Prev

Next

Regularized Logistic Regression

We can regularize logistic regression in a similar way that we regularize linear regression. As a result, we can avoid overfitting. The following image shows how the regularized function, displayed by the pink line, is less likely to overfit than the non-regularized function represented by the blue line:

Regularized logistic regression.

Cost function:

$$\Rightarrow J(\theta) = -\left[\frac{1}{m}\sum_{i=1}^{m}y^{(i)}\log h_{\theta}(x^{(i)}) + (1 - y^{(i)})\log(1 - h_{\theta}(x^{(i)}))\right]$$

$$+ \frac{\lambda}{2m}\sum_{j=1}^{n}\bigotimes_{j}^{2}\sum_{k=1}^{n}\bigotimes_{j}^{2}$$

Cost Function

Recall that our cost function for logistic regression was:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))]$$

We can regularize this equation by adding a term to the end:

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

The second sum, $\sum_{j=1}^n \theta_j^2$ means to explicitly exclude the bias term, θ_0 . I.e. the θ vector is indexed from 0 to n (holding n+1 values, θ_0 through θ_n), and this sum explicitly skips θ_0 , by running from 1 to n, skipping 0. Thus, when computing the equation, we should continuously update the two following equations:

Gradient descent

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \right]$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

$$\begin{cases} \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m} \Theta_j \end{cases}$$

Mark as completed

3 5

