Homework 3 David Yang

- 1. Suppose V_1 and V_2 are independent $\mathrm{Gamma}(1,\lambda)$ random variables that represent waiting times in a Poisson process with rate λ events per unit time. Let $X=V_1$ be the time of the first event and let $Y=V_1+V_2$ be the time of the second event.
- 2. Suppose X and Y have joint pdf $f_{xy}(x,y) = I(0 < x < 1, -x < y < x)$.
 - a) Explain how you can tell, without finding the marginal densities, that the conditional densities are Uniform. Write out the conditional densities $f_{x|y}(x\mid y)$ and $f_{y|x}(y\mid x)$.
 - b) Explain how you can tell, without finding the marginal densities, that X and Y are not independent. Find the marginal pdf's $f_x(x)$ and $f_y(y)$ and verify that $f_{xy}(x,y) \neq f_x(x)f_y(y)$.
 - c) Show that X and Y are uncorrelated.
 - a) Suppose X_1 and X_2 are Bernoulli random variables with expectations p_1 and p_2 . Show that X_1 and X_2 are independent if and only if they are uncorrelated. This shows the Bernoulli distribution is special like the multivariate Normal distribution in that uncorrelated implies independence.
 - b) Suppose $Y = X_1 + X_2$ with X_1 and X_2 independent. If you learn that Y and X_1 are Normal variables, prove that X_2 is also a Normal random variable.