<u>Physics 220</u> Fall 2024

Problem Set # 6 (due on Fri Nov 15th)

1) Two relativistic particles with rest masses m_1 and m_2 are observed to move along the observer's z-axis towards each other with velocities v_1 and v_2 respectively. Upon collision they are observed to coalesce into one particle of rest mass m, moving with velocity v relative to the observer.

- a) Find m and v in terms of m_1 , m_2 , v_1 , v_2 .
- b) Would it be possible for the resultant particle to be a photon with mass m = 0 assuming that m_1 , $m_2 > 0$?
- c) Same question as in (b) but when one or both of the masses vanish
- 2) A π^+ meson (rest mass $m_\pi = 139$ MeV collides with a neutron (rest mass $m_n = 939$ MeV), which is at rest in the laboratory, to produce a K+ meson (rest mass $m_K = 494$ MeV) and a Λ baryon (rest mass $m_\Lambda = 1115$ MeV). What is the threshold total energy (in the laboratory frame) of the π^+ for this reaction to proceed?

- 3) Consider the relativistic one dimensional harmonic oscillator with mass m and potential energy $U = \frac{1}{2}kx^2$. The maximal amplitude of the oscillator is xmax = a.
 - a) Find the Lagrangian for this system.
 - b) Find the Euler-Lagrange equation for this system.
 - c) Find the conserved energy for this system.
 - d) Find an integral expression for the period τ of the oscillation.
 - e) Determine the first relativistic correction to the period by expanding the integral expression for the period found in d) to first order in ka2 mc2 and performing the integrations.

- 4) Consider the motion of a relativistic rocket, on which no external forces act. The rocket is propelled by expelling gasses at a constant velocity *u* with respect to the rocket. As a result of this propulsion, the mass m of the rocket, and its velocity *v*, will change over time.
 - a) Obtain the differential equation for the change in the rocket velocity v as a function of the change in its mass m, as a function of m, v and u.
 - b) Solve this equation for v as a function of m