

Examen

Statistik und Wirtschaftsmathematik

Zeit:	90 Minuten
Name:	
Matr. Nummer:	

Hinweise:

- 1. Zugelassene Hilfsmittel: Open-Book: Aufschriebe, Formelsammlung, Skript, Taschenrechner (keine gespeicherten Formeln etc.!), Notizen.
- 2. Jede Antwort muss hinreichend begründet werden. Antworten ohne Begründung ergeben 0 Punkte.
- 3. Unleserliche Ergebnisse werden nicht gewertet. Nutzen Sie bei weiterem Platzbedarf bitte auch die Rückseiten der Klausurblätter!
- 4. Die geschätzte Bearbeitungszeit (in Minuten) für eine Aufgabe entspricht der Punktzahl. Somit sind die Aufgaben insgesamt 90 Punkte wert.

5. Viel Glück!!!

Aufgabe	Punkte	Erreichte Punkte
1	10	
2	10	
3	25	
4	10	
5	10	
6	25	
Gesamt	90	

Prof. Dr. Florian Kauffeldt

Teil 1: Statistik

Aufgabe 1. Deskriptive Statistik (10 Punkte)

a) Geben Sie das Messniveau (nominal, ordinal, intervall, verhältnis) der folgenden Daten sowie die Lagemaße, welche berechnet werden können, an.

Daten	Messniveau	Lagemaße, die berechnet werden können	
Google Sternbewertungen	Ordinal	Modalwert, Median	
Tierarten	Nominal	Modalwert	
Bilanzergebnis	Intervall	Modalwert, Median, Mittelwert	
Geschwindigkeit eines Autos in km/h	Verhältnis	Modalwert, Median, Mittelwert	
Akademische Grade	Ordinal	Modalwert, Median	

b) Bestimmen Sie die Varianz für den folgenden Datensatz, welcher für 5 Personen angibt, ob es sich um eine Frau handelt (1) oder nicht (0)

Frau	1	0	1	0	0

Lösung:

$$var = \frac{2}{5} \cdot \frac{3}{5} = \frac{6}{25}$$

Prof. Dr. Florian Kauffeldt

Aufgabe 2. Intervallschätzer (10 Punkte)

Bei einer Stichprobe mit 35 Studenten ergab sich ein durchschnittlicher Konsum von 13,5 Litern an alkoholischen Getränken im Monat (Standardabweichung 10,5 Liter).

- a) Schätzen Sie anhand dieser Stichprobe das 95%-Konfidenzintervall für den mittleren monatlichen Alkoholkonsum von Studenten.
- b) Nehmen Sie an, dass Ihnen der Schätzfehler in dieser Stichprobe zu hoch ist. Welche Größe müsste eine Stichprobe mindestens aufweisen, dass der Schätzfehler nicht höher als 1 Liter ist (ebenfalls mit 95% Konfidenz)?

Lösung:

- a) Gegeben:
 - n=35
 - x = 13.5
 - s=10
 - $\sigma = \frac{s}{\sqrt{n}} \approx 1.7748$
 - Gewichtungsfaktor (95%): 1.96

Intervall damit: 13.5+/-3.4787

b) Schätzfehler:

$$\frac{s}{\sqrt{n}}*1.96 \le 1 \Leftrightarrow (s*1.96)^2 \le n \Leftrightarrow n \ge 423.53.$$
 Die Stichprobe müsste mindestens 424 Studenten enthalten.

Prof. Dr. Florian Kauffeldt

Aufgabe 3. Hypothesentest (25 Punkte)

Betrachten Sie eine Stichprobe, die 220 Frauen und 167 Männer enthält. Die Frauen besitzen durchschnittlich 18 Schuhpaare (Standardabweichung: 4). Die Männer besitzen durchschnittlich 13 Schuhpaare (Standardabweichung: 7).

Es soll die Hypothese untersucht werden, dass Frauen im Schnitt mehr Schuhpaare besitzen als Männer.

- a) Handelt es sich um einen Ein- oder Zweistichprobentest? Begründen Sie Ihre Antwort.
- b) Ist der Test einseitig oder zweiseitig? Begründen Sie Ihre Antworten.
- c) Schreiben Sie die Null- und Alternativhypothese des Hypothesentests unter Verwendung des Aufgabenkontexts auf.
- d) Berechnen Sie die Teststatistik (z-Wert) und den p-Wert. Interpretieren Sie den p-Wert.
- e) Wie verändert sich der Standardfehler, wenn die Stichprobengröße ansteigt? Begründen Sie Ihre Antwort.

Lösung:

- a) Einstichprobentest ← Zwei Gruppen (Männer und Frauen)
- b) Einseitig ← "mehr Schuhpaare"
- c) Hypothesen:

H0:
$$\mu_{Frauen} - \mu_{M\ddot{a}nner} \le 0$$

H1: $\mu_{Frauen} - \mu_{M\ddot{a}nner} > 0$

d) Teststatistik:

$$\frac{\mu_{Frauen} - \mu_{M\ddot{a}nner}}{se_{pool}} = 8.26$$

•
$$\mu_{Frauen} - \mu_{M"anner} = 18 - 13 = 5$$

•
$$se_{pool} = \sqrt{se_f^2 + se_m^2} = \sqrt{\frac{4^2}{220} + \frac{7^2}{167}} \approx 0.61$$

8.26 ist nicht in Tabelle (geht nur bis 3), damit liegt der p-Wert nahe 0.

$$p - Wert \approx 0\%$$

Evidenz für mehr Schuhpaare

e) Standardfehler sinkt. Extremwerte rücken näher bzw. Wurzel (n) wird größer -> SE wird kleiner, da unter dem Bruch.

Teil 2: Wirtschaftsmathematik

Aufgabe 1. Matrixalgebra (10 Punkte)

Betrachten Sie die folgenden Matrizen A, B und C:

$$A = \begin{pmatrix} 11 & 17 & 19 \\ 6 & 18 & 3 \end{pmatrix} \text{ und } B = \begin{pmatrix} 18 & 10 \\ 13 & 12 \\ 9 & 15 \end{pmatrix}$$

- a) Berechnen Sie das Produkt der Matrizen $A \times B$.
- b) Berechnen Sie die Determinante des Produkts der Matrizen $\det(A \times B)$.

Lösung:

a)
$$\begin{pmatrix} 11*18+17*13+19*9 & 11*10+17*12+19*15 \\ 6*18+18*13+3*9 & 6*10+18*12+3*15 \end{pmatrix} = \begin{pmatrix} 590 & 599 \\ 369 & 321 \end{pmatrix}$$
 b)
$$\det(A \times B) = 590*321-369*599 = -31641$$

Aufgabe 2. Mengenlehre (10 Punkte)

Betrachten Sie die folgende Menge M_1 und M_2 :

$$M_1 = \{(x, y): y \le x\} \text{ und } M_2 = \{(x, y): y > 4\}$$

- a) Zeichnen Sie die Vereinigungsmenge $M = M_1 \cup M_2$.
- b) Zeigen Sie, dass die Vereinigungsmenge M nicht konvex ist.

Lösung:

b) P1=(0,0) und P2=(0,4) sind ein Element von M. Aber 1/2P1+1/2P2 = (0,2) ist kein Element von M.

Aufgabe 3. Matrizen und Optimierung (25 Punkte)

a) Lösen Sie das folgende Optimierungsproblem ohne Nebenbedingungen. Zeigen Sie auch, dass die Bedingung zweiter Ordnung (positive Definitheit der Hesse-Matrix) erfüllt ist.

$$\min_{x,y} 2x^2 + 3y^2 + 4xy + 5x + 6y + 7$$

Prof. Dr. Florian Kauffeldt

b) Ein Konsument hat 100 € und kann Bier (Anzahl Bier = b) und Pizza (Anzahl Pizza = p) kaufen. Bier kostet 3 € und Pizza 10 €. Die Nutzenfunktion des Konsumenten ist $\sqrt{b} + p$. Lösen Sie das Optimierungsproblem des Konsumenten (die Bedingung zweiter Ordnung müssen Sie nicht überprüfen):

$$\max_{b,p} \sqrt{b} + p$$

$$s. d.$$

$$3 \cdot b + 10 \cdot p \le 100$$

Lösung:

a) BEO:

$$\nabla = \begin{pmatrix} 4x + 4y + 5 \\ 6y + 4x + 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Extremwert:

$$(x^*, y^*) = (-3/4, -1/2)$$

• BZO:

$$H = \begin{pmatrix} 4 & 4 \\ 4 & 6 \end{pmatrix}$$

• Positive Definitheit:

$$(-3/4, -1/2)$$
 $\begin{pmatrix} 4 & 4 \\ 4 & 6 \end{pmatrix}$ \cdot $\begin{pmatrix} -3/4 \\ -1/2 \end{pmatrix}$ $= (-5, -6) \cdot \begin{pmatrix} -3/4 \\ -1/2 \end{pmatrix} > 0$

b) Lagrange-Funktion:

$$L = \sqrt{b} + p + \lambda(3b + 10p - 100)$$

BEO:

$$\nabla = \begin{pmatrix} \frac{1}{2}b^{-1/2} - 3\lambda \\ 1 - 10\lambda \\ 2b + 10p - 100 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Damit:

$$\lambda^* = \frac{1}{10}$$
$$b^* = 25/4$$
$$p^* = 8.75$$