Basic Properties

Definition: A topological space M is called a *manifold* if it satisfies the following:

- M is Hausdorff (points can be separated by open sets);
- M is second countable (the basis for the topology of M is countable);
- M is locally Euclidean (every point in M has a neighborhood homeomorphic to \mathbb{R}^n for some n).

In particular, the third condition says that for every $p \in M$, there is $U \in \mathcal{O}_p$ and a homeomorphism $\varphi \colon U \to \mathbb{R}^n$. The value of n is called the *dimension* of the manifold M.

Definition: Let M be an n-manifold. A *chart* on M is a pair (U, ϕ) such that $U \subseteq M$ is open, $\phi \colon U \to \mathbb{R}^n$ is a homeomorphism.

A family of charts $A = \{(U_i, \varphi_i)\}_{i \in I}$ is known as an *atlas* if

$$M = \bigcup_{i \in I} U_i$$
.

To understand the smooth structure of a manifold, we consider a point $p \in M$ and two charts (U, ϕ_U) and (V, ϕ_V) such that $p \in U$ and $p \in V$. The functions $\phi_U \colon U \to \mathbb{R}^n$ and $\phi_V \colon V \to \mathbb{R}^n$ are homeomorphism, meaning that $\phi_V \circ \phi_U^{-1} \colon \phi_U (U \cap V)^n \to \mathbb{R}^n$ defined on the (nonempty) $U \cap V$ is also a homeomorphism.

In particular, we develop the smooth structure by making sure all such pairs $\phi_V \circ \phi_U^{-1}$ are *diffeomorphisms*. To do this, we need to first develop the derivative in \mathbb{R}^n .

Definition: Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function. We say f is *differentiable* at $p \in \mathbb{R}^n$ if there is a linear map $L \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$\frac{\|f(p+h) - f(p) - Lh\|}{\|h\|} \to 0$$

as $h \rightarrow 0$.

The *derivative* of f is the association $f \mapsto L$ for each $p \in \mathbb{R}^n$. We write $D_p f$ to denote this map. Note that we consider elements of $Mat_n(\mathbb{R})$ as points in \mathbb{R}^{n^2} with the standard topology on \mathbb{R}^{n^2} .

A function f is called a *diffeomorphism* if it is continuously differentiable and has a continuously differentiable inverse.

Definition: If (U, φ_U) and (V, φ_V) are charts such that $U \cap V \neq \emptyset$, the function $\varphi_V \circ \varphi_U^{-1} \colon \mathbb{R}^n \to \mathbb{R}^n$ is known as the *transition map* between φ_U and φ_V .

A smooth structure for M is an atlas $\{(U_i, \phi_i)\}_{i \in I}$ such that for all i, j, the transition maps $\phi_j \circ \phi_i^{-1} \colon \mathbb{R}^n \to \mathbb{R}^n$ are diffeomorphisms where defined.

If $\{(U_i, \phi_i)\}_{i \in I}$ is a maximal smooth atlas — i.e., any other smooth atlas that contains $\{(U_i, \phi_i)\}_{i \in I}$ is equal to $\{(U_i, \phi_i)\}_{i \in I}$ — then we call $\{(U_i, \phi_i)\}_{i \in I}$ a smooth structure for M.

Note: From now on, we use "manifold" to refer to smooth manifolds, and will say *topological* manifolds if the manifold does not necessarily admit a smooth structure.

Definition: A map $f: M \to N$ between manifolds is called *smooth* if for any chart (U, ϕ_U) in M and corresponding chart (V, ϕ_V) in N, the map $\phi_V \circ f \circ \phi_U^{-1} \colon \mathbb{R}^n \to \mathbb{R}^k$ is continuously differentiable.

The function f is a *diffeomorphism* if f is a smooth bijection with smooth inverse, and we say the manifolds M and N are diffeomorphic if they admit a diffeomorphism.

Examples

There are a couple special examples of (smooth) manifolds.

- (i) Open subsets of \mathbb{R}^n are always manifolds.
- (ii) The general linear group, $GL_n(\mathbb{R})$ of $n \times n$ invertible matrices, viewed as a subset of $Mat_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$, is a manifold. Furthermore, it is an open subset of \mathbb{R}^{n^2} , as considering the map det: $Mat_n(\mathbb{R}) \to \mathbb{R}$ given by $A \mapsto det(A)$, we see that $GL_n(\mathbb{R}) = det^{-1}(\mathbb{R} \setminus \{0\})$.
- (iii) The special linear group, $SL_n(\mathbb{R}) \subseteq GL_n(\mathbb{R})$, consisting of $n \times n$ matrices with determinant 1, is also a smooth manifold. Furthermore, this manifold is a closed subset of \mathbb{R}^{n^2} , as it is equal to $\det^{-1}(\{1\})$.
- (iv) The n-sphere, Sⁿ, given by

$$S^{n} = \left\{ (x_0, \dots, x_n) \mid \sum_{i=0}^{n} x_i^2 = 1 \right\}$$

is a manifold in \mathbb{R}^n . That it is a smooth manifold is quite a bit less obvious.

Now, in low dimensions, we know that $S^2 \cong \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, and that the continuously differentiable transformation $z \mapsto \frac{1}{z}$ takes the neighborhood basis of ∞ to deleted neighborhoods of 0, and takes the neighborhood basis of ∞ . This is our desired smooth structure.

In the case of the general S^n , we use two stereographic projections to construct our smooth structure. The first stereographic projection is via the north pole, N_p , and maps points on $S^n \setminus \{N_p\}$ bijectively to \mathbb{R}^n ; this is a chart that is defined everywhere on S^n except N_p . Similarly, we may use a stereographic projection originating from the south pole, S_p , so as to create another chart defined everywhere except S_p . These two stereographic projections are our desired smooth structure, as these two charts are all that is necessary to cover S^n .

(v) The real projective plane, consisting of lines through the origin in \mathbb{R}^{n+1} , can be expressed as

$$\mathbb{RP}^{n} = \left(\mathbb{R}^{n+1} \setminus \{0\}\right)/\mathbb{R}^{\times}.$$

We will show that this is a manifold by constructing a family of charts mapping to \mathbb{R}^n .

Consider a point $(r_0, ..., r_n) \in \mathbb{R}^{n+1} \setminus \{0\}$. If $r_0 \neq 0$, then by dividing, we may associate this point's equivalence class in \mathbb{RP}^n to

$$(1, r_1/r_0, \dots, r_n/r_0) \in \{1\} \times \mathbb{R}^n$$

so we may associate all points of the form $[(r_0, ..., r_n)]$ with $r_0 \neq 0$ with a chart (U_0, φ_0) that maps \mathbb{RP}^n to \mathbb{R}^n .

Similarly, we may define U_k via

$$U_k = \{ [(r_0, \dots, r_n)] \mid r_k \neq 0 \}$$

with corresponding chart

$$\begin{split} \phi_k \colon U_k \to \mathbb{R}^n \\ [(r_0, \dots, r_n)] \mapsto \frac{1}{r_k}(r_0, \dots, \widehat{r_k}, \dots, r_n), \end{split}$$

where $\hat{r_k}$ denotes the exclusion of the r_k coordinate. Varying k from 0 to n, we see that

$$\mathbb{RP}^n = \bigcup_{k=0}^n U_k,$$

the chart functions $\phi_k \colon U_k \to \mathbb{R}^n$ are homeomorphisms (as they are just division and projections). Furthermore, the transition maps $\phi_j \circ \phi_i^{-1}$ are coordinate-wise rational functions defined by

$$(u_1,\ldots,u_n)\mapsto \left(\frac{u_1}{u_i},\ldots,\frac{1}{u_i},\ldots,\frac{u_n}{u_i}\right),$$

where the $\frac{1}{u_i}$ is at position j.

(vi) We now turn to a very important example from algebraic geometry: the Grassmannian, Gr(k, n), consisting of all the k-dimensional subspaces of \mathbb{R}^n .

This is a k(n-k)-dimensional manifold; we need to understand what the smooth structure is. To do this, we let $\langle \cdot, \cdot \rangle$ be an inner product on \mathbb{R}^n , and for any $V \in Gr(k, n)$, we consider maps in $Hom(V, V^{\perp})$, where V^{\perp} denotes the orthogonal complement of V.

Now, we see that if $W \in Gr(k, n)$ is any other k-dimensional subspace, the orthogonal $P_V \colon \mathbb{R}^n \to V$ restricted to W is a linear isomorphism if and only if $W \not\subseteq V^{\perp}$, or that $W \cap V^{\perp} = \{0\}$.

We see that if W is such that $P_V|_W: W \to V$ is a linear isomorphism, the inverse $(P_V|_W)^{-1}: V \to W$ is well-defined; so, we may make a correspondence between $\operatorname{Hom}(V,V^\perp)$ and $\operatorname{Gr}(k,n)$ by noting that any such $T \in \operatorname{Hom}(V,V^\perp)$ has a corresponding graph (v,T(v)), so we take $v \mapsto P_V|_W^{-1}(v)$, then project onto V^\perp by taking $T(P_{V^\perp}(P_V|_W^{-1}(v))) = T(v)$. We depict it as a diagram below.

Defining $U_V = \{W \in Gr(k,n) \mid W \cap V^{\perp} = \{0\}\}$, we may define the chart from U_V onto $Hom(V,V^{\perp})$ by $\phi_V = P_{V^{\perp}} \circ P_V|_W^{-1}$. The family $\{(U_V,\phi_V) \mid V \in Gr(k,n)\}$ is our smooth atlas.

Inverse and Implicit Function Theorems

In order to replace manifolds with linear maps, we need to understand smooth maps on \mathbb{R}^n . The most important theorems in this regard are the inverse function theorem and the implicit function theorem.

Theorem (Inverse Function Theorem): Let $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable function. If $D_p f$ is invertible as a linear map, then f has a local, continuously differentiable inverse $f^{-1}: V \to W$, where $p \in W \subseteq U$ and $f(p) \in V \subseteq \mathbb{R}^n$.

The proof uses the contraction mapping theorem. Recall that if X is a complete metric space, and $f: X \to X$ is a strict uniform contraction — that is, there exists $0 \le \lambda < 1$ such that $d(f(x), f(y)) \le \lambda d(x, y)$ for all $x, y \in X$ — then f has a unique fixed point.

We begin with a technical lemma.

Lemma: If $U(0, r) \subseteq V$ for some r > 0 where V is a normed vector space, $g: V \to V$ is a uniform contraction, and f = id + g, then the following hold:

- $(1 \lambda) \|x y\| \le \|f(x) f(y)\|$ (in particular, f is injective);
- if q(0) = 0, then

$$U(0,(1-\lambda)r) \subseteq f(U(0,r)) \subseteq U(0,(1+\lambda)r).$$

Proof of Lemma. To see the first item, we notice that by the triangle inequality,

$$||x - y|| - ||f(x) - f(y)|| \le ||x - y|| - ||x - y|| + ||g(x) - g(y)||$$

 $\le \lambda ||x - y||,$

so $(1 - \lambda) \|x - y\| \le \|f(x) - f(y)\|$, and f is injective. Furthermore, we see that if g(0) = 0, then

$$\begin{split} f(U(0,r)) &= U(0,r) + g(U(0,r)) \\ &\subseteq U(0,r) + \lambda U(0,r) \\ &= U(0,(1+\lambda)r). \end{split}$$

Finally, if $y \in U(0, (1 - \lambda)r)$, then we want to find x such that y = f(x) = x + g(x); equivalently, we see that we want x such that x = y - g(x). Since the function F(x) = y - g(x) is a translation of a uniform contraction, F(x) is a contraction, so there is a fixed point, meaning $y \in f(U(0, r))$.

Note: We will use $|\cdot|$ to denote the norm on \mathbb{R}^n .

Proof of the Inverse Function Theorem. By using a series of affine maps — first by translating p to 0, then translating f(p) to 0, then inverting $D_0 f$ as per our assumption, we may safely assume that p = f(p) = 0 and $D_0 f = Id$.

Set g = f - Id. We will show that g is a contraction in a sufficiently small ball. Fixing $x, y \in \mathbb{R}^n$, consider the map $\mathbb{R} \to \mathbb{R}^n$ given by $t \mapsto g(x + t(y - x))$. Notice that by the Fundamental Theorem of Calculus,

$$|g(y) - g(x)| \le |y - x| \sup_{0 \le t \le 1} |g'(x + t(y - x))|.$$

Furthermore, since $g'(0) = \mathbf{0}$ by the fact that $D_0 f = \operatorname{Id}$ and $(\operatorname{Id})' = \operatorname{Id}$, and since f is continuously differentiable, there is r > 0 such that

$$|g(y) - g(x)| \leqslant \frac{1}{2}|y - x|$$

for all $x, y \in U(0, r)$. Thus, g is a strict contraction on U(0, r). By the previous lemma, we see that

$$U(0,r/2) \subseteq f(U(0,r));$$

by setting $U = U(0,r) \cap f^{-1}(U(0,r))$, we see that the map $f|_U : U \to V := U(0,r/2)$ is a bijection. The inverse function $f^{-1} : V \to U$ thus exists.

Now, we let $h = f^{-1}$, $x \in U$, $y \in V$ such that h(x) = y, and $A = D_x f$. We will show that $A^{-1} = D_y h$, which is enough to show that h is continuously differentiable, as we assume the map $x \mapsto D_x f$ is continuous, and inversion is continuous in $GL_n(\mathbb{R})$.

For sufficiently small vectors s and k, since f and h are bijections, we have

$$h(y+k)=x+s,$$

so

$$f(x+s) = y + k.$$

Furthermore, by unraveling the definitions of f = g + Id, s, and k, and the fact that g is a uniform contraction on U, we get

$$|s - k| = |(f(x + s) - f(x)) - s|$$

$$= |(x + s + g(x + s)) - (x + g(x)) - s|$$

$$= |g(x + s) - g(x)|$$

$$\leq \frac{|s|}{2}.$$

In particular, since

$$|s| \le |s - k| + |k|$$

$$\le |k| + \frac{|s|}{2},$$

we see that $|s|/2 \le |k|$. We calculate

$$\begin{split} \left| h(y+k) - h(y) - A^{-1}k \right| &= \left| x + s - x - A^{-1}(f(x+s) - f(x)) \right| \\ &= \left| s - A^{-1}(f(x+s) - f(x)) \right| \\ &\leq \left\| A^{-1} \right\|_{op} |As - f(x+s) - f(x)|. \end{split}$$

Thus, since $|s|/2 \le |k|$,

$$\frac{\left|h(y+k) - h(y) - A^{-1}k\right|}{|k|} \le \frac{2\|A^{-1}\|_{op}|As - f(x+s) - f(x)|}{|s|}$$

$$\to 0,$$

so
$$D_y h = A^{-1}$$
.

Constructing C^{∞} Maps on Manifolds

Definition: A function $f: U \to \mathbb{R}$, where $U \subseteq \mathbb{R}^n$ is open, is called C^{∞} if the partial derivatives of all orders,

$$\frac{\partial^{|\alpha|} f}{\partial \partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$$

are continuous. Here, $\alpha = (\alpha_1, \dots, \alpha_n)$ is a *multi-index*, where $\alpha_i \ge 0$ for each i, and $|\alpha| = \sum_{i=1}^n \alpha_i$.

We are concerned now with constructing C^{∞} functions on C^{∞} -manifolds.^I In order to do this, we introduce the bump functions.

Definition: The *bump function* that is equal to 1 on B(0,1) and is zero outside U(0,2) is given by

$$h(x) = \begin{cases} e^{-1/x} & x > 0\\ 0 & x \le 0 \end{cases}$$

$$b(x) = \frac{h(4 - |x|^2)}{h(4 - |x|^2) + h(|x|^2 - 1)}.$$
(*)

Lemma: Let M be a C^{∞} manifold. Let $U \in \mathcal{O}_p$, and let $f \colon U \to \mathbb{R}$ be an arbitrary C^{∞} function defined on

 $^{^{}I}A\ C^{\infty}\ \text{manifold is one where all the transition functions}\ \phi_{j}\circ\phi_{i}^{-1}\colon\phi_{i}\big(U_{i}\cap U_{j}\big)\to\phi_{j}\big(U_{i}\cap U_{j}\big)\ \text{are}\ C^{\infty}\ \text{functions}.$

Then, there exists $V \in \mathcal{O}_p$ with $\overline{V} \subseteq U$, and a C^{∞} function \widetilde{f} defined on M such that

$$\widetilde{f}(q) = \begin{cases} f(q) & q \in V \\ 0 & q \notin U. \end{cases}$$

Proof. Let (W, φ) be a chart centered at p with $\varphi(p) = 0$ and $U(0,3) \subseteq \varphi(W)$. Let $\overline{b} = b \circ \varphi$, where b is the bump function defined in (*). Then, \overline{b} is a C^{∞} function on W, and is 0 outside $\varphi^{-1}(U(0,2)) \subseteq W$.

We define \overline{b} to be equal to zero on W^c . Thus, if we define $V=\phi^{-1}(U(0,1))$, then $V\in \mathcal{O}_p$, $\overline{V}\subseteq U$, and \overline{b} is equal to 1 on V. Letting

$$\widetilde{f}(q) = \begin{cases} \overline{b}(q)f(q) & q \in W \\ 0 & q \notin W, \end{cases}$$

we see that \widetilde{f} satisfies the required property.

The Tangent Space

Notations

- A general normed space V will have its norm denoted by $\|\cdot\|$. If $V = \mathbb{R}^n$, then we denote the norm by $|\cdot|$.
- We denote topological spaces by (X, τ) .
- $U(x,r) = \{y \in V \mid ||x y|| < r\}.$
- $B(x, r) = \{y \in V \mid ||x y|| \le r\}.$
- N_p : neighborhood system centered at $p \in X$.
- \mathcal{O}_p : system of *open* neighborhoods centered at $p \in X$.