Логика и алгоритмы

Задачи семинаров 4-5

ТЕОРЕМА 0.1 (Цермело). Для любого множества X существует отношение $<\subset X \times X$, которое является полным порядком на X.

ТЕОРЕМА 0.2 (лемма Цорна). Пусть (P, <) — частично упорядоченное множество, в котором всякая цепь имеет верхнюю грань. Тогда (P, <) содержит максимальный элемент.

- 1. Докажите, что всякое бесконечное множество имеет счетное подмножество.
- 2. Докажите, что если A бесконечное множество, B не более чем счетное (т.е. конечное или счетное) множество, то $A \cup B \sim A$.
- 3. Выведите аксиому выбора из леммы Цорна и из теоремы Цермело (в теории множеств Цермело-Френкеля без аксиомы выбора).
- 4. С помощью леммы Цорна докажите, что всякая цепь в частично упорядоченном множестве содержится в максимальной (по включению).
- 5. Докажите, что любой частичный порядок на множестве X можно продолжить до линейного. (Отношение R_2 продолжает R_1 , если $R_1 \subset R_2$.)
- 6. Докажите теорему Гамеля о том, что в любом векторном пространстве существует базис.
- 7. Проверьте, что все базисы имеют одинаковую мощность.
- 8. Какую мощность будет иметь базис в случае векторного пространства \mathbb{R} над полем \mathbb{Q} ?
- 9. Докажите, что существует функция $f: \mathbb{R} \to \mathbb{R}$ отличная от линейной и удовлетворяющая тождеству f(x+y) = f(x) + f(y) для всех $x, y \in \mathbb{R}$. Может ли такая функция иметь предел в точке x = 0?
- 10. Докажите, что между \mathbb{R} и \mathbb{C} существует биекция, сохраняющая операцию сложения, то есть аддитивные группы (\mathbb{C} , +) и (\mathbb{R} , +) изоморфны. (Вместо \mathbb{C} можно взять аддитивную группу n-мерного векторного пространства \mathbb{R}^n .)
- 11. Докажите, что существует подмножество \mathbb{R}^2 , которое пересекается с каждой прямой на плоскости ровно по двум точкам.