

UNIVERSIDADE ESTADUAL DA PARAÍBA — UEPB CENTRO DE CIÊNCIAS EXATAS E SOCIAIS APLICADAS — CCEA

ELEMENTOS DE INTERCONEXÃO

Ingrid Morgane Medeiros de Lucena

- A medida que os pacotes de dados descem pelas camadas do modelo OSI, eles recebem cabeçalhos e trailers, o encapsulamento.
- O PDU (Protocol Data Unit) para cada encapsulamento nas camadas recebe um nome, a saber:
 - Camadas Aplicação, Apresentação e Sessão: Dados (ou mensagem)
 - Camada Transporte: **Segmento**
 - Camada Rede: Pacote
 - Camada de Enlace: Quadro (Frame)
 - Camada Física: Bits

Importante!!!

- Os PDUs das camadas recebem os mesmos nomes tanto no modelo OSI quanto no modelo TCP/IP!!!
- O processo que ocorre no host de destino chama-se desencapsulamento.
- O PDU da camada de rede, o <u>pacote</u>, por vezes é referenciado de forma genérica para designar os dados transmitidos pela rede.

Aplicação	Dados	Aplicação
Transporte		Transporte
Rede		Rede
Enlace		Enlace
Físico		Físico

Aplicação		Aplicação
Transporte	TCP Dados	Transporte
Rede		Rede
Enlace		Enlace
Físico		Físico

Aplicação		Aplicação
Transporte		Transporte
Rede		Rede
Enlace		Enlace
Físico	101010101011	Físico

Aplicação		Aplicação
Transporte		Transporte
Rede		Rede
Enlace		Enlace
Físico	101010101011	Físico

Aplicação		Aplicação
Transporte		Transporte
Rede		Rede
Enlace		Enlace
Físico	101010101011	Físico

Aplicação		Aplicação
Transporte	TCP Dados	Transporte
Rede		Rede
Enlace		Enlace
Físico		Físico

Aplicação	Dados	Aplicação
Transporte		Transporte
Rede		Rede
Enlace		Enlace
Físico		Físico

☐ <u>ELEMENTOS DE INTERCONEXÃO</u>

☐ CONCEITOS

- Tipos de tráfegos:
 - Unicast:
 - Uma origem para um destino (1:1)
 - Broadcast:
 - Uma origem para todos destinos (1:todos)
 - Multicast:
 - Uma origem para um grupo destino (1:alguns)

☐ CONCEITOS

Domínio de Colisão

- Um dispositivo ao transmitir toma o domínio do segmento.
- Todos recebem as transmissões enviadas.

Domínio de Broadcast

- Domínio lógico obtido por todos os hosts numa mesma rede.
- Todos que recebem os pacotes sem necessidade de roteamento.
- Envio para todos somente se explicitamente.

☐ Repetidor (Repeater)

- Repetidor de sinal enviado por um equipamento quando a distância a ser percorrida é maior do que o recomendado.
- Conectam segmentos de uma LAN.
- Elemento de camada 1.
- Ampliam o sinal.

☐ Hubs (Concentradores)

- Consiste num "repetidor" multiportas;
- Também chamado de "concentrador";
- Recebe a informação de uma porta, e distribui por todas as outras;
- Possibilita uma conexão física entre diversos computadores com a topologia estrela;
- Nós no mesmo domínio de Colisão e Broadcast

□ Bridges (Pontes)

- Conectam dois segmentos de rede.
- Filtram baseados no endereço MAC.
- Camada 2.
- Aprendem os endereços MAC, tabela CAM (Content Addressable Memory).

☐ Switches (Comutador)

• Conectam segmentos de rede.

- Isolam os domínios de colisão em cada porta.
- Camada 2.
- Aprendem os endereços MAC, tabela CAM (Content Addressable Memory).

☐ Tabela MAC (CAM *Table*)

Hosts	Port 1	Port 2	Port 3	Port 4	Port 5	Port 6
Host1/00-01-0E-A3-A1-AA	Х					
Host2/00-01-0E-A3-A1-BB			X			
Host3/00-01-0E-A3-A1-CC						X
Host4/00-01-0E-A3-A1-DD					X	
Host5/00-01-0E-A3-A1-EE				X		
Host6/00-01-0E-A3-A1-FF		X				

☐ CLASSIFICAÇÃO DOS SWITCHES

Cut-Trough:

- Comutação entre varias portas examinando apenas o endereço MAC;
- O quadro completo nunca é armazenado, a menos que ocorra uma contenção na porta;
- Baixa latência;

☐ CLASSIFICAÇÃO DOS SWITCHES

Store-and-Forward:

- Armazena todo o quadro, examina o endereço MAC, avalia o CRC e reencaminha o quadro.
- Verificação da integridade do quadro, caso inválido, ele é descartado;

☐ Switches (Comutador)

- Atualmente existem <u>switches de camada 3</u>.
- Processamento e roteamento é realizado a nível de hardware.
- Extremamente rápidos.
- Não utilizados em WAN.

☐ Roteador

- Interligam segmentos de rede distintos.
- Segmentam as redes, domínios de <u>broadcast</u> diferentes.
- Tabela de roteamento baseada em endereços IP.
- Camada 3.

 Determinam o melhor caminho pela métrica do algoritmo utilizado.

☐ <u>CENÁRIO</u>

☐ CENÁRIO

☐ Gateway

- Equipamento que conecta redes com protocolos diferentes.
- Atuam em todas as camadas
- Serve para conectar sua LAN a internet.

Método de Acesso

CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

Técnica de gerenciamento de **acesso ao meio** em redes locais Ethernet para as **topologias lógicas em barramento**.

Lembram do half-duplex?

Ex.:

- ✓ Barramento e
- ✓ Estrela (*Hub*)

Método de Acesso

- CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
 - 1. Antes de transmitir seu pacote, o *nó* "escuta" o meio físico, para verificar se outra estação já está transmitindo.
 - 2. Caso o meio esteja ocupado ele aguarda.
 - 3. Se o meio estiver livre ele transmite.
 - 4. Se uma colisão for detectada durante a transmissão, transmita um pequeno sinal especial "jam signal" para garantir que todas as estações saibam da colisão e, então, parem de transmitir, aguardando um tempo aleatório (algoritmo backoff) para voltar a transmitir.

Método de Acesso ao Meio

Método de Acesso - CSMA/CD

Método de Acesso

- CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)
 Redes sem fio.
 - ✓ O nó que deseja se comunicar com outro, pede autorização para ele enviando um sinal RTS (Request To Send).
 - ✓ Se um nó receber um RTS e estiver livre para se comunicar, ele envia um sinal chamado CTS (Clear To Send).
 - ✓ Somente depois de receber um CTS, um nó pode começar a transmitir dados para outro.
 - ✓ Toda vez que um nó que não está envolvido na troca de dados percebe um RTS ou CTS na rede, ele fica sem enviar dados por algum tempo.

Método de Acesso

CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance)

Redes sem fio.

□ Wi-Fi – Rede sem Fio (Wireless)

- Padronizado como IEEE 802.11.
- Assim como no Ethernet, utiliza o meio compartilhado.
- Utiliza o CSMA/CA (Carrier Sense Multiple Access with Collision Avoindace).
- É definido dois modos de operação:
 - Ad hoc
 - Infraestrutura

☐ Modo Ad hoc

- Não precisa de um ponto central de conexão.
- Equipamentos conectam-se diretamente uns aos outros.
- Problemas: segurança, administração e gerência da rede.

☐ Modo Infraestrutura

- O concentrador é o equipamento central.
- Esse equipamento é conhecido como ponto de acesso (access point)
- Todas as configurações de segurança são feitas nele:
 - Autorização
 - Autenticação
 - Controle de banda
 - Criptografia

□ Padrões

• 802.11b

- Velocidade máxima de 11 Mbps.
- Opera na frequência de 2,4 Mhz (micro-ondas, telefones sem fio, etc).
- Permite número máximo de 32 clientes.
- Não interopera com 802.11b

802.11a

- Definido após 802.11b e 802.11.
- Aumento de velocidade para 54 Mbps.
- Opera na frequência de 5Ghz.

Padrões

• 802.11g

- Velocidade máxima de 54 Mbps.
- Opera na faixa de 2,4 Ghz.
- Interopera com equipamentos (b e g)

802.11n

- Velocidade de 100 a 500 Mbps.
- Opera na faixa de 2,4 Ghz e 5 Ghz.
- Uso da tecnologia MIMO (Multiple In, Multiple Out), múltiplas entradas e saídas usando várias antenas.

□ Padrões

• 802.11ac

- Maior velocidade, 1.3 Gbps.
- Opera na frequência de 5 Ghz.
- Melhor qualidade do sinal.

☐ Padrões

• 802.11ax

- Wi-Fi 6
- Permitir que os access points suportem mais clientes.
- Fornecer um desempenho mais previsível para aplicações avançadas, como vídeo 4K ou 8K, aplicativos de colaboração e alta definição, escritórios totalmente sem fio e Internet das Coisas (IoT).
- Maior velocidade teórica, 14 Gbps.
- Opera nas frequências de 2,4 Ghz e 5 Ghz.
- Compatibilidade com 802.11n em 2,4 Ghz.
- Melhor qualidade do sinal.

☐ <u>Padrões</u>

- \square 802.11b 2,4 Ghz 11 Mbps
- □ 802.11a 5 Ghz 54 Mbps
- □ 802.11g 2,4 Ghz 54 Mbps
- □ 802.11n 2,4 Ghz e 5 Ghz até 600 Mbps
- \square 802.11ac 5 Ghz 1,3 Gbps
- 802.11 ax 2,4Ghz e 5 Ghz

REFERÊNCIAS

TANENBAUM, A. Redes de Computadores. Terceira Edição. Editora Campus, 2003.

SOARES, L.F.G.; LEMOS, G. e COLCHER, S. Redes de Computadores: das LANs, MANs e WANs às Redes ATM. Segunda Edição. Editora Campus. Rio de Janeiro, 1995.

KUROSE, R.. Redes de Computadores e a Internet. Quinta Edição. Editora Pearson. 2010.

TORRES, G. Redes de Computadores — Versão Revisada e Atualizada. Ed. Nova Terra, 2009.