DM3: Chimie

1 Structure de la matière

- 1. Règles de remplissage :
 - règle de Pauli : deux électrons ne peuvent avoir leurs quatre nombres quantiques identiques
 - règle de Hund : les électrons se répartissent dans les cases quantiques avant de s'apparier
 - $-\,$ règle de Klechkowski : Le remplissage s'effectue selon des valeurs croissantes de (n+l), en cas d'égalité on remplit d'abord le plus petit n.
- 2. Carbone : $Z_{\rm C} = 6:1s^22s^22p^2$
- 3. Le silicium est juste en dessous du carbone donc sa configuration électronique finit en $3p^2$. Sa configuration électronique est $1s^22s^22p^63s^23p^2$ donc son numéro atomique est $Z_{Si}=14$
- 4. Les deux atomes ont le même nombre d'électrons de valence (4) : ils auront des propriétés chimiques similaires.

2 Structure cristalline du β -SiC

- 5. Dans la maille, il y a :
 - 4 atomes de carbone;
 - $-8 \times (1/8) + 6 \times (1/2) = 4$ atomes de silicium.

Il y a donc autant d'atomes de carbone que de silicium dans la maille : on pourra prendre la formule SiC pour le carbure de silicium.

3 Formation de SiC par CVD

- 6. Quotient de la réaction : $Q_{\rm r}=\frac{(P_{\rm HCI}/P^\circ)^3}{P_{\rm CH_3SiCl_3}/P^\circ}=\frac{P_{\rm HCI}^3}{P^{\circ 2}P_{\rm CH_4SiCl_4}}$
- 7. Tableau d'avancement :

	$\mathrm{CH_3SiCl}_{3(g)}$	SiC(s)	$\mathrm{HCl}_{(g)}$	n_{totgaz}
E.I	n	0	0	n
E(t)	$n(1-\alpha)$	$n\alpha$	$3n\alpha$	$n(1+2\alpha)$

- 8. À l'équilibre on a $K=Q_{\rm r}=\frac{P_{\rm HCl}^3}{P^{\circ 2}P_{\rm CH_3SiCl_3}}$ où la pression partielle P_i d'une espèce gazeuse est donnée par $P_i=x_iP_{tot}=x_iP^{\circ}$. Avec $x_i=n_i/n_{totgaz}$. On en déduit que $K=\frac{27\alpha_q^3}{(1+2\alpha_q)^2(1-\alpha_q)}$, dont la résolution numérique donne $\alpha_q=0.80$.
- 9. Une augmentation isotherme (à température constante) de la pression augmente la valeur de Q et aura tendance à déplacer l'équilibre dans le sens de fabrication des réactifs, et donc aura tendance à faire diminuer la valeur de α_q
- Le temps de demi-réaction correspond au temps au bout duquel la quantité de matière est divisée par 2.

n (mol)	0.10	0.20	0.30
$\overline{ au_{1/2}}$ (min)	21	21	21

Le temps de demi-réaction est indépendant de la quantité de matière initiale : la réaction est d'ordre 1.

- 11. Comme la réaction est d'ordre 1 la vitesse de réaction est v(t) = k[MTS] Donc la concentration de MTS vefifie l'équation différentielle $k[\text{MTS}] = -\frac{\text{d} \left[\text{MTS}\right]}{\text{d} \, t}$.
- 12. En résolvant l'équation différentielle précédente, on trouve :

$$[MTS](t) = [MTS]_0 e^{-kt}$$

- 13. Le temps $au_{3/4}$ de 3/4 de réaction est atteint lorsque MTS] $(au_{3/4}) = [\text{MTS}]_0/4$ d'où $au_{3/4} = \frac{\ln(4)}{k} = \frac{2\ln(2)}{k}$
- 14. On a $\tau_{1/2}=\frac{\ln(2)}{k}$ donc $\tau_{3/4}/\tau_{1/2}=2$. Cela est vérifié sur les courbes où l'on trouve que $\tau_{3/4}$ est d'environ 42 minutes.
- 15. On écrit la loi d'Arrhenius aux températures T_2 et T_3 :

$$- \text{ à } T_2 : k(T_2) = A \exp(-E_a/RT_2)$$

2016-2017

page 2/2

$$\begin{array}{l} -\,\, \mathrm{\grave{a}}\,T_3: k(T_3) = A\exp(-E_a/RT_3)\\ \\ \mathrm{Or}\,\,\tau_{1/2}(T_3) = \tau_{1/2}(T_2)/20 = \ln(2)/(20k(T_2))\; \mathrm{donc}\,\,k(T_3) = 20k(T_2).\,\mathrm{D'o\grave{u}}\\ \\ E_a = \frac{\ln(20)R}{\frac{1}{T_2} - \frac{1}{T_3}} = 388\,\mathrm{kJ}\,\mathrm{mol}^{-1} \end{array}$$