МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ІВАНА ФРАНКА

Факультет прикладної математики та інформатики

Кафедра програмування

ЛАБОРАТОРНА РОБОТА № 11-12

Виконала: студентка групи ПМОм-11 Кравець Ольга

Алгоритми і скінченні автомати

Завдання 1

Побудувати автомат Мура для такої задачі. Задані три цілі числа p,q,r. Переставити їх місцями так, щоб виконувалась умова: p≤q≥r.

Алгоритм задачі:

- 1. Прочитати три числа: p, q, r.
- 2. Визначити перестановку чисел, яка відповідає умові $p \le q \le r$.
- 3. Перейти у стан, що відповідає цій перестановці.
- 4. У відповідному стані видати відсортовану трійку.

Операції:

- ightharpoonup Порівняння чисел: $p \le q, q \le r, p \le r, r \le q$ тощо.
- > Виведення впорядкованої трійки у відповідному стані.

Перелік станів автомата:

 \in 6 можливих перестановок трьох чисел, але враховуючи, що ми переставляємо їх для виконання умови $p \le q \le r$, результат завжди буде один — відсортована трійка.

$$Q = \{S, A1, A2, A3, A4, A5, A6\}$$

S – початковий стан (читання p, q, r)

A1:
$$p \le q \le r \rightarrow$$
 виводимо p, q, r

A2:
$$p \le r \le q \rightarrow$$
 виводимо p, r, q

A3: q
$$\leq$$
 p \leq r \rightarrow виводимо q, p, r

A4:
$$q \le r \le p \rightarrow$$
 виводимо q, r, p

A5:
$$r \le p \le q \rightarrow$$
 виводимо r, p, q

A6:
$$r \le q \le p \rightarrow$$
 виводимо r, q, p

Умови переходів:

У стані S читаємо p, q, r (з S в один із A1-A6). Далі — серія перевірок:

$$\triangleright$$
 якщо $p \le q$ і $q \le r \rightarrow A1$

- \triangleright якщо р \leq r i r \leq q \rightarrow A2
- > якщо $q \le p i p \le r \rightarrow A3$
- \triangleright якщо q \leq r i r \leq p \rightarrow A4
- \triangleright якщо $r \le p i p \le q \rightarrow A5$
- ightharpoonup якщо $r \le q i q \le p \rightarrow A6$

Граматика визначень:

Вхід: трійка цілих чисел $\langle input \rangle ::= p, q, r \in \mathbb{Z}$

Вихід: перестановка $\{p,\,q,\,r\}$, що задовольняє $p\leq q\leq r$

Функція переходу (δ):

$$\delta$$
: Q × {порівняльні умови} \rightarrow Q

Вихідна функція автомата (λ):

$$\lambda(q)$$
 = результат у стані q

Таблиця переходів:

Поточний стан	Умова переходу	Наступний стан	Вихід (у стані)
S	$p \le q \land q \le r$	A1	p, q, r
S	$p \le r \land r \le q$	A2	p, r, q
S	$q \le p \land p \le r$	A3	q, p, r
S	$q \le r \land r \le p$	A4	q, r, p
S	$r \le p \land p \le q$	A5	r, p, q
S	$r \le q \land q \le p$	A6	r, q, p

Приклад обробки:

Вхід:
$$p = 3$$
, $q = 1$, $r = 2$

Кроки:

- 1. Перехід зі стану S на основі умови:
 - а) Перевірка: $q \le p \le r \rightarrow$ істина
 - b) Отже, обирається стан A3
- 2. У стані А3 результат:

$$\lambda(A3) = q, p, r$$

= 1, 3, 2

Вихід: 1, 3, 2

Завдання 2

Задача на будову та сама, що й для завдання 1, але реалізувати автоматом Мілі.

Алгоритм задачі:

- 1. Зчитати числа p, q, r.
- 2. На основі порівнянь р, q, r зробити один перехід.
- 3. У переході до нового стану вивести впорядковану трійку.
- 4. Автомат завершує роботу.

Операції:

- ▶ Вхід: три цілі числа р, q, r
- > На основі порівнянь виконується одна з 6 перестановок
- Виведення впорядкованої трійки (на переході автомата)

Перелік станів автомата:

Оскільки в Мілі дія відбувається на ребрі, а не в стані, станів треба менше. Використаємо:

S — початковий стан

End — завершальний стан (єдиний)

Умови переходів:

(Усі з початкового стану S до завершального End):

Умова	Вихід
$p \le q \land q \le r$	p, q, r
$p \le r \land r \le q$	p, r, q
$q \le p \land p \le r$	q, p, r
$q \le r \land r \le p$	q, r, p
$r \le p \land p \le q$	r, p, q
$r \le q \land q \le p$	r, q, p

Граматика визначень:

$$<_{\text{ВХІД}}> ::= p, q, r \in \mathbb{Z}$$

 <вихід> ::= впорядкована трійка (p, q, r) така, що p \leq q \leq r
 Функція переходу (δ):

$$\delta \colon Q \times \Sigma \to Q$$

$$ightharpoonup Q = \{S, End\}$$

 $ightharpoonup \Sigma$ — множина можливих порівнянь p, q, r

Вихідна функція автомата (λ):

$$\lambda: (Q \times \Sigma) \rightarrow Output$$

Вихід залежить від умови переходу:

$$\triangleright$$
 $\lambda(S, p \le q \land q \le r) =$ "вивести p, q, r"

$$\triangleright$$
 $\lambda(S, r \le q \land q \le p) =$ "вивести r, q, p "

Таблиця переходів:

Звідки	Куди	Умова	Вихід під час
924		переходу	переходу
S	End	$p \le q \land q \le r$	вивести p, q, r
S	End	$p \le r \land r \le q$	вивести p, r, q
S	End	$q \le p \land p \le r$	вивести q, p, r
S	End	$q \le r \land r \le p$	вивести q, r, p
S	End	$r \le p \land p \le q$	вивести r, p, q
S	End	$r \le q \land q \le p$	вивести r, q, p

Приклад обробки:

Вхід:
$$p = 2$$
, $q = 5$, $r = 3$

Кроки:

- 1. У стані S перевіряємо умови: $p \le r \le q \rightarrow$ істина
- 2. Відбувається перехід:

$$\delta(S, p \le r \le q) = End$$

$$\lambda(S, p \le r \le q) = p, r, q = 2, 3, 5$$

Вихід: 2, 3, 5

Завдання 3

Запис арифметичного виразу складається з послідовності цілих чисел і знаків арифметичних операцій + чи —, записаних між кожною парою чисел. Послідовність закінчується крапкою. Скласти суміщений автомат Мура і Мілі для обчислення такого виразу.

Алгоритм задачі:

- 1. Зчитати перше число записати його y result.
- 2. Повторювати:
 - ▶ Зчитати + або — запам'ятати як ор.
 - Зчитати наступне число х.
 - ▶ Обчислити result = result op x.
- 3. Якщо зчитано крапку (.) завершити, вивести result.

Операції:

- > Зчитування числа → збереження його в результат
- ightharpoonup При зчитуванні + або ightharpoonup зберегти поточну операцію
- > Зчитати наступне число → додати/відняти до/від результату

▶ Крапка (.) → завершити обчислення

Перелік станів автомата:

Q = { S, ReadNum, ReadOp, Calc, End }

▶ S — старт (очікуємо перше число)

➤ ReadNum — читаємо число

▶ ReadOp — чекаємо + або –

➤ Calc — обчислюємо дію

➤ End — кінець (крапка)

Умови переходів:

Стан	Символ на вході	Наступний стан	Дія (операція або збереження)
S	цифра	ReadNum	result := x
ReadNum	"+"	ReadOp	op := "+"
ReadNum	"	ReadOp	op := "-"
ReadNum	,,	End	вивести result
ReadOp	цифра	Calc	х := нове число
Calc	(безумовно)	ReadNum	result := result op x

Граматика визначень:

<вираз> ::= <ціле> { (+|-) <ціле> } .

<ціле> ::= послідовність цифр

Φ ункція переходу (δ):

Поточний стан	Умова	Наступний стан	Дія (Мілі / Мура)
S	цифра	ReadNum	результат = число (Мура)
ReadNum	"+"	ReadOp	ор = "+" (Мілі)
ReadNum	"_"	ReadOp	ор = "–" (Мілі)
ReadOp	цифра	Calc	зберегти число (Мілі)
Calc	_	ReadNum	результат += або – число (Мура)
ReadNum	""	End	Вивести результат (Мура)

Вихідна функція автомата (λ):

- > У стані S / ReadNum: ініціалізація результату
- ▶ У стані Calc: застосування операції до результату

▶ У стані End: вивід результату

Таблиця переходів:

Поточний стан	Вхідний символ	Наступний стан	Дія	Тип (Мура/Мілі)
S	цифра	ReadNum	result := x	Mypa
ReadNum	+	ReadOp	op := "+"	Мілі
ReadNum	_	ReadOp	op := "-''	Мілі
ReadNum		End	вивести result	Мура
ReadOp	цифра	Calc	х := число	Мілі
Calc	Λ	ReadNum	result := result op x	Мура

 Λ - перехід без зовнішнього входу (автоматично після обчислення).

Приклад обробки:

Вхід: 10 + 5 - 3.

Кроки:

Стан	Вхід	Операція	Результат
S	10	result := 10	10
ReadNum	"+"	op := "+"	
ReadOp	5	result += 5	15
ReadNum	"_"	op := "-"	
ReadOp	3	result -= 3	12
ReadNum	""	print(result)	12

Вихід: 12

Завдання 4

Побудувати автомат М типу розпізнавача, який приймає цілі числа без знака, в записі яких ϵ хоча б одна цифра 4, але не на першому місці.

Алгоритм задачі:

- 1. Прочитати перший символ:
 - а) Якщо це $4 \to$ відхиляємо (неприйнятне).
 - b) Інакше → переходимо до перевірки наступних цифр.
- 2. Для кожної наступної цифри:
 - а) Якщо це 4 \rightarrow приймаємо (умова виконана).
 - b) Інакше → продовжити перевірку.

 Якщо рядок завершено і цифра 4 не з'явилась після першої позиції → відхиляємо.

Операції:

- > Зчитування символу
- > Переходи між станами
- Перевірка умови (чи це 4?, чи перша позиція?)

Перелік станів автомата:

- ▶ q0 початковий стан (ще не прочитано жодної цифри)
- ▶ q1 прочитано першу цифру (вона не 4)
- р q2 знайдено цифру 4 не на першій позиції → кінцевий (приймаючий) стан
- ▶ qE відкидання, якщо перша цифра була 4

Умови переходів:

Поточний стан	Вхідний символ	Наступний стан	Умова переходу
q0	4	qΕ	перший символ = 4
q0	<i>≠</i> 4	q1	перший символ ≠ 4
q1	4	q2	знайдено 4 після першої позиції
q1	<i>≠</i> 4	q1	повторюємо пошук
q2	будь-яка	q2	залишаємося у прийнятному стані
qE	будь-яка	qE	залишаємося у відхиленому стані

Граматика визначень:

- ightharpoonup Алфавіт: $\Sigma = \{0, 1, ..., 9\}$
- Становий простір: Q = {q0, q1, q2, qE}
- Початковий стан: q0
- Приймаючий стан: q2
- > Функція переходу: δ (описано нижче)

Φ ункція переходу (δ):

• $\delta(q0, d) =$

- ▶ qE, якщо d = 4
- > q1, якщо d ≠ 4
- $\delta(q1, d) =$
 - ▶ q2, якщо d = 4
 - > q1, якщо d ≠ 4
- $\delta(q2, d) = q2$ (цифра 4 вже знайдена не на першому місці залишаємося у приймаючому стані)
- $\delta(qE, d) = qE$ (залишаємося у відкидаючому стані)

Фінальний стан:

$$F = \{q2\}$$

Вихідна функція автомата (λ):

- λ(q2) = "так" прийнято
- λ(q0, q1, qE) = "ні" відхилено

Таблиця переходів:

Поточний	Вхідний	Наступний
стан	символ	стан
q0	4	qE
q0	<i>≠</i> 4	q1
q1	4	q2
q1	<i>≠</i> 4	q1
q2	будь-яка	q2
qE	будь-яка	qE

Приклад обробки:

1. Вхід: 432

Кроки:

- 1. q0 перша цифра "4" перехід у qE
- 2. qЕ це стан відхилення

Вихід: відхилено.

2. Вхід: 1345

Кроки:

1. $q0 \rightarrow$ перша цифра "1" \rightarrow перехід у q1

- 2. $q1 \rightarrow "3" \rightarrow$ залишаємося в q1
- 3. $q1 \rightarrow "4" \rightarrow перехід у q2$
- 4. q2 це приймаючий стан

Вихід: прийнято.

3. Вхід: 1789

Кроки:

1.
$$q0 \rightarrow "1" \rightarrow q1$$

2. q1 \rightarrow "7", "8", "9" \rightarrow немає "4" \rightarrow не було переходу в q2

Вихід: відхилено.

Завдання 5

Задано ціле число без знака. Побудувати автомат М типу перетворювача для такої задачі. Замінити в записі цілого числа цифри "2" на цифри "6", а в кінець числа дописати цифру "0" Алгоритм задачі:

- 1. У стані q0 ініціалізуємо вихідну змінну R
- 2. У стані q1 по кожному символу:
 - а) якщо це "2" \rightarrow додаємо "6"
 - b) інакше \rightarrow додаємо символ як ε
- 3. Після завершення (кінець вводу) \rightarrow дописуємо "0" і виводимо результат

Операції:

- R := "" ініціалізація вихідного рядка
- > Якщо символ == "2" \rightarrow R += "6"
- ightharpoonup Інакше ightharpoonup R += символ
- ▶ Після завершення обробки → R += "0"
- ightharpoonup print(R) виведення результату

Перелік станів автомата:

- > q0 початковий стан: ініціалізація змінної R=""
- q1 основний стан обробки цифр
- > qF фінальний стан: дописування "0" і вивід результату

Умови переходів:

Поточний стан	Вхідний символ	Наступний стан	Умова переходу
q0	будь-яка цифра	q1	початок обробки
q1	2	q1	символ == "2"
q1	<i>≠</i> 2	q1	символ ≠ "2"
q1	кінець	qF	завершення вводу

Граматика визначень:

- \triangleright Алфавіт: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- ightharpoonup Множина станів: $Q = \{q0, q1, qF\}$
- Початковий стан: q0
- ➤ Кінцевий стан: qF

Функція переходу (δ) :

- ho $\delta(q0, d) = q1$ при будь-якому d (перший символ)
- $> \delta(q1, "2") = q1$
- \triangleright δ(q1, ≠"2") = q1
- \triangleright $\delta(q1, EOS) = qF EOS = кінець рядка$

Фінальний стан:

qF — тут формується фінальний результат: R += "0" та print(R)

Вихідна функція автомата (λ):

Перехід	λ (вихідна операція)
$q0 \rightarrow q1$	R := ""
$q1 \rightarrow q1$, символ = 2	R += "6"
$q1 \rightarrow q1$, символ $\neq 2$	R += символ
$q1 \rightarrow qF$	R += "0"; print(R)

Таблиця переходів:

Стан	Символ = "2"	Символ ≠ "2"	Кінець (EOS)
q0	q1 / R := ""	q1 / R := ""	_

q1	q1 / R += "6"	q1 / R += символ	qF / R += "0"; print(R)
qF			

Приклад обробки:

Вхід: 13220

Обробка:

$$1 \rightarrow 1$$

$$3 \rightarrow 3$$

$$2 \rightarrow 6$$

$$2 \rightarrow 6$$

$$0 \rightarrow 0$$

$$\rightarrow$$
 R = 13660

→ R += "0" →
$$136600$$

Завдання 6

Скласти суміщений автомат Мура і Мілі для такої задачі. Заданий масив цілих чисел С. Переставити числа в оберненому порядку, після цього поміняти знаки чисел на протилежні.

Алгоритм задачі:

- 1. Прочитати масив чисел С
- 2. Зберегти обернену копію R = reverse(C)
- 3. Для кожного елемента r у R: r := -r
- 4. Вивести результат

Операції:

- ➤ read(C) зчитування вхідного масиву
- ightharpoonup R := reverse(C) переставити числа
- ▶ for i in R: R[i] := -R[i] змінити знаки
- ightharpoonup print(R) вивести результат

Перелік станів автомата:

Стан	Позначення	Опис	
q0	Початковий	Запуск автомата, зчитування вхідного	
		масиву С Формування оберненого масиву R =	
q1	Проміжний	теverse(C)	
q2	Обробка	Прохід по R, зміна знаку кожного числа	
qF	Кінцевий	Завершення: вивід масиву R	

Умови переходів:

Поточний стан	Умова	Наступний стан	Дія
q0	старт	q1	зчитати масив С
q1	С зчитано	q2	R := reverse(C)
q2	i < len(R)	q2	R[i] := -R[i]; i++
q2	i == len(R)	qF	print(R)

Граматика визначень:

- > Алфавіт: множина цілих чисел
- ightharpoonup Множина станів: Q = {q0, q1, q2, qF}

Початковий стан: q0

▶ Кінцевий стан: qF

 Φ ункція переходу (δ):

δ(стан, умова)	→ стан
δ(q0, старт)	q1
δ(q1, С зчитано)	q2
$\delta(q2, i < len(R))$	q2
$\delta(q2, i == len(R))$	qF

Фінальний стан:

qF — після завершення циклу зміни знаків. У цьому стані виконується дія: print(R)

Вихідна функція автомата (λ):

- дії на ребрах (Мілі)
- дії в вершинах (Мура)

Стан	Операція
q0	
q1	R := reverse(C)
q2	R[i] := -R[i]
qF	print(R)

Таблиця переходів:

Стан	Умова	Наступний стан	Операція
q0	старт	q1	read(C)
q1	зчитано	q2	R := reverse(C)
q2	i < len(R)	q2	R[i] := -R[i]; i++
q2	i == len(R)	qF	print(R)

Приклад обробки:

$$Bxiд: C = [3, -1, 0, 5]$$

Кроки:

- 1. Зчитування $C \rightarrow q0$
- 2. Обернений масив: $R = [5, 0, -1, 3] \rightarrow q1$
- 3. Зміна знаків \rightarrow [-5, 0, 1, -3] \rightarrow q2

4. Вивід результату \rightarrow print([-5, 0, 1, -3]) \rightarrow qF \rightarrow R += "0" \rightarrow 136600

Вихід: [-5, 0, 1, -3]

