

UFR SAT - SECTION INFORMATIQUE MASTER GDIL

Mémoire: Réseaux de Neurones et IoT appliquées dans le Domaine Environnemental (Agriculture)

Tutelle: M. DEMBELE

Sommaire

□ Contexte et Problématique

☐ Etat de l'Art

□ Réseaux de Neurones en Périphérie du réseau

Contexte

Src: https://images.app.goo.gl/YrhtnQodsrn11rWA9 Src: https://images.app.goo.gl/4ysmSUMQxXQLd1Hv7 Src: https://images.app.goo.gl/pADSMpEc1gu8fVkN6

Problématique

Proposition de Solution

Etat de L'Art

• Machine Learning dans l'IdO (Secteur Agriculture)

• Prédiction de l'Humidité du Sol

Machine Learning Dans L'IdO (Agriculture)

Type de Données	Type de Modèle	Objectifs	Travaux
Images	CNN	Diagnostic Maladies de plantes et detection de parasites	Yue et al. [10]
	Réseau Récursif Résiduel Profond + SVM / kNN		Mwebaze et al. [11]
	CNN	Surveillance Taux de Croissance Plant Raisin + Param environnementaux	Yahata et al. [14]
Données Météo	Chaine de Markov Cachée	Identification Risques Maladies, Optimisation Ressources Agricoles	Patil et Thorat [13]

Machine Learning Dans L'IdO (Agriculture)

Objectif:

- Améliorer la productivité (Détection des maladies)
- Réduire les Couts de maintenance des Systèmes agricoles (Maintien de l'environnement requis)

Observation:

Exécution des Modèles faite sur un serveur distant

Prédiction de l'Humidité du Sol

Prédiction de l'Humidité du Sol

Réseaux de Neurones en Périphéries

- Architecture Proposée
- Données
- Modèles d'Apprentissage
- Comparaison et Choix des Modèles

Architecture

Architecture: Outils

- Bonne Performance d'exécution de la Carte;
- Consommation d'Energie normale;
- Temps d'exécution rapide.

Données météorologiques

- Données station météo
 - Température
 - o Humidité de l'air
 - Pression
 - Direction Vent
 - Vitesse Vent
 - o Rafale
- Humidité du sol
- Irrigation Field

Objectif:

Choix des variables pour les modèles

Observation sur une journée

- Augmentation de l'humidité du Sol SH en tant d'irrigation
- Variation de cette dernière dans le cas contraire

Observation sur une semaine

 Variation de SH en fonction de la Température de l'Air AT

Observation sur une semaine

- La Pression n'influe aucunement sur la variation de SH
- Diminution du SH si l'humidité de l'Air augmente
- Variation de la vitesse du vent ~ Temperature Air

Apprentissage sur deux types de Données

- Données Brutes
- Données Normalisées

$$x' = rac{x - x_{min}}{x_{max} - x_{min}}$$

Critère d'Evaluation

Erreur Quadratique Moyenne MSE

$$MSE = \frac{1}{n} \Sigma \left(y - \widehat{y} \right)^2$$

Modèles d'Apprentissage: SVR

MSE	Validation	Test
Données Brutes	85	103
Données Normalisée s	62	58

Modèles d'Apprentissage: PMC

MSE	Validation	Test
Données Brutes	38	36
Données Normalisée s	49	63

Données Normalisées

Modèles d'Apprentissage: RN-OHL

MSE	Train	Valida- tion	Test
Données Brutes	179	157	180

Données Brutes

Modèles d'Apprentissage: RN-MHL

MSE	Train	Valida- tion	Test
Données Brutes	144	128	136
Données Normalis ées	77	59	75

Données Normalisées

Comparaison Modèles

Données Brutes

- Perceptron Multi Couche
- Support Vector Machine

Comparaison Modèles

Données Normalisées

- Support Vector Machine
- Perceptron Multi Couche

Bons modèles mais pourraient être amélioré

Perspectives

- Déploiement à grande Echelle
- Performance des modèles
- Implémentation Architectures
- Gestion Intelligente de l'Irrigation
- Usage de modèles d'apprentissage par renforcement

UFR SAT - SECTION INFORMATIQUE MASTER GDIL

Mémoire: Réseaux de Neurones et IoT appliquées dans le Domaine Environnemental (Agriculture)

Tutelle: M. DEMBELE