

Accurately predicting electron affinities with Koopmans spectral functionals

Edward Linscott, Nicola Colonna, Riccardo De Gennaro, and Nicola Marzari

Theory and Simulation of Materials, École Polytechnique Fédérale de Lausanne APS March Meeting, 18 March 2021

EPFL

How can we predict spectral properties?

¹ C.-O. Almbladh et al. Phys. Rev. B 31.6 (1985), 3231

How can we predict spectral properties?

DFT

- reliable ground-state properties
- computationally inexpensive
- KS eigenvalues formally meaningless (except HOMO¹)
- self-interaction error, band gap too small, etc.

¹ C.-O. Almbladh et al. *Phys. Rev. B* 31.6 (1985), 3231

How can we predict spectral properties?

DFT

- reliable ground-state properties
- computationally inexpensive
- KS eigenvalues formally meaningless (except HOMO¹)
- self-interaction error, band gap too small, etc.

GW

- quasiparticles formally defined
- complicated and expensive (non-local and frequency-dependent)
- total energies not routine

How can we predict spectral properties?

DFT

- reliable ground-state properties
- computationally inexpensive
- KS eigenvalues formally meaningless (except HOMO¹)
- self-interaction error, band gap too small, etc.

Koopmans

- orbital-density-dependent corrective terms to semi-local DFT
- comparable computational cost to DFPT
- KS eigenvalues are meaningful
- Accuracy comparable to GW

GW

- quasiparticles formally defined
- complicated and expensive (non-local and frequency-dependent)
- total energies not routine

¹ C.-O. Almbladh et al. *Phys. Rev. B* 31.6 (1985), 3231

The absence of piecewise linearity

C. Li et al. Journal of Chemical Physics 146.7 (2017), 074107

J. P. Perdew et al. Phys. Rev. Letters 49.23 (1982), 1691

The absence of piecewise linearity

C. Li et al. Journal of Chemical Physics 146.7 (2017), 074107

J. P. Perdew et al. Phys. Rev. Letters 49.23 (1982), 1691

The absence of piecewise linearity

Consequences for ionisation potentials, electron affinities, band gaps, band widths...

J. P. Perdew et al. Phys. Rev. Letters 49.23 (1982), 1691

C. Li et al. Journal of Chemical Physics 146.7 (2017), 074107

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{\mathsf{DFT}}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{\mathsf{DFT}}[\rho]$$

$$+\sum_{i} \alpha_{i} \left(-\int_{0}^{f_{i}} \varepsilon_{i}(f)df + f_{i} \int_{0}^{1} \varepsilon_{i}(f)df\right)$$

$$E_{\text{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

$$E_{\text{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{\mathsf{DFT}}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{\mathsf{DFT}}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

Constructed such that the orbital energies

$$arepsilon_i^{\mathsf{Koopmans}} = \langle arphi_i | H | arphi_i
angle = \partial \mathsf{E}_{\mathsf{Koopmans}} / \partial f_i$$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

Constructed such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

possess two key properties:

 they are independent of the corresponding occupancies f_i (⇔ E is linear in f_i)

$$E_{\text{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

Constructed such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

possess two key properties:

 they are independent of the corresponding occupancies f_i (⇔ E is linear in f_i) → different flavours (KI, KIPZ, pKIPZ)

$$E_{\text{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

Constructed such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

- they are independent of the corresponding occupancies f_i (⇔ E is linear in f_i) → different flavours (KI, KIPZ, pKIPZ)
- they are equal to the corresponding total energy difference $E_i(N-1) E(N)$

$$E_{\text{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{DFT}[\rho] + \sum_{i} \alpha_i \left(-\int_0^{f_i} \varepsilon_i(f) df + f_i \int_0^1 \varepsilon_i(f) df \right)$$

Constructed such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

- they are independent of the corresponding occupancies f_i (⇔ E is linear in f_i) → different flavours (KI, KIPZ, pKIPZ)
- they are equal to the corresponding total energy difference $E_i(N-1) E(N)$ $\frac{dE}{dE} \approx \alpha_i \frac{\partial E}{\partial E}$

$$E_{\mathsf{Koopmans}}[\rho, \{f_i\}, \{\alpha_i\}] = E_{\mathsf{DFT}}[\rho]$$

$$+\sum_{i}\frac{\alpha_{i}}{\left(-\int_{0}^{f_{i}}\varepsilon_{i}(f)df+f_{i}\int_{0}^{1}\varepsilon_{i}(f)df\right)}$$

Constructed such that the orbital energies

$$\varepsilon_i^{\mathsf{Koopmans}} = \langle \varphi_i | H | \varphi_i \rangle = \partial E_{\mathsf{Koopmans}} / \partial f_i$$

- they are independent of the corresponding occupancies f_i (⇔ E is linear in f_i) → different flavours (KI, KIPZ, pKIPZ)
- they are equal to the corresponding total energy difference $E_i(N-1) E(N)$

$$\frac{dE}{df_i} \approx \alpha_i \frac{\partial E}{\partial f_i} \Longrightarrow \varepsilon_i^{\mathsf{Koopmans}} = \frac{\partial E_{\mathsf{Koopmans}}}{\partial f_i} \approx E_i(N-1) - E(N)$$

Koopmans spectral functionals

Ionisation potentials $= E(N-1) - E(N) \stackrel{?}{=} -\varepsilon_{HO}$ of 100 molecules (the GW100 set) cf. CCSD(T)

Koopmans spectral functionals

Electron affinities = $E(N) - E(N+1) \stackrel{?}{=} -\varepsilon_{LU}$ of molecules cf. CCSD(T)/exp

For 15 of the GW100 molecules with bound LUMOs

For the NaCl molecule

Figures from Linscott et al. (in prep)

Screening coefficients $\{\alpha_i\}$ must be determined first, either...

² N. Colonna et al. *JCTC* 14.5 (2018), 2549.

Screening coefficients $\{\alpha_i\}$ must be determined first, either...

via △SCF calculations

Riccardo De Gennaro M22.00004 paper in preparation

Screening coefficients $\{\alpha_i\}$ must be determined first, either...

- via △SCF calculations
- via DFPT²

Riccardo De Gennaro **M22.00004** paper in preparation

Nicola Colonna **A20.00002** paper in preparation

Screening coefficients $\{\alpha_i\}$ must be determined either...

- via △SCF calculations
- via DFPT²

Riccardo De Geniero M22.00004 paper in preparation

Nicola Colonna **A20.00002** paper in preparation

² N. Colonna et al. *JCTC* 14.5 (2018), 2549.

Edward Linscott

quasiparticles formally

Koopmans spectral functionals: DFT efficiency + GW accuracy DFT Koopmans GW

properties	corrective terms to	defined
computationally inexpensive	semi-local DFTcomparable computational	 complicated and expensive (non-local and
 KS eigenvalues formally 	cost to DFPT	frequency-dependent)
meaningless (except HOMO)	 KS eigenvalues are meaningful 	 total energies not routine
 self-interaction error, band gap too small, etc. 	 Accuracy comparable to GW 	
Look out for our papers & cod	e release later this year! (Fo	llow У @ed₋linscott for

orbital-density-dependent

Slides can be found at elinscott.github.io/resources.html

reliable ground-state

updates)

For further reading, see I. Dabo et al. *Phys. Rev. B* 82.11 (2010), 115121; G. Borghi et al. *Phys. Rev. B* 90.7 (2014), 075135; N. Colonna et al. *JCTC* 14.5 (2018), 2549; N. L. Nguyen et al. *Phys. Rev. X* 8.2 (2018), 021051; N. Colonna et al. *JCTC* 15.3 (2019), 1905