

Universidade do Minho

Departamento de Matemática e Aplicações

Séries Temporais FORMULÁRIO

Docente: Raquel Menezes

Introdução

Definição Dado um p.e. X(t), tal que para todo o t temos $E[X(t)^2] < +\infty$, define-se:

- 1. função valor médio $\mu(t) = E[X(t)]$
- 2. função de variância $\sigma^2(t) = Var[X(t)] = E[(X(t) \mu(t))^2]$
- 3. função de covariância $\gamma(t_1, t_2) = Cov[X(t_1), X(t_2)] = E[(X(t_1) \mu(t_1))(X(t_2) \mu(t_2))]$
- 4. função de correlação $\rho(t_1, t_2) = \frac{\gamma(t_1, t_2)}{\sigma(t_1)\sigma(t_2)} = \frac{Cov[X(t_1), X(t_2)]}{\sqrt{Var[X(t_1)]Var[X(t_2)]}}$

Definição Um p.e. diz-se um processo de ruído branco se:

- 1. $E[X(t)] = \mu$ (usualmente $\mu = 0$)
- 2. $Cov[X(t_1), X(t_2)] = 0, t_1 \neq t_2$
- 3. $Var[X(t)] = \sigma^2$, independentemente de t (homocedástico)

Função de auto-covariância

Para um processo estacionário de 2ª ordem define-se a função de auto-covariância

$$\gamma_k = Cov[X_t, X_{t+k}] = E[(X_t - \mu)(X_{t+k} - \mu)]$$

Função de autocorrelação (FAC)

Para um processo estacionário de 2ª ordem define-se a função de autocorrelação

$$\rho_k = Corr[X_t, X_{t+k}] = \frac{\gamma_k}{\gamma_0} = \frac{Cov[X_t, X_{t+k}]}{\sigma^2}$$

Função de autocorrelação parcial (FACP)

Por vezes interessa além de estudar a correlação de uma forma global, também a correlação parcial entre X_t e X_{t+k} , quando se fixam as variáveis intermédias $X_{t+1}, X_{t+2}, ..., X_{t+k-1}$.

Alguns modelos estacionários lineares

Processos autoregressivos de ordem p, AR(p)

O processo X_t diz-se AR(p) quando satisfaz a equação às diferenças estocásticas

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + \epsilon_t$$

ou

$$(1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p) X_t = \epsilon_t$$

onde $\Phi_p(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$ é o polinómio regressivo de ordem p e ϵ_t um ruído branco. Note-se que ϵ_t é independente de X_{t-k} para $\forall k \geq 1$.

A fórmula geral para a função ρ_k de um processo AR(p) pode ser obtida por

$$\rho_k = \sum_{i=1}^p A_i G_i^k.$$

Os valores das p constantes A_i podem ser obtidos tendo em conta as p primeiras autocorrelações, ou seja, à custa do seguinte sistema de equações

$$\rho_{1} = \phi_{1} + \phi_{2}\rho_{1} + \dots + \phi_{p}\rho_{p-1}
\rho_{2} = \phi_{1}\rho_{1} + \phi_{2} + \dots + \phi_{p}\rho_{p-2}
\vdots
\rho_{p} = \phi_{1}\rho_{p-1} + \phi_{2}\rho_{p-2} + \dots + \phi_{p}$$

Processos de médias móveis de ordem q, MA(q)

Os processos MA(q) são da forma

$$X_t = \epsilon_t - \theta_1 \epsilon_{t-1} - \theta_2 \epsilon_{t-2} - \dots - \theta_q \epsilon_{t-q}$$

ou

$$X_t = (1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q) \epsilon_t$$

onde $\Theta_q(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$ é o polinómio médias móveis de ordem q.

A função de autocovariâncias é dada por:

$$\gamma_k = \begin{cases} \sigma_{\epsilon}^2 (1 + \sum_{i=1}^q \theta_i^2) & \text{se } k = 0\\ \sigma_{\epsilon}^2 (-\theta_k + \sum_{i=1}^{q-k} \theta_i \theta_{k+i}) & \text{se } k = 1, 2, \dots, q\\ 0 & \text{se } k \ge q+1 \end{cases}$$

e a **FAC** é dada por

$$\rho_k = \begin{cases} 1 & \text{se } k = 0\\ \frac{-\theta_k + \sum_{i=1}^{q-k} \theta_i \theta_{k+i}}{1 + \sum_{i=1}^{q} \theta_i^2} & \text{se } k = 1, 2, \dots, q\\ 0 & \text{se } k \ge q + 1 \end{cases}$$

Processos mistos autoregressivos e médias móveis, ARMA(p,q)

Um processo ARMA(p,q) vem definido pela seguinte equação

$$\Phi_p(B)X_t = \Theta_q(B)\epsilon_t$$

onde ϵ_t é um processo ruído branco, com ϵ_t independente de $X_{t-k}, \ \forall k \geq 1$, e os polinómios $\Phi_p(B)$ e $\Theta_q(B)$ são dados por

$$\Phi_p(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$
 e
 $\Theta_q(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$.

Consultar Tabela 2.1 para comparação dos vários tipos de processos ARMA(p,q).

Processos autoregressivos estritamente sazonais

Os processos $AR(P)_s$ são da forma

$$X_t = \nu_1 X_{t-s} + \ldots + \nu_P X_{t-sP} + \epsilon_t$$
 ou $N_P(B) X_t = \epsilon_t$

onde $N_P(B) = 1 - \nu_1 B^s - \dots - \nu_P B^{sP}$ representa o polinómio autoregressivo sazonal de grau P em B. Estes processos são sempre invertíveis e serão também estacionários caso as raízes do polinómio $N_P(B)$ estejam fora do círculo unitário.

Processos de médias móveis estritamente sazonais

Os processos $MA(Q)_s$ são da forma

$$X_t = \epsilon_t - \eta_1 \epsilon_{t-s} - \ldots - \eta_Q \epsilon_{t-sQ}$$
 ou $X_t = H_Q(B) \epsilon_t$

Tabela 2.1: Comparação dos vários tipos de processos ARMA(p,q)

	AR(p)	MA(q)	ARMA(p,q)
Modelo em	$\Phi_p(B)X_t = \epsilon_t$	$(\Theta_q(B))^{-1}X_t = \epsilon_t$	$(\Theta_q(B))^{-1}\Phi_p(B)X_t = \epsilon_t$
termos dos			
valores ante-	Série finita em X_t	Série infinita em X_t	Série infinita em X_t
riores de X_t			
Modelo em	$X_t = (\Phi_p(B))^{-1} \epsilon_t$	$X_t = \Theta_q(B)\epsilon_t$	$X_t = (\Phi_p(B))^{-1}\Theta_q(B)\epsilon_t$
termos dos			
valores ante-	Série infinita em ϵ_t	Série finita em ϵ_t	Série infinita em ϵ_t
riores de ϵ_t			
Condições	Raízes de $\Phi_p(B) = 0$		Raízes de $\Phi_p(B) = 0$
de estacio-	fora do círculo	Sempre estacionários	fora do círculo
naridade	unitário		unitário
Condições		Raízes de $\Theta_q(B) = 0$	Raízes de $\Theta_q(B) = 0$
de inverti-	Sempre invertíveis	fora do círculo	fora do círculo
bilidade		unitário	unitário
	Decaimento exponen-	Decaimento brusco	Decaimento exponen-
FAC	cial e/ou sinusoidal	para zero a partir de	cial e/ou sinusoidal
	para zero	k = q + 1	para zero
	Decaimento brusco	Decaimento exponen-	Decaimento exponen-
FACP	para zero a partir de	cial e/ou sinusoidal	cial e/ou sinusoidal
	k = p + 1	para zero	para zero

onde $H_Q(B) = 1 - \eta_1 B^s - \ldots - \eta_Q B^{sQ}$ representa o polinómio médias móveis sazonal de grau Q em B. Estes processos são sempre estacionários.

Processos mistos estritamente sazonais, $ARMA(P,Q)_s$

A generalização dos dois processos anteriormente descritos pode ser efectuada pelos seguintes modelos

$$N_P(B)X_t = H_Q(B)\epsilon_t.$$

Processos multiplicativos, $ARMA(p,q) \times (P,Q)_s$

Os processos multiplicativos com componentes sazonal e não sazonal são da forma

$$\Phi_p(B)N_P(B)X_t = \Theta_q(B)H_Q(B)\epsilon_t$$

onde $\Phi_p(B)$ e $N_P(B)$ representam os polinómios autoregressivo não sazonal e sazonal, e $\Theta_q(B)$ e $H_Q(B)$ representam os polinómios médias móveis não sazonal e sazonal, respectivamente.

Modelos não estacionários lineares

Processos integrados mistos, ARIMA(p, d, q)

Generalizando as ideias anteriores de modo a contemplar qualquer modelo ARMA, e permitindo que o operador autoregressivo tenha d raízes unitárias, chega-se à expressão

$$(1 - \phi_1 B - \dots - \phi_p B^p)(1 - B)^d X_t = (1 - \theta_1 B - \dots - \theta_q B^q) \epsilon_t.$$

ou

$$\Phi_p(B)\nabla^d X_t = \Theta_q(B)\epsilon_t.$$

Processos integrados mistos sazonais, $SARIMA(p, d, q) \times (P, D, Q)_s$ Este processo pode se escrever abreviadamente como

$$N_P(B)\Phi_p(B)\nabla^d\nabla_s^D X_t = \Theta_q(B)H_Q(B)\epsilon_t$$

onde $\nabla_s^D = (1 - B^s)^D$, e os polinómios $N_P(B)$, $\Phi_p(B)$, $\Theta_q(B)$ e $H_Q(B)$ foram definidos no capítulo 2.

Modelização ARIMA de séries temporais

Previsão com modelos ARIMA

Dado um processo ARIMA(p,d,q), denotado por $\Phi_p(B)(1-B)^dx_t = \Theta_q(B)\epsilon_t$, consideremos a sua representação $MA(\infty)$,

$$x_t = \Psi(B)\epsilon_t = \sum_{i=0}^{\infty} \psi_i \epsilon_{t-i}$$

onde $\psi_0=1$ e os restantes ψ_i podem obter-se à custa da equação

$$\Phi_n(B)(1-B)^d\Psi(B) = \Theta_n(B).$$

Para se determinar um intervalo de predição a 95% para a variável x_T tendo-se observado toda a série até x_T , calcula-se

$$[\hat{x}_{T+k} \pm 1.96\hat{\sigma}_{\epsilon}(1+\hat{\psi}_1^2+\ldots+\hat{\psi}_{k-1}^2)^{1/2}].$$