

Nussbaum und Nüsse*

Nussbäume wachsen langsam. Die momentane Änderungsrate der Höhe einer Pflanze in Abhängigkeit von der Zeit wird als *Wachstumsgeschwindigkeit* bezeichnet.

a) Die Wachstumsgeschwindigkeit eines bestimmten Nussbaums in Abhängigkeit von der Zeit t kann modellhaft durch die Funktion v beschrieben werden. Zum Zeitpunkt t=0 beträgt die Höhe des Nussbaums 0 m. (Siehe nachstehende Abbildung.)

1) Schätzen Sie mithilfe der obigen Abbildung die Höhe H dieses Nussbaums zur Zeit t = 10 Jahre ab.

$$H \approx$$
 m [0/1 P.]

Der Zeitpunkt, zu dem die Wachstumsgeschwindigkeit am stärksten abnimmt, wird mit t_1 bezeichnet.

2) Lesen Sie aus der obigen Abbildung den Zeitpunkt t_1 ab.

$t_1 \approx$	Jahre	[0/1	P. j

- b) Nüsse werden in Packungen abgefüllt. Die Masse einer Packung in g wird durch die normalverteilte Zufallsvariable X mit dem Erwartungswert μ und der Standardabweichung σ modelliert.
 - 1) Ordnen Sie den beiden Wahrscheinlichkeiten jeweils die gleich große Wahrscheinlichkeit aus A bis D zu. [0/1 P.]

$P(X \ge \mu - \sigma)$	
$P(\mu - \sigma \le X \le \mu + \sigma)$	

А	$1 - P(X \le \mu + \sigma)$
В	$1-2\cdot P(X\geq \mu+\sigma)$
С	$P(X \le \mu + \sigma)$
D	$2 \cdot P(X \ge \mu + \sigma)$

Die Standardabweichung von X beträgt $\sigma = 5$ g.

Im Rahmen der Qualitätskontrolle werden Stichproben vom Umfang n entnommen. Die Stichprobenmittelwerte der Massen der Packungen werden ermittelt. In der nachstehenden Abbildung ist der Graph der Dichtefunktion für die Verteilung der Stichprobenmittelwerte mit den Wendepunkten W_1 und W_2 dargestellt.

2) Geben Sie den Stichprobenumfang n an.

[0/1 P.]

Bundesministerium Bildung, Wissenschaft und Forschung

SRDP Standardisierte Reife- und Diplomprüfung

Möglicher Lösungsweg

a1) $H \approx 6 \text{ m}$

Toleranzbereich: [5,5 m; 7,2 m]

a2) $t_1 \approx 14$ Jahre

Toleranzbereich: [12 Jahre; 16,5 Jahre]

- a1) Ein Punkt für das richtige Abschätzen von H.
- a2) Ein Punkt für das Ablesen des richtigen Zeitpunkts t_1 .

$P(X \ge \mu - \sigma)$	С
$P(\mu - \sigma \le X \le \mu + \sigma)$	В

А	$1 - P(X \le \mu + \sigma)$
В	$1-2\cdot P(X\geq \mu+\sigma)$
С	$P(X \le \mu + \sigma)$
D	$2 \cdot P(X \ge \mu + \sigma)$

- **b2)** n = 25 Packungen
- b1) Ein Punkt für das richtige Zuordnen.
- **b2)** Ein Punkt für das Angeben des richtigen Stichprobenumfangs n.