Efficient Multi-class Anxiety Level Prediction Approximation for Long Assessments

Rogers Haochong Yang¹, Yuan Hong Sun², Kang Lee^{*}

Department of Statistical Sciences¹ & Department of Applied Psychology and Human Development ^{2*}, University of Toronto

BACKGROUND

- Anxiety disorders have been a significant public health concern and can affect one's quality of life and impair daily functioning. Affecting 264 million people worldwide, 60% of college students in US reported having overwhelming anxiety in the past year.
- Psychometric assessments such as Depression Anxiety Stress Scale (DASS) are effective but flawed in design, leading to fewer respondents and lower response quality.
- Q: Can we use machine learning techniques to predict our anxiety level accurately and efficiently based on existing assessments?

DATA SOURCE

- Derived from DASS-42 Scale, which was completed by a large and diverse sample of participants (N=31,715), collected from an online website called Open Psychometrics.
- 42 items are scored on a 4-point likert scale ranging from none to always, indicating level of symptoms experienced over past week.
- The resulting level of anxiety is calculated by summing up scores of relevant questions.
- Resulting anxiety labels are classified into 5 levels of severity: Normal, Mild, Moderate, Severe, Extremely Severe

METHODS

Dataset Preparation

Dataset Processing

Train Models on permutations Select Best Techniques based Hyperparameter | on validation set accuracy of selected features and Tuning and determine best fit model demographics

App Implementation

RESULTS

- Models Explored and have hyperparameter tuned:
 - K-Nearest Neighbors (KNN)
 - Support Vector Machine (SVM)
 - Multi-Layer Perceptron (MLP)
 - Kolmogorov–Arnold Networks (KAN)
 - Stacked Generalization Ensemble (Ensemble)

E.g., SHAP Selected Items:

- [#28] I felt I was close to panic.
- [#20] I felt scared without any good reason.
- [#41] I experienced trembling (eg, in the hands)
- Implementing Ensemble Model:
 - Hyperparameter tuned over combinations of 7 questions input
 - Validation AUC Score of 86.85%
 - F1 Score of 78.96%

Applied to me to some degree, or some of the time

Applied to me very much, or most of the time

Applied to me to a considerable degree, or a good part of time

Cohen's Kappa (κ) of 73.67%

Figure 1: Models Performances over Number of Questions Trained without Demographics. Note that the Base line accuracy in a 5-class prediction task is 20%.

• 7 items with demographic features or 9 items without to reach 85% accuracy in five-level multiclass classification task.

Note that the Base line accuracy in a 5-class prediction task is 20%

APPLICATION

Welcome to the Depression Anxiety Stress Scales (DASS) prediction interactive webpage. computes an individual's anxiety severity in five levels using a machine learning model trained using data collected from an onlin I experienced breathing difficulty (e.g., excessively rapid breathing, breathlessness in the absence of physical exertion). Click to drop down I had a feeling of shakiness (e.g., legs going to give way) Click to drop down I found myself in situations that made me so anxious I was most relieved when they ended Click to drop down Did not apply to me at all

I was aware of the action of my heart in the absence of physical exertion (e.g., sense of heart rate increase, heart missing a beat).

Welcome to the results page for the Depression Anxiety Stress Scales (DASS) multiclass prediction interactive webpage survey.

Your predicted anxiety severity level is: moderate.

Displayed is your estimated anxiety severity level given your answers to the selected DASS questions. This is calculated through a machine learning model pre-trained using data collected from an online

*This webpage does not contain medical/health advice. This tool is intended for informational and

Scan the QR Code to test out the assessmer

More about me and my research, feel free

DISCUSSION

- Key features relevant to predicting anxiety levels are identified and applied for training ML model.
- Time and effort needed for assessing anxiety status are significantly reduced while maintaining high prediction accuracy and reliability.
- Web App with our model in the backend can be used for regularly self-screening or clinical assessment.
- Wide applications to other forms of mental health assessments to significantly reduce the efforts needed.

ACKNOWLEDGEMENT

Sincere gratitude to the Data Sciences Institute at University of Toronto for their invaluable support.

