Data Wrangling 2

Data Tidying

Daniela Palleschi

2024-07-09

Inhaltsverzeichnis

Le	ernziele	2
	Ressourcen	2
1	Einrichtung 1.1 Pakete 1.2 Daten	2 2 2
2	'Tidy' Arbeitsablauf	3
3	'Tidy' Daten 3.1 Regeln für 'tidy' Daten	
4	Daten bereinigen (tidying) 4.1 'Tidying' Daten mit dem tidyverse	
5	0	7 8 9 11
6	pivot_wider() 6.1 pivot_wider() 6.4 Eindeutige Werte	11 12 13
7	Hausaufgaben	14
Se	ession Info	14

Lernziele

Heute werden wir lernen...

- über breite versus lange Daten
- wie man breite Daten länger macht
- wie man lange Daten breiter macht

Ressourcen

Die vorgeschlagenen Ressourcen für dieses Thema sind

- Kurs-Website: Kapitel 9 (Data Wrangling 2)
- Kapitel 6 (Data Tidying) in Wickham et al. (2023)
- Kapitel 8 (Data Tidying) in Nordmann & DeBruine (2022)

1 Einrichtung

1.1 Pakete

1.2 Daten

• Wir verwenden den Datensatz languageR_english.csv (im Ordner daten)

1 Bereinigen (d.h. tidy) von Variablennamen (von janitor)

- (2) Zeilen nach wort in ansteigender Reihenfolge anordnen (A-Z)
- (3) Variablen umbenennen...
- (4) r_tlexdec in rt_lexdec umbenennen
- (5) r_tlexdec in rt_lexdec umbenennen
- (6) nur die genannten Spalten behalten

2 'Tidy' Arbeitsablauf

- Abbildung 1 zeigt einen Überblick über den typischen Data-Science-Prozess
 - Wir importieren unsere Daten, bereinigen sie und durchlaufen dann einen Zyklus aus Umwandlung, Visualisierung und Modellierung, bevor wir schließlich unsere Ergebnisse kommunizieren.

Abbildung 1: Image source: Wickham et al. (2023) (all rights reserved)

- Bisher haben wir gelernt, wie man
 - unsere Daten importieren (readr::read csv)
 - Daten transformieren (Paket dplyr)
 - Daten zu visualisieren (Paket ggplot)
 - unsere Ergebnisse mit dynamischen Berichten zu kommunizieren (Quarto)
- aber wir haben bis jetzt nur aufgeräumte Daten gesehen
 - daher mussten wir den Schritt des "tidy" (Paket tidyr) noch nicht durchführen

3 'Tidy' Daten

- dieselben Daten können auf verschiedene Weise dargestellt werden
- Wir werden uns 3 Tabellen ansehen, die genau dieselben Daten in verschiedenen Formaten darstellen

- Die Tabellen zeigen die gleichen Werte von vier Variablen:
 - Land (country)
 - Jahr (year)
 - Bevölkerung (population)
 - Anzahl der Tuberkulosefälle (cases)
- Jeder Datensatz ordnet die Werte anders an
- überlegen Sie, welche Tabelle für Sie am einfachsten zu lesen ist

Tabelle 1: Version 1

country	year	cases	population
Afghanistan	1999	745	19987071
Afghanistan	2000	2666	20595360
Brazil	1999	37737	172006362
Brazil	2000	80488	174504898
China	1999	212258	1272915272
China	2000	213766	1280428583

Tabelle 2: Version 2

country	year	type	count
Afghanistan	1999	cases	745
Afghanistan	1999	population	19987071
Afghanistan	2000	cases	2666
Afghanistan	2000	population	20595360
Brazil	1999	cases	37737
Brazil	1999	population	172006362
Brazil	2000	cases	80488

Brazil	2000	population	174504898
China	1999	cases	212258
China	1999	population	1272915272
China	2000	cases	213766
China	2000	population	1280428583

Tabelle 3: Version 3

country	year	rate
Afghanistan		745/19987071
Afghanistan		2666/20595360
Brazil		37737/172006362
Brazil		80488/174504898
China	1999	212258/1272915272
China	2000	213766/1280428583

3.1 Regeln für 'tidy' Daten

- Wahrscheinlich ist Tabelle 1 für Sie am einfachsten zu lesen
 - sie folgt den drei Regeln für aufgeräumte Daten (visualisiert in Abbildung 2):
- 1. Jede Variable ist eine Spalte, jede Spalte ist eine Variable
- 2. Jede Beobachtung ist eine Zeile, jede Zeile ist eine Beobachtung
- 3. Jeder Wert ist eine Zelle, jede Zelle ist ein Einzelwert

3.2 Warum 'tidy' Daten?

- "Glückliche Familien sind alle gleich; jede unglückliche Familie ist auf ihre eigene Art unglücklich."
- Leo Tolstoy

Abbildung 2: Image source: Wickham et al. (2023) (all rights reserved)

"'Tidy' Datensätze sind alle gleich, aber jeder 'untidy' Datensatz ist auf seine eigene Weise unordentlich."

— Hadley Wickham

Die Arbeit mit aufgeräumten Daten hat zwei wesentliche Vorteile:

- 1. Die Arbeit mit einer konsistenten Datenstruktur ermöglicht es uns, Konventionen zu übernehmen.
 - Aufgeräumte Daten sind die allgemein vereinbarte Datenstruktur
 - Konventionen/Werkzeuge basieren auf der Annahme dieser Struktur
- 2. Die vektorisierte Natur von R kann glänzen
 - die meisten eingebauten R-Funktionen arbeiten mit *Vektorwerten* (und Spalten sind im Wesentlichen Vektoren)
 - Alle Pakete im tidyverse sind darauf ausgelegt, mit aufgeräumten Daten zu arbeiten (z.B. ggplot2 und dplyr)

4 Daten bereinigen (tidying)

- Umwandlung breiter Daten in lange Daten und langer Daten in breite Daten (neben anderen Schritten)
 - Ergebnis: aufgeräumte Daten (normalerweise)

4.1 'Tidying' Daten mit dem tidyverse

• Das Paket tidyr (aus tidyverse) hat zwei nützliche Funktionen zum Transponieren unserer Daten:

- pivot_longer(): macht breite Daten länger
- pivot_wider(): lange Daten breiter machen

Abbildung 3: die berühmteste Verwendung des Wortes Pivot (zumindest für Millenials)

4.2 Breite versus lange Daten

- Wir müssen oft zwischen breiten und langen Datenformaten konvertieren, um verschiedene Arten von Zusammenfassungen oder Visualisierungen zu erstellen
- breite Daten: alle Beobachtungen zu einer Sache befinden sich in einer einzigen Zeile
 - ist *normalerweise* nicht aufgeräumt
- lange Daten: jede Beobachtung befindet sich in einer separaten Zeile
 - ist normalerweise aufgeräumt
- Beginnen wir mit dem typischsten Fall: Umwandlung breiter Daten in lange Daten

5 pivot_longer()

- im Datensatz languageR_english.csv (df_eng)
 - haben wir 4568 Beobachtungen (Zeilen)
 - Wir haben 5 Variablen (Spalten)
 - die Spalte age_subject gibt an, ob eine Beobachtung von einem Teilnehmer der Altersgruppe old oder young stammt
 - die Spalten word und word_category beschreiben Eigenschaften des Stimulus für eine bestimmte Beobachtung (d. h. das Wort)
 - die Spalte rt_lexdec enthält die Reaktionszeit für eine lexikalische Entscheidungsaufgabe

- die Spalte rt_naming enthält die Antwortzeit für eine Wortbenennungsaufgabe

Tabelle 4: df_eng

$age_subject$	word	$word_category$	rt_lexdec	rt_naming
young	ace	N	623.61	456.3
old	ace	N	775.67	607.8
young	act	V	617.10	445.8
old	act	V	715.52	639.7
young	add	V	575.70	467.8
old	add	V	742.19	605.4

- Sind diese Daten in Tabelle 4 aufgeräumt?
- Sind diese Daten zu breit oder zu lang?
- Wie können wir diese Daten länger machen?

5.1 Our goal

• wir wollen Abbildung 4 produzieren

Response time by task and age group

Abbildung 4: Our plot to be reproduced

• die beiden kontinuierlichen Variablen rt_lexdec und rt_naming erscheinen in Facetten

- facet_wrap() nimmt eine kategorische Variable als Argument und erzeugt eine Facette für jede Kategorie
- wir brauchen also eine kategorische Variable, die die Ebenen lexdec und naming enthält
 - und eine kontinuierliche Variable, die die entsprechende Antwortzeit enthält

5.2 pivot_longer()

- Die Funktion pivot_longer() (von tidyr) konvertiert eine breite Datentabelle in ein längeres Format
 - wandelt die Namen der angegebenen Spalten in die Werte einer neuen kategorischen Spalte um
 - und kombiniert die Werte dieser Spalten in einer neuen Spalte

```
df_eng_long <-
    df_eng %>%
    pivot_longer(
        cols = starts_with("rt_"),
        names_to = "response",
        values_to = "time"
    )
6
```

- (1) Erstellen Sie ein neues Objekt namens df_eng_long, das...
- (2) df_eng, und dann
- (3) mache es länger
- 4 indem du Spalten (col =) nimmst, die mit rt_ beginnen
- (5) und eine Variable namens response erstellen, die die Namen aus cols enthält (names_to =)
- (6) und eine Variable namens time erstellen, die die Werte aus cols enthält (values_to =)

```
df_eng_long |> head()
```

```
# A tibble: 6 x 5
 age_subject word word_category response
                                                time
  <chr>
              <chr> <chr>
                                    <chr>>
                                               <dbl>
1 young
                                    rt_lexdec
                                                624.
              ace
                     N
2 young
                     N
                                    rt_naming
                                                456.
              ace
3 old
                                    rt_lexdec 776.
              ace
                     N
4 old
                     N
                                    rt_naming
                                                608.
              ace
                     V
5 young
                                    {\tt rt\_lexdec}
                                                617.
              act
6 young
                     V
                                    rt_naming 446.
              act
```

- Vergleichen wir die Beobachtungen für die Wörter ace und act in
 - df_eng (Tabelle 5)
 - df_eng_longer (Tabelle 6)

Tabelle 5: df_eng

age_subject	word	rt_lexdec	rt_naming
young	ace	623.61	456.3
old	ace	775.67	607.8
young	act	617.10	445.8
old	act	715.52	639.7

Tabelle 6: df_eng |> pivot_longer(...)

age_subject	word	response	time
young	ace	rt_lexdec	623.61
young	ace	rt_naming	456.30
old	ace	rt_lexdec	775.67
old	ace	rt_naming	607.80
young	act	rt_lexdec	617.10
young	act	rt_naming	445.80
old	act	rt_lexdec	715.52
old	act	rt_naming	639.70

- die beiden Tabellen enthalten genau die gleichen Informationen
 - 8 Werte für die Antwortzeit:
 - * 4 für rt_lexdec
 - * 4 für rt_naming
- Dies ist eine wichtige Erkenntnis: Wir haben keine Daten oder Beobachtungswerte geändert, sondern lediglich die Organisation der Datenpunkte neu strukturiert.

5.2.1 Plotten unserer 'tidy' Daten

- Versuchen wir nun, unser Diagramm zu erstellen:
 - age_subject auf der x-Achse
 - time auf der y-Achse
 - Kategorien response in Facetten

Response time by task and age group

Abbildung 5: Response times per age group for the lexical decision task vs. naming task

Aufgabe 5.1: Tidy data
Beispiel 5.1.
Abbildung 5 neu erstellen.

6 pivot_wider()

- Es kommt häufiger vor, dass man seine Daten verlängern will (man nimmt Spalten und macht aus deren Werten neue Zeilen)
 - aber manchmal möchte man seine Daten auch verbreitern (man nimmt Zeilen und verwandelt ihre Werte in neue Spalten)

- Die tidyr-Funktion pivot_wider() macht Datensätze breiter, indem sie Spalten vergrößert und Zeilen reduziert.
 - Dies ist hilfreich, wenn eine Beobachtung über mehrere Zeilen verteilt ist.
- Lassen Sie uns versuchen, df_eng breiter zu machen
 - Wir könnten zum Beispiel eine einzige Zeile pro Wort haben
 - * mit einer einzigen Variablen für die Antwort des young Probanden und die Antwort des old Probanden

6.1 pivot_wider()

- pivot wider nimmt ähnliche Argumente wie pivot_longer(), mit einigen leichten Unterschieden:
 - id_cols (optional): identifizierende Spalten (welche Spalten identifizieren jede Beobachtung eindeutig?)
 - names_from: wie soll die neue Spalte heißen, die die vorherigen Spaltennamen enthält (muss eine kategorische Variable sein)?
 - names_prefix (optional): Präfix für die neuen Spaltennamen (optional)
 - values_von: neue Spaltenwerte

6.2

• lassen Sie uns zwei neue Variablen erstellen, die ihre Namen von age_subject und ihre Werte von rt_lexdec übernehmen

```
df_eng_wide <-
  df_eng %>%
  select(-rt_naming) |>
  pivot_wider(
    names_from = age_subject,
    values_from = rt_lexdec,
    names_prefix = "lexdec_"
)
```

- (1) neue Spaltennamen unter Verwendung der Werte in age_subject erstellen
- 2 Erstelle neue Beobachtungswerte aus rt_lexdec
- 3 Hinzufügen von lexdec_ am Anfang der neuen Spaltennamen

6.3

- Vergleichen wir die Beobachtungen für die Wörter ace und act in
 - df_eng (Tabelle 5)
 - df_eng_longer (Tabelle 6)

Tabelle 7: df_eng

age_subject	word	word_category	rt_lexdec
young	ace	N	623.61
old	ace	N	775.67
young	act	V	617.10
old	act	V	715.52

Tabelle 8: df_eng_wide

word	word_category	lexdec_young	lexdec_old
ace	N	623.61	775.67
act	V	617.10	715.52

• Auch hier haben wir keine Daten oder Beobachtungswerte geändert, sondern lediglich die Anordnung der Datenpunkte neu strukturiert.

6.4 Eindeutige Werte

- Wir haben rt_naming entfernt, weil es auch einen eindeutigen Wert pro Wort pro Altersgruppe hat
- wir ändern nur die Breite und führen NA-Werte für lexdec_young für alte Themen und NA-Werte für lexdec_old für junge Themen ein
- Hätten wir sie nicht entfernt, sähen unsere ersten 6 Zeilen wie Tabelle 9 aus
 - Vergleichen Sie dies mit der Ausgabe in Tabelle 8, sehen Sie den Unterschied?

Tabelle 9: Wider data with missing values

word	word_category	rt_naming	lexdec_young	lexdec_old
ace	N	456.3	623.61	NA
ace	N	607.8	NA	775.67
act	V	445.8	617.10	NA
act	V	639.7	NA	715.52

Lernziele

Heute haben wir gelernt...

- über breite und lange Daten
- wie man breite Daten länger macht
- wie man lange Daten breiter macht

7 Hausaufgaben

Anhang 2 auf der Website des Kurses.

Session Info

Hergestellt mit R version 4.4.0~(2024-04-24)~(Puppy~Cup) und RStudioversion 2023.9.0.463~(Desert~Sunflower).

sessionInfo()

R version 4.4.0 (2024-04-24)
Platform: aarch64-apple-darwin20
Running under: macOS Ventura 13.2.1

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib;

```
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/c/en_US.UTF-8/en_US.UTF-8
time zone: Europe/Berlin
tzcode source: internal
attached base packages:
              graphics grDevices datasets utils
[1] stats
                                                       methods
                                                                 base
other attached packages:
 [1] janitor_2.2.0
                     here_1.0.1
                                     lubridate_1.9.3 forcats_1.0.0
                     dplyr_1.1.4
                                     purrr_1.0.2
                                                      readr_2.1.5
 [5] stringr_1.5.1
 [9] tidyr_1.3.1
                     tibble_3.2.1
                                     ggplot2_3.5.1
                                                      tidyverse_2.0.0
loaded via a namespace (and not attached):
 [1] utf8_1.2.4
                       generics_0.1.3
                                         renv_1.0.7
                                                            xm12_1.3.6
 [5] stringi_1.8.3
                       hms_1.1.3
                                         digest_0.6.35
                                                            magrittr_2.0.3
                       grid_4.4.0
 [9] evaluate_0.23
                                         timechange_0.3.0
                                                            fastmap_1.1.1
[13] rprojroot_2.0.4
                       jsonlite_1.8.8
                                                            fansi_1.0.6
                                         tinytex_0.50
[17] viridisLite_0.4.2 scales_1.3.0
                                         cli_3.6.2
                                                            rlang_1.1.3
[21] crayon_1.5.2
                       bit64_4.0.5
                                         munsell_0.5.1
                                                            withr_3.0.0
[25] yaml_2.3.8
                       tools_4.4.0
                                         parallel_4.4.0
                                                            tzdb_0.4.0
[29] colorspace_2.1-0 pacman_0.5.1
                                         kableExtra_1.4.0
                                                            png_0.1-8
[33] vctrs_0.6.5
                       R6_2.5.1
                                         magick_2.8.3
                                                            lifecycle_1.0.4
[37] snakecase_0.11.1
                       bit_4.0.5
                                                            pkgconfig_2.0.3
                                         vroom_1.6.5
[41] pillar_1.9.0
                                         Rcpp_1.0.12
                       gtable_0.3.5
                                                            glue_1.7.0
[45] systemfonts_1.0.6 xfun_0.43
                                          tidyselect_1.2.1
                                                            rstudioapi_0.16.0
[49] knitr_1.46
                       farver_2.1.1
                                         htmltools_0.5.8.1 labeling_0.4.3
[53] svglite_2.1.3
                       rmarkdown_2.26
                                         compiler_4.4.0
```

Literaturverzeichnis

Nordmann, E., & DeBruine, L. (2022). Applied Data Skills. Zenodo. https://doi.org/10.5281/zenodo.6365078

Wickham, H., Çetinkaya-Rundel, M., & Grolemund, G. (2023). R for Data Science (2. Aufl.).