Feuille 3 Suites Récurrentes

Il y a plusieurs types d'exercices : les exercices dits « de calculs » – marqués par un (C) – que vous devez pouvoir traiter en autonomie et sans erreur : des questions de ce type seront posées à l'examen.

Exercice 1. On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=2$ et $u_{n+1}=u_n^2+2$.

- 1. Montrer que cette suite est bien définie et strictement croissante.
- 2. Étudier sa convergence.

Exercice 2. Soit $a \in \mathbb{R}$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = a$ et $u_{n+1} = \sqrt{u_n + 1}$.

- 1. Pour quels réels a cette suite est bien définie?
- 2. Si (u_n) converge, quelles sont les limites possibles?
- 3. Étudier la convergence en fonction du paramètre a.

Exercice 3. On considère la fonction f définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{2}{1+x}$. On considère la suite définie par $u_0 = 2$, $u_{n+1} = f(u_n)$.

- 1. Montrer que l'intervalle $\left[\frac{1}{2}, 2\right]$ est stable par f.
- 2. En déduire que la suite (u_n) est bien définie et déterminer les limites potentielles.
- 3. Que dire des sens de variations des sous-suites u_{2n} et u_{2n+1} ?
- 4. Montrer que pour tout entier naturel n, on a $|u_{n+1}-1| \leq \frac{2}{3}|u_n-1|$.
- 5. La suite (u_n) converge-t-elle?

Exercice 4. Étudier la suite $(u_n)_{n\in\mathbb{N}}$, telle que $u_0\in\mathbb{C}$ et pour tout $n\in\mathbb{N}$,

$$u_{n+1} = \frac{1}{5}(3u_n - 2\overline{u_n})$$

Exercice 5. Soient $a, b \in \mathbb{R}$ avec $a \neq 1$ et $(u_n)_{n \in \mathbb{N}}$ la suite définie par la relation de récurrence $u_{n+1} = au_n + b$.

- 1. Quelle est la seule limite possible ℓ de la suite $(u_n)_{n\in\mathbb{N}}$?
- 2. Soit $v_n = u_n \ell$. Montrer que la suite $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique, et en déduire la nature de la suite $(u_n)_{n \in \mathbb{N}}$ selon les valeurs de a.
- 3. Application : on considère un carré de côté 1. On le partage en 9 carrés égaux, et on colorie le carré central. Puis, pour chaque carré non-colorié, on réitère le procédé. On note u_n l'aire coloriée après l'étape n. Quelle est la limite de la suite $(u_n)_{n\in\mathbb{N}}$?

Exercice 6. Soit $N \geq 2$ un entier. On cherche une approximation de \sqrt{N} .

1. Appliquer la méthode de Newton à la fonction $f(x) = x^2 - N$. Comment est définie la suite récurrente obtenue?

- 2. Quels sont les points de départ pour lesquels la méthode de Newton donne une suite qui converge effectivement vers \sqrt{N} .
- 3. Soit (u_n) une telle suite. On suppose que $\sqrt{N} < u_0 < \sqrt{N} + 1$. Montrer que pour tout entier n, on a $0 < u_{n+1} \sqrt{N} \le (u_n \sqrt{N})^2$. On dit que la convergence est quadratique.
- 4. Et pour approximer $N^{\frac{1}{k}}$, avec k un entier?

Exercice 7 (Pour aller plus loin : Suites récurrentes linéaires d'ordre 2). Pour chacune des récurrences ci-dessous, trouver une base de l'ensemble des solutions et donner l'expression du terme général de la suite qui vérifie cette récurrence et $u_0 = 1$, $u_1 = 0$. On pourra s'aider des méthodes exposées dans le devoir.

- 1. $u_{n+2} 3u_{n+1} + 2u_n = 0$.
- 2. $u_{n+2} 2u_{n+1} + u_n = 0$. 3. $u_{n+2} 4u_{n+1} + 8u_n = 0$.