03

General Organic Chemistry

Electrophiles are electron deficient species.

E.g.
$$H^{\oplus}$$
, R^{\oplus} , NO_2^{\oplus} , X^{\oplus} , PCl_3 , PCl_5

 $(\overset{\oplus}{N}H_4 \text{ and } H_3O^{\oplus} \text{ are not electrophile})$

Nucleophiles are electron rich species.

E.g.
$$Cl^{\ominus}$$
, $\overset{\hookrightarrow}{C}H_3$, $\overset{\hookrightarrow}{O}H$, RO^{\ominus} , $\overset{\hookrightarrow}{C}N$, $\overset{\hookrightarrow}{N}H_3$, $R\overset{\hookrightarrow}{O}H$, $CH_2=CH_2$, $CH=CH$

Relative electron withdrawing order (-I order)

$$\begin{array}{l} \overset{\oplus}{-NF_3} > \overset{\oplus}{-NR_3} > \overset{\oplus}{-NH_3} > -NO_2 > -CN > -COOH > -X > -OR > -OH > -C = CH > -NH_2 > -C_6H_5 > -CH = CH_2 \end{array}$$

Relative electron releasing order (+I order)

$$-\ddot{N}H > -O^{\ominus} > -COO^{\ominus} > 3^{\circ}$$
 alkyl $> 2^{\circ}$ alkyl $> 1^{\circ}$ alkyl $> -CH_3$

Relative Stability Order

(A) Stability of carbocation

$$(Ph)_{3} \overset{\oplus}{C} > (Ph)_{2} \overset{\oplus}{C} H > Ph - \overset{\oplus}{C} H_{2} > CH_{2} = CH - \overset{\oplus}{C} H_{2}$$

$$> (CH_{3})_{3} \overset{\oplus}{C} > (CH_{3})_{2} \overset{\oplus}{C} H > CH_{3} \overset{\oplus}{C} H_{2} > \overset{\oplus}{C} H_{3} > CH_{2} = \overset{\oplus}{C} H$$

$$> CH = \overset{\oplus}{C}$$

(B) Stability of free radical

$$(Ph)_3 \mathring{C} > (Ph)_2 \mathring{C}H > CH_2 = CH - \mathring{C}H_2 > Ph\mathring{C}H_2 > (CH_3)_3 \mathring{C}$$

$$> (CH_3)_2 \mathring{C}H > CH_3 \mathring{C}H_2 > \mathring{C}H_3$$

(C) Stability of carbanion

Reactivity towards nucleophile (NAR)

- (1) $HCHO > CH_3CHO > (CH_3)_2CO$
- (2) CCl₃CHO > CHCl₂CHO > CH₂ClCHO
- Reactivity order towards acyl nucleophilic substitution reaction

Acid chloride > anhydride > ester > amide

* Order of electronic effect

Mesomeric > Hyperconjugation > Inductive effect

* Stability of alkene ∞ no. of α -hydrogen

$$R_2C=CR_2 > R_2C=CHR > R_2C=CH_2 > RCH=CHR > RCH=CHR > RCH=CHR > RCH=CH_2 > CH_2=CH_2$$

*** Heat of hydrogenation** $\propto \frac{1}{\text{Stability of alkene}}$