Задача А. Чистые стратегии

Имя входного файла: pure.in
Имя выходного файла: pure.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дана матрица игры размера $m \times n$. Требуется найти все чистые стратегии игроков, приводящие к позиции равновесия.

Формат входного файла

В первой строке даны два целых числа m и n $(1 \le m, n \le 100)$ — размеры матрицы. Далее следуют m строк по n целых чисел a_{ij} в каждой $(|a_{ij}| \le 10^6)$.

Формат выходного файла

В первой строке выведите два целых числа p_1 и p_2 — число оптимальных чистых стратегий первого и второго игроков соответственно.

Во второй строке в любом порядке выведите через пробел p_1 чисел — номера строк, оптимальных для первого игрока.

В следующей строке в любом порядке выведите через пробел p_2 чисел — номера столбцов, оптимальных для второго игрока.

Строки и столбцы нумеруются с единицы. Если игра не содержит позиций равновесия в чистых стратегиях, выведите в выходной файл лишь «0 0».

pure.in	pure.out
3 2	2 2
0 0	2 3
1 1	1 2
1 1	
2 2	0 0
-1 1	
1 -1	

Задача В. Смешанные стратегии

Имя входного файла: mixed.in
Имя выходного файла: mixed.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дана матрица игры размера $m \times n$. Требуется найти оптимальные смешанные стратегии для каждого из игроков.

Формат входного файла

В первой строке даны два целых числа m и n $(1 \le m, n \le 30)$ — размеры матрицы. Далее следуют m строк по n целых чисел a_{ij} в каждой $(|a_{ij}| \le 1000)$.

Формат выходного файла

В первой строке выходного файла выведите m чисел — оптимальная стратегия первого игрока. Во второй строке выходного файла выведите n чисел — оптимальная стратегия второго игрока. Если оптимальных стратегий несколько, выведите любую из них.

mixed.in	mixed.out
2 2	0.50 0.50
3 1	0.25 0.75
0 2	

Задача С. Графический метод

Имя входного файла: nx2.in
Имя выходного файла: nx2.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Дана матрица игры размера $2 \times n$. Требуется найти оптимальные смешанные стратегии для каждого из игроков.

Формат входного файла

В первой строке дано целое число n $(1 \le n \le 100)$ — размер матрицы. Далее следуют две строки по n целых чисел a_{ij} в каждой $(|a_{ij}| \le 1000)$.

Формат выходного файла

В первой строке выходного файла выведите два числа — оптимальная стратегия первого игрока. Во второй строке выходного файла выведите n чисел — оптимальная стратегия второго игрока. Если оптимальных стратегий несколько, выведите любую из них.

nx2.in	nx2.out
2	0.50 0.50
3 1	0.25 0.75
0 2	
3	1.0 0.0
2 2 1	0.0 0.0 1.0
1 5 0	

Задача D. Вполне смешанная игра

Имя входного файла: completely.in Имя выходного файла: completely.out

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана матрица вполне смешанной игры размера $n \times n$. Требуется найти оптимальные смешанные стратегии для каждого из игроков.

Формат входного файла

В первой строке дано целое число n ($1 \le n \le 50$) — размер матрицы. Далее следуют n строк по n целых чисел a_{ij} в каждой ($|a_{ij}| \le 1000$).

Формат выходного файла

В первой строке выходного файла выведите n чисел — оптимальная стратегия первого игрока. Во второй строке выходного файла выведите n чисел — оптимальная стратегия второго игрока. Если оптимальных стратегий несколько, выведите любую из них.

completely.in	completely.out
2	0.50 0.50
3 1	0.25 0.75
0 2	
3	0.375 0.125 0.500
2 2 1	0.625 0.250 0.125
1 5 0	
2 1 3	

Задача Е. Равновесие по Нэшу

 Имя входного файла:
 nash.in

 Имя выходного файла:
 nash.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Дана биматричная игра $\Gamma(A,B)$. Матрицы A и B имеют размер $m\times n$ Требуется найти ситуации равновесные по Нэшу.

Формат входного файла

В первой строке даны два целых числа m и n ($1 \le m, n \le 100$) — размеры матриц. Далее следует описание матрицы A-m строк по n целых чисел a_{ij} в каждой. Затем идет описание матрицы B в аналогичном формате. Все числа во входном файле по абсолютному значению не превосходят 10^6 .

Формат выходного файла

В первой строке выходного файла выведите одно число k— число равновесных по Нэшу ситуаций. Каждая из следующий k строк должна содержать описание ситуации— номер строки и столбца.

nash.in	nash.out
2 2	2
4 0	1 1
0 1	2 2
1 0	
0 4	
2 2	1
7 0	2 2
10 3	
7 10	
0 3	

Задача F. Сильное равновесие

 Имя входного файла:
 strong.in

 Имя выходного файла:
 strong.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Дана биматричная игра $\Gamma(A,B)$. Матрицы A и B имеют размер $m\times n$ Требуется найти сильно равновесные ситуации.

Формат входного файла

В первой строке даны два целых числа m и n ($1 \le m, n \le 100$) — размеры матриц. Далее следует описание матрицы A-m строк по n целых чисел a_{ij} в каждой. Затем идет описание матрицы B в аналогичном формате. Все числа во входном файле по абсолютному значению не превосходят 10^6 .

Формат выходного файла

В первой строке выходного файла выведите одно число k— число сильно равновесных ситуаций. Каждая из следующий k строк должна содержать описание ситуации— номер строки и столбца.

strong.in	strong.out
2 2	1
3 0	2 2
0 1	
1 0	
0 4	
2 2	0
7 0	
10 3	
7 10	
0 3	

Задача G. Парето

Имя входного файла: pareto.in Имя выходного файла: pareto.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дана биматричная игра $\Gamma(A,B)$. Матрицы A и B имеют размер $m\times n$ Требуется найти оптимальные по Парето ситуации.

Формат входного файла

В первой строке даны два целых числа m и n ($1 \le m, n \le 100$) — размеры матриц. Далее следует описание матрицы A-m строк по n целых чисел a_{ij} в каждой. Затем идет описание матрицы B в аналогичном формате. Все числа во входном файле по абсолютному значению не превосходят 10^6 .

Формат выходного файла

В первой строке выходного файла выведите одно число k— число оптимальных по Парето ситуаций. Каждая из следующий k строк должна содержать описание ситуации— номер строки и столбца.

pareto.in	pareto.out
2 2	2
4 0	1 1
0 1	2 2
1 0	
0 4	
2 2	3
7 0	1 1
10 3	1 2
7 10	2 1
0 3	