AD-A007 658

ATMOSPHERIC STRUCTURE. PART 3. UPPER AIR AND SURFACE DATA: STALLION SITE

Marjorie M. Hoidale, et al

Army Electronics Command White Sands Missile Range, New Mexico

January 1975

DISTRIBUTED BY:

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return to the originator.

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The citation of trade names and names of manufacturers in this report is not to be construed as official Government indorsement or approval of commercial products or services referenced herein.

/

11

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER DR-878	2. GOVT ACCESSION NO.	AD-A007658
4. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED
Atmospheric Structure		
Part 3, Upper Air and Surface Da	ta	6. PERFORMING ORG. REPORT NUMBER
Stallion Site		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)
Marjorie M. Hoidale		
Michael P. Dayton Lamar Newman		DA Task 1T665702D127-02
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT BUMBERS
		AREA & WORK UNIT DUMBERS
		12. REPORT DATE
U. S. Army Electronics Command		January 1975
Atmospheric Sciences Laboratory		13. NUMBER OF PAGES
White Sands Missile Range, New Me	exico	<u>~33</u>
14. MONITORING AGENCY NAME & ADDRESS(If dilloren	from Controlling Office)	15. SECURITY CLASS. (of this report)
U. S. Army Electronics Command		UNCLASSIFIED
Ft. Monmouth, New Jersey		15a. DECLASSIFICATION/DOWNGRADING
		SCHEDUCE
16. DISTRIBUTION STATEMENT (of this Report)		·
Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the etetract entered	in Block 20, it different fro	m Report)
: F		
		· ·
: 		
18. SUPPLEMENTARY NOTES Reproduce	ed by	
NATIO INFOR	ONAL TECHNICAL RMATION SERVICE Department of Commerce pringfield, VA. 22151	
19. KEY WORDS (Continue on reverse side if necessary an	d identify by Slock number)	
1. Ballistics		
2. Meteorology		
3. Wind		
A statistical analysis of surface and upper air rawinsonde data is presented for Stallion Site, White Sands Missile Range, New Mexico. Atmospheric parameters covered for the layer from the surface to 100,000 feet above mean sea level are: wind, temperature, pressure, density, moisture, index of refraction and freezing level. Upper air climatological information is based on the period of observation from 1961-1973; while the surface temperature data spans 1962-1973, precipitation records 1963-1973, and wind data 1965-		
1973.		,

FOREWORD

This report is a revision of Data Report 323-AD 844675 titled "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: Stallion Site" published in 1968 and Data Report 399, "White AD 456245 Sands Missile Range Climatography No. 5, Stallion Site" published in 1969.

The revision updates the original records to cover the period through 1973 and combines material previously offered so that surface data and rawinsonde data for each 1,000 feet up to 16,000 feet above mean sea level, as well as rawinsonde data for additional levels up to 100,000 feet, are available in a single report.

Preceding page blank

ACKNOWLEDGEMENTS

It would be impossible to acknowledge all whose work have made this report possible; however, the authors do wish to acknowledge the important contribution made by those personnel - military, contractor and civilian - whose efforts made possible the acquisition of upper air and surface records during the years 1961-1973.

CONTENTS

	PAGE
INTRODUCTION	1
EXPLANATION OF TERMS	2
RELIABILITY OF DATA	8
FIGURES	
1. Map of White Sands Missile Range	11
Table I. Frequency Distribution of Upper Air Soundings by Hours and Months	12
SECTION I. UPPER AIR DATA	
WIND DATA	
By Months	
Upper Air Wind Data at Selected Levels (Table II)	14
Relative Frequency Distribution of Upper Air Wind Directions at Selected Levels (In Per Cent) (Table III)	26
Relative Frequency Distribution of Upper Air Scalar Wind Speeds at Selected Levels (In Per Cent) (Table IV)	38
By Seasons	
Upper Air Wind Data at Selected Levels (Table V)	50
Relative Frequency Distribution of Upper Air Wind Directions at Selected Levels (In Per Cent) (Table VI)	54
Relative Frequency Distribution of Upper Air Scalar Wind Speeds at Selected Levels (In Per Cent) (Table VII)	58

CONTENTS (CONT)

	PAGE
TEMPERATURE DATA	
By Months	
Mean and Extreme Upper Air Temperatures (°Celsius) at Selected Levels (Table VIII)	63
Relative Frequency Distribution of Upper Air Temperatures at Selected Levels (In Per Cent) (Table IX)	75
By Seasons	
Mean and Extreme Upper Air Temperatures (°Celsius) at Selected Levels (Table X)	99
PRESSURE DATA	
By Months	
Mean and Extreme Upper Air Pressures (Millibars) at Selected Levels (Table XI)	104
By Seasons	
Mean and Extreme Upper Air Pressures (Millibars) at Selected Levels (Table XII)	116
DENSITY DATA	
By Months	
Mean and Extreme Upper Air Densities (Grams/ Cubic Meter) at Selected Levels (Table XIII)	121
By Seasons	
Mean and Extreme Upper Air Densities (Grams/ Cubic Meter) at Selected Levels (Table XïV)	133
MOISTURE DATA	
By Months	
Mean and Extreme Upper Air Mixing Ratios (Grams/	120

CONTENTS (CONT)

		PAGE
	Mean and Extreme Upper Air Precipitable Water (Centimeters) Between Selected Levels (Table XVI)	150
	Mean and Extreme Upper Air Relative Humidities (Per Cent) at Selected Levels (Table XVII)	162
	By Seasons	
	Mean and Extreme Upper Air Mixing Ratios (Grams/Kilogram) at Selected Levels (Table XVIII)	174
	Mean and Extreme Upper Air Precipitable Water (Centimeters) Between Selected Levels (Table XIX)	178
	Mean and Extreme Upper Air Relative Humidities (Per Cent) at Selected Levels (Table XX)	182
INDEX	OF REFRACTION DATA	
	By Months	
	Mean and Extreme Upper Air Indexes of Refraction at Selected Levels (Table XXI)	187
	By Seasons	
	Mean and Extreme Upper Air Indexes of Refraction at Selected Levels (Table XXII)	199
FREEZI	ING LEVEL DATA	
	By Months and By Seasons	
	Mean and Extreme Heights (Feet MSL) of the Freezing Level (Table XXIII)	205
	Relative Frequency Distribution of the Freezing Level (In Per Cent) (Table XXIV)	206

CONTENTS (CONT)

	PAGE
SECTION II. SURFACE DATA	
By Months and By Years	
Monthly and Annual Temperature Means and Extremes (°Fahrenheit) at Seven W. R. Sites (Table XXV)	208
Monthly and Annual Mean Precipitation (Inches) at Seven WSMR Sites (Table XXVI)	209
Annual Rainfall (Inches) By Years at Stallion Site, 1963-1973 (Table XXVII)	210
Monthly and Annual Mean and Maximum Snowfall (Inches) at "A" Station, 1950-1973 (Table XXVIII)	210
Surface Wind Data By Month and By Hour, Stallion Site, 1965-1973 (Table XXIX)	211
LITERATURE CITED	223

INTRODUCTION

Activities of various projects on Range often necessitate a knowledge of upper air atmospheric conditions or surface data weeks or months in advance of the scheduled mission. As this exceeds the capability of the usual 24-56 hour forecast and the longer five-day outlook, a statistical analysis of exoteric meteorological data is desirable. Missions at specific launch complexes frequently demand a detailed knowledge of conditions for that particular area as opposed to data for the entire Range. For this reason, an analysis has been presented for individual rawinsonde stations proximate to Range test sites and launch complexes (1-6).*

Section 1 of this report, based on rawingonde data collected during the observational period 1961-1973, presents the frequency of occurrence of the upper air meteorological conditions, and the mean and extreme values classified by months and seasons that can be expected from the surface to 100,000 feet above mean sea level (MSL) at Stallion Site [Figure 1], latitude 33° 48' north, longitude 106° 40' west, elevation 4,940 feet MSL. Seven parameters are analyzed: wind, temperature, pressure, density, moisture, index of refraction and freezing level. Note should be made at this point that White Sands Missile Range (WSNI) rawinsonde releases do not follow a routine schedule, but are taken depending upon the mission requirements [Table I].

Surface measurements of meteorological conditions at Stallion Site consist of wind, temperature, and precipitation data. These are presented in tabular form in Section II.

^{*}Upper air and surface data have been published in earlier reports for White Sands Desert, Holloman, Small Missile Range, Jallen, and Apache Sites. Reports 1 and 2 in the Atmospheric Structure series presented analyses of surface data for "A" Station [7, 8].

- 1. Winds Aloft or Surface Wind
 - A. Wind directions are given as the true direction from which the wind is blowing.
 - B. Wind speeds are measured in knots (nautical miles per hour).
- 2. Resultant Wind [9, p.480]

In climatology, the resultant wind is the vectorial average of all wind directions and speeds for a given level at a given place for a certain period, as a month.

It is obtained by resolving each wind observation into components from north and east, summing over the given period, obtaining the averages, and reconverting the average components into a single vector.

3. Surface Wind Gusts

Wind gusts are characterized by sudden, intermittent increases in speed, with at least nine knots variation between peaks and lulls. The average time interval between peaks and lulls usually should not exceed 20 seconds.

4. Standard Vector Deviation of the Wind [10, p.173, 179, 195-198]

The standard vector deviation of the wind is a measure of dispersion about the end of the mean resultant wind vector. A circle drawn with the center at the end of the mean resultant wind vector and a radius of the standard vector deviation includes 63 per cent of the vector winds.

$$\sigma^2 = \sum \frac{v^2}{N} - v_R^2$$

where,

σ = Standard vector deviation, knots

N = Number of cases

 V_p = Speed of vector mean wind

V = Module of the vector wind

4. Standard Vector Deviation of the Wind [10] (Cont)

5. Constancy [10, pp. 198-199]

Constancy is a term used to show how constant the direction of the wind is. It is determined by dividing the mean scalar wind into the magnitude of the mean resultant wind.

$$Q = \frac{100 \text{ V}_{R}}{\text{V}_{S}} \qquad \text{(per cent)}$$

where,

0 = Constancy of wind direction (per cent)

 V_p = Module or speed of vector mean wind

 V_c = Speed of scalar mean wind

The constancy of a set of winds is zero when they blow equally frequently from all directions, with the same average speed; the constancy is 100 when they blow from exactly the same direction, but not necessarily all with the same speed.

6. Temperature

- A. Temperatures are reported in degrees Fahrenheit for surface observations and in degrees Celsius for upper air (rawinsonde) observations.
- B. Surface maximum and minimum temperatures are measured by standard liquid-in-glass thermometers which are read and reset each working day. When stations are not manned on weekends and holidays, the extreme temperatures are obtained from calibrated thermographs adjusted to maximum and minimum thermometers.

- Temperature (Cont)
 - C. Temperature Extreme. In climatology, the highest and, in some cases, the lowest temperature observed during a given period or during a given month or season of that period. If this is the whole period for which observations are available, it is the absolute extreme [9, p.216].
- 7. Density [11]

$$\rho_{X} = 348.38 \left[\frac{p}{K_{VX}} \right] \qquad \text{grams/cubic meter}$$

$$K_{VX} = K \left[\frac{p}{p - 0.379e} \right]$$

$$e = 0.0611 \text{ f } 10$$

where,

 ρ_{X} = Density, in grams/cubic meter

p = Pressure, in millibars

 K_{VX} = Virtual temperature, in degrees Kelvin

e = Partial pressure of aqueous vapor, in millibars

C = Temperature, in degrees Celsius

K = C + 273.16, Temperature, Absolute, in degrees Kelvin

f = Relative humidity, in per cent

8. Index of Refraction [11]

$$n_{x} = 1 + \frac{77.6}{K} \left[p + e \left[\frac{4830}{K} - \frac{11}{77.6} \right] \right] \quad 10^{-6}$$

3. Index of Refraction [11, (Cont)

e = 0.0611 f 10
$$\left(\frac{7.5C}{C + 237.3}\right)$$

where,

 n_{X} = Index of refraction, dimensionless

K = C + 273.16, Temperature, Absolute, in degrees Kelvin

C = Temperature, in degrees Celsius

p = Pressure, in millibars

f = Relative humidity, in per cent

e = Partial pressure of aqueous vapor, in millibars

9. Mixing Ratio [9, p.374; 12]

In a system of moist air, the dimensionless ratio of the mass of water vapor to the mass of dry air.

$$\omega = \frac{0.622e}{p-e} \times 10^3$$

where,

 ω = Mixing ratio, grams/kilogram

p = Pressure, in millibars

e = Partial pressure of aqueous vapor, in millibars

where,

r = Relative humidity, in per cent

e = Saturation vapor pressure, in millibars

9. Mixing Ratio [9, p.374; 12] (Cont)

$$\log_{10} e_s = -7.90298 \left(\frac{T_s}{T} - 1 \right) + 5.62808 \log_{10} \left(\frac{T_s}{T} \right) - 1.3816 \times 10^{-7}$$

$$\left[10^{11.344} \left(1 - \frac{T}{T_s} \right) - 1 \right] + 8.1328 \times 10^{-3} \left[10^{-3.49149} \left(\frac{T_s}{T} - 1 \right) - 1 \right] + \log_{10} e_{w_s}$$

where,

T = Dry bulb temperature, in degrees Kelvin

T_s = Steam point temperature, 373.16 degrees Kelvin

e = Saturation pressure of pure ordinary liquid water at steam point temperature (T_s), 1013.246 millibars

10. Precipitable Water [9, p.437; 12]

Precipitable water is defined as the total atmospheric water vapor contained in a vertical column of unit cross-sectional area extending between any two specified levels. It may be expressed as the height to which that water substance would stand if completely condensed and collected in a vessel of the same unit cross section.

Mathematically,

$$W = \frac{1}{g} \int_{p_1}^{p_2} \omega dp$$

where,

W = Precipitable water vapor, centimeters

 ω = Mixing ratio, grams/kilogram

p = Pressure, bounded by p_1 and p_2 , millibars

g = Acceleration of gravity, centimeters per sec²

If g is expressed in cm sec⁻², p in millibars, and ω in g kg⁻¹, then W is in centimeters. With these units, the above equation may be written as:

$$W_{(cm)} = 0.001 \int_{p_1}^{p_2} \omega dp$$

10. Precipitable Water [9, p.437; 12] (Cont)

To determine the precipitable water within the various layers, the preceding equation will be numerically integrated. Since the mixing ratio, ω , may be expressed as

$$\omega = \frac{0.622e}{p - e}$$

it is seen that

$$W_{(cm)} = 0.622 \int_{p_1}^{p_2} \frac{e}{p - e} dp$$

where e and p are expressed in millibars. Note that a factor of 10^3 has been introduced to compensate for units.

11. Relative Humidity [9, p.477]

Popularly called humidity. The (dimensionless) ratio of the actual vapor pressure of the air to the saturation vapor pressure. The relative humidity is usually expressed in per cent.

12. Precipitation

Precipitation is measured in a standard eight-inch rain gage, and is recorded in hundredths of an inch. Less than .01 inch is reported as a trace (an amount too small to measure).

13. Season [9, p.499]

A division of the year according to some regularly recurrent phenomena, usually astronomical or climatic.

In middle latitudes four seasons are recognized, which for climatological purposes are (Northern Hemisphere): winter - December, January and February; spring - March, April and May; summer - June, July and August; autumn or fall - September, October and November. The annual course of weather does not always follow these divisions closely, but the use of four periods of three calendar months each is so convenient for statistical purposes that no other division has been seriously considered.

RELIABILITY OF DATA [13]

The standard reliabilities of the instrumentation and the derived data are as follows:

UPPER AIR METEOROLOGICAL PARAMETERS

Rawin Sets, Surface to 30 km alt. 4 knots or AN/GMD-2, 2A, 4 (98,425 Ft) [2 minutes (0% of vector (with slant range) or 0.6 km (1,969 Ft) wind, whichever mean layer winds] is greater Rawin using FPS-16 Surface to 30 km alt. 3 knots or or similar radar (98,425 Ft) [20 seconds or 100 m. (328 Ft) wind, whichever mean layer winds] Note: All rawinsonde mean layer winds are unreliable when tracking angles are within 6 degrees of the horizon or surface obstructions which often occurs under strong jet stream conditions. DENSITY Rawin Sets (15 to 1200 gm/m³) AN/GMD-1A*, 2A*, Surface to 10 km alt. 0.4% 4*, WTRT-57*, etc. (32,808 Ft) 10 to 30 km alt. 1%				
Rawin Sets, Surface to 30 km alt. AN/CMD-1A, (98,425 Ft) [2 minutes of 0.6 km (1,969 Ft) out slant range) mean layer winds] Rawin Sets, Surface to 30 km alt. AN/GMD-2, 2A, 4 (98,425 Ft) [2 minutes is greater Rawin using FPS-16 Surface to 30 km alt. Awin using FPS-16 Surface to 30 km alt. Or similar radar (98,425 Ft) [20 minutes or 10% of vector wind, whichever is greater Rawin using FPS-16 Surface to 30 km alt. Or similar radar (98,425 Ft) [20 seconds or 100 m. (328 Ft) wind, whichever is greater Note: All rawinsonde mean layer winds are unreliable when tracking angles are within 6 degrees of the horizon or surface obstructions which often occurs under strong jet stream conditions. DENSITY Rawin Sets (15 to 1200 gm/m³) AN/GMD-1A*, 2A*, Surface to 10 km alt. 0.4% 4*, WTRT-57*, etc. (32,808 Ft) 10 to 30 km alt. 1%			_	
AN/GMD-1A, (98,425 Ft) [2 minutes unid, whichever is greater Rawin Sets, Surface to 30 km alt. 4 knots or 10% of vector (with slant range) or 0.6 km (1,969 Ft) wind, whichever mean layer winds] is greater Rawin using FPS-16 Surface to 30 km alt. 3 knots or or similar radar (98,425 Ft) [20 seconds or 100 m. (328 Ft) wind, whichever mean layer winds] is greater Note: All rawinsonde mean layer winds are unreliable when tracking angles are within 6 degrees of the horizon or surface obstructions which often occurs under strong jet stream conditions. DENSITY Rawin Sets (15 to 1200 gm/m³) AN/GMD-1A*, 2A*, Surface to 10 km alt. 0.4% 4*, WTRT-57*, etc. (32,808 Ft) 10 to 30 km alt. 1%	WIND VELOCI	TY		
AN/GMD-2, 2A, 4 (98,425 Ft) [2 minutes (with slant range) or 0.6 km (1,969 Ft) wind, whichever mean layer winds] is greater Rawin using FPS-16 Surface to 30 km alt. 3 knots or or similar radar (98,425 Ft) [20 seconds or 100 m. (328 Ft) wind, whichever mean layer winds] is greater Note: All rawinsonde mean layer winds are unreliable when tracking angles are within 6 degrees of the horizon or surface obstructions which often occurs under strong jet stream conditions. DENSITY Rawin Sets (15 to 1200 gm/m³) AN/GMD-1A*, 2A*, Surface to 10 km alt. 0.4% 4*, WTRT-57*, etc. (32,808 Ft) 10 to 30 km alt. 1%	AN/GMD-1A WBRT-47 (l, (with-	(98,425 Ft) [2 minutes or 0.6 km (1,969 Ft)	12% of vector wind, whichever
or similar radar (98,425 Ft) [20 seconds of vector or 100 m. (328 Ft) wind, whichever mean layer winds] is greater Note: All rawinsonde mean layer winds are unreliable when tracking angles are within 6 degrees of the horizon or surface obstructions which often occurs under strong jet stream conditions. DENSITY Rawin Sets (15 to 1200 gm/m³) AN/GMD-1A*, 2A*, Surface to 10 km alt. 0.4% 4*, WTRT-57*, etc. (32,808 Ft) 10 to 30 km alt. 1%	AN/GMD-2,	2A, 4	(98,425 Ft) [2 minutes or 0.6 km (1,969 Ft)	10% of vector wind, whichever
unreliable when tracking angles are within 6 degrees of the horizon or surface obstructions which often occurs under strong jet stream conditions. DENSITY Rawin Sets (15 to 1200 gm/m³) AN/GMD-1A*, 2A*, Surface to 10 km alt. 0.4% 4*, WTRT-57*, etc. (32,808 Ft) 10 to 30 km alt. 1%		•	(98,425 Ft) [20 seconds or 100 m. (328 Ft)	6% of vector wind, whichever
Rawin Sets (15 to 1200 gm/m ³) AN/GMD-1A*, 2A*, Surface to 10 km alt. 0.4% 4*, WTRT-57*, etc. (32,808 Ft) 10 to 30 km alt. 1%	ur wi su oo	nreliable when the strict of the structure obstruct occurs under street.	tracking angles are of the horizon or ions which often	
AN/GMD-1A*, 2A*, Surface to 10 km alt. 0.4% 4*, WTRT-57*, etc. (32,808 Ft) 10 to 30 km alt. 1%	DENSITY			
(0=)000 to 70)123 tt/	AN/GMD-1A	A*, 2A*,	Surface to 10 km alt. (32,808 Ft)	

^{*}Density Computed

RELIABILITY OF DATA [13]

UPPER AIR METEOROLOGICAL PARAMETERS

Parameter and Instrument Types RELATIVE HUMIDITY	Range of Values or Environment	Data Reliability
Rawin Sets, AN/GMD-1A, 2A 4, WBRT-57, etc. using ML-476 Hy- gristor or equiv. PRESSURE	(5 to 99%) Temperature greater than 0°C Temperature 0° to -20°C -21°C to -40°C Below -40°C	5% 10% 20% unreliable
Rawin Sets, AN/GMD-1A, 2A*, 4*, WBRT-57, etc.	10 to 50 mb 50 to 200 mb 200 to 500 mb greater than 500 mb	1.0% 0.6% 0.3% 0.2%
*Pressure Computed		
INDEX OF REFRACTION		
Rawin Sets*, AN/GMD-1A, 2A, 4, WBRT-57, SMQ-1, 3	5 to 200 N-units 200 to 400 N-units	1% 2.5%
*Refractive Index Computed		

*Refractive Index Computed

TEMPERATURE

Rawin Sets, AN/GMD-1A, 2A,	(-90°C to 60°C)	
4, WBRT-57, SMQ	Surface to 20 km alt. (65,617 Ft)	1°C*
1, etc. using ML- 419 element or equiv.	20 km to 30 km alt. (65,617 to 98.425 Ft)	2.5°C*

^{*}Root Mean Square (RMS) deviations about a mean value which can be considered the best estimate of the measure of the quantity.

RELIABILITY OF DATA [13]

SURFACE METEOROLOGICAL PARAMETERS

Parameter and Instrument Types	Range of Values or Environment	Data Reliability	
WIND			
Wind Measuring Set AN/GMQ-11	Direction 0-360 degrees Speed 1-160 knots	3 deg. 2.0 knots or 3%	
RAINFALL			
Precipitation Gauge ML-17, ML-217, etc.	s 0.01 to 20 inches	0.01 inches	
TEMPERATURE			
Liquid in Glass ML-24, Ml-7, etc.	-90°F to + 145°F	0.5°F*	
Thermographs, Bimetal & Bourdon tube	-20°F to + 110°F	2.0°F*	

^{*}Root Mean Square (RMS) deviations about a mean value which can be considered the best estimate of the measure of the quantity.

Manual and computer verification techniques were employed to insure a high degree of accuracy.

FIGURE 1. MAP OF WHITE SANDS MISSILE RANGE

FREDUENCY DISTRIBUTION OF UPPER AIP SOUNDINGS BY HOURS AND MONTHS
PERIOD OF RECORD 1961-1973
STALLION SITE TABLE I

	307	382	007	344	365	327	326	430	498	426	439	589	TOTAL BY MONTHS
6	0	ન	-	-	-	0	ပ	•-4	o	0	C	đ	₹
8	-	0	0	0	0	-	0	O	0	-	C	ים	73
S	0	 1	~	0	0	0	~	0	၁	=	-	ာ	7.5
_	0	0	0	-	-	-	۸.	C	c	0	-	-	21
10	၁	7	c	9	-	၁	⊘ i	IJ	C	-	0	7	O V
12	Э	-1	-	-	C	N	=	0	-	~	N	-	61
24	3	Ю	Ю	-	N	0	Ю	N	Ξ	≈	~	₹)	
82	10	9	σ	7	s	ĸ	ţ	o	7	æ	S	12	1.7
154	11	14	17	10	7	N	11	11		τ.	1.7	J.	91
303	27	29	83	13	16	14	14	16	33	32	41	39	15
393	33	55	30	27	21	14	17	3 <u>0</u>	43	4 3	4. #	57	ħ 7
367	27	27	32	26	26	23	22	45	34	36	53	3 5	13
431	20	39	30	31	30	33	27	28	4 5	4.0	56	\$ #	12
463	33	32	31	07	30	30	51	67	44	45	40	38	. .
465	54	42	38	59	32	23	46	77	D C	£ #	1 1	35	07
721	58	40	62	47	55	51	04	S	44	54	78	43	3 ^
619	35	0 7	73	54	46	57	a t	ţ	61	X M	S A	C#	7
329	15	12	50	32	39	48	34	55	75	17	13	13	۲-
06	N	٥	-	t	16	14	12		8	O	t	∿	٥
53	-	ĸ	rc		10	7	-	3 0	t	r	Q.	-	ς.
43	2	S	ស	12	n	o	t	T	S	U	t	*	t
26	5	9	ľ	ŧ	t	m	€.	v	80	=	4	-	₹
10	7	0	C	~	~	-	α.)	ට ට	=	3	~	Λ.
#	0	-	0	o	0	0			C	3	•-	7	1
TOTAL BY HOURS	DEC	NOR	UCT	SEP	AUG	JUL	JUL	HAY	VPt.	N.A.K	24 14 14	JACI	(13F)
TOTAL													XCO:+

4633 UPPER AIR SOUNDINGS WERE TAKEN DURING THIS PERIOD

ATMOSPHERIC STRUCTURE REPORT

STALLION SITE

SECTION I

UPPER AIR WIND DATA

By Mo	nths	Page
Table II.	Upper Air Wind Data at Selected Levels	14
Table III.	Relative Frequency Distribution of Upper Air Wind Directions at Selected Levels (In Per Cent)	26
Table IV.	Relative Frequency Distribution of Upper Air Scalar Wind Speeds at Selected Levels (In Per Cent)	38
By Se	asons	
Table V.	Upper Air Wind Data at Selected Levels	50
Table VI.	Relative Frequency Distribution of Upper Air Wind Directions at Selected Levels (In Per Cent)	.54
Table VII.	Relative Frequency Distribution of Upper Air Scalar Wind Speeds at Selected Levels (In Per Cent)	58

TABLE II
UPPER AIR WIND DATA AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

JANUARY

STANDARD VECTOR DEVIATION (KNOTS)	
CONSTANCY (PERCENT)	
SCALAR MEAN SPEED (KNOTS)	
MIND SPEED (KNOTS)	
RESULTANT DIRECTION (DEGREFS)	00000000000000000000000000000000000000
TANT WIND NTS (KNOTS)	
RESULT COMPONEN	
MINIMUM SPEED (KNOTS)	
MAXIMUM SPEED (KNOTS)	10000000000000000000000000000000000000
TOTAL OBS	10000000000000000000000000000000000000
GEOMETRIC ALTITUDE MSL FEET	

TABLE II (CONT)
UPPER AIR WIND DATA AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

FEBRUARY

STANDARD VECTOR DEVIATION (KNOTS)	
CONSTANCY (PERCENT)	8 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
SCALAR MEAN SPEED (KNOTS)	10.00000000000000000000000000000000000
SPEED (KNOTS)	
RESULTAWI DIRECTION (DEGREFS)	
TANT MIND NTS (KNOTS)	
RESULT COMPONEN +N -S	
MINIMUM SPEED (KNOTS)	
MAXIMUM SPEED (KNOTS)	10000000000000000000000000000000000000
T0TAL 08S	10000000000000000000000000000000000000
GEOVETRIC ALTITUDE MSL FEET	215 215 215 215 215 215 215 215

TABLE II (CONT)
UPPER AIR WIND DATA AT SELECTED LFVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

MARCH

STANDARD VECTOR DEVIATION (KNOTS)		
CONSTANCY (PERCENT)		
SCALAR MEAN SPEED (KNOTS)		
WIND SPE _e D (knots)		
RESULTANT DIRECTION (DEGREES)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
TANT WIND INTS (KNOTS)		
RESULT COMPONEN		
MINIMUM SPEED (KNOTS)		
MAXIMUM SPEED (KNOTS)	88 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
TOTAL OBS		
GEOMÉTRIC ALTITUDE MSL FEET	16	

TABLE 11 (CONT)
UPPER AIR WIND DATA AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

APRIL

STANDARD VECTOR DEVIATION (KNOTS)	9.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 18 20.			
CONSTANCY (PERCENT)	22.				* • • • • • • • • • • • • • • • • • • •	9 9 9 H H H G 9 9 9 9 9 9 9 9 9 9 9 9 9
SCALAR MEAN SPEED (KNOTS)		13. 15.	19. 21. 24.	6 4 4 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	60000000000000000000000000000000000000	200 100 100 100 100 100 100 100 100 100
WIND SPEED (KNOTS)	- a n	11. 9.	13. 16. 19.	ัก เกลา เลา เกลา	. t a a a a a a a a a a a a a a a a a a	400 H M H A B B B B B B B B B B B B B B B B B B
RESULTANI DIRECTION (DEGREES)	J M M	たなたの	2020	12222	ា	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TANT WIND NTS (KNOTS)	11.1	111111111111111111111111111111111111111	110 110 120 120 120 120	37	## W W 4 C	11 1 1 110 111 1 1 1 1 1 1 1 1 0 0 0 0 0
RESULT COMPONER +N S	1.9	• • • •	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50.00		1111111000 1000111110000 0000000
MINIMUN SPEED (KNOTS)	• • • •					· · · · · · · · · · · · · · · · · · ·
MAXIMUNS SPEED (KNOTS)		 7240 444	52. 59. 70.	81. 92. 91.	188. 138. 124.	6 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
TOTAL OBS	444. 559. 559.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1162. 1162. 1165. 116.
GEOWETRIC ALTITUDE MSL FEET	4940. 5000. 6000.	7000. 8000. 9000.	4 C C C C C C C C C C C C C C C C C C C	500 600 600 600		55000 65000 75000 75000 80000 95000

TABLE II (CONT)
UPPER AIR WIND DATA AT SELECTFO LFVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

MAY

STANDARD VECTOR DEVIATION (KNOTS)	
CONSTANCY (PERCENT)	
SCALAR MEAN SPEED (KNOTS)	
WIND SPEED (KNOTS)	
RESULTANT DIRECTION (DEGREES)	
TANT WIND NTS (KNOTS)	
RESULT COMPONER +N -S	
MINIMUM SPEED (KNOTS)	
MAXIMUM SPEED (KNOTS)	10000000000000000000000000000000000000
TOTAL OBS	
GEOMETRIC ALTITUDE MSL FEET	18

TABLE II (CONT)
UPPER AIR WIND DATA AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

JUNE

STANDARD VECTOR DEVIATION (KNOTS)	
CONSTANCY (PFRCENT)	
SCALAR MEAN SPEED (KNOTS)	
"IND SPEED (KNOTS)	PROPERTY TO WAS DEFERENCE OF STANDERS PROPERTY PROPERTY OF STANDERS PROPERTY PROPERT
RESHLTANT DIRECTTON (DEGREFS)	00000000000000000000000000000000000000
TANT WIND NTS (ANOTS)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
RESULT COMPONER +N -S	
MINIMUM SPEED (KNOTS)	
MAXIMUM SPEED (KNOTS)	100 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
TOTAL OBS	889. 1118. 118
GEOMETRIC ALTITUDE MSL FEET	19

TABLE II (CONT)
UPPER AIR WIND DATA AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

JULY

	29. 50. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1
76. 22. 11. 12. 11. 12. 12. 12. 12. 12. 12	76. 76. 77. 29. 39. 10. 11. 12. 12. 13. 14. 14. 14. 14. 19. 19. 19. 19. 19. 19. 19. 19
77. 75. 75. 75. 75. 75. 75. 75. 75. 75.	77. 775. 779. 799. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
79, 1. 11. 32. 39. 39. 4. 11. 12. 12. 12. 12. 12. 12. 12. 13. 14. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	79, 11, 11, 12, 139, 29, 29, 29, 29, 29, 29, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
39. 4. 16. 22. 22. 28. 28. 28. 28. 28. 28. 28. 28	39. 4. 16. 5. 19. 5. 19. 5. 19. 5. 19. 5. 19. 5. 19. 5. 19. 5. 19. 5. 19. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
77. 6. 22. 22. 22. 24. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	77. 66. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19
80. 5. 19. 2 10. 6. 11. 14. 19. 9 94. 19. 19. 994. 22. 25. 992. 28. 28. 28. 28. 29. 991. 32. 28. 28. 28. 28. 28. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 32. 991. 991. 991. 991. 991. 991. 991. 99	80. 5. 19. 2 10. 68. 11. 14. 14. 15. 11. 55. 14. 19. 99. 19. 19. 99. 99. 99. 99. 99. 99
10. 6. 11. 5. 14. 9. 9. 9. 9. 25. 25. 9. 9. 28. 28. 28. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	10. 6. 11. 55. 59. 99. 99. 55. 59. 59. 59. 59. 59
96. 13. 14. 996. 994. 22. 25. 992. 25. 28. 28. 991. 32. 991. 31. 32. 991.	96. 13. 14.5 994. 19. 994. 19. 994. 22. 22. 992. 25. 25. 992. 991. 31. 32. 991. 35. 992. 993. 35. 993. 993. 993. 993. 993. 993.
19. 19. 22. 25. 25. 25. 31. 32. 9	19. 25. 25. 25. 25. 31. 32. 35. 35. 36. 36.
25. 22. 25. 25. 25. 25. 25. 25. 25. 25.	200 200 200 200 200 200 200 200 200 200
28. 25. 9 31. 32. 9	
31, 32, 9	. 31. 32. 94. 94. 95. 95. 95. 95. 95. 95. 95. 95. 95. 95
, , , , , , , , , , , , , , , , , , ,	

TABLE II (CONT)
UPPER AIR WIND DATA AT SELECTED LFVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

AUGUST

STANDARD VECTOR DEVIATION	<u>^</u>
CONSTANCY (PFRCENT)	
SCALAR MEAN SPEED (KNOTS)	
SPEEU (KNOTS)	
RESULTANT DIRECTTON (DEGREFS)	51. 2044. 2033. 2033. 2033. 2034. 2034. 2034. 2034. 2034. 203. 203. 203. 203. 203. 203.
TANT VIND NTS (KNOTS)	
RESULT COMPONER +N -S	
MINIMUN SPEED (KNOTS)	
MAXIMUN SPEED (KNOTS)	17. 20. 30. 30. 30. 30. 30. 30. 30. 30. 30. 3
TOTAL OBS	384. 407. 408. 408. 4110. 4111.
GEOMÉTRIC ALTITUDE MSL FEET	110000. 110000. 110000. 110000. 110000. 120000.

TABLE II (CONT)
UPPER AIR WIND DATA AT SELECTED LFVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

SEPTEMPER

TANDARD VECTOR DEVIATION (KNOTS)	
0 1	
CONSTANCY (PERCENT) S)	とそんでんかご ヤムらすらご 引まられる とられて ひゅう りょう りょう りょう しゅん りゅん しゅん しゅん しゅん しゅん しゅん しゅん しゅん しゅん しゅん し
SCALAR MEAN SPEED (KNOTS	
F WIND SPEEU (KNOTS)	+ 50 + 60 + 60 + 60 + 60 + 60 + 60 + 60
RESULTANT DIRECTION (DEGREFS)	
TANT WIND NTS (KNOTS)	
RESULTA COMPONENT	
MINIMUM SPEED (KNOTS)	
MAXIMUR SPEED (KNOTS)	
TOTAL OBS	
GEOMETRIC ALTITUDE MSL FEET	4940. 50000. 11120000. 1120000. 1130000.

TABLE II (CONT)
UPPER AIR WIND DATA AT SELECTFO LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

OCTOBER

STANDARD VECTOR DEVIATION (KNOTS)	
CONSTANCY (PERCENT)	
SCALAR MEAN SPEED (KNOTS)	
NIND SPEED (KNOTS)	
RESULTANT DIRECTION (DEGREES)	00000000000000000000000000000000000000
TANT WIND NTS (KNOTS)	
RESULT COMPONEN	
MINIMUM SPEEU (KNOTS)	- · · · · · · · · · · · · · · · · · · ·
MAXIMUM SPEED (KNOTS)	
TOTAL OBS	
GEO FIRIC ALTITUDE MSL FEET	23

TABLE 11 (CONT)
UPPER AIR WIND DATA AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

NOVEMBER

STANDAR' VECTOR DEVIATION		
CONSTANCY (PERCENT)		
SCALAR MEAN SPEED (KNOTS)	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
IND SPEED (RNOTS)		
RESULTANT DIRECTION (DEGREFS)	30000000000000000000000000000000000000	
SULTANT AIND NENTS (KNOTS)		
RESULT COMPONEN	## III	
MINIMUM SPEED (KNOTS)		
MAXIMUM SPEED (KNOTS)	111 8 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
TOTAL OBS		
GEOMÉTRIC ALTITUDE MSL FEET		

TABLE 11 (CONT)

UPPER AIR WIND DATA AT SELECTEN LEVELS BY MONTHS STALLION SITE PERIOD OF RECORD 1961-1973

DECEMBER

STANDARD VECTOR	(KNOTS	တ္ တု ကို ဟု	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M W W W W W W W W W W W W W W W W W W W	8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	18. 17. 25. 33.
CONSTANCY (PERCENT)	~	0 to 0	62. 71.	777		79 88 99 90 91 90	77. 71. 61. 75. 90.
SCALAR MEAN SPEED	(KNOTS)	12 0 4 5 0 0 0	17. 22. 25.	22. 20.00. 20.00.	5 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	61. 63. 48. 41.	19. 17. 19. 24. 30.
WIND SPEED (KNOTS)	.			20. 20. 20. 20. 20.	27. 30. 46.	, n d t o u c t o u c o u c t o u c o u c	15. 10. 18. 25.
RESULTANT DIRECTION (DEGREFS)	* ### #################################	0.0.0				265 265 266 267	278. 282. 281. 280. 270. 266.
LTANT WIND ENTS (KNOTS)	n a	0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1111 2007 11000	2000	~ C 0 10 ^	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 11 11 11 11 11 11 11 11 11 11 11 11
RESULTAR COMPONENTS	e4 10	⇔ i i ∾ v ∞ v		@ 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		100 000 000 000 000 000 000 000 000 000
SPEEU (KNOTS)	000	0044	• • • • • • • • • • • • • • • • • • •	m % c c	00 11 80	м 4 0 Ф 0 0	000HHCC
MAXIMUN, SPEED (KNOTS)		52. 52.	0 0 0 0 4 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75 61. 82. 104.	111. 164. 162.	156. 133. 111. 100. 97.	60. 71. 89. 100. 95. 120.
TOTAL OBS			327.		319. 273.	188. 176. 153. 145.	137. 135. 126. 120. 113.
GEOMETRIC ALTITUDE MSL FEET		1 W IF C		0000	00000	30000	75000. 80000. 85000. 90000. 95000.

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR WIND DIPECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE III

JANUARY

	CALM,	37.	31.	-	•	•	•	•	°	•	•	•	•	•	•	•	.	•	- i	•	•	•	•	°	°	o	•:	0	•	0	•	•
	330 360								11.							11.		7.	8	•	÷	e.	ŧ	9	8	12.	80	'n	m,	، ف	· ;	.
	330	•	7.																					16.		8	6	8	• t	• •		-
	300	.	ţ	8																										15.		
ES S	270 × 270	.	4	8																				29.						13.		
P.E. G.F.	240	•	•	&		14.			6	&	۲.	8	80	6	6	80	6	•	7.	7.	.	ĸ,	ю •	7.		11.	۲.	ю •	m	ഗ	8	ດໍ
Ξ	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.	6	7.	7.	7.	ţ.	٠ ا	8	2	8	8	2.	1.	۲,	તં	8	'n	ď	•	0	0	•	t	'n.		+	٠,	ď	8	•	
	2150 180	3.	3.		'n	.	1.	۲,	1.			1.	•	0	0	0	+	-	0	0	0	0	0	1.	•	2	t	1.	•	-	∾์	•
ند	×120 ·150	2.	7.	٦.	1.	1.	7.	1.	0	0	•	1.	•	0	1.	1.	•	1.	•	0	0	0	•	•	•	۶.	1.	ς,	e N	÷ t	ro I	ດ
	.90 .120	1.	1.	•	۵,	1.	1.	.	٦,	-;		1.	7.	1.	-		-	•	۲.	•	•	•	o	.	.	'n	&	φ.	11.	11.	11	20
	96	1.	'n.	ស	2.	۲,	۲,	۲,	8	۲,	8	-	7:	7.	1.	٦.	۲,	۲,	2	ю.	•	0	;	-	'n	9				13		
	× 30 × 50	.	<u>س</u>	.	ŧ	5.	• t	4.	ţ.	'n.	3.	t	ţ.	.	ю.	٠ د	ъ.	'n.	4.	0	1:	2.	-	1.	ຜ	•9	11.	11.	15.	15.		11.
	<u>≥</u> 360 < 30	10.	11.	80	7.	.	2.	ស	ល	t.	t t	ຜ	t.	•	ູນ	ີດ	ນ	•9	t.	٠ د	ю Ю	1.	• •	ď	ູດ	11.	89	10.	•	m i	m i	٧.
	TOTAL OBS	8	3	4	Ŧ	J	2	S	2	S	S	S	S	2	#	N	9	9	O	0	9	-	~	164.	2	4	n	S	4	102.	96	. 4.
EOMETR	ALTITUDE MSL FT,	94	00	0.0	00	00	00	000	100	200	300	400	500	600	800	000	500	000	500	000	500	000	500	000	500	000	500	000	500	.00006	9500	000

TABLE III (CONT)
RELATIVE FREQUENCY DISTRI_bution of upper air wind directions at selected levels (in Per Cent)
STALLION SITE
PERIOD OF PECORD 1961-1973

FEBRUARY

CALM,	22.		• •																			• c		
33.0 35.0	17.											t	ŧ	m i	ที่เ	,	ָה ר		ŧ	ŧ	'n	ai r	າ :	ŧ
>300 <330	10.		20.			1 0		0					M		00 (j l	17.	. 3		80	8	એ 1	• •	-
270	200		11.									80	~	~			n d							
240 > 270 >	n ±		12 18										S											
(DEGRE 210 -	9.		17.			010	. 6	6	11.		• • •	10.		φ,	י [*] נ	ก๋ง	t o		ŧ	ທີ	7.	13.	,	٠ ت
TIONS	8 6	6 8	3 0	•	t t	'n.		8	5	.	• «	-	•	0	•	.	· -	7	~	•	e N	ด ์	•	m •
DIREC 150 180	• • • •	m ¢	n 3	ะ		•	• •	-	0	•	o		0	_	-	-	• •		8	8	٥.	.	• •	•
WIND 120 150	ณ ณ	-2		-	• •	-	• •	•	0	• •	• •	•	0	0	•	•	• •	0	-1	۵.	m M	- 0	• •	0
2 90 2120	ન <u>ં</u> નં	ກໍ ໙ໍ	- • ∾	-4-	• •	o c		•	•	0 0	•	-	•	0	o•	.	•	ິດ	.	.	•	ທ໌	י ו	'
0 9 06°	ลู้ ค่	• •	% -		; ;	• 	-	•	· -	.	•	0	•	0	•	•	• d					21.		
09 *1 v		ທູ້ ວ						'n	ю •	י מי		-		0		_		; ;	0	12.	_	۲.	e P	
> 360	្នំ ហ្គ ភូមិ		. .		• • • ±	ທີ່ປ	• • n =	'n	• •	~ r	מא מ	'n		•	• •		, k	ຸທ	7.	'n	•	• •	•	'n
TOTAL OPS	394.	9	9	00	0	0 0	0	0	01	P #	0 0	*	0	-	M 1	7 1	- V	n	N	-	0	0	, U	73.
GEOMETRIC ALTITUDE MSL FT,	4940. 5000.	000	000	00	200	3000	500	9009	900	000		500	0000	5000	0000	0000		0000	500	000	500	000	9500	000

TABLE 111 (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR WIND DIRECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

MARCH

	CALM,		14.		o	0	•	o	Ó	0	່ວ	•	0	o	0	0	0	o	7	8	ď		-	o	0	-	Ö	•	-	°	o	ď
	330	89			12.	σ	6	8	• 9	ŧ	ស	÷	ţ.	ţ.	ţ.	٠ ٢	w.	\$	8	ъ Ю	°	-	۲.	7	۵,	2	۲.	÷	S.	2	0	•
	>300 >330	5.	•											N		17	10.				8			7.				÷	8	7.	•	'n
	×270 ×300	5	ţ.	80																											18.	
EES	× 240 × 270	•		7.	0	15.	20	21.	22.	25	29	32.	34	4	t	0	N	42	43.	45	52.	52	47.	S	33.	26.	23.	28.	28.	33.	£3.	39
3	210	10.	10.	14.	20.	19.	20.	21.	19.	17.	16.	13.	13.	12.	11.	1.4.	14.	14.	14.	10.	۲.	æ	œ	#		12.		80	•	o •	ທີ	i.
CTIONS	×180 210				17.			6	٥	5	ŧ	e e	6	ŧ	3.	8	2	5	-	•	•	•	-	ů.	7.	ů,	'n.	ŧ	ູດ	•	ċ	• •
D DIRE	> 150 > 180	7.	7.	•	•	•	S	3	3	1.	1.		1.	1.	0	0	0		0		•	•	•	۵.	'n	ю	'n	e e	1.	'n	ď	ċ
Z	120 150	Э.	3.	E.	2.	2	2	1.	1.	1.	7.	1.	0	•	•	0	•	0	0	•	•	°	•	۵,	۲,	2	•	• 9	'n	;	8	'n
	×90 120	1.	-	ŧ	-1	-	-	-	1,	-	1,	°	•	1.	°	•	°	•	0	•	0	•	•	1.	ď	7.	13.		14.		10	
	06° 	3.	÷	'n	2•	1.	-	1.	1.	-	7.	•	•	•	1.	-	.	-	-	• • {	•	o	0	•	1:					13.	11.	•
		•9	7.	ີວ	.	ъ.	۲,	۵,	1.	•	1.	1.	.	1.	1.	1.	•	1.	0	1.	•	•	•	•	'n	ů.	S	7.	t t	'n	ď	•
	1×360 × 30	12.		7.	t t	B	8	1.	2.	ы	8	8	۵,	۵,	8	1.	.	٦.	8	•	•0	•	•	•0	1.	'n	e N	ທີ	'n	1.	•	, O
	TOTAL OBS	-	0	0	0	0	0	0	0	0	0	0	0	0	9	σ	#		3	269.	す	0	~	S	n	2	-	0	0	91.	83.	62.
OMETR	ALTITUDE MSL FT,	94	00	00	00	00	00	000	100	200	300	000	500	009	800	000	500	000	200	00	500	000	500	000	200	000	200	000	200	000	-	0

TABLE III (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR WIND DIPECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

APRIL

CALM,	16.	0000		00000	inooo-10	000N44W
330	1110		ທີ່ສະທິນ ກິດສະທິນ	E E O O 7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	วัน ณ ฅ ๚ ๋ ๋ ๋ ๋
330	n 3 0 D			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		7 + 6 7 7 + 6
270	m + 0 D	10°	9 6 6 6	177.00	+ + + + + + + + + + + + + + + + + + +	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ES) 240 2						
(DEGRE 210 ≥ 240 ≥	2000		1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 4 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ + + + + + + + + + + + + + + + + + +
CT10NS -180 -	13.		. 9 . 6 .		ก็คำล่าก็จ้อ	0.55
DIRE 150 180		ន់	เล้าเล้า			00 F M 4 4 0
WIND 120 150	4 0 m m	- 0 - 0 0		004400	000000	พอพพอพ
	0 N 3 0	v		00000		
0 9 ^	4404	ก็ก็ผู้ผู้		00040	400044	0 6 W 4 0 C
19 %	120 100 100 100 100 100 100 100 100 100	ที่ ดี ที่ ดี	• • • • • ল ল ল ল ল			0 - 10 - 10 - 10
×360 ×30	10.	ค์ค่งค่	N - N - N			ก็เกิรรักที่ค่
TOTAL OBS	+ 10 10 10 1	D ID ID ID I	D IO OO OO IO	2 2 2 2 2 2 2 2	1980 1980 1980 1980 1980	4000 t
GEOMETRIC ALTITUDE MSL FT,	1000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	000000000000000000000000000000000000000

TABLE III (CONT)
RELAȚIVE FREGUENCY DISTRIBUȚION OF UPPER AIR WIND DIRECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

MAY

CALM,	L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
330 360	
2300 330	4 4 0 9 0 9 0 1 0 L 0 V 0 V V L L L 0 0 0 C 0 V 0 C 0 C 0 C 0 C 0 C 0 C 0 C
× 270 × 300	
ES) 240 270	アロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(UEGRE	
CTIONS > 180 > < 210 <	
DIRE 150 180	
¥1ND 2120 2150	
.90 .120	
06°	40 6 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
₩	υμαμωμωμουσασασμασασοσαμηνασγωμυπαμωμωμουσασασασασασασασασασασασασασασασασασασα
> 360 > 30	
TOTAL OBS	10000000000000000000000000000000000000
GEOMETRIC ALTITUDE MSL FT,	4 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE III (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR WIND DIPECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

JUNE

CALM,	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•
-330 -360		•
330 330		•
270 300		•
(EES) ≥ 240 < 270	Natuannennennennennen Natuannennennen	•
(DLGF 210 240		•
CT10NS -180 >		4
DIPE 150 180	α α α α α α α α α α α α α α α α α α α	•
*IND 	n u n z z n n n u u u z z n z n z n z n	•
.90 .120	- F F W J F B B J N O O O O O O N N N N N N N N N N N N	•
906	4 4 8 2 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
£199		j
≥369 <30		•
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•
TOTAL OBS)
GEOMETRIC ALTITUDE MSL FT	4 00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

TABLE III (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR WING DIRECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

CALM.	25.		0	•	–	•	• 0	•	•	•	•	•	•	°	1.	·	•	1.	•	·	•	•	•	•	•	•	•	-
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3 30	10.	• • •	9	۲.	ວ ີ (11.	10.	10.	11.	6	7.	7.	•	7.	11.		•	-	•	•	•	•	•	å	°	•	ċ
×300 ×330	ผพ	ហំ	ດີ ຜ	2			110.	6	7	9		10.		7	8	13.		•	ы. Б	1.	•	ő	•	•	•	•	•	•
270	<i>a a</i>	ហ :	• œ	9	7.	o 0	,,	ິດ	t	S.	_	8	8		_			o°	'n	-	•	ċ	•	•	•	•	ċ	o
EES)	w w	ູ້ທໍາ		11.		œ 1	. 3	#	ິນ	.	.	ູ່ເກ			12.		Φ	•	2	•	•	•	•	•	•	•	•	o
(DEGRE 210 > 240	9 9		10.			o 0	, œ		6	80			11.		8	6	6	8	ស	1.	•	•	•	c	•	•	°	•
<pre>cT10NS</pre>	14.					o :	0 0		8	6	7.	80	6		12.	7.	12.	6	•	1:	7.	•	•	0	•	•	•	•
PIPE > 150 < 180	. 6	6	N 15				ي د	9	ហ	7.	6	۲.	10.	. 9	• ‡	80	•		13.	۷,	•	•	0	•	•	0	0	•
WIND 	÷ •	۲.	, ,	6	3	•	• ~	α		10.	_	7.	t t	7.	.	ທີ	• \$		14.		_	-	ю •	1.	•	•	•	0
× × × × × × × × × × × × × × × × × × ×	ส พ	10.	ດ້ທ	9	91	٠.		11.		6	10.		۲.	€	6	٧.											. 49	
06 ^ v	ວ ເດ	11.	 t t	W.	&		10.						8	6	ທີ່	ις.											36.	
× ×	10.	7.	ດ້ອ	S.	†	ထိ၊	• ;	9	7.	•9	8	ູນ	80	7.	9.	6	6	6	6	ທ		1.	•	0	ۍ •	•	0	0
> 360 > 30	12.		• ~	•	7.	I t	• 6	6	6	10.		۲.	•	•	ທີ່	ທໍ	•	80	7.	1.	•	•	•	•	•	•	•	•
ral 3S	63 . 86.	36,	. 20.	38.	39.	91.	, c	8	11.	.06	38.	33.	53.	55.	. 40	• • •	. 8	5.	. . .	55.	53.	٠7.	<u>.</u>	58.	.63	.52.	[6,	5.
T0T 08	, N	ñ	ñ M	ñ	36	in i	U 160	'n	80	3	ğ	3	3	Ŋ	Š	Š	2	ä	17	16	~	71	7.	검	-	15	=	7
GEOMETRIC ALTITUDE MSL FT,	4940.	00	000	00	00	1001	o	400	50	600	800	00	500	000	50	000	500	000	500	000	500	၁၀	200	000	500	000	200	00

TABLE III (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR WIND DIRECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

AUGUST

CALM.	22.		000	60	00	00			• •	• •	· •	.	-	, • •	•	
1330 1350	9 6 4		0 ~ 0	6.	ທ໌ຈ	Q	က် ဝ			::: ::::::::::::::::::::::::::::::::::		• •	o c	•	•	
×330	0 m 0	8.	 	66	60 10	# ru	8 6	10:	10.	ထိတ်		• •	ċ	• •	•	
270	911.	က် ဆ	100	6.8	8 6	6.6	. .	~ 0	9 0	15.	m c	• •	•	• •	•	•••
EES)	* n t	68	တ် တော်	6 8	.	&		ដូច				•	_	•	•	•••
(DEGF 210 240	. 6.		 							ထိုက္ခ		• •	•	• •	•	•••
T10NS	11. 13.					6	_		• •	• •	80:	• •	ċ	• •	•	
10 DIRE 2150 <180	့် လုံ	11.	8 60 1	6.4	5.	6	, r	ທີ່	• • • •	٠, در	ထိ	• • •	ċ	• •	•	•••
VIND	 4 4 0	ທິສໍເ	. v .	(a) 0	800	ထိတ်	ω · α	ູ້ທີ່ພ	വ	ສຸ ທ	11.		∾ •	• •	•	
>90 120	3 3 00	,,,	. · · ·	86	10.		y t	. .	ູທ	ທີ່ທ້	19.	52.	64.	63.	56	200
) 90 90	4°.	• 10 •	9 0	10.	14.	12.	10.	in a	.	⊅ ທ	13.	3.8	34.	36.	# 0	N 4 6
×1×	10.	ຸດທີ	 N t t		ಌ ರ	10.	6		ດິທິ	& 6	11.	• -	.	• •	•	 0 0 4
× 360 × 30	15. 10.	3 W ·	• o o	86	. 6	8	. 00 (, , a	• • •	11.		• • • •	•	• •	•	•••
TOTAL OBS	384. 407.	00		-	-	-40		א פטר	വ	S	20	A C	94	חומ	10	123. 106.
GEOMETRIC ALTITUDE MSL FT,	4940. 5000.	00		200	100	500	000		000	000	500	500	000	000	500	

TABLE III (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR WIND DIPECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

SEPTEMBER

CALM,		24.		-	1.	_	•	•	•	•	·	•	•	•	ċ	•	•	+	•	•	•	•	-	-	o	•	°	•	- i	ન	, ,	-
330	36	L.	11.	13.		\$	æ	•	รัง	ທີ	လိ	9	8	7.	•	÷		ທໍ	*	<u>س</u>	1.	-	ທີ	æ	ю М	* *	-	. 4	ċ	٠ •	;,	÷
300	53	'n	÷	10.		6	6		10.		æ	89	8			12.			7.	က်	ຜ	S	‡	လ	'n	8	1.	-	-	તં	•	•
>270	30	'n.	3.	6	8																		29.		9	+	+	ċ	-	o ·	.	-
REES) > 240	2	ţ.	ຜ	<u>س</u>																			24.		ю •	۲,	۵,	•	-		~	•
S (DEGR	240																						18.			8.	۲,	°	-	.	N :	÷
CT10N	10						16.		6	8	8	7.	7.	•	5.	10.		6	ů.	'n	.	សំ	12.	÷	ŝ	÷	7	1.	8	8	.	, ,
1D PIRE 2150	ď	ល	ۍ ه	5.	6	2.	•	•	•9	•	÷	• ±	ູນ	S	•	÷	'n	٠ ر	•	0	•	•	7	6	ъ.	ţ.	÷	• t	e S	ių.	n) I	·
×1N ≥120	150	E	۵,	ທີ	۵,	'n	ď	=	• 9	ູດ	•	ູນ	ທີ	ທີ	ນ	۵,	۵,	1.	•	•	-	•	ď			12.		6	&	۲.	ດ໌ ເ	•
0 6 √	N	ŧ	m m	7.	ю •	ะ		m.	۲,	.	.	m°	۵.	a°	α.	•	.	- i	°	o	•	•	α.	6	26.	25.	35.	0	#0 #	÷0	· ·	41.
09/	ው	ູນ	÷	•	•	လိ	÷	ŧ.	'n	Ň	ď	'n	÷	-	1.	7.	•	0	۲.	•	ٿ	•	-	6						39		
} }	· D	10.	80	7.	ູນ	S.	ູຊ	ņ	ທີ	ູນ	ູ້		ъ М		ъ.	å	ď	-	-1	-		_	'n	_		_	'n.		-	ហំ	•	2
× 360	M	11.		8	ۍ ک	ູນ	,	'n	t t	'n	ŧ.	5.	ţ.		t.	ທີ		ю •	n,	•	•	1.	٠ «	÷	ţ.	e.	M.	1.	8	0	N ·	°
10	à	N	9	9	9	9	9	9	9	9	9	9	9	9	9	9	Ŧ	C	7	S	3	S	σ	8	1	•	2	S	4	132.	rd (: 5
GEOMETRIC ALTITUDE	J.	046	00	000	00	00	00	000	100	200	300	400	500	0009	8000	000	5000	0000	2000	000	500	000	500	000	200	000	200	000	200	.00006	9500	

RELATIVE FREGUENCY DISTRIBUTION OF UPPER AIR WIND DIRECTIONS AT SELECTED LEVELS (IN FEW CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE III (CUNT)

OCTOBER

	CALM,	26.			0	•	•	0	•	•	•	•	•	•	•	•	-	8	3.	'n	•	α,	1.	•	•	-	7.	1.		-4	'n.	.
	380 360	9	71.	18	5	O		00	80	8	10.	14.	15.	15.	13.	11.	7.			÷			7.		#	7.	÷	ģ	÷	ທ໌:	.	Ņ
	3300 330	1.	1.	Φ	6				14.							7	0	12.	σ	11.			17.		6	12.	8	n)	8	,	ທ໌ :	• •
	2 270 300	8		9		10.	12.	13.	14.	15.	17.	15.	17.	16.	17.	19.	20.	17.	21.	23.	32.	29.	28.	15.	11.	13.	13.	14.	25.	25	33.	29.
ES	> 240 > 270	'n.	ĸ	.	6	11.	16.	16.	19.	20.	20.	20.	19.	23.	22.	24.	2.	24.	33.	36.	41.	40	31.	13.	16.	12.	16.	22	15	5 6.	25	67
(DEG	240	7.	7.	6					20.															15.			80	œ.	7.	MO I	, i	Ť
CTI	180		J		0			12.		7,		7.	•	.	S.	•	8	÷			_		-		6	5		તં		÷		• •
100	150 < 180	5.	•	æ	7.	6	9	t	ĸ,	ĸ,		8	(1)	7.	ς,	1.	-	-	1.	1.	1.	•	•	ູດ	S	e S	ď	-	'n	ທີ່	ที่เ	N
	1120 150	3	60	.	ີນ	'n	m •	1.	7.	۵,	o.	ď	-	.	1,	1.	٠ ،	-	1.	-	•	•	•	ĸ,	.	10.	Ŷ	σ,	•	.	N u	ດ
	4. 90 4. 20	8	ď	7	<u>س</u>	2	۲.	2	o,	.	-		۲,	α,	-	8	•	۲.	-	o	•	°	င်	ญ่า	ທີ	•	11,			, ,	• u	n
	06) 	5.	•	10.	÷	Э.	ι,	3	'n	๙	ж •	3	'n	'n	ď	8	۲,	8	1.	ď	ċ	•	•	m 1	ю М		16.			ທ໌	0 =	;
	<u> </u>	10.	8	9	10	'n	÷	4.	'n	ŧ	ŧ	ю	m m		ς.	• t	S.	÷	5	.	•	:	•	1:	•	7.	ţ.	•	8	÷	ที่เ	Ň
	0860 080 080	14.	14.	ŧ	'n.	a.	8	'n	t		3.	.	ţ.	ŧ.	•6	80	۲.	۲.	٧.	•	ວ	E.	m M	8	•9	7.	ທີ່	້າ	‡	. 3 :	U t	'n
	TOTAL 08S	367.	-	-	-	-	-	-	-	-	-	-	7	-	-	-	Ø	Φ	-		വ	す	S	-	0	σ	80 1	_	9	152.	η,	→
EOME	ALTITUDE MSL FT,	9	00	00	00	00	006	000	100	200	300	400	500	600	800	000	200	000	500	000	500	000	500	000	200	000	500	000	200	90000	0000	

TABLE III (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR WIND DIRECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

NOVEMBER

	CALM.		21.		•	•	•	•	•	•	•	ဝ်	•	•	•	•	•	٦.	8	8	•	1.	-	•	-	o	•	α	•	æ	າ ເ	•
	_330 < 360	12.			17.						12.	11.	11.	11.	12.	6	10.	6	9.	•	α,	ວ	ď	•	ທໍ	พ	7		•	÷	, r	•
	_300 -330	3.	ŧ																	15.					6			12.		7.	ים ניו	•
	>270 <300	8	2	7.	ທໍ	ઌ૾	6																								80°	
S	2240 270	±	.	9																											ง ช ช	
(DE	240 22	8															13.			6	φ.		10.			11.	7.	ŧ	ນ	÷	œ *	•
-	<pre></pre>				14.			7.	5.	ທ	÷	3.	8	8	8	2	ď	'n		<u>د</u>	:	1.	-	2.	1.	8	તં	ċ	ċ	8	• •	•
DIPE	>150 < 180	5.	ŧ	<u>ر</u>	• •	ŧ	1.	7.	2	1.	1:	0	0	•	0	0	•	0	•	•	ċ	•	1.	1.	1.	-	•	1.	•	•	•	•
ONIM	120 × 150	1.	+		ς,	•	1.	1.	7	-	1.	1.	1.	•	ora ora	•	•	•	•	•	•	•	1.	•	'n	-	-	•	•	•	• •	•
	290 120	1.	•	ູນ		1.	1.	1.	0	1.	1.	-	1.	લ	. •	-		-	•	0	•	•	•	٦.	ກໍ	'n	.	'n.	- 1	'n	۰. م	•
	06° 	ŧ.	÷	•	۳, د	۲,	1.	2.	-		•	•	1.	1.	1:		1.	1.	•	-	°	•	•		8	۲.	•	÷	ហ	.	คร	•
	×30 60	10.	œ	÷	S.	· t	3.	2	2.	٠ د	2.	1:	1.	1.	0	1.	•	0	•	•	•	•	•	•	м)	ທໍ		æ	•	• ‡	.	•
	× 360 × 30		16.		. 60	•9	ນໍ	•	7.	۲.	ວ	•9	7.	7.	•	7.	7.	•	ţ.	ъ.	٥,	8	1.	8	ა	•	6	÷	•	m M	m c	•
	TOTAL OBS	348.	406.	405.	405.	406.	407.	407.	408.	405.	*10*	+0+	403.	403.	405.	391.	345.	322.	293.	233.	211.	193.	164.	152.	148.	143.	134.	130.	122.	112.	93.	•
GEOMETRIC	ALTITUDE MSL FT.	σ	0	0	0	0	0	00	10	20	30	t 0	50	9	80	00	50	00	50	8	20	00	20	00	20	00	ຄວ	00	20	00	95000.))

TABLE III (CONT)
RELATIVE FREQUENCY DISTRIBUTION, OF UPPER AIR WIND PIPECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

DECEMBER

	CALM.	34.		-	1.	•	•	• •	· •	•	•	•	•	•	•	•	•	- i	ທີ	•	•	- i	•	Τ.	7	•	°	•	•	0	-	ď
	>330 >360	8	12.	25.	20.	16.	12.	6	6	7.	6	11.	10.	6	8	8	8	&	8	7.	÷	%	ທໍ	7.	12.	6	11.	•	•	8	ŧ	'n
	>300 <330	t t	7.				21.	20.	19.	18.	18.	14.	12.	14.	15.	15.	15.	12.	11.	13.	12.	19.	16.	15.	13,	10.	6		10.		7.	ď
	270 300	2.	8	6	6	10.	13.	20.	23.	24.	22.	25.	25.	23.	23.	21.	25.	23.	24.	31.	31.	31.	25.	29.	28.	28.	21.	23.	33.	28.	32.	30.
u	2240 270	8	8	ິດ	11.	14.	21.	23.	20.	20.	21.	21.	24.	25.	27.	27.	29.	29.	21.	29.	~	32.	¢5.	33.	٥	22.	27.	25.	29.	37.	47	53.
<u> </u>	240	•	7.																	16.			7.	11.		8	1:	ĸ,	e e	1.	۲,	.
CT10145	160		11.		10.		ŧ	8	8	3.	8	ŧ	Ç.	•	÷	3.	1.	٠,	•	•	+	•	-	+	ŧ	1.	Э.	8	-	8	•	•
DIRE	150 <180	3	.	•	<u>.</u> دي	-	1.	ď	7	1.	8	1.	1:	0	1.	1.	0	7	0	•	0	•	ċ	0	•	1.	7	0	•	7	•	
QNI *	120 150	0	0	3	0	•	1.	-	1.	۲,	1.	-4	1.	۲,	0	•	1.	•	•	•	•	•	•	•	•	1.	3	۵.	ς,	۵,	•	•
	120	٦.	1.	•	•	α,	1.	1.	1.	1.	۲,	۲,	ς.	<u>-</u>	1.	1.	.	-	°	1.	°	•	•	•	-	÷	÷	'n	1.	٥,	~	
	06 ⁷	1.	8	÷	٠ <u>٠</u>	۶.	۲,	2°	ď	3		æ.	8	۲,	۶,	-	.	1.	8	1.	•	•	•	0	ď	7.	.	7.	ည်	÷	ณ์ :	ċ
	id &	7.	δ.	ນ	3.	8	۲,	-	8	٥,	-		-	8	-	-	1.	•	•	-	-	-	•	-	۳,	t.	7.	11.	7.	2	ď	-
	360 30		18.		•9	ູນ	.	•	2	ູນ	e E	3	t	t t	t	ţ.	2.	'n	ţ.	•0	-	•0	ċ	e.	m •	· t	6	ນ	ທ	'n	'n	1.
	TUTAL OBS	0	320.	N	N	N	a	Q.	S	O	S	S	a	C	N	-	0	~	ŧ	215.	Œ	^	S	S	ŧ	M	3	M	N	M	-	92,
EOMETR	ALTITUDE MSL FT.	O	00		0	0	0	0	01	200	300	0	500	900	80	00	50	00	500	4000 0	560	000	50	000	20	00	500	000	200	000	200	2

TABLE IV
RELATIVE FREGUENCY DISTRIBUTION OF UPPER AIR SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PEP CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

JANIJARY

	. 150	0	0	• 0	ċ	•	·	•	•	•	0	•	•	·	ċ	•	ċ	ċ	· 0	-	0	•	•	ċ	•	•	•	•	ċ	ò	ò	ò
	125 150	0	· ၁	0	• •	•	•	÷	• o	•	0	0	0	0	0	•	•	8	8	۲.	•	0	•	•	•	•	0	•	•	•	•	•
	- 100 - 125	0	0	0	•	•	•	•	·	•	•	•	•	o	•	0	‡	•	80	7.	'n	•	-	°	-1	•	•	Ġ	•	•	°	•
	<pre>_ 90 < 100</pre>	•	•	0	•	•	ċ	•	•	ò	•	•	•	•	0	-1	ن	ů.	ŝ	7.	e.	8	-	•	ċ	•	ċ	•	•	•	-	1.
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ċ	ô	• 0	Ô	•0	ò	•	•	÷	ò	•	·	·	-	2	က်	•	æ		8	'n	'n	-	۲,	ċ	ò	ò	ċ	ò	-	ċ
(\$	70 / 80	0	0	0	0	0	0	• 0	0	•	0	0	1.	2.	±	ۍ	ຜ	6		16.		8	ຜູ	-	1.	.	•	•	•	1.	•	S.
(KNOTS)		0	•	•	•	•	•	•	•	7	-	8	5.	•	ູນ	7.	6			13.				8	ò	•	ċ	1.	1.	'n	'n	÷
SPEEN		ċ	ċ	ċ	0	•	0	•	-	å	÷	9	7.	7.				12.						÷	-	-1	-	તં	₩)	m	ŧ	۲.
ON I 3	<pre></pre>	0	0	•	0	1.	.	-	†	S.					14.									80	9	'n	ţ.	~	ŝ	သိ	8	15.
	0# 0# 1	c	c	0	2.	M ² 3	۲.								25.										ŷ	M				12.		
	200	0	0	ູນ											21.						ູນ	6	20.	32.	5 0	19.	14.	19.	20.	18.	18.	12.
	-10 -20	15.	18.	20.	* 6 †	53.	47.	40.	31.	24.	21.	17.	16.	14.	14.	15.	6	ကိ	ĸ	w.	5	ည်	9	23.	* 7 7	39.	37.	41.	34.	37.	34.	30.
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	48.	51.	65.	30	23.	16.	13.	10.	10.	8	æ	9	•	ţ	S.	\$	1.	•	ċ	∼	-	'n	7.	21.	34.	37.	25.	27.	22.	16.	16.
	CALM		31.	1.	0	•	•	0	0	•0	0	0	• 0	0.	0	°0	•0	• 0	1.	0	0	•	0	0	•	•	1.	•	•	• 0	0	0
	TOTAL 08S	385,	448.	644	*644	447	451.	452.	455.	456.	456.	455.	453.	451.	.944	429	393.	363.	321.	289.	260.	219.	179.	164.	154.	146.	139.	122.	115.	102.	96•	74.
GEOMETRIC	ALTITUDE MSL FT,	*0161	÷0005	•000	7000	8000	9000	100001	11000.	12000.	130	∞ 1400ŋ.	15000.	16000.	18000.	20000	25000.	30000	35000.	40000	45000	50000	55000	• 00009	6 5000•	.00007	75000.	80000	85000.	•00006	95000.	1000001

TABLE IV (CONT)

RELATIVE FREQUENCY DISTRIBUTION OF UPPEP AIM SCALAR WIND SPLEUS AT SELECTED LEVELS (IN PEP CENT)

STALLION SITE
PERIOD OF RECORD 1961-1973

FEBRUARY

_ 150	· · ·			• •	•	• •	0	ċ	ċ	•	ò	•	-	ċ	ò	•	ċ	•	•	ċ	ċ	ċ	ô	ċ	•
125 150	000		• •	• • • •	•	•	•	•	•	•	• •		3.	•	ċ	•	ċ	•	ċ	•	ċ	•	•	•	-
125	• • •	• • •	• •	••	• •	• •	•	ċ	o d	0	ห์ ห		11.	ţ.	'n	o	Ö	·	•	ċ	ċ	•	•	•	•
90	000	• • •	• •	••	•	• •	•	•	ċ	.	n a	• •	12.	6	e.	•	ċ	•	ċ	ċ	ċ	ċ	ċ	ċ	7
06	0 0		• •	• •	0		ċ	-1	\$	in •		• 6		14.	'n	ċ	·	ċ	ċ	ò	ė	•	8	ò	7.
5) -75 -80	000	• •	• •	• • •	•	• •	1.	8	.	٠ ک		11.				8		•		•	•	•	1.	÷	
(KI40TS) 60 <70	000			• o	•	'n	÷	ស				11.					'n	ด ์	ċ	•	ċ	۲,	ŧ	ທໍ	ທໍ
SPEED 50 60	000			«	ค่า		7.		o o			11.					œ	•	0	•	Ċ	۲.	9	•	
ONIA TO 20 50	000	· • •	. 2	ສຸ ເດ	. 0	· ·						13.			19.			ţ.	8	t	2.		11.		ů.
130	00.	• • ·	• •		200								• 9	8		18.		σ	ທໍ					17.	
30	2			31. 37.								ດີ	ъ.	1.		10.									
20	21.												8		ď	t	9		-						
10	56. 58.	37.	17.	13.	o c	6 0	•	7.	ů.	I C 1	m H	, ,		0	ċ	-	•	20.	29.	31.	28.	24.	18.	14.	œ
CALIA	22.	• • • • • •	• •	• •	0	• •	0	0	0	• ວ	.	• •	0	0	0	0	•	1.	0	0	•	•	0	0	•
TOTAL OBS	394. 501.	700	9	9	00	1	9	9	0 1	- 1	20	t d	0	r-	3	9	_	S	3	S	-	0	0		
GEOMETHIC ALTITUDE MSL FT,	50000			000	200	000	1500	900	900	000	000	200	000	000	000	200	000	000	000	005	000	000	000	000	000

RELATIVE FREQUENCY DISTRIBUTION OF UPPEP AIR SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE IV (CONT)

MARCH

	150	ċ	ċ					•	0	•	•	ċ	ô	•	ċ	0	ċ	-	-	ċ	ċ	0	•	·	ċ	·	•	•	ċ	•	ċ	ċ
	125 150	•	,		• •			•	0	•	•	•	0	ċ	•	•	-	ب	'n	÷	8	•	•	•	•	0	ċ	•	•	•	•	•
	≥ 10 0 - 12 5	0	ć	• c		; c		ö	0	ó	ċ	•	•	•	°	•	-		13.		e,	•	•	•	•	•	•	•	•	•	•	•
	100	0	ć	• c		, -		•	0	•	•	•	0	•	•	-	ģ	10.	6	•	'n	7		•	ċ	•	•	•	•	•	•	•
	06	Ċ						ċ	ċ	ò	•	ċ	•	ċ	ò	'n	•	10.	14.	10.	11.	.	å	ċ	ċ	ċ	ô	ċ	ċ	ċ	=	\$
5)	ν1 × 80	0	c	• c	• =	•	• =		0	0	•	0	۲.	8.	E	6				17.			ŧ	7.	0	•	•	0	•	٦.	•	•
(KNOT	>60 70 70	•	Ċ			-		•	0	•	-	1.	ŧ	•	6					16.			•	ъ.	•	•	•	•	-	1.	•	•
سأ	× 50 × 60	0	ç	Ċ				•	-	٠ د	ţ.	80		11.							15.			'n	-	-	-	÷	8	1:	+	•
WIND	م الح 50 م	0	c				•	-	t	8		14.					17.	6	6		13.				1.	5	9	-	•		17.	
	04 04 04 04 04	0	c	•	• •) pr	ά	12.	18.	19.	26.	23.	21.	25.	24.	22.	11.	10.	6		10.				7.	†	1.	9		12.		
	× 20 × 30	t t	7	6	5	23.	27.	33.	33.	37.	32.	32.	31.	5 6.	19.	15.	6	•	ທີ	7.	.									27.		
	≥10 <20		28.	9	17	47.	47.	39	34.	26.	25.	18.	14.	10.	æ	7.	ţ.	ູດ	'n	1.	å	e G	&	24.	43.	36.	38.	36.	38.	37.	12.	16.
	괴숍						17.	14.	11.	7.	•9	t.	'n	'n	÷	ŝ	-	-	-	ċ	+	-	-	o.						14.		•9
	CALM	10.	14.		•			•	0	0	0	0	0	0	0	•0	•0	•	.	8	2.	1.	1.	0	•	7.	0	•	1.	0	•	ς,
	TOTAL OBS	415.	C				0	505	0	0	0	0	0	0	σ	O)	4	O	S	9	#	0	1	S	B	S	-	0	0	91.	83.	62.
GEOMETRIC	TITUDE L FT,	• •		C) C		0	10000	0	1200	300	1400	500	600	900 8	000	500	000	500	000	500	000	500	000	500	000	500	000	500	000	9500	000

RELATIVE FREQUENCY DISTRIBUTION OF UPPEP AIR SCALAR WIND SPEEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IV (CONT)

APRIL

7150	000000000000000000000000000000000000000	9
125	000000000000000000000000000000000000000	•
125		•
100	000000000000000000000000000000000000000	•
06.	00000000000000000000000000000000000000	ò
5) - 70 - 80	000000000000000000000000000000000000000	•
(KNOT)		-
SPFEN VSO V60		•
WIND		&
50 0 0 0 0		
× 30		
100		~
120		15.
CAL.	0 4 H O D O O O O O O O O O O O O O O O O O	m M
TOTAL OBS	11111111111111111111111111111111111111	73.
GEOMETRIC ALTITUDE MSL FT,	••••••••••••••••••••••••••••••••••••••	00

TABLE IV (CONT)
RELATIVE FREQUENC; DISTRIBUTION OF UPPER AIR SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973

MAY

>150	c		c c	• •	•	• •	ů	• •	•	•	• •	•	•	• 6	•	ċ	•	ċ	•	•	•
2125 150	000	00	• • • • •	000	•	• •	0	• •	0	-	• •	O	•	0 0	•	•	•	•	•	•	•
100 125	000	00	000	000	•	• •	o .	- °		3	• • ` •-	0	•	•	•	0	•	•	•	•	•
. 90 .100	•••	• •	000	000	•	• • • •	ů	• • • •	-	åı	, -	0	•	•	•	•	•	•	÷.	ċ	•
80 80 80		• • •	000	000	•	00	:	c	9	_	10.	ò	•	• 6		•0	0	ċ	ò	•	•
5) - 70 - 80	000	• • •	000			. .	.	t :-	ິດ	801	. 6	8	-	• •	• •	0	•	°	•	0	0
(KNOTS	000	• •	000	0 -		.	8	n o	10.		110.		.	•	• •	•	•	•	O	•	•
SPEEN 250	c o c	00	00-	- 0		т	5.		S		1 12		ហំ	• 0		•	•	•	ò	•	•
WIND 240 550	000	0 4	• • · ·	1 0 F	ຶ້ທ	. &		13.					.	•	• •	•	ċ	•	•	ċ	-
00 m 1 v	000	o m	ณ์ ห. น์	, ,		15.								m +	• •	•	•	2•	ò	.	'n
\ \ 30 \ 30	ณ ี เ															2.			10.		
110 × 20	25.	900 400 • 600	47°		35.	32. 29.	28.	27.	15.	8		80	29.	. 0	30.	* # #	46.	• 0 •	47.	22.	47.
110	56. 55.		3.00 0.00	26.	18.	16. 15.	11.	. 6	10	ю. •		.	ຸດ	t C	68.	53.	43.	45.	41.	27.	32.
CALM	17. 15.	0 =	000	.		• • • •	0	• •	8	ત ં (, .	0	•	. ; c	• •	0	0	1.	•	à	
TOTAL OBS	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	488 488	# # # # # # # # # # # # # # # # # # #	487.	483.	479. 478.	474	# # # # # # # # # # # # # # # # # # #	416.	333.	265.	232.	188.	174.	155	133.	127.	121.	115.	66	76.
GEOMETRIC ALTITUDE MSL FT,	4940. 5000.	200	000	1200	20	20	0	20	00	00		0	20	9	0	0	9	2	20	9500	9

RELATIVE FREGUENCY DISTRIBUTION OF UPPER AIR SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IV (CONT)

JUNE

150		ċċ	•	·	•	ċ	ċ	•	•	ċ	ċ	ċ	•	ċ	ċ	ċ	ċ	•	ċ	•	ċ	ċ	•	ċ	ċ	•	ċ	•	•	•
125 150	÷ •	•	0	0	•	ċ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ô	•	•	0	•	•	•	•	•	•
.100 125	• •	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	•		ò	•	•	•	•	•	•	•	•
190 v	000	ò	•	•	ò	ċ	•	ċ	ခံ	ċ	•	•	•	•	ô	ċ	6	+	ċ	ô	ô	ô	ċ	•	•	•	•	•	•	ċ
06°	00		•	• 0	ċ	ċ	•	ċ	÷	•	ċ	•	ċ	•0	•	ċ	1.	e G	<u>.</u>	•	ė	•	•	ċ	•	ő	•	ċ	ċ	•
270 280	000	•	0	0	0	•	0	•	• •	•	0	•	0	•	0	۲,	7.	•	ţ.	1.	-	•	-	_	•	•	•	•	•	•
(KNOTS)	0 0	•	•	•	•	•	•	•	• •	•	•	•	-	1.	-	ນ	5		11.	•	•	•	0	•	•	•	•	•	•	•
SPEEn - 50 - 60	ċċ	· c	•	0	ċ	ċ	ċ	•	•	•	ċ	-	3	ii)	ند	10.	16.	17.	17.			•		•	•	0	•	•	•	•
WIND 140	• • •	•	0	•	ċ	•	:	:	٠ د	ю •	9 •	7.				16.					1.	-	-	•	ċ	•	٠ د	1.	-	;
000	0	•	-	-	2.	٠ د	m i	ຳນ		13.											8	1.	٦.	۵,	1.	7.		19.		
30	00	t t	æ				17.																					42.		
200	25.	29.	41.	43.	41.	43.	±5.	٠ ا	35.	36.	36.	37.	32.	29.	26.	14.	11.	'n	11.	18.	47.	47.	58.	63.	59.	42.	34.	33.	26.	σ
10	59.	99	50°	45.	* # #	41.	35	31.	30.	26.	25.	18.	15.	14.	6	7.	÷	÷	1.	5.		+ +			S.	•	•	ທີ	÷	
CALM	15.	0	0.	0	•	•	• 0	•	0	• >	1.	1.	•	0	0	1.	۲,	1.	0	1.	0		•	•	1.	•	•	•	1:	1.
10TAL OBS	343.		9	~	~		- 1			~	-	~	Q	ø	3	0	ഗ	S	0	O.	~	ທ	3	3	3	O	-	12	00	85.
GEOMETRIC ALTITUDE MSL FT,	.0464	000	00	90	00	00	2	0	1300	20	0	0	20	20	2	20	20	00	2	9	20	0	0	00	00	0	0	9	0	2

TABLE IV (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

JUL Y

2 150	ċ	ċ	·c	0	•	•	ċ	0	•	ċ	•	•	•0	ċ	•0	ċ	ċ	•	ċ	ċ	•	·	ċ	ċ	•	ò	•	ò	ċ	0	•
≥ 125 < 150	0	•	•	•	0	•	0	•	0	•	0	•	•	•	ċ	•	• 0	•	0	•	•	ċ	0	0	•	0	•	Ö	•	•	•
1000 125	0	0	0	•	•	•	ċ	•	•	0	•	0	•	•	•	°	°	•	•	°	•	ċ	•	•	•	0	•	•	0	•	•
196	0	•	•	•	•	•	•	•	•	•	•	•	•	ò	ċ	ċ	ċ	ö	°.	ċ	•	ċ	ċ		ċ	ô	•	•	•	ċ	•
00 ∞ 41 /	• 0	•	0	ċ	ċ	0	0	•	•	ċ	ċ	ċ	0	0	0	ċ	ò	ċ	•	ô	ċ	ċ	ċ	ċ	0	ċ	•	ô	0	ò	•
S)	0	0	0	0	•	0	0	0	• •	0	0	0	0	0	0	0	•	•	0	0	•	•	•	•	•	•	•	•	•	•	•
(KN01 260 <70	0	0	•	0	•	•	• •	•	•	•	°	•	•	•	•	o	ċ	•	•	•	•	•	•	•	•	•	•	•	0	•	ev V
SPEEn 2.50 6.60	0	0	•	0	0	•	0	0	0	ċ	0	0	0	0	ċ	•	ċ	0	ò	0	ċ	ċ	ċ	•	•	•	0	1.	å	ů.	7.
WIND 140 550	0	0	•	ċ	•	0	.	0	•	ċ	0	0	0	0	0	7	-	7.	•	2•	0	•	0	•	ċ	1.	٠,			37.	
30 04 ×	0	0	0	0	0	0	•	ô	0	c	ċ	1.	1.	1.		1.			18.		ທີ	1.	1.			19.					
< 30	1.	÷	•	2.	8	۵,	٠ «	8	÷	9	9	ហំ		10.					25.							69				•9	o
£10 \$20	11.	11.	15.	23.	28.	32.	34.	37.	37.	• 0 7	47.	50.	52.	47.	45.	46	* 7 7	39.	37.	39.	43.	47.	65.	45.	34.	11.		'n		•	•
×12 10	• 19	99	83.	74.	70.	•99	· 119	•09	269	54.	47.	43.	40.	41.	46.	38.	27.	15.	11.	19.	35.	44.	18.	ις.	-	ċ	•	•	•	0	•
CALM		22.	٠ ده	1.	•	0		0	•	0	0	0	• 0	0	•	•	•	1.	0	•	+	•	•	•	•	°	0	•	•	•	.
TOTAL OBS	363.	386.	386.	386.	386.	388.	389.	391.	392,	392.	392.	391.	390.	388.	383.	353.	335.	594.	544.	218.	205.	174.	165.	153.	147.	141.	138.	129.	122.	116.	105.
GEOMETRIC ALTITUDE MSL FT,	-	•0000	\sim	$\overline{}$		$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	1300	$\overline{}$	$\overline{}$	$\overline{}$		\sim	$\overline{}$	\sim			$\overline{}$		$\overline{}$	$\overline{}$		$\overline{}$	_					

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIP SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IV (CONT)

AUGUST

2 150	· · · · · · · · · · · · · · · · · · ·	000000
125 150		00000
		00000
× 100 × 100		00000
06 41 ×		
270 ×80		00000
(KN015 260 <70		00000
SPFEN 250 60		00400
WIND ^ ^ 40 50		# 5 P P P P P P P P P P P P P P P P P P
> 30 > 40		652 652 71
×20 ×30	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
×20		08440
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	- W + W + W + W + W + W + W + W + W + W	
CALM	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00040
TOTAL OBS		58 37 40 00 00 00 00 00 00 00 00 00 00 00 00
GEOMETRIC ALTITUDE MSL FT,	000094 000094 000095 000096 0000096 00000000	500

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIM SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IV (CONT)

SEPTEMBER

OMETR							WIND	فغا	(KNOTS	S)					
ALTITUDE	TOTAL	CALP	∓	<u>></u> 10	² 20	∴30	× 40	. 50	· 60	7.1	280	06~		<u>≥</u> 125	\
ب	0BS		× 10	< 20		t	< 50	9	× 70	×80	O .	0		15	
34	N	24.	62.	13.	1.	•	0	0	0	'n	0.	•	0	0.	G
00	9	21.	• 49	14.	•	0	0	0	0	0	•0	•	0	0	C
00	9	٦.	76.	21.	٠ ۲	0	•	0	•	•0	•	•	•	0	0
00	9	1.	61.	33.	rt.	1.	0	0	•	0	•	•	•	•	<u> </u>
00	•	0	51.	40.	8	1.	0	0	0	0	•	•	0	•	0
00	9	0	45.	43.		1.	•	ċ	•	•	ċ	ċ	•	• •	C
00	9	0	43.	* 7 7		c	0	•	•	0	ċ	•	0	•	C
00	9	•	38.	* 7 7		3.	0	ċ	•	0	•	•	•	0	0
00	စ	•0	34.	43.		t	Š	0	•	•	ċ	•	0	•	0
00	9	0	32.	++		t.	2•	•	0	0	•	•	•	0	C
1400	9	0	29.	45.		ນໍ	e e	-	•	•	•	•	•	•	С
00	•	0	2 9•	. 11		ູດ	†	1.	7	•	•	ċ	•	•	0
00	9	0	27.	45.		9	÷	7.	1.	•	ċ	•	•	0	C
00	9	0	23.	t t •		7.	• 9	-	-	•	•	ċ	•	•	0
00	9	0	23.	37.			•	is.	ď	0	•	•	•	0	0
00	ŧ	0	12.	31.			۲.	†	۲,	+	-	•	•	•	0
00	S	-	• 9	17.				;		1.	2•	-	1.	•	0
00	~	0	.	7.						•	5	-		•	0
00	S	0	+	•	11,	20.	17.	15.		10.	ູນ	7	°	•	0
00	M	0	'n	ດ						•9	'n	0	• •	•	0
00	N	•	ω •					æ		•	•	•	•	•	0
90	O	1.	21.			ູດ	m M	å		0	•	• •	•	•	0
0	00	+	50.		•	٦.	;	•		0	ċ	•	ċ	•	0
00	_	•	53.			•	•	•	•		•	•	•	0	0
00	Ø	•	¢2.			1.	ċ	•	•	•0		•	•	ô	0
00	5	0	36.			3	ċ	•	•	•	ċ	•	•	ô	0
0	S	•	30.			ю	•	•	•	0		•	•	•	0
0	ŧ	1.	24.			•	ċ	•	•	•	•	0	•	ò	0
0	M)	• •	25.			ທ	ċ	•	•	•	•	•	•	•	0
95000	116.	-	5 0•	42°	32	K)	•	•	ċ	•	ċ	ċ	°	ċ	0
0	0	-	19.			80	'n	•	•	•	ċ	•	· ?	•	0

TABLE IV (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR SCALAR WIND SPEEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

OCTOBER

GEOMETRIC ALTITUDE TOTAL MSL FI, OBS	CAL	^ <u>1</u> 0	< 10 < 20 < 20	×20 ×30	× 4.0	WIND V V 4 50	SPFE VS0 60	(KN0TS) 260 <70	5) 	06 717	× 190 100	100 4125	≥ 125 × 150	<u>_</u> 150
		58.	15.	1.	Ċ	0	0	0	0	• 0	0	_	0	
	23.	61.	14.	1.	c	0	0	0	0	•	0	0	0	ċ
	•0	75.	22.		0	0	_	•	0		•	•	•	C
	• ე	59.	34.			1.	_		•0		_	_	_	0
	0	47.	42.		1.	•	0	•	0	0	ċ	°	_	C
	0	41.	• † †		2•	0	0	•	•		•	•	0	0
	0	33.	47.		3.	.	-	•	0		•	0	•	C
	•	27.	48.		•	٥,	•	•	•		•	0	°	0
	• ი	23.	46.		6	۶.	•	•	•		•	•	•	0
_	•	21.	41.		o [*]	ស្ន	0	-	0		•	_	•	0
_	•	22.	37.		11.	ů.	1:	7	•		_	•	•	0
_	•	20.	36.		14.	t •			0		_	_	•	0
	•	17.	35.		13.	ю •			0		_	-	•	0
	•0	18.	26.	27.	17.	•	3	8	1.	•	•	•	0	0
•	0	17.	22.		19.				8		-	o	•	0
•	1.	12.	16.		23.				-		_	1.	ô	0
•	2•	6	11.		18.	18.			ۍ د				-	0
•	E,	÷	N		13.		S						•	0
•	m •	œ M	•		11.				8		'n	e.	ċ	0
•		1:	0		**************************************		~		10.				_	0
•	2	+	ın		20.			7.	8				• •	0
•	H	6	34.		16.	•			-				-	0
3.	•	43.	41.		.	_			•				o	0
•	0	57.	36.		1.	•			0				_	0
•	1.	• 49	32.		H	+		•	•		•	•	ċ	0
•	1.	54.	39.		1.	-			•			°	_	0
•	1.	50.	39.		1.	°		•	0			•	_	0
•	1.	* † †	00			-		ပံ	•			•	_	0
•	7.	37.	25.	20.	13.	-		0	•		•	•	ċ	0
•	'n	28.	56.			• 9	•	•	0		ö	ċ	_	0
•	t	23.	28.			11.	t •	•	0	•	•	•	-	0

TABLE IV (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973

NOVEMBER

2150	00	• • c c	0	• • c o	•	• •		• 0	ċ	•0	ė	•	·	•	÷	ċ	• •	5 6	•	•	ô	ċ	ė	ċ	•	•
125 150	000	• • •	•	• • • •	0	• •	•	•	• •	0	• •	•	-	٠ «	8	•	•	• 6	•	•	•	•	ċ	•	•	•
.100 <125	00	• •	•	• •	0	• •	ô	0	°	•	•	m •	9	œ	တိ	ທີ່	•	• •		•	0	•	o	o	.	• •
4100 100	• •	• • • •	•	• •	0	• •	•	•	ċ	ċ	-	'n	9		ທໍ	÷	ဝ် ဝ	• •	•	•	•	ċ	•	G	(•
06 1 v	00	• •	0	• •	• 0	• •	•	ċ	•	ċ	34	t		11.		•9	'n.	• •	. 0	•	•	•	•	-	• •	t
5) 70 80 80	0 0	• • • •	0	• • • •	0	000	• •	0	•	'n.		10.			15.		• (• V C	•	•	0	•	1.	÷	'n,	• •
(KNOTS)	00	• •	0	• •	0	• •	-	2	ις •	•	•	10.	o 1		12.			0 M	0	0	•	1.	ત	7.	_	12.
SPEEn > 50 < 60	00	• • •	.	• • - -	1.	• • • •	t	7.	11.	11.	130	12.	13.	16.	15.	16.	25.	r C	•	0	1.	'n	7.	ຜ	<u>.</u>	•
WIND 40 50 50	00	• •	÷	, v	ю •	11.	14.	15.	12.	16.	16.	16.	15.	13.	14.	18	6	7.	M	6 0	ю.	•	7.	9	9	10.
0 14 0 14 0	0 0	œ m	• •	. 0	13.	20. 10.	20.	23.	2 5.	22.	5 0	14.	15.	6	10.	œ	12°		14	10.	7.	6	8	11.	16.	12.
00 21 30 00 00 00 00 00 00 00 00 00 00 00 00	• . ਜ ਜ\	11.	17.	, 6 0 0 0	33.	31. 11.	28.	26.	23.	21.	18	16.	• 0 1	٥	3 1	• (8 4	
> 10 < 20	18.	36.	455	46.	38.	31.	25.	19.	18.	10.	16.	6	ທ໌	m •	-	n i									20.	
* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	56.							æ	7.	÷	ů	å	-		•	• ••			25.						10.	ŝ
CALM	24.	• • •	•	• •	0	• • • •	•	0	• •	ċ	0	•	.	æ	8	• •				0	0	٥.	0	S,	ing (ດ
TOTAL OBS	348.	405. 405.	406.	407	408	#02 #0#	404	403.	403	405	391.	345.	322.	293.	233.	211.	193	150	148	143.	134.	130.	122.	112.	93.	.3.
GEOMETRIC ALTITUDE MSL FT,	4940°	000	000	000	100	000	400	500	000	800 9	000	500	000	500	000	500	000		500	000	500	000	500	000	9500	000

MELATIVE FREQUENCY MISTRIBUTION OF UPPER AIR SCALAR WIND SPEEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IV (CONT)

DECEMILER

<u>2</u> 150	c c c c c c c c c c c c c c c c c c c	•
125	000000000000000000000000000000000000000	
2100 4125		11.
100	+	7.
06	ононоосоорононо н	5
S) 	000000000000000000000000000000000000000	'n
(KN018	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.
SPFEN 150 60		
WIND 40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	'n
000		18.
>20 30		16.
10	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
110	00000000000000000000000000000000000000	· 2
CALIA	# m m m m m m m m m m m m m m m m m m m	લ
TOTAL OBS		92.
GEOMETPIC ALTITUDE MSL FT,	00000000000000000000000000000000000000	00

TABLE V

HPPLR AIR WIND DATA AT SELECTED (EVELS BY SEASONS STALLION SITE

PERIOD OF RECORD 1961-1973

WINTER

GEO ETRIC ALTITUDE MSL FEET	TOTAL OBS	MAXIMUS SPEED (KNOTS)	MINIMUM SPEED (KNOTS)	RESULT COMPONEN	TANT WIND (MTS (KNOTS)	RESULTANT DIRECTION (DEGREFS)	WIND SPEED (KNOTS)	SCALAK MEAN SPEED (KNOTS)	CONSTANCY (PERCENT)	STANDARD VECTOR DEVIATION (KNOTS)
	ľ	Š	•				?	: ;		
#	5	V.4.	•	•		3	·	ດໍ		• ,
0	1269.	24.	•0	•	•	3	2.	ů.		7.
0	56	37.	•	•	•	-	3.	Ġ		
0	1269.	63.	•0	•	-5.5	C	ຜ		tu.	
0	26	51.	1.	•	-7.A	Œ	8			15.
0	1274.	52.	•0	•	•				•09	16.
000	27	•09	ċ	3.3	-12.3	Œ	13.		65.	18.
100	1278.	•99	ċ	•	-14.7	Œ				19.
200	27	•99	°C	4.7	-17.0	Œ	18.			21.
1300	27	73.	:	•	•	Ø)	20.			23.
400	27	78.	٥.	•	•	Ø	21.		74.	24.
500	27	84.	٠ ښ	•	٠ ر	8	23.		74.	26.
6 00	1271.	0	0.		•	Œ	24.			28.
800	56	107.	0.	•	9	œ	27.			30.
000	22	119.	5 •	•	æ	1	29.			33.
500	13	164.	1.	•	9	1	36.			42.
000	03	202.	•0	•	3	~	43.			• 87
500	• 406	179.	•	•	•	~	50.			51.
000	813.	186.	Э.	٧.	9	~	57.			46.
500	722.	142.	•	÷.	3	_	53.			36.
000	628.	124.	•0	2	9	~	47.			30.
500	523.	107.	ນ•	•	6	~	39.			25.
000	489.	97.	•0	•		~	24.			21.
500	456.	112.	•0	2.8	•	8	15.			18.
000	414.	74.	1.	•	•	8	6			17.
500	396.	71.	•	•	•	σ	7.			18.
000	365.		•	•	-6.1	9	7.			22.
200	348.		٦.	•	•	Ø	•6			26.
00006	322.	95.		1.0		274.	13.	26.	40.	30.
500	304.		•0	n:	æ	9	16.			36.
00	239.	n	• 0	-1.3	-23.8	9	24.			42.

TABLE V (CONT)

HPPLP AIR WIND DATA AT SFLFCTEN FEVELS BY SEASONS

STALLION SITE

PEPIOD OF RECORD 1961-1973

SPRING

SEO ETRIC ALTITUDE MSL FEET	10TAL 08S	MAXIMUNI SPEED (KNOTS)	WINIMUM SPEED (KNOTS)	RESULTI COMPONENT +N -S	ANT WIND TS (KNOTS)	RESULTANT DIRECTION (DEGREFS)	WIND SPEED (KNOTS)	SCALAK MEAN SPEED (KNOTS)	CONSTANCY (PFRCENT)	STANDARD VECTOR DEVIATION (RNOTS)
・0カグゥ	30	33.	ċ	-1.1	-1.1	S	2.	7.	22.	9.
5000	55	32.	ċ	-1.1	-1.1	N	8.	7.	21.	•6
6000	55	32.	•0	-1.7	-2.k	*	· £	10.	31.	11.
7000.	S	41.	1.	-3.1	L. 4-	3	• 9	12.		13.
8000	55	46.		-3.5	7.9-	4	7.	14.	53.	14.
9000	55	54.	•0	-3.7	-8.2	ŧ	6	15.		15.
10000	55	58.	•0	-3.6		251.	11.	17.	.99	16.
100	54	63.	•0	-3.6	-12.6	S		19.	70.	17.
200	54	68.	•0	-3.7	-15,1	S		21.	74.	18.
13000.	1546.	•69	ċ	0.1-		257.	18.	23.	77.	20.
t 00	54	71.	°C	2.4-	•	S	20.	26.	78.	21.
15000.	53	81.	ċ	10.1-	•	5	22.	6.8	80.	23.
900	53	92.	•0	カ・カー		S		30.	81.	24.
800	52	91.	•	•	-	9		34.	82.	27.
000	40	0	•	•	1:	Φ		38.	84.	29.
200	37	3	30	•		5		48.	85.	
000	56	S	•0	•	-47.1	S		56.	87.	41.
35000.	1 C	175.	•0	•	-52,1	Q	53.	•09	88.	42.
000	J	2	•	9.6-	-53.7	9		•09	•06	
500	9	ŧ	•0	-9.5	σ.	S		54.	. 46	30.
000		0	•	•	-42.5	9	t J.	46.		24.
200	Ω	93.	•	•	-31.7	Q	32.	35.		22.
000	ው	82.	•	-3.8	-15.7	S	16.	20•		17.
65000	S	57.	•0	-1.6	-6.7	S	7.	13.	55.	14.
000	-	•09	•0	7	-1.1	3	1.	10.		13.
500	σ	52.	1.	8.	ro.	S	1.	11.	8	14.
80000	29	57.	1.	-1.0	o.	3	-	13.	11.	15.
200	M	61.	•0	1100	2.5	Œ	7.	13.	8	16.
00006	┥.	75.	•0	₹ •	さ・コー	247.	ູນ			18.
200	0	86.	ċ	-2.1		D	8	18.	45.	20.
100000	-	88.	•	-1.9	-12.3	9	12.	21.		23.

TABLE V (CONT)
UPPLP AIR WIND DATA AT SELFCTEN LEVELS BY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

SIMMER

GEOMETRIC ALTITUDE MSL FEET	TOTAL OBS	MAXIMUN SPEED (KNOTS)	MINIMUM SPEED (KNOTS)	RESULT COMPONEN	TANT WIND NTS (KNOTS)	RESULTANT DIRECTION (DEGREES)	#IND SPEED (KNOTS)	SCALAR MEAN SPEED (KNOTS)	CONSTANCY (PERCENT)	STANDARD VECTOR DEVIATIO
±	60	67.	• 0	1.1	~•	153.	• o	ů.	•	7.
0	16	.99	ċ	5	٥.	U.	1.	· C	10.	7.
	16	47.	0.	•	7.1	J		. ~	17.	80
0	16	36.	0.	-2.7	-1.6	-	'n		38.	6
	16	34.	ċ	•	-2.5	N	t	•	43.	10.
9000	9	36.	ů	•	-2.7	227.	t	•6	38.	10.
000	17	40.	•0	-2.0	-2.8	3	ຶ້	10.	35.	11.
100	17	* 7 7	1:	-1.7	•	3	, en		31.	12.
200	17	50.	ċ	-1.6	-2.7	す	'n	11.	28.	13.
1300	17	51.	ċ	-1.6	•	3	'n	12.	25.	14.
400	17	4.8.	1.	•	•	n	'n	13.	23.	15.
200	17	50.	0	•	-2.5	3	J.		24.	16.
009	17	50.	•0	•	•	P	t.		24.	17.
800	16	61.	•0	•	-3.6	3	t t		28.	18.
000	1	67.	•0	•	8.1-	t	2°	15.	35.	18,
200	07	. 49	0	•	-	SO.	8	18.	* † †	20.
000	0	79.	•0	-3.0	-10.2	S	11.	22.	48.	24.
500	Ø ,	96	•0	•		9	13.	26.	50.	28.
000	9	102.	٠ ن	6:	ŝ	9	16.	29.	53.	31.
500	8	85.	•	•	÷	9		27.	54.	
000	M (79.	•	•	8	9	.	19.	t3°	22.
500	S	46.	1.	-2.5	α ,	-	۶,	12.	18.	14.
000	S	45.	ن.	-1.9		102.	6	12.	73.	10.
500	30	47.	•	-1.2	8	95.		16.	94.	•6
000	S	38.	•0	7.6	8	• 76		19.	97.	8.
200	3	45.	•0	9:-		92.		23.	98.	8.
000	S	47.	•	-1.3		93.		26.	98.	80
200	0	51.	•	ا س		91.		28.	•66	•6
000		56.	· t	6:		92.		30.	98•	11.
95000.	339.	57.	•0	-1.0	32.0	92.	32.	33.	98.	11.
000	9	61.	•	•		• 776			98.	12.

TABLE V (CONT)

UPPLY AIR WIND DATA AT SELECTED (EVELS BY SEASONS STALLION SITE

PERIOD OF RECORD 1961-1973

FALL

-1.2 - 3.2 - 249. 1. 3. 10. 33. 12. 14 1.1. 264. 1. 3. 10. 33. 12. 12. 14. 1. 3. 11. 12. 14. 14. 15. 12. 14. 14. 15. 12. 14. 15. 15. 16. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16	MAXIMUN SPEEU (KNOTS) 56.
10.1	· · ·
2.6	
.2 -15.1 271. 15. 23. 65. 28. .3 -17.1 272. 17. 26. 66. 28. .4 -24.1 269. 24. 34. 70. 33. 1.4 -26.3 26. 24. 36. 66. 26. 2.2 -37.1 267. 44. 53. 48. 77. 41. 2.6 -44.0 267. 44. 53. 49. 83. 39. 2.0 -33.2 267. 44. 53. 38. 88. 25. -9 -21.4 268. 9. 15. 38. 84. 25. -9 -21.4 268. 9. 15. 34. 16. -9 -4.1 268. 4. 15. 5. 16. -9 -6.5 1. 1. 16. 17. 16. -9 -7 301. 1. 16. 27. 265. 39. 27. -7 -9 -6 26.	• • • c c o
1.4 -24,1 269, 24, 34, 70, 33 1.4 -30,3 267, 37, 48, 77, 41 2.6 -44,0 267, 44, 49, 83, 34 2.6 -44,0 267, 44, 49, 83, 34 2.0 -43,1 267, 43, 49, 84, 33, 34, 34, 33, 34, 34, 34, 30, 30, 30, 30, 30 2.0 -33,2 267, 43, 49, 84, 83, 34, 30, 30, 30, 30, 30, 30, 30 2.0 -33,2 268, 20, 34, 34, 34, 30, 30, 30, 30, 30, 30, 30 2.0 -34,0 268, 40, 40, 12, 13, 25, 30, 30, 30, 30, 30	000
2.6 -44.0 267. 44. 53. 83. 33. 33. 25. 25. 25. 267. 43. 49. 87. 33. 25. 267. 25. 268. 25. 268. 27. 25. 268. 9. 15. 25. 84. 25. 268. 9. 15. 25. 34. 15. 25. 34. 15. 25. 34. 15. 25. 34. 15. 25. 34. 15. 25. 34. 15. 25. 35. 35. 35. 35. 35. 35. 35. 35. 35. 3	
9 -21.4 268. 21. 25. 84. 2 3 -8.9 268. 9. 15. 59. 1 4 1.2 254. 4. 12. 34. 1 .5 -1.0 297. 1. 12. 10. 1 .6 65. 1. 13. 5. 1 .7 301. 1. 15. 5. 1 .8 -2.4 276. 2. 17. 15. 2 5 -5.7 265. 6. 20. 29. 2 7 -9.6 260. 10. 25. 39.	0 00
.5 -1.0 297. 1. 12. 10. 1. 13. 5. 1. 1. 13. 5. 1. 1. 15. 5. 1. 15. 5. 1. 15. 5. 1. 15. 5. 1. 15. 20. 29. 22. 39. 25. 39. 3	•••
.2 -2.4 276. 2. 17. 15. 2 5 -5.7 265. 6. 20. 29. 2 7 -8.5 265. 9. 22. 39. 2 1.7 -9.6 260. 10. 25. 39.	000
	0000

RELATIVE FREQUENCY PISTRIBUTION OF UPPER AIR WING DIMECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE VI

*INTER

	CALM,		~			°																						Ö	o	•	.	-
	_330 -360					14.												œ		ഹ് .	÷	'n	'n	ø	c,	6	8	÷	÷	'n	ດ	*
	330	-	7.	ŝ		21.					σ	Ø		8								n		Õ		-	6	6	•	'	t	8
	300	ů.	ς,	7.	10.	11.	15.	19.	25.	24.	25.	5 6•	26.	56 •	26.	25.	24.	24.	25.	ŧ	36.		-	32.	o	ຽນ	-	25.	25.	23.	24.	21.
EES	270	æ.	t																0		Ø				ŧ					23.		
<u> </u>	210	٥	•			17.											11.				Φ.	7.	លំ	φ.	۲.	ထိ	• ‡	‡	÷	9	2	÷
T10N	180 >	6	10.		÷	8	2.	٠.	٠ <u>.</u>	;;	Ň	8	ъ.	<u>ب</u>	ત	8	8	8	1.	•	•	•	-	8	જ	N.	ю •	-	٠ ،	8	•	ď
01	150 180	9	'n.	٥,	5.	8	۲,	Ŋ	۵,	-	1.	1.	-	ċ	0	c	0	•	•	•	·	0	0	1.	۲.	۲,	2	-	1.	.	8	•
NIM	120	γ,	+	۲,	1.	-	1.		1.	1.	1.	1.	1.	1.	•	•	0	•	•	•	•	•	•	•	•	1.	ر.	٧,	ю •	ດ .	т •	ď
	<u>.</u> 90 ∈ 12n	1.	-	•	-	-	1.	-		- -	<u>-</u>	-	1.	.	1.	1,	1.	1.	-	•	°	°	°	°	1.	.	ທໍ	ນ້	•	91		ທໍ
	06	2.	3.	t	2	8	8	8	2	'n	ď	1.	1.	1,	1.	.	;	1.	ď	1.	0	0	•	-	'n					15.		
	130 150 150	•9	5	ູນ	t	t.	4.	ъ.	ь.	J.	ď					Э.	۲,		8	٦.	1.	1.	0	-		•			10.	6	t	ည
	7.360 3.30			10.		5	t.	.	5	÷	.	.	.	t	5	.	.	ţ.	t.	1.		0	1.	۵,	t.	7.	8	•	.	r,	t	e.
	TOTAL OBS	07	26	26	26	9	27	27	27	27	27	27	27	27	26	22	13	03	0	-	S	S	CJ	8	2	•	9	9	t	322.	0	3
EOME	ALTITUDE NSL FT,	94	00	000	00	00	00	000	100	200	300	004	500	900	800	000	500	000	500	000	F 7.3	000	500	000	500	000	500	000	500	.00006	200	000

PELATIVE FREQUENCY DISTRI_bution of upper air wind difections at selected levels (in Per Cent) Stallion site Period of Pecord 1961-1973 TABLE VI (CONT)

SPRING

CALM.	0000000400400040004000
340 360 8 8 11. 12.	ว ส ส ส ส น น น พ พ พ ค ค ค พ พ พ ส พ พ ค ผ ผ ผ พ พ ค ค ค ค ค ค ค ค ค ค ค ผ ผ
1330 330 1330 110 120 133	1111 100000 100000 100000 100000 100000 100000 100000 100000 100000
270 300 3. 4. 6. 8. 8. 111.	20. 20. 20. 20. 22. 22. 22. 24. 11. 10.
REES) 240 270 10. 10.	24 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CCE Canatagone CCE	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1180 1180 1180 1180 1180 1180 1180	000000000000000000000000000000000000000
0 01 HE 1 150 1 20 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
150 NO	+4400000000000000000000000000000000000
600 004000 600 004000	
000 440000HHHH	44044444444444444444444444444444444444
was roammand	44444460000446
11. 10. 10. 74. 88.	, , , , , , , , , , , , , , , , , , ,
	1543. 1543. 1539. 1525. 1480. 1372. 1015. 844. 766. 670. 670. 452. 418. 339. 339. 280.
OMETRIC TITUDE L FT, 4940. 5000. 7000. 9000. 1000.	14000. 15000. 16000. 20000. 25000. 35000. 45000. 55000. 55000. 55000. 75000. 85000.

PELAIIVE FREQUENCY DISTRIBUTION OF UPPER AIR WIND PIPECTIONS AT SELECTED LEVELS (IN PEP CENT)

STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE VI (CONT)

SLIMMER

	CALM		21.			1.	0	0	o	o	ວ	o	•	o	o	o	0	o	ċ	-	- i	·	ċ	Ö	<u>ਜ</u>	ċ	·	ċ	o	ċ	ċ	-i -	• !
	2330	S,	•	6	10.	æ	,	7.	•	80	80	80	7.	7.	7.	7.	•	7.		6			7.	.	-	•	•	•	•	•	•	• c	•
	300	55	2.	3.	•	• 9	•	9.	0	10.	6	6	8	7.	•	7.	8				10.		8	ۍ ک	8		•		ċ	ċ	•	•	>
	270	30	8	۲,	7.	ς. Σ	7.	7.	2 0	8	6	&	7	7.	7.	80	80				13.			•	-	°	o	o	•	ċ	ċ	000	,
ES	< 042 ·	2/0	.	t	2	7.	æ											17.							-	•	0	o	•	•	•	•	•
()	2210	240	6	6	6													16.						6	3.	•	•	•	•	•	•	•	•
CTIONS	180	10	15.	15.	18.	21.	20.	17.	14.	11.	10.	10.	6	8	6	6	6	6	10.	8	•	7.	•	8	Ş.	•	• 0	0	•	•	•	•	•
DIRE	150	x -		80		11.	-	σ		ď	ģ	ທີ	ល	ĸ.		9					_	_	_	œ	_	۲.	7	0	•	•	•	•	•
ZIS	120	r.	ţ.	ŧ	ູນ	• 9	ຶ້ນ	δ.	ŧ	S	•	•	•	7.	•9	ຜ	S.	.	.	'n	e N	Ю.	ູນ	6	13.		ູນ	e,	ď		-	ณ ๋ ก	i
	06	V	ţ	.	æ	ູນ	ູນ	ຜ	ູນ	ស	•	7.	ထ	80	۲.	7.	ທີ	ທີ	•	ທໍ	.	.	• •									59.	
	09.	עכ	ţ.	t t	6	ۍ .	ŧ	ţ.	•	7.	&	_			11.			2•	\$	÷	'n	m •	က်									37.	
	30	09	10.	6	7.	#	t t	ŧ.	ŧ.	ູນ	•	9	•	7.	7.	8	7.	8	•	5.	ູນ	•	.	80	80	'n	1.	•	•	6	°.	• •	•
	× 360	030 0		10.	30	S.	5.	•9	7.	•9	•9	7.	8	8	7.	•9	•9	•	7.	.	•9	7.	7.	•	2.	1.	0	•	•0	•	•	.	•
	TOTAL	\mathbf{x}	60	16	16	16	16	16	17	17	17	17	17	17	17	16	7,7	~	01	0	O	Φ.	m	D.	N	0	S	M	S	0	_	339.	•
GEOMETRIC	ALTITUDE	WSL FI.	94	00	00	00	00	00	000	100	200	300	004	500	009	800	نان	500	000	500	000	500	000	500	000	500	000	200	000	500	000	95000.	

RELATIVE FREQUENCY DISTRI_BUTION OF UPPER AIR WIND DIRECTIONS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE VI (CONT)

FALL

CALM,			25.	-	·	·	0	o	o	o	o	o	o	o	o	o	o		Ŧ	~	o	- i		o	·	o	·	-	-	<u>.</u>	ai	'n
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, ה	c	13.		14.	11.	11.	6	6	ထ	6	11.	12.	11.	11.	6	ဆိ		ທີ	ហំ	'n	'n	ທ໌	œ	æ	ທີ	÷	ທໍ	'n	ที	3	ď
90K -	0	Ň	<u>س</u>		3	12.	14.	15.	14.	S	m	13.	-	11.	-	N	3	S	$\boldsymbol{\sigma}$	10.	8	σ	-4							9	ĸ.	ب
270	2	N	ď		• 9	80	11.	13.	14.	16.	18.	17.	18.	17.	17.	18.	19.	21.	25.	<u> </u>	33.	31.	29.	18.	15.	14.	13.	12.	16.	15.	20.	19.
EES)	•	ŧ	t	ŧ	6	N	t	15.	20.	21.	22.	22.	22.	24.	24.	25.	25.	26.	S	~	0	0 7	à	19.	15.	11.	13.	~	16.	23.	21.	23.
CDEGREI 210) (2	6					19.																			2	÷	t	ď	ທ໌	m m
CT10NS	u ·						13.	10.	89	7.	-	_	ç Ç	ů.	t t	•	_	Š.	3.	∾	ď	ď	٠ د	ů,	Ş.	÷	t	-	å	60	8	ţ.
150	<u>-</u>	٠ •	5.	'n.	7.	ហ	t	t.	t.	3	ĸ,	۶.	٦.	%	2.	۲,	1.	1.		•					ţ.	2	۶,	۲,	۲,	e N	٠,	۲,
WIND 120	0.1	N.	۲,	'n	'n	٥,	ď	8	œ	ъ	ъ.	3.	۵,	۲,	۵,	.	1.	-	•	-	•	•	1.	ъ.	•	8	•	•	ູນ	÷	e P	•
06	U	N	۲,	9	2	۵,	8	۲,	1.	۵,	ď	ď	۸.	e.	-	-	۲.	1.	°	•	•	°	-	.	11.	11.	16.	18.	17.	17.	16.	17.
9	N L	٠ ۵	ۍ.	8	ţ.	3.	3.	3.	2•	2	, N	2.	۲,	۲,	;	1:	.	1.	1.	1.	•	•	•	<u>ئ</u>	7.					16.		
087	C	.0.	6 0	•	• t	t	t.	ţ.	'n	t t	w •	'n	ດໍ	<u>ښ</u>	۶.	8	۵,	۵,			0	1.				• 9		9	•	t t	t t	e und
. 360	ו כ		14.	8	9.	2°	t t	t t	5.	t	t.	2	ຜ	2.	•	7.	•	ຂໍ	2.	'n	w •	8	٥,	ູນ	5.	2.	ວ		t t	8	'n	۶.
TOTAL		0.3	18	18	18	18	19	1190.	19	18	18	18	18	18	17	16	90	01	87	~	00	61	0	S	2	0	~	Ω	3	(T)	ŧ	9
GEO: JETRIC ALTITUDE	- (L	740	00	00	00	00	00	10000	100	200	300	004	500	900	800	000	500	000	500	000	500	000	500	000	5000	000	2000	0000	5000	00	500	000

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR SCALAR WIND SPEEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE VII

WINTER

GEOMETRIC							-		(KNOT	S.)					
ALTITUDE MSL FT,	TUTAL 08S	CALM	1 <u>1</u> 1	≥ 10 < 20	.20 < 30	0.5	40	20	09 7	70 - 70 - 80	067 790	$\frac{90}{100}$	125	×125 150	× 150
t	67	31.			1.	0		-	0	0	°C	0	0	0	Ċ
00	Ω		55.	18.		ئ		0		0		0		0	0
00	56	• •			ţ.	• ت	0	0		0		•	0	•	ċ
00	26	•			12.	8		0	•	0		•	0	• •	0
00	26	0			19.	.				0	ċ	•	0	•	•
00	27	0			25.		+	ċ	0	0		•	0	0	·
000	27	•			31,		ъ.	1.	0	•	ŏ	•	0	• •	•
100	27	0			34.		S.	1.	•	•	•	•	•	0	•
200	27	0			31.			€0	-	•	ċ	•	0	0	•
1300	27	• ၁	σ.		31.				2.	•	•	•	•	•	ò
400	27	0	æ		29.		-		8	1.	0	•	0	•	ċ
500	27	•	7.		27.		m			1.	ċ	•		ċ	ċ
000	27	0	7.		25.		4	~		۲,		•		•	0
900	56	0	ů,		25.	23.	15.		•	ŧ	8	ċ		•	ċ
000	22	0	t t		18.		9	-	9	ۍ ک		1:		ċ	ċ
200	13	0	8	æ	15.	9		m	-	•		m m		ċ	ċ
000	03	0	3.	Ġ	12.	N		-	N	8		•		2	ċ
500	0	8	2•		6			0	-	0		•		ŧ	-
000	-	•	.	ю •	•	σ		N	13.	14.		6		m •	-
500	S	0	-		in.			~	S	4		•		•	ċ
000	S	•	1:	t	8			0	~	~ 4	4	ď		•	ċ
500	S	•	5	7.	16.			S		•		.		•	ò
000	0	•	æ	25,	28.		8	9		1.		•		•	ċ
500	S		N	38.	23.		2.			•		•			ċ
000	-	0	M	38.	19.	7.	.			0		•			•
500	9	0	34.	œ	17.	•	3			•		•			ċ
000	9	ô	26.	38.	19.	10.	ţ.			•0		•			ċ
500	ŧ	0	24•	0	19.	14.	7.			0		-			•
000	N	•	17.	30.	17.	15.			ŧ	8	:	7:			ò
95000	304.	0.	11.	26.	19.	13.	11.	7.	e,	٠ د	÷	8	-	•	ċ
000	10	T	80	19.	16.	19.	8		7.	'n	S.	E			ċ

TABLE VII (CONT)

RELATIVE FREQUENCY DISTRIBUTION OF UPPER ALA SCALAR WIND SPEEDS AT SELECTED LEVELS (IN PER CENT)

STALLION SITE
PERIOD OF RECORD 1961-1973

SPRING

× 150		• • • •
125	000000000000000000000000000000000000000	• •
100 125	000000000000000000000000000000000000000	• •
190 100		• •
06	000000000000000000000000000000000000000	• •
5) -70 -80		••
(KN015		 o a
SPFEn 50 60		• • • •
WIND 40	••••••••••••••••••••••••••••••••••••••	7.0
00		11.
20	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10		34.
51 <u>5</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18°
CALM	4 d d d d d d d d d d d d d d d d d d d	พ.
TOTAL		∞ ⊣
GEOMETRIC ALTITUDE MSL FT,	29 29 29 29 29 29 29 29 29 29	000

TABLE VII (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR SCALAR WIND SPEEDS AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973

SUMMER

. 150	• • • • c c c			• • • •	•	• •		• 0	• •		•	•	• • • •	ò	ċ	ċ	ċ	ċ	ċ	•	ċ	•	•
125	000	000	•••	• •	•	• •		0	• •	•	•	•	• •	•	•	•	•	•	Ġ	ċ	•	°	•
125	000	00	••	00	•	• •	•	•	• •	•	•	• o	• •	•	ò	•	•	°.	•	•	0	o	0
90	000		••	• •	•	• •	•	0	•		•	င်	• •	ċ	•	•	ċ	°	•	ċ	•	•	•
06 / -	000	 	00	• • •	•	• •	•	·	• •		•	7		•	ċ	•	ċ	÷	•	•	•	•	ô
70	000		00	000	•	o c	• • • ɔ	0	•	• •	8	٠ د	- 0	•	•	•	• n	•	•	•	0	•	•
(KN075)	200		••	000	•	• •	•	0	•	• •	2	ທ໌.	•	•	•	•	•	•	•	•	•	•	-
SPFEn - 1.50 - 60	000	00		• •	•	000		•	• F	, io	5	۲.	ů m		0	•	0	•	•	•		8	
× IND 140 50		000	00	0 0		. .	, c	i M	. 4 . 4	9	10.		10.	•	•	•	0	•	-		15.		
0 k / /	000	 		- • •	0	ນໍ້ນ	, v	9	۰ د				- 2 			1.					41.		
30	004	່ສຸທ	• •			11.																	
210 20	16. 16.																					æ	ທໍ
101	63. 64.	\$ 0	58. 55.	51.	43.	4 to	32.	31.	32.	18.	11.	10.	25.	39.	31.	15.	7.	å	۲,	ю •	8		ئ
CAL	21,	: - :	00	• •	• • • •	0 0		0	• •	• •	1.	.	• • • •	• 0	1.	0	0	•	0	•	•	1.	-
TOTAL OBS	1090. 1162.	16 16	16 17	17	17	17	17	16	140	50	88	9	10 M	2	N	8	S	3	S	0	~	M	9
GEOMETRIC ALTITUDE MSL FT,	4940. 5000.	000	900	000	300	1500	0000	800	000	000	500	000	500	500	000	500	000	200	000	200	000	200	000

TABLE VII (CONT)

HELATIVE FREQUENCY DISTRIPUTION OF UPPER AIR SCALAR WIND SPLEDS AT SELECTED LEVELS (IN PER CENT)

STALLION SITE
PERIOD OF RECORD 1961-1973

FALL

>150		, >
×125 ×150		•
×100 ×125		•
×1×		,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		4
5) × 170 × 80		•
4KN0TS) - 60 < 70	000000000000000000000000000000000000000	•
SPEED 250 660	000000000000000000000000000000000000000)
VIND VIV VIV VIV		•
0000		
× 30	SERVICE TO THE TENTE OF THE TEN	
× 10 × 20		
×10	10 00 00 00 00 00 00 00 00 00 00 00 00 0	
CALM		•
TOTAL	11111111111111111111111111111111111111	• ^ '
GEOMETRIC ALTITUDE MSL FT,	61	•

ATMOSPHERIC STRUCTURE REPORT

STALLION SITE

SECTION I

UPPER AIR TEMPERATURE DATA

By N	iont	<u>hs</u>	Page
Table VII	Π.	Mean and Extreme Upper Air Temperatures (°Celsius) at Selected Levels	63
Table I	IX.	Relative Frequency Distribution of Upper Air Temperatures at Selected Levels (In Per Cent)	75
By S	Seas	ons	
Table	х.	Mean and Extreme Upper Air Temperatures (°Celsius) at Selected Levels	99

MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGREES CELSIUS) AT SELECTED LEVELS BY MONTHS STALLION SITE PERIOD OF RECORD 1961-1973 TABLE VIII

JANUARY

MINIMUM			-21.		-17.	-19.	-20.	-50.	-21.	-23.	-25.	-27.	-29.	-31.	-33	30.00	-47	75		. 40	-00-		0 0	0 0 0		-75.	-69-	·6y-	-03.	-64.	-60.	.56	(i)
MEAN	ų	• n	ດ :	•	ຳ	· ·	• •	-	-3.	. + -	-6.		-10.		-16.	-21.	3.5	- 11	- 17 B	1 1 C	0.4	- 64	- 70	• 50 1	• • • •	-0%	-60	-58.	-56.	-54.	-52.	-50.	-48.
MAXIMUM	a +	•	17.	• 5		11.	• 0	• •	ŗ,	ė	ا ئ ە	3.	•	-2.	-6.	-6-	-22.	-34	-63	77-	-67	0.00		170	- M) (-51.	-20	-47.	-46.	-45.	-39.	
TOTAL OBSERVATIONS		-		-	417		4 -	4 -	011	• 0 4 5	0 7 7	07:	410.	415.	411.	394.	361.	338.	298.	274.	248.	213.	179.	164.		1001		13/	121.		102.		
GEOMETRIC ALTITUDE MSL FEET	4940.	00	6000	7000.	8000	9000	10000	10	20	13000	14000	15000	00001	19000	18000	20000	25000.	30000.	35000.	40000	45000.	50000.	55000.	£0000°	65000.	70000	0000	• 0000	• 0000	.0000	.0000	۸. ۵	100000

MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGREES CELSIUS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE VIII (CONT)

FEBRUARY

MINIM	-12.	•	-14.	-16.		-17.	-18.	-21.	-54.	-56.	-28.	-31.	-36.	-04-	-47.	-53.	-61.	-69-	-72.	-71.	-74.	-72.	-71.	-69.	-99-	-65.	-66.	-64.	-28	
MEAN	7.		3.		-1-	-2.	- 7-	•9•	-8-	-10.	-11.	-13.	-18.	-22.	-33.	- + + -	-53.	-56.	-57.	-62.	-64.	-49-	-62.	-60	-58.	-56.	-54.	-51.	-48.	-45.
MAXIMUM	25.	21.	18.	15.	12.	10.	. 6	•9	t.	'n	;	0	- 5	-10,	-21.	-33.	-35.	-63.	-48.	-52.	-52.	-54.	-55.	-53.	-55.	-64-	-46.	- 11-		-36.
TOTAL OBSERVATIONS	365. 473.	473.	473.	470.	470.	470.	. 69 .	468.	468.	466.	#9#	465.	462.	450	408	371.	319.	289.	258.	225,	187.	171.	152.	127.	118.	108.	105.	98.	91.	•69
GEOMETRIC ALTITUDE MSL FEET	4940.	6000	7000.	8000	.0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000.	35000.	*00007	45000.	50000.	55000.	. 00 0 09	6 5000.	000	200	0	200	000	200	

TABLE VIII (CONT)

MEAN AND EXTREME UPPER AIR TEMPEPATURES (DEGREES CELSIUS)
AT SELECTED LEVELS RY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

MARCH

MOMINIE	5 6 6	111.	119.		1653. 168. 179.	1771 170 170 170 170 170 170 170 170 170
MEAN	10. 10. 7.	្នំ ÷ ÷ ÷		1111 200 200 200 200 200 200 200 200 200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MAXIMUM	22.0 24.0	20.	7 0 0	00000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TOTAL OBSERVATIONS	388. 482. 483.	4 4 8 3	1440 1440 1440 1440	12449 12449	416. 377. 313. 232.	169 1131 105 105 62
GEOMETRIC ALTITUDE MSL FEET	4940. 5000. 6000.	7000. 8000. 9000.	10000. 110000. 12000.	14000. 15000. 16000. 18600. 20000.	25000. 30000. 35000. 45000. 50000.	55000. 60000. 70000. 75000. 80000. 95000.

THE AND EXTREME UPPER AIR TEMPEPATURES (DEGREES CELSIUS)
AI SELECTED LEVELS BY WORTHS
STALLIOM SITE
PERIOD OF PECCRD 1961-1973

APPIL

NOWINIW		
KEAN		1 60 1 57 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MAXIMUM	1 1 4 0 10 10 10 10 10 10 10 10 10 10 10 10 1	
TOTAL OBSERVATIONS		158. 139. 116. 116. 74.
GEOMETRIC ALTITUDE MSL FEET	#940. \$0000. \$0000. 10000. 12000. 18000. 18000. 35000. \$5000. \$5000.	65000. 70000. 75000. 80000. 95000.

MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGRÉES CELSIUS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE VIII (CONT)

MAY

MINIMOM	2.	3.	2.	-1:	-3.	-6-	-8-	-10.	-13.	-15.	-17.	-21.	-23.	-26.	-30.	-37.	-47.	-57.	-64	-69-	-71.	-74.	-71.	-60-	-61.	-58	-52.	-53.	-20•	-48.	-45
NE AN	21.		17.	15.		10.	8.	5.	ۍ. د	•	-2.	- 4-	-9-	-11.	-15.	-26.	-38.	-20.	-58.	-60•	-62.	-63.	-63.	-60.	-57.	-24.	-51.	-48.	-45.	-45,	-40
MAXIMUM	33.	33.	30.	26.	23.	20.	16.	14.	10.	7.	Ŋ.	.	7.	- +-	.6-	-19.	-31.	* 11-	-50.	-53.	-54.	-52.	-57.	-55.	-52.	-20	-47.	-45.	-60	-35.	-33.
TOTAL OBSERVATIONS	413.	462.	462.	462.	462.	462.	462.	459.	457.	455.	453.	450.	.644	445.	435.	419.	386.	307.	263.	248.	222.	181.	169.	151.	139.	129.	124.	119.	113.	97.	74.
GEOMETRIC ALTITUDE MSL FEET	.0464	00	0	7000.	8000°	.0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000.	35000.	40000	45000.	50000	55000.	.00009	65000.	70000.	75000.	80000	85000.	•00006	95000.	000

MEAN AND EXTREME UPPER AIM TEMPERATURES (DEGREES CELSIUS)
AT SELECTED LEVELS BY MONTHS
STALLIGH SITE
PERIOD OF RECORD 1961-1973

11.1

MINIMUM		12.	12.	13.		•	•	ا م	3.	0 (-3.	-2·	-9-	-8-	6-	1.		act		• • • • • • • • • • • • • • • • • • •	-10-	• 60	• n		-74.	-69-	-65.	-60	-56.	77	1	- 25	-51.	•64-	-46.
MEAN	į	. C.	25.	22.	19.		• u	• • • •	77.	• 0 •	• (ດໍ່	'n,	•0	-2.	-7-	-11			-44	. ער ער	• • • • •	• 10-		-67.	-64.	-28	-56.	-53.	-50	-47	į	· C +	-42.	-39.
MAXIMUM	i,		000	34.	30.	27.	24.		• 1 2			• •	.	ċ	.	-0-	-4-	-10.	-22.	-34.	57-	- F.	100		001	. 28.	-55.	-51.	-64-	-45	-42.		000		-31.
TOTAL CHSERVATIONS	320.	351		. 205	351.	352.	351.	352	101	351	075	, cc	9456	• • • • • • • • • • • • • • • • • • • •	347.	9446	338.	317.	297.	247.	213,	195.	185.	169) (? (c) H	7 1	131.	N	S	116,	•	10		
GEOMETRIC ALTITUDE MSL FEET	.0464	5000	6000		.000	8000.	.0006	10000	11000	12000.	13000.	14000	15000	14000	0000	19000	20000	25000.	30000	35000.	40000	45000.	50000	55000.	60000	65000	00000	0000	.0000	.0000	85000.	•00006	95006	000001	_

TABLE VILL (CONT)

MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGREES CELSIUS)

AT SELECTED LEVELS BY MONTHS

STALLIOM SITE

PERIOD OF RECORD 1961-1973

JULY

MEAN MINIMUM	26. 17.	26. 17.	23. 15.	21. 13.	19. 11.	16. 9.	•	12. 3.	.0	•	5. 1.		•	•	81	17.	•	•	-5256.	•			7	9	•	53.	-5		-4551.		-40.
MAXIMUM		•	•	•	•	54.	21.	18.	16.	13.	10.	7.	5.	•	•			•					-29.			•	-45.	•	•	7.	-34.
TOTAL OBSERVATIONS	320.	356.	356.	350.	351.	351.	351.	424.	354.	354.	354.	353.	352.	350.	345.	317.	297.	261.	221.	196.	185.	162.	153.	141.	135.	129.	127.	119,	113.	107.	97.
GEUMETRIC ALTITUDE MSL FEET	*0767	5000.	6000	7000.	8000.	•0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000.	35000.	40000	45000.	50000.	55000.	. 0000 9	65000.	70000	75000.	80000.	50	.00006	50	100000.

FABLE VITE (CONT)
MEAN AND EXTREME UPPER AIM TEMPERATURES (DEGREES CELSIUS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECCRD 1961-1973

AUGUST

	15.	14.	22. 14.	20. 12.		.8.	•	•	ь.	6.	41.	2.	-0-	.61	-812.	•						•	9-		•	•	•	•	.656.	.949.	.146.
E	5.	5.	32.	• 0	•9	3.	1.	7.	•	12,	10.	8.		•			-232			-5662	•		•					•	9404-	-3743	-374
101AL OBSERVATIONS	355.	384.	384.	385.	385.	385.	384.	384.	384.	385.	385.	384.	382.	378.	375.	358.	344.	308.	277.	242.	220.	195.	183.	175.	165.	158.	151.	147.	131.		102.
GEOMETRIC ALTITUDE MSL FEET	4940.	5000.	.0009	7009.	8000.	. 0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000	3500U.	+00000	45000.	.00008	55000.	60000,	65000.	70000	75000,	80000.	85000.	•00006	200	100000.

TABLE VIII (CONT)

MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGREES CELSIUS) AT SELECTED LEVELS BY MONTHS STALLION SITE PERIOD OF PECORD 1961-1973

SEPTEMBER

MINIM	7.	8	8	•	÷	1.	0	-3.	-5-	-6.	-8-	-10.	-13.	-18.	-22.	-33.	-45.	· 64-	-60	-65.	- 44 -	-76.	-70.	-65.	-63.	-58	-55.	-52.	-51.	-64-	-48.
MEAN	22.	21.	19.	17.	14.	12.	10.	ф	5.	3.	+	-1:	-2.	-9-	-10.	-20.	-32.	-43.	-53.	-61.	-68.	-69-	-65.	-60	-57.	-54.	-51.	-61-	-47.	-45.	-45.
MAXIMUM	33.	33.	29.	26.	23.	20.	17.	14.	11.	a 0	• 9	ţ.	۲,	•	1	-15.	-25.	-37.	-47.	-53.	-58.	-58°	-55.	-54 •	-51.	-64-	-47.	-45.	-45.		-36.
TOTAL OBSERVATIONS	322.	364.	363.	364,	364.	365.	364.	363.	363.	363.	363.	362.	362.	361.	359.	346.	326.	278.	253.	232.	219.	196.	184.	174.	163.	156.	150.	142.	131.		102.
GEOMETRIC ALIITUDE MSL FEET	*0464	2000	•0009	7000.	8000	.0000	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000-	25000.	30000	35000.	+ 0000	45000.	20000	55000.	.00009	65000.	70000.	500	80000	85000.	000	200	100000.

MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGREES CELSIUS)
AT SPLECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973 AND THE COMPANIE

OCTOBER

MUMBER	1.	0	 	-5-	- 5.	-7-	·6-	-11.	-13.	-15.	-18.	-20.	-19.	-23.	-27.	-31.	- 11-	-55.	-64.	-71.	-73.	-75.	-71.	-68.	-63.	-29.	-57.	-55.	-53.	-52.	-51.
MEAN	17.	17.	15.	13.		* * *	7.	ខ	3.	1.	-1.	-3.		-8-	-13.	-54.	-36.	-47.	-55.	-62.	-67.	-68.	-65.	-61.	-58	-55.	-53.	-50.	-61-	-47.	-45.
MAXIMUM	29.	28.	25.	23.	20.	17.	14.	11.	10.	6	7.	5.	e (%	-2.	<u>.</u> 5.	-16.	-27.	-38.	-47.	-20	-56.	-57.	-58	-55.	-53.	-20	-48.	-45.	- + + -	-41.	-40.
TOTAL OBSERVATIONS	367.	417.	417.	416.	417.	418.	418.	418.	418.	418.	417.	416.	414.	413.	410.	388.	362.	314.	288.	255.	247.	219,	210.	201.	195.	185.	175.	165.	152.	134.	115.
GEOMETRIC ALTITUDE MSL FEET	*0464	5000	6000	7000.	. HOOO.	•0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000.	35000.	*0000	45000.	50000.	55000.	•00009	65000.	70000	75000.	80000.	85000.	.00006	.00086	000

TABLE VIII (CONT)

MEAND EXTREME UPPER AIR TEMPERATURES (DEGRÉES CELSIUS) AT SELECTED LEVELS BY MONTHS STALLION SITE PERIOD OF PECORD 1961-1973

NOVEMBER

MINIMUM	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MEAN	111 111 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	62. 158. 153. 148.
MAXIMUM		
TOTAL OBSERVATIONS	10000000000000000000000000000000000000	148. 1128. 1128. 113.
GEOMETRIC ALTITUDE MSL FEET	4940. 5000. 40000. 110000. 110000. 150000. 160000. 250000. 400000. 50000.	65000. 70000. 75000. 80000. 95000. 95000.

TABLE VIII (CONT)

MEAN AND EXTREMS UPPER AIR TEMPERATURES (DEGREES CELSIUS)
AT SFLECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

DECEMBER

MINIMUM		-10.	.8-	-8-	-6-	-8	-10.		•	4 -	7 7	61.	-21.	-23.	-56.	-59.	-32.	-45.	-50.	-61.	-67.	-71.	-71.	-75.	-73.	-74.	-66	1	• 0	20.	- 50-	-62.	-60	O.	
MEAN	1	ຄໍ	ۍ. د	• •	3.	۲,	0	-1.		ָ ק	4				-11.	-	-50.	-31.	-45.	-52.	-57.	-60	-63.	-65.	-64.	-63.	-60	-50	15.7		.00	-53.	-51.	-48.	
MAXIMUM	•	• 6 7	1.9		• H	12.	10.	6	7.	9	, ,) pr	•		, ,		-	N I		-33.	-45.	-51.	-53.	-24.	-26.	-24.	-51.	-52.	-51				.041	-32.	
TOTAL OBSERVATIONS	797	ACF		, 00° F	. 00.4	, CO	329	329.	329.	329.	329.	329.	328	NOK.	326	, k	, U. P.	202	673	. 747	216.	187	175.	153	· 64.	140.	138.	136.	132.	126.	100	• P • • • • • • • • • • • • • • • • • •	.011	92.	
OMETRIC ALTITUDE MSL FEET	*0767	5000	6000	7000.	8000	0006	• 0000	10000	·non-	12000.	15000.	14600.	15000.	16000.	18000	20000.	00056		90000	• 0000	\$ 100 C	• 0000	0000	• 0000		10000	.0000	•0000	.00008	85000.	90000	95000		• 000001	

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE IX

JANUARY

	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00000000000
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	000000000000
	115 200	4 4 0 0 0 0 0 0 0 0 0 0
	011 110 110	121 131 000 000 000
	1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	179 to 000 to 00
.0	0 0	. 46 H H H H H H H H H H H H H H H H H H
CELSIUS	\$ 0 ^	11000000000000000000000000000000000000
DEGREES (× × × × × × × × × × × × × × × × × × ×	0 4 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	-15 -10	300000000000000000000000000000000000000
TEMPERATURE	-15 -15	404444004b00
TE	× -20 × -20	400000044040
	×-30	
	×-30	0000000000
	TOTAL	350. 417. 418. 417. 417. 419. 418.
GEOMETRIC ALIITUDE MSL FEET		4940 50000 60000 70000 110000 14000 14000 14000

ν • • • • • • • • • • • • • • • • • • •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	& a = 0 0
>-15 -10	4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
× -15	4 W 4 0 0
× ×	4 H W W O O O O O O O O O O O O O O O O O
× - 30	14000
× 140	0 0 18:
×1 ×	6000
1 50 450	32.000
V V 1 5 5 5 5 5 5 5 5 5 5	20000
^ • • •	00000
TOTAL OBS	415. 411. 394. 338.
GEOMETRIC ALTITUDE MSL FEET	16000. 18000. 20000. 25000.

0 ^|

00000

TABLE IX (CONT)

JANUARY

0.5	000000000000000
- 35	0000000000000
140	200000000000
145	N H H O O O O O O O O O O O O O O O O O
- 50 - 145	12. 10. 10. 10. 10. 10. 10. 10.
155	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
60	288. 200. 200. 500. 500.
-65	00000000000000000000000000000000000000
-70 -65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-75 -70	000000000000000000000000000000000000000
-80	000000000000000000000000000000000000000
1 80	000000000000000000000000000000000000000
-85	00000000000
TOTAL	298. 274. 248. 213. 179. 164. 153. 146. 137. 121. 102. 97.
GEOMETRIC ALTITUDE MSL FEET	25000. 40000. 50000. 55000. 65000. 75000. 85000. 95000.

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE 1X (CONT)

Ĺ

FERRUARY

	125	0000000000	0	
	200	\$ NOO 0 0 0 0 0 0 0	N 0	
	115	104400000000000000000000000000000000000	010	8
	110	1000 1000 1000 1000 1000 1000 1000 100	\$1 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	288.000.000
	V1 7	28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	-20 -15 \	34.00000
Sn	^	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-52 -50 -50	41. 41. 0.
CELSIUS	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 30 - 25 - 25	19.00
DEGREES	-10 -5	H W W W W W W W W W W W W W W W W W W W	\ 	1,400
	<pre></pre>	400 H H B B B B B B B B B B B B B B B B B	\\ \-\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	122 H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEMPERATURE	/-20 <-15	0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 × 0 × 1 ×	00000
	-25 -25	0000000	1 20 4 4 50	35.
	>-50 <-25	0 2 2 0 0 0 0 0 0 0 0	× × × × × × × × × ×	00000
	-30	000000000	·	00000
	TOTAL OBS	366. 473. 473. 470. 470. 469. 468. 466.	TOTAL OBS	465. 462. 450. 408. 371.
GEUMETRIC	ALTITUDE MSL FEET	#940. 5000. 6000. 7000. 8000. 10000. 12000. 13000. 15000.	GEOMETRIC ALTITUDE MSL FEET	16000. 18000. 20000. 25000.

TABLE 1X (CONT)

FEBRUARY

.	•	•	•	0	•	•	0	ò	•	·	0	•	0	0
1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.0	0	0	0	0	¢	0	0	0	0	0	•	•	0
140	8	•	•	Ö	0	0	ċ	0	•	ô	•	0	0	6
1 4 5 1 4 5 1 4 0	t		0	0	•	•	0	ċ	0	0	0	1.	12.	38.
- 120 - 45	17.	20.	8	0	0	0	0	0	0	å	6	37.	60.	46.
1 . 22 1 .	42.	33.	28.	ţ.	8	7	1.	8	14.	48.	. 49	50.	25.	'n
0 \$ 1 1 2 0 0	34.	20.	51.	27.	10.	11.	24.	52.	59.	36.	23.	10.	2.	1.
65 1 × ×		18.	14.	56.	46.	52.	.09	39.	25.	14.	.	å	0	0
70-70-65	0	&	e E	13.	36.	32.	14.	• 9	٠,	0	-	0	0	0
-75	•	.	8	•	•9	ů,	7	•	ò	ô	•	0	•	0
1-80 1-75	• 0	0	0	0	0	· n	0	0	•	0	0	0	0	0
- I - A - B - B - B - B - B - B - B - B - B	0	0.	0	0	0	0	•	0	°C	0	0	c	0	• 0
38-	0	0	0	0	0	0	0	0	0	•	•	•0	0	0
TOTAL OHS	319.	289.	258.	225.	187.	171.	152.	127.	118.	108.	105.	96	91.	•69
GEOMETRIC ALTITUDE MSL FEET	35000.	40000	45000.	.00000	55000.	.00009	.0000	10000	75000.	80000	85000.	90000°	95000.	100000.

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE 1Y (CONT)

MARCH

TEMPERATURE DEGREES CELSIUS

, l	44000000000	0 ^1	•••••
25 25	\$ N H O O O O O C O O	ς, ο · ·	m o c o o
115	444 \$\frac{4}{4} = 000000	0 S V	000 000 000
110	00000 0000 00000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	240 800 000
10	000000000000000000000000000000000000000	>-20 -15	2000 0000
0 16 // 1 v	44000000000000000000000000000000000000	-25 -25 -25	28. 38. 0
S	444444600 0044640000	-129 -129	18. 21.
1 - 10 5	30000000000000000000000000000000000000	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
×1× ×15 ×15 ×15 ×15 ×15 ×15 ×15 ×15 ×15	00004880000000000000000000000000000000	0 m 1 i 0 m	1000 1000 1000
× × × × × × × × × × × × × × × × × × ×	9 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	V V	90000
4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0000000HNN+	\ \ \ \ \ \ \	00000
-25 -25		\ -55 -50	00000
)))	00000000000	> 55	00000
TOTAL	24.00 24.40.00 24.40	TOTAL OBS	473. 472. 463. 416.
GEOMETRIC ALTITUDE MSL FEET	4940. 5000. 7000. 10000. 11000. 13000. 15000.	GEOMETRIC ALTITUDE MSL FEET	16000. 1806u. 20000. 25000.

-30	000000000000
- 35	000000000000000000000000000000000000000
07-1.	20000000000000
- 45 - 40	4 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
× × × × × × × × × ×	00000000000000000000000000000000000000
× 1× -55	50 27 27 27 27 20 20 20 20 20 20 20 20 20 20 20 20 20
. 55	36 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
09- 14-	000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
× × × × × × × × × × × × × × × × × × ×	
×-75	00000000000000
×-80	000000000000
1 × × × × × × × × × × × × × × × × × × ×	0000000000000
× 85	000000000000
TOTAL OBS	313. 232. 232. 169. 131. 113. 105. 899. 62.
GEOMETRIC ALIITUDE MSL FEET	35000. 45000. 50000. 55000. 55000. 75000. 75000. 80000. 80000. 95000.

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IX (CONT)

APRIL

	0£ ^1	00000000000	0 ^	00000
	25 7 25 7 30	n nccccccc	№ 0	\$0000
	22 7 × 1 ×	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V	\$ 00000 \$
	× 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	^ ^ 15 - 10	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	×15	00000 00000 00000	> = 15 - 15	28. 61. 0.
S	\$\frac{1}{10}	00000000000000000000000000000000000000		N 0 0 0
CELSIUS	v I ^ S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 25 55	50 4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DEGREES	\(\frac{1}{2}\)	1000 H M M M M M M M M M M M M M M M M M	\ 	37.
	> 10 - 10 - 5	0000 H M M M A M M M M M M M M M M M M M M M	\ 	9 9 9
TEMPERATURE	× -15		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	50000
T	×-20 ×-15	00000000000000000000000000000000000000	>=50 <=45	0000
	× × × × × × × × × × × × × × × × × × ×	6000000000		00000
	· •25	3 3 5 6 6 6 6 6 6 6 6	, S	00000
	TOTAL	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TOTAL	531. 525. 501. 458.
	GEOMETRIC ALTITUDE MSL FEET	4940. 5000. 7000. 9000. 110000. 13000.	GEUMETRIC ALTITUDE MSL FEET	16000. 18000. 20000. 25000. 30000.

-52 -52	
-30 -25	0000000000000
S 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
∨ ∨ 0 0 0 0 0	W
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	W 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
× 1 × 60 + 55	00000000000000000000000000000000000000
~ ^ • 0 • 0	
× × × × × × × × × × × × × × × × × × ×	010700000000000000000000000000000000000
¥75 170 170	000000000000000000000000000000000000000
× × × × × × × × × × × × × × × × × × ×	
0	0000000000000
TOTAL OBS	22 23 23 24 23 24 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25
GEOMETRIC ALTITUDE MSL FEET	45000. 450000. 550000. 550000. 75000. 450000. 450000.

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE IX (CONT)

MAY

TEMPERATURE DEGREES CELSIUS

۲) دی	00000000000	\nabla	00000
×1 ×	W w c c c c c c c c c	ŏ! <u>*</u>	-0000
71 × 30	N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	φο • • •	\$ 0000 0000
\$2 \\	8 8 8 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	VI V	0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
×1 × 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V V	6 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 10 × 15 × 15 × 15 × 15 × 15 × 15 × 15	440044444 0000000000000000000000000000	× - 20 - 15	4 0 H C C C C C C C C C C C C C C C C C C
×1×	44040404000	20 20 1 × 1 ×	044 00 00
0 0	000000000000	0 S 1 1 ^1 v	00000
, , , , , , , , , , , , , , , , , , ,	90000000000000000000000000000000000000		0 0 10 14
10	00000000000000000000000000000000000000	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	64 to 0 to
× -15 × -10	00000004446	\1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0. 0. 21.
×-20 ×-15	00000000	\ 	00000
× - 20	0000000000	. .	00000
TOTAL OBS	0 4 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	TOTAL 08S	449 445. 435. 486.
GEOMETRIC ALTITUDE MSL FEET	4940. 5000. 7000. 9000. 11000. 12000. 15000.	GEUNETRIC ALTITUDE MSL FEET	16000. 18000. 20000. 25000.

TABLE IX (CONT)

MAY

-S-	0000000000000
-30 -25	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0000000000
\ \ 	00000000000000000000000000000000000000
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	# 6 4 UN O O O O O O O C O O C O O C O O O O O
· - 50 • - 45	00000000000000000000000000000000000000
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	37. 110. 120. 100. 100. 00.
> -60	148 HW # 411
× × × × × × × × × × × × × × × × × × ×	0 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
× 1 × 100 × 165	000000000000000000000000000000000000000
×-75	000000000000
	20000000000
0 8- >	00000000000
TOTAL OBS	263. 263. 222. 169. 159. 129. 119.
GEOMETRIC ALTITUDE MSL FEET	25000. 45000. 50000. 55000. 55000. 75000. 75000. 85000. 95000.
	84

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IX (CONT)

JUNE

S
É
-
S
_
CELSIUS
<u></u>
_
in
×
7
DEGREES
7
ب
ı.
$\bar{\alpha}$
URE
Ξ
~
::
EMPERATI
ŧ
u

0 †	0000000000	^1	00000
×35 ×40	m m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00000
0 33 3 30 3 1 √	0 K W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	○ 	00000
· 1× 30	3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	۱ × ۰ × ۰ × ۰ × ۰ × ۰ × ۰ × ۰ × ۰ × ۰ ×	28.
22 V V	N M # P D D D D D D D D D D D D D D D D D D	, 10 10 10 10 10 10	465 00.
715	00000000000000000000000000000000000000	V V V V V V V V V V V V V V V V V V V	0 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	>=20 <=15	30000
× 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	× 125 × 125 × 120	5000 H
ر ارم	00000000000000000000000000000000000000	1 30 - 25	1000
₩ •	00000000000000000000000000000000000000	\$ 00 110	W 0000
 -10 -5	000000000	\	80000
× × 15 × 10		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0000
· -1 5	0000000000	^ R	00000
TOTAL	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TOTAL	344. 344. 338. 317.
GEUMETRIC ALTITUDE MSL FEET	4940. 5000. 6000. 7000. 9000. 11000. 13000. 15000.	GEOMETRIC ALTITUDE MSL FEET	16000. 18000. 20000. 25000.

-52	0	0	•	•	•	• •	•	ċ	•	•	•	•	ċ	•
-25	0	ċ	•	•	•	ċ	•	•	•	•	•	0	•	•
S O P	1.	0	0	•	•	0	0	ò	o	•	•	•	-	ល
992	8	0	0	•	•	ċ	•	•	•	•	•	e N	15.	• 49
0 t + 0 v	*6#	•	0	•	°	0	•	•	•	7.	6	59.	79.	30.
× 1 × +50	*04	• •	•	•	•	•	•	•	1.	50.	•06	37.	÷	• • • • • • • • • • • • • • • • • • •
7 7 20 7 7	3.	54.	t	•	•	•	1.	19.	96	649	8	7.	0	0
> -55	0	40.	39.	8	ς,	8	71.	80.	8	•	•	0	•	0
9-1×	0	٠ د	53.	39.	33.	.62	28.	0	0	•	•	•	0	0
-70 65	0	ò	4	48.	54.	27.	•	ċ	ò	ċ	ò	ò	ò	•
47 1 5 0 T 1	0	0	0	Š.	11.	0	0	0	ô	•	0	0	ò	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 8 • >	0	0	0	0	0	0	0	0	0	0	0	0	•	0
TOTAL OBS	247.	213.	195.	185.	169.	156.	137.	131.	126.	122.	116.	110.	97.	83.
GEUMETRIC ALTITUDE MSL FEET	35000.	40000	45000	50000	55000	60000	65000	70000	75000.	80000	85000.	90000	95000.	100000
						80	6							

RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IX (CONT)

7

ร
\supset
Ξ
S
_
ī
CELS
_
S
DEGREES
W
DEGR
9
ш
لد
TURE
\supset
-
d
2
ū
FEMPE
5
ī
=
,

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00000000000	10	00000
\	00000000000	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	00000
88 84 80 84 80	u m a a a a a a a a a a	0 is ^ v	000
v ^ w w 0 m	00000000000000000000000000000000000000	ა ი 	84. 87. 00.
×1 × 35.00	0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 S 0 S 0 S	W W & & & & & & & & & & & & & & & & & &	> 1 - 15 - 10	14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 1 V	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 50 - 150 - 150	00000
× 10 × 15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00040
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	4 X V V V V V V V V V V V V V V V V V V	-30 -25	0 0 0 0 0 0
១ស ^! v	00.00.00.00.00.00.00.00.00.00.00.00.00.	\ - 30 00	00000
۷ م ه		> + + 0 > - 35	00000
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		×1 ×	• • • • • • • • • • • • • • • • • • •
· -1 0	000000000	, , , , , , , , , , , , , , , , , , ,	
TOTAL OBS	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	TOTAL	352. 350. 345. 297.
GEOMETRIC ALTITUDE MSL FEET	4940. 5000. 6000. 7000. 9000. 11000. 13000. 15000.	GEOMETRIC ALTITUDE MSL FEET	16000. 18000. 20000. 25000.

-25	
×-30	
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000000000
04-1	67. 00.000000000000000000000000000000000
\$ 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10000000000000000000000000000000000000
× 1× 50 × 1× 50	200 000 000 000 000 000 000 000 000
* 1 × 2 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	000000000000000000000000000000000000000
-55 -55	24 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	00000000000000000000000000000000000000
-65	0004000000000
-75 -70	000000000000000000000000000000000000000
>-80 >-75	
· - 80	000000000000
TOTAL OBS	261. 1986. 1686. 1683. 1183. 1194. 1134.
GEOMETRIC ALTITUDE MSL FEET	35000° 45000° 50000° 55000° 70000° 75000° 85000° 95000° 95000°

RELATIVE FREGUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE IX (CONT)

AUGUST

S

				7	TEMPERATURE DEGREES	URE DE		CELSIUS	ý					
ALTITUDE MSL FEET	TOTAL 08S	· • 10	×1 × 10 × 10 × 10 × 10 × 10 × 10 × 10 ×	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 	√ I S	0 1 7	15 20	20 20 25	≥25 < 30	× 35	35 40	/ [v	^ 1
*01/61	355.	0	0	0	•0	0	0	15.	35.	30.	18.	.	0	ò
5000	384.	•	0	•	•	0	1.	17.	38.	29.	15.	0	0	ö
• 000 9	384.	°	0	0	ċ	•	1.	31.	* # #	22.	-	°	•	ċ
7000.	385	0	0	0	ò	0	3	50.	38.	8	•	•	0	ċ
8000	385.	0	•	ô	•	0	15.	62.	23.	•	ċ	•	·	ċ
.0006	385	•	o ,		•		45	525	ູດ	ċ	ċ	•	•	ċ
10000	384	0	• •		•	11.	2	23.	-	•	ċ	•	ċ	ċ
11000.	384	•	0			35.	N	, N	•	•	•	0	•	ċ
, 12000.	384.	•	0	•	8	72.	9	•	•	•	•	•	•	•
~	385.	•	0		25.	74.	-	0	0	•	•	•	•	0
14000.	385.	ċ	0	1.	•69	30.	•	0	•	ð	•	0	•	•
15000.	384.	•	0	10.	88.	'n	0	0	•	0	0	0	•	0
GEOMETRIC ALTITUDE MSL FEET	TOTAL	\$ 1	\\ \\ \\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \	> + + 0 0 + 1 > 0 0 + 1 > 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- 150 - 150 - 150	>-20 -15	- 15 - 15	> 10 - 10 - 5	۱۰ د د	۷ ا ۸ م ص	∨! ∧ ® 0	^10

.

•••••

73.

986.0

00700

9 9 9 9

00000

3000

00000

00000

00000

00000

382. 378. 375. 358.

> 18000. 20000. 25000. 30000.

16000.

TABLE IX (CONF)

AUGUST

7-25	0000000000000
-30 -25	0000000000000
	0000000000000
7 T V	00000000000000000000000000000000000000
71 v	50. 00. 00. 00. 00. 00. 00.
· · · · · · · · · ·	22.00000000000000000000000000000000000
× × × × × × × × × × × × × × × × × × ×	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	00000000000000000000000000000000000000
×-65 ×-60	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-70	00000000000000000000000000000000000000
	000000000000000000000000000000000000000
-80	CCO0402000000
· - 80	000000000000
TOTAL	308. 242. 220. 195. 105. 165. 158. 111. 118.
GEOMETRIC ALTITUDE MSL FEET	35000. 40000. 50000. 55000. 60000. 75000. 75000. 80000. 85000.

TABLE IX (CONT)
RELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973

SEPTEMBER

0 7 1

............

. B.C.	ALTITUDE TOTAL MSL FEET 085	4940. 5000. 5000. 564. 7000. 364. 8000. 364. 9000. 364. 1000. 363. 4000. 363.	GEOMETRIC ALTITUDE TOTAL MSL FEET 08S	16000. 362. 16000. 361. 25000. 359. 346. 30000. 326.
	· -15	•••••••	^ *	00000
	×1 × × × × × × × × × × × × × × × × × ×		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	20004
T E	0110 1100	00000000484	>-++ > 35	00000
TEMPERATURE.	\$ 0 ^	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\ \ \ \ \ \ \ \ \ \	0. 0. 53.
	0 is ^1 7	9 t N O O O C C C C C C C C C C C C C C C C	0 G 1 1 ^ ^	00.00 00.00
DEGREES	×1×5	900 B B B B B B B B B B B B B B B B B B	S 0 1 1 1 v	641100
CELSIUS	× 15	00000000000000000000000000000000000000	^ \ \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	04,00
S	× 15 × 20	00000000000000000000000000000000000000	VI v	# # # O
	×1×	00000000000000000000000000000000000000	V V V	6 55 6 55 0 0
	× 30 × 30	00000000000000000000000000000000000000	\	47. 10. 0.
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	n 000000000	○ 	÷
	× 35 × 40		\ \\ \\	•••••

Ţ

> 10

....

SFPTEMBER

-25	00000000000000
- 130 - 130 - 125	00000000000000
8 B 0 B 0 B	0000000000000
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	22 00 00 00 00 00 00 00
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	00000000000000000000000000000000000000
/ - 50 / - 45	11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	64 64 64 66 66 66 66 66 66 66 66 66 66 6
0 G 1 V 1 V	00000000000000000000000000000000000000
× = 65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
× - 40	0000 m N 0 0 0 0 0 0 0
×-75 07-	000000000000000000000000000000000000000
_ =80 ^ =75	
~ - 80	0000000000000
TOTAL OBS	233. 233. 233. 196. 156. 156. 115.
GEVMETRIC ALTITUDE MSL FEET	55000. 40000. 550000. 55000. 75000. 75000. 85000. 950000.

KELATIVE FREQUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE IX (CONT)

OCTOBER

	· 35	00000000000	^I	00000
	· 30 · 35	0000000000	۱۰ ۱۳	00000
	√ ∨ 0 0 0 0	0 0000000000	^ l ^ ও ন্	10000
	25 25 25	7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\$ 0000 \$ 0000
	× 20 × 20	000000 000000	\ 10 5	00 0 00 0 00 0
ιΛ	× 15 15	00000000000000000000000000000000000000	\ 10 10	648.
CELSIUS	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\ \ -20 \ -15	44600
TEMPERATURE DEGREES (د ا ۸ د ا ۸	7400 M G G G F C C C C C C C C C C C C C C C C	×=25 ×=20	61110
	\$ 0 ×	00.00000000000000000000000000000000000		29.000
	10 10 10 10 10	000000000000000000000000000000000000000	¥1.6 50 00 00 00 00 00 00 00 00 00 00 00 00 0	0000
	>-15 -10 -10		↑ ∨ 0 1 0 1	0.00.00.
	×-15	00000000	\ \ - \ \ \ - \ \ - \ \ \ - \ \ - \ \ \ - \ \ \ - \ \ \ - \ \ \ - \ \ \ - \ \ \ - \ \ \ \ \ \ \ - \	00000
	·-20		^ 245	00000
	TOTAL OBS	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	TOTAL OBS	4114. 4110. 388.
	ALTITUDE MSL FEET	4940. 5000. 7000. 7000. 11000. 13000. 15000.	GEOMETRIC ALTITUDE MSL FEET	16000. 20000. 25000. 30000.

TABLE IX (CONT)

OCTOBER

-25	0000000000000
≥-30 <-25	000000000000
136	000000000000
	n c o o o o o o o o o o
1 + 1 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 ×	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
^ = 50 - 45	57 4 7 7 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
× × × × × × × × × ×	20000000000000000000000000000000000000
× - 55	22. 22. 20. 50. 10. 0.
-65 <=60	0 10 10 10 10 0 0
\70 \65	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
×-75	000000000000000000000000000000000000000
× -75	
· + 80	0000000000000
TOTAL OBS	314. 288. 288. 247. 210. 201. 195. 185. 152. 134.
GEOMETRIC ALTITUDE MSL FEET	45000. 45000. 55000. 55000. 60000. 70000. 75000. 85000. 95000.

RELATIVE FREGUENCY DISTRIBUTION OF UPPER AIR TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE IX (CONT)

NOVEMBER

1
-
(
-
,
4
1
i
•
t
(
•
4
-
-
:
•
<
-
u
0
3
4

	30	00000000000	o	00000
	· 25 · 30	0000000000	v 0	27. 1. 0. 0.
	. 25	0400000000	- - 10 - 5	2 m 0 m 0 0 0
	20	00000000000000000000000000000000000000	VI V	21. 35. 0.
	· v	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	×-15	# # # # # # # # # # # # # # # # # # #
Sí	10	00 1 7 8 8 7 4 6 8 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	- 1 S S	1. 10. 0.
CELSIUS) .	# W # # # W W W W W W W W W W W W W W W	×1×	4 4 4 6 6 6 6
DEGREES	0		∨ ∧ 	14000
	-10 5	00000000000000000000000000000000000000	1 × × × × × × × × × × × × × × × × × × ×	000 N B
TEMPERATURE		00000000000000000000000000000000000000	× × × × × × × × × × × × × × × × × × ×	00000
	2-20 2-15		V V V V V V V V V V V V V V V V V V V	00000
	-25	000000000	- 55 - 55 - 55	00000
	-25	000000000	^ - 55	00000
	TOTAL	348. 408. 407. 407. 407. 403.	TOTAL 08S	402. 401. 390. 322.
GEOMETRIC ALTITUDE MSL FEET		4940. 5000. 6000. 7000. 10000. 12000. 15000.	GEOMETRIC ALTITUDE MSL FEET	16000. 18000. 20000. 25000. 30000.

TABLE IX (CONT)

NOVEMBER

0 - -		
× = 35 × = 30	0000000000	
> = 40 > = 35	000000000	
41 × 1 ×	20000000000000000000000000000000000000	
- 120 - 450 - 450	00000000000000000000000000000000000000	
× 52 • 50 • 50	200 200 200 200 200 200 200 200 200 200	
0 9 0 • 1 ×	200 000 000 000 000 000 000 000 000 000	
9 - 09-	00000000000000000000000000000000000000	
×-70	0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
-75 -70 -70	000000000000000000000000000000000000000	
>-80 <-75	0004400000000	
-85 -80		
^ - 85	000000000000	
TOTAL OBS		
GEUMETRIC ALTITUDE MSL FEET	450000 550000 550000 700000 700000 950000 100000	

RELATIVE FREGUENCY DISTRIBUTION OF UPPER AIN TEMPERATURES
AT SELECTED LEVELS (IN PER CENT)
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE IX (CONT)

DECEMBER

	52		به ۱	•••••
	×20 ×25	000000000000	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	45. 0. 0.
	- 15 - 20	* * * * * * * * * * * * * * * * * * *	×1 ×	14. 14. 0
	210 ≥15	00000000000000000000000000000000000000	0 5 7 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	18 26. 00.
	×10 ×10	000 m m m m m m m m m m m m m m m m m m	× -25 × -20	16. 246. 0
S	0 × ×	0.000000000000000000000000000000000000	-30 -25	0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CELSIUS	5 0 7 1	18 18 18 18 18 18 18 18 18 18 18 18 18 1		00000
DEGREES (/ - 10 / - 5	3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	07-1 07-1 07-1 032-1	0. 0. 17.
	2-15 7-10	00000000000000000000000000000000000000	3† - 1 1 + 0	.00 .00 .00
TEMPERATURE	-20 -15	4 7 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- \ \ - \ \ - \ \ \ - \ \ \ \ \ \ \ \ \	, o o o o o
TE	25-25	000000000	55 - 50	00000
	-30 -25	000000000000	- ← 55	0000
	· =30	00000000000	9- \	00000
	TOTAL OPS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TOTAL	328. 326. 321. 305.
	GEOMETRIC ALTITUDE MSL FEET	4940. 5000. 6000. 7000. 8000. 10000. 12000. 15000.	GEOMETRIC ALTITUDE MSL FEET	16000. 18000. 20000. 25000.

TABLE IX (CONT)

DECEMBER

152	9	ċ	•	0	0	•	0	0	0	0	•	•	•	•
× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1× 1×	0.	0	•	•	•	•	•	•	0	0	ċ	•	•	ô
35 30	•	•	•	•	•	•	0	•	•	•	•	•	•	٦.
V V V	0	.	•	•	0	•	•	•	•	ô	•	•	-	•
V V	พ	•	0	•	•	•	0	•	•	•	•	e e	80	22.
× 1× 150 × 1 ± 50	22.	8	0	•	0	•	÷	0	•	•	•	16.	32.	41.
\$ 0 • 1 • 1 • 1	62.	27.	10.	-	&	•	1.	ŧ.	11.	29.	47.	52.	41.	32.
091 120 120	12.	39.	45.	18.	12.	13.	13.	43.	54.	62.	* 0	29.	18.	\$
1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	20.	39	57.	36.	††	. 99	51.	35.	6	9	1.	0	•
× 70 × 65	•	ů.	•	25.	41.	4 0	19.	8	ċ	ċ	÷	ö	ċ	ċ
57.5 07.0	0	•	7	1.	7.	'n	-	•	0	0	•	0	0	•
; - 6 0 < - 75	0	0	0	•	0	•	0	0	0	•	0	0	•	0
0 P - >	0	•	0	0	•	•	0	•	•	•	0	0	0	•
TOTAL OBS	す	-	8	175.	S	す	#	3	3	3	N	S	-	Q.
GEOMETRIC ALTITUDE MSL FEET	.55000	40000	45000.	50000	55000.	÷00000	65000.	70000	75000.	60000	85000.	90000	95000.	100000

TABLE X

MEAN AND EXTREME UPPER ATR TEMPERATURES (DEGREES CELSIUS)
AT SELECTED LEVELS BAY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973 1961-1973

WINTER

•	MINIMOM			-21.	-17.	-17.	-19.	-50.	-20.	-21.		-25.	-27.	-59-	-31.	-36.	-40.	-47.	-54	-61,	-69-	-76.	-73.	-78.	-79.	-75.	-69-	-69-	-65.	-66.	-64	-60	, or .
	MEAN	:	٠,9	• 6	.	'n	8	0		-3.	- 5•	-7-	* 8	-10,	-12.	-16.	-21.	-32.	ーキロ・	-53.	-57.	-58.	-62.	-65	-64.	-63.	-60.	-58.	-56.	-54.	-52.	-20.	-47.
	MAXIMUM		25:		21.	18.	15.	12.		•6	•9	ů	'n		•	-2-	 6-	-21.	-32.	-33.6	-42.	-48	-52,	-52	-54.	-53,	-51.	-20	-47.	-46.	-45.	-39.	-32.
•	TOTAL	OBSERVATIONS	1013.	1218.	1220.	1219.	1216.	1217.	1216.	1217.	w	w	"	1208.	w	-	•	1074.	982.	859.	779.	693.	613.	519.	484	451.	411.	391.	361.	346.	320.	301.	2
	GEOMETRIC ALTITUDE	MSL FEET	4940	5000	6000	7000.	8000.	9000	10000	11000.	12000.	13000.	*000ts	15000.	16000.	18000.	20000.	25000.	30000.	35000.	*0000	45000.	50000	55000,	. 60000	65000.	70000.	75000.	80000.	85000.	•00006	.00056	000

TABLE X (CONT)

MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGREES CELSIUS)
AT SELECTED LEVELS BY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

SPRING

MINIMUM	0	0	?	-11-	-13.	-16.	-17.	-19.	-22.	-24.	-27.	-29.	-30	-35.	-39.	-45.	-24.	-61.	-99	-72.	-71.	-74.	-73.	69	-94.	-63.	-60	-58.	-56.	-54.	-51.
MEAN	16.	15.	12.	10.	7.	.		-	-25	Ť	9	•	-10.	-15.	-19.	-30.	-47.	-51.	-57.	-59.	61.	-63	-62	•09	-57.	-55.	-52.	-50.	-27	***	-45
MAXIMUM	33.	33.	30.	26.	23.	20.	16.	13.	10.	7.	•		-	Ť	6	-19.	-31.	•	-44.	-69	-49.	-64-	-52.	-46-	-52.	-20	-47.	-45.	3	-35.	-32.
TOTAL OBSERVATIONS	1218.	1478.	1479.	1478.	1475.	1476.	1475.	1468.	1464.	1462.	1458.	1455	1453.	1442.	1399.	1293.	1194.	953.	788.	724.	.949	538.	485.	.044	.60%	381.	354.	335.	312.	276.	210.
GEOMETRIC ALTITUDE MSL FEET	4940.	5000	6000.	7000.	8000.	9000	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000.	35000.	*0000*	45000.	50000	55000.	6 000 0 .	. 0 0 0 0 0 0	70000.	75000.	80000	85000.	.00006	200	100000.

TABLE X (CONT)
MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGREES CELSIUS)
AT SELECTED LEVELS BY SEASONS
STALLION SITE
PEHIOD OF RECORD 1961-1973

SUMMER

MINIMUM	12.		13.	10.	8	• 9	3.	•	-3.	-2·	•	-8-	-6-	-13.	-17.	-28.	-40.	-51.	-63.	-68.	-74.	-16.	-71.	-65.	-60.	-57.	-52.	-55.	-51.		-48.
MEAN	25.	25.	22.	20.	18.	15.	13.	11.	8	•	÷	8	-1-	<u>.</u> 5	-6-	-19.	-30	-41.	-52.	-61.	-68.	-68	-64.	-60	-56.	-53.	-20•	-48°	-45	-43.	-40
MAXIMUM	38.	38.	34.	30.	27.	24.	21.	18.	16.	13.	10.	80	ູນ	۵,	- 3.	-10.	-25.	-34.	-45.	-53.	-58.	-58.	-58.	-55.	-51.	-67-	-45.	140.	-36.	-35.	-31.
TOTAL OBSERVATIONS	995.	1085.	1086.	1086.	1088.	1087.	1087.	1087.	1089.	1088.	1087.	1083.	1081,	1072.	1058,	992.	938,	816.	711.	633.	590.	526.	492.	453.	431.	413.	*00	382.	354.	322.	282.
GEOMETRIC ALTITUDE MSL FEET	*0464	5000.	6000	7000.	8000.	•0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000.	35000.	+ 0000	45000.	50000	55000.	60000	6500n.	70000.	75000.	80000	50	•00006	50	100000

TABLE X (CONT)
MEAN AND EXTREME UPPER AIR TEMPERATURES (DEGREES CELSIUS)
AT SELECTED LEVELS BY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

FALL

MINIMUM		10.	3 F S S		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	171. 171. 178.	
MEAN	16. 16.	10.		្ត ម្នាក់ ព្រះ ព្រះ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66425 68425 684	
MAXIMUM	8 8 8 8 8 8 8 9 8 8	803. 803.	2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		125. 125.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
TOTAL OBSERVATIONS	.037. 1189.	1187. 1189. 1190.	1189. 1188. 1185.	1183. 1180. 1178.	1159. 1019. 885.	774. 697. 659. 579. 546.	8888 4888 8488 8486 8486
GEOMETRIC ALTITUDE MSL FEET	4940. 5000. 6000.	7000. 8000. 9000.	10000. 11000. 12000.	14000. 15000. 16000.	20000 250000 30000 35000	40000. 450000. 55000. 60000.	65000. 70000. 75000. 80000. 95000.

ATMOSPHERIC STRUCTURE REPORT

STALLION SITE

SECTION I

UPPER AIR PRESSURE DATA

By Mo	nthe	PAGE
Table XI.	Mean and Extreme Upper Air Pressures (Millibars) at Selected Levels	104
By Sea	sons .	
Table XII.	Mean and Extreme Upper Air Pressures (Millibars) at Selected Levels	116

MEAN AND EXTREME UPPER AIR PRESSURES (MILLIBARS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PEPION OF RECORD 1461-1973 TABLE XI

JANUARY

MINIMUM	835.	833.	803.	773.	743.	715.	688.	661.	635.	610.	586.	563.	540.	496	455.	364.	290.	230.	182.	143.	112.	87.	68.	53.	•	32.5	f.		16.3	12.8	•
MEAN	851.	848.	817.	787.	758.	730.	703.	676.	651.	£26.	602.	579.	556.	513.	473.	383.	307.	244.	192.	151.	-	93.	72.	56.	•	34.5	•	21.5	7	13.5	10.8
MIMIXAV	A63.	862.	829.	798•	769.	741.	714.	687.	662.	637.	613.	590.	567.	524.	t 8t.	395.	319.	255.	202.	158.	123.	96•	75.	88	•	36.0	•	•	17.7	14.1	11.3
TOTAL OHSERVATIONS	350.	418.	419.	419.	419.	420.	420	421.	421.	421.	420	418.	417.	412.	395.	362.	338.	300	276.	248.	213.	179.	164.	154.	146.	139.	124.	117.		.76	
GEOWETRIC ALTITUDE MSL FEET	4740.	.0000	6 000 9	7000	8000°	•0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	16000.	20000	25000.	30000	35000.	+0000+	45000	50000	55000	60000	.00069	70000	75000.	80000	85000.	•00006	.00066	100000

Fridance Salls to conditioning Parish

TABLE XI (CONT)
WEAR AND EXTREME UPPFR AIR PRESSURES (MILLIHARS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PEFIOD OF PECORD 1961-1973

FEERUARY

MINIMUM	836.	833.	803.	773.	744.	715.	688	661.	635.	610.	585.	562.	539.	* 76 7	452.	362.	288.	229.	181.	144.	114.	•06	70.	55.	•		•		16.2	•	•
MEAN	849.	647.	816.	786.	757.	729.	702.	675.	.649	625.	601.	577.	555.	512.	471.	382.	306.	243.	191.	151.	118.	93.	72.	56.		•			17.1		•
MAXINIM	862.	360.	828.	798.	768.	739.	713.	687.	661.	637.	613.	590	568.	525.	485.	396.	320.	256.	204•	160.	125.	98•	76.	59.	46.5	36.5	28.5	22.5	18.1	14,3	11.4
TUTAL OBSERVATIONS	366.	474.	474.	474.	471.	471.	471.	469.	468	468	466.	464.	466.	463.	451.	410.	371.	320.	289.	258.	226.	187.	171.	154.	128.	119.	109.	106.	•66	93.	71.
CCC:ETRIC ALTITUDE MSL FEET	4940.	5000	•0000	7000.	8000.	•0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000	25000.	30000.	35000.	40000	#2000°	50000	55000.	60000	.00069	70000	75000.	80000	H5000.	•00006	.00056	100000

TABLE XI (CONT)
MEAN AND EXTREME UPPER AIR PRESSURES (MILLIHARS)
AT SELECTED LEVELS BY HONTHS
STALLING SITE
PERIOD OF RECORD 1961-1973

FARCH

WIWINIW		635.	832.	800.	770.	-042	712.	685.	658.	631.	. 909	581.	558.	534.	491.	450	359.	286.	228.	181.	144.	113.	89.	. 69	54.	45.5	33.5	26.5	1.	9	13.1	10.4
PIEAN		847.	845.	815.	785.	756.	728.	701.	674.	.649	624.	•009	577.	554.	511.	471.	381.	305.	243.	191.	151.	118.		73.	57.	44.5	35.0	28.0	22.0	•	13.9	11.1
MAXIMUM		860.	858.	R27.	798.	769.	742.	715.	688•	663.	638.	614.	591.	568.	526.	485.	396.	320.	256.	202.	158.	123.	•96	76.	61.	48.0	38.0	30.0	23.5	18.6	14.8	11.8
FOTAL	OBSERVATIONS	389.	• #8#	485.	485.	484.	483.	482.	479.	479.	479.	477.	476.	470.	474.	465	418.	378.	313.	253	232	202	168.	147.	130.	123.	112.	104.	. 66	88.	81.	62.
، ر	MSL FEET	*0161	5000.	.000°	7000.	8000	.0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000	35000.	40000	45000.	50000	55000.	÷00009	e5000.	70000	75000•	80000	45000·	•0006	.0005h	100000.

							*
٠	ILES (MILLIHARS)	40SITHS?		1961-1973	The state of the s	*	ì
, TABLE XI (CONT)	AT A ID TX FOLLT (10PFR AIR PRESSILLES (MILLIBARS)	AT SELECTED LEVELS PY ADMINS!	STALL TON SITE	PEMIOD OF PLOORD		APRIL	
	7 .V.						

>	FOWINIE		625.	823.	18.	765.	7.38	710.	684.	658.	:633	609	586.	563.	541.	497.	456.	367.	· #62	234.	186.	147.	115.	90.	70.	55.	43.0	•	27.0	•	16.6	13.4	10.7
;	MEIAN		.849.	840.	F16.	.787.	.758.	731.	704.	678.	.652.	.628.	6.04.	561.	558.	-915	475.	386.	310.	こえ	194.	153.	120.	. 46	73.	57.	45.0	35.5	28.0	22.5	•	14.2	•
		.	862.	₽ 60•	428.	798.	769	.741.	7.1.4.	. 88.	663.	€38.	615.	592.	:269	527.	×4:86.	396.	320.	256.	202	160.	125.	97.	75.		•	ė	29.0	Ė	•	14.7	•
• 1	ICTAL.	CHSERVATIONS	410.	533.	5.54	532.	.531.	552.	5.3.3	532.	532	5.31	5.35.	532.	531.	525	541•	45B	455	336.	275.	244.	222.	188.	169.	158.	146.	139.	125.	116.	.110.	-86	75.
	FRIC ALTITUDE	MSL FEET	•0 46.7	5000.	.0000	7000.	A016.	900n•	10000	11000.	12000.	1,5000.	14000.	15000.	16000.	18000.	20000.	25000.	30000	55000	40000+	45000.	50000°	55000•	.00000	e5000•	70000.	75000.	80000	35000.	33660•	95000•	100000.

TABLE XI (CONT)
MEAG AND EXTREM UPPER ATR PRESSINGES (MILLIMARS)
AT SELECTED LEVELS BY MONTHS
STALLION SIFE
PEPIOD OF PECOND 1961-1973

TAP

MININ	838.	837.	807.	778.	750.	722.	695	.699	* 779	619.	595.	572.	249.	505.	465.	376.	301.	240.	191,	149.	116.	91.	71.	26.	45.0	35.5	28.0	22.0	17.6	14.0	11.2
PEAN	649	547.	617.	788.	760.	733.	707.	681.	t.56.	631.	608.	585.	563.	520.	480.	391.	315.	252.	198.	156.	122.	95.	75.	58.	46.0	36.0	28.5	23.0	18.1	14.0	11.6
MD X I R UM	461.	859.	428.	797.	769.	741.	715.	689	663.	639.	615.	592.	570.	528.	488.	399.	323.	258.	205.	161.	127.	100.	78.	•	47.0	37.0	•	23.5	18.7		12.0
TOTAL QHSERVATIOWS	412.	461.	462.	461.	462.	461.	462.	454	457.	454	453.	450	・たまさ	445.	435.	419.	386.	309.	265.	250.	224.	163.	170.	151.	139.	130.	124.	114.	113.	97.	74.
GEOST BLIC ALTITUSE	*0764	5000	•0000	7.900.	e000a	•0006	10000	11000.	12000.	15000.	14000.	15000•	16000.	14000.	20000.	25000.	\$6000	.00055	*0007#	45000.	.00006	55000•	•0000	•5000 •	20000	75000.	*2000?	85000.	•00006	.00056	100000

TABLE XI (CONT)
MEAN AND EXIREME UPPER AIR PRESSURFS (MILLIHARS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

JUNE

MINIMUM	838.	636.	808	780.	752.	725.	.669	673.	647.	623.	299.	576.	554.	512.	473.	385.	306.	250.	197.	155.	122.	95.	74.	58.	45.5	36.0	28.5	22.5	17.8	14.1	11.3
MEAN	849.	647.	818.	789.	762.	735.	709.	683.	629	635.	611.	589.	567.	525.	485.	396.	321.	257.	204.	160.	125.	-86	76.	•09	47.0	37.0	29.5	23.5	18.5	14.9	7
MAXIMUM	860.	858	828.	799.	771.	743.	717.	691.	9999	642.	618.	596.	574.	532.	492.	403.	330.	267.	214.	169.	133.	103.	80.	63.	49.5	39.0	31.0	24.5	19.7	15.8	12.7
TUTAL OHSERVATIONS	320.	351.	352.	351.	352.	351.	352.	349.	351.	349.	348.	346.	347.	・カオだ	338.	317.	297.	247.	213.	196.	185.	169.	156.	137.	131.	126.	122.	116.	110.	97.	83.
GECMETRIC ALTITUDE MSL FEET	• 0404	2000	•0000	7000.	60000	•0006	10000.	11000.	12000.	1,5000.	14000.	15000.	16000.	16000.	20000.	25000.	50000	35000.	40000	45000.	50000	55000.	6000n•	.00000	70000.	75000.	80000	45000·	•00066	.00036	100000.

TABLE XI (CONT)
"ALA!! AUD EXIREME UPPER AIR PRESSURFS (MILLIBARS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PEHIOD OF RECORD 1961-1973

JULY

MUNITIM	842.	840.	612.	785.	758.	732.	707	681.	657.	633.	610.	587.	565	523.	484.	396.	321.	25B.	205.	162.	126.	98.	76.	59.	76.0	36.5	28.5	23.0	18.1	14.4	11.5
FFAN	852.	650.	821.	793.	765.	738.	712.	687.	662.	638.	015.	592.	571.	529.	489.	401.	326.	263.	209.	164.	128.	•66	77.	61.	47.5	37.5	30.0	23.5	18.8	15.0	12.0
MAXII.IM	859.	857.	827.	798.	770.	742.	716.	691.	999	643.	619.	597.	575.	533.	* 161	406.	331.	267.	213.	168.	131.	102.	79.	62.	48.5	38.5	•	÷	19.3	•	12.3
I UTAL OHSERVATIONS	321.	350.	450.	350.	351.	351.	351.	354.	354.	354.	354.	353.	352.	350.	345.	317.	5 667	263.	221.	197.	185.	162.	153.	141.	135.	129.	127.	119.	113.	10%	.76
GEOMETRIC ALTITUDE MSL FEET	.0464	5000	£000°	7000.	.000g	.0006	10000	11000.	12000.	13000.	14000	15060.	10000	10000	Z0000.	25000.	30000.	35000.	40000	45000.	56000	55000.	.0000a	.000ca	70000	75000.	*0000×	85000.	•00006	40000	*GOUNDT

TABLE XI (CONT)
MEAN AND EXIPEME UPPER AIR PRESSURFS (MILLIHARS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PEPIOD OF RECORD 1961-1973

AUGUST

MINIMINIM	842.	840.	812.	784.	756.	729.	703.	b78.	653.	659.	603.	580.	559.	518.	479.	392.	318.	255.	202	159	124.	.76	75.	59.	46.0	36.5	29.0	23.0	18.1	14.4	11.5
r.E.A.N	652.	850.	821.	792.	705.	738.	712.	686.	662.	ć38.	614.	592.	570.	528.	488.	400	325.	262.	203.	164.	128.	666	77.	.00	47.5	37.5	29.5	23.5	18.8	15.0	12.0
мах і м. гм	858.	H57.	927.	798.	770.	743.	717.	692	667.	643.	620.	597.	575.	533.	* 1161	406.	331.	267.	213	168.	130.	101.	79.	62.	0.64	38.5	30.5	24.5	19.5	•	12.5
TCTAL OHSERVATIOHS	356.	384.	384.	385.	345.	385.	384.	************	384.	385.	385.	384.	342.	378.	375.	359.	345.	308.	277.	242	220.	195.	184.	176.	165.	156.	151.	147.	131.	114.	102.
GEGETICIE ALLITUDE MSL PELT	4 940.	5000	•0000	,000%	•0000	*000A	* むちゅうが	11090.	12000.	15000.	14000	15000.	16000.	18000.	- 00007	25000.	30000	32000.	*0000	45000.	£3000.	5500 0 •	•00000	.00000	70000	75000.	80000	.0500B	•00006	42000°	100000

TABLE XI (CONT)
WEAN AND FXIREME UPPER AIR PRESSURES (MILLIBARS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1461-1973

SEPTEMBER

MINIMOMINIM	840.	838.	809.	781.	753.	726.	699	673.	64B.	624.	•009	577.	555	512.	472.	384.	309.	246.	196.	155.	122.	95.	73.	57.	44.5	36.0	28.5	22.5	17.9	14.3	11.4
MEAN	850.	849.	019.	.06Z	703.	7.55.	709.	684.	e59.	635.	c11.	588.	566.	524.	4 85.	3.27.	321.	258.	205.	161.	126.	98.	76.	.65	0.74	37.U	29.0	23.0	18.4	14.7	11.7
111771 X X (A)	959.	957.	H28.	799.	770.	743.	716.	691.	.999	642.	619.	596.	574.	۰35،	492.	403	327.	564.	210.	166.	129.	100.	78.	61.	0°67	38.0	30.0	24.0	10.0	15.1	12.1
FUTAL OPSERVATIOUS	323.	365.	364.	50b.	\$6b•	366.	365.	364.	*49%	. 492	304.	363.	36.5.	362.	360.	340.	326.	276.	253.	233.	220	197.	184.	174.	103.	156.	150.	142.	131.	115.	102.
ALTHIC ALTITUDE MSL HEET	494().	5000	.000g	7:10:1	66669	400 0	15000.	11000.	1<000.	13000.	14000.	15060.	Letini.	Tenon.	*COUD*	20000.	5 0000	\$2000.	.ted00.	45000.	50 UU 0 •	550กค.	00000	იეციი	70000.	75000.	*0000	00000	90000	95000.	150000

TABLE XI (CONT)
MEAN AND EXIDERE UPPER AIR PRESSURES (MILLIHARS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PEMIOD OF RECORD 1461-1973

OCTORER

MINIME	a a a	R A A	807.	778.	750.	704	, C 20	9000	, C40	017	593	570.	547	504	464	374	301	241	192.	153.	119.	93.	73.	57.	44.5	35.0	27.5	000	17.4		10.9
NEAN	652.	350.	F20.	790.	702.	7.35	708.	542	657.	653.	609.	567.	564.	522.	482.	394.	318.	254.	201.	158.	123.	96.	75.	58.	0.94	36.0	28.5	22.5	17.9	14.3	-
MUSTALE	862.	460.	H29.	•00s	771.	744.	718.	692.	567.	643.	619.	296.	57¢.	531.	491.	402.	327.	263.	209.	164.	128.	100		.09·	D • / 1	3/•1	20.5	23.5	18.6	14.7	11.8
FOTAL OHSERVATIO IS	367.	417:	417.	4 lo.	417.	414.	418.	418.	418.	418.	41/	416.	414.	413.	410	٠ ٢ ١	363.	515	200	• 00 00 00	2240	• 127	• CTC	• V 0 •	000	0.74	1 70.	146.	155.	135.	116.
GEGREPHIC ALTITUDE MSL PEET	0964	• Dfine	• 0000	• 00000	• 0.000	• 00000	• 00007	10000	1:000			• 6000	• • • • • • • • • • • • • • • • • • • •	• 50 55 6	0.002	00007	45000	*00000	0.004	50000	00080	•000nc	200000	70007	75000.	SUNDO.	000000	00000		000.00	•

TABLE XI (CONT)
"ALAM AND EXTPEME UPPER AIR PRESSURES (MILLIGARS)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

HOVENBER

NOTE THE N	8.35	833.	802	773.	744.	716.	689.	662.	637.	612.	588.	565.	54%	* 66 *	459.	371.	298.	236.	187.	148.	116.	91.	71.	55.	43.0	34.0	5.97	21.0	16.6	13.2	10.5
N-E-AN	851.	849	618.	789.	760.	7.52.	705.	649	653.	673	605.	582.	500.	517.	477.	300.	313.	250.	197.	155.	121.	÷	73.	57.	45.6	35.5	28.0	22.0	17.4	13.6	11.0
MAXIM	865.	463.	831.	749.	769.	741.	714.	688.	663.	639.	615.	593.	570.	£29.	489.	402.	326.	263.	50 °	164.	129.	97.	75.	58.	0.94		•	20.00	•	14.3	11.4
ICTAL OHSERVATIONS	348.	# CH.	4117.	4117.	40.8.	÷0.7•	407	40B.	405	404	404	403	403.	405.	397.	345.	321.	295	233.	5u3	192.	165.	151.	147.	142.	134.	130.	123.	14.3.	• † 6	74.
OECHIKIC ALTITUDE MSC FEET	4940.	5000.	C0000	. 000 L	0.000	*000A	10000.	11000.	12000.	10000.	14000.	15000.	10000	10000.	20000.	25000•	30000	35000	+00004	45000.	5,0000	550n0•	•00000	•000ca	70060	75600.	+0000°	88000	•00006	•00uc6	100000

TABLE XI (CONT)
MEAN AND EXTREME UPPER AIR PRESSURFS (MILLIBARS)
A1 SELECTED LEVELS RY MONTHS
STALL ION SITE
PEPIOD OF RECORD 1961-1973

PLCEMBER

MIMIMIM	835.	634.	804.	774.	745.	716.	689	662.	636.	611.	586.	563.	540.	497.	457	367.	294.	234.	185.	146.	115.	89.	20.	55.	43.5	34.0	26.5		16.3	12.8	10.0
FLAN	649	K48.	617.	7.47	757.	729.	702.	٠76.	650	623.	601.	578.	556.	513.	473.	584.	308.	245.	193.	152.	119.	43.	72.	٠,٧٠	44.5	34.5	27.5	21.5	17.0	13.5	10.7
MUXIIIM	363.	461.	.529	798.	758.	739.	712.	686.	•040 •	536.	612.	589.	567.	524.	+ 12 t	396.	320.	256.	203	159.	124.	97.	75.	58.	45.5	35.5	28.0	22.5	•	14.0	11.2
FOTAL OHSERVALIONS	.166	328.	329.	324	\$29.	·626	324.	329.	329.	324.	329.	328.	328.	320.	321.	305.	274.	245	216.	148.	176.	154.	151.	140.	158.	136.	132.	126.	121.	114.	.26
GECOMETRIC ALTITUDE MSE FEET	4940	2000	•0500	7300.	•0000	.0006	10000.	11000.	12000.	13000.	14000.	15000.	10009	10000.	*0000Z	25000.	3000u	.0000cc	40000	45000.	50000	55900.	6 0000.	.000ca	70000.	75000.	\$0HD\$	35000°	•00000	.00056	100000

TABLE XII
MEAN AND EXTREME UPPER AIR PRESSUMES (MILLIBARS)
AT SELECTED LEVELS BY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

VINTER

wiw Iti I p	835.	653.	803.	773.	743.	715.	688.	661.	635.	610.	585.	562.	539.	• 161	452.	362.	288.	229.	181.	143.	112.	87.	68•	53.	•	•	•	•	16.2		10.0
MEAN	850.	848.	ы17.	787.	758.	729.	702.	676.	650.	625.	601.	578.	556.	513.	472.	343.	307.	544.	192.	151.	119.	93.	72.	26.	□• # #	34.5	27.5	21.5	17.1	13.5	10.6
MDM TAGIM	863.	,462.	A29.	798.	169.	741.	714.	687.	.662	637.	613.	590.	768.	۰۶۶۰	445.	396.	320.	256.	- 402	160.	125.	986	76.	59.	46.5	36.5	28.5	22.5	18.1	14.3	11.4
ICTAL ORSERVATIO IS	1013.	1220.	1222.	1222.	1219.	1220.	1220.	1219.	1216.	1218.	1215.	1210.	1211.	1201.	1167	1077.	983.	863.	781.	• 469	615.	520•	486.	454.	412.	394	365.	349.	323.	30d•	238°
VECMETHIC ALTITUME MSL FEET	• 0 46 4	5000	•0034	7000.	•0000	*000K	10000	11000.	1<000.	1,5000.	14000	15000.	10000	18000.	\$0000°	25000.	პიმიი•	35000.	*0000*	45000.	•000ng	55000	50000°	.05060	, 0000	75000.	90000	•00000	40000b	.00096	100000.

TABLE XII (CONT)
MEAN AND EXIBEME UPPER AIR PRESSURFS (MILLIBARS)
AI SELECFEU LEVFLS HY SEASONS
STALLION SIFF
PERIOU UF RECORD 1961-1973

SPRING

JEORETRIC ALTITUDE 101AL MSERVATIONS 4940. 1217. 5000. 1478.
1478
1476.
1469
1464
1462• 1458•
7
1111
5.7
1196.
1-
559.4 1860
7
3
נח
r)
F./
F 7

TABLE XII (CONT)
MEAN AND FYTHEMY UPPER AIR PRESSURES (MILLIBARS)
AT SELECTED LEVELS BY SFASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

HI WAS

MILLALIAN	638 .	836.	80A.	780.	752.	725.	699	673.	647.	624.	549.	576.	554.	512.	473.	385.	306.	250.	197.	155.	122.	95.	74.	58.	45.5	36.0	28.5	22.5	17.8	14.1	11.3
2.4 7.4	h51 .	240.	320.	791.	104.	7.37.	711.	oggo.	661.	U.37.	014.	591.	509.	527.	407.	99.00	324.	261.	207.	163.	127.	.66	77.	• n.a	47.5	37.5	29.5	23.5	18.7	15.0	12.0
William	460.	×58.	N28.	7002	771.	743.	717.	.264	567.	643.	620.	597.	.75.	533.	• 46 1	*90	331.	267.	214.	169.	133.	103.	¥0.	63.	40.5	39.0	•	24.5	•	15.8	12.7
LOTAL CHANGE	·/ fo	1085.	1030.	1046.	1038.	1087.	1087.	1007.	* T T T T T T T T T T T T T	1988.	1087.	1083.	1081.	1072.	1058.	9 bin	941.	818.	711.	£ 35.	.06c	726.	443.	454	431.	415.	+00+	585	354.	322.	2H2.
OEOVETRIC ALTITUDE MSC FEFT	" U this to	50 Jes	C 94.0	7000	• B) ii o	. 0006	10000	11000	12000	15000	14010.	Lound.	10000	16060.	201100	20000	50000	.55000	*0000	45000	50000°	55000	• 0000a	55000	* 0.0007	75000.	40000	85000°	•00006	95000.	100000

TABLE XII (CONT)
MEAN AND EXTREME UPPER AIR PRESSURES (MILLIMARS)
AT SELECTED LEVELS HY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

ドドし

MINIM	835.	833,	802.	773.	744.	716.	689	662.	637.	612.	588.	565.	542.	499	459.	371.	298.	236.	187.	148	116.	91.	71.	55.	430	34.	56.	21.	16.	13.	10.
NEAN	851.	549.	819.	790.	761.	734.	707.	.42.	. 56.	632.	608.	586.	563.	521.	482.	393.	318.	254.	201.	158.	124.	96.	75.	58.	46.0	36.0	28.5	22.5	17.9	24.3	11.4
MANI AND	865.	963.	A31.	300.	771.	744.	718.	692.	667.	643.	619.	596.	574.	532.	492.	403.	327.	264.	210.	166.	129.	100.	.78.	61.	C * 8 +	38.7	30.0	24.0	19.0	15.1	15.1
10TAL 005ERVATIO15	1034	1190.	1184.	1188.	1190.	1191.	1190.	1140.	1187.	1186.	1145.	1142.	1180.	1177.	1161.	1080.	1010.	886.	774.	69B.	660	581.	548.	523.	501.	476.	450.	431.	397.	344.	292•
GECSEIGIC ALTITODE MSE PEET	4940.	5000.	£0000	7000.	*000%	•0:305	10000.	11000.	12,000.	13000.	14000.	15000.	16000.	16000.	20000	25000.	30000.	35000	+0000÷	40000	50000	55000.	•00000	02000	74860.	75060.	30000	.00065	•00006	+00006	100000.

ATMOSPHERIC STRUCTURE REPORT

STALLION SITE

SECTION I

UPPER AIR DENSITY DATA

By Mont	<u>hs</u>	Page
Table XIII.	Mean and Extreme Upper Air Densities (Grams/Cubic Meter) at Selected Levels	121
By Seas	ons	
Table YIV.	Mean and Extreme Upper Air Densities (Grams/Cubic Meter) at Selected Levels	133

TABLE XIII
MEAN AND EXTREME UPPER AIR DENSITIES (GHAMS/CUBIC METER)
AT SELECTEU LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

JANUARY

MINIMUM	1005.	992.	968.	• 110	918.	893.	868.	842.	815.	791.	767.	744.	722.	676.	631.	240 6	439.	354.	285	228.	182.	143.	113.	88.	69	24.	42.	33.	26.	20.	16.
MEAN	1065.	1060.	1026.	995.	960	928	899.	871.	843.	816.	791.	766.	741.	695.	652.	554.	467.	387.	311.	246.	196.	155.	120.	93.	72.	56.	* ##	34.	27.	21.	17.
MAXIMUM	1179.	1133.	1115.	1069.	1032.	997.	957.	920.	891.	861.	832.	806.	778.	720.	670.	568.	477.	399.	332.	272.	211.	167.	128.	98•	75.	28•	45.	96.	28.	22.	18.
TOTAL OBSERVATIONS	.46.	411.	418.	414.	417.	415.	417.	417.	419.	416.	418.	416.	415.	410.	393.	359.	325.	260.	235.	209.	180.	154.	• 0 1	130.	122.	115.	102.	• 8 6	86.	82.	63.
GEOMETRIC ALTITUDE MSL FEET	0	.0003	0	0	B000.	0	000	1000	2000	300	4000	5000	009	8000	0000	500	30000	5000	000	200	0000	2000	000	2000	000	5000	0000	5000	0000	500	100000.

TABLE XIII (CONT)
MEAN AND FXTREME UPPER AIR DENSITIES (GHAMS/CUBIC METER)
AT SELECTEC LEVELS BY MONTHS
STALLION SITE
PEHIOD OF PECORD 1961-1973

FEBRUARY

MINIM	988.	987.	965.	941.	916	895.	866.	837.	818.	791	769.	744.	720.	674.	632.	531.	・オオオ	357.	282.	226.	179.	142.	10	.68	70.	54.	41.	32.	25.	20.	15.
MEAN	1055.	1052.	1021.	9	961.	931.	905	874.	846.	819.	793.	768.	744.	698.	654	554	466.	385.	307	243.	195.	154.	120.	93.	72.	. 96	* 1 1	34.	27.	21.	17.
MAXIMUM		-	\subset	1056.	C	980.	947.	915.	885.	857.	R28.	802.	776.	727.	675.	266.	477.	+ 00 +	332.	564.	211.	168.	130.	97.	75.	24.	#6.	36.	2A.	23.	18.
TOTAL OBSERVATIONS	362.	469	473.	469	470.	466.	470.	463.	468°	462.	466.	464.	466.	463.	451.	*101	358.	280.	250.	221.	192,	158.	143.	124.	103.	96.	88.	87.	82.	78.	62.
GEOMETRIC ALTITUDE MSL FEET	*0%6%	5000.	.0009	7000.	9 000	.0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000.	35000.	40000	45000.	.00003	55000.	. 00000		70000.	75000.	80000°	85000.	90000	95000.	100000.

TABLE XIII (CONT)
MEAN AND EXTREME UPPER AIR DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PEHIOD OF PECORD 1961-1973

MARCH

MINIMUM	977.	977.	958.	934.	910.	887.	863.	840	816.	792.	769.	745.	722.	678.	636.	533.	434	349.	281.	224.	184.	143.	114.	89.	68 •	54.	42.	33.	26.	20.	16.
MEAN	1040.	1040.	1011.	982.	954.	926	898.	871.	844.	818.	793.	768.	744.	.169	653.	553.	465.	384.	308.	243.	194.	153.	119.	93.	72.	56.	* # # # # # # # # # # # # # # # # # # #	35.	27.	21.	17.
MAXIMUM	1124.	1120.	1074.	1042.	1012.	983.	646	914.	886.	859.	830.	800	775.	725.	678.	568.	477.	398.	330.	267.	210.	165.	126.	98•	75.	58.	45.	36.	28.	25	17.
TCTAL OBSERVATIONS	388.	481.	483.	482.	482.	480.	480.	475.	474.	473.	472.	472.	472.	470.	461.	411.	349.	257.	208.	188.	158,	134.	116.	100.	•96	87.	•08	77.	•99	61.	. 84
GEOMETRIC ALTITUDE MSL FEET	*01611	5000.	•0009	7000	8000	.0006	10000.	100	200	300	400	500	900	900	000	200	000	500	000	500	000	200	000	500	000	500	000	500	000	95000	000

TABLE XIII (CONT)
MEAN AND EXTREME UPPER AIR DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PEHIOD OF RECOPD 1961-1973

APRIL

MINIMUM	983.	971.	955.	926	905.	882.	860.	837.	814.	793.	769.	744.	721.	676.	635.	539.	441.	358.	288.	232.	184.	145.	116.	89.	70.	55.	43.	34.	26.	20.	16.
MEAN	1023.	1020.	995.	967.	941.	914.	888.	863.	837.	812.	788.	763.	740.	• 769	651.	553.	466.	388.	315.	248.	197.	155.	122.	• 46	73.	57.	***	(C)	27.	22.	17.
MAXIMUM	1084.	1081.	1051.	1022.	• 166	961.	931.	905	876.	840.	822.	793.	767.	720.	673.	568.	477.	400	332.	269.	207.	165.	129.	98.	76.	59.	46.	36.	28.	22.	18.
TOTAL OBSERVATIONS	412.	529.	533.	524.	530.	528.	532.	528.	531.	527.	531.	531.	530.	524.	500.	424.	414.	285.	230.	202.	183.	154.	138.	129.	121.	115.	106.	101.	97.	88.	67.
GEOMETRIC ALTITUDE MSL FEET	4940.	5000.	. 0009	7000	.0008	.0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	16000.	20000.	25000.	30000	35000.	*0000	45000.	50000	55000.	60000°	65000.	70000.	75000.	80000	85000.	•00006	9500	100000.

TABLE XIII (CONT)

MEAN AND EXTREME UPPER AIR DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

MAY

GEOMETRIC ALTITUDE MSL FEET	TOTAL OBSERVATIONS	MAXIMIM	MEAN	MINIMUM
*0767	408	1073.	1004.	960.
.000	457,	1068.	1003.	959.
•000	460	1028.	978.	937.
7000.	457.	•966	951.	916.
.0003	460	970.	926.	895.
•0006	457.	943.	•006	874.
100001	460	917.	875.	852.
11000.	453°	892.	851.	828
12000.	455°	865.	827.	809
13000.	644	837.	803.	787
14000.	451.	813.	180	762.
15000.	448.	788.	757.	738.
16000.	447.	765.	734.	718
18000.	441.	703.	691.	676.
20000	435.	670	.649	632.
25000.	419.	566.	552.	539.
30000	381.	475.	467.	455.
35000.	260.	*00+	392.	374.
¢0000	218.	331.	321.	299.
45000.	205.	273.	255.	239.
50000.	181,	213.	201.	189.
55000.	146.	167.	159.	149.
.00009	136.	131.	124.	117.
65000.	122,	101.	95.	90.
70000	112.	77.	74.	72.
75000.	105.	59.	58.	56.
80000.	102.	46.	45.	* 11
85000.		36.	35.	34.
.00006	95.	28•	28.	27.
9500		23.	22.	21.
100000.		18.	17.	17.

TABLE XIII (CONT)
MEAN AND FXTREME UPPER AIR DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

CUNE

GEOFFINIC ALITIODE				
FEFT	OBSERVATIONS	MAKINOM	MEAN	MINIMOMINIA
•				
.046	319.	1039.	988.	943
.000	940	1035.	987.	0
•000•	351.	1001	963.	
.000	349.	968.	937.	100
.000	351.	93A.	912.	
.0000	349.	911.	888	
.0000	351.	885.	864.	
.0001	347.	863.	840.	819
2000.	351.	840.	817.	1:0
.0005	348.	809	794	777
.000+	348.	786.	771.	
.000	346.	765.	749.	735.
.000	347.	144.	728.	
3000.	・オオの	701.	685.	672
.000	338.	659.	***	13
.0000	317.	560.	549.	10
30000.	295.	477.	466.	455
.000	220.	398.	392.	_
.000	164.	334.	325.	
•000•	149.	277.	263.	
.000	143.	224.	210.	199.
_	129.	176.	165.	
_	121.	133.	126.	۰
_	102.	101.	97.	-
_	97.	79.	75.	73.
•000	92.	63.	59.	-
_	91.	48.	46.	
_	86.	38.	36.	
_	81.	30.	28.	28.
_	70.	24.	22.	22.
_	•09	19.	18.	17.

TABLE XIII (CONT)

MEAN AND EXTREME UPPER AIP DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

JULY

MINIMUN	948	246	927	106	882	861	841	819	793,	778,	757	737.	718	672	632,	538,	454	385,	324	267	211.	165	125	97,	74,	58,	45,	36	28.	22.	18
MEAN	985.	985.	961.	935.	910.	885.	861.	837.	814.	791.	169.	747	725.	683.	641.	545.	463.	392.	329.	272.	219.	170.	129.	•66	76.	29.	47.	37.	29.	23.	18.
MAXIMUM	1019.	1017.	•066	964.	934.	908	883.	854.	830.	811.	782.	761.	739.	693.	653.	555.	469	399.	333.	275.	225.	176.	133.	101.	78.	61.	48.	38.	30.	23.	19.
TOTAL OBSERVATIONS	320.	350.	350.	350.	351.	351.	350.	353.	354.	353.	354.	353.	352,	350.	345	317.	297.	251.	178.	155.	147.	134.	125.	114.	110.	107.	106.	102.	97.	92.	85.
GEOMETRIC ALTITUDE MSL FEET	•0464	5000•	. 0009	2000	8000	•0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000	25000.	30000.	35000.	*0000+	45000•	50000	55000.	•00009	65000•	70000	75000.	80000	85000.	•00006	950	100000

TABLE XIII (CONT)
MEAN AND EXTREME UPPER AIR DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
S' LLION SITE
PERIOD OF PECORD 1961-1973

AUGUST

AU :	44	MAXIMUM	FEAN	MINIMUN
• 0 76	355 355 355 355 355 355 355 355 355 355	1025.	•066	953
.000	384.	1026.	986	953
•000	384.	•366	• 496	932
000 د	385.	962.	938.	606
.000	385.	936.	913.	887
.000	385.	912.	888	865
.000	384.	889.	863.	348
.000	384.	862.	840.	824
.000	384.	836.	816.	801
•000	385.	810.	793.	780
.000	385.	785.	771.	758
.000	384.	760.	748.	732
.000	382.	737.	726.	404
.000	378.	• 169	683.	199
.000	375.	650	641.	626
.000	358.	554.	545.	534
30000.	**************************************	471.	463.	453
.000	284•	399.	391.	386
.000	215.	334.	328.	321
.000	191.	275.	270.	261
.000	177.	225.	218.	207
.000	162.	178.	169.	162
.000	155.	133.	129.	124
.000	147.	102.	98	95
•000	137.	78.	76.	75
.000	130.	61.	59.	58
.000	124.	# *	47.	46
.000	120.	38.	37.	36
.000	106.	30.	29.	28
•000	• 96	24.	23.	22
.000	82.	19.	18.	17

TABLE XIII (CONT)
MEAN AND EXTREME UPPER AIP DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

SEPTEMBER

MINIMUM	959.	959.	939	917.	896°	874.	851.	829.	808	786.	761.	738.	714.	6699	627.	534.	448	374.	303	246.	201.	154.	121.	93.	73.	57.	* 7 7	35.	27.	22.	17.
MEAN	1000.	666	974.	946	921.	895.	870.	846.	822.	798.	774.	751.	728.	683.	641.	547.	****	390.	324.	265.	214.	166.	127.	97.	75.	59.	46.	36.	28.	22.	18.
MAXIMUM	1054.	1040.	1015.	988	961.	933.	907.	881.	855.	822.	796.	772.	747.	702.	.099	562.	473.	397.	331.	274.	224.	173.	131.	100.	78.	61.	47.	37.	29.	23.	18.
TOTAL OBSERVATIONS	319.	361.	364.	361.	365.	362.	365.	360.	364.	360.	364.	363.	363.	361.	359.	345	323.	251.	202.	188.	181.	159.	147.	138.	128.	124.	121.	115.	105.	91.	80°
GEOMETRIC ALTITUDE MSL FEET	*0767	5000.	•0009	.0002	8000	•0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000	25000.	30000	35000.	*0000	45000•	50000•	55000.	.00009	65000.	70000.	75000.	80000	85000.	•00006	95000•	100000.

TABLE XIII (CONT)
MEAN AND EXTREME UPPER AIR DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

OCTOBER

	020.	019.	990.	•	•		•	•	•	•	778. 757.	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•				
	085. 1	1 080		012.														•						•							
OBSERVATIONS	362.	412.	417.	411.	417.	413.	418.	410.	するか。	# T T T T T T T T T T T T T T T T T T T	417.	416.	414.	413.	410.	387.	362.	290.	242.	208.	204.	182.	176.	167.	161.	153.	146.	136.	125.	110.	97.
MSL FEET	•0767	5000.	•0009	7000	8000	.0006	10000	11000.	12000.	15000.	14000.	15000.	10000.	18000.	20000.	25000.	30000	35000.	40000	45000	50000	55000.	.00009	e 2000.	.00007	75000.	80000.	85000.	•00006	95000.	100000

TABLE XIII (CONT)

MEAN AND EXTREME UPPER AIR DENSITIES (GFAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

NOVEMBER

MINIMUM	992.	996.	944	918.	892.	860.	835.	812.	786.	762.	740.	717.	671.	532.	535.	438.	357.	297.	238.	190.	150.	115.	91.	71.	55.	4 2.	32.	26.	20.	16.
MEAN	0	1041.	16	646	920.	891.	863.	836.	.608	784.	759.	736.	691.	648.	551.	465.	388.	319.	256.	203.	159.	123.	95.	73.	57.	• ##	35.	27.	21.	17.
MAXIMIM	===	1112.	03	66	965.	934.	901.	873.	842.	810.	785.	760	712.	675.	563.	479.	*00 *	335.	275.	221.	169.	128.	98•	75.	58.	4 5.	36.	28.	22.	17.
TOTAL OBSERVATIONS	341.	401.	#00#	405.	399.	406.	401.	403.	397.	402.	401.	401.	400	390	みなける	310.	243.	184.	166.	152.	129.	118.	113.	109.	102.	.86	93.	85.	•69	52.
GEOMETRIC ALTITUDE MSL FEET	*0 10	5000.	7000	8000	.0006	000	100	200	300	400	500	009	800	000	<u> </u>	000	500	000	500	000	500	•00009	500	000	500	000	500	000	500	000

TABLE XIII (CONT)
MEAN AND EXTREME UPPER AIR DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

DECEMBER

GEOMETRIC ALTITUDE MSL FEET	TOTAL OBSERVATIONS	MAXIMIM	KEAN	MINIMOMINIMOM
•0464	293.	1125.	1063.	-
5000.	324.	1121.	1061.	600
•0009	328.	1075.	1025.	8
7000.	325.	1038.	992.	957.
8000	328.	997.	959.	N
•0006	325.	• 1196	928.	ð
10000	328.	931.	898.	~
11000.	324.	899.	870.	0
12000.	328.	870.	841.	14
13000.	324.	844.	814.	99
14000.	328.	812.	788.	69
15000.	327.	785.	763.	#
16000.	327.	758.	739.	N
18000.	325.	711.	• 469	-
20000	321.	667.	650	n
25000.	303.	566.	552.	N
30000	263.	476.	465.	3
35000.	206.	40¢	386.	S
+0000+	178.	330.	312.	8
45000	154.	263.	248.	n
50000	144.	20B.	197.	20
55000.	124.	163.	155.	#
•00009	123.	126.	121.	-
. 65000.	119.	97.	• †6	87.
70000	111.	76.	72.	.69
75000.	110.	58.	26.	54.
80000	107.	45.	* # # #	・のす
85000·	105.	35.	J.	33.
•00006	100.	28.	27.	26.
95000•	93.	22.	21.	21.
100000	77.	17.	17.	16.

TABLE XIV
MEAN AND EXTREME UPPER AIR DEMSITIES (GRAMS/CUBIC METEK)
AT SELECTED LEVELS BY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

WINTER

P.INIRUM	988.	967.	965	941.	918.	893.	866.	857	A14.	786.	767.	744.	720.	674.	631.	528.	439.	354.	282	226.	179.	142.	113.	87.	.69	54.	41.	32.	25.	20.	15.
ME AL	1061.	1057.	1024.	992.	960	929.	•006	872.	844.	817.	791.	766.	742.	696•	652.	554.	466.	386.	309.	245.	196.	155.	120.	93.	72.	56.	* * * * * * * * * * * * * * * * * * * *	34.	27.	21.	17.
MAXIMUM	1179.	1133.	1115.	1059.	1032.	997.	957.	920.	891.	861.	A32.	806.	778.	727.	675.	568.	477.	406.	332.	272.	211.	168.	130.	98•	76.	59.	46.	36.	28.	23.	18.
TOTAL	1001.	1204.	1219.	1208.	1215.	1206.	1215.	1204.	1215.	1202.	1212.	1207.	1208.	1198.	1165.	1066.	946	746.	663.	584.	516.	436.	406.	373.	336.	321.	297.	290.	268.	253.	202.
GEOMETRIC ALTITULE MSL FEET	*0764	5000•	.0009	7000.	*000R	•0006	10000.		$\overline{}$	$\overline{}$	$\overline{}$	15000.	$\overline{}$	_			30000		$\overline{}$	45000•	$\overline{}$	$\overline{}$	•00009	_	$\overline{}$	_	80000	85000.	.00006	_	100000.

TABLE XIV (CONT)
MEAN AND EXTREME UPPER AIR DENSITIES (GRAMS/CUBIC METER)
AT SELECTED LEVELS BY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

SPRING

GEOMETRIC ALTITUDE MSL FEET	TOTAL OBSERVATIONS	MAXIMIM	MEAN	MINIMUN
*0#6#	1208.	1124.	02	960
5000.	1467.	1120.	1021.	956
•0009	1476.	1074.	66	937.
7000.	1467.	1042.	967	916
8000	1472.	1012.	.046	895°
•0006	1465.	983.	914.	874.
10000.	1472.	•6116	888.	852
11000.	1456,	914.	862.	828
12000.	1450.	886.	836.	808
13000.	1449.	A54.	811.	787
14000.	1454.	830.	787.	762.
15000.	1451.	800·	763.	738.
16000.	1449.	775.	739.	718.
18000.	1435.	725.	• 469	676.
20000	1396.	67B.	651.	635.
25000	1284.	568.	553.	533.
30000	1144.	477.	466.	494
35000.	802.	*00+	388.	349
40000	656.	332.	315.	281.
45000.	595.	273.	249.	224.
50000	522.	213.	198.	184.
55000.	きかり	167.	156.	143.
•00009	390.	131.	122.	114.
65000.	351.	101.	94.	89.
70000.	329.	77.	73.	68.
75000.	307.	59.	57.	54.
80000	288.	46.	45.	42.
85000.	277.	36.	35.	33.
.00006	258.	28.	27.	26.
95000•	235.	23.	22.	20.
100000	183.	18.		16.

TABLE XIV (CONT)
MEAN AND FXTREME UPPER AIP DENSITIES (GHAM5/CUBIC METEK)
AT SELECTED LEVELS BY SEASCNS
STALLION SITE
PERIOD OF RECORD 1961-1973

SUMMER

MINIMUM	943.	9 0	90%	ΩÍ	861.	340	10	~	-	N	709.	667.	626.	533.	453.	381.	310.	246.	199.	155.	121.	• **c	73.	57.	45.	35.	28.	22.	17.
MEAN	988.	963.	937	912.	887.	800 800 800 800 800 800 800 800 800 800	816.	793.	170.	748.	726.	683.	642.	546.	+64	392.	327.	269.	216.	168.	128.	98	76.	29.	46.	36.	29.	23.	18.
MAXIMUM	1039.	1035.	96R.	938.	912.	8634	940	811.	786.	765.	744.	701.	629	560.	47.7	399.	334.	277.	225.	178.	133.	102.	79.	63.	. 84	38.	30.	54.	19.
TOTAL OBSERVATIONS	* n66	1085.	0	1087.	1085.	1084.	1089.	1086.	1087.	1083.	1081.	1072.	1058.	992.	936.	755.	557.	495	467.	425.	401.	363.	. 446	329.	321.	308.	284.	258.	227.
GEOMETRIC ALTITUDE MSL FEET	4940	•0009	7000•	8000°	90	11000.	200	30	400	500	900	800	000	200	00	20	00	200	00	20	000	200	000	50	000	500	000	950	000

TABLE XIV (CONT)

MEAN AND EXTREME UPPER AIR DENSITIES (GFAMS/CUBIC METER)
AT SELECTED LEVELS BY SEASONS
STALLION SITE
PEKIOD OF RECORD 1961-1973

FALL

4940. 5000. 11000. 12000. 14000. 15000. 16000. 20000. 25000. 55000. 55000.				
5000. 6000. 11000. 12000. 15000. 15000. 15000. 15000. 15000. 15000. 15000.	1022.	1114.	1021.	696
6000. 11000. 11000. 12000. 15000. 15000. 15000. 15000. 15000. 15000.	1174.	1112.	1020.	959
7000. 110000. 110000. 120000. 150000. 200000. 550000. 60000.	1186.	1078.	992.	939.
8000. 110000. 12000. 13000. 16000. 20000. 35000. 55000. 60000.	1172.	1033.	962.	917.
9000. 11000. 12000. 13000. 16000. 20000. 35000. 55000. 60000.	1187.	•966	934.	968
10000. 11000. 12000. 14000. 16000. 20000. 40000. 55000. 60000.	1174.	965.	907.	874
11000. 12000. 14000. 16000. 20000. 85000. 55000. 55000.	1189.	934.	881.	851
12000. 13000. 16000. 20000. 35000. 55000. 55000.	1174.	901.	854.	829
13000. 14000. 15000. 20000. 35000. 45000. 55000. 55000.	1185.	873.	829.	808
14000. 15000. 20000. 30000. 40000. 50000. 55000.	1170.	845.	803.	782
15000. 16000. 20000. 35000. 40000. 55000. 60000.	1183.	819.	779.	757
16000. 20000. 35000. 40000. 55000. 55000.	1180.	795.	755.	734
16000. 20000. 30000. 40000. 55000. 55000.	1178.	760.	732.	713
20000. 35000. 45000. 55000. 55000.	1174.	712.	687.	649
25000. 25000. 40000. 50000. 55000. 60000.	1159.	675.	645.	627
\$6000. \$5000. \$5000. \$5000. \$5000. \$5000.	1076.	563.	249.	534
55000. 45000. 50000. 55000. 60000.	995.	479.	465.	438
40000. 45000. 50000. 55000. 60000.	784.	+ 00	390.	357,
45000. 50000. 55000. 60000.	628.	335.	322.	297
50000. 55000. 60000. 65000.	562.	275.	261.	238
55000. 60000. 65000.	537.	224.	209.	190
60000. 65000.	.074	173.	163.	150
65000.	441.	131.	125.	115
	418.	100.	96	916
70000.	398,	78.	74.	71,
75000.	379.	61.	58.	52
80000	365,	47.	45.	45
85000.	344.	38.	35.	32.
•00006	315,	29.	28.	26.
95000.	270.	23.	22.	20,
100000.	229,	18.	17.	16.

ATMOSPHERIC STRUCTURE REPORT

STALLION SITE

SECTION I

UPPER AIR MOISTURE DATA

By Mo	nths	Page
Table X	V. Mean and Extreme Upper Air Mixing Ratios (Grams/Kilogram) at Selected Levels	138
Table XV	VI. Mean and Extreme Upper Air Precipitable Water (Centimeters) Between Selected Levels	150
Table XVI	I. Mean and Extreme Upper Air Relative Humidities (Per Cent) at Selected Levels	162
By Se	asons	
Table XVII	I. Mean and Extreme Upper Air Mixing Ratios (Grams/Kilogram) at Selected Levels	174
Table XI	X. Mean and Extreme Upper Air Precipitable Water (Centimeters) Between Selected Levels	178
Table X	X. Mean and Extreme Upper Air Relative Humidities (Per Cent) at Selected Levels	182

TABLE XV

MEAN AND EXTREME UPPER AIR MIXING RATIOS (GRAMS/FILOGRAM) AT SELECTED LEVELS
RY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

JALILIALY

MINIMUM	.290	さささ・	.401	.402	.293	.171	. 064	.166	650.	.027	.077	.034	.010	.022	510 •	200.	*005	.001	.001	.001	.001	.001	000.	000.	000	000	000	.000	000.
MEAN	2.729	2.372	•	•						1.049	.923	. 623	049.	.482	.354	.247	.168	.114	.067	500	.017	600.	0000	000.	000.	000.	000°	000	000.
MAXINIM	7.554	5.743	7.044	5.861	5.322	4.747	4.063	4.160	4.003	3.741	740.4	4.006	3.214	2.557	1.451	366.	.809	.553	.290	.179	.083	420.	0000	000.	00ú·	000.	000.	000.	000.
TOTAL 0055EPVATIONS	417.	¢1H.	416.	416.	414.	410.	411.	* 50 d	405.	405.	397.	395.	386.	375.	362.	351.	318.	246.	155.	75.	30.	. 0	• ()	. D	0.	•	• 0	• n	• 0
GEOMETATC ALTITUDE MSE PEET	•0000	0.11.0	7090.	.000b	40.10	10000	11930.	12000.	15000.	1400m	15000.	16000.	10000	20000.	22"(1).	240c0.	<0000×	23000.	30000	32000.	54000.	5e30n•	\$8900	+0000±	+200C+	44000	40000	46000	.0000

TABLE XV (CONT)

*EAU AND EXTURE WERE TAIRS (GRAMS/FILOCKAM) AT STLECTED LEVELS

FY YONTHS

STALLIOM SITE

PERIOD OF MECOPE 1943

FEMRUARY

RINIMUM	217.	.642	•				.062													•		•	•	•	000.	•	•	•	000.
MEAN	2.772	41	•	•	•	•	1,523	•	•	616.	.857	194.	.576	L + + -	.337	.254	.179	.125	080.	.053	1034	.025	900.	.001	000.	000.	000	000	000.
MINT X TW	8.940	7.040	6.503	5,751	5.840	•	4.452	4.014	4.503	4.241	5.066	4.052	3.940	•	•	1.664	•	169.	.421	.264	.199	.153	600.	.001	000.	000.	000.	000.	000.
TOTAL	473.	473.	473.	470.	470.	466.	403.	460.	45%	* n Q n	45G•	451.	450.	435.	418.	378.	342.	265.	177.	85°	3H.	15.	• *	1.	• 5	• •	• 0	•=	•
GEORETRIC ACTIONS MISE PERT	5000	•888	7000	द्यातात्र.	•0000	10000	11464	12000.	15000	14000	15909	10001	1:000	20000	22000.	Z4000.	20000	28000	34000.	52000.	34000.	30000	58000.	*0000+	* <pre>*</pre>	+4000	46000.	40000+	•000ns

TABLE XV (CONT)

NEAM AND EXTREVE UPPER AIR MIXING HATIOS (GRAMSZAILOGKAM) AT SELECTED LEVELS
FY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973

FARCH

MINIMUM	í	.581	425.	450	200	1000	961.	.124	.173	.030	.032	0.50	1000	220.	• 020	.013	.010	.012	.011	.005	.003	.002	.001	.001	.002	.002	.019	•025	010	.017	.017	.015
MEAN	r	•	2.301		3		1001	1.050	116.1	1.324			.867	754		0 :	# O # .	.340	.248	.178	.123	.071	040.	.018	.013	.023	.034	.032	.030	.025	• 026	.027
MAXIMIM		OCT &	6.539	5.966	5,325	5.002	4.951	418	7 7 7	4.730	5.935	0.420	3.476	3.167	3.002	3 6 7 0	007	550-1	1.135	060.	.485	. 533	.220	X + 10 •	3 to 10 to 1	****	.042	\$ C 3	. 045	+60·	.034	.138
TCTAL OBSEPVATIONS	483.		• 704	****	460.	480.	474.	472.	455	5.94		• 001	#0.h	463.	453.	445	421	404	747	0.70	1 31	• • • • • • • • • • • • • • • • • • • •	א ת ה	• • •	• 3	e t m	, ,	° м	• 7 (• ถ	j	•
OEUNETRIC ALTITUDE MSE FRET	5000	•0000	- 00n/	1000		•0006	10000	.1000.	12000.	15060.	14000	11,000	00004	•0000	10006	S00005	22000.	24060.	20000	28100.	30000	32000	2000	36000	34000.	-3000±	42000	*COO##	46000	48000	50000	

TABLE XV (CONT)

REAG AND LATHER UPPER AIM WIXING MATIOS (GRASS/RILOGMAN) AT SELECTED LEVELS

RY FONTHS

STALLIOW SITE

PERIOD OF RECORD 1961-1973

MINERUM	.200	.120	.102	.172	. 180	.133	. u5u	.262	.147	040.	990.	.057	.021	.033	.026	•000	†00°	.000	.002	• 005	.001	.001	.001	000.	000	000	000.	000	000
MEAN	3.152	.803	•	•	•	•	1.763	•	•	•	1.067	.927	.655	764°	.357	.270	190	.130	.076	.036	.016	900	.002	000	000	000	000	000	000
MULIXVI	8.579	7,543		•	5.89n	•	•	•	•	3.876	3.533	3.214	2.505	2.073	1.709	1.212	.673	944.	.275	.146	.063	.020	+00.	000.	000.	000.	000.	ບຸດດ•	000.
TOTAL OBSERVATIONS	533.	523.	524.	518.	518.	514.	517.	509.	503.	497.	488.	433.	468.	433.	412.	300°	357.	308.	222.	108.	47.	14.	۵.	້ລ	• n	• 5	•0	•0	•
GEOMETRIC ALTITUDE MSL FEET	ວທຄຸທ•	.0000	7006.	\$000°	•0006	10000	11900.	12nnn.	15040.	14000.	15000.	Leuon.	18060.	2000°.	22000.	24000°	20000.	•0000~	SUB00.	32000.	54000.	35000°	58000.	40000	#Z000.	441100	46000	+cn00+	•00000

TABLE XV (CONT)

MEAN AND EXTREME JUPPER AIR MIXING RATIOS (GRAMS/KILOGRAM) AT SELECTED LEVELS HY MONTHS STALLION SITE PERIOD OF RECORD 19

1961-1973

Y A Y

MINIMUM	.262	.437	174	•129	.297	★80 •	• 08·	.063	.150	•050	.045	450.	.122	.143	.027	.019	•000	*00°	.002	.002	100.	.001	.001	900•	000	000.	000•	000.	000	
MEAN	4.459	- 30	3.549	3,308	3.031	2,721	2.455	2,199	1.974	1.769	1,595	1,423	1.033	.738	. 503	.355	.253	.174	.112	.072	.028	.011	.007	900.	000	000.	000.	000.	000	
MIMIXTH	•	10.043	•	•	7,455	•	•	6.912	•	6.034	5.569	5.134	4.279	3,515	2.334	1.404	9	.754	5 £ £ £	. 246	.137	• 062	• 026	• 006	000.	000.	000	000.	000.	
TOTAL OBSERVATEORIS	453.	450.	446.	****	* # # # # # # # # # # # # # # # # # # #	*577	440.	440.	• 1111	* 25 to 5	437.	434.	424.	417.	406.	#0.D#	385.	354.	300.	162.	43.	30.	ů.	1.	• o	• •	•n	0.	°,	
GEOMETAIC ALTITUDE MSL FEET	• 0000	•0000	7000.	*000a	• 000 6	10000	11000.	12000.	1,0000	14800.	15000.	10000	18000.	20000.	22000.	5 4000.	26000.	28000.	30000	32000.	34000.	30000	3Ango.	40000	4200C+	44000	40000	480n0•	•000nc	

TABLE XV (CONT)

THE CATE TATES TO UPDER ATH WIXING HATIOS (GPAMSZAILOGRAM) AT SELECTED LEVELS
AY MONTHS
STALLION SITE
PERIOD OF RECORD 1461-1973

JUNE

GEORIETAIC ALTITULE Mai FLEI DOGG.	TOTAL OBSERVATIONS 345	MAXI: UM	MEAN.	MINIMIMINIM
	344.	12,714	•	824
	343.	12,018	4.956	.220
	346.	12,105	•	1.246
	545.	11.653	•	1.118
	346.	9.616	3.800	. 705
	345.	8.864	3.468	.272
	346.	8,293	3,134	100
	345.	7.584	2.845	.264
	344.	6.079	2.554	.279
	340.	6.702	2.289	.067
	342.	6.315	2.018	.053
	334.	5.740	1.544	740.
	325.	4.468	1.085	.05°
	308.	•	.727	870.
	295.	2.414	.510	• 026
	283.	•	.358	# TO .
	27.3	.856	.255	.010
	257.	869.	.168	•00•
	161.	.510	.121	POO.
	151.	. 368	.068	00.
	68.	.186	.036	00.
	38.	. 083	• 025	.00
	22.	640.	.022	.00
	16.	. 041	.019	.00
	15.	.036	.018	.00
	12.	.033	.016	.00
	12.	.028	.013	00.
	*6.	050.	.013	.00

TABLE XV (CONT)
MEAN ALD LYTREME UPPER AIR MIXILG PATIOS (GPAMS/KILOGRAM) AT SELECTED LEVELS
BY MONTHS
STALLIOU SITE
PERIOD OF RECORD 1961-1973

JULY

MEAN LYTREME UNDER ATH FIXING FATIOS (GRAMS/KILOGRAM) AT SELECTED LEVELS
HY YONTHS
STALLION, SITE
PERIOD OF RECORD 1961-1973 TABLE XV (CONT)

AUGUST

MINIMUM	4.335	.293	.197	. 783	.785	1.622	1.268	616.	788.	.752	+S+.	.612	.122	.174	+£0.	.022	.023	940.	.014	• 005	• 005	•003	.005	• 005	.001	•003	.010	.005	•00•
MEAN	869.6	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. 823	.564	349	.279	.195	.122	.052	.027	.012	.012	.011	.012	900.	• 006
MUMIXAM	æ	•	•	•	11.749	ċ	10,192	8.544	4.176	7.134	6.983	6.482	5,191	4.114	3.465	2.637	1.696	1.190	. 823	.667	394	.240	.122	.058	.030	• 020	• 015	.010	600*
TOTAL OBSERVATIONS	383.	382.	383.	385	385.	BRE.	384.	383.	383.	383.	581.	378.	372.	354.	340.	331.	325.	315.	315.	276.	224	114.	65.	34.	.	*	ຸດ	N	~
GEOMETRIC ALTITUDE MSE FEET	5900 ·	.0000	7000	00000	9000	10000	11000	12000.	15000.	14000•	15000.	10.400.	1000°	2000 0 •	2200v.	~ 4000 ~	26000.	28060.	560603.	.52060.	. 00046	\$6000.	30000	#0000h	+2000.	44000	46000.	48000	54000.

TABLE XV (CONT)

MEAN AND EXTREME UPPER AIR MIXING PATIOS (GRAMS/KILOGRAM) AT SELECTED LEVELS
HY MONTHS
STALLICH SITE
PERIOU OF RECORD 1961-1973

SEPTENBER

MINIMUM		10203	2	.71	1.761	•	•	.912	A24	641		100	***	262.	•056	.120	• 068	. 054	.016	•000•	700	*00*	.003	.002	.002	.001	.001	.015	.010	.007	•005
MEAN	8,069	75.1	761.0	010.0	016.0	2.420	4.971	4.532	960**	3.590	3.147	0.44	2000	E - 364	1.000	1.163	.769	. 526	.392	100.	.209	.163	.097	250.	.020	800.	.012	.015	.010	.007	•002
MUNIXEM	14.696	•	746-11		•	- (7. 187	8.520	ついか。	8.638	7.154	6.929	6-751	4.100	201.0		626.2	Z. Z	1.089	1.370	. 774	. 523	120	201.	740.	\$00°	.023	S	010.	1000	cuc.
TOTAL OHSEFVATIONS	365.	305.	304.	303.	366	13 to 15 to		200	260.		357.	351.	337.	325.	312	000	0000	0 7 7 7 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	* # # # # # # # # # # # # # # # # # # #	044	, 20°	• 50.4	2 2 2	• 4	• 62	• 0	• •	•	•	• •	•
GEOMETRIC ALTITUDE MSL FEET	.0000	•0000	.0007	•0000	2000	10000.	11000.	20071	1 4000	10001	-0001	15000	10000	10000.	20000	22000.	24000.	20000	20000	30000	32000	34000	30000	38000	40004	4<0.00	44000	40000	48000	50000	

TABLE XV (CONT)
MEAN AND EXTREME UPPER AIM MIXING PATIOS (GRAMS/NILOGRAM) AT SELECTED LEVELS

PT MONTHS STALLION STIE PERIOD OF RECORD 1961-1973

OCTORER

MINIMIM	1.718	1.709	. 593	.169	1.106	.748	. 590	. 398	. 077	.130	.120	• 1.96	960.	.061	.118	.136	.091	.012	•014	*00	• 002	.001	.001	.016	000.	000	000	000.	000
¥E ≯ S	5.031	-,	7	-	₹.		۲.	2,428	٥.		41	·V	.956	.712	.542	.415	.315	.220	.154	.114	090•	.035	.031	.019	000	000	000	000	000
NAXISH	12.040	0	•	ċ	9.437	•	•	B.463	•	•	•	•	•			2,178	•		. 923	. 535	.347	.221	.119	すべつ・	000.	000.	000.	000.	000.
TeTAL 035EHVATIONS	411.	410.	413.	417.	410.	415.	・カンコ	*+0#	397.	384.	372.	362.	355.	349.	345.	536.	327.	325.	287.	152.	æ4.		11.	3.	•	• •	• •	ຳລ	• 6
GEOMETAIC ALTITUDE MSL FEET	•0006	•900	7000	e0005	•000h	10000.	11000.	12000.	15000	1+300.	15000.	10000.	18000.	~ 0000 ~	22000.	24:000•	20000	20000	30000	\$20na.	24000°	30000•	58000.	*0000	42000.	44000	*000a*	46000.	50000

TABLE XV (CONT)

1 EAGY AND EXTREME UPPER AIR MIXING HATIOS (GRAMS/KILOCHAM) AT SELECTED LEVELS

HY MONTHS

STALLION SITE

PERIOD OF AFCORD 1961-1973

LOVENBER

SFOMETALC ALTITUDE MSC FEET	TOTAL OUSEPVATIONS	MAXIMIM	FF # 1	FINIKUM
.0000	404	7.684	3,652	1.12
• 0000	*10*	8.056	~	1.136
Zuon.	407.	8.288	0	1.107
40n0•	408.	8.717	30	
¥300	405	7.766	2,515	,00.
10000	300	7,102	2.256	36.
11000.	304.	6.021	1,952	60.
1200n.	344.	5.687	1.672	.214
13000.	387.	5.701	1.490	11.
14000.	547.	5.448	1.289	0.50
15000.	380.	5.440	1,120	.03
16000.	3811.	•	086	.21
15000.	372.	•	900	.121
20000	358.	•	.634	.061
22000.	340.	•	506	100
-000hZ	324.	2.046	.363	.021
20000	293.	1,711	.277	.012
20000.	269.	1.249	.201	.00
30000.	202	.743	.137	00.
32000.	107.	.450	.085	400.
3+600.	52.	.282	.041	.002
•000ac	5n°	480.	.013	.001
58000.	. \$.	\$00.	.003	.002
40000	•	000.	000.	000
#2000°	• 61	000.	000.	300°
*44000	• ລ	000.	000	000
46000.	• 5	000.	000	000
48J0U•	•	000.	000	000
:0000c	•	000.	000	000

TABLE XV (CONT)

MEAN AND EXTREME JUPPER ATH MIXING HATIOS (GRAMS/KILGGKAM) AT SELECTED LEVELS
PY MONTHS
STALLICH SITE
PERIOD OF RECORD 1961-1973

IN CLIMBER

GEOMETATE ALTITUDE	TCTAL	MAXIMM	ME AN	MINIMOM
MSL FEET	OBSERVATIONS		l	
5000•	327.	7.368	2.860	.35
c0000	328.	7.070	2.586	04.
7000.	327.	7.403	•	
.0008	327.	4.457	•	
4000A	324.	5.789		.31
10000.	319.	6.173		EO.
11000.	315.	5.479		
12000.	311.	5.456	•	*0*
13000.	510.	5.343		.02
14000.	307.	4.316	•	\$0.
15000.	305.	3,725	.923	80.
10000.	301.	3.348	.815	61.
18000.	297.	2.630	.626	80°
20000.	291.	2.311	.487	10.
22000.	284.	1.298	.379	80.
24000.	279.	1.130	.283	00.
20000	260.	.731	.199	00.
20000.	233.	.535	.139	00.
\$0000	156.	345	680.	00.
32000.	63.	.191	.053	00.
24000	28.	• 056	.022	00.
50000	3.	610.	.016	.01
38000	8	.002	.001	00.
40000	•	000.	000.	00.
42000.	=	000.	000	00.
44000.	• 0	000.	000	00.
46000·	• •	000.	000	00.
48000	• 5	00u•	000.	00.
Sunan.	•	000.	000	00.

TABLE XVI

REAM AND EXTREME UPPER AIM PRECIPITABLE WATER (CENTIMETERS) RETWEEN SELECTED LEVELS BY MONTHS STALLTON SITE PERCORD 1961-1973

JAMINAD

MINIMOM	410.		010	.011	900.	.003	•005	.005	+000	.002	.001	.000	.000	000	.000	.000	000.	000.	• 000	000	• 000	.000	.000
YEAN	620.	127	650.	.075	.057	• 042	.030	.021	.015	.010	900.	*00.	.003	.002	.001	.000	000	000•	000	000•	0000	0000	000•
KAXIMIM.	.104	.324	.214	•220	.176	641.	.143	101.	.071	0 to 0	.027	910.	10c.	•006	•003	•001	000.	000.	000.	000.	000.	000.	000.
13TAL 03SFRVATIOUS	338.	403.	•004	• 5 0 M	* * * * * * * * * * * * * * * * * * *	0 m	• • • • • • • • • • • • • • • • • • •	301.	• ** *** *** *** *** *** *** *** *** **	300	• 400	• • • • • • • • • • • • • • • • • • • •	• • •	93.	• 1 3	• 0	• •		• 0	• •	• •	•	•
GECMETRIC ALTITUDE MISC FEET	4946 6400.	- 10000 - 100000	,	ı	ı	ı	ı	,	22000 - 24000	1	•	1	•	32500 - 34000	•	ı		+0000+ - 42000+	42000 - 44000	!	46000 4H000	48.000 59.000.	

TABLE XVI (CONT)

NEAU AND EXTREME UPPER AIR PRECIFITABLE WATER (CENTIMETERS) RETWEEN SELECTED LEVELS BY MONTHS STALLION SITE PERFORM 1961-1973

FEISHUARY

MITTIM	.028	• 028	•1010	•10•	.010	900.	#00.	.003	100.	100.	.001	100	200.	000.	0000	000	000	000.	000	000.	020.	000	000
JEAN .	.076	.123	160.	.072	.050	.035	.026	.019	.013	.010	.007	\$00.	.003	-005	.001	100.	000.	000.	000.	000.	000	000.	000
MAXIMUM	.198	.339	.270	.217	.190	.138	.105	.082	.061	770.	.030	.020	.012	H00.	.005	.002	000.	000	000.	000.	000	000.	000.
10TAL 085ERVATIONS	325.	426.	420.	421.	418.	418.	419.	+00+	378.	343.	317.	271.	186.	.05.	32.	15.	*	7.	•0	•0	•0	• 3	•0
GEOMETRIC ALTITUDE MSC PEET	4940 6000.	6000 8000.	8000°- 10000°	10000 12000.	12000 14000.	14000 16000.	16000 18000.	•	ŧ	22000 24000.	24000 26000.	Ļ	28000 30000.	30000 32000.	32000 24000.	34000 36000.	3600u 38000.	38000 40000.	40000- 42000.	42000 44000.	44000 4600n.	46000 48000.	48000 50000.

TABLE XVI (CONT)

SELECTED LEVELS BY MONTHS

STALLION SITE
PERIOD OF HECHRIN 1961-1973

エンアな

HINIMIH	620.	1.00	•050	•010	600.	900•	• 003	• 002	100	100	.001	000	000	000	0000			000		000			000
MEAN	180.	.131	.104	.078	• 056	•039	.028	.020	.015	.010	.007	• 002	• 003	• 005	.001	.001	.001	.001	.001	0000	.000	0000	000.
MAXECIM	483.	. 556	£0.0	\$2.5 \$2.5 \$3.5 \$3.5 \$3.5 \$3.5 \$3.5 \$3.5 \$3.5 \$3	149	217	* * * * * * * * * * * * * * * * * * * *		160.	0+0.	.023	.014	010.	con.	200.	1000	100.	100.	100.	.001	.001	000.	000.
TOTAL OBSEMVATIONS	352.	2 2 2	1 m	10 (C) (F)	436.	400 to	424.	399.	369	200	278.	196.	100	37.	3) (f) #	, v) pr	• n	, ,	• เ	J
GEORETHE ALTHUDE	1 1	E000 10000.	1	,	1	•	•	.00022	22000 24000.	24000 25000.	<6000 28300.	ı	1	1	ı	1		40000 - 42000.	42000. 44000.	44000 46000.	#FADU 4HDOD.	+8000 50000.	

TABLE XVI (CONT)

**CALA A 10 EXTREME LIPPER A 14 PRECIPITABLE WATER (CENTIMETERS) BETWEEN

**CELETED LEVELS BY MONTHS

**STALLION SITE

PERICH OF RECORD 1961-1973 1961-1973

JI HAV

MINIMUM	040	140	500	.028	•10.	.013	.008	.000	.003	.000	.001	.001	000.	000•	000	• 000	000	000	000	000	000	000	0000
MEAN	660.	.156	.122	-092	• 068	640.	.033	.022	.015	.011	900•	.005	• 003	-005	.001	000.	000.	000•	000	000.	000.		000•
MAXIMIM	.245	.354	.312	. 223	.173	66.	111.	070	.067	***	.028	910.	500.	300.	200.	100-	000.	000.	000.	000.	300.	000	000.
TOTAL OPSERVATIONS		* * * * * * * * * * * * * * * * * * *	100	• 100 a	1655	10 KG 4	30 - 3	3 3 7	- 175	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0000	o o	1	9 4 4	. a	7	• 0	• =		•	• •	• 0	•
GEGMETRIC ALTITUDE MSC PEET	6000° - 4000°	1	10000 - 12000.	12000 14000.	14060 16000.	16000 18000.	18000 <0000.	20000 22000.	ŧ	1		ŧ	50000 52000.		34000 36000.			40000- 42000.	45000°- 44000°	44000 46000.	46000 48000.	4800u 5000u.	

AEAN AND EXTREME UPPER AIR PRECIPITABLE WATER (CENTIMETERS) RETWEEN SELECTED LEVELS BY MONTHS STALLION SITE PERIOD OF REFORE 1961-1973 TABLE XVI (CONT)

YVW

MINIMUM	0.00	640	100°	.026	• 014	.015	.005	2000	700.	• 005	.001	.001	000.	000•	030	000	000	000.	000•	000		000	000.	000•
FER	.135	206	164	.127	#60.	.070	640.	.635	• 025	.014	.010	•000	*00	.003	.001	.001	00°	000.	000.	000	000		000.	000.
MAXIMIM	Tra.	50p.	302	.311	.236	.175	.142	.106	• 675	770.	•636	• 0.22	.013	.010	.005	₹00°•	.001	000•	000.	000.	000			000.
TOTAL OBSERVATIONS	4.14.	463.	46.5.	400.	453.	45.00°	*****	• 00 cm	• /24	£200	• n : :	• 0 : 6	*0.10	231.	137.	t 5.	10.	Ň	•	• • •	•0	• • •	, ;	•
GLOWETRIC ALTITUDE MSL PEFT			1		10000 1 10000	14.000 - 100.00°	F J	1000° - 2000°	33000 - 38000	1					35'000.1 S41'00.	.0000 - 00000 - 000000			**************************************)	44000- 45000	4600U 44000.	#800u 5000u-	

TABLE XVI (CONT)

PEAN A 10 EXTPENE UPPER AIR PRECIPITABLE WATCH (CENTIMETERS) RETWEEN SELECTED LEVELS BY MONTHS SELECTED STALLION SITE PERIOD OF RECORD 1961-1973

FINIT

MINIMUM	.041	• 085	• 068	.051	• 036	.008	•000	100.	†00•	• 005	0000	•003	100.	.001	.001	000.	000	000.	000.	000.	000	000.	000•
MEAN	.192	•524	かんだ。	.184	.141	.104	. n74	.050	.033	.022	.014	600.	•000	+00.	.003	.001	.001	.001	000•	000•	000.	000•	000
MAXIMUM	4000	•6%6	.567	サセコ	.334	.265	.222	.192	.169	.119	340.	.027	070	.013	.011	900*	.003	.001	.001	.001	.001	000.	. 000
TOTAL URSERVATIONS	320.	351.	351.	349.	*64°	347.	341.	329.	321.	313.	304.	.662	281.	220.	180.	94.	54.	29.	20.	14.	12.	12.	12.
GEOMETRIC ALTITUME MSL FEET	4940 6000.	600U MOOS.	AJOU 19099.	10000 12000.	1	Ļ	•	•	20000 22000.	22000 24000.	1	26000 ZHODO.	1	3000u 32000.	52000 54000.	•	36600 58600.	•	•	42000 44000.	•	•	48000 50000.

PEAN AND EXTHEME UPPER AIR PRECIPITABLE WATER (CENTIMETERS) BETAEEN SELECTED LEVELS HY MONTHS STALLTON SITE PERSON 1961-1973 TABLE XVI (CORT)

1111

	MINIMUM	317	901.	CVI	901	240	9000	• 026	.018	.013	.010	100.	• 005	• 003	.001	.001	000	000.	000.	000.	• 000	000	000.	000.
	PLAN	•308	.450	1467	262	.226	.173	.128	060.	• 000	•039	. 020	.017	.011	200.	400.	,000·	.001	.001	.001	.000	200.	00u•	900•
	MAXIMUM	E d	247	.639	•508	64.13	.316	***	162.		511.	\$00°	\$CD •	7 10	010		C x c	000	200	700.	100.	060.	0.0	600.
	101AL ORDERVATIONS	230.		• / 0 / 2	.22		0000 0000	20.00	0.00	23.7	2000) i ()		203.	177.	134.	36.	57.	- N	000	0	.10	4	
•	PEOWEINIC ALTITUDE PISE FEET	494U 6680.	~		. 1	ŧ			1	22000 <4000.	24000 ZAROU.	1	•	•	1	ı	,	ŧ	ı	F	44000 46000.	4600u. +8000.	44000 500no.	

TABLE XVI (CONT)

PERM AND EXTREME UPPER AIR PRECIPITABLE WATER (CENTIMETERS) RETWEEN SELECTED LEVELS BY MONTHS STALLION SITE PERMOND OF RECORD 1961-1973

AUSUST

MINIMOM	.178	.242	.166	· 084	040	.031	.023	.015	900•	800	.001	• 005	• 005	• 001	000.	000•	000.	000•	000	000•	• 000	000	000•
*,EAN	.294	1 55.	.363	.288	.222	.166	.118	.079	• (152	.034	.022	.015	.010	.007	÷00.	.002	.001	.001	000•	000.	000.	000.	000•
MAXINUM	.435	.675	.592	456	.366	662.	.236	.174	.136	260.	• 065	640.	.02H	•016	.013	2000	\$00	. 002	•001	000•	000•	000•	000.
TOTAL UBSERVATIONS	276.	505.	306.	3000	500.	306.	506.	301.	289.	287.	285.	282.	277.	245.	222.	157.	95.	51.	15.	•9	N	٠ ۲	2.
GEOGETRIC ALTITUDE MSC PEET	4940 6600.	6000 3000.	3000 1000m.	10000 12000.	1.	•	!	1	20000 22000.	22000 2400u.	•	26000 LHONG.	ı	39000 32600.	ſ.	1	\$600u J800u.	1	ı	42000 44600.	ı	1	48000 50000.

MEAN AGD EXTREME OFFICE AIR PRECIFITABLE WATER (CENTIMETERS) BETWEEN SELECTED LEVELS BY MONTHS STRE STALLION SITE PERIOD OF RECORD 1961-1973 TABLE XVI (CONT)

The second secon

SEPTEMBER

MINIM	.075	.133	660.	•024	• 036	.021	100.	•003	•005	900•	+00•	.001	100.	.001	000	000•	000.	000•	000.	000•	000.	000.	000•
FEAN	.243	.362	.287	.221	.164	.113	.075	.048	.032	.021	.014	.010	.007	• 005	.003	.002	.001	000.	000.	000.	000•	000•	000•
MAXINUM	414.	.661	.557	.413	.32H	.288	£10.	.170	.123	.086	•064	.041	.027	.017	.010	.00%	-005	.001	.001	000	000.	000.	000•
TOTAL OPSERVALIOUS	283.	325.	325.	324.	324.	321.	315.	311.	296.	294.	289.	283.	267.	201.	162.	•66		18.	ä.		1.	1.	1.
GEOMETRIC ALTITUDE ASC PEFT	4540 6600.	6000 Soon.	8000 1000B.	16300 12000.	12000- 14000.	14000 16000.	16006 18000.	16000 20000.	20000 - Z2000:	22000 24000.	24000 26000.	2600J ZA000.	2800u 5000u.	30000 32000.	•	34000 36000.	3600u 3800U.	38000 40000.	40000- 42000:	42000 44000.	44000- 46000	46000 48000.	48000 5000ft.

MEAN AND EXTREME UPDARM AIR PRECIPITABLE WATER (CENTIMETERS) RETWEEN SELECTED LEVELS BY MONTHS STALLION SITE PERIOD OF RECORD 1961-1973 TABLE XVI (CONT)

OCTOMER

MISIMOM	.057	060.	.027	.037	.017	.010.	.012	• 005	.005	÷00·	*00	• 005	.001	.001	000	0000	• 000	000	000•	000	000	000	000.
MEAN	.146	.226	.179	.137	. 101	690•	.045	.031	.023	.016	.011	.008	.005	÷00•	₹00•	.001	.001	.001	000	000•	000•	000	000•
MAXIMUM	.367	.577	.513	.425	.34.7	•254	.210	.170	.129	• 0 BB	-062	オカン・	.630	.014	.011	9 00•	ħ60°	.001	000•	000.	000.	000.	000.
10TAL OHSERVATIONS	250.	303.	303.	301.	296.	290.	・カウム	297.	**************************************	291.	• 00 50 00	279.	251.	187.	122.	48.	17.	ۍ. • د	• •	•0	• 5	•0	•0
GECMETRIC ALTITUDE MSC PEET	4940 5000.	6000 3000.	1	1	ı.	1	١.		1	ı	2400u 2600u.	ı		1.	1	1	1	1	i.	١.	•	•	46000 50000.

TABLE XVI (CONT)
SELECTED LEVELS RY MONTHS
STELCTED LEVELS RY MONTHS
STALLTON SITE
PERIOD OF RECORD 1961-1973

MOVEMBER

	MINIMOR				690.	.041	• 023	•016	.000	010	950	700	100	500.	199.	.001	100.	100.	000	000	000.	000	000	000	000	0000	000.
	JE AN		.113	.175) (p	000	A P O	0/0.	.052	• 039	• 024	• 022	.016	.011	800.	100		500	200.	100.	000	000	000•	000•	000	000	000.
i	MAXIMUM		. 225	さりす。	.370	.277	350.	100	441	601.	£21.	160.	•057	240.	• 025	.013	F00.	400.	.000	000.	000						
	1-1AL OHSERVATIONS	273.	1 PO	0 86	• W • P	530	525.	325.	320.	313.	297.	270.	24.5	, m	900	F009	139.	· 7 ·	38.	٥	•0	• •	•0		•0	• 5	
	GECRETALITION WELT	ı		•	Tugne - 12000.	12000 14000	14000. 16000.	10000- 18000					1	•	ı	50000 - 52000.	•	34000 36000.	36 JOU 3800U.	•	+0000n - +2000t	42000- 44000		,	. !		

MEAN AND EXTHEM UPPER AIR PRECIPITABLE WATER (CENTIMETERS) RETWEEN Selected Levels by Months Stalliop Site Period of Record 1961-1973 1961-1973

UF CEMBER

MINIMUM	9,0	990	100	710		6104	•011.	• 005	500.	E00.	000				000	000.	000.	100.	000.	000.	000•	000.	000	000	000.
1E AN	960•	-147	.114	.087	.063) H T	0 1 1 1	.031	.022	.017	.012	. 00B	.005	.003	.003	100	100	000	000	000.	000.	000•	000.	000.	000•
MAXIMUM	.192	. 30H	.266	-282	.235	.150	011	3 6 6	0.50	900	•031	7.00	.010	.013	100.	.013	001	000.	-000			000	000.	000.	060.
191AL Disservations	206.	- 107				· ???	231.	226.	219.	211.	. 110	500	135	• a	• 00		•	· 8	•0	• 0	•0	•0	•	• •	
GEGWETRIC ALTITIDE MSL FEET	4940. 6000.	8000 10000.	ı	12000 146nu.	14000- 16660-	•	-	ı	•	2206J. 24000.	24000 26000.			30000 52663.	32000 34000.	•	36000 38000.	į	ı		1	ŧ	!	48000 50nou.	

TABLE XVII

CHA'L A'BLE KTHE UPPER AIR RELATIVE HUMIDITIES (PER CENT)

AT SELECTED LEVELS BY MONTHS

STALLION SITE

PERION OF PECORD 1961-1973

JANUARY

MINIMUM		4		•	•	•		• ·	10					-			-		s · ,	• •	•	-	•		•	•	• •	• 6	• •	•	
MEAN	##	4.7	7	- 10	, d	200	, m	30.0	3	31.	300	30.	20.		500	000	28.	27.	23.	180	17.	ð	,				• •	•	•		
M.A.K.IFIUM	66	60	55	. 55	660	55	5	65	100	66	66	66	66	66	66	66	66	66	26.	79.	94	34.	16.	0	6		0			0	
JOTAL SHSEMVATIONS	340.	417.	t 1 x ·	417.	417.	415.	412.	410.	410.	407.	4:16.	300	306.	347.	3/4.	363.	355°	319.	247.	155.	75.	.40.	J.	0.	0.	0.	0		0	·c	
GEO-ILTRAC ALTITUTE MSE FFET	•076+	Sont.	:00HD:	76111).	Sun0.	9000	13000.	11000	12000	13000	1+000.	Local	15000	13000	20006.	220(1).	2+0un.	26000.	28000.	\$3096.	\$200te	34040	South.	5.95.40	40000	42000	***	450011	4.30111.	53000	

TABLE XVII (CONT)

AFAN AND FXIMINE UPPER AIR FELATIVE HUMIUITIES (PER CENT)

AT SCLECTED LEVELS HY MONTHS

STALLION SITE

PERIOD OF RECORD 1961-1973

AND ADDRESS OF THE PROPERTY OF

FEBRUARY

WINIMUM	6	ŝ	6	13.	ູນ	8	•	~	'n	8	1.		ึง	-	-	-	•	-	. •	1	7.	-		-	8	• •	•	•	•	•0
MEAN	41.	39.	37.	38.	39.	34.	39.	38.	36.	.45	52.	31.	31.	50.	30.	30.	31.	29.	27.	23.	20.	15.	13.	6	ò	•	9	•	0	
KAX INDE	20	E.	66	25	°Uń	100.	100.	100.	•66	•65	•66	• 66	66	.65	66	91.	55	.62	70.	69.	67.	47.	25.	34.	~	• 0	•0	•	•0	0
101AL 045ERVAT FONS	357.	446.	• 5 +11	445.	450.	042	4 38.	й 54 .	4.51.	428.	425.	421.	\$ 7.70°	421.	406.	390	359.	326.	250.	164.	G.30.	37.	13.	. • #	1.	•0	0.	0.	0•	٥.
GEOMETRIC ALTITUME MSL FEET	* Ú サ	Suna.	ógno.	7000	ganu.	€0110.	13000.	11000.	12000.	13000.	14000.	15000.	15000.	13000.	20000.	22000.	24000.	26000.	23000.	30000	32000.	34000.	36000	38000.	4.70ng.	42000°	44000.	45000°	42000	50000

TABLE XVII (CONT)
MEAN AND EXTREME UPPER AIR RELATIVE HUMIDITIES (PER CENT)
AT SELECTED LEVELS LY MONTHS
STALLTON SITE
PERIOD OF RECORD 1961-1973

VARCH

MINIM	•	•	'n	1.	'n	3.	8	5.	-4	-1	8	1.	1.	1.	1.	:	'n	1.	1	7	7.	7	8	.	14.	14.	15.	15.	15.	15.
MEAN	33.	33.	32.	33.	35.	36.	37.	37.	36.	35.	33.	32.	31.	31.	31.	31.	30.	29.	27.	21.	16.	11.	11.	16.	20.	19.	19.	20.	,0 <i>2</i>	20.
MAXIMUM	.65	66	65	•66	. 66	100.	•66	6 5	66	•66	•66	•6tı	.66	.66	66	.66	45.	70.	20.	. 49	52.	56.	.92	25.	25.	25.	25.	?	25.	25.
OBSEPVATIONS	361.	476.	455.	457.	453.	453	451.	446.	44.5.	• ###	• 0 7 7	439	457.	426.	420.	346.	375.	318.	246.	167.	4 5 •	57.	ວ ້	• •	?•	3.	3.	o:	તું.	°.
OEORETRIC ALTITURE MSL FEET	+ D = C =	5000	÷0nny	7000	30110.	90106	16000.	11000.	12000.	13000.	14000.	15600.	16006.	13000.	20000.	22000.	24000.	25000.	29000	50600	52000.	.Squan.	30000.	\$8000 .	4:30:00	420nn.	*000**	4500G.	43000°	50v80.

HEAN AND EXIMEME UPPER AIR RELATIVE HUMIDITIES (PER CENT)
AT SCLECTED LEVELS HY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973 TABLE XVII (CONT)

APRIL

MINIMUM		•	:	:	•	\ \	; -	• •	· ·	•	÷	~	1.	ئو ا	•	•	•	• 1	°		٠,		7.	-	-	1.	-	•	· c	• •	•	•	••
MEAN			• • • •		28.	30.			• 0 ×	· V ·	53.	53.	3.5	32.	. 15	1 3	• 0 0	• 000	• 00	27.	56.	24.	19.	12.	œ i		3.	0	0		•	•	• •
MAXINUM	97.	70	• # 5	• 06	•	66	66	00	00	000	44	•	42.	25	65	7	74	7.0		• • •	• (24	•			•	ດໍ	•	•	0	c		
TOTAL OMSEHVATIONS	305.	513.	503	777		* C.	• ₽.74	404	407	7 7 7	, x	• P	• / / #	468.	463.	* # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	413.	S. S. S. S.	277) A			9.7	• = = = = = = = = = = = = = = = = = = =	14.	. 1	• •	• > :	•	• •	•0	•	• 0
GFOMETRIC ALTITUME MSL FEET	4740	5340.	• פחהט	70007	01.01	• 1000	• uno	10000	11000	12000.	13000	0 = 1		- DOOC T	Tound.	1 3000	20000.	22000.	Saune.	25000	23000	39000	Cance	34010	35000	33000	40000	3000	• 1501	• 0=0**	45056	4300G.	530HR•

PEAN AND EXTREME UPPER AIR RELATIVE HUMIDITIES (PER CENT)
AT SELECTFD LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1961-1973 TABLE XVII (CONT)

MAY

MINIMUM	đ	•	• •	• -	•	;,	• •	-	•	• ດ		-	• -	• ~	, _~	•	•	•	• · ·	•	• -	: _:			• • a	• •		•	•	• •
MEAN	26.	. 76	26.		9			0 0			35		40.0	. 0	30.			25.	25.	200	20.	12.	000	· •	22	22	- C - C - C - C - C - C - C - C - C - C	יי	: =	• •
MAXIMUM	3	91	97.	100.	100	100	67.	. 7.	00	5.5	5.7	66	66	100	bio	65	06	80.	.69	72.	. 49	40	31.	20.	36.		15.	~	• c	
TOTAL OMSÉRVATIONS	· CX	451.	473.	£22¢	200	7	427	424	£24°	423.	421.	416.	413.	407.	344.	- N. S. F.	381.	367.	34%	245.	160.	27	.51.	69	2.	•	1.	-	ů.	ċ
GEOTHTRIC ALTITUDE	4940.	Score.	SUBG.	7000	*000*	.0006	10000.	11000.	12000.	1 5000.	Lauro.	15000	10000	10000	Sound.	220un.	24000	¿hodo.	2800n.	300mg.	32000.	34000.	Should.	53400.	40000	42000.	****	45000	*C=0**	*110uu

TABLE XVII (CONT)

AFAN A.E) EXTREME UPPER AIR PELATIVE HUMIDITIES (PER CENT)
AT SELECTED LEVELS HY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

Ę

TABLE XVII (CONT)

CLAW AND FXINEME UPPER AIR RELATIVE HUMIDITIES (PER CENT)
AT SELECTED LEVELS HY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

> = =

MINIMUM	9	3	• n	• •		• •	0 5		•	•	• •	• n :	•	• 0	۰, ۲	•	• V -	• -	:,	• •	•	• -	-	-	•	:.	•	10.	14.	10.	•61
MEAN	#2°	4	1	•	• •		• 12			10.	• d	0 3	• • •	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			• •			25.	240	200	16.				20.0	• 7 7	21.		• 1 >
MAXINUM	ot o	.26	63.	7 7	ş	3	63.	47	9	96	, ,	6.3	9	97.	100.	3	9	10.1	74	, P.	.04	58.	57.	45.	35.	50	30		. 50		•
TOTAL CHSEPVATIONS	* 766	. 5 28	37.30	32.6	324.	324	324.	327.	327.	328.	GER.	327.	326.	×15.	30H	243.	277.	259.	253	0.000	.0%6	179.	т. С. п	3 6	47.	62.	25	0		21.	
GEOTETHIC ALTITUDE	*0567	2000	eanna.	7009.	3000	·Jane	1.3000	11000	12040.	13000.	14000.	15000.	Journ.	19000.	Sugno.	22000.	24000.	Zonau.	28000.	30000	320kD.	34000.)00JHQ.	3Auro.	*Danct,	42000·	##Poo	46000	48000.	Sugar.	

TABLE XVII (CONT)

AFAN AMO EXTREME UPPEP AIR PELATIVE HUMIDITIES (PER CENT)
A1 SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

AUGUST

MINIMIN	•	12.	12.	•	-	•		ů.	• 7 7		•	• • • • • • • • • • • • • • • • • • • •	•01	ô	• •	, c	Ň.	• •	• ,	: ,	÷ (, ,	•		•		7.		~	19.	19.	19.
MEAN	1	•0	45.	41.	40.	, H	2	0 1 3		•			• • • •	• 10	000	0 0	• • •	000	• 00	• • •	• •	***	•		• • • • • • • • • • • • • • • • • • • •	10.		œ.	12.	19.	.61	19.
MAXIEUM	40			25	***	HO.	2		07			3	27	3	50	55	g				. 26	20.	• • • •				• • • •	• • • • • • • • • • • • • • • • • • • •	0.00			• ^ >
TOTAL UMSELVATIONS	324	. 1		. 700	353	3500	355	ある年。	354.	353	353.	353.	351.	348	345	324	312	303.	20.30	050	247	000	2000	111.	25	je) te	5	• 5	• 0	. 0	, d	j
GEOMETRIC ALTITUDE MSL FFET	's yau.	. 1000			• 0000	• 0000	, coop	10000	11000.	12000.	13000.	1+000.	15000.	16000.	19000.	20000	22040.	Securo.	26000.	Zauun.	30000.	32000.	54000.	Brutio.	38010.	40000	42000	44000	, OCU 04	48000	50000	

TABLE XVII (CONT)

WHAN AND FXTHEME UPPER ALP FELATIVE HUMIDITIES (PER CENT)

AT SELECTED LEVELS BY MONTHS

STALLION SITE

PRICO OF PECOND 1961-1973

SPLTEMBER

HONOR OF THE PERSON OF THE PER	.10101	W. M. T. V. V.	ME AN	MIT AT ME IM
SSE FEET	OBSEMWATIONS			
3940.	293.	, 10,	46.	14.
5000	335.	43.	* * * * * * * * * * * * * * * * * * * *	11.
.0000	3.55.	ر د د د	41.	7.
7000.	3.34	* 77	42.	3.
3000	353.	.96	43.	12.
anno	356.	87	t t •	•
13000.	334.	95.	45.	13.
11000.	3.52.	.74	46.	11.
12009.	330.	.66	47.	10.
15000.	* # 1 × 1	٠ پ	46.	*
14000.	327.	45.	45.	:
15090.	321.	.96	+13.	•6
16006.	307.	100.	41.	æ
13.00	247.	000	35.	7:
20010.	• 5 87	•66	29.	ů.
22000.	269.	925	25.	~
24000.	265.	.76	22.	જં
25000.	260.	47.	22.	
יטוטאא	252.	##·	22.	1.
370110.	***************************************	, 0 c	21.	1.
32000.	169.	63.	23.	
34000°	100.	65.	18.	-
• 690 66	55.	30.	10.	1.
33010.	22.	13.	7.	1.
40000	10.	13.	t.	1.
420n0•	8	14.	ъ. В•	1.
440HO.	1.	14.	14.	14.
450HO.	•	14.	14.	14.
430HO.	1.	15.	15.	15.
50000.	-	15.	15.	15.

TABLE XVII (CONT)

THAT AND EXTREME UPDER AIR RELATIVE HUMIDITIES (PER CENT)
AT SELECTED LEVELS BY MONTHS
STALLIGG SITE
PEROOF PEROOF

OCTOBER

TABLE XVII (CONT)

HEAT AND EXTREME UPPER AIR RELATIVE HUMIDITIES (PER CENT)
AT SELECTED LEVELS HY MONTHS
STALLION SITE
PPHIOT OF PECORE 1961-1973

LOVEMBER

MINIM	•	10.	12.	12.	10.	10.	ž	٦.	ы. •	۲.	7.	:	S		۶.	٥٠	۲,	'n	%	1:			-:	.	• •	•0	•	•	• •	.
MEAN	*0*	+ 0	38.	38.	58.	37.	37.	35.	33.	51.	20.	2R.	27.	28.	28.	29.	.68	29.	29.	86.	21.	15.	œ	.	0	•	•	• •	•	•0
MAXIPUM	96	, 1 5	£25	· Con	. 66	65	•65	67	. 06	. 66	• cots	.66	- 66	• 6 6	. 65	· ar	100.	н7.	H2.	80.	65.	52.	18.	• •	ວ	• 0	<u>۔</u>	• •	•	.0
TOTAL OMSERVATIONS	315.	375.	374.	374.	375.	372.	366.	367.	362.	355.	355.	MtH.	これまか	340.	326.	313.	. #50	265.	242.	184.	• bb	57.	.02	ě	0.	• 0	٥.	•0	•0	•
GEOMETRIC ALTITUDE PSL FEET	・ニュアナ	5000.	ភូមិព.	7000	4000°	9000	10000.	11000.	12000.	15000.	10001	15000.	15000.	14000.	20000.	Spore.	24000.	<50110.	23unc.	30000	32000.	3/tono.	360110.	38000	40000	# SOC 2	44000.	46000.	tages.	50006

	CELL			
	(PFI			
TABLE XVII (CONT)	CLAND CXTROOP UPPER AIR CELATIVE HOAIDIILES (PFR CED	AT SELECTED LEVELS BY PONTHS	STALLICY SITE	ECTITION CAROLING AD CONTACT

PECEMBER

MEAN MINIMUN	49. 13.	46.	•	42. 11.	39. 11.	38.	37. 1.	36. 1.	34.	32. 1.	31. 1.	29. 1.	29.	28. 2.	.28.	29.	29. 1.	28. 1.	26. 1.	22. 1.	19.	11. 1.	10. 6.	•	•0	•	0.	0.0	0.0	0.
NA X I N UM	.95	ak.	0 ,3	66	•05	• 56	100.	66 6	100.	100.	*6h	45.	6 6	* 75	.66	.92	н7.	75.	77.	78.	71.	31.	13.	2.	°.	•	0	°.	° 0	0
TCTAL OHSEHVATIONS	273.	505.	* till to	303.	393	300	245.	241.	247.	246.	P.4.3.	261.	211.	273.	207.	254.	257.	238.	212.	157.	57.0	\$2.	3.	2.	c	=	٥.	.	໊	• •
FOSETRIC ALITIONE MSL FEET	*0*/**	5000.	5000	764.1.	#U+O#	.0006	19000.	11000.	12006.	13066.	140mg.	15640.	15300.	13090.	*COREN	22000.	24000.	24000.	29000.	39000.	32000.	34000.	3.50115.	33000.	40000	42010.	4.4000	45000.	420B0.	53000.

TABLE XVIII

FLALLOGRAM) AT SELECTED LEVELS

FY SEAGONS

STALLICE SITE

PERIOD OF RECORD 1961-1973

HAINIM

MINIM	.29		04.	.17	.14))	70.	.02	.02	.02	80.	.01	00.	00.	000	00.	00.	03.	000	000	00.	00.	00.	00.	00.	000		000
Z H H H	2.781	2.446		2.092	1.890	1.709	1.521	1.340	1.177	1.028	.897	.796	.611	0440	.354	.259	.181	.126	.079	.050	.025	.019	†00°	.001	000.	000	000.	000	000.
MAXIMUM	8.040	060.7	7.403	6.457	5.789	6.173	5.479	5.456	5.543	4,316	5.066	4.052	3.940	3.243	2.452	1.664	1.046	1691	.421	.264	.199	.153	600.	.001	0	0	000.	0000	000.
TOTAL, OUSEHVATIONS	1217.	1219.	1216.	1215.	1208.	1145.	1144.	1180.	1172.	1106.	1152.	1147.		1099.		1008.	JNC.	744.		225.	.96	22.	÷	.	• 0	• 5	• 0	• •	•
GEOMETRIC ALITIONE PSC FFET	•000c	.000a	.0007	•0503	•0000	Tuguo.	11000.	1<000.	15000.	14000.	15000.	10000	18000.	20000.	22000.	54000°	20000°	28000.	\$6000	32000.	24000.	20000	Senon.	• 0000+	4200U	.000++	40000·	*0000	•000ps

TABLE XVIII (CONT)

REAL ALL COPLE ALK MIKING RATIOS (GRAMS/KILCCRAM) AT SELECTEU LEVELS

RY SEASOMS

STALLIOM SITE

PERIOD OF AFCORD 1961-1973

SPH 1116

MINIMUM	.200	.120	.055	.129	.086	• 08 ¢	.058	.036	.032	.032	.022	.026	.013	.010	.012	• 000	†00°	.003	. u02	.001	.001	.001	.001	900.	.022	.019	.017	.017	.015
MEAN	•	•	•		•	•	•	•	•	•	1.166	•	.752	.560	.399	.291	.209	.145	060.	.053	.022	.011	.010	.027	.032	.030	.025	.026	.027
MAXIMIM	9.983	•	•	•	•	•	•	•		•	5.569	•	•	•	•	1.494	•	,754	5 t t t	962.	.137	.062	5 00.	200.	.038	.045	460.	÷0.34	.038
TOTAL GASEPVATIONS	1464.	1455.	1454.	1442.	せた	1445.	1435.	1422.	1416.	1404,	1390.	1380.	1349.	1295.	1239.	1186.	1079.	929.	703.	363.	17H.	53.	14.	• #	40	5.	ิง	ณ์ ณ	∾.
GEOWETHIC ALITHUE MSL FEET	5000.	00000	7000.	0000	.0006	10000.	11000.	12000.	10000	14060.	15000.	10300.	10000	20000	22000	24000.	20000	20000.	30000.	32000.	\$4000	36000	Sonno.	*00007	+<0007+	44000	*6000*	43000	55000

TABLE XVIII (CONT)

MEAN AND EXTREME UPPER AIR MIXING RATIOS (GRAMS/KILOGRAM) AT SELECTED LEVELS
HY SEASONS
STALLION SITE
PLAIDD OF RECORD 1961-1973

SUNMER

MINIMUM	.	.293	.197	.714	. 785	.705	.272	.100											•			.00.	.001	.001	100.	.001	500.	.005	•003
MEAN	6.691	7.212	6.727	0.264	5.819		668.4		4.063	3.657	3.265	2.883	2,183	1.565	1.071	.748	.527	.368	.254	.180	.113	.053	.032	.021	.020	.017	.012	600.	.008
MAXIMUM	16.716	13,346	13,526	13.691	11.749	10.888	10.192	•	3	•		6.0.54	•	4.468	•	5,995			088°	199.	468.	.246	.122	.001	. 041	.036	.033	.028	0.030
TOTAL OBSEPVATIONS	1078.	1075.	1075.	1678.	1080.	1079.	1082.	1082.	1082.	1081.	1074.	1072.	1050.	1011.	967.	929.	.689	867.	839.	697.	554.	50.5.	172.	105.	54.	39.	36.	55.	36.
GEOMETRIC ALTITUDE MSL FEET	,000c	•000a	7000.	• U d ü P	• บบกร	10000.	11000.	12000.	13000	14000	150000	•nough .	14000.	201100.		~ 00042	20000	2d000.	30000	52000.	34000.	. 30000°	38460•	*UU001	42000.	*00Uth	40-100.	46000.	50000

TABLE XVIII (CONT)

PERM AND EXTRENT OFFICE ALK VIXIVE HATIOS (GRADIS/FILGCHAM) AT SELECTED LEVELS

BY SEASONS

STALLICW SITE

PERIOD OF AFCORD 1961-1973

FALL

MINIMUM	1,123	10131	.593	.164	.663	. 568	160.	.214	.077	.029	.031	.196	.026	.061	• 068	021	.012	900.	• 003	†00°	.002	.001	• 001	.001	.001	.015	-	0	• 002
MEAN	5.492	4.723	4.420	#00	3,738	3.388	3.034	2.689	2.355	2.051	1.742	1,496	1.129	. 823	.598	.438	.327	.241	.168	.128	.072	.035	.022	.011	.012	.015	.010	200	•005
MAXIAUM	14.096	•		-	•	9.782	8.564	8.463	8.638	7.154	6.459	6,751	6.102	0 pc • p	2.958	2.236	1.711	1.370	. 923	.535	740.	.221	.119	.034	.023	.015	.010	.007	
TOTAL GGSEHVATIONS	1184.		1184.	1146.	1187.	1173.	1170.	1158.	1142.	1128.	1103.	1079.	1052.	1014.	986.	952.	90°	Bod.	751.	447.	270.	108.	59.	15.	• N	1.	1.	• •	1.
GLOMETRIC ALTITUDE MSL FEET	.0000	•0000	7007	CH211.	9000	19000	11000.	12,000.	1500.0	14000.	15000.	10,400	16900.	20000.	24,00.	24000	20000.	28040.	30000	32400.	34000.	36000.	30000.	40000	42000.	+4000	46000.	+8000•	5 ս Ողու

MEAN AID EXTREME DEPT AIR PRECIPITARE WATER (CENTIMETERS) BETWEEN SELECTED LEVELS BY SEASONS STALLION SITE PERION OF RECORD 1961-1973 TABLE XIX

WINTER

MINIMOM	.014	• 028	•016	.011	900.	•003	†00.	.003	.001	.001	.001	000•	000•	000	000•	000•	000•	000•	000	000	000•	000	000•
FAN	.082	.130	.102	.076	.055	040.	.028	.021	.015	.010	.007	.005	.003	-005	.001	.001	000.	000.	000	000.	000.	000	000.
MAXIMUM	.198	.368	.270	.282	.235	.160	.145	.107	.071	させい・	.030	.020	.013	.00B	•005	200.	000•	000.	000.	000.	000.	000.	000
TOTAL OHSERVATIONS	.69×	1056.	1063.	1057.	1054.	1044.	1036.	987.	941.	F67.	H21.	703.	504.	237.		25.	• 0		•0	•	• •	•0	• •
GEOWE PRIC ALTITUDE MSE FEFT	4940 6000	6000 A600.	8900 10000.	1.	١.	14000 16000.	16000 18000.	t	20000 ZZ000.	ı	1	26006 28899.	28000 5000d.	30000 52000.	32000 54000.	54000 56000.	36000 58600.	1	40000 42660.	42000 44000.	44000,- 46000.	46000 48010.	48000 50000.

MEAN AND EXTREME OPPER AIR PRECIPITABLE WATER (CENTIMETERS) BETWEEN SEANS SELLTON SITE PRICORD 1961-1973 TABLE XIX (CONT)

SPRING

MUMINIM	.023	.041	•050	•010	600	900•	.003	.002	.001	.001	100.	000	000	000•	000.	000•	000•	000•	000.	000•	000•	000.	000.
MEAN	.109	.165	.130	660.	.073	.053	.037	.025	.017	.012	800.	.005	.003	.002	.001	.001	900.	000.	.001	000.	000.	000.	000.
MAXIMUM	.29H	694.	365.	.311	.236	.175	.142	.106	470.	7+0.	.036	.022	.013	.010	•005	-002	.001	.001	.001	.001	.001	000	000.
10TAL UPSERVATIONS	1111.	1374.	1374.	36	1359.	Ď.	1341.	~	1215.	1163.	1088.	437.	•00ã	£70.	237.	70.	20.	ໍ້ລ	3.	, \$	· ~	8	.
GEOWETPIC ALTITUDE MSE PEET	4440 6000.	6000 Acco.	8600 10009.	10000- 10001	12000 1400c.	14400 16000.	16000 18000.	18000 20000.	20000 22000.	1.	240004 26000.	20000- 25000.	28000 50000.	50000 22000.	32000 34nou.	34000 36000.	5600U 58600.	38000 +0000.	40000 42000.	45000°- 44000°	**************************************	46000 48600.	48000 50000.

TABLE XIX (CONT)

PEAN YOU EXTREME OPPER AIR PRECIPITAGLE WATER (CENTIMETERS) RETWEEN SELECTED LEVELS BY SEASONS STALLION SITE PERIOD SITE

SUMMER

GEOMFIRIC ALTITUDE MSL FELT	19TAL UMSERVATTONIS	MAXINIM	AE.AN	MUMINIM
4940 6000.	826.	がかす。	.258	
6000 ABOU.	415	.747	.384	• 06
5000 - 10mps.	414.	•634	.314	•00•
	415.	500G	. 24.4	.051
	413.	504.	-192	, U 3
14000 16000.	u11.	.316	771.	000
	******************	150.	.104	• 000
18000 50000	・ハンシン	.201	.171	.00
	.51.	. 1 o c	240.	700.
	このな	.114	.031	00.
	・オロス	• 0 H4	. 920	• 001
	* to 11 d	₩ 4,0•	.013	00.
	780.	.033	600.	.001
	€.7.4•	•01н	.000	.00
	579.	.013	*00	000
34000 36000.	389.	200.	• 002	000
	235.	#50·	.001	9000
ı	137.	₹0 0 •	.001	000.
•	.20	•001	000.	000
45000 44000.	42.	.001	300.	000
ı	30.	•0.1	000•	000
•	35.	000•	000.	000
48.000 50000.	35.	00.0	000.	000.

4 N K 4 K C 2 F 4 N 4 N 4 4 0 0 0 0 0 0 0 0

MEAN AND EXTREME HERE ALM PRECIPITABLE WATER (CENTIMETERS) RETWEEN SELUCTED LIVELS BY SEASONS STALLION SITE PERHOD OF PECORD 1961-1973 TABLE XIX (CONT)

GEOMETRIC ALTITUDE MSL FEET	10TAL . DHSERVATIONS	MAXIMUM	*EAN	MINIMOM
4940 CHOH	H06.	413	.104	E+0.
1.	.691·	.661	.254	• 059
8000 10900.	.096	.557	.201	.027
١	055.	454.	.153	• 023
12000 14000.	にきる。	746.	.112	•016
•	041.	.288	.078	.000
,	435+	.219	.053	.000
18000 20000.	921.	.170	.036	.000
	4H 7.	621.	.025	700.
	R61.	*03H	.018	.00
	A15.	190.	.012	.001
	795.	550	800.	.001
1	726.	.030	900.	.001
!	527.	.019	. 700	.001
1	373.	.011	.003	000•
1	185.	•00•	.001	000
36000 3800v.	, 66•	\$00	.001	000.
1	21.	.001	000	000
١.	'n	.001	000.	000•
1 440	1.	00 0•	000.	000
!		000.	000.	000
1.	1.	000.	000.	000.
48000 5uggg.	:	ບດນ•	000.	000

TABLE XX

WEAT AID EXCISE UPPER AIR PELATIVE HUMIDITIES (PER CENT)
AT SELECTED LEVELS OF SEASONS
STALLTOI SITE
PERIOD OF PECOND 1961-1973

STER

TABLE XX (CONT)

PEAR AND EXTREME UPPER AIR MELATIVE HUMIDITIES (PER CENT)
AT SELECTED LEVELS MY SEASONS
STALLING SITE
PERIOD OF MECORD 1901-1973

SPRING

÷

MINIMUM		• • ল ল	• • • ল ল ল	ं ० ० (• • • • • • •	००० ल्ल्लल	• • • •	15 - 4 15 e
MEAL.	3. 3. 40 3. 40 40 3. 40 40	30.		10 10 10 10 10 10 10 10 10		200 280 280	25.	11. 31. 80.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
TAXINOM	5 5 5 5 5 5	100.	100 49.	0000	999	e o o	40. 70.	4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	, 20 % o 00 % o
, ICTAL OBSELVITIONS	1141. 1470. 1380.	1345.	1373. 1376. 1367.	1356. 1358.	1322 1323 1313 1343	1231. 1176. 1127.	- 4 C C C C C C C C C C C C C C C C C C	377°. 175°. 36°.	
OMETRIC ALTITURE Mac FELI	5440. 5660.	7000. 3000.	9000. 10010. 11000.	13000.	15000. 15000. 18000.	20000. 22000. 24000.	25080. 28000. 30000.	32000. 34000. 53000.	40000 42000 44000 43000 50000

TABLE XX (CONT).

JEAN AND EXTREME UPPER AIR PELATIVE HUMIDITIES (PER CENT)

AT SELECTED LEVELS BY SEASONS

STALLION SITE

PERIOD OF MECORD 1961-1973

SUMMER

FILIMOS	ī	۶,	œ.		1.	3.	S.	7.	3.		ů.	.	:	1.	1.	۲.	-		.	1.	1.		1.	1.	-:		1.	1.	14.	15.	15.
MEAL	ļ	40.	39.	36.	57.	5.H.	+0+	41.	45.	43.	t t ·	***	45.	* # #	42.	38.	32.	29.	27.	25.	24.	23.	21.	.	12.	12.	17.	20.	21.	21.	21.
MUNITAL!		45.	e 20	43.	• 5 5 5	. 95	94.	95.	47.	67	. 2 5	x g	· Xin	66	. 66	100	•6h.	46.	. 64	• 0.5	76.	.61	71.	61.	47.	35.	68	2.X.	30.	89.	39.
101AL	OHSERVATIONS	. #UA	cal.	• KEO	SKN.	·Inb	co:3	003°	çar.	07.5	5. D.	• then	. ZRD	arb.	963.	9%p	R 46.	* x = x	×14.	796.	707.	634.	+ c.c.	535	170.	1.12.	55.	•0+,	.37.	•99	\$6.
GEOWETRIC ALTITUDE	NSL FELT	*340	5000	400n.	7000	Aura.	1000	10000	11569.	12500.	1 4000.	14000.	15000.	15,000.	19000	20000.	22000.	24000.	25000.	*CD742	50000	32000·	34000	550PB.	35000	40000	42000	444000	43000	4 3 U.S.	Sagina.

FEAN AND EXTREME UPPER AIR RELATIVE HUMDITIES (PER CENT)
AT SELECTED LEVELS BY SEASONS
STALLION, SITE
PERIOD OF PECOND 1961-1973 TABLE XX (CONT)

FALL

MINIM	•6	10.	7.	3.	10.	•	20					1.	ທໍ	1.	ď	તં	8.	۲.	.	-	-		• -4	•	-4		14.	14.	15.	15.
MEAN	41.	+ 0	37.	38.	38.	58.	39.	58.	27.	36.	34.	32.	31.	29.	26.	25.	25.	25.	. 25•	23.	22.	16.	•	• 9	ţ.	8.	14.	14.	15.	15.
WAXIMUM	46.	94.	42.	6 0	100.	100.	6 6	.66	.66	.65	66	.65	100.	.66	. b b	.98	100	.74	. † £	в0.	65.	.69	30.	13.	13.	14.	14.	14.	15.	15.
. IGTAL JHSERVATIONS	c.38.	1090	LUHA	1090.	1042.	1093.	1084.	1077.	1045.	1049.	1035.	1010.	0.87	962.	°620	. RQB	R67.	824°	791.	677.	346.	725.	• 5 7	33.	10.	2•		1.	.	•
SEOWETHIC ALTITUME MSL FFET	4 34B.	00000	, UCD.	7000	3000	9000	10000	11000.	12000	13000.	14000.	15000.	15000.	13000.	20000.	22300.	24300.	25000°	28000.	Saun.	32000.	34000.	Budtin.	38UH0.	40000	42000.	440000	460110.	48000.	50000

ATMOSPHERIC STRUCTURE REPORT

STALLION SITE

SECTION I

UPPER AIR INDEX OF REFRACTION DATA

By Mont	hs .	Dan
Table XXI.	Mean and Extreme Upper Air Indexes of Refraction at Selected Levels	Page
By Mont		187
	Mean and Extreme Upper Air Indexes of Refraction at Selected Levels	100

TABLE XXI
MLAN ALD EXTREME UPPER AIR INDEXES OF REFRACTION
A! SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF RECORD 1901-1973

JAMINARY

MINIMUM	1.000237	1.000233	1.000232	1,000225	1.000217	1.000204	1.000197	1.000190	1.000184	1.000178	1.000172	1.000167	1.000162	1.000152	1,000143	1.000121	1.000097	1.000078	1.000063	1.000050	1.000040	1.000032	1.000025	1.000020	1.000015	1.000012	1.000009	1.000007	1,000005	1.000004	1.000003
GPADIENT	000000	000001	000011	600000	600000*-	000008	000008	U00008	000007	000007	u00007	000006	000006	000012	000010	000023	000020	000018	000017	000015	000011	600000-	000007	0000006	000005	000003	000003	000005	000002	000001	000001
MEAN	1,000254	1.000253	1.000243	1,000234	1,000225	1.000216	•	•	•	•	•	•	1.000168	•	•	•	•	•	1,000069	•	•	•	•	•	•	1.000012	•	•	1.000006	1.000005	1.000004
MAXIMUM	-	1.000280	1.000265	1.00259	1.100246	1.000238	1.000228	1.000218	1.000210	1.000201	1.000194	1.000188	1.000182	1.000167	1.000154	1.000127	1.000106	1.000089	1.000074	1.000061	1.000047	1.000037	1.dnn029	1.000022	1.000017	1.000013	1.000010	1.000008	1.000006	0.0	1.00000
TOTAL OHSE EVATIONS	350.	417.	418.	417.	417.	418.	417.	419.	419.	418•	418.	416.	415.	410.	343.	359.	325.	260•	235.	207.	178.	153.	140.	150.	122.	115.	102.	98.	x0.	x.	o3•
GEOMETHIC ALTITUDE MSL FEET	• 0 76 7	5000.	•0009	7400.	8000	9000	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25000.	30000	35000.	40000+	45000.	•0000c	25000.	•00000	65000°	70000	75000.	80000	35000 •	• חחווטס	95000.	100000.

TABLE XXI (CONT)
WEAR AND EXTREME UPPER AIR INDEXES OF REFRACTION
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF PECORD 1961-1973

FERRUARY

MUMINIM	1.000233	2.2	•	3002	1.000216	1.000206	1.000198	1,000191	1.000186	1.000180	1.000174	1.000169	1.000164	1,000154	1.000143	1.000119	1.000099	1.000079	1.000062	1.000050	1.000039	1.000031	1.000025	1.000019	1.000015	1.000012	1.00000	1.000007	1.000005	1.000004	1.000003
GKADIENT	000000	000002	000010	000008	000000	000008	000008	00000A	000007	000007	000007	000006	000000	000012	000010	000023	000020	000c18	000017	000014	000010	600000	000007	000006	000005	000003	000003	000002	000002	000001	000001
REAR.	1,000253	1,000251	1.000241	•	•	•	1.000210	•	•	1.000187	1.000180	1.000174	1.000168	1.000157	1,000147	1,000123	1,000103	1.000085	1.000068	1,000053	1.000043	1.000034	1.000026	1,000020	1.000016	1.000012	1.000009	1.000007	00000.	1.000005	1.000004
NIAXINUM		1.000284	1.000270	1.000257	1.000246	1.900236	1.000228	1.000218	1.400211	1,000203	1.000196	1.00190	1,000182	1.000168	1.000154	1.000127	1.000106	1.000089	1.000074	1.000059	1.000047	1.100037	1.000029	1.000022	1.000017	1,000013	1.000010	1,000008	1.000006	1.400005	1.00000
TOTAL UMSERVATIONS	366.	473.	4/3.	475.	470.	470.	470.	4694	408.	tor.	466.	すたな・	466.	463.	450.	4114	358•	SHO.	.05%	221.	142.	158.	143.	124.	193.	*9r	• 834.	* 2 2 .	25.50	70.	62.
GEOMETHIC ALTITJUL	• 0 26 4	5900.	•1000	7060.	8000	÷0006	10000.	11000.	12000.	13000.	14000.	15400.	16000.	18060.	20000	25000.	30000	35000·	40000+	45000.	.00nac	55000.	•00000	• 20000	70000	75000.	3000n•	85UBH•	•0000F	*1000F	190000

TABLE XXI (CONT)

*LABI AND EXTRENE UPPER AIM INDEXES OF REFRACTION

AI SELECTED LEVELS BY MONTHS

STALLION SITE

PERIOD OF MECORD 1961-1973

MARCH

MINIMUM	1.000229	00	002	1.000210	1.000203	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	.0001	1.000119	.0000	.0000	.0000	.0000	0000	.0000	0000	.0000	.0000	0000	.0000	.0000	.0000	.0000	1.000003
GRADIENT	000	•	000	-· 0000008	000007	000007	00000A	000	000007	- .000007	-1000006	000006	000012	000010	000024	000020	000018	000017	000015	000011	600000-	000007	000006	000005	-• 000003	000003	000002	000002	000001	000001
MEAN	000	.0002	.0002	.0002	.0002	300n•	1.000201	1.000194	1.000187	1.000180	1.000174	1.000168	1.000157	1.000146	1,000123	1.000103	1.000065	1.000068	1.000053	1.000043	1.000034	1.000026	1.000020	1.000016	1.000012	1.000009	1.000008	1.000006	3	1.000004
MAXIMIM	1.UA0282	1.000265	1,900257	1.000246	1.00236	1.000227	1.00017	1.000208	1.000200	1.000191	1.000185	1.000178	1.100167	1.000154	1.000127	1.000106	1.000089	1.000074	1.000059	1.000047	1,000037	1.400028	1.000022	1.000017	1.900013	1.000010	1.000008	1.000006	1.000005	1.00004
TOTAL UMSEMVATIONS	• E I	4.33	・めてコ	450.	431.	480.	476.	474.	• 1/4	u 72.	472.	471.	4/1.	462.	410.	342.	27.7	208.	163.	159.	154.	116.	100.	•96	47.	80°	77.	-90	61.	ر ت
GEDAN TRIC ALTITUDE MSL FEET	4 G # D # C # C # C # C # C # C # C # C # C	FU00.	7000.	8000	•0006	10000.	11000.	12000.	15000.	14000.	15000.	15000.	18000.	20000.	.5000	30000.	.35000.	40000+	45000	S1100G•	55800.	00000	6500 0 •	70000.	75000.	80000	8500 0 •	*0000 *	95000•	190000.

TABLE XXI (CONT)

MEAN AND EXTREME UPPER AIR INDEXES OF REFRACTION AT SELECTFU LEVELS BY MONTHS STALLION SITE PERIOD OF RECORD 1961-1973

APRIL

MINIMIM	1.000221	000	000	1.000210	000.	000.	. 000	•	1.000184		1.000172	1.000166	1,000161	1.000151	1.000142	1.000121	1.000098	1.000080	1.000064	1.000052	1.000041	1.000032	1.000026	1.000020	1.000015	1.000012	000	.00000	1.000005	000	1.000003
GRADIENT	.000000	000001	Э	0000008	000007	000007	000007	000007	000007	000007	000007	000006	000006	000012	000010	000023	000019	000017	000016	000015	000011	000010	000007	000006	000005	000003	000003	000002	000002	000001	000001
MEAL	1,000247		.00023	1.000229	•	-	•	9	•	1.000186	1.000180	•	•	•	•	•	•	•	1.000070	•	•	1.000034	1.000027	•	1.000016	.00001	0	1.000008	1.000006	1,000005	1.000004
HAXIMUM	1.400284	1.000283	0.200n•T	1.000258	1.00024P	1.000237	1.000227	1.000218	1.00209	•	1.00194	1.000187	1.006180	1,000165	1,000153	1.000127	1.000106	1.000089	1.000074	1.400060	1.000046	1.000037	1.000029	000	. 860	1.00013	2		0	0	1.00000
TOTAL	416.	534.	534•	360 100 100 100 100 100 100 100 100 100 1	551.	5.53.	533.	5,53.	5.42.	5.52.	5.32•	5.32	551.	525.	591•	455.	414.	, 25.50 , 25.50 , 25.50	2.40	26 2 •	13.W+	154.	138.	120.	121.	115.	1000	101.	97.	xx.	67.
SEUT FRIC ALTITUM	*0267	•00nc	6000°	7900.	JOCC.	• ೧೭೧೪	10000.	11,000.	130000	15000.	14000.	15000.	15000.	10000.	20000	25000.	30000.	35000.	40000	45U0U•	conon	55000	÷0000	65000	70003	75000.	*0000	85900.	*00006	45000.	100000.

TABLE XXI (CONT)

ALABIE TABLE XXI (CONT)

AL SELECTFU LFVELS BY MONTHS

STALLION SITE

PHALOD OF RECORD 1961-1973

ì		-	
	4	,	
	۲	١,	
4	t	•	

MINIMUM	000.	1,000225	.000	000	000	.000	.000	.000	000	.000	.000	000	.000	1.000152	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	000.	000.	.000	.000	0	000.
GRAUIENT	_	000	00001		$\overline{}$	0000	0000	0000	0000	0000	0000	0000	0000	_	0001	A.	0001	0001	0001	0001	_	0001	0000				0000	0000		$\overline{}$	
MEAL	0	42000	00023	0023	1,000223	02	.00	.0002	.0001	.0001	.0001	.0001	.0001		.0001	.0001	.0001	.0000	0000.	9	.000	.0000	,000 ·	0000.	2	00.	100	00000	00000.	1.000005	1,000004
MDXIMUM	1.400293	1.00090	1.000271	1,006263	1.000254	1,000245	1.000235	1.110227	• 11002	1.000212	• 110 UZ	.0001	.0000	1,000172	.0001	.0001	.0001	.0000	.0000	0000	1.000047	. 11000	1.000029	.0000	1.000017		0 0 Ú	υO	00	O _O	0 0
TOTAL CHSERVATICHS	413.	+62.	462.	*00t	462.	462.	462.	*850.5	457.	455.	453•	4 5 O •	•0++	465.	中がな	410.	341.	250.	218.	205.	181.	140.	136.	122.	112.	105.	102.	•07	۵5.	86.	6₽•
GEUMF FRIC ALTITUDE NSL FELT	4967.	580r.	• 0000	7000.	A11011.	•00n6	10000.	11000.	12009.	15000.	14900.	15000.	16000.	18000.	> 0000 >	25unu.	50000	35000°	4000h	45000.	50000s	.00055	60000	65000•	Zng00•	75000.	Rando.	45000.	96000•	45000°	100000

TABLE XXI (CONT)
MLAW AND EXTHEME UPPER ALL INDEXES OF REFRACTION
AT SELECTED LEVELS BY MONTHS
STALLION SITE
PERIOD OF MECORD 1961-1973

JUNE

MINIMUM	1.000220	.00022	00021	1.000205	00020	00019	00019		00018	.00017	.00017	.00016	.00016	00015	.00014	.00012	.00010	.0000	.00006	.0000	+00000	.00003	.00002	.00002	1.000016	1.000012	1,000009	00000	00000	1.000004	00000
GRADIENT	0000	000002	00001	0000UR	000008	4000008	000008	000007	000007	000007	00000	000006	00000	000012	000011	000024	10000	00001	0000	00000	000011	000010	000008	000006	000005	+00000°-	000003	000002	000002	000001	000001
MEAN	1.000256	2,5	120	3	.0002	1,000219	•	.000	•	1.000190	•	•	_	•	•	•	•	•	•	1.000058	•	•	•	•	•	•	•	•	1.000006		1.000004
MAKICHM	1.900301	1.000297	1.000285	1.000274	1.000266	1,000257	1.000241	1.000234	1.00224	1.000213	1.Unu205	1.000199	1.990192	1.100177	1.000162	1.000127	1.000106	1.000089	1.00001	1.000062	1.000050	1.400039	1.000030	1.000023	1.000018	1.0000.1	1.000011	1.00008	1.00007	1.000005	1.000004
TOTAL JHSFRVATIONS	320.	351.	352.	351.	352.	351.	35%	340.	351.	\$40.	348.	346.	.547.	344.	358.	317.	296°	271.	100.	150.	143.	120.	121.	102.	47.	•25•	71.	86.	x1.	70•	•00•
GEUM TRIC ALTIFUDE	4940.	5000	6u00.	7000.	8000	•0006	10000	11900.	12000.	13000.	14000.	15000.	16000.	IAnon.	20100.	25000.	50000	35000.	*0000 *	+2000.	20000	55400.	•00000	spngn•	70000	75000.	30000	45000	90000	45000.	190000.

VENT ALT EXTREME UPPER AIR TRIDEXES OF REFRACTION AT SELECTEU LEVELS BY MONTHS STALLTON SITE PERIOD OF RECORD 1961-1973 TABLE XXI (CONT)

JULY

ASL FLET	TOTEL CHSERVATIONS 3100	2 1	ME AN	IENT	MOMINI
	• 515 \$405	1.000333	1.000274	•	1.000239
	546	1.000001	1.000250	000016	1.000222
	342.	1.000285	1.000250	600010	1.000207
	350.	1.00283	1.000241	000010	1,000205
	350.	1.000258	1.600232	600000-	1,000199
	340.	1,000248	1.000223	600000	1.000199
	4,24.	1.000238	1.000214	600009*-	1,000192
	554.	1.110022A	1.000206	U0000B	1,000187
	354.	1.4000218	1.000198	000008	1.000180
	374.	1.000208	1.000191	000007	1.000175
	553.	1.00199	•	000007	1,000169
	352.	1.000191	1,000176	000007	1.000164
	350.	1.000175	•	000014	1.000151
	544.	1.000161	1,000150	000013	1.000142
	317.	1.000130	1,000123	600027	1.000120
	297.	1.000106	1,000103	000020	1,000102
	, 55.00 10.00	1.000938	1.000087	000017	1.000086
	174.	1.000074	1.000073	000014	1.000072
	155.	1.000061	1.000060	000013	1,000059
	147.	1.000050	1.000048	000011	1.000047
	1.54.	1.000639	1.000037	000011	1,000037
	125.	1.000030	1.000028	600000-	1,000027
	114.	1.00022	1.000022	UD J 00 7	1.000022
	110.	1.000017	1.000017	000005	.0000
	107.	1.000014	1,000013	+.00000	.0000
	1.16.	1.00011	1.000010	600003	0001
	162.	1.000008	1.000008	000002	0000
	.74	1.000001	1.000006	000002	00
	.55	111111111111111111111111111111111111111	1.000005	000001	00
	• '5 °C	1.000004	1.000004	000001	000

TABLE XXI (CONT)

LATE ALL UPPER AIP INDEXES OF REFRACTION

AI SPLECTED LEVELS BY MONTHS

STAFFTON SITE

PERIOD OF PEGORD 1961-1973

3.16(157

MOMINIW	1.000236	1.000234	1.000209	1.000204	1.000201	1.000201	1,000199	1.000196	1.000137	1.000180	1,000173	1.000106	1.000161	1.000152	1.000142	1.000120	1.000101	1.000086	1.000071	1.000058	1.000046	1.000036	1.000027	1.000021	1.000016	1.000012	1.000010	1.000007	1.000006	00	1.000003
GRADIENT	.000000	000001	000017	000010	600000	000008	JOUUUB	600000-	¢000008	000008	000008	000008	000007	000014	000013	000026	000019	000017	000014	000013	000011	000011	000009	U000007	000005	 000004	000003	000002	u000u2	000001	400001
MEAN	1.000277	1.000276	1.000259	1.000249		1.000232	1.000223	1.000215	1.000207	1.000199	1.000191	1.000183	1.000175	1.000161	1.000149	1,000123	1.000103	1.000087	1.000072	1.000059	1.000048	1.000037	1.000028	1.000022	1.000016	1.005013	1.000010	1.000008	1.000006	1.000005	1.0000004
махгом	1.000313	1.000311	1.60000	1.000279	1.000268	1.100760	1.000259	1.000030	1.100226	1.007217	1.000007	1.000001	1.100142	1,400175	1.0016160	1.490130	1,300106	1.000089	1.8000074	1.000001	1.000050	1.000040	1.000030	1.400023	1.000017	1.000014	1.000011	1.000008	1.900007	1.000005	1.00000
FULFE OMSFRVATIMES	. • () ()	534.	3.55	• 455	\$ 45.	30.50	・さたや	4.16.	.4.14.0	3,700	3.45.	**************************************	5.12.	470.	374.	5,5%	• 17 % 3	• 27 /	215.	1 41.	177.	102.	• i. · · · · · · · · · · · · · · · · · ·	147.	1.57	1 50.	1.24	120.	196.	• 96	٠ پاي
GEOR FRIC ALTHRA MSL HEEF	*0767	5000	5000	7000.	Auca.	9356	10000	11.000	12000.	13000.	1400	15009.	1500J.	19800.	<0000 P	25:00.	30000	3500°9.	*0000#	45000.	54900.	5,000.5	50000	05000	70 10 i	/baage	30000°	45000	Sunda.	45u00.	100000

TABLE XXI (CONT)

ALAN AND EXTREME UPPER AIR INDEXES OF REFRACTION

AT SELECTED LEVELS BY MONTHS

STAILION SITE

PERIOD OF RECORD 1961-1973

SFPTEMBER

MINIMUM	•	.000	.000	00	. 300	.000	.000	.000	000.	.000	1.000170	.000	.000	.000	.000	.000	.000	.000	.000	.000	000.	.000	.000	000	.000	.000	. 000	.000	.000	.00000	1.000003
GRADIENT	000000	000003	000014	00000	600000*-	6000000-	600000	-,000000	000008	000008	000008	000008	000007	000013	000012	120000-	000019	000017	000015	000013	00Ca11	000011	600000-	-, 600006	000005	+000000	000003	000002	000002	000001	000001
MEAN	1,000273	026	00055	0005	.00023	000	000	1.000211	.000	.000	1.000187	.000	000.	.000	000.	.000	000	000.	.000	1.000058	000.	.000	000.	000.	1,000016	.000	00	.0000	0000.00	3	1.000004
MAXITUM	03	.0003	2	1.000280	20	. 0002	$\boldsymbol{\alpha}$	•	_	_	1.000206	•	_	1.000177	_	•	•	•	•	_	1.000050	_	•	1.000022	1.000017	1.000014	1.000010	4.0000B	1.000006	1.00005	1.000004
TOTAL UMSERYATIONS	3.20•	362.	361.	162.	362.	363.	362.	(A)	303.	363.	363.	361.	561.	361.	350.	345.	9000 9000	250.	202.	188.	181.	159.	147.	138.	128.	124.	121.	115.	105.	• 15	ж 90-
GEDMETHIC ALTITUDE	• 0 7 6 7	5000•	6000	7000.	8000°	•0006	10000	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25u00.	30000.	35000.	40000·	45000°	, 50 u G	55000.	60000	65000.	70000.	75000.	80000	85000•	. 00006	95000•	100000.

TABLE XXI (CONT)

REALL AND EXTREME DEPER AIR INDEXES OF REFRACTION AT SELECTED LIVELS BY MONTHS STALLION SITE PERIOD OF PECORD 1961-1973

OCTORER

MINIMUM	1.000234	1.000234	000	1.000214	1.000208	1.000203	1.000197	1.000189	1.000181	1.000175	1.000170	1,000165	1.000160	1.000150	1.000141	1.000119	•	0000	.0000		.00000	.0000	1.000027	1.000021	1.000016	1.000012	1.000010	1.000008	1.000006	9	1.000004
GKADIENT	000000	000001	000011	÷000000*-	600000-	000008	000003	000008	000008	00000A	000007	000007	000007	000012	000010	000023	000019	000017	000015	000014	000011	000010	0000GB	000000	000005	000003	000003	0	000002	00000	000001
MEAN	1.000258	1.000257	1,000245	1.000237	1.000228								.00016	1.000155	.00014			1.000087	1.00001		1.000046		1.000027	1.000021	.00001	.0000	1.000010	1.000008	1.000006	05.	1.000004
Wilvia X dic	1.000302	1,000299	1.000283	•	1.000258	1,000253	1.000243	1.000234	1.000225	1.400216	1.0207	1.000197	1.000187	1.000173	1.000159	1.000128	1.001106	1.00009	1.000074	900					1.000011	1.000013	1.000010		900000°T	•	1.900004
TOTAL UMSERVATIONS	30.7.	417.	417.	416.	417.	418.	413.	414.	418.	418.	417.	415.	414.	413.	410.	338°	362.	・こかべ	-2+2	20A.	- 5 114	142.	176.	157.	161.	155.	3 4€.	156.	125.	• 54.1	.37.
GEOM THIC ALTITUDE 4SL PEET	4940	5000	-n00:	7.10.3.	Ati(i)	4000	10000.	11000-	12000.	15000.	14000.	LSGUD.	15000.	lanca.	Z110011.	45u00.	\$0000	55000.	+0000+	45000.	•00000	55000°		.00060	70000.	75960.	*0000H	35000 •	90000	.95116.0	139000

REFHACTION	
TABLE XXI (CONT) "EAN AND EXTMENT UPPER AIR INDEXES OF REFRACTION AI SELECTFU LEVELS BY MONTHS STALLION SITE	PERTON OF RECORD 1964-167
TABLE EXTHENE UPPER AT SELECTFU LE STALLION	PERTON OF RECK
Ariu	
r an	

NOVEMBER

	MINIM	8	1.000233	200	0000	2000	0000	00000	00019	000	00018	1000	1.000172	1.000167	1.000162	.0001	.0001	.0001	.0000	1.000079	.0000	.0000	1.000042	.00003	N	-,00002	10000	.0000	0000	8	1.000005	000
	GRADIENT		000000	000001	000010	00000B	000008	000000	000008	000008	000008	000007	.00000 ·	900000-	000006	000011	000010	- 000023	- 0000050	- 000017	-000016	000014	000011	010000-	800000-	900000	600000	500000	-000000	800000	-000001	000001
Q	MEAN	5	1 00000	100000 T	1 0000 t	1.000633	1.00004	0100001	1,000,000	1-000194	1.000194	1-000180	1.000174	1-000167	1,000156	1,000146	1.000148	1.0001	1.000.00	1.000070	1.000056	1.000045	1.000035	1.000027	1.000021	1.000016	1.000013	1.000010	1.000008	00	000	
NOVEMBER	MA X	1.900282	-	1.000266	1.000263	1.000257	1.000243	1.000232	1.000223	1.000215	1.00205	1.000198	1.400193	1.000185	1.000170	1.000156	1.000128	1.000107	1.000089	1.000075	1.00001	1.000049	1.000038	620000-1	1.000022	1.000017	1.000013	1.000010	800600 T		7.000004 1.000004	
	TOTAL	348.	4:17.	./	*/O#		• 100	* 10 %			• 600	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	• 000	• • • • • • • • • • • • • • • • • • • •	• 17.4	3.4(1)	• t • n	-010	• • • • • • • • • • • • • • • • • • • •	154	• 62	130	- a	- CT T			300	o m	355	.66	52.	
	GEOMETHIC ALTITUDE MSL FEET	+ 0.40.4	• 0000	7000	8000	4000	16000	11000.	12000.	13600.	14000.	15000.	16000	18000.	20000.	25000.	30000	35000.	40000	45000.	50000	2500u.	. 00000	e5000.	Zeuou.	75000.	40000°	95000.	90000°	00006	• 000001	

TABLE XXI (CONT)

ALEAN AND EXTREME UPPER AIR INDEXES OF REFMACTION
ALSELECTED LEVELS BY MONTHS
STALLION SITE
PERION OF MECORD 1961-1973

DLCEMBER

	WIMINIM		1.000241	1.000238	1.000226	1.000217	1.000208	1.000201	1.000196	1.000190	1.000184	1.000179	1.000172	1.000167	1.000162	1.000152	1.000143	1.000118	1.000098	1.000080	1.000064	1.000051	1.000040	1.000032	1.000025	1.00019	1.000015	1.000012	1.000000	1.00000	1.000005	1.000003	
	GKADIENT	000000		200000	0106000-	600000	500000	600000-	000008	- 000008	700000-	000007	200000-	900000-	90000-	110000-	010000	520000	020000	910000	**************************************	110000	110000-	P10000	700000·I			50000 ·	600000	800000-1	- 00001	000001	
¥	REAL	1.000256		0000	2000	2000	1.00001	1.00001	1 - 000001	1000000	1.000147	1-000180	1.00012	1.000168	1.000156	1.000146	1.000123	1.000103	1.000086	1.000069	1.000055	1.000044	1.000034	1.000027	1.000021	1.000016	1.000012	1.000009	1.000007	1.000006	1.000005	1.000604	
CHOR MER K	MUMIXAM	30	~			1.00000	1.000239	1.500232	1.000221	1.000215	1.000207	1.000195	1.000187	1.000180	1.000165	1.000153	1.000127	1.000106	1.000090	1.900074	1.000059	3+00000	1.00036	1.000028	1.00022	1.000017	1.000013	7.100010	1.00000		0000	2	
	TOTAL UNSERVATIONS	- C+-C		• 0 • 0 • 0 • 0	• 100	• N		\$24.	ON 1	0.00		·	• 200	\$ 10 P	026	• M 60 M	0000	• 000	• 12 · · · · · · · · · · · · · · · · · ·	1 / / 4	• 10 7	• • • • • • • • • • • • • • • • • • • •	- 10 -	• 0 • •	- 1	9 7 7 7		101	• • • • • • • • • • • • • • • • • • • •	, M	77.	•	
	GEO.ATTRIC ALTITUDE	5000.	0000	7404	A CONTRACTOR		0000	17000	75000			150.00	Lancing	12000	20000	25,000	30000	55000	*P0n0+	45400.	50000	55000.	.00000	65000.	70:00.	75000.	8១០០០.	abung.	9000c	95u0u.	100001		

TABLE XXII

ALAN AND EXTHENE UPPER AIR INDEXES OF PEFRACTION
AT SELECIFU LEVELS BY SEASONS
STALLION SITE
PERIOD OF PECORD 1961-1973

KINTER

MINIM	.00023	.00022	.00022	002	.00020	.000	.0001	. 0001	.0001	1.000178	.0001	.0001	.0001	.0001	.0001	.0301	.0000	.0000	.0000	.0000	.0000	.0000	.0000	0000.	.000	000	.0000	.00000	0000	.00000	1.000003
GRADIENT	.000000	000002	000010	000008	000000	000008	U00008	000008	000007	000007	000007	000000	000006	000012	000010	000023	000020	000018	000017	000014	000011	600000-	000007	000006	000005	000003	000003	000002	000002	000001	000001
KEAN	1.000254	0	000	000	.000	.000	1,000209	000	.000	.000	. noo	.000	. 000	1.000156	000.	1.000123	.000	000.	000.	00	.000	00.	00.	00.	-	1.000012	9	0	000	1.000005	1.000004
MINIXOP	1.000285	1.100284	1.00270	•	1.000250	•	1.000232	•	•	•	1.000196	1.000190	1.400182	•	•	•	•	•	1.000074	•	1.000047	•	•	1.000022	•	1.000013	•	•	1.000006	2	1.000004
TOTAL CHSERVATIONS	1913.	1218.	1220.	1210.	1216.	1217.	1216.	1217.	1215.	1215.	1212.	1298•	12:10.	1197.	1164.	1066.	• 9 7 6	746.	562.	582.	514.	4 15 2	*95,4	373.	336.	321.	297.	290.	269.	25.4 ·	202.
GENATIRIC ALTIFUDE ASE FEET	• 03763	5000.	o4)00.	7000.	8400.	9000	100001	11009.	12000.	13000.	14000.	15000.	16000.	18096.	20000.	25000.	50000	55000.	40060.	*÷0000÷	20000°	55400.	•000úc	65000.	79000.	75000.	3000n	85000°	40000h	95000.	10000.

1	R
	U
ļ	
I	from
ĺ	۴,
ı	7
١	Š
I	ğ
ı	×

TABLE XXII (CONT)
**LAN: ALD EXTHEME UPPER AIR INDEXES OF REFRACTION
AI SELECTED LEVELS HY SEASONS
STALLION SITE
PERIOD OF RECORD 1961-1973

SPRING

יין זין יוליי	STOP A STANSON				
· fign n	1217.	1.000293	1.000248	.000000	1.000221
5000	1477.	1,000290	1.000247	000001	1,000219
enana.	1470.	1.100271	1.000238	000000	00021
7000.	1478.	1.000263	1.000230	000008	1,000207
Butu.	1475.	1.000254	1,000223	000008	00000
900g	1476.	1.999245	1,000215	000007	1.000197
13.000	14 75,0	1,000235	1.000208	000007	1,000193
11000.	1454.	1.000227	1.000201	700000·	00018
12000	1403.	1.000221	000	000007	.000
13000.	1401.	1.990212	1.000187	T00000	1.000178
14900.	1457.	1.000203	1.000180	000007	•
15000.	1454.	1,000195	•	000006	1.000166
16000	1451.	1,000187	1,000168	000006	•
13000	1441.	1.""172	•	000012	•
50 10n •	1397.	1.000158	1.0001-6	000010	1.000142
25000.	1254.	1.000127	•	000024	•
50000.	1143.	1.000106	1.000103	000320	1.00009
35000.	801.	1.000089	. 1.000086	000017	_
+1000th	.56.	1.000074		000016	
45ucu.	545.	1.400061		000015	•
50000	523.	1.000047	1.000044	000011	1.000040
55000	4.35.	1.000037		000010	.0000
to did this	•500	1.000029	1.000027	000007	.0000
.00069	351.	1.000022	1.000021	000006	1.000020
Zuaba.	\$20°	1.000017	1.000016	000005	1.000015
75000.	307.	1.000013	1.000012	000003	1.000012
90000	\$7.5°	1,000010	1.000010	000003	1.00000
esuro.	277.	1.0000R	1.000008	000002	0000
90000	254.	00	1.0000006	000002	1,000005
-000km	0.55	C	\supset	000001	1.00000
100000	1 43.	1.00000	1.000004	000001	90

TABLE XXII (CONT)
MEAN AND EXTREME UPPER AIR INDEXES OF REFRACTION
AT SELECTEU LEVELS BY SEASONS
STALLION SITE
PERIUD OF RECORD 1961-1973

SUMMER

MINIMUM	.00022	1.000221	.00020	.00020	.00020	.00019	.00019	.00018	.00018	.00017	.00017	.00016	.00016	.00015	.00014	.00012	.00010	.00008	.00006	.00005	+00000	.00003	.00002	.0000	.00001	.00001	.00000	.00000	0	Ò	2
GRADIENT	0000	0000	1000	0000	00000	0000	00000	0000	0000	0000	00000	00000	00000	0000	0001	0000	0001	00001	00001	1000	0001	-	3000		0000			0000		0000	0000
MEAN	0	000	000	000.	.000	.000	000.	.000	.000	000.	.000	.000	.000	000	000.	.000	.000	.000	.000	.000	.000	.000	.000	000.	000.	.000	000.	.000	C	000	• 000
MAXIMIM	033	0 U O	Ŏ.	8	00058	0	Š	3	Ň	7	Ŏ	0	.00019	1.000177	.00016	.00013	.00010	.0000	.00007	9	.00001	*000n*	. 0000	Ñ	7	ᅼ	ᅼ	• uu000	0	0	0
TOTAL OMSERVATIONS	• 766	1084.	1034.	1084.	1047.	1086.	1035.	1087.	1049.	1088.	1087.	1083.	1041.	1072.	1057.	992.	937	755.	558•	496.	467.	425.	401.	363.	344.	329.	321.	308.	284.	いちぬ・	227.
GEOMFTRIC ALTITUDE MSL FEET	4940	5000.	6000.	7000.	8000°	*000h	10000.	11000.	12000.	15000.	14000.	15000.	16000.	18000.	20000	25000.	30000.	35000.	+0000+	45000.	20000.	55000.	00000	65000.	70000	75000.	80000	85000.	•00006	95000.	100000.

TABLE XXII (CONT)

**LAN AND EXTREME UPPER AIR INDEXES OF REFRACTION

AT SELECTEU LEVELS BY SEASONS

STALLION SITE

PERIOD OF RECORD 1961-1973

ALL

MINIMOM	0023	002	0021	0021	0020	0020	6100	0018	.00018	.00017	.00017	.00016	.00016	1.000149	.00014	.00011	.0000	.0000	.00006	.00005	4000	.00003	0005	0002	0001	0001	0000	0000	.00000	0000	00
GRADIENT	000	0000	1000	0000	0000	0000	0000	2000	0000	0000	0000	0000	0000	000012	0001	0005	0001	0001	0001	0001	0001	0001	0000	0000	0000	0000	000	000	0000	0000	000
MEAN	026	.00026	.00024	.00023	00023	.00022	.00021	020	.00019	.00018	.00018	.00017	.00016	1,000156	.00014	.00012	.00010	.00008	.0000	.00005	*0000	.00003	.00002	.00002	.0000	001	001	00000	000	0000	000
MAXIMUM	030	0	0029	028	0027	9	0024	3	.00023	0023	.00020	.00019	00019	=	.00016	0012	.00010	0000	.0000	90	•00000	.00003	0005	102	0.1	001	01	900	000	000	Ó
TOTAL OMSERVATIONS	1035.	1186.	1185.	1185.	1187.	1188.	1187.	1188.	1185.	1184.	1183.	117R.	1177.	1175.	1159.	1077.	945.	783.	628.	562.	537.	470.	441.	418.	348.	379.	365.	344.	315.	270.	220.
GEOMFIRIC ALTITUDE MSL FEET	4940	5000.	6000	7000.	8000.	.0006	10000.	11000.	12000.	13000.	14000.	15000.	16000.	18000.	20000.	25u00.	30000	35000.	40000	45000.	50000.	55000.	60000	.00000	70000	75000.	*0000A	85000.	40000	95000.	100000.

ATMOSPHERIC STRUCTURE REPORT

STALLION SITE

SECTION I

UPPER AIR FREEZING LEVEL DATA

By Month	s and By Seasons	Page
Table XXIII.	Mean and Extreme Heights (Feet	- uge
	MSL) of the Freezing Level	205
Table XXIV.	Relative Frequency Distribution of the Freezing Level (In Per Cent)	
		206

FREEZING LEVEL

For this report the freezing level is defined as any altitude at which the temperature is 0° centigrade.

Multiple freezing levels may occur on a single lawinsonde observation.

The data presented is based on all freezing level occurrences.

TABLE XXIII MEAN AND EXTREME HEIGHTS (FEET "SL) OF THE FREEZING LEVEL BY MONTHS AND BY SEASONS

STALLION SITE

PERIOD OF RECORD 1961-1973

MONTH	TOTAL RAWINSONDE ASCENSIONS	MAXIMUM	MEAN	MINIMUM
JANUARY	454	15200	9200	0064
FEBRUARY	475	16100	2006	0064
MARCH	485	15100	9300	0004
APRIL	466	15300	11100	5400
MAY	463	16600	13100	6700
CUNE	354	17900	15000	11000
プロトイ	355	20700	16200	00011
AUGUST	387	18500	15800	000
SEPTEMBER	366	18000	14700	00261
OCTOBER	419	17100	000	
NOVEMBER	604	17700	0000	0016
DECEMBED	900		00111	0000
	250	00201	9200	0064
SEASON				
WINTER	1227	16100	9100	006#
SPRING	1482	16600	•	0000
SUMMER	1096	20700	15700	
FALL	1104		,,	00011
	•	19000	7	2000

TABLE XXIV
RELATIVE FREGUENCY DISTRIBUTION OF THE FREFZING LEVEL AY MONTHS AND BY SEASONS (IN PERCENT)

PERIOD OF RECORD 1961-1973

STALLION SITE

	17	C000000000	0000
GEOMETRIC ALTITUDE MSL FEET	×1.18 19.98	0.30000440000	0040
	¥ # #	-0000NB84000	0000
	≥16K <17K	1198641000000000000000000000000000000000000	0040
	× × × × × × × × × × × × × × × × × × ×	134 43 1000 1000 1000 1000 100 100 100 100 10	39 9 9
	12 24 57 57	220 CC	1010
	13K 14K	6511 10 13 4 15 t u	20 P P P
	12 × 13 × 13 × 13 × 13 × 13 × 13 × 13 × 1	1140 1000 20 20 20 20 20 20 20 20 20 20 20 20	17 10 10
	¥17 \$2,4	120000000	13 18 1
	≥ 10K × 11K	00000000000000000000000000000000000000	# # O &
	>9K	111 100 100 111 112	10000
	*! ^ X	111000000	51 50 0 20
	* * * * * * * * * *	911000000000000000000000000000000000000	0 · 0 · 0 · 0
	*1 * X	2 4 2 4 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4	D 60 0 8
	* * * * * * * * * * * * * * * * * * *	100000000000000000000000000000000000000	3 FO O
	× × × × × × × × × × × × × × × × × × ×	0040000004	4000
TOTAL	RAWINSUNDE ASCENSIONS	424 475 485 334 354 365 419 419	1227 1482 1090 1194
	MONTH	JANUARY FEBRUARY MARCH APRIL MAY JUNE JULY AUGUST SEPTEMBER OCTOBER NOVEMBER UECEMBER	SEASON AINTER SPRING SUMMER FALL
		206	

ATMOSPHERIC STRUCTURE REPORT

STALLION SITE

SECTION II

SURFACE DATA

Ĺ	By Months	and By Years	Page
Table	xxv.	Monthly and Annual Temperature Means and Extremes (°Fahrenheit) at Seven WSMR Sites	208
Table	XXVI.	Monthly and Annual Mean Precipitation (Inches) at Seven WSMR Sites	209
Table		Annual Rainfall (Inches) by Years at Stallion Site, 1963-1973	210
Table	XXVIII.	Monthly and Annual Mean and Maximum Snowfall (Inches) at "A" Station, 1950-1973	210
Table	XXIX.	Surface Wind Data by Month and by Hour, Stallion Site, WSMR, New Mexico,	211

TABLE XXV

MONTHLY AND ANNUAL TEMPERATURE MEANS AND EXTREMES (°FAHRENHEIT) AT SEVEN WSMR SITES

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	0ci	Nov	Бэс	Annual
STALLION	SITE		E	1evat	ion 4	,940	FT MS	L	Peri	od of	Reco	rd 19	62-1973
Mean Max	51	56	63	72	82	90	92	89	82	74	61	51	72
Mean Min	21	26	31	39	48	57	64	61	50	43	32	23	41
Abs Max	72	77	85	93	97	101	104	101	95	90	79	71	104
Abs Min	-12	2	6	17	30	40	54	47	35	20	14	2	-12
WSD* SITE			E	levat	ion 3	3,989	FT MS	L	Peri	od of	Reco	rd 19	60-1973
Mean Max	57	61	69	78	87	94	95	92	87	78	66	57	77
Mean Min	25	29	36	46	53	62	67	64	58	45	33	ŧ	45
Abs Max	78	81	89	97	100	108	108	104	99	94	83	75	108
Abs Min	-14	5	6	19	26	41	57	51	37	22	12	5	-14
JALLEN SI	TE	4-4	E	levat	ion 4	,051	FT NS	L	Peri	od of	Recc	rd 19	ó3 – 1973
Mean Max	55	59	67	76	86	92	95	91	85	77	64	56	75
Mean Min	25	29	35	44	52	61	67	65	57	46	34	27	45
Abs Max	76	81	89	98	98	108	106	106	98	. 92	84	76	108
Abs Min	-2	5	7	22	30	43	58	50	37	28	16	7	-2
APACHE SI	TE	· · · · · · · · · · · · · · · · · · ·	E	levat	ion 3	3,956	FT MS	L	Peri	od of	Reco	rd 19	63-1973
Mean Max	51	60	68	77	86	92	95	92	86	79	65	56	76
Mean Min	24	27	35	44	52	61	66	63	57	44	33	26	44
Abs Max	78	80	89	97	100	108	107	103	99	93	82	75	108
Abs Min	-2	7	7	20	28	42	59	53	37	21	13	2	-2
"A" SITE			E	leva	ion 4	,238	FT MS	L	Peri	od of	Reco	rd 19	50-1973
Mean Max	56	60	66	75	84	93	93	91	86	76	64	56	75
Mean Min	34	38	43	52	60	t .	70	69	63	53	41	35	52
Abs Max	76	81	86	9.,	103	106	107	103	98	92	84	77	107
Abs Min	-6	8	16	29	38	50	59	55	46	33	22	8	-6
HMN* SITE	[14]		E	levat	ion 4	,090	FT MS	L	Peri	od of	Reco	ra 19	42-1973
Mean Max	55	60	66	76	85	94	94	93	87	77	64	56	75
Mean Min	27	31	37	45	54	63	68	66	59	48	34	1 28	47
Abs Max	79	80	87	16	103	10?	107	106	103	93	81	75	107
Abs Min	-11	0	9	22	1	42	54	53	38	24	12	2	-11
SMR* SITE			E	leva	ion 1	3,5 9	FT MS	L	Peri	od of	Reco	rd 19	63-1973
Mean Max	56	60	68	77	86	93	95	91	86	77	65	56	76
Mean Min	27	31	39	48	56	64	58	65	60	47	37	29	48
Abs Max	78	83	87	96	100	106	108	103	98	93	82	74	108
Abs Min	4	7	9	22	32	42	59	57	: 42	23	16	6	4
						<u> </u>	1			L	10		

^{*}White Sands Desert

*Small Missile Range

^{*}Holloman

TABLE XXVI

MONTHLY AND ANNUAL MEAN PRECIPITATION (INCHES) AT SEVEN WSMR SITES

Site	Stallion	White Sands Desert	Jallen	"A"	Holloman*	Small Missile Range	Apache
Elevation	4,940	3,989	4,051	4,238	4,070	3,999	3,956
Period of Record	1963-73	1963-73	1966-73	1950-73	1942-73	1964-73	1964-73
Jan	0.12	0.29	0.26	0.48	0.41	0.29	0.29
Feb	0.19	0.40	0.34	0.57	0.40	0.39	0.18
Mar	0.29	0.25	0.14	0.52	0.53	0.26	0.17
Apr	0.10	0.14	0.07	0.22	0.12	0.13	0.12
May	0.30	0.15	0.37	0.23	0.30	0.16	0.15
Jun	0.97	1.39	0.77	0.89	0.98	1.04	0.96
Ju1	1.71	1.94	1.82	2.29	1.86	1.89	1.35
Aug	. 2.13	2.06	1.50	1.86	1.95	2.48	2.13
Sep	1.27	1.39	1.07	1.29	1.32	1,15	1.21
Oct	0.96	0.75	0.98	1.06	1.04	0.77	0.63
Nov	0.25	0.37	0.44	0.42	0.34	0.35	0.35
Dec	0.52	0.47	0.55	0.76	0.62	0.64	0.58
Annua1	8.80	10.20	8.27	10.59	8.76	9.55	7.87

^{*}Precipitation records from Holloman Air Force Base were used for the period 1942-64; records from Holloman Rawinsonde Site were used for the years 1965-73.

TABLE XXVII

ANNUAL RAINFALL (INCHES)

BY YEARS AT STALLION SITE

1963-1973

Year	Rainfall
1963	6.90
1964	5.05
1965	9.36
1966	7.68
1967	11.73
1968	8.68
1969	10.82
1970	3.73
1972	13.44
1973	8.86

TABLE XXVIII MONTHLY AND ANNUAL MEAN AND MAXIMUM SNOWFALL (INCHES) AT "A" STATION 1950-1973

Month	Mean Snowfall	Maximum Snowfall	Date
Jan	1.3	6.9	1972
Feb	1.5	8.6	1952
Mar	0.5	3.5	1958
Apr	0.0	T	1971*
May	0.0	0.0	
Jun	0.0	0.0	
Ju1	0.0	0.0	
Aug	0.0	0.0	
Sep	0.0	0.0	
0ct	0.0	T	1972*
Nov	0.8	6.2	1961
Dec	2.4	14.9	1967
Annual	6.5	18.5	1960

*Also occurred on prior dates

NOTE: "A" Station snowfall records have been presented since this data is not available from Stallion Site.

TABLE XXIX

SUMPACE WITH DATA BY MONTH AND BY HOUM STALLTON SITE WHITE SAMPS MISSILE RANGE, HEN MEXICO PEMICH OF RECPRD 1965-1973

THAILTAN

	_	OBSNS			262	561	201	261	261	261	202	262	266	268	268	267	267	267	208	208	204	564	564	264	264	564	264	264		2440
			¥		1966	1972	1972	1972	1967	1961	1961	1967	1961	1961	1964	5961	696	1261	1971	1973	1973	1972	1972	1972	1972	1972	1972	1972		
	6051		DAY			a	⇉	ŧ	14	S	ε	٤	£	¢	23	%	25	~	∼		かっ	'n	10	*7	N)	*)	Ŋ	i,		
-	PEAK		SPU	(KT)	50	31	40	25	50	33	37	t.	3	35	35	34	39	04	36	37	33	33	96	32	され	38	37	36		20
	<u>-</u>		3 1 1	(:)4:)	350	5 .	7:	Ę	360	360	360	040	360	360	250	260	2.73	002	00%	210	220	70	70	70	Ü.	207	7.0	70		
ָר י	SCALAR	MF AN	SPO	(KI)	£ • 17		¢.	===	5.0	5. A	5.7	4.0	3.4	3.9	t. • t	₽•C	•	6.9	⊕•°	6.0	•	•	4.6	•	7.7	4.5	4.6	4.4		4.7
	けると	1.1144			-		=	ŧ.	2	- Ta	?	,	चेताः	3/4/	x	ĸ	55%	554	SSE	*S\$	7.	Z	2	7	Z	7	Ξ.	Z	SMIH	Z
	インドナ	Z C	551	(14)	ري. دي	5	4.7	4.7	₩	# • 7	4.7	4.1	5 • 4	1.2	•	1.3	•	6.1	1.8	1.9	1.4	1.7	0.7	F•4	4.1	% 3	7.04	6.5	THE 13	H . H
	トライン アンファ	7.5	710	$\overline{}$	35.5				304	350	360	‡	5 0	1.5	532	361	242	2×2	204	とうな	307	308	313	351	337	- 11	347	344	FOR	358
	4				-4	J	n	1	ດ	٥	~	٥				77		14	15	ic	17	P 1	13	2	21	.7 2	23	1 7		

*ALSO OCCURRED ON PRIOF DATES

PIPECTION MUST FREQUENTLY OBSERVED DURING THE GIVEN PERIOD **PRVL DIM IS THE PREVAILING WIND DIRECTION !. E. THE WIND

Reproduced from best available copy

STALL OF SITE SAIDS SISSILE PAGGE, GEN NEXICO PERIOD OF PECCHAL 1965-1973 SUMPACE DATA PATA MY YENTH AND BY HOUR

	TOTAL	OHSMAS			241	241	241	240	239	239	258	259	243	243	245	245	242	242	24%	243	240	240	240	240	240	り す こ	240	240		5717	
	-		ž		96	5	90	16	4	25	16	97	47	7.5	16	14	97	97	1907	47	4	96	96	47	5	3	96	3			
	1.5.19		NAY		5	\$	15	22	Ľ,	c	21	2.1		-	ź	7	Š	^	%	n	T	15	15	14	J.	IJ	کا	21			
>-	"E.AK		Clas	(KT)	37	39	t	30	53	50	28	31	E	30	36	37	37	37	35	64	35	33	2	28	1	ŧ	36	(Y		7	
FERMING A	٤		2111	(04c)	0.7	Ę	5/2	30	.) #	4:0	ž	:: :	360	() A 4	14 0	340	140	1 %0	520	260	250	.450	950	320	2	2	97	326			
ند س	See Mr	F. F. A.P.	3	(K.T.)	# # # # # # # # # # # # # # # # # # #	7 • 4	4.	4.7	€ • 5	4 . 5	•	ر. د	5.1	₹. 1	4.0	0 • <u>/</u>	0./	•	7.4	7.5	•	•	Ţ• †	•	a. 1	£ • \$	4.7	•		5.5	
	100	*****			-		Z	7	7	7.	-	Z:	•	. .	<u>٠</u>	.~	S	∴	S	s	ℐ	55.4	S	7	Ξ	ł 1	: Na	Z.	14 T 18 1	<u>=</u>	
	T 41	5	1,45	() L	۲. ٦	T • 1		K.2	J.,	٤.٠	>•€	c.	c.	υ• 1	7. • 4	•	;,, • ₹	†• ±		i • 1	.7	· 5	0• ₹	M) • 4	¢ •	¥.	ۍ ۲۰	o. ✓	Tir.	= i	
		7	114	(E) T(E)	505	13	374	355	5.00	360	504	\$	4 4	2	۲. الآدا	7	241	200	25.5	700	ي ن د	275	310	36.1	375) *	·	4.0.4	3 3 1	\ 7 31	
	.:				-	٠,٠	ن.	3	د.	٥	_	٥	5	••	. ৰ . ৰ	7	7	\$	೧೭	î		::	٦٠ 	3 10	7	7	C 73	3° '3			

*ALSO DOCURRED OF PPIOF DATES

-10 labicates A Fissing Direction **PRVL DIR is the PREVAILING WIND DIRECTION I. E., THE WIND "IPELTION ROST FREQUELTLY OBSERVED DURING THE GIVEN PERIOD

SUMPACE WIND PATA BY MONTH AND BY HOUR STALL FOR SITE WHITE SAMIS "ISSILE RANGE" NEW MEXICO PERCOPE 1965-1973

	TOTAL	OUSNS			261	261	261	260	260	260	200	261	257	257	257	257	257	257	254	258	260	260	260	260	260	260	260	25.0		.221
	· I		YR	. 2	3	6	3	6	5	19734	3	6	6	9	2	3	6	1971	19714	1971	1971	1972	1967	1967	1971	1967	1966	1970		
	611ST		PAY		J	1	\$	11	12	S.	ď	22	N	N	23	13	27	S	໓	V	S	11	50	53	s		17			
_	PERK		SPU	(KT)	30	32	33	59	24	22	26	33	39	かい	t u	2	t 1	47	ませ	61	45	53	3	ŧ	32	すり	33	36		61
E A M C . T			7 10	(541)	70u	Ę	3.30	5 /.	3	210	Ę	1	これが	220	002	350	260	250	04%	202	240	いない	270	27.2	310	1. 1. 1.	960	360		
	SCALAR	N.E. All	Ī.							2.5								4.6	•	•	9.3	•	•	•	•	-	-	-		7. •0
	The Mark	** 工作 []			2	-	Z	Z		2	<u>.</u> .	ē.	1	∴	is:	S. S. S.	222	25 %	55%	255	so.	Ŋ	S	3	255	₹ 7/1	3	Z	I J	7
	SILIVIT	7	î	_	4.2	•	•	6.07	•	•	N O	4.5	•	•	•	J.	•	4.1	•	•	2.7	•	•	•		•	4.2	•	0.2 4.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	ا
	ESTA	•	1	: J'C' (-)	(N)	0+0	1) . 10 (34.	なない	50.5	557	= :		5/2	ななが	25	500	240	142	241	540	250	100 100 100 100 100 100 100 100 100 100	212	550	3116	515	37.5	T .	こから
	ž				~	V	·) :	. د	۵.	j ·	,	ن :	ን	⊃ ;	11.	7	?		CI.	0 !		0	7) V	7	77	?	7		

*4LSO UCCUEMED ON PRIOR MATES

-10 INDICATES A MISSING DIRECTION
**PHVL DIR 1S 146 PREVAILING WIND DIRECTION: 1. E., THE WIND DIRECTION NOTE: GIVEN PERION

SUMPACE WITH DATA ET MONTH AND BY HOUN STALLION SITE WHILE SAMDS WISSILE RANGE, NEW MEXICO PERHOD 1965-1973

	TOTAL	SNSHO			200	260	260	200	260	260	200	260	203	263	203	203	263	263	263	263	261	261	261	261	261	261	261	261		6272
	_		¥		-	4	8	15	9	1969	7	96	0	~	-	-	~	4		6	-	~	-	-	~	~	0	1		
	6051		DAY		Ç	19			22	2	61	*	eni!	30					18		12	У. Н		~	÷Ω	21		₽.		
	DE AK		SPU	¥	56	33	30	35	32	27	36	36	38	34	38	4 1	53	34	4	19	‡	42	4.4	32	34	37	36	30		19
APR 1	C.		717	(114.6.)	≎	530	210	710	330	320	270	09	20	200	707	500	180	720	210	200	04%	220	350	3 0	30	= 7	730	20		
	SCALAR	MEAN	SPU	(X)	•	•	•	•	5.5	5.3	5.5	•	7.4	3.4	•	9.5	0	•	11.2	-	11.3	10.6	4.4	•	6.5	•	50.0	5.8		7.7
	アスマ	***T']			7	Z	z	7	2	2	2	J.i.	uf:	:S:	.55.	Y85	755	\$24	25.4	SS 2	\$25	222	:A	'n	553	554		7	HIPOS	z
	TART	2	SPU	3	4.1	2.7	2. 6	4.7	6.7	0°.7	e: • 3	•	9•	1.7	•	T)	5.	3	7.0	٠. ب	2.7	¢ • •	3.1	c.7	7.7	γ. γ.	ار. دن	2.1	THE S	6.3
	WESTILTAN	7	1	9	326	3.5H	341	3.40	345	エナバ	•	7.7	332	5.45	25.5	223	250	232	235	2.55	2±1	242	251	25c	ひとな	2.70	301	510	Ç	5. u
	É				4	N	າ	1	ລ	۵	~	υ	ァ	7	11	17	13	14	1:	10	17	10	61			77	43			

*ALSO UCCHRED ON PHION DATES

**PAVL DIR IS THE PREVAILING WIND DIRECTION*I. E.* THE WIND DIRECTION TO THE GIVEN PERIOD -10 LADICATES F MISSING DIRECTION

SUMPACE WITH DATA HY MONTH AND BY HOUR STALLION SITE WHILE SAME MISSILE RANGE, NEW MEXICO PERLUD OF MECOMU 1965-1973

	TOTAL	8 R			3	1	*	3	4	243	3	*		5	iñ	10	10	6	10	10	Ñ	3	3	3	#	3	ž	4		5949
			¥×		1968	1970	1970	1973	1965	1973	97	97	4	96	97	97	97	97	8	26	3	50	1969	97	97	97	16	1973		
	GUST		DAY							58					s)	#	#	#	~				11		Ð	ů.	¢	11		
	OEAK		SPD	×	36	まれ	50	33	23	35	39	38	37	37	40	38	0 4	t N	54	0.7	04	4	3	1	42	36	5 5	36		34
- 4			2	(:)+(:)	S	9	၁	30	S	260	•	€,	•	260	T	7	3	-	S	#	30	•	200	2	30	⊃ †	0 1	3		
	SCALAR	Z d J	Į.	C X C		•	•	•	•	5.1	•	•	•	7.7	•	•	•	÷	10.6	=	:	•	8.9	•	•		•	•		7.4
	PHVL.	****			Z	Z	2	ī	ž	z	Z	11.11	s	.S.S.E	555	7.35	554	25E	55.5	FSS	55×	₹.V.	S	3 C 2	×	ました	3	2	OLTH	Z
	TAME	2	Spi	(S)	•	•	•	•	•	3.5	•	•	٠.	C • 2	•	•	•	•	ت. ج.	•	•		4.1	4.7	•	•	1.9	•	TH. 3	1.9
	RESILTANT	•	214	(:)F(:)	346	Ω	357	S.	۵	£,	25	40.4	181	25.5	0 × 2	225	224	221	525	226	222	26.5	225	240	245	5 57	310	336	T S	204
	14.				4	œ	<u>.</u>	ŧ	Ω	Ĵ	7	עב	ת										71							

-10 INUICALES & MISSING DIRECTION
**PRVL DIM 1S THE PREVAILING WIND DIRECTION*1. E., THE WIND
PIRECTION "UST FREQUENTLY OBSERVED DURING THE GIVEN PERIOD *ALSO OCCUPIED ON PRIOR DATES

STALLION SITE SHIFT SA'NS MISSILE RENGE, NEW MEXICO PERIOD OF PLONED 1965-1973

ナニラ

TOTAL			251	251	251	757	250	246	250	254	251	252	253	25.5	252	251	252	252	252	251	250	251	251	251	546	542		6025
	¥		1969	1970	1970*	1967	1906	1966	1900	1966	1967*	1900	5061	1965	1969	1973	1970	1967	1973	1973	1967	1973	1969	1969	1973	1965		
PEAK GUST	DAY		5,	11	13	Š	ブ	J.	J .	3	.7	ታ	かい	℃	\$ %	13	15	50	~	13	€;	10	3	Ç	12	¥.		
FAK	SPD	(K 7.)	58	3	30	S	30	すり	3	35	30	30	32	35	40	38	9	41	4	S	t t	7	5	39	27	36		40
3.	01:	(1)(1)	170	160	160	=	ē	360	96,	090	un.	ş	= 7	÷ >	1 &C	230	210	06	240	210	つちど	300	7.3C	366	-1-0	002		
SCALAR		(X)	•	10° ±	10° ±	4.0	4.3	4 - 1	4.7	5.3	9. 0	0.0	7.4	O • M	9.5	0. 6	4.6	10.2	•	•	4.1	9•0	6.5	5.6	•	4.5		0.0
I'RVL			z	z	.2	7	₹	ŧ	Ξ	4	P 55	55.	358	55.	550	555	155	55.5	55 A	\$ \cdot \cdo	*55	ۍ	3	2	¥	11/12	UNITH	555
TALL	SP11	(F.)	4	£ • 4	3	2.1	•	2.3	•	-	1.1	•	æ.?	4.7	D U	5.0	٠ د د	1.0	5.5	•	4.	8.3	7.5	•	1.3	1.4	2 411	ر. لا: ا
PESHLTMIT	1 210	_		344	350	553	455	Λ.	33	3.1	ב דע	112	212	25.13	214	220	22.5	215	216	216	214	221	250	270	こって	305	FOR	25%
1			-	J	2	3	ລ	3	>	ε	5	2	r4	1,	1,	14	21	70	1.1	70	15	7:0	17	7	43	77		

*NISO UCCUPARED ON PHIOR DATES

TABLE XXIX (CONT)

SUPFACE WITH PAIN ENTRY MONTH AND BY HOUR STALLION SITE WHITE SAMPS "INSILE RANGE, NEW MEXICO PERCORD 1965-1973

	TOTAL			246	247	247	247	240	241	245	246	247	246	246	247	247	246	543	546	245	242	244	243	544	242	240	243	3 3 3	2002
	1	¥		1966*	1971*	1973	1973	1969	1909	1973	1973	1973	1973	1969	1969	1909	1969	1968	1965	1966	1973	1973	1973	1969	1967	1965	1970*		
	GUST	Y ¶ U			N	N	*	1	(L)	3	C	N	N	F C:	-	•	~	-	^	31			-	۲,	-	10			
	PEAK	SPO	(KT)	27	22	53	Š V	3	S S	27	32	50	31	28	30	t Fi	84	45	42	46	tt	37	41	33	さな	30	22	3)
J. 1. 7	a	21 T 11	(DEC)	120	S	50	30	30	5	3	0 17	ή	9	3	120	240	160	320	180	30	120	150	170	360	110	50	360		
	SCAL AK	เาษร	(x)	7.5	4 - 1	4.1	3.0	5.8	0.4	•	5.5	•	•	5.7	•	6.2	•	•	8.1	•	•	.0 • Q	•	•	5.3	•	4.6	,	•
	DKVL 01R**			2	Ξ	. .	Z	7	Z	Z	, Nr	s:	√	7.00	554	5S.4	35 W	J,	S.	s	S.	S	:X:	S	z	?	z	E E E	•
	"LTwiT	Spril	(K. f.)	1.6	2.1	2.3	2.5	7.04	4.5	5.0	2.3	•	¢		1.7	•	2.7	3.1	9.7	.,	1.6	1.3			ۍ.	U• 7	1.6	THE MO	•
	HESPLTANT SIND	4J O	(D.F.C.)	~	11	c	ŧ	u T	10	56	üÇ.	tain	155	201	100	202	504	174	194	183	140	160		a S	ş	359	454	F CH	•
	É			4	7	*7	ţ	သ	٥	/	ŋ	Ť	70	11	3.2	15	7.7	2	91	17	18	61	72	7.7	25	23	54		

+10 INDICATES A MISSING DIRECTION
**PRVL DIR IS THE PREVAILING WIND DIRECTION! E., THE WIND
DIRECTION MOST FREQUENTLY OBSERVED DURING THE GIVEN PERIOD

*ALSO UCCHRIED ON PRIOF DATES

SUMPRET JITE DATA BY MONTH AND BY HOUR STALLION SITE JHLIE SANDS MISSILE RANGE, NEW MEXICO PERIOD OF RECORE 1965-1973

ALIGHS, T

Reproduced from best available copy.

	OUSING			544	244	243	245	245	544	245	245	245	245	247	247	240	244	544	546	246	246	946	546	546	246	245	245		5885
		X.		1966	19,,6	1972	1966	1966	1960	1966	1972	1972	1972	1906	1966	1972	1971	1973	1971	1972	1966	1971	1971	1972	1971	1968	1972		
± .51 15		DAY		ÚI	5	25	'n	\ `	N	N'	25	25	V U	22	25	9	10	0.1	10	9	11	7	*			21			
74	۲ ۱	SPD	(KT)	5¢	20	24	28	38	53	23	ţ	2.1	54	52	200	53	33	43	7	45	51	43	36	37	31	27	27		21
	ì	SIR	(DEG)	1	=======================================	522	5,	7.0	61	9	30	9 †	Ξ	<u>=</u>	ā	200	9	100	7.0	30	520	D	9	\$20 5	05%	220	7.0		
	これない	(i)	(F T)	¢.	5.A	3.6	5.0	æ ••)	υ. Ε	4.1	4.4	4.5	•		5.5	•	4.0	•	7.6	•	7.5	•	٠. ٩	•	•	さ・さ	•		5.0
17.75	***10			z	7	2	Z		7	₹.	11	ŗ	S.	25°S	3.0°	.	S	5	ۍ:	S	S.	√	ۍ:	S.	'n	2	z	ILL	.
-	- 17. - 17.0 - 17.0	uds	(L)	1.7	n•1	1.7	K • 7	9.1	a.,	0.1	# · /	x.	1.1	1.6	1.7	4.1	4.4		x • N	7.4	r: N	7.7	٠,	٥.	ir.	ۍ. د	1.1	111	• 1
	1 T	aTu	(1)4(3)	357	31,0	•	·r	1	•	3	t,	Ŧ.	174	300	207	200	21.1	05.1	1:1	194	174	176	154	151	55.4	327	352	₩ YO	HIZ
	<u> </u>			-	V	*7)	*	Ω	٥	`	٥	ブ	1 c	11	12	13		10	2	17	10	13	^ C	7.7	75	23	† 01		

**LSU OCCHPALU ON PRIOR DATES

-19 INDICATES A MISSIMG DIRECTION

SURFACE VESTANTA BY BONTH AND BY HOUR STALLION SITE HILL SAIDS SISSILE RANGE, NEW MEXICO PRATOD OF RECOMP 1965-1973

SEF 1E .. INER

	_	SNS			z,	ŧ	t	r)	ŧ	-	_	10	10	2	5	5	3	0	6	0	9	و.	9	30	9	S.	.9	٥		58
	2	90			J	S	S	S	S	S	Ω	S	S	S	S	S	S	S	S	S	S	v	S	S	S	S	S	25		615
			¥.		-	1	1	1	~	1971	~	97	97	9	16	45	97	5	97	97	96	96	16	96	97	~	97	76		
	GUST		DAY		1 0	٦ ٦	-	:	9	13	3:					17			23							25	5	7		
	DEAK		SPU	(KT)	31	31	30	31	31	33	27	50	28	ý	50	53	33	38	35	36	45	38	30	34	27	25.	32	32		45
; ;	r.		211	これい	30	Cir.	E,	311	<u>=</u> 7.	Ē	2	002	20	70	<u> </u>	SX.	00%	160	200	30	90	25.5	30	360	330	Ş	0 7	t		
3	SCALAR	1:V311	SPU	(KT)	3.6	•	3.B	•	ئ. ب	•	4.2	0.4	5•1	6.1	4.0	9.9	7.1	7.4	7.6	7.B	•	•	5.n		C . 7	•	3.7	5.7		υ. υ.
	コメバト	***11()			z	2	=:	?		Z	₫	-11 IF	S	55.4	554	s	25W	554	25.4	55%	S	s	S	S	55 M	Z	z	z	ILINOX	2
	レジゼー	UN.	SPU	(F.)	7.5	U^ •	1.9	0.4	•	4.7	r.	4.5	1.1	*	1.5	2.1	2.7	0.7	3.1	2.7	•	4.5	1.0	ç.	σ.	6.	6.	1.2	THE M	ţ.
	15.7	CNT	310	(1) (1)	347	357	127	358	350	c.	ر ا	ιί	10	uis I	22.1	225	22.1	225	226	232	218	195	210	245	いたの	310	344	347	FOR	245
	±			-	4	7	า	ŧ	Ω	٥	~	ټ.	3	7.0		17		7.1	15	10	11	18	12	2	77	4,4	23	54		

*ALSO UCCUPRED ON PRIOF DATES

+10 INDICATES A MISSING DIRECTION
**PRVL DIR 1S 14E PREVALLING WIND DIRECTION 1. E., THE WIND
**PRVL DIR 1S 14E PREVALLING WIND DIRECTION GOST FREQUENTLY OBSERVED DURING THE GIVEN PERIOD

produced from st available copy.

OCTORER.

	TOTAL	OUSINS			270	270	270	270	270	270	271	271	273	272	272	272	272	273	273	273	266	268	26k	268	569	268	569	268		9949
			¥		1966	1966	1966	1966	1906	1972	1967	1967	1961	1471	1971	1971	1971	1971	17.61	1969	~	1	1970	~	~	~	1906	2		
	6051		710		14	1	17	14	14	31	50	52	℃ 2.	%	Ç.	? Q	<u>ر</u> ع	50	53	13	3 0	ر. د	^	7	7	12	31	31		
J .	PEAR		SPD	•		38	42	0 7	35	33	から	42	36	0 7	43	35	37	39	S.	35	35	31	50	25	38	30	84	44		52
2000			¥ I :	こうよこ	2011	090	45.0	500	360	9	2	=	160	027	225	200	2000	. 3 C	240	24:1	200	530	225	013	210	320	40	60		
၁	SCALAR	MEAN	SPU	(F.T.)	£ • 2	4.7	4.8	1 7	₩•\$	7.3	•	5.5	•	5.7	•	2.	•	7.5	7.1	7.1	2.0	5.1	•	•	4.3	4.5	t.	£.		ۍ ۲.
	11.H	**27.0			2		ï	Z		7	2	.w.tr	- INF	#5.5°	۰	, , ,	>2.	. 55	5.2.5	254	355	s	·s	z	<i>.</i> .		7	7	OF TH	Z
	THAT	"I'I	SPE	ري ا	6.7	5.5	5.5	3.5	2.7	•	•	3.5	•	<u>٠</u>		1.5	K • 3	6-7	y • ·	×.	5.3	1.6	1.3	1.1	1.3	\$ \$	4.2	V.	. 42	1.1
	its Line	7	23:1	(1.1.0)	354	300	c	٨	♥.	≉	3	47	ŧ,			400	221		210	211	2	21.5	D.	2%.a	325	500	7.47	۲.۶	7	335
	-				-4	1	7)	4	n	\$	_	ಶ	J	2	11	7	•	14		10										

*4550 OCC BOOK ON PATON DATES

**PHVL DIM IS THE PREVAILING MIND DIRECTION I. E. THE WIND THECTION MOST FRED DESTROYED BURING THE GIVEN PERIOD -1" I BITCATES A FISSING DIRECTION

ced from

5816

4.7

5.1

Tree (108,194

1-4 1-4 S

	TOTAL	CHCAC	Chicago		23.4	25.0	234	254	239	238	240	239	240	246	245	244	240	247	247	247	243	242	242	243	242	242	241	241	•
	_		*	<u> </u>	1956	1900	1966	1960	1971	1971	19764	1973	1903	1964	1973	1900*	1973	19,5	1973	1966	1906	1909	1473*	1907	1967	1967	1971	1971	!
	GUST		DAY		-	_	-	-		-4	23	2	25	ŝ	₹	00	<u>-</u>	13		\$	20	17	Š	~1	N	N		27	
Ì	PEAK		SPU	(KT)	39	36	33	30	24	200	28	04	33	33	45	34	38	37	40	35	30	35	36	7	7	37	34	32	
			I.e.	(1) 4(1)	2	Ē	9	60	9696	5000	=	212	2,5) (S S S	36	ت ک	750	186	20.	O # 7	350	ンなこ	5	O D	3	.550	356	
_	SC.LAR	1.1.4	<u>1</u>	CKC	4.7	11.1	÷	T.	4.7	T • +	1.01	4.7	4.5		5.4	6.3	13.65	U • /	•	¢.		5	٠. د	•	7. 1.	7.4	± • t	† • †	
	סאאר	***.			-	-	. .	~ :	- ;	: :		-	1	<i>s</i> .	A	: · · ·	÷ n	,	200	ă C	r.	n j		-	? .	?	7 ;	<u>.</u>	
	Tank I	(F. T.	1.715	(1.1)	V. 7	~ ·	ر. د د	5.1		•) ·		1.7	•		, • 1	() (7.7	י ע י	• •	1 -		٥ <u>.</u>	C (, ,	V :	, r	6.7	
	P. S. 12 T.		<u>.</u>		300	0.00					-	• 0		2000		2 7 7 7		100		7 4 5	1 0	240			, P			700	
	والم			•	~	.1 ~) :		ר כ	, -	- 0	0.7	1		• -	J ~	? =	2	2	17	2	7		3.5	1 1	j •) :	J	

0 Reproduced from best available copy.

PERIOD OF CHARTER HOUR PERIOD OF HOUR PERIOD OF PROCESS 1955-1973

STALLTON SITE THIS

Sympton

FIOVE SIMPR

TABLE XXIX (CONT)

SUPPACE ALTH DATA BY MONTH AND BY HOUN STALLTON SITE 7411E SAINS MISSILE RADGE, NEW PEXICO

	TOFAL		200113			7.0	216	216	215	215	214	- 41 	215	224	222	22.7	227	228	227	227	227	222	221	221	221	221	219	214	219	
			7	<u> </u>					1967	1972*	1907	1968	1961	1967	1973	1973	1973	1973	1973	1975	19734	1973	19734	1901	1967	1970	1970	1970*	1961	
	60.31)	NA Y		*			15	1,	\$	1.	21	15	15		^	V	V.	30	Λ'	Vi		23	÷	7 (10	0.	7	+ T	
~	DE AK		SPJ	X	7.07		26	35	35	30	31	36	25	52	T 17	1.5	43	47	94	4.1	34	38	33	t M	30	38	35	3%	35	1
offer the R			CHAIL	(:)4(:)	103			Ē	<u></u>	ت = ۲	7	(Haz	3	5	ilt, i	ここと	1.07	200	27.	100%	0 72	.510	520	2	ĭ	320	= 6,7	530	20	
<u>بر</u>	SC .1. 28	1.9	Cole	(KT)	a. • 17		•		£.	4.5	4.5	-1 -1 -1	•	£.	0 • 1	•		0.0	7.3	7.4	7.5	2.		t •	**	•	•	S		3,
	Just of	** - 1			· ?*	7.1		- e	11 4	-	Ž	š	7	4	ا <u>له</u> اح	٠,	,55	7.5.	. S.S.	3.5	55.5	J) ;				747	Z" ;	-~ • 	7	7
	1.4.1	7:1	5/-:	(1.1)	w. • 7	4		9.				3 :	•	1.1	•	•	•	<.1	7.7	2.0	~ · ·	3 4		200	V :	י ני	•	0:	/ · · · · · · · · · · · · · · · · · · ·	
	Title Line		· IC	(:)::i>)	545	342	. 4.8	411.4				1	0.	, i			2 .	5.					6113	: 0	400	120	7000	0.4	107	37.5
	1				~	٧	٧	•		3	o •	- 1	0 3).) ·	→ •	7 .	0 .: 1	+ ·	n :) r	- 1) -	, ,) ·	. : ¬	10	2 1	r d	

FILSO OCCUPATED OF LATER PATES

**PRVL DIR IS 11E PREVAILING WIND DIRECTION I. E. THE JIND DIRECTOR PUR GIVEN PERIOD -10 LAUCATES & WISSING DIPECTION

LITERATURE CITED

- Hoidale, M. M., M. P. Dayton, and L. Newman, December 1974, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air and Surface Data: White Sands Desert Site," DR-873, Forecast Section, WSMR Meteorological Team, Meteorological Support Technical Area, Atmospheric Sciences Laboratory, U. S. Army Electronics Command, White Sands Missile Range, New Mexico.
- 2. Hoidale, M. M., M. P. Dayton, and L. Newman, January 1975, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air and Surface Data: Holloman Site," DR-877, Forecast Section, WSMR Meteorological Team, Meteorological Support Technical Area, Atmospheric Sciences Laboratory, U. S. Army Electronics Command, White Sands Missile Range, New Mexico.
- 3. Hoidale, M. M., B. J. Gee, M. A. Seagraves, and G. W. Harmon, April 1969, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: Small Missile Range," DR-324, Meteorological Support Division, Environmental Sciences Department, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico. AD 857 332
- 4. Taft, P. H. and M. M. Hoidale, April 1969, "White Sands Missile Range, Climatography No. 6, Small Missile Range Site, WSMR," DR-400, Atmospheric Sciences Research Office, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico. AD 860 148
- 5. Hoidale, M. M., R. L. Russo, and L. Newman, May 1973, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air and Surface Data: Jallen Site," DR-776, Forecast Section, WSMR Meteorological Team, Atmospheric Sciences Laboratory, U. S. Army Electronics Command, White Sands Missile Range, New Mexico. AD 762 159
- 6. Hoidale, M. M., B. J. Richart, and T. B. Hudson, May 1971, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 3, Upper Air Data: Apache Site," DR-621, Meteorological Support Division, Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico. AD 886 353L
- 7. Hoidale, M. M. and L. Newman, March 1974, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 1, Surface Wind, Cloud Cover, Visibility," DR-818, Forecast Section, WSMR Meteorological Team, Atmospheric Sciences Laboratory, U. S. Army Electronics Command, White Sands Missile Range, New Mexico. AD 776 908

LITERATURE CITED

- 8. Hoidale, M. M. and L. Newman, April 1974, "Atmospheric Structure, White Sands Missile Range, New Mexico, Part 2, Temperature, Relative Humidity, Dew Point, Station Pressure, Density, Clouds, Hydrometeors, and Lithometeors," DR-822, Forecast Section, WSMR Meteorological Team, Atmospheric Sciences Laboratory, U. S. Army Electronics Command, White Sands Missile Range, New Mexico. AD 779 35
- 9. Huschke, R. E., edited by, 1959, "Glossary of Meteorology," pp. 480, 216, 374, 437, 477, 499, American Meteorological Society, Boston, Massachusetts.
- Brooks, C. E. and N. Carruthers, 1953: "Handbook of Statistical Methods in Meteorology," M. O. 538, Air Ministry, Meteorological Office, Her Majesty's Stationery Office, London, pp. 173, 179, 195-199.
- 11. Stidham, L. R., March 1962: "Computation of Rawinsonde Program,"
 Data Reduction Division North, Holloman Air Force Base, New Mexico.
- 12. Hoidale, G. B., C. W. Querfeld, et al., September 1964: "Spectral Transmissivity of the Earth's Atmosphere in the 250 to 500 Wave Number Interval, Part 1, Meteorological Data Processing," Report ERDA-186, Environmental Sciences Directorate, U. S. Army Electronics Research and Development Activity, White Sands Missile Range, New Mexico. AD 448 070
- 13. "Reliability of Meteorological Data," IRIG Document 110-71, Revised March 1971; Inter-Range Instrumentation Group, White Sands Missile Range, New Mexico.
- 14. Laws, E. and J. Rivera, 1967: "Summary of Surface Weather Observations, Holloman Air Force Base," Detachment 24, 6th Weather Wing, Air Force Systems Command USAF, Air Force Missile Development Center, Holloman Air Force Base, New Mexico.