RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FOUR YEAR BACHELOR OF TECHNOLOGY (B. Tech..) DEGREE COURSE SEMESTER: VI (C.B.C.S.)

BRANCH: COMPUTER SCIENCE AND ENGINEERING

Examination Scheme and Syllabus

Sixth Semester:-

S. N.	Subjec t	Teaching Scheme			Evaluation Scheme			Credits	Category
3.11.		L	T	P	CA	UE	Total	Credits C	Category
1	Compiler Design	4	-	-	30	70	100	4	PCC-CS
2	Compiler Design -Lab	-	-	2	25	25	50	1	PCC-CS
3	Elective-II	3	-	-	30	70	100	3	PEC-CS
4	Elective-III	3	-	-	30	70	100	3	PEC-CS
5	Open Elective-I	3	_	_	30	70	100	3	OEC
6	Professional Skills Lab II	-	-	2	25	25	50	1	PCC-CS
7	Hardware Lab	-	-	2	25	25	50	1	ESC
8	Mini Project	-	-	6	50	50	100	3	PROJ- CS
9	Economics of IT Industry	2	-	-	15	35	50	2	HSMC
	Intellectual Property Rights (AuditCourse)	2	-	-	50	-	-	Audi t	PCC
	Total	17	-	12			700	21	

Elective-II: - 1. Machine Learning 2. Internet of Things 3. Cluster and Cloud Computing

Elective-III: - 1. Data Science 2. Distributed Operating Systems 3. Human Computer Interaction

Open Elective 1:- 1. Linux Fundamentals 2. Android Application Development 3. Blockchain Technologies

RASHTRASANT TUKADOJI MAHARAJ NAGPUR UNIVERSITY, NAGPUR FOUR YEAR BACHELOR OF TECHNOLOGY (B. Tech..) DEGREE COURSE

SEMESTER: Sixth (C.B.C.S.)

BRANCH: COMPUTER SCIENCE & ENGINEERING

Subject: Open Elective 1: Block-chain
Technologies

Subject Code: BTECH-CSE-604.3T

Load 36 Hrs.	Credits	College Assessment Marks	University Evaluation	Total Marks	
001115	3	30	70	100	

Aim: To make students aware of Block Chain Technology and how it works. T

Prerequisites: Data Structures and algorithms and basic knowledge of Cryptography.

Course Objectives:

1	To teach the concepts of blockchain technologies.			
2	To cover the technical aspects of crypto currencies, block chain			
	technologies, and distributed consensus.			
3	To familiarize potential applications for Bit coin-like crypto currencies			
4	To learn, how these systems work and how to engineer secure software that			
	interacts with the Bit coin network and other crypto currencies.			

Course Outcomes:

Students would be able to:

1	Understand emerging abstract models for Block chain Technology			
2	Analyse the concept of cryptocurrency and mathematical background			
	behind it			
3	Apply the tools for understanding the background of bitcoins			
4	Identify major research challenges and technical gaps existing between			
	theory and practice in crypto currency domain			
5	Understanding of latest advances and its applications in Block Chain			
	Technology			

SYLLABUS:

UNIT- I:

Introduction Basic of Blockchain Architecture – Challenges – Applications – Block chain Design Principles -The Blockchain Ecosystem - The consensus problem - Asynchronous Byzantine Agreement - AAP protocol and its analysis, Abstract Models for BLOCKCHAIN - GARAY model - RLA Model - Proof of Work (PoW) as random oracle - formal treatment of consistency, liveness and fairness - Proof of Stake (PoS) based Chains - Hybrid models (PoW + PoS)

UNIT-II:

Cryptographic Fundamentals Cryptographic basics for crypto currency - a short overview of Hashing, cryptographic algorithm — SHA 256, signature schemes, encryption schemes and elliptic curve cryptography- Introduction to Hyperledger-Hyperledger framework - Public and Private Ledgers.

UNIT-III:

Bit Coin Bit coin - Wallet - Blocks - Merkley Tree - hardness of mining - transaction verifiability - anonymity - forks - double spending - mathematical analysis of properties of Bit coin. Bitcoin blockchain, the challenges, and solutions, proof of work, Proof of stake, alternatives to Bitcoin consensus, Bitcoin scripting language and their uses.

UNIT-IV:

Ethereum Ethereum - Ethereum Virtual Machine (EVM) - Wallets for Ethereum - Solidity - Smart Contracts - some attacks on smart contracts. Ethereum and Smart Contracts- The Turing Completeness of Smart Contract Languages and verification challenges- comparing Bitcoin scripting vs. Ethereum Smart Contracts

UNIT-V:

Block Chain-Recent Trend Blockchain Implementation Challenges- Zero Knowledge proofs and protocols in Block chain - Succinct non interactive argument for Knowledge (SNARK) - pairing on Elliptic curves – Zeash - attacks on Blockchains

Text Books:

- 1. Melanie Swan, "Block Chain: Blueprint for a New Economy", O"Reilly, first edition 2015.
- 2. Daniel Drescher, "Block Chain Basics", Apress; 1stedition, 2017
- 3. Anshul Kaushik, "Block Chain and Crypto Currencies", Khanna Publishing House, Delhi.
- 4. Imran Bashir, "Mastering Block Chain: Distributed Ledger Technology, Decentralization and Smart Contracts Explained", Packt Publishing, first edition 2012.

Reference Book:

Ritesh Modi, "Solidity Programming Essentials: A Beginner"s Guide to Build Smart Contracts for Ethereum and Block Chain", Packt Publishing.

Websites:

- $1.\ https://developer.ibm.com/patterns/create-and-deploy-block\ chain-network-using fabric-sdk-java/$
- 2. https://docs.docker.com/get-started/
- 3. https://console.ng.bluemix.net/docs/services/block%2520chain/index.html