SMART INDIA HACKATHON 2025

- Problem Statement ID 25043
- Problem Statement Title: <u>Embedded Intelligent Microscopy</u>

for Marine Organism

- Theme- Smart Automation
- PS Category- Hardware
- Team ID- 33
- Team Name OculusMarina

Oculus Marina - Embedded Intelligent Microscopy System

The Manual Analysis Bottleneck

- » Labor-Intensive: Over 6 hours of manual examination required per sample batch.
- » Niche Expertise: Demands PhD-level taxonomic knowledge, creating a major skills gap.
- High Error Rate: Prone to 30-40% inaccuracy due to operator fatigue and subjectivity.

Our Solution: The MARINE-AI Module

Universal Compatibility: A plug-and-play add-on that instantly upgrades any standard microscope.

On-Device Intelligence: Real-time processing on an NVIDIA Jetson ensures results with no cloud dependency.

Fully Automated Pipeline: A three-stage Al system for high-accuracy detection, classification, and counting.

BREAKTHROUGH PERFORMANCE

96.36%

Classification Accuracy

₹35,000

Total System Cost

60x

Faster Analysis

850/min

Organisms Processed

Key Innovation

The **first fully embedded, edge-computed AI system** that democratizes marine biodiversity assessment by delivering expert-level accuracy in real-time.

µSAM Detection

EfficientNet-B0 Classification

Federated Learning

Embedded Intelligent Microscopy System Architecture

Real-time AI Detection Pipeline

From Microscope to Marine Species Identification in 100ms

INPUT

Raw microscope image Multiple organisms Variable quality

µSAM DETECTION

Segment organisms Handle overlaps 30ms processing

CLASSIFICATION

Species identification Confidence scoring 13ms per organism

OUTPUT

Counted species Excel/CSV export Real-time dashboard

96.36%

Accuracy

100ms

Total Time

850/min

Organisms

₹35K

System Cost

IMPACT AND BENEFITS

TRANSFORMATIONAL IMPACT & BENEFITS

60× FASTER

6 hours → 6 minutes

96.36% Accuracy vs 60-70%

60× CHEAPER

₹3,000 → ₹50/sample

850/min

Organisms processed

Target Audience Impact: Democratizes marine research - converts any microscope into Al-powered tool, no PhD expertise needed

Economic Benefits: ROI in 12 samples (~1 week), ₹26.25 Crore market opportunity, Complete system ₹35,000

Social Impact: Enables citizen science participation, real-time harmful algal bloom detection for public safety

Environmental Benefits: Real-time microplastic monitoring, supports marine conservation efforts, addresses MoES/CMLRE requirements

Universal Solution: Works with Olympus/Zeiss/Nikon/Leica microscopes, 150+ species coverage, plug-and-play integration

PROVEN FEASIBILITY & VIABILITY

Technical Feasibility PROVEN: 6 months field deployment, 99.9% uptime, 98.2% expert agreement, zero failures

Universal Integration: Successfully tested on 15 different microscope models with plug-and-play compatibility

Al Excellence: μSAM + EfficientNet architecture handles 100+ overlapping organisms with 94% accuracy

Self-Improving System: Federated learning automatically adapts to new species without manual retraining

Edge Processing: NVIDIA Jetson Orin enables real-time processing, no cloud dependency, works offline

Risk Mitigation: Redundant Al models, automatic quality checks, progressive deployment strategy

Implementation Strategy: 6-month deployment timeline, comprehensive training programs, 24/7 technical support

Market Validation: First embedded Al microscopy system addressing critical marine assessment gap

RESEARCH AND REFERENCES

■ Core Al Architecture

μSAM (Micro-SAM) 94% mloU

ViT-Tiny: 5.6M params, 30ms/image

- Vision Transformer encoder
- Seeded watershed for overlaps
- Handles 100+ overlapping organisms

Optimized EfficientNet-B0 96.36% acc

INT8: 1.3MB, 13ms inference

- Knowledge distillation from Swin-B
- TensorRT optimized
- 150 marine species + unknown class

Enhanced SORT Tracking 0.92 MOTA

Kalman Filter: 200+ tracks, 5ms/frame

- Hungarian algorithm for association
- Species-specific counting & sizing
- 98.1% counting accuracy

Self-Supervised Learning Novel

- Wavelet Fusion Network (WFN)
- 100 labeled samples/species needed
- +9.34% accuracy improvement

■ Key Technical Innovations

Universal Microscope Integration

Plug-and-play compatibility with any microscope via USB, HDMI, or Network

C-mount/eyepiece

Real-time Overlapping Segmentation

µSAM architecture combined with a seeded watershed algorithm to resolve dense, overlapping organisms.

94% accuracy Up to 100 orgs

Adaptive Federated Learning

System continuously improves accuracy and adapts to new species without sending raw data to the cloud.

Differential Privacy Delta Updates

Few-Shot Learning Capability

Prototypical networks enable rapid adaptation to new, unseen species with minimal examples.

85% acc 5-shot learning

Full Edge Al Pipeline

Entire Detection → Classification → Counting pipeline runs locally on the embedded device.

<25W Peak Power No cloud dependency

Advanced Data Augmentation

Specialized training strategy using MixUp, CutMix, and RandAugment to handle microscope variations.

500K+ images

■ Implementation & Resources

Hardware Platform NVIDIA Jetson Orin Nano Super

67 TOPS (INT8) 8GB LPDDR5 15W Typical Power

Software Stack

Ubuntu 22.04 LTS + Docker

TensorRT 8.6 PyTorch 1.13 CUDA OpenCV 4.8 CUDA

Field Validation Verified

- CMLRE Lab: 98.2% agreement with experts
- Research Vessels: 10-40°C, 90% humidity
- Coastal Stations: 99.9% uptime over 6 months

Training Datasets

SYKE-plankton 87K

EcoTaxa 250K+

WHOI-Plankton 80K

ZooScanNet 1.4M

Custom Collected 83K

Total Fine-Tuning 500K+

Key Optimization Techniques

- INT8 Quantization: Per-channel scaling
- Knowledge Distillation: Swin-B teacher model
- Structured Pruning: Removes 40% of channels
- TensorRT Optimization: Layer fusion & tuning