

Hi5630HV110 G.Hn PLC 芯片

用户指南

文档版本 01

发布日期 2018-03-10

版权所有 © 深圳市海思半导体有限公司 2018。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

商标声明

、HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为总部办公楼 邮编: 518129

网址: http://www.hisilicon.com/cn/

客户服务电话: 4008302118

客户服务邮箱: support@hisilicon.com

前言

概述

本文档针对 Hi5630H 芯片实现的业务功能、接口时序参数、封装以及 PCB 布线的进行描述,指导用户能够正确的使用芯片。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
Hi5630H 芯片	V110

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 维护工程师
- 软件工程师

符号约定

在本文中可能出现下列标志,它们所代表的含义如下。

符号	说明
危险	用于警示紧急的危险情形,若不避免,将会导致人员死亡 或严重的人身伤害。
全 警告	用于警示潜在的危险情形,若不避免,可能会导致人员死 亡或严重的人身伤害。

符号	说明
▲ 小心	用于警示潜在的危险情形,若不避免,可能会导致中度或 轻微的人身伤害。
注意	用于传递设备或环境安全警示信息,若不避免,可能会导致设备损坏、数据丢失、设备性能降低或其它不可预知的结果。 "注意"不涉及人身伤害。
□ 说明	用于突出重要/关键信息、最佳实践和小窍门等。 "说明"不是安全警示信息,不涉及人身、设备及环境伤害 信息。

修改记录

修改记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修改日期	版本	相关的 DTS 或 JIRA 单号	修改描述	修改作者
2018-03-10	01	-	第1次发布正式版本。	-

目 录

前 言	ii
修改记录	iv
1 概述	12
1.1 功能简述	12
1.2 主要特点	13
1.2.1 特性概述	13
1.2.2 电力线通信接口特性	14
1.2.3 Ethernet 以太接口特性	14
1.2.4 PCIe 接口特性	15
1.2.5 LAN Switch 特性	15
1.3 电气特点	17
1.4 遵从的标准与协议	18
1.5 应用领域	19
1.6 典型应用	19
1.6.1 1200M 路由器集成 G.hn 应用场景	19
1.6.2 300M 单频型 G.hn AP 应用场景	19
2 时序和参数	21
2.1 时序图例	21
2.2 RGMII 接口	21
2.2.1 接收方向	21
2.2.2 发送方向	22
2.3 SDIO 接口	23
2.3.1 接收方向	23
2.3.2 发送方向	24
2.4 MDIO 接口	24
2.5 I2S 接口	25
2.6 SPI FLASH 接口	26
2.7 SPI MASTER 接口	27
2.8 UART 接口	27
2.9 I2C 接口	28

2.10 JTAG 接口	30
3 电性能及可靠性参数	32
3.1 极限电压参数	32
3.2 推荐工作电压	33
3.3 功耗分布	34
3.4 电气特性	35
3.4.1 数字 IO 电气参数	35
3.4.2 PCIE 接口电气参数	39
3.4.3 GEPHY 接口电气参数	40
3.5 上下电要求	40
3.6 极限工作环境	41
3.7 推荐工作环境	42
3.8 可靠性参数	42
3.9 热阻特性	43
3.10 焊接工艺	43
4 封装	45
4.1 概述	45
4.2 芯片 Mark 图	45
4.3 封装图	46
5 管脚描述	49
5.1 管脚类型说明	
5.2 管脚数量统计	51
5.3 系统时钟接口	
5.4 复位接口	51
5.5 模拟接口	52
5.6 数字接口	54
5.7 电源和地	58
5.7.1 模拟电源和地	58
5.7.2 数字电源和地	60
5.8 复用关系	60
5.9 上电配置字	71
5.9.1 硬件配置字	71
6 管脚排列	72
6.1 管脚排列图	72
6.2 管脚速查表	73
7 硬件设计指南	76
7.1 系统设计指导	

7.1.1 Hi5630H Fanout 封装设计建议	76
7.1.2 电源设计指导	77
7.2 原理图设计建议	81
7.2.1 Flash 设计建议	81
7.2.2 PCIE 接口设计建议	82
7.2.3 RGMII 接口设计建议	82
7.2.4 SDIO 接口设计建议	82
7.2.5 GEPHY 接口设计建议	83
7.2.6 BUCK 接口设计建议	83
7.2.7 AFE 接口设计建议	83
7.2.8 时钟电路设计建议	84
7.2.9 过零电路设计建议	84
7.2.10 不使用管脚的处理	84
7.3 PCB 设计建议	84
7.3.1 Flash 设计建议	84
7.3.2 PCIE 接口设计建议	84
7.3.3 RGMII 接口设计建议	85
7.3.4 SDIO 接口设计建议	85
7.3.5 GEPHY 接口设计建议	85
7.3.6 BUCK 接口设计建议	86
7.3.7 AFE 接口设计建议	86
7.3.8 时钟电路设计建议	86
7.3.9 过零电路设计建议	86
7.2.10 He	

插图目录

图 1-1 Hi5630H 逻辑框图	12
图 1-2 1200M 路由器集成 G.hn 应用场景	19
图 1-3 300M 单频型 G.hn AP 应用场景	20
图 2-1 时序图例	21
图 2-2 RGMII 接收方向接口时序	21
图 2-3 RGMII 发送方向接口时序	22
图 2-4 SDIO 接口输入方向接口时序	23
图 2-5 SDIO 接口输出方向时序	24
图 2-6 MDIO 接收方向接口时序	24
图 2-7 MDIO 发送方向接口时序	25
图 2-8 I2S 接口时序	25
图 2-9 SFC 输入方向时序	26
图 2-10 SFC 输出方向时序图	26
图 2-11 SPI MASTER 接口输出时序	27
图 2-12 SPI MASTER 接口输入时序	27
图 2-13 UART 接口时序	28
图 2-14 I ² C 接口帧传输示意图	28
图 2-15 I ² C 接口时序图	28
图 2-16 JTAG 接口时序	30
图 3-1 LVCMOS 上冲示意图	37
图 3-2 LVCMOS 下冲示意图	37
图 3-3 上电顺序图	41
图 3-4 焊接温度曲线图	44
图 4-1 Mark 示意图	45
图 4-2 Top View	46

插图目录

图 4-3 Side View	47
图 4-4 Side view Detail A 放大图	47
图 4-5 Bottom view	47
图 6-1 管脚分布图	72
图 7.1 H;5620HV110 在号 Fanout 图	77

表格目录

表 1-1 电刀线通信特性参数列表	14
表 1-2 Ethernet 以太接口特性参数列表	14
表 1-3 PCIe 接口特性参数列表	15
表 1-4 LAN Switch 特性参数列表	15
表 1-5 Hi5630H 的电源类型	17
表 2-1 RGMII 接收方向接口时序参数	22
表 2-2 RGMII 发送方向接口时序参数	23
表 2-3 SDIO 输入方向时序参数	24
表 2-4 SFC 输出方向时序参数	24
表 2-5 MDIO 接口时序参数	25
表 2-6 SFC 输入方向时序参数	26
表 2-7 SFC 输出方向时序参数	26
表 2-8 SPI MASTER 接口输出时序参数	27
表 2-9 SPI MASTER 接口输入时序参数	27
表 2-10 UART 接口时序参数	28
表 2-11 I ² C 接口标准速率模式时序参数	29
表 2-12 I ² C 接口快速速率模式时序参数	29
表 2-13 JTAG 接口时序参数	30
表 3-1 极限电压参数	32
表 3-2 推荐工作电压	33
表 3-3 路由器集成 G.hn 应用场景下电源的功耗分布	34
表 3-4 3.3V LVCMOS I/O 直流电气特性	35
表 3-5 3.3V LVCMOS I/O 单端直流电气特性	35
表 3-6 LVCMOS 上下冲参数说明	37
表 3-7 1.8V LVCMOS I/O 直流参数	38

表 3-8 1.8V LVCMOS I/O 单端直流电气特性	38
表 3-9 PCIE 测试指标说明	39
表 3-10 GEPHY IO 的电气特性列表	40
表 3-11 上电时序参数	41
表 3-12 极限工作环境参数	41
表 3-13 推荐工作环境参数	42
表 3-14 可靠性参数	42
表 3-15 芯片潮湿敏感等级定义	42
表 3-16 热阻特性	43
表 4-1 Mark 说明	45
表 4-2 封装参数表	48
表 5-1 管脚类型说明	50
表 5-2 管脚数量统计表	51
表 5-3 系统时钟接口管脚列表	51
表 5-4 复位接口管脚列表	52
表 5-5 模拟接口管脚列表	52
表 5-6 数字接口管脚列表	55
表 5-7 模拟电源和地管脚列表	58
表 5-8 数字电源和地管脚列表	60
表 5-9 复用管脚列表	61
表 5-10 复用管脚配置寄存器	68
表 5-11 硬件配置字列表	71
表 6-1 管脚速查表	73
表 7-1 Hi5630HV110 的电源参数	77
表 7-2 内核电源 PCB 设计要求	79
表 7-3 内核电源 PCB 推荐滤波网络	79
表 7-4 板级电源合并参考	80
表 7-5 SPI Nor Flash 接口设计推荐	82
表 7-6 RGMII 接口各信号匹配设计推荐	82
表 7.7 SDIO 接口信号匹配设计推荐	92

1 概述

1.1 功能简述

Hi5630HV110 是一款支持 ITU-T G.Hn 协议的家庭互联 SoC 芯片,为解决利用电力线建立家庭网络的关键器件。Hi5630HV110 集成了 ITU-T G.Hn MAC/PHY 传输器,以太 IEEE802.3MAC/PHY, PCIE1.1 控制器/PHY,局域交换器等功能,提供桥接电力线网络,以太 802.3 网络,和 WIFI 网络功能。为以 G.Hn 电力线互联的家庭网络产品提供完整的解决方案。

应用场景:

- 以电力线网络为主的路由器
- 连接电力线网络和以太网络(含 WIFI 网络)的桥接器

Hi5630H 的逻辑框图如图 1-1 所示。

图1-1 Hi5630H 逻辑框图

Hi5630HV110 芯片主要包括:

• SYS ECS: ECS 小系统

- 双核 A9-CPU、ECS DMAC、Timer、BootROM、SysCtrl 及总线
- 丰富外设接口: SFC、GPIO、SPIM、I2C、UART、SDIO、I2S
- PIE 报文插入和提取逻辑
- 两组 PCIe 控制器和 PCIe-PHY
- DDR 接口控制器、DDR-PHY 和合封的 DDR2-SDRAM 内存
- GHN DATAPATH: GHN 电力线通信传输通路
 - GHN_PHY (AFE): GHN 物理层模拟前端
 - GHN PHY (DFE): GHN 物理层数字前端
 - GHN_DLL: GHN 数据链路层
- ETH_INF: ETH_INF 模块主要完成以太网接口、GHN 接口和 CPU 处理器系统之间 的数据收发处理,内部主要包括报文转发引擎 LAN SWITCH、GE MAC、GE-PHY、 MDIO 几个模块
- OTHER:包含芯片的模拟小 IP(含 POR、Tsensor、DC-DC BUCK、Dying GASP、PLL)、CRG 及全局配置寄存器等

1.2 主要特点

1.2.1 特性概述

Hi5630HV110 的功能特点如下:

- 以电力线为介质,符合 ITU-T G.9960、G.9961、G.9962、G.9972 协议的接口。
- 符合以太IEEE802.3协议的1000/100M RGMII接口和1000/100/10M 三模MDI接口。
- 支持两个符合 PCIe Gen1.1 协议的 PCIe 接口。
- 局域交换器 LAN-SWITCH 功能,连接电力线接口、以太接口和 PCIe 接口;完成各接口间数据转发、网络 L2 协议处理、网络 NAPT 协议处理、报文修改、用户流的QoS 等业务层处理。
- 支持一个符合 SDIO SDR25 标准的接口。
- 内嵌系统:
 - Cortex-A9 双核 500MHz
 - 64KB 的指令 Cache 和 32KB 的数据 Cache
 - 支持 MMU
 - 支持 ACP 接口
 - 支持副核时钟关闭; 支持时钟调频
 - 支持 DMA, 提供 16 个 DMA 通道
 - 支持 2 个 Dual-Timer
- 支持合封 DDR2 SDRAM 内存, 64MB 容量。
- 支持 SPI NOR-Flash 接口,最大 16MB 容量。
- 支持 I2S 语音接口。
- 支持 Line-Driver 控制接口。

- 支持电力线过零检测接口。
- 支持3个UART接口。
- 支持 2 个 I2C 接口。
- 支持 1 个 SPI Master 接口。
- 支持 38 个 GPIO 接口。
- 支持管脚复位。
- 支持掉电检测接口。

1.2.2 电力线通信接口特性

电力线通信特性参数如表 1-1 所示。

表1-1 电力线通信特性参数列表

特性项	特性参数
协议版本	支持 ITU-T G.9960、G.9961、G.9964、G.9972 标准: • G.9972 下支持 TDM 和 FDM 模式 • 只支持电力线介质 • 支持 50MHz、100MHz 两种 profile 支持 CENELEC EN50561 EMC 标准
电力线通信域 节点数	 支持一个域最多有8个节点,包括一个主节点(DM)和7个从节点(EP) 支持8个节点同时进行通信 不支持双向传输模式
电力线传输加 解密	支持 AES-128 CCM 加解密,符合 NIST FIPS 197 和 NIST 800-38C 要求

1.2.3 Ethernet 以太接口特性

Ethernet 以太接口特性如表 1-2 所示。

表1-2 Ethernet 以太接口特性参数列表

特性项	特性参数
协议版本	IEEE802.3

RGMII 接口	 只支持单端口 Single port 支持 RGMII/MII 模式 支持 100/1000Mbps 速率 支持线序调整 VDDIO = 1.8/2.5/3.3V, +/-5%
ETH-PHY MDI 接口	 只支持单端口 Single port 支持三种传输数率 Support triple modes: 1000/100/10Mbps
MDIO 接口	 支持单 MDIO 接口 支持 IEEE 802.3u clause 22 标准 支持最高 10MHz MDC 时钟 VDDIO=1.8/2.5/3.3V,+/-5%

1.2.4 PCIe 接口特性

PCIe 接口特性如表 1-3 所示。

表1-3 PCIe 接口特性参数列表

特性项	特性参数			
协议版本	CIe Gen1.1			
PCIe 接口	 支持两端口 single 支持 PCIe Gen 1.1 standard. Maximum data-rate = 2.5 Gbps 支持每个端口关闭,支持关闭时钟 支持 PCIE-PHY powerdown, L0/L1 low-power 模式 			

1.2.5 LAN Switch 特性

LAN Switch 特性如表 1-4 所示。

表1-4 LAN Switch 特性参数列表

特性项	特性参数
性能	双向处理能力, 2000 Mbps, 2.8M pps
最大帧长	ETH 帧,最大帧长,含 FCS 2000 byteETH 帧,最小帧长,含 FCS 40 byte
协议支持	PPPOE、IPv4、IPv6、TCP/UDP 等

特性项	特性参数
协议报文识别	支持识别 ARP、PPPOE 等协议族、ICMPv4、ICMPv6、TCP ACK/FIN/RST 等报文
二层转发	 支持二层 MAC 地址表,支持 MAC 地址自动学习和转发 支持单播 MAC/MAC+VLAN 学习转发 支持组播 MAC/MAC+VLAN 转发 支持 MAC 地址数目为 128 支持基于端口的学习使能控制 支持源端口抑制
二层广播转发	 支持基于 VLAN 或全端口广播转发 支持未知单播做广播转发 支持未知组播做广播转发 支持广播做广播转发 支持源端口抑制 支持 VLAN 数目 32
三层转发	 支持 IP 五元组链表转发, 同时支持 IPv4、IPv6,不支持 IP 隧道 支持 NAT/NAPT 处理 支持二三四层报文编辑 支持 PPPOE 编辑 链表数目 64K
ACL	 支持基于二三四层特征域做 ACL 分类 支持四个自定义 16bit 域做 ACL 分类 支持最多 8 个特征域标识一条流 支持一个报文可以匹配多条流,最多匹配 4 条流,支持 8 个优先级进行匹配决策 支持 ACL 表项数目 128 支持内部优先级标记、丢弃、捕获报文 支持双层 tag 添加、删除、修改 支持基于 ACL 的报文 CAR 支持未知报文 TOCPU 时的优先级标记

特性项	特性参数
	• 支持 CAR, 支持基于 ACL、未知单组播、广播报文做 CAR, CPU 端口 CAR
	• 支持入队管理,支持私有队列深度、最大队列深度配置,支持 尾丢弃,不支持 WRED
QoS	• 支持出口调度,支持 SP+DRR 调度
	• 支持端口优先级队列、用户优先级队列2级队列管理
	• 支持基于端口、队列做 shaping
	• 支持队列数目 128、资源数 16K、用户数 16、队列优先级数 4

1.3 电气特点

- 封装: TFBGA 10.5mm×10.5mm, 管脚间距: 0.65mm, 212 BALL
- 单板只提供 3.3V 单电源,芯片内部集成 2 路 DC-DC
- 支持 4 层 PCB 板
- 40MHz 单晶体时钟输入
- 工作温度: 0~70℃
- 典型功耗: 1.9W
- 峰值功耗: 2.4W

Hi5630H的电源类型如表 1-5 所示。

表1-5 Hi5630H 的电源类型

参数	符号	说明	典型值 (单位: V)
BUCK0/1	VDD33_BUCK	BUCK0/1 BUCK0 3.3V 功率电源	3.3
	AVDD33_BUCK	BUCK0 3.3V 模拟电源	3.3
OSC	AVDD33_OSC	AVDD33_OSC OSC 3.3V 模拟电源	
	VDD11_OSC	OSC 1.1V 模拟电源	1.1
AFE	AVDD11_RX	G.hn AFE RX 1.1V 模拟电源	1.1
	AVDD11_TX	G.hn AFE TX 1.1V 模拟电源	1.1
	AVDD18_AFE	G.hn AFE 1.8V 模拟电源	1.8
	AVDD33_AFE	G.hn AFE 3.3V 模拟电源	3.3
	AVDD18_PLL	AFE-PLL 1.8V 模拟电源	1.8

参数	符号	说明	典型值 (单位: V)	
GEPHY	AVDD11_GE	GE-PHY 1.1V 模拟电源	1.1	
	AVDD11_SH	GE-PHY 共用电路 1.1V 模拟电源	1.1	
	AVDD33_GE	GE-PHY 3.3V 模拟电源	3.3	
SCPLL	VDD33_SCPLL	SYS-PLL & DDR-PLL 1.1V 模 拟电源	3.3	
	AVDD18_PLL	SYS-PLL & DDR-PLL 3.3V 模 拟电源	1.8	
PCIE_PHY0/1	AVDD11_PCIE	PCIE-PHY0/1 1.1V 模拟电源	1.1	
	AVDD33_PCIE	PCIE-PHY0/1 3.3V 模拟电源	3.3	
DDRPHY	AVDD33_DDRPLL1	DDR-PHY 内置锁相环 DDRPLL1 模拟电源	3.3	
	AVDD33_DDRPLL2	DDR-PHY 内置锁相环 DDRPLL2 模拟电源	3.3	
Dying-Gasp	AVDD33_DG	Dying-Gasp 临终遗言比较器电源	3.3	
EFUSE	AVDD25_EFUSE	芯片内置 EFUSE 电源	2.5	
CORE	DVDD11	数字 CORE 电源	1.1	
GPIO IO	DVDD33_1	数字 IO 3.3V 电源	3.3	
	DVDD33_2	数字 IO 3.3V 电源	3.3	
DDRIO	VDDIO_CK_DDR2	DDR 时钟 IO 电源	1.8	
	VDDIO_DDR2	DDR IO 电源	1.8	

1.4 遵从的标准与协议

Hi5630HV110 支持以下标准协议:

- ITU-T Recommendation G.9960 Unified high-speed wire-line based home networking transceivers System architecture and physical layer specification.
- ITU-T Recommendation G.9961 Unified high-speed wire-line based home networking transceivers Data link layer specification.
- ITU-T Recommendation G.9964 Unified high-speed wire-line based home networking transceivers Power spectral density specification.

- ITU-T Recommendation G.9972 Coexistence mechanism for wireline home networking transceivers.
- IEEE802.3 Local and metropolitan area networks Specific requirements. Part3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications.
- CNELEC EN 50561 1, 2013: Power line communication apparatus used in low-voltage installations. Radio disturbance characteristics. Limits and methods of measurement. Apparatus for in-home use.
- RFC 2516 A Method for Transmitting PPP Over Ethernet.
- RFC 1661 The Point-to-Point Protocol (PPP) Specification.
- RFC791 Internet Protocol, Version 4 Specification.
- RFC1883 Internet Protocol Version 6 Specification.
- RFC 793 Transmission Control Protocol Specification.

1.5 应用领域

应用领域如下:

- 以电力线网络为主的路由器
- 连接电力线网络和以太网络(含 WIFI 网络)的桥接器

1.6 典型应用

1.6.1 1200M 路由器集成 G.hn 应用场景

1200M 路由器集成 G.hn 应用场景如图 1-2 所示。

图1-2 1200M 路由器集成 G.hn 应用场景

1.6.2 300M 单频型 G.hn AP 应用场景

300M 单频型 G.hn AP 应用场景应用场景如图 1-3 所示。

图1-3 300M 单频型 G.hn AP 应用场景

2 时序和参数

2.1 时序图例

图2-1 时序图例

2.2 RGMII 接口

2.2.1 接收方向

图2-2 RGMII 接收方向接口时序

表2-1 RGMII 接收方向接口时序参数

符号	参数描述	最小值	典型值	最大值	单位	寄存 器配 置
t1	RGMII_RX CLK 周期	-	8(1G 模式) 40(100M 模式) 400(10M 模式)	-	ns	-
t2	RGMII_RX CLK 的高脉 冲宽度	3.6(1G 模式) 16(100M 模式) 160(10M 模式)	4 (1G 模式) 20 (100M 模式) 200 (10M 模式)	4.4(1G 模式) 24(100M 模式) 240(10M 模式)	ns	-
t3	RGMII_RX CLK 的低脉 冲宽度	3.6(1G 模式) 16(100M 模式) 160(10M 模式)	4 (1G 模式) 20 (100M 模式) 200 (10M 模式)	4.4(1G 模式) 24(100M 模式) 240(10M 模式)	ns	-
t4	输入信号的 建立时间	1	2	-	ns	-
t5	输入信号的 保持时间	1	2	-	ns	-

2.2.2 发送方向

图2-3 RGMII 发送方向接口时序

表2-2 RGMII 发送方向接口时序参数

符号	参数描述	最小值	典型值	最大值	单位	寄存 器配 置
t1	RGMII_TX CLK 周期	-	8(1G 模式) 40(100M 模式) 400(10M 模式)	-	ns	-
t2	RGMII_TX CLK 的高脉 冲宽度	3.6(IG 模式) 16(100M 模式) 160(10M 模式)	4(1G 模式) 20(100M 模式) 200(10M 模式)	4.4(1G 模式) 24(100M 模式) 240(10M 模式)	ns	-
t3	RGMII_TX CLK 的低脉 冲宽度	3.6(IG 模式) 16(100M 模式) 160(10M 模式)	4(1G 模式) 20(100M 模式) 200(10M 模式)	4.4(1G 模式) 24(100M 模式) 240(10M 模式)	ns	-
t4/ t5	时钟上升沿 /下降沿的 延时到输出 信号变化的 时间	1.2	2	-	ns	-

2.3 SDIO 接口

SDIO 接口仅支持 SDR25 模式(不支持 DDR 及其它 high speed 模式),最高的时钟频率为 50MHz。

2.3.1 接收方向

图2-4 SDIO 接口输入方向接口时序

表2-3 SDIO 输入方向时序参数

参数	符号	最小值	典型值	最大值	单位
SDIO_CLK 时钟周期	Tclk	20	-	-	ns
输入信号建立时间要求	T_{su}	6.0	-	-	ns
输入信号保持时间要求	T_{hd}	5.5	-	-	ns

2.3.2 发送方向

图2-5 SDIO 接口输出方向时序

表2-4 SFC 输出方向时序参数

参数	符号	最小值	典型值	最大值	单位
SDIO_CLK 时钟周期	Tclk	20	-	-	ns
输出 DATA 信号延时 /输出 CMD 信号延时	T_{oDLY}	2.0	-	12.0	ns

2.4 MDIO 接口

图2-6 MDIO 接收方向接口时序

图2-7 MDIO 发送方向接口时序

表2-5 MDIO 接口时序参数

参数	最小值	典型值	最大值	单位
MDC 周期	40	-	-	ns
MDC 高/低电平	20	-	-	ns
MDC rise/fall time	-	-	10	ns
MDIO setup time to MDC rising(发送方向)	10	-	-	ns
MDIO hold time to MDC rising(发送方向)	10	-	-	ns
MDIO Delay from MDC rising (接收方向)	0	-	300	ns

2.5 I2S 接口

图2-8 I2S 接口时序

I2S 接口传输数据分为左右两个声道,根据 XFS(RFS)信号的高低电平区分。按照协议,用 XCK/RCK 时钟的上升沿进行数据采样,MSB 在 XFS/RFS 变化的下一个时钟周期有效。总是先传送 MSB,后传送 LSB。

2.6 SPI FLASH 接口

图2-9 SFC 输入方向时序

表2-6 SFC 输入方向时序参数

参数	符号	最小值	典型值	最大值	单位
SFC_CLK 时钟周期	T_{clk}	20	-	-	ns
输入信号建立时间要求	T_{su}	10	-	-	ns
输入信号保持时间要求	T_{hd}	-2.0	-	-	ns

图2-10 SFC 输出方向时序图

表2-7 SFC 输出方向时序参数

参数	符号	最小值	典型值	最大值	单位
SFCCLK 时钟周期	T_{clk}	20	-	-	ns
输出数据信号延时	T_{ov}	0	-	4.5	ns
输出片选信号延时	T_{css}	T _{clk} /2	-	$3.5 \times T_{clk}$	ns

2.7 SPI MASTER 接口

图2-11 SPI MASTER 接口输出时序

表2-8 SPI MASTER 接口输出时序参数

符号	参数描述	最小值	典型值	最大值	单位
ttxd	输出延迟	0	-	3.5	ns
ttckp	发送时钟周期	40	-	-	ns

图2-12 SPI MASTER 接口输入时序

表2-9 SPI MASTER 接口输入时序参数

符号	参数描述	最小值	典型值	最大值	单位
Trxs	接收数据的建立时间	13	-	-	ns
Trxh	接收数据的保持时间	-2.0	-	-	ns
Trckp	接收时钟周期	40	-	-	ns

2.8 UART 接口

UART 接口输入输出数据与 APB 总线时钟 pclk 之间的时序关系如图 2-13 所示。

图2-13 UART 接口时序

表2-10 UART 接口时序参数

符号	参数描述	最小值	典型值	最大值	单位
tbit	1bit 的时间(start 位传输时间)	5333	-	104166	ns
td	数据位传输时间	26665	-	833328	ns
tp	校验位传输时间	5333	-	104166	ns
tstop	stop 位传输时间	5333	-	208332	ns

2.9 I2C 接口

图2-14 I2C 接口帧传输示意图

图2-15 I²C 接口时序图

表2-11 I²C 接口标准速率模式时序参数

符号	参数描述	最小值	典型值	最大值	单 位	寄存器配置
f_{SCL}	SCL 时钟频率	0	-	100	kHz	I ² C 控制寄存器 I2C_CON bit[2:1]选 择为标准模式
t _{HD:STA}	启动保持时间	4.0	-	-	μs	-
t _{LOW}	SCL 低电平周期	4.7	-	-	μs	标准模式 SCL 低电 平时间配置寄存器 I2C_SS_SCL_LCNT
t _{HIGH}	SCL 高电平周期	4.0	-	-	μs	标准模式 SCL 高电 平时间配置寄存器 I2C_SS_SCL_HCNT
t _{SU:STA}	启动建立时间	4.7	-	-	μs	1
t _{HD;DAT}	数据保持时间	0	-	3.45	μs	-
t _{SU;DAT}	数据建立时间	250	-	-	ns	-
t _r	SDA、SCL上升 时间	-	-	1000	ns	-
t_{f}	SDA、SCL下降 时间	-	-	300	ns	-
t _{SU;STO}	结束建立时间	4.0	-	-	μs	-
$t_{ m BUF}$	开始与结束之间 的总线释放时间	4.7	-	-	μs	-

表2-12 I²C 接口快速速率模式时序参数

符号	参数描述	最小值	典型值	最大值	单 位	寄存器配置
f_{SCL}	SCL 时钟频率	0	-	400	kHz	I2C 控制寄存器 I2C_CON bit[2:1]选 择为快速模式
t _{HD:STA}	启动保持时间	0.6	-	-	μs	-
t_{LOW}	SCL 低电平周 期	1.3	-	-	μs	快速模式 SCL 低电 平时间配置寄存器 I2C_FS_SCL_LCNT

符号	参数描述	最小值	典型值	最大值	单 位	寄存器配置
t _{HIGH}	SCL 高电平周 期	0.6	-	-	μs	快速模式 SCL 高电 平时间配置寄存器 I2C_FS_SCL_HCNT
t _{SU:STA}	启动建立时间	0.6	-	-	μs	-
t _{HD;DAT}	数据保持时间	0	-	0.9	μs	-
t _{SU;DAT}	数据建立时间	100	-	-	ns	-
t _r	SDA、SCL 上升 时间	20+0.1C _b	-	300	ns	-
$t_{\rm f}$	SDA、SCL 下降 时间	20+0.1C _b	-	300	ns	-
t _{SU;STO}	结束建立时间	0.6	-	-	μs	-
t _{BUF}	开始与结束之 间的总线释放 时间	1.3	-	-	μs	-

2.10 JTAG 接口

图2-16 JTAG 接口时序

表2-13 JTAG 接口时序参数

符号	参数描述	最小值	典型值	最大值	单位	寄存器配置
T121	JTAG_TCK 周期	100	-	-	ns	-

符号	参数描述	最小值	典型值	最大值	单位	寄存器配置
T122	JTAG_TCK 为高(或低) 的时间	40	-	-	ns	-
T123	JTAG_TMS 和 JTAG_TDI 的建立时间	10	-	-	ns	-
T124	JTAG_TMS 和 JTAG_TDI 的保持时间	10	-	-	ns	-
T125	JTAG_TCK 到 JTAG_TDO 的下降沿	0	-	20	ns	-
T126	所有 JTAG 信号的上升/ 下降时间	-	-	3	ns	-

3 电性能及可靠性参数

3.1 极限电压参数

注意

超过表 3-1 中的数值, 可能导致芯片异常。

极限电压参数如表 3-1 所示。

表3-1 极限电压参数

参数	符号	最小值	最大值	单位
BUCK0/1	VDD33_BUCK	-0.5	4.0	V
	AVDD33_BUCK	-0.5	4.0	V
OSC	AVDD33_OSC	-0.5	4.0	V
	VDD11_OSC	-0.5	1.32	V
AFE	AVDD11_RX	-0.5	1.32	V
	AVDD11_TX	-0.5	1.32	V
	AVDD18_AFE	-0.5	2.2	V
	AVDD33_AFE	-0.5	4.0	V
	AVDD18_PLL	-0.5	2.2	V
GEPHY	AVDD11_GE	-0.5	1.32	V
	AVDD11_SH	-0.5	1.32	V
	AVDD33_GE	-0.5	4.0	V
SCPLL	VDD33_SCPLL	-0.5	4.0	V
	AVDD18_PLL	-0.5	2.2	V

参数	符号	最小值	最大值	单位
PCIE_PHY0/1	AVDD11_PCIE0	-0.5	1.32	V
	AVDD33_PCIE0	-0.5	4.0	V
DDRPHY	AVDD33_DDRPLL1	-0.5	4.0	V
	AVDD33_DDRPLL2	-0.5	4.0	V
Dying-Gasp	AVDD33_DG	-0.5	4.0	V
EFUSE	AVDD25_EFUSE	-0.5	3.0	V
数字 CORE 电源	DVDD11	-0.5	1.32	V
3.3V IO 电源	DVDD33_1	-0.5	4.0	V
	DVDD33_2	-0.5	4.0	V
DDR 时钟 IO 电源	VDDIO_CK_DDR2	-0.5	2.2	V
DDR IO 电源	VDDIO_DDR2	-0.5	2.2	V

3.2 推荐工作电压

Hi5630H 的推荐工作电压如表 3-2 所示。

表3-2 推荐工作电压

参数	符号	最小值	典型值	最大值	单位
BUCK0/1	VDD33_BUCK	3.2	3.3	3.4	V
	AVDD33_BUCK	3.2	3.3	3.4	V
OSC	AVDD33_OSC	3.2	3.3	3.4	V
	VDD11_OSC	1.067	1.1	1.133	V
AFE	AVDD11_RX	1.067	1.1	1.133	V
	AVDD11_TX	1.067	1.1	1.133	V
	AVDD18_AFE	1.746	1.8	1.854	V
	AVDD33_AFE	3.2	3.3	3.4	V
	AVDD18_PLL	1.746	1.8	1.854	V
GEPHY	AVDD11_GE	1.067	1.1	1.133	V
	AVDD11_SH	1.067	1.1	1.133	V
	AVDD33_GE	3.2	3.3	3.4	V

参数	符号	最小值	典型值	最大值	单位
SCPLL	VDD33_SCPLL	3.2	3.3	3.4	V
	AVDD18_PLL	1.746	1.8	1.854	V
PCIE_PHY0/1	AVDD11_PCIE0	1.067	1.1	1.133	V
	AVDD33_PCIE0	3.2	3.3	3.4	V
DDRPHY	AVDD33_DDRPLL1	3.2	3.3	3.4	V
	AVDD33_DDRPLL2	3.2	3.3	3.4	V
Dying-Gasp	AVDD33_DG	3.2	3.3	3.4	V
EFFUSE	AVDD25_EFUSE	2.425	2.5	2.575	V
数字 CORE 电源	DVDD11	1.067	1.1	1.133	V
3.3V IO 电源	DVDD33_1	3.2	3.3	3.4	V
	DVDD33_2	3.2	3.3	3.4	V
DDR 时钟 IO 电源	VDDIO_CK_DDR2	1.746	1.8	1.854	V
DDR IO 电源	VDDIO_DDR2	1.746	1.8	1.854	V

3.3 功耗分布

注意

- 1、上述功耗值为芯片实测值。
- 2、典型功耗指环境温度为常温(25℃)、常压下, Hi5630H 在典型应用下的功耗值。该应用模式包括: 所有端口处于正常用户工作状态(2*PCIE+PLC+GEPHY)。
- 3、峰值功耗指芯片所有电源电压正偏 5%, 芯片结温为 125 度时, Hi5630 在最大应用下满负荷工作所需要的功耗值。该应用模式包括: 所有端口都处于满负荷工作状态 (2*PCIE+PLC+GEPHY)。

典型应用场景(路由器集成 G.hn)下, Hi5630H的各电源功耗分布如表 3-3 所示。

表3-3 路由器集成 G.hn 应用场景下电源的功耗分布

芯片部分	峰值电流(mA)	典型功耗(mW)	峰值功耗(mW)
3.3V 电源	253	759	877

芯片部分	峰值电流(mA)	典型功耗(mW)	峰值功耗(mW)
1.1V 电源	1309	1137	1512
芯片总功耗		1896	2389

3.4 电气特性

3.4.1 数字 IO 电气参数

3.4.1.1 3.3V LVCMOS

3.3V LVCMOS I/O 直流电气特性如表 3-4 所示。

表3-4 3.3V LVCMOS I/O 直流电气特性

参数	标识	最小值	典型值	最大值	单位
I/O 电压	V_{DD33}	2.97	3.3	3.63	V
输入电容	C_{IN}	3.06	3.30	3.42	pF
最大输入电压	V _{I MAX}	-	-	3.63+0.5	V

3.3V LVCMOS I/O 单端直流电气特性如表 3-5 所示。

表3-5 3.3V LVCMOS I/O 单端直流电气特性

参数	标识	最小值	典型值	最大值	单位
输入高电平	V_{IH}	2.0	-	DVDD33+0.3	V
输入低电平	$V_{\rm IL}$	-0.3	-	0.8	V
触发点	V_{t}	1.49	1.65	1.84	V
史密特触发点低到高	V_{t+}	1.66	1.83	1.96	V
史密特触发点高到低	V_{t-}	1.24	1.37	1.48	V
输入漏电流(V _{IN} =3.3V 或 0V 情况)	$I_{\rm IZ}$	-	-	±10	μΑ
三态输入漏电流 (V _{OUT} =3.3V 或 0V 情况)	Ioz	-	-	±10	μΑ
上拉电阻	R _{PU}	80	90	100	ΚΩ

参数		标识	最小值	典型值	最大值	单位
下拉电阻		R _{PD}	80	90	100	ΚΩ
输出高电平		V_{OH}	2.4	-	-	V
输出低电平		V_{OL}	-	-	0.4	V
IO4 低电平输出 VoL	1	111	3.74	6.22	8.84	mA
电流(识档位: DS2/DS1/DS0)	2	110	7.46	12.4	17.6	mA
	4	101	14.6	24.4	34.7	mA
	5	100	18.4	30.6	43.5	mA
	12	011	36.2	60.4	86	mA
	14	010	39.9	66.6	94.8	mA
	16	001	47.1	78.6	112	mA
	18	000	50.8	84.8	121	mA
IO4高电平输出 V _{OH}	1	111	5.24	11.6	20	mA
时电流(识档位: DS2/DS1/DS0)	2	110	10.5	23.3	40.1	mA
	4	101	21.1	46.6	80.3	mA
	5	100	26.4	58.3	100	mA
	12	011	52.7	117	201	mA
	14	010	58	128	221	mA
	16	001	68.6	152	261	mA
	18	000	73.8	163	281	mA
IO2 低电平输出 vol	1	11	3.43	5.72	8.17	mA
电流(识档位: DS2/DS1/DS0)	2	10	6.9	11.5	16.5	mA
D32/D31/D30/	3	01	10.1	16.9	24.2	mA
	4	00	13.6	22.7	32.5	mA
IO2 高电平输出 voh	1	11	4.44	9.84	17	mA
时电流(识档位: DS2/DS1/DS0)	2	10	8.87	19.7	33.9	mA
	3	01	13.3	29.4	50.7	mA
	4	00	17.7	39.2	67.6	mA

数字 IO 的上下冲说明如图 3-1、图 3-2 所示。

图3-1 LVCMOS 上冲示意图

图3-2 LVCMOS 下冲示意图

表3-6 LVCMOS 上下冲参数说明

参数	上冲	下冲	单位
Vos (3.3V)	4.3	-1	V
Vos (2.5V)	3.2	-0.7	V
Vos (1.8V)	2.3	-0.5	V
tos	0.2	0.2	脉宽

3.4.1.2 1.8V LVCMOS

1.8V LVCMOS I/O 直流参数如表 3-7 所示。

表3-7 1.8V LVCMOS I/O 直流参数

参数	标识	测试条件	最小值	典型值	最大值	单位
I/O 电压	$V_{\rm DD18}$	-	1.62	1.8	1.98	V
输入电容	C_{IN}	-	3.06	3.30	3.42	pF
最大输入电压	V _{I MAX}	-	-	-	1.98	V

1.8V LVCMOS I/O 单端直流电气特性如表 3-8 所示。

表3-8 1.8V LVCMOS I/O 单端直流电气特性

参数	标识	测试条件	最小值	典型值	最大值	单位
输入高电平	V_{IH}	-	0.7V _{DD18}	-	V _{DD18} + 0.3	V
输入低电平	$V_{\rm IL}$	-	-0.3	-	$0.2V_{DD18}$	V
触发点	V_{t}	-	0.76	0.85	0.94	V
史密特触发点低到高	V_{t+}	-	-	-	-	V
史密特触发点高到低	V_{t-}	-	-	-	-	V
输入漏电流	I _{IZ}	(V _{IN} =3.3V 或 0V 情况)	-	-	±10	μΑ
三态输入漏电流	I_{OZ}	(V _{OUT} =3.3V 或 0V 情况)	-	-	±10	μΑ
上拉电阻	R_{PU}	-	80	90	100	ΚΩ
下拉电阻	R_{PD}	-	80	90	100	ΚΩ
输出高电平	V _{OH}	I _{OH} = -100uA	V _{DD18} – 0.2	-	-	V
输出低电平	V_{OL}	$I_{OH} = -100uA$	-	-	0.2	V
输入电容	C _{IN}	-	-	-	10	pF
IO4 低电平输出 VOL 电流 (识档位: DS2/DS1/DS0)	1	111	-	1	-	mA

参数	标识	测试条件	最小值	典型值	最大值	单位
-	2	110	-	2	-	mA
-	4	101	-	4	-	mA
-	5	100	-	5	-	mA
-	12	011	-	12	-	mA
-	14	010	-	14	-	mA
-	16	001	-	16	-	mA
-	18	000	-	18	-	mA
IO4 高电平输出 VOH 时电流 (识档位: DS2/DS1/DS0)	1	111	-	1	-	mA
-	2	110	-	2	-	mA
-	4	101	-	4	-	mA
-	5	100	-	5	-	mA
-	12	011	-	12	-	mA
-	14	010	-	14	-	mA
-	16	001	-	16	-	mA
-	18	000	-	18	-	mA

3.4.2 PCIE 接口电气参数

根据协议生成眼图模板,分别测量图中标注的 TX 端和 RX 端测试点。

表3-9 PCIE 测试指标说明

Case	参数项	指标要求	单位	参数说明
-	UI	199.94(min)- 200.06(max)	ps	Unit Interval
TX 端	V _{TX-DE-RATIO-3.5dB}	3.0 (min)- 4.0 (max)	dB	Tx de-emphasis level ratio
	T _{TX-EYE}	≥0.75	UI	Transmitter Eye including all jitter sources
	Z _{TX-DIFF-DC}	80 (min) -120 (max)	Ω	DC differential Tx impedance

Case	参数项	指标要求	单位	参数说明
RX 端	T _{RX-MIN-PULSE}	≥120	ps	Minimum single pulse applied at Rx
	T _{RX-EYE}	≥0.4	UI	Receiver eye time opening ,Minimum eye time at Rx pins to yield a 10 ⁴² BER
	V _{RX-EYE}	≥100 (diff)	mV _{P-P}	Receive eye voltage opening , Data Clocked Rx Architecture

3.4.3 GEPHY 接口电气参数

3.4.3.1 IO 电气特性列表

表3-10 GEPHY IO 的电气特性列表

符号	管脚类型	参数	条件	Min	Тур	Max	Units
VOD-10	MDI	10MHz模式下输 出差分电压	-	2.2	2.5	2.8	V
VOD-100	MDI	100MHz 模式下 输出差分电压	-	0.950	1	1.050	V
VOD-1000	MDI	1000MHz 模式下 输出差分电压 1	-	0.670	0.745	0.820	V

3.5 上下电要求

注意

● 芯片在上电过程中,会对 FLASH 管脚进行保护,强制芯片的 FLASH 对接管脚为输入状态,防止上电过程中接口异常导致 FLASH 处于异常工作状态。该功能默认是打开的。

芯片电源上电顺序如图 3-3 所示,上电时序参数如表 3-11 所示。

图3-3 上电顺序图

表3-11 上电时序参数

参数	最小值(ms)	最大值(ms)
T_1	0	200
T_2	0	200
T_3	6	12

下电的时候,对电源顺序没有要求,但是要求所有电源在 200ms 之内完成掉电,掉电保持时间大于 5ms,否则对芯片器件的可靠性有影响。

3.6 极限工作环境

Hi5630H 极限工作环境参数如表 3-12 所示。

□ 说明

极限工作环境参数仅用于评估, 不用于实际应用。

注意

超过极限工作环境参数数值, 可能导致芯片物理损伤。

表3-12 极限工作环境参数

参数	符号	最小值	最大值	单位
环境温度	T _A	0	70	${\mathbb C}$

参数	符号	最小值	最大值	单位
焊接温度	T_P	225	260	$^{\circ}$
极限结温	T _{JMAX}	0	125	$^{\circ}$ C

3.7 推荐工作环境

Hi5630H推荐工作环境参数如表 3-13 所示, 热设计的降额标准以表 3-12 中的数据为准。

表3-13 推荐工作环境参数

参数	符号	最小值	最大值	单位
环境温度	T_A	0	70	J
长期工作结温	$T_{ m JL}$	0	105	${\mathbb C}$
极限工作结温	T_{JS}	0	125	$^{\circ}$

3.8 可靠性参数

Hi5630H的可靠性参数如表 3-14 所示。

表3-14 可靠性参数

参数	符号	参数值
ESD 参数	ESD level/volt	HBM: 2000V
		CDM: 200V
LatchUp 电流	ILU	过流: 正负 100mA
		过压: 1.5×Vmax
潮湿敏感等级	MSL	3 级

表3-15 芯片潮湿敏感等级定义

潮湿敏感等级(MSL)	含义(拆封后存放条件及最长时间)		
1	无限制,□<=85% RH(Relative Humidity)。		
2	一年,□<=30℃/60% RH。		

潮湿敏感等级(MSL)	含义(拆封后存放条件及最长时间)	
3	一周,■ <=30°C/60% RH。	
4	72 小时,□ <=30°C/60% RH。	
5	48 小时,□ <=30°C/60% RH。	
6	24 小时,□ <=30°C/60% RH。	

3.9 热阻特性

注音

热阻基于 JEDEC JESD51-2 标准给出,应用时的系统设计及环境可能与 JEDEC JESD51-2 标准不同,需要根据应用条件作出分析。

Hi5630HV110的封装热阻如表 3-16所示。

表3-16 热阻特性

参数	符号	数值	单位
Junction-to-case thermal resistance	θ _{JC}	7.9	°C/W
Junction-to-board thermal resistance	θ ЈВ	17	°C/W

3.10 焊接工艺

- BGA 焊球材料: SAC105
- 表贴元器件包装类型: 盘式
- 可存储期限 (90%相对湿度以下): 12moths@40℃
- 包装材料: 防静电材料
- 可应用的焊接方法: Infrared reflow/convection
- reflow 的焊接参数如下:
 - 3 reflows at 245°C (lead reduced)
 - 1 reflow at 260°C for rework (lead reduced)
 - 3 reflows at 225°C (lead)
- Bakeout 参数: 125℃@40hours

图3-4 焊接温度曲线图

4 封装

4.1 概述

Hi5630HV110 采用 TFBGA 封装, 封装尺寸为 10.5mm×10.5mm, 管脚间距为 0.65mm。

4.2 芯片 Mark 图

Hi5630H 芯片 Mark 图如图 4-1 所示, Mark 各符号说明如表 4-1 所示。

图4-1 Mark 示意图

表4-1 Mark 说明

编号	含义
1	海思公司 Logo。
2	工单 Part number 前 6 位。

编号	含义
3	工单 Part number 其余字符。
	R:环保标识(N表示含铅、R表示RoHS、G表示无铅)。
	B: 封装类型 BGA。
	C: 温度等级(C表示商业级、I表示工业级、M表示军工级)。
	H: 芯片产品区分位
4	XXXXXXXX: Mark Lot Number。
5	YYWW: 封装时间信息, YY 表示年份; WW 表示星期。
	XXXXX: 芯片封装地信息(字符数可变)。
6	Pin 1 起始标志。

4.3 封装图

Hi5630H 的封装图如图 4-2~图 4-5 所示。

图4-2 Top View

图4-3 Side View

图4-4 Side view Detail A 放大图

图4-5 Bottom view

封装参数如表 4-2 所示。

表4-2 封装参数表

参数	尺寸(mm)			尺寸(inch)	尺寸(inch)			
	最小值	典型值	最大值	最小值	典型值	最大值		
A	1.10	1.17	1.24	0.043	0.046	0.049		
A1	0.16	0.21	0.26	0.006	0.008	0.010		
A2	0.91	0.96	1.01	0.036	0.038	0.040		
С	0.22	0.26	0.30	0.009	0.010	0.012		
D	10.40	10.50	10.60	0.409	0.413	0.417		
Е	10.40	10.50	10.60	0.409	0.413	0.417		
D1	-	9.75	-	-	0.384	-		
E1	-	9.75	-	-	0.384	-		
e	-	0.65	-	-	0.026	-		
b	0.25	0.30	0.35	0.010	0.012	0.014		
aaa	0.15			0.006				
bbb	0.10			0.004				
ddd	0.08			0.003				
eee	0.15			0.006				
fff	0.08			0.003				
MD/ME	16/16							

□ 说明

- 1. Controlling dimension: millimeter.
- 2.Primary datum C and seating plane are defined by the spherical crowns of the solder balls.
- 3.Dimension B is measured at the maximum solder ball diameter, parallel to primary datum C.
- 4. Special characteristics C class: ecc, ddd.
- 5. The pattern of pin 1 flducial is for reference only.
- 6. Referance document: jedec publication 95 design guide 4.5.
- 7. b IS SOLDER BALL DIAMETER=0.30 mm(BEFORE REFLOW)

BGA PAD SOLDER MASK OPENING=0.275 mm

PKG BALL DIAMETER = 0.31 mm(AFTER REFLOW)

5 管脚描述

Hi5630H 的管脚描述包括:

- 时钟复位专用管脚
- 模拟管脚
 - AFE接口管脚
 - GEPHY接口管脚
 - PCIE 接口管脚
 - Dying Gasp 掉电检测接口管脚
 - 过零点检测接口管脚
 - DDR 参考电压和较准电阻接口管脚
- 数字 (GPIO) 管脚
 - SPI Flash 接口管脚
 - UARTO接口管脚
 - UART1接口管脚
 - I2C0 Master 接口管脚
 - I2C1 Master 接口管脚
 - MDIO 接口管脚
 - RGMII/MII 接口管脚
 - SDIO 接口管脚
 - SPIM 接口管脚
 - JTAG 接口管脚
 - I2S0 Slave 接口管脚
 - I2S1 Slave 接口管脚
 - LD/Dying Gasp/PCIE 控制接口管脚
- 电源和地管脚
- □ 说明

管脚描述表中,"-"表示"值为空"。

5.1 管脚类型说明

Hi5630H 的管脚类型说明如表 5-1 所示。

表5-1 管脚类型说明

类型	说明
Ι	普通输入端口。
I_{PU}	带有内部上拉的输入端口。
Isu	带迟滞功能(施密特)的输入端口。
I _{PU/SU}	带迟滞功能(施密特)并且内部有上拉的输入端口。
I _{PD}	带有内部下拉的输入端口。
О	普通输出端口。
O _{PU}	带有内部上拉的输出端口。
${ m O}_{ m Tri}$	三态输出端口。
O _{OD}	输出,漏极开路。
I/O	双向端口。
I/O _{OD}	双向端口,输出漏极开路。
I _{SU} /O _{Tri}	双向端口,输入带迟滞功能(施密特),输出三态。
I _{PU/SU} /O _{Tri}	双向端口,输入带迟滞功能(施密特),输出三态。
I _{PD} /O _{Tri}	双向端口,输入内部下拉,输出三态。
I _{PU} /O _{Tri}	双向端口,输入内部上拉,输出三态。
Tri	三态端口。
AI	模拟输入。
AO	模拟输出。
AIO	模拟 IO。
NC	未连接。
LVTTL	具有 tolerant 特性的 TTL 接口电平。
LVCMOS	LVCMOS 接口电平。
CML	电流逻辑电平。
_P	输出驱动可调,或内部集成终端匹配。

5.2 管脚数量统计

Hi5630H 的管脚数量统计如表 5-2 所示。

表5-2 管脚数量统计表

管脚类型	数量
复位输入 IO	1
JTAG_MODE 输入 IO	1
GPIO	38
模拟 IO	36
测试管脚	1
NC	-
电源/地	135
总计	212

5.3 系统时钟接口

系统时钟接口如表 5-3 所示。

表5-3 系统时钟接口管脚列表

管脚名称	位置	类型	频率 (MHz)	驱动 (mA)	电平 (V)	描述
XTL_IN	R15	AI	40	-	2.5	单端晶体振荡器输入端,外接晶体;外灌模式下为外灌时钟输入,外灌电压摆幅 2.5V(+/-5%)。(外灌时钟需要 AC 耦合,加 100nF 电容)
XTL_OUT	R16	AO	40	-	2.5	单端晶体振荡器实际输出端,外接晶体;外灌模式下悬空。

5.4 复位接口

复位接口如表 5-4 所示。

表5-4 复位接口管脚列表

管脚名称	位置	类型	频率 (MHz)	驱动 (mA)	电平 (V)	复用管脚 (可选)	描述
SYS_RESET _N	E16	I _{PU/SU}	-	-	3.3	-	管脚硬复位输入,低有效。 芯片上电期间建议外部输入低电平让芯片处于复位态,需要芯片工作时再解复位。 芯片内置虑毛刺电路,会虑除<=10ns的毛刺。
A9_JTAG_T RST_N	R3	I _{PD/SU} /O _{Tri}	-	-	3.3	GPIO_32	A9 CPU 调试 JTAG 接口复位输入,低有效。 复用 GPIO_32 管脚。 JTAG_MODE=0(硬件配置字)&io_a9_jtag_sel=1(寄存器 0x1150_0008,bit1)时为 A9 CPU 调试 JTAG 接口复位输入功能。

5.5 模拟接口

模拟接口如表 5-5 所示。

表5-5 模拟接口管脚列表

管脚名称	位置	类型	频率 (MHz)	驱动	电平 (V)	描述		
G.hn AFE 模拟前端接口	G.hn AFE 模拟前端接口							
AFE_RXINP	R9	AI	-		ANA	AFE RX 模拟差分输入正极端。 2.7Vpp single end, 5.5V differential, 1.65V common mode.		
AFE_RXINN	R10	AI	-	-	ANA	AFE RX 模拟差分输入负极。 2.7Vpp single end, 5.5V differential, 1.65V common mode.		

管脚名称	位置	类型	频率 (MHz)	驱动	电平 (V)	描述
AFE_TXOUTP	R12	AO	-	-	ANA	AFE TX 模拟差分输出正极端。 1.6Vpp single end, 3.2Vpp differential, 1.35V common mode.
AFE_TXOUTN	R13	AO			ANA	AFE TX 模拟差分输出负极端。 1.6Vpp single end, 3.2Vpp differential, 1.35V common mode.
AFE_IREF_RES	P12	AIO	-	-	ANA	AFE 参考电流设置,外接 1%精密电阻 10K。 注意:参考电流设置只在芯片AFE 初始化时工作一下(0.55V输出),正常工作时是 0V。
AFE_VBG_CAP	T12	AIO	-	-	ANA	内部参考电压 0.55V 接口,外接滤波电容(0.1uF)。
AFE_LDO11_CAP	P11	AIO	-	-	1.1	AFE 1.1V LDO 外部滤波电容接口(10uF)。
AFE_LDO27_CAP	T14	AIO	-	-	2.7	2.7V LDO 外部滤波电容接口 (10uF)。
GE-PHY MDI 介质相关接	美 口					
MDI_AP_0	J1	AIO	250	-	ANA	内置 GE-PHY 差分接收和发送
MDI_AN_0	K1	AIO				端口。可强制或自协商配置为 10BASE-T、100BASE-TX 或
MDI_BP_0	L2	AIO				1000BASE-T 模式,提供
MDI_BN_0	L1	AIO				MDI/MDI-X 的对接方式,并可以纠正通道 MDI_N 和 MDI_P 的
MDI_CP_0	N1	AIO				极性问题。
MDI_CN_0	N2	AIO				注意:在 10/100Mbps 操作模式 下,只用了通道 A 和通道 B。自
MDI_DP_0	R2	AIO				动 MDIX 功能会检测对方的发
MDI_DN_0	R1	AIO				送通道,配置适当的发送和接收通道。
BGREF	P3	AIO	-	-	-	内置 GE-PHY 内部基准参考电压,该引脚需要外接 1%精度的10.0kΩ 电阻到地。
PCIE 接口						
PCIE0_RXP	H15	AI	2500	-	CML	内置PCIE-PHY0差分接收端口。
PCIE0_RXN	H14	AI				

管脚名称	位置	类型	频率 (MHz)	驱动	电平 (V)	描述
PCIE0_TXP	J16	AO	2500	-	CML	内置PCIE-PHY0差分发送端口。
PCIE0_TXN	J15	AO				
PCIE0_100M_CLKP	G15	AO	100	-	HCSL	PCIE0 子系统参考时钟差分输
PCIE0_100M_CLKN	G16	AO				出。
PCIE1_RXP	K15	AI	2500	-	CML	内置PCIE-PHY1差分接收端口。
PCIE1_RXN	K14	AI				
PCIE1_TXP	L16	AO	2500	-	CML	内置PCIE-PHY1差分发送端口。
PCIE1_TXN	L15	AO				
PCIE1_100M_CLKP	M15	AO	100	-	HCSL	PCIE1 子系统参考时钟差分输
PCIE1_100M_CLKN	M14	AO				出。
Dying Gasp 掉电检测接口	口, 过氧	零点检测	接口			
PFI_DYINGGASP	P9	AI	-	-	ANA	DyingGasp 判决电平信号允许电 压范围 0V~3.3V。 上电阈值: 1.225V;
						下电阈值: 1.125V。
DG_VIN	R8	AI	50Hz 或 60Hz	-	3.3	过零点检测比较器正端。
DG_VREF	Т8	AI	50Hz 或 60Hz	-	3.3	过零点检测比较器负端。单端过零模式下面,此管脚接 100nf 电容到地。
DDR2 参考电压和较准电	阻接口					
DDR2_VREF	A7	AI	-	-	0.9	SSTL_1.8 DDRIO 参考电压。
DDR2_ZQ	В5	AIO	-	-	1.8	ZQ 校准电阻接口。

5.6 数字接口

注意

JTAG_MODE 管脚必须采用下拉,否则影响芯片功能。

GPIO 数字接口如表 5-6 所示。

表5-6 数字接口管脚列表

管脚名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	复用管 脚	描述
GPIO_0	P4	I _{PD/SU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 4	3.3	请参见 表 5-9	请参见表 5-9
GPIO_1	Т3	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 4	3.3		
GPIO_2	T4	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 4	3.3		
GPIO_3	R4	I _{PU/SU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 4	3.3		
GPIO_4	P5	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 4	3.3		
GPIO_5	R6	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 4	3.3		
GPIO_6	P6	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 2	3.3		
GPIO_7	P7	I/O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_8	R7	I/O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_9	Т6	I/O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_10	F15	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_11	F14	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_12	F16	I _{PU} /O _{Tri/OD}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_13	E15	I _{PU} /O _{Tri/OD}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_14	C4	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 4	支持: 1.8/2.5/3.3		

管脚名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	复用管脚	描述
GPIO_15	A4	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 4	支持: 1.8/2.5/3.3		
GPIO_16	B4	I _{PU} /O _{Tri}	-	支持8驱动: 1/2/4/5/12/14/16/18 默认:4	支持: 1.8/2.5/3.3		
GPIO_17	A2	I _{PU} /O _{Tri}	-	支持8驱动: 1/2/4/5/12/14/16/18 默认:4	支持: 1.8/2.5/3.3		
GPIO_18	C3	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 4	支持: 1.8/2.5/3.3		
GPIO_19	B2	I _{PD/SU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 4	支持: 1.8/2.5/3.3		
GPIO_20	C1	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 1	支持: 1.8/2.5/3.3		
GPIO_21	C2	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 1	支持: 1.8/2.5/3.3		
GPIO_22	D3	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 1	支持: 1.8/2.5/3.3		
GPIO_23	E3	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 1	支持: 1.8/2.5/3.3		
GPIO_24	E2	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 1	支持: 1.8/2.5/3.3		
GPIO_25	E1	I _{PD/SU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 1	支持: 1.8/2.5/3.3		
GPIO_26	F2	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 4	支持: 1.8/2.5/3.3		

管脚名称	位置	类型	频率 (MHz)	驱动 (mA)	电平(V)	复用管脚	描述
GPIO_27	F3	I _{PU} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 1	支持: 1.8/2.5/3.3		
GPIO_28	G1	I _{PD} /O _{Tri}	-	支持8驱动: 1/2/4/5/12/14/16/18 默认:8	支持: 1.8/2.5/3.3		
GPIO_29	G3	I _{PD} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 12	支持: 1.8/2.5/3.3		
GPIO_30	Н3	I _{PD} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 12	支持: 1.8/2.5/3.3		
GPIO_31	H2	I _{PD} /O _{Tri}	-	支持 8 驱动: 1/2/4/5/12/14/16/18 默认: 12	支持: 1.8/2.5/3.3		
GPIO_32	R3	I _{PD/SU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 4	3.3		
GPIO_33	D15	I _{PU/SU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_34	E14	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_35	C16	I _{PU} /O _{Tri/OD}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_36	C15	I _{PU} /O _{Tri/OD}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
GPIO_37	D14	I _{PU} /O _{Tri}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3		
JTAG_M ODE	D16	I _{PD}	-	支持 4 驱动: 1/2/3/4 默认驱动: 1	3.3	-	JTAG 接 口使能控 制,高电 平有效。 必须下 拉。

5.7 电源和地

Hi5630HV110 电源和地分为模拟和数字两类,下面分别详细介绍。

5.7.1 模拟电源和地

模拟电源和地管脚如表 5-7 所示。

表5-7 模拟电源和地管脚列表

名称	位置	电压 (V)	描述			
PMU: BUCK0 1.8V, BUCK1 1.1V						
AVDD33_BUCK_0	B15	3.3	BUCK0 3.3V 模拟电源。			
VDD33_BUCK_0	A14、B14	3.3	BUCK0 3.3V 功率电源。			
AVSS_BUCK_0	A15, A16	0	BUCK0 功率和模拟地。			
BUCK_FB_0	B16	1.8	BUCKO 输出电压反馈。			
BUCK_LX_0	A13、B13	1.8	BUCK0 LX 输出。			
AVDD33_BUCK_1	C9	3.3	BUCK1 3.3V 模拟电源。			
VDD33_BUCK_1	A10, B10	3.3	BUCK1 3.3V 功率电源。			
AVSS_BUCK_1	A9、B9	0	BUCK1 功率和模拟地。			
BUCK_FB_1	C8	1.1	BUCK1 输出电压反馈。			
BUCK_LX_1	A11、B11、 C10	1.1	BUCK1 LX 输出。			
VSS_BUCK	A12, B12, C11, C12	0	BUCK0 & BUCK1 IO 公共地。			
Crystal Oscillator 晶体	振荡器					
AVDD33_OSC	M13	3.3	OSC 3.3V 模拟电源。			
AVDD11_OSC	N13	1.1	OSC 1.1V 模拟电源。			
AVSS_OSC	P15、T15、 T16	0	OSC 3.3V/1.1V 模拟地。			
AFE-PLL						
AVDD18_PLL	L11	1.8	AFE-PLL 1.8V 模拟电源。			
G.hn AFE 模拟前端						
AVDD11_RX	L9	1.1	G.hn AFE RX 1.1V 模拟电源。			

名称	位置	电压 (V)	描述				
AVDD11_TX	N12	1.1	G.hn AFE TX 1.1V 模拟电源。				
AVDD18_AFE	L10	1.8	G.hn AFE 1.8V 模拟电源。				
AVDD33_AFE	N11	3.3	G.hn AFE 3.3V 模拟电源。				
AVSS_AFE	K11, N10, P10, P13, P14, R11, R14, T10	0	G.hn AFE 模拟地。				
GE-PHY							
AVDD11_GE	M4	1.1	GE-PHY 1.1V 模拟电源。				
AVDD11_SH	M3	1.1	GE-PHY 共用电路 1.1V 模拟电源。				
AVDD33_GE	K3、K4	3.3	GE-PHY 3.3V 模拟电源。				
AVSS_GE	J2、J3、J4、 K2、L3、 L4、M2、 N3、P2、 T1、T2	3.3	GE-PHY 模拟地。				
PCIE-PHY0							
AVDD11_PCIE0	H13	1.1	PCIE-PHY0 1.1V 模拟电源。				
AVDD33_PCIE0	J12	3.3	PCIE-PHY0 3.3V 模拟电源。				
PCIE-PHY1							
AVDD11_PCIE1	J13	1.1	PCIE-PHY1 1.1V 模拟电源。				
AVDD33_PCIE1	K13	3.3	PCIE-PHY1 3.3V 模拟电源。				
SYS-PLL & DDR-PLI	L系统和 DDR	子系统	锁相环				
AVDD11_SCPLL	L8	1.1	SYS-PLL & DDR-PLL 1.1V 模拟电源。				
AVDD33_SCPLL	N7	3.3	SYS-PLL & DDR-PLL 3.3V 模拟电源。				
DDR-PHY internal PL	DDR-PHY internal PLL DDR-PHY 内置锁相环						
AVDD33_DDRPLL	В7	3.3	DDR-PHY 内置锁相环 DDRPLL1 模拟电源。				
_	B7 A6	3.3					
1 AVDD33_DDRPLL			源。 DDR-PHY 内置锁相环 DDRPLL2 模拟电				

名称	位置	电压 (V)	描述			
Dying-Gasp 临终遗言						
AVDD33_DG	N8	3.3	Dying-Gasp 临终遗言比较器电源。			
EFUSE						
AVDD25_EFUSE	N9	2.5	EFUSE 电源。			

5.7.2 数字电源和地

数字电源和地管脚如表 5-8 所示。

表5-8 数字电源和地管脚列表

名称	位置	电压	描述
DVDD11	F6、F7、F8、F9、F10、F11、 G6、G7、H6、H7、J6、K6	1.1	Core 电源。
DVDD33_1	N5	3.3	3.3V IO 电源。
DVDD33_2	F13	3.3	3.3V IO 电源。
RGMII IO			
DVDDIO_RGMII1	E4、F4	1.8/2.5/3. 3	RGMII IO 电源。
DVDDIO_RGMII2	H4	1.8/2.5/3. 3	RGMII IO 电源。
DDR IO			
VDDIO_CK_DDR2	C6	1.8	DDR 时钟 IO 电源。
VDDIO_DDR2	D5、D6、D8、D9、D11、D12	1.8	DDR IO 电源。

5.8 复用关系

本节列出所有复用的管脚和对应的复用接口功能。

复用管脚规格:

- 支持 DFT JTAG 管脚和功能 JTAG 管脚复用,通过一个 JTAG_MODE 进行选择
- 1组 FLASH的 6个管脚和 GPIO_0~GPIO_5 复用
- 1组 LineDriver 的 3个管脚和 GPIO_7~GPIO_9 复用

- 3组 UART 的6个管脚和GPIO_10~GPIO_13、GPIO_33、GPIO_34复用
- 2组 I2C的4个管脚和GPIO_12、GPIO_13、GPIO_35、GPIO_36复用
- 1组 SDIO的6个管脚和GPIO_14~GPIO_19复用
- 1组 RGMII的 12个管脚和 GPIO_14~GPIO_25 复用
- 1 组外置 ETH PHY 的 3 个控制管脚和 GPIO_26~GPIO_28 复用
- 1组 MII的 3个控制管脚和 GPIO_29~GPIO_31 复用
- 2组 I2S的8个管脚和GPIO_18~GPIO_25复用
- 1 组 A9 JTAG 的 5 个管脚和 GPIO_22~GPIO_25、GPIO_32 复用

表5-9 复用管脚列表

位置	管脚名 称	默认复 用状态	接口功能 1	接口功能 2	接口功能3	接口功能 4	GPIO 功能 选通条件
P4	GPIO_0	SFC_WP _N	SFC_WP_N: FLASH 写保 护控制信号 选通条件: FUNCTION_ LVL1_SEL_ L[10]=1	-	-	-	选通条件: GPIO_SEL_ LO[0]为 1 或者功能选 择都为 0
Т3	GPIO_1	SFC_MI SO	SFC_MISO: FLASH 输入 数据信号 选通条件: FUNCTION_ LVL1_SEL_ L[9]=1	_	-	-	选通条件: GPIO_SEL_ LO[1]为 1 或者功能选 择都为 0
T4	GPIO_2	SFC_CS _N1	SFC_CS_N1: FLASH 片选 信号 选通条件: FUNCTION_ LVL1_SEL_ L[9]=1	-	-	-	选通条件: GPIO_SEL_ LO[2]为 1 或者功能选 择都为 0
R4	GPIO_3	SFC_HO LD_N	SFC_HOLD_ N: FLASH HOLD 控制 信号 选通条件: FUNCTION_ LVL1_SEL_ L[11]=1	-	-	-	选通条件: GPIO_SEL_ LO[3]为 1 或者功能选 择都为 0

位置	管脚名 称	默认复 用状态	接口功能1	接口功能 2	接口功能3	接口功能 4	GPIO 功能 选通条件
P5	GPIO_4	SFC_SC LK	SFC_SCLK: FLASH 输出 时钟信号 选通条件: FUNCTION_ LVL1_SEL_ L[9]=1	-	-	-	选通条件: GPIO_SEL_ LO[4]为 1 或者功能选 择都为 0
R6	GPIO_5	SFC_MO SI	SFC_MOSI: FLASH 输出 数据信号 选通条件: FUNCTION_ LVL1_SEL_ L[9]=1	-	-	-	选通条件: GPIO_SEL_ LO[5]为 1 或者功能选 择都为 0
P6	GPIO_6		-	-	-	-	该管脚固定 是 GPIO 功 能
P7	GPIO_7	GPIO	LD_EN: 片外 LineDriver enable 信号 选通条件: FUNCTION_ LVL1_SEL_ L[7]=1	-	-	-	选通条件: GPIO_SEL_ LO[7]为 1 或者功能选 择都为 0
R7	GPIO_8	GPIO	LD_CTL0: 片 外 LineDriver 控制信号 0 选通条件: FUNCTION_ LVL1_SEL_ L[7]=1	-	-	-	选通条件: GPIO_SEL_ LO[8]为 1 或者功能选 择都为 0
T6	GPIO_9	GPIO	LD_CTL1: 片 外 LineDriver 控制信号 1 选通条件: FUNCTION_ LVL1_SEL_ L[7]=1	-	-	-	选通条件: GPIO_SEL_ LO[9]为 1 或者功能选 择都为 0

位置	管脚名 称	默认复 用状态	接口功能1	接口功能 2	接口功能3	接口功能 4	GPIO 功能 选通条件
F15	GPIO_10	UARTO_ TXD	UARTO_TXD : UARTO 数 据发送信号 选通条件: FUNCTION_ LVL1_SEL_ L[6]=1	-	-	_	选通条件: GPIO_SEL_ LO[10]为 1 或者功能选 择都为 0
F14	GPIO_11	UART0_ RXD	UARTO_RX D: UARTO 数据接收信 号 选通条件: FUNCTION_ LVL1_SEL_ L[6]=1	-	-	-	选通条件: GPIO_SEL_ LO[11]为 1 或者功能选 择都为 0
F16	GPIO_12	GPIO	UART1_TXD :UART1 数 据发送信号 选通条件: FUNCTION_ LVL1_SEL_ L[5]=1	PCIE0_CLK REQ_N: PCIE0 片外 低功耗时钟 REQ 信号 选通条件: FUNCTION_ LVL2_SEL_ L[4]=1	I2C0_SCL: I2C0 串行控 制信号 选通条件: FUNCTION _LVL3_SE L_L[2]=1	GEPHY_LIN K_ACT: GEPHY LINK 状态指 示输出信号 选通条件: FUNCTION_ LVL4_SEL_ L[1]=1	选通条件: GPIO_SEL_ LO[12]为 1 或者功能选 择都为 0
E15	GPIO_13	GPIO	UART1_RX D: UART1 数据接收信 号 选通条件: FUNCTION_ LVL1_SEL_ L[5]=1	PCIE1_CLK REQ_N: PCIE1 片外 低功耗时钟 REQ 信号 选通条件: FUNCTION_ LVL2_SEL_ L[3]=1	I2C0_SDA: I2C0 串行数 据信号 选通条件: FUNCTION _LVL3_SE L_L[2]=1	MII_COL: 备 用 MII_COL 控制信号,和 GPIO31 功能 1 一致 选通条件: FUNCTION_ LVL4_SEL_ L[9]=1	选通条件: GPIO_SEL_ LO[13]为 1 或者功能选 择都为 0
C4	GPIO_14	GPIO	RGMII_TX3: RGMII TX data[3]输出 信号 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	SDIO_DAT A0: SDIO 双 向数据 data[0]信号 选通条件: FUNCTION_ LVL2_SEL_ L[2]=1	-	-	选通条件: GPIO_SEL_ LO[14]为 1 或者功能选 择都为 0

位置	管脚名 称	默认复 用状态	接口功能 1	接口功能 2	接口功能3	接口功能 4	GPIO 功能 选通条件
A4	GPIO_15	GPIO	RGMII_TX2: RGMII TX data[2]输出 信号 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	SDIO_DAT A1: SDIO 双 向数据 data[1]信号 选通条件: FUNCTION_ LVL2_SEL_ L[2]=1	-	-	选通条件: GPIO_SEL_ LO[15]为 1 或者功能选 择都为 0
B4	GPIO_16	GPIO	RGMII_TX1: RGMII TX data[1]输出 信号 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	SDIO_DAT A2: SDIO 双 向数据 data[2]信号 选通条件: FUNCTION_ LVL2_SEL_ L[2]=1	-	AUDIO_I2C 0_SCL: I2C0 备用复用 I2C0 的 SCL 控制信号,对 接语音器件 使用 选通条件: FUNCTION_ LVL3_SEL_ L[2]=1 并且 FUNCTION_ LVL3_SEL_ L[5]=1	选通条件: GPIO_SEL_ LO[16]为 1 或者功能选 择都为 0
A2	GPIO_17	GPIO	RGMII_TX0: RGMII TX data[0]输出 信号 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	SDIO_DAT A3: SDIO 双 向数据 data[3]信号 选通条件: FUNCTION_ LVL2_SEL_ L[2]=1	-	AUDIO_I2C 0_SDA: I2C0 备用复用 I2C0 的数据 信号,对接语音器件使用 选通条件: FUNCTION_ LVL3_SEL_ L[2]=1 并且 FUNCTION_ LVL3_SEL_ L[5]=1	选通条件: GPIO_SEL_ LO[17]为 1 或者功能选 择都为 0
C3	GPIO_18	GPIO	RGMII_TX_ EN: RGMII TX enable 输 出信号 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	SDIO_CMD : SDIO 控制 命令信号 选通条件: FUNCTION_ LVL2_SEL_ L[2]=1	-	I2S0_SDO: I2S0 数据输 出信号 选通条件: FUNCTION_ LVL4_SEL_ L[10]=1	选通条件: GPIO_SEL_ LO[18]为 1 或者功能选 择都为 0

位置	管脚名 称	默认复 用状态	接口功能1	接口功能 2	接口功能3	接口功能 4	GPIO 功能 选通条件
B2	GPIO_19	GPIO	RGMII_TX_ CLK: RGMII Tx 方向输出 随路时钟 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	SDIO_CLK: SDIO 输出参 考时钟信号 选通条件: FUNCTION_ LVL2_SEL_ L[2]=1	-	I2S0_SDI: I2S0 数据输 入信号 选通条件: FUNCTION_ LVL4_SEL_ L[10]=1	选通条件: GPIO_SEL_ LO[19]为 1 或者功能选 择都为 0
C1	GPIO_20	GPIO	RGMII_RX_ DV: RGMII Rx 方向数据 有效指示信 号 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	-	-	I2SO_BCLK: I2SO BCLK 输入时钟信 号 选通条件: FUNCTION_ LVL4_SEL_ L[10]=1	选通条件: GPIO_SEL_ LO[20]为 1 或者功能选 择都为 0
C2	GPIO_21	GPIO	RGMII_RX_ CLK: RGMII Rx 输入随路 时钟 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	-	-	I2SO_LRCK: I2SO_LRCK 输入同步时 钟信号 选通条件: FUNCTION_ LVL4_SEL_ L[10]=1	选通条件: GPIO_SEL_ LO[21]为 1 或者功能选 择都为 0
D3	GPIO_22	A9_JTA G_TDI	RGMII_RX0 : RGMII 输 入数据 data[0] 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	A9_JTAG_T DI: A9 JTAG 数据输入信 号 选通条件: FUNCTION_ LVL2_SEL_ L[1]=1	-	I2S1_SDO: I2S1 数据输 出信号 选通条件: FUNCTION_ LVL4_SEL_ L[11]=1	选通条件: GPIO_SEL_ LO[22]为 1 或者功能选 择都为 0
E3	GPIO_23	A9_JTA G_TDO	RGMII_RX1 : RGMII 输 入数据 data[1] 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	A9_JTAG_T DO: A9 JTAG 双向数 据信号 选通条件: FUNCTION_ LVL2_SEL_ L[1]=1	-	I2S1_SDI: I2S1 数据输 入信号 选通条件: FUNCTION_ LVL4_SEL_ L[11]=1	选通条件: GPIO_SEL_ LO[23]为 1 或者功能选 择都为 0

位置	管脚名 称	默认复 用状态	接口功能1	接口功能 2	接口功能3	接口功能 4	GPIO 功能 选通条件
E2	GPIO_24	A9_JTA G_TMS	RGMII_RX2 : RGMII 输入 数据 data[2] 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	A9_JTAG_T MS: A9 JTAG TMS 模式控制信 号 选通条件: FUNCTION_ LVL2_SEL_ L[1]=1	-	I2S1_BCLK: I2S1 BCLK 输入时钟信 号 选通条件: FUNCTION_ LVL4_SEL_ L[11]=1	选通条件: GPIO_SEL_ LO[24]为 1 或者功能选 择都为 0
E1	GPIO_25	A9_JTA G_TCK	RGMII_RX3 : RGMII 输入 数据 data[3] 选通条件: FUNCTION_ LVL1_SEL_ L[4]=1	A9_JTAG_T CK: A9 JTAG时钟输 入信号 选通条件: FUNCTION_ LVL2_SEL_ L[1]=1	-	I2S1_LRCK: I2S1_LRCK 输入同步时 钟信号 选通条件: FUNCTION_ LVL4_SEL_ L[11]=1	选通条件: GPIO_SEL_ LO[25]为 1 或者功能选 择都为 0
F2	GPIO_26	GPIO	EXT_GEPHY _MDC: 外置 ETH PHY MDC 输出控 制信号 选通条件: FUNCTION_ LVL1_SEL_ L[3]=1	-	_	_	选通条件: GPIO_SEL_ LO[26]为 1 或者功能选 择都为 0
F3	GPIO_27	GPIO	EXT_GEPHY _MDIO: 外置 ETH PHY 双 向数据信号 选通条件: FUNCTION_ LVL1_SEL_ L[3]=1	-	-	-	选通条件: GPIO_SEL_ LO[27]为 1 或者功能选 择都为 0
G1	GPIO_28	GPIO	EXT_GEPHY _CLK: 外置 ETH PHY 输 出参考时钟 信号 选通条件: FUNCTION_ LVL1_SEL_ L[3]=1	-	EXT_AUDI O_CLK25M : 向外置语 音器件输出 25M参考时 钟 选通条件: FUNCTION _LVL3_SE L_L[3]=1	-	选通条件: GPIO_SEL_ LO[28]为 1 或者功能选 择都为 0

位置	管脚名 称	默认复 用状态	接口功能1	接口功能 2	接口功能3	接口功能 4	GPIO 功能 选通条件
G3	GPIO_29	GPIO	MII_RX_CR S: MII 接收 测 CRS 输入 信号 选通条件: FUNCTION_ LVL1_SEL_ L[0]=1	GEPHY_LIN K_STAT: 内 置 GEPHY LINK 状态点 灯信号 选通条件: FUNCTION_ LVL2_SEL_ L[5]=1	EXT_AUDI O_CLK32K : 向外置语 音器件输出 32K 参考时 钟 选通条件: FUNCTION _LVL3_SE L_L[4]=1	-	选通条件: GPIO_SEL_ LO[29]为 1 或者功能选 择都为 0
Н3	GPIO_30	GPIO	MII_RX_ER: MII 接收测 错误帧检测 输入信号 选通条件: FUNCTION_ LVL1_SEL_ L[0]=1	GEPHY_LIN K_ACT:内 置 GEPHY LINK激活点 灯信号 选通条件: FUNCTION_ LVL2_SEL_ L[0]=1	TEST_CLK : 片内部分 时钟降频后 输出管脚观 测 选通条件: FUNCTION _LVL3_SE L_L[6]=1	-	选通条件: GPIO_SEL_ LO[30]为 1 或者功能选 择都为 0
H2	GPIO_31	GPIO	MII_COL: MII COL 控 制输入信号 选通条件: FUNCTION_ LVL1_SEL_ L[0]=1	-	-	-	选通条件: GPIO_SEL_ LO[31]为 1 或者功能选 择都为 0
R3	GPIO_32	A9_JTA G_TRST _N	-	A9_JTAG_T RST_N: A9 JTAG复位输 入信号 选通条件: FUNCTION_ LVL2_SEL_ L[1]=1	-	-	选通条件: GPIO_SEL_ HI[0]为1或 者功能选择 都为0
D15	GPIO_33	GPIO	UART2_TXD : UART2 数 据发送信号 选通条件: FUNCTION_ LVL1_SEL_ L[12]=1	-	SPIM_SCL K: SPI Master 输出 参考时钟信 号 选通条件: FUNCTION _LVL3_SE L_L[0]=1	-	选通条件: GPIO_SEL_ HI[1]为1或 者功能选择 都为0

位置	管脚名 称	默认复 用状态	接口功能 1	接口功能 2	接口功能3	接口功能 4	GPIO 功能 选通条件
E14	GPIO_34	GPIO	UART2_RX D: UART2 数据接收信 号 选通条件: FUNCTION_ LVL1_SEL_ L[12]=1	-	SPIM_CS0_ N: SPI Master 输出 片选 0 信号 选通条件: FUNCTION _LVL3_SE L_L[0]=1	-	选通条件: GPIO_SEL_ HI[2]为1或 者功能选择 都为0
C16	GPIO_35	GPIO	I2C1_SCL: I2C1 串行控 制信号 选通条件: FUNCTION_ LVL1_SEL_ L[2]=1	-	SPIM_CS1_ N: SPI Master 输出 片选 1 信号 选通条件: FUNCTION _LVL3_SE L_L[0]=1	_	选通条件: GPIO_SEL_ HI[3]为1或 者功能选择 都为0
C15	GPIO_36	GPIO	I2C1_SDA: I2C1 串行数 据信号 选通条件: FUNCTION_ LVL1_SEL_ L[2]=1	-	SPIM_MIS O: SPI Master 数据 输入信号 选通条件: FUNCTION _LVL3_SE L_L[0]=1	-	选通条件: GPIO_SEL_ HI[4]为1或 者功能选择 都为0
D14	GPIO_37	GPIO	GEPHY_LIN K_ACT: 内置 GEPHY LINK 激活点 灯信号 选通条件: FUNCTION_ LVL1_SEL_ L[1]=1	-	SPIM_MOS I: SPI Master 数据 输出信号 选通条件: FUNCTION _LVL3_SE L_L[0]=1	-	选通条件: GPIO_SEL_ HI[5]为1或 者功能选择 都为0

表5-10 复用管脚配置寄存器

寄存器名称	寄存器地址	Bit 位	选通描述
FUNCTION	0x1150_0000	bit[12]	UART2 功能信号选通:
_LVL1_SEL L			UART2_TXD(GPIO_33)/UART2_RXD(GPIO_34)
		bit[11]	SFC HOLD 功能信号选通:
			SFC_HOLD_N(GPIO_3)

寄存器名称	寄存器地址	Bit 位	选通描述
		bit[10]	SFC WP 功能信号选通:
			SFC_WP_N(GPIO_0)
		bit[9]	SFC 四线功能选通:
			SFC_MISO(GPIO_1)/SFC_CS_N1(GPIO_2)/SFC_SCLK(GPIO _4)/SFC_MOSI(GPIO_5)
		bit[7]	LineDriver 控制信号选通:
			LD_EN(GPIO_7)/LD_CTL0(GPIO_8)/LD_CTL0(GPIO_9)
		bit[6]	UARTO 功能选通:
			UART0_TXD(GPIO_10)/UART0_RXD(GPIO_11)
		bit[5]	UART1 功能选通:
			UART1_TXD(GPIO_12)/UART1_RXD(GPIO_13)
		bit[4]	RGMII 功能选通:
			RGMII_TX3(GPIO_14)/RGMII_TX2(GPIO_15)/RGMII_TX1(GPIO_16)/RGMII_TX0(GPIO_17)/RGMII_TX_EN(GPIO_18)/RGMII_TX_CLK(GPIO_19)/RGMII_RX_DV(GPIO_20)/RGMII_RX_CLK(GPIO_21)/RGMII_RX0(GPIO_22)/RGMII_RX1(GPIO_23)/RGMII_RX2(GPIO_24)/RGMII_RX3(GPIO_25)/
		bit[3]	外置 GEPHY MDIO 信号选通:
			EXT_GEPHY_MDC(GPIO_26)/EXT_GEPHY_MDIO(GPIO_27)/EXT_GEPHY_CLK(GPIO_28)
		bit[2]	I2C1 功能信号选通
			I2C1_SCL(GPIO_35)/I2C1_SDA(GPIO_36)
		bit[1]	GE 点灯信号选通: GEPHY_LINK_ACT(GPIO_37)
		bit[0]	MII 功能信号选通: MII_RX_CRS(GPIO_29)/MII_RX_ER(GPIO_30)/MII_COL(GP IO_31)
FUNCTION _LVL2_SEL	0x1150_0004	bit[5]	GE LINK STAT 信号选通: GEPHY_LINK_STAT(GPIO_29)
_L[31:0]		bit[4]	PCIE0 时钟 REQ 选通: PCIE0_CLKREQ_N(GPIO_12)
		bit[3]	PCIE1 时钟 REQ 选通:
		511[5]	PCIE1_CLKREQ_N(GPIO_13)
		bit[2]	SDIO 功能信号选通:
			SDIO_DATA0(GPIO_14)/SDIO_DATA1(GPIO_15)/SDIO_DA TA2(GPIO_16)/SDIO_DATA3(GPIO_17)/SDIO_CMD(GPIO_1 8)/SDIO_CLK(GPIO_19)

寄存器名称	寄存器地址	Bit 位	选通描述
		bit[1]	A9 jtag 功能选通: A9_JTAG_TDI(GPIO_22)/A9_JTAG_TDO(GPIO_23)/A9_JTAG_TMS(GPIO_24)/A9_JTAG_TCK(GPIO_25)/A9_JTAG_TRST_N(GPIO_32)
		bit[0]	GE LINK ACT 信号选通: GEPHY_LINK_ACT(GPIO_30)
FUNCTION _LVL3_SEL _L[31:0]	0x1150_0008	bit[6]	时钟输出测试功能选通: TEST_CLK(GPIO_30)
_L[31:0]		bit[5]	io_i2c0_sel==1 选通前提下,该控制用来选通第 3 功能 I2C0 和第 4 功能 AUDIO I2C0:
			0: 原始第 3 功能 I2C0(I2C0_SCL(GPIO_12)/I2C0_SDA(GPIO_13)) 1: 第 4 功能 Audio I2C0 (i2c0_scl_in(GPIO_16)/i2c0_sda_in(GPIO_17))
		bit[4]	对接语音芯片 32K 时钟输出: EXT_AUDIO_CLK32K(GPIO_29)
		bit[3]	对接语音芯片 25M 时钟输出: EXT_AUDIO_CLK25M(GPIO_28)
		bit[2]	I2C0 功能选通: I2C0_SCL(GPIO_12)/I2C0_SDA(GPIO_13)
FUNCTION _LVL4_SEL _L[31:0]	0x1150_000C	bit[11]	I2S1 功能选通: I2S1_SDO(GPIO_22)/I2S1_SDI(GPIO_23)/I2S1_BCLK(GPIO_24)/I2S1_LRCK(GPIO_25)
		bit[10]	I2S0 功能选通: I2S0_SDO(GPIO_18)/I2S0_SDI(GPIO_19)/I2S0_BCLK(GPIO_ 20)/I2S0_LRCK(GPIO_21)
		bit[9]	MII_COL 信号选通: MII_COL(GPIO_13)
		bit[1]	GE LINK ACT 选通: GEPHY_LINK_ACT(GPIO_12)
GPIO_SEL_ LO[31:0]	0x1150_02C4	bit[31:0]	依次对应 GPIO_31~GPIO_0
GPIO_SEL_ HI[31:0]	0x1150_02C8	bit[5:0]	依次对应 GPIO_37~GPIO_32

□ 说明

- 对于同一个 GPIO 的 4 级功能复用,选通优先级依次为 GPIO 功能 > 功能 1 > 功能 2 > 功能 3 > 功能 4,因此一个 GPIO 有多个功能的选择都为 1,选通优先级最高的功能。
- GPIO 中"功能选择都为 0" 含义是该管脚的 4 个功能复用的选择条件配置为 0, 功能复用为空的不关心。
- GPIO_SEL_LO 和 GPIO_SEL_HI 配为 1 选通 GPIO 是最高优先级,此时对应的功能选择端配置无效。
- 如果功能选通条件和 GPIO_SEL_LO 和 GPIO_SEL_HI 都为 0,则为 GPIO 模式。

5.9 上电配置字

5.9.1 硬件配置字

硬件配置字用于配置单板硬件功能,通过 IOMUX 寄存器可查询。

表5-11 硬件配置字列表

位置	管脚名称	硬件配置字	描述
P5	GPIO_4	FLASH_ADDR_	FLASH 地址模式选择:
		MODE	0=3字节模式;
			1=4字节模式。
			在网口加载启动模式下,复用为 RGMII 或 GE-PHY 网口选择:
			0 = GE-PHY 网口加载;
			1=RGMII 网口加载。
R6	GPIO_5	BOOT_SEL_0	上电启动模式选择:
F15	GPIO_10	BOOT_SEL_1	{BOOT_SEL_1, BOOT_SEL_0} =
			00:调试模式,CPU 不启动;
			01: 从外置 NOR-FLASH 直接启动和加载 CPU;
			10:从 BOOTROM 启动,然后跳转至 NOR-FLASH 加载和启动 CPU;
			11: 从 BOOTROM 启动, 跳转至 RGMII 或者 ETH PHY 启动。
P6	GPIO_6	OSC_FREQ_SEL	系统参考时钟频率选择:
			1 = 40MHz.
			注意: Hi5630HV110 只支持 40MHz 晶体,必需接为高电平 1。

6 管脚排列

6.1 管脚排列图

Hi5630HV110 采用 TFBGA 封装, 共有 212 个管脚, 管脚分布如图 6-1 所示。

图6-1 管脚分布图

	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	
Α	VSS	GPIO_1 7		GPIO_1 5		AVDD3 3_DDR PLL2	DDR2_ VREF		AVSS_ BUCK_ 1	VDD33 _BUCK _1	BUCK_ LX_1	VSS_B UCK	BUCK_ LX_0	VDD33 _BUCK _0	AVSS_ BUCK_ 0	AVSS_ BUCK_ 0	Α
В		GPIO_1 9	VSS	GPIO_1 6	DDR2_ ZQ	AVSS_ DDRPL L2	AVDD3 3_DDR PLL1	AVSS_ DDRPL L1	AVSS_ BUCK_ 1	VDD33 _BUCK _1	BUCK_ LX_1		BUCK_ LX_0		AVDD3 3_BUC K_0	BUCK_ FB_0	В
С	GPIO_2 0	GPIO_2 1	GPIO_1 8	GPIO_1 4	VSS	VDDIO _CK_D DR2	VSS	BUCK_ FB_1	AVDD3 3_BUC K_1	BUCK_ LX_1			VSS	VSS	GPIO_3 6	GPIO_3 5	С
D		VSS	GPIO_2 2	VSS	VDDIO _DDR2	VDDIO _DDR2	VSS	VDDIO _DDR2	VDDIO _DDR2	VSS	VDDIO _DDR2	VDDIO _DDR2	VSS	GPIO_3 7	GPIO_3 3	JTAG_ MODE	D
Е	GPIO_2 5	GPIO_2 4	GPIO_2 3	DVDDI O_RG Mll1									VSS	GPIO_3 4	GPIO_1 3	SYS_R ESET_ N	Е
F		GPIO_2 6	GPIO_2 7	DVDDI O_RG Mil1		DVDD1 1	DVDD1 1	DVDD1 1	DVDD1 1	DVDD1 1	DVDD1 1		DVDD3 3_2	GPIO_1 1	GPIO_1 0	GPIO_1 2	F
G	GPIO_2 8	VSS	GPIO_2 9	VSS		DVDD1 1	DVDD1 1	VSS	VSS	VSS	VSS		VSS	vss	PCIEO_ 100M_ CLKP	PCIEO_ 100M_ CLKN	G
Н		GPIO_3 1	GPIO_3 0	DVDDI O_RG MII2		DVDD1 1	DVDD1 1	VSS	VSS	VSS	VSS		AVDD1 1_PCIE 0	PCIE0_ RXN	PCIE0_ RXP		Н
J	MDLA P0	AVSS_ GE	AVSS_ GE	AVSS_ GE		DVDD1 1	VSS	VSS	VSS	VSS	VSS	AVDD3 3_PCIE 0	AVDD1 1_PCIE 1	VSS	PCIE0_ TXN	PCIE0_ TXP	J
K	MDLA NO	AVSS_ GE	AVDD3 3_GE	AVDD3 3_GE		DVDD1 1	VSS	VSS	VSS	VSS	AVSS_ AFE		AVDD3 3_PCIE 1	PCIE1_ RXN	PCIE1_ RXP		K
L	MDLB NO	MDI_B P0	AVSS_ GE	AVSS_ GE		VSS	VSS	AVDD1 1_SCP LL	AVDD1 1_RX	AVDD1 8_AFE			VSS	VSS	PCIE1_ TXN	PCIE1_ TXP	L
М		AVSS_ GE	AVDD1 1_SH	AVDD1 1_GE									AVDD3 3_OSC	PCIE1_ 100M_ CLKN	PCIE1_ 100M_ CLKP		М
N	MDLC PO	MDI_C N0	AVSS_ GE	VSS	DVDD3 3_1	VSS	AVDD3 3_SCP LL	AVDD3 3_DG	AVDD2 5_EFU SE	AVSS_ AFE	AVDD3 3_AFE	AVDD1 1_TX	AVDD1 1_OSC	VSS	VSS	VSS	N
Р		AVSS_ GE	BGREF	GPIO_0	GPIO_4	GPIO_6	GPIO_7	VSS	PFI_DY INGGA SP	AVSS_ AFE	AFE_L DO11_ CAP	AFE_IR EF_RE S	AVSS_ AFE	AVSS_ AFE	AVSS_ OSC	AFE_T EST	Р
R	MDI_D N0	MDI_D P0	GPIO_3 2	GPIO_3	VSS	GPIO_5	GPIO_8	DG_VI N	AFE_R XINP	AFE_R XINN	AVSS_ AFE	AFE_T XOUTP	AFE_T XOUTN	AVSS_ AFE	XTL_IN	XTL_O UT	R
Т	AVSS_ GE	AVSS_ GE	GPIO_1	GPIO_2		GPIO_9		DG_VR EF		AVSS_ AFE		AFE_V BG_CA P		AFE_L DO27_ CAP	AVSS_ OSC	AVSS_ OSC	Т
	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	

6.2 管脚速查表

表6-1 管脚速查表

位置	名称	位 置	名称	位 置	名称	位置	名称
A1	VSS	D8	VDDIO_DDR2	Н9	VSS	M4	AVDD11_GE
A2	GPIO_17	D9	VDDIO_DDR2	H10	VSS	M13	AVDD33_OSC
A4	GPIO_15	D10	VSS	H11	VSS	M14	PCIE1_100M_C LKN
A6	AVDD33_DDRP LL2	D11	VDDIO_DDR2	H13	AVDD11_PCIE0	M15	PCIE1_100M_C LKP
A7	DDR2_VREF	D12	VDDIO_DDR2	H14	PCIE0_RXN	N1	MDI_CP0
A9	AVSS_BUCK_1	D13	VSS	H15	PCIE0_RXP	N2	MDI_CN0
A10	VDD33_BUCK_1	D14	GPIO_37	J1	MDI_AP0	N3	AVSS_GE
A11	BUCK_LX_1	D15	GPIO_33	J2	AVSS_GE	N4	VSS
A12	VSS_BUCK	D16	JTAG_MODE	J3	AVSS_GE	N5	DVDD33_1
A13	BUCK_LX_0	E1	GPIO_25	J4	AVSS_GE	N6	VSS
A14	VDD33_BUCK_0	E2	GPIO_24	J6	DVDD11	N7	AVDD33_SCPL L
A15	AVSS_BUCK_0	E3	GPIO_23	J7	VSS	N8	AVDD33_DG
A16	AVSS_BUCK_0	E4	DVDDIO_RGMII1	Ј8	VSS	N9	AVDD25_EFUS E
B2	GPIO_19	E13	VSS	J9	VSS	N10	AVSS_AFE
В3	VSS	E14	GPIO_34	J10	VSS	N11	AVDD33_AFE
B4	GPIO_16	E15	GPIO_13	J11	VSS	N12	AVDD11_TX
В5	DDR2_ZQ	E16	SYS_RESET_N	J12	AVDD33_PCIE0	N13	AVDD11_OSC
В6	AVSS_DDRPLL2	F2	GPIO_26	J13	AVDD11_PCIE1	N14	VSS
В7	AVDD33_DDRP LL1	F3	GPIO_27	J14	VSS	N15	VSS
В8	AVSS_DDRPLL1	F4	DVDDIO_RGMII1	J15	PCIE0_TXN	N16	VSS
В9	AVSS_BUCK_1	F6	DVDD11	J16	PCIE0_TXP	P2	AVSS_GE
B10	VDD33_BUCK_1	F7	DVDD11	K1	MDI_AN0	P3	BGREF
B11	BUCK_LX_1	F8	DVDD11	K2	AVSS_GE	P4	GPIO_0
B12	VSS_BUCK	F9	DVDD11	К3	AVDD33_GE	P5	GPIO_4
B13	BUCK_LX_0	F10	DVDD11	K4	AVDD33_GE	P6	GPIO_6

位 置	名称	位 置	名称	位 置	名称	位置	名称
B14	VDD33_BUCK_0	F11	DVDD11	K6	DVDD11	P7	GPIO_7
B15	AVDD33_BUCK _0	F13	DVDD33_2	K7	VSS	P8	VSS
B16	BUCK_FB_0	F14	GPIO_11	K8	VSS	P9	PFI_DYINGGAS P
C1	GPIO_20	F15	GPIO_10	K9	VSS	P10	AVSS_AFE
C2	GPIO_21	F16	GPIO_12	K10	VSS	P11	AFE_LDO11_C AP
C3	GPIO_18	G1	GPIO_28	K11	AVSS_AFE	P12	AFE_IREF_RES
C4	GPIO_14	G2	VSS	K13	AVDD33_PCIE1	P13	AVSS_AFE
C5	VSS	G3	GPIO_29	K14	PCIE1_RXN	P14	AVSS_AFE
C6	VDDIO_CK_DD R2	G4	VSS	K15	PCIE1_RXP	P15	AVSS_OSC
C7	VSS	G6	DVDD11	L1	MDI_BN0	P16	AFE_TEST
C8	BUCK_FB_1	G7	DVDD11	L2	MDI_BP0	R1	MDI_DN0
C9	AVDD33_BUCK _1	G8	VSS	L3	AVSS_GE	R2	MDI_DP0
C10	BUCK_LX_1	G9	VSS	L4	AVSS_GE	R3	GPIO_32
C11	VSS_BUCK	G10	VSS	L6	VSS	R4	GPIO_3
C12	VSS_BUCK	G11	VSS	L7	VSS	R5	VSS
C13	VSS	G13	VSS	L8	AVDD11_SCPL L	R6	GPIO_5
C14	VSS	G14	VSS	L9	AVDD11_RX	R7	GPIO_8
C15	GPIO_36	G15	PCIE0_100M_CLK P	L10	AVDD18_AFE	R8	DG_VIN
C16	GPIO_35	G16	PCIE0_100M_CLK N	L11	AVDD18_PLL	R9	AFE_RXINP
D2	VSS	H2	GPIO_31	L13	VSS	R10	AFE_RXINN
D3	GPIO_22	Н3	GPIO_30	L14	VSS	R11	AVSS_AFE
D4	VSS	H4	DVDDIO_RGMII2	L15	PCIE1_TXN	R12	AFE_TXOUTP
D5	VDDIO_DDR2	Н6	DVDD11	L16	PCIE1_TXP	R13	AFE_TXOUTN
D6	VDDIO_DDR2	H7	DVDD11	M2	AVSS_GE	R14	AVSS_AFE
D7	VSS	Н8	VSS	М3	AVDD11_SH	R15	XTL_IN
R16	XTL_OUT	-	-	-	-	-	-

位置	名称	位 置	名称	位 置	名称	位置	名称
T1	AVSS_GE	-	-	-	-	-	-
T2	AVSS_GE	-	-	-	-	-	-
Т3	GPIO_1	-	-	-	-	-	-
T4	GPIO_2	-	-	-	-	-	-
T6	GPIO_9	-	-	-	-	-	-
Т8	DG_VREF	-	-	-	-	-	-
T10	AVSS_AFE	-	-	-	-	-	-
T12	AFE_VBG_CAP	-	-	-	-	-	-
T14	AFE_LDO27_CA P	-	-	-	-	-	-
T15	AVSS_OSC	-	-	-	-	-	-
T16	AVSS_OSC	-	-	-	-	-	-

7 硬件设计指南

7.1 系统设计指导

7.1.1 Hi5630H Fanout 封装设计建议

PCB设计建议采用 4 层板设计。

4层板设计时分层建议如下:

- TOP 层: 信号/电源层。
- 内一层: 地平面层。
- 内二层:信号/电源层。
- Bottom 层: 信号/电源层。

PCB 设计注意事项:

- 元器件布局在 TOP 和 Bottom 层。
- 电源管脚用走粗线,滤波小电容可放在 Bottom 层。
- 主芯片出线推荐过孔大小为 8mil,线宽为 4mil。

PCB 材料 FR-4, PCB 板厚度为 1.6mm, 表层铜箔厚度为 1 盎司。

Hi5630HV110 的 Fanout 布局图如图 7-1 所示。

图7-1 Hi5630HV110 布局 Fanout 图

7.1.2 电源设计指导

7.1.2.1 电源要求

表7-1 Hi5630HV110 的电源参数

参数	符号	电流(mA)	噪声
BUCK0/1	VDD33_BUCK	500	DC<+/-3% AC<165mVpp
	AVDD33_BUCK	275	DC<+/-3% AC<165mVpp
OSC	AVDD33_OSC	-	DC<+/-2% AC<55mVpp
	VDD11_OSC	10	DC<+/-2% AC<55mVpp
AFE	AVDD11_TX/RX	33	DC<+/-2% AC<55mVpp

参数	符号	电流 (mA)	噪声
	AVDD18_AFE	-	DC<+/-2%
			AC<50mVpp
	AVDD33_AFE	-	DC<+/-2%
			AC<55mVpp
	AVDD18_PLL	-	DC<+/-2%
			AC<55mVpp
GEPHY	AVDD11_GE	27	DC<+/-2%
	AVDD11_SH		AC<50mVpp
	AVDD33_GE	50	DC<+/-2%
			AC<60mVpp
SCPLL	VDD33_SCPLL	-	DC<+/-2%
			AC<30mVpp
	AVDD18_PLL	-	DC<+/-2%
			AC<50mVpp
PCIE_PHY0/1	AVDD11_PCIE	17	DC<+/-2%
			AC<60mVpp
	AVDD33_PCIE	3.7	DC<+/-2%
			AC<35mVpp
DDRPHY	AVDD33_DDRPLL1	-	DC<+/-2%
			AC<30mVpp
	AVDD33_DDRPLL2	-	DC<+/-2%
			AC<30mVpp
Dying-Gasp	AVDD33_DG	-	DC<+/-3%
			AC<30mVpp
数字 CORE 电源	DVDD11	850	DC<+/-3%
			AC<80mVpp
3.3V IO 电源	DVDD33_1	-	DC<+/-3%
			AC<165mVpp
	DVDD33_2	-	DC<+/-3%
			AC<165mVpp
DDR 时钟 IO 电源	VDDIO_CK_DDR2	-	DC<+/-2%
			AC<50mV
DDR IO 电源	VDDIO_DDR2	-	DC<+/-2%
			AC<50mVpp

7.1.2.2 电路设计

7.1.2.2.1 通用设计指导

下面是一些电源网络设计的通用设计指导:

- 计算电源平面的厚度,需要保证最恶劣应用下,直流压降满足电源规范要求。
- 为了减小电源走线的寄生电感,电源的走线建议尽量短和粗。
- 如可能,尽量不用走线,直接用过孔连接到相应的电源平面上。
- 有些 PCB 厂家工艺可以允许使用在焊盘里打孔来减小寄生电感。
- PCB 叠层设计时,尽量将电源平面与地平面直接临近放置以减小回路电感。电源平面与地平面靠的越近,回路电感越小。
- 高敏感电源供电建议尽量滤波电容靠近 ASIC 器件放置,以减小滤波电容的回路电感。
- 电容需要在 PCB 上尽量靠近 ASIC 器件。
- 尽量在 pin field 区域放置低 ESL 高频电容。
- 板级模拟电源平面不能和其他任何电源存在交叠(以另外一个电源为参考)。

7.1.2.2.2 特殊设计指导

CORE 电源设计指导

Hi5630HV110 芯片 CORE 电源 DVDD11 为芯片的 Core logic、Memory core、DDRCORE、DDR等数字逻辑等供电。CORE 电源不需添加磁珠。

推荐按照下面规则设计滤波网络:

- 选择稳定的 VRM 模块,需要支持 AVS 调压,电源模块有较好的动态响应能力。
- 分析 DVDD11 电源 PCB 直流压降,建议使用 VRM 模块的远端反馈能力确保满足芯片核心电源供电要求。
- 进行 die-package-PCB 芯片 core 电源时域电源完整性分析,保证电源噪声可以满足要求。

表7-2 内核电源 PCB 设计要求

符号	目标阻抗(20MHz 以内)	环路电感
DVDD11	70mohm	0.21nH

表7-3 内核电源 PCB 推荐滤波网络

编码	容值	封装	数量
08070614	100nF	0402~27.6MHz	4
08071543	1uF	0402~6.31MHz	6

SCPLL 供电电源设计指导

Hi5630HV110 芯片 SCPLL 电源供电管脚包括 VDDHV、VDDLV 和 VDDREF, 推荐按照下面规则设计滤波网络:

- 使用磁珠给 SCPLL 模拟电源滤波,磁珠直流阻抗尽量低。
- 适当加滤波电容,滤波器件靠近管脚放置。
- VDDLV 建议进行磁珠隔离。
- VDDHV 建议进行磁珠隔离。

TSENSOR 供电电源设计指导

Hi5630HV110 芯片 TSENSOR 电源供电管脚包括 AVDD33 和 DVDD, 当 TVSENSOR 在 ATE 校准时,需保证芯片处于最小功耗模式。

推荐按照下面规则设计滤波网络:

- 使用磁珠给 TVSENSOR 模拟电源 AVDD 滤波,磁珠直流阻抗尽量低。
- 适当加滤波电容,滤波器件靠近管脚放置。
- DVDD 以在板级共用 DVDD11 供电平面, DVDD11 若使用 AVS 功能,需保证电压调节范围满足+/-10%。

EFUSE 供电电源设计指导

芯片 EFUSE 电源供电管脚包括 AVDD25_EFUSE、DVDD11_EFUSE,推荐按照下面规则设计供电网络:

- AVDD25_EFUSE 只有在编程的时候需要,编程仅发生在 ATE 阶段,而在产品正常应用时,只需要 Read 操作,推荐进行接地处理。
- DVDD11 EFUSE 需要板级提供 fix 的 1.1V 电源。

7.1.2.2.3 电源合并方案

注意

Hi5630HV110 芯片不推荐使用内部 1.1V BUCK, 1.1V 默认外供电源, 在确认内置 BUCK 可满足电流需求时才能用。在当前典型应用场景下(GE+2*PCIE+PLC), 1.1V BUCK 功率不足。

表7-4 板级电源合并参考

芯片电源名称 ^{说明} 1	板级电源符号 ^{说明} 2	电源模块类型(推荐) ^{说明} 3
AVDD33_PCIE0	AVDD33_PCIE	3.3V 电源模型

芯片电源名称 ^{说明} 1	板级电源符号 ^{说明} 2	电源模块类型(推荐) ^{说明} 3		
AVDD33_PCIE1				
DDRIO_RGMII1	DDRIO_RGMII			
DDRIO_RGMII2				
AVDD33_DDRPLL1	AVDD33_DDRPLL			
AVDD33_DDRPLL2				
DVDD33IO_1	DVDD33			
DVDD33IO_2				
VDDIO_CK_DDR2	VDDIO_DDR2			
VDDIO_DDR2		1.8V 电源模型		
AVDD18	AVDD1V8			
AVDD18_PLL				
AVDD11_PCIE0	AVDD11_PCIE	1.1V 电源模型		
AVDD11_PCIE1				
AVDD11_PCIE0_CLK				
AVDD11_PCIE1_CLK				
AVDD11_RX	AVDD11_TRX			
AVDD11_TX				
AVDD11_GE	AVDD11_GEPHY			
AVDD11_SH				

□ 说明

- 说明 1:表示芯片独立出 Bump 的电源名称。
- 说明2:表示推荐板级的电源合并方案。该列中相同名称的板级电源符号如果包含多个芯片电源名称:就表示此多个芯片电源名称可在板级合并。该列中不同名称的板级电源符号是互相隔离(独立电源或者磁珠隔离)。
- 说明3:表示电源模块的合并方案。相同电源模块类型下的不同板级电源符号之间通过磁珠隔离。

7.2 原理图设计建议

7.2.1 Flash 设计建议

外接单片 SPI Nor Flash (最大支持 16MB,时钟 50MHz)时,SPI Nor Flash 接口设计推荐如表 7-5 所示。

表7-5 SPI Nor Flash 接口设计推荐

信号	上下拉配置	连接匹配方式
SFC_CLK	上下拉兼容	源端串阻 33Ω
SFC_RXD	NA	对端串阻 33Ω
SFC_TXD	上下拉兼容	源端串阻 33Ω
SFC_HOLD	4.7KΩ上拉	源端串阻 33Ω
SFC_WP	4.7KΩ上拉	源端串阻 33Ω
SFC_CS1	NA	源端串阻 33Ω

7.2.2 PCIE 接口设计建议

PCIE 接口原理图设计建议如下:

- PCIE 接口共有 2 组 AVDD33_PCIE 和 AVDD11_PCIE 模拟电源信号,采用磁珠进行隔离分别连接至 3.3V 和 1.1V,每个电源管脚处至少放置一个 100nF 去耦电容。
- 差分数据信号 TXP/M 和 RXP/M 采用 AC 耦合方案,耦合电容为 100nF。
- 差分时钟信号 REFCLK_P/N 需连接 49.9Ω, 1%精度对地电阻。

7.2.3 RGMII 接口设计建议

RGMII 接口设计推荐如表 7-6 所示。

表7-6 RGMII 接口各信号匹配设计推荐

信号名称	PCB 匹配设计
RGMII_TxCLK	源端串阻 33Ω
RGMII_TXD[0:3]	源端串阻 33Ω
RGMII_RxCLK	对端串阻 33Ω
RGMII_RXD[0:3]	对端串阻 33Ω
MDC	源端串阻 33Ω, 采用 4.7K 上拉
MDIO	直接连接,采用 1.5K 上拉

7.2.4 SDIO 接口设计建议

Hi5630HV110 提供一个 SDIO 接口,支持协议 SD3.0,且配合相关电路支持 SD 卡电压可调节,支持 3.3V 和 1.8V 电平的 SD 卡。

表7-7 SDIO 接口信号匹配设计推荐

信号	上下拉配置	连接匹配方式
SD_CLK	NA	源端串阻 33Ω
SD_DATA/SD_CMD	上拉 4.7ΚΩ	源端串阻 33Ω

7.2.5 GEPHY 接口设计建议

GEPHY 接口原理图设计建议如下:

电源

GEPHY 电源共有 AVDD11、AVDD33 2 种电源,设计建议分别如下:

AVDD11 连接至 1.1V,采用专用磁珠隔离滤波。AVDD11 管脚处至少放置一个 100nF 去耦电容。

AVDD33 连接至 3.3V,采用专用磁珠隔离滤波,AVDD33 管脚处至少放置一个 100nF 去耦电容。

纹波要求:数字电源纹波要求±5%,模拟电源纹波要求±2%。

BGREF

外接 1%精度的 $10k\Omega$ 电阻到地。走线尽量短。远离其它数字信号、时钟走线等强干扰源信号。

● 变压器选型要求

插入损耗: 0.1~1MHZ, -1.1dB; 1~60MHZ, -0.5dB; 60~100MHZ, -1.0dB; 100~125MHZ, -1.2dB。

回波损耗: 1~30MHZ, -18dB; 30~40MHZ, -14.4dB; 40~50MHZ, -13.1dB; 50~80MHZ, -12dB; 80~100MHZ, -10dB。

7.2.6 BUCK 接口设计建议

- 功率电感采用 2.2nH, DCR<0.096ohm。
- 功率输入采用 10uF+10nF 的电容组合,功率输出采用 10uF+10nF 的电容组合。

7.2.7 AFE 接口设计建议

- TX 方向, LD 输出需要做防护设计,其共模保护器件的电源上要有 10uF 以上的电容,且要采用 100nF 电容进行隔直处理。
- RX 方向,在靠近芯片端做防护设计,其共模保护器件的电源上要有 10uF 以上的电容,在 RXP/N 之间并一个 200ohm 电阻。
- AFE_LDO11_CAP 需要外接 10uF 电容。
- AFE LDO27 CAP 需要外接 10uF 电容。
- AFE_VBG_CAP 需要外接 100nF 电容。
- AFE_IREF_RES 外接 10kohm±1%精度电阻。

● 电源磁珠要求: 需要在 AFE 的 1.1V、1.8V、3.3V 供电上加磁珠隔离,特别是 OSC3.3V 和 1.1V 需要加高 DCR 的磁珠,增强对 DCDC 工作频率处纹波的抑制。

7.2.8 时钟电路设计建议

XTL_OUT/XTL_IN 需要分别串接一个 0ohm 电阻,方便调试晶体驱动。

7.2.9 过零电路设计建议

DG VREF 需要加 100nF 电容。

7.2.10 不使用管脚的处理

普通数字管脚内部已有上下拉,如不使用可悬空,但对于那些对芯片功能稳定有重要影响的数字管脚(如上电配置字),即使内部有上下拉电阻,必须在板级加强上下拉,因为内部上下拉通常都很弱。

对于模拟管脚,如不使用可悬空。

对于不使用模拟 IP (如 PCIE、GEPHY) 的电源管脚,其电源必须保持。

7.3 PCB 设计建议

7.3.1 Flash 设计建议

外接单片 SPI Nor Flash,最大支持 16MB,时钟 50MHz,信号线设计建议:为减小信号反射,建议所有的信号线不要穿越电源和地分割区域,保持完整的电源地参考平面,PCB 板传输线阻抗控制在 $50\Omega\pm10\%$ 。

建议 PCB 设计采用以下原则:

- Clk 信号注意包地处理,并有完整的参考平面。
- 建议所有信号走线分布在邻近地平面的走线层,避免信号走线穿越电源或地分割区域,尽量保证信号走线都有完整的参考平面。
- 在信号走线周围及换层过孔附近放置与地连通的过孔,保持良好的信号回流路径。
- 所有信号线尽量短,并且在走线路径上尽量少打过孔,保证走线阻抗的连续性。
- 相邻信号走线间距保持在2~3倍线宽。
- 各信号线尽量保持等长。

7.3.2 PCIE 接口设计建议

- 电源滤波电容靠近电源管脚放置。
- 差分数据走线长度建议控制在 5inch 以内,差分阻抗控制在 100Ω±10%。
- 差分数据线走线尽可能短、直,差分数据线对内走线长度严格等长。
- 差分数据线走线宽度恒定,差分数据线走线上不允许有分叉。
- 差分数据线走线间距恒定,走线尽可能在临近地平面的布线层走线且不要换层。

- 差分数据线走线应有完整的地平面层作为参考平面,不能跨平面分割。
- 差分数据线走线应尽量用最少的过孔和拐角,拐角可考虑用圆弧或者 45 度角,避免直角,以减少反射和阻抗变化,在有过孔的地方需要有伴随地孔。
- 避免邻近其它高速周期信号和大电流信号,并保证间距大于 50mil,以减小串扰。 此外,还应远离低速非周期信号,保证至少 20mil 的距离。

7.3.3 RGMII 接口设计建议

注意

Hi5630HV110 MII 接口应用场景说明:

- MII 接口应用场景参考 RGMII 设计规则。
- Tx_CLK/Rx_CLK 时钟走线尽量短,并在 2 端预留对地 pF 级电容, PCB 走线远离 其他信号,并保证良好包地处理。
- TXD/RXD 数据信号走线尽量短,串阻位置靠近源端摆放,数据信号间保证足够的间距,尽量满足 3W 原则,走线长度在 4000mil 以内。

7.3.4 SDIO 接口设计建议

- 电源滤波电容靠近电源管脚放置。
- 时钟信号走线尽量短,并在 2 端预留对地 pF 级电容, PCB 走线远离其他信号,并 保证良好包地处理。
- 数据信号走线尽量短,串阻位置靠近源端摆放,数据信号间保证足够的间距,尽量 满足 3W 原则。

7.3.5 GEPHY 接口设计建议

• MDI

MDI_AN/AP、MDI_BN/BP、MDI_CN/CP、MDI_DN/DP 是差分对,PCB 布线时需要平行、等长(<10mil)、对称走线,控制差分阻抗值 100Ω (包括变压器到 RJ45 间),并严格保证板级差分阻抗的连续性,板上走线尽量短(<4000mil)。远离其它数字信号、时钟走线,最好能以模拟地做隔离。

差分对之间最好能以 GND 做隔离,差分对之间也要做 skew 匹配,尽量保证差分对之间的走线延迟相同。

BGREF

外接 1%精度的 $10k\Omega$ 电阻到地。走线尽量短。远离其它数字信号、时钟走线等强干扰源信号。

● PCB 布局布线

器件布局: 变压器和 RJ45 外壳间距<0.5cm。

7.3.6 BUCK 接口设计建议

- 保证每个 BUCK 的功率环路面积最小,BUCK 功率输入的滤波电容与 BUCK 的功率低路径尽量短,电感后面的滤波的电容与 BUCK 的功率地路径尽量短。
- LX 输出到功率电感的走线尽量短。
- BUCK 走线附件不能走敏感信号。

7.3.7 AFE 接口设计建议

- TX 方向,芯片到 LD 器件之间的走线阻抗按照差分 100ohm±10%控制,且走线尽量短,并远离其他噪声干扰源。
- RX 方向,走遵循差分对称方式,从布局上尽量远离其他噪声源,并预留屏蔽罩的位置。
- AFE_LDO11_CAP、AFE_LDO27_CAP、AFE_VBG_CAP、AFE_IREF_RES 外接阻 抗需要尽量靠近芯片管脚。
- AFE 的模拟地在 TOP 层不要和数字部分的地连接到一起,直接下孔到地平面。

7.3.8 时钟电路设计建议

- 晶体以及走线需要尽量远离 AFE 部分。
- 晶体的负载电容地与芯片的 OSC_GND 直连,并在 TOP 层不要和其他 GND 连接, 直接下孔到地平面。

7.3.9 过零电路设计建议

- DG_VIN 的电容需要靠近芯片方式。
- DG VREF 的滤波电容需要靠近芯片放置。

7.3.10 其它

7.3.10.1 电源平面隔离度设计建议

为提高电源平面间隔离度, 封装电源平面布局根据之前仿真建议如下:

- 相邻层电源平面尽量错开;
- 对于 Core 层,不同电源网络的过孔之间尽量加地过孔进行隔离。
- 对于 BGA,不同电源网络的 BGA 之间尽量加地 BGA 进行隔离。

7.3.10.2 PCB 信号完整性仿真设计建议

注意

时钟信号如果带多个负载, 无论频率高低, 都需要特别注意其信号质量, 应保证信号边沿单调。

PCB设计人员可以使用板级仿真工具,根据 Hi5630HV110接口 IBIS 模型、对接器件 IBIS 模型、传输线模型以及板上拓扑结构完成信号完整性仿真分析。通过对仿真结果的分析,不断调整拓扑结构,以达到所需的信号质量要求,包括过冲、下冲、振铃、单调性等。

A

缩略语

A

AES Advanced Encryption Standard 高级加密标准

C

CCM Counter with Cipher block chaining Message 计数器模式密码块链消息完整码

authentication code 协议

D

DM Doamin Master 域主

E

EP End Point 终端节点

ESD Electrostatic Discharge 静电释放

F

FDM Frequency-division Multiplexing 分频多任务

FEC Forward Error Correction 前向纠错

G

G.hn Gigabit Home Networking 吉比特家庭网络

GE Gigabit Ethernet 吉比特以太网

H

HBM Human Body Model 人体模型

Ι

ITU-T Telecommunication Standardization Sector 国际电信联盟电信标准化部门

M

MAC Media Access Control 介质访问控制

MDI Medium Dependent Interface 专用媒体界面

 \mathbf{N}

NAPT Network Address and Port Translation 网络地址和接口转换

 $\mathbf{0}$

OFDM Orthogonal Frequency Division Multiplexing 正交频分复用

P

PHY Physical Layer 物理层

PLC Power Line Communication 电力线通信

PPPoE Point-to-Point Protocol over Ethernet 以太网点对点协议

Q

QoS Quality of Service 服务质量

S

SoC System on Chip 系统芯片

T

TCP Transmission Control Protocol 传输控制协议

TDM Time-division Multiplexing 时分多路复用

 \mathbf{U}

UDP User Datagram Protocol 用户数据包协议