
	Page No.		
	Desc:		
	Chemical Kinetics		
	P>0		
	ROR: - Change in the conc. of reactionts/products per unit time. R > P.		
-	Unit = moll-1 time 1/atm tim-1 59 x A + BB > xC+ 80.		
	KOR = - NIAI = -DUKI = Deciments		
No car			
No Roo	1 h. O disableaning of a = - D(A), R2 - BB		
	At Land		
	A A A A A A A A A A A A A A A A A A A		
-	At At Xdt ydt		
Q	If ROD of Sozia 2X10-3M sec - Find KOA.		
	$250_2+0_2\rightarrow250_2$		
	2 × 10-3 = - A SO2 = A SO2 , ROA = 803= 2×10-3 HSECT		
	· 2 St At		
4	Former allichus ene		
8	Nature of Reactants: 200+02 - 2002 Fast.		
9	Course at much to the reaction.		
1/	Temp 1 ROK 1 Surface are of reactants - I particle sign,		
7	Temp 1 , ROK 1 5) Surface are of reactants - I particle says , Treaction		
*	Rate law and Rate constant.		
	Rate law: Rate z conc. of reactants.		
	Rate lew is a mathematical equation that describes relationsh		
	between reaction rate and the concentration of reactions		
	$\angle A + \beta B \rightarrow \gamma C + S D$		
	Rate & [A] x [B] & R= Rate constant		
	-de z k[A] * [B] &		
	dt		
	azn, Bzy for elementary xxv, 1 step rxns, Rate determing step		
>	Order = x + y		
	Order Unit of R Examples		
	moe x (moe) = mol L-15-1 Eg:- n2+ Cl_> 2 hcl		
N. Barrell	mate x 1 = 5 N205 > 2N02 + 1 02		
	2 molix (mali)2 z mol 45-1 2NI & H2+ I2		

K is defined as the rate of sixin when the major come. of each reactant is unity. Paga No. CH3 (HO > CHY+(O, - of + NEO) CHUZ + CL Y + HCL 2.56H3 -> 156+3H, F dr = K(N) Fractional Order Rate = k (CnUz) [CU] 1/2 Order = 3 Complex Rxns-Rxns take more than I step. Slawest step is rate Determing Step. Order is for both elementary & complex xxxx but male wanty is for elementary exes. Order is given by so slowest Step in complex and molecularity of slowest itep is some of order. Order = Experimental, Molecularity = Theoretical [Simoleulary] * Order of a reaction. Sum of powers to which the moler conc. in the rate law Equation are raised * Molecularity: The no. of atoms, ions or molecules that must Collide with one another simultaneously to result into a Chemical XXN. Eg: 2HI > 4,+I, Malecularity - 2 2NO+0, -> 2NOL & Molecularity -3 * Integrated rate law: - These are studied by integrating the above differential equations in order to predict the conc. at any time and to determine the order of rxn accurately > Zero Order: - lol & zero power of cone of reactants [R] = k [R]0 -dR zk, d[R]z-kdt Integrating both sides.

RTz-kt + ((R) - R Sd(R]z-Skdt, [R]z-kt+(At t= 0, [R] = [Ro] First order: $[R]^2 \times [R]^2 \times$ In [R] = - kt + In [Ro]

Fg: 85 Ra - 4 Me + 218 Rn and all radiocety of (, 44+H, ->C, H& Kt = lu[ro]-lu[r] kt = ln(Ro) lou [Ro] = kt. * Ity: Time in which KOK is reduced to half of its initial come KZ [R]o-[R] t= +1/2, [R] =[R] tyz [Ro] tyz [Ro] -> First order : k = 2.303 log [Ro] t=t1/2 0 g [R] = [Ro] typ 2 0.693 tyz not propositional to[R]. * non order reaction.

kt z Ro'n - Ct-n tyz x Ro'n. * bendo 1 st order: - Second order made to behave like 1st order to Eg: - Mydrolysis of Ethyl acetate, Townson of Cane Sugar CO C12 M22 OH + M20 7 C6 M12 06 + C6 M12 08. Sucrose Glucose Fructose Rate = K[C12 M22 O11] as in soln, amount of nation is excessively high as compared to sugar, so [1, 0] is not constant-

> Sed	and Order.
	The kt to
	tile RPO. Page No. Inote:
	R.P.O. [Joseph]
	Chart of teach of a southway water (Alexand C. 1)
	(feet of temperature on reaction reales (Archenius Equation)
	Chemical TXNS faster at 1 temp. Is temp , molecules
	chemical rxns faster at 1 temp. As temp 1, molecules move faster and collide more vigorously enabling bond cleavages &
	JUDDUAMO MI MI
	ROR doubles for a 10 T in temp as proved by Arrhenus, he
	Combined the concept of actuation energy (Ea) and Boltomann
	distribution law. Keeping the conc constant, if
	Combined the concept of activation energy (Ea) and Boltomann distribution low. [Keeping the conc constant, if $K = A e^{-\frac{L}{2}} = -(1)$ [Temp, RORT, RT
	Re resteventant, A pre enformential factor, Eas Activation energy, R = tras conformed To lemp, R 12 avg. Kinetic energy. (2 in colone and 25 in
	To lemb, Prz ava, Kinetic enurau. (2 ivialone
→	
->	1 tend 1 let 1 me Ab and then dut con
	Tehna lea both sides clear (1)
	In k = la In A - Fa Ink Slept - Ga
	Turing lig both sides of eg () In k = lan In A - Fa Ink Slept - Ga RT
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
-R	Ea Cactivation energy :- Men. amount of energy that is required
	to activate atoms or molecules so that they can undergo a chance
	chemical xxn.
	Exothermic (DH = - UE) tndothermic (AH = + W)
	Activated complex. Activated amplen
	of The Threshold V. E. The
D Jour	0 194 1
bocky	I Ch
10000	TITE Eth
-	Lxn coordinate(t) Rxn coexclusite
1 9 11 1	AHZEp-ERZ(Ea) f-(Ea) DHZEp-ERZ(Ea) f-(Ea)
	Activated complex is a short-lived state in which colliding
	particles are at the peak of P.E. curve
	. 0

]	
	Page No.
	Date:
*	(NI) was There The and it dill want to a well
	at diff rates (particular for gase)
->	It states that for a chemical reaction to occur, to
	riacting farticles must collecte with another BROR
	dipinds on freq. of collisions.
->	A collision will be effective in producing chemical
	Change only if the species brought together posses a certain
	man amount of energy (ta)
\rightarrow	Colliding particles must be oriented in a manner favores
	the necessary rearrangement of atom
	Not all collisions are equal or bring about a change
-	Change
4	When two gases A and B react, reaction becomes possible
	when he is collede. So, no of collinson eer 10 (2) in
	a given volume can be obtained from kinetic thory-
	Ter ZAB = MANB 6 AB (8 TI KRT) 1/2
	Regalling die to 1 - 1 1 1 2004 Com
	6 = collision diameter, 112 reduced mass, Kg = Boltzminn
	maling - no. of molecules of A and Bruncted in I second
-	No al molecule restaurable constant 6 k?
T.	No of molecules reacted is always less than no of molecules collided, ie every collision does not yield a ron.
-7	Arrhenius then proposed, molecule having Fa after collegen well result?
→	Acc. to Manwell , at temp T, ratio of total number of collection and
	no of collisions a givene Ea to molecules 4 e Exet
	no of collisions as giving Eatomolecules is e-ENRF 7' = Ze Ea/RT -dna = Z' > Ideally.
	Zz total no of collision 2' = no of collision our 5.
	NA x Ze COPRI ZR
	hang
	REPNA XZE-ENRT
	nang hang
	po probability factor.
	J 0

Page No	
Lenc	
mutton	(tate The

* Activated Complex theory - (Also known as Tra -> An activated complex is an unstable arrangement of atom that is in between the relactants and products and enests momentarily at the peak of activation energy barner -> because of its high energy, the activated complex exists for an extremely short period of time (about 10-135) -> There is equal likelihood that the activated complex either Justorms the original reactants or goes on to form products $A + B \rightleftharpoons X^{\#} \rightarrow Product$ activated complex) AC Here, ROK depends on & factors - @ Conc. of activated complex @ Freq. of decomposites Rate z (conc. of AC) (freq. of decomposition of AC (1) Conc. of A. C: Exn is in equilibrium with A. (. (A][B] (cont. of A() Treq of decomposition of A.C. - Since, A.C is in a process of decomposition so one of its vibration degree of freedom will change to translational dif So , Evil, be the aug. vibrational energy which signets in bond breaking. k, z / kBT) e (As") #/RT e (As") */K. Euz (DHO)# + RT. Complex reaction: - There will be intermediated in the TXN which should not appear in rate law. Reversible heaction: A reaction in which conversion of reactants to products and conversion of products to reactants occur Eg:- Chy COOM+C, My OH = simultaneously. (M3 (00C) M5 + HO At time to, a-n At equilibrium, (a-xo) neg Rate 2 dn z k, [A] - k, [B] $= k_1(a-x)-k_1(x)-Q$

		Paga No.		
		Date:		
	At equilibrium, Key 2 Meg and rate	20		
	K1(a-xeq) z R-1(xey)			
	KIZ Key Z Reg	-		
	R-1 a-xey	-		
*	K., z K. (a-Kegy) - D			
	From eq. @ &Q.			
	Rate 2 dn 2 K, (a-n) - k, x (a-ney)			
	dt Keg.			
	far e a kidt.			
	xey-x ney.			
	-ln(negr-n) = a [k,t+	·I]		
	neg.			
1	at ±20, x20.			
1	Iz -xcg lya (xeg).			
	Q	<u>-</u>		
	K, t z Kegy In (xegy)			
	a (xeg-n)			
*	Consecutive Reactions.			
	$A \xrightarrow{k_1} B : B \xrightarrow{k_2} C$			
	-dA = k, (A) ; d(c) = k; (B).			
	d(B) = k, (A) - k, (B).			
	at			
	Eg: (a) (n3-0 - 1) (44+ 4-1-1-1	3 CO+11.		
	(b) 2NO+4, XI>N,+HO	2		
	(b) 2NO+H, 1>N2+H,02 N,02+H, 2>2H,0.			
	11120.			