M.Tech Project : Canned Motor Pump

Pump

M.Tech Project : Canned Motor Pump

Objective :

- 1. Understanding the fluid flow and heat transfer in rotor cavity
- 2. Designing rotor cavity for optimized heat transfer
- 3. Design optimized pump casing for noise reduction

Process and Methodology :

- 1. Literature survey
- 2. CFD simulation of flow through cavity
- 3. Design of volute and impeller blades
- 4. Validation of acoustic response

Results and Outcome:

- 1. Designed and validated pump performance
- Validated results with literature and measurements
- 3. Harmonics for due to fluid structure interaction are identified

Outlet

Introduction and Literature Survey

Regular Pump

Canned Motor Pump

Radial Gap

$$e = R_2 - R_1$$

Radius Ratio

$$\eta = \frac{R_1}{R_2}$$

Taylor Number

$$Ta = \frac{\Omega^2 R_1 (R_2 - R_1)^3}{v^2}$$

Schematic of Taylor-Couette flow Ref. Fénot et al.

Advantages:

- Mechanical seal is not required
- · Leak-free configuration
- Less noise compared to conventional pump

Limitations:

- Loss in magnetic induction
- · Increased heat generation
- Hydrodynamic noise is still present

Dominant Noise Frequency due to Unsteady Fluid Structure Interactions

Flow and Heat Transfer Simulations in Rotor gap

Velocity results compared with Experiment Ref. Abebayo

Velocity results compared with Experiment Ref. Abebayo

Heat Transfer Variation Simulation

Heat Transfer Variation Experiment Results Ref. Kataoka

Design and Flow Simulation for Impeller and Volute

Design Specific ations	Value	Design Specific ations	Value
Motor rating (kW)	60	Flow rate	150
Head (m)	80	Overall Efficien cy %	55
Rotation speed (rpm)	2900	Impeller Dia. (mm)	255

Hydrodyne Pump Design Requirement

Generated with our code in SOLIDWORKS

Head H (m)

Y+

1.0655

Steady Flow Simulation Results compared with Experiment

120

Discharge Q (m³ / hr)

140

160 180

5.26% Max Error

X: 147.6 Y: 83.28

Acoustic Simulation for Unsteady Volute Noise

Sound Pressure Level simulated with COMSOL

Canned Motor Pump Design