	Browning Computing
	d the same
	Name - Breksha A. Patel
	sapid + 60004210126
	Branch & Computer Engineering
Annual Control	Div * C2
	Experiment no. 5
	Ain & To implement Logistic Modeling: A moth department is
	interested in exploring the relationship between students
or sect	scores on the ACT test, a standard college entrance
7-25	
-11	Business colculus class nota were obtained for a
	sample of students
	71
	Theory -
	<u>Bayesian Logistic Modeling</u> :
1.005	Bryesian Logistic Modeling is a statiscal approach used to model the
cath .	relationship between a binary outcome maxiable and one or more
THE TAKE	predictor maxiables, the binary outcome mariable y; follows a
199	binomial distribution with parameters n; and p; where p; is
100	determined by a logistic regression model.
7)	Model Description:
1	
	Logistic Regression Model:
	The logistic regression model specifies the relationship betrueen
	the log-odds of the probability of success (pi) and the
	predictor variable (ri) through the logistic function, The
	madel is expressed as -
-	109 (p) * Bo + 3, xi, where
	(1-Pi/
100	Bo is the intercept and Bo is the coefficient associated
	with the predictor vaxiable xi. This equation is then used to calculate p; as follows: p; = a (Bo + B; xi)
	to calculate p: as follows: p: = a (Bot Pixi)

	This logistic function ensures that pi lies between 0 \$1
2.	Likelihood function:
	Given the kinary nature of the outcome mariable, the likelihood
	function for the parameters Bo of B, is specified as:
	L(Bo, B) = T. Picy; Piyi (1-pi) ni-yi, where
	ni Cy; is the binomial coeffected, n is the number of
	observations on the content of Bayerian Avalysis, the
	likelihood function quantifies the probability of observing the
	given data (4;) under the specified logistic regression model
3	Brioz Distribution :
	Mothematically, represented as = TT (BO, BI) ~ 1
	The flat prior reflects a lock of prior knowledge or bias
	about the nature of the regression parameters.
1	Posterior Density -
11	when a flat non-informative prior is used, The posterior
4	density is proportional to the product of the user nood funding
	and the prior distribution, mothematically,
	T (BO, B, Idato) & L (BO, BI)
	This posterior distribution captures the updated beliefs and
	the parameters after observing the data.
	Conducion &
Y.3.3	In conclusion, we learned how to me Bayerian methods
	to made hinary auto and
	performance using posterior predictive cheeks.
-	

SAP ID.: 60004210126 Name: Preksha Ashok Patel

Batch: C2-1

Subject: Bayesian Computing Laboratory Semester: VII

Experiment No. 5

Aim:

Implement Logistic Modeling: A math department is interested in exploring the relationship between students' scores on the ACT test, a standard college entrance exam, and their success (getting an A or a B) in a business calculus class. Data were obtained for a sample of students.

Code:

Importing Libraries:

library(brms)
library(ggplot2)

Generate Data for given Scenario:

```
set.seed(123) n <- 100 #

Number of students

ACT_scores <- rnorm(n, mean = 25, sd = 5)

Success <- ifelse(ACT_scores + rnorm(n) > 25, "A", "B")
calculus_data <- data.frame(ACT_scores, Success)
```

Data Exploration and Visualization:

```
ggplot(calculus_data, aes(x = ACT_scores, fill = Success)) +

+ geom_histogram(binwidth = 2, position = "identity", alpha = 0.7) +

+ labs(title = "Distribution of ACT Scores by Success",

+ x = "ACT Scores", y = "Frequency",

+ fill = "Success")
```

Logistic Regression Modeling using Bayesian Approach:

```
calculus_data$Success_binary <- as.numeric(calculus_data$Success == "A") model <- brm(Success_binary ~ ACT_scores, data = calculus_data, family = bernoulli())
summary(model)
```

Posterior Predictive Checks:

```
posterior_preds <- posterior_predict(model)

ggplot(calculus_data, aes(x = ACT_scores, y = colMeans(posterior_preds), color =
Success)) +

+     geom_point() +

+     geom_line(aes(y = colMeans(posterior_preds) - 1.96 * sd(posterior_preds)), linetype =
"dashed", alpha = 0.5) +

+     geom_line(aes(y = colMeans(posterior_preds) + 1.96 * sd(posterior_preds)), linetype =
"dashed", alpha = 0.5) +

+     labs(title = "Posterior Predictive Checks",

+     x = "ACT Scores", y = "Probability of Success",

+     color = "Success")</pre>
```

Output:

Data Exploration and Visualization:

Logistic Regression Modeling using Bayesian Approach:

```
Compiling Stan program...
Start sampling
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1: Gradient evaluation took 3.4e-05 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 0.34 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1: Iteration:
                       1 / 2000 [ 0%]
                                         (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%]
                                         (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%]
                                         (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%]
                                         (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%]
                                         (Warmup)
Chain 1: Iteration: 1000 / 2000 [
                                  50%]
                                         (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%]
                                         (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%]
                                         (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%]
                                        (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%]
                                        (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%]
                                        (Sampling)
Chain 1:
Chain 1: Elapsed Time: 0.046 seconds (Warm-up)
Chain 1:
                        0.045 seconds (Sampling)
Chain 1:
                        0.091 seconds (Total)
Chain 1:
```

```
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 9e-06 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 0.09 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration:
                       1 / 2000 [ 0%]
                                         (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%]
                                         (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%]
                                         (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%]
                                         (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%]
                                         (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%]
                                         (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%]
                                         (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%]
                                         (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%]
                                         (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%]
                                         (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%]
                                        (Sampling)
Chain 2:
Chain 2: Elapsed Time: 0.044 seconds (Warm-up)
Chain 2:
                        0.047 seconds (Sampling)
Chain 2:
                        0.091 seconds (Total)
Chain 2:
```

```
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
Chain 3:
Chain 3: Gradient evaluation took 1.1e-05 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 0.11 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3:
Chain 3:
Chain 3: Iteration: 1 / 2000 [ 0%]
Chain 3: Iteration: 200 / 2000 [ 10%]
                                          (Warmup)
                                          (Warmup)
Chain 3: Iteration: 400 / 2000 [ 20%]
                                          (Warmup)
Chain 3: Iteration: 600 / 2000 [ 30%]
                                          (Warmup)
Chain 3: Iteration: 800 / 2000 [ 40%]
                                          (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%]
                                          (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%]
                                          (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%]
                                          (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%]
                                          (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%]
                                          (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%]
                                          (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%]
                                          (Sampling)
Chain 3:
Chain 3: Elapsed Time: 0.05 seconds (Warm-up)
                         0.038 seconds (Sampling)
Chain 3:
Chain 3:
                         0.088 seconds (Total)
Chain 3:
```

```
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 7e-06 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 0.07 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration:
                      1 / 2000 [ 0%]
                                         (Warmup)
Chain 4: Iteration: 200 / 2000 [ 10%]
                                         (Warmup)
Chain 4: Iteration: 400 / 2000 [ 20%]
                                         (Warmup)
Chain 4: Iteration: 600 / 2000 [ 30%]
                                         (Warmup)
Chain 4: Iteration: 800 / 2000 [
                                  40%]
                                         (Warmup)
Chain 4: Iteration: 1000 / 2000 [
                                  50%]
                                         (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%]
                                         (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%]
                                         (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%]
                                         (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%]
                                         (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%]
                                         (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%]
                                        (Sampling)
Chain 4:
Chain 4: Elapsed Time: 0.041 seconds (Warm-up)
Chain 4:
                        0.049 seconds (Sampling)
                        0.09 seconds (Total)
Chain 4:
Chain 4:
```

Model Summary:

Family: bernoulli
Links: mu = logit
Formula: Success_binary ~ ACT_scores
Data: calculus_data (Number of observations: 100)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk ESS Tail ESS

Estimate Est.Error 1-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS Intercept -59.83 15.57 -95.02 -34.91 1.00 1497 1834 ACT_scores 2.40 0.62 1.41 3.82 1.00 1480 1741

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS and Tail_ESS are effective sample size measures, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Posterior Predictive Checks:

