Computing and Numerical Methods Part II Report:

Using C++ to code a simulation, and provide a convergence study of a Vessel System's Dynamics **Q6)(a)**

Case	System	Vessel Parameters						
	Parameters	m	Α	K	y_0	\dot{y}_0	h_0	
Single Vessel, no	T=1,	1.0	0.1	0.0	-0.1	0.0	0.0	
drag	$C_D = 0.0$							
Single Vessel, low	T=1,	5.0	0.5	0.0	0.1	-0.5	0.0	
drag	$C_D = 0.1$							
Sinking Vessel	T=2,	100.0	0.1	1000.0	0.0	0.0	0.0	
	$C_D = 0.0$							
Three Vessel	T = 10,	1	0.1	20	-0.1	0.0	0.0	
	$C_D = 0.01$	10.0	0.5	10.0	-0.1	0.0	0.0	
		50.0	10.0	1.0	-0.1	0.0	0.0	

ldentify and state the maximum time-step for a converged solution for FE and RK4.

Running test cases for the first test-case (Single Vessel, no drag).

The baseline solution is defined as the solution given by the numerical method using a sensible base time step, as stated below.

The maximum time step is defined as the largest time step falling within the 10% deviation of the baseline solution.

Case 1

The procedure is outlined below, using a leapfrog method:

ii) State, in table form, the final displacements, velocities, and water levels of the vessels.

Case	Method	Vessel	Max Step	Final	Final	Final Water	
			<mark>Size</mark>	Displacement Velocity		Levels	
			<mark>(m)</mark>	(m)	(m/s)	(m)	
Single Vessel,	RK4	1		-0.099986	-0.317409	0.000000	
no drag	FE	1		-0.099552	-0.316048	0.000000	
Single Vessel,	RK4	1		0.006299	-0.236070	0.000000	
low drag	FE	1		0.006300	-0.235292	0.000000	
Sinking Vessel	RK4	1		15.933335	15.738578	14.439672	
	FE	1		15.933921	15.738459	14.440190	
Three Vessel		1		0.144690	-0.033585	0.063547	
	RK4	2		0.059553	-0.179188	0.004433	
		3		0.010222	0.038018	0.000005	
		1		0.144497	-0.033789	0.063540	
	FE	2		0.059154	-0.177866	0.004433	
		3		0.010012	0.035148	0.000005	

- iii) Plot the displacement of the vessel base from the \overline{y} as a function of time, for FE and RK4
- iv) Need to change plots to size 24 font

Q6(b)

i) Vary parameters then analyse the frequency response of the system and compare

Running the simulation for the single Test cases varying Vessel parameters using base test cases

Base Case	Method	System	Vessel Parameters					
		Parameters	m	Α	K	y_0	\dot{y}_0	h_0
Single Vessel, no	RK4	T = 10,	1.0	0.1	0.0	-0.1	0.0	0.0
drag		$C_d = 0.0$						

Add captions for images and explanation for part (b),i,ii

Q6(c)

Explain why it is advantageous to solve this problem, as well as more complex numerical problems, using C++ instead of an interpreted language

Yapp...

Describe your implementation approach: How did you use the STL and object-oriented programming paradigms? Which aspects of the problem did you encapsulate in using classes and why? How did you ensure your code was reasonably CPU- and memory-efficient?

<mark>Yapp</mark>...