Disambiguation and Morphological Analysis of Linear B Sign Sequences

The DĀMOS corpus

- Only online, (not yet) annotated corpus of Mycenaean Greek
- Still unlicensed, will be Open Access
- ▶ All 5800 known Linear B documents are available
- Currently annotation is done manually
 - Query database for potentially interesting words
 - Look up rules for sign sequence expansion
 - Disambiguate
 - Verify using dictionary
 - Requires knowledge of ancient Greek, English, and Spanish

The DAMOS corpus

- Write an annotation support tool
- Let a machine do all the heavy lifting
- Automatize at much as possible of the pipeline
- Luckily no syntactic analysis needed (not much syntax in the corpus)

- Script used to write earliest dialect of Greek, Mycenaean
- ▶ Used in Crete and the mainland between 1400 and 1200 BCE
- Extant texts (mainly on clay tablets) are solely for temporary administrative records
- ▶ Syllabic, i.e. each sign corresponds to a single syllable
- Some ideograms for objects and units of measure
- Overall slightly less than 200 unique signs

- Descends from the Linear A script
 - ▶ Predecessor remains undeciphered
- Current consensus that Linear A was used to write a language unrelated to Greek
- ▶ Decipherment took more than 70 years
- Groundwork by Alice Kober, full decipherment by Michael Ventris and John Chadwick [Ventris53]

- Construction of combinatoric sign grids
- ► Assumption that inflection usually happens in the last syllable and won't change consonant
- Creation of an internally consistent grammar
- ► Guessing a single word and checking if everything else falls into place (a-mi-ni-so → Amnissos)
- Understanding is still not complete

a	T	a ₂ Ju	e	A	i	Ψ	0	ľ	u	F
	ai	Ж								
]	ja		je	X			jo	7		
	wa	<u> </u>	we	2	wi	Á	wo	Λ'		
'	da	F	de	\divideontimes	di	I	do	¢=	da ₂	Ж
1	ka	\oplus	ke	X	ki	Υ	ko	8	ku	4)7
,	ma	M	me	FC#	mi	B	mo	N.		
1	na	7	ne	ध्य	ni	Y	no	W	ոս : ո	աչ? 🏋
pa	ŧ	pa2? 🍄	pe	2	pi	愈	po	ቫ	pu	R
.			qe	€	qi	T	qo T	qo₂? 🖰		
ra	0	ra ₂	re	. Ψ	ri	₹	ro †	ro ₂ t	ru	Ψ
	sa	Υ	se	٣	si	川	so	17		
ta	Ľ	ta ₂ ? W	te ≡ ≡	pte 🛚	ti	\wedge	to	Ŧ	tu	Ф
			z?e	Ē			z?o ♀	z ?o2 🐠		

Figure: Syllabary [Ventris53]

Figure: Ideograms [Unicode13]

- Syllabary for an unrelated language
- Sign sequences are phonetic approximations of Mycenaean words
- ▶ Not able to express all phonetic features of Greek
 - Consonant clusters
 - ► Ending consonants
 - Diphthongs
- Scribes created various hacks to circumvent script limitations
- Possibly weaknesses in the assigned phonetic values
- Possibly two very similar dialects

Methodology - Ambiguity and Irregularities

- po-me ποιμήν shepherd
 - Dative singular: po-me-ne ποιμήνέι
 - Nominative singular: po-me-ne ποιμήνές
- i-qo → ίππος
- i-ko \rightarrow ιχος or ικος or ισκος
- No syntax to aid reconstruction of intended declension

Methodology - Preprocessing

- Almost no preprocessing necessary
- Scribes were helpful
 - Comma between words
 - Signs on neatly drawn lines
 - No hyphenation
 - Medium encouraged fixing mistakes
- Considerable effort invested into correctly identifying signs
- ► Lack of syntax → One to one correspondence of lines to sentence-ish constructs

Methodology - First approaches

- Approximate matching using n-grams
- Create dictionary of Mycenaean words
- Run spell checker on sign sequences
- Produces nonsensical suggestions
 - Phonetic gap too large

- Stochastic language models won't work
- Average text length 14 signs
- Roughly 150 documents exceed 50 signs (not words!)
- Longest text around 600 signs

- Tried-and-True rule based analyzers
- ► Good track records with other Greek dialects [Crane91]
- ► Two step process is reduced to single problem
- ► Easily adapted to state-of-the-art knowledge
 - ...and limited by it

- ▶ Drawback: Have to assemble rule set
 - ▶ Even worse: there are multiple to choose from
 - ▶ Worst of all: all are written in different languages
 - ► Collaborator agreed to assist

Methodology - Basic Script Rules

- $ightharpoonup p
 ightharpoonup p^h$, b, p
- ightharpoonup k
 igh
- ightharpoonup r
 ightharpoonup r
 ightharpoonup r
- $ightharpoonup q
 ightarrow k^w$, g^w
- Syllables with initial consonant clusters are written with signs matching the vowel of the syllable
- ▶ Ending consonants are omitted (ti-ri-po-de \rightarrow tripodes)
- Much more complex ones possible (some site specific [Hooker80])

Methodology - Measurement

- Measurement of success/failure quite complex
- ▶ No training set to verify against
- ► Did build Ad-Hoc references from literature for ngram similarity test
- ► Have to rely on subjective impressions from collaborators

Outlook

- ► Assemble rule set
- Convert it into a sensible format
 - Using endless chains of regular expressions is not satisfactory
 - ▶ In an ideal world rule set and source code is kept apart
- Functional Morphology sounds appropriate

Outlook

- Plan to have robust results until finals
- Maybe incorporate the ngram similarity algorithm as a postprocessing step
- Try to extend tool's application to more than annotation assistance
 - If output is stable across known similar texts look for notably worse results
- Unfortunately, irreducibly complex

Propaganda

- Bring civili...computer science to the barbarians
- ▶ It hurts to see how they do things
- ► Find/Show appropriate tools for working with small and barely understood information systems
- Hopefully, won't need constant funding (and maintenance) to be of use

References

- Evidence for Greek Dialect in the Mycenaean Archives, Ventris and Chadwick, The Journal of Hellenic Studies, Vol. 73 (1953), pp. 84-103
- Generating and parsing classical Greek, Crane, Literary and Linguistic Computing 6.4 (1991) pp. 243-245
- The Unicode Standard 6.3
- Linear B: An Introduction, Hooker, Bristol Classical Press, 1980