CSCI 466: Networks

IP Addresses, IP Protocol, Subnets

Reese Pearsall Fall 2023

*All images are stolen from the internet

Announcements

PA2 Due date pushed to this **Friday** (10/20)

Friday will be a work day for PA2 (no lecture)

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Messages from Network Applications

Physical Layer

Bits being transmitted over a medium

*In the textbook, they condense it to a 5-layer model, but 7 layers is what is most used

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Messages from Network Applications

Physical Layer

Bits being transmitted over a medium

*In the textbook, they condense it to a 5-layer model, but 7 layers is what is most used

Our packet of information so far...

Transport Layer

Our packet of information so far...

Transport Layer

Network Layer

Responsible for the delivery of data through a network

Forwarding

Data Plane

Routing

Control Plane

Forwarding Techniques

Lookup,

forwarding,

Longest prefix matching

Address range	Interface (output link)
11001000 00010111 00010*** ******	1
11001000 00010111 00011000 *******	2
11001000 00010111 00011*** ******	3
otherwise	4

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address

examples:

DA: 11001000 00010111 000 10110 10100001 DA: 11001000 00010111 000 11000 10101010

which interface? which interface?

PROTOGOL

IP addressing, IPv4, and IPv6

https://www.rfc-editor.org/rfc/rfc791

Packets traversing through the network layer are referred to as a datagram. Each packet gets an IPv4/IPv6 header

Message

Transport

Layer

Header

IP Header

IPv4: 32-bit addresses (decimal)

192.149.252.76

IPv6: 128-bit addresses (hexademical)

3ffe:1900:fe21:4545::

Packets traversing through the network layer are referred to as a **datagram**. Each packet gets an IPv4/IPv6 header

IP Address: Globally unique* 32 bit (4 byte) dotted decimal number assigned to interfaces on hosts and routers

193.32.216.9

IP Address: Globally unique* 32 bit (4 byte) dotted decimal number assigned to interfaces on hosts and routers

(1 byte = 8 bits)

128	64	32	16	8	4	2	1
1	1	0	0	0	0	0	1

$$128 + 64 + 1 = 193$$

IP Address: Globally unique* 32 bit (4 byte) dotted decimal number assigned to interfaces on hosts and routers

(1 byte = 8 bits)

193.32.216.9

11000001 00100000 11011000 00001001

How many addresses are possible with a 32 bit number? ~4 billion possible IPv4 addresses

It is very common to have a range of IP addresses assigned to you (random assignment would be chaos)

Subnet mask

The leftmost <u>24</u> bits represent the prefix of the subnet

11111111 11111111 11111111 XXXXXXXXX = 255.255.255.0

Network bits 193.32.216.9

Host bits

11000001 00100000 11011000 00001001

6 subnets

- 1. 223.1.1.0/24
- 2. 223.1.7.0/24
- 3. 223.1.3.0/24
- 4. 223.1.8.0/24
- 5. 223.1.2.0/24
- 6. 223.1.9.0/23

The subnet 223.1.1.0/24 contains the following addresses

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4

223.1.1.5

• • •

223.1.1.252

223.1.1.253

223.1.1.254

How many addresses does a /24 subnet provide?

0 and 255 are reserved for special services (?)

The subnet 223.1.1.0/24 contains the following addresses

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4

223.1.1.5

• • •

223.1.1.252

223.1.1.253

223.1.1.254

How many addresses does a /24 subnet provide?

$$2^8 - 2 = 253$$

Class C network

0 and 255 are reserved for special services (?)

Subnet Type	Slash	Subnet Mask	Available Addresses
Class A	/8	255.0.0.0	2^24 - 2 = 16777216
Class B	/16	255.255.0.0	2^16 - 2 = 65,634
Class C	/24	255.255.255.0	2^8 - 2 = 254

Issues with this type of assignment?

Subnet Type	Slash	Subnet Mask	Available Addresses
Class A	/8	255.0.0.0	2 ² 4 – 2 = 16777216
Class B	/16	255.255.0.0	2^16 - 2 = 65,634
Class C	/24	255.255.255.0	2^8 - 2 = 254

If I have 2000 devices, I will either need 8 class C subnets or 1 class B subnet (but waste 63,000ish IP addresses)

We need a better way to subnet!

Our only available subnet masks have been:

255.255.255.0	11111111 1111111 1111111 0000000	/24
255.255.0.0	1111111 1111111 0000000 0000000	/16
255.0.0.0	1111111 0000000 0000000 00000000	/8

CIDR introduces a more flexible way for subnetting
We can any number of bits for our mask

```
Host bits! 200.23.16.0/20 = 11001000.00010111.00010000.00000000 
Mask = 111111111.11111111.11110000.00000000
```

ISPs can now group and advertise organizations by IP blocks

We once again have another hierarchy ©

One possible way an ISP could organize IP blocks

ISP's block	200.23.16.0/20	11001000 00010111 0001 <mark>000</mark> 0 00000000
Organization 0	200.23.16.0/23	11001000 00010111 0001 000 0 00000000
Organization 1	200.23.18.0/23	11001000 00010111 0001 001 0 00000000
Organization 2	200.23.20.0/23	11001000 00010111 0001 010 0 00000000
•••		
Organization 7	200.23.30.0.23	11001000 00010111 0001 1110 00000000

How do IPs get obtained/assigned?

The Internet Corporation for Assigned Names and Numbers (ICANN) is responsible for managing and allocating IP address space for ISPs and organizations

(they also manage the DNS root servers!)

When an organization gets a range of IP addresses to use, how to we give assign them to devices?

Do we do it manually?

we could....

DHCP

Dynamic Host Configuration Protocol (DHCP) is a **plug-and-play**, client-server protocol that allows a host to obtain an IP address automatically

When a host is automatically assigned an IP address, it might keep that one forever, or the IP addresses can be temporary

(more common)

This process is similar to a TCP handshake!

But devices that are **not** the dhcp server will ignore it

This process is similar to a TCP handshake!

This process is similar to a TCP handshake!

IP/DHCP in Wireshark