EGM0004

Sistemas Não Lineares

Prof. Josenalde Barbosa de Oliveira – UFRN

Programa de Pós-Graduação em Engenharia Mecatrônica

Ferramentas e resultados matemáticos

Os sistemas dinâmicos podem ser classificados em:

• Não linear, variante no tempo, com parâmetro desconhecido heta

$$\dot{x} = f(x, u, t, \theta), \quad y = h(x, u, \theta, t)$$

• Linear, variante no tempo, com parâmetro desconhecido heta

$$\dot{x} = A(\theta, t)x + B(\theta, t)u, \quad y = C(\theta, t)x + D(\theta, t)u$$

- Linear, invariante no tempo (LTI, autônomo) com parâmetro desconhecido θ $\dot{x}=A(\theta)x+B(\theta)u, \quad y=C(\theta)x+D(\theta)u$
 - Sendo Linear, obedece ao princípio da superposição $u_1 \rightarrow y_1, u_2 \rightarrow y_2 \implies \alpha_1 u_1 + \alpha_2 u_2 \rightarrow \alpha_1 y_1 + \alpha_2 y_2$
 - Supondo D=0, ou seja, sem transferência direta de energia da entrada para a saída do sistema, caso SISO

$$\dot{x}(t) = Ax(t) + bu(t), \quad y(t) = h^{T}x(t)$$

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \quad b = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}, \quad h = \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix}$$

Ferramentas e resultados matemáticos

Sistema controlável: se existe sinal de controle que leva um sistema de um estado para qualquer outro estado. Está associada à capacidade de influenciar todos os estados através das entradas do sistema.

 $P_c = [b|Ab| \cdots |A^{n-1}b| \rightarrow \text{matriz de controlabilidade. Se } det(P_c) \neq 0 \quad (\rho(P_c) = n) \rightarrow \text{sistema controlável}$ O posto da matriz P_c , dado por ρ , é o número de colunas ou linhas linearmente independentes

Sistema observável: quando é possível a partir da entrada e saída, encontrar a condição inicial. É a capacidade de "ver" todos os estados por meio das saídas do sistema.

Se qualquer condição inicial x(0) pode ser obtida conhecendo-se u(t) e y(t) para todo instante t entre 0 e T>0, finito.

$$P_o = \begin{bmatrix} h^T \\ h^T A \\ \vdots \\ h^T A^{n-1} \end{bmatrix}$$

 $P_o = \begin{bmatrix} h^T \\ h^T A \\ \vdots \\ h^T A^{n-1} \end{bmatrix} \rightarrow \text{matriz de observabilidade. Se } \det(P_o) \neq 0 \quad (\rho(P_o) = n) \rightarrow \text{ sistema observável ou seja, é apenas a solução homogênea } y(t) = h^T e^{At} x(0)$

Decomposição de Kalman. O que não é controlável, sendo estável, é estabilizável. O que não é observável, sendo estável, é detetável. Ou seja, existem dinâmicas não conhecidas e que não se pode influenciar via controle, mas se sabe ao menos que são estáveis, ou seja, decaem para zero com t -> Inf

Exemplo 1: testar control/observer

$$\dot{x} = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$

Exemplo 2:

$$\dot{x} = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} x(t)$$

Aplicação de Laplace $\mathcal L$

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = 0 \implies \mathcal{L}[\dot{x}(t)] = s\hat{x}(s)$$

$$s\hat{x}(s) = A\hat{x}(s) + B\hat{u}(s) \implies (sI - A)\hat{x}(s) = B\hat{u}(s) \implies \hat{x}(s) = (sI - A)^{-1}B\hat{u}(s)$$

$$\text{Como } y(t) = h^Tx(t) \implies \hat{y}(s) = h^T\hat{x}(s) \implies \hat{y}(s) = h^T(sI - A)^{-1}B\hat{u}(s)$$

$$\hat{g}(s) = \frac{\hat{y}(s)}{\hat{u}(s)} = h^T(sI - A)^{-1}B \implies \text{função de transferência}$$

Seja
$$u(t) = \delta(t) \rightarrow \text{ impulso unitário, logo } \hat{u}(s) = 1. \quad \hat{y}(s) = \hat{g}(s)\hat{u}(s) = \hat{g}(s) \implies y(t) = g(t) \rightarrow \text{ resposta ao impulso}$$

$$\hat{g}(s) \to \text{transformada de Laplace da resposta ao impulso. Obs: } \hat{g}(s) = h^T(sI - A)^{-1}b = h^T\frac{Adj(sI - A)}{det(sI - A)}b$$

Grau de cada elemento da Adjunta é no máximo n-1 elimina um s. $\hat{g}(s)$ é uma função racional denominada estritamente própria, deg(n) < deg(d)

Funções de transferência

$$\hat{g}(s) = \frac{\beta_m s^m + \beta_{m-1} s^{m-1} + \dots + \beta_1 s + \beta_0}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_1 s + \alpha_0} = \frac{\hat{z}(s)}{\hat{r}(s)}, \quad m < n$$

Grau relativo de $\hat{g}(s) \to n^* = n - m$ (excesso de polos)

As raízes de $det(sI - A) = 0 \rightarrow$ autovalores de A

As raízes de $\hat{r}(s) = 0 \rightarrow \text{ polos de } \hat{g}(s) \rightarrow \text{ levam a função para infinito. } \{\text{polos de } \hat{g}(s)\} \subset \{\text{autovalores de } A\}$

Se o sistema é controlável e observável não há cancelamentos na obtenção de $\hat{g}(s)$, logo,

 $\{\text{polos de } \hat{g}(s)\} = \{\text{autovalores de } A\}$

Quando há cancelamento, o sistema tem subsistema não controlável ou não observável

As raízes de $\hat{z}(s) = 0 \rightarrow \text{zeros de } \hat{g}(s) \rightarrow \text{deixam a função nula.}$

Realização de uma função de transferência: obtenção do modelo por variáveis de estado para o subsistema controlável e observável

Forma canônica do controlador

$$\hat{g}(s) = \frac{\beta_m s^m + \beta_{m-1} s^{m-1} + \dots + \beta_1 s + \beta_0}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_1 s + \alpha_0} = \frac{\hat{z}(s)}{\hat{r}(s)}, \quad m < n \quad \text{função racional: divisão de polinômios}$$

$$\dot{x} = \begin{bmatrix}
-\alpha_{n-1} & -\alpha_{n-2} & \cdots & -\alpha_1 & -\alpha_0 \\
1 & 0 & 0 & 0 \\
0 & 1 & \vdots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0
\end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} u \quad \text{Para esta forma,} \\
Adj(sI - A)b = \begin{bmatrix} s^{n-1} \\ s^{n-2} \\ \vdots \\ s \\ 1 \end{bmatrix} = \alpha_{n-1}(s)$$

$$y = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & \beta_m & \beta_{m-1} & \cdots & \beta_1 & \beta_0 \end{bmatrix} x$$

 $\alpha_{n-1}(s)$ independe dos coeficientes de $\hat{g}(s) \to \text{sem}$ preocupação com desconhecimento dos coeficientes

Forma canônica do observador (dual à forma do controlador)

$$\hat{g}(s) = \frac{\beta_m s^m + \beta_{m-1} s^{m-1} + \dots + \beta_1 s + \beta_0}{s^n + \alpha_{m-1} s^{m-1} + \dots + \alpha_1 s + \alpha_0} = \frac{\hat{z}(s)}{\hat{r}(s)}, \quad m < n \quad \text{função racional: divisão de polinômios}$$

$$\dot{x} = \begin{bmatrix} -\alpha_{n-1} & 1 & 0 & \cdots & 0 & 0 \\ -\alpha_{n-2} & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ -\alpha_1 & 0 & 0 & \cdots & 0 & 1 \\ -\alpha_0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \beta_m \\ \beta_{m-1} \\ \vdots \\ \beta_1 \\ \beta_0 \end{bmatrix} u \quad \text{Para esta forma,} \\ h^T A d j (sI - A) = \\ [s^{n-1} s^{n-2} \cdots s^{n-2} \cdots s^{n-2}] = \alpha_{n-1}^T (s)$$

$$y = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \end{bmatrix} x$$

Polinômios

mônico \rightarrow o coeficiente do termo de maior grau é 1. $\hat{r}(s)$ é mônico Hurwitz \rightarrow raízes da equação polinomial (polinomio=0) tem parte real negativa Se $\hat{z}(s)$ é Hurwitz \rightarrow sistema de fase mínima. Zeros com parte real negativa Se $\hat{r}(s)$ é Hurwitz \rightarrow sistema estável. Polos com parte real negativa

OBS:

MRAC: fase mínima

APPC: fase mínima e não mínima

6 – Aumento da vazão Qe e estabilização do nível (ação PI)

Polinômios coprimos

Dois polinômios a(s) e b(s) são coprimos se eles não tem fator comum (exceto uma constante)

Exemplo: a(s) = 2(s+1) e b(s) = 4(s+2)

Identidade de Bezout:

Dois polinômios a(s), b(s) são coprimos se e somente se existem polinômios c(s), d(s) tal que

$$c(s)a(s) + d(s)b(s) = 1$$

Exemplo:
$$a(s) = (s+1) e b(s) = (s+2) \implies c(s) = s^n + 2s^{n-1} - 1$$
, para $n \ge 1$
$$d(s) = -s^n - s^{n-1} + 1$$

Teorema 1 Se a(s) e b(s) são coprimos e de graus n_a e n_b , respectivamente, onde $n_a > n_b$, então, para qualquer polinômio arbitrário $a^*(s)$ com grau $n_a^* \ge n_a$ a equação polinomial (Diofantina)

$$a(s)l(s) + b(s)p(s) = a^*(s)$$

tem uma única solução l(s) e p(s) cujos graus n_l e n_p , respectivamente, satisfazem as restrições

$$n_p < n_a$$

$$n_l \le \max(n_a^* - n_a, n_b - 1)$$

Projeto de alocação de polos

Seja
$$\hat{g}(s) = \frac{b(s)}{a(s)} = \frac{s-1}{s^3}$$
. Projetar controlador por alocação de polos para $a^*(s) = (s+1)^5$

O controlador é dado pela razão $\frac{p(s)}{l(s)}$. Em malha aberta: $\frac{p(s)b(s)}{a(s)l(s)}$.

Em malha fechada:
$$\frac{p(s)b(s)}{a(s)l(s) + p(s)b(s)} = \frac{p(s)b(s)}{a^*(s)}$$

$$a(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = a_3 s^3, \quad a_3 = 1$$

$$b(s) = b_n s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0 = b_1 s^1 + b_0, \quad b_1 = 1, b_0 = -1$$

$$n_p < n_a \implies n_p < 3 \implies p(s) = p_2 s^2 + p_1 s + p_0$$

$$n_l \le max(n_a^* - n_a, n_b - 1) \implies n_l \le max(2, 0) \implies n_l <= 2 \implies l(s) = l_2 s^2 + l_1 s + l_0$$

$$n_l \le max(n_a - n_a, n_b - 1) \implies n_l \le max(2, 0) \implies n_l \le 2 \implies l(s) = l_2 s^2 + l_1 s + l_0$$
Resolver: $(s^3)(l_2 s^2 + l_1 s + l_0) + (s - 1)(p_2 s^2 + p_1 s + p_0) = (s + 1)^5$
https://pt.symbolab.com/solver/binomial-expansion-calculator

Resposta:
$$\frac{-(16s^2 + 6s + 1)}{s^2 + 5s + 26}$$

Resposta:
$$\frac{-(16s^2 + 6s + 1)}{s^2 + 5s + 26}$$

Projeto de alocação de polos

Resolver:
$$(s^3)(l_2s^2 + l_1s + l_0) + (s-1)(p_2s^2 + p_1s + p_0) = (s+1)^5$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} l_2 \\ l_1 \\ l_0 \\ p_2 \\ p_1 \\ p_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 5 \\ 10 \\ 10 \\ 5 \\ 1 \end{bmatrix} \Rightarrow x = \begin{bmatrix} 1 \\ 5 \\ 26 \\ -16 \\ -6 \\ -1 \end{bmatrix}$$

$$a(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = a_3 s^3, \quad a_3 = 1$$

 $b(s) = b_n s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0 = b_1 s^1 + b_0, \quad b_1 = 1, b_0 = -1$

```
linha 0:\begin{pmatrix}0\\0\end{pmatrix}
  linha 1: \binom{1}{0}\binom{1}{1}
  linha 2: \binom{2}{0}\binom{2}{1}\binom{2}{2}
  linha 3: \binom{3}{0}\binom{3}{1}\binom{3}{2}\binom{3}{3}
C_{n,p} = \begin{pmatrix} n \\ p \end{pmatrix} = \frac{n!}{n!(n-n)!}
  linha 0: 1
  linha 1 : 1 1
  linha 2: 1 2 1
  linha 3: 1 3 3 1
  linha 4: 1 4 6 4 1
  linha 5: 1 5 10 10 5 1
```

Forma geral Sylvester

$$a(s) = a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0 = a_3 s^3, \quad a_3 = 1$$

$$b(s) = b_n s^n + b_{n-1} s^{n-1} + \dots + b_1 s + b_0 = b_1 s^1 + b_0, \quad b_1 = 1, b_0 = -1$$

Γ	a_n a_{n-1}	$0 \\ a_n$	$0 \\ 0$		$0 \\ 0$	$b_n \\ b_{n-1}$		$0 \\ 0$		0
	a_{n-2}		a_n		0	_	b_{n-1}	b_n		0
	:	:	:		:	:	:	:		:
	a_1	a_2	a_3		÷	b_1	b_2	b_3		:
	a_0	a_1	a_2		:	b_0	b_1	b_2		•
	0	a_0	a_1		:	0	b_0	b_1		•
	:	• •	a_0		a_1	:	:	b_0		b_1
L	0	0	0	• • •	a_0	0	0	0	• • •	b_0

a(s), b(s) coprimos, para $det(S) \neq 0 \implies \exists S^{-1}$

Normas e outras métricas

Para analisar a estabilidade de sistemas adaptativos, faz-se necessário ferramentas e métricas que permitam avaliar se os sinais envolvidos são limitados, ou seja, possuem cota superior, ou mesmo se convergem para zero (ou para seus pontos de equilíbrio)

- a) Norma de um vetor $x = [x_1 \cdots x_n]^T$, $x_i \in R, ||x||$ é uma função com as propriedades:
- i) $||x|| \in R$, $||x|| \ge 0$ com ||x|| = 0 se e somente se x = 0 vetor nulo
- ii) $||\alpha x|| = |\alpha|||x||, \forall \alpha \in \mathbb{R}$
- iii) $||x+y|| \le ||x|| + ||y|| \to \text{designal dade triangular}$

Norma
$$p$$
 de $x = ||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ $||x||_1 = \sum_{i=1}^n |x_i| > ||x||_2 = ||x|| = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} > ||x||_{\infty} = \max_{i \le i \le n} |x_i|$

Norma Euclidiana

Normas e outras métricas

Uma matriz $A \in \mathbb{R}^{n \times m}$ uma aplicação linear (operador) do espaço \mathbb{R}^n no espaço \mathbb{R}^m

Definição: Seja $|\cdot|$ uma norma dada. Então, para uma matriz $A \in \mathbb{R}^{n \times m}$, a quantidade ||A|| definida por

$$||A|| := \sup_{x \neq 0, x \in \mathbb{R}^m} \frac{|Ax|}{|x|} = \sup_{|x|=1} |Ax|.$$

é denominada norma matricial induzida correspondente a norma de vetores | · |.

e a correspondente norma induzida

$$||A||_p = \sup_{x \neq 0, x \in \mathbb{R}^m} \frac{|Ax|_p}{|x|_p} = \sup_{|x|_p = 1} |Ax|_p.$$

Normas e outras métricas

Exemplos:
$$x = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}$$

 $A = \begin{bmatrix} 0 & 5 \\ 1 & 0 \\ 0 & -10 \end{bmatrix}$

$$||A||_1 = \max_{j \in \{1, \cdots, m\}} \left(\sum_{i=1}^n |a_{ij}|\right)$$
 Valor máximo da soma do módulo de cada coluna

$$||A||_2 = (\lambda_{max} A^T A)^{1/2}$$

Valor singular de um sistema, particular interesse na análise em frequência

$$||A||_{\infty} = \max_{i \in \{1, \dots, n\}} \left(\sum_{j=1}^{m} |a_{ij}| \right)$$
 Valor máximo da soma do módulo de cada linha

Comparação assintótica de sinais

Seja g(x) > 0 e suponha que $\lim_{x \to \infty} \frac{|f(x)|}{g(x)} \le c$ então, dizemos que f é da mesma forma de grandeza de g e representamos por $f = \mathcal{O}(g)$

Exemplo:
$$f(x) = xsenx$$
, $g(x) = x$, $\lim_{x \to \infty} \frac{|xsenx|}{x} = \frac{x|senx|}{x} = |senx| \le 1$

Seja g(x)>0 e suponha que $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$ então, dizemos que f é desprezível em relação a g e representamos por f=o(g)

Exemplo:
$$f(x) = x$$
, $g(x) = x^2$, $\lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0$