Algorítmica y Programación

Enero - Mayo 2020

Dr. Iván S. Razo Zapata (ivan.razo@itam.mx)

Programación Orientada a Objetos

Temas para esta sesión

Ejercicio

Idea general

Three essential components of computer simulation

Initialize. You will need to set up the initial values for all the state variables of the system.

Observe. You will need to define how you are going to monitor the state of the system. This could be done by just printing out some variables, collecting measurements in a list structure, or visualizing the state of the system.

Update. You will need to define how you are going to update the values of those state variables in every time step. This part will be defined as a function, and it will be executed repeatedly.

Objetivo principal

- Simular el sistema discreto para 40 pasos
- Valores dados por el usuario: a y x0

$$x_t = ax_{t-1}$$

```
class sistemaD:
    __a = 0
    x = 0
    def __init__(self, val1, val2):
        self._a = val1
        self._x = val2
    def observa(self):
        return self.__x
    def actualiza(self):
        self.\_x = self.\_a * self.\_x
# Inicialización
sistema1 = sistemaD(1.01,1)
for x in range(1,41):
    # Observación
    print(sistema1.observa())
    # Actualización
    sistema1.actualiza()
```

```
# Inicialización
sistema1 = sistemaD(1.01,0.5)
Valores = []
for x in range(1,41):
    # Observación
    Valores.append(sistema1.observa())
    # Actualización
    sistema1.actualiza()
arrayV = np.asarray(Valores)
plt.plot(arrayV)
plt.show()
```

Ejercicio

$$x_{t} = 0.5x_{t-1} + y_{t-1}$$

$$y_{t} = -0.5x_{t-1} + y_{t-1}$$

$$x_{0} = 1, \quad y_{0} = 1$$


```
import numpy as np
import matplotlib.pyplot as plt
class sistema2Variables:
    _{x} = 0
    y = 0
    def __init__(self, val1, val2):
        self_{-}x = val1
        self_{\cdot}_y = val2
    def observa(self):
        return self.__x, self.__y
    def actualiza(self):
        nextX = 0.5 * self_{-}x + self_{-}y
        nextY = -0.5 * self_{-}x + self_{-}y
        self.__x, self.__y = nextX, nextY
```



```
# Inicialización
sistema2 = sistema2Variables(1,1)
Valores = []
for i in range(1,41):
    # Observación
    # print(sistemal.observa())
    x, y = sistema2.observa()
    Valores.append([x,y])
    # Actualización
    sistema2.actualiza()
### Impresión Final
varArray = np.asarray(Valores)
plt.plot(varArray[:,0])
plt.plot(varArray[:,1])
plt.show()
### Fase
plt.plot(varArray[:,0],varArray[:,1])
plt.show()
```


Ejercicio

- Prey grows if there are no predators
- Predators die if there are no prey

$$x_t = x_{t-1} + rx_{t-1}$$

$$y_t = y_{t-1} - d_y y_{t-1}$$

Crecimiento de la población

Decrecimiento de la población

- Prey grows if there are no predators
- Predators die if there are no prey

$$x_{t} = x_{t-1} + rx_{t-1} \left(1 - \frac{x_{t-1}}{K} \right)$$

$$y_t = y_{t-1} - d_y y_{t-1}$$

Decrecimiento de la población

- Prey grows if there are no predators
- Predators die if there are no prey

- The prey's death rate increases as the predator population increases
- The predators' growth rate increases as the prey population increases

$$x_t = x_{t-1} + r_x x_{t-1} (1 - x_{t-1}/K)$$

$$y_t = y_{t-1} - d_y y_{t-1}$$

Crecimiento de la población

$$x_t = x_{t-1} + rx_{t-1}(\mathbf{1} - x_{t-1}/\mathbf{K}) - u_x(y_{t-1})x_{t-1}$$
 Decrecimiento de la población

Decrecimiento de la población

$$x_t = x_{t-1} + rx_{t-1}(1-x_{t-1}/K) - d_x(y_{t-1})x_{t-1} \qquad y_t = y_{t-1} - dy_{t-1} + r_y(x_{t-1})y_{t-1}$$
 Decrecimiento de la población

$$x_t = x_{t-1} + rx_{t-1} \left(1 - \frac{x_{t-1}}{K}\right) - \left(1 - \frac{1}{by_{t-1} + 1}\right) x_{t-1}$$

Crecimiento de la población

Decrecimiento de la población

$$y_t = y_{t-1} - dy_{t-1} + cx_{t-1}y_{t-1}$$

Decrecimiento de la población Crecimiento de la población


```
import numpy as np
import matplotlib.pyplot as plt
class sistemaPandP():
    b = 0
    c = 0
    k = 0
   def __init__(self, v1, v2, v3, v4, v5, v6, v7):
        self._x = v1
        self._y = v2
        self_{-}r = v3
        self_{-}b = v4
        self_{-}d = v5
        self._c = v6
        self_{-} k = v7
   def observa(self):
        return self.__x, self.__y
   def actualiza(self):
        # Actualizar con ecucaciones del sistema prey and predator
        primero = self.__x
        segundo = self._r * self._x * (1 - (self._x / self._k))
        tercero = (1 - (1 / ((self._b * self._y) + 1))) * self._x
        nextX = primero + segundo - tercero
        nextY = self.\_y - (self.\_d * self.\_y) + (self.\_c * self.\_x * self.\_y)
        self.__x, self.__y = nextX, nextY
```



```
# Inicialización
sistema3 = sistemaPandP(1,1,1,1,1,1,5)
Valores = []
for i in range(1,101):
    # Observación
    # print(sistemal.observa())
    x, y = sistema3.observa()
    Valores.append([x,y])
    # Actualización
    sistema3.actualiza()
### Impresión Final
varArray = np.asarray(Valores)
plt.plot(varArray[:,0])
plt.plot(varArray[:,1])
plt.show()
### Fase
plt.plot(varArray[:,0],varArray[:,1])
plt.show()
```


