

Reviewing the Central Limit Theorem

https://www.healthknowledge.org.uk/public-healthtextbook/research-methods/1b-statistical-methods/statisticaldistributions

 Let X = be the birth weight of a baby (in kilograms)

- Statistics for an individual:
 - \circ Mean = μ_X
 - Standard Deviation = σ_x
 - $\circ z = \frac{x-\mu}{\sigma}$
 - (Data on the left is NOT the population)
- Statistics for a sample:
 - ∘ Mean = $\mu \approx \mu_X$
 - Standard Deviation = $\frac{\sigma_X}{\sqrt{n}}$
 - (Data on the left IS a sample)

Example

 Suppose we want to determine the average GPA of community college students at Forsyth Tech. Three samples are collected:

	Sample 1	Sample 2	Sample 3
Sample Size (n)	50	37	42
Mean (\bar{x})	3.21	3.23	3.11
Standard Dev. (s)	0.21	0.20	0.26

• Each sample mean can be used to estimate the "true" population mean: 3.21, 3.23, 3.11

• The "mean of the means" can be calculated to estimate the "true" population mean: 3.18

Each of these means is called a point estimate of the "true" population mean.

True population mean: 3.2

Population standard deviation: 0.25

Confidence Intervals

- Using samples to estimate population parameters is called inferential statistics.
- Point estimates are "okay" at estimating population parameters but they are often not exact.
- Perhaps an interval can be constructed?
 - "The true population mean GPA lies between 3.1 and 3.3"
- How can an interval be constructed?
- How confident can we be in the interval?

Confidence Intervals

- A confidence interval is another type of estimate but, instead of being just one number, it is an interval of numbers.
- It provides a range of reasonable values in which we expect the population parameter to fall.
- There is no guarantee that a given confidence interval does capture the parameter, but there is a predictable probability of success.

Calculating a Confidence Interval

- First, a confidence interval for a population mean will be calculated for a population with a **known** standard deviation.
- Normally, the population mean AND standard deviation are unknown. These are special cases.
- To estimate μ for a population, a sample of size n must be collected. The mean of the sample, \bar{x} , is a **point estimate** of μ .
- An error bound for the population mean (EBM) is required. This is the margin of error. (A measure of how close \bar{x} is to μ)

Population $\mu_X = ???$

Sample

 $\bar{x} = 7$ (point estimate)

s = 2.1 (point estimate)

Using the Central Limit Theorem

- The Central Limit Theorem tells us that the sample means roughly follow a normal distribution.
- Therefore, we can use the Empirical Rule to state the following:
 - 68% Confidence Level 68% of confidence intervals contain the true population parameter.
 - 95% Confidence Level 95% of confidence intervals contain the true population parameter.
 - 99% Confidence Level 99% of confidence intervals contain the true population parameter.
 - XX% Confidence Level XX% of confidence intervals contain the true population parameter.
 - (Any confidence level can be selected.)

100 samples with 95% confidence intervals (Population mean in blue)

Each sample has its own confidence interval. The population parameter will likely be within the "overlap" of these intervals.

Confidence Levels

- The Central Limit Theorem and the Empirical Rule also tell us that each **confidence level** has an associated z-score.
- Low confidence levels = small confidence intervals

Confidence Level	Area in One Tail	Exact Z-score
50%	0.25	0.674
80%	0.1	1.282
90%	0.05	1.645
95%	0.025	1.96
98%	0.01	2.326
99%	0.005	2.576

Example

- Suppose the mean birthweight of babies born in London is a desired parameter. To estimate this values, a random sample of babies was constructed (right). Through previous study, the population standard deviation is known.
 - $\mu_X = ???$
 - $\sigma_X = 0.57$ kg
- Statistics from the sample:
 - \circ n = 3226
 - \circ $\bar{x} = 3.39$ kg
 - \circ s = 0.55kg
- How is the population mean estimated if a confidence level of 95% is desired?

Example (Cont.)

5-Step Process:

1. Calculate the sample mean.

(Already done! $\bar{x} = 3.39 \text{kg}$)

- 2. Find the z-score that corresponds to the confidence level.
- 3. Calculate the error bound (EBM)
- 4. Construct the confidence interval
- 5. Write a sentence that interprets the estimate in the context of the situation in the problem.

Example (Step 2)

Find the z-score that corresponds to the confidence interval

The confidence level is 95%

This means that the confidence interval must cover a range of 95% of the distribution.

There will be 5% left over (0.05). This is split between the two "empty" tails.

$$z_{\frac{\alpha}{2}} = z_{0.025} = 1.96$$

Confidence Level	Area in One Tail	Exact Z-score
50%	0.25	0.674
80%	0.1	1.282
90%	0.05	1.645
<mark>95%</mark>	0.025	1.96
98%	0.01	2.326
99%	0.005	2.576

Example (Step 3)

Calculate the error bound (EBM)

- Recall that the standard error is the standard deviation of a sample.
 - Population standard deviation: σ_X
 - Sample standard deviation (standard error): $\frac{\sigma_X}{\sqrt{n}}$
- The confidence interval that corresponds to the 95% confidence level must contain 95% of the sampling distribution.
- The Empirical Rule states that this is $\pm 2\sigma$ of the mean. This is a z-score of 2. However, the EXACT z-score is 1.96.

EBM =
$$z_{\frac{\alpha}{2}} \left(\frac{\sigma_X}{\sqrt{n}} \right) = 1.96 \left(\frac{0.57}{\sqrt{3226}} \right) \approx 0.0197$$

Example (Step 4)

Construct the confidence interval

Lower bound:

$$\bar{x} - z_{\frac{\alpha}{2}} \left(\frac{\sigma_X}{\sqrt{n}} \right) = 3.39 - 1.96 \left(\frac{0.57}{\sqrt{3226}} \right) \approx 3.37$$

Upper bound:

$$\bar{x} + z_{\frac{\alpha}{2}} \left(\frac{\sigma_X}{\sqrt{n}} \right) = 3.39 + 1.96 \left(\frac{0.57}{\sqrt{3226}} \right) \approx 3.41$$

Example (Summary)

- 5-Step Process:
 - 1. Calculate the sample mean.

(Already done! $\bar{x} = 3.39 \text{kg}$)

2. Find the z-score that corresponds to the confidence level.

95% percent confidence level:
$$z_{\frac{\alpha}{2}} = 1.96$$

3. Calculate the error bound (EBM)

EBM =
$$z_{\frac{\alpha}{2}} \left(\frac{\sigma_X}{\sqrt{n}} \right) = 1.96 \left(\frac{0.57}{\sqrt{3226}} \right) \approx 0.0197$$

- 4. Construct the confidence interval (3.37, 3.41)
- 5. Write a sentence that interprets the estimate in the context of the situation in the problem.

We estimate with 95% confidence that the true population mean of birthweights is between 3.37 and 3.41 kilograms.

A Few Notes

Generally, researchers want as small of confidence interval as possible to get an accurate approximation of the population mean. What if the confidence level and/or sample size changes?

The **confidence interval** can be narrowed by decreasing the **confidence level**; however, the confidence in the estimation decreases.

For example:

We can say that we are 100% confident that the mean GPA of college students in the United States is between 0 and 4.0. (This is not helpful!)

Narrowing the interval will decrease our confidence that we ACTUALLY include the population mean.

A Few Notes

The **confidence interval** can be narrowed by increasing the **sample size**.

From the last example, n=3226

EBM =
$$z_{\frac{\alpha}{2}} \left(\frac{\sigma_X}{\sqrt{n}} \right) = 1.96 \left(\frac{0.57}{\sqrt{3226}} \right) \approx 0.0197$$

If the sample size is increased, the EBM decreases. Suppose n=30000

EBM =
$$z_{\frac{\alpha}{2}} \left(\frac{\sigma_X}{\sqrt{n}} \right) = 1.96 \left(\frac{0.57}{\sqrt{30000}} \right) \approx 0.0065$$

Summary

If a population has an UNKOWN mean and KNOWN standard deviation, the mean (μ_X) can be approximated by constructing a random sample.

The mean of the random sample is used as a **point estimate** of the population mean.

The desired confidence level and standard error dictate the confidence interval.

The **confidence interval** is where the TRUE population mean is likely to lie.

