Outline

- Definition & main principles
- Several extensions of linear regression
- Trees and forests
- Deep learning

Tree

Tree = Model based on a series of splitting rules

Tree

Tree = Model based on a series of splitting rules

Tree

- Training is based on the optimization of a criterion measuring the level of « purity » of each terminal node (Gini) or its accuracy (MSE).
- The tree is pruned in order to keep it relatively simple. The level of pruning is optimized by cross-validation

A « toy » example

	X1	X2	Υ
1	15	0	2.1
2	20	0	3.2
3	22	1	7.0
4	25	1	7.8
5	30	1	8.9
6	35	0	4.1

```
library(rpart)
library(rpart.plot)

Model<-rpart(Y~X1+X2, data=Training, control=rpart.control(minsplit = 2))
rpart.plot(Model)</pre>
```


Instability of trees

```
X1
          X2
     15 0
                2.1
     20
                3.2
3
     22
                7.0
           1
4
     25
                7.8
     30
           1
                8.9
5
                                      8.1
     35
                4.1
6
```


How to reduce the instability and improve the accuracy of the predictions?

- Bagging
- Boosting

Bagging

- Resample K datasets from the original training dataset (bootstrap)
- Train a tree using each of the K datasets (and a subset of inputs)
- Average the K resulting trees

Hyper-parameters:

- Value of K,
- number of inputs (features) tested at each node of each tree.

Training

- We train **ntrees** trees from the training dataset
- Each tree is trained from a bootstrap sample of data
- The number ntrees needs to be optimized (often, 500 is enough)

Training

- Each terminal node includes N data (N=10 by default)
- Each terminal node returns one category
- The category of each node corresponds to the majority of the data of this node

Training

- Each split of each tree is based on one of the features (inputs) available
- This feature is selected to minimize the Gini impurity or MSE
- At each split, only mtry features are considered, randomly chosen among the whole set of features available
- The value of mtry is either set to its default value or optimized by crossvalidation

Prediction with a forest

- For each X, get ntrees (ex:500) categories: c2, c5, c2, c1,
- Compute the proportions of each of the categories
- Prediction=category with the highest probability

Useful R packages

rpart Trees

randomForest Random forest

ranger Fast implementation of random forest

Algorithm: fast implementation of random forest

- Not practical to use the standard randomForest R function due to the large size of the dataset
- Use of the ranger package

ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R

Marvin N. Wright Universität zu Lübeck Andreas Ziegler Universität zu Lübeck, University of KwaZulu-Natal

10.18637/jss.v077.i01

Fast implementation of random forest

- Not practical to use the standard randomForest R function due to the large size of the dataset
- Use of the ranger package

10.18637/jss.v077.i01

Example: maize biomass

https://github.com/davemakowski/TP_machinelearning

```
####Regression tree
library(rpart)
library(rpart.plot)

Mod_tree<-rpart(B~T1+T2+T3+RAD1+RAD2+RAD3,data=DataSet)
print(Mod_tree)
#dev.new()
par(mfrow=c(1,1))
rpart.plot(Mod_tree)</pre>
```



```
library(randomForest)
Mod_RF<-randomForest(B~T1+T2+T3+RAD1+RAD2+RAD3,data=DataSet,ntree=500, mtry=6)
Mod_RF
```

```
Call:
```

>

 $randomForest(formula = B \sim T1 + T2 + T3 + RAD1 + RAD2 + RAD3,$ data = DataSet, ntree = 500, mtry = 6)

Type of random forest: regression

Number of trees: 500

No. of variables tried at each split: 6

Mean of squared residuals: 1295.703 % Var explained: 96.08

 Mod_RF plot(Mod_RF) Error

trees

varImpPlot(Mod_RF,type=2)

Mod_RF


```
RMSE rf<-sqrt(mean((DataSet$B-predict(Mod RF))^2))
RMSE rf
#Cross-validation
B pred rf<-rep(NA,length(DataSet$B))
List year<-unique(DataSet$Year)</pre>
for (i in 1:length(List year))
Training i<-DataSet[DataSet$Year!=List year[i],]</pre>
Test i<-DataSet[DataSet$Year==List year[i],]
Mod i<-randomForest(B~T1+T2+T3+RAD1+RAD2+RAD3,data=Training i, ntree=200)
B rf i<-predict(Mod i, newdata=Test i)
B pred rf[DataSet$Year==List year[i]]<-B rf i
                                                                                         > RMSE_rf
                                                                                         [1] 35.99588
RMSEP rf<-sqrt(mean((DataSet$B-B pred rf)^2))
RMSEP rf
                                                                                         > RMSEP_rf
                                                                                         [1] 131.1415
```

