ANALISI MATEMATICA 1 - LEZIONE 8

LIMITI DI FUNZIONI

R=Ru(-∞,+∞) si dice RETTA ESTESA Se xo∈R e 200 l'INTORNO di centro xo e raggio r è defimito come

$$I(x_{o}, n) = \begin{cases} (x_{o}-n, x_{o}+n) & \text{le } x_{o} \in \mathbb{R} \\ (n, +\infty) & \text{le } x_{o} = +\infty \\ (-\infty, -n) & \text{le } x_{o} = -\infty \end{cases}$$

Nel caso xo ER si pone

$$I(x_0, x) = (x_0, x_0 + x)$$
 INTORNO DESTRO
 $I(x_0, x) = (x_0 - x, x_0)$ INTORNO SINISTRO

Se $x_0 \in \overline{\mathbb{R}}$ e D $\subseteq \mathbb{R}$ allore x_0 si dice PUNTO DI ACCUMULAZIONE di D se

$$\forall r>0 (Dn I(x_0, r)) (\{x_0 \neq \emptyset.$$

OSSERVAZIONE Se Dè un intervallo in IR allore i moi punti di accumulazione sono tutti i punti di D compresi gli estremi

D	punti di accomulazione di D
1-1/0(0,2)013/	[0,2]
$[-1,+\infty)$	[-1,+0) 0 }+00 }
$(-\infty,3)\cup(3,4)$	$(-\infty, 4] \cup \{-\infty\}$
[1,2]0[3,4]	[1,2]0[3,4]
R	$\overline{\mathbb{R}}$

Siano DER, xo punto do accumulazione d'D, Y:D→ReleR.

Si dice che il LIMITE DI f(x) PER X CHE TENDE A X0 VALE l e su souve

lim f(x) = l + LIMITE DESTRO - LIMITE SINISTRO Se

(3, L) I = (x) f / (x, x) I (D) = x F: O < E O < 3 F)

OSSERVAZIONE Dalla definizione segue che se xo∈D allora il volore del limite non dipende da f(xo).

TEOREMA (PONTE) Y 2×m = D\2×03 tale che

lim f(x) = l = 0lim $x_m = x_0$ si he lim $f(x_m) = l$ $x \to x_0$ limitidi successioni

PROPRIETA' DEI LIMITI DI FUNZIONE

Grazie al teorema "ponte" valgono le proprieta analoghe viste per i l'miti di successioni.

- 4) Il limite limf(x) se esiste è unico.
- 2) Se limf(x) = l ∈ R allora ± r>0 tole che félimitate in (Dn I(xo, 2))/{xoj.

- 3) Se lum f(x) > 0 allora $\exists r > 0$ tole the f > 0 in $(D \cap I(x_0, r)) \setminus \{x_0\}$.
- 4) Se lim $f(x) = l_1$, lim $f(x) = l_2$ e $\exists r > 0$ $x \rightarrow x_0$ tale che $\forall x \in (D \cap I(x_0, r)) \setminus \{x_0\}$ $f(x) \leqslant g(x)$ allore $l_1 \leqslant l_2$.
- 5) Se $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \ell$ e $\exists r>0$ tale che $\forall x\in (D\cap I(x_0,r))/\{x_0\}$ $f(x) \leqslant h(x) \leqslant g(x)$ allow $\lim_{x\to\infty} h(x) = \ell$.
- 6) Se f è limitate in un intorno di xo e lim g(x)=0 allora lim f(x).g(x)=0. x-xo
- 7) Vale l'algebra du limiti già stabilità per i limiti di successioni.
- 8) Se lim f(x) = l e lim f(x) = l allora lim f(x) = l.
- 9) Se lim f(x)=le lim g(x)=Le Ir>0 tale che x → x x x x + l allone lim g(f(x))=L. ** dominio di f

FUNZIONI CONTINUE

Sia $f: D \rightarrow \mathbb{R}$ e sia $x_0 \in D$. Se x_0 è un punto di accumulazione di D e lim $f(x) = f(x_0)$ $x \rightarrow x_0$

allow s' dice the fe CONTINUA i'm xo. f si dice continua in ASD se fe continua i'm ogui punto xo EA.

OSSERVAZIONE

Le funzioni elementari $(x), x^2, a^x, \log(x), xn(x), \cos(x), tg(x), arcsen(x), arccos(x) e arctg(x) sono continue nel loro dominio. Per le proprietà dei limiti se <math>f$ e g sono continue allora $f\pm g$, $f\cdot g$, f/g e $f\circ g$ sono continue nel loro dominio.

Composizione sono continue nel loro dominio. f(g(x))

ESEMPIO

Si'Q
$$\begin{cases}
1 - \frac{1}{X+1} & \text{le } X \in (0, 1) \cup (1, +\infty) \\
2 & \text{le } X = 1 \\
-\frac{1}{X} & \text{le } X \in [-2, 0) \\
\frac{(X+2)^2 - 1}{2} & \text{le } X \in (-4, -2)
\end{cases}$$

Disequere il grafico di f in D= (-4,+∞)/{0} e dire in quali punti di D la funzione f e continua.

| punt d'accumulazione d'D sono $[-4,+\infty)$ \cup $\{+\infty\}$

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \left(1 - \frac{1}{x+1}\right) = \frac{1}{2} + f(1) = 2.$$

$$\begin{array}{l}
\text{lim } f(x) = \text{lim} \frac{(x+2)^2 - 1}{2} = -\frac{1}{2} \\
\times \to -2^- \times \to -2^- \times \times \to -2^-
\end{array}$$

$$\begin{array}{l}
\text{lim } f(x) = \text{lim} -\frac{1}{x} = +\frac{1}{2} \\
\times \to -2^+ \times \to -2^+ \times \to -2^+
\end{array}$$

$$\begin{array}{c} \text{lim } f(x) = \text{lim} - \frac{1}{x} = +\infty \\ \times \to 0^{-} \quad \times \to 0^{-} \times \end{array}$$

$$\begin{array}{c} \text{lim } f(x) = \text{lim } f(x) \\ \text{lim } f(x) = \text{lim } \left(1 - \frac{1}{x+1}\right) = 0 \end{array}$$

$$\times \to 0^{+} \quad \times \to 0^{+}$$

$$\lim_{x \to -4} f(x) = \lim_{x \to -4} \frac{(x+2)^2 - 1}{2} = \frac{3}{2}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(1 - \frac{1}{x+1}\right) = 1$$

fe continue in D1{-2,1}

1 punti di discontinuita

LIMITI NOTEVOLI

Per il teorema "ponte" valgano i seguenti l'miti:

•
$$\lim_{X \to +\infty} \frac{\log_{a}(x)}{X^{b}} = 0$$
 per a>0, a \(1 \) e b>0.

•
$$\lim_{X \to +\infty} \frac{X^b}{Q^x} = 0$$
 pu $Q>1$ e $b>0$.

•
$$\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$$
 • $\lim_{x\to 0} \frac{e^{x}-1}{x} = 1$

•
$$\lim_{X\to 0} \frac{xm(x)}{x} = 1$$

Dato che sen(x) e pour baste x→ot.

Per
$$x \in (0, \frac{\pi}{2})$$
, PH = $\lambda m(x)$, $QR = tg(x)$
 $\Delta OPR \subseteq \Delta OPR \subseteq \Delta OQR$
 $\Delta COPR \subseteq \Delta OPR \subseteq \Delta OQR$
 $\Delta COPR \subseteq \Delta OQR \subseteq \Delta O$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}$$

Allora per doppio confronto
$$\lim_{x\to 0^+} \frac{\operatorname{ser}(x)}{x} = 1$$
.

$$\frac{\chi}{2} \subseteq \frac{\chi_{-}(\chi)}{2} \rightarrow (c_{3}(\chi) \cdot \chi_{1}(\chi) \cdot \chi_{2}(\chi) \cdot \chi_{3}(\chi) \cdot \chi_{$$

 $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$