- Q1. Design an DFA for the regular language L={baaa} defined over $\Sigma = \{a,b\}$.
- Q2. Design an DFA for the regular language L={w $\in \Sigma^*$ | w $\neq \in$ and the first and the last character is same} defined over Σ = {p,q}.
- Q3. Design an DFA for the regular language L={ $w \in \Sigma^* \mid w \neq \varepsilon$ and the first and the last character is not same} defined over $\Sigma = \{p,q\}$.
- Q4. Design an DFA for the regular language L={w $\in \Sigma^*$ | w $\neq \epsilon$ and w characters alternate between 0's and 1's } defined over Σ = {0,1} (Square Wave).
- Q5. Design an NFA (that is surely not an DFA) for the regular language L={w $\in \Sigma^*$ | w ends in cab} defined over Σ = {p,q,r}.
- Q6. Design an NFA (that is surely not an DFA) for the regular language L={w $\in \Sigma^*$ | some character in Σ appears at most twice in w} defined over Σ = {p,q,r}.
- Q7. Design an NFA (that is surely not an DFA) for the regular language L={w $\in \Sigma^*$ | the third last character of w is p} defined over Σ = {p,q}. Your NFA should use at most four states.
- Q8. Transform the NFA obtain by solving Q7 in to an DFA using subset construction method with lazy expansion.