국민 건강조사를 활용한 스트레스 예측 모형

The World is a Global Village and the Peoples of the World are One Human Family. May We Strive of Peace and Humanity with the Spirit of Global Cooperation Society.

연구 배경 및 목적

- 현대 사회에서 도시 삶의 질(Urban Quality of Life)은 국가 및 도시 경쟁력의 핵심 요소로 대두됨
- 본 연구는 국민영양조사 데이터를 통해 우리나라 도시 삶의 질을 분석하고 진단하기 위해 모델을 만들고자 함
- 궁극적으로 대한민국 경쟁력 향상을 위해 도시 삶의 질 향상을 위한 실질적이고 효과적인 정책 수립에 기여하고자 함

연구내용

1. 데이터 전처리

전처리 과정

- 결측치, 무응답, 모르겠음 제거
- 명목척도인 '성별' one-hot encoding 진행
- 학습 세트와 검증 세트를 8:2 비율로 설정
- 과적합을 방지해주기 위해 <표준화와 정규화 중 표준화 진행>

전처리 결과

2. 모델학습 (다중 선형 회귀)

다중 선형 회귀 모델

- Statsmodel 라이브러리 사용
- 상수항 추가하여 분석 진행
- N_WAT_C (물 섭취량), incm (소득) 변수 유의하지 않음
- 다중 공선성 문제 확인

		Sat, 16 Nov 2024 05 47:26 4552		R-squared: Adj. R-squared: F-statistic: Prob (F-statistic): Log-Likelihood: AIC: BIC:		122.9	
	coef	std err		t	P> t	ľ0.025	0.975]
const	1.9022	0.066	28	655	0.000	1.772	2.032
age	0.0079	0.001			0.000	0.006	0.009
incm	0.0023	0.009		260	0.795	-0.015	0.020
edu	-0.0450	0.011	-3	973	0.000		-0.023
D_1_1	-0.1509	0.012	-12		0.000	-0.174	
BP16_1	0.0444	0.007	5	919	0.000	0.030	0.059
B01	-0.0296	0.010	-2	.834	0.005	-0.050	-0.009
BP_PHQ_2	-0.3518	0.017	-21	034	0.000	-0.385	-0.319
N_WAT_C	0.0006	0.003	0	183	0.855	-0.006	0.007
L_BR_FQ	0.0255	0.009	2	782	0.005	0.008	0.043
sex_F	0.9410	0.034	27	594	0.000	0.874	1.008
sex_M	0.9612	0.035		280	0.000	0.892	1.030
Omnibus: Prob(Omnibus):				Durbin-Watson: Jarque-Bera (JB):			1.918 157.860
Skew: Kurtosis:		-0.372 3.527		Prob(JB): Cond. No.			5.26e-35 2.91e+16

[2] The smallest eigenvalue is 1.72e-26. This might indicate that there are

strong multicollinearity problems or that the design matrix is singular

연구방법

3. 모델학습 (다항 회귀)

다항 선형 회귀 모델

- 변수들을 Polynomial transformer를 사용하여 2차항으로 전환
- 해당 변수들을 다항 선형 회귀 진행

분석)

- Tensorflow Keras 고수준 api를 활용한 피드 포워드 신경망구현
- 최적의 하이퍼 파라미터를 찾기 위해 그리드 서치 진행
- 노드 범위 32~256개, 은닉층 개수 1~3개

RELU

ADAM

Mean Squared Error

Mean Absolute Error

Input Layer	Hidden Layers	Output Layer

Activation Function

Optimizer

Loss Function

Metric

# 최적 아이퍼파타미터도 모델 약 best_model = tuner.hypermodel.bu best_model.fit(X_train, y_train,	
Epoch 1/50 /usr/local/lib/python3.10/dist-p	ackages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_c
super()init(activity_regu	larizer=activity_regularizer, **kwargs)
91/91	
Epoch 2/50	
91/91	
Epoch 3/50	
91/91	Os 3ms/step - loss: 0.4736 - mae: 0.5345 - val_loss: 0.5059 - val_mae: 0.5460
Epoch 4/50	
91/91	
Epoch 5/50	
91/91	
Epoch 6/50	
91/91	
Epoch 7/50	
91/91	
Epoch 8/50	
91/91	
Epoch 9/50	
91/91	Os 2ms/step - loss: 0.4603 - mae: 0.5142 - val_loss: 0.4846 - val_mae: 0.5311
Epoch 10/50	
0.1/0.1	0 0 / 1 0 100 0 5070 1 0 7000 1 0 5170

• 그리드 서치 결과

Best units for layer no.1	192		
Best number of layers	3		
Best learning rate	0.005337024633539518		

연구 결론

- 도시 삶의 질 향상을 위해서는 스트레스 관리가 필요하며, 우울감과 주관적 건강인지, 그리고 아침식사가 중요하다는 단서를 얻음
- 따라서 본 연구를 통해 우리나라 각 지자체가 구성원들의 스트레스 관리를 위해 우울감과 주관적 건강인지, 아침식사 빈도를 진단할 필요성이 있다고 판단됨
- 또한, 우울감을 해소하기 위한 대책 마련, 국민 건강 증진 도모, 아침식사 권장 캠페인 등을 제안하는 바임.

연구 의의 및 한계

- 통계적으로 변수를 찾고 선형과 비선형 관계를 모두 분석해보았음. 또한, 도시 삶의 질 향상을 위한 단서를 도출함
- 스트레스 지수를 R-squared 기준으로 매우 높은 설명력을 가공해내지 못했으며 표준화로 인한 underfitting 이 일어났을 수 있음
- 도시 삶의 질 향상을 위한 다소 추상적인 정책을 제안함

참고문헌

• 질병관리청. (2022). *국민건강영양조사 원시자료 이용지침서: 제 9기* 1차년도 (2022). 질병관리청. https://knhanes.kdca.go.kr