MODULO INTERRUPÇÕES DO dsPIC30F4011

OBJETIVOS

- Ter noções das interrupções no dsPIC30F4011.
- Aprender sobre a Tabela de vetores de interrupção.
- Configurar registradores para trabalhar com as interrupções.
- Fazer programas com as interrupções externas do dsPIC30F4011.

INTRODUÇÃO

Uma interrupção é a ocorrência de uma condição - um evento - que causa uma suspensão temporária de um programa enquanto que a condição é atendida por outro programa.

As interrupções permitem ao sistema responder assincronamente a um evento e lidar com este enquanto outro programa esta sendo executado. Um sistema de interrupção dá a ilusão de se estar fazendo muitas coisas simultaneamente. Geralmente, a CPU não pode executar mais que uma instrução por vez; mas este pode suspender a execução de um programa temporariamente, e executar outro, e depois retornar ao programa original. Este é parecido a uma função em linguagem C.

A diferença entre uma função e uma interrupção é que a interrupção é uma resposta a um "evento" que acontece assincronamente no programa principal. Não se sabe quando o programa principal vai ser interrompido. O programa que lida com a interrupção é chamada de **rotina de serviço de interrupção (Interrup Service Routine - ISR)**.

O ISR é executado em resposta à interrupção externa ou interna e geralmente executa uma operação de entrada ou saída para um dispositivo. Quando acontece uma interrupção, o programa principal temporariamente suspende sua execução e pula para o ISR; o ISR executa a operação e termina com um "retorno da interrupção" e depois o programa principal continua desde onde ficou.

Figura 1. Descrição da execução de um programa sem interrupções (a) e a execução no nível base com interrupções ocasionais, executando as ISRs em nível de interrupção.

Um exemplo típico de interrupção é a entrada manual usando um teclado. Considerando um forno de microondas, onde o programa principal controla o elemento de potência de microondas para cozinhar; ainda cozinhando o sistema deve responder a várias entradas manuais neste caso a porta do forno (quando se abre) ou quando o usuário deixa de pressionar uma tecla, uma interrupção é gerada (o sinal vai de ALTO para BAIXO, talvez) e o programa principal é interrompido. O ISR então lê o código do teclado e muda as condições de cozimento do forno e finaliza passando o controle de novo para o programa principal. O programa principal recomeça onde ficou quando aconteceu a interrupção.

Como se podem ver as entradas manuais acontecem "assincronamente" em intervalos que não podem ser preditas ou controladas pelo software que roda no sistema. **ESTA É UMA INTERRUPÇÃO.**

PINOS DAS INTERRUPÇÕES EXTERNAS DO dsPIC30F4011

Figura 2. Microcontrolador mostrando os pinos das interrupções externas

ORGANIZAÇÃO DAS INTERRUPÇÕES DO DSPIC30F4011

O dsPIC30F4011 tem 30 fontes de interrupção e 4 exceções de processador (traps), os quais devem ser arbitrados baseados em um esquema de prioridade.

A CPU é responsável de ler a tabela de vetores de interrupção (Interrupt Vector Table – IVT) e transferir o endereço contido no vetor de interrupção para o contador de programa. O vetor de interrupção é transferido desde o barramento de dados de programa para o contador de programa via um multiplexador de 24 bits de largura na entrada do contador de programa. O IVT e a tabela de vetores de interrupção alternada (Alternate Interrupt Vector Table – AIVT) estão localizadas próximos ao começo da memória de programa (0x000004).

INT Number	Vector Number	Interrupt Source			
Highest Na	atural Orde	er Priority			
0	8	INT0 – External Interrupt 0	23	31	INT2 – External Interrupt 2
1	9	IC1 – Input Capture 1	24	32	U2RX – UART2 Receiver
2	10	OC1 – Output Compare 1	25	33	U2TX – UART2 Transmitter
3	11	T1 – Timer 1	26	34	Reserved
4	12	IC2 – Input Capture 2	27	35	C1 – Combined IRQ for CAN1
5	13	OC2 - Output Compare 2	28	36	Reserved
6	14	T2 – Timer 2	29	37	Reserved
7	15	T3 – Timer 3	30	38	Reserved
8	16	SPI1	31	39	Reserved
9	17	U1RX – UART1 Receiver	32	40	Reserved
10	18	U1TX – UART1 Transmitter	33	41	Reserved
11	19	ADC – ADC Convert Done	34	42	Reserved
12	20	NVM – NVM Write Complete	35	43	Reserved
13	21	SI2C – I ² C™ Slave Interrupt	36	44	Reserved
14	22	MI2C – I ² C Master Interrupt	37	45	Reserved
15	23	Input Change Interrupt	38	46	Reserved
16	24	INT1 – External Interrupt 1	39	47	PWM – PWM Period Match
17	25	IC7 – Input Capture 7	40	48	QEI – QEI Interrupt
		<u> </u>	41	49	Reserved
18	26	IC8 – Input Capture 8	42	50	Reserved
19	27	OC3 – Output Compare 3	43	51	FLTA – PWM Fault A
20	28	OC4 – Output Compare 4	44	52	Reserved
21	29	T4 – Timer4	45-53	53-61	Reserved
22	30	T5 – Timer5	Lowest Na	atural Orde	er Priority

O controlador de interrupção é responsável por pré-processar as interrupções e as exceções do processador, apresentando estes para o núcleo do processador. As interrupções periféricas e traps são habilitadas, priorizadas e controladas usando os registradores de funções especiais (SFRs).

IFSO<15:0>, IFS1<15:0>, IFS2<15:0>: Todos os flags de requisição de interrupção estão nestes três registradores. Os flags são setados por seus respectivos periféricos ou sinais externos e são zerados via software.

	IFS0 : Interrup Flag Status Register 0							
Bit	Nome	Descrição	Bit	Nome	Descrição			
0	INT0IF	External Interrupt 0 Flag Status bit	8	SPI1IF	SPI1 Interrupt Flag Status bit			
1	ICIIF	Input Capture Channel 1 Interrupt Flag Status bit	9	Ulrxif	UART1 Receiver Interrupt Flag Status bit			
2	OCIIF	Output Compare Channel 1 Interrupt Flag Status bit	10	UlTXIF	UART1 Transmitter Interrupt Flag Status bit			
3	TlIF	Timer1 Interrupt Flag Status bit	11	ADIF	A/D Conversion Complete Interrupt Flag Status bit			
4	IC2IF	Input Capture Channel 2 Interrupt Flag Status bit	12	NVMIF	Non-Volatile Memory Write Complete Interrupt Flag Status bit			
5	OC2IF	Output Compare Channel 2 Interrupt Flag Status bit	13	SI2CIF	I2C Transfer Complete Interrupt Flag Status bit			
6	T2IF	Timer2 Interrupt Flag Status bit	14	MI2CIF	I2C Bus Collision Flag Status bit			
7	T3IF	Timer3 Interrupt Flag Status bit	15	CNIF	Input Change Notification Flag Status bit			

- 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

	IFS1 : Interrup Flag Status Register 1							
Bit	Nome	Descrição	Bit	Nome	Descrição			
0	INTlIF	External Interrupt 1 Flag Status bit	8	U2RXIF	UART2 Receiver Interrupt Flag Status bit			
1	IC7IF	Input Capture Channel 7 Interrupt Flag Status bit	9	U2TXIF	UART2 Transmitter Interrupt Flag Status bit			
2	IC8IF	Input Capture Channel 8 Interrupt Flag Status bit	10	SPI2IF	SPI2 Interrupt Flag Status bit			
3	OC3IF	Output Compare Channel 3 Interrupt Flag Status bit	11	ClIF	CAN1 (Combined) Interrupt Flag Status bit			
4	OC4IF	Output Compare Channel 4 Interrupt Flag Status bit	12	IC3IF	Input Capture Channel 3 Interrupt Flag Status bit			
5	T4IF	Timer4 Interrupt Flag Status bit	13	IC4IF	Input Capture Channel 4 Interrupt Flag Status bit			
6	T5IF	Timer5 Interrupt Flag Status bit	14	IC5IF	Input Capture Channel 5 Interrupt Flag Status bit			
7	INT2IF	External Interrupt 2 Flag Status bit	15	IC6IF	Input Capture Channel 6 Interrupt Flag Status bit			

	IFS2 : Interrup Flag Status Register 2							
Bit	Nome	Descrição	Bit	Nome	Descrição			
0	OC5IF	Output Compare Channel 5 Interrupt Flag Status bit	8	QEIIF	Quadrature Encoder Interface Interrupt Flag Status bit			
1	OC6IF	Output Compare Channel 6 Interrupt Flag Status bit	9	DCIIF	Data Converter Interface Interrupt Flag Status bit			
2	OC7IF	Output Compare Channel 7 Interrupt Flag Status bit	10	LVDIF	Programmable Low Voltage Detect Interrupt Flag Status bit			
3	OC8IF	Output Compare Channel 8 Interrupt Flag Status bit	11	FLTAIF	Fault A Input Interrupt Flag Status bit			
4	INT3IF	External Interrupt 3 Flag Status bit	12	FLTBIF	: Fault B Input Interrupt Flag Status bit			
5	INT4IF	External Interrupt 4 Flag Status bit	13		Não Implementado, ler como 0.			
6	C2IF	CAN2 (Combined) Interrupt Flag Status bit	14		Não Implementado, ler como 0.			
7	PWMIF	Motor Control Pulse Width Modulation Interrupt Flag Status bit	15	·	Não Implementado, ler como 0.			

IECO<15:0>, IEC1<15:0>, IEC2<15:0>: Todos os bits de controle de habilitação de interrupções são mantidos nestes três registradores. Estes bits de controle são usados para habilitar interrupções individualmente desde sinais periféricos ou externos.

	IEC0 : Interrupt Enable Control Register 0							
Bit	Nome	Descrição	Bit	Nome	Descrição			
0	INT0IE	External Interrupt 0 Enable bit	8	SPILIE	SPI1 Interrupt Enable bit			
1	ICIIE	Input Capture Channel 1 Interrupt Enable bit	9	Ulrxie	UART1 Receiver Interrupt Enable bit			
2	OCIE	Output Compare Channel 1 Interrupt Enable bit	10	Ultxie	UART1 Transmitter Interrupt Enable bit			
3	TlIE	Timer1 Interrupt Enable bit	11	ADIE	A/D Conversion Complete Interrupt Enable bit			
4	IC2IE	Input Capture Channel 2 Interrupt Enable bit	12	NVMIE	Non-Volatile Memory Write Complete Interrupt Enable bit			
5	OC2IE	Output Compare Channel 2 Interrupt Enable bit	13	SI2CIE	I2C Transfer Complete Interrupt Enable bit			
6	T2IE	Timer2 Interrupt Enable bit	14	MI2CIE	I2C Bus Collision Interrupt Enable bit			
7	T3IE	Timer3 Interrupt Enable bit	15	CNIE	Input Change Notification Interrupt Enable bit			

- 1 = Interrupt request enabled
- 0 = Interrupt request not enabled

	IEC1 : Interrupt Enable Control Register 1								
Bit	Nome	Descrição	Bit	Nome	Descrição				
0	INTIIE	External Interrupt 1 Enable bit	8	U2RXIE	UART2 Receiver Interrupt Enable bit				
1	IC7IE	Input Capture Channel 7 Interrupt Enable bit	9	U2TXIE	UART2 Transmitter Interrupt Enable bit				
2	IC8IE	Input Capture Channel 8 Interrupt Enable bit	10	SPI2IE	SPI2 Interrupt Enable bit				
3	OC3IE	Output Compare Channel 3 Interrupt Enable bit	11	Clie	CAN1 (Combined) Interrupt Enable bit				
4	OC4IE	Output Compare Channel 4 Interrupt Enable bit	12	IC3IE	Input Capture Channel 3 Interrupt Enable bit				
5	T4IE	Timer4 Interrupt Enable bit	13	IC4IE	Input Capture Channel 4 Interrupt Enable bit				
6	T5IE	Timer5 Interrupt Enable bit	14	IC5IE	Input Capture Channel 5 Interrupt Enable bit				
7	INT2IE	External Interrupt 2 Enable bit	15	IC6IE	Input Capture Channel 6 Interrupt Enable bit				

	IEC2: Interrupt Enable Control Register 2							
Bit	Nome	Descrição	Bit	Nome	Descrição			
0	OC5IE	Output Compare Channel 5 Interrupt Enable bit	8	QEHE	Quadrature Encoder Interface Interrupt Enable bit			
1	осые	Output Compare Channel 6 Interrupt Enable bit	9	DCIIE	Data Converter Interface Interrupt Enable bit			
2	OC7IE	Output Compare Channel 7 Interrupt Enable bit	10	LVDIE	Programmable Low Voltage Detect Interrupt Enable bit			
3	OC8IE	Output Compare Channel 8 Interrupt Enable [©] bit	11	FLTAIE	Fault A Interrupt Enable bit			
4	INT3IE	External Interrupt 3 Enable bit	12	FLTBIE	Fault B Input Interrupt Enable bit			
5	INT4IE	External Interrupt 4 Enable bit	13		Não Implementado, ler como 0.			
6	C2IE	CAN2 (Combined) Interrupt Enable bit	14		Não Implementado, ler como 0.			
7	PWMIE	Motor Control Pulse Width Modulation Interrupt Enable bit	15	·	Não Implementado, ler como 0.			

IPC0<15:0>... IPC11<7:0> : O nível de prioridade atribuído pelo usuário associado com cada uma das interrupções é mantido nestes doze registradores.

	IPC0 : Interrupt Priority Control Register 0						
Bit	Nome	Descrição	Bit	Nome	Descrição		
0-2	INT0IP<2:0>	External Interrupt 0 Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	8-10	OC1IP<2:0>	Output Compare Channel I Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled		
3	-	Não implementado. Ler como 0.	11	-	Não implementado. Ler como 0		
4-6	IC1IP<2:0>	Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	12-14	T1IP<2:0>	Timer1 Interrupt Priority bits. 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled		
7	-	Não implementado. Ler como 0.	15	-	Não implementado. Ler como 0.		

SE ALGUMA INTERRUPÇÃO TEM NÍVEL DE PRIORIDADE IGUAL A 0, É O MESMO DIZER QUE NÃO FOI HABILITADA A INTERRUPÇÃO EM IECx.

	IPC1 : Interrupt Priority Control Register 1						
Bit	Nome	Descrição	Bit	Nome	Descrição		
0-2	IC2IP<2:0>	Input Capture Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • • • • • • • • • • • • • • • •	8-10	T2IP<2:0>	Timer2 Interrupt Priority bits. 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled		
3		000 = Interrupt source is disabled Não implementado. Ler como 0.	11		Não implementado. Ler como 0		
4-6	OC2IP<2:0>	Output Compare Channel 2 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	12-14	T3IP<2:0>	Timer3 Interrupt Priority bits. 111 = Interrupt is priority 7 (highest priority interrupt)		
7	-	Não implementado. Ler como 0.	15	-	Não implementado. Ler como 0.		

	IPC2 : Interrupt Priority Control Register 2					
Bit	Nome	Descrição	Bit	Nome	Descrição	
0-2	SPI11P<2:0>	SPI1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	8-10	UlTXIP<2:0>	UART1 Transmitter Interrupt Priority bits. 111 = Interrupt is priority 7 (highest priority interrupt)	
3	-	Não implementado. Ler como 0.	11	-	Não implementado. Ler como 0	
4-6	UlRXIP<2:0>	UART1 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	12-14	ADIP<2:0>	A/D Conversion Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	
7	-	Não implementado. Ler como 0.	15	-	Não implementado. Ler como 0.	

	IPC3 : Interrupt Priority Control Register 3						
Bit	Nome	Descrição	Bit	Nome	Descrição		
0-2	NVMIP<2:0>	Non-Volatile Memory Write Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	8-10	MI2CIP<2:0>	I2C Bus Collision Interrupt Priority bits. 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled		
3	-	Não implementado. Ler como 0.	11	-	Não implementado. Ler como 0		
4-6	SI2CIP<2:0>	I2C Ttransfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	12-14	CNIP<2:0>	Input Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)		
7	-	Não implementado. Ler como 0.	15	-	Não implementado. Ler como 0.		

	IPC4 : Interrupt Priority Control Register 4							
Bit	Nome	Descrição	Bit	Nome	Descrição			
		External Interrupt 1 Priority bits			Input Capture Channel 8			
		111 = Interrupt is priority 7			Interrupt Priority bits.			
		(highest priority interrupt)			111 = Interrupt is priority 7			
		•			(highest priority interrupt)			
0-2	INT11P<2:0>	•	8-10	IC8IP<2:0>	·			
		•			·			
		001 = Interrupt is priority 1			·			
		000 = Interrupt source is disabled			001 = Interrupt is priority 1			
					000 = Interrupt source is disabled			
3	_	Não implementado. Ler como 0.	11	-	Não implementado. Ler como 0			
		Input Capture Channel 7			Output Compare Channel 3			
		Interrupt Priority bits			Interrupt Priority bits			
		111 = Interrupt is priority 7			111 = Interrupt is priority 7			
		(highest priority interrupt)			(highest priority interrupt)			
4-6	IC7IP<2:0>	•	12-14	OC3IP<2:0>	·			
		•			·			
					·			
		001 = Interrupt is priority 1			001 = Interrupt is priority 1			
		000 = Interrupt source is disabled			000 = Interrupt source is disabled			
7	-	Não implementado. Ler como 0.	15	-	Não implementado. Ler como 0.			

E ASSIM SUCESSIVAMENTE ATÉ O IPC11. PARA MAIS DETALHES VER O MANUAL DE REFERÊNCIA DO dsPIC30F INTCON1<15:0>, INTCON2<15:0> : Funcionam como controles de interrupção global. O INTCON1 contém os flags de controle e status para as exceções do processador. O registrador INTCON2 controla o comportamento do sinal de requerimento de interrupção externa e o uso do AIVT.

INTCON1 : Interrupt Control Register 1									
Bit	Nome	Descrição	Bit	Nome	Descrição				
0	-	Não implementado. Ler como 0.							
1	OSCFAIL	Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred	8	COVTE	Catastrophic Overflow Trap Enable bit 1 = Trap on catastrophic overflow of Accumulator A or B enabled 0 = Trap disabled				
2	STKERR	Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred	9	OVBTE	Accumulator B Overflow Trap Enable bit 1 = Trap overflow of Accumulator B 0 = Trap disabled				
3	ADDRERR	Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred	10	OVATE	Accumulator A Overflow Trap Enable bit 1 = Trap overflow of Accumulator A 0 = Trap disabled				
4	MATHERR	Arithmetic Error Status bit 1 = Overflow trap has occurred 0 = Overflow trap has not occurred	11-14	-	Não implementado. Ler como 0				
5-7	-	Não implementado. Ler como 0.	15	NSTDIS	Interrupt Nesting Disable bit 1 = Interrupt nesting is disabled 0 = Interrupt nesting is enabled				

Se o bit NSTDIS (INTCON1 <15>) é setado, o aninhamento de interrupção é prevista. Assim se uma interrupção está sendo executada, pode ser processada uma nova interrupção, sempre que esta nova interrupção tenha uma maior prioridade.

INTCON2 : Interrupt Control Register 2									
Bit	Nome	Descrição	Bit	Nome	Descrição				
0	INT0EP	External Interrupt #0 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge	4	INT4EP	External Interrupt #4 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge				
1	INT1EP	External Interrupt #1 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge	5-13	-	Não implementado. Ler como 0.				
2	INT2EP	External Interrupt #2 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge	14	DISI	DISI Instruction Status bit 1 = DISI instruction is active 0 = DISI is not active				
3	INT3EP	External Interrupt #3 Edge Detect Polarity Select bit 1 = Interrupt on negative edge 0 = Interrupt on positive edge	15	ALTIVT	Enable Alternate Interrupt Vector Table bit 1 = Use alternate vector table 0 = Use standard (default) vector table				

A INSTRUÇÃO DISI (SETADA PARA 1) PODE SER USADA PARA DESABILITAR O PROCESSAMENTO DAS INTERRUPÇÕES DESDE A PRIORIDADE 6 PARA ABAIXO.

TABLE 5-2: INTERRUPT CONTROLLER REGISTER MAP(1)

SFR Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
INTCON1	0800	NSTDIS	ı	_	ı	-	OVATE	OVBTE	COVTE	_	-	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000 0000 0000 0000
INTCON2	0082	ALTIVT	DISI	_	ı	-	-	ı	-	-	١	-	-	_	INT2EP	INT1EP	INTOEP	0000 0000 0000 0000
IFS0	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INTOIF	0000 0000 0000 0000
IFS1	0086	_	ı	_	ı	C1IF	_	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	IC8IF	IC7IF	INT1F	0000 0000 0000 0000
IFS2	8800	1	-	-	_	FLTAIF	-	_	QEIIF	PWMIF	-	_	_	_	_	_	_	0000 0000 0000 0000
IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	U1TXIE	U1RXIE	SPI1IE	T3IE	T2IE	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INTOIE	0000 0000 0000 0000
IEC1	008E	_	-	_	-	C1IE	_	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	IC8IE	IC7IE	INT1E	0000 0000 0000 0000
IEC2	0090	_	_	_	_	FLTAIE	_	_	QEIIE	PWMIE	_	-	-	_	_	_	_	0000 0000 0000 0000
IPC0	0094	_	_	T1IP<2:0>		_	(C1IP<2:0	>	_		IC1IP<	2:0>	_	INTOIP<2:0>		0100 0100 0100 0100	
IPC1	0096	_	T	31P<2:0	>	_		T2IP<2:0>		-		OC2IP<	2:0>	_	IC2IP<2:0>			0100 0100 0100 0100
IPC2	0098	_	ADIP<2:0>			_	U1TXIP<2:0>			_	U1RXIP<2:0>		_	SPI1IP<2:0>		0100 0100 0100 0100		
IPC3	009A	_	CNIP<2:0>		>	-	MI2CIP<2:0>			-	SI2CIP<2:0>			_	NVMIP<2:0>		0100 0100 0100 0100	
IPC4	009C	1	OC3IP<2:0>		>	ı	IC8IP<2:0>			-	IC7IP<2:0>		_	INT1IP<20>		0100 0100 0100 0100		
IPC5	009E	_	II.	T2IP<2:0	>	-		T5IP<2:0>		_		T4IP<2	2:0>	_	OC4IP<2:0>			0100 0100 0100 0100
IPC8	00A0	1	(01IP<2:0>	,	1	-	_	-	-	U2TXIP<2:0> -		_	U2RXIP<2:0>		0100 0000 0100 0100		
IPC7	00A2	_	-	_	_	-	_	-	-	_	-	_	-	_	-	_	_	0000 0000 0000 0000
IPC8	00A4	_	1	_	ı	_	_	ı	_	_	1	_	-	_	_	_	_	0000 0000 0000 0000
IPC9	00A6	_	PWMIP<2:0>)>	_	_	ı	-	_	-	_	-	_	_	_	-	0100 0000 0100 0100
IPC10	8A00	-	FLTAIP<2:0>)>	-	-	ı	_	_			-	_	QEIIP<2:0>		0100 0000 0000 0100	
IPC11	OOAA	_	_	_	_	_	_	_	-	-	_	-	-	_	-	_	_	0000 0000 0000 0000

Legend: — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70048) for descriptions of register bit fields

ESCREVENDO UM INTERRUPT SERVICE ROUTINE - ISR

As guias para escrever os ISR's são:

<u>Declarar os ISR's sem parâmetros e um tipo de retorno void (obrigatório)</u>. Um ISR é parecido a alguma outra função em C em que este pode ter variáveis locais e variáveis de acesso global. Portanto, um ISR necessita ser declarada sem parâmetros e não retorna valores. Isto é necessário porque o ISR, em resposta a uma interrupção de hardware ou trap, é invocada assincronamente no programa principal (isto é, este não é chamado de forma normal, então parâmetros de retorno de valores não são aplicáveis).

Os ISR´s poderiam ser invocados através de uma interrupção de hardware ou trap e não desde uma função (obrigatório). Um ISR usa uma instrução de "retorno desde a interrupção" (return from interrupt — RETFIE) para sair da função ao invés que a instrução normal RETURN. Usando uma instrução RETFIE fora do contexto pode corromper recursos do processador, tal como o registrador de status.

<u>Finalmente, ISR's poderiam não chamar outras funções (recomendado)</u>. Esta recomendação é por causa da latência (tempo entre a chamada da interrupção e a primeira instrução a ser executada dentro do ISR).

A sintaxe para escrever ISR's é:

```
void interrupt() iv IVT_ADDR_U1RXINTERRUPT ics ICS_AUTO {
    // Código da rotina de serviço de interrupção.
}
Onde:
```

- **iv** palavra reservada que informa ao compilador que esta é uma rotina de serviço de interrupção..
- IVT_ADDR_U1RXINTERRUPT Vetor de interrupção apropriado.

- ics Interrupt Context Saving; Salvando o context da interrupção (Interrupt Context Saving) pode ser executada em várias formas:
 - 1. ICS OFF Não salva o context.
 - 2. ICS_AUTO O compilador escolhe se salvar o contexto será executado ou não.

Exemplo de uma rotina de interrupção.

ESCREVENDO O VETOR DE INTERRUPÇÃO

INTERRUPT VECTORS

TMR5-Timer 5

23 INT2-External interrupt 2

T5Interrupt

_INT2Interrupt

AltT5Interrupt

_AltINT2Interrupt

INTERRUPT VECTORS (CONTINUED)

	INTERRUPT VECTORS			INTERRUPT VECTORS (CONTINUED)						
IRQ#	Vector Function	Primary Name	Alternate Name	IRQ#	Vector Function	Primary Name	Alternate Name			
n/a	Reserved	_ReservedTrap0	_AltReservedTrap0	24	UART2RX-UART2 receiver	_U2RXInterrupt	_AltU2RXInterrupt			
n/a	Oscillator fail trap	OscillatorFail	AltOscillatorFail	25	UART2TX-UART2 transmitter	_U2TXInterrupt	_AltU2TXInterrupt			
n/a	Address error trap	AddressError	AltAddressError	26	SPI2-Serial peripheral interface 2	_SPI2Interrupt	_AltSPI2Interrupt			
n/a	Stack error trap	StackError	AltStackError	27	CAN1-Combined IRQ	_C1Interrupt	_AltC1Interrupt			
n/a	Math error trap	MathError	AltMathError	28	IC3-Input capture 3	_IC3Interrupt	_AltIC3Interrupt			
n/a	Reserved	ReservedTrap5	AltReservedTrap5	29	IC4-Input capture 4	_IC4Interrupt	_AltIC4Interrupt			
n/a	Reserved	ReservedTrap6	AltReservedTrap6	30	IC5-Input capture 5	_IC5Interrupt	_AltIC5Interrupt			
		ReservedTrap7	AltReservedTrap7	31	IC6-Input capture 6	_IC6Interrupt	_AltIC6Interrupt			
n/a	Reserved			32	OC5-Output compare 5	_OC5Interrupt	_AltOC5Interrupt			
0	INT0-External interrupt 0	_INTOInterrupt	_AltINT0Interrupt	33	OC6-Output compare 6	_OC6Interrupt	_AltOC6Interrupt			
1	IC1-Input capture 1	_IC1Interrupt	_AltIC1Interrupt	34	OC7-Output compare 7	_OC7Interrupt	_AltOC7Interrupt			
2	OC1-Output compare 1	_OC1Interrupt	_AltOC1Interrupt	35	OC8-Output compare 8	_OC8Interrupt	_AltOC8Interrupt			
3	TMR1-Timer 1	_T1Interrupt	_AltT1Interrupt	36	INT3-External interrupt 3	_INT3Interrupt	_AltINT3Interrupt			
4	IC2-Input capture 2	_IC2Interrupt	_AltIC2Interrupt	37	INT4-External interrupt 4	_INT4Interrupt	_AltINT4Interrupt			
5	OC2-Output compare 2	_OC2Interrupt	_AltOC2Interrupt	38	CAN2-Combined IRQ	_C2Interrupt	_AltC2Interrupt			
6	TMR2-Timer 2	_T2Interrupt	_AltT2Interrupt	39	PWM-PWM period match	_PWMInterrupt	_AltPWMInterrupt			
7	TMR3-Timer 3	_T3Interrupt	_AltT3Interrupt	40	QEI-Position counter compare	_QEIInterrupt	_AltQElInterrupt			
8	SPI1-Serial peripheral interface 1	SPI1Interrupt	AltSPI1Interrupt	41	DCI-CODEC transfer done	_DCIInterrupt	_AltDCIInterrupt			
9	UART1RX-UART1 Receiver	U1RXInterrupt	AltU1RXInterrupt	42	PLVD-Low voltage detect	_LVDInterrupt	_AltLVDInterrupt			
10	UART1TX-UART1 Transmitter	U1TXInterrupt	AltU1TXInterrupt	43	FLTA-MPWM fault A	_FLTAInterrupt	_AltFLTAInterrupt			
11	ADC-ADC convert done	ADCInterrupt	AltADCInterrupt	44	FLTB-MPWM fault B	_FLTBInterrupt	_AltFLTBInterrupt			
	NVM-NVM write complete	ļ - .	<u>-</u> .	45	Reserved	_Interrupt45	_AltInterrupt45			
12	· ·	_NVMInterrupt	_AltNVMInterrupt	46	Reserved	_Interrupt46	_AltInterrupt46			
13	Slave I ² C Interrupt	_SI2CInterrupt	_AltSI2CInterrupt	47	Reserved	_Interrupt47	_AltInterrupt47			
14	Master I ² C Interrupt	_MI2CInterrupt	_AltMI2CInterrupt	48	Reserved	_Interrupt48	_AltInterrupt48			
15	CN-Input change interrupt	_CNInterrupt	_AltCNInterrupt	49	Reserved	_Interrupt49	_AltInterrupt49			
16	INT1-External interrupt 1	_INT1Interrupt	_AltINT1Interrupt	50	Reserved	_Interrupt50	_AltInterrupt50			
17	IC7-Input capture 7	_IC7Interrupt	_AltIC7Interrupt	51	Reserved	_Interrupt51	_AltInterrupt51			
18	IC8-Input capture 8	_IC8Interrupt	_AltIC8Interrupt	52	Reserved	_Interrupt52	_AltInterrupt52			
19	OC3-Output compare 3	_OC3Interrupt	_AltOC3Interrupt	53	Reserved	_Interrupt53	_AltInterrupt53			
20	OC4-Output compare 4	_OC4Interrupt	_AltOC4Interrupt			•	•			
21	TMR4-Timer 4	_T4Interrupt	_AltT4Interrupt	1						
	THE TOTAL CO.	· ·		1						

EXEMPLOS

1. Qual é o código para habilitar a interrupção externa 1 e o timer2 do dsPIC30F?

```
    IFS0 = 0; //aqui se encontra o bit de flag de status da interrupção do Timer 2.
    IFS1 = 0; //aqui se encontra o bit de flag de status da interrupção Externa 1.
    IEC0bits.T2IE = 1; //Habilita a interrupção do timer 2.
    IEC1bits.INT1IE = 1; //Habilita a interrupção externa 1.
```

 Qual é o código para habilitar a interrupção externa 1 e ativar esta na borda de descida? E para a interrupção externa 2 que se ativa na borda de subida? Responder tudo em um fragmento de código.

```
IFS1 = 0; //aqui se encontra o bit de flag de status da interrupção Externa 1 e 2.
IEC1bits.INT1IE = 1; //Habilita a interrupção externa 1.
IEC1bits.INT2IE = 1; //Habilita a interrupção externa 2.
INTCON2bits.INT1EP = 1; //Se ativa na borda negativa (descida)
INTCON2bits.INT2EP = 0; //Se ativa na borda positiva (subida)
```

 Utilizando a tabela de vetores de interrupção, escrever um programa que inclua o ISR (só o cabeçalho) para uma interrupção externa 0 que se ativa na borda de subida.

```
void INTOInt() iv IVT_ADDR_INTOINTERRUPT
{.
....
}
void main (void)
{
IFSO = 0; //aqui se encontra o bit de flag de status da interrupção Externa 0
IECObits.INTOIE = 1; //Habilita a interrupção externa 0
INTCON2bits.INTOEP = 0; //Se ativa na borda positiva (subida)
}
```

4. Toda vez que pressionar e soltar a tecla ligada ao pino onde se encontra a entrada da interrupção externa 0, na porta B onde estão ligados os leds deve aparecer a contagem do número de vezes que foi pressionada a tecla. Fazer o programa que execute este enunciado usando as interrupções.

```
//************* ISR da interrupção externa 0 *
void INT0Int() iv IVT_ADDR_INT0INTERRUPT
{
   LATB++;
   IFS0bits.INT0IF = 0;
}
//************ Programa Principal *********
void main ()
{
   ADPCFG = 0xFFFF;
```

*/

```
TRISB=0; //a PORTB como saída
TRISE = 0x0100; //entrada INT0=RE8

IFS0 = 0; //desabilita o flag desta interrupção
IECObits.INT0IE = 1; //Habilitamos INT0
INTCON2bits.INT0EP = 0; //Borda positiva
while(1); // Loop infinito
```

5. Toda vez que pressionar e soltar a tecla ligada ao pino onde se encontra a entrada da interrupção externa 0, a porta B ligará e desligara todos os leds com um intervalo de tempo de 250 ms. Quando se pressionar e soltar novamente o piscar dos leds para e assim sucessivamente. Fazer o programa que execute este enunciado usando as interrupções.

```
unsigned char cont = 0;
//********** ISR da interrupção externa 0 *
void INTOInt() iv IVT ADDR INTOINTERRUPT
  cont++;
 IFSObits.INTOIF = 0;
//** Programa Principal *****
void main ()
ADPCFG = 0 \times FFFF;
TRISB=0; //a PORTB como saída
TRISE = 0x0100; //entrada INTO=RE8
IFS0 = 0;
IECObits.INTOIE = 1;//Habilita INTO
INTCON2bits.INT0EP = 0; //Borda positiva
  while (1)
    if (cont == 1)
        LATB = 255;
        Delay_ms(250);
        LATB = 0;
        Delay ms(250);
    if (cont == 0 \mid \mid cont > 1)
           {
             LATB = 0;
             cont = 0;
   }
```

- 6. Se quer projetar um sistema com as seguintes características:
 - a) Quando pressionar e soltar a tecla ligada ao pino onde se encontra a entrada da interrupção externa 0 uma primeira vez, os displays (1, 2, 3 e 4) deverão mostrar a palavra "HOLA" piscando a intervalos de tempo de 250 ms.
 - b) Quando pressionar e soltar a tecla ligada ao pino onde se encontra a entrada da interrupção externa 0 uma segunda vez, o item a) para onde estiver e o display 1 começa a contar de 0 a 9 sem parar a intervalos de 500 ms.
 - c) Quando pressionar e soltar a tecla ligada ao pino onde se encontra a entrada da interrupção externa 0 uma terceira vez, o item b) para onde estiver e o display 1 começa a contar de forma decrescente sem parar a

intervalos de 500 ms.

d) Na quarta vez que pressionar e soltar a tecla ligada ao pino onde se encontra a entrada da interrupção externa 0, o item c) para onde estiver e começa o item a) e assim sucessivamente. Levar em consideração que a interrupção externa 0 se ativa na borda de descida. Fazer o programa que execute este enunciado usando as interrupções.

Solução:

```
unsigned char cont = 0;
unsigned int i;
unsigned int num0 9[10] = \{63, 6, 91, 79, 102, 109, 125, 7, 127, 111\};
//0,1,2,3,4,5,6,7,8,9
//unsigned int num9_0[10]={111,127,7,125,109,102,79,91,6,63};
//9,8,7,6,5,4,3,2,1,0
//******** ISR da interrupção externa 0 *
void EXT0Int() iv IVT ADDR INT0INTERRUPT
  cont++;
  IFSObits.INTOIF = 0;
//** Programa Principal *****
void main ()
ADPCFG = 0 \times FFFF;
//Configurando pinos de saída para os displays
   TRISC.B13 = 0; //Display 1
                      //Display 2
  TRISC.B14 = 0;
                      //Display 3
  TRISD.B2 = 0;
   TRISD.B0 = 0;
                       //Display 4
//Desligando os displays
  LATC.B13 = 0;
  LATC.B14 = 0;
  LATD.B2 = 0;
   LATD.B0 = 0;
TRISB=0; //a PORTB como saída
TRISE = 0x0100; //entrada INT0=RE8
IFSO = 0:
IECObits.INTOIE = 1;//Habilita INTO
INTCON2bits.INTOEP = 0; //Borda positiva ou subida
  while(1)
    switch (cont)
        {
                case 0: LATC.B13 = 0;
                        LATC.B14 = 0;
                        LATD.B2 = 0;
                        LATD.B0 = 0;
                        break;
                case 1: i=50;
                        while(i != 0) //Enquanto não passar 500 ms fica
mostrando
                        //contagem nos displays de 7 segmentos
                        {
                          LATD.B0 = 1; //habilita os displays
                          LATB=0x76; //letra H
                          Delay ms(2); //atraso de 2 milisegundos
                          LATD.B0 = 0; //desabilita display do milhar
                          LATD.B2 = 1; //habilita os displays
                          LATB=0x3F; //letra O
                          Delay_ms(2); //atraso de 2 milisegundos
                          LATD.\overline{B2} = 0; //desabilita display das centenas
```

```
LATC.B14 = 1; //habilita os displays
                          LATB=0x38; //letra L
                          Delay_ms(2); //atraso de 2 milisegundos
                          LATC.\overline{B}14 = 0; //desabilita display das dezenas
                          LATC.B13 = 1; //habilita os displays
                          LATB=0x77; //letra A
                          Delay_ms(2); //atraso de 2 milisegundos
                          LATC.B13 = 0; //desabilita display das unidades
                        if (cont == 2){i=0; break;} //se foi pressionada
novamente a tecla e cont foi para 2
                        LATC.B13 = 0;
                        LATC.B14 = 0;
                        LATD.B2 = 0;
                        LATD.B0 = 0;
                        if (cont == 2){break;} //se foi pressionada novamente
a tecla e cont foi para 2
                        Delay ms(250);
                        i = 0;
                        break;
                case 2: LATC.B13 = 0;
                        LATC.B14 = 0;
                        LATD.B2 = 0;
                        LATD.B0 = 0;
                        LATC.B13 = 1;
                        while(1)
                          LATB = num0 9[i];
                          if (i==9)\{i=-1;\}
                          i++;
                          if (cont == 3){break;} //se foi pressionada
novamente a tecla e cont foi para 3
                          Delay_ms(500);
                          break;
                        break;
                case 3: LATC.B13 = 0;
                        LATC.B14 = 0;
                        LATD.B2 = 0;
                        LATD.B0 = 0;
                        LATC.B13 = 1;
                         while(1)
                          LATB = num0 9[i];
                           if (i==0) { i=10; }
                           i--;
                           if (cont == 4) {break;} //se foi pressionada
novamente a tecla e cont foi para 4
                           Delay_ms(500);
                           break;
                         break;
                default: LATC.B13 = 0;
                         LATC.B14 = 0;
                         LATD.B2 = 0;
                         LATD.B0 = 0;
                         cont = 1;
                         break;
       }
```