

Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ciencias Exactas y Naturales Departamento de Matemática

Álgebra Lineal (R211 - CE9)

2024

6.2 El teorema de descomposición espectral

El teorema de descomposición espectral es un caso particular del teorema de diagonalización. Cuando la transformación es simétrica (en el caso real) o hermítica (en el caso complejo), podremos diagonalizarla y con condiciones muy especiales: autovalores positivos y base ortonormal de autovectores. A eso apuntamos.

Definición 1 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, y dim(V) = n. $T \in L(V)$ se dice que es autoadjunta si $T^* = T$. Esto es, T es autoadjunta sii p.t. $u, v \in V$,

$$\langle Tv, u \rangle = \langle v, Tu \rangle.$$

Matricialmente, si B bon de V y $A = [T]_B$, puesto que $[T^*]_B = ([T]_B)^* = \overline{[T]_B^t}$ tenemos que:

- Si $F = \mathbb{R}$, $A = A^t$, es decir, A es simétrica.
- Si $F = \mathbb{C}$, $A = A^* = \overline{A^t}$, es decir, A es hermítica.

En general diremos que A es hermítica, y sobreentenderemos que si el cuerpo es \mathbb{R} hermítica se reduce a simétrica. Salvo que sea necesaria la aclaración por alguna cuestión particular, hablaremos de hermítica.

La siguiente proposición nos parece en este momento un poco evidente, pero hay que completar los detalles.

Proposición 1 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, dim(V) = n, $T \in L(V)$. Son equivelentes:

- 1. T es autoadjunta,
- 2. P.t. B bon de V, $[T]_B$ es hermítica,
- 3. Existe B bon de V t.q. $[T]_B$ es hermítica.

Demostración: EJERCICIO.

La siguiente proposición tiene interés en si mismo: nos asegura, aún en el caso de cuerpo complejo, que toda transformación autoadjunta tiene sus autovalores reales.

Proposición 2 $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, dim(V) = n, $T \in L(V)$ autoadjunta. Si $\lambda \in F$ es autovalor de T, entonces $\lambda \in \mathbb{R}$.

Demostración: Si λ autovalor de T existe $v \in V$ no nulo (luego $||v|| \neq 0$) t.q. $Tv = \lambda v$. Entonces

$$\lambda||v|| = \lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle Tv, v \rangle = \langle v, T^*v \rangle = \langle v, Tv \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \langle v, v \rangle = \overline{\lambda}||v||,$$

de donde $\lambda = \overline{\lambda}$, luego $\lambda \in \mathbb{R}$.

Matricialmente: los autovalores de una matriz hermítica son reales.

Veamos el teorema más importante de esta unidad:

El teorema de descomposición espectral para transformaciones autoadjuntas $(V, \langle \cdot, \cdot \rangle)$ un F-ev con pi, dim(V) = n, $T \in L(V)$ autoadjunta. Entonces existe una bon B de V de autovectores de V tal que $[T]_B$ es una matriz diagonal real.

Demostración: Por inducción sobre dim(V) = n.

- Caso base: n = 1 nada que hacer.
- Hipótesis de inducción: suponemos que para todo V tal que 1 < dim(V) < n-1 se verifica la afirmación.
- Consideremos dim(V) = n. Como T es autoadjunta, existe $\lambda \in \mathbb{R}$ autovalor de T. Sea $v \in V$, $v \neq \overline{0}$ un autovector de T asociado al autovalor λ . Sea $w := \frac{v}{||v||}$. Así definido, w también es un autovector de T asociado al autovalor λ , normalizado.

Sea $U = (span\{w\})^{\perp}$. Tenemos que $U \subset V$ sev y dim(U) = n - 1. Además, U es T-invariante (EJERCICIO: justificar esta afirmación).

Aplicaremos la HI a este sev. Para esto, consideramos $T|_U$ y $\langle \cdot, \cdot \rangle_U$ el pi de V restringido a U.

 $T|_U$ es autoadjunta (EJERCICIO: justificar esta afirmación).

Así, por HI existe $B' = \{v_1, \ldots, v_{n-1}\}$ bon de U de autovectores de $T|_U$ t.q. $[T|_U]_{B'}$ es una matriz diagonal real:

$$[T|_U]_{B'} = egin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n-1} \end{pmatrix},$$

con $\lambda_1, \lambda_2, \dots, \lambda_{n-1} \in \mathbb{R}$ y $Tv_i = \lambda_i v_i$ para $i = 1, \dots, n-1$.

Sea $B = B' \cup \{w\}$. Entonces B bon de T (EJERCICIO: por qué?) de autovectores de T y

$$[T]_{B} = \begin{pmatrix} & & & & & \\ \hline & [T|_{U}]_{B'} & 0 \\ & & & \lambda \end{pmatrix} = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 & 0 \\ 0 & \lambda_{2} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \\ 0 & 0 & \dots & \lambda_{n-1} & 0 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}.$$

Matricialmente: si $A \in \mathbb{C}^{n \times n}$ hermítica, existe $B = \{v_1, \dots, v_n\}$ bon de \mathbb{C}^n de autovectores de A y $D \in \mathbb{R}^{n \times n}$ diagonal t.q. $D = C_{E \to B} A C_{B \to E}$ ($E = \{e_1, \dots, e_n\}$ base canónica respecto del pi, es decir, tal que la matriz del pi respecto de la base E es la matriz identidad). Entonces,

$$(C_{B\to E}^{-1})_{ij} = (C_{E\to B})_{ij} = \langle e_j, v_i \rangle = \overline{\langle v_i, e_j \rangle} = \overline{(C_{B\to E})_{ji}} = (C_{B\to E}^*)_{ij}.$$

Se desprende que

$$(C_{B\to E})^{-1} = C_{B\to E}^*.$$

Y en el caso real,

$$(C_{B\to E})^{-1} = C_{B\to E}^t.$$

Este tipo de matrices es tan importante que llevan nombre propio:

Definición 2 • $U \in \mathbb{C}^{n \times n}$ inversible y tal que $U^{-1} = U^*$ se llama matriz unitaria,

• $O \in \mathbb{R}^{n \times n}$ inversible y tal que $U^{-1} = U^t$ se llama matriz ortogonal.

Para cualquier par de bon, la matriz de cambio de base es unitaria (ortogonal).

Tenemos entonces que toda matriz hermítica $A \in \mathbb{C}^{n \times n}$ se descompone como $A = UDU^*$, donde D es una matriz diagonal real (de autovalores de A) y U es una matriz unitaria.

De manera análoga, toda matriz simétrica $A \in \mathbb{R}^{n \times n}$ se descompone como $A = ODO^t$, donde D es una matriz diagonal real (de autovalores de A) y O es una matriz ortogonal.