WEEKLY DATA ANALYSIS CHALLANGE 21

Extracting the dataset

```
In [1]:
```

```
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
```

In [2]:

```
ds = pd.read_csv('ds_salaries.csv')
ds
```

Out[2]:

	Unnamed: 0	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_re
0	0	2020	МІ	FT	Data Scientist	70000	EUR	79833	
1	1	2020	SE	FT	Machine Learning Scientist	260000	USD	260000	
2	2	2020	SE	FT	Big Data Engineer	85000	GBP	109024	
3	3	2020	МІ	FT	Product Data Analyst	20000	USD	20000	
4	4	2020	SE	FT	Machine Learning Engineer	150000	USD	150000	
602	602	2022	SE	FT	Data Engineer	154000	USD	154000	
603	603	2022	SE	FT	Data Engineer	126000	USD	126000	
604	604	2022	SE	FT	Data Analyst	129000	USD	129000	
605	605	2022	SE	FT	Data Analyst	150000	USD	150000	
606	606	2022	МІ	FT	Al Scientist	200000	USD	200000	

607 rows × 12 columns

CLEANING AND TRANSFORMATION

1. Is there any missing values?

```
In [3]:
```

```
ds.isnull().sum()
```

Out[3]:

```
0
experience level
                       0
employment type
job title
                       0
salary
salary_currency
salary in usd
                       0
employee residence
                       0
                       \cap
remote_ratio
company_location
                       0
company_size
                       0
dtype: int64
In [4]:
count nan = ds.isna().sum().sum()
print(f'Number of missing values: {count nan}')
Number of missing values: 0
 1. Are the data types in each columns correct?
In [5]:
ds.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 607 entries, 0 to 606
Data columns (total 12 columns):
 #
    Column
                         Non-Null Count Dtype
___
    _____
                          -----
 0
   Unnamed: 0
                          607 non-null
                                          int64
                          607 non-null
   work year
                                          int64
   experience level
                        607 non-null
                                          object
                         607 non-null
   employment type
                                          object
                         607 non-null
    job title
 4
                                          object
                         607 non-null
 5
                                          int64
    salary
    salary_currency
                         607 non-null
 6
                                          object
 7
    salary_in_usd
                         607 non-null
                                          int64
 8
    employee residence 607 non-null
                                          object
 9
    remote ratio
                          607 non-null
                                          int64
 10 company_location
                          607 non-null
                                          object
 11 company_size
                          607 non-null
                                          object
dtypes: int64(5), object(7)
memory usage: 57.0+ KB
 1. Remove and rename unnecessary columns
In [6]:
rename = {
    'Unnamed: 0':'employee id'
ds = ds.rename(columns=rename)
In [7]:
ds = ds.drop(['salary currency', 'salary'], axis=1)
ds.head()
Out[7]:
                                                job_title salary_in_usd employee_residence remote_ratio co
  employee_id work_year experience_level employment_type
```

umnamea: u

work year

0

0

2020

MI

0

Machine

Scientist

Data

79833

0

DE

1	employee_id	work_year	experience_level	employment_type	Learning Job_title Scientist	salary_in_usd	employee_residence	remote_ratio	CC
2	2	2020	SE	FT	Big Data Engineer	109024	GB	50	
3	3	2020	МІ	FT	Product Data Analyst	20000	HN	0	
4	4	2020	SE	FT	Machine Learning Engineer	150000	us	50	
4									F

VISUALISATION

1. Which role has the highest salary employment wise?

In [8]:

salary_pivot = ds.pivot_table(index='job_title', values='salary_in_usd', aggfunc='mean')
sorted_salary = salary_pivot.sort_values(by='salary_in_usd', ascending=False).round(0).a
stype(int)
sorted_salary

Out[8]:

salary_in_usd

job_title	
Data Analytics Lead	405000
Principal Data Engineer	328333
Financial Data Analyst	275000
Principal Data Scientist	215242
Director of Data Science	195074
Data Architect	177874
Applied Data Scientist	175655
Analytics Engineer	175000
Data Specialist	165000
Head of Data	160163
Machine Learning Scientist	158412
Data Science Manager	158328
Director of Data Engineering	156738
Head of Data Science	146719
Applied Machine Learning Scientist	142069
Lead Data Engineer	139724
Data Analytics Manager	127134
Cloud Data Engineer	124647
Data Engineering Manager	123227
Principal Data Analyst	122500
ML Engineer	117504
Machine Learning Manager	117104
Lead Data Scientist	115190
Data Engineer	112725
Research Scientist	109020

Data Scientist	salary_10 <u>8</u> 0 96
Computer Vision Software Fjobirtitler	105249
Staff Data Scientist	105000
Machine Learning Engineer	104880
Machine Learning Infrastructure Engineer	101145
Big Data Architect	99703
Data Analyst	92893
Lead Data Analyst	92203
Marketing Data Analyst	88654
Lead Machine Learning Engineer	87932
Machine Learning Developer	85861
Head of Machine Learning	79039
Business Data Analyst	76691
Data Science Engineer	75803
BI Data Analyst	74755
Data Science Consultant	69421
Al Scientist	66136
Data Analytics Engineer	64799
Finance Data Analyst	61896
ETL Developer	54957
Big Data Engineer	51974
Computer Vision Engineer	44419
NLP Engineer	37236
Product Data Analyst	13036
3D Computer Vision Researcher	5409

1. Which employment types do employers prefer to hire

In [9]:

```
ep_type = ds.pivot_table(index='employment_type', values='employee_id', aggfunc='count')
sorted_epType = ep_type.sort_values(by='employee_id', ascending=False)
sorted_epType
```

Out[9]:

employee_id

employment_type

FT	588
PT	10
СТ	5
FL	4

1. Which role are entry leveled generally hired for?

In [10]:

```
entry_level = ds[ds['experience_level'] == 'EN']
count = entry_level['job_title'].value_counts()
count
```

Data Scientist 22 Data Analyst 12 Data Engineer 12 9 Machine Learning Engineer Data Science Consultant 5 AI Scientist 4 Research Scientist 4 3 Big Data Engineer 3 Computer Vision Engineer Business Data Analyst ML Engineer Computer Vision Software Engineer BI Data Analyst Machine Learning Scientist Applied Data Scientist Machine Learning Developer Financial Data Analyst 1 Applied Machine Learning Scientist Data Analytics Engineer 1 Name: job title, dtype: int64

1. Which countries pay the highest for which role?

In [11]:

Out[10]:

```
grouped = ds.groupby('job title')['salary in usd'].max()
result = ds.groupby(['job_title', 'salary_in_usd'])['company_location'].first().reset in
result = result.sort values('salary in usd', ascending=False)
```

Out[11]:

	job_title	salary_in_usd	company_location
472	Principal Data Engineer	600000	US
387	Financial Data Analyst	450000	us
497	Research Scientist	450000	us
19	Applied Machine Learning Scientist	423000	us
479	Principal Data Scientist	416000	us
268	Data Scientist	5679	US
0	3D Computer Vision Researcher	5409	IN
267	Data Scientist	4000	VN
138	Data Engineer	4000	IR
266	Data Scientist	2859	MX

499 rows × 3 columns

1. what insight can you find regaurding employees demographic?

In [12]:

```
# employees location count
location_count = ds['employee_residence'].value_counts()
location_count
```

Out[12]:

US 332 44

GR

```
30
ΙN
        29
\mathsf{CA}
DE
        25
        18
FR
ES
        15
        13
GR
JΡ
        7
PΤ
        6
         6
BR
         6
PΚ
         5
NL
         4
PL
ΙT
RU
         4
ΑE
         3
         3
ΑT
         3
VN
         3
TR
         3
ΑU
         2
RO
         2
ΒE
         2
SG
         2
SI
         2
DK
HU
         2
NG
         2
         2
MX
         1
ВО
         1
MY
         1
TN
ΙE
         1
DZ
         1
AR
         1
CZ
         1
JΕ
         1
LU
         1
PR
         1
RS
         1
ΕE
         1
\mathsf{CL}
         1
         1
ΗK
ΚE
         1
MD
         1
СО
         1
IR
         1
         1
CN
         1
MT
UA
         1
ΙQ
HN
ВG
         1
         1
HR
PΗ
         1
NZ
         1
СН
         1
Name: employee_residence, dtype: int64
In [13]:
# employees remote ratio count
ratio_count = ds['remote_ratio'].value_counts()
ratio_count
Out[13]:
100
        381
        127
0
        99
50
Name: remote_ratio, dtype: int64
```

ىر

1. wnich experinece level has the nighest hiring?

```
In [14]:
```

```
experience_count = ds['experience_level'].value_counts()
experience_count
Out[14]:
```

SE 280 MI 213 EN 88

EX 26 Name: experience level, dtype: int64

1. Does company size affect the rate of hiring and pay scale

In [15]:

```
# hiring rate distribution by company size

company_size = ds['company_size'].value_counts()
company_size

fig = plt.figure(figsize=(10, 8))
plt.pie(company_size, labels=company_size.index, autopct='%1.1f%%')
plt.title('Hiring Rate for Different Company Sizes', weight='bold')
plt.show()
```

Hiring Rate for Different Company Sizes

In [16]:

```
# Pay scale in different company sizes

data = {
    'Comapny Size' : ds['company_size'],
    'Salary' : ds['salary_in_usd']
}
pay_scale = pd.DataFrame(data)

fig = plt.figure(figsize=(10,8))
box_plot = plt.boxplot(
```

```
[
    pay_scale[pay_scale['Comapny Size'] == 'S']['Salary'],
    pay_scale[pay_scale['Comapny Size'] == 'M']['Salary'],
    pay_scale[pay_scale['Comapny Size'] == 'L']['Salary']
    ],
    labels=['S', 'M', 'L'],
)

plt.title('Pay Scale Distribution by Company Size', weight='bold')
plt.xlabel('Company Size', weight='bold')
plt.ylabel('Pay Scale', weight='bold')
plt.show()
```


1. What is the Year over Year salary growth at different levels?

In [20]:

```
data = {
    'Work Year': ds['work_year'],
    'Experience Level': ds['experience_level'],
    'Salary': ds['salary_in_usd']
}
YoY = pd.DataFrame(data)

grouped_data = YoY.groupby(['Work Year', 'Experience Level']).sum().reset_index()
pivoted_data = grouped_data.pivot(index='Work Year', columns='Experience Level', values=
'Salary')

plt.figure(figsize=(10,8))
pivoted_data.plot(kind='bar')

plt.xlabel('Work Year', weight='bold')
plt.ylabel('Salary', weight='bold')
plt.title('Year-on-Year Salary Growth at Different Experience Levels', weight='bold')
plt.show()
```

<Figure size 720x576 with 0 Axes>

Year 19n-Year Salary Growth at Different Experience Levels

