

Paul McSlarrow, Brandon Rodriguez, Zachary Hauck, & Teddy Brewer

TABLE OF CONTENTS

TOPIC

What is our topic & why are we interested in this topic?

DATA

Where did we get & how did we prepare our data?

ANALYSIS PROCESS

How we analyzed our data

CONCLUSIONS

What did we conclude from our analysis

HURDLES

What problems did we encounter and how would we do the problem differently

TOPIC

A CLOSER LOOK

MS - Fitting

Determining distance to stellar clusters using Main Sequence Fitting

HR Diagram

Analyzing the distribution of stars in an HR diagram

Comparison

Comparing observed data from the cluster with theoretical models and adjusting distances until the main sequence aligns with known models

02 DATA

WHERE WE GOT OUR DATA

GAIA ARCHIVES

- Map of the Milky Way
- Variety of parameters to choose from
- Easy to find clusters

ABOUT MESSIER OBJECTS

Catalogued by the French astronomer Charles Messier

- Almost all Messier objects among the closest to Earth in their respective classes
- Consists of a diverse range of astronomical objects
 - Star clusters, nebulae, galaxies, etc.

DATA CLEANING/PREP

Using Gaia Archives

- Easy to remove or select desired columns
- Include specific conditions

No data cleaning needed

O3 ANALYSIS PROCESS

The HR Diagram +t.5

Any difference in position between the main sequences must be due to the distance of the cluster

Problems with MS Fitting

- 1. Main Sequence Evolution
- 2. Mass Transfer from Companions
- 3. Non-Member Inclusions

05

HURDLES

HURDLES

PREVIOUS

- Project idea wouldn't work
- Previous data set had too many N/A
- Limited time

Calculations

Could not find reliable method to get temperature

TIME

We ran out of time

MGMR/MB

Struggled to get MGMR/MB from dataset

- https://www.esa.int/Science_Exploration/Space_Science/Gaia/%28archive%29/0/%28type%___video
- https://gea.esac.esa.int/archive/
- http://www.physicsbootcamp.org/sec-Luminosity-of-Stars.html
- https://arxiv.org/pdf/1008.0815
- https://astro.unl.edu/naap/distance/cluster_fitting.html#:~:text=Main%20sequality20alsow20alsow20determines.cloud%20of%20gas%20and%20dust.
- https://en.wikipedia.org/wiki/Messier_object

THANKS!

Do you have any questions?

