FACE-LIGHT

FACE-LIGHT: Fast AES CTR Mode Encryption for Low-end Microcontrollers

Kyung-ho Kim, Seung-ju Choi, Hyeok-dong Kwon, Zhe Liu, **Hwa-jeong Seo**

2019 ICISC

Overview

- FACE-LIGHT
 - Improved implementation of a FACE (CHES 2018)
- Improvements
 - Reduced the size of the Look Up Table
 - Removed the need to update the look up table

CONTENTS

01

Introduction

- AES
- Side Channel Attack
- Masking

02

FACE

- Outline
- Structure

03

Our Work

- FACE-LIGHT
- Extended-FACE
- Evaluation

04

Conclusion

- Contribution
- Future Work

Introduction

FACE-LIGHT

AES (Advanced Encryption Standard)

- World side block cipher standard
 - FIPS 197
 - ISO/IEC 18033-3
- AES Modes
 - ECB, CBC, CFB, OFB, CTR

Fig 1. AES Structure

AES-CTR

- AES Counter Mode
- Parallel Process

- 128bits IV(Initial Vector)
 - 96bits Nonce
 - 32bits Counter
- Counter value increases by 1 on each block

Fig 2. AES-CTR Structure

Side Channel Attack(SCA)

- Attack based on additional information during cipher operation
- Power Analysis
 - SPA(Simple Power Analysis)
 - DPA(Differential Power Analysis)
 - CPA(Correlation Power Analysis) Measure

Fig 3. Power Analysis Attack

Masking

- SCA Countermeasure
 - Preventing power analysis
- Implemented with reference to the published masking technique*
 - Optimized Implementation on 8bits Microcontroller

Fig 4. Masking Process

*C. Herbst, E. Oswald, and S. Mangard, "An aes smart card implementation resistant to power analysis attacks," in ACNS, pp. 239–252, Springer, 2006.

FACE

FACE-LIGHT

Outline

- Optimized implementation using AES-CTR technique
 - Last byte saves the counter value
 - The only difference between the first and the next block is the last byte
- Stores the repeated value except the counter value
 - Stores the value in the Look Up Table(LUT)
 - Refer to the LUT for specific round
 - Requires 5 LUT(5KB)
- Need to update LUT every period according to the change of the counter value

Structure (Round 0)

- Utilize the change of last bytes of the data
 - The difference between the first block and the next block is 1byte
- 12 Bytes can be utilized after Round 0
 - S[12], S[13],S[14], S[15]
- Table can be used
 (2³² 1)times
 - No need for update

Structure (Round 1)

- Last byte spreading
 - Spreads across two stages
 - ShiftRows
 - MixColumns
- LUT generation available
 - Excpet first column
- Table can be used
 (28 1) times

Structure (Round 1+)

- Last byte spreading
 - Spreads across two stages
 - ShiftRows
 - MixColumns
- LUT generation available
 - Utilize S[15] as index
 - Table Size: 1KB
- Table can be used (28 x 232) times

Structure (Round 2)

- First column spreading
 - Spreads across two stages
 - ShiftRows
 - MixColumns
- All values are affected after Round 2
- LUT generation available
 - Intermediate value during MixColumns
- Table can be used
 (28 1) times

Different Part

Structure (Round 2+)

- Values that are not stored in LUT in Round
 2
 - S[0], S[1],S[2], S[3]
- LUT generation available
 - Unused Intermediate value during MixColumns
 - Table Size: 4KB
- Table can be used (28 x 232) times

Limitation of FACE

- Difficult to utilize on 8bits Microcontroller
 - LUT capacity issues
 - Requires minimum 5KB of memory
- Requires updates of LUT at regular intervals

Fig 6. Arduino Uno Memory Structure

Our Work FACE - LIGHT

FACE-LIGHT

Target Board

- 8bits Microcontroller
 - Arduino Uno ATmega328P

- Hardware Spec
 - Flash Memory: 32KB
 - SRAM: 2KB
 - EEPROM: 1KB
 - Clock Speed: 16MHz

Fig 7. Arduino Uno

Overview

- Optimized implementation based on FACE
 - Optimized for low-power processor
- Stores the iterated value dependent on the counter value
 - Stores the value in the Look Up Table(LUT)
 - Multiple rounds omitted with a single reference
 - Requires 4 LUT (4KB)
- No Need to update LUT every period according to the change of the counter value
- Improved performance by combining with FACE

Fig 8. Overview of FACE-LIGHT

Look Up Table Structure

• Size of LUT: 4KB

Update not required

Fig 9. FACE-LIGHT Look Up Table

Extended FACE

Subbytes

<u>03</u>

Evaluation (Calculating Speed)

- 22% performance improvement over standard AES
- No additional LUT update time required

Unit: Clock Cycles

Security Level	Dinu et al. *	Otte et al. **	FACE-Light (Our Work)	Ex-FACE (Our Work)
AES-128	2,835	2,507	2,218	1,967
AES-192	N/A	2,991	2,702	2,449
AES-256	N/A	3,473	3,184	2,931

Table 1. Comparison of calculating speed

^{*} D. Dinu, A. Biryukov,"FELICS-fair evaluation of lightweight cryptographic systems," inNIST, 2015.

^{**} D. Otteet al., "AVR-crypto-lib,"Online: http://www.das-labor.org/wiki/AVR-Crypto-Lib/en, 2009.

Evaluation (vs FACE)

- Optimized for FACE-LIGHT 8bits Microcontroller
- Support Constant Timing(No need to LUT update)
- 8bits low-power processor available without restrictions

	FACE	FACE-LIGHT (Our Work)
Table Update	О	X
Constant Timing	Not Support	Support
Target Processor	32-bits or above	8-bits or above
Expandable Round	Round 2	Round 3

Table 2. Comparison with original FACE

Evaluation (Side Channel Attack Resistance)

Resistant to power analysis attacks (CPA, DPA)

Fig 10. Graph of Power Analysis

Evaluation (vs LEA)

- Better performance compared to Masked LEA using ARX operation
- Improved performance over previous Masked AES
 - FACE-LIGHT, software optimization

Unit: Clock Cycles

LEA-128 *	Masked LEA-128 **	Masked AES-128 (Previous Work)***	Masked FACE-128 (Our Work)
2,688	36,589	25,970	6,219

Table 3. Comparison with LEA and Previous Work

^{*} H. Seo, I. Jeong, J. Lee, and W. Kim, "Compact implementations of ARX-based block ciphers on IoT processors," ACM TECS, 2018. ** E. Park, S. Oh, and J. Ha, "Masking-based block cipher LEA resistant to side channel attacks," KIISC, 2017.

^{***} K. H. Kim, H. J. Seo, "Implementation of Optimized 1st-Order Masking AES Algorithm Against Side-Channel-analysis," KIPS, 2019.

Conclusion

FACE-LIGHT

Contribution

- Effective optimization of AES-CTR on low-power processor
 - Clock Cycles optimization
- More Rounds are expandable than FACE
- Difficult in predicting attack points(Timing being constant)
- Masking operation to counter a side channel attack
- Lightweight AES

Future Work

- Optimization on various platforms
 - 16bits MSP ... ETC
- Optimize other domestic cryptography using our proposal
 - Pre-calculation of LUT
 - Side channel attack resistant
 - Software optimization
- Apply proposed methods to AES modes
 - AES GCM

Fig 11. MSP430FR2433 LaunchPad kit

THANK YOU

pgm.kkh@gmail.com

