

Questão 01 - (UECE)

Uma bateria de 12 V de tensão e 60 A.h de carga alimenta um sistema de som, fornecendo a esse sistema uma potência de 60 W. Considere que a bateria, no início, está plenamente carregada e alimentará apenas o sistema de som, de maneira que a tensão da bateria permanecerá 12 V até consumir os 60 A.h de carga. O tempo Máximo de funcionamento ininterrupto do sistema de som em horas é:

- a) 08
- b) 10
- c) 12
- d) 14

Questão 02 - (UECE)

A figura abaixo mostra a chapa de especificações de uma máquina de lavar roupas. Nessa chapa, estão identificadas três grandezas físicas características do equipamento.

Essas grandezas são, respectivamente,

- a) voltagem, frequência e potência.
- b) corrente, frequência e potência.
- c) voltagem, período e corrente.
- d) corrente, período e voltagem.

Questão 03 - (FATEC SP)

Atualmente, a maioria das pessoas tem substituído, em suas residências, lâmpadas incandescentes por lâmpadas fluorescentes, visando a uma maior economia. Sabendo-se que a luminosidade da lâmpada fluorescente de 15 W equivale à da lâmpada incandescente de 60 W, o efeito da substituição de uma lâmpada incandescente que funcione em média 6 horas por dia por

DDP, Potência e Energia Elétrica

Resolução: youtube.com/tenhoprovaamanha

outra fluorescente será uma economia mensal, em kWh, de

- a) 4,5.
- b) 8,1.
- c) 10,2.
- d) 13.5.
- e) 15,0.

Questão 04 - (UFG GO)

A figura a seguir mostra o comportamento elétrico típico de uma célula de combustível de H₂.

Considerando esses dados, a corrente elétrica, em mA, que será fornecida com a maior potência de operação, será de:

- a) 0.2
- b) 1,0
- c) 1,4
- d) 1,6
- e) 1,8

Questão 05 - (UFT TO)

Uma pessoa demora 45 minutos em seu banho diário. Sabe-se que seu chuveiro consome uma potência de 5000 Watts e voltagem de 220Volts, e que o custo da energia é R\$ 0,20 por [kW·h]. Quanto esta pessoa gasta mensalmente com seus banhos? Considere que a pessoa toma um banho por dia, e que o mês tem 30 dias.

- a) R\$10,00
- b) R\$12,50

- c) R\$22,50
- d) R\$75,00
- e) R\$75,50

Questão 06 - (UCS RS)

Um dispositivo elétrico possui inicialmente uma energia interna de 550 J. Então, passa a receber de uma corrente elétrica uma quantidade de energia por tempo equivalente a 50 W, e passa a liberar na forma de radiação eletromagnética uma quantidade de energia por tempo equivalente a 20 W. Quando o dispositivo elétrico atingir uma energia interna de 1000 J, ele derrete. Quanto tempo levará para isso acontecer? (Despreze qualquer outra perda ou ganho de energia fora dos processos mencionados acima.)

- a) 8 s
- b) 20 s
- c) 28 s
- d) 15 s
- e) 55 s

Questão 07 - (UNIRG)

A figura a seguir mostra uma arma de choque utilizada para defesa pessoal.

Esse aparelho, quando em funcionamento, fornece uma corrente de 2 μΑ (microampères) em uma tensão de 50.000 volts, o que é suficiente para incapacitar uma nela provocar sem danos permanentes. A potência elétrica liberada durante um choque com essas características, em watts, é de

- a) 0,1
- b) 0,2
- c) 0,3
- d) 0.4

DDP, Potência e Energia Elétrica

Resolução: youtube.com/tenhoprovaamanha

Questão 08 - (UFPR)

Atualmente, os aparelhos eletrodomésticos devem trazer uma etiqueta bem visível contendo vários itens do interesse do consumidor, para auxiliá-lo na escolha do aparelho. A etiqueta à direita é um exemplo modificado (na prática as faixas coloridas), na qual a letra A sobre a faixa superior corresponde a um produto que consome pouca energia e a letra G sobre a faixa inferior corresponde a um produto que consome muita energia. Nesse caso, trata-se de etiqueta para ser fixada em um refrigerador. Suponha agora que, no lugar onde está impresso XY,Z na etiqueta, esteja impresso o valor 41,6. Considere que o custo do KWh seja igual a R\$ 0,25. Com base nessas informações, assinale a alternativa que fornece o custo total do consumo dessa geladeira, considerando que ela funcione ininterruptamente ao longo de um ano.

(Desconsidere o fato de que esse custo poderá sofrer alterações dependendo do número de vezes que ela é aberta, do tempo em que permanece aberta e da temperatura dos alimentos colocados em seu interior.)

- a) R\$ 124,8.
- b) R\$ 499,2.
- c) R\$ 41,6.
- d) R\$ 416,0.
- e) R\$ 83,2.

Questão 09 - (UEPB)

O sistema de distribuição da eletricidade nas residências se dá através de três sistemas: **monofásico** (uma fase e um neutro), **bifásico** (duas fases A e B, por exemplo, e um neutro) e o **trifásico** (três fases A, B e C, por exemplo, e um neutro). Nas grandes cidades, o sistema de distribuição da eletricidade na maioria das residências costuma ser **bifásico**, que se dá da seguinte maneira:

A partir do poste da rua, chegam à casa do consumidor três fios; após passarem pelo "relógio da luz", o medidor da energia elétrica, esses fios são distribuídos pela casa (figura abaixo). Para não haver sobrecarga, costuma-se fazer uma separação, criando-se redes. Assim, os equipamentos duas existentes nas residências são projetados para serem ligados entre uma fase e o neutro (por exemplo, uma lâmpada) e/ou entre duas fases (por exemplo, um chuveiro). Em alguns locais estratégicos da casa costumam ser colocadas "caixas de luz" que, além de racionalizar e sistematizar as ligações feitas, permitem a colocação de fusíveis ou disjuntores, que interrompem a passagem da corrente elétrica quando esta se torna excessiva.

Acerca do assunto tratado no texto, em relação ao consumo de energia elétrica da residência, resolva a seguinte situação-problema:

DDP, Potência e Energia Elétrica

Resolução: youtube.com/tenhoprovaamanha

A figura abaixo representa parte de um circuito elétrico de uma residência, com alguns componentes eletrodomésticos identificados com suas respectivas potências (tabela abaixo). A instalação elétrica desta residência está ligada a uma rede monofásica de 220V e protegida por um disjuntor ou fusível F.

Aparelhos	Potência (W)
Lâmpada	150
Ferro Elétrico	400
Liquidificador	300
Computador	120
TV	150
Geladeira	300

Considerando que todos os equipamentos estejam ligados ao mesmo tempo, o consumo de energia elétrica da residência, em kWh, durante 120 minutos, é:

- a) 4,56
- b) 3,52
- c) 6,32
- d) 2,84
- e) 5,34

Questão 10 - (UEPG PR)

Um ebulidor de resistência elétrica igual a 75,0 Ω está envolto por 0,20 kg de gelo a 0 °C. Os terminais do ebulidor são conectados a uma fem que gera uma corrente elétrica de intensidade igual a 2 A através dele, durante 1,4 minutos. Considere que toda energia dissipada pelo ebulidor foi integralmente absorvida pelo gelo. Considere, ainda, 1 cal = 4,2 J; C_{agua} = 1 cal/g °C e $L_{f(agua)}$ = 80 cal/g. Sobre esse evento físico, assinale o que for correto.

- 01. A potência do ebulidor é igual a 300 W.
- 02. A energia dissipada pelo ebulidor foi 25.200 J.
- 04. A diferença de potencial entre os terminais do ebulidor, durante o processo, foi de 150 V.
- 08. Ao final do processo tem-se 125 g de gelo e 75 g de água.
- 16. A temperatura final do sistema é 0 °C.

Questão 11 - (UNESP)

Células fotovoltaicas foram idealizadas e desenvolvidas para coletar a energia solar, uma forma de energia abundante, e convertêla em energia elétrica. Estes dispositivos são confeccionados com materiais semicondutores que, quando iluminados, dão origem a uma corrente elétrica que passa a alimentar um circuito elétrico. Considere uma célula de 100 cm² que, ao ser iluminada, possa converter 12% da energia solar incidente em energia elétrica. Quando um resistor é acoplado à célula, verifica-se que a tensão entre os terminais do resistor é 1,6 V. Considerando que, num dia ensolarado, a célula recebe uma potência de 1 kW por metro quadrado, calcule a corrente que passa pelo resistor.

Questão 12 - (UFJF MG)

O gráfico mostra a potência elétrica, em kW, consumida na residência de um morador da cidade de Juiz de Fora, ao longo do dia. A residência é alimentada com uma voltagem de 120 V. Essa residência tem um disjuntor que desarma, se a corrente elétrica ultrapassar um certo valor, para evitar danos na instalação elétrica. Por outro lado, esse

DDP, Potência e Energia Elétrica

Resolução: youtube.com/tenhoprovaamanha

disjuntor é dimensionado para suportar uma corrente utilizada na operação de todos os aparelhos da residência, que somam uma potência total de 7,20 kW.

- a) Qual é o valor máximo de corrente que o disjuntor pode suportar?
- b) Qual é a energia em kWh consumida ao longo de um dia nessa residência?
- c) Qual é o preço a pagar por um mês de consumo, se o 1kWh custa R\$ 0,50?

Questão 13 - (UFU MG)

Em uma escola secundária de uma cidade à beira mar, onde a temperatura da água na torneira do laboratório escolar era 20 °C e a tensão na instalação elétrica 120 V, um grupo de alunos aqueceu 300 cm³ de água em uma xícara, utilizando um aquecedor elétrico portátil de potência elétrica desconhecida. Essa água entrou em ebulição após 200 s da aplicação do referido aquecedor.

Considerando que toda a energia fornecida pelo aquecedor foi utilizada para aumentar a temperatura da água e utilizando os dados

- 1 cal = 4J;
- densidade da água = 1 g/cm^3 ;
- calor específico da água = 1 cal / (g°
 C),

determine:

- a) a quantidade de calor utilizada pela água para entrar em ebulição.
- b) a potência elétrica do aquecedor.
- c) a corrente elétrica no aquecedor.
- d) a resistência elétrica do aquecedor.

DDP, Potência e Energia Elétrica Resolução: youtube.com/tenhoprovaamanha

- **01.** C
- **02**. A
- **03**. B
- **04**. D
- **05**. C
- **06.** D
- **07.** A
- **08**. A
- **09.** D
- **10.** C C C C C
- **11.** 0,75 A
- **12.** a) 60 A
 - b) 24kWh
 - c) R\$ 360,00
- 13.a) 24 000cal ou 96 000J
 - b) 480W
 - c) 4A
 - d) 30 ohms