Algebra Lineare e Geometria

Fabio Ferrario @fefabo

2023/2024

Indice

0.1	Ripasso concetti base			
	0.1.1	Sottoinsieme		5
	0.1.2	Operazioni su insiemi		5
	0.1.3	Insiemi di numeri		5
	0.1.4	Funzioni		6

Introduzione

Questi appunti di Algebra Lineare e Geometria sono stati fatti con l'obiettivo di riassumere tutti (o quasi) gli argomenti utili per l'esame di Algebra Lineare e Geometria del corso di Informatica dell'Università degli Studi di Milano Bicocca.

Il Corso

Gli appunti fanno riferimento alle lezioni di GAL erogate nel secondo semestre dell'anno accademico 22/23.

Programma del corso

Il programma si sviluppa come segue:

1. Algebra Lineare

- Spazi Vettoriali
- Dipendenza Lineare
- Basi
- Prodotto scalare euclideo
- Prodotto vettoriale

2. Matrici

- Operazioni
- Rango
- Invertibilità
- Determinante
- Trasformazioni elementari e riduzione a scala

4 INDICE

3. Sistemi di equazioni lineari

- Risultati di base
- Teoremi di Rouché-Capelli e Cramer
- Cenni alla regressione lineare semplice

4. Applicazioni lineari

- Matrice associata
- Proprietà

5. Diagonalizzabilità di Matrici

- Autovalori
- Autovettori
- Molteplicità algebrica e geometrica
- Teorema Spettrale

6. Geometria Analitica nel Piano

- Sottospazi lineari affini
- Classificazione delle coniche

7. Geometria Analitica nello spazio

• Sottospazi lineari Affini

Prerequisiti

I prerequisiti per questo corso sono: Teoria di insiemi di base. Insiemi con strutture (monoidi e gruppi). Dimostrazioni per assurdo e per induzione.

0.1 Ripasso concetti base

- Insieme
- Sottoinsieme

La definizione matematica di insieme è complessa, verrà quindi data una definizione intuitiva. Si tratta di un gruppo di elementi distinti (l'ordine non conta).

Esempio $A = \{1, 2, 3\}$ è un insieme, mentre $B = \{1, 1, 2\}$, NON è un insieme.

0.1.1 Sottoinsieme

Dato A = 1, 2, 3, 4 B = 2, 3 è un sottoinsieme di A e si indica con $A \subset B$. Si tratta quindi di un insieme contenuto all'interno dell'insieme di partenza (definizione assolutamente non formale).

0.1.2 Operazioni su insiemi

- Unione Siano A e B due insiemi, $A \cup B$ è definito come l'insieme che contiene gli elementi di A e B.
- Intersezione Siano A e B due insiemi, $A \cap$ è l'insieme degli elementi comuni tra A e B.
- Complemento Siano $A \subset B$ due insiemi. L'insieme complemento $B \setminus A$ oppure $B A = \{x \in B : x \notin A\}$
- Prodotto Cartesiano A, B insiemi. $A \times B$: $A \times B = \{(x, y) : x \in A, y \in B\}$ $B \times A = \{(x, y) : x \in B, y \in A\}$

Osservazione notazione Scrivere (x, y) è diverso che scrivere $\{x, y\}$, perchè nel primo caso sto considerando la coppia di elementi x, y, mentre nel secondo caso sto considerando l'insieme contenente gli elementi x, y. Quindi $(x, y) \neq (y, x)$, mentre $\{x, y\} = \{y, x\}$.

Osservazioni Prodotto cartesiano

- Non gode della proprietà commutativa
- Gode della proprietà distributiva

0.1.3 Insiemi di numeri

- N Insieme numeri naturali
- \mathbb{Z} Insieme numeri interi $\mathbb{N} \subset \mathbb{Z}$
- $\mathbb Q$ Insieme numeri razionali $\mathbb Z\subset \mathbb Q$ Numeri $\frac{n}{m},\,n\in \mathbb Z,\,m\in Z$
- $\bullet \ \mathbb{R}$ Insieme numeri reali $\mathbb{Q} \subset \mathbb{R}$ Numeri come π, \sqrt{q}, e

6 INDICE

0.1.4 Funzioni

Dati due insiemi A e B, una funzione è una relazione che associa ogni elemento di A a uno e un solo elemento di B. L'insieme A viene chiamato **Dominio**, mentre B è il **Codominio**.