

ANGGOTA KELOMPOK

Muhammad Reffy Haykal (18222103)
Moh Afnan Fawwaz (18222111)

PEMBAGIAN TUGAS

Muhammad Reffy Haykal (18222103)
Moh Afnan Fawwaz (18222111)

18222111

- l. Membuat Icon dan Splash Screen
- 2. Membuat Virtual Lab (GLB Page dan GLBB Page)
- 3. Men-deploy Aplikasi di HP Android

18222103

- I. Membuat Home Screen
- 2. Membuat Register, Login, dan Logout Page
- 3. Membuat Quiz Page
- 4. Integrasi Firebase (Autentikasi dan Realtime Database)

CONTENT OF REPORT

- l. Deskrip Singkat mengenai Proyek
- 2. Penerapan System Thingking
- 3. Penerapan Design Thingking dan User-Centered Design (UCD)
- 4.UX/UI Design
- 5. Model Perangkat Lunak Menggunakan UML
- 6. Proses Implementasi dan Teknologi yang Digunakan
- 7. Pengujian Fungsional dan Non-Fungsional
- 8. Hasil Akhir dan Evaluasi

Aplikasi mobile yang dibuat adalah lanjutan dari Website Phylab yang merupakan Virtual Lab GLB dan GLBB untuk belajar Matakuliah TPB, yaitu Fisika.

PENERAPAN SYSTEM THINGKING

Konsep penerapan system thinking pada Phylab terletak pada penggabungan banyak elemen terkait virtual lab yang bertujuan untuk mendukung pemahaman pengguna dalam mempelajari materi terkait fisika, khususnya GLB (Gerak Lurus Beraturan) dan GLBB (Gerak Lurus Bebas Beraturan)

Beberapa elemen yang tertera pada Phylab sebagai pemenuhan spesifikasi virtual lab diantaranya:

- l. Simulasi tentang bagaimana GLB bekerja
- 2. Simulasi tentang bagaimana GLBB bekerja
- 3. Penjelasan dasar tentang apa itu GLB dan GLBB
- 4. Latihan terkait materi GLB dan GLBB untuk menguji pemahaman
- 5. Platform yang mewadahi semua aspek

BUKTI SYSTEM THINGKING

PENERAPAN DESIGN THINGKING

Design Thinking adalah pendekatan berfokus pada manusia untuk memecahkan masalah yang menekankan pemahaman mendalam tentang kebutuhan pengguna, pengujian ide-ide inovatif, dan iterasi berkelanjutan, pada Phylab menggunakan:

Komponen	Deskripsi
Emphatize (Memahami kebutuhan	Mempelajari GLB dan GLBB serta melakukan survey bagaimana penerapannya pada TPB → Pemahaman
dan masalah pengguna)	terkait rumus dan penjelasan GLB & GLBB
Define (Menentukan masalah	Mengetahui bahwa dengan memahami bagaimana GLB dan GLBB bekerja akan meningkatkan
utama yang harus diselesaikan)	pemahaman → Konsep visual dari GLB dan GLBB
Ideate (Menghasilkan solusi atau	Mengidentifikasi fitur apa saja yang diperlukan seperti parameter, visualisasi grafik, dan membuat
fitur potensial)	sketsanya → Sketsa kasar terkait grafik GLB dan GLBB
Prototype (Membuat prototipe	Membuat penjelasan dan visualisasi gerak lurus dan parabola menggunakan Figma serta Expo
untuk diuji)	(menggunakan bahasa TSX dengan framework React-Native) → Website Phylab
Test (Menguji prototipe dan	Menguji prototipe dan memperbaiki kesalahan-kesalahan seperti bug serta meminta feedback kepada
memperbaikinya)	teman → Perbaikan kode dan konsep seputar Phylab

OOO PENERAPAN USER-CENTERED DESIGN (UCD)

Pengaplikasian konsep UCD pada pengembangan Phylab membantu pada aspek-aspek seperti berikut:

- l. Empathize with Users: Mencari materi-materi tentang GLB dan GLBB serta melakukan survey dengan bertanya kepada teman TPB saya mengenai apa kesusahan yang dialami dalam memahami konsep ini. → User Requirement Gathering: Mendapatkan informasi keresahan
- 2. Defining the Problem: Menggunakan data tersebut untuk memahami bagaimana cara kita memberikan sesuatu yang dapat memudahkan mereka untuk memahami GLB dan GLBB → Get The Concept: Menggunakan visual dalam mempelajari sesuatu dapat membantu mempermudah memahami suatu konsep

O PENERAPAN USER-CENTERED DESIGN (UCD)

- 3. Ideating the Solution: Merancang untuk membuat sebuah virtual lab dengan membuat bagaimana kira-kira activity yang akan dilakukan oleh user terhadap lab dan bagaimana mereka berinteraksi dengan simulasi visual yang akan dibuat → Composing UML
- 4. Prototyping: Membuat desain dengan Figma terkait high-fidelity dari sketsa kasar dan mengimplementasikannya menggunakan TSX dengan framework React-Native, serta backend dan hosting → Prototyping and Implementing
- 5. Testing with User: Melakukan sebuah user testing baik oleh saya sendiri maupun oleh teman saya tentang efektivitas penggunaan Phylab dalam membantunya memahami konsep GLB dan GLBB → Alpha & Beta Testing and Fixing Bug

UX/UI DESIGN

Icon

Splash Screen

UI/UX DESIGN

Home page

Register Page

Login Page

Logout Page

UX/UI DESIGN

GLBPage

12:13 🖨 …		lln. 🛭 🛠	#### (30°
← GLBP	age		
Кесера	tan (m/s):		
0			
	Mulai	Reset	
4	Waktu: 0.0	00 detik	
ini yuk!	ih ngerti? Co	10 - Gera	eo US
5			cademy
S S			
	•	4	

UX/UI DESIGN

GLBB Page

Screen Page

PEYLAN	"Make Physics More Fun"	Beranda		
1. (GLB) Bila Andi memiliki kecepatan sebesar 20m/s, kira-kira berapa lama waktu yang harus ditempuh oleh Andi untuk mencapai jarak 80m?				
10s				
8s				
6s				
5s				
4s				
	Next			
	• •			

12:14 章 ···
12:14
"Make Physics More Fun"
Quiz Selesai!
Skor Anda: 1 dari 6
Kembali ke Beranda

000 MODEL PERANGKAT LUNAK MENGGUNAKAN UML

Use case diagram menjelaskan interaksi antara pengguna dengan sistem dan skenario apa saja yang dapat dilakukan oleh pengguna ketika mengakses Phylab. Pengguna dapat melakukan login, register, mengakses penjelasan dan simulasi GLB/GLBB, serta mencoba mengerjakan ujian. Selain itu, sistem (database dan hosting) akan ikut berinteraksi dengan pengguna untuk menjalankan website, menyimpan hasil ujian pengguna, melakukan autentikasi, dan menyimpan akun pada database

000 MODEL PERANGKAT LUNAK MENGGUNAKAN UML

Activity Diagram akan menjelaskan alur proses dari sistem ketika pengguna menggunakan Phylab. Terdapat 3 tokoh yang dimulai dari pengguna mengakses phylab lalu melakukan register atau login dan datanya akan disimpan oleh sistem dilanjutkan dengan pemilihan materi oleh pengguna. Setelah memilih materi maka pembelajaran dan simulasi yang dibantu oleh sistem akan dilaksanakan dan dilanjutkan latihan dari user. Data hasil latihan akan disimpan pada database untuk informasi pengguna di lain waktu

000 MODEL PERANGKAT LUNAK MENGGUNAKAN UML

ERD Relationship Diagram) **(Entity** menggambarkan struktur data dalam sistem Phylab. Dimulai dari pengguna yang melakukan register atau login, data pengguna akan disimpan dalam entitas User. Setelah login, pengguna dapat mengakses halaman dari entitas Page yang terhubung dengan Content berisi materi pembelajaran seperti penjelasan GLB atau GLBB. Pengguna juga dapat memilih latihan dari entitas Exercise yang mencakup soalsoal terkait materi, atau memainkan simulasi interaktif dari entitas Game. Semua data yang dihasilkan, seperti hasil latihan atau aktivitas pengguna, akan disimpan dalam sistem untuk referensi di lain waktu.

PROSES IMPLEMENTASI DAN TEKNOLOGI YANG DIGUNAKAN

→ React Native

→ TSX

b. Back-end

→ TSX

→ Firebase

c. Hosting

→ Expo Go

→ EAS

000 PENGUJIAN FUNGSIONAL DAN NON-FUNGSIONAL

Fungsional:

- Sistem login berjalan dengan baik dengan data yang disimpan pada Firebase
- Autentikasi bekerja dengan baik untuk memastikan pengguna memang benar memiliki akun pada mobile app
- Sistem latihan memeriksa hasil dari user dan memberikan nilai berdasarkan benar salahnya jawaban dari user
- Permainan baik pada GLB maupun GLBB dapat dimainkan dengan baik

000 PENGUJIAN FUNGSIONAL DAN NON-FUNGSIONAL

Non-Fungsional:

- Penyimpanan data akun user tersimpan dengan baik sehingga tidak akan terdapat akun ganda (Security)
- Data hasil latihan user akan tersimpan dan akan terganti secara otomatis apabila user melakukan latihan lagi sehingga sistem tidak akan terbebani oleh penyimpanan data yang banyak (Scalability)
- Respon dari sistem cepat sehingga user dapat menggunakan mobileapp dengan responsive (Realibility)

HASIL AKHIR DAN EVALUASI

Virtual Lab ini telah berhasil mengintegrasikan fitur-fitur utama yang dirancang untuk mempermudah pengguna dalam mempelajari Matakuliah Fisika materi GLB dan GLBB yang dibungkus dalam Aplikasi Mobile. Berikut adalah fitur-fitur yang telah diimplementasikan dan hasil pengujiannya

Fitur	Fungsi	Hasil
Login/Registrasi	Memnungkinkan pengguna mengakses dan menyimpan interaksi	Berhasil membuat akun baru di Firebase
Materi	Penyajian materi bacaan	Teks dan gambar ditampilkan dengan rapi
Virtual Lab	Memperagakan GLB dan GLBB secara virtual	Dapat memvisualisasikan gerakan GLB dan GLBB dengan lancar
Kuis dan penympanan skor	Menjawab pertanyaan dengan jawaban pilihan ganda	Pertanyaan ditampilkan secara berurutan, langsung mendapatkan feedback jawaban yang benar dan menyimpan skor pengguna pada Realtime Database miliki Firebase
Desain Mobile yang Responsif	Menyediakan Virtual Lab dalam bentuk mobile application	Aplikasi Mobile dapat dijalankan secara responsif

HASIL AKHIR DAN EVALUASI

Berikat adalah evaluasi yang dapat dilakukan untuk meningkatkan performa Aplikasi Mobile ini

Aspek	Deskripsi
Ikon Aplikasi Mobile	Memperbaiki tampilan ukuran dari ikon phylab mobile
Splash Screen	Meningkatkan tampilan yang responsif dari splash screen
Modal Pup up	Mengganti kata-kata dan tampilan dari moodal sehingga lebih relevan dan menarik
Video Materi GLBB	Menambahkan video materi GLBB sebagaimana yang terdapat pada GLB

