Extended Finite Element Method (XFEM)

Janna Puderbach

October 26, 2023

Content

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

nfitted Metho

Level Set Function

Extended Finite

Motivation

Interface Problems

Unfitted Method

Level Set Function

Extended Finite Elements

Motivation

Figure: Microstructure of a composite material

Applications:

- Crack propagation
- Microstructured problems
- Composite materials
- ► Time-depending domains

Advantages:

- Discontinuities within elements possible
- Avoiding complex mesh generation

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Interface Problems

Unfitted Meth

Level Set Functio

extended Finite Elements

Interface Problems

Figure: Composite material

$$-\nabla \cdot (\mu_i \nabla u_i) = f$$
 in Ω_i (1)
 $u_i = g$ on $\partial \Omega$ (2)

$$[u] = g_s$$
 on Γ (3)

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Interface Problems

Unfitted Metho

Level Set Function

Elements

Unfitted Method

- background mesh
- cut cells

Figure: Unfitted mesh

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Interface Problems

Unfitted Method

Level Set Function

Extended Finito Elements

Motivation

Interface Problem

Unfitted Metho

Level Set Function

Extended Finit Elements

► Tracking the interface

$$\phi: \Omega \to \mathbb{R} \quad , \quad \phi(x) \begin{cases} = 0 & , x \in \Gamma \\ < 0 & , x \in \Omega_1 \\ > 0 & , x \in \Omega_2 \end{cases}$$

Figure: Level set function

▶ i.e. signed distance function

Implementation in deal.II

Figure: Cut cells

- loop over all cells
- using the level set function to find the cut cells
- active_fe_index()

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Interface Problem

Infitted Metho

Level Set Function

Extended Finite Elements

Enriched Elements

Figure: Standard degrees of freedom

Figure: Enriched degrees of freedom

Extended Finite Element Method (XFEM)

Janna Puderbach

Motivation

Interface Proble

Unfitted Metl

Level Set Fur

Extended Finite

Janna Puderbach

Motivation

Interface Problems

Unfitted Meth

Level Set Funct

Extended Finite Elements

► Standard finite element space

$$V_h = \{ \varphi \in V : \phi |_{\mathcal{K}} \in Q_p \}$$

► Enriched finite element space

$$V_h^s = \{ \varphi \in V : \varphi|_K \in Q, \varphi|_{K_i} \in Q, i = 1, 2 \}$$

aval Sat Euration

Extended Finite Elements

Standard finite Element solution

$$u_h = \sum_{i \in I} u_i N_i \tag{4}$$

where N_i are standard shape functions.

Extended finite element solution

$$u_h = \sum_{i \in I} u_i N_i + \sum_{j \in J} a_j M_j \tag{5}$$

where M_j are enriched shape functions.

$$M_j(x) = N_j(x)\Psi(x) \tag{6}$$

with Ψ the Heaviside function.