## Final Report

# Build A Personalized Online Course Recommender System with Machine Learning

**Pham Quoc Nam** 9/17/2024

#### Outline

Introduction and Background

**Exploratory Data Analysis** 

Unsupervised
Learning based
Recommendation
System

Supervised Learning based Recommendation System

Deploy and showcase models on Streamlit

Conclusion and future work

**Appendix** 

# Introduction & Background

#### Introduction

The main goal of this project is to improve learners' learning experience via helping them quickly find new interested courses and better paving their learning paths. Meanwhile, with more learners interacting with more courses via your recommender systems, your company's revenue may also be increased.

#### Mission



#### Mission

- Collecting and understanding data
- Performing exploratory data analysis on online course enrollments datasets
- Extracting Bag of Words (BoW) features from course textual content
- Calculating course similarity using BoW features
- -Building content-based recommender systems using various unsupervised learning algorithms
- Building collaborative-filtering recommender systems using varies supervised learning algorithms
- Creating an insightful and informative slideshow and presenting to your peers

## Exploratory Data Analysis

#### **Target**

- Identify keywords in course titles using a WordCloud
- Calculate the summary statistics and visualizations of the online course content dataset
- Determine popular course genres
- Calculate the summary statistics and create visualizations of the online course enrollment dataset
- Identify courses with the greatest number of enrolled students

#### Analyze course genres



#### **Analyze Course Enrollments**



#### **Top-20 Most Popular Courses**

|   | TITLE                                        | Enrolls |
|---|----------------------------------------------|---------|
| 0 | python for data science                      | 14936   |
| 1 | introduction to data science                 | 14477   |
| 2 | big data 101                                 | 13291   |
| 3 | hadoop 101                                   | 10599   |
| 4 | data analysis with python                    | 8303    |
| 5 | data science methodology                     | 7719    |
| 6 | machine learning with python                 | 7644    |
| 7 | spark fundamentals i                         | 7551    |
| 8 | data science hands on with open source tools | 7199    |
| 9 | blockchain essentials                        | 6719    |
| 0 | data visualization with python               | 6709    |
| 1 | deep learning 101                            | 6323    |
| 2 | build your own chatbot                       | 5512    |
| 3 | r for data science                           | 5237    |
| 4 | statistics 101                               | 5015    |
| 5 | introduction to cloud                        | 4983    |
| 6 | docker essentials a developer introduction   | 4480    |
| 7 | sql and relational databases 101             | 3697    |
| 8 | mapreduce and yarn                           | 3670    |
| 9 | data privacy fundamentals                    | 3624    |

#### Course Enrollment Percentage



#### **Word Cloud of Course Titles**



## Unsupervised Learning based Recommendation System

#### Outline

- 1. Content-based Course Recommender System using User Profile and Course
- Genres
- 2. Content-based Course Recommender System using Course Similarities
- 3. Clustering based Course Recommender System

#### Content-based Course Recommender System using User Profile and Course



#### Results



|         | USER    | COURSE_ID  | SCORE |
|---------|---------|------------|-------|
| 0       | 2       | ML0201EN   | 43.0  |
| 1       | 2       | GPXX0ZG0EN | 43.0  |
| 2       | 2       | GPXX0Z2PEN | 37.0  |
| 3       | 2       | DX0106EN   | 47.0  |
| 4       | 2       | GPXX06RFEN | 52.0  |
|         |         |            |       |
| 1500419 | 2102680 | excourse62 | 15.0  |
| 1500420 | 2102680 | excourse69 | 14.0  |
| 1500421 | 2102680 | excourse77 | 14.0  |
| 1500422 | 2102680 | excourse78 | 14.0  |
| 1500423 | 2102680 | excourse79 | 14.0  |

#### Content-based Course Recommender System using Course Similarities



- 1. the content-based recommender system is highly based on the similarity calculation among items
- 2. The similarity or closeness of items is measured based on the similarity in the content or features of those items.

#### Course similarity matrix:

|     | 0        | 1        | 2        | 3        | 4        | 5        | 6        |
|-----|----------|----------|----------|----------|----------|----------|----------|
| 0   | 1.000000 | 0.088889 | 0.088475 | 0.065556 | 0.048810 | 0.104685 | 0.065202 |
| 1   | 0.088889 | 1.000000 | 0.055202 | 0.057264 | 0.012182 | 0.078379 | 0.032545 |
| 2   | 0.088475 | 0.055202 | 1.000000 | 0.026463 | 0.039406 | 0.000000 | 0.000000 |
| 3   | 0.065556 | 0.057264 | 0.026463 | 1.000000 | 0.000000 | 0.250490 | 0.390038 |
| 4   | 0.048810 | 0.012182 | 0.039406 | 0.000000 | 1.000000 | 0.000000 | 0.000000 |
|     |          |          |          |          |          |          |          |
| 302 | 0.033944 | 0.028239 | 0.018270 | 0.094759 | 0.060474 | 0.064851 | 0.053856 |
| 303 | 0.076825 | 0.063911 | 0.082698 | 0.030638 | 0.030415 | 0.000000 | 0.000000 |
| 304 | 0.072898 | 0.138270 | 0.133400 | 0.017443 | 0.129871 | 0.009285 | 0.000000 |
| 305 | 0.039276 | 0.031367 | 0.012684 | 0.018796 | 0.000000 | 0.015008 | 0.024926 |
| 306 | 0.121113 | 0.076940 | 0.000000 | 0.158073 | 0.000000 | 0.126211 | 0.157219 |



#### Evaluation results of user profilebased recommender system

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

Score\_threshold=10

```
s = 0
for i in range(len(res_df['COURSE_ID'])):
    s+=len(res_df['COURSE_ID'].iloc[i])
avg = s/len(res_df['COURSE_ID'])
```

```
avg
11.377
```

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

```
579
excourse22
excourse62
              579
DS0110EN
              562
              555
excourse65
              555
excourse63
excourse72
              551
excourse68
              550
              539
excourse67
excourse74
              539
BD0145EN
              506
```

Clustering based Course Recommender System

We could perform clustering algorithms such as K-means or DBSCAN to group users with similar learning interests. For example, in the below user clusters, we have user clusters whom have learned courses related to machine learning, cloud computing, databases



#### Flow chart



#### **Evaluation**

#### Number of clusters = 20

On average, how many new/unseen courses have been recommended per user (in the test user dataset)

```
s = 0
for r in user_recommendations.value
    s+=r[1:].sum()
avg=s/len(user_recommendations)
print(avg)
```

5.733

What are the most frequently recommended courses? Return the top-10 commonly recommended courses

| DS0103EN   | 579 |
|------------|-----|
| DA0101EN   | 532 |
| BD0111EN   | 456 |
| DS0101EN   | 444 |
| BD0101EN   | 428 |
| PY0101EN   | 386 |
| DS0105EN   | 319 |
| ML0101ENv3 | 299 |
| BC0101EN   | 296 |
| ML0115EN   | 286 |

## Supervised Learning based Recommendation System

## Flow chart of KNN based recommender system



## Flow chart of NMF based recommender system



#### Flow char of Neural Network Embedding based recommender system



## Compare the performance of models



# Deploy and showcase models on Streamlit





| our co | u1363.     | <b>↓</b>                 |
|--------|------------|--------------------------|
|        | COURSE_ID  | TITLE                    |
| 0      | excourse46 | Machine Learning         |
| 1      | excourse47 | Machine Learning For All |

st\_table()

|   | SCORE  | TITLE                      | DESCRIPTION                                                                                                                                                                                                                                                                               |
|---|--------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0.6893 | Machine Learning<br>With R | this machine learning with r course dives into the basics of machine learning using an approachable and well known programming language you ll learn about supervised vs unsupervised learning look into how statistical modeling relates to machine learning and do a comparison of each |

#### Personalized Learning

#### 1. Select recommendation models

Recommender

Select model:

Course Similarity

#### 2. Tune Hyper-parameters:



Train Model

#### 4. Prediction

Recommend New Courses

#### Your courses:

|   | COURSE_ID  | TITLE                                                           |
|---|------------|-----------------------------------------------------------------|
| 0 | ML0201EN   | Robots Are Coming Build lot Apps With Watson Swift And Node Red |
| 1 | GPXX0Z2PEN | Containerizing Packaging And Running A Spring Boot Application  |
| 2 | DX0106EN   | Data Science Bootcamp With R For University Proffesors          |
| 3 | RAVSCTEST1 | Scorm Test 1                                                    |

#### Recommendations generated!

data science with open data

With Open Data

|   | SCORE  | TITLE                                                                              | DESCRIPTION                                                                          |
|---|--------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 0 | 0.9476 | Data Science<br>Bootcamp                                                           | a multi day intensive in person data science bootcamp offered by big data university |
| 1 | 0.6823 | Data Science<br>Bootcamp With<br>Python For<br>University<br>Professors            | data science bootcamp with python for university professors                          |
| 2 | 0.6685 | Data Science<br>Bootcamp With<br>Python For<br>University<br>Professors<br>Advance | data science bootcamp with python for university professors advance                  |
| 3 | 0.6499 | Data Science<br>Bootcamp With<br>Python                                            | data science bootcamp with python                                                    |
|   |        |                                                                                    |                                                                                      |

#### Outline

- 1. Content-based Course Recommender System using User Profile and Course
- Genres
- 2. Content-based Course Recommender System using Course Similarities
- 3. Clustering based Course Recommender System

## Conclusion

- User profile based model has the highest number of recommendation
- Similar matrix's high complexity
- NMF, KNN as a solution

## Appendix



Reporter: Pham Quoc Nam (github, linkedin)



Github repository: IBM ML

## Thank you

Pham Quoc Nam 0763117015 pikkerpham168@gmail.con

