Accurate variational Quantum Eigensolvers

Malay Singh

Supervisors : Msc Ramiro Sagastizabal and Dr. Leonardo Di Carlo Department of Applied Physics

Delft University of technology

Three Month Report

Abstract

Put your abstract or summary here, if your university requires it.

Contents

Li	st of	Figur	es	111		
\mathbf{Li}	st of	Table	${f s}$	v		
1	\mathbf{Pro}	ject P	roposal	1		
2	Sup	ercon	ducting Qubits	3		
	2.1	Quant	tum Information	3		
	2.2	Super	conducting Qubits	3		
		2.2.1	Circuit Quantum Electrodynamics	3		
		2.2.2	Single and Two qubit gates	3		
		2.2.3	Readout	3		
		2.2.4	Noise	3		
3	Quantum Simulations with Superconducting Qubits					
	3.1	Introd	luction	5		
	3.2	Hydro	ogen Hamiltonian	5		
	3.3	Variat	tional Quantum Eigensolvers	5		
4	State preparation Ansatze					
	4.1	Six pa	arameter circuit	7		
	4.2	Partic	ele number conserving circuit	7		
5	Err	or Sigi	nalling Circuit	9		
6	Active Error minimization					
	6.1	Limits	ations of Simulations	11		

CONTENTS

7	Outlook					
	7.1	Exper	ience Gained	13		
		7.1.1	Oscilloscope Driver	13		
		7.1.2	Quantum State Tomography	13		
		7.1.3	Miscellaneous	13		
	7.2	Experience Necessary				
8	Mat	terials	& methods	15		

List of Figures

2.1	Bloch Sphere visualisation of a single qubit state						3
2.2	Effective Ci	rcuit for th	e transmo	n qubit .			3
2.3	Energy	levels	for	the	transmon	qubit	for
			$\frac{E}{E}$	$\frac{dJ}{dC} = ?$			
	found by sir	nulation					3
2.4	The transmission profile of the resonator is shifted to one of two peaks						
	conditioned	on the stat	ses of the	qubit			4
3.1	A Flowchar	t depicting	the steps	used in m	apping Real Spa	ce Molecular	
	Hamiltonian	n on to Qub	oit Hilbert	space			5
3.2	The dissocia	ation curve	for Hydro	gen molec	ule		5
3.3	Hardware a	nd software	schemati	c of the va	riational quantu	m eigensolver.	5

LIST OF FIGURES

List of Tables

LIST OF TABLES

Project Proposal

One of the proposed powerful applications for near-term quantum computers is to address problems in quantum simulation of molecular structures and condensed matter physics problems, which currently stretch the limits of existing high-performance computing infrastructure[1].

1. PROJECT PROPOSAL

Superconducting Qubits

2.1 Quantum Information

Figure 2.1: Bloch Sphere visualisation of a single qubit state.

2.2 Superconducting Qubits

0.5

Figure 2.2: Effective Circuit for the transmon qubit

0.5

Figure 2.3: Energy levels for the transmon qubit for

$$\frac{E_J}{E_C} = ?$$

found by simulation.

- 2.2.1 Circuit Quantum Electrodynamics
- 2.2.2 Single and Two qubit gates
- 2.2.3 Readout
- 2.2.4 Noise

2. SUPERCONDUCTING QUBITS Figure 2.4: The transmission profile of the resonator is shifted to one of two peaks conditioned on the states of the qubit.

Quantum Simulations with Superconducting Qubits

3.1 Introduction

3.2 Hydrogen Hamiltonian

Figure 3.1: A Flowchart depicting the steps used in mapping Real Space Molecular Hamiltonian on to Qubit Hilbert space.

Figure 3.2: The dissociation curve for Hydrogen molecule.

3.3 Variational Quantum Eigensolvers

Figure 3.3: Hardware and software schematic of the variational quantum eigensolver.

3. (QUANTUM	SIMULATIONS	WITH	SUPERCONDUCTING	QUBITS
------	---------	--------------------	------	-----------------	---------------

State preparation Ansatze

- 4.1 Six parameter circuit
- 4.2 Particle number conserving circuit

4. STATE PREPARATION ANSATZE

Error Signalling Circuit

5. ERROR SIGNALLING CIRCUIT

Active Error minimization

6.1 Limitations of Simulations

6. ACTIVE ERROR MINIMIZATION

Outlook

- 7.1 Experience Gained
- $7.1.1 \quad {\bf Oscilloscope\ Driver}$
- 7.1.2 Quantum State Tomography
- 7.1.3 Miscellaneous
- 7.2 Experience Necessary

7. OUTLOOK

Materials & methods