

曼切斯特编解码器方案介绍

Richard Zhu richardz@efinixinc.com

Manchester IP 功能和性能说明

- 1、提供系统时钟灵活的MII接口,可以很方便的和内部逻辑链接;
- 2、将MII转成串行数据,并经LVDS发送Manchester编码;
- 3、接收Manchester编码的流,通过整形、滤波、定界、译码的算法模块恢复出正确的数据,并转成MII接口;
- 4、提取Manchester编码的时钟;时钟抖动小于20ns;
- 5、测量接收时钟和本地时钟的误差,测量精度0.25ppm;
- 6、精密的容错算法和码流跟踪算法,可达大于200ppm的频率偏差容限;(与现场信号质量有关)
- 7、时钟和解码算法能支持长时间持续数据报文发送;没有报文长度的限制;

Manchester 编解码原理框图

资源占用和性能

Core Resource	
Inputs	17 / 470
Outputs	53 / 595
Clocks	4 / 16
Logic Elements	676 / 19728
Memory Blocks	3 / 204
Multipliers	0 / 36

3 clocks (including virtual clocks), 0 inputs and 0 outputs were constrained.

There are 24 pins with no clock driven by root clock: PllTestClk

Maximum possible analyzed clocks frequency

Clock Name	Period (ns)	Frequency (MHz)	Edge
SysClk	6.270	159.496	(R-R)
TxMcstClk	4.275	233.920	(R-R)
RxMcstClk	7.546	132.512	(R-R)

Geomean max period: 5.870

IP信号管脚说明

时钟信号

信号名	I/O 描述	说明
SysClk	I 系统时钟	和用户逻辑内部同步一个时钟,可以用到 75M到166M
TxMcstClk	I 发送曼码时钟	100M时钟
TxMcstSClk	I 发送曼码Lvds时钟	400M时钟,PLL直接给LVDS
RxMcstClk	I 接收曼码时钟	100M时钟
RxMcstSClk	I 接收曼码Lvds时钟	400M时钟,PLL直接给LVDS

MII接口信号

信号名	1/0	描述	说明
MiiRxCEn	0	MII接收时钟允许	与系统时钟同步
MiiRxData	0	MII接收数据(4Bit)	
MiiRxDV	0	MII接收数据有效	
MiiRxErr	0	Mii接收数据错误	
MiiTxCEn	0	Mii发送时钟允许	与系统时钟同步
MiiTxData	I	Mii发送数据(4Bit)	
MiiTxEn	I	MII发送数据允许	
MiiTxBusy	0	Mii发送忙	高电平时不能写入数据

EBUS接口信 号

```
信号名 I/O 描述 说明
TxMcstData O 曼码发送数据 8bit,接800MLVDS Tx接口
RxMcstData I 曼码接收数据 8bit,接800MLVDS Rx接口
RxMcstLink O 接收链接建立
```

这部分信号用于调试和故障诊断,使 用模块时可以不连接

```
module Mcst2MII
  //System Signal
              , //(I)System Clock
 SysC1k
             , //(I)Manchester Tx clock
 TxMcstClk
  RxMcstClk
              , //(I)Manchester Rx clock
 Reset N
              //System Reset
 //MII Signal
              , //(0)MII Rx Clock Enable
 MiiRxCEn
 MiiRxData
              , //(O)MII Rx Data Input
              , //(0)MII Rx Data Valid
 MiiRxDV
              , //(0)MII Rx Error
 MiiRxErr
             . //(0)MII Tx Clock Enable
  MiiTxCEn
  MiiTxData
             , //(I)MII Tx Data Output
  MiiTxEn
              //(I)MII Tx Enable
 MiiTxBusy
             , //(0)MII Tx Busy
  //Manchester Data In/Output
 TxMcstData , //(0)Manchester Data Outp
 RxMcstData , //(I)Manchester Data In
 RxMcstLink , //(0)Manchester Linked
  //Debug & Test Interfac
 RxMcstCode , //(0)Mancheste Code Outpu
             //(0)Rx Not-Return-to-Zer
 RxNrzDRst
             , //(0)Rx Not-Return-to-Zer
 RxNrzFRst
 RxDmlitPos , //(0)Delimite Position
 ClkFreqDiff , //(0)Clock Frequency Diff
  ClkDiffDir //(0)Clock Frequency Diff
 ClkFDiffInd , //(0)Clock Frequency Diff
 PllTestClk
               //(0)Clock Test Output
```


IP配置参数设定

parameter RightCntWidth_C = 27;

parameter TxDataBurstLength_C = 100;
parameter TxDataIntervalLen_C = 20;

判断错误的计数器的宽度,设为27,表示连续2²7次没有误码, Right信号才为高;可以不用修改,主要为了仿真用;

发送数据连续长度;该值以4Bits为单位;它定义TxEn的长度;取值范围1-65535;由于采用了创新的架构和算法;理论支持数据长时间无滑码传输;

发送间隔长度;该值以4Bit为单位;他定义TxEn低电平的长度;

取值范围1-65535;由于采用的独特的算法,理论支持的最小间隔为4Bits;

IP文件组成

调试界面-LED Position and Flag

DPLLTest

Name	Туре	Width	Radix		Value	
R×DmlitPos	Probe	3	Hex	*	4	
[PrbsError	Probe	1	Hex	•	0	
[PrbsRight	Probe	1	Hex	•	1	
ClkFreqDiff	Probe	16	Dec	•	106	
t ClkDiffDir	Probe	1	Hex	*	1	
[LedCntRst	Source	1	Hex	-	0	

表示当前的编码的分界位置,0-7——一般情况会一直变化,除非收发的频率完全一样

PRBS的错误检视,1表示有误码

PRBS的正确检查, 当连续128M个4Bit数据没有错误, 该信号为高

接收时钟和发送时钟的偏差,单位为1/4ppm;比如106就表示收发时钟的偏差为26.5ppm

接收时钟和发送时钟的偏差方向,为1,表示接收时钟比发送时钟慢

用于清除错误计数,该计数会有3位在LED上显示

正常情况:

D3/D4:System/TxSys闪烁 D5/D7/D8/D9:Error, ErrorCounter全 灭

D6/D10:Link、Right长亮

Demo板上LVDS管脚分配

• LVDS Rx 07为 Manchester接收

• LVDS Tx 07为 Manchester发送

Monitor 测试管脚 (用于测量频率偏差)

GPIO26——本地时钟

GPIO22——接收时钟

GPIO18——发送和接收时钟的 偏差

GPIO13--恢复时钟

GPIO18的高电平宽度除以10就是收 发时钟的频率偏差; 如图,表示收发时钟偏差为26ppm

Signal integrity 恢复时钟眼图

从图上看,时钟抖动在20ns;

同步信号使用发 送端的时钟

仿真

频率偏差大于1000ppm, 仿真50ms没有误码 现实环境比仿真环境差很多,所以仿真仅作为参考

Tx-Rx Delay 250ns

Inside Logic Analysizer 使用ILA调试

PrbsError一直为0

如果遇到问题,抓到有问题的波形,根据这些信号的波形 基本可以诊断大部分问题;

实测结果

- 测试环境:
 - 两块T20F256Demo板,通过10 根以上15cm的跳线连接;
 - 两块板的频偏26ppm;
 - Demo板的采用电脑的USB供电;
 - -连续发送数据;
- ・测试结果
 - Over 72Hrs,长时间无误码;

