1 ОБЗОР ПРЕДМЕТНОЙ ОБЛАСТИ

Пакет 3Д-моделирования Blender - свободное и открытое программное обеспечение, предназначенное для создания трехмерной компьютерной графики. В список возможностей пакета входит:

- моделирование
- скульптинг
- создание анимации
- симуляция
- рендеринг
- монтаж и обработка видео
- создание рисованной 2D-анимации
- встроенный редактор кода на языке Python, позволяющий взаимодействовать с пакетом Blender

На текущий момент Blender является одним из стандартов в области 3D-моделирования. Пакет широко применяется как в игровых студиях, таких как Ubisoft (серия "Assassin's Creed"), Epic (Unreal Engine, Fortnite), так и в телевизионных сериалах ("Человек в высоком замке", "Кремниевая долина", "Чужестранка") и полнометражных фильмах ("Хардкор", "Парк Юрского периода"). Широкое применение получил в науке в области визуализации различных процессов и явлений.

В Blender предустановлено два движка для рендера Cycles и Eevee. Первый предназначен для рендера физически достоверных и сложных сцен, в которых важен реализм, правильное поведение света и отражений, но вычислительно затратен и не поддерживает отображение финального результата в реальном времени.

Движок Eevee, наоборот, специально создавался для версий Blender 2.8х и новее с учетом необходимости поддержки рендера в реальном времени. Хотя и почти все настройки сцены из Cycles подходят для Eevee, их движок просчитывает совершенно по другому, в значительно упрощенной вариации.

Фактически движок Eevee по своему принципу работы создавался аналогично игровым движкам и спокойно поддерживает рендер в реальном времени, и поэтому именно Eevee был выбран в качестве движка рендера в данной работе.

В области захвата движений существуют два основных вида систем. Маркерные системы и безмаркерные.

Маркерная система захвата движений. В такой системе несколько камер снимают человека, одетого в специальный костюм с маркерами — датчиками. Человек как бы отыгрывает за виртуального персонажа его роль по сценарию или заданию, а компьютер, получая данные о маркерах с камер — сводит все эти данные в единую 3Д-модель, повторяющую движения, мимику и черты актера. Данная система может работать как в реальном времени, так и просто быть основой для дальнейшей обработки.

Безмаркерные системы. В данных системах не требуется применение каких-либо специальных устройств, которые бы крепились на человека — безмаркерные системы основаны на применении средств компьютерного зрения и средств распознавания образов. Отсутствие «лишнего» на актере позволяет как ускорить процесс мокапа, так и записывать более сложные движения без риска травм актёров и повреждения дорогостоящего оборудования.

Маркерные системы можно разделить на:

- Пассивные оптические системы. В пассивных системах маркеры на актере лишь отражают посланный на них специальными стробоскопами камер инфракрасный свет, показывая тем самым свою позицию на костюме. Минусами данного подхода являются: Большие временные затраты на установку и крепление датчиков на актере, плохое различение датчиков при быстром их перемещении или близком расположении относительно друг друга.
- В оптических активных системах, напротив, используются системы посылающих сигнал светодиодов и контроллеров, синхронизирующих светодиоды друг с другом, а всю систему с сервером. В остальном работа оптической активной системы схожа с работой оптической пассивной.
 Из минусов можно выделить невозможность захвата лицевой анимации,

- необходимость крепления к актеру дополнительного оборудования контроллера, хрупкость и высокая стоимость.
- Магнитные системы. Здесь в качестве маркеров используются магниты, а
 в качестве «камер» уловители магнитного потока, которые определяют
 положения датчиков по изменению ЭМ-поля. Из минусов подверженность внешнему электрическому воздействию, меньшая зона работы по
 сравнению с оптическими системами. Остальные минусы схожи с минусами оптических активных систем.
- Механические системы используют специальный костюм-скелет, который напрямую отслеживает положение каждого сгиба и вращений суставов. Минусы: сам скелет, различные контроллеры и провода сильно сковывают актера в движениях, нет возможности захвата анимаций лица, возможности определять взаимодействия нескольких актеров в одной сцене.
- Гироскопические и инерциальные системы. Здесь данные с сенсоров (например его положение, угол наклона) передаются в компьютер, где уже непосредственно происходит запись этих жанных и их обработка.
 Минусы нет захвата мимики, высокая стоимость, все равно необходимо наличие оптической или магнитной системы для определения положения актера в сцене.

Преимущества систем захвата движений:

- Результат работы получаем в реальном времени, что значительно снижает затраты относительно покадровой анимации.
- Объём работы не зависит от сложности или длинны задачи, как если бы применялся традиционный покадровый подход. Motion capture позволяет снимать большое количество дублей одной и той же сцены, но в разных стилях и с разной подачей
- Сложные движения и реалистичные физические взаимодействия, как например вес или столкновения могут быть легко записаны, при этом будучи физически корректными.

- Количество анимационных данных, которые могут быть записаны за короткий срок огромны, если сравнивать с традиционными техниками в анимации. Это экономически эффективно, а также позволяет легче укладываться в сроки проекта.
- Стоимость варьируется от нуля до бесконечночти, что позвляет достаточно легко подобрать тот вариант, который качественно и количественно лучше всех подойдет для проекта.

Недостатки:

- Необходимость в дополнительном ПО, зачастую не входящем в основные пакеты, в которых создаётся анимация
- Для некоторых систем мокапа могут существовать требования к размерам помещения и его электромагнитным свойствам.
- При возникновении проблемы в процессе записи анимации становится проще переснять дубль полностью, чем его редактировать, но не все системы позволяют отсматривать результат в реальном времени, чтобы определить, необходимо ли переснять дубль.
- Трансформации объекта ограничены возможностями объекта мокапа, поэтому все дополнительные преобразования всё равно будет необходимо делать позднее.
- Несовпадение параметров компьютерной модели и объекта съёмки могут привести к различным артефактам.