Specialist Mathematics

Written examination 1

2005 Trial Examination

SOLUTIONS

PART I: Multiple-choice questions (1 mark each)

1.	A	11.	С	21.	С
2.	В	12.	Е	22.	В
3.	A	13.	D	23.	D
4.	C	14.	D	24.	Е
5.	D	15.	C	25.	A
6.	D	16.	D	26.	С
7.	D	17.	E	27.	E
8.	A	18.	D	28.	С
9.	В	19.	E	29.	D
10.	A	20.	A	30.	A

PART II: Short Answer Questions.

Ouestion 1

$$y = x \sin x \Rightarrow y' = \sin x + x \cos x$$

 $\Rightarrow y'' = \cos x + (\cos x - x \sin x) = 2\cos x - x \sin x$
Substituting into the differential equation, we obtain
 $(2\cos x - x \sin x) + m(x \sin x) = n \cos x$
 $\Rightarrow (m-1)x \sin x + 2\cos x = n \cos x$
 $\Rightarrow m-1=0 & n=2 \Rightarrow m=1 & n=2$

3 marks

Question 2

Centre: $(3,2) \& a = 2, b = 1 \Rightarrow \text{Vertices: } (3,2 \pm 1) \Rightarrow (3,1) \& (3,3)$.

Asymptotes are
$$y - 2 = \pm \frac{1}{2}(x - 3) = \pm \frac{1}{2}x + 2 \mp \frac{3}{2}$$

 $\Rightarrow y = \frac{1}{2}x + \frac{1}{2} & \Rightarrow y = -\frac{1}{2}x + \frac{7}{2}$

4 marks

Question 3

$$\int_{0}^{\pi} 8\sin^{4}x \, dx = 8 \int_{0}^{\pi} (\sin^{2}x)^{2} dx = 8 \int_{0}^{\pi} \left[\frac{1}{2}(1-\cos 2x)\right]^{2} dx$$

$$= 2 \int_{0}^{\pi} (1-2\cos 2x + \cos^{2}2x) \, dx = 2 \int_{0}^{\pi} \left[1-2\cos 2x + \frac{1}{2}(1+\cos 4x)\right] dx$$

$$= \int_{0}^{\pi} (2-4\cos 2x + 1 + \cos 4x) \, dx = \int_{0}^{\pi} (3-4\cos 2x + \cos 4x) \, dx$$

$$= \left[3x - 2\sin 2x + \frac{1}{4}\sin 4x\right]_{0}^{\pi} = (3\pi) - (0) = 3\pi$$

3 marks

Question 4

a. The mass M: Ma = T - - - - - - - (1)The mass m: ma = mg - T - - - - (2)Adding (1) and (2): $(M + m)a = mg \Rightarrow a = \frac{mg}{M + m} \text{ m/s}^2$

2 marks

b. Substitute into (1):
$$T = \frac{Mmg}{M+m}$$
 N

1 mark

Question 5

$$V = \pi \int_0^h x^2 dy = \pi \int_0^h (e^y)^2 dy = \pi \int_0^h e^{2y} dy = \frac{\pi}{2} [e^{2y}]_0^h = \frac{\pi}{2} (e^{2h} - 1) \text{ cubic units}$$
3 marks

Question 6

$$z^{4} = -16 = 16cis(\pi) = 2^{4}cis(\pi + 2k\pi), k = 0,1,2,3.$$

$$z = 2cis\left(\frac{\pi + 2k\pi}{4}\right), k = 0,1,2,3.$$

$$k = 0 \Rightarrow z_{1} = 2cis\left(\frac{\pi}{4}\right) = 2\left[\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})\right] = 2\left[\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right] = \sqrt{2} + \sqrt{2}i$$

$$k = 1 \Rightarrow z_{2} = 2cis\left(\frac{3\pi}{4}\right) = 2\left[\cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4})\right] = 2\left[-\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right] = -\sqrt{2} + \sqrt{2}i$$

$$k = 2 \Rightarrow z_{3} = 2cis\left(\frac{5\pi}{4}\right) = 2\left[\cos(\frac{5\pi}{4}) + i\sin(\frac{5\pi}{4})\right] = 2\left[-\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right] = -\sqrt{2} - \sqrt{2}i$$

$$k = 3 \Rightarrow z_{1} = 2cis\left(\frac{7\pi}{4}\right) = 2\left[\cos(\frac{7\pi}{4}) + i\sin(\frac{7\pi}{4})\right] = 2\left[\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}\right] = \sqrt{2} - \sqrt{2}i$$

$$4 \text{ marks}$$