NNLO and EW corrections

NNLO predictions have substantial uncertainties:

- DYNNLO and FEWZ agree well for Z
- DYNNLO is above FEWZ for W^- by 1.5% and by 1.0% for W^+ .
- FEWZ uses input fully dressed width, while DYNNLO used born width. • Part of the difference, 0.5%, is releated to the partial width treatment:

W, Z inclusive paper uses FEWZ and does NOT apply additional EW corrections explicitly, which is a consistent approach. Another approach is to apply EW corrections externaly using SANC and use DYNNLO with born partial width. Paper approach neglects initial-final state intereference effects, which are small, another approach has potential double counting for the full width.

 \rightarrow the paper approach seems to be more consistent. Take external estimation of the pure weak radiative corrections as an uncertainty.

We will use the treatment with DYNNLO+external pure weak corrections as 1 FEWZ – DYNNLO = 2.2%. This corresponds to a shift of roughly $\sigma_{\rm exp}$. Change back to the paper treatment is a larger effect for W/Z ratio: 0.7% Z EW corrections SANC + 0.5% W dressed branching + a cross check.