Travaux dirigées : Techniques Multimédias

Outils de traitement d'images Proposées par : Houcemeddine HERMASSI

Exercice 1 : (morphologie de l'image)

Différents prétraitements ont été appliqués à l'image I_1 . Les résultats de ces traitements sont montrés sur la Figure 2 tandis que les histogrammes sont donnés dans la Figure 3 mais dans le désordre.

- 1) Associez les histogrammes de la Figure 3 aux images de la Figure 2.
- 2) En vous aidant des histogrammes associés, déterminez quel prétraitement a permis de passer de l'image I_1 à chacune des images de la Figure 1.

Figure 1: image l_1 d'une roue d'engrenage et son histogramme H_1 .

Figure 2 : Images I_2 à I_{11} en sortie de différents prétraitements de l'image I_1 .

Figure 3 : dans le désordre, histogrammes H_2 à H_{11} des images I_2 à I_{10} .

Exercice 2 : (Filtrage)

L'image de la Figure 4 est une image à niveaux de gris de taille 10×10 pixels dont les valeurs des niveaux de gris sont codées sur <u>4 bits</u>. Cette image représente un cercle sur un fond sombre.

Figure 4 : image l_{11} d'un cercle et valeurs des pixels de l'image en fonction de leurs coordonnées.

Un bruit de type impulsionnel est ajouté à cette image tel que : $I_{11}(1,1)=I_{11}(3,6)=I_{11}(4,4)=I_{11}(4,8)=0$ et $I_{11}(5,1)=I_{11}(5,5)=I_{11}(6,3)=I_{11}(8,8)=15$.

Figure 5 : image I_{12} après ajout d'un bruit impulsionnel sur l'image I_{11} .

- 1) Quel est le paramètre du bruit ?
- 2) Appliquer un <u>filtre moyenneur</u> de taille 3×3 sur les pixels de I_{12} de coordonnées (1,1), (3,6), (4,4), (4,8), (5,1), (5,5), (6,3), (8,8), (1,4), (1,8), (8,2), (8,5). Quelle est l'erreur quadratique moyenne sur ces pixels ?
- 3) Appliquer <u>un filtre médian</u> de taille 3×3 sur les pixels de I_{12} de coordonnées (1,1), (6,3), (4,4), (8,4), (1,5), (5,5), (3,6), (8,8), (4,1), (8,1), (2,8), (5,8). Quelle est l'erreur quadratique moyenne sur ces pixels

Exercice 3 : (binarisation)

L'image de la Figure 6 est une image à niveaux de gris de taille 10×10 pixels dont les valeurs des niveaux de gris sont codées sur <u>4 bits</u>. Cette image représente une forme rectangulaire et une forme en losange sur un fond non uniforme.

Figure 6 : image I_{13} d'un rectangle et d'un losange et valeurs des pixels de l'image en fonction de leurs coordonnées.

- 1) Tracer l'histogramme de l'image?
- 2) Choisir les seuils optimaux d'après l'histogramme pour binariser l'image et retrouver les deux formes recherchées
- 3) Détaillez et expliquez le plus précisément et le plus rigoureusement possible les traitements à réaliser pour obtenir l'image résultat I_{14} de la Figure 7. Pour illustrer chacun de ces traitements, il est demandé de représenter l'image résultat correspondante et de donner les éventuels filtres, opérateurs, éléments structurants, seuils,...utilisés.

Figure 7 : image I_{14} idéale du rectangle et losange recherchés et valeurs des pixels de l'image en fonction de leurs coordonnées.

Exercice 4:

L'image de la Figure 8 est une image à niveaux de gris de taille 8×8 pixels dont les valeurs des niveaux de gris sont codées sur 4 bits. Cette image représente deux formes en croix.

Figure 8 : image l₁₅ de deux croix et valeurs des pixels de l'image en fonction de leurs coordonnées.

Figure 9 : image I₁₆ idéale des deux croix recherchées et valeurs des pixels de l'image en fonction de leurs coordonnées.

1) Sur l'image I_{15} de la Figure 8, on distingue deux croix. On souhaite appliquer une série de prétraitements afin d'obtenir l'image I_{16} de la Figure 9. En utilisant des opérations de binarisation, des filtrages morphologiques et des opérateurs logiques, expliquer le plus précisément possible la chaîne de traitement à mettre en oeuvre afin d'obtenir l'image résultat I_{16} de la Figure 9. Pour illustrer chacun de ces traitements, il est demandé de représenter l'image résultat correspondante et de donner les opérateurs, éléments structurants, et seuils utilisés.

Exercice 5: (érosion, dilatation, squelettisation)

L'image couleur I_{17} de la Figure 10 représente la plaque d'immatriculation d'un véhicule automobile. Afin de lire le contenu de cette plaque, on souhaite analyser cette image. Pour cela, une première opération est effectuée à partir de l'image I_{17} de la Figure 10. Les résultats sont représentés sur les images de la Figure 11 ainsi que leurs histogrammes respectifs.

Figure 10: image l₁₇ d'une plaque d'immatriculation.

Figure 11 : images résultats de prétraitements de l'image l₁₇ et histogrammes associés.

1) Quel prétraitement a permis d'obtenir les images de la Figure 11 ? Expliquer à quelles zones de l'image correspondent les différents pics de chacun des histogrammes respectifs. Dans le cadre de la lecture de la plaque d'immatriculation, expliquer pourquoi la dernière image, notée par la suite I_{18} , de la Figure 11 est la plus adéquate à exploiter.

Figure 12 : images résultats de prétraitements de l'image l_{18} .

2) Différents traitements sont ensuite appliqués à partir de l'image I_{18} de la Figure 11. Les résultats de ces traitements sont représentés sur les images de la Figure 12. Déterminer le plus précisément

possible les traitements effectués sur les images de la Figure 12 en justifiant, pour chaque image, votre réponse.

Exercice 6:

L'image I_{19} de la Figure 13 représente une cellule humaine vue au microscope. Afin de détecter la maladie du cancer, on souhaite analyser cette image.

Figure 13 : image I_{19} d'une cellule vue au microscope.

Figure 15 : image l_{20} des contours de l'image l_{19} .

Pour cela, une série de traitements est effectuée à partir de l'image I_{19} de la Figure 13. Les résultats de ces traitements sont représentés sur les images de la Figure 14.

Figure 14 : images résultats de prétraitements de l'image l_{18} conduisant à l'image l_{19} (en bas à droite)

- 1) Déterminer le plus précisément possible les traitements effectués à partir de l'image I_{19} et ayant conduit successivement aux images présentées sur la Figure 14 en justifiant, pour chaque image, votre réponse. Les types d'opération, les valeurs des paramètres et les éventuels filtres utilisés ainsi que les images sources devront être précisés le plus rigoureusement possible.
- 2) Dans le cas d'une image binaire, comme I_{19} , comment peut-on obtenir le contour des objets, comme sur l'image I_{20} de la Figure 15, à partir d'opérateurs simples de morphologie mathématique et binaires ?
- 3) Proposez une mesure la plus simple possible de la régularité du contour.

Exercice 7: (Détection du contour)

Sur les images I_{21} et I_{22} des Figures 16 et 17, on distingue des formes sur un fond non uniforme du à un défaut d'éclairage.

. 0	1	. 2	3	- 4	. 5	6	7	. 8	9	10	11	12	13
io	i ₀	i ₀	i ₀	<i>i</i> ₀	i ₀	i ₀	i ₀	i ₀	i ₀	i ₀	i ₀	i ₀	io
I ₀ -a	i _o -a	i ₀ -a	1 ₀ -a	i _{o-} a	i ₀ -a	i _{o-} a	l ₀ -a	l _o -a	l _{o-} a	I ₀ -a	i ₀ -a	i _{o-} a	i ₀ −a
io-2a	i ₀ -2a	i ₀ -2a	i₀-2a-b	i ₀ -2a-b	i₀-2 <i>a-b</i>	i ₀ -2a	i ₀ -2a	i₀-2σ	i ₀ -2a	i ₀ -2 <i>a</i>	i ₀ -2a	i ₀ -2a	i ₀ -2a
io-a	io-a	i₀-a-b	i₀-a-b	i₀-a-b	i₀-a-b	i₀-a-b	io-a	io-a	i _{o-a}	i _{o-} a	i _{o-a}	io-a	i ₀ -a
i _o	i ₀	i _o -b	i _{o-b}	i _{o-} b	i _o -b	i _{o-} .b	Î	i _o	i _o	i _o	i ₀	i ₀	io
i _o -a	i _o -a	i _o -a-b	i₀-α-b	i₀-a-b	i _{o-} a-b	i _o -a-b	i _o -a	i _o -a	i₀-a	i _{o-} a	i ₀ -a	i _{o-} a	i ₀ -a
i ₀ -2a	i ₀ -2a	i ₀ -2a	i _o -2a-b	i ₀ -2 <i>a-b</i>	i ₀ -2a-b	i ₀ -2a	i ₀ -2a	i₀-2a	i ₀ -2a	i ₀ -2a	i ₀ -2a	i ₀ -2a	i ₀ -2a
i _o -a	i ₀ -a	i ₀ -a	i ₀ -a	i ₀ -a	i _o -a	i₀-a	i ₀ -a	i₀-a+b	i₀-a+b	i ₀ -a+b	i ₀ -a	i ₀ -a	i _o -a
io	i ₀	io	lo	i 0	i 0	io	i ₀ +b	i ₀ +b	i ₀ +b	i ₀ +b	i₀+b	i ₀	I ₀
io-a	io-a	io-a	io- a	io-a	io-a	io-a	i _{o-a+b}	i ₀ -a+b	i ₀ -a+b	i ₀ -a+b	i ₀ -a+b	io-a	i ₀ -a
i ₀ -2a	i ₀ -2a	i ₀ -2a	i ₀ -2a	i ₀ -2a	i ₀ -2a	i ₀ -2a	i ₀ -2a+b	i ₀ -2a+b	i ₀ -2a+b	i _o 2a+b	i ₀ 2a+b	i ₀ -2a	i ₀ -2a
i _o -a	i _o -a	i _o -a	i _o -a	i _{o-} a	i _o -a	i _o -a	i _o -a	i _o -a+b	i ₀ -a+b	i ₀ -a+b	i _o -a	i _o -a	i ₀ -a
i _o	i ₀	i ₀	i _o	i _o	io	i ₀	i _o	i _o	l _o	i _o	i _o	i ₀	io
3 io	i ₀	i _o	io	io	io	i _o	i ₀	i _o	i _o	i _o	io	io	i ₀

Figure 16 : à gauche, valeurs des niveaux de gris des pixels de l'image I_{21} .paramétrée par i_0 , a et b; à droite, image I_{21} pour i_0 =10, a=2 et b=4.

Figure 17: à gauche, image I_{22} ; à droite, valeurs des niveaux de gris des pixels de I_{22} .

Traitement de *I*₂₁

1) Réaliser le filtrage linéaire de l'image l_{21} pour i_0 =15, a=4 et b=4, avec le filtre de convolution suivant :

- 2) On veut fermer le contour en filtrant l'image par le même filtre après rotation de +90°. Expliquer pourquoi cela ne donne pas de résultat satisfaisant.
- 3) En supposant que l'on connait l'orientation du défaut d'illumination (verticale ici), proposez un traitement qui permette de récupérer les contours manquants.

Traitement de *I*₂₂

4) En s'inspirant de l'approche précédente et en exploitant le filtre de convolution H_1 :

$$H_1 = \begin{array}{c|cccc} -1 & -1 & 0 \\ -1 & 0 & 1 \\ \hline 0 & 1 & 1 \end{array}$$

Proposez une solution pour détecter les coins du carré de I_{22} malgré le défaut d'illumination.