

DESIGN OF ANALOG DATA ACQUISITION SYSTEM

DESIGN DOCUMENT OF USER INTERFACE

Contents

SOFTWARE DESIGN DOCUMENTATION	ON	4
LIBRARIES USED:		4
USE CASE DIAGRAM:		5
FLOW CHART OF CONFIGURATOR	R UI	6
FLOW CHART OF DISPLAY UI		7
GUI FOR CONFIGURATOR		8
INPUT SIGNAL		9
GUI FOR DISPLAY		9
OUTPUT SIGNAL		10
SOFTWARE REQUIREMENT		11
Anaconda		11
Visual Studio Code		11

SOFTWARE DESIGN DOCUMENTATION LIBRARIES USED:

1. Tkinter

Tkinter is the most commonly used method for developing GUI. Python with Tkinter is the fastest and easiest way to create GUI applications.

Tkinter widgets used for developing GUI:

- Label
- Entry
- Canvas
- Option menu
- Frame
- Button

To create a tkinter app:

- Importing the module tkinter
- Create the main window (container)
- Add any number of widgets to the main window

2. Matplotlib

- **Matplotlib** is a plotting library for the Python programming language and its numerical mathematics extension NumPy.
- It is mainly used for plotting graph.

3. Animation

- Animations make even more sense when depicting time series data
- Matplotlib's animation base class deals with the animation part.
- It provides a framework around which the animation functionality is built.
- FuncAnimation is the main object that makes an animation by repeatedly calling a function func.

USE CASE DIAGRAM:

Figure 1 Use case Diagram

The above use cases diagram describes that the user has to input required data.

- Type of measurement: The user will have a choice of selecting among two types of waveforms such as AC voltage and DC voltage.
- Range: The user must select the range in terms of volts.
 - a. If the measurement type is AC, then the range is 110, 230, 440 and 500
 - b. If the measurement type is DC, then the range is 10, 24 and 48
- Signal Frequency: The user can enter the signal frequency.
- Amplitude: The user can enter the amplitude in the terms of volts.

FLOW CHART OF CONFIGURATOR UI

Figure 2 Flow chart of Configurator

FLOW CHART OF DISPLAY UI

Figure 3 Flowchart of Display

GUI FOR CONFIGURATOR

Screenshots:

Figure 4 GUI for Configurator

- The above is GUI for Configurator, which has
 - 1. Option menu for selecting type of measurement and range.
 - 2. Label for displaying the unit, attenuation factor and sampling frequency.
 - 3. Entry for taking input of voltage and signal frequency from user.
 - 4. Button for read data and plot the input signal.
- The input from the user will read from the Configurator GUI.
- That data will have sent to source.

INPUT SIGNAL Configurator \times Voltage - AC 230 Attenuation Factor Input Voltage Sampling Frequency Signal Frequency 220 50 300 200 100 Amplitude 0 -100 -200 -300

Figure 5 GUI for Input Signal

0.025

0.030

 The above GUI shows that the data from the user will take and the plot the input graph.

0.035

0.040

GUI FOR DISPLAY

0.005

0.000

0.010

0.015

0.020

Time

Figure 6 GUI for Display

The above is GUI for Display, which has

- Label for displaying the input voltage, unit, measurement type, range and attenuation factor.
- If the measurement type is AC, the Vrms and Vmax value will be displayed in the GUI.
- If the measurement type is DC, only the Vavg value will be displayed in the GUI.
- Button to plot the output signal

OUTPUT SIGNAL Pisplay Input Voltage 220.0 Measurement Type Range Voltage - AC Vrms Vmax Attenuation factor 138.0 Execute Reset

Figure 7 GUI for Output Signal

0.015

0.020

0.025

0.030

0.035

0 -100 -200 -300

0.000

0.005

0.010

SOFTWARE REQUIREMENT Anaconda

Anaconda is an open-source distribution of the Python and R programming languages for scientific computing, that aims to simplify package management and deployment. The distribution includes data-science packages suitable for Windows, Linux, and macOS.

Visual Studio Code

Visual Studio Code is a free source-code editor made by Microsoft for Windows, Linux and macOS. Features include support for debugging, syntax highlighting, intelligent code completion, snippets, code refactoring, and embedded Git.