The existence of independent and identically distributed random variables

金弘义 518030910333

April 8, 2020

Before we prove the theorem, let's first introduce the concept of generalized inverse distribution function.

Definition 1. the generalized inverse distribution function $F^{-1}(p) = \inf\{x \in \mathbb{R} : F(x) \geq p\}$

Here are some of its properties:

- 1) F^{-1} is non-decreasing
- 2) $F^{-1}(F(x)) \le x$
- 3) $F(F^{-1}(p)) \ge p$
- 4) $F^{-1}(p) \le x$ if and only if $p \le F(x)$
- 5) If Y has a U[0,1] distribution then $F^{-1}(Y)$ is distributed as F

Proof. 1.It comes obviously from the fact that F is non-decreasing.

- $2.F^{-1}(F(x)) = \inf\{y \in \mathbb{R} : F(y) \ge F(x)\} \le x$
- $3.F(F^{-1}(p)) = F(\inf\{x \in \mathbb{R} : F(x) \ge p\}) \ge p$
- 4. Impose F on both sides of $F^{-1}(p) \leq x$ and we get $F(F^{-1}(p)) \leq F(x)$. So $p \leq F(F^{-1}(p)) \leq F(x)$ by property 3. It's similar for another side.
- 5. We need to prove $P(F^{-1}(Y) \leq x) = F(x)$. From property 4, we know $P(F^{-1}(Y) \leq x) = P(Y \leq F(x))$. Since Y is a uniform distribution, $P(Y \leq F(x)) = F(x)$. In conclusion, $P(F^{-1}(Y) \leq x) = F(x)$.

With the help of Skorokhod representation of random variables and the property 5 of generalized inverse function, we can simplify the problem to finding a countable sequence of independent random variables on $([0,1],\mathcal{B},Leb)$ which are uniformly distributed.

Theorem 1. Given a certain distribution function, there exists a countable sequence of independent and identically distributed random variables on $([0,1],\mathcal{B},Leb)$.

Proof. $\forall s \in [0, 1]$, write it in 2-base (if there are multiple representation, choose the infinite one):

$$s = \sum_{i=1}^{+\infty} B_i(\frac{1}{2})^i \tag{1}$$

Claim $(B_i)_{i\geq 1}$ is independent. This has been proved in previous work "Independence of coin tossing events" by Haichen Dong.

Let p_n be the n^{th} prime number and I_n be $\{p_n^i: i \in \mathbb{N}\}$. It's obvious that (I_n) don't intersect with each other. Denote $\phi_n(i) = p_n^i \in I_n$. Now we define $X_n = \sum_{i=1}^{+\infty} B_{\phi_n(i)} \cdot (\frac{1}{2})^i$. (X_n) is obviously independent.

$$\forall a \in [0, 1], a = \sum_{i=1}^{+\infty} B_i'(\frac{1}{2})^i.$$

$$P(X_n \le a) = P(B_{\phi_n(1)} < B_1') + P(B_{\phi_n(1)} = B_1' \cap B_{\phi_n(2)} < B_2') + \dots$$

$$= \sum_{i=1}^{+\infty} P(\bigcap_{j=1}^{i-1} B_{\phi_n(j)} = B_j' \cap B_{\phi_n(i)} < B_i')$$

$$= \sum_{i=1}^{+\infty} (\frac{1}{2})^{i-1} \cdot \frac{1}{2} B_i'$$

$$= a$$

So X_n has a uniform distribution on [0,1]. We can now derive that $F^{-1}(X_n)$ is an independent sequence on $([0,1],\mathcal{B},Leb)$ with distribution F.