's surface respectively by affecting them with the suffix n when the corresponding value of V involves a positive power of  $\frac{1}{r}$ , and with the negative suffix, -n, when the value of

V involves a negative power of  $\frac{1}{r}$ .

Then 
$$V = \sum \frac{1}{r^{n+1}} \left\{ H_n^m \left( g_n^m \cos m\lambda + h_n^m \sin m\lambda \right) \right\},$$

for the first class of terms:

and 
$$V = \sum r^n \left[ H_n^m \left( g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda \right) \right],$$

for the second class of terms.

Let 
$$X_n^m = (1 - \mu^2)^{\frac{1}{2}} \frac{dH_n^m}{d\mu} \frac{1}{r^{n+2}}$$
 and  $X_{-n}^m = r^{n-1} (1 - \mu^2)^{\frac{1}{2}} \frac{dH_n^m}{d\mu}$ .

Then by equation (22) of Section I. (see p. 257)

$$X_n^m = \frac{1}{r^{n+2}} \left[ (n-m) H_n^{m+1} - m\mu (1-\mu^2)^{-\frac{1}{2}} H_n^m \right],$$

or by equation (16),

$$X_{n}^{m} = \frac{1}{r^{n+2}} \left[ \frac{1}{2} (n-m) H_{n}^{m+1} - \frac{1}{2} (n+m) H_{n}^{m-1} \right];$$

hence for the first class of terms, i.e. for forces whose origin is situated in the interior of the Earth,

$$\begin{split} X &= \Sigma \left[ X_{n}^{m} \left( g_{n}^{m} \cos m\lambda + h_{n}^{m} \sin m\lambda \right) \right] \\ &= \Sigma \frac{1}{r^{n+2}} \left[ \frac{1}{2} \left( n - m \right) H_{n}^{m+1} - \frac{1}{2} \left( n + m \right) H_{n}^{m-1} \right] \left( g_{n}^{m} \cos m\lambda + h_{n}^{m} \sin m\lambda \right), \\ Y &= \Sigma \frac{1}{r^{n+2}} \left[ m H_{n}^{m} \left( 1 - \mu^{2} \right)^{-\frac{1}{2}} \right] \left( g_{n}^{m} \sin m\lambda - h_{n}^{m} \cos m\lambda \right), \\ Z &= \Sigma \frac{n+1}{r^{n+2}} H_{n}^{m} \end{split}$$

$$(g_{n}^{m} \cos m\lambda + h_{n}^{m} \sin m\lambda), \end{split}$$

where  $g_n^m$ ,  $h_n^m$  are the Gaussian magnetic constants for positive integral values of m and n.

And for the second class of terms, i.e. for forces whose origin is outside the Earth, the corresponding terms are:

in the value of X

$$= \Sigma r^{n-1} \left[ \frac{1}{2} (n-m) H_n^{m+1} - \frac{1}{2} (n+m) H_n^{m-1} \right] (g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda),$$

in the value of Y

$$= \sum r^{n-1} \left[ m H_n^m (1 - \mu^2)^{-\frac{1}{2}} \right] (g_{-n}^m \sin m\lambda - h_{-n}^m \cos m\lambda),$$

in the value of Z

$$= \sum r^{n-1} \left[ -nH_n^m \right] (g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda),$$

where  $g_{-n}^m$ ,  $h_{-n}^m$  are the magnetic constants for positive integral values of m and n.

2. Let 
$$V_n^m = \frac{1}{r^{n+1}} H_n^m$$
 and  $V_{-n}^m = r^n H_n^m$ ,

also let 
$$Y_n^m = \frac{1}{r^{n+2}} m H_n^m (1-\mu^2)^{-\frac{1}{2}}$$
 and  $Y_{-n}^m = r^{n-1} m H_n^m (1-\mu^2)^{-\frac{1}{2}}$ ,

and let 
$$Z_n^m = \frac{1}{r^{n+2}}(n+1)H_n^m$$
 and  $Z_{-n}^m = r^{n-1}(-nH_n^m)$ .

Then taking both classes of terms together we have

$$V = \sum \left\{ V_n^m \left( g_n^m \cos m\lambda + h_n^m \sin m\lambda \right) \right\} + \sum \left\{ V_{-n}^m \left( g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda \right) \right\},$$

$$X = \sum \{X_n^m \left(g_n^m \cos m\lambda + h_n^m \sin m\lambda\right)\} + \sum \{X_{-n}^m \left(g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda\right)\},$$

$$Y = \sum \left\{ Y_n^m \left( g_n^m \sin m\lambda - h_n^m \cos m\lambda \right) \right\} + \sum \left\{ Y_{-n}^m \left( g_{-n}^m \sin m\lambda - h_{-n}^m \cos m\lambda \right) \right\},$$

$$Z = \sum \{Z_n^m \left(g_n^m \cos m\lambda + h_n^m \sin m\lambda\right)\} + \sum \{Z_{-n}^m \left(g_{-n}^m \cos m\lambda + h_{-n}^m \sin m\lambda\right)\}.$$

Collecting coefficients of  $\cos m\lambda$  and  $\sin m\lambda$ ,

the coefficient of 
$$\cos m\lambda$$
 in  $V$  is  $\sum (V_n^m g_n^m + V_{-n}^m g_{-n}^m)$ ,

...... 
$$X$$
 is  $\sum (X_n^m g_n^m + X_{-n}^m g_{-n}^m)$ ,

..... 
$$Y \text{ is } -\Sigma (Y_n^m h_n^m + Y_{-n}^m h_{-n}^m),$$

..... 
$$Z$$
 is  $\Sigma (Z_n^m g_n^m + Z_{-n}^m g_{-n}^m)$ ,

the coefficient of 
$$\sin m\lambda$$
 in  $V$  is  $\Sigma (V_n^m h_n^m + V_{-n}^m h_{-n}^m)$ ,
$$\dots X$$
 is  $\Sigma (X_n^m h_n^m + X_{-n}^m h_{-n}^m)$ ,

..... Y is 
$$\sum (Y_n^m g_n^m + Y_{-n}^m g_{-n}^m)$$

..... 
$$Z$$
 is  $\Sigma (Z_n^m h_n^m + Z_{-n}^m h_{-n}^m)$ ,

in which n takes all integral values for a given value of m.

The relations between the functions when the suffix is changed from n to -n are

$$X_{-n}^{m} = r^{2n+1}X_{n}^{m}, \quad Y_{-n}^{m} = r^{2n+1}Y_{n}^{m}, \quad Z_{-n}^{m} = -\frac{n}{n+1}r^{2n+1}Z_{n}^{m}.$$

On the surface of a sphere of radius unity  $V_n^m$  and  $V_{-n}^m$  are each of them equal to  $H_n^m$ , i.e. to  $G_n^m (1-\mu^2)^{\frac{m}{2}}$ , and it will be convenient to express their values in terms of  $\mu$  the cosine of the colatitude of a point on the surface of the sphere.

3. Collection of the values of the quantities  $H_n^m$  or  $V_n^m$ .

When 
$$m=0$$
,  $V_{\circ}^{0}=1$ ,  $V_{\circ}^{1}=\mu$ ,  $V_{\circ}^{0}=\mu^{2}-\frac{1}{3}$ ,  $V_{\circ}^{0}=\mu^{2}-\frac{3}{5}\mu$ ,  $V_{\circ}^{0}=\mu^{4}-\frac{6}{7}\mu^{2}+\frac{3}{35}$ ,  $V_{\circ}^{0}=\mu^{5}-\frac{10}{9}\mu^{3}+\frac{5}{21}\mu$ ,  $V_{\circ}^{0}=\mu^{6}-\frac{15}{11}\mu^{4}+\frac{5}{11}\mu^{2}-\frac{5}{231}$ ,  $V_{\circ}^{0}=\mu^{7}-\frac{21}{13}\mu^{5}+\frac{105}{143}\mu^{2}-\frac{35}{429}\mu$ ,  $V_{\circ}^{0}=\mu^{7}-\frac{21}{13}\mu^{5}+\frac{11}{143}\mu^{4}-\frac{28}{143}\mu^{2}+\frac{7}{1287}$ ,  $V_{\circ}^{0}=\mu^{6}-\frac{36}{17}\mu^{7}+\frac{126}{85}\mu^{5}-\frac{84}{221}\mu^{3}+\frac{63}{2431}\mu$ ,  $V_{\circ}^{0}=\mu^{10}-\frac{45}{19}\mu^{8}+\frac{630}{323}\mu^{6}-\frac{210}{323}\mu^{4}+\frac{315}{4199}\mu^{2}-\frac{63}{46189}$ . When  $m=1$ ,  $V_{\circ}^{1}=(1-\mu^{2})^{\frac{1}{3}}\left(\mu^{2}-\frac{1}{5}\right)$ ,  $V_{\circ}^{1}=(1-\mu^{2})^{\frac{1}{3}}\left(\mu^{5}-\frac{3}{12}\mu^{2}+\frac{1}{21}\right)$ ,  $V_{\circ}^{1}=(1-\mu^{2})^{\frac{1}{3}}\left(\mu^{5}-\frac{10}{11}\mu^{3}+\frac{5}{33}\mu\right)$ ,  $V_{\circ}^{1}=(1-\mu^{2})^{\frac{1}{3}}\left(\mu^{5}-\frac{15}{13}\mu^{4}+\frac{45}{143}\mu^{2}-\frac{5}{429}\right)$ ,  $V_{\circ}^{1}=(1-\mu^{2})^{\frac{1}{3}}\left(\mu^{7}-\frac{7}{5}\mu^{5}+\frac{7}{13}\mu^{5}-\frac{7}{143}\mu\right)$ ,  $V_{\circ}^{1}=(1-\mu^{2})^{\frac{1}{3}}\left(\mu^{7}-\frac{28}{17}\mu^{5}+\frac{14}{17}\mu^{4}-\frac{28}{221}\mu^{2}+\frac{7}{2431}\right)$ ,  $V_{\circ}^{1}=(1-\mu^{2})^{\frac{1}{3}}\left(\mu^{8}-\frac{28}{17}\mu^{5}+\frac{14}{17}\mu^{4}-\frac{28}{221}\mu^{2}+\frac{7}{2431}\right)$ ,  $V_{\circ}^{1}=(1-\mu^{2})^{\frac{1}{3}}\left(\mu^{8}-\frac{28}{17}\mu^{5}+\frac{14}{323}\mu^{5}-\frac{84}{323}\mu^{5}+\frac{63}{3199}\mu\right)$ .

When 
$$m=2$$
,  $V_s^2=(1-\mu^2)$ ,  $V_s^2=(1-\mu^2)$  ( $\mu$ ),  $V_s^2=(1-\mu^2)$  ( $\mu$ ),  $V_s^2=(1-\mu^2)$  ( $\mu^2-\frac{1}{7}$ ),  $V_s^2=(1-\mu^2)$  ( $\mu^3-\frac{1}{3}\mu$ ),  $V_s^2=(1-\mu^2)$  ( $\mu^4-\frac{6}{11}\mu^2+\frac{1}{33}$ ),  $V_r^2=(1-\mu^2)$  ( $\mu^5-\frac{10}{13}\mu^3+\frac{15}{143}\mu$ ),  $V_s^2=(1-\mu^2)$  ( $\mu^6-\mu^4+\frac{3}{13}\mu^2-\frac{1}{143}$ ),  $V_s^2=(1-\mu^2)$  ( $\mu^7-\frac{21}{17}\mu^5+\frac{7}{17}\mu^5-\frac{7}{221}\mu$ ),  $V_s^2=(1-\mu^2)$  ( $\mu^8-\frac{28}{19}\mu^6+\frac{210}{323}\mu^4-\frac{28}{323}\mu^2+\frac{7}{4199}$ ). When  $m=3$ ,  $V_s^2=(1-\mu^2)^{\frac{3}{2}}$  ( $\mu^2-\frac{1}{9}$ ),  $V_s^3=(1-\mu^2)^{\frac{3}{2}}$  ( $\mu^3-\frac{3}{11}\mu$ ),  $V_s^3=(1-\mu^2)^{\frac{3}{2}}$  ( $\mu^4-\frac{6}{13}\mu^2+\frac{3}{143}$ ),  $V_s^3=(1-\mu^2)^{\frac{3}{2}}$  ( $\mu^8-\frac{3}{17}\mu^4+\frac{3}{17}\mu^2-\frac{1}{221}$ ),  $V_s^3=(1-\mu^2)^{\frac{3}{2}}$  ( $\mu^8-\frac{15}{17}\mu^4+\frac{3}{17}\mu^2-\frac{1}{221}$ ),  $V_s^3=(1-\mu^2)^{\frac{3}{2}}$  ( $\mu^7-\frac{15}{17}\mu^4+\frac{105}{323}\mu^2-\frac{7}{323}\mu$ ). When  $m=4$ ,  $V_s^4=(1-\mu^2)^s$  ( $\mu^7-\frac{11}{11}$ ),  $V_s^4=(1-\mu^2)^s$  ( $\mu^8-\frac{1}{13}\mu$ ),

$$V_{s}^{4} = (1 - \mu^{s})^{2} \left(\mu^{4} - \frac{2}{5} \mu^{2} + \frac{1}{65}\right),$$

$$V_{\theta}^{4} = (1 - \mu^{s})^{2} \left(\mu^{5} - \frac{10}{17} \mu^{3} + \frac{1}{17} \mu\right),$$

$$V_{10}^{4} = (1 - \mu^{2})^{2} \left(\mu^{6} - \frac{15}{19} \mu^{4} + \frac{45}{323} \mu^{2} - \frac{1}{323}\right).$$
When  $m = 5$ ,  $V_{s}^{5} = (1 - \mu^{2})^{\frac{5}{5}}$ ,  $V_{e}^{6} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu\right),$ 

$$V_{7}^{5} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{2} - \frac{1}{13}\right),$$

$$V_{8}^{5} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{3} - \frac{1}{5} \mu\right),$$

$$V_{10}^{5} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{4} - \frac{6}{17} \mu^{3} + \frac{15}{85}\right),$$

$$V_{10}^{5} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{5} - \frac{10}{19} \mu^{3} + \frac{15}{323} \mu\right).$$
When  $m = 6$ ,  $V_{e}^{6} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{5} - \frac{1}{15}\right),$ 

$$V_{8}^{6} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{2} - \frac{1}{15}\right),$$

$$V_{9}^{6} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{2} - \frac{1}{15}\right),$$

$$V_{10}^{6} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{4} - \frac{6}{19} \mu^{2} + \frac{3}{323}\right).$$
When  $m = 7$ ,  $V_{7}^{7} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{2} - \frac{1}{17}\right),$ 

$$V_{9}^{7} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{3} - \frac{3}{19} \mu\right).$$
When  $m = 8$ ,  $V_{9}^{8} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{3} - \frac{3}{19} \mu\right).$ 
When  $m = 8$ ,  $V_{9}^{8} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu^{2} - \frac{1}{19}\right).$ 
When  $m = 9$ ,  $V_{9}^{8} = (1 - \mu^{2})^{\frac{5}{5}} \left(\mu\right)$ .

When m=10,  $V_{10}^{10}=(1-\mu^2)^5$ .

4. On a sphere of radius unity, since  $\cos \theta = \mu$ ,

$$X = -\frac{dV}{d\theta} = \frac{dV}{d\mu} (1 - \mu^2)^{\frac{1}{2}},$$

and  $V_n^m$  becomes the same as  $H_n^m$ .

Collecting the values of the quantities  $X_n^m$ , we have:—

When 
$$m=0$$
,  $X_1^0 = (1-\mu^2)^{\frac{1}{3}}$ ,  $X_2^0 = 2(1-\mu^2)^{\frac{1}{3}}(\mu)$ ,  $X_3^0 = 3(1-\mu^2)^{\frac{1}{3}}(\mu^2 - \frac{1}{5})$ ,  $X_4^0 = 4(1-\mu^2)^{\frac{1}{3}}(\mu^2 - \frac{3}{7}\mu)$ ,  $X_5^0 = 5(1-\mu^2)^{\frac{1}{3}}(\mu^4 - \frac{2}{3}\mu^2 + \frac{1}{21})$ ,  $X_6^0 = 6(1-\mu^2)^{\frac{1}{3}}(\mu^5 - \frac{10}{11}\mu^3 + \frac{5}{33}\mu)$ ,  $X_7^0 = 7(1-\mu^2)^{\frac{1}{3}}(\mu^6 - \frac{15}{13}\mu^5 + \frac{45}{143}\mu^2 - \frac{5}{429})$ ,  $X_8^0 = 8(1-\mu^2)^{\frac{1}{3}}(\mu^7 - \frac{7}{5}\mu^5 + \frac{7}{13}\mu^5 - \frac{7}{143}\mu)$ ,  $X_9^0 = 9(1-\mu^2)^{\frac{1}{3}}(\mu^6 - \frac{28}{17}\mu^6 + \frac{14}{17}\mu^4 - \frac{28}{221}\mu^2 + \frac{7}{2431})$ ,  $X_{10}^0 = 10(1-\mu^2)^{\frac{1}{3}}(\mu^6 - \frac{36}{19}\mu^7 + \frac{378}{323}\mu^5 - \frac{84}{323}\mu^3 + \frac{63}{4199}\mu)$ . When  $m=1$ ,  $X_1^1 = -\mu$ ,  $X_2^1 = -2\mu^2 + 1$ ,  $X_3^1 = -3\mu^5 + \frac{11}{5}\mu$ ,  $X_4^1 = -4\mu^4 + \frac{27}{7}\mu^2 - \frac{3}{7}$ ,

$$\begin{split} X_{s}^{1} &= -5\mu^{s} + 6\mu^{3} - \frac{29}{21}\mu, \\ X_{e}^{1} &= -6\mu^{s} + \frac{95}{11}\mu^{4} - \frac{100}{33}\mu^{2} + \frac{5}{33}, \\ X_{7}^{1} &= -7\mu^{7} + \frac{153}{13}\mu^{5} - \frac{795}{143}\mu^{3} + \frac{275}{429}\mu, \\ X_{s}^{1} &= -8\mu^{8} + \frac{77}{5}\mu^{6} - \frac{119}{13}\mu^{4} + \frac{245}{143}\mu^{2} - \frac{7}{143}, \\ X_{s}^{1} &= -9\mu^{9} + \frac{332}{17}\mu^{7} - \frac{238}{17}\mu^{5} + \frac{812}{221}\mu^{3} - \frac{623}{2431}\mu, \\ X_{10}^{1} &= -10\mu^{10} + \frac{459}{19}\mu^{8} - \frac{6552}{323}\mu^{6} + \frac{2226}{323}\mu^{4} - \frac{3402}{4199}\mu^{2} + \frac{63}{4199}. \end{split}$$

When 
$$m=2$$
,  $X_{2}^{2}=-2\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(\mu\right)=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-2\mu\right)$ ,  $X_{3}^{2}=-3\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(\mu^{2}-\frac{1}{3}\right)=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-3\mu^{2}+1\right)$ ,  $X_{4}^{2}=-4\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(\mu^{3}-\frac{4}{7}\mu\right)=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-4\mu^{3}+\frac{16}{7}\mu\right)$ ,  $X_{6}^{2}=-5\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(\mu^{4}-\frac{4}{5}\mu^{2}+\frac{1}{15}\right)=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-5\mu^{4}+4\mu^{2}-\frac{1}{3}\right)$ ,  $X_{6}^{2}=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-6\mu^{5}+\frac{68}{11}\mu^{3}-\frac{38}{33}\mu\right)$ ,  $X_{7}^{2}=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-7\mu^{6}+\frac{115}{13}\mu^{4}-\frac{375}{143}\mu^{2}+\frac{15}{143}\right)$ ,  $X_{8}^{2}=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-8\mu^{7}+12\mu^{5}-\frac{64}{13}\mu^{3}+\frac{68}{143}\mu\right)$ ,  $X_{8}^{2}=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-9\mu^{8}+\frac{266}{17}\mu^{6}-\frac{140}{17}\mu^{4}+\frac{294}{221}\mu^{2}-\frac{7}{221}\right)$ ,  $X_{10}^{2}=\left(1-\mu^{2}\right)^{\frac{1}{2}}\left(-10\mu^{9}+\frac{376}{19}\mu^{7}-\frac{4116}{323}\mu^{6}+\frac{952}{323}\mu^{3}-\frac{742}{4199}\mu\right)$ .

When 
$$m = 3$$
,  $X_3^s = (1 - \mu^2) (-3\mu)$ ,  $X_4^s = (1 - \mu^2) (-4\mu^2 + 1)$ ,  $X_5^s = (1 - \mu^2) \left( -5\mu^3 + \frac{7}{3}\mu \right)$ ,  $X_6^s = (1 - \mu^2) \left( -6\mu^4 + \frac{45}{11}\mu^2 - \frac{3}{11} \right)$ ,  $X_7^s = (1 - \mu^2) \left( -7\mu^5 + \frac{82}{13}\mu^3 - \frac{141}{143}\mu \right)$ ,  $X_8^s = (1 - \mu^2) \left( -8\mu^6 + 9\mu^4 - \frac{30}{13}\mu^2 + \frac{1}{13} \right)$ ,  $X_8^s = (1 - \mu^2) \left( -9\mu^7 + \frac{207}{17}\mu^5 - \frac{75}{17}\mu^3 + \frac{81}{221}\mu \right)$ ,  $X_{10}^s = (1 - \mu^2) \left( -10\mu^8 + \frac{301}{19}\mu^6 - \frac{2415}{323}\mu^4 + \frac{343}{323}\mu^2 - \frac{7}{323} \right)$ .

When 
$$m = 4$$
,  $X_4^4 = (1 - \mu^2)^{\frac{3}{2}} (-4\mu)$ ,  $X_5^4 = (1 - \mu^2)^{\frac{3}{2}} (-5\mu^2 + 1)$ ,  $X_6^4 = (1 - \mu^2)^{\frac{3}{2}} \left( -6\mu^3 + \frac{26}{11} \mu \right)$ ,  $X_7^4 = (1 - \mu^2)^{\frac{3}{2}} \left( -7\mu^4 + \frac{54}{13} \mu^2 - \frac{3}{13} \right)$ ,  $X_8^4 = (1 - \mu^2)^{\frac{3}{2}} \left( -8\mu^5 + \frac{32}{5} \mu^3 - \frac{56}{65} \mu \right)$ ,  $X_9^4 = (1 - \mu^2)^{\frac{3}{2}} \left( -9\mu^6 + \frac{155}{17} \mu^4 - \frac{35}{17} \mu^2 + \frac{1}{17} \right)$ ,  $X_{10}^4 = (1 - \mu^2)^{\frac{3}{2}} \left( -10\mu^7 + \frac{234}{19} \mu^5 - \frac{1290}{323} \mu^3 + \frac{94}{323} \mu \right)$ .

When 
$$m = 5$$
,  $X_5^5 = (1 - \mu^2)^2 (-5\mu)$ ,  
 $X_6^5 = (1 - \mu^2)^2 (-6\mu^2 + 1)$ ,  
 $X_7^5 = (1 - \mu^2)^2 (-7\mu^3 + \frac{31}{13}\mu)$ ,

$$\begin{split} X_8^5 &= (1-\mu^2)^2 \left( -8\mu^4 + \frac{21}{5} \mu^2 - \frac{1}{5} \right), \\ X_9^5 &= (1-\mu^2)^2 \left( -9\mu^5 + \frac{110}{17} \mu^3 - \frac{13}{17} \mu \right), \\ X_{10}^5 &= (1-\mu^2)^2 \left( -10\mu^6 + \frac{175}{19} \mu^4 - \frac{600}{323} \mu^2 + \frac{15}{323} \right). \end{split}$$

When 
$$m = 6$$
,  $X_6^6 = (1 - \mu^2)^{\frac{5}{2}} (-6\mu)$ , 
$$X_7^6 = (1 - \mu^2)^{\frac{5}{2}} (-7\mu^2 + 1)$$
, 
$$X_8^6 = (1 - \mu^2)^{\frac{5}{2}} \left( -8\mu^3 + \frac{12}{5} \mu \right)$$
, 
$$X_9^6 = (1 - \mu^2)^{\frac{5}{2}} \left( -9\mu^4 + \frac{72}{17} \mu^2 - \frac{3}{17} \right)$$
, 
$$X_{10}^6 = (1 - \mu^2)^{\frac{5}{2}} \left( -10\mu^5 + \frac{124}{19} \mu^8 - \frac{222}{323} \mu \right)$$
.

When 
$$m=7$$
,  $X_7^7 = (1-\mu^2)^3 (-7\mu)$ , 
$$X_8^7 = (1-\mu^2)^3 (-8\mu^2+1)$$
, 
$$X_9^7 = (1-\mu^2)^3 \left(-9\mu^3 + \frac{41}{17}\mu\right)$$
, 
$$X_{10}^7 = (1-\mu^2)^3 \left(-10\mu^4 + \frac{81}{19}\mu^2 - \frac{3}{19}\right)$$
.

When 
$$m = 8$$
,  $X_8^8 = (1 - \mu^2)^{\frac{7}{2}} (-8\mu)$ , 
$$X_9^8 = (1 - \mu^2)^{\frac{7}{2}} (-9\mu^2 + 1),$$
 
$$X_{10}^8 = (1 - \mu^2)^{\frac{7}{2}} \left(-10\mu^3 + \frac{46}{19}\mu\right).$$

When 
$$m=9$$
,  $X_9^9 = (1-\mu^2)^4 (-9\mu)$ ,  
 $X_{10}^9 = (1-\mu^2)^4 (-10\mu^2 + 1)$ .

When 
$$m=10$$
,  $X_{10}^{10}=(1-\mu^2)^{\frac{9}{2}}(-10\mu)$ .

5. To adapt the preceding investigations on Legendre's and Laplace's coefficients to the theory of Terrestrial Magnetism, there are certain relations of the functions  $H_n^m$  and the functions  $X_n^m$ ,  $Y_n^m$  and  $Z_n^m$  which still remain to be developed and which will be found useful and will greatly facilitate the determination of the magnetic constants of Terrestrial Magnetism from the observed values of the magnetic elements at places regularly distributed over the Globe.

We proceed now to the development of this Theory of Terrestrial Magnetism.

Assuming, as in Section I., that  $Q_n^m = (1 - \mu^2)^{\frac{m}{2}} D^m P_n$ , it has been proved in Section III. (see p. 363), that

$$\int_{-1}^{1} Q_{n}^{m} Q_{n_{1}}^{m} d\mu = 0,$$

except when  $n = n_1$ ; and that when  $n_1 = n$ , we have

$$\int_{-1}^{1} (Q_n^m)^2 d\mu = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}.$$

Also from Section I. we have

$$H_n^m = \frac{(n-m)!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)} Q_n^m$$
;

hence we have  $\int_{-1}^{1} H_n^m H_{n_1}^m d\mu = 0$ , except when  $n = n_1$ ; and when  $n_1 = n$ , we have  $\int_{-1}^{1} (H_n^m)^2 d\mu = \frac{2}{2n+1} \left[ \frac{(n-m)! (n+m)!}{1 \cdot 3 \cdot 5 \cdot ... (2n-1)!^2} \cdot ... (1) \right].$ 

6. From equation (4) above (p. 246) we have

$$DP_{n+1} = (2n+1) P_n + DP_{n-1},$$

therefore by successive substitutions,

$$DP_{n+1} = (2n+1)P_n + (2n-3)P_{n-2} + (2n-7)P_{n-4} + &c.,$$

the last term when n is even being  $P_0$ , and when n is odd being  $3P_1$ .

Putting n for n+1 and differentiating m-1 times, we get

$$D^{m}P_{n} = (2n-1) D^{m-1}P_{n-1} + (2n-5) D^{m-1}P_{n-3} + &c. + \begin{bmatrix} D^{m-1}P_{0} & \text{when } n \text{ is odd,} \\ 3D^{m-1}P_{1} & \text{when } n \text{ is even.} \end{bmatrix}$$

Also from equation (3) above (p. 246) by differentiating m times we get

$$\mu D^m P_n + m D^{m-1} P_n = \frac{n+1}{2n+1} D^m P_{n+1} + \frac{n}{2n+1} D^m P_{n-1}.$$

Hence 
$$\mu D^n P_n + m D^{m-1} P_n = \frac{n+1}{2n+1} \left\{ (2n+1) D^{m-1} P_n + (2n-3) D^{m-1} P_{n-2} + \&c. + \begin{bmatrix} D^{m-1} P_0 & \text{when } n \text{ is even,} \\ 3D^{m-1} P_1 & \text{when } n \text{ is odd.} \end{bmatrix} \right\}$$

$$+ \frac{n}{2n+1} \left\{ (2n-3) D^{m-1} P_{n-3} + (2n-7) D^{m-1} P_{n-4} + \&c. + \begin{bmatrix} D^{m-1} P_0 & \text{when } n \text{ is even,} \\ 3D^{m-1} P_1 & \text{when } n \text{ is odd.} \end{bmatrix} \right\}$$

i.e. 
$$\mu D^{m}P_{n} = (n-m+1) D^{m-1}P_{n} + (2n-3) D^{m-1}P_{n-2} + \&c.$$
 
$$+ \begin{bmatrix} D^{m-1}P_{0} & \text{when } n \text{ is even,} \\ 3D^{m-1}P_{1} & \text{when } n \text{ is odd.} \end{bmatrix}$$

Also we have seen above (see p. 249) that

$$(1-\mu^2) D^{m+1} P_n = 2m\mu D^m P_n - (n+m) (n-m+1) D^{m-1} P_n.$$

$$(1-\mu^2) D^{m+1} P_n = -(n-m) (n-m+1) D^{m-1} P_n + 2m (2n-3) D^{m-1} P_{n-2} + \&c.$$
 
$$+ 2m (2n-4r+1) D^{m-1} P_{n-2r} + \&c.$$

Multiplying by  $(1-\mu^2)^{\frac{m-1}{2}}$  and putting

$$Q_n^m \text{ for } (1-\mu^2)^{\frac{m}{2}} D^m P_n,$$

we get 
$$Q_n^{m+1} = -(n-m)(n-m+1)Q_n^{m-1} + 2m(2n-3)Q_{n-2}^{m-1} + &c.$$
  
  $+2m(2n-4r+1)Q_{n-2}^{m-1} + &c.$ ;

and since 
$$Q_n^{m+1} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{(n-m-1)!} H_n^{m+1}$$
, we get

$$\begin{split} \frac{1 \cdot 3 \cdot 5}{(n-m-1)!} \cdot \frac{(2n-1)}{m-1} H_n^{m+1} &= -(n-m) \left( n-m+1 \right) \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{(n-m+1)!} H_n^{m-1} \\ &+ 2m \left\{ \left( 2n-3 \right) \cdot \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-5)}{(n-m-1)!} H_{n-2}^{m-1} + \&c. \right\}. \end{split}$$

Hence 
$$H_n^{m+1} = -H_n^{m-1} + 2m \left\{ \frac{1}{2n-1} H_{n-2}^{m-1} + \frac{(n-m-1)(n-m-2)}{(2n-1)(2n-3)(2n-5)} H_{n-4}^{m-1} + &c. \right.$$
  
  $\left. + \frac{(n-m-1)(n-m-2)\dots(n-m-2r+2)}{(2n-1)(2n-3)\dots(2n-4r+3)} H_{n-2r}^{m-1} + &c. \right\} \dots (2).$ 

Now multiply by  $H_{n-2r}^{m-1}d\mu$  and integrate from  $\mu=-1$  to  $\mu=1$ , then

$$\int_{-1}^{1} H_{n}^{m+1} H_{n-2r}^{m-1} d\mu = 2m \frac{(n-m-1)(n-m-2)\dots(n-m-2r+2)}{(2n-1)(2n-3)\dots(2n-4r+3)} \int_{-1}^{1} (H_{n-2r}^{m-1})^{2} d\mu$$

$$= 2m \frac{(n-m-1)(n-m-2)\dots(n-m-2r+2)}{(2n-1)(2n-3)\dots(2n-4r+3)}$$

$$\times 2 \frac{(n-m-2r+1)!(n+m-2r+1)!}{\{1\cdot 3\cdot 5\dots(2n-4r-1)\}^{2}(2n-4r+1)}$$

$$= 4m \frac{(n-m-1)!(n+m-2r-1)!}{1\cdot 3\cdot 5\dots(2n-4r-1)} \dots (3).$$

Putting  $n-2r=n_1$ , and recollecting that n and  $n_1$  are both even or both odd, and that when one of them is even and the other odd the integral evidently vanishes, we have

$$\int_{-1}^{1} H_{n}^{m+1} H_{n_{1}}^{m+1} d\mu = 4m \frac{(n-m-1)! (n_{1}+m-1)!}{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \dots (2n_{1}-1)},$$

where  $n_1$  is less than n.

Writing  $n_1$  for n in the above equation before integration and multiplying by  $H_n^{m-1}d\mu$  and then integrating we get

$$\int_{-1}^{1} H_{n_1}^{m+1} H_n^{m-1} d\mu = 0,$$

since all the quantities  $n_1$ ,  $n_1-2$ , &c. are less than n and so all the terms separately vanish.

Again multiplying the above equation before integration by  $H_{\scriptscriptstyle n}^{\scriptscriptstyle m-1} d\mu$  we get

$$\int_{-1}^{1} H_n^{m+1} H_n^{m-1} d\mu = -\int_{-1}^{1} (H_n^{m+1})^2 d\mu$$

$$= -2 \frac{(n-m+1)! (n+m-1)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2 (2n+1)}.$$

7. We have seen above that

$$\begin{split} D^2P_n &= (2n-1)\left(2n-3\right)P_{n-2} + 2\left(2n-3\right)\left(2n-7\right)P_{n-4} \\ &+ 3\left(2n-5\right)\left(2n-11\right)P_{n-6} + \&c. + r\left(2n-2r+1\right)\left(2n-4r+1\right)P_{n-2r} + \&c. \end{split}$$
 Hence 
$$D^{m+2}P_n &= (2n-1)\left(2n-3\right)D^mP_{n-2} + 2\left(2n-3\right)\left(2n-7\right)D^mP_{n-4} + \&c. \\ &+ r\left(2n-2r+1\right)\left(2n-4r+1\right)D^mP_{n-2r} + \&c. \end{split}$$

$$\begin{split} \therefore & (1-\mu^2)^{\frac{m}{2}} D^{m+2} P_n = (2n-1) \left(2n-3\right) \left(1-\mu^2\right)^{\frac{m}{2}} D^m P_{n-2} \\ & + 2 \left(2n-3\right) \left(2n-7\right) \left(1-\mu^2\right)^{\frac{m}{2}} D^m P_{n-4} + \&c. \\ & + r \left(2n-2r+1\right) \left(2n-4r+1\right) \left(1-\mu^2\right)^{\frac{m}{2}} D^m P_{n-2r} + \&c. \\ & \therefore & \frac{Q_n^{m+2}}{1-\mu^2} = \left(2n-1\right) \left(2n-3\right) Q_{n-2}^m + 2 \left(2n-3\right) \left(2n-7\right) Q_{n-4}^m + \&c. \\ & + r \left(2n-2r+1\right) \left(2n-4r+1\right) Q_{n-2r}^m + \&c., \\ & + r \left(2n-2r+1\right) \left(2n-4r+1\right) Q_{n-2r}^m + \&c. \\ & + r \left(2n-2r+1\right) \left(2n-4r+1\right) Q_{n-2r}^{m-2} + \&c. \end{split}$$

From which we obtain

$$\begin{split} \frac{H_{n}^{m}}{1-\mu^{2}} &= H_{n-2}^{m-2} + 2 \left(2n-3\right) \frac{\left(n-m\right)\left(n-m-1\right)}{\left(2n-1\right)\left(2n-3\right)\left(2n-5\right)} H_{n-4}^{m-2} + \&c. \\ &+ r \left(2n-2r+1\right) \frac{\left(n-m\right)\left(n-m-1\right) \ldots \left(n-m-2r+3\right)}{\left(2n-1\right)\left(2n-3\right) \ldots \left(2n-4r+3\right)} H_{n-2r}^{m-2} + \&c \ldots (4). \end{split}$$

Multiply the value of  $(1-\mu^2)^{\frac{m}{2}}D^{m+2}P_n$  obtained above by  $(1-\mu^2)^{\frac{m}{2}}D^mP_{n-2r}$  and integrate from  $\mu=-1$  to  $\mu=1$ , then

$$\begin{split} \int_{-1}^{1} \left(1 - \mu^{2}\right)^{m} D^{m+2} P_{n} \cdot D^{m} P_{n-2r} d\mu \\ &= r \left(2n - 2r + 1\right) \left(2n - 4r + 1\right) \int_{-1}^{1} (1 - \mu^{2})^{m} \left(D^{m} P_{n-2r}\right)^{2} d\mu \\ &= r \left(2n - 2r + 1\right) \left(2n - 4r + 1\right) \frac{2}{2n - 4r + 1} \frac{(n + m - 2r)!}{(n - m - 2r)!} \\ &= 2r \left(2n - 2r + 1\right) \frac{(n + m - 2r)!}{(n - m - 2r)!} . \end{split}$$

Putting  $n-2r=n_1$ , we get

$$\int_{-1}^{1} (1-\mu^2)^m D^{m+2} P_n \cdot D^m P_{n_1} d\mu = (n-n_1) \left(n+n_1+1\right) \frac{(n_1+m)\,!}{(n_1-m)\,!}.$$

We have seen that

$$\begin{split} H_{n}^{m} &= -H_{n}^{m-2} + 2\left(m-1\right) \left\{ \frac{1}{2n-1} \; H_{n-2}^{m-2} + \frac{\left(n-m\right)\left(n-m-1\right)}{\left(2n-1\right)\left(2n-3\right)\left(2n-5\right)} \; H_{n-4}^{m-2} + \&c. \right. \\ &\left. + \frac{\left(n-m\right)\left(n-m-1\right) \ldots \left(n-m-2r+3\right)}{\left(2n-1\right)\left(2n-3\right) \ldots \left(2n-4r+3\right)} \; H_{n-2r}^{m-2} + \&c. \right\} \; , \end{split}$$

and

$$\begin{split} \frac{H_{n}^{m}}{1-\mu^{2}} &= H_{n-2}^{m-2} + 2\left(2n-3\right) \frac{\left(n-m\right)\left(n-m-1\right)}{\left(2n-1\right)\left(2n-3\right)\left(2n-5\right)} H_{n-4}^{m-2} + \&c. \\ &+ r\left(2n-2r+1\right) \frac{\left(n-m\right)\left(n-m-1\right) \ldots \left(n-m-2r+3\right)}{\left(2n-1\right)\left(2n-3\right) \ldots \left(2n-4r+3\right)} H_{n-2r}^{m-2} + \&c. \end{split}$$

Multiply this last equation by  $H_n^m d\mu$  and integrate, then

$$\begin{split} \int_{-1}^{1} \frac{(H_{n}^{m})^{2}}{1-\mu^{2}} d\mu &= \int_{-1}^{1} H_{n}^{m} H_{n-2}^{m-2} d\mu + 2 \, (2n-3) \, \frac{(n-m) \, (n-m-1)}{(2n-1) \, (2n-3) \, (2n-5)} \int_{-1}^{1} H_{n}^{m} H_{n-4}^{m-2} d\mu \\ &+ r \, (2n-2r+1) \, \frac{(n-m) \, (n-m-1) \, \ldots \, (n-m-2r+3)}{(2n-1) \, (2n-3) \, \ldots \, (2n-4r+3)} \int_{-1}^{1} H_{n}^{m} H_{n-2r}^{m-2} d\mu \ldots (5). \end{split}$$

But 
$$\int_{-1}^{1} H_n^m H_{n_1}^{m-2} d\mu = 4 (m-1) \frac{(n-m)! (n_1 + m - 2)!}{1 \cdot 3 \cdot 5 \cdot \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \cdot \dots (2n_1 - 1)},$$

 $n_1$  being less than n, hence the value of the above definite integral  $\int_{-1}^{1} \frac{(H_n^m)^2}{1-\mu^2} d\mu$  may be found by substituting  $\overline{n-2}$ ,  $\overline{n-4}$ , &c. successively for  $n_1$  in this equation.

8. We will now find a formula of reduction for  $\int_{-1}^{1} (1-\mu^2)^{m+1} (D^m P_n)^2 d\mu$ .

We have seen that  $\int_{-1}^{1} (1-\mu^2)^m (D^m P_n)^2 d\mu = \frac{2}{2n+1} \frac{(n+m)!}{(n-m)!}$ ,

and

$$P_2 = \frac{3}{2} \left( \mu^2 - \frac{1}{3} \right),$$

also from a previous paper (see Vol. 1. p. 488) we have

$$P_{n}P_{2} = \frac{3}{2} \frac{(n+1)(n+2)}{(2n+1)(2n+3)} P_{n+2} + \frac{n(n+1)}{(2n-1)(2n+3)} P_{n} + \frac{3}{2} \frac{n(n-1)}{(2n-1)(2n+1)} P_{n-2};$$

hence 
$$\left(\mu^2 - \frac{1}{3}\right) P_n = \frac{(n+1)(n+2)}{(2n+1)(2n+3)} P_{n+2} + \frac{2}{3} \frac{n(n+1)}{(2n-1)(2n+3)} P_n$$

$$+\frac{n(n-1)}{(2n-1)(2n+1)}P_{n-2},$$
 or 
$$\left(\mu^{2}-1\right)P_{n}=\frac{(n+1)(n+2)}{(2n+1)(2n+3)}P_{n+2}-2\frac{n^{2}+n-1}{(2n-1)(2n+3)}P_{n}$$

$$+\frac{n\left( n-1\right) }{\left( 2n-1\right) \left( 2n+1\right) }P_{n-2}.$$

Differentiating m times, we get

$$(\mu^{2}-1)D^{m}P_{n} + 2\mu mD^{m-1}P_{n} + m(m-1)D^{m-2}P_{n}$$

$$= \frac{(n+1)(n+2)}{(2n+1)(2n+3)}D^{m}P_{n+2} - 2\frac{n^{2}+n-1}{(2n-1)(2n+3)}D^{m}P_{n} + \frac{n(n-1)}{(2n-1)(2n+1)}D^{m}P_{n-2}.$$
But  $\mu P_{n} = \frac{n+1}{2n+1}P_{n+1} + \frac{n}{2n+1}P_{n-1}$ 

$$= \frac{n+1}{2n+1}\left\{\frac{1}{2n+3}DP_{n+2} - \frac{1}{2n+3}DP_{n}\right\} + \frac{n}{2n+1}\left\{\frac{1}{2n-1}DP_{n} - \frac{1}{2n-1}DP_{n-2}\right\}$$

$$= \frac{n+1}{(2n+1)(2n+3)}DP_{n+2} + \frac{1}{(2n-1)(2n+3)}DP_{n} - \frac{n}{(2n+1)(2n-1)}DP_{n-2}.$$

Differentiating m-1 times, we get

$$\mu D^{m-1}P_n + (m-1)D^{m-2}P_n = \frac{n+1}{(2n+1)(2n+3)}D^m P_{n+2} + \frac{1}{(2n-1)(2n+3)}D^m P_n - \frac{n}{(2n+1)(2n-1)}D^m P_{n-2}.$$

Also 
$$P_n = \frac{1}{2n+1} DP_{n+1} - \frac{1}{(2n+1)} DP_{n-1}.$$

Differentiating we get

$$DP_{n} = \frac{1}{2n+1} D^{2}P_{n+1} - \frac{1}{(2n+1)} D^{2}P_{n-1};$$

$$\therefore P_{n} = \frac{1}{2n+1} \left\{ \frac{1}{2n+3} D^{2}P_{n+2} - \frac{1}{2n+3} D^{2}P_{n} \right\}$$

$$- \frac{1}{2n+1} \left\{ \frac{1}{2n-1} D^{2}P_{n} - \frac{1}{2n-1} D^{2}P_{n-2} \right\}$$

$$= \frac{1}{(2n+1)(2n+3)} D^{2}P_{n+2} - \frac{2}{(2n-1)(2n+3)} D^{2}P_{n} + \frac{1}{(2n-1)(2n+1)} D^{2}P_{n-2}.$$

Differentiate this equation m-2 times, then multiply the result by m(m-1) and subtract from  $2m[\mu D^{m-1}P_n + (m-1)D^{m-2}P_n]$  and we get

$$\begin{split} 2m\mu D^{^{m-1}}P_n + m\left(m-1\right)D^{^{m-2}}P_n \\ &= \frac{2m\left(n+1\right) - m\left(m-1\right)}{\left(2n+1\right)\left(2n+3\right)}D^{^{m}}P_{n+2} \\ &\qquad \qquad + \frac{2m+2m\left(m-1\right)}{\left(2n-1\right)\left(2n+3\right)}D^{^{m}}P_n - \frac{2mn+m\left(m-1\right)}{\left(2n-1\right)\left(2n+1\right)}D^{^{m}}P_{n-2} \\ &= \frac{m\left(2n+3\right) - m^2}{\left(2n+1\right)\left(2n+3\right)}D^{^{m}}P_{n+2} + \frac{2m^2}{\left(2n-1\right)\left(2n+3\right)}D^{^{m}}P_n - \frac{m\left(2n-1\right) + m^2}{\left(2n-1\right)\left(2n+1\right)}D^{^{m}}P_{n-2}; \end{split}$$

$$\therefore (\mu^{2}-1) D^{m} P_{n} = \frac{(n+1-m)(n+2-m)}{(2n+1)(2n+3)} D^{m} P_{n+2} - 2 \frac{n^{2}+n-1+m^{2}}{(2n-1)(2n+3)} D^{m} P_{n}$$

$$+ \frac{(n+m)(n-1+m)}{(2n-1)(2n+1)} D^{m} P_{n-2}.$$

Now multiply by  $(1-\mu^2)^m D^m P_n$  and integrate between limits, then

$$\int_{-1}^{1} (1 - \mu^{2})^{m+1} (D^{m} P_{n})^{2} d\mu = 2 \frac{n^{2} + n + m^{2} - 1}{(2n-1)(2n+3)} \int_{-1}^{1} (1 - \mu^{2})^{m} (D^{m} P_{n})^{2} d\mu$$

$$= 4 \frac{n^{2} + n + m^{2} - 1}{(2n-1)(2n+3)(2n+1)} \frac{(n+m)!}{(n-m)!} \dots (6).$$

9. From the above equation we derive the following definite integrals:

$$\int_{-1}^{1} (1-\mu^2) \left(H_n^m\right)^2 d\mu = 4 \frac{n^2 + n + m^2 - 1}{(2n-1)(2n+1)(2n+3)} \frac{(n-m)!(n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2},$$
hence
$$\int_{-1}^{1} \mu^2 \left(H_n^m\right)^2 d\mu = \int_{-1}^{1} \left(H_n^m\right)^2 d\mu \left\{1 - \frac{2n^2 + 2n + 2m^2 - 2}{(2n-1)(2n+3)}\right\}$$

$$= \int_{-1}^{1} \left(H_n^m\right)^2 d\mu \frac{2n^2 + 2n - 2m^2 - 1}{(2n-1)(2n+3)},$$
and
$$\int_{-1}^{1} \mu H_n^m \frac{dH_n^m}{d\mu} d\mu = \frac{1}{2} \left[\mu \left(H_n^m\right)^2\right]_{-1}^{1} - \frac{1}{2} \int_{-1}^{1} \left(H_n^m\right)^2 d\mu$$

$$= -\frac{1}{2} \int_{-1}^{1} \left(H_n^m\right)^2 d\mu = -\frac{(n-m)!(n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2(2n+1)} \dots (7).$$
Also
$$\int \mu \left(1 - \mu^2\right) H_n^m \frac{dH_n^m}{d\mu} d\mu = \frac{1}{2} \mu \left(1 - \mu^2\right) \left(H_n^m\right)^2 - \frac{1}{2} \int \left(H_n^m\right)^2 \left(1 - 3\mu^2\right) d\mu$$

$$= \frac{1}{2} \mu \left(1 - \mu^2\right) \left(H_n^m\right)^2 + \int \left(H_n^m\right)^2 d\mu - \frac{3}{2} \int \left(1 - \mu^2\right) \left(H_n^m\right)^2 d\mu,$$
hence
$$\int_{-1}^{1} \mu \left(1 - \mu^2\right) H_n^m \frac{dH_n^m}{d\mu} d\mu$$

$$= 2 \frac{(n-m)!(n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2} \left\{\frac{1}{2n+1} - \frac{3(n^2 + n + m^2 - 1)}{(2n-1)(2n+1)(2n+3)}\right\}$$

 $=2\frac{(n-m)!(n+m)!}{\{1,3,5,...(2n-1)\}^2}\frac{n^2+n-3m^2}{(2n-1)(2n+1)(2n+3)}.....(8).$ 

53

A. II.

10. We have seen above that

$$(\mu^{2}-1) D^{m} P_{n} = \frac{(n-m+1)(n-m+2)}{(2n+1)(2n+3)} D^{m} P_{n+2}$$

$$-2 \frac{n^{2}+n+m^{2}-1}{(2n-1)(2n+3)} D^{m} P_{n} + \frac{(n+m)(n+m-1)}{(2n-1)(2n+1)} D^{m} P_{n-2}.$$

Multiply by  $(1-\mu^2)^m D^m P_{n_1}$  and integrate between limits, supposing that  $n_1$  and n are both odd or both even. Then

$$\int_{-1}^{1} (1 - \mu^2) Q_n^m Q_{n_1}^m d\mu = \int_{-1}^{1} (1 - \mu^2)^{m+1} D^m P_n \cdot D^m P_{n_1} d\mu,$$

which vanishes except when  $n_1 = n$ , or when  $n_1 = n - 2$ , or when  $n_1 = n + 2$ .

When  $n_1 = n - 2$ 

$$\int_{-1}^{1} (1-\mu^{2}) Q_{n}^{m} Q_{n_{1}}^{m} d\mu = -\frac{(n+m)(n+m-1)}{(2n-1)(2n+1)} \int_{-1}^{1} (Q_{n-2}^{m})^{2} d\mu$$

$$= -\frac{(n+m)(n+m-1)}{(2n-1)(2n+1)} \frac{2}{2n-3} \frac{(n+m-2)!}{(n-m-2)!} = -\frac{2(n+m)!}{(2n-3)(2n-1)(2n+1)(n_{1}-m)!},$$
and 
$$\int_{-1}^{1} (1-\mu^{2}) H_{n}^{m} H_{n-2}^{m} d\mu = -\frac{2}{2n+1} \frac{(n+m)!(n-m)!}{1\cdot 3\cdot 5 \cdot \dots \cdot (2n-1) \cdot 1\cdot 3\cdot 5 \cdot \dots \cdot (2n-1)}.$$

When  $n_1 = n + 2$  we get

$$\begin{split} &\int_{-1}^{1} \left(1-\mu^2\right) \, Q_n^m Q_{n_1}^m d\mu = -\frac{\left(n-m+1\right) \left(n-m+2\right)}{\left(2n+1\right) \left(2n+3\right)} \int_{-1}^{1} \left(Q_{n+2}^m\right)^2 d\mu \\ &= -\frac{2 \left(n+m+2\right)!}{\left(2n+3\right) \left(2n+5\right) \left(n-m\right)!} = -\frac{2 \left(n_1+m\right)!}{\left(2n+1\right) \left(2n+3\right) \left(2n+5\right) \left(n-m\right)!}, \\ &\text{and} \quad \int_{-1}^{1} \left(1-\mu^2\right) H_{n+2}^m H_n^m d\mu = -\frac{2}{\left(2n+5\right)} \frac{\left(n+m+2\right)! \left(n-m+2\right)!}{\left(2n+3\right) \left(2n+3\right) \left(2n+3\right)}. \end{split}$$

Hence, when  $n_1 = n - 2$ ,

$$\int_{-1}^{1} \mu^{2} H_{n}^{m} H_{n_{1}}^{m} d\mu = \frac{2}{2n+1} \frac{(n+m)! (n-m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^{2}} \dots (9),$$

and when  $n_1 = n + 2$ 

$$\int_{-1}^{1} \mu^{2} H_{n_{1}}^{m} H_{n}^{m} d\mu = \frac{2}{2n_{1} + 1} \left\{ \frac{(n_{1} + m)! (n_{1} - m)!}{\{1 \cdot 3 \cdot 5 \dots (2n_{1} - 1)\}^{2}} \dots (10). \right\}$$

In all other cases this integral vanishes.

Hence 
$$\begin{split} &\int_{-1}^{1} \left(1 - \mu^{2}\right) \left(Q_{n}^{m}\right)^{2} d\mu = \frac{2 \left(n^{2} + n + m^{2} - 1\right)}{\left(2n - 1\right) \left(2n + 3\right)} \int_{-1}^{1} \left(Q_{n}^{m}\right)^{2} d\mu \\ &= \frac{4 \left(n^{2} + n + m^{2} - 1\right)}{\left(2n - 1\right) \left(2n + 3\right) \left(2n + 3\right)} \frac{\left(n + m\right)!}{\left(n - m\right)!}, \end{split}$$

and 
$$\int_{-1}^{1} \left(\frac{1}{3} - \mu^{2}\right) (Q_{n}^{m})^{2} d\mu = -\frac{4}{3} \frac{n^{2} + n - 3m^{2}}{(2n - 1)(2n + 1)(2n + 3)} \frac{(n + m)!}{(n - m)!};$$

also 
$$\int_{-1}^{1} \left(\frac{1}{3} - \mu^{2}\right) Q_{n}^{m} Q_{n-2}^{m} d\mu = -\frac{2}{(2n-3)(2n-1)(2n+1)} \frac{(n+m)!}{(n-m-2)!}.$$

Similarly 
$$\int_{-1}^{1} \left(\frac{1}{3} - \mu^{2}\right) Q_{n+2}^{m} Q_{n}^{m} d\mu = -\frac{2}{(2n+1)(2n+3)(2n+5)} \frac{(n+m+2)!}{(n-m)!};$$

in all other cases  $\int_{-1}^{1} \left(\frac{1}{3} - \mu^2\right) Q_n^m Q_{n_1}^m d\mu$  or  $\int_{-1}^{1} \mu^2 Q_n^m Q_{n_1}^m d\mu$  vanishes.

The value of  $\int_{-1}^{1} \mu^2 H_n^m H_{n_1}^m d\mu$  may be derived from the expression for  $\int_{-1}^{1} \mu^2 Q_n^m Q_{n_1}^m d\mu$  by multiplying by the ratio

$$\frac{H_{n}^{m}H_{n_{1}}^{m}}{Q_{n}^{m}Q_{n_{1}}^{m}} = \frac{(n-m)!(n_{1}-m)!}{1\cdot 3\cdot 5\ldots (2n-1)\; 1\cdot 3\cdot 5\ldots (2n_{1}-1)};$$

hence 
$$\int_{-1}^{1} \left(\frac{1}{3} - \mu^{2}\right) (H_{n}^{m})^{2} d\mu = -\frac{4}{3} \frac{n^{2} + n - 3m^{2}}{(2n-1)(2n+1)(2n+3)} \frac{(n+m)!(n-m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^{2}},$$

$$\int_{-1}^{1} \left( \frac{1}{3} - \mu^{2} \right) H_{n}^{m} H_{n-2}^{m} d\mu = -\frac{2}{2n+1} \frac{(n+m)! (n-m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^{2}},$$

and

$$\int_{-1}^{1} \left( \frac{1}{3} - \mu^{2} \right) H_{n}^{m} H_{n+2}^{m} d\mu = -\frac{2}{2n+5} \frac{(n+m+2)! (n-m+2)!}{\{1 \cdot 3 \cdot 5 \dots (2n+3)\}^{2}}.$$

11. From Art. 1 above (p. 402) we have

$$X_{n}^{m} = \frac{1}{r^{n+2}} \left[ \frac{1}{2} (n-m) H_{n}^{m+1} - \frac{1}{2} (n+m) H_{n}^{m-1} \right],$$

$$Y_n^m = \frac{1}{r^{n+2}} m H_n^m (1 - \mu^2)^{-\frac{1}{2}},$$

$$Z_n^m = \frac{n+1}{r^{n+2}} H_n^m.$$

Hence on a sphere of radius 1 we have

$$X_{n}^{m} = \left[\frac{1}{2}(n-m)H_{n}^{m+1} - \frac{1}{2}(n+m)H_{n}^{m-1}\right].$$

Also, as above,

$$\begin{split} X_n^m &= m\mu \left(1 - \mu^2\right)^{-\frac{1}{2}} H_n^m - (n+m) H_n^{m-1}, \\ Y_n^m &= mH_n^m \left(1 - \mu^2\right)^{-\frac{1}{2}}, \text{ and } Z_n^m = (n+1) H_n^m, \\ \mu Y_n^m - X_n^m &= (n+m) H_n^{m-1}, \end{split}$$

Hence

and

$$(1-\mu^2)^{\frac{1}{2}} Y_n^m = m H_n^m.$$

Also we have

$$X_n^m = (1 - \mu^2)^{\frac{1}{2}} \frac{dH_n^m}{d\mu}.$$

 $\mu Y_{n}^{m} + X_{n}^{m} = (n-m) H_{n}^{m+1}$ 

From these formulae we find

$$(X_n^m)^2 + (Y_n^m)^2 = (1 - \mu^2) \left(\frac{dH_n^m}{d\mu}\right)^2 + \frac{m^2}{1 - \mu^2} (H_n^m)^2,$$

$$\int_{-1}^{1} (1 - \mu^2) \left(\frac{dH_n^m}{d\mu}\right)^2 d\mu = \int_{-1}^{1} (X_n^m)^2 d\mu.$$

and

We have also

$$(X_n^m)^2 + (Y_n^m)^2 = \frac{1}{2}(n+m)^2(H_n^{m-1})^2 + \frac{1}{2}(n-m)^2(H_n^{m+1})^2 + m^2(H_n^m)^2;$$

$$\therefore \int_{-1}^{1} (X_{n}^{m})^{2} d\mu + \int_{-1}^{1} (Y_{n}^{m})^{2} d\mu = \frac{1}{2} (n+m)^{2} \int_{-1}^{1} (H_{n}^{m-1})^{2} d\mu 
+ \frac{1}{2} (n-m)^{2} \int_{-1}^{1} (H_{n}^{m+1})^{2} d\mu + m^{2} \int_{-1}^{1} (H_{n}^{m})^{2} d\mu 
= 2 \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \cdots (2n-1)\}^{2} (2n+1)} \left[ \frac{1}{2} (n-m+1) (n+m) 
+ \frac{1}{2} (n-m) (n+m+1) + m^{2} \right] 
= 2 \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \cdots (2n-1)\}^{2}} \frac{n(n+1)}{2n+1} = n(n+1) \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \dots (11).$$

And since  $Z_n^m = (n+1) H_n^m$ , we have

$$\int_{-1}^{1} (X_{n}^{m})^{2} d\mu + \int_{-1}^{1} (Y_{n}^{m})^{2} d\mu + \int_{-1}^{1} (Z_{n}^{m})^{2} d\mu = 2 \frac{(n-m)! (n+m)!}{\{1.3.5...(2n-1)\}^{2}} (n+1).$$

12. Also we have

$$\mu X_{n}^{m} Y_{n}^{m} = \frac{1}{4} (n-m)^{2} (H_{n}^{m+1})^{2} - \frac{1}{4} (n+m)^{2} (H_{n}^{m-1})^{2};$$

$$\therefore \int_{-1}^{1} \mu X_{n}^{m} Y_{n}^{m} d\mu = \frac{1}{4} (n-m)^{2} \int_{-1}^{1} (H_{n}^{m+1})^{2} d\mu - \frac{1}{4} (n+m)^{2} \int_{-1}^{1} (H_{n}^{m-1})^{2} d\mu$$

$$= \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^{2} (2n+1)} \left[ \frac{1}{2} (n-m) (n+m+1) - \frac{1}{2} (n-m+1) (n+m) \right]$$

$$= -\frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^{2}} \frac{m}{2n+1}.$$

Also since

$$\mu Y_{n_1}^m - X_{n_1}^m = (n_1 + m) H_{n_1}^{m-1},$$
 $\mu Y_{n_1}^m + X_{n_1}^m = (n_1 - m) H_{n_1}^{m+1},$ 
 $(1 - \mu^2)^{\frac{1}{2}} Y_{n_1}^m = m H_{n_1}^m,$ 

and

we have

$$\frac{1}{2}(\mu Y_{n}^{m} - X_{n}^{m})(\mu Y_{n_{1}}^{m} - X_{n_{1}}^{m}) + \frac{1}{2}(\mu Y_{n}^{m} + X_{n}^{m})(\mu Y_{n_{1}}^{m} + X_{n_{1}}^{m}) + (1 - \mu^{2}) Y_{n}^{m} Y_{n_{1}}^{m}$$

$$= X_{n}^{m} X_{n_{1}}^{m} + Y_{n}^{m} Y_{n_{1}}^{m}$$

$$= \frac{1}{2}(n + m)(n_{1} + m) H_{n}^{m-1} H_{n_{1}}^{m-1} + \frac{1}{2}(n - m)(n_{1} - m) H_{n}^{m+1} H_{n_{1}}^{m+1} + m^{2} H_{n}^{m} H_{n_{1}}^{m};$$
hence
$$\int_{-1}^{1} X_{n}^{m} X_{n_{1}}^{m} d\mu + \int_{-1}^{1} Y_{n}^{m} Y_{n_{1}}^{m} d\mu = 0 \dots (12),$$

since all the integrals on the right-hand side of the equation vanish.

Also we have 
$$\int_{-1}^{1} Z_{n}^{m} Z_{n_{1}}^{m} d\mu = 0$$
, since  $\int_{-1}^{1} H_{n}^{m} H_{n_{1}}^{m} d\mu = 0$ .

13. Also

$$\frac{1}{2} \int_{-1}^{1} (\mu Y_{n}^{m} + X_{n}^{m}) (\mu Y_{n_{1}}^{m} + X_{n_{1}}^{m}) d\mu - \frac{1}{2} \int_{-1}^{1} (\mu Y_{n}^{m} - X_{n}^{m}) (\mu Y_{n_{1}}^{m} - X_{n_{1}}^{m}) d\mu 
= \frac{1}{2} (n - m) (n_{1} - m) \int_{-1}^{1} H_{n}^{m+1} H_{n_{1}}^{m+1} d\mu - \frac{1}{2} (n + m) (n_{1} + m) \int_{-1}^{1} H_{n}^{m-1} H_{n_{1}}^{m-1} d\mu, 
or$$
or
$$\int_{-1}^{1} \mu (X_{n}^{m} Y_{n_{1}}^{m} + X_{n_{1}}^{m} Y_{n}^{m}) d\mu = 0 \qquad (13).$$

Also we have

$$\int_{-1}^{1} \left\{ \mu^{2} \left( Y_{n}^{m} \right)^{2} - \left( X_{n}^{m} \right)^{2} \right\} d\mu = (n+m) (n-m) \int_{-1}^{1} H_{n}^{m-1} H_{n}^{m+1} d\mu$$

$$= -(n+m) (n-m) \int_{-1}^{1} (H_{n}^{m-1})^{2} d\mu$$

$$= -2 \frac{(n-m+1)! (n+m)!}{\{1,3,5,\dots(2n-1)\}^{2} (2n+1)} (n-m),$$

and

$$\int_{-1}^{1} (1-\mu^2) (Y_n^m)^2 d\mu = m^2 \int_{-1}^{1} (H_n^m)^2 d\mu = 2 \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2 (2n+1)} m^2.$$

Adding we get

$$\begin{split} \int_{-1}^{1} \left\{ (Y_n^m)^2 - (X_n^m)^2 \right\} d\mu &= 2 \frac{(n-m)! (n+m)!}{\left\{ 1 \cdot 3 \cdot 5 \dots (2n-1) \right\}^2 (2n+1)} \left[ m^2 - (n-m+1)(n-m) \right] \\ &= -2 \frac{(n-m)! (n+m)!}{\left\{ 1 \cdot 3 \cdot 5 \dots (2n-1) \right\}^2 (2n+1)} \left[ n (n+1) - (2n+1) m \right] \\ &= -2 \frac{(n-m)! (n+m)!}{\left\{ 1 \cdot 3 \cdot 5 \dots (2n-1) \right\}^2} \left[ \frac{n (n+1)}{2n+1} - m \right]. \end{split}$$

Combining this with

$$\int_{-1}^{1} (X_n^m)^2 d\mu + \int_{-1}^{1} (Y_n^m)^2 d\mu = 2 \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2} \frac{n(n+1)}{2n+1},$$

we have

$$\int_{-1}^{1} (X_{n}^{m})^{2} d\mu = 2 \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^{2}} \left[ \frac{n (n+1)}{2n+1} - \frac{1}{2} m \right],$$

$$\int_{-1}^{1} (Y_{n}^{m})^{2} d\mu = \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^{2}} m.$$

and

Also 
$$\int_{-1}^{1} (\mu Y_{n}^{m} + X_{n}^{m}) (\mu Y_{n_{1}}^{m} - X_{n_{1}}^{m}) d\mu + \int_{-1}^{1} (\mu Y_{n}^{m} - X_{n}^{m}) (\mu Y_{n_{1}}^{m} + X_{n_{1}}^{m}) d\mu$$
$$= (n - m) (n_{1} + m) \int_{-1}^{1} H_{n}^{m+1} H_{n_{1}}^{m-1} d\mu + (n + m) (n_{1} - m) \int_{-1}^{1} H_{n}^{m-1} H_{n_{1}}^{m+1} d\mu,$$

or 
$$\int_{-1}^{1} \mu^{2} Y_{n}^{m} Y_{n_{1}}^{m} d\mu - \int_{-1}^{1} X_{n}^{m} X_{n_{1}}^{m} d\mu$$

$$= \frac{1}{2} (n - m) (n_{1} + m) \int_{-1}^{1} H_{n}^{m+1} H_{n_{1}}^{m-1} d\mu + \frac{1}{2} (n + m) (n_{1} - m) \int_{-1}^{1} H_{n}^{m-1} H_{n_{1}}^{m+1} d\mu$$

$$= 2m \frac{(n - m)! (n_{1} + m)!}{1 \cdot 3 \cdot 5 \cdot \dots (2n - 1) 1 \cdot 3 \cdot 5 \cdot \dots (2n_{1} - 1)}.$$

$$\int_{-1}^{1} (1 - \mu^2) Y_n^m Y_{n_1}^m d\mu = 0;$$

therefore

$$\int_{-1}^{1} Y_{n}^{m} Y_{n_{1}}^{m} d\mu - \int_{-1}^{1} X_{n}^{m} X_{n_{1}}^{m} d\mu = 2m \frac{(n-m)! (n_{1}+m)!}{1 \cdot 3 \cdot 5 \dots (2n-1) 1 \cdot 3 \cdot 5 \dots (2n_{1}-1)}.$$

14. We have seen above that

$$\int_{-1}^{1} (H_n^m)^2 d\mu = \frac{2}{2n+1} \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2},$$

and that  $(1-\mu^2)^{\frac{1}{2}} Y_n^m = mH_n^m$ ;

hence

$$\int_{-1}^{1} \frac{(H_n^m)^2}{1-\mu^2} d\mu = \frac{1}{m^2} \int_{-1}^{1} (Y_n^m)^2 d\mu = \frac{1}{m} \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)\}^2}.$$

Also since

$$\frac{\mu^2 (H_n^m)^2}{1-\mu^2} = \frac{(H_n^m)^2}{1-\mu^2} - (H_n^m)^2,$$

it follows that 
$$\int_{-1}^{1} \frac{\mu^{2} (H_{n}^{m})^{2}}{1-\mu^{2}} d\mu = \left(\frac{1}{m} - \frac{2}{2n+1}\right) \frac{(n-m)! (n+m)!}{\{1 . 3 . 5 ... (2n-1)\}^{2}}.$$

We have also seen that, when  $n_1$  is less than n,

$$\int_{-1}^{1} Y_{n}^{m} Y_{n_{1}}^{m} d\mu = m \frac{(n-m)! (n_{1}+m)!}{1 \cdot 3 \cdot 5 \dots (2n-1) 1 \cdot 3 \cdot 5 \dots (2n_{1}-1)};$$

hence, under the same condition,

$$\int_{-1}^{1} \frac{H_n^m H_{n_1}^m}{1 - \mu^2} d\mu = \frac{1}{m} \frac{(n-m)! (n_1 + m)!}{1 \cdot 3 \cdot 5 \dots (2n-1) 1 \cdot 3 \cdot 5 \dots (2n_1 - 1)} \dots (14);$$

also

$$\int_{-1}^{1} \frac{\mu^{2} H_{n}^{m} H_{n_{1}}^{m}}{1 - \mu^{2}} d\mu = \int_{-1}^{1} \frac{H_{n}^{m} H_{n_{1}}^{m}}{1 - \mu^{2}} d\mu - \int_{-1}^{1} H_{n}^{m} H_{n_{1}}^{m} d\mu$$

$$= \int_{-1}^{1} \frac{H_{n}^{m} H_{n_{1}}^{m}}{1 - \mu^{2}} d\mu,$$

where n and  $n_1$  must evidently be both even or both odd, in order that the integral may have a finite value.

When in these equations we are only concerned with the same value of m, we may conveniently write  $H_n$  for  $H_n^m$  and  $H_{n_1}$  for  $H_{n_1}^m$ , for the sake of simplification.

15. From the differential equation for  $H_n$  we have

$$(1-\mu^2)\frac{d^2H_n}{d\mu^2} - 2\mu \frac{dH_n}{d\mu} + \left[n(n+1) - \frac{m^2}{1-\mu^2}\right]H_n = 0,$$

and

$$(1-\mu^2) \frac{d^2 H_{n_1}}{d\mu^2} - 2\mu \frac{d H_{n_1}}{d\mu} + \left[ n_1 (n_1 + 1) - \frac{m^2}{1-\mu^2} \right] H_{n_1} = 0.$$

Multiply by  $H_{n_1}$  and  $H_n$  respectively and add, then

$$(1 - \mu^{2}) \left[ H_{n_{1}} \frac{d^{2} H_{n}}{d\mu^{2}} + H_{n} \frac{d^{2} H_{n_{1}}}{d\mu^{2}} \right] - 2\mu \left[ H_{n_{1}} \frac{d H_{n}}{d\mu} + H_{n} \frac{d H_{n_{1}}}{d\mu} \right]$$

$$+ \left[ n \left( n + 1 \right) + n_{1} \left( n_{1} + 1 \right) - \frac{2m^{2}}{1 - \mu^{2}} \right] H_{n} H_{n_{1}} = 0.$$
But  $(1 - \mu^{2}) \frac{d}{d\mu} \left[ H_{n_{1}} \frac{d H_{n}}{d\mu} + H_{n} \frac{d H_{n_{1}}}{d\mu} \right] - 2 \left( 1 - \mu^{2} \right) \frac{d H_{n}}{d\mu} \frac{d H_{n}}{d\mu}.$ 

But 
$$(1 - \mu^2) \frac{d}{d\mu} \left[ H_{n_1} \frac{dH_n}{d\mu} + H_n \frac{dH_{n_1}}{d\mu} \right] - 2 (1 - \mu^2) \frac{dH_n}{d\mu} \frac{dH_{n_1}}{d\mu}$$
  

$$= (1 - \mu^2) \left[ H_{n_1} \frac{d^2 H_n}{d\mu^2} + H_n \frac{d^2 H_{n_1}}{d\mu^2} \right],$$

therefore

$$(1 - \mu^{2}) \frac{d}{d\mu} \left[ H_{n_{1}} \frac{dH_{n}}{d\mu} + H_{n} \frac{dH_{n_{1}}}{d\mu} \right] - 2\mu \left[ H_{n_{1}} \frac{dH_{n}}{d\mu} + H_{n} \frac{dH_{n_{1}}}{d\mu} \right] - 2(1 - \mu^{2}) \frac{dH_{n}}{d\mu} \frac{dH_{n_{1}}}{d\mu} + \left[ n(n+1) + n_{1}(n_{1}+1) - \frac{2m^{2}}{1-\mu^{2}} \right] H_{n} H_{n_{1}} = 0,$$

or 
$$\frac{d}{d\mu} (1 - \mu^2) \left[ H_{n_1} \frac{dH_n}{d\mu} + H_n \frac{dH_{n_1}}{d\mu} \right] - 2 (1 - \mu^2) \frac{dH_n}{d\mu} \frac{dH_{n_1}}{d\mu} + \left[ n (n+1) + n_1 (n_1 + 1) - \frac{2m^2}{1 - \mu^2} \right] H_n H_{n_1} = 0.$$

Integrating from  $\mu = -1$  to  $\mu = 1$ , we get

$$\begin{split} \int_{-1}^{1} (1 - \mu^{2}) \frac{dH_{n}}{d\mu} \frac{dH_{n_{1}}}{d\mu} d\mu + \int_{-1}^{1} \frac{m^{2}H_{n}H_{n_{1}}}{1 - \mu^{2}} d\mu \\ &= \left[ \frac{1}{2} n (n+1) + \frac{1}{2} n_{1} (n_{1}+1) \right] \int_{-1}^{1} H_{n}H_{n_{1}} d\mu. \end{split}$$

When  $n = n_1$ , this gives the value of

$$\int_{-1}^{1} (X_n)^2 d\mu + \int_{-1}^{1} (Y_n)^2 d\mu = n (n+1) \int_{-1}^{1} (H_n)^2 d\mu,$$

as we have seen elsewhere.

In all other cases

$$\int_{-1}^{1} X_{n} X_{n_{1}} d\mu + \int_{-1}^{1} Y_{n} Y_{n_{1}} d\mu = 0,$$
and 
$$\int_{-1}^{1} Y_{n} Y_{n_{1}} d\mu = -\int_{-1}^{1} X_{n} X_{n_{1}} d\mu = \frac{m (n-m)! (n_{1}+m)!}{1 \cdot 3 \cdot 5 \dots (2n-1) 1 \cdot 3 \cdot 5 \dots (2n_{1}-1)} \dots (15).$$

16. From the differential equation for  $H_n$  (taking  $H_n$  for  $H_n^m$ ) we have

$$(1-\mu^2)\frac{d^2H_n}{d\mu^2} - 2\mu\frac{dH_n}{d\mu} + \left[n(n+1) - \frac{m^2}{1-\mu^2}\right]H_n = 0,$$

and

$$(1 - \mu^2) \frac{d^2 H_{n_1}}{d\mu^2} - 2\mu \frac{dH_{n_1}}{d\mu} + \left[ n_1 (n_1 + 1) - \frac{m^2}{1 - \mu^2} \right] H_{n_1} = 0.$$

Multiply by  $(1-\mu^2) H_{n_1}$  and  $(1-\mu^2) H_n$  respectively and add, then

$$(1 - \mu^{2})^{2} \left[ H_{n_{1}} \frac{d^{2}H_{n}}{d\mu^{2}} + H_{n} \frac{d^{2}H_{n_{1}}}{d\mu^{2}} \right] - 2\mu \left( 1 - \mu^{2} \right) \left[ H_{n_{1}} \frac{dH_{n}}{d\mu} + H_{n} \frac{dH_{n_{1}}}{d\mu} \right]$$

$$+ \left[ n \left( n + 1 \right) + n_{1} \left( n_{1} + 1 \right) \right] \left( 1 - \mu^{2} \right) H_{n} H_{n_{1}} - 2m^{2} H_{n} H_{n_{1}} = 0.$$

But 
$$(1-\mu^2)^2 \frac{d}{d\mu} \left[ H_{n_1} \frac{dH_n}{d\mu} + H_n \frac{dH_{n_1}}{d\mu} \right] - 2 (1-\mu^2)^2 \frac{dH_n}{d\mu} \frac{dH_{n_1}}{d\mu}$$
  

$$= (1-\mu^2)^2 \left[ H_{n_1} \frac{d^2H}{d\mu^2} + H_n \frac{d^2H_{n_1}}{d\mu^2} \right];$$

therefore

$$(1-\mu^{2})^{2} \frac{d}{d\mu} \left[ H_{n_{1}} \frac{dH_{n}}{d\mu} + H_{n} \frac{dH_{n_{1}}}{d\mu} \right] - 2\mu (1-\mu^{2}) \left[ H_{n_{1}} \frac{dH_{n}}{d\mu} + H_{n} \frac{dH_{n_{1}}}{d\mu} \right]$$

$$-2 (1-\mu^{2})^{2} \frac{dH_{n}}{d\mu} \frac{dH_{n_{1}}}{d\mu} + \left[ n (n+1) + n_{1} (n_{1}+1) \right] (1-\mu^{2}) H_{n} H_{n_{1}} - 2m^{2} H_{n} H_{n_{1}} = 0.$$

$$\text{Or } \frac{d}{d\mu} \left[ (1 - \mu^2)^2 \left( H_{n_1} \frac{dH_n}{d\mu} + H_n \frac{dH_{n_1}}{d\mu} \right) \right] + 2\mu \left( 1 - \mu^2 \right) \left[ H_{n_1} \frac{dH_n}{d\mu} + H_n \frac{dH_{n_1}}{d\mu} \right]$$

$$- 2 \left( 1 - \mu^2 \right)^2 \frac{dH_n}{d\mu} \frac{dH_{n_1}}{d\mu} + \left[ n \left( n + 1 \right) + n_1 \left( n_1 + 1 \right) \right] \left( 1 - \mu^2 \right) H_n H_{n_1} - 2m^2 H_n H_{n_1} = 0.$$

Or again

$$\begin{split} \frac{d}{d\mu} \left[ (1-\mu^2)^2 \left( H_{n_1} \frac{dH_n}{d\mu} + H_n \frac{dH_{n_1}}{d\mu} \right) \right] + \frac{d}{d\mu} \left[ 2\mu \left( 1 - \mu^2 \right) H_n H_{n_1} \right] \\ - 2 \left( 1 - \mu^2 \right) H_n H_{n_1} + 4\mu^2 H_n H_{n_1} - 2 \left( 1 - \mu^2 \right)^2 \frac{dH_n}{d\mu} \frac{dH_{n_1}}{d\mu} \\ + \left[ n \left( n + 1 \right) + n_1 \left( n_1 + 1 \right) \right] \left( 1 - \mu^2 \right) H_n H_{n_1} - 2m^2 H_n H_{n_1} = 0. \end{split}$$

Now integrate from  $\mu = -1$  to  $\mu = 1$ , and we get

$$\int_{-1}^{1} (1 - \mu^{2})^{2} \frac{dH_{n}}{d\mu} \frac{dH_{n_{1}}}{d\mu} d\mu + m^{2} \int_{-1}^{1} H_{n} H_{n_{1}} d\mu 
= \left[ \frac{1}{2} n (n+1) + \frac{1}{2} n_{1} (n_{1}+1) - 3 \right] \int_{-1}^{1} (1 - \mu^{2}) H_{n} H_{n_{1}} d\mu + 2 \int_{-1}^{1} H_{n} H_{n_{1}} d\mu.$$

Multiplying the equation obtained in Art. 15 by  $\frac{2}{3}$  and subtracting from this, we get

$$\int_{-1}^{1} \left(\frac{1}{3} - \mu^{2}\right) (1 - \mu^{2}) \frac{dH_{n}}{d\mu} \frac{dH_{n_{1}}}{d\mu} d\mu + m^{2} \int_{-1}^{1} \left(\frac{1}{3} - \mu^{2}\right) \frac{H_{n} H_{n_{1}}}{1 - \mu^{2}} d\mu$$

$$= \int_{-1}^{1} \left(\frac{1}{3} - \mu^{2}\right) (X_{n} X_{n_{1}} + Y_{n} Y_{n_{1}}) d\mu$$

$$= \left[\frac{1}{2} n (n+1) + \frac{1}{2} n_{1} (n_{1}+1) - 3\right] \int_{-1}^{1} \left(\frac{1}{3} - \mu^{2}\right) H_{n} H_{n_{1}} d\mu \dots (16).$$

17. We have seen above (p. 420) that

$$(X_n^m)^2 + (Y_n^m)^2 = \frac{1}{2}(n+m)^2(H_n^{m-1})^2 + \frac{1}{2}(n-m)^2(H_n^{m+1})^2 + m^2(H_n^m)^2;$$

hence 
$$(1-\mu^2)(X_n^m)^2 + (1-\mu^2)(Y_n^m)^2$$
  

$$= (1-\mu^2)^2 \left(\frac{dH_n^m}{d\mu}\right)^2 + m^2(H_n^m)^2$$

$$= (1-\mu^2) \left\{ \frac{1}{2} (n+m)^2 (H_n^{m-1})^2 + \frac{1}{2} (n-m)^2 (H_n^{m+1})^2 + m^2 (H_n^m)^2 \right\}.$$

Multiplying by  $d\mu$  and integrating from -1 to +1, we have

$$\int_{-1}^{1} (1 - \mu^{2})^{2} \left( \frac{dH_{n}^{m}}{d\mu} \right)^{2} d\mu + m^{2} \int_{-1}^{1} (H_{n}^{m})^{2} d\mu = \frac{1}{2} (n + m)^{2} \int_{-1}^{1} (1 - \mu^{2}) (H_{n}^{m-1})^{2} d\mu + \frac{1}{2} (n - m)^{2} \int_{-1}^{1} (1 - \mu^{2}) (H_{n}^{m+1})^{2} d\mu + m^{2} \int_{-1}^{1} (1 - \mu^{2}) (H_{n}^{m})^{2} d\mu$$

$$= \int_{-1}^{1} (1 - \mu^{2}) (H_{n}^{m})^{2} d\mu \left\{ \frac{n^{2} + n + m^{2} - 2m}{n^{2} + n + m^{2} - 1} \times \frac{(n - m + 1)(n + m)}{2} + \frac{n^{2} + n + m^{2} + 2m}{n^{2} + n + m^{2} - 1} \times \frac{(n - m)(n + m + 1)}{2} + m^{2} \right\}$$

$$= 2 \frac{(n - m)! (n + m)!}{(2n - 1)(2n + 1)(2n + 3) \{1 \cdot 3 \cdot 5 \dots (2n - 1)\}^{2}} \times \{ [n (n + 1) + m (m - 2)] (n^{2} + n - m^{2} + m) + (n^{2} + n + m^{2} + 2m) (n^{2} + n - m^{2} - m) + 2m^{2} (n^{2} + n + m^{2} - 1) \}.$$

The factor in large brackets in this expression

$$= 2n^{2} (n+1)^{2} + n (n+1) [m (m-2) - m (m-1) + m (m+2) - m (m+1) + 2m^{2}]$$

$$+ m^{2} [2 (m^{2} - 1) - (m-2) (m-1) - (m+2) (m+1)]$$

$$= 2n^{2} (n+1)^{2} + 2n (n+1) m^{2} - 6m^{2}$$

$$=2n^{2}(n+1)^{2}+2n(n+1)m^{2}-6m^{2}$$

$$= 2 \left[ n^2 (n+1)^2 + (n n + 1 - 3) m^2 \right]$$

Hence

$$\int_{-1}^{1} (1 - \mu^{2})^{2} \binom{dH_{n}^{m}}{d\mu}^{2} d\mu = \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \left[ \frac{2n^{2} (n+1)^{2} + 2m^{2} (n n+1-3)}{(2n-1)(2n+3)} - m^{2} \right]$$

$$= \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \left[ \frac{2n^{2} (n+1)^{2} - (2n n+1+3) m^{2}}{(2n-1)(2n+3)} \right].$$
Also 
$$\int_{-1}^{1} (1 - \mu^{2})^{2} \left( \frac{dH_{n}^{m}}{d\mu} \right)^{2} d\mu + m^{2} \int_{-1}^{1} (H_{n}^{m})^{2} d\mu + (n+1)^{2} \int_{-1}^{1} (1 - \mu^{2}) (H_{n}^{m})^{2} d\mu$$

$$= \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \frac{2}{(2n-1)(2n+3)} \left[ n^{2} (n+1)^{2} + m^{2} (n n+1-3) + (n+1)^{2} (n n+1+m^{2}-1) \right]$$

$$= \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \frac{2}{(2n-1)(2n+3)} \left[ (n+1)^{2} (n 2n+1-1) + m^{2} (n+1)^{2} (n+1-3) \right]$$

$$= \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \frac{2}{2n+3} \left[ (n+1)^{3} + m^{2} (n+2) \right]. \tag{17}$$

We also readily find that

$$\int_{-1}^{1} (1 - \mu^{2})^{2} \left( \frac{dH_{n}^{m}}{d\mu} \right)^{2} d\mu + m^{2} \int_{-1}^{1} (H_{n}^{m})^{2} d\mu + n^{2} \int_{-1}^{1} (1 - \mu^{2}) \left( H_{n}^{m} \right)^{2} d\mu$$

$$= \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \frac{2}{(2n-1)(2n+3)} \left[ n^{2} \left( \overline{n+1} \ \overline{2n+1} - 1 \right) + m^{2} \left( n \ \overline{2n+1} - 3 \right) \right]$$

$$= \int_{-1}^{1} (H_{n}^{m})^{2} d\mu \frac{2}{2n-1} \left[ n^{3} + m^{2} (n-1) \right] \dots (18).$$

We have seen above (p. 413) that, when  $n_i$  is less than  $n_i$ 

$$\int_{-1}^{1} H_n^{m+1} H_{n_1}^{m-1} d\mu = 4m \frac{(n-m-1)! (n_1+m-1)!}{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \dots (2n_1-1)},$$

and

$$\int_{-1}^{1} H_{n_1}^{m+1} H_n^{m-1} d\mu = 0.$$

Also from equations on p. 421 we have

$$\begin{split} \frac{1}{2} \int_{-1}^{1} \left( \mu Y_{n}^{m} + X_{n}^{m} \right) \left( \mu Y_{n_{1}}^{m} - X_{n_{1}}^{m} \right) d\mu - \frac{1}{2} \int_{-1}^{1} \left( \mu Y_{n}^{m} - X_{n}^{m} \right) \left( \mu Y_{n_{1}}^{m} + X_{n_{1}}^{m} \right) d\mu \\ = \int_{-1}^{1} \mu \left( X_{n}^{m} Y_{n_{1}}^{m} - X_{n_{1}}^{m} Y_{n}^{m} \right) d\mu = \frac{1}{2} \left( n - m \right) \left( n_{1} + m \right) \int_{-1}^{1} H_{n}^{m+1} H_{n_{1}}^{m-1} d\mu \\ - \frac{1}{2} \left( n + m \right) \left( n_{1} - m \right) \int_{-1}^{1} H_{n}^{m-1} H_{n_{1}}^{m+1} d\mu \; ; \end{split}$$

and

$$\int_{-1}^{1} \mu \left( X_{n}^{m} Y_{n_{1}}^{m} + X_{n_{1}}^{m} Y_{n}^{m} \right) d\mu = 0 ;$$

hence 
$$\int_{-1}^{1} \mu X_{n}^{m} Y_{n_{1}}^{m} d\mu = -\int_{-1}^{1} \mu X_{n_{1}}^{m} Y_{n}^{m} d\mu$$

$$= \frac{1}{4} (n-m) (n_{1}+m) \int_{-1}^{1} H_{n}^{m+1} H_{n_{1}}^{m-1} d\mu$$

$$= \frac{m (n-m)!}{1 \cdot 3 \cdot 5 \dots (2n-1)} \frac{(n_{1}+m)!}{1 \cdot 3 \cdot 5 \dots (2n_{1}-1)} \dots (19).$$

Hence it appears from equations (15) and (19) that

$$\int_{-1}^{1} \mu^{2} Y_{n} Y_{n_{1}} d\mu = \int_{-1}^{1} Y_{n} Y_{n_{1}} d\mu = -\int_{-1}^{1} X_{n} X_{n_{1}} d\mu = \int_{-1}^{1} \mu X_{n} Y_{n_{1}} d\mu = -\int_{-1}^{1} \mu X_{n_{1}} Y_{n} d\mu.$$

Also from the above equations we have

$$\begin{split} X_n^m &= m \frac{\mu}{(1-\mu^2)^{\frac{1}{2}}} \, H_n^m - (n+m) \, H_n^{m-1} = \frac{1}{2} \left(n-m\right) \, H_n^{m+1} - \frac{1}{2} \left(n+m\right) \, H_n^{m-1} \\ &= -n H_n^{m-1} + m \, \left\{ \frac{n-m}{2n-1} \, H_{n-2}^{m-1} + \frac{(n-m) \left(n-m-1\right) \left(n-m-2\right)}{(2n-1) \left(2n-3\right) \left(2n-5\right)} \, H_{n-4}^{m-1} + \&c. \right. \\ &\qquad \qquad + \frac{\left(n-m\right) \left(n-m-1\right) \dots \left(n-m-2r+2\right)}{(2n-1) \left(2n-3\right) \dots \left(2n-4r+3\right)} \, H_{n-2r}^{m-1} + \&c. \right\}. \end{split}$$
 And 
$$Y_n^m = m \, \frac{H_n^m}{(1-\mu^2)^{\frac{1}{2}}} = m \, \left\{ H_{n-1}^{m-1} + \frac{\left(n-m\right) \left(n-m-1\right)}{(2n-1) \left(2n-3\right)} \, H_{n-3}^{m-1} + \&c. \right. \\ &\qquad \qquad + \frac{\left(n-m\right) \left(n-m-1\right) \dots \left(n-m-2r+3\right)}{(2n-1) \left(2n-3\right) \dots \left(2n-4r+5\right)} \, H_{n-2r+1}^{m-1} + \&c. \right\}. \end{split}$$
 Also 
$$Z_n^m = (n+1) \left(1-\mu^2\right)^{\frac{1}{2}} \, \left\{ H_{n-1}^{m-1} + \frac{\left(n-m\right) \left(n-m-1\right)}{\left(2n-1\right) \left(2n-3\right)} \, H_{n-3}^{m-1} + \&c. \right. \end{split}$$

 $+\frac{(n-m)(n-m-1)\dots(n-m-2r+3)}{(2n-1)(2n-3)\dots(2n-4r+5)}H_{n-2r+1}^{m-1}+\&c.$ 

19. To find the expressions for  $X_n^m$ ,  $Y_n^m$  and  $Z_n^m$  in terms of powers of  $\mu$ .

$$\begin{split} P_n &= \frac{1}{2^n \, n!} \, D^n \, (\mu^2 - 1)^n = \frac{1}{2^n \, n!} \, D^n \, \Big\{ \mu^{2n} - n \mu^{2n-2} + \&c. + (-1)^r \, \frac{n!}{r! \, (n-r)!} \, \mu^{2n-2r} + \&c. \Big\} \\ &= \frac{1}{2^n \, n!} \, \Big\{ \frac{2n!}{n!} \, \mu^n - n \, \frac{(2n-2)!}{(n-2)!} \, \mu^{n-2} + \&c. + (-1)^r \, \frac{n!}{r! \, (n-r)!} \, \frac{(2n-2r)!}{(n-2r)!} \, \mu^{n-2r} + \&c. \Big\} \,, \end{split}$$

so that the general term of  $P_n$  is

$$\frac{1}{2^n}(-1)^r \frac{(2n-2r)!}{r!(n-r)!(n-2r)!} \mu^{n-2r}.$$

If this be divided by the coefficient of the first term in  $P_n$  so as to reduce the coefficient of  $\mu^n$  to unity, we have the general term in

$$H_n^0 \text{ or } G_n^0 = \frac{(n!)^2}{2n!} (-1)^r \frac{(2n-2r)!}{r! (n-r)! (n-2r)!} \mu^{n-2r}.$$

Similarly the general term in  $D^m P_n$  is

$$= \frac{1}{2^{n}} (-1)^{r} \frac{(n-2r)!}{(n-m-2r)!} \frac{(2n-2r)!}{r! (n-r)! (n-2r)!} \mu^{n-m-2r}$$

$$= \frac{1}{2^{n}} (-1)^{r} \frac{(2n-2r)!}{(n-m-2r)! r! (n-r)!} \mu^{n-m-2r},$$

and the first term in the same quantity will be

$$\frac{1}{2^{n}} \frac{n!}{(n-m)!} \frac{2n!}{n! \, n!} \mu^{n-m} = \frac{1}{2^{n}} \frac{2n!}{(n-m)! \, n!} \mu^{n-m};$$

therefore dividing by this so as to reduce the coefficient of  $\mu^{n-m}$  to unity, we have the general term in  $H_n^m$ 

$$= (1-\mu^2)^{\frac{m}{2}} (-1)^r \frac{n! (n-m)!}{2n!} \frac{(2n-2r)!}{(n-m-2r)! r! (n-r)!} \mu^{n-m-2r}.$$

Hence

$$\begin{split} \mu \, Y_{\scriptscriptstyle n}^{\scriptscriptstyle m} - X_{\scriptscriptstyle n}^{\scriptscriptstyle m} &= (1 - \mu^{\scriptscriptstyle 2})^{\frac{m-1}{2}} (n+m) \, \left\{ \mu^{\scriptscriptstyle n-m+1} - \&c. \right. \\ &+ (-1)^r \frac{(n-m+1)\,!}{(n-m-2r+1)\,!} \, \frac{n\,! \, (2n-2r)\,!}{2n\,! \, r\,! \, (n-r)\,!} \, \mu^{\scriptscriptstyle n-m-2r+1} \right\}, \end{split}$$

and

$$\mu Y_n^m + X_n^m = (1 - \mu^2)^{\frac{m+1}{2}} (n - m) \left\{ \mu^{n-m-1} - \&c. + (-1)^r \frac{n! (n - m - 1)! (2n - 2r)!}{2n! (n - m - 2r - 1)! r! (n - r)!} \mu^{n-m-2r-1} \right\};$$

hence

$$\mu Y_n^m + X_n^m = (1 - \mu^2)^{\frac{m-1}{2}} (n - m) (1 - \mu^2) \left\{ \mu^{n-m-1} - \&c. + (-1)^r \frac{n!}{2n!} \frac{(n - m - 1)! (2n - 2r)!}{(n - m - 2r - 1)! r! (n - r)!} \mu^{n-m-2r-1} + \&c. \right\}.$$

Multiplying the last two factors together, the coefficient of  $\mu^{n-m-2r+1}$  in the general term of the product is

$$-(-1)^{r} \frac{n! (n-m-1)!}{2n!} \left\{ \frac{(2n-2r)!}{(n-m-2r-1)! \ r! (n-r)!} + \frac{(2n-2r+2)!}{(n-m-2r+1)! (r-1)! (n-r+1)!} \right\}$$

$$= -(-1)^{r} \frac{n! (n-m-1)! (2n-2r)!}{2n! \ r! (n-r)! (n-m-2r+1)!}$$

$$\times \left\{ (n-m-2r) (n-m-2r+1) + 2r (2n-2r+1) \right\};$$

$$\therefore X_{n}^{m} = -(1-\mu^{2})^{\frac{m-1}{2}} \left\{ n\mu^{n-m+1} - \&c. + \frac{(-1)^{r}}{2} \frac{n! (n-m)! (2n-2r)!}{2n! \ r! (n-r)! (n-m-2r+1)!} \right\}.$$

$$\times \left[ (n-m-2r) (n-m-2r+1) + 2r (2n-2r+1) + (n+m) (n-m+1) \right] \mu^{n-m-2r+1} \right\}.$$

The quantity in square brackets becomes

$$(n-m+1)(2n-2r)+2r(n+m+1)=2\times[n(n-m+1)+2mr].$$

Hence

$$\begin{split} X_{n}^{m} &= -\left(1-\mu^{2}\right)^{\frac{m-1}{2}}\left\{n\mu^{n-m+1}-\&\text{c.}+(-1)^{r}\frac{n!\;(n-m)!\;(2n-2r)!}{2n!\;r!\;(n-r)!\;(n-m-2r+1)!}\right.\\ &\qquad \qquad \times \left[n\;(n-m+1)+2mr\right]\mu^{n-m-2r+1}+\&\text{c.}\right\},\\ Y_{n}^{m} &= m\left(1-\mu^{2}\right)^{\frac{m-1}{2}}\left\{\mu^{n-m}-\&\text{c.}+(-1)^{r}\frac{n!\;(n-m)!\;(2n-2r)!}{2n!\;r!\;(n-r)!\;(n-m-2r)!}\mu^{n-m-2r}+\&\text{c.}\right\},\\ Z_{n}^{m} &= (n+1)\left(1-\mu^{2}\right)^{\frac{m}{2}}\left\{\mu^{n-m}-\&\text{c.}+(-1)^{r}\frac{n!\;(n-m)!\;(2n-2r)!}{2n!\;r!\;(n-r)!\;(n-m-2r)!}\mu^{n-m-2r}+\&\text{c.}\right\}. \end{split}$$

Example of the application of these formulae.

Suppose n=6,  $n_1=4$  and m=2.

Then 
$$H_4^2 = (1 - \mu^2) \left\{ \mu^2 - \frac{2 \cdot 1}{2 \cdot 7} \right\} = (1 - \mu^2) \left\{ \mu^2 - \frac{1}{7} \right\},$$
and  $H_6^2 = (1 - \mu^2) \left\{ \mu^4 - \frac{4 \cdot 3}{2 \cdot 11} \mu^2 + \frac{4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 4 \cdot 11 \cdot 9} \right\}$ 

$$= (1 - \mu^2) \left\{ \mu^4 - \frac{6}{11} \mu^2 + \frac{1}{33} \right\}.$$
Hence  $X_4^2 = (1 - \mu^2)^{\frac{1}{2}} \frac{d}{d\mu} H_4^2 = 2\mu \left( 1 - \mu^2 \right)^{\frac{3}{4}} - 2\mu \left( 1 - \mu^2 \right)^{\frac{1}{2}} \left( \mu^2 - \frac{1}{7} \right)$ 

$$= (1 - \mu^2)^{\frac{1}{2}} \left\{ -2\mu^3 + \frac{2}{7}\mu + 2\mu - 2\mu^3 \right\}$$

$$= -(1 - \mu^2)^{\frac{1}{2}} \left\{ 4\mu^3 - \frac{16}{7}\mu \right\},$$
also 
$$Y_4^2 = 2 \left( 1 - \mu^2 \right)^{\frac{1}{2}} \left\{ \mu^2 - \frac{1}{7} \right\},$$
and 
$$Z_4^2 = 5 \left( 1 - \mu^2 \right) \left\{ \mu^2 - \frac{1}{7} \right\}.$$

also

and

But by formula for  $X_4^2$ , we have

$$\begin{split} X_{_{4}}^{^{2}} &= -\left(1-\mu^{2}\right)^{\frac{1}{2}} \left\{4\mu^{_{3}} - \frac{2}{2} \cdot \frac{1}{7} \left[4 \cdot 3 + 4\right] \mu\right\} \\ &= -\left(1-\mu^{_{2}}\right)^{\frac{1}{2}} \left\{4\mu^{_{3}} - \frac{16}{7} \mu\right\}, \text{ which agrees.} \end{split}$$

Also 
$$X_{6}^{2} = (1 - \mu^{2})^{\frac{1}{2}} \frac{d}{d\mu} H_{6}^{2}$$

$$= (1 - \mu^{2})^{\frac{3}{2}} \left\{ 4\mu^{3} - \frac{12}{11} \mu \right\} - (1 - \mu^{2})^{\frac{1}{2}} 2\mu \left\{ \mu^{4} - \frac{6}{11} \mu^{2} + \frac{1}{33} \right\}$$

$$= -(1 - \mu^{2})^{\frac{1}{2}} \left\{ 4\mu^{5} - \frac{12}{11} \mu^{3} - 4\mu^{3} + \frac{12}{11} \mu + 2\mu^{5} - \frac{12}{11} \mu^{3} + \frac{2}{33} \mu \right\}$$

$$= -(1 - \mu^{2})^{\frac{1}{2}} \left\{ 6\mu^{5} - \frac{68}{11} \mu^{3} + \frac{38}{33} \mu \right\}.$$

And 
$$Y_{6}^{2} = 2 \left(1 - \mu^{2}\right)^{\frac{1}{2}} \left\{ \mu^{4} - \frac{6}{11} \mu^{2} + \frac{1}{33} \right\},$$
and 
$$Z_{6}^{2} = 7 \left(1 - \mu^{2}\right) \left\{ \mu^{4} - \frac{6}{11} \mu^{2} + \frac{1}{33} \right\}.$$

But by formula for  $X_6^2$ , we have

$$\begin{split} X_{6}^{2} &= -(1-\mu^{2})^{\frac{1}{2}} \left\{ 6\mu^{5} - \frac{4}{2} \cdot \frac{1}{11} \left[ 6 \cdot 5 + 4 \right] \mu^{3} + \frac{4 \cdot 3 \cdot 2}{2 \cdot 4 \cdot 11 \cdot 9} \left[ 6 \cdot 5 + 8 \right] \mu \right\} \\ &= -(1-\mu^{2})^{\frac{1}{2}} \left\{ 6\mu^{5} - \frac{68}{11} \mu^{3} + \frac{38}{33} \mu \right\}, \text{ as before.} \end{split}$$

Hence by the formula

$$\int_{-1}^{1} (X_{4}^{2})^{2} d\mu = 2 \frac{1 \cdot 2}{1 \cdot 3 \cdot 5 \cdot 7} \left\{ 16 \cdot 3 \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9} + 4 \cdot \frac{2}{7} \cdot \frac{1 \cdot 2 \cdot 3}{1 \cdot 3} \right\}$$

$$= \frac{4}{105} \left\{ \frac{640}{105} + \frac{16}{7} \right\} = \frac{64}{2205} \left\{ 8 + 3 \right\} = \frac{704}{2205},$$

$$\int_{-1}^{1} (Y_{4}^{2})^{2} d\mu = 2 \cdot 4 \cdot \frac{1 \cdot 2}{1 \cdot 3 \cdot 5} \cdot \frac{1 \cdot 2}{7} \left\{ \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5} + \frac{2 \cdot 1}{7 \cdot 5} \cdot \frac{1 \cdot 2}{1} \right\}$$

$$= \frac{16}{105} \left\{ \frac{8}{5} + \frac{4}{35} \right\} = \frac{64}{3675} \left\{ 15 \right\} = \frac{64}{245},$$

and

$$\int_{-1}^{1} (Z_4^2)^2 d\mu = 25 \cdot 2 \cdot \frac{1 \cdot 2}{1 \cdot 3 \cdot 5 \cdot 7} \left\{ \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9} \right\} = \frac{20}{21} \left\{ \frac{16}{21} \right\} = \frac{320}{441}.$$

Also the formula for  $\int_{-1}^{1} (X_{4}^{2})^{2} d\mu + \int_{-1}^{1} (Y_{4}^{2})^{2} d\mu + \int_{-1}^{1} (Z_{4}^{2})^{2} d\mu$  gives

$$2 \cdot \frac{1 \cdot 2}{1 \cdot 3 \cdot 5 \cdot 7} \left\{ 22 \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 3 \cdot 5 \cdot 7} + 4 \cdot \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5} + 4 \cdot \frac{2}{7} \cdot \frac{1 \cdot 2 \cdot 3}{1 \cdot 3} + 4 \cdot \frac{2 \cdot 1}{7 \cdot 5} \cdot \frac{1 \cdot 2}{1} \right\}$$

$$= \frac{4}{105} \left\{ \frac{176}{7} + \frac{32}{5} + \frac{16}{7} + \frac{16}{35} \right\} = \frac{64}{3675} \left\{ 55 + 14 + 5 + 1 \right\} = \frac{64}{49},$$

which agrees with the sum of the separate values just found.

In the same way it is shewn that the separate formulae for

$$\int_{-1}^{1} (X_{\epsilon}^{2})^{2} d\mu, \quad \int_{-1}^{1} (Y_{\epsilon}^{2})^{2} d\mu \quad \text{and} \quad \int_{-1}^{1} (Z_{\epsilon}^{2})^{2} d\mu,$$

when added together give the same result as the formula for

$$\int_{-1}^{1} \left[ (X_{\epsilon}^{2})^{2} + (Y_{\epsilon}^{2})^{2} + (Z_{\epsilon}^{2})^{2} \right] d\mu,$$

and that this result is

$$\frac{2048}{3^3 \cdot 5 \cdot 7 \cdot 11^2 \cdot 13} [29 + 13 + 49] = \frac{2048}{3^3 \cdot 5 \cdot 11^2}.$$

Similarly the formulae of Art. 15 (p. 425) give

$$\int_{-1}^{1} Y_{6}^{2} Y_{4}^{2} d\mu = -\int_{-1}^{1} X_{6}^{2} X_{4}^{2} d\mu = \frac{256}{3.5.7^{2}.11}.$$

21. The important function  $\int_{-1}^{1} X_{n}^{m} X_{n_{1}}^{m} d\mu + \int_{-1}^{1} Y_{n}^{m} Y_{n_{1}}^{m} d\mu$  was first proved to vanish in all cases by a different method from that given above.

It was shewn that the function contains the factor

$$\left\{ -m + 2m^2 \left[ \frac{1}{n_1 + m - 1} + \frac{n_1 - m - 1}{(n_1 + m - 1)(n_1 + m - 2)} + \frac{(n_1 - m - 1)(n_1 + m - 2)}{(n_1 + m - 1)(n_1 + m - 2)(n_1 + m - 3)} + &c. \right] \right\}.$$

Also it was proved by induction that

$$\frac{1}{x-1} + \frac{y-1}{(x-1)(x-2)} + \frac{(y-1)(y-2)}{(x-1)(x-2)(x-3)} + &c.$$

$$+ \frac{(y-1)(y-2)\dots(y-r+1)}{(x-1)(x-2)\dots(x-r)} = \frac{1}{x-y}.$$

For when y=1 it becomes  $\frac{1}{x-1}$ ,

when 
$$y=2$$
 it becomes  $\frac{1}{x-1} + \frac{1}{(x-1)(x-2)} = \frac{x-1}{(x-1)(x-2)} = \frac{1}{x-2}$ .

Assume the same law to hold for  $y_1 = y - 1$  and prove it to be true for y thus—

Assume 
$$\frac{1}{x_1-1} + \frac{y_1-1}{(x_1-1)(x_1-2)} + \frac{(y_1-1)(y_1-2)}{(x_1-1)(x_1-2)(x_1-3)} + &c.$$

$$= \frac{1}{x_1-y_1} \text{ for all values of } x_1.$$

Let  $x_1 = x - 1$ ,

then 
$$\frac{1}{x-2} + \frac{y_1 - 1}{(x-2)(x-3)} + \frac{(y_1 - 1)(y_1 - 2)}{(x-2)(x-3)(x-4)} + &c. = \frac{1}{x_1 - y_1 - 1}.$$

Multiply by  $\frac{y_1}{x-1}$  and add to  $\frac{1}{x-1}$ .

$$\therefore \frac{1}{x-1} + \frac{y_1}{(x-1)(x-2)} + \frac{y_1(y_1-1)}{(x-1)(x-2)(x-3)} + &c.$$

$$= \frac{1}{x-1} + \frac{y_1}{(x-1)(x-y_1-1)} = \frac{1}{x-y_1-1},$$
or
$$\frac{1}{x-1} + \frac{y-1}{(x-1)(x-2)} + \frac{(y-1)(y-2)}{(x-1)(x-2)(x-3)} + &c. = \frac{1}{x-y}.$$

Hence we have

$$\frac{1}{n_{1}+m-1} + \frac{n_{1}-m-1}{\left(n_{1}+m-1\right)\left(n_{1}+m-2\right)} + \frac{\left(n_{1}-m-1\right)\left(n_{1}-m-2\right)}{\left(n_{1}+m-1\right)\left(n_{1}+m-2\right)\left(n_{1}+m-3\right)} + \&c.$$

$$= \frac{1}{2m},$$

therefore the above factor reduces to  $-m+2m^2\left[\frac{1}{2m}\right]=0$ ,

hence we get  $\int_{-1}^{1} X_{n}^{m} X_{n_{1}}^{m} d\mu + \int_{-1}^{1} Y_{n}^{m} Y_{n_{1}}^{m} d\mu = 0$  in all cases.

22. In the series

$$(2n-1)\frac{1}{n+m-1} - (2n-3)\frac{n-m}{(n+m-1)(n+m-2)} + (2n-5)\frac{(n-m)(n-m-1)}{(n+m-1)(n+m-2)(n+m-3)} - \&c.,$$

the alternate terms of which occur either in the development of  $(X_*^m)^2$  or of  $(Y_*^m)^2$ , each term may be divided into two parts, so that the series

becomes

$$=1+\frac{n-m}{n+m-1}+\frac{(n-m)(n-m-1)}{(n+m-1)(n+m-2)}+\frac{(n-m)(n-m-1)(n-m-2)}{(n+m-1)(n+m-2)(n+m-3)}+\&c.$$

$$-\frac{n-m}{n+m-1}-\frac{(n-m)(n-m-1)}{(n+m-1)(n+m-2)}-\frac{(n-m)(n-m-1)(n-m-2)}{(n+m-1)(n+m-2)(n+m-3)}+\&c.$$

Hence we see that the sum of this series = 1.

Also by a similar arrangement of the terms we have

$$(2n-1)\frac{1}{n+m-1} + (2n-3)\frac{n-m}{(n+m-1)(n+m-2)} + (2n-5)\frac{(n-m)(n-m-1)}{(n+m-1)(n+m-2)(n+m-3)} + &c.$$

$$= 1 + 2(n-m) \times \frac{1}{2m} = 1 + \frac{n-m}{m} = \frac{n}{m}.$$

Hence the odd terms of this series  $=\frac{1}{2}\frac{n+m}{m}$ ,

and the even terms of this series =  $\frac{1}{2} \frac{n-m}{m}$ .

[By means of these series the simple values for  $\int_{-1}^{1} (X_n^m)^2 d\mu$  and  $\int_{-1}^{1} (Y_n^m)^2 d\mu$ , as given above, were first obtained.]

23. Now let us consider the application of the above investigations to the determination of the numerical values of the magnetic constants of terrestrial magnetism. For a given value of  $\mu$  (i.e. for a given latitude) we have a series of terms forming the coefficients of  $\cos m\lambda$  and  $\sin m\lambda$ , in the values of the magnetic potential and of the magnetic forces X, Y, and Z, which are of the forms

$$a_n H_n^m + a_{n_1} H_{n_1}^m + \&c.$$
 $a_n X_n^m + a_{n_1} X_{n_1}^m + \&c.$ 
 $a_n Y_n^m + a_{n_1} Y_{n_1}^m + \&c.$ 
 $a_n Z_n^m + a_{n_2} Z_{n_1}^m + \&c.$ 

where  $a_n$ ,  $a_n$ , &c., are the magnetic constants to be determined.

The numerical values of  $H_n^m$ ,  $X_n^m$ ,  $Y_n^m$ , and  $Z_n^m$  for different values of n and m must be calculated, and in any belt of latitude of breadth corresponding to the numerical value taken for  $\delta\mu$ , these coefficients must be equated to the values of the forces as derived from the magnetic observations taken in that belt of latitude.

The values of the magnetic forces X, Y, and Z are derived for every  $10^{\circ}$  of longitude and every  $5^{\circ}$  of latitude from the declination ( $\delta$ ), the dip (i), and the horizontal force ( $\omega$ ), as given in the charts from which the observations are obtained. These values of the forces X, Y, and Z are analysed for belts of latitude  $5^{\circ}$  in breadth around the Earth's surface by a formula of the type  $a_0 + a_1 \cos \lambda + b_1 \sin \lambda + a_2 \cos 2\lambda + b_2 \sin 2\lambda + &c$ .

If we take  $x_m$  to represent the coefficient of  $\cos m\lambda$  in the expansion of the value of the force X for a given belt of latitude corresponding to the colatitude  $\theta = \cos^{-1}\mu$ :

then 
$$a_n X_n^m + a_{n_1} X_{n_1}^m + a_{n_2} X_{n_2}^m + \&c. = x_m$$

where  $x_m$  is derived from the observations. Similar equations, involving on one side the magnetic constants  $a_n$ ,  $a_n$ , &c., and on the other the values derived from the observations, must be formed for all the successive different belts of latitude from the north pole to the south pole—i.e. for all values of  $\mu$  between 1 and -1.

The numerical values of  $X_n^m$ ,  $X_n^m$ , &c., as well as the values of  $H_n^m$  (as above defined), have been determined for every degree of latitude and recorded for future use, but, in the actual determinations of the magnetic constants which have been made, belts of latitude  $\tilde{\mathfrak{z}}$ ° in breadth have been taken, or  $\delta\theta$  has been taken as  $\tilde{\mathfrak{z}}$ °, and the area of the belt is proportional to  $\delta\mu$ .

Supposing the observations equally distributed over the surface of the globe, or supposing the weight of any determination proportional to the surface of the corresponding element about the point of observation, then the weight of each of the above equations is proportional to  $\delta\mu$ , and multiplying the equation in X for each value of  $\mu$  by  $X_n^m$ , and summing up the separate equations for the whole surface of the Earth, we get the final equation—

$$a_n \int_{-1}^{1} (X_n^m)^2 d\mu + a_{n_1} \int_{-1}^{1} X_n^m X_{n_1}^m d\mu + \&c. = \int_{-1}^{1} X_n^m x_m d\mu.$$

Similarly, the final equation for  $a_{n_1}$  is found by multiplying the above equations by  $X_{n_1}^m$ ,  $Y_{n_2}^m$ , and  $Z_{n_1}^m$  respectively, and we get

$$a_n \int_{-1}^{1} X_n^m X_{n_1}^m d\mu + a_{n_1} \int_{-1}^{1} (X_{n_1}^m)^2 d\mu + \&c. = \int_{-1}^{1} X_{n_1}^m x_m d\mu.$$

Similarly, if  $y_m$  denote the coefficient of  $\sin m\lambda$  or  $-\cos m\lambda$  in the value of the force Y as derived from observations, we have

$$\Sigma (\alpha_n Y_n) = y_m,$$

and the final equations for finding  $a_n$  and  $a_{n_1}$  respectively will be

$$a_n \int_{-1}^{1} (Y_n^m)^2 d\mu + a_n \int_{-1}^{1} Y_n^m Y_n^m d\mu + \&c. = \int_{-1}^{1} Y_n^m y_m d\mu,$$

and

$$\mathbf{a}_n \int_{-1}^1 Y_n^m Y^m d\mu + \mathbf{a}_{n_1} \int_{-1}^1 (Y_{n_1}^m)^2 d\mu + \&c. = \int_{-1}^1 Y_{n_1}^m y_m d\mu.$$

Combining the final equations for  $a_n$  from X and Y together, we have

$$a_n \int_{-1}^{1} \left[ (X_n^m)^2 + (Y_n^m)^2 \right] d\mu = \int_{-1}^{1} X_n^m x_m d\mu + \int_{-1}^{1} Y_n^m y_m d\mu,$$

since the coefficients of  $a_{n_1}$  and all the other terms on the left-hand side of this equation vanish when the integration is taken all over the Earth's surface.

Hence 
$$a_n \cdot n (n+1) \int_{-1}^1 (H_n^m)^2 d\mu = \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu;$$

i.e. 
$$a_n \times 2n(n+1) \frac{(n-m)!(n+m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^2(2n+1)} = \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu.$$

Similarly, by putting  $n_1$  for  $n_2$  we may get the value of  $a_{n_1}$ .

In the same way the final equation for finding  $a_n$  from the equations for Z would give us

$$a_n \int_{-1}^{1} (Z_n^m)^2 d\mu + a_{n_1} \int_{-1}^{1} Z_n^m Z_{n_1}^m d\mu + \&c. = \int_{-1}^{1} Z_n^m z_m d\mu;$$
or
$$a_n (n+1)^2 \int_{-1}^{1} (H_n^m)^2 d\mu = \int_{-1}^{1} Z_n^m z_m d\mu, \text{ since } \int_{-1}^{1} Z_n^m Z_{n_1}^m d\mu = 0;$$
i.e.
$$a_n 2 (n+1)^2 \frac{(n-m)! (n+m)!}{[1 \cdot 3 \cdot 5 \cdots (2n-1)]^2 (2n+1)} = \int_{-1}^{1} Z_n^m z_m d\mu.$$

If we combine all the equations of condition involving x, y and z, the final equations for the determination of  $a_n$  will be

$$a_n \int_{-1}^{1} \left[ (X_n^m)^2 + (Y_n^m)^2 + (Z_n^m)^2 \right] d\mu = \int_{-1}^{1} X_n^m x_m d\mu + \int_{-1}^{1} Y_n^m y_m d\mu + \int_{-1}^{1} Z_n^m z_m d\mu,$$

and similar equations for the other magnetic constants.

Since 
$$\int_{-1}^{1} \left[ (X_n^m)^2 + (Y_n^m)^2 \right] d\mu = n (n+1) \int_{-1}^{1} (H_n^m)^2 d\mu,$$
$$\int_{-1}^{1} (Z_n^m)^2 d\mu = (n+1)^2 \int_{-1}^{1} (H_n^m) d\mu,$$

we have

and

$$\alpha_n 2(n+1) \frac{(n-m)!(n+m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^2} = \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu + \int_{-1}^1 Z_n^m z_m d\mu.$$

From the above equations it appears that the weight of a determination of a magnetic constant from the observations of the horizontal force is to the weight of its determination from the observations of the vertical force as n to (n+1).

24. If we take into account separately the parts of the magnetic force at a point due to the internal and external centres of magnetic force, the general terms of the coefficient of  $\cos m\lambda$  in the potential function will be of the form

$$\left(\frac{a_n}{r^{n+1}}+\beta_n r^n\right) H_n^m,$$

and the corresponding coefficients in X, Y, and Z will be-

in 
$$X$$
, 
$$\left(\frac{\alpha_n}{r^{n+2}} + \beta_n r^{n-1}\right) \left[\frac{1}{2}(n-m)H_n^{m+1} - \frac{1}{2}(n+m)H_n^{m-1}\right],$$

in 
$$Y$$
,  $\left(\frac{\alpha_n}{r^{n+2}} + \beta_n r^{n-1}\right) m \left(1 - \mu^2\right)^{-\frac{1}{2}} H_n^m$ ,

in 
$$Z$$
, 
$$\left[\frac{(n+1) \alpha_n}{r^{n+2}} - n\beta_n r^{n-1}\right] H_n^m.$$

If then, as before, we put r=1, we shall have the final equation for  $a_n$  as follows:

$$a_n \left[ \int_{-1}^1 (X_n^m)^2 d\mu + \int_{-1}^1 (Y_n^m)^2 d\mu + (n+1)^2 \int_{-1}^1 (H_n^m)^2 d\mu \right]$$

$$\begin{split} + \beta_n \left[ \int_{-1}^1 (X_n^m)^2 d\mu + \int_{-1}^1 (Y_n^m)^2 d\mu - n (n+1) \int_{-1}^1 (H_n^m)^2 d\mu \right] \\ = \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu + (n+1) \int_{-1}^1 H_n^m z_m d\mu, \end{split}$$

where the coefficient of  $\beta_n = 0$ .

And 
$$a_n \left[ \int_{-1}^1 (X_n^m)^2 d\mu + \int_{-1}^1 (Y_n^m)^2 d\mu - n (n+1) \int_{-1}^1 (H_n^m)^2 d\mu \right]$$

$$+ \beta_n \left[ \int_{-1}^1 (X_n^m)^2 d\mu + \int_{-1}^1 (Y_n^m)^2 d\mu + n^2 \int_{-1}^1 (H_n^m)^2 d\mu \right]$$

$$= \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu - n \int_{-1}^1 H_n^m z_m d\mu,$$

where the coefficient of  $a_n = 0$ .

Hence  $\alpha_n$  and  $\beta_n$  are separately determined from the equations

$$2a_{n}(n+1)\frac{(n-m)!(n+m)!}{[1\cdot 3\cdot 5\cdots (2n-1)]^{2}}$$

$$=\int_{-1}^{1}X_{n}^{m}x_{m}d\mu+\int_{-1}^{1}Y_{n}^{m}y_{m}d\mu+(n+1)\int_{-1}^{1}H_{n}^{m}z_{m}d\mu,$$

$$2\beta_{n}\cdot n\frac{(n-m)!(n+m)!}{[1\cdot 3\cdot 5\cdots (2n-1)]^{2}}$$

and

$$2\beta_{n} \cdot n \left[1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)\right]^{2}$$

$$= \int_{-1}^{1} X_{n}^{m} x_{m} d\mu + \int_{-1}^{1} Y_{n}^{m} y_{m} d\mu - n \int_{-1}^{1} H_{n}^{m} z_{m} d\mu.$$

Thus generally from the values of X and Y we derive

$$(a_n + \beta_n) 2n (n+1) \frac{(n-m)! (n+m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^2}$$

$$= (2n+1) \left[ \int_{-1}^1 X_n^m x_m d\mu + \int_{-1}^1 Y_n^m y_m d\mu \right],$$

and from the values of Z we derive

$$[(n+1) a_n - n\beta_n] \int_{-1}^1 (H_n^m)^2 d\mu = \int_{-1}^1 H_n^m z_m d\mu.$$

The above theory assumes that the integration is taken over the whole surface of the Earth, and that the observations are uniformly distributed

over the Earth's surface, otherwise the coefficients of the neglected terms on the left-hand side of these equations will not vanish, and each equation may have other terms which are too important to be neglected, and so it will not be so easy to separate the magnetic constants from one another.

Suppose 
$$a_n + \beta_n = k_n$$
 and  $(n+1) a_n - n\beta_n = k_n'$ ,  
then  $(2n+1) a_n = nk_n + k_n'$ ,  
and  $(2n+1) \beta_n = (n+1) k_n - k_n'$ ,

which are expressions analogous to those of Gauss (Werke, 1867, Vol. v. p. 173), and  $a_n$ ,  $\beta_n$ ,  $k_n$  and  $k_n'$  correspond to P', p',  $\Pi'$  and Q' respectively*.

Determination of Special Points on the Earth's Surface.

25. At the Magnetic Poles, we have X=0, Y=0, two equations which determine the colatitude  $\theta$  and the longitude  $\lambda$ .

For a line of equal magnetic declination, we have  $\frac{Y}{X}$  = a constant, hence for such a line the equation

$$\left(X\frac{dY}{d\theta} - Y\frac{dX}{d\theta}\right)\delta\theta + \left(X\frac{dY}{d\lambda} - Y\frac{dX}{d\lambda}\right)\delta\lambda = 0$$

gives the relation between  $\delta\theta$  and  $\delta\lambda$  at any point.

On a Mercator's chart the tangent of the angle which the tangent to this line at any point makes with the equator is

$$-\frac{\delta\theta}{\sin\theta\delta\lambda} = \frac{X\frac{dY}{d\lambda} - Y\frac{dX}{d\lambda}}{\sin\theta\left(X\frac{dY}{d\theta} - Y\frac{dX}{d\theta}\right)}$$
$$= -\frac{1}{1-\mu^2} \frac{X\frac{dY}{d\lambda} - Y\frac{dX}{d\lambda}}{X\frac{dY}{d\mu} - Y\frac{dX}{d\mu}}, \text{ where } \mu = \cos\theta.$$

* In Taylor's Scientific Memoirs, vol. II. p. 233, there are some misprints, and the values of 3P', &c. there given should have been as follows:

At a point where two branches of the line cross each other this expression must have two values, hence at such a point

$$X \frac{dY}{d\lambda} - Y \frac{dX}{d\lambda} = 0$$
 and  $X \frac{dY}{d\theta} - Y \frac{dX}{d\theta} = 0$ :

these are the two equations for finding the values of  $\lambda$  and  $\theta$ .

At points of maximum or minimum declination, the same two equations must hold good.

The difference between this case and the former is that in the case of maximum declination

$$\frac{d}{d\lambda}\left(X\,\frac{d\,Y}{d\lambda}-Y\,\frac{d\,X}{d\lambda}\right) \text{ and } \frac{d}{d\theta}\left(X\,\frac{d\,Y}{d\theta}-Y\,\frac{d\,X}{d\theta}\right)$$

must both be negative, and in the case of minimum declination they must both be positive, but in the case of two branches crossing each other they must have opposite signs.

Proceeding to a second differentiation we have at such points

$$\left(X\frac{d^2Y}{d\theta^2} - Y\frac{d^2X}{d\theta^2}\right)(\delta\theta)^2 + \left(X\frac{d^2Y}{d\theta d\lambda} - Y\frac{d^2X}{d\theta d\lambda}\right)2\delta\theta\delta\lambda + \left(X\frac{d^2Y}{d\lambda^2} - Y\frac{d^2X}{d\lambda^2}\right)(\delta\lambda)^2 = 0.$$

which will give the two values of  $\frac{d\theta}{d\lambda}$  at such points.

At points where the horizontal force is a maximum or a minimum we have

$$X^2 + Y^2$$
 a maximum or a minimum,

hence the values of  $\theta$  and  $\lambda$  for such points are given by the equations

$$X \frac{dX}{d\theta} + Y \frac{dY}{d\theta} = 0$$
 and  $X \frac{dX}{d\lambda} + Y \frac{dY}{d\lambda} = 0$ ;

similarly the relation between  $\delta\theta$  and  $\delta\lambda$  for the tangent line to the line of equal horizontal force is given by the equation

$$\left(X\frac{dX}{d\theta} + Y\frac{dY}{d\theta}\right)\delta\theta + \left(X\frac{dX}{d\lambda} + Y\frac{dY}{d\lambda}\right)\delta\lambda = 0.$$

Suppose V to be the magnetic potential and to be a function of  $\mu$  and  $\lambda$ .

Then 
$$X = -\frac{dV}{rd\theta} = \frac{(1-\mu^2)^{\frac{1}{2}}}{r} \frac{dV}{d\mu},$$
 
$$Y = -\frac{1}{r(1-\mu^2)^{\frac{1}{2}}} \frac{dV}{d\lambda}.$$
 Hence 
$$\frac{Y}{X} = -\frac{\frac{dV}{d\lambda}}{(1-\mu^2)\frac{dV}{d\mu}}.$$

On the sphere of unit radius r=1, and

$$\begin{split} \frac{dX}{d\theta} &= -\sin\theta \frac{dX}{d\mu} = -(1 - \mu^2) \frac{d^2V}{d\mu^2} + \mu \frac{dV}{d\mu}, \\ \frac{dY}{d\theta} &= -\sin\theta \frac{dY}{d\mu} = \frac{d^2V}{d\lambda d\mu} + \frac{\mu}{1 - \mu^2} \frac{dV}{d\lambda}. \end{split}$$

Hence

$$X\frac{dY}{d\theta} - Y\frac{dX}{d\theta} = \left(1 - \mu^2\right)^{\frac{1}{2}} \left[ \frac{dV}{d\mu} \frac{d^2V}{d\lambda d\mu} - \frac{dV}{d\lambda} \frac{d^2V}{d\mu^2} + \frac{2\mu}{1 - \mu^2} \frac{dV}{d\lambda} \frac{dV}{d\mu} \right],$$

and

$$X\frac{dY}{d\lambda} - Y\frac{dX}{d\lambda} = -\frac{dV}{d\mu}\frac{d^2V}{d\lambda^2} + \frac{dV}{d\lambda}\frac{d^2V}{d\lambda d\mu}.$$

As an example of the application of the above theory, we will find the approximate place of the crossing of two branches of the line of equal declination in the neighbourhood of the point  $\theta = 80^{\circ}$ ,  $\lambda = 260^{\circ}$ . Take this point as the origin, and take x and y as the longitude and latitude respectively of some near point referred to this origin, taking  $10^{\circ}$  of longitude and  $5^{\circ}$  of latitude as the units of x and y respectively. Then if x and y be the coordinates of the point of crossing of the two branches, we have

$$\begin{split} X\,\frac{d\,Y}{dx}-\,Y\,\frac{d\,X}{dx}&=0=\left(X\,\frac{d\,Y}{dx}-\,Y\,\frac{d\,X}{dx}\right)_0+\left(X\,\frac{d^2\,Y}{dx^2}-\,Y\,\frac{d^2\,X}{dx^2}\right)_0\,x\\ &+\left(X\,\frac{d^2\,Y}{dx\,dy}-\,Y\,\frac{d^2\,X}{dx^2}+\frac{d\,X}{dy}\,\frac{d\,Y}{dx}-\frac{d\,Y}{dy}\,\frac{d\,X}{dx}\right)_0\,y,\\ \text{and}\quad X\,\frac{d\,Y}{dy}-\,Y\,\frac{d\,X}{dy}&=0=\left(X\,\frac{d\,Y}{dy}-\,Y\,\frac{d\,X}{dy}\right)_0+\left(X\,\frac{d^2\,Y}{dy^2}-\,Y\,\frac{d^2\,X}{dy^2}\right)_0\,y\\ &+\left(X\,\frac{d^2\,Y}{dx\,dy}-\,Y\,\frac{d^2\,X}{dx\,dy}+\frac{d\,X}{dx}\,\frac{d\,Y}{dy}-\frac{d\,Y}{dx}\,\frac{d\,X}{dy}\right)_0\,x. \end{split}$$

These equations give the values of x and y for the point required.

Also the values of X and Y for the point required are given by the equations

$$X = X_0 + {\begin{pmatrix} dX \\ dx \end{pmatrix}_0} x + {\begin{pmatrix} dX \\ dy \end{pmatrix}_0} y + \frac{1}{2} \left( \frac{d^2X}{dx^2} \right)_0 x^2 + \frac{1}{2} \left( \frac{d^2X}{dy^2} \right)_0 y^2 + \left( \frac{d^2X}{dx} dy \right)_0 xy,$$

and

$$Y = Y_{\mathrm{o}} + \left(\frac{d\,Y}{dx}\right)_{\mathrm{o}}x + \left(\frac{d\,Y}{dy}\right)_{\mathrm{o}}y + \frac{1}{2}\left(\frac{d^2\,Y}{dx^2}\right)_{\mathrm{o}}x^2 + \frac{1}{2}\left(\frac{d^2\,Y}{dy^2}\right)_{\mathrm{o}}y^2 + \left(\frac{d^2\,Y}{dxdy}\right)_{\mathrm{o}}xy,$$

and  $\tan \delta = \frac{Y}{X}$  gives the value of the declination.

Let 
$$\begin{vmatrix} a & b & c \\ d & e & f \end{vmatrix}$$
 be the values of the function  $\begin{vmatrix} (-1, & 1) & (0, & 1) & (1, & 1) \\ (-1, & 0) & (0, & 0) & (1, & 0) \\ g & h & i \end{vmatrix}$  points  $\begin{vmatrix} (-1, & 1) & (0, & 1) & (1, & 1) \\ (-1, & 0) & (0, & 0) & (1, & 0) \\ (-1, & -1) & (0, & -1) & (1, & -1) \end{vmatrix}$ .

Then taking differences along x, we have

$$e-d$$
,  $f-e$  and the mean  $\frac{dX}{dx} = \frac{f-d}{2}$ ;

and taking differences along y,

$$b-e$$
,  $e-h$  and the mean  $\frac{dX}{dy} = \frac{b-h}{2}$ .

The second differences are

$$\frac{d^{2}X}{dx^{2}} = \frac{d+f-2e}{2}, \qquad \frac{d^{2}X}{dy^{2}} = \frac{b+h-2e}{2};$$

also taking all the successive first differences with respect to x,

$$b-a$$
,  $c-b$ ,  
 $e-d$ ,  $f-e$ ,  
 $i-h$ ,  $h-g$ ,

and the differences of these with respect to y,

$$b-a-e+d$$
,  $c-b-f+e$ ,  
 $e-d-i+h$ ,  $f-e-h+g$ ,

and taking the mean of these, we have

$$\frac{d^2X}{dxdy} = \frac{1}{4} \left( -\alpha - i + c + g \right).$$

Hence we have

$$X = e + \frac{f - d}{2} x + \frac{b - h}{2} y + \frac{d + f - 2e}{2} x^{s} + \frac{b + h - 2e}{2} y^{2} + \frac{c + g - \alpha - i}{4} xy.$$

Similarly the value of Y at the point (x, y) may be determined.

Taking the values of X and Y from the Tables and taking their differences with respect to longitude and latitude, we have for X

	250°	260°	270°	Diff. with respect to latitude			Second diff. with respect to latitude
15° 10° 5°	1000·4 1031·5 1046·6	995·3 1030·3 1048·0	973·9 1012·4 1033·6	-31·1 -15·1	- 35·0 - 17·7	$\begin{vmatrix} -38.5 \\ -21.2 \end{vmatrix}$	-16.0, -17.3, -17.3

1st and 2nd diff. with longitude		Second diff. with respect to latitude and longitude		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-16·3 -16·7 -15·8	-3.9, -3.5 -2.6, -3.5		

## Similarly for Y

	250°	260°	270° Diff. with res		respect to latitude		Second diff. with respect to latitude
$15^{\circ}$	-152.5	-151.4	-138.1	- 5.7	± 3.0	+11.2	
$10^{\circ}$	-152.5 $-146.8$ $-140.9$	-154.4	-149.3	-5.7 -5.9	+3.0 +2.3	+10.2	+0.2, +0.7, +1.0
$5^{\circ}$	<b>-140</b> ·9	-156.7	-159.5		1 2 0	1102	

1st and 2nd diff. with longitude	respect to	Second diff. with respect to latitude and longitude		
+ 1·1, +13·3 - 7·6, + 5·1 -15·8, - 2·8	+12·2 +12·7 +13·0	+8.7, +8.2 +8.2, +7.9		

Hence at the origin, where x=0, y=0, taking the mean differences, we have

$$\begin{split} X_{\rm o} = 1030 \cdot 3, & \left(\frac{dX}{dx}\right)_{\rm o} = -9 \cdot 55, & \left(\frac{dX}{dy}\right)_{\rm o} = -26 \cdot 35, & \left(\frac{d^2X}{dx^2}\right)_{\rm o} = -16 \cdot 7, \\ & \left(\frac{d^2X}{dy^2}\right)_{\rm o} = -17 \cdot 3, & \left(\frac{d^2X}{dxdy}\right)_{\rm o} = -3 \cdot 4, \\ Y_{\rm o} = -154 \cdot 4, & \left(\frac{dY}{dx}\right)_{\rm o} = -1 \cdot 25, & \left(\frac{dY}{dy}\right)_{\rm o} = 2 \cdot 65, & \left(\frac{d^2Y}{dx^2}\right)_{\rm o} = 12 \cdot 7, \\ & \left(\frac{d^2Y}{dy^2}\right)_{\rm o} = 0 \cdot 7, & \left(\frac{d^2Y}{dxdy}\right)_{\rm o} = 8 \cdot 25. \end{split}$$

Hence the equations for finding x and y are

$$0 = -2762 \cdot 4 + 10506 \cdot 3x + 8033 \cdot 2y,$$

$$0 = -1338 \cdot 1 + 7916 \cdot 8x - 1949 \cdot 9y,$$

giving

$$x = 0.19190$$
 and  $y = .092895$ ;

hence

Long. = 
$$261^{\circ}.9$$
 and Lat. =  $10^{\circ}.45$ ,

which agree very well with the chart.

Also we have

$$X = 1030\cdot3 - 9\cdot55x - 26\cdot35y - 8\cdot35x^2 - 8\cdot65y^2 - 3\cdot4xy,$$

and

$$Y = -154\cdot 4 - 1\cdot 25x + 2\cdot 65y + 6\cdot 35x^2 + 0\cdot 35y^2 + 8\cdot 25xy.$$

From the equation  $\tan \delta = \frac{Y}{X}$ , we get  $\delta = -8^{\circ} 32' \cdot 4$ .

According to Erman's chart,  $\delta = -8^{\circ} 33' \cdot 2$ .

The equation which gives the tangent to the two branches of the line of equal declination at their common point is

$$10506 \cdot 3 (\delta x)^2 + 7975 \cdot 0 \times 2\delta x \delta y - 1949 \cdot 9 (\delta y)^2 = 0,$$

hence

$$\frac{\delta y}{\delta x} = -0.6128$$
 or  $+8.7928$ .

On a Mercator's chart this must be divided by  $\sin \theta$ , which gives the values  $-31^{\circ} 55' \cdot 7$  and  $83^{\circ} 37' \cdot 1$  for the directions of the lines.

## SECTION VI.

THE THEORY OF TERRESTRIAL MAGNETISM, GIVING THE EXPRESSIONS OF THE MAGNETIC FORCES ON THE EARTH'S SURFACE, TAKING INTO ACCOUNT THE SPHEROIDAL FIGURE OF THE EARTH.

1. Let us now take into account the spheroidal figure of the Earth. Let r,  $\theta'$ ,  $\lambda$  be the polar coordinates of a point on the spheroidal surface referred to the Earth's centre as origin and axis of figure as initial line; let  $\theta$  be the geographical colatitude (the angle which the normal makes with the axis) and let  $\mu = \cos \theta$  and  $\mu' = \cos \theta'$ .

The angle of the vertical  $\psi = \theta' - \theta$ .

The values of the sines and cosines of these angles for values of  $\theta$  differing by 1° from 0° to 90° have been computed, the eccentricity e of the elliptic section in the plane of the meridian being derived from Bessel's dimensions of the Earth as given in Encke's tables in the Berliner Jahrbuch, 1852.

The expressions for the magnetic potential and for the magnetic forces X, Y, and Z, in terms of the Gaussian magnetic constants  $g_n^m$ ,  $h_n^m$  will be of the same form as those given above for the sphere (see p. 403).

Let X be the total force towards the north perpendicular to the Earth's radius, Y the total force perpendicular to the geographical meridian towards the west, Z the force towards the Earth's centre, then

$$X = -\frac{dV}{rd\theta'}$$
,  $Y = -\frac{1}{r\sin\theta'}\frac{dV}{d\lambda}$ , and  $Z = -\frac{dV}{dr}$ 

(east longitudes being considered positive).

If X' be the horizontal force in the meridian towards the north,

Y' the horizontal force perpendicular to the meridian towards the west,

Z' the vertical downward force on the spheroidal surface of the Earth,

then

$$X' = X \cos \psi + Z \sin \psi,$$
  

$$Y' = Y,$$
  

$$Z' = -X \sin \psi + Z \cos \psi.$$

We may conveniently denote the values of the coefficients of  $g_n^m \cos m\lambda$  and  $h_n^m \sin m\lambda$  in the potential function and in the forces X, Y and Z by the same symbols  $V_n^m$ ,  $X_n^m$ ,  $Y_n^m$  and  $Z_n^m$  respectively as in the case of the sphere, regarding them as functions of  $H'_n^m$ , where  $H'_n^m$  is the same function of  $\mu'$  that  $H^n$  is of  $\mu$ .

The coefficients of  $g_n^m \cos m\lambda$  and  $h_n^m \sin m\lambda$  in X' and Z' may be denoted by  $X_n'$  and  $Z_n'$ , where

$$X_n' = X_n^m \cos \psi + Z_n^m \sin \psi,$$
  
$$Z_n' = -X_n^m \sin \psi + Z_n^m \cos \psi.$$

and

2. If  $\alpha$  be the equatorial radius of the spheroid, then, taking into account only the terms to the order  $e^2$ ,

$$\frac{a^2}{r^2} = \frac{1 - e^2 \sin^2 \theta'}{1 - e^2} = 1 + e^2 \cos^2 \theta' = 1 + e^2 \mu^2.$$

We have also

the point on the spheroid.

$$\sin \psi = \sin (\theta' - \theta) = \frac{e^2 \sin \theta \cos \theta}{\left[1 - e^2 (2 - e^2) \cos^2 \theta\right]^{\frac{1}{2}}} = e^2 \cos \theta \sin \theta' = e^2 \cos \theta \sin \theta,$$
also
$$\mu' = \cos \theta' = \cos \theta - e^2 \mu (1 - \mu^2)^{\frac{1}{2}} \sin \theta,$$
or
$$\mu' = \mu - e^2 \mu (1 - \mu^2) = \mu - \sin \theta \sin \psi;$$
hence
$$\frac{d\mu'}{d\mu} = 1 - e^2 (1 - 3\mu^2),$$
and
$$(1 - \mu'^2)^{\frac{1}{2}} = \{1 - [\mu - e^2 \mu (1 - \mu^2)]^2\}^{\frac{1}{2}} = (1 - \mu^2)^{\frac{1}{2}} (1 + e^2 \mu^2).$$

Let b be the polar axis, and let x and y be rectangular coordinates of

Then

$$x = r \left(1 - \mu^{2}\right)^{\frac{1}{2}} = \alpha \left(1 - \mu^{2}\right)^{\frac{1}{2}} \left(1 + e^{2}\mu^{2}\right)^{\frac{1}{2}},$$

$$y = r\mu' = b\mu' \left(1 - e^{2} + e^{2}\mu'^{2}\right)^{-\frac{1}{2}} = b\mu \left[1 - e^{2} \left(1 - \mu^{2}\right)\right]^{\frac{1}{2}}.$$

If N be the normal terminated by the minor axis,

$$\begin{split} N^2 &= x^2 + \frac{y^2}{(1 - e^2)^2} = \frac{b^2}{1 - e^2 + e^2 \mu'^2} \left[ 1 - \mu'^2 + \frac{\mu'^2}{(1 - e^2)^2} \right] \\ &= \frac{\alpha^2}{1 - e^2} \left[ \frac{(1 - e^2)^2 + (2e^2 - e^4) \mu'^2}{1 - e^2 + e^2 \mu'^2} \right] \\ &= \frac{\alpha^2}{1 - e^2} \left[ \frac{1 - 2e^2 (1 - \mu^2)}{1 - e^2 (1 - \mu^2)} \right]. \end{split}$$

The radius of curvature of the meridian is

$$\rho = \frac{1 - e^2}{a^2} N^3.$$

If  $\delta S$  be the elementary area of a belt of the Earth's surface between two parallels of latitude and  $\delta s$  be the length of the arc of the meridian, we have

$$\delta S = 2\pi x \cdot \delta s = 2\pi N \sin \theta \cdot \rho \cdot \delta \theta = 2\pi \frac{1 - e^2}{a^2} N^4 \sin \theta \cdot \delta \theta$$

$$= 2\pi b^2 \frac{N^4}{a^4} \sin \theta \cdot \delta \theta,$$
or
$$\frac{dS}{d\mu} = -2\pi b^2 \frac{N^4}{a^4} = -2\pi a^2 (1 - e^2) \frac{1}{(1 - e^2)^2} [1 - e^2 (1 - \mu^2)]^2,$$
and
$$\frac{dS}{d\mu'} = -2\pi a^2 \frac{1 - 2e^2 (1 - \mu^2)}{(1 - e^2)[1 - e^2 (1 - 3\mu^2)]} = -2\pi a^2 (1 - e^2\mu^2) = -2\pi r^2.$$

Taking the equatorial radius =1, we have

$$\begin{aligned} \frac{dS}{d\mu'} &= -2\pi \left(1 - e^2 \mu^2\right), \\ \frac{1}{r^2} &= 1 + e^2 \mu^2, \\ \frac{1}{r^{n+2}} &= 1 + \frac{n+2}{2} e^2 \mu^2, \\ r^{n-1} &= 1 - \frac{n-1}{2} e^2 \mu^2. \end{aligned}$$

and

3. In the following investigation of the coefficients of  $\cos m\lambda$ , &c., in which m remains the same, while n may have different values, it will be convenient to denote  $H_n^m$  by  $H_n$ ,  $H_n'^m$  by  $H_n'$ ,  $X_n^m$  by  $X_n$ , &c., regarding  $H_n'$ ,  $X_n$ , &c. as functions of  $\mu'$  or  $\cos \theta'$ , where  $\theta'$  is the geocentric colatitude.

Regarding  $H_{n'}$  and  $\frac{dH_{n'}}{d\mu'}$ , &c. as functions of  $\mu'$ , we have by Taylor's theorem

$$H_n' = H_n - e^2 \mu (1 - \mu^2) \frac{dH_n}{d\mu}$$

to the order  $e^2$ , and

$$\frac{dH_{n}{'}}{d\mu'} = \frac{dH_{n}}{d\mu} - e^{2}\mu \left(1 - \mu^{2}\right) \frac{d^{2}H_{n}}{d\mu^{2}}.$$

Hence

$$\begin{split} (1-\mu'^2)^{\frac{1}{2}} \frac{dH_n'}{d\mu'} &= (1-\mu^2)^{\frac{1}{2}} \frac{dH_n}{d\mu} \left(1+e^2\mu^2\right) - e^2\mu \left(1-\mu^2\right)^{\frac{3}{2}} \frac{d^3H_n}{d\mu^2} \\ &= (1-\mu^2)^{\frac{1}{2}} \frac{dH_n}{d\mu} \left(1+e^2\mu^2\right) - 2e^2\mu^2 \left(1-\mu^2\right)^{\frac{1}{2}} \frac{dH_n}{d\mu} \\ &\qquad \qquad + e^2\mu \left(1-\mu^2\right)^{\frac{1}{2}} \left[n\left(n+1\right) - \frac{m^2}{1-\mu^2}\right] H_n \\ &= (1-\mu^2)^{\frac{1}{2}} \frac{dH_n}{d\mu} \left(1-e^2\mu^2\right) + e^2\mu \left(1-\mu^2\right)^{\frac{1}{2}} \left[n\left(n+1\right) - \frac{m^2}{1-\mu^2}\right] H_n. \end{split}$$

4. Expressions for the Magnetic Forces on the Earth's Surface.

If  $a_n$  and  $\beta_n$  be taken to represent magnetic constants depending on the internal and external sources of magnetic force respectively, the coefficient of  $\cos m\lambda$  in the general term of the potential function V is

$$\Sigma \left\lceil \left( rac{oldsymbol{lpha}_n}{r^{n+1}} + oldsymbol{eta}_n r^n 
ight) H_n' 
ight
ceil.$$

The coefficients of  $\cos m\lambda$  in the general terms of the values of the forces X, Y and Z are:—

for 
$$X$$
, 
$$\Sigma \left[ \left( \frac{\alpha_n}{r^{n+2}} + \beta_n r^{n-1} \right) (1 - \mu'^2)^{\frac{1}{2}} \frac{dH_n'}{d\mu'} \right],$$
for  $Y$ , 
$$\Sigma \left[ \left( \frac{\alpha_n}{r^{n+2}} + \beta_n r^{n-1} \right) m \left( 1 - \mu'^2 \right)^{-\frac{1}{2}} H_n' \right],$$
for  $Z$ , 
$$\Sigma \left[ \left( \frac{\alpha_n \left( n+1 \right)}{r^{n+2}} - \beta_n n r^{n-1} \right) H_n' \right].$$

If we resolve the forces X and Z in the horizontal and vertical directions instead of along and perpendicular to the Earth's radius, the change in the value of X is  $Z \sin \psi$ , and the change in the value of Z is  $-X \sin \psi$ , where

$$\sin \psi = e^2 \sin \theta \cos \theta = e^2 \mu (1 - \mu^2)^{\frac{1}{2}}.$$

Hence the term  $(1-\mu^2)^{-\frac{1}{2}}H_n[(n+1)\alpha_n-n\beta_n]e^2\mu(1-\mu^2)$ 

must be added to the coefficient of  $\cos m\lambda$  in the value of X, and the term

$$-\frac{dH_n}{d\mu}(\alpha_n+\beta_n)e^2\mu(1-\mu^2)$$

must be added to the coefficient of  $\cos m\lambda$  in the value of Z. Hence taking, as in the case of a sphere,  $x_m$ ,  $y_m$  and  $z_m$  for the values of the coefficients of  $\cos m\lambda$  as derived from observation, and substituting the values just obtained for  $H_n'$ ,  $\frac{dH_n'}{d\mu'}$ , &c. and collecting terms, we get for the equations of condition

$$\begin{split} \Sigma \left[ \left( 1 - \mu^2 \right)^{\frac{1}{2}} \frac{dH_n}{d\mu} \left\{ \left( \alpha_n + \beta_n \right) - \left( \alpha_n + \beta_n \right) e^2 \mu^2 + \frac{1}{2} \left[ \alpha_n \left( n + 2 \right) - \beta_n \left( n - 1 \right) \right] e^2 \mu^2 \right\} \right. \\ &\quad + \left( 1 - \mu^2 \right)^{-\frac{1}{2}} H_n \left\{ \left( n + 1 \right)^2 \alpha_n + n^2 \cdot \beta_n - \left( \alpha_n + \beta_n \right) \frac{m^2}{1 - \mu^2} \right\} e^2 \mu \left( 1 - \mu^2 \right) \right] = x_m, \\ \Sigma \left[ m \left( 1 - \mu^2 \right)^{-\frac{1}{2}} H_n \left\{ \left( \alpha_n + \beta_n \right) - \left( \alpha_n + \beta_n \right) e^2 \mu^2 + \frac{1}{2} \left[ \alpha_n \left( n + 2 \right) - \beta_n \left( n - 1 \right) \right] e^2 \mu^2 \right\} \right. \\ &\quad - m \left( 1 - \mu^2 \right)^{-\frac{1}{2}} \frac{dH_n}{d\mu} \left( \alpha_n + \beta_n \right) e^2 \mu \left( 1 - \mu^2 \right) \right] = y_m, \\ \Sigma \left[ H_n \left\{ \left( n + 1 \right) \alpha_n - n\beta_n + \frac{1}{2} \left[ \alpha_n \left( n + 1 \right) \left( n + 2 \right) + \beta_n \cdot n \left( n - 1 \right) \right] e^2 \mu^2 \right\} \right. \\ &\quad - \frac{dH_n}{d\mu} \left[ \alpha_n \left( n + 2 \right) - \beta_n \left( n - 1 \right) \right] e^2 \mu \left( 1 - \mu^2 \right) \right] = z_m. \end{split}$$

5. Multiplying the equation for  $x_m$  by  $(1-\mu^2)^{\frac{1}{2}} \frac{dH_n}{d\mu}$ , and the equation for  $y_m$  by  $m(1-\mu^2)^{-\frac{1}{2}} H_n$  and adding, we get

$$\begin{split} &\left[\left(1-\mu^2\right)\left(\frac{dH_n}{d\mu}\right)^2 + \frac{m^2}{1-\mu^2}\left(H_n\right)^2\right]\left\{\left(a_n + \beta_n\right) + \frac{1}{2}\left[na_n - (n+1)\beta_n\right]e^2\mu^2\right\} \\ &\quad + H_n\frac{dH_n}{d\mu}\left\{\mu\left(1-\mu^2\right)e^2\left[(n+1)^2a_n + n^2.\beta_n\right] - 2\mu m^2e^2\left(a_n + \beta_n\right)\right\} \end{split}$$

+ terms involving other magnetic constants =  $X_n x_m + Y_n y_m$ . Then taking the weight of the observations in a belt of latitude as proportional to its breadth  $(\delta\mu)$ , and multiplying by  $\delta\mu$  and integrating from -1 to +1, we get

$$\begin{split} n\left(n+1\right) & \int_{-1}^{1} (H_{n})^{2} \, d\mu \, \left\{ \left(\alpha_{n} + \beta_{n}\right) + \frac{1}{2} \left[n\alpha_{n} - (n+1)\,\beta_{n}\right] e^{2} \right\} \\ & - \frac{1}{2} \left[n\alpha_{n} - (n+1)\,\beta_{n}\right] e^{2} \, \left\{ \int_{-1}^{1} (1-\mu^{2})^{2} \left(\frac{dH_{n}}{d\mu}\right)^{2} \, d\mu + m^{2} \int_{-1}^{1} (H_{n})^{2} \, d\mu \right\} \\ & + \left[ (n+1)^{2}\,\alpha_{n} + n^{2}\beta_{n} \right] e^{2} \int_{-1}^{1} \mu \, \left(1-\mu^{2}\right) H_{n} \, \frac{dH_{n}}{d\mu} \, d\mu \\ & - 2m^{2}e^{2} \, \left(\alpha_{n} + \beta_{n}\right) \int_{-1}^{1} \mu H_{n} \, \frac{dH_{n}}{d\mu} \, d\mu + \text{terms involving } \alpha_{n_{1}}, \, \beta_{n_{1}}, \, \&c. \\ & = \int_{-1}^{1} X_{n} x_{m} d\mu + \int_{-1}^{1} Y_{n} y_{m} d\mu. \end{split}$$

Hence referring for the values of the above definite integrals to Section V. Art. 9 (p. 417), we get

$$\begin{split} \int_{-1}^{1} (H_{n})^{2} d\mu &\left\{ \left[ (\alpha_{n} + \beta_{n}) + \frac{1}{2} e^{2} \left[ n\alpha_{n} - (n+1)\beta_{n} \right] \right] n (n+1) \right. \\ &\left. - e^{2} \left[ n\alpha_{n} - (n+1)\beta_{n} \right] \frac{n^{2} (n+1)^{2} + (n^{2} + n - 3) m^{2}}{(2n-1)(2n+3)} \right. \\ &\left. + e^{2} \left[ (n+1)^{2} \alpha_{n} + n^{2}\beta_{n} \right] \frac{n^{2} + n - 3m^{2}}{(2n-1)(2n+3)} + m^{2}e^{2} (\alpha_{n} + \beta_{n}) \right\} + \&c. \\ &\left. = \int_{-1}^{1} X_{n} x_{m} d\mu + \int_{-1}^{1} Y_{n} y_{m} d\mu. \right. \end{split}$$

In the same way from the equation for  $z_m$  we get

$$\begin{split} \int_{-1}^{1} (H_n)^2 \, d\mu \, \left\{ (n+1) \, a_n - n\beta_n + \frac{1}{2} \, e^2 \left[ (n+1) \, (n+2) \, a_n + n \, (n-1) \, \beta_n \right] \right. \\ & \times \frac{2n^2 + 2n - 2m^2 - 1}{(2n-1) \, (2n+3)} \\ & - e^2 \left[ (n+2) \, a_n - (n-1) \, \beta_n \right] \frac{n^2 + n - 3m^2}{(2n-1) \, (2n+3)} \right\} + \&c. = \int_{-1}^{1} H_n z_m d\mu. \end{split}$$

Since  $\int_{-1}^{1} (H_n)^2 d\mu = 2 \frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2 (2n+1)}$  (as proved above, p. 411), we see that the coefficients of  $a_n$  and  $\beta_n$  in the above final equations are determined.

6. The above equations may be combined so as to give the final equations for  $a_n$  and  $\beta_n$  respectively.

Multiplying the last equation by (n+1) and adding to the former, we get the final equation for  $a_n$ :—

$$\begin{split} \int_{-1}^{1} (H_n)^2 \, d\mu & \Big\{ (2n+1) \, (n+1) \, a_n - \beta_n e^2 \frac{(n-1) \, [n \, (n+1) - 3m^2]}{(2n-1) \, (2n+3)} \\ & + a_n e^2 \frac{n+2}{2 \, (2n+3)} \big[ (n+1) \, (2n^2 + 2n + 1) - 2m^2 \, (n-1) \big] \Big\} \\ & + \text{terms in } e^2 \text{ involving other magnetic constants} \\ & = \int_{-1}^{1} X_n x_m d\mu + \int_{-1}^{1} Y_n y_m d\mu + (n+1) \int_{-1}^{1} H_n z_m d\mu. \end{split}$$

The principal term in  $a_n$  has the coefficient

$$2(n+1)\frac{(n-m)!(n+m)!}{\{1.3.5...(2n-1)\}^{\frac{1}{2}}},$$

as before found. We see that when n=1, and also when  $n(n+1)=3m^2$ , i.e. when n=3 and m=2, the term containing  $\beta_n$  disappears from this equation.

In the same way by multiplying the last equation of Art. 5 by n and subtracting it from the former, we get the final equation for  $\beta_n$ :—

$$\begin{split} \int_{-1}^{1} (H_n)^2 \, d\mu & \left\{ (2n+1) \, n\beta_n + \alpha_n e^2 \, \frac{(n+2) \left[ n \, (n+1) - 3 m^2 \right]}{(2n-1) \, (2n+3)} \right. \\ & \left. - \frac{1}{2} \, \beta_n e^2 \, \frac{n-1}{2n-1} \left[ n \, (2n^2 + 2n+1) - 2 m^2 \, (n+2) \right] \right\} \\ & + \text{terms in } e^2 \text{ involving other magnetic constants} \\ &= \int_{-1}^{1} X_n x_m d\mu + \int_{-1}^{1} Y_n y_m d\mu - n \int_{-1}^{1} H_n z_m d\mu. \end{split}$$

7. The formulae for finding the numerical values of the coefficients  $V_n^m$ ,  $X_n^m$ ,  $Y_n^m$ ,  $Z_n^m$ , &c. are:—

$$V_n^m = \frac{1}{r^{n+1}} H'_n^m$$
, and  $V_{-n}^m = r^n H'_n^m$ ,  $Z_n^m = \frac{n+1}{r^{m+2}} H'_n^m$ , and  $Z_{-n}^m = -nr^{n-1} H'_n^m$ ,

$$Y_n^m = \frac{m}{r^{n+2}} (1 - \mu'^2)^{-\frac{1}{2}} H'_n^m, \text{ and } Y_{-n}^m = mr^{n-1} (1 - \mu'^2)^{-\frac{1}{2}} H'_n^m,$$

$$\mu' Y_n^m - X_n^m = \frac{n + m}{r^{n+2}} H'_n^{m-1} \text{ or } \mu' Y_n^m + X_n^m = \frac{n - m}{r^{n+2}} H'_n^{m+1}.$$

These formulae may be simplified in the cases when m=n, and when m=n-1.

When m = n, we have

$$V_{n}^{m} = \frac{1}{r^{n+1}} (1 - \mu'^{2})^{\frac{n}{2}} = \frac{(\sin \theta')^{n}}{r^{n+1}}, \text{ and } V_{-n}^{m} = r^{n} (\sin \theta')^{n},$$

$$Z_{n}^{m} = \frac{(n+1)(\sin \theta')^{n}}{r^{n+2}}, \text{ and } Z_{-n}^{m} = -nr^{n-1} (\sin \theta')^{n},$$

$$Y_{n}^{m} = \frac{n(\sin \theta')^{n-1}}{r^{n+2}}, \text{ and } Y_{-n}^{m} = nr^{n-1} (\sin \theta')^{n-1},$$

$$X_{n}^{m} + \mu' Y_{n}^{m} = 0, \text{ and } X_{-n}^{m} + \mu' Y_{-n}^{m} = 0.$$

When m = n - 1, we have

$$G'_{nl}^{n-} = \mu', \qquad \text{and} \quad H'_{n}^{n-1} = \mu' \left(1 - \mu'^{2}\right)^{\frac{n-1}{2}} = \mu' \left(\sin \theta'\right)^{n-1},$$

$$Z_{n}^{m} = \frac{(n+1)\mu'(\sin \theta')^{n-1}}{r^{n+2}}, \quad \text{and} \quad Z_{-n}^{m} = -nr^{n-1}\mu'(\sin \theta')^{n-1},$$

$$Y_{n}^{m} = \frac{(n-1)\mu'(\sin \theta')^{n-2}}{r^{n+2}}, \quad \text{and} \quad Y_{-n}^{m} = (n-1)r^{n-1}\mu'(\sin \theta')^{n-2},$$

$$X_{n}^{m} = \frac{n(\sin \theta')^{n} - (n-1)(\sin \theta')^{n-2}}{r^{n+2}},$$

$$X_{-n}^{m} = r^{n-1} \left[n(\sin \theta')^{n} - (n-1)(\sin \theta')^{n-2}\right].$$

and

The above formulae have been employed to determine the numerical values of  $X_n^m$ ,  $Y_n^m$  and  $Z_n^m$  and of  $X_{-n}^m$ ,  $Y_{-n}^m$  and  $Z_{-n}^m$ , and also the values of  $X_n'$ ,  $Z_n'$  and of  $X_{-n}'$ ,  $Z_{-n}'$ , for every degree of the geographical colatitude over the surface of the Earth.

8. We will now give a more complete investigation of the case of the spheroid.

For a given value of  $\mu'$ , i.e. for a given narrow belt of latitude, we

may express the horizontal and vertical magnetic forces in terms of the magnetic constants as in the case of the sphere.

We may also analyse the observations of horizontal and vertical forces in the same belt of latitude in a series of the form

$$\alpha_0 + \alpha_1 \cos \lambda + b_1 \sin \lambda + \alpha_2 \cos 2\lambda + b_2 \sin 2\lambda + \&c.$$

and equate the coefficients of  $\cos m\lambda$  and of  $\sin m\lambda$  in the two series.

Thus we shall have

$$a_n X_{n'}' + \beta_n X_{-n}' + a_{n_1} X_{n_1}' + \beta_{n_1} X_{-n_1}' + \&c. = x_{m'}',$$
 $a_n Y_{n'}' + \beta_n Y_{-n}' + a_{n_1} Y_{n_1}' + \beta_{n_1} Y_{-n_1}' + \&c. = y_{m'}',$ 
 $a_n Z_{n'}' + \beta_n Z_{-n}' + a_{n_1} Z_{n_1}' + \beta_{n_1} Z_{-n_1}' + \&c. = z_{m'}',$ 

where  $x_m'$ ,  $y_m'$  and  $z_m'$  are the coefficients derived from the observations of horizontal and vertical forces.

Substituting the values of  $X_n'$ ,  $Y_n'$ ,  $Z_n'$ , &c., in terms of  $H_n'$ ,  $\frac{dH_n'}{d\mu'}$ , &c., in the above equations, we get

$$\left(\frac{a_n}{r^{n+2}} + \beta_n r^{n-1}\right) \frac{dH_n'}{d\mu'} (1 - \mu'^2)^{\frac{1}{2}} \cos \psi + \left[\frac{(n+1)}{r^{n+2}} a_n - n\beta_n r^{n-1}\right] H_n' \sin \psi$$

+ similar terms involving other magnetic constants =  $x_m'$ ,

$$\begin{split} \left(\frac{a_n}{r^{n+2}} + \beta_n r^{n-1}\right) m H_{n'} \left(1 - \mu'^2\right)^{-\frac{1}{2}} + \text{similar terms} &= y_{m'}, \\ -\left(\frac{a_n}{r^{n+2}} + \beta_n r^{n-1}\right) \frac{d H_{n'}}{d \mu'} \left(1 - \mu'^2\right)^{\frac{1}{2}} \sin \psi \\ &+ \left[\frac{(n+1) a_n}{r^{n+2}} - n \beta_n r^{n-1}\right] H_{n'} \cos \psi + \text{similar terms} &= z_{m'}. \end{split}$$

On multiplying these equations by  $X_n'$ ,  $Y_n'$  and  $Z_n'$  respectively, i.e. each equation by the coefficient of  $a_n$  in that equation, and adding them all together, we shall get the partial equation of condition for  $a_n$ : the coefficient of  $a_n$  will be

$$\frac{1}{r^{2n+4}} \left[ (1-\mu'^2) \left( \frac{dH_n'}{d\mu'} \right)^2 + (n+1)^2 (H_n')^2 + \frac{m^2 (H_n')^2}{1-\mu'^2} \right];$$

the coefficient of  $a_n$  will be

$$\begin{split} \left[\frac{1}{r^{n+2}}\frac{dH_{n'}'}{d\mu'}(1-\mu'^{2})^{\frac{1}{2}}\cos\psi + \frac{n+1}{r^{n+2}}H_{n'}'\sin\psi\right] \\ & \times \left[\frac{1}{r^{n_{1}+2}}\frac{dH_{n'}'}{d\mu'}(1-\mu'^{2})^{\frac{1}{2}}\cos\psi + \frac{n_{1}+1}{r^{n_{1}+2}}H_{n'}'\sin\psi\right] \\ & + \frac{m}{r^{n+2}}\frac{m}{r^{n_{1}+2}}\frac{H_{n'}'H_{n'}'}{1-\mu'^{2}} \\ & + \left[-\frac{1}{r^{n+2}}\frac{dH_{n'}'}{d\mu'}(1-\mu'^{2})^{\frac{1}{2}}\sin\psi + \frac{n+1}{r^{n+2}}H_{n'}'\cos\psi\right] \\ & \times \left[-\frac{1}{r^{n_{1}+2}}\frac{dH_{n'}'}{d\mu'}(1-\mu'^{2})^{\frac{1}{2}}\sin\psi + \frac{n_{1}+1}{r^{n_{1}+2}}H_{n'}'\cos\psi\right] \\ & = \frac{1}{r^{n+n_{1}+4}}\left\{\frac{dH_{n'}'}{d\mu'}\frac{dH_{n'}'}{d\mu'}(1-\mu'^{2}) + (n+1)(n_{1}+1)H_{n'}'H_{n'}' + \frac{m^{2}H_{n'}'H_{n'}'}{1-\mu'^{2}}\right\}. \end{split}$$

Also the coefficient of  $\beta_n$  in the same partial equation of condition for  $a_n$  will be

$$\begin{split} \left(\frac{1}{r^{n+2}} \frac{dH_{n'}'}{d\mu'} (1-\mu'^2)^{\frac{1}{2}} \cos \psi + \frac{n+1}{r^{n+2}} H_{n'}' \sin \psi\right) \\ & \times \left(r^{n_1-1} \frac{dH_{n_1}'}{d\mu'} (1-\mu'^2)^{\frac{1}{2}} \cos \psi - n_1 r^{n_1-1} H_{n_1}' \sin \psi\right) \\ & + \frac{1}{r^{n+2}} \frac{r^{n_1-1} m^2}{1-\mu'^2} H_{n'}' H_{n_1}' \\ & + \left(-\frac{1}{r^{n+2}} \frac{dH_{n'}'}{d\mu'} (1-\mu'^2)^{\frac{1}{2}} \sin \psi + \frac{n+1}{r^{n+2}} H_{n'}' \cos \psi\right) \\ & \times \left(-r^{n_1-1} \frac{dH_{n_1}'}{d\mu'} (1-\mu'^2)^{\frac{1}{2}} \sin \psi - n_1 r^{n_1-1} H_{n_1}' \cos \psi\right) \\ & = \frac{1}{r^{n-n_1+3}} \left\{\frac{dH_{n'}'}{d\mu'} \frac{dH_{n'}'}{d\mu'} (1-\mu'^2) - (n+1) n_1 H_{n'}' H_{n_1}' + \frac{m^2 H_{n'}' H_{n_1}'}{1-\mu'^2}\right\}. \end{split}$$

Similarly the coefficient of  $a_n$  in the partial equation of condition for  $\beta_n$  is

$$r^{n-n_1-s}\left\{\frac{dH_{n^{'}}}{d\mu^{'}}\,\frac{dH_{n_{1}}}{d\mu^{'}}(1-\mu^{\prime 2})-n\left(n_{1}+1\right)H_{n^{'}}H_{n_{1}}{'}+\frac{m^{2}H_{n^{'}}H_{n_{1}}{'}}{1-\mu^{\prime 2}}\right\}.$$

Also the coefficient of  $\beta_n$  in the same partial equation for  $\beta_n$  is

$$r^{n+n_1-2} \left\{ \frac{dH_{n'}}{d\mu'} \, \frac{dH_{n_1}}{d\mu'} (1-\mu'^2) + n \, \, n_1 H_{n'} H_{n_1}' + \frac{m^2 H_{n}' H_{n_1}'}{1-\mu'^2} \right\} \, .$$

The coefficient of  $a_n$  in the partial equation of condition for  $a_n$  will be found from the coefficient of  $a_n$  in the same equation by putting n for  $n_1$ .

Similarly the coefficient of  $\beta_n$  in any partial equation of condition for  $\beta_n$  will be found from the coefficient of  $\beta_n$  in the same equation by putting n for  $n_1$ .

Hence the coefficient of  $a_n$  in the partial equation of condition for  $a_n$  will be

$$\frac{1}{r^{2n+4}} \left\{ (1-\mu'^2) \left( \frac{dH_n'}{d\mu'} \right)^2 + (n+1)^2 \left( H_n' \right)^2 + \frac{m^2 \left( H_n' \right)^2}{1-\mu'^2} \right\};$$

and the coefficient of  $\beta_n$  in the partial equation of condition for  $\beta_n$  will be

$$r^{2n-2} \left\{ (1 - \mu'^2) \left( \frac{dH_n'}{d\mu'} \right)^2 + n^2 \left( H_n' \right)^2 + \frac{m^2 \left( H_n' \right)^2}{1 - \mu'^2} \right\}.$$

9. Since 
$$\frac{1}{r^2} = 1 + e^2 \mu^2$$
, we have

$$\begin{split} &\frac{1}{r^{n+n_1+4}} = \left(1 + e^2 \mu^2\right)^{\frac{n+n_1}{2}+2} = \left(1 + \frac{n+n_1+4}{2} \ e^2 \mu^2\right),\\ &\frac{1}{r^{n-n_1+3}} = 1 + \frac{n-n_1+3}{2} e^2 \mu^2,\\ &r^{n-n_1-3} = 1 - \frac{n-n_1-3}{2} \ e^2 \mu^2,\\ &r^{n+n_1-2} = 1 - \frac{n+n_1-2}{2} e^2 \mu^2. \end{split}$$

and

Also the area of a small belt of the surface of the spheroid is

$$\begin{split} \delta S &= -2\pi r^2 \delta \mu' \\ &= -2\pi \left( 1 - e^2 \mu^2 \right) \delta \mu' = -2\pi \left( 1 - e^2 + 2e^2 \mu^2 \right) \delta \mu. \end{split}$$

If we assume the weight of the observations in any belt of latitude to be proportional to the area of the belt, then to form the final equations for  $a_n$  and  $\beta_n$ , &c. we must multiply each of the terms of the respective partial equations of condition similar to the above equations for  $a_n$  and  $\beta_n$  by  $(1-e^2\mu^2)\delta\mu'$ , or  $(1-e^2+2e^2\mu^2)\delta\mu$ , and integrate between the limits +1 and -1, i.e. over the whole surface of the Earth.

The coefficient of  $\alpha_{n_1}$  in the final equation for  $\alpha_n$  will be the same quantity as the coefficient of  $\alpha_n$  in the final equation for  $\alpha_{n_1}$ ; and similarly the coefficient of  $\beta_{n_1}$  in the final equation for  $\beta_n$  will be the same quantity as the coefficient of  $\beta_n$  in the final equation for  $\beta_{n_1}$ .

10. Since  $H_n'$  is the same function of  $\mu'$  that  $H_n$  is of  $\mu$ , it follows from the results given above (p. 421) that

$$\begin{split} \int_{-1}^{1} \left[ (1 - \mu'^2) \left( \frac{dH_n'}{d\mu'} \right)^2 + \frac{m^2 \left( H_n' \right)^2}{1 - \mu'^2} + (n+1)^2 \left( H_n' \right)^2 \right] d\mu' &= \frac{2 \left( n - m \right) ! \left( n + m \right) !}{\left[ 1 \cdot 3 \cdot 5 \dots \left( 2n - 1 \right) \right]^2} (n+1), \\ \text{also} & \int_{-1}^{1} \frac{dH_n'}{d\mu'} \frac{dH_{n_1'}}{d\mu'} \left( 1 - \mu'^2 \right) d\mu' + \int_{-1}^{1} \frac{m^2 H_n' H_{n_1'}}{1 - \mu'^2} d\mu' &= 0, \\ \text{and} & \int_{-1}^{1} H_n' H_{n_1'} d\mu' &= 0. \end{split}$$

Hence we need only consider the terms involving  $e^2\mu^2$  in the above expressions for the coefficients of the magnetic constants.

The coefficient of  $a_{n_1}$  in the equation for  $a_n$  will be

$$\begin{split} \left(1 + \frac{n + n_{\scriptscriptstyle 1} + 2}{2} \ e^{\scriptscriptstyle 2} \mu^{\scriptscriptstyle 2}\right) \\ & \times \left\{ \frac{dH_{n'}}{d\mu'} \ \frac{dH_{n'}}{d\mu'} \left(1 - \mu'^{\scriptscriptstyle 2}\right) + \left(n + 1\right) \left(n_{\scriptscriptstyle 1} + 1\right) \ H_{n'}' H_{n'}' + \frac{m^{\scriptscriptstyle 2} H_{n'}' H_{n'}}{1 - \mu'^{\scriptscriptstyle 2}} \right\}. \end{split}$$

Putting this under the form

$$\left[1 + \frac{1}{6}(n + n_1 + 2)e^2 - \frac{n + n_1 + 2}{2}e^2\left(\frac{1}{3} - \mu^2\right)\right] \times \left\{ (1 - \mu'^2)\frac{dH_{n'}}{d\mu}\frac{dH_{n'}}{d\mu} + \frac{m^2H_{n'}H_{n'}}{1 - \mu'^2} + (n + 1)(n_1 + 1)H_{n'}H_{n'}\right\},$$

and putting  $\mu$  for  $\mu'$  in terms of the second order, we see that all the terms are readily integrable by means of the above definite integrals.

On integrating this expression from  $\mu = -1$  to  $\mu = 1$ , we get

$$-\frac{n+n_{1}+2}{2}e^{2}\left\{\frac{1}{2}n\left(n+1\right)+\frac{1}{2}n_{1}\left(n_{1}+1\right)-3+\left(n+1\right)\left(n_{1}+1\right)\right\}\int_{-1}^{1}\left(\frac{1}{3}-\mu^{2}\right)H_{n}H_{n_{1}}d\mu$$

$$=\frac{n+n_{1}+2}{2}e^{2}\left\{\frac{1}{2}\left(n+n_{1}+1\right)\left(n+n_{1}+2\right)-3\right\}\int_{-1}^{1}\mu^{2}H_{n}H_{n_{1}}d\mu$$

$$=\frac{1}{4}e^{2}\left(n+n_{1}+2\right)\left(n+n_{1}+4\right)\left(n+n_{1}-1\right)\int_{-1}^{1}\mu^{2}H_{n}H_{n_{1}}d\mu.$$

This vanishes, except when

 $n_1 = n - 2$ 

or when

 $n_1 = n + 2$ 

or when

 $n=n_1$ .

When  $n_1 = n - 2$ , the value of the coefficient of  $a_{n-2}$  is

$$e^{2} \frac{2n(n+1)(2n-3)}{2n+1} \frac{(n+m)!(n-m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^{2}};$$

and when  $n_1 = n + 2$ , the value of the coefficient of  $a_{n+2}$  is

$$e^{2} \frac{2(n+2)(n+3)(2n+1)(n+2+m)!(n+2-m)!}{2n+5} \frac{(n+2+m)!(n+2-m)!}{[1\cdot 3\cdot 5\ldots (2n+3)]^{2}}$$

Similarly the coefficient of  $\beta_{n_1}$  in the final equation for  $\alpha_n$  is

$$\begin{split} e^{2} \frac{n - n_{1} + 1}{2} \left[ \frac{1}{2} n (n+1) + \frac{1}{2} n_{1} (n_{1} + 1) - 3 - (n+1) n_{1} \right] \int_{-1}^{1} \mu^{2} H_{n} H_{n_{1}} d\mu \\ &= e^{2} \frac{n - n_{1} + 1}{4} \left[ (n - n_{1}) (n - n_{1} + 1) - 6 \right] \int_{-1}^{1} \mu^{2} H_{n} H_{n_{1}} d\mu \\ &= e^{2} \frac{(n - n_{1} + 1) (n - n_{1} + 3) (n - n_{1} - 2)}{4} \int_{-1}^{1} \mu^{2} H_{n} H_{n_{1}} d\mu ; \end{split}$$

hence, when  $n_1 = n - 2$ , the coefficient of  $\beta_{n-2}$  vanishes.

When  $n_1 = n + 2$ , the coefficient of  $\beta_{n+2}$  is

$$e^2 \int_{-1}^1 \mu^2 H_n H_{n_1} d\mu = e^2 \int_{-1}^1 (H_{n_1})^2 d\mu.$$

Similarly the coefficient of  $a_n$ , in the final equation for  $\beta_n$  is

$$e^{2} \frac{n_{1}-n+1}{2} \left[ \frac{1}{2} n (n+1) + \frac{1}{2} n_{1} (n_{1}+1) - 3 - n (n_{1}+1) \right] \int_{-1}^{1} \mu^{2} H_{n} H_{n_{1}} d\mu$$

$$= e^{2} \frac{(n_{1}-n+1) (n_{1}-n+3) (n_{1}-n-2)}{4} \int_{-1}^{1} \mu^{2} H_{n} H_{n_{1}} d\mu.$$

When  $n_1 = n - 2$ , the coefficient of  $a_{n-2}$  in the final equation for  $\beta_n$  is

$$e^{2} \int_{-1}^{1} \mu^{2} H_{n} H_{n_{1}} d\mu = e^{2} \frac{2}{2n+1} \frac{(n+m)! (n-m)!}{[1 \cdot 3 \cdot 5 \dots (2n-1)]^{2}};$$

when  $n_1 = n + 2$ , the coefficient of  $a_{n+2}$  vanishes.

The coefficient of  $\beta_n$  in the same final equation for  $\beta_n$  is

$$-e^{2}\frac{n+n_{1}}{2}\left[\frac{1}{2}n(n+1)+\frac{1}{2}n_{1}(n_{1}+1)-3+nn_{1}\right]\int_{-1}^{1}\mu^{2}H_{n}H_{n_{1}}d\mu$$

$$=-e^{2}\frac{(n+n_{1})(n+n_{1}+3)(n+n_{1}-2)}{4}\int_{-1}^{1}\mu^{2}H_{n}H_{n_{1}}d\mu.$$

Hence the coefficient of  $\beta_{n-3}$  is

$$-e^{2}(n-1)(2n+1)(n-2)\frac{2}{2n+1}\frac{(n+m)!(n-m)!}{\{1.3.5...(2n-1)\}^{2}}$$

and the coefficient of  $\beta_{n+2}$  is

$$-e^{2}(n+1)(2n+5)n\frac{2}{2n+5}\frac{(n+m+2)!(n-m+2)!}{\{1.3.5...(2n+3)\}^{2}}.$$

The coefficient of  $a_n$  in the final equation for  $a_n$  is

$$\left\{2\left(n+1\right)\left(1+\frac{n+1}{3}e^{2}\right)+\frac{4\left(n+1\right)\left(n+2\right)}{\left(2n+1\right)\left(2n+3\right)}\left[\frac{1}{3}n\left(n+1\right)-m^{2}\right]e^{2}\right\} \times \frac{\left(n+m\right)!\left(n-m\right)!}{\left\{1\cdot3\cdot5\cdot\ldots\left(2n-1\right)\right\}^{2}}.$$

11. Hence the final equation for  $a_n$  becomes

$$a_{n} \left\{ 2 \left( n+1 \right) \left( 1 + \frac{n+1}{3} e^{2} \right) + \frac{4 \left( n+1 \right) \left( n+2 \right)}{\left( 2n+1 \right) \left( 2n+3 \right)} \left[ \frac{1}{3} n \left( n+1 \right) - m^{2} \right] e^{2} \right\} \\ \times \frac{\left( n+m \right) ! \left( n-m \right) !}{\left\{ 1 \cdot 3 \cdot 5 \cdot \ldots \left( 2n-1 \right) \right\}^{2}} \\ -\beta_{n} \cdot e^{2} \frac{2 \left[ n \left( n+1 \right) - 3m^{2} \right]}{\left( 2n-1 \right) \left( 2n+1 \right) \left( 2n+3 \right)} \frac{\left( n+m \right) ! \left( n-m \right) !}{\left\{ 1 \cdot 3 \cdot 5 \cdot \ldots \left( 2n-1 \right) \right\}^{2}} \\ +\alpha_{n+2} \cdot e^{2} \frac{2 \left( n+2 \right) \left( n+3 \right) \left( 2n+1 \right)}{2n+5} \frac{\left( n+m+2 \right) ! \left( n-m+2 \right) !}{\left\{ 1 \cdot 3 \cdot 5 \cdot \ldots \left( 2n+3 \right) \right\}^{2}} \\ +\beta_{n+2} \cdot e^{2} \frac{2}{2n+5} \frac{\left( n+m+2 \right) ! \left( n-m+2 \right) !}{\left\{ 1 \cdot 3 \cdot 5 \cdot \ldots \left( 2n+3 \right) \right\}^{2}} \\ +\alpha_{n-2} \cdot e^{2} \frac{2n \left( n+1 \right) \left( 2n-3 \right)}{2n+1} \frac{\left( n+m \right) ! \left( n-m \right) !}{\left\{ 1 \cdot 3 \cdot 5 \cdot \ldots \left( 2n-1 \right) \right\}^{2}}$$

= a known quantity of the form

$$\int_{-1}^{1} x_{m}' X_{n}'(w) d\mu + \int_{-1}^{1} y_{m}' Y_{n}'(w) d\mu + \int_{-1}^{1} z_{m}' Z_{n}'(w) d\mu,$$

where  $(w) d\mu$  represents the weight, and where  $x_m'$ ,  $y_m'$  and  $z_m'$  are derived from the observations of the horizontal and vertical magnetic forces.

Similarly the final equation for  $\beta_n$  becomes

$$-a_{n} \cdot e^{2} \frac{2\left[n\left(n+1\right)-3m^{2}\right]}{(2n-1)\left(2n+1\right)\left(2n+3\right)} \frac{(n+m)! (n-m)!}{\{1\cdot 3\cdot 5 \ldots (2n-1)\}^{2}} \\ +\beta_{n} \left\{2n\left(1-\frac{n}{3}e^{2}\right)-e^{2} \frac{4n\left(n-1\right)}{(2n-1)\left(2n+1\right)}\left[\frac{1}{3}n\left(n+1\right)-m^{2}\right]\right\} \\ \times \frac{(n+m)! (n-m)!}{\{1\cdot 3\cdot 5 \ldots (2n-1)\}^{2}} \\ +a_{n-2} \cdot e^{2} \frac{2}{2n+1} \frac{(n+m)! (n-m)!}{\{1\cdot 3\cdot 5 \ldots (2n-1)\}^{2}} \\ -\beta_{n+2} \cdot e^{2} \cdot 2n\left(n+1\right) \frac{(n+m+2)! (n-m+2)!}{\{1\cdot 3\cdot 5 \ldots (2n+3)\}^{2}} \\ -\beta_{n-2} \cdot e^{2} \cdot 2\left(n-1\right) \left(n-2\right) \frac{(n+m)! (n-m)!}{\{1\cdot 3\cdot 5 \ldots (2n-1)\}^{2}}$$

= a known quantity of the form

$$\int_{-1}^{1} x_{m}' X'_{-n}(w) d\mu + \int_{-1}^{1} y_{m}' Y'_{-n}(w) d\mu + \int_{-1}^{1} z_{m}' Z'_{-n}(w) d\mu.$$

In the same way the other final equations for  $a_{n-2}$ ,  $\beta_{n+2}$ , &c. may be formed from the equations of condition, and the coefficients of the other magnetic constants in all the final equations determined.

Also it appears that in the final equation for each magnetic constant, for a given value of m, there will only be five unknown magnetic constants when the equations for X, Y and Z are combined, since the coefficients of the other magnetic constants will severally vanish.

12. The coefficient of  $a_n$  in the final equation for  $a_n$  (as found from the

coefficient of  $a_n$ ; see Art. 8) will be

$$\begin{split} \int_{-1}^{1} \left[ 1 + (n+1) e^{2} \mu^{2} \right] & \left\{ (1 - \mu'^{2}) \left( \frac{dH_{n}'}{d\mu} \right)^{2} + (n+1)^{2} (H_{n}')^{2} + \frac{m^{2} (H_{n}')^{2}}{1 - \mu'^{2}} \right\} d\mu' \\ &= \left[ 1 + (n+1) e^{2} \right] \int_{-1}^{1} \left[ (1 - \mu^{2}) \left( \frac{dH_{n}}{d\mu} \right)^{2} + (n+1)^{2} (H_{n})^{2} + \frac{m^{2} (H_{n})^{2}}{1 - \mu^{2}} \right] d\mu \\ &- (n+1) e^{2} \int_{-1}^{1} \left[ (1 - \mu^{2})^{2} \left( \frac{dH_{n}}{d\mu} \right)^{2} + m^{2} (H_{n})^{2} + (n+1)^{2} (1 - \mu^{2}) (H_{n})^{2} \right] d\mu. \end{split}$$

Hence we see from the investigations of these integrals on pp. 421 and 427, that the coefficient of  $a_n$  in the final equation for  $a_n$ , arising from combining X, Y and Z, will be

$$\frac{(n-m)! (n+m)!}{\{1 \cdot 3 \cdot 5 \dots (2n-1)\}^2} 2 (n+1) \\
\times \left\{1 + (n+1) e^2 - e^2 \frac{2}{(2n+1)(2n+3)} [(n+1)^3 + m^2 (n+2)]\right\}.$$

Similarly the coefficient of  $\beta_n$  in the final equation for  $\beta_n$  is

$$\begin{split} \int_{-1}^{1} (1 - ne^{2}\mu^{2}) \left\{ (1 - \mu'^{2}) \left( \frac{dH'_{n}}{d\mu} \right)^{2} + n^{2} \left( H'_{n} \right)^{2} + \frac{m^{2} \left( H'_{n} \right)^{2}}{1 - \mu'^{2}} \right\} d\mu' \\ &= (1 - ne^{2}) \int_{-1}^{1} \left[ (1 - \mu^{2}) \left( \frac{dH_{n}}{d\mu} \right)^{2} + n^{2} (H_{n})^{2} + \frac{m^{2} \left( H_{n} \right)^{2}}{1 - \mu^{2}} \right] d\mu \\ &+ ne^{2} \int_{-1}^{1} \left[ (1 - \mu^{2})^{2} \left( \frac{dH_{n}}{d\mu} \right)^{2} + m^{2} (H_{n})^{2} + n^{2} (1 - \mu^{2}) (H_{n})^{2} \right] d\mu. \end{split}$$

Hence the coefficient of  $\beta_n$  in the combined final equation for  $\beta_n$  is

$$2n\frac{(n-m)!\;(n+m)!}{\{1\;.\;3\;.\;5\;\ldots\;(2n-1)\}^2}\bigg[1-ne^2+e^2\frac{2}{(2n-1)\;(2n+1)}\left\{n^3+m^2\;(n-1)\right\}\bigg]\;.$$

If the polar radius instead of the equatorial radius be taken as the unit of length, then we must multiply the coefficient of  $a_n$  in the final equation for  $a_n$  by  $(1-e^2)^{n+1}$  or  $1-(n+1)e^2$ , and we multiply the coefficient of  $\beta_n$  in the final equation for  $\beta_n$  by  $(1-e^2)^{-n}$  or  $1+ne^2$ , and the equations are somewhat simplified.

13. Hence when the polar radius of the Earth is taken as the unit of length, the final equation for  $\alpha_n$  for a given value of m becomes

$$\begin{split} \frac{2 \left(n-m\right)! \left(n+m\right)!}{\left[1\cdot 3\cdot 5 \ldots \left(2n-1\right)\right]^{2}} \left\{ a_{n} \left(n+1\right) \left[1-e^{2} \frac{2}{\left(2n+1\right)\left(2n+3\right)} \left\{ \left(n+1\right)^{3}+\left(n+2\right) m^{2} \right\} \right] \\ -\beta_{n} e^{2} \frac{n \left(n+1\right)-3 m^{2}}{\left(2n-1\right) \left(2n+1\right) \left(2n+3\right)} \\ +a_{n-2} e^{2} \frac{n \left(n+1\right) \left(2n-3\right)}{2 n+1} \\ +a_{n+2} e^{2} \frac{\left(n+2\right) \left(n+3\right) \left(n+m+1\right) \left(n+m+2\right) \left(n-m+1\right) \left(n-m+2\right)}{\left(2n+1\right) \left(2n+3\right)^{2} \left(2n+5\right)} \\ +\beta_{n+2} e^{2} \frac{\left(n+m+1\right) \left(n+m+2\right) \left(n-m+1\right) \left(n-m+2\right)}{\left(2n+1\right)^{2} \left(2n+3\right)^{2} \left(2n+5\right)} \end{split}$$

= a known quantity of the form

$$\int_{-1}^{1} x_{m}' X_{n}'(w) d\mu + \int_{-1}^{1} y_{m}' Y_{n}'(w) d\mu + \int_{-1}^{1} z_{m}' Z_{n}'(w) d\mu.$$

Similarly the final equation for  $\beta_n$  becomes

$$\frac{2(n-m)!(n+m)!}{[1\cdot 3\cdot 5\cdots (2n-1)]^2} \left\{ \beta_n n \left[ 1 + e^2 \frac{2}{(2n-1)(2n+1)} \left\{ n^3 + (n-1)m^2 \right\} \right] - \alpha_n e^2 \frac{n(n+1) - 3m^2}{(2n-1)(2n+1)(2n+3)} + \alpha_{n-2} e^2 \frac{1}{2n+1} - \beta_{n-2} e^2 (n-1)(n-2) - \beta_{n+2} e^2 \frac{n(n+1)(n+m+1)(n+m+2)(n-m+1)(n-m+2)}{(2n+1)^2(2n+3)^2} \right\}$$

=a known quantity of the form

$$\int_{-1}^{1} x_{m}' X'_{-n}(w) d\mu + \int_{-1}^{1} y_{m}' Y'_{-n}(w) d\mu + \int_{-1}^{1} z_{m}' Z'_{-n}(w) d\mu.$$

14. If we had expressed the magnetic potential V and the magnetic forces X, Y and Z in terms of the functions  $Q_n$ ,  $Q_{n_1}$ , &c., instead of in terms of  $H_n$ ,  $H_{n_1}$ , &c., we should have obtained another series of magnetic constants; but the two series are related to one another, and the one series may be derived from the other by multiplying each constant in one series by a factor depending on the values of n and m to get the corresponding magnetic constant for the other series.

Thus let  $a_n$  and  $b_n$  be two magnetic constants derived from the function  $Q_n$  (as defined above), and let  $a_n$  and  $\beta_n$  be the corresponding magnetic Gaussian constants as derived from the function  $H_n$ . Then these magnetic constants  $a_n$  and  $b_n$  are connected with  $a_n$  and  $a_n$  by the relations

$$\frac{a_n}{a_n} = \frac{\beta_n}{b_n} = \frac{Q_n}{H_n} = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{(n-m)!}$$

for a given value of m, and similarly

$$\frac{a_{n_1}}{a_{n_1}} = \frac{\beta_{n_1}}{b_{n_1}} = \frac{Q_{n_1}}{H_{n_1}} = \frac{1 \cdot 3 \cdot 5 \dots (2n_1 - 1)}{(n_1 - m)!},$$

and in particular

$$\frac{a_{n-2}}{a_{n-2}} = \frac{\beta_{n-2}}{b_{n-2}} = \frac{Q_{n-2}}{H_{n-2}} = \frac{1 \cdot 3 \cdot 5 \dots (2n-5)}{(n-m-2)!},$$

and

$$\frac{a_{\scriptscriptstyle n+2}}{a_{\scriptscriptstyle n+2}} = \frac{\beta_{\scriptscriptstyle n+2}}{b_{\scriptscriptstyle n+2}} = \frac{Q_{\scriptscriptstyle n+2}}{H_{\scriptscriptstyle n+2}} = \frac{1 \cdot 3 \cdot 5 \, \ldots \, (2n+3)}{(n-m+2)!} \, .$$

We may find the final equations for  $a_n$  and  $b_n$  from the final equations for  $a_n$  and  $\beta_n$  respectively by multiplying them by  $\frac{Q_n}{H_n}$ , and then substituting the values of  $a_n$  and  $\beta_n$  in terms of  $a_n$  and  $b_n$  respectively.

Hence in the final equations for  $a_n$  and  $\beta_n$  the coefficient of  $a_n$  or of  $\beta_n$  will be multiplied by

$$\left(\frac{Q_n}{H_n}\right)^2$$
 or  $\left(\frac{1\cdot 3\cdot 5 \dots (2n-1)}{(n-m)!}\right)^2$ 

in order to find the coefficients of  $a_n$  and  $b_n$  respectively. Also the coefficient of  $a_{n-2}$  or of  $\beta_{n-2}$  in the same equations will be multiplied by

$$\frac{Q_n Q_{n-2}}{H_n H_{n-2}}$$
 or  $\frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \dots (2n-5)}{(n-m)! \cdot (n-m-2)!}$ 

to find the coefficients of  $a_{n-2}$  and  $b_{n-2}$  respectively. And the coefficients of  $a_{n+2}$  and  $\beta_{n+2}$  will be multiplied by

$$\frac{Q_n Q_{n+2}}{H_n H_{n+2}} \text{ or } \frac{1 \cdot 3 \cdot 5 \dots (2n-1) \cdot 1 \cdot 3 \cdot 5 \dots (2n+3)}{(n-m)! \cdot (n-m+2)!}$$

to find the coefficients of  $a_{n+2}$  and  $b_{n+2}$ . Or generally the coefficients of  $a_{n_1}$  and  $\beta_{n_1}$  in the final equations for  $a_n$  and  $\beta_n$  will be multiplied by  $\frac{Q_n Q_{n_1}}{H_n H_{n_1}}$  to find the coefficients of  $a_{n_1}$  and  $b_{n_1}$  in the corresponding final equations.

Hence the constants  $a_n$  and  $b_n$  will have to be multiplied by  $\frac{Q_n}{H_n}$ , i.e. by the factor

$$\frac{1\cdot 3\cdot 5 \ldots (2n-1)}{(n-m)!},$$

in order to obtain the corresponding Gaussian constants  $a_n$  and  $\beta_n$ .

Again, let  $A_n$ ,  $B_n$  be two magnetic constants connected with  $a_n$  and  $\beta_n$  by the relations

$$\frac{\mathbf{a}_n}{A_n} = \frac{\beta_n}{B_n} = \frac{\Pi_n}{H_n} = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{\lceil (n-m)! \ (n+m)! \rceil^{\frac{1}{2}}}.$$

Then the values of the magnetic constants  $A_n$ ,  $B_n$ , &c., as determined from the function  $\Pi_n$ , can be converted into the corresponding Gaussian magnetic constants derived by means of the function  $H_n$  by multiplying each magnetic constant  $A_n$  or  $B_n$  for each value of m by the factor

$$\frac{\Pi_n}{H_n} = \frac{1 \cdot 3 \cdot 5 \cdot \dots (2n-1)}{[(n-m)! (n+m)!]^{\frac{1}{2}}}.$$

Also in the final equations for  $\alpha_n$  and  $\beta_n$  the coefficients of  $\alpha_n$  or of  $\beta_n$  will be multiplied by

$$\left(\frac{\Pi_n}{H_n}\right)^2$$
 or  $\frac{\left[1.3.5...(2n-1)\right]^2}{(n-m)!(n+m)!}$ 

in order to find the coefficients of  $A_n$  and  $B_n$  respectively.

Also the coefficients of  $a_{n-2}$  or of  $\beta_{n-2}$  in the same equations will be multiplied by  $\frac{\prod_n \prod_{n-2}}{H_n H_{n-2}}$  to find the coefficients of  $A_{n-2}$  or of  $B_{n-2}$  respectively.

Also the coefficients of  $a_{n+2}$  or of  $\beta_{n+2}$  will be multiplied by  $\frac{\prod_n \prod_{n+2}}{H_n H_{n+2}}$  to find the coefficients of  $A_{n+2}$  or of  $B_{n+2}$  respectively.

From the final equations for the determination of the Gaussian constants  $a_n$ ,  $\beta_n$ , &c., and taking the equatorial radius of the Earth as unity, we may write down the final equations for the determination of  $a_n$ ,  $b_n$ , &c., where

$$\frac{a_n}{a_n} = \frac{\beta_n}{b_n} = \frac{Q_n}{H_n}, &c.$$

Hence the final equation for  $a_n$  becomes

$$2 \left\{ a_{n} \left( n+1 \right) \left[ 1+\left( n+1 \right) e^{2} - e^{2} \, \frac{2}{\left( 2n+1 \right) \left( 2n+3 \right)} \left\{ \left( n+1 \right)^{3} + \left( n+2 \right) \, m^{2} \right\} \right] \\ - b_{n} e^{2} \, \frac{n \, \left( n+1 \right) - 3 m^{2}}{\left( 2n-1 \right) \left( 2n+1 \right) \left( 2n+3 \right)} \left\{ \frac{\left( n+m \right)!}{\left( n-m \right)!} \right. \\ + 2 a_{n-2} e^{2} \, \frac{n \, \left( n+1 \right)}{\left( 2n-1 \right) \left( 2n+1 \right)} \, \frac{\left( n+m \right)!}{\left( n-m-2 \right)!} \\ + 2 \left[ a_{n+2} e^{2} \, \frac{\left( n+2 \right) \left( n+3 \right)}{\left( 2n+3 \right) \left( 2n+5 \right)} + b_{n+2} e^{2} \, \frac{1}{\left( 2n+1 \right) \left( 2n+3 \right) \left( 2n+5 \right)} \right] \frac{\left( n+m+2 \right)!}{\left( n-m \right)!} \\ = \frac{1 \cdot 3 \cdot 5 \ldots \left( 2n-1 \right)}{\left( n-m \right)!} \left[ \int_{-1}^{1} x_{m}' X_{n}' (w) \, d\mu + \int_{-1}^{1} y_{m}' Y_{n}' \left( w \right) d\mu + \int_{-1}^{1} z_{n}' Z_{n}' (w) \, d\mu \right].$$

Also the final equation for  $b_n$  will be

$$\begin{split} 2\left\{b_{n}n\left[1-ne^{2}+e^{2}\frac{2}{(2n-1)\left(2n+1\right)}\left\{n^{3}+\left(n-1\right)m^{2}\right\}\right]\right. \\ \left.-a_{n}e^{2}\frac{n\left(n+1\right)-3m^{2}}{(2n-1)\left(2n+1\right)\left(2n+3\right)}\right\}\frac{(n+m)!}{(n-m)!} \\ +2\left[a_{n-2}e^{2}\frac{1}{(2n-3)\left(2n-1\right)\left(2n+1\right)}-b_{n-2}e^{2}\frac{(n-2)\left(n-1\right)}{(2n-3)\left(2n-1\right)}\right]\frac{(n+m)!}{(n-m-2)!} \\ \left.-2b_{n+2}e^{2}\frac{n\left(n+1\right)}{(2n+1)\left(2n+3\right)}\frac{(n+m+2)!}{(n-m)!} \right] \\ =\frac{1\cdot3\cdot5\ldots\left(2n-1\right)}{(n-m)!}\times\left[\int_{-1}^{1}x_{m}'X'_{-n}(w)\,d\mu+\int_{-1}^{1}y_{m}'Y'_{-n}(w)d\mu+\int_{-1}^{1}z_{m}'Z'_{-n}(w)d\mu\right]. \end{split}$$

In these equations  $x_{m'}$ ,  $y_{m'}$  and  $z_{m'}$  are quantities derived from the magnetic observations.

Also since 
$$\frac{\alpha_n}{A_n} = \frac{b_n}{B_n} = \frac{\Pi_n}{Q_n} = \left[\frac{(n-m)!}{(n+m)!}\right]^{\frac{1}{2}},$$
we have 
$$\frac{\Pi_n \Pi_{n-2}}{Q_n Q_{n-2}} = \left[\frac{(n-m)!}{(n+m)!} \frac{(n-m-2)!}{(n+m)!} \frac{1}{(n+m-2)!}\right]^{\frac{1}{2}},$$
and 
$$\frac{\Pi_n \Pi_{n+2}}{Q_n Q_{n+2}} = \left[\frac{(n-m)!}{(n+m)!} \frac{(n-m+2)!}{(n+m)!} \frac{1}{(n+m+2)!}\right]^{\frac{1}{2}}.$$

Hence the final equation for  $A_n$  becomes

$$\begin{split} A_{n}(n+1) \left[ 1 + (n+1) \, e^{2} - e^{2} \frac{2}{(2n+1)(2n+3)} \{ (n+1)^{3} + (n+2) \, m^{2} \} \right] \\ - B_{n} e^{2} \frac{n(n+1) - 3m^{2}}{(2n-1)(2n+1)(2n+3)} \\ + A_{n-2} e^{2} \frac{n(n+1)}{(2n-1)(2n+1)} \\ \times \left[ (n-m-1)(n-m)(n+m-1)(n+m) \right]^{\frac{1}{2}} \\ + \left[ A_{n+2} e^{2} \frac{(n+2)(n+3)}{(2n+3)(2n+5)} + B_{n+2} e^{2} \frac{1}{(2n+1)(2n+3)(2n+5)} \right] \\ \times \left[ (n-m+1)(n-m+2)(n+m+1)(n+m+2) \right]^{\frac{1}{2}} \end{split}$$

$$=\frac{1\cdot 3\cdot 5\cdots (2n-1)}{2\left[(n-m)!\ (n+m)!\right]^{\frac{1}{2}}}\left[\int_{-1}^{1}x_{m}'X_{n}'(w)\ d\mu+\int_{-1}^{1}y_{m}'Y_{n}'(w)\ d\mu+\int_{-1}^{1}z_{m}'Z_{n}'(w)\ d\mu\right].$$

And the final equation for  $B_n$  becomes

$$\begin{split} B_{n}n \bigg[ 1 - ne^{2} + e^{2} \frac{2}{(2n-1)(2n+1)} \{n^{2} + (n-1) m^{2}\} \bigg] \\ - A_{n}e^{2} \frac{n(n+1) - 3m^{2}}{(2n-1)(2n+1)(2n+3)} \\ + \bigg[ A_{n-2}e^{2} \frac{1}{(2n-3)(2n-1)(2n+1)} - B_{n-2}e^{2} \frac{(n-1)(n-2)}{(2n-3)(2n-1)} \bigg] \\ \times \big[ (n-m-1)(n-m)(n+m-1)(n+m) \big]^{\frac{1}{2}} \\ - B_{n+2}e^{2} \frac{n(n+1)}{(2n+1)(2n+3)} \\ \times \big[ (n-m+1)(n-m+2)(n+m+1)(n+m+2) \big]^{\frac{1}{2}} \\ = \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \, \big[ (n-m)! (n+m)! \big]^{\frac{1}{2}}} \bigg[ \int_{-1}^{1} x_{m}' X'_{-n}(w) d\mu + \int_{-1}^{1} y_{m}' Y'_{-n}(w) d\mu + \int_{-1}^{1} z_{m}' Z'_{-n}(w) d\mu \bigg]. \end{split}$$

## SECTION VII.

## NUMERICAL CALCULATION OF THE MAGNETIC FORCES ON THE EARTH'S SURFACE—REGARDED AS A SPHEROID.

1. Expressions for the Magnetic Forces at the Equator  $(\mu = 0)$ .

SINCE

$$G_n^{m-1} = (-1)^{\frac{n-m+1}{2}} \frac{1 \cdot 3 \cdot 5 \dots (n-m) \cdot 1 \cdot 3 \cdot 5 \dots (n+m-2)}{1 \cdot 3 \cdot 5 \dots (2n-1)},$$

and

$$G_n^{m+1} = (-1)^{\frac{n-m-1}{2}} \frac{1 \cdot 3 \cdot 5 \cdots (n-m-2) \cdot 1 \cdot 3 \cdot 5 \cdots (n+m)}{1 \cdot 3 \cdot 5 \cdots (2n-1)},$$

we have

$$(n-m) G_n^{m+1} = -(n+m) G_n^{m-1} = X_n^m = X_{-n}^m,$$
 $mG_n^m = Y_n^m = Y_{-n}^m,$ 
 $(n+1) G_n^m = Z_n^m \text{ and } -nG_n^m = Z_{-n}^m.$ 

If n-m is odd, the value of  $G_n^m=0$ , and the forces  $Y_n$ ,  $Y_{-n}^m$ ,  $Z_n$  and  $Z_{-n}^m$  vanish.

If n-m is even and =2r,

$$G_n^m = (-1)^r \frac{1 \cdot 3 \cdot 5 \dots (2r-1)}{1 \cdot 3 \cdot 5 \dots (2n-2r-1)},$$

and the forces  $X_n^m$  and  $X_{-n}^m$  vanish.

For m=0 and n=2r,

$$G_n^0 = (-1)^r \frac{\{1 \cdot 3 \cdot 5 \dots (2r-1)\}^2}{1 \cdot 3 \cdot 5 \dots (4r-1)} = -\frac{(2r-1)^2}{(4r-3)(4r-1)} G_{n-2}^0.$$

For m=1 and n=2r+1,

$$G_n^1 = (-1)^r \frac{1 \cdot 3 \cdot 5 \cdots (2r-1) \cdot 1 \cdot 3 \cdot 5 \cdots (2r+1)}{1 \cdot 3 \cdot 5 \cdots (4r+1)} = -\frac{(2r-1)(2r+1)}{(4r-1)(4r+1)} G_{n-1}^1.$$

For m=2 and n=2r+2,

$$G_n^2 = (-1)^r \frac{1 \cdot 3 \cdot 5 \dots (2r-1) \cdot 1 \cdot 3 \cdot 5 \dots (2r+3)}{1 \cdot 3 \cdot 5 \dots (4r+3)} = -\frac{(2r-1) \cdot (2r+3)}{(4r+1) \cdot (4r+3)} G_{n-2}^2$$

For m=3 and n=2r+3,

$$G_n^3 = (-1)^r \frac{1 \cdot 3 \cdot 5 \dots (2r-1) \cdot 1 \cdot 3 \cdot 5 \dots (2r+5)}{1 \cdot 3 \cdot 5 \dots (4r+5)} = -\frac{(2r-1)(2r+5)}{(4r+3)(4r+5)} G_{n-2}^3.$$

For m=4 and n=2r+4,

$$G_n^4 = (-1)^r \frac{1 \cdot 3 \cdot 5 \dots (2r-1) \cdot 1 \cdot 3 \cdot 5 \dots (2r+7)}{1 \cdot 3 \cdot 5 \dots (4r+7)} = -\frac{(2r-1) \cdot (2r+7)}{(4r+5) \cdot (4r+7)} G_{n-2}^4.$$

The law of formation of these quantities is evident, and their numerical values for all values of m and n from 0 to 10 have been determined from these formulae.

The numerical calculation of these functions from one another in succession is greatly simplified by putting n-1=x, when we get the following relations:—

$$G_{n}^{0} = -rac{x^{2}}{4x^{2}-1} \, G_{n-2}^{0},$$
 $G_{n}^{1} = -rac{x^{2}-1}{4x^{2}-1} \, G_{n-2}^{1},$ 
 $G_{n}^{2} = -rac{x^{2}-4}{4x^{2}-1} \, G_{n-2}^{2},$ 
 $G_{n}^{3} = -rac{x^{2}-9}{4x^{2}-1} \, G_{n-2}^{3},$ 
 $G_{n}^{4} = -rac{x^{2}-16}{4x^{2}-1} \, G_{n-2}^{4},$ 
 $G_{n}^{m} = -rac{x^{2}-m^{2}}{4x^{2}-1} \, G_{n-2}^{m}.$ 

and generally

2. Values of the Expressions for the Magnetic Forces at the Pole ( $\mu = 1$ ).

Here we have

$$G_n^0 = \frac{n!}{1 \cdot 3 \cdot 5 \dots (2n-1)} = \frac{n}{2n-1} G_{n-1}^0,$$

$$G_n^1 = \frac{1}{2} \frac{(n+1)!}{1 \cdot 3 \cdot 5 \dots (2n-1)} = \frac{n+1}{2n-1} G_{n-1}^1,$$

$$G_n^2 = \frac{1}{2^2} \frac{1}{1 \cdot 2} \frac{(n+2)!}{1 \cdot 3 \cdot 5 \dots (2n-1)} = \frac{n+2}{2n-1} G_{n-1}^2,$$

and generally

$$G_n^m = \frac{1}{2^m} \frac{1}{m!} \frac{(n+m)!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)} = \frac{n+m}{2n-1} G_{n-1}^m.$$

The value of  $X_n^m$  is always 0, except when m=1.

The value of  $Y_n^m$  is always 0, except when m=1, and the value of  $Z_n^m$  is always 0, except when m=0.

$$X_n^1 = -\frac{\mu}{r^{n+2}} G_n^1, \text{ and } X_{-n}^1 = -\mu r^{n-1} G_n^1,$$

$$Y_n^1 = \frac{1}{r^{n+2}} G_n^1, \qquad Y_{-n}^1 = r^{n-1} G_n^1,$$

$$Z_n^0 = \frac{n+1}{r^{n+2}} G_n^0, \qquad Z_{-n}^0 = -n r^{n-1} G_n^0.$$

$$r^2 = 1 - e^2 \text{ and } \log\left(\frac{1}{r}\right) = 0.0014542.$$

The logarithms of the values of the coefficients  $X_n^m$ ,  $Y_n^m$ ,  $Z_n^m$  at the Pole for m=0, m=1 and for the several values of n are here given.

	Log Y _n ¹		Log Y¹_n		$\operatorname{Log} Z_n^{\ 0}$		$\operatorname{Log} Z^0_{-n}$
$Y_1^1 = -X_1^1$	0.0043626	Y11	0.	Z ₁ ⁰	0.3053926	$Z^{\scriptscriptstyle 0}_{\scriptscriptstyle -1}$	n 0·
$Y_{2}^{1} = -X_{2}^{1}$ $Y_{2}^{1} = -X_{2}^{1}$	0·0058168 9·9103610	$Y^{1}_{-2}$ $Y^{1}_{-3}$	9·9985458 9·9001816	$egin{array}{c} Z_{s}^{\ 0} \ Z_{s}^{\ 0} \end{array}$	0·3068468 0·2113910	$egin{array}{c} Z^0_{-2} \ Z^0_{-3} \end{array}$	$n \ 0.1234845$ $n \ 0.0762729$
$Y_4^1 = -X_4^1$	9.7656872	$Y^1_{-4}$	9.7525993	Z,º	0.0667172	$Z^{_{0}}_{-4}$	n 9.9567193
$Y_{_{6}}^{^{1}}=-X_{_{5}}^{^{1}} \ Y_{_{6}}^{^{1}}=-X_{_{6}}^{^{1}}$	9·5910501 9·3962097	$Y^{1}_{-5}$ $Y^{1}_{-6}$	9·5750539 9·3773050	$egin{array}{c} Z_{\mathfrak{s}}^{\ 0} \ Z_{\mathfrak{s}}^{\ 0} \end{array}$	9·8920801 9·6972397	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$n \ 9.7969026$ $n \ 9.6113883$
$Y_7^1 = -X_7^1$ $Y_9^1 = -X_9^1$	9·1868105 8·9664160	$Y^{1}_{-7}$ $Y^{1}_{-8}$	9·1649975 8·9416945	$Z_7^0$ $Z_8^0$	9·4878405 9·2674460	$egin{array}{cccccccccccccccccccccccccccccccccccc$	n 9·4080355 n 9·1915720
$Y_{\mathfrak{g}}^{1} = -X_{\mathfrak{g}}^{1}$ $Y_{\mathfrak{g}}^{1} = -X_{\mathfrak{g}}^{1}$	8.7374212	$Y^1_{-9}$	8.7097914		9.0384512	Z°9	n 8.9650639
$Y_{10}^{-1} = -X_{10}^{-1}$	8.5015145	Y110	8.4709763	Z ₁₀	8.8025445	Z ⁰ 10	n 8·7306136

For X these are to be multiplied by  $-(g'\cos\lambda + h'\sin\lambda)$ , and for Y they are to be multiplied by  $(g'\sin\lambda - h'\cos\lambda)$ .

Note. In the tables n before a logarithm indicates that the corresponding number is negative.

3. Calculation of the weights of the observations for every 5th degree of geographical colatitude, on the assumption that the weight of any determination of magnetic force is proportional to the area of the surface over which the observations extend.

If  $\rho$  be the radius of curvature of the terrestrial meridian for the geographical colatitude  $\theta$ , and if N be the normal terminated by the axis of revolution, we have seen that

$$\rho = \frac{1 - e^2}{\alpha^2} N^3,$$

and that an element of the surface

$$=2\pi \frac{1-e^2}{\alpha^2} N^4 \sin \theta d\theta.$$

Take a as unity, then the weight of the observation for any belt  $= (1 - e^2) N^4 \sin \theta d\theta.$ 

When the observations extend over a zone of  $5^{\circ}$  in breadth, the area of the zone will contain the factor  $2\sin\frac{\omega}{2}$ , where  $\omega$  is the circular measure of  $5^{\circ} = \frac{\pi}{36}$ .

The weight found by the above formula must be divided by  $2 \sin \frac{\omega}{2}$  or  $\omega$  in order to reduce it to the scale employed when observations are given to every 5° of latitude. This summation will only extend to latitude  $87^{\circ} \cdot 5$ .

The area of the small circle of radius 2°.5 round the pole is very approximately

$$2\pi N^4 \left(1-e^2\right) \left(1-\cos\frac{\omega}{2}\right),$$

hence the weight for this small area

$$\begin{split} &=N^4(1-e^2)\,\frac{1-\cos\frac{\boldsymbol{\omega}}{2}}{2\sin\frac{\boldsymbol{\omega}}{2}}\\ &=\frac{1}{2}\,N^4\left(1-e^2\right)\tan\frac{\boldsymbol{\omega}}{4}=\frac{1}{2\left(1-e^2\right)}\tan\frac{\boldsymbol{\omega}}{4}\,. \end{split}$$

4. Table of the values of the common logarithms of

$$\mu'$$
,  $\frac{a}{r}$ ,  $\cos \psi$ ,  $\sin \psi$ ,  $\frac{N}{r}e^2$ ,

and the weight (w) of the observations for every 5° of geographical colatitude.

Colatitude #	$\mu' = \cos \theta'$	$L\cos\psi$	$L\sin\psi$	$\log \frac{a}{r}$	$\log \frac{N}{r} e^2$
0°				0.00145,41798	7.82731,87745
5° (a)	9.99832,19863	9.99999,99261	6.76593,67691	0.00144,30230	7.82729,65348
10° (b)	9.99326,31892	9.99999,97134	7.06025,21937	0.00140,99016	7.82723,05047
15° (c)	9.98474,77330	9.99999,93878	7.22506,27380	0.00135,58511	7.82712,27293
$20^{\circ}\left(d ight)$	9.97264,35843	9.99999,89889	7:33401,40434	0.00128,25582	7.82697,65423
25° (e)	9.95675,33949	9.99999,85652	7.41002,04288	0.00119,23041	7.82679,64579
30° (f)	9.93679,98818	9.99999,81680	7.46308,86606	0.00108,78888	7.82658,80246
35°(g)	9.91240,33923	9.99999,78453	7.49831,34682	0.00097,25389	7.82635,76474
40° (h)	9.88304,75765	9.99999,76361	7.51843,38477	0.00084,98028	7.82611,23844
$45^{\circ}\left(i ight)$	9.84802,59533	9.99999,75655	7.52482,97299	0.00072,34381	7.82585,97256
50° (k)	9.80635,60827	9.99999,76416	7.51792,88237	0.00059,72936	7.82560,73604
55° (l)	9.75663,54698	9.99999,78552	7.49731,87637	0.00047,51916	7.82536,29430
60° (m)	9.69678,50910	9.99999,81802	7.46163,44972	0.00036,08132	7.82513,38611
$65^{\circ}(n)$	9.62355,65018	9.99999,85775	7.40815,09877	0.00025,75897	7.82492,70168
70° (o)	9.53148,15336	9.99999,89992	7.33178,61245	0.00016,86039	7.82474,86234
75° (p)	9.41028,14816	9.99999,93949	7.22254,40342	0.00009,65027	7.82460,40255
80° (q)	9.23684,90010	9.99999,97170	7.05751,92345	0.00004,34238	7.82449,75455
85° (r)	8.93740,95949	9.99999,99271	6.76307,25954	0.00001,09366	7.82443,23610

Ð	$\log (w)$	θ	$\log (w)$
0° 5° 10° 15° 20° 25° 30° 35° 40° 45°	8·0407347, 8·9431600,5 9·2424026,3 9·4155137,1 9·5362776,0 9·6278148,6 9·7004205,2 9·7595817,0 9·8085678,2 9·8494801,2	50° 55° 60° 65° 70° 75° 80° 85° 90°	9·8837442,1 9·9123655,2 9·9360727,9 9·9554033,9 9·9707558,6 9·9824238,6 9·9906179,4 9·9954799,1 9·9970916,4

Calculation of the Values of the Quantities H'" for every 5° of Latitude.

rO	5. Scheme of Ca.	e of Ca	lculation of Quantities $H'_n$ from $G'_n$ .	of Quan	tities H"	" from G	, n .					
m=	Ti	0	-	61	က	4	ಬ	9	2	œ	6	10
	$\log(1-\mu^{\prime 2})^{-\frac{1}{2}}$		$\log(1-\mu'^2)^{\frac{1}{2}}$	$\log(1-\mu^{\prime 2})^{\frac{1}{2}} - \log(1-\mu^{\prime 2})^{\frac{1}{2}} - \log(1-\mu^{\prime 2})^{\frac{3}{2}} - \log(1-\mu^{\prime 2})^{\frac{3}{2}} - \log(1-\mu^{\prime 2})^{\frac{3}{2}} - \log(1-\mu^{\prime 2})^{\frac{1}{2}} - \log(1-\mu^{\prime 2})^{\frac{1}{2}} - \log(1-\mu^{\prime 2})^{\frac{3}{2}} - \log(1-\mu^{\prime 2})^{\frac{3}{$	$\log{(1-\mu^{\prime 2})^{\frac{3}{2}}}$	$\log (1 - \mu'^2)^2$	$\log (1 - \mu'^2)^{\frac{5}{2}}$	$\log(1-\mu'^2)^3$ 1	$\log{(1-\mu'^2)^{\frac{7}{2}}}$	$\log (1 - \mu'^2)^4$ I	$\log(1-\mu'^2)^{\frac{9}{2}}$	$\log(1-\mu^{\prime 2})^5$
z												
n=1	$\log G_1'^{-1}$	$\log G_1{}'^0$	$\log G_{1}{}^{\prime 1}$									
63	log G2'-1	$\log G_2'^0$	$\log G_{2}{'}^{1}$	$\log G_2{'}^2$								
က	log G,'-1	log Gg,	$\log G_{3}^{\prime 1}$	$\log G_3'^2$	$\log G_3'^3$							
4	$\log G_4^{\prime -1}$	$\log G_4^{\prime0}$	$\log G_4^{\prime,1}$	$\log G_{4}{'}^{2}$	$\log G_4'^3$	$\log G_4'^4$						
70	$\log G_b'^{-1}$	$\log G_{5}{}'^{0}$	$\log G_{\delta}{'}^{1}$	$\log G_5^{'2}$	$\log G_b^{\prime 3}$	$\log G_5'^4$	$\logG_5{}^{\prime 5}$					
9	$\log G'^{-1}$	$\log G_{6}^{\prime 0}$	$\log G_{6}^{\prime 1}$	$\log G_{6}{'^{2}}$	$\log G_{6}{'^{3}}$	$\log G_{6}{'}^{4}$	$\log G_6{'^5}$	$\log G_6'^6$				
1	$\log G_t'^{-1}$	$\log G_{7}^{\prime 0}$	$\log G_{7}^{\prime 1}$	$\log G_{r}^{\prime  2}$	$\log G_{7}{'^{3}}$	$\log G_{7}{}^{\prime 4}$	$\log G_7$ 's	$\log G_7'^6$	$\log G_{7}{}^{7}$			
00	$\log G_8'^{-1}$	$\log G_8'^0$	$\log G_{8}^{\prime 1}$	$\log G_8^{\prime2}$	$\log G_8{'}^3$	$\log G_8'^4$	$\log G_8'^6$	$\log G_8'^6$	$\log G_{8}{}^{77}$	$\log G_8'^8$		
6	$\log G_{\mathfrak{g}}'^{-1}$	$\log G_{\mathfrak{g}'^0}$	$\log G_{g^{'1}}$	$\log G_9^{'2}$	$\log G_{9}^{\prime 3}$	$\log G_{9}^{\prime,4}$	$\log G_9^{'5}$	$\log  G_9{'}^6$	$\log G_{9}^{\prime 7}$	$\log G_9'^8$	$\log G_9'^9$	
10	$\logG_{10}{''}^{-1}$	$\log G_{10}{'0}$	$\log G_{10}{'1}$	$\log {G_{10}}^{'2}$	$\log G_{10}{}^{'3}$	$\log G_{10}{}^{'4}$	$\log G_{10}^{'5}$	$\log G_{10}{}'^6$	$\log G_{10}{'}^{7}$	$\log G_{10}{}^{'8}$	$\log G_{10}'^9$	$\log G_{10}{'10}$
												1
-	$\log H_1^{\prime -1}$	$\log H_{1}{}^{'0}$	$\log H_1{}'^1$									
63	$\log H_2^{\prime-1}$	$\log H_{3}{}^{\prime0}$	$\log H_2{'}^1$	$\log H_2^{\prime2}$								
က	$\log H_3^{\prime-1}$	$\log H_{3}{}'^{0}$	$\log H_3^{'1}$	$\log H_3{}'^2$	$\log H_3^{'3}$							
4	$\log H_4^{\prime -1}$	$\log H_4^{\prime0}$	$\log H_4^{'1}$	$\log H_4^{\prime2}$	$\log H_4^{\prime 3}$	$\log H_4^{\prime 4}$						
10	$\log H_b^{\prime-1}$	$\log H_{b}{'^{0}}$	$\log H_{b}^{\prime 1}$	$\log H_{\delta'}^2$	$\log H_{\delta}^{\prime 3}$	$\log H_5^{\prime 4}$	$\log H_{b}{'}^{5}$					
9	$\log H_6^{\prime-1}$	$\log H_6^{'0}$	$\log H_{\mathfrak{g}^{\prime 1}}^{\prime 1}$	$\log H_6^{'2}$	$\log H_6^{'3}$	$\log H_6^{\prime 4}$	$\log H_{6}{'^5}$	$\log H_6^{'6}$				
7	$\log H_{r}^{\prime -1}$	$\log H_7^{\prime 0}$	$\log H_7^{'1}$	$\log H_7'^3$	$\log H_7^{\prime 3}$	$\log H_{7}^{\prime 4}$	$\log H_7^{\prime,6}$	$\log H_7'^6$	$\log H_7{}^{\prime7}$			
æ	$\log H_8^{\prime-1}$	$\log H_{8}{'}^{0}$	$\log H_8^{'1}$	$\log H_8^{\prime 2}$	$\log H_8^{\prime 3}$	$\log H_8^{\prime 4}$	$\log H_8^{'6}$	$\log H_8^{\prime 6}$	$\log H_8'$ 7	$\log H_8'^8$		
en.	$\log H_9^{\prime-1}$	$\log H_{9}^{'0}$	$\log H_{\mathfrak{g}^{'1}}$	$\log H_9'^2$	$\log H_{\mathfrak{g}'}{}^3$	$\log H_{\mathfrak{g}}{}'^4$	$\log H_{9}^{'5}$	$\log H_9'^6$	$\log H_{9}^{\prime 7}$	$\log H_{\rm \theta}^{'8}$	$\log H_9'^9$	
10	$\log H_{10}{^{\prime}}^{-1}$	$\log H_{10}{'^0}$	$\log H_{10}{'}^{1}$	$\log H_{10}{'^2}$	$\log H_{10}{}^{'3}$	$\log \boldsymbol{H}_{10}{}^{\prime4}$	$\log H_{10}{'^{\rm II}}$	$\log H_{10}{'}^6$	$\log H_{10}^{\prime 7}$	$\log H_{10}{}'^8$	$\log H_{10}{}^{'9}$	$\log H_{10}{'10}$

## CALCULATION OF THE QUANTITIES H'".

10 -20 9.4318213	ò	9.4318213	OI	2.4249032	ò	2 4249032
9	0.	0.4886392	6	3.1824129	0.	3.1824129 3.1756760+
8 I·5454570	o. 9°9983220 9°9729757	1.5454570 1.5437790 1.5184327	8	3.6363256	0. 9.9932631 + 9 9622844	3.9399226 3.9331857+ 3.9022070
7 2.6022749	o. 9.9983320 9.9701044 9.9197001	2.6022749 2.6005969 2.5723793 2.57219750	1	4.6974322	0. 9.9932631+ 9.9593413 9.9025824	4.6974322 4.6906953 + 4.6567735   4.6000146
6 3.6590928	0. 9.9983220 9.9664400 9.909225 9.8328874	3.6590928 3.6574148 3.6555328 3.5690153 3.4919802	9	5.4549419	0. 9.9932631+ 9.955845 9.8025263	5.4549419 5.4482050+ 5.4105264 5.3474682 5.2631411
5	0. 9.9983220 9.9616010 9.8972128 9.8103697 9.7049024	4.7159106 4.7142326 4.6775116 4.6131234 4.5262803 4.4208130	w	6.2124516	o. 9.9932631 + 9.9506224 9.8794448 9.7849528	6.2124516 6.2057147 + 6.1630740 6.0918964 5.997,3844 5.883,3574
4 5.7727285	0. 9'9983220 9'9549142 9'8800106 9'7804090 9'6608721	5.7727285 7.7710505 5.7276427 5.627391 5.5531375 5.4336006 5.2976025	4	6.9699613	0. 99932631 + 99437631 97617213 97539208 96251076	6'9699613 6'9632244 + 6'9137244 6'816826 6'723821 6'5950689 6'4486973
3	0. 9.9983220 9.9450701 9.8553886 9.7385086 9.6004383 9.4453711	68295464 68278684 67746165 66849444 6588550 64299847 67299847	3	7.7274710	0. 99932631 + 99933600 9'836345 97104364 9'5620035 9'3957761	7.7274710 7.7207341+ 7.6611310 7.5637055 7.4379074 7.72594745 7.1226471
7.8863643	9.9983220 9.9291353 9.8171869 9.675334 9.5118717 9.3312655 9.1371157	7.8863643 7.8846863 7.7035512 7.5618777 7.3982360 7.2176298 7.0234800 6.8182298	0	8.4849806	0.0932631+ 9917228 97968015 97468015 9748944 92741964 90639662 88404072	8.4849806 8.4782437 + 8.4022134 8.2817521 7.9539153 7.7591770 7.7591770
I - 10 8.9431821	0. 9.9983220 9.8988909 9.5690787 9.3676973 9.1508838 8.9221891 8.6839939	8'9431821 8'9415041 8'9415041 8'822739 8'5122608 8'3108794 7'80940559 7'6271760	I	9.2424903	0. 99932631+ 98861816 97263047 97363047 97365041 88284253 88284253 88284253 82878487	9'2424903 9'2357334+ 9'2357334+ 8'9688550 8'7754422 8'5580400 8'3220944 8'0709156 7'8065726
o		9.9983220 9.8188649 9.5919427 9.342933 9.0782298 8.845633 8.5233900 8.2360735 7.9434648 7.6460899	0	.0		9.9932631+ 9.8035383 9.568214 9.2891268 8.9965673 8.6861526 8.3583556 8.3783556 7.6420785
1.0568179	n7.8863643 n7.8846863 n7.7852552 n7.4554430 n7.4554430 n7.372481 n6.8085534 n6.5703582 n6.3243367	n8'9431822 n8'9415042 n8'9420731 n9'6925760 n8'3108795 n8'0940660 n7'8653713 n7'8653713 n7'8653713	1-	0.7575097	n8 4849806 n8 4782437 n8 3711622 n8 2113453 n 8 0179325 n7 75645847 n7 73134059 n7 7490629 n6 7728293	n 9.2424903 n 9.2357534 n 9.2357534 n 8.9688550 n 8.7754422 n 8.5580400 n 8.3220944 n 8.0709156 n 7.8065726
(a)	1 4 6 4 70 0 7 8 6 0	1 4 5 4 5 4 5 6 0 1		(b)	1 2 E 4 2 0 7 8 9 0	1 2 8 4 5 9 0 0 0 0 0

In the tables, where necessary, 10 has been added to the common logarithm to avoid the use of negative characteristics.

Calculation of the quantities  $H'^m$  (continued).

01		4.1570855	ò	4.1570855	10	5.3661781	ò	5.3661781
	<u> </u>	4.7413769	0. 9.9847478 –	4.7413769 4.7261247 –	6	5.8295603	0.	5.8295603 5.8022039
~	)	5.3256684	o° 9.9847478 – 9.9442552	5.3256684 5.304162 - 5.2699236	8	6.2929425	0. 9.9726436 9.9185545	6.2929425 6.2655861 6.2114970
ı	,	8656606.5	0. 9.9847478 – 9.9411869 9.8736436	5.909598 5.847076 5.8511467 5.7836034	7	6.7563247	0° 9°9726436 9°9152985 9°8322242	6.7289683 6.7289683 6.6716232 6.5885489
4	·	6.4942513	o. 9.9847478 – 9.9372691 9.8639972 9.7663999	6 4942513 6 4789991 - 6 4315204 6 3573485 6 2605603	9	7.2197069	0. 9.9726436 9.9111389 9.829318 9.7059938	7.1923505 7.1923505 7.198458 7.0406387 6.9257007
1	n	7.0785427	0. 9'9847478 – 9'9320919 9'8493601 9'7417073 9'6128971	7.0785427 7.0632905 – 7.0106346 6.9279028 6.8202500	w	16830891	o. 9'9726436 9'9056386 9'8061932 9'6793143 9'5793143	7.6830891 7.655737 7.5887277 7.4892823 7.3624034 7.2116699
	4	7.6628342	o. 9'9847478 – 9'9249310 9'8307144 9'7088105 9'5638793 9'3992730	7.6628342 7.6475820 - 7.5877652 7.4935486 7.3716447 7.2267135	4	8.1464712	0. 726436 9.9726436 9.8980241 9.7861327 9.6434589 9.4743751	8.1464712 8.1191148 8°0444953 7°9326039 77899301 7°6268463
	<i>ئ</i>	8 2471256	9°9847478 – 9°9847478 – 9°9143747 9°9143747 9°9143747 9°91988548 9°3080617 9°1018484	8.2318734 – 8.1615003 8.0510509 7.9095895 7.7429784 7.1551873 7.3489740	. "	8.6098534	0.0.0000000000000000000000000000000000	8.6098534 8.5824970 8.4966376 8.3670461 8.2024148 8.0081013 7.7873798
1	N	8*8314171	0. 99847478 – 98972496 97620567 97919418 97343139 91737210 89329854 86737524	8-8314171 8-7286667 8-7286667 8-5934738 8-4235309 8-2257310 8-0051381+ 7-7644025	71	9.0732356	0.0726436 99685119 97116604 97116604 9711604 9711604 9711604 9711604 9711604 9711604 9711604 9711604	9°0732356 8°0458792 8°0417475 8°784806 8'5873679 8'3554907 + 8°921677 7'7976041
	ı	9.4157085	9°847478 – 9°846123 9°846123 9°8268339 9°3228678 8°9496933 8°6519251 8°519251 7°9761986	9.4157085 9.4004563 9.2803208 9.0025414 8.8856986 8.6385763 8.3654024 8.0676336	I	9.2366178	0. 99726436 98335497 96287995 97750030 90774933 87374686 83317066 78301908 70148564	9.5366178 9.5992614 9.3701675 9.1654173 8.9116208 8.6141111 8.2705858 7.8683344 7.3668086
	0	ò		9.9847478 – 9.7773389 9.5051091 9.9151578 8.8377898 8.437739 7.9486574 7.2445245 n.6.780290 n.6.9806850	0	.0		9.9726436 97390169 974223250 97326175 85262707 76480378 n776316568 n77108026 n77139965
	H I	0.5842915	n88314171 n8861649 n86660294 n85182500 n8714072 n77811110 n77431422 n776811110 n776811110 n776811110 n776811110	n9'4157086 n9'4004564 n9'2803209 n9'1025415 n8'6385687 n8'6385764 n8'676337 n7'743898 n7'743898	1 -	0.4633822	n9'0732356 n9'0458792 n8'9067853 n8'7020351 n8'1507236 n8'1507236 n7'74049422 n6'9034264 n6'9034264	n9.5366178 n9.592614 n9.7901675 n9.1654173 n8.9116208 n8.8705858 n7.868324 n7.3668086 n6.5514742
		(c)	1 4 2 4 2 2 2 2 2 2	H 4 K 4 K 9 V 8 Q Q		(p)	= 8 & 4 N O V × Q O	= 9 & 4 7 0 0 0 0 0

10	ò	6.2833430	10	7.0114761	ò	7.0114761
4300559.9 6	0.	6.6550087	6	7.3103285	0.	7.3103285
8	o° 9°9567533+ 9°846757	7.0266744 6.9834277 + 6.9113501	80	6081609.2	o. 9.9367999 9.8418903	7.6091809 7.5459808 7.4510712
7.3983401	0. 99567533 + 9.8811545 9.7773002	7.3983401 7.3550934 7.2794946 7.1756403	7	7.9080333	0. 9.9367999 9.8380028 9.7073466	7.9080333 7.8448332 77460361 7.6153799
6	0. 9.9567533 + 9.8766529 9.7649306 9.6252850	7.7700058 7.7267591-1- 7.646587 7.5349364 7.3952908	9	8.2068857	o. 9.9367999 9.8330282 9.6934432 9.5210969	8.2068857 8.1436856 8.0399139 779003289
5 8-14-167-15	0. 9.9567533 + 9.8706949 9.7487390 9.5955041	8.1416715 8.0984248+ 8.0123664 7.8904105 7.7371756	7.0	8.5057381	o. 9°9367999 9°8264358 9°6751682 9°4866785 9°2626348	8.5057381 8.4425380 8.3321739 8.809063 7.9924166 7.7683729
4 8·5133372	0° 99567533 + 98624363 97266115 9 9551745 9 9551745 9 9551745 9 9551745 9 9551745	8.5133372 8.4700905 + 8.3757735 8.2399487 7.8650000 7.6311797	4	8.8045905	0. 99367999 98172818 96500475 94395214 91868682 88897470	88045905 8.7413904 8.6218723 8.4546380 8.2441119 7.9914587 7.6943375
3 8.8850029		8-8850029 8-8417562+ 8-735259 8-735000 8-3822570 8-1473070+ 7-8754421	3	9.1034428	o. 9'8367999 9'8037092 9'6132675 9'3705410 9'0745641 8'7162254 8'2075026	9.1034428 9.0402427 8.9071520 8.7167103 8.4739838 8.7780069 7.8196682
3899952.6	0. 99567533 + 9°8303084 9°6434075 9°1211097 8°7842877 8°799343 7°8575918	9.2566886 9.2134219+ 9.0869770 8.9001361 8.6628615 8.3778393 - 8.0409563 7.6366029 7.1142604	8	9.4022952	9'9367999 9'78'14848 9'78'14848 9'5539543 9'2584301+ 8'8844152 8'3876230 7'4879016	9 4022952 9 3399951 9 1837800 8 9562495 8 660753 + 8 2867104 7 7899182 6 6901968 n 6 9020922
I 9.6283343	0°9967533+ 9°9867533+ 9°5487625 9°2375148 8°32590562 8°3355461 7°34535991 8°7°545519	9'6283343 9'5850876+ 9'780808 8'8658491 8'4773905 7'9638804 n'7'1528862 n'7'1518805	Π	9.7011476	0. 9'9367999 9'738'3685 9'44'4666 9'0335275 8'424'4414 n'7'54798442 n'7'9798442 n'7'9798442	9.7011476 9.6379475 9.4395161 9.1416142 8.7346751 8.1252890 n.7.2428891 n.7.6809918 n.7.3062047
0		9'9567533+ 9'6867141 9'6867141 9'2680306 8'738099 n'6'9214784 n'8'1139901 n'7'9085762 n'7'2182991	0	ö		9.9367999 9.6171546 9.1055340 7.533126 n8.4143332 n7.2786850 n7.2786850
- I - O.3716657	ng·256688 ng·2134219 ng·0486541 ng·84054311 ng·1057248 ng·105748 ng·6017677 67812205 6.8102240	n9.6283343 n9.550876 n9.170968 n9.1770968 n8.8658491 n8.4773905 n7.9638804 n6.9734334 7.1528862 7.1528862	I —	0.2988524	n9.4022952 n9.3390951 n9.1406637 n8.4358227 n7.8264366 6.9440367 7.3821394 7.2711394	n9.7011476 n9.6379475 n9.1416142 n8.7346751 n8.152890 7.2428891 7.689918 7.5699918
(e)	1 4 2 4 7 9 0 0	1 2 8 4 3 3 5 6 0 0 0 0		S	H 4 W 4 W 0 V 0 0 0	H 4 W 4 P 00 C 0 C 0 C

Calculation of the quantities  $H_n'''$  (continued).

01	7.6053853	ò	7.6053853		8.0976947	ò	8-0976947
6	7.8448468	0. 9.9124034	7-8448468 7-7572502	c	8.2879252	0.	8.2879252 8.1709728
∞	8.0843083	o. 9'9124034 97'891681	8.0843083 7.9967117 7.8734764	×	8.4781557	o. 9.8830476 9.7250465	8.4781557 8.3612033 8.2032222
7	8.3237697	0. 9'9124034 9'7847763 9'6201028	8·3237697 8·2301731 8·1085460 7·9438725	1	8.6683863	0. 9.8830476 97199518 9.5121292	8.6683863 8.514339 8.383381 8.1805155
9	8.5632312	.0 9.9124034 9.7791489 9.6039940 9.3884779	8.5632312 8.4756346 8.3423801 8.1672252 7.9517091	9	8.8586168	0. 9.8830476 9.7134117 9.4927513 9.2189528	8.8586168 8.7416644 8.5720285 8.3513681 8.0775696
rv.	8.8026927	o' 9'9124034 9'7716783 9'5826924 9'3468804	8.8026927 8.7150961 8.5743710 8.385381 8.1495731 7.8646919		9.0488473	0.8830476 9'8830476 9'4668957 9'1654079 8'7853409	9°0488473 8°9318849 8°7535551 8°5157430 8°2142552 7°8414259
4	9.0421541	o. 99124034 97612793 92531602 92888128 89621685 8536937	9'0421541 8'9545575 8'8034334 8'5953143 8'309069 8'0043226 7'5958478		4.2390779	0. 98830476 9692556 9692580 96881815 8632080 79977176	9.2390779 9.2390779 8.9316285 8.6696588 8.3272594 7.8711088
8	9.2816156	0. 97458049 97658049 97658049 92012223 888363339 8748558	9.2816156 9.1940190 9.0274205 8.7009669 8.4828379 7.5301724 5.7636312	,	9.4293084	0.830476 9.6743667 9.9755925 8.936578 8.3368518 n.7.5176181	9.4293084 9.3123560 9.3123560 8.80490509 8.3940158 7.7661602 n 6.9469265
0	9.5210771	0° 9'9124034 9'7203160 9'4370762 9'049937 8'441047 n'6'9888264 n'7'9014529	9.5210771 9.4334805 9.4334805 8.9581533 8.510708 8.051818 n.6.509035 h.7.422530	ć	9.6195389		9.6195389 9.5025865 9.5036975 8.3400943 n70403854 n770403854 n77059791
i	9.7605385	0°. 9°9124034 9°6702891 9°2916638 8°6861078 n°7-8907507 n°8-269344 n°8-1136493 n°7-7862331 n°7-7802331	9.7665385 9.6729419 9.4308276 9.0522023 8.4466463 n.y.6112892 n.8.0214729 n.y.841878 n.y.5467716 n.y.0106168	,	4.8097695		98097695 9'0928171 8'3831531 n6'7503856 n8'2776955 n8'1565917 n7'7986583 n7'1010495
0	ò		9.9124034 9.5246730 n 8.6086416 n 8.6750255 n 8.45,6180 n 8.05,37083 n 7.32,8500 7.0481698 7.1589050	(	6		9'8330476 9'383560 n'8'0986057 n'8'7266653 n'8'732313 n'7'541785 7'4601259 7'4903340
1-	0.2394615	n9'5210771 n9'4344805 n9'1913662 n8'127409 n8'2071849 7'7820115 7'6347264 7'7820115 7'6347264	n9.7665386 n9.6729420 n9.436277 n9.0522024 n8.4466464 7.6512893 8.0214730 7.8467717 7.5467717	•	0.1902305	n9.6195389 n9.2033868 n9.2033868 n8.602922 6.5601550 7.9663611 7.6084277 6.9108189 n 6.5834683	n 9.8097694 n 9.628170 n 9.3936173 n 8.8831530 6.7503855 8.2776955 8.1565916 7.7986582 7.1010494 n 6.7736988
	(g)	H 4 W 4 7 7 0 0 0 0	1 4 8 4 8 9 0 O		(1)	H 4 8 4 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1284207860

10	8.5093431	ò	8.5093431	OI	8.8545091	ò	8.8545091
6	8.6584088	0.	8.6584088 8.5004348	6	8.9690582	0.	8.9690582 8.7754143
00	8.8074745	o: 9°8480260 9°6474026	8-8074745 8-6555005 8-4548771	∞	6.0836073	o. 9.8063561 9.5530339	9°0836073 8°8899634 8°6366412
7	8.9565402	o. 9.8480260 9.6413036 9.3779141	8.9565402 8.8045662 8.5978438 8.3344543	7	9.1981564	o. 9'8063561 9'545416 9'2078212	9.1981564 9.045125 8.7435980 8.4059776
9	6509501.6	0. 98480260 96334534 93534215 89961328	9.1056059 8.9536319 8.7390593 8.4590274 8.1017387	9	9.3127055	o. 9.8063561 9.5356303 9.1745715 8.6801550	9.3127055 9.1190616 8.8483358 8.487270
70	9.2546716	o° 9°8480260 9°6229686 9°3202726 8°9198038 8°3491785	9.2546716 9.1026976 8.8776402 8.5749442 8.1744754 7.6038501	2	9.4272546	o. 9'8063561 9'824563 9'1284351 8'5456436 n'6'9100905	9.4272546 9.336107 8.9497109 8.5556897 7.9728982 n 6.3373451
4	9.4037373	0.4880260 9.8480260 9.2727154 8.8019995 7.9731279	9.4037373 9.2517633 9.0119579 8.6764527 8.2057368 7.3768652 n71912899	4	9.5418036	0. 9'8063561 9'5038223 9'0596043 8'2890580 "7'9607418	9.5418036 9.3481597 9.0456259 8.6014079 7.8308616 n.7.5025454
ري د	6.28256	0°48°0260 9°58°0701 9°58°0701 8°58°1271 8°58°5359 n°772°39644 n°8°0798539 n°7°8°26918	9.5528029 9.4008289 9.1388730 8.1373388 n.7.2767673 n.7.2767673	3	9.6563527	0. 9.8663561 9.4754114 8.9475259 n.6.2455127 n.8.2584601 n.8.2584601 n.8.2584601	9.6563527 9.4627088 9.1317641 8.600786 n 7.9148128 n 7.7197424 n 7.18335700
64	9898104.6	0. 9'8480260 9'5487512 9'0610606 7'7228308 n.8'3120606 n.8'2184935 n.7'8195900 n.6'8507075	9.7018686 9.5498946 9.2560198 8.7629292 7.4646994 n $8.0339352n$ $7.9203621n$ $7.5214586n$ $6.5525761$	2	8106044.6	0. 9.8663561 9.4266336 8.6905788 n.8-4302941 n.8-4302941 n.8-62041 n.8-03012 7.3237882	9.7709018 9.5772579 9.1975354 8.4614806 n.8.1731959 n.8.2045516 n.7.8335139 n.6.7747930
ı	9.8509343	0.8480260 9.8480260 9.4724469 8.6810467 n.8.5560744 n.8.5749452 n.7.4800903 7.3340917	9.8599343 9.6989603 9.331812 8.5319810 n8.4470087 n8.4258795 n8.9932645 n7.3370246 771850260	I	6.8824500	0. 9.8663561 9.3220793 n.8.976824 n.8.766687 n.7.843507 n.7.843507 7.5392643 7.6138630	9.8854509 9.6918070 9.2075302 n.7.962233 n.8.6460596 n.8.4160516 n.7.7700140 7.4947152 7.4993139
0	ò		9.8480260 9.2130351 n.8.8623294 n.8.646003 n.7.9888799 7.7016802 7.7777964 7.7777964 6.7665616	0	ò		9.8663561 8.8842231 n.9.0852645 n.8.9895023 7.6457366 8.0328161 7.7629560 7.0011277 n.6.9090209
1 —	0.1490657	n9.7018686 n9.7498946 n9.7141155 n9.7141155 8.2679430 8.2768138 7.9441988 7.1879589 n 7.0359603	n9.8509343 n9.6989603 n9.331812 n8.5319810 8.4170087 8.458795 8.0932645 7.3370246 n7.1850260 n7.2087739	I I	0.1145491	n 9.7709018 n 9.5772579 n 9.0929811 7.8476842 8.5315105 8.3024025 7.6554649 n 7.3101661 n 7.3847648	n9'88459 n9'6918070 n9'2075302 7'962333 8'6460596 84169516 7'7700140 n'7444152 n'74993139
	(i)	19842078001	1 6 6 7 8 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1		(k)	10 8 4 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 8 4 2 9 0 0 0

Calculation of the quantities  $H_n^m$  (continued).

10	ò	9.1431705	10	9.3825408	ò	9.3825408
9	0.	9.2288534 8.9854889	6	9.4442867	0.0969851	9.4442867
8	o. 97566355 94368119	9.3145364 9.0711719 8.7513483	∞	9.2060326	o. 9'6967851 9'2897350	9.5060326 9.2028177 8.7957676
7	0. 9.7566355 9.4268631 8.9823206	9.4002193 9.1568548 8.8270824 8.3825399	7	6.2677785	0. 9.6967851 9.2757110 – 8.6491040	9.5677785 9.2645636 8.8434895 – 8.2168825
6	0. 97566355 9413952 89314787 81014034	94859023 9.2425378 8.8998275 7.5873057	9	9.6295245	0. 9.6967851 9.2572715 8.5482051 n.7.8816243	9.6295245 9.3263096 8.8867960 8.1777296
5	0. 97566355 97964032 8 8571443 7.4762228 n 8.0321350	9.5715852 9.3382207 8.9679884 8.4287295 7.0478080	ιν	9.6912704	o. 9'6967851 9'2319128 8'3734508 n8'1563189 n8'0502676	9.6912704 9.3880555 8.9231832 8.647212 n.7.8475893
4 9.6572682	o°7566355 9°3713397 8°7353987 "7°9409794 "8°1825373	9.6572682 9.4139037 9.0285779 8.3928639 n.7.5982476 n.7.8398055 n.7.4984023	4	9.7530163	0. 9'6967851 9'1947585 7'920222 n8'3494602 n8'1034685	9.7530163 9.4498014 8.9477748 7.673238 n.8.1024765 n.78564848
3	0. 9.7566355 9.3322948 8.4334675 n.8.5954674 n.8.2998319 n.7.7871486 6.9278834	97429511 974995866 9°0752459 8°264186 n8°1064185 n8°0227830 n7°5300997 6°6708345	က	9.81476=2	0. 9'6967851 9'1347698 "8'0987060 "8'5'059093 "8'1252502 6'4199557 7'4920896	9.8147622 9.5115473 8.9495320 n.7.9134682 n.8.3198525 n.7.9400124 6.2347179 7.3068518
2 9.8286341	o. 9.7566355 9.2628850 n.76195524 n.8.36192650 n.8.343601 n.7.5310060 7.5290965 7.4378298	9.8286341 9.5822696 9.0915191 n.7.4481865 n.8.4481865 n.8.1439942 n.7.3505401 7.3577306 7.26044539	71	9.8765082	0. 9.6967851 n8.6304564 n8.6378958 n8.6378958 7.6050032 7.6050033 7.1607086	9.8765082 9.5732933 8.8962059 n.8.5069646 n.8.5144040 n.7.9576934 7.48.15114 7.5013715
1 9:9143170	0. 97566355 91005084 n8.7674920 n8.8023556 n8.3430283 7.4644538 7.8516191 7.5223529 61495270	9.9143170 9.6709525 9.6709525 n.87166726 n.87166726 n.82573453 7.3837708 7.7659361 7.4366699 6.0638440	н	9.9382541	0.96967851 8.6766671 n.8.9546423 n.8.7491502 n.77841250 8.0298057 7.8341536 6.8748296	9'9382541 9'6350392 8'649212 n8'8928964 n8'6574043 n7'7223791 7'9680598 7'7724077 6'8130837 n7'0580706
o ò		9.7566355 n.7.8629241 n.9.1943225 n.8.9417424 n.8.0057449 8.2110244 8.0737550 7.4284588 n.7.1592362 n.7.1592362	0	·o		9.6667851 n8.9336705 n9.2439479 n8.8446564 8.0833413 8.3518871 7.9104109 n7.2047980 n7.72047980 n7.72047980
- I 0.0856830	n 9.8286341 n 9.5852696 n 8.9201425 8.5961261 8.6309897 8.1716624 n 7.259879 n 7.359870 n 7.359870	n9'9143171 n9'6709526 8'6818091 8'7166727 8'253454 n7'3837709 n7'7659362 n7'7659362 n'7'4366700	I —	0.0617459	n9.8765082 n9.5732933 n8.5531753 8.6256584 7.6606532 n7.9063139 n7.7106618 n6.7513378	n9'9382541 n9'6380392 n8'6449212 8'8928964 8'6574043 7'723791 n7'9880598 n'7724077 n'6'8330837 7'0580706
(2)	100450	1 2 2 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		( <i>m</i> )	1 2 8 4 7 2 9 0 1	1 2 2 4 7 3 9 9 9

OI	9.5779231	ò	9.5779231	01	9.7332402	ò	9.7332402
6	9.6201308	0, 6.235565	9.6201308	6	6.7599162	o. 9.5314815	9.7599162
8	9.6623385	o. 9.6235565 9.0934851	9.6623385 9.2858950 87558236	8	9.7865922	o. 9'5314815 8'7991323	97865922 9.3180737 8.5857245
7	9.7045462	o. 9.6235565 9.0712415 7.8966695	9.7045462 9.3281027 8.7757877 7.6012157	7	9.8132682	0.5314815 8.5541786 8.541785	9.8132682 9.3447497 8.5674468 n 7.9710241
9	9.7467539	0. 9.6235565 9.0413256 5.8162178 8.1844387	97467539 93703104 87880795 56229717 n 779311926	9	9.8399441	0. 9.5314815 8.6896169 n.8.3158801 n.8.415752	9.8399441 9.3714256 8.595510 n.8.1558242 n.7.9815193
w	9196884.6	o. 9.6235565 8.9988110 n.7.9918505 n.8.2872910 n.7.8090612	9.7889616 9.4125181 8.757726 n.77888121 n.8.0762526 n.7.5980228	ĸ	1029998.6	0°5314815 8°5574674 8°8°4578168 8°8°1578168 8°8°1951244 8°6°5483894	9.8666201 9.3981016 8.4540875 n.8.3344369 n.80617445
4	9.8311693	o. 9'6235565 8'9331865 n.8'3569107 n.7'7660334 7'3786522	9°8311693 9°4547258 8°7643558 n°8°1286800 n°7°272027 7°298215	4	1962868.6	0. 9.5314815 8.3925616 n.8.5928127 n.8.2428444 7.1532964	9.8932961 9.4247776 8.2858577 8.84861088 n.81361405 7.0465925 7.4958010
æ	9.8733769	0. 9.6235565 8.8164972 n.8-6061782 n.8-6061782 n.7-6075515 7.6652995 7.4545095	9.873769 9.4969334 8.6898741 n.8.4795551 n.7.4809284 7.5386764	3	1246616.6	0. 9.5314815 7.6522754 n.87277291 n.82290210 7.6526814 7.7504158 6.9598996	9.9199721 9.4514536 7.572475 n.856477012 n.81989931 7.5726535 6.8798717
71	9.9155846	0.0535565 8.528216 n.8.8185802 n.8.542155 7.9073845 7.9073845 7.582094 n.6.7056927	9.9155846 9.5391411 8.444062 n.8.7341648 n.8.4577400 5.8736704 7.8229691 7.4437940 n.6.6212773	61	6.6466480	0.5314815 n.8-4554573 n.8-8594036 n.8-255442 7-9588607 7-8957263 6-5150787 n.7-2464001	9.9466480 9.4781295 n.8-3821053 n.8-8160516 n.8-2341922 7.9455087 7.8423743 6.4617267 n.7-1930481
I	9.9577923	0° 9'6235565 n 8'3682925 n 9'0248221 n 8'5904216 7'9685343 8'1284155 7'5262746 n 7'287149	9.9577923 9.5813488 n.8.3566848 n.8.582134 7.926326 8.6862078 7.4846669 n.7.2385072 n.7.1710975	1	9.9733240	0. 9:5314815 n8:9263353 n9:0269840 n8:2664157 8:368646 8:0353617 n7:1190248 n7:14951695 n6:8678209	9'9733240 9'5048055 n 8'8996593 n 9'0003080 n 9'1797397 8'2814080 8'0086857 n 7'0923488 n 7'4684935 n 6'8411449
0	ò		9 6235565 n9'1950236 n8'5377511 8'48'0167 8'346588 7'1323237 n7'586541 n7'3771423 6'3368598		ò		9.5314815 n9.3379221 n9.2166844 n4.9493900 8-6214318 815-59820 n7.7553793 n7.7411280 n6.6477741
I –	0.0422077	n9'915846 n9'5391411 8'2838771 8'506062 n7'8841189 n8'0340001 n7'4418592 7'1962995 7'1288898	n9.9577923 n9.5813488 8.326044 8.9282134 n7.9263266 n8.0862078 n7.4340669 7.235072 7.1710975	I —	a.oz66760	n9946648 n94781295 8-8729833 8-9736320 8-1530637 n8-247320 n7-9520097 7-0656728 7-418175 6-8144689	n 9'9733240 n 9'5048055 8'8996593 9'0003080 8'1797397 n 8'28 44080 n 8'0086857 7'74684935 6'8411449
	(n)	1 2 8 4 3 2 5 6 0 1 0 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 2 2 4 2 2 2 5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2		(0)	1 2 2 4 5 5 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 2 E 4 20 C 8 6 0 I

CALCULATION OF THE QUANTITIES  $H'^m$  (continued).

	10	9.8513739	ò	6.8213739		oı	9.9343859	ò	9.9343859
	6	9.8662365	o. 94102814+	9.8662365	AA B AM	6	9.9409473	0.	9.9409473
	∞	1660188.6	o. 94102814+ 81310859	9.8810991 9.2913805+ 8.0121850		8	9.9475087	o. 9.2368490 n.8.3592111	9°9475087 9°1843577 n8°3067198
	7	2196268.6	0. 94102814+ 7'8651869 n8'3728384	9.8959617 9.3052431 + 7.7611486 8.5688001		7	1020456.6	0. 9.2368490 n84632822 n8.3445004	9.9540701 9.1009191 n.8.4173523 n.8.2985705
	9	9.9108243	0. 9'4102814+ 26'7090154 28'8'529175 77'85'89280	9.9108243 9.3211057+ n6.6198397 n8.3637418		9	5189096.6	0. 9.2368490 n8:5670523 n8:4032973 6:8891336	9.9606315 9.1974805 n.8.5276838 n.8.3639288 6.8497651
	75	6989\$26.6	0. 94102814+ n86921391 n8556828 n78577847	9.9256869 9.3359683+ n7.9578260 n8.4625697 n7.7834716 7.5400145		ນາ	6261496.6	o. 9'2368490 n.8'6735609 n.8'4678995 7'3315690	9.9671929 9.2040419 n8.6407538 n8.4350924 7.2987619 7.7045446
	4	9.9402496	0. 9.4102814+ n.8.3936472 n.7.8561207 7.79561207 7.4705575	9.9405496 9.350810+ n.8.3341968 n.8.5672974 n.7.7666763 7.7361655 7.4111071		4	9.9737544	0. 9.2368490 n8.7863581 n8.5400553 7.6399743 7.8621672 6.5771470	9.9737544 9.2106034 n8.57601125 n8.5138097 7.6137287 7.8359216 6.5599014
	8	9.9554122	o. 94102814+ n.8'6527887 n.87253529 7'9804758 7'533675 n7'0838817	9°9554122 9°3656936+ n°8°682009 n°8°6807651 n°7°6695323 7°9361880 7°9361880 7°7°880797 n°7°089797		8	9.9803158	0. 9.2368490 n.8.9103394 n.8.6223892 7.9099623 8.0000217 n.5.4424798 n.7.3491026	9.9803158 9.2171648 n 8.8906552 n 8.6027050 7.8902781 7.9803375 n 5.4227956
	61	9.9702748	0. 9.4102814+ n8-8848073 n8-8370826 n7-1476763 8-1765658 7-6518511 n7-3903168	9.9702748 9.885562+ n.8.8573574 n.7.1179511 8.1468406 7.5921259 n.7.3605916 n.7.1824091		63	6.6868772	0. 9.2368490 n9.0534342 n8.7191067 8.1747545 8.11573269 n6.9929510 n7.5483280 n6.5743786	9.9868772 9.237262 n.9.0403114 n.8.7059839 8.1016317 8.1422041 n.6.9798282 n.7.5352052 n.6.5612558
	I	9.9851374	0. 9.4102814+ n9.1266022 n8.9644891 7.8971981 7.8437191 n7.628293 n7.3721015 6.7889457	9.98\$1374 9.3954188+ n9.117396 n8.9546265 7.8823355 8.3765595 7.7288565 n7.6779667 n7.5779667 6.7740831		1	9.9934386	0. 9.2368490 n9.2310501 n8.8376118 8.4573080 8.3349481 n7.7700932 n6.3111178 7.1533270	9.9934386 9.2302876 n.8.2244887 n.8.8310504 8.4207466 8.3287367 n.7.5099079 n.7.7535318 n.6.3045564
	٥	ò		9'4102814+ n'9'4268011 n'9'1376964+ 8'5237709 8'638687 7'438587 n'8'0100539 n'7'5214650 7'7240108		0			9.2368490 n.9.4822572 n.8.9229033 n.8.9229033 8.550525 n.7.9683662 n.8.0231413 6.7131544 7.4371637
	I —	0.0148626	n99702748 n93805562 899068770 8937639 n78674729 n77651041 77651041 73423763 n67592205	n9'981374 n9'3954188 9'117396 8'954625 n''883355 n''6288565 7'679667 n'6'7740831		I -	0.0065614	ng.9868772 ng.2237262 gr.179273 gr.8444890 ns.4441852 ns.3218253 7.503704 6.2979950 n7.1402042	n9.9934386 n9.2302876 9.244887 8.8310504 n8.4507466 n8.3283867 7.599079 7.7635318 6.3945564 n7.1467656
L		(d)	1 2 £ 4 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I 4 & 4 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			(b)	1 4 2 4 7 7 0 V 0 0 0	1 2 8 4 7 0 0 0 0 0

OI	6.9836617	ò	2199\$86.6		ò		
6	9.9852955	o. 8 ⁹ 374096	9.9852955		ò		6
80	6.6866364	0. 8.9374096 n 8.6545212	9.9869294 8.9243390 n 8.6414506		o. n 8.7212464		.0.
4	9.9885632	o. 8.9374096 n.8.7103526 n.8.1146477	9.9885632 8.9259728 n 8.6989158 n 8.1032109	-	o. n8-7695511		o. 9'9736711 9'9253664
9	0.61066.6	o. 8.9374096 n.8.7721082 n.8.1652265 7.8436687	9.9901970 8.9276066 n877623052 n81554235 7.8338657		o. n88239087 7'9679187		o. 99700368 99156791 98410455
ທ	6.63166.6	0. 8.9374096 n.8.8415303 n.8.2218444 7.9626203 7.5663196	9.9918309 8.9292405 n8.8333612 n8.2136753 7.9544512 7.5581505	he Equator.	o. n 8*8860566 8*0705811	at the Pole.	o. 9.9652379 9.9030900 9.8187691 9.7161068
4	9.9934647	0.89374096 n89212533 n829212533 n82949076 76735738 n73213084	9.9934647 8.9308743 n8.9147000 n8.2797078 8.0883723 7.6670385 n7.3147731	$\log G_n^m$ at the	o° n89586073 8·1870866 n7·4907975	$G_n^m$	0. 99586073 97891466 97891466 96726411
3	6.662666	6'974096 10'9054239 10'873(10;324 2449102 - 7'746344 17'5120570 17'5228725	9.9950985 8.935081 n.9°0.05224 n.8°3.501309 8°2400087 – 7°7597329 n.7°5071555 n.7°2179710	Values of Log	o. n9°0457575 8°3217852 n7°6556077	Values of Log	9.9488475 9.8616973 9.7477539 9.6130554 9.4617877
. 0	9.9967323	6. 8.9374096 n.9.1134946 – n.8.4504093 8.4194700 n.7.7558306 n.7.7558300 n.7.3346268	9.9967323 8.9341419 n 9.1262269— n 8.4471416 8.44162023 7.9305889 n 7.7255623 n 7.3913591 7.0192019		0° n9'1549020 8'48'14861 n7'8446640 7'2219522		0. 9.9339532 9.8339987 9.6856060 9.5259052 9.1697577 8.911853
н	6.698366	0.0 9.9374096 9.284402 8.592040 8.080481 7.77713337 7.7505521 7.2956331	9.9983662 8.9357758 n.9.2828064 n.8.5601352 8.0268703 8.0564143 n.7.9889183 7.2939993 7.2939993		o. n 9.3010300 8.6777807 n 8.0665127 7.4593131		0. 9'9030900 9'7560619 9'5808707 9'3845760 9'1737227 8'918739 8'7214250
0	ò		8'9374096 n'9'5130011 n'8'7101004 8'8995223 8'2983007 n'8'2027832 n'7'6054128 7'3019194 n'6'9228811		n95228787 89330532 n893353580 77355195 n71348020		9'8239087 9'8239087 9'05020600 9'3590219 9'1037494 8'8405080 8'5716627 8'2986614 8'0224550
I –	0.0016338	n9'9967323 n8'9341419 8'558511325 8'558513 n8'6269364 n8'9947804 7'5878360 7'5878360 n7'5273644 n7'75203364	n 9'9983661 n 8'9357757 9'2828063 8'5601331 n 8'6285702 n 8'096442 7'9696698 7'5889182 n 7'2939992 n 7'053680			the Pole $\mu=1$ .	
	(£)	1 4 5 4 5 9 6 9 9 9 9 9 9	H 4 10 4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	1 4 5 4 5 0 C 0 0 0 I	For th	1 2 2 4 70 7 20 0 0

Tables of the Values of  $X_n^m$ ,  $Y_n^m$ ,  $Z_n^m$  and  $X_{-n}^m$ ,  $Y_{-n}^m$ ,  $Z_{-n}^m$  for every 5° of geographical colatitude and for the equator and the pole, beginning at 5° geographical colatitude or 85° latitude for series (a), regarding  $X_n^m$ ,  $\tilde{Y}_n^m$ , &c. as functions of  $\mu' = \cos \theta'$ , where  $\theta'$  is the geocentric colatitude corresponding to the geographical colatitude  $\theta$ . From these values of  $X_n^m$ ,  $Y_n^m$ , &c. are derived the values of  $X_n^m \cos \psi + Z_n^m \sin \psi$  or  $X_n^m$  and  $-X_n^m \sin \psi + Z_n^m \cos \psi$  or  $Z_n^m$ , the coefficients of  $g_n^n$  or of  $h_n^m$  in the equations of condition for finding these magnetic functions.

Values of Log  $Y_n^m$  from the formula  $Y_n^m = mG'_n^m = Y_{-n}^m$  for  $\mu' = 0$ .

01	£
6	.9542425
8	.9030900
2	.8450980 n 9'6146491
9	7781513 n9'6020600 8'7460700
Ŋ	0989978 0950585°97 097889
4	.6020600 n 9.5606673 8.7891466 n 8.0928575
8	.4771213 n 9.5228788 8.7989065 n 8.1327290
2	.3010300 n9.4559320 8.7825161 n8.1456940 7.5229822
$\mathbf{I} = \mathbf{u}$	0.0 n9.3010300 8.6777807 m8.0665127 7.4593131
(8)	H 4 W 4 W 4 V 8 6 6

Values of Log  $X_n^m$  from the formula  $X_n^m = (n-m) \ G'_n^{m+1} = X_{-n}^m$  for  $\mu' = 0$ .

7	4498361.6 u
9	n 9.2466724
.c	n 9:3010300 8:668887
4	8.7695511
8	n 9.4357286 8.8860566 n 8.3358955
8	n9.5228788 9.0207552 n8.5007057
н	o. n 9.6320233 9.1804561 n 8.6897620 8.1761947
<i>m</i> = 0	0. n9.7781513 9.3767507 n8.9116107 8.4135556
(8)	H 8 8 4 70 0 70 0 0

Values of Log  $Z_n^m$  from the formula  $Z_n^m = (n+1) \ G_n^m$  when  $\mu' = 0$ .

]		
	OI	1.0413927
	6	<u> </u>
	80	.9542425
	7	1155692.6 n
	9	.8450980 n 9.7781512 9.0093114
	25	7781513 n 97891466
	4	.6989700 n 9.8037053 9.1413291
•	3	.6020600 n 9.8239088 9.22487,52 n 8.6556077
	8	74771213 n9·8538720 9·3265841 n8·7989065 8·2633449
	I	.3010300 n 9.9559320 n 8.9696027 8.4593131
	m = 0	no. 9.6320232 n9.1804560 8.6897620 n8.1761947
	3	H 4 8 4 7 0 7 8 0 0 1

Values of Log  $Z_{-u}^m$  from the formula  $Z_{-u}^m = -nG_{-u}^m$  when  $\mu' = 0$ .

-	
	I &
	n .9542425
	n .9030900
" " " " " " " " " " " " " " " " " " "	n ·8450980
THE THE PARTY OF T	n .7781513 9726987 n8.9679187
WIT O WINTO	n .6989700 97311546 n90248236
1	n .6020600 9.7367586 n 9.0901766 8.4907975
	n .4771213 977447275 n91668832 8.6098502
	n .3010300 9.7569620 n 9.2596374 8.7477540
	no. 9.7781513 n 9.3767507 8.9116107 n 8.4135556
	9°8239087 n9°5351132 9°1135093 n8°6386095 8°1348020
	(s) = 4 × × × × × × × × × × × × × × × × × ×

Values of Log  $Y_n^m$  from the formula  $Y_n^m = \frac{1}{r^{n+2}} m \left(1-\mu'^2\right)^{-\frac{1}{2}} H'_n^m$ .

OI	1.5059555	10	4.1993317	IO	5.7576472
6	2.5155729 2.5153379	6	4.9096740 4'9043470	6	6-2948253 6-2809289
∞	3.5197951 3.5195602 3.4956559	8	5.6146213 5.6092943 5.5797255	80	6.8266084 6.8127121 6.7735753
7	4.5171780 4.5169430 4.4901685 4.4412072	7	6.3127290 6.3074020 6.2748901 6.2195411	2	7:3515520 7:3376556 7:2954506 7:2292631
9	5.5056062 5.5053712 5.4749322 5.4198578 5.3442657	9	7.0018821 6.9965551 6.9602864 6.8986381 6.8157209	9	7.8675409 7.8536446 7.8075217 7.7347057 7.6392733
ທ	6.4817997 6.4815647 6.4462867 6.1833415 6.2979415	25	7.6788006 7.6734736 7.5624731 7.5624751 7.4693730 7.3567559	ນ	8.3712952 8.3573088 8.366988 8.2247228 7.9909715
4	7.4402645 7.4400296 7.308648 7.3246042 7.2264456 7.1083518	4	8.3379904 8.3326634 8.2845733 8.2975508 7.9701475	4	8.8573208 8.843445 8.784933 8.6921028 8.5715547 8.4279794 8.2647289
	8.3707007 8.3704657 8.3186569 8.2304278 8.1149814 7.9783541 7.8783541 7.8247300	3	8°9691515 8°963844 8°9056313 8°8097057 8°6852275 8°538244 8°538244 8°538244 8°538245 8°538245	3	9.3153177 9.2324411 9.2324441 9.1233105 8.9832050 8.8179497 8.6315145
а	9.2499843 9.2497493 9.1820056 9.0715003 8.9312698 8.7690711 8.5899079 8.3972012	81	9'5491599 9'5438329 9'4692725 9'1995810 9'1995810 9'0251441 8'8318157 8'6229354 8'4008463	8	97221620 97082657 97082853 94882863 9319572 91232552 89040184 8646384
m = 1	.0043291 .0040341 9.9061060 9.7586519 9.7586519 9.7792415 9.1038710 8.9366193 8.6938672	m = 1	.0042297 99989231 98932311 97348241 973488212 973488212 973488212 8795912 8795912	I = m	9.9901712 9.8713916 9.6949680 9.4794811 9.2337146 8.9618966 8.6654836 8.3435956 7.9924688
(a)	n 1 2 2 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(9)	n = 1 2 2 2 4 3 3 4 9 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0)	n=1 2 2 4 4 3 6 6 6 6 7 10 0

01	6.8449510	IO	7.6693164	IO	8.3233832
6	7.2612931	6	7'9940322	6	8.5753902 8.5132780
8	7.6722403 7.6461664 7.5933599	8	8.3133531 8.2712987 8.2004135	∞	8.8220022 8.7598900 8.6660683
7	8.0763479 8.050241 7.9942115 7.9124198	7	8.6258345 8.5837801 8.5093736 8.4067117	7	9°0617747 8°9996625 8°9019533 8°7723850
9	8'4715009 8'4454270 8'352049 8'2962803 8'1826249	9	8.9293612 8.8873068 8.8083987 8.6978687 8.5594155	9	9.2925925 9.2304803 9.1277965 8.9892994 8.8180410
5	8.8544192 8.2283454 8.7626229 8.6644601 8.388637	S	9.2206533 9.1785989 9.0937328 8.9729692 8.8209266	າດ	9.5111757 9.4490635 9.3397873 9.1896076 9.0022058 8.7792500
4	9.2196087 9.1935349 9.1201980 9.0095891 8.8681979 8.7003966 8.5091643	4	94942167 94521623 93590376 92244051 90541604 88518410	4	977120302 96499180 97514878 97553414 97559032 89043379
က	9.5567697 9.5306958 9.3461190 9.3178101 9.1544613 8.9014304 8.7419914 8.4979275	3	9.7397514 9.6976970 9.5923590 9.4378254 9.2417747 9.0080170 8.7373444 8.4272737	65	9°8848559 9°827437 9°6907409 9°5013871 9°2597485 8°6948595 8°6076087 8°1599738
61	9.8427780 9.8167042 9.7138550 9.7582861 9.3020406 9.1314459 8.894055 8.8761244 8.2487806	2	9.9341335 9.8920791 9.7668265 9.5811779 9.3450956 8.7255750 8.7255750 7.8012638	64	.0065292 9.944169 9.7901897 9.5637471 9.2693108 8.8963838 8.4006795 7.5020460
m = 1	.0038477 9.9777738 9.8399625 9.6564948 9.0377538 8.7455110 7.8442989 7.0302471	m = 1	0035769 99615225 97979470 97559163 97559163 97559163 87559163 87559163 87750221 775776672	I=u	.0032637 9'9411515 9'7438079 9'7411427 8'4328445 n'7'5515325 n'7'9907231 n'7'8808110
(g)	n 2 2 4 4 3 4 6 0 0 1 0 0 1 0 0 1	(e)	1 2 2 4 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S	n = 2 2 5 7 8 10 10

Values of Log  $Y_n^m$  from the formula  $Y_n^m = \frac{1}{r^{n+2}} m \left(1 - \mu'^2\right)^{-\frac{1}{2}} H'_n^m$  (continued).

10	8.8565173	01	9.2981228	10	1060/090.6
6	9.0492487	6	9.4417460 9.3256434	6	9.7696748
00	9.2365852 9.1499611 9.0276984	∞	9.5799742 9.4038716 9.3067203	∞	9-868646 977156140 9-5157141
7	9.4170820 9.3304580 9.2038034 9.0401025	7	9.7113630 9.5952604 9.4330144 9.2260416	7	9°8572148 9°859643 9°5999653 9°3372993
9	9.5886243 9.5020002 9.1697183 9.1955359 8.980924	9	9.8337970 9.7176944 9.3290977 9.0561490	9	.0386104 9.8873598 9.94735107 9.942022 9.0376370
ທ	9.7479320 9.6613079 9.5215533 9.335420 9.987025 8.8147939	S	9'9439964 9'8278938 9'6504038 9'4134415 9'1128035	2	1077714 99565208 97321868 9732143 90394689 84005671
4	9.8895108 9.802868 9.652735 9.455886 9.1522138 8.8565420 8.4490398	4	0364672 9°2203646 97307174 9°4695975 9°1280479 8°6727471 7°492836	4	1592036 '0079531 97889011 94340893 8'9640969 8'1359487 n7'9510969
**	9.9164370 9.9164370 9.7508111 9.5153300 9.2081735 8.8115577 8.274531 6.4918845	3	1009092 99848066 97769755 94790511 90690158 84420100 1779735761	3	1826071 031355 97701241 93829045 87700367 n 79101887 n 8°2668016 n 8°563530
И	.0654588 9.9788347 9.7877198 9.5054526 9.1193426 8.5544261 n.7.0601204 n.7.937194 n.7.8713163	64	0.1141986 9.9980960 9.9860568 9.3981515 8.8381513 n7.5392941 n.8.2097376 n.8.1279590 n.7.7651499	8	0.1548581 0036075 97050561 921860890 7'9405826 n8'4905418 n8'3776922 n7'9795121
m = 1	.0029176 9.9162936 9.6751518 9.2974990 8.6929156 n.7.8985310 n.8.1233747 n.7.7969310	m = 1	.0025494 9.8864468 9.580969 9.0784824 n 0.9465647 n 8.4147245 n 8.3544704 n 7.3006278 n 7.3006278	I = m	.0021703 9.8509198 9.4758641 8.6553873 n.8.5711385 n.8.5701327 n.8.2488411 n.7.4933247 7.3420495 7.3665209
(9)	1 2 8 4 7 7 8 9 0 1	(h)	n = 1 2 2 4 4 3 3 4 4 4 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(i)	1

IO	9.9762257	10	.2345558	01	.4486165
6	.0444200 9.8513734	6	.2740060 '0311167	6	.4642440 .1613900
∞	.1072193 99141727 9'6614478	8	3080613 0651720 97458236	∞	.4744766 .1716225 97649333
7	.1631791 9.972757 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.7927 9.792	7	.3352770 .9763897 9763895 939905	7	.4778697 .1750156 97543023 91280562
9	.2101842 .0171376 .97470091 9.3865476 8.8927284	9	.3535381 .1106488 97684137 92864424 84568423	9	.4723082 .1694541 9.7303013 9.0215957 n.8°3553758
'n	.2449548 .0519081 9.77586056 9.3751817 8.7929875 n 7'1580317	ıc	.3595645 .1166752 97569181 97181344 78376881 n83940755	Ŋ	.4545120 .1516579 9.6871464 8.8290452 n8.6122741 n8.52065837
4	2619965 '0689499 97670133 9.3233926 8.5334436 n8.2257247	4		4	.4189871 .1161330 9.6444672 8.3402920 n.8.7698905 n.8.5242596 n.7.6797175
₆₀	2510006 0579630 97776156 91965273 n64989114 n85124561 n83179830	3	.3081314 .0652420 9'6413765 8'7930244 n8'6754995 n8'6003392 n8'9081311	ю	.3554335 .0525794 94909249 n8.4552219 n8.452220 n8.4524877 6.7775540 7.8500488
64	1888701 9958235 9'6166983 8'8812408 n8'5935533 n8'5255063 n7'1969423	8	2172479 9'9743586 9'9743586 9'4810832 n'78382258 n 8'8844136 n'77111050 7'7496707 7'7496707	а	.2407274 9'9378733 9'2611467 n 8'8722662 n 8'8200664 n 8'3237166 7'8478954 7'9281163
m = 1	.0017919 9'8087453 9'8087453 n'8'0850565 n'8'7547898 n'8'5362790 n'7'8899387 7'5452372 7'5204332 7'72501701	I = m	0014256 97585363 97585363 87703431 n87703431 n87468298 74737305 77577305 77577500 61552293	I = w	.0010824 9'6682284 8'6784712 n 8'9568072 n 7'7810115 8'0330530 7'8377617 6'8787985 n 7'1241463
(k)	n = 1 2 2 3 3 3 4 4 4 7 7 10 10	(2)	# # # # # # # # # # # # # # # # # # #	( <i>m</i> )	n = 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Values of Log  $Y_n^m$  from the formula  $Y_n^m = \frac{1}{r^{m+2}} m (1-\mu'^2)^{-\frac{1}{2}} H_n'^m$  (continued).

01	6132529,	o I	7619394	01	.8673945
6	.6194145 -2432286	6	.7426893	6	·8364031
∞	.6102121 .2340262 9.7042124	∞	.7180442 .2496943 9.5175137	∞	.8000167 .2103946 8'9312956
7	.5941702 .2179843 9°6659269 8'4916125	7	.6865596 .2182097 9.4410754 n8.848213	7	7567908 1671687 8.6220707 791299187
9	.\$691736 .1029877 9.6110144 6.44616427 8.7546427	9	.6461202 -1777703 9.3560743 n 8.9625061 n 8.7883698	9	7046102 114981 117438186 11578172 118599242
νn	.5319424 .1557565 9.5312686 n8.5245657 n8.8202638	ĸ	.5934463 .1250964 9.1812509 n 9.0517689 n 8.7892451 n 7.1426787	۲۷	.6401950 .0505729 .0505729 .050725271 .05073673 .05073673 .05073673
4	.4769825 .1007966 9.4106842 n.8.8346660 n.8.8594926 n.8.2443039 7.8571803	4	.5230437 .0546938 8.9159425 n 9.1163622 n 8.765625 7.6771831	4	.5580512 99684291 n8.918918914 n9.1850885 n8.345639 8.3541496
ю	.3939938 .0178079 9.2110062 n9.0009448 n8.8025805 n8.0028333 8.0608389 7.8503065	છ	94246124 99562625 80772250 80772250 807128473 80781368 81766398 7.3856922	ю	9.6478786 9.658255 n.91736203 n.91735210 n.81623847 8.4991369 8.0020251 n.75322358
7	2598527 9.8836667 8.7891894 n 9.0792056 n 8.8030384 6.2192264 7.7898652 n 6.9676061	2	.2750284 9.8066785 n8.7108229 n9.1449378 n8.5532470 8.2747321 8.117663 6.7912873 n 7.5227773	2	2865534 9'6969313 n'9'1715537 n'9'1239255 n'7'446157 8'4636017 9'9089835 n'7'6775457 n'7'4994597
m = 1	0007728 9'6445869 n 8'3695804 n 9'02633676 n 8'5922247 7'9705950 8'1307338 7'5288505 n 7'2835484	I = w	.0005058 9:5321559 n 8:9271783 n 8:2075956 8:3094328 8:0368791 n 7:1207108 n 7:4970241 n 6:8698441	$m = \mathbf{I}$	.0002895 9.4106674 n9.1270847 n8.9700681 7.8978736 8.3921941 7.6445876 n7.6337943 n7.3731630 6.7901037
(u)	1 4 2 4 7 7 8 9 0 1	(0)	1 2 8 4 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(d)	1 = 1 2 2 2 4 4 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

IO	.9414684	OI	.9854267
6	.1391213	6	9.8787126
∞	.8575943 .0944868 .ng.2168923	∞	.8917626 9.8291831
7	.8061203 .0430127 .0930127 .09304894	1-	·8353934 97728140 n 9:5457679 n 8:9500739
9	7456916 9.9225840 n.9.3128307 n.9.1491192	9	.7700696 9.774901 n.9.5421997 n.8.9353289 8.6137820
25	.6730283 9.9099207 n 9.3466760 n 9.1410580 8.0047710	72	.6925113 9.6299318 no.5340634 ns.9143885 8.6551753 8.2588855
4	.\$826363 9.8195288 n.9.1590813 n.9.1228219 8.2227843 7.1600439	4	.5972241 9.5346447 n.9.5184813 n.8.8835000 8.6921755 8.2708526 n.7.9185981
3	.4642156 9.7011086 n.9.3446419 n.9.0867351 8.3743516 8.464454 n.5.9069560 n.7.8136222	8	.4739083 94113288 n.9483341 n.8549735 8.7188622 8.265974 n.79860309 n.76968573
8	2946423 9°5315347 n°9°13481633 n°9°138793 8'4655705 8'4501863 n°7°088538 n°7°088538 n°7°088538	м	.2994398 9.2368604 n 9.4309563 n 8.7498820 8.7498820 8.2333511 n 8.0253355 n 7.6941432
m = 1	0.001303 9.2370227 n 9.2370227 n 8.338723 8.4576120 8.332955 n 7.5168601 n 7.7705274 n 6.3115955	m=1	.0000328 8.9374533 n9.2844949 n8.5018346 8.6302807 8.0981356 n7.9714021 n7.5906015 7.2957534
(b)	1 4 8 4 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	£	# # # # # # # # # # # # # # # # # # #

5.7291743 4.1697238 01 0 0 4.8828859 4.8747392 6.2690641 6.2524559 2.4881555 2.4850344 6 6 6 5.5906530 5.5825063 5.5501176 6.8035589 6.7869508 6.7451024 3.4952637 3.4921428 3.4653534 00 00  $\infty$  $= r^{n-1} m \left(1 - \mu^{2}\right)^{-\frac{1}{2}} H_{n}^{m}.$ 6.2915805 6.2834338 6.2481020 6.1899332 7.3312142 7.3146060 7.2696894 7.2007902 4.4955327 4.4924116 4.4627511 4.4109037 -2 -6.9835534 6.9754067 6.9363181 6.8718500 6.7861130 7.8499148 7.8333067 7.7844722 7.7089445 7.6108004 5.4868469 5.4837259 5.4504008 5.3924404 5.3139622 9 9 9 OF LOG  $Y_{-n}^m$  FROM THE FORMULA  $Y_{-n}^m$ 7.6632917 7.6551450 7.6110943 7.5385068 7.4425849 7.3271480 6'4659264 6'4628054 6'4246414 6'3588101 6'2705241 8.3563808 8.3397726 8.2857610 8.2016733 8.0926647 7.9624986 10 n M 7.4272773 7.4241563 7.3793055 7.3029589 7.2019142 7.0809344 6.9434932 8°3253013 8°3171546 8°2662446 8°1827929 8°0735825 7°9433594 8.8285100 8.8285100 8.7673374 8.6717650 8.5485052 8.4022182 8.2362560 4 8°3574785 8°3574785 8°3027836 8°2116685 8°0933361 7°9538227 7°7973126 8°9592822 8°9511355 8°8901224 8°7913770 8°6640790 8°5142362 8°3459989 8°1623523 9.3058267 9.2892185 9.2174897 9.1056844 8.9628672 8.7949002 8.6057533 8.3981841 3 9.2427692 9.2396481 9.1590184 9.0556270 8.9125105 8.5653765 8.3697838 8.1630905 9°5421104 9°5339637 9°4565834 9°3346822 9°1812523 9°0039956 8°8078474 8°5961472 8°3712384 9.7153827 9.6987746 9.609206 9.4733719 9.3019011 9.1029174 8.8809687 8.6388772 8.5388772 9.9968790 9.8960048 9.7450647 9.3604822 9.142257 8.9122879 8.6724498 9'9918533 9'8833618 9'5273123 9'5273123 9'3085002 9'0711447 8'8185560 8'5528031 0.0000000 9.9833918 9.8619006 9.464567 9.2166885 8.9415588 8.6424341 8.3178344 0 0 0 E uu# 1 2 8 4 2 2 0 0 0 1 <u>a</u> Ð, છ

01	6.8180173	10	7.6442780	OI	8.3005375
6	7.2369245	6	7.9713784	6	8.5547203 8.4904323
∞	7.6504368 7.6217978 7.5664262	∞	8-2930839 8-2486450 8-1753751	<b>∞</b>	8-8035081 8-7392201 8-6432226
7	8.0571095 8.0284706 7.9698429 7.8854861	7	8-6079499 8-5635110 8-4867198 8-3816733	7	9.0454564 8.9811684 8.8812834 8.7495393
9	8.4548276 8.4261886 8.334014 8.2719117 8.1556912	9	8.9138612 8.8694223 8.7881295 8.6752149 8.5343771	9	9.2784499 9.2141620 91093024 8.9686295 87951953
٧	8-8403111 8-8116721 8-7433845 8-744951 8-3024791	52	9.2075380 9.1630990 9.0758482 8.9247000 8.7982728 8.6156299	5	9.4992089 9.4349209 9.3234690 9.7711135 8.9815359 8.7564043
4	9.2080657 9.1794268 9.1035247 8.9903507 8.8453944 8.6760280	4	9.4834860 9.4390471 9.3435376 9.2065205 9.0338912 8.8291872	4	9.7022392 9.6379512 9.5173452 9.3490233 8.8336680 8.8836880
62	9.5477918 9.5191528 9.4320109 9.301308 9.1352229 8.9366269 8.7176228	3	9.7314053 9.6890664 9.5792437 9.4223254 9.2238901 8.9877479 8.7146906 8.4022353	3	9°8772407 9°8129527 9°6787741 9°4872445 9°2434305 8°9463654 8°5869388 8°5869388
81	9.8363652 9.8077263 9.7023120 9.5441780 9.3453673 9.1122076 8.8476020 8.5517558	Çŝ	9.9281720 9.8837331 9.5680626 9.395956 9.0433810 8.795956 7.7762254	8	0.0010898 9.9368017 9.7503987 9.5517803 9.551683 8.8800655 8.3821854 7.4513761
н	0.000000 9.9713610 9.8309846 9.649518 9.7698728 9.710805 8.7262726 7.8199303 7.0033134	I	0.000000 9.955611 9.7896009 9.5451856 9.2327456 8.83,30946 8.3283922 7.3367529 n.7.5150134 n.7.5150134	Ħ	0.0000000 9.9357121 9.7361927 9.4372029 9.0291759 8.4187019 n.7.5352142 n.7.5722290 n.7.8601411 n.7.5922661
0 = w		m=0		m = 0	
( <i>q</i> )	n = 2 2 2 4 3 10 9 10	(e)	n = 1 2 2 2 4 4 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	S	n = 1 2 2 3 4 4 3 7 7 7 9 9 9 10 9

6,5802769 6.68189.6 01 0 o I 9.4255997 9.7559295 9.0307705 6 6 0 Values of Log  $Y_{-n}^m$  from the formula  $Y_{-n}^m = r^{n-1} m (1 - \mu'^2)^{-\frac{n}{2}} H'^m$  (continued). 9.5655276 9.4477253 9.2888744 9.8545662 9.7018687 9.5005219 9.2200520 9.1314829 9.0072751 ∞ 00 00 9.9463632 9.7936659 9.5862200 9.3221071 9.4024939 9.3139248 9.1853252 9.0196792 9.6986160 9.5808138 9.4168681 9.2081957 9°8227496 9°7049474 9°5344617 9°3129514 9°0383031 0.0292057 9.8765082 9.6612123 9.3804569 9.0224448 9.5759813 9.4874121 9.3531851 9.1770577 8.9605691 9 S 9 9°9346486 9°8168464 9°6376568 9°3989949 9°0966572 8°7157401 0.0998136 9.9471161 9.7213352 9.4179159 9.0167236 8.4453749 97372341 9°6486649 9°5069672 9°3170088 9°0802243 8°7943705 S 10 30 9.9999953 9.7594964 9.4232377 8.9517985 8.1222034 n 7.9359047 0.0288190 9.9110168 9.7196700 9.8807580 9.7921889 9.6400922 9.4310005 9.1656806 8.8380638 8.4286165 9.4568505 9.1136013 8.6566008 0.1526927 7.9314377 4 0.1775430 0.0248456 9.7621663 9.7334998 8.7591851 n.78978903 n.8.2530563 n.8.0351708 9.9962533 9.9076842 9.7401132 9.5026870 9.1935854 8.7950245 8.2389749 6.4714612 0.0949606 9.9771584 9.7676277 9.4680037 9.056268 8.4275634 n.7.6074798 3 3 3 9.9985434 9.6985452 9.2101312 7.9311779 n 8.4796902 n 8.365938 n 7.9657668 n 6.9961609 0.0605961 9.9720269 9.7789670 9.4947547 9.1066996 8.5398380 n7.043872 n7.755412 0.1099496 9.9921474 9.7524086 9.7888038 8.8271058 n.7.5265471 n.8.2525910 n.8.11118127 n7.7473040N Ò N 0.000000 9.8821978 9.5821483 9.0708342 n6.9372169 n8.4636771 n7.9829402 n7.2844815 6.9562811 9.8473026 9.4708000 9.4708000 8.6788764 n.8.5631807 n.8.5713280 n.7.4810263 7.3283042 7.3513287 9°9114309 9°6683440 9°2887462 8°6822177 n 7°8858880 n 8°2550991 n 8°1068415 n 77784528 0.0000000 n 7.2413255 0.0000000 0 0 0 Ü m u u g€  $\overline{z}$ 

OI	\$289896.6	IO	0.2245768	OI	0.4410394
6	0°0330714 9°8388302	6	0.2649774	6	0.4573885 0.1538129
00	0.0970653 9.9028241 9.6489046	∞	0.2999830 0.0561434 97338446	∞	0.4683428 0.1647670 9.75733562
1	0.1542197 9.9599785 9.6984667 9.3602490	7	0.3281491 0.0843094 9.7546619 9.3090442	7	04724575 0.1688818 9.7474467 9.1204791
9	0.2024194 0.0081782 9.736851 9.3751990 8.8801852	9	0.3473606 0.1035209 9.7603354 9.2774138	9	0.4676176 0.1640419 9.7241675 9.0147402 n 8.3477987
w	0.2383846 0.0441433 9.7596462 9.3650277 8.7816389 n7.1454885	រភ	0.3543374 0.1104977 9.7497902 7.8286595 n 8.3840965	ĸ	0.4505431 0.1469673 9.6817342 8.8229114 n.8.6054186 n.8.4990066
4	0.2566209 0.0623797 9.7592485 9.3144335 8.5432896 n8.2143761 n8.2143761	4	0.3435856 0.0997459 9.7139449 9.0777557 n.8.223642 n.8.5237470 n.8.1818686	4	0.4157398 0.1121641 9.6097766 8.3348798 n.8.7537567 n.8.574041
65	0.2468285 0.0235874 9.7130454 9.1887625 n6.4899520 n8.5023021 n8.5023021 n8.70698647	3	0.3048051 0.0609653 9'6361494 8'7868469 n 8'5683716 n 8'5922609 n 8'0891025	3	0.3529078 0.0493321 9.4869560 n.8.406533 n.8.8565548 n.8.4763539 6.7706985 7.8424717
0	0.1858836 9.9916424 9.6113227 8.8746706 n 8.5857885 n 8.6165469 n 7.1855937 7.5048934	8	0.2148719 1 9.9710323 4 9.9710323 8 n7.832987 8 n8.8223361 0 n7.7432267 7 77406421 7 76489002	2	0.2389233 9.9353476 9.2578994 n8.8682973 n8.8753758 n8.3183044 7.8417616 7.9212608
I	0.0000000 9.8057588 9.320847 n8.7049906 n8.7582196 n8.525142 n7.8809793 7.5350832 7.6090846 7.2436269	н	0.000000 9.7561603 9.095581 n8.7660664 n8.306523 7.4666026 7.8482927 7.5185514 6.1452503	Ħ	0.000000 9.6664243 8.6759455 n.8.9335599 n.8.777833209 8.0276408 7.8316279 6.8719430 n.7.1165692
m = 0		<i>m</i> = 0		<i>m</i> = 0	
(k)	1 = 1	(2)	1 2 8 4 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(m)	n=1 2 3 4 4 6 7 10

0.6178125 0.7583987 0.8653679 0 10 2 0.7394858 0.8345695 0.2447545 0.6145203 0 0 6 Values of Log  $Y_{-n}^m$  from the formula  $Y_{-n}^m = r^{n-1} m (1 - \mu'^2)^{-\frac{1}{2}} H'^m$  (continued). 0.6058331 0.2291320 9.6988030 0.7151779 0.2464908 9.5139730 0.7983762 0.2085611 8.9292690 00 00 00 0.7553433 0.1655283 8.6202371 n 9.1278921 0.5903064 0.2136053 9.6610327 8.4862031 0.2153434 9.4378719 n.8.8412806 0.6840305 0.5658249 0.1891239 9.6066354 6.4412700 n 8.7492333 0.6439283 0.1752412 9.3332080 n.8.9593026 n.8.7848291 0.1135407 n7.4121781 n9.1559836 n8.5618976 0.7033557 9 9 9 0.1524078 9.5274048 n.8.5201867 n.8.8153696 n.8.3368822 0.6391335 0.0493185 n 8.6710796 n 9.1757268 n 8.4965321 8.2529785 0.1229045 n 9°0489026 n 8°7860416 n 7°1391380 0.2912917 0.5291089 0.5215263 0.0528392 8.9137506 n.9.1138331 n.8.7636962 7.6739796 8.1230195 0.5571827 9.9673677 n 8.9506369 n 9.1836410 n 8.3829234 8.3523160 0.4746642 0.0979631 9.4073355 8.8308022 8.8551136 8.2394097 7.8517709 0°3921907 0°0154896 9°2081727 n 8°9975961 n 8°8587167 n 7°9984543 8°0559447 0.4234322 9.9547451 8.0753704 n 9.1506554 n 8.7017787 8.07528363 7.3821515 0.4472031 9.8573881 n 9.0997988 n 9.1722665 n 8.1609372 8.4274964 8.0001915 n 7.5302092 3 n9'0763721 n8'7996897 6'2153626 8'1644037 7'7849710 n6'9621967 0.2585648 9.8818636 8.7868711 0.2741854 9.8054983 n 8.7093055 n 9.1430832 n 8.5610551 8.5722030 8.1689000 6.7880838 n 7.5192366 0.2860709 9'6962559 n 9'1706852 n 9'1228640 n 7'4333612 8'4621542 7'9073430 n 7'6757121 n7.4974331n82057413 83072409 80343500 n71178445 n74938206 n68663034 n 8·3677773 n 9·0240493 n 8·5893912 7·9672463 8·1268700 7.5244715 n7.2786542 n7.2109869 9.4101850 n 9.1264092 n 8.9691996 7.8968121 8.3909396 7.6431401 n7.6921538 n7.3713294 6.7880771  $\begin{array}{c}
9.5313129 \\
n 8.9259981 \\
n 9.0264782
\end{array}$ 0.6532000 0.0000000 0.000000 0.0000000 0 o B 0 1 ŧI uu n 1 4 8 4 7 8 9 0 I u ~ 4 ~ ~ ~ ~ ~ 0 0 0 (b)  $\widehat{z}$ 9 n = 1

OI	0.9405565	OI	0/61586.0
6	0.9014038 0.1382094	6	0.9410843
00	0.8568561 0.0936617 0.093687	∞	0.8015767 9.8289753 9.9460759
7	0.8054689 0.0422745 n.9.2686643 n.9'1498391	7	0.8352294 9.7726281 n9.5455601 n8.9498442
9	0.7411271 9.9819326 n9.3120925 n9.1482941 7.6340870	9	0.7699274 9.7073261 n 9.5420138 n 8.9351211 8.6135523
w	0.6725506 9.9093562 n.9.3460246 n.9.1403198 8.0039459 8.4096852	ເດ	0.6923910 9.6297896 n9.5338994 n 8.9142026 8.2586558
4	0.582455 9.8190511 n9.3685168 n9.1221705 8.2220461 8.4441956 7.1591320	4	0.5971257 9.5345244 n.9.5183391 n.8.8833360 8.619896 8.2706448 n.7.9183684
	0.4639116 9.7007172 n9.3741642 n9.0861706 8.3737002 8.4637162 n 5.9061309	33	0.4738317 9.4112304 n.9.4892338 n.8.8448313 8.7.86981 8.2684115 n.7.9858231 n.7.9658231
7	0.2944252 0.5312307 n.9.347725 n.9.0134016 8.4690006 8.4495349 n.7.0871156 n.7.0871156 n.7.0871156	8	0.2993851 9.2367838 n.9.438578 n.8.7497617 8.7331871 n.8.0251496 n.7.6939354 7.3217672
Sect	0.000000 9.2368056 n 9.2368056 n 8.8334815 8.4571343 8.3347310 n 7.5162087 n 6.3107704 7.1529362	Ι	0.000000 8.9373986 n.9.2844183 n.8.5647362 8.6591604 8.0979934 n.7.9712381 n.7.5904756 7.2955456 7.0552034
o = <i>w</i>		o = w	
(b)	n = 1 2 2 2 4 4 4 4 4 9 9 9 10 10	(£)	n 1 2 8 4 7 7 7 8 9 0 1

Values of Log  $X_n^m$  from the formula  $X_n^m = \frac{1}{r^{n+1}} [(n-m) \, H'^{m+1}_n - m \mu' \, (1-\mu'^2)^{-\frac{1}{2}} \, H'^m].$ 

01	n 1·5042775	0 1	n 4.1925949	10	n 5.7423949
6	n 2°5138949 n 2°5132854	6	n 4.9029372 n 4.8960871	6	n 6.2795730 n 6.2621510
∞	n 3:5181171 n 3:5174609 n 3:4930886	80	n 5.6078845 n 5.6008436 n 5.5693560	∞	n 6·8113561 n 6·7934915 n 6·7498681
r-	n4'5155000 n4'5147834 n4'4874661 n4'4379001	7	n 6·3059922 n 6·2987059 n 6·2639707 n 6·2061276	1	n 7.3362997 n 7.3178651 n 7.2704527 n 7.1983470
9	n 5.5039282 n 5.5031315 n 5.4720486 n 5.4162481 n 5.3398466	9	n 6·9951453 n 6·9875316 n 6·9486233 n 6·8839718 n 6·7976748	9	n 7.8522886 n 7.8330931 n 7.7807734 n 7.7007979
vo	n6.4801217 n6.4792124 n6.4431454 n6.3792955 n6.2928738 n6.1877094	vs	n7.6720638 n7.6639913 n7.6195192 n7.5459962 n7.4486021	w	n8.3560429 n8.3357797 n8.2768458 n8.1864577 n8.0696310 n7.9299527
4	n7.4385865 n7.4375085 n7.3345284 n7.3198783 n7.2203536 n7.1007143	4	n8.312536 n8.324920 n8.202197 n8.1846229 n8.0724410 n7.9383670	4	n8.8420685 n8.8201990 n8.7518404 n8.5119441 n8.5119421 n8.3511200 n8.1673288
3	n8.3690227 n8.3676632 n8.3444423 n8.2245089 n7.9681271 n7.9681271 n7.6413500	es.	n8.9624147 n8.883661 n8.783667 n8.6522622 n8.783607 n8.452048 n8.3176981 n8.11229905	83	n 9.3000654 n 9.2755053 n 9.1925493 n 9.0667482 n 8.9034632 n 8.7105414 n 8.4894484 n 8.2406183
6	n9'2483063 n9'2463835 n9'1763740 n9'069014 n8'9193147 n8'7530193 n8'759548 n8'709548	69	n9.5424231 n9.5301993 n9.4461817 n9.1467374 n9.1457976 n8.9552944 n8.7385907 n8.7385907 n8.2437599	61	n9.7069097 n9.6769180 n9.5678483 n9.1033146 n9.1033746 n8.9368843 n8.6350036 n8.2693193 n7.7841134
ы	n · 0026511 n9'9990339 n9'859060 n9'7408708 n9'5530586 n9'5530586 n9'133076 n8'133076 n8'143848 n8'3474505	I	n9'9974929 n9'982610 n9'8505645 n9'6603244 n9'1354731 n8'8209587 n8'4311085 n7'9061624 n5'8302365	I	n9'988153 n9'9421087 n9'7671463 n9'49/8473 n9'1169111 n8'4666131 8'4585569 8'4585334 8'3098822
0 = <i>w</i>	8°9475112 9°2483062 9°364094 9°3032940 9°2213320 9°1005749 8°9521511 8°572918 8°572918	m = 0	9.2467200 9.5424231 9.6128427 9.5793744 9.4842815 9.1474705 9.1798815 8.0881046 8.7763240 8.5763240	m = 0	9'4197761 9'7669096 9'764214 9'7127365 9'7127365 9'7227031 8'9427874 9'2227031 8'942821 8'9735466
(a)	" " " " " " " " " " " " " " " " " " "	(g)	1 = 1	(0)	n = 1 2 2 3 3 4 4 4 4 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6

01	n 6·8175946	10	n 7.6260698	Io	n 8·2601831
6	n 7.2339367 n 7.2013354 n6	6	n 7.9507856 n 7.8979649	6	n 8.5121901 n 8.5121901 n 8.4334622 n 8
∞	n7.6448839 n7.6114596 n7.5502174	<b>∞</b>	n8:2701065 n8:2159209 n8:1308141	∞	n8.7588021 n8.6779518 n8.5615017
7	n 8·0489915 n 8·0445070 n 7·9486273 n 7·8554525	7	n8·5825879 n8·5266412 n8·4356204 n8·3131113	7	n 8°9985746 n 8°9149802 n 8°7906893 n 8°6279318
9	n8'441445 n8'4082421 n8'3362963 n8'2334993 n8'1034902	9	n 8·8861146 n 8·8278087 n 8·7289569 n 8·5939669 n 8·4253347	9	n 9.2293924 n 9.1421120 n 0.0072808 n 8.8271674 n 8.6005664
rv.	n 8-8270628 n 8-7891678 n 8-7089309 n 8-5931213 n 8-4461405 n 8-2707168	25	n 9:1774067 n 9:1157762 n 9:0060382 n 8:8336466 n 8:609216	25	n 9.4479756 n 9.3554817 n 9.2056827 n 8.0002734 n 8.3885066
4	n 9.1922523 n 9.1513511 n 9.0590546 n 8.9244903 n 8.7528673 n 8.5465906 n 8.3054539	4	n 9.4599701 n 9.3843046 n 9.283262 n 9.0796216 n 8.8488080 n 8.1867780	4	ng.6488301 ng.5483967 ng.1289868 ng.1289868 n8.7594901 n8.2754812
65	n9.5294133 n9.4534549 n9.3718386 n9.2072494 n8.9948766 n8.733737 n8.4141037 n8.0045525	3	n 9.6965048 n 9.6313155 n 9.4682099 n 9.2435886 n 8.9380719 n 8.5056245 n 7.6153853 7.8281981	82	n 9.8216558 n 9.7076585 n 9.10474986 n 9.1047452 n 8.6094978 8.0088015 8.3052875
61	n9.8154216 n9.7591688 n9.6106628 n9.3864407 n9.0819036 n 8.6556258 n 7.8101309 7.9512286 8.0872164	8	n9.8908869 n9.7981312 n9.7587389 n9.2525261 n8.6442117 8.5849244 8.5457893 8.3906025	81	n 9'9433291 n 9'8008628 n 8'8456293 8'7145049 8'9253637 8'850805 8'6508647 8'34633240
H	n 9.9764913 n 9.8878046 n 9.6273138 n 9.1446999 8.3331395 8.9193348 8.9417009 8.650579 8.4223872	I	n9'9603303 n9'8101619 n9'3747742 8'6722729 9'2163023 9'2299328 9'1027973 8'5865142 8'585056	I	n 9'9400636 n 9'688923 n 8'5700247 9'3482775 9'3225024 9'0857673 8'7219023 8'7219023 8'75814032
m = 0	9°5404655 9°8537016 9°8537016 9°7751726 9°6195687 9°4025229 9°1272268 8°7842400 8°3351592 7°5668649	0 = <i>w</i>	9'6319112 9'8908869 9'9034026 9'7863106 9'5731652 9'2650802 8'8197091 7'8884464 n'8'1202440	m = 0	9'7044113 9'94;3291 9'9220768 9'7502015 9'412603 8'9'121434 n 8'9077781 n 8'5949607 n 8'5362011 n 8'5362011
(9)	n=1 2 3 3 4 4 6 6 7 7 8 8 10	(9)	n = 1 2 2 3 3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	S	n = 1 2 2 3 4 4 4 4 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9

1911515.6 u n 9.1811704 n 8.7689207 oI 0 0 n 9.6177008 n 9.4145652 n 9.3247936 n 9.1728153 n8.9616521 n8.8503628 Values of Log  $X_n^m$  from the formula  $X_n^m = \frac{1}{\gamma^{n+2}} [(n-m) H_n'^{m+1} - m\mu' (1-\mu'^2)^{-\frac{1}{2}} H_n'^m]$  (continued). 6 6 6 n 9.3063433 n 9.0949809 n 9.7148906 n 9.5048107 n 9.2190145 n9.0345152 n8.8771935n 9.4630218 n 9.1489886 00 00 n 9°8052408 n 9°5860665 n 9°2750561 n 8°8194827 n 9.2043902 n 8.9004675 n9.3294854 n9.2108837n9.0427139 n8.8235538n 9.5944106 n 9.4316132 ~ n9.5010277 n9.3768597 n9.1938143 n8.9481009 n8.6245511 n 9.7168446 n 9.5457523 n 9.2961476 n 8.9446208 n 8.3958663 n 9.8866364 n 9.6550318 n 9.3067199 n 8.7294536 8.0527398 9 9 9 n 9'6603354 n 9'5282528 n 9'3234703 n 9'0361793 n 8'6267159 n9.8270440 n9.6440659 n9.3603233 n8.9228528 n7.8611366 8.2973871 n 9.9557974 n 9.7061704 n 9.2964756 n 8.3523126 8.6194733 8.6446695 5 n 94178710 n 9°0536539 n 8°3977874 8°1327574 8°3453754 n 9'9195148 n 9'7180750 n 9'3752207 n 8'7170778 8'4936598 8'6786339 8'5786339 n 9.7290840 n 9.1963902 8.5830004 8.9442790 8.8225964 8.4897132 n 9.8019142 n 9.6576826 9622L00.0 u 4 4 4 n 9.4432746 n 8.8663704 8.4584906 8.7528241 8.6750931 8.4487132 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10.2753429 ## 10. # 9.7003534 n 8.7308329 9.1533421 9.1797286 8.9414020 8.4405978 n 7.5023785 n 9.7498886 9.9154645 1261057.9n n9.9839568n 0.0306331 3 3 3 n9.9778622 n9.7671956 n9.2658956 8.7984387 9.0565807 9.096265 8.8785521 8.5053365 n 9.9972462 n 9.6894958 n 8.3843494 9.2901843 9.3152315 9.1096493 8.6983431 7.5946756 n 8.0698229 n 0.0028841 n 9.5436782 9.1791280 9.479254 9.3469328 8.9611330 7.7224059 n 8.3122208 C) O Ø n 9'5303500 9'2092122 9'5657834 9'5657834 9'2923954 8'8874204 7'9315986 n 8'2193790 n9.2264952 9.5398148 9.6059729 9.5065899 9.1268762 8.0243739 n8.53202264 n8.5202264 9.7029290 9.7036871 9.7036871 8.6264157 n 8.7271959 n 8.7563033 n 8.4566729 7.8287418 #8.2500519 n9.91532100.65588.6u 9.1524241 n8.4372208 n8.8753237 n8.787032 n8.5117120 n8.5222873 n7.4553042 n9.0626453 n9.0093379 n8.7102463 n8.0646398 7.7838965 n 9.2098183 n 8.9448734 n 8.2473490 8.1472263 8.2174552 9.7634561 9.9778621 9.9128116 9.8123189 9.9972463 9.8749877 9.4903119 9.8531046 9.8039197 9.6600975 n 9.1210428 0 0 0 II 11  $\parallel$ 38 2 uH 2 8 4 7 8 9 0 0 1 n ~ 4 ~ 0 ~ ∞ 0 0 u ≈ 4 20 0 7∞ 0 0  $\widehat{g}$ ==  $\tilde{\epsilon}$  $\overline{z}$ 

	00		~		20
OI	81852818	OI	8161166.6 11	oI	no.1454016
6	n 9.8507761 n 9.5820417	6	n o°0306415 n 9°6744241	6	n 0°1610291 n 9°6791460
∞	ng·9135754 ng·6343806 ng·2365420	∞	n 0.0046968 n 9.6919840 n 9.0864992	∞	n 9.6607598 n 8.6607598
1	n 9°9695352 n 9°5765101 n 9°320353 n 8°2776395	7	n 0.0919125 n 9.6970268 n 8.9659299 8.7196044	7	n 0°1746548 n 9°543483 8°5957838 9°0882059
9	noo165403 n 9.7043619 n 9.1837990 8.1088049 8.7287589	9	n 0°1101736 n 9°6838452 n 8°6517039 8°9707127 8°9108551	9	no.1690933 n9.5593137 9.0149366 9.2010117 8.8912318
١٨	no°0513109 n9°7108141 n9°0391974 8°7965320 8°9292202 8°7069267	ıv	no.1162000 n9'6416368 8.4282064 9.1657441 9.0082384 8.5280933	ın	no.1512971 n9'4416291 9'2673869 9'300089 8'9093040 n6'6156681
4	no.0683526 ng.6815831 n.84495653 g.1326022 g.0895171 8.7668430 8.0084752	4	no 1044978 n 9:5457563 9:1134050 9:3263663 9:0780236 8:4000448 n 8:1911408	4	no.1157722 n9.1029253 9.452516 9.3844612 8.8813989 n8.2762016 n 8.4919410
3	no·0573657 9°0342549 9°3742549 9°3733711 9°2093854 8'7417520 n'77855577 n 8°3078167	2	no.o647669 ng.3145879 g.4356335 g.4500429 g.1033387 7.4333818 n 8.5420294 n 8.3680436	3	noo522186 7.8791680 9.6155691 9.4502084 8.7418962 n.8.6877437 n.8.6415701 n.8.0327630
64	n 9.9952262 n 9.2497819 9.5497819 9.5581795 9.2698569 8.4253251 n 8.5852013 n 8.5852013 n 8.595089	62	n 9.973834 8.256731 9.6657178 9.564205 9.0202327 n 8.6375230 n 8.4348935 r 9.775080		n 9.9375125 9.3508497 9.7497171 9.4853204 7.6708628 n 8.9764862 n 8.7497380 n 7.4775871
ы	n9.8081480 9.2579880 9.7962052 9.6852032 9.1878779 n8.7268504 n 8.9653100 n 8.7043043 n 7.8754862 b.0096226	Ι	n9.7580611 9.5433800 9.8460400 9.6090209 8.4012142 n9.1054588 n.8.9733429 n.8.3075210 8.2182238 8.2242986	I	n9'6978675 97047396 9'8622004 9'8522004 n9'051870 n9'20811870 n8'7796515 8'244569 8'4028363
<i>m</i> = 0	9.8872428 9.9952262 9.9952262 0.6576380 n.8.5078771 n.9.1998812 n.8.6204876 8.3337781 8.4601266 8.4601266	m = 0	9'9157426 9'9738833 n'9'484327 n'9'4189689 n'9'0392981 8'2331455 8'6737780 8'3961395 7'0695463	m = 0	9'9393365 9'9375125 9'9375123 n'9'4971213 n'9'489000 n'8'504169 8'6791058 7'7712951 n'8'0624004
(k)	n 2 2 4 4 3 3 4 4 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(2)	n = 1 2 2 3 4 4 3 3 6 7 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	(m)	n = 1 2 2 3 3 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

no.2776760 no.24677840 10 01 n 8.9817785 n 0.2429710 n 9.5499403 9.4117511 no.2466846  $= \frac{1}{r^{n+2}} \left[ (n-m) H_n'^{m+1} - m\mu' (1-\mu'^2)^{-\frac{1}{2}} H_n'^m \right] \text{ (continued)}.$ 6 6 6 n 8.4216388 9.4488767 9.5040540 no.2337686 n9.4781197 9.1471403 n 0.2102982 00 00 00 0.1670723 9.5845886 9.5813745 8.8170738 no.2180411 8.7177842 9.5104294 9.1458016 n 0.2177267 n 9.3654878 9.2879723 9.2018459 n o'1148917 9'6564606 9'6089516 8'7351396 n 8'8132670 no.1776017 9.1486940 9.5686353 9.1537217 n 8-2229042 9.4093242 9.2554594 8.6017565 n = 0.1927301 n = 9.16519999 9 9 n 0.1249278 9.3809218 9.6236874 9.1469032 n 8.5632609 n 8.6782312 n 0.0504765 97216890 9.6353468 8.5733536 n 8.9271177 n 8.5331468 9.5170115 9.2995559 8.4464537 n 8.5280806 no.1554989 n8.6106458 S n 5 noo545252 9'5464576 9'6755261 9'1142670 n8'8122144 n8'7745333 n 9.9683327 9.7816596 9.6602051 8.0831566 n 9.0416646 n 8.5593980 8.2579087 8.942416 9.6141845 9.3298853 7.7868325 n 8.7210698 n 8.4309269 VALUES OF LOG_X" FROM THE FORMULA X" n0.10053904 7 n o·o175503 9·3845919 9·7023377 9·3371052 n 8·4966559 n 8·8912112 n 8·4582360 n 9.9560939 9.6781144 9.7236676 9.0271978 n 9.0241887 n 8.8618024 n 9.8581601 9.8373655 9.6828170 n 8.4236328 n 9:1591145 n 8:5586098 8:4796978 8:2779044 7.2064633 7.9269330 8 8 3 n 9.8834092 9.6312250 9.7813081 9.296531 n 9.9756303 n 9.388588 8.3377663 8.3377663 n 9.8065099 9.7892105 9.7666774 8.7686706 9.8895423 9.7015845 n 8.9429207 n 9.2820127 n 8.4897903 8.6974962 8.3779949 n8'9331752 8'2422055 8'5145569 7'8590321 n9.6968349N (VI N n9.1704472 n7.7183587 8.6572703 8.3651150 n7.4910810 n 9.5319873 9.8864862 9.8002458 n 8.5589391 n 9.4101266 n 8.6931810 8.6938041 8.6931287 9'938'506 9'7121272 n'9'28'4031 n'9'4135138 n'8'1111810 8'9199756 8'45'6587 n'8'2501632 n'8'1427969 n 9.6243293 9.8117336 9.8475741 9.1086582 n 9.3039506 7.5307334 n 8.1414848 9.9585651 9.8834092 n.88044940 n.972662199 n.972663366 8.7065386 8.9330241 8.3897328 n.8.1955832 n.8.1741886 9.9854269 9.6968349 n.9.5893434 n.9.5572655 8.5819810 9.15578628 8.4746230 n.8.5125429 9.9738298 9.8065099 n 9.3776236 n 9.6033796 n 8.8798899 9.660981 n 7.9971248 n 8.4245906 n 7.8431681 7.7752411 0 0 O 1 [] 11 unuu w 4 ≈ 0 ~ ∞ 0 0 n = 1n = 1■ 0 m 4 m 0 r ∞ 0 0  $\mathfrak{Z}$ 9 (d) 11 2

OI	n 0°1783174	OI	n 9.9228363
6	no.1390779 97945868	6	n 9.8787017
∞	no.0944433 9.8191300 9.5184737	∞	11.09.8291722 9.9583498 9.2964495
2	n o°o429693 9°849548 9°5291596 n 8°5617265	2	n 9.7728030 9.9654498 9.2977407 n 9.0924220
9	n 9.9825406 9.8661163 9.5393085 n 8.7339552 n 8.9051923	9	n9.7074792 9.9685219 9.2085720 n9.1540064 n8.7348311
vs	n 9.9098773 9.8886634 9.5487166 n 8.8884081 n 6.9745738	ιΛ	n 9.6299209 9.9735669 9.2987282 n 9.2213768 n 8.7863329 8.5124878
4	n 9.8194853 9.9106399 9.5569734 n 9.0350655 n 9.0489146 7.7119681 8.4796422	4	n9.5346337 9.9785853 9.2978380 n9.2962840 n8.8432449 8.6376775 8.3505673
~	ng.7010646 99320851 9'563384 ng.1296272 8'1914024 8'1914024 7'5581177		n9.4113179 99835772 9°2831629 n9.3813521 n8.9069609 8°7759146 8°4581768
0	n9.5314913 9.55653381 n9.3385013 n9.2186734 8.5315774 8.765180 7.0073611	69	n9.2368494 9.9885432 9.2891287 n9.4807890 n8.9794256 8.9316091 8.5786399 n8.3440346 n8.1271219
I	n9:2369793 9:9735192 9:97351940 0:95017431 n9:3187871 8:8380196 8:9236924 n7.7537253 n7.544011	Ħ	n8'9374424 9'9934836 9'2754249 n'9'0633753 9'1116300 8'7156673 n'8'5637879 n'8'5637879
<i>m</i> = 0	9.9935689 9.5314913 n9.7018271 n9.4333709 91.50220 91.502306 n8.5657560 n7.2592766 8.1472867	o = w	9'9983990 9'2368495 n'9'7599824 n'9'1622608 9'3276169 8'8746531 n'8'8148663 n'8'4931177 8'2483621 8'2483621
(b)	n	(r)	1 4 2 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n 4.1629870 n 1.4739740 01 0 0 g n 2'4864775 n 2'4829819 n 4.8761491 n 4.8664792 n 6.2538118 n 6.2336781 6 6 0  $\mu^{\prime 2})^{-\frac{1}{3}}H_n^{\prime m}$ ]. n 3.4935857 n 3.4900435 n 3.4627851 n 5.5839162 n 5.5740555 n 5.5397481 n 6·7883066 n 6·7677303 n 6·7213952  $\infty$ 00 00 I  $-m\mu'$  (1 n4.4938547 n4.4902520 n4.4600487 n4.4075966 n7.3159619 n7.2948156 n7.2446915 n7.1698741 n6·2848437 n6·2747376 n6·2371826 n6·1765197 ~  $-m) H_n'^{m+1}$ n5.4851689 n5.4814862 n5.4475172 n5.3888307 n5.3895431 n 6.9768166 n 6.9663831 n 6.9246550 n 6.8571837 n 6.7680669 n7-8346625 n7-8127553 n7-7577239 n7-6750367 n7-6750367 9 0 9  $= r^{n-1} [(n$ n 6.4642484 n 6.4604531 n 6.4215001 n 6.3547641 n 6.2654564 n7.6565549 n7.6456626 n7.5983707 n7.5220279 n7.4218140 n7.3015224 n8'3411285 n8'3181536 n8'2565080 n8'1634082 n8'0438698 n7'9014798 10 n  $X_m^m$ FORMULA n7.4216352 n7.3757691 n7.2982330 n7.1958222 n7.0732969 n 8·3185645 n 8·3069831 n 8·2518910 n 8·1634744 n 8·0484727 n 7·9115789 n 8·82298658 n 8·8052846 n 8·7342143 n 8·6266066 n 8·488926 n 8·3253588 n7.4255993 THE n8.3589215 n8.3546760 n8.2985690 n8.2057496 n7.7844678 n7.7844678 n 8·9525454 n 8·9398130 n 8·8729572 n 8·7670320 n 8·6311137 n 8·4710785 n 8·2909100 n 8·0933826 n 9.2905744 n 9.2633026 n 9.1776349 n 9.0481221 n 8.8831254 n 8.6874919 n 8.4636872 n 8.2121454 FROM 3 2 1 n 9.0471381 n 8.9005554 n 8.7313740 n 8.5445714 n 8.3435374 n 8.1306778 n 9.2410912 n 9.2362823 n 9.1633868 n 9.5353736 n 9.5203300 n 9.4334926 n 9.299345 n 8.914459 n 8.714520 n 8.2141520 n9.7001304 n9.6674270 n9.387170 n9.1737485 n8.9165465 n8.6110541 n8.243581 n7.7556405 M of Log N 19.9993220 19.9918188 19.727836 19.5371853 19.5371853 19.5373393 10.9916623 11.85599674 11.855899674 n9'9932632 n9'9712115 n9'8406952 n9'6476353 n9'4082837 n9.9353294 n9.7576553 n9.4856446 n9.1019967 n8.4519870 8.1623191 8.4028722 8.2814093 n 9.1271444 n 8.7998102 n 8.4071402 n 7.8793743 n 5.8006286 n 9.9847477 8.9431821 9.2410911 9.3163082 9.2903068 9.2054587 9.0818156 8.9305058 8.7583600 8.5698744 8.3681673 9°5424993 9°5353736 9°566853 9°566853 9°566853 9°3291418 9°3291418 8°9641363 8°9641363 8°7495359 9.4157085 9.7001303 9.7547304 9.7005338 9.5792452 9.202365 8.9612326 8.6877854 8.3797044 0 0 0  $\parallel$ Ш um 3 8 m 4 m 0 r m 0 0 I u ~ 4 ~ ~ ~ ~ ~ 0 0 0 1 4 5 4 5 0 7 8 9 0 E હ

OI	609906L-9 u	OI	n 7.6010314	10	н 8-2373374
6	n7.2095681 n7.1744017	6	n7.9281318 n7.9281318	6	n8.4915202 n8.4106165
∞	n7.6230804 n7.5870910 n7.5232837	80	n8·2498373 n8·1932671 n8·1057757	00	n8.7403080 n8.6572819 n8.5386560
7	n 8.0297531 n7.9027035 n7.9242587 n7.8285188	2	n8·5647033 n8·5653720 n8·4129666 n8·4129666	7	n 8·9822563 n 8·8964861 n 8·7700194 n 8·6050861
9	n 8.4274712 n 8.389037 n 8.3144928 n 8.2091307 n 8.0765565	9	n8:8706146 n8:8099241 n8:7086877 n8:5713131 n8:4002963	9	n 9.2152498 n 9.1257937 n 8.9887867 n 8.8064975 n 8.5777207
νo.	n8-8129547 n8-7724945 n8-6896925 n8-5713178 n8-4217719	Ŋ	ng.1642914 ng.1002762 n8.9881536 n8.6383774 n8.6382678	ιń	n 9'4360088 n 9'3413391 n 9'1893644 n 8'917793 n 8'7134227 n 8'3556609
4	n9.1807093 n9.1372430 n9.0423813 n8.9052519 n8.7310638 n8.5222220	4	n9.4402394 n9.3711893 n9.2428262 n9.6617370 n8.885388 n8.5363053 n8.1617396	4	n 9·6390391 n 9·5364299 n 9·3013942 n 9·1126685 n 8·7709960 n 8·2548113
₆₀	n 9.5204354 n 9.4719119 n 9.3577305 n 9.19057761 n 8.9756382 n 8.7119338 n 8.3897351	દ	n 9'6881587 n 9'6105848 n 9'4550946 n 9'2250886 n 8'9201873 n 8'4853553 n 7'5927315	83	n 9.8140406 n 9.6978675 n 9.1506026 n 8.5931795 7.9903074 8.3849781
0	n 9.8090088 n 9.7501909 n 9.7501198 n 9.3723326 n 9.062333 n 8.6363874 n 7.7943274 7.9268600 8.0602827	2	n9.8849254 n9.7897851 n9.2394108 n8.6367117 8.268715 8.546552 8.546552 8.5231355	O	n9.9378897 n9.7932476 n9.4823842 n8.8336625 8.7003623 8.9090454 8.8333964 8.6301948
н	n9.9726436 n9.8813918 n9.1331559 8.3100314 8.9026615 8.9224625 8.8131656 8.6316893 8.3934535	H	n9'9567534 n9'864281 8'6615422 9'2031870 9'2144328 9'0849127 8'8662450 8'5665518 8'1638170	1	n 9.9367999 n 9.634829 n 8.5624095 9.3354865 9.424223 9.3633598 9.0694490 8.7034082 8.7034082 8.7034082 n 7.5585575
<i>m</i> = 0	9.5366178 9.8090088 9.8447237 9.7636296 9.6554606 9.3558496 9.1079884 8.7024365 8.3107906 7.5399312	m = 0	9.6283343 9.8849254 9.8950565 9.7755799 9.260499 9.2495802 8.8018245 7.8881772 n 8.9975902 n 8.1711590	m = 0	9°7011476 9°9378897 9°9144616 9°7404105 9°492935 8°8960008 n°8°5764666 n°8°5764666 n°8°5764666
(p)	n = 1 2 2 2 2 2 4 4 4 9 9 0 1 0 0 1	(9)	n = 1 2 2 2 4 3 9 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	(5)	1 = 1

n9.1633245n 8.7484974 m 9.4999239 0 0 0 n8.9431739 n8.8299395n 9.6039555 n 9.3993730 n 9.3086473 n 9.1549694  $-m\mu'(1-\mu'^2)^{-\frac{1}{2}}H'_n^m$  (continued). 6 6 6 n 9.1324554 n 9.0160370 n 8.8567702 n 9.4485752 n 9.2901970 n 9.0771350 n 9.4910654 n 9.2038223 n 9.7025922 00  $\infty$ 00 n 9.5816636 n 9.4171666 n 9.1882439 n 8.8826216 n9.3148973 n9.1943505 n9.0242357 n8.8031305 n 9.7943892 n 9.5737681 n 9.2613108 n 8.8042905 n9.7057972 n9.5330053 n9.2817010 n8.9284745 n8.3780204 n 9.4883847 n 9.3622716 n 9.1772811 n 8.9296227 n 8.6041278 n9°8772317 n9°6441802 n9°2944215 n8°7157083 8°0375476  $_{-n}^{m} = r^{n-1} \left[ (n-m) H'_{n}^{m+1} \right]$ 9 Ó 9 n 9.8176962 n 9.6330185 n 9.3475763 n 8.9084062 n 7.8449903 8.2795412 n 9.6496375 n 9.515698 n 9.3088822 n 9.9478396 n 9.6967657 n 9.2856240 n 8.3400142 8.6057280 8.6294773 n 9.0196461 n 8.6082377 n 7.8488631 S LO. w n 0.0007187 n 9.7211262 n 9.1869855 8.5721488 8.9319806 8.8088511 n 9.7931614 n 9.6469847 n 9.4052280 n 9.0390658 n 8.3812542 8.1142792 n 9.7087272 n 9.3641733 n 8.7043308 8.4792132 8.6624876 8.5278809 × 9998116.6u THE FORMULA 4 4 n 9.9086567 n 9.7414443 n 9.4325767 n 8.8537274 8.4439025 8.7362909 8.6566149 n 9.7422404 n 9.2659951 8.4682095 8.9903644 8.9260050 8.6720402 8.2186039 n = 0.0255690 n = 0.0255690 n = 0.0255690 n = 0.02556909.1439374 9.1688770 8.9291036 8.4268525 n7.4871863 2800879°9 n 8.4282899 3 3 3 FROM n 9.9729995 n 9.7603878 n 9.2571428 8.7877408 9.085934 8.8620189 8.4868583 7.8042074 n 9.9929972 n 9.6835472 n 8.3767012 9.2808365 9.3041841 9.0969023 8.6838965 9.5386141 9.172476 9.3375281 8.9502814 7.7101075 7.5779293 n 8.3642302 n 8.2970286 6992666.6 u 24 N Ø N 0 OF LOG n9.5254873 n9.5254844 9.5570306 9.5060942 9.2797524 8.8728323 n 9.8830476 n 9.2222462 9.5338662 9.6603247 9.8480260 7.8251246 9.6971864 9.6971762 9.4081895 8.6170110 n8.7163443 n8.7440049 n8.4429276 n7.6764247 7.9150654 n 8.2009008 n 8.2296286 9.5005111 n 8·5225933 n 8·5040801 n 8·2283888 n 9.9124034 VALUES 9.8509343 9.9922669 9.7988556 9.1318707 n.9.1130850 n.9.2004136 n.8.9340218 n.8.2350506 8.134810 8.2022630 9.7605385 9.9060038 9.0513447 9.1417652 n 8.4245778 n 8.7704700 n 8.7704700 n 8.704700 n 8.704700 n 8.0018040 9.8097695 9.922973 9.869331 9.882637 n7.445954 n9.0515979 n8.0955999 n8.0957997 n8.0484335 7.7660506 0 o 0 H Ü (I 3 B m u ~ 4 ~ ~ ~ ~ ~ ~ 0 0 n w 4 200 200 0 0 4 m 4 m 0 p 0 0 0 (g) n=1ર n = 1Ē 11 11

1					
01	n 9.7700386	10	n 9°9812123	01	n 0 · 1378245
6	n 9.8394275 n 9.5694985	6	n 0°0216129 n 9°6644451	6	no.1541736 n9.6715689
8	n 9.9034214 n 9.6230320 n 9.2239988	8	no.0566185 n9.6829554 n9.0765202	<b>∞</b>	no.1651279 n9.6539043 n7.9930526
1	n 9.9605758 n 9.2206867 n 8.2206867 n 8.2650963	7	n o o o o o o o o o o o o o o o o o o o	2	no 1692426 n9'6182145 8'589283 9'0806288
9	no.oo87755 ng.6954025 ng.1736450 8.0974563 8.7162157	9	no.1039961 n9.6767173 n8.6436256 8.9616841 8.9008761	9	no.1644027 n9.5539015 9.058028 9.1941562 8.8836547
ທ	n 0.0447407 n 9.7030493 n 9.0302380 8.7864780 8.9178716 8.6943833	\$	no.1109729 n9.6354593 8-4210785 9-1576658 8-992208 8-5181143	v	n 0°1473282 n 9°4,59385 9°2019747 9°2038751 8°9024485 n 6°6080910
4	noo629770 n96750129 n84418005 91236428 90793631 87554944 79959320	4	no.1002211 n9.5405292 9.1072275 9.3192384 9.0699453 8.3910162 n.8.1811618	4	no.1125249 ng.1889564 9.435610 9.3790490 8.852651 n 8.2693461 n 8.4843639
т	noo531846 n95751064 99276847 93656123 92004260 87115980 n77712091 n8 2952735	ro.	n 9 3103112 9 4304064 9 4328654 9 9 9062108 7 7443035 n 8 5330008 n 8 3550646	çs	n o o o o o o o o o o o o o o o o o o o
0	n 9'9922397 n 9'2456008 9'5002375 9'516093 9'2620921 8'4163657 n 8'5750473 n 8'5750473 n 8'5750473	7	n 9.9715074 8-2534068 9-6614411 9-5551934 9-0230552 n 8-6303951 n 8-7866925 n 8-786649	2	n9.9357084 9.3483240 9.7404698 9.7404698 7.6121722 n8 9710740 n8.74707316 8.1718674
П	n9.8063561 9.2550015 9.7920241 9.6798276 9.1813077 n8.7190856 n.8.9563506 n.8.6941503 n.7.8641376	I	n9.7566355 9.5410040 9.8427137 9.6047442 8.3959871 n9 0992813 n 8.2994427 8.2091952 8.2143196	H	n9'6967851 9'7029355 9'8596747 9'4476875 n9'0012181 n9'2024533 n8'7742393 8'4559808 8'0163179
<i>m</i> = 0	9.8854509 9.9922397 9.6834569 n.8.5625015 n.9.14216405 n.9.102115282 n.8.6115282 8.3336241 8.487780 8.487780	<i>m</i> = 0	9'9'143170 9'9715073 9'9715073 0'990964 0'9'031206 8'2260176 8'656997 8'3871109	m = 0	9'9382541 9'9337084 n'9'4938740 n'9'3849311 n'8'4087263 8'6729720 9'7644396 n'8'0548233
(k)	2 8 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(5)	n   1   2   2   2   4   4   4   4   4   4   4	( <i>m</i> )	# 1 2 5 4 7 2 0 0 0 0 1

n 0.2413690 n 0.2898802 no.2756494 0 0 10 n 0.2709673 n 8.9782378 n 9.5445309 no.2448510 9.4097245 10.2380768  $= r^{n-1} [(n-m) H'_n^{m+1} - m\mu' (1-\mu'^2)^{-\frac{1}{2}} H'_n^m] \text{ (continued)}.$ 6 6 6 n 0.2466594 n 8.4184353 9.4453360 9.5022204 #9.4732255 9.1417309 11 0.2086577 n 0.2293896  $\infty$ 00 00 no.2138629 ng.3611088 9.2830781 9.1964365 8.7149179 9.5072259 9.1422609 9.5829481 9.5795409 8.8150472 no.1656248 no'2155120 9.6550131 9.6073111 8.7333060 n 8.8112404 n 0.1754098 9.1461649 9.5657690 9.1505182 n 8.2193635 n 0'1893814 n 9'1613361 9'4049452 9'2505652 8'5963471 10.1136372 9 Ø 9 9'3787299 9'6211583 9'1440369 n'8'5600574 n'8'6746905 no.1526654 n8.6072971 9.5131477 9.2951769 8.4415595 n8.5226712 n 0°0494150 9°7204345 9°6338993 8°5717131 n 8°9252841 n 8°5311202 n 0.1230732 เก n S VALUES OF LOG X" FROM THE FORMULA X" 9.5446030 9.6733342 9.6733342 8.8093481 8.7713298 4.77830498 8.9396081 9.9260215 9.3260215 7.7824535 n 8.7161756 n 9.9674642 9.7805981 9.6589506 8.0817091 n 9.0400241 n 8.5575644 8.2558821 11 0.0530078 no.0982207 4 n99549137 9'6765970 9'7218130 9'0250059 n9'0216596 n8'8589361 n 9.8574846 9.8364970 9.6817555 n 9.1276670 n 9.1576670 8.4778642 8.2758778 n 0.0157472 9.3822736 9.6995042 9.3337565 n 8.4927921 n 8.8868322 n8.4533418 7.9215236 7.2032598 3 8 3 97007160 n 8'9418592 n 9'2807582 n 8'4883428 8'6958557 8'3761613 n 7'8991357 9.6294219 9.7789898 9.7789898 n 8.9722816 n 9.0386320 n 8.384301 8.3328721 9.7880303 9.7651600 8.7668160 n9'2175122 n8'9306461 8'2393392 8'5113534 7'8554914 n 9.6963524 9.8888668 n 9.8821213 n 9.8056669 N N N n 9.6235565 9.8104457 9.8457710 9.1063399 n 9.1670985 n 7.7144949 8.6528013 8.3602208 n 9.5314815 9.8856432 9.7990656 n 8.5574217 u 9.4082720 n 8.6912750 8.6902624 n9'4102815 9'9382681 9'7114517 n9'2805346 n 9.4124523 n 8.1099265 8.9185281 8.4562182 n8.2483296 n8.1407703 7.5275299 n 8.1379441 n7.4856716 9.9851374 9.6963524 n.9.588679 n.9.5563970 8.5809195 9.1542283 8.47342283 n.8.5803812 n.8.3107093 n 9.5839016 n 9.2461535 8.7031899 8.9297603 8.3853538 n 8.1906890 n 8.1687792 n 9.3764434 n 9.6018622 n 8.8780353 9.0587162 8.8527720 n 7.994285 n 8.4213871 n 7.8396274 9.9577923 9.8821213 n8.8026909 9.9733240 7.7732145 0 0 0 11 H n  $\boldsymbol{m}$ m u ~ 4 ~ ~ ~ ~ ~ ~ 0 0 0 m 4 m 0 r ∞ 0 0 4 m 4 m 0 r 00 0 0 n = 1n = 1n=1E 3 <u>@</u>

01	n 0°1774055	IO	и 9.9226066
6	no.1382528 97936749	6	n 9.8784939 9.9529922
∞	n 0:0937051 9:8183049 9:5175618	∞	n 9.8289863 9.9581420 9.2962198
7	no.0423179 9.8422166 9.8528334 <b>5</b> n 8.5608146	7	n 9 7726390 9°9632639 9°2975329 10°9075329
9	n 9°9819761 9°8654649 9°5385703 n 8°7331301 n 8°9042804	9	n 9.7073370 9.9683579 9.298.3861 n 9.1537986 n 8.7346014
W)	n 9.9093996 9.8880989 9.5480652 n 8.8876699 n 8.9737487 n 6.9526463	5	n9.6298006 997,4447 9.2985642 n9.2211909 n8.7861251 8.5122581
4	n 9.8190945 9.9101622 9.554689 n 9.0344141 n 9.0481764 7.7111430 8.4787303	4	n9.5345353 9.9784659 9.2976908 n9.2961200 n 8.8430590 8.6374697 8.3503376
8	### ##################################	3	n9'4112413 9'98'47'88 9'28'50426 n9'38'12099 n8'9067969 8'7757287 8'4579690 n8'1466324
64	n 9.5312742 9.9537302 9.5659473 n 9.331236 n 9.2181036 8.5309260 8.5309260 7.0065360 n 8.2288622	62	n 9.2367947 9.9884666 9.289333 n 9.480687 n 8.972834 8.9314451 8.5784540 n 8.12889228
I	ny.2368490 99733021 975611900 ny.3611900 ny.3183094 88334551 89230410 ny.759871 ny.759871 ny.759871 ny.759871	н	n8.9374096 99934289 9.2753483 n9.0603255 9.1114878 8.7155033 n 8.5636020 n 8.2981156 7.9687820
0=11	9.9934386 9.5312742 n.97015231 n.94329801 9.1065209 n.8°3547453 n.8°6663178 n.7°254515 8°1463748	<i>m</i> = 0	9'9983662 9'2367948 n'9'7599058 n'9'1621624 9'3274966 8'8745109 n'8'8147023 n'8'4919318 8'2481543
( <i>b</i> )	n = 1 2 2 2 3 3 4 4 4 4 9 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	(r)	1 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Values of Log  $Z_n^m$  from the formula  $Z_n^m = \frac{1}{r^{n+2}}(n+1) H_n'^m$ .

10	.4905303	10	3.4832147	OI	5.2147484
6	1.5045125 1.5456702	6	4.1979218	6	5.7562913 5.7837875
80	2.5141297 2.5596523 2.5771417	8	4.9082641 4.9486947 4.9605185	∞	6.2934694 6.3253395 6.3275865
7	3.5183521 3.5692996 3.5882526 3.5806840	7	5.6132113 5.6590369 5.6722824 5.6583261	7	6.8252524 6.8625085 6.8660611 6.8412663
9	4.5157350 4.5734920 4.594205 4.5848866 4.5506892	9	6.3113192 6.3639842 6.3788679 6.3629771 6.3214526	9	7.3501961 7.3942916 7.3993314 7.3722629 7.3182232
w	5.5041630 5.570848 5.593588 5.5817061 5.5421536 5.4795220	70	7.0004722 7.0620921 7.0788531 7.0128933 6.9416689	rv	7.8661849 7.9192352 7.9259272 7.895738 7.8351044 7.7491027
4	64803566 65593029 65842849 65688163 65218102 64494739	4	7.6773907 7.7512451 7.7701017 7.7474617 7.6922336 7.6105778 7.5070088	4	8.369393 8.4352241 8.4352240 8.4088412 8.339457 8.2416279 8.1197701
8	7.438215 7.5354965 7.5028689 7.5441326 7.3986574 7.2907908	~~	8.3365805 8.4281636 8.4291516 8.4201516 8.3536865 8.3536865 8.2578160 7.9987219	8	8.8559648 8.9389784 8.9491425 8.906957 8.8248821 8.7107794 8.5701017 8.4066369
8	8.3692576 8.4939614 8.5231277 8.4918036 8.4185199 8.3143132 8.3143132 8.3933533 7.8769388	8	8 9677415 9 0873533 9 0697628 9 0698027 8 9861994 8 8696944 8 8696944 8 87275185 8 7643956	64	93139618 94250040 94357718 973811160 9279337 91410236 89729392 87793169
ı	9'2485412 9'42439'4 9'45'13481 9'4002040 9'3005132 9'167516 9'0101431 8'8340439 8'64308635	1	9'5477500 9'737814 9'737814 9'56762844 9'5634628 9'4144173 9'237873 8'8220815 8'5280815	1	97208060 98830009 98830009 9805160 9735411 97354311 97354311 87593041
<i>m</i> = 0	3936811 3917,582 2012178 2043214 9864822 976612055 9734672 89593381 87947989	<i>w</i> = 0	2985229 2862992 1699309 97995562 97845879 9741347 89800007 8 6575874	0 = m	2898452 2598336 1149483 97895629 97892629 972891178 87212355 777429434 777429434
(a)	1 2 2 4 7 0 0 0 0 0	(9)	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(6)	1 = 1

		* **		
10	10	7.3390433	01	8.0659235
9 6-8436684 6-8589873	6	7.6681240 7.6674624	6	8.3222953 8.3015758
8 7.2600106 7.2796942 7.2682804	∞	7.9928400 7.9955431 7.9670504	∞	8:5743023 8:5579476 8:5579476
7 7-6709577 7-696354 7-6857313 7-6857313	7	8.3121605 8.3212591 8.2926099 8.2313406	7	8-8209143 8-8099546 8-7580029 8-6698273
6 8.0750654 8.059335 8.079139 8.0547408 7.9824841	9	8.6246423 8.6405799 8.6128243 8.5480517 8.4509911	9	9°0506869 9°0565666 9°050353 8°9122937 8°78243°00
\$ 4702183 8.4702183 8.5110912 8.45633607 8.4565115 8.2684533	ທ	8.9281689 8.9530614 8.9261871 8.8565761 8.7502909 8.6114252	ır,	9.2915046 9.2963392 9.2450549 9.1460277 9.0043834 8.8228203
8.8531366 8.8933366 8.893838 8.8472399 8.756982 8.634944 8.4389444	4	9.2194610 9.2565880 9.2304100 9.1537694 9.0346773 8.8781153 8.6868800	4	9.5100878 9.5271569 9.4756735 9.3675190 9.2092333 8.034255 8.7487849
3 9.2183262 9.2831624 9.224446 9.1170478 8.9751694 8.8014879 8.8014879	8	9.4930244 9.5478801 9.5217233 9.4341365 9.2960777 8.8885574 8.6198793	3	97109422 97457400 976529185 95705115 971431283 88316350 84253928
2 9'5554871 9'6543520 9'6543520 9'5720252 9'4427204 9'7720238 8'81177122 8'81177122	~	97385591 98214435 97831008 97831008 97971008 979717488 876497182 876497182	0	9°8837680 9°9465945 9°892773 9°7420160 9°5145266 9°1995914 8°7550396 7°79021636
1 98414955 99915129 99786403 98720827 96987500 91694696 91852188 88353025 876082576	н	9'9329412 '0669782 '0283413 '9'832206 9'6523465 9'3320270 8'8777011 7'939590 n'8'1660015	Ĭ	.0054413 .1194203 .0470155 9.8471115 9.5204416 8.9790902 n.8.1557701 n.8.6461132 n.8.5819586 n.8.5819586
$m = 0$ $m = 0$ $\frac{2775213}{2212684}$ $\frac{2775213}{97372829}$ $\frac{97372829}{97333999}$ $\frac{85033963}{85033963}$ $\frac{85033963}{8581046}$ $\frac{886778707}{88678807}$	<i>m</i> = 0	2613603 1686046 9'9060521 0'77079758 ng'0188747418 ng'62278108 ng'6227844 ng'6227844	m = 0	2410936 '0986274 97130334 87788099 n 9.2710749 n 9.2710749 n 9.266663 n 8.7865629 n 8.2906518 6.3333005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>\$</u>	n = 1 2 2 4 4 3 3 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(5)	n = n

Values of Log  $Z_n^n$  from the formula  $Z_n^m = \frac{1}{r^{n+2}}(n+1) H_n'''$  (continued).

01	8-6584485	IO	9.1492850	IO	9.5594170
6	8-855547 8-8103134	6	9.2972730	6	9.5565087
∞	9.0482762 9.0074096 8.9265396	8	9'4408962 9'3705511	8	9.7689514 9.6634583 9.5049510
7	9°2356125 9°2001410 9°1192439 8°9969357	7	9.5791245 9.5141744 9.3976859 9.2321058	7	98661411 97660431 976558016 97845282
9	94161096 93874774 93063480 91779231	9	97105133 9'6524026 9'5347690 9'3607159	9	99564914 98632328 97005302 94669852
ıvı	9.5876517 9.567945 9.4862138 9.3493330 9.1602710	25	9.8329472 9.7837914 9.6642933 9.4784835 9.2236030 8.8857782	w	.0378869 9.9535831 9.7872411 9.5364211 9.1824332 8.6539240
4	97469593 97395165 9°6563118 9°294948 9°0150205 8°6489110	4	9'9431467 9'7835259 9'7835250 9'2899999 8'8804566 E'1983858	4	.1070479 .0349786 9.8628734 9.572137 8.3848230
(7)	9.8885383 9.8988242 9.8123795 9.438453 9.3946807 9.9492174 8.5408703 6.8166944	3	.0356174 .0164248 9.887755 9.6567974 9.3047540 8.7289007 n 7.9562743	8	1584801 1041395 9°220883 9°6018155 9°0469397 n 8°3382442 n 8°6406146
6	.0020885 .0404032 .0404033 9.9461983 9.7431123 9.4239492 8.9170246 n.7.4738714 n.8.4332279	61	.1000594 .1088955 90670424 91919908 n 79511236 n 87327196 n 86366985	81	1818836 1555718 9.9339304 9.5461445 8.3355849 n 8.9435361 n 8.8318390 n 8.5294164
I	0644861 1539533 0377503 97570075 97570075 97570075 n8 5541676 n8 8574695 n8 8574695	I	1113348 1733376 1733376 9'999264 9'587219 n'75344855 n'7139592 n'8'1103973 7'8252892	I	11541346 1789753 9'9288584 9'228216 n'9'2002240 n'9'206565 n'8'2085015 8'1929838 8'1929838
m = 0	2163510 0056844 9.3521326 n 9.3134468 n 9.315468 n 9.3064964 n 8.267511 n 8.2678179 8.058677	m = 0	1866270 9.8788765 n 8.7049147 n 9.5729112 n 9.151278 n 8.449167 8.448664 8.4997418 8.2036180	<i>m</i> = 0	11512263 9'6530501 n 9'653050 n 9'6733053 n 9'6733053 n 9'6733053 n 8'8897654 8'6112811 8'7392733 8'4795722 7'8166355
(9)	n = 1 2 2 2 4 4 3 4 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(h)	1 2 2 4 70 7 8 9 0	(i)	# 1 2 & 4 7 7 8 9 0 0

OI	9.9030693	IO	5592061.	OI	.4282632
6	9.9756284	6	.2340805 .0325839	6	.4482556
∞	.043827 9.8965336 9.6852014	8	.2735308 .0763990 97984433	8	.4638832 .2067866 9.8414900
7	.1066220 97501682 97501682	1	.3075860 .1158492 9°8323095 94296349	7	.4741158 -2224142 98474583 9°2626049
9	.1625819 .0275272 9.8085512 9.414207	9	.3348019 .1499045 9.8588219 9.4226051 8'6344007	9	.4775090 .2326469 9.8446466 9.1816985 #.85588712
v	2095809 -0834871 9.8581765 9.5159051 8.9794684 n 7.3859053	5	.3530628 .1771203 9.8753551 9.3877239 8.0530351 n.8.6508152	5	.4719473 .2360400 9.8295205 9.022518 
4	2443574 1304920 9'8955023 9'5098735 8'7910770 #8'5091156	4	.3590894 .1953813 9.8774775 9.3002306 n 8.5572420 n 8.5454973	4	.4541512 .2304783 97957593 8.5795761 n.90603271 n.8°604537
8	7.2613992 1.165.2626 9.91409644 9.4499550 10.68103310 10.88750282 11.87263126	3	.3473870 .2014078 908567235 90953182 n 90157852 n 8:9917774 n 8:5353268 77179295	3	.4186263 -2126822 97302089 n87614527 n972261898 n8*8978630 772386868 8*3525742
8	"2504122" 1823044 9'9000892 9'2438129 n'9'0230723 n'9'1130172 n'8'1937293 n'7'7813632	2	26 3076561 13 1897055 02 8229641 19 09036041 19 0903604 17 18 186345 18 31386345 18 313589	8	3550727 1771574 95973408 n95875415 n9782885 n85640307 8493620 8493620 8493620 85553404 8°6829392
П	1183728 11713174 9°8125767 n°8 6647871 n°9 2668280 n°8 6784796 8°349306 8°5058841 8°1830137	I	2167726 1499745 9'6192613 n'9'3856302 n'9'1662449 8'2911375 8'7443305 8'4418970 7'1109330	н	"136037" "136037" "136037" "136037" "136037" "136037" "136037" "136037 "136037 "136037 "136037 "136037 "136037 "136037 "136037 "136037 "136037
<i>m</i> = 0	9.363733 9.363733 9.9693110 9.962610 9.92818929 8.4956130 8.9412817 8.731714 8.731714 8.076679	o = u	0590911 n8 3419461 n9 7987584 n8 7902225 n8 7902225	m = 0	9'9988975 n'9'4122350 n'9'478120 n'9'5151913 8'840182 9'1998716 8'8167482 n'8'1526486 n'8'4571649
(k)	n = 1 2 2 2 4 3 3 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	n = 1 2 2 2 4 3 3 9 0 10 0 10 0 10 0 10 0 10 0 10 0 1	(m)	n = 1 2 2 2 4 4 3 3 6 5 7 7 6 9 8 8 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Values of Log  $Z_n^m$  from the formula  $Z_n^m = \frac{1}{r^{m+3}} (n+1) H'_n^m$  (continued).

IO	.6224069	01	.7766561	10	-8939246
6	.6229643	6	7617708	6	789061E. 0862498-
8	-6191569 :2887285 9-8003074	8	7425207 3199283 96291404	8	-8363066 -2924421 9°0547357
7	.6099545 -2849211 9.7786212 8.6456995	7	7178756 3006782 9.5693014	7	7999202 -2614507 87622101 9°3113508
9	.5939127 .2757187 9.7448979 6.6258052 n 8.9756764	9	.6863910 2760330 94854895 n 91576788	9	7566944 2250643 n7.5750472 n9.3648033 n8.8123030
۳۷	.5689160 .96931809 n.8.7376305 n.90790861	5		5	"7945137 "1818385 "88617845 "97417772 "87845331 85825652
4	.5316848 .2346802 9.6115146 n.9.0934883 n.9.1694674 n.8.600362	4	.5932777 .2041091 9.1333046 n 9.3907162 n 9.9220690 8.048471 8.5392169	4	.6400986 .1296579 n9.1800669 n9.4712559 n8.7712570 8.7372270
ю	.4767248 .197489 9.4698285 n.97246315 n.84377468 8.5415099 8.3723702	8	.5228751 .1544352 8.3515790 10.940414481 11.97136005 8.5255820 8.6722425	**	.5579547 .0652427 n9.3870277 n9.5266352 n8.5734908 8.8913955 8.5100412 n8.0816446
70	.3937362 .1424890 9.1449217 n9.5141192 n9.3648988 6.7790787 8.7799787 8.4466275	8	.4244437 .0810325 n.90820869 n.95953831 8.8501161 8.8501161 8.7083028 7.4635813 n.8.2364640	2	74477821 9.9830988 n.9.5540311 n.9.5861842 n.7.9638212 9.0507991 8.5473334 n.8.3616531
н	2595951 0595004 n96831299 n973281683 87734854 89016161 8 4408853 n 8 2413407 n 8 2413407	I	2748598 9.9826012 n.9.5025623 n.9.7002896 9.1278549 8.9132931 n.8.0482773 n.8.4703481	jed	2864569 9.8729262 n9.7142821 n9.6541755 8.6611623 9.2224296 8.5328150 n8.5331742 n8.5333004
<i>m</i> = 0	9'9253593 n9'6731752 n9'8336042 n9'2382666 9'2669711 9'18\8176 8'0377320 n8'6434725 n8'3799758	o = <i>m</i>	9°8330173 n9°8157178 n9°8195874 n5°6493716 9°4007633 8°9994289 n8°6599867 n8°6590565 n7°6496287 8°1335328	m = 0	9.7116010 n.9.9043084 n.9.7402390 9.2231199 9.4169075 8.28,7288 n.8.9140124 n.8.4766725 8.2350723 8.1477201
(n)	n = 1 2 2 3 4 4 4 4 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(0)	1 2 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	( <i>d</i> )	1

ΙG	1662916.	01	9581520.1
6	.9414250 .2197101	6	9854158
∞	.9021854 1848354 19:3486336	∞	.9412813 99244593 n9.6829745
7	.8575509 .1455958 n9.4178300	7	-8917516 9-8803247 n 9-6990361 n 9-1447348
9	.8060769 .1009613 n.9.3644065 7.8916789	9	.8353825 9.8307950 n.9.7166571 n.9.1555438 8.8753896
w	7456481 '0494873 n 9'5442346 n 9'3597691 8'2992396 8'7464584	w	.7700587 9.7744260 n.9.7365496 n.9.1680272 8.9545715
4	.6729849 9.9890586 n.96055579 n.94772905 8.5684054 8.3633993 7.5928152	4	.6925003 9.7091021 n.97598855 n.9788865 9.047242 8.6671588
	.\$825929 9.9163953 n.9'6691104 n.9'4681504 8'7937589 8'9350142 n.6'4232733 n.8'3713322	es	.5972132 9'6315437 n9'7887522 n9'2013154 9'1431970 8'7440848 n8'5072758
01	.4641722 9°826033 n9735419 n97484391 9°050771 9°050771 n8°5356849 n8°5356849 n8°5356849	69	.4738973 9.5362566 n.9.8272624 n.9.2253694 9.2613878 8.8337773 n.8.6769142 n.8.3914794
<b>H</b>	2945989 9707826 n95302809 972322018 97232018 97133387 n87182085 n73050341	I	2994290 94129408 n 9'8849211 n 9'2591708 94067981 8'9415998 n 8'5432702 8'2941196 8'2941196
o = w	9.5380093 n 9.9595522 n 9.5951804 9.34851857 9.3289808 n 8.8138116 n 8.9266221 7.6678311 8.4376414	o=w	9.2384724 n 9.990.1661 n 9.3122151 9.5985379 9.0770285 n 9.1079687 n 8.7223900 8.5597647 8.3020397 n 7.9644050
(b)	1 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(r)	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Values of Log  $Z_{-n}^m$  from the formula  $Z_{-n}^m = -nr^{m-1}H_n''$ .

				T	
0	п 0.4188341	10	n 34122141	01	n 5°1448825
6	n I'4313375 n I'4739740	6	n 4.1253762 n 4.169870	6	n 5.6847726 n 5.7139219
∞	n 2.4384458 n 2.4864773 n 2.5054455	00	n 4.8331433 n 4.8761491 n 4.8876179	∞	n6.2192674 n6.2538118 n6.2577209
		7	n 5:5340708 n 5:5339161 n 5:5931388 n 4:4873254	7	n 6'7469227 n 6'7883065 n 6'7945424 n 6'7714007
6		9	n 6°2260436 n 6°2848437 n 6°294315 n 6°2904315 n 6°2904520	9	n7.2656233 n7.3159619 n7.3351194 n7.3007442 n7.2483576
5 n 5.4091085 n 5.4851687	n 5 3139313 n 5 3661122 n 5 3689786 n 5 3678258	rV.	n 6.9057820 n 6.90578165 n 6.9097126 n 6.9097171 n 6.9403477 n 6.8740583	ın	n7:7720893 n7:8346624 n7:8475975 n7:8315018 n7:7636457 n7:7636457
	n 6.2846153 n 6.2846153 n 6.2846153	4	n7.5677916 n7.6565349 n7.6848261 n7.683212 n7.583322 n7.583322 n7.583322	4	n8.2608266 n8.3411285 n8.3591372 n8.3355115 n8.262437 n8.1701092 n8.0499045
3 n7.3037816 n7.455593 n7.4678144 n7.4558805	n/4044949 n/3229735 n/72176158 n/70928905	ы	n8.201725 n8.3185645 n8.3344614 n8.3348972 n8.2745460 n8.1286952 n8.0656104	m	n8.7215352 n8.8298657 n8.8220469 n8.8224229 n8.7465524 n8.6365774 n8.6365774 n8.4385830
2 n8.1859513 n8.3589215 n8.41,2305 n8.3967491 n8.3328138	n 0.2340/39 n 8.1106186 n 7.9661783 n 7.8052426	81	n8.7846007 n8.952453 n9.0001037 n8.9751125 n8.9008638 n8.7905539 n8.6223977 n8.4918500 n8.126087	64	n 9.1310912 n 9.2905744 n 9.2905594 n 9.126599 n 9.0626939 n 8.8857372 n 8.4929668
I n8'9431821 n9'2410911 n9'313082 n9'203068 n9'2054587	n 8-7583600 n 8-7583600 n 8-5698743 n 8-3681673	I	ng.2424903 ng.5553736 ng.5626853 ng.5666853 ng.4687726 ng.3291417 ng.158733 ng.148733 ng.148733 ng.148733 ng.148733	н	n 9.4157085 n 9.7001303 n 9.7547304 n 9.7705338 n 9.522452 n 9.4099483 n 9.2023653 n 8.9612326 n 8.3797044
	n 9-3590299 n 9-1290623 n 8-8861631 n 8-6331027	m = 0	n9.9932632 n0.1031584 n0.0351229 n9.6898977 n9.4572543 n9.1949942 n8.1948789 n8.5850418		n 9.9847477 n 9.9865187 n 9.7901502 n 9.513364 n 9.2651450 n 8.7556203 n 8.1381235 7.6714247
$ \begin{array}{c}     n \\                               $	% 0 10	(9)	1 2 & 4 2 0 0 0 0	3	n = 1 2 2 3 3 3 4 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9

OI	n 6·3546351	01	n7.2726123	OI	n8:0016851
6	n 6.7735423 n 6.7906609	6	n 7:5997128 n 7:6010314	6	n8 2558679 n8 2373374
∞	n 7.1870546 n 7.2095681 n 7.1999540	80	n7.9214183 n7.9281319 n7.9006194	∞	n8.5046557 n8.4915202 n8.4412802
7	n7.5937274 n7.6330804 n7.6156052 n7.5770059	2	n8-2362843 n8-2498374 n8-2241987 n8-1649096	2	n 8·7466040 n 8·7403080 n 8·6915755 n 8 6055889
9	n 7'9914454 n 8'0297532 n 8'0249578 n 7'9846207 n 7'9141577	9	n 8·5421955 n 8·547034 n 8·5414026 n 8·4796405 n 8·3845601	9	n8.9795975 n8.9522563 n8.953887 n8.458683 n8.7181916
w	n8.3769289 n8.4274712 n8.4261304 n8.3833944 n8.3063854 n8.2001269	25	n 8-8358723 n 8-8706146 n 8-8503106 n 8-7851544 n 8-6818797 n 8-5449942	ıvı	n9.2003565 n9.2152498 n9.1707446 n9.0763811 n8.9379560 n8.7585819
4	n8-7446835 n8-8129546 n8-8700006 n8-6840422 n8-5648283 n8-4167885	4	n9.1118203 n9.1642914 n9.1479632 n9.0778929 n8.9632556 n8.8097041 n8.6204490	4	n9.4033868 n9.436088 n9.304584 n9.2032087 n9.1395867 n8.9369981 n8.6845465
	n9.0844095 n9.1807093 n9.194774 n9.1357846 n9.0398175 n8.9022134 n8.7313618	8	n 9.3597395 n 9.4402394 n 9.4294267 n 9.35(6897 n 9.3202012 n 9.0420510 n 8.8201462 n 8.5534483	3	n 9.5783883 n 9.6390390 n 9.6017704 n 9.4894221 n 9.3125545 n 8.7652076 n 8.3611544
0	n 9.3729830 n 9.5204353 n 9.5399598 n 9.4787358 n 9.1928935 n 8.9802798 n 8.7415861 n 8.4574347	64	n9.5565063 n9.6881586 n9.6854601 n9.5943369 n9.4350512 n9.2157834 n8.9357002 n8.5813070	64	n9.7022373 n9.8140406 n9.7825763 n9.6508679 n9.122811 n8.6533930 n7.8357362
ı	ng·5366178 ng·8690088 ng·8447236 ng·7656296 ng·7656296 ng·1079885 ng·1079885 ng·1079885 ng·1079885 ng·1079985	I	n9'6283343 n9'8289254 n9'8950564 n9'7755799 n9'2405802 n8'8 8018246 n7'8681773 8'0975903 8'1711590	I	n9'7011476 n9'978896 n9'9144616 n9'7404105 n9'429935 n8'8860008 8'884598 8'5764666 8'5764666
m = 0	n 9.9726436 n 0.0387643 n 9.8968811 n 9.628298 n 9.2201105 n 84197763 8.649147 8.649147 8.5179785	m = 0	n 9 9567534 n 9 9865518 n 9 7727672 n 9 7727672 7 6156793 8 9519343 8 9519343 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	m = 0	n 9'9367999 n 9'9170967 n 9'5804795 n 8'1721089 9'1591089 9'1900855 9'0222960 8'7169163 8'7169163 n 6'2890621
(g)	1 2 & 4 & 2 0 0 0 1	(e)	" " " " " " " " " " " " " " " " " " "	S	1 4 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Values of Log  $Z_{-n}^m$  from the formula  $Z_{-n}^m = -nr^{n-1}H'^m$  (continued).

OI	n8-5966325	10	n 9:0900465	01	n 9.5028322
6	n8.7913090 n8.7484974	6	n 9.2353693 n 9.1633246	6	n 9.6068638 n 9.4999239
8	n8.9805905 n8.9431739 n8.8647236	∞	n9.3752971 n9.3086474 n9.1955540	∞	n 9.7055004 n 9.6039555 n 9.4483662
7	n 9.1630325 n 9.134453 n 9.0450082 n 8.9351197	2	n 9.5083855 n 9.4485753 n 9.3357822 n 9.1728673	-	n 9.7972976 n 9.7025921 n 9.540298 n 9.3279434
9	n9.3365198 n9.348974 n9.2386623 n9.1136874 n8.9429563	9	n 9·6325190 n 9·58·16636 n 9·46916699 n 9·2988122 n 9·0699214	9	n 9.8801400 n 9.7943893 n 9.6370852 n 9.4074824 n 9.0952278
20	n 9.4977725 n 9.4883847 n 9.4136338 n 9.2816673 n 9.9960353 n 8.8559390	w	n 9.7444181 n 9.7057971 n 9.5935543 n 94128844 n 9.1616993	ъ	n9.9597479 n9.8772317 n9.7183976 n9.4729701 n9.1229304 n8.5973392
4	n 9°6412965 n 9°6496373 n 9°5767220 n 9°4345771 n 9°2272491 n 8°5870950	4	n 9.8385885 n 9.8176963 n 9.7055307 n 9.5096580 n 9.2244008 n 8.185529 n 8.1391473	4	no.0036270 n9.9478396 n9.7865220 n9.5172101 n9.1037627 n8.3253202 8.1847790
33	n 9.7567918 n 9.7225003 n 9.54255 n 9.3221007 n 8.9815317 n 8.4766346 n 6.7548784	3	n 9.9047300 n 9.9118666 n 9.7292459 n 9.5788031 n 9.2340150 n 8.6533016 7.8443706 8.2883787	3	noo284773 noo207186 ng'5349493 ng'554641 n8'9780962 8'1747932 8'5811118 8'4089838
8	n 9.8211346 n 9.9086567 n 9.8405355 n 9.652331 n 9.3443594 n 8.8444446 7.4061857 8.3689922 8.3104015	01	n9.9780081 n9.9780081 n9.5965133 n9.1139965 7.8803846 8.6671205 8.5747948 8.5747948	61	no.oo21752 no.o255690 ng.4590595 ng.2659335 88.269335 88.8146926 88.8183880 84699136
1	n9'7605385 n9'9729994 n9'9729994 n9'61347 n9'1417261 8444778 8.8607377 8.704700 8.4932338	I	n9'8097695 n9'929973 n9'8290390 n9'428637 7.4459564 9'0515978 8'9965909 8'0557997 8'0484936	н	n 9.8509343 n 9.9992669 n 9.7988556 n 9.1138707 9.1130850 9.2004136 8.9340219 8.2350505 n 8.1334810 n 8.2022630
<i>m</i> = 0	ng'9124034 ng'8247305 ng'2203861 g'3701053 g'326906 8'8299711 8'2201322 n'7'9945320 n'8'1501522	m=0	n 9.8830476 n 9.685362 8.5740273 9.4222361 9.1171335 8.3741777 n 8.3632673 n 8.4378381 n 8.2043795	<i>m</i> = 0	n 9.8480260 n 9.513417 9.338038 9.569844 9.3706766 8.7634140 n 8.544376 n 8.4200694 n 7.7600507
(9)	# 4 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(k)	n = 1 2 3 3 4 4 4 7 10 9	€	1 2 2 4 7 2 0 0 0 1

10	IO	n 0-1388938	ıo	n 0·3792935
9 n 9.9185224 n 9.7700387	6	n 0.1792944 n 9.9812122	6	n 0.3956427 n 0.1378245
8 n9.835162 n9.6312656	∞	no·2143000 no·0216129 ng·7470716	8	no.4065969 no.1541737 n9.7925203
7 n 0°0396707 n 9°9034214 n 9°6930622 n 9°4006020	7	no·2424662 no·0566184 ng·7775234 ng·3782632	7	no.4107117 no.1651279 n9.7948454 n9.2136352
6 noo878703 n99605759 n97472447 n974367412 n89874849	9	n 0.2616776 n 0.0847847 n 9.7995911 n 9.3678220 n 8.5830290	9	n 0.4058717 n 0.1692428 n 9.7833603 n 9.1290856 8.5079015
5 no.1238354 no.0087755 ng.7912252 ng.4545986 n8.9223624 7.3319695	25	no.2686544 no1039960 ng.8102353 ng.3284931 n7.9982490 8.5994435	м	n o 3887972 n o 1644027 n g 7661164 n 8 9652855 8 7989453 8 7382907
4 no.1420717 no.0447405 ng.8207907 ng.4429222 n8.7297705 8.4520096 8.5260736	4	nor2579026 nor109729 n9°8043532 n9°2351108 84980112 87902465 84941256	4	no.3539939 no.1473282 n9.7241220 n8.5161720 9.0030408 8.8078408 8.0083345
3 no.1322794 no.0629769 n9.8233449 n9.375434 6'7433797 8'8137217 8'6622066 8'1781944	3	no.2191220 no.1002210 ng.7723151 ng.0021939 8.9506654 8.935466 8.4805407 n7.6665578		no.2911618 no.1125249 ng.6470588 8.6805154 g.1627857 8.8405767 n7.1860739 n8.3036045
2 no.o713345 no.o531846 no.158014 8977978035 no.1580614 89433607 90460659 8734228 77242572 n8°0893144	8	no.1291889 no.0614405 ng/6921535 8.1452557 9.2166744 goz52411 8.254037 n 8.3081716	61	no.1771774 no.0496929 ng.4991835 g.204914 g.2097512 8.8006266 n 8.3820757 n 8.5127275
1 n9.884509 n9.9922397 n9.684569 8.5652014 9.3426404 9.1921164 8.6115283 n8.3230241 n8.487781	I	n9'9143170 n9'9715073 n9'4009963 9'284434 9'4137418 9'031206 n8'2260177 n8'6666997 n8'3871109	I	n 9.9382541 n 9.937084 n 9.0913208 9.4938740 9.4938740 n 8.8109930 n 8.6729720 n 7.7644397
$m = 0$ $n_{9}.8063561$ $n_{9}.1846558$ $9.5611912$ $9.5611912$ $9.1961191$ $n_{8}.870391$ $n_{8}.8743394$	<i>m</i> = 0	n9.7566355 8.1634789 9.6704934 9.5423768 8.7058141 n8.9160019 n8.9160019 n8.325224 8.1096772 8.1708000	<i>m</i> = 0	n9'6967851 9'243397 9'243397 9'150340 8'7808681 n9'1282343 n8'7533441 8'1053623 8'4045520 8'0013320
$     \begin{array}{c}       n \\       n \\       2 \\       2 \\       4 \\       4 \\       4 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\       9 \\     $	(2)	# # # # # # # # # # # # # # # # # # # #	(m)	1 2 8 4 5 0 7 8 9 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Values of Log  $Z_{-n}^m$  from the formula  $Z_{-n}^m = -nr^{n-1}H_n^{\cdot m}$  (continued).

10 n o 5756048	01	n 0.7317228	OI	n o ⁻ 8505054
9 n 0.5723126 n 0.5723126	6	n oʻ7128099 n oʻ2898803	6	n 0°8197070 n 0°2756495
8 no.5636254 no.2380768 n9.7535053	×	n o · 6885 o 20 n o · 2709674 n 9 · 584 2071	∞	no.7835136 no.2448511 n9.0113165
7 n o·5480987 n o·7293896 n 9·7279695 n 8·5988974	7	n 0.6573546 n 0.2466595 n 9.5203405 8.9695067	7	n 0°7404807 n 0°2086577 n 8°7146191 9°2679316
6 no.5236172 no.2138629 ng.6893664 n6.5751535 8.9288743	9	no·6172523 no·2155120 ng·4314708 g·1087179 8·9800019	9	n o'6884930 n o'1656248 7'5222542 9'3172123 8'768838
5 no.4869012 no.1993814 ng.6313251 8.682090 g.0284344 8.5957045	ъ	no:5649157 no:1754098 ng:2981739 g:2263467 g:0146382 7'4134921	25	n o·6242709 n o·1136371 8·8023450 9·3649842 8·7369421 n 8·5391460
4 no.4324565 no.1526654 n9.5412191 90316325 91139359 8.5493845	4	no.4948503 no.1230732 ng.0631659 g.3301952 g.0380503 n.7.9994862 n 8.4942836	4	no·5423201 no·0494151 9'1118655 9'4118654 8'660908 n'8'6896360 n'8'4102386
3 no.3499830 no.982206 ng.3578137 9.264184 9.1844857 8.322153 n 8.4908582 n 8.3255681	65	no.3967561 no.0530078 no.0530078 9.4450094 9.0430795 n.8.4145633 n.8.6232816 n.7.8783543	23	n o 4323404 n g 9674642 g 93667849 g 9454338 8 5140513 n 8 8386025 n 8 4634502
2 no.2163570 no.0157472 ng.0456934 g.4321044 g.246033 n6.7172229 n8.7242560 n8.7242560	64	no.2475094 ng 9549135 8-9830595 9-5143472 90115004 n.8-742841 n.8-7446204 8-1915307	8	no.2712083 ng.8574845 9.4568525 9.559414 7.8956195 n8.9913596 n8.4945404 8.3146621
1 n9.9577923 n9.8821212 8.8026909 9.5839016 9.2461535 n.8.7031899 n.8.7031899 n.8.7031899 n.8.7031899 n.8.7031899 8.1966890	1	n9'9733240 n9'8656669 9'3764433 9'6018622 8'8780353 n9'0587162 n8'8527721 7'942586 8'4213872 7'8396275	н	n9'98\$1374 n9'69\$3524 9'5886678 9'563970 n8'5809195 n9'142282 n8'4733755 8'583812 8'3107094 n'7732146
m = 0 $n9.6235565$ $9.4957960$ $9.7268624$ $9.130938$ $n9.139938$ $n9.115221$ $n7.9758762$ $8.5879410$ $8.3293241$ $n7.3345415$	o = w	n9.5314815 9.6387835 9.6334684 5.5509442 n9.3197274 n8.9302902 8.5394657 8.6430378 7.6606678 n8.0885995	m = 0	ng'4102815 9'7277346 9'6146247 ng'1353414 ng'336647 ng'336647 ng'3265274 8'8545729 8'4238795 n'8'1844813 n'8'1043009
(n) = 0 1 2 2 2 4 2 3 2 0 0 0 1	(0)	n = 1 2 2 3 3 4 4 4 7 7 6 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(d)	8 10 10 10 10 10 10

IO	n 0.9339951	01	n o 9835633
6	n 0°8948424 n 0°1774055	6	n 0°9394505 n 9°9226067
∞	n o·8502947 n o·1382528 9/3063290	8	n o·8899428 n 9·8784940 9·6413522
7	n 0.7989076 n 0 0937051 9.3712474 9.2981797	1	n o:8335956 n 9'8280862 9'6530708
9	no.7385656 no.0423180 94394698 93178239 n7.8493743	9	n o.7682936 n 9.7726390 9.6653186 9.1095785 n 8.8337673
w	no·6659892 n9·9819760 9·4855913 9·3378784 n8·2526570 n8·7941538	w	n 0.6907572 n 9.7073371 9.6783936 9.1166887 n 8.9086062 n 8.5580521
4	no:5756841 ng:99933997 9:538466 g:358472 nr:3316147 nr:7893167 nr:7593106	4	n o · 5954919 n 9 · 6298006 9 · 6927966 9 · 1247402 n 8 · 9913857 n 8 · 6211935
60	n 0.4573502 n 9.8190945 9.5894515 9.3806391 n 8.7351156 n 8.8831235 6.3766907 8.3290276	33	no.4721979 no.5345353 97094487 9134227 no.0850410 n8.697463 8.4613105
а	n o 2878638 n 97007606 9642411 94047802 n 8 9395658 n 8 9870416 7.8826142 8 4891003 7.5608650	61	no·2977514 ng·4112413 gy·302540 gy·1460679 ng·1042989 ng·7756213 8·6255757 8·3455141 ng·0191035
I	n 9.9934386 n 9.5312742 97015231 94329801 n 911495429 n 91063208 83547454 8:666378 7:2584515 n 8:1463748	I	n9.9983662 n9.2367949 9.7599058 9.1621624 n9.3274966 n8.8745109 8.8147023 8.4919317 n8.2481543 n8.2481543
m = 0	n 9.2368490 97832438 9769377 n 9.2493219 87463003 8763003 8763003 8763003 87753003 87753003 87753003 87753003	0 = w	n 8°9374096 9°8140202 9°1871998 n 9°5015495 n 8°9977270 9°0408798 8°642340 n 8°5084262 n 8°5084282
( <i>b</i> )	n 1 2 2 4 4 3 2 0 1 0 0 1 0 0 1	$\hat{z}$	# # # # # # # # # # # # # # # # # # #

## EQUATIONS OF CONDITION FOR FINDING

In these equations the expression of the Magnetic Forces in terms of the Magnetic Constants for a given belt of latitude is equated to the corresponding expression called the *absolute term* which is derived from the observations taken in that belt of latitude.

The logarithms and the signs (+ or -) of the coefficients of  $g_n^m$  or  $h_n^m$  in the equations are given in the tables. The *numerical* values of the absolute terms are given for 1845 and for 1880 for the g and h equations.

m=0.	n	ODD.
------	---	------

Co-latitude	For $X$ $g_1^{\mathfrak{o}}$	$g_{-1}{}^{\scriptscriptstyle 0}$	${g_3}^{\circ}$	$g_{-3}^{0}$	${g_{\scriptscriptstyle{5}}}^{^{\mathrm{o}}}$	g_5°
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 555 (m) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	8-9532263 9-2523050 9-4251486 9-5455497 9-6366401 9-7071397 9-7673181 9-8156959 9-8559816 9-8896198 9-9176350 9-9407744 9-9595923 9-9745025 9-9858120 9-9937423 9-9984426 0-000000000	+ 8.9402960 + 9.2396702 + 9.4129962 + 9.5340517 + 9.6259482 + 9.6989700 + 9.7585912 + 9.8080674 + 9.8842539 + 9.9133645 + 9.9375377 + 9.93752757 + 9.9572757 + 9.99572757 + 9.9983442 + 0.00000000	+ 9.3283042 + 9.6146381 + 9.7658529 + 9.8551072 + 9.9045229 + 9.9228538 + 9.9131855 + 9.8748884 + 9.8032458 + 9.6861931 + 9.4915605 + 9.0866507 - 8.8167641 - 9.3801944 - 9.5903678 - 9.7022145 - 9.7600721 - 9.7781513	+ 9.3148815 + 9.6016214 + 9.7535016 + 9.8436647 + 9.8942119 + 9.9057193 + 9.8691093 + 9.7993447 + 9.6845333 + 9.4930529 + 9.0966376 - 8.7932528 - 9.3745034 - 9.5878970 - 9.7012319 - 9.7598384 - 9.7781513	+ 9.2224495 + 9.4852763 + 9.5949419 + 9.6200305 + 9.5731486 + 9.4404450 + 9.1496354 - 7.5935679 - 9.1241868 - 9.3504323 - 9.4192876 - 9.3885226 - 9.2478255 - 8.8767844 + 8.586998 + 9.1507683 + 9.3277581 + 9.3767507	+ 9'2045250 + 9'4678413 + 9'5785911 + 9'6050735 + 9'5600612 + 9'4299685 + 9'1440324 - 7'2832876 - 9'1104431 - 9'3416154 - 9'4134723 - 9'3852421 - 9'2471165 - 8'8806045 + 8'5767679 + 9'1489183 + 9'3273795 + 9'3767507
	For Z					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	0·3036698 0·2984783 0·2897462 0·2773486 0·2407250 0·2158664 0·1860190 0·1504913 0·1083162 0·0581067 9·9977982 9·9241563 9·8317250 9·7102363 9·5365913 9·2370218	- 9'9983442 - 9'9933515 - 9'9849437 - 9'9729859 - 9'9572757 - 9'9375306 - 9'9133645 - 9'8494851 - 9'8494851 - 9'6889700 - 9'6259483 - 9'5340516 - 9'4129963 - 9'2396702 - 8'9402960 0'00000000	+ 0'2011839 + 0'1697922 + 0'1146224 + 0'0301730 + 9'9049397 + 9'7109854 + 9'3471268 - 8'7256091 - 9'4711444 - 9'6917288 - 9'7994329 - 9'8480317 - 9'8535035 - 9'8192493 - 9'7397259 - 9'5945458 - 9'3115087 0'00000000	- 0.0662229 - 0.0353070 - 9.9809515 - 9.8977104 - 9.7742428 - 9.5831910 - 9.2269669 + 8.5447993 + 9.3337788 + 9.5592880 + 9.6695875 + 9.7200502 + 9.7269933 + 9.6939165 + 9.4707816 + 9.1881396 0.00000000	+ 9'8664247 + 9'7843377 + 9'6247523 + 9'3114982 - 7'7829577 - 9'2522987 - 9'4606556 - 9'5107502 - 9'4571430 - 9'2802161 - 8'7843756 + 8'8682063 + 9'2680349 + 9'4168009 + 9'3286520 + 9'0765800 0'00000000	- 9'7714964 - 9'6901972 - 9'5321492 - 9'2223794 + 7'5043358 + 9'1568413 + 9'3692938 + 9'4222489 + 9'3114770 + 9'1981399 + 8'7127235 - 8'7757844 - 9'1836732 - 9'3193891 - 9'3367913 - 9'3497155 - 8'9982644 0'00000000

## GAUSS' MAGNETIC CONSTANTS.

The following is the type of these equations:

$$X'^m_{\ n}g^m_n + X'^m_{\ -n}g^m_{-n} + X'^m_{\ n_1}g^m_{n_1} + X'^m_{\ -n_1}g^m_{-n_1} + \&c. = x'_m,$$

with similar equations for Y and Z: where

$$X_n^{\prime m} = X_n^m \cos \psi + Z_n^m \sin \psi \text{ and } Z_n^{\prime m} = -X_n^m \sin \psi + Z_n^m \cos \psi.$$

An explanation of the mode of formation of these equations is given at the beginning of Section VIII.

$g_7{}^0$	$g_{-7}^{0}$	$g_{\mathfrak{g}}^{^{0}}$	$g_{-9}{}^{\circ}$	Absolute term, 1	$(a_0 + a'_0)$ for $X$	
97	9 –7	99	9-9	1845	1880	
+ 8·9529284 + 9·1805006 + 9·2230216 + 9·1269798 + 8·8179013 - 8·1101781 - 8·8770022 - 9·0097260 - 8·9441959 - 8·6174790 + 8·2407168 + 8·8176597 + 8·9337640 + 8·8547051 + 8·4728248 - 8·3572397 - 8·8150696 - 8·9116107	+ 8·9298243 + 9·1581900 + 9·2020853 + 9·1082025 + 8·8033976 - 8·0703080 - 8·8592574 - 8·9962465 - 8·9346092 - 8·6141392 + 8·2192787 + 8·8098887 + 8·9296353 + 8·8532910 + 8·4751154 - 8·3531256 - 8·8145242 - 8·9116107	+ 8·5978745 + 8·7767031 + 8·7734680 + 8·3334771 - 8·1237791 - 8·5369154 - 8·5112273 - 8·0607174 + 8·1503385 + 8·4606289 + 8·3953360 + 7·7651506 - 8·1972780 - 8·4247461 - 8·3119353 - 7·2517353 + 8·2486467 + 8·4135556	+ 8.5693492 + 8.7491938 + 8.6878550 + 8.3122970 - 8.0943811 - 8.5148839 - 8.4936654 - 8.0519890 + 8.1306562 + 8.4483209 + 8.3878288 + 7.7699044 - 8.1891552 - 8.4212452 - 8.3112542 - 7.2651280 + 8.2478979 + 8.4135556	1.6141 2.1097 2.61865 3.1453 3.6774 4.1814 4.6719 5.1196 5.56235 5.99975 6.3925 6.7362 7.01835 7.23835 7.3475 7.3658	2:6096 3:0990 3:5780 4:0501 4:5157 4:9913 5:4432 5:8674 6:2499 6:6060 6:8952 7:1009 7:2224 7:2546	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r)
				Absolute term,	$(a_0 - a'_0)$ for $Z$	
				1845	1880	
+ 9.4393846 + 9.2737326 + 8.8622805 - 8.5498448 - 9.0285002 - 9.0964780 - 8.9644361 - 8.4396264 + 8.6144022 + 8.9419625 + 8.9808757 + 8.8154883 + 8.0288949 - 8.6614450 - 8.9142754 - 8.9264887 - 8.7220784 0.00000000	- 9'3599240 - 9'1954526 - 8'7875193 + 8'4649586 + 8'9511420 + 9'0224387 + 8'8942372 + 8'3801408 - 8'5388377 - 8'8735459 - 8'9162784 - 8'7547756 - 7'9857979 + 8'8542709 + 8'8681306 + 8'6645896 0'00000000	+ 8.9592279 + 8.6569308 - 7.7497047 - 8.5886267 - 8.6224319 - 8.2884239 + 8.5002652 + 8.4788928 + 8.50036200 - 8.1667819 - 8.4574222 - 8.3792426 - 7.6440388 + 8.2359374 + 8.4376739 + 8.3018171 0.00000000	- 8.8862853 - 8.5857688 + 7.6637853 + 8.5173955 + 8.5547616 + 8.2266827 - 7.9902960 - 8.4372506 - 8.4372506 - 8.4208180 - 7.9550734 + 8.1070819 + 8.4042576 + 8.3301297 - 7.6067935 - 8.1865168 - 8.3910220 - 8.2563214 0.0000000	12:7873 12:57105 12:26415 11:85765 11:33005 10:7181 10:0332 9:23315 8:2793 7:24715 6:18635 5:03565 3:8353 2:5879 1:2897	12.0989 11.6153 11.0729 10.4632 9.8042 9.0396 8.2132 7.2945 6.2535 5.1167 3.8950 2.6577 1.3875	(a) (b) (c) (d) (e) (e) (f) (g) (h) (i) (i) (m) (n) (o) (p) (q) (r) (s)

The absolute terms of the equations for the determination of  $g_n^m$  are,

and 
$$x'_{m} = \frac{1}{2} (a_{m} - a'_{m}), \text{ when } n - m \text{ is even,}$$

$$= \frac{1}{2} (a_{m} + a'_{m}), \text{ when } n - m \text{ is odd.}$$

$$y'_{m} = \frac{1}{2} (b_{m} + b'_{m}), \text{ when } n - m \text{ is even,}$$
and 
$$= \frac{1}{2} (b_{m} - b'_{m}), \text{ when } n - m \text{ is odd.}$$

$$z'_{m} = \frac{1}{2} (a_{m} + a'_{m}), \text{ when } n - m \text{ is even,}$$

$$= \frac{1}{2} (a_{m} - a'_{m}), \text{ when } n - m \text{ is odd.}$$

m=0. n EVEN.

Co-latitude	For $X$ $g_2^0$	$g_{-2}^{\ \ 0}$	g,º	$g_{-4}^0$	${g_{\mathfrak{e}}}^{\mathfrak{o}}$	$g_{-6}{}^0$
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	9:2511620 9:5451804 9:7095062 9:8177999 9:8929964 9:9451273 9:9793160 9:9983336 0:0035936 9:9955581 9:9738493 9:9371354 9:8827222 9:8055555 9:6956638 9:5301605 9:2354209	+ 9.2391766 + 9.5335251 + 9.6983896 + 9.8835110 + 9.9366837 + 9.9720238 + 9.9922669 + 9.9987893 + 9.9911305 + 9.8825763 + 9.8825763 + 9.6971304 + 9.5321587 + 9.2377445 0.00000000	+ 9.3047046 + 9.5806760 + 9.7138548 + 9.7760296 + 9.7868176 + 9.7502423 + 9.6594790 + 9.4885729 + 9.1333668 - 8.5865187 - 9.2898112 - 9.4984282 - 9.5867171 - 9.6033787 - 9.5569323 - 9.1615728 0.0000000	+ 9.2891747 + 9.5656408 + 9.696359 + 9.7629410 + 9.7751714 + 9.6518348 + 9.4840456 + 9.1358370 - 8.5469853 - 9.2799508 - 9.4928224 - 9.5835009 - 9.6018611 - 9.5566650 - 9.4334265 - 9.1627118 0.0000000	+ 9·1014950 + 9·3482513 + 9·4281044 + 9·4026401 + 9·2644451 + 8·9092486 - 8·4472269 - 9·0645826 - 9·2104357 - 9·1995959 - 9·0378623 - 8·4971198 + 8·7098452 + 9·0617156 + 9·1555798 + 9·1066325 + 8·8742221 0·0000000	+ 9.0810252 + 9.3284708 + 9.4094924 + 9.3857473 + 9.2501212 + 8.9004635 - 8.4158006 - 9.0499259 - 9.1998792 - 9.1923563 - 9.5343436 - 8.5040488 + 8.7003326 + 9.1541446 + 9.11643698 + 8.8748798 - 8.8748798

The absolute terms for the determination of  $h_n^m$  are,

and 
$$x'_{m} = \frac{1}{2} (b_{m} - b'_{m}), \text{ when } n - m \text{ is even,}$$

$$= \frac{1}{2} (b_{m} + b'_{m}), \text{ when } n - m \text{ is odd.}$$

$$y'_{m} = -\frac{1}{2} (a_{m} + a'_{m}), \text{ when } n - m \text{ is even,}$$

$$= -\frac{1}{2} (a_{m} - a'_{m}), \text{ when } n - m \text{ is odd.}$$

$$z'_{m} = \frac{1}{2} (b_{m} + b'_{m}), \text{ when } n - m \text{ is even,}$$

$$= \frac{1}{2} (b_{m} - b'_{m}), \text{ when } n - m \text{ is odd.}$$

The meaning and the formation of these expressions is given in Section VIII.

				1		1
$g_8^{0}$	$g_{-8}^{0}$	$g_{10}^{0}$	0	Absolute term,	$\frac{1}{2}(a_0 - a'_0)$ for $X$	
98	$g_{-8}$	$\mathcal{G}_{10}$	$y_{-10}^{0}$	1845	1880	
+ 8.7835600 + 8.9885938 + 8.9844047 + 8.7835048 + 7.8774911 - 8.5969155 - 8.7874342 - 8.7094936 - 8.2428092 + 8.3372700 + 8.6787210 + 8.3877330 - 8.0017709 - 8.5825896 - 8.4918234 0.00000000	+ 8.7577646 + 8.9637005 + 8.9611224 + 8.7630870 + 7.8776859 - 8.5747182 - 8.7700823 - 8.6964631 - 8.2390420 + 8.6650696 + 8.6733103 + 8.3871210 - 7.9900846 - 8.5798747 - 8.6663616 - 8.4921930 0.00000000	+ 8*3989833 + 8*5475395 + 8*4078654 + 7*5603518 - 8*1975294 - 8*3192440 - 8*0201626 + 7*7881973 + 8*2180302 + 8*1406807 + 7*0497009 - 8*0636196 - 8*1740081 - 7*8413438 + 7*7769464 + 8*1474196 + 8*0535943 0*00000000	+ 8'3677007 + 8'5173932 + 8'3799866 + 7'5457667 - 8'1699419 - 8'2964243 - 8'0037823 + 7'7620985 + 8'2017351 + 8'1299262 + 7'0768501 - 8'0537085 - 8'1689406 - 7'8412773 + 7'7716572 + 8'1462533 + 8'0537557 0'0000000	- '4268 - '4561 - '41595 - '3567 - '2584 - '1721 - '0635 + '0302 '12375 '17865 '2068 '2287 '20025 '12555 '0788	- '3817 - '3139 - '2116 - '0810 '0582 '2005 '3185 '3872 '4217 '4056 '3584 '2766 '1530	(a) (b) (c) (d) (e) (d) (f) (m) (n) (o) (p) (q) (r) (s)
				Absolute term,	1	
				1845	1880	
+ 9'2046502 + 8'9794918 + 8'2079901 - 8'6790653 - 8'8748556 - 8'7857489 - 8'2834761 + 8'4315944 + 8'7397391 + 8'7225847 + 8'3848041 - 8'1667566 - 8'6440904 - 8'6968694 - 8'4757469 + 7'6727519 + 8'5599799 + 8'6897620	- 9'1291701 - 8'9054511 - 8'1429484 + 8'6035647 + 8'8031891 + 8'7178264 + 8'2249608 - 8'3601725 - 8'6752925 - 8'6625188 - 8'3311790 + 8'1006900 + 8'5872419 + 8'6432461 + 8'4249172 - 7'6103363 - 8'5081837 - 8'6386095	+ 8.7046736 + 8.2986254 - 8.0400527 - 8.4056708 - 8.2730637 + 6.4566114 + 8.2128490 + 8.2631406 + 7.8129580 - 7.9597598 - 8.2222656 - 8.0490052 + 7.3881869 + 8.1340093 + 8.1474119 + 7.5747251 - 7.9647140 - 8.1761947	- 8.6332402 - 8.2294781 + 7.9665976 + 8.3370591 + 8.2085924 - 6.1369896 - 8.1491766 - 8.2048990 - 7.7640553 + 7.9012310 + 8.1706922 + 8.0027499 - 7.3268842 - 8.0880727 - 8.1046384 - 7.5362944 + 7.9224423 + 8.1348020	- 0'4582 - 0'27425 - 0'10225 + 0'05005 '18975 '2694 '3342 '36015 '3643 '28245 '17885 '06685 - '0645 - '1440 - '1809 - '2095	.0906 .2375 .3396 .3938 .3695 .3396 .2535 .1709 .0479 0958 2353 3368 4347 4653	(a) (b) (c) (d) (e) (f) (g) (h) (i) (i) (k) (i) (m) (n) (o) (p) (q) (r) (s)

						1	
	For X						
Co-latitude	$g_1^{1}$ or $h_1^{1}$	$g_{-1}^{-1}$ or $h_{-1}^{-1}$	$g_3^{1}$ or $h_3^{1}$	$g_{-3}^{-1}$ or $h_{-3}^{-1}$	$g_{\mathfrak{s}^1}$ or $h_{\mathfrak{s}^1}$	$g_{-5}^{-1} \text{ or } h_{-5}^{-1}$	$g_7^1 \text{ or } h_7^{-1}$
<u> </u>							
(a) 5°	- 0.0026064	- 9.9983442	- 9.8958149	- 9.8858730	- 9.5529168	- 9.5373032	- 9'1131077
(a) 5° (b) 10	- 9.9973154	- 9.9933515	- 9.8501792	- 9.8409834	- 9.4231036	- 9.4088565	- 8.8196534
(c) 15	- 9.9884211	- 9.9849437	- 9.7661787	- 9°7583784 - 9°6199103	- 9.1142766	- 9°1041789 + 8°3005184	+ 8·1946386 + 8·9433386
(d) 20	- 9°9758030	- 9°9729859 - 9°957275 <b>7</b>	- 9.6252033 - 9.3697157	- 9°3701812	+ 8.3543590 + 8.3543590	+ 9.2006391	+ 9'1034602
(e) 25 (f) 30	- 9.9385929 - 9.9385929	- 9.9375306	- 8.5304401	- 8.5898937	+ 9.4377171	+ 9.4229433	+ 9.0856173
(g) 35	- 9.9133858	- 9.9133645	+ 9.2183315	+ 9.1954331	+ 9.5174987	+ 9.2022004	+ 8.8858950
(h) 40	- 9.8831670	- 9.8842539	+ 9.5439265	+ 9.5307525	+ 9.5098413	+ 9.5005213	+ 8.0082573
(i) 45 (k) 50	- 9.8472561	- 9.8494851 - 9.8080675	+ 9°7053662 + 9°7976865	+ 9.6960238	+ 9.4152595 + 9.1853782	+ 9·4089235 + 9·1833754	- 8·7299283 - 8·9660464
(k) 50 (l) 55	- 9°8046170 - 9°7541164	- 9.7585914	+ 9.8468468	+ 9.8421039	+ 8.3838054	+ 8.4099759	- 8.9730570
(m) 60	- 9.6934589	- 9.6989700	+ 9.8624843	+ 9.8594585	- 9.0088201	- 8.9981638	- 8.7780831
(n) 65	- 9.6195016	- 9.6259483	+ 9.8474385	+ 9 8458702	- 9.3051227	- 9.3001352	- 7.6969857
(0) 70	- 9.5267979	- 9.5340516	+ 9.7997748	+ 9.7994168 + 9.7119972	- 9.4104555 - 9.4133850	- 9.4079959 - 9.4125585	+ 8.6953458 + 8.9202722
(p) 75 (q) 80	9°4050882 9°2312804	- 9°4129963 - 9°2396702	+ 9°7113974 + 9°5605795	+ 9.2618741	- 9.3183832	- 9'3186451	+ 8.9235390
	- 8.9316111	- 8.9402960	+ 9.2743995	+ 9.2761156	- 9.0628199	- 9.0637171	+ 8.7153056
(r) 85 (s) 90	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
						<u> </u>	
	For Y						
	101. 1						
(a) 5°	0.0043291	+ 0.0000000	+ 9.0001000	+ 9.8960048	+ 9.5791799	+ 9.5633066	+ 9.1638710
(a) 3 (b) 10	0.0043291	+ 0.0000000	+ 9.8932311	+ 9.8833618	+ 9.5428212	+ 9.5273123	+ 9.0922932
(c) 15	0.0040676	+ 0.0000000	+ 9.8713916	+ 9.8619006	+ 9.4794811	+ 9.4645667	+ 8.96189 <b>66</b>
(d) 20	0.0038477	+ 0.0000000	+ 9.8399625	+ 9.8309846	+ 9.3839809	+ 9.3698728	+ 8.7455110
(e) 25 (f) 30	0.0035769	+ 0.0000000	+ 9.7979470 + 9.7438079	+ 9.7896009 + 9.7361927	+ 9.2458609 + 9.0411427	+ 9.2327456 + 9.0291759	+ 8·3462 <b>768</b> - 7·551 <b>5325</b>
	0.0029176	+ 0.0000000	+ 9.6751518	+ 9.6683440	+ 8.6929156	+ 8.6822177	- 8.2696872
(h) 40	0.0025494	+ 0.0000000	+ 9*5880969	+ 9.5821483	- 6.9465647	- 6.9372169	- 8·3544 <b>704</b>
(i) 45 (k) 50	0.0021703	+ 0.0000000	+ 9°4758641 + 9°3250658	+ 9.4708000 + 9.3208847	- 8·5711385 - 8·7647898	- 8·5631807 - 8·7582196	- 8·2488411 - 7·8899387
$\begin{pmatrix} l \end{pmatrix}$ 55	0.0014256	+ 0.0000000	+ 9'1028844	+ 9.0992281	- 8.8056819	- 8.8004548	+ 7.4737305
(m) 60	0.0010824	+ 0.0000000	+ 8.6784712	+ 8.6759455	- 8.7516759	- 8.7477070	+ 8.0330530
(n) 65	0.0007728	+ 0.0000000	- 8.3695804	- 8.3677773	- 8.5922247	- 8.5893912	+ 8.1307338
(o) 70	0°0005058 0°0002895	+ 0.0000000	- 8'9271783 - 9'1270847	- 8.9259981 - 9.1264092	- 8·2075959 + 7·8978736	- 8·2057413 + 7·8968121	+ 8.0368 <b>791</b> + 7.64458 <b>76</b>
(p) 75 (q) 80	0.0001303	+ 0.0000000	- 9.5312672	- 9.2309632	+ 8.4576120	+ 8.4571343	- 7·516860I
(r) 85	0.0000328	+ 0.0000000	- 9.2844949	- 9.2844183	+ 8.6302807	+ 8.6301604	- 7.9714021
(8) 90	0.0000000	+ 0.0000000	- 9.3010300	- 9.3010300	+ 8.6777807	+ 8.6777807	- 8.0665127
	For Z						
				1			
(a) 5° (b) 10	9.2499770	- 8°9402960 - 9°2396702	+ 9.4520526	- 9.3153669	+ 9.3009660	- 9.2049145	+ 9'0104642
(b) 10 (c) 15	9°5491528 9°7221549	- 9.4129962	+ 9.7384275 + 9.8897097	- 9.4021097 - 9.4239951	+ 9.5638241 + 9.6735427	- 9.4683380 - 9.5790015	+ 9.238064 <b>2</b> + 9.28063 <b>58</b>
(d) 20	9.8427714	- 9.5340517	+ 9.9790564	- 9.8441658	+ 9.6987086	- 9.6055081	+ 9.1846826
(e) 25	9.9341272	- 9.6259482	+ 0.0285877	- 9.8947244	+ 9.6519359	- 9.5605391	+ 8.8758211
(f) 30 (g) 35	0.006233 0.0624231	- 9.6989700 - 9.7585912	+ 0.0470557	- 9.9144037	+ 9.5193995	- 9:4305373	- 8.1663745
(g) 35 (h) 40	0.1141932	- 9.8080674	+ 0.0375450 + 9.9994270	- 9'9062 <b>722</b> - 9'8696984	+ 9.2289570	- 9°1448781 + 7°2424570	- 8.9345426 - 9.06745 <b>72</b>
(i) 45	0.1548538	- 9.8494850	+ 9.9279908	- 9'8000042	- 9.5056059	+ 9.1105041	- 9.0020915
(k) 50	0.1888662	- 9.8842539	+ 9.8111938	- 9.6852884	- 9.4292114	+ 9.3416497	- 8.6756979
(l) 55 (m) 60	0°2172449 0°2407251	- 9°9133645 - 9°9375307	+ 9.5132166	- 9°4940512 - 9°0986323	- 9:4982573	+ 9°4136087 + 9°3854486	+ 8·2976524 + 8·8754049
(n) 65	0.5260/521	- 9.9572757	- 8·9385413	+ 8.7902378	- 9 [.] 4676461 - 9 [.] 3271143	+ 9.2474118	+ 8.9916740
(0) 70	0.2750273	- 9.9729858	- 9.5044077	+ 9.3739682	- 8.9564281	+ 8.8811837	+ 8.9127293
(p) 75 (q) 80	0.2865527	- 9.9849437	- 9.7150023	+ 9.5877042	+ 8.6652416	- 8.5759720	+ 8.5310428
(q) 80 (r) 85	0°2946420 0°2994398	- 9.9933515 - 9.9983442	- 9°8270346 - 9°8849829	+ 9.7011638 + 9.7598232	+ 9.4069121	- 9·1488108 - 9·3273595	- 8·4149909 • - 8·8730335
(8) 90	0,3010300	- 0.0000000	- 6.8030800	+ 9.7781513	+ 9.4559320	- 9.3767507	- 8.9696027

			Absolute term	for $g, \frac{1}{2}(a_1 - a_1')$	Absolute term	for $h$ , $\frac{1}{2}(b_1 - b'_1)$	
$g_{-7}^{1}$ or $h_{-7}^{1}$	$g_{\mathfrak{g}}^{1}$ or $h_{\mathfrak{g}}^{1}$	$g_{-9}^{-1}$ or $h_{-9}^{-1}$	1845	1880	1845	1880	
- 9'0918370 - 8'8009486 + 8'1573037 + 8'9210226 + 9'0843292 + 9'0695768 + 8'8741586 + 8'0252500 - 8'7139347 - 8'9557007 - 8'9664611 - 8'7756036 - 7'7323674 + 8'6899196 + 8'9182673 + 8'9231747 + 8'7158194 0'00000000	- 8.6141140 - 7.9020314 + 8.4301914 + 8.6565540 + 8.5887827 + 8.1087701 - 8.2223465 - 8.5207813 - 8.4558774 - 7.8693294 + 8.2205002 + 8.4631186 + 8.3642769 + 7.5225426 - 8.2510915 - 8.4382497 - 8.2980740 0.00000000	- 8.5872108 - 7.8830583 + 8.4014640 + 8.6312404 + 8.0951679 - 8.1982085 - 8.5035754 - 8.4436378 - 7.8696006 + 8.2071322 + 8.4557231 + 7.5347699 - 8.2474913 - 8.4373553 - 8.2983398 0.00000000	- ·8596 - ·8132 - ·7735 - ·70845 - ·6101 - ·4737 - ·3066 - ·10965 + ·12455 ·29395 ·3877 ·4500 ·44345 ·3747 ·19975	- '6678 - '5691 - '4428 - '2877 - '1143 '0759 '2496 '3904 '4861 '5073 '4522 '3415 '1843	1.0391 1.19255 1.2846 1.3163 1.3127 1.2459 1.17445 1.0733 .9161 77995 .6551 .5040 .35665 .2212	1'4214 1'4095 1'3314 1'2358 1'1229 1'0007 '8493 '6855 '5331 '3765 '2437 '1411 '0635	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (i) (n) (o) (p) (g) (r) (s)
			Absolute term i	For $g$ , $\frac{1}{2}(b_1 + b'_1)$	Absolute term f	for $h$ , $-\frac{1}{2}(a_1 + a'_1)$	
			1845	1880	1845	1880	
+ 9.1422257 + 9.0711447 + 8.9415588 + 8.7262726 + 8.3283922 - 7.5352142 - 8.255991 - 8.3417234 - 8.2379895 - 7.8809793 + 7.4666026 + 8.0276408 + 8.1268700 + 8.0343500 + 7.6431401 - 7.5162087 - 7.9712381 - 8.0665127	+ 8.6998672 + 8.5795912 + 8.3435956 + 7.8442989 - 7.5376672 - 7.8808110 - 7.3006278 + 7.3420495 + 7.6204332 + 7.5275800 + 6.8787985 - 7.2835484 - 7.4970241 - 7.3731630 - 6.3115955 + 7.2957534 + 7.4593131	+ 8.6724498 + 8.5528031 + 8.3178344 + 7.8199303 - 7.5150134 - 7.8601411 - 7.7784528 - 7.2843042 + 7.6090846 + 7.5185514 + 6.8719430 - 7.2786542 - 7.4938206 - 7.3713294 - 6.3107704 + 7.2955456 + 7.4593131	·8207 ·83065 ·85465 ·8642 ·8653 ·8688 ·85585 ·8168 ·7681 ·6958 ·6365 ·5724 ·51615 ·4706 ·4318 ·4207	·8585 ·8716 ·8514 ·8316 ·8039 ·7489 ·6867 ·6111 ·5272 ·4446 ·3718 ·3130 ·2738 ·2547	- '90745 - '96175 - 1'0252 - 1'0830 - 1'1312 - 1'1902 - 1'22185 - 1'2460 - 1'27245 - 1'30025 - 1'3130 - 1'3219 - 1'32675 - 1'3115 - 1'3035 - 1'2992	- 1'0031 - 1'0587 - 1'1208 - 1'1762 - 1'2194 - 1'2564 - 1'2875 - 1'3102 - 1'3109 - 1'3111 - 1'3032 - 1'2977 - 1'2872	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
			. Absolute term f	for $g$ , $\frac{1}{2}(a_1 + a'_1)$	Absolute term	for $h$ , $\frac{1}{2}(b_1 + b'_1)$	
			1845	1880	1845	1880	
- 8'9301383 - 9'1585143 - 9'2024316 - 9'1085984 - 8'8039603 + 8'0690107 + 8'8593245 + 8'9964401 + 8'9348995 + 8'6146806 - 8'2184458 - 8'8098344 - 8'9296912 - 8'8534134 - 8'4753908 + 8'3529064 + 8'8145018 + 8'9116107	+ 8.6432863 + 8.8221417 + 8.7589628 + 8.3791463 - 8.1689481 - 8.5823845 - 8.5568387 - 8.1066975 + 8.1956420 + 8.5062168 + 8.4410786 + 7.8114532 - 8.2428150 - 8.4704542 - 7.2982437 + 8.2943736 + 8.4593131	- 8'5696106 - 8'7494683 - 8'6881630 - 8'3127472 + 8'0942896 + 8'5150536 + 8'4939289 + 8'0525628 - 8'1305032 - 8'4484031 - 7'7705740 + 8'1890422 + 8'4212672 + 8'4313363 + 7'2658733 - 8'2478717 - 8'4135556	*64015 *7899 *9601 1*1316 1*29415 1*43965 1*54325 1*577305 1*5178 1*3861 1*19095 *9759 *79105 *6456 *48485 *4470	1.3320 1.4437 1.5264 1.6049 1.6445 1.6172 1.5301 1.3287 1.0573 7495 4812 3016 1.487	- '17705 - '3328 - '5039 - '7269 - I'02455 - I'34865 - I'62515 - 2'27605 - 2'24505 - 2'24505 - 2'247385 - 2'5409 - 2'58355 - 2'58355 - 2'5611 - 2'5779	- '7795 - 1'0328 + 1'2884 - 1'5714 - 1'8141 - 2'2480 - 2'4155 - 2'5400 - 2'6304 - 2'633 - 2'6183 - 2'697 - 2'5903	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)

	For X						
Co-latitude	$g_2^{-1}$ or $h_2^{-1}$	$g_{-2}^{-1}$ or $h_{-2}^{-1}$	$g_4^{\ 1}$ or $h_4^{\ 1}$	$g_{-4}^{-1}$ or $h_{-4}^{-1}$	$g_{\mathfrak{g}}^{1}$ or $h_{\mathfrak{g}}^{1}$	$g_{-6}^{-1} \text{ or } h_{-6}^{-1}$	$g_8^{-1}$ or $h_8^{-1}$
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 9.9989663 - 9.9779863 - 9.9414712 - 9.8866121 - 9.8081392 - 9.6955859 - 9.5245589 - 9.2136257 8.0717793 9.2695533 9.5488601 9.7079491 9.8136943 9.8876469 9.93393726 9.9737875 9.9935496 0.00000000	- 9.9918637 - 9.9713941 - 9.9357529 - 9.8821833 - 9.6956900 - 9.5293019 - 9.2306149 + 7.5240878 + 9.2471125 + 9.5373082 + 9.7007796 + 9.8091313 + 9.8848659 + 9.9378520 + 9.9731226 + 9.9933847 + 0.00000000	- 9.7407551 - 9.6598062 - 9.4963491 - 9.1396674 + 8.6900476 + 9.3522360 + 9.5679008 + 9.6691587 + 9.7041790 + 9.6850642 + 9.6082057 + 9.4491816 - 9.1044640 - 8.5716598 - 9.2831095 - 9.5022720 - 9.6021134 - 9.6320233	- 9.7279760 - 9.6480489 - 9.4868384 - 9.1371396 + 8.6467768 + 9.3352903 + 9.5553252 + 9.6593694 + 9.6967780 + 9.69673917 + 9.4490817 + 9.1096638 - 8.5469680 - 9.2791635 - 9.5009282 - 9.6618092 - 9.6320233	- 9'3418927 - 9'1445450 - 8'4618206 + 8'9226472 + 9'2313413 + 9'3230723 + 9'2921704 + 9'1254295 + 8'6198634 - 8'7317823 - 9'1068219 - 9'2084315 - 9'1699999 - 8'9668313 - 8'1017114 + 8'8390922 + 9'1118000 + 9'1804561	- 9'3234481 - 9'1279377 - 8'4585556 + 8'8998002 + 9'2132193 + 9'3078674 + 9'2799411 + 9'1170606 + 8'6225453 - 8'7148096 - 9'0981056 - 9'2032033 - 9'1674789 - 8'9671408 - 8'1178810 + 8'8365330 + 9'1113418 + 9'1804561	- 8'8698399 - 8'4290796 + 8'45590051 + 8'8359051 + 8'83696389 + 8'7208397 + 7'9204218 - 8'5394329 - 8'7036153 - 8'3039354 + 8'2581992 + 8'6579432 + 8'6579432 + 8'4567712 - 7'7582697° - 8'5640278 - 8'6897620
	For Y						
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	0°0040941 9°99809028 9°9901712 9°9777738 9°9615226 9°9411515 9°9162936 9°8864468 9°8509198 9°8087453 9°7585363 9°6982284 9°6245869 9°5321559 9°4106675 9°2370227 8°9374533 0°0000000	+ 9.9968790 + 9.9918533 + 9.9833918 + 9.9713610 + 9.9555611 + 9.9357121 + 9.9114309 + 9.8821978 + 9.8821978 + 9.8657588 + 9.7561603 + 9.6964243 + 9.6964243 + 9.6232990 + 9.5313129 + 9.4101850 + 9.2368056 + 8.9373986 0.0000000	+ 9.7580519 + 9.7348241 + 9.6949680 + 9.6364948 + 9.5559163 + 9.4469939 + 9.2974990 + 9.0784824 + 8.6853873 - 8.0803662 - 8.7703431 - 8.9568072 - 9.0263676 - 9.0279956 - 8.9700681 - 8.8378723 - 8.5618346 0.00000000	+ 9'7450647 + 9'7221350 + 9'6827653 + 9'6249518 + 9'5451856 + 9'4372029 + 9'2887462 + 9'0708342 + 8'6788764 - 8'0749906 - 8'7660664 - 8'95355599 - 9'0240493 - 9'0264782 - 8'9691996 - 8'8374815 - 8'5617362 0'0000900	+ 9:3792415 + 9:3268289 + 9:2337146 + 9:0877538 + 8:8585946 + 8:4328445 - 7:8985310 - 8:4747245 - 8:5807327 - 8:5362790 - 8:3468298 - 7:7870115 + 7:9705950 + 8:3094328 + 8:3921941 + 8:3352955 + 8:0981356 0:0000000	+ 9'3604822 + 9'3085002 + 9'2160885 + 9'0710805 + 8'8430946 + 8'4187019 - 7'885880 - 8'4636771 - 8'5713280 - 8'5285142 - 8'3406523 - 7'7823209 + 7'9672463 + 8'3072409 + 8'399396 + 8'3347310 + 8'0979934 0'0000000	+ 8.9366193 + 8.8425243 + 8.6654836 + 8.3445322 + 7.3570221 - 7.9907231 - 8.1233747 - 7.9973868 - 7.4933247 + 7.5452372 + 7.8563710 + 7.8377617 + 7.5288505 - 7.1207108 - 7.6937943 - 7.7705274 - 7.5906615 0.0000000
	For Z						
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 75 (q) 80 (r) 85 (s) 90	9'4253477 9'7194205 9'8838350 9'9922493 0'0675944 0'1198972 0'1542765 0'1734971 0'1789664 0'1711402 0'1496346 0'1131112 0'0588702 9'9818523 9'8720812 9'7066667 9'4119815	- 9'2396616 - 9'5340101 - 9'6988746 - 9'8078993 - 9'8839961 - 9'9371686 - 9'9725087 - 9'992742 - 9'9924993 - 9'9720114 - 9'8830613 - 9'8067853 - 9'6976154 - 9'5326437 - 9'2382295 0'0000000	+ 9'4007587 + 9'6767647 + 9'8100014 + 9'88722573 + 9'8831505 + 9'8831505 + 9'7561236 + 9'5854903 + 9'2309923 - 8'6795328 - 9'3859156 - 9'5949329 - 9'6834245 - 9'7002213 - 9'6538675 - 9'5298161 - 9'2586161 0'0000000	- 9'2896123 - 9'5660835 - 9'760884 - 9'7634091 - 9'7756644 - 9'7409084 - 9'6524421 - 9'4848131 - 9'1371804 + 8'5433304 + 9'2795649 + 9'4927403 + 9'5835299 + 9'6019454 + 9'5567803 + 9'4335598 + 9'1628545 0'0000000	+ 9'1679000 + 9'4146855 + 9'4945893 + 9'4692045 + 9'3311422 + 8'9762979 - 8'5124861 - 9'1310114 - 9'2770878 - 9'2664126 - 9'1048782 - 8'5648671 + 8'7762478 + 9'1284990 + 9'1224851 + 9'1736029 + 8'9412272 0'0000000	- 9'0813734 - 9'3288279 - 9'4098674 - 9'3861566 - 9'2506072 - 8'9012321 + 8'4146622 + 9'0499309 + 9'1925953 + 9'0347051 + 8'5050483 - 8'6999415 - 9'0579615 - 9'1541621 - 9'1065874 - 8'8749449 0'0000000	+ 8·8343190 + 9·0393797 + 9·0352432 + 8·8344543 + 7·9296043 - 8·6476108 - 8·2943962 + 8·3943962 + 8·7254501 + 8·7298359 + 8·4390506 - 8·0523724 - 8·6336576 - 8·7181544 - 8·5430062 0·0000000

- 1 ou h 1	g 1 om 1 1	a lon h 1	Absolute term	for $g, \frac{1}{2} (a_1 + a'_1)$	Absolute term	for $h$ , $\frac{1}{2}(b_1 + b'_1)$	
$g_{-8}^{1}$ or $h_{-8}^{1}$	$g_{10}^{-1} \text{ or } h_{10}^{-1}$	$g_{-10}^{1}$ or $h_{-10}^{1}$	1845	1880	1845	1880	
- 8.8457489 - 8.4089352 + 8.4275878 + 8.8123300 + 8.8661315 + 8.7043471 + 7.9247604 - 8.5204505 - 8.7435518 - 8.6947568 - 8.3026013 + 8.6224891 + 8.6522891 + 8.65904491 + 8.4571815 - 7.7489066 - 8.5633885 - 8.6897620	- 8.3471369 - 5.3634134 + 8.3108863 + 8.4225300 + 8.1876033 - 7.5889238 - 8.2509395 - 8.2456884 - 7.6862126 + 8.0117486 + 8.0223794 - 7.4969343 - 8.1419995 - 8.1424541 - 7.5452247 + 7.9693480 + 8.1761947	- 8'3174318 - 6'0044196 + 8'2804934 + 8'3953218 + 8'1649495 - 7'5516022 - 8'2288159 - 8'228863 - 7'6812765 + 7'9951330 + 8'2142219 + 8'0176877 - 7'4802784 - 8'1374738 - 8'1374738 - 8'1410806 - 7'5484577 + 7'9684759 + 8'1761947	1.0690 .8064 .5498 .27255 .0134 2157 4007 55985 66445 75885 8309 8654 87465 8743 84975 8329	'4420 '1948 - '0152 - '2001 - '3557 - '5113 - '6363 - '7460832987078548847383268319	- '0356 - '05995 - '0726 - '0683 - '0543 - '07685 - '0815 - '0206 '03435 '0804 '0815 '08465 '0893 '1408 '1720	- '2762 - '2601 - '2428 - '2059 - '1330 - '0394 - '0229 - '0830 - '1517 - '2279 - '2659 - '2763 - '2896 - '2984	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (o) (p) (q) (r) (s)
			Absolute term	for $g, \frac{1}{2}(b_1 - b'_1)$	Absolute term	or $h$ , $-\frac{1}{2}(a_1 - a'_1)$	
			1845	1880	1845	1880	
			1045	1880	1045		
+ 8-9120879 + 8-8185560 + 8-6424341 + 8-3227287 + 7-3367529 - 7-9722290 - 8-1068415 - 7-9829402 - 7-4810263 + 7-5350832 + 7-8482927 + 7-8316279 + 7-5244715 - 7-1178445 - 7-6921538 - 7-7697892 - 7-5904756 0-00000000	+ 8.4552887 + 8.3047675 + 7.9924688 + 7.0302471 - 7.5678631 - 7.6181118 - 7.2617488 + 6.9741270 + 7.3665209 + 7.2561701 + 6.1552293 - 7.1241463 - 7.2163963 - 6.8698441 + 6.7901037 + 7.1538481 + 7.0554331 0.00000000	+ 8'4249852 + 8'2751596 + 7'9639959 + 7'0033134 - 7'5428247 - 7'5952661 - 7'2413255 + 6'9562811 + 7'3513287 + 7'2436269 - 6'1452503 - 7'1165602 - 7'2109869 - 6'8663034 + 6'7880771 + 7'1529362 + 7'0552034 0'00000000	- 1'2928 - 1'20185 - 1'14205 - 1'0813 - '9811 - '8677 - '75365 - '6582 - '5503 - '4442 - '3533 - '2723 - '20665 - '1385 - '0625	- 1'1931 - 1'1029 - 1'0130 - '9155 - '8130 - '6955 - '5921 - '4841 - '3796 - '2898 - '2116 - '1380 - '0714	- '05955 - '06615 - '0512 - '0463 - '0359 - '0335 - '02125 - '0153 + '00865 '02085 '0306 '0262 + '00555 - '0041 - '0056	0352 0877 1191 1408 1548 1609 1573 1518 1415 1335 1099 0727 0383	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
		1	A hanlinte term	for $g, \frac{1}{2} (a_1 - a'_1)$	A healuta tarm	for $h$ , $\frac{1}{2}(b_1 - b'_1)$	
			1845	1880	1845	1880	
- 8'7580501 - 8'9639976 - 8'9614466 - 8'7634875 - 7'8791501 + 8'5747718 + 8'7702769 + 8'6967579 + 8'2397173 - 8'3202494 - 8'6651099 - 8'6734429 - 8'3874056 + 7'9896028 + 8'5798356 + 8'6663780 + 8'667380 + 8'4922283 0'00000000	+ 8'4400682 + 8'5886511 + 8'4490404 + 7'6021048 - 8'2385854 - 8'3604405 - 8'0615715 + 7'8290476 + 8'2592391 + 8'1820501 + 7'0928452 - 8'1048359 - 8'2153702 - 7'8828719 + 7'8181669 + 8'1887923 + 8'0950036 0'0000000	- 8'3679418 - 8'5176486 - 8'3802849 - 7'5465980 + 8'1700585 + 8'2966425 + 8'0041670 - 7'7618734 - 8'1301304 - 7'0786324 + 8'1590083 + 7'8414756 - 7'7715207 - 8'1462499 - 8'0537766 0'0000000	- 1'45415 - 1'7280 - 1'8717 - 1'9373 - 1'89095 - 1'79565 - 1'63245 - 1'47385 - 1'2730 - 1'0867 - '89535 - '6950 - '48225 - '3205 - '13965	- 2°2714 - 2°1509 - 2°0095 - 1°8540 - 1°6724 - 1°4880 - 1°2984 - 1°0935 - °9296 - °7627 - °5553 - °3767 - °1728	1845 '07575 '0305 - '0032 - '0188 - '00735 '04265 '05705 '09215 '11885 '09135 '05005 '02585 - '0028 '03775 '0264	*2993 *2915 *3025 *3356 *3751 *4540 *4757 *4747 *4527 *4068 *3403 *2531 *1741	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)

	E Z						
0.1.22	For $X$ $g_2^2 \text{ or } h_2^2$	$g_{-2}^{2}$ or $h_{-2}^{2}$	$g_4{}^2$ or $h_4{}^2$	$g_{-4}^{2}$ or $h_{-4}^{2}$	$g_6^{\ 2} \ { m or} \ h_6^{\ 2}$	$g_{-6}^{2}$ or $h_{-6}^{2}$	$g_8^2$ or $h_8^2$
Co-latitude	$g_2$ or $n_2$	$g_{-2}$ or $n_{-2}$	94 01 114	9_4 01 70_4	96 01 106	9-6 01 10-6	98 01 108
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 9.2482727 - 9.5422899 - 9.7066139 - 9.8149052 - 9.8900987 - 9.9422261 - 9.9764111 - 9.9954243 - 0.0006802 - 9.9926404 - 9.9709277 - 9.9342098 - 9.8797931 - 9.8026234 - 9.6927292 - 9.5272241 - 9.2324833	- 9'2411134 - 9'5354619 - 9'7003264 - 9'8093511 - 9'88934477 - 9'9386204 - 9'9739606 - 9'9942035 - 0'0007260 - 9'9939511 - 9'9734633 - 9'9378933 - 9'8845131 - 9'8082370 - 9'6990672 - 9'5340954 - 9'2396811 0'0000000	- 9.1763176 - 9.4459514 - 9.5673094 - 9.6096384 - 9.5869466 - 9.4890144 - 9.2592910 - 8.3256443 + 9.1876985 + 9.5091460 + 9.6675431 + 9.7505996 + 9.7664836 + 9.7010668 + 9.5655984 + 9.2882594 0.00000000	- 9'1634318 - 9'4336761 - 9'5560752 - 9'5599358 - 9'5794342 - 9'4848932 - 9'2623512 - 8'4185432 + 9'1656325 + 9'4973860 + 9'6599716 + 9'7457593 + 9'7787829 + 9'7653132 + 9'7011287 + 9'5665376 + 9'2897248 0'0000000	- 8.9192346 - 9.1484541 - 9.1904803 - 9.0797463 - 8.6459841 + 8.7223907 + 9.1610916 + 9.3163067 + 9.3470720 + 9.2690429 + 9.0267191 + 7.6111909 - 8.9779950 - 9.2203795 - 9.2820469 - 9.2183684 - 8.9789435	- 8.9006238 - 9.1307626 - 9.1745125 - 9.0670690 - 8.6456394 + 8.6934837 + 9.1437698 + 9.3032560 + 9.3374043 + 9.2627841 + 9.0251943 + 7.7214993 - 8.9702419 - 9.2183696 - 9.2807278 - 9.2183696 - 8.9796960	- 8.5689978 - 8.7381038 - 8.6334123 - 7.7994099 + 8.5878643 + 8.8784960 + 8.6967870 - 7.7068874 - 8.5875061 - 8.7942255 - 8.7491205 - 8.7491205 - 8.3858124 + 8.2455465 + 8.698084 + 8.7604437 + 8.5783241 0.00000000
	For Y	,			1	1	'
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	9'2499843 9'5491599 9'7221620 9'8427780 9'9341335 0'0065292 0'0654588 0'1141986 0'1548581 0'1888701 0'2172479 0'2407274 0'2598527 0'2750284 0'2865534 0'2946423 0'2994398	+ 9'2427692 + 9'5421104 + 9'7153827 + 9'8363652 + 9'9281720 + 0'0010898 + 0'0605961 + 0'1512409 + 0'1858836 + 0'2148719 + 0'2389233 + 0'2585648 + 0'2741854 + 0'2944252 + 0'2993851 + 0'3010300	+ 9.1820056 + 9.4692725 + 9.6221233 + 9.7138550 + 9.7668265 + 9.7668265 + 9.766868 + 9.7650561 + 9.6166983 + 9.4810832 + 9.2611467 + 8.7891894 - 8.7108229 - 9.1715537 - 9.3481633 - 9.4309562 - 9.4559320	+ 9.1690184 + 9.4565834 + 9.6099206 + 9.7023987 + 9.7803987 + 9.7789670 + 9.7524086 + 9.6985452 + 9.6113227 + 9.4768065 + 9.2578994 + 8.78671 - 8.7093055 - 9.1706852 - 9.3477725 - 9.4308578 - 9.4559320	+ 8.9312698 + 9.1995810 + 9.3195272 + 9.3620406 + 9.3450956 + 9.2693109 + 9.1193426 + 8.8381532 + 7.9405826 - 8.5935533 - 8.8344136 - 8.803664 - 8.803384 - 8.5632470 - 7.4346157 + 8.4695705 + 8.7189536 + 8.7825161	+ 8.9125105 + 9.1812523 + 9.3019011 + 9.3453673 + 9.3295956 + 9.2551683 + 9.1066996 + 8.8271058 + 7.9311779 - 8.5857885 - 8.8282361 - 8.8753758 - 8.7936897 - 8.5610551 - 7.4333612 + 8.4690060 + 8.7188114 + 8.7825161	+ 8.5899079 + 8.8318157 + 8.9040182 + 8.8694055 + 8.7255750 + 8.4006795 - 7.0601204 - 8.2697376 - 8.3776922 - 8.2550659 - 7.7511050 + 7.8478954 + 8.1687827 + 8.1717663 + 7.9089835 - 7.0878538 - 8.0253355 - 8.1456940
	For Z						
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 35 (h) 40 (i) 45 (k) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 85 (s) 90	8·3711709 8·9696109 9·3157596 9·5571878 9·7401402 9·8852106 0·0033782 0·1011864 0·1828431 0·2512043 0·3082864 0·3555512 0·3940780 0·4246673 0·4479101 0·4642298 0·4739118	- 8·1830652 - 8·7817806 - 9·1283789 - 9·3704169 - 9·5541202 - 9·7000597 - 9·8191873 - 9·9180170 - 0·0007259 - 0·0701375 - 0·1282364 - 0·1764540 - 0·2471712 - 0·2710146 - 0·2877767 - 0·2977294 - 0·3010300	+ 8.5242663 + 9.1107839 + 9.4367584 + 9.6492701 + 9.7937962 + 9.8897808 + 9.9464816 + 9.9536837 + 9.8995093 + 9.7923196 + 9.5955497 + 9.1400815 - 9.0865725 - 9.5556462 - 9.7398742 - 9.8273352 - 9.8538720	- 8'4118028 - 8'9987479 - 9'3254212 - 9'5388835 - 9'6845861 - 9'7819421 - 9'8401761 - 9'8631590 - 9'8508123 - 9'7985219 - 9'6934213 - 9'4994080 - 9'0516657 + 8'9779843 + 9'4555791 + 9'6418247 + 9'7301628 + 9'7569620	+ 8'4193217 + 8'9868641 + 9'2798983 + 9'4431335 + 9'5176495 + 9'5143248 + 9'4232038 + 9'1900814 + 8'3203932 - 9'0255890 - 9'2935399 - 9'3624127 - 9'3043763 - 9'0793503 + 9'079831 + 9'2615191 + 9'3265841	- 8'3318763 - 8'9000162 - 9'1940349 - 9'3586288 - 9'4348713 - 9'3452227 - 9'1162087 - 8'2763055 + 8'9454008 + 9'2188035 + 9'2907192 + 9'2352091 + 9'0129951 - 8'9386229 - 9'1941453 - 9'2596374	+ 8·1869136 + 8·7280297 + 8·9732734 + 9·0592883 + 9·066980 + 8·7534620 - 7·5072860 - 8·7340391 - 8·8819373 - 8·7928405 - 8·3145371 + 8·4419219 + 8·7802374 + 8·7980426 + 8·5463071 - 7·9378133 - 8·6771148 - 8·7989065



			l.		i.		1
			Absolute term	for $g$ , $\frac{1}{2}(a_2 - a'_2)$	Absolute term	for $h$ , $\frac{1}{2}(b_2 - b'_2)$	
$g_{-8}^{2}$ or $h_{-8}^{2}$	$g_{_{10}}^{^{2}} \text{ or } h_{_{10}}^{^{2}}$	$g_{-10}^{2}$ or $h_{-10}^{2}$	1845	1880	1845	1880	
- 8.5446646 - 8.7150542 - 8.6133625 - 7.8086668 + 8.5620225 + 8.8314944 + 8.8620645 + 8.6852705 + 7.7283747 - 8.75729837 - 8.7852839 - 8.7441489 - 8.3866039 + 8.2363459 + 8.6953988 + 8.7598453 + 8.5787343 0.00000000	- 8·1608495 - 8·2430704 - 7.7797096 + 8·0897803 + 8·3912723 + 8·3458077 + 7·8197744 - 8·0723348 - 8·3125022 - 8·1605676 + 7·1003967 + 8·1804483 + 8·2435443 + 7·8568021 - 7·9026870 - 8·2298909 - 8·1269057 0·00000000	- 8.1307975 - 8.2147773 - 7.7596044 + 8.0579368 + 8.3649517 + 8.3239437 + 7.8085715 - 8.0496762 - 8.2967681 - 8.1506421 + 7.0456154 + 8.1709494 + 8.2386956 - 7.8575069 - 7.8977438 - 8.2287554 - 8.1270884 0.00000000	18865 1567 1331 1290 10155 108435 105115 1048 12005 12055 12559 12911 16415 17835 1006	'3117 '2884 '2356 '1688 '0969 '0072 - '0789 - '1497 - '1835 - '1989 - '1523 - '1011 - '0443	**O767 **O8695 **I065 **I420 **I972 **27495 **30965 **2979 **30115 **30315 **28705 **2467 **20275 **I4715 **O9145	.0750 .1805 .2269 .2503 .2738 .2824 .2868 .2999 .3060 .2832 .2277 .1532 .0763	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (o) (p) (q) (r) (s)
			Absolute term i			or $h_1 - \frac{1}{2}(a_2 + a_2)$	
			1845	1880	1845	1880	
+ 8.5653765 + 8.8078474 + 8.8809687 + 8.8476020 + 8.7053058 + 8.3821854 - 7.0435872 - 8.2552910 - 8.3653938 - 8.22449119 - 7.7430267 + 7.8417616 + 8.1644037 + 8.1689000 + 7.9073430 - 7.0871156 - 8.0251496 - 8.1456940	+ 8·1933940 + 8·4008463 + 8·4067612 + 8·2487806 + 7·8012638 - 7·5150293 - 7·8713163 - 7·7651499 - 7·0113531 + 7·5174366 + 7·6588792 + 7·4043225 - 6·9676061 - 7·5227773 - 7·4994597 - 6·8693683 + 7·3219969 + 7·5229822	+ 8·1630905 + 8·3712384 + 8·3782883 + 8·2218469 + 7·7762254 - 7·4921836 - 7·8508930 - 7·7473040 - 6·9961609 + 7·5048934 + 7·6489002 + 7·3967454 - 6·9621967 - 7·5192366 - 7·4974331 - 6·8684564 + 7·3217672 + 7·5229822	- '15935 - '1178 - '12655 - '14145 - '15775 - '17545 - '1763 - '14775 - '1254 - '0951 - '04715 '0002 '04245 '0848 '12275 '1291	- '2588 - '3219 - '3579 - '3670 - '3605 - '33300 - '2893 - '2511 - '2106 - '1651 - '1170 - '0766 - '0380 - '0236	- '0876 - '12565 - '14905 - '1734 - '19375 - '2179 - '25165 - '2874 - '3205 - '3739 - '42475 - '4752 - '5145 - '54455 - '56095 - '5581	- '2329 - '2565 - '2759 - '2862 - '3048 - '3322 - '3662 - '4064 - '4520 - '4959 - '5333 - '5585 - '5809 - '5817	(a) (b) (c) (d) (e) (f) (g) (h) (k) (l) (m) (o) (p) (q) (r) (s)
			Absolute term for $g$ , $\frac{1}{2}(a_2+a_3')$		Absolute term for $h$ , $\frac{1}{2}(b_2+b'_2)$		
			1845	1880	1845	1880	
- 8·1099298 - 8·6518212 - 8·8983596 - 8·9862186 - 8·9361736 - 8·687157 + 7·3652342 + 8·6656262 + 8·8182723 + 8·7334155 + 8·2639631 - 8·3791738 - 8·7237463 - 8·7445745 - 8·4956908 + 7·8788613 + 8·6253497 + 8·7477540	+ 7.8774257 + 8.3840604 + 8.5629532 + 8.5629532 + 8.5629532 - 7.9596218 - 8.3726029 - 8.3144647 - 7.5951324 + 8.1447394 + 8.3134775 + 8.0813645 - 7.6699468 - 8.2368538 - 8.2246151 - 7.6010657 + 8.0610188 + 8.2633449	- 7.8047062 - 8.3123006 - 8.4928326 - 8.4578091 - 8.1055645 + 7.8888815 + 8.3099726 + 8.2569360 + 7.5541820 - 8.0876652 - 8.2622722 - 8.0356914 + 7.6143046 + 8.1910994 + 8.1819182 + 7.5631670 - 8.0187807 - 8.2219522	'0069 - '0911 - '17605 - '2134 - '24135 - '2543 - '2740 - '28095 - '2580 - '19035 - '1343 - '04155 '0489 '15845 '2331 '2491	- '2210 - '3281 - '4386 - '5546 - '6121 - '6193 - '5686 - '4586 - '3594 - '2779 - '2191 - '1442 - '0719 - '0301	.03535 .0162 02575 0781 1005 1048 1715 2366 3483 45925 62115 7481 8157 8959 9507 9587	- '0841 - '1735 - '2606 - '3310 - '3926 - '4266 - '4648 - '5556 - '6763 - '7634 - '8256 - '9074 - '9644 - 1'0085	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
-			·			67	

	FOR X					
Co-latitude	$g_3^2$ or $h_3^2$	$g_{-3}^{2}$ or $h_{-3}^{2}$	$g_5^2  ext{ or } h_5^2$	$g_{-5}^{2} \text{ or } h_{-5}^{2}$	$g_7^2$ or $h_7^2$	$g_{-7}^2$ or $h_{-7}^2$
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (n) 65 (n) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 9:2463386 - 9:5300190 - 9:6765089 - 9:7584310 - 9:7969503 - 9:7969503 - 9:7646195 - 9:6857133 - 9:5376848 - 9:2373505 + 8:3603074 + 9:3391952 + 9:6348162 + 9:7910313 + 9:9886420 + 9:9534038 + 9:9886320 + 0:00000000	- 9'2363156 - 9'5204646 - 9'6677324 - 9'7507417 - 9'790662 - 9'7945671 - 9'7623061 - 9'6863585 - 9'5430514 - 9'2546922 + 8'1554068 + 9'3419547 + 9'6267064 + 9'7866580 + 9'8881912 + 9'9584523 + 9'9883999 + 0'00000000	- 9.0629433 - 9.3145492 - 9.4019363 - 9.3850006 - 9.2494808 - 8.8355749 + 8.8103166 + 9.2937244 + 9.4808962 + 9.5588705 + 9.5603547 + 9.4845203 + 9.2946953 + 8.7623683 - 8.9460970 - 9.3343021 - 9.4809287 - 9.5228788	- 9'0471947 - 9'2995606 - 9'3882943 - 9'3735273 - 9'2419298 - 8'8418637 + 8'7775841 + 9'2778598 + 9'4698292 + 9'5510281 + 9'2952262 + 8'7719971 - 8'9391933 - 9'3225381 - 9'4805521 - 9'5228788	- 8.7529269 - 8.9548842 - 8.9357154 - 8.6517501 + 8.2977489 + 8.9277268 + 9.1005218 + 9.1095474 + 8.9597319 + 8.4182933 - 8.6413758 - 8.9774537 - 9.0424883 - 8.9324035 - 8.4871433 + 8.5331937 + 8.9318099 + 9.0207552	- 8.7314546 - 8.9345039 - 8.9175656 - 8.6397486 + 8.2587174 + 8.9069632 + 9.0842493 + 9.0969869 + 8.9514992 + 8.4224220 - 8.6269916 - 8.9702222 - 9.0386359 - 8.9313184 - 8.4996447 + 8.5295062 + 8.9312691 + 9.0207552
(") 90	, 0 000000	. 0 030000	y <b>J</b> 220700	9 3220700	. 9 020/332	, 9 020/332
	For Y					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	9'2497493 9'5438330 9'7082656 9'8167042 9'8920792 9'9444169 9'9788347 9'9980960 0'0036075 9'9958235 9'9743586 9'9378733 9'8836667 9'8066785 9'6969314 9'5315347 9'2368604 0'00000000	+ 9'2396481 + 9'5339637 + 9'6987746 + 9'8077263 + 9'8837331 + 9'9368017 + 9'9720269 + 9'991474 + 9'9985434 + 9'9916424 + 9'9710323 + 9'9353476 + 9'8818636 + 9'8054983 + 9'6962559 + 9'5312307 + 9'2367838 0'0000000	+ 9'0715003 + 9'3501911 + 9'4882863 + 9'5582861 + 9'5811779 + 9'5637471 + 9'5054526 + 9'3981516 + 9'2180890 - 8'8812408 - 7'8382258 - 8'8722662 - 9'0792056 - 9'1449378 - 9'1239255 - 9'0138793 - 8'7498820 0'00000000	+ 9'0556270 + 9'3346822 + 9'4733719 + 9'5441780 + 9'5680626 + 9'5517803 + 9'4947547 + 9'3888038 + 9'2101312 + 8'8746706 - 7'8329987 - 8'8682973 - 9'0763721 - 9'1430832 - 9'1228640 - 9'0134016 - 8'7497617 0'0000000	+ 8.7690711 + 9.0251441 + 9.1232552 + 9.1314460 + 9.0612656 + 8.8963838 + 8.5544261 - 7.5392941 - 8.4905418 - 8.6255063 - 8.5739839 - 8.3237166 + 6.2192264 + 8.2747321 + 8.4636017 + 8.4501863 + 8.2333511 0.00000000	+ 8'7474258 + 9'0039956 + 9'1029174 + 9'1122076 + 9'0433810 + 8'8800655 + 8'5398380 - 7'5265471 - 8'4796902 - 8'6165469 - 8'3183044 + 6'2153626 + 8'2722030 + 8'4621542 + 8'4495349 + 8'2331871 0'00000000
	For Z					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	8-4953916 9-0887340 9-4263039 9-6555423 9-8224988 9-9474936 0-0411297 0-1094383 0-1559247 0-1824692 0-1896875 0-1769680 0-1421450 0-0805551 9-9825133 9-8253382 9-5355428	- 8°3570069 - 8°9506968 - 9°2888337 - 9°5188408 - 9°6867442 - 9°8128346 - 9°9076811 - 9°9772777 - 0°0250925 - 0°0614597 - 0°0499411 - 0°0162022 - 9°9555470 - 9°8582625 - 9°7016451 - 9°4121910 0°0000000	+ 8'4927464 + 9'0706787 + 9'38'18809 + 9'5726350 + 9'6870428 + 9'7421743 + 9'7429547 + 9'6844624 + 9'5448938 + 9'2408487 - 8'2579525 - 9'2896172 - 9'5860187 - 9'5860187 - 9'4840883 - 9'2249159 0'0000000	- 8°3956148 - 8°9740584 - 9°2860993 - 9°4780007 - 9°5938422 - 9°6534173 - 9°5972030 - 9°4604962 - 9°1615868 + 8°1086771 + 9°2021046 + 9°4312940 + 9°55141794 + 9°5061386 + 9°4052001 + 9°1466113 0°0000000	+ 8.3150082 + 8.8703013 + 9.1414785 + 9.2703504 + 9.2915481 + 9.1989182 + 8.9149343 - 7.9712874 - 8.9450454 - 9.1133085 - 0.0898774 - 8.8623970 + 6.9462258 + 8.8512425 + 9.0509977 + 9.0455328 + 8.8334618	- 8-2338799 - 8-7898586 - 9-0621722 - 9-1926322 - 9-2159081 - 9-1260453 - 8-8468165 + 7-8561267 + 8-8729561 + 9-0457276 + 9-0257285 + 8-8024823 - 6-3832808 - 8-7883021 - 8-9911312 - 8-9872148 - 8-7759814 - 0-0000000

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Ĥ.		1	1	· [
- 8 3708 366	2)	1	11	1		$g_{-9}^{2}$ or $h_{-9}^{2}$	$g_{a}^{2}$ or $h_{a}^{2}$
- 8 *5013083   - 8 *4748159   323255   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256   320256	_	1880	1845	1880	1845		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)	**O145 **O015 **O022 +- **O060 **O007 **O091 **O332 **O543 **O472 **O394 **O572 **O859	**************************************	'3347 '2458 '1284 '0130 -'0996 -'2107 -'3158 -'3929 -'4292 -'4345 -'4247 -'4124	'3773 '4027 '3928 '28865 '16555 '02355 - '1508 - '26015 - '34615 - '4146 - '4279 - '42615 - '41725 - '41000	- 8'4748159 - 8'2456760 + 7'9206987 + 8'5218558 + 8'6299905 + 8'4878977 + 7'5919250 - 8'3623690 - 8'5479432 - 8'4269025 - 7'4843625 + 8'3315834 + 8'5112778 + 8'3767886 + 7'0213420 - 8'3435740	- 8-5013083 - 8-2669526 + 7-9579715 + 8-5472037 + 8-6510878 + 8-5041740 + 7-5779716 - 8-3800291 - 8-5597450 - 8-4337333 - 7-4619184 + 8-3391907 + 8-5146388 + 8-3772955 + 6-9902948 - 8-3443152
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·′ ₂ )	1		1			
1845   1880   1845   1880   1845   1880     1845     1880	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)	'0335 '0178 - '0056 - '0270 - '0335 - '0290 - '0157 - '0009 '0132 '0149 '0088	- '04065 - '05495 - '05495 - '0579 - '0585 - '0606 - '0857 - '0780 - '05725 - '0365 - '0218 + '00025	- '7220 - '7393 - '7331 - '7017 - '6432 - '5693 - '4787 - '3837 - '2811 - '1877 - '1153	- '5969 - '72555 - '79135 - '80775 - '77055 - '7181 - '63295 - '5331 - '4369 - '34635 - '2597 - '19605 - '1206	+ 8·5961472 + 8·6388772 + 8·6388772 + 8·5517558 + 8·2997601 - 7·9552412 - 8·1118127 - 7·9657668 - 7·1855937 + 7·7406421 + 7·9212608 + 7·7849710 + 6·7880838 - 7·6757121 - 7·8424492 - 7·6939354	+ 8·6229353 + 8·6646384 + 8·5761244 + 8·3224139 + 7·5020460 - 7·9795121 - 7·1969423 + 7·7496707 + 7·9281163 + 7·7898652 + 6·7912873 - 7·6775457 - 7·88432743 - 7·6941432
+ 8·0398965	)	for $h$ , $\frac{1}{2}(b_2 - b'_2)$	Absolute term i	for $g, \frac{1}{2} (a_2 - a'_2)$	Absolute term		
+ 8 * 5648263       - 8 * 4913703       - 2181       - 11775         + 8 * 7795416       - 8 * 7075471       - 4678       - 11517         + 8 * 8115820       - 8 * 7417287       - 4678       - 11517         + 8 * 6488371       - 8 * 5822810       - 72125       - 8818       - 16855       - 3085         + 7 * 8950310       - 7 * 8435225       - 9164       - 9700       - 1604       0332         - 8 * 4348379       + 8 * 3671917       - 1 * 02245       - 1 * 0530       - * 1438       0556         - 8 * 6368259       + 8 * 5746481       - 1 * 0969       - 1 * 0350       - * 1697       0891         - 8 * 5283867       + 8 * 4710498       - 1 * 0969       - 1 * 0350       - * 1537       * 1044         - 7 * 7726874       + 7 * 7736930       - 1 * 05975       - 1 * 0002       - * 1268       * 1032         + 8 * 3645635       - 8 * 3063760       - 9882       - 9254       - 0750       * 0957         + 8 * 5554413       - 8 * 5126115       - * 81215       - * 8183       - 06525       * 0659         + 8 * 4457601       - 8 * 3969346       - 6274       - 6831       - 09885       * 0201         + 7 * 4259672       - 7 * 4261153       - 46855       - * 5522       - * 0853		1880	1845	1880	1845		
- 8-5350973	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (i) (m) (o) (p) (q) (r) (s)	·0332 ·0556 ·0891 ·1044 ·1032 ·0957 ·0659 ·0201 - ·0296 - ·0223 - ·0221	- '1517 - '16855 - '1604 - '1438 - '1697 - '1537 - '1268 - '0750 - '06525 - '09885 - '0853 - '0804 - '0381	- '9700 - I'0530 - I'0624 - I'0350 - I'0002 - '9254 - '8183 - '6831 - '5522 - '4118 - '2850	- '4678 - '72125 - '9164 - 1'02245 - 1'0824 - 1'0969 - 1'05975 - '9882 - '81215 - '6274 - '46855 - '3370 - '22325	- 8:4913703 - 8:7075471 - 8:7417287 - 8:5822810 - 7:8435225 + 8:3671917 + 8:5746481 + 8:4710498 + 7:7336930 - 8:3069346 - 8:5126115 - 8:3969346 - 7:4261153 + 8:3132242 + 8:4890837 + 8:3457646	+ 8.5648263 + 8.7795416 + 8.8115820 + 8.6488371 + 7.8950310 - 8.6368259 - 8.5283867 - 7.7726874 + 8.3645635 + 8.5654413 + 8.4457601 + 7.4529672 - 8.3624046 - 8.5356973 - 8.3912536

	For X					
Co-latitude		$g_{-3}^{-3}$ or $h_{-3}^{-8}$	$g_{\mathfrak{s}}^{\ \mathfrak{s}} \ \mathrm{or} \ h_{\mathfrak{s}}^{\ \mathfrak{s}}$	$g_{-5}^{-3}$ or $h_{-5}^{-3}$	$g_7^8$ or $h_7^8$	$g_{-7}^{-3} \text{ or } h_{-7}^{-8}$
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 8.3689928 - 8.9622963 - 9.2998025 - 9.5289542 - 9.6958041 - 9.8206753 - 9.914.1746 - 9.9823375 - 0.0286744 - 0.0550677 - 0.0621404 - 0.0492839 - 0.0143373 - 9.9526408 - 9.8545124 - 9.6972735 - 9.4074391 0.00000000	- 8'3589437 - 8'9526337 - 9'2907704 - 9'5207777 - 9'6886810 - 9'8147713 - 9'9996178 - 9'9792145 - 0'0270281 - 0'0548960 - 0'0633965 - 0'0518778 - 0'0181390 - 9'9574838 - 9'8601994 - 9'7035818 - 9'4141277 0'00000000	- 8'3143973 - 8'8882843 - 9'1921322 - 9'3710718 - 9'4669439 - 9'4490601 - 9'2694303 - 8'7076342 + 9'0449723 + 9'6172013 + 9'7029866 + 9'7029866 + 9'7237062 + 9'6824494 + 9'5627512 + 9'2943779 0'0000000	- 8.2986063 - 8.8731081 - 9.1779811 - 9.3583666 - 9.4561442 - 9.4837884 - 9.4352334 - 9.2708572 - 8.7412993 + 9.6102321 + 9.6989602 + 9.7217791 + 9.6820605 + 9.5634331 + 9.2956955 0.00000000	- 8·1070000 - 8·6520109 - 8·9028537 - 8·9936323 - 8·9355173 - 8·6018744 + 8·4701418 + 9·0059694 + 9·1807960 + 9·2093773 + 9·1022195 + 8·7380428 - 8·5028563 - 9·0253056 - 9·1593021 - 9·1293981 - 8·9065270 0·00000000	- 8.0854679 - 8.6313328 - 8.8836569 - 8.9767222 - 8.9224077 - 8.5997386 + 8.4334406 + 9.1679364 + 9.2004286 + 9.0971839 + 8.7398245 - 9.0206780 - 9.1575017 - 9.1291756 - 8.9071761 0.00000000
	For Y					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (n) 65 (o) 70 (p) 75 (q) 85 (s) 90	8·3707007 8·9691515 9·3153177 9·5567697 9·7397514 9·8848559 0·0030611 0·1009092 0·1826071 0·2510096 0·3081314 0·3554335 0·3939938 0·4246124 0·4478786 0·4642156 0·4739083 0·4771213	+ 8·3605995 + 8·9592822 + 9·3058267 + 9·5477918 + 9·7314053 + 9·8772407 + 9·9962533 + 0·0949606 + 0·1775430 + 0·2468285 + 0·3048051 + 0·3529078 + 0·3921907 + 0·4234322 + 0·4472031 + 0·4738317 + 0·4738317 + 0·4771213	+ 8·3186569 + 8·9056313 + 9·2324041 + 9·4461190 + 9·5923590 + 9·7508111 + 9·7769755 + 9·7701241 + 9·7276156 + 9·6413765 + 9·4909249 + 9·2110062 + 8·0772250 - 9·1008603 - 9·3746419 - 9·4893541 - 9·5228788	+ 8·3027836 + 8·8901224 + 9·2174897 + 9·4320109 + 9·5792437 + 9·769132 + 9·765277 + 9·7621663 + 9·7210454 + 9·6361494 + 9·4869560 + 9·2081727 + 8·0753704 - 9·0997988 - 9·3741642 - 9·4892338 - 9·5228788	+ 8.1149814 + 8.6852275 + 8.9832050 + 9.1544613 + 9.2417747 + 9.2597485 + 9.2081735 + 9.0690158 + 8.7700367 - 6.4989114 - 8.6754995 - 8.8619670 - 8.8625805 - 8.7043078 - 8.1623847 + 8.3743516 + 8.7788621 + 8.7989065	+ 8·0933361 + 8·6640790 + 8·9628672 + 9·1352229 + 9·2238901 + 9·2434302 + 9·1935854 + 9·0562688 + 8·7591851 - 6·4899520 - 8·6683716 - 8·8565548 - 8·8587167 - 8·7017787 - 8·1609372 + 8·3737002 + 8·7186981 + 8·7989065
	For Z					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 55 (m) 60 (n) 65 (o) 75 (q) 80 (r) 85 (s) 90	7:4409734 8:3386831 8:8579869 9:2202391 9:4948029 9:7125651 9:8899892 0:0368854 0:1595597 0:2622906 0:3480963 0:4191649 0:4771094 0:5231268 0:5580988 0:5826577 0:5972295 0:6020600	- 7:3008955 - 8:1989524 - 8:7188229 - 9:0818434 - 9:357334 - 9:5762107 - 9:7548445 - 9:9030279 - 0:0270280 - 0:1310824 - 0:2181695 - 0:2904384 - 0:3494664 - 0:3494664 - 0:349471213	+ 7'5642963 + 8'4505211 + 8'9504172 + 9'5249121 + 9'5227077 + 9'6937141 + 9'8129617 + 9'9881222 + 9'9221795 + 9'9139052 + 9'8562035 + 9'7292405 + 9'4679243 + 8'3290419 - 9'3884573 - 9'6694986 - 9'7888309 - 9'8239088	- 7'4660951 - 8'3528116 - 8'8535109 - 9'1890969 - 9'4282393 - 9'6008098 - 9'7217957 - 9'7988236 - 9'8348345 - 9'8285689 - 9'7729337 - 9'6482142 - 9'3900847 - 8'2961271 + 9'3050617 + 9'5889845 + 9'7093516 + 9'7447275	+ 7.4851941 + 8.3546773 + 8.8257545 + 9.1177535 + 9.2965656 + 9.3870736 + 9.3945200 + 9.3040356 + 9.0449585 - 7.0718319 - 9.0174497 - 9.2266000 - 9.2461422 - 9.1028223 - 8.5706889 + 8.7948317 + 9.1433430 + 9.2248752	- 7'4032779 - 8'2734102 - 8'7455519 - 9'0390074 - 9'2196399 - 9'3123119 - 9'3222795 - 9'2348295 - 8'9803443 + 5'4914727 + 8'9487508 + 9'1623125 + 9'1623125 + 9'1643163 + 9'0439651 + 8'5172302 - 8'7338857 - 9'0848739 - 9'1668832

[46						
	3 7 3	Absolute term	for $g$ , $\frac{1}{2}(a_3 - a_3)$	Absolute term	for $h$ , $\frac{1}{2}(b_3 - b'_3)$	
$g_9^{\ a}$ or $h_9^{\ a}$	$g_{-9}^{3}$ or $h_{-9}^{3}$	1845	1880	1845	1880	
- 7.8118088 - 8.3173677 - 8.4885689 - 8.4118101 - 7.5939222 + 8.4089972 + 8.6760941 + 8.6879184 + 8.4382845 - 7.7949506 - 8.5433692 - 8.6415186 - 8.456860 + 7.2328906 + 8.4804740 + 8.6146940 + 8.4578948 0.00000000	- 7.7845364 - 8.2912066 - 8.4644761 - 8.3917871 - 7.6111787 + 8.3819381 + 8.6557079 + 8.6722768 + 8.4289194 - 7.7597401 - 8.5317874 - 8.63347575 - 8.4545506 + 7.1780151 + 8.4771634 + 8.6138750 + 8.4582224 0.00000000	- '0206 - '00915 + '0228 '01895 '0200 '0064 '03605 '0334 - '0069 - '01245 - '0001 + '01505 '04055 '03195 '00275	*0386 *0643 *0816 *0956 *0922 *1001 *0894 *0734 *0658 *0510 *0249 *0184 *0006	100875 10443 10753 1136 1189 12015 1290 1343 17955 20405 2097 18555 13805 109445	'0447 '0462 '0634 '0784 '0967 '1063 '1177 '1382 '1533 '1420 '1231 '0841 '0236	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
		Absolute term i	for $g$ , $\frac{1}{2}(b_3 + b'_3)$	Absolute term fo	or $h$ , $-\frac{1}{2}(a_3 + a'_3)$	
+ 7*8247300 + 8*3727870 + 8*6315145 + 8*7419914 + 8*7373444 + 8*6076087 + 8*2574531 - 7*6236261 - 8*2668016 - 8*3179830 - 8*0981311 + 6*7775540 + 8*0608389 + 8*1760398 + 8*020251 - 5*9069560 - 7*9860309 - 8*1327290	+ 7.7973126 + 8.3459989 + 8.6057533 + 8.7176228 + 8.7146906 + 8.5869388 + 8.2389749 - 7.6074798 - 8.2530563 - 8.3066344 - 8.0891025 + 6.7706985 + 8.0559447 + 8.1728363 + 8.0001915 - 5.9061309 - 7.9858231 - 8.1327290	- '0477 - '04765 - '0420 - '0444 - '0488 - '06365 - '0659 - '0807 - '0928 - '0941 - '09755 - '1051 - '1057 - '10205 - '11255 - '1150	- '0941 - '1119 - '1073 - '1160 - '1294 - '1418 - '1549 - '1688 - '1833 - '1980 - '2125 - '2281 - '2396 - '2446	- '0526 - '06375 - '0946 - '1349 - '18735 - '21205 - '2416 - '2649 - '2801 - '31075 - '3424 - '38235 - '4144 - '4497 - '4592 - '4522	- '0854 - '1265 - '1484 - '1651 - '1813 - '1994 - '2156 - '2341 - '2575 - '2947 - '3315 - '3570 - '3767 - '3852	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
		Absolute term 1	for $g$ , $\frac{1}{2}(a_3 + a'_3)$	Absolute term	for $h$ , $\frac{1}{2}(b_3 + b'_3)$	
+ 7·2916310 + 8·1389094 + 8·5707063 + 8·8018708 + 8·8886155 + 8·5390006 - 7·9639331 - 8·6415287 - 8·7261473 - 8·533963 + 7·2693662 + 8·5424251 + 8·6722096 + 8·5099729 - 6·4941956 - 8·5075004 - 8·6556077	- 7'2166802 - 8'0647711 - 8'4979090 - 8'7309339 - 8'8200787 - 8'7557310 - 8'4786980 + 7'8856942 + 8'5800888 + 8'6693852 + 8'4820760 - 7'1492293 - 8'4898360 - 8'6233160 - 8'4632001 + 6'2813483 + 8'4610614 + 8'6098502	- '0688 + '0005 '01885 - '0124 - '0253 - '0884 - '0935 - '07945 - '1155 - '19265 - '18555 - '1768 - '14995 - '18635 - '2045	- '0582 - '0382 - '0385 - '0538 - '0703 - '0665 - '1078 - '1427 - '1518 - '1718 - '1718 - '1691 - '1850 - '2187 - '2435	- '0885 - '1157 - '1253 - '1204 - '13315 - '1674 - '18585 - '2134 - '32525 - '385395 - '45875 - '5166 - '5194 - '54805 - '5538	- '1114 - '1008 - '1064 - '1118 - '1298 - '1924 - '2154 - '2192 - '2565 - '3190 - '3744 - '3984 - '4369 - '4832	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (i) (m) (n) (o) (p) (r) (s)

Co-latitude	For $X$ $g_4^3 \text{ or } h_4^3$	$g_{-4}^{-3}$ or $h_{-4}^{-3}$	$g_6{}^3$ or $h_6{}^3$	$g_{-6}^{-3}  ext{ or } h_{-6}^{-3}$	$g_8^{\ 3}$ or $h_8^{\ 3}$	$g_{-8}^{\ \ 3} \text{ or } h_{-8}^{\ \ 3}$
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 8·3676258 - 8·9523526 - 9·2751686 - 9·24828544 - 9·6203704 - 9·7062774 - 9·7482643 - 9·7472311 - 9·6966506 - 9·5749428 - 9·3039385 8·0897391 9·3917554 9·6808772 9·8385884 9·9325627 9·9836887 0·00000000	- 8'3547057 - 8'9399320 - 9'2635707 - 9'4723899 - 9'6113369 - 9'6989660 - 9'7429804 - 9'7443505 - 9'6967779 - 9'5794834 - 9'3186429 + 7'5756172 + 9'3764540 + 9'6743723 + 9'8355151 + 9'9313113 + 9'9833892 + 0'00000000	- 8.2244562 - 8.7851451 - 9.0652414 - 9.2062769 - 9.2418525 - 9.1615205 - 8.8580944 + 8.5003017 + 9.1574047 + 9.3750786 + 9.4596046 + 9.4499491 + 9.3360172 + 9.0244559 - 8.4327266 - 9.1820409 - 9.3815182 - 9.4357286	- 8·2057946 - 8·7672161 - 9·0485550 - 9·1914061 - 9·2295686 - 9·1533444 - 8·8606937 + 8·4493174 + 9·1404202 + 9·3641441 + 9·4523795 + 9·4457366 - 9·3346843 + 9·0273406 - 8·4144280 - 9·1797738 - 9·3810672 - 9·4357286	- 7'9680587 - 8'4947575 - 8'7098106 - 8'7320993 - 8'5010740 + 8'0256553 + 8'7555205 + 8'9413287 + 8'9413115 + 8'73798377 - 8'6897767 - 8'8916009 - 8'8613683 - 8'5570464 + 8'1941408 + 8'7761483 + 8'8860566	- 7'9436563 - 8'4713349 - 8'6881393 - 8'7133828 - 8'4893580 + 7'9747530 + 8'7338758 + 8'9252194 + 8'9293572 + 8'7333213 + 7'466209 - 8'6707913 - 8'8593197 - 8'5593500 + 8'1882149 + 8'7755206 + 8'8860566
	For Y					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	8·3704657 8·9638246 9·3014212 9·5306958 9·6976971 9·8227437 9·9164370 9·9848066 0·0313565 0·0579630 0·0652420 0·0525794 0·0178079 9·9562625 9·8582566 9·70113288 0·0000000	+ 8·3574785 + 8·9511355 + 9·2892185 + 9·6869664 + 9·8129527 + 9·9070842 + 0·0248456 + 0·0525874 + 0·069653 + 0·0493321 + 0·0154896 + 9·9547451 + 9·8573881 + 9·7007172 + 9·4112304 0·0000000	+ 8·2304278 + 8·8097057 + 9·1233105 + 9·3178101 + 9·4378254 + 9·5013871 + 9·5153300 + 9·4790511 + 9·3829045 + 9·1905273 + 8·7930244 - 8·4552219 - 9·0009448 - 9·1528473 - 9·1735210 - 9·0867351 - 8·8349735 0·0000000	+ 8·2116685 + 8·7913770 + 9·1056844 + 9·3011368 + 9·4223254 + 9·4872445 + 9·5026870 + 9·4680037 + 9·3734998 + 9·1887625 + 8·7868469 - 8·4505313 - 8·9975961 - 9·1506554 - 9·1722665 - 9·0861706 - 8·8348313 0·0000000	+ 7.9783541 + 8.5382045 + 8.8179497 + 8.9614304 + 9.0080171 + 8.9648595 + 8.8115577 + 8.4420100 - 7.9101887 - 8.5124561 - 8.6003392 - 8.4824877 - 8.0028333 + 8.0781368 + 8.4291369 + 8.464544 + 8.2685974 0.0000000	+ 7'9538227 + 8'5142362 + 8'7949002 + 8'9396269 + 8'9877479 + 8'9463654 + 8'7950245 + 8'4275634 - 7'8978903 - 8'5023021 - 8'5022009 - 8'4763539 - 7'9984543 + 8'0752705 + 8'4274964 + 8'4637162 + 8'2684115 0'0000000
!	For Z					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	7.5372144 8.4298288 8.9405575 9.2906248 9.5491987 9.7468922 9.8997925 0.0171974 0.164516323 0.2015828 0.2126746 0.1511206 0.0648129 9.9158807 9.6309771 0.0000000	- 7'4234420 - 8'3164733 - 8'8278823 - 9'1788721 - 9'4385823 - 9'6375903 - 9'7919431 - 9'9108935 - 0'9999983 - 0'0625088 - 0'0999974 - 0'1125304 - 0'0984329 - 0'053394 - 0'957995 - 9'8197363 - 9'5352422 0'0000000	+ 7.5428056 + 8.4213277 + 8.9080449 + 9.2233076 + 9.4348544 + 9.5710050 + 9.6440714 + 9.6566998 + 9.6012950 + 9.4487511 + 9.0722011 - 8.7675480 - 9.3278495 - 9.4944651 - 9.5265774 - 9.4478819 - 9.2009352 0.0000000	- 7'4544538 - 8'3335453 - 8'8211944 - 9'1377265 - 9'3508476 - 9'4888417 - 9'5639867 - 9'5789118 - 9'5260653 - 9'3766386 - 9'0060276 + 8'6825904 + 9'2550867 + 9'4246370 + 9'4584999 + 9'3809515 + 9'1346717 0'0000000	+ 7'3995964 + 8'2586764 + 8'7115070 + 8'9757056 + 9'1137466 + 9'1430339 + 9'0485233 + 8'7265598 - 8'2455217 - 8'8760776 - 8'9918129 - 8'8970855 - 8'4345759 + 8'5305815 + 8'8917317 + 8'9349244 + 8'7438138 0'0000000	- 7'3219144 - 8'1817246 - 8'6357561 - 8'9016073 - 9'0417397 - 9'0735841 - 8'9823066 - 8'6659150 + 8'1664523 + 8'8125330 + 8'9325022 + 8'8414459 + 8'3857521 - 8'472227 - 8'8382218 - 8'8382238 - 8'6930507

		Absolute term f	or $g$ , $\frac{1}{2}(a_3 + a'_3)$	Absolute term f	or $h, \frac{1}{2}(b_3 + b'_3)$	
$g_{10}^{\ 3} \text{ or } h_{10}^{\ 3}$	$g_{-10}^{3}$ or $h_{-10}^{3}$	1845	1880	1845	1880	
- 7.6412654 - 8.1226153 - 8.2395477 - 8.0008540 + 7.8350524 + 8.3667320 + 8.4487429 + 8.2345925 - 7.5155347 - 8.3090150 - 8.3677359 - 8.0301276 + 7.9300207 + 8.3266818 + 8.2774422 + 7.5548805 - 8.1471881 - 8.3358955	- 7.6111233 - 8.0937229 - 8.2131153 - 7.9809521 + 7.7968305 + 8.3411210 + 8.42822587 + 8.2202809 - 7.4748654 - 8.2941767 - 8.3583401 - 8.0275645 + 7.9186947 + 8.3224375 + 8.2762964 + 7.5601274 - 8.1463357 - 8.3358955	- '0383 + '00875 - '0079 - '05645 - '0846 - '0791 - '04725 - '0217 + '0269 '05595 '0360 '02805 '03455 '03455 '0227	- '0795 - '0737 - '0640 - '0435 - '0247 '0058 '0161 '0217 '0196 '0246 '0350 '0424 '0679 '0722	- '01755 - '0450 - '0574 - '0746 - '0878 - '08195 - '0737 - '0673 - '04065 - 0'2125 - '0165 + '01945 '03195 '02605 '03015 '0060	- '0393 - '0266 - '0197 - '0169 - '0047 '0195 '0591 '0745 '0690 '0841 '0909 '0818 '0661 '0680	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
		Absolute term f	or $g$ , $\frac{1}{2}(b_3 - b'_3)$	Absolute term fo	r $h$ , $-\frac{1}{2}(a_3 - a'_3)$	
+ 7.6571332 + 8.1919602 + 8.4266570 + 8.4979275 + 8.4272737 + 8.1599738 + 6.4918845 - 7.9735763 - 8.0503630 - 7.7824079 + 7.2393411 + 7.8503065 + 7.3856922 - 7.5322358 - 7.8136222 - 7.6968573 0.0000000	+ 7.6268297 + 8.1623523 + 8.3981841 + 8.4709938 + 8.4022353 + 8.1371281 + 6.4714612 - 7.9557304 - 8.0351708 - 7.7698647 + 7.2293621 + 7.8424717 + 7.8424717 + 7.3821515 - 7.5302092 - 7.8127103 - 7.6966276 0.00000000	1062 13005 1328 1514 1697 17385 1754 1674 1339 10951 106415 10358 10206 100625	1793 2137 2364 2347 2220 1976 1655 1299 10988 10711 10569 10487 10243	- '0016 + '01775 '0153 '0426 '07185 '10225 '1141 '1211 '1004 '09715 '0836 '00955 '0442 '0170 '0071	**************************************	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
		Absolute term f	for $g$ , $\frac{1}{2}(a_3 - a'_3)$	Absolute term	for $h$ , $\frac{1}{2}(b_3 - b'_3)$	
+ 7:1653454 + 7:9993853 + 8:4071335 + 8:5990542 + 8:6196975 + 8:4242912 + 6:7537082 - 8:3487227 - 8:4654079 - 8:2304207 + 7:7239834 + 8:3531740 + 8:3531740 + 8:3714081 - 8:2593006 0:00000000	- 7.0920542 - 7.9269898 - 8.3362230 - 8.5302269 - 8.5536453 - 8.3623592 - 6.8150073 + 8.2871543 + 8.4091555 + 8.1800620 - 7.6597951 - 8.3029399 - 8.3260049 - 7.8809397 + 8.0369698 + 8.3289434 + 8.2180860 0.00000000	**O308 **1361 **19265 **2151 **1827 **1923 **1649 **12775 **1142 **O4955 **O4525 **O555 **O2025 **O3035 **O2025	'3207 '3252 '3338 '3146 '3049 '2824 '2221 '1627 '0902 '0119 - '0209 - '0151 '0004	°0133 °0636 °1201 °1490 °17615 °2004 °20005 °1557 °15945 °13235 °09835 °0832 °0832 °0285 °03215 °01215	**O423 **O955 **1357 **1657 **1767 **1631 **1618 **1315 **1021 **O703 **O805 **1134 **O987	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (o) (p) (q) (r) (s)

***						
Co-latitude	For $X$ $g_4^4$ or $h_4^4$	$g_{-4}^{4}$ or $h_{-4}^{4}$	$g_6^4$ or $h_6^4$	g_6 or h_6	$g_8^4$ or $h_8^4$	g_8 or h_8
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 7:4385585 - 8:3311426 - 8:8418220 - 9:1918219 - 9:4503131 - 9:6479108 - 9:8007049 - 9:9179967 - 0:0053934 - 0:0661984 - 0:1130214 - 0:0975275 - 0:0512887 - 9:9649139 - 9:8159321 - 9:5309983 0:00000000	- 7'4256215 - 8'3186528 - 8'8300618 - 9'1810516 - 9'4407617 - 9'6397698 - 9'7941225 - 9'9130729 - 0'0021778 - 0'0646884 - 0'1021770 - 0'1147098 - 0'1006125 - 0'0555779 - 9'9701797 - 9'8219157 - 9'5374217 - 0'00000000	- 7'3944891 - 8'2700616 - 8'7514810 - 9'0584036 - 9'2572767 - 9'3739435 - 9'4154934 - 9'3715339 - 9'1895880 - 8'4076406 + 9'1212597 + 9'4609760 + 9'6152864 + 9'6757919 + 9'6599644 + 9'5564183 + 9'2971030 0'00000000	- 7'3758027 - 8'2520259 - 8'7345210 - 9'0429367 - 9'2437212 - 9'3627519 - 9'4072515 - 9'3673042 - 9'1927279 - 8'4747679 + 9'1003761 + 9'4512088 + 9'6598864 + 9'6731044 + 9'6591556 + 9'5568836 + 9'5568836 + 9'2983154 0'00000000	- 7.2203028 - 8.0722328 - 8.5114510 - 8.7519192 - 8.8470905 - 8.7861595 - 8.3868531 + 8.5025313 + 8.9466995 + 9.0902340 + 9.0776099 + 8.8794947 + 7.7591398 - 8.8139857 - 9.0420110 - 9.0487503 - 8.8428462 0.00000000	- 7'1958672 - 8'0486572 - 8'0486572 - 8'4893275 - 8'7319030 - 8'8300571 - 8'7739318 - 8'3907436 + 8'4711677 + 8'9298131 + 9'0703088 + 8'8769474 + 7'8056666 - 8'8077656 - 9'0397148 - 9'0482681 - 8'8434129 0'00000000
	For Y					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (n) 60 (n) 65 (o) 70 (p) 75 (q) 85 (s) 90	7:4402645 8:3379904 8:8573208 9:2196087 9:4942167 9:7120302 9:8895108 0:0364672 0:1592036 0:2619965 0:3478623 0:4189871 0:4769825 0:5230437 0:5580512 0:5826363 0:5972241	+ 7'4272773 + 8'3253013 + 8'8451181 + 9'2080657 + 9'4834860 + 9'7022392 + 9'8807580 + 0'0288190 + 0'1526927 + 0'2566209 + 0'3435856 + 0'4157398 + 0'4746642 + 0'5215263 + 0'5571827 + 0'5822455 + 0'5971257 + 0'6020600	+ 7:3980648 + 8:2845733 + 8:7849635 + 9:1201980 + 9:3390376 + 9:5314878 + 9:6527352 + 9:7307174 + 9:7689011 + 9:7670133 + 9:7201224 + 9:6144672 + 9:4106842 + 8:9159425 - 8:9518914 - 9:3690813 - 9:5184813 - 9:5606673	+ 7'3793055 + 8'2662446 + 8'7673374 + 9'1035247 + 9'3435376 + 9'5173452 + 9'6400922 + 9'7196700 + 9'7594964 + 9'7592485 + 9'7139449 + 9'6097766 + 9'4073355 + 8'9137506 - 8'9506369 - 9'3685168 - 9'5183391 - 9'5606673	+ 7'2264456 + 8'0975508 + 8'5715547 + 8'8681979 + 9'0541604 + 9'1559032 + 9'1822138 + 9'1280479 + 8'9640969 + 8'5534436 - 8'2907425 - 8'7698905 - 8'8594926 - 8'7665625 - 8'3845639 + 8'2227843 + 8'6921755 + 8'7891466	+ 7·2019142 + 8·0735825 + 8·5485052 + 8·8463944 + 9·0338912 + 9·1374091 + 9·1656806 + 9·1136013 + 8·9517985 + 8·5432896 - 8·2826642 - 8·7637567 - 8·8551136 - 8·7636962 - 8·3829234 + 8·2220461 + 8·6919896 + 8·7891466
	For Z					
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 85 (s) 90	6'4826516 7'6796331 8'3720959 8'8551768 9'2213579 9'5118188 9'7485069 9'9444992 0'1081995 0'2453083 0'3598459 0'4547258 0'5320951 0'5935463 0'6402523 0'6730541 0'6925177	- 6'3675733 - 7'5649715 - 8'2581143 - 8'7421174 - 9'1094342 - 9'4012092 - 9'6393492 - 9'8368864 - 0'0221777 - 0'1408747 - 0'2569501 - 0'3532705 - 0'4319399 - 0'4945121 - 0'5421264 - 0'5755970 - 0'5954699 - 0'6020600	+ 6·5859184 + 7·7716767 + 8·4451894 + 8·9012028 + 9·2315974 + 9·4766723 + 9·6570990 + 9·7840819 + 9·8651843 + 9·8955512 + 9·8772404 + 9·7951791 + 9·6103933 + 9·1290345 - 9·1822509 - 9·6060007 - 9·7599722 - 9·8037053	- 6.4966650 - 7.6829807 - 8.3574036 - 8.8146525 - 9.1465707 - 9.3934121 - 9.5757971 - 9.7801537 - 9.8207285 - 9.8046251 - 9.7247940 - 9.5425206 - 9.0669476 + 9.1093021 + 9.5375288 + 9.6926952 + 9.7367586	+ 6·5230738 + 7·6934191 + 8·3405285 + 8·7579245 + 9·0354030 + 9·2097111 + 9·2951060 + 9·2897684 + 9·1663401 + 8·7882198 - 8·5617442 - 9·0611572 - 9·1695121 - 9·0915783 - 8·7203666 + 8·5699016 + 9·0428830 + 9·1413291	- 6'4447002 - 7'6157533 - 8'2640210 - 8'6829957 - 8'9624347 - 9'1390448 - 9'2270518 - 9'2240559 - 9'1047383 - 8'7329575 + 8'4928852 + 9'0021012 + 9'1138827 + 9'0385996 + 8'6707901 - 8'3138333 - 8'9912067 - 9'0901766

						1
$g_{10}^{4}$ or $h_{10}^{4}$	$g_{-10}^{4}$ or $h_{-10}^{4}$		for $g$ , $\frac{1}{2} (a_4 - a_4')$		for $h$ , $\frac{1}{2}(b_4 - b'_4)$	
310	3-10	1845	1880	1845	1880	
- 6'9643686 - 7'7855280 - 8'1666742 - 8'3040333 - 8'1832311 + 7'1309340 + 8'3481165 + 8'5463679 + 8'4888892 + 8'0031033 - 8'1942142 - 8'4924011 - 8'4301847 - 7'7812825 + 8'2590445 + 8'4797062 + 8'350121 0'0000000	- 6:9341844 - 7:7564214 - 8:1394491 - 8:2798057 - 8 1649364 + 6:9945675 + 8:3224409 + 8:5272926 + 8:4752642 + 8:0007540 - 8:1783447 - 8:4839418 - 7:7878177 + 8:2548458 + 8:4786715 + 8:3505693 0:00000000	-02605 - 00115 - 0134 -0113 -0402 -05005 -04985 -0366 -02755 -0405 -0539 -0368 -0438 -0141 -02635	'0055 '0221 '0194 '0178 '0152 '0236 '0320 '0461 '0399 '0382 '0383 '0591 '0363	- '0087     '0076     '0032     - '01355     - '0115     '0142     - '0070     - '00515     - '0062     - '01015     '0143     '01795     - '01345     '0048	'0170 '0199 '0357 '0450 '0529 '0442 '0448 '0362 '0275 '0099 '0032 '0014	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (o) (p) (q) (r) (s)
		Absolute term i	for $g, \frac{1}{2}(b_4 + b_4')$	Absolute term fo	or $h, -\frac{1}{2}(a_4 + a'_4)$	
		1845	1880	1845	1880	
+ 6.9737967 + 7.8251858 + 8.2647289 + 8.5091644 + 8.6192131 + 8.6083046 + 8.4490398 + 7.9492836 - 7.9510969 - 8.2552258 - 8.1918476 - 7.6797175 + 7.8571803 + 8.1265602 + 8.0291877 + 7.1600439 - 7.9185981 - 8.0928573	+ 6.9434932 + 7.7955779 + 8.2362560 + 8.4822307 + 8.5941747 + 8.5854589 + 8.4286165 + 7.9314377 - 7.9359047 - 8.2426826 - 8.1818686 - 7.6721404 + 7.8517709 + 8.1230195 + 8.0271611 + 7.1591320 - 7.9183684 - 8.0928575	'0217 - '0094 - '00585 '01105 '0119 '0123 '0222 '02855 '02795 '03725 '03355 '0326 '0161 - '01125 - '0224 - '0292	- '0130 '0054 '0120 '0147 '0184 '0192 '0086 - '0040 - '0228 - '0392 - '0678 - '0935 - '1089 - '1083	- '00135 - '00285 - '01855 '04145 '0692 '0790 '08305 '0680 '0509 '0613 '0735 '0809 '0775 '07555 '07905 '0800	**O177 **O433 **O628 **O758 **O888 **O957 **1058 **1077 **O952 **O890 **O882 **O894 **I016 **1076	(a) (b) (c) (d) (e') (f) (g) (h) (ii) (k) (l) (m) (o) (p) (q) (r) (s)
	i.	Absolute term f	for $g$ , $\frac{1}{2}(a_4 + a_4)$	Absolute term	for $h$ , $\frac{1}{2}(b_4 + b'_4)$	,
		1845	1880	1845	1880	
+ 6·3573378 + 7·5079555 + 8·1205823 + 8·4857331 + 8·6872314 + 8·7487564 + 8·6482282 + 8·1951833 - 8·243929) - 8·5803907 - 8·55448912 - 8·0538686 + 8·2559701 + 8·5393807 + 8·4536110 + 7·5889774 - 8·3565452 - 8·5321902	- 6.2834833 - 7.4349639 - 8.0490080 - 8.4161053 - 8.6200592 - 8.6845742 - 8.5878403 - 8.1426380 + 8.1819336 + 8.5256487 + 8.4947869 + 8.0120788 - 8.2056616 - 8.4941013 - 8.4107458 - 7.75546927 + 8.3144013 + 8.4907975	.0016 - '02675 '0176 '08845 '0891 '1012 '09555 '0883 '0331 '00995 '02365 '02125 '0431 '00465 - '00095 - '0161	'0347 '0348 '0344 '0254 '0076 '0096 '0085 - '0317 - '0681 - '0987 - '1411 - '1615 - '1853 - '1822	**O4125 **O197 **O1605 **O0065 **O0585 **O0825 **O423 **O572 **1484 **16135 **1273 **10505 **0756 **03255 **0787 **0779	'0146 '0090 '0176 '0058 '0165 '0410 '0741 '0601 '0690 '0653 '0436 '0359 '0457	(a) (b) (c) (d) (r) (f) (g) (h) (ii) (k) (m) (n) (o) (p) (q) (r) (s)

	FOR X				
Co-latitude	$g_5^4$ or $h_5^4$	$g_{-5}^{4}$ or $h_{-5}^{4}$	$g_7^4$ or $h_7^4$	$g_{-7}^{4}$ or $h_{-7}^{4}$	$g_9^4$ or $h_9^4$
(a) 5°	- 7:4374749	- 7.4216630	- 7.3198333	- 7:2982722	- 7:1006576
(b) 10	- 8.3223578	- 8.3070944	- 8.1844402	- 8.1636336	- 7.9381321
(c) 15	- 8.8198978	- 8.8055402	- 8.6465221	- 8.6269746	- 8.3505523
(d) 20	- 9.1208168	- 9.1376859	- 8.9237042	- 8.9059367	- 8.5454395
(e) 25	- 9.3834705	- 9.3718806	- 9.0782940	- 9.0628928	- 8 5566235
(f) 30	- 9.5471920	- 9.5374280	- 9·1267947 - 9·0497473	- 9'1145742 - 9'0424514	- 8·2686840 + 8·1430638
(g) 35 (h) 40	- 9.6560255 - 9.7158571	- 9.648356 <b>7</b> - 9.710562 <b>5</b>	- 8·7064872	- 8.7133859	+ 8.6809061
(i) 45	- 9.7261305	- 9.7235679	+ 8.5974008	+ 8.5591398	+ 8.8231244
(k) 50	- 9.6775383	- 9.6783507	+ 9 1359983	+ 9.1206448	+ 8.7660492
(l) 55	- 9.5396195	- 9.5455740	+ 9.3276475	+ 9.3181103	+ 8.3962232
(m) 60	- 9.1789945	- 9.2002303	+ 9.3846564	+ 9.3788747	- 8.5810001
(n) 65	+ 8.9636973	+ 8.9210614	+ 9.3292384	+ 9.3265841	- 8.7219088
(0) 70	+ 9.5506745	+ 9.5410554	+ 9.1125004	+ 9.1132759	- 8.7743571
$\binom{(p)}{(q)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	+ 9.7832716	+ 9.7792491 + 9.9096667	+ 8·0650659 - 9·0362590	+ 8.0969419	- 8·5583042 + 7·7185211
(q) 80 (r) 85	+ 9.9112331	+ 9.9783521	- 9.2964777	- 9.2959502	+ 8.6379467
(8) 90	+ 0.0000000	+ 0.0000000	- 9.3631779	- 9.3631779	+ 8.7695511
			<u> </u>	1	
	For Y				
(a) 5°	7.4400296	+ 7.4241563	+ 7.3246042	+ 7:3029589	+ 7.1083518
(b) 10	8.3326635	+ 8.3171546	+ 8.2039414	+ 8.1827929	+ 7.9701475
(c) 15	8.8434244	+ 8.8285100	+ 8.6921028	+ 8.6717650	+ 8.4279794
(d) 20	9.1932349	+ 9.1794268	+ 9.0092891	+ 8.9903507	+ 8.7003966
(e) 25	9.4521624	+ 9.4390471	+ 9 2244051	+ 9.2065205	+ 8.8518410
(f) 30 (g) 35	9.6499180 9.8028868	+ 9.6379512	+ 9°3653414 + 9 4455886	+ 9.3490233	+ 8.9043379 + 8.8565420
(g) 35 (h) 40	9.9203646	+ 9 9110168	+ 9'4695975	+ 9.4568505	+ 8.6727471
(i) 45	0.0029231	+ 9.9999953	+ 9'4340893	+ 9.4232377	+ 8.1359487
(k) 50	0.0689499	+ 0.0623797	+ 9.3233926	+ 9.3144332	- 8.2257247
(1) 55	0.1049230	+ 0.0997459	+ 9.0848836	+ 9.0777557	- 8.5327756
(m) 60	0.1161330	+ 0.1121641	+ 8.3402920	+ 8.3348798	- 8.5242596
(n) 65 (o) 70	0.100,1966	+ 0 0979631	- 8·8346660	- 8.8308022 - 9.1138331	- 8.2443039
(o) 70 (p) 75	0°0546938 9°9684292	+ 0.0528392	- 9°1163622 • 9°1850885	- 91138331	+ 7.6771831 + 8.3541496
(q) 80	9.8195288	+ 9 8190511	- 0.1558510	- 9.1221705	+ 8.4450207
(r) 85	9.5346447	+ 9.5345244	- 8.8835000	- 8 8833360	+ 8 2708526
(8) 90	0,0000000	0,0000000	0,0000000	0 0000000	0.0000000
	For Z			1	
(a) 5°	6.2612122	- 6:4619455	+ 6.5702420	- 6.4875437	+ 6.4506073
(b) 10	7.7530998	- 7.6543180	+ 7.7488245	- 7.6667578	+ 7.6116375
(c) 15 (d) 20	8·4369893 8·9078877	- 8.3389994 - 8.8109717	+ 8.4101005	- 8·3290666	+ 8.2425646
(a) 20 (e) 25	9.2580821	- 9.1624886	+ 8.8483540	- 8.7687242 - 9.0768145	+ 8.6357173 + 8.8786489
(f) 30	9.5284778	- 9'4344144	+ 9.3682450	- 9.2923736	+ 9.0036597
(g) 35	9.7406459	- 9.6482732	+ 9 5076361	- 9.4340242	+ 9.0148389
(h) 40	9 9071511	- 9.8165775	+ 9.5805908	- 9.5094312	+ 8.8795529
(i) 45	0.0356946	- 9.9469735	+ 9.5859068	- 9.5173727	+ 8.3808176
(k) 50	0.1309984	- 0.0441268	+ 9.5092703	- 9.4436054	- 8.5116964
(l) 55 (m) 60	0·1956849 0·2305918	- 0.1106034 - 0.1421880	+ 9.2987765	- 9.2367622	- 8.8455202
(n) 65	0.5346551	- 0.127320	+ 8·5714769 - 9·0953984	- 8·5252433 + 9·0294361	- 8.8601243 - 8.5985635
1/ ~.7	0.5038030	- 0.1333185	- 9.3913082	+ 9.3296300	+ 8.0233800
(0) 70					
(o) 70 (p) 75	0.1293318	- 0.0498048	- 9.4712850	+ 9.4117812	+ 8.7377075
(o) 70 (p) 75	9.9886442	- 9.9098958	- 9.4712850 - 9.4170845		+ 8.7377075 + 8.8363618
(0) 70				+ 9.4117812 + 9.3588818 + 9.1251134 0.0000000	+ 8.7377075 + 8.8363618 + 8.6669235 0.0000000

	Absolute term f	For $g$ , $\frac{1}{2}(a_4 + a'_4)$	Absolute term	for $h$ , $\frac{1}{2}(b_4 + b_4)$	
$g_{-9}^{4}$ or $h_{-9}^{4}$	1845	1880	1845	1880	
- 7.0733477 - 7.9117897 - 8.3258680 - 8.5232535 - 8.5383939 - 8.2608357 + 8.1047853 + 8.6604278 + 8.8083708 + 8.7562196 + 8.3944231 - 8.2649781 - 8.7154165 - 8.7714865 - 8.5585454 + 7.7051590 + 8.6372271 + 8.7695511	- '02015 - '02215 - '0144 - '0354 - '0342 - '02225 - '00585 '0118 '01075 '0328 '0709 '0935 '0973 '0899 '04955 '0270	'0022 - '0129 - '0198 - '0080 - '0006 '0098 '0309 '0505 '0520 '0340 '0167 '0256 '0300 '0285	'0011 '0052 - '0193 - '06365 - '07305 - '07195 - '0524 - '0167 - '02145 - '0019 - '01575 - '0195 - '02255 - '02635 - '0453 - '0410	- '0102 - '0050 - '0048 '0014 '0008 - '0040 - '0127 - '0154 - '0250 - '0240 '0083 '0328 '0481 '0609	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (n) (o) (p) (g) (r) (s)
,	Absolute term i	For $g$ , $\frac{1}{2}(b_4 - b'_4)$	Absolute term for	or $h_{1} - \frac{1}{2} (a_{4} - a'_{4})$	I
	1845	1880	1845	1880	
+ 7.0809344 + 7.9433594 + 8.4022182 + 8.6760280 + 8.8291872 + 8.836680 + 8.8380638 + 8.6566008 + 8.1222034 - 8.2143761 - 8.5237470 - 8.5237470 - 8.5174041 - 8.2394097 + 7.6739796 + 8.3523160 + 8.4441956 + 8.2706448 0.00000000	- '0006 '0372 '05615 '05715 '0570 '0410 '0307 '01755 '00315 '00315 - '00555 - '0128 - '0190 - '01385 - '0126	'0272 '0259 '0382 '0542 '0600 '0604 '0514 '0321 '0204 '0102 '0087 '0075	01355 02115 03695 04355 0493 0467 04745 0425 0557 0462 0384 0321 0165 01025	.0247 .0388 .0461 .0562 .0656 .0731 .0766 .0779 .0775 .0633 .0423 .0205	(a) (b) (c) (c) (d) (e) (f) (g) (h) (i) (ii) (m) (n) (q) (q) (r) (s)
	Absolute term f	for $g, \frac{1}{2}(a_4 - a'_4)$	Absolute term	for $h$ , $\frac{1}{2}(b_4 - b'_4)$	
	1845	1880	1845	1880	
- 6.3750359 - 7.5368512 - 8.1690648 - 8.5639769 - 8.8091074 - 8.9367340 - 8.9509819 - 8.8195498 - 8.3297227 + 8.4491189 + 8.7896968 + 8.8082027 + 8.5510121 - 7.9939366 - 8.6891002 - 8.7898578 - 8.6214546 0.00000000	- '0162 - '05695 - '0362 - '01035 '0336 '0114 '01355 '0178 '0836 '08095 '06465 '06355 '0075 - '00075 - '00075	- '0715 - '0253 - '0218 - '0281 - '0297 '0015 '0041 - '0158 - '0304 - '0366 - '0449 - '0111	'03565 - '0022 '00565 '01505 '01385 '04345 '0785 '0953 '0662 '00535 - '0074 - '03135 - '0358 - '00755 - '0036	**O428 **O342 **O328 **O539 **O576 **O532 **O441 **O157 **O020 -**O212 -**O628 -**O525 -**O340	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
<u> </u>				68 9	

	For X				
Co-latitude	$g_5^{5}  ext{ or } h_5^{5}$	$g_{-5}^{5}$ or $h_{-5}^{5}$	$g_7^5$ or $h_7^5$	$g_{-7}^{\ \ 5}$ or $h_{-7}^{\ \ 5}$	$g_9^5$ or $h_9^5$
Co-latitude	95 01 115	9-5 01 10-5	97 02 107	9-7 01 11-7	99 09
(a) 5°	- 6.4800948	- 6.4642706	- 6.4431095	- 6.4215314	- 6.2928287
(b) 10	- 7.6719572	- 7.6566432	- 7.6193752	- 7.5984961	- 7.4484188
(c) 15	- 8.3558062	- 8.3413245	- 8.2765200	- 8.2567917	- 8.069202
(d) 20	- 8.8266496	- 8.8132970	- 8.7083458	- 8.6902020	- 8.4453404
(e) 25	- 9.1767760	- 9.1648137	- 9.0021069	- 8·9889642	- 8.6595466
(f) 30	- 9.447093I	- 9.4367395	- 9.2042975	- 9.1905694	- 8.7317339
(g) 35	- 9.6591744	- 9.6505986	- 9.3214736	- 9:3106202	- 8· <b>6</b> 220147 - 7·8267988
(h) 40 (i) 45	- 9.8255866 - 9.9540347	9.81890 <b>25</b> 9.9492987	- 9°3574260	- 9:3500912 - 9:3500912	+ 8 6247545
(i) 45 (k) 50	- 0.0492430	- 0.0464231	- 9.0296571	- 9.0384128	+ 8.9308217
(l) 55	- 0.1138366	- 0 1129288	+ 8.4648321	+ 8.3862792	+ 9.0083876
(m) 60	- o·1486566	- 0.1492131	+ 9.2719483	+ 9.2579404	+ 8.9082001
(n) 65	- 0.1226082	- 0.1550572	+ 9.5186745	+ 9.5116846	+ 8.4417651
(0) 70	- 0.1518515	- 0.1256433	+ 9 6241926	+ 9 6207139	- 8*5662006
(p) 75	- 0.0471949	- 0.0521298	+ 9.6352241	+ 9.6340055	- 8.9276389
(q) 80	- 9.9064668	- 9.9122208	+ 9.5482253	+ 9'5484940	- 8·9744688 - 8·7859619
(r) 85 (s) 90	- 9.626431 <b>5</b>	- 9.6326870 0.0000000	+ 9.2980378	+ 9.29916 <b>72</b> 0.0000000	0.0000000
(6) 90	0 000000	0 000000	0 000000		
For Y					
( ) .0	6 0		. 66.06.	1 6	1 6.0000.00
(a) 5°	6.4817997	+ 6.4659264	+ 6.4462867	+ 6.4246414	+ 6.2979415
(b) 10 (c) 15	7.6788006 8.3712952	+ 7.6632917 + 8.3563808	+ 7.6322428 + 8.3060988	+ 8.2857610	+ 7·4693730 + 8·1184259
(c) 15 (d) 20	8.8544192	+ 8.8403111	+ 8.7626229	+ 8.7433845	+ 8.5388637
(e) 25	9.2206533	+ 9.2075380	+ 9.0937328	+ 9.0758482	+ 8.8209266
(f) 30	9.2111757	+ 9.4992089	+ 9.3397873	+ 9.3234690	+ 9.0022058
(g) 35	9.7479320	+ 9.7372341	+ 9.5215553	+ 9.5069672	+ 9.0987025
(h) 40	9.9439964	+ 9.9346486	+ 9.6504038	+ 9.6376568	+ 9.1128035
(i) 45	0.1077714	+ 0.0998136	+ 9.7321868 + 9.7686056	+ 9.7213352	+ 9.0304689 + 8.7929875
(k) 50 (l) 55	0.3595645	+ 0°2383846 + 0°3543374	+ 9.7569181	+ 9.7596462 + 9.7497902	+ 7 8376881
(m) 60	0.4545150	+ 0.4502431	+ 9.6871464	+ 9.6817342	- 8.6122741
(n) 65	0 5319424	+ 0.5291089	+ 9.5312686	-1 9.5274048	- 8.8202638
(0) 70	0.5934463	+ 0.5915917	+ 9.1812509	+ 9.1787218	- 8.7892451
(p) 75	0.6401950	+ 0.6391335	- 8.6725271	- 8.6710796	- 8.4983657
(q) 80	0.6730283	+ 0.6725506	- 9.3466760	- 9:3460246	+ 8.0047710
(r) 85 (s) 90	0.6925113	+ 0 6923910	- 9.5340634 - 9.5850266	- 9.5338994 - 9.5850266	+ 8.6551753 + 8.7695511
(8) 90	0 0989700	+ 0 0989700	- 9 5050200	- 9 5050200	+ 0 /093311
For $Z$					
				1 0.00	
(a) 5°	5.2062234	- 5.4062224	+ 5.5953767	- 5.2118988	+ 5.5435782
(b) 10	7.0028078	- 6.9029619	+ 7.0805820	- 6 9977276 - 7.8457233	+ 7.0142515
(c) 15 (d) 20	7·8684312 8·4723434	- 7.7693770 - 8.3743628	+ 7.9275594 + 8.5048616	- 7·8457233 - 8·4244066	+ 7.8364131 + 8.3776092
(e) 25	8.9301447	- 8·833486 <b>2</b>	+ 8.9275253	- 8.8487731	+ 8.7511973
(f) 30	9.2933076	- 9.1981789	+ 9.2462037	- 9°1694241	+ 9.0050581
(g) 35	9.5892638	- 9.4958252	+ 9.4871511	- 9.4125554	+ 0.1909901
(h) 40	9.8343560	- 9.7427160	+ 9.6650019	- 9.5927379	+ 9.2236628
(i) 45	0.0390866	- 9.9492986	+ 9.7877082	- 9.7178580	+ 9.1820328
(k) 50 (l) 55	0.310242	- 0.1226384 - 0.2677019	+ 9.8583912 + 9.8753042	- 9·7909746 - 9·8102889	+ 8.9781893 + 8.0405437
(l) 55 (m) 60	0.3538511	- 0°3880738	+ 9.8291740	- 9.7665082	- 8·8529901
(n) 65	0.2693434	- 0.4863846	+ 9.6924380	- 9.6321697	- 9.0793436
(0) 70	0.6462314	- 0.5645775	+ 9.3569743	- 9:3001299	- 9.0633034
(p) 75	0.7046739	- 0.6240772	- 8.8660669	+ 8.7973972	- 8.7835246
	0'7457201	- 0.6659021	- 9.5447349	+ 9.4850181	+ 8.3015806
(r) 85 (s) 90	0.7700768	- 0.6907352 - 0.6989700	- 9.7366414	+ 9.6782885	+ 8.9547422 + 9.0705811
(0) 90	0 //01513	0 0909700	- 9.7891466	T 9/311340	7 9 0/03011

	Absolute term	for $g$ , $\frac{1}{2}(a_5 - a'_5)$	Absolute term	for $h$ , $\frac{1}{2}(b_5 - b'_5)$	
$g_{-9}^{5}$ or $h_{-9}^{5}$	1845	1880	1845	1880	
- 6.2654967 - 7.4219783 - 8.0442516 - 8.4224888 - 8.6394989 - 8.7155323 - 8.6124215 - 7.8737275 + 8.6009147 + 8.9909714 + 8.9934362 + 8.4458305 - 8.5573927 - 8.9248133 - 8.9738426 - 8.7864585 0.00000000	- '0171 '01355 '01115 '0065 '0118 '00635 '01105 '02165 '0287 '03455 '0584 '0554 '04715 '0459 '01875	*0127 *0000 - *0079 - *0096 - *0009 *0071 *0216 *0340 *0205 *0133 *0085 *0110 *0141	01635 00065 - 01665 - 0113 - 00885 - 01895 - 02815 - 00955 0070 0183 02945 0147 02475 0038	'0011 - '0020 '0288 '0337 '0377 '0323 '0179 '0078 - '0004 '0022 '0075 '0071 '0005	(a) (b) (c) (d) (e) (f) (g) (h) (i) (n) (o) (p) (q) (r) (s)
	Absolute term i	For $g$ , $\frac{1}{2}(b_5 + b'_5)$	Absolute term fe	or $h$ , $-\frac{1}{2}(a_5 + a_5')$	
	1845	1880	1845	1880	
+ 6:2705241 + 7:4425849 + 8:0926647 + 8:5144951 + 8:7982728 + 8:9815359 + 9:0802243 + 9:0966572 + 9:0167236 + 8:7816389 + 7:8286595 - 8:6054186 - 8:4965321 + 8:0039459 + 8:6549675 + 8:7095511	01375 0325 0103 0100 0100 00545 0048 0020 - 01945 - 0369 - 0435 - 0447 - 0480 - 0487 - 05545 - 0621	'0458 '0298 '0195 '0077 '0052 - '0069 - '0135 - '0224 - '0303 - '0462 - '0641 - '0758 - '0753	- '01635 - '00795 - '00835 - '01025 '0026 '01255 '0027 - '0035 - '00505 - '01875 - '0268 - '0373 - '0485 - '05605 - '05605 - '05605	- '0146 - '0111 - '0179 - '0107 - '0048 - '0059 - '0039 - '0056 - '0092 - '0172 - '0244 - '0357 - '0372 - '0431	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (i) (m) (n) (o) (p) (q) (f) (s)
	Absolute term i	for $g$ , $\frac{1}{2} (a_5 + a'_5)$	Absolute term	for $h$ , $\frac{1}{2}(b_5 + b'_5)$	
	1845	1880	1845	1880	
- 5'4673900 - 6'9388329 - 7'7622528 - 8'3051603 - 8'6808674 - 8'9372014 - 9'0955879 - 9'1616278 - 9'1233697 - 8'9237742 - 8'0117153 + 8'7973449 + 9'0281451 + 9'0149644 + 8'7380586 - 8'2500403 - 8'9084162 - 9'0248236	**O288 **O1985 - **O1255 - **O3975 - **O116 - **O1125 - **O1055 - **O520 - **O520 - **O1035 **O1745 - **O1545 - **O4795 - **15445 - **1541 - **1616	- '0107 '0086 '0223 '0285 '0432 '0109 - '0188 - '0365 - '0888 - '1001 - '0958 - '0855 - '0836 - '0659	'01275 '0170 '0247 '0357 '01555 '0202 '0043 '02845 '0561 '0712 '0516 '0541 '0637 '0272 '01235 '0009	***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  ***  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **  **	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (i) (n) (o) (p) (q) (r) (s)

	For X				
G 1 111111	K 7 K	$g_{-6}^{5}$ or $h_{-6}^{5}$	$g_8^5$ or $h_8^5$	$g_{-8}^{5}$ or $h_{-8}^{5}$	$g_{10}^{-5}$ or $h_{10}^{-5}$
Co-latitude	$g_6$ or $n_6$	$g_{-6}$ or $n_{-6}$	$g_8$ or $n_8$	9_8 OI n_8	910 01 1110
( ) 0	6 9	66	(	(	69-6
(a) 5°	- 6.4791810	- 6*4604798	- 6.3792550	- 6.3547999	- 6.1876597
(b) 10	- 7·6638662	- 7.6457692 - 8.3183924	- 7.5458328 - 8.1860836	- 7.5221725 - 8.1637393	- 7:3309264
(c) 15 (d) 20	- 8·3354996 - 8·7886725	- 8·7729167	- 8.5924358	- 8.5719243	- 7.9294710 - 8.2697825
	- 9.1120066	- 9.1009351	- 8·8525198	- 8.8343739	- 8.4253683
(e) 25 (f) 30	- 9.3543776	- 9:3422799	- 8.9985035	- 8.9833432	- 8.3820620
(g) 35	- 9.5267489	- 9.5168907	- 9.0333543	- 9.0221378	- 7.8537127
(h) 40	- 9.6420823	- 9.6347071	- 8.9176691	- 8.9129581	+ 8.3029036
(i) 45	- 9.7035898	- 9.6989611	- 8.3295026	- 8.3593261	+ 8.6461501
(k) 50	- 9.7074226	- 9.7059310	+ 8.8040644	+ 8.7797584	+ 8.7068560
(l) 55	- 9.6369256	- 9.6394534	+ 9.1980119	+ 9.1556363	+ 8.5262768
(m) 60	- 9.4337246	- 9'4435979	+ 9.3006703	+ 9.2932829	- 6.7709302
(n) 65	- 8.5580423	8.6478099	+ 9'2992496	+ 9.2954463	- 8.5295234
(0) 70	9.3876787	+ 9.3728515	+ 9.1456326	+ 9.1451614	- 8.6782864
(p) 75	9.7237750	+ 9.7186373	+ 8.5682562	+ 8.5761934	- 8.5323331
(q) 80	9.8893805	+ 9.8874827	- 8.8899778	- 8.8862693	- 6.9216376
(r) 85	9.9737259	+ 9.9732882	- 9.2215993	- 9.2209929	+ 8.5127952
(8) 90	0.0000000	+ 0.0000000	- 9.3010300	- 9.3010300	+ 8.6668887
	For Y				
		1		1	
(a) 5°	6.4815647	+ 6.4628054	+ 6.3833415	+ 6.3588101	+ 6.1939172
(b) 10	7.6734737	+ 7.6551450 + 8.3397726	+ 7.5624751 + 8.2247228	+ 7.5385068 + 8.2016733	+ 7:3567559
(c) 15 (d) 20	8·3573987 8·8283454	+ 8.8116721	+ 8.6644601	+ 8.6426566	+ 7.9909715 + 8.3894128
(e) 25	9.1785990	+ 9.1630990	+ 8.9729692	+ 8.9527000	+ 8.6406683
(f) 30	9.4490635	+ 9.4349209	+ 9 1896076	+ 9.1711135	+ 8.7792500
(g) 35	9.6613079	+ 9.6486649	+ 9.3335420	+ 9.3170088	+ 8.8147938
(h) 40	9.8278938	+ 9.8168464	+ 9'4134415	+ 9.3989949	+ 8.7335860
(i) 45	9.9565208	+ 9.9471161	+ 9'4302143	+ 9.4179159	+ 8.4605671
(k) 50	0.0213081	+ 0.0441433	+ 9.3751817	+ 9.3650277	- 7.1580317
(1) 55	0.116672	+ 0.1104974	+ 9.2181344	+ 9.2100561	- 8.3940755
(m) 60	0.1216279	+ 0'1469673	+ 8.8290452	+ 8.8229114	- 8.5065837
(n) 65	0.1222262	+ 0.1524078	- 8.5245657	- 8.5201867	- 8:3422916
(o) 70	0.1220964	+ 0.1229045	- 9.0217689 - 0.0217689	- 9·0489026 - 9·1757268	- 7·1426787 + 8·2550051
(p) 75 (q) 80	0°0505730 9°9099207	+ 9.9093562	- 9.1410280	- 9.1403198	+ 8.4105971
(r) 85	9.6299318	+ 9.6297896	- 8.9143885	- 8.9142026	+ 8.2588855
(8) 90	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
	For Z	·			
(a) 5°	5.5729213	- 5.4827686	+ 5.5833825	- 5.5043204	+ 5.4808139
(b) 10	7.0640822	- 6.9744824	+ 7.0617617	- 6.9833957	+ 6.9428901
(c) 15	7.9211333	- 7.8324362	+ 7.8971252	- 7.8198959	+ 7.7502066
(d) 20 (e) 25 (f) 30 (g) 35 (h) 40	8.5128644	- 8.4253911	+ 8.4576316	- 8.3819465	+ 8.2693933
(e) 25	8.9546807	8.8687147	+ 8.8576821	- 8.7839040	+ 8.6121535
(f) 30	9.2977805	- 9.2135583	+ 9.1469268	- 9.0753635	+ 8.8232823
(g) 35	9.5692190	- 9.4869235	+ 9.3500154	- 9.2809162	+ 8.9178752
(h) 40	9·7848265 9·9544026	- 9·7045812 - 9·8762684	+ 9.4788795	- 9.4124333 - 9.4728606	+ 8.8854060 + 8.6524957
(i) 45 (k) 50	0.0840911	- 0.0080642	+ 9.2126294	- 9.4549034	- 7·4148872
(l) 55	0.1775128	- 0.1032597	+ 9'3869023	- 9.3294110	- 8.6518408
(m) 60	0.5365400	- 0.1641624	+ 9.0501819	- 8.9679547	- 8.7872501
(n) 65	0.2597004	- 0.1893209	- 8.7416641	+ 8.6775130	- 8.6416502
(0) 70	0.2444199	- 0.1755576	- 9.2810495	+ 9.2255737	- 7.4426763
(p) 75	0.1812862	- 0.1139292	- 9.4178803	+ 9.3648669	+ 8.5832111
(q) 80	0.0491442	- 9.9823749	- 9.3896125	+ 9.3380539	+ 8.7464661
(o) 70 (p) 75 (q) 80 (r) 85 (s) 90	9.7740276	- 9.7078012	- 9.1677424	+ 9.1170086	+ 8 5994693
(8) 90	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000

1				<del></del>	
a 5 on h 5	Absolute term f	or $g$ , $\frac{1}{2}(a_5 + a_5')$	Absolute term f	or $h$ , $\frac{1}{2}(b_5 + b'_5)$	
$g_{-10}^{5}$ or $h_{-10}^{5}$	1845	1880	1845	1880	1
- 6.1574509 - 7.3017071 - 7.9019161 - 8.2446288 - 8.4035887 - 8.3687660 - 7.8625481 + 8.2744601 + 8.6281224 + 8.6944433 + 8.5197551 - 6.392952 - 8.5213527 - 8.6746384 - 8.5318575 - 6.9797594 + 8.66668887	- '0187 - '02425 - '02285 - '0075 - '0095 - '00975 - '00285 - '0318 - '03345 - '0225 - '0225 - '0227 - '01835 - '0103	- '0298 - '0116 '0076 '0111 '0025 - '0033 - '0083 - '0165 - '0166 - '0144 - '0044 '0066 '0044 '0066	- '01325 - '00655 - '00135 '0074 '0072 - '00615 - '01305 - '01665 - '03815 - '0221 - '0440 - '02565 - '0284 - '06315 - '0557 - '0473	+ '0192 '0034 '0119 '0059 - '0021 - '0079 - '0195 - '0216 - '0076 - '0007 '0029 '0073 '0006 '0045	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
1	Absolute term f	or $g$ , $\frac{1}{2}(b_5 - b_5')$	Absolute term fo	r $h$ , $-\frac{1}{2}(a_5 - a_5')$	
	1845	1880	1845	1880	
+ 6·1636137 + 7·3271480 + 7·9624986 + 8·3624791 + 8·6156299 + 8·7564043 + 8·7943705 + 8·7157401 + 8·4453749 - 7·1454885 - 8·3849965 - 8·499066 - 8·3368822 - 7·1391380 + 8·2529785 + 8·4996852 + 8·2586558 0·00000000	- '00515 - '0255 - '0238 - '0166 - '0193 - '01415 - '0180 - '0306 - '02455 - '0095 - '0024 '0019 - '0070 - '0166 - '01275	- '0316 - '0251 - '0252 - '0247 - '0228 - '0408 - '0405 - '0443 - '0479 - '0448 - '0362 - '0262 - '0127	- '01295 - '00175 '00825 - '01245 - '0296 - '04555 - '0570 - '0445 - '04865 - '05205 - '0624 - '0569 - '0528 - '03045 - '01395	*0148 - '0041 - '0206 - '0404 - '0514 - '0561 - '0586 - '0584 - '0551 - '0452 - '0313 - '0194 - '0096	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (n) (o) (p) (q) (r) (s)
	Absolute term	for $g$ , $\frac{1}{2}(a_5 - a'_5)$	Absolute term	for $h$ , $\frac{1}{2}(b_5 - b'_5)$	
	1845	1880	1845	1880	
- 5:4064001 - 6:8693204 - 7:6780183 - 8:1990884 - 8:5441889 - 8:7580693 - 8:8558022 - 8:8269438 - 8:5988999 + 7:2976776 + 8:5983080 + 8:7382982 + 8:5966416 + 7:4301789 - 8:5384331 - 8:7041446 - 8:5582784 0:00000000	·0408 ·01545 - ·01225 - ·01995 - ·0199 ·01505 ·01735 - ·0187 - ·0635 - ·03815 - ·00995 ·01305 - ·01485 ·01615 ·0033	*0235 *0219 *0386 *0444 *0590 *0078 - *0211 - *0287 - *0552 - *0678 - *0473 - *0414 *0099	- '00415 - '0121 - '0171 - '0294 - '04425 - '0926 - '0687 - '05175 - '0777 - '1001 - '0688 - '0865 - '0815 - '1068 - '04445	.0080 .0212 .0081 - 0286 - 0504 - 0622 - 0471 - 0410 - 0431 - 0331 - 0385 - 0284 - 0312	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (o) (p) (q) (r) (s)

	For X				
G . 1 . 4 . 4 3 .	$g_6^6 \text{ or } h_6^6$	$g_{-6}^{-6}$ or $h_{-6}^{-6}$	$g_8^{\ 6}$ or $h_8^{\ 6}$	$g_{-8}^{6} \text{ or } h_{-8}^{6}$	$g_{10}^{6}$ or $h_{10}^{6}$
Co-latitude	<i>y</i> ₆ or <i>n</i> ₆	9-6 01 70-6	98 01 708	9-8 01 72-8	910 95 110
(-) =0	F:F02002I	- 5.4851911	- 5.4720149	- 5:4475469	- 5.3398053
(a) 5°	- 5.2039021 - 6.9920412	- 6.9769049	- 6.9484886	- 6.9247741	- 6.7975078
(b) 10	- 7·8520585	- 7.8348585	- 7.7804697	- 7:7579925	- 7.5967797
(c) 15		- 8.4278135	- 8.3357537	- 8·3149726	- 8.1027794
(d) 20	- 8.4437427 - 8.8855013	- 8.8711369	- 8.7281002	- 8.7094451	- 8.4241474
(e) 25	- 9.5285344	- 9.2159805	- 9.0060222	- 8.9898990	- 8.5986428
(f) 30	- 9°4998990	- 9.4893458	- 9.1920358	- 9.1788518	- 8.6212530
(g) 35	- 9.7154277	- 9.7070035	- 9.2936558	- 9.2838994	- 8.3880400
(h) 40 (i) 45	- 9'8849227	- 9 8786908	- 9.3031014	- 9.2976083	+ 8.0706316
(i) 45 (k) 50	- 0.014229	- 0.0104869	- 9.1777222	- 9.1789717	+ 8.7316868
(1) 55	- 0.1048260	- 0.102920	- 8.6291357	- 8.6627430	+ 8.9115746
(n) 60	- 0.166263	- 0·1665876	+ 9.0233472	+ 9.0011840	+ 8.8906474
(n) 65	- 0.1866166	- 0.1917732	+ 9.4117234	+ 9.4027988	+ 8.5991177
(0) 70	- 0.1745817	- 0.1779799	+ 9.5694035	+ 9.5650831	- 8.2287735
(p) 75	- 0.1112016	- 0.1163250	+ 9.6089443	+ 9.6073165	- 8.8139892
(q) 80	- 9.9792252	- 9.9847973	+ 9.5388731	+ 9.5389564	- 8.9051439
(r) 85	- 9.7040871	- 9.7102234	+ 9.2979123	+ 9.2989715	- 8-7344830
(8) 90	0.0000000	0.0000000	0.0000000	0.0000000	0,0000000
				1 1	
	For Y				
		010.6			
(a) 5°	5.5056062	+ 5'4868469	+ 5.4749322	+ 5.4504008	+ 5.3442657
(b) 10	7.0018821	+ 6.9835534	+ 6.9602864	+ 6.9363181	+ 6.8157209
(c) 15	7.8675409	+ 7.8499148	+ 7.8075217	+ 7.7844722	+ 7.6392733
(d) 20	8:4715009	+ 8.4548276	+ 8.3852049	+ 8·3634014 + 8·7881295	+ 8.1826249
(e) 25	8.9293612	+ 8.9138612	+ 8.8083987		+ 8.5594155 + 8.8180410
(f) 30	9.2925925	+ 9.2784499	+ 9.1277965	+ 9.1093024	+ 8.9809924
(g) 35 (h) 40	9.5886243	+ 9.5759813	+ 9.3697183	+ 9.5344617	+ 9.0261490
1 1 1	9.8337970 0.0386104	+ 9.8227496 + 0.0292057	+ 9.5489083	+ 9.6612123	+ 9.0376370
(i) 45 (k) 50	0.5101845	+ 0.5054164	+ 9.6735107	+ 9.7368551	+ 8.8927284
$\begin{pmatrix} l \end{pmatrix}$ 55	0.3232381	+ 0.3473606	+ 9.7684137	+ 9.7603354	+ 8.4568423
(m) 60	0.4723082	+ 0.4676176	+ 9.7303013	+ 9.7241675	- 8.3553758
(n) 65	0.5691736	+ 0.5658249	+ 9.6110144	+ 9.6066354	- 8.7546427
(0) 70	0.6461202	+ 0.6439283	+ 9.3360743	+ 9.3332080	- 8.7883698
(p) 75	0.7046102	+ 0.7033557	- 7.4138186	- 7.4121781	- 8.5639242
(q) 80	0.7456916	+ 0.7451271	- 9.3128307	- 9.3120925	+ 7.6349989
$(\hat{r})$ 85	0.7700696	+ 0.7699274	- 9.5421997	- 9.5420138	+ 8 6137820
(8) 90	0.7781213	+ 0.7781513	- 9.6020600	- 9.6020600	+ 8.7460700
	For Z				
(a) 5°	4.2181991	- 4.4271428	+ 4.5961135	- 4.5163648	+ 4.5522454
(b) 10	6.3137214	- 6.2232235	+ 6.3807163	- 6.3016246	+ 6.3229434
(c) 15	7:3525064	- 7.2629110	+ 7.4010724	- 7:3231398	+ 7.3196065
(d) 20	8.0772511	- 7.9888793	+ 8.0995324	- 8.0231276	+ 7:9837196
(e) 25	8.6266745	- 8 5398094	+ 8.6142790	- 8.5397572	+ 8.4520408
(f) 30	9.0622414	- 8.9774199	+ 9.0062997	- 8.9339580	+ 8.7832573
(g) 35	9.4177677	- 9'3345725	+ 9.3074003	- 9.2374707	+ 9.0053397
(h) 40	9.7119624	- 9.6308169	+ 9.5355929	- 9.4682359	+ 9.1294222
(i) 45	9.9577253	- 9.8786907	+ 9.7011206	- 9.6364216	+ 9.1216944
(k) 50	0.1636008	- o·o866733	+ 9.8088882	- 9.7468601	+ 9.0407210
(l) 55	0.3356127	- 0.2607221	+ 9.8589045	- 9.7994937	+ 8.6318113
(m) 60	0.4781248	- 0.4051483	+ 9.8444587	- 9.7875678	- 8.5595760
(n) 65	0.2943254	- 0 5231006	+ 9.7443829	- 9.6899420	- 8.9761447
(0) 70	0.6866788	- 0.6169141	+ 9.4843580	- 9.4327381	- 9.0247871
(p) 75	0.7568592	- 0.6882993	- 7.6471083	+ 7.4236851	- 8.8115752
(q) 80	0.8061510	- 0.7384785	- 9.4829251	+ 9.4298331	+ 7.8967634
(r) 85	0.8354012	- 0.7682716	- 9.7167531	+ 9.6652104	+ 8.8755716
(8) 90	0.8450980	- 0.7781513	- 9.7781512	+ 9.7269987	+ 9.0093114
1					

$h_{-10}^{6} \text{ or } h_{-10}^{-6}$	Absolute term f	or $g$ , $\frac{1}{2}(a_6 - a'_8)$	Absolute term i	for $h$ , $\frac{1}{2}(b_6 - b'_6)$	
7_10 OI 71_10	1845	1880	1845	1880	
- 5'3095804 - 6'7682181 - 7'5690392 - 8'0771998 - 8'4013702 - 8'5794586 - 8'6071003 - 8'3850103 + 8'0206121 + 8'7135321 + 8'9002170 + 8'8841819 + 8'5987295 - 8'2139561 - 8'8043238 - 8'9043238 - 8'7349175 0'00000000	- '0261 - '02285 - '00025 '01365 '00955 '00135 '00575 '0047 '0015 '02885 '01265 '0143 '03825 '03635 '0211	- '0130 - '0064 '0041 '0025 - '0029 - '0037 '00101 '0166 '0207 '0039 '0034 - '0037	- '0117 '01245 '01375 '01135 - '00665 - '00915 - '00385 '0030 - '0100 - '0082 - '00315 '0106 '00345 - '00225 '0069	'0027 '0113'0041'0152'0096'0008'0007'0018 '0019'0008'0053 '0056 '0109	
	Absolute term i	for $g$ , $\frac{1}{2}(b_6 + b'_6)$	Absolute term fo	or $h$ , $-\frac{1}{2}(a_6 + a'_6)$	,
	1845	1880	1845	1880	
+ 5°3139622 + 6°7861130 + 7°6108004 + 8°1556912 + 8°5343771 + 8°7951953 + 8°9605691 + 9°0383031 + 9°0224448 + 8°8801852 + 8°4468633 - 8°34779837 - 8°7492333 - 8°5618976 + 7°6340870 + 8°6135523 + 8°6135523 + 8°7460700	.0066 .0164 .02275 .0101 .00295 .00535 .01115 .0020 .00435 .00825 .00635 .0031 .0060 .0125 .0029	'0145 '0125 '0020 '0014 '0012 '0044 '0062 '0110 '0176 '0167 '0127 '0082 '0017 '0036	100845 100765 10229 101995 100795 100655 10092 100925 102065 10338 10339 103325 10372 10372 10372	.0083 .0060 0049 0065 .0040 .0062 .0073 .0139 .0179 .0228 .0205 .0151 .0185	
	Absolute term i	for $g$ , $\frac{1}{2}(a_6 + a'_6)$	Absolute term	for $h$ , $\frac{1}{2}(b_6 + b'_6)$	
	1845	1880	1845	1880	
- 4.4772745 - 6.2488255 - 7.2468296 - 7.9127925 - 8.3833996 - 8.7172759 - 8.9423267 - 9.0696276 - 9.0953527 - 8.9882482 - 8.5858553 + 8.5049028 + 8.9283558 + 8.9801627 + 8.7696817 - 7.8437111 - 8.8335668 - 8.9679187	'00615 '0388 '0377 '04455 '0083 - '0306 - '01065 '00795 '04705 '0684 '0737 '0595 '0282 '03235 '0181	'0042 - '0320 - '0452 - '0340 - '0161 - '0146 '0049 '0285 '0090 - '0236 - '0427 - '0181 - '0048 '0194	- '03925 - '0231 - '02075 - '0041 '00095 - '0154 - '02315 - '02605 '0247 '01185 '0109 - '00685 - '06395 - '04285 - '04125 - '0380	- '0361 - '0241 - '0180 - '0157 - '0180 - '0109 - '0036 '0229 '0204 '0481 '0277 '0385 '0132 '0096	

	For X				Absolute term	for $g, \frac{1}{2} (a_6 + a'_6)$	Absolute term	for $h$ , $\frac{1}{2}(b_6 + b'_6)$
Co-latitude	$g_7^{6}$ or $h_7^{6}$	$g_{-7}^{6}$ or $h_{-7}^{6}$	$g_9^6$ or $h_9^6$	$g_{-9}^{6}$ or $h_{-9}^{6}$	1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 5.5031016 - 6.9874126 - 7.8328269 - 8.4077725 - 8.8270813 - 9.1410730 - 9.3754533 - 9.5439143 - 9.6526744 - 9.7013368 - 9.6526744 - 9.75133452 - 9.1506196 + 9.1610165 + 9.6591367 + 9.8669666 + 9.9687050 + 0.00000000	- 5:4815122 - 6:9664866 - 7:8129869 - 8:3894123 - 8:8105570 - 9:1266974 - 9:3634943 - 9:5346027 - 9:6462280 - 9:6980278 - 9:6801940 - 9:5590541 - 9:1737017 + 9:1350863 + 9:6526568 + 9:8647190 + 9:9681974 + 0:0000000	- 5.4162106 - 6.8838211 - 7.7004549 - 8.2328769 - 8.5929600 - 8.8256283 - 8.9457701 - 8.9408670 - 8.7214316 + 8.1422176 + 8.9745573 + 9.2022108 + 9.2022108 + 9.2554606 + 9.1527788 + 8.7320377 - 8.7360670 - 9.1542588 - 9.2466724	- 5'3888642 - 6'8573187 - 7'6753440 - 8'2096882 - 8'5722147 - 8'8078747 - 8'9317049 - 8'9318208 - 8'7227990 + 8'0650109 + 8'9581907 + 9'1930708 + 9'2505615 + 9'1513632 + 8'7360777 - 8'7312202 - 9'15355711 - 9'2466724	10272 101245 100255 100745 100405 101155 101255 10081 1 10342 101005 10268 105735 105295 10605 10590	'0064 '0088 '0139 '0099 '0124 '0038 '0004 - '0021 - '0010 - '0014 - '0104 - '01022 - '0092 - '0086	- '0151 - '01925 - '00805 '00555 '01165 '01375 '00985 '0212 '0263 '0171 '03105 '0392 '01875 '02885 '0050 '0022	- '0183 - '0054 - '0057 - '0065 - '0046 '0007 - '0062 - '0051 - '0020 '0080 '0196 '0297 '0073 '0294
	For Y				Absolute term	for $g$ , $\frac{1}{2}(b_6 - b'_6)$	Absolute term fo	or $h, -\frac{1}{2}(a_6 - a'_6)$
	FOR I				1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	5:5053712 6:9965552 7:8536445 8:4454270 8:8873069 9:2304803 9:5020002 9:7176944 9:8873598 0:0171376 0:1106488 0:1694541 0:1929877 0:1777703 0:1149882 9:9825840 9:7074901	+ 5:4837259 + 6:9754067 + 7:8333067 + 8:4261886 + 8:8694223 + 9:2141620 + 9:4874121 + 9:7049474 + 9:8765082 + 0:1035209 + 0:1640419 + 0:1851239 + 0:1752412 + 0:135407 + 9:9819326 + 9:7073261 0:00000000	+ 5:4198578 + 6:8986381 + 7:7347057 + 8:2962803 + 8:6978687 + 8:9892994 + 9:1955359 + 9:3892977 + 9:3865476 + 9:2864424 + 9:0215957 + 6:4461642 - 8:9625061 - 9:1578172 - 9:1491192 - 8:9353289 0:00000000	+ 5°3924404 + 6°8718500 + 7°7089445 + 8°2719117 + 8°6752149 + 8°9686295 + 9°1770577 + 9°3129514 + 9°3751990 + 9°2774138 + 9°0147402 + 6°4412700 - 8°9593026 - 9°1559836 - 9°1482941 - 8°9331211 0 00000000	- '0101 - '0062 - '01655 - '0222 - '01725 - '01345 - '00595 - '0122 - '00965 '00235 '01525 '0136 '0124 '0117 '0104	- '0046 '0014 '0011 '0010 '0026 '0060 '0065 '0113 '0112 '0086 '0101 '0096	- '00155 - '02015 - '02015 - '0202 - '01235 - '01725 - '02005 - '0302 - '02625 - '01505 - '0077 - '0076 - '01915 - '0175 - '0122	- '0036 '0086 '0133 '0119 - '0001 - '0002 - '0059 - '0051 '0073 '0226 '0253 '0257
	For Z				Absolute term	for $g$ , $\frac{1}{2}(a_6 - a'_6)$	Absolute term for $h, \frac{1}{2}(b_6 - b'_6)$ 1845 1880	
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 55 (m) 60 (n) 65 (o) 70 (p) 75 (g) 80 (r) 85 (s) 90	4:5756411 6:3660757 7:3962893 8:1088537 8:6422932 9:0580982 9:3888082 9:6535196 9:8641298 0:0282043 0:1503689 0:2329118 0:2758034 0:2759625 0:2248679 0:1006722 9:8304492	- 4:4913852 - 6:2824402 - 7:3136663 - 8:0276037 - 8:5627340 - 8:9804955 - 9:3133668 - 9:5803782 - 9:7933567 - 0:9597956 - 0:0842489 - 0:1689361 - 0:2137630 - 0:2155905 - 0:1658479 - 0:0426475 - 9:7730337 0:00000000	+ 4.5866034 + 6.3646295 + 7.3738133 + 8.0561578 + 8.5492894 + 8.9133296 + 9.1787260 + 9.3612628 + 9.4672489 + 9.4937858 + 9.4221235 + 9.1803803 - 5.5846275 - 9.1586007 - 9.3642901 - 9.1552928 0.00000000	- 4'5098001 - 6'2885874 - 7'2990138 - 7'98'30453 - 8'4782582 - 8'8447126 - 9'1127888 - 9'2981986 - 9'4971842 - 9'4368043 - 9'3683553 - 9'1305418 - 6'9199709 + 9'1076892 + 9'3170227 + 9'3170227 + 9'3179525 + 9'1098570 0 00000000	- '00055 '0254 '0221 '01435 - '0115 - '0057 '00145 - '00735 '00755 - '00245 - '0070 - '0069 - '0238 - '0197 - '02375	'0153 '0014 - '0077 - '0007 - '0008 '0285 '0285 '0382 '0146 - '0139 - '0205 - '0153 - '0216	- '02725 - '0088 '01355 '0391 '02765 '0427 '03285 '01995 '0121 '02215 '0241 '00035 - '01065 - '02925 - '00165	'0072 '0048 - '0012 - '0061 '0036 '0205 '0132 '0012 - '0084 '0072 '0085 - '0048 '0036

Co-latitude	FOR $X$ $g_7^7$ or $h_7^7$	$g_{-7}^{7}$ or $h_{-7}^{7}$	$g_9^7$ or $h_9^7$	$g_{-9}^{7}  ext{ or } h_{-9}^{-7}$	Absolute term i	or $g$ , $\frac{1}{2}(a_7 - a'_7)$	Absolute term f	or $h$ , $\frac{1}{2}(b_7 - b'_7)$
Co-iantude	97 01 n ₇	<i>y</i> ₋₇ or <i>n</i> ₋₇	$g_9$ or $n_9$	9_9 OI N_9	1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (g) 80 (r) 85 (s) 90	- 4'5154744 - 6'3058907 - 7'3360742 - 8'0485979 - 8'5819872 - 8'9977340 - 9'3283797 - 9'5930226 - 9'8035621 - 9'9675659 - 0'0896619 - 0'1721403 - 0'2150829 - 0'1639475 - 0'0397218 - 9'7694804 0'00000000	- 4:4938769 - 6:2849320 - 7:3161579 - 8:930954 - 8:5652256 - 8:9829870 - 9:3158384 - 9:5828699 - 9:7958483 - 9:9622872 - 0:0867405 - 0:1714275 - 0:2180821 - 0:1683396 - 0:0451391 - 9:7755254 0:00000000	- 4:4874340 - 6:2638426 - 7:2701646 - 7:9481144 - 8:4348151 - 8:7895159 - 9:0410770 - 9:2021458 - 9:2719282 - 9:2272881 - 8:9557758 + 8:6176650 + 9:2913975 + 9:5114948 + 9:5814838 + 9:5287754 + 9:2971060 0:00000000	- 4'4600774 - 6'2372972 - 7'2449494 - 7'9247179 - 8'4136874 - 8'7710694 - 9'0256995 - 9'1902495 - 9'2641022 - 9'2249108 - 8'9658374 + 8'5682423 + 9'2799694 + 9'5062629 + 9'5794414 + 9'5286793 + 9'2981031 0'00000000	'01095 - '0124 - '00655 - '0052 '00505 '00105 - '0095 - '0157 - '0157 - '01115 '0130 - '0011	- '0132 - '0035 '0005 '0019 '0102 '0083 '0110 '0030 '0051 '0112 '0072 '0060 '0002	'01515 - '0016 - '0023 '00055 - '0055 - '0082 - '01645 - '04395 - '02295 '01115 '0013 - '02085 - '0143 - '0037 - '0128	'0021 '0037 '0048 '0023 - '0023 - '0073 - '0080 - '0054 - '0042 - '0041 '0001
	To a V				Absolute term i	For $g$ , $\frac{1}{2}(b_7 + b'_7)$	Absolute term fo	r h, $-\frac{1}{2}(a_7 + a'_7)$
	For Y				1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	4.5171780 6.3127290 7.3515529 8.6258345 9.0617747 9.4170820 9.7113630 9.9572148 0.1631791 0.3352770 0.4778697 0.5941702 0.6865596 0.7507908 0.8353934 0.8450980	+ 4.4955327 + 6.2915805 + 7.3312142 + 8.0571095 + 8.6079499 + 9.0454564 + 9.4024939 + 9.6986160 + 9.9463632 + 0.1542197 + 0.3281491 + 0.4724575 + 0.5903064 + 0.6840305 + 0.7553433 + 0.8054689 + 0.8352294 + 0.8450980	+ 4'4901685 + 6'2748901 + 7'2954506 + 7'9942115 + 8'5093736 + 8'9019533 + 9'2038034 + 9'4330144 + 9'5999653 + 9'7630905 + 9'7543022 + 9'6659269 + 9'4410754 + 8'6220707 - 9'5457679 - 9'5146491	+ 4.4627511 + 6.2481020 + 7.2696894 + 7.9698429 + 8.4867198 + 8.8812834 + 9.1853252 + 9.4168681 + 9.5862200 + 9.6984667 + 9.7540619 + 9.7474467 + 9.6610327 + 9.4378719 + 8.6202371 - 9.2686643 - 9.5455601 - 9.6146491	- '01815 - '00825 - '0033 - '0065 - '01215 - '01236 - '01735 - '0212 - '0192 - '01845 - '0215 - '03345 - '0285 - '0333 - '0369	- '0234 - '0125 - '0148 - '0142 - '0214 - '0238 - '0142 - '0133 - '0157 - '0157 - '0209 - '0254 - '0292 - '0261	·00245 - '0018 ·00205 ·00335 ·0067 ·00345 ·0062 ·0159 ·0243 ·00825 - '00315 - '0026 - '00495 - '0022 - '0047 - '0093	- '0132 - '0064 - '0074 - '0099 - '0127 - '0078 - '0015 '0066 '0172 '0264 '0340 '0363 '0509 '0519
	For Z				Absolute term	for $g$ , $\frac{1}{2}(a_7 + a'_7)$	Absolute term	for $h$ , $\frac{1}{2}(b_7 + b'_7)$
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 85 (e) 90	3°5208617 5°6156634 6°8276107 7°6731889 8°3142353 8 8228074 9°2373051 9°5806038 9°8674008 0°1076621 0°3084138 0°4747444 0°6104034 0°6104034 0°8576266 0°8917707	- 3'4358287 - 5'5312507 - 6'7442104 - 7'5911613 - 8'2338982 - 8'7444264 - 9'1610852 - 9'5066834 - 9'7958433 - 0'0384737 - 0'4099883 - 0'547581 - 0'6570164 - 0'7402870 - 0'7988205 - 0'8335736 - 0'8450980	+ 3:5902567 + 5:6742263 + 6:8678471 + 7:6874436 + 8:2941575 + 8:7593590 + 9:1203872 + 9:3986007 + 9:6064776 + 9:7505997 + 9:8324930 + 9:8473861 + 9:7782605 + 9:5684855 + 8:7574023 - 9:4184699 - 9:6991359 - 9:7695511	- 3'5128398 - 5'5976660 - 6'7924810 - 7'6136926 - 8'2224697 - 8'6900599 - 9'0537296 - 9'3347584 - 9'5455413 - 9'6925772 - 9'7773149 - 9'7949218 - 9'7283670 - 9'5212431 - 8'7198982 + 9'3705347 + 9'6529597 + 9'7237936	- '0089 - '0290 - '0295 '02255 '03995 '0407 '00105 - '0114 - '0243 - '01905 - '0215 - '02335 - '05035 - '08415 - '0899	'0195 '0268 '0440 '0280 '0078 - '0118 '0105 '0121 '0061 '0049 - '0007 '0144 '0023 - '0092	'0131 - '00165 '0190 '0075 '0122 '0028 - '0132 - '00885 - '0178 - '0104 - '00515 - '0102 - '01965 '0326 '0468 '0418	'0188 '0172 '0225 - '0014 - '0131 '0077 '0180 '0233 '0023 '0023 '0038 '0069 '0045 - '0157 - '0258

	For X				Abaoluta torr	for a 1 (a + a/)	Absolute town	Con h 1 /h / h/ )
Co-latitude	$g_8^7$ or $h_8^7$	$g_{-8}^{7}$ or $h_{-8}^{7}$	$g_{10}^{-7}$ or $h_{10}^{-7}$	$g_{-10}^{7}$ or $h_{-10}^{7}$		for $g$ , $\frac{1}{2}(a_7 + a_7)$	Absolute term i	
00 10010000		<b>3</b> = 0			1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 555 (m) 60 (n) 65 (o) 70 (p) 75 (q) 85 (s) 90	- 4:5147546 - 6:2985912 - 7:3176089 - 8:0140556 - 8:5259435 - 8:9139868 - 9:2095448 - 9:4298744 - 9:5838576 - 9:6737195 - 9:6193347 - 9:3361532 + 8:7520763 + 9:8439487 + 9:9636575 + 0:0000000	- 4'4902775 - 6'2748390 - 7'2950421 - 7'9931025 - 8'5069886 - 8'8973638 - 9'1955330 - 9'4187018 - 9'5757177 - 9'6688172 - 9'69221173 - 9'6226196 - 9'3692384 + 8'6819804 + 9'5798744 + 9'8413307 + 9'9630790 + 0'00000000	- 4:4378648 - 6:2059859 - 7:1980258 - 7:8548734 - 8:3121841 - 8:6265386 - 8:8215075 - 8:8215075 - 8:2555775 + 8:7265471 + 9:0900786 + 9:2021533 + 9:1451111 + 8:8148047 - 8:5646950 - 9:0927066 - 9:1983677	- 4'4076285 - 6'1766478 - 7'1701647 - 7'8290426 - 8'2889114 - 8'6063454 - 8'8049783 - 8'8854058 - 8'8091170 - 8'2842199 + 8 7032120 + 9'0789159 + 9'1961542 + 9'1428858 + 8'8170986 - 8'5580977 - 9'0919349 - 9'1983677	- '00965 '0110 '01405 - '0068 - '01115 - '01785 - '0209 - '0113 '0044 - '0113 - '0163 - '01655 - '0090 '0096 - '0071 '0004	10139 10143 10095 10020 10009 10030 10004 10002 10017 10056 10040 10043 10131 10191	03855 0182 0188 01085 0103 0080 00465 - 01115 - 01245 00295 0153 00535 - 0019 - 0488 - 0489 - 0614	'0074 '0020 '0035 '0012 '0043 '0060 '0059 '0022 '0040 '0008 '0068 '0087 '0020 '0027
For Y						for $g$ , $\frac{1}{2}(b_7 - b'_7)$	Absolute term fo	or $h, -\frac{1}{2}(a_7 - a_7)$
	FOR 1				1845	0881	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 75 (q) 80 (r) 85 (s) 90	4:5169430 6:3074021 7:3376555 8:0502741 8:5837802 8:9996625 9:3304580 9:5952604 9:8059643 9:9701325 0:0923877 0:1750156 0:2179843 0:2182097 0:1671688 0:0430127 9:7728140	+ 4'4924116 + 6'2834338 + 7'3146060 + 8'0284706 + 8'5635110 + 8'9811684 + 9'3139248 + 9'7936659 + 9'9599785 + 0'0843094 + 0'1688818 + 0'2136053 + 0'2153434 + 0'1655283 + 0'0422745 + 9'7726281 0'00000000	+ 4'4412072 + 6'2195411 + 7'2292631 + 7'9124198 + 8'4067117 + 8'7723850 + 9'0401025 + 9'2260416 + 9'3372993 + 9'3727922 + 9'3190232 + 9'1280562 + 8'4916125 - 8'8448213 - 9'1299187 - 9'1507510 - 8'9500739 0'00000000	+ 4'4109037 + 6'1899332 + 7'2007902 + 7'8854861 + 8'3816733 + 8'7495393 + 9'0196792 + 9'3221071 + 9'3602490 + 9'3090442 + 9'1204791 + 8'4862031 - 8'8412806 - 9'1278921 - 9'1498391 - 8'9498442 0'00000000	100905 101805 10205 10264 101805 10125 10006 100255 10104 10104 100745 10040 10185 10124 10106	10182 10182 10106 10045 10039 10040 10150 10209 10195 10161 10118 10091	- '02035 - '0112 - '00915 - '01075 '0016 '00865 '0088 '0074 '0053 '00195 '00285 '0027 - '00155 - '0078 - '0018	*0130 *0047 *0036 *0115 *0168 *0182 *0203 *0235 *0261 *0235 *0212 *0146 *0057
	For Z					for $g$ , $\frac{1}{2}(a_7 - a'_7)$	Absolute term for $h$ , $\frac{1}{2}(b_7 - b'_7)$	
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (n) 65 (o) 75 (g) 80 (r) 85 (s) 90	3:5714985 5:6612074 6:8645836 7:6979821 8:3230453 8:8115564 9:2015389 9:5153553 9:7670005 9:9654619 0:1163671 0:2227295 0:2850535 0:3006528 0:2612975 0:1453484 9:8800197 0:00000000	- 3'4910641 - 5'5814606 - 6'7859588 - 7'6208789 - 8'2478160 - 8'7384951 - 9'1308726 - 9'4472379 - 9'7015074 - 9'9025890 - 0'0560305 - 0'1647691 - 0'2292376 - 0'2466859 - 0'2088287 - 0'0939825 - 9'8293289 0'0000000	+ 3'5825037 + 5'6600835 + 6'8429218 + 7'6468489 + 8'2326847 + 8'6709694 + 8'9978503 + 9'2327706 + 9'3849215 + 9'45463066 + 9'2617608 + 8'6416794 - 9'0156988 - 9'3115824 - 9'31445115 0'0000000	- 3'5069770 - 5'5853834 - 6'7695709 - 7'5753294 - 8'1634232 - 8'6043253 - 8'9341068 - 9'1721298 - 9'3275053 - 9'4004948 - 9'3785537 - 9'2145580 - 8'6032741 + 8'9681157 + 9'2676754 + 9'2982701 + 9'1033578 0'0000000	- '0168 - '0309 - '01895 - '00955 '00155 - '0346 - '04985 - '0497 - '0415 - '00745 '0177 '03375 '05565 '0208 '00805	- '0097 '0007 '0017 - '0128 - '0365 - '0542 - '0308 - '0310 - '0620 - '0418 - '0115 - '0155 - '0069	1845  - '0275 - '00415 - '0194 - '0091 - '0208 - '00455 - '00455 - '0047 - '01385 - '0211 - '01195 - '0550 - '0034	- '0163 - '0190 '0004 - '0281 - '0145 - '0074 '0082 '0259 - '0067 '0065 - '0022 '0179 '0144

Co-latitude	FOR $X$ $g_8^8$ or $h_8^8$	$g_{-8}^{-8}$ or $h_{-8}^{-8}$	$g_{_{10}}{}^{8}  ext{ or } h_{_{10}}{}^{8}$	$g_{-10}^{-8}  ext{ or } h_{-10}^{-8}$	Absolute term	for $g$ , $\frac{1}{2}(a_8 - a'_8)$	Absolute term	for $h$ , $\frac{1}{2}(b_8 - b'_8)$
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 3'5180919 - 5'6077846 - 6'8111342 - 7'6444964 - 8'2695151 - 8'7579747 - 9'1479001 - 9'4616555 - 9'7132381 - 9'9116369 - 0'0624814 - 0'1687866 - 0'2310590 - 0'2466138 - 0'2072224 - 0'0912467 - 9'8259017 0'00000000	- 3.4936069 - 5.5840045 - 6.7885026 - 7.6234227 - 8.2503596 - 8.7410387 - 9.1334165 - 9.4497815 - 9.7040513 - 9.9051328 - 0.0585744 - 0.1673128 - 0.2317814 - 0.2492295 - 0.2113725 - 0.00000000	- 3'4930578 - 5'5692329 - 6'7495916 - 7'5497265 - 8'1300463 - 8'5603896 - 8'8756559 - 9'0929033 - 9'2161940 - 9'2324995 - 9'0794081 - 7'9033505 + 9'1521118 + 9'4502854 + 9'5530208 + 9'5181379 + 9'2958361 0'00000000	- 3:4628129 - 5:5398594 - 6:7216452 - 7:5237276 - 8:1064698 - 8:5396611 - 8:8581591 - 9:0790106 - 9:2063661 - 9:2276369 - 9:0828638 - 8:0658274 + 9:1371587 + 9:4440495 + 9:5505546 + 9:5178662 + 9:2967766 0:00000000	**\text{*\text{oo285}} \text{*\text{oo158}} \text{-\text{oo66}} \text{-\text{oo37}} \text{-\text{oo795}} \text{-\text{oo795}} \text{-\text{oo18}} \text{-\text{oo01}} \text{-\text{oo01}} \text{-\text{oo063}} \text{-\text{oo1535}} \text{-\text{oo19}} \text{oo225} \text{\text{oo381}} \text{-\text{oo186}}	'0094 '0097 '0083 '0010 - '0030 - '0034 - '0041 '0081 '0042 - '0055 '0014 '0082 - '0015	- '0073 - '0021 - '00675 - '0108 '00175 '0056 '0156 '01525 '00905 '02235 '04105 '0296 '02935 '01815 '0060	- '0065 - '0107 - '0023 '0001 - '0017 - '0021 - '0058 - '0013 - '0035 - '0026 - '0073 - '0036 - '0042
	For V			Absolute term	For $g$ , $\frac{1}{2}(b_8 + b'_8)$	Absolute term fo	or $h_1 - \frac{1}{2} (a_8 + a'_8)$	
	For Y				1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (f) 40 (i) 45 (k) 50 (m) 65 (m) 65 (o) 70 (p) 75 (g) 85 (e) 90	3'5197951 5'6146213 6'8266084 7'6722403 8'3133531 8'8220022 9'2365852 9'5799742 9'8668646 0'1072193 0'3080613 0'4744766 0'6102121 0'7180442 0'8000167 0'8575943 0'8917626	+ 3:4952637 + 5:5906530 + 6:8035589 + 7:6504368 + 8:2930839 + 8:8035081 + 9:2200520 + 9:8545662 + 0:0970653 + 0:2999830 + 0:4683428 + 0:6058331 + 0:7151779 + 0:7983762 + 0:8568561 + 0:8915767 + 0:9030990	+ 3'4956569 + 5'5797255 + 6'7735753 + 7'5933599 + 8'2004135 + 8'6660683 + 9'0276984 + 9'3067203 + 9'5157141 + 9'6614478 + 9'7458236 + 9'7649333 + 9'7042124 + 9'5175137 + 8'9312956 - 9'2168923 - 9'5463056 - 9'6243364	+ 3'4653534 + 5'5501176 + 6'7451024 + 7'5664262 + 8'1753751 + 8'6432226 + 9'0072751 + 9'5005219 + 9'6489046 + 9'7358446 + 9'7573562 + 9'6988030 + 9'5139730 + 8'9292690 - 9'2159804 - 9'5460759 - 9'6243364	'01375 '0001 - '00805 - '00425 '0008 '0055 '0075 - '0083 '0024 '0045 - '00325 - '00735 - '0109 - '00995 - '0001 '0101	- '0004 '0028 '0071 '0105 '0099 '0050 '0070 '0053 '0082 '0069 '0026 '0010 - '0032 - '0040	·0071 ·00405 - ·00625 - ·01405 - ·00985 ·0079 ·00585 ·01545 ·01285 ·00785 ·0036 - ·0088 - ·0054 - ·00705 - ·00495 - ·0114	- '0091 - '0047 '0028 '0105 '0102 '0057 '0043 '0020 - '0007 '0008 '0046 '0152 '0153 '0142
	For Z				Absolute term f	for $g$ , $\frac{1}{2}(a_8 + a'_8)$	Absolute term	for $h$ , $\frac{1}{2}(b_8 + b'_8)$
					1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 555 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (a) 90	2·5166789 4·9107550 6·2958650 7·2622770 7·9949473 8·5762254 9·049957 9·4423990 9·7702311 0·0448794 0·2743717 0·4645218 0·6196129 0·7428193 0·8364775 0·9022623 0·9413006 0·9542425	- 2:4355597 - 4:8303232 - 6:2165551 - 7:1844885 - 7:9190322 - 8:5024781 - 8:9786432 - 9:3735950 - 9:7040511 - 9:9813192 - 0:2133475 - 0:4058735 - 0:5631088 - 0:6881638 - 0:7833199 - 0:8502076 - 0:8899209 - 0:9030900	+ 2·5792243 + 4·9625406 + 6·3295097 + 7·2700693 + 7·9686736 + 8·5069494 + 8·9277570 + 9·5057007 + 9·5057007 + 9·6857081 + 9·7987060 + 9·8415063 + 9·6285234 + 9·6285234 + 9·0524467 - 9·3493657 - 9·6830778 - 9·7626391	- 2:5031428 - 4:8872820 - 6:2555942 - 7:1979755 - 7:8988238 - 8:4396970 - 9:1944593 - 9:4475350 - 9:6307025 - 9:7367779 - 9:737755 - 9:5848828 - 9:0138192 + 9:3055216 + 9:6412384 + 9:7212464	-0064500125017450257021050045500105 -0161 -01885 -00915 -02985 -01815 -0081 -04575 -014750008	- '0316 - '0416 - '062 - '0047 '0037 '0125 - '0007 - '0016 '0088 - '0055 '0004 '0077 '0145 '0240	·01785 ·03135 ·01925 ·01145 ·01275 ·0158 ·00775 - ·01015 - ·00905 - ·0045 ·01635 ·00135 ·00135 - ·02975 - ·06055 - ·0363 - ·0255	'0082 '0026 - '0157 - '0144 - '0046 - '0186 '0008 - '0147 - '0069 - '0050 '0058 - '0059 '0039

	FOR X		Absolute torm	for $g, \frac{1}{2}(a_8 + a'_8)$	Absolute term i	for $h = 1(h + h')$
Co-latitude	$g_9^8$ or $h_9^8$	$g_{-9}^{-8}$ or $h_{-9}^{-8}$	1845	101 y, ½ (u ₈ + u ₈ ) 1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 3'5174329 - 5'6007321 - 6'7932427 - 7'6110218 - 8'2152453 - 8'6769920 - 9'0332258 - 9'3046765 - 9'5027078 - 9'6317529 - 9'6317529 - 9'6363151 - 9'4708712 - 8'3407921 + 9'8202790 + 9'9585824 + 0'00000000	- 3:4900685 - 5:5741552 - 6:7679530 - 7:5874827 - 8:1938715 - 8:6581405 - 9:0171900 - 9:2916871 - 9:4929448 - 9:6253789 - 9:6859201 - 9:6578627 - 9:4796447 - 8:4802142 + 9:4981929 + 9:8172676 + 9:9579324 0:0000000	- '00465 '0040 - '0023 '0033 '00095 '00555 '00205 '0142 '0418 '0368 '02755 '0321 '04925 '0089 '0269 '0176	- '0119 - '0066 - '0032 - '0059 - '0024 - '0013 '0003 - '0043 '0065 - '0097 - '0040 '0117 '0060 '0117	- '0225 '0095 '00885 '0063 '00475 '0027 - '0069 - '00505 - '01325 - '01535 '01095 - '0010 - '00295 '00955 '0177 '0128	'0066 - '0003 '0022 '0053 '0020 '0023 '0032 '0011 - '0046 - '0042 - '0037 '0075 '0076 '0067
	For Y		Absolute term	for $g$ , $\frac{1}{2}(b_8 - b'_8)$	Absolute term fo	or $h$ , $-\frac{1}{2}(a_8-a_8')$
			1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	3°5195602 5°6092944 6'8127120 7°6461664 8'2712988 8'7598900 9'1499611 9'4638716 9'7156140 9'9141727 0'0551720 0'1716225 0'2340262 0'2496943 0'2103947 0'0944868 9'8291831	+ 3'4921428 + 5'5825063 + 6'7869508 + 7'6217978 + 8'2486450 + 8'7392201 + 9'1314829 + 9'4477253 + 9'7018687 + 9'9028241 + 0'0561434 + 0'1647670 + 0'2291320 + 0'2464908 + 0'2085611 + 0'0936617 + 9'8289753 0'00000000	101515 10009 100605 101175 10126 10102 10043 10036 10028 10028 10028 100495 10062 101275 10010	'0021 '0099 '0105 '0090 '0033 '0043 '0023 '0059 '0063 '0090 '0132 '0134 '0097	-0061 - 00565 - 00425 - 00415 - 00415 - 0004 - 00265 - 00995 - 00175 - 00045 - 0049 - 0124 - 0162 - 01815 - 01195	- '0010 - '0029 - '0052 - '0050 - '0025 - '0038 '0002 '0061 '0110 '0174 '0177 '0105 '0045
	For Z		Absolute term	for $g$ , $\frac{1}{2}(a_8 - a'_8)$	Absolute term for $h$ , $\frac{1}{2}(b_8-b'_8)$	
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 66 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	2'5619451 4'9509283 6'32'74676 7'2817003 7'9983878 8'5596056 9'0088611 9'3717829 9'6644639 9'8973131 0'0769598 0'2071422 0'2888990 0'3199391 0'2923235 0'1846214 9'9241870	- 2'4839152 - 4'8736531 - 6'2514236 - 7'2073261 - 7'9260700 - 8'489668 - 8'9415507 - 9'3072695 - 9'6028303 - 9'8385547 - 0'0209845 - 0'1537744 - 0'2378843 - 0'2799533 - 0'2449816 - 0'1384898 - 9'8787961 0'00000000	1845 '01285 '00095 - '01335 - '00825 '03905 '02635 '0430 '03755 '02965 '03375 '03295 '0426 - '01795 '01165	1880  10158 1018 10100 10100 10170 10079 10107 10014 10041 10150 10098 10055 10021	1845  100845 102315 100445 102165 10206 100945 100575 101115 10248 100555 100245 100305 101415 10073	- '0078 - '0229 '0017 '0040 '0019 '0092 '0140 '0053 '0065 '0158 '0176 '0024 - '0075

	For X		Absolute term	for $g, \frac{1}{2}(a_9 - a'_9)$	Absolute term	for $h, \frac{1}{2}(b_9 - b'_9)$
Co-latitude	$g_9^9$ or $h_9^9$	$g_{-9}^{9}$ or $h_{-9}^{9}$	1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 2'5138700 - 4'9028385 - 6'2793538 - 7'2335540 - 7'9502015 - 8'5113729 - 8'9605771 - 9'3234442 - 9'6160687 - 9'8488615 - 0'0284535 - 0'1285846 - 0'2402950 - 0'2472950 - 0'2436469 - 0'1359210 - 9'8754717 0'00000000	- 2'4864997 - 4'8762374 - 6'2540078 - 7'2099104 - 7'9286541 - 8'4922509 - 8'9441350 - 9'3098536 - 9'6054146 - 9'8411389 - 0'0235688 - 0'1563585 - 0'2404686 - 0'2735374 - 0'2475658 - 0'1410740 - 9'8813803 0'00000000	- '0022 '00955 - '0004 - '0028 '0042 '0048 '01205 - '00545 '00325 - '00105 - '0036 - '00415 '01735 '0128 '0203	+ '0067 - '0025 '0042 '0010 '0009 - '0010 '0005 '0046 - '0032 - '0019 '0025 - '0048	- '00245 '00585 '0002 '0066 - '00405 - '0121 - '0099 - '0282 '01575 '0060 - '0008 '00095 - '00475 - '02275 - '00795	'0037 '0050 - '0008 - '0013 '0001 '0011 '0023 '0011 - '0023 '0001 '0003 - '0003 - '0003
			Absolute term	for $g, \frac{1}{2} (b_9 + b'_9)$	Absolute term fo	or $h, -\frac{1}{2}(a_9 + a'_9)$
	For Y		1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	2·5155729 4·9096740 6·2948253 7·2612931 7·9940322 8·5753902 9·0492487 9·4417460 9·7696748 0·0444200 0·2740060 0·4642440 0·6194145 0·7426893 0·8364031 0·9022289 0·9412921 0·9542425	+ 2'4881555 + 4'8228859 + 6'2690641 + 7'2369245 + 7'9713784 + 8'5547203 + 9'0307705 + 9'4255997 + 9'7559295 + 0'0330714 + 0'2649774 + 0'4573885 + 0'6145203 + 0'7394858 + 0'8345695 + 0'9014038 + 0'9410843 + 0'9542425	'0141 '0102 - '00305 - '00315 - '00015 - '0010 '00335 '00275 '00325 '01035 '0051 '0003 - '0060 - '00555 - '0043	'0061 '0011 - '0020 '0002 - '0011 - '0011 '0031 '0046 '0065 '0128 '0125 '0134 '0124 '0067	- '0083 - '00995 '00525 '0022 '00175 - '0014 '0003 '0115 - '00645 - '01805 - '01805 - '01505 - '0161 - '0155 - '01295 - '0129	*0166 *0033 *0076 *0092 *0080 *0079 *0035 *0018 *0027 *-0011 *-0004 *0077 *0169 *0108
			Absolute term	for $g, \frac{1}{2} (a_9 + a'_9)$	Absolute term	for $h, \frac{1}{2} (b_9 + b'_9)$
	For Z		1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 555 (m) 60 (n) 65 (o) 75 (q) 80 (r) 85 (s) 90	1·5070936 4·2004438 5·7587168 6·8459631 7·6702576 8·3242424 8·8572857 9·2987946 9·6676623 9·9766983 0·2349320 0·4489022 0·6234261 0·7620740 0·8674711 0·9415028 0·9854354 1·0000000	- 1'4284514 - 4'1225561 - 5'6820603 - 6'7709762 - 7'5973267 - 8'2536903 - 8'7893617 - 9'2336672 - 9'6054145 - 9'9173254 - 0'1783419 - 0'3949193 - 0'5717960 - 0'7124717 - 0'8195133 - 0'8947553 - 0'9394285 - 0'9542425	.02545 .01805 .0129 .00445 	'0014 - '0055 - '0098 - '0139 - '0056 '0042 - '0042 - '0139 '0139 '0139 '0168 '0083	- '0053 - '0142 '0066 - '01495 - '03455 - '0153 '0018 '00585 '01335 - '0064 - '01935 '00055 - '01435 '0190 '0274	- '0098 '0000 - '0111 - '0097 - '0028 - '0125 '0042 '0014 '0028 - '0083 - '0028 - '0042 '00111

For X			Absolute term	for $g$ , $\frac{1}{2} (a_9 + a'_9)$	Absolute term	for $h$ , $\frac{1}{2}(b_9 + b'_9)$
Co-latitude	$g_{10}^{\ 9} \ { m or} \ h_{10}^{\ 9}$	$g_{-10}^{9}$ or $h_{-10}^{9}$	1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 2:5132580 - 4:8959782 - 6:2619080 - 7:2009081 - 7:8973064 - 8:4325283 - 8:8491113 - 9:1712031 - 9:4125418 - 9:5795338 - 9:6712972 - 9:6750788 - 9:5438122 - 8:9602331 + 9:4175680 + 9:7959040 + 9:9534798 0:00000000	- 2'4830066 - 4'8665777 - 6'2338978 - 7'1747878 - 7'8735216 - 8'4114603 - 8'8310700 - 9'1564253 - 9'4011998 - 9'5717613 - 9'6672644 - 9'6752302 - 9'5500252 - 8'9969364 + 9'4043668 + 9'7924733 + 9'9527574 0'00000000	'0057 '00425 - '0069 - '0070 '0006 '0035 '00155 - '00525 '00355 - '01378 - '01685 - '02275 - '0139 - '0396 - '0367	- '0016 - '0092 - '0012 '0057 '0092 '0076 '0036 '0054 '0116 - '0010 - '0018 '0094 '0063 '0091	'00725 - '00115 - '0066 - '0074 - '01185 - '0110 - '0100 - '0073 - '02105 - '0174 - '02405 - '03965 - '03425 - '05875 - '0528	- '0035 - '0057 - '0079 - '0058 - '0020 - '0022 - '0073 - '0054 - '0012 - '0073 - '0026 '0052 - '0052 - '0041
			Absolute term	for $g$ , $\frac{1}{2}(b_9 - b'_9)$	Absolute term fo	or $h$ , $-\frac{1}{2}(a_9 - a'_9)$
	For Y		1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 85 (s) 90	2·5153379 4·9043471 6·2809288 7·2352193 7·9519780 8·5132780 8·9626247 9·3256434 9·6184243 9·8513734 0·0311167 0·1613900 0·2432286 0·2743394 0·2467811 0·1391213 9·8787126 0·00000000	+ 2'4850344 + 4'8747392 + 6'2524559 + 7'2082856 + 7'9269396 + 8'4904323 + 8'9422014 + 9'3077975 + 9'6032321 + 9'8388302 + 0'0211377 + 0'1538129 + 0'2378192 + 0'2707987 + 0'2447545 + 0'1382094 + 9'8784829 0'00000000	- '0046 '0022 - '00005 - '00195 - '00205 - '0059 - '0048 - '00345 - '00385 - '00155 - '0015 - '0061 - '0059 - '0073 '00195	- '0054 - '0023 - '0029 - '0006 - '0015 - '0062 - '0070 - '0055 - '0013 - '0026 '0056 '0065	- '0091 - '00185 - '00345 - '0024 '00115 - '0028 '0020 '0010 - '00435 '00195 '00145 - '00765 - '0098 - '0154 - '01245	- '0019 - '0054 '0037 '0039 '0028 - '0001 - '0038 - '0046 - '0110 - '0063 - '0017 '0003 '0010
	Tion //		Absolute term	for $g, \frac{1}{2}(a_9 - a'_9)$	Absolute term	for $h$ , $\frac{1}{2}(b_9 - b'_9)$
	For Z		1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 555 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	1.5480152 4.2362729 5.7859803 6.8610427 7.6693549 8.3032797 8.8118092 9.2238367 9.5575538 9.8247913 0.0331797 0.1871829 0.2883728 0.3348540 0.3189783 0.2195235 9.9639834	- 1'4713796 - 4'1604586 - 5'7115013 - 6'7883866 - 7'5989371 - 8'2354515 - 8'7468419 - 9'1619143 - 9'4987663 - 9'7691334 - 9'9805515 - 0'1373928 - 0'2411441 - 0'2898338 - 0'2757476 - 0'1776101 - 9'9228765	103735 102395 10160 100325 10069 101275 100355 100325 10032 10213 102425 101565 100565	'0014 '0084 '0042 '0056 - '0056 '0000 - '0056 - '0070 - '0042 - '0083 - '0111 - '0001	- '0080 - '0259 - '0064 '0073 '00805 '02385 '0232 '0046 '00045 - '01685 - '0246 - '01995 - '02935 - '00905	**************************************

	FOR X		A baoluto torm	for a 1/a - a' )	Absolute term	for $h$ , $\frac{1}{2}(b_{10}-b'_{10})$
Co-latitude	$g_{10}^{10}  ext{ or } h_{10}^{10}$	$g_{-10}^{10}$ or $h_{-10}^{10}$	1845	for $g$ , $\frac{1}{2}(a_{10} - a'_{10})$	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 555 (m) 665 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	- 1'5042529 - 4'1924972 - 5'7421779 - 6'8172157 - 7'6254915 - 8'2593740 - 8'7678564 - 9'1798345 - 9'5135004 - 9'7806864 - 9'9890252 - 0'1429816 - 0'2441292 - 0'2905739 - 0'2746688 - 0'1751921 - 9'9196387	- 1°4739962 - 4°1630753 - 5°714180 - 6°7910032 - 7°6015537 - 8°2380681 - 8°7494585 - 9°1645308 - 9°5013830 - 9°7717500 - 9°9831682 - 0°1400094 - 0°2437608 - 0°2924503 - 0°2783642 - 0°1802267 - 9°9254930 0°00000000	0043 - 00605 0015 0051 0022 0073 0081 0077 02865 00725 0129 0201 01515 00365 - 00765	- '0024 - '0032 - '0016 '0020 '0021 .0018 '0007 - '0006 '0007 - '0018 - '0056 '0012 - '0044	'00655 '00045 '0072 '0028 '0040 '01565 '01585 '01165 '0105 '0043 '0092 '0290 '0272 '02245 '00465	- '0065 '0060 '0011 - '0006 - '0020 - '0018 '0037 - '0017 - '0014 - '0034 '0012 '0022 - '0017
	FOR Y		Absolute term f	for $g$ , $\frac{1}{2}(b_{10} + b'_{10})$	Absolute term fo	$r h, -\frac{1}{2}(a_{10} + a'_{10})$
	FOR I		1845	1880	1845	1880
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 555 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	1·5059555 4·1993317 5·7576472 6·8449510 7·6693164 8·3233832 8·8565173 9·2981228 9·6670901 9·9762257 0·2345558 0·4486165 0·6232219 0·7619394 0·8673945 0·9414684 0·9854267	+ 1'4756520 + 4'1697238 + 5'7291743 + 6'8180173 + 7'6442780 + 8'3005375 + 8'8360940 + 9'2802769 + 9'6518979 + 9'9658825 + 0'2245768 + 0'4410394 + 0'6178125 + 0'7583987 + 0'8653679 + 0'9405565 + 0'9851970 + 1'0000000	- '02195 - '00445 - '00065 - '0018 - '00575 - '0066 - '00575 - '00075 - '00255 - '0040 - '0006 - '00035 - '00155 - '0074 - '0087	- '0004 '0032 '0012 '0032 '0041 '0033 '0021 '0019 - '0027 '0034 '0054 - '0010 - '0043	10054 100825 100525 100525 100685 100145 10013 100135 100135 100365 10023 100275 100805 10085	'0006 '0006 - '0040 '0078 - '0052 '0031 '0019 '0033 '0049 '0033 '0040 '0021 '0029 '0040
	For Z		Absolute term for $g$ , $\frac{1}{2}(a_{10} + a'_{10})$		_	or $h$ , $\frac{1}{2}(b_{10} + b'_{10})$
(a) 5° (b) 10 (c) 15 (d) 20 (e) 25 (f) 30 (g) 35 (h) 40 (i) 45 (k) 50 (l) 55 (m) 60 (n) 65 (o) 70 (p) 75 (q) 80 (r) 85 (s) 90	0.4931373 3:4857621 5:2171984 6:4252793 7:3411984 8:0678903 8:6602070 9:1508219 9:5607258 9:9041500 0:1911256 0:4289164 0:6228733 0:7769614 0:8940994 0:9763783 1:0252054 1:0413927	- 0'4159480 - 3'4093940 - 5'1421705 - 6'3520690 - 7'2702262 - 7'9995075 - 8'5946852 - 9'0'83444 - 9'5013829 - 9'8479365 - 0'1379413 - 0'3785701 - 0'5750882 - 0'7313846 - 0'8503117 - 0'9339080 - 0'9835413 - 1'00000000	- *0210 - *0160 - *00205 *02125 *00725 *0219 *01925 *0143 *0260 *02255 *03825 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *03255 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *0325 *03	1880  '0096 '0068 '0245 '0219 '0120 '0002  - '0035 '0080 '0062 '0057 + '0178 '0083 '0157 '0089	- '0189 - '0091 - '0038 '00265 '01735 '0210 '01195 '0104 '0171 '0267 '0134 '0026 - '0099 - '0268 - '02455 - '0240	1880

## TABLE OF EQUATIONS OF CONDITION MULTIPLIED BY THE

To form the following table of Equations each equation of the previous table for a given latitude is multiplied by the square root of the weight (w) of the observations for that belt of latitude, and the order of the equations is reversed so as to start from the Equator, to which the equation (s) corresponds. The signs and the logarithms of the coefficients of  $g_n^m$  or  $h_n^m$  are given in the tables. Also the signs and the logarithms of the products

m = 0. n ODD.

	For X					
Co-latitude	$g_1^{\ 0}$ or $h_1^{\ 0}$	$g_{-1}^{0}$ or $h_{-1}^{0}$	$g_3^{0}$ or $h_3^{0}$	$g_{-3}{}^{0} \text{ or } h_{-3}{}^{0}$	$g_5^0$ or $h_5^0$	$g_{-5}^{0}$ or $h_{-5}^{0}$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.8480308 9.9961826 9.9890513 9.9770239 9.9598804 9.9372940 9.9088108 9.8738178 9.8314919 9.7807217 9.7199798 9.6471089 9.5573500 9.4505475 9.3136885 9.1329055 8.8735063 8.4248063	+ 9'8480308 + 9'9960842 + 9'9886605 + 9'9761556 + 9'9583037 + 9'9349774 + 9'9055671 + 9'8695473 + 9'8695473 + 9'7742251 + 9'7742251 + 9'7123513 + 9'6383820 + 9'5491803 + 9'4398556 + 9'3021905 + 9'1207531 + 8'8608715 + 8'4118760	- 9.6261821 - 9.7578121 - 9.6975235 - 9.5815797 - 9.3655723 - 8.7944658 + 9.0546871 + 9.4477433 + 9.6280652 + 9.7279859 + 9.7729763 + 9.7730641 + 9.7184303 + 9.6232460 + 9.4736098 + 9.2358394 + 8.7998842	- 9'6261821 - 9'7575784 - 9'6965409 - 9'5791089 - 9'3598813 - 8'7709545 + 9'0646740 + 9'4492357 + 9'6264054 + 9'7240848 + 9'7733932 + 9'7855101 + 9'7640850 + 9'7640850 + 9'7681193 + 9'6118035 + 9'4612585 + 9'2228227 + 8'7864615	+ 9'2247815 + 9'3254981 + 9'1460773 + 8'5781217 - 8'8621623 - 9'2255272 - 9'3565590 - 9'3754704 - 9'2923044 - 9'0489269 - 7'4978518 + 9'0294262 + 9'2906553 + 9'3870560 + 9'3881693 + 9'3026988 + 9'1064776 + 8'6940295	+ 9'2247815 + 9'3251195 + 9'1442273 + 8'5779798 - 8'8659824 - 9'2248182 - 9'3532785 - 9'3696551 - 9'2834875 - 9'0351832 - 7'1875715 + 9'023823 + 9'02801788 + 9'3739686 + 9'3732123 + 9'2863480 + 9'0891426 + 8'6761050
	For $Z$					
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0:000000 9:2347618 9:5319003 9:7014482 9:8171029 9:9018580 9:9058346 0:0142895 0:0501883 0:0752314 0:0903029 0:0956572 0:0909353 0:0750042 0:0454874 9:9975031 9:9196796 9:7752498	0.000000 - 8.9380360 - 9.2349792 - 9.4042082 - 9.5194295 - 9.6670064 - 9.7147742 - 9.7499396 - 9.7742252 - 9.7885378 - 9.7931553 - 9.7877409 - 9.7711831 - 9.7411247 - 9.6927006 - 9.6145528 - 9.4699242	0.000000 - 9.3092487 - 9.5898548 - 9.7309378 - 9.8046272 - 9.812052 - 9.8160681 - 9.7556157 - 9.6336009 - 9.3958845 - 8.6298930 + 9.5611957 + 9.5611957 + 9.7188471 + 9.7983118 + 9.8223793 + 9.7909935 + 9.6727639	0.0000000 + 9.1858796 + 9.4660906 + 9.6065184 + 9.6792944 + 9.7046950 + 9.6880866 + 9.6257703 + 9.5011601 + 9.2585189 + 8.4490832 - 9.1067577 - 9.4334013 - 9.5881502 - 9.6658492 - 9.6658492 - 9.6585083 - 9.5378029	0'0000000 + 9'0743200 + 9'3239610 + 9'4080128 + 9'3864211 + 9'2457366 + 8'8362427 - 8'7405584 - 9'2220882 - 9'3818831 - 9'4150341 - 9'3404464 - 9'1025090 - 7'5968651 + 9'0796370 + 9'3325092 + 9'4055390 + 9'3380047	0.000000 - 8.9960044 - 9.2450245 - 9.3280032 - 9.3047670 - 9.1613749 - 8.7438208 + 8.6689063 + 9.1400120 + 9.2962171 + 9.3265328 + 9.2490846 + 9.0070516 + 7.3182432 - 8.9905182 - 9.2399061 - 9.3113985 - 9.2430764

## SQUARE ROOT OF THE WEIGHTS OF THE OBSERVATIONS.

 $w^{\frac{1}{2}}x'_{m}$ ,  $w^{\frac{1}{2}}y'_{m}$  and  $w^{\frac{1}{2}}z'_{m}$ , which are derived from the absolute terms for 1845 and 1880, are given in the tables.

The following is the type of these equations:

$$X'^m_{n} w^{\frac{1}{2}} g^m_n + X'^m_{n_1} w^{\frac{1}{2}} g^m_{n_1} + \&c. = w^{\frac{1}{2}} x'_m,$$

with similar equations for Y and Z.

				Log (u	$v^{\frac{1}{2}}x'_{0})$	
$g_7^{\ 0} \ { m or} \ h_7^{\ 0}$	$g_{-7}^{0}  ext{ or } h_{-7}^{0}$	$g_{\mathfrak{g}}{}^{\mathfrak{o}}$ or $h_{\mathfrak{g}}{}^{\mathfrak{o}}$	$g_{-9}^{0} \text{ or } h_{-9}^{0}$	1845	1880	
- 8.7596415 - 8.8128096 - 8.3525487 + 8.4640367 + 8.8400830 + 8.9114657 + 8.7856961 + 8.1968996 - 8.5593511 - 8.8689360 - 8.9140099 - 8.7567930 - 7.9603884 + 8.6318087 + 8.8951186 + 8.9307785 + 8.8017019 + 8.4245084	- 8.7596415 - 8.8122642 - 8.3484346 + 8.4663273 + 8.8386689 + 8.9073370 + 8.7779251 + 8.1754615 - 8.5560113 - 8.8593493 - 8.9005304 - 8.7390482 - 7.9205183 + 8.6173050 + 8.8763413 + 8.9098422 + 8.7793913 + 8.4014043	+ 8·2615864 + 8·2463867 - 7·2470443 - 8·3031472 - 8·4101240 - 8·1749797 + 7·7331870 + 8·3515188 + 8·4025010 + 8·0750786 - 7·9650013 - 8·3871257 - 7·9376865 + 8·1016159 + 8·4212249 + 8·3979044 + 8·0694545	+ 8:2615864 + 8:2456379 - 7:2604370 - 8:3024661 - 8:4066231 - 8:1668569 + 7:7325291 + 8:3440116 + 8:3901930 + 8:0553963 - 7:9562729 - 8:3734562 - 8:3650942 - 7:9082885 + 8:0804358 + 8:3956119 + 8:3703951 + 8:0409292	0.7152507 0.8638796 0.8549486 0.8374469 0.8137929 0.7833724 0.7461696 0.7014411 0.6511081 0.5942336 0.5256036 0.4453318 0.3478724 0.2319849 0.0923595 9.9156873	0·70865 0·85642 0·84662 0·82975 0·80532 0·77357 0·73649 0·69204 0·64008 0·57946 0·51175 0·43343 0·23048	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (i) (i) (j) (e) (d) (c) (b) (a)
				Log (	$v^{\frac{1}{2}}z'_{0}$ )	
				1845	1880	
0.0000000 - 8.7198184 - 8.9217977 - 8.9054873 - 8.6468229 + 8.0065966 + 8.7835247 + 8.9370585 + 8.8838346 + 8.5391423 - 8.3439103 - 8.8442269 - 8.9466883 - 8.8424076 - 8.3179836 + 8.5700374 + 8.8949339 + 8.9109646	0.0000000 + 8.6623296 + 8.8634396 + 8.8454828 + 8.5831688 - 7.9634591 - 8.7228120 - 8.8724612 - 8.8154180 - 8.4635777 + 8.2844247 + 8.7740280 + 8.8726490 + 8.7650494 + 8.2330974 - 8.4952762 - 8.8166539 - 8.8315040	0.0000000 + 8.2995571 + 8.4329829 + 8.2271493 - 7.6294167 - 8.3569485 - 8.4254586 - 8.1229647 + 7.9454921 + 8.4036329 + 8.4045491 + 7.9425201 - 8.1386342 - 8.3567655 - 7.4574616 + 8.2781321 + 8.4308079	0'0000000 - 8'2540614 - 8'3863310 - 8'1777287 + 7'5921714 + 8'3078314 + 8'3427932 + 8'0632647 - 7'8969455 - 8'3415345 - 7'870868 + 8'0768930 + 8'3686690 + 8'2855343 + 7'3715422 - 8'2069701 - 8'3578653	0°1082287 0°4082565 0°5750112 0°6874334 0°7691362 0°8282037 0 8741764 0°9072220 0°9261796 0°9344018 0°9340227 0°9242089 0°9025448 0°8675103 0°8145359	0°13998 0°41981 0°58172 0°69437 0°77383 0°83104 0°87069 0°89802 0°91615 0°92394 0°92405 0°91524 0°89666	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

On multiplying an equation in X given in this table by the coefficient of  $g_n^m$  in that equation, i.e. by  $X'_n^m w^{\frac{1}{2}}$ , we get an equation for  $g_n^m$  of the type

$$(X'_{n}^{m})^{2} w g_{n}^{m} + X'_{n}^{m} X'_{n_{1}}^{m} w g_{n_{1}}^{m} + &c. = X'_{n}^{m} w x'_{m}.$$

Adding all such equations in X for the different belts of latitude

m=0. n EVEN.

	FOR X					
Co-latitude	$g_2^{0}  ext{ or } h_2^{0}$	$g_{-2}^{0}$ or $h_{-2}^{0}$	$g_4^{\ 0} \ { m or} \ h_4^{\ 0}$	$g_{-4}^{\ \ \ \ \ \ \ \ }$ or $h_{-4}^{\ \ \ \ \ \ \ \ \ \ }$	$g_6{}^{\scriptscriptstyle 0}$ or $h_6{}^{\scriptscriptstyle 0}$	$g_{-6}^{0} \text{ or } h_{-6}^{0}$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30	0.000000 9.2331609 9.5254695 9.6868757 9.7909334 9.8604239 9.9951718 9.930321 9.9374302 9.928337 9.928337 9.928376	0.0000000 + 9.2354845 + 9.5274677 + 9.6883423 + 9.7916783 + 9.8602780 + 9.9039930 + 9.9277093 + 9.9338864 + 9.9235294 + 0.8965508 + 9.8518146 + 9.7868940	0:0000000 - 9:1593128 - 9:4281206 - 9:5481442 - 9:5887566 - 9:5644188 - 9:4664646 - 9:2459940 - 8:5283908 + 9:0581069 + 9:3928568 + 9:5392698 + 9:6004526	0'0000000 - 9'1604518 - 9'4287355 - 9'5478769 - 9'5872390 - 9'5612026 - 9'4608588 - 9'2361336 - 8'4888574 + 9'0605771 + 9'3883295 + 9'5316256 + 9'5905849	0°0000000 + 8°8719621 + 9°1019415 + 9°1467917 + 9°0470935 + 8°6875469 - 8°4051562 - 8°9940451 - 9°1414680 - 9°1351758 - 8°9688665 - 8°3270177 + 8°7594589	0'000000 + 8'8726198 + 9'1018459 + 9'1453559 + 9'0433989 + 8'6780346 - 8'4720852 - 8'9905264 - 9'1342284 - 9'1246193 - 8'9542098 - 8'256004 + 8'7506738
(e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.7669038 9.5859387 9.4172631 9.1663817 8.7227420	+ 9.5074184 + 9.5755531 + 9.4061465 + 9.1547264 + 8.7107566	+ 9.6007250 + 9.5441684 + 9.4216117 + 9.2018773 + 8.7762846	+ 9.5890788 + 9.5310798 + 9.4073928 + 9.1868421 + 8.7607547	+ 9.0783525 + 9.1707789 + 9.1358613 + 8.9694526 + 8.5730750	+ 9°0640286 + 9°1538861 + 9°1172493 + 8°9496721 + 8°5526052
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	- 9'8480308 - 9'9879504 - 9'9550459 - 9'8959691 - 9'8020065 - 9'6526755 - 9'3844633 - 8'3529949 9'2994331 9'6148097 9'7812720 9'8841879 9'9479528 9'9819212 9'9890380 9'9674057 9'9074102 9'7733157	+ 9.6719395 + 9.8116935 + 9.7782749 + 9.7182709 + 9.6227891 + 9.4707822 + 9.196068 + 8.0216630 - 9.1356193 - 9.4425086 - 9.6056314 - 9.7664396 - 9.7686265 - 9.8013403 - 9.874539 - 9.7850453 - 9.7244943 - 9.5900654	+ 9'4800540 + 9'5963900 + 9'4809342 + 9'2158933 + 6'8074504 - 9'2134830 - 9'4820182 - 9'5991437 - 9'6338183 - 9'5984671 - 9'4783759 - 9'1962640 + 8'0809661 + 9'2563827 + 9'5043969 + 9'6065443 + 9'6175662 + 9'5212559	- 9'3831440 - 9'4991742 - 9'3826432 - 9'1145922 + 6'9366555 + 9'1198236 + 9'3845735 + 9'4993071 + 9'5317745 + 9'4940914 + 9'3711510 + 9'0837570 - 8'0666595 - 9'1542509 - 9'3982439 - 9'4984993 - 9'5083957 - 9'4114609	- 9°0284868 - 9°1058556 - 8°8100928 + 8°2705227 + 8°9837304 + 9°1591456 + 9°0174044 + 8°4446670 - 8°7610803 - 9°083518 - 9°1861001 - 9°1219350 - 8°8347073 + 8°2640409 + 8°9964713 + 9°1634124 + 9°1327157	+ 8.9615401 + 9.0384480 + 8.7404716 - 8.2139747 - 8.9169184 - 9.0896563 - 9.0959737 - 8.9414592 - 8.3542362 + 8.6921111 + 9.0226454 + 9.1069108 + 9.0396496 + 8.7479945 - 8.1964959 - 8.9140683 - 9.0788266 - 9.0471606

together we get the final equation in X for  $g_n^m$  of the type

$$\Sigma \left[ (X'_{n}^{m})^{2} w \right] g_{n}^{m} + \Sigma \left[ X'_{n}^{m} X'_{n_{1}}^{m} w \right] g_{n_{1}}^{m} + \&c. = \Sigma \left[ X'_{n}^{m} w x'_{m} \right].$$

The coefficients in the final equations for  $g_n^m$  and  $h_n^m$  are the same.

In the same way the final equations in Y and Z for  $g_n^m$  or  $h_n^m$  are formed.

				Log	$(w^{\frac{1}{2}}x'_{0})$	
$g_8^{\circ}$ or $h_8^{\circ}$	$g_{-9}^{0}$ or $h_{-9}^{0}$	$g_{10}^{0}$ or $h_{10}^{0}$	$g_{-10}^{0}$ or $h_{-10}^{0}$	1845	1880	
0°000000 8'4895634 8'6623150 8'5738015 7'9871488 8'3654347 + 8'6467574 + 8'6306641 + 8'2791421 - 8'1675493 - 8'6173775 - 8'6672250 - 8'4471258 + 7'6913985 + 8'5516436 + 8'6921616 + 8'6097951 + 8'2551400	0.0000000  - 8.4899330  - 8.6616706  - 8.5710866  - 7.9754625  + 8.3648227  + 8.6413467  + 8.6212524  + 8.2623640  - 8.1637821  - 8.6007470  - 8.6498731  - 8.4249285  + 7.6915933  + 8.5312258  + 8.6688793  + 8.5349018  + 8.2223446	0.000000 + 8.0513343 + 8.1427286 + 7.7681583 - 7.8267217 - 8.1517098 - 8.0316560 + 7.0058837 + 8.0825528 + 8.1427703 + 7.6924812 - 7.8999534 - 8.1694543 - 8.0114366 + 8.1156223 + 8.1687408 + 7.8705633	0.0000000 + 8.0514957 + 8.1415623 + 7.7628691 - 7.8266552 - 8.1466423 + 7.0330329 + 8.0217449 + 7.0330329 + 8.1264752 + 7.6663824 - 7.8835731 - 8.1466346 - 7.9838493 + 7.3139055 + 8.0877435 + 8.1385945 + 7.8392807	8·8942662 9·0941257 9·2927844 9·3446441 9·2932522 9·2200394 9·0487280 8·4218790 - 8·7275138 - 9·1400648 - 9·2920834 - 9·4025134 - 9·4025134 - 9·4271089 - 9·3379813	9·18243 9·43716 9·54558 9·59348 9·60270 9·55598 9·45929 9·24398 8·68966 - 8·81277 - 9·20531 - 9·34700 - 9·39563	(s) (r) (q) (p) (00 (n) (n) (l) (k) (ii) (h) (g) (f) (e) (d) (c) (l) (a)
				Log	$(w^{\frac{1}{2}}z'_{0})$	
				1845	1880	
+ 8·5377928 + 8·5577199 + 7·6680609 - 8·4669588 - 8·6822473 - 8·6217921 - 8·1347930 + 8·3409869 + 8·6644568 + 8·6644792 + 8·3358783 - 8·1632669 - 8·6359592 - 8·6887630 - 8·4472041 + 7·9157470 + 7·9157470 + 8·6060931 + 8·6762302	- 8.4866403 - 8.5059237 - 7.6056453 + 8.4161291 + 8.6286240 + 8.5649436 + 8.0687264 - 8.2873618 - 8.6043909 - 8.6000326 - 8.2644564 + 8.1047516 + 8.5680367 + 8.6170965 + 8.3717035 - 7.8507053 - 8.266524 - 8.6007501	- 8.0242255 - 7.9624540 + 7.5700341 + 8.1386238 + 8.1193872 + 7.3658886 - 8.0170416 - 8.1784484 - 7.9016319 + 7.7376981 + 8.1674245 + 8.0926398 + 6.3068217 - 8.0869711 - 8.1738096 - 7.7478096 + 7.9198267 + 8.1762536	+ 7.9828328 + 7.9201823 - 7.5316034 - 8.0958503 - 8.095859 - 7.3045859 + 7.9707863 + 8.1268750 + 7.8431031 - 7.6887954 - 8.1091829 - 8.0289674 - 5.9871999 + 8.0224998 + 8.1051979 + 7.6743545 - 7.8506794 - 8.1048202	- 9.1692148 - 9.2551786 - 9.1536715 - 8.8007716 8.8104793 9.2301906 9.4189780 9.5176420 9.4983555 9.4487465 9.3346815 9.1579727 8.5496144 - 8.8235707 - 9.2062854 - 9.3688120	- 9.51576 - 9.63593 - 9.52268 - 9.36283 - 8.96675 8.65804 9.20078 9.36016 9.47284 9.49235 9.49966 9.41076 9.22587 8.77104	(s (r) (q) (p) (o) (n) (l) (k) (i) (k) (i) (i) (i) (i) (i) (i) (i) (i) (i) (i

	FOR X						
Co-latitude	$g_1^1$ or $h_1^1$	$g_{-1}^{1}$ or $h_{-1}^{1}$	$g_3^1$ or $h_3^1$	$g_{-3}^{-1}$ or $h_{-3}^{-1}$	$g_5^1$ or $h_5^1$	$g_{-5}^{-1}$ or $h_{-5}^{-1}$	$g_7^1$ or $h_7^1$
(s) 90° (r) 85 (q) 85 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 - 8.9293511 - 9.2265894 - 9.3963001 - 9.5121758 - 9.5972033 - 9.6614953 - 9.7102992 - 9.7464891 - 9.7719962 - 9.7874509 - 9.7931766 - 9.7888032 - 9.7731869 - 9.7439418 - 9.6961780 - 9.6185167 - 9.4741864	0'000000 - 8'9380360 - 9'2349792 - 9'4042082 - 9'5194295 - 9'6636500 - 9'6670064 - 9'7147742 - 9'7499396 - 9'7742252 - 9'7885378 - 9'7877409 - 9'7711831 - 9'7711831 - 9'7411247 - 9'6927006 - 9'6145528 - 9'4699242	0.0000000 + 9.2721395 + 9.555885 + 9.7026093 + 9.7851527 + 9.830296 + 9.830296 + 9.7395586 + 9.6301063 + 9.4482104 + 9.0981223 - 8.3806504 - 9.1836231 - 9.4739356 - 9.4713805 - 9.3673949	0.0000000 + 9.2738556 + 9.5571831 + 9.7032091 + 9.7847947 + 9.8235719 + 9.7982867 + 9.7328777 + 9.6207639 + 9.4350364 + 9.0752239 - 8.4401040 - 9.1840886 - 9.3880491 - 9.4661353 - 9.4621847 - 9.3574530	0°0000000 - 9°0605599 - 9°3136922 - 9°4045969 - 9°3958334 - 9°2828244 - 8°9768565 + 8°3399882 + 9°1272503 + 9°3399996 + 9°4141252 + 9°3972895 + 9°2879274 + 9°0332445 + 8°1224978 - 8°8220335 - 9°0443049 - 9°0244968	0.0000000 - 9.0614571 - 9.3139541 - 9.4937704 - 9.3933738 - 9.2778369 - 8.9662002 - 8.3661587 + 9.1252475 + 9.3336636 + 9.4948052 + 9.3852136 + 9.9145465 + 8.0686572 - 8.8119358 - 9.0300578 - 9.0088832	0'0000000 + 8'7130456 + 8'918480 + 8'918481 + 8'6807237 - 7'6746874 - 8'7461195 - 8'9292398 - 8'9079185 - 8'6546684 + 7'9125412 + 8'7656858 + 8'9358276 + 8'9173676 + 8'7114774 + 7'9023955 - 8'4408547 - 8'5846877
	For Y						
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.8480308 9.9977728 9.9954393 9.9915014 9.9858837 9.9784745 9.9691188 9.9576084 9.9436640 9.9269104 9.9068333 9.88534740 9.8174843 9.7719865 9.77118245 9.6254310 9.4759091	+ 9.8480308 + 9.9977400 + 9.9953090 + 9.9953090 + 9.9912119 + 9.9853779 + 9.9777017 + 9.9680364 + 9.9561828 + 9.9418721 + 9.9247401 + 9.9042839 + 9.8502103 + 9.8139074 + 9.7681388 + 9.7077569 + 9.6212013 + 9.6212013 + 9.4715800	- 9.1490608 - 9.2822349 - 9.2265762 - 9.1182966 - 8.9125562 - 8.3472821 + 8.6465076 + 9.0590672 + 9.2669379 + 9.4903808 + 9.5549426 + 9.5940182 + 9.6081013 + 9.5791485 + 9.5791485 + 9.5791485 + 9.5791486	- 9'1490608 - 9'2821583 - 9'2262722 - 9'1176211 - 8'9113760 - 8'3454790 + 8'6439819 + 9'0557409 + 9'2627568 + 9'3955401 + 9'4864322 + 9'5481348 + 9'5864030 + 9'6035083 + 9'5991234 + 9'5696575 + 9'5045631 + 9'3675848	+ 8.5258115 + 8.6280207 + 8.4529210 + 7.8890855 - 8.1929738 - 8.5699264 - 8.7197123 - 8.7618647 - 8.4958786 - 6.8508486 + 8.5727064 + 8.8913530 + 9.0597683 + 9.1521197 + 9.1872380 + 9.1640225 + 9.0507599	+ 8·5258115 + 8·6279004 + 8·4524433 + 7·8880240 - 8·1911192 - 8·5670929 - 8·7157434 - 8·7566376 - 8·700917 - 8·4879208 - 6·8415008 + 8·5620085 + 8·8793862 + 9·0466530 + 9·1380116 + 9·1723236 + 9·1485136 + 9·0348866	- 7.9145435 - 7.9691421 - 7.5121691 + 7.6357995 + 8.0222570 + 8.1084355 + 8.0010894 + 7.4299133 - 7.8318108 - 8.1735812 - 8.2587543 - 8.1494780 - 7.4017428 + 8.1601842 + 8.5136498 + 8.6696535 + 8.7134945 + 8.6354510
	For Z						
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.1490608 0.2971798 0.2899510 0.2777646 0.2604052 0.2375527 0.2087615 0.1734277 0.1307386 0.0795939 0.0184776 9.9452439 9.8567336 9.7480346 9.6109102 9.4299118 9.1703541 8.7215570	- 9.8480308 - 9.9960842 - 9.9886605 - 9.9761556 - 9.9583637 - 9.9349774 - 9.9055671 - 9.8695473 - 9.8261260 - 9.77422513 - 9.7422513 - 9.6383820 - 9.5491803 - 9.4398556 - 9.3021905 - 9.1207531 - 8.8608715 - 8.4118760	- 9'7511208 - 9'8827229 - 9'88273436 - 9'7062142 - 9'4897856 - 8'9162430 + 9'1812530 + 9'5731351 + 9'7530659 + 9'8527309 + 9'9037109 + 9'9173358 + 9'8972660 + 9'8424951 + 9'7471952 + 9'5974666 + 9'3596288 + 8'9236326	+ 9.6261821 + 9.7575632 + 9.6964728 + 9.5789161 + 9.3593461 + 8.7679395 - 9.0666687 - 9.4502340 - 9.6271605 - 9.7247443 - 9.7739823 - 9.7860630 - 9.7646140 - 9.7086318 - 9.6123046 - 9.4617520 - 9.2233110 - 8.7869469	+ 9'3039628 + 9'4046521 + 9'2251194 + 8'6564535 - 8'9418060 - 9'3048160 - 9'4356825 - 9'4544401 - 9'3710835 - 9'1273460 - 7'5566188 + 9'1087478 + 9'3696098 + 9'4668473 + 9'4668474 + 9'3812996 + 9'1850254 + 8'7725460	- 9'2247815 - 9'3250995 - 9'1441198 - 8'5671839 + 8'8665616 + 9'2251135 + 9'3534850 + 9'3697915 + 9'2835218 + 9'0349442 + 7'1467409 - 9'0246689 - 9'2807476 - 9'37'44465 - 9'37'36469 - 9'2867584 - 9'0895393 - 8'6764945	- 8.8176335 - 8.8707735 - 8.4102999 + 8.5222547 + 8.8981072 + 8.9693757 + 8.8434413 + 8.2538352 - 8.6175700 - 8.9268316 - 8.9717411 - 8.8143334 - 8.0165848 + 8.6897285 + 8.9528214 + 8.9883927 + 8.8592655 + 8.4820442

		1	$\operatorname{Log}(w^{\frac{1}{2}})$	r' ₁ ) for g	$Log(w^{\frac{1}{2}}$	$x'_1$ ) for $h$	
$g_{-7}^{-1}$ or $h_{-7}^{-1}$	$g_{\scriptscriptstyle 9}{}^{\scriptscriptstyle 1}$ or $h_{\scriptscriptstyle 9}{}^{\scriptscriptstyle 1}$	$g_{-9}^{-1}$ or $h_{-9}^{-1}$	1845	1880	1845	1880	!
0'0000000 + 8'7135594 + 8'9184837 + 8'9094792 + 8'6752975 - 7'7100691 - 8'7436400 - 8'9226439 - 8'8975728 - 8'6386748 + 7'9295339 + 8'7539494 + 8'9197871 + 8'8082366 + 8'6891614 + 7'8650606 - 8'4221499 - 8'5634170	0'0000000 - 8'2958140 - 8'4335587 - 8'2423034 + 7'5079205 + 8'3419786 + 8'4311550 + 8'1766830 - 7'8112015 - 8'3806175 - 8'4250652 - 8'1021373 + 7'9589804 + 8'4246928 + 8'1379483 - 7'5232327 - 8'0856940	0.0000000 - 8.2960798 - 8.4326643 - 8.2387032 + 7.5201478 + 8.3386728 + 8.4237595 + 8.1633150 - 7.8114727 - 8.3683779 - 8.4078593 - 8.0779993 + 7.9453782 + 8.3808368 + 8.3993792 + 8.1092209 - 7.5042596 - 8.0587908	9.2982268 9.5689927 9.6380566 9.6385904 9.5661975 9.4363099 9.0515265 - 8.9818807 - 9.4113123 - 9.5797873 - 9.6651919 - 9.7005195 - 9.7023677 - 9.6783362 - 9.6420533	9.26327 9.52870 9.64654 9.69064 9.66443 9.55955 9.35342 8.82211 - 8.98279 - 9.36322 - 9.52600 - 9.60540 - 9.63856	8·8212142 9·3400941 9·5434541 9·6878084 9·7940093 9·8601032 9·9181257 9·9725932 9·9945746 9·9997671 9·9979564 9·9695652 9·9226753 9·8446154 9·7244142	8·80051 9·14484 9·37807 9·56114 9·70451 9·80405 9·88524 9·94217 9·97508 9·99623 0·00410 9·99928 9·96662	(s) (r) (q) (p) (o) (n) (m) (k) (i) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
			$\text{Log}(w^{\frac{1}{2}})$	$y_1'$ ) for $g$	$\text{Log}(w^{\frac{1}{2}})$	$y'_1$ ) for $h$	
			1845	1880	1845	1880	
- 7:9145435 - 7:9689781 - 7:5115177 + 7:6343520 + 8:0197279 + 8:1045717 + 7:9956772 + 7:4227854 - 7:8228514 - 8:1627296 - 8:2460073 - 8:1348899 - 7:3854245 + 8:1422996 + 8:4944114 + 8:6493157 + 8:6923460 + 8:6138057	+ 7'3073439 + 7'2934934 - 6'3069045 - 7'3643749 - 7'4824020 - 7'2612501 + 6'8468349 + 7'4837628 + 7'5623053 + 7'2667896 - 7'2049117 - 7'6767218 - 7'7310213 - 7'3515746 + 7'6124377 + 8'0513525 + 8'2007925 + 8'1714472	+ 7:3073439 + 7:2932856 - 6:3060794 - 7:3625413 - 7:4791985 - 7:2563559 + 6:8399794 + 7:4747342 + 7:5509567 + 7:2530443 - 7:1887654 - 7:6582436 - 7:7103514 - 7:3289208 + 7:5880691 + 8:0255913 + 8:1740044 + 8:1440298	9'4720033 9'6330226 9'6679609 9'7039878 9'7430775 9'7815001 9'8105208 9'8416006 9'8539878 9'8571378 9'8571378 9'8432037 9'8169576 9'7868246 9'7456957 9'6875569 9'6219413	9'25406 9'43517 9'49085 9'56152 9'63335 9'69968 9'75415 9'79295 9'81629 9'82994 9'82994 9'82992 9'79053 9'74765	- 9.9617068 - 0.1128510 - 0.1130773 - 0.1140010 - 0.1065765 - 0.0959664 - 0.0820633 - 0.0608236 - 0.0373901 - 0.0117580 - 9.9799038 - 9.9333303 - 9.8848388 - 9.8247160 - 9.7512010 - 9.6655796	- 9'95768 - 0'11091 - 0'11032 - 0'10295 - 0'08258 - 0'06593 - 0'04100 - 0'01088 - 9'97476 - 9'92932 - 9'87499 - 9'81525	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
			$\text{Log}(w^{\frac{1}{2}})$	z',) for a	$\operatorname{Log}(w^{\frac{1}{2}}z_1)$ for $h$		
			1845	1880	1845	1880	
+ 8.7596415 + 8.8122418 + 8.3482154 - 8.4666027 - 8.8387913 - 8.9073929 - 8.7778708 - 8.1746286 + 8.5565527 + 8.8596396 + 8.9007240 + 8.7391153 + 7.9192210 - 8.6178677 - 8.8767372 - 8.9101885 - 8.7797156 - 8.4017183	+ 8.3073439 + 8.2021136 - 7.2935527 - 8.3489461 - 8.4558321 - 8.2205167 + 7.7794896 + 8.3972614 + 8.4480889 + 8.1203821 - 8.0109814 - 8.4366295 - 8.4325948 - 7.9828555 + 8.1472851 + 8.4667197 + 8.4433430 + 8.1148663	- 8.2615864 - 8.2456117 + 7.2611823 + 8.3025482 + 8.4066451 + 8.1667439 - 7.7386104 - 8.3341967 - 8.3902752 - 8.0552433 + 7.9568467 + 8.3737197 + 8.3652639 + 7.9081970 - 8.0808860 - 8.3959199 - 8.3706696 - 8.0411906	9:4983383 9:6833474 9:8052725 9:8894158 9:9747832 0:05335953 0:1098310 0:1373973 0:1386146 0:1131764 0:0625408 9:9917755 9:9039032 9:7962239 9:6657109 9:5140386	8·83748 9·17005 9·47474 9·67354 9·86015 0·00190 0·09146 0·14090 0·15063 0·140978 0·10973 0·06346 0·00969 9·93841	- 0'2592969 - 0'4061665 - 0'4075259 - 0'3961995 - 0'3787513 - 0'3504389 - 0'3792624 - 0'2734206 - 0'2107191 - 0'1356336 - 0'341833 - 0'8903241 - 9'7116850 - 9'5162518 - 9'2903221 - 8'9558528	- 0'26138 - 0'41433 - 0'41336 - 0'41006 - 0'40540 - 0'38253 - 0'35105 - 0'30798 - 0'25328 - 0'18340 - 0'10057 - 9'98984 - 9'86423 - 9'70573	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

	For X						
Co-latitude	$g_2^1$ or $h_2^1$	$g_{-2}^{-1}$ or $h_{-2}^{-1}$	$g_4^{\ 1}$ or $h_4^{\ 1}$	$g_{-4}^{-1} \text{ or } h_{-4}^{-1}$	$g_6^1$ or $h_6^1$	$g_{-6}^{-1}$ or $h_{-6}^{-1}$	$g_8^1$ or $h_8^1$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.8480308 9.9912896 9.9690965 9.9305845 9.8730248 9.7913960 9.6759855 9.5050429 9.2114254 7.9965194 – 9.1179096 – 9.4043497 – 9.5457962 – 9.6220466 – 9.6547509 – 9.6492281 – 9.5991876 – 9.4705463	+ 9.8480308 + 9.9911247 + 9.9684316 + 9.9290639 + 9.8702438 + 9.7868330 + 9.6688160 + 9.4934910 + 9.1889846 + 7.4488279 - 9.1348988 - 9.4090927 - 9.5459003 - 9.6194487 - 9.6503221 - 9.6435098 - 9.5925954 - 9.4634437	- 9.4800541 - 9.5998534 - 9.4975810 - 9.2743214 - 8.5570377 + 9.0821657 + 9.4172180 + 9.5643885 + 9.6269363 + 9.6269363 + 9.6289191 + 9.5734426 + 9.4476916 + 9.2024463 - 8.5039550 - 8.9078062 - 9.2041060 - 9.2810075 - 9.2123351	- 9'4800541 - 9'5995492 - 9'4962372 - 9'2703754 - 8'5323459 + 9'0873655 + 9'4171181 + 9'5615745 + 9'6218065 + 9'6218181 + 9'5636533 + 9'4351160 + 9'1855006 + 8'4606842 - 8'9052784 - 9'1945953 - 9'2692502 - 9'1995560	+ 9'0284869 + 9'1095400 + 8'8344012 - 8'0929233 - 8'9522092 - 9'1477016 - 9'1764679 - 9'0630047 - 8'6736544 + 8'5446035 + 9'0297134 + 9'1719612 + 9'1732826 + 9'0452487 + 8'6907860 - 8'1695775 - 8'7657463 - 8'8134727	+ 9'0284869 + 9'1090818 + 8'8318420 - 8'1090929 - 8'9525187 - 9'1451806 - 9'1712397 - 9'0542884 - 8'6566817 + 8'5472854 + 9'0213445 + 9'1597319 + 9'1580777 + 9'0271267 + 8'6679390 - 8'1663125 - 8'7491390 - 8'7950281	- 8·5377928 - 8·5617678 - 7·7535787 + 8·4479831 + 8·6782943 + 8·6356449 + 8·2262356 - 8·2601182 - 8·6454874 - 8·4437168 + 7·8002126 + 8·5710500 + 8·7005463 + 8·6040439 + 8·1636571 - 8·0502809 - 8·3414199
	For Y						
(8) 90° (r) 85 (q) 80 (p) 75 (v) 70 (n) 65 (n) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (d) 5	0.0000000 8.9351933 9.2323317 9.4018794 9.5175338 9.6022886 9.6662648 9.7147191 9.7506174 9.7756599 9.7907307 9.7960844 9.7913618 9.7754300 9.7459126 9.6979281 9.6201041 9.4756741	0.0000000 + 8.9351386 + 9.2321146 + 9.4013969 + 9.5166908 + 9.6614607 + 9.7123431 + 9.7476309 + 9.7720427 + 9.7864817 + 9.7912217 + 9.7859224 + 9.7694685 + 9.7394998 + 9.6911487 + 9.6130546 + 9.4684590	0.0000000 - 8.5595746 - 8.8331813 - 8.9612800 - 9.0133735 - 9.0040693 - 8.9248436 - 8.7265259 - 8.0222383 + 8.6101274 + 8.9827663 + 9.1772898 + 9.2972042 + 9.3698237 + 9.4046336 + 9.4027249 + 9.3560254 + 9.2296319	0.0000000 - 8.5594762 - 8.8327905 - 8.9604115 - 9.0017510 - 8.9215963 - 8.7222492 - 8.0168627 + 8.6036165 + 8.9751181 + 9.1685370 + 9.39050222 + 9.39050222 + 9.3433363 + 9.2166447	0.0000000 + 8.0958756 + 8.3306045 + 8.33360045 + 8.2948107 + 7.9482967 - 7.7550479 - 8.3030126 - 8.4781511 - 8.5054728 - 8.3790084 - 7.7783218 + 8.2830548 + 8.6725020 + 8.8558926 + 8.9414715 + 8.9480302 + 8.9480302 + 8.8508215	0'0000000 + 8'0957334 + 8'3300400 + 8'3821515 + 8'2926188 + 7'9449480 - 7'7503573 - 8'2968351 - 8'4960681 - 8'3679610 - 7'7656788 + 8'2689122 + 8'6570020 + 8'8392193 + 8'9238454 + 8'9297015 + 8'8320622	- 7.584015 - 7.7658364 - 7.7658364 - 7.7685062 - 7.1060887 + 7.5065522 + 7.8055981 + 7.8125538 + 7.4871093 - 7.4180648 - 7.9016707 - 8.0031655 - 7.8409334 + 7.1709295 + 8.1126710 + 8.3732405 + 8.4637256 + 8.4081993
	For Z						
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10	0.0000000 9.4097215 9.7019757 9.8632931 9.9672302 0.0365719 0.0811476 0.1058174 0.1130123 0.1037065 0.0777810 0.0340673 9.9701075 9.8815018 9.7603881 9.7603881 9.5915919 9.3406218 8.8969277	0.0000000 - 9.2359695 - 9.5279527 - 9.6888273 - 9.7921632 - 9.8607630 - 9.9044780 - 9.9281942 - 9.9343714 - 9.9240143 - 9.8970358 - 9.8522995 - 9.7873789 - 9.6979035 - 9.5760381 - 9.4066315 - 9.1552114 - 8.7112416	0.0000000 - 9.2563561 - 9.5251251 - 9.6855992 - 9.6651262 - 9.5629693 - 9.3420984 - 8.6214049 + 9.1557324 + 9.6359144 + 9.6969198 + 9.6970579 + 9.6403961 + 9.5177583 + 9.2979660 + 8.8723387	0.0000000 + 9.1605945 + 9.4288688 + 9.5479922 + 9.5873233 + 9.5612316 + 9.4607767 + 9.2357477 + 8.4852025 - 9.0619205 - 9.3890970 - 9.5322329 - 9.5911187 - 9.5895718 - 9.5315479 - 9.4078453 - 9.1872848 - 8.7611923	0'000000 + 8'9389672 + 9'1689119 + 9'2136970 + 9'1138769 + 8'7539495 - 8'5329035 - 9'0610610 - 9'2082847 - 9'2018279 - 9'0352953 - 8'3922769 + 8'8265082 + 9'1450496 + 9'2373433 + 9'2023462 + 9'0358868 + 8'6394800	0.0000000 - 8.8726849 - 9.1018964 - 9.1453740 - 9.0433394 - 8.6776432 + 8.4730847 + 8.9908879 + 9.1344674 + 9.1247717 + 8.9542148 + 8.2944530 - 8.7514424 - 9.0645146 - 9.1542954 - 9.1176243 - 8.9500292 - 8.5529534	0.0000000 - 8.5407462 - 8.7134634 - 8.6248695 - 8.0377503 + 8.4167523 + 8.66978723 + 8.6816329 + 8.3297760 - 8.2190463 - 8.6648247 - 8.7181139 - 8.4978211 + 7.7435117 + 8.6025931 + 8.7430001 + 8.605810 + 8.3058990

- 8.5377928 - 8.5611285 - 7.7442156	$g_{10}^{1} \text{ or } h_{10}^{1}$ + 8.0242255	$g_{-10}^{-1}$ or $h_{-10}^{-1}$	Log (w ^{1/2} )		$I_{\log}(w^{\frac{1}{2}})$	1) 101 10	
- 8.5611285 - 7.7442156	+ 8.0242255			1880	1845	1880	
+ 8·6758-70 + 8·6299908 + 8·2130023 - 8·2587841 - 8·6366289 - 8·6682919 - 8·4247344 + 7·8045512 + 8·5545574 + 8·6800389 + 8·5804688 + 8·1353447	+ 7°9670880 - 7°5495337 - 8°1336660 - 8°1273774 - 7°4746360 + 7°9904158 + 8°1805844 + 7°9536207 - 7°6109527 - 8°1499723 - 8°1307303 - 7°4391341 + 8°015107 + 8°1906688 + 8°0186432 - 4°9846147 - 7°8187169	+ 8'0242255 + 7'9662159 - 7'5437667 - 8'1322925 - 8'1228517 - 7'4579801 + 7'9857241 + 8'1704047 + 7'9370051 - 7'6060166 - 8'1331642 - 8'1086067 - 7'4018125 + 7'9788569 + 8'1634606 + 7'9882503 - 5'6256209 - 7'7890118	- 9.7686237 - 9.9270312 - 9.9369695 - 9.9330462 - 9.9225948 - 9.8972505 - 9.8481923 - 9.7786451 - 9.689657 9.2856565 9.5541121 9.6746893 9.7367346	- 9'76810 - 9'91818 - 9'92335 - 9'92335 - 9'92525 - 9'89829 - 9'84078 - 9'75984 - 9'65055 - 9'47582 - 9'20553 - 8'06163 9'13980 9'45933	9'0835592 9'1463427 8'9461605 8'9188389 8'8965355 8'8829577 8'5039631 - 8'2700500 - 8'8530297 - 8'8103840 - 8'7652205 - 8'6145907 - 8'6846310 - 8'6748440 - 8'5459280 - 8'5459280	9'32283 9'45954 9'43669 9'41593 9'34312 9'15869 8'88712 8'31602 8'53737 9'04859 9'21794 9'26535 9'25513	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
			$\text{Log}(w^{\frac{1}{2}})$	/' ₁ ) for g	$\log (w^{\frac{1}{2}})$	$y_1'$ ) for $h$	
			1845	1880	1845	1880	
- 7.7650982 - 7.6833657 - 7.1032224 + 7.5021732 + 7.7996643 + 7.8044755 • + 7.4769553 - 7.4057664 - 7.8872241 - 7.9866323 - 7.8224393 + 7.1506603 + 8.0908675 + 8.3501910 + 8.4397573	0'0000000 + 7'0531731 + 7'1491571 + 6'7813156 - 6'8552220 - 7'1940980 - 7'0921827 + 6'1114121 + 7'1980422 + 7'2912610 - 6'8784109 - 7'1415396 - 7'4683221 - 7'3817705 + 6'7983859 + 7'7002257 + 7'9259688 + 7'9268687	0:0000000 + 7:0529434 + 7:1482452 + 6:7792890 - 6:8516813 - 7:8886886 - 7:0846056 + 6:1014331 + 7:1854990 + 7:2760688 + 6:8605650 - 7:1211163 - 7:4454764 - 7:3567321 + 6:7714522 + 7:6717528 + 7:8963609 + 7:8965652	- 8.7936200 - 9.1367588 - 9.3064473 - 9.4204255 - 9.5258453 - 9.6156150 - 9.6967823 - 9.7602300 - 9.8019092 - 9.8426535 - 9.8715042 - 9.871592 - 9.871592 - 9.871592 - 9.871592 - 9.871592 - 9.871592	- 8.85144 - 9.13519 - 9.31673 - 9.44748 - 9.55703 - 9.65298 - 9.72858 - 9.78417 - 9.83483 - 9.86594 - 9.88540 - 9.89275 - 9.89059	- 7.7459280 - 7.6080929 7.7355049 8.4036792 8.4634231 8.2871425 7.8931989 - 8.1265635 - 8.2520990 - 8.4293287 - 8.4348853 - 8.5157913 - 8.5231774 - 8.5886686 - 8.4826387	8·58094 8·85684 9·03221 9·11086 9·12846 9·14931 9·15291 9·14843 9·11451 9·05288 8·95570 8·79321 8·36045	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
			$\text{Log}(w^{\frac{1}{2}})$	z' ₁ ) for q	$\text{Log}(w^{\frac{1}{2}})$	z',) for h	1
			1845	1880	1845	1880	
+ 8.6616870 + 8.5710475 + 7.9749807 - 8.3651073 - 8.6414793 - 8.6212927 - 8.2621215 + 8.1644574 + 8.6500677 + 8.4249821 - 7.6930575 - 8.5316263 - 8.6692035 - 8.5851989	0'0000000 + 8'0927436 + 8'1841013 + 7'8093788 - 7'8682498 - 8'1930719 - 8'0728723 + 7'0490280 + 8'1239222 + 8'1839792 + 7'7333315 - 7'9413623 - 8'2106508 - 8'0524928 + 7'3702436 + 8'1567973 + 8'2098524 + 7'9116482	0'0000000  - 8'0515166  - 8'1415589  - 7'7627326  + 7'8268535  + 8'1467100  + 8'0217058  - 7'0348152  - 8'0720025  - 8'1265672  - 7'6661573  + 7'8839578  + 8'1468528  + 7'9839659  - 7'3147368  - 8'0880418  - 8'1388499  - 7'8395218	- 9'1427809 - 9'5011370 - 9'6744841 - 9'8273627 - 9'9296945 - 0'0610112 - 0'1103254 - 0'1375800 - 0'158500 - 0'1564710 - 0'1374072 - 0'0861436 - 0'056825 - 9'8703661	- 9'23528 - 9'57131 - 9'73574 - 9'86773 - 9'94600 - 0 00686 - 0'06959 - 0'11447 - 0'14808 - 0'17239 - 0'18283 - 0'18283 - 0'17021	8.4193439 8.5722260 -7.4383699 8.3978384 8.6771058 8.9287450 9.0311820 8.9063674 8.6809957 8.5342029 -7.7460782 -8.1243681 -7.3190574 8.2524386 8.5871395	9'23854 9'39860 9'52307 9'59476 9'63351 9'64446 9'63351 9'59893 9'49889 9'43010 9'36052 9'31485 9'29002	(s) (r) (q) (p) (o) (n) (m) (k) (i) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

	For X		1				
Co-latitude	$g_2^2$ or $h_2^2$	$g_{-2}^{2} \text{ or } h_{-2}^{2}$	$g_4^2$ or $h_4^2$	$g_{-4}^{2} \text{ or } h_{-4}^{2}$	$g_6{}^2$ or $h_6{}^2$	$g_{-6}^{2}  ext{ or } h_{-6}^{2}$	$g_8{}^2$ or $h_8{}^2$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0'0000000 - 9'2302233 - 9'5225331 - 9'6839411 - 9'8574948 - 9'9022462 - 9'9271105 - 9'9345125 - 9'9345125 - 9'8562019 - 9'8562019 - 9'7924364 - 9'7040061 - 9'5830440 - 9'4143688 - 9'1634912 - 8'7198527	0'0000000 - 9'2374211 - 9'5294044 - 9'6902791 - 9'7936149 - 9'9059297 - 9'9296461 - 9'9358232 - 9'9254661 - 9'8584874 - 9'8537514 - 9'7888307 - 9'6993551 - 9'5774899 - 9'4080833 - 9'1566632 - 8'7126934	0'0000000 + 9'2859994 + 9'5609074 + 9 6922787 + 9'7518615 + 9'7592651 + 9'7186360 + 9'6237259 + 9'451018 + 9'1124386 - 8'2299282 - 9'1390818 - 9'3392247 - 9'4008540 - 9'3777772 - 9'2750663 - 9'0671527 - 8'6478976	0'0000000 + 9'2874648 + 9'5618466 + 9'6923406 + 9'7506911 + 9'7564846 + 9'7137957 + 9'6161544 + 9'4392581 + 9'0903726 - 8'3228271 - 9'1421420 - 9'3351035 - 9'3933416 - 9'3680746 - 9'2638321 - 9'0548774 - 8'6350118	0.000000 - 8.9766835 - 9.2136774 - 9.2732588 - 9.2057574 - 8 9556967 + 7.5792273 + 8.9829019 + 9.2109150 + 9.2109150 + 9.2059906 + 9.0408824 + 8.5726010 - 8.4598915 - 8.8482372 - 8.7696554 - 8.3908146	0'0000000 - 8'9774360 - 9'2136786 - 9'2719397 - 9'2023085 - 8'9479436 + 7'6895357 + 8'9813771 + 9'2046562 + 9'2621444 + 9'2075399 + 9'0235606 + 8'5436940 - 8'4595468 - 8'8352078 - 8'8822694 - 8'7519639 - 8'3722038	0.0000000 + 8.5760641 + 8.7557527 + 8.6892203 + 8.2309244 - 8.3635141 - 8.7171569 - 8.7504083 - 8.5293782 + 7.6256275 + 8.6010709 + 8.7582688 + 8.7021095 + 8.4017717 - 7.5675487 - 8.3411692 - 8.3593051 - 8.0405778
	For Y						
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 555 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0°1490608 0°2971798 0°2899513 0°2777653 0°2604063 0°2375544 0°2087638 0°1734307 0°1307422 0°0795982 0°0184825 9'9452496 9'8567395 9'7480409 9'6109168 9'4299189 9'1703612 8'7215643	+ 0·1490608 + 0·2971251 + 0·2897342 + 0·2272828 + 0·2595633 + 0·2362665 + 0·2069597 + 0·1710547 + 0·1277557 + 0·0759810 + 0·0142335 + 9·9403869 + 9·8513001 + 9·7420794 + 9·6045040 + 9·4231396 + 9·4231396 + 9·1633117 + 8·7143492	- 9'3039628 - 9'4286962 - 9'3434723 - 9'1627656 - 8'6962008 + 8'7668911 + 9'2291831 + 9'4372660 + 9'5585704 + 9'6297962 + 9'6643407 + 9'6675106 + 9'6404000 + 9'5807339 + 9'4819938 + 9'3298802 + 9'0904738 + 8'6535856	- 9.3039628 - 9.4285978 - 9.3430815 - 9.1618971 - 8.6946834 + 8.7645728 + 9.2259358 + 9.4329893 + 9.6533938 + 9.6536925 + 9.6536690 + 9.570032 + 9.4704508 + 9.3176775 + 9.0777847 + 8.6405984	+ 8.6305469 + 8.7166936 + 8.4648795 - 7.4258276 - 8.5486249 - 8.7807401 - 8.8481028 - 8.7905964 - 8.5354254 + 7.8653227 + 8.7424371 + 8.9991334 + 9.1195212 + 9.1590030 + 9.1301794 + 9.0272841 + 8.8207823 + 8.4028498	+ 8.6305469 + 8.7165514 + 8.4643150 - 7.4245731 - 8.5464330 - 8.7773914 - 8.8434122 - 8.7844189 - 8.5276606 + 7.8559180 + 8.7313897 + 8.9864904 + 9.1053786 + 9.1135061 + 9.0096580 + 8.8024536 + 8.3840905	- 7.9937248 - 8.0230755 - 7.0831628 + 7.9001954 + 8.1571442 + 8.1464844 + 7.8159318 - 7.7072878 - 8.1969380 - 8.3024323 - 8.1740215 - 6.9399112 - 8.2508898 + 8.5394824 + 8.6375443 + 8.6117751 + 8.4530170 + 8.4530170 + 8.4530170
	For Z						
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0°3251521 0°4716518 0°4595388 0°4391220 0°4100452 0°3717797 0°3235876 0°2644692 0°1930764 0°1075832 0°0054703 9°8831690 9°7354209 9°5540476 9°3253266 9°0235165 8°5908122 7°8427509	- 0.1490608 - 0.2830857 - 0.2622265 - 0.2325491 - 0.1935421 - 0.1444904 - 0.0844192 - 0.0120096 - 9.9254660 - 9.8223009 - 9.6989781 - 9.5502700 - 9.3680276 - 9.1385557 - 8.8361358 - 8.4029819 - 7.6546452	- 9.7019028 - 9.8250752 - 9.7351832 - 9.5468581 - 9.0719504 + 9.1177832 + 9.5635861 + 9.7485024 + 9.8413814 + 9.8784238 + 9.8720852 + 9.7399911 + 9.6077036 + 9.4174089 + 9.1445153 + 8.7319852 + 7.9958463	+ 9.6049928 + 9.7279028 + 9.6371337 + 9.4467910 + 8.9633622 - 9.0293674 - 9.4674444 - 9.7403940 - 9.7755524 - 9.7674429 - 9.7119669 - 9.6321524 - 9.4984935 - 9.3070223 - 9.0331781 - 8.6199492 - 7.8833828	+ 9'1746149 + 9'2592591 + 9'0031921 - 7'9396802 - 9'0647299 - 9'2820780 - 9'3304491 - 9'2497227 - 8'9674611 + 8'2451333 + 9'0943653 + 9'3029946 + 9'3545351 + 9'3315569 + 9'2112723 + 8'9876552 + 8'6080654 + 7'8909017	- 9·1076682 - 9·1918853 - 8·9339319 + 7·9040820 + 8·9983730 + 9·2129108 + 9·2587556 + 9·1749863 + 8·8872729 - 8·2010456 - 9·22450135 - 9·2245787 - 9·2487787 - 9·2487787 - 9·1267676 - 8·9017918 - 8·5212175 - 7·8034563	- 8.6469373 - 8.6748548 - 7.9331223 + 8.5375190 + 8.7834205 + 8.7579391 + 8.4099583 - 8.2707199 - 8.7347126 - 8.8066774 - 8.6383230 - 7.3870768 + 8.6036723 + 8.8206054 + 8.8274271 + 8.6810303 + 8.3492310 + 7.6584936

			$\operatorname{Log}(w^{\frac{1}{2}})$	$(x'_{0})$ for $g$	$\log (w^{\frac{1}{2}})$	$x'_2$ ) for $h$	
$g_{-8}^2$ or $h_{-8}^2$	$g_{_{10}}^{^{-2}}  ext{ or } h_{_{10}}^{^{-2}}$	$g_{-10}^{2} \text{ or } h_{-10}^{2}$	1845	1880	1845	1880	
0'0000000 + 8'5764743 + 8'7551543 + 8'6866107 + 8'2217238 - 8'3643056 - 8'7121853 - 8'7414667 - 8'5148558 + 7'6531148 + 8'5895544 + 8'7418553 + 8'6817047 + 8'3759299 - 7'5768056 - 8'3211194 - 8'3362555 - 8'0162446	0.0000000 - 8.1246457 - 8.2251999 - 7.8938989 + 7.8421800 + 8.2212460 + 8.1484847 + 7.0565795 - 8.1024397 - 8.2372423 - 7.9766187 + 7.6995652 + 8.1900180 + 8.2051797 + 7.8579191 - 7.4874665 - 7.8642717 - 7.6324295	0.000000 - 8.1248284 - 8.2240644 - 7.8889557 + 7.8428848 + 8.2163973 + 8.1389858 + 7.0017982 - 8.0925142 - 8.2215082 - 7.9539601 + 7.6883623 + 8.1741540 + 8.1788591 + 7.8260756 - 7.4673613 - 7.8359786 - 7.6023775	9'0003380 9'2465821 9'4130625 9'4494201 9'3857720 9'2815873 9'0355450 8'1121338 8'6335857 8'8303690 8'8864708 8'9668000 8'9380855 8'9632078 8'9834137	- 8.64414 - 9.0006 - 9.17391 - 9.28401 - 9.24134 - 9.14326 - 8.85326 7.79920 8.91106 9.13165 9.2519 9.31021 9.30765	8-9589237 9-1630693 9-2981728 9-3775470 9-4356593 9-4496940 9-4349657 9-4156112 9-3435376 9-1746978 9-0024986 8-8412570 8-7074084 8-5925523	8·88026 9·18057 9·34857 9·43747 9·46342 9·41376 9·39273 9·30274 9·23562 9·10669 8·68897	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
			$\operatorname{Log}(w^{rac{1}{2}})$	$y'_2$ ) for $g$	$\text{Log }(w^{\frac{1}{2}})$	$y'_2$ ) for $h$	
			1845	1880	1845	1880	
- 7'9937248 - 8'0228896 - 7'0824246 + 7'8985549 + 8'1542779 + 8'1421054 + 7'8097980 - 7'6992995 - 8'1867840 - 8'2901339 - 8'1595749 - 6'9233780 + 8'2323957 + 8'5192132 + 8'6157408 + 8'5887256 + 8'4290487 + 8'0369565	+ 7'3710130 + 7'3197369 - 6'8646773 - 7'4906716 - 7'5081552 - 6'9453078 + 7'6150620 + 7'4593087 - 6'9360932 - 7'6694338 - 7'7511071 - 7'3652396 + 7'6151712 + 8'0169194 + 8'1145181 + 8'0220476 + 7'6649740	+ 7:3710130 + 7:3195072 - 6:8637654 - 7:4886450 - 7:5046145 - 6:9398984 + 7:3647818 + 7:6050830 + 7:4467655 - 6:9209010 - 7:6515879 - 7:7306838 - 7:3423939 + 7:5901328 + 7:9899857 + 8:0860452 + 7:9924397 + 7:6346705	8·9589570 9·0867615 8·9237049 8·6190896 6·2864079 - 8·6511834 - 8·9462169 - 9·0544803 - 9·1113996 - 9·1709924 - 9·1484373 - 9·0777603 - 9·0008133 - 8·9161695 - 8·8392841 - 8·9101090	- 8.22278 - 8.57752 - 8.87954 - 9.05940 - 9.20116 - 9.36789 - 9.41753 - 9.446038 - 9.48165 - 9.48895 - 9.43355 - 9.35793 - 9.22687	- 9·5947428 - 9·7466642 - 9·7313468 - 9·7025973 - 9·6622543 - 9·6058351 - 9·5407919 - 9·4620108 - 9·4003589 - 9·3255370 - 9·2425411 - 9·1670326 - 9·0892594 - 8·9872394 - 8·8673013 - 8·6502610	- 9.61273 - 9.76184 - 9.74233 - 9.71818 - 9.68077 - 9.63284 - 9.57699 - 9.51990 - 9.46327 - 9.40875 - 9.36095 - 9.32054 - 9.25930 - 9.18108	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
			$\text{Log }(w^{\frac{1}{2}}$	$(z'_2)$ for $g$	$\log (w^{\frac{1}{2}})$	$(z'_2)$ for $h$	
	_		1845	1880	1845	1880	1
+ 8.5957848 + 8.6230897 + 7.8741703 - 8.4869027 - 8.7299524 - 8.7014480 - 8.3472102 + 8.2201459 + 8.6752876 + 8.7430124 + 8.5699101 + 7.2450250 - 8.5373675 - 8.7500810 - 8.7543574 - 8.6661165 - 8.2730225 - 7.5815098	+ 8·1113757 + 8·0587588 - 7·5963747 - 8·2158270 - 8·2222317 - 7·6476485 + 8·0494009 + 8·2696603 + 8·0866115 - 7·5198725 - 8·2187486 - 8·2523937 - 7·8098321 + 7·9820073 + 8·2935574 + 8·2707101 + 8·0052617 + 7·3490057	- 8'0699830 - 8'0165207 + 7'5584760 + 8'1731301 + 8'1764773 + 7'5920063 - 8'0295373 + 7'4789221 + 8'1612199 + 8'1897634 + 7'7390918 - 7'9194719 - 8'2259479 - 8'2259479 - 8'205895 - 7'9335019 - 7'2762862	9'2444045 9'3652823 9'1952012 8'6805208 - 8'6039489 - 9'1057777 - 9'2475893 - 9'3905011 - 9'3624907 - 9'3996303 - 9'2624382 - 9'1794047 - 9'0595434 - 8'7276572 7'5466060	- 8.32660 - 8.85447 - 9.15428 - 9.33185 - 9.42927 - 9.53328 - 9.62947 - 9.71099 - 9.73377 - 9.71156 - 9.64826 - 9.52186 - 9.36622 - 9.15830	- 9.8297135 - 9.9757835 - 9.9475685 - 9.9027424 - 9.8593376 - 9.7708982 - 9.6007467 - 9.4981363 - 9.3158868 - 9.1590042 - 8.9246452 - 8.8819570 - 8.7428613 - 8.2246846 7.9776538 8.2561463	- 9.85171 - 9.98200 - 9.95311 - 9.90798 - 9.86813 - 9.80784 - 9.71280 - 9.62345 - 9.57189 - 9.51869 - 9.42411 - 9.29576 - 9.08951 - 8.73871	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

		1	1	ī		T
	For X					
Co-latitude	$g_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 2}$ or $h_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 2}$	$g_{-3}^{2} \text{ or } h_{-3}^{2}$	$g_5^2$ or $h_5^2$	$g_{-5}^{2}$ or $h_{-5}^{2}$	$g_{7}^{2} \text{ or } h_{7}^{2}$	$g_{-7}^2 \text{ or } h_{-7}^2$
					0.000.00	0.000.00
(s) 90°	9.8480308	+ 9.8480308	- 9.3709096	- 9.3709096	+ 8.8687860	+ 8.8687860
(r) 85	9.9863720	+ 9.9861399	- 9.4786687 - 9.3296111	- 9.4782921 - 9.3278471	+ 8.9295499 + 8.5285027	+ 8.9290091 + 8.5248152
(q) 80	9°9487128 9°8816519	+ 9.9477613	- 8.9373089	- 8·9304052	- 8.4783552	- 8.4818566
(p) 75 (o) 70	9.7764092	+ 9.7720359	+ 8.7477462	+ 8.7573750	- 8.9177814	- 8.9166963
(n) 65	9.6125179	+ 9.6044081	+ 9.2723970	+ 9.2729279	- 9.0201900	- 9.0163376
(m) 60	9.3272316	+ 9.3099911	+ 9.4525567	+ 9.4500502	- 8.9454901	- 8.9382586
(l) 55	8.3164902	+ 8.1115896	+ 9.5165375	+ 9.5114272	- 8.5975586	- 8.5831744 + 8.3642941
(k) 50 (i) 45	- 9·1792226	- 9°1965643 - 9°4677915	+ 9.5007426 + 9.4056363	+ 9.4929002	+ 8.3601654 + 8.8844720	+ 8.8762393
(i) 45 (h) 40	- 9.5899972	- 9.5906424	+ 9.1980083	+ 9.1821437	+ 9.0138313	+ 9.0012708
(g) 35	- 9.6444103	- 9.6420969	+ 8.6901074	+ 8.6573749	+ 8.9803126	+ 8.9640401
(f) 30	- 9.6493033	- 9.6447774	- 8.6857852	- 8.6920740	+ 8.7779371	+ 8.7571735
(e) 25	- 9.6108577	- 9.6045736	- 9.0633882	- 9.0558372	+ 8.1116563	+ 8.0726248
(d) 20 (c) 15	- 9°5265698	- 9.5188805	- 9.1531394 - 9.1096932	- 9.1416661 - 9.0960512	- 8.4198889 - 8.6434723	- 8.4078874 - 8.6253225
(c) 15 (b) 10	- 9·3842658 - 9·1512203	- 9°3754893 - 9°1416659	- 8.9357505	- 8.9207619	- 8.5760855	- 8.5557052
(a) 5	8.7189186	- 8.7078956	- 8.5345233	- 8.5187747	- 8.2245069	- 8.2030346
		'	!	I		I
	For Y					
(s) 90°	0.0000000	0,0000000	0.0000000	0,0000000	0.0000000	0.0000000
(r) 85	9.2346004	+ 9.2345238	- 8.7476220	- 8.7475017	+ 8.2310911	+ 8.2309271
(q) 80	9.5268437	+ 9.5265397	- 9.0091883	- 9.0087106	+ 8*4454953	+ 8.4448439
(p) 75	9.6881433	+ 9.6874678	- 9'1151374	- 9.1140259 - 9.1184611	+ 8.4548136 + 8.2601100	+ 8.4533661 + 8.2575809
(o) 70 (n) 65	9°7920564 9°8613684	+ 9.7908762 + 9.8595653	- 9·1303157 - 9·0569073	- 9.0540738	+ 6.1969581	+ 6.1930643
(m) 60	9.9059097	+ 9.9033840	- 8.8403026	- 8.8363337	- 8.2917530	- 8.2863408
(1) 55	9.9305414	+ 9.9272151	- 7.7944086	- 7.7891815	- 8.5301667	- 8.5230388
(k) 50	9.9376956	+ 9.9335145	+ 8.8231129	+ 8.8165427	- 8.5673784	- 8.5584190
(i) 45 (h) 40	9°9283476 9°9023799	+ 9.9232835	+ 9.1428291	+ 9.1348713 + 9.2930877	- 8·4152819 - 7·4435780	- 8·4044303 - 7·2308310
(g) 35	9.8586255	+ 9.8518177	+ 9.3852434	+ 9.3745455	+ 8.4342169	+ 8.4196288
(f) 30	9.7946272	+ 9.7870120	+ 9.4139574	+ 9.4019906	+ 8.7465941	+ 8.7302758
(e) 25	9.7059866	+ 9.6976405	+ 9.3950853	+ 9'3819700	+ 8.8751730	+ 8.8572884
(d) 20 (c) 15	9.5848430	+ 9.5758651	+ 9.3264249	+ 9.3123168 + 9.1811288	+ 8.8995848 + 8.8310121	+ 8.8803464 + 8.8106743
(c) 15 (b) 10	9.4160225 9.1620343	+ 9.1221620	+ 9.1960432 + 8.9713924	+ 8.9558835	+ 8.6463454	+ 8.6251969
(a) 5	8.7213293	+ 8.7112281	+ 8.5430803	+ 8.5272070	+ 8.2406511	+ 8.2190058
	For Z				<u> </u>	
1						
(8) 90°	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
(r) 85 (q) 80	9·5332828 9·8206472	- 9.4099310	- 9°2226559	+ 9.1443213	+ 8.8312018 + 9.0408418	- 8·7737214 - 8·9825238
(p) 75	9.9737252	- 9.6969541 - 9.8494744	- 9°4793973 - 9°5772306	+ 9°4005091 + 9°4973505	+ 9.0400410	- 8·9823431
(0) 70	0.0629330	- 9.9409249	- 9.5808989	+ 9.4995573	+ 8.8366204	- 8.7736800
(n) 65	0.1198462	- 9.9939039	- 9.4924925	+ 9.4089957	+ 6.9239275	- 6.3609825
(m) 60 (l) 55	0.1450044	- 0.0179772 - 0.0176422	- 9°2576536 - 8°2141353	+ 9'1701410 + 8'0648599	- 8.8304334 - 9.0460602	+ 8.7705187
(t) 55 (k) 50	0.1243413	- 9.9948313	+ 9.1827208	- 9·1034589	- 9°0551806	+ 8.9875997
(i) 45	0.0806648	- 9.9498326	+ 9.4696339	- 9.3852363	- 8.8697855	+ 8.7976962
(h) 40	0.0137222	- 9.8815616	+ 9.5887463	- 9.5014869	- 7.8755713	+ 7.7604106
(g) 35 (f) 30	9.9209205	- 9.7874719 - 0.6620440	+ 9.6227455	- 9.533208I	+ 8.7947251	- 8.7266073
(f) 30 (e) 25	9°7977039 9°6364062	- 9.6630449 - 9.5006516	+ 9.5923846 + 9.5009502	- 9°5008842 - 9°4077496	+ 9.0491285	- 8·9762556 - 9·0298155
(d) 20	9.4236811	- 9.2869796	+ 9.3407738	- 9.2461395	+ 9.0384892	- 8.9607710
(c) 15 (b) 10	9.1340608	- 8.9965906	+ 9.0896378	- 8.9938562	+ 8.8492354	- 8.7699291
	8.7099353	- 8.5718981	+ 8.6918800	- 8.5952597	+ 8.4915026	- 8.4110599
(a) 5	7.9669716	- 7.8285869	+ 7.9643264	- 7.8671948	+ 7.7865882	- 7:7054599

		1 + /		T. / 1	/ \ 0 7	1
$g_9^2$ or $h_9^2$	$g_{-9}^2 \text{ or } h_{-9}^2$	11	$x'_2$ ) for $g$		$(x'_2)$ for $h$	
		1845	1880	1845	1880	
- 8'3487365 - 8'3420552 + 6'9856038 + 8'3685074 + 8'5000167 + 8'3168924 - 7'4299548 - 8'3899161 - 8'5016171 - 8'3047692 + 7'4822555 + 8'3839648 + 8'5012981 + 8'3611111 + 7'7261103 - 7'9747095 - 8'1225096 - 7'8424166	- 8'3487365 - 8'3413140 + 7'0166510 + 8'3680005 + 8'4966557 + 8'3092851 - 7'4523989 - 8'3830853 - 8'2871091 + 7'4962089 + 8'3676885 + 8'4802008 + 8'3357632 + 7'6888375 - 7'9534329 - 8'0960172 - 7'8152235	- 9.4165845 - 9.5998000 - 9.6157053 - 9.6167202 - 9.5953310 - 9.5973007 - 9.3714066 - 9.1202734 8.2967310 9.1232131 9.3401625 9.4443818 9.4188890 9.3448256 9.2293526	- 9'46660 - 9'61306 - 9'62339 - 9'62920 - 9'61804 - 9'57198 - 9'46745 - 9'27984 - 8'94013 8'03868 9'01285 9'27037 9'37487 9'37739	- 9.1020953 - 9.2499861 - 9.1412819 - 9.0886428 - 8.9158175 - 8.5803042 - 8.5001535 7.9361862 8.3568454 8.1108485 7.9888602 7.7936048 8.4379213 8.4700056 8.3002559 8.1159969	- 8.83075 - 8.93173 - 8.75271 - 8.58671 - 8.65932 - 8.71250 - 8.48918 - 7.91522 - 6.78697 - 7.70289 - 7.24670 - 7.05588 8.01158 8.42563	(s) (r) (q) (p) (o) (n) (m) (d) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
		$\text{Log}(w^{\frac{1}{2}})$	$y'_2$ ) for $g$	$\log (w^{\frac{1}{2}})$	$y'_2$ ) for $h$	
t		1845	1880	1845	1880	
0'0000000 - 7'6918832 - 7'8385833 - 7'6687576 + 6'7766652 + 7'7675669 + 7'8961527 + 7'7058535 - 7'1388144 - 7'9042522 - 8'0322429 - 7'8535102 + 7'3522563 + 8'1363213 + 8'3442632 + 8'3723953 + 8'2441366 + 7'8687812	0°0000000 - 7'6916754 - 7'8377582 - 7'6669240 + 6'7734617 + 7'7626727 + 7'8892972 + 7'6968249 - 7'1274658 - 7'8905069 - 8'0160966 - 7'8350320 + 7'3315864 + 8'1136675 + 8'3198946 + 8'3466341 + 8'22173485 + 7'8413638	- 8.8292899 - 9.0766563 - 9.2835787 - 9.3998498 - 9.5172169 - 9.6084184 - 9.6829915 - 9.7432415 - 9.7809250 - 9.7870679 - 9.7485789 - 9.6745747 - 9.5440404 - 9.3076945	- 8.75967 - 9.05714 - 9.26467 - 9.43424 - 9.56169 - 9.64810 - 9.71152 - 9.75022 - 9.77089 - 9.776944 - 9.74875 - 9.70875 - 9.64616	7'7420330 6'3932490 - 8'3296684 - 8'5476708 - 8'7354772 - 8'8601310 - 8'8891636 - 8'7243447 - 8'6944866 - 8'6669625 - 8'6197586 - 8'5474396 - 8'5467031 - 8'3771993 - 7'9910581	7.27649 7.93979 8.16440 8.10595 - 6.93194 - 8.16398 - 8.41858 - 8.46691 - 8.35610 - 7.65247 8.13021 8.37525 8.55506	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (d) (c) (a)
	:	$\operatorname{Log}(w^{\frac{1}{2}})$	$z'_2$ ) for $g$	$\log (w^{\frac{1}{2}})$	$z_2'$ for $h$	
		1845	1880	1845	1880	
0.0000000 - 8.3889936 - 8.5310063 - 8.3536165 + 7.4383451 + 8.4234618 + 8.5334777 + 8.3207463 - 7.7145595 - 8.4531268 - 8.5411098 - 8.3146287 + 7.7452413 + 8.4627445 + 8.5797208 + 8.4872985 + 8.1860276 + 7.5114765	0.0000000 + 8.3435046 + 8.4843927 + 8.3044361 - 7.4114932 - 8.3746363 - 8.4806479 - 8.2625588 + 7.6755651 + 8.3957899 + 8.4789320 + 8.2469825 - 7.6937328 - 8.3961884 - 8.5998675 - 8.4153040 - 8.1125716 - 7.4371537	- 8'9605827 - 9'3441005 - 9'5188418 - 9'6561338 - 9'752462 - 9'8776726 - 9'9510276 - 9'9649071 - 9'9386717 - 9'8894320 - 9'8122954 - 9'6719932 - 9'4381990 - 9'0464126	- 9.18357 - 9.45015 - 9.60590 - 9.72748 - 9.81218 - 9.88095 - 9.92251 - 9.93968 - 9.93968 - 9.93056 - 9.90222 - 9.83698 - 9.75928	- 8·1908646 - 8·5762340 - 8·8964679 - 8·9163269 - 8·9726784 - 8·7826169 - 8·8312441 - 9·0449914 - 9·1114140 - 9·1339657 - 9·0375498 - 9·0554147 - 9·0406362 - 8·9491244 - 8·7787178	- 8·31789 - 8·33970 - 8·33951 - 8·45667 8·28090 8·78693 8·93709 8·95555 8·94344 8·85416 8·62486 8·37135 - 8·39937	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

	T3 32	****				
Co-latitude	FOR $X$ $g_3^3 \text{ or } h_3^3$	$g_{-3}^{-3}$ or $h_{-3}^{-3}$	$g_{\scriptscriptstyle 5}^{\; \scriptscriptstyle 3} \; { m or} \; h_{\scriptscriptstyle 5}^{\; \scriptscriptstyle 3}$	$g_{-5}^{3}$ or $h_{-5}^{3}$	$g_7^{3}  ext{ or } h_7^{3}$	$g_{-7}^{-3}$ or $h_{-7}^{-3}$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0'0000000 - 9'4051791 - 9'6925825 - 9'8457243 - 9'9380187 - 9'9920390 - 0'0173203 - 0'0183232 - 9'9969398 - 9'9534145 - 9'8866214 - 9'7939654 - 9'6708856 - 9'5097115 - 9'2970930 - 9'0075594 - 8'5834976 - 7'8405728	0*000000 - 9*4118677 - 9*6988908 - 9*8514113 - 9*9428617 - 9*9958407 - 0*0199142 - 0*0195793 - 9*9967681 - 9*9517682 - 9*8834984 - 9*7894086 - 9*6649816 - 9*5025884 - 9*2889165 - 8*9985273 - 8*5738350 - 7*8305237	0.0000000 + 9.2921179 + 9.5580602 + 9.6736613 + 9.6806883 + 9.5852377 + 9.3953985 + 8.9868444 - 8.6323743 - 9.1737142 - 9.3198509 - 9.3423087 - 9.2808513 - 9.1392106 - 8.8998891 - 8.5094856 - 7.7859773	0'0000000 + 9'2934355 + 9'5587421 + 9'6732724 + 9'7071570 + 9'6766619 + 9'5782685 + 9'3835774 + 8'9604145 - 8'6660394 - 9'1751411 - 9'3150242 - 9'3339942 - 9'2700516 - 9'1265054 - 8'8857380 - 8'4943094 - 7'7701863	0'0000000  - 8'9042670  - 9'1247071  - 9'1505140  - 9'0106835  - 8'4805580  + 8'7060792  + 9'0584023  + 9'1512494  + 9'1055361  + 8'9102533  + 8'3499326  - 8'4520847  - 8'7494247  - 8'7617711  - 8'6106106  - 8'2732122  - 7'5785800	0.0000000 - 8.9049161 - 9.1244846 - 9.1487136 - 9.060559 - 8.4649922 + 8.7078609 + 9.0533667 + 9.1423007 + 9.0926765 + 8.8921275 + 8.3132314 - 8.4499489 - 8.7363151 - 8.7363151 - 8.7448610 - 8.5914138 - 8.2525341 - 7.5570479
	FOR Y					
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0·3251521 0·4716483 0·4595246 0·4390905 0·4099903 0·3716955 0·3234699 0·2643142 0·1928817 0·1073472 0·0051931 9·8828519 9·7350662 9·5536588 9·3249085 9·0230746 8·5903528 7·8422807	+ 0.3251521 + 0.4715717 + 0.4592206 + 0.4384150 + 0.4088101 + 0.3698924 + 0.3209442 + 0.2609879 + 0.1887006 + 0.1022831 + 9.9992445 + 9.8760441 + 9.7274510 + 9.5453127 + 9.3159306 + 9.0135836 + 8.5804835 + 7.8321795	- 9.3709096 - 9.4870941 - 9.3699509 - 9.0920722 + 8.0626029 + 9.1887079 + 9.4589613 + 9.5975593 + 9.6694877 + 9.6306019 + 9.5409512 + 9.4062664 + 9.2142578 + 8.9401610 + 8.5268326 + 7.7902369	- 9.3709096 - 9.4869738 - 9.3694732 - 9.0910107 + 8.0607483 + 9.1858744 + 9.4549924 + 9.5923322 + 9.6629175 + 9.6869064 + 9.6719116 + 9.6199040 + 9.5289844 + 9.3931511 + 9.2001497 + 8.9252466 + 8.5113237 + 7.7743636	+ 8.6469373 + 8.7166021 + 8.3696606 - 8.1535966 - 8.6896857 - 8.8402822 - 8.8300034 - 8.6316823 - 6.4407835 + 8.6947768 + 8.9732997 + 9.0879643 + 9.1099588 + 9.0556821 + 8.590619 + 8.590619 + 8.3064288 + 7.5865614	+ 8.6469373 + 8.7164381 + 8.3690092 - 8.1521491 - 8.6871566 - 8.8364184 - 8.8245912 - 8.6245544 + 6.64318241 + 8.6839252 + 8.9605527 + 9.0733762 + 9.0936405 + 9.033617 + 8.6706241 + 8.2852803 + 7.5649161
	For Z					
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.4500908 0.5949695 0.5779667 0.5493107 0.5085047 0.4548111 0.3872013 0.3042791 0.2041627 0.0842998 9.9411693 9.7697800 9.5627754 9.3087103 8.9883779 8.5657438 7.9598844	- 0'3251521 - 0'4699159 - 0'4525721 - 0'4233586 - 0'3817958 - 0'3271681 - 0'2584748 - 0'1743523 - 0'0729545 - 9'9517681 - 9'8073118 - 9'6346353 - 9'4264210 - 9'1712608 - 8'8499822 - 8'4265798 - 7'8201537 - 6'7724755	- 9.6719396 - 9.7865709 - 9.6648076 - 9.3796692 + 8.3144198 + 9.4456260 + 9.6972769 + 9.8123863 + 9.8557773 + 9.8469196 + 9.79224061 + 9.6927525 + 9.5339244 + 9.3366151 + 9.0530509 + 8.6581741 + 8.0717224 + 7.0358763	+ 9.5927583 + 9.7070916 + 9.5842935 + 9.2962736 - 8.2815050 - 9.3677864 - 9.6162506 - 9.7794410 - 9.7595746 - 9.7031075 - 9.6015865 - 9.4510221 - 9.2421467 - 8.9572357 - 8.5612678 - 7.9740129 - 6.9376751	+ 9'0729060 + 9'1410830 + 8'7901407 - 8'5619008 - 9'0882002 - 9'2238439 - 9'1946364 - 8'9736325 - 7'0137040 + 8'9696986 + 9'2083195 + 9'2743108 + 9'2372839 + 9'1104730 + 8'858923 + 8'5335114 + 7'9758786 + 6'9567741	- 9'0149140 - 9'0826139 - 8'7291947 + 8'5084421 + 9'0293430 + 9'1624120 + 9'1393489 + 8'9049336 + 5'4333448 - 8'9050844 - 9'1391134 - 9'2020703 - 9'1625222 - 9'0335473 - 8'8071462 - 8'4533088 - 7'8946115 - 6'8748579

		$\text{Log}(w^{\frac{1}{2}})$	$x'_3$ ) for $g$	$\log (w^{\frac{1}{2}})$	c'3) for h	
$g_{\mathfrak{g}}$ or $h_{\mathfrak{g}}$	$g_{-9}^{3}$ or $h_{-9}^{3}$	1845	1880	1845	1880	
0.0000000 + 8*4556348 + 8*6100030 + 8*4716859 + 7*2182685 - 8*4345877 - 8*6095550 - 8*4995520 - 7*7368227 + 8*3630246 + 8*5922023 + 8*5558849 + 8*2592075 - 7*4078296 - 8*1799489 - 8*1963258 - 7*9385690 - 7*2833888	0.0000000 + 8.4559624 + 8.6691840 + 8.4683753 + 7.1633930 - 8.4322523 - 8.6027939 - 8.4879702 - 7.7016122 + 8.3536595 + 8.5356507 + 8.5354987 + 8.2321484 - 7.4250861 - 8.1599259 - 8.1722330 - 7.9124079 - 7.2561164	7:4370727 8:4997799 8:5992028 8:1629144 5:9777017 8:06;32058 7:7950319 8:4656186 8:4816454 7:7104639 8:1808209 8:1278195 8:1278195 8:1718422 7:7295599 8:0216241	6·77589 8·26013 8·38741 8·69295 8·79593 8·83374 8·90752 8·94230 8·88947 8·88474 8·79144 8·79144 8·795042	8·6712217 8·9705110 9·1312483 9·2538389 9·2993001 9·2777730 9·2103682 9·0699481 9·0353298 8·9840077 8·9549728 8·9055886 8·6907024 8·4145425 7·6497650	8·37065 8·92011 9·08147 9·13767 9·16324 9·10855 9·02696 8·96840 8·91017 8·79860 8·68188 8·51485 8·46422	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
		$\operatorname{Log}(w^{\frac{1}{2}}$	$y'_3$ ) for $g$	$\text{Log }(w^{\frac{1}{2}}y$	$y'_3$ ) for $h$	
		1845	1880	1845	1880	
- 7'9807598 - 7'9837709 - 5'9022650 + 7'9932370 + 8'1614177 + 8'0385406 + 6'7455904 - 8'0543139 - 8'2598551 - 8'1915417 - 7'5270100 + 8'1372439 + 8'4578190 + 8'5512518 + 8'5101302 + 8'3392714 + 7'9939883 + 7'2963100	- 7.9807598 - 7.9835631 - 5.9014399 + 7.9914034 + 8.1582142 + 8.0336464 + 6.7387349 - 8.0452853 - 8.2485065 - 8.1177964 - 7.5117637 + 8.4371491 + 8.5285980 + 8.4857616 + 8.3135102 + 7.9672002 + 7.2688926	- 8·9087286 - 9·0490855 - 9·0041220 - 9·0152869 - 9·0069806 - 8·9669290 - 8·9416260 - 8·9237308 - 8·8487456 - 8·7436253 - 8·7080823 - 8·5682107 - 8·4975933 - 8·4371567 - 8·4462017 - 8·3862753	- 9'23649 - 9'37723 - 9'35344 - 9'31857 - 9'28205 - 9'24086 - 9'19541 - 9'14623 - 9'0355 - 9'0355 - 9'036874 - 8'96874 - 8'96874 - 8'96875	- 9'5033614 - 9'6597419 - 9'6482319 - 9'6086316 - 9'5678390 - 9'5122355 - 9'4604475 - 9'4034959 - 9'3078370 - 9'2307222 - 9'1524446 - 8'9802222 - 8'7897985 - 8'5726190 - 8'4287426	- 9'43372 - 9'57374 - 9'54798 - 9'51169 - 9'45476 - 9'38848 - 9'33744 - 9'28983 - 9'24160 - 9'18314 - 9'12203 - 9'05122 - 8'95230 - 8'74537	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
		$\log (w^{\frac{1}{2}})$	$(z'_3)$ for $g$	$\text{Log }(w^{\frac{1}{2}})$	z' ₃ ) for h	
		1845	1880	1845	1880	
- 8.5036385 - 8.5052404 - 6.4895046 + 8.5011848 + 8.6575875 + 8.5201268 + 7.2374026 - 8.4901191 - 8.6680194 - 8.5662688 - 7.8682170 + 8.4187914 + 8.6813702 + 8.7025229 + 8.5700096 + 8.2784632 + 7.7601107 + 6.7632110	+ 8'4578810 + 8'4588014 + 6'2766573 - 8'4544120 - 8'6086939 - 8'4675377 - 7'1172657 + 8'4382588 + 8'6112573 + 8'5048289 + 7'7899781 - 8'3584888 - 8'6159413 - 8'6339861 - 8'4990727 - 8'2056659 - 7'6859724 - 6'6882602	- 9°1587241 - 9°2680694 - 9°2538266 - 9°1671584 - 9°2328602 - 9°2528054 - 9°0187648 - 8°8419660 - 8°8955517 - 8°8507362 - 8°2829114 - 7°9436320 8°0892188 6°4671088 - 8°5453453	- 9'23453 - 9'33759 - 9'26248 - 9'21935 - 9'22040 - 9'15286 - 8'98880 - 8'76469 - 8'77170 - 8'63506 - 8'46525 - 8'44525 - 8'43227 - 8'537883	- 9.5991559 - 9.7390886 - 9.7341292 - 9.7067138 - 9.6392778 - 9.5523111 - 9.4684001 - 9.2710665 - 9.1939027 - 9.1280394 - 9.0041321 - 8.9308368 - 8.911885 - 8.8314722 - 8.6547002	- 9.53216 - 9.63812 - 9.59563 - 9.56455 - 9.48917 - 9.18679 - 9.30888 - 9.28943 - 9.22608 - 9.03801 - 8.95272 - 8.90673 - 8.85367 - 8.86080	(s) (r) (q) (p) (o) (n) (l) (k) (i) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

	For X					
Co-latitude	$g_4^{\ 3} \ { m or} \ h_4^{\ 3}$	$g_{-4}^{3}$ or $h_{-4}^{3}$	$g_6^3$ or $h_6^3$	$g_{-6}^{3}$ or $h_{-6}^{3}$	$g_8$ or $h_8$	$g_{-8}^{3}$ or $h_{-8}^{3}$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45	9:8480308 9:9814287 9:9278717 9:8298003 9:6662551 9:3694571 8:0577755 - 9:2601213 - 9:5168149 - 9:6213907	+ 9.8480308 + 9.9811292 + 9.9266203 + 9.8267270 + 9.6597502 + 9.3541557 + 7.5436536 - 9.2748257 - 9.5213555 - 9.6215180	- 9.2837594 - 9.3792582 - 9.1773499 - 8.4239385 + 9.0098338 + 9.3137189 + 9.4179855 + 9.4157874 + 9.3169507 + 9.0821448	- 9.2837594 - 9.3788072 - 9.1750828 - 8.4056399 + 9.0127185 + 9.3123860 + 9.4085623 + 9.4085623 + 9.3060162 + 9.0651603	+ 8.7340874 + 8.7738883 + 8.1894498 - 8.5482583 - 8.8467462 - 8.8693026 - 8.6578131 + 7.3360205 + 8.6816720 + 8.8658516	+ 8.7340874 + 8.7732606 + 8.1835239 - 8.5505619 - 8.8446976 - 8.6478277 + 7.4223857 + 8.6751934 + 8.8540973
(h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	- 9.6515150 - 9.6280551 - 9.5564877 - 9.4342778 - 9.2509932 - 8.9829255 - 8.5735539 - 7.8392058	- 9'6486344 - 9'6227712 - 9'5491763 - 9'4252443 - 9'2405287 - 8'9713276 - 8'5611333 - 7'8262857	+ 8'4045856 - 8'7378852 - 9'0117308 - 9'0557599 - 8'9744157 - 8'772983 - 8'4063464 - 7'6960362	+ 8°3536013 - 8°7404845 - 9°0335547 - 9°0434760 - 8°9595449 - 8°7563119 - 8°3884174 - 7°6773746	+ 8'8456126 + 8'6353113 + 7'8758656 - 8'3149814 - 8'5002381 - 8'4175675 - 8'1159588 - 7'4396387	+ 8·8295033 + 8·6136666 + 7·8249633 - 8·3032654 - 8·4815216 - 8·3958962 - 8·0925362 - 7·4152363
	For Y					
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.000000 9.4090688 9.6964170 9.8494685 9.9416404 9.9955096 0.0206158 0.0214248 9.9998351 9.9560966 9.8880905 9.7962278 9.6729540 9.5116045 9.2988346 9.0091781 8.5850259 7.8420457	0'0000000 + 9'4089704 + 9'6960262 + 9'8486000 + 9'9401230 + 9'9931913 + 0'0173685 + 0'0171481 + 9'9944595 + 9'944595 + 9'8814423 + 9'7874750 + 9'6631630 + 9'5008738 + 9'2872916 + 8'969754 + 8'5723368 + 7'8290585	0:0000000 - 8:8327135 - 9:0820441 - 9:1647329 - 9:1382252 - 8:9786465 - 8:4232583 + 8:7492072 + 9:1383994 + 9:3876446 + 9:3833350 + 9:3951208 + 9:3515974 + 9:2517328 + 9:0859489 + 8:8310674 + 8:4309070 + 7:7020078	0:0000000 - 8:8325713 - 9:0814796 - 9:1634784 - 9:1360333 - 8:9752978 - 8:4185677 + 8:7430297 + 9:1306346 + 9:2982399 + 9:3722876 + 9:3824778 + 9:382478 + 9:362328 + 9:0692756 + 8:8134413 + 8:4125783 + 7:6832485	0'0000000 + 8'2663374 + 8'4597634 + 8'4597634 + 8'0635147 - 7'9805350 - 8'4505241 - 8'5565220 - 8'4543282 - 7'8349288 + 8'3462939 + 8'6913485 + 8'8150698 + 8'8219245 + 8'7295692 + 8'5257066 + 8'1594058 + 7'4499341	0°0000000 + 8°2661515 + 8°4590252 + 8°4187083 + 8°0606484 - 7°9761560 - 8°4443903 - 8°5484437 - 8°4441742 - 7°8226304 + 8°3318473 + 8°6748153 + 8°965757 + 8°8016553 + 8°7077657 + 8°1354375 + 8°1354375 + 7°4254027
	For Z					
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (i) 55 (k) 50 (i) 45 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 9.6287171 9.9111897 0.0560248 0.1364985 0.1749781 0.1807110 0.1577656 0.1075044 0.0294508 9.9214813 9.7795833 9.5971025 9.3631061 9.0587636 8.6483144 8.0510301 7.0087944	0.0000000 - 9.5329822 - 9.8150453 - 9.9592114 - 0.0387764 - 0.0761346 - 0.0805668 - 0.0561802 - 0.0043809 - 9.9247384 - 9.8151774 - 9.6717339 - 9.4878006 - 9.2524897 - 8.9470109 - 8.5356392 - 7.9376746 - 6.8950220	0.0000000 - 9.1986752 - 9.4431909 - 9.5177893 - 9.4798430 - 9.3055512 - 8.7355844 + 9.0281839 + 0.3906232 + 9.5260351 + 9.5609837 + 9.5238622 + 9.4212153 + 9.2487618 + 8.9914464 + 8.6158018 + 8.0425290 + 7.0143856	0'0000000 + 9'1324117 + 9'3762605 + 9'4497118 + 9'4100149 + 9'2327884 + 8'6506268 - 8'9622104 - 9'3185107 - 9'4508054 - 9'4831957 - 9'4437775 - 9'3390520 - 9'1647550 - 8'9058653 - 8'5289513 - 7'9547466 - 6'9260338	0.0000000 + 8.7415538 + 8.9302334 + 8.8829436 + 8.5159624 - 8.4122776 - 8.8651219 - 8.9479957 - 8.1702618 + 8.6308437 + 8.9283141 + 8.9932442 + 8.9276540 + 8.7438444 + 8.7438444 + 8.7438444 + 8.7438444 + 8.7438444 + 8.7438444 + 8.7438444	0.0000000 - 8.6907907 - 8.8785328 - 8.8294337 - 8.4576752 + 8.3634538 + 8.8094823 + 8.8886850 + 8.7544051 + 8.0911924 - 8.5701989 - 8.8620974 - 8.9237944 - 8.8556471 - 8.6697461 - 8.3435130 - 7.8029259 - 6.7934944

		Log (w	$\frac{1}{2}x'_3$ ) for $g$	$\log (w^{\frac{1}{2}})$	$x'_3$ ) for $h$	
$g_{10}^{3}$ or $h_{10}^{3}$	$g_{-10}^{3}$ or $h_{-10}^{3}$	1845	1880	1845	1880	
- 8·1839263 - 8·1449281 + 7·5501895 + 8·2686541 + 8·3120597 + 7·9977224 - 7·9981640 - 8·3239187 - 8·2508871 - 7·4402748 + 8·1388764 + 8·1388764 + 8·2169423 + 7·6489598 - 7·7689928 - 7·7438166 - 7·1128454	- 8·1839263 - 8·1440757 + 7·5554364 + 8·2675083 + 8·3078154 + 7·8963964 - 7·9956009 - 8·3145229 - 8·2360488 - 7·3996055 + 8·1245648 + 8·3080495 + 8·1913313 + 7·6107379 - 7·7490909 - 7·9208722 - 7·7149242 - 70·827033	8·1844905 8·4034278 8·5337571 8·5207706 8·4333108 8·5340042 8·7158365 8·3859351 8·2783318 8·5991419 8·8024604 8·8071613 8·6018742 7·7115345 7·7101469 8·2909557	8.70657 8.82961 8.62268 8.53528 8.37632 8.26996 8.30450 8.16301 7.70530 - 8.31744 - 8.54277 - 8.68597 - 8.71768 - 8.71428	7·6261821 8·4770273 8·4111167 8·4956828 8·2742975 - 8·1951856 - 8·2953953 - 8·5652433 - 8·5652433 - 8·7698872 - 8·7922076 - 8·8178329 - 8·8232854 - 8·7229491 - 8·5728193 - 8·4213513 - 7·9520340	8.68054 8.81794 8.90806 8.94977 8.91018 8.81655 8.84020 8.72777 8.23190 - 7.59684 - 8.13217 - 8.17426 - 8.27509 - 8.40830	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
		$\text{Log }(w^{\frac{1}{2}}$	$y'_3$ ) for $g$	$\text{Log }(w^{\frac{1}{2}})$	$y'_3$ ) for $h$	
		1845	1880	1845	1880	
0.0000000  - 7.6945973  - 7.8089312  - 7.5234477  + 7.3710701  + 7.8280082  + 7.8180852  + 7.1955239  - 7.7242800  - 7.9751031  - 7.8778602  + 6.3716753  + 8.0101841  + 8.2466663  + 8.1344139  + 7.8131615  + 7.1287132	0'0000000 - 7'6943676 - 7'8080193 - 7'5214211 + 7'3675294 + 7'8255988 + 7'8105081 + 7'1855449 - 7'7117368 - 7'9599109 - 7'8600143 + 6'3512520 + 7'9873384 + 8'2161427 + 8'2391326 + 8'1059410 + 7'7835536 + 7'0984097	7.7936200 7.7841841 8.3050791 8.5392609 8.7848984 9.9622169 9.0829634 9.1656276 9.1687697 9.1444586 9.1094727 9.0303362 8.9371055 8.8822492 8.7338814	8·38335 8·68284 8·74632 8·83725 8·97246 9·08165 9·17498 9·23766 9·27109 9·27479 9·25344 9·18001 9·06749	7.8489983 8.2257579 8.6366342 8.8276750 8.8999080 8.9554792 8.9579165 9.0250162 8.9820257 8.9139472 8.7362177 8.4796199 7.9985988 8.0173372 6.9118769	8·12484 8·45621 8·75163 8·90289 8·94758 8·97236 8·98718 9·00295 9·02477 8·99348 8·92511 8·74948 8·30527	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
	:1	Log (w ¹ / ₂	$z'_3$ ) for $g$	$\log (w^{\frac{1}{2}})$	e'a) for h	
		1845	1880	1845	1880	
0.0000000 - 8.2570406 - 8.3667171 - 8.0739936 + 7.9062998 + 8.3496717 + 8.3212104 + 7.6801662 - 8.1722928 - 8.253066 - 6.6334990 + 8.2745015 + 8.4336049 + 8.3671930 + 8.1148904 + 7.6205866 + 6.6369254	0.0000000 + 8.2158260 + 8.2242524 + 8.0281817 - 7.8663176 - 8.3037066 - 8.2709763 - 7.6159779 + 8.1219341 + 8.3338956 + 8.1914382 - 6.6947981 - 8.2125695 - 8.3675527 - 8.2983757 - 8.0439799 - 7.5481911 - 6.5636342	- 8'3041650 - 8'4774677 8'2976369 8'7296709 8'6333203 8'6630801 9'0138489 9'0482330 9'1419608 9'1882632 9'1445294 9'1828507 9'0986764 8'9019969 8'1963076	6·59980 - 8·17429 - 8·31136 8·06093 8·93291 9·17943 9·30273 9·30273 9·40890 9·40204 9·40228 9·36236 9·32001	8.0823163 8.5024900 8.4460568 8.9055012 8.9704761 9.0897603 9.1588073 9.1341607 9.2258787 9.2061816 9.1256735 9.0233966 8.8934504 8.5715959 7.8316085	8·99206 9·04992 8·89701 8·83234 8·98673 9·08697 9·16516 9·15432 9·17198 9·12360 9·01237 8·83021 8·44025	(s) (r) (q) (p) (o) (n) (m) (i) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

		1	1			
	FOR X			4 7 4	. 7.4	4 7 4
Co-latitude	$g_4^4$ or $h_4^4$	$g_{-4}^4$ or $h_{-4}^4$	$g_6^4$ or $h_6^4$	$g_{-6}^{4}$ or $h_{-6}^{4}$	$g_8^4$ or $h_8^4$	$g_{-8}^4$ or $h_{-8}^4$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 75 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 - 9.5287383 - 9.8112411 - 9.9561258 - 0.0366666 - 0.0752292 - 0.0810578 - 0.0582186 - 0.0080705 - 9.9301335 - 9.8222806 - 9.6804957 - 9.4981211 - 9.2642205 - 8.9599607 - 8.5495789 - 7.9523439 - 6.9101385	0.0000000  - 9.5351617  - 9.8172247  - 9.9613909  - 0.0409558  - 0.0783142  - 0.0827462  - 0.0583598  - 0.065605  - 9.9269179  - 9.8173568  - 9.6739133  - 9.4899801  - 9.2546691  - 8.9491904  - 8.5378187  - 7.9398541  - 6.8972015	0:0000000 + 9:2948430 + 9:5517273 + 9:6511763 + 9:6511763 + 9:5929881 + 9:4290124 + 9:0774425 - 8:3495127 - 9:1143281 - 9:2758178 - 9:2952842 - 9:2241538 - 9:0711841 - 8:8265424 - 8:4592379 - 7:8912629 - 6:8660691	0:000000 + 9:2960554 + 9:5521926 + 9:6503675 + 9:6584823 + 9:5875881 + 9:4192452 + 9:0565589 - 8:4166400 - 9:1174680 - 9:2715881 - 9:2870423 - 9:2129622 - 9:0576286 - 8:8110755 - 8:4422779 - 7:8732272 - 6:8473827	0'000000 - 8'8405862 - 9'0440593 - 9'0332229 - 8'7993636 + 7'7368415 + 8'8475311 + 9'0337927 + 9'0321061 + 8'8714396 + 8'4068152 - 8'2666439 - 8'6363698 - 8'6509979 - 8'5200580 - 8'5200580 - 8'2192079 - 7'6934341 - 6'6918828	0'0000000 - 8'8411529 - 9'0435771 - 9'0309267 - 8'7931435 + 7'7833683 + 9'0264916 + 9'0205924 + 8'8545532 - 8'3754516 - 8'2705344 - 8'6241421 - 8'6439645 - 8'5000418 - 8'1970844 - 7'6698585 - 6'6674472
	For Y					
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 555 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0'4500908 0'5949641 0'5779453 0'5492631 0'5084216 0'4546842 0'3870235 0'3040451 0'2038686 0'0839437 9'9407511 9'7693016 9'5622405 9'3081241 8'9877475 8'5650777 7'9591917 6'9118445	+ 0.4500908 + 0.5948657 + 0.5775545 + 0.5483946 + 0.5069042 + 0.4523659 + 0.3837762 + 0.1984930 + 0.0774328 + 9.9331029 + 9.7605488 + 9.5524495 + 9.2973934 + 8.9762045 + 8.5528750 + 7.9465026 + 6.8988573	- 9:4086981 - 9:5162213 - 9:3643903 - 8:9431033 + 8:9013204 + 9:3883859 + 9:5825036 + 9:6763052 + 9:7088854 + 9:6936412 + 9:635013 + 9:5325260 + 9:3816981 + 9:1729450 + 8:8883368 + 8:4927204 + 7:9057746 + 6:8696448	- 9'4086981 - 9'5160791 - 9'36'38258 - 8'9418488 + 8'8991285 + 9'5778130 + 9'5778130 + 9'6701277 + 9'7011206 + 9'6842365 + 9'6239539 + 9'5198830 + 9'30'5555 + 9'1574450 + 8'8716635 + 8'475943 + 7'8874459 + 6'8508855	+ 8·6371774 + 8·6899155 + 8·2180933 - 8·3757758 - 8·7519404 - 8·8371943 - 8·7379269 - 8·2469253 + 8·4953157 + 8·8888370 + 9·032318 + 9·0620046 + 9·061135 + 8·8680678 + 8·2793116 + 7·7187521 + 7·7187521 + 6·6980256	+ 8.6371774 + 8.6897296 + 8.2173551 - 8.3741353 - 8.7490741 - 8.8328153 - 8.7317931 - 8.2388470 + 8.4851617 + 8.8765386 + 9.0178852 + 9.0454714 + 8.8477986 + 8.6145332 + 8.2562621 + 7.6947838 + 6.6734942
	For Z					
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0°5470008 0°6902577 0°6683631 0°6314642 0°5789242 0°5097968 0°4227622 0°3160287 0°1871804 0°0329396 9°8487831 9°6282977 9°3620291 9°0352653 8°6233156 8°0798528 7°3008344 5°9542316	- 0'4500908 - 0'5932099 - 0'5709060 - 0'5333383 - 0'4798900 - 0'4096416 - 0'3213069 - 0'2131329 - 0'0827468 - 9'9269178 - 9'7411703 - 9'5191400 - 9'2514195 - 8'9233416 - 8'5102562 - 7'9658712 - 7'1861728 - 5'8391533	- 9.6517361 - 9.7577122 - 9.6013097 - 9.1734628 + 9.1144124 + 9.5880950 + 9.7632155 + 9.8374233 + 9.8374233 + 9.6883658 + 9.5368898 + 9.5368898 + 9.0455048 + 8.6693416 + 8.1529463 + 7.3928780 + 6.0574984	+ 9'5847894 + 9'6904352 + 9'5328378 + 9'1005140 - 9'0523255 - 9'5202223 - 9'6928304 - 9'7626006 - 9'7108938 - 9'6091588 - 9'4555879 - 9'2436224 - 8'9604781 - 8'5827913 - 8'0551605 - 7'3041820 - 5'9682450	+ 8-9893599 + 9-0406230 + 8-5652106 - 8-7115785 - 9-0769562 - 9-1472138 - 9-0291936 - 8-5179270 + 8-7300919 + 9-0910802 + 9-1940523 + 9-1748968 + 9-0599214 + 8-8493104 + 8-8493104 + 8-5260633 + 8-0482854 + 7-3146204 + 5-9946538	- 8.9382074 - 8.9889467 - 8.3091423 + 8.662000 + 9.0239775 + 9.0915844 + 8.9701376 + 8.4490680 - 8.6748296 - 9.0294784 - 9.1289398 - 9.1068426 - 8.9892551 - 8.7763421 - 8.4511345 - 7.9717779 - 7.2369546 - 5.9162802

	,	Trog (ant	$x'_4$ ) for $g$	Log (mt	$x'_4$ ) for $h$	
$g_{10}^{4} \text{ or } h_{10}^{4}$	$g_{-10}{}^4$ or $h_{-10}{}^4$	1845	1880	1845	1880	
0'0000000 + 8'3480521 + 8'4750152 + 8'2502564 - 7'7666604 - 8'4078864 - 8'4604375 - 8'1503970 + 7'9449754 + 8'4136293 + 8'4207073 + 6'9811443 - 7'9971385 - 8'0721721 - 7'8744311 - 7'4067293 - 6'4359486	0'000000 + 8'348'3093 + 8'47'39805 + 8'2460577 - 7'7731956 - 8'4038901 - 8'4519782 - 8'1345275 + 7'9426261 + 8'400043 + 8'4315765 + 8'2022317 + 6'8447778 - 7'97'88438 - 8'047'9445 - 7'847'2060 - 7'3776227 - 6'4057644	8·4185206 8·1445281 8·6326850 8·5512257 8·7092905 8·5754914 8·5053532 8·6024053 8·6036880 8·4840170 7·9032887 - 7·9410122 - 6·8288366 8·1235646	8·55765 8·76690 8·57441 8·56744 8·57867 8·63174 8·46133 8·31478 8·10658 8·15470 8·16759 8·19460 7·55427	7.6789812 - 8.1240313 8.2452764 8.1407139 - 7.9841677 - 7.7604281 - 7.669900 - 7.7869701 8.0770284 7.9515588 - 7.1698255 - 7.9821496 - 7.3190574 7.6489524 - 7.6472762	7·14387 7·50046 - 7·98685 - 8·42471 - 8·53641 - 8·63829 - 8·60746 - 8·58729 - 8·64820 - 8·55749 - 8·43246 - 8·55906 8·04436	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (h)
		$\text{Log }(w^{\frac{1}{2}}$	y' ₄ ) for g	$\operatorname{Log}(w^{\frac{1}{2}})$	/' ₄ ) for h	
		1845	1880	1845	1880	
- 7.9408883 - 7.9163381 + 7.1553529 + 8.0203996 + 8.1119381 + 7.8348820 - 7.6477539 - 8.1480304 - 8.1970979 - 7.875870 + 7.8535675 + 8.3288306 + 8.4331205 + 8.2773032 + 7.9724858 + 7.4463871 + 6.4453767	- 7'9408883 - 7'9161084 + 7'1544410 + 8'0183730 + 8'1083974 + 7'8294726 - 7'6401768 - 8'1380514 - 8'1845547 - 7'8606448 + 7'8357216 + 8'3084073 + 8'4356692 + 8'4080821 + 8'2503695 + 7'9440129 + 7'4167792 + 6'4150732	- 8·3134137 - 8·3479880 - 8·0464615 8·1980378 8·4985955 8·5033942 8·53391627 8·4025646 8·3974782 8·271093 7·9941890 7·9553379 7·8935726 - 7·7608507 - 7·7412667 8·0442166	8.88266 - 9.03477 - 8.96612 - 8.82244 - 8.57867 - 8.33563 - 7.57010 - 7.89068 - 22517 - 8.18956 - 8.07160 - 7.95897 - 7.58260 - 7.92785	8:7511208 8:8956419 8:8735435 8:8703078 8:8933264 8:843980 8:7554969 8:6629006 8:7743810 8:8440797 8:8019110 8:7198970 8:4677348 8:0822513 - 7:2229837 - 6:8380907	8·87984 9·00463 8·94665 8·93668 8·93477 8·95634 9·00026 8·98067 8·92278 8·87315 8·78395 8·67775 8·48670 8·06188	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
		$\text{Log}(w^{\frac{1}{2}})$	$z'_4$ ) for $g$	$\text{Log}(w^{\frac{1}{2}})$	(a) for h	
		1845	1880	1845	1880	
- 8·3802210 - 8·3542852 + 7·5842864 + 8·4448229 + 8·5247586 + 8·2336718 - 8·5010740 - 8·5010740 - 8·5222628 - 8·1686700 + 8·5989667 + 8·5280190 + 8·5989667 + 8·5011388 + 8·2538719 + 7·1291568 + 5·8289178	+ 8-3388283 + 8-3121413 - 7-5500017 - 8-4019577 - 8-4794792 - 8-1833633 + 7-9801152 + 8-459697 + 8-4675208 + 8-1066737 - 8-0469219 - 8-4676311 - 8-5347845 - 8-4339666 - 8-1842441 - 7-7567649 - 7-0561652 - 5-7550633	- 8.0548567 - 6.9754636 7.6627620 8.6256892 8.3127368 8.3515328 7.9658595 8.4760108 8.8878328 8.9049708 8.9049708 8.9094644 8.8296686 8.7969081 8.0594201 - 8.1954626 6.9118769	- 9.10858 - 9.26562 - 9.20348 - 9.14074 - 8.97970 - 8.81085 - 8.46910 7.88560 7.92414 7.80555 8.30911 8.41635 8.39179 8.35424	8·7395683 8·8937147 8·5078600 8·8697337 9·0067740 9·0825301 9·1758054 9·1276167 8·6992681 8·5510805 7·8207378 7·6469468 6·6631237 8·0193824 8·0626050 8·3231809	8·28736 8·65766 8·55040 8·63070 8·80029 8·81655 8·74691 8·82600 8·55465 8·14222 - 7·66771 - 8·12530 - 7·80445 7·97826	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

	For X				
Co-latitude	$g_5^4$ or $h_5^4$	$g_{-5}^{4}$ or $h_{-5}^{4}$	$g_7^4$ or $h_7^4$	$g_{-7}^{4}$ or $h_{-7}^{4}$	$g_9^4$ or $h_9^4$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.8480308 9.9764605 9.9069536 9.7744835 9.5360524 8.9413990 - 9.1470309 - 9.4958023 - 9.6194104 - 9.6508706 - 9.6201410 - 9.5358163 - 9.3974023 - 9.1973779 - 8.9189556 - 8.5276547 - 7.9435591 - 6.9090549	+ 9.8480308 + 9.9760921 + 9.9049757 + 9.7704610 + 9.5264333 + 8.8987631 - 9.5017568 - 9.6202228 - 9.6483080 - 9.6148464 - 9.5281475 - 9.3876383 - 9.1857880 - 8.9058247 - 8.5132971 - 7.9282957 - 6.8932430	- 9.2112087 - 9.2942177 - 9.0315680 + 8.0562778 + 9.0978783 + 9.3569401 + 9.3526928 + 9.2838303 + 9.0778704 + 8.5221409 - 8.6107711 - 8.9295381 - 8.9279050 - 8.8922014 - 8.6918430 - 8.3542790 - 7.8056415 - 6.7914133	- 9'2112087 - 9'2936902 - 9'0286755 + 8'0881538 + 9'0986538 + 9'3469111 + 9'2742931 + 9'0625169 + 8'4838799 - 8'6176698 - 8'9222422 - 8'9647845 - 8'8768002 - 8'6740755 - 8'3347315 - 7'7848349 - 6'7698522	+ 8.6175819 + 8.6356867 + 7.7138301 - 8.5495161 - 8.7597350 - 8.6996105 - 8.2490365 + 8.3524060 + 8.7079213 + 8.7478645 + 8.5851900 + 8.0228546 - 8.1188943 - 8.3705309 - 8.3135783 - 8.0583092 - 7.5593334 - 6.5722376
	For Y				
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 9.5323847 9.8148378 9.9596411 0.0400717 0.0784983 0.0611558 0.0108220 9.9326932 9.8246485 9.6826776 9.5001283 9.2660698 8.9616737 8.5511813 7.9538648 6.9116096	0'0000000 + 9'5322644 + 9'8143601 + 9'9585796 + 0'0382171 + 0'0756648 + 0'0802005 + 0'0559287 + 0'0042518 + 9'9247354 + 9'8153007 + 9'6719797 + 9'4881615 + 9'2529545 + 8'9475656 + 8'9475656 + 8'5362669 + 7'9383559 + 6'8957363	0.000000 - 8.8812400 - 9.1181309 - 9.1763004 - 9.1017401 - 8.8123677 + 8.3083284 + 9.0410664 + 9.2652647 + 9.3588294 + 9.3738814 + 9.3253794 + 9.2155517 + 9.0383125 + 8.7777279 + 8.3998597 + 7.8251427 + 6.7961842	0.0000000 - 8.8810760 - 9.1174795 - 9.1748529 - 9.0992110 - 8.8085039 + 8.3029162 + 9.0339385 + 9.3479778 + 9.3611344 + 9.3107913 + 9.1992336 + 9.0204279 + 8.7584895 + 8.3795219 + 78039942 + 6.7745389	0.0000000 + 8.2685926 + 8.4403297 + 8.3453615 + 7.6625610 - 8.2220056 - 8.4922960 - 8.4889584 - 8.1675968 + 8.0606888 + 8.5770310 + 8.7363328 + 8.7545482 + 8.6657484 + 8.4685354 + 8.13573483 + 7.5913488 + 6.5799318
	For Z				
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 9.7063736 9.9839532 0.1205437 0.1892809 0.2123238 0.1986282 0.1518677 0.0728705 9.9604347 9.8114350 9.6204367 9.3786881 9.0719895 8.6760265 8.1447462 7.3743011 6.0327925	0'0000000 - 9'6281019 - 9'9052048 - 0'0410167 - 0'186961 - 0'1304337 - 0'1152244 - 0'0667865 - 9'9859989 - 9'8717136 - 9'7208614 - 9'5280640 - 9'2846247 - 8'9763960 - 8'5791105 - 8'0467563 - 7'2755193 - 5'9335255	0'0000000 - 9'1803092 - 9'4123935 - 9'4624969 - 9'3765861 - 9'0731001 + 8'5395133 + 9'2549593 + 9'4511424 + 9'5106469 + 9'4848747 + 9'3874269 + 9'2184553 + 8'9686159 + 8'6164928 + 8'1178574 + 7'3700258 + 6'0418220	0.0000000 + 9.1228534 + 9.3541908 + 9.402931 + 9.3150078 - 8.4932797 - 9.1929450 - 9.3854775 - 9.4421128 - 9.4437151 - 9.3138150 - 9.1425839 - 8.8907219 - 8.5368630 - 8.0368235 - 7.2879591 - 5.9591237	0.0000000 + 8.6646635 + 8.8316708 + 8.7289194 + 8.0387579 - 8.5762652 - 8.8281607 - 8.817030 - 8.4535685 + 8.3055577 + 8.7838368 + 8.8946297 + 8.8538700 + 8.6925563 + 8.4038561 + 7.9203215 + 7.2328388 + 5.9221873

	Log (m²	$x'_4$ ) for $g$	T.09 (20)	$x'_4$ ) for $h$	1
$g_{-9}^4 \text{ or } h_{-9}^4$	1845	1880	1845	1880	
+ 8.6175819 + 8.6349671 + 7.7004680 - 8.5497573 - 8.7568644 - 8.6931182 - 8.2330145 + 8.350659 + 8.6980917 + 8.7331109 + 8.5647117 + 7.9845761 - 8.1110460 - 8.3523013 - 8.2913923 - 8.0336249 - 7.5329910 - 6.5449277	8·2793946 8·6927837 8·9490687 8·9793247 8·9561895 8·8283479 8·4839102 7·9875913 8·0137541 - 7·6918960 - 8·2516139 - 8·4138170 - 8·3992136 - 7·9722699 - 8·1135125 - 8·0120320	8·30287 8·47486 8·40355 8·21393 8·51686 8·69370 8·67133 8·44614 7·93310 6·70289 7·80737 8·17646 7·96080 7·15633	- 8'4608147 - 8'6538382 - 8'4160896 - 8'3443584 - 8'2754125 - 8'1749823 - 7'9270778 - 8'2876101 - 8'1645886 - 8'6440714 - 8'7613147 - 8'7434111 - 8'6540087 - 8'0994647 7'4841421 6'7491496	8·63265 8·67989 8·51118 7·91029 - 8·36559 - 8·37564 - 8·15556 - 8·05998 - 7·54393 6·82783 7·05041 - 7·56103 - 7·54918 - 7·82251	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (d) (c) (d) (e) (d) (a)
	$\operatorname{Log}(w^{\frac{1}{2}}y'_{4})$ for $g$		$\operatorname{Log}(w^{\frac{1}{2}})$	$y'_4$ ) for $h$	
	1845	1880	1845	1880	
0.0000000 + 8.2683848 + 8.4395046 + 8.3435279 + 7.6593575 - 8.2171114 - 8.4854405 - 8.4799298 - 8.1562482 + 8.0469435 + 8.5608847 + 8.7178546 + 8.7338783 + 8.4441668 + 8.1099751 + 7.5645607 + 6.5525144	- 8.0981105 - 8.1367588 - 8.2699655 - 8.0925879 - 7.7219947 7.4663470 7.4544934 8.1861492 8.4118785 8.5170678 8.6356658 8.6072265 8.5632572 8.3386817 - 6.4859082	7°35947 7'87037 7'93073 7'99398 8'28733 8'47455 8'66714 8'72291 8'70289 8'63828 8'46185 8'26351 8'24848	7.7178993 8:0060329 8:2086958 8:4918829 8:5620329 8:6326784 8:7020380 8:5702610 8:6009763 8:5736008 8:5726378 8:4891985 8:3815218 8:0934492 7:8396962	7.46014 8.30706 8.61755 8.78678 8.86700 8.85958 8.84041 8.80579 8.74164 8.65402 8.54349 8.43904 8.20661	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (i) (i) (i) (j) (j) (c) (d) (c) (d)
	$\text{Log}(w^{\frac{1}{2}})$	$z'_4$ ) for $g$	$\log (w^{\frac{1}{2}})$	$z'_4$ ) for $h$	
	1845	1880	1845	1880	
0.0000000 - 8.6191946 - 8.7851668 - 8.6803121 - 7.9793145 + 8.5287138 + 8.7762391 + 8.7458796 + 8.3909910 - 8.2544628 - 8.7238337 - 8.8307727 - 8.7869443 - 8.6230148 - 8.3321157 - 7.8768217 - 7.1580525 - 5.8466159	- 7.8459291 - 6.8703703 7.8662732 8.7884935 8.7882702 8.8762533 8.8783891 8.1922921 8.0566794 7.9611888 8.4061302 - 7.8651506 - 8.3726160 - 8.5236325 - 7.9172719	- 7.77589 - 8.04063 - 8.64346 - 8.54886 - 8.16670 - 7.56896 7.11796 - 8.39750 - 8.35299 - 8.21825 - 8.25333 - 8.66822	- 7.5540425 7.8732560 - 8.5450949 - 8.4816154 - 7.8469334 7.6963902 8.7770408 8.9209650 8.8196098 8.5422737 8.0212407 8.02274468 7.5659558 - 7.1105615 8.2598164	- 8.52922 - 8.71547 - 8.78917 - 8.31172 7.27873 8.16394 8.60062 8.66778 8.66516 8.63587 8.39566 8.38424 8.44535	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

				-	
	For X				
Co-latitude	$g_{\mathfrak{s}^5}$ or $h_{\mathfrak{s}^5}$	$g_{-5}^{5}$ or $h_{-5}^{5}$	$g_7^{5}$ or $h_7^{5}$	$g_{-7}^{5}$ or $h_{-7}^{5}$	$g_9^5$ or $h_9^5$
(8) 90°	0,0000000	0,0000000	0.0000000	0.0000000	0.0000000
(r) 85	- 9.6241715	- 9·6304 <b>27</b> 0	+ 9.2957778	+ 9.2969072	- 8.7837019
(q) 80	- 9.9017758	- 9.9075298	+ 9.5435343	+ 9.5438030	- 8.9697778
(p) 75	- 0.0384068	- 0.0433417	+ 9.6264360	+ 9.6252174	- 8.9188508
(0) 70	- 0.1021991	- 0.1110515	+ 9.6095705	+ 9.6060918	- 8.5515785
(n) 65	- 0.1303099	- 0·1327589	+ 9.4963762	+ 9.4893863	+ 8.4194668
(m) 60	0.1166930	- 0.1142492	+ 9.2399847	+ 9.2259768	+ 8.8762365
$\binom{l}{l}$ 55	- 0.0700194	- 0.0691116	+ 8.4210149	+ 8.3424620	+ 8.9645704
(k) 50	- 9.9911151	- 9.9883242	- 8.9715292	- 8.9802849	+ 8.8726938
(i) 45 (h) 40	- 9.8787748 - 9.7298705	- 9.8740388 - 9.7231864	- 9.2166880 - 9.2617099	- 9.5142830 - 9.5243751	+ 8·5494946 - 7·7310827
(h) 40 (g) 35	- 9.5389652	- 9.5303894	- 9.2012644	- 9.1904110	- 8.5018055
(f) 30	- 9.2973034	- 9.2869498	- 9.0545078	- 9:0407797	- 8.5819442
(e) 25	- 8.9906834	- 8.9787211	- 8.8190143	- 8.8028716	- 8.4734540
(d) 20	- 8.5947884	- 8·5814358	- 8.4764846	- 8.4583408	- 8.2134792
(c) 15	- 8.0635631	- 8.0490814	- 7.9842769	- 7.9645486	- 7.7769621
(b) 10	- 7.2931585	- 7.2778445	- 7.2405765	- 7.2196974	- 7.0696201
(a) 5	- 5.9516748	- 5.9358506	- 5.9146895	- 5.8931114	- 5.7644087
	For Y				
(a) 220	015.50000	+ 0:5470008	- 0:4220574	- 0:4220574	+ 8.6175819
(s) 90°	0.2470008	+ 0.2470008 + 0.6901310	- 9.4330574 - 9.5318034	- 9.4330574 - 9.5316394	+ 8.6529153
(r) 85 (q) 80	0.6902513	+ 0.6678596	- 9:3419850	- 9.3413336	+ 8.0000800
(q) 80 $(p)$ 75	0.6314069	+ 0.6303454	- 8.6637390	- 8.6622915	- 8.4895776
(0) 70	0.5788242	+ 0.5769696	+ 9.1666288	+ 9.1640997	- 8.7746230
(n) 65	0.2096441	+ 0.5068106	+ 9.5089703	+ 9.5051065	- 8.7979655
(m) 60	0.4225484	+ 0.4185795	+ 9.6551828	+ 9 6497706	- 8·58o31o5
(l) 55	0.3122423	+ 0'3105202	+ 9.7131009	+ 9.7059730	+ 7.7938709
(k) 50	0.1868569	+ 0.1802567	+ 9.7104777	+ 9.7015183	+ 8.7348596
(i) 45	0.0322112	+ 0.0245537	+ 9.6569269	+ 9.6460753	+ 8.9552090
(h) 40	9.8482803	+ 9.8389325	+ 9.5546877	+ 9.3867580 + 9.3867580	+ 9.0170874 + 8.9784933
(g) 35 (f) 30	9·6277228 9·3613860	+ 9.3494192	+ 9.1899976	+ 9.1736793	+ 8.8524161
(f) 30 (e) 25	9.0345607	+ 9.0214454	+ 8.9076402	+ 8.8897556	+ 8.6348340
(d) 20	8.6225580	+ 8.6084499	+ 8.5307617	+ 8.5115233	+ 8.3070025
(c) 15	8.0790521	+ 8.0641377	+ 8.0138557	+ 7.9935179	+ 7.8261828
(b) 10	7:3000019	+ 7.2844930	+ 7.2534441	+ 7.2322956	+ 7.0905743
(a) 5	5.9533797	+ 5.9375064	+ 5.9178667	+ 5.8962214	+ 5.7695215
	For Z				
	1				. 0 0 (
(s) 90°	0.6261821	- 0.5470008 - 0.6884752	- 9.6371774	+ 9.5791854 + 9.6760285	+ 8.9524822
(r) 85 (q) 80	0.7678168	- 0.0884725 - 0.6612111	- 9.7343814 - 9.5400439	+ 9'0700285	+ 8.2968896
	0.6958858	- 0.6152891	- 8·8572788	+ 8.7886091	- 8.7747365
(p) 75 (o) 70	0.6316093	- 0.2499224	+ 9.3423522	- 9'2855078	- 9.0486813
(n) 65	0.2470421	- 0.4640863	+ 9.6701397	- 9.6098714	- 9.0570453
(m) 60	0.4402824	- 0.3561102	+ 9.7972104	- 9.7345446	- 8.8210265
(l) 55	0.3100339	- 0'2238847	+ 9.8314870	- 9'7664717	+ 7.9967265
(k) 50	0.1224496	- 0.0645102	+ 9.8002633	- 9.7328467	+ 8.9200614
(i) 45	9.9638267	- 9.8740387	+ 9.7124483	- 9.6425981	+ 9.1067729
(h) 40	9.7386399	- 9.6469999	+ 9.5692858	- 9'4970218	+ 9.1279467
(g) 35	9.4690546	- 9.3756160	+ 9.3669419	- 9'2923462	+ 9.0404599
(f) 30	9.1435179	- 9°0483892	+ 9.0964143	- 9.0196344 - 8.6636805	+ 8.8552684 + 8.5651047
(g) 35 (f) 30 (e) 25 (d) 20	8:7440521	- 8.6473936	+ 8.7414327	- 8.6626805 - 8.1925454	+ 8.1457480
	8°2404822 7°5761881	- 8·1425016	+ 8.2730004	- 7·5534802	+ 7.5441700
(c) 15 (b) 10	6.6240091	- 6·5241632	+ 6.7017833	- 6.6189289	+ 6.6354528
(a) 5	4.9781334	- 4.8778024	+ 5.0669567	- 4.9834788	+ 5.0121282
(~, 3	7 7/ 334	7 - / / 00-4	3 2009301	7 7-377-2	. 5 -5 5 -

			1		
$g_{-9}^{5} \text{ or } h_{-9}^{5}$	$\operatorname{Log}(w^{\frac{1}{2}}x$			v' ₅ ) for h	
<i>y</i> = g or <i>n</i> = g	1845	1880	1845	1880	
0.0000000  - 8.7841985  - 8.9691516  - 8.9160252  - 8.5427706  + 8.4235322  + 8.7714726  + 8.9552542  + 8.9552542  - 7.7780114  - 8.4922123  - 8.5657426  - 8.4534063  - 8.1906276  - 7.7520085  - 7.0431796  - 5.7370767	8·2707413 8·6571217 8·6646936 8·7288877 8·7441145 8·5064845 8·4140647 8·2773300 7·9681024 7·7070576 7·9516729 7·6631237 7·8611823 7·9000781 7·9407530	8·14696 8·03670 7·92063 8·10923 8·28945 8·49952 8·29063 7·79313 6·87890 - 7·88655 - 7·77742 - ∞	7.5775236 8.3888842 8.1585292 8.4544632 8.2401528 7.8131344 - 7.9361862 - 8.3913505 - 8.2023493 - 7.8512272 - 7.7988690 - 7.9032887 - 8.0353216 6.5810522 7.9212747	6·69671 7·84657 7·86627 7·32780 - 6·57976 7·86013 8·20903 8·45107 8·50108 8·43191 8·33918 - 7·15124 6·85530	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
	$\operatorname{Log}(w^{rac{1}{2}}y$			$y'_5$ ) for $h$	
	1845	1880	1845	1880	
+ 8.6175819 + 8.6527075 + 7.9992549 - 8.4877440 - 8.7714195 - 8.7930713 - 8.5734550 + 7.7848423 + 8.7235110 + 8.9600151 + 8.9600151 + 8.8317462 + 8.6121802 + 8.2826339 + 7.8004216 + 7.0637862 + 5.7421041	- 8.6411224 - 8.7416416 - 8.6828380 - 8.6724531 - 8.6356854 - 8.6161910 - 8.5350628 - 8.2451024 7.2429021 7.6059813 7.6406804 7.8797909 7.8502103 7.8267446 8.2800222 7.8460596	- 8.72309 - 8.87453 - 8.87498 - 8.79807 - 8.65002 - 8.45914 - 8.31829 - 8.08651 - 7.78072 7.64074 7.79077 8.16982 8.32443 8.47478	- 8.6276273 - 8.7532337 - 8.7117297 - 8.6769536 - 8.5570867 - 8.4058365 - 8.2410377 - 7.6594742 - 7.4859401 7.3561039 8.0029276 7.2947642 - 7.8609342 - 7.755939 - 7.6685059 - 7.9212747	- 8.48251 - 8.56828 - 8.54798 - 8.37860 - 8.22091 - 7.94149 - 7.71623 - 7.54724 - 7.71278 - 7.60598 - 7.93366 - 8.13264 - 7.89553 - 7.97826	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
	$\text{Log}(w^{\frac{1}{2}})$	z' ₅ ) for g	$\log (w^{\frac{1}{2}})$	$z'_{5}$ ) for $h$	
	1845	1880	1845	1880	
- 8·8728544 - 8·9061562 - 8·2453493 + 8·7292705 + 9·0003423 + 9·0058468 + 8·7653813 - 7·9678981 - 8·8656463 - 9·0481098 - 9·0659117 - 8·9753787 - 8·9753787	- 9.0564722 - 9.1855426 - 9.1784364 - 8.6720005 - 8.1743064 8.2194971 - 7.9829767 - 8.6721861 - 8.4981746 - 7.9479926 - 7.9554364 - 7.94242489 - 8.4495474 - 7.9125511 8.0658993 8.1671494	- 8.66692 - 8.91995 - 8.92728 - 8.9258 - 8.98581 - 8.93611 - 8.53033 - 8.23034 7.97930 8.56022 8.22809 7.78471 - 7.84329	- 6.8022733 - 8.0894070 - 8.4298779 - 8.7953513 - 8.7185752 - 8.6903514 - 8.7051457 - 8.3959544 7.5582086 8.2096353 8.0715213 8.4028785 8.2066044 7.9985877 7.8132671	- \infty - \	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

	For X			1	
Co-latitude	$g_6^{\ 5} \ { m or} \ h_6^{\ 5}$	$g_{-6}^{}$ or $h_{-6}^{}$	$g_8{}^5$ or $h_8{}^5$	$g_{-8}^{5} \text{ or } h_{-8}^{5}$	$g_{10}^{5}$ or $h_{10}^{5}$
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.8480308 9.9714659 9.8846895 9.7149869 9.3730566 - 8.5357440 - 9.4017610 - 9.5931084 - 9.6492947 - 9.6283299 - 9.5463662 - 9.4065397 - 9.2045879 - 8.9289140 - 8.5568113 - 8.0432565 - 7.2850675 - 5.9507610	+ 9.8480308 + 9.9710282 + 9.8827917 + 9.7098492 + 9.3582294 - 8.6255116 - 9.4116343 - 9.5956362 - 9.6478031 - 9.6237012 - 9.5389910 - 9.3966815 - 9.1924902 - 8.9148395 - 8.5410555 - 8.0261493 - 7.2669705 - 5.9320598	- 9'1490608 - 9'2193393 - 8'8852868 + 8'5594681 + 9'1310105 + 9'2769513 + 9'2687067 + 9'1241944 + 8'7459365 - 8'2542427 - 8'8219530 - 8'9131451 - 8'8487138 - 8'6664272 - 8'3605746 - 7'8938405 - 7'1670341 - 5'8508350	- 9'1490608 - 9'2187329 - 8'8815783 + 8'5674053 + 9'1305393 + 9'2731480 + 9'2613193 + 9'1118191 + 8'7216305 - 8'2840662 - 8'8172420 - 8'9019286 - 8'8335535 - 8'6482813 - 8'3400631 - 7'8714962 - 7'1433738 - 5'8263799	+ 8.5149195 + 8.5105352 - 6.9169466 - 8.5235450 - 8.6636643 - 8.5072251 - 6.7389666 + 8.4824596 + 8.6487281 + 8.5708902 + 8.2071875 - 7.733535 - 8.2352723 - 8.2352723 - 8.0379213 - 7.6372279 - 6.9521277 - 5.6592397
	For Y				
(s) 90° (r) 85 (q) 85 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 49 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0:0000000 9:6276718 9:9052297 0:0417849 0:1104743 0:1334582 0:1196943 0:928580 9:937802 9:8812609 9:7321777 9:5410987 9:2992738 8:9925064 8:5964842 8:0651556 7:2946750 5:9531447	0.0000000 + 9.6275296 + 9.9046652 + 0.0405304 + 0.1082824 + 0.1150037 + 0.0666805 + 9.9860154 + 9.8718562 + 9.7211303 + 9.5284557 + 9.2851312 + 8.9770064 + 8.5798109 + 8.0475295 + 7.2763463 + 5.9343854	0'000000 - 8'9121285 - 9'1363670 - 9'1685792 - 9'0371468 - 8'5022674 + 8'7970816 + 9'1743172 + 9'3170538 + 9'3549544 + 9'2133328 + 9'2133328 + 9'2133328 + 9'2133328 + 7'9384797 + 7'1836764 + 5'8549215	0'0000000 - 8'9119426 - 9'1356288 - 9'1669387 - 9'0342805 - 8'4978884 + 8'7999478 + 9'1662389 + 9'3068998 + 9'3426560 + 9'3032788 + 9'1967996 + 9'0213238 + 8'7666074 + 8'4107954 + 7'9994302 + 7'1597081 + 5'8303901	0.0000000 + 8.2566255 + 8.4059061 + 8.2462170 - 7.1280566 - 8.3199933 - 8.4746201 - 8.3502583 - 7.0999038 + 8.6378699 + 8.6294603 + 8.6294603 + 8.1575516 + 7.6987284 + 6.9779572 + 5.6654972
	For Z				
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 9.7717676 0.0444535, 0.1727984 0.2297978 0.2374021 0.2042764 0.1336986 0.0259632 9.8791427 9.6891104 9.4490098 9.1479908 8.768581 8.2810032 7.6288902 6.6852835 5.0445013	0'0000000  - 9'7055412  - 9'9776839  - 0'1051414  - 0'1609355  - 0'1670526  - 0'1322018  - 0'597125  - 9'9499368  - 9'8010085  - 9'6088651  - 9'3667143  - 9'0637686  - 8'6826221  - 8'1935299  - 7'5401931  - 6'5956837  - 4'9543486	0.0000000 - 9.1654824 - 9.3849215 - 9.4090922 - 9.2664274 - 8.7193658 + 8.9882183 + 9.3430851 + 9.4575015 + 9.4612539 + 9.3831634 + 9.2298062 + 8.9971371 + 8.6715895 + 8.2257704 + 7.6048821 + 6.6829630 + 5.0549625	0.0000000 + 9.1147486 + 9.3333629 + 9.3560788 + 9.2109516 + 8.6552147 - 8.9359911 - 9.2855938 - 9.3967755 - 9.3976007 - 9.3167172 - 9.1607070 - 8.9255738 - 8.5978114 - 8.1500853 - 7.5276528 - 6.6045970 - 4.9759004	0.0000000 + 8.5972093 + 8.7417751 + 8.5744230 - 7.4280542 - 8.6193519 - 8.7552865 - 8.6080236 - 7.3567593 + 8.5772358 + 8.7896899 + 8.7976660 + 8.6734926 + 8.4260609 + 8.0375321 + 7.4579635 + 6.5640914 + 4.9523939

	$\text{Log}(w^{\frac{1}{2}})$	$x_5'$ ) for $g$	Log (w	$(x'_5)$ for $h$	1
$g_{-10}^{5}$ or $h_{-10}^{5}$	1845	1880	1845	1880	
+ 8·5149195 + 8·5097182 - 6·9750684 - 8·5230694 - 8·6600163 - 8·4990544 - 6·3609616 + 8·4759379 + 8·6363154 + 8·5528625 + 8·1787440 - 7·7423389 - 8·2189763 - 8·2189763 - 8·0127676 - 7·6096730 - 6·9229084 - 5·6290309	- 7.8608680 - 8.2613761 - 8.3513349 - 8.3443584 - 8.4167417 - 8.3298842 - 8.4924325 - 8.4586099 7.3967170 - 7.9137447 - 7.8362500 - 7.8575145 - 7.7252716 - 8.1727936 - 8.1727936 - 8.1528505 - 7.9795985	7.66757 7.64119 7.81485 - 7.63466 - 8.14374 - 8.19781 - 8.18552 - 7.87526 - 7.46038 7.32268 7.94960 7.76060 - 7.76060 - 7.91467 - 8.28813	- 8.5228919 - 8.7435952 - 8.7935824 - 8.4445302 - 8.3944653 - 8.6211544 - 8.3124287 - 8.5376773 - 8.1632863 - 8.0403506 - 7.6931590 7.7371234 7.7194420 - 6.9442412 - 7.5843801 - 7.8299728	7·50124 6·77589 7·85863 7·45361 - 6·83048 - 7·85851 - 8·30249 - 8·24621 - 7·83950 - 7·24696 7·67513 7·95534 7·38169 8·09721	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
		y' ₅ ) for g	$\operatorname{Log}(w^{\frac{1}{2}})$	y' ₅ ) for h	
	1045	1000	1045	1000	
0.0000000 + 8.2563958 + 8.4049942 + 8.2441904 - 7.1245159 - 8.3145839 - 8.4670430 - 8.3402793 - 7.0873606 + 8.3701150 + 8.6200240 + 8.6741613 + 8.6066146 + 8.4295373 + 8.1306179 + 7.6702555 + 6.9483493 + 5.6351937	- 8'1032502 - 8'2154171 - 7'836'3099 7'2641315 - 7'3579129 - 7'9457600 - 8'3462343 - 8'4275935 - 8'1850126 - 8'0550403 - 8'1653482 - 8'0703184 - 8'1904844 - 8'1746'790 - 7'4195641	- 8.10154 - 8.41361 - 8.54992 - 8.63666 - 8.65804 - 8.60453 - 8.55253 - 8.28267 - 8.29698 - 8.24988 - 8.31360	- 8.1423142 - 8.4788963 - 8.7138458 - 8.7404902 - 8.7728863 - 8.6844571 - 8.6432656 - 8.5902321 - 8.6806150 - 8.5627723 - 8.3510826 - 7.9453797 7.7303613 - 7.0111768 - 7.8200267	- 7'98001 - 8'28311 - 8'48675 - 8'64052 - 8'71885 - 8'73445 - 8'72408 - 8'69083 - 8'69083 - 8'63570 - 8'51066 - 8'19366 - 7'46299 7'98417	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)
	$\operatorname{Log}(w^{\frac{1}{2}})$	z'5) for g	$\log (w^{\frac{1}{2}})$	z' ₅ ) for h	
	1845	1880	1845	1880	
0.000000 - 8.5560184 - 8.6994536 - 8.5296450 + 7.4155568 + 8.5743433 + 8.7063346 + 8.5544908 + 7.2395497 - 8.5236400 - 8.7312277 - 8.7355930 - 8.6082796 - 8.3580963 - 7.9672272 - 7.3857752 - 6.4905217 - 4.8779801	7.5162539 8:2034815 -8:1629384 8:1009884 -7:9755248 -8:5495309 -8:7589565 -8:2137137 8:1640396 8:0818204 -8:1786440 -8:1501532 -7:9020435 7:9570673 8:3184171	7'99338 - 8'61231 - 8'66607 - 8'81661 - 8'71964 - 8'42592 - 8'28046 7'83396 8'69559 8'55166 8'46638 8'19065 8'18498	- 8.6456118 - 9.0238803 - 8.9023695 - 8.9223940 - 8.8152901 - 8.9684705 - 8.8466038 - 8.6557825 - 8.7616968 - 8.8708949 - 8.5257042 - 8.3185576 - 8.0469035 - 7.8509242 - 7.3258050	- 8:49189 - 8:44863 - 8:57667 - 8:71047 - 8:58623 - 8:58082 - 8:62920 - 8:73566 - 8:62717 - 8:36065 7:78828 8:17655 7:71700	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

	For X				
		a 6 on 7 6	46 on 16	4 6 au I 6	a 6 an 7 6
Co-latitude	$g_6^6$ or $h_6^6$	$g_{-6}^{}$ or $h_{-6}^{}$	$y_8^6$ or $h_8^6$	$y_{-8}^{6}$ or $h_{-8}^{6}$	$g_{10}^{6} \ { m or} \ h_{10}^{6}$
(1) ==0			0.0000000		
(8) 90°	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
(r) 85	- 9.7018271	- 9.7079634	+ 9.2956523	+ 9'2967115	- 8.7322230 - 8.9004529
(q) 80	- 9.9745342	- 9.9801063	+ 9.5341821	+ 9.5342654	818074529
(p) 75	- 0.1029135	- 0'1075639	+ 9.6001562	+ 9.5985284	- 8.8052011
(0) 70	- 0.1299296	0.1633578	+ 9.5547814	+ 9.5504610	- 8.2141514
(n) 65	- 0'1676216	- 0'1694749	+ 9.38942 <b>51</b> + 8.9913836	+ 9.3805005	+ 8.5768194
(m) 60	- 0.1342627	0'1346240	+ 0 9913030	+ 8.9692204 - 8.6189258	+ 8.8586838
(l) 55 (k) 50	- 0.0640288	- 0.0621348	- 8.5853185	- 9·1208438	+ 8.8677574 + 8.6735589
7.1	- 9.8096628	- 9:9523590 - 9:8034309	- 9·1195943 - 9·2278415	- 9°2223484	+ 7.9953717
( ) )	- 9.6197116	- 9.6112874	- 9°1979397	- 9'1881833	- 8·2923239
	- 9.3796898	- 9.3691366	- 9·0718266	- 9.0586426	- 8·5010438
1 23	- 9.0787447	- 9.0661308	- 8.8562325	- 8.8401093	- 8.4488531
(f) 30 (e) 25	- 8.6994087	- 8.6850443	- 8.5420076	- 8.5233525	- 8.2380548
(d) 20	- 8.5118812	- 8·1959523	- 8.1038925	- 8.0831114	- 7.8709182
(c) 15	- 7.5598154	- 7.5426154	- 7.4882266	- 7.4657494	- 7:3045366
(b) 10	- 6.6162430	- 6.5981062	- 6.5696899	- 6·5459754	- 6.4187091
(a) 5	- 4.9754821	- 4.9567711	- 4'9435949	- 4.0101260	- 4.8113853
(/ )	1 7/34001	7 7301111	マ ノサンファサブ	T 7*7*****	7 -1.3033
	FOR Y				
(s) 90°	0.6261821	+ 0.6261821	- 9.4500908	- 9.4500908	+ 8.5941008
(r) 85	0.7678096	+ 0.7676674	- 9.5399397	- 9.5397538	+ 8.6115220
(q) 8o	0.7410006	+ 0.7404361	- 9.3081397	- 9.3074012	+ 7.6303079
(p) 75	0.6958221	+ 0.6945676	- 7.4050305	- 7.4033900	- 8.5551361
(0) 70	0.6314981	+ 0.6293062	+ 9'3214522	+ 9.3182829	- 8.7737477
(n) 65	0.2468723	+ 0'5435266	+ 9.5887161	+ 9.5843371	- 8.7323444
(m) 60	0.4403446	+ 0.4356540	+ 9.6983377	7 9.6922039	- 8.3234122
(l) 55	0.3097209	+ 0'3035434	+ 9.7245965	+ 9.7165182	+ 8'4130251
(k) 50	0.1520263	+ 0.1442912	+ 9.6858812	+ 9.6787272	+ 8.8346005 + 8.9623771
(i) 45 (h) 40	9·9633505 9·7380809	+ 9.9539458	+ 9.5982508	+ 9.5859524 + 9.4387456	+ 8.9604329
	9.4084151	+ 9.7270335	+ 9.4531922 + 9.2495091	+ 9.2329759	+ 8.8607832
(g) 35 (f) 30	9'1428028	+ 9.1286602	+ 8.9780068	+ 8.9595127	+ 8.6682513
(e) 25	8.7432686	+ 8.7277686	+ 8.6223061	+ 8 6020369	+ 8.3733229
(d) 20	8.2396397	+ 8.2229664	+ 8.1533437	+ 8.1315402	+ 7.9507637
(c) 15	7:5752978	+ 7.5576717	+ 7.5152786	+ 7.4922291	+ 7'3470302
(b) 10	6.6230834	+ 6.6047547	+ 6.5814877	+ 6.5575194	+ 6.4369222
(a) 5	4.9771862	+ 4.9584269	+ 4.9465122	+ 4.9219808	+ 4.8158457
	E 7			,	
	For Z				
(8) 90°	0.6931288	0.6261821	- 9.6261820	+ 9.5750295	+ 8.8573422
(r) 85	0.8331412	- 0.7660116	- 9.7144931	+ 9.6629504	+ 8.8733116
(q) 80	0.8014600	- 0.7337875	9.4782341	+ 9.4251421	+ 7.8920724
(p) 75 (o) 70	0.7480711	- 0.6033030	- 7.6383202	+ 7°4148970 - 9°4181160	- 8.8027871 - 9.0101650
(o) 70 (n) 65	0.5720541	- 0.6022920 - 0.5008023	+ 9.4697359 + 9.7220846	- 9.6676437	- 8·9538464
(m) 60	0.4461615	- 0.3731847	+ 9.8124951	- 9°7556042	- 8·5276124
(l) 55	0.2917955	- 0'2169079	+ 9 8150873	- 9.7556765	+ 8.5879941
(k) 50	0.1024729	- 0.0282424	+ 9.7507603	- 9.6887322	+ 8.9825931
(i) 45	9.8824654	- 9.8034308	+ 9.6258607	- 9.5611617	+ 9.0764345
(h) 40	9.6162463	- 9.5351008	+ 9.4398768	9'3725198	+ 9.0337061
(g) 35	9.2975585	- 9.2143633	+ 9.1871911	- 9.1172615	+ 8.8851305
(f) 30	8.9127517	- 8.8276302	+ 8.8565100	- 8.7841683	+ 8.6334676
(e) 25	8.4405819	- 8.3537168	+ 8.4281864	- 8 3536646	+ 8.2659482
	7.8453899	- 7.7570181	+ 7.8676712	- 7.7912664	+ 7.7518584
(c) 15	7.0602633	- 6.9706679	+ 7.1088293	- 7:0308967	+ 7.0273634
(b) 10	5.9349227	- 5.8444248	+ 6.0019126	- 5.9228589	+ 5.9441447
(a) 5	3.9897791	- 3.8987228	+ 4.0676935	- 3.9879448	+ 4.0238254

	$\log (w^{\frac{1}{2}})$	$x'_a$ ) for $a$	$\text{Log}(w^{\frac{1}{2}})$	$x'_{6}$ ) for $h$	
$g_{-10}^{6}  ext{ or } h_{-10}^{-6}$	1845	1880	1845	1880	
0.0000000 - 8.7326575 - 8.8996328 - 8.8017936 - 8.1993340 + 8.5764312 + 8.8563998 + 8.6554042 + 7.9453522 - 8.2892942 - 8.4868911 - 8.4296689 - 8.2152776 - 7.8453386 - 7.2767961 - 6.3894194 - 4.7811604	8·3220225 8·5558134 8·55738433 8·1407139 8·0797922 8·4281822 7·1322741 7·6139700 7·6844079 7·0346177 7·8597943 7/9853430 6·2118474 8·1270250 8·1243974	- 7.56594 7.52679 7.58227 8.30135 8.19781 7.97236 7.81950 - 7.51007 - 7.38714 7.30222 7.49257 - 7.65639 - 7.92785	7·8365891 - 7·3474915 7·5290310 8·0106838 - 7·4760123 - 7·8818503 - 7·9561828 7·4189934 - 7·5102008 - 7·8657050 - 7·7026125 7·9052062 7·9522101 7·8633082 - 7·7759428	8.03517 7.74350 - 7.74350 - 7.71549 - 6.88847 7.25645 - 7.22331 - 6.80128 - 6.80496 - 7.90701 - 8.08612 - 7.49257 7.90329 7.24527	(s) (r) (q) (p) (o) (u) (t) (l) (k) (i) (h) (g) (f) (e) (d) (c) (a)
	$\text{Log }(w^{\frac{1}{2}}y$	$g_6'$ ) for $g$	$\text{Log }(w^{\frac{1}{2}})$	$y'_6$ ) for $h$	
	1845	1880	1845	1880	
+ 8.5941008 + 8.6112923 + 7.6293960 - 8.5531095 - 8.7702070 - 8.7269350 - 8.3158351 + 8.4030461 + 8.8220573 + 8.9471849 + 8.9425870 + 8.8403599 + 8.6454056 + 8.3482845 + 7.9238300 + 7.3185573 + 6.4073143 + 4.7855422	- 8.2562708 - 8.3381841 - 8.0922190 - 7.7693632 7.4767396 7.7804754 7.8844903 7.5946721 7.2429021 7.9720150 7.6326377 7.3496129 7.8545317 8.1708888 7.9829826 7.5273008	- 7:40433 - 7:22819 7:90912 8:09501 8:20810 8:22321 8:00943 7:74857 7:58532 7:00392 - 7:05041 7:18082 7:94712 7:97528	- 8.4885122 - 8.5682829 - 8.5658519 - 8.5383710 - 8.5155776 - 8.4935755 - 8.2829565 - 7.9223245 - 6.8961146 7.885279 6.7171973 7.7801580 8.1501532 8.1737429 7.6518002 7.6346136	8·12906 8·26491 8·17429 8·30296 8·34331 8·23055 8·11105 7·81950 7·73426 7·52680 7·71719 7·56999 7·62836 7·73299	(s) (r) (q) (p) (o) (n) (m) (l) (k) (d) (f) (e) (d) (c) (b) (a)
	$\log (w^{\frac{1}{2}})$	$z'_{6}$ ) for $g$	$\log (w^{\frac{1}{2}})$	$z'_{6}$ ) for $h$	
	1845	1880	1845	1880	
- 8.8159495 - 8.8313068 - 7.8390201 + 8.7608936 + 8.9655406 + 8.9060575 + 8.4729392 - 8.55420381 - 8.9301203 - 9.0200928 - 8.9739115 - 8.8221175 - 8.5674862 - 8.1973070 - 7.6809313 - 6.9545865 - 5.8700068 - 3.9488545	8·1057094 8·5076143 8·4455581 8·7657289 8·8528454 8·8127578 8·6405960 8·2732009 7·8422392 - 7·9520897 - 8·3900053 7·798890 8·4990580 8·3902488 8·3569705 7·4966320	8·13583 - 7·67898 - 8·25299 - 8·62164 - 8·35829 7·93194 8·42288 7·64638 - 8·10622 - 8·13157 - 8·43576 - 8·53493 - 8·53493 - 8·35536 7·43716	- 8:4278144 - 8:6131640 - 8:6272598 - 8:7970524 - 7:8210685 8:0151282 8:0417548 8:3488798 - 8:3576798 - 8:2892911 - 8:0918046 6:8575145 - 7:4629942 - 8:1309255 - 8:1317508 - 8:3015966	7.83030 8.11831 8.58077 8.43369 8.66753 8.28733 8.32788 - 7.51248 - 7.97930 - 8.18001 - 8.10018 - 8.13506 - 8.23223 - 8.37142	(s) (r) (q) (p) (o) (n) (m) (l) (k) (i) (h) (g) (f) (e) (d) (c) (b) (a)

	FOR X				$\text{Log}(w^{\frac{1}{2}})$	e'6) for g	$\log (w^{\frac{1}{2}})$	x'6) for h
Co-latitude	$g_7^6$ or $h_7^6$	$g_{-7}^{-6}$ or $h_{-7}^{-6}$	$g_{\scriptscriptstyle 9}{}^6$ or $h_{\scriptscriptstyle 9}{}^6$	$g_{-9}^{-6}$ or $h_{-9}^{-6}$	1845	1880	1845	1880
(a) 90° (r) 85 (g) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.8480308 9.9664450 9.8622756 9.6503486 9.1463944 - 9.1283213 - 9.5213816 - 9.6360157 - 9.6432089 - 9.5774145 - 9.4481982 - 9.2552441 - 8.9912833 - 8.6409887 - 8.1759113 - 7.5405838 - 6.6686139 - 4.9746816	+ 9*8480308 + 9:9659374 + 9:8600280 + 9:6438687 + 9:1204642 - 9:1514034 - 9:5270905 - 9:6363768 - 9:6398999 - 9:5709681 - 9:4388866 - 9:2432851 - 8:9769077 - 8:6244644 - 8:1575511 - 7:5207438 - 6:5876879 - 4:9530922	- 9'0947032 - 9'1519988 - 8'7313760 + 8'7232496 + 9'1381567 + 9'2331623 + 9'1702472 + 8'9307401 + 8'0840897 - 8'6461717 - 8'8451509 - 8'8255609 - 8'6758386 - 8'4068674 - 8'0010157 - 7'4082118 - 6'5050224 - 4'8877906	- 9'0947032 - 9'1513111 - 8'7265292 + 8'7272896 + 9'1367411 + 9'2282632 + 9'1611072 + 8'9143735 + 8'0068830 - 8'6475391 - 8'8114957 - 8'8114957 - 8'6580850 - 8'3861221 - 7'9778270 - 7'3831009 - 6'4785200 - 4'8604442	8.6188828 8.7794954 8.7191750 8.7497453 8.4135127 5.6766917 - 7.9702025 - 8.4902089 7.8503571 8.0233838 7.9668659 7.4872459 7.7223666 7.2204476 7.8633082 8.1423258	- 7.78253 - 7.96153 - 7.33773 - 8.00824 - 7.13151 - 6.97770 - 7.29026 6.55824 7.52165 8.01816 7.89992 8.02280 7.79469 7.62009	7'1904535 7'6967100 8'4554548 8'2642132 8'5786640 8'4697633 8'2010325 8'3761385 8'2682080 7'9181763 8'0425866 7'9461168 7'5945033 - 7'7197033 - 8'0525695 - 7'8867338	8·31638 7·86106 8·46807 8·28347 7·88847 - 7·27873 - 7·67561 - 7·74857 6·78697 - 7·58750 - 7·71719 - 7·63366 - 7·58260 - 8·07636
	For Y				$\mathbf{Log}\ (w^{rac{1}{2}}$	y' ₆ ) for g 1880	$\log (w^{\frac{1}{2}}$ 1845	y' ₆ ) for h
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10	0.000000 9.7052301 9.9778930 0.1062001 0.1631482 0.1706894 0.1374905 0.0668316 9.95590097 9.8120999 9.6219783 9.3817910 9.0806906 8.7012143 8.2135658 7.5614014 6.6177565 4.9769512	0.0000000 + 9.7050661 + 9.9772416 + 0.1047526 + 0.1666191 + 0.1668256 + 0.1320783 + 0.0597037 + 9.9500503 + 9.8012483 + 9.6092313 + 9.3672029 + 9.0643723 + 8.6833297 + 8.1943274 + 7.5410636 + 6.5966080 + 4.9553059	0.0000000 - 8.9330689 - 9.1444282 - 9.1490291 - 8.9478840 + 6.4238659 + 8.9896321 + 9.2426252 + 9.3284197 + 9.3189423 + 9.0753267 + 8.8395097 + 8.5117761 + 8.6644191 + 7.4424626 + 6.5198394 + 4.8914378	0.000000 - 8.9328611 - 9.1436031 - 9.1471955 - 8.9446805 + 6.4189717 + 8.9827766 + 9.335966 + 9.3170711 + 9.3051970 + 9.2172353 + 9.0568485 + 8.8188398 + 8.8188398 + 8.4891223 + 8.0400505 + 7.4167014 + 6.4930513 + 4.8640204	8:0147733 8:0634949 8:0846336 8:1189168 8:1609715 7:3391043 - 7:9407101 - 8:0282319 - 7:6992571 - 8:0330062 - 8:1165800 - 8:1965633 - 8:0327054 - 7:5605305 - 7:7120783	7·31996 7·97758 7·99553 7·91988 8·02692 8·02112 7·76909 7·72002 7·33971 6·90428 6·92118 6·99634 7·47667	- 8.0840998 - 8.2383470 - 8.2383470 - 7.8661915 - 7.8641924 - 8.1455729 - 8.3753121 - 8.4218790 - 7.8490194 - 8.2063983 - 8.1165800 - 7.9418773 - 8.1192588 - 8.0724139 - 6.8980886	8'08053 8'40524 8'39433 8'33949 7'84102 - 7'67561 - 7'72'03 - 6'24290 - 5'92474 7'97983 8'00364 7'78471 - 7'37021
	For Z				$\text{Log}(w^{\frac{1}{2}}$	$z'_6$ ) for $g$	$\log (w^{\frac{1}{2}})$	z' ₆ ) for h
	FOR Z	i i			1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 9.8281892 0.0959812 0.2160798 0.2613404 0.2535051 0.2009482 0.1065517 9.9700764 9.7888699 9.5578035 9.2685990 8.9083085 8.4562006 7.8769925 7.1040462 5.9872770 4.0472211	0'0000000 - 9'7707737 - 0'0379565 - 0'1570598 - 0'2009684 - 0'1914647 - 0'1369725 - 0'0404317 - 9'9016677 - 9'7180968 - 9'4846621 - 9'1931576 - 8'8307058 - 8'8307058 - 8'3766414 - 7'7957425 - 7'0214232 - 5'9036415 - 3'9629652	0.0000000 - 9.1530328 - 9.3595991 - 9.35951847 - 9.1439786 - 5.5623292 + 9.1484167 + 9.3783063 + 9.4350579 + 9.2655467 + 9.0585168 + 8.7635399 + 8.7635399 + 8.7635399 + 7.8242966 + 7.0815702 + 5.9858308 + 4.0581834	0'0000000 + 9'1075970 + 9'3132615 + 9'3082346 + 9'0930671 - 6'8976726 - 9'0985782 - 9'3245381 - 9'3786764 - 9'3319243 - 9'2024825 - 8'9925796 - 8'6949229 - 8'2921656 - 7'7511841 - 7'0067707 - 5'9097887 - 3'9813801	- 8.3734036 - 8.2897752 - 8.3677889 - 7.8242270 - 7.8227997 - 7.3572025 7.8341298 - 7.8081594 7.0861081 - 7.6601588 - 7.9404887 8.0070622 8.1582997 8.1729725 - 6.4481196	- 8.33219 - 8.18000 - 8.30296 - 8.12839 8.14205 8.55010 8.41102 8.39671 - 6.82783 - 6.74938 - 7.76628 6.99634 7.99860	- 7.2152239 - 8.4614349 - 8.0185615 6.5294459 8.3597187 8.3134101 8.0389682 8.2418150 8.4412755 8.5347118 8.3214860 8.4423871 7.9458467 - 7.7126215 - 8.1431234	7.55404 - 7.67655 7.92063 7.84271 - 7.90198 7.04722 8.07675 8.25362 7.48104 - 7.68961 - 6.95897 7.53145 7.67124

	FOR X				$\operatorname{Log}(w^{\frac{1}{2}}$	$x_7'$ ) for $g$	$\text{Log}(w^{\frac{1}{2}}$	$x_7'$ ) for $h$
Co-latitude	$g_7^7 \text{ or } h_7^7$	$g_{-7}^{7} \text{ or } h_{-7}^{7}$	$g_9^7$ or $h_9^7$	$g_{-9}^{7}$ or $h_{-9}^{7}$	1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 - 9.7672204 - 0.0350308 - 0.1551594 - 0.2004608 - 0.1926757 - 0.1401767 - 0.0458447 - 9.9094380 - 9.7283022 - 9.4973065 - 9.2081705 - 8.88479443 - 8.3958946 - 7.8167367 - 7.0438311 - 5.9270920 - 3.9870544	0'0000000 - 9'7732654 - 0'0404481 - 0'1595515 - 0'2034600 - 0'139564 - 0'1394639 - 0'0429233 - 9'9041593 - 9'7205884 - 9'4871538 - 9'1956492 - 8'8331973 - 8'3791330 - 7'0239148 - 5'9061333 - 3'9654569	0.000000 + 9.2948460 + 9.5240844 + 9.5726957 + 9.4968727 + 9.2690992 + 8.5857014 - 8.9119586 - 9.1691602 - 9.1966683 - 9.1064297 - 8.9208678 - 8.6397262 - 8.2487225 - 7.7162532 - 6.9779215 - 5.8850439 - 3.9590140	0'0000000 + 9'2958431 + 9'5239883 + 9'5706533 + 9'4916408 + 9'2576711 + 8'5362787 - 8'9220202 - 9'1667829 - 9'1888423 - 9'0945334 - 8'9054903 - 8'6212797 - 8'2275948 - 7'6928567 - 6'9527063 - 5'8584985 - 3'9316574	7'4601380 - 7'0367017 8'1051553 - 8'0326528 - 8'1736014 - 8'3202189 - 8'0929034 - 8'1322038 - 7'9024637 6'9254732 - 7'5860823 - 7'5662136 - 7'6301487 - 7'8615605 - 7'7471710	6·29877 7·77346 7·84854 8·03460 7·68527 7·44516 7·99757 7·86095 7·93334 7·18303 6·57876 - 7·39428 - 7·93448	- 8·1049500 - 7·5635107 - 8·1465479 - 8·3044840 7·0916451 8·0153113 - 8·3169655 - 8·5848310 - 8·1409060 - 7·8180978 - 7·6201536 6·5905730 - 7·1756352 - 6·9722588 7·8881695	- 7'03913 5'99531 - 7'60399 - 7'60863 - 7'71009 - 7'81950 - 7'62311 - 7'28647 7'26601 7'56103 7'41841 7'13613
	Ti 1/2				$\text{Log}(w^{\frac{1}{2}}$	y' ₇ ) for g	$\text{Log}(w^{\frac{1}{2}}$	$y'_7$ ) for $h$
	For Y				1845	1880	1845	1880
(a) 90° (7) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.6931288 0.8331334 0.8014293 0.7480027 0.6719375 0.5718719 0.4459061 0.2914598 0.1050512 9.8819549 9.6156469 9.2968728 8.9119850 8.4397419 7.8444867 7.0593089 5.9339393 3.9887580	+ 0.6931288 + 0.8329694 + 0.8007779 + 0.7465552 + 0.6694084 + 0.5680081 + 0.4404939 + 0.2843319 + 0.0960918 + 9.8711033 + 9.6028999 + 9.2822847 + 8.8956667 + 8.4218573 + 7.0389711 + 5.9127818 + 3.9671127	- 9.4626799 - 9.5435079 - 9.2647984 + 8.6132826 + 9.4264533 + 9.6436286 + 9.7223386 + 9.7192733 + 9.6516874 + 9.5247054 + 9.3372983 + 9.0835942 + 8.7521636 + 8.3832810 + 7.7623503 + 7.0032075 + 5.8960914 + 3.9617485	- 9'4626799 - 9'5433001 - 9'2639733 + 8'6114490 + 9'4232498 + 9'6387344 + 9'7154831 + 9'7102447 + 9'6403388 + 9'5109601 + 9'3211520 + 9'0651160 + 8'7314937 + 8'3006272 + 7'7379817 + 6'9774463 + 5'8693033 + 3'9343311	- 8-4150572 - 8-5201842 - 8-4501539 - 8-5156080 - 8-3178164 - 8-2436981 - 8-2825187 - 8-1811716 - 8-2976521 - 8-0889753 - 7-9643672 - 7-6331237 - 7-73324213 - 7-6845927 - 7-9666335	- 8.26467 - 8.46312 - 8.40014 - 8.31136 - 8.18128 - 8.17360 - 8.0189 - 8.10847 - 8.31845 - 8.25515 - 8.05057 - 8.05005 - 7.94712 - 8.18313	- 7.8165137 - 7.6698379 - 7.3377317 - 7.6858171 - 7.4003512 - 7.4760123 7.8844903 8.3417891 8.1432692 7.7171318 7.4421030 7.7058657 7.3752551 7.1256613 - 7.0234113 7.0969230	8:56320 8:70446 8:55522 8:52269 8:40698 8:21323 7:78758 - 7:13227 - 7:83396 - 8:02854 - 7:89992 - 7:74902 - 7:65639 - 7:93448
	For Z					$z'_{7}$ ) for $g$	i i	$z'_{7}$ ) for $h$
	TUR Z				1845	1880	1845	1880
(a) 90° (r) 85 (q) 80 (p) 75 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (k) 49 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.7511208 0.8895107 0.8529356 0.7913003 0.7035474 0.5881051 0.4427808 0.2645966 0.0495342 9.7921409 9.4848877 9.1170959 8.6730177 8.1281427 7.4413277 6.5353676 5.2368647 2.9924417	- 0.6931288 - 0.8313136 - 0.7941295 - 0.7314989 - 0.6423943 - 0.5252838 - 0.3780247 - 0.1976965 - 9.9803458 - 9.7205884 - 9.7205884 - 9.4109673 - 9.0408760 - 8.5946367 - 8.0478056 - 7.3593001 - 6.4519673 - 5.1524520 - 2.9074087	- 9.6175819 - 9.6968759 - 9.4137789 + 8.7486142 + 9.5538634 + 9.7559622 + 9.8154225 + 9.6924718 + 9.5312177 + 9.3028846 + 9.0001780 + 8.6095693 + 8.1080649 + 7.4555824 + 6.5756040 + 5.2954276 + 3.0618367	+ 9.5718244 + 9.6506997 + 9.3658437 - 8.7111101 - 9.5066210 - 9.7060687 - 9.7629582 - 9.7334977 - 9.6344493 - 9.4702814 - 9.2390423 - 8.9335204 - 8.5402702 - 8.0363771 - 7.3818314 - 6.5002379 - 5.2188673 - 2.9844198	- 8·8017905 - 8·9227941 - 8·7403838 - 8·6932114 - 8·3536648 - 8·3101402 - 8·2479314 - 8·3417891 - 7·9987770 6·9459294 8·5138783 8·4813077 8·2033568 - 7·6097874 - 8·2305368 - 7·6571469	- 7.81182 7.35947 8.15367 - 6.83631 7.67558 7.76303 8.05083 7.97737 - 8.01305 7.81683 8.35144 8.52324 8.27834 8.10394	8-4692071 8-6679859 8-5085266 - 8-2845745 - 7-983939781 - 7-6895089 - 7-98506028 - 7-8888154 - 8-0453140 7-3514419 7-9661507 7-7252716 8-0926610 - 6-9856227 7-8250282	- 8·25965 - 8·19364 7·64852 7·83006 7·56516 7·33943 8·33540 8·21145 7·82836 - 8·04201 - 7·05041 8·23197 8·08574 8·08807

	D. 77				1		1	
	FOR X	- 7 <b>1</b> 7	7 7 7	7 7 7	$\text{Log}(w^{\frac{1}{2}};$	$x_7$ ) for $g$	$\operatorname{Log}(w^{\frac{1}{2}})$	$x'_7$ ) for $h$
Co-latitude	$g_8^7$ or $h_8^7$	$g_{-8}^{7}  ext{ or } h_{-8}^{7}$	$g_{10}^{7}$ or $h_{10}^{7}$	$g_{-10}^{7}$ or $h_{-10}^{7}$	1845	1880	1845	1880
(s) 90° (r) 85 (q) 85 (p) 75 (o) 70 (n) 65 (m) 65 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.8480308 9.9613975 9.8392577 9.5792314 8.7374542 - 9.3338549 - 9.5673711 - 9.6496123 - 9.6155916 - 9.5085977 - 9.3341583 - 9.0893366 - 8.76641971 - 8.3398509 - 7.7821944 - 7.0253658 - 5.9107925 - 3.9863346	+ 9.8480308 + 9.9608190 + 9.8366397 + 9.5710863 + 8.6673583 - 9.5906560 - 9.6483001 - 9.6106893 - 9.5004578 - 9.3229857 - 9.0753238 - 8.7475741 - 8.3208960 - 7.7612413 - 7.0027990 - 5.8960403 - 3.9618575	- 9'0463985 - 9'0904466 - 8'560040 + 8'8660166 + 9'1304890 + 9'1798550 + 9'0581150 + 8'6827299 - 8'1974496 - 8'7388458 - 8'8016630 - 8'7012983 - 8'4767489 - 8'1260915 - 7'6230122 - 6'9057827 - 5'8271872 - 3'9094448	- 9'0463985 - 9'0896749 - 8'5534067 + 8'8083105 + 9'1282637 + 9'1738559 + 9'0469523 + 8'6593948 - 8'2260920 - 8'7338571 - 8'7896897 - 8'6847691 - 8'4505557 - 8'1028188 - 7'5971814 - 6'8779216 - 5'7978491 - 3'8792085	6'4500908 - 7'8489983 7'9775802 - 7'9454544 - 8'2041759 - 8'1898893 - 8'0211148 7'5996355 - 7'9949505 - 8'2448864 - 8'1559221 - 7'9270658 - 7'6827192 7'9615837 7'8095315 - 7'6922842	8·12906 8·11501 7·62878 - 7·59327 - 7·73357 - 7·20815 6·26907 - 6·55824 - 7·41899 6·87898 7·20531 7·85751 8·00555 7·95692	- 8.6361992 - 8.6870489 - 8.6837288 - 7.2699655 77.137317 8.1623931 7.4378584 - 8.0513522 - 7.9891470 7.5921931 7.8073739 7.8926281 7.8856400 8.0880652 8.0282102 8.2937813	- 6.69313 - 7.29877 7.93483 7.82372 - 5.98847 - 7.57976 7.31046 7.72703 7.72002 7.55821 6.97446 7.42386 7.15124 - 7.68314
	For Y				$\operatorname{Log}(w^{rac{1}{2}})$ 1845	y' ₇ ) for g	$\log (w^{\frac{1}{2}})$	y' ₇ ) for h
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.000000 9.7705540 0.0383217 0.1583807 0.2035876 0.1956860 0.1430520 0.0485705 9.9120046 9.7307044 9.4995443 9.2102488 8.8498728 8.8498728 8.8498728 7.8184129 7.0454124 5.9286034 3.9885230	0.0000000 + 9'7703681 + 0'0375835 + 0'1567402 + 0'2007213 + 0'1913070 + 0'1369182 + 0'0404922 + 9'9018506 + 9'7184060 + 9'4850977 + 9'1937156 + 8'8313787 + 8'8313787 + 7'7966094 + 7'0223629 + 5'9046351 + 3'9639916	0.000000 - 8.9478139 - 9.1460600 - 9.1211306 - 8.8301992 + 8.4693142 + 9.0960926 + 9.3146643 + 9.2620394 + 9.1303255 + 8.9198933 + 8.6225953 + 8.2206191 + 7.6805586 + 6.9370200 + 5.8407424 + 3.9127872	0.000000 - 8.9475842 - 9.1451481 - 9.1191040 - 8.8266585 + 8.4639048 + 9.0885155 + 9.2652270 + 9.3021211 + 9.2468472 + 9.1124796 + 8.8994700 + 8.5997496 + 8.1955807 + 7.6336249 + 6.9085471 + 5.8111345 + 3.8824837	- 8.0230459 - 8.0887307 - 7.2583836 - 7.5874379 - 7.8498580 - 7.9850697 - 7.8482774 - 7.3484123 - 6.7028914 8.0011939 8.1362681 8.2718142 8.1256613 8.0246160 7.6644055	7.64119 7.95435 8.06309 8.19221 8.26773 8.28819 8.13227 7.54393 7.51580 7.55749 7.90510 8.11028 8.07398	- 7·2530125 - 7·8874036 - 7·1815436 7·4167417 7·4325466 7·2580710 7·6804587 7·8111038 7·8692228 7·8413000 7·0839109 - 7·8816188 - 7·77753285 - 7·8173568 - 8·0163213	7.75361 8.15966 8.31755 8.35645 8.39434 8.33911 8.26368 8.20194 8.15005 7.96498 7.43609 7.52231 7.92785
					$\operatorname{Log}(w^{\frac{1}{2}}$	$z'_{7}$ ) for $g$	$\text{Log }(w^{\frac{1}{2}})$	z' ₇ ) for h
	For Z				1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0'0000000 9'8777597 0'1406574 0'2525094 0'2860307 0'2627552 0'1907659 0'0725499 9'9073340 9'6917406 9'4196392 9'0813297 8'6617667 8'1369527 7'4661209 6'5723405 5'2824087 3'0430785	0'0000000  - 9'8270689  - 0'0892915  - 0'2000406  - 0'2320638  - 0'2069393  - 0'1328055  - 0'0122133  - 9'8444611  - 9'6262475  - 9'3515218  - 9'0106634  - 8'5887054  - 8'0617234  - 7'3890177  - 6'4937157  - 5'2026619  - 2'9626441	0.0000000 - 9.1422515 - 9.3357105 - 9.3027943 - 9.0010767 + 8.6193811 + 9.2297972 + 9.3855494 + 9.3965027 + 9.399616 + 9.1370545 + 8.8776411 + 8.5211797 + 8.0465921 + 7.4149877 + 5.2812848 + 3.0540837	0'0000000 + 9'1010978 + 9'2935791 + 9'2935791 + 8'9534936 - 8'5807958 - 9'1825944 - 9'3347365 - 9'3423669 - 9'2522454 - 9'0764137 - 8'8138976 - 8'4545356 - 7'9773306 - 7'3434682 - 6'4773278 - 5'2065847 - 2'9785570	7'9035359 8'3133723 8'7366771 8'5136517 8'2256750 - 7'8401927 - 8'5742309 - 8'6382285 - 8'6224053 - 8'4433600 7'0701226 - 7'8302137 - 8'0915166 - 8'2580973 - 7'9330662	7.83659 - 8.18564 - 8.05191 - 8.60656 - 8.77090 - 8.45940 - 8.44473 - 8.67587 - 8.48703 - 8.01149 7.11024 6.69531 - 7.80068	- 7·5292189 - 8·7356717 - 8·0685798 - 8·3096604 8·1191515 8·1353537 - 7·8906813 - 7·5998835 - 7·6571339 8·2223472 7·8388323 - 7·8092517 8·1017091 - 7·3861869 8·1470896	8·15610 8·24816 - 7·33363 7·79829 - 7·80377 8·38134 7·86999 - 7·81110 - 8·08611 - 8·35299 6·48185 - 8·12896 - 8·02610

	For X				$\operatorname{Log}(w^{\frac{1}{2}})$	$x'_8$ ) for $g$	$\operatorname{Log}(w^{\frac{1}{2}}x'_{8})$ for $h$	
Co-latitude	$g_8^8$ or $h_8^8$	$g_{-8}^{8}$ or $h_{-8}^{8}$	$g_{10}^{-8}  ext{ or } h_{10}^{-8}$	$g_{-10}^{8}$ or $h_{-10}^{8}$	1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 66 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0*000000 - 9*8236417 - 0*0865557 - 0*1984343 - 0*2319917 - 0*2087607 - 0*1368230 - 0*0186642 - 9*8535090 - 9*6379782 - 9*3659394 - 9*0276909 - 8*6081850 - 8*0834252 - 7*4126352 - 6*5188911 - 5*2289859 - 2*9896719	0'0000000 - 9'8296127 - 0'0918353 - 0'2025844 - 0'2346074 - 0'2094831 - 0'1353492 - 0 0147572 - 9'8470049 - 9 6287914 - 9'032073 - 8'5912490 - 8'0642670 - 7'3915615 - 6'4962595 - 5'2052058 - 2'9651879	0'0000000 + 9'2935761 + 9'5134469 + 9'5442327 + 9'4356633 + 9'1298135 - 7'8713869 - 9'0355909 - 9'1743716 - 9'1409341 - 8'9971872 - 8'4105999 - 7'9439537 - 7'3178653 - 6'4573485 - 5'1904342 - 2'9646378	0'0000000 + 9'2945166 + 9'5131752 + 9'5417665 + 9'4294274 + 9'1148604 - 8'0338638 - 9'0390466 - 9'1695090 - 9'1311062 - 8'9832945 - 8'7379499 - 8'3898714 - 7'9203772 - 7'2918664 - 6'4294021 - 5'1610607 - 2'9343929	8·2672529 8·5762340 8·3346205 7·2641315 - 8·1638101 - 7·7673769 5·9561828 - 7·1971446 - 8·0057271 - 7·6326377 - 7·7801580 - 7·4184120 - 7·6334513 7·9667959 7·1626018	- 7·17383 7·90912 7·13734 - 7·72574 7·60095 7·87653 - 7·56896 - 7·47335 - 7·40186 6·90428 7·79887 7·83698 7·78704	7.7758913 8:2541856 8:4588200 8:456696 8:5910149 8:3173139 7:9128314 8:1251419 8:1178647 7:6524719 7:1228289 - 7:8836341 - 7:6432112 - 7:0903581 - 7:5710798	- 7.62099 - 7.55161 - 7.85453 - 7.40035 - 7.52177 - 7.08198 - 7.71961 - 7.26409 - 7.15519 5.90428 - 7.24152 - 7.87059 - 7.62682
					$\text{Log}(w^{\frac{1}{2}})$	y' ₈ ) for g	$\text{Log}(w^{\frac{1}{2}})$	y' ₈ ) for h
	For Y				1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.7511208 0.8895026 0.8529033 0.7912286 0.7034221 0.5879138 0.4425130 0.2642441 0.0490914 9.7916047 9.4842581 9.1163760 8.6722125 8.1272605 7.4403791 6.5343653 5.2358226 2.9913751	+ 0.7511208 + 0.8893167 + 0.88931651 + 0.7895881 + 0.7695588 + 0.5835348 + 0.4363792 + 0.2561658 + 0.0389374 + 9.7793063 + 9.4698115 + 9.69913 + 8.1669913 + 7.4185756 + 6.5113158 + 5.2118543 + 2.9668437	- 9'4723672 - 9'5440456 - 9'2122013 + 8'9225075 + 9'5028916 + 9'6819141 + 9'7329697 + 9'7020064 + 9'6033199 + 9'4404542 + 8'9074892 + 8'5162786 + 8'0143209 + 7'3614987 + 6'4813322 + 5'2009268 + 2'9672369	- 9.4723672 - 9.5438159 - 9.2112894 + 8.9204809 + 9.4993509 + 9.6765047 + 9.7253926 + 9.6920274 + 9.5907767 + 9.4252620 + 9.1931583 + 8.8870659 + 8.4934329 + 7.9892825 + 7.3345650 + 6.4528593 + 5.1713189 + 2.9369334	7.8523522 - 5.9977400 - 7.9931321 - 8.0286384 - 7.8516652 - 7.4895851 7.6212489 7.3363940 - 7.8609502 7.7998014 7.6446466 6.7828809 - 7.4785992 - 7.7197033 5.7681388 7.8460596	- 7'45009 - 7'50289 6'99531 7'40618 7'82423 7'89151 7'69232 7'80128 7'74084 7'83038 7'92547 7'73105 7'29737 - 6'41597	- 7'9049357 - 7'6923452 - 7'8434981 - 7'7236057 - 7'929806 7'5340042 7'8629061 8'0650859 8'1308006 7'6918960 7'8019110 - 7'8732271 - 7'9978866 - 7'6097874 7'3755938 7'5590152	8:00032 8:18243 8:17715 7:65397 6:88847 -6:82280 7:26907 7:58965 7:69774 7:93334 7:92547 7:32695 -7:52231 -7:77295
					$\text{Log}(w^{\frac{1}{2}}$	$z'_8$ ) for $g$	$\text{Log}(w^{\frac{1}{2}}$	$z'_8$ ) for $h$
	For Z				1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (e) 15 (b) 10 (a) 5	0·8022733 0·9390406 0·8975713 0·8276894 0·7281972 0·5973146 0·4325582 0·2305545 9·9867515 9·6949712 9·3466829 8·9297865 8·4264357 7·8088547 7·0304158 6·0036219 4·5319563 1·9882589	- 0'7511208 - 0'8876609 - 0'8455166 - 0'7745318 - 0'6735417 - 0'5408105 - 0'3739099 - 0'1695303 - 9'9231913 - 9'6287912 - 9'27789 - 8'8584340 - 8'3526884 - 7'7329396 - 6'9526273 - 5'924120 - 4'4515245 - 1'9071397	- 9.6106699 - 9.6808178 - 9.3446747 + 9.0436586 + 9.6139013 + 9.7777606 + 9.8095427 + 9.7548888 + 9.6275802 + 9.4304408 + 9.160646 + 8.8075478 + 8.3571597 + 7.7825810 + 7.0382081 + 6.0372666 + 4.5837419 + 2.0508043	+ 9.5692772 + 9.6389784 + 9.3008306 - 9.0050311 - 9.5702607 - 9.7314772 - 9.7605349 - 9.7029607 - 9.5725746 - 9.3722751 - 9.0987432 - 8.7431669 - 8.2899073 - 7.7127312 - 6.9661143 - 5.9633511 - 4.5084833 - 1.9747228	- 6.7511208 8.1665320 8.6557001 7.8996969 8.2442545 8.4526460 7.9294575 8.2314942 8.1486980 - 6.9459294 - 7.5622953 - 8.2030430 - 8.2601434 - 8.0557028 - 6.8650488 7.5173166	8.22824 8.15911 7.88180 6.59327 -7.72574 7.92218 -7.17216 -6.80128 8.03878 7.49294 -7.57638 -7.67218 -8.46930 -8.31360	- 8.2545710 - 8.5576466 - 8.77774231 - 8.4646989 7.1157117 8.1912195 - 7.6212489 - 7.9128314 - 7.9483381 7.8140418 8.1029410 7.9853011 7.9090158 8.0983381 8.2643763 7.9593951	7.71135 7.58880 - 7.76616 7.75464 - 7.68435 - 7.81655 - 8.13536 6.85927 - 8.21138 - 7.58750 - 8.06264 - 8.07569 7.26518 7.72772

	For X		$\text{Log }(w^{\frac{1}{2}}x$	'8) for g	$\operatorname{Log}(w^{\frac{1}{2}}x)$	e' ₈ ) for h
Co-latitude	$g_9^8$ or $h_9^8$	$g_{-9}^{-8} \text{ or } h_{-9}^{-8}$	1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10	9.8480308 9.9563224 9.8155880 9.4996963 - 8.3261700 - 9.4485729 - 9.6243515 - 9.6448444 - 9.5736250 - 9.4274479 - 9.2089604 - 8.9130166 - 8.5272023 - 8.0291527 - 7.3791606 - 6.5009996 - 5.2219334 - 2.9890129	+ 9.8480308 + 9.9556724 + 9.8125766 + 9.4894048 - 8.4655921 - 9.4573464 - 9.6258991 - 9.6421029 - 9.5672510 - 9.4176849 - 9.1959710 - 8.8969808 - 8.5083508 - 8.5083508	8:0935435 8:4274923 7:9446990 8:6836181 8:4918829 8:4178233 8:5338842 8:5773591 8:0941604 7:2364940 7:6485769 6:8575145 7:3687242 -7:1756352 7:3701988 -7:3752099	7'91622 7'77589 8'06350 - 7'59327 - 7'97215 7'79061 - 7'60151 6'43330 - 7'05581 - 7'30495 - 7'67513 - 7'38494 - 7'66975 - 7'88946	7:9552408 8:2457133 7:9753124 - 7:4610339 - 6:9853779 8:0171158 - 8:0783987 - 7:6451635 - 7:7635892 7:3356477 7:5564845 7:6495508 7:7608507 7:7458624 - 8:0599394	7.67410 7.87855 7.87037 - 7.55941 - 7.60863 - 7.64046 7.00943 7.46133 7.30360 7.22577 7.62856 7.18082 - 6.32733 7.63345
	T II		$\text{Log}(w^{\frac{1}{2}}y)$	/' ₈ ) for g	$\text{Log }(w^{\frac{1}{2}})$	$y'_8$ ) for $h$
	For Y		1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0'0000000 9'8269231 0'0897958 0'2016066 0'2350722 0'2117279 0'1396589 0'0213548 9'8560448 9'6403541 9'3681555 9'0297519 8'6101003 8'0852062 7'4143052 6'5204689 5'2304957 2'9911402	0.0000000 + 9.8267153 + 0.0889707 + 0.1997730 + 0.2318687 + 0.2368334 + 0.0123262 + 9.8446962 + 9.6266088 + 9.3520092 + 9.0112737 + 8.5894304 + 7.3899366 + 6.4947077 + 5.2037076 + 2.9637228	- 6.9977400 8.1008192 7.7836036 7.6799831 - 7.1951856 - 7.4151944 7.5124853 - 7.0558155 7.5582086 7.9128841 7.9801614 7.9202482 7.5956628 - 6.7223813 7.8881695	7:98451 8:12241 8:11178 7:93962 7:77704 7:73889 7:31791 7:57534 7:44325 7:85852 7:90008 7:84585 7:13613	- 8.0751079 - 8.2541856 - 8.2007269 - 8.0787996 - 7.6678978 - 6.6212489 7.1992208 7.9396952 - 7.3479860 - 6.5063439 - 7.4978390 - 6.9109081 - 7.4422963 - 7.5201872 7.4930867	7.65095 8.01650 8.23918 8.22593 8.01989 7.75337 6.25721 - 7.52165 - 7.32268 - 7.60325 - 7.59579 - 7.31261 - 6.81391
			$\text{Log}(w^{\frac{1}{2}})$	z' ₈ ) for g	$Log(w^{\frac{1}{2}}$	z's) for h
	For Z		1845	1880	1845	1880
(s) 90° (r) 85 (q) 85 (q) 80 (p) 75 (o) 70 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 9.9219270 0.1799304 0.2835354 0.3053170 0.2666007 0.1751786 0.0331426 9.8391852 9.5892040 9.2760668 8.8886519 8.4098159 7.8122952 7.0498391 6.0352245 4.5721296 2.0335251	0°0000000 - 9'8765361 - 0°1337988 - 0°2361935 - 0°2563312 - 0°2155860 - 0°1218108 - 9'9771673 - 9'7804268 - 9'5275704 - 9'2115534 - 8'8213415 - 8'3398771 - 7'7399774 - 6'9754649 - 5'9591805 - 4'4948544 - 1'9554952	8:0640659 8:2493735 8:6206215 8:5032333 8:5059755 8:4400611 8:5307927 8:5753406 8:3455207 8:4959049 7:7962448 7:7692884 7:79393887 6:7458624 7:8166600	7.31996 - 7.73567 - 7.98244 - 8.16147 - 7.59048 - 7.11417 7.98556 7.83950 8.15519 7.90428 - 7.13506 7.92209 8.01257	7·8610629 8·1460654 - 7·4755117 - 7·3745440 7·7219947 8·3624881 8·0034577 7·7015399 - 7·9001719 - 8·2181511 - 6·4238589 8·1856682 7·4622674 8·1326898 7·6346136	- 7.87280 7.37552 8.23672 8.18404 7.79061 7.69232 8.10231 7.90566 7.20349 7.50634 7.11024 - 8.21005 - 7.70600

For X		T ( -	m' ) for a	T == (-1	m' \ for 1
	$g_{-9}^{9} \text{ or } h_{-9}^{9}$			1	$x_9$ ) for $h$
0.0000000 - 9.8732117 - 0.1312300 - 0.2348588 - 0.2566729 - 0.2179967 - 0.1266210 - 9.9846363 - 9.7907336 - 9.5408088 - 9.2277281 - 8.8403679 - 8.3615832 - 7.7641089 - 7.0016928 - 5.9871107 - 4.5240398 - 1.9854500	0'0000000  - 9'8791203  - 0'1363830  - 0'2387777  - 0'2589153  - 0'2181703  - 0'1243949  - 9'9797516  - 9'7830110  - 9'5301547  - 9'2141375  - 8'8239258  - 8'3424612  - 7'7425615  - 6'9780492  - 5'9617647  - 4'4974387  - 1'9580797	8·3052360 8·1025190 8·2305114 - 7·6034260 - 7·5340042 - 6·9892257 7·4680662 - 7·678268 8·0057271 7·5855251 7·5030402 - 7·2973683 - 6·4159674 7·7481422 - 7·0501796	- 7'67898 - 7'64852 7'38915 - 7'26413 - 7'48285 7'63080 6'65515 - 6'94187 6'87898 6'90428 7'50304 - 7'24815 7'63998	- 7.8981071 - 8.3522904 - 7.6679055 6.9631015 - 6.8807917 7.7461877 8.1534634 - 8.3921212 - 7.9203753 - 7.9870693 - 7.4872459 7.6697542 6.1149374 7.5352947 - 7.0969230	- 7'31996 - 6'47243 6'46833 5'98538 - 7'33943 7'31791 6'98326 5'92474 - 7'01822 - 6'78288 7'54918 7'38211
D		$\operatorname{Log}(w^{\frac{1}{2}})$	$y'_{9}$ ) for $g$	$\log (w^{\frac{1}{2}})$	y'9) for h
FOR Y		1845	1880	1845	1880
0.8022733 0.9390321 0.8975379 0.8276150 0.7280672 0.5971162 0.4322804 0.2301888 9.9862921 9.6944149 9.3460299 8.9290395 8.4256005 7.8079396 7.0294319 6.0025822 4.5308753 1.9871529	+ 0.8022733 + 0.9388243 + 0.8967128 + 0.8257814 + 0.7248637 + 0.5922220 + 0.4254249 + 0.2211602 + 9.06806696 + 9.3298836 + 8.9105613 + 8.4049306 + 7.7852858 + 7.0050633 + 5.9768210 + 4.4440872 + 1.9597355	- 7'48'14993 - 7'7420'330 - 7'7734603 6'468'3332 7'692948'1 7'9926420 7'4799198 7'3955155 7'4669169 6'9247401 - 7'108'40'39 - 6'0558822 - 7'348'5209 - 7'298'2072 7'776'7390 7'8569760	7·67410 8·09116 8·12241 8·08812 8·09259 7·79061 7·63080 7·44754 6·98326 6·96613 6·20531 7·18082 6·89160 7·59924	- 7'9586205 - 8'1100098 - 8'1856407 - 8'1980378 - 8'1629144 - 8'2341789 - 8'2292993 - 7'7657425 8'0025699 6'4018614 - 7'0504119 7'1228289 7'1926330 7'5340667 - 6'7458624 - 7'6268350	7.88145 8.22563 7.88180 - 6.59327 - 7.02677 7.40906 - 7.22331 7.50025 7.83950 7.82783 7.86807 7.76060 7.36872 8.03402
		$\text{Log }(w^{\frac{1}{2}}$	$z'_{9}$ ) for $g$	$\text{Log}(w^{\frac{1}{2}})$	$z'_9$ ) for $h$
FOR Z		1845	1880	1845	1880
0.8480308 0.9831754 0.9368118 0.8586830 0.7474519 0.6011278 0.4169386 0.1911148 9.9185704 9.5924024 9.2030785 8.7370765 8.1744527 7.4841650 6.6141019 5.4664737 3.8216451 0.9786736	- 0.8022733 - 0.9371685 - 0.8900643 - 0.8107252 - 0.6978496 - 0.5494977 - 0.3629557 - 0.1345247 - 9.8591975 - 9.5301546 - 9.1379511 - 8.6691525 - 8.1039006 - 7.4112341 - 6.5391150 - 5.3898172 - 3.7437574 - 0.9000314	8-6390193 - 8-6416859 - 8-5835807 - 8-4513577 - 8-1672215 - 8-2353803 - 8-2984502 - 8-1811716 - 8-1192544 - 8-2808609 - 7-6506429 - 7-4985703 - 7-9244971 8-0246160 8-1134447	7.76711 8:22305 8:13832 8:13422 8:13422 8:12839 - 7:60095 7:759129 7:70437 7:86095 - 7:67293 - 8:04729 - 7:87102 - 7:59057 6:96004	8.2857814 8.2764936 -8.1521609 6.7315746 -8.2720589 -7.7838817 8.0935177 7.7233387 7.1971446 -8.1094315 -8.4427320 -8.0544321 7.6697542 -7.9661957 -8.0305899 -7.4320328	7·89335 7·74593 - 7·61856 - 7·43837 7·90446 7·42486 7·11417 7·57943 - 8·03878 - 7·37190 - 7·89105 - 7·92511 - ∞ - 7·80514
	9,9 or h,9  0.0000000 - 9.8732117 - 0.1312300 - 0.2348588 - 0.2566729 - 0.2179967 - 0.1266210 - 9.9846363 - 9.7907336 - 9.540808 - 9.2277281 - 8.8403679 - 8.3615832 - 7.7641089 - 7.0016928 - 5.9871107 - 4.5240398 - 1.9854500  FOR Y  0.8022733 0.9390321 0.8975379 0.8276150 0.7280672 0.5971162 0.4322804 0.2301888 9.9862921 9.6944149 9.3460299 8.9290395 8.4256005 7.8079396 7.0294319 6.0025822 4.5308753 1.9871529  FOR Z  0.8480308 0.9431754 0.9368118 0.8586830 0.7474519 0.6011278 0.4169386 0.1911148 9.9185704 9.5924024 9.2030765 8.1744527 7.4841650 6.614101 5.4664737 3.8216451	9,9 or h,9 9	ggg or hgg ggg or hggggggggggggggggggggg	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

	For X		$\operatorname{Log}(w^{\frac{1}{2}},$	$x'_{9}$ ) for $g$	$\operatorname{Log}(w^{\frac{1}{2}},$	$x'_{9}$ ) for $h$
Co-latitude	$g_{10}^{9}$ or $h_{10}^{9}$	$g_{-10}^{9}$ or $h_{-10}^{9}$	1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	9.8480308 9.9512198 9.7912130 9.4087799 - 8.9456110 - 9.5215139 - 9.6231152 - 9.6274800 - 9.5214059 - 9.3372819 - 9.0754870 - 8.7289021 - 8.7289021 - 8.2827386 - 7.7112138 - 6.9690469 - 5.9696649 - 4.5171795 - 1.9848380	+ 9.8480308 + 9.9504974 + 9.7877823 + 9.3955787 - 8.9823143 - 9.5277269 - 9.6432666 - 9.6234472 - 9.5136334 - 9.3259399 - 9.0607092 - 8.7108608 - 8.2616706 - 7.6874290 - 6.9429266 - 5.9416547 - 4.4877790 - 1.9545866	- 8'4126969 - 8'5954352 - 8'1383238 - 8'1383238 - 8'2119778 - 8'2281217 - 8'0999757 7'5064112 - 7'6620314 7'1150718 7'4483519 6'0579422 - 7'6953083 - 7'6527565 7'3965277 7'4636318	7:80707 7:79708 7:96844 - 7:24648 - 6:98538 8:04216 7:70043 7:51248 7:82268 7:88853 7:66015 - 6:95897 - 7:81400 - 7:01803	- 8.5706647 - 8.7667479 - 8.5299696 - 8.5894551 - 8.3664930 - 8.2182509 - 7.2467900 - 8.2794349 - 7.8051950 - 7.9247401 - 6.9456766 - 7.9535093 - 7.71194420 - 7.6334513 - 6.8288366 - 7.5680949	- 7:46081 7:71374 7:41028 - 6:69018 - 7:84870 - 7:05688 - 7:70043 - 7:81950 - 7:28429 - 7:22577 - 7:66771 - 7:77742 - 7:60608 - 7:35798
	FOR Y		$\frac{\text{Log}(w^{\frac{1}{2}})}{1845}$	y' ₉ ) for g 1880	$Log(w^{\frac{1}{2}})$	y' ₉ ) for h
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 9.8764526 0.1344303 0.2379930 0.2597173 0.2209303 0.1294264 9.9872995 9.7932455 9.5431644 9.2299273 8.8424155 8.3634883 7.7658854 7.0033581 5.9886857 4.525548 1.9869179	0'0000000 + 9'8762229 + 0'1335184 + 0'2359664 + 0'2561766 + 0'2155209 + 0'1218493 + 9'9773205 + 9'7807023 + 9'5279722 + 9'2120814 + 8'82119922 + 8'3406426 + 7'7408470 + 6'9764244 + 5'9602128 + 4'4959405 + 1'9566144	7:2877746 - 7:8586319 - 7:7620639 - 7:770777 - 8:0402837 - 7:8791940 - 7:5416435 - 7:4796912 - 7:6059813 - 7:6751359 - 7:1402449 - 5:5128774 - 7:1405615 - 7:3705147	7.62099 7.80822 7.73940 - 7.40035 - 7.09164 - 7.70840 - 7.80128 - 7.73426 - 7.10083 - 6.68243 - 7.34219 - 7.21194 - 7.54630	- 8.0929094 - 8.1828297 - 7.9824380 - 7.8690393 7.1390697 7.2580710 - 7.5946721 6.9418721 7.2257701 - 7.3514419 6.9404887 - 7.2304215 - 7.3517265 - 7.0353105 - 7.6667983	6·99774 6·47243 - 7·22166 - 7·78472 - 8·01909 - 7·63080 - 7·53596 - 5·94187 7·37190 7·49534 7·44799 - 7·58260 - 7·09266
	For Z	1	$\text{Log}(w^{\frac{1}{2}}$	z' ₉ ) for g	$\operatorname{Log}(w^{\frac{1}{2}})$	$z'_{9}$ ) for $h$
	FUR Z	1	1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.0000000 9.9617234 0.2148325 0.3101902 0.3202319 0.2660745 0.1552193 9.9803625 9.7666634 9.4822939 9.1281206 8.6916000 8.1534900 7.4832623 6.6291815 5.4937372 3.8574742 1.0195952	0.0000000 - 9.9206165 - 0.1729191 - 0.2669595 - 0.2752117 - 0.2188458 - 0.1054292 - 9.9367343 - 9.7110055 - 9.4235064 - 9.0661982 - 8.6266327 - 8.0856618 - 7.4128445 - 6.5565254 - 5.4192582 - 3.7816599 - 0.9429596	7'7497884 8'1898233 8'3759236 8'313757 7'4828517 7'8601310 - 7'4680662 7'4921005 - 8'0302503 - 7'7036244 - 7'7186400 - 7'3620937 8'0180274 8'1474443 8'2800475	- 5'99774 - 8'04063 - 7'91029 - 7'43254 - 7'60095 - 7'81314 - 7'70437 - ∞ - 7'67293 7'65247 7'50304 7'77449 6'96004	7'1116834 - 7'9519576 - 8'4588200 - 8'2853208 - 8'3686368 - 8'1946363 6'6093953 7'6046299 8'2902281 8'2817723 7'7855868 7'7135332 - 7'6200874 - 8'1814386 - 7'6108469	5:99774 7:98208 8:21393 8:03070 - 7:42486 7:95481 8:32909 8:03878 7:67293 7:52753 7:32695 7:76929 7:65901

	For X		$\operatorname{Log}(w^{\frac{1}{2}}x$	'10) for g	$  \log(w^{\frac{1}{2}}x)$	'10) for h
Co-latitude	$g_{10}^{10}  ext{ or } h_{10}^{10}$	$g_{-10}^{-10}$ or $h_{-10}^{-10}$	1845	1880	1845	1880
(s) 90° (r) 85 (q) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0'0000000 - 9'9173787 - 0'1705011 - 0'2658807 - 0'2759518 - 0'2218309 - 0'1110180 - 9'9452080 - 9'7225585 - 9'4382405 - 9'0841184 - 8'6476472 - 8'1095843 - 7'4393989 - 6'5853545 - 5'4499348 - 3'8136985 - 0'9758329	0'0000000  - 9'9232330  - 0'1755357  - 0'2695761  - 0'2778282  - 0'2214625  - 0'1080458  - 9'9393510  - 9'7136221  - 9'4261231  - 9'0688147  - 8'6292493  - 8'0882784  - 7'4154611  - 6'5591420  - 5'4218749  - 3'7842766  - 0'9455762	- 7·8814014 7·5576019 8·1716245 8·2885740 8·0882914 7·8283744 8·4133074 8·332251 7·7676068 7·2222136 7·5577805 6·9899987 - 7·5498942 7·3412254	- 7.64119 7.07449 - 7.73940 7.24065 6.82280 - 6.74619 6.80128 7.19714 7.24696 7.20531 - 7.08391 - 7.35536 - 7.19412	7·6651930 8·3465253 8·4257808 8·4477759 7·9414895 7·6015049 7·9773721 8·0081980 8·1247694 8·0987982 7·4818509 7·2973683 7·6712399 6·4213513 7·5239982	- 7.22819 7.33773 7.07039 - 7.51686 - 7.12383 - 7.19849 7.52438 - 7.19714 - 7.22577 - 6.68243 6.92118 7.62836 - 7.62682
			$\text{Log}(w^{\frac{1}{2}}y'$	(10) for g	$\operatorname{Log}(w^{\frac{1}{2}}y$	'10) for h
	For Y		1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (e) 15 (b) 10 (a) 5	o:8480308 o:9831667 o:9367774 o:8586064 o:7473173 o:6009236 o:4166529 o:1907386 9:9180978 9:5918302 9:2024067 8:7363081 8:1735935 7:4832238 6:6130898 5:4654041 3:8205330 o:9775355	+ 0.8480308 + 0.9829370 + 0.9829370 + 0.9358655 + 0.8565798 + 0.7437766 + 0.5955142 + 0.4090758 + 0.1807596 + 9.9055546 + 9.5766380 + 9.1845608 + 8.7158848 + 8.1507478 + 7.4581854 + 6.5861561 + 5.4369312 + 3.7909251 + 0.9472320	7.7875501 7.8669717 -7.1856407 6.5352799 -6.7635292 7.5797617 7.3745766 -6.8312441 7.7163891 -7.6844079 -6.6824352 -7.6394587 -7.1054828 -6.6268208 -7.4164988 -7.4164988 -8.0491914	- 7.48150 - 6.99774 7.72770 7.52269 7.57644 - 7.40906 7.24679 7.27840 7.46038 7.53752 7.40943 6.95897 7.35536 - 6.41597	- 7:7774497 - 7:9035359 - 7:7661610 - 7:4305446 - 7:3471057 7:5399946 7:0983702 - 7:0865166 7:0558155 - 7:0386835 - 7:0386835 - 7:0656519 7:7154815 7:5744862 7:5340667 - 7:6845927 7:4401507	- 7:45009 - 7:46014 - 7:31753 - 7:59327 - 7:59327 - 7:50389 - 7:48655 - 7:23493 - 7:43323 - 7:64074 - 7:79637 - 7:48185 6:62836 6:59206
	E #	1	$\operatorname{Log}(w^{\frac{1}{2}}z')$	10) for g	$\log(w^{\frac{1}{2}}z)$	' ₁₀ ) for <i>h</i>
	For Z		1845	1880	1845	1880
(s) 90° (r) 85 (q) 80 (p) 75 (o) 70 (n) 65 (m) 60 (l) 55 (k) 50 (i) 45 (h) 40 (g) 35 (f) 30 (e) 25 (d) 20 (c) 15 (b) 10 (a) 5	0.8894235 1.0229454 0.9716873 0.8853113 0.7623393 0.6005750 0.3969528 0.1473084 9.8460221 9.4854659 9.0551058 8.5399978 7.9181006 7.1551058 6.1934181 4.9249553 3.1069634 9.9647173	- 0.8480308 - 0.9812813 - 0.9292170 - 0.8415236 - 0.7167625 - 0.5527899 - 0.3466065 - 0.0941241 - 9.7898086 - 9.4261230 - 8.9926283 - 8.4744760 - 7.8497178 - 7.0841336 - 6.1202078 - 4.8499274 - 3.0305953 - 9.8875280	8·2873635 8·4974271 8·0939527 8·0793480 8·4979289 8·5603331 8·3211829 8·3711561 8·0972081 8·2091708 8·2447280 7·7401289 8·1775692 7·1256613 - 7·9722588 - 8·0299762	7.79742 8.19364 7.91439 8.24163 7.77009 7.87113 - 7.50025 6.24290 8.00392 8.24472 8.26896 7.68272 7.79618	- 8.2282420 - 8.3877915 - 8.4234438 - 7.9868471 7.4003512 8.1048065 8.3945477 8.1891789 7.9589054 8.0021080 8.2265032 8.1190904 7.2734562 - 7.3936910 - 7.7271802 - 7.9842187	- 7.05215 7.44490 - 6.59737 - 7.60399 7.18950 - 8.15954 - 6.74619 7.33639 - 7.46038 7.33971 7.26601 8.15625 8.04611 7.43716

#### SECTION VIII.

FORMATION OF THE EQUATIONS OF CONDITION, FORMATION OF THE FINAL EQUATIONS AND THE DETERMINATION OF THE VALUES OF THE MAGNETIC CONSTANTS.

THE theory of Terrestrial Magnetism, as developed in Section V. for the Sphere, and in Section VI. for the Spheroidal surface, requires that the observations of the horizontal and vertical magnetic forces should be distributed uniformly over the whole surface of the Earth. In the absence of such observations, and especially when as yet there are very few trustworthy observations of the magnetic elements taken in high latitudes, it is necessary to adopt some other method of solution of the equations of condition just given at the end of the preceding Section, taking only those equations which relate to that portion of the Earth's surface over which fairly good observations have been taken. Under these circumstances it will be necessary to take into account the values of those terms of the equations which now no longer vanish when the integration is not taken over the whole surface of the Earth. assume that the Charts from which the observations are taken are trustworthy up to a latitude of  $67^{\circ}\frac{1}{2}$  either north or south of the Equator, i.e. taking a central belt 5° broad at the Equator and 13 belts of the same breadth on either side of it.

The equations of condition given in Section VII. and the final equations for X, Y and Z for the period 1845 are formed for each belt between latitudes  $77^{\circ}\frac{1}{2}$  N. and  $77^{\circ}\frac{1}{2}$  S., i.e. for 15 belts of 5° on either side of the equatorial belt, but the observations in extreme northern or southern latitudes between  $67^{\circ}\frac{1}{2}$  and  $77^{\circ}\frac{1}{2}$  have not been included in the solution of the equations except in a few special instances.

Regarding the Earth as a spheroid of revolution, we have seen that the values of  $\mu'$  or  $\cos \theta'$ , where  $\theta'$  is the geocentric colatitude, have been determined for every 5° of geographical colatitude. Also the values of  $\cos \psi$ ,  $\sin \psi$ ,  $\frac{\alpha}{r}$ ,  $G'^{n}_{n}$  and  $H'^{n}_{n}$  have been determined for every 5° of geographical colatitude and have been tabulated for all values of n and m from 0 to 10. The weights of the observations of the magnetic elements for these belts of latitude have also been determined on the assumption that the weight is proportional to the area of the corresponding portion of the Earth's surface. From the values of  $H_n^m$  the values of  $X_n^m$ ,  $X_{-n}^m$ ,  $Y_n^m$ ,  $Y_{-n}^m$ ,  $Z_n^m$  and  $Z_{-n}^m$  have also been determined and recorded, and from these have been determined the values of  $X_n^m$  or  $(X_n^m \cos \psi + Z_n^m \sin \psi)$ ,  $X_{-n}^{\prime m}$ ,  $Z_{n}^{\prime m}$  or  $(-X_{n}^{m}\sin\psi+Z_{n}^{m}\cos\psi)$  and  $Z_{-n}^{\prime m}$ , which are the resolved parts of the expressions for the horizontal and vertical forces in the plane of the meridian on the spheroid, and so are the coefficients of the magnetic constants in the equations of condition.

2. In the preceding investigation Section VI. (p. 449)  $a_n$  has been taken to represent any magnetic constant depending on the action of magnetic forces in the interior of the Earth, and  $\beta_n$  has been taken to represent any magnetic constant depending on magnetic forces outside the Earth's surface. Thus  $a_n$  will represent the Gaussian constant  $g_n^m$  in the expression  $g_n^m \cos m\lambda$  or the constant  $h_n^m$  in the expression  $h_n^m \sin m\lambda$ . These Gaussian constants  $g_n^m$  and  $h_n^m$  will have the same coefficients  $X_n^m$  or  $Y_n^m$  or  $Y_n^m$  in the equations of condition for X, Y and Z respectively; and the corresponding external magnetic constants, which may be denoted by  $g_{-n}^m$  and  $h_{-n}^m$ , will have the same coefficients  $X_{-n}^m$ ,  $Y_{-n}^m$  and  $Z_{-n}^m$  in the same equations of condition.

As in the equations in Art. 8, p. 454, these equations will be of the form

$$\begin{split} &X'^{m}_{n}g^{m}_{n}+X'^{m}_{-n}g^{m}_{-n}+X'^{m}_{n_{1}}g^{m}_{n_{1}}+X'^{m}_{-n_{1}}g^{m}_{-n_{1}}+\&c.=x'_{m},\\ &Y'^{m}_{n}g^{m}_{n}+Y'^{m}_{-n}g^{m}_{-n}+Y'^{m}_{n_{1}}g^{m}_{n_{1}}+Y'^{m}_{-n_{1}}g^{m}_{-n_{1}}+\&c.=y'_{m},\\ &Z'^{m}_{n}g^{m}_{n}+Z'^{m}_{-n}g^{m}_{-n}+Z'^{m}_{n_{1}}g^{m}_{n}+Z'^{m}_{-n_{1}}g^{m}_{-n}+\&c.=z'_{m}, \end{split}$$

with similar equations for  $h_n^m$ ,  $h_{-n}^m$  &c.

where 
$$X'^m_n = X^m_n \cos \psi + Z^m_n \sin \psi,$$
 
$$Y'^m_n = Y^m_n,$$
 
$$Z'^m_n = -X^m_n \sin \psi + Z^m_n \cos \psi.$$

In these equations of condition, the theoretical expressions for the horizontal and vertical magnetic forces in terms of the magnetic constants will be of the same form for all periods of time. For a given period they are equated to  $x'_m$ ,  $y'_m$  and  $z'_m$ , the absolute terms derived from the magnetic observations of the horizontal and vertical magnetic forces for that period, and by solving the equations the values of the magnetic constants for that period are determined. In the first solution, the absolute terms are derived from the observations of the magnetic elements given in Sabine's charts for the period about 1845 published in the Philosophical Transactions of the Royal Society. In the second solution they are derived from the much more complete and trustworthy observations recorded by Captain Creak in the Admiralty Charts of 1880. By the kind permission of the Lords of the Admiralty, reduced copies of these Charts are given at the end of this Volume.

The observations have been taken for every 10° of longitude and for belts of latitude 5° in breadth around the surface of the Earth.

The numerical values of the coefficients of the magnetic constants for the spheroidal figure of the Earth have been calculated and recorded in Section VII. for all values of n and m from 0 to 10 both for internal and external forces, and the equations of condition will contain two sets, each of 120 magnetic constants: the values of these two sets of constants may be found for any given period by substituting in these equations the values of  $x'_m$ ,  $y'_m$ ,  $z'_m$  derived from the observed values of the magnetic elements for that period.

Formation of the Absolute Terms of the Equations of Condition.

3. The terms  $x'_m$ ,  $y'_m$  and  $z'_m$  as explained above are derived from the observations of the horizontal force in the plane of the meridian, of the horizontal force perpendicular to the meridian and of the vertical force in the equations for X, Y and Z respectively.

The values of the forces being given from the charts for  $\lambda = 0$ ,  $\lambda = 10^{\circ}$ , &c. to  $\lambda = 350^{\circ}$ , they are analysed for each belt of latitude by a formula of the type

 $a_0 + a_1 \cos \lambda + b_1 \sin \lambda + a_2 \cos 2\lambda + b_2 \sin 2\lambda + \&c.$ 

The values of the coefficients  $a_0$ ,  $a_1$ ,  $b_1$ , &c. for X, Y and Z for the different belts of latitude for the epochs 1845 and 1880 were obtained and tabulated.

The coefficients  $a_m$  of  $\cos m\lambda$  and  $b_m$  of  $\sin m\lambda$  in this series are the absolute terms of the equations for  $g_n^m$  and  $h_n^m$  respectively in that belt of latitude.

Let the forces whether X, Y or Z, when  $\lambda = 0^{\circ}$ ,  $\lambda = 10^{\circ}$ ,  $\lambda = 20^{\circ}$ , &c. to  $\lambda = 350^{\circ}$ , be denoted by

$$F_0$$
,  $F_1$ ,  $F_2$ , &c. to  $F_{35}$  respectively.

Let  $\Sigma(F)$  denote the sum of these quantities, and let  $\Sigma_{0}(F_{0})$  denote the sum of every ninth of these quantities beginning with  $F_{0}$ , and similarly let  $\Sigma_{0}(F_{1})$  denote the sum of every ninth of these quantities beginning with  $F_{1}$ , and so on.

Thus 
$$\Sigma_{9}(F_{0}) = F_{0} + F_{9} + F_{18} + F_{27},$$
 
$$\Sigma_{9}(F_{1}) = F_{1} + F_{10} + F_{19} + F_{28}.$$

Then we shall have

$$18a_{1} = F_{0} - F_{18} + (F_{1} - F_{17} - F_{19} + F_{35})\cos 10^{\circ} + (F_{2} - F_{16} - F_{20} + F_{34})\cos 20^{\circ} + (F_{3} - F_{15} - F_{21} + F_{33})\cos 30^{\circ} + (F_{4} - F_{14} - F_{22} + F_{32})\cos 40^{\circ} + (F_{5} - F_{13} - F_{23} + F_{31})\cos 50^{\circ} + (F_{6} - F_{12} - F_{24} + F_{30})\cos 60^{\circ} + (F_{7} - F_{11} - F_{25} + F_{29})\cos 70^{\circ} + (F_{8} - F_{10} - F_{26} + F_{28})\cos 80^{\circ};$$

$$18b_{1} = (F_{1} + F_{17} - F_{19} - F_{35})\sin 10^{\circ} + (F_{2} + F_{16} - F_{20} - F_{34})\sin 20^{\circ} + (F_{3} + F_{15} - F_{21} - F_{33})\sin 30^{\circ} + (F_{4} + F_{14} - F_{22} - F_{32})\sin 40^{\circ} + (F_{5} + F_{13} - F_{23} - F_{31})\sin 50^{\circ} + (F_{6} + F_{12} - F_{24} - F_{30})\sin 60^{\circ} + (F_{7} + F_{11} - F_{22} - F_{23})\sin 70^{\circ} + (F_{8} + F_{10} - F_{26} - F_{28})\sin 80^{\circ} + F_{9} - F_{27}.$$

 $36\alpha_0 = \Sigma(F)$ ;

Also let  $\Sigma_0 (\pm F_0) = F_0 - F_9 + F_{18} - F_{27}$ , i.e. the sum of every ninth beginning with  $F_0$  and changing the sign of the alternate terms, and let

$$\Sigma_{9}(\pm F_{1}) = F_{1} - F_{10} + F_{19} - F_{28}$$
, &c.

Then we shall have

$$\begin{split} 18\alpha_{2} &= \Sigma_{9} \left( \pm F_{0} \right) + \left[ \Sigma_{9} \left( \pm F_{1} \right) - \Sigma_{9} \left( \pm F_{8} \right) \right] \cos 20^{\circ} + \left[ \Sigma_{9} \left( \pm F_{2} \right) - \Sigma_{9} \left( \pm F_{7} \right) \right] \cos 40^{\circ} \\ &+ \left[ \Sigma_{9} \left( \pm F_{3} \right) - \Sigma_{9} \left( \pm F_{6} \right) \right] \cos 60^{\circ} + \left[ \Sigma_{9} \left( \pm F_{4} \right) - \Sigma_{9} \left( \pm F_{5} \right) \right] \cos 80^{\circ}; \\ 18b_{2} &= \left[ \Sigma_{9} \left( \pm F_{1} \right) + \Sigma_{9} \left( \pm F_{8} \right) \right] \sin 20^{\circ} + \left[ \Sigma_{9} \left( \pm F_{2} \right) \right. \\ &+ \left[ \Sigma_{9} \left( \pm F_{3} \right) + \Sigma_{9} \left( \pm F_{6} \right) \right] \sin 60^{\circ} + \left[ \Sigma_{9} \left( \pm F_{4} \right) \right. \\ &+ \left[ \Sigma_{9} \left( \pm F_{3} \right) + \left[ \Sigma_{9} \left( \pm F_{6} \right) \right] \sin 60^{\circ} + \left[ \Sigma_{9} \left( \pm F_{4} \right) \right. \\ &+ \left[ \Sigma_{9} \left( \pm F_{3} \right) + \left[ \Sigma_{9} \left( \pm F_{1} \right) - \Sigma_{6} \left( \pm F_{5} \right) \right] \cos 30^{\circ} + \left[ \Sigma_{8} \left( \pm F_{2} \right) - \Sigma_{6} \left( \pm F_{4} \right) \right] \cos 60^{\circ}; \end{split}$$

$$\begin{aligned} &18b_{3} = \left[ \Sigma_{e} \left( \pm F_{i} \right) + \Sigma_{e} \left( \pm F_{s} \right) \right] \sin 30^{\circ} + \left[ \Sigma_{e} \left( \pm F_{s} \right) + \Sigma_{e} \left( \pm F_{s} \right) \right] \sin 60^{\circ} + \Sigma_{e} \left( \pm F_{s} \right) \right; \\ &18a_{4} = \Sigma_{e} \left( F_{e} \right) + \left[ \Sigma_{e} \left( F_{s} \right) + \Sigma_{e} \left( F_{s} \right) \right] \cos 40^{\circ} + \left[ \Sigma_{e} \left( F_{s} \right) + \Sigma_{e} \left( F_{r} \right) \right] \cos 80^{\circ} \\ & - \left[ \Sigma_{e} \left( F_{s} \right) + \Sigma_{e} \left( F_{s} \right) \right] \cos 40^{\circ} + \left[ \Sigma_{e} \left( F_{s} \right) + \Sigma_{e} \left( F_{r} \right) \right] \cos 20^{\circ} ; \\ &18b_{4} = \left[ \Sigma_{e} \left( F_{s} \right) - \Sigma_{e} \left( F_{s} \right) \right] \sin 40^{\circ} + \left[ \Sigma_{e} \left( F_{s} \right) - \Sigma_{e} \left( F_{s} \right) \right] \sin 80^{\circ} \\ & + \left[ \Sigma_{e} \left( F_{s} \right) - \Sigma_{e} \left( F_{s} \right) \right] \sin 60^{\circ} + \left[ \Sigma_{e} \left( F_{s} \right) - \Sigma_{e} \left( F_{s} \right) \right] \sin 20^{\circ} ; \\ &18a_{5} = F_{o} - F_{1s} + \left( F_{1} - F_{1r} - F_{1s} + F_{2s} \right) \cos 50^{\circ} - \left( F_{2} - F_{1s} - F_{2s} + F_{2s} \right) \cos 80^{\circ} \\ & - \left( F_{3} - F_{1s} - F_{1s} + F_{2s} \right) \cos 30^{\circ} - \left( F_{s} - F_{1s} - F_{2s} + F_{2s} \right) \cos 20^{\circ} - \left( F_{s} - F_{1s} - F_{2s} + F_{2s} \right) \cos 40^{\circ} ; \\ &18b_{5} = \left( F_{1} + F_{1r} - F_{1s} - F_{2s} \right) \sin 50^{\circ} + \left( F_{1} - F_{1s} - F_{2s} + F_{2s} \right) \cos 10^{\circ} + \left( F_{s} - F_{1s} - F_{2s} + F_{2s} \right) \cos 40^{\circ} ; \\ &18b_{5} = \left( F_{1} + F_{1r} - F_{2r} - F_{2s} \right) \sin 10^{\circ} + \left( F_{s} + F_{1s} - F_{2s} - F_{2s} \right) \sin 10^{\circ} + \left( F_{s} + F_{1s} - F_{2s} - F_{2s} \right) \sin 10^{\circ} \\ & - \left( F_{4} + F_{1s} - F_{2s} - F_{2s} \right) \sin 10^{\circ} + \left( F_{5} + F_{1s} - F_{2s} - F_{2s} \right) \sin 40^{\circ} + F_{5} - F_{2s} + F_{2s} \right) \cos 60^{\circ} ; \\ &18a_{6} = \Sigma_{3} \left( \pm F_{1} \right) + \Sigma_{3} \left( \pm F_{1} \right) - \Sigma_{3} \left( \pm F_{2} \right) \right] \cos 60^{\circ} ; \\ &18b_{5} = \left[ \Sigma_{3} \left( \pm F_{1} \right) + \Sigma_{3} \left( \pm F_{2} \right) \right] \sin 60^{\circ} ; \\ &18b_{7} = \left[ F_{1} - F_{1s} - F_{1s} + F_{2s} \right] \cos 30^{\circ} + \left( F_{2} - F_{1s} - F_{2s} + F_{2s} \right) \cos 40^{\circ} \\ & - \left( F_{3} - F_{1s} - F_{1s} + F_{2s} \right) \cos 30^{\circ} + \left( F_{4} - F_{1s} - F_{2s} + F_{2s} \right) \cos 40^{\circ} \\ & - \left( F_{4} - F_{1s} - F_{2s} + F_{2s} \right) \sin 50^{\circ} - \left( F_{5} - F_{1s} - F_{2s} + F_{2s} \right) \cos 40^{\circ} \\ & + \left( F_{4} - F_{1s} - F_{2s} + F_{2s} \right) \cos 30^{\circ} + \left( F_{5} - F_{1s} - F_{2s} + F_{2s} \right) \cos 40^{\circ} \\ & + \left( F_{4} - F_{1s} - F_{2s} + F_{2s} \right) \sin 50^{\circ} - \left($$

 $18a_{10} = \Sigma_{9} (\pm F_{0}) - \left[\Sigma_{9} (\pm F_{1}) - \Sigma_{9} (\pm F_{3})\right] \cos 80^{\circ} - \left[\Sigma_{9} (\pm F_{2}) - \Sigma_{9} (\pm F_{7})\right] \cos 20^{\circ}$ 

 $+ [\Sigma_{9}(\pm F_{3}) - \Sigma_{9}(\pm F_{6})] \cos 60^{\circ} + [\Sigma_{9}(\pm F_{4}) - \Sigma_{9}(\pm F_{5})] \cos 40^{\circ};$ 

75

$$18b_{10} = \left[\Sigma_{9}(\pm F_{1}) + \Sigma_{9}(\pm F_{8})\right] \sin 80^{\circ} - \left[\Sigma_{9}(\pm F_{2}) + \Sigma_{9}(\pm F_{7})\right] \sin 20^{\circ} \\ - \left[\Sigma_{9}(\pm F_{3}) + \Sigma_{9}(\pm F_{8})\right] \sin 60^{\circ} + \left[\Sigma_{9}(\pm F_{4}) + \Sigma_{9}(\pm F_{8})\right] \sin 40^{\circ};$$

$$18\alpha_{11} = F_{0} - F_{18} - (F_{1} - F_{17} - F_{19} + F_{38}) \cos 70^{\circ} - (F_{2} - F_{16} - F_{20} + F_{24}) \cos 40^{\circ} + (F_{3} - F_{15} - F_{21} + F_{33}) \cos 30^{\circ} + (F_{4} - F_{14} - F_{22} + F_{32}) \cos 80^{\circ} - (F_{5} - F_{13} - F_{23} + F_{31}) \cos 10^{\circ} + (F_{6} - F_{12} - F_{24} + F_{30}) \cos 60^{\circ} + (F_{7} - F_{11} - F_{25} + F_{29}) \cos 50^{\circ} - (F_{8} - F_{10} - F_{26} + F_{28}) \cos 20^{\circ};$$

$$18b_{11} = (F_{1} + F_{17} - F_{19} - F_{35}) \sin 70^{\circ} - (F_{2} + F_{16} - F_{20} - F_{34}) \sin 40^{\circ} - (F_{3} + F_{15} - F_{21} - F_{38}) \sin 30^{\circ} + (F_{4} + F_{14} - F_{22} - F_{32}) \sin 80^{\circ} - (F_{5} + F_{13} - F_{23} - F_{31}) \sin 10^{\circ} - (F_{6} + F_{12} - F_{24} - F_{30}) \sin 60^{\circ} + (F_{7} + F_{11} - F_{25} - F_{29}) \sin 50^{\circ} + (F_{8} + F_{10} - F_{26} - F_{28}) \sin 20^{\circ} - (F_{9} - F_{27});$$

$$18\alpha_{12} = \Sigma_{3}(F_{0}) - \left[\Sigma_{3}(F_{1}) + \Sigma_{3}(F_{2})\right] \cos 60^{\circ};$$

$$18b_{13} = \left[\Sigma_{9}(F_{1}) - \Sigma_{7}(F_{2})\right] \sin 60^{\circ}.$$

The same groups of terms enter into the expressions for  $a_1$  &  $b_1$ ,  $a_3$  &  $b_5$ ,  $a_7$  &  $b_7$ ,  $a_{11}$  &  $b_{11}$ ,  $a_{13}$  &  $b_{13}$ , and  $a_{17}$  &  $b_{17}$ , only multiplied by different coefficients in each case.

Also the same groups of terms with different coefficients enter into the expressions for  $a_2$  &  $b_2$ , for  $a_{10}$  &  $b_{10}$  and for  $a_{14}$  &  $b_{14}$ ; and the same groups enter into the expressions for  $a_4$  &  $b_4$ ,  $a_8$  &  $b_8$  and  $a_{16}$  &  $b_{16}$ .

The above equations give the values of  $a_m$  and  $b_m$  for different values of m for each belt of latitude, and it will not be necessary to go beyond the terms above found.

Formation of the Equations of Condition.

4. Take 
$$\sum (X'_{n}^{m}g_{n}^{m} + X'_{-n}^{m}g_{-n}^{m})$$
 to denote the series of terms  $X'_{n}^{m}g_{n}^{m} + X'_{-n}^{m}g_{-n}^{m} + X'_{n_{1}}^{m}g_{n_{1}}^{m} + X'_{-n_{1}}^{m}g_{-n_{1}}^{m} + &c.$ 

and employ a similar notation for Y and Z as well as for the h constants; then the equations of condition for each belt of latitude are

$$\Sigma \left( X_{n}^{\prime m} g_{n}^{m} + X_{-n}^{\prime m} g_{-n}^{m} \right) = \alpha_{m}, \text{ and } \Sigma \left( X_{n}^{\prime m} h_{n}^{m} + X_{-n}^{\prime m} h_{-n}^{m} \right) = b_{m},$$

$$\Sigma \left( Y_{n}^{\prime m} g_{n}^{m} + Y_{-n}^{\prime m} g_{-n}^{m} \right) = b_{m}, \text{ and } \Sigma \left( Y_{n}^{\prime m} h_{n}^{m} + Y_{-n}^{\prime m} h_{-n}^{m} \right) = -\alpha_{m},$$

$$\Sigma \left( Z_{n}^{\prime m} g_{n}^{m} + Z_{-n}^{\prime m} g_{-n}^{m} \right) = a_{m}, \text{ and } \Sigma \left( Z_{n}^{\prime m} h_{n}^{m} + Z_{-n}^{\prime m} h_{-n}^{m} \right) = b_{m}.$$
A. II.

The values of the coefficients  $X_n^m$ ,  $X_{-n}^m$ ,  $Y_n^m$  &c. in these equations are the values derived for the spheroidal surface of the Earth from the formulae given in Section VI. (p. 452); their logarithms are recorded in tables in Section VII. (see pp. 482—519).

When n-m is even, the value of  $X'^m_n$  contains only odd powers of  $\mu$ , and the values of  $Y'^m_n$  and  $Z'^m_n$  contain only even powers of  $\mu$ .

Similarly, when n-m is odd, the value of  $X'_n^m$  contains only even powers of  $\mu$ , and the values of  $Y'_n^m$  and  $Z'_n^m$  contain only odd powers of  $\mu$ .

Hence if the coefficient of  $\cos m\lambda$  in either of the quantities X, Y or Z be denoted by  $a_m$  and the coefficient of  $\sin m\lambda$  by  $b_m$  for a given north latitude, and if  $a'_m$ ,  $b'_m$  denote the similar quantities for the corresponding south latitude, then combining the equations for these two belts together we have, when n-m is even,

$$\Sigma \left( X_{n}^{\prime m} g_{n}^{m} + X_{-n}^{\prime m} g_{-n}^{m} \right) = \frac{1}{2} \left( a_{m} - a_{m}^{\prime} \right), \text{ and } \Sigma \left( X_{n}^{\prime m} h_{n}^{m} + X_{-n}^{\prime m} h_{-n}^{m} \right) = -\frac{1}{2} \left( b_{m} - b_{m}^{\prime} \right),$$

$$\dots (1),$$

$$\Sigma \left( Y_{n}^{\prime m} g_{n}^{m} + Y_{-n}^{\prime m} g_{-n}^{m} \right) = \frac{1}{2} \left( b_{m} + b_{m}^{\prime} \right), \text{ and } \Sigma \left( Y_{n}^{\prime m} h_{n}^{m} + Y_{-n}^{\prime m} h_{-n}^{m} \right) = -\frac{1}{2} \left( a_{m} + a_{m}^{\prime} \right),$$

$$\Sigma \left( Z'_{n}^{m} g_{n}^{m} + Z'_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left( \alpha_{m} + \alpha'_{m} \right), \text{ and } \Sigma \left( Z'_{n}^{m} h_{n}^{m} + Z'_{-n}^{m} h_{-n}^{m} \right) = \frac{1}{2} \left( b_{m} + b'_{m} \right);$$

and, when n-m is odd, we have

$$\Sigma \left( X'_{n}^{m} g_{n}^{m} + X'_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left( \alpha_{m} + \alpha'_{m} \right), \text{ and } \Sigma \left( X'_{n}^{m} h_{n}^{m} + X'_{-n}^{m} h_{-n}^{m} \right) = \frac{1}{2} \left( b_{m} + b'_{m} \right),$$

$$\Sigma \left( Y'_{n}^{m} g_{n}^{m} + Y'_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left( b_{m} - b'_{m} \right), \text{ and } \Sigma \left( Y'_{n}^{m} h_{n}^{m} + Y'_{-n}^{m} h_{-n}^{m} \right) = -\frac{1}{2} \left( a_{m} - \alpha'_{m} \right),$$

$$\Sigma \left( Z'_{n}^{m} g_{n}^{m} + Z'_{-n}^{m} g_{-n}^{m} \right) = \frac{1}{2} \left( \alpha_{m} - \alpha'_{m} \right), \text{ and } \Sigma \left( Z'_{n}^{m} h_{n}^{m} + Z'_{-n}^{m} h_{-n}^{m} \right) = \frac{1}{2} \left( b_{m} - b'_{m} \right).$$

Thus the equations for the magnetic constants, when n-m is even, are separated from the equations for the constants when n-m is odd, and each equation contains only half the number of unknown magnetic constants to be determined.

Also the equations for the quantities  $h_n^m$  will be found from the equations for  $g_n^m$  by substituting,

when n-m is even,

$$\frac{1}{2}(b_m - b'_m) \text{ for } \frac{1}{2}(a_m - \alpha'_m) \text{ in the equations for } X,$$

$$-\frac{1}{2}(a_m + \alpha'_m) \text{ for } \frac{1}{2}(b_m + b'_m) \text{ in the equations for } Y,$$

$$\frac{1}{2}(b_m + b'_m) \text{ for } \frac{1}{2}(a_m + \alpha'_m) \text{ in the equations for } Z;$$

and when n-m is odd, by substituting

$$\frac{1}{2}(b_m + b'_m) \text{ for } \frac{1}{2}(\alpha_m + \alpha'_m) \text{ in the equations for } X,$$

$$-\frac{1}{2}(\alpha_m - \alpha'_m) \text{ for } \frac{1}{2}(b_m - b'_m) \text{ in the equations for } Y,$$

$$\frac{1}{2}(b_m - b'_m) \text{ for } \frac{1}{2}(\alpha_m - \alpha'_m) \text{ in the equations for } Z.$$

and

Thus we have in the equations for X

$$x'_{m} = \frac{1}{2} (a_{m} - a'_{m})$$
 or  $\frac{1}{2} (a_{m} + a'_{m})$  in the equation for  $g_{n}^{m}$ ,

and

$$x'_{m} = \frac{1}{2}(b_{m} - b'_{m})$$
 or  $\frac{1}{2}(b_{m} + b'_{m})$  in the equation for  $h_{n}^{m}$ ,

according as n-m is even or odd.

Also we have in the equations for Y

$$y'_{m} = \frac{1}{2}(b_{m} + b'_{m})$$
 or  $\frac{1}{2}(b_{m} - b'_{m})$  in the equation for  $g_{n}^{m}$ ,

and

$$y'_{m} = -\frac{1}{2} \left( \alpha_{m} + \alpha'_{m} \right) \text{ or } -\frac{1}{2} \left( \alpha_{m} - \alpha'_{m} \right) \text{ in the equation for } h_{n}^{m},$$

according as n-m is even or odd.

Similarly we have in the equations for Z

$$z'_{m} = \frac{1}{2} \left( \alpha_{m} + \alpha'_{m} \right) \text{ or } \frac{1}{2} \left( \alpha_{m} - \alpha'_{m} \right) \text{ in the equation for } g_{n}^{m},$$

and  $z'_m = \frac{1}{2} (b_m + b'_m)$  or  $\frac{1}{2} (b_m - b'_m)$  in the equation for  $h_n^m$ , according as n - m is even or odd.

Thus the values of  $x'_m$ ,  $y'_m$  and  $z'_m$  in the equations of condition given in the previous Section (see pp. 520—553) have been determined.

Each system of equations of condition will involve a single value of m combined either with all even values of n or with all odd values of n. There will be one system for the coefficients  $X'_n^m$ ,  $X'_{-n}^m$ , another for the coefficients  $Y'_n^m$ ,  $Y'_{-n}^m$  and a third for the coefficients  $Z'_n^m$ ,  $Z'_{-n}^m$ .

The belts of latitude,  $5^{\circ}$  in breadth, starting from  $87^{\circ}\frac{1}{2}$  N. latitude, are distinguished by the letters (a), (b), (c) &c., the centres of the belts being  $5^{\circ}$ ,  $10^{\circ}$ ,  $15^{\circ}$  &c. from the pole respectively, and each belt of north latitude combined with the corresponding belt of south latitude will contribute an equation to each system.

Thus for latitude  $60^{\circ}$  N. combined with  $60^{\circ}$  S., the set (f) will furnish, for the g constants, the three following equations to the respective systems X, Y, Z corresponding to m=4 and n even:

* -[9.6479108] $g_4^4$  -[9.6397698] $g_{-4}^4$  -[9.3739435] $g_6^4$  -[9.3627519] $g_{-6}^4$  - &c.

$$=\frac{1}{2}\left(\alpha_{4}-\alpha'_{4}\right) \text{ for } X,$$

 $\big[9.7120302\big]g_{\scriptscriptstyle 4}^{\scriptscriptstyle 4} + \big[9.7022392\big]g_{\scriptscriptstyle -4}^{\scriptscriptstyle 4} + \big[9.5314878\big]g_{\scriptscriptstyle 6}^{\scriptscriptstyle 4} + \big[9.5173452\big]g_{\scriptscriptstyle -6}^{\scriptscriptstyle 4} + \&c.$ 

$$=\frac{1}{2}(b_4+b'_4)$$
 for  $Y$ ,

 $\big[9.5118188\big]g_4^4 - \big[9.4012092\big]g_{-4}^4 + \big[9.4766723\big]g_6^4 - \big[9.3934121\big]g_{-6}^4 + \&c.$ 

$$=\frac{1}{2}\left(\alpha_{4}+\alpha_{4}'\right) \text{ for } Z,$$

and the three following equations to the similar systems corresponding to odd values of n:

$$-\big[9\cdot 5471920\big]g_{\scriptscriptstyle \delta}^{\scriptscriptstyle 4} - \big[9\cdot 5374280\big]g_{\scriptscriptstyle -\delta}^{\scriptscriptstyle 4} - \big[9\cdot 1267947\big]g_{\scriptscriptstyle 7}^{\scriptscriptstyle 4} - \big[9\cdot 1145742\big]g_{\scriptscriptstyle -7}^{\scriptscriptstyle 4} - \&c.$$

$$=\frac{1}{2}(a_4+a'_4)$$
 for  $X$ ,

 $\big[9\cdot 6499180\big]g_{\scriptscriptstyle 5}^{\scriptscriptstyle 4} + \big[9\cdot 6379512\big]g_{\scriptscriptstyle -6}^{\scriptscriptstyle 4} + \big[9\cdot 3653414\big]g_{\scriptscriptstyle 7}^{\scriptscriptstyle 4} + \big[9\cdot 3490233\big]g_{\scriptscriptstyle -7}^{\scriptscriptstyle 4} + \&c.$ 

$$=\frac{1}{2}(b_4-b'_4)$$
 for  $Y$ ,

 $\big[9\cdot 5284778\big]g_{\scriptscriptstyle \delta}^{\scriptscriptstyle 4} - \big[9\cdot 4344144\big]g_{\scriptscriptstyle -\delta}^{\scriptscriptstyle 4} + \big[9\cdot 3682450\big]g_{\scriptscriptstyle 7}^{\scriptscriptstyle 4} - \big[9\cdot 2923736\big]g_{\scriptscriptstyle -7}^{\scriptscriptstyle 4} + \&c.$ 

$$=\frac{1}{2}\left(\alpha_{4}-\alpha_{4}^{\prime}\right) \text{ for } Z.$$

^{*} where [9.6479108] is employed to express the number of which 9.6479108 is the logarithm.

## Formation of the Final Equations.

5. Each equation of condition, as above found, will give rise to as many final equations as there are magnetic constants in the equation to be determined. The equations of condition are multiplied by the weights  $w_a$ ,  $w_b$  &c. of the observations for their respective belts of latitude. In the following solutions of the equations the weight of the observations for any belt of latitude has been taken to be proportional to the area of that belt. The weight of each equation from the equatorial belt (s) is taken as  $\frac{1}{2}w_s$ , since this belt extends only  $2^{\circ}\frac{1}{2}$  on each side of the equator.

Then the *final* equation for each magnetic constant  $g_n^m$  is formed by multiplying each equation so formed by the coefficient of  $g_n^m$  in the corresponding equation of condition, and adding together the resulting coefficients of  $g_n^m$  from the different belts of latitude (a), (b), (c) &c.

Thus the type of the final equation for  $g_n^m$  is

$$\Sigma [(X'_{n}^{m})^{2}w]g_{n}^{m} + \Sigma [X'_{n}^{m}X'_{-n}^{m}w]g_{-n}^{m} + \Sigma [X'_{n}^{m}X'_{n_{1}}^{m}w]g_{n_{1}}^{m} + \&c. = \Sigma [X'_{n}^{m}wx'_{n}],$$

with similar equations for Y and Z. The absolute term  $\Sigma [X'_n^m wx'_m]$  is different, according as n-m is even or odd, the value of  $x'_m$  being arrived at as indicated in the last article.

For the convenience of the ready calculation of the coefficients in the final equations, a series of numerical equations has been formed from the equations of condition by multiplying the equation of condition for each latitude by the square root of the weight of the observations in that latitude. These equations so formed are given in the previous Section (see pp. 554—587) and are of the types

$$\Sigma \left( X'_{n}^{m} w^{\frac{1}{2}} g_{n}^{m} + X'_{-n}^{m} w^{\frac{1}{2}} g_{-n}^{m} \right) = w^{\frac{1}{2}} x'_{m}, \text{ and } \Sigma \left( X'_{n}^{m} w^{\frac{1}{2}} h_{n}^{m} + X'_{-n}^{m} w^{\frac{1}{2}} h_{-n}^{m} \right) = w^{\frac{1}{2}} x'_{m} \dots (2),$$
 with similar equations for  $Y$  and  $Z$ .

6. From the above equations (2) the final equations for any magnetic constant  $g_n^m$  or  $h_n^m$  for a given latitude are formed by multiplying by  $(X'_n^m w^{\frac{1}{2}})$ ,  $(Y'_n^m w^{\frac{1}{2}})$ , and  $(Z'_n^m w^{\frac{1}{2}})$ , i.e., by the coefficient of  $g_n^m$  or  $h_n^m$  in the above equations for X, Y and Z respectively.

This will give for  $g_n^m$  an equation of the type

$$(X'_{n}^{m})^{2}wg_{n}^{m} + X'_{n}^{m}X'_{-n}^{m}wg_{-n}^{m} + X'_{n}^{m}X'_{n_{1}}^{m}wg_{n_{1}}^{m} + &c. = X'_{n}^{m}wx'_{m} \dots (3),$$

with similar equations for Y and Z.

Then integrating or adding together the equations in X or Y or Z for the different latitudes we get the final equations for  $g_n^m$  of the types

$$\Sigma \left[ (X'_{n}^{m})^{2} w \right] g_{n}^{m} + \Sigma \left[ X'_{n}^{m} X'_{-n}^{m} w \right] g_{-n}^{m} + \Sigma \left[ X'_{n}^{m} X'_{n_{1}}^{m} w \right] g_{n_{1}}^{m} + \&c. = \Sigma \left[ X'_{n}^{m} w x'_{m} \right]...(4),$$

$$\Sigma \left[ \left( Y'^{m}_{n} \right)^{2} w \right] g^{m}_{n} + \Sigma \left[ Y'^{m}_{n} Y'^{m}_{-n} w \right] g^{m}_{-n} + \Sigma \left[ Y'^{m}_{n} Y'^{m}_{n_{1}} w \right] g^{m}_{n_{1}} + \&c. = \Sigma \left[ Y'^{m}_{n} w y'_{m} \right],$$

$$\sum \left[ (Z'_{n}^{m})^{2} w \right] g_{n}^{m} + \sum \left[ Z'_{n}^{m} Z'_{-n}^{m} w \right] g_{-n}^{m} + \sum \left[ Z'_{n}^{m} Z'_{n}^{m} w \right] g_{n}^{m} + \&c. = \sum \left[ Z'_{n}^{m} wz'_{m} \right].$$

The changes in the values of  $x'_m$ ,  $y'_m$  and  $z'_m$  according as (n-m) is even or odd have been above explained, and their values in the equations for determining  $h_n^m$  instead of  $g_n^m$  have also been given (see p. 594).

We shall have a separate final equation for each value of n; thus the final equation for  $g_{n}^{m}$  for a given latitude from the equations for X is

$$X_{n}^{\prime m} X_{n}^{\prime m} w g_{n}^{m} + X_{-n}^{\prime m} X_{n}^{\prime m} w g_{-n}^{m} + (X_{n}^{\prime m})^{2} w g_{n}^{m} + \&c. = X_{n}^{\prime m} w x_{m}^{\prime},$$

where the coefficient of  $g_n^m$  is the same as the coefficient of  $g_{n_1}^m$ , in equation (3).

Then adding up, for the constant  $g_{n_1}^m$ , the coefficients in the final equations for all the different belts of latitude we have the final equation from the series (X), which may be represented by the form

$$\Sigma \left[ X'_{n}^{m} X'_{n_{1}}^{m} w \right] g_{n}^{m} + \Sigma \left[ X'_{-n}^{m} X'_{n_{1}}^{m} w \right] g_{-n}^{m} + \Sigma \left[ (X'_{n_{1}}^{m})^{2} w \right] g_{n_{1}}^{m} + \&c. = \Sigma \left[ X'_{n_{1}}^{m} w x'_{m} \right],$$

where  $x'_m$  stands for  $\frac{1}{2}(a_m - a'_m)$  when  $n_1 - m$  is even and for  $\frac{1}{2}(a_m + a'_m)$  when  $n_1 - m$  is odd.

Equations similar to the above will be derived from the series (Y) and from the series (Z).

These equations may be solved separately, and the values of the magnetic constants determined from each series; taking series (X), series (Y) and series (Z) separately.

7. For another and more satisfactory determination of the magnetic constants the series (X) and the series (Y) may also be conveniently combined into one equation in the same way as the above equations for

different latitudes in X have been combined, in which case the coefficient of  $g_n^m$  in the final equation for  $g_n^m$  will be

$$\sum [X'_{n}^{m}X'_{n}^{m}w] + \sum [Y'_{n}^{m}Y'_{n}^{m}w].$$

And the coefficient of  $g_n^m$  in the final equation for  $g_n^m$  will be  $\Sigma (X_n'^m)^2 w + \Sigma (Y_n'^m)^2 w.$ 

We have seen above that in the case of a sphere the coefficients of each of the magnetic constants in this final equation except the coefficient of  $g_n^m$  will vanish; but this will only be the case when the summation is taken all over the Earth's surface. The corresponding coefficients on the spheroid will be small quantities depending on the value of the square of the eccentricity.

The right-hand side of the equation (4) becomes under these conditions  $\Sigma [X'_{"} x'_{"} w] + \Sigma [Y'_{"} y'_{"} w].$ 

If for a first approximation small terms be neglected, the value of  $g_n^m$  will be given by the equation

$$\left\{ \sum \left[ (X_n''')^2 w \right] + \sum \left[ (Y_n''')^2 w \right] \right\} g_n''' = \sum \left[ X_n''' x_m' w \right] + \sum \left[ Y_n'' y_m' w \right].$$

When the belts of latitude which are employed in giving the equations extend over the whole of the Earth's surface, and when the successive belts are sufficiently narrow, the coefficient of  $(g_n^m + g_{-n}^m)$  in the final equation for  $g_n^m$  is approximately

$$n(n+1)\int_{-1}^{1} (H_n'^m)^2 d\mu$$
 or  $\frac{n(n+1)}{2n+1} \times 2\frac{(n-m)!(n+m)!}{[1.3.5...(2n-1)]^2}$ ,

and, as before (see p. 439 above), the right-hand side of the equation becomes

$$\int_{-1}^{1} X'_{n}^{m} x'_{m} d\mu + \int_{-1}^{1} Y'_{n}^{m} y'_{m} d\mu.$$

It will be seen that  $\Sigma[X'_n^m X'_{n_i}^m w]$ , which is the coefficient of  $g_{n_i}^m$  in the final equation for  $g_n^m$  [equation (4)], is also the coefficient of  $g_n^m$  in the final equation for  $g_{n_i}^m$ .

A similar interchange of coefficients will also hold good in the equations for Y and in the equations for Z.

This interchange of coefficients will also hold good when the series of equations for (X) and for (Y) are combined.

The final equations for some of the more important magnetic constants are given at the end of this volume. We propose to solve the final equations derived from the series for X, Y and Z combined, taking into account the data obtained from magnetic observations over the portion of the surface of the Earth between latitudes  $67^{\circ}\frac{1}{2}$  N. and  $67^{\circ}\frac{1}{2}$  S., taking only the equations of condition for belts between these latitudes, and taking only those terms in these equations for values of m from 0 to 6 and for values of n from 1 to 6 inclusive. These equations will give values for 48 constants, and no equation will contain more than three unknown quantities.

The Table on p. 605 gives the values of these 48 constants thus obtained from observations of the magnetic elements for 1845 and for 1880.

### Solution of the Equations.

8. The coefficients on the left-hand side of the equations of condition (and therefore also on the left-hand side of the final equations) will be the same for  $g_n^m$  and for  $h_n^m$ , but the right-hand members of the equations or the absolute terms will be different. Taking  $a_n^m$  to stand for either  $g_n^m$  or  $h_n^m$ , the equations for solution may be conveniently arranged as follows:

From the equations for (X) taken separately

$$\Sigma \left[ X_{n}^{\prime m} X_{n_{1}}^{\prime m} w \right] a_{n}^{m} + \Sigma \left[ (X_{n_{1}}^{\prime m})^{2} w \right] a_{n_{1}}^{m} = \begin{pmatrix} \text{absolute term} \\ \text{for } g_{n_{1}}^{m} \end{pmatrix} \text{ or } \begin{pmatrix} \text{absolute term} \\ \text{for } h_{n_{1}}^{m} \end{pmatrix}.$$

From the series of equations for (X) combined with those for (Y) we may also solve the equations, of which the type will be as follows:

$$\begin{split} & \left\{ \Sigma \left[ X'_{n}^{m} X'_{n_{1}}^{m} w \right] + \Sigma \left[ \left. Y'_{n}^{m} Y'_{n_{1}}^{m} w \right] \right\} \alpha_{n}^{m} \\ & + \Sigma \left[ \left( X'_{n_{1}}^{m} \right)^{2} w \right] + \Sigma \left[ \left( Y'_{n_{1}}^{m} \right)^{2} w \right] \alpha_{n_{1}}^{m} + \&c. = \begin{pmatrix} \text{absolute term} \\ \text{for } g_{n_{1}}^{m} \end{pmatrix} \text{ or } \begin{pmatrix} \text{absolute term} \\ \text{for } h_{n_{1}}^{m} \end{pmatrix}, \end{split}$$

the absolute terms being derived in this case from the series for (X) and for (Y) combined.

The values of the same constant derived from these equations taken separately or taken together will differ somewhat from one another.

The final equation for any magnetic constant derived from the series for X, Y and Z combined will be formed by adding together the coefficients of the same magnetic constants in the three final equations for X, for Y and for Z, each taken separately. As there is a separate final equation for each magnetic constant, there will be as many combined final equations as there are magnetic constants in them to be determined.

Let us illustrate the mode of solving these final equations by taking the case given above (see p. 596) in which m=4 and n is odd, taking the equations up to latitude  $77^{\circ}\frac{1}{2}$  inclusive, and combining the equations for X, Y and Z, supposing the magnetic constants corresponding to negative values of n to be non-existent. We will include the terms involving n=7.

The coefficients for  $g_{\mathfrak{s}^4}$  and  $h_{\mathfrak{s}^4}$  being the same, the final equations for  $g_{\mathfrak{s}^4}$  and  $h_{\mathfrak{s}^4}$  for the period 1845 may be written thus:

$$(\text{for } g) \qquad (\text{for } h)$$

from 
$$(X)$$
 3:4034960  $\alpha_5^4$  - :3898572  $\alpha_7^4$  = :2416593 or -:0159063,

,, 
$$(Y)$$
 9.4158541  $\alpha_5^4$  + .4092903  $\alpha_7^4$  = .0589245 or .3418323,

,, (Z) 
$$15.3871472 \,a_5^4 + .0223528 \,a_7^4 = .4657356$$
 or  $.1824818$ .

Adding these together we have

$$28.2064973 \, \alpha_5^4 + .0417859 \, \alpha_7^4 = .7663194 \text{ or } .5084078.....(1).$$

Similarly the final equations for  $g_7^4$  and  $h_7^4$  may be written thus:

from (X) 
$$-3898572 \, a_5^4 + 2637326 \, a_7^4 = 0204205$$
 or  $0140404$ ,

,, 
$$(Y)$$
  $\cdot 4092903 \, \alpha_s^4 + \cdot 3081774 \, \alpha_r^4 = \cdot 0454171 \text{ or } \cdot 0373065,$ 

,, (Z) 
$$0223528 \alpha_5^4 + 6536612 \alpha_7^4 = 0056358$$
 or  $0882180$ .

Adding these together we have

$$\cdot 0417859 \, a_5^4 + 1 \cdot 2255712 \, a_7^4 = \cdot 0714734 \text{ or } \cdot 1395649......(2).$$

Eliminating  $a_{s}^{4}$  from the equations (1) and (2) we get  $1.2255093 a_{7}^{4} = .0703382$  or .1388117.

Hence 
$$g_7^4 = .0573951$$
 and  $h_7^4 = .1132686$ .

Substituting in the first equation, we get

$$g_s^4 = .0270832$$
 and  $h_s^4 = .0178567$ .

Thus the values of  $g_{7}^{4}$  and  $h_{7}^{4}$  are more important than the values of  $g_{5}^{4}$  and  $h_{5}^{4}$ .

Similarly in solving the equations with m=4 and n even, it is found that  $g_4^4 = 0029684$ ,  $h_4^4 = 0217744$ ,  $g_6^4 = 0642604$  and  $h_6^4 = 0603230$ ; so that  $g_6^4$  and  $h_6^4$  are more important than  $g_4^4$  and  $h_4^4$ .

9. The relative importance of magnetic constants of different orders is well shewn by the solution of the final equations for  $h_s^2$ ,  $h_s^2$  and  $h_7^2$  for the period 1880.

Keeping in the terms containing  $h_7^2$ , the final equations derived by combining the equations for X, Y and Z are

$$24 \cdot 1400624 \, h_3^2 - .2579706 \, h_5^2 - .1213933 \, h_7^2 = .19111,$$

$$-.2579706 \, h_3^2 + 2.1784697 \, h_5^2 - .0719819 \, h_7^2 = .13841,$$

$$-.1213933 \, h_3^2 - .0719819 \, h_5^2 + .1887180 \, h_7^2 = -.02852.$$

The solution of these equations gives the values

$$h_{s}^{2} = .00794$$
,  $h_{s}^{2} = .06041$ ,  $h_{7}^{2} = -.12298$  (British units).

Converting these into c.g.s. units, we get

$$h_s^2 = .000366$$
,  $h_s^2 = .0027855$ ,  $h_7^2 = -.00567$ .

Comparison with the tables of values of magnetic constants given below (p. 605) shews that the effect of keeping in the constant  $h_7^2$  is to make a considerable change in the values of the constants  $h_3^2$  and  $h_5^2$ .

The corresponding equations for  $g_3^2$ ,  $g_5^2$  and  $g_7^2$  are

$$24 \cdot 1400624 g_{3}^{2} - \cdot 2579706 g_{5}^{2} - \cdot 1213933 g_{7}^{2} = -14 \cdot 62295,$$

$$- \cdot 2579706 g_{3}^{2} + 2 \cdot 1784697 g_{5}^{2} - \cdot 0719819 g_{7}^{2} = -1 \cdot 11044,$$

$$- \cdot 1213933 g_{3}^{2} - \cdot 0719819 g_{5}^{2} + \cdot 1887180 g_{7}^{2} = \cdot 05785,$$

and the solution of these equations gives the values

$$g_s^2 = -.613670$$
,  $g_s^2 = -.592789$ ,  $g_7^2 = -.314308$  (British units), or  $g_s^2 = -.028295$ ,  $g_s^2 = -.027332$ ,  $g_7^2 = -.014492$  (c.g.s. units).

These values of  $g_s^2$  and  $g_s^2$  do not differ much from the values obtained and recorded in the Table (see p. 605), when  $g_7^2$  is neglected.

10. Let us further illustrate the mode of solving these final equations by taking the case of m=0 and n odd from the equations for X, and also from the equations for Z, taken separately, for the period 1845.

We will form the equations of condition taking into account the data only up to  $67^{\circ}\frac{1}{2}$  N. and S. latitudes. The formation of the final equations for  $g_1^{\circ}$ ,  $g_3^{\circ}$  and  $g_5^{\circ}$  will then be as follows:

From equations for (X),

$$7.6331952 g_1^{\circ} - 1138565 g_3^{\circ} - 0886747 g_5^{\circ} = 53.575026,$$

$$-1138565 g_1^0 + 2.8880836 g_3^0 - 1765112 g_5^0 = -2.456863,$$

$$- .0886747 g_1^{\circ} - .1765112 g_3^{\circ} + .3955108 g_5^{\circ} = - .4538875.$$

And we have from equations for (Z),

$$12.0636234 g_1^{\circ} - 2.1413469 g_3^{\circ} - .7000106 g_5^{\circ} = 85.065860,$$

$$-2.1413469 g_1^{\circ} + 2.7856531 g_3^{\circ} - 4744250 g_5^{\circ} = -16.292662$$

- 
$$\cdot 7000106 g_1^{\circ} - \cdot 4744250 g_3^{\circ} + \cdot 4394974 g_5^{\circ} = - \cdot 4.6678164.$$

Solving the equations for (X), we get

$$g_1^0 = 7.01229$$
,  $g_3^0 = -.56367$ ,  $g_5^0 = .17302$ .

These values agree almost exactly with those found from the whole of the equations for (X) up to latitude  $77^{\circ}\frac{1}{2}$ .

Solving the equations for (Z), we get

$$g_1^0 = 6.951666$$
,  $g_3^0 = -.524544$ , and  $g_5^0 = -.11476$ .

These values agree very closely with those found from the whole of the equations for (Z) up to latitude  $77^{\circ}\frac{1}{2}$ .

The values of  $g_1^{\circ}$  and  $g_3^{\circ}$  derived from the equations for (Z) agree fairly well with those found from the equations for (X), but the values of  $g_s^{\circ}$  have opposite signs. Probably the neglected term in  $g_7^{\circ}$  may have some influence on this result.

Taking the magnetic constants depending upon external forces into account, let us find approximately what values of  $g_{-1}^{\circ}$ ,  $g_{-3}^{\circ}$ ,  $g_{-5}^{\circ}$  will bring the two sets of results into harmony. This may be done by substituting  $g_{n}^{\circ} + g_{-n}^{\circ}$  for  $g_{n}^{\circ}$  in the equations for (X), and  $g_{n}^{\circ} - \frac{n}{n+1} g_{-n}^{\circ}$  for  $g_{n}^{\circ}$  in the

equations for (Z). Hence we get in the cases treated above

$$g_1^0 = 6.971874$$
,  $g_{-1}^0 = .040416$ ,  $g_3^0 = -.541312$ ,  $g_{-3}^0 = -.022358$ ,  $g_5^0 = .01605$ , and  $g_{-5}^0 = .15697$ .

Hence the constant  $g_{-5}^{0}$  seems to be of great importance.

The values found for the two first of the above constants are in British units by Gauss (1830) by Erman (1829)

by Gauss (1830) by Erman (1829) 
$$g_1^0 = 7.0155$$
  $g_1^0 = 6.9417$   $g_3^0 = -.1430$   $g_3^0 = -.4069$ .

The values of these constants, derived from the above series of equations for (X), (Y) and (Z) combined, for all latitudes from  $67^{\circ}\frac{1}{2}$  S. to  $67^{\circ}\frac{1}{2}$  N., are

$$g_1^0 = 6.98081$$
 and  $g_3^0 = -.523986$ 

for the period 1845 from Sabine's charts.

The values derived for the above constants from the above equations of condition, taking m from 0 to 4 and n from 1 to 4 only, and neglecting the other terms, i.e., taking those constants only which were determined by Gauss, are

$$q_1^0 = 6.9777$$
 and  $q_3^0 = -.5310$ 

for the same period.

11. The values of the constants given in the two following tables are derived from the combined equations for (X), (Y) and (Z) to equations (e) inclusive (i.e. between latitudes  $67^{\circ}\frac{1}{2}$  S. and  $67^{\circ}\frac{1}{2}$  N.), supposing the constants corresponding to negative values of n to be non-existent. The equations for the belts outside these latitudes have not been included because of the scarcity of observations of the magnetic elements.

The second of these tables gives the values of the constants when we include in the equations only those 24 constants which are taken into account by Gauss himself. This table also includes the values (in British units) of these constants as determined by Gauss and by Erman.

- *The values of the Magnetic Constants are derived from
- (1) Sabine's Charts for 1845 in the *Philosophical Transactions* of the Royal Society.
  - (2) The Admiralty Charts for 1880.
- * (The values given in the *British Association Reports* for 1898 (p. 128) for  $h_{\sharp}'$ ,  $h_{\sharp}'$  and  $h_{\sharp}'$  for the period 1845 should be replaced by the values here given to those constants.)

TABLE of the Values of the Magnetic Constants.

		-		
		0.45		000
ì		845		880
	British	C. G. S.	British	C. G. S.
$g_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 0}$	6.98081	321871	6.87176	316843
$g_{\scriptscriptstyle 2}^{\scriptscriptstyle 1}$	0275845	-00127187	158464	0073065
$g_{\scriptscriptstyle 3}^{\scriptscriptstyle 2}$	- '523986	-00127187	- 58113	026795
$g_{\scriptscriptstyle 4}^{\scriptscriptstyle 3}$	- ·67352	- ·0310546	-73195	- ·033749
$g_{\scriptscriptstyle 5}^{\scriptscriptstyle 4}$	0513465	00236748	27987	012904
$g_{\scriptscriptstyle 6}^{\scriptscriptstyle 5}$	- '30013	- 0138385	07904	- 0036446
$g_1$	602567	0133333	52644	024273
$g_1 \ g_2^1$	-1.065495	- 0491279	-1.11386	- 051358
$g_{_3}^2$	678817	0312989	91030	041972
$g_{{f 4}}^3$	- '712584	0328558	79880	- '036831
$g_{\scriptscriptstyle 5}^{\scriptscriptstyle 4}$	- ·784390	0361666	- '61614	- ·028409
$g_6^5$	- 272348	- 0125575	59068	-027235
$g_{_2}^{_6}$	007649	-0003527	- 11506	-027235 $-0053054$
$g_{3}^{2}$	- 607671	-0009321 -0280185	- 61198	- 0282172
$g_{{}_4^2}^3$	- 331346	-0152777	- ·41928	-0282172 $-019332$
$g_{\scriptscriptstyle 5}^{\scriptscriptstyle 4}$	- ·661354	- 0304937	-58220	- ·026844
$g_{\scriptscriptstyle 6}^{\scriptscriptstyle 5}$	300535	012932	15864	020344
$g_3^6$	- 044994	0020746	- 06274	- 0028928
$g_4^3$	076635	0035335	12123	00255896
$g_{\scriptscriptstyle 5}^{\scriptscriptstyle 4}$	- 023517	- 0010843	011915	- '0005494
$g_6^5$	241583	011139	37369	0172301
$g_4^6$	002980	0001374	- 02346	0010818
$g_5^4$	002330	0012508	00433	0001996
$g_6^{5}$	064652	0012900	07682	0035421
$g_{\scriptscriptstyle 5}^{\scriptscriptstyle 6}$	- 01512	0006970	- 01435	0006615
$g_6^5$	009531	- '0004394	- '02154	0009933
$g_{\scriptscriptstyle 6}^{\scriptscriptstyle 6}$	003132	0001444	- '00047	0000218
$h_1^{g_6}$	-1.254179	0578277	-1.30780	- 0602998
$h_2^{'1}$	039173	.0018062	28051	0129335
$h_3^{-1}$	297611	0137222	16224	0074808
$h_4^{-1}$	- 119440	0055071	23026	010617
$h_5^{^1}$	.5291705	.0243990	.58114	.026795
$h_6^{-1}$	- 139605	0064369	- '06162	- '002841
$h_2^{\circ 2}$	254829	- '0116484	27960	- 0128917
$h_{3}^{^{2}}$	088692	0040894	.00861	.0003968
$h_4^{-2}$	$\cdot 214592$	.0098944	11316	0052175
$h_5^{^2}$	025210	- '0011624	06455	0029737
$h_6^{2}$	069335	0031969	- 17877	- '0082428
$h_3^{"3}$	- 146981	0067770	- '10697	- '0049321
$h_4^{3}$	.084794	.0039097	.09392	.0043306
$h_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 3}$	.009588	.0004421	.02851	0013145
$h_6^{-3}$	123986	.0057167	11457	.0052826
$h_4^{-4}$	·021780	00100425	·0 <b>2</b> 029	0009355
$h_5^4$	.01799	.0008295	.02489	0011477
$h_{e}^{4}$	.060462	.0027878	·0398 <b>4</b>	.0018370
$h_5^{5}$	00864	<b>-</b> ·0003984	- 00414	<b>-</b> ⋅0001908
$h_6^{5}$	- 049244	-00022705	02920	- '0013465
$h_6^6$	- 005664	- '0002612	.00390	·0001799

Comparison of the Values of the Magnetic Constants in British Units, as determined—(1) by Gauss, (2) by Erman, (3) by Adams for 1845, (4) by Adams for 1880, with their yearly rate of increase from 1845 to 1880.

Con- stants	Gauss	Erman	Ada 1845	ams, 1880	Yearly rate of change
$egin{array}{c} g_1^{\ 0} \ g_2^{\ 0} \ g_3^{\ 0} \ g_4^{\ 0} \ g_1^{\ 1} \ h_1^{\ 1} \ g_2^{\ 1} \ h_3^{\ 1} \ g_4^{\ 1} \ h_4^{\ 2} \ g_3^{\ 2} \ h_2^{\ 2} \ g_3^{\ 3} \ h_3^{\ 3} \ g_4^{\ 4} \ h_4^{\ 4} \ g_4^{\ 4} \ h_4^{\ 4} \end{array}$	7·0155 - · 1672 - · 1430 - · 8249 · 6746 -1·3545 -1·0981 - · 0457 · 9316 · 3622 -1·1563 + · 4858 + · 0037 - · 2956 - · 5546 - · 1725 - · 3470 · 3226 + · 0106 - · 1421 · 1498 - · 0013 + · 0313 · 0241	6:9417 + :0262 - :4069 - :5937 :6149 -1:3036 - :9659 + :0156 :6477 :3567 - :8330 - :0693 + :0271 - :2741 - :6664 - :1347 - :3382 :2353 - :0276 - :1572 :1455 + :0654 + :0194	6:9777 - :0124 - :5310 - :6309 - :6145 -1:2622 -1:0598 + :0421 - :7300 - :2631 - :6904 - :1081 - :0083 - :2547 - :6006 - :0884 - :3376 - :2160 - :0450 - :1470 - :0764 + :0847 + :0030 - :0218	6:8558 + :1624 - :6194 - :7207 :5358 -1:3166 -1:1014 + :2818 :9505 :1243 - :7507 - :2252 - :1154 - :2792 - :6057 + :0079 - :4226 :1169 - :0627 - :1070 :1209 + :0938 - :0234 :0203	- '00325 '00466 - '00236 - '00239 - '00210 - '00145 - '00111 '00639 '00588 - '00370 - '00161 - '00312 - '00286 - '00065 - '00014 '00257 - '00227 - '00264 - '00047 '00119 '00024 - '00070 - '00004

The multiplier for the conversion from British units into c.g.s. units is 0.046108.

It will be seen on examining these Tables for the period 1845-

- (1) That  $g_4^{\circ}$  and  $g_6^{\circ}$  are numerically very much larger than  $g_2^{\circ}$ .
- (2) That the values of  $g_2^0$  from the same equations differ greatly according as  $g_8^0$  is or is not included, the value of  $g_2^0$  being -0276 when  $g_8^0$  is included, and -0124 when  $g_8^0$  is excluded.
- (3) It also appears from the comparison of the solutions when the equations of condition are included up to  $77^{\circ}\frac{1}{2}$  latitude with the solutions above (i.e. stopping at  $67^{\circ}\frac{1}{2}$  latitude), that  $g_{2}^{\circ} = -0126$  in the first case, and -0276 in the second case, and that this discrepancy is partly due to the fact that the sum of the absolute terms in the final equation for  $g_{2}^{\circ}$  is +08815 when we stop at latitude  $67^{\circ}\frac{1}{2}$ , and -07184 when we proceed to latitude  $77^{\circ}\frac{1}{2}$ . Hence a wide variation in the value of  $g_{2}^{\circ}$  is to be expected in the two cases, even when  $g_{3}^{\circ}$  is included in both sets of equations.

- (4) It also appears from the above Tables that those constants in the values of which Gauss and Erman greatly differ are those which have undergone the greatest changes in the interval from 1845 to 1880, and that the values for 1845 now determined for the most part agree more nearly with those of Erman than with those of Gauss*.
- 12. The values of the magnetic constants have been determined from the equations for (X) and (Y) combined, and from the equations for (Z) separately, as well as from the equations for (X), (Y) and (Z) combined, and their values have been compared. Also their values have been determined (1) by including all the equations up to (e), i.e. between latitudes  $67^{\circ}\frac{1}{2}$  N. and  $67^{\circ}\frac{1}{2}$  S., as given in the following table, and (2) by including all the equations up to (c), i.e. between latitudes  $77^{\circ}\frac{1}{2}$  N. and  $77^{\circ}\frac{1}{2}$  S.

Comparative Values of the Magnetic Constants in British Units as deduced from different magnetic elements.

	1845		1880			1845		1880		
	From X and Y	Z	From X and Y	Z		From X and Y	Z	From X and Y	Z	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	7·012 - ·009 - ·564 - ·596 + ·173 - ·148 ·597 -1·089 ·682 - ·704 - ·858 - ·260 ·000 - ·596 - ·353 - ·678 ·416 - ·037 ·093 - ·028 ·221 - ·001 ·023 ·055	6·952 - ·089 - ·525 - ·846 - ·115 - ·646 ·605 -1·052 ·675 - ·726 - ·722 - ·299 - ·013 - ·617 - ·313 - ·647 ·206 - ·051 ·064 - ·019 ·259 + ·006 ·030 ·073	**X and **Y	6:877 + :179 - :574 - :630 + :329 - :005 :536 -1:122 :973 - :873 - :643 - :643 - :628 - :423 - :586 :165 - :051 :117 + :005 :483 - :028 - :016 :081	$h_1^1$ $h_2^1$ $h_3^1$ $h_4^1$ $h_5^1$ $h_6^1$ $h_2^2$ $h_3^2$ $h_4^2$ $h_5^2$ $h_6^3$ $h_4^3$ $h_5^3$ $h_6^4$ $h_5^4$	-1·287 -043 -285 -192 -534 -110 -247 -095 -176 +068 -011 -150 -077 +029 -026 -021 -025 -050	-1·240 ·035 ·299 - ·063 ·503 - ·168 - ·260 - ·083 ·245 - ·098 - ·120 - ·145 ·091 - ·007 ·205 ·022 ·012 ·070	-1·273 ·229 ·190 - ·284 ·724 - ·366 - ·265 - ·029 ·133 + ·037 - ·172 - ·117 ·092 ·031 ·135 ·030 ·051 ·054	-1·321 ·309 ·152 - ·192 ·478 + ·223 - ·289 - ·035 ·100 + ·078 - ·176 - ·099 ·096 ·027 ·098 ·012 ·003 ·028	
$g_{6}^{5} \ g_{6}^{6} \ g_{6}^{6}$	- ·013 - ·011 - ·002	- ·017 - ·009 + ·008	- ·013 - ·025 ·001	- ·016 - ·019 - ·002	$egin{array}{c} h_{5}{}^{5} \ h_{6}{}^{5} \ h_{6}{}^{6} \end{array}$	- ·009 - ·041 - ·006	- ·008 - ·056 - ·005	- ·006 - ·029 + ·003	- ·002 - ·029 + ·004	

^{[*} It should be remembered that before the excellent Admiralty Charts of 1880, prepared by Captain Creak, the magnetic charts of the world were based on observations which were insufficient and not distributed widely or regularly over the Earth's surface.]

13. In order to test the accuracy of the work in the determination of the magnetic constants we may substitute their values in the theoretical expressions for X, Y and Z and compare the results with the values of X, Y and Z as taken from the charts.

For this purpose we have to form for each parallel of latitude the value of the expression

$$\begin{split} \frac{1}{2} \left( a_{\scriptscriptstyle m} + a'_{\scriptscriptstyle m} \right) &= \ X_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 0} g_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 0} + X_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 0} g_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 0} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 0} g_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 0} \\ &+ \left( X_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 1} g_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 1} + X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 1} g_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 1} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 1} g_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 1} \right) \cos \lambda + \left( X_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 1} h_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 1} + X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 1} h_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 1} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 1} h_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 1} \right) \sin \lambda \\ &+ \left( X_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 2} g_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 2} + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 2} g_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 2} \right) \cos 2\lambda \\ &+ \left( X_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 2} h_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 2} + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 2} h_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 2} \right) \sin 2\lambda \\ &+ \left( X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 3} g_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 3} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 3} g_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 3} \right) \cos 3\lambda \\ &+ \left( X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 3} h_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 3} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 3} h_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 3} \right) \sin 3\lambda \\ &+ X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 4} g_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 4} \cos 4\lambda + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 5} g_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 5} \cos 5\lambda + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 4} h_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 4} \sin 4\lambda + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 5} h_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 5} \sin 5\lambda, \end{split}$$

and also the value of the expression

$$\begin{split} \frac{1}{2} \left( a_{\scriptscriptstyle m} - a'_{\scriptscriptstyle m} \right) &= X_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 0} g_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 0} + X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 0} g_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 0} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 0} g_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 0} \\ &\quad + \left( X_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 1} g_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 1} + X_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 1} g_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 1} + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 1} g_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 1} \right) \cos \lambda \quad + \left( X_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 1} h_{\scriptscriptstyle 1}{}^{\scriptscriptstyle 1} + X_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 1} h_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 1} + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 1} h_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 1} \right) \sin \lambda \\ &\quad + \left( X_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 2} g_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 2} + X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 2} g_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 2} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 2} g_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 2} \right) \cos 2\lambda + \left( X_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 2} h_{\scriptscriptstyle 2}{}^{\scriptscriptstyle 2} + X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 2} h_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 2} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 6} h_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 6} \right) \sin 2\lambda \\ &\quad + \left( X_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 3} g_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 3} + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 3} g_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 3} \right) \cos 3\lambda \qquad \qquad + \left( X_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 3} h_{\scriptscriptstyle 3}{}^{\scriptscriptstyle 3} + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 3} h_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 3} \right) \sin 3\lambda \\ &\quad + \left( X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 4} g_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 4} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 4} g_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 4} \right) \cos 4\lambda \qquad \qquad + \left( X_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 4} h_{\scriptscriptstyle 4}{}^{\scriptscriptstyle 4} + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 4} h_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 4} \right) \sin 4\lambda \\ &\quad + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 5} g_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 5} \cos 5\lambda + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 6} g_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 6} \cos 6\lambda + X_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 5} h_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 5} \sin 5\lambda + X_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 6} h_{\scriptscriptstyle 6}{}^{\scriptscriptstyle 6} \sin 6\lambda, \end{split}$$

and then to form the sum and difference of these expressions for the values of X in northern or southern latitudes respectively, which may then be directly compared with the charts.

Similar expressions must be formed in the same way for Y and Z for each parallel of latitude, and their sums and differences taken as in the case of X.

When the values of the magnetic constants had been determined, they were substituted in the equations of condition for each belt of latitude, the terms of which when added up gave the theoretical value of the absolute term for that latitude. This calculated value of the absolute term

was then compared with the value of the corresponding absolute term derived from the observations which had been used in the solution of the equations.

The following table gives some of these comparisons between the calculated and observed values of the absolute terms of the equations of condition for the period 1880 for m=0, m=1 and m=2, for odd and even values of n, and for m=3, for odd values of n, i.e. for all the more important magnetic constants.

The observed values are taken from the Admiralty Charts and are the values used in the solution of the equations, and it will be seen by the comparison of the calculated and observed values that a chart drawn to give the results of the calculations would not differ much from the Admiralty Charts from which the observations have been taken.

In the equations of condition and the final equations which have been used above no account is taken of observations within the area of a portion of the surface of the Earth immediately around the poles, *i.e.* within an area bounded by a small circle of radius  $2^{\circ}30'$  round the pole when we take all the above equations, or of radius  $12^{\circ}30'$  when we stop at the belt (c) given by latitude  $77^{\circ}\frac{1}{2}$ . This area will be bounded by a circle of radius  $22^{\circ}30'$  when we stop at equations (e) or latitude  $67^{\circ}\frac{1}{2}$ , as in the determinations of the magnetic constants given in the above tables (pp. 605-607).

# COMPARISON BETWEEN CALCULATED AND OBSERVED VALUES OF THE ABSOLUTE TERM

	m = 0				m = 1							
	n o	odd	n e	ven	for $g$ ,	n odd	for h,	n odd	for $g$ ,	n even	for h,	n even
X	calculated	observed	calculated	observed	calculated	observed	calculated	observed	calculated	observed	calculated	observe
(a) 85° (b) 80 (c) 75 (d) 70 (e) 65 (f) 60 (g) 55 (h) 50 (i) 45 (k) 40 (l) 35 (m) 30 (n) 25 (o) 20 (p) 15 (q) 10 (r) 5 (s) 0	0.540 1.075 1.600 2.114 2.615 3.091 3.585 4.058 4.526 4.985 5.432 5.857 6.249 6.598 6.598 6.598 6.7241 7.288	2.610 3.099 3.578 4.050 4.516 4.991 5.463 6.250 6.606 6.895 7.101 7.222 7.255	- '129 - '241 - '318 - '353 - '339 - '278 - '181 - '058 '074 - '198 '301 '370 '400 '396 '332 '242 '127	- '382 - '314 - '212 - '081 '058 '201 '387 '422 '406 '358 '277 '153	- 1'026 - 1'004 - '963 - '896 - '794 - '657 - '485 - '283 - '069 '144 '326 '466 '547 '556 '495 '369 '197	- '668 - '569 - '443 - '288 - '114 '076 '250 '390 '486 '507 '452 '342 '184	'979 1'031 1'102 1'182 1'249 1'289 1'244 1'153 1'025 '871 '705 '542 '392 '265 '161 '075	1:421 1:410 1:331 1:236 1:123 1:001 :849 :686 :533 :377 :244 :141 :064	1.681 1.504 1.240 919 576 249 - 038 - 270 - 442 - 562 - 702 - 741 - 775 - 889 - 835 - 854 - 862	'442 '195 - '015 - '200 - '356 - '511 - '636 - '746 - '833 - '871 - '885 - '847 - '833 - '833	- '138 - '153 - '171 - '189 - '202 - '204 - '191 - '161 - '016 - '056 '014 '088 '163 '232 '289 '333 '361 '370	- '27/ - '26/ - '26/ - '20/ - '13/ - '03/ - '08/ - '15/ - '22/ '26/ - '29/ - '29/
Y		<u>!</u>										
(a) 85° (b) 80 (c) 75 (d) 70 (e) 65 (f) 60 (g) 55 (h) 50 (i) 45 (k) 40 (l) 35 (m) 30 (n) 25 (o) 20 (p) 15 (q) 10 (r) 5 (s) 0					1.031 1.029 1.022 1.012 994 968 931 .884 .757 .672 .606 .531 .460 .400 .353 .325 .315	·859 ·872 ·851 ·832 ·804 ·749 ·611 ·527 ·445 ·372 ·313 ·274	- '969 - '991 - 1'024 - 1'066 - 1'114 - 1'164 - 1'210 - 1'253 - 1'287 - 1'312 - 1'336 - 1'337 - 1'332 - 1'335 - 1'337 - 1'314 - 1'312	- 1.003 - 1.059 - 1.121 - 1.176 - 1.219 - 1.256 - 1.288 - 1.302 - 1.310 - 1.311 - 1.303 - 1.298 - 1.287	- 1'724 - 1'670 - 1'586 - 1'476 - 1'350  - 1'213  - 1'071  - '935  - '806  - '688  - '579  - '480  - '389  - '306  - '227  - '150  - '076	- 1·193 - 1·103 - 1·103 - ·916 - ·813 - ·696 - ·502 - ·484 - ·380 - ·290 - ·212 - ·138 - ·071	136 142 149 159 170 179 185 190 186 176 161 142 120 092 063	**************************************
Z			,									,
(a) 85° (b) 80 (c) 75 (d) 70 (e) 65 (f) 60 (g) 55 (h) 50 (i) 45 (k) 40 (l) 35 (m) 30 (n) 25 (o) 20 (p) 15 (q) 10 (r) 5 (s) 0	13°110 12°974 12°752 12°448 12°067 11°613 11°086 9°810 9°051 8°205 7°268 6°238 5°117 3°918 2°652 1°338	12.099 11.615 11.073 10.463 9.804 9.040 8.213 7.294 6.253 5.117 3.895 2.658 1.387	- '538 - '448 - '307 - '136 '038 '201 '328 '406 '428 '393 '391 '185 '039 - '113 - '252 - '364 - '435 - '460	**091 **238 **340 **3394 **369 **340 **253 **171 **048 -**096 -**235 -**337 -**435 -**465	197 1402 1694 1925 1149 1344 1499 1596 1621 1568 1443 1246 1009 1557 322 194 149	1.332 1.444 1.526 1.605 1.644 1.617 1.530 1.329 1.057 749 481 302 1.49	- '071 - '161 - '314 - '465 - '690 ~ '954 - 1'246 - 1'542 - 1'824 - 2'070 - 2'273 - 2'421 - 2'516 - 2'586 - 2'587 - 2'587 - 2'583 - 2'583 - 2'580	- '780 - 1*033 - 1*571 - 1*814 - 2*048 - 2*248 - 2*415 - 2*630 - 2*630 - 2*618 - 2*610 - 2*590	- '585 - 1'117 - 1'552 - 1'863 - 2'038 - 2'026 - 1'889 - 1'706 - 1'505 - 1'303 - 1'109 - '926 - '748 - '567 - '384 - '195	- 2·271 - 2·151 - 2·010 - 1·854 - 1·672 - 1·488 - 1·298 - 1·094 - '930 - '763 - '555 - '377 - '173	008 022 047 085 139 202 279 337 438 460 457 428 376 303 212	*299 *293 *303 *373 *45- *476 *471 *453 *400 *344 *255 *174

IN THE EQUATIONS OF CONDITION FOR 1880, FOR  $m=0,\ m=1,\ \mathrm{AND}\ m=2.$ 

		m :	= 2	m=3						
for $g$ ,		for h,		for g,		for g,			n odd	
calculated	observed	calculated	observed	calculated	observed	calculated	observed	calculated	observed	
'070 '135 '190 '227 '244 '233 '208 '156 '085 '006 - '070 - '137 - '182 - '184 - '141 - '076	'312 '288 '236 '169 '097 '007 - '079 - '150 - '183 - '199 - '152 - '101 - '044	'046 '091 '128 '158 '181 '207 '218 '238 '257 '279 '295 '303 '298 '273 '229 '165 '087	'075 181 '227 '250 '274 '282 '287 '300 '306 '283 '228 '153 '076	175 327 438 492 486 425 318 183 035 - 105 - 226 - 318 - 379 - 4412 - 4425 - 4424 - 4420 - 4418	'366 '335 '246 '128 '013 -'100 -'211 -'316 -'393 -'429 -'435 -'425 -'412 -'416	'002 '007 '015 '024 '034 '046 '054 '062 '068 '070 '069 '065 '058 '070 '039 '027 '014	*039 *064 *082 *096 *099 *100 *089 *073 *066 *051 *025 *018 *001	'002 '007 '017 '029 '045 '062 '081 '098 '113 '124 '131 '132 '125 '111 '090 '063 '033	'045 '046 '063 '078 '097 '106 '118 '138 '153 '142 '123 '084 '024	(a) (b) (c) (d) (e) (f) (g) (h) (i) (k) (l) (m) (q) (q) (r) (s)
- '072 - '140 - '204 - '261 - '309 - '370 - '381 - '376 - '346 - '328 - '289 - '245 - '201 - '128 - '109 - '101	- '259 - '322 - '358 - '367 - '361 - '330 - '289 - '251 - '211 - '165 - '117 - '077 - '038 - '024	- '048 - '094 - '138 - '177 - '217 - '247 - '278 - '311 - '344 - '378 - '451 - '490 - '526 - '558 - '558 - '558 - '597 '603	- '233 - '257 - '276 - '286 - '305 - '332 - '366 - '406 - '452 - '496 - '533 - '559 - '581 - '582	- '178 - '344 - '492 - '612 - '699 - '755 - '773 - '650 - '573 - '487 - '398 - '311 - '228 - '148 - '073	- '680 - '722 - '739 - '733 - '702 - '643 - '569 - '479 - '384 - '281 - '188 - '115 - '058	- '002 - '006 - '015 - '026 - '040 - '054 - '072 - '086 - '103 - '118 - '133 - '146 - '158 - '167 - '175 - '180 - '183 - '184	- '094 - '112 - '107 - '116 - '129 - '142 - '155 - '169 - '183 - '213 - '228 - '240 - '245	- '003 - '008 - '017 - '031 - '048 - '068 - '092 - '118 - '146 - '176 - '205 - '234 - '260 - '284 - '319 - '327 - '330	- '085 - '127 - '148 - '165 - '181 - '199 - '216 - '234 - '258 - '295 - '332 - '357 - '377 - '385	(a) (b) (c) (d) (d) (e) (f) (g) (h) (i) (k) (i) (m) (n) (n) (n) (p) (q) (r) (s)
- '013 - '050 - '109 - '185 - '272 - '312 - '445 - '511 - '549 - '555 - '524 - '462 - '375 - '274 - '173 - '088 - '032 - '012	- '221 - '328 - '439 - '555 - '612 - '619 - '359 - '359 - '278 - '219 - '144 - '072 - '030	- '008 - '028 - '062 - '100 - '143 - '185 - '227 - '276 - '328 - '390 - '464 - '549 - '641 - '736 - '822 - '895 - '941 - '958	- '084 - '173 - '261 - '331 - '393 - '427 - '465 - '556 - '676 - '763 - '826 - '907 - '964 - I'008	- '037 - '143 - '303 - '495 - '690 - '864 - '995 - I'080 - I'080 - I'080 - I'080 - I'080 - I'080 - I'080 - '508 - '508 - '364 - '232 - '112	- '882 - '970 - 1'053 - 1'062 - 1'035 - '925 - '818 - '683 - '552 - '412 - '285 - '153	- '000 - '001 - '006 - '012 - '024 - '038 - '057 - '077 - '101 - '125 - '149 - '171 - '191 - '209 - '225 - '234 - '241 - '263	- '058 - '038 - '039 - '054 - '070 - '066 - '108 - '143 - '152 - '172 - '169 - '185 - '219 - '244	- '000 - '001 - '005 - '012 - '024 - '041 - '094 - '131 - '173 - '218 - '266 - '313 - '356 - '393 - '422 - '444	- '111 - '101 - '106 - '112 - '130 - '192 - '215 - '219 - '257 - '319 - '374 - '398 - '437 - '483	(a) (b) (c) (d) (e) (f) (g) (h) (ii) (k) (m) (n) (o) (p) (q) (r) (s)

#### Formation of Equations for the Polar regions.

14. To complete the investigation this polar area should be taken into account by the addition of theoretical terms involving the magnetic constants on the left-hand side of the equations of condition and the final equations, and by the addition on the right-hand side of these equations of quantities derived from observations of the magnetic elements over this polar area. In the absence or the uncertainty with regard to these polar observations we can scarcely do more than prepare the way for the time when our knowledge of these elements shall be more extensive by making the equations as complete as possible.

To find the values of X, Y, Z at the poles for m=0 and m=1 for the several values of n, we have  $r=(1-e^2)^{\frac{1}{2}}$ ,

also  $X_n^0 = 0$ ,  $Y_n^0 = 0$ , for all values of n,

$$Z_1^0 = \frac{2}{r^3}, \qquad Z_2^0 = \frac{2}{r^4}, \qquad Z_3^0 = \frac{8}{5} \frac{1}{r^5}, \qquad Z_4^0 = \frac{8}{7} \frac{1}{r^5}, \qquad Z_5^0 = \frac{16}{21} \frac{1}{r^7},$$

$$Z_{\rm e}^{\rm o} = \frac{16}{33} \; \frac{1}{r^{\rm e}}, \quad Z_{\rm r}^{\rm o} = \frac{128}{429} \; \frac{1}{r^{\rm e}}, \quad Z_{\rm e}^{\rm o} = \frac{128}{715} \; \frac{1}{r^{\rm i0}}, \quad Z_{\rm e}^{\rm o} = \frac{256}{2431} \; \frac{1}{r^{\rm in}}, \quad Z_{\rm io}^{\rm o} = \frac{256}{4199} \; \frac{1}{r^{\rm in}}.$$

Next let m=1,

then

$$Y_n^1 = -X_n^1 = \frac{1}{2} Z_n^0$$
, for all values of  $n$ .

For X these coefficients are to be multiplied by  $-g_n^1 \cos \lambda - h_n^1 \sin \lambda$ , and for Y by  $g_n^1 \sin \lambda - h_n^1 \cos \lambda$ . Also  $Z_n^1 = 0$ , for all values of n.

To find the logarithms of the coefficients of g and h for the pole,

$$\log(1-e^2) = 9.9970916$$
,  $\log r = 9.9985458$ ,  $\log \frac{1}{r} = .0014542$ .

Taking [ $\cdot 0014542$ ] to represent the number of which  $\cdot 0014542$  is the logarithm, we have  $Y_1^1 = [\cdot 0043626]$ ,  $Y_2^1 = [\cdot 0058168]$ , &c. as in the following equations, and  $Z_1^0 = 2Y_1^1 = [\cdot 3053926]$ , &c.

Also

$$\begin{split} Z_{-1}{}^{\circ} &= -1, & Z_{-2}{}^{\circ} &= -\frac{4}{3}r, & Z_{-3}{}^{\circ} &= -\frac{6}{5}r^{2}, & Z_{-4}{}^{\circ} &= -\frac{32}{35}r^{3}, \\ Z_{-5}{}^{\circ} &= -\frac{40}{63}r^{4}, & Z_{-6}{}^{\circ} &= -\frac{32}{77}r^{5}, & Z_{-7}{}^{\circ} &= -\frac{112}{429}r^{5}, & Z_{-8}{}^{\circ} &= -\frac{1024}{6435}r^{7}, \\ Z_{-9}{}^{\circ} &= -\frac{1152}{12155}r^{8}, & Z_{-10}{}^{\circ} &= -\frac{2560}{46189}r^{9}, & Z_{-7}{}^{\circ} &= -\frac{1152}{429}r^{5}, & Z_{-8}{}^{\circ} &= -\frac{1024}{6435}r^{7}, \end{split}$$

and 
$$Y_{-n}^{-1} = -X_{-n}^{-1} = Y_n^{-1} \times r^{2n+1}$$
. Therefore  $Y_{-1}^{-1} = 1 = -Z_{-1}^{-6}$ .

Let the magnetic forces at the North pole, considered as a point in the zero meridian, be X=a, Y=b, Z=c, where a is positive when directed towards the north in that meridian, b is positive when in the direction perpendicular to that meridian and towards the west, and c is positive when directed downwards.

Then if, instead of as above, we consider the pole to belong to the meridian whose east longitude is  $\lambda$ , we shall have

$$X = a \cos \lambda + b \sin \lambda,$$
  

$$Y = -a \sin \lambda + b \cos \lambda.$$

Similarly let a', b', c' denote the magnetic forces at the South pole.

Then we shall have, expressing X, Y, Z in terms of the Gaussian constants,

$$-[\cdot 0043626]g_1^{-1}-[\cdot 0058168]g_2^{-1}-[9\cdot 9103610]g_3^{-1}-[9\cdot 7656872]g_4^{-1}-[9\cdot 5910501]g_5^{-1}\\-[9\cdot 3962097]g_8^{-1}-[9\cdot 1868105]g_7^{-1}-[8\cdot 9664160]g_8^{-1}-[8\cdot 7374212]g_9^{-1}-[8\cdot 5015145]g_{10}^{-1}=a,\\-[\cdot 0043626]h_1^{-1}-[\cdot 0058168]h_2^{-1}-[9\cdot 9103610]h_3^{-1}-[9\cdot 7656872]h_4^{-1}-[9\cdot 5910501]h_5^{-1}\\-[9\cdot 3962097]h_8^{-1}-[9\cdot 1868105]h_7^{-1}-[8\cdot 9664160]h_8^{-1}-[8\cdot 7374212]h_9^{-1}-[8\cdot 5015145]h_{10}^{-1}=b,$$
 and

Also

Hence the equations for the polar element to be added to the equations of condition previously found are

$$-[\cdot 0058168]g_{2}^{1} - [9\cdot7656872]g_{4}^{1} - [9\cdot3962097]g_{6}^{1} - [8\cdot9664160]g_{8}^{1} - [8\cdot5015145]g_{10}^{1} = \frac{1}{2}(\alpha + \alpha')g_{10}^{1} - [0\cdot0043626]g_{1}^{1} - [9\cdot9103610]g_{3}^{1} - [9\cdot5910501]g_{5}^{1} - [9\cdot1868105]g_{7}^{1} - [8\cdot7374212]g_{9}^{1} = \frac{1}{2}(\alpha - \alpha')g_{10}^{1} - [0\cdot0058168]h_{2}^{1} - [9\cdot7656872]h_{4}^{1} - [9\cdot3962097]h_{6}^{1} - [8\cdot9664160]h_{8}^{1} - [8\cdot5015145]h_{10}^{1} = \frac{1}{2}(b + b')g_{10}^{1} - [0\cdot0043626]h_{1}^{1} - [9\cdot9103610]h_{3}^{1} - [9\cdot5910501]h_{5}^{1} - [9\cdot1868105]h_{7}^{1} - [8\cdot7374212]h_{9}^{1} = \frac{1}{2}(b - b')g_{10}^{1} - [0\cdot3068468]g_{2}^{0} + [0\cdot0667172]g_{4}^{0} + [9\cdot6972397]g_{6}^{0} + [9\cdot2674460]g_{5}^{0} + [8\cdot8025445]g_{10}^{0} = \frac{1}{2}(c + c')g_{10}^{1} - [0\cdot3053926]g_{1}^{0} + [0\cdot2113910]g_{3}^{0} + [9\cdot8920801]g_{5}^{0} + [9\cdot4878405]g_{7}^{0} + [9\cdot0384512]g_{9}^{0} = \frac{1}{2}(c - c')g_{10}^{0} - [0\cdot3053926]g_{1}^{0} + [0\cdot2113910]g_{3}^{0} + [9\cdot8920801]g_{5}^{0} + [9\cdot4878405]g_{7}^{0} + [9\cdot0384512]g_{9}^{0} = \frac{1}{2}(c - c')g_{10}^{0} - [0\cdot3053926]g_{1}^{0} + [0\cdot2113910]g_{3}^{0} + [0\cdot3053926]g_{1}^{0} + [0\cdot2113910]g_{3}^{0} + [0\cdot3053926]g_{1}^{0} + [0\cdot2113910]g_{3}^{0} + [0\cdot3053926]g_{1}^{0} + [0\cdot2113910]g_{2}^{0} + [0\cdot3053926]g_{1}^{0} + [0\cdot2113910]g_{2}^{0} + [0\cdot3053926]g_{1}^{0} + [0\cdot2113910]g_{2}^{0} + [0\cdot3053926]g_{1}^{0} + [0\cdot3$$

The weight of each of these equations taken on the same scale as before is proportional to the area of the circular segment of the surface over which the observations extend. When the observations extend over a zone of  $5^{\circ}$  in breadth, the area of the zone will contain the factor  $2\sin\frac{\omega}{2}$ , where  $\omega$  is the circular measure of  $5^{\circ}$ . We must divide by this factor to find the weight, as we have done in our former calculations.

Now the area bounded by the small circle of radius  $2^{\circ}30'$  round the pole is very approximately

$$2\pi \times \frac{N^4}{a^2} (1 - e^2) \left( 1 - \cos \frac{\omega}{2} \right) = 4\pi \frac{N^4}{a^2} (1 - e^2) \sin^2 \frac{\omega}{4}.$$

Dividing this by  $2\pi$  and by  $2\sin\frac{\omega}{2} = 4\sin\frac{\omega}{4}\cos\frac{\omega}{4}$  we have for the weight corresponding to this small area

$$\frac{1}{2} \frac{N^4}{\alpha^2} (1 - e^2) \tan \frac{\omega}{4}.$$

Making a = 1, we have at the pole  $\log N = .0014542$ ,  $\log (1 - e^2) = 9.9970916$ , and  $\log \tan \frac{\omega}{4} = 8.3388563$ .

Hence  $\log \text{ (weight)} = 8.0407347$ , and the weight = .01098335.

To find the weight corresponding to segment of area bounded by a small circle round the pole of radius 12°30′, we must add the areas of the belts for latitudes 85° and 80° to the small circle of radius 2°30′. Thus the weight will be,

for the pole,  $01098335 \dots \log(w) = 8.0407347$ , for belt (a),  $08773241 \dots \log(w) = 8.9431600$ , for belt (b),  $08773241 \dots \log(w) = 9.2424026$ , weight for  $12^{\circ} \frac{1}{2} = \frac{27345991}{2} \dots \log(w) = 9.4368937$ .

Next suppose the polar segment to have a radius of  $22^{\circ}30'$ . Then the areas of the next two belts (c) and (d) must be added to the above, and we get

 $\begin{array}{c} \cdot 27345991 \\ \text{for belt (c),} & \cdot 26032372 \dots \log(w) = 9 \cdot 4155137, \\ \text{for belt (d),} & \cdot 34377762 \dots \log(w) = 9 \cdot 5362776, \\ \text{weight for } 22^{\circ} \frac{1}{2} = \cdot 87756125 \dots \log(w) = 9 \cdot 9432774. \end{array}$ 

From the above equations of condition the coefficients of the final equations for m=0 and m=1 for all values of n from 0 to 10 have been determined for these polar elements. These have been added to the coefficients of the corresponding final equations from (X) and (Z) or from (X), (Y) and (Z) for the several belts of latitude so as, in each of the cases taken, to include the whole surface of the Earth. The final equations for values of n from 0 to 6 are given below.

In these final equations as given below, a stands for  $\frac{a-a'}{2}$  and a' for

 $\frac{a+a'}{2}$ , similarly  $\beta$  stands for  $\frac{b-b'}{2}$  and  $\beta'$  for  $\frac{b+b'}{2}$ , also  $\gamma$  stands for  $\frac{c-c'}{2}$  and  $\gamma'$  for  $\frac{c+c'}{2}$ .

15. Formation of the final equations for m=0, and n odd, taking into account the equations of condition, stopping at (e) inclusive, and also the equations corresponding to the polar segments with radius  $22^{\circ} 30'$ .

The final equations will be as follows:

		For $g_1^{\ 0}$		Absolute	e terms
	$g_1{}^{\mathfrak{d}}$	$g_3^{0}$	$g_{\mathfrak{z}^0}$	1845	1880
From $X \dots$	7.6331952 12.0636234 3.5814808 23.2782994	- '1138565 - 2'1413469 2'8844368 -6292334	- *0886747 - *7000106 1*3827704 *5940851	53°575026 85°065860 1°772842 γ 138°640886 +	52·47937 83·96225 1·772842 γ 136·44162+
From X From Z	- '1138565 - 2'1413469 2'8844368 '6292334	also for $g_3^0$ 2.8880836 2.7856531 2.3230544 7.9967911	- '1765112 - '4744250 1'1136496 '4627134	- 2.456863 - 16.292662 1.4278032 γ - 18.749525 +	- 2·49548 - 16·48110 1·42780 γ - 18·97658+
From X From Z		and for g ₅ ⁰ - '1765112 - '4744250 1'1136496 '4627134	*3955108 *4394974 *5338724 1*3688806	- '4538875 - 4'6678164 '6844748 7 - 5'1217039	<ul> <li>- '41034</li> <li>- 4'39735</li> <li>'68447 γ</li> <li>- 4'80769</li> </ul>

Also for m=0, and n even, the final equations will be

		For $g_2^{\theta}$		Absolute	e terms
	$oldsymbol{g}_2^{\ 0}$	$g_4^{\circ}$	${m g_6}^0$	1845	1880
From $X \dots$ From $Z \dots$	5.9353003 6.4063186 3.6055460 15.9471649	- '2100908 - 1'2109824 2'0741556 -6530824	- '1084497 - '3156105 '8858576 '4617974	·088152 ·655802 1·7787882 γ΄ ·743954	1·11998 1·90941 1·77879 γ' 3·02939
From $X \dots$ From $Z \dots$	- '2100908 - 1'2109824 2'0741556 '6530824	also for $g_4^0$ 1:1321535 1:1328694 1:1931960 3:4582189	- '0999649 - '1498668 '5096056 '2597739	- '657740 - '753613 1'023280 γ' - 1'411353	- '93417 - '92917 1'02328 7' - 1'86334
		and for $g_6^{\ 0}$			
From $Z \dots$	- ·1084497 - ·3156105 ·8858576 ·4617974	- *0999649 - *1498668 - *5096056 - *2597739	1311547 1604164 2176492 5092203	·041058 ·051397 ·437036 γ΄ ·092455	·05543 ·03719 ·437036 γ′ ·09262

### FORMATION OF THE FINAL EQUATIONS.

## For m=1 and n odd, the final equations will be

		For $g_1^{-1}$ and $h_1^{-1}$	Absolute	term for g	Absolute term for h	
	$g_1^1$ or $h_1^1$	$g_3^{-1}  ext{ or } h_3^{-1}  ext{ } g_5^{-1}  ext{ or } h_5^{-1}$	1845	1880	1845	1880
(X) (Y) (Z) (P)	2.9862372 10.6203049 30.4174073 .8953702 44.9193196	- 2.0046256 - 9080995 - 3256928 - 7211092 - 7011097 - 2317090	·6460745 7·0375320 18·3312516 - ·886421 α 26·0148581	·06856 6·03140 16·13701 - ·88642 α 22·23697	- 4.7000693 - 13.3237434 - 37.9189145 886421 \$\beta\$ - 55.9427272	- 4.53794 - 13.25900 - 40.34372 88642 β - 58.14066
(X) $(Y)$ $(Z)$ $(P)$	- 2'0046256 '9080995 - '3256928 '7211092 - '7011097	For $g_3^1$ and $h_3^1$ 2.7010559 .7688186 5.1262964 -5807636 9.1769345  -2832645 -2784124 -2607741	.9192013 1.0138712 3.4681067 7139016 a 5.4011792	1·34058 1·07387 4·99417 - ·71390 a 7·40862	3'1891606 - '9252286 1'7927788 - '7139016β 4'0567108	2·78482 - ·91569 - i·07219 - ·71390 β - 2·94132
		For $g_5^1$ and $h_5^1$	1			
(X) (Y) (Z) (P)	- '4049405 '0375997 - '2100608 '3456926 - '2317090	- '3038483	- '8469248 '0168797 - '7292658 - '3422374 a - 1'5593109	- '72421 '01964 - '75427 - '34224 a - 1'45884	-6884089 - ·0166866 -4622901 - ·3422374β 1·1340124	79895 - '01151 - '50652 - '34224 \$ 1'29396

## For m=1 and n even, the final equations will be

		For $g_2^1$ and $h_2^1$		Absolute	term for g	Absolute t	erm for h
(75)	$\frac{g_2^1 \text{ or } h_2^1}{-}$	$\begin{array}{c c}g_4^{-1} \text{ or } h_4^{-1}\end{array}$	$g_6^1$ or $h_6^1$	1845	1880	1845	1880
(X) $(Y)$	4·7252731 3·0362275	- ·8834794 ·2553293	- ·1654593 - ·0068366	- 4.6983874 - 3.2648495	- 4.57101 - 3.43537	- *5335 ⁸ 77 - *0587768	1.40281 .61340
(Z) $(P)$	13.3230622	- ·3986114 ·5185389	- ·1888655 ·2214644	- 13.6722508 8893941 a'	- 14.44531 88939 a'	$\frac{.5241924}{8893941\beta'}$	$\frac{4.15380}{88939 \beta'}$
	21.9859493	2082226	- 1396970	- 21.6354877	- 22.45169	.9990033	6.17301
		For $g_4^{-1}$ and $h_4^{-1}$	·				
(X) $(Y)$	- ·8834794 ·2553293	1.2083344	- '0940175 '0051341	·1065771 - ·3723795	- '38209	- ·2536825 - ·0291936	- ·48670 - ·01651
(Y) (Z) (P)	- 3986114	1.7670285	- '1458594	8196584	- '97200	- '1006035	- *49527
(1)	- ·5082226	-2982990 3·4465636	- 1073414	- ·5116401 α' - 1·0854608	- '51164 a'	- ·5116401 β' - ·3834796	- ·51164β' - ·99848
		For $g_6^1$ and $h_6^1$					
(X)	- ·1654593 - ·0068366	- '0940175	·1679758 ·0072219	2040272	·18532 ·00658	- '0081682 '0000802	- '07374 - '00470
(Y) (Z)	- •1888655	- '1458594	1783999	.2511771	18903	0273859	100940
(P)	- °1396970	- 1073414	·0544123 ·4080099	- '2185179 a'	- '21852 a' '38093	- ·2185179 β' - ·0354739	- ·21852 β' - ·06904

16. Formation of the final equations for the period 1845, taking into account the equations of condition for (X), (Y) and (Z) to (c) inclusive, and also the equations (P) corresponding to the polar segments with radius 12° 30′.

The final equations will be as follows:

For m = 0 and n odd,

		For $g_1^0$		Absolute term
	$g_1^{0}$	$g_{\mathfrak{z}^0}$	g5 ⁰	1845
(X) $(Z)$	7.6940384 14.2852236	·0130398 - ·7829229	- °0110762 - °3528180	53 [.] 941576 99 [.] 737391
(P)	1·1160376 23·0952996	·8988296 ·1289465	°4308900 °0669958	·5524416 γ 153·678967
(X) (Z) (P)	·0130398 - ·7829229 ·8988296 ·1289465	also for g ₃ ⁰ 3.1530372 3.6220022 -7238952 7.4989346	- '0141019 - '2560720 '3470284 '0768545	- 1·692265 - 7·325830 - 4449228 γ - 9·018095
		and for $g_{\mathfrak{s}^0}$		
(X) $(Z)$	- '0110762 - '3528180	- '0141019	*4955695	.0138187
(P)	4308900	- ·2560720 ·3470284	·5001678 ·1663620	- 2·3794415
İ	.0669958	0768545	1.1620993	- 2.3656228

For m = 0 and n even,

	$g_2{}^0$	For $g_2^{\circ}$ $g_4^{\circ}$	96°	Absolute term
(X) $(Z)$ $(P)$	6·1521685 8·2177097 1·1235368 15·4934150	- '0061571 - '5245692 - '6463352 - '1156089	- *0156015 - *2056823 *2760452 *0547614	- '071836 '282131 '554294 7' '210295
(X) (Z) (P)	- '0061571 - '5245692 -6463352 -1156089	also for $g_4^0$ 1.3244086 1.3982534 23718160 3.0944780	- *0119941 - *1039114 *1588000 *0428945	- *808850 - *899464 - *318868 7' - 1*708314
(X) (Z) (P)	- '0156015 - '2056823 <u>'2760452</u> -0547614	and for $g_6^0$ - '0119941 - '1039114 - '1588000 - '0428945	*1718058 *1705926 *0678224 *4102208	- '028342 '025255 '136186 \gamma' - '003087

For m=1 and n odd, the final equations will be

		For $g_1^1$ and $h_1^1$		18	345
	$g_1^1$ or $h_1^1$	$g_3^1$ or $h_3^1$	$g_{\mathfrak{s}^1}$ or $h_{\mathfrak{s}^1}$	For $g$	For h
(X) (Y) (Z) (P)	3°54°57°5 11°2354744 3°6564773 279°094 45°7115316	- 1.7194983 1.3434531 .0089039 .2247074 1424339	- '3793161 '2008277 - '0257077 '1077225 - '0964736	1°1283716 7°5412902 18°6082131 - °2762208 a 27°2778749	- 5.3512098 - 13.8957675 - 38.0228819 2762208 β - 57.2698592
(X) (Y) (Z) (P)	- 1'7194983 1'3434531 '0089039 '2247074 - '1424339	For $g_3^1$ and $h_3^1$ $\begin{array}{r} 2.8509357 \\ 1.0773108 \\ 5.5951168 \\ 1.809738 \\ \hline 9.7043371 \end{array}$	- '2873597 '1638961 - '0243385 '0867571 - '0610450	1·1677598 1·3703002 3·8561444 - ·2224614 a 6·3942044	2·8583076 - 1·3296299 <u>I·6480024</u> - ·2224614 β 3·1766801
		For $g_5^1$ and $h_5^1$			
(X) (Y) (Z) (P)	- '3793161 '2008277 - '0257077 '1077225 - '0964736	- '2873597 '1638961 - '0243385 '0867571 - '0610450	.4775556 .0795428 .7128006 .0415905 1.3114895	- ·8241335 ·1504548 - ·5149878 - ·1066458 α - 1·1886665	- 6624873 - 1679845 - 3833853 - 1666458 β - 8778881

## For m=1 and n even, the final equations will be

		For $g_2^{-1}$ and $h_2^{-1}$		1845		
	$g_2^{\ 1}$ or $h_2^{\ 1}$	$g_4^{-1}$ or $h_4^{-1}$	$g_6^1$ or $h_6^1$	For g	For h	
(X) (Y) (Z) (P)	5·1280310 3·5953618 13·8072555 ·2808842 22·8115325	- `7756170 `5228428 - `0183365 `1615838 - `1095269	- '1810288 '0767312 - '0271653 '0690113 - '0624516	- 5'1551077 - 3'9864211 - 14'5454971 - '2771472 a' - 23'6870259	.5575605 0955385 5495836 2771472 B' 1.0116056	
(X) (Y) (Z) (P)	- `7756170 `5228428 - `0183365 `1615838 - `1095269	For $g_4^1$ and $h_4^1$ $\begin{array}{c} 1^{\circ}2404733 \\ \circ 3012508 \\ 2^{\circ}0664442 \\ \hline 0929540 \\ \hline 3^{\circ}7011223 \end{array}$	- '0956215 '0454432 - '0179021 '0397000 - '0283804	- '0189260 - '7180144 - 1'5067400 - '1594340 a' - 2'2436804	- '2479337 - '0467206 - '0800582 - '1594340 B' - '3747125	
(X) (Y) (Z) (P)	- '1810288 '0767312 - '0271653 '0690113 - '0624516	For $g_6^1$ and $h_6^1$ - '0956215     '0454432     - '0179021     '0397000     - '0283804	1706017 10200090 12336239 10169556 14411902	'2191669 - '1076297 - '0420438 - '0680931 a'	- '0096245 - '0053584 - '0181385 - '0680931 β' - '0331214	

17. Formation of the theoretical coefficients for the final equations for  $g_n^m$  for m=0 and for all positive and negative values of n from 1 to 8 inclusive, taking into account all the equations for belts of latitude of 5° up to  $87^{\circ}\frac{1}{2}$ , and also the equations (P) corresponding to the polar segments of radius  $2^{\circ}30'$ —i.e. integrating all over the Earth's surface.

### (1) When n is odd.

		$g_1{}^{\scriptscriptstyle 0}$	g-10	g ₃ °	$g_{-3}^{0}$	$g_{\mathfrak{s}}^{\mathrm{o}}$	$g_{-5}^{0}$	g ₇ °	g7°
$g_1{}^0$	(X) $(Z)$ $(P)$	7.7003306 15.3312564 .0448248 23.0764118	7.6542768 - 7.6501978 0221885 0281095	*0275805 *0112863 *0361008 *0749676	*0149877 *0036833 - *0264484 - *0077774	- '0002119 - '0115687 '0173064 - '0055258	- '0002538 '0093341 - '0139005 - '0048202	*0000178 - *0046001 *0068228 *0022405	- 0000165 -0038278 - 0056776 - 0018333
$g_{-1}^{0}$	(X) $(Z)$ $(P)$	7.6542768 - 7.6501978 0221885 0281095	7.6087902 3.9152845 -0109833 11.5350580	- '0035156 '0222637 - '0178700 '0008781	- '0156707 - '0219730 '0130920 - '0245517	**************************************	**************************************	**************************************	*0000051 - *0049577 *0028104 - *0021422
$g_{\mathfrak{z}^0}$	(X) $(Z)$ $(P)$	·0275805 ·0112863 ·0361008 ·0749676	- '0035156 '0222637 - '0178700 '0008781	3·1866427 4·2255137 ·0290748 7·4412312	3.1484722 - 3.1346454 0213009 0074741	°0110111 °0036675 °0139380 °0286166	**************************************	-0000344 - 0036917 -0054948 -0018375	**************************************
g3°	(X) $(Z)$ $(P)$	*0149877 *0036833 - *0264484 - *0077774	- '0156707 - '0219730 '0130920 - '0245517	3.1484722 - 3.1346454 0213009 0074741	3.1110440 2.371803 .015605 5.498452	- '0009898 '0078808 - '0102112 - '0033202	- '0086237 - '0118448 '0082016 - '0122669	**************************************	**************************************
$g_{\scriptscriptstyle 5}{}^{\scriptscriptstyle 0}$	(X) $(Z)$ $(P)$	- '0002119 - '0115687 -0173064 -0055258	.0000136 .0471209 0085667 .0385678	*0110111 *0036675 *0139380 *0286166	- '0009898 '0078808 - '0102112 - '0033202	·5143421 ·6123189 ·0066820 I·1333430	*5048439 - *5011986 - *0053667 - *0017214	·0021105 ·0006029 ·0026344 ·0053478	**************************************
$g_{-5}^{0}$	(X) $(Z)$ $(P)$	- '0002538 '0093341 - '0139005 - '0048202	- 0383464 - 0383464 - 068808 - 0314238	*0030657 *0042680 - *0111951 - *0038614	- '0086237 - '0118448 '0082016 - '0122669	*5048439 - *5011986 - *0053667 - *0017214	-4956187 -4103186 -0043105 -9102478	- '0001063 '0015776 - '0021158 - '0006445	- '0016723 - '0026245 '0017606 - '0025362
g ₇ º	(X) $(Z)$ $(P)$	**************************************	*0000055 *0057897 - *0033773 *0024179	*0000344 - *0036917 *0054948 *0018375	**************************************	**************************************	- '0001063 '0015776 - '0021158 - '0006445	*0611503 *0691404 *0010384 *1313291	'0596145 - '0590206 - '0008642 - '0002703
$g_{-7}^{0}$	(X) $(Z)$ $(P)$	·0000165 ·0038278 - ·0056776 - ·0018333	**************************************	·0000127 ·0030911 - ·0045726 - ·0014688	- '0000328 - '0022498 - '0033499 - '0011329	'0004593 '0010459 - '0021920 - '0006878	- '0016723 - '0026245 '0017606 - '0025362	*0596145 - *0590206 - *0008642 - *0002703	.0581365 .0523984 .0007191 .1112540

Type of equation-

$$\begin{split} \Sigma \left[ (X'_{n}^{m})^{2} \, w \right] g_{n}^{m} + \Sigma \left[ (X'_{n}^{m}. \ X'_{n_{1}}^{m}) \, w \right] g_{n_{1}}^{m} + \Sigma \left[ (Z'_{n}^{m})^{2} \, w \right] g_{n}^{m} + \Sigma \left[ (Z'_{n}^{m}. \ Z'_{n_{1}}^{m}) \, w \right] g_{n_{1}}^{m} \\ &= \Sigma \left[ (x_{m}' \, . \ X'_{n}^{m}) \, w \right] + \Sigma \left[ (z_{m}' \, . \ Z'_{n}^{m}) \, w \right]. \end{split}$$

### (2) When n is even.

		$g_2^0$	$g_{-2}{}^{0}$	g4°	9-40	$g_6{}^0$	g_60	g ₈ °	$g_{-8}^0$
$g_2{}^0$	(X) $(Z)$ $(P)$	6·1764738 9·2226421 ·0451260 15·4442419	6.1222621 - 6.1044053 0295840 0117272	°0203434 °0074258 °0259596 °0537288	*0080301 *0059439 - *0201510 - *0061770	·0000467 - ·0074261 -0110872 -0037078	'0000101 '0061265 - '0090985 - '0029619	*000088 - *0027891 *0041212 *0013409	'0000083 '0023418 - '0034606 - '0011105
g0	(X) $(Z)$ $(P)$	6·1222621 - 6·1044053 - ·0295840 - ·0117272	6.0688968 4.0406704 .0193950 10.1289622	- '0022139 '0136435 - '0170190 - '0055894	0140836 0182690 0132110 0194416	'0000174 '0048900 - '0072686 - '0023612	'0000424 - '0039942 '0059648 '0020130	'0000085 '0018285 - '0027018 - '0008648	*0000080 - '0015353 *0022687 *0007414
g4 ⁰	(X) $(Z)$ $(P)$	·0203434 ·0074258 ·0259596 ·0537288	- '0022139 '0136435 - '0170190 - '0055894	1·3533148 1·6803805 ·0149336 3·0486289	1·3326863 - 1·3249820 - ·0115920 - ·0038877	10050778 10015592 10063780 10130150	**************************************	'0000201 - '0015992 '0023708 '0007917	**************************************
$g_{-4}{}^{0}$	(X) $(Z)$ $(P)$	*0080301 *0059439 - *0201510 - *0061770	- *0140836 - *0185690 - *0132110 - *0194416	1.3326863 - 1.3249820 0115920 0038877	1·3125545 ·9448833 ·0089985 2·2664363	- ·0003786 ·0037393 - ·0049510 - ·0015903	- '0039908 - '0059747 - '0040629 - '0059026	**************************************	*0000186 - *0010419 *0015453 *0005220
	(X) $(Z)$ $(P)$	- 0000467 - 0074261 - 0110872 - 0037078	*0000174 *0048900 - *0072686 - *0023612	**************************************	- ·0003786 ·0037393 - ·0049510 - ·0015903	·1818936 ·2102425 ·0027240 ·3948601	1779238 - 1764031 - 0022354 - 0007147	**************************************	'0001560 '0004318 - '0008502 - '0002624
$g_{-\epsilon^0}$	(X) (Z) (P)	*0000101 *0061265 - *0090985	*0000424 - *0039942 *0059648 *0020130	·0012915 ·0022885 - ·0052340 - ·0016540	- '0039908 - '0059747 '0040629 - '0059026	·1779238 - ·1764031 - ·0022354 - ·0007147	1740863 1480471 0018345 3239679	- '0000422 '0006151 - '0008309 - '0002580	- '0006640 - '0010518 '0006977 - '0010181
$g_8{}^{\scriptscriptstyle 0}$	(X) $(Z)$ $(P)$	**************************************	*0000085 *0018285 - *0027018 - *0008648	**************************************	**************************************	**************************************	- '0000422 '0006151 - '0008309 - '0002580	°0198007 °0220050 °0003764 °0421821	10192380 - 10190182 - 10003160 - 10000962
g_8°	(X) $(Z)$ $(P)$	*0000083 *0023418 - *0034606 - *0011105	- '0000080 - '0015353 '0022687 '0007414	**************************************	-0000186 0010419 -0015453 -0005220	**************************************	- '0006640 - '0010518 '0006977 - '0010181	'0192380 - '0190182 - '0003160 - '0000962	*0186993 *0164437 *0002654 *0354084

Formation of the theoretical coefficients for the final equations for  $g_n^m$  or  $h_n^m$  for m=1, (1) for n odd and (2) for n even, for all positive and negative values of n from 1 to 6 inclusive, taking all the equations for belts of latitude up to  $87^{\circ}\frac{1}{2}$ , and also the equations corresponding to the polar segments of radius  $2^{\circ}30'$ .

### (1) When n is odd.

		$g_1^1$ or $h_1^1$	$g_{-1}^{-1}$ or $h_{-1}^{-1}$	$g_3^{-1} \text{ or } h_3^{-1}$	$g_{-3}^{-1}$ or $h_{-3}^{-1}$	$g_5^1$ or $h_5^1$	$g_{-5}^{-1}$ or $h_{-1}$
	(X)	3.8019594	3.8096047	- 1.5270651	- 1.5076599	- '3017824	- '2912836
	(Y)	11.2031246	11.4646148	1.5528311	1.5168987	2960352	2853310
$g_1^{-1}$	(Z)	30.6811646	- 15.2788251	.0472046	0187276	.0000481	- '0000120
1	(P)	'0112062	0110942	'0090252	10088162	10043266	.0041701
		45.9974848	.0064886	.0819928	- *0006726	- '0013425	- '0017945
	(X)	3.8096047	3.8175078	- 1.7446347	- 1.5343784	- '2988183	2879802
	(Y)	11.4646148	11.4263058	1.5373650	1.2016970	2930764	2824781
_1		- 15.2788251	7.6088010	.0046836	- '0116029	0000193	0000320
	(P)	.0110942	.0109833	.0089350	10087280	0042834	0041285
	(- )	0064886	22.8635979	- 1936511		- '0014748	
			22 80359/9	- 1930511	- '0355563	- 0014748	- '0013412
	(X)	- 1.270651	- 1.7446347	2.9928863	2.9673672	- '2299197	- '2302655
,	(Y)	1.5528311	1.2373620	1.5411140	1.2204998	12384083	2297958
3 ¹	(Z)	.0472046	·0046836	5.6545429	- 4.1978186	.0156768	- '0039429
	(P)	.0090252	·0089350	*0072687	.0071003	0034845	.0033585
		.0819958	1936211	9.8958149	- '0028513	*0276499	- '0010541
_	(X)	- 1.5076599	- 1.5343784	2.9673672	2.9423058	- '2386728	2388522
	(Y)	1.5168987	1.2016970	1.5204998	1.5005255	2328938	2244633
-3 ¹	(Z)	- 0187276	- *0116029	- 4.1978186	3.1166028	.0011000	- '0075783
·	(P)	0088162	.0087280	.0071003	*0069358	'0034038	0032807
	( )	- '0006726	0325263	- *0028513	7.2661196	0011825	0189896
_	(X)	- '3017824	- *2988183	- *2299197	- '2386728	15010134	**********
	(Y)	12960352	2930764	2384083	- 2300/20	.2010132	4934494
, 1 5	(Z)	10000781	0000163	0156768	0011900	*1134598 *7397539	- '6057704
Đ	(P)	0043266	0000103	0130708	0011900	139/539	- 0057704
	(- )	- '0013425	- '0014748	0276499	- '0011852	1.3558974	0006182
_			0014740	02/0499	- 0011052	1 35509/4	- 0000185
	(X)	- *2912836	- *2879802	2302655	- '2388522	*4934494	4860509
1	(Y)	.5823310	.2824781	*2297958	*2244633	1100925	1068322
-5	(Z)	- '0000120	'0000320	- '0039429	0075783	6057704	4961398
	(P)		.0041285	-0033585	*0032807	.0019100	.0015218
		- '0017945	- '0013412	- '0010541	- '0186865	- '0006185	1.0905747

Formation of the theoretical coefficients for the final equations for m=1.

#### (2) When n is even.

					1		
		$g_2^1$ or $h_2^1$	$g_{-2}^{-1}$ or $h_{-2}^{-1}$	$g_4^{-1} \text{ or } h_4^{-1}$	$g_{-4}^{-1}$ or $h_{-4}^{-1}$	$g_6^{\ 1} \text{ or } h_6^{\ 1}$	$g_{-6}^{1}$ or $h_{-6}^{1}$
$g_2^1$	(X) (Y) (Z) (P)	5:3732443 3:8586274 13:8614767 0112815 23:1046299	5:3455962 3:8200228 - 9:1817777 :0110942 - :0050645	6515436 .6682295 .0310519 .0064899	- '6468403 '6484134 - '0094915 '0062972 - '0016212	- 1386266 1349333 1000698 10027718 - 10008517	- 1327617 1291857 - 1000185 10026537 - 10009408
$g_{-2}$	(X) (Y) (Z) (P)	5:3455962 3:8200228 - 9:1817777 0110942 - *0050645	5°3184296 3°7818764 6°0824656 °0109100 15°1936816	- '6685050 '6571564 '0027669 '0063822 - '0021995	- '6635806 '6376276 - '0121256 '0061927 - '0318859	- '1363538 '1326939 - '000214 '0027258 - '0009555	- '1305189 '1272032 '0000381 '0026097 - '0006679
$g_4^1$	(X) (Y) (Z) (P)	- '6515436 '6682295 '0310519 '0064899 '0542277	- ·6685050 ·6571564 ·0027669 ·0063822 - ·0021995	1·3035371 ·3815712 2·1114387 ·0037334 3·8002804	1·2880783 ·3727300 - 1·6658350 ·0036226 - ·0014041	- '0738726 '0776182 '0069175 '0015945	- '0748904 '0743152 - '0014760 '0015266 - '0005246
$g_{-4}^{-1}$	(X) $(Y)$ $(Z)$ $(P)$	- '6468403 '6484135 - '0094915 '0062972 - '0016212	- '6635806 '6376276 - '0121256 '0061927 - '0318859	1.2880783 .3727300 - 1.6658350 .0036226 0014041	1·2729526 ·3641162 1·3144282 ·0035151 2·9550121	- '0778697 '0753171 '0004417 '0015472 - '0005637	- '0787857 '0729062 - '0037548 '0014813 - '0081530
$g_6^1$	(X) $(Y)$ $(Z)$ $(P)$	- '1386266 '1349333 '0000698 '0027718 - '0008517	- '1363538 '1326939 - '0000214 '0027258 - '0009555	- '0738726 '0776182 '0069175 '0015945 '0122576	- '0778697 '0753171 '000417 '0015472 - '0005637	1782377 10329115 12473219 10006810 14591521	1749490 10317222 10006520 10002539
$g_{-6}^{1}$	(X) $(Y)$ $(Z)$ $(P)$	- 1327617 1291857 - 1000185 10026537 - 10009408	- '1305189 '1272032 '0000381 '0026097 - '0006679	- *0748904 *0743152 - *0014760 *0015266 - *0005246	- '0787857 '0729062 - '0037548 '0014813 - '0081530	1749490 10317222 - 12075771 10006520 - 10002539	·1717610 ·0305787 ·1742616 ·0006242 ·3772255

The above tables of the coefficients of the final equations for m=0 and for m=1 take into account all the equations to (a) inclusive and also the equations corresponding to the polar segments with radius  $2^{\circ}30'$ .

It will be seen (1) that all the terms, except the principal term in each equation, are very small; (2) that the coefficients of the principal terms in the respective final equations for  $g_n^m$  and  $g_{-n}^m$  for any value of n are very nearly in the ratio of n+1 to n.

These results might be expected, since we have seen in Section V.,

above, that in the case of a spherical surface all except the principal terms vanish, since

$$\Sigma [(X_n^m X_{n_1}^m) w] + \Sigma [(Y_n^m Y_{n_1}^m) w] + \Sigma [(Z_n^m Z_{n_1}^m) w] = 0,$$
and
$$\Sigma [(X_n^m X_{-n}^m) w] + \Sigma [(Y_n^m Y_{-n}^m) w] + \Sigma [(Z_n^m Z_{-n}^m) w] = 0.$$

We have also seen that on a spherical surface

$$\begin{split} \Sigma \big[ (X_{-n}^m)^2 w \big] + \Sigma \big[ (Y_{-n}^m)^2 w \big] + \Sigma \big[ (Z_{-n}^m)^2 w \big] &= \frac{n}{n+1} \big\{ \Sigma \big[ (X_n^m)^2 w \big] + \Sigma \big[ (Y_n^m)^2 w \big] + \Sigma \big[ (Z_n^m)^2 w \big] \big\} \\ &= n \left( 2n+1 \right) \Sigma \big[ (H_n^m)^2 w \big]. \end{split}$$

18. The solution of the final equations, stopping at equation (e) inclusive and taking the equations corresponding to the polar segments with radius  $22^{\circ}30'$ , will give values of the magnetic constants in terms of  $\alpha$ ,  $\alpha'$ ,  $\beta$ ,  $\beta'$ ,  $\gamma$ ,  $\gamma'$  which are simple functions of the forces at the poles. These values of the magnetic constants for a given period, when equated to the values of the same constants given in the table on p. 605 for the same period, will give the values of  $\alpha$ ,  $\beta$ ,  $\gamma$ , &c., from which, in the absence of direct observations, we may derive  $\alpha$ ,  $\beta$ , c, &c., the forces at the poles. The accuracy of the work may be tested by the close agreement of the values of each of the quantities  $\alpha$ ,  $\beta$ ,  $\gamma$ , &c., derived from the several final equations which give the magnetic constants. The values of these constants and the corresponding values of  $\alpha$ ,  $\beta$ ,  $\gamma$ , &c., for the periods 1845 and 1880 are here given.

For 1845.

```
g_1^0 = 6.166 + .0613 \gamma = 6.9808
                                            , which gives \gamma = 13.29
g_3^0 = -2.5075 + .14925\gamma = -.52399
                                                            \gamma = 13.29
g_{s}^{0} = -5.5700 + 4230 \gamma = 0.0513465,
                                                            \gamma = 13.29
       0.0545 + 0.0828 \ \gamma' = -0.0275845,
                                                       ", \gamma' = -.991"
g_4^{\circ} = - \cdot 4454 + \cdot 2302 \quad \gamma' = - \cdot 67352
                                                        " \gamma' = -.991
        3596 + 6657 \gamma' = -30013
                                                            \gamma' = -.991
g_1^1 = .58317 - .02269\alpha = .602567
                                                        \alpha = -.855
g_{s}^{1} = 6034 - 0882 a = 678817
                                                        \alpha = -855
q_s^1 = -1.0459 - 3059 \alpha = -.784390
                                                            a = -.855
g_2^1 = - .9900 - .0483 \alpha' = -1.065495
                                                       ", a' = 1.563"
g_4^1 = - \cdot 4403 - \cdot 1742 \alpha' = - \cdot 712584
                                                            a' = 1.563
g_6^1 = .6625 - .5980 \alpha' = - .272348
                                                            a' = 1.563
```

For 1880.

```
g_1^0 = 6.06496 + 0.06130 \gamma = 6.87176, which gives \gamma = 13.16
g_3^0 = -2.5445 + .14924\gamma = - .58113
                                                           13.16
                                            ,, ,,
g_5^{\circ} = -5.2842 + 42295\gamma = 27987
                                                            13.16
                                                      \gamma =
                                                 ,,
g_2^0 = 20582 + 08284\gamma' = 158464,
                                                 \gamma = -
                                                              •5717
g_4^{\circ} = -.60033 + .23025 \gamma' = -.73195
                                                 ,, \quad \gamma' = -
                                                             .57165
g_6^{\circ} = 30149 + 66566 \gamma' = -07904
                                                              .5717
g_1^1 = 50301 - 02269\alpha = 52644
                                                      \alpha = -1.0326
g_3^1 = .81926 - .08822\alpha = .91030,
                                                      a = -1.0320
g_5^1 = - 93186 - 30589\alpha = - 61614
                                                      \alpha = -1.0325
q_0^1 = -1.029775 - 0.04828\alpha' = -1.11386
                                                      a' =
                                                              1.7416
g_4^1 = - .49541 - .17419\alpha' = - .79880,
                                                      a' =
                                                              1.7417
q_6^1 = 45071 - 59793a' = -59068
                                                      a' =
                                                              1.7417
h_{1}^{1} = -1.28596 - 0.02269\beta = -1.30780
                                                      \beta =
                                                               .9625
h_3^1 = 24714 - 08822\beta = 16224,
                                                 ,, β =
                                                               .9624
                                                 \beta =
h_s^1 = 87552 - 30589\beta = 58114
                                                               9624
                                           \beta' = -
h_2^1 = 273996 - 04828\beta' = 28051
                                                               .1349
h_1 = -25373 - 17419\beta' = -23026
                                                 \beta' = -
                                                               \cdot 1347
                                            ,,
h_a^1 = -142155 - 59793\beta' = -06162
                                                  ,, \beta' = -
                                                               .1346
```

Replacing a,  $\beta$ ,  $\gamma$ , &c., in these equations by their values in terms of a, b, c, &c., we get the values of a, a', b, b', c and c', which are the mean values of the horizontal and vertical magnetic forces for the north and south polar areas bounded by a circle of  $22^{\circ}\frac{1}{2}$  radius. The values of these forces in British units for the north and south polar caps for the periods 1845 and 1880, as derived from these investigations, are here given.

For the period 1845

$$\frac{c-c'}{2} = 13.29 , \frac{c+c'}{2} = -.991 , \text{ hence } c = 12.30 \text{ and } c' = -14.28 ,$$

$$\frac{a-a'}{2} = -.855 , \frac{a+a'}{2} = 1.563 , \text{ hence } a = .708 \text{ and } a' = .2.418 ,$$

$$\frac{b-b'}{2} = .8184, \frac{b+b'}{2} = .0647, \text{ hence } b = .883 \text{ and } b' = -..7537,$$

whence we derive for the horizontal force, at the north pole 1.13 and at the south pole 2.53 units, and for the total force, at the north pole 12.35 and at the south pole -14.50 British units.

For the period 1880

$$\frac{c-c'}{2} = 13.16 , \quad \frac{c+c'}{2} = -.5717, \text{ hence } c = 12.59 \text{ and } c' = -13.73 ,$$

$$\frac{a-a'}{2} = -.1.0324, \quad \frac{a+a'}{2} = -.17417, \text{ hence } a = -.7093 \text{ and } a' = -.2.7741,$$

$$\frac{b-b'}{2} = -.9624, \quad \frac{b+b'}{2} = -.1347, \text{ hence } b = -.8277 \text{ and } b' = -.1.0971,$$

whence we derive for the horizontal force, at the north pole 1.09 and at the south pole 2.98 units, and for the total force, at the north pole 12.64 and at the south pole -14.05 British units.

19. On referring to the Charts for Sabine's Arctic and Antarctic Magnetic Surveys (1840—1845) and to the Admiralty Charts constructed by Captain Creak for 1880 we find a very close agreement between the above calculated values of the horizontal and vertical magnetic forces for the polar areas and the values of those forces derived from the observations and recorded in the Charts.

Thus the values given by Captain Creak for 1880 are:

for the horizontal force at the north pole 1 British unit and at the south pole 2.75 British units;

for c, the vertical force at the north pole, 12.6 units and for c', the vertical force at the south pole, -13.7 British units.

In the north and south polar charts given at the end of this volume the black curved lines indicate the values of the Total force as given in Sabine's Arctic and Antarctic Magnetic Surveys (1840—1845), and the red lines indicate the values of the Vertical and the Horizontal forces recorded by Captain Creak for the period 1880.

20. If we take into account the terms depending upon magnetic forces outside the Earth, the equations of condition for the polar element will include the following terms in addition to those which have been already given on p. 614:

```
\begin{split} -\left[9\cdot9985458\right]g_{-2}^{-1}-\left[9\cdot7525993\right]g_{-4}^{-1}-\left[9\cdot3773050\right]g_{-6}^{-1}-\left[8\cdot9416945\right]g_{-8}^{-1}-\left[8\cdot4709763\right]g_{-10}^{-1}=\frac{1}{2}\left(a+a'\right),\\ -g_{-1}^{-1}-\left[9\cdot9001816\right]g_{-3}^{-1}-\left[9\cdot5750539\right]g_{-5}^{-1}-\left[9\cdot1649975\right]g_{-7}^{-1}-\left[8\cdot7097914\right]g_{-9}^{-1}=\frac{1}{2}\left(a-a'\right),\\ -\left[9\cdot9985458\right]h_{-2}^{-1}-\left[9\cdot7525993\right]h_{-4}^{-1}-\left[9\cdot3773050\right]h_{-6}^{-1}-\left[8\cdot9416945\right]h_{-8}^{-1}-\left[8\cdot4709763\right]h_{-10}^{-1}=\frac{1}{2}\left(b+b'\right),\\ -h_{-1}^{-1}-\left[9\cdot9001816\right]h_{-3}^{-1}-\left[9\cdot5750539\right]h_{-5}^{-1}-\left[9\cdot1649975\right]h_{-7}^{-1}-\left[8\cdot7097914\right]h_{-9}^{-1}=\frac{1}{2}\left(b-b'\right),\\ -\left[\cdot1234845\right]g_{-2}^{-0}-\left[9\cdot9567193\right]g_{-4}^{-0}-\left[9\cdot6113883\right]g_{-6}^{-0}-\left[9\cdot1915720\right]g_{-8}^{-0}-\left[8\cdot7306136\right]g_{-10}^{-0}=\frac{1}{2}\left(c+c'\right),\\ -g_{-1}^{-0}-\left[\cdot0762729\right]g_{-3}^{-0}-\left[9\cdot7969026\right]g_{-5}^{-0}-\left[9\cdot4080355\right]g_{-7}^{-0}-\left[8\cdot9650639\right]g_{-9}^{-0}=\frac{1}{2}\left(c-c'\right). \end{split}
```

These terms have been added to make the equations complete, but they have not as yet been employed in the determination of the magnetic constants.

### Description of the following Tables.

The following Tables give the several final equations which have been employed in the determination of the magnetic constants for the periods 1845 and 1880; they are derived from the equations given on pp. 554—587 by combining the equations for X, for Y and for Z from the several belts between  $67^{\circ}\frac{1}{2}$  N. and  $67^{\circ}\frac{1}{2}$  S. latitude, and are of the type given as equation (4) of this section.

Some of the more important final equations for the magnetic constants with a negative suffix  $(g_{-n}^m)$  have been added to the tables, and their solution would give the values of these constants for the same periods of time. In some other cases the numerical values of the coefficients only of the magnetic constants have been given in the tables, so that by supplying the terms depending on the observed values of the magnetic elements for any given period of time the values of the constants for that period may be determined.

Formation of the Final Equations for m=0 for all values of n from 1 to 10, taking into account the equations of condition stopping at equation (e) inclusive (i.e. to latitude  $67^{\circ}\frac{1}{2}$ ), and also for the equations (P) corresponding to the polar segment with radius  $22^{\circ}30'$ . From the equations for X and Z and those equations combined.

(1) When n is odd.

		$g_1^{0}$	g-1 ⁰	${g_3}^0$	$g_{-3}{}^0$	$g_5{}^0$	$g_{-5}^{0}$
$g_1{}^0$	(X) $(Z)$ $(P)$	7.6331952 12.0636234 19.6968186 3.5814808	7·5889390 - 6·0303603 1·5585787 - 1·7728420	- *1138565 - 2*1413469 - 2*2552034 2*8844368	- 1226364 1.5861301 1.4634937 - 2.1132110	- ·0886747 - ·7000106 - ·7886853 1·3827704	- *0855784 - *5652811 - *4797027 - 1*1106382
$g_{-1}^0$	(X) $(Z)$ $(P)$	7.5889390 - 6.0303603 1.5585787 - 1.7728420	7.5452019 3.1122949 10.6574968 .8775612	- '1411597 1'0892643 '9481046 -1'4278033	- '1496043 - '8063501 - '9559544 1'0460448	- *0860695 *3882760 - *3022065 - *6844748	- '0829876 - '3138450 - '3968326 '5497688
$g_3{}^0$	(X) $(Z)$ $(P)$	- '1138565 - 2'1413469 - 2'2552034 2'8844368	- '1411597 1'0892643 '9481046 - 1'4278033	2.8880838 2.7856531 5.6737369 2.3230544	2·8579799 - 2·0764461 - 7815338 - 1·7019286	- ·1765114 - ·4744250 - ·6509364 1·1136496	- ·1777867 ·3901540 ·2123673 - ·8944808
$g_{-3}^{0}$	(X) $(Z)$ $(P)$	- '1226364 _1'5861301 _1'4634937 - 2'1132110	- *1496043 - *8063501 - *9559544 1*0460448	2·8579799 - 2·0764461 - ·7815338 - 1·7019286	2·8284066 1·5478839 4·3762905 1·2468758	- ·1834238 + ·3590274 - ·1756036 - ·8158878	- ·1845693 - ·2952704 - ·4798397 ·6553193
$g_5{}^{\scriptscriptstyle 0}$	(X) $(Z)$ $(P)$	- *0886747 - *7000106 - *7886853 1*3827704	0860695 .3882760 .3022065 6844748	- ·1765114 - ·4744250 - ·6509364 1·1136496	- ·1834238 ·3590274 ·1756036 - ·8158878	*3955108 *4394974 *8350082 *5338724	- '3902625 - '3618590 - '0284035 - '4288052
$g_{-\mathfrak{s}^0}$	(X) (Z)	*0855784 *5652811 *4797027 1*1106382	- '0829876 - '3138450 - '3968326 '5497688	- ·1777867 ·3901540 ·2123673 - ·8944808	- '1845693 - '2952704 - '4798397 - '6553193	·3902625 - ·3618590 ·0284035 - ·4288052	·3851367 ·2979727 ·6831094 ·3444154
$g_{7}{}^{0}$	(X) (Z)	- '0331758 - '1322591 - '1654349 '5451432	- '0322894 '0690024 '0367130 - '2698472	0709077 1021726 1730803 .4390448	- ·0689827 -0752283 -0062456 - ·3216553	- '0436160 - '0426039 - '0862199 '2104738	- '0441804 -0363377 - '0078427 - '1690521
$g_{-7}^{0}$	(X) $(Z)$ $(P)$	- *0316740 *1108633 *0791893 - *4536338	- '0308277 - '0579588 - '0887865 '2245500	- *0677063 *0855746 *0178683 - *3653456	- '0658325 - '0627336 - '1285661 '2676614	- '0431758 '0371720 - '0060038 - '1751431	- '0437308 - '0316886 - '0754194 '1406746

Type of these equations—

$$\begin{split} \left\{ \Sigma \left[ (X'_{n}^{m})^{2} \, w \right] + \Sigma \left[ (Z'_{n}^{m})^{2} \, w \right] \right\} g_{n}^{m} + \left\{ \Sigma \left[ (X'_{n}^{m} \, X'_{n_{1}}^{m}) \, w \right] + \Sigma \left[ (Z'_{n}^{m} \, Z'_{n_{1}}^{m}) \, w \right] \right\} g_{n_{1}}^{m} + \&c. \\ &= \Sigma \left[ (X'_{n}^{m} \, x_{n}^{\prime}) \, w \right] + \Sigma \left[ (Z'_{n}^{m} \, z_{n}^{\prime}) \, w \right]. \end{split}$$

g ₇ °	g ₋₇ °	g ₉ °	$g_{-9}^0$	1845	1880
- ·0331758	- '0316740	- '0083280	- '0079213	53°575026	52'47937
- ·1322591	'1108633	- '0053853	- '0031617	85°065860	83'96225
- ·1654349	'0791893	- '0137133	- '0047596	138°640886	136'44162
·5451432	- '4536338	- '1936964	- '1635814	1°7728420 γ	1'77284 γ
- *0322894	- *0308277	0028801	- '0077348	53°280527	52·19188
*0690024	- *0579588	0025389	'0019608	- 43°896763	- 41·97950
- *0367130	- *0887865	0025389	- '0057740	9°383764	10·21238
- *2698472	*2245499	00258801	'0809732	- °8775612 γ	- ·87756 γ
- '0709077	0677063	- '0181915	- '0171865	- 2.456861	- 2.49548
- '1021726	.0855746	- '0095500	'0091263	- 16.292667	- 16.48110
- '1730803	.0178683	- '0277415	- '0080602	- 18.749528	- 18.97658
'4390448	3653456	'1559982	- '1317444	1.4278032 γ	1.42780 γ
0689827	- '0658325	- '0172844	- '0167079	- 2·502657	- 2·54028
.0752283	- '0627336	- '0069433	- '0066536	12·074223	12·21777
.0062456	- '1285661	- '0103411	- '0233615	- 9·571566	9·67749
3216553	'2676614	- '1142882	'0965193	- 1·046045 γ	- 1·046045 γ
- '0436160	- '0431758	- '0121489	- '0114552	- '4538875	- '41034
- '0426039	'0371720	- '0079890	'0066715	- 4·6678164	- 4'39735
- '0862199	- '0060038	- '0201379	- '0047837	- 5·1217039	- 4'80769
'2104738	- '1751431	'0747840	- '0631570	·6844748 γ	'684475 γ
- '0441804	- '0437308	- '0117219	- '0110452	- 0'4265168	- 0°38422
- '0363377	- '0316886	- '0063960	- '0053359	3'7264380	<u>3°54478</u>
- '0078427	- '0754194	- '0053259	- '0163811	3'2999212	3°16056
- '1690521	- '1406746	- '0600634	'0507275	- '54977 γ	- °54977 γ
*0429919	·0422967	- '0048407	- '0047965	- '2036836	- '19362
*0545269	- ·0468285	- '0039784	'0035077	- '8617810	- '86153
*0975188	- ·0045318	- '0088191	- '0012888	- 1'0654646	- 1'05515
*0829772	- ·0690484	'0294828	- '0248990	'2698472 γ	'26985 γ
- 0422967	*0416203	- °0049062	- °0048630	- '1947500	- ·18518
- 0468285	*0402263	°0035991	- °0031720	- '7223115	- ·72255
- 0045318	*0818466	- °0013071	- °0080350	- '5275615	- ·53737
- 0690484	*0574577	- °0245338	°0207194	- '224550 γ	- ·22455 γ

# (2) When n is even.

					,		
		$g_2{}^0$	$g_{-2}^{0}$	g ₄ ⁰	g_4 ⁰	g ₆ ⁰	9-6
$g_2{}^{\scriptscriptstyle 0}$	(X) $(Z)$ $(P)$	5.9353003 6.4063186 12.3416189 3.6055460	5.8869711 - 4.2536687 1.6333024 - 2.3637887	- '2100908 - 1'2109824 - 1'4210732 2'0741556	- '2152736 '9557641 '7404905 - 1'6100652	- *1084497 - *3156105 - *4240602 *8858576	- '1041086 '2605933 '1564847 - '7269633
$g_{-2}^{0}$	(X) $(Z)$ $(P)$	5.8869711 - 4.2536687 1.6333024 - 2.3637887	5.8393445 2.8244633 8.6638078 1.5496957	- *2270148 -8140945 -5870797 - 1*3598128	- ·2319257 - ·6425696 - ·8744953 ·1055556	- *1058105 *2072157 *1014052 - *5807651	- ·1015158 - ·1710558 - ·2725716 ·4765958
$g_4{}^{\scriptscriptstyle 0}$	(Z) $(P)$	- '2100908 - 1'2109824 - 1'4210732 2'0741556	- '2270148 -8140945 -5870797 - 1'3598128	1.1321235 1.1328694 2.2650229 1.1931960	1·1183960 - ·8984056 - ·9262194	- '0999649 - '1498668 - '2498317 '5096056	- *0994945 *1271930 *0276985 - *4181990
$g_{-4}^{0}$	(X) $(Z)$ $(P)$	*9557641 *7404905	- '2319257 - '6425696 - '8744953 '1055556	1.1183960 8984056 2199904 9262194	1·1049212 ·6125267 1·7174479 ·7189787	- ·1021352 ·1215705 ·0194353 - ·3955821	*1016243 - *1031697 - *2047940 *3246272
$g_6{}^0$	(Z) $(P)$	- *1084497 - *3156105 - *4240602 *8858576	- ·1058105 ·2072157 ·1014052 - ·5807651	- '0999649 - '1498668 - '2498317 '5096056	- '1021352 - '1215705 - '3955821	·1311547 ·1604164 ·2915711 ·2176492	- 1292581 - 1353768 - 0061187 - 1786098
$g_{-6}^{0}$	(X) $(Z)$ $(P)$	- '1041086 '2605933 '1564847 - '7269633	- '1015158 - '1710558 - '2725716 '4765958	- '0994945 - '1271930 - '0276985 - '4181990	- '1016243 - '1031697 - '2047940 '3246272	- 1292581 - 1353768 - 0061187 - 1786098	·1274087 ·1142659 ·2416746 ·1465730
$g_8{}^0$	(X) $(Z)$ $(P)$	- ·0335070 - ·0434978 - ·0770048 ·3292836	- '0326737 '0284817 - '0041920 - '2158777	- '0329997 - '0282696 - '0612693 - '1894264	- ·0319625 ·0219325 - ·0100300 - ·1470424	- '0156604 - '0107012 - '0263616 '0809028	- *0158347 *0109209 - *0049138 - *0663914
$g_{-8}^{\ \ 0}$	(Z) $(P)$	- '0318180 '0368033 '0049853 - '2765007	- '0310269 - '0240987 - '0551256 -1812733	- '0313367 - '0238825 - '0074542 - '1590620	- '0303335 - '0185145 - '0488480 '1234721	- *0154763 *0110148 - *0044615 - *0679343	- *0156478 - *0098406 - *0254884 *0557491

$g_8{}^0$	$g_{-8}^0$	g10°	9-100	1845	1880
- ·03350696	- '0318180	- *0067837	- ·0063725	·088152	1·11998
- ·04349786		*0031556	- ·0027079	·655802	1·90941
- 0770048	- '2765007	- *0036281	- °0090804 - °0956616	.743954 1.7787882 γ'	3·02939 1·77879 γ'
- *0326737	- '0310269	- °0066102	- 10062096	·0982751	1·12141
*0284817	- '0240987	- °0021097	10018102	- ·4424197	- 1·27410
- °0041920	- °0551256	- °0740127	- °0043994	- '3441446	- 0·15269
- °2158777	°1812733		°0627156	- 1'16617 γ'	- 1·16617 γ'
- ·0329997	- '0313367	0069775	- ·0065508	- ·657740	- '93417
- ·0282696	'0238825	0019579	·0016583	- ·753613	- '92917
- ·0612693	- '0074542	- *0089354	- '0048925	- 1.411353	- 1.86334
·1894264	- '1590620	*0649440	- '0550311	1.0232802 γ'	1.02328 γ
- °0319625	- ·0303335	- '0067491	- '0063364	- ·6491774	- *92383
	- ·0185145	'0014869	- '0012884	·5973065	+ *73604
- *0100300	- '0488480	- ·0052622	- ·0076248	- ·0518709	- ·18779
- *1470424	'1234721	- ·0504128	·0427179	- ·794322 γ'	- ·79432 γ'
- °0156604	- :0154763	- 10037478	- '0035171	*041058	*05543
- °0107012	:0110148	- 10026558		*051397	*03719
- °0263616	- '0044615	- *0064036	- '0012564	·092455	·09262
°0809028	- '0679343	*0277372	- '0235034	·4370358 γ'	·437036 γ'
- *0158347	- '0156478	0035909	- '0033645	*041080	·05588
*0109209	- '0098406		- '0018457	- *079677	- ·03305
- '0049138	- '0254884	- '0014190	- ·0052102	- ·038597	·02283
- '0663914	'055749I	- '0227620	·0192876	- ·358646 γ'	- ·35865 \gamma'
*0141275	*0138606	- '0013474	- '0013438	*0210180	*02105
*0173116	- *0150678	- '0013909	'0012652	*0148518	*00329
0314391	- '0012072 - '0252520	- '0027383	- '0000786 - '0087365	·0358698 ·1624514 γ'	·16245 γ'
*0138606	*0136022	- '0013778	- '0013730	°0198806	*01671
- *0150678	*0131186	'0012693	- 'C011534	- °0125449	- *00378
- '0012072 - '0252520	*0267208 *0212042	0001082	- '0025264	- ·136411 γ'	·01293 - ·13641γ'

Final equations for m=1, 2, and 3 for all values of n from 1 to 10. From the equations for X, Y and Z respectively and those equations combined.

## (1) When n is odd.

			1				
		$g_1^{-1} \text{ or } h_1^{-1}$	$g_{-1}^{1}$ or $h_{-1}^{1}$	$g_3^1$ or $h_3^1$	$g_{-3}^{-1}$ or $h_{-3}^{-1}$	$g_5^1$ or $h_5^1$	$g_{-5}^{-1}$ or $h_{-5}^{-1}$
$g_1^1$ or $h_1^1$	(X) $(Y)$ $(Z)$ $(P)$	2·9862372 10·6203049 30·4174073 44·0239494 ·8953702	3.0002743 10.5899389 - 15.1493187 1.5591055 .8864210	- 2.0046256 .9080995 3256928 - 1.4222189 .7211092	- 1.9767768 .8860421 .2543667 8363680 .7044036	- '4049405 '0375997 - '2100608 - '5774016 '3456926	- '3919431 '0356222 '1692676 - '1870533 '3331915
$g_{-1}^{-1}$ or $h_{-1}^{-1}$	(X) $(Y)$ $(Z)$ $(P)$	3.0002743 10.5899389 - 15.1493187 - 1.5591055 .8864210	3.0147177 10.5597278 7.5452128 21.1196593 .8775612	- 2.0276952 ·8986170 - 1.784060 - 1.3074842 ·7139016	- 1.0690535 .8766950 .1224843 0698742 .6973632	- *4010352 *0370508 *1031542 - *2608302 *3422374	- '1882371 '0350977 - '0830781 - '2358175 '3298612
$g_3^1 \  ext{or} \ h_3^1$	(X) $(Y)$ $(Z)$ $(P)$	- 2.0046256 .9080995 3256928 - 1.4222189 .7211092	- 2.0276952 .8986170 1784060 - 1.3074842 .7139016	2·7010559 ·7688186 5·1262964 8·5961709 ·5807636	2.6809220 .7583899 - 3.8109739 3716620 .5673095	- '3038483 '0479263 - '2832645 - '5391865 '2784124	- '3021935 '0457609 '2368500 - '0195826 '2683442
$g_{-3}^{1}$ or $h_{-3}^{1}$	(X) $(Y)$ $(Z)$ $(P)$	- 1°9767768 ·8860421 ·2543667 - '8363680 ·7044036	- 1.0690535 -8766950 -1224843 0698742 -6973632	2.6809220 .7583899 - 3.8109739 3716620 .5673095	2.6611426 .7481307 2.8333066 6.2425799 .5541669	- '3110444 '0465404 '2177050 - '0467990 '2719626	- '3092685 '0444172 - '1838957 - '4487470 '2621277
$g_5^1$ or $h_5^1$	(X) $(Y)$ $(Z)$ $(P)$	- '4049405 '0375997 - '2100608 - '5774016 '3456926	- '4010352 '0370508 '1031542 - '2608302 '3422374	- '3038483 '0479263 - '2832645 - '5391865 '2784124	- '3110444 '0465404 '2177050 - '0467990 '2719626	·4729736 ·0357094 ·5690702 I·0777532 ·1334681	·4663226 ·0349857 - ·4683139 ·0329944 ·1286416
$g_{-5}^{1}$ or $h_{-5}^{1}$	(X) (Y) (Z) (P)	- '3919431 '0356222 '1692676 - '1870533 '3331915	- ·1882371 ·0350977 - ·0830781 - ·2358175 ·3298612	- '3021935 '0457609 '2368500 - '0195826 '2683442	- '3092685 '0444172 - '1838957 - '4487470 '2621277	·4663226 ·0349857 - ·4683139 ·0329944 ·1286416	*4598053 *0342804 *3854417 *8795274 *1239896
$g_7^1$ or $h_7^1$	(X) $(Y)$ $(Z)$ $(P)$	- '0547088 '0161300 '0751122 '1459510 -1362858	- '0540479 - '0160152 - '0368732 - '0331899 - '1349236	- '0540704 - '0082538 - '1077065 - '1700307 '1097612	- *0524302 - *0081395 *0761847 *0156150 *1072184	- '0297014 - '0002910 - '0598334 - '0898258 '0526184	- '0310557 - '0003256 - '0505280 - '0191467 - '0507156

Type of these equations—

$$\begin{split} & \left\{ \Sigma \left[ (X'_{n}^{m})^{2} w \right] + \Sigma \left[ (Y'_{n}^{m})^{2} w \right] + \Sigma \left[ (Z'_{n}^{m})^{2} w \right] \right\} g_{n}^{m} \\ & + \left\{ \Sigma \left[ (X'_{n}^{m} X'_{n_{1}}^{m}) w \right] + \Sigma \left[ (Y'_{n}^{m} Y'_{n}^{m}) w \right] + \Sigma \left[ (Z'_{n}^{m} Z'_{n_{1}}^{m}) w \right] \right\} g_{n_{1}}^{m} + \&c. \\ & = \Sigma \left[ (X'_{n}^{m} x'_{m}) w \right] + \Sigma \left[ (Y'_{n}^{m} y'_{m}) w \right] + \Sigma \left[ (Z'_{n}^{m} z'_{m}) w \right]. \end{split}$$

				Fo	er g	Fo	- I
$g_7^1$ or $h_7^1$	$g_{-7}^{-1}$ or $h_{-7}^{-1}$	$g_{\mathfrak{g}^1}$ or $h_{\mathfrak{g}^1}$	$g_{-9}^{1} \text{ or } h_{-9}^{1}$	1845	1880	1845	1880
- '0547088 - '0161300 - '0751122 - '1459510 '1362858	- '0522847 - '0155632 '0628502 - '0049977 '1296097	*0021806 - *0058117 - *0183987 - *0220298 *0484241	-0020722 -0055082 -0168543 -0134183 -0454393	·6460745 7·0375320 18·3312516 26·0148581 - ·886421 α	°06856 6°03140 16°13701 22°23697 - °88642 a	- 4.7000693 - 13.3237434 - 37.9189145 - 55.9427272 886421 β	- 4.53794 - 13.25900 - 40.34372 - 58.14066 88642 β
- '0540479 - '0160152 - '0368732 - '0331899 - '1349236	- '0516638 - '0154522 - '0308536 - '0979696 '1283142			·6652797 7·0132906 - 9·1115250 - 1·4329547 - ·8775612 a	·05491 6·00857 - 8·01121 - 1·94773 - ·87756 α	- 4'7225008 - 13'2877883 18'8923360 0'8820469 - '8775612 β	- 4.55663 - 13.22337 20.09631 - 2.31631 - 87756 β
- '0540704 - '0082538 - '1077065 - '1700307 '1097612	- °0513246 - °0080101 - °0901317 - °0307970 - °1043845	- '0047340 - '0037514 - '0268697 - '0353551 '0389995	- '0044417 - '0035601 <u>'0228663</u> <u>'0148645</u> '03659 <b>57</b>	•9192013 1·0138712 3·4681067 5·4011792 – ·7139016 α	1·34058 1·07387 4·99417 7·40862 - ·71390 α	3.1891606 - '9252286 1.7927788 4.0567108 - '7139016 β	2·78482 - ·91569 1·07219 2·94123 - ·71390 β
- '0524302 - '0081395 - '0761847 - '0156150 - '1072184	- '0500019 - '0078979 - '0659662 - '1238660 '1019663						
- '0297014 - '0002910 - '0598334 - '0898258 '0526184	- '0300582 '0003379 - '0518208 - '0822169 - '0500409	- '0066442 - '0010670 - '0161685 - '0238797 '018 <b>6</b> 960	- '0062526 - '0010173 - '0137568 - '0064869 - '0175436	- ·8469248 ·0168797 - ·7292658 - 1·5593109 - ·3422374 α	- ·72421 ·01964 - ·75427 - 1·45884 - ·34224 α	*6884089 - *0166866 *4622901 1*1340124 - *3422374β	-79895 - *01151 -*50652 1*29396 - *34224 β
- '0310557 - '0003256 '0505280 '0191467 '0507156	- '0313732 - '0003708 - '0437589 - '0755029 '0482313						
.0551723 .0015791 .0561205 .1128719 .0207443	**************************************	- '0038989 - '0000597 - '0061454 - '0101040 '0073707	- '0039218 - '0000606 '0054783 '0014959 '0069164	- ·0248367 - ·0148057 - ·0692747 - ·1089171 - ·1349236 α	- '03763 - '01435 - '08540 - '13738 - '13492 α	·0550275 ·0179512 ·0384398 ·1114185 - ·1349236 β	·06486 ·01784 ·06718 ·14988 - ·13492 β

# (2) When n is even.

		$g_2^1$ or $h_2^1$	$g_{-2}^{-1} \text{ or } h_{-2}^{-1}$	$g_4^{-1}  ext{ or } h_4^{-1}$	$y_{-4}^{-1}$ or $h_{-4}^{-1}$	$g_6^1$ or $h_6^1$	$g_{-6}^{-1}$ or $h_{-6}^{-1}$
$g_2^{-1}$	(X) $(Y)$ $(Z)$ $(P)$	4:7252731 3:0362275 13:3230622 21:0845628 -9013865	4.7060898 3.0102976 - 8.8298252 - 1.1134378 .8864210	- '8834794 '2553293 - '3986114 - 1'0267615 '5185389	- ·8735948 ·2469362 ·3245072 - ·3021514 ·5031453	- 1654593 - 10068366 - 1888655 - 3611614 - 2214644	- '1590115 - '0069194 - '1556849 - '0102460 - '2120309
$g_{-2}^{-1}$	(X) $(Y)$ $(Z)$ $(P)$	4·7060898 3·0102976 - 8·8298252 - 1·1134378 ·8864210	4:6872742 2:9846303 5:8524019 15:5243064 :8717040	- ·8972124 ·2506420 ·2836142 - ·3629562 ·5099298	- ·8871820 ·2423593 - ·2304424 - ·8752651 ·4947918	- '1626641 - '0068698 -1234607 - '0460732 -2177875	- '1562616 - '0067840 - '1017250 - '2647706 '2085106
$g_4^{-1}$	(X) $(Y)$ $(Z)$ $(P)$	- '8834794 '2553293 - '3986114 - 1'0267615 '5185389	- ·8972124 ·2506420 ·2836142 - ·3629562 ·5099298	1°2083344 °1729017 1°7670285 3°1482646 °2982990	1°1952134 °1698536 - 1°3981366 - °0330696 °2894436	- *0940175 *0051341 - *1458594 - *2347428 *1274014	- '0943619 '0047370 '1244065 '0347816 '1219747
$g_{-4}^{-1}$	(X) $(Y)$ $(Z)$ $(P)$	- ·8735948 ·2469362 ·3245072 - ·3021514 ·5031453	- ·8871820 ·2423593 - ·2304424 - ·8752651 ·4947918	1°1952134 °1698536 - 1°3981366 - °0330696 °2894436	1·1823646 ·1668714 1·1063548 2·4555908 ·2808510	- '0973812 '0048574 '1191653 '0266415 '1236193	- '0974470 '0052711 - '1015789 - '1937548 '1183537
$g_6^1$	(X) $(Y)$ $(Z)$ $(P)$	- *1654593 - *0068366 - *1888655 - *3611614 *2214644	- '1626641 - '0068698 -1234607 - '0460732 -2177875	- '0940175 '0051341 - '1458594 - '2347428 '1274014	- '0973812 '0048574 '1191653 '0266415 '1236193	·1679758 ·0072219 ·1783999 ·3535976 ·0544123	·1651158 ·0070683 ·1508073 ·0213768 ·0520945
$g_{-6}^{-1}$	(X) $(Y)$ $(Z)$ $(P)$	- 1590115 - 1069194 1556849 - 10102460 12120309	- '1562616 - '0067840 - '1017250 - '2647706 '2085106	- '0943619 '0047370 '1244065 '0347816 '1219747	- '0974470 '0052711 - '1015789 - '1937548 '1183537	·1651158 ·0070683 - ·1508073 ·0213768 ·0520945	·1623380 ·0069188 ·1275009 ·2967577 ·0498755

				Fo	r q	For	· h ·
$g_8^{1}$ or $h_8^{1}$	$g_{-8}^{1}$ or $h_{-8}^{1}$	$g_{\scriptscriptstyle 10}{}^{\scriptscriptstyle 1}$ or $h_{\scriptscriptstyle 10}{}^{\scriptscriptstyle 1}$	$g_{-10}^{1}$ or $h_{-10}^{1}$	1845	1880	1845	1880
- '0166647	- '0158014	0028091	**************************************	- 4.6983874	- 4.57101	- '5335877	1.40581
- '0098160	- '0093844	- 0024763		- 3.2648495	- 3.43537	- '0587768	.61340
- '0562815	- '0475754	- 0111427		- 13.672508	- 14.44531	- '5241924	4.15380
- '0827622	- '0223896	- 0108099		- 21.6354877	- 22.45169	- '9990033	6.17301
'0823209	- '0777658	0282234		889394 a'	88939 α'	- '889394β'	88939 \beta'
				- 4.6665148 - 3.2352472 9.0478425 1.1460805 8746276 a'	- 4.54028 - 3.40450 9.55827 1.61349 87463 a'	- '5335511 - '0587976 - '3483488 - '1264047 - '8746276 β'	1·40379 ·60928 - 2·75709 - ·74402 - ·87463 β'
- '0175987	- '0166724	- '0021205	- '0019751	- 1065771	12159 - '38209 - '97200 - 1'23250 - '51164 a'	- ·2536825	- ·48670
- '0035432	- '0034025	- '0010833	- '0010211	- 3723795		- ·0291936	- ·01651
- '0462972	- '0391347	- '0095729	'0081801	- 8196584		- ·1006035	- ·49527
- '0674391	- '0190598	- '0127767	'0051839	- 10854608		- ·3834796	- ·99848
'0473566	- '0447362	'0162360	'0151336	- 51164 α'		- ·51164 β'	- ·51164 β'
- '0103865	- '0105226	- '0027303	- '0025638	·2040272	-18532	'0081682	- '07374
- '0002741	- '0002771	- '0002542	- '0002412	·0005837	-00658	'0000802	- '00470
- '0205582	'0180593	- '0048024	'0041017	·2511771	-18903	'0273859	'00940
- '0312188	'0072596	- '0077869	'0012967	·4557880	-38093	'0354739	- '06904
'0202257	'0191065	'0069343	'0064634	- ·2185179 a'	- 21852 α'	'2185179 β'	- '21852 β'

$g_2^{\ 2}$ or $h_2^{\ 2}$	(X) (Y) (Z)	g ₂ ² or h ₂ ² 5.8560865 30.4176397 55.1758930 91.4496192	g ₋₂ ² or h ₋₂ ² 5.8736892 30.3185676 - 36.6376841 - 0.4454273	$g_4^2$ or $h_4^2$ 1'9023717 1'5914424 '0103389 '3212682	g_4 ² or h_4 ² - 1.8760836 1.5438057 03703182952461	g ₆ ² or h ₆ ² - ·2761720 ·1239966 - ·0462303 - ·1984057	$\begin{array}{c c} g_{-6}^2 \text{ or } h_{-6}^2 \\ \hline - \cdot 2650029 \\ \cdot 1183499 \\ \cdot 0380836 \\ \hline - \cdot 1085694 \\ \end{array}$
$g_4^2$ or $h_4^2$	(X) $(Y)$ $(Z)$	- 1.9023717 1.5914424 0103389 3212682	- 1°9268351 1°5648733 °0525484 - °3094134	1.7384537 1.3699973 4.1222073 7.2306583	1.7255506 1.3487733 - 3.2602014 1858775	- '2190847 '1158533 - '0474292 - '1506606	- *2167639 *1106619 *0456663 - *0604357
$g_6^2$ or $h_6^2$	(X) $(Y)$ $(Z)$	- '2761720 '1239966 - '0462303 - '1984057	- '2717991 '1217870 '1302408 - '0197713	- *2190847 *1158533 - *0474292 - *1506606	- *2226879 *1122404 *0459700 - *0644775	*2174322 *0714518 *3574373 *6463213	*2144368 *0696389 - *3011288 - *0170531

$\begin{bmatrix}g_3^2\\\text{or}\\h_3^2\end{bmatrix}$	(X) (Y) (Z)	$g_3^2$ or $h_3^2$ 4.1941269 5.9425073 14.0034282 24.1400624	$g_{-3}^{2} \text{ or } h_{-3}^{2}$ $\begin{array}{r} 4.1770132 \\ 5.8855425 \\ -10.4217632 \\ \hline -3592075 \end{array}$	$g_6^2 \text{ or } h_5^2$ $- \frac{.6716362}{.4638440}$ $- \frac{.0501784}{.2579706}$	$g_{-5}^{2} \text{ or } h_{-5}^{2}$ $\begin{array}{r} -6631724 \\ 4466743 \\ 0554246 \\ \hline -1610735 \end{array}$	$g_7^2 \text{ or } h_7^2$ - '1103617 '0291874 - '0402190 - '1213933	$g_{-7}^{2} \text{ or } h_{-7}^{2}$ $\begin{array}{c}1052833 \\ .0283133 \\ .0336243 \\ \hline0433457 \end{array}$
$g_5^2 \  ext{or} \ h_5^2$	(X) (Y) (Z)	- •6716362 •4638440 - •0501784 - •2579706	- ·6811298 ·4528531 ·0586707 - ·1696060	·6335524 ·3185157 1·2264016 2·1784697	·6268705 ·3118832 - 1·0070993 - ·0683456	- '0665022 '0246492 - '0301289 - '0719819	- '0660358 '0235123 '0278199 - '0147036
$g_7^2 \  ext{or} \ h_7^2$	(X) $(Y)$ $(Z)$	- ·1103617 ·0291874 - ·0402190 - ·1213933	- *1078222 *0283966 *0293679 - *0500577	- *0665022 *0246492 - *0301289 - *0719819	- *0678847 *0236636 *0277380 - *0164831	·0718631 ·0152717 ·1015832 ·1887180	·0706311 ·0148315 - ·0872007 - ·0017381

$\begin{bmatrix}g_3^3\\ \text{or}\\ h_3^3\end{bmatrix}$	(X) (Y) (Z)	g ₃ ³ or h ₃ ³ 7.7831711 55.1586439 84.149966 147.0917216	$g_{-3}^{3} \text{ or } h_{-3}^{3}$ $7.8043450$ $54.9743153$ $-62.8652751$ $-0866148$	g ₅ ³ or h ₅ ³ - 1.7807839 1.7600996 0598019 0391176	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	g ₇ ³ or h ₇ ³ - ·1688230 ·1288671 - ·0087517 - ·0487076	g_7 ³ or h_7 ³ - ·1607705 ·1224368 ·0073628 - ·0309709
$g_{\bf 5}^3 \\ \text{or} \\ h_{\bf 5}^{\perp \parallel}$	(X) (Y) (Z)	- 1.7807839 1.7600996 .0598019 .0391176	- 1.8354689 1.9860540 0150036 1655887	1·2550739 1·5452837 3 <u>'4195822</u> 6·2199398	1°2452721 1°5200845 - 2°8133805 °0480239	- *1411364 *1177833 - *0021999 - *0255530	- '1396354 '1119510 '0071231 - '0205613
$g_7^3$ or $h_7^3$	(X) $(Y)$ $(Z)$	- ·1688230 ·1288671 - ·0087517 - ·0487076	- ·1650357 ·1258253 ·0064123 - ·0327981	- '1411364 '1177833 - '0021999 - '0255530	- ·1435309 ·1134852 ·0087933 - ·0212524	*1186787 *0748286 *2313050 *4248123	·1170206 ·0727383 - ·1983397 - ·0085808

		Fo	or g	Fo	or h
$g_8^2$ or $h_8^2$	$g_{-8}^2 \text{ or } h_{-8}^2$	1845	1880	1845	1880
- '0448692 '0017479 - '0201855 - '0633068	- *0425640 *0015650 *0170368 - *0239622	.5584839 4994256 7117042 6526459	- '01140 - 3'42615 - 6'98186 - 10'41941	- 1.7810965 - 7.2429571 - 14.3351455 - 23.3591991	- 1.78354 - 7.85075 - 15.93574 - 25.57003
- '0374467 '0031731 - '0254972 - '0597708	- *0355132 *0028676 *0215329 - *0111127	- '7068864 - '4300292 - 1'3017542 - 2'4386698	- '54015 - '72765 - 1'75082 - 3'01862	7651172 - 1387209 10175575 16439538	-78835 - 27529 -42191 -93497
- *0189448 *0042949 - *0150805 - *0297304	- *0189261 *0040039 *0137159 - *0012063	1694613 - 169446 - 10129446 - 10891637 - 12456804	14794 - 04427 08486 18853	°0404818 - °0246750 - °0423906 - °0265838	*02076 - *04368 - *05420 - *07712

		Fo	or g	Fo	or h
$g_9^2$ or $h_9^2$	$g_{-9}^{2}$ or $h_{-9}^{2}$	1845	1880	1845	1880
- '0167968 - '0035370 - '0150774 - '0354112	- *0158386 - *0034086 *0128141 - *0064331	- 2·1013078 - 3·7947663 - 8·6025393 - 14·4986134	- 2.08403 - 3.77384 - 8.76508 - 14.62295	- '5872382 - '3900929 - 1'1571948 - 2'1345259	- '28199 - '02187 - '49497 - '19111
- '0112581 - '0008544 - '0128794 - '0249919	- '0106082 - '0008528 -0109511 - '0005099	- '0088187 - '5127447 - '7624143 - 1'2839777	*04153 - *46504 - *68693 - 1*11044	1131649 - '0288192 - '1163853 - '0320396	.03071 .01060 .09710
- '0052179 '0005244 - '0063181 - '0110116	- '0052569 '0004721 '0057192 '0009344	*1118711 - *0357963 *0511579 *1272327	'09353 - '02746 - '00822 '05785	- *0070686 *0005182 - *0182992 - *0248496	*00047 *00816 - *03715 - *02852

		Fo	or g	Fo	or h
$g_9^{3} \text{ or } h_9^{3}$	$g_{-9}^{3} \text{ or } h_{-9}^{3}$	1845	1880	1845	1880
- '0230096	- '0216543	- '1188299	- '56925	- 1.2685284	- '90664
'0085247	'0079409	- 2'1839724	- 4'33651	- 8.1899166	- 6'47443
- '0042155	'0037113	- 4'3163385	- 4'32315	- 12.1609314	- 8'35188
- '0187004	- '0100021	- 6'6191408	- 14'22891	- 21.6193764	- 15'73295
- '0197814	- *0186187	°0239183	·08573	-3538548	·28086
'0086185	*0080416	- °1026141	- ·17179	- 2683575	- ·19301
- '0051281	*0043542	- °0693361	·01250	- 0316070	-08529
- '0162910	- *0062229	- °1480319	- ·07356	-0538903	-17314
- '0111551	- *0110869	- °0052944	*02706	- 0037425	- '00263
'0062529	*0058460	- °0086410	- *02560	- 0342865	- '03285
- '0027065	*0028960	- °0176366	- *00872	- 0004055	- '05898
- '0076087	- *0023449	- °0037012	- *00726	- 0309495	- '09446

Final equations for m=3, 4, and 5. From the equations for X, Y and Z respectively and those equations combined.

						Fo	r g	Fo	r h
		$g_4^{\ 3} \text{ or } h_4^{\ 3}$	$g_{-4}^{3}$ or $h_{-4}^{3}$	$g_6^{\ 3} \ { m or} \ h_6^{\ 3}$	$g_{-6}^{3}$ or $h_{-6}^{3}$	1845	1880	1845	1880
$\begin{bmatrix} g_4^{\ 3} \\ \text{or} \\ h_4^{\ 3} \end{bmatrix}$	(X) $(Y)$ $(Z)$	3.7596608 7.8947196 14.6737803 26.3281607	3.7436908 7.8163481 -11.6395368 - 0.0794979	- *4980032 *4633943 *0113225 - *0232864	- ·4919583 ·4436183 ·0055937 - ·0427463	1974902 ·8760844 <u>'9384537</u> <del>2'0120283</del>	*24841 1*21499 1*71960 3*18300	*2184196 *6758584 1*3353052 2*2295832	29184 77386 140443 247013
$\begin{bmatrix}g_6^3\\\text{or}\\h_6^3\end{bmatrix}$	(X) $(Y)$ $(Z)$	- ·4980032 ·4633943 ·0113225 - ·0232864	- ·5056255 ·4496436 ·0118681 - ·0441138	·3916522 ·3350340 ·8750271 1·6017133	*3873632 *3275434 - *7375755 - *0226689	·0125871 ·1450888 ·2274858 ·3851617	- *00630 *17778 - *42424 - *59572	- ·0367976 ·0530271 ·1803857 ·1966152	°02747 °06721 °08664 °18132

Γ						For $g$		Fo	or h
		$g_4^4 \text{ or } h_4^4$	$g_{-4}^{4}$ or $h_{-4}^{4}$	$g_6^{\ 4} \text{ or } h_6^{\ 4}$	$g_{-6}^{4}$ or $h_{-6}^{4}$	1845	1880	1845	1880
$g_4^4$ or $h_4^4$		9·2748125 84·1188388 116·8795672 210·2732185	9°3002568 83°8363769 -93°1437554 - °0071217	- 1.6990760 1.7532997 .0792532 .1334769	- 1.6766981 1.6791849 0156921 0132052	- *3406078 *2739375 *7018231 *6351528	- '30798 - 1'34317 - 3'27198 - 4'92313	- '0059673 1'9757506 2'6181162 4'5878995	*29056 2*54297 1*43816 4*27169
$g_6^4$ or $h_6^4$	(X) (Y) (Z)	- 1.6990760 1.7532997 .0792532 .1334769	- 1.7229646 1.7018389 -0072411 - 0138846	.9502502 1.5604387 2.9414055 5.4520944	.9426434 1.5345601 - 2.4871751 0099716	·0587329 ·0796647 ·2144875 ·3528851	*08075 *10038 *23458 *41571	**************************************	- '02571 '16325 '08239 '21993

						For	r g	For	r h
ĺ		$g_5^4 \text{ or } h_5^4$	$g_{-5}^{4}$ or $h_{-5}^{4}$	$g_7^4 \text{ or } h_7^4$	$g_{-7}^4$ or $h_{-7}^4$	1845	1880	1845	1880
$g_{5}^{4}$ or $h_{5}^{4}$	(X) $(Y)$ $(Z)$	3·3954751 9·4062063 15·38470 <u>31</u> 28·1863845	3°3804662 9°3119869 -12°7067159 - °0142628	- '3947004 '4029091 '0202085 '0284172	- *3900007 *3832829 - *0023698 - *0090876	°2402352 °0569385 °4674347 °7646084	°07945 °28656 - °24398 °12203	- '0156344 '3404510 '1822892 '5071058	·10605 ·54629 ·04925 ·70159
$g_7^4$ or $h_7^4$	(X) $(Y)$ $(Z)$	- '3947004 '4029091 '0202085	- *4007976 -3884603 -0030701 - *0092672	·2608021 ·3039539 ·6517791 I·2165351	*2578464 *2969660 - *5601749 - *0053625	**O195493 **O441174 **O071250 **O707917	·02170 ·04341 ·00258 ·06769	*0142034 *0363896 *0880327 *1386257	°00737 °03616 °10346 °14699

						For $g$		For h	
		$g_5^{5} \text{ or } h_5^{5}$	$g_{-5}^{5}$ or $h_{-5}^{5}$	$g_7^5 \text{ or } h_7^5$	$g_{-7}^{5}$ or $h_{-7}^{5}$	1845	1880	1845	1880
$g_5^{\ 5}$ or $h_5^{\ 5}$	(Z)	10°5483242 116°8370545 152°9977736 280°3831523	10·5780175 116·4443446 - 127·0146070 ·0077551	- 1.6284259 1.7037606 .0887097 .1640444	- 1.6070178 1.6211956 - 0163579 - 0021801	- '3435114 - 1'2591969 - 2'6366137 - 4'2393220	- '13196 - 1'50018 - 2'39064 - 4'02278	- *0503192 - 1*1416378 - 1*2307555 - 2*4227125	- '11806 - '69460 - '34785 - 1·16051
$g_{7}^{5}$ or $h_{7}^{5}$	(X) (Y) (Z)	- 1.6284259 1.7037606 .0887097 .1640444	- 1.6512329 1.6430569 -0056878 0024882	·7468552 1·5288367 2·6033553 4·8790472	7408538 1·5033592 - 2·2460357 - ·0018227	*0779101 *0069740 *1209663 *2058504	°02878 °03815 °04535 °11228	°0421939 °0225418 - °0905983 - °0258626	- '00806 '00728 - '04790 - '04868

# For m = 5, 6, 7, 8.

						For $g$		For h	
		$g_6^5$ or $h_6^5$	$g_{-6}^{5}$ or $h_{-6}^{5}$	$g_8^5$ or $h_8^5$	$g_{-8}^{5}$ or $h_{-8}^{5}$	1845	1880	1845	1880
$g_6^{\ 5}$ or $h_6^{\ 5}$	(X) $(Y)$ $(Z)$	3'1058721 10'6967502 16'1124421 29'9150644	3.0929438 10.5893721 -13.6845781 0022622	- *3258660 *3421787 *0203162 *0366289	- '3219633 '3234222 - '0031223 - '0016634	- '0284830 - '1177225 - '1388805 - '2850860	*01298 - *35194 - *30552 - *64448	- '1127118 - '4579321 - '9024802 - 1'4731241	·02028 - ·41870 - ·47522 - ·87364

			For $g$		For	· h
$g_{ m 6}^{\  m 6}$ or $h_{ m 6}^{\  m 6}$	$g_{-6}^{6} \text{ or } h_{-6}^{6} \mid g_{8}^{6} \text{ or } h_{8}^{6}$	$g_{-8}^{6}$ or $h_{-8}^{6}$	1845	1880	1845	1880
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.7191204 - 1.5624578 152.4311814 1.6474470 -164.1402540 .095.8928 -0100478 .1808820	- 1.5418887 1.5575217 0158521 0002191	- ·1779289 - ·2220763 1·5178139 1·1178087	- ·07856 ·26143 - ·35184 - ·16897	**************************************	*00799 *55783 *82618

			Fo	r g	For	· h
	$g_9^6 \text{ or } h_9^6$	$g_{-9}^{6} \text{ or } h_{-9}^{6}$	1845	1880	1845	1880
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	- '2755131 '2925225 '0192181 '0362275	- '2721708 '2747123 - '0028115 - '0002700	1575352 0421333 - 1048524 0948161	- *02877 *07857 *04519 *09499	**************************************	.06096 .09813 .04268 .20177

						1	Fo	or g	Fo	or h
	$g_7^7 \text{ or } h_7^7$	$g_{-7}^{7} \text{ or } h_{-7}^{7}$	$g_9^7 \text{ or } h_9^7$	$g_{-9}^{7}$ or $h_{-9}^{7}$	1845	1880	1845	1880		
$g_7^7$ or $h_7^7$	(X) 12·7240775 (Y) 192·1558537 (Z) 234·3103054 439·1902366	12.7613903 191.5097356 -204.2611132 '0100127	- 1.5011444 1.5931800 -1022515 -1942871	- '0152097	.0790212 1.0079847 1.9821143 -2.9110778	- ·07122 - ·79713 ·17830 - ·69005	1116204 - 0396364 - 4994436 - 5714276	*04136 1*11264 - *02976 1*12424		

Γ			:		For g		For h		
		$g_8^7 \text{ or } h_8^7$	$g_{-8}^{7}$ or $h_{-8}^{7}$	$g_{10}^{7} \text{ or } h_{10}^{7}$	$g_{-10}^{7}$ or $h_{-10}^{7}$	1845	1880	1845	1880
$g_8$ or $h_8$	(X) $(Y)$ $(Z)$	2·6929069 12·9016251 17·5507768 33·1453088	2.6821095 12.7720042 -15.4538077 .0003060	- '2367956 '2571514 '0181124 '0384682	- '2338881 '2362881 - '0024316 - '0000316	*0156549 - *0435159 *1074283 *0795673	°02181 °12575 - °35573 - °20817	- *1082369 *0155932 - *1023934 - *1950371	*00010 *19953 *06012 *25975

					Fo	or g	Fo	r h
	$g_8^8$ or $h_8^8$	$g_{-8}^{8}$ or $h_{-8}^{8}$	$g_{10}^{8} \text{ or } h_{10}^{8}$	$g_{-10}^{8} \text{ or } h_{-10}^{8}$	1845	1880	1845	1880
$g_8^8$ or $h_8^8$	$ \begin{array}{c} (X) \dots \\ (Y) \dots \\ (Z) \dots \\ \end{array} \begin{array}{c} 13.6861471 \\ 234.2411668 \\ 279.0932359 \\ 527.0205498 \end{array} $	13.7268560 233.4586971 -247.1700388 .0155143	1.5431857	- 1.4256831 1.4404066 0146233 .0001002	- '0567578 - '1321388 -8033517 -6144551	- '01289 '08507 '30497 '37715	- '2362381 - '1354841 - 1'0552595 - 1'4269817	°03769 °33660 <u>- °05027</u> °32402

For m = 8, 9.

			For g		For h	
	$g_9^8$ or $I$	$h_{9}^{8}  g_{-9}^{8} \text{ or } h_{-9}^{8}$	1845	1880	1845	1880
$g_9^8 \  ext{or} \ h_9^8$	(X) 2·53964 (Y) 13·87657 (Z) 18·24721 34·66343	74 13°7371378 60 - 16°2664099	·0089086 ·0340929 ·3052325 ·3482340	·01975 ·08455 - ·04093 ·06337	·0382869 - ·0776123 - ·0694911 - ·0301657	*01143 *09258 *10303 *20704

		For g		For h	
$g_{\mathfrak{g}}$ or $h_{\mathfrak{g}}$	$g_{-9}^{9} \text{ or } h_{-9}^{9}$	1845	1880	1845	1880
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.6301805 278.0797898 - 292.6991621 '0108082	- '0514447 - '0315765 - 1'5247793 - 1'6078005	*00749 *42969 *49846 *93564	*0426089 - *5884055 *1020889 - *4437077	°00103 °26948 °10606 °37657

### INDEX TO VOLUMES I. AND II.

Acceleration: secular, of Moon's mean motion, I. 160, 205, 211, II. 120, 237; of Moon relative to the Earth, II. 6 Adams Prize, 1. xxxiii Addresses, i. 309, 321, 328, 341, 355 Airy, Sir G., I. xvii, xxii, xxvi, 7, 205, 231, 264, 325 Albategnius, I. xxxv Amsler's planimeter, 1. 405 Annual equation, in lunar theory, 11. 41 Apse of Moon's orbit, motion of, II. 51, 58 Arago, I. xxiv Argelander, 1. 326, 348, 392 Astronomical observations made at Cambridge Observatory, I. 374; corrections for collimation, level, and azimuth, ib.; correction for curvature of star's path, I. 376; correction for change of declination, I. 378; occultations of fixed stars by the Moon, I. 381; correction for refraction, I. 383

Astronomical problems, application of graphical methods to solution of certain, 1. 70

Astronomical refraction, 1. 302

Astronomical Society, see Royal Astronomical Society

Attraction of an indefinitely thin shell, r. 414, 417

Auwers, I. 348, 352

Ball, W., 1. 279 Bashforth, I. 485 Baxendell, I. 271 Berliner Jahrbuch, 11. 299 Bernoulli's numbers, I. xliv, 426, 454 Bessel, I. xxi, 10, 227, 387, 392, II. 299 Bessel's fictitious year, 1. 399 Bessel's zones, I. 56, 350 Biela's comet, I. xxv, 68 Biot, I. xxiv, xxxiii Bond, G. P., I. 353 Bond, W. C., I. 353 Bossut, I. xxxv Bouvard, I. xvii, xlix, 6, 62 Bouvard's tables of Saturn, I. xxxiv, 87 Bradley, I. 6, 78, 311, 386 Brinkley, I. 312 Brünnow, 1. 271 Burckhardt, I. xxxiv, 90, 329 Burckhardt's and Plana's parallax the Moon, corrections to be applied to, I. 108 Bürg, I. 90, 329 Busch, 1. 313

Cagnoli, I. 291

Cambridge Observatory: astronomical observations made at, I. 374; geographical position of, t. 403

Cambridge Observatory Syndicate, Prof. Challis's report on the new planet to, I. xlix

Canis majoris, a, method of finding place of, ı. 395

Canonical form of equations, 1. 334

Carlini, I. 329

Carrington, I. 387

Cayley, I. xxxviii

Challis, I. xvii, xlix, 43, 47, 52, 67, 129, 271, 384

Chasles, 1. 415

81

Clairaut, lunar theory of, I. 329, II. 5; theorem on variation of gravity, II. 217

Clausen, I. 90

Comet II. 1854, I. 71

Comet II. 1861, r. 72

Comet, new, I. 67

Comet of Faye, I. 66

Comets, perturbations of, I. 70

Conjunction of Moon and the planets Jupiter and Venus, I. xvi

Copley Medal awarded to Adams, I. xxxii; to Le Verrier, ib.

Curve of sines and Kepler's problem, 1. 293

D'Alembert, 1. 311, 329

Damoiseau, I. xxxiv, xxxvi, 90, 255, 329, II. 5, 188, 233

Damoiseau's tables of Jupiter's satellites, I. 113, II. 188, 225

D'Arrest, I. xlvi, 341

Darwin, G. H., 1. 471

Dawes, I. 79

Delambre, I. 300, II. 188

De la Rue, I. xxxix

Delaunay, I. xxxvii, xlvi, 10, 169, 253, 328, 499

Determinant, development of infinite, II. 85

Development of  $\log \frac{1}{2} (1 + e^x)$ , II. 300—303

Disturbing function, I. 334; development of, II. 157

D 11 21 . 1

Dollond's telescope, 1. 81

Donkin, I. xxxviii

Downing, 1. xlv

Dunthorne, I. xxxv

Earnshaw, I. xxxi

Earth: orbit of, I. 211; ellipticity of, I. 499; figure of the, II. 201

Earth's spheroidal surface, magnetic forces on, II. 446, 449

Eccentricity: of Moon's orbit, I. 158, II. 46, 51, 58; of Earth's orbit, I. 211

Eclipse, total, of Sun, r. 80

Ecliptic: secular change of plane of, I. 231; obliquity of, I. 303

Ellipsoids, concentric, I. 414, 417

Ellipticity: of Mars, I. 275; of Earth, I. 499

Encke, I. 51, II. 299

Equation: annual, II. 41; of the centre, in lunar theory, II. 46; parallactic, II. 33, 38 Equation:  $d^2w/dt^2 + Qw = 0$ , method of solving,

11. 64, 86, 132

Equations: canonical form of, I. 334; form of final for determination of magnetic constants, II. 459; of condition in theory of terrestrial magnetism, II. 593; solution of, in theory of terrestrial magnetism, II. 601

Equator, inclination of to the invariable plane, 1. 303

Equilibrium theory of tides, 1. 471

Erman, II. 604, 606, 607

Euler, I. xxxv, 329, 454

Euler's constant, value of, I. xliv, 459

Evection and the equation of the centre, in lunar theory, II. 46; and the motion of the apse, II. 51

Evection and Variation, arguments of, I. 90

Fabri, 1. 280

Farley, 1. 387, 400

Fave's comet, I. 66

Ferrers, 1, 496

Fictitious year, Bessel's, 1. 399

Figure of the Earth, II. 201

Final Equations: for determining magnetic constants, II. 459—462; tables of, II. 627—640; type of, II. 436—439, 451, 452

Flamsteed, I. xviii, xxii, xlix, 2, 6, 22, 65

Fletcher, I. 79

Flora, motion of, I. 324

Foster's pendulum experiments, 1. 227

Frederiksvaern, total eclipse of Sun as seen at, 1. 80

Functions in series, Laplace's theorems on development of, II. 239

 $G_n^m$ : scheme of calculation for, II. 266, 267; values of, II. 268—296

 $G_{\pi}^{'m}$ : tables of values of logarithms of, II. 316—329; tables of values of, II. 330—342

 $G_n^m - G_n^{\prime m}$ , formula for, II. 305

Galileo, 1. 280

Galle, I. xx, liii, 9

Gauss, I. xxxiv, xl, 51, 272, II. 604, 606, 607 Glaisher, I. 459, 468 Godfray, I. 231 Godward, I, 118 Greenwich observations, I. xix, xxxii, 4 Greenwich star-catalogues, 1. 386

 $H_n^m$ : defined, II. 248; relation to magnetic potential and to magnetic forces, II. 402, 403, 419—424; relation to  $Q_n^m$ , II. 248  $H_n^{\prime m}$ , tables of values of logarithms of, II. 473 - 481

 $\int_{-1}^{1} (H_n^m)^2 d\mu$ , value of, II. 411

Hall, A., I. 275

Halley, I. XXXV, II. 14

Hansen, I. xxxvi, 10, 91, 172, 225, 231, 255, 297, 325, 332, 381, п. 5

Hansen's lunar tables, errors of, I. 259

Hansteen, I. 84

Henderson, I. xxxiv, 89, 92

Herschel, Sir J., I. xxi, 62, 64, 78, 342, 350

Herschel, Sir W., I. 6, 62, 78, 324, 342, 350 Hill, G. W., I. xl, 181, 499; his method of

treating the lunar theory, 11. 77, 81, 85

Hind, I. xxxiv, 321

Hjorth, Lieut., 1. 84

Horrox, II. 4

Huggins, I. 353

Huyghens, I. 280, 282

Inclination of Moon's orbit, 1. 158, 11. 64 Inequality: parallactic, II. 33, 38; Neison's lunar, II. 130; Jupiter and Saturn's long, II. 224 Instrument for observing meteors, I. 268 Invariable plane, 1. 303

Juno, motion of, I. 324

Jupiter: Moon, and Venus, conjunction of, I. xvi; and Saturn, long inequality of, II. 224; tables of satellites of, I. 113, 124; theory of satellites of, 11. 136, 192; masses of satellites of, II. 188

Kater, 1. 228

Kepler's problem: Newton's solution of, 1. 289; note on Morrison's paper on, I. 297

Lagrange, I. xxxiii, xxxvi

Lalande, I. xxxv, 56, 354

Lambert's theorem, proof of, I. 410

Lamont, I. 62

Laplace, I. xxxvi, 141, 233, 249, 276, 329, II. 189, 193, 224, 239

Laplace's coefficients: product of, II. 372; definite integrals of product, II. 398

Lassell, r. 48, 53, 62

Laugier, I. 345

Legendre's coefficients, I. 487—496, II. 243—264, 343; relations between, II. 245—250; definite integrals of their product, 11. 339

Leibnitz's theorem, 11, 247

Lemonnier, 1. 2, 6

Le Verrier, I. xviii, xxiv, xlvi, 8, 274, 355; corrections of R.A.'s of Maskelyne's 35 fundamental stars, I. 399

"Le Verrier's Planet," I. xxi

Lindenau, I. 312

Liveing, I. 85

Logarithms, Napierian and common, I. 459,

Lubbock, t. xxxviii, 325, 331

Lunar inequalities, 1. 499, 11. 15, &c.

Lunar parallax, constant of, 1. 224

Lunar theory: lectures on, II. 1—84; numerical developments in, II. 104; studies on Newton's, и. 227

Lundahl, 1. 314

MacAlister, Dr D., I. xlvii

Machin, I. 311

Magnetic constants: values of, II. 605—607; relation of different sets of, ii. 463-466; solution of equations for, II. 600-604; calculated and observed values, comparison of, II. 608-611; test of accuracy of values of, II. 624, 625; relation to magnetic potential and to magnetic forces, II. 402, 403; final equations for, II. 459, 460

Magnetic forces, II. 401—403; values of V and X in powers of  $\mu$ , II. 404—410; their relation to Legendre's coefficients, 11. 411; numerical calculation of, II. 467, 482—519; equations of condition for finding, 11, 520-553; formation of equations of condition, II. 588-590, 593-596; formation of absolute terms of equations

of condition, II. 590—593; formation of final equations, II. 597—599

Magnetic potential (V) of the Earth, II. 401 Main, I. 316

Mars: ellipticity of, 1. 275; satellites, ib.

Marth, I. 275

Maskelyne, I. 399, II. 5; 35 fundamental stars, I. 399

Mason, I. 353

Mayer, T., I. xxxv, 6, 329

Mécanique Céleste, II. 192

Meridian observations, 1. 58

Meteors, see November Meteors

Moon: apogee, 1. 302; latitude, I. 231, II. 64, 68, 72; secular acceleration of mean motion, I. 140, 160, 205, 211, II. 120, 237; motion of node, I. 181, II. 64, 72, 85; Challis's theorems relating to orbit, I. 129; inclination of orbit, I. 158; motion in orbit of any inclination, II. 68, 72; tables of parallax, I. 89; corrections to be applied to Burckhardt's and Plana's parallax, I. 108; radius vector, I. 189

Morrison, I. 297

Nadir point, I. 379

Napierian logarithms, 1. 459, 467

Neison's lunar inequality, 11. 130

Neptune: elements of, I. xvii, xix, xx, 1, 25, 35, 49, 54, 57; search for, I. 43; ephemeris of, I. 58; discovery of, I. xx, 63

Newcomb, I. 230, 255, 369, II. 130

New comet, I. 67

Newton, H. A., I. xxxix, 269, II. 194

Newton, Sir I., 1. xlv, 289, 302, 310, 329, 484, 11. 4, 227

Newton's *Principia*, I. 292, II. 4; solution of Kepler's problem, I. 289; lunar theory, II. 227 Nicolai, I. 325

Niven, I. 473

November Meteors, I. xxxix, 268, 269, 497, II. 194

Numerical Lunar Theory, remarks on Airy's, 1. 264

Observations: Greenwich, I. xix, xxxii, 4; meridian, I. 58; of Comet II. 1861, I. 72; Ball's, of Saturn, I. 279

Observatory of Cambridge, see Cambridge Observatory

Observatory of St John's College, geographical position of, I. 403

Ohm, I. 454

Olbers, I. 66, 323

Oldenburg, 1. 284

Oppolzer, r. 273, 274

Orbit: Moon's, see Moon; of  $\gamma$  Virginis, 1.78; Sun's, see Sun

Oriani, I. 298

Parallax, I. 253; new tables of Moon's, I. 89 Perturbations: of Uranus, I. 6; of Jupiter, I. 116

Peters, I. xxxiv, 227, 274, 309

Piazzi, I. 387

Pierce, B., I. xxxiii, 57, 64

Plana, I. xxxiv, xxxvi, xxxviii, xlii, 170, 329, II. 5, 233

Plana's and Burckhardt's parallax of the Moon, corrections to be applied to, I. 108

Plane, invariable, 1. 303

Planets, perturbations of, I. 70

Planimeter, Amsler's, 1. 405

Poisson, I. xxxviii, 311, 333, 414

Polar regions: formation of equations of condition for, II. 612—614, 627; formation of final equations for, II. 615—624; derived values of forces, II. 624—626

Polar stars, I. 401

Pontécoulant, I. xxxiv, xxxvii, xlii, 92, 153, 160, 331, II. 235

Portsmouth, Lord, I. xlv

Precession of equator, I. 303

Preuss, r. 313

Problems, astronomical, solution of certain by graphical methods, I. 70

Proctor, I. 353

Ptolemy, 11. 3

Pure Mathematics, I. 403

 $Q_n^m$ , definition of, II. 248

$$\int_{-1}^{1} (Q_n^m)^2 d\mu$$
, value of, II. 411

Radius vector of Moon, 1. 189

Refraction, astronomical, I. 302

Resolution of  $x^n + \frac{1}{x^n} - 2 \cos na$  into factors, I.

Robinson, I. 312

Rosse, I. 351

Rothe, I. xliv, 454

Royal Academy of Sciences of Göttingen, I. 8 Royal Astronomical Society, I. xxxii; gold medal of, presented to M. Peters, I. 309; Mr Hind, I. 321; M. Charles Delaunay, I. 328; Prof. H. D'Arrest, I. 341; M. le Verrier, I. 355

Royal Society, I. xxxii

Rümker, 1. 348

 $S^m$ , definition of, II. 250

St John's College, geographical position of Observatory of, I. 403

Satellites: tables of Jupiter's, I. 113, 124; theory of Jupiter's, II. 137, 188, 192, 224; Mars', I. 275

Saturn: error in Bouvard's tables of, I. 87; Ball's observations of, I. 279; and Jupiter, long inequality of, II. 224

Schiaparelli, 1. 273, 274

Schmidt, I. 348

Schönfeld, I. 348, 354

Schröter, I. 324

Schubert, I. 298

Schultz, I. 348

Schumacher, I. xxiii, xxxii, 56

Secchi, I. 353

Secular acceleration of Moon's mean motion, I. XXXV, 140, II. 120, 237

Sedgwick, I. xxvi, xxvii

Shanks, I. 459

Sheepshanks, I. xxxii, 58

Shell, attraction of an indefinitely thin, I. 414

Shot, trajectories of, I. 473

Shower, meteoric, I. 268

Sines, curve of, I. 293

Smith, Lieut., 1. 84

Smith Prize examination, I. xliii

Solutions, correction of approximate in lunar theory, IL 29

Souillart, II. 224

Special points on the Earth's surface, II. 440—445

Stampfer, 1. 324

Stars: maps, I. lii; mean places of 84 fundamental, I. 386; proposed new fundamental catalogue, I. 390; polar, I. 401

Staudt, I. xliv, 426

Steiner, 1. 414

Stephan, I. 348

Stockwell, I. 307, 501

Stone, I. 259, 287

Stratford, I. xxii, 95

Struve, I. xxxiii, 51, 313, 318, 353, 392

Sun: total eclipse of, I. 80; mean longitude of, I. 90; orbit of, I. 181; coordinates of in terms of the time, II. 12

Système du Monde, Pontécoulant's, list of errata in, 11. 235

Table of multiples of  $\operatorname{Log} \frac{a}{2}$ , II. 312—314

Tables de la Lune, Damoiseau's, list of errata in, II. 233

Tables: of Moon's parallax, i. 89; of Jupiter's satellites, i. 113; values of  $G_n^m$ , ii. 268—295; values of Log  $G_n^m$ , ii. 315—342; multiples of

 $\operatorname{Log} \frac{a}{r},$  II. 312—314; values of  $H_n^{\prime m}$ , II. 473—

481; values of  $\operatorname{Log} X_n^m$ ,  $\operatorname{Log} Y_n^m$  and  $\operatorname{Log} Z_n^m$ , II. 482—519; values of  $\operatorname{Log} X_n^m$ ,  $\operatorname{Log} Y_n^m$  and  $\operatorname{Log} Z_n^m$ , II. 520—553; equations of condition, II. 520—553; equations of condition for polar regions, II. 614, 627; equations of condition  $\times (w^{\frac{1}{2}})$ , II. 554—587; values of magnetic constants, II. 605—607; final equations, II. 616—623, 628—632

Telescope, Dollond's, 1. 81

Tempel's comet, I. 274

Tennant, Major-General, 1. 286

Terrestrial Magnetism, I. xxxiv, II. 241, 401—403, 446—466

"The New Planet," I. xlix

Théorie de la Lune, Damoiseau's, list of errata in, 11. 233

Théorie du Mouvement de la Lune, Plana's, list of errata in, 11. 233

Theory of determination of magnetic constants, II. 435—440, 449—452, 454—462

Theory of Terrestrial Magnetism, II. 401—403, 446—466

Thomson, J., I. xxxi	$X_n^m$ , tables of values of logarithms of, II.
Thomson, Sir W., I. 471	496—501
Tides, equilibrium theory of, 1. 471	$X_{-n}^m$ , tables of values of logarithms of, II.
Time: change in unit of mean solar, I. 259;	502—507
equation of, 1. 260; change in adopted unit	$X_n^m$ , tables of values of logarithms of, II.
of, 1. 286	520—553
Trajectories of shot, I. 473	$X_{-n}^{m}$ , tables of values of logarithms of, II.
Trigonometrical operations, account of some,	520553
ı. 403	
Turner, H. H., 1. 471	$Y_n^m$ , tables of values of logarithms of, II.
Tycho Brahe, II. 4	482—489
	$Y_{-n}^m$ , tables of values of logarithms of, II.
Uranus, I. xvii, xviii, xxxiii, xxx, 1, 6, 62	490—495
Values of $G_n^m$ in powers of $\mu$ , II. 265, 266	$Z_n^m$ , tables of values of logarithms of, II.
Variation: lunar, II. 15, 19, 24; and Evection,	508—513
arguments of, 1. 90	$Z_{-n}^m$ , tables of values of logarithms of, II.
Venus, I. xvi	514—519
Vesta, motion of, r. 324	$Z_n^m$ , tables of values of logarithms of, II.
Virginis, γ, orbit of, 1. 78	520—553
Vogel, 1. 348	$Z_{-n}^{m}$ , tables of values of logarithms of, II.
	520—553
Wallis, I. 280	Zenger, I. 294
Waterston, I. 70	Zenith point, I. 379
Wrottesley, Lord, 1. 79	



•			
	٠		
		·	





,		















* ±	
	4





