Chiffrement Asymétrique

Partie 2

Dr. Noureddine Chikouche

noureddine.chikouche@univ-msila.dz

https://sites.google.com/view/chikouchenoureddine

Plan du cours

- Echange de clés
- Protocole d'échange de clés RSA
- Protocole de Diffie-Hellman
- •Comparaison

Echange de clés

- Les protocoles d'Internet utilisent largement les clés de session.
- ► Une clé de session (session key) est une clé symétrique temporaire utilisée pour protéger les données transmis par les chiffrent pendant une session de communication.

Echange de clés

- Pour échanger des clés de session (symétriques), on peut utiliser deux moyens:
 - Canal sécurisé: rarement disponible.
 - Canal non sécurisé (public): Internet, Wifi, mobiles, ...
- Les algorithmes à clé publique (comme RSA) n'est pas utilisé pour le chiffrement des données, mais plutôt pour l'échange de clés de session pour la cryptographie symétrique.

Echange de clés

- Pour échanger de clés, on utilise les protocoles d'échange de clés.
- Il existe deux catégories de protocoles d'échange de clés:
 - ▶ Utiliser des connaissances partagées préalablement entre les entités communicants. Par exemples, protocole d'échange de clés RSA.
 - Ne pas Utiliser des connaissances partagées préalablement entre les entités communicants. Par exemple, protocole d'échange de clé Diffie-Hellman.

Protocole d'échange de clés RSA

- L'information préalablement échanger entre les entités est la clé publique de destinataire.
- Ce protocole utilisé par le protocole HTTPS et PGP.
- On utilise le principe de chiffrement hybride:
 - Chiffrer la clé session par la clé publique de destinataire.
 - Chiffrer le message à envoyer par la clé de session (chiffrement symétrique).

Protocole d'échange de clés RSA

Entité A

Générer Ksec

$$c_m = E_{K_{sec}}(m)$$

$$c_K = E_{PK_B}(Ksec)$$

Envoyer préalablement PK_B

 c_m, c_K

Entité B (PK_B, SK_B)

Déchiffrer c_K

$$Ksec = D_{SK_B}(Ksec)$$

Déchiffrer c_m

$$m = D_{K_{sec}}(c_m)$$

Protocole d'échange de clés RSA

- L'entité A choisit aléatoirement une clé de session Ksec (ex. de taille 128 bits pour AES-128).
- A chiffre le message à envoyer par la clé Ksec en utilisant la fonction de chiffrement symétrique, $c_m = E_{Ksec}(m)$
- A chiffre la clé de session par la clé publique de destinataire (PK_B) , $c_K = E_{PK_B}(Ksec)$
- A envoie c_m et c_K à l'entité B.
- ▶ B déchiffre c_K avec sa clé privée pour obtenir le clé session $Ksec = D_{SK_R}(Ksec)$
- ▶ B déchiffre le message chiffré par la clé de session reçue, $m = D_{K_{sec}}(c_m)$.

Protocole d'échange de clés RSA Attaque

Protocole d'échange de clés RSA Attaque

- Le protocole d'échange de clés RSA est vulnérable aux attaques actives «par milieu» (man-in-the-middle).
- Principe d'attaque:
 - Lors d'échange de la clé publique de B, l'attaquant C remplace PK_B par sa clé publique (PK_C) et l'envoie à A.
 - L'entité *A* utilise la clé publique de *C* pour chiffrer la clé de session. Alors, l'attaquant peut obtenir tout simplement la clé de session pendant la communication entre A et B.
- Pour éviter cette vulnérabilité, il faut certifier la clé publique de destinataire.

Protocole de Diffie Hellman

Diffie & Hellman

Premier schéma de clé publique proposé en 1976.

Protocole de Diffie et Hellman

- Ce protocole est plus utilisé pour l'échange d'une clé secrète (ou de session) sans besoin des informations préalablement partagée.
- ▶ Il est souvent utilisée dans des produits commerciaux (SSL,...).
- Non authentifié dans la version de base.
- La sécurité du protocole DH repose sur le problème Logarithme discret et sur le problème de DH.

Protocole de Diffie Hellman

Logarithme discret

- Soit G un groupe cyclique. Soient p un grand premier et g un générateur de \mathbb{Z}_p^* .
- Etant donné x, calculer $y=g^x \mod p$ se fait facilement par exponentiation rapide.
- Problème: Trouver $x = \log_{g}(y) \mod p-1$. Connaissant y, g et p.
- ▶ **Applications:** cryptosystème El-Gamal et protocole de Diffie-Hellman.

- Le problème de DH signifie la difficulté de calcul de $k = g^{xy} \mod p$ à partir de $X=g^x \mod p$ et de $Y=g^y \mod p$, lorsque p est grand.
- x et y sont des clés privées.
- X et Y sont des clés publiques.

- Soit p un grand nombre premier et g un générateur de Z_p^* .
- A choisi un entier x et calcule $X=g^x \mod p$.
- A envoi X, g, et p à B.
- B choisit un entier y et calcule $Y=g^y \mod p$.
- B envoie Y à A.

- L'entité A calcule (gy mod p)x mod p = gxy mod p
- L'entité B calcule (gx mod p)y mod p = gxy mod p
- La clé secrète partagée est:

$$K = g^{xy} \mod p$$

Exemple:

- On Suppose que les entités A et B partagent p = 233 et g = 45 :
- A choisit x = 11 et Bob y = 20, alors
 - $X = 45^{11} \mod 233 = 147$
 - $Y = 45^{20} \mod 233 = 195,$
- $Y^x \mod p = 195^{11} \mod 233 = 169$
- $X^y \mod p = 147^{20} \mod 233 = 169.$
- Les entités A et B disposent d'une clé secrète partagée, k = 169.

Protocole Diffie et Hellman

Attaque 1

Protocole Diffie et Hellman Attaque 1

- Le protocole DH est vulnérable aux attaques actives « par milieu» (man-in-the-middle).
- Lors de l'échange des clés, l'attaquant C bloque le message X envoyé par A, sélectionne un nombre aléatoire z et calcule $Z = g^z \mod p$. C envoie le message Z à l'entité B.
- Résultat: les deux entités A et B calculent deux clés différentes, $k_A = g^{xy} \mod p$ pour l'entité A et $k_B = g^{yz} \mod p$ pour l'entité B.
- Lorsque l'entité A envoie un message chiffré *m* en utilisant sa clé secrète, l'entité B ne peut pas obtenir le message clair de A.

Protocole Diffie et Hellman Attaque 2

Protocole Diffie et Hellman Attaque 2

- Le protocole DH est vulnérable aux attaques actives « par milieu» (manin-the-middle):
- Lors de l'échange des clés, l'attaquant C modifie les messages envoyés X et Y et les remplace par des nouveaux messages Z et U, respectivement.
- Les entités A et B crée des clés de session différentes, K et K'.
- L'attaquant crée de clés K_{AC} et K_{BC} , tels que: $K_{AC} = K$ et $K_{BC} = K'$.

Protocole Diffie et Hellman Attaque 2

- Lorsque A envoie un message chiffré $E_K(m)$ à B, l'attaquant intercepte le message envoyé, puis le déchiffre en utilisant la même clé K_{AC} .
- Cependant, l'entité B ne peut pas obtenir le message clair à cause de K et K' sont différentes.
- L'attaquant C peut appliquer le même scénario avec B.

Protocole Diffie et Hellman Avantages & Inconvénient

Avantages:

Problème de Logarithme discret est dur.

Inconvénients:

- ▶ Un attaquant peut observer: p, g g^b mod p et g^a mod p
- ► Comme RSA, très lent.
- Pas d'authentification

Protocole Diffie et Hellman version signée

- Afin d'éviter l'attaque par milieu, la solution est d'utiliser la signature numérique.
- ► Elle consiste à ce que:
 - ▶ l'entité A envoie (A, g^x),
 - ► B envoie (B, g^y , Sign_B(B, g^y , g^x ,A))
 - ▶ A vérifie la signature reçue et calcule la clé secrète *K*.
 - ► Enfin A calcule sa signature (A, $Sign_A(A,g^x, g^y,B)$) et l'envoie à B.
 - ▶ B vérifie la signature reçue et calcule la clé secrète *K*.

Protocole Diffie et Hellman version signée

Comparaison

Chiffrement symétrique vs Chiffrement asymétrique

	Symétrique	Asymétrique
Avantages	 Il est plus rapide en exécution et nécessite moins de puissance de calcul. Il utilise des petites clés (64 - 256) bits. Il est implémenté sur le hardware facilement. 	 Permettre de signer des messages. Faciliter de distribution des clés. Il nécessite 2n clés seulement pour n entités communicants.
Inconvénients	 Il ne fournit pas certaines services (ex. signature). Distribution des clés. Il nécessite n(n-1)/2 clés pour n entités communicants. 	 Il est lent à l'exécution (1000 fois plus lents). Taille de clé largement augmentée.

Ressources

- P. Boyer, cryptographie, 2013, http://www.math.univ-paris13.fr/boyer/enseignement/images.html
- Cryptographie à clé publique, MGR850, École de technologie supérieure (ÉTS). https://cours.etsmtl.ca/mgr850/documents/cours/MGR850_A14_Cours-06_cryptoAsym.pdf