REGIONE AUTONOMA DELLA SARDEGNA ASSESSORATO DEI LAVORI PUBBLICI

COMUNE DI LODE' PROVINCIA DI NUORO

Costruzione di un muro di sostegno in Corso Villanova

(Messa in sicurezza del versante in conseguenza di frane e smottamenti nella strada di accesso all'abitato ID 21365 - CIG ZB01FB4776

ALL. 2 RELAZIONE DI CALCOLO

SCALA: -

PROGETTO ESECUTIVO

IL PROGETTISTA

Ing.Francesco Trudu

IL COMMITTENTE

Amm. Comunale Lodè

Agosto 2018

TRUDU E ASSOCIATI

studio di architettura e ingegneria

via Chiesa, 31 Nuragus truduassociati@alice.it Tel 0782 818264

Calcolo geotecnico e strutturale muri di sostegno

PROGETTO/LAVORI

Costruzione di un muro di sostegno in Corso Villanova - Muro "TIPO 1" sul corso Villanova

COMMITTENTE

Amm. Comunale Lodè

COMUNE

Lodè

ANNOTAZIONI

NORMATIVA DI RIFERIMENTO

D.M. 17/01/2018

Le verifiche di tipo geotecnico (ribaltamento, scorrimento, carico limite, stabilità globale) e strutturali vengono svolte con il metodo agli Stati Limite Ultimi (S.L.U.)

Coeff. parziali o di sicurezza sulle azioni (A)

gruppo EQU

azioni permanenti aventi effetto favorevole alla sicurezza gGi=0,9 azioni permanenti aventi effetto sfavorevole alla sicurezza gGs=1,1 azioni variabili aventi effetto favorevole alla sicurezza gQi=0

azioni variabili aventi effetto sfavorevole alla sicurezza gQs=1,5

gruppo A1

azioni permanenti aventi effetto favorevole alla sicurezza gGi=1

azioni permanenti aventi effetto sfavorevole alla sicurezza gGs=1,3

azioni variabili aventi effetto favorevole alla sicurezza gQi=0

azioni variabili aventi effetto sfavorevole alla sicurezza gQs=1,5

gruppo A2

azioni permanenti aventi effetto favorevole alla sicurezza gGi=1

azioni permanenti aventi effetto sfavorevole alla sicurezza gGs=1

azioni variabili aventi effetto favorevole alla sicurezza gQi=0

azioni variabili aventi effetto sfavorevole alla sicurezza gQs=1,3

Coeff. parziali o di sicurezza per i parametri geotecnici dei terreni (M)

gruppo M1

tangente dell'angolo di resistenza al taglio gf'=1

coesione efficace gc'=1

coesione non drenata gcu=1

peso dell'unità di volume gg=1

gruppo M2

tangente dell'angolo di resistenza al taglio gf'=1,25

coesione efficace gc'=1,25

coesione non drenata gcu=1,4

peso dell'unità di volume gg=1

Coeff. parziali o di sicurezza sulle resistenze globali dei sistemi geotecnici (R)

gruppo R3

Opera di sostegno:

coeff. sicurezza al ribaltamento gRib=1,15

coeff. sicurezza allo scorrimento gScorr=1,1

coeff. sicurezza al carico limite del complesso fondazione-terreno gQlim=1,4

coeff. sicurezza resistenza del terreno a valle gSp=1,4

Pali di fondazione:

coeff. sicurezza resistenza alla base gb=1,35

coeff. sicurezza resistenza laterale in compressione gs=1,15

coeff. sicurezza resistenza laterale in trazione gst=1,25

coeff. sicurezza resistenza a carichi trasversali gT=1,3

La verifica di stabilità globale del complesso opera di sostegno-terreno viene condotta secondo l'Approccio 1 - Combinazione 2 (A2+M2+R2)

Le rimanenti verifiche SLU di tipo geotecnico e strutturale sono condotte in base all'Approccio 2 (A1+M1+R3)

UNITA' DI MISURA

Sistema Tecnico

Lunghezze (coordinate, distanze, dimensioni, spostamenti ...): m

Aree sezioni: mq Volumi: mc

Momenti di inerzia sezioni: m^4

Forze, Resistenza alla punta e laterale, Sforzo normale, Taglio: kg

Momenti (stabilizzante, instabilizzante, flettente - per metro lineare di muro): kg*m

Sovraccarico uniformemente ripartito: kg/mg

Coesione: kg/mq

Pesi unità di volume: kg/mc

Coefficienti di reazione del terreno o di Winkler: kg/cmc

tempi: secondi (s) velocità: m/s accelerazioni: m/s2

Latitudine, Longitudine: gradi sessadecimali

calcoli strutturali

dimensioni, copriferro, interferro: cm diametri tondini, staffe e spirali: mm

aree sezioni: cmq volumi: cmc

Momenti di inerzia sezioni: cm^4

Tensioni/pressioni, Moduli elastici, carico limite unitario, resistenze mater.: kg/cmq

METODI DI CALCOLO

Muro

calcolo della spinta: teoria di Coulomb generalizzata

calcolo del carico limite del complesso fondazione superficiale-terreno: teoria di Prandtl-Cacquot-Terzaghi

stabilità globale: metodo di Bishop analisi sismica: metodo pseudostatico

calcolo spostamenti permanenti indotti dal sisma: metodo Newmark > Whitman e Liao

Pali di fondazione

valori del fattore di forma Ng per il carico limite assiale: Berezantzev et al. (1961)

valori del fattore di forma Nq per pali trivallati di grande diametro: Berezantzev (1965)

Analisi del palo sotto carichi di esercizio (verifiche strutturali e calcolo spostamenti nel palo):

"Palo elastico su suolo elastico alla Winkler" - soluzione con il Metodo agli Elementi Finiti (F.E.M)

SISTEMA DI RIFERIMENTO ASSOLUTO

Origine sull'estremo inferiore della fondazione di valle, asse X orizzontale verso monte, asse Y verticale verso l'alto, asse Z ortogonale al piano del disegno e uscente

INPUT DEL PROBLEMA

CONDIZIONI DI ROTTURA

Condizioni di rottura drenate - Assenza di pressioni neutre

TIPOLOGIA E SEZIONE MURO

Muro a sbalzo in C.A.

DATI GEOMETRICI

Sezione muro

scarpa esterna, Se=0 m spessore muro in testa, Bm=0,3 m scarpa interna, Si=0 m altezza parte superiore muro, Hm=2,7 m altezza complessiva muro, H=3,2 m altezza fondazione, Hf=0,5 m larghezza fondazione, B=2,3 m sviluppo fondazione a monte, L=1 m sviluppo longitudinale del muro (lungo l'asse Z), Lz=90 m

Terreni circostanti

inclinazione pendio di monte rispetto all'orizzontale, i (°)=20 affond, piano di posa fondazione, D=0,6 m affond. terreno di monte rispetto al coronamento muro, Ha=0 m angolo di rotazione del piano di posa della fondaz. rispetto all'orizzontale, alfa (°)=0 spessore del magrone, Sm=0,1 m

DATI GEOTECNICI TERRENI

peso dell'unità di volume dell'acqua, gw=1000 kg/mc

Terreno spingente (1)

peso dell'unità di volume, g=2000 kg/mc angolo di resistenza al taglio, Fi (°)=30 coesione drenata terreno spingente, c'=0,000002 kg/mg angolo di attrito diaframma verticale da estremo di fondaz. di monte = 20° Terreno di fondazione (2)

peso dell'unità di volume, g=2100 kg/mc angolo di resistenza al taglio, Fi (°)=32 coesione drenata terreno di fondazione, c'=0,00003 kg/mg costante di sottofondo o di Winkler del terreno di fondazione, kt=10 kg/cmc Terreno di riporto sopra la fondazione di monte (3) peso dell'unità di volume del terreno di riporto sopra la fondaz., q3=1800 kg/mc

PROPRIETA' AL CONTATTO MURO-TERRENI E PALI-TERRENI

Angoli di attrito sulle superifici di contatto muro-terreni

angolo di attrito terrapieno-muro, delta=20° angolo di attrito muro-magrone o muro-terreno, delta1=32° adesione al contatto muro-magrone o muro-terreno ad1=0 kg/mg angolo di attrito magrone-terreno di fondazione, delta2=32° adesione al contatto magrone-terrenodi fondazione ad2=0 kg/mg

DATI MATERIALE MURO E PALI

peso dell'unità di volume, gm=2500 kg/mc peso dell'unità di volume del magrone = 2000 kg/mc

Calcestruzzo

resistenza caratteristica cubica a compressione, Rck=300 kg/cmg modulo di elasticità longitudinale, Ec=319.173 kg/cmq coeff. parziale di sicurezza = 1,5 diagramma di progetto tensione-deformazione: parabola-rettangolo deformazione ec2 = 0.2%deformazione ec3 = 0.175%deformazione ec4 = 0,07% deformazione di rottura o ultima = 0,35% resistenza media a compress. cilindrica, fcm=330,55 kg/cmq resistenza caratteristica a compress. cilindrica a 28 gg, fck=249 kg/cmg resistenza di progetto a compress., fcd=141,1 kg/cmq resistenza media a trazione, fctm=25,75 kg/cmq resistenza caratteristica a trazione, fctk=18,02 kg/cmg resistenza di progetto a trazione, fctd=12,01 kg/cmq

Acciaio

tipo di acciaio: B450C

modulo di elasticità longitudinale, Es=2.100.000 kg/cmq

coeff. parziale di sicurezza = 1,15

diagramma di progetto tensione-deformazione: elastico-perfettamente plastico

deformazione di snervamento = 0,186%

deformazione a rottura = 1%

tensione caratteristica di snervamento, fyk=4.500,00 kg/cmq resistenza di progetto dell'acciaio, fyd=3.913,04 kg/cmq

SOVRACCARICHI: 1) UNIFORMEMENTE RIPARTITO SUL TERRAPIENO; 2) CONCENTRATO SUL MURO

terrapieno: di tipo permanente, g1=0 kg/mq terrapieno: di tipo variabile, q1=50 kg/mq

muro (di tipo permanente), componente orizz. H2=0 kg/m muro (di tipo permanente), componente vert. V2=200 kg/m

AZIONE SISMICA

non viene considerata

DATI PROGETTO ARMATURA A FLESSIONE E TAGLIO

Muro

rapporto armature = 0

diametro armatura trasversale (staffe o di ripartizione), dst=8 mm

numero di braccia delle eventuali staffe per ml di muro = 4

percentuale dell'armatura longit. a flessione per determinare l'armat. di ripartiz. = 20%

Muro e pali (quando presenti)

diametro tondini = 12 mm

copriferro = 4 cm

spazio minimo tra le barre (interferro) = 4 cm

interasse massimo tra le barre = 30 cm

VERIFICHE AGLI S.L.E.

valore massimo ammissibile della tangente dell'angolo di rotazione del piano di posa della fondazione = 0,005 (beta_max=0,29°)

spostamento permanente ammissibile per effetto del sisma = 2 cm

IMPOSTAZIONI DI CALCOLO

Terreni omogenei ed isotropi: spingente (1) - di fondazione (2) - di riporto sopra la fondaz. di monte (3) Condizioni di spinta "attiva"

Non si tiene conto della spinta passiva a valle (a favore di sicurezza)

COMBINAZIONI DI CARICO

Combinazioni fondamentali (assenza di sisma)

Azioni permanenti G:

- peso proprio elementi strutturali (muro)
- peso proprio terreno
- peso proprio elementi non strutturali
- carico concentrato sul coronamento del muro e sovraccario permanente sul terrapieno
- spinte del terreno

Azioni variabili Q:

- sovraccarico saltuario sul terrapieno q1 (es. derivante da traffico veicolare)
- spinta dovuta al sovraccarico saltuario

Combinazioni sismiche

Azione sismica E

Azioni permanenti G

Azioni varibili Q (con coeff. riduttivo di combinazione)

OUTPUT DEL PROBLEMA

AREE, PESI E BRACCI (rispetto all'origine del sist. di riferimento)

Muro

area = 1,96 mq

peso = 4.900,00 kg

ascissa baricentro muro = 1,15 m

ordinata baricentro muro = 0,91 m

Terreno di riporto sopra la fondazione a monte

area = 2,88 mq

peso = 5.187,57 kg

ascissa baricentro terreno = 1,81 m

ordinata baricentro terreno = 1,94 m

VERIFICHE AGLI STATI LIMITE ULTIMI

COMBINAZ. FONDAMENTALE 1 (assenza di sovraccarico accidentale)

VERIFICA AL RIBALTAMENTO (rispetto all'estremo di fondazione di valle)

Trattasi di SLU di tipo geotecnico

coeff. carichi permanenti favorevoli alla sicurezza = 1

coeff. carichi permanenti sfavorevoli alla sicurezza = 1,3

coeff, carichi variabili favorevoli alla sicurezza = 0

coeff. carichi variabili sfavorevoli alla sicurezza = 1,5

angolo di resistenza al taglio drenato di progetto terreno spingente, Fi1d=30°

coesione drenata di progetto terreno spingente, C1d=0 kg/mq

Spinta complessiva dovuta al terrapieno e all'eventuale sovraccarico, St=5.260,92 kg

componente orizzontale, Sth=4.943,65 kg

braccio componente orizzontale, YSt=1,19 m

componente verticale, Stv=1.799,34 kg

braccio componente verticale, XSt=2,3 m

Momento ribaltante, Mrib=7.634,91 kg*m

Momento stabilizzante, Mstab=19.395,71 kg*m

Coeff. di sicurezza = 2,54

VERIFICA SODDISFATTA

VERIFICA ALLO SCORRIMENTO (piano di posa)

Trattasi di SLU di tipo geotecnico

angolo di resistenza al taglio di progetto terreno spingente, Fi1d= 30°

Spinta complessiva dovuta al terrapieno e all'eventuale sovraccarico, St=5.260,92 kg

componente orizzontale, Sth=4.943,65 kg

braccio componente orizzontale, YSt=1,19 m

componente verticale, Stv=1.799,34 kg

braccio componente verticale, XSt=2,3 m

Resistenza lungo la superficie di scorrimento, Tlim=7.552,74 kg

Componente orizz. della risultante delle forze che si scaricano alla base del muro, Rh=6.426,74 kg

coeff. di sicurezza superf. separazione muro-magrone o muro-terreno = 1,18

VERIFICA SODDISFATTA

coeff. di sicurezza sup. separazione magrone-terreno = 1,22

VERIFICA SODDISFATTA

VERIFICA AL CARICO LIMITE

Trattasi di SLU di tipo geotecnico

Parametri geotecnici di progetto

angolo di resistenza al taglio drenato del terreno di fondazione, Fi2d (°)=32

coesione drenata terreno di fondazione, c'2d=0 kg/mq

peso dell'unità di volume del terreno superficiale, g1=2000 kg/mc

peso dell'unità di volume del terreno di fondazione, g2=2100 kg/mc

Risultante dei carichi in fondazione, R=13.689,28 kg

componente normale al piano posa fondazione, Rn=12.086,91 kg

componente tangenziale al piano posa fondazione, Rt=6.426,74 kg

angolo di inclinazione di R rispetto alla normale al piano di posa fondaz. = 28° eccentricità di R, Ec=-0,18 m B/6 = 0.38 mbase del muro non parzializzata larghezza ridotta della fondazione, B'=1,95 m Fattori del carico limite Nc=35,49 Nq=23,18 Ng=30,21 Fattori di inclinazione del carico ic=0,47iq = 0,47ig=0,02 Fattori di inclinazione del piano di posa della fondazione alfa c=1 alfa_q=1 alfa g=1 Carico limite unitario, qlim=1,42 kg/cmq Carico limite, Qlim=27.562,46 kg Sottospinta, Sw=0,00 kg Carico di esercizio, Qes=Rn-Sw=12.086,91 kg Coeff. di sicurezza = 2,28 VERIFICA SODDISFATTA

VERIFICA DI STABILITA' GLOBALE

n° di cerchi analizzati = 10

Trattasi di SLU di tipo geotecnico

angolo di resistenza al taglio di progetto terreno, Fid (°)=26,56

coesione drenata di progetto, C'd=0 kg/mq

Cerchio critico: Xc (m)= 1,15 Yc (m)= 6,4 Rc (m)= 6,62

Octonic	, oi itioo. ,		` '	0,7 110	(111) 0,02	•				
concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	T
1	73,43	0	-26,96	0	0,38	0	6,4	0	102,68	39,91
2	209,09	0	-23,33	0	0,38	0	6,4	0	273,55	106,32
3	323,26	0	-19,79	0	0,38	0	6,4	0	399,4	155,24
4	417,47	0	-16,32	0	0,38	0	6,4	0	490,9	190,8
5	492,87	0	-12,92	0	0,38	0	6,4	0	555,2	215,79
6	550,32	0	-9,57	0	0,38	0	6,4	0	597,23	232,13
7	590,46	0	-6,25	0	0,38	0	6,4	0	620,38	241,13
8	613,68	0	-2,95	0	0,38	0	6,4	0	627,04	243,71
9	1270,44	0	0	0	0,3	0	6,4	0	1270,44	493,79
10	2789,07	0	3,04	0	0,4	0	6,4	0	2736,57	1063,64
11	2879,11	0	6,52	0	0,4	0	6,4	0	2774,59	1078,42
12	2949,27	0	10,03	0	0,4	0	6,4	0	2802,4	1089,22
13	2999,01	0	13,57	0	0,4	0	6,4	0	2820,47	1096,25
14	3027,52	0	17,17	0	0,4	0	6,4	0	2828,94	1099,54
15	3033,64	0	20,85	0	0,4	0	6,4	0	2827,58	1099,01
16	3015,83	0	24,61	0	0,4	0	6,4	0	2815,77	1094,42
17	2972	0	28,49	0	0,4	0	6,4	0	2792,38	1085,33
18	2899,32	0	32,52	0	0,4	0	6,4	0	2755,56	1071,02
19	2793,9	0	36,75	0	0,4	0	6,4	0	2702,4	1050,36
20	2650,21	0	41,22	0	0,4	0	6,4	0	2628,25	1021,54
21	2459,97	0	46,02	0	0,4	0	6,4	0	2525,36	981,55
22	2209,98	0	51,3	0	0,4	0	6,4	0	2379,78	924,96
23	1876,41	0	57,28	0	0,4	0	6,4	0	2162,9	840,66
24	1406,11	0	64,53	0	0,4	0	6,4	0	1800,45	699,79
25	563,68	0	75,52	0	0,4	0	6,4	0	899,93	349,78
I (m) -	12.86									

L(m) = 12,86

 $M_{resist} = 149.527,83 \text{ kg*m}$

 $M_{instab} = 116.259,84 \text{ kg*m}$

Coff. sicurezza del pendio (metodo di Bishop) = 1,286

VERIFICHE STRUTTURALI MURO (metodo agli SLU)

MENSOLA DI FONDAZIONE DI VALLE

Momento flettente sezione di incastro, My=2.864,09 kg*m

Taglio sezione di incastro, Tz=-5.376,54 kg

armatura inferiore = 10,18 cmq (9 fi 12)

armatura superiore = 4,52 cmg (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=17.285,67 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-7.919,61 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=17.285,67 kg*m

MENSOLA DI FONDAZIONE DI MONTE

momento flettente sezione di incastro, My=-2.301,80 kg*m

taglio sezione di incastro, Tz=4.110,02 kg

armatura inferiore = 4,52 cmg (4 fi 12)

armatura superiore = 10,18 cmg (9 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=7.919,61 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-17.285,67 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=-17.285,67 kg*m

MENSOLA IN ELEVAZIONE

Sez. 1-1 (distanza sezione rispetto alla testa del muro = 2,7 m largh. sez = 0,3 m)

Momento ribaltante, Mrib=3.319,65 kg*m

Momento stabilizzante, Mstab=643,56 kg*m

componente orizz. della risultante delle forze che si scaricano sulla sezione, Rh=3.688,50 kg componente vertic. della risultante delle forze che si scaricano sulla sezione, Rv=3.257,70 kg eccentricità dello sforzo normale, e=-0,97 m (u = -0,82 m)

Momento flettente, My=3.164,75 kg*m

Sforzo normale. Nx=-3.257.70 kg

Taglio, Tz=-3.688,50 kg

armatura lato terra, Af=4,52 cmq (4 fi 12)

armatura lato esterno, A1f=4,52 cmq (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=4.918,40 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-4.918,40 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=4.918,40 kg*m

Sez. 2-2 (distanza sezione rispetto alla testa del muro = 1,35 m largh. sez = 0,3 m)

Momento ribaltante, Mrib=414,96 kg*m

Momento stabilizzante, Mstab=259,33 kg*m

componente orizz. della risultante delle forze che si scaricano sulla sezione, Rh=922,13 kg componente vertic. della risultante delle forze che si scaricano sulla sezione, Rv=1.470,67 kg eccentricità dello sforzo normale, e=-0,26 m (u = -0,11 m)

Momento flettente, My=376,23 kg*m

Sforzo normale, Nx=-1.470,67 kg

Taglio, Tz=-922,13 kg

armatura lato terra, Af=4,52 cmq (4 fi 12)

armatura lato esterno, A1f=4,52 cmq (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=4.695,68 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-4.695,68 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA momento resistente sezione, Mrd=4.695,68 kg*m

COMBINAZ. FONDAMENTALE 2 (presenza di sovraccarico accidentale) VERIFICA AL RIBALTAMENTO (rispetto all'estremo di fondazione di valle)

```
Trattasi di SLU di tipo geotecnico
coeff. carichi permanenti favorevoli alla sicurezza = 1
coeff. carichi permanenti sfavorevoli alla sicurezza = 1.3
coeff. carichi variabili favorevoli alla sicurezza = 0
coeff. carichi variabili sfavorevoli alla sicurezza = 1.5
angolo di resistenza al taglio drenato di progetto terreno spingente, Fi1d=30°
coesione drenata di progetto terreno spingente, C1d=0 kg/mg
Spinta complessiva dovuta al terrapieno e all'eventuale sovraccarico, St=5.339,46 kg
        componente orizzontale, Sth=5.017,45 kg
        braccio componente orizzontale, YSt=1,19 m
        componente verticale, Stv=1.826,20 kg
        braccio componente verticale, XSt=2,3 m
Momento ribaltante, Mrib=7.748,89 kg*m
Momento stabilizzante, Mstab=19.457,50 kg*m
Coeff. di sicurezza = 2,51
VERIFICA SODDISFATTA
```

VERIFICA ALLO SCORRIMENTO (piano di posa)

Trattasi di SLU di tipo geotecnico angolo di resistenza al taglio di progetto terreno spingente, Fi1d= 30° Spinta complessiva dovuta al terrapieno e all'eventuale sovraccarico, St=5.339,46 kg componente orizzontale, Sth=5.017,45 kg braccio componente orizzontale, YSt=1,19 m componente verticale, Stv=1.826,20 kg braccio componente verticale, XSt=2,3 m Resistenza lungo la superficie di scorrimento, Tlim=7.569,53 kg Componente orizz, della risultante delle forze che si scaricano alla base del muro, Rh=6.522,69 kg coeff. di sicurezza superf. separazione muro-magrone o muro-terreno = 1,16 **VERIFICA SODDISFATTA** coeff. di sicurezza sup. separazione magrone-terreno = 1,21 **VERIFICA SODDISFATTA**

VERIFICA AL CARICO LIMITE

alfa g=1

```
Trattasi di SLU di tipo geotecnico
Parametri geotecnici di progetto
  angolo di resistenza al taglio drenato del terreno di fondazione, Fi2d (°)=32
 coesione drenata terreno di fondazione, c'2d=0 kg/mg
 peso dell'unità di volume del terreno superficiale, g1=2000 kg/mc
 peso dell'unità di volume del terreno di fondazione, g2=2100 kg/mc
Risultante dei carichi in fondazione, R=13.758,24 kg
componente normale al piano posa fondazione, Rn=12.113,78 kg
componente tangenziale al piano posa fondazione, Rt=6.522,69 kg
angolo di inclinazione di R rispetto alla normale al piano di posa fondaz. = 28,3°
eccentricità di R, Ec=-0,18 m
B/6 = 0.38 \text{ m}
base del muro non parzializzata
larghezza ridotta della fondazione, B'=1,93 m
Fattori del carico limite
   Nc = 35,49
    Nq=23,18
   Ng=30,21
Fattori di inclinazione del carico
   ic=0.47
   iq = 0.47
    ig=0,01
Fattori di inclinazione del piano di posa della fondazione
   alfa c=1
   alfa_q=1
```

Carico limite unitario, qlim=1,39 kg/cmq Carico limite, Qlim=26.852,65 kg Sottospinta, Sw=0,00 kg Carico di esercizio, Qes=Rn-Sw=12.113,78 kg Coeff. di sicurezza = 2,22 VERIFICA SODDISFATTA

VERIFICA DI STABILITA' GLOBALE

n° di cerchi analizzati = 10

Trattasi di SLU di tipo geotecnico

angolo di resistenza al taglio di progetto terreno, Fid (°)=26,56

coesione drenata di progetto, C'd=0 kg/mq

Cerchio critico: Xc (m)= 1,15 Yc (m)= 6,4 Rc (m)= 6,62

concio	Wt	Wq	alfa (°)	u	DX	Fsh	В	Fsv	N	T
1	73,43	0	-26,96	0	0,38	0	6,4	0	102,76	40,06
2	209,09	0	-23,33	0	0,38	0	6,4	0	273,71	106,7
3	323,26	0	-19,79	0	0,38	0	6,4	0	399,59	155,77
4	417,47	0	-16,32	0	0,38	0	6,4	0	491,08	191,43
5	492,87	0	-12,92	0	0,38	0	6,4	0	555,36	216,49
6	550,32	0	-9,57	0	0,38	0	6,4	0	597,35	232,85
7	590,46	0	-6,25	0	0,38	0	6,4	0	620,46	241,86
8	613,68	0	-2,95	0	0,38	0	6,4	0	627,07	244,44
9	1270,44	0	0	0	0,3	0	6,4	0	1270,44	495,24
10	2789,07	26,05	3,04	0	0,4	0	6,4	0	2761,96	1076,65
11	2879,11	26,05	6,52	0	0,4	0	6,4	0	2799,35	1091,22
12	2949,27	26,05	10,03	0	0,4	0	6,4	0	2826,62	1101,86
13	2999,01	26,05	13,57	0	0,4	0	6,4	0	2844,25	1108,73
14	3027,52	26,05	17,17	0	0,4	0	6,4	0	2852,38	1111,9
15	3033,64	26,05	20,85	0	0,4	0	6,4	0	2850,78	1111,27
16	3015,83	26,05	24,61	0	0,4	0	6,4	0	2838,84	1106,62
17	2972	26,05	28,49	0	0,4	0	6,4	0	2815,42	1097,49
18	2899,32	26,05	32,52	0	0,4	0	6,4	0	2778,7	1083,17
19	2793,9	26,05	36,75	0	0,4	0	6,4	0	2725,8	1062,55
20	2650,21	26,05	41,22	0	0,4	0	6,4	0	2652,11	1033,83
21	2459,97	26,05	46,02	0	0,4	0	6,4	0	2549,96	994,01
22	2209,98	26,05	51,3	0	0,4	0	6,4	0	2405,53	937,71
23	1876,41	26,05	57,28	0	0,4	0	6,4	0	2190,5	853,89
24	1406,11	26,05	64,53	0	0,4	0	6,4	0	1831,4	713,9
25	563,68	26,05	75,52	0	0,4	0	6,4	0	939,87	366,37

L(m) = 12.86

M_resist = 150.888,24 kg*m M_instab = 117.661,17 kg*m

Coff. sicurezza del pendio (metodo di Bishop) = 1,282

VERIFICA SODDISFATTA

VERIFICHE STRUTTURALI MURO (metodo agli SLU)

MENSOLA DI FONDAZIONE DI VALLE

Momento flettente sezione di incastro, My=2.903,39 kg*m

Taglio sezione di incastro, Tz=-5.441,49 kg

armatura inferiore = 10,18 cmq (9 fi 12)

armatura superiore = 4,52 cmq (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=17.285,67 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-7.919,61 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=17.285,67 kg*m

MENSOLA DI FONDAZIONE DI MONTE

momento flettente sezione di incastro, My=-2.369,33 kg*m

taglio sezione di incastro, Tz=4.231,43 kg

armatura inferiore = 4,52 cmq (4 fi 12)

armatura superiore = 10,18 cmg (9 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=7.919,61 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-17.285,67 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=-17.285,67 kg*m

MENSOLA IN ELEVAZIONE

Sez. 1-1 (distanza sezione rispetto alla testa del muro = 2,7 m largh. sez = 0,3 m)

Momento ribaltante, Mrib=3.385,07 kg*m

Momento stabilizzante, Mstab=649,66 kg*m

componente orizz. della risultante delle forze che si scaricano sulla sezione, Rh=3.761,19 kg componente vertic. della risultante delle forze che si scaricano sulla sezione, Rv=3.278,05 kg eccentricità dello sforzo normale, e=-0,98 m (u = -0,83 m)

Momento flettente, My=3.227,12 kg*m

Sforzo normale, Nx=-3.278,05 kg

Taglio, Tz=-3.761,19 kg

armatura lato terra, Af=4,52 cmg (4 fi 12)

armatura lato esterno, A1f=4,52 cmq (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=4.920,93 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-4.920,93 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=4.920,93 kg*m

Sez. 2-2 (distanza sezione rispetto alla testa del muro = 1,35 m largh. sez = 0,3 m)

Momento ribaltante, Mrib=431,31 kg*m

Momento stabilizzante, Mstab=262,38 kg*m

componente orizz. della risultante delle forze che si scaricano sulla sezione, Rh=958,47 kg componente vertic. della risultante delle forze che si scaricano sulla sezione, Rv=1.480,85 kg eccentricità dello sforzo normale, e=-0,26 m (u = -0,11 m)

Momento flettente, My=391,06 kg*m

Sforzo normale, Nx=-1.480,85 kg

Taglio, Tz=-958,47 kg

armatura lato terra, Af=4,52 cmq (4 fi 12)

armatura lato esterno, A1f=4,52 cmq (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus= $4.696,95 \text{ kg}^*\text{m}$ momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui= $-4.696,95 \text{ kg}^*\text{m}$ essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=4.696,95 kg*m

ARMATURA TRAVERSALE A TAGLIO O DI RIPARTIZIONE MURO

L'armatura a taglio eventualmente necessaria è costituita solo da staffe

Mensola di fondazione di valle

Taglio massimo nella sezione al variare delle combinaz. di carico Tz_max = 5.441,49 kg Resistenza al taglio dovuta al solo cls, Tcls=18.295,9 kg

Resistenza a "taglio-compressione" (bielle di cls), Vrcd=142.228,8 kg

essendo Tz_max<=Tcls non occorre specifica armature a taglio (è sufficiente l'armatura trasversale minima regolamentare)

armatura di ripartizione: 2 fi 8 con passo 33,3 cm

Mensola di fondazione di monte

Taglio massimo nella sezione al variare delle combinaz. di carico Tz_max = 4.231,43 kg

Resistenza al taglio dovuta al solo cls, Tcls=18.295,9 kg

Resistenza a "taglio-compressione" (bielle di cls), Vrcd=142.228,8 kg

essendo Tz_max<=Tcls non occorre specifica armature a taglio (è sufficiente l'armatura trasversale minima regolamentare)

armatura di ripartizione: 2 fi 8 con passo 33,3 cm

Mensola in elevazione

Sez. 1-1

Taglio massimo nella sezione al variare delle combinaz. di carico Tz_max = 3.761,19 kg

Resistenza al taglio dovuta al solo cls, Tcls=11.937,7 kg

Resistenza a "taglio-compressione" (bielle di cls), Vrcd=78.733,8 kg

essendo Tz_max<=Tcls non occorre specifica armature a taglio (è sufficiente l'armatura

trasversale minima regolamentare)

armatura di ripartizione: 2 fi 8 con passo 19,8 cm

Sez. 2-2

Taglio massimo nella sezione al variare delle combinaz. di carico Tz_max = 958,47 kg

Resistenza al taglio dovuta al solo cls, Tcls=11.937,7 kg

Resistenza a "taglio-compressione" (bielle di cls), Vrcd=78.733,8 kg

essendo Tz max<=Tcls non occorre specifica armature a taglio (è sufficiente l'armatura

trasversale minima regolamentare)

armatura di ripartizione: 2 fi 8 con passo 19,8 cm

VERIFICHE AGLI STATI LIMITE DI ESERCIZIO COMBINAZ. FONDAMENTALE 1 (assenza di sovraccarico accidentale)

Risultante dei carichi in fondazione, R=13.058,83 kg

componente orizzontale dei carichi in fondazione, Rh=4.943,65 kg

componente verticale dei carichi in fondazione, Rv=12.086,91 kg

angolo di inclinazione di R rispetto alla verticale = 22,24°

eccentricità di R, Ec=-48,88 m

limite del nocciolo centrale d'inerzia della base di fondaz. B/6=16,67 m

distanza di R dal lembo maggiormante compresso, u=1,12 m

pressione di contatto all'estremo di fondazione di valle, p1=7.202,4 kg/mq

cedimento all'estremo di fondazione di valle, w1=0,07 cm

tangente dell'angolo di rotaz. della base della fondaz. = 0,000215 (beta=0,01°)

Verifica allo S.L.E. soddisfatta

COMBINAZ. FONDAMENTALE 2 (presenza di sovraccarico accidentale)

Risultante dei carichi in fondazione, R=13.111,77 kg

componente orizzontale dei carichi in fondazione, Rh=5.017,45 kg

componente verticale dei carichi in fondazione, Rv=12.113,78 kg

angolo di inclinazione di R rispetto alla verticale = 22,5°

eccentricità di R, Ec=-48,89 m

limite del nocciolo centrale d'inerzia della base di fondaz. B/6=16,67 m

distanza di R dal lembo maggiormante compresso, u=1,11 m

pressione di contatto all'estremo di fondazione di valle, p1=7.248,3 kg/mq

cedimento all'estremo di fondazione di valle, w1=0,07 cm

tangente dell'angolo di rotaz. della base della fondaz. = 0,000217 (beta=0,01°)

Verifica allo S.L.E. soddisfatta

ARMATURE DI CALCOLO

Mensola di fondazione di valle armatura

lembo superiore $4 \Phi 12 (4,52 \text{ cmq})$ lembo inferiore $9 \Phi 12 (10,18 \text{ cmg})$

Mensola di fondazione di monte armatura

lembo superiore $9 \Phi 12 (10,18 \text{ cmq})$ lembo inferiore $4 \Phi 12 (4,52 \text{ cmg})$

Mensola in elevazione armatura

sez. 1-1 (H = 2.7 m)

lato terra $4 \Phi 12 (4,52 \text{ cmq})$ lato libero $4 \Phi 12 (4,52 \text{ cmq})$

sez. 2-2 (H = 1,35 m)

lato terra 4Φ 12 (4,52 cmq)

COMPUTO METRICO MATERIALI

<u>MURO</u>	per ml di muro	complessivo					
Calcestruzzo	1,96 mc	176,40 mc					
Acciaio							
- a flessione (f12)	67,6 m	6.086,7 m					
	60 kg	5.404 kg					
- a taglio/ripartiz. (f8)	55,9 m	5.030,9 m					
	22 kg	1.985 kg					
incidenza acciaio/cls = 41,9 kg/mc							
Magrone di cls	0,25 mc	22,50 mc					
Casseformi	6,40 mq	576,00 mq					

II Tecnico

Ing.Francesco Trudu

Schema Grafico del Muro

Muro "TIPO 1" sul corso Villanova

Distinta Armature

Calcolo geotecnico e strutturale muri di sostegno

PROGETTO/LAVORI

Costruzione di un muro di sostegno in Corso Villanova - Muro "TIPO 2" su Via Cantaru

COMMITTENTE

Amm. Comunale Lodè

COMUNE

Lodè

ANNOTAZIONI

NORMATIVA DI RIFERIMENTO

D.M. 17/01/2018

Le verifiche di tipo geotecnico (ribaltamento, scorrimento, carico limite, stabilità globale) e strutturali vengono svolte con il metodo agli Stati Limite Ultimi (S.L.U.)

Coeff. parziali o di sicurezza sulle azioni (A)

gruppo EQU

azioni permanenti aventi effetto favorevole alla sicurezza gGi=0,9 azioni permanenti aventi effetto sfavorevole alla sicurezza gGs=1,1 azioni variabili aventi effetto favorevole alla sicurezza gQi=0

azioni variabili aventi effetto sfavorevole alla sicurezza gQs=1,5

gruppo A1

azioni permanenti aventi effetto favorevole alla sicurezza gGi=1 azioni permanenti aventi effetto sfavorevole alla sicurezza gGs=1,3 azioni variabili aventi effetto favorevole alla sicurezza gQi=0

azioni variabili aventi effetto sfavorevole alla sicurezza gQs=1,5

gruppo A2

azioni permanenti aventi effetto favorevole alla sicurezza gGi=1

azioni permanenti aventi effetto sfavorevole alla sicurezza gGs=1

azioni variabili aventi effetto favorevole alla sicurezza gQi=0

azioni variabili aventi effetto sfavorevole alla sicurezza gQs=1,3

Coeff. parziali o di sicurezza per i parametri geotecnici dei terreni (M)

gruppo M1

tangente dell'angolo di resistenza al taglio gf'=1

coesione efficace gc'=1

coesione non drenata gcu=1

peso dell'unità di volume gg=1

gruppo M2

tangente dell'angolo di resistenza al taglio gf'=1,25

coesione efficace gc'=1,25

coesione non drenata gcu=1,4

peso dell'unità di volume gg=1

Coeff. parziali o di sicurezza sulle resistenze globali dei sistemi geotecnici (R)

gruppo R3

Opera di sostegno:

coeff. sicurezza al ribaltamento gRib=1,15

coeff. sicurezza allo scorrimento gScorr=1,1

coeff. sicurezza al carico limite del complesso fondazione-terreno gQlim=1,4

coeff. sicurezza resistenza del terreno a valle gSp=1,4

Pali di fondazione:

coeff. sicurezza resistenza alla base gb=1,35

coeff. sicurezza resistenza laterale in compressione gs=1,15

coeff. sicurezza resistenza laterale in trazione gst=1,25

coeff. sicurezza resistenza a carichi trasversali gT=1,3

La verifica di stabilità globale del complesso opera di sostegno-terreno viene condotta secondo l'Approccio 1 - Combinazione 2 (A2+M2+R2)

Le rimanenti verifiche SLU di tipo geotecnico e strutturale sono condotte in base all'Approccio 2 (A1+M1+R3)

UNITA' DI MISURA

Sistema Tecnico

Lunghezze (coordinate, distanze, dimensioni, spostamenti ...): m

Aree sezioni: mq Volumi: mc

Momenti di inerzia sezioni: m^4

Forze, Resistenza alla punta e laterale, Sforzo normale, Taglio: kg

Momenti (stabilizzante, instabilizzante, flettente - per metro lineare di muro): kg*m

Sovraccarico uniformemente ripartito: kg/mq

Coesione: kg/mq

Pesi unità di volume: kg/mc

Coefficienti di reazione del terreno o di Winkler: kg/cmc

tempi: secondi (s) velocità: m/s accelerazioni: m/s2

Latitudine, Longitudine: gradi sessadecimali

calcoli strutturali

dimensioni, copriferro, interferro: cm diametri tondini, staffe e spirali: mm

aree sezioni: cmq volumi: cmc

Momenti di inerzia sezioni: cm^4

Tensioni/pressioni, Moduli elastici, carico limite unitario, resistenze mater.: kg/cmq

METODI DI CALCOLO

Muro

calcolo della spinta: teoria di Coulomb generalizzata

calcolo del carico limite del complesso fondazione superficiale-terreno: teoria di Prandtl-Cacquot-Terzaghi

stabilità globale: metodo di Bishop analisi sismica: metodo pseudostatico

calcolo spostamenti permanenti indotti dal sisma: metodo Newmark > Whitman e Liao

Pali di fondazione

valori del fattore di forma Ng per il carico limite assiale: Berezantzev et al. (1961)

valori del fattore di forma Nq per pali trivallati di grande diametro: Berezantzev (1965)

Analisi del palo sotto carichi di esercizio (verifiche strutturali e calcolo spostamenti nel palo):

"Palo elastico su suolo elastico alla Winkler" - soluzione con il Metodo agli Elementi Finiti (F.E.M)

SISTEMA DI RIFERIMENTO ASSOLUTO

Origine sull'estremo inferiore della fondazione di valle, asse X orizzontale verso monte, asse Y verticale verso l'alto, asse Z ortogonale al piano del disegno e uscente

INPUT DEL PROBLEMA

CONDIZIONI DI ROTTURA

Condizioni di rottura drenate - Assenza di pressioni neutre

TIPOLOGIA E SEZIONE MURO

Muro a sbalzo in C.A.

DATI GEOMETRICI

Sezione muro

scarpa esterna, Se=0 m spessore muro in testa, Bm=0,2 m scarpa interna, Si=0 m altezza parte superiore muro, Hm=1,8 m altezza complessiva muro, H=2,2 m altezza fondazione, Hf=0,4 m larghezza fondazione, B=1,6 m sviluppo fondazione a monte, L=0,8 m sviluppo longitudinale del muro (lungo l'asse Z), Lz=40 m

Terreni circostanti

inclinazione pendio di monte rispetto all'orizzontale, i (°)=20 affond, piano di posa fondazione, D=0,5 m affond. terreno di monte rispetto al coronamento muro, Ha=0 m angolo di rotazione del piano di posa della fondaz. rispetto all'orizzontale, alfa (°)=0 spessore del magrone, Sm=0,1 m

DATI GEOTECNICI TERRENI

peso dell'unità di volume dell'acqua, gw=1000 kg/mc

Terreno spingente (1)

peso dell'unità di volume, g=2000 kg/mc angolo di resistenza al taglio, Fi (°)=30 coesione drenata terreno spingente, c'=0,000002 kg/mg angolo di attrito diaframma verticale da estremo di fondaz. di monte = 20° Terreno di fondazione (2)

peso dell'unità di volume, g=2100 kg/mc angolo di resistenza al taglio, Fi (°)=32 coesione drenata terreno di fondazione, c'=0,00003 kg/mg costante di sottofondo o di Winkler del terreno di fondazione, kt=10 kg/cmc Terreno di riporto sopra la fondazione di monte (3) peso dell'unità di volume del terreno di riporto sopra la fondaz., q3=1800 kg/mc

PROPRIETA' AL CONTATTO MURO-TERRENI E PALI-TERRENI

Angoli di attrito sulle superifici di contatto muro-terreni

angolo di attrito terrapieno-muro, delta=20° angolo di attrito muro-magrone o muro-terreno, delta1=32° adesione al contatto muro-magrone o muro-terreno ad1=0 kg/mg angolo di attrito magrone-terreno di fondazione, delta2=32° adesione al contatto magrone-terrenodi fondazione ad2=0 kg/mg

DATI MATERIALE MURO E PALI

peso dell'unità di volume, gm=2500 kg/mc peso dell'unità di volume del magrone = 2000 kg/mc

Calcestruzzo

resistenza caratteristica cubica a compressione, Rck=300 kg/cmg modulo di elasticità longitudinale, Ec=319.173 kg/cmq coeff. parziale di sicurezza = 1,5 diagramma di progetto tensione-deformazione: parabola-rettangolo deformazione ec2 = 0.2%deformazione ec3 = 0.175%deformazione ec4 = 0,07% deformazione di rottura o ultima = 0,35% resistenza media a compress. cilindrica, fcm=330,55 kg/cmq resistenza caratteristica a compress. cilindrica a 28 gg, fck=249 kg/cmg resistenza di progetto a compress., fcd=141,1 kg/cmq resistenza media a trazione, fctm=25,75 kg/cmq resistenza caratteristica a trazione, fctk=18,02 kg/cmg resistenza di progetto a trazione, fctd=12,01 kg/cmq

Acciaio

tipo di acciaio: B450C

modulo di elasticità longitudinale, Es=2.100.000 kg/cmq

coeff. parziale di sicurezza = 1,15

diagramma di progetto tensione-deformazione: elastico-perfettamente plastico

deformazione di snervamento = 0,186%

deformazione a rottura = 1%

tensione caratteristica di snervamento, fyk=4.500,00 kg/cmq resistenza di progetto dell'acciaio, fyd=3.913,04 kg/cmq

SOVRACCARICHI: 1) UNIFORMEMENTE RIPARTITO SUL TERRAPIENO; 2) CONCENTRATO SUL MURO

terrapieno: di tipo permanente, g1=0 kg/mq terrapieno: di tipo variabile, q1=50 kg/mq

muro (di tipo permanente), componente orizz. H2=0 kg/m muro (di tipo permanente), componente vert. V2=150 kg/m

AZIONE SISMICA

non viene considerata

DATI PROGETTO ARMATURA A FLESSIONE E TAGLIO

Muro

rapporto armature = 0

diametro armatura trasversale (staffe o di ripartizione), dst=8 mm

numero di braccia delle eventuali staffe per ml di muro = 4

percentuale dell'armatura longit. a flessione per determinare l'armat. di ripartiz. = 20%

Muro e pali (quando presenti)

diametro tondini = 12 mm

copriferro = 4 cm

spazio minimo tra le barre (interferro) = 4 cm

interasse massimo tra le barre = 30 cm

VERIFICHE AGLI S.L.E.

valore massimo ammissibile della tangente dell'angolo di rotazione del piano di posa della fondazione = 0,005 (beta_max=0,29°)

spostamento permanente ammissibile per effetto del sisma = 2 cm

IMPOSTAZIONI DI CALCOLO

Terreni omogenei ed isotropi: spingente (1) - di fondazione (2) - di riporto sopra la fondaz. di monte (3) Condizioni di spinta "attiva"

Non si tiene conto della spinta passiva a valle (a favore di sicurezza)

COMBINAZIONI DI CARICO

Combinazioni fondamentali (assenza di sisma)

Azioni permanenti G:

- peso proprio elementi strutturali (muro)
- peso proprio terreno
- peso proprio elementi non strutturali
- carico concentrato sul coronamento del muro e sovraccario permanente sul terrapieno
- spinte del terreno

Azioni variabili Q:

- sovraccarico saltuario sul terrapieno q1 (es. derivante da traffico veicolare)
- spinta dovuta al sovraccarico saltuario

Combinazioni sismiche

Azione sismica E

Azioni permanenti G

Azioni varibili Q (con coeff. riduttivo di combinazione)

OUTPUT DEL PROBLEMA

AREE, PESI E BRACCI (rispetto all'origine del sist. di riferimento)

Muro

area = 1 mq

peso = 2.500,00 kg

ascissa baricentro muro = 0,76 m

ordinata baricentro muro = 0,6 m

Terreno di riporto sopra la fondazione a monte

area = 1,56 mq

peso = 2.801,65 kg

ascissa baricentro terreno = 1,21 m

ordinata baricentro terreno = 1,37 m

VERIFICHE AGLI STATI LIMITE ULTIMI

COMBINAZ. FONDAMENTALE 1 (assenza di sovraccarico accidentale) VERIFICA AL RIBALTAMENTO (rispetto all'estremo di fondazione di valle)

Trattasi di SLU di tipo geotecnico

coeff. carichi permanenti favorevoli alla sicurezza = 1

coeff. carichi permanenti sfavorevoli alla sicurezza = 1,3

coeff, carichi variabili favorevoli alla sicurezza = 0

coeff. carichi variabili sfavorevoli alla sicurezza = 1,5

angolo di resistenza al taglio drenato di progetto terreno spingente, Fi1d=30°

coesione drenata di progetto terreno spingente, C1d=0 kg/mq

Spinta complessiva dovuta al terrapieno e all'eventuale sovraccarico, St=2.570,41 kg

componente orizzontale, Sth=2.415,40 kg

braccio componente orizzontale, YSt=0,83 m

componente verticale, Stv=879,13 kg

braccio componente verticale, XSt=1,6 m

Momento ribaltante, Mrib=2.607,44 kg*m

Momento stabilizzante, Mstab=6.811,54 kg*m

Coeff. di sicurezza = 2,61

VERIFICA SODDISFATTA

VERIFICA ALLO SCORRIMENTO (piano di posa)

Trattasi di SLU di tipo geotecnico

angolo di resistenza al taglio di progetto terreno spingente, Fi1d= 30°

Spinta complessiva dovuta al terrapieno e all'eventuale sovraccarico, St=2.570,41 kg

componente orizzontale, Sth=2.415,40 kg

braccio componente orizzontale, YSt=0,83 m

componente verticale, Stv=879,13 kg

braccio componente verticale, XSt=1,6 m

Resistenza lungo la superficie di scorrimento, Tlim=3.955,91 kg

Componente orizz. della risultante delle forze che si scaricano alla base del muro, Rh=3.140,01 kg

coeff. di sicurezza superf. separazione muro-magrone o muro-terreno = 1,26

VERIFICA SODDISFATTA

coeff. di sicurezza sup. separazione magrone-terreno = 1,33

VERIFICA SODDISFATTA

VERIFICA AL CARICO LIMITE

Trattasi di SLU di tipo geotecnico

Parametri geotecnici di progetto

angolo di resistenza al taglio drenato del terreno di fondazione, Fi2d (°)=32

coesione drenata terreno di fondazione, c'2d=0 kg/mq

peso dell'unità di volume del terreno superficiale, g1=2000 kg/mc

peso dell'unità di volume del terreno di fondazione, g2=2100 kg/mc

Risultante dei carichi in fondazione, R=7.066,71 kg

componente normale al piano posa fondazione, Rn=6.330,78 kg

componente tangenziale al piano posa fondazione. Rt=3.140.01 kg

angolo di inclinazione di R rispetto alla normale al piano di posa fondaz. = 26,38° eccentricità di R, Ec=-0,14 m B/6 = 0.27 mbase del muro non parzializzata larghezza ridotta della fondazione, B'=1,33 m Fattori del carico limite Nc=35,49 Nq=23,18 Ng=30,21 Fattori di inclinazione del carico ic = 0,5iq=0,5 ig=0,03 Fattori di inclinazione del piano di posa della fondazione alfa c=1 alfa_q=1 alfa g=1 Carico limite unitario, qlim=1,29 kg/cmq Carico limite, Qlim=17.106,57 kg Sottospinta, Sw=0,00 kg Carico di esercizio, Qes=Rn-Sw=6.330,78 kg Coeff. di sicurezza = 2,7 **VERIFICA SODDISFATTA**

VERIFICA DI STABILITA' GLOBALE

n° di cerchi analizzati = 10

Trattasi di SLU di tipo geotecnico

angolo di resistenza al taglio di progetto terreno, Fid (°)=26,56

coesione drenata di progetto, C'd=0 kg/mq

Cerchio critico: Xc (m)= 0.76 Yc (m)= 5.77 Rc (m)= 5.75

Cerchio critico: $Xc (m) = 0.76 Yc (m) = 5.57$						Ro	: (m)= 5,7	' 5					
	concio	Wt	Wq	alfa (°)	u		DX	Fsh		В	Fsv	N	T
	1	49,94	0	-26,31	0		0,32	0		5,57	0	68,08	25,02
	2	142,38	0	-22,83	0		0,32	0		5,57	0	182,74	67,16
	3	220,5	0	-19,43	0		0,32	0		5,57	0	268,64	98,73
	4	285,28	0	-16,1	0		0,32	0		5,57	0	332,17	122,07
	5	337,43	0	-12,83	0		0,32	0		5,57	0	377,68	138,79
	6	377,5	0	-9,6	0		0,32	0		5,57	0	408,24	150,03
	7	405,91	0	-6,4	0		0,32	0		5,57	0	426,02	156,56
	8	422,92	0	-3,22	0		0,32	0		5,57	0	432,54	158,95
	9	610,19	0	-0,64	0		0,2	0		5,57	0	612,73	225,18
	10	1587,67	0	1,99	0		0,33	0		5,57	0	1568,62	576,46
	11	1651,82	0	5,25	0		0,33	0		5,57	0	1604,59	589,68
	12	1703,68	0	8,53	0		0,33	0		5,57	0	1632,73	600,02
	13	1742,97	0	11,84	0		0,33	0		5,57	0	1653,47	607,64
	14	1769,31	0	15,19	0		0,33	0		5,57	0	1667,02	612,62
	15	1782,12	0	18,59	0		0,33	0		5,57	0	1673,36	614,95
	16	1780,65	0	22,07	0		0,33	0		5,57	0	1672,24	614,54
	17	1763,88	0	25,63	0		0,33	0		5,57	0	1663,11	611,18
	18	1730,5	0	29,3	0		0,33	0		5,57	0	1645,05	604,55
	19	1678,72	0	33,11	0		0,33	0		5,57	0	1616,64	594,11
	20	1606,15	0	37,09	0		0,33	0		5,57	0	1575,69	579,06
	21	1509,42	0	41,3	0		0,33	0		5,57	0	1518,76	558,14
	22	1383,64	0	45,8	0		0,33	0		5,57	0	1440,32	529,31
	23	1221,21	0	50,71	0		0,33	0		5,57	0	1330,68	489,02
	24	1009,1	0	56,2	0		0,33	0		5,57	0	1171,1	430,37
	25	720,86	0	62,68	0		0,33	0		5,57	0	917,68	337,24
	26	276,59	0	71,31	0		0,33	0		5,57	0	413,69	152,03
	L (m) = 10,48												

M_resist = 80.120,12 kg*m M_instab = 58.899,83 kg*m

VERIFICHE STRUTTURALI MURO (metodo agli SLU)

MENSOLA DI FONDAZIONE DI VALLE

Momento flettente sezione di incastro, My=804,49 kg*m

Taglio sezione di incastro, Tz=-2.530,36 kg

armatura inferiore = 9,05 cmg (8 fi 12)

armatura superiore = 4,52 cmg (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=11.956,28 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-6.233,62 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=11.956,28 kg*m

MENSOLA DI FONDAZIONE DI MONTE

momento flettente sezione di incastro, My=-977,30 kg*m

taglio sezione di incastro, Tz=2.083,49 kg

armatura inferiore = 4,52 cmg (4 fi 12)

armatura superiore = 9,05 cmq (8 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=6.233,62 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-11.956,28 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=-11.956,28 kg*m

MENSOLA IN ELEVAZIONE

Sez. 1-1 (distanza sezione rispetto alla testa del muro = 1,8 m largh. sez = 0,2 m)

Momento ribaltante, Mrib=983,60 kg*m

Momento stabilizzante, Mstab=196,80 kg*m

componente orizz. della risultante delle forze che si scaricano sulla sezione, Rh=1.639,33 kg componente vertic. della risultante delle forze che si scaricano sulla sezione, Rv=1.508,98 kg eccentricità dello sforzo normale, e=-0.62 m (u = -0.52 m)

Momento flettente. Mv=937.70 kg*m

Sforzo normale, Nx=-1.508,98 kg

Taglio, Tz=-1.639,33 kg

armatura lato terra, Af=4,52 cmq (4 fi 12)

armatura lato esterno, A1f=4,52 cmq (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=3.059,81 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-3.059,81 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=3.059,81 kg*m

COMBINAZ. FONDAMENTALE 2 (presenza di sovraccarico accidentale) VERIFICA AL RIBALTAMENTO (rispetto all'estremo di fondazione di valle)

Trattasi di SLU di tipo geotecnico

coeff. carichi permanenti favorevoli alla sicurezza = 1

coeff. carichi permanenti sfavorevoli alla sicurezza = 1,3

coeff. carichi variabili favorevoli alla sicurezza = 0

coeff. carichi variabili sfavorevoli alla sicurezza = 1,5

angolo di resistenza al taglio drenato di progetto terreno spingente, Fi1d=30°

coesione drenata di progetto terreno spingente, C1d=0 kg/mq

Spinta complessiva dovuta al terrapieno e all'eventuale sovraccarico, St=2.625,31 kg

componente orizzontale, Sth=2.466,99 kg

braccio componente orizzontale, YSt=0,83 m

componente verticale, Stv=897,91 kg

braccio componente verticale, XSt=1,6 m

Momento ribaltante, Mrib=2.663,13 kg*m

Momento stabilizzante, Mstab=6.841,58 kg*m

Coeff. di sicurezza = 2,57

VERIFICA ALLO SCORRIMENTO (piano di posa)

Trattasi di SLU di tipo geotecnico angolo di resistenza al taglio di pr

angolo di resistenza al taglio di progetto terreno spingente, Fi1d= 30°

Spinta complessiva dovuta al terrapieno e all'eventuale sovraccarico, St=2.625,31 kg

componente orizzontale, Sth=2.466,99 kg

braccio componente orizzontale, YSt=0,83 m

componente verticale, Stv=897,91 kg

braccio componente verticale, XSt=1,6 m

Resistenza lungo la superficie di scorrimento, Tlim=3.967,64 kg

Componente orizz. della risultante delle forze che si scaricano alla base del muro, Rh=3.207,08 kg

coeff. di sicurezza superf. separazione muro-magrone o muro-terreno = 1,24

VERIFICA SODDISFATTA

coeff. di sicurezza sup. separazione magrone-terreno = 1,31

VERIFICA SODDISFATTA

VERIFICA AL CARICO LIMITE

Trattasi di SLU di tipo geotecnico

Parametri geotecnici di progetto

angolo di resistenza al taglio drenato del terreno di fondazione, Fi2d (°)=32

coesione drenata terreno di fondazione, c'2d=0 kg/mq

peso dell'unità di volume del terreno superficiale, g1=2000 kg/mc

peso dell'unità di volume del terreno di fondazione, g2=2100 kg/mc

Risultante dei carichi in fondazione, R=7.113,52 kg

componente normale al piano posa fondazione, Rn=6.349,56 kg

componente tangenziale al piano posa fondazione, Rt=3.207,08 kg

angolo di inclinazione di R rispetto alla normale al piano di posa fondaz. = 26,8°

eccentricità di R. Ec=-0.14 m

B/6 = 0.27 m

base del muro non parzializzata

larghezza ridotta della fondazione, B'=1,32 m

Fattori del carico limite

Nc=35,49

Nq=23,18

Ng=30,21

Fattori di inclinazione del carico

ic=0,49

iq = 0.49

iq = 0.03

Fattori di inclinazione del piano di posa della fondazione

alfa_c=1

alfa_q=1

alfa q=1

Carico limite unitario, glim=1,25 kg/cmg

Carico limite, Qlim=16.495,42 kg

Sottospinta, Sw=0,00 kg

Carico di esercizio, Qes=Rn-Sw=6.349,56 kg

Coeff. di sicurezza = 2,6

VERIFICA SODDISFATTA

VERIFICA DI STABILITA' GLOBALE

n° di cerchi analizzati = 10

Trattasi di SLU di tipo geotecnico

angolo di resistenza al taglio di progetto terreno, Fid (°)=26,56

coesione drenata di progetto, C'd=0 kg/mq

Cerchio critico: $Xc (m) = 0.76 \ Yc (m) = 5.57 \ Rc (m) = 5.75$

alfa (°) Т concio Wt Wq DX Fsh В Fsv N u 5,57 25,15 49,94 0 -26,31 0 0,32 0 0 68,15

2	142,38	0	-22,83	0	0,32	0	5,57	0	182,89	67,51
3	220,5	0	-19,43	0	0,32	0	5,57	0	268,82	99,23
4	285,28	0	-16,1	0	0,32	0	5,57	0	332,34	122,68
5	337,43	0	-12,83	0	0,32	0	5,57	0	377,83	139,47
6	377,5	0	-9,6	0	0,32	0	5,57	0	408,36	150,74
7	405,91	0	-6,4	0	0,32	0	5,57	0	426,1	157,29
8	422,92	0	-3,22	0	0,32	0	5,57	0	432,58	159,68
9	610,19	0	-0,64	0	0,2	0	5,57	0	612,74	226,18
10	1587,67	21,23	1,99	0	0,33	0	5,57	0	1589,5	586,73
11	1651,82	21,23	5,25	0	0,33	0	5,57	0	1624,98	599,83
12	1703,68	21,23	8,53	0	0,33	0	5,57	0	1652,69	610,06
13	1742,97	21,23	11,84	0	0,33	0	5,57	0	1673,07	617,58
14	1769,31	21,23	15,19	0	0,33	0	5,57	0	1686,34	622,48
15	1782,12	21,23	18,59	0	0,33	0	5,57	0	1692,47	624,74
16	1780,65	21,23	22,07	0	0,33	0	5,57	0	1691,2	624,27
17	1763,88	21,23	25,63	0	0,33	0	5,57	0	1682	620,88
18	1730,5	21,23	29,3	0	0,33	0	5,57	0	1663,97	614,22
19	1678,72	21,23	33,11	0	0,33	0	5,57	0	1635,68	603,78
20	1606,15	21,23	37,09	0	0,33	0	5,57	0	1594,97	588,75
21	1509,42	21,23	41,3	0	0,33	0	5,57	0	1538,46	567,89
22	1383,64	21,23	45,8	0	0,33	0	5,57	0	1460,63	539,16
23	1221,21	21,23	50,71	0	0,33	0	5,57	0	1351,95	499,04
24	1009,1	21,23	56,2	0	0,33	0	5,57	0	1193,85	440,69
25	720,86	21,23	62,68	0	0,33	0	5,57	0	942,96	348,08
26	276,59	21,23	71,31	0	0,33	0	5,57	0	444,42	164,05

L(m) = 10.48

M_resist = 81.141,68 kg*m

 $M_{instab} = 59.916,14 \text{ kg*m}$

Coff. sicurezza del pendio (metodo di Bishop) = 1,354

VERIFICA SODDISFATTA

VERIFICHE STRUTTURALI MURO (metodo agli SLU)

MENSOLA DI FONDAZIONE DI VALLE

Momento flettente sezione di incastro, My=819,47 kg*m

Taglio sezione di incastro, Tz=-2.573,15 kg

armatura inferiore = 9,05 cmq (8 fi 12)

armatura superiore = 4,52 cmg (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=11.956,28 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-6.233,62 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=11.956,28 kg*m

MENSOLA DI FONDAZIONE DI MONTE

momento flettente sezione di incastro, My=-1.019,42 kg*m

taglio sezione di incastro, Tz=2.176,08 kg

armatura inferiore = 4,52 cmq (4 fi 12)

armatura superiore = 9,05 cmq (8 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=6.233,62 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-11.956,28 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=-11.956,28 kg*m

MENSOLA IN ELEVAZIONE

Sez. 1-1 (distanza sezione rispetto alla testa del muro = 1,8 m largh. sez = 0,2 m)

Momento ribaltante, Mrib=1.012,68 kg*m

Momento stabilizzante, Mstab=199,51 kg*m

componente orizz. della risultante delle forze che si scaricano sulla sezione, Rh=1.687,79 kg componente vertic. della risultante delle forze che si scaricano sulla sezione, Rv=1.522,54 kg eccentricità dello sforzo normale, e=-0,63 m (u = -0,53 m)

Momento flettente, My=965,42 kg*m

Sforzo normale, Nx=-1.522,54 kg

Taglio, Tz=-1.687,79 kg

armatura lato terra, Af=4,52 cmg (4 fi 12)

armatura lato esterno, A1f=4,52 cmq (4 fi 12)

Verifica allo SLU per sforzo normale e momento flettente

momento ultimo della sezione (lembo superiore maggiormente compresso), Mus=3.060,78 kg*m momento ultimo della sezione (lembo inferiore maggiormente compresso), Mui=-3.060,78 kg*m essendo Mui <= My <= Mus la VERIFICA E' SODDISFATTA

momento resistente sezione, Mrd=3.060,78 kg*m

ARMATURA TRAVERSALE A TAGLIO O DI RIPARTIZIONE MURO

L'armatura a taglio eventualmente necessaria è costituita solo da staffe

Mensola di fondazione di valle

Taglio massimo nella sezione al variare delle combinaz. di carico Tz_max = 2.573,15 kg

Resistenza al taglio dovuta al solo cls, Tcls=15.865,1 kg

Resistenza a "taglio-compressione" (bielle di cls), Vrcd=110.481,3 kg

essendo Tz_max<=Tcls non occorre specifica armature a taglio (è sufficiente l'armatura

trasversale minima regolamentare)

armatura di ripartizione: 2 fi 8 con passo 27,8 cm

Mensola di fondazione di monte

Taglio massimo nella sezione al variare delle combinaz. di carico Tz_max = 2.176,08 kg

Resistenza al taglio dovuta al solo cls, Tcls=15.865,1 kg

Resistenza a "taglio-compressione" (bielle di cls), Vrcd=110.481,3 kg

essendo Tz_max<=Tcls non occorre specifica armature a taglio (è sufficiente l'armatura

trasversale minima regolamentare)

armatura di ripartizione: 2 fi 8 con passo 27,8 cm

Mensola in elevazione

Sez. 1-1

Taglio massimo nella sezione al variare delle combinaz. di carico Tz max = 1.687,79 kg

Resistenza al taglio dovuta al solo cls, Tcls=9.640,7 kg

Resistenza a "taglio-compressione" (bielle di cls), Vrcd=46.986,3 kg

essendo Tz max<=Tcls non occorre specifica armature a taglio (è sufficiente l'armatura

trasversale minima regolamentare)

armatura di ripartizione: 2 fi 8 con passo 11,8 cm

VERIFICHE AGLI STATI LIMITE DI ESERCIZIO COMBINAZ. FONDAMENTALE 1 (assenza di sovraccarico accidentale)

Risultante dei carichi in fondazione, R=6.775,91 kg

componente orizzontale dei carichi in fondazione, Rh=2.415,40 kg

componente verticale dei carichi in fondazione, Rv=6.330,78 kg

angolo di inclinazione di R rispetto alla verticale = 20,88°

eccentricità di R, Ec=-49,24 m

limite del nocciolo centrale d'inerzia della base di fondaz. B/6=16,67 m

distanza di R dal lembo maggiormante compresso, u=0,76 m

pressione di contatto all'estremo di fondazione di valle, p1=5.559,8 kg/mq

cedimento all'estremo di fondazione di valle, w1=0,06 cm

tangente dell'angolo di rotaz. della base della fondaz. = 0,000244 (beta=0,01°)

Verifica allo S.L.E. soddisfatta

COMBINAZ. FONDAMENTALE 2 (presenza di sovraccarico accidentale)

Risultante dei carichi in fondazione, R=6.811,97 kg

componente orizzontale dei carichi in fondazione, Rh=2.466,99 kg

componente verticale dei carichi in fondazione, Rv=6.349,56 kg

angolo di inclinazione di R rispetto alla verticale = 21,23°

eccentricità di R, Ec=-49,25 m

limite del nocciolo centrale d'inerzia della base di fondaz. B/6=16,67 m

distanza di R dal lembo maggiormante compresso, u=0,75 m

pressione di contatto all'estremo di fondazione di valle, p1=5.607,7 kg/mq cedimento all'estremo di fondazione di valle, w1=0,06 cm tangente dell'angolo di rotaz. della base della fondaz. = 0,000248 (beta=0,01°) Verifica allo S.L.E. soddisfatta

ARMATURE DI CALCOLO

Mensola di fondazione di valle armatura

lembo superiore 4 Φ 12 (4,52 cmq) lembo inferiore 8 Φ 12 (9,05 cmq)

Mensola di fondazione di monte armatura

lembo superiore $8 \Phi 12 (9,05 cmq)$ lembo inferiore $4 \Phi 12 (4,52 cmq)$

Mensola in elevazione armatura

sez. 1-1 (H = 1,8 m)

lato terra $4 \ \Phi \ 12 \ (4,52 \ cmq) \\ 4 \ \Phi \ 12 \ (4,52 \ cmq)$

COMPUTO METRICO MATERIALI

MURO	<u>per ml di muro</u>	complessivo
Calcestruzzo	1,00 mc	40,00 mc
Acciaio		
- a flessione (f12)	44,2 m	1.768,0 m
	39 kg	1.570 kg
- a taglio/ripartiz. (f8)	51,0 m	2.040,6 m
	20 kg	805 kg
incidenza acciaio/cls = 59,4 kg	g/mc	
Magrone di cls	0,18 mc	7,20 mc
Casseformi	4,40 mq	176,00 mq

II Tecnico

Ing.Francesco Trudu

Schema Grafico del Muro

