LOGIC DESIGN OF SEQUENTIAL CIRCUITS

- **♥** General Model of Sequential Circuit
- **♥ Flip-Flop as Basic Memory Unit**
- **Analysis of Sequential Circuits**
- Design of Sequential Circuits
- **♥** Sequential MSI Modules

General Model of Sequential Circuit

- ♥ Output depends on circuit's history stored as state variables in memory.
- \otimes Mealy machine: outputs = F(inputs, current states)
- ★ Excitation signals act on memory for next states.

General Model of Sequential Circuit

- Synchronous circuit State changes only at the occurrence of clock.
- Asynchronous circuit State changes in response to the change of inputs.

FLIP-FLOP AS BASIC MEMORY UNIT

A Simple SR Latch

A simple SR Latch with two stable states:

Q=0, Q'=1 in '0' state;

Q=1, Q'=0 in '1' state.

S(set), R(reset) — excitation signals.

FLIP-FLOP AS BASIC MEMORY UNIT

A Simple SR Latch

☼ Conceptual circuit: symbol, state transition table & analysis

S R	Q(t)	Q(t+1)
0 0	0	$\begin{cases} 0 \\ 1 \end{cases}$ $Q(t+1)=Q(t)$
0 0	1	1
0 1	0	$\{0, 0\}$ Q(t+1)=0
0 1	1	0
1 0	0	$\{1, \}$ Q(t+1)=1
1 0	1	1
1 1	0	not defined
1 1	1	not defined

FLIP-FLOP AS BASIC MEMORY UNIT (continued) Clocked SR flip-flop

♣ Flip-flop changes state only when clock = 1.
 Conceptual ckt, symbol, state transition table & equation:

$$Q(t+1) = S+R'Q(t)$$

 $SR = 0$ (restriction)

State transition diagram & excitation table: Q(t) Q(t+1) S R

FLIP-FLOP AS BASIC MEMORY UNIT (continued)

Clocked JK flip-flop

♥ Extension of SR FF by allowing J=1 & K=1.

Conceptual ckt, symbol, state transition table & equation:

$$Q(t+1) = JQ(t)' + K'Q(t)$$

♥ State transition diagram & excitation table:

$$JK=0x$$

$$Q=0$$

$$JK=x1$$

$$Q=1$$

$$JK=x0$$

$$\begin{array}{ccccc} Q(t) & Q(t+1) & J & K \\ \hat{0} & \hat{0} & & \hat{0} & x \\ 0 & 1 & & 1 & x \\ 1 & 0 & & x & 1 \\ 1 & 1 & & x & 0 \\ \end{array}$$

FLIP-FLOP AS BASIC MEMORY UNIT (continued) Clocked T flip-flop

♣ A special case of JK FF by setting J=K=T.
 Conceptual ckt, symbol, state transition table & equation:

$$Q(t+1) = TQ(t)' + T'Q(t) = T \oplus Q(t)$$

♥ State transition diagram & excitation table:

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

FLIP-FLOP AS BASIC MEMORY UNIT (continued) Clocked D flip-flop

A special case of JK FF by setting $J=\overline{K}=D$. Conceptual ckt, symbol, state transition table & equation:

$$\begin{array}{cccc} D & Q(t) & Q(t+1) \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array}$$

$$Q(t+1) = D$$

♥ State transition diagram & excitation table:

$$D=0$$
 $Q=0$
 $Q=1$
 $D=1$
 $D=1$

$$\begin{array}{cccc} Q(t) & Q(t+1) & D \\ \hat{0} & \hat{0} & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$$

FLIP-FLOP AS BASIC MEMORY UNIT (continued)

Edge-triggered flip-flop

♥ FF changes state only at the edge of the clock.

solves the problem of multiple triggering of level-controlled FF when level is active. Two methods of circuit implementation:

- ♦ master-slave flip-flop
- ♦ special circuit

Typical waveforms of edge-triggered JK FF:

- **♦** In the setup time, J,K must be constant prior to the active edge of the clock.
- ♦ In the hold time, J,K must not change after the active edge of the clock.

ANALYSIS OF SEQUENTIAL CIRCUITS

Write logical expressions for excitation and output in terms of input and current state. Write state transition table and output table. Draw the state transition

diagram.

Example 4.1

$$J_1 = x \oplus A_0' \qquad K_1 = 1$$

$$J_0 = A_1 \qquad K_0 = 1$$

$$F = A_1$$

$\begin{array}{cc} Current \\ x & A_1 A_0 \end{array}$	$J_1 K_1$	$J_0 K_0$	Next S $A_1(t+1)$	State $A_0(t+1)$	F	1,	/0	0/0
$\begin{array}{ccccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{array}$	1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1	1 0 0 0 0 1 0	0 0 1 0 0 0 1	0 0 1 1 0 0 1 1	When x=0, 00->10->01->00->. When x=1, 01->10->01-> Self-correcting: x=0, 11->00 x=1, 11->00, 00->00	x/1 0,	x/1 1/0

DESIGN OF SEQUENTIAL CIRCUITS

Design of a Gray Code Counter (Example 4.2)

♥ Problem specification.

For the counter,

- find state transition table.
- Excitation table for the type of chosen FF.
- Simplest expressions of excitation signals.
- Check the self-correcting property. If not correct, modify the design.
- Implement the counter, then the system.

& Example

Design a counter for the given Gray code subsequence:

000 001 011 010 110 000 (repeat)

DESIGN OF SEQUENTIAL CIRCUITS (continued)

Design of the counter using JK FF's

Counting sequence state transition table

State transition table Excitation table

current	next	Excitation	on for J	K FF's
y ₂ y ₁ y ₀	$y_2^+y_1^+ y_0^+$	$J_2 K_2$	$J_1 K_1$	$J_0 K_0$
0 0 0	0 0 1	0 x	0 x	1 x
0 0 1	0 1 1	0 x	1 x	$\mathbf{x} = 0$
0 1 0	1 1 0	1 x	$\mathbf{x} = 0$	0 x
0 1 1	0 1 0	0 x	$\mathbf{x} = 0$	x 1
1 0 0	0 0 0	x 1	0 x	0 x
1 0 1	$\mathbf{X} \mathbf{X} \mathbf{X}$	$\mathbf{X} \mathbf{X}$	$\mathbf{X} \mathbf{X}$	$\mathbf{X} \mathbf{X}$
1 1 0	1 0 0	x 0	x 1	0 x
1 1 1	$\mathbf{X} \mathbf{X} \mathbf{X}$	$\mathbf{X} \mathbf{X}$	$\mathbf{X} \mathbf{X}$	$\mathbf{X} \mathbf{X}$

y_2	y ₁			
y ₀ \	00	01	11	10
0	0	1	X	X
1	0	0	X	X
	J		y ₁ ,	y ₀

y ₂ y ₀	7 1 00	01	11	<u>10</u>	
0	X	X	0	1	
1_	X	X	X	X	
]	K ₂	$=\overline{\mathbf{y}}$	<u></u>	

y ₂ y ₀	00	01	11	10	
0	0	X	X	0	
1	1	X		X	
$J_1 = y_0$					

y_2	0 00	01	11	10
0	X	0	1	X
1	X	0	X	X
$\mathbf{K_1} = \mathbf{y_2}$				

y ₂ y y ₀	7 1 00	01	11	10	
0	1	0	0	0	
1	\mathbf{x}	X	X	X	
$\overline{\mathbf{J_0}} = \overline{\mathbf{y_2}} \overline{\mathbf{y_1}}$					

y ₂ y y ₀	71 00	01	11	10	
0	X	X	X	X	
1	0	1	X	X	
$\mathbf{K_0} = \mathbf{y_1}$					

8 Self-correcting: 101 ->011 111 -> 100

DESIGN OF SEQUENTIAL CIRCUITS (continued)

Design of the counter using D FF's

State transition table & Excitation table

	urre Yı	ent y ₀		nex	t +y0+		citat D ₁	
0	0	0	0	0	1	0	0	1
0	0	1	0	1	$\overline{1}$	0	ĺ	1
0	1	0	1	1	0	1	1	0
0	1	1	0	1	0	0	1	0
1	0	0	0	0	0	0	0	0
1	0	1	X	X	X	\mathbf{X}	X	X
1	1	0	1	0	0	1	0	0
1	1	1	X	X	X	X	X	X

$v_0^{V_2 J}$	71 00	01 0	11	10	
0	1	0	0	0	
_1	1	0	X	X	
$\mathbf{D_0} = \overline{\mathbf{y}_2} \overline{\mathbf{y}_1}$					

♦ Self-correcting: 101 → 010 111 → 010

SEQUENTIAL MSI MODULES

Shift Register & Shift Operations

♥ Left shift, e.g., on JK FF's

♦ Logical right shift, e.g., on D FF's

- Arithmetic right shift: connect MSB to shift in Arithmetic left shift: signal overflow if the sign changes.
- ® Rotate: connect shift in & shift out

Bidirectional Shift Register

Use AND or OR gate to block the clock.

To maintain D FF unaltered, either feedback Q to D or block the clock.

Ripple-Carry Binary Counter

	Count up Count down	Count up
current y ₂ y ₁ y ₀		y_0 triggers every clock.
0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y_1 triggers if $y_0=1$. y_2 triggers if $y_1y_0=1$.
$\begin{array}{cccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ \end{array}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	y_i triggers if $y_{i-1}y_0=1$.
$\begin{array}{cccc} 0 & 1 & 1 \\ 1 & 0 & 0 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Count down y_0 triggers every clock.
$\begin{array}{cccc} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	y_1 triggers if $y_0=1$. y_2 triggers if $y_1y_0=1$.
1 1 1	0 0 0 1 1 0	y_i triggers if $y_{i-1}y_0=1$.

Counter on D FF's & Parallel Counter

Parallel Counter

Counter on D FF's

Up/Down Counter

Up/Down Counter selected by XOR gates

Multifunctional Up/Down Counter

