Effectiveness of Data Augmentation to Identify Relevant Reviews for Product Question Answering

Kalyani Roy, Avani Goel, Pawan Goyal

Dept. of CSE, IIT Kharagpur, India

Objective

- With the rapid growth of e-commerce, there is a need to provide automated answers to customer posted questions.
- A potential solution would be to automatically identify the answer to the new question from the already posted reviews.
- We attempt to improve the task of finding relevant review (ranking) with a better transformer-based model and Data Augmentation technique using T5.

2 Example Product Snapshot

The plausible answers to the question from the reviews are highlighted in **blue**. The texts inside the **green** rectangles are the summaries of the reviews.

3 Problem Statement

Given a question Q about a product P and a set of reviews $R = \{r_1, r_2, r_3, \dots\}$ for that question, our aim is to provide a ranked list of reviews $R' = \{r'_1, r'_2, r'_3, \dots\}$ where r'_i are ranked in order of decreasing relevance with question Q.

4 Synthetic Training Data Creation

- Due to lack of a labeled dataset which contains question along with its relevant reviews, we resort to synthetic training settings.
- We use Amazon Question Answer Dataset and Amazon Review Dataset.
- For every question Q, we select the positive response A_p with the most helpful votes. We randomly select an answer from a different question of the same product as the negative answer A_n .
- By utilizing Q, A_p , and A_n , we train a classifier with BERT that predicts whether an answer is relevant to a given question or not.
- Initially, we choose the top 100 review sentences using BM25. We refine this list with the trained classifier, and we take the top 10 reviews as the set R for each question.
- QAR Dataset is our synthetic dataset that consists of Q, R, A_p , and A_n .

Data Augmentation

- We consider the review of a product as "context" and the summary as the "answer" and attempt to generate question with it.
- FT1 model: The T5 model that is already fine-tuned on the question generation task on the SQuAD dataset.

FT2 model: We use FT1 to further fine-tune the model on the SubjQA dataset.

- We employ both FT1 and FT2 to generate new questions. We discard the questions containing possessive pronouns, and questions that do not end with '?'.
- We split the review into sentences to form the review list R, we take the review summary as our positive answer A_p . We combine this generated data with QAR Dataset to get QAR-aug Dataset.

Review: Since it's a long hose there was a bit of kink that I didn't notice. Turned the water on and it instantly blew a large hole in the hose, rendering it useless. The plastic is pretty thin, so be warned

Summary: On 3rd time used it had a huge hole in it.

Gen. Que. with FT1: What was the problem with the hose?

Review: This is a very cute decal for my baby girl's room, but it is not as tall as the picture depicts. I would suggest putting it behind the baby bed or dresser to hide how short it really is.

Summary: Cute, but not as big as in the photo. Gen. Que. with FT2: How is the decal?

to carefully check for any kinks.

6 Modelling Question Review Relevance

• Our base model simultaneously learns relevance functions between 'question and review' and 'review and answer'

$$P(r_i|Q) = softmax(W^T Tran(Qr_i))$$

$$P(A_p|r_i) = \sigma(W^T Tran(A_pr_i))$$

$$P(A_n|r_i) = \sigma(W^T Tran(A_nr_i))$$

W is a learnable matrix, and Tran(XY) denotes the representation of the paired sentences X and Y using transformer.

• We score an answer by combining the learnt relevance functions:

$$P(A_p|Q) = \sum_{r_i} P(A_p|r_i) P(r_i|Q)$$

$$P(A_n|Q) = \sum_{r_i} P(A_n|r_i) P(r_i|Q)$$

• The objective of the model is to rank positive answer higher than the negative answer.

$$loss = max(0, P(A_p|Q) - P(A_n|Q) - \delta)$$

• At the time of inference, we use the learned relevance function between 'question and review' to rank the reviews related to a question.

Experiments

• For evaluating the models, we use the annotated dataset from RIKER [2]

	nDCG	BM25	RIKER [2]	Bert-RR [1]		Deberta-RR	
	(%)	_	_	×	\checkmark	×	\checkmark
Baby	@1	42.08	_	55.00	62.08	59.17	64.16
	@3	38.64	_	57.95	61.32	60.70	63.28
	@5	44.34	_	61.60	63.79	64.71	66.85
	@10	52.76	64.80	66.95	69.31	67.51	70.78
Tools & Home	@1	37.50	_	40.83	46.25	41.25	44.17
	@3	38.44	_	45.32	45.82	44.14	45.46
	@5	38.36	_	45.76	46.60	46.68	46.90
	@10	43.81	45.12	49.67	50.69	50.13	50.75
Patio Lawn & Garden	@1	31.25	_	45.00	49.16	48.33	50.00
	@3	34.70	_	44.46	47.13	48.96	52.11
	@5	36.40	_	46.88	50.52	49.99	52.35
	@10	44.04	55.91	55.01	58.30	57.17	58.99
Average	@1	36.94	_	46.94	52.50	49.58	52.78
	@3	37.26	_	49.24	51.42	51.27	53.62
	@5	39.70	_	51.41	53.64	53.79	55.37
	@10	46.87	55.28	57.21	59.43	58.27	60.17

Table 1:Performance of all the models in three categories. The cross and the checkmark symbols indicate that the model is trained with the QAR dataset and the augmented dataset QAR-aug, respectively.

8 Conclusion

- We utilize transformer-based models to provide relevant reviews to a new question.
- We present a data augmentation technique by fine-tuning the T5 model to generate new questions from customer reviews.
- Experimental results show substantial improvements over the existing approaches using the data augmentation technique.

References

- [1] Zhang, S., Lau, J.H., Zhang, X., Chan, J., Paris, C.: Discovering relevant reviews for answering product-related queries. In: 2019 IEEE International Conference on Data Mining (ICDM). pp. 1468–1473 (2019)
- [2] Zhao, J., Guan, Z., Sun, H.: Riker: Mining rich keyword representations for interpretable product question answering. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. p. 1389–1398 (2019)

Dataset: https://github.com/kalyani-roy/DARR