```
cat("\f") # Clear the console
rm(list = ls()) # Clear the working environment
#################### Load the required packages
library(ISLR)
library(e1071)
library(pROC)
library(dplyr)
############## Load the data
iris <- iris
glimpse(iris) # Metadata
str(iris)
head(iris) # See the first 6 values of the dataset
sum(is.na(iris)) # Check for NA's
attach(iris) #Optional Step
######################### Subset the data
Random.seed <- c('Mersenne-Twister', 490)
set.seed(490) # Set seed for replication
index <- sample(1:nrow(iris), 0.5 * nrow(iris), replace = FALSE) # Create an index to split the data
# iris_train <- iris[index,]
# iris_test <- iris[-index,]</pre>
```

```
iris_train_x <- iris[index, 1:4]</pre>
iris_test_x <- iris[-index, 1:4]</pre>
iris_train_y <- iris[index, 5]</pre>
iris_test_y <- iris[-index, 5]</pre>
#### **** For the TA: I need to understand why we chose to subset the dataset like we did. I have
never
####
        subsetted data like this and am struggling to see the necessity or requirement to do the split
####
        like it is done in the lines. Is it done to adhere to the arguments for naiveBayes() only? ****
# table(Species)
model <- naive Bayes (iris train x, iris train y) # Apply the Naive Bayes Estimator
## Predictions for Training set
pred_train <- predict(model,iris_train_x, type = "class")</pre>
cfm_train <- table(pred_train, iris_train_y)
cfm_train
## Predictions for Testing set
pred_test <- predict(model,iris_test_x, type = "class")</pre>
cfm_test <- table(pred_test, iris_test_y)
cfm_test
## Predictions for the entire set
pred_all <- predict(model, iris[1:4], type = "class")</pre>
cfm_all <- table(pred_all, Species)
cfm_all
```

```
accuracy_train <- sum(diag(cfm_train))/sum(cfm_train) # Training Accuracy
accuracy_train
error_train <- 1 - accuracy_train # Training Error
error_train
accuracy_test <- sum(diag(cfm_test))/sum(cfm_test) # Testing Accuracy
accuracy_test
error_test <- 1 - accuracy_test # Testing Error
error_test
accuracy_all <- sum(diag(cfm_all))/sum(cfm_all) # Overall Error
accuracy_all
error_all <- 1 - accuracy_all # Overall Accuracy
error all
```

macro_spec<-0

```
macro_sens <- 0
train_sens <- cfm_train["setosa", "setosa"]/sum(cfm_train[, 'setosa'])
train_sens
train_spec <- sum(diag(cfm_train[2:3,2:3]))/(sum(diag(cfm_train[2:3,2:3])) +
sum(cfm_train['setosa',2:3]))
train_spec
ppv_train <- cfm_train['setosa','setosa']/sum(cfm_train['setosa',])</pre>
ppv_train
npv_train <- sum(diag(cfm_train[2:3,2:3]))/(sum(diag(cfm_train[2:3,2:3])) +
sum(cfm_train[2:3,'setosa']))
npv_train
macro_sens <- macro_sens + train_sens
macro_spec <- macro_spec + train_spec
train_sens <- cfm_train["versicolor","versicolor"]/sum(cfm_train[,'versicolor'])
train_sens
train\_spec <- sum(diag(cfm\_train[c(1,3),c(1,3)]))/(sum(diag(cfm\_train[c(1,3),c(1,3)])) + c(1,3),c(1,3))) + c(1,3),c(1,3)) + c(1,3),c(1,3),c(1,3)) + c(1,3),c(1,3),c(1,3),c(1,3)) + c(1,3),c(1,3),c(1,3),c(1,3),c(1,3)) + c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),c(1,3),
sum(cfm_train['versicolor',c(1,3)]))
train_spec
```

```
ppv_train <- cfm_train['versicolor','versicolor']/sum(cfm_train['versicolor',])</pre>
ppv_train
npv_train < -sum(diag(cfm_train[c(1,3),c(1,3)]))/(sum(diag(cfm_train[c(1,3),c(1,3)])) + constant = constant 
sum(cfm_train[c(1,3),'versicolor']))
npv_train
macro_sens <- macro_sens + train_sens
macro_spec <- macro_spec + train_spec
train_sens <- cfm_train["virginica","virginica"]/sum(cfm_train[,'virginica'])
train_sens
train\_spec <- sum(diag(cfm\_train[1:2,1:2])) / (sum(diag(cfm\_train[1:2,1:2])) + (sum(diag(cfm\_train[1:2,1:2]))) / (sum(diag(cfm\_train[1:2,1:2])) / (sum(diag(cfm\_train[1:2,1:2]))) / (sum(diag(cfm\_train[1:2,1:2])) / (sum(diag(cfm\_train[1:2,
sum(cfm_train['virginica',1:2]))
train_spec
ppv_train <- cfm_train['virginica','virginica']/sum(cfm_train['virginica',])
ppv_train
npv_train <- sum(diag(cfm_train[1:2,1:2]))/(sum(diag(cfm_train[1:2,1:2])) +
sum(cfm_train[1:2,'virginica']))
npv_train
macro_sens <- macro_sens + train_sens
macro_spec<- macro_spec + train_spec
```

```
macro_sens <- macro_sens/3
macro_spec<- macro_spec/3
macro_sens
macro_spec
macro_spec<-0
macro_sens <- 0
test_sens <- cfm_test["setosa", "setosa"]/sum(cfm_test[, 'setosa'])
test_sens
test\_spec <- sum(diag(cfm\_test[2:3,2:3]))/(sum(diag(cfm\_test[2:3,2:3])) + sum(cfm\_test['setosa',2:3]))
test_spec
ppv_test<-cfm_test['setosa','setosa']/sum(cfm_test['setosa',])
ppv_test
npv\_test <- sum(diag(cfm\_test[2:3,2:3]))/(sum(diag(cfm\_test[2:3,2:3])) + sum(cfm\_test[2:3,'setosa']))
```

npv_test

macro_sens <- macro_sens + test_sens

```
test_sens <- cfm_test["versicolor","versicolor"]/sum(cfm_test[,'versicolor'])
test_sens

test_spec <- sum(diag(cfm_test[c(1,3),c(1,3)]))/(sum(diag(cfm_test[c(1,3),c(1,3)])) + sum(cfm_test['versicolor',c(1,3)]))
test_spec

ppv_test <- cfm_test['versicolor','versicolor']/sum(cfm_test['versicolor',])
ppv_test

npv_test <- sum(diag(cfm_test[c(1,3),c(1,3)]))/(sum(diag(cfm_test[c(1,3),c(1,3)])) + sum(cfm_test[c(1,3),'versicolor']))
npv_test

macro_sens <- macro_sens + train_sens
macro_spec <- macro_spec + train_spec
```

```
test_sens <- cfm_test["virginica","virginica"]/sum(cfm_test[,'virginica'])
test_sens</pre>
```

```
test\_spec <- sum(diag(cfm\_test[1:2,1:2])) / (sum(diag(cfm\_test[1:2,1:2])) + sum(cfm\_test['virginica',1:2])) + sum(cfm\_test['virginica',1:2])) / (sum(diag(cfm\_test[1:2,1:2])) / (sum(diag(cfm\_test[1:2,1:2])) + sum(cfm\_test['virginica',1:2])) / (sum(diag(cfm\_test[1:2,1:2])) / (s
test_spec
ppv_test<- cfm_test['virginica','virginica']/sum(cfm_test['virginica',])
ppv_test
npv_test <- sum(diag(cfm_test[1:2,1:2]))/(sum(diag(cfm_test[1:2,1:2])) + sum(cfm_test[1:2,'virginica']))
npv_test
macro_sens <- macro_sens + train_sens
macro_spec <- macro_spec + train_spec
macro_sens <- macro_sens/3
macro_spec<- macro_spec/3
macro_sens
macro_spec
macro_spec <- 0
macro_sens<-0
sens <- cfm_all["setosa","setosa"]/sum(cfm_all[,'setosa'])</pre>
sens
```

```
spec <- sum(diag(cfm_all[2:3,2:3]))/(sum(diag(cfm_all[2:3,2:3])) + sum(cfm_all['setosa',2:3]))
spec
ppv <- cfm_all['setosa','setosa']/sum(cfm_all['setosa',])
ppv
npv <- sum(diag(cfm all[2:3,2:3]))/(sum(diag(cfm all[2:3,2:3])) + sum(cfm all[2:3,'setosa']))
npv
macro_sens <- macro_sens + sens
macro_spec <- macro_spec + spec
sens <- cfm_all["versicolor","versicolor"]/sum(cfm_all[,'versicolor'])
sens
spec <- sum(diag(cfm_all[c(1,3),c(1,3)]))/(sum(diag(cfm_all[c(1,3),c(1,3)])) +
sum(cfm_all['versicolor',c(1,3)]))
spec
ppv <- cfm_all['versicolor','versicolor']/sum(cfm_all['versicolor',])
ppv
npv <- sum(diag(cfm_all[c(1,3),c(1,3)]))/(sum(diag(cfm_all[c(1,3),c(1,3)])) +
sum(cfm_all[c(1,3),'versicolor']))
npv
```

```
macro_sens <- macro_sens + sens
macro_spec <- macro_spec + spec</pre>
```



```
sens <- cfm_all["virginica","virginica"]/sum(cfm_all[,'virginica'])</pre>
sens
spec <- sum(diag(cfm_all[1:2,1:2]))/(sum(diag(cfm_all[1:2,1:2])) + sum(cfm_all['virginica',1:2]))
spec
ppv <- cfm_all['virginica','virginica']/sum(cfm_all['virginica',])
ppv
npv <- sum(diag(cfm_all[1:2,1:2]))/(sum(diag(cfm_all[1:2,1:2])) + sum(cfm_all[1:2,'virginica']))
npv
macro_sens <- macro_sens + sens
macro_spec<- macro_spec+ spec
macro_sens <- macro_sens/3
macro_spec<- macro_spec/3
macro_sens
macro_spec
```

```
prob <- predict(model,iris_test_x, type = "raw")</pre>
setosa_labels <- rep(0, length(iris_test_y))</pre>
versicolor_labels <- rep(0, length(iris_test_y))</pre>
virginica_labels <- rep(0, length(iris_test_y))</pre>
for(f in 1:length(iris_test_y)){
if(iris_test_y[f] == "setosa"){
setosa_labels[f] <- 1
} else if(iris_test_y[f] == "versicolor"){
versicolor labels[f] <- 1
} else if(iris_test_y[f] == "virginica"){
virginica labels[f] <- 1
}
setosa_roc<-roc(setosa_labels, prob[,'setosa'], auc.polygon = TRUE, max.auc.polygon = TRUE, print.auc
= TRUE, show.thres = TRUE)
setosa_smooth_roc<- smooth(setosa_roc, method = "density")</pre>
plot(setosa_smooth_roc, col = 'red', xaxt='n', xlab="False Positive Rate (1 - Specificity)", ylab = "True
Positive Rate (Sensitivity)")
par(new = TRUE)
virginica_roc <- roc(virginica_labels, prob[,'virginica'], auc.polygon = TRUE, max.auc.polygon = TRUE,
print.auc = TRUE, show.thres = TRUE)
virginica_smooth_roc<- smooth(virginica_roc, method = "density")</pre>
```

```
plot(virginica_smooth_roc, col = 'green', xaxt='n', xlab="", ylab = "")
par(new = TRUE)
versicolor_roc<- roc(versicolor_labels, prob[,'versicolor'], auc.polygon = TRUE, max.auc.polygon = TRUE,
print.auc = TRUE, show.thres = TRUE)
versicolor_smooth_roc<- smooth(versicolor_roc, method = "density")</pre>
plot(versicolor smooth roc, col = 'blue', xaxt='n', xlab="", ylab = "")
y_labels <- c(setosa_labels, versicolor_labels, virginica_labels)
y_probs <- c(prob[,"setosa"],prob[,"versicolor"],prob[,"virginica"])</pre>
par(new = TRUE)
micro roc <- roc(y labels, y probs, auc.polygon = TRUE, max.auc.polygon = TRUE, print.auc = TRUE,
show.thres = TRUE)
micro smooth roc<-smooth(micro roc, method = "density")
plot(micro_smooth_roc, col = 'black', lty = 'dotdash', xaxt='n', xlab="", ylab = "")
par(new=TRUE)
macro sensitivity <- (setosa smooth roc$sensitivities + versicolor smooth roc$sensitivities +
virginica_smooth_roc$sensitivities)/3
macro_specificity <- (setosa_smooth_roc$specificities + versicolor_smooth_roc$specificities +
virginica_smooth_roc$specificities)/3
lines(macro specificity, macro sensitivity, type='l', xlim = rev(range(macro specificity)), col='magenta',
Itv=4
axis(1, at=(5:0) * 0.2, labels=(0:5) * 0.2, pos=c(-0.04,0))
legend(0.4, 0.5, legend = c('setosa', 'versicolor', 'virginica', 'micro-avg', 'macro-avg'), col = c('red', 'blue',
'green', 'black', 'magenta'), lty = c(1,1,1,4,4))
```


probs_train <- predict(model, iris_train_x, type = "raw") # Training AUC
multiclass.roc(iris_train_y, probs_train)</pre>

multiclass.roc(iris_test_y, prob) # Testing AUC

probs_all <- predict(model, iris[1:4], type = "raw") # Overall AUC
multiclass.roc(Species, probs_all)</pre>

<u>Results</u> -> The model identifies and classifies the species accordingly with a high rate of certainty, especially for Setosa.

		Train	Test	All
Accuracy		0.946	0.946	0.946
AUC		0.99	0.99	0.99
Macro Sensitivity		0.95	0.92	0.94
Macro Specificity		0.97	0.98	0.97
Sensitivity	Setosa	1.00	1.00	1.00
	Versicolor	0.95	0.84	0.90
	Virginica	0.89	1.00	0.94
Specificity	Setosa	1.00	1.00	1.00
	Versicolor	0.94	1.00	0.97
	Virginica	0.97	0.92	0.95
PPV	Setosa	1.00	1.00	1.00
	Versicolor	0.88	1.00	0.93
	Virginica	0.96	0.84	0.90
NPV	Setosa	1.00	1.00	1.00
	Versicolor	0.97	0.92	0.95
	Virginica	0.93	1.00	0.96