SPH3U0

Position, Displacement and Velocity Practice

Finding Displacement from a Change in Position: $\overrightarrow{\Delta d} = \overrightarrow{d_2} - \overrightarrow{d_1}$

1. A soccer coach is pacing along the sideline as her team plays a close game. She starts at position A at time zero. She walks to position B and then turns around walking to position C and arrives at position D at time 4.00 min.

a) State her position with respect to the 0 reference point (Home) at each location. Make sure to indicate the full position!

- b) Find her displacement when she walks from: しょい じっト A to B: DI = dz - d = 50m (W) - 50 0m (E) = -50-50,0m2-55.0m265.0m (U)
 - ii.

 - B to C: $\Delta \vec{d} = \vec{d}_3 \vec{d}_2^2$ | 10.0 m(E) 5.0 m(D) = 10.0 (-5.0) = 15.0 m(E)

 C to D: $\Delta \vec{d} = \vec{d}_4 \vec{d}_3^2$ | 35.0 m(E) 10.0 m(E) = 25.0 m(E)

 A to D: $\Delta \vec{d} = \vec{d}_4 \vec{d}_1^2$ | 35.0 m(E) 50 o m(E) -15.0 m(E) = 15.0 m(W)
- c) If it takes her 4.00 minutes to walk from A to D, find her average velocity.

- 2. A hockey player starts 25.0 m North of centre line and skates to a position 36.0 m South of centre line in a time of 12.0 seconds.
 - a) Draw a diagram representing the hockey's player motion and find the resultant displacement.

b) Calculate the resultant displacement using the math method. c) Find the average velocity of the player's motion.

SPH3U0

Position, Displacement and Velocity Practice

Finding Displacement from a Change in Position: $\overrightarrow{\Delta d} = \overrightarrow{d_2} - \overrightarrow{d_1}$

1. A soccer coach is pacing along the sideline as her team plays a close game. She starts at position A at time zero. She walks to position B and then turns around walking to position C and arrives at position D at time 4.00 min.

a) State her position with respect to the 0 reference point (Home) at each location. Make sure to indicate the full position!

- b) Find her displacement when she walks from: しょう じょう A to B: DI = d2 - d, = 50m (W) - 50 om (E) = -50-50, 0m2-55 om = 55.0m (W)
 - ii.

 - B to C: $\Delta \vec{d} = \vec{d}_3 \vec{d}_2^2 = 10.0 \text{ m(E)} 5.0 \text{ m(D)} = 10.0 (-5.0) = 15.0 \text{ m(E)}$ C to D: $\Delta \vec{d} = \vec{d}_4 \vec{d}_3^2 = 35.0 \text{ m(E)} 10.0 \text{ m(E)} = 25.0 \text{ m(E)}$ A to D: $\Delta \vec{d} = \vec{d}_4 \vec{d}_1^2 = 35.0 \text{ m(E)} 50.0 \text{ m(E)} = -15.0 \text{ m(E)}^2 = 15.0 \text{ m(E)}$
- c) If it takes her 4.00 minutes to walk from A to D, find her average velocity.

- 2. A hockey player starts 25.0 m North of centre line and skates to a position 36.0 m South of centre line in a time of 12.0 seconds.
 - a) Draw a diagram representing the hockey's player motion and find the resultant displacement.
 - b) Calculate the resultant displacement using the math method.
 - c) Find the average velocity of the player's motion.

Finding Resultant Displacement from a series of displacements: $\overrightarrow{\Delta d_R} = \overrightarrow{\Delta d_1} + \overrightarrow{\Delta d_2} + \overrightarrow{\Delta d_3}$

3. Two dedicated cross country runners are out for a training run. They first run 3.0 km west in a time of 18.0
minutes. They then turn around and run 1.8 km east in a time of 11.0 minutes when they stop to chat with
friends coming from school.

a) Find their resultant displacement and total distance travelled.

b) Find their average velocity in km/h.

c) Find their average speed in km/h.

d) Discuss any differences you notice between the magnitude of their average velocity during the fun.

and their average speed. Ew . ad=3,orm(w) Xd,21.8 KM(E) Stz 18 omin + 11 cm 2.29.0min = 0.483h

sar advota =3.0 km(w)+ lokm(d) = -3.0 Km +1.8 Km = -1.2KM = 1. LKMCW

VOV = AdT = 3.5Km+1811 OL 0413h = 9.93 Km/

VAV DE 1.28m(W)

4. A student is delivering newspapers on a paper route. She walks 1.2 km north from home in a time of 12.0 minutes and then turns around and walks 2.5 km south in a time of 30.0 minutes. Just as she is about to go home, she discovers she missed one delivery. She then walks 1.8 km north in a time of 15.0 minutes to deliver her last paper.

a) Find her resultant displacement and total distance travelled. c) Find her average speed.

b) Find her average velocity. DJ = KZKM(N) Dd, 25km (5)

her ET+

- 4dz= 1.8 km (N) St= 12.0min + 320min + 15.0min &dz?
- = 57. JMI~
- Let NZ+
- sar saltodet see =1.2Km(N)+LSKm(S)+18Km(N) - +1.2-2.5+1,8 = 0.5 Km [N) Sdrzddit Adz + 6d3 =1,2+2.5+1.8 = 5.5 Km
 - = 0.5 KM (N) Vav= Dot = 5,5km - 5.8 Km/h

Jaske 0.5KM[N]

5. A track and field runner runs once around the LASS track in a time of 60.0 seconds. The total track length is 4.00 x 10² m.

- a) Find the runner's resultant displacement and total distance travelled.
- b) Find the runner's average velocity and speed.
- c) Briefly explain your answers to part (b).

Dd= 4 OUXIOM St = 60,05

- = 0 60.03
- Var Dd

1) Thetidocity is zen = 400×10 m as the displacement

60:5 the zero. The runn

= 6.67 M/s stupped and started in the zers. The rurer

6. What is wrong with the following statement? "A man walked at an average velocity of 5.2m/s." This statement is incorred as it refers to vacaty (a vector) but does not would like time.