МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа № 4.4.2

Изучение фазовой решетки (эшелет)

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий**

Цель работы

Исследовать спектр ртутной лампы в рабочем порядке и дисперсию эшелета в разных порядках; определить параметры и спектральные характеристики эшелета; оценить влияние ширины пучка на разрешающую способность

В работе используются

- гониометр
- ртутная лампа
- эшелет
- призменный уголковый отражатель
- щель с микрометрическим винтом

Теоретическая часть

Дифркационная решётка представляет собой стеклянную или металлическую пластину, на которую через строго одинаковые интервалы нанесены параллельные штрихи. Основные параметры дифракционной решётки — период d (постоянная решётки), число штрихов N. Условие дифракции Фраунгофера — решётка освещается плоской волной, а плоскость наблюдения практически находится в бесконечности.

Рис. 1: Распределение интенсивности света при дифракции Фраунгофера на решётке

Согласно принципу Гюйгенса-Френеля распределение интенсивности в дифракционной картине определяется суперпозицией волн; амплитуды всех интерферирующих волн при φ практически одинаковы; фазы составляют арифметическую прогрессию:

$$d\sin\varphi_m = m\lambda$$
,

где $m \in Z$ — порядок спектра.

Интенсивность I света, распространяющегося под углом φ к нормали:

$$I = I_1(\varphi) \frac{\sin^2(N(dk\sin\varphi)/2)}{\sin^2((dk\sin\varphi)2)},$$

где $k=\frac{2\pi}{\lambda}$ — волновое число. Дисперсия D характеризует угловое расстояние между близкими спектральными линиями:

$$D = \frac{d\varphi}{d\lambda} = \frac{m}{d\cos\varphi} = \frac{m}{\sqrt{d^2 - m^2\lambda^2}}$$

Согласно притерию разрешения Релея, линии становятся неразличимыми, когда расстояние между ними меньше, чем растояние от максимума одной линии до её первого минимума:

$$\frac{Nkd}{2}(\sin(\varphi + \Delta\varphi) - \sin\varphi) = \pi,$$

где $\Delta \varphi$ — угловая полуширина главного максимума, $\Delta \varphi = \frac{\lambda}{N d \cos \varphi}$ Разрешающая способность спектрального прибора R вычисляется по формуле:

$$R = \frac{\lambda}{\Delta \lambda} = m \cdot N$$

Рис. 2: К определению разрешающей способности дифракционной решётки

Дисперсионная область G—предельная ширина спектрального интервала $d\lambda$, при которой спектры соседних порядков перекрываются только своими границами:

$$G = d\lambda = \frac{\lambda}{m}.$$

Ход работы

Исследование спектра ртутной лампы

Для угла $\psi=45^o$ измерим угловые координаты спектральных линий ртути в рабочем порядке. Отметим гловую координату каждой из описанных линий: Для оценки разреша-

Ахроматический	93°10′30″	
Фиолетовый	75°36′45″	$4047\dot{A}$
Синий	74°23′45″	$4358\dot{A}$
Голубой	$72^{o}15'35''$	$4916\dot{A}$
Зелёный	$70^{o}12'35''$	$5461\dot{A}$
Желтый 2	69°3′25″	$5770\dot{A}$
Жёлтый 1	68°58′35″	$5791\dot{A}$

ющей способности измерим гирину одной из линий жёлтого дублета и рассчитаем аппаратную полуширину линии $\Delta \lambda$:

Ширина линии: $68^{\circ}2'10'' - 68^{\circ}2'0'' = 10''$

$$\Delta \lambda = \frac{1}{3}\dot{A}; \quad R = \frac{\lambda}{\Delta \lambda} = \frac{5770}{20} \cdot 60 = 17810$$

Для угла $\psi = 30^{o}$ измерим координаты каждой из жёлтых линий во всех наблюдаемых порядках: Повторим измерения для $\psi = 45^{o}, 60^{o}$:

	Ж ₁	89°3′55″
$I_{\text{пол}}$	Ж ₂	$88^{0}55'45''$
	Ж ₁	$39^{o}50'55''$
$I_{ m orp}$	Ж ₂	39°55′25″

	Ж ₁	$68^{0}58'35''$
$I_{ m orp}$	Ж ₂	$69^{\circ}3'35''$
	Ж ₁	48°32′15″
$II_{ m orp}$	Ж ₂	48°40′50″

Таблица 1: $y/2 - 45^{\circ}$

Зависимость разрешающей силы от ширины пучка:

Натроим зрительную трубу на желтый дублет в рабочем порядке; определим начало отсчёта — момент открытия щели. Крест появляется при $59^o57'20''$; ширина щели — 3 деления.

Откроем щель пошире; уменьшая ширину щели, добьемся предельного разрешения желтого дублета, оценим число штрихов:

$$n \approx 1600 \text{ mitp/mm}; \quad \Delta \lambda = 2\dot{A}.$$

Построим график зависимости $\sin \varphi_m = f(\lambda)$ и по углу наклона определим период эшелета: Угол наклона графика $k = (6.5 \pm 0.1) \cdot 10^6$

Число штрихов $n \approx 650 \pm 10$ штр/мм

Период эшелета: $d = \frac{1}{0.65} = 1.53 \pm 0.04$ мм.

	Ж ₁	$92^{o}15'5''$
$I_{ m orp}$	Ж ₂	$92^{\circ}20'15''$
	Ж ₁	70°51′45″
$II_{ m orp}$	Ж ₂	$71^{\circ}0'35''$
	Ж ₁	$50^{o}51'5''$
$III_{ m orp}$	Ж ₂	$51^{o}4'45''$

Таблица 2: $\psi = 60^{\circ}$

Зависимость $\sin \varphi_m$ от λ

Угловая дисперсия в рабочем порядке для жёлтого дублета в угловых секундах на \dot{A} :

$$D = 14.3 \; \frac{\text{угл} \cdot \text{сек}}{\dot{A}}$$

Экспериментальная разрешающая способность:

$$R = \frac{\lambda}{\Delta \lambda} = 2890$$

Вывод

В данной лабораторной работе мы исследовали спектральные характеристики дифракционной решётки, научились работать с гониометром, экспериментально определили период решётки и разрешающую способность.