

Research Interest_

My passion is the quest for understanding and modeling visual intelligence in humans, particularly in applications involving behavior understanding, navigation, and reasoning. The research problems that I would like to pursue include learning with limited data, generalizing concepts across different domains, and learning data representations without labels through unsupervised or weakly supervised methods. I would like to apply solutions to these problems in different domains, including intelligent mobility and robotics.

Education

Worcester Polytechnic Institute

Worcester, Massachusetts, USA

M.Sc. Robotics Engineering, GPA: 4.0/4.0

Jan 2017 - Aug 2018

• Honda Research Institute, SanJose, CA — Research Internship Program Spring, Summer 2018

Vellore Institute of Technology

Vellore, India July 2012 - May 2016

B.Tech. IN Electronics and Instrumentation, GPA: 8.79/10

• Carnegie Mellon University, Pittsburgh, PA — Semester Abroad Fall 2015, Spring 2016

Research Experience _____

Kinetic Automation

Mountain View, California, USA

STAFF RESEARCH ENGINEER - MACHINE LEARNING

Mar 22-Present

Responsible for Machine learning related tasks simulation, data creation, algorithm design, and deployment.

RESEARCH ENGINEER Oct 21-Feb 22

Developing 3D Machine Vision algorithms for Autonomous Driving and Electric Vehicles maintenance.

Honda Research Institute

San Jose, California, USA

RESEARCH ENGINEER

Jan 18-Oct 21

Worked on 3D scene understanding research topics like 3D Mapping using LiDAR sensor, sensor fusion with GPS-IMU sensors, 3D detection, joint 2D-3D multiobject tracking, action recognition, future trajectory forecast.

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

VISITING SCHOLAR, MACHINE LEARNING DEPARTMENT

May 17-Aug 17

Under the supervision of Katerina Fragkiadaki, worked on developing Ego-motion estimation for UAVs with low cost sensors (Monocular Camera, IMU) using Deep Learning Techniques. IMU sensor is used to overcome the problem of less or no visual correspondences during fast motion.

RESEARCH ASSOCIATE, FIELD ROBOTICS CENTER

Sept 15-April 16

Under the supervision of Sebastian Scherer, for the application of Industrial inspection with UAVs, I worked on system integration, control and real-time coverage planner to optimize flight time.

Publications

Social-STAGE: Spatio-Temporal Multi-Modal Future Trajectory Forecast

ICRA

INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION

2021

HTTPS://ARXIV.ORG/PDF/2011.04853.PDF S Malla, B Dariush and C Choi

RAIN: Reinforced hybrid attention inference network for motion	ICCV
forecasting	/CCV
International Conference on Computer Vision	2021
HTTPS://ARXIV.ORG/PDF/2108.01316.PDF	2021
J Li, F Yang, H Ma, <u>S Malla</u> , M Tomizuka and C Choi	
LOKI: Long Term and Key Intentions for Trajectory Prediction	ICCV
International Conference on Computer Vision	2021
HTTPS://arxiv.org/pdf/2108.08236.pdf	2021
H Girase*, H Gang*, <u>S Malla</u> , J Li, A Kanehara, K Mangalam, C Choi	
Shared Cross-Modal Trajectory Prediction for Autonomous Driving	CVPR <u>"ORAL"</u>
Computer Vision and Pattern Recognition	2021
HTTPS://arxiv.org/pdf/2011.08436.pdf	2021
C Choi, J H Choi, J Li, <u>S Malla</u>	
Bird's Eye View Segmentation Using Lifted 2D Semantic Features	BMVC
British Machine Vision Conference	2021
HTTPS://www.bmvc2021-virtualconference.com/assets/papers/0772.pdf	2021
I Dwivedi, <u>S Malla</u> , YT Chen, B Dariush	
DROGON: A Trajectory Prediction Model based on Intention-Conditioned	CoRI
Behavior Reasoning	CORL
Conference on Robot Learning	2020
HTTPS://arxiv.org/pdf/1908.00024.pdf	2020
C Choi, <u>S Malla</u> , A Patil, J H Choi	
TITAN: Future Forecast using Action Priors	CVPR <u>"ORAL"</u>
Computer Vision and Pattern Recognition	2020
HTTPS://ARXIV.org/pdf/2003.13886.pdf	2020
<u>S Malla</u> , B Dariush and C Choi	
SSP: Single Shot Future Trajectory Prediction	IROS
International Conference on Intelligent Robots and Systems	2020
HTTPS://ARXIV.org/pdf/2004.05846.pdf	2020
I Dwivedi, <u>S Malla</u> , B Dariush, C Choi	
The H3D Dataset for Full-Surround 3D Multi-Object Detection and	ICRA
Tracking in Crowded Urban Scenes	TCTVT
International Conference on Robotics and Automation	2019
HTTPS://arxiv.org/pdf/1903.01568.pdf	2013
A Patil, <u>S Malla</u> , H Gang, Y T Chen	
Development of an intelligent pressure measuring technique for bellows	Elsevier
using radial basis function neural network	LISCVICI
SENSORS AND ACTUATORS A: PHYSICAL	2016
https://www.sciencedirect.com/science/article/abs/pii/S0924424715302697	2010
V Naveen, V Komanapalli, and <u>S Malla</u>	
Gesture Control Interface Using Machine Learning Algorithms	IJARCSSE
IJARCSSE Volume 5, ISSUE. 09 (2015) ISSN: 2277-128X.	
https://www.researchgate.net/publication/291559092_Gesture_Control_Interface_Using_Machine_Learning_	2015
ALGORITHMS	
H S Baweja, T Parhar, <u>S Malla</u>	
NEMO: Future Object Localization Using Noisy Ego Priors	Arxiv
	2019
HTTPS://arxiv.org/pdf/1909.08150.pdf	2013
<u>S Malla</u> , I Dwivedi, B Dariush, C Choi	

Papers under review	
DRAMA: Joint Risk Localization and Captioning in Driving	ECCV
SUBMITTED TO EUROPEAN CONFERENCE ON COMPUTER VISION	2022
CM-II- C Ch-: III Ch-: I Duite-ii rad II:	2022
S Malla, C Choi, J H Choi, I Dwivedi, and J Li	FCCV.
Trajectory Prediction by Clustering Human Interactions at Multiple Scales Submitted to European Conference on Computer Vision	ECCV
SOBMITTED TO LONG FAN CONFERENCE ON COMPOTER VISION	2022
C Choi*, D Lee*, S Malla, S Bae, and J Kim	
Patents	
System and method for future forecasting using action priors	ACCEPTED
US PATENT APP. 16/913,260	2021
<u>Srikanth Malla</u> , Chiho Choi, Behzad Dariush	
Systems and methods for providing future object localization	ACCEPTED
US PATENT APP. 16/828,343	2021
<u>Srikanth Malla</u> , Chiho Choi	
Composite field based single shot prediction	ACCEPTED
US PATENT APP. 16/917,864	2021
Isht Dwivedi, Chiho Choi, <u>Srikanth Malla</u> , Behzad Dariush	
SYSTEM AND METHOD FOR PROVIDING SOCIAL-STAGE SPATIO-TEMPORAL	ACCEPTED
MULTI-MODAL FUTURE FORECASTING US PATENT APP.17/160747	2021
Srikanth Malla, Chiho Choi, Behzad Dariush	2021
System and method for completing Joint Risk Localization and Reasoning	
in Driving	FILED
US PATENT APP. 17/388256	2021
Srikanth Malla	2021
System and method for automated extrinsic calibration of Lidars,	
Cameras, Radars, and Ultrasonic Sensors on Vehicles and Robots	FILED
Provisional Filed	2021
Nikhil Naikal, Alexander Marques, <u>Srikanth Malla</u>	
SYSTEM AND METHOD FOR COMPLETING TRAJECTORY PREDICTION FROM	EU ED
AGENT-AUGMENTED ENVIRONMENTS	FILED
US PATENT APP. 17/161136	2021
Chiho Choi, <u>Srikanth Malla</u> , Sangjae Bae	
SYSTEM AND METHOD FOR PROVIDING LONG TERM AND KEY INTENTIONS	EII ED
FOR TRAJECTORY PREDICTION	FILED
US PATENT APP. 17/352540	2021
Harshayu Vishwajeet Girase, Haiming Gang, <u>Srikanth Malla</u> , Jiachen Li, Akira Kanehara, Chiho Choi	
Technical Skills	
Programming Python C++ Matlab	

Programming Python, C++, Matlab
ML Frameworks PyTorch, TensorFlow, Keras, CUDA
Vision Libraries PCL, OpenCV
Robotics Frameworks OpenRave, , Multisim, ROS, Solid Works, Movelt, Gazebo, MuJoCo
Robots: Baxter, UAVs (custom built, DJI), Kuka Youbot, Turtle Bot
Others Linux, Docker, Vim, IPythonNotebook, Google Colab, Git, Github, AWS S3, AWS EC2, LTEX

Editorial Service

2022	ECCV , European Conference on Computer Vision	Reviewer
2022	CVPR, Computer Vision and Pattern Recognition	Reviewer
2022	RAL , Robotics and Automation Letters	Reviewer
2021	ICCV, International Conference on Computer Vision (MAIR2 Workshop)	Reviewer
2021-22	ICRA, International Conference on Robotics and Automation	Reviewer
2020	IROS, International Conference on Intelligent Robots and Systems	Reviewer
2020	IJRR, International Journal of Robotics Research	Reviewer
2020	T-IV , Transactions on Intelligent Vehicles	Reviewer

Teaching.

Worcester Polytechnic Institute

Tutor

ELECTRICAL AND COMPUTER ENGINEERING DESIGN, ECE 2799

Spring 2017

In Spring 2017, I was the tutor for the course ECE 2799. Half of the course is project based and I supervised the electronics projects.

Teaching Assistant

SYNERGY OF HUMAN AND ROBOTIC SYSTEMS, RBE 595

Fall 2017

In Fall 2017 I was the Teaching Assistant for the course RBE 595, which is an advanced course designed for project-based robot design. I was part of grading the students assignments and tests. And help the students with questions in the class.