### Type $\it Markdown$ and LaTeX: $\it \alpha^2$

```
In [1]: #import libraries
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
```

#### Out[2]:

|     | Country           | Density\n(P/Km2) | Abbreviation | Agricultural<br>Land( %) | Land<br>Area(Km2) | Armed<br>Forces<br>size | Birth<br>Rate | Ca<br>C |
|-----|-------------------|------------------|--------------|--------------------------|-------------------|-------------------------|---------------|---------|
| 0   | Afghanistan       | 60               | AF           | 58.10%                   | 652,230           | 323,000                 | 32.49         |         |
| 1   | A <b>l</b> bania  | 105              | AL           | 43.10%                   | 28,748            | 9,000                   | 11.78         | 3       |
| 2   | Algeria           | 18               | DZ           | 17.40%                   | 2,381,741         | 317,000                 | 24.28         | 2       |
| 4   | Angola            | 26               | AO           | 47.50%                   | 1,246,700         | 117,000                 | 40.73         | 2       |
| 6   | Argentina         | 17               | AR           | 54.30%                   | 2,780,400         | 105,000                 | 17.02         |         |
|     |                   |                  |              |                          |                   |                         |               |         |
| 185 | United<br>Kingdom | 281              | GB           | 71.70%                   | 243,610           | 148,000                 | 11.00         |         |
| 186 | United<br>States  | 36               | US           | 44.40%                   | 9,833,517         | 1,359,000               | 11.60         | •       |

```
In [3]:
        df.info()
         17 01033 primary education em offment (10)
                                                        TTO HOW HUTT
                                                                        object
         18 Gross tertiary education enrollment (%)
                                                                        object
                                                        110 non-null
         19 Infant mortality
                                                                        float64
                                                        110 non-null
         20 Largest city
                                                        110 non-null
                                                                        object
         21 Life expectancy
                                                        110 non-null
                                                                        float64
         22 Maternal mortality ratio
                                                                        float64
                                                        110 non-null
         23 Minimum wage
                                                        110 non-null
                                                                        object
         24 Official language
                                                                        object
                                                        110 non-null
         25 Out of pocket health expenditure
                                                        110 non-null
                                                                        object
         26 Physicians per thousand
                                                        110 non-null
                                                                        float64
         27 Population
                                                        110 non-null
                                                                        object
         28 Population: Labor force participation (%)
                                                        110 non-null
                                                                        object
         29 Tax revenue (%)
                                                                        object
                                                        110 non-null
         30 Total tax rate
                                                        110 non-null
                                                                        object
         31 Unemployment rate
                                                                        object
                                                        110 non-null
         32 Urban_population
                                                        110 non-null
                                                                        object
         33 Latitude
                                                        110 non-null
                                                                        float64
         34 Longitude
                                                                        float64
                                                        110 non-null
        dtypes: float64(9), object(26)
        memory usage: 30.9+ KB
In [4]:
        #to display top 5 rows
```

df.head()

#### Out[4]:

|                     | Country     | Density\n(P/Km2) | Abbreviation | Agricultural<br>Land( %) | Land<br>Area(Km2) | Armed<br>Forces<br>size | Birth<br>Rate | Calling<br>Code | ( |
|---------------------|-------------|------------------|--------------|--------------------------|-------------------|-------------------------|---------------|-----------------|---|
| 0                   | Afghanistan | 60               | AF           | 58.10%                   | 652,230           | 323,000                 | 32.49         | 93.0            |   |
| 1                   | Albania     | 105              | AL           | 43.10%                   | 28,748            | 9,000                   | 11.78         | 355.0           |   |
| 2                   | Algeria     | 18               | DZ           | 17.40%                   | 2,381,741         | 317,000                 | 24.28         | 213.0           |   |
| 4                   | Angola      | 26               | AO           | 47.50%                   | 1,246,700         | 117,000                 | 40.73         | 244.0           |   |
| 6                   | Argentina   | 17               | AR           | 54.30%                   | 2,780,400         | 105,000                 | 17.02         | 54.0            |   |
| 5 rows × 35 columns |             |                  |              |                          |                   |                         |               |                 |   |

## **Data cleaning and Pre-Processing**

# In [5]: #To find null values df.info()

<class 'pandas.core.frame.DataFrame'> Int64Index: 110 entries, 0 to 193 Data columns (total 35 columns): Column Non-Null Count Dtype \_ \_ \_ ----------0 Country 110 non-null object 1 Density (P/Km2)110 non-null object Abbreviation 110 non-null object 2 Agricultural Land( %) object 3 110 non-null Land Area(Km2) object 4 110 non-null Armed Forces size 5 110 non-null object 6 Birth Rate float64 110 non-null 7 Calling Code 110 non-null float64 8 Capital/Major City 110 non-null object 9 Co2-Emissions 110 non-null object 10 CPI 110 non-null object 11 CPI Change (%) object 110 non-null 12 Currency-Code object 110 non-null 13 Fertility Rate 110 non-null float64 14 Forested Area (%) object 110 non-null 15 Gasoline Price 110 non-null object 16 GDP 110 non-null object Gross primary education enrollment (%) object 17 110 non-null 18 Gross tertiary education enrollment (%) object 110 non-null 19 Infant mortality 110 non-null float64 20 Largest city 110 non-null object 21 Life expectancy 110 non-null float64 22 Maternal mortality ratio 110 non-null float64 23 Minimum wage 110 non-null object 24 Official language 110 non-null object 25 Out of pocket health expenditure 110 non-null object 26 Physicians per thousand float64 110 non-null 27 Population 110 non-null object 28 Population: Labor force participation (%) object 110 non-null 29 Tax revenue (%) 110 non-null object 30 Total tax rate 110 non-null object 31 Unemployment rate 110 non-null object 32 Urban population 110 non-null object 33 Latitude 110 non-null float64 34 Longitude 110 non-null float64 dtypes: float64(9), object(26)

memory usage: 30.9+ KB

```
In [6]: # To display summary of statistics
df.describe()
```

Out[6]:

|    |      | Birth Rate | Calling<br>Code | Fertility<br>Rate | Infant<br>mortality | Life expectancy | Maternal<br>mortality<br>ratio | Physicians<br>per<br>thousand |    |
|----|------|------------|-----------------|-------------------|---------------------|-----------------|--------------------------------|-------------------------------|----|
| CC | ount | 110.000000 | 110.000000      | 110.000000        | 110.000000          | 110.000000      | 110.000000                     | 110.000000                    | 11 |
| m  | nean | 20.196455  | 344.290909      | 2.672182          | 20.271818           | 72.671818       | 137.227273                     | 1.919182                      | 2  |
|    | std  | 10.039056  | 341.231562      | 1.308142          | 18.453214           | 7.000788        | 201.171462                     | 1.598116                      | 2  |
|    | min  | 6.400000   | 1.000000        | 0.980000          | 1.700000            | 54.300000       | 2.000000                       | 0.010000                      | -4 |
| 2  | 25%  | 11.075000  | 70.000000       | 1.682500          | 6.100000            | 67.625000       | 15.250000                      | 0.467500                      |    |
| ,  | 50%  | 17.830000  | 239.500000      | 2.200000          | 13.600000           | 74.400000       | 41.000000                      | 1.640000                      | 2  |
|    | 75%  | 27.962500  | 420.750000      | 3.505000          | 31.500000           | 77.350000       | 176.000000                     | 3.007500                      | 4  |
| ı  | max  | 46.080000  | 1876.000000     | 6.910000          | 78.500000           | 83.300000       | 1120.000000                    | 7.120000                      | 6  |
| ı  |      |            |                 |                   |                     |                 |                                |                               | •  |

```
In [7]: #To Display column heading
         df.columns
Out[7]: Index(['Country', 'Density\n(P/Km2)', 'Abbreviation', 'Agricultural Land(
         %)',
                 'Land Area(Km2)', 'Armed Forces size', 'Birth Rate', 'Calling Code', 'Capital/Major City', 'Co2-Emissions', 'CPI', 'CPI Change (%)',
                 'Currency-Code', 'Fertility Rate', 'Forested Area (%)',
                 'Gasoline Price', 'GDP', 'Gross primary education enrollment (%)',
                 'Gross tertiary education enrollment (%)', 'Infant mortality',
                 'Largest city', 'Life expectancy', 'Maternal mortality ratio',
                 'Minimum wage', 'Official language', 'Out of pocket health expenditur
         e',
                 'Physicians per thousand', 'Population',
                 'Population: Labor force participation (%)', 'Tax revenue (%)',
                 'Total tax rate', 'Unemployment rate', 'Urban_population', 'Latitude',
                 'Longitude'],
                dtype='object')
```

## **EDA and VISUALIZATION**

In [8]: sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x20ad83b9f10>



#### In [9]: | sns.distplot(df['Birth Rate'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='Birth Rate', ylabel='Density'>



## **Plot Using Heat Map**

```
In [11]: sns.heatmap(df1.corr())
Out[11]: <AxesSubplot:>
```



## To Train The Model-Model Building

we are going to train Linera Regression Model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output) we could ignore address column as it required for our model

## To Split my dataset into training and test data

```
In [13]:
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

#### Out[16]:

#### 

```
In [17]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

#### Out[17]: <matplotlib.collections.PathCollection at 0x20adc2feaf0>



## **Accuracy**

```
In [18]: |lr.score(x_test,y_test)
Out[18]: 1.0
In [19]: lr.score(x_train,y_train)
Out[19]: 1.0
In [20]: from sklearn.linear_model import Ridge,Lasso
In [21]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[21]: Ridge(alpha=10)
In [22]: |rr.score(x_test,y_test)
Out[22]: 0.9942264954173058
In [23]: la =Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[23]: Lasso(alpha=10)
In [24]: la.score(x_test,y_test)
Out[24]: 0.3605150942286648
 In [ ]:
```