

Relatório Atividade extra-classe 5 Relógio HH-MM-SS

Dispositivos lógicos programáveis

Rhenzo Hideki Silva Kajikawa

26 de Setembro de 2023

Sumário

1. Introdução	3
1.1. Objetivos	3
1.2. Motivação	3
1.3. Procedimentos	3
2. Descrição do Projeto	4
2.1. Componentes utilizados	4
2.2. Sistema Completo	5
2.2.1. Pinagem	5
2.2.2. Número de elementos lógicos	6
3. Resultados obtidos	9
3.1. RTL viewer	9
3.2. Implementação na placa	11
1 Conclução	11

1. Introdução

1.1. Objetivos

Este projeto feito em aula do relógio HHMMSS tem como objetivo indicar as horas (HH) , minutos (MM) e segundos (SS) , mostrando as unidades em 3 pares de displays de 7 segmentos, estes que estão são encontrados no kit DE2-115 da TERASIC , encontrado no laboratório de sinais digitais.

1.2. Motivação

Em aula foram ensinadas vários conceitos de VHDL e boas maneiras para um projeto. Porém até o momento não havia sido aplicado o conjunto dessas ideias em um projeto. Dessa forma este projeto vem para amarrar essas ideias em aplica-las em aula.

1.3. Procedimentos

Em aula foram feitas 4 entidades. Essas entidades foram separadas da seguinte forma , divisor de clock que foi chamado div_clk , um contador BCD (Binary-coded decimal) que foi chamado de contador_bcd , um conversor BCD para SSD (Seven-segment display) que foi chamado de bcd2ssd , e por fim a entidade que integra todo o conjunto o relógio , chamado de relogio_HH-MMSS. Com essas entidades feitas é possível junta-los em um arquivo para assim obter-se o projeto final como um todo.

2. Descrição do Projeto

Como falado anteriormente , O projeto foi separado em seções menores , atacando o projeto em partes menores para uma melhor manutenção do código.

O primeiro levantamento feito em aula é representado pela Figura 1 , que foi feita em aula. Nela é possível observar as pequenas partes que compõem o todo. Se bem observado tem para cada display de sete segmentos um conversor BCD para SSD , estes que recebem de o valores de um dos 3 contadores , e por fim temos um o clock de 50MHz conectados em todos os contadores e um divisor de clock que habilita o contador de segundos.

Figura AE5 1: Elaboração do Projeto Fonte: Elaborada pelo autor

2.1. Componentes utilizados

O componentes utilizados para o projeto podem ser visualizados na Figura 1.

No total foram Utilizados 6 displays de sete segmentos , 6 conversores de BCD para SSD , 3 contadores , 1 divisor de clock e 1 clock de 50MHz. Contabilizando o total de 17 componentes para cumprir com os objetivos desse projeto. Como dito anteriormente , nesse projeto foi abordado como criar componentes a partir de uma entidade .vhdl , dessa forma foram criados 3 componentes menores.

Um divisor de clock com 2 entradas , reset e clock in , e uma saída clock out . Esse divisor tem como objetivo diminuir os pulsos de enable dos segundos , podendo ajustar toda

contagem do sistema para diferentes clocks . Apenas trocando o valor genérico do componente "div".

Para os contadores foram criados com 2 entradas , clock e reset , e três saídas bcd unidade , bcd dezena e um clock out. Nos contadores foi pensado inicialmente em fazer contadores que contavam de 0 a 59 e posteriormente esse dado teria de ser tratado , porém o professor nos sugeriu a construção de 2 contadores , 1 para unidade e o outro para dezena , dessa forma o componente extra foi descartado. Da mesma forma que o divisor , é possível entrar com valores para ajustar os generics dos contadores uma vez que para o projeto é necessário 2 contadores de 59 e um de 24 ou 12.

Para o conversor BCD para SSD , foi a tarefa mais simples dos 3 componentes menores , uma vez que o componente é apenas uma tabela de conversão , foi utilizado apenas um when case ou with select.

Uma vez que o sistema tinha todos seu componentes menores feito o trabalho maior foi de ligar todos os componentes criados dentro do clock.vhd.

2.2. Sistema Completo

Após o sistema ter todos seu componentes montas foi feita a pinagem e compilação completa.

2.2.1. Pinagem

A pinagem pode ser vista nesta 2 figuras :

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Slew Rate
ac_ccn	Input	PIN_Y23	5	B5_N2	PIN_AF27	2.5 V (default)		8mA (default)	
L clk	Input	PIN_Y2	2	B2_N0	PIN_Y2	2.5 V		8mA (default)	
enable	Input	PIN_Y24	5	B5_N2	PIN_G5	2.5 V (default)		8mA (default)	
reset reset	Input	PIN_AB2	2	B2_N0	PIN_J1	2.5 V (default)		8mA (default)	
ssd_hourcimal[6]	Output	PIN_AA14	3	B3_N0	PIN_AH4	2.5 V (default)		8mA (default)	2 (default)
ssd_hourcimal[5]	Output	PIN_AG18	4	B4_N2	PIN_Y10	2.5 V (default)		8mA (default)	2 (default)
ssd_hourcimal[4]	Output	PIN_AF17	4	B4_N2	PIN_AG4	2.5 V (default)		8mA (default)	2 (default)
ssd_hourcimal[3]	Output	PIN_AH17	4	B4_N2	PIN_AF3	2.5 V (default)		8mA (default)	2 (default)
ssd_hourcimal[2]	Output	PIN_AG17	4	B4_N2	PIN_AC7	2.5 V (default)		8mA (default)	2 (default)
ssd_hourcimal[1]	Output	PIN_AE17	4	B4_N2	PIN_AF6	2.5 V (default)		8mA (default)	2 (default)
ssd_hourcimal[0]	Output	PIN_AD17	4	B4_N2	PIN_AD8	2.5 V (default)		8mA (default)	2 (default)
ssd_hours_unit[6]	Output	PIN_AC17	4	B4_N2	PIN_AD7	2.5 V (default)		8mA (default)	2 (default)
ssd_hours_unit[5]	Output	PIN_AA15	4	B4_N2	PIN_AE6	2.5 V (default)		8mA (default)	2 (default)
ssd_hours_unit[4]	Output	PIN_AB15	4	B4_N2	PIN_AG3	2.5 V (default)		8mA (default)	2 (default)
ssd_hours_unit[3]	Output	PIN_AB17	4	B4_N1	PIN_AF5	2.5 V (default)		8mA (default)	2 (default)
ssd_hours_unit[2]	Output	PIN_AA16	4	B4_N2	PIN_AE4	2.5 V (default)		8mA (default)	2 (default)
ssd_hours_unit[1]	Output	PIN_Ab16	4	B4_N2	PIN_AH3	2.5 V (default)		8mA (default)	2 (default)
ssd_hours_unit[0]	Output	PIN_AA17	4	B4_N1	PIN_AE5	2.5 V (default)		8mA (default)	2 (default)
ssd_minucimal[6]	Output	PIN_AH18	4	B4_N2	PIN_T22	2.5 V (default)		8mA (default)	2 (default)
ssd_minucimal[5]	Output	PIN_AF18	4	B4_N1	PIN_R27	2.5 V (default)		8mA (default)	2 (default)
ssd_minucimal[4]	Output	PIN_AG19	4	B4_N2	PIN_T25	2.5 V (default)		8mA (default)	2 (default)
ssd_minucimal[3]	Output	PIN_AH19	4	B4_N2	PIN_R25	2.5 V (default)		8mA (default)	2 (default)
ssd_minucimal[2]	Output	PIN_AB18	4	B4_N0	PIN_T21	2.5 V (default)		8mA (default)	2 (default)
ssd_minucimal[1]	Output	PIN_AC18	4	B4_N1	PIN_R26	2.5 V (default)		8mA (default)	2 (default)
ssd_minucimal[0]	Output	PIN_AD18	4	B4_N1	PIN_R28	2.5 V (default)		8mA (default)	2 (default)

Figura AE5 2: Parte 1 da pinagem Fonte: Elaborada pelo autor

ssd_secocimal[6]	Output	PIN_Y19	4	B4_N0	PIN_U2	2.5 V (default)	8mA (default)	2 (default)	
ssd_secocimal[5]	Output	PIN_AF23	4	B4_N0	PIN_R4	2.5 V (default)	8mA (default)	2 (default)	
ssd_secocimal[4]	Output	PIN_AD24	4	B4_N0	PIN_T7	2.5 V (default)	8mA (default)	2 (default)	
ssd_secocimal[3]	Output	PIN_AA21	4	B4_N0	PIN_R5	2.5 V (default)	8mA (default)	2 (default)	
ssd_secocimal[2]	Output	PIN_AB20	4	B4_N0	PIN_T4	2.5 V (default)	8mA (default)	2 (default)	
ssd secocimal[1]	Output	PIN_U21	5	B5_N0	PIN_T3	2.5 V (default)	8mA (default)	2 (default)	
ssd_secocimal[0]	Output	PIN_V21	5	B5_N1	PIN_U1	2.5 V (default)	8mA (default)	2 (default)	
ssd_secounit[6]	Output	PIN_W28	5	B5_N1	PIN_R3	2.5 V (default)	8mA (default)	2 (default)	
ssd_secounit[5]	Output	PIN_W27	5	B5_N1	PIN_U3	2.5 V (default)	8mA (default)	2 (default)	
ssd seco unit[4]	Output	PIN Y26	5	B5 N1	PIN U4	2.5 V (default)	8mA (default)	2 (default)	
ssd_secounit[3]	Output	PIN_W26	5	B5_N1	PIN_R7	2.5 V (default)	8mA (default)	2 (default)	
ssd_secounit[2]	Output	PIN_Y25	5	B5_N1	PIN_R6	2.5 V (default)	8mA (default)	2 (default)	
ssd seco unit[1]	Output	PIN AA26	5	B5 N1	PIN R2	2.5 V (default)	8mA (default)	2 (default)	
ssd_secounit[0]	Output	PIN_AA25	5	B5_N1	PIN_R1	2.5 V (default)	8mA (default)	2 (default)	

Figura AE5 3: Parte 2 da pinagem Fonte: Elaborada pelo autor

2.2.2. Número de elementos lógicos

O numero de elementos lógicos por componente:

Flow Status	Successful - Fri Nov 24 22:37:36 2023
Quartus Prime Version	20.1.1 Build 720 11/11/2020 SJ Standard Edition
Revision Name	relogio
Top-level Entity Name	div_clk
Family	Cyclone IV E
Device	EP4CE115F29C7
Timing Models	Final
Total logic elements	11
Total registers	7
Total pins	3
Total virtual pins	0
Total memory bits	0
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figura AE5 4: Compilação do divisor de clock Fonte: Elaborada pelo autor

Pode ser observado o uso de 11 elementos lógicos no divisor de clock

Flow Status Successful - Fri Nov 24 22:30:45 2023 Quartus Prime Version 20.1.1 Build 720 11/11/2020 SJ Standard Edition Revision Name relogio Top-level Entity Name bcd_counter Family Cyclone IV E Device EP4CE115F29C7 **Timing Models** 16 / 114,480 (< 1 %) Total logic elements Total registers Total pins 11 / 529 (2%) Total virtual pins Total memory bits 0/3,981,312(0%) Embedded Multiplier 9-bit elements 0 / 532 (0%) Total PLLs 0/4(0%)

Figura AE5 5: Compilação do contador Fonte: Elaborada pelo autor

Pode ser observador o uso de 16 elementos lógicos para cada par de contadores , tendo como uma projeção de se ter 3 vezes mais , aproximadamente 48 elementos para o conjunto todo. Observação o contador estava configurado para contar 24 horas.

Flow Status	Successful - Fri Nov 24 22:50:28 2023
Quartus Prime Version	20.1.1 Build 720 11/11/2020 SJ Standard Edition
Revision Name	relogio
Top-level Entity Name	bcd2ssd
Family	Cyclone IV E
Device	EP4CE115F29C7
Timing Models	Final
Total logic elements	14
Total registers	0
Total pins	12
Total virtual pins	0
Total memory bits	0
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figura AE5 6: Compilação do conversor bcd para ssd Fonte: Elaborada pelo autor

Para o conversor bcd para ssd foram utilizados 14 elementos , porém cada elemento trabalha de forma separada . Assim a estimativa para o total de elementos lógicos presente no projeto seria de 84 elementos lógicos para todo o grupo de conversores.

Flow Status	Successful - Fri Nov 24 22:55:48 2023
Quartus Prime Version	20.1.1 Build 720 11/11/2020 SJ Standard Edition
Revision Name	relogio
Top-level Entity Name	clock
Family	Cyclone IV E
Device	EP4CE115F29C7
Timing Models	Final
Total logic elements	168
Total registers	53
Total pins	46
Total virtual pins	0
Total memory bits	0
Embedded Multiplier 9-bit elements	0
Total PLLs	0

Figura AE5 7: Compilação do relógio (clock) Fonte: Elaborada pelo autor

Apesar de na soma de todos os componentes terem dado 143 elementos lógicos, a compilação resultou em um total 168 de elementos . Isso pode ter ocorrido pois alguns componentes flutuavam os valores de elementos lógicos dependendo de como eram configurados.

3. Resultados obtidos

3.1. RTL viewer

Aqui estão os RTLs viewers para cada componente:

Figura AE5 8: RTL viewer do divisor de clock Fonte: Elaborada pelo autor

Figura AE5 9: RTL viewer do contador bcd Fonte: Elaborada pelo autor

Figura AE5 10: RTL viewer do conversor bcd ssd Fonte: Elaborada pelo autor

Figura AE5 11: RTL viewer do relógio (clock) Fonte: Elaborada pelo autor

3.2. Implementação na placa

A implementação na placa foi feita em aula com o kit DE2-115 da TERASIC. Foi possível observar a placa funcionando como esperado.

Na implementação podemos ver a contagem sendo feita de 1 em 1 segundo , porém para fins práticos depois aumentamos a frequência de contagem para observar o funcionamento de todos os contadores e todos displays de sete segmentos. O projeto funcionou com sucesso na placa utilizada que foi a

4. Conclusão

Com esse projeto feito em aula foi possível visualizar soluções mais eficientes para lidar com alguns componentes , além de ver o funcionamento e a criação de componente menores para um projeto um pouco maior. Além de utilizar diferentes partes tanto em paralelo quanto sequencial para este projeto . Dessa maneira conseguimos implementar praticamente todo o conhecimento que foi dado em aula neste projeto