

厦门大学 RM2021 技术报告 Aerial 空中机器人

组长:杨荃潞

组员: 刘世立

一、需求确定

1.机械方面:

今年相比以往,无人机增加了桨叶保护罩的需求,用于在比赛起飞时保护无人机桨叶,防止被新增的飞镖或其他大弹丸打到桨叶导致坠机。同时今年采用金币模式,无人机起飞不需要金钱,但是发射弹丸需要大量金钱。所以云台要求两个,分为有枪管和无枪管,要求可迅速拆卸调整,方便战术安排。另外往年的无人机云台存在电机扭矩不足的问题,需要更换6020电机用于调整扭矩。

2.电控方面:

电控方面由于沿用往年的无人机,飞控电路早已写好,电控需要写好的云台的旋转机构和发射机构的代码。

总结: 机械方面要求桨叶保护罩,设计新云台和改造旧云台; 电控方面写好云台旋转机构电机和发射机构电机的代码。

二、结构设计

1.机械部分

1) 旧云台修改部分

原云台采用 3510 电机,经实验发现 3510 电机扭矩不足,带不动摄像头和前面的枪管,因此采用扭矩更大的 6020 电机,但是 6020 电机比 3510 电机重太多,会对重心产生太大影响,需要重新调整重心。此外 6020 电机和 3510 电机孔位也有所不同,需要重新设计孔位。

(旧云台用的3510,扭矩不够)

2) 新云台设计部分

新云台相对于旧云台只是没有枪管,主要解决重心问题和孔位问题, 主体结构与有枪管的并无太大区别。

(无枪管,换6020电机)

3) 快拆装置

快拆装置从连接处入手,采用分层结构,一层固定于机架上,一层固定 于云台上,中间通过螺丝固定。经检验云台不算很重,螺丝能够承重起。

(机架上的连接结构,突起用于固定方向)

4) 桨叶保护罩

今年最大的问题是桨叶保护罩,因为桨叶保护罩要考虑网子的防护性, 重量和支架位置。第一代桨叶保护罩打算对每片桨叶进行单独保护,用鱼线做保护网,从电机座下方生出支架进行支撑。第一代的支架如图所示:

(第一代支架)

但是经检测,这样的图形的支架下方弧形会挡住桨叶旋转,第一代失败。 第二代,支架取消弧形形状,改成圆形并通过垂直支架上升用于支撑,依 旧使用鱼线做保护网。第二代如图所示

(第二代桨叶保护罩)

第二代桨叶保护罩支架结构上没有问题,不过雕刻机精度不够,装配有点问题,有点紧,同时为了减轻重量设置的比较细导致强度有点不够。但是这个不是重点,重点是由于桨叶与机架的位置太靠近,导致装上桨叶保护罩了之后没办法装电池\(\(^{\sum_\chi}\)_\(_\), 这就只能从结构上解决了,这也几乎宣告了单独桨叶保护罩没办法,只能下一代在大结构上修改了。

另外到这里保护网也出问题了,问题在于网的选择:选鱼线手编的话,鱼线太过柔韧,容易形变,没办法达到要求,选棉线的话,会有线头溢出,在飞行的时候,如果线头绕到桨叶上,桨叶电机很容易坏(深刻的教训),官方推荐的尼龙网很难找到规格合适的,也只能自己修剪,修剪就又容易产生线头,而且尼龙网也很有韧性,要达到官方的要求需要绷紧,而绷紧就对支架有很大的强度要求,鉴于支架都是雕刻板或碳管,很难各个方向是都有足够的强度。选网上也很有困难。

回到桨叶保护罩上,单个保护罩没办法使用,只能考虑对桨叶进行整体保护,即用一个大网把整个无人机网住。这样的话需要两个部分,一是一张大网,能够网住机架,另外就是在无人机外置一个支架,用于支撑网子。由此,三代无人机如下图:

(三代无人机)

结构上来说,有点悬,因为支架由于重量原因,只能选择碳管,铝管强度够,但是太重,没办法使用。而碳管,感觉强度依旧不够,容易导致出现问题,不过测试这么多次没出现问题,应该支架结构还行。

选择大网后,支架问题很好解决,主要问题变成了网子的材料选择。最开始的时候,材料依旧选择的是鱼线,老问题,太柔韧,完全没办法防御,只能舍弃。然后选择的是尼龙网,强度足够,问题在于线头不好清理,并且尼龙网太粗,会对气动力造成影响,同理,防猫网也不行,太重,孔太密会影响气动力。本来想考虑铁丝的,但是铁丝依旧很软,没办法成功。最后找到材料了,使用渔网既轻便又坚韧,由于是网状结构,绷紧后防护作用很好,最终确定采用全支架+大网的模式制作保护罩。

总结:最后保护罩能用了,只是有点脆弱,感觉很容易坏。另外下一代的话建议还是对单个桨叶进行保护,因为整个大网很难装上,装拆都很费时间,到时候很难搞修理。

三、程序设计

由于这一届无人机继承的是上一届的结构,代码方面并没有多少工作,另外据世立说,代码可以照搬步兵英雄的代码,只需要进行一些修改,因此代码上没有太多的进展。

四、电路设计

同上,由于继承的上一届的结构,没有太多的进展。

五、系统分析

利用 solidworks 分析外支架在均匀受压时,不会产生影响结构的形变,但是由于上网时受力并不均匀,很难保证完全一致,不过留有容错,应该没有问题。

六、人机工程

无人机操作有两个部分,分为飞手直接操作无人机飞行和云台操作手操作云台并进行射击。飞手在场外目视无人机操作飞行,云台手则在内通过摄像头进行操作。

七、工业设计

同理,由于这一届采用的是上一届的结构,设计理念很难找到。不过看形状应该是从普通四 翼无人机里寻找灵感的。经寻找,应该是从官方的开源文件中进行改装。

八、成本控制

采用上一代的无人机,极大程度的降低成本,同时备份好易损坏装备,方便随时 更换。

九、BOM 表

机器人完整材料清单

<u> </u>				
机架	主体模块	分层板	机械	300
机架	桨叶保护	桨叶保护架	机械	200
机架	连接模块	固定件	机械	200
机架	桨叶保护	桨叶保护罩	机械	33
机架	桨叶保护	保护网	机械	50
云台	Yaw 轴	6020 电机	机械	899
云台	Pitch 轴	3508 电机	机械	499
云台	Pitch 轴	C620 电调	机械	399
云台	云台支架	连接板(含枪	机械	100
		管)		
云台	云台支架	连接板(无枪	机械	100
		管)		
发射机构	摩擦轮模块	摩擦轮固定板	机械	100
发射机构	摩擦轮模块	摩擦轮	机械	316
发射机构	摩擦轮模块	SNAIL 电机	机械	258

发射机构	摩擦轮模块	SNAIL 电调	机械	218
发射机构	拨弹模块	拨弹轮	机械	10
发射机构	拨弹模块	压力卡弹开关	机械	20
发射机构	拨弹模块	2006 电机	机械	259
发射机构	拨弹模块	C610 电调	机械	159
电源模块	电池模块	TB47D 电池	硬件	5436
电源模块	电池模块	电池架	硬件	796
电源模块	电源 hub	电源 hub 板	硬件	20
电源模块	降压模块	降压模块	硬件	26
算法硬件	飞控模块	N3	硬件	2099
遥控器	遥控器接收机	DR16	硬件	338
			总结	23731