Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 14

1. Пусть
$$z = \frac{3\sqrt{3}}{2} + \frac{3i}{2}$$
. Вычислить значение $\sqrt[7]{z^3}$, для которого число $\frac{\sqrt[7]{z^3}}{\frac{\sqrt{3}}{2} + \frac{i}{2}}$ имеет аргумент $-\frac{26\pi}{21}$.

2. Решить систему уравнений:

$$\begin{cases} x(-15+6i) + y(-7-15i) = 140 + 160i \\ x(12-5i) + y(1+8i) = -61 - 172i \end{cases}$$

- 3. Найти корни многочлена $-3x^6 3x^5 + 12x^4 576x^3 924x^2 + 2964x 4080$ и разложить его на множители над $\mathbb R$ и $\mathbb C$, если известны корни $x_1=1-i, \, x_2=3+5i, \, x_3=-5.$
- 4. Даны 3 комплексных числа: 9-20i, 8+27i, -2-12i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1=3, z_2=\frac{3\sqrt{3}}{2}+\frac{3i}{2}$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+4i| < 3\\ |arg(z-4-2i)| < \frac{3\pi}{4} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (-1, 9, -7), b = (3, -1, 4), c = (1, 2, 0). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-4,10,-4) и плоскость P:40y-26z+634=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(8, -8, 12), $M_1(1, 31, -9)$, $M_2(-9, -3, -9)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -2x + 22y + 11z - 360 = 0 \\ 17x + 11y - 8z - 54 = 0 \end{cases} \qquad L_2: \begin{cases} -19x + 11y + 19z + 3066 = 0 \\ 7x - 14y - 19z - 2292 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.