Hierarchical Topic Models

Andrew Leverentz

Research Examination, Fall Quarter 2017 UC San Diego, Dept. of Computer Science and Engineering

Image Source: Paisley et al [16]

lacktriangle Internet and digital archives ightarrow large collections of text data

- ightharpoonup Internet and digital archives ightarrow large collections of text data
- ▶ How can we navigate these collections efficiently?

- ► Internet and digital archives → large collections of text data
- ▶ How can we navigate these collections efficiently?
- Typical task: find sets of documents that share the same topic or subject matter

- ► Internet and digital archives → large collections of text data
- ▶ How can we navigate these collections efficiently?
- Typical task: find sets of documents that share the same topic or subject matter
- ▶ Natural language can be both redundant and ambiguous

- ► Internet and digital archives → large collections of text data
- ▶ How can we navigate these collections efficiently?
- Typical task: find sets of documents that share the same topic or subject matter
- ▶ Natural language can be both redundant and ambiguous
- Superficial attributes of documents aren't enough

- ► Internet and digital archives → large collections of text data
- How can we navigate these collections efficiently?
- Typical task: find sets of documents that share the same topic or subject matter
- ▶ Natural language can be both redundant and ambiguous
- Superficial attributes of documents aren't enough
- ▶ We need a notion of *latent semantics*, or underlying meaning

 General approach: documents are mixtures of topics, which are distributions over the vocabulary

- General approach: documents are mixtures of topics, which are distributions over the vocabulary
- Probability provides a natural framework for this

- General approach: documents are mixtures of topics, which are distributions over the vocabulary
- Probability provides a natural framework for this
- ► Topics can exist at different levels of abstraction (e.g., baseball and basketball are distinct subtopics under sports)

- General approach: documents are mixtures of topics, which are distributions over the vocabulary
- Probability provides a natural framework for this
- ▶ Topics can exist at different levels of abstraction (e.g., baseball and basketball are distinct subtopics under sports)
- ► Can we learn a hierarchy of topics based on a particular corpus?

- General approach: documents are mixtures of topics, which are distributions over the vocabulary
- Probability provides a natural framework for this
- ▶ Topics can exist at different levels of abstraction (e.g., baseball and basketball are distinct subtopics under sports)
- ► Can we learn a hierarchy of topics based on a particular corpus?
- Similar to the Dewey Decimal System or Library of Congress Classification

Topics:
$$heta_1= ext{"sports"}$$
 $heta_2= ext{"medicine"}$ $heta_2= ext{"document 1"}$ $heta_2= ext{"document 2"}$

Topics:
$$\theta_1$$
 = "sports" $\frac{}{}_{\text{team}}$ player injury illness θ_2 = "medicine" $\frac{}{}_{\text{team}}$ player injury illness

Documents: ϕ_1 = "document 1"

 ϕ_2 = "document 2"

Topics:
$$\theta_1$$
 = "sports"
$$\theta_2$$
 = "medicine"
$$\frac{\theta_2}{\theta_2}$$
 = "document 1"
$$\frac{\theta_2}{\theta_2}$$
 = "document 2"
$$\frac{\theta_2}{\theta_2}$$
 = "document 2"

Topics:
$$\theta_1$$
 = "sports"
$$\theta_2$$
 = "medicine"
$$\frac{1}{\text{team}} \frac{1}{\text{player}} \frac{1}{\text{injury}} \frac{1}{\text{illness}}$$
Documents: ϕ_1 = "document 1"
$$\phi_2$$
 = "document 2"
$$\frac{1}{\text{topic 1}} \frac{1}{\text{topic 2}}$$

"Flat" Topic Models

Idea: frequencies of words in documents determined by probabilities

- Idea: frequencies of words in documents determined by probabilities
- ▶ There are K latent topics, and each θ_k is a distribution over words in the vocabulary

- Idea: frequencies of words in documents determined by probabilities
- ▶ There are K latent topics, and each θ_k is a distribution over words in the vocabulary
- ▶ For document d, the vector ϕ_d is a distribution over topics

- Idea: frequencies of words in documents determined by probabilities
- ▶ There are K latent topics, and each θ_k is a distribution over words in the vocabulary
- ▶ For document d, the vector ϕ_d is a distribution over topics
- ▶ For the n^{th} word in document d:

Select a topic: $z_{d,n} \sim \mathsf{Categorical}(\phi_d)$

Select a word: $t_{d,n} \sim \mathsf{Categorical}(\theta_{z_{d,n}})$

- Idea: frequencies of words in documents determined by probabilities
- ▶ There are K latent topics, and each θ_k is a distribution over words in the vocabulary
- ▶ For document d, the vector ϕ_d is a distribution over topics
- ▶ For the n^{th} word in document d:

Select a topic: $z_{d,n} \sim \mathsf{Categorical}(\phi_d)$

Select a word: $t_{d,n} \sim \mathsf{Categorical}(\theta_{z_{d,n}})$

▶ Infer values of θ_k , ϕ_d using maximum likelihood

ightharpoonup Extension to PLSA: assume topic mixtures ϕ_d and topic vectors θ_k are drawn from Dirichlet distributions

- Extension to PLSA: assume topic mixtures ϕ_d and topic vectors θ_k are drawn from Dirichlet distributions
- Dirichlet is a distribution over discrete probability distributions; density over simplex:

$$\operatorname{Dirichlet}(\vec{x} \mid \vec{\alpha}) \propto \prod_{k=1}^{\operatorname{len}(\vec{\alpha})} x_i^{\alpha_i - 1}$$

- Extension to PLSA: assume topic mixtures ϕ_d and topic vectors θ_k are drawn from Dirichlet distributions
- Dirichlet is a distribution over discrete probability distributions; density over simplex:

$$\mathsf{Dirichlet}(\vec{x} \mid \vec{\alpha}) \propto \prod_{k=1}^{\mathsf{len}(\vec{\alpha})} x_i^{\alpha_i - 1}$$

Dirichlet distribution acts as a regularizer, reduces overfitting

- Extension to PLSA: assume topic mixtures ϕ_d and topic vectors θ_k are drawn from Dirichlet distributions
- Dirichlet is a distribution over discrete probability distributions; density over simplex:

$$\mathsf{Dirichlet}(\vec{x} \mid \vec{\alpha}) \propto \prod_{k=1}^{\mathsf{len}(\vec{\alpha})} x_i^{\alpha_i - 1}$$

- Dirichlet distribution acts as a regularizer, reduces overfitting
- Allows Bayesian posterior inference

Latent Dirichlet Allocation: The Model

 $egin{aligned} heta_k &\sim \mathsf{Dirichlet}(lpha) \ \phi_d &\sim \mathsf{Dirichlet}(eta) \ z_{d,n} &\sim \mathsf{Categorical}(\phi_d) \ t_{d,n} &\sim \mathsf{Categorical}(heta_{z_{d,n}}) \end{aligned}$

for each topic k for each document d for the $n^{\rm th}$ word in document d for the $n^{\rm th}$ word in document d

Bayesian Inference Algorithms

► Latent-variable models contain *observed* and *latent* random variables

- ► Latent-variable models contain *observed* and *latent* random variables
- Model specifies:
 - lacktriangleright Likelihood: $p({\sf data} \mid {\sf latent} \ {\sf variables}, {\sf fixed} \ {\sf parameters})$

- Latent-variable models contain observed and latent random variables
- Model specifies:
 - ightharpoonup *Likelihood*: $p(\text{data} \mid \text{latent variables}, \text{fixed parameters})$
 - ightharpoonup Prior: p(latent variables | fixed parameters)

- Latent-variable models contain observed and latent random variables
- Model specifies:
 - ► *Likelihood*: p(data | latent variables, fixed parameters)
 - *Prior*: $p(\text{latent variables} \mid \text{fixed parameters})$
- ▶ Goal: try to estimate the *posterior* via Bayes' rule

$$\begin{split} p(\text{latent variables} \mid \text{data}, \text{fixed parameters}) \\ &= \frac{\text{Likelihood} \times \text{Prior}}{p(\text{data} \mid \text{fixed parameters})} \end{split}$$

- Latent-variable models contain observed and latent random variables
- Model specifies:
 - ightharpoonup *Likelihood*: p(data | latent variables, fixed parameters)
 - ▶ *Prior*: *p*(latent variables | fixed parameters)
- ▶ Goal: try to estimate the *posterior* via Bayes' rule

$$\begin{split} p(\text{latent variables} \mid \text{data}, \text{fixed parameters}) \\ &= \frac{\text{Likelihood} \times \text{Prior}}{p(\text{data} \mid \text{fixed parameters})} \end{split}$$

▶ Denominator: marginalization is often intractable

- Latent-variable models contain observed and latent random variables
- Model specifies:
 - ightharpoonup *Likelihood*: $p(\text{data} \mid \text{latent variables}, \text{fixed parameters})$
 - ▶ *Prior*: p(latent variables | fixed parameters)
- ► Goal: try to estimate the *posterior* via Bayes' rule

$$\begin{split} p(\text{latent variables} \mid \text{data}, \text{fixed parameters}) \\ &= \frac{\text{Likelihood} \times \text{Prior}}{p(\text{data} \mid \text{fixed parameters})} \end{split}$$

- ▶ Denominator: marginalization is often intractable
- Need approximate inference methods

Gibbs Sampling

Markov Chain Monte Carlo (MCMC) method

- Markov Chain Monte Carlo (MCMC) method
 - ► *Monte Carlo*: Estimate a quantity by drawing samples from a random distribution

- Markov Chain Monte Carlo (MCMC) method
 - ► *Monte Carlo*: Estimate a quantity by drawing samples from a random distribution
 - Markov Chain: Find stationary distribution of a stochastic process where update rules depend only on previous state

- Markov Chain Monte Carlo (MCMC) method
 - ► *Monte Carlo*: Estimate a quantity by drawing samples from a random distribution
 - Markov Chain: Find stationary distribution of a stochastic process where update rules depend only on previous state
- ▶ State vector \vec{z} ; each component corresponds to a latent variable

- Markov Chain Monte Carlo (MCMC) method
 - Monte Carlo: Estimate a quantity by drawing samples from a random distribution
 - Markov Chain: Find stationary distribution of a stochastic process where update rules depend only on previous state
- ▶ State vector \vec{z} ; each component corresponds to a latent variable
- ▶ Repeatedly update \vec{z} by iterating through latent variables, updating z_k by sampling from its *complete conditional*:

$$p(z_k \mid \vec{z}_{-k}, \vec{x})$$

Here, \vec{z}_{-k} denotes all components of \vec{z} except z_k

- Markov Chain Monte Carlo (MCMC) method
 - Monte Carlo: Estimate a quantity by drawing samples from a random distribution
 - Markov Chain: Find stationary distribution of a stochastic process where update rules depend only on previous state
- ▶ State vector \vec{z} ; each component corresponds to a latent variable
- ▶ Repeatedly update \vec{z} by iterating through latent variables, updating z_k by sampling from its *complete conditional*:

$$p(z_k \mid \vec{z}_{-k}, \vec{x})$$

Here, \vec{z}_{-k} denotes all components of \vec{z} except z_k

▶ The distribution of the samples \vec{z} approaches the true posterior $p(\vec{z} \mid \vec{x})$

Collapsed Gibbs Sampling

► For some models, we can eliminate some latent variables by marginalization

Collapsed Gibbs Sampling

- For some models, we can eliminate some latent variables by marginalization
- ► For the remaining latent variables, we compute a modified form of the complete conditionals:

$$p(z_k \mid \vec{z}_{\mathsf{subset}-k}, \vec{x})$$

Collapsed Gibbs Sampling

- For some models, we can eliminate some latent variables by marginalization
- ► For the remaining latent variables, we compute a modified form of the complete conditionals:

$$p(z_k \mid \vec{z}_{\mathsf{subset}-k}, \vec{x})$$

 Running Gibbs sampling based on these distributions yields an estimate for

$$p(\vec{z}_{\mathsf{subset}} \mid \vec{x})$$

 Approximation technique: select an approximating family of distributions and search for best approximation

- Approximation technique: select an approximating family of distributions and search for best approximation
- ▶ Measure closeness using reversed Kullback-Leibler divergence

$$\mathsf{KL}(q, \, p(\cdot \,|\, \vec{x})) = E_{\vec{z} \sim q}[\log q(\vec{z}) - \log p(\vec{z} \,|\, \vec{x})]$$

- Approximation technique: select an approximating family of distributions and search for best approximation
- ▶ Measure closeness using reversed Kullback-Leibler divergence

$$\mathsf{KL}(q, \, p(\cdot \,|\, \vec{x})) = E_{\vec{z} \sim q}[\log q(\vec{z}) - \log p(\vec{z} \,|\, \vec{x})]$$

Mean-field approximation: consider parameterized functions which factor cleanly:

$$q(\vec{z}) = \prod_{k} q_k(z_k; \nu_k)$$

- Approximation technique: select an approximating family of distributions and search for best approximation
- ▶ Measure closeness using reversed Kullback-Leibler divergence

$$\mathsf{KL}(q, \, p(\cdot \,|\, \vec{x})) = E_{\vec{z} \sim q}[\log q(\vec{z}) - \log p(\vec{z} \,|\, \vec{x})]$$

Mean-field approximation: consider parameterized functions which factor cleanly:

$$q(\vec{z}) = \prod_{k} q_k(z_k; \nu_k)$$

Minimizing reversed KL corresponds to maximizing evidence lower bound (ELBO):

$$\mathsf{ELBO} = E_q[\log p(\vec{z}, \vec{x})] - E_q[\log q(\vec{z})]$$

 Coordinate ascent: optimize one latent variable's parameters at a time

- Coordinate ascent: optimize one latent variable's parameters at a time
- Works best for exponential-family models, where conditional distributions can be written as

$$p(x \mid \theta) = h(x) \exp(\eta(\theta) \cdot T(x) - a(\theta))$$

- Coordinate ascent: optimize one latent variable's parameters at a time
- Works best for exponential-family models, where conditional distributions can be written as

$$p(x \mid \theta) = h(x) \exp(\eta(\theta) \cdot T(x) - a(\theta))$$

 $(\eta(\theta) = natural parameters, T(x) = sufficient statistics)$

- Coordinate ascent: optimize one latent variable's parameters at a time
- Works best for exponential-family models, where conditional distributions can be written as

$$p(x \mid \theta) = h(x) \exp(\eta(\theta) \cdot T(x) - a(\theta))$$

 $(\eta(\theta) = \text{natural parameters}, T(x) = \text{sufficient statistics})$

- Coordinate ascent: optimize one latent variable's parameters at a time
- Works best for exponential-family models, where conditional distributions can be written as

$$p(x \mid \theta) = h(x) \exp(\eta(\theta) \cdot T(x) - a(\theta))$$

 $(\eta(\theta) = \text{natural parameters}, T(x) = \text{sufficient statistics})$

lacktriangle For exponential-family models, the update rule for z_k is

$$\nu_k = E_q[\eta_k(\vec{z}_{-k}, \vec{x})]$$

where η_k denotes the natural parameters of the complete conditional of z_k

Stochastic Variational Inference: Context

► Generic model with local (per-observation) and global variables:

 x_n : observed data

 z_n : local variables (one per observation)

 β : global variable (shared for all observations)

 α : fixed parameters

Stochastic Variational Inference: Context

Generic model with local (per-observation) and global variables:

 x_n : observed data

 z_n : local variables (one per observation)

 β : global variable (shared for all observations)

 α : fixed parameters

► Complete conditional for local variables simplifies:

$$p(z_n \mid \alpha, \beta, z_{-n}, x_{1:N}) = p(z_n \mid \alpha, \beta, x_n)$$

Stochastic Variational Inference: Context

Generic model with local (per-observation) and global variables:

 x_n : observed data

 z_n : local variables (one per observation)

 β : global variable (shared for all observations)

 α : fixed parameters

Complete conditional for local variables simplifies:

$$p(z_n \mid \alpha, \beta, z_{-n}, x_{1:N}) = p(z_n \mid \alpha, \beta, x_n)$$

Complete conditional for global variable requires full dataset:

$$p(\beta \mid \alpha, z_{1:N}, x_{1:N})$$

► Euclidean distance on variational parameters may not reflect "true" distance between distributions

- Euclidean distance on variational parameters may not reflect "true" distance between distributions
- ▶ Rather than standard gradient of the objective function $(\nabla \mathcal{L})$, use natural gradient $G^{-1}\nabla \mathcal{L}$

- ► Euclidean distance on variational parameters may not reflect "true" distance between distributions
- ▶ Rather than standard gradient of the objective function $(\nabla \mathcal{L})$, use natural gradient $G^{-1}\nabla \mathcal{L}$
- ► *G* is a matrix (*metric tensor*) that encodes local information about "true" distances

- ► Euclidean distance on variational parameters may not reflect "true" distance between distributions
- ▶ Rather than standard gradient of the objective function $(\nabla \mathcal{L})$, use natural gradient $G^{-1}\nabla \mathcal{L}$
- ► *G* is a matrix (*metric tensor*) that encodes local information about "true" distances
- ▶ With a symmetric version of KL divergence and a model with exponential-family distributions, *G* cancels cleanly:

$$G^{-1}\nabla \mathcal{L} = E_q[\eta] - \nu$$

where u is the current value of the local variational params

- ► Euclidean distance on variational parameters may not reflect "true" distance between distributions
- ▶ Rather than standard gradient of the objective function $(\nabla \mathcal{L})$, use natural gradient $G^{-1}\nabla \mathcal{L}$
- ► *G* is a matrix (*metric tensor*) that encodes local information about "true" distances
- ▶ With a symmetric version of KL divergence and a model with exponential-family distributions, *G* cancels cleanly:

$$G^{-1}\nabla \mathcal{L} = E_q[\eta] - \nu$$

where ν is the current value of the local variational params

For local variables, the update rule is the same as in CAVI:

$$\nu^{\mathsf{local}} = E_q[\eta^{\mathsf{local}}]$$

► For global variables, repeatedly draw *mini-batches* b containing S observations

- ► For global variables, repeatedly draw *mini-batches* b containing S observations
- ▶ Compute an *unbiased estimate* of the natural gradient $G^{-1}\nabla \mathcal{L}$ for each batch:

$$\mu = E_q[\eta_b^{\mathsf{global}}] - \nu^{\mathsf{global}}$$

- ► For global variables, repeatedly draw *mini-batches b* containing S observations
- ▶ Compute an *unbiased estimate* of the natural gradient $G^{-1}\nabla \mathcal{L}$ for each batch:

$$\mu = E_q[\eta_b^{\mathsf{global}}] - \nu^{\mathsf{global}}$$

Here, $\eta_b^{\rm global}$ denotes the natural parameters of the complete conditional of the global variable, but with the true dataset replaced by N/S copies of the mini-batch b

- ► For global variables, repeatedly draw *mini-batches b* containing S observations
- ▶ Compute an *unbiased estimate* of the natural gradient $G^{-1}\nabla \mathcal{L}$ for each batch:

$$\mu = E_q[\eta_b^{\mathsf{global}}] - \nu^{\mathsf{global}}$$

Here, $\eta_b^{\rm global}$ denotes the natural parameters of the complete conditional of the global variable, but with the true dataset replaced by N/S copies of the mini-batch b

▶ Update according to a decaying schedule of step sizes ρ_t :

$$u^{\mathsf{global}} \leftarrow \nu^{\mathsf{global}} + \rho_t \, \mu$$

- ► For global variables, repeatedly draw *mini-batches b* containing S observations
- ► Compute an *unbiased estimate* of the natural gradient $G^{-1}\nabla \mathcal{L}$ for each batch:

$$\mu = E_q[\eta_b^{\mathsf{global}}] - \nu^{\mathsf{global}}$$

Here, $\eta_b^{\rm global}$ denotes the natural parameters of the complete conditional of the global variable, but with the true dataset replaced by N/S copies of the mini-batch b

▶ Update according to a decaying schedule of step sizes ρ_t :

$$\begin{split} \nu^{\mathsf{global}} &\leftarrow \nu^{\mathsf{global}} + \rho_t \, \mu \\ &= (1 - \rho_t) \nu^{\mathsf{global}} + \rho_t \, E_q[\eta_b^{\mathsf{global}}] \end{split}$$

Learning Topic Hierarchies

► Goal: extend LDA model so that:

- ► Goal: extend LDA model so that:
 - ▶ Topics are arranged in a tree (root \rightarrow abstract; leaves \rightarrow concrete)

- Goal: extend LDA model so that:
 - ► Topics are arranged in a tree (root \rightarrow abstract; leaves \rightarrow concrete)
 - ► The size and structure of the tree can be determined in a data-driven way

- Goal: extend LDA model so that:
 - ▶ Topics are arranged in a tree (root \rightarrow abstract; leaves \rightarrow concrete)
 - ► The size and structure of the tree can be determined in a data-driven way
- Documents can combine topics, but in a more constrained way

- Goal: extend LDA model so that:
 - ▶ Topics are arranged in a tree (root \rightarrow abstract; leaves \rightarrow concrete)
 - The size and structure of the tree can be determined in a data-driven way
- Documents can combine topics, but in a more constrained way
 - ▶ If a document draws words from one node, then it should also be somewhat likely to draw words from ancestor nodes

Topic Modeling with Hierarchies

- Goal: extend LDA model so that:
 - ► Topics are arranged in a tree (root \rightarrow abstract; leaves \rightarrow concrete)
 - The size and structure of the tree can be determined in a data-driven way
- Documents can combine topics, but in a more constrained way
 - ▶ If a document draws words from one node, then it should also be somewhat likely to draw words from ancestor nodes
- ▶ We'll discuss two main models:

Topic Modeling with Hierarchies

- Goal: extend LDA model so that:
 - ► Topics are arranged in a tree (root \rightarrow abstract; leaves \rightarrow concrete)
 - ► The size and structure of the tree can be determined in a data-driven way
- Documents can combine topics, but in a more constrained way
 - ▶ If a document draws words from one node, then it should also be somewhat likely to draw words from ancestor nodes
- We'll discuss two main models:
 - Nested Chinese Restaurant Process

Topic Modeling with Hierarchies

- Goal: extend LDA model so that:
 - ▶ Topics are arranged in a tree (root → abstract; leaves → concrete)
 - The size and structure of the tree can be determined in a data-driven way
- Documents can combine topics, but in a more constrained way
 - ▶ If a document draws words from one node, then it should also be somewhat likely to draw words from ancestor nodes
- We'll discuss two main models:
 - Nested Chinese Restaurant Process
 - Nested Hierarchical Dirichlet Process

Nested Chinese Restaurant Process

▶ Idea: Each document samples a path from an infinite tree

Source: Paisley et al [16]

Nested Chinese Restaurant Process

- ▶ Idea: Each document samples a path from an infinite tree
- ► Within each document, we can only select nodes (ie, topics) from the sampled path

Source: Paisley et al [16]

How to define distributions over paths in an infinite (or arbitrarily large) tree?

How to define distributions over paths in an infinite (or arbitrarily large) tree? Nested Chinese Restaurant Process

- How to define distributions over paths in an infinite (or arbitrarily large) tree?
 Nested Chinese Restaurant Process
- ▶ How to define distributions over arbitrarily large partitions?

- How to define distributions over paths in an infinite (or arbitrarily large) tree?
 Nested Chinese Restaurant Process
- How to define distributions over arbitrarily large partitions? Chinese Restaurant Process

Analogy: Sequence of customers entering a restaurant

- ► Analogy: Sequence of customers entering a restaurant
- ▶ Infinitely many tables, each with infinite capacity

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- ► First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- ▶ First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- ▶ First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

- Analogy: Sequence of customers entering a restaurant
- Infinitely many tables, each with infinite capacity
- ▶ First customer always sits at first table
- ▶ When $n \ge 1$ customers have been seated, the next customer follows these rules:
 - ▶ If the first k tables are occupied, with the i^{th} table containing m_i customers, sit at table i with probability $\frac{m_i}{n+\alpha}$
 - Sit at the next empty table with probability $\frac{n}{n+\alpha}$

▶ Parameter α : As $\alpha \to \infty$, number of occupied tables increases

► Stick-breaking construction:

- Stick-breaking construction:
 - ▶ Draw infinite sequence of beta-distributed variables:

$$V_k \sim \mathsf{Beta}(1,\alpha)$$
 for $k \ge 1$

- Stick-breaking construction:
 - ▶ Draw infinite sequence of beta-distributed variables:

$$V_k \sim \mathsf{Beta}(1,\alpha)$$
 for $k \ge 1$

 \blacktriangleright Draw table index k with probability $\pi_k = V_k \prod_{j=1}^{k-1} (1-V_j)$

- Stick-breaking construction:
 - ▶ Draw infinite sequence of beta-distributed variables:

$$V_k \sim \mathsf{Beta}(1,\alpha)$$
 for $k \ge 1$

 \blacktriangleright Draw table index k with probability $\pi_k = V_k \prod_{j=1}^{k-1} (1-V_j)$

- Stick-breaking construction:
 - ▶ Draw infinite sequence of beta-distributed variables:

$$V_k \sim \mathsf{Beta}(1,\alpha)$$
 for $k \ge 1$

 \blacktriangleright Draw table index k with probability $\pi_k = V_k \prod_{j=1}^{k-1} (1-V_j)$

- Stick-breaking construction:
 - ▶ Draw infinite sequence of beta-distributed variables:

$$V_k \sim \mathsf{Beta}(1,\alpha)$$
 for $k \ge 1$

▶ Draw table index k with probability $\pi_k = V_k \prod_{j=1}^{k-1} (1-V_j)$

- Stick-breaking construction:
 - ▶ Draw infinite sequence of beta-distributed variables:

$$V_k \sim \mathsf{Beta}(1,\alpha)$$
 for $k \ge 1$

▶ Draw table index k with probability $\pi_k = V_k \prod_{j=1}^{k-1} (1 - V_j)$

Nested CRP: Distribution Over Paths

► Analogy: Infinitely many restaurants, arranged in a tree

- Analogy: Infinitely many restaurants, arranged in a tree
- ▶ Customers enter the "root" restaurant and select a table

- Analogy: Infinitely many restaurants, arranged in a tree
- Customers enter the "root" restaurant and select a table
- Once seated, customers move to a restaurant indicated by a card at their table

- Analogy: Infinitely many restaurants, arranged in a tree
- Customers enter the "root" restaurant and select a table
- Once seated, customers move to a restaurant indicated by a card at their table
- This process repeats indefinitely at new restaurants

► A single draw from the NCRP is a distribution over infinite paths (finite-depth variant also exists)

- ► A single draw from the NCRP is a distribution over infinite paths (finite-depth variant also exists)
- ▶ Stick-breaking construction: $T \sim NCRP(\alpha)$ denotes:

- ► A single draw from the NCRP is a distribution over infinite paths (finite-depth variant also exists)
- ▶ Stick-breaking construction: $T \sim NCRP(\alpha)$ denotes:

 $V_r \sim \mathsf{Beta}(1, \alpha)$ for any finite-length path r

- A single draw from the NCRP is a distribution over infinite paths (finite-depth variant also exists)
- ▶ Stick-breaking construction: $T \sim NCRP(\alpha)$ denotes:

$$V_r \sim \mathrm{Beta}(1,\alpha) \qquad \text{for any finite-length path } r$$

$$V_{()} = 1$$

- A single draw from the NCRP is a distribution over infinite paths (finite-depth variant also exists)
- ▶ Stick-breaking construction: $T \sim NCRP(\alpha)$ denotes:

$$V_r \sim \mathsf{Beta}(1, lpha)$$
 for any finite-length path r $V_{()} = 1$ $\pi_{()} = 1$

- A single draw from the NCRP is a distribution over infinite paths (finite-depth variant also exists)
- ▶ Stick-breaking construction: $T \sim NCRP(\alpha)$ denotes:

$$\begin{split} V_r &\sim \text{Beta}(1,\alpha) &\quad \text{for any finite-length path } r \\ V_{()} &= 1 \\ \pi_{()} &= 1 \\ \pi_{r[1:\ell]} &= \pi_{r[1:\ell-1]} \cdot \left(V_{r[1:\ell]} \prod_{j=1}^{r[\ell]-1} (1 - V_{r[1:\ell-1],j}) \right) \end{split}$$

- A single draw from the NCRP is a distribution over infinite paths (finite-depth variant also exists)
- ▶ Stick-breaking construction: $T \sim NCRP(\alpha)$ denotes:

$$\begin{split} V_r &\sim \text{Beta}(1,\alpha) &\quad \text{for any finite-length path } r \\ V_{()} &= 1 \\ \pi_{()} &= 1 \\ \pi_{r[1:\ell]} &= \pi_{r[1:\ell-1]} \cdot \left(V_{r[1:\ell]} \prod_{j=1}^{r[\ell]-1} (1 - V_{r[1:\ell-1],j}) \right) \\ T &= \sum_{r: \text{infinite path}} \pi_r \delta_r \end{split}$$

Nested CRP: A Finite-Depth Example

▶ Draw an infinite tree of topics, $\theta_r \sim \mathsf{Dirichlet}(\alpha^{(\theta)})$

- ▶ Draw an infinite tree of topics, $\theta_r \sim \text{Dirichlet}(\alpha^{(\theta)})$
- ▶ Draw a global distribution over paths, $T \sim \mathsf{NCRP}(\alpha^{(V)})$

- ▶ Draw an infinite tree of topics, $\theta_r \sim \text{Dirichlet}(\alpha^{(\theta)})$
- ▶ Draw a global distribution over paths, $T \sim \mathsf{NCRP}(\alpha^{(V)})$
- ► For each document *d*:

- ▶ Draw an infinite tree of topics, $\theta_r \sim \mathsf{Dirichlet}(\alpha^{(\theta)})$
- ▶ Draw a global distribution over paths, $T \sim NCRP(\alpha^{(V)})$
- ► For each document *d*:
 - ▶ Draw a path $c_d \sim T$

- ▶ Draw an infinite tree of topics, $\theta_r \sim \mathsf{Dirichlet}(\alpha^{(\theta)})$
- ▶ Draw a global distribution over paths, $T \sim \mathsf{NCRP}(\alpha^{(V)})$
- ► For each document d:
 - ▶ Draw a path $c_d \sim T$
 - lacktriangle Draw a stick-breaking distribution over depths ϕ_d

- ▶ Draw an infinite tree of topics, $\theta_r \sim \mathsf{Dirichlet}(\alpha^{(\theta)})$
- ▶ Draw a global distribution over paths, $T \sim \mathsf{NCRP}(\alpha^{(V)})$
- ► For each document d:
 - ▶ Draw a path $c_d \sim T$
 - lacktriangle Draw a stick-breaking distribution over depths ϕ_d
 - ► For each word-slot *n*:

- ▶ Draw an infinite tree of topics, $\theta_r \sim \mathsf{Dirichlet}(\alpha^{(\theta)})$
- ▶ Draw a global distribution over paths, $T \sim NCRP(\alpha^{(V)})$
- ► For each document d:
 - ▶ Draw a path $c_d \sim T$
 - lacktriangle Draw a stick-breaking distribution over depths ϕ_d
 - ▶ For each word-slot *n*:
 - Draw a depth $z_{d,n} \sim \mathsf{Categorical}(\phi_d)$

- ▶ Draw an infinite tree of topics, $\theta_r \sim \mathsf{Dirichlet}(\alpha^{(\theta)})$
- ▶ Draw a global distribution over paths, $T \sim \mathsf{NCRP}(\alpha^{(V)})$
- ► For each document d:
 - Draw a path $c_d \sim T$
 - lacktriangle Draw a stick-breaking distribution over depths ϕ_d
 - ▶ For each word-slot n:
 - ▶ Draw a depth $z_{d,n} \sim \mathsf{Categorical}(\phi_d)$
 - ▶ Draw a vocabulary word $t_{d,n} \sim \mathsf{Categorical}(\theta[c_d[1:z_{d,n}]])$

NCRP Topic Model: Gibbs Sampling

▶ Collapsed Gibbs sampling (marginalize out depth proportions ϕ_d and topic vectors θ_r)

NCRP Topic Model: Gibbs Sampling

- ▶ Collapsed Gibbs sampling (marginalize out depth proportions ϕ_d and topic vectors θ_r)
- ► Griffiths et al [11]: Finite depth, uses order-dependent "restaurant analogy" formulation to avoid tracking infinitely many paths; each sampling step may grow or shrink the tree

NCRP Topic Model: Gibbs Sampling

- ▶ Collapsed Gibbs sampling (marginalize out depth proportions ϕ_d and topic vectors θ_r)
- ► Griffiths et al [11]: Finite depth, uses order-dependent "restaurant analogy" formulation to avoid tracking infinitely many paths; each sampling step may grow or shrink the tree
- ▶ Blei et al [3]: Uses lazy evaluation; if final layer is ever sampled, then start tracking one extra layer

▶ Infinitely many latent variables: need additional approximations

- ▶ Infinitely many latent variables: need additional approximations
- ► Start with finite-depth, finite-width tree

- Infinitely many latent variables: need additional approximations
- ► Start with finite-depth, finite-width tree
- Depth stays constant, but width may change

- Infinitely many latent variables: need additional approximations
- Start with finite-depth, finite-width tree
- Depth stays constant, but width may change
- Outside of the finite truncation, variational distributions are assumed constant

- Infinitely many latent variables: need additional approximations
- ► Start with finite-depth, finite-width tree
- Depth stays constant, but width may change
- Outside of the finite truncation, variational distributions are assumed constant
- ▶ Divide infinite set of paths into equivalence classes

- Infinitely many latent variables: need additional approximations
- Start with finite-depth, finite-width tree
- Depth stays constant, but width may change
- Outside of the finite truncation, variational distributions are assumed constant
- Divide infinite set of paths into equivalence classes
- If one equivalence class becomes sufficiently likely, add a representative path from it

Nested Hierarchical Dirichlet Process

▶ Idea: Global probability distribution over nodes, and each document samples a re-weighted version of that distribution

Nested Hierarchical Dirichlet Process

- Idea: Global probability distribution over nodes, and each document samples a re-weighted version of that distribution
- Handles "hybrid" topics better than NCRP

Source: Paisley et al [16]

lacktriangle Each node in infinite tree associated with a topic vector $heta_r$

- **Each** node in infinite tree associated with a topic vector θ_r
- ▶ Global distribution over paths drawn from an NCRP distribution (i.e., draw global stick-breaking proportions $V_{r,j}^*$)

- **Each** node in infinite tree associated with a topic vector θ_r
- ▶ Global distribution over paths drawn from an NCRP distribution (i.e., draw global stick-breaking proportions $V_{r,j}^*$)
- Per-document:
 - $lackbox{ Permutation of branches } z_{r,j}^d$

- **Each** node in infinite tree associated with a topic vector θ_r
- ▶ Global distribution over paths drawn from an NCRP distribution (i.e., draw global stick-breaking proportions $V_{r,j}^*$)
- Per-document:
 - lacktriangle Permutation of branches $z_{r,j}^d$
 - lacktriangleright "Re-weighting" stick-breaking proportions $V^d_{r,j}$

- **Each** node in infinite tree associated with a topic vector θ_r
- ▶ Global distribution over paths drawn from an NCRP distribution (i.e., draw global stick-breaking proportions $V_{r,j}^*$)
- Per-document:
 - lacktriangle Permutation of branches $z_{r,j}^d$
 - lacktriangle "Re-weighting" stick-breaking proportions $V^d_{r,j}$
 - $\,\blacktriangleright\,$ "Path-propagation" proportions U^d_r

NHDP Topic Model

- **Each** node in infinite tree associated with a topic vector θ_r
- ▶ Global distribution over paths drawn from an NCRP distribution (i.e., draw global stick-breaking proportions $V_{r,j}^*$)
- Per-document:
 - $\blacktriangleright \ \ {\it Permutation of branches} \ z^d_{r,j}$
 - lacktriangle "Re-weighting" stick-breaking proportions $V^d_{r,j}$
 - lacktriangle "Path-propagation" proportions U_r^d
- ▶ Together, $z_{r,j}^d$, $V_{r,j}^d$, and U_r^d define a document-specific distribution over nodes

NHDP Topic Model: Selecting Indices

▶ For each document d, for each node r, and for each $j \ge 1$, select $z^d_{r,j}$:

NHDP Topic Model: Selecting Indices

▶ For each document d, for each node r, and for each $j \ge 1$, select $z_{r,j}^d$:

Result defines how branches are permuted and copied (per document):

NHDP Topic Model: Path Propagation

Visualizing $V_{r,j}^d$ and U_r^d , ignoring branch permutations (i.e., assuming $z_{r,j}^d=j$)

NHDP Topic Model: Conditional Distributions

$$\begin{split} \theta_r &\sim \mathsf{Dirichlet}(\alpha^{(\theta)}) \\ V_{r,j}^* &\sim \mathsf{Beta}(1,\alpha^{(V^*)}) \\ V_{r,j}^d &\sim \mathsf{Beta}(1,\alpha^{(V)}) \\ U_r^d &\sim \mathsf{Beta}(\alpha_1^{(U)},\alpha_2^{(U)}) \\ z_{r,j}^d &\sim \sum_{k\geq 1} \left(V_{r,k}^* \prod_{i=1}^{k-1} (1-V_{r,i}^*)\right) \delta_k \\ c_n^d &\sim \sum_{r:\mathsf{path}} A(r,V^d,z^d) \, B(r,U^d) \, \delta_r \\ A(r,V^d,z^d) &= \prod_{m=0}^{\mathsf{len}(r)-1} \sum_{k\geq 1} \mathbbm{1} \left[z_{r[1:m],k}^d = r[m+1]\right] \left(V_{r[1:m],k}^d \prod_{i=1}^{k-1} \left(1-V_{r[1:m],i}^d\right)\right) \\ B(r,U^d) &= U_r^d \prod_{m=0}^{\mathsf{len}(r)-1} \left(1-U_{r[1:m]}^d\right) \\ t_n^d &\sim \mathsf{Categorical}(\theta_{c_n^d}) \end{split}$$

NHDP Topic Model: Plate Diagram

▶ Use a finite-depth, finite-width tree

- ▶ Use a finite-depth, finite-width tree
- lacktriangle Simplifications for document-specific indices $z_{r,j}^d$:

- ▶ Use a finite-depth, finite-width tree
- ▶ Simplifications for document-specific indices $z_{r,j}^d$:
 - Use Dirac- δ variational distributions

- ▶ Use a finite-depth, finite-width tree
- ▶ Simplifications for document-specific indices $z_{r,j}^d$:
 - Use Dirac- δ variational distributions
 - lacktriangledown For any d and any r, the indices $z_{r,j}^d$ do not repeat

- ▶ Use a finite-depth, finite-width tree
- lacktriangle Simplifications for document-specific indices $z_{r,j}^d$:
 - Use Dirac- δ variational distributions
 - For any d and any r, the indices $z_{r,j}^d$ do not repeat
 - For each document, greedy algorithm selects small number of nodes to include

- ▶ Use a finite-depth, finite-width tree
- lacktriangle Simplifications for document-specific indices $z_{r,j}^d$:
 - Use Dirac- δ variational distributions
 - For any d and any r, the indices $z_{r,j}^d$ do not repeat
 - For each document, greedy algorithm selects small number of nodes to include
- Greedy algorithm: start with root, add a node only if it increases ELBO by some threshold

- ▶ Use a finite-depth, finite-width tree
- lacktriangle Simplifications for document-specific indices $z_{r,j}^d$:
 - Use Dirac- δ variational distributions
 - For any d and any r, the indices $z_{r,j}^d$ do not repeat
 - For each document, greedy algorithm selects small number of nodes to include
- Greedy algorithm: start with root, add a node only if it increases ELBO by some threshold
- Remainder of algorithm is a standard application of stochastic variational inference

► Scalable algorithms

- Scalable algorithms
- ► Interpreting models

- Scalable algorithms
- Interpreting models
- Incorporating human feedback

- Scalable algorithms
- Interpreting models
- Incorporating human feedback
- Moving beyond the bag-of-words model

- Scalable algorithms
- Interpreting models
- Incorporating human feedback
- Moving beyond the bag-of-words model
- Frameworks for Bayesian non-parametric inference

Acknowledgements

Advisor: Sanjoy Dasgupta

▶ LANL Mentor: Kari Sentz

Research Exam Committee:

Vineet Bafna (chair), Yoav Freund, Julian McAuley

Thank You!

 Sanjeev Arora, Rong Ge, Yonatan Halpern, David Mimno, Ankur Moitra, David Sontag, Yichen Wu, and Michael Zhu.

A practical algorithm for topic modeling with provable guarantees.

In International Conference on Machine Learning, pages 280-288, 2013.

[2] David Barber.

Bayesian reasoning and machine learning.

Cambridge University Press, 2012.

Online version available at http://www.cs.ucl.ac.uk/staff/d.barber/brml/; Draft dated 2017-02-02.

[3] David M Blei, Thomas L Griffiths, and Michael I Jordan.

The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies. Journal of the ACM (JACM), 57(2):7, 2010.

[4] David M Blei, Alp Kucukelbir, and Jon D McAuliffe.

Variational inference: A review for statisticians.

Journal of the American Statistical Association, (just-accepted), 2017.

[5] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.

Journal of machine Learning research, 3(Jan):993-1022, 2003.

[6] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman. Indexing by latent semantic analysis.

Journal of the American society for information science, 41(6):391, 1990.

[7] Arthur P Dempster, Nan M Laird, and Donald B Rubin.

Maximum likelihood from incomplete data via the EM algorithm.

Journal of the royal statistical society. Series B (methodological), pages 1-38, 1977.

[8] Thomas S Ferguson.

A bayesian analysis of some nonparametric problems.

The annals of statistics, pages 209-230, 1973.

 Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Springer, 2001.

[10] Samuel J Gershman and David M Blei.

A tutorial on bayesian nonparametric models. *Journal of Mathematical Psychology*, 56(1):1–12, 2012.

[11] Thomas L Griffiths, Michael I Jordan, Joshua B Tenenbaum, and David M Blei. Hierarchical topic models and the nested chinese restaurant process. In Advances in neural information processing systems, pages 17–24, 2004.

[12] Thomas L Griffiths and Mark Steyvers.

Finding scientific topics.

Proceedings of the National academy of Sciences, 101(suppl 1):5228-5235, 2004.

[13] Gregor Heinrich.

Parameter estimation for text analysis.

Technical report, 2005.

[14] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference.

The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

[15] Thomas Hofmann.

Probabilistic latent semantic analysis.

In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages 289–296. Morgan Kaufmann Publishers Inc., 1999.

[16] John Paisley, Chong Wang, David M Blei, and Michael I Jordan.

Nested hierarchical dirichlet processes.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):256-270, 2015.

[17] Rajesh Ranganath, Sean Gerrish, and David Blei.

Black box variational inference.

In Artificial Intelligence and Statistics, pages 814-822, 2014.

[18] Rajesh Ranganath, Dustin Tran, Jaan Altosaar, and David Blei.

Operator variational inference.

In Advances in Neural Information Processing Systems, pages 496-504, 2016.

[19] Philip Resnik and Eric Hardisty.

Gibbs sampling for the uninitiated.

Technical report, University of Maryland, College Park, 2010.

[20] Jayaram Sethuraman.

A constructive definition of dirichlet priors.

Statistica sinica, pages 639-650, 1994.

[21] Yee W Teh, Michael I Jordan, Matthew J Beal, and David M Blei. Sharing clusters among related groups: Hierarchical dirichlet processes. In Advances in neural information processing systems, pages 1385–1392, 2005.

[22] Chong Wang and David M Blei.

Variational inference for the nested chinese restaurant process.

In Advances in Neural Information Processing Systems, pages 1990-1998, 2009.

[23] Wikipedia.

Exponential family.

https://en.wikipedia.org/w/index.php?title=Exponential_family&oldid=787816251. Accessed September 2017.

[24] Wikipedia.

Latent dirichlet allocation.

 $\label{lem:https://en.wikipedia.org/w/index.php?title=Latent_Dirichlet_allocation\&oldid=797823717. Accessed September 2017.$

[25] Wikipedia.

Latent semantic analysis.

https://en.wikipedia.org/w/index.php?title=Latent_semantic_analysis&oldid=798597246. Accessed September 2017.

[26] Wikipedia.

Probabilistic latent semantic analysis.

https:

//en.wikipedia.org/w/index.php?title=Probabilistic_latent_semantic_analysis&oldid=783155225.

Accessed September 2017.