

Phase space analysis of models of supersymmetry

Sam Rogerson

mastércore

Introduction

- 1. Approach
- 2. Model description
- 3. Likelihood function
- 4. Markov Chains
- 5. Constraints
- 6. Phase Spaces
- 7. Implications
- 8. Conclusion

Approach

- Attempt to explore the phase space of various models of SUSY
 - Predict spectrum (SoftSUSY)
 - Observables (Feyn-Higgs, micrOmegas, SUSY-POPE)
- Determine preferred regions
 - Constrain models against list of observables
 - Calculate χ^2 from global likelihood function

VCMSSM (very CMSSM)

- Much like CMSSM
- Imposes GUT scale condition

$$\rightarrow$$
B₀=A₀+m₀

- Removes a degree of freedom
- 3 free parameters

MSUGRA

 VCMSSM + constraint on gravitino

$$\rightarrow$$
m₀=m_{3/2}

 Need non-gravitino LSP (for Cosmology to be preserved)

Likelihood function

Constraints from one sided exclusion limits $BR(B_s \to \mu\mu), M_h$

Standard model parameters $\Delta \alpha_{had}, m_{t}, M_{Z}$

Markov Chain Approach

- Standard MCMC approach
 - Vary all input parameters simultaneously
 - Individually minimise χ^2 w.r.t. each parameter
- "Embarassingly parallel" method
 - Run multiple chains to sample space
 - Avoid bias by implementing random starting parameters

Constraints

- General (30 constr.)
 - $-BR(b \rightarrow sy)$
 - $-(g-2)_{u}$
 - $-\Gamma_z$

Constraints can be turned on and off with no resampling required.

- Dark Matter
 - micrOmegas calculates Ω_{CDM} for a given spectrum
- Sampling carried out with constraint off

Phase spaces: m_0 , $m_{1/2}$

Phase Spaces: $m_{1/2}$, $tan(\beta)$

Phase Spaces: A_0/m_0 , $tan(\beta)$

Summary of results

	VCMSSM	MSUGRA
No CDM	21.5 (55,345,0,7.5)	23.0 (120,300,-100,7.5)
With CDM	22.0 (60,310,-20,8)	32.0 (2450,130,-1400,10)

 $(m_0, m_{1/2}, A_0, tan(\beta))$

Comments

All of these points lie near one of the benchmark points (respectively LM1/LM6, LM2, LM1, LM10)

As can be seen from the phase space, mSUGRA suffers hugely from applying the CDM constraint

Conclusions

- The best fit regions for all situations show best fit regions in regions favouring early discovery
- If SUSY is of CMSSM/SUGRA flavour and has consistent electroweak behaviour would expect an "early" signal