HLS Lab B-FIR

110061608 吳承哲

> Outline

- **■** FIR11
- FIR128 baseline
- FIR128 Q1: Variable Bitwidths
- FIR128_Q2: Pipelining
- FIR128_Q3: Removing Conditional Statements
- FIR128_Q4: Loop Partitioning
- FIR128_Q5 : Memory Partitioning
- FIR128_Q6: Best Design
- Conclusion
- GitHub link

> FIR11

Code

```
#include "fir.h"
#define N 11
#include "ap_int.h"
typedef int coef_t;
typedef int data_t;
typedef int acc_t;
14
15
16
17
18
19
20<mark>⊖ void fir (data_t *y,data_t x){</mark>
           coef_t c[N] = \{53, 0, -91, 0, 313, 500, 313, 0, -91, 0, 53\};
22
23
24
           // Write your code here
           data_t shift_reg[N];
           int i;
acc = 0;
           Shift_Accum_Loop:
            for (i = N - 1; i >= 0; i--) {
                  if (i == 0) {
acc += x * c[0];
                       shift_reg[0] = x;
                       shift_reg[i] = shift_reg[i - 1];
acc += shift_reg[i] * c[i];
34
                 *y = acc;
```

```
Coef_t
data_t
acc_t
fir
HLS TOP name=fir
y
x
:[] c
:[] shift_reg
Shift_Accum_Loop
```


Utilization

以上 fir11 都是經過 HLS 自動優化,只是實現基本 fir11 的功能,並成功合成出來。

> FIR128_baseline

Code

```
#include "fir.h"
#define N 128
#include "ap_int.h"
void fir (data_t *y,data_t x){
    coef_t c[N] = {10, 11, 11, 8, 3, -3, -8, -11, -11, -10,
    data_t shift_reg[N];
    acc_t acc;
    int i;
    acc = 0;
    Shift_Accum_Loop:
    for (i = N - 1; i >= 0; i--) {
        if (i == 0) {
  acc += x * c[0];
            shift_reg[0] = x;
            shift_reg[i] = shift_reg[i - 1];
            acc += shift_reg[i] * c[i];
        *y = acc;
```


Utilization

Utilization Estim	ates				
⊡ Summary					
Name	BRAM_18K	DSP	FF	LUT	URAM
DSP	-	-	-	-	-
Expression	-	-	0	39	-
FIFO	-	-	-	-	-
Instance	3	1	576	276	0
Memory	-	-	-	-	-
Multiplexer	-	-	-	20	-
Register	-	-	35	-	-
Total	3	1	611	335	0
Available	280	220	106400	53200	0
Utilization (%)	1	~0	~0	~0	0

以上是 FIR128 經過 HLS 自動優化後的結果,因為處理的 coefficient 變多所以花的 cycle 數和硬體也變多,接下來的幾個 question 會提出幾種優化的方式,最後並設計出 Best design。

> FIR128_Q1 : Variable Bitwidths

Code

```
#include "fir.h"
#define N 128
#include "an int h"

typedef ap int<8> reg_t;

void fir (data_t *y, data_t *x){

coef_t c[N] = {10, 11, 11, 8, 3, -3, -8, -11, -11, -10, -10, -10]

// Write your code here
static

reg_t shift_reg[N];

acc_t acc;
int i;
acc = 0;
Shift_Accum_Loop:
for (i = N - 1; i >= 0; i--) {
    if (i == 0) {
        acc += x * c[0];
        shift_reg[0] = x;
    } else {
        shift_reg[i] = shift_reg[i - 1];
        acc += shift_reg[i] * c[i];
    }
}

*y = acc;
}
```

```
Directive X

if ir

if in

if
```

Perform	ance Estima	tes									
□ Timir	□ Timing										
Clock		8bit		16bit		32bit		64bit			
ap_clk	Target	10.00	ns	10.00	ns	10.00	ns	10.00	ns		
	Estimated	6.508	ns	6.508	ns	6.912	ns	6.912	ns		
⊡ Later	псу		01			1.5		1	641:		
		<u> </u>	86		_	bit	_	bit	64bi	t	
Latenc	y (cycles)	min	13	4	13	4	13	5	135		
		max	13	•	13	•	13	5	135		
Latenc	y (absolute)	min	1.3	340 us	1.3	340 us	1.3	350 us	1.350	0 us	
	max 1.340 us 1.340 us 1.350 us 1.350 us										
Interva	al (cycles)	min	13	5	13	5	13	6	136		
		max	13	5	13	5	13	6	136		

Utilization

Utilization Estimates								
8bit	16bit	32bit	64bit					
18K 2	2	3	3					
0	1	1	1					
337	353	611	611					
326	291	335	335					
0	0	0	0					
	8bit 18K 2 0 337	8bit 16bit 18K 2 2 0 1 337 353	8bit 16bit 32bit 18K 2 2 3 0 1 1 337 353 611	8bit 16bit 32bit 64bit 18K 2 2 3 3 0 1 1 1 337 353 611 611				

以上是透過改變 shift register 的 bitwidth 來觀察 performance 和 utilization 的變化,隨著 bit 數的增加, Latency 都差不多,但是從 16bit 變成 32bit 時,硬體使用 的數量會大幅度的上升,因為要搬移的 data bitwidth 增加,所以需要用到的硬體也會變多,還有因為 32 bits 以上 之後的 bit 都是多餘的,所以用到的硬體才不會繼續增加。

> FIR128_Q2 : Pipelining

Code 的部分沒有做更動,主要是加入 Pipeline 的 pragma,並改變 II 從 $1\sim5$ 觀察發生的變化。

Hierarchy

Performance

Performa	nce Estima	tes										
□ Timin	g											
Clock		II_1		11_2		II_3		II_4		II_5		
ap_clk	Target	10.00	ns	10.00	ns	10.00	ns	10.00	ns	10.00	ns	
	Estimated	6.508	ns	6.508	ns	6.508	ns	6.508	ns	6.508	ns	
□ Laten	су		11 '	,	п -	2	11.	,	11	4	11 5	_
Latence	y (cycles)	min	13		II_ 26		II_;		11 <u>.</u> 4		II_5 516	\dashv
Lateric	y (cycles)	max			26	-	38		51		516	\exists
Latenc	y (absolute)				2.6	510 us	3.8	380 us	5.1	160 us	5.160	us
		max	1.3	340 us	2.6	510 us	3.8	380 us	5.1	160 us	5.160	us
Interva	l (cycles)	min	13	5	26	2	38	9	51	7	517	
		max	13	5	26	2	38	9	51	7	517	
		max	13	5	26	12	38	9	51	/	517	

Utilization

L	Utilization Estimates									
		II_1	II_2	II_3	11_4	II_5				
	BRAM_18K	2	2	2	2	2				
	DSP	0	0	0	0	0				
	FF	337	175	176	151	151				
	LUT	326	296	313	283	283				
	URAM 0 0 0 0 0									

從以上結果可以觀察出隨著 II 的增加,雖然 latency 上升,但是硬體的使用會減少,II 從 1 變到 2 的時候大概就是 latency 變成 2 倍,但使用的 FF 也減少一半。從 2 變成 3 時,可以看出 latency 上升但硬體使用的情況沒發生什麼變化,在 FIR 的運算中,依次 iteration 應該是 3 個 cycle,所以 II=2 或 3 使用硬體的效率差不多,但是會浪費掉一個 cycle,而 II=4 和 5 可以看出硬體的使用量有稍微降低一些,但是從 latency 的角度來看,總共耗費太多 cycle 了。

> FIR128_Q3 : Removing Conditional Statements

Code

以上是將 if-else 移除掉之後,再將 i=0 的情況,補在 for-

loop 後面,就可以達到原本的功能。

	AUTEULU OIE	,								
Perform	Performance Estimates									
□ Timing										
Clock		befor	е	after						
ap_clk	Target	10.00	ns	10.00	ns					
	Estimated	6.508	ns	6.508	ns					
⊡ Later	ncy									
			be	fore	after					
Latenc	y (cycles)	min	13	4	135					
		max	13	•	135					
Latenc	y (absolute)	min	_		1.350 us					
	max 1.340 us 1.350 us									
Interva	Interval (cycles) min 135 136									
	max 135 136									

Utilization

L	Utilization Estimates							
		before	after					
	BRAM_18K	2	2					
	DSP	0	1					
	FF	337	113					
	LUT	326	243					
	URAM	0	0					

根據上述的部分可以觀察出,經過 remove condition 的動作 雖然 latency 的部分沒有降低,但是可以看出在硬體使用的 部分少了許多。

> FIR128_Q4 : Loop Partitioning

Code

以上是將FIR 拆分成兩個 loop,一個是 TDL 另一個是 MAC。

Performa	Performance Estimates									
⊡ Timin	g									
Clock		merge	е	fissior	1					
ap_clk	Target	10.00	ns	10.00	ns					
	Estimated	6.508	ns	6.508	ns					
⊡ Laten										
		. .		erge	fission					
Latenc	y (cycles)	min	13	5	268					
		max	13	5	268					
Latenc	y (absolute)	min	1.3	350 us	2.680 us					
		max	1.3	350 us	2.680 us					
Interva	l (cycles)	min	13	6	269					
		max	13	6	269					

Utilization

Utilization Es	Utilization Estimates								
	merge	fission							
BRAM_18K	2	2							
DSP	1	1							
FF	113	128							
LUT	243	270							
URAM	0	0							

以上的結果只有經過 HLS 自動優化,如果只是單純將 loop 拆開來沒有做任何處理,performance 不一定會提高。

➤ FIR128_Q5 : Memory Partitioning

Code 的部分是使用 loop fission 的 code, 並透過 insert array_reshape 的 pragma 來觀察發生的變化。 Hierarchy

Performance

Performa	ance Estima	tes								
⊡ Timin	□ Timing									
Clock		origin	ı	resha	рe	resha	pe_pipelinefunction			
ap_clk	Target	10.00	ns	10.00	ns	10.00	ns			
	Estimated 6.508 ns 6.912 ns 7.108 ns									
□ Later	ncy									
			_	igin	_		reshape_pipelinefunction			
Latenc	y (cycles)		26		26	-	24			
		max			26	•	24			
Latenc	y (absolute)	min	2.6	580 us	2.6	570 us	0.240 us			
	max 2.680 us 2.670 us 0.240 us									
Interva	l (cycles)	min	26	9	26	8	1			
		max	26	9	26	8	1			

Utilization

l	Utilization Estimates								
		origin	reshape	reshape_pipelinefunction					
	BRAM_18K		0	0					
	DSP	1	1	1					
	FF	128	4418	6014					
	LUT	270	14180	3618					
	URAM	0	0	0					

從以上結果可以看出,單純將 array complete reshape 的話,想要達到相同的 performance,在硬體的使用上就會大幅度提升,這邊我還有實驗一下,pipeline function 的話會將兩個 loop fully unroll,可以看出 latency 大幅度的減少,但是硬體的使用上 FF 變高但 LUT 的用量減少,可以利用以上觀察出的結果,設計出 best design。

➤ FIR128_Q6: Best Design

Code

```
#include "fir.h"
     tdefine N 128
tinclude "ap_int.h"
typedef ap_int<8> reg_t;
typedef ap_int<5> c_t;
14
15
16
17
     void fir (data_t *y,data_t x){
18
19
20
21
22
23
24
25
26
27⊖
28
29
30
         c_t c[N] = {10, 11, 11, 8, 3, -3, -8, -11, -11, -10, -10, -10,
         // Write your code here
         reg_t shift_reg[N];
         Time_delay_loop:
         for (i = N - 1; i >= 0; i--) {
                   shift_reg[i] = shift_reg[i - 1];
               shift_reg[0] = x;
32
33
34
         MAC:
         for (i = N - 1; i >= 0; i--) {
              acc += shift_reg[i] * c[i];
36
37
38
39
40
41
42
               *y = acc;
    }
*/
         FIR:
          for (i = N - 1; i >= 0; i--) {
44
               shift_reg[i] = shift_reg[i - 1];
               acc += shift_reg[i] * c[i];
              shift_reg[0] = x;
              acc += shift_reg[0] * c[0];
```

Code 的部分我將 loop merge 和 loop fission 的部分放在一起,可以用不同的 solution 來比較。

Hierarchy

Performance

Utilization

Utilization Estimates									
	coef_int	coef_5bits	merge						
BRAM_18K	0	0	0						
DSP	1	12	24						
FF	6014	2351	3225						
LUT	3618	3760	4042						
URAM 0 0 0									

bitwidth 的部分,我將 shift register 設為 8bit,coefficient array 設為 5bit,可以從上述結果看出從integer(32bits)變成 5 bits,整體的 latency 和硬體使用來看,都提升許多,pipeline 的部分我是做 function pipeline,我也有試過將 inner loop pipeline 但是效果沒有 function pipeline 好,最後我還有將 loop merge並做 function pipeline,他會多 loop fission 一個cycle,後來發現是 DSP 產生出的電路不同,如下圖:

Merge_DSP

Instance		
DSP		
Instance	Module	Expression
		i0 * i1 + i2
mac_muladd_8s_4ns_11s_13_4_1_U10	mac_muladd_8s_4ns_11s_13_4_1	i0 * i1 + i2
mac_muladd_8s_4ns_11s_13_4_1_U15	mac_muladd_8s_4ns_11s_13_4_1	i0 + i1 * i2
mac_muladd_8s_4ns_11s_13_4_1_U18	mac_muladd_8s_4ns_11s_13_4_1	i0 * i1 + i2
mac_muladd_8s_4ns_11s_13_4_1_U23	mac_muladd_8s_4ns_11s_13_4_1	i0 + i1 * i2
mac_muladd_8s_4ns_12s_13_4_1_U1	mac_muladd_8s_4ns_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_4ns_12s_13_4_1_U8	mac_muladd_8s_4ns_12s_13_4_1	i0 * i1 + i2
mac_muladd_8s_4ns_12s_13_4_1_U9	mac_muladd_8s_4ns_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_4ns_12s_13_4_1_U16	mac_muladd_8s_4ns_12s_13_4_1	i0 * i1 + i2
mac_muladd_8s_4ns_12s_13_4_1_U17	mac_muladd_8s_4ns_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_4ns_4ns_12_4_1_U24	mac_muladd_8s_4ns_4ns_12_4_1	i0 * i1 + i2
mac_muladd_8s_5s_12s_13_4_1_U3	mac_muladd_8s_5s_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_5s_12s_13_4_1_U4	mac_muladd_8s_5s_12s_13_4_1	i0 * i1 + i2
mac_muladd_8s_5s_12s_13_4_1_U5	mac_muladd_8s_5s_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_5s_12s_13_4_1_U6	mac_muladd_8s_5s_12s_13_4_1	i0 * i1 + i2
mac_muladd_8s_5s_12s_13_4_1_U11	mac_muladd_8s_5s_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_5s_12s_13_4_1_U12	mac_muladd_8s_5s_12s_13_4_1	i0 * i1 + i2
mac_muladd_8s_5s_12s_13_4_1_U13	mac_muladd_8s_5s_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_5s_12s_13_4_1_U14	mac_muladd_8s_5s_12s_13_4_1	i0 * i1 + i2
mac_muladd_8s_5s_12s_13_4_1_U19	mac_muladd_8s_5s_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_5s_12s_13_4_1_U20	mac_muladd_8s_5s_12s_13_4_1	i0 * i1 + i2
mac_muladd_8s_5s_12s_13_4_1_U21	mac_muladd_8s_5s_12s_13_4_1	i0 + i1 * i2
mac_muladd_8s_5s_12s_13_4_1_U22	mac_muladd_8s_5s_12s_13_4_1	i0 * i1 + i2
	Instance mac_muladd_8s_4ns_11s_13_4_1_U2 mac_muladd_8s_4ns_11s_13_4_1_U7 mac_muladd_8s_4ns_11s_13_4_1_U10 mac_muladd_8s_4ns_11s_13_4_1_U15 mac_muladd_8s_4ns_11s_13_4_1_U18 mac_muladd_8s_4ns_11s_13_4_1_U23 mac_muladd_8s_4ns_11s_13_4_1_U23 mac_muladd_8s_4ns_12s_13_4_1_U1 mac_muladd_8s_4ns_12s_13_4_1_U1 mac_muladd_8s_4ns_12s_13_4_1_U9 mac_muladd_8s_4ns_12s_13_4_1_U16 mac_muladd_8s_4ns_12s_13_4_1_U17 mac_muladd_8s_5s_12s_13_4_1_U17 mac_muladd_8s_5s_12s_13_4_1_U4 mac_muladd_8s_5s_12s_13_4_1_U5 mac_muladd_8s_5s_12s_13_4_1_U11 mac_muladd_8s_5s_12s_13_4_1_U11 mac_muladd_8s_5s_12s_13_4_1_U12 mac_muladd_8s_5s_12s_13_4_1_U12 mac_muladd_8s_5s_12s_13_4_1_U12 mac_muladd_8s_5s_12s_13_4_1_U12 mac_muladd_8s_5s_12s_13_4_1_U19 mac_muladd_8s_5s_12s_13_4_1_U19 mac_muladd_8s_5s_12s_13_4_1_U19 mac_muladd_8s_5s_12s_13_4_1_U20 mac_muladd_8s_5s_12s_13_4_1_U20 mac_muladd_8s_5s_12s_13_4_1_U21	Instance

Fission_DSP

⊞ Instance		
⊟ DSP		
Instance	Module	Expression
am_addmul_8s_8s_5s_13_4_1_U2	am_addmul_8s_8s_5s_13_4_1	(i0 + i1) * i2
am_addmul_8s_8s_5s_13_4_1_U3	am_addmul_8s_8s_5s_13_4_1	(i0 + i1) * i2
am_addmul_8s_8s_5s_13_4_1_U6	am_addmul_8s_8s_5s_13_4_1	(i0 + i1) * i2
am_addmul_8s_8s_5s_13_4_1_U7	am_addmul_8s_8s_5s_13_4_1	(i0 + i1) * i2
am_addmul_8s_8s_5s_13_4_1_U10	am_addmul_8s_8s_5s_13_4_1	(i0 + i1) * i2
am_addmul_8s_8s_5s_13_4_1_U11	am_addmul_8s_8s_5s_13_4_1	(i0 + i1) * i2
ama_addmuladd_8s_8s_4ns_12s_14_4_1_U1	ama_addmuladd_8s_8s_4ns_12s_14_4_1	i0 + (i1 + i2) * i3
ama_addmuladd_8s_8s_4ns_12s_14_4_1_U4	ama_addmuladd_8s_8s_4ns_12s_14_4_1	(i0 + i1) * i2 + i3
ama_addmuladd_8s_8s_4ns_12s_14_4_1_U5	ama_addmuladd_8s_8s_4ns_12s_14_4_1	i0 + (i1 + i2) * i3
ama_addmuladd_8s_8s_4ns_12s_14_4_1_U8	ama_addmuladd_8s_8s_4ns_12s_14_4_1	(i0 + i1) * i2 + i3
ama_addmuladd_8s_8s_4ns_12s_14_4_1_U9	ama_addmuladd_8s_8s_4ns_12s_14_4_1	i0 + (i1 + i2) * i3
ama_addmuladd_8s_8s_4ns_12s_14_4_1_U12	ama_addmuladd_8s_8s_4ns_12s_14_4_1	(i0 + i1) * i2 + i3

我猜想大概是合成出的電路不同,導致整體的 latency 也會不一樣。

> Conclusion

透過這一連串的 optimization,讓我對於 Vitis HLS 的使用又有一些新的理解,不管是 memory 的 partition 或是 pragma 的使用都更加熟悉如何使用,還有一些 coding style 的技巧也學到了一些,真的是受益良多。

➤ Github link

https://github.com/sssh311318/Lab_B_FIR