

Sparse Linear Algebra in CUDA

HPC - Algorithms and Applications

Alexander Pöppl Technical University of Munich Chair of Scientific Computing

November 28th 2018

Table of Contents

Homework - Worksheet 2

Recap on Coalesced Memory Access

PageRank algorithm

Compressed Sparse Row (CSR) Kernels

Scalar kernel Vectorized kernel

Last Tutorial

Matrix Multiplication: Optimizations

- coalesced memory access
- overlapped memory access and computation

Roofline Model

- Compares hardware and kernel performance limits
- Hints for optimizations through ceilings

Assignment H3.2a - Vectorized CSR kernel

CMake

- Experimental CMake support for this exercise
- CMake can create Projects for different platforms
 - Makefiles
 - Visual studio projects
- To use it:
 - Windows: Use cmake GUI
 - Linux/OSX: in Project folder: mkdir build; cd build; cmake ..; make

Assignment H2.1a - Prefetching

```
__global__ void mm_o(float* Ad, float* Bd,
                   float* Cd, int n) {
 /** snip **/
 float Celem = 0;
 float Areg = Ad[ i*n + tx];
 float Breg = Bd[ ty*n + k];
 for(int m=1; m < n/TILE_SIZE; m++) {</pre>
   Ads[ty][tx] = Areg;
   Bds[ty][tx] = Breg;
   syncthreads();
   Areg = Ad[ i*n + m*TILE_SIZE+tx];
   Breg = Bd[ (m*TILE_SIZE+ty)*n + k];
```


Assignment H2.1a - Prefetching

```
/** cont. **/
  for(int j=0; j<TILE_SIZE; j++) {</pre>
   Celem += Ads[ty][j]*Bds[j][tx];
  }
  syncthreads();
};
Ads[ty][tx] = Areg;
Bds[ty][tx] = Breg;
syncthreads();
for(int j=0; j<TILE_SIZE; j++) {</pre>
  Celem += Ads[ty][j]*Bds[j][tx];
Cd[i*n+k] += Celem:
```


Assignment H2.1b - Performance measurements

Assignment H2.1b - Performance measurements

Assignment H2.1b - Roofline Model

Assignment H2.1b - Roofline Model

Prefetching - a resource trade-off

Prefetching: no massive performance gain on all systems! Example: NVidia Quadro NVS 290 (8192 Registers per SM)

- before prefetching 10 Registers per thread \rightarrow 16 \times 16 \times 10 = 2560 registers per block
- 8192 registers per SM → 3 active blocks

Prefetching - a resource trade-off

Prefetching: no massive performance gain on all systems! Example: NVidia Quadro NVS 290 (8192 Registers per SM)

- before prefetching 10 Registers per thread \rightarrow 16 \times 16 \times 10 = 2560 registers per block
- 8192 registers per SM → 3 active blocks
- now 16 registers → 16 × 16 × 16 = 4096 registers per block
- only 8192 registers per SM → only 2 active blocks per SM!

Prefetching - a resource trade-off

Prefetching: no massive performance gain on all systems! Example: NVidia Quadro NVS 290 (8192 Registers per SM)

- before prefetching 10 Registers per thread \rightarrow 16 \times 16 \times 10 = 2560 registers per block
- 8192 registers per SM → 3 active blocks
- now 16 registers → 16 × 16 × 16 = 4096 registers per block
- only 8192 registers per SM → only 2 active blocks per SM!

Number of active threads

- before: 3 active blocks \to 24 active warps \to 768 active threads \to optimal occupancy
- after: 2 active blocks \to 16 active warps \to 512 active threads \to less parallelism, less latency hiding

This may be different for your GPU!

Towards High-Performance Matrix Multiplication

More options for optimization:

- loop unrolling (save loop instructions and address arithmetics)
- thread granularity: compute 1 \times 2 or 1 \times 4 blocks per thread (requires to load Ads or Bds only once)
- how do different optimizations interact with resource limitations (available registers, etc.)

Recap: Coalescing

(source: NVIDIA - Fermi/Kepler Whitepapers)

Recap: Coalescing

Hardware limitations:

- Fermi: 1 dispatcher per warp ⇒ 1 concurrent instruction
- Kepler: 2 dispatchers per warp ⇒ 2 concurrent instructions

Bottleneck:

- biggest LD/ST instruction can transfer 128 B chunk
- if threads in a warp access multiple 128 B chunks in global memory, multiple LD/ST instructions have to be dispatched for the warp.
- if all threads access the same 128 B chunk, a single LD/ST of size 128 B is enough for the warp.

Recap: Coalescing

On this slide:

```
tx = threadIdx.x; ty = threadIdx.y; tz = threadIdx.z;
Coalescing:
```

- Ideally: each thread in a warp accesses the same 128 B chunk
- In order to achieve that, we must know which threads of a block are in a warp.
- CUDA uses row-major order for warp indices, so:
 warpID = ((tz * blockDim.y + ty) * blockDim.x + tx) / 32;
- Rule of thumb: Memory access A[f(tx, ty, tz)] to an array float* A; is coalesced, if little change to tx causes little change to f(tx, ty, tz).

Task:

- Solve exercise T3.1 on your worksheet.
- Besides coalescing, no further hardware optimizations are assumed to happen

Sparse Linear Algebra

Nathan Bell and Michael Garland Efficient Sparse Matrix-Vector Multiplication on CUDA. 2008.

Goals:

- Large matrices in big applications always sparse
- Efficient treatment of sparsity
- · Towards higher numbers of unknowns

PageRank algorithm

 $\mathbf{x} \leftarrow \mathbf{x}^{(i)}$:

```
Input: \mathbf{B} \in \mathbb{R}^{n \times n} left-stochastic (non-negative and all column sums
              are 1), \alpha \in (0, 1), \epsilon > 0
Output: \mathbf{x} \in \mathbb{R}^n stochastic (non-negative and sum is 1) with \mathbf{x} \approx \mathbf{B}\mathbf{x}
\mathbf{x}^{(0)} \leftarrow \frac{1}{2}\mathbf{e}, where \mathbf{e} = (1, 1, 1, ...)^T;
i \leftarrow 0:
repeat
      \mathbf{v}^{(i)} \leftarrow \mathbf{B}\mathbf{x}^{(i)}:
      \mathbf{x}^{(i+1)} \leftarrow \alpha \mathbf{y}^{(i)} + (1-\alpha)\frac{1}{n}\mathbf{e};
      i \leftarrow i + 1:
until ||\mathbf{x}^{(i)} - \mathbf{x}^{(i-1)}|| < \epsilon:
```


Compressed Sparse Row (CSR)

CSR matrix-vector multiplication:

```
const int N; // number of matrix rows
const int K; // number of nonzero matrix entries
float a[K];  // array of nonzero matrix entries
float j[K];  // array of column indices
float start[N+1]; // array of row start indices
float x[N]; // input vector x
float y[N]; // result vector y
for(int i = 0; i < N; i++) {
 v[i] = 0;
 for(k = start[i]; k < start[i + 1]; k++) {</pre>
   y[i] += a[k] * x[j[k]];
```


Compressed Sparse Row (CSR) Kernel 1

```
__global__ void csr_matvec_s(start, j, a, x, y) {
  /** TODO **/
}
```

Task: Implement a CSR matrix-vector multiplication $\mathbf{y} \leftarrow \mathbf{y} + \mathbf{B}\mathbf{x}$:

- Assign one thread to a matrix row
- Compute a row × vector product for each thread.
- Add the result to the output vector.

Compressed Sparse Row (CSR) Kernel 1

Solution:

```
__global__ void csr_matvec_s(start, j, a, x, y) {
 int i = blockDim.x * blockIdx.x + threadIdx.x ;
 if (i < num_rows) {</pre>
   float dot = 0;
   int row_start = start[i];
   int row end = start[i + 1]:
   for (int k = row_start; k < row_end; k++) {</pre>
     dot += a[k] * x[j[k]];
   }
   y[i] += dot;
```


Observations:

contiguous, fully compressed storage of j and a

Example data:

start [0 2 4 7 9]

Access pattern to j and a by row / thread ID (0-3):

Observations:

- contiguous, fully compressed storage of j and a
- x is accessed randomly → uncoalesced access

Example data:

start [0 2 4 7 9]

Access pattern to j and a by row / thread ID (0-3):

Observations:

- · contiguous, fully compressed storage of j and a
- x is accessed randomly → uncoalesced access
- uncoalesced memory access to j and a, coalesced access to start and y

Example data:

start [0 2 4 7 9]

Access pattern to j and a by row / thread ID (0-3):

Observations:

- · contiguous, fully compressed storage of j and a
- x is accessed randomly → uncoalesced access
- uncoalesced memory access to j and a, coalesced access to start and y
- non-uniform distribution of nonzeros may lead to serialization

Example data:

start [0 2 4 7 9]

Access pattern to j and a by row / thread ID (0-3):

Compressed Sparse Row (CSR) Kernel 2

Idea: each warp does a row \times vector multiplication.

Requires the following steps:

- Assign one warp to a matrix row
- Allocate a shared array vals[] for the partial results of a block
- Compute one row × vector product in a loop. This time, parallelize
 the loop over all 32 threads in the warp. Take care that access to
 the arrays j and a is coalesced.
- Use a reduction of some kind (ideally: binary fan-in) to add up the partial sums in vals[] and add the output to the result vector.
- → Homework!