算法作业答案

作业一:

1(3.1-1) 假设f(n)与g(n)都是渐近非负函数。使用 θ 记号的基本定义来证明 $\max(f(n),g(n)) = \theta(f(n) + g(n))$ 。

证明:因为f(n)与g(n)都是渐近非负函数

根据定义有: 存在 N_f , N_g 使得: 当 $n \geq N_f$ 时, $f(n) \geq 0$, 同时, 当 $n \geq N_g$ 时, $g(n) \geq 0$ 。 所以,我们取 $N_0 = max(N_f,N_g)$,此时,当 $n \geq N_0$ 时,同时有 $f(n) \geq 0$, $g(n) \geq 0$ 。 取 $C_1 = 1/2$, $C_2 = 1$,则当 $n \geq N_0$ 时,有:

 $(f(n) + g(n))/2 \le \max(f(n), g(n)) \le f(n) + g(n)$ 得证

2 (3.1-4) $2^{n+1} = O(2^n)$ 成立吗? $2^{2n} = O(2^n)$ 成立吗?

解: 1) $2^{n+1} = O(2^n)$ 成立

取 $c \ge 2$, 当 $n \ge 1$ 时,

有 $2^{n+1} = 2 * 2^n \le c * 2^n$

因此,成立

2) $2^{2n} = O(2^n)$ 不成立

如果 $2^{2n} = O(2^n)$ 成立,根据定义有: $2^{2n} \le c2^n$ (c为常数)得, $n \le \lg c$,则 $2^{2n} \le c2^n$ 对于任意大的n不成立,与假设矛盾因此, $2^{2n} = O(2^n)$ 不成立

3 求下列函数的渐近表达式:

 $3n^2 + 10n$; $n^2/10 + 2^n$; 21 + 1/n; $\log n^3$; $10\log 3^n$.

 $\mathfrak{M} \colon \ 3n^2 + 10n = O(n^2)$

 $n^2/10 + 2^n = O(2^n)$

21 + 1/n = 0(1)

 $\log n^3 = O(\log n)$

 $10\log 3^n = O(n)$

- 4 试讨论 0(1)与0(2)的区别
- 解:根据符号0的定义易知0(1) = 0(2)。用0(1)或0(2)表示用一个函数时,差别仅在于其中的常数因子。
- 5 (1) 假设某算法在输入规模上为n时的计算时间为 $T(n) = 3 * 2^n$ 。在某台计算机上实现并完成该算法的时间为t秒。现有另一台计算机,其运行速度为第一台的 64 倍,那么在这台新机器上用同一算法在t秒内能输入规模为多大的问题?
- (2) 若上述算法的计算时间改进为 $T(n) = n^2$,其余条件不变,则在新机器上用t秒时间能解输入规模为多大的问题?
- (3) 若上述算法的计算时间进一步改进为 8, 其余条件不变, 那么在新机器上用*t*秒时间能解输入规模为多大的问题?
- 解: (1) 设新机器用同一算法在t秒内能解输入规模为 n_1 的问题。因此有, $t=3*2^n=3*$

 $2^{n_1}/64$,解得 $n_1 = n + 6$ 。

- (3) 由于T(n) = 8为常数阶,因此算法可解任意规模的问题。

6 对于下列各组函数f(n)和g(n),确定f(n) = O(g(n))或 $f(n) = \Omega(g(n))$ 或 $f(n) = \theta(g(n))$,并简述理由。

(1)
$$f(n) = \log n^2$$
; $g(n) = \log n + 5$ (5) $f(n) = 10$; $g(n) = \log 10$

(2)
$$f(n) = \log n^2$$
; $g(n) = \sqrt{n}$ (6) $f(n) = \log^2 n$; $g(n) = \log n$

(3)
$$f(n) = n$$
; $g(n) = \log^2 n$ (7) $f(n) = 2^n$; $g(n) = 100n^2$

(4)
$$f(n) = n\log n + n$$
; $g(n) = \log n$ (8) $f(n) = 2^n$; $g(n) = 3^n$

$$\mathfrak{M}$$
: (1) $\log n^2 = \theta(\log n + 5)$ (5) $10 = \theta(\log 10)$

(2)
$$\log n^2 = O(\sqrt{n})$$
 (6) $\log^2 n = \Omega(\log n)$

(3)
$$n = \Omega(\log^2 n)$$
 (7) $2^n = \Omega(100n^2)$

(4)
$$n \log n + n = \Omega(\log n)$$
 (8) $2^n = O(3^n)$

7 证明: $n! = o(n^n)$

证明: 由 stirling 公式得, $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left[1 + \theta\left(\frac{1}{n}\right)\right]$

$$\lim_{n\to\infty} n!/n^n = \lim_{n\to\infty} \frac{\sqrt{2\pi n} \left[1 + \theta\left(\frac{1}{n}\right)\right]}{e^n} = 0$$

所以, $n! = o(n^n)$ 。

证毕

只需证,存在 N_0 , C_1 , C_2 ,使得: 当 $n \geq N_0$ 时,有 $0 \leq C_1 n^k \leq P(n) \leq C_2 n^k$ 。

1)
$$P(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$$

$$\geq a_k n^k - (|a_{k-1}| + \dots + |a_0|) n^{k-1}$$

$$\geq \left(a_k - \frac{(|a_{k-1}| + \dots + |a_0|)}{n} \right) n^k$$

$$\diamondsuit a_k - \frac{(|a_{k-1}| + \dots + |a_0|)}{n} \ge 0$$
,得 $n \ge \frac{(|a_{k-1}| + \dots + |a_0|)}{a_k}$

取
$$N_1 = \frac{(|a_{k-1}| + \dots + |a_0|)}{a_k} + 1$$
, $C_1 = a_k - \frac{(|a_{k-1}| + \dots + |a_0|)}{N_1} > 0$, 当 $n \ge N_1$ 时,有

$$0 \le C_1 n^k \le P(n)$$

$$P(n) = a_k n^k + a_{k-1} n^{k-1} + \dots + a_0$$

$$\le (|a_k| + |a_{k-1}| + \dots + |a_0|) n^k$$

取
$$N_2 = 1$$
, $C_2 = |a_k| + |a_{k-1}| + \cdots + |a_0|$, 当 $n \ge N_2$ 时, 有

$$P(n) \le C_2 n^k$$

综上 1), 2), 取 $N_0 = \max(N_1, N_2)$, 当 $n \ge N_0$ 时, 有

$$0 \le C_1 n^k \le P(n) \le C_2 n^k$$

所以,当 $a_k > 0$ 时,任何多项式 $P(n) = a_k n^k + a_{k-1} n^{k-1} + \cdots + a_0$ 属于集合 $\theta(n^k)$ 。证毕

作业 3:

1(4.3-1)证明: T(n) = T(n-1) + n的解为 $O(n^2)$ 。证明: 假设对 $\forall m < n$, $\exists c > 0$,使得:

 $T(m) \le cm^2$

则有:

$$T(n-1) \le c(n-1)^2$$

带入迭代式可得:

$$T(n) \le c(n-1)^2 + n$$
$$= cn^2 - 2cn + c + n$$

令 $-2cn+c+n \le 0$,可得:

$$c \ge \frac{n}{2n+1}$$

故对于 $\forall n > 0$, 可令c = 1, 使得

$$T(n) \le cn^2 - 2cn + c + n \le cn^2$$

故 $T(n) = O(n^2)$ 。

2 (4.3-6) 证明: $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ 的解为 $O(n \lg n)$ 。

往证:存在常数 N_0 , C_0 , 使得: 当 $n \ge N_0$ 时, $T(n) \le C_0 n \lg n$ 。

假设: $T(\lfloor n/2 \rfloor + 17) \le C_0(\lfloor n/2 \rfloor + 17) \lg(\lfloor n/2 \rfloor + 17)$

有:
$$T(n) \le 2C_0(\lfloor n/2 \rfloor + 17)\lg(\lfloor n/2 \rfloor + 17) + n$$

$$\leq 2C_0(n/2+17)\lg(n/2+17) + n$$

$$= C_0(n+34)[\lg(n+34)-1] + n$$

$$= C_0 n \lg(n+34) - C_0 n + 34 C_0 \lg(n+34) - 34 C_0 + n \tag{*1}$$

 $取 C_0 ≥ 2$

则有(*1)
$$\leq C_0 n \lg(n + 34) + 34C_0 \lg(n + 34) - 34C_0 - n$$

$$< C_0 n \lg(n + 34) + 34 C_0 \lg(n + 34) - n$$

$$= C_0 n \lg n + C_0 n \lg (n+34) - C_0 n \lg n + 34 C_0 \lg (n+34) - n$$
 (*2)

下面我们只需证明存在常数 N_0 , $C_0 \ge 2$, 使得当 $n \ge N_0$ 时,

有
$$C_0 n \lg(n+34) - C_0 n \lg n + 34 C_0 \lg(n+34) - n \le 0$$

即有: $(*2) \leq C_0 n \lg n$

$$C_0 n \lg(n + 34) - C_0 n \lg n + 34 C_0 \lg(n + 34) - n$$

$$= C_0 n(\lg(n+34) - \lg n) + 34C_0 \lg(n+34) - n$$

$$= C_0 n(\ln(1+34/n)/\ln 2) + 34C_0 \lg(n+34) - n$$

$$\leq C_0 n(34/(n \ln 2)) + 34C_0 \lg(n+34) - n$$

此时只需取 $C_0 = 3$, $N_0 = 100$, 即可使当 $n \le N_0$ 时, 有

$$C_0 n \lg(n+34) - C_0 n \lg n + 34 C_0 \lg(n+34) - n \le 0$$

原题得证

3(4.4-4)对递归式T(n) = T(n-1) + 1,利用递归树确定一个好的渐进上界,用代入法进行验证。

解: 递归树如下,树高为n-1,叶节点数目为 1,整棵树的代价为:

$$T(n) = 1 + 1 + 1 + \dots + \theta(1) = n - 1 + \theta(1) = O(n)$$

代入法验证:

令对于 $\forall m < n$, $\exists c > 0$, 使 $T(m) \leq cm$, 有

$$T(n) = T(n-1) + 1$$

$$\leq c(n-1) + 1$$

$$= cn - c + 1$$

故对于 $\forall n > 0$, 可令c = 1, 使得

$$T(n) \le cn - c + 1 \le cn$$

所以, T(n) = O(n)。

4(4.4-7) 对递归式 $T(n) = 4T(\lfloor n/2 \rfloor) + cn(c$ 为常数),画出递归树,并给出其解的一个渐近紧缺界。用代入法验证。证明:

递归树的高度为 $\log_2 n$,非叶子节点的度为 4,每一层的贡献为 $4^i \left\lfloor cn/2^i \right\rfloor$ 。 则 $T(n) = 4T(\left\lfloor n/2 \right\rfloor) + cn$ $= \sum_{i=0}^{\log_2 n} 4^i \left\lfloor cn/2^i \right\rfloor$

1)
$$T(n) \leq \sum_{i=0}^{\log_2 n} 4^i c n / 2^i$$
$$= c n \sum_{i=0}^{\log_2 n} 2^i$$
$$= c n \frac{2^{\log_2 n + 1} - 1}{2 - 1}$$

$$= O(n^2)$$

$$T(n) \ge \sum_{i=0}^{\log_2 n} 4^i (cn/2^i - 1)$$

$$= cn \sum_{i=0}^{\log_2 n} 2^i - \sum_{i=0}^{\log_2 n} 4^i$$

$$= cn \frac{2^{\log_2 n + 1} - 1}{2 - 1} - \frac{4^{\log_2 n + 1} - 1}{4 - 1}$$

$$= 2cn^2 - cn - 4/3n^2 + 1/3$$

$$= (2c - 4/3)n^2 - cn + 1/3$$

$$= \Omega(n^2)$$
综上 1)、2),得 $T(n) = \theta(n^2)$
用代入法验证
a) $\diamondsuit T([n/2]) \le c[n/2]^2 - c[n/2]$
有
$$T(n) = 4T([n/2]) + cn$$

$$\le 4(c[n/2]^2 - c[n/2]) + cn$$

$$< 4c(n/2)^2 - 4c(n/2) + cn$$

$$= cn^2 - 2cn + cn$$

$$= cn^2 - 2cn + cn$$

$$= cn^2 - cn$$
b) $\diamondsuit T([n/2]) \ge c[n/2]^2 + 3c[n/2] + 3c$

$$T(n) = 4T([n/2]) + cn$$

$$\ge 4(c[n/2]^2 + 3c[n/2] + c) + cn$$

$$> 4c(n/2 - 1)^2 + 12c(n/2 - 1) + 4c + cn$$

$$= cn^2 - 4cn + 4c + 6cn - 12c + 12c + cn$$

 $= cn^2 + 3cn + 4c$ $> cn^2 + 3cn + 3c$

5 (4.2-1) 使用 Strassen 算法计算如下矩阵乘法:

$$\begin{bmatrix} 1 & 3 \\ 7 & 5 \end{bmatrix} \begin{bmatrix} 6 & 8 \\ 4 & 2 \end{bmatrix}$$

给出计算过程。

解:
$$A_{11} = 1$$
, $A_{12} = 3$, $A_{21} = 7$, $A_{22} = 5$
 $B_{11} = 6$, $B_{12} = 8$, $B_{21} = 4$, $B_{22} = 2$
 $S_1 = B_{12} - B_{22} = 8 - 2 = 6$
 $S_2 = A_{11} + A_{12} = 1 + 3 = 4$
 $S_3 = A_{21} + A_{22} = 7 + 5 = 12$
 $S_4 = B_{21} - B_{11} = 4 - 6 = -2$
 $S_5 = A_{11} + A_{22} = 1 + 5 = 6$
 $S_6 = B_{11} + B_{22} = 6 + 2 = 8$
 $S_7 = A_{12} - A_{22} = 3 - 5 = -2$
 $S_8 = B_{21} + B_{22} = 4 + 2 = 6$
 $S_9 = A_{11} - A_{21} = 1 - 7 = -6$
 $S_{10} = B_{11} + B_{12} = 6 + 8 = 14$
 $P_1 = A_{11}S_1 = 1 * 6 = 6$
 $P_2 = S_2B_{22} = 4 * 2 = 8$