Problema 1 (Ejercício 7.4.2). Es cada una de las siguientes relaciones antisimétrica, un orden parcial y/o un orden total?

```
C = \{ n \in \mathbb{Z} \mid existe \ k \in \mathbb{Z} \ tal \ que \ n = k \};
```

$$E = \{ n \in \mathbb{Z} \mid existe \ k \in \mathbb{Z} \ tal \ que \ n = 2k \};$$

$$P = \{n \in \mathbb{Z} \mid n \text{ es un número primo}\};$$

$$N = \{ n \in \mathbb{Z} \mid existe \ k \in \mathbb{Z} \ tal \ que \ n = k \};$$

$$S = \{ n \in \mathbb{Z} \mid existe \ k \in \mathbb{Z} \ tal \ que \ n = 6k \};$$

$$D = \{ n \in \mathbb{Z} \mid existe \ k \in \mathbb{Z} \ tal \ que \ n = k - 5 \};$$

$$B = \{ n \in \mathbb{Z} \mid n \text{ es no negativo} \};$$

Demostraci'on.

Problema 2 (Ejercício 3.2.9). Encuentra conjuntos A y B tal que $A \in B$ y $A \subseteq B$.

Demostración. Sea $A = \{\emptyset\} \ y \ B = \{\emptyset, \{\emptyset\}\}\$

A es un conjunto que contiene al conjunto vacío

B tiene dos elementos, el conjunto vacío y el conjunto que contiene al conjunto vacío así que como todos los elementos de A están en B, se cumple que $A \subset B$ y como B contiene al conjunto que contiene al conjunto vacío, se concluye que $A \in B$

Problema 3 (Ejercício 3.2.10). Sean $A, B \ y \ C$ conjuntos. Suponemos que $A \subseteq B \ y \ B \subseteq C$. Probar que A = B = C.

Demostración. Por definición de subconjunto:

```
A \subseteq B para toda x \in A, x \in B (1)
```

$$B \subseteq C$$
 para toda $x \in B, x \in C$ (2)

De 1 y 2 tenemos que para toda $x \in A, x \in C$ (3) es decir $A \subseteq C$

Como $C \subseteq A$ Para toda $x \in C, x \in A$ (4)

de 3 y 4 tenemos que A = C

Como A = C 2 puede reescribirse como

 $B \subseteq A$ Para toda $x \in B, x \in A$ (5)

entonces de 1 y 5 tenemos que A=B Por lo tanto A=B=C

Problema 4 (Ejercício 3.2.11). Sean A y B conjuntos. Probar que no es posible que $A \subsetneq B$ y $B \subseteq A$ ambas sean correctas.

Demostración. Por definición si $A \subsetneq ??B$ Para toda $a \in A, a \in B$ pero existe al menos una $b \in B, b \notin A$ si $B \subseteq A$ para toda $b \in B, b \in A$ lo cual es una contradicción con nuestro enunciado anterior, ya que solo sucede que $b \notin A$ o $b \in A$ pero no ambas a la vez.

Problema 5 (Ejercício 3.2.12). Sean AyB cualesquiera dos conjuntos. Es correcto que uno de $A \subseteq B$ o $A \supseteq B$ deben ser verdad?. Da una prueba o un contraejemplo.

Demostración. Falso

Contra Ejemplo: Sea $A=\{3,4,5\}$ y $B=\{8,4,1\}$ $A\nsubseteq B$ ya que no todos los elementos de A están en B

Si no se dio la contención, mucho menos la igualdad, $A \neq B$

 $A \nsubseteq B$ ya que no todos los elementos de B están en A

Problema 6 (Ejercício 3.2.13). Sea $A = \{x, y, z, w\}$. Enlista todos los elementos en $\wp(A)$.

Demostración. $A = \{x, y, z, w\}$ ent.

$$\wp(A) = \{\emptyset, \{x, y, z, w\}, \{x, y, z\}, \{y, z, w\}, \{z, w, x\}, \{x, y\}, \{x, z\}, \{x, w\}, \{y, z\}, \{y, w\}, \{z, w\}, \{x\}, \{y\}, \{z\}, \{w\}\}.$$

Problema 7 (Ejercício 3.2.14). Sean A y B conjuntos. Suponemos que $A \subseteq B$. Probar que $\wp(A) \subseteq \wp(B)$

Demostración. Por definición $x \in \wp(A)$ si y solo si $x \subseteq A$

Si $A \subseteq B$ se cumple que todos los elementos de A están en B

y como $\wp(B)$ contiene todos los subconjuntos de B quien a su vez contiene todos los elementos de A se cumple que $\wp(A) \subseteq \wp(B)$.

Problema 8 (Ejercício 3.2.16). ????????????????Cuáles de los siguientes son verdaderos y cuáles falsos

Demostración. (1) $\{\emptyset\} \subseteq G$ para todos conjunto en G.

FALSO. Porque el conjunto G no necesariamente tiene al conjunto vacío.

 $(2)\emptyset \subseteq G$ para todo conjunto G.

VERDADERO. Dem: si $\emptyset \subseteq G \ \exists x \in \emptyset \ \text{tal que } x \notin G$

Problema 9 (Ejercício 3.3.5). Dados dos conjuntos A y B los conjuntos A - B y B - A necesariamente disjuntos? Da una prueba o un contraejemplo

Demostración. Para que los conjuntos A-B y B-A sean disjuntos, no deben tener ningún elemento en común.

Al no tener elementos en común, la intersección de ambos conjuntos es el vacío

$$(A - B) \cap (B - A) = \emptyset$$

 $x \in (A - B)$ y las $x \in (B - A)$ por definición de intersección

 $x \in A, x \notin B$ y las $x \in B, \notin A$.

no hay ninguna x que cumpla estar y no estar en A, lo mismo cumple para B por lo que concluimos que $(A-B)\cap (B-A)=\emptyset$

por lo que A - B y B - A son necesariamente disjuntos.

Problema 10 (Ejercício 3.3.9). Sean A y B conjuntos. Prueba que $(A \cup B) - A = B - (A \cap B)$

 $Demostración. \ (A \cup B) - A$ son todas las x que están en Ao en B que no están en A

Por lo que solo nos quedan las x que están en B que no están en $A,\,B-A$

Las x que están tanto en A como en B son las $x \in A$ y $x \in B$ Como B - A son las x que no estén en A, quitamos de B las x que estén en A y en B

$$x \in B, x \notin (x \in A y x \in B)$$

Por definición de intersección

$$x \in B, x \notin (A \cap B)$$

Por definición de Diferencia

$$B - (A \cap B)$$

Por lo tanto $(A \cup B) - A = B - (A \cap B)$

Problema 11 (Ejercício 3.3.10). Sean A y B y C conjuntos. Suponemos que $C \subset A \cup B$, y que $C \cap A = \emptyset$. Probar que $C \subseteq B$

Demostración. Si $x \in C$ y $C \subset A \cup B$

 $x \in AoB$ por definición de subconjunto y de unión

Si ademas $C \cap A = \emptyset$ no existe $x \in C$ y $x \in A$

Como para toda $x \in C, x \notin A$

tenemos que $\forall x \in C, x \notin A, x \in A \text{ o } x \in B$

Como no existen x que estén y no estén simultáneamente en A nos queda $\forall x \in C, x \in B$ que por definición de subconjunto es $C \subseteq B$

Problema 12 (Ejercício 3.3.11). Sea X un conjunto, y sea $A, B, C \subseteq X$ son subconjuntos. Supongamos que $A \cap B = A \cap C$, y que $(X - A) \cap B = (X - A) \cap C$. Probar que B = C.

Demostración. Tenemos $(X - A) \cap B = (X - A) \cap C$

como $B \subseteq X, (X - A) \cap B = B - A$

como $C \subseteq X, (X - A) \cap C = C - A$

B - A = C - A

 $(B - A) \cup (A \cap B) = B y (C - A) \cup (A \cap C) = C$

Como $A \cap B = A \cap CyB - A = C - A$

 $(B - A) \cup (A \cap B) = (C - A) \cup (A \cap C)$

Por lo tanto B = C.

Problema 13 (Ejercício 3.3.12). Sean $A, B \ y \ C$ conjuntos. Provar que $(A-B) \cap C = (A \cap C) - B = (A \cap C) - (B \cap C)$.

Demostración. Sea $x \in (A - B) \cap C$

 $x \in A - B \to x \in A \text{ y } x \notin B \text{ y } x \in C$

como $x \in A$ y $x \in C$

 $x \in A \cap C$

y como $x \notin B$ Por lo tanto $x \in (A \cap C) - B$

 $x \in (A \cap C) - B$

 $x \in A$ y $x \in C$ y $x \notin B$

 $x \in A - B \ y \ x \in C$

Por lo tanto $x \in (A - B) \cap C$

 $x \in (A \cap C) - (B \cap C)$

 $x \in (A \cap C)$ y $x \notin (B \cap C)$

 $x \in A \ y \ x \in C \ y \ x \notin B \ o \ x \notin C$

 $x \in A \ y \ x \in C \ y \ x \notin B$

Por lo tanto $x \in (A \cap B) - B$

 $x \in (A \cap C) - B$

 $x \in A \cap C$ y $x \notin B$

 $x \in A \neq x \in C \neq x \notin B \cap C$

Por lo tanto $x \in (A \cap C) - (B \cap C)$.

Problema 14 (Ejercício 3.3.16). Prueba o encuentra un contraejemplo de la siguiente declaración. Jean A, B, C conjuntos. Entonces $(A \cup C) - B = (A - B) \cup (C - B)$.
Demostración. Sea $x?((A?C)?B)$ on las $x \in A$ o las $x \in C$ tal que $x \notin B$ as $x \in A$ tal que $x \notin B$, son las $x \in (A - B)$ las $x \in C$ y que $x \notin B$, son las $x \in (C - B)$ or lo que las x que están en $(A - B)$ o en $(C?B)$ on las $x \in (A - B) \cup (C - B)$ por definición de unión
Problema 15 (Ejercício 3.3.5). Enlista todos los elementos de cada uno de los siguientes conjuntos. 1) $\wp(\wp(\emptyset))$. (2) $\wp(\wp(\emptyset))$.
$Demostraci\'on.$ (1)
Problema 16 (Ejercício 3.2.16).
Demostración. Escriba aquí su segunda demostración.
Problema 17 (Ejercício).
Demostración. Escriba aquí su segunda demostración.