PROJECT REPORT

IoT Based Smart Crop Protection System for Agriculture

TEAM ID: PNT2022TMID04659

S.No	CONTENT	Page No
1.	INTRODUCTION	
	1.1 Project Overview	3
	1.2 Purpose	3
2.	LITERATURE SURVEY	
	2.1 Existing problem	4
	2.2 References	5
	2.3 Problem Statement Definition	6
3.	IDEATION & PROPOSED SOLUTION	
	3.1 Empathy Map Canvas	7
	3.2 Ideation & Brainstorming	8
	3.3 Proposed Solution	12
	3.4 Problem Solution fit	13
4.	REQUIREMENT ANALYSIS	
	4.1 Functional requirement	14
	4.2 Non-Functional requirements	14
5.	PROJECT DESIGN	16
	5.1 Data Flow	16
	5.2 Solution & Technical Architecture	17
	5.3 User Stories	18
6.	PROJECT PLANNING & SCHEDULING	19
	6.1 Sprint Planning & Estimation	21
	6.2 Sprint Delivery Schedule	22
	6.3 Reports from JIRA	23
7.	CODING & SOLUTIONING	24
	7.1 Feature 1	24

•	7.2 Feature 2	30
8.	TESTING	
	8.1 Test Cases	31
	8.2 User Acceptance Testing	32
9.	RESULTS	
	9.1 Performance Metrics	34
10.	ADVANTAGES & DISADVANTAGES	34
11.	CONCLUSION	34
12.	FUTURE SCOPE	35
13.	APPENDIX	35
	GitHub	35

INTRODUCTION

1.1 Project Overview

The title of our project is "IOT BASED SMART CROP PROTECTION FOR AGRICULTURE" .The overview of our Projectis to Safeguard the farm from climatic changes like soil erosion, landslide and birds, animals etc... So, that we are making a cloud based project and placing IOT based sensor. Over which it will produce sounds and notification and provide results on IOT MIT app. From which we can protect our farm. And it will provide better yieldfor us.

1.2 Purpose

1.

The main purpose of our project is to protect the farm from climatic changes, Animals, Birds, Pests and to make the crop togrow better and provide better yield.

2.LITERATURE SURVEY

2.1 Existing problem

- 1. "Food" is the important thing, which is needed for everyone to survive in this world. For that farmers are doing their own part in a effective manner, during which they have to face some problems such as:
- 2. There are increasing pressures from climate change, soil erosion and biodiversity loss and from consumers' changing tastes in food and concerns about how it is produced.
- 3.And the natural world that farming works with plants, pests and diseases continue to pose their own challenges beyond that, they have to
 - 4. Stay resilient against global economic factors.
 - 5. Inspire young people to stay in rural areas and become futurefarmers
- 6. The effects of climate change affect farmers' ability to grow the food we all need. Increasingly volatile weather and more extreme events –like floods and droughts –change growing seasons, limit the availability ofwater, allow weeds, pests and fungi to thrive, and can reduce crop productivity.

LITERATURE SURVEY

SLNO	TITLE	YEAR	TECHNIQUE USED	ADVANTAGE	DRAWBACK
1.	A model for smart Agriculture Using IOT	2016	ZigBee with wings	A complete real -time and historical environment information ,eff icient management and utilization of resources	The technique can achieve convenient wireless connection only within a short- distance
2.	Automatic control of Agriculture pumps based on soil Moisture sensing	2015	For testing N1 MULTISM simulation software is used.DIAC and TRIAC technique.	Achieves proper water management,s aves human power and enhances crop or productivity	Does not support several water levels and uses old techniques.
3.	Automated Irrigation System Using a Wireless Sensor Network and GPRS module	2014	WSUs and a WIU, based on microcontroller ZigBee and GPRS technologies.	Feasible and cost effective for optimizing water resources for agricultural production	The investment in electric power supply is expensive.
4.	An effective method for Crop Monitoring Using Wireless sensor Network	2014	WSN with GSM technology	A Can collect data from locations previously inaccessible on a Micro- measurement scale.	Provides only precision values that is not accurate and is not effective.

2.2 References

- 1. https://smartinternz.com/assests/docs/Smart%20Home%20Automation%20using%20IBM%20cloud%20Service s%20(1).pdf
- 2. https://smartinternz.com/assets/docs/Smart%20Home%20Automation%20using%20IBM%20cloud%20Service s%20(1).pdf
 - $3. \, https://openweathermap.org/$
 - $4.\ \underline{https://www.youtube.com/watch?v=cicTw4SEdxk}$
 - 5. https://github.com/rachuriharish23/ibmsubscribe

2.3 Problem Statement

- 6. Agriculture is one of the area which required urgent attention and advancement for high yield and efficient utilisation of resources.
- 7. In this paper an approach smart crop monitoring is presented throughInternet of Things (IOT).
- 3.A Level 4 framework is proposed namely sensing devices, sensor data level, base station level, edge computing and cloud data level for smartcrop monitoring.
- 4. In this Project, Farm is going to get protected from humidity, Temperature and Animals with the help of IOT cloud module.
- 5. The Agricultural Farm is been monitored with the help of MIT appand then data will be collected and stored in it cloud.
- 6. It will monitor and sense the humidity level and movement of animals and will sent the message as notification to the user.

3.IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

Empathy Map Canvas

Gain insight and understanding on solving customer problems.

Build empathy and keep your focus on the user by putting yourself in their shoes.

3.2 Ideation and Brainstorming

What do they think and feel?

As its name may imply, smart farming is the use of technology in animal agriculture, and its something that's been around since the Industrial Revolution. The biggest difference between then and now, though? "Motorized devices are being replaced with IOT".

What do they hear?

Smart farming is about using the new technologies whichhave arisen at the drawn of the Fourth Industrial Revolution in the area of Agriculture and cattle production to increase quality and quantity by making maximum use of resources and minimizing the environmental impact.

What do they see?

Smart farming is a management concept focused on providing the agriculture industry with the infrastructure to leverage advanced technology -including Big Data, the cloud and the Internet of Things(IOT)- for tracking, monitoring, Automating and Analysing operations.

What do they say and do?

The aim of this technology is to make The most of all the Data collected by various tools, by converting them into real sources if information in order to the define ways of simplifying agricultural work. It also allow for accurate and Predictive analysis of all situation that may affect the farms, Such as weather condition (temperature, humidity etc..) and sanitary . For Example: This makes it easier to organize the supply of energy ,water, livestock feed and fertilizer.

BRAINSTORM

3.3 PROPOSED SOLUTION:

S.No.	Parameter	Description
1.	Problem Statement (Problem to be solved)	 Farm crops are frequently destroyed by neighbourhood animals including buffalo, cows, goats, birds, etc. The farmer suffers enormous losses as a result.
2.	Idea / Solution description	 Here, we suggest a mechanism for automatically protecting crops from animals. This microcontroller-based system uses a microcontroller from the PIC family.
		These systems employ a motion sensor to identify approaching wild animals close to the field.
3.	Novelty / Uniqueness	 Certain cultural techniques can stop or lessen crop damage caused by insects. These include where crop residues are
		placed, deep ploughing, crop rotation, fertiliser use, strip-cropping, irrigation, and planned planting activities.
4.	Social Impact / Customer Satisfaction	 The number of smartphone applications that can help farmers make better crop protection decisions is steadily rising. Despite the fact that recent studies have concentrated on smart phone adoption generally and farmers' willingness to pay for crop protection apps, none have concentrated on the initial adoption choice.
		 Traditional farming practises relied heavily on the farmer being present in the field to continuously assess the state of the soil and the health of the crop.
5.	Business Model (Revenue Model)	 Smart crop protection system is the International Journal of Latest Engineering Science(IJLES) DOI:10.51386/25816659/ijles-v4i4101 E-ISSN:2581-6659 Volume:04 Issue:04
6.	Scalability of the Solution	 Utilizing crop leftovers for increased animal protection and manures for increased crop protection might be

	considered integration. Integration is a strategy for increasing outputs (family food, agricultural products for sale, etc.) while reducing input (purchase, labour).
--	--

3.4 PROBLEM SOLUTION FIT

CS AS 6. CUSTOMER CONSTRAINTS 5. AVAILABLE SOLUTIONS 1. CUSTOMER SEGMENT(S) Low availability of improved hybrid seed. Sensors provides location of crop mapping · Farmers who trying to protect helps the farmers to identify the crops Limited supervision crops from various problems * CCTV camera to monitor and supervise Weeds can cause significant reduction in Lack of manpower, the crops crop field if not controlled. · Effective weed dessication and seeding must be done to increase the yield of crop. 2. JOBS-TO-BE-DONE / PROBLEMS 9.PROBLEM ROOT CAUSE 7. BEHAVIOUR Automatics sprinklers systems must be Consumes more time in cropland The crops are being ravaged by implemented. . To predict the soil , Humidity , Temperature animals leads to huge loss for farmer. To monitor soil, pest, insect attacks in the fields. ,ph,Cattle ,Fertilization Monitoring so many · Due to various environmental · Requires protecting crops from wild animals things are Benefical here.In addition to factors such as temperature attacks birds and pests agricultural use, they can alsobe used for climate and soil quality pollution and global warming . By using, checimals the soil quality is diminished and leads to annual loss. CH SL 8.CHANNELS of BEHAVIOUR 10.YOUR SOLUTION 3. TRIGGERS Data Analytics helps to givedata to farmers Smart farming can make agriculture more · Farmers are able to recognise the issues and systematically. By using IoTthe data can be profitable for the farmer. work without anyone help. stored safe and secure. . Decreasing resource inputs will save the . By seeing surrounding cropland with farmer money and labor, and increased installing machineries reliability of spatially explicit data will reduce 4. EMOTIONS: BEFORE / AFTER Giving awareness among farmers about the risks. Applications of the devices Available technologies with low cost

REQUIREMENT ANALYSIS

4.1 Functional Requirements

4.

F	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR	User Visibility	Sensing animals near the crop field, the device sends the farmer an SMS and plays an alert to scare them away.
FR	User Reception	Data such as sensor readings for temperature, humidity, and soil moisture are received by SMS.
FR	User Understanding	Based on the sensor data value to get the information about present of farming land.
FR	User Action	Actions that must be taken by the user include crop residue destruction, deep ploughing, crop rotation, fertiliser application, strip cropping, and scheduled planting operations.

4.2 Non-Functional Requirements

FR No	n-Functional	scription
	quirement	
NFR-1	Usability	Mobile assistance. Given the capabilities of mobile devices, users must be able to interact in the same roles and tasks on PCs and mobile devices when practicable.
NFR-2	Security	Authorized users of the system who share information must be able to register and communicate securely on devices with data.

NFR-3	Reliability	>	· · · · · · · · · · · · · · · · · · ·		
			to the field and doesn't issue an erroneous		
			warning signal.		
NFR-4	Performance	>	Regardless of the amount of data that is saved		
			and the background analytics, it must offer		
			users acceptable response speeds.		
		>	Communications that are bidirectional and		
			nearly real-time must be supported. The		
			necessity to support industrial and device		
			protocols at the edge is connected to this		
			requirement.		
NFR-5	Availability	>	For 24x7 operations, IOT solutions and		
			domains require highly available systems.		
			is not a vital production application, thus if		
			the IoT solution goes down, neither		
			operations nor production are affected.		
NFR-6	Scalability	>	System must manage increasing load and		
			data retention requirements based on the		
			scalability of the solution, such as additional		
			buildings and manufacturing facilities.		
			-		

PROJECT DESIGN

5.1 Data flow Diagram

5.

5.2 Solution & Technical Architecture

5.3 USER STORIES

User Type Functional User User Story/Task Acceptance Priority Release Criteria Requirement Story (Epic) number USN-1 Customer Registration User can enter into the I can access my High Sprint 1 (Mobile user) web application account / dashboard I can receive USN-2 User can register their High Sprint 1 Credentials like e-mail id Confirmation and password email & click confirm USN-3 User can log into the I can log into High Login Sprint1 application by entering email my account &password Dashboard USN-4 User can view I can view High Sprint 2 thetemperature the data given by the device USN-5 User can view the High I can view Sprint 2 level of sensor monitoring value the data given by the device USN-1 User can view the web I can view High Customer Usage Sprint 3 (Web user) page and get the information the data givenby the device USN-1 User acts according to Working I can get the High Customer Sprint 3 The alert given by the device data work according to it

6.PROJECT PLANNING AND SCHEDULING

TITLE	DESCRIPTION	DATE
Literature Survey on	A Literature Survey is a	13 September 2022
TheSelected Project and	compilation summary of research	
Information Gathering	done previously in the given topic.	
_	Literature survey can be taken	
	from books, research	
	paper online or from any source.	
Prepare Empathy Map	Empathy Map is a visualization	14 September 2022
	toolwhich can be used to get a	
	better insight of the customer	
Ideation-Brainstorming	Brainstorming is a group	19 September 2022
	problemsolving session where	
	ideas are shared, discussed and	
	organized among the team	
	members.	
Define Problem Statement	A Problem Statement is a concise	19 September 2022
	description of the problem or	
	issues aproject seeks to address.	
	The problemstatement identifies	
	the current state, the desired future	
	state and any gaps	
	between the two.	
Problem Solution Fit	This helps us to understand the	19 September 2022
	thoughts of the customer their	
	likes, behaviour, emotions etc.	
Proposed Solution	Proposed solution shows the	19 September 2022
	current solution and it helps is	
	going towards the desired result	
	until it is achieved.	
Solution Architecture	Solution Architecture is a very	19 September 2022
	complex process that it has a lot of	
	subprocesses and branches. It	
	helps inunderstanding the	
	components and	
	features to complete our project.	
Customer Journey	It helps us to analyze from the	03 October 2022
	perspective of a customer, who	
	usesour project.	

+	
+++	

Functional Requirements	Here functional and	03 October 2022
	nonfunctionalrequirements are	
	briefed. It has specific features	
	like usability, security,	
	reliability, performance,	
	availability and scalability.	
Data Flow Diagrams	Data Flow Diagram is a graphical	21 October 2022
_	or visual representation using a	
1	standardized set of symbols and	
1	notations to describe a business's	
	operations through data	
	movement.	
Technology Architecture	Technology Architecture is a more	03 October 2022
	well defined version of solution	
	architecture. It helps us analyze	
	and understand various	
	technologies thatneeds to be	
	implemented in the	
	project.	
Prepare Milestone &	It helps us to understand and	18 October 2022
ActivityList	evaluate our own progress	
	andaccuracy so far.	
Spring Delivery Plan	Sprint planning is an event in	In Progress
	scrum that kicks off the sprint. The	
	purposeof sprint planning is to	
	define what can be delivered in the	
1	sprint and	
	how that work will be achieved.	

6.1 Sprint Planning and Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1		US-1	Create the IBM Cloud services which <u>are</u> <u>being</u> used in this project.	6	High	Kowsalya
Sprint- 1		US-2	Configure the IBM Cloud services which are being used in completing this project.	4	High	Myvizhli
Sprint- 2		US-3	IBM Watson IoT platform acts as the <u>mediator to</u> connect the web application to IoT devices, so create the IBM Watson IoT platform.	5	High	Mounesh
Sprint- 2		US-4	In order to connect the IoT device to the <u>IBM cloud</u> , create a device in the IBM Watson IoT platform and get the device credentials.	5	High	Kasiram

6.2 Sprint Delivery Schedule

Sprint	Total Story Points	Duration	Sprint StartDate	Sprint End Date(Planned)	Story Points Completed (ason Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	30	30 oct 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	49	6 nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	50	7 nov 2022

Burn down Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress overtime.

6.3 Reports From JIRA

CODING AND SOLUTIONING

7.1 Feature 1

7.

```
import time
import sys
import ibmiotf.application
import ibmiotf.device
import random
#Provide your IBM Watson Device Credentials
organization = "iritj7"
deviceType = "abcd"
deviceId = "12345"
authMethod = "token"
authToken = "12345678"
# Initialize GPIO
def myCommandCallback(cmd):
  print("Command received: %s" % cmd.data['command'])
```

```
status=cmd.data['command']if
  status=="lighton":
    print ("led is on") elif
  status == "lightoff":
    print ("led is off")
  else:
    print ("please send proper command")
try:
      deviceOptions = {"org": organization, "type": deviceType, "id":
deviceId, "auth-method": authMethod, "auth-token": authToken}
      deviceCli = ibmiotf.device.Client(deviceOptions)
      #.....
except Exception as e:
      print("Caught exception connecting device: %s" % str(e))
      sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an
event of type "greeting" 10 times
deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
    temp=random.randint(90,110)
```

```
Humid=random.randint(60,100) Moist=random.randint(20,100)
    Animal_dect=random.randint(1,20)
    data = { 'temp' : temp, 'Humid': Humid, 'Moist' : Moist, 'Animal_dect' : Animal_dect }
    #print data
    def myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity = %s
%%" % Humid, "to IBM Watson", "Published Moisture= %s" % Moist, "Published
Animal detection = ", Animal_dect)
    success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
    if not success:
      print("Not connected to IoTF")time.sleep(10)
    deviceCli.commandCallback = myCommandCallback
# Disconnect the device and application from the cloud
deviceCli.disconnect()
```


Features

Output: Digital pulse high (3V) when triggered (motion detected) digital lowwhen idle (no motion detected). Pulse lengths are determined by resistors and capacitors on the PCB and differ from sensor to sensor. Power supply: 5V-12V input voltage for most modules (they have a 3.3V regulator), but 5Vis ideal in case the regulator has different specs.

BUZZER

Specifications

• RatedVoltage : 6V DC

• Operating Voltage: 4 to 8V DC

• Rated Current*: ≤30mA

• SoundOutput at 10cm*: ≥85dB

Most modern ones are civil defense or air- raid sirens, tornado sirens, or the sirens on emergency service vehicles such as ambulances, police cars and firetrucks.

There are two general types, pneumatic and electronic.

7.2 FEATURE 2

Good sensitivity to Combustible gas in wide range .

High sensitivity to LPG, Propane and Hydrogen .

Long life and low cost.

Simple drive circuit.

8. TESTING

8.1 TEST CASES

sno	parameter	Values	Screenshot
1	Model summary	-	
2	accuracy	Training	
		accuracy-	
		95%	
		Validation	
		accuracy-	
		72%	
3	Confidence score	Class	
		detected-	
		80%	
		Confidence	
		score-80%	

8.2USER ACCEPTANCE TESTING:

9. RESULTS

- 1. The problem of crop vandalization by wild animals and firehas become a major social problem in current time.
- 2.It requires urgent attention as no effective solution exists till date for this problem. Thus this project carries a great social relevance as it aims to address this problem. This project will help farmers in protecting their orchards and fields and save them from significant financial losses and will save them from the unproductive efforts that they endure for the protection their fields. This will also help them in achieving better cropyields thus leading to their economic wellbeing.

ADVANTAGES AND DISADVANTAGES

Advantage:

10.

Controllable food supply. you might have droughts or floods, but if you are growing the crops and breeding them to be hardier, youhave a better chance of not straving. It allows farmers to maximize yields using minimum resources such as water, fertilizers.

Disadvantage:

The main disadvantage is the time it can take to process the information.in order to keep feeding people as the population growsyou have to radically change the environment of the planet.

11. CONCLUSION

A IoT Web Application is built for smart agricultural system using Watson IoT platform, Watson simulator, IBM cloud and Node-RED.

35

FUTURE SCOPE

In the future, there will be very large scope, this project can be madebased on

Image processing in which wild animal and fire can be detected bycameras and if it comes

towards farm then system will be directly activated through wireless networks. Wild

animals can also be detected by using wireless networks such as laser wireless sensors

and by sensing this laser orsensor's security system will be activated.

11.APPENDIX

12.

Github: https://github.com/IBM-EPBL/IBM-Project-22440-1659852031