theorem [von Neumann] let $A: \mathcal{H} \to \mathcal{H}$ be a unit norm operator. then $\forall x \in \mathcal{H}$ the sequence $A^n x$ Cesàro converges to the fixed point of A closest to x. that is,

$$\frac{1}{N+1}\sum_{k=0}^N A^k x \longrightarrow \mathrm{Proj}_M x$$

where $M = \{s \in \mathcal{H} : As = s\}.$

lemma let A be a unit norm operator on a Hilbert space. then A and A^* have the same fixed points.

the lemma is an immediate consequence of the Cauchy Schwarz inequality.

<u>proof of theorem</u> let $B_N = \frac{1}{N+1} \sum_{k=0}^N A^k$. the claim is immediate for $x \in M$ a fixed point of A. so let us fix $x \in M^{\perp}$ and show $B_N(x) \longrightarrow 0$. we fix $\varepsilon > 0$. since $M = \operatorname{fix}_A = \operatorname{fix}_{A^*} = \ker(A^* - I)$ we have $x \in M^{\perp} = \overline{\operatorname{img}(A - I)}$ and thus $||x - y|| \le \varepsilon$ for some y = Az - z. now $B_N(y) = \frac{A^{N+1}z - z}{N+1} \longrightarrow 0$ since ||A|| = 1. moreover, $B_N(x - y)$ has norm $\le \varepsilon$ since $||B_N|| \le 1$. thus $||B_N(x)|| \le 2\varepsilon$ for sufficiently large N.