Assignment 1 Artifacts:

- 1. Actual notebook with all the cells run indicating the outputs present in the Notebooks Folder
- 2. PDF version of the above Notebooks can be found in pdf_files Folder
- **3.** final report gives the Brief summary of the above experiments

Multi layered Feedforward Neural Network

Layers:

a. Image of size 3 X 32 X 32

b. 3 - Hidden layers:

i. h1 of size 500

ii. h2 of size 250

iii. h3 of size 100

Activation used: ReLU

c. output layer with 10 Units Activation used: SoftMax

Loss: Cross-Entropy

Optimizer: SGD (Stochastic Gradient Descent)

Hyperparameters:

a. Learning rate: 0.001

b. Epochs: 10c. Momentum: 0.9d. Batch Size: 4

Serial Number	Batch Norm Present	Training Accuracy	Validation Accuracy	Training Accuracy Plot	Training Loss plot	Validation Loss
1	No	58%	53%	2.0 1.8 1.6 1.0 0.0 0.10 20 30 30 40 50 60	60 Training Accuracy 50 40 40 40 40 50 60 Mein barch step	CD- widows
2	Yes	35%	46%	2.10 2.05 2.00 1.95 1.90 1.83 1.80 1.73 0 10 20 30 40 50 60	36 Training Accuracy 33	1300 Moderate at 1 1000 Moderate

3. Ground Truth data of some random Images from the dataset:

The Trained model predictions for the same Without Batch Norm: ['dog', 'cat', 'frog', 'horse']

The Trained model predictions for the same With Batch Norm: ['frog', 'bird', 'car', 'horse']

4. Confusion Matrix:

Serial Number	Batch Norm Enabled	Confusion Matrix
1	No	o - 407 15 101 28 30 10 20 21 165 90 -770
		n- 23 662 15 23 10 5 14 6 85 217
		-690 -690
		- 500
		m- 26 13 72 CS 60 229 112 34 55 71
		हैं ज - 35 10 132 76 410 34 125 60 41 17 -450
		9 n - 22 6 73 287 66 347 61 51 48 39
		o - 8 10 55 106 82 20 644 9 29 37
		~ - 33 15 41 85 92 48 24 540 21 82 -200
		m - 55 54 16 17 12 13 6 8 733 86 -100
		n - 24 104 14 34 9 9 14 20 62 720
		0 1 2 3 4 5 6 7 8 9 Predicted Class Labels
2	Yes	Confusion Matrix
		n- 74 675 37 23 41 7 33 44 64 181
		-500
		N - 64 12 354 50 275 46 90 82 18 9
		n - 35 16 150 237 143 131 149 67 29 43 -400
		9 4 - 59 5 127 21 555 17 78 105 25 8
		-300 g n - 19 10 134 364 130 290 94 112 24 17
		e- 7 5 93 35 259 16 550 48 20 12 -200
		-200 35 9 53 44 153 48 18 567 20 33
		n - 77 140 27 31 38 9 42 73 73 400
		0 1 2 3 4 5 6 7 8 9 Predicted Class Labels

5.Batch Normalization Effect:

Batch Normalization Decreased the Training Accuracy and Validation Accuracy, in general Applying Batch Normalization must result in faster convergence.

Question-2: C.N.N

2.1 Experimental Settings

Loss Function used: Cross-entropy

Optimization Method: SGD (Stochastic Gradient Descent)

2.1.1

Serial Num	Learn -ing rate	Batch Size	Epoch	Momentum	weights and Bias initialization	Max pool layer at the end	Modify the number of neurons in a FC layer	Increase/ Decrease FC count	Training accuracy (in %)	Accuracy On Test data (in %)
1	0.01	256	60	0.9	Yes	Yes	No	No	88%	79%
2	0.01	256	30	0.9	Yes	Yes	No	No	76%	77%
3	0.01	128	30	0.9	Yes	Yes	No	No	83%	79%
4	0.001	128	30	0.9	Yes	Yes	No	No	42%	68%
5	0.001	128	80	0.9	Yes	Yes	No	No	75%	73%
6	0.1	128	30	0.9	Yes	Yes	No	No	75%	76%
7	0.01	64	30	0.9	Yes	Yes	No	No	87%	80%
8	0.1	64	30	0.9	Yes	Yes	No	No	9%	10%
9	0.01	128	30	0.9	No	Yes	No	No	9%	10%
10	0.01	64	30	0.9	Yes	No	No	No	87%	79%
11	0.01	64	30	0.9	Yes	No	Yes	Yes, Two Fully connected layer used	90%	80%
12	0.01	64	30	0.5	Yes	No	Yes	Yes, Two Fully connected layer used	81%	77%

2.1.3 Plots:

Serial	Training loss plots	Training accuracy	Remarks
Number			

2.1.2 Challenges Faced:

• Did not initialize the weights initially for the model initially, which resulted in the vanishing gradient problem or gradients exploding problem

2.1.5

• Images respective to each class has been recorded in the appropriate PDF. Experimental-1 result has been attached for reference.

2.1.6

• For Question-6, Random image classification has been done to each experimental setting. Experimental-1 result has been attached for reference.

Question-3

- 1. For Training and Testing Hindi Language has been chosen for the models mentioned in both Question-2 and Question-3
- 2. Detailed Training and Testing has been recorded in notebook as well as pdf.