PERCEPTRON/NEURON

• The basic unit of a NN is a perceptron:

• Perceptron was introduced by Frank Rosenblatt in 1957.

• How do we relate input with output?

How do we relate input with output?

- H1: output depends on a threshold TH
 - Example: if $x_1 + x_2 + x_3 > TH$ return 1; 0 otherwise

• How do we relate input with output?

- H2: H1 + weighted input
 - Example: if $x_1^* w_1 + x_2^* w_2 + x_3^* w_3 > TH$ return 1; 0 otherwise

But... this function will always be 0 in (0, 0, ...).

How do we relate input with output?

- H3: H2 + bias (b)
 - Example: $x_1^*w_1 + x_2^*w_2 + x_3^*w_3 + 1^*b$

Without b => poorer fit. But, even with b => linear

PERCEPTRON => NEURON

How do we relate input with output?

• H4: H3 + activation function

Mostly set to make a non-linear transformation which allows to fit nonlinear hypotheses

NEURON

• How do we relate input with output?

• H4: H3 + activation function

http://sintesis.ugto.mx/WintemplaWeb/01Neural%20Lab/00Introduction/02Activation%20Function/index.htm

NEURON

- Multiple activation functions are available.
- Some examples:

https://www.kdnuggets.com/2017/09/neural-network-foundations-explained-activation-function.html

EXAMPLE (Jurafsky)

- Let
 - W = [0.2, 0.3, 0.9]
 - $x = [0.5, 0.6, 0.1]^T$
 - b (bias) = 0.5
 - $y = \sigma (W.x + b) = (\sigma (sigma = sigmoid function)) = 1/(1+e^{-(W.x + b)})$

What is the value of y?

https://giphy.com/gifs/writing-11ikeVaUfcXLWM

EXAMPLE (Jurafsky)

- Let
 - W = [0.2, 0.3, 0.9]
 - $x = [0.5, 0.6, 0.1]^T$
 - b (bias) = 0.5
 - $y = \sigma (W.x + b) = (\sigma (sigma = sigmoid function)) = 1/(1+e^{-(W.x + b)})$
 - W.x = [0.2, 0.3, 0.9]. [0.5, 0.6, 0.1]^T = 0.2*0.5 + 0.3*0.6 + 0.9*0.1 = 0.37
 - W.x + b = 0.37+0.5 = 0.87
 - $y = 1/(1 + e^{-0.87}) = 0.7$

FEED-FORWARD NEURAL NETWORK (or MULTI-LAYER NEURAL NETWORK)

 We increase the expressive power of the network by adding intermediate layers of neurons before the final output layer, yielding more complex, non-linear classifiers.

Note: In the standard architecture, each layer is fully-connected

(Jurafsky)

http://cse22-iiith.vlabs.ac.in/exp4/index.html

- How do we make the perfect cookies?
 - We make various tests, varying the recipe
 - First step: follow recipe, taste, if perfect we stop, otherwise:
 - Second step: we change the recipe (we change ingredients or some quantities of the ingredients), taste, if perfect we stop, otherwise:
 - Third step:...
- Neural Networks (NN) work in a similar manner

- Neural Networks:
 - Initialization
 - Take input and process it (forward propagation)
 - Result is compared with the desired output => the error is obtained
 - Try to minimize the error, by changing some elements in the network (backward propagation).
 - We update each weight, so that the actual output becomes closer to the target output (minimizing the error). A learning rate is used (η) .

Input layer

Output layer

A simple neural network

Input: 0.05, 0.1 Output: 0.01, 0.99

Initial weights and bias: random, Activation function: logistic function

Example from: https://www.edure ka.co/blog/backpro pagation/

(FORWARD PROPAGATION)

 $net_{h1} = w_1^* i_1 + w_2^* i_2 + b_1^* 1 = 0.15*0.05+0.2*0.1+0.35*1 = 0.3775$ Plus activation on net_{h1} : $out_{h1} = 0.593269992$

By the same token, calculate: net_{h1} , out_{h2} , net_{o1} , out_{o1} , net_{o2} , out_{o2}

FEED-FORWARD NEURAL NETWORK (ERROR)

 E_{o1} = ½ (target_{o1} – out_{o1})² = 0.274811083, E_{o2} = 0.023560026 E_{total} = E_{o1} + E_{o2} = 0.298371109

FEED-FORWARD NEURAL NETWORK (BACKWARD PROPAGATION)

How much a change in w_5 affects the total error?

=> partial derivative of E_{total} with respects to w_5 = the gradient with respect to w_5

(BACKWARD PROPAGATION)

Need do calculate:

FEED-FORWARD NEURAL NETWORK (BACKWARD PROPAGATION)

CHAIN RULE:

$$\frac{\delta E total}{\delta w 5} = \frac{\delta E total}{\delta out \ o 1} * \frac{\delta out \ o 1}{\delta net \ o 1} * \frac{\delta net \ o 1}{\delta w 5}$$

FEED-FORWARD NEURAL NETWORK (BACKWARD PROPAGATION)

• As $E_{Total} = \frac{1}{2} (target_{o1} - out_{o1})^2 + \frac{1}{2} (target_{o2} - out_{o2})^2$:

$$\frac{dE_{Total}}{dout_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507$$

• As out_{o1} = $1/(1+e^{-neto1})$:

$$\frac{dout_{o1}}{dnet_{o1}} = out_{o1} (1 - out_{o1}) = 0.186815602$$

• As $net_{o1} = w_5^*out_{h1} + w_6^*out_{h2} + b_2^*1$:

$$\frac{dnet_{o1}}{dw_5} = \text{out}_{h1} = 0.593269992$$

(BACKWARD PROPAGATION)

$$\frac{dE_{Total}}{dout_{o1}} = -\left(\text{target}_{o1} - \text{out}_{o1}\right) = -(0.01 - 0.75136507) = 0.74136507$$

$$\frac{dout_{o1}}{dnet_{o1}} = \text{out}_{o1} \left(1 - \text{out}_{o1}\right) = 0.186815602$$

$$\frac{dnet_{o1}}{dw_{E}} = \text{out}_{h1} = 0.593269992$$

$$\frac{\delta E total}{\delta w 5} = \frac{\delta E total}{\delta out \ o 1} * \frac{\delta out \ o 1}{\delta net \ o 1} * \frac{\delta net \ o 1}{\delta w 5}$$

FEED-FORWARD NEURAL NETWORK (BACKWARD PROPAGATION)

$$\frac{dE_{Total}}{dw_5} = 0.74136507*0.186815602*0.593269992=0.082167041$$

$$\frac{\delta E total}{\delta w 5} = \frac{\delta E total}{\delta out \ o 1} * \frac{\delta out \ o 1}{\delta net \ o 1} * \frac{\delta net \ o 1}{\delta w 5}$$

(BACKWARD PROPAGATION)

Being η the Learning rate:

$$w_5 = w_5 - \eta * \frac{\partial E_{total}}{\partial w_5}$$

And we update w₅

