

FORTEREY CA 93943-5101

nclassified	
-------------	--

ecurity Classification of this page

	REPORT DOCU	MENTATION PAGE						
a Report Security Classification: Unclassified		1b Restrictive Markings						
a Security Classification Authority		3 Distribution/Availability of Report						
b Declassification/Downgrading Schedule		Approved for public rel	ease; distrib	oution is u	nlimited.			
Performing Organization Report Number(s)		5 Monitoring Organization R	eport Number	(a)				
Name of Performing Organization Naval Postgraduate School	6b Office Symbol (if applicable) AA/PL	7a Name of Monitoring Orga Naval Postgraduate Scho						
c Address (city, state, and ZIP code) Monterey CA 93943-5000								
a Name of Funding/Sponsoring Organization	ing Organization 6b Office Symbol 9 Procurement Instrument Identification Number (if applicable)							
Address (city, state, and ZIP code)		10 Source of Funding Number	ers					
		Program Element No	Project No	Task No	Work Unit Accession No			
1 Title (include security classification) A COMPU IRFOIL FLOW AND FLUTTER PROBLEMS	TATIONAL AND EXPE	RIMENTAL INVESTIGATION	ON OF INCO	MPRESSIBL	E OSCILLATORY			
2 Personal Author(s) Riester, Peter J.								
3a Type of Report Master's Thesis	13b Time Covered From To	14 Date of Report (year, moi	nth, day)	15 Page Co 160	unt			
6 Supplementary Notation The views expressed the Department of Defense or the U.S.		nose of the author and do	not reflect	the officia	al policy or position			
7 Cosati Codes Tield Group Subgroup 9 Abstract (continue on reverse if necessary and in	Flutter, Theodorsen visualization.	nue on reverse if necessary as						
In this thesis several incompressible oscil nodified so that systematic comparisons with Theoretic the Theodorsen results. Second, the panel code redictions was obtained. In the experimental part of y an airfoil executing harmonic plunge oscillations are executing plunge oscillations were explored.	latory flow and flutter produces of classical theory of was applied to the analy of the thesis two flow visu	could be accomplished. It was sis of bending-torsion flutter. ualization experiments were pe	found that the Again, generator formed. First	e panel code al agreement it, the vortice	is in excellent agreement with Theodorsen's flutter al flow patterns generated			
0 Distribution/Availability of Abstract cx unclassified/unlimited same as repo	rt DTIC users	21 Abstract Security Classific Unclassified	eation					
2a Name of Responsible Individual 1. F. Platzer		22b Telephone (include Area 408 656 2058	Code)	22c Office Symbol AA/PL				
D FORM 1473,84 MAR	83 APR edition may	y be used until exhausted	securi	ty classification of this page				

All other editions are obsolete

Unclassified

Approved for public release; distribution is unlimited.

A COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION OF INCOMPRESSIBLE OSCILLATORY AIRFOIL FLOW AND FLUTTER PROBLEMS

by

Peter J. Riester
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1981

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 1993_

ABSTRACT

In this thesis several incompressible oscillatory flow and flutter problems were investigated. First, a previously developed unsteady panel code was modified so that systematic comparisons with Theodorsen's classical theory could be accomplished. It was found that the panel code is in excellent agreement with the Theodorsen results. Second, the panel code was applied to the analysis of bending-torsion flutter. Again, general agreement with Theodorsen's flutter predictions was obtained. In the experimental part of the thesis two flow visualization experiments were performed. First, the vortical flow patterns generated by an airfoil executing harmonic plunge oscillations were visualized. In the second experiment, the interference effects between a stationary airfoil and a small vane executing plunge oscillations were explored.

7 Kas 15 2 4 4 4 C. /

TABLE OF CONTENTS

I. 3	INTRO	DDUC'	TION	•	٠	1
	A.	GENE	ERAL			1
	В.	SCOI	PE	٠	٠	1
II.	SII	NGLE	AIRFOIL ANALYSIS	٠		3
	A.	U2D	IFF PANEL CODE			3
		1.	GEOMETRY		٠	3
		2.	U2DIFF	٠	•	3
	В.	PHAS	SE PROGRAM		•	
	C.	MOD	IFICATION OF U2DIIF AND PHASE PROGRAM .	٠	٠	6
		1.	OUTPUT			6
		2.	DIFFERENCE BETWEEN UPOT AND U2DIIF/PHAS	E		17
		3.	UPOT VERIFICATION	•	٠	17
			a. K_{panel} (K_p) vs. $K_{Theodorson}(K_t)$			18
			b. AERODYNAMIC FORCES	•	٠	18
		4.	RESULTS	•	٠	23
III	. F	LUTTI	ER DETERMINANT	•	•	87
	A.	FLU	TTER THEORY	•		87
	В.	UPO'	TFLUT CODE	•	٠	93
		1.	FORMULATION AND INPUT	•		93
		2.	OUTPUT			94

		3. VALIDATION	1
IV.	FLO	OW VISUALIZATION EXPERIMENT	7
	A.	INTRODUCTION)7
	В.	THEORY)9
	C.	EXPERIMENTAL SETUP)9
		1. PLUNGING AIRFOIL)9
		2. WIND TUNNEL	L2
	D.	TEST PROCEDURE	L2
	E.	RESULTS AND DISCUSSION	L4
v.]	LIFT	ENHANCEMENT PRODUCED BY A PLUNGING AIRFOIL 12	26
	A.	THEORY	26
	В.	SETUP	26
	C.	WIND TUNNEL	27
	D.	SMOKE GENERATION	31
	E.	PHOTOGRAPHY	31
	F.	EXPERIMENTAL PROCEDURES	32
	G.	RESULTS AND DISCUSSION	32
VI.	CON	CLUSIONS AND RECOMMENDATIONS	16
	A.	SINGLE AIRFOIL ANALYSIS	16
	В.	FLOW VISUALIZATION EXPERIMENTS	16
I.TS'	T OF	PEEEDENCES 14	1.8

LAITIAL	DISTRIBUTION	LIST	٠		٠								۰		٠			149)
---------	--------------	------	---	--	---	--	--	--	--	--	--	--	---	--	---	--	--	-----	---

TABLE OF SYMBOLS

- a elastic axis position taken from the midchord
- b half chord
- C, spring constant for pitch
- Ch spring constant for plunge
- C_p drag coefficient
- C, lift coefficient
- C_{Lo} lift coefficient as a result of pitch
- C_{Lh} lift coefficient as a result of plunge
- C_{Mov} moment coefficient as a result of pitch
- **C_{Mh}** moment coefficient as a result of plunge
- h plunge amplitude
- i denotes complex number
- I mass moment of inertia
- I_L denotes imaginary part of lift
- I_M denotes imaginary part of moment
- Im Imaginary part
- K_p reduced frequency used in panel code
- Kt reduced frequency used in Theodorsen analysis
- κ mass ratio $(1/\mu)$
- L lift force per unit span
- $\textbf{L}_{\alpha},\textbf{L}_{\beta},\textbf{L}_{h} \qquad \text{aerodynamic coefficients used for Theodorsen}$ analysis
- M moment
- $\mathbf{M_h}, \mathbf{M_\alpha}$ aerodynamic coefficients used for Theodorsen analysis
- q dynamic pressure

- Re real part
- R_I, real part of lift
- R_{M} real part of moment
- S_x static moment about the elastic axis
- t nondimensional time
- U freestream velocity
- AOA angle of atack
- α pitch amplitude
- ρ density
- ϕ phase angle between force and motion
- $\phi_{ extsf{L}lpha}$ phase angle between lift force and pitch motion
- $\phi_{ t Lh}$ phase angle between lift force and plunge motion
- $\phi_{ exttt{M}lpha}$ phase angle between moment and pitch motion
- ϕ_{Mh} phase angle between moment and plunge motion
- ω frequency of harmonic oscillation (rad/sec)
- ω_{lpha} natural frequency of system for pitch
- ω_h natural frequency of system for plunge

ACKNOWLEDGEMENTS

The research for this thesis was conducted using the facilities of the Department of Aeronautics and Astronautics at the Naval Postgraduate School. I would like to give my sincere appreciation to professors M. F. Platzer and S. K. Hebbar, my thesis advisor and co-advisor, for their guidance, encouragement and many hours of council that led to the completion of this work. In addition I would like to thank Dr. E. Tuncer for helping me modify the U2DIIF panel code through his gifted knowledge of computers in the department.

I would also like to thank the staff of the Department of Aeronautics and Astronautics, in particular Mr. John Molton, Mr. Ron Ramaker, Mr Don Meeks, Mr. Rick Stills, Mr. Ted Best, Mr Pat Hickey and Mr. Jack King. Their technical assistance was instrumental in enabling my experiment to be a success.

Special thanks go to the Department of Physics, in particular Dr. Robert Keolian for helping me with the smoke tunnel phase of my research. The use of Dr. Keolian's shaker table and design suggestions proved to be extremely helpful

Finally, I would like to thank my beautiful and gifted wife, Nancy, for her endless support both throughout my tour here and finally in the typing of this thesis.

A Complete Service Complete Co

Description of the second seco

particular to the control of the con

I. INTRODUCTION

A. GENERAL

In this thesis, several numerical methods were used to analyze the flow about an airfoil performing unsteady motion in an inviscid incompressible fluid. First, the unsteady motion of a single airfoil was analyzed after modifying the U2DIIF code [ref.2]. The primary purpose was to verify the code against the proven theory of Theodorsen for analyzing the phenomenon of flutter. To accomplish this the U2DIIF code was modified to calculate aerodynamic values over a range of reduced frequencies and then apply these values to the flutter analysis.

Next, the propulsive effects of a plunging airfoil were verified through experimental methods using a low speed plexiglas wind tunnel.

Finally, an exploratory test was conducted in the department's smoke tunnel to study the interaction between a plunging airfoil and a stationary large airfoil.

B. SCOPE

Chapter II contains the modification of the single airfoil U2DIIF code into the code UPOT.f and extensive verification of this code against results produced by Theodorsen. Chapter III describes the UPOT code and explains the modifications which

were added to solve the flutter determinant. In chapter IV the flow visualization experiment is described which was performed to study the vortical wake patterns produced by a plunging airfoil. In chapter V a second experiment is described which was performed to explore a plunging airfoil's potential for control of flow separation.

II. SINGLE AIRFOIL ANALYSIS

A. U2DIFF PANEL CODE

1. Geometry

Figure 2.1 shows a representation of the system that is analyzed using the panel code. Shown are the values for h (plunge) and α (AOA).

2. U2DIFF

The U2DIIF code was developed by TENG [ref.2] for the study of unsteady inviscid and incompressible flow over a single airfoil. The code is based on the extension of the panel method, developed by Hess & Smith [ref.4] for steady potential flow problems, to include the unsteady motion of the airfoil that is continuously shedding vortices into the trailing wake. This vortex shedding process is nonlinear in that the wake vortices influence the flow over the airfoil which in turn alters the vortex shedding as the airfoil proceeds in time.

The non-linearity of the unsteady flow makes this problem different from the steady flow problem which requires only simple Gaussian elimination. Teng developed a code that used an iterative type of solution. Typical program output includes the airfoil pressure distribution, force and moment coefficients, and the trailing vortex wake pattern. No

Figure 2.1 Airfoil Geometry

attempt is made here to reproduce the work of Teng or to explore the operation of the U2DIIF code, but the reader is encouraged to review reference 2.

B. PHASE PROGRAM

The phase program was put through some verification by Neace [ref.9] and modified slightly in order to present results for harmonic motion. The code PHV3.f (phaseshift) was written by Neace to convert the time dependent output of lift and moment histories to harmonic output using an iterative curve fit algorithm:

$$F(t) = Amp * Sin(\omega t + \phi)$$
 (2.1)

where Amp = amplitude of motion, ω = frequency, and ϕ = phase angle between motion and the aerodynamic forces. One primary output of this program was the values of phaseshift (ϕ) between the AOA and coefficients of lift (C_L) and moment (C_M) for the pitching airfoil and the phaseshift between the plunge value (h/2b) and the C_L and C_M for the plunging airfoil. The other output was the amplitude of C_L and C_M for the pitching or plunging case.

C. MODIFICATION OF U2DIIF AND PHASE PROGRAM

In an attempt to make the above mentioned codes more "user friendly", the two codes were combined into a single code named UPOT.f. The modification involved a new input file

called UPOT.in which gives the user several options of operation. The input file can call for the analysis of steady flow only, straight and modified ramp motion, pitch oscillation, plunge oscillation, and the capability of performing the oscillation analysis over a series of reduced frequencies. A sample input file is shown in Figure (2.2).

1. Output

Outputs from the code have been limited to reduce the amount of computer space taken up by the code operation. A sample calculation was run using the input from Figure (2.2) and the on-screen output is shown in Figure (2.3). Of course, the user can modify the output portions of the code to minimize output. The following list describes the input/output files and the data they contain.

- a. UPOT.IN: The input file figure (2.2).
- b. CL.d: This file contains the various AOA values along with its corresponding $C_{\scriptscriptstyle L}$ for each time step.
- c. CM.D: This file contains the various AOA values along with its corresponding $C_{\text{\tiny M}}$ for each time step.
- d. PHASE.d: This file contains the values of non dimensional time (t), AOA, C_L , C_M , for each time step.
- e. FOR015.DAT: This file contains the values of non dimensional AOA, curve fit for $C_{\rm L}$, curve fit for $C_{\rm M}$, (used in the phase portion of program).
- f. CPSS.d: This file contains the steady state pressure coefficient for the mid point locations of all the air foil panels.
- g. CPU005.d: This file contains the unsteady pressure coefficient for the mid point location of all airfoil

- panels. (in this case the values are for an AOA equal to 5 degrees).
- h. PHZSWP.d: This file contains the phase information of the reduced frequency sweep portion for the program. The file contains the phase angle of C_L , and C_M , and the amplitude of C_L , C_M .
- i. FLUTTER.IN: This file contains information that can be used to solve the flutter determinant. It contains K_p , C_L Re, C_L Im, C_M Re, C_M Im for the pitch or plunge case.

```
stdin
                                                                                                                     Page 1
     AIRFOIL TYPE : NACA 0012 AIRFOIL
NLOWER = 50 , NUPPER = 50
    IFLAG NLOWER NUPPER
                  50
    AIRFOIL TYPE
     IRAMP IOSCIL ALPI
                                         ALPMAX
                                                              PIVOT
                             -3.0
                                            3.0
                                                                0.37
       Ω
               REQSTP REQENL
    FREO
     .68
    IGUST UGUST VGUS.

0 0. 0.

ITRANS DELHX DELHY DELI PHASE
0 .00 .0 .0 0.00

EYCLE NTCYCLE TOL
2 60 0.005
   CYCLE
    naot & naot X aoa values multiplied by 10 (integer) \frac{1}{2} 05 10 20 25 39 50
Comments...
IRAMP 0: n/a
                                     RFREO is based on ful, chord
           1: Straight ramp
           2: Modified ramp
IOSCIL 0: n/a RFREQ is based on turn chorles 1: Sinusoidal pitch, motion starts at min Aoa
                                      RFREQ is based on full chord
ITRANS 0: n/a
           1: Translational harmonic oscillation
ALPI/ALPMAX Minimum/MAX AOA in degrees for IRAMP/ITRANS/IOSCIL MAX does not apply for ITRANS

PIVOT Location of Elastic Axis as a fraction of fuil chord

FREQ Initial reduced frequency for program

RFQSTP Reduced freq step size for a sweep of freq.'s(enter 0.0 if only one calcu
lation is desired.)
RFQFNL Final freq for the sweep
          Translational amount in the chordwise direction (dist/full chord)
DELHX
DELHY Max Translational amount in the vertical direction (h/fullchord(b))
DELI Min Translational amount in the vertical direction (h/b)
CYCLE
          : # of cycles for oscillatory motions
            -In case of ramp, cycle=1.5 denotes airfoil is held at max aoa for the duration of .5 cycle
             -For steady state solution set it to 0
NTCYCLE: # of time steps for each cycle
CYCLE*NTCYCLE is limited to 200 currently.
TOL Tolerance for convergence of the unsteady solution.(recommend using not
      iess than .001)
NAOT: # of input aoa for cp output
           - angles should be in increasing order,

    for oscilatory motions angles should increase
first, then decrease. Decreasing angles are for

              the return cycle ..
```

Figure 2.2 UPOT.IN

```
stdin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Page 1
                                                              AIRFOIL TYPE : NACA 0012 AIRFOIL
                                                             NLOWER = 50 , NUPPER = 50
             IFLAG (C:NACA, 1:INPUT) = 0
NO. PANELS UPPER SURFACE = 50
NO. PANELS LOWER SURFACE = 50
            7
OSCILLATORY MOTION, IOSCIL =
INITIAL ANGLE OF ATTACK = -3.0000
FINAL ANGLE OF ATTACK = 3.0000
REDUCED FREQ. FOR OSCIL = 0.6800
REDUCED FREQ. STEP = 0.7000
FINAL REDUCED FREQ. = 0.7000
PIVOT POINT = 0.3700
                                                                                                                                                                                  = 2.0000
= 60
= 0.0050
             TOTAL # OF CYCLES
# of TIME STEPS PER CYCLE
                                                                                                                                                                                                                                   0.0050
             TOLERANCE FOR CONVERGENCE
FREQ SWEEP
FREQ = 0.680000
                                      0.99507 -1.116717 -0.086820 0.280753 -0.848084 0.997535 -1.108171 -0.086820 0.213074 -0.887088 0.993600 -1.100064 -0.086820 0.213074 -0.887088 0.993600 -1.100064 -0.086820 0.168200 -0.912031 0.987718 -1.092523 -0.086820 0.134381 -0.930386 0.970208 -1.078820 -0.086820 0.106525 -0.945238 0.970208 -1.078820 -0.086820 0.006278 -0.96526 0.958651 -1.072610 -0.086820 0.060678 -0.969786 0.945283 -1.066794 -0.086820 0.040815 -0.979380 0.930159 -1.061323 -0.086820 0.004851 -0.979380 0.930159 -1.061323 -0.086820 0.004851 -0.979380 0.930159 -1.061323 -0.086820 0.004851 -0.979538 0.930359 -1.056157 -0.086820 -0.004851 -0.979538 0.874870 -1.046545 -0.086820 -0.004871 -1.005873 0.874870 -1.046545 -0.086820 -0.0017780 -1.005873 0.874870 -1.0346545 -0.086820 -0.0043274 -1.021408 0.830493 -1.037547 -0.086820 -0.058416 -1.028793 0.806302 -1.033154 -0.086820 -0.058416 -1.028793 0.806302 -1.033154 -0.086820 -0.058416 -1.028793 0.806302 -1.033154 -0.086820 -0.012765 -1.050167 0.726883 -1.0019887 -0.086820 -0.102850 -1.050167 0.726883 -1.019887 -0.086820 -0.117685 -1.050167 0.726883 -1.019887 -0.086820 -0.117685 -1.050167 0.726883 -1.019887 -0.086820 -0.117685 -1.050167 0.726883 -1.019887 -0.086820 -0.117685 -1.050167 0.726883 -1.019887 -0.086820 -0.132698 -1.061283 0.669285 -1.010628 -0.086820 -0.132698 -1.061283 0.659247 -1.005803 -0.086820 -0.132698 -1.061283 0.659247 -1.005803 -0.086820 -0.132698 -1.061283 0.5515698 -0.985017 -0.086820 -0.123352 -1.101523 0.515698 -0.985017 -0.086820 -0.213352 -1.101523 0.515698 -0.985017 -0.086820 -0.249545 -1.117830 0.452969 -0.993714 -0.086820 -0.233108 -1.135180 0.330715 -0.995714 -0.086820 -0.233108 -1.135180 0.330715 -0.995714 -0.086820 -0.233108 -1.135180 0.350573 -0.995714 -0.086820 -0.233108 -1.135180 0.350573 -0.995714 -0.086820 -0.331061 -1.153716 0.330715 -0.995714 -0.086820 -0.331061 -1.153718 0.330715 -0.995714 -0.086820 -0.331061 -1.153718 0.330715 -0.995714 -0.086820 -0.331061 -1.153718 0.330715 -0.995714 -0.086820 -0.331061 -1.153718 0.330715 -0.995714 -0.086820 -0.331061 -1.1537
     STEADY FLOW SOLUTION AT ALPHA = -3.000000
                      10
                    14
                    15
                      19
                    20
                    24
                    27
                    28
                      30
                    32
                      33
                                          0.219097 -0.923337 -0.086820 -0.485507 -1.206527

0.193698 -0.916066 -0.086820 -0.485152 -1.218668

0.169507 -0.908273 -0.086820 -0.516866 -1.231611

0.146621 -0.899722 -0.086820 -0.551434 -1.245566
                      3.5
                    36
```

Figure 2.3a UPOT output

				sto	lin		Page 2
39	0.125130	-0.890054 -0	0.86820	-0 500671	-1.260821)	
40		-0.878738 -0					
41	0.086664	-0.864972 -0	.086820	-0.682121	-1.296966	5	
42		-0.847530 -0					
43		-0.824472 -0 -0.792611 -0					
45		-0.746398 -0					
46		-0.675433 -0					
47		-0.558323 -0					
48		-0.346398 -0					
49 50	0.002465	0.075008 -0					
51	0.000493	1.561213 -0			-0.741819		
52	0.002465	1.669507 -0			-0.050689		
53	0.006399	1.558290 +0		0.875814	0.352401		
54	0.012282	1.445845 -0		0.674864	0.57020		
55	0.020090	1.357269 -0		0.513069	0.697804		
56 57	0.029792	1.287651 -0 1.231267 -0		0.392567	0.779380		
58	0.054717	1.184229 -0		0.233416	0.875548		
59	0.069841	1.144055 -0		0.179673	0.905719		
60	0.086664	1.109153 -0	0.086820	0.137083	0.92893	3	
61	0.105117	1.078474 -0	0.086820	0.102934	0.947136		
62 63	0.125130	1.001316 -0	0.086820	0.075364	0.961580		
64	0.146621	1.027193 -0 1.005756 -0		0.053053	0.973112		
65	0.193698	0.986749 -0		0.020565	0.98966		
66	0.219097	0.969966 -0	.086820	0.009091	0.99544	1	
67	0.245605	0.955241 -0		0.000149	0.99992		
68 69	0.273117	0.942428 -(1.003314		
70	0.330715	0.931390 -(0.921993 -(1.00746		
71	0.360573	0.914106 -0			1.008488		
72	0.390982	0.907597 -0			1.00895		
73	0.421821	0.902331 -0			1.00896		
74 75	0.452969	0.898173 -0 0.894989 -0			1.00857		
76	0.515698	0.892645 -0			1.00687		
7.7	0.547031	0.891016 -0			1.005668		
78	0.578179	0.889982 -0			1.00426		
79	0.609018	0.889434 -0			1.002690		
80 81	0.639427	0.889276 -(0.889426 -(0.001926	1.00096		
82	0.698476	0.889824 -0		0.005855	0.99706		
83	0.726883	0.890423 -0		0.010190	0.99489		
84	0.754395	0.891196 -0		0.014851	0.99254	7	
85	0.780903	0.892138 -0		0.019880	0.990010		
86 87	0.806302	0.893264 -0 0.894605 -0		0.025328	0.98725		
88	0.853379	0.896208 -0		0.031258	0.98424		
89	0.874870	0.898136 -0		0.044881	0.97730		
90	0.894883	0.900467 -0		0.052775	0.97325	5	
91	0.913336	0.903280 -0		0.061567	0.96872		
92	0.930159	0.906675 -0		0.071417	0.963630		
93 94	0.945283	0.910746 -0 0.915603 -0		0.082565	0.95782		
95	0.970208	0.921351 -0		0.110175	0.94330		
96	0.979910	0.928123 -0		0.127830	0.93390		
97	0.987718	0.936086 -0	0.086820		0.92219		
98	0.993600	0.945516 -0		0 0 2 0 3 4	0.90680		
		0.957020 -0					
100	0.99950/	0.971841 -0	J. UB 6 8 Z U	0.280/53	0.84808	4	
	*******	* * * * * * * * * * * * *		****			
		TEADY FLOW SO					
ist	ep alpha	time	nitr	cl, cd	, cm		
1				-0.3479	0.0002	-0.0403	
2	-2.9836				-0.0005	-0.0424	
3	-2.9344 -2.8532				-0.0012 -0.0019	-0.0434 -0.0441	
4	-2.0032	0.4020	9	3.3101	J. J. J.	0.0111	

Figure 2.3b UPOT output

*				S	din		Page 3
5 -	2.7406	0.6160	0	-0.2935	-0.0027	-0.0444	
6 -	2.5981	0.7700	0	-0.2751	-0.0033	-0.0444	
	2.4271	0.9240	0	-0.2549	-0.0039	-0.0441	
	2.2294	1.0780	C	-0.2332 -0.2101	-0.0044 -0.0047	-0.0434 -0.0424	
	2.0074 1.7634	1.2320	ž	-0.1858	-0.0047	-0.0424	
	1.5000	1.5400	000	-0.1605	-0.0048	-0.0393	
	1.2202	1.6940	Ö	-0.1345	-0.0046	-0.0373	
	0.9271	1.8480	000	-0.1080	-0.0043	-0.0350	
	0.6237	2.0020	0	-0.0812	-0.0038	-0.0323	
	0.3136	2.1560	0	-0.0545	-0.0031	-0.0295 -0.0264	
16 17	0.0000	2.3100	^	-0.0280 -0.0021	-0.0023 -0.0014	-0.0231	
18	0.6237	2.6180	C	0.0230	-0.0004	-0.0197	
19	0.9271	2.7720	Ċ	0.0471	0.0006	-0.0161	
20	1.2202	2.9260	С	0.0699	0.0016	-0.0124	
21	1.5000	3.0800		0.0911	0.0025	-0.0087	
22 23	1.7634	3.2340 3.3880	C	0.1107 0.1284	0.0034	-0.0050 -0.0013	
24	2.2294	3.5420	0	0.1440	0.0048	0.0024	
25	2.4271	3.6960	č	0.1573	0.0053	0.0059	
26	2.5981	3.8500		0.1683	0.0056	0.0093	
27	2.7406	4.0040	C	0.1769	0.0057	0.0126	
28	2.8532	4.1580 4.3120	0	0.1829	0.0056 0.0054	0.0156 0.0184	
29 30	2.9344	4.4660	0	0.1872	0.0050	0.0210	
31	3.0000	4.6200	000	0.1855	0.0045	0.0232	
32	2.9836	4.7740		0.1812	0.0038	0.0252	
3 3	2.9344	4.9280	0	0.1745	0.0031	0.0268	
3.4	2.8532	5.0820	0	0.1653	0.0024	0.0280 0.0289	
35 36	2.7406 2.5981	5.2360 5.3900	0	0.1538	0.0008	0.0295	
37	2.4270	5.5440	Ö	0.1246	0.0002	0.0296	
38	2.2294	5.6980	0	0.1071	-0.0004	0.0294	
39	2.0074	5.8520	C	0.0880	-0.0009	0.0288	
40	1.7634	6.0060	0 0	0.0676	-0.0012 -0.0014	0.0278 0.0265	
41 42	1.5000	6.1600 6.3140	Ö	0.0459	-0.0014	0.0249	
43	0.9270	6.4680	0	0.0001	-0.0013	0.0229	
44	0.6237	6.62-20	0	-0.0235	-0.0010	0.0206	
45	0.3136	6.7760	C	-0.0472	-0.0006	0.0181	
46 47 -	0.0000	6.9300	1	-0.0709 -0.0941	0.0000	0.0153 0.0123	
	0.3136	7.0840 7.2380	0	-0.1166	0.0014	0.0092	
	0.9271	7.3920	0	-0.1382	0.0021	0.0059	
	1.2202	7.5460	0	-0.1586	0.0028	0.0025	
	-1.5000	7.7000	1	-0.1776	0.0035	-0.0010	
	1.7634	7.8540	C	-0.1950	0.0041	-0.0045 -0.0080	
	2.0074	8.0080 8.1620	0	-0.2105 -0.2241	0.0047	-0.0080	
	2.4271	8.3160	0	-0.2356	0.0053	-0.0147	
56 -	2.5981	8.4700	0	-0.2448	0.0054	-0.0179	
57 -	2.7406	8.6240	1	-0.2516	0.0053	-0.0210	
	2.8532	8.7780	0	-0.2559	0.0051	-0.0239	
	2.9344	8.9320 9.0860	0	-0.2578 -0.2571	0.0047	-0.0265 -0.0289	
	-3.0000	9.0860	0	-0.2539	0.0035	-0.0309	
	-2.9836	9.3940	Ö	-0.2482	0.0028	-0.0327	
	-2.9344	9.5480	0	-0.2400	0.0020	-0.0342	
64 -	-2.8532	9.7020	0	-0.2295	0.0011	-0.0353	
	-2.7406	9.8560 10.0100	0	-0.2168 -0.2019	0.0003	-0.0360 -0.0364	
		10.0100	0	-0.2019	-0.0003	-0.0364	
		10.3180	0	-0.1664	-0.0017	-0.0361	
		10.4720	0	-0.1463	-0.0022	-0.0354	
		10.6260	0	-0.1247	-0.0025	-0.0343	
		10.7800	0	-0.1020	-0.0026	-0.0329 -0.0311	
		10.9340	0	-0.0784 -0.0542	-0.0026 -0.0024	-0.0311	
74 -	-0.6237	11.2420	Ö	-0.0296	-0.0020	-0.0267	
75 -	-0.3136	11.3960	0	-0.0050	-0.0015	-0.0240	
76		11.5500	0	0.0195	-0.0008	-0.0211	
77	0.3136	11.7040	0	0.0436	-0.0001	-0.0181	

Figure 2.3c UPOT output

```
stdin
                                                                                                                                   Page 4
    78
              0.6237 11.8580
                                               0
                                                            0.0670
                                                                               0.0007
                                                                                              -0.0148
                                                                              0.0016
              0.9270
                          12.0120
                                               0
                                                            0.0894
                                                                                              -0.0114
              1.2202
                                                            0.1106
                                                                                              -0.0079
    ρ.
                          12.3200
                                               0
                                                            0.1304
                                                                              0.0033
                                                                                              -0.0044
               .7633
                          12.4740
                                               0
                                                            0.1486
                                                                              0.0040
                                                                                              -0.0008
              2.0074 12.6280
2.2294 12.7820
                                                            0.1649
                                                                              0.0046
                                                                                                0.0028
                                                            0.1792
                                                                              0.0051
                                                                                                0.0063
                                                            0.1913
                          12.9360
                                                                              0.0055
                                                                                                0.0097
              2.4270
              2.5981
                          13.0900
                                               0
                                                            0.2012
                                                                              0.0057
                                                                                                0.0130
                                                                                                0.0161
                                                                              0.0057
    97
                  7406
                          13.2440
                                               Λ
                                                           0.2087
              2.8532 13.3980
                                                           0.2137
                                                                               0.0056
                                                                                                0.0191
    gρ
                                               Λ
              2.9344 13.5520
2.9836 13.7060
                                                            0.2161
                                                                               0.0053
                                                                                                0.0218
                                               Ö
                          13.7060
                                                                              0.0048
                                                                                                0.0242
              3.0000 13.8600
                                               0
                                                           0.2134
                                                                              0.0042
                                                                                                0.0263
                                                                              0.0036
                                                                                                0.0282
              2.9836
                          14.0140
                                                            0.2083
              2.9344 14.1680
2.8532 14.3220
2.7406 14.4760
                                                            0.2007
                                                                                                0.0297
                                               n
    Q R
                                                           0.1907
                                                                              0.0020
                                                                                                0.0309
                                               Ω
                                                            0.1785
                                                                               0.0012
                                                                                                0.0317
              2.5981 14.6300
                                               0
                                                            0.1641
                                                                              0.0005
                                                                                                0.0321
             2.4271 14.7840
2.2294 14.9380
2.0074 15.0920
1.7634 15.2460
1.5000 15.4000
                                                                            -0.0002
                                               0
                                                           0.1478
                                                                                                0.0322
                                                          0.1297
                                                                                                0.0319
                                               0
    9.8
                                                                             -0.0013
                                               0
                                                          0.0889
0.0666
0.0435
                                                                             -0.0016
                                                                                                0.0302
                                              0
                                                                             -0.0017
                                                                                                0.0288
                                                                             -0.0017
                                                                                                0.0271
              1.2202 15.5540
0.9271 15.7080
                                              Ω
              0.9271 15.7080
0.6238 15.8620
                                                            0.0197
                                                                             -0.0016
                                                                                                0.0251
                                               0
                                                                             -0.0013
-0.0008
                                                           -0.0044
                                                                                                0.0228
              0.3136
                          16.0160
                                              0
                                                          -0.0287
                                                                                                0.0202
                                                                             -0.0002
   106
              0.0000 16.1700
                                              0
                                                           -0.0528
                                                                                                0.0173
            -0.3136 16.3239
-0.6237 16.4779
                                                           -0.0765
                                                           -0.0994
                                                                               0.0012
                                                                                                 0.0111
            -0.9270 16.6319
                                              0
                                                           -0.1215
                                                                               0.0020
                                                                                                0.0078
   109
            -1.2202 16.7859
-1.5000 16.9399
-1.7633 17.0939
-2.0074 17.2479
                                              0
                                                          -0.1423
                                                                               0.0028
                                                                                                0.0043
                                                                              0.0035
                                                                                                0.0008
                                                           -0.1617
                                              0
                                                           -0.1795
                                                                               0.0042
                                                                                               -0.0027
                                                           -0.1955
                                                                               0.0047
                                                                                              -0.0063
             -2.2294 17.4019
                                               0
                                                           -0.2095
                                                                               0.0052
                                                                                              -0.0097
                                                                               0.0054
                                                                                              -0.0131
             -2.4270 17.5559
                                               0
                                                          -0.2212
                                             0 0 1
                                                          -0.2308
                                                                               0.0056
                                                                                               -0.0164
                          17.7099
17.8639
            -2.5981
-2.7406
   116
   117
                                                           -0.2379
                                                                               0.0055
                                                                                               -0.0195
             -2.8532 18.0179
                                                           -0.2426
                                                                               0.0053
                                                                                              -0.0224
            -2.9344 18.1719
                                               0
                                                           -0.2447
                                                                              0.0049
                                                                                              -0.0250
                                             Ö
                                                                                               -0.0274
            -2.9836 18.3259
                                                           -0.2444
                            PHASE SHIFT ANALYSIS
                             FREQ = 0.6800000
AMPLITUDE; clamp, cmamp : 0.2304234 3.4331881E-02
PHASE; clp, cmp : 184,9092 -37.54200
AVERAGE DRAG, TOTAL DRAG : 1.5421067E-03 9.4068512E-02
ETAS, WBAR : -0.2168084 -7.1127615E-03
FREQ SWEEP
           0.690000
FREQ =
 STEADY FLOW SOLUTION AT ALPHA = -3.000000
          0.999507 -1.116717 -0.086820 0.280753 -0.848084
       0.997535 -1.108171 -0.086820 0.213074 -0.887088
0.993600 -1.100064 -0.086820 0.168200 -0.912031

      0.993600
      -1.100064
      -0.086820
      0.168200
      -0.912031

      0.979910
      -1.092523
      -0.086820
      0.134381
      -0.930386

      0.979910
      -1.085444
      -0.086820
      0.106525
      -0.945238

      0.970208
      -1.072610
      -0.086820
      0.06078
      -0.969186

      0.945283
      -1.066794
      -0.086820
      0.040815
      -0.979380

      0.930159
      -1.061323
      -0.086820
      0.022307
      -0.988783

      0.913336
      -1.056157
      -0.086820
      0.004851
      -0.997572

      0.894883
      -1.051250
      -0.086820
      -0.011780
      -1.005873

      0.874870
      -1.046545
      -0.086820
      -0.027772
      -1.013791
```

Figure 2.3d UPOT output

+			sto	din	Page 5
13	0.853379 -1.0	41994 -0.086820	-0.043274	-1.021408	
14		37547 -0.086820			
15		33154 -0.086820			
16		28773 -0.086820			
17		24362 -0.086820			
18		19887 -0.086820			
19 20		15315 -0.086820 10628 -0.086820			
21		05803 -0.086820			
22		00836 -0.086820			
23		95714 -0.086820			
2 4		90441 -0.086820			
25		85017 -0.086820			
26		79449 -0.086820			
27 28		73745 -0.086820 67910 -0.086820			
29		61956 -0.086820			
30		55883 -0.086820			
31		49692 -0.086820			
32		43373 -0.086820			
3 3		36907 -0.086820			
34		30250 -0.086820			
35		23337 -0.086820			
36 37		16066 -0.086820 08273 -0.086820			
38		99722 -0.086820			
3 9		90054 -0.086820			
40		78738 -0.086820			
41		64972 -0.086820			
42		47530 -0.086820			
43		24472 -0.086820			
44 45		92611 -0.086820 46398 -0.086820			
46		75433 -0.086820			
47		58323 -0.086820			
48		46398 -0.086820			
49		75008 -0.086820			
50		54855 -0.086820			
51	0.000493 1.5	61213 -0.086820		-0.741819	
52 53		69507 -0.086820 58290 -0.086820		-0.050689	
54		45845 -0.086820			
55		57269 -0.086820			
56		87651 -0.086820		0.779380	
57	0.041349 1.2	31267 -0.086820	0.302348	0.835256	
58		84229 -0.086820			
59		44055 -0.086820		0.905719	
60		09153 -0.086820			
61 62		78474 -0.086820 51316 -0.086820		0.947136	
63		27193 -0.086820		0.973112	
64		05756 -0.086820			
65		86749 -0.086820		0.989664	
66		69966 -0.086820	0.009091	0.995444	
67		55241 -0.086820		0.999926	
68		42428 -0.086820		1.003314	
69		31390 -0.086820		1.005780	
70 71		21993 -0.086820 14106 -0.086820		1.007464	
72		07597 -0.086820		1.008957	
73		02331 -0.086820		1.008960	
74		98173 -0.086820		1.008574	
75	0.484302 0.8	94989 -0.086820	-0.015784	1.007861	
76		92645 -0.086820		1.006879	
77		91016 -0.086820		1.005668	
78		89982 -0.086820		1.004263	
79 80	0.609018 0.8 0.639427 0.8	89434 -0.086820 89276 -0.086820	-0.005387	1.002690	
81		89426 -0.086820		0.999089	
82		89824 -0.086820		0.997068	
83	0.726883 0.8	90423 -0.086820	0.010190	0.994892	
84		91196 -0.086820		0.992547	
85	0.780903 0.8	92138 -0.086820	0.019880	0.990010	

Figure 2.3e UPOT output

		stdi	1	Page 6
86 0.806302 87 0.830493 88 0.853379 89 0.874870 90 0.894883 91 0.913336 92 0.930159 93 0.945283 94 0.958651 95 0.970208 96 0.979910 97 0.987718 98 0.993600 99 0.997535	0.893264 -0.0868. 0.894605 -0.0868. 0.894605 -0.0868. 0.993280 -0.0868. 0.900467 -0.0868. 0.9003280 -0.0868. 0.910746 -0.0868. 0.915603 -0.0868. 0.921351 -0.0868. 0.928123 -0.0868. 0.928123 -0.0868. 0.936086 -0.0868. 0.936086 -0.0868. 0.957020 -0.0868.	20 0.031258 20 0.037745 20 0.044881 20 0.052775 20 0.061567 20 0.071417 20 0.082565 20 0.095332 20 0.110175 20 0.127830 20 0.149558 20 0.177698 20 0.177698 20 0.217400	0.987255 0.984247 0.980946 0.977302 0.973255 0.968728 0.963630 0.957828 0.957828 0.951141 0.943306 0.933900 0.922194 0.906809 0.884647 0.8848084	
*****		* * * * * *		
*** BEGIN UNST	EADY FLOW SOLUTION	* * * * * * * * * * * * * * * * * * *		
isteb alpha	time nitr	c1, cd,	cm	
1 -3.0000 2 -2.9836 3 -2.9344 4 -2.8532 5 -2.7406 6 -2.5981 7 -2.4271 8 -2.2294 9 -2.0074 10 -1.7634 11 -1.5000 12 -1.2202 13 -0.9271 14 -0.6237 15 -0.3136 18 0.6237 19 0.9271 20 1.2202 21 1.5000 22 1.7634 23 2.0074 24 2.2294 25 2.4271 26 2.5981 27 2.7406 28 2.8532 29 2.9344 30 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 33 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.0000 32 2.9836 31 3.000000 32 2.9836 31 3.00000000000000000000000000000000000	0.0000 1 0.1518 0 0.3035 0 0.4553 0 0.6071 0 0.7588 0 0.9106 0 1.0624 1 1.2141 0 1.3659 0 1.5177 1 1.6694 0 1.8212 0 1.9730 0 2.1247 0 2.2765 1 2.4283 0 2.5801 0 2.7318 0 2.1247 0 2.7765 1 3.1871 0 3.3389 0 3.0354 1 3.1871 0 3.3389 0 3.9907 0 3.6424 0 4.0977 0 4.2495 0 4.7048 0 4.0977 0 4.2495 0 4.7048 0 4.5530 0 4.7048 0 4.5530 0 4.7048 0 5.6154 0 5.6154 0 5.6154 0 5.6154 0 5.6154 0 5.6154 0 5.6154 0 5.6154 0 5.61572 0 6.3742 0 6.5260 0 6.6778 0 6.8295 1 6.9813 0 7.2849 0 7.1331 0 7.2849 0 7.1331 0 7.2849 1	-0.3370 -0 -0.3243 -0 -0.32929 -0 -0.2744 -0 -0.2542 -0 -0.2323 -0 -0.1848 -0 -0.1595 -0 -0.1334 -0 -0.1069 -0 -0.0802 -0 -0.0535 -0 -0.0271 -0 -0.0012 -0 -0.0012 -0 -0.01110 0 -0.1285 0 -0.1439 0 -0.1763 0 -0.1763 0 -0.1763 0 -0.1763 0 -0.1763 0 -0.1763 0 -0.1763 0 -0.1799 0 -0.1862 0 -0.1855 0 -1.862 0 -0.1855 0 -0.1862 0 -0.1855 0 -0.1862 0 -0.1855 0 -0.1862 0 -0.1855 0 -0.1862 0 -0.1862 0 -0.1863 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.1729 0 -0.0021 -0 -0.0257 -0 -0.0494 -0 -0.0729 0 -0.0960 0 -0.1185 0 -0.1185 0 -0.1185 0 -0.0960 0 -0.1185 0 -0.1185 0 -0.1185 0 -0.1185 0 -0.0021 -0 -0.00257 -0 -0.00494 -0 -0.0729 0 -0.00960 0 -0.1185 0 -0.11899 0 -0.11602 0	.0002	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

Figure 2.3f UPOT output

×				S	tdin		Page
52	-1.7634	7.7402	0	-0.1963	0.0042	-0.0044	
53	-2.0074	7.8919	0	-0.2117	0.0042	-0.0079	
54	-2.2294	8.0437	Ö	-0.2251	0.0051	-0.0113	
55	-2.427C	8.1955	ő	-0.2364	0.0053	-0.0147	
56	-2.5981	8.3472	1	-0.2454	0.0054	-0.0179	
57	-2.7406	8.4990	Ĉ	-0.2520	0.0053	-0.0210	
58	-2.8532	8.6508	Ō	-0.2562	0.0051	-0.0238	
59	-2.9344	8.8025	С	-0.2578	0.0047	-0.0265	
60	-2.9836	8.9543	0	-0.2570	0.0042	-0.0289	
61	-3.0000	9.1061	0	-0.2536	0.0035	-0.0310	
62	-2.9836	9.2578	0	-0.2477	0.0028	-0.0328	
63	-2.9344	9.4096	0	-0.2394	0.0019	-0.0342	
64	-2.8532	9.5614	0	-0.2288	0.0011	-0.0354	
65	-2.7406	9.7131	0	-0.2159	0.0003	-0.0361	
66	-2.5981	9.8649	0	-0.2009	-0.0005	-0.0365	
67	-2.427	10.0167	0	-0.1839	-0.0012	-0.0366	
68	-2.2294	10.1684	0	-0.1652	-0.0018	-0.0362	
69 70	-2.0074 -1.7634	10.3202	0	-0.1450 -0.1233	-0.0022 -0.0025	-0.0355 -0.0345	
71		10.6237	0	-0.1006	-0.0023	-0.0330	
72	-1.2202	10.7755	0	-0.0770	-0.0027	-0.0313	
73	-0.927	10.9273	0	-0.0528	-0.0024	-0.0292	
74	-0.6237	11.0790	0	-0.0282	-0.0029	-0.0269	
75		11.2308	Ö	-0.0036	-0.0015	-0.0242	
76		11.3826	Ö	0.0209	-0.0008	-0.0213	
77	0.3136	11.5343	C	0.0448	-0.0001	-0.0183	
78	0.6237	11.6861	0	0.0681	0.0007	-0.0150	
79		11.8379	0	0.0904	0.0016	-0.0116	
80	1.2202	11.9897	0	0.1115	0.0025	-0.0081	
81		12.1414	1	0.1311	0.0033	-0.0045	
82		12.2932	0	0.1493	0.0040	-0.0010	
83		12.4450	0	0.1654	0.0047	0.0026	
84		12.5967	0	0.1796	0.0052	0.0061	
85		12.7485	0	0.1915	0.0055	0.0095	
8 6 8 7		12.9003	1	0.2012	0.0057	0.0129	
88	2.8532	13.0520 13.2038	0	0.2085	0.0058	0.0160	
89		13.3556	0	0.2133 0.2156	0.0056	0.0189 0.0217	
90		13.5073	Ö	0.2153	0.0048	0.0241	
91		13.6591	Ö	0.2125	0.0042	0.0263	
92		13.8109	Ö	0.2072	0.0036	0.0282	
93		13.9626	0	0.1995	0.0028	0.0297	
94	2.8532	14.1144	0	0.1894	0.0020	0.0309	
95		14.2662	0	0.1770	0.0012	0.0317	
96	2.5981	14.4179	1	0.1625	0.0005	0.0322	
97	2.4271	14.5697	0	0.1461	-0.0002	0.0323	
98		14.7215	0	0.1279	-0.0008	0.0320	
99	2.0074	14.8732	0	0.1081	-0.0013	0.0313	
100		15.0250	0	0.0870	-0.0016	0.0303	
101 102		15.1768	0	0.0647	-0.0018	0.0289	
103	0.9271	15.4803	0	0.0415	-0.0018 -0.0016	0.0272 0.0252	
103		15.4803	0	-0.0063	-0.0016	0.0252	
105		15.7838	Ö	-0.0305	-0.0008	0.0203	
106		15.9356	1	-0.0546	-0.0002	0.0175	
107		16.0874	Ö	-0.0782	0.0005	0.0145	
108		16.2391	Ö	-0.1011	0.0012	0.0113	
109	-0.9270	16.3909	Ō	-0.1230	0.0020	0.0079	
110	-1.2202	16.5427	0	-0.1437	0.0028	0.0044	
111		16.6945	1	-0.1630	0.0035	0.0009	
112	-1.7634	16.8462	0	-0.1807	0.0042	-0.0026	
113		16.9980	0	-0.1965	0.0048	-0.0061	
114		17.1498	0	-0.2103	0.0052	-0.0096	
115		17.3015	0	-0.2219	0.0055	-0.0130	
116		17.4533	1	-0.2312	0.0056	-0.0163	
117		17.6051	0	-0.2382	0.0055	-0.0194	
118		17.7568	0	-0.2427	0.0053	-0.0223	
119 120		17.9086 18.0604	0	-0.2446 -0.2441	0.0049	-0.0250	
120	-2.7036	10.0004	J	-0.2441	0.0044	-0.0274	
		DUNCT C''	TET	1 × 6 1 6			
		PHASE SH FREQ =	0.690				

Figure 2.3g UPOT output

stdin	Page 8
AMPLITUDE; clamp, cmamp: 0.2300964 3.4413978E-02 PHASE; clp, cmp: 193.5791 -37.85255 AVERAGE DRAG, TOTAL DRAG: 1.5437672E-03 9.4169796E-02 ETAS, WBAR: -0.2118947 -7.2855391E-03	

Figure 2.3h UPOT output

2. Difference Between UPOT and U2DIIF/Phase

The input file format was changed along with the following:

- The program can now analyze a pitch, plunge or ramp motion that starts from any minimum value of Alpha or plunge (h/2b). Previously, the program only accepted the initial position of zero. This program does not need to go through the origin.
- The phase portion of the program was changed to curve fit $C_{I.}$ and C_{M} to a cosine function:

$$F(t) = Amp * Cos(\omega t + \phi)$$
 (2.2)

where, Amp = amplitude of motion, ω = frequency of motion, ϕ = phase angle between motion and the aerodynamic forces. This was done since the alpha and plunge values were allowed to start from a new zero position.

• The phase portion uses the middle 180 degrees of the final 360 degree cycle specified in the UPOT.in file. This change was done to capture an all positive area of the cosine curve for phasing analysis. The program integrates this portion of the cosine curve, and for proper code operation the area under the curve must be kept to one sign. If the areas of integration were chosen to include both sides of the axis, then the code would produce errors near 90 and 270 degrees.

3. UPOT Verification

The code UPOT did not incorporate any drastic changes to the prior codes, but the original code had never been extensively compared to prior theories over a wide range of reduced frequencies. When conducting these comparisons, it is easy to become confused. This section will go through the comparisons slowly to help alleviate that problem.

a. K_{panel} (K_p) vs. $K_{Theodorson}(K_t)$.

The equation for reduced frequency is:

$$K_p = \frac{\omega 2b}{U} \qquad K_t = \frac{\omega b}{U} \tag{2.3}$$

where: ω = frequency of oscillation (rad/sec)

b = half chord (units to match U)

U = free stream velocity (units to match b).

The difference between K_p and K_t lies in the fact that K_p calls for the full chord and K_t calls for the half chord, hence, it is important to remember that K_p is twice K_t .

b. Aerodynamic Forces

The aerodynamic forces problem of simple harmonic motion about an equilibrium position was solved theoretically by Theodorsen in NACA TR-496 [ref.10] and outlined by Fung in [ref.5]. The complex equations were simplified using the simple harmonic motion equation and resulted in the following:

$$L = \pi \rho b^{3} \omega^{2} \left(L_{h} \frac{h}{b} + \left[L_{\alpha} - \left(\frac{1}{2} + a \right) L_{h} \right] \alpha + \left[L_{\beta} - \left(c - e \right) L_{z} \right] \beta \right) e^{i (\omega t + \phi_{L})}$$
 (2.4)

$$M = \pi \rho b^{4} \omega^{2} \left(\left[M_{h} - \left(\frac{1}{2} + a \right) L_{h} \right] \frac{h}{b} + \left[M_{\alpha} - \left(\frac{1}{2} + a \right) \left(L_{\alpha} + M_{h} \right) + \left(\frac{1}{2} + a \right)^{2} L_{h} \right] \alpha$$

$$+ \left[M_{\beta} - \left(\frac{1}{2} + a \right) L_{\beta} - \left(c - e \right) M_{Z} + \left(c - e \right) \left(\frac{1}{2} + a \right) L_{z} \right] \beta \right) e^{i \left(\omega t + \phi_{M} \right)}$$

$$(2.5)$$

L, M are the lift and moment per unit span of the airfoil about the elastic axis, b, h/b, a and α (radians), are

shown in Figure (2.1)., L_h , L_α , L_β , and M_α are defined by Scanlan [ref.6,pp.412-424] for various values of K_t and e. This analysis will not cover airfoil aileron combinations. Therefore β becomes zero and equations 2.4 and 2.5 reduce to:

$$L = \pi \rho b^{3} \omega^{2} \left(L_{h} \frac{h}{b} + \left[L_{\alpha} - \left(\frac{1}{2} + a \right) L_{h} \right] \alpha \right) e^{i (\omega t + \phi_{L})}$$
 (2.6)

$$M = \pi \rho b^{4} \omega^{2} \left(\left[M_{h} - \left(\frac{1}{2} + a \right) L_{h} \right] \frac{h}{b} + \left[M_{\alpha} - \left(\frac{1}{2} + a \right) \left(L_{\alpha} + M_{h} \right) + \left(\frac{1}{2} + a \right)^{2} L_{h} \right] \alpha \right) e^{i(\omega t + \phi_{L})}$$
(2.7)

The UPOT panel code used the following equations in defining lift and moment:

$$C_L = \frac{L}{2gb} = \sqrt{R_L^2 + I_L^2} e^{i(\omega t + \phi L)}$$
 $\phi_L = \tan^{-1} \frac{I_L}{R_L}$ (2.8)

$$C_{M} = \frac{M}{4 g b^{2}} = \sqrt{R_{m}^{2} + I_{m}^{2}} e^{i(\omega t + \phi m)} \qquad \phi_{m} = \tan^{-1} \frac{I_{m}}{R_{m}}$$
 (2.9)

where R_L and I_L are the real and imaginary parts of C_L , and R_M and I_M are the real and imaginary parts of C_M . For the same conditions the lift (L) and moment (M) should be the same for both the panel code and Theodorsen. This fact allows for comparison of the magnitude, real, imaginary and phase of lift and moment.

For lift:
$$L_t$$
 (eqn 2.6) equals L_p (eqn 2.8)

$$\pi \rho b^3 \omega^2 [L_h h/b + (L_{\alpha} - (1/2 + a) L_h) \alpha] e^{i(\omega t + \phi_L)} = 2qb\sqrt{R_L^2 + I_L^2} e^{i(\omega t + \phi_L)}$$
 (2.10)

After canceling $e^{i(\omega t + \phi L)}$:

$$\pi \rho b^{3} \omega^{2} \left[L_{h}(h/b) + \left(L_{\alpha} - (\frac{1}{2} + a) L_{h} \right) \alpha \right] = 2qb \sqrt{R_{L}^{2} + I_{L}^{2}}$$

$$C_{L} = \sqrt{R_{L}^{2} + I_{L}^{2}}$$
(2.11)

For pitch case, h/b = 0, 2.11 reduces to:

$$\pi \rho b^3 \omega^2 [(L_{\alpha} - (\frac{1}{2} + a) L_h) \alpha] = 2qbC_{\alpha}$$
 (2.12)

Substitute $K_t = b\omega/U$ for ω^2 and $q = \frac{1}{2}\rho U^2$ into equation 2.12 which gives:

$$2\pi qbK_t^2 (L_{\alpha} - (\frac{1}{2} + a) L_h) \alpha = 2qbC_{L\alpha}$$
 (2.13)

After cancelling and substituting K_p for K_t :

$$\frac{\pi K_p^2}{4} \left[L_{\alpha} - (1/2 + a) L_h \right] \alpha = C_{L\alpha}$$
 (2.14)

This relationship can be further broken down into the real and imaginary parts:

Imag:
$$\frac{\pi K_p^2}{4} \left[iL_{\alpha} - (\frac{1}{2} + a) iL_h \right] \alpha = C_{L\alpha} \sin(\phi_L)$$
 (2.15)

Plunge Case: $\alpha=0$ using equation 2.11 gives:

Real:
$$\frac{\pi K_p^2}{4} [L_{\alpha} - (1/2 + a) L_h] \alpha = C_{L\alpha} \cos(\phi_L)$$
 (2.16)

$$\pi \rho b^3 \omega^2 L_h \frac{h}{b} = 2qbC_{Lh} \tag{2.17}$$

The panel code uses h/2b for analysis because it uses full chord vice half chord. Therefore equation 2.17 becomes:

$$2\pi\rho b^{3}\omega^{2}L_{h}(\frac{h}{2b}) = 2qbC_{Lh}$$
 (2.18)

Substituting as before for ω :

$$2\pi qbK_t^2L_h^2(\frac{h}{2b}) = 2qbC_{Lh}$$
 (2.19)

Cancel and substitute Kp:

$$(\frac{\pi K_p^2}{2}) (\frac{h}{2b}) L_h = C_{Lh}$$
 (2.20)

This can also be broken up into imaginary and real parts as before.

MOMENT:

Equating equations 2.7 and 2.9 results in:

$$\pi \rho b^{4} \omega^{2} \left(\left[M_{h} - (\sqrt{2} + a) L_{h} \right] \frac{h}{b} + \left[M_{\alpha} - (\sqrt{2} + a) (L_{\alpha} + M_{h}) + (\sqrt{2} + a)^{2} L_{h} \right] \alpha \right)$$

$$= 4 q b^{2} \sqrt{R_{m}^{2} + I_{m}^{2}}$$
(2.21)

For pitch: h/b = 0

$$M_{p} = 4 q D^{2} \sqrt{R_{m}^{2} + I_{m}^{2}} e^{i(\omega t + \phi_{m})}$$
 (2.22)

$$C_{M\alpha} = \sqrt{R_m^2 + I_m^2}$$
 (2.23)

resulting in:

$$\pi \rho b^4 \omega^2 \left(\left[M_{\alpha} - (\frac{1}{2} + a) \left(L_{\alpha} + M_h \right) + (\frac{1}{2} + a)^2 L_h \right] \alpha \right) = 4 q b^2 C_{M\alpha}$$
 (2.24)

After substituting and cancelling:

$$\frac{\alpha \pi K_p^2}{8} \left[M_\alpha - (1/2 + a) (L_\alpha + M_h) + (1/2 + a)^2 L_h \right] = C_{M\alpha}$$
 (2.25)

REAL $M_h = \frac{1}{2}$

$$\frac{\alpha \pi K_p^2}{8} \left[M_\alpha - (1/2 + a) (L_\alpha + 1/2) + (1/2 + a)^2 L_h \right] = C_{M\alpha} \cos(\phi_{M\alpha})$$
 (2.26)

 $IMAG: M_h = 0$

$$\frac{\alpha \pi K_p^2}{8} \left[iM_{\alpha} - (1/2 + a) (iL_{\alpha}) + (1/2 + a)^2 iL_h \right] = C_{M\alpha} \sin(\phi_{M\alpha})$$
 (2.27)

For plunge, $\alpha = 0$, equation 21 reduces to :

REAL: $M_h = \frac{1}{2}$

$$\frac{\pi}{4} K_p^2 \left(\frac{h}{2b} \right) \left[M_h - (1/2 + a) L_h \right] = C_{Mh} \cos (\phi_{Mh})$$
 (2.28)

 $IMAG: M_h = 0$

$$\frac{\pi}{4} K_p^2 \left(\frac{h}{2b} \right) (1/2 + a) L_h = C_{Mh} \sin(\phi_{Mh})$$
 (2.29)

Comparisons are shown for various cases of pitch and plunge. The tables include pitch values of 1 (Tables 2.2-2.3) and 6.7 degrees (Tables 2.4-2.5), plunge (h/2b) values of .01 (Table 2.8) and .0833 (Table 2.6-2.7). The graphs include 1 degree pitch (Figures 2.7-12, 2.13-20), 6.7 degree pitch (Figures 2.21-28,2.29-36), .01 h/2b plunge (Figures 2.53-56), and .0833 h/2b plunge (Figures 2.37-44, 2.45-52).

4. Results

The tables and graphs show that the panel code predicts the Theodorsen results accurately. An initial question that was first addressed for the comparisons was how many cycles to use for good consistent phase results. Initial runs were made at several different cycle values and the results are shown in Table 2.1. It can be seen that the panel code predicts Theodorsen's results, using a cycle number of three. Increasing the cycle number just takes more computer time and only results in marginal increases in accuracy.

The most glaring difference appears in the I_M c_{Mh} comparisons of Figures 2.47-48. The panel code drops off sharply at the higher end of the reduced frequency spectrum. The reason for this is believed to be due to the magnitude of h/2b chosen for the comparison. The code was rerun for a

	Compari	son of Phase	Calculations U	sing Variou:	s Cycles.	
		(Pitch, 6.7 deg., NA	CA 0007, .37c, 50 pa	nels top and bot	tom)	
Kp	# Cycles	Cl Phase Angle	Cm Phase Angle	Cl Amplitude	Cm amplitud	e
1.00	1	182.0537	-54.409	0.4884	0.08937	
1.00	2	208.1592	-46.424	0.5109224	0.083932	
1.00	3	206.001	-44.313	0.51527	0.083169	
% Diff. 2/3		1.05%	4.76%	0.84%	0.92%	
1.00	4	204.9365	-43.33887	0.51668	0.082951	
1.00	5	204.3955	-42.86817	0.5172907	0.082865	
1.00	6	204.0596	-42.58497	0.517598	0.082822	
1.00	7	203.8291	-42.3916	0.517776	0.082792	
1.00	8	203.6031	-42.25684	0.51789	0.082784	
% Diff. 7/8		0.11%	0.32%	0.02%	0.01%	
3.60	2	264.44052	-59.79002	1.0931	0.212011	
3.60	3	261.9737	-58.29977	1.09954	i	
% Diff. 2/3		0.94%	2.56%	0.59%	3.35%	
3.60	4	260.17877	-57.4404	 		
3.60		259.2686	·			
3.60	6	258.5186	-56.3252			
3.60	7	257.9483	-56.0098			
3.60	8	257.6163	-55.380567	1.106764	0.218632	
% Diff. 7/8		0.13%	1.14%	0.04%	0.02%	

TABLE 2.1 PHASE CALCULATION VS CYCLE NUMBER

series of h/2b values and the percent difference for the panel code to Theodorsen was plotted in Figure 2.4. This chart shows that the h/2b value chosen has a tremendous impact on the code results. An h/2b value of .01 gave an acceptable error of 10% at $K_p = 8$. Runs were completed with a value of .01 h/2b and the favorable results are shown in Figures 2.53-56.

Figure 2.4 Effect of h/2b values on Im C_m

1.0 deg., 37.C NACA 0007, 50 pares top and bottom, 350IFF taken wrt Theordonan values. 1.0 deg., 37.C NACA 0007, 50 pares top and bottom, 350IFF taken wrt Theordonan values. 1.0 deg., 37.C NACA 0007, 50 pares to be seen to be see				Comparison	Taries C	A GIOCO MAILU	STORE OF THE PROPERTY OF THE P							
Kpanel Reparel Reparel Reparel Robinel Robinel <th< th=""><th></th><th></th><th></th><th>(pitch, 1.0 de</th><th>1037c. h</th><th>VACA 0007.</th><th>50 paners top a</th><th>and bottom.</th><th>3cyc66calc.)</th><th></th><th></th><th></th><th></th><th></th></th<>				(pitch, 1.0 de	1037c. h	VACA 0007.	50 paners top a	and bottom.	3cyc66calc.)					
Koarnel Real theo. % DIFF. Imag Pen. Imag Theo % DIFF. Mag Theo. % DIFF. Phress Ph.				Kpanel (equa	to 2 × Th	sordorsen Kt			%DIFF taken v	vrt Theordora	en values.			
Control Cont		1	Deel peel	3	35		Imag Theo			Mad Theo	# DIFF	Phase Pri		% DIFF
0.1998 0.10312 0.098462 4.74% 0.01082 0.0074867 46.62% 0.1001893 0.0887874 4.98% 174.01008 175.42146 0.10964 0.0074867 46.62% 0.1001893 0.0887874 4.71% 173.12806 175.6214 0.2 0.008644 0.0086434 0.0086441 0.00647181 0.08688912 0.0887846 4.71% 173.12806 175.6241 175.2146 0.2 0.008644 0.0086441 0.00647181 0.08688912 0.0887874 4.46% 173.12817 178.6341 0.32 0.08868 0.088787 0.08878 0.088787 0.08878 0.07878 0		Npai rei	noai paii.	2	5	1					2			
0.16 0.09664 0.096343 4.40% 0.01094 0.00447781 0.0.65% 0.09689929 0.09627908 4.71% 173.72805 175.6214 0.2 -0.09634 0.092624 4.11% 0.00447781 0.0.65% 0.09829902 3.67% 173.72805 175.6241 0.24 -0.098364 0.0964781 0.065% 0.098408923 0.0961780 4.27% 173.7381 175.6341 0.32 -0.08866 0.096787 3.68% 0.0964181 236.98% 0.098402 3.66% 177.79586 181.8773 0.4 -0.08622 0.096787 0.0067231 0.086281 0.086281 0.098692 3.12% 177.79586 181.8773 0.48 -0.07864 0.00044781 2.086% 0.098691 0.078266 3.12% 181.8773 177.79586 181.8773 0.63 -0.07824 0.00044781 1.009673 0.0922861 0.078266 3.12% 181.8773 181.8773 0.63 -0.07824 0.0004473 0.0194744 12.35% <td>18.67</td> <td>0.11998</td> <td></td> <td>-0.0</td> <td>4.74%</td> <td>0.01082</td> <td>l l</td> <td>37.24%</td> <td>0.1036881</td> <td></td> <td>4.98%</td> <td>174.01008</td> <td>175.42145</td> <td>0.80%</td>	18.67	0.11998		-0.0	4.74%	0.01082	l l	37.24%	0.1036881		4.98%	174.01008	175.42145	0.80%
0.24 0.09954 0.092534 4.11% 0.0104 0.006447811 00.65% 0.096401513 0.0927909 4.46% 173.83972 175.99571 175.99571 0.0241 0.009544 0.005106469 4.66% 0.096401513 0.096401513 0.096602 3.86% 175.1373 178.91357 179.91358 179.91357 179.91358 179.913564 179.913564 179.91358 179.91357 179.91358 179.91358 179.91358 179.91357 179.91358 179.91358 179.91357 179.91358 179.9	12.5			-0.0	4.40%	0.01094	0.00748667		0.10013938	0.0958348	4.71%	173.72806	175.62214	1.02%
0.24 0.08354 0.080722 3.91% 0.00610646 94.86% 0.08401613 0.0901869 4.27% 174.23728 176.75241 176.75271 176.75271 176.75271 176.75271 176.75271 176.75271 176.75271 177.75681 177.75682 0.00681 0.00681 0.00681 0.00681 0.00681 0.00681 0.00682831 0.06824025 3.66% 177.75681 186.87573 177.75686 177.75686 177.75686 177.75686 177.75686 177.75686 177.75684 0.078220 3.60 177.75684 0.078220 3.70 187.876 187.75682 0.078280 3.70 0.07341 12.33% 0.0782869 0.0782869 0.0782869 0.0782869 3.10 177.75686 187.876 187.75684 0.0782869 3.10 187.75673 187.75673 187.75673 187.75673 188.82867 188.82884 188.8678 0.0782869 0.07828696 0.0772869 0.0772869 1.26% 0.07738696 0.0772869 0.0782869 1.36% 0.07828696 1.0782869 1.26%	10	0.2	_	_	4.11%	0.0104		89.00		0.0927608	4.48%			1.23%
0.32 -0.088686 -0.086787 3.56% 0.00042817 30.08810923 0.086802 3.86% 175.71373 178.91567 0.48 -0.08622 -0.08672 -0.08628 0.0662831 0.08628281 3.56% 177.719686 181.8773 0.48 -0.08622 -0.078649 0.0786281 0.08628281 0.0823214 0.078626 3.12% 180.3468 181.8773 0.63 -0.09044 -0.07862 -0.00044 -0.00047 -0.00047 0.000474 17.23% 0.078266 3.17% 181.89826 187.02716 0.88 -0.07864 -0.07817 -0.01341 1.2.3% 0.07738067 0.078286 186.288 188.5678 187.77866 187.07766	8.33	0.24		0.0	3.91%	0.00944	0.00510648	84.86%	0.09401513	0.0901869	4.27%	174.23728		1.42%
0.4 -0.08622 -0.0862347 3.46% 0.00024119 235.99% 0.08628314 0.0824026 3.50% 177.79686 181.8773 0.48 -0.08232 -0.078644 3.48% -0.00047203 92.86% 0.08232141 0.0788286 3.12% 180.33408 184.82806 0.53 -0.08044 -0.07781 -0.0096731 70.88% 0.0808878 0.07782606 3.37% 181.98968 187.02716 0.88 -0.07842 -0.077272 -0.077272 -0.077272 1.88.85232 183.858 188.85828 188.85282 188.85828 0.88 -0.07272 -0.077272 -0.07771 1.34% -0.02328 -0.02484 5.66% 0.0778664 0.0778606 0.0778606 0.078648 0.078664 0.078606 0.034648 0.08878738 0.077876 0.0778648 0.08878734 0.078648 0.0786648 0.0886748 0.0786648 0.0786648 0.0886748 0.0886748 0.0786648 0.0786648 0.0786648 0.08867448 0.0886748 0.0786648 0.0786648	8.25	0.32		0.0	3.58%	0.00668		1				175.71373		1.79%
0.48 -0.08232 -0.078646 3.49 % -0.000428 -0.0067203 92.86 % 0.0823214 0.0788296 3.37 % 180.33408 184.82906 0.53 0.0804 0.077883 4.09 % -0.00278 0.0006731 70.88 % 0.08088779 0.0782865 3.37 % 181.39956 187.02715 0.08824 0.0782862 0.07828687 0.0772882 2.59 % 188.52882 188.89348 0.88 0.07828687 0.0772842 0.07722 0.077171 1.82 % -0.01832 0.01832 0.078386 0.0024848 0.07828687 0.077702 0.48 % 208.8523 207.87124 0.08 % 0.004564 0.004564 0.003464 0.003464 0.003464 0.003464 0.003464 0.0045286 0.0036809 0.00802443 0.048 % 208.8523 207.87124 0.00688 0.006848 0.0068248 0.004828 0.004664 0.004669 0.0036809 0.00802443 0.186 % 208.8523 207.87124 0.005704 0.006849 0.0068249 0.004669 0.0036809 0.00802443 0.186 % 208.8523 207.87124 0.0056409 0.006868 0.00800358 2.44 % 0.077102 0.48 % 208.85287 15.818726 0.005603 0.006861 71.72 % 0.106072 0.1100087 0.11404519 0.1186806 0.0802443 1.43 % 216.24128 216.81828 1 0.005603 0.006861 71.72 % 0.119738 0.1190887 0.11404519 0.1186806 0.463 % 289.2022 287.31651 0.0056408 0.1826844 0.38 % 0.006863 0.1186806 0.0802443 0.1186806 0.0080243 0.1186806 0.008661 71.72 % 0.178738 0.11808358 0.11310788 0.1186806 0.463 % 293.55789 287.31651 0.006861 0.0048737 10.38 % 0.006861 0.11868358 0.11310788 0.1186806 0.4138652 0.44 % 293.55789 287.31851 0.0048737 10.89 % 0.016188 0.11808048 0.1181088 0.1181088 0.1181088 0.1181088 0.1181088 0.1181088 0.1181089 0.118108 0.1181089 0.1181108 0.1181108 0.11810	2	0.4		L	3.48%	0.00328				0.0824025	3.60%			2.149
0.63 -0.09684 -0.077883 4.08% -0.00278 70.98% 0.08088778 0.078266 3.37% 181.98966 187.02716 0.8 -0.07842 -0.078125 3.01% -0.017314 12.33% 0.07929687 0.0772882 2.59% 188.52832 189.348 0.8 -0.07564 -0.074217 1.82% -0.013414 12.33% 0.0773867 0.0783488 1.35% 188.5762 188.8752 0.8 -0.07272 -0.071781 1.34% -0.024978 -0.07805648 0.0768848 0.0788848 0.0768848 0.0768848 0.0878724 0.0878724 0.0878724 0.076787666 0.087	4.17			0.0	3.49%	-0.00048				0.0798298	3.12%	180.33408		2.43%
0.88 -0.07842 -0.078125 3.01% -0.013414 12.33% in 0.07829687 0.0772982 2.59% in 188.62882 188.62882 188.62882 189.8348 0.88 -0.07564 -0.074217 1.92% in 0.01322 -0.0179149 8.90% in 0.0738067 0.0768489 1.35% in 192.75643 189.775163 189.57673 0.88 -0.07272 -0.071781 1.34% in 0.02328 -0.0244748 5.65% in 0.07836849 0.0768489 0.07787387 0.077102 0.48% in 182.75153 189.8752 1.2 -0.0648 -0.065233 0.97% in 0.02464 -0.036806 3.20% in 0.07873387 0.077102 0.48% in 2.77512 188.8752	3.75	0.63		-0.077883	4.09%	-0.00278	-0.0096731	70.98%		0.0782506	3.37%	_		2.70%
0.88	3.33	0.8		-0.0	3.01%	-0.01178	-0.013414		0.07929687	0.0772982	2.59%	188.52882		0.779
0.8 -0.07272 -0.01781 1.34% -0.0246748 5.65% 0.0763648 0.0768848 0.026% 197.7515 198.9752 1 -0.0848 -0.084284 0.28% -0.03486 -0.03486 -0.03486 -0.03486 -0.07809686 0.077102 0.48% 208.86223 207.87124 1.2 -0.0648 -0.065233 0.97% -0.0487313 2.34% 0.07809686 0.0802443 1.43% 216.24128 216.81686 1.6 -0.06704 -0.068408 -0.048731 2.34% 0.07809686 0.0802443 1.43% 216.24128 216.81686 2.4 -0.06704 -0.068408 -0.06868 -0.0680368 -0.106072 -0.1106087 3.83% 0.11404618 0.11868043 4.63% 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.41288 228.412	2.94	0.88	_	0.0	1.92%	-0.01832	-0.0179149	8.90%	0.07738057	0.0783489				0.729
1.2 -0.06848 -0.088284 0.28% -0.03468 -0.036806 3.20% 0.0787337 0.077102 0.48% 208.86223 207.87124 1.2 -0.0648 0.065233 0.97% 0.04664 0.0487313 2.34% 0.0790868 0.0802443 1.43% 215.24128 215.81686 1.6 -0.05704 0.069409 3.98% 0.00668 0.0680358 2.14% 0.08767245 0.0803233 2.93% 229.41288 228.8725 2.4 -0.002503 0.008851 71.72% 0.179738 0.1888358 4.82% 0.11404519 0.1185806 4.63% 248.44832 248.99297 2.4 -0.002503 0.008851 71.72% 0.179738 0.1888358 4.82% 0.17976643 0.18960431 4.91% 2.93.65769 293.14781 2.4 -0.004169 0.048737 0.98% 0.10618 0.1100687 4.44% 0.11310788 0.1195806 5.44% 293.65769 248.42059 2.4 -0.0416 0.0048737 0.98% 0.10618 0.1100687 4.44% 0.11310788 0.1195806 5.41% 248.42069 248.9297 2.4 -0.0418 0.008851 43.73% 0.17718 0.1888358 4.84% 0.17722989 0.1890431 8.25% 288.38983 287.31851 2.4 -0.0418 0.008851 43.73% 0.17718 0.13806373 6.81% 0.17722989 0.1896488 0.4138562 8.21% 291.00938 293.14781	2.5	0.8		0.0	1.34%	-0.02328		5.86%		0.0758848				0.619
1.2 -0.0648 -0.065233	2	-	-0.08848		0.28%	-0.03468			0.07873387					0.39%
1.6	1.67	1.2		-0.0	0.97%	-0.04564	-0.0487313	2.34%		0.0802443				0.179
2.4 - 0.041693 - 0.048737 10.38% - 0.106072 -0.1100687 3.83% 0.11404619 0.1196806 4.63% 248.44832 248.98297 248.002503 -0.002503 -0.008861 71.72% -0.179738 -0.1888358 4.82% 0.17976643 0.1880431 4.91% 269.2022 287.31651	1.25	1.6		-0.0	3.88%	-0.06668			0.08787245	0.0903233		229.41288		0.249
4 -0.0026031 -0.008861 71.72% -0.179738 -0.18883581 4.82% 0.179766431 0.1880431 4.91% 269.2022 287.31651 8 0.1564088	0.83	2.4	ł	l	10.38%	-0.106072	-0.1100687	3.83%	0.11404519	0.1195806		_		0.599
Kp equal to 2.4.4.and 8 above were calculated using 200 panels top and bottom and 4 cycles of 100 calculations. 6.44% 293.65769 293.14781 4 -0.0416 -0.048737 10.98% -0.156886 -0.17718 -0.17718 -0.17722988 0.118662 6.41% 293.65769 293.14781 2.4 -0.0416 -0.048737 10.98% -0.10618 -0.1100687 4.44% 0.11310788 0.1195806 6.41% 248.42069 246.99297 4 -0.00488 -0.08861 43.73% -0.17718 -0.1889368 6.81% 0.17722988 0.1890431 8.25% 288.38983 287.31851 8 0.1382 0.1628884 18.28% -0.35464 -0.3806373 6.81% 0.37889488 0.4138562 8.21% 291.00938 293.14781	0.5			O.O	71.72%	-0.179738			0.17976643	0.1890431				0.719
Kp equal to 2.4.4, and 8 above were calculated using 200 panels top and bottom and 4 cycles of 100 calculations. values were calculated using 75 panes and 3cyc86calc. 2.4 -0.0416 -0.048737 10.99% -0.1100687 4.44% 0.11310788 0.1195806 5.41% 248.42069 248.99297 4 -0.00488 -0.08861 43.73% -0.17718 -0.1888358 8.18% 0.17722998 0.1890431 8.25% 288.38983 287.31851 8 0.1382 0.1628884 18.28% -0.35444 -0.3806373 6.81% 0.37989468 0.4138552 8.21% 291.00938 293.14781	0.25	80	0.1564088	0.1826884	3.86%	-0.358727			0.39134264	0.4138552				0.149
values were calculated using 75 panes and 3cyc66calc. 0.1100687 4.44% 0.11310788 0.1195806 6.41% 248.42069 248.99297 2.4 -0.0416 -0.048737 10.99% -0.10718 -0.188358 8.18% 0.177222988 0.1890431 8.25% 288.38983 287.31851 4 -0.00488 -0.1828884 18.28% -0.35464 -0.3806373 8.81% 0.37989468 0.4138552 8.21% 291.00938 293.14781	Values 1	or Kp equal	to 2.4.4, and	8 above were	o calculated	d using 200 p	anels top and	bottom and	4 cycles of 1C	O calculation				
2.4 -0.0416 -0.048737 10.99% -0.10618 -0.1100687 4.44% 0.11310788 0.1195806 5.41% 248.42069 248.9297 4 -0.00488 -0.008861 43.73% -0.17718 -0.1888358 8.18% 0.17722998 0.1890431 8.25% 288.38983 287.31851 8 0.1382 0.1628884 18.28% -0.35464 -0.3806373 6.81% 0.37988468 0.4138562 8.21% 291.00838 293.14781	The bek		vere calculate	ed 15 pa	nee and 3k	sycoboalc.								
4 -0.00498 -0.008861 43.73% -0.17718 -0.1888368 6.18% 0.17722998 0.1890431 8.25% 288.38983 287.31861	0.83			0.0	Į.	-0.10518	ľ			0.1195805			_	0.589
8 0.1382 0.1628884 18.28% -0.35464 -0.3806373 6.81% 0.37989468 0.4138552 8.21% 291.00938 293.14781	0.5	4		-0.0	43.73%	-0.17718			0.17722998	0.1890431		288.38983		0.409
	0.25	8		0.16	18.28%	-0.35464	-0.3806373	9		0.4138552		- 1	_1	0.739

TABLE 2.2 1 DEGREE PITCH CL

Figure 2.5 1 Degree pitch C_L Re

Figure 2.6 1 degree pitch C_L Re

Figure 2.7 1 Degree pitch C_L Im

Figure 2.8 1 Degree pitch C_L Im

Figure 2.9 1 Degree pitch C_L Magnitude

Figure 2.10 1 Degree pitch C_L Magnitude

Figure 2.11 1 Degree pitch C_L Phase

Figure 2.12 1 degree pitch C_L Phase

Phese Th. % Di 347.66745 344.8468 342.5197	247.66745 347.46646 342.8468 342.5197 340.32135	347.86745 344.8466 342.5187 340.32136	347.66/46 344.8466 342.6197 340.32136	342.6197	340.32136	226 20262	335.28363 0.37 %	332.93194 0.07%	329.83193 0.09%	326.23904 0.04%	326.88186 0.08%	323.58433 0.00%	320.12036 320.66117 0.13%	67	313.5406 0.41%	310.12196	308.29271 0.70%	312.05862 0.95%	325.27302 0.83%			308.29271		326.27302 1.91%		
347.56314 344.87593 342.51393 340.39656	8 8 8 8 9 9 9	347.56314 344.87599 342.51393 340.39656 336.54009	347.56314 342.61393 340.39666 336.64009	342.51393 340.39868 336.54009	336.54009	336.54009	000000000	333, 10103	330.14016	328.37668	328.0702	323.59022	320.12036	315.88177	312.25686	307.58148	306.13184	309.08103	322.66932			303.93134	306.20814	319.05617		
	0.38% 0.10%	0.38%	0.10%	100	0.0/%	0.96%	2.60%	2.61%	3.14%	3.47%	4.45%	6.17%	6.87%	7.27%	6.13%	8.67%	7.83%	8.40%	9.17%			11.22%	12.88%	16.62%		
4 + ++	4 + +	0.0121192	0.0116938		0.0117148	0.0115888	0.0116284	0.0114134	0.0114883	0.0115576	0.0117935	0.0120806	0.0125991	0.0136892	0.0149568	0.0180056	0.0262226	0.04333	0.1123447	ations.		0.0262226	0.04333	0.1123447	arter 4	
		Mag Pan. Ih	1300000	0.0118816	0.64% 0.0116483 0.0117148	0.0114751	7.23% 0.0112281	3.34% 0.0111268	0.0111272		0.0112688	5.16% 0.0114564 0.0120806	4.81% 0.0118844 0.0125991	0.012694 0.0136892	0.0137407 0.0149568		0.0232987	4.23% 0.0396906	3.09% 0.1020471 0.1123447	4 cycles of 100 calculations.			- 1	2.94% 0.0947918		
monton bu		% DIFF		0.35%	0.64%	1.34%	7.23%	3.34%	4.04%	3.84%	4.91%	5.16%	4.81%	8.08%	8.20%	8.38%	4.84%	4.23%	- 1			8.14%	6.32%	2.94%		
75 panels top and bottom)	Mh=.6	Imag t	0 00000	-0.003089	-0.003619	-0.003902	-0.004619	-0.005194	-0.006773	-0.006084	-0.006815	-0.007172	-0.008006	-0.009412	-0.010842	-0.013768	-0.019796	-0.032172	-0.063899	raives for Kp equal to 2.4, and 8 above were calculated using 200 panels top and bottom and		-0.019798	-0.032172	-0.063999		
CA 0007, 76		Imag Pan.	00000	-0.00202	-0.0036	-0.00386	-0.00447	-0.00502	-0.00554	-0.00585	-0.00829	-0.0088	-0.00762	-0.00884	-0.01017	-0.01269	-0.018818	-0.03081	-0.062024	O panels top	calc.	-0.01668	-0.03046	-0.08212		
O deg., .37c, NACA 0007, 75 panets top and by		% DIFF	976.0	0.14%	0.67%	0.93%	1.65%	2.30%	2.84%	3.33%	4.24%	5.16%	8.26%	8.36%	10.32%	14.61%	12.10%	13.79%	12.24%	ated using 20	nd 3 cyc 85	20.02%	23.17%	22.45%		
(pitch, 1.0 de			0000000	0.01147 0.0114858	0.0111736	0.0109116	0.0103 0.0104731	0.0101633	0.0099323	0.0096269	0.0097636	0.0097216	0.009729	0.0099403	0.00924 0.0103033	0.0116031	0.0156299	0.0290264	0.0823334	were calcul	75 panels a	0.0125 0.0156299	0.0223 0.0290254	0.0716 0.0923334		
	to 2 x Theor	Rp.	00000	0.01147	0.01111	0.01081	0.0103	0.00993	0.00985		0.00835	0.00922		0.00911	0.00924		0.013738	0.0250217	8 0.0610345 0.0923334	and 8 abow	culated using	0.0125	0.0223	0.0716		
(pitch, 1.0	Kperrel lequal to 2 x Theordorsen K	Kpanel	9000	0.18	0.2	0.24	0.32	0.4	0.48	0.63	9.0	0.68	9.0	-	1.2	1.6	2.4	4	89	equel to 2.4,	The below values were calculated using 75 panets and 3 cyc 85 calc.	2.4	4	8		
5	¥	1/kt K	000	12.6	10	6.33	6.25	9	4.17	3.76	3.33	2.94	2.5	2	1.67	1.25.	0.83	0.5	0.26	lues for Kp	e below val	0.63	0.6	0.26	-	

TABLE 2.3 1 DEGREE PITCH C_M COMPARISON

Figure 2.13 1 Degree pitch C_M Re

Figure 2.14 1 Degree pitch C_M Re

Cm Imag vs Kp for Panel and Theordorsen (pitch, 1.0 deg, .37c, NACA0007, 75 panels top and bottom, 3cycles of 65 calc. per cycle)

Figure 2.15 1 Degree pitch C_M Im

Figure 2.16 1 Degree pitch C_M Im

Figure 2.17 1 Degree pitch C_M Magnitude

Figure 2.18 1 Degree pitch C_M Magnitude

Figure 2.19 1 Degree pitch C_M Phase

Figure 2.20 1 Degree pitch C_M Phase

		Comparison	of Panel CL	Values with	Comparison of Panel CL Values with Incordorsan Results	M DESTUTES							
		(prtch, 6.7 d	lag., .37c, NA	CA 0007, 7	5 panels top a	(prich, 6.7 dag., .37c, NACA 0007, 75 panels top and bottom, 3cyc65calc.)	yc65calc.)						
		Kpanel (equ	Kpanel (equal to 2 x Theordorsen Kt)	ordorsen Kt)		%DIFF taken wrt Theordorsen values.	wrt Theordo	rsen values.					
Kpanel	1/kt.	Real pen.	Real theo.	% DIFF.	Imag Pan.	Imag Theo.	% DIFF.	Mag Pan.	Mag Theo.	% DIFF.	% DIFF. Phase Pn.	Phase Th.	% DIFF.
0.11888	16.87	-0.88904	-0.65963	4.46%	0.07158	0.052824	35.51%	0.692748	0.8617417	4.69%	174.08616	175.42145	0.77%
0.16	12.5	-0.86442	-0.836788		0.07227	0.050028	44.46%	0.668337	0.8407516	4.31%	173.78224	175.52214	0.88%
0.2	10	-0.84218	-0.81988	3.58%	0.07024	0.0434	81.84%	0.84589	0.8214672	3.84%	173.75776	175.9857	1.27%
0.24	6.33	-0.82342	-0.603148	3.38%	0.06214	0.0342133	81.83%	0.828508	0.804116	3.71%	174.30778	178.75341	1.36%
0.32	6.25	-0.59084	-0.57477	2.60%	0.043054	0.0108	294.38%	0.582407	0.5746733	3.05%	175.83227	178.81357	1.72%
0.4	5	-0.58528	-0.55188	2.43%	0.02292	-0.01816	241.83%	0.565744	0.5520886	2.47%	177.67614	181.8773	2.20%
0.48	4.17	-0.54524	-0.53298	2.30%	-0.023584	-0.045026	47.82%	0.54575	0.5348586		162.47675	2.04% 162.47675 184.62905	1.27%
0.53	3.75	-0.53384	-0.52034	2.58%	-0.04174	-0.06414	34.82%	0.535489	0.5242782	2.13%	184.47076	184.47076 167.02715	1.37%
9.0	3.33	-0.5204	-0.51004	2.03%	-0.06786	-0.088874	24.49%	0.524806	0.5178976	1.33%	187.42943	169.69348	1.35%
0.68	2.94	-0.50646	-0.497256	1.85%	-0.0872	-0.12003	18.02%	0.515703	0.5115376		160.68413	0.81% 160.68413 193.57073	1.40%
0.6	2.5	-0.48886	-0.4808	1.70%	-0.13886	-0.18532	17.15%	0.507779	0.5084283		0.13% 195.84781	196.9752	1.87%
-	2	-0.46848	-0.4575	1.86%	-0.2087	.0.2368	13.01%	0.511037	0.5185833	i	1.07% 204.10342	207.87124	1.72%
1.2	1.67	-0.4482	-0.43706	2.55%	-0.27804	.0.3131	11.20%	0.527437	0.5376365		211.81332	1.90% 211.61332 215.61686	1.78%
1.6	1.25	-0.41788	-0.38804	4.88%	-0.41216	-0.45584	8.58%	0.588941	0.805186	3.01%	224.80517	226.6725	1.88%
2.4	0.83	-0.38116	-0.31314	15.33%	-0.87442	-0.73746	8.55%	0.765035	0.8011861		241.63042	4.51% 241.83042 248.99297	2.09%
4	0.5	-0.04413	-0.0583	25.58%	.1.25867	-1.2852	0.68%	0.66% 1.257644	1.2665666		267.96929	0.71% 267.96929 267.31651	0.25%
8	0.25	0.996234	1.090012	8.80%	.2.8321	.2.5486	11.08%	3.002211	2.77283	8.27%	266.38009	266.38009 283.14761	1.29%
atues abov	ve for Kp of	4 and 8 we	ra celculated	using 200 p	enels and 4 cy	Values above for Kp of 4 and 8 were calculated using 200 panals and 4 cycles of 100 calculations per cycle.	elculations p	er cycle.					
elow calci	ulations we	ra done with	Below calculations were done with 75 panels and 3cyc of 65 calc.s	nd 3cyc of B	5 calc.s								
4	0.5	-0.2078	.0.0593	250.42%	-1.1874	.1.2652	5.38%	1.215297	1.2865889		280.15478	4.05% 280.15478 287.31851	2.68%
8	0.25	0.58584	1.080012	48.11%	-2.8049	.2.5486	10.01%	2.861366	2.77283		3.19% 261.40143	283.14781	4.01%

TABLE 2.4 6.7 DEGREE PITCH C_L COMPARISON

Figure 2.21 6.7 degrees pitch C_L Re

Figure 2.22 6.7 degrees pitch C_L Re

Figure 2.23 6.7 degrees pitch C_L Im

Figure 2.24 6.7 degrees pitch C_L Im

Figure 2.25 6.7 degrees pitch C_L Magnitude

Figure 2.26 6.7 degrees pitch C_L Magnitude

Figure 2.27 6.7 degrees pitch C_L phase

Figure 2.28 6.7 degrees pitch C_L Phase

			% DIFF	0.20%	0.27%	0.15%	0.20%	0.18%	0.23%	0.28%	0.31%	0.31%	0.30%	0.29%	0.20%	- 1	0.20%	0.84%	1.68%	3.01%			2.02%	4.04%
			Phase Th.	347.6938	344.9458	342.5197	340.3203	338.3714	332.932	329.8319	327.9488	326.8817	323.584	320.5512	316.5682	313.5416	310.1218;	308.2927	312.0588	326.2741			312.0588	325.2741
			Phase Pn.	347	344	341.8888	341.0004	336.9821	333.7106	330.7499	326.9609	326.8914	324,6641	321.4786.	317.2064	313.9523	309.5167	306.7047	306.8074	315,4991			305.7676	312.128
			% DIFF	0.06%	0.78%	3.74%	1.79%	2.78%	3.82%	4.68%	6.28%	8.22%	7.10%	8.20%	8.80%	11.01%	12.80%	14.34%	6.23%	0.48%		-	14.67%	11.22%
			Mag The.	0.081188	0.079688	0.078469	0.077644	0.078591	0.07847	0.078972	0.07786	0.079018	0.08094	0.084414	0.091714	0.100209	0.120838	0.168991	0.290311	0.752899	culations.		0.290311	0.752699
			Mag Pan. 11	0.081136	0.079083	0.076663	0.076268	0.07446	0.073649	0.073367	0.073592	0.074103	0.075195	0.077492	0.082725	0.08918	0.105193	0.14475	0.272228	0.7492	s of 100 cale		0.247151	0.668221
esuits	3cyc65calc.)		% DIFF	6.48%	5.32%	0.87%	6.05%	5.18%	8.38%	7.32%	7.95%	8.67%	9.24%	10.02%	10.87%	11.82%	12.03%	11.38%	1.12%	22.47%	and 4 cycle		8.81%	15.58%
Aerodynamic Values (CM) with Theordonen Results	.37c, NACA 0007, 50 panels top and bottom, 3cyc85calc.)	Mh=.5	Imag Th. 9	-0.017304	-0.020696	-0.023576	-0.028148	-0.030898	-0.034798	-0.038681	-0.041223	-0.044321	-0.04806	-0.053636	-0.083055	-0.072639	-0.092249	-0.132633	-0.215551	-0.428776	re calculated using 200 panels top and bottom and 4 cycles of 100 calculations.		-0.215551	-0.426776
(CM) with	O panele top	_	Imag Pan.	-0.016252			-0.024828	-0.029115	-0.032575	-0.035849	4.23% -0.037946	-0.040477	-0.043608	-0.048262	-0.0682	-0.084202	-0.08115	-0.117542	-0.21796	-0.52513	O panels to	of 65 calc.	25.72% -0.200537	27,54% -0,495585
namic Value	ACA 0007, 5	-	% DIFF	0.33%	1.21%	4.02%	1.38%	2.33%	3.16%	3.81%	4.23%	5.11%	6.95%	8.88%	6.85%	10.34%	13.90%	19.33%	16.13%	13.82%	sted using 2	75 panels and 3 cyc of 65 calc.	25.72%	27.64%
		1 =	-	0.079322	0.076953	0.074864	0.073109	0.07017	0.088094	0.086548	0.08584	0.085418	0.085135	0.065184	0.0888	0.069032	0.077741	0.10472	0.19447	0.818834	were calcul		0.19447	0.618634
f Panel Mon	(pitch, 6.7 deg.,	to 2 x Theo	Rp	0.079067	0.078019	0.071866	0.072101	0.068532	0.085941	0.084013	0.083065	0.082071	0.061259	0.060628	0.060704	0.061896	0.068935	0.084477	0.183089	0.634359	and 8 above	siculated usin	0.144469	0.446235
Comparison of Panel Moment		Kpenel lequel to	Kpane! P	0.11986	0.18	0.2	0.24	0.32	0.4	0.46	0.53	0.8	0.88	0.6	-	1.2	1.6	2.4	4	8	Values for Kp equal to 4 and 8 above we	The below values were calculated using	4	9
		-	1/kt	16.67	12.6	10	6.33	6.26	60	4.17	3.75	3.33	2.84	2.6	2	1.87	1.25	0.83	0.6	0.25	alues for Ki	he below vi	0.6	0.25

TABLE 2.5 6.7 DEGREES PITCH C_M COMPARISON

Figure 2.29 6.7 Degrees pitch C_M Re

Figure 2.30 6.7 Degrees pitch C_M Re

Figure 2.31 6.7 Degrees pitch C_M Im

Figure 2.32 6.7 Degrees pitch C_M Im

Figure 2.33 6.7 Degrees pitch C_M magnitude

Figure 2.34 6.7 Degrees pitch C_M magnitude

Figure 2.35 6.7 Degrees pitch C_M phase

Figure 2.36 6.7 Degrees pitch C_M phase

Kpernel lequal to 2 x Theordomen Ki Kpernel lequal t			
Kpanel Real part, Real train. Kpanel (equal to 2 x Theor-donesn Ki) Kpanel Kpanel			
Kparrel Real part. Part Ithuso. % DIFF Imag Part. Imag Trac. % DIFF M 0.18 -0.00264 -0.007088 20.81% -0.05694 -0.06671 3.88% 0.2 -0.0184 -0.01862 24.22% -0.06648 -0.0671 3.88% 0.2 -0.01864 -0.01862 23.13% -0.11662 -0.10724 -0.10724 0.2 -0.02602 -0.018641 68.36% -0.1862 -0.1628 2.23% 0.4 -0.02602 -0.016641 68.36% -0.1862 -0.1868 1.86% 0.5 -0.02776 -0.016641 68.36% -0.1862 -0.1868 1.86% 0.6 -0.0287 -0.016641 134.65% -0.23642 -0.2683 1.86% 0.8 -0.0287 -0.016641 134.65% <td< th=""><th>kan wrt Theordonen values.</th><th></th><th></th></td<>	kan wrt Theordonen values.		
0.06864 0.066004 4.71% 0.07512 0.0720518 4.28% 0.009049 -0.00713 3.88% 0.10484 0.101284 3.61% 0.10484 0.101284 3.61% 0.10626 0.15232 2.59% 0.1706 0.17568 2.23% 0.1706 0.17688 1.88% 0.1706 0.17688 1.86% 0.24043 0.20883 1.86% 0.234043 0.230234 1.66% 0.31742 0.31024 1.43% 0.362086 0.46404 2.42% 0.66672 3.11% 0.66672 3.11% 0.12444 1.07178 12.08% 0.66672 3.11% 0.12444 1.07178 10.11% 0.7011 0.68672 6.31% 0.7011 0.68672 6.31%	Mag Thao.	% DIFF. Phase Pn. P	Phase Th. % DIFF.
0.07512 -0.0720518 4.26%, -0.09648 -0.00720518 3.88%, -0.10484 -0.101284 3.61%, -0.101484 -0.1277572 2.569%, -0.17658 2.23%, -0.17658 2.23%, -0.127 -0.2083 1.86%, -0.2127 -0.2083 1.86%, -0.2127 -0.2083 1.86%, -0.2127 -0.2083 1.86%, -0.2127 -0.2083 1.86%, -0.2127 -0.2083 1.86%, -0.2127 -0.2083 1.86%, -0.31462 -0.2817 1.80%, -0.3142 -0.31284 1.269%, -0.3620845 -0.46404 2.42%, -0.30883 -0.36362 3.11%, -0.2074 1.00778 10.01%, -0.20845 -0.46404 2.42%, -0.30884 -0.46404 2.42%, -0.2074 1.00778 10.01%, -0.2084 -0.46404 2.42%, -0.2084 -0.40778 10.11%, -0.2074 -0.00857 2.1094 80.81%,	71 % O OKO 2KB O OKA 4837	4 000% 261 714	282 BOR 0 42%
0.09048	-1	1	
0.10494 0.101284 3.81% 0.15626 0.15532 2.59% 0.1786 0.1768 2.23% 0.18349 0.18898 1.89% 0.234043 0.2083 1.86% 0.234043 0.2081 1.86% 0.234043 0.20824 1.86% 0.234043 0.2081 1.86% 0.31742 0.31284 1.43% 0.31742 0.31284 1.43% 0.3832 0.3652 1.60% 0.4844 1.07178 12.89% 0.7011 0.8657 2.1084 0.7011 0.8657 6.31% 0.12444 1.07178 16.11% 0.2086 2.21084 80.63% 0.7011 0.8657 6.31% 0.7011 0.8657 6.31%	1		
0.13164 -0.1277672 3.04% 0.16826 -0.16232 2.59% -0.1706 -0.17668 2.23% -0.18349 -0.18889 1.88% -0.234043 -0.20833 1.86% -0.234043 -0.230244 1.46% -0.234043 -0.230244 1.48% -0.31742 -0.2407 1.48% -0.31742 -0.31284 1.43% -0.47628 -0.34652 1.60% -0.48932 -0.34652 3.11% -0.20784 -1.0778 12.69% -3.3882 -2.1084 80.65% -0.7011 -0.86672 3.11% -0.7017 -0.7017 10.11% -0.7017 -0.86672 6.31% -0.7017 -0.86672 6.31% -0.7017 -0.86672 6.91% -0.7017 -0.86672 6.91%	0.106663		
-0.15626 -0.1523 2.59% -0.1706 -0.17568 2.23% -0.18348 -0.18898 1.89% -0.224643 -0.20893 1.86% -0.224643 -0.20813 1.466% -0.224658 -0.2617 1.48% -0.31742 -0.31294 1.43% -0.36262 0.46404 2.42% -0.47528 -0.46404 2.42% -0.66672 3.11% -1.20784 1.07178 12.69% -0.7011 -0.66672 3.11% -1.2444 -1.07178 16.11% -1.2444 -1.07178 16.11% -1.2444 -1.07178 16.11% -1.2444 -1.07178 16.11%		3.67% 269.7771	261.9706 0.84%
0.1766 0.17668 2.23% 0.18348 0.18898 1.89% 0.234043 0.2.02883 1.86% 0.234043 0.2.02834 1.86% 0.28668 0.2817 1.48% 0.31742 0.31284 1.43% 0.31742 0.31284 1.43% 0.47528 0.46404 2.42% 0.488452 0.86572 3.11% 0.688452 2.1084 80.55% pairwis top and bottom and 4 oyotes of 100 0.7011 0.86572 6.31% 0.7011 0.86572 6.31% 0.7011 0.86572 6.31%	59% 0.158421 0.15344417	3.24% 280.5248	263.0602 0.96%
-0.19349 -0.18989 1.89% -0.2127 -0.20893 1.86% 0.236549 -0.230234 1.86% -0.31742 -0.31244 1.43% -0.31742 -0.31244 1.43% -0.362462 -0.36352 1.80% -0.47526 -0.46404 2.42% 0.686462 -0.46502 3.11% -1.20784 -1.07178 12.69% -0.7011 -0.86572 6.31% -0.7011 -0.86572 6.31% -1.2444 -1.07178 16.11% -0.7011 -0.86572 6.31%	23% 0.181378 0.17636685	2.84% 261.762	264.6868 1.07%
0.234043 0.230234 1.85% 0.234043 0.230234 1.85% 0.23658 0.23617 1.45% 0.31742 0.31284 1.43% 0.47628 0.46404 2.42% 0.46645 0.46404 2.42% 0.46645 0.46404 2.42% 0.33882 2.1094 12.89% 0.7011 0.66672 0.31% 0.7011 0.66672 0.31% 0.7011 0.66672 0.31% 0.7011 0.66672 0.31% 0.7011 0.66672 0.31%	L	2.44% 282.7074	266.7676 1.15%
0.234043 -0.230234 1.86% -0.26658 -0.2617 1.48% -0.31742 -0.31284 1.43% -0.36822 -0.36352 1.60% -0.46404 2.42% -0.686452 -0.46404 2.42% -0.686452 -0.4650% -0.686452 -0.4650% -0.666572 -0.653% -0.7011 -0.666572 6.31% -0.7011 -0.666572 6.31% -0.7011 -0.666572 6.31% -0.7011 -0.666572 6.31%	86% 0.213788 0.20003191	2.28% 264.2174	267.4816 1.22%
0.26668	86% 0.234664 0.23023786	1.88% 266.1786	269.0088 1.29%
0.31742	48% 0.265696 0.26211141	1.33% 269.3916	273,2108 1.40%
0.36932	l	0.47% 275.1736	278.4308 1.52%
-0.47526 -0.46404 2.42% 0.686452 0.66572 0.11% -1.20784 -1.00778 12.69% perver top and bottom and 4 oyores of 100 0.7011 -0.86572 6.51% -1.2444 -1.07778 16.11% -3.52086 -2.1094 66.91%	80% 0.376338 0.37752668	0.31% 281.0824	286.856 1.80%
0.686452	42% 0.613243 0.62124982	1.64% 292.1764	297.096 1.66%
7.20784 .1.07178 12.89%, 3.3882 .2.1094 80.53%, permete top and bortom and 4 overes of 100, 0.7011 .0.86672 6.31%, 1.2444 .1.07178 16.11%, 3.52086 .2.1094 66.91%,	11% 0.90266 0.92689168	2.61% 310,493	314.0277 1.13%
3.3882 -2.1094 80.63% permets top and bortrom and 4 cycles of 100 -0.7011 -0.68672 6.31% -1.2444 -1.07178 16.11% -3.52086 -2.1094 66.91%	89% 2.213438 2.24610464	1.41% 328.9286	331.4862 1.37%
0.7011 0.86572 6.31% 1.2444 1.07178 16.11% 66.91%	63% 8.699366 8.61243724	2.20% 337.0924	346.6526 2.48%
ing 75 permis and 3 cyc 86cate. 12 0.6436 12.00% -0.7011 -0.66672 6.31% 14 1.97278 8.33% -1.2444 -1.07178 16.11% 16.11% 8.24694 6.10% -3.52096 -2.1004 06.91%	of 100 calculations		
2.4 0.56626 0.6436 12.00% 0.7011 0.66672 5.31% 4 1.80644 1.97278 8.33% 1.12444 1.07778 16.11% 8 7.62628 8.24684 5.10% 3.52086 2.2.1094 66.91%			
4 1.80844 1.87278 8.33% -1.2444 -1.07178 16.11% 8 7.82628 8.24694 6.10% -3.52086 -2.1094 66.91%	31% 0.901217 0.82589166	2.66% 308.9269	314.0277 1.62%
8 7.62628 8.24694 6.10% -3.52086 -2.1094 66.91%	١.	2.22% 325.4879	331,4862 1.82%
		0.81% 335.7781	345.6526 2.86%
Reel pan, Reel theo. Imag Pan, Imag Theo.			

TABLE 2.6 PLUNGE h/2b=.0833 C_L COMPARISON

Figure 2.37 Plunge h/2b=.0833 C_L Re

Figure 2.38 Plunge h/2b=.0833 C_L Re

Figure 2.39 Plunge h/2b=.0833 C_L Im

Figure 2.40 Plunge h/2b=.0833 C_L Im

Figure 2.41 Plunge h/2b=.0833 C_L Magnitude

Figure 2.42 Plunge h/2b=.0833 C_L magnitude

Figure 2.43 Plunge h/2b=.0833 C_L phase

Figure 2.44 Plunge h/2b=.0833 C_L phase

				(plunge .0833b/b, .3	(plunge .0833b/b, .37c, NACA 0007, 75 panels,3 cyo65)	cyo65)								
				Kpanel (equal to	Kpanel (equal to 2 x Theordorsen Kt)			%DIFF taken wrt Theordorsen values.	Theordorsen	values.				
1/kt		Kpanel	Real pan. Real	Real theo.	% DIFF.	Img Pan	Imag The	% DIFF.	Mag Pan.	Mag Theo. 9	% DIFF.	Phase Pn	Phase Pn Phase Th %	6 DIFF.
						_ .			- 1					
	16.67	0.11998	16.67 0.11998 0.00132	0.001319179	0.06%	_	0.00675 0.006721	0.44%	0.00687786 0.00684875	0.00684875	0.43%	78.9351	78.8945	0.05%
	12.5	0.16	0.16 0.00202	0.00204733	1.33%		0.00865 0.008646	0.04%	0.00888273 0.00888531	0.00888531	0.03%		76.8555 76.6783	0.23%
	101	0.2	0.2 0.00276	0.002844726	2.98%	_	0.01042 0.010451	0.30%	0.01077933 0.01083124	0.01083124	0.48%	0.48 % 75.1645 74.7732	74.7732	0.52%
	8.33		0.24 0.00354	0.00369484	4.19%		0.01209 0.012145	0.45%	0.45% 0.01259761 0.01269456	0.01269456	0.76%	0.76% 73.6798 73.0788	73.0788	0.82%
	6.25	0.32	0.32 0.00516	0.005512253	6.39%		0.0152 0.015331		0.85% 0.01605197 0.01629167	0.01629167	1.47%		71.249 70.2237	1.46%
	5		0.41 0.00683	0.007459764	8.44%		0.01807 0.018279	1.14%	0.01931771 0.01974283	0.01974283	2.15%		69.2947 67.7996	2.21%
	4.17		0.48 0.00857	0.009533759	10.11%	0.02081	0.02107	1.23%	0.02250558 0.02312655	0.02312655	2.69%		67.6171 65.6542	2.99%
	3.75	0.53	0.0097	0.01098723	11.72%		0.02247 0.022787	1.39%	1.39% 0.02447429 0.02529756	0.02529756	3.25%	66.6508	64.258	3.72%
	3.33	9.0	0.6 0.01134	0.01287852	11.95%	0.02475	0.02506	1.24%	1.24% 0.02722422 0.02817525	0.02817525	3.38%	65.3836	65.3836 62.8008	4.11%
	2.94		0.68 0.01328	0.01528568	13.10%		0.027295 0.027628	1.21%	1.21% 0.03035548 0.03157482	0.03157482	3.86%	64.0503	64.0503 61.0458	4.92%
	2.5		0.8 0.01643	0.0191749	14.32%		0.03106 0.031403	1.09%	0.03513785 0.03679467	0.03679467	4.50%	4.50% 62.1222 58.5917	58.5917	6.03%
	c)		1 0.02232	0.026475126	15.69%		0.03722 0.037552	0.88%	0.04339943 0.04594666	0.04594666	5.54%		59.0498 54.8153	7.73%
	1.67	1.21	0.02915	0.0348795	16.43%	_	0.04331 0.043623	0.72%	0.05220612 0.05585274	0.05585274	6.53%		56.0573 51.3552	9.16%
	1.25	1.6	1.6 0.04591	0.055251155	16.91%	_	0.05529 0.055684	0.71%	0.07186593 0.0784436	0.0784436	8.39%	50.2955	50.2955 45.2236	11.22%
	0.83		2.4 0.09818	0.111201		11.71% 0.0800021 0.079887	0.079887	0.14%	0.1266481	0.1266481 0.13692186	7.50%	39.1748	7.50% 39.1748 35.6935	9.75%
	0.5		4 0.26237	0.286658		8.47% 0.1095213 0.128854	0.128854	15.00%	0.28431041 0.31428687	0.31428687	9.54%		22.6572 24.2042	6.39%
	0.25		8 1.06271	1.10392		3.73% -0.021611 0.253136	0.253136	109%	1.062926	1.13257111	6.15%	-1.165	12.915 109.02%	09.029
alucs	for Kp e	qual to 2.	Values for Kp equal to 2.4.4, and 8 above	above were calcul	were calculated using 200 panels top and bottom ad 4 cycles	and bottom	ad 4 cycle	s of 100 calculations	8					
e be	low value	se were ca	deulated us	The below values were calculated using 75 panels and 3	1 3 cyc of 65 calc.				•					
	0.83	2.4	2.4 0.09315	0.111201	16.23%		0.07777 0.079887	2.65%	0.121347	0.121347 0.13692186	11.37%		39.8582 35.6935	11.67%
	0.51	4	4 0.24712	0.28665824	13.79%		0.10401 0.128854		19.28% 0.26811635 0.31428709	0.31428709	14.69%	22.8257	22.8257 24.2042	5.70%
	0.25		8 0.9993	1.1039244	9.48%		-0.04788 0.253136		119% 1.00044639 1.13257539	1.13257539	11.67%	-2.7431	12.915 1	121.24%
p of	4 and 8 fc	or CM im	Kp of 4 and 8 for CM img were redone		using h/b=.01, .02,.04,.06 to better understand why the imag values become so different.	understand	why the im	g values became	ю different.					
hese	values of	b/b were	made sm	uller to account for	These values of hb were made smaller to account for the very high Kp. (NACA 0007, 100 panels, 3 cyc 65, .37c)	A 0007,100	panels.3cy	c6537c)						
D = .(11.Imagil	h/b=.01.lmag lmag Th. %diff		h/b = .02. Imag p Imag Th.	Imag Th.	%diff		h/b = .04. Imag p Imag Th.		Adiff h	h/b= .06. Imag Imag Th. %diff	Imag Th.	%diff	
0	0.01536	0.01536 0.01546	0.65%	0.0304	0.030937	1.74%		0.05862	0.06187	5.25%	0.08291	0.08291 0.09281	10.67%	
C	0 00724 0 007000	OCACO O	200	4					1 1 1 1					

TABLE 2.7 PLUNGE h/2b=.0833 C_M COMPARISON

Figure 2.45 Plunge h/2b=.0833 C_M Re

Figure 2.46 Plunge h/2b=.0833 C_M Re

Figure 2.47 Plunge h/2b=.0833 C_M Im

Figure 2.49 Plunge h/2b=.0833 C_M Magnitude

Figure 2.50 Plunge h/2b=.0833 C_M Magnitude

Figure 2.51 Plunge h/2b=.0833 C_M Phase

Figure 2.52 Plunge h/2b=.0833 C_M Phase

			H .	0.09%	41.31%	0.59%	0.55%	1.11%	1.74%	2.56%	3.48%	3.78%	4.48%	6.63%	7.23%	8.70%	1.08%	3.82%	14.20%	3.34%	
			% DIFF.															_	Ì		
			Phase T %	78.89	78.68	74.77	73.08	70.22	87.8	86.86	64.28	82.8	81.05	58.59	54.82	51.38	46.22	35.89	24.2	12.92	
			Phase Pn.	78.828182	46	76.211322	73.482188	71.003348	68.980266	67.331136	66.493646	85.183515	63.786452	61.83111	58.77642	66.82521	50.22754	40.82597	27.6416	13.34668	
		ě	% DIFF.	0.42%	98.87%	0.67%	0.78%	1.04%	2.37%	2.80%	3.41%	3.57%	3.84%	4.51%	5.43%	6.28%	7.82%	10.17%	12.28%	12.88%	
		dorsen value	Mag Theo. % DIFF.	0.000822	0.001087	0.0013	0.001524	0.001958	0.00237	0.002698 0.002778	0.002933 0.003037	0.003262 0.003382	0.003845 0.00379	0.004218 0.004417	0.006518	0.006284 0.006705	0.009417	0.016437	0.03773	0.135963	
euite		%DIFF takan wrt Theordorsen values.	Mag Pan.	0.000828 0.000822	1.41E-05	0.001283	0.001512	0.001935	0.002314	0.002698	0.002933	0.003262	0.003845	0.004218	0.006218	0.006284	0.00868	0.014786	0.033104	0.118447	
rdorsen Re	(plunge .01 h/2b, .37c, NACA 0007, 100 panels,3 cyc85)	%DIFF tak	% DIFF.	0.40%	99.C4%	0.37%	0.55%	0.57%	1.57%	1.58%	1.68%	1.81%	1.41%	1.37%	1.05%	0.73%	0.19%	0.25%	0.71%	10.02%	
ge) with Thec			mag Theo.	0.00061 0.00080878	0.00001 0.00103798	0.00126 0.00126482	0.00146 0.00145798	4.80% 0.00183 0.00184043	0.00218 0.00219439	0.00249 0.00252941	0.00269 0.00273553	0.00298 0.00300837	0.00327 0.00331871	0.00372 0.00376991	0.00448 0.00450808	0.0062 0.00623883	0.00887 0.00668476	0.00959028	0.0154887	0.0303886	
Values (Plus		rdorsen Kt)	Img Pan Imag Theo.	0.00061	0.00001	0.00125	0.00145	0.00183							0.00448	0.0062		0.00981	14.78% 0.01536	0.02734	
Panel Cm \	b, .37c, N	o 2 x Theo	% DIFF.	1.03%	96.93%	3.37%	3.08%	4.80%	7.32%	9.13%	11.30%	11.39%	12.28%	13.50%	14.93%	15.70%	16.28%	18.05%		13.04%	
Comparison of Panel Cm Values (Plunge) with Theordonsen Results	(plunge .01 h/2	Kpanel (equal to 2 x Theordonaen Kt)	Real theo.	0.000158385	0.000246778	0.000341504	0.000443558	0.000661735	0.00089663	0.001144509	0.001318995	0.00137 0.001548041	0.00181 0.001835018	0.8 0.001991 0.002301909	0.002704 0.003178288	0.00353 0.004187215	0.006663 0.006832792	0.01334948	0.034412725	0.132523409	
			Real pan.	0.00016 0.	0.00001 0.	0.00033 0.	0.00043 0.	0.000083 0.	0.00083	0.00104 0.	0.00117 0.			0.001991	0.002704		0.006663	0.011207	0.029326 0.	0.115247 0.	
	-		Kpanai	18.67 0.11998	0.18	0.2	0.24	0.32	0.4	0.48	0.63	0.81	0.88		1	1.2	1.8	2.4	4	80	-
				18.87	12.5	10	8.33	9.25	2	4.17	3.75	3.33	2.94	2.5	2	1.87	1.26	0.83	0.5	0.25	
			1/kt																		

TABLE 2.8 PLUNGE h/2b=.01 C_M COMPARISON

Figure 2.53 Plunge h/2b=.01 C_M Re

Figure 2.54 Plunge h/2b=.01 C_M Im

Figure 2.55 Plunge h/2b=.01 C_M Magnitude

Figure 2.56 Plunge h/2b=.01 C_M Phase

Figure 2.57 Pitch Oc. 1.0,3.0, and 6.7 degrees vs Theodorsen

Figure 2.58 Dimensionless Aerodynamic Coefficient for 1.0,3.0, and 6.7 degrees

III. FLUTTER DETERMINANT

The proven accuracy of the UPOT Code enabled it to be used for the solution of the flutter determinant.

A. FLUTTER THEORY

In order to analyze the phenomenon of flutter, it is necessary to obtain the equations of motion of the system. To simplify the problem the assumption is made that the actual motion of the system can be considered a combination of fundamental wing bending, and fundamental wing torsion. The system can then be replaced by an equivalent system containing an airfoil section of unit span restrained by springs against independent vertical motion (bending), and torsion as illustrated in Figure 3.1. This paper will not consider the aileron hinge case so ß and c are set equal to zero. According to the class notes of M. Platzer [ref.1] the formulation proceeds as follows:

Consider the balance of the elastic, inertial and aerodynamic forces on a mass element:

- Total Inertial force: $-\int dm(h"+r\alpha") = -(Mh"+S_{\alpha}\alpha")$ Mass: $M=\int dm$ Static Moment about the elastic axis: $S_{\alpha} = \int rdm$
- The moments about the elastic axis are:

$$-\int r(h'' + r\alpha'') dm = -(I_{\alpha}\alpha'' + S_{\alpha}h'')$$
 (3.1)

Mass moment of inertia about elastic axis

$$I_{\alpha} = \int r^2 dm$$

• Elastic restoring forces are: $-hC_h$ $-\alpha C_\alpha$ The Equations of motion therefore become:

$$h''M + \alpha''S_{\alpha} + hC_{h} = L$$

$$\alpha''I_{\alpha} + h''S_{\alpha} + \alpha C_{\alpha} = M$$
(3.2)

Where: C_{α} = Torsional stiffness of the wing

C_h = Stiffness of the wing in translation (plunge)

M = Mass of the wing per unit span

These equations can be written in a different way by expressing the spring constants in terms of the natural frequencies. Consider the airfoil to be so restrained that only one degree of freedom is permitted. The equations of motion become:

$$Mh''+hC_h=0 \quad \text{so that} \quad \omega_h=\sqrt{\frac{C_h}{M}}$$

$$I_{\alpha}\alpha''I_{\alpha}+\alpha C_{\alpha}=0 \quad \text{so that} \quad \omega_h=\sqrt{\frac{C_{\alpha}}{I_{\alpha}}}$$
 (3.3)

Hence: $C_h = M\omega_h^2$ $C_\alpha = I_\alpha\omega_\alpha^2$

The small structural damping of metal aircraft may be approximated by a force that opposes the motion and is in phase with the velocity. One assumes therefore that the

magnitude of the damping is proportional to the elastic restoring force. Since the motion of the airfoil is harmonic at the critical flutter condition, the structural damping can be accounted for by replacing the terms:

$$hC_h$$
 with $hC_h(1+ig_h)$

$$\alpha C_{\alpha}$$
 with $\alpha C_{\alpha} (1 + ig_{\alpha})$

Where g_h and g_α are damping constants multiplied by i to ensure that the damping force is in phase with the velocities in the simple harmonic motion.

From equation 3.3 with:

$$h(t) = he^{i\omega t}$$
 and $\alpha(t) = \alpha e^{i\omega t}$

We have:

$$h'' = \omega^2 h e^{i\omega t}$$
 and $\alpha'' = -\omega^2 \alpha e^{i\omega t}$

And the equations of motion become:

$$e^{i\omega t} \left(-\omega^2 h M - \omega^2 \alpha S_{\alpha} + h C_{b}\right) = L \tag{3.4}$$

$$e^{i\omega t} \left(-\omega^2 \alpha I_{\alpha} - \omega^2 h S_{\alpha} + \alpha C_{\alpha} \right) = M \tag{3.5}$$

The equations for the aerodynamic forces were given by Fung [ref.5] and are shown here:

$$L = \pi \rho b^3 \omega^2 \left(L_h \frac{h}{b} + \left[L_\alpha - \left(\frac{1}{2} + a \right) L_h \right] \alpha \right) e^{i\omega t}$$
 (3.6)

Equating equation 3.4 to 3.6 and 3.5 to 3.7 yields:

Substituting into equation 3.8 and 3.9 for C_h and C_α and using the following dimensional terms:

$$M = \pi \rho b^{4} \omega^{2} \left(\left[M_{h} - \left(\frac{1}{2} + a \right) L_{h} \right] \frac{h}{b} + \left[M_{\alpha} - \left(\frac{1}{2} + a \right) \left(L_{\alpha} + M_{h} \right) + \left(\frac{1}{2} + a \right)^{2} L_{h} \right] \alpha \right) e^{i\omega t}$$
(3.7)

$$(-\omega^{2}Mh - \omega^{2}\alpha S_{\alpha} + hC_{h}) = \pi \rho b^{3}\omega^{2} \left(L_{h}\frac{h}{b} + [L_{\alpha} - (\frac{1}{2} + a)L_{h}]\alpha\right)$$
 (3.8)

$$(-\omega^{2}\alpha I_{\alpha} - \omega^{2}hS_{\alpha} + \alpha C_{\alpha}) = \pi \rho b^{4}\omega^{2} ([M_{h} - (\frac{1}{2} + a) L_{h}] \frac{h}{b} + [M_{\alpha} - (\frac{1}{2} + a) (L_{\alpha} + M_{h}) + (\frac{1}{2} + a)^{2}L_{h}]\alpha)$$
(3.9)

$$\mu = \frac{M}{\pi \rho b^2} \qquad x_{\alpha} = \frac{S_{\alpha}}{Mb} \qquad r_{\alpha} = \sqrt{\frac{I_{\alpha}}{Mb^2}}$$
 (3.10)

The equations simplify and after bringing all terms to the left result in:

$$A\frac{h}{b} + B\alpha = 0$$

$$D\frac{h}{b} + E\alpha = 0$$
(3.11)

This is a homogeneous equation whose solution is obtained if the flutter determinant is zero.

$$\begin{bmatrix} A & B \\ D & E \end{bmatrix} = 0 \tag{3.12}$$

Where:

$$A = \mu \left[1 - \left(\frac{\omega_{\alpha}}{\omega}\right)^{2} \left(\frac{\omega h}{\omega_{\alpha}}\right)^{2} (1 + ig_{h})\right] + L_{h}$$

$$B = \mu X_{\alpha} + L_{\alpha} - L_{h} (1/2 + a)$$

$$D = \mu X_{\alpha} + 1/2 - L_{h} (1/2 + a)$$

$$E = \mu T_{\alpha}^{2} \left[1 - \left(\frac{\omega_{\alpha}}{\omega}\right)^{2} (1 + ig_{\alpha})\right] - 1/2 (1/2 + a) + M_{\alpha} - L_{\alpha} (1/2 + a) + L_{h} (1/2 + a)^{2}$$
(3.13)

 μ is the ratio of the mass of the wing to the mass of a cylinder of air of a diameter equal to the chord of the wing. ω_{α} and ω_{h} are the natural angular frequency (rad/sec) of torsional vibration around "a" (elastic axis) and the natural frequency in deflection, respectively. x_{α} is the location of center of gravity of the wing measured from a. ω is the circular frequency of wing vibration.

The relationships between the code and Theodorsen derived earlier in Chapter II can be used here to simplify the equations: (note: no damping in this case $g_{\alpha}=g_{h}=0$)

For A: manipulating equation 2.20,

$$L_{h} = \frac{2C_{Lh}}{\pi K_{p}^{2} \left(\frac{h}{2h}\right)}$$
 (3.14)

resulting in:

$$A = \mu \left[1 - \left(\frac{\omega_{\alpha}}{\omega}\right)^{2} \left(\frac{\omega h}{\omega_{\alpha}}\right)^{2}\right] + \frac{2C_{L\alpha}}{\pi K_{p}^{2}\left(\frac{h}{2h}\right)}$$
(3.15)

For B: manipulating equation 2.14,

$$L_{\alpha} - L_{h}(1/2 + a) = \frac{4 C_{L\alpha}}{\pi K_{p}^{2} \alpha}$$
 (3.16)

resulting in:

$$B = \mu X_{\alpha} + \frac{4 C_{L\alpha}}{\pi K_{\alpha}^2 \alpha}$$
 (3.17)

For D: manipulating equation 2.28

$$L_{\alpha} - L_{h}(1/2 + a) = \frac{4C_{Mh}}{\pi K_{p}^{2}(\frac{h}{2h})}$$
 (3.18)

resulting in:

$$D = \mu X_{\alpha} + \frac{4 C_{Mh}}{\pi K_{p}^{2} \left(\frac{h}{2 h}\right)}$$
 (3.19)

For E: manipulating equation 2.24

$$-\frac{1}{2}(\frac{1}{2}+a) + M_{\alpha} - L_{\alpha}(\frac{1}{2}+a) + L_{h}(\frac{1}{2}+a)^{2} = \frac{8C_{M\alpha}}{\alpha\pi K_{p}^{2}}$$
 (3.20)

resulting in:

$$E = \mu r_{\alpha}^{2} \left[1 - \left(\frac{\omega_{\alpha}}{\omega} \right)^{2} \right] + \frac{8C_{M\alpha}}{\alpha \pi K_{D}^{2}}$$
 (3.21)

The determinant is expanded to AE-BD=0, and the real and imaginary parts are set equal to zero. Substituting $(\omega_{\alpha}/\omega)^2$ = X and solving the real (2 roots) and imaginary (1 root) equations for values of X corresponding to each reduced frequency value. These X values can be plotted as SQRT(X)

against K_p and any intersections of real and imaginary parts signify a flutter point.

Knowing that:

$$K_p = \frac{2b\omega}{U}$$
 and $\sqrt{X} = (\frac{\omega_\alpha}{\omega})$ (3.22)

solve for Ucritical

$$U_{critical} = \frac{2b\omega_{\alpha}}{K_{p}\sqrt{X}}$$
 (3.23)

which is the critical flutter speed.

B. UPOTFLUT CODE

1. FORMULATION AND INPUT

The equations derived in the flutter theory section above were programmed into a FORTRAN subroutine and attached to the UPOT.f code. The UPOT code was modified first to enable it to conduct a frequency sweep of pitch and plunge simultaneously. The resulting frequency sweep pitch and plunge array data is then sent to the flutter subroutine which provides the values of SQRT(x) and K_p for plotting. The program also gives a best guess for the $U_{critical}$ based on the difference between the real and imaginary SQRT(x) values. The input file UPOTFLUT.IN is very similar to the regular UPOT.IN file with the addition of actual physical properties of the system being analyzed. The user should start the

analysis in the pitch mode first (IOSCIL =1, ITRANS =0) to ensure complete coverage of all frequencies of interest. The following relations were taken from NACA TR-685 [ref.8] and should prove helpful in determining the physical properties needed for program operation.

$$\kappa = \text{mass ratio} = \pi \rho b^2 / M$$

$$\kappa = 1/\mu$$

$$x_{\alpha} = S_{\alpha}/Mb$$

$$r_{\alpha}^2 = I_{\alpha}/Mb^2$$

2. OUTPUT

Outputs from the code have been limited to reduce the amount of computer space taken up by the code operation. A sample input and output file are contained in Figure 3.2. The following list describes the input/output files and the data they contain:

- a. UPOTFLUT.IN The input file figure 3.2a
- b. CL.d Same as UPOT.f output
- c. CM.d Same as UPOT.f output
- d. PHASE.d Same as UPOT.f output
- e. CPSS.d Same as UPOT.f output
- f. CPU005.d Same as UPOT.f output
- g. PHZSWP.d This file contains $K_p, \phi_L, \phi_M, C_{L\alpha}, C_{M\alpha}$
- h. PLHZSWP.d This file contains K_p , $\phi_L \phi_M$, C_{Lh} , C_{Mh}

- b = semichord (ft.)
- cb = distance between midchord and aileron hinge, positive if aft of midchord (ft.)
- eb = distance between midchord and aileron leading edge, positive aft of midchord (ft.)
- (ab = distance between rotation point (elastic axis) and midchord, positive if aft of midchord (ft.)
 - h = bending deflection of rotation point (elastic axis), positive downward (ft.)
- , α = angular deflection about rotation point (elastic axis), positive for leading edge up (radians)
- β = angular deflection of aileron about aileron hinge relative to wing chord, positive for aileron leading edge up (radians)

Figure 3.1 Simplified System Geometry

```
stdin
                                                                                                     Page 1
   AIRFOIL TYPE : NACA 0012 AIRFOIL
NLOWER = 50 , NUPPER = 50
   IFIAG NLOWER NUPPER 0 50 50
   AIRFOIL TYPE
                       ALPI
-3.0
                                                      PIVOT
   IRAMP
           IOSCIL
                                    ALPMAX
                                               0.3
                                   3.0
      0
            REQSTP REQENL
   FREQ
   .85 .01 .95
                          - 95
   0 0. 0. 0. ITRANS DELHX DELHY DELI PHASE 0 0.00 .0833 -.0833 0.00 CYCLE NTCYCLE TOI. 3 65 0.005
   3 65 0.005
naot & naot X aoa values multiplied by 10 (integer)
2 05 10 20 25 39 50
Semi-chord Walpha Wh Mass
6 90 72.0 .53789
Ialpha Salpha Density
4.84102 .645468 .002378
Comments...
IRAMP 0: n/a
                                RFREQ is based on full chord
        1: Straight ramp
2: Modified ramp
IOSCIL 0: n/a
                                RFREQ is based on full chord
         1: Sinusoidal pitch, motion starts at min Aoa
ITRANS 0: n/a
         1: Translational harmonic osciliation
CYCLE: # of cycles for oscillatory motions
-In case of ramp, cycle=1.5 denotes airfoil is held
at max aoa for the duration of .5 cycle
          -For steady state solution set it to 0
NTCYCLE: # of time steps for each cycle
CYCLE*NTCYCLE is limited to 200 currently.
NAOT: # of input aoa for cp output

    angles should be in increasing order,
    for oscilatory motions angles should increase first, then decrease. Decreasing angles are for

           the return cycle..
SEMI-CHORD Half Chord in feet.
Waipha, Wh, uncoupled natural frequencies of the system in question.
              Walpha is pitch and Wh is plunge(H2).
              specific mass of the system in slugs/foot of span
Mass
              Moment of Inertia of system about the elastic axis(a)
Ialpha
              per unit span length.
              Static moment of wing-aileron per unit span length
Salpha
Density
              Mass of air per unit of volume(slugs per ft^3)
```

Figure 3.2a UPOTFLUT.in example input file

```
stdin
                                                                                                                           Page 1
                AIRFOIL TYPE : NACA 0012 AIRFOIL
      NLOWER = 50 , NUPPER = 50
   OSCILLATORY MOTION, IOSCIL =
FREQ SWEEP
FREQ = 0.850000
                          PHASE SHIFT ANALYSIS
                          FREQ = 0.8500000
 w 0.8500000
 kp= 0.8500000 ifreq
 AMPLITUDE: clamp, cmamp : 0.2316691 2.9221054E-02
ioscil = 0itrans = 0
PHASE; clp, cmp : 202.4033 -63.70797
AVERAGE DRAG, TOTAL DRAG : 1.5930884E-03 0.1051438
ETAS, WBAR = 0.1430808 -1.1134184E-02
                         PHASE SHIFT ANALYSIS
FREQ = 0.8500000
 w 0.8500000
 kp= 0.8500000 ifreq
 AMPLITUDE: clamp, cmamp: 0.2779089 2.2117507E-02
ioscil = 0itrans = 1
PHASE: clp, cmp: 270.5030 37.10253
AVERAGE DRAG, TOTAL DRAG: -6.2051453E-03 -0.4095396
ETAS, WBAR : 0.1050769 -0.1181067
FREQ SWEEP
FREQ = 0.860000
 AMPLITUDE; clamp, cmamp : 0.2317267 2.9490557E-02

toscil = 01trans = 0

PHASE; clp, cmp : 202.8760 -63.85251

AVERAGE DRAG, TOTAL DRAG : 1.5921656E-03 0.1050829

ETAS, WBAR = 0.1398697 -1.1383206E-02
                         PHASE SHIFT ANALYSIS
FREQ = 0.8600000
 w 0.8600000
 kp= 0.8600000 ifreq
 AMPLITUDE; clamp, cmamp: 0.2804866 2.2494521E-02 ioscil = 0itrans = 1 PHASE; clp, cmp: 270.7843 36.79393 AVERAGE DRAG, TOTAL DRAG: -6.3188463E-03 -0.4170439 ETÄS, WBAR: 0.1047920 -0.1205979
FREQ SWEEP
FREQ = 0.870000
                   * PHASE SHIFT ANALYSIS
                         FREQ = 0.8700000
 w 0.8700000
```

Figure 3.2b UPOTFLUT example output file

```
stdin
                                                                                                                       Page 2
 kp= 0.8700000
 AMPLITUDE; clamp, cmamp : 0.2317936 2.9765518E-02 iosci1 = 0itrans = 0 PHASE; clp, cmp : 203.3604 -64.02047 AVERAGE DRAG, TOTAL DRAG : 1.5893428E-03 0.1048966 ETAS, WBAR : -0.1365460 -1.1639614Ε-02
                         PHASE SHIFT ANALYSIS
                         FRE0 = 0.8700000
 w 0.8700000
 kp= 0.8700000 1freq
 AMPLITUDE; clamp, cmamp: 0.2830637 2.2874046E-
ioscil = 0itrans = 1
PHASE; clp, cmp: 271.0655 36.47753
AVERAGE DRAG, TOTAL DRAG: -6.4334869E-03 -0.4246101
ETAS, WBAR: 0.1045149 -0.1231114
                                                                  2.2874046E-02
FREO SWEEP
FREO = 0.880000
                         PHASE SHIFT ANALYSIS
FREO = 0.8800000
  w 0.8800000
 kp= 0.8800000 ifreq
 AMPLITUDE; clamp, cmamp : 0.2318744 3.0037180E-02 ioscil = 01trans = 0 PHASE; clp, cmp : 203.8330 -64.15525 AVERAGE DRAG, TOTAL DRAG : 1.5880425E-03 0.1048108 ETAS, WBAR : -0.1335113 -1.1894441E-02
                        PHASE SHIFT ANALYSIS
FREO = 0.8800000
  w 0.8800000
 kp= 0.8800000 lfreq
 FREO SWEEP
FREQ = 0.890000
                        PHASE SHIFT ANALYSIS
                         FREQ = 0.8900000
 w 0.8900000
 kp= 0.8900000 ifreq
 AMPLITUDE; clamp, cmamp : 0.2319494 3.0311935E-02 ioscil = 0itrans = 0
PHASE; clp, cmp : 204.3115 -64.29196 AVERAGE DRAG, TOTAL DRAG : 1.5859993E-03 0.1046759 ETAS, WBAR : -0.1304959 -1.2153637E-02
                                                                 -1.2153637E-02
 PHASE SHIFT ANALYSIS
FRE0 = 0.8900000
 kp= 0.8900000 ifreq
 AMPLITUDE; clamp, cmamp: 0.2883391 2.3644408E-02
```

Figure 3.2c UPOTFLUT example output file

```
stdin
                                                                                                                     Page 3
 ioscil = 0itrans = 1
PHASE; clp, cmp : 271.6436 35.87401
AVERAGE DRAG, TOTAL DRAG : -6.6649993E-03 -0.4398900
ETAS, WBAR : 0.1039310 -0.1282581
FREQ SWEEP
FREQ = 0.900000
                         PHASE SHIFT ANALYSIS
                         FREQ = 0.9000000
 w 0.9000000
 kp= 0.9000000 ifreq
 AMPLITUDE: clamp, cmamp : 0.7320280 3.0592278E-02 ioscil = 01trans = 0 PHASE; clp, cmp : 204.7803 -64.43259 AVERAGE DRAG, TOTAL DRAG : 1.5828811E-03 0.1044701 ETAS, WBAR : 0-0.1274617 -1.2418482E-02
                         PHASE SHIFT ANALYSIS
FREQ = 0.9000000
 w 0.9000000
kp= 0.9000000 ifreq
 FREQ SWEEP
FREQ = 0.910000
 PHASE SHIFT ANALYSIS
FREQ = 0.9100000
 kp= 0.9100000 ifreq
 AMPLITUDE; clamp, cmamp : 0.2321466 3.0865142E-02 ioscil = 0 01trans = 0 PHASE; clp, cmp : 205.2529 -64.61227 AVERAGE DRAG, TOTAL DRAG : 1.5800473E-03 0.1042831 ETAS, WBAR : -0.1245367 -1.2687406E-03
 FHASE SHIFT ANALYSIS
FREQ = 0.9100000
 kp= 0.9100000 ifreq 7
 AMPLITUDE; clamp, cmamp: 0.2936268
                                                                  2.4440434E-02
 AMPLITUDE; Clamp, Cmamp: 0.233262 2.44404342 10scil = 01trans = 1
PHASE; clp, cmp: 272.2159 35.29980
AVERAGE DRAG, TOTAL DRAG: -6.9000078E-03 -0.4554005
ETAS, WBAR: 0.1033707 -0.1335003
ETAS, WBAR
FREQ SWEEP
FREQ = 0.920000
                       PHASE SHIFT ANALYSIS
FREQ = 0.9200000
     0.9200000
  kp= 0.9200000 ifreq
```

Figure 3.2d UPOTFLUT example output file

```
PHASE SHIFT ANALYSIS
FREO = 0.9700000
  w 0.9200000
kp- 0.9200000 ifreq
  AMPLITUDE: clamp, cmamp: 0.7967705 2.4841587E-02 losc11 = 01trans - 1 272.5011 35.01268 AVERACE DRAG, TOTAL DRAG: -7.0186830E-03 -0.4632331 FTAS, WNAR : 0.1030987 -0.1361546
FREQ SWEFP
FREQ = 0.910000
 FHASE SHIFT ANALYSIS
FREQ - 0.9799999
kp- 0.9799999 lfreq 9
  AMPLITUDE: clamp, cmamp: 0.2324548 3.1417310F-02 loscil v 01trans - 0 206.2080 -64.82713 AVERAGE DRAG, TOTAL DRAG: 1.5755624F-03 0.1039871 ETAS, WBAR - 0.1191657 -0.1191657 -1.3221607E-02
                            FHASE SHIFT ANALYSIS
FREQ = 0.9799999
  w 0.9299999
kp- 0.9299999 lfreq 9
  FREQ SWEFP
FREO = 0.940000
  FHASE SHIFT ANALYSIS
FRFO - 0.9199999
kp- 0.9399999 1freq 10
  AMPLITUDF: clamp, cmamp: 0.2326474 3.1699076E-02 loac11 v 01trans v 0 -64.94821 AVERAGE DRAG, TOTAL DRAG: 1.5715322F-03 0.1037211 ETAS, WBAR : -0.1164358 -1.34969R9E-02
  PHASE SHIFT ANALYSIS
FREO - 0.9199999
kp= 0.9199999 lfreq 10
  AMPLITUDE: clamp, cmamp: 0.3015640 2.5659967F-02
   PHASE; clp, cmp : 273.0792 34.44823

AVERAGE DRAG, TOTAL DRAG : -7.2587137F-03 -0.4790751

FIAS, WARR

Number of Kp Values : 0.1025746 -0.1415304

Number of Kp Values : 0.0033

Alpha
Plunge Value/full Cherd (h/zbl = 0.0033

Alpha
PlVOT FOINT (a) Of Elastic Axis = -0.4000

Half Chord (b) = 6.0000

Alpha Uncoupled Nat. Freq = 90.0000

Plunge Uncoupled Nat. Freq = 77.0000

1 alpha = 4.8410

S alpha = 0.6455

Mass Ratio = 0.5379

Alr Density = 0.0024

Mass Ratio = 0.2000
```

Figure 3.2e UPOTFLUT example output file

- j. PLUNGE.in This file contains K_p , C_{Lh} RE, C_{Lh} IM, C_{mh} RE, C_{mh} IM
- k. FLUTPLOT.d This file contains K_p , SQRT(x) Re, SQRT(X) RE, SQRT(X) IM

3. VALIDATION

The program was tested against some sample cases to check for code validity. The first case was taken from reference 6 example #1, p. 236. Figures 3.3 and 3.4 show plots of the FLUTPOT.d file. Figure 3.3 shows the initial look over a wide range of K_p and after finding the approximate flutter location Figure 3.4 shows a closer look at the K_p range of interest. This example calculated a $U_{\rm critical}$ of 161.985 ft/sec. which compares favorably to the example value of 162 ft/sec. The next example was taken from NACA TR-685 [ref.8] case #1 p. 8. Figures 3.5 and 3.6 again show the initial and final looks for this analysis. The example called for a $U_{\rm critical}$ of 567 miles/hr and the program returned a value of 570 miles/hr. Next, the code was tested over a range of ω_h/ω_α ratios as done in NACA TR-685, p11., graph I-A(a). Figure 3.7 shows the comparison between the two methods.

Figure 3.3 Initial look at flutter, example 1

Figure 3.4 Final look at flutter, example 1

Figure 3.5 Initial look at flutter, example 2

Figure 3.6 Final look at flutter, example 2

Figure 3.7 $\omega_{\rm h}/\omega_{\alpha}$ Calculations

IV. FLOW VISUALIZATION EXPERIMENT

A. INTRODUCTION

The purpose of this experiment was to document the production of thrust by a plunging airfoil. This was a preliminary experiment to better understand the vortex pattern produced by a plunging airfoil, and to examine the production of thrust using smoke flow visualization techniques.

An explanation of what constitutes a propulsive vortical along with smoke flow visualization signature propulsive vortical patterns is given in Reference 7. In this reference, the explanation is given by contrasting vortical pattern produced by a cylinder (drag) with the vortical pattern produced by a plunging airfoil (thrust). cylinder produced a vortical sheet where the top row of rotated clockwise and the bottom row of vortices rotated counterclockwise. This pattern induces a velocity component in the upstream direction (Biot-Savart law). contrast, the plunging airfoil produced a clockwise rotating vortex sheet on the bottom row. This pattern induces a velocity component in the downstream direction. Reproduction of the flow visualization data from Reference 7 is shown in Figure 4.1.

Figure 4.1 View of flow over cylinder (top) and plunging airfoil (bottom) [Ref. 7]

B. THEORY

A comparison was done using the incompressible panel code, U2DIIF. The purpose of this study was to examine the vortical pattern produced by the panel code, and determine if the vortical signature matched experimental results. The input to the panel code was set up to best match the conditions of the experiment described in the next section. The panel code was run using a plunge amplitude, h/2b equal to .1977, a reduced frequency of 1.8 and a zero mean AOA. The results of the vortical pattern are shown in Figure 4.2. Aside from the starting vortex, this is clearly a thrust producing vortical sheet. Furthermore, the vortical pattern is similar to that produced by the experiment shown in Figures 4.10 and 4.11.

C. EXPERIMENTAL SETUP

1. Plunging Airfoil

The plunging airfoil used in this paper was originally a wing taken from the rotor of a model helicopter. The wing was attached to a MB250 Shaker Table as shown in Figure 4.3 The wing was made from a NACA0007 airfoil section and consisted of a 2.45" chord and a 22" span. The wing was built from a foam core and finished with a layer of graphite epoxy composite for added fatigue strength. The airfoil's drive mechanism was a MB 250 Shaker Table capable of 1" total

Figure 4.2 Wake pattern produced by U2DIIF code

Figure 4.3 Shaker table with wing

deflection. The Shaker Table was limited only by resonance frequencies of the wing which occurred around 20 Hz or 1200 rpm.

2. WIND TUNNEL

The wind tunnel used in this experiment was a very low speed, low turbulence smoke tunnel. It is made of plexiglass walls and a contraction ratio of 2.8:1. The motor provides wind tunnel velocities between 0 and 10 feet per second (fps). The smoke was created using a Rosco smoke generator and piped into the tunnel in the test section using a small seven tube smoke rake constructed for this experiment. Figure 4.4 is a photograph of the wind tunnel and smoke rake used in this experiment.

D. TEST PROCEDURE

Testing was conducted in the low speed smoke tunnel under several different conditions. The speeds of the tunnel were approximately 1.04 fps, 1.47 fps, and 1.56 fps (measured visually). These low speeds allowed good pictures and the ability to get higher reduced frequencies without calling for too high a load on the wing. The actual plunging harmonic frequencies ranged from 1 to 15 Hz and amplitudes from 1/16" to 1" peak to peak. The tunnel was initially turned off and the Shaker Table turned on with stagnant smoke in the tunnel. The purpose was to see if the

plunging airfoil would draw the smoke through the tunnel like

Figure 4.4 Tunnel and smoke rake

a fan, thus showing the production of thrust by the plunging airfoil.

Photos were taken using a Nikon 35mm camera and Kodak TMAX-400 ASA black and white film. The shutter speed was set to 1/125 seconds with an aperture setting of 4.0 for the light conditions. Film developing time was optimized at 9 minutes at 75 degrees F.

E. RESULTS AND DISCUSSION

The result for the tunnel off condition flow visualization experiment was as expected. The wing in fact accelerated the smoke in its vicinity.

The result of the additional rake flow visualization experiments are shown in Figures 4.5-4.14. Figure 4.5 shows the stationary airfoil at zero degree AOA. The Reynolds number (based on airfoil chord) is 10,000. It can be seen that the airfoil produces a small wake with the boundary layer mostly attached. Figures 4.6 through 4.14 show the vortical wake flow patterns produced by plunge oscillations at various frequencies as indicated. Most of these pictures reveal the propulsive vortical street pattern discovered in Reference 7. Previous experiments by Neace, [ref.9] found that the tunnel was too small for the airfoil size used, but the airfoil size for the present experiment seemed to be optimum, as seen by the long trail of vortices. The vortical patterns show that the bottom vortex is rotating clockwise, and the top vortex is

Figure 4.5 Steady airfoil 1.56 ft/s

Figure 4.6 $K_p = 1.8008$, h/2b=.1977, 1.56 ft/s

Figure 4.7 $K_p = 2.467$, h/2b=.10204, 1.56 ft/s

Figure 4.8 $K_p = 2.467$, h/2b=.1913, 1.56 ft/s

Figure 4.9 $K_p = 4.112$, h/2b=.14031, 1.56 ft/s

Figure 4.10 K_p = 6.167, h/2b=.05102, 1.56 ft/s

Figure 4.11 $K_p = 6.753$, h/2b=.1084, 1.56 ft/s

Figure 4.12 $K_p = 7.401$, h/2b=.03826, 1.56 ft/s

Figure 4.13 K_p =8.223, h/2b=.01913, 1.56 ft/s

Figure 4.14, K_p=12.335, h/2b=.01775, 1.56 ft/s

rotating counterclockwise, which is a thrust producing vortical sheet. It can be seen in the pictures that the frequency greatly affects the vortical strength (size). Increasing the frequency leads to an increase in wake vorticity.

V. LIFT ENHANCEMENT PRODUCED BY A PLUNGING AIRFOIL

A. THEORY

Chapter IV demonstrated the propulsive capability of a plunging airfoil. The production of thrust implies the generation of a jet flow which, in turn, may be utilized as a boundary layer control device. Therefore, an additional test was conducted in the NPS smoke tunnel in order to explore the feasibility of this concept.

B. SETUP

The same NACA0007 plunging wing was used as in chapter IV with a different driving mechanism. The wing was mounted to an ELECTRO-SEIS Model 113 Shaker Table by APS Dynamics, Inc. The shaker was located below the test section of the NPS smoke tunnel (Figure 5.1). The plunging airfoil was mounted to struts at both ends to prevent excessive bending while plunging. The large airfoil is a cambered profile taken from the rotor of a full size helicopter (13" chord, 2" Thickness, modified NACA airfoil, Reynolds Number of 52,000). The wing is suspended from the tunnel ceiling as shown in the flow pictures. The design allowed for full movement of the big wing to position it in the vicinity of the plunging airfoil.

C. WIND TUNNEL

This study used the Naval Postgraduate School's flow visualization wind tunnel. The tunnel is an open-circuit one, with air entering an inlet that measures 4.5 m X 4.5 m (15'X15'). As the air enters the tunnel, it passes through a 7.5-cm long honeycomb. A 9:1 ratio square contraction cone directs the flow into a test section that is 1.5 m X 1.5 m (5'X5'), and 6.7 m (22') long, as seen in Figure 5.2. The flow is then exhausted into the atmosphere through a fan, which uses variable pitch blades to control the speed of the flow. The speed control toggle switch is located right below the red and green on/off switch located in the left side of the tunnel control room. The tunnel speed was determined using a digital manometer which was verified for accuracy (Figure 5.3).

An observation booth is located on the side of the tunnel. A glass window, 1.6 m X 1.1 m (5.2' X 3.4'), provides the primary viewing area from the observation room and a second one, 0.4 m X 1.23 m (1.33'X4'), is located in the tunnel's roof. The main viewing window had sufficient area for most of the photography, with the top window used for illumination. A circular turntable was located on the floor of the test section [ref.11] which allowed for easy access to the shaker table. The walls and floor of the test section were flat black for low light reflectivity.

Figure 5.1 Shaker table setup below tunnel

Figure 5.2 Tunnel Layout

	۸n		% Diff fm Acad.		5.72%	%08.0	2.96%	5.32%	4.81%	5.72%	5.53%	4.36%	4.51%	5.88%
	against knov	Aerolab Wind Tunnel readings (3 readings taken at each value)	Aero. Vel.	ft/s	9.845	13.9229	19.69	24.115	27.8459	31.132	34.1	39.38	44.028	53.92
Tunnel Velocity Speed Check	Comparing the digital manometer speed indications against known		Dig. Vel.	ft/s	9.2815	14.0338	20.2735	25.397	29.1845	32.912	35.985	41.095	46.013	57.09
			Aerolab reading	(cm H20)	0.02	0.1	0.2	0.3	0.4	0.5	9.0	0.8		1.5
		Aerolab Wind Tu	Digital reading	(in H20)	0.0175	0.04	0.0835	0.131	0.173	0.22	0.263	0.343	0.43	0.662

Figure 5.3 Tunnel speed check

D. SMOKE GENERATION

The smoke was generated in the Rosco smoke/fog machine. Many different smoke injection techniques were tried but with less than satisfactory results. Smoke rakes were first tried outside the tunnel with the tube number varying from 2 to 30 tubes. The tubes were inserted in the honeycomb and also separated different distances from the inlet of the tunnel. The rake was also tried inside the test section with very bad results (smoke dispersed immediately). Problems ranged from lack of smoke and turbulence when enough smoke was present. The Rosco machine at its lowest setting was producing a very high smoke volume and whenever the flow was restricted by a smoke rake the smoke production went way down. The final technique adopted was very simple. The smoke output was sent directly from the machine to a 1" nozzle which was manually waved at the entrance of the tunnel to make a steady cloud. The steady cloud was gradually pulled into the tunnel, producing a thick smoke sheet in the test section.

E. PHOTOGRAPHY

Photos were taken using a Nikon 35mm camera and Kodak TMAX-400 ASA black and white film. The film speed was set to 1/250 seconds with an aperture setting of 4.0 for the light conditions. Film developing time was optimized at 9 minutes at 75 degrees F.

F. EXPERIMENTAL PROCEDURES

The first step involved a look at the large airfoil to verify normal flow patterns (Figure 5.4 and 5.5) and find the AOA for initial trailing edge separation (Figure 5.6). Next, the plunging airfoil was placed in the tunnel by itself and a run was made to verify the propulsive capability in the larger tunnel at higher speeds. As seen in Figure 5.7, the airfoil produced a drag vortical flow. Figure 5.8 and 5.9 shows the propulsive pattern of the propulsive airfoil. Finally, the two airfoils were placed in close relative position to see the interference effect between the two airfoils.

G. RESULTS AND DISCUSSION

Several airfoil position combinations were studied, as shown in Figures 5.10 through 5.15. Figure 5.10 and 5.11 show the plunging airfoil located at approximately .65 chord of the large airfoil. Figure 5.12 through 5.15 show the plunging airfoil located at approximately .75 chord.

The differences between the plunging on and off condition were not easy to see with the eye but pictures indeed showed some differences between the two conditions. A shortcoming of this experiment was the inability of the plunging airfoil to run parallel with the large airfoil. Additionally, sizing of and relative positioning of the two airfoils was not optimized to give best results. The two airfoils were chosen from the resources available and time constraints prevented a more

Figure 5.5 Large airfoil at 10 degrees AOA

Figure 5.6 Large airfoil at 12 degrees AOA (stall)

Figure 5.7 Plunge airfoil steady

Figure 5.8 Plunging airfoil K_p=1.71

Figure 5.9 Plunging airfoil K_p=3.42

Figure 5.10 Large airfoil at 12 degrees AOA, steady plunging airfoil position 1

Figure 5.11 Large airfoil at 12 degrees AOA, plunging airfoil $K_p=3.42$, position 1

Figure 5.12 Large airfoil at 12 degrees AOA, plunging airfoil steady, position 2

Figure 5.13 Large airfoil at 12 degrees AOA, plunging airfoil $K_p=3.42$, position 2

Figure 5.14 Large airfoil at 14 degrees AOA, plunging airfoil steady, position 2

Figure 5.15 Large airfoil at 14 degrees AOA, plunging airfoil $K_p=3.42$, position 2

detailed investigation of the interference effects between the two airfoils.

VI. CONCLUSIONS AND RECOMMENDATIONS

A. SINGLE AIRFOIL ANALYSIS

The modified version of U2DIIF (UPOT) can perform aerodynamic calculations over range of reduced any frequencies. The nonlinear theory presented here for harmonic motion, and the phase relationships that exist between the the aerodynamic forces airfoil motion and have extensively verified by comparison with Theodorsen's linear theory. Furthermore, this panel code was applied to the analysis of incompressible bending-torsion airfoil flutter. Again, excellent agreement with the classical Theodorsen analysis was obtained.

Access to faster computational means is recommended to shorten the time needed to predict the flutter points. The code should be modified to incorporate three-dimensional calculations which would help solve more difficult flutter problems.

B. FLOW VISUALIZATION EXPERIMENTS

The flow visualization experiment successfully showed the development of thrust produced by a plunging airfoil. The enhanced lift experiment, on the other hand, was not a complete success. The smoke visualization presented difficulties that were not satisfactorily overcome. As a

result, the pictures taken were somewhat inconclusive. Futhermore, the angle of attack of the oscillating airfoil could not be changed thus making it difficult to achieve a flow condition conducive to lift enhancement.

It is recommended that further experiments be conducted in the low speed smoke tunnel with a shaker table capable of moving an airfoil at harmonic frequencies near 40 HZ. Additionally, the airfoil must be modified to allow change of AOA. Finally, the Rosco smoke machine output volume must be modified to permit much lower smoke output. This final point proved to be the single largest detriment to the visualization experiment.

LIST OF REFERENCES

- 1. Platzer, M.F., Class Lecture Notes, Naval Postgraduate School, Monterey, California, Sep 1991.
- Teng, N.H., The Development of a Computer Code (U2DIIF) for the Numerical Solution of Unsteady, Inviscid and Incompressible Flow over an Airfoil, Master's Thesis, Naval Postgraduate School, Monterey, California, Jun 1987, pp. 1-135
- 3. Ashley, H., Bislinghoff, R.L., Halfman, R.L., Aeroelasticity, Addison Wesley, 1957.
- 4. Hess, J.L. and Smith, A.M.O. Calculation of Potential Flow about Arbitrary Bodies, Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, Oxford, 1966,pp1-138.
- 5. Fung, Y.C., The Theory of Aeroelasticity, Dover, 1969,pp455-463.
- 6. Scanlan, Robert H., Rosenbaum, Robert, Introduction to the Study of Aircraft Vibration and Flutter, The Macmillan Company, 1960, pp. 192-204.
- 7. Freymouth, P., Propulsive Vortical Signature of Plunging and Pitching Airfoils, AIAA Journal, Vol. 26, No. 7, Jul 1988, pp. 881-883.
- 8. Theodorsen, T., Garrick, T.E., Mechanism of Flutter, NACA TR-685, 1940.
- 9. Neace, K.S., A Computational and Experimental Investigation of the Propulsive and Lifting Characteristics of Oscillating Airfoils and Airfoil Combinations in Incompressible Flow, Aeronautical and Astronautical Engineer's Thesis, Naval Postgraduate School, Monterey, California, Sep. 1992.
- 10. Theodorsen, T., General Theory of Aerodynamic Instability and the Mechanism of Flutter, NACA TR-496, 1934
- 11. Rhoades, Mark M., A Study of the Airwake Aerodynamics over the Flight Deck of an AOR Model Ship, Master's Thesis, Naval Postgraduate School, Monterey, California, Sep. 1990.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria VA 22304-6145		No.	Copies 2
2.	Library, Code 052 Naval Postgraduate School Monterey CA 93943-5002			2
3.	Chairman, Code AA/CO Naval Postgraduate School Monterey, California 93943-5000			1
4.	Dr. M.F. Platzer Dept. of Aeronautics and Astronautics, Naval Postgraduate School Monterey, California 93943-5000	Code	AA/PL	6
5.	Dr. S.K. Hebbar Dept. of Aeronautics and Astronautics, Naval Postgraduate School Monterey, California 93943-5000	Code	AA/HB	2
6.	Dr. E. Tuncer Dept. of Aeronautics and Astronautics, Naval Postgraduate School Monterey, California 93943-5000	Code	AA/ET	1
7.	LCDR. Peter J. Riester 1129 Manchester Avenue Norfolk, Virginia 23508			1

gre 55

DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101

ID:32768000666754 TL570 .R373 1986 Recent advances in ae \Krothapalli, Anjaneyu

3 2768 00018990 6