## Week 1: Motion in Physics

SI LEADER: Stephen Iota (siota001@ucr.edu)

Course: Physics 40A (Winter 2019), Prof. John Ellison

Date: 9 January 2019

#### 1 Kinematic Equations

Write down the five kinematic equations. Identify which two are the fundamental equations.

### 2 Motion Diagrams

Three motion diagrams are shown. Draw an acceleration vs time and a velocity vs time graph for each.

| a) | 0 •        | <b>(b)</b> | 0 •        | (c) | 0 •        |
|----|------------|------------|------------|-----|------------|
|    | <b>1</b> ● |            |            |     |            |
|    | 2 •        |            | 1 •        |     |            |
|    | 3 ●        |            | 2 ●        |     | 1 •        |
|    | 4 ●        |            | 3 ●        |     | 2 •        |
|    |            |            | 4 ●        |     | <b>3</b> • |
|    |            |            |            |     | <b>4</b> • |
|    | 5 ●        |            | 5 <b>•</b> |     | <b>5</b> • |

### 3 Velocity Diagram

Indicate on the graph where objects 1 and 2 have the same velocity.



# 4 Stopping at a Red Light

A motorist is traveling at 20 m/s. He is 60 m from a stoplight when he sees it turn yellow. His reaction time, before stepping on the brake, is 0.50 sec. What steady deceleration while braking will bring him to a stop at the red light?

## 5 Logarithmic Acceleration

A car accelerates logarithmically  $(\vec{a}(t) = \ln t \, \hat{x})$ . Solve for position as a function of time x(t).