06-Report

July 13, 2020

1 Weighted Graphs: Homework

1.1 Exercise 1

• Implement the array-based version of the Dijkstra's algorithm.

Solution:

Implementation of array-based version of the Dijkstra's algorithm can be found in src/dijkstra.c file. For this and other version, data types that is used in program are defined such as Node, Array and graph. Implementation is based on the pseudo-code that is provided in lecture notes.

1.2 Exercise 2

• Implement the binary heap-based version of the Dijkstra's algorithm by using the library binheap that was developed during Lesson 6, Lesson 7, and Lesson 8.

Solution

Implementation of array-based version of the Dijkstra's algorithm can be found in src/dijkstra.c file. Binary heap and its functions were already implemented during the lectures so this implementation is used in the program. It is based on the pseudo-code that is provided in lecture notes.

1.3 Exercise 3

• Test the implementations on a set of instances of the problem and compare their execution times.

Solution

For testing correctness and performance of implementation <code>src/main.c</code> is written. Belove you can find the theoretical complexity of array-based and binary heap-based dijkstra algorithms as well as plot that is produces by performance test results.

Time Algorithm Complex	ity			
Build	Extract	Update Distance	Complexity	

Algorithm	Time Complexity			
Array- based	$\Theta(n)$	$\Theta(n)$	$\Theta(1)$	$\Theta((\ V\)^2 + \ E\)$
Heap- Based	$\Theta(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}((\ V\ + \ E\) * \log \ V\)$

It seems that plot shows that implementation follows the theoretical complexities. Array-based algorithm seems exponentiaal and binary-heap based seems shows linear.