

Generazione e visualizzazione grafica di traffico di reti

Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Laurea Triennale in Informatica

Francesco Pannozzo

Matricola 699427

Relatore

Prof. Daniele De Sensi

Anno Accademico 2023/2024

Tesi non ancora discussa
Generazione e visualizzazione grafica di traffico di reti Relazione di tirocinio. Sapienza Università di Roma
© 2024 Francesco Pannozzo. Tutti i diritti riservati

Questa tesi è stata composta con \LaTeX e la classe Sapthesis.

 $Email\ dell'autore:\ francesco.pannozzo@libero.it$

Dedicato alla mia famiglia

Sommario

Questa relazione descrive il lavoro di tirocinio interno svolto presso l'università La Sapienza, concretizzato nella realizzazione di un progetto volto a realizzare un software per poter visualizzare in forma grafica l'andamento del traffico di una rete. Il progetto ha come obiettivo di mostrare il traffico di rete al variare del tempo e ciò viene raggiunto tramite grafiche e animazioni generate programmaticamente. L'idea dell'ambito di tirocinio nasce dalla volontà di sperimentare una realizzazione front-end tramite la libreria Manim, un motore di animazioni per video matematici esplicativi..

Indice

1	Introduzione	1
2	Progettazione	3
_	Test 3.1 Sotto capitolo test	5

Capitolo 1

Introduzione

...

Capitolo 2

Progettazione

...

Capitolo 3

Test

Per ottenere i lati di un rettangolo che abbia proporzioni 16 : 9 partendo da un quadrato di lato n, dobbiamo innanzitutto considerare che l'area del quadrato è data da $A = n^2$. Vogliamo che il rettangolo abbia la stessa area del quadrato ma rispetti le proporzioni 16 : 9.

Denotiamo con l la lunghezza e con h l'altezza del rettangolo. La condizione di proporzione si può esprimere come

$$\frac{l}{h} = \frac{16}{9}.$$

Dato che l'area del rettangolo deve essere uguale a quella del quadrato, abbiamo che

$$l \cdot h = n^2$$
.

Utilizzando la proporzione, possiamo esprimere l in termini di h come

$$l = \frac{16}{9}h.$$

Sostituendo questa espressione nell'equazione dell'area, otteniamo

$$\frac{16}{9}h \cdot h = n^2,$$

che si semplifica in

$$\frac{16}{9}h^2 = n^2.$$

Da qui, isoliamo h ottenendo

$$h^2 = \frac{9}{16}n^2 \implies h = n \cdot \frac{3}{4}.$$

Risostituendo il valore di h nell'espressione di l, abbiamo

$$l = \frac{16}{9} \cdot n \cdot \frac{3}{4} = n \cdot \frac{4}{3}.$$

Quindi, per un quadrato di lato n, per ottenere i lati di un rettangolo che mantenga la stessa area (n^2) con proporzioni 16:9, l'altezza h del rettangolo sarà $n\cdot\frac{3}{4}$ e la lunghezza l sarà $n\cdot\frac{4}{3}$.

Quindi il tutto funziona poichè è sempre vero quanto segue:

$$(l+1)(m+1) > ml \tag{3.1}$$

3. Test

3.1 Sotto capitolo test

Ecco un esempio di codice YAML:

}

La complessità temporale dell'algoritmo è O(m+n).

$$O(m+n) (3.2)$$

Let's cite! The Einstein's journal paper [2] and the Dirac's book [1] are physics related items.

Figura 3.1. a nice plot

As you can see in the figure 3.1, the function grows near 0. Also, in the page 6 is the same example.

Bibliografia

- [1] Paul Adrien Maurice Dirac. *The Principles of Quantum Mechanics*. International series of monographs on physics. Clarendon Press, 1981. ISBN: 9780198520115.
- [2] Albert Einstein. "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]". In: *Annalen der Physik* 322.10 (1905), pp. 891–921. DOI: http://dx.doi.org/10.1002/andp.19053221004.