28 | Regulation of Gene Expression

© 2017 W. H. Freeman and Company

Ways to Regulate Protein Concentration in a Cell

- Synthesis of primary RNA transcript
- How to process this RNA into mRNA
- Posttranscriptional modifications of mRN/
- Degradation of mRNA
- Protein synthesis
- Posttranslational modification of protein
- Targeting and transport of the protein
- Degradation of the protein
- Seven Processes That Affect the Steady-State Concentration of a Protein

The Vocabulary of Gene Regulation

Housekeeping gene

- under constitutive expression
- constantly expressed in approximately all cells

Regulated gene

- Levels of the gene product rise and fall with the needs of the organism.
- Such genes are inducible.
 - able to be turned on
- Such genes are also repressible.
 - able to be turned off

Small-Molecule Effectors Can Regulate Activators and Repressors

- Repressors reduce RNA Pol-promoter interactions or block the polymerase.
 - bind to operator sequences on DNA
 - usually near a promoter in bacteria but further away in many eukaryotes
- Effectors can bind to repressor and induce a conformational change.
 - change may increase or decrease repressor's affinity for the operator and thus may increase or decrease transcription

Activators Improve Contacts Between RNA Polymerase and the Promoter

- Binding sites in DNA for activators are called enhancers.
- In bacteria, enhancers are usually adjacent to the promoter.
 - often adjacent to promoters that are "weak" (bind RNA polymerase weakly), so the activator is necessary
- In eukaryotes, enhancers may be very distant from the promoter.

Negative Regulation

- Negative regulation involves repressors.
 - Example: Repressor binds to DNA and shuts down transcription
 - Alternative: Signal causes repressor to dissociate from DNA; transcription induced
 Negative regulation

Despite opposite effects on transcription, both are negative regulation

dissociation of repressor from DNA, inducing transcription. Repressor DNA Promoter Molecular signal Operator ON OR OFF

Molecular signal causes

Negative regulation Molecular signal causes binding of repressor to DNA, inhibiting transcription.

Figure 28-4a Lehninger Principles of Biochemistry, Seventh Edition

© 2017 W. H. Freeman and Company

© 2017 W. H. Freeman and Company

Positive Regulation

- Positive regulation involves activators.
- Enhance activity of RNA polymerase
 - Activator-binding sites are near promoters that weakly bind RNA Pol or do not bind at all.
 - It may remain bound until a molecule signals dissociation.
 - Alternatively, the activator may only bind when signaled.

Positive regulation
Molecular signal causes
dissociation of activator from
DNA, inhibiting transcription.

Figure 28-4c
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Positive regulation
Molecular signal causes
binding of activator to DNA,
inducing transcription.

Figure 28-4d *Lehninger Principles of Biochemistry*, Seventh Edition © 2017 W. H. Freeman and Company

DNA Looping Allows Eukaryotic Enhancers to Be Far from Promoters

- Activators can influence transcription at promoters thousands of bp away.
- How? Via formation of DNA loops
- Looping can be facilitated by architectural regulator proteins.
- Co-activators may mediate binding by binding to both activator and RNA polymerase.

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Many Bacterial Genes Are Transcribed And Regulated Together in an Operon

- An operon is a cluster of genes sharing a promoter and regulatory sequences.
 - Genes are transcribed together, so mRNAs are several genes represented on one mRNA (polycistronic).
- First example: the *lac* operon

The *lac* Operon Reveals Many Principles of Gene Regulation

- Work of Jacob and Monod 1960
- Shows how three genes for metabolism of lactose are regulated together as an operon:
 - $-\beta$ -galactosidase (lacZ)
 - cleaves lactose to yield glucose and galactose
 - lactose permease (galactoside permease; lacY)
 - transports lactose into cell
 - thiogalactoside transacetylase (lacA)
- Rely on negative regulation via a repressor.

Figure 28-7
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Lactose Metabolism in E. Coli

- When glucose is abundant and lactose is lacking, cells make only very low levels of enzymes for lactose metabolism.
 - Transcription is repressed.
- If glucose is scarce and cells are fed lactose, the cells can use it as their energy source.
- The cells suddenly express the genes for the enzymes for lactose metabolism.
 - Transcription is no longer repressed.

Inhibiting the Transcription of the *lac* Operon via a Repressor Protein

- A gene called *lacl* encodes a repressor called the Lac repressor.
 - It has its own promoter P_I.
 - Transcription of the repressor is independent of transcription of the enzymes the repressor regulates.
 - The repressor can bind to three operator sites (O_1-O_3) .
- The Lac repressor binds primarily to the operator O₁.
 - O₁ is adjacent to the promoter.
 - Binding of the repressor helps prevent RNA polymerase from binding to the promoter.
- The repressor also binds to one of two secondary operators, with the DNA looped between this secondary operator and O₁ (see Fig. 28-8b).

It reduces transcription, but *transcription occurs at a low, basal rate,* even with the repressor bound.

Structure of the *lac* Operon

Lac Repressor Bound to O₁ and O₃ with DNA Looped Between

How Lac Repressor Binds to DNA

- Lac repressor is a tetramer.
 - dimer of dimers
 - Each dimer binds to the palindromic operator sequence.
- The O₁ sequence reflects the symmetry of the repressor.
- There are approximately 20 repressors per cell.

The *lac* Operon Is Governed by More Than Repressor Binding

- The availability of glucose governs expression of lactose-digesting genes via catabolite repression.
 - When glucose is present, lactose genes are turned off.
 - It is mediated by cAMP and cAMP receptor protein (CRP or CAP for catabolite activator protein).

When Glucose Is Absent, *lac Operon*Transcription Is Stimulated by CRP-cAMP

- cAMP binds near the promoter.
 - stimulates transcription 50fold
 - bends DNA
 - open complex doesn't form readily without CRP-cAMP
- CRP-cAMP only has this effect when the Lac repressor has dissociated.
- cAMP is made when [glucose] is low.

Figure 28-17 Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

When Lactose Is Absent Little to No Transcription Occurs

Whether [glucose] is high or low, if lactose is absent → repressor stays bound.... → no transcription even when CRP-cAMP bind.

Glucose high, cAMP low, lactose absent

Lehninger Principles of Biochemistry, Seventh Edition

2017 W. H. Freeman and Company

Glucose low, cAMP high, lactose absent

Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

When Lactose Is Present, Transcription Depends On Glucose Level

 Repressor dissociates, but transcription is only stimulated significantly if cAMP rises.

Glucose high, cAMP low, lactose present

Lehninger Principles of Biochemistry, Seventh Edition © 2017 W. H. Freeman and Company

Figure 28-18d
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company

Glucose low, cAMP high, lactose present

Two Requirements for Strongest Induction of the *lac* Operon

- Lactose must be present to form allolactose to bind to the repressor and cause it to dissociate from the operator.
 - reducing repression
- 2. [Glucose] must be low so that cAMP can increase, bind to CRP, and the complex can bind near the promoter
 - causing activation

Combined Effects of Glucose and Lactose on the *lac* Operon

- When lactose is low, repressor is bound:
 - →inhibition
- When lactose is high, repressor dissociates
 - permitting transcription
- When glucose is high, CRP is not bound and
 - → transcription is dampened
- When glucose is low, cAMP is high and CRP is bound
 - →activation

The trp Operon

Figure 28-19
Lehninger Principles of Biochemistry, Seventh Edition
© 2017 W. H. Freeman and Company