Planche nº 6. Espaces préhilbertiens

Exercice nº 1 (*** I) (Polynômes de LEGENDRE)

Soit $E=\mathbb{R}[X].$ On munit E du produit scalaire $P|Q=\int_{-1}^1 P(t)Q(t)\ dt.$

- 1) Pour $n \in \mathbb{N}$, on pose $L_n = ((X^2 1)^n)^{(n)}$.
 - a) Montrer que la famille $(L_n)_{n\in\mathbb{N}}$ est une base orthogonale de l'espace préhilbertien (E, |).
 - b) Déterminer $||L_n||$ pour $n \in \mathbb{N}$.
- 2) Déterminer l'orthonormalisée de SCHMIDT de la base canonique de E.
- 3) Déterminer la distance de X^3 à $\mathbb{R}_1[X]$.

Exercice n° 2 (*** I) (Polynômes d'HERMITE) (nécessite d'avoir traité le chapitre « Intégration sur un intervalle quelconque »).

 $\mathrm{Soit}\ E=\mathbb{R}[X].\ \mathrm{Pour}\ (P,Q)\in E^2,\ \mathrm{on\ pose}\ \phi(P,Q)=\int_0^{+\infty}P(t)Q(t)e^{-t}\ dt.\ \mathrm{Pour}\ n\in\mathbb{N},\ \mathrm{on\ pose}\ h_n=\left(X^ne^{-X}\right)^{(n)}e^X.$

- 1) Montrer que φ est un produit scalaire sur E.
- 2) a) Pour $n \in \mathbb{N}$, préciser les coefficients de h_n . Montrer que la famille $(h_n)_{n \in \mathbb{N}}$ est une base de E.
 - b) Montrer que la famille $(h_n)_{n\in\mathbb{N}}$ est une base orthogonale de l'espace préhilbertien (E, φ) .
 - c) Pour $n \in \mathbb{N}$, déterminer $\|h_n\|$. En déduire une base orthonormée de l'espace préhilbertien (E, φ) .

Exercice n° 3 (** I) (Polynômes de TCHEBYCHEV) (nécessite d'avoir traité le chapitre « Intégration sur un intervalle quelconque »).

Soit $E = \mathbb{R}[X]$. Pour $(P,Q) \in E^2$, on pose $\phi(P,Q) = \int_{-1}^1 \frac{P(t)Q(t)}{\sqrt{1-t^2}} dt$. Pour $n \in \mathbb{N}$, on note T_n le n-ème polynôme de TCHEBYCHEV de première espèce c'est-à-dire l'unique polynôme tel que $\forall \theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.

- 1) Montrer que φ est un produit scalaire sur E.
- 2) a) Montrer que $(T_n)_{n\in\mathbb{N}}$ est une base orthogonale de l'espace préhilbertien (E,ϕ) .
 - b) Pour $n \in \mathbb{N}$, déterminer $\|T_n\|$.

Exercice nº 4 (** I)

On note E l'ensemble des suites réelles de carrés sommables c'est-dire les suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que

$$\sum_{n=0}^{+\infty} u_n^2 < +\infty.$$

- 1) Montrer que E est un \mathbb{R} -espace vectoriel.
- $\textbf{2)} \ \mathrm{Pour} \ (u, v) \in E^2, \ \mathrm{on} \ \mathrm{pose} \ \phi(u, v) = \sum_{n=0}^{+\infty} u_n \nu_n. \ \mathrm{Montrer} \ \mathrm{que} \ \phi \ \mathrm{est} \ \mathrm{un} \ \mathrm{produit} \ \mathrm{scalaire} \ \mathrm{sur} \ E.$

Exercice nº 5 (* I)

Soit Φ l'application qui à deux matrices carrées réelles A et B de format $\mathfrak n$ associe $\mathrm{Tr}\left(A^T\times B\right)$. Montrer que Φ est un produit scalaire sur $\mathscr M_{\mathfrak n}(\mathbb R)$. Est ce que Φ est un produit scalaire sur $\mathscr M_{\mathfrak n}(\mathbb C)$?

Exercice n° 6 (****) Soit E un \mathbb{R} -espace vectoriel muni d'une norme, notée $\| \|$, vérifiant l'identité du parallélogramme. Montrer que cette norme est hilbertienne.

Exercice nº 7 (** I)

Soit E un espace préhilbertien réel et $(e_1,...,e_n)$ une famille de n vecteurs unitaires de E $(n \in \mathbb{N}^*)$ telle que pour tout vecteur x de E, on ait $\|x\|^2 = \sum_{k=1}^n \left(x|e_k\right)^2$. Montrer que la famille $(e_1,...,e_n)$ est une base orthonormée de E.

Exercice nº 8 (***)

Soit f une fonction continue sur [0,1], non nulle à valeurs réelles positives. Pour P et Q polynômes donnés, on pose $\Phi(P,Q) = \int_0^1 f(t)P(t)Q(t) \ dt.$

- 1) Montrer que Φ est un produit scalaire sur $\mathbb{R}[X]$.
- $\textbf{2)} \ \text{Montrer qu'il existe une base orthonormale } (P_{\mathfrak{n}})_{\mathfrak{n} \in \mathbb{N}} \ \text{pour } \Phi \ \text{telle que, pour tout entier naturel } \mathfrak{n}, \ \deg(P_{\mathfrak{n}}) = \mathfrak{n}.$
- 3) (****) Soit $(P_n)_{n\in\mathbb{N}}$ une telle base. Montrer que chaque polynôme P_n , $n\in\mathbb{N}^*$, a n racines réelles simples.

Exercice n° 9 (*** I) (Matrices et déterminants de Gram) Soit E un espace préhilbertien réel.

Pour $n \in \mathbb{N}^*$ et (x_1, \ldots, x_n) dans E^n , on pose $G(x_1, \ldots, x_n) = (x_i | x_j)_{1 \le i, j \le n}$ (matrice de Gram) puis $\gamma(x_1, \ldots, x_n) = \det(G(x_1, \ldots, x_n))$ (déterminant de Gram).

- 1) Montrer que $\operatorname{rg}(G(x_1,\ldots,x_n)) = \operatorname{rg}(x_1,\ldots,x_n)$.
- 2) Montrer que la famille $(x_1, ..., x_n)$ est liée si et seulement si $\gamma(x_1, ..., x_n) = 0$ et que la famille $(x_1, ..., x_n)$ est libre si et seulement si $\gamma(x_1, ..., x_n) > 0$.
- 3) On suppose que la famille (x_1,\ldots,x_n) est libre dans E. On pose $F=\mathrm{Vect}\,(x_1,\ldots,x_n)$. Pour $x\in E$, on note $\mathfrak{p}_F(x)$ la projection orthogonale de x sur F puis d(x,F) la distance de x à F (c'est-à-dire $d(x,F)=\|x-\mathfrak{p}_F(x)\|^2$). Montrer que $d(x,F)=\sqrt{\frac{\gamma(x,x_1,\ldots,x_n)}{\gamma(x_1,\ldots,x_n)}}.$