Problem 1.3

(a) For N=8 particles, there are $2^N=256$ possible microstates, and N+1=9 possible macrostates. Via Pascal's triangle, one can, for reasonable values of N and with a bit of work, determine the number of microstates for one macrostate:

N									
0	1								
1	1	1							
2	1	2	1						
3	1	3	3	1					
4	1	4	6	4	1				
5	1	5	10	10	5	1			
6	1	6	15	20	15	6	1		
7	1	7	21	35	35	21	7	1	
8	1	8	28	56	70	56	28	8	1
	0	1	2	3	4	5	6	7	8
					\overline{n}				

Thus, for n = 4, W(n) = 70 and $P(n) = 70/256 \approx 27\%$. To generalize this for any N and n without having to explicitly write out Pascal's triangle, we can express the value for n from a selection of N using the combination notation ${}_{N}C_{n}$, where

$$_{N}C_{n} = {N \choose n} = \frac{N!}{n!(N-n)!}$$
 (1)

In other words, calculating for ${}_{N}\mathbf{C}_{n}$ yields the number of ways that n particles out of N can be in one partition of the box.

(b) The macrostate n = N/2 is much more probable than the macrostate n = N because the macrostate n = N/2 is associated with more microstates that are indistinguishable from each other.