Lifelike Bot Builders

Rewa Rammal Elias Charbel Salameh

Outline

01 Problem

Data Preparation

Model Training and testing

104 Results and challenges

Introduction

Implementing a CNN model to accurately classify animal images, trained on Kaggle Animals-10 dataset, containing 10 different animal classes, using deep learning and data augmentation techniques.

To access our dataset: https://www.kaggle.com/datasets/alessiocorrado99/animals10/data

Problem

We aim to solve the problem of accurately identifying and classifying animal images from diverse categories.

This will benefit applications in wildlife monitoring, veterinary diagnostics, and educational resources, providing enhanced accuracy and efficiency in image-based animal recognition tasks.

Data Preparation


```
# Initialize a dictionary to store the count of images in each class

class_counts = {}

# Loop through each class directory and count the images

for class_name in classes:
    class_dir = os.path.join(data_dir, class_name)
    num_images = len(os.listdir(class_dir))
    class_counts[class_name] = num_images

# Convert the dictionary to a DataFrame for easy plotting

class_counts_df = pd.DataFrame(list(class_counts.items()), columns=['Class', 'Number of Images'])

# Plot the class distribution

plt.figure(figsize=(10, 6))

sns.barplot(x='Class', y='Number of Images', data=class_counts_df)

plt.title('Class Distribution')

plt.xticks(rotation=45)

plt.show()
```

The class distribution plot shows the number of images in each class, highlighting any class imbalances.

```
• • •
                                      Project (3).ipynb
# Checking image dimensions
image shapes = []
for class name in classes:
    class_dir = os.path.join(data_dir, class_name)
    for image_name in os.listdir(class_dir):
        image_path = os.path.join(class_dir, image_name)
        image = Image.open(image path)
        image_shapes.append(image.size)
# Convert to DataFrame for analysis
image_shapes_df = pd.DataFrame(image_shapes, columns=['Width', 'Height'])
# Plot image dimensions
plt.figure(figsize=(10, 6))
sns.histplot(data=image shapes df, x='Width', kde=True, color='blue', label='Width')
sns.histplot(data=image_shapes_df, x='Height', kde=True, color='red', label='Height')
plt.title('Image Dimensions Distribution')
plt.legend()
plt.show()
```

The image dimensions distribution plot displays the range and frequency of image widths and heights.

Data Preparation

Plot of class distribution

Plot of image dimension variety

Data Preparation

From tensorflow.keras:

- ImageDataGenerator is used to generate data. Data was resized and underwent augmentation techniques such as rotation, shifting, shearing, zooming, and horizontal flipping for the training set to enhance diversity.
- flow_from_directory is used to load images from the specified directories. Data was resized, batched for efficiency, categorized for training, and shuffled for diversity, ensuring proper formatting and augmentation for robust model training and evaluation.

```
Project (3).ipynb
target_size = 264
train data generator = ImageDataGenerator(rescale=1./255,
        rotation_range=20,
       width shift range=0.2,
       height_shift_range=0.2,
       shear range=0.2.
       zoom_range=0.2,
       horizontal flip=True)
train generator = train data generator.flow from directory(
        train dir.
        target size=(target size, target size),
        batch_size=64,
        class mode='categorical',
        shuffle=True)
val_data_generator = ImageDataGenerator(rescale=1./255)
val_generator = val_data_generator.flow_from_directory(
       val dir,
        target_size=(target_size, target_size),
       batch size=64,
        class_mode='categorical',
       shuffle=False)
test_data_generator = ImageDataGenerator(rescale=1./255)
test_set = test_data_generator.flow_from_directory(
        test dir.
        target size=(target size, target size),
        batch_size=64,
        class mode='categorical',
        shuffle=False)
```


Model Architecture

The model has multiple Conv2D layers with increasing filters (32 to 1024), each followed by batch normalization and max pooling.

After flattening, it includes a dense layer with 512 neurons, batch normalization, dropout, and a final dense layer with 10 neurons using softmax for classification.

It is compiled with the Adam optimizer and categorical crossentropy loss for multi-class classification.

Augmentation proved to solve overfitting better than the dropout layer method. Adding the two methods had a minimal impact on our model.


```
•••
                                        Project (3).ipvnb
model = Sequential([
        Conv2D(32, (3, 3), activation='relu', input_shape=(target_size, target_size, 3)),
        BatchNormalization(),
        MaxPooling2D((2, 2)),
        Conv2D(64, (3, 3), activation='relu'),
        BatchNormalization(),
        MaxPooling2D((2, 2)),
        Conv2D(128, (3, 3), activation='relu'),
        BatchNormalization().
        MaxPooling2D((2, 2)),
        Conv2D(256, (3, 3), activation='relu'),
        BatchNormalization().
        MaxPooling2D((2, 2)),
       Conv2D(512, (3, 3), activation='relu'),
        BatchNormalization(),
        MaxPooling2D((2, 2)),
        Conv2D(1024, (3, 3), activation='relu'),
        BatchNormalization(),
        MaxPooling2D((2, 2)),
        Flatten().
       Dense(512, activation='relu'),
        BatchNormalization(),
       Dense(10, activation='softmax')
```

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 262, 262, 32)	896
batch_normalization (BatchN ormalization)	(None, 262, 262, 32)	128
max_pooling2d (MaxPooling2D)	(None, 131, 131, 32)	0
conv2d_1 (Conv2D)	(None, 129, 129, 64)	18496
batch_normalization_1 (Batc hNormalization)	(None, 129, 129, 64)	256
max_pooling2d_1 (MaxPooling 2D)	(None, 64, 64, 64)	0
conv2d_2 (Conv2D)	(None, 62, 62, 128)	73856
 otal params: 8,401,098 rainable params: 8,396,042 lon-trainable params: 5,056		

Model training and testing

```
Project(3).apymb

# Compile the model
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Define callbacks:
early_stopping = EarlyStopping(monitor='val_accuracy', patience=8, restore_best_weights=True)
model_checkpoint = ModelCheckpoint('best_model2.hs', monitor='val_accuracy', save_best_only=True)
reduce_lr = ReducetROnPlateau(monitor='val_accuracy', factor=0.1, patience=4, verbose=1, mode='auto', min_delta=0.0001, cooldown=0,
min_lr=0)

print('Model initialized and Callbacks defined.")
```

Callbacks included, ModelCheckpoint, and ReduceLROnPlateau to stop training once the validation accuracy is not improving, saving the best model and reduce learning rate.

The model was trained using train_generator for 50 epochs, with val_generator as the validation set, and the best model based on validation accuracy was saved.


```
Project (3).ipvnb
plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(history.history['loss'], label='Training Loss')
plt.plot(history.history['val_loss'], label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(history.history['accuracy'], label='Training Accuracy')
plt.plot(history.history['val_accuracy'], label='Validation Accuracy')
plt.xlabel('Epoch')
plt.vlabel('Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.tight_layout()
plt.show()
```

Visual inspections of model predictions were conducted using sample images.

```
Project (3).ipynb

# Evaluate the model
loss, accuracy = model.evaluate(val_generator)
print("Validation Loss:", loss)
print("Validation Accuracy:", accuracy)
```

After training, the model was evaluated on the validation set to determine final validation loss and accuracy

Results of Training and validation

Results of validation

Validation confusion matrix

82/82 [======] - 7s 89ms/step Classification Report:						
======================================						
	precision	recall	f1-score	support		
butterfly	0.94	0.92	0.93	423		
cat	0.94	0.88	0.91	334		
chicken	0.96	0.94	0.95	620		
cow	0.85	0.86	0.86	374		
dog	0.92	0.90	0.91	973		
elephant	0.83	0.96	0.89	290		
horse	0.91	0.92	0.92	525		
sheep	0.84	0.88	0.86	364		
spider	0.96	0.96	0.96	965		
squirrel	0.92	0.91	0.92	373		
accuracy			0.92	5241		
macro avg	0.91	0.91	0.91	5241		
weighted avg	0.92	0.92	0.92	5241		

The classification report

Results of testing

Challenges

- Time constraints
- Imbalanced dataset
- Image sizes selection
- Variety of hyperparameters
- Prevent overfitting

Next step

Gathering more data to balance the dataset and create a more accurate model

Implement additional classes to cover more species

Optimize our model to accurately predict more images

Implementing our model in an environment to solve a reallife problem

Thank you!