2019-2020, semestre automne L3, Licence Sciences et Technologies

LIFAP6: Algorithmique, Programmation et Complexité

Chaine Raphaëlle (responsable semestre automne)

E-mail: raphaelle.chaine@liris.cnrs.fr

http://liris.cnrs.fr/membres?idn=rchaine

Parcours en largeur (BFS)

- Pour un sommet de départ s on commence par visiter tous les successeurs de s avant de visiter les autres descendants de s
- Le parcours en largeur consiste à visiter d'abord
 - tous les sommets à distance 1 de s,
 - puis ceux à distance 2 qui n'ont pas été visités,
 - et ainsi de suite ...
- Le parcours en largeur permet donc de résoudre les problèmes de plus court chemin dans un graphe non valué

Parcours en largeur (BFS)

- Pour programmer l'algorithme, on utilise une structure de **file**:
 - lorsque à partir de s, on s'apprête à visiter ses successeurs non marqués, il est nécessaire de les ranger successivement dans une file
 - la recherche repartira ainsi de chacun des successeurs de s, à partir du premier.

Parcours en largeur (BFS)

```
procédure BFS(donnée-résultat G: graphe, s : noeud)
variables
   u,v: nœud; F: file
début
  pour tout noeud u \neq s faire
      colorie(u,blanc); set père(u, nil); set dist(u,\infty)
  finpour
  colorie(s,gris); set père(s,nil); set_dist(s,0)
  initialise file vide(F); enfile(F,s)
 tant que non est-vide(F) faire
      u \leftarrow t\hat{e}te(F);
      pour tout noeud v successeur de u faire
          si couleur(v)=blanc alors
              colorie(v,gris); set père(v,u); set dist(v, u.dist +1)
               enfile(F,v)
          finsi
      finpour
      défile(F); colorie(u,noir) (facultatif : 2 couleurs suffisent))
 fintantque
```

fin

• Effectuer le parcours en largeur sur le graphe suivant

Les sommets sont visités dans l'ordre
1, 3, 5, 6, 7, 2, 8, 4, 9

- Complexité en temps : O(N+M)
 où N est le nombre de nœuds et M le
 nombre d'arcs
 - en effet, un sommet n'est mis dans la file qu'une seule fois (passage de blanc à gris) et les arêtes sont toutes parcourues 1 fois (découverte des voisins)
- Complexité en espace : O(N)
 la file a une longueur au plus en O(N) (si s est connecté à tous les autres sommets)

- En fait, parcours en largeur et en profondeur s'inscrivent dans une même stratégie générale d'exploration des nœuds du graphe
- Diffèrent suivant que les successeurs d'un nœud seront rangés dans une pile ou une file

```
procédure ExplorerGraphe (donnée-résultat G: Graphe, x : noeud)
variable
 E : Salle d'attente de Noeud
début
  pour tout nœud n de G faire
    colorie(n,blanc) ...
  finpour
  initialiser(E); ajouter(E,x)
  répéter
    y← sommet(E); retirer_sommet(E),
    si couleur(y)=blanc alors
        colorie (y,gris);
        pour tout nœud z successeur de y faire
          si couleur(z) = blanc alors
            ajouter(z,E)
          finsi
                                    Si E correspond à une Pile :
        finpour
                                    parcours en profondeur
        colorie(y, noir) (facultatif))
                                    Si E correspond à une File :
     finsi
                                    parcours en largeur
                                                                      40
  jusque estvide(E)
```

fin

```
procédure ExplorerGraphe (donnée-résultat G: Graphe, x : noeud)
variable
 E : Salle d'attente de Noeud
début
  pour tout nœud n de G faire
    colorie(n,blanc) ...
  finpour
  initialiser(E); colorie(x,gris); ajouter(E,x)
  répéter
    y← sommet(E); retirer sommet(E)
    pour tout nœud z successeur de y faire
       si couleur(z) = blanc alors
          colorie(z, gris)
          ajouter(z,E)
                                   Si E correspond à une Pile :
      finsi
                                   parcours en profondeur
    finpour
                                   (légèrement différent de celui
    colorie(y, noir) (facultatif))
                                   de la version récursive)
  jusque estvide(E)
fin
                                   Si E correspond à une File :
                                   parcours en largeur
                                                                     41
```

Tri topologique

Problème :

- Etant donné un graphe orienté acyclique modélisant une relation d'ordre partiel, trouver une relation d'ordre total entre les nœuds qui respecte l'ordre partiel
- ie. trouver un ordre des nœud tel qu'un nœud soit toujours visité avant ses successeurs
- Utile pour les problèmes de séquencement

 Si chaque Nœud représente une tâche, la tâche 1 devra être réalisée avant les tâches 5 et 7, etc.

- Le parcours en profondeur permet de résoudre le problème du tri topologique
- Il suffit pour cela de classer les nœuds dans l'ordre inverse où ils sont coloriés en noir (ordre postfixe inverse)
- En effet un nœud est colorié en noir APRES les nœuds qu'il a permis de découvrir!

Recherche de plus court chemin

- Dans un graphe valué, il existe un plus court chemin entre 2 nœuds si il n'existe pas de circuit de valeur négative dans un chemin menant de l'un à l'autre
- Un tel circuit est dit absorbant

- Soit G un graphe orienté valué avec des valeurs
 ≥ 0
 - en fait on peut également avoir des valeurs négatives si cela ne provoque pas l'apparition de circuits absorbants

- Cas d'une représentation par matrice d'adjacence
 - M[i,j]=v_{ij} si les nœuds i et j sont reliés par un arc de valeur v_{ij}
 - M[i,i]=0 (entre un nœud et lui-même)
 - Distance infinie entre 2 nœuds non connectés

	n ₁	n ₂	n ₃	n ₄	n ₅	n ₆
n_1	0	3				5
n_2		0	7			10
n_3			0	5	1	
n ₄				0	6	
n ₅					0	7
n ₆			8	2		0

- Cas d'une représentation par liste d'adjacence
 - Plus de problème de matérialisation de la distance infinie

- But : Connaître les plus courts chemins entre un nœud source donné S et TOUS les nœuds du graphe accessibles depuis S
- Valable uniquement pour les graphes valués positivement
- Construction incrémentale et gloutonne d'un ensemble E_{noir} de nœuds accessibles depuis S
- Initialisation :
 - $E_{\text{noir }0}$ vide $E_{\text{gris }0} = \{S\}$ Ensemble des nœuds gris
- Passage à l'étape suivante en coloriant en noir un nœud gris
 - E_{noir i+1}=E_{noir i} U {nœud de E_{gris} le plus proche de S en empruntant un chemin qui ne traverse que des nœuds de E_{noir i}}

- Passage à l'étape suivante
 - E_{noir i+1}=E_{noir i} U {nœud **gris** le plus proche de S en empruntant un chemin qui ne passe que par des nœuds noirs}
- Affirmation : Les sommets entrent dans E par ordre croissant de distance à S ☺

Algorithme glouton :

- à chaque étape, les choix sont faits sur la base d'une stratégie locale, qui ne sera pas remise en cause plus tard lorsqu'on aura une meilleure vision globale
- les algorithmes gloutons ont souvent un bon comportement asymptotique en termes de complexité mais ne sont pas toujours exacts ...

- L'algorithme de Dijkstra est un algorithme glouton mais exact ©
 - En effet, à chaque étape, le nœud n Gris le plus proche de S « en empruntant un chemin qui ne traverse que des nœuds de E_{noir i} » se révèle être le nœud de E_{gris i} le plus proche de S, même si on a le droit de passer aussi par des sommets gris ou blanc!

Répartition des nœuds en 3 ensembles :

- Ensemble blanc : nœuds non atteints par un chemin
- Ensemble gris : nœuds atteints mais à partir desquels on n'a encore mené aucune exploration et pour lesquels il existe peut-être un meilleur chemin depuis S
- Ensemble noir : nœuds dont on a fini d'explorer le voisinage et pour lesquels on connaît un plus court chemin depuis S

Initialisation :

 Nœuds tous blancs, sauf le sommet S de départ en gris

- Ensemble des nœuds noirs : E_{noir i}
- Ensemble des nœuds gris $E_{gris i}$: frontière extérieure de $E_{noir i}$
- Ensemble des nœuds blancs : nœuds non voisins d'un nœud de Engir i

- Mise en œuvre :
 - A chaque étape, pour connaître rapidement le nœud Gris qui est le plus proche de S
 - Utilisation d'un tableau PCD (Plus Courte Distance) indicé par les numéros des sommets contenant 2 infos dist et pred.
 - PCD[Y].dist correspond à la plus courte distance entre S et Y si Y appartient à E_{noir i}
 - Sinon PCD[Y].dist correspond à la distance du plus court chemin entre S et Y ne traversant que des nœuds de Enoir i
 - Pour connaître le plus court chemin entre le sommet de départ et chacun des nœuds, on stockera également le prédécesseur, dans le chemin, de chaque nœud (dans PCD[Y].pred)

- Après chaque sélection d'un nouveau nœud Gris n pour entrer dans l'ensemble E_{noir}, on effectue un relâchement des arcs issus de n, c'est-à-dire une mise à jour des distances aux sommets directement accessibles depuis n
- Relâchement d'un arc (n,x)
 - Si cet arc permet d'améliorer la longueur du chemin menant de la source S à x :
 - Si x était blanc alors coloriage en gris
 - Mise à jour de PCD[x].dist et de PCD[x].pred

```
procédure Dijkstra(données G : Graphe, S : indice de Nœud,
  résultat PCD : tableau [indice de Noeud]
                 de paire (distance, indice de Nœud))
```

variables

n_i,n_{min}: indice de Nœud

min: distance

début

//Initialisation

pour chaque nœud ni de G faire

Initialisation avec couleur blanche

finpour couleur(s)←gris Le type paire (distance, indice de Nœud) est un type composé d'un champ dist et d'un champ pred

tant que il reste des nœuds gris faire Recherche du prochain nœud gris à colorier en noir :

min←∞

pour tout nœud n_i gris **faire**

Mise à jour éventuelle de min et n_{min} (avec dist(n_i) et n_i) si n_i est plus proche de S que les nœuds gris précédemment observés

finpour

pour tout arc n_{min}n_i avec n_i non noir **faire**

Relâchement des arêtes issues de n_{min} (pour colorier de nouveaux sommets en gris et mettre à jour les chemins aux voisins déjà gris)

finpour couleur(n_{min})←noir fintantque

```
procédure Dijkstra(données G : Graphe, S : indice de Nœud,
        résultat PCD : tableau [indice de Noeud]
                            de paire(distance, indice de Nœud))
variables
  n<sub>i</sub>,n<sub>min</sub>: indice de Nœud
  min: distance
début
 //Initialisation
                                                       Coût de l'arête
 pour chaque nœud ni de G faire
                                                       entre S et ni
     PCD[n_i].dist \leftarrow G[S,n_i]
     si G[S,n<sub>i</sub>] = \infty alors PCD[n<sub>i</sub>].pred \leftarrow 0, couleur(n<sub>i</sub>) \leftarrowblanc
     sinon PCD[n_i].pred \leftarrow S, couleur (n_i) \leftarrowgris,
                                                    Le type paire (distance,
     finsi
                                                     Nœud) est un type
  finpour
                                                     composé d'un champ
  S.couleur—noir
                                                    dist et d'un champ pred
                                  Pas d'arête
                                 entre S et ni
```

```
. . . .
```

tant que il reste des nœuds gris faire

```
mın←∞
pour tout nœud n<sub>i</sub> gris faire
                                                  Complexité
   si PCD[n<sub>i</sub>].dist < min alors
                                                  améliorable en
       min \leftarrow PCD[n_i].dist, n_{min} \leftarrow n_i uilisant une file de
   finsi
                                                   priorité!
finpour
pour tout arc n<sub>min</sub>n<sub>i</sub> avec n<sub>i</sub> non noir faire
  si n<sub>i</sub>.couleur=blanc alors
      n<sub>i</sub>.couleur←gris
   finsi
  si PCD[n<sub>min</sub>].dist + G[n<sub>min</sub>,n<sub>i</sub>] < PCD[n<sub>i</sub>].dist alors
      PCD[n_i].dist \leftarrow PCD[n_{min}].dist + G[n_{min}, n_i]
      PCD[n_i].pred \leftarrow n_{min}
   finsi
```

finpour

couleur(n_{min})←noir

fintantque

fin

Sélection du Nœud I à colorier en noir (

Relâchement des arcs issus du nœud colorié en noir

Recherche des plus courts chemins entre n1 et les autres nœuds

Initialisation:

	n ₁	n ₂	n ₃	n ₄	n ₅	n ₆
dist	0	3	8	8	8	5
pred	0	n ₁	0	0	0	n ₁

 $E_{noir} = \{n1\}$

Etape 1

Sélection de n2

	n ₁	n ₂	n_3	n ₄	n ₅	n ₆
dist	0	3	10	8	8	5
pred	0	n ₁	n ₂	0	0	n ₁

E_{noir}={n1,n2} Relâchement de (n2,n3) et de (n2,n6)

Recherche des plus courts chemins entre n1 et les autres nœuds

Etape 2

Sélection de n6

	n ₁	n_2	n_3	n ₄	n ₅	n ₆
dist	0	3	10	7	8	5
pred	0	n ₁	n ₂	n_6	0	n ₁

E={n1,n2,n6} Relâchement de (n6,n3) et de (n6,n4)

Etape 3

Sélection de n4

	n ₁	n ₂	n_3	n ₄	n ₅	n ₆
dist	0	3	10	7	13	5
pred	0	n ₁	n_2	n ₆	n ₄	n ₁

E={n1,n2,n6, n4} Relâchement de (n4,n5) 61

Recherche des plus courts chemins entre n1 et les autres nœuds

Etape 4

Sélection de n3

	n ₁	n ₂	n_3	n ₄	n ₅	n ₆
dist	0	3	10	7	11	5
pred	0	n_1	n ₂	n ₆	n_3	n ₁

E={n1,n2,n6, n4, n3} Relâchement de (n3,n5)

Sélection de n5

	n ₁	n ₂	n ₃	n ₄	n ₅	n ₆
dist	0	3	10	7	11	5
pred	0	n_1	n ₂	n ₆	n_3	n_1

E={n1,n2,n6, n4, n3, n5}

Plus court chemin entre n1 et n5?

Si n est le nombre de nœuds dans le graphe et m le nombre d'arcs

- Initialisation : Parcours de n nœuds en $\theta(n)$
- (au plus) n étapes successives
 - A chaque étape on cherche le nœud gris à colorier en noir parmi les n_q nœuds gris (n_q<=n-n_n)
 - En θ(n_g) si cet ensemble de nœuds est représenté par une liste chainée
 - En θ(n) si cet ensemble est représenté par un tableau de booléen
 - En θ(lg(n_q)) si cet ensemble est représenté par un tas binaire
 - A chaque étape, des opérations de relâchement (mise à jour de distance), suite au recrutement d'un sommet x dans E_{noir}
 - En θ(degré⁺(x)) si représentation de G par des listes d'adjacence
 - En θ(n) si représentation de G par matrice d'adjacence auxquelles il faut ajouter des opérations de réajustement de tas binaire si jamais on décide d'en utiliser un!
 - En $\theta(\lg(n_g))^*(\deg(x))$

Algorithme

- en θ(n²) pour une représentation par matrice d'adjacence,
- ou en $\theta(n(\lg(n)+m+\lg(n)*m))$ si on représente G, E_{noir} et l'ensemble E_{gris} des nœuds gris par des structures judicieuses!

Réseau de transport

Définition

- Graphe orienté et valué G=(N,A) ayant un unique nœud s sans prédécesseur (entrée ou source du réseau) et un unique sommet t sans successeur (sortie ou puit du réseau)
- Notion de capacité d'un arc u de A
 - C_u: saturation, valeur maximale pour l'arc
 - Φ_u: capacité réelle, flot

On a
$$0 \le \Phi_u \le C_u$$

- Lois de conservation aux nœuds
 - Pour tout nœud x différent de s ou t, le flux entrant doit correspondre au flux sortant

$$\sum_{y \in succ(x)} \phi_{(x,y)} = \sum_{z \in pred(x)} \phi_{(z,x)}$$

 En ce qui concerne s et t, Φ₀ est la valeur du flot circulant entre s et t dans G

$$\phi_0 = \sum_{y \in succ(s)} \phi_{(s,y)} = \sum_{z \in pred(t)} \phi_{(z,t)}$$

 La loi de conservation aux nœuds est-elle vérifiée dans ce réseau de transport?

 Quelle est la valeur totale du flot circulant entre s et t?

Ford-Fulkerson

- L'algorithme de Ford-Fulkerson permet de connaître le flot maximal supportable par un réseau de transport
- En partant d'une valeur nulle, l'algorithme consiste à augmenter la valeur du flot de manière itérative tout en respectant la capacité de l'ensemble des arcs

Ford Fulkerson

A chaque itération :

- On cherche un chemin non saturé de G reliant s à t le long duquel on pourrait augmenter le flot (chemin dit « améliorant »)
- Pour cela :
 - On considère le graphe résiduel G' à partir de l'état actuel des flots dans G
 - Un chemin non saturé dans G correspond à un chemin dans G'
- Si un tel chemin existe, on augmente le flot de la quantité correspondante

Attention :

 Pour augmenter la valeur du flot circulant entre s et t on pourra être amené à diminuer le flot dans certains arcs ©

 Testez si le flot est optimal en recherchant un chemin améliorant (s'il existe)

Etant donné un réseau de transport G, les arcs du graphe résiduel G' permettent d'identifier:

- les arcs de G dans lesquels il est encore possible d'augmenter le flux (arcs orientés dans le même sens dans G et G')
- les arcs de G dans lesquels il est possible de décrémenter le flux (arcs orientés en sens inverse dans G et G')

Réseau résiduel G'

On a trouvé un chemin améliorant s, v2, v3, t.

- Recherche d'un chemin améliorant sans calculer l'ensemble du graphe résiduel
 - Initialisation:
 - au début, tous les sommets de G sont non marqués (blancs)
 - Les nœuds de G sont les nœuds de G'
 - On marque (en gris) l'entrée s du réseau de G
 - Tant que la sortie t est non marquée (blanche) et qu'il reste des sommets marqués non examinés (ie des sommets gris)
 - On examine (avant passage au noir) un sommet x marqué mais non examiné
 - On marque (en gris) tous les successeurs y de x correspondant à des arcs non saturés
 - L'arc (x,y) est un arc de G' et on lui associe la valeur $C_{(x,y)}$ $\Phi_{(x,y)}$
 - On marque tous les prédécesseurs z de x correspondant à des arcs portant un flux strictement positif
 L'arc (x,z) est un arc de G' et on lui associe la valeur Φ_(z,x)

- Si on réussit à marquer t, alors on a trouvé un chemin améliorant :
 - Ce chemin améliorant, ainsi que sa capacité, apparaissent dans le graphe résiduel G' en cours de construction

Capacité ε= min(valeurs des arcs du chemin améliorant)

- Attention :
 - Certains arcs du chemin améliorant correspondent à des arcs de G (appelons L+ leur ensemble)
 - Certains arcs du chemin améliorant correspondent à des arcs de
 G pris dans le sens inverse (appelons L- leur ensemble)
- Il est alors possible d'augmenter de ε la valeur du flot dans le réseau en augmentant de ε la valeur des arcs de L⁺ et en diminuant de ε la valeur des arcs de L⁻

Réseau résiduel G'

On a trouvé un chemin améliorant s, v2, v3, t. La capacité de ce chemin est 4.

Dans le graphe G, on améliore donc le flot en affectant :

- 8+4=12 à l'arc (s,v2)
- 4-4 = 0 à l'arc (v3, v2)
- 15+4=19 à l'arc (v3,t)

Méthode de Ford-Fulkerson

- Initialiser le flot Φ de tous les arcs à 0
- Tant qu'il existe un chemin améliorant p de capacité ε, modifier les arcs correspondant dans G
- Retourner Φ_0