CSE 3320 Operating Systems Distributed and Parallel File Systems

Jia Rao

Department of Computer Science and Engineering

http://ranger.uta.edu/~jrao

Recap of Previous Classes

- File systems provide an abstraction of permanently stored data
 - Namespace: files and directories
 - Translate paths to corresponding locations on disks
 - Space management and optimizations
 - Free blocks
 - Caching and prefetching
 - Reliability and consistency

Distributed and Parallel File Systems

- Provide similar abstractions of data on multiple machines
 - Namespace: path name → machine ID: disk block address
 - Management: placement of files on machines
 - Replication
 - Striping
- Designed for performance and availability

Distributed v.s. Parallel File Systems

Design objectives

The boundary is blurring

Fault-tolerance v.s. Concurrent performance

Data distribution

Entire file on a single node v.s. striping over multi nodes

Symmetry

Storage co-located with apps v.s. storage separated from apps

Fault-tolerance

Designed for fault-tolerance v.s. relying on enterprise storage

Workload

Loosely coupled, distributed apps v.s. coordinated HPC apps

Examples

- Distributed File Systems
 - NFS, GFS (Google File System), HDFS (Hadoop Distributed File System), GlusterFS
- Parallel File Systems
 - PVFS (Parallel Virtual File System), Lustre, OCFS2, GPFS

Design Issues (1)

Nameserver

- maps file names to objects (files, directories, blocks)
- Implementation options
 - Single name Server
 - □ Simple implementation, reliability and performance issues
 - Several Name Servers (on different hosts)
 - ☐ Each server responsible for a domain

Design Issues (2)

Caching

- Caching at the client: Main memory vs. Disk
- Cache consistency
 - Server initiated
 - □ Server informs cache managers when data in client caches is stale
 - □ Client cache managers invalidate stale data or retrieve new data
 - Disadvantage: extensive communication
 - Client initiated
 - □ Cache managers at the clients validate data with server before returning it to clients
 - Disadvantage: extensive communication
 - Prohibit file caching when concurrent-writing
 - □ Several clients open a file, at least one of them for writing
 - ☐ Server informs all clients to purge that cached file
 - Lock files when concurrent-write sharing (at least one client opens for write)

Design Issues (3)

Update (write) policy

- Once a client writes into a file (and the local cache), when should the modified cache be sent to the server?
 - Write-through: all writes at the clients, immediately transferred to the servers
 - Advantage: reliability
 - □ Disadvantage: performance, it does not take advantage of the cache
 - Delayed writing: delay transfer to servers
 - Advantages:
 - Many writes take place (including intermediate results) before a transfer
 - ☐ Some data may be lost
 - □ Disadvantage: reliability
 - Delayed writing until file is closed at client
 - ☐ For short open intervals, same as delayed writing
 - ☐ For long intervals, reliability problems

Design Issues (4)

Availability

- What is the level of availability of files in a distributed file system?
- Use replication to increase availability, i.e. many copies (replicas) of files are maintained at different sites/servers
- Replication issues:
 - How to keep replicas consistent
 - How to detect inconsistency among replicas

Design Issues (5)

Scalability

- Deal with a growing system?
- Issues
 - Node join and leave (fail)
 - Cache consistency
 - Nameserver
- Solutions
 - Replication
 - Design cache consistency protocol for scalability
 - Multiple name (meta) servers
 - ▶ Take advantage of multi-thread and multi-core

Example - GlusterFS (DFS)

Example – GlusterFS (2)

- Three ways to place files
 - Distribute: place entire files on different servers
 - Pros: good scalability, efficient disk space usage
 - Cons: poor reliability
 - Replicate: place identical copies of files on different servers
 - Pros: reliability
 - Cons: wasted disk space, moderate scalability
 - Stripe: place only part of a file on one server
 - Pros: good performance for concurrent and random access
 - Cons: poor scalability and reliability

Example - PVFS(PFS)

Example – PVFS (PFS)

Significant improvement in throughput What could be the issues?

- 1. Sever coordination affects efficiency
- 2. Client QoS?

DFS and PFS in the Cloud (1)

 Both approaches provide cheap, reliable and high-performance cloud storage solutions

Use case-1

DFS and PFS in the Cloud (2)

Use case-2

Some Real Results...

- Host a 8-VM Hadoop cluster on 8 DELL machines
- Performed micro and real I/O intensive workloads
- Two storage solutions: PVFS and local ext3

				PVFS			Local ext3				
Gridmix websort 20GB data				2391 second			4693 second				
PVFS		16k	32k	e	64k	256k	1M				
	Sequential	58.89	60.15		60.47	104.80	130.47			Network bandwidth oottleneck	
	random	12.34	20.84		33.51	50.43	108.71		bottlenec		
								1			
		16k	32k		64k	256k	1M				
Local ext3	Sequential	120.11	120.56		120.39	120.39	120.57				
	random	4.01	7.80	1	14.71	43.20	92.19				