HW5 — Conv Neural Network

Please submit your solutions in the jupyter notebook file (i.e., ipynb)

1 Programming Assignment

- 1. Take the "MNIST-CNN.ipynb" and "MNIST-ResNet.ipynb" as your start point:
 - (a) Build a customized data set, \mathcal{D} , with labels of only two digits (e.g., images with labels of only 1 and 3). Pick a data set size that aligns with your computational capability. Show me your code. Plot a subset of your customized data set.
 - (b) Train a CNN model with \mathcal{D} . Sweep the data set once (i.e., with 1 epoch) with your choice of batch size, optimizer, and other configurations. Show me your code.
 - (c) Using the same data loader and train-test split, train a ResNet model with \mathcal{D} . Sweep the data set once (i.e., with 1 epoch) with your choice of batch size, optimizer, and other configurations. Show me your code.
 - (d) Using the same data loader and train-test split, train a Feedforward Neural Network (NN) model with \mathcal{D} . Sweep the data set once (i.e., with 1 epoch) with your choice of batch size, optimizer, and other configurations. Show me your code.

2 Definitions & Concepts

You must create a "Markdown" block for this part in your jupyter notebook

- 1. Consider a CNN layer with the following characteristics:
 - Input volume size: 32x32x3 (where 32x32 is the spatial dimension of the input, and 3 is the number of input channels, e.g., RGB image)
 - Number of conv kernels: 10
 - Kernel size: 5×5
 - Stride: 1Padding: 0
 - (a) How many parameters does the above model have?
 - (b) What is the minimum size of the image that still allows the above model to remain functional and compatible?
- 2. What is the key problem that ResNet aims to address in deep neural networks?
- 3. What is the key problem that dropout aims to address in deep neural networks?

Submitted by Bowen Weng on.