ДОМАШНЯЯ РАБОТА ПО МЕХАНИКЕ

21 февраля 2022 г.

1 модуль

- 1. Две автомашины движутся по двум взаимно перпендикулярным и прямолинейным траекториям по направлению к перекрестку с постоянными скоростями 13,9 м/с и 27,7 м/с. В начальный момент времени первая точка находилась на расстоянии 100 м от перекрестка, а вторая на расстоянии 50 м. Через сколько времени расстояние между ними будет минимальным?
- **2.** Наклонная плоскость пересекается с горизонтальной плоскостью по прямой AB под углом $\alpha = 30^{\circ}$ (рис.1). Тело начинает движение вверх по наклонной плоскости со скоростью V = 1,5 м/с под углом $\beta = 45^{\circ}$ к прямой AB. В ходе движения тело вновь попадает на прямую AB в точке B. Определить расстояние AB. Трением между телом и наклонной плоскостью пренебречь.

- **3.** Лодку подтягивают к пристани высотой H с помощью веревки, наматываемой на вал лебедки. Радиус вала равен R << H. Вал вращается с постоянной угловой скоростью ω . Определить зависимость модулей скорости и ускорения лодки от длины веревки L > H. Движение лодки считается поступательным.
- **4.** Ракета поддерживается в воздухе на постоянной высоте, выбрасывая вертикально вниз струю газа со скоростью u = 900 м/с. Найти: а) время, которое ракета может оставаться в состоянии покоя, если начальная масса топлива составляет $\eta = 25\%$ ее массы (без топлива); б) массу газов $\mu(t)$, которую должна ежесекундно выбрасывать ракета, чтобы оставаться на постоянной высоте, если начальная масса ракеты (с топливом) равна m_0 .
- **5.** Шар массы m_1 , движущийся со скоростью V_0 , ударяется о неподвижный шар массы m_2 . После абсолютно упругого соударения шары летят со скоростями V_1 и V_2 в направлениях, указанных на рис. 2. При каком соотношении масс m_1 и m_2 возможны случаи: a) $\alpha = \pi/2$, δ) $\alpha = \beta \neq 0$, ϵ 0 $\alpha = \beta = 0$. Возможен ли случай $\beta = \pi/2$? Чему равно при $\alpha = \pi/2$ предельное возможное значение угла β ?

6. Три пружины соединены между собой, верхняя пружина закреплена на потолке (рис.3). Пружины надеты на закреплённый на потолке стержень, к нижней пружине прикреплён груз, который может двигаться, не задевая стержень. К системе прикреплены две невесомые жёсткие скобки (показаны синим цветом). Определите эквивалентную жёсткость системы.

Рис. 3

- **7.** Тележка массой 6 кг, движущаяся по горизонтальной плоскости, с помощью невесомой и нерастяжимой нити, перекинутой через блок, массой которого можно пренебречь, соединена с телом массой 3 кг. Определить натяжение нити и ускорения грузов: а) без учета трения; б) с учетом трения (k=0,1).
- **8.** Тело массой m, двигаясь по инерции вверх вдоль наклонной плоскости, поднялось на высоту h. Какую работу совершила при этом сила трения? Угол наклона плоскости к горизонту равен β , а коэффициент трения тела о плоскость μ .
- **9.** Некоторая планета массы M движется по окружности вокруг Солнца со скоростью V = 34,9 км/с (относительно гелиоцентрической системы отсчета). Найти период обращения этой планеты вокруг Солнца.
- **10.** Некоторая планета массы M движется вокруг Солнца по эллипсу так, что минимальное расстояние между ней и Солнцем равно r, а максимальное R. Найти с помощью законов Кеплера период обращения ее вокруг Солнца.
- **11.** Небольшое тело падает без начальной скорости на Землю на экваторе с высоты h=10,0 м. В какую сторону и на какое расстояние х отклонится тело от вертикали за время падения τ ? Сопротивлением воздуха пренебречь. Сравнить найденное значение x с разностью Δs путей, которые пройдут вследствие вращения Земли за время τ точка, находящаяся на высоте h, и точка, находящаяся на земной поверхности.
- **12.** Определить положение центра масс равностороннего треугольника, образованного тремя однородными стержнями, имеющими одинаковую массу и длину l.