HW 11

5.2.14a

The group operation is associative: it is required to prove that for $\alpha, \beta, \gamma \in \hat{G}$, $(\alpha\beta)\gamma = \alpha(\beta\gamma)$. This follows because $(\alpha(z)\beta(z))\gamma(z) = \alpha(z)(\beta(z)\gamma(z))$ as an equation in \mathbb{C} . Similarly, commutativity of multiplication in \mathbb{C} implies commutativity of the group operation in \hat{G} .

The identity element is the constant function $\epsilon(z) = 1$ for all $z \in G$, because for any $\alpha \in \hat{G}$, $\alpha(z)\epsilon(z) = \alpha(z)$.

Given $\alpha \in \hat{G}$, the inverse α^{-1} is given by $\alpha^{-1}(z) = \alpha(z)^{-1}$ for all $z \in G$. This is well-defined because $\alpha(z) \neq 0$ for all $z \in G$ (0 is not a root of unity), and $\alpha(z)\alpha(z)^{-1} = \alpha(z)\alpha(z)^{-1} = 1$, hence $\alpha\alpha^{-1} = \epsilon$.

5.2.14b

Let \mathbb{C}' be the group of roots of unity in \mathbb{C} . Let j be the square root of -1 in \mathbb{C} .

Write $G = \langle x_1 \rangle \times \langle x_2 \rangle \dots \langle x_r \rangle$ and let n_i be the order of x_i , and let $\chi_i \in \hat{G}$ be as in the hint. Let F be the function from $G \to \hat{G}$ given by $F(x_1^{e_1}, x_2^{e_2} \dots x_n^{e_n}) = \chi_1^{e_1} \chi_2^{e_2} \dots \chi_n^{e_n}$. It is easy to check that F is an injective homomorphism.

We prove that F is surjective. Let $\phi \in \hat{G}$, in other words $\phi : \langle x_1 \rangle \times \langle x_2 \rangle \dots \langle x_r \rangle \to \mathbb{C}'$ is a homomorphism. Since the x_i generate G, ϕ is uniquely determined by its action on each x_i . $\phi(x_i)$ is a root of unity of order dividing n_i , so we can write $\phi(x_i) = \chi_i^{e_i}$ for some e_i since $\chi_i(x_i) = e^{\frac{2\pi j}{n_i}}$ is a primitive n_i -th root of unity. Hence $\phi = F(x_1^{e_1}, x_2^{e_2} \dots x_n^{e_n})$.

5.2.15

Let us use the convention that if $G = \langle a \rangle \times \langle b \rangle$ then a has order 8 and b has order 4 (this is always possible since the direct product gives $G \cong C_8 \times C_4$). If $G = \langle a \rangle \times \langle b \rangle$ we have $G = \langle a^3 \rangle \times \langle b \rangle$ as well since $\langle a \rangle = \langle a^3 \rangle$; similarly we can replace a with a^3, a^5, a^7 and we can replace b with b^3 .

Since ord(a)=8 we have $a=x^iy^j$ for some $i\in(0,8)$ with i coprime with 8 since otherwise the 8 exponents of x in $x^iy^j, x^{2i}y^{2j}...$ are not distinct. We can replace a with some power of a a' such that $a'=xy^k, G\cong\langle a'\rangle\times\langle b\rangle$. Hence we first classify all such a',b.

If b is an element of $\langle y \rangle$, we have $b \neq y^2$ (otherwise b has order 2), and some power of b is y^{-1} , hence some power is y^-k . Hence $\langle a' \rangle \times \langle b \rangle$ contains x as well as y^{-1} , and since a' has order 8 and b has order 4, $G \cong \langle a' \rangle \times \langle b \rangle$. Hence we have $G \cong \langle xy^j \rangle \times \langle y \rangle$ and $G \cong \langle xy^j \rangle \times \langle y^3 \rangle$ for $j \in [0,3]$. Taking odd powers of xy^j we have $G \cong \langle x^iy^j \rangle \times \langle y^k \rangle$ where i,k odd.

If b is not an element of $\langle y \rangle$ we have $a=xy^i, b=x^jy^k$ with j even. Similarly to the above, we replace b with powers of b such that j=2 so $a=xy^i, b=x^2y^k$. Let l be arbitrary; since y^l can be written a product of powers of a and b in a unique way, y^l is some power of $a^{-2}b=y^{k-2i}$. Working modulo 4,

k-2i must be congruent to 1 or -1, or k=2i+-1. Since 2i is either 0 or 2 modulo 4, we have k=1 or 3. Hence we have $a=xy^i, b=x^2y^j$ where i is arbitrary and j is even. Taking odd powers of a gives $a=x^hy^i, h$ odd. Taking odd powers of b we have $b=x^2y^j$ or $b=x^{-2}y^{-j}$, j even, which is equivalent to x^6y^j, j even.

Hence the full list is: either

 $G \cong \langle x^i y^j \rangle \times \langle y^k \rangle$ where i, k odd.

 $G \cong \langle x^h y^i \rangle \times \langle x^i y^j \rangle$ where h odd, i = 2, 6, j even.

5.4.4

First, every commutator in S_n is even since $\epsilon(x^{-1}y^{-1}xy) = \epsilon(xx^{-1})\epsilon(yy^{-1})$ where ϵ is the sign-counting homomorphism.

Using the identity [(12), (23)] = (12)(23)(12)(23) = (132) we see that any 3-cycles lies in the commutator. Since the 3-cycles in S_4 generate A_4 , $S'_4 = A_4$.

Alternatively, from the identity [(12)(34), (23)] = (14)(23) we have S'_4 contains the group generated by 3-cycles (a subgroup of order 3) as well as V_4 (of order 4); hence it has size at least 12, hence it is A_4 .

For A_4' : looking at the subgroup lattice of S_4 , the only candidates are the trivial group, V_4 and A_4 . It cannot be the trivial group since A_4/A_4' is abelian. Also since $A_4/V_4 = C_3$ is abelian, by 7.4 $A_4' \leq V_4$. Hence $A_4' = V_4$.

5.4.5

Similar to the above, the 3-cycles generate A_n and are contained in S'_n hence $S'_n = A_n$.

5.4.14

We show that $G = D \times U$ as an internal direct product. D and U are both contained in G.