CALCOLO DELLE TRAVI

tav. 1 PIANTA PIANO TIPO

CALCOLO DI UNA TRAVE

Analogamente a quanto fatto per i pilastri, anche per il predimensionamento delle travi si può eseguire un procedimento approssimato che si basa sulla scomposizione della pianta d'impalcato in aree di influenza.

Ci si riferisce alla trave di spina TR_15-13 e alla trave di riva TR_23-20, entrambe costituite da due campate di luci pari a 4,45 m e 4,2 m.

Riassumendo, dall'analisi dei carichi sui solai di interpiano:

-	Permanenti strutturali	G_1	3,30	kN/m ²
	(solaio in laterocemento 24+5)			
-	Permanenti non strutturali	G ₂	2,86	kN/m ²
	(massetto 0,56 +pavimento 0,40 +into	naco 0,30	+tramezzi ripartiti 1,	,60 kN/m ²)
-	Accidentali	Q_k	2,00	kN/m²
	(carico di affollamento)			

I carichi per metro lineare di trave sono, pertanto:

TRAVE DI SPINA

- $g_{k1} = 3,30 \text{ kN/m}^2*(5,20/2 + 6,00/2)\text{m}*1,25 = 23,10 \text{ kN/m}$
- $= g_{k2} 2,86kN/m^2*(5,20/2+6,00/2)m*1,25 = 20,03 kN/m$
- $q_{1k} 2,00kN/m^2*(5,20/2+6,00/2)m*1,25 = 14,00 kN/m$

TRAVE DI BORDO

- $= g_{k1} 3,30 \text{ kN/m}^{2*}(5,20/2)\text{m*}0,90 = 7,73 \text{ kN/m}$
- $= g_{k2} 2,86kN/m^2*(5,20/2)m*0,90 = 6,70 kN/m$
- $q_{1k} = 2,00 \text{kN/m}^2 * (5,20/2) \text{m} * 0,90 = 4,68 \text{ kN/m}$

Una trave può essere schematizzata tramite un'asta vincolata in corrispondenza dei pilastri o delle pareti di controvento.

La scelta del tipo di vincolo dipende dalla rigidezza torsionale di queste due tipologie di elementi strutturali verticali: in genere, per semplicità, si adotta un vincolo di appoggio in corrispondenza delle travi e un vincolo di incastro per i setti.

Per la trave in esame: si è ipotizzato il seguente schema statico (trave a due campate semplicemente appoggiata in corrispondenza dei pilastri e incastrata in corrispondenza del setto di controvento).

Nell'equazione dei 3 momenti, se la trave è incastrata a una o entrambe le estremità, per la risoluzione si può trasformare l'incastro in un doppio appoggio fittizio. La nuova campata deve avere luce nulla ed essere scarica:

$$\int_{A} M_{A} L_{A} + 2 M_{B} (L_{B} + L_{A}) + M_{C} L_{B} = -\frac{1}{4} (p_{B} L_{B}^{3} + p_{A} L_{A}^{3})$$

$$M_{B} L_{B} + 2 M_{C} (L_{B} + L_{0}) + M_{Q} L_{B} = -\frac{1}{4} (p_{B} L_{B}^{3} + p_{0} L_{A}^{3})$$

$$P_0=0$$
; $L_0=0$; $M_0=0$

Nelle travi, come nei solai, per trovare le massime sollecitazioni a momento e a taglio, è pertanto necessario considerare diverse combinazioni di carico, per tenere in conto che l'entità dei carichi può risultare variata da una campata all'altra rispetto al valore calcolato.

Questa variabilità dei carichi rispetto al valore calcolato viene tenuta in conto attraverso dei coefficienti amplificativi (γ_{sfav}) e riduttivi (γ_{fav}) (sono gli stessi visti per i solai).

Combinazioni di carico:

- COMBINAZIONE 1
 (per massimizzare il momento in campata a)
- COMBINAZIONE 2 (per massimizzare il momento in campata b)
- COMBINAZIONE 3
 (per massimizzare il momento all'appoggio 2)
- COMBINAZIONE 4
 (solo per l'estremità appoggiata, per massimizzare il momento all'appoggio 1)

Per la trave di spina si ha pertanto che:

$$\gamma_{sfav}^* \mathbf{p} = \gamma_{sfav,G1}^* \mathbf{g}_1 + \gamma_{sfav,G2}^* \mathbf{g}_2 + \gamma_{sfav,Qk}^* \mathbf{q}_k$$

$$= 1,30*23,10 \text{ kN/m} + 1,50*20,03 \text{ kN/m} + 1,50*14,00 \text{ kN/m}$$

$$= 30,03 \text{ kN/m} + 30,05 \text{ kN/m} + 21,00 \text{ kN/m}$$

$$= 81,08 \text{ kN/m}$$

$$\gamma_{fav}^* \mathbf{p} = \gamma_{fav,G1}^* g_1 + \gamma_{fav,G2}^* g_2 + \gamma_{fav,Qk}^* q_k$$

$$= 1,00*23,10 \text{ kN/m} + 0,00*20,03 \text{ kN/m} + 0,00*14,00 \text{ kN/m}$$

$$= 23,10 \text{ kN/m} + 0,00 \text{ kN/m} + 0,00 \text{ kN/m}$$

$$= 23,10 \text{ kN/m}$$

Per la trave di bordo si ha pertanto che:

```
\gamma_{sfav}^* \mathbf{p} = \gamma_{sfav,G1}^* g_1 + \gamma_{sfav,G2}^* g_2 + \gamma_{sfav,Qk}^* q_k
= 1,30*7,73 \text{ kN/m} + 1,50*6,70 \text{ kN/m} + 1,50*4,68 \text{ kN/m}
= 10,05 \text{ kN/m} + 10,04 \text{ kN/m} + 7,02 \text{ kN/m}
= 27,12 \text{ kN/m}
```

$$\gamma_{fav}^* \mathbf{p} = \gamma_{fav,G1}^* \mathbf{g}_1 + \gamma_{fav,G2}^* \mathbf{g}_2 + \gamma_{fav,Qk}^* \mathbf{q}_k$$

= 1,00*7,73 kN/m + 0,00*6,70 kN/m + 0,00*4,68 kN/m
= 7,73 kN/m + 0,00 kN/m + 0,00 kN/m
= 7,73 kN/m

MOMENTI - Trave di spina TR_15-13

	M ⁻ max,1	M ⁺ max,a	M ⁻ max,2	M ⁺ max,b	M ⁻ max,3
COMB 1	0	140,4	-131,4	18,6	14,6
COMB 2	0	23,2	-82,9	69,7	-137,3
COMB 3	0	125,7	-166,7	49,4	-95,5
COMB 4	-80,28	/	/	/	/

MOMENTI - Trave di bordo TR_23-20

	M ⁻ max,1	M ⁺ max,a	M ⁻ max,2	M ⁺ max,b	M ⁻ max,3
COMB 1	0	47,3	-43,9	6,2	4,9
COMB 2	0	7,7	-27,7	23,3	-45,9
COMB 3	0	42,0	-55,8	16,6	-32,0
COMB 4	-26,8	/	/	/	/

DIMENSIONAMENTO

Note le sollecitazioni, è necessario stabilire le dimensioni della sezione delle travi e dimensionare l'armatura tesa A_s , attraverso le equazioni

PER LE TRAVI DI SPINA, se in spessore di solaio, le incognite sono A_s e la larghezza della sezione **b** (l'altezza è fissata pari allo spessore del solaio strutturale).

La larghezza delle travi in spessore di solaio per campate fino a 5-6 m varia, mediamente, da 700 a 1000 mm

Per l'esempio in esame, ipotizzo b = 750 mm

PER LE TRAVI DI BORDO, le incognite sono A_s e l'altezza della sezione d (la larghezza è fissata pari a quella dei pilastri perimetrali).

Per l'esempio in esame, ipotizzo d = 300 mm

DIMENSIONAMENTO

Trave di spina TR_15-13

Campata A
$$A_{s,min} = \frac{140400000 \ N \cdot mm}{0.9 \cdot 243 \ mm \cdot 391 \ MPa} = 1641,88 \ mm^2$$

Campata B $A_{s,min} = \frac{69700000 \ N \cdot mm}{0.9 \cdot 243 \ mm \cdot 391 \ MPa} = 815,09 \ mm^2$

Appoggio 2 $A_{s,min} = \frac{166700000 \ N \cdot mm}{0.9 \cdot 243 \ mm \cdot 391 \ MPa} = 1949,44 mm^2$

Appoggio 1 $A_{s,min} = \frac{80270000 \ N \cdot mm}{0.9 \cdot 243 \ mm \cdot 391 \ MPa} = 938,82 \ mm^2$

Appoggio 3 $A_{s,min} = \frac{137300000 \ N \cdot mm}{0.9 \cdot 243 \ mm \cdot 391 \ MPa} = 1605,63 \ mm^2$

OSS. d sarà pari all'altezza del solaio strutturale (240+50 mm) diminuita del copriferro netto (30 mm), del diametro delle staffe (8mm) del raggio delle armature (9 mm)

DIMENSIONAMENTO

Trave di bordo TR_23-20

Campata A
$$A_{s,min} = \frac{47300000 \ N \cdot mm}{0,9 \cdot 253 \ mm \cdot 391 \ MPa} = 531,28 \ mm^2$$

Campata B $A_{s,min} = \frac{23300000 \ N \cdot mm}{0,9 \cdot 253 \ mm \cdot 391 \ MPa} = 261,71 \ mm^2$

Appoggio 2 $A_{s,min} = \frac{55800000 \ N \cdot mm}{0,9 \cdot 253 \ mm \cdot 391 \ MPa} = 626,75 \ mm^2$

Appoggio 1 $A_{s,min} = \frac{26800000 \ N \cdot mm}{0,9 \cdot 253 \ mm \cdot 391 \ MPa} = 301,02 \ mm^2$

Appoggio 3 $A_{s,min} = \frac{45900000 \ N \cdot mm}{0,9 \cdot 253 \ mm \cdot 391 \ MPa} = 515,55 \ mm^2$

OSS. d sarà pari all'altezza della trave (ipotizzo 300mm) diminuita del copriferro netto (30 mm), del diametro delle staffe (8mm) del raggio delle armature (9 mm)

DIMENSIONAMENTO DELLE ARMATURE

Trave di spina TR_15-13

Campata A con **8
$$\phi$$
18** si ha $A_s^* = 8 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 2034,72 > 1641,88 \, mm^2$
Campata B con **5 ϕ 18** si ha $A_s^* = 5 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 1271,70 \, mm^2 > 815,09 \, mm^2$
Appoggio 2 con **10 ϕ 18** si ha $A_s^* = 10 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 2543,40 \, mm^2 > 1949,44 \, mm^2$
Appoggio 1 con **5 ϕ 18** si ha $A_s^* = 5 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 1271,70 \, mm^2 > 938,82 \, mm^2$
Appoggio 3 con **9 ϕ 18** si ha $A_s^* = 9 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 2289,06 \, mm^2 > 1605,63 \, mm^2$

DIMENSIONAMENTO DELLE ARMATURE

Trave di bordo TR_23-20

Campata A con **3
$$\phi$$
18** si ha $A_s^* = 3 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 763,41 \ mm^2 > 531,28 \ mm^2$ Campata B con **2 ϕ 18** si ha $A_s^* = 2 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 508,94 \ mm^2 > 261,71 \ mm^2$ Appoggio 2 con **3 ϕ 18** si ha $A_s^* = 3 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 763,41 \ mm^2 > 626,75 \ mm^2$ Appoggio 1 con **2 ϕ 18** si ha $A_s^* = 2 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 508,94 \ mm^2 > 301,02 \ mm^2$ Appoggio 3 con 3 ϕ 18 si ha $A_s^* = 3 \cdot \left(\frac{\pi \cdot 18^2}{4}\right) = 763,41 \ mm^2 > 515,55 \ mm^2$

Bisogna verificare che i momenti resistenti M_{Rd} relativi alle armature scelte siano superiori ai momenti sollecitanti M_{Sd} :

$$M_{Rd} = A_s^* \cdot 0.9 \cdot d \cdot f_{yd} > M_{Sd}$$

Trave di spina TR_15-13

Campata A
$$M_{Rd} = 2034,72 \ mm^2 \cdot 0,9 \cdot 243 \ mm \cdot 391 \ MPa = 173992366 N \cdot mm$$
 $= 173,99 \ kN \cdot m > 140,40 \ kN \cdot m$ \checkmark VERIFICATO

Campata B $M_{Rd} = 1071,70 \ mm^2 \cdot 0,9 \cdot 243 \ mm \cdot 391 \ MPa = 108745229 \ N \cdot mm$ $= 108,75 \ kN \cdot m > 69,70 \ kN \cdot m$ \checkmark VERIFICATO

Appoggio 2 $M_{Rd} = 2543,40 \ mm^2 \cdot 0,9 \cdot 243 \ mm \cdot 391 \ MPa = 217490458 \ N \cdot mm$ $= 217,49 \ kN \cdot m > 188,70 \ kN \cdot m$ \checkmark VERIFICATO

Appoggio 1 $M_{Rd} = 1271,70 \ mm^2 \cdot 0,9 \cdot 243 \ mm \cdot 391 \ MPa = 108745229 \ N \cdot mm$ $= 108,75 \ kN \cdot m > 80,27 \ kN \cdot m$ \checkmark VERIFICATO

Appoggio 3 $M_{Rd} = 2289,06 \ mm^2 \cdot 0,9 \cdot 243 \ mm \cdot 391 \ MPa = 195741412 \ N \cdot mm$ $= 195,74 \ kN \cdot m > 137,30 \ kN \cdot m$ \checkmark VERIFICATO

Bisogna verificare che i momenti resistenti M_{Rd} relativi alle armature scelte siano superiori ai momenti sollecitanti M_{Sd} :

$$M_{Rd} = A_s^* \cdot 0.9 \cdot d \cdot f_{vd} > M_{Sd}$$

Trave di bordo TR_23-20

Campata A
$$M_{Rd} = 763,41 \ mm^2 \cdot 0,9 \cdot 253 \ mm \cdot 391 \ MPa = 67932205 \ N \cdot mm$$
 $67,93 \ kN \cdot m > 47,30 \ kN \cdot m$ \checkmark VERIFICATO

Campata B $M_{Rd} = 508,94 \ mm^2 \cdot 0,9 \cdot 253 \ mm \cdot 391 \ MPa = 45288137 \ N \cdot mm$ $= 45,29 \ kN \cdot m > 23,30 \ kN \cdot m$ \checkmark VERIFICATO

Appoggio 2 $M_{Rd} = 763,41 \ mm^2 \cdot 0,9 \cdot 253 \ mm \cdot 391 \ MPa = 67932205 \ N \cdot mm$ $= 67,93 \ kN \cdot m > 55,80 \ kN \cdot m$ \checkmark VERIFICATO

Appoggio 1 $M_{Rd} = 508,94 \ mm^2 \cdot 0,9 \cdot 253 \ mm \cdot 391 \ MPa = 45288137 \ N \cdot mm$ $= 45,29 \ kN \cdot m > 26,80 \ kN \cdot m$ \checkmark VERIFICATO

Appoggio 3 $M_{Rd} = 763,41 \ mm^2 \cdot 0,9 \cdot 253 \ mm \cdot 391 \ MPa = 67932205 \ N \cdot mm$ $= 67,93 \ kN \cdot m > 45,90 \ kN \cdot m$ \checkmark VERIFICATO

Bisogna inoltre verificare che il collasso avvenga con l'armatura tesa snervata (collasso duttile). La verifica può essere effettuata verificando che

$$\omega_{S} = \frac{f_{yd} \cdot A_{S}^{*}}{f_{cd} \cdot b \cdot d} < \overline{\omega}_{S} = 0,52$$

Trave di spina TR_15-13

Campata A
$$\[\omega_S = \frac{391 \, MPa \cdot 2034.72 \, mm^2}{14,17 \, MPa \cdot 750 \, mm \cdot 243 \, mm} = 0,31 < \overline{\omega}_S = 0,52 \] \checkmark \] \text{VERIFICATO} \]$$

Campata B $\[\omega_S = \frac{391 \, MPa \cdot 1271,70 \, mm^2}{14,17 \, MPa \cdot 750 \, mm \cdot 243 \, mm} = 0,19 < \overline{\omega}_S = 0,52 \] \checkmark \] \text{VERIFICATO} \]$

Appoggio 2 $\[\omega_S = \frac{391 \, MPa \cdot 2543,40 \, mm^2}{14,17 \, MPa \cdot 750 \, mm \cdot 243 \, mm} = 0,39 < \overline{\omega}_S = 0,52 \] \checkmark \] \text{VERIFICATO} \]$

Appoggio 1 $\[\omega_S = \frac{391 \, MPa \cdot 1271,70 \, mm^2}{14,17 \, MPa \cdot 750 \, mm \cdot 243 \, mm} = 0,19 < \overline{\omega}_S = 0,52 \] \checkmark \] \text{VERIFICATO} \]$

Appoggio 3 $\[\omega_S = \frac{391 \, MPa \cdot 12289,06 \, mm^2}{14,17 \, MPa \cdot 750 \, mm \cdot 243 \, mm} = 0,35 < \overline{\omega}_S = 0,52 \] \checkmark \] \text{VERIFICATO} \]$

Bisogna inoltre verificare che il collasso avvenga con l'armatura tesa snervata (collasso duttile). La verifica può essere effettuata verificando che

$$\omega_{S} = \frac{f_{yd} \cdot A_{S}^{*}}{f_{cd} \cdot b \cdot d} < \overline{\omega}_{S} = 0,52$$

Trave di bordo TR_23-20

Campata A
$$\omega_S = \frac{391 \, MPa \cdot 763,02 \, mm^2}{14,17 \, MPa \cdot 300 \, mm \cdot 253 \, mm} = 0,28 < \overline{\omega}_S = 0,52$$
 \checkmark VERIFICATO

Campata B $\omega_S = \frac{391 \, MPa \cdot 508,68 \, mm^2}{14,17 \, MPa \cdot 300 \, mm \cdot 253 \, mm} = 0,19 < \overline{\omega}_S = 0,52$ \checkmark VERIFICATO

Appoggio 2 $\omega_S = \frac{391 \, MPa \cdot 763,02mm^2}{14,17 \, MPa \cdot 300 \, mm \cdot 253 \, mm} = 0,28 < \overline{\omega}_S = 0,52$ \checkmark VERIFICATO

Appoggio 1 $\omega_S = \frac{391 \, MPa \cdot 508,68mm^2}{14,17 \, MPa \cdot 300 \, mm \cdot 253 \, mm} = 0,19 < \overline{\omega}_S = 0,52$ \checkmark VERIFICATO

Appoggio 3 $\omega_S = \frac{391 \, MPa \cdot 763,02mm^2}{14,17 \, MPa \cdot 300 \, mm \cdot 253 \, mm} = 0,28 < \overline{\omega}_S = 0,52$ \checkmark VERIFICATO

Combinazioni di carico:

- COMBINAZIONE 1
 (per massimizzare il momento in campata a)
- COMBINAZIONE 2 (per massimizzare il momento in campata b)
- COMBINAZIONE 3
 (per massimizzare il momento all'appoggio 2)
- COMBINAZIONE 4
 (solo per estremità appoggiata, per massimizzare il momento all'appoggio 1)

Per la trave di spina si ha pertanto che:

$$\gamma_{sfav}^* \mathbf{p} = \gamma_{sfav,G1}^* \mathbf{g}_1 + \gamma_{sfav,G2}^* \mathbf{g}_2 + \gamma_{sfav,Qk}^* \mathbf{q}_k$$

$$= 1,00^* 23,10 \text{ kN/m} + 1,00^* 20,03 \text{ kN/m} + 1,00^* 14,00 \text{ kN/m}$$

$$= 23,10 \text{ kN/m} + 20,03 \text{ kN/m} + 14,00 \text{ kN/m}$$

$$= 57,13 \text{ kN/m}$$

$$\gamma_{fav}^* \mathbf{p} = \gamma_{fav,G1}^* g_1^* + \gamma_{fav,G2}^* g_2^* + \gamma_{fav,Qk}^* q_k$$

= 1,00*23,10 kN/m + 0,00*20,03 kN/m + 0,00*14,00 kN/m
= 23,10 kN/m

MOMENTI - Trave di spina TR_15-13

	M ⁻ max,1	M ⁺ max,a	M ⁻ max,2	M ⁺ max,b	M ⁻ max,3
COMB 1	0	96,98	-96,88	12,11	-2,50
COMB 2	0	28,14	-68,28	45,97	-91,71
COMB 3	0	88,69	-117,7	34,91	-67,05
COMB 4	-56,60	/	/	/	/

Per la trave di bordo si ha pertanto che:

$$\gamma_{sfav}^* \mathbf{p} = \gamma_{sfav,G1}^* g_1 + \gamma_{sfav,G2}^* g_2 + \gamma_{sfav,Qk}^* q_k$$

$$= 1,00*7,73 \text{ kN/m} + 1,00*6,70 \text{ kN/m} + 1,00*4,68 \text{ kN/m}$$

$$= 7,73 \text{ kN/m} + 6,70 \text{ kN/m} + 4,68 \text{ kN/m}$$

$$= 19,11 \text{ kN/m}$$

$$\gamma_{fav}^* \mathbf{p} = \gamma_{fav,G1}^* \mathbf{g}_1 + \gamma_{fav,G2}^* \mathbf{g}_2 + \gamma_{fav,Qk}^* \mathbf{q}_k$$

= 1,00*7,73 kN/m + 0,00*6,70 kN/m + 0,00*4,68 kN/m
= 7,73 kN/m + 0,00 kN/m + 0,00 kN/m
= 7,73 kN/m

MOMENTI - Trave di bordo TR_23-20

	M ⁻ max,1	M ⁺ _{max,a}	M ⁻ max,2	M ⁺ max,b	M ⁻ max,3
COMB 1	0	32,45	-32,41	4,05	-0,85
COMB 2	0	9,42	-22,85	15,36	-30,71
COMB 3	0	29,67	-39,34	11,65	-22,47
COMB 4	-18,92	/	/	/	/

VERIFICHE SLE - TENSIONI

VERIFICA DELLE TENSIONI MASSIME:

- di compressione, nel cls compresso
- di trazione, nell'armatura tesa

$$\sigma_c = \frac{2M}{bx z}$$
 < 0,60 f_{ck} = 15 MPa

$$\sigma_s = \frac{M}{A_s z}$$
 < 0,80 f_{yk} = 360 MPa

Con
$$z = d - \frac{x}{3}$$
 e con $x = \frac{\alpha_e A_s}{b} \left\{ -1 + \sqrt{1 + \frac{2bd}{\alpha_e A_s}} \right\}$ ($\alpha_e = 15$)

Campata

Appoggio

VERIFICHE SLE - TENSIONI

Trave di spina TR_15-13

	M [kN·m]	A _s [mm]	b [mm]	x [mm]	z [mm]	σ _c [MPa]	< 15 MPa?	σ _s [MPa]	< 360 MPa?
САМРАТА А	96,98	2034,72	750	105,71	207,76	11.78	✓	229.41	✓
САМРАТА В	45,97	1271,70	750	88,62	213,46	6.48	✓	169.35	✓
APPOGGIO 2	117,7	2543,40	750	114,39	204,87	13.39	✓	225.88	√
APPOGGIO 1	56,6	1271,70	750	86,62	213,46	8.16	✓	208.50	✓
APPOGGIO 3	91,7	2289,06	750	110,25	206,25	10.75	✓	194.23	√

VERIFICHE SLE - TENSIONI

Trave di bordo TR_23-20

	M [kN·m]	A _s [mm]	b [mm]	x [mm]	z [mm]	σ _c [MPa]	< 15 206,10 MPa?	σ _s [MPa]	< 360 MPa?
CAMPATA A	32,5	763,02	300	105,93	217,69	9.40	✓	195.66	✓
САМРАТА В	15,4	508,68	300	90,83	222,72	5.08	✓	135.93	✓
APPOGGIO 2	39,3	763,02	300	105,93	217,69	11.36	✓	236.60	√
APPOGGIO 1	18,9	508,68	300	90,83	222,72	6.23	✓	166.82	✓
APPOGGIO 3	30,7	763,02	300	105,93	217,69	8.88	✓	184.83	✓

(VERIFICA INDIRETTA)

La verifica a fessurazione può essere eseguita indirettamente controllando che il <u>diametro delle armature tese</u> e la loro <u>spaziatura</u> non superino determinati limiti.

Tali limiti dipendono dallo <u>stato tensionale</u> delle armature in condizione <u>di esercizio</u> e dall'<u>apertura massima delle fessure</u> consentita (w).

L'apertura massima delle fessure dipende dalle condizioni ambientali cui è esposta la struttura e dalla tipologia di armatura.

Per l'edificio in esempio:

- Condizioni ambientali ordinarie (XC1-XC2-XC3);
- Armature poco sensibili (acciaio ordinario).

Tabelle CIRCOLARE 21 gennaio 2019

Tabella C4.1.II Diametri n	nassimi delle barre	рег	il	contro	lo di fes	ssurazione	
Tensione nell'acciaio	Diametro	m	assi	mo ¢	ιο φ delle barre (mm)		
σ _s [MPa]	$w_3 = 0.4 \text{ mm}$	1	w ₂	= 0,3	mm	$w_1 = 0.2 \text{ mm}$	
160	40	\perp		32		25	
200	32		_	25		16	
240	20		\perp	16		12	
280	16			12		8	
320	12			10		6	
360	10			8		-	
		_					

Tabella C4.1.III -Spaziatura massima delle barre per il controllo di fessurazione									
Tensione nell'acciaio	Spaziatura massima s delle barre (mm)								
σ _s [MPa]	$w_3 = 0.4 \text{ mm}$	$w_3 = 0.4 \text{ mm}$ $w_2 = 0.3 \text{ mm}$							
160	300	300	200						
200	300	250	150						
240	250	200	100						
280	200	150	50						
320	150	100	-						
360	100	50	-						

Trave di spina TR_15-13

	Armatura tesa	σ _s [MPa]	φ [mm]	φ _{max} [mm]	φ≤φ _{max}	i [mm]	i _{max} [mm]	∳ ≤φ _{max}
CAMPATA A	8ф18	229.41	18	26	✓	94	240	√
САМРАТА В	5ф18	169.35	18	35	✓	164	300	✓
APPOGGIO 2	10ф18	225.88	18	25	✓	73	340	✓
APPOGGIO 1	5ф18	208.50	18	24	✓	164	260	✓
APPOGGIO 3	9ф18	194.23	18	32	✓	82	290	✓

Trave di bordo TR_23-20

	Armatura tesa	σ _s [MPa]	φ [mm]	φ _{max} [mm]	γ ≤φ _{max}	i [mm]	i _{max} [mm]	φ≤φ _{max}
CAMPATA A	3ф18	195.66	18	32	✓	103	290	√
САМРАТА В	2ф18	135.93	18	40	✓	206	350	√
APPOGGIO 2	3ф18	236.60	18	26	✓	103	240	✓
APPOGGIO 1	2ф18	166.82	18	38	✓	206	330	✓
APPOGGIO 3	3ф18	184.83	18	32	✓	103	290	✓

VERIFICHE SLE - DEFORMAZIONE

(VERIFICA INDIRETTA)

Per luci fino a 10m la verifica di deformazione può essere eseguita indirettamente controllando che il rapporto tra luce altezza (I/h) non superi un determinato limite.

 $\frac{l}{h} \le K \left[11 + \frac{0.0015 \, f_{ck}}{\rho + \rho'} \right] \cdot \left[\frac{500 \, A_{s,eff}}{f_{vk} \, A_{s,calc}} \right]$

Il secondo termine tra parentesi quadre può essere assunto unitario.

Sistema strutturale	K	Calcestruzzo molto sollecitato ρ=1,5%	Calcestruzzo poco sollecitato ρ=0,5%	
Travi semplicemente appoggiate, piastre incernierate mono o bidirezionali	1,0	14	20	
Campate terminali di travi continue o piastre continue monodirezionali o bidirezionali continue sul lato maggiore	1,3	18	26	
Campate intermedie di travi continue o piastre continue mono o bidirezionali	1,5	20	30	
Piastre non nervate sostenute da pilastri (snellezza relativa alla luce maggiore)	1,2	17	24	

VERIFICHE SLE – DEFORMAZIONE

Trave di spina TR_15-13

	A _s [mm²]	$\rho_{s} = \frac{A_{s}}{(bd)}$ [%]	(l/h) _{max}	l [mm]	h [mm]	(l/h)	(I/h)≤(I/h) _{max} ?
CAMPATA A	2034,72	1,12	18	4450	290	15,3	✓
САМРАТА В	1271,70	0,70	18	4200	290	14,5	✓

Trave di bordo TR_23-20

	A _S [mm²]	$\rho_s = \frac{A_s}{(bd)}$ [%]	(l/h) _{max}	l [mm]	h [mm]	(l/h)	(I/h)≤(I/h) _{max} ?
CAMPATA A	763,02	1,01	18	4450	250	17,8	✓
САМРАТА В	508,68	0,67	18	4200	250	16,8	✓

TAGLIO - Trave di spina TR_15-13

	V_1	V _{2(a)}	$V_{2(b)}$	V_3
COMB 1	151,2	-209,1	79,7	-9,0
COMB 2	29,0	-64,9	156,3	-184,2
COMB 3	142,9	-217,9	187,2	-153,3
COMB 4	108.2	/	/	/

TAGLIO - Trave di bordo TR_23-20

	V_1	V _{2(a)}	V _{2(b)}	V ₃
COMB 1	50,5	-70,2	27,9	-4,6
COMB 2	11,0	-23,4	52,6	-61,3
COMB 3	47,8	-72,9	62,6	-51,3
COMB 4	36,2	/	/	/

Resistenza a "taglio-trazione" staffe

$$V_{Rsd} = \frac{A_{sw}}{s} z f_{yd} \sin \alpha \left(ctg\alpha + ctg\theta \right)$$

Resistenza a "taglio-compressione" cls

$$V_{Rcd} = b z f_{c2} \sin^2 \theta (ctg\alpha + ctg\theta)$$

- α è l'inclinazione delle armature trasversali a taglio
- θ è l'inclinazione dei puntoni di calcestruzzo compressi

 $f_{\rm c2} \sim 0.5~f_{\rm cd}$ (resistenza a compressione del cls del puntone)

Ipotizzando staffe disposte perpendicolarmente rispetto all'asse dalla trave (α = 90°), ricordando che $\sin^2 \theta = \frac{1}{1 + ctg^2 \theta}$

$$\Rightarrow V_{Rsd} = \frac{A_{sw}}{s} z f_{yd} ctg \vartheta$$

$$\Rightarrow V_{Rcd} = b z 0.5 f_{cd} \frac{ctg \vartheta}{1 + ctg^2 \vartheta}$$

Il taglio resistente sarà pari al minore tra V_{Rsd} e V_{Rcd}.

Quanto vale θ ?

Nella <u>teoria del traliccio isostatico di Morsh</u>, θ = 45° (quindi ctg θ = 1). Questo modello, però, conduce ad eccessivi dimensionamenti dell'armatura trasversale. Il modello va quindi perfezionato aggiungendo il contributo della resistenza a trazione del calcestruzzo (cfr. resistenza a taglio di elementi privi di specifica armatura, come i solai). Nella teoria del <u>traliccio con puntone a inclinazione variabile</u> tale contributo viene preso in considerazione diminuendo l'inclinazione θ (cioè aumentando il valore di ctg θ).

La normativa vigente, tuttavia impedisce di utilizzare valori di θ inferiori a 22.8° (cioè valori di ctg θ superiori a 2,5).

Pertanto

$$1 \le ctg\theta \le 2,5$$

cioè

$$21.8^{\circ} \le \mathcal{9} \le 45^{\circ}$$

Un criterio che si può adottare per determinare il valore di θ con cui calcolare i tagli resistenti, è quello di uguagliare le due equazioni di VRsd e VRcd: si ottiene in questo modo l'inclinazione θ_{eq} delle bielle di calcestruzzo cui corrisponde il cedimento simultaneo delle bielle di calcestruzzo e delle staffe.

$$ctg \, \theta_{eq} = \sqrt{\frac{s \cdot b \, 0.5 f_{cd}}{A_{sw} \cdot f_{yd}}}$$

Questo criterio permette di massimizzare il taglio resistente della trave.

N.B. Se trovo ctg θ_{eq} >2,5, allora prenderò ctg θ = 2,5 Se trovo 1<ctg θ_{eq} <2,5, allora prenderò ctg θ = ctg θ_{eq} Se trovo ctg θ_{eq} <1, allora prenderò ctg θ = 1

N.B. Asw è l'area dell'armatura trasversale di staffe

s è il passo delle staffe, b è la larghezza della trave

Staffe a quattro braccia

LIMITAZIONI NORMATIVE: (cap 4.1.6 NTC2018)

- 1) s < 500mm (cioè almeno tre staffe al metro)
- 2) s < 0.8 d (d altezza utile della sezione)
- 3) $A_{sw}/s > 1.5 \text{ b mm}^2/\text{m}$ (b larghezza della sezione)

Oss. Solitamente, il passo delle staffe viene arrotondato per difetto ai 5 cm

VERIFICHE SLU - TAGLIO

Trave di spina TR_15-13 — ipotizzo staffe a 4 braccia ϕ 8 (Asw = 201,06mm²)

Predimensiono l'armatura trasversale minima sulla base delle limitazioni normative: il passo s deve essere minore di 500mm (1) e di 0,8*243=194,4mm (2), quindi scelgo s = 150 mm. Verifico che $A_{sw}/s = 201,06mm^2/0,15m = 1340,4mm^2/m >1,5*750 = 1125 mm^2/m (3).$

Se con questi parametri la verifica a taglio non risulta verificata in uno o più punti della trave, in quella zona rifarò la verifica riducendo il passo di 5 cm

	Staffe	A _{Sw} [mm²]	s [mm]	ctg $ heta_{eq}$	ctg 9	V _{Rsd} [kN]	V _{Rcd} [kN]	V _{Rd} = min(V _{Rsd;} V _{Rcd}) [kN]	V _{sd} [kN]	V _{Rd} ≥V _{Sd} ?
APPOGGIO 1	ф8 a 4 braccia	201,06	150	3.02 > 2.5	2.5	286,55	400,73	286,55	151,2	✓
APPOGGIO 2a	ф8 a 4 braccia	201,06	150	3.02 > 2.5	2.5	286,55	400,73	286,55	217,9	✓
APPOGGIO 2b	ф8 a 4 braccia	201,06	150	3.02 > 2.5	2.5	286,55	400,73	286,55	187,2	✓
APPOGGIO 3	ф8 a 4 braccia	201,06	150	3.02 > 2.5	2.5	286,55	400,73	286,55	184,02	✓

VERIFICHE SLU - TAGLIO

Trave di bordo TR_23-20 — ipotizzo staffe a 2 braccia φ8 (Asw = 100,53mm²)

Predimensiono l'armatura trasversale minima sulla base delle limitazioni normative: il passo s deve essere minore di 500mm (1) e di 0,8*253=202,4mm (2), quindi scelgo s = 200 mm. Verifico che $A_{sw}/s = 100,53$ mm²/0,20m = 502,65mm²/m >1,5*300 = 450 mm²/m (3).

Se con questi parametri la verifica a taglio non risulta verificata in uno o più punti della trave, in quella zona rifarò la verifica riducendo il passo di 5 cm

	Staffe	A _{Sw} [mm²]	s [mm]	ctg $artheta_{eq}$	$ctg\vartheta$	V _{Rsd} [kN]	V _{Rcd} [kN]	V _{Rd} = min(V _{Rsd;} V _{Rcd}) [kN]	V _{Sd} [kN]	V _{Rd} ≥V _{Sd}
APPOGGIO 1	ф8 a 2 braccia	100,53	200	3.13 > 2.5	2.5	111,88	166,89	111,88	50,5	✓
APPOGGIO 2a	ф8 a 2 braccia	100,53	200	3.13 > 2.5	2.5	111,88	166,89	111,88	72,9	✓
APPOGGIO 2b	ф8 a 2 braccia	100,53	200	3.13 > 2.5	2.5	111,88	166,89	111,88	62,6	✓
APPOGGIO 3	ф8 a 2 braccia	100,53	200	3.13 > 2.5	2.5	111,88	166,89	111,88	61,3	✓

POSIZIONAMENTO DELLE ARMATURE - Trave di bordo TR_23-20

POSIZIONAMENTO DELLE ARMATURE - Trave di bordo TR_23-20

POSIZIONAMENTO DELLE ARMATURE - Trave di spina TR_15-13

POSIZIONAMENTO DELLE ARMATURE - Trave di spina TR_15-13

