[Cauchy Condensation Test] Let $\{a_k\}$ be a sequence such that:

1.
$$a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_k \ge a_{k+1} \ge \cdots$$

2.
$$a_k \ge 0$$
 for all $k \in \mathbb{N}$

Then the series $\sum_{k=1}^{\infty} a_k$ converges if and only if $\sum_{k=0}^{\infty} 2^k a_{2^k}$ converges.

Corollary: The series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if and only if p > 1.

Proof:

For any $k \in \mathbb{N}$, let $a_k := \frac{1}{k^p} > 0$. It is easy to see that $a_k > a_{k+1}$.

Note the series:

$$\sum_{k=1}^{2^{n}} \frac{1}{k^{p}}$$

$$= \frac{1}{1^{p}} + \frac{1}{2^{p}} + \frac{1}{3^{p}} + \dots + \frac{1}{2^{np}}$$

$$\leq \frac{1}{1^{p}} + \frac{1}{2^{p}} + \frac{1}{2^{p}} + \dots + \frac{1}{2^{n-1}p}$$

$$\leq \frac{1}{1^{p}} + \frac{2}{2^{p}} + \dots + \frac{2^{n-1}}{2^{(n-1)p}}$$

$$\leq \sum_{k=0}^{n-1} 2^{k} a_{2^{k}} = \sum_{k=0}^{n-1} \frac{1}{2^{k(p-1)}}$$

k=0
$$k=0$$
 $\sum_{k=0}^{\infty} 2^k a_{2^k} = \sum_{k=0}^{\infty} \frac{2^k}{2^{kp}} = \sum_{k=0}^{\infty} \frac{1}{2^{k(p-1)}}.$

If $p \le 1$, $\frac{1}{2^{k(p-1)}} \ge 1$, then by Comparison Test, $\sum_{k=0}^{\infty} \frac{1}{2^{k(p-1)}}$ diverges. So, by Cauchy Condensation Test, the series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if and only if

p > 1. \square