

Persamaan Nirlanjar

- Di dalam matematika aplikasi pencarian aka persamaan f(x) = 0 sering dijumpai.
- Biasanya, jawaban analitik dari persamaan tersebut tidak ada, sehingga harus dicari jawaban numeriknya yang biasanya dilakukan dengan metode iterasi.

METODE SECANT

METODE TERTUTUP

- 1. Pencarian akar dalam selang [a,b]
- 2. Dipastikan pada selang ini setidaknya terdapat satu akar (pasti menemukan akar)
- 3. Metode konvergen karena pada proses pencarian akar di setiap iterasi selalu diperoleh nilai konvergen menuju akar

METODE TERBUKA

Yang diperlukan hanyalah tebakan (guest) dimanakah akar kemungkinan berada dengan iterasi tertentu akan diperoleh hampiran akar yang baru, dengan cara demikian berturut-turut akan diperoleh hampiran akar yang baru berdasar akar yang lama yang tepat terdapat pada iterasi sebelumnya.

Metode Tabel

Metode Tabel atau Metode Pembagian Area, dimana untuk x = [a,b] atau x di antara a dan b dibagi sebanyak N bagian dan pada masing-masing bagian dihitung nilai f(x) oleh sebab itu diperoleh tabel:

X	f(x)
X ₀ =a	f(a)
x_{1}	$f(x_1)$
X ₂	$f(x_2)$
X ₃	f(x3)
•••	•••
x _n =b	f(b)

Metode Tabel

Dari tabel bila didapatkan $f(x_k)=0$ atau mendekati 0 maka dikatakan bahwa xk adalah penyelesaian persamaan f(xk)=0.

Bila tidak ada $f(x_k)$ yang =0, maka dicari nilai $f(x_k)$ dan $f(x_{k+1})$ yang berlawanan tanda bila tidak ditemukan maka dikatakan tidak mempunyai akar untuk x = [a,b]

Contoh Metode Tabel

Cari akar persamaan dari f(x) = 2x-6 dengan range x=[2,4] dan pembagi N=10

Iterasi	X	f(x)			
1	2	-2			
2	2,2	-1.6			
3	2,4	-1.2			
4	2,6	-0.79999999999999			
5	2.8	-0.3999999999999			
6	3	1.77635683940025E-15			
7	3.2	0.400000000000002			
8	3.4	0.800000000000002			
9	3,6	1.2			
10	3,8	1.6			
11	4	2			

Metode Bagi Dua

Metode biseksi ini membagi range menjadi 2 bagian, dari dua bagian ini dipilih bagian mana yang mengandung akar sedangkan bagian yang tidak mengandung akar dibuang. Hal ini dilakukan berulang-ulang hingga diperoleh akar persamaan yang paling mendekati nol.

Algoritma program untuk metode Bisection

- 1. Tentukan a, b, toleransi, dan jumlah iterasi maksimum.
- 2. Periksa apakah f(a).f(b) > 0 jika benar keluar dari progam karena pada selang yang diberikan tidak terdapat akar persamaan.
- 3. Hitung nilai x = (a+b)/2.
- 4. Jika nilai mutlak (b-a) < toleransi, maka x adalah hasil perhitungan.
- 5. Hentikan program jika tidak lanjutkan ke langkah berikutnya.
- 6. Jika jumlah iterasi > iterasi maksimum, akhiri program.
- 7. Jika f(a).f(x) < 0, maka b = x; jika tidak, a = x.
- 8. Proses lagi dari langkah (2).

Contoh Metode Bagi Dua

Cari akar persamaan dari f(x) = 2x-6 dengan range x = [1,5,3,5]

iterasi	a	b	X	f(a)	f(b)	f(x)	ket
1	1.5	3.5	2.5	-3	1	-1	f(a).f(x) > 0
2	2.5	3.5	3	-1	1	0	f(x)=0

Contoh Soal

• Selesaikan persamaan $xe^{-x}+1=0$, dengan menggunakan range x=[-1,0], maka diperoleh tabel biseksi sebagai berikut :

iterasi	а	В	×	f(×)	f(a)	Keterangan
1	-1	0	-0,5	0,175639	-1,71828	berlawanan tanda
2	-1	-0,5	-0,75	-0,58775	-1,71828	
3	-0,75	-0,5	-0,625	-0,16765	-0,58775	
4	-0,625	-0,5	-0,5625	0,012782	-0,16765	berlawanan tanda
5	-0,625	-0,5625	-0,59375	-0,07514	-0,16765	
6	-0,59375	-0,5625	-0,57813	-0,03062	-0,07514	
7	-0,57813	-0,5625	-0,57031	-0,00878	-0,03062	
8	-0,57031	-0,5625	-0,56841	0,002035	-0,00878	berlawanan tanda
9	-0,57031	-0,56641	-0,56836	-0,00336	-0,00878	
10	-0,56836	-0,56641	-0,56738	-0,00066	-0,00336	

Contoh Soal

• Dimana
$$x = \frac{a + b}{2}$$

. . Արևական անականական անգային անգային անական անակա

Pada iterasi ke 10 diperoleh x = -0.56738 dan f(x) = -0.00066

- Untuk menghentikan iterasi, dapat dilakukan dengan menggunakan toleransi error atau iterasi maksimum.
- Catatan: Dengan menggunakan metode biseksi dengan tolerasi error 0.001 dibutuhkan 10 iterasi, semakin teliti (kecil toleransi errorny) maka semakin besar jumlah iterasi yang dibutuhkan.

Metode regula falsi adalah perbaikan metode bagi dua yaitu dengan cara melibatkan nilai f(a) dan f(b) dan proses pencarian akar persamaan dilakukan dengan memanfaatkan kemiringan dan selisih tinggi dari dua titik batas range, metode ini bekerja secara iterasi dengan melakukan update range. algoritmanya sama seperti metode Bisection, kecuali mengganti x dengan rumusan

- metode pencarian akar persamaan dengan memanfaatkan kemiringan dan selisih tinggi dari dua titik batas range.
- Dua titik a dan b pada fungsi f(x) digunakan untuk mengestimasi posisi c dari akar interpolasi linier.
- Dikenal dengan metode False Position

$$\frac{f(b) - f(a)}{b - a} = \frac{f(b) - 0}{b - x}$$

$$x = b - \frac{f(b)(b-a)}{f(b) - f(a)}$$

$$x = \frac{af(b) - bf(a)}{f(b) - f(a)}$$

Algoritma Metode Regula Falsi

- 1. definisikan fungsi f(x)
- 2. Tentukan batas bawah (a) dan batas atas (b)

- 3. Tentukan toleransi error (e) dan iterasi maksimum (n)
- 4. Hitung Fa = f(a) dan Fb = f(b)
- 5. Untuk iterasi I = 1 s/d n atau error > e

$$\bullet \quad \mathbf{x} = \frac{Fb.a - Fa.b}{Fb - Fa}$$

- Hitung Fx = f(x)
- Hitung error = |Fx|
- Jika Fx.Fa <0 maka b = x dan Fb = Fx jika tidak a = x dan Fa = Fx.
- 6. Akar persamaan adalah x.

Contoh Soal

• Selesaikan persamaan $xe^{-x}+1=0$ pada range x=[0,-1]

iterasi	а	b	×	f(x)	f(a)	f(b)
1	-1	0	-0,36788	0,468536	-1,71828	1
2	-1	-0,36788	0,074805	1,069413	-1,71828	0,468536
3	-1	0,074805	-0,42973	0,339579	-1,71828	1,069413
4	-1	-0,42973	0,1938	1,159657	-1,71828	0,339579
5	-1	0,1938	-0,51866	0,128778	-1,71828	1,159657
6	-1	-0,51866	0,412775	1,273179	-1,71828	0,128778
7	-1	0,412775	-0,6627	-0,28565	-1,71828	1,273179
8	-0,6627	0,412775	-0,6169	-0,14323	-0,28565	1,273179
9	-0,6169	0,412775	-0,59626	-0,0824	-0,14323	1,273179
10	-0,59626	0,412775	-0,58511	-0,05037	-0,0824	1,273179
11	-0,58511	0,412775	-0,57855	-0,03181	-0,05037	1,273179
12	-0,57855	0,412775	-0,57451	-0,02047	-0,03181	1,273179
13	-0,57451	0,412775	-0,57195	-0,01333	-0,02047	1,273179
14	-0,57195	0,412775	-0,5703	-0,00874	-0,01333	1,273179

Contoh Soal

iterasi	а	b	x	f(x)	f(a)	f(b)
15	-0,5703	0,412775	-0,56922	-0,00576	-0,00874	1,273179
16	-0,56922	0,412775	-0,56852	-0,00381	-0,00576	1,273179
17	-0,56852	0,412775	-0,56806	-0,00252	-0,00381	1,273179
18	-0,56806	0,412775	-0,56775	-0,00167	-0,00252	1,273179
19	-0,56775	0,412775	-0,56755	-0,00111	-0,00167	1,273179
20	-0,56755	0,412775	-0,56741	-0,00074	-0,00111	1,273179

Akar persamaan diperoleh di x = -0.56741 dengan kesalahan =0,00074

Post Test

- Cari satu contoh persamaan non linier dan selesaikan dengan metode tabel.
- Selesaikan persamaan 4x³+7x+3 dengan range x
 = [-0,5, 0] dengan metode bagi dua dan regula falsi
- Selesaikan persamaan : x+e^x = 0 dengan range x = [-1,0] dengan metode bagi dua dan regula falsi
- Buat program untuk mengimplementasikan algoritma metode bagi dua

Refrensi

- Munir, Rinaldi. 2008. Metode Numerik Revisi Kedua. Informatika Bandung: Bandung
- Cahya Rahmad, ST, M.Kom. Dr. Eng, "Diktat Kuliah Matematika Numerik", Program Studi Manajemen Informatika, Politeknik Negeri Malang

TERIMAKASIH

