# Cryptologie asymétrique 1/2

### **Damien Vergnaud**

Sorbonne Université

CRYPTO 1

### Contents

- Public-key cryptography
  - History of Public-key cryptography
  - Diffie-Hellman key exchange
  - Trapdoor permutations and RSA
- 2 RSA
  - Primality testing
  - RSA and integer factoring
  - RSA with shared modulus
  - Broadcast attack
  - Wiener's attack

# Limitations of Secret Key (Symmetric) Cryptography

- Secret key cryptography
  - symmetric encryption
  - MAC

- Sender and receiver must share the same key
  - needs secure channel for key distribution
- Other limitation of authentication scheme
  - cannot authenticate to multiple receivers
  - The second field of the Parks
  - does not have non repudiation

# Limitations of Secret Key (Symmetric) Cryptography

- Secret key cryptography
  - symmetric encryption
  - MAC

- Sender and receiver must share the same key
  - needs secure channel for key distribution
- Other limitation of authentication scheme
  - cannot authenticate to multiple receivers
  - does not have non-repudiation

## Limitations of Secret Key (Symmetric) Cryptography

- Secret key cryptography
  - symmetric encryption
  - MAC

- Sender and receiver must share the same key
  - needs secure channel for key distribution
- Other limitation of authentication scheme
  - cannot authenticate to multiple receivers
  - does not have non-repudiation

## How to distribute the cryptographic keys?

- If the users can meet in person beforehand it's simple.
- But what to do if they cannot meet? (e.g. on-line shopping)

#### A Naive solution

- give to every user  $P_i$  a separate key  $K_{ij}$  to communicate with every  $P_j$
- view quadratic number of keys is needed
- ->> someone needs to "give the keys"
- ullet  $\leadsto$  the users need to store large numbers of keys in a secure way

### How to distribute the cryptographic keys?

- If the users can meet in person beforehand it's simple.
- But what to do if they cannot meet? (e.g. on-line shopping)

#### A Naive solution

- ullet give to every user  $P_i$  a separate key  $K_{ij}$  to communicate with every  $P_j$
- $\leadsto$  quadratic number of keys is needed
- → someone needs to "give the keys"
- ullet  $\leadsto$  the users need to store large numbers of keys in a secure way

# The solution: Public-Key Cryptography

• first proposed by Diffie and Hellman:

```
W.Diffie and M.E.Hellman,
New directions in cryptography
IEEE Trans. Inform. Theory, IT-22, 6, 1976, pp. 644-654.
```

- similar idea by Merkle:
  - 1974: a project proposal for a Computer Security course at UC Berkeley (it was rejected)
  - 1975: submitted to the CACM journal (it was rejected) (see http://www.merkle.com/1974/)
- 2015 Turing Award
- It 1997 the GCHQ revealed that they new it already in 1970 (James Ellis).

### The idea

- instead of using one key K: use 2 keys (e, d)
  - e → encryption,
  - d → decryption,
- e can be public and only d has to be kept secret!

- Public Key Encryption
  - Message + Bob's Public Key = Ciphertext
  - Ciphertext + Bob's Private Key = Message
- anyone with Bob's public key can send Bob a secret message.
- only Bob can decrypt the message, since only Bob has the private key.

### The idea

- instead of using one key K: use 2 keys (e, d)
  - e → encryption,
  - *d* → decryption,
- e can be public and only d has to be kept secret!

### Digital signatures

- Message + Alice's Private Key = Signature
- Message + Signature + Alice's Public Key = 0 or 1
- anyone with Alice's public key can verify that the message comes from Alice.
- only Alice can produce the signature, since only Alice has the private key.

### But is it possible?

• In "physical world": yes!



- Diffie and Hellman proposed the public key cryptography in 1976.
  - They just proposed the concept, not the implementation.
  - But they have shown a protocol for key-exchange

### But is it possible?

• In "physical world": yes!



- Diffie and Hellman proposed the public key cryptography in 1976.
  - They just proposed the concept, not the implementation.
  - But they have shown a protocol for key-exchange

# Key Exchange



 $(\mathbb{G},\cdot)$  a finite cyclic group;  $\langle g \rangle = \mathbb{G}$ 



 $K_a = y_b^a = (g^b)^a = g^{ab} = (g^a)^b = y_a^b = K_b$ 

 $(\mathbb{G},\cdot)$  a finite cyclic group;  $\langle g 
angle = \mathbb{G}$ 



 $(\mathbb{G},\cdot)$  a finite cyclic group;  $\langle g \rangle = \mathbb{G}$ 



 $(\mathbb{G},\cdot)$  a finite cyclic group;  $\langle g \rangle = \mathbb{G}$ 



 $(\mathbb{G},\cdot)$  a finite cyclic group;  $\langle g \rangle = \mathbb{G}$ 



## Diffie-Hellman Key Exchange: Security

#### Eve knows:

- (G, g)
- $y_a = g^a$
- $y_b = g^b$

and should have no information on  $K = g^{ab}$ .

- If finding a from  $y_a$  is easy then the DH key exchange is not secure.
- Even if it is hard, then

... the scheme may also not be completely secure

How to choose G ?

... First choice (**bad**):  $\mathbb{G} = (\mathbb{Z}/n\mathbb{Z}, +)$  for some integer n. ... Second choice (**good**):  $\mathbb{G} = (\mathbb{Z}/n\mathbb{Z}^*, \cdot)$  for some integer n.

### Diffie-Hellman Key Exchange: Security

#### Eve knows:

- (G, g)
- $y_a = g^a$
- $y_b = g^b$

and should have no information on  $K = g^{ab}$ .

- If finding a from  $y_a$  is easy then the DH key exchange is not secure.
- Even if it is hard, then

... the scheme may also not be completely secure

• How to choose G ?

... First choice (bad):  $\mathbb{G} = (\mathbb{Z}/n\mathbb{Z}, +)$  for some integer n. Second choice (good):  $\mathbb{G} = (\mathbb{Z}/n\mathbb{Z}^*, \cdot)$  for some integer n.

## Diffie-Hellman Key Exchange: Security

#### Eve knows:

- (G, g)
- $y_a = g^a$
- $y_b = g^b$

and should have no information on  $K = g^{ab}$ .

- If finding a from  $y_a$  is easy then the DH key exchange is not secure.
- Even if it is hard, then

... the scheme may also not be completely secure

• How to choose  $\mathbb{G}$  ?

... First choice (**bad**):  $\mathbb{G} = (\mathbb{Z}/n\mathbb{Z}, +)$  for some integer n. ... Second choice (**good**):  $\mathbb{G} = (\mathbb{Z}/n\mathbb{Z}^*, \cdot)$  for some integer n.

$$Z = Y^X \mod N$$

When Z is unknown, it can be efficiently computed

## Exponentiation by squaring – square-and-multiply

$$y^{x} = \begin{cases} 1 & \text{if } x = 0\\ y \cdot y^{x-1} & \text{if } x \text{odd}\\ (y^{2})^{x/2} & \text{if } x \text{even} \end{cases}$$

```
long pow(long y, long x)
   long result = 1;
   while (x) {
        if (x & 1) {
           result *= y;
       y *= y;
       x /= 2:
   return result;
```

## Efficiency of computation modulo n

Suppose that *n* is a *k*-bit number, and  $0 \le x, y \le n$ 

- $(x \pm y) \mod n \rightsquigarrow O(k)$
- $(xy) \mod n \rightsquigarrow O(k^2) (\text{ou } \tilde{O}(k))$
- $(x)^c \mod n \rightsquigarrow O((\log c)k^2)$  ou  $\tilde{O}((\log c)k)$
- $(x^{-1}) \mod n \rightsquigarrow O(k^3)$  (ou  $\tilde{O}(k^2)$ ) ou  $O(k^2)$  (ou  $\tilde{O}(k)$ )

$$Z = Y^X \mod N$$

When X is unknown, the problem is known as the discrete logarithm and is generally believed to be hard to solve

$$Z = Y^X \mod N$$

When X is unknown, the problem is known as the discrete logarithm and is generally believed to be hard to solve

$$Z = Y^X \mod N$$

When Y is unknown, the problem is known as the discrete root extraction and is generally believed to be hard to solve unless the factorisation of N is known.

$$Z = Y^X \mod N$$

When Y is unknown, the problem is known as the discrete root extraction and is generally believed to be hard to solve unless the factorisation of N is known.

$$Z = Y^X \mod N$$

When Y is unknown, the problem is known as the discrete root extraction and is generally believed to be hard to solve unless the factorisation of N is known.

















An asymmetric encryption scheme is a triple of algorithms  $(\mathcal{K}, \mathcal{E}, \mathcal{D})$  where

- $\mathcal{K}$  is a probabilistic **key generation algorithm** which returns random pairs of secret and public keys (sk, pk) depending on the security parameter  $\kappa$ ,
- $\mathcal{E}$  is a probabilistic **encryption algorithm** which takes on input a public key pk and a plaintext  $m \in \mathcal{M}$ , runs on a random tape  $u \in \mathcal{U}$  and returns a ciphertext c,
- $\mathcal{D}$  is a deterministic **decryption algorithm** which takes on input a secret key sk, a ciphertext c and returns the corresponding plaintext m or the symbol  $\bot$ . We require that if  $(sk, pk) \leftarrow \mathcal{K}$ , then  $\mathcal{D}_{sk}\left(\mathcal{E}_{pk}(m,u)\right) = m$  for all  $(m,u) \in \mathcal{M} \times \mathcal{U}$ .

# Public-Key Encryption

An asymmetric encryption scheme is a triple of algorithms  $(\mathcal{K}, \mathcal{E}, \mathcal{D})$  where

- $\mathcal{K}$  is a probabilistic **key generation algorithm** which returns random pairs of secret and public keys (sk, pk) depending on the security parameter  $\kappa$ ,
- $\mathcal{E}$  is a probabilistic **encryption algorithm** which takes on input a public key pk and a plaintext  $m \in \mathcal{M}$ , runs on a random tape  $u \in \mathcal{U}$  and returns a ciphertext c,
- $\mathcal{D}$  is a deterministic **decryption algorithm** which takes on input a secret key sk, a ciphertext c and returns the corresponding plaintext m or the symbol  $\bot$ . We require that if  $(sk, pk) \leftarrow \mathcal{K}$ , then  $\mathcal{D}_{sk}\left(\mathcal{E}_{pk}(m,u)\right) = m$  for all  $(m,u) \in \mathcal{M} \times \mathcal{U}$ .

# Public-Key Encryption

An asymmetric encryption scheme is a triple of algorithms  $(\mathcal{K}, \mathcal{E}, \mathcal{D})$  where

- $\mathcal{K}$  is a probabilistic **key generation algorithm** which returns random pairs of secret and public keys (sk, pk) depending on the security parameter  $\kappa$ ,
- $\mathcal{E}$  is a probabilistic **encryption algorithm** which takes on input a public key pk and a plaintext  $m \in \mathcal{M}$ , runs on a random tape  $u \in \mathcal{U}$  and returns a ciphertext c,
- $\mathcal{D}$  is a deterministic **decryption algorithm** which takes on input a secret key sk, a ciphertext c and returns the corresponding plaintext m or the symbol  $\bot$ . We require that if  $(sk, pk) \leftarrow \mathcal{K}$ , then  $\mathcal{D}_{sk}\left(\mathcal{E}_{pk}(m,u)\right) = m$  for all  $(m,u) \in \mathcal{M} \times \mathcal{U}$ .

# Public-Key Encryption: Security Notions

Encryption is supposed to provide confidentiality of the data.

But what exactly does this mean?

| Security goal            | But                     |
|--------------------------|-------------------------|
| Recovery of secret key   | True if data is         |
| is infeasible            | sent in the clear       |
| Obtaining plaintext from | Might be able to obtain |
| ciphertext is infeasible | half the plaintext      |
| etc                      | etc                     |

So what is a **secure** encryption scheme?

Not an easy question to answer ...

## Trapdoor permutations

- A trapdoor function is a function that
  - is easy to compute in one direction,
  - yet believed to be difficult to compute in the opposite direction (finding its inverse) without special information, called the "trapdoor".
- A trapdoor permutation family  $\{E: X \longrightarrow X\}_{(e,d)}$ 
  - easy to compute  $y = E_e(x)$  for any  $x \in X$ ,
  - (believed to be) difficult to compute  $E_e^{-1}(y)$  for any  $y \in X$ ,
  - except if one knows d:  $E_e^{-1}(y) = D_d(y) = x$ .
- Do such functions exist?

## How to encrypt a message m



## How to encrypt a message m



## RSA - Key Generation

Rivest, Shamir, Adleman (1978)

A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21 (2): pp.120-126.

### 2002 Turing Award

### • Key generation:

• Generate two large primes p and q ( $p \neq q$ ).

How ?

- Compute  $N = p \cdot q$  and  $\varphi(N) = (p-1)(q-1)$ .
- Select a random integer e,  $1 < e < \varphi(N)$ , such that  $\gcd(e, (p-1)(q-1)) = 1$ .
- Compute the unique integer d,  $1 < d < \varphi(N)$  with  $e \cdot d \equiv 1 \mod \varphi(N)$ .

Public key = (N, e) which can be published. Private key = (d, p, q) which needs to be kept secret

## RSA - Key Generation

Rivest, Shamir, Adleman (1978)

A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21 (2): pp.120-126.

### 2002 Turing Award

#### • Key generation:

• Generate two large primes p and q ( $p \neq q$ ).

How ?

- Compute  $N = p \cdot q$  and  $\varphi(N) = (p-1)(q-1)$ .
- Select a random integer e,  $1 < e < \varphi(N)$ , such that  $\gcd(e, (p-1)(q-1)) = 1$ .
- Compute the unique integer d,  $1 < d < \varphi(N)$  with  $e \cdot d \equiv 1$  mod  $\varphi(N)$ .

Public key = (N, e) which can be published. Private key = (d, p, q) which needs to be kept secret

## RSA - Encryption / Decryption

- **Encryption:** if Alice wants to encrypt a message for Bob, she does the following:
  - Obtain Bob's authentic public key (N, e).
  - Represent the message as a number 0 < m < N.
  - Compute  $c = m^e \mod N$ .
  - Send the ciphertext *c* to Bob.

- **Decryption:** to recover *m* from *c*, Bob does the following:
  - Use the private key d to recover  $m = c^d \mod N$ .

## RSA - Encryption / Decryption

- **Encryption:** if Alice wants to encrypt a message for Bob, she does the following:
  - Obtain Bob's authentic public key (N, e).
  - Represent the message as a number 0 < m < N.
  - Compute  $c = m^e \mod N$ .
  - Send the ciphertext *c* to Bob.

- **Decryption:** to recover *m* from *c*, Bob does the following:
  - Use the private key d to recover  $m = c^d \mod N$ .

# RSA - Proof That Decryption Works

Recall that  $e \cdot d \equiv 1 \mod \varphi(N)$ , so there exists an integer k such that

$$e \cdot d = 1 + k \cdot \varphi(N).$$

- If gcd(m, p) = 1:
  - By **Fermat's Little Theorem** we have  $m^{p-1} \equiv 1 \mod p$ .
  - Taking k(q-1)-th power and multiplying with m yields

$$m^{1+k(p-1)(q-1)} \equiv m \mod p$$

• If gcd(m, p) = p, then  $m \equiv 0 \mod p$  and the previous equality is valid again.

Hence, in all cases  $m^{e \cdot d} \equiv m \mod p$  and by a similar argument we have  $m^{e \cdot d} \equiv m \mod q$ .

Since p and q are distinct primes, the **CRT** leads to

$$c^d = (m^e)^d = m^{ed} = m^{k(p-1)(q-1)+1} = m \mod N.$$

### Outline

- Public-key cryptography
  - History of Public-key cryptography
  - Diffie-Hellman key exchange
  - Trapdoor permutations and RSA
- 2 RSA
  - Primality testing
  - RSA and integer factoring
  - RSA with shared modulus
  - Broadcast attack
  - Wiener's attack

### Prime Numbers

prime numbers are needed for RSA



### Theorem (Prime number theorem)

The number of primes less than x is about  $x/\log x$ .

- $\rightsquigarrow$  primes are quite common ( $\simeq 2^{1014}$  primes  $\le 2^{1024}$ ).
- testing primes can be done very fast!
- generating primes can be done very fast!
   (on average, one need to test 708 numbers before one find a 1024-bit prime)

### Fermat's test

## Theorem (Fermat's little theorem)

For  $a \in (\mathbb{Z}/n\mathbb{Z})^*$ ,  $a^{\varphi(n)} \equiv 1 \mod n$ .

- if n is prime we have  $a^{n-1} \equiv 1 \mod n$  always
- if n is not prime we have  $a^{n-1} \equiv 1 \mod n$  is unlikely

#### Fermat's test

For i = 1 to k do

- Pick a randomly from  $(\mathbb{Z}/n\mathbb{Z})^*$
- Compute  $b = a^{n-1} \mod n$
- If  $b \not\equiv 1$  output (Composite, a)

output Possibly Prime



### Fermat's test

## Theorem (Fermat's little theorem)

For  $a \in (\mathbb{Z}/n\mathbb{Z})^*$ ,  $a^{\varphi(n)} \equiv 1 \mod n$ .

- if n is prime we have  $a^{n-1} \equiv 1 \mod n$  always
- if n is not prime we have  $a^{n-1} \equiv 1 \mod n$  is unlikely

#### Fermat's test

For i = 1 to k do

- Pick a randomly from  $(\mathbb{Z}/n\mathbb{Z})^*$
- Compute  $b = a^{n-1} \mod n$
- If  $b \not\equiv 1$  output (Composite, a)

output Possibly Prime



#### Carmichael numbers

- Carmichael numbers are composite numbers *n* which fail the Fermat Test for every *a* not dividing *n*.
- There are infinitely many Carmichael Numbers
  - the first three are 561, 1105, 1729
- Exercise: Carmichael Numbers N have the following properties
  - always odd
  - are square free
  - 3 if p divides N then p-1 divides N-1.
  - have at least three prime factors
- Need for other tests

### References



A Computational Introduction to Number Theory and Algebra Victor Shoup

### References



Prime Numbers: A Computational Perspective Crandall, Richard, Pomerance, Carl B.

## Security of RSA

- Security of RSA relies on difficulty of finding d given N and e.
- If we can factor N then we can find p and q
  - Hence we can calculate d.
- i.e. If factoring is easy we can break RSA.
  - Currently 768 bit numbers are the largest that have been (2010) factored
  - Hence best to choose (at least) 2048 bit numbers
- Is RSA as strong as factorization? Will next show that knowing d we can factor N.
  - Still does not rule out possibility that breaking RSA is easier than factoring

# Integer Factoring

- Exponential methods:
  - trial division
  - Pollard's p-1 method
  - ullet Pollard's ho method
- Three most effective algorithms are:
  - quadratic sieve
  - elliptic curve factoring algorithm (ECM)
  - number field sieve (NFS)
- One idea many factoring algorithms use:
  - Suppose one fine  $x^2 \equiv y^2 \mod N$  s.t.  $x \neq \pm y \mod N$ .
  - Then  $N \mid (x y)(x + y)$
  - Neither (x y) nor (x + y) is divisible by N; thus,

gcd(x - y, N) has a non-trivial factor of N.



# Integer Factoring

- Exponential methods:
  - trial division
  - Pollard's p-1 method
  - Pollard's  $\rho$  method
- Three most effective algorithms are:
  - quadratic sieve
  - elliptic curve factoring algorithm (ECM)
  - number field sieve (NFS)
- One idea many factoring algorithms use:
  - Suppose one fine  $x^2 \equiv y^2 \mod N$  s.t.  $x \neq \pm y \mod N$ .
  - Then  $N \mid (x y)(x + y)$ .
  - Neither (x y) nor (x + y) is divisible by N; thus,

gcd(x - y, N) has a non-trivial factor of N.



# Integer Factoring

- Exponential methods:
  - trial division
  - Pollard's p-1 method
  - Pollard's  $\rho$  method
- Three most effective algorithms are:
  - quadratic sieve
  - elliptic curve factoring algorithm (ECM)
  - number field sieve (NFS)
- One idea many factoring algorithms use:
  - Suppose one fine  $x^2 \equiv y^2 \mod N$  s.t.  $x \neq \pm y \mod N$ .
  - Then N | (x y)(x + y).
  - Neither (x y) nor (x + y) is divisible by N; thus,

gcd(x - y, N) has a non-trivial factor of N.



# Time complexity of Integer Factoring

• quadratic sieve:

$$O(\exp((1+o(1))\sqrt{\ln N \ln \ln N}))$$
 [For  $N \simeq 2^{1024}$ , " $O(e^{68})$ "]

elliptic curve factoring algorithm:

$$O(\exp((1+o(1))\sqrt{2\ln p\ln\ln p})),$$

where p is N's smallest prime factor [For N=pq and  $p,q\simeq 2^{512}$ , " $O(e^{65})$ "]

number field sieve:

$$O(\exp((1.92+o(1))(\ln N)^{1/3}(\ln \ln N)^{2/3}))$$
  
[For  $N\simeq 2^{1024}$ , " $O(e^{60})$ "]

- Multiple 512-bit moduli have been factored
- Extrapolating trends of factoring suggests that:
  - 1024-bit moduli will be factored by 2018 ...

# Knowledge of $\varphi(N)$

- We will show knowledge of  $\varphi(N)$  allows us to factor N as well.
- We have

$$\varphi(N) = (p-1)(q-1) = N - (p+q) + 1.$$

Hence

$$S = p + q = N + 1 - \varphi(N)$$
  
 $P = pq = N$ 

• p and q are the **roots** of  $X^2 - SX + P = 0$ .

# Security of RSA

- Suppose you can find d for a given N and e.
- Then for some integer s

$$ed - 1 = s(p - 1)(q - 1).$$

• Hence for any  $x \neq 0$ 

$$x^{ed-1} = 1 \mod N.$$

We want to put

$$y_1 = \sqrt{x^{ed-1}} = x^{(ed-1)/2}$$

and then use

$$y_1^2 - 1 \equiv 0 \mod N$$

to recover a factor of N from  $gcd(y_1 - 1, N)$ .

• This will only work when  $y_1 \neq \pm 1 \mod N$ .

## Security of RSA

• Now suppose  $y_1 = 1 \mod N$ , then we take a square root of  $y_1$ 

$$y_2 = \sqrt{y_1} = x^{(ed-1)/4}$$

- We know  $y_2^2 = y_1 = 1 \mod N$ . Hence we compute  $gcd(y_2 1, N)$  and see if this gives a factor of N.
- We repeat until
  - either we have factored N
  - or  $(ed-1)/2^s$  is no longer divisible by 2.
- We will factor N with probability 1/2.



### Shared Modulus

- Assume for efficiency that each user has
  - The same modulus N
  - Different public/private exponents  $(e_i, d_i)$
- Suppose I am user number one, and I want to find user number two's  $d_2$ .
  - User one computes p and q since they know  $d_1$ .
  - User one computes  $\varphi(N) = (p-1)(q-1)$
  - User one computes  $d_2 = e_2^{-1} \mod \varphi(N)$
- So each user can then find every other users key.

What about an eavesdropper?

#### Shared Modulus

- Now suppose the attacker is not one of the people who share a modulus
- Suppose Alice sends the message m to two people with public keys

• 
$$(N, e_1), (N, e_2)$$
, i.e.  $N_1 = N_2 = N$ .

- Eve can see the messages  $c_1$  and  $c_2$  where
  - $\bullet \ c_1 = m^{e_1} \mod N$

### Shared Modulus

- Eve can now compute
  - $t_1 = e_1^{-1} \mod e_2$
  - $t_2 = (t_1e_1 1)/e_2$

• Eve can then retrieve the message from

$$c_1^{t_1} c_2^{t_2} \equiv m^{e_1 t_1} m^{-e_2 t_2} \mod N$$

$$\equiv m^{1+e_2 t_2} m^{-e_2 t_2} \mod N$$

$$\equiv m^{1+e_2 t_2 - e_2 t_2} \mod N$$

$$\equiv m \mod N$$

# Small Public Exponent

Hastad (1988)

Solving Simultaneous Modular Equations of Low Degree.

SIAM J. Comput. 17(2): 336-341

- Suppose we have three users
  - With public moduli  $N_1$ ,  $N_2$  and  $N_3$
  - All with public exponent e=3
- Suppose Alice sends them the **same** message *m*
- Eve sees the messages
  - $c_1 = m^3 \mod N_1$
  - $c_2 = m^3 \mod N_2$
  - $c_3 = m^3 \mod N_3$
- Now Eve, using the CRT, computes the solution to

$$X = c_i \mod N_i$$

to obtain

## Small Public Exponent

So the attacker has

$$X \mod N_1 N_2 N_3$$
.

• But since  $m^3 < N_1 N_2 N_3$  we must have

$$X = m^3$$

over the integers. Hence

$$m = X^{1/3}$$
.

- This attack is interesting since we find the message without factoring the modulus.
- This is evidence that breaking RSA is easier than factoring.

# Small Private Exponent

Wiener (1990) Cryptanalysis of short RSA secret exponents. IEEE Transactions on Information Theory 36(3): 553-558

- To reduce the work load of the exponentiation, one may wish to use a small value of d rather than a random value
- Since modular exponentiation takes time linear in log(d), a small private key can improve performance
- If the card has limited computing power, a relatively small value of d would be handy.
- We present an attack, due to Wiener, that succeeds in computing the secret decryption exponent under certain conditions.

## Small Private Exponent

- N = pq with  $q , <math>d < (1/3) \cdot N^{0.25}$ .  $\leadsto$  Given (N, e) with  $ed \equiv 1 \mod N$ , attacker can efficiently recover d.
- The proof is using continued fractions technique
- There is an integer k such that  $ed k\varphi(N) = 1$ .
- We have

$$\left|\frac{e}{\varphi(N)} - \frac{k}{d}\right| = \frac{1}{d\varphi(N)}.$$

- Since  $N = pq > q^2$ , we have  $q < \sqrt{N}$  hence  $N \varphi(N) = p + q 1 < 2q + q 1 < 3\sqrt{N}$ .
- Now we see that

$$\left|\frac{e}{N} - \frac{k}{d}\right| = \left|\frac{ed - kN}{dN}\right| = \left|\frac{1 + k(\varphi(N) - N)}{dN}\right| < \frac{3k\sqrt{N}}{dN} = \frac{3k}{\sqrt{N}}.$$

# Small Private Exponent

• Since k < d, we have that  $3k < 3d < N^{0.25}$ , and hence

$$\left|\frac{e}{N} - \frac{k}{d}\right| < \frac{1}{dN^{0.25}}.$$

• Finally, since  $3d < N^{0.25}$ , we have that

$$\left|\frac{e}{N}-\frac{k}{d}\right|<\frac{1}{3d^2}.$$

• Legendre theorem on continued fractions: there are at most  $\log N$  fractions k/d with d < N approximately e/N so tightly, and they can be obtained by computing the  $\log N$  convergents of the continued fraction expansion of e/N (i.e. Euclidean algorithm).