

II. The Datasets

- + This project uses the MLB Pitch Data 2015-2018 dataset that is publicly available on
- + The first file, pitches.csv, charts various data for each pitch thrown during each of the four seasons from 2015 through
- + The second file, atbats.csv, contains various static data for each at-bat from each of the four seasons from 2015 through
- + The dataset
- + create a new binary variable to classify each of these three types of fastballs as a

Pre-Pitch Categorical Variables

- The second type of features in the dataset are pre-pitch categorical variables
- continuous variables discussed above; they are known prior to the pitch being thrown
- categorical data variables
- + The most significant influence on fastball usage is whether there is at least one runner
- + Fastball usage decreases depending upon the number of outs

% of Fastballs - # of Pitch in At-Bat 0.57 0.56 0.55 0.54 0.53 0.52 0.51 0.50 0.49 1 2 3 4 5 6 >6

Pitch Sequence

- + Pitchers throw more than average amounts of fastballs by a considerable amount on the
- + first pitch of an at-bat and any pitch after the sixth pitch in a long at-bat
- + Fastballs are thrown higher than average in the early innings and the ninth inning
- + Right-handed pitchers throw fastballs more often than left-handed pitchers regardless of

Game Score

- + Pitchers throw more fastballs than usual when their team is winning, or the game is tied
- + significantly less fastballs when their team is behind
- + game circumstances and the likelihood that a pitcher will throw a fastball on the next

IV. Initial Machine Learning Models Test Run

- + At this point in the project, I decided to feed the dataset into four classifiers to see how they would perform
- + I elected to feed the classifiers approximately 5% of the data. 145,000 pitches
- + The initial models yielded the following accuracy on the test set from
- + the sample data:
- + Logistic Regression Classifier: 0.5572
- + SGDClassifier: 0.5442
- + Random Forest Classifier: 0. 5280
- + Gradient Boosting Classifier: 0. 5510

V. Additional Feature Engineering

 Previous Pitch Type - this feature provides the pitch type of the immediate previous pitch thrown to the batter using the pitch type labels (Once this data was compiled, I converted it to categorical features using dummy variables)

 Vertical/Horizontal Previous Pitch Location - these two features provide the vertical and horizontal pitch location of the immediate previous pitch to a batter in a particular at-bat. These were built off of the 'px' and 'pz' continuous variables.

VI. Second Machine Learning Models Test Run

- + Having added the previous pitch features to the dataset, I fed the updated 5% sample data into some models to see if I had improved performance significantly improved models
- + Here are the resulting test set accuracy numbers for each model:
- + Logistic Regression Classifier: 0.601517
- + SGDClassifier: 0.591917
- + Random Forest Classifier: 0.569545
- + Gradient Boosting Classifier: 0.601848

Gradient Boosting Classifier Feature Importance

	coefficient	gbc_feature_importance
prev_pitch_SI	0.231926	0.379442
prev_pitch_FF	2.742564	0.080825
b_count_3	0.724995	0.057462
s_count_2	-0.937326	0.054237
prev_pitch_FT	2.808360	0.043790
prev_pitch_FC	3.038671	0.037677
inning_pitch_count	-0.094548	0.029650
s_count_1	-0.600940	0.021992
b_count_1	-0.199580	0.020831
prev_pitch_KN	0.085609	0.019515
on_2b	-0.131415	0.015927
pitch_num_2	-2.442173	0.015921
prev_pitch_SL	2.232262	0.014552
b_count_2	0.051795	0.014136
prev_pitch_IN	-6.606109	0.012344

+ The gradient boosting classifier only produces positive "feature importance" values to each model feature on a normalized scale. These values will indicate to us which features are most important to the model.

	coefficient	gbc_feature_importance
prev_pitch_SC	-1.036591	0.000000
prev_pitch_PO	2.437529	0.000003
prev_pitch_FO	2.498353	0.000017
px_prev_(-3.467, -2.933]	0.035960	0.000018
prev_pitch_EP	1.916104	0.000086
pitch_num_10	-2.348446	0.000115
px_prev_(2.933, 3.467]	-0.236866	0.000131
pitcher_lead9	-0.005301	0.000145
px_prev_(-2.933, -2.4]	-0.000748	0.000150
pitcher_lead8	-0.033039	0.000271
px_prev_(2.4, 2.933]	-0.111568	0.000273
pitch_num_9	-2.365207	0.000290
pitcher_lead_9	0.117185	0.000291
pz_prev_(-0.6, -0.2]	0.260123	0.000291
pitcher_lead7	-0.004890	0.000308

