- 1(1)假设 X_1,\ldots,X_n 相互独立,且同服从参数为 λ 的指数分布,求 $\sum_{i=1}^n X_i$ 的分布;
 - (2)假设 X_1, X_2 相互独立,分别服从参数为 λ_1, λ_2 的指数分布,求 $P(X_1 < X_2)$.
- 2 设 $\{N(t), t \ge 0\}$ 是以参数为 λ 的时齐泊松过程,令 $S_0 = 0$, $S_n(n \ge 1)$ 表示第n个事件发生的时刻, $X_n = S_n S_{n-1}(n \ge 1)$ 表示第n-1个事件与第n个事件发生的时间间隔。试求 S_n , $X_n(n \ge 1)$ 的概率密度函数。
- 3 设 $\{N(t), t \ge 0\}$ 是以参数为 λ 的时齐泊松过程,令 $S_0 = 0$, $S_n (n \ge 1)$ 表示第n个事件发生的时刻, $X_n = S_n S_{n-1} (n \ge 1)$ 表示第n-1个事件与第n个事件发生的时间间隔,则对0 < s < t,求 $P(X_1 \le s \mid N(t) = 1)$
- 4 设 $\{N(t), t \ge 0\}$ 是以参数为 λ 的时齐泊松过程,令 $S_0 = 0$, $S_n(n \ge 1)$ 表示第n个事件发生的时刻,又设每一发生事件以概率P属于类型1,以概率1-P属于类型2,且与其它事件相互独立。让 $N_1(t)$, $N_2(t)$ 分别表示时间区间[0,t]上发生事件中分别属于类型1和属于类型2的数目,显然 $N(t) = N_1(t) + N_2(t)$,试证明 $\{N_1(t), t \ge 0\}$ 和 $\{N_2(t), t \ge 0\}$ 分别是参数为 λ P和 $\lambda(1-P)$ 的泊松分布,且相互独立. 5 设 $\{N_1(t), t \ge 0\}$ 和 $\{N_2(t), t \ge 0\}$ 是相互独立,分别以参数为 λ_1 和 λ_2 的时齐泊松过程,令 $S_0^i = 0$, S_n^i ($n \ge 1$)表示第i个过程中第n个事件发生的时刻,i = 1, 2. 求 $P(S_1^1 < S_1^2)$,进一步试求 $P(S_n^1 < S_n^2)$.
- 6 设 (X, Λ) 的概率分布为: Λ的边缘分布密度为 $\frac{1}{\lambda^2}e^{-\beta/\lambda}$, $\lambda > 0$, 其中 β 为正常数; 给定 $\Lambda = \lambda$ 时,X服从参数为 λ 的指数分布,求EX. 7 设X, Y独立同分布于参数为 λ 的指数分布,求

$$Z = \begin{cases} 3X + 1, \stackrel{.}{+} X \ge Y \\ 6Y, \stackrel{.}{+} X < Y \end{cases}$$

的数学期望.

8 设 $X_1,...,X_n$ 是相互独立的n个随机变量, $X_i \square F_i(x)$, $i=1,2,\cdots n$,若 $Y=\max\{X_1,...,X_n\}$, $Z=\min\{X_1,...,X_n\}$ 试求Y,Z的分布.