The integral test

Explanation of the concept thro' an example

Consider $\sum_{n=1}^{\infty} \frac{1}{n^2}$ & compare it with

 $\int_{x^2} dx,$ Note that Sn= 1+ 1/2+ 1/2+ --+ 1/2

= f(1) + f(2) + f(3) + ... + f(n),

$$\int_{1}^{\infty} \frac{dx}{x^{2}}$$

 $< f(1) + \int_{1}^{\infty} \frac{dx}{dx}$ < f(1) + (dx x2

Hence the partial sums of $\frac{1}{n^2}$ are bounded from above. from above. Hence from above cor; we see that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ rges

THEOREM 9 The Integral Test

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{N}^{\infty} f(x) dx$ both converge or both diverge.

Exil Show that the p-series \(\frac{1}{n^p} \), peR, converges if pri and diverges if pri.

Case 1: p=1: Harmonic series = n diverges.

Case 2: p71, Let $f(x) = \frac{1}{xp}$.

Then f is continuous, positive & decreasing for an $[1, \infty)$. Hence by integral test. $\int_{-\infty}^{\infty} \frac{1}{n^2} dx$ both converge or diverge.

But

Jan converges for p71,

Hence D In converges for p71.

Since Signal diverges for PK1, so does

200 Jp ,

Example Discuss the convergence/divergence Son: Let $f(x) = e^{-x^2}$. Then f is continuous positive and decreasing function of x for x = 1 that $f'(x) = -2xe^{-x} < 0$. Dan, where an = e⁻¹² can now be investi-n=1 - gated using the integral test, by comparing it with fe-2 dn. Note that for x7,1 27x & hence -x2 <-x & hence e-x2 < e-x So by comparison test since of end end L'ince se-x2dn & since se-x dn

Hence se-x2x converges by integral test,

A thus se-converges by integral test,

Sect. 11.4 - Comparison tests

THEOREM 10 The Comparison Test

Let $\sum a_n$ be a series with no negative terms.

- (a) $\sum a_n$ converges if there is a convergent series $\sum c_n$ with $a_n \le c_n$ for all n > N, for some integer N.
- (b) $\sum a_n$ diverges if there is a divergent series of nonnegative terms $\sum d_n$ with $a_n \ge d_n$ for all n > N, for some integer N.

$$a_n \ge d_n$$
 for all $n > N$, for some integer N .

since I diverges, by comparison test, we conclude that 25

The Limit comparison test

THEOREM 11 Limit Comparison Test

Suppose that $a_n > 0$ and $b_n > 0$ for all $n \ge N$ (N an integer).

- 1. If $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- 2. If $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.
- 3. If $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.

Proof: We will prove only part 1,
Since C >0, So is
$$C/2$$
. Then $\lim_{n\to\infty} \frac{an}{bn} = C$
implies $\frac{1}{b}$ $\frac{an}{b} = C$

$$\frac{1}{b} - \frac{1}{b} = C$$

$$\frac{1}{b} =$$

If 5bn converges, then so does 3c 2bn & hence 5 an converges by 2nd ineq, of (*) & direct companison test. If 2bn diverges so does (c) 5bn & hence 5an diverges (using the 1st inequality in & a dir. comp. best.

Example: Discuss the convergence / divergence

of 2n+1

N=1 n²+2n+1

Soln: One cannot use the nth term test since We also show this by limit comparison to be $\frac{2n+1}{n^2+2n+1}$ $\frac{2n}{n^2}$ $\frac{2n}{n^2+2n+1}$ $\frac{2n}{n^2}$ $\frac{2n+1}{n^2+2n+1}$ $\frac{2n+1}{n^2+2n+1}$ $\frac{2n+1}{n^2+2n+1}$ $\frac{2n+1}{n^2+2n+1}$ $\frac{2n+1}{n^2+2n+1}$ $= \lim_{n \to \infty} \frac{2+\frac{1}{n}}{1+\frac{2}{n}} = 2 > 0.$

But since 5bn diverges (harmonic series) so does 5an (by limit comparison best)?

Ex.2 Use limit comparison test to discuss convergence/divergence of (a) $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ (b) $\sum_{n=1}^{\infty} \frac{1 + n \ln(n)}{n^2 + 5}$ (a) $a_n = \frac{1}{2^{n-1}}$, $b_n = \frac{1}{2^n}$ (for large enough n, $\frac{1}{2^{n-1}}$ is almost $\sum_{n=1}^{\infty} \frac{1}{2^n} \text{ converges } \left(\frac{1}{2} < 1 \right) \text{ equal } 60 \frac{1}{2^n} \right)$ $\lim_{n\to\infty} \frac{q_n}{b_n} = \lim_{n\to\infty} \frac{1}{2^n - 1} \cdot 2^n = \lim_{n\to\infty} \frac{1}{(1 - \frac{1}{2^n})}$ By limit companison test, since I be converged so does I an. $\begin{array}{c|c}
\hline
b & \frac{1+n\ln n}{n^2+5}
\end{array}$ $a_n = \underbrace{1 + n \ln(n)}_{n^2 + 5}$ pu = ______ $\eta = \lim_{n \to \infty} n \ln(n) + n$ lim an im = lin ln(m+ = = 0 diverges, by companison So since Zbn test, 2 an also diverges.

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}$$

X0,99

 $\frac{1}{2^{0.01}} \rightarrow 0$

Example: Does \(\frac{1}{n^3/2} \) converge ? Som In(n) grows slower than no any cro Hence for a sufficiently large n, (inc. N>N for N very large), $\frac{1}{n^{3h}} < \frac{n^{4}}{n^{2h}} = \frac{1}{n^{3h}}$ Take $an = \frac{\ln(n)}{n^{3/2}}$, $bn = \frac{1}{n^{5/4}}$. Then $\lim_{n\to\infty} \frac{an}{bn} = \lim_{n\to\infty} \frac{\ln(n)}{n^{3/2}} \cdot n^{5/4}$ $=\lim_{n\to\infty}\frac{\ln(n)}{n'/4}$ Now $\lim_{x\to\infty}\frac{\ln(x)}{x^{1/4}}$ $\left(\frac{\infty}{\infty}\right)$ $=\lim_{\chi\to\infty}\frac{1}{\sqrt{\chi}}=4\lim_{\chi\to\infty}\frac{1}{\chi^{1/4}}=0$ Hence $\lim_{n\to\infty} \frac{\ln(n)}{n!4} = 0$. Thus, by limit comparison test & the fact that $\sum_{\eta = 1/4}^{1}$ converges, we Conclude that $\frac{2}{n} \frac{|n(n)|}{n^3/2}$ also converges,

Sect. 11.5 - The ratio and root tests

· Mature of ratio test: This is a powerful technique which determines the growth or decline of a series by looking at anni: it's an extension of the result on convergence or divergence of a geometric scries,

THEOREM 12 The Ratio Test

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- **(b)** the series *diverges* if $\rho > 1$ or ρ is infinite,
- (c) the test is *inconclusive* if $\rho = 1$.

Example: Use the ratio test to determine convergence / divergence of

①
$$\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$$
 ② $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$

$$3) \sum_{n=1}^{\infty} \frac{4^{n} \cdot (n1)^{2}}{(2n)1}$$

$$\begin{array}{cccc}
\hline
 & \frac{10}{100} & \text{Let an} = \frac{10}{100}.
\end{array}$$

$$\lim_{n \to \infty} \frac{2n+1}{n} = \lim_{n \to \infty} \frac{(n+1)^{n}}{n^{n}} = \lim_{n$$

Hence by ratio test, $\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$ converge

$$\frac{2}{\lim_{n\to\infty} \frac{2n+1}{an}} = \lim_{n\to\infty} \frac{(2n+2)!}{(n+1)!} \cdot \frac{(n!)^{2}}{(2n)!}$$

$$= \lim_{n\to\infty} \frac{(2n+2)(2n+1)}{(n+1)^{2}} = \lim_{n\to\infty} \frac{2(2+2n)(2+n)}{(n+1)^{2}}$$

$$= 4 > 1$$

By ratio test, 2 an diverge

4 ((n+1)) 4 lim (n+1) (2n+2) (2n+ e ratio test is inconclusine $\frac{n}{2n} = \frac{2(n+1)}{2n+1} = \frac{2n+2}{2n+1}$ this implies that an +> 0 as no Hence San Liverges

Failure of ratio test in certain cases
Let $a_n = \begin{cases} n/2^n, & n \text{ odd}, \\ 1/2^n, & n \text{ even}. \end{cases}$
Does Zan converge?
$\frac{a_{n+1}}{a_n} = \begin{cases} \frac{1}{2^{n+1}}, & n \text{ odd} \\ \frac{1}{2^{n+1}}, & n \text{ even} \end{cases}$
$= \begin{cases} \frac{1}{2^n} \\ \frac{1}{2^n} \\ \frac{1}{2^n} \end{cases}, n \text{ even}$
Note that lim = 0 & lim not 2 con nodd neven
tence we cannot use ratio best.

f