DATA 5690: Midterm

Tyler J. Brough

2024-02-28

Table of contents

Introduction

This is your midterm exam.

Frequentist Analysis

1. In this question your task is to carry out statistical inference for a binomial proportion from the frequentist perspective.

The frequentist agent confronts a tootsie roll candy machine with a fixed but unknown probability of dispensing a cherry tootsie roll denoted by θ .

a. Generate artificial data for this scenario with the following code:

```
import numpy as np

np.random.seed(42)

theta = 0.30
tootsie_rolls = np.random.binomial(n=1, p=theta, size=50)
```

The agent is given these data and told they represent draws from the candy machine where an observation of 1 represents a cherry tootsie roll and an observation of 0 represents a vanilla tootsie roll.

- b. Compute the maximum likelihood estimator $\hat{\theta}_{MLE}$ as though you were the agent. What is the agent's numerical point estimate of this maximum likelihood estimator?
- c. What is the sampling distribution of $\hat{\theta}_{MLE}$ according to the Central Limit Theorem? Make a plot of it using matplotlib.pyplot.
- d. Compute a 95% confidence interval for $\hat{\theta}_{MLE}$. What are the upper and lower bounds? Give a formal interpretation of this confidence interval.
- e. Conduct a hypothesis test that the tootsie roll machine is biased towards dispensing vanilla tootsie rolls with a level of significance of 5%.
 - State the null hypothesis.
 - State the alternative hypothesis.
 - Compute the test statistic and report its numerical value.
 - Compute the rejection region and report its numerical value.
 - Is this a one-tailed or two-tailed test?
 - What does the agent conclude? State it formally.

- f. Please redo parts a-e for $\theta = 0.45$.
- 2. In this question your task is to carry out statistical inference for count data from the frequentist perspective. Assume that these data represent visitors that arrive per hour to take a turn at the tootsie roll machine. Let λ be the hourly arrival rate of the visitors.
 - a. Generate artificial data for this problem with the following code:

```
import numpy as np

np.random.seed(42)

lam = 20
visits = np.random.poisson(lam=lam, size=50)
```

- b. The agent doesn't see the data-generating process but assumes that they come from a Poisson distribution with a fixed but unknown λ parameter. Compute the maximum likelihood estimator $\hat{\lambda}_{MLE}$.
- c. What is the sampling distribution of $\hat{\lambda}_{MLE}$ according to the Central Limit Theorem? Make a plot of it using matplotlib.pyplot.
- d. Compute a 95% confidence interval for $\hat{\lambda}_{MLE}$. What are the upper and lower bounds? Give a formal interpretation of this confidence interval.
- e. Conduct a hypothesis test that the true arrival rate is 18 visitors per hour.
 - State the null hypothesis.
 - State the alternative hypothesis.
 - Compute the test statistic and report its numerical value.
 - Compute the rejection region and report its numerical value.
 - Is this a one-tailed or two-tailed test?
 - What does the agent conclude? State it formally.
- 3. Use the IID bootstrap procedure to generate an approximate sampling distribution for $\hat{\lambda}_{MLE}$ in the previous problem using the same data that were given to the agent.
 - a. You can produce a single bootstrap sample with the following code:

```
np.random.seed(42)
x_b = np.random.choice(a=x, size=50, replace=True)
```

Given this bootstrap sample you would then compute a bootstrap replication of the MLE: $\hat{\lambda}^b_{MLE}$.

- b. Repeat the above for $b=1,\ldots,B$ with B=10,000.
- c. Reproduce the confidence interval and hypothesis test from question 2 above but using the bootstrap sampling distribution rather than appealing to the CLT.
- d. Compare this computational procedure to the classical approach using the CLT.

_Bayesian Analysis {.unnumbered}

- 4. Reproduce the statistical inference for the data from problem 1 above but from the subjective Bayesian perspective. Assume the agent has a prior of $\theta \sim Beta(a=1,b=1)$. Compute the posterior distribution. Make plots of the prior, likelihood and posterior using matplotlib.pyplot. Calculate the posterior probability that $\theta=0.5$. Compute a 95% equal-tailed credibility interval. Using Bayes' factors conduct a hypothesis test for $H_1:\theta=0.5$ (i.e. a fair coin) against $H_2:\theta\neq0.5$ (i.e. a biased coin). See Clyde, Merlise and Çetinkaya-Rundel, Mine and Rundel, Colin and Banks, David and Chai, Christine and Huang, Lizzy (2022) Chapter 3 for details on implementing Bayes' factors. Interpret the results. Compare the results to the frequentist procedure.
- 5. Reproduce the statistical inference for the data from problem 2 above but from the subjective Bayesian perspective. Assume the agent has the prior: $\lambda \sim Gamma(\alpha,\beta)$, which is the conjugate prior for the Poisson likelihood function. Compute the posterior distribution. Make plots of the prior, likelihood, and posterior using matplotlib.pyplot. Compute a 95% equal-tailed credibility interval. Using Bayes' factors conduct a hypothesis test for $H_1: \lambda = 18$ against $H_2: \lambda \neq 18$. Use a diffuse prior for H_2 .

References