Digital Image Processing COSC 6380/4393

Lecture – 27

Nov 21st, 2023

Pranav Mantini

Review: Image Restoration

- Image restoration: recover an image that has been degraded by using a prior knowledge of the degradation phenomenon.
- Model the degradation and applying the inverse process in order to recover the original image.

A Model of Image Degradation/Restoration Process

$$g(x,y) = h(x,y) \otimes f(x,y) + \eta(x,y)$$

A Model of Image Degradation/Restoration Process

A Model of Image Degradation/Restoration Process

Review: Noise Sources

 The principal sources of noise in digital images arise during image acquisition and/or transmission

- ✓ Image acquisitione.g., light levels, sensor temperature, etc.
- ✓ Transmission
 e.g., lightning or other atmospheric disturbance in wireless network

Types of Noise

Spatially independent

The noise at location (x, y), $\eta(x, y)$ is defined by a function H that is not dependent on the (x, y) $\eta(x, y) \to H$

Statistical noise

Spatially dependent

The noise at location (x, y), $\eta(x, y)$ is defined by a function H that is dependent on the location (x, y)

$$\eta(x,y)\to H(x,y)$$

Periodic noise

a b c d e f

The PDF of (bipolar) impulse noise is given by

FIGURE 5.2 Some important probability density functions. $p(z) = \begin{cases} P_a & \text{for } z = a \\ P_b & \text{for } z = b \\ 0 & \text{otherwise} \end{cases}$

Examples of Noise: Original Image

FIGURE 5.3 Test pattern used to illustrate the characteristics of the noise PDFs shown in Fig. 5.2.

Examples of Noise: Noisy Images(1)

a b c d e f

FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image in Fig. 5.3.

Examples of Noise: Noisy Images(2)

g h i j k l

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt and pepper noise to the image in Fig. 5.3.

An Example of Periodic Noise

a b

FIGURE 5.5

(a) Image corrupted by sinusoidal noise.
(b) Spectrum (each pair of conjugate impulses corresponds to one sine wave).
(Original image courtesy of

NASA.)

Restoration in the Presence of Noise Only

Spatial Filtering

Noise model without degradation

$$g(x, y) = f(x, y) + \eta(x, y)$$

Restoration in the Presence of Noise Only

Spatial Filtering

Noise model without degradation

$$g(x, y) = f(x, y) + \eta(x, y)$$

and

$$G(u,v) = F(u,v) + N(u,v)$$

Restoration Filters

- Mean Filters
- Order statistic filters
- Adaptive filters

Spatial Filtering: Mean Filters (1)

Let S_{xy} represent the set of coordinates in a rectangle subimage window of size $m \times n$, centered at (x, y).

Arithmetic mean filter

$$f(x, y) = \frac{1}{mn} \sum_{(s,t) \in S_{xy}} g(s,t)$$

Spatial Filtering: Mean Filters (2)

Geometric mean filter

$$f(x,y) = \left[\prod_{(s,t)\in S_{xy}} g(s,t)\right]^{\frac{1}{mn}}$$

Generally, a geometric mean filter achieves smoothing comparable to the arithmetic mean filter, but it tends to **lose less image detail** in the process

Spatial Filtering: Example (12) PRIMENT OF COMPUTER SCIENCE

a b c d

FIGURE 5.7

(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. (c) Result
of filtering with
an arithmetic
mean filter of size 3×3 . (d) Result
of filtering with a
geometric mean
filter of the same
size.
(Original image)

(Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.)

Spatial Filtering: Mean Filters (4)

Contraharmonic mean filter

$$f(x,y) = \frac{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q+1}}{\sum_{(s,t)\in S_{xy}} g(s,t)^{Q}}$$

Q is the order of the filter.

It is well suited for reducing the effects of **salt-and-pepper noise**. Q>0 for pepper noise and Q<0 for salt noise.

Spatial Filtering: Mean Filters (3)

Harmonic mean filter

$$f(x, y) = \frac{mn}{\sum_{(s,t)\in S_{xy}} \frac{1}{g(s,t)}}$$

It works well for **salt noise**, but **fails for pepper noise**. It does well also with other types of noise like **Gaussian noise**.

Spatial Filtering: Example (2) PRIMENT OF COMPUTER SCIENCE

a b c d

FIGURE 5.8

(a) Image corrupted by pepper noise with a probability of 0.1. (b) Image corrupted by salt noise with the same probability. (c) Result of filtering (a) with a 3×3 contraharmonic filter of order 1.5. (d) Result of filtering (b) with Q = -1.5.

Spatial Filtering: Example (3)

a b

FIGURE 5.9

Results of selecting the wrong sign in contraharmonic filtering.
(a) Result of filtering
Fig. 5.8(a) with a contraharmonic filter of size 3×3 and Q = -1.5.
(b) Result of filtering 5.8(b) with Q = 1.5.

Spatial Filtering: Order-Statistic Filters

 Response is based on ranking the values of pixels in the image (within the filter).

Spatial Filtering: Order-Statistic Filters (1)

Median filter

$$f(x, y) = \underset{(s,t) \in S_{xy}}{median} \{g(s,t)\}$$

Max filter

$$f(x, y) = \max_{(s,t) \in S_{xy}} \left\{ g(s,t) \right\}$$

Min filter

$$f(x, y) = \min_{(s,t) \in S_{xy}} \left\{ g(s,t) \right\}$$

- Best known
- Good for statistical noise
- Reduce noise with considerably less blurring effect
- Effective for both bi and unipolar impulse noise
- 100th percentile
- Ex. Pepper has low value, and hence works well

- 0th percentile
- Works well for salt noise

1 PUTER SCIENCE

a b c d

filter.

FIGURE 5.10

(a) Image corrupted by saltand-pepper noise with probabilities $P_a = P_b = 0.1$. (b) Result of one pass with a median filter of size 3×3 . (c) Result of processing (b) with this filter. (d) Result of processing (c) with the same

Spatial Filtering: Example (2) PRIMENT OF COMPUTER SCIENCE

a b

FIGURE 5.11

(a) Result of filtering Fig. 5.8(a) with a max filter of size 3×3 . (b) Result of filtering 5.8(b) with a min filter of the same size.

Spatial Filtering: Order-Statistic Filters (2)

Midpoint filter

$$f(x,y) = \frac{1}{2} \left[\max_{(s,t) \in S_{xy}} \left\{ g(s,t) \right\} + \min_{(s,t) \in S_{xy}} \left\{ g(s,t) \right\} \right]$$

- Combines order statistics and averaging
- Works well for random noise, like Gaussian, and uniform

Spatial Filtering: Order-Statistic Filters (3)

Alpha-trimmed mean filter

$$f(x,y) = \frac{1}{mn - d} \sum_{(s,t) \in S_{xy}} \{g_r(s,t)\}\$$

We delete the d/2 lowest and the d/2 highest intensity values of g(s,t) in the neighborhood S_{xy} . Let $g_r(s,t)$ represent the remaining mn-d pixels.

e f

FIGURE 5.12

(a) Image corrupted by additive uniform noise.

(b) Image additionally corrupted by additive salt-andpepper noise. Image (b) filtered with a 5×5 ; (c) arithmetic mean filter; (d) geometric mean filter; (e) median filter; and (f) alphatrimmed mean

Spatial Filtering: Adaptive Filters (1)

Adaptive filters

The behavior changes based on statistical characteristics of the image inside the filter region defined by the mxn rectangular window.

The performance is superior to that of the filters discussed

Trade-off: increased complexity

Adaptive, Local Noise Reduction Filters (1)

 S_{xy} : local region

The response of the filter at the center point (x,y) of S_{xy} is based on four quantities:

- (a) g(x, y), the value of the noisy image at (x, y);
- (b) σ_{η}^2 , the variance of the noise corrupting f(x, y) to form g(x, y);
- (c) m_L , the local mean of the pixels in S_{xy} ;
- (d) σ_L^2 , the local variance of the pixels in S_{xy} .

Adaptive, Local Noise Reduction Filters (2)

The behavior of the filter:

- (a) if σ_{η}^2 is zero, the filter should return simply the value of g(x, y).
- (b) if the local variance is high relative to σ_{η}^2 , the filter should return a value close to g(x, y);
- (c) if the two variances are equal, the filter returns the arithmetic mean value of the pixels in S_{xy} .

Adaptive, Local Noise Reduction Filters (3)

An adaptive expression for obtaining f(x, y) based on the assumptions:

$$f(x, y) = g(x, y) - \frac{\sigma_{\eta}^2}{\sigma_L^2} [g(x, y) - m_L]$$

a b c d

FIGURE 5.13

(a) Image corrupted by additive Gaussian noise of zero mean and variance 1000. (b) Result of arithmetic mean filtering. (c) Result of geometric mean filtering. (d) Result of adaptive noise reduction filtering. All filters were of size 7×7 .

Adaptive Median Filters (1)

The notation:

 z_{\min} = minimum intensity value in S_{xy}

 $z_{\text{max}} = \text{maximum intensity value in } S_{xy}$

 z_{med} = median intensity value in S_{xy}

 z_{xy} = intensity value at coordinates (x, y)

 S_{max} = maximum allowed size of S_{xy}

Adaptive Median Filters (2)

The adaptive median-filtering works in two stages:

Stage A:

$$A1 = z_{\text{med}} - z_{\text{min}}; \quad A2 = z_{\text{med}} - z_{\text{max}}$$

if A1>0 and A2<0, go to stage B

Else increase the window size

if window size $\leq S_{\text{max}}$, repeat stage A; Else output z_{med}

Stage B:

$$B1 = z_{xy} - z_{min}; \quad B2 = z_{xy} - z_{max}$$

if B1>0 and B2<0, output z_{xy} ; Else output z_{med}

Adaptive Median Filters (2)

The adaptive median-filtering works in two stages:

Stage A:

$$A1 = z_{\text{med}} - z_{\text{min}}; \quad A2 = z_{\text{max}} - z_{\text{min}}$$

The median filter output is an impulse or not

if A1>0 and A2<0, go to stage B

Else increase the window size

if window size $\leq S_{\text{max}}$, repeat stage A; Else output z_{med}

Stage B:

$$B1 = z_{xy} - z_{min}; \quad B2 = z_{yy} - z_{min};$$

The processed point is an impulse or not

if B1>0 and B2<0, output z_{xy} ; Else output z_{med}

Example: Adaptive Median Filters

a b c

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities $P_a = P_b = 0.25$. (b) Result of filtering with a 7 × 7 median filter. (c) Result of adaptive median filtering with $S_{\text{max}} = 7$.