Deep Learning

- 1. Introduction
 - Definition
 - History
 - Limitations and Considerations
 - Key Elements of Machine Learning
 - Representation
 - Evaluation
 - Optimization
 - Neural Networks
 - Artificial Neurons
 - Perceptron
 - Sigmoid
 - Architecture of Neural Networks
 - Input Layer
 - Hidden Layer
 - Output Layer
 - Understanding the importance and impact of
 - Algorithm (Low)
 - Feature Selection (Medium)
 - Real World Data (High)
 - Overfitting and regularization
 - LAB: Introduction to Tensorflow (Part 1)
- 2. Datasets, Networks, and Trainers
 - Gathering Data
 - Quantifying real world data
 - Representing Data
 - What is,
 - Training Data
 - Testing Data

- Validation Data
- Splitting a Dataset
- Normalizing Data
- Networks
 - Role and Importance
 - Layers
 - Bias
 - Look at Feed Forward Networks
 - Look at Recurrent Networks
- Deeper Look at Layers
 - Sigmoid Layer
 - TanH Layer
 - Softmax Layer
 - Relu Layer
- Trainers
 - Role and Importance
 - Cost/Loss Functions and Gaussian Distributions
 - Gradient Descent Algorithm
 - Back Propagation Trainer
 - http://neuralnetworksanddeeplearning.com/chap2.html
 - Back Propagation with a single modified neuron
 - Back Propagation with linear neurons
- Types of Learning
 - Supervised
 - Unsupervised
 - Semi-Supervised
 - Reinforcement
- Machine Learning Techniques
 - Classification
 - Regression
 - Linear Regression

- Logistic Regression
- Clustering
 - K-Means Clustering
 - Hierarchial Clustering
- Classification Vs. Regression
- LAB: Introduction to Tensorflow (Part 2)
- 3. Machine Learning with Tensorflow
 - Sessions, Variables and Constants
 - Reading from Files
 - Filenames, shuffling and epoch limits
 - File formats
 - Preprocessing
 - Batching
 - Threads and Queues
 - Queue Usage
 - Coordinator
 - Queue Runner
 - LAB: Linear Regression
 - LAB: Cost Functions and Hand Made Descents
 - LAB: Logistic Regression
 - LAB: Softmax Classification
 - ASSIGNMENT: Predicting Onset of Diabetes using TF NN
 - CASE STUDY: Image Classification with Convolution networks using TF NN
- 4. Machine Learning with PyBrain
 - Introduction and Installation
 - Model Overview
 - Building A Network
 - Building
 - Activating
 - Examining

- Creating a Feed Forward Network
- Creating a Recurrent Network
- Building A Dataset
 - Adding
 - Examining
 - Differences between
 - Regression or Supervised Dataset
 - Classification
 - Sequential Dataset
- Training using Back Propagation Trainer
- Layers and Connectors
- Saving and Loading Classifiers using Pickle
- LAB: Classification of Multivariate Gaussion Distribution using FeedForward Network
- ASSESSMENT: Predicting House Prices using TF NN
- PROJECT: Automatic Image Classification with Neural Networks and PyBrain