Лабораторная работа № 10

ИССЛЕДОВАНИЕ АЛГОРИТМОВ ГЕНЕРАЦИИ И ВЕРИФИКАЦИИ ЭЛЕКТРОННОЙ ЦИФРОВОЙ ПОДПИСИ

Цель: изучение алгоритмов генерации и верификации электронной цифровой подписи и приобретение практических навыков их реализации.

Задачи:

- 1. Закрепить теоретические знания по алгебраическому описанию и алгоритмам реализации операций генерации и верификации электронной цифровой подписи (ЭЦП).
- 2. Получить навыки практической реализации методов генерации и верификации ЭЦП на основе хеширования подписываемых сообщений и алгоритмов RSA, Эль-Гамаля и Шнорра, а также DSA.
- 3. Разработать приложение для реализации заданных алгоритмов генерации и верификации ЭЦП.
 - 4. Оценить скорость генерации и верификации ЭЦП.
- 5. Результаты выполнения лабораторной работы оформить в виде описания разработанного приложения, методики выполнения экспериментов с использованием приложения и результатов эксперимента.

10.1. Теоретические сведения

10.1.1. Определение, назначение, основные функции и типы ЭЦП

Электронная цифровая подпись (ЭЦП) является важным элементом современных информационных систем, использующих методы и технологии криптографического преобразования информации.

Остановимся на важнейших свойствах и иных информационных и фактологических характеристиках ЭЦП. Более подробные сведения из предметной области можно найти в [2, 4, 29, 50].

Понятие «электронная цифровая подпись» было введено в 1976 г. У. Диффи и М. Хеллманом.

После создания RSA разработаны алгоритмы цифровой подписи И. Рабина и Р. Меркле. В 1984 г. Ш. Гольдвассер, С. Микали и Р. Ривест сформулировали требования безопасности к алгоритмам ЭЦП, описали атаки на ЭЦП.

Государственный стандарт Республики Беларусь [51] определяет понятие ЭЦП в следующем виде.

Определение 1. Электронная цифровая подпись – контрольная характеристика сообщения, которая вырабатывается с использованием личного ключа, проверяется с использованием открытого ключа, служит для контроля целостности и подлинности сообщения и обеспечивает невозможность отказа от авторства.

- ↑ Таким образом, ЭЦП выполняет те же функции, что и соб-......... ственноручная (поставленная «от руки») подпись:
 - аутентифицирование лица, подписавшего сообщение;
 - контроль целостности подписанного сообщения;
 - защита сообщения от подделок;
 - доказательство авторства лица, подписавшего сообщение, если это лицо отрицает свое авторство.
- ЭЦП представляет собой бинарную последовательность (в отличие от графического образа, каковым является подпись от руки);
 - указанная бинарная последовательность зависит от содержания подписываемого сообщения.

Как следует из определения 1, основным компонентом в технологии ЭЦП является ключ. Принадлежность ключа, в предположении, что он известен только законным пользователям, позволяет решать все «возложенные на ЭЦП», сформированную на основе этого ключа, задачи. В соответствии с этим обстоятельством перечисленные выше функции ЭЦП могут быть реализованы на основе классических методов зашифрования/расшифрования (см. гл. 10 в [3]):

- на основе симметричных систем (с тайным ключом);
- на основе симметричных систем и посредника;
- на основе асимметричных систем (с открытым ключом).

Первый из перечисленных методом ничем не отличается, например, от DES.

Во втором случае создаются две симметричные системы: между отправителем и посредником и между посредником и получателем. Причем посредник выдает двум сторонам различный тайный (для иных субъектов системы) ключ.

В последнем случае сообщение, отправляемое получателю, шифруется тайным ключом отправителя. Отправитель же верифицирует подпись (в данном случае — устанавливает авторство, используя для расшифрования публичный ключ отправителя, и получает гарантию в защищенности переданного сообщения от подделок, если после расшифрования формат и содержание документа имеют логическую стройность) с помощью открытого ключа отправителя.

Таким образом, в этом случае, как и в первых двух случаях, ЭЦП, как отдельный, самостоятельный, присоединенный к исходному документу элемент получаемого сообщения, отсутствует. Кроме того, в отличие от классической асимметричной криптографии, где используется ключевая информация получателя, в нашем случае используется ключевая информация отправителя: открытый ключ — для зашифрования, тайный — для расшифрования.

С учетом изложенного можем сформулировать определение ЭЦП в несколько ином виде.

Определение 2. Электронная цифровая подпись — бинарная (или в ином виде) последовательность символов, являющаяся реквизитом электронного документа, зависящая от содержания этого документа и предназначенная для подтверждения целостности и подлинности электронного документа.

10.1.2. ЭЦП на основе хешей подписываемых сообщений

Классическая технология использования ЭЦП предусматривает подписание не самого сообщения (обозначим его здесь $M_{\rm o}$), а его хеша, $H(M_{\rm o})$. Это сокращает время генерации/верификации подписи и снижает вероятность появления случайных ошибок в итоговом документе.

Основу рассматриваемых протоколов составляют методы асимметричной криптографии и эллиптических кривых.

Общая структура подписанного электронного документа — $M_0 - M'$ — представляет собой, как правило, конкатенацию этого документа и ЭЦП S. Кроме этих двух элементов, интегральный документ может содержать некоторую служебную информацию (дата, время отправки или различные данные об отправителе), как это схематично показано на рис. 10.1.

Рис. 10.1. Пояснение к процедуре формирования ЭЦП и структуре подписанного документа

Важное свойство цифровой подписи заключается в том, что ее может проверить (верифицировать) каждый, кто имеет доступ к *открытому ключу* ее автора. На рис. 10.2 показан в общем виде порядок процесса верификации (без учета использования служебной информации). Заметим, что в общем случае версии исходного документа (M_0) и полученного (M_{Π}) могут отличаться.

Рис. 10.2. Пояснение к процедуре верификации ЭЦП

Если в результате устанавливается равенство хешей: $H(M_{\Pi}) = H(M_{\rm o})$, то принимается решение о подлинности подписи и целостности документа M_{Π} , т. е. это также означает, что $M_{\Pi} = M_{\rm o}$.

Из приведенных на рис. 10.1 и рис. 10.2 последовательных преобразований можно сделать следующие общие выводы:

- при генерации ЭЦП (по классической схеме) для сообщения M отправитель последовательно выполняет следующие действия:
 - вычисляет хеш (хеш-образ) сообщения M: H(M);
- вычисляет содержание ЭЦП (собственно ЭЦП S) по хешу H(M) с использованием своего закрытого ключа d: $S = C_d(H(M))$;

- присоединяет (конкатенирует) ЭЦП к сообщению M и некоторой служебной информации, создавая таким образом итоговое сообщение M';
 - посылает сообщение M' получателю;
- получив сообщение M, другая сторона последовательно выполняет следующие действия:
- \bullet отделяет цифровую подпись S от сообщения M (для общего случая применим одинаковые символьные обозначения);
- применяет к сообщению M операцию хеширования, используя ту же функцию, что и отправитель, и получает хеш-образ полученного сообщения;
- используя открытый ключ отправителя, расшифровывает S, т. е. извлекает из ЭЦП xew-образ отправленного сообщения;
- проверяет соответствие (равенство) обоих хеш-образов, и если они совпадают, то отправитель действительно является тем, за кого себя выдает, а сообщение при передаче не подверглось искажению.

При этом стойкость ЭЦП к подделыванию (криптостойкость) определяется теми же факторами, что и криптостойкость алгоритмов зашифрования/расшифрования сообщений: чтобы применение ЭЦП имело смысл, необходимо, чтобы вычисление легитимной подписи без знания закрытого ключа было вычислительно сложным процессом. Решение такой задачи в асимметричных алгоритмах реализации ЭЦП опирается на известные нам вычислительные задачи:

- факторизации, т. е. разложения числа на простые множители;
- дискретного логарифмирования.

На основе первой задачи строится алгоритм RSA, на основе второй – алгоритмы, например, Эль-Гамаля, DSA, Шнорра. Эти алгоритмы достаточно подробно рассмотрены в [3], главе 11. Здесь остановимся на кратком описании математических основ алгоритмов.

10.1.2.1. ЭЦП на основе RSA

Здесь можно рассматривать две ситуации:

- сообщение M_0 подписывается и передается в открытом (незашифрованном) виде;
- ullet сообщение $M_{
 m o}$ подписывается и передается в зашифрованном виде.

Первый случай соответствует схеме и операциям, представленным на рис. 10.1 и рис. 10.2. При этом подпись S вычисляется на основе известного из лабораторной работы \mathbb{N} 8 соотношения (8.5):

$$S \equiv (H(M_0))^{d_0} \bmod n_0, \tag{10.1}$$

при указанном выше реверсе в отношении ключевой информации; в (10.1) d_0 и n_0 — элементы тайного ключа отправителя. Передаваемое сообщение $M' = M_0 || S$.

Соответственно, операция расшифрования на приемной стороне (получатель анализирует $M_{\Pi}||S\rangle$ будет производиться в соответствии с формулой (8.6) с известной модификацией ключей:

$$H(M_0) \equiv (S)^{e_0} \bmod n_0. \tag{10.2}$$

Далее вычисляется $H(M_{\rm n})$. Если $H(M_{\rm o}) = H(M_{\rm n})$, подпись верифицирована.

Если подписываемое сообщение M(M') также должно передаваться в зашифрованном виде, то обычно M' шифруется на стороне отправителя стандартным образом: с помощью открытого ключа получателя (e_{Π} и n_{Π}), который перед основным процессом верификации подписи расшифровывает послание своим тайным ключом: d_{Π} и n_{Π} . Далее осуществляются вычисления и анализ, как и в первом случае.

10.1.2.2. ЭЦП на основе DSA

Алгоритм DSA (Digital Signature Algorithm – алгоритм цифровой подписи), или DSS (Digital Signature Standard – стандарт цифровой подписи), является одним из известных, нередко и сейчас применяемых. В алгоритме используются следующие параметры: p – простое число длиной от 64 до 1024 битов (число должно быть кратно 64); q – 160-битный простой множитель (p – 1). Далее вычисляется число g:

$$g = v^{(p-1)/g} \mod p,$$
 (10.3)

где v – любое число, меньшее (p-1), для которого выполняется условие:

$$v^{(p-1)/g} \mod p > 1$$
.

Числа p, q, v могут использоваться группой лиц. Еще один элемент открытого ключа y вычисляется в соответствии с выражением

$$y \equiv g^x \bmod p, \tag{10.4}$$

где x < q; x — закрытый ключ.

Общая схема генерации и верификации ЭЦП приведена на рис. 10.3. Здесь H(m) – хеш подписываемого сообщения. ЭЦП

состоит из двух чисел: r и s. Число k здесь играет такую же роль, что и одноименный параметр в шифре Эль-Гамаля.

Рис. 10.3. Общая схема генерации и верификации ЭЦП DSA

10.1.2.3. ЭЦП Эль-Гамаля

Ключевая информация отправителя для ЭЦП создается точно так же, как это описано в материалах к лабораторной работе № 8. Она состоит из тех же элементов, что и ключи в DSA. Основное отличие в применении расчетов состоит в том, что результатом зашифрования является только одна пара чисел, а не пара для каждого блока исходного сообщения. Причем в рассматриваемом случае таким сообщением является хеш подписываемого документа: $H(M_0)$.

Итак, ключевая информация отправителя: открытый ключ: y, g и p; тайный ключ: x. Чтобы подписать сообщение M_0 , обладатель используемых для ЭЦП ключей должен выбрать, как и в предыдущей схеме, случайное число k, взаимно простое с (p-1). Затем вычисляется числа a и b, являющиеся цифровой подписью $(S = \{a, b\})$:

$$a \equiv g^k \bmod p; \tag{10.5}$$

для вычисления b с помощью расширенного алгоритма Евклида решается уравнение

$$H(M_0) \equiv (xa + kb) \bmod (p-1).$$
 (10.6)

Получателю отправляется сообщение $M' = M_0 || S$.

Для верификации подписи вычисляется хеш полученного сообщения $H(M_{\Pi}) = h$. Далее нужно убедиться, что выполняется равенство

$$y^a a^b \equiv g^b \bmod p. \tag{10.7}$$

Если равенство выполняется, подпись верифицируется.

10.1.2.4. ЭЦП Шнорра

Рассматриваемая схема является основой стандарта ЭЦП в Беларуси. Алгоритм ЭЦП К. Шнорра (К. Schnorr) является вариантом алгоритма ЭЦП Эль-Гамаля.

Одной из особенностей ЭЦП Эль-Гамаля является то, что число p должно быть очень большим, чтобы сделать действительно трудной проблему дискретного логарифма. Рекомендуемая длина p должна составлять по крайней мере 1024 бита. Чтобы уменьшить размер подписи, Шнорр предложил новую схему, но с уменьшенным размером подписи.

Ключевая информация: p — простое число в диапазоне от 512 до 1024 битов; q —160-битное простое число, делитель (p-1); любое число g ($g \neq 1$) такое, что

$$g^q \equiv 1 \mod p. \tag{10.8}$$

Числа p, g, q являются открытыми и могут применяться группой пользователей.

Выбирается число x < q (x является тайным ключом) и вычисляется последний элемент открытого ключа:

$$y \equiv g^{-x} \bmod p. \tag{10.9}$$

Секретный ключ имеет длину не менее 160 битов.

Для *подписи сообщения* M_0 выбирается случайное число k (1 < k < q) и вычисляет параметр a:

$$a \equiv g^k \bmod p. \tag{10.10}$$

Далее вычисляется хеш от канкатенации сообщения M_0 и числа a: $h = H(M_0||a)$. Обратим внимание, что хэш-функция непосредственно не применяется к сообщению. Создается хеш-образ подписываемого сообщения, спереди присоединенного к числу a. Далее вычисляется значение b:

$$b \equiv (k + xh) \bmod q. \tag{10.11}$$

Получателю отправляются $M' = M_0 || S; S = \{h, b\}.$

Для проверки подписи получатель вычисляет

$$X \equiv g^b y^h \pmod{p}. \tag{10.12}$$

Затем он проверяет выполнение равенства: $h = H(M_{\Pi}||X)$. Подпись достоверна, если равенство выполняется.

Основные вычисления для генерации подписи могут производиться предварительно. Порядок величин x и h — около 140 двоичных разрядов, порядок числа k — около 70—72 разрядов. С учетом этого сложность операций умножения можно считать ничтожно малой по сравнению с модульным умножением в схеме RSA.

10.2. Практическое задание

1. Разработать авторское оконное приложение в соответствии с целью лабораторной работы. При этом можно воспользоваться результатами выполнения предыдущих лабораторных работ, а также доступными библиотеками либо программными кодами.

Приложение должно реализовывать следующие операции:

- генерацию и верификацию ЭЦП на основе алгоритмов RSA, Эль-Гамаля и Шнорра;
- оценку времени выполнения указанных процедур при реальных (требуемых) ключевых параметрах.

Для вычисления хешей можно также воспользоваться доступными online-средствами, например *katvin* (https://katvin.com/tools/hash-generator.html).

- 2. Для выполнения необходимых операций передачи (по сети)/верификации информации обменяться открытой ключевой информацией с получателем подписанного сообщения для каждого исследуемого алгоритма (по согласованию с преподавателем).
- 3. Результаты оформить в виде отчета по установленным правилам.

ВОПРОСЫ ДЛЯ КОНТРОЛЯ И САМОКОНТРОЛЯ

- 1. Дать определение ЭЦП.
- 2. Охарактеризовать основные функции ЭЦП.

- 3. В чем заключаются сходства и различия между собственноручной и электронной подписью?
 - 4. Охарактеризовать основные способы реализации ЭЦП.
- 5. Имеется ли различие в использовании ключевой информации при передаче зашифрованных сообщений и при передаче подписанных (ЭЦП) сообщений?
- 6. Охарактеризовать криптостойкость ЭЦП на основе RSA, схемы Эль-Гамаля, схемы Шнорра, а также на основе DSA.
- 7. Какие элементы составляют ключевую информацию алгоритмов реализации ЭЦП, перечисленных в вопросе 6?
- 8. Дать сравнительные характеристики схемам ЭЦП, перечисленным в вопросе 6.
- 9. Охарактеризовать особенности государственного стандарта ЭЦП в Республике Беларусь.