题目	选择项 A	选择项 B	选择项 C	选择项 D	答案
计算机网络通信过程中的各种时延中,与数据大小无关的是:()	Transmission DelayPropagation Delay	Propagation Delay	Processing Delay	Queuing Delay	В
关于网络协议和网络体系结构,说法正确的包括: ()	协议要素包括语义、语法 、词汇	协议接口主要是指对等实 体之间的通信接口	计算机网络必须采用分 层架构来进行组织	计算机网络的分层可以 有助于各层的独立设计	D
以下关于链路吞吐量的描述中,正确的是:	受各种低效率因素的影响,由带宽为10Mbps的链路连接的一对节点可能只达到2Mbps的吞吐量	链路吞吐量为单位时间内 成功地传送数据的数量	一段链路由两端结点以 及结点之间的通信线路 组成,链路吞吐量取值 为3者的最小值。	链路吞吐量的大小等于 链路的带宽	ABC
数据链路层实现可靠传输的基本方法包括: () 数据链路层实现可靠传输的基本方法包括: ()	帧定界 差错检测	确认 确认	超时重传帧序号	帧序号 拥塞控制	B, C, D A, B, C
下列属于奇偶校验码的特征是: ()	能检查出奇数个比特错误	能检查出偶数个比特错误	能查出任意数量比特的 错误	只能查出一个比特的错 误	A
下列属于CRC的特征是: ()	能检查出奇数个比特错误	能检查出偶数个比特错误	能查出任意数量比特的 错误	只能查出一个比特的错	С
数据链路层米用了后退N帧(GBN)协议,发送方已经发送了编号为0-7的数据帧。当发送方计时器超时时,若发送方只收到了0、2、3、4号帧的确认,则发送方需要重新发送的帧数是())	1	2	指 庆	误 4	С
数据链路层采用选择重传(Selective ACK, or, Selective Re-transmission)协议传输数据,发送方已经发送了0-3号数据帧,现已收到1号帧的ACK确认,而0、2号帧依次超时,则此时需要重传的帧数是())	1	2	3	4	В
不属于高级数据链路控制HDLC的数据传输模式为()	正常响应模式NRM	异步平衡模式ABM	非平衡响应模式NNM	异步响应模式ARM	С
局部地区通信网络简称局域网,英文缩写为:	WAN	LAN	SAN	MAN	В
为实现可靠传输,当数据帧丢失时,系统将重传数据帧, 当ACK丢失时,系统会()	重新建立连接	重传ACK	调整窗口大小	重传数据帧	D
数据链路层进行的流量控制指的是() 两台主机之间的数据链路层米用后退N帧协议传输数据,数	源端到目标端	源端到中间节点	目标节点到目的端	相邻节点之间	D
据传输速率为16kbps,单向传播时延为270ms,数据帧长度范围是128-512字节,接收方总是以与数据帧等长的帧进行确认,为使信道利用率达到最高,帧序列的比特数至少为	5	4	3	2	В
某一速率为100M的交换机有20个端口,则每个端口的传输 速率为:	5M	10M	100M	2000M	С

集线器的缺点是:	不能延伸网络可操作的距 离	不能过滤网络流量	不能在网络上发送变弱 的信号	不能放大变弱的信号	В
CSMA/CA协议使用了()机制解决隐蔽终端问题? CSMA/CA协议使用了()机制解决暴露终端问题?	载波监听 载波监听	碰撞检测 碰撞检测	RTS/CTS 机制 RTS/CTS 机制	多点接入 多点接入	C A
在802.11局域网中,暴露终端问题产生的原因是()	载波监听	碰撞检测	RTS/CTS 机制	多径传播	С
截断二进制指数类型退避算法解决了:	站点检测到冲突后延迟发 送的时间	站点检测到冲突后多点接入的方法.	检测	站点如何避免冲突	A
不属于自动请求重传中差错控制的策略是() 以太网媒体访问控制技术CSMA/CD的机制是:	停止等待ARQ协议 争用带宽	后退N机制 预约带宽	选择重传机制 循环使用带宽	CSMA 按优先级分配带宽	D A
以下关于以太网的说法中,正确的是()	以太网的物理拓扑是总线 型的结构	以太网提供有确认的无连 接的服务	以太网参考模型一般只 包括物理层和数据链路 层	以太网必须采用CSMA/CD 协议	С
虚拟局域网(VLAN)可以有多种划分方式,不正确的是:	基于用户	基于物理地址	基于IP地址	基于交换机端口	C
在一个米用CSMA/CD协议的网络中,传输介质是一个完整的电缆,传输速率是1Gbps,电缆中的信号传播速度是200000km/s。若最小数据帧长度减少800bit,则最远的两个站占之间的距离至小要()	增加160m	增加80m	减少160m	减少80m	D
一般我们称:一座大楼内的一个计算机网络系统是一个:	WAN	LAN	MAN	PAN	В
无线局域网不使用CSMA/CD,而使用CSMA/CA的原因是无线局域网()	采用了二进制指数退避的 冲突恢复策略	并非所有的站点都能听见 对方	无线介质传输特征复 杂,存在隐藏终端、暴 露终端等问题	覆盖范围小,不进行冲 突检测不影响正确性	ВС
在令牌环网中,当数据帧在循环时,令牌在什么地方?	在接收站点	在发送站点	在环中循环	监控站点	В
在局域网中,运行网络操作系统的设备是:	交换机	网卡	网桥	网络服务器	D
建立虚拟局域网的交换技术一般包括()、帧交换、信元交换三种方式。	分组交换	报文交换	电路交换	端口交换	D
10 Mb/s和100 Mb/s自适应系统是指:	既可工作在10 Mb/s,也可 工作在100 Mb/s	既工作在10 Mb/s,同时 也工作在100 Mb/s	端口之间10 Mb/s和100 Mb/s传输率的自动匹配 功能	工作在10 Mb/s到100 Mb/s之间的任意位置	С
使用CSMA/CD协议的站点在发送帧的过程中发生冲突时,它将。	不理睬,继续将当前帧发 完,然后再作处理	立即停止发送当前帧,进 入监听状态	立即停止发送当前帧, 改发强化冲突信号,然 后进行退避处理	不理睬,冲突造成的错 误交由高层处理	С
控制相邻两个结点间通信流量的工作应安排在: 控制计算机网络端到端流量的工作应安排在:	传输层 网络层	网络层 传输层	物理层 物理层	数据链路层 数据链路层	D B
会把原始的比特流封装在分离的单元里,并且利用协议交换这些单元。	物理层	网络层	数据链路层	传输层	С
以父孫这些單元。 ——是源机器向目的机器发出独立的帧,而目的机器对收 到的帧不做确认。	面向连接的服务	面向确认的服务	无确认,面向连接服务	无确认, 无连接服务	D
透明传输是数据链路层的基本功能,所谓透明性是指()	传输的数据内容、格式及 编码有限	传输数据的方式透明	传输的数据内容、格式 及编码无限制	传输数据的方向透明	С

在二进制同步通信协议中,ACK表示()	拆除建立链路	正确接收发送方报文的确 认	请求远程站的响应	未正确接收发送方报文 的响应	В
使用字符填充的首尾定界符法,为了达到数据的透明性, 采用()	0比特插入法	转义字符填充法	增加冗余位	以上都不是	В
CSMA/CD协议的要点是: 网卡最重要的一个功能是:	碰撞检测 实现TCP/IP协议	多点接入 实现以太网协议	载波侦听 实现串/并行转换	冲突避免 配置IP地址	ABC C
网桥通过将帧中的和自己地址表中的信息进行比较,等现整的转发和过滤。 4.12 \$4.05 \$2.05 \$1.05	源节点的物理地址	目的节点的物理地址	源节点IP地址	目的节点IP地址	В
10Mbit/s以太网集线器上,则每个站能得到的带宽为();若10个站都连接到一个10Mbit/s以太网交换机上,则每个站得到的带宽为()。	共享10Mbit/s,独占 10Mbit/s	独占10Mbit/s,共享 10Mbit/s	共享10Mbit/s, 共享 10Mbit/s	独占10Mbit/s,独占 10Mbit/s	A
经典Ethernet采用的媒体访问控制方式是	CSMA/CA	CSMA/CD	令牌环	令牌总线	В
高级数据链路控制协议HDLC是()	面向字符型的同步协议	面向比特型的同步协议	面向字计数的同步协议	异步协议	В
网桥实现哪个功能?	过滤数据帧	转发数据帧	扩展LAN	处理数据帧	ABC
滑动窗口流控机制工作原理中,可直接传输并不需要确认的是()	滑动窗口左边的数据	滑动窗口右边的数据	滑动窗口内的数据	滑动窗口收缩的数据	С
虚拟局域网控制"广播风暴"的主要原理是:	禁止广播消息的传递	限制局域网中接收广播的 工作站数	限制局域网中发送广播 的工作站数	虚拟局域网中的主机数 更少	В
在数据传输的线路复用技术中,时分复用与统计时分复用的区别是()	时分复用采用时间片控制,统计时分复用不采用时间片控制	时分复用采用固定时间片 控制,统计时分复用采用 按需分配时间片控制	时分复用采用预先扫描 用户需求控制,统计时 分复用不预先扫描用户 需求控制	时分复用与统计时分复 用在信道复用控制策略 上基本相同	В
局域网体系结构中,IEEE802.2描述了()层的功能	MAC	LLC	CSMA/CD	Token Bus	В
局域网数据链路层分为()两个子层功能	MAC子层和LLC子层	IP子层和MAC子层	MAC子层和TCP子层	LLC子层和ICMP子层	A
逻辑链路控制子层提供了()两种链路服务	TCP, UDP	无连LLC、面向连接LLC	物理层和数据链路层	网络层和传输层	В
对于基带CSMA/CD而言,为了确保发送站点在传输时能检测到可能存在的冲突,数据帧的传输时延至少要等于信号传播时证的:	1倍	2倍	3倍	1/2倍	В
下列关于网桥的描述,错误的是()	网桥工作在数据链路层, 可以对网络进行过滤和分 段	网桥可以对不需要传递的 数据进行过滤并有效地阻 止广播数据	网桥传递所有的广播信息,因此难以避免广播 风暴	网桥与集线器相比,需 要处理接收到的数据, 因此增加了时延	В
VLAN的帧结构 ()	与以太网帧结构完全相同	与以太网帧结构完全不同	与以太网帧结构不兼容	在以太网帧结构中增加 VLAN标记	D
以太网的碰撞窗口或争用期为: 计算机网络的数据交换技术包括()	传播时延 虚电路、报文交换、分组	往返时延 帧交换、ATM交换、虚电	发送时延 线路交换、包交换、存	处理时延 帧交换、TAM交换、数据	B A
11 开心时为用以双次大汉个巴门(一)	交换	路	储转发交换	报	Λ

在CSMA/CD中,冲突的数量与1-坚持CSMA中的相比。	更多	一样	更少	是1-坚持CSMA中的两倍	С
		• • • • • • • • • • • • • • • • • • • •			· ·
计算机网络的存储转发包括 ()	报文交换、帧交换	报文交换、分组交换	线路交换、分组交换	报文交换、数据交换	В
下列关于交换机比集线器的优势,正确的是()	交换机隔离了冲突域,支 持多对用户的同时通信	交换机使用差错控制,减 少出错率	交换机可以级联,使网 络的覆盖范围更大	交换机无须设置,使用 更加方便	A
由交换机连接起来的10Mbps的共享式以太网,若共有10个 用户,则每个用户能够占有的带宽约为()	1M	2M	10M	100M	С
无线局域网主要采用了(一)方法解决数据帧的碰撞问题	碰撞检测	预约信道	超时重传	提高信噪比	В
下面关于网络互连设备叙述错误的是:	路由器用来互连不同的网 络,是网络层设备	以太网交换机实质上是一 个多端口网桥,工作在网 络层	在数据链路层扩展局域 网可使用网桥	在物理层扩展局域网可 使用转发器和集线器	В
在路由器进行互联的多个局域网结构中,要求每个局域网 ()	物理层协议可以不同,而 数据链路层及其以上的高 层协议必须相同	物理层、数据链路层协议 可以不同,而数据链路层 以上的高层协议必须相同	物理层、数据链路层、 网络层协议可以不同, 而网络层以上的高层协 议必须相同	物理层、数据链路层、 网络层以及高层协议都 可以不同	С
路由器在能够开始向输出链路传输分组的第一bit之前,必须先接收到整个分组,这种机制被称为()	存储转发	分组交换	报文交换	分组检测	A
ARP协议的作用是: ()	将端口号映射到IP地址	连接IP层和TCP层	广播IP地址	将IP地址映射到第二层 地址	D
应用程序Ping发出的是()报文	TCP请求报文	TCP应答报文 RIP要求内部路由器将它	ICMP请求报文 RIP要求内部路由器向整	ICMP应答报文 RIP要求内部路由器按	С
以下关于RIP的描述中,错误的是: ()	RIP是基于距离向量路由 选择算法的	关于整个AS的路由信息发 布出去	个AS的路由器发布路由	照一定的时间间隔发布 路由信息	С
以下关于0SPF协议的描述中,最准确的是()	OSPF协议根据链路状态法 计算最佳路由	OSPF协议是用于自治系统 之间的外部网关协议	OSPF协议不能根据网络 通信情况动态地改变路 由	OSPF协议只能适用于小 型网络	A
使用星形拓扑 以下哪种LAN具有最大的数据速率?	10Base5 10Base2	10BaseT 10Base5	10Base2 10BaseT	100BaseT FDDI	B, D D
IEEE802将数据链路层划分为两个子层,上子层是 ,下子层是	LLC, MAC	MAC, LLC	PDU, HDLC	HDLC, PDU	A
网桥工作在哪一层? 网桥可以访问同一个网络中站点的 地址。	物理层 物理	网络层 IP	数据链路层 服务访问点	应用层 网络	C A
因特网将整个网络划分为许多较小的单位,即AS。由此, 路由协议也分为两大类,即:	RIP和OSPF	内部网关协议和外部网关 协议	BGP和RIP	TCP和IP	В
下面关于虚拟局域网VLAN的叙述错误的是:	VLAN是由一些局域网网段 构成的与物理位置无关的 逻辑组	利用以太网交换机可以很 方便地实现VLAN	虚拟局域网是一种新型 局域网	每一个VLAN的工作站可 处在不同的局域网中	С
透明网桥是通过查找端口-地址表来决定转发路径的,而端口-地址表是 生成的。	通过广播一个探测帧来搜 集路径信息	网桥通过正向自学习方法	由网络管理员在设置网 桥时通过手工输入	网桥通过逆向自学习方 法	D
交换机确定输出端口的办法不包括: ()	数据报	虚电路	源路由	端口的带宽	D

数据报服务的特点不包括: ()	主机可以随时随地发送分 组	主机知道网络是否可以传 送该分组	每个分组的转发均基于 首部的目的地址,分组 之间相互独立	把较长的报文划分成较 短的数据段	В
虚电路服务的特点不包括: ()	每一个数据分组中都带有 目的主机完整的地址	提供面向连接的、可靠的 传输服务	提供资源预留	主机发送第一个数据分 组前至少有一个RTT的时 延,用于建立连接。	A
源路由的特点不包括()	分组首部包含完整的路由 信息	每个分组都会被独立处理	分组会顺序到达目的主 机	由主机来提供可靠性保证	D
IP地址是网际层中识别主机的 面向无连接的IP协议的信息传输方式是: 路由器的功能不包括: ()	唯一地址 点到点 解决异构网络之间的互连 问题	逻辑地址 广播 路由选择	物理地址 虚电路 分组转发	前置地址 数据报 流量控制	B D D
IP 协议提供的是服务类型是:	面向连接的数据报服务	无连接的数据报服务	面向连接的虚电路服务	无连接的虚电路服务	В
路由器连接的异构网络指的是()	网络的拓扑不同	网络中计算机的操作系统 不同	数据链路层和物理层均 不同	数据链路层协议相同, 物理层协议不同	C
路由器用于连接多个逻辑上分开的网络,工作于: 不属于路由选择协议的是:	网络接口层 RIP	网际层 BGP	运输层 ICMP	应用层 OSPF	B C
使用链路状态路由选择算法的OSPF和使用距离向量路由选择算法的RTP都是:	域间路由协议	外部网关协议	TCP/IP协议	内部网关协议	D
CIDR将()都相同的连续的IP地址组成"CIDR"地址 块,路由表就利用CIDR地址块来查找目的网络。	物理地址	主机地址	网络前缀	路由协议	С
每台路由器都依赖()协议,否则该路由器不能正确工作。	RIP	ARP	OSPF	BGP	В
企业Intranet要与Internet互联,必需的互联设备是:	调制解调器	交换机	中继器	路由器	D
TCP/IP体系结构中的TCP和IP所提供的服务分别为()	链路层服务和网络层服务	网络层服务和运输层服务	运输层服务和应用层服 务	运输层服务和网络层服 务	D
面向连接的协议有:	IP协议	UDP协议	TCP协议	OSPF协议 分片只可能发生在路由	С
下列关于IP数据报分片和重组描述正确的是:	分片在信源机,重组在目 的机	分片在一经过路由器时就 进行,重组也一样	分片只可能发生在路由器,而重组必须在目的机	器,而重组可能发生在 目的机,也可能发生在 路中哭	С
把网络202. 112. 78. 0划分为多个子网,子网掩码是 255. 225. 255. 192,则各子网中可用的主机地址数之和是:	254	252	128	114	В
与10.110.12.29 mask 255.255.255.224 属于同一网段的主机IP地址是()	10. 110. 12. 0	10. 110. 12. 30	10. 110. 12. 31	10. 110. 12. 32	В
下列描述中,不属于IP层实现的功能是()	尽力而为的不可靠传输服 条	数据报的路由选择与转发	数据报的分段与重组	确定主机进程间的接口	D

在WINDOWS2000 操作系统中要查看本机的路由表,可在MS-DOS方式运行:	Ping	Tracert	Route Print	Ipconfig	С
不会产生ICMP差错报文的是:	路由器不能正确选择路由	路由器不能传送数据报	路由器检测到一个异常 条件影响它转发数据报	针对ICMP 差错报告报文	D
互联网中所有端系统和路由器都必须实现的协议是:以下哪个不是网际互连设备? C类地址的最高三个比特位,依次是() 下列属于B类IP地址的是() 现在要构建一个可连接14个主机的网络,如果采用划分子网的方法,则子网掩码为()	SNMP 网桥 010 128. 2. 2. 10 255. 255. 255. 255	HTTP 路由器 110 202. 96. 209. 5 255. 255. 255. 248	IP 网关 100 20. 113. 233. 246 255. 255. 255. 240	TCP 集线器 101 192. 168. 0. 1 255. 255. 255. 224	C A, D B A C
关于网络互连设备叙述错误的是:	在物理层扩展局域网可使 用转发器和集线器	在数据链路层扩展局域网 可使用网桥	以太网交换机实质上是 一个多端口网桥,工作 在网络层	路由器用来互连不同的 网络,是网络层设备	С
哪组网络地址和子网掩码正确标识了172.16.128.0 172.16.159.255地址块 路由器涉及TCP/IP体系结构的 层。	172. 16. 128. 0、 255. 255. 255. 224 网络层	172. 16. 128. 0、 255. 255. 0. 0 网络接口层	172. 16. 128. 0、 255. 255240. 0 运输层	172. 16. 128. 0、 255. 255. 224. 0 网络接口层和网络层	D D
IP地址为192.168.200.2,子网掩码为255.255.255.192, 则网络标识为()	191. 0. 0. 0	191. 168. 200. 192	191. 168. 200. 0	191. 168. 200. 128	С
检查网络连通性的应用程序是:	Ping 在连接建立时做一次路由	DNS 为每个到来的分组做路由	ARP 仅在网络拥塞时做新的	FTP 不必做路由选择	A B
如果网络层使用数据报服务,那么需要在IP地址为192.168.1.*的网络中,如果网络掩码为255.255.255.0,则该网络的网络地址为(),广播地址为(),主机可用IP地址范围为()假设目的IP地址为200.200.21.1,路由表中默认路由为:0.0.0.0,倒数第2条记录是:200.200.16.0/20,最后一条记录是:200.200.21.0/24。则路由选择的结果为:(选择 192. 168. 1. 0; 192. 168. 1. 255; 192. 168. 1. 1— 192. 168. 1. 254 200. 200. 16. 0/20	选择 192. 168. 1. 255; 192. 168. 1. 0; 192. 168. 1. 1— 192. 168. 1. 254 200. 200. 21. 0/24	路由选择 192.168.1.0; 192.168.1.255; 192.168.1.0 192.168.1.255 200.200.16.1	小少做路田远择 192. 168. 1. 255; 192. 168. 1. 0; 192. 168. 1. 0— 192. 168. 1. 255 0. 0. 0. 0	A B
在子网192.168.4.0/30中,能接收目的地址为 192.168.4.3的TP分组的最大主机数是() 假定某网络的IP地址空间为192.168.5.0/24,米用的子网 掩码为255.255.255.248,则该网络的最大子网个数为(0 32, 8	1 32, 6	2 8, 32	4 8, 30	C B
),每个子网内的最大可分配IP地址个数为()) 关于无分类编址CIDR,下列说法正确的是:	CIDR使用各种长度的"网	CIDR将网络前缀都相同的 连续的IP地址组成"CIDR	网络前缀越短,其地址	使用CIDR,查找路由表 时可能会得到多个匹配 结果,应当从匹配结果 中选择具有最长网络前	ABD

络前缀"来代替分类地址 连续的IP地址组成"CIDR 块所包含的地址数就越 中的网络号和子网号 "地址块

中选择具有最长网络前 缀的路由。因为网络前 缀越长,路由就越具体

ARP的功能是()	根据IP地址查询MAC地址	根据MAC地址查询IP地址	根据域名查询IP地址	根据IP地址查询域名	A
RARP的功能是 ()	根据IP地址查询MAC地址	主机根据自己的MAC地址 获取自己的IP地址	根据目的主机的IP地址 获取目的主机的MAC地址	根据IP地址查询域名	В
将主机名转换成IP地址,要使用()协议,将IP 地址转 换成MAC地址,要使用()协议	DNS, ARP	ARP, DNS	DNS, RARP	DNS, ISP	A
	10011110. 11100011. 01100 100. 00001100	11011110. 11100011. 0110 1101. 10001100	010100.00101001	10011110. 11100011. 011 00100. 10010100	С
有关ARP协议描述不正确的是:	在ARP的实现中,有一个 ARP服务器负责回答查询请 求	由被询问的主机回答ARP 查询	给定目的主机的IP地址, ARP可以找到同属一个物 理网络内部的目的主机 的物理地址	ARP采用广播机制	A
将一个局域网连入Internet,首选的设备是:	网桥	路由器	中继器	网关	В
在下列有关DHCP的描述中,不正确的是:	DHCP允许主机自动从服务 器获取IP地址	DHCP允许允许地址重复使 用	DHCP服务器会给出包含 配置参数的提议供主机 选择	DHCP为特定主机指定唯 一的IP地址	D
如果用户网络需要划分5个子网,每个子网最多20台主机,则适用的子网掩码是()	255. 255. 255. 192	255. 255. 255. 240	255. 255. 255. 224	255. 255. 255. 248	С
下列()设备可以隔离ARP广播帧	集线器 路由器处理的信息量比交	交换机	路由器	网桥 路由器不但可以根据IP	С
关于路由器,下列说法正确的是()	始田益处理的信息重比交 换机少,因而转发速度比 交换机快	对于同一目标,路由器只 提供延迟最小的最佳路由	路由器可以提供网络层 的分组转发	始田益小恒可以候据1F 地址转发,还可以根据 物理地址转发	С
某公司申请到一个C类网络,由于有地理位置上的考虑必须切割成5个子网,请问子网掩码要设为:	255. 255. 255. 224	255. 255. 255. 192	255. 255. 255. 254	255. 255. 255. 240	A
哪个路由算法在设置和更新时,需要更多路由器之间的通信。	距离向量	链路状态	Dijkstra	向量链路	A
IP协议利用(),控制数据传输的时延	服务类型	目的IP	标识	生存时间	D
在哪种路由方法中所有的路由器拥有一个公共的数据库?	距离向量	链路状态	向量链路	最短路径	В
主机没有IP地址但要加入网络时,使用(); 主机发送数据报但不知目的主机的硬件地址时,使用(); 数据报传输讨程中出现差错时, 使用()	DHCP; ARP; ICMP	DHCP; RARP; ICMP;	RARP; ARP; ICMP	RARP; RARP; DHCP	A
将IP地址转换为物理地址的协议是:	IP	ICMP	ARP	RARP	C
将物理地址转换为IP地址的协议是: 在MTU较小的网络,需将数据报分成若干较小的部分进行传	IP	ICMP	ARP	RARP	D
输,这种较小的部分叫做: 一个B类网络172.16.0.0,使用子网掩码255.255.255.192	组	片	段	节	В
一个B突网络172.16.0.0,使用于网推码255.255.255.192 来划分子网,则理论上可以利用的网络数和每个网络中的 主机数分别为())	512、126	1000、62	1024、62	2、62	С
在距离向量路由中,每个路由器从接收距离向量	网络中的每个路由器	两跳距离内的路由器	通过软件存储的表格	它的邻居路由器	D
。 分组的概念是在()层用到的	物理层	数据链路层	网络层	传输层	С

关于因特网的路由选择协议叙述正确的是:	因特网采用静态的、分层 次的路由选择协议	RIP是基于距离向量的路 由选择协议,RIP选择一 个到目的网络具有最少路 由器的路由	OSPF最主要特征是使用 分布式链路状态协议, 所有的路由器最终都能 建立一个链路状态数据 库	BGP-4采用路径向量路由 选择协议。BGP所交换的 网络可达性信息是要到 达某个网络所要经过的 自治系统序列	BCD
如果在一个使用链路状态路由的互连网络中有5个路由器和6个网络,那么存在个路由表,每个表中至少有 个表项?	1, 5	5, 6	6, 5	6, 1	В
如果在一个使用链路状态路由的互连网络中有5个路由器和6个网络,那么存在多少个不同的链路状态数据库?	1	5	6	30	A
以下关于移动IP的描述中,错误的是()	转交地址是指当移动节点 接入到一个外地网络时使 用的、长期有效的IP地址	目的地址为家乡地址的IP 分组,将会以标准的IP路 由机制发送到家乡网络	家乡链路与外地链路比 家乡网络与外地网络更 精确地表示出移动节点 接λ的位置	家乡代理通过隧道将发 送给移动节点的IP分组 转发给移动节点	A
在链路状态路由中,洪泛使链路状态的变化能够被 记录	所有路由器	相邻路由器	个别路由器	所有网络	A
下面关于IP地址与硬件地址的叙述正确的是:	RARP是解决同一个局域网 上的主机或路由器的IP地 址和硬件地址的映射问题	IP地址不能直接用来进行 通信,在实际网络的链路 上传送数据帧必须使用硬 件曲 ll-	使件地址是数据链路层 和物理层使用的地址, IP地址是网络层和以上 各层使用的	在局域网中,硬件地址 又称为物理地址或MAC地 址	BCD
关于RIP协议描述不正确的是:	每个节点会构造一个包含 到所有其他节点的"距离 "的一维数组	节点根据接收到的距离向 量计算到达其他所有节点 的最短路径	每个节点会构造一个包 含到所有邻居节点的" 距离"的一维数组	采用周期性分发和触发 更新两种方式分发网络 拓扑信息	С
路由器不处理哪个功能? 关于OSPF协议描述不正确的是:	数据分段	差错控制和流量控制	协议转换	数据封装	В
以下关于区域路由,错误的是()	OSPF协议将一个自治域划 分成若干区域,有一种特 殊的区域叫做主干区域	域之间通过区域边界路由 器互联	在目治系统甲有4类路由器:区域内部路由器、 主干路由器、区域边界路由器和自治域边界路	主干路由器不能兼做区 域边界路由器	D
关于互联网中IP地址,下列叙述正确的是:	在同一个局域网上的主机 或路由器的IP地址中的网 络号必须是一样的	用网桥互连的网段仍然是 一个局域网,只能有一个 网络号	路由器总是具有两个或 两个以上的IP 地址	当两个路由器直接相连时,在连线两端的接口处,必须指明IP地址	ABC
以下关于距离向量路由选择的描述中,错误的是()	RIP要求路由器都要维护从 它到每个内部路由器的距 离向量	与路由器直接连接的网络 的距离值为0	每经过一个路由器,距 离值加1	路由器更新的原则是找 出到达每个网络的最短 距离	D
BGP协议中的网络可达性信息是()	到达某个网络所经过的路 径	到达某个网络的下一跳路 由	到达某个网络的链路状 态摘要信息	到达某个网络的最短距 离以及下一跳路由器	A

直接封装RIP、OSPF、BGP报文的协议分别为(TCP、UDP、IP	TCP, IP, UDP	UDP、TCP、IP	UDP、IP、TCP	D
以下关于链路状态路由的描述中,错误的是()	OSPF使用链路状态协议来 实现AS内部路由表的更新	中其它的路由器发送路由	链路状态的"度量"可以是距离、带宽、时延 或者费用等	链路状态协议要求定时 向AS中其它的路由器发 送路由信息	D
以下关于BGP特征的描述中,错误的是()	BGP的路由选择算法是基于 路径向量(Path Vector)算 法 IP多播是指多个接收者可		BGP要求相邻的AS边界路 由器之间交换到达目的 网络的路径 发送主机使用多播地址	= =	D
以下关于IP多播的描述中,错误的是()	以接收到同一个或者一组 源节点发送的相同内容的 分绍	支持多播协议的路由器叫 做多播路由器	发送分组时不需要了解接收者的位置信息与状态信息	利用多播树可以将多播 分组转发到整个互联网	D
关于因特网中路由器和广域网中结点交换机叙述错误的 是:	路由器根据目的网络地址 找出下一跳(即下一个路 由器),而结点交换机则 根据目的站所接入的交换 机号找出下一跳(即下一 个结点交换机)。	路由器和结点交换机都使 用统一的IP协议	路由器专门用来转发分 组,结点交换机还可以 连接上许多主机	路由器用来互连不同的 网络,结点交换机只是 在一个特定的网络中工 作	В
以下关于IPv6地址"1A22: 120D: 0000: 0000: 72A2: 0000: 0000: 00C0"的不同表示法中,错误的是()	1A22:120D::72A2:0000:00 00:00C0	1A22:120D::72A2:0:0:C0	1A22:120D::72A2::00C 0	1A22:120D:0:0:72A2::C 0	С
某个IPv6地址为8::D0:123:CDEF:89A, 其完整形式是()	8000:0000:0000:0000:00D 0:1230:CDEF:89A0	0008:00D0:0000:0000:00 00:0123:CDEF:089A	8000:0000:0000:0000: D000:1230:CDEF:89A0	0008:0000:0000:0000:0 0D0:0123:CDEF:089A	D
两个具有相同体系结构的局域网需要进行互连,互连后的网络应满足: 1)安全性。需要对跨越网络的数据流进行过滤,只有满足一定条件的数据包允许通过。2)独立性。两个网络应能独立管理和维护。3)禁止一方的广播报文泛滥到另一方。则互连设备可采用。	交换机号找出下一跳(即下一个结点交换机)。	路由器	网关	中继器	В
TCP协议在每次建立连接时,都要在收发双方之间交换的报文数为:	2 个	3个	4 个	1 个	В
在OSI参考模型中,提供流量控制功能的是() 主机A和主机B乙间建立了一个TCP连接,主机A向主机B友运	1、2层	2、4层	3、5层	5、6层	В
了3个连续的TCP段,分别包含300B、400B和500B的有效载荷,第3个段的序号为900。若主机B仅仅正确收到第1个和第3个数据段,则主机B发送给主机A的确认序号为()	300	500	1200	1400	В

主机甲与主机乙已经建立了一个TCP连接。主机甲向主机乙发送了两个连续的TCP段,分别包含300字节和500字节的有效载荷,第一个段的起始序号为200,主机乙正确收到这两个数据段后,发送给主机甲的确认序号为()	500	700	800	1000	D
主机甲和主机乙之间已经建立一个TCP连接,双方持续有效 传输,若甲收到乙的一个TCP段,序号1913,确认序号 2046,有效荷100字节,则甲发送给乙的TCP段的序号和	2046, 2012	2046, 2013	2047, 2013	2047, 2014	В
确认序号可能是(主机甲向主机乙发送了一个连接建立请求(SYN=1, seq = 11220),若主机乙接受该请求,主机乙的回复可能是((SYN=0, ACK=0, seq=11221, ack=11221)	(SYN=1, ACK=1, seq=11220, ack=11220)	(SYN=1, ACK=1, seq=11221, ack=11221)	(SYN=0, ACK=0, seq=11220, ack=11220)	С
主机A基于TCP向主机B连续发送3个TCP报文段。第1个报文段的序号为90,第2个报文段的序号为120,第3个报文段的序号为150。第1个报文段里面的数据有(1)字节。第2个报文段里面的数据有(2)字节。假设第2个报文段丢失了,而其他两个报文段抵达了主机	(1)30 (2)30 (3)120	(1)30 (2)30 (3)150		(1)90 (2)120 (3)150	A
B, B回复A的确认报文的确认号应该为(3)。 IP层负责()的通信, TCP层负责()的通信:	主机到主机、进程到进程	进程到进程、主机到主机	进程到进程、端到端	主机到进程、进程到主机	A
TCP协议使用三次握手来建立连接,TCP协议规定,在对发送端SYN确认信息中,同时捎带()以减少通信的量。	上一个已接收的报文编号	下一个希望接受的报文编 号	对发送进程的链接请求 SYN	对发送进程的请求确认 ACK	С
TCP/IP为实现高效率的数据传输,在传输层采用了UDP协议,其传输的可靠性则由()提供。	TCP	IP	上层协议	DNS	С
一个TCP连接过程包括:	拨号,通话,挂机	连接建立、数据传输、连 接释放	下载、安装、使用	注册、登陆、使用	В
接收端发现有差错时,设法通知发送端重发,直到收到正确的码字为止,这种差错控制方法称为: TCP的拥塞控制算法中,当拥塞窗口cwnd达到哪一个值时,	前向纠错	冗余校验	混合差错控制	自动请求重发	D
TCP的拥塞控制算法中,当拥塞窗口cwnd达到哪一个值时, 讲行线性增长()	接收窗口rwnd	拥塞门槛ssth	发送窗口wnd	拥塞门槛ssth一半	В
TCP传输的可靠是由于使用了: 在停止等待协议算法中,使用帧序号的目的是:	序号 处理数据帧的丢失	IP地址 处理确认帧的丢失	确认号 处理重复帧	容错措施 处理差错	AC C
在进行流量控制和拥塞控制时,发送端的发送窗口上限值应取"接收方窗口"和"拥塞窗口"的()。	较大的一个	较小的一个	二者之和	二者之差	В
在TCP中,连接的建立采用()握手的方法	1次	2次	3次 当属于一个拥塞窗口的	4次 发送方取"拥塞窗口"	С
TCP拥塞控制方法中,正确的描述是:	当已发送报文段的应答到	以分组丢失或超时为拥塞 标志		和"接收方承认的窗口	ABD

标志

传输层

校验和

拥塞窗口大小开始线性

"两者最小值作为发送

窗口 网络接口层 进程端口号

В

D

达,拥塞窗口大小加倍

应用层 累计确认重传机制

在TCP/IP协议簇中,UDP协议工作在: 哪种策略不是TCP可靠传输协议的控制策略()

TCP/IP 网络中,()与数据链路层有关,()与网络层有关,()和传输层有关。在TCP/IP协议族的层次中,解决计算机之间通信问题是在:连接管理是的主要任务,如三次握手来建立连接的方法也是属于	物理地址,逻辑地址,端 口号 数据链路层 物理层	IP地址,物理地址,端口 号 网际层 数据链路层	IP地址,端口号,物理 地址 传输层 网络层	物理地址,IP地址,逻辑地址 应用层 传输层	A B D
关于无线局域网,叙述错误的是:	无线局域网可分为两大 类,即有固定基础设施的 和无固定基础设施的	无固定基础设施的无线局 域网又叫做自组网络	有固定基础设施的无线 局域网的MAC层不能使用 CSMA/CD协议,而是使用 CSMA/CA协议	移动自组网络和移动IP 相同	D
Internet上的各种不同网络及不同类型的计算机进行相互 通信的基础是	HTTP	SPX/IPX	TCP	IP	D
A通过计算机网络给B发送消息,说其同意签订合同。随后A 反悔,不承认发过该消息。为防止这种情况发生,在计算 机网络中应采用的技术是:	防火墙	数据加密	数字签名	消息认证	С
利网络中国采用的技术是: 当前最流行的网络管理协议是: 王机A和王机B之间建立了一个TCP连接,TCP最大的数据段	TCP/IP	SMTP	SNMP	UDP	С
长度为1000字节,若主机A当前的拥塞窗口为4000字节,在主机A向主机B连续发送两个最大段之后,成功收到主机B回复的第一段的确认,确认报文中通告的接收窗口大小为2000字节,则此时主机A还可以向主机B发送的最大字节数	0	1000	2000	3000	В
量 (因特网中按 () 进行寻址	邮件地址	MAC地址	网线接口地址	IP地址	D
物理层、数据链路层、网络层传送的数据单位分别为:	比特、帧、分组	比特、分组、帧	帧、分组、比特	分组、比特、帧	A
以下各项中,不是数据报操作特点的是()	每个分组自身携带有足够 的信息,它的传送是被单 独外理的	在整个传送过程中,不需 建立虚电路	使所有分组按顺序到达 目的端系统	网络节点要为每个分组 做出路由选择	С
以下哪类设备涉及OSI模型层次最多? 以下哪类设备涉及OSI模型层次最少?	网桥 网桥	路由器 路由器	集线器 集线器	网关 网关	D C
远程访问服务RAS的主要功能是	为远程用户访问局域网提 供接入服务	为远程用户提供文件服务	为远程用户提供FTP服务	为远程用户提供WWW服务	A
考虑在一个具有10ms往返时延的线路上米用慢启动拥塞机制。假设没有发生网络拥塞,该TCP的报文段大小为2KB,接收方可用接收窗口为24KB。那么发送方需要(ms)时间才能达到该接收窗口大小。	30	40	50	60	В
(ms)时间才能达到该接收窗口大小。设TCP的拥塞窗口的慢启动门限值初始为12(单位为报文段),当拥塞窗口达到16时出现超时,再次进入慢启动过程。问从这时起,需要	8	12	14	16	В

有一个TCP连接,当其拥塞窗口为32个分组大小时超时。假
设网络的RTT是固定的,为5s,不考虑比特开销(即分组不
丢失),则系统在超时后处于慢启动的时间有()
土机甲州土机乙建工」一个IUY连按,甲的佣基控制彻炻阀
值为32KB,甲向乙始终以MSS=1KB大小的数据段发送数据,
并且一直有数据发送; 乙为该连接分配了16KB的接收缓
存,并对每个数据段进行确认,忽略段的传输时延。若乙
收到的数据全部存入缓存,不被取走,则甲从连接建立成
功时刻起,未发送超时的情况下,经过4个RTT之后,甲的
生就窜马星机乙已经建立了一个TUP连接。王机中始终以
MSS=1KB大小的数据段发送数据,并且一直有数据发送;主
机乙收到一个数据段后都会发出一个接收窗口为10KB的确
认段。若甲在t时刻发生超时时拥塞窗口为8KB,则从t时刻
起,不再发生超时的情况下,经过10个RTT,甲的发送窗口
十小先()

用于WWW传输控制的协议是: 属于应用层协议的是: web使用()进行信息传输。 在Internet域名体系中,域的下面可以划分子域,各级域

当一台计算机从FTP服务器下载文件时,在该FTP服务器上

名用圆点分开,按照: 超文本的含义是:

对数据进行封装的五个转换步骤是:

10s

1KB

10

	DNS	SMTP	HTTP	HTML	С
	TCP、IP	SMTP, UDP	FTP、TELNET	ICMP, ARP	С
	HTML	HTTP	FTP	WWW	В
,	从左到右越来越小的方式	从左到右越来越小的方式	从右到左越来越小的方	从右到左越来越小的方	С
	分4层排列	分多层排列	式分多层排列	式分4层排列	C
	该文本中含有声音	该文本中含有二进制数	该文本中含有链接到其 他文本的链接点	该文本中含有图像	С
	比特,数据帧,数据报, 报文段,数据	数据,报文段,数据报, 数据帧,比特	数据报,数据段,数 据,比特,数据帧	数据段,数据包,数据 帧,比特,数据	В

30s

16KB

14

40s

32KB

15

В

Α

A

20s

8KB

12