Locally Equivalent Weights for Bayesian MrP

Ryan Giordano, Alice Cima, Erin Hartman, Jared Murray, Avi Feller University of British Columbia Statistics Seminar October 2025

The basic problem

We have a survey population, for whom we observe:

- Covariates \mathbf{x} (e.g. race, gender, zip code, age, education level)
- Responses y (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

Observe
$$(\mathbf{x}_i, y_i)$$
 for $i = 1, \dots, N_S$

Observe \mathbf{x}_j for $j = 1, \dots, N_T$

¹Photo copyright: Mark Taylor / naturepl.com

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

The problem is that the populations may be very different, maybe leading to bias. 1

¹Photo copyright: Mark Taylor / naturepl.com

The basic problem

We have a survey population, for whom we observe:

- Covariates **x** (e.g. race, gender, zip code, age, education level)
- Responses *y* (e.g. A binary response to "do you support Trump")

We want the average response in a target population, in which we observe only covariates.

The problem is that the populations may be very different, maybe leading to bias. 1

How can we use the covariates to say something about the target responses?

¹Photo copyright: Mark Taylor / naturepl.com

We want $\mu:=\frac{1}{N_T}\sum_{j=1}^{N_T}y_j$, but don't observe target y_j . Let $Y_{\mathcal{S}}=\{y_1,\ldots,y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of \boldsymbol{x} may be different in the survey and target.

,

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)

Bayesian hierarchical modeling (MrP)

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- ightharpoonup Take $\hat{\mu}^{\text{CW}}(Y_{\mathcal{S}}) = \frac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})} [y | \mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$

,

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- lacksquare Take $\hat{oldsymbol{\mu}}^{\sf CW}(Y_{\cal S}) = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - \triangleright Dependence on y_i is clear

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})}[y | \mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ► Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data}))$

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- lacksquare Take $\hat{m{\mu}}^{\sf CW}(Y_{\cal S}) = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - ightharpoonup Dependence on y_i is clear

- ▶ Weights give interpretable diagnostics:
 - · Regressor balance
 - · Frequentist variability
 - · Partial pooling
 - Extraplolation

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta|\text{Survey data})}[y|\mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
- ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data})$)
 - Black box

We want $\mu := \frac{1}{N_T} \sum_{j=1}^{N_T} y_j$, but don't observe target y_j . Let $Y_S = \{y_1, \dots, y_{N_S}\}$.

- Assume $p(y|\mathbf{x})$ is the same in both populations,
- But the distribution of **x** may be different in the survey and target.

Calibration weighting (CW)

- ► Choose "calibration weights" *w_i* using only the regressors **x** (e.g. raking weights)
- lacksquare Take $\hat{m{\mu}}^{\sf CW}(Y_{\cal S}) = rac{1}{N_S} \sum_{i=1}^{N_S} w_i y_i$
 - ightharpoonup Dependence on y_i is clear

- ▶ Weights give interpretable diagnostics:
 - · Regressor balance
 - · Frequentist variability
 - · Partial pooling
 - Extraplolation

Bayesian hierarchical modeling (MrP)

- ► Take $\hat{y}_j = \mathbb{E}_{\mathcal{P}(\theta | \text{Survey data})} [y | \mathbf{x}_j]$ and $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j$
 - ▶ Dependence on y_i very complicated (Typically via MCMC draws from $\mathcal{P}(\theta|\text{Survey data})$)

Black box

 \leftarrow We open this box, providing analogues of all these diagnostics

Prior work: Equivalent weights for linear models

Gelman (2007b) observes that MrP is a CW estimator when one uses linear regression to form \hat{y} :

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j = \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\mathbf{x}_j^{\intercal} \hat{\theta}}_{\text{Linear in } Y_{\mathcal{S}}}$$

Most existing literature on comparing CW and MrP focus on such linear models. ²

²For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).

Prior work: Equivalent weights for linear models

Gelman (2007b) observes that MrP is a CW estimator when one uses linear regression to form \hat{y} :

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \hat{y}_j = \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\mathbf{x}_j^{\mathsf{T}} \hat{\theta}}_{\text{Linear in } Y_{\mathcal{S}}}$$

Most existing literature on comparing CW and MrP focus on such linear models. ²

But what if you use a non-linear link function? Or a hierarchical model?

"It would also be desirable to use nonlinear methods ... but then it would seem difficult to construct even approximately equivalent weights. Weighting and fully nonlinear models would seem to be completely incompatible methods." — (Gelman 2007a)

²For example, Gelman (2007b), B., F., and H. (2021), and Chattopadhyay and Zubizarreta (2023).

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta})$.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_S \mapsto m(\mathbf{x}_i^\mathsf{T} \hat{\theta})$ is inherently nonlinear.

But some sample averages of $m(\mathbf{x}_i^\intercal \hat{\theta})$ can be approximately linear.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

The map from $Y_{\mathcal{S}} \mapsto m(\mathbf{x}_{i}^{\mathsf{T}}\hat{\theta})$ is inherently nonlinear.

But *some sample averages* of $m(\mathbf{x}_i^{\mathsf{T}}\hat{\theta})$ can be approximately linear.

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta})$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\boldsymbol{\theta}}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \end{split} \tag{Law of large numbers)}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \text{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^{\mathsf{T}} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^{\mathsf{T}} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \end{split}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a *approximately* a CW estimator.

$$\begin{split} \hat{\mu}^{\mathrm{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \end{split}$$

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \qquad \text{(By assumption)} \\ &\approx \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i m(\mathbf{x}_i^\mathsf{T} \hat{\theta}) \qquad \qquad \text{(Law of large numbers)} \end{split}$$

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\begin{split} \hat{\mu}^{\text{MrP}}(Y_S) &= \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) \\ &\approx \int m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_T(\mathbf{x}) d\mathbf{x} \qquad \text{(Law of large numbers)} \\ &= \int \frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \text{(Multiply by } \mathcal{P}_S(\mathbf{x}) / \mathcal{P}_S(\mathbf{x})) \\ &\approx \int (\alpha^\mathsf{T} \mathbf{x}) m(\mathbf{x}^\mathsf{T} \hat{\theta}) \mathcal{P}_S(\mathbf{x}) d\mathbf{x} \qquad \text{(By assumption)} \\ &\approx \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i m(\mathbf{x}_i^\mathsf{T} \hat{\theta}) \qquad \text{(Law of large numbers)} \\ &= \alpha^\mathsf{T} \frac{1}{N_S} \sum_{i=1}^{N_S} \mathbf{x}_i y_i \qquad \text{(Property of exponential family MLEs)} \end{split}$$

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\text{MrP}}}_{\alpha^{\mathsf{T}} \mathbf{x}_i} y_i + \text{Small error}$$

³Krantz and Parks 2012; **G.**, Stephenson, et al. 2019.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\mathsf{MrP}}}_{\alpha^\mathsf{T} \mathbf{x}_i} y_i + \mathsf{Small} \ \mathsf{error}$$

But what are the weights? We don't observe $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})}$, so can't estimate α directly.

³Krantz and Parks 2012; **G.**, Stephenson, et al. 2019.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^\mathsf{T} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\mathsf{MrP}}}_{\alpha^\mathsf{T} \mathbf{x}_i} y_i + \mathsf{Small} \ \mathsf{error}$$

But what are the weights? We don't observe $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})}$, so can't estimate α directly.

Key idea (informal)

If $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})$ is approximately linear, then $w_i^{\mathrm{MrP}} \approx N_S \frac{\partial \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_i}$.

³Krantz and Parks 2012; G., Stephenson, et al. 2019.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$, with MLE $\hat{\theta}$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}).$

Example

Suppose $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})} \approx \alpha^{\mathsf{T}} \mathbf{x}$ for some α . Then MrP is a approximately a CW estimator.

$$\hat{\mu}^{\text{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} m(\mathbf{x}_j^{\mathsf{T}} \hat{\theta}) = \frac{1}{N_S} \sum_{i=1}^{N_S} \underbrace{w_i^{\text{MrP}}}_{\alpha^{\mathsf{T}} \mathbf{x}_i} y_i + \text{Small error}$$

But what are the weights? We don't observe $\frac{\mathcal{P}_T(\mathbf{x})}{\mathcal{P}_S(\mathbf{x})}$, so can't estimate α directly.

Key idea (informal)

If $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})$ is approximately linear, then $w_i^{\mathrm{MrP}} \approx N_S \frac{\partial \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_i}$.

For logistic regression, compute and analyze $\frac{\partial \hat{\mu}^{MrP}(Y_S)}{\partial y_i}$ using the implicit function theorem.³

³Krantz and Parks 2012; G., Stephenson, et al. 2019.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \mathrm{Logistic}(\mathbf{x}^{\mathsf{T}}\theta).$
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey\ data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

No reason to think $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ is even approximately **globally** linear.

 $^{^4}$ Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; \mathbf{G}_{\bullet} , Broderick, and Jordan 2018.

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta | \mathrm{Survey \ data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

No reason to think $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ is even approximately **globally** linear.

But we can still compute and analyze $w_i^{\text{MrP}} := N_S \frac{\partial \hat{\mu}^{\text{MrP}}(Y_S)}{\partial y_i}$ using Bayesian sensitivity analysis!⁴

MrP weights for MCMC

$$w_i^{\mathrm{MrP}} := N_S \frac{\partial \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_i} = N_S \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\operatorname{Cov}_{\mathcal{P}(\theta \mid \mathrm{Survey \ data)}} \left(m(\mathbf{x}_j^{\mathsf{T}}\theta), \theta^{\mathsf{T}} \mathbf{x}_i \right)}_{\mathrm{Can \ estimate \ without \ rerunning \ MCMC!}}$$

⁴Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G., Broderick, and Jordan 2018.

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.

• MrP is
$$\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey\ data})} \left[m(\mathbf{x}_j^\mathsf{T} \theta) \right]$$
.

No reason to think $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ is even approximately **globally** linear.

But we can still compute and analyze $w_i^{\text{MrP}} := N_S \frac{\partial \hat{\mu}^{\text{MrP}}(Y_S)}{\partial y_i}$ using Bayesian sensitivity analysis!⁴

MrP weights for MCMC

$$w_i^{\mathrm{MrP}} := N_S \frac{\partial \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_i} = N_S \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\operatorname{Cov}_{\mathcal{P}(\theta \mid \mathrm{Survey \ data)}} \left(m(\mathbf{x}_j^{\mathsf{T}}\theta), \theta^{\mathsf{T}} \mathbf{x}_i \right)}_{\mathrm{Can \ estimate \ without \ rerunning \ MCMC!}}$$

What do these weights mean? There are now two distinct possibilities:

- · "Locally implicit weights"
 - An estimator of $\mathcal{P}_T(\mathbf{x})/\mathcal{P}_S(\mathbf{x})$ (via Riesz regression applied to the Gateaux derivative)
- "Locally equivalent weights"
 - A characterization of $Y_{\mathcal{S}}\mapsto \hat{\mu}^{\mathsf{MrP}}(Y_{\mathcal{S}})$ for diagnostics and interpretation

 $^{^4}$ Diaconis and Freedman 1986; Gustafson 1996; Efron 2015; G_{\bullet} , Broderick, and Jordan 2018.

- Suppose the model is $m(\mathbf{x}^\intercal \theta) = \operatorname{Logistic}(\mathbf{x}^\intercal \theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta | \mathrm{Survey \ data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

No reason to think $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ is even approximately **globally** linear.

But we can still compute and analyze $w_i^{\text{MrP}} := N_S \frac{\partial \hat{\mu}^{\text{MrP}}(Y_S)}{\partial y_i}$ using Bayesian sensitivity analysis!⁴

MrP weights for MCMC

$$w_i^{\mathrm{MrP}} := N_S \frac{\partial \hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_i} = N_S \frac{1}{N_T} \sum_{j=1}^{N_T} \underbrace{\operatorname{Cov}_{\mathcal{P}(\theta \mid \mathrm{Survey \ data)}} \left(m(\mathbf{x}_j^{\mathsf{T}}\theta), \theta^{\mathsf{T}} \mathbf{x}_i \right)}_{\mathrm{Can \ estimate \ without \ rerunning \ MCMC!}}$$

What do these weights mean? There are now two distinct possibilities:

- · "Locally implicit weights"
 - An estimator of $\mathcal{P}_T(\mathbf{x})/\mathcal{P}_S(\mathbf{x})$ (via Riesz regression applied to the Gateaux derivative)
- "Locally equivalent weights" \leftarrow The present talk will focus on this interpretation
 - A characterization of $Y_S \mapsto \hat{\mu}^{MrP}(Y_S)$ for diagnostics and interpretation

 $^{^4\}mathrm{Diaconis}$ and Freedman 1986; Gustafson 1996; Efron 2015; $\mathbf{G.},$ Broderick, and Jordan 2018.

- Suppose the model is $m(\mathbf{x}^{\mathsf{T}}\theta) = \operatorname{Logistic}(\mathbf{x}^{\mathsf{T}}\theta)$.
- Set a hierarchical prior $\mathcal{P}(\theta|\Sigma)\mathcal{P}(\Sigma)$, use MCMC to draw from $\mathcal{P}(\theta|Survey data)$.
- MrP is $\hat{\mu}^{\mathrm{MrP}}(Y_{\mathcal{S}}) = \frac{1}{N_T} \sum_{j=1}^{N_T} \mathbb{E}_{\mathcal{P}(\theta \mid \mathrm{Survey \ data})} \left[m(\mathbf{x}_j^{\mathsf{T}} \theta) \right]$.

MrP locally equivalent weights (MrPlew)

For new data \tilde{Y}_{S} , form a **MrP locally equivalent weighting**:

$$\hat{\boldsymbol{\mu}}^{\mathrm{MrP}}(\tilde{Y}_{\mathcal{S}}) \approx \hat{\boldsymbol{\mu}}^{\mathrm{MrP}}(Y_{\mathcal{S}}) + \sum_{i=1}^{N_{S}} w_{i}^{\mathrm{MrP}}(\tilde{y}_{i} - y_{i}) \quad \text{where} \quad w_{i}^{\mathrm{MrP}} := \frac{\partial \hat{\boldsymbol{\mu}}^{\mathrm{MrP}}(Y_{\mathcal{S}})}{\partial y_{i}}.$$

Our task is to rigorously show that even such local weights can be meaningfully used diagnostically in the same ways we use global weights.

Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on $Y_{\mathcal{S}}$.

Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on Y_S .

But the high level idea can be extended much more widely:

- 1. Assume your initial model was accurate
- 2. Select some perturbation your model should be able to capture
- 3. Use local sensitivity to detect whether the change is what you expect
- 4. If the change is not what you expect, either (1) or (2) was wrong

Notice that there was no discussion of misspecification!

Calibration weights (typically) do not depend on Y_S .

But the high level idea can be extended much more widely:

- 1. Assume your initial model was accurate
- 2. Select some perturbation your model should be able to capture
- 3. Use local sensitivity to detect whether the change is what you expect
- 4. If the change is not what you expect, either (1) or (2) was wrong

Such checks recover generlized versions of many standard diagnostics for linear models.

Examples:

- Additive parameter shifts \leftrightarrow Unbiasedness
- ullet Invariance to survey data weighting $\ \leftrightarrow$ Regressor + residual orthogonality
- Importance sampling $\ \leftrightarrow$ Sandwich covariance $\stackrel{?}{=}$ Inverse Fisher information

Student contributions and ongoing work:

- · Vladimir Palmin is working on extending MrPlew to lme4
- Sequoia Andrade is working on generalizing to other local sensitivity checks
- · Lucas Schwengber is working on novel flow-based techniques for local sensitivity
- (Currently recruiting!) Doubly-robust Bayesian Hierarchical MrP

Vladimir Palmin

Seguoia Andrade

Lucas Schwengber

Preprint and R package (hopefully) coming soon!

References i

B., Eli, Avi F., and Erin H. (2021). Multilevel calibration weighting for survey data. arXiv: 2102.09052 [stat.ME].

Chattopadhyay, A. and J. Zubizarreta (2023). "On the implied weights of linear regression for causal inference". In: Biometrika 110.3, pp. 615–629.

Diaconis, P. and D. Freedman (1986). "On the consistency of Bayes estimates". In: The Annals of Statistics, pp. 1-26.

Efron, B. (2015). "Frequentist accuracy of Bayesian estimates". In: Journal of the Royal Statistical Society Series B: Statistical Methodology 77.3, pp. 617–646.

G., T. Broderick, and M. I. Jordan (2018). "Covariances, robustness and variational bayes". In: Journal of machine learning research 19.51.

G., W. Stephenson, et al. (2019). "A swiss army infinitesimal jackknife". In: The 22nd International Conference on Artificial Intelligence and Statistics. PMLR, pp. 1139–1147.

Gelman, A. (2007a). "Rejoinder: Struggles with survey weighting and regression modelling". In: Statistical Science 22.2, pp. 184-188.

(2007b). "Struggles with survey weighting and regression modeling". In.

Gustafson, P. (1996). "Local sensitivity of posterior expectations". In: The Annals of Statistics 24.1, pp. 174-195.

Krantz, S. and H. Parks (2012). The Implicit Function Theorem: History, Theory, and Applications. Springer Science & Business Media.