代数学 [第5回レポート課題解答例

担当:大矢 浩徳 (OYA Hironori)*

問題 1

4次2面体群を

$$D_4 = \{e, \sigma, \sigma^2, \sigma^3, \tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\}$$

と書く、ここで、 $\sigma^4=e, \tau^2=e, \tau\sigma=\sigma^{-1}\tau$ である。 $S:=\{e,\sigma,\sigma^2,\sigma^3\}, T:=\{e,\tau\}\subset D_4$ とする。S,T はそれぞれ D_4 の部分群である。以下の問に答えよ:

- (1) D_4 における S による左剰余類 (D_4/S の元) を全て記述せよ.
- (2) D_4 における S による右剰余類 ($S \setminus D_4$ の元) を全て記述せよ.
- (3) D_4 における T による左剰余類 (D_4/T の元) を全て記述せよ.
- (4) D_4 における T による右剰余類 $(T \setminus D_4$ の元) を全て記述せよ.
- (5) D_4 の S に関する左完全代表系,T に関する左完全代表系をそれぞれ 1 つずつ記述せよ.
- (6) D_4 における S の指数 $[D_4:S]$, T の指数 $[D_4:T]$ はそれぞれいくらか.

問題 1 解答例。

(1)
$$S = \{e, \sigma, \sigma^2, \sigma^3\}, \tau S = \{\tau, \tau \sigma, \tau \sigma^2, \tau \sigma^3\} (= \{\tau, \sigma \tau, \sigma^2 \tau, \sigma^3 \tau\}).$$

(2)
$$S = \{e, \sigma, \sigma^2, \sigma^3\}, S\tau = \{\tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau\}.$$

(3)
$$T = \{e, \tau\}, \sigma T = \{\sigma, \sigma\tau\}, \sigma^2 T = \{\sigma^2, \sigma^2\tau\}, \sigma^3 T = \{\sigma^3, \sigma^3\tau\}.$$

$$(4) \ T = \{e,\tau\}, T\sigma = \{\sigma,\tau\sigma\} (= \{\sigma,\sigma^3\tau\}), T\sigma^2 = \{\sigma^2,\tau\sigma^2\} (= \{\sigma^2,\sigma^2\tau\}), T\sigma^3 = \{\sigma^3,\tau\sigma^3\} (= \{\sigma^3,\sigma\tau\}).$$

(5) D_4 の S に関する左完全代表系の例: $\{e, \tau\}$, D_4 の T に関する左完全代表系の例: $\{e, \sigma, \sigma^2, \sigma^3\}$.

(6)
$$[D_4:S]=2, [D_4:T]=4.$$

問題 1 補足解説. 剰余類を全て列挙する際には例えば次のように考えれば良い. ここでは (3) を例に出して説明を行う ((1),(2),(4) も同様である):

最初に単位元eを含むTによる左剰余類を考えると、

$$eT = \{eg \mid g \in T\} = \{e, \tau\} (=T)$$

となる. 次に、上の eT には含まれない元、例えば σ を含む T による左剰余類を考えると、

$$\sigma T = \{\sigma g \mid g \in T\} = \{\sigma, \sigma\tau\}$$

となる. 次に,ここまでで既に見た $eT \cup \sigma T$ には含まれない元,例えば σ^2 を含む T による左剰余類を考えると,

$$\sigma^2 T = \{ \sigma^2 q \mid q \in T \} = \{ \sigma^2, \sigma^2 \tau \}$$

となる. 次に,ここまでで既に見た $eT\cup \sigma T\cup \sigma^2 T$ には含まれない元,例えば σ^3 を含む T による左剰余類を考えると,

$$\sigma^{3}T = \{\sigma^{3}q \mid q \in T\} = \{\sigma^{3}, \sigma^{3}\tau\}$$

 $^{^*}$ $e ext{-}mail:$ hoya@shibaura-it.ac.jp

となる. 以上で D_4 の全ての元が現れたので, D_4 の T による左剰余類への分割が,

$$D_4 = T \cup \sigma T \cup \sigma^2 T \cup \sigma^3 T$$

と得られたことになる. (つまり, $D_4/T = \{T, \sigma T, \sigma^2 T, \sigma^3 T\}$.)

一般に群 G の部分群 H に関する左 (右) 完全代表系は,H による全ての左 (右) 剰余類からちょうど 1 つづつ,元を抜き出してくれば良い.指数 [G:H] は G を H による左 (右) 剰余類に分割した際にいくつに分割されるかという数である.これは定義より,商集合 G/H (または $H\backslash G$) の元の個数に他ならない.G の H に関する左 (右) 完全代表系の元の個数ということもできる.上だと $D_4/T=\{T,\sigma T,\sigma^2 T,\sigma^3 T\}$ なので, $[D_4:T]=4$ である.

問題 1(1), (2) より,

$$gS = Sg \ \forall g \in D_4$$

が成立することがわかる. 一方(3),(4)より、

$$\sigma T \neq T \sigma$$

なので、T に関してはS の上記の性質の類似は成立しないことがわかる. これは、

S は D_4 の正規部分群 (normal subgroup) であるが、T はそうではない

という事実に他ならない.