TSA Throughput Prediction

Question

Using historic hourly data starting at the beginning of 2019, can we predict the number of passengers going through airport security for a given hour?

Motivation

Recovery

Predict if and when the travel industry may recover fully from Covid 19

Efficiency

Proper staff and resource allocations

Customer Service

Better customer service will create loyal customers

Timeline

2021

Somewhat steady growth back toward pre-pandemic numbers

2019

Pre-pandemic

2020

Large drop in March with little recovery

Stakeholders

Airports

Shuttles and Taxis

Potential Challenges

Global events

Pandemics

Weather

Data Collection

01

Source - Repository

- Github repository (updated regularly)
- csv files for each airport
- Gate level counts
- 02

Dataframe - individual time seires

- Aggregate throughput for each airport
- Column Single airport
- Datetime index (time series analysis)

Data Structure

HOURLY DATA

Over 3 years

Start - Dec 31, 2018 End - Feb 5, 2022

18 Columns

AIRPORTS

Null Values

Small Airports have higher null values

Impute null with ZERO

Fewer Flights in the Middle of the night

Yearly Trends

Baseline Model

276 passengers

Seasonal ARIMA Model

- AR Auto-regressive: q
- MA Moving Average: p
- I Differencing: d
- Seasonal parameters: P, D, Q, S

(p, d, q) X (P, D, Q, S)

Seasonality/Stationarity

Seasonal:

- Period (S) = 24
- D = 1 (max values)

Non-stationary:

- $d+D \le 2$
- d = 0 or 1

Best Parameters

- Seasonality: D=1, S=24
- **Stationarity:** d = 0, 1
- **3 Autoregressive:** p, q = 0, 1, 2
- **4 Moving Average:** P, Q = 0, 1, 2, 3

GRID SEARCH: p, d, q, P, Q

Training

- Tain/Test split: test against last 500 values
- Cross-validation for best parameters
- Metric Akaike Information Criteria (AIC) Best predictive model

(1, 0, 1) X (3, 1, 3, 24)

Prediction

Test MAE - 227 people

Forecast

Next Steps

Perform time series clustering of all airports

Automate data collection from source repository as it is updated