Listex 5

João Pedro Machado Silva, BV3032477

Ex2:

• A:

Caso Base: T(0) = a

Passo Recursivo = T(n-1) + b, n > 0

$$T(0) = a$$

$$T(1) = T(0) + b = a + b$$

$$T(2) = T(1) + b = a + 2b$$

$$T(3) = T(2) + b = a + 3b$$

$$T(n)=a+n.b \in O(n)$$

• B:

Caso Base: T(0) = a

Passo Recursivo = T(n/2) + b, n > 0 e no pior dos casos

$$T(0) = a$$

$$T(2) = T(1) + b = T(2^{1}) + b$$

$$T(4) = T(2) + b = T(2^2) + b$$

$$T(8) = T(4) + b = T(2^3) + b$$

$$T(2^{k}) = T(2^{k-1}) + b$$

Temos que $n = 2^k - k = \log n$

Porém o n é o menor número entre a e b, então:

$$T(n) = log(min(a,b)) \in O(log(min(a,b)))$$

• C:

Caso Base: T(0) = a

Passo Recursivo = T(n-1) + b, n > 0

$$T(1) = a$$

$$T(2) = T(1) + b = a + b$$

$$T(3) = T(2) + b = a + 2b$$

$$T(4) = T(3) + b = a + 3b$$

$$T(n)=a+(n-1).b\in O(n)$$

• D:

Caso Base:
$$T(0) = a$$
, $T(1) = a$

Passo Recursivo =
$$T(n-1) + b$$
, $n > 1$

$$T(0) = a$$

$$T(1) = a$$

$$T(2) = T(1) + b = a + b$$

$$T(3) = T(2) + b = a + 2b$$

$$T(4) = T(3) + b = a + 3b$$

$$T(n)=a+(n-1).b\in O(n)$$