Universidade Federal de São Paulo

Instituto de Ciência e Tecnologia

Relatório de Modelagem Computacional Projeto 01 - Lançamento de Corpos

Queda com Atrito

Celso Gabriel Vieira Robeiro Lopes (123119), Felipe Hikari Kawahama (112197), Lucas Eduardo Nogueira Gonçalves (122055).

Prof. Dr. Marcos Gonçalves Quiles

São José dos Campos Março, 2018

1.1 INTRODUÇÃO SOBRE QUEDA LIVRE E LANÇAMENTO DE CORPOS

A grosso modo podemos definir queda livre como o abandono de um corpo a uma certa altura, de modo que o movimento seja provocado unicamente pela força da gravidade (m.g) agindo no corpo até que o corpo atinja o solo, onde m é a massa do corpo e g é a constante gravitacional.

Em conceitos físicos podemos representar as forças que estão agindo sobre o corpo através de um diagrama de forças.

Imagem 1: Diagrama de Forças para uma queda livre em condições ideais.

Ou seja: $\sum F_y = m.a_y = m.g$. Onde a_y é a componente y da aceleração.

Agora analisando em condições não tão ideias, podemos incluir a força de resistência do ar em nosso sistema. Seja essa força $F_{at} = k.v_y$, sendo v_y , a componente vertical da velocidade do corpo e k uma constante de proporcionalidade.

Logo: $\sum F_y = m.a_y = -m.g + k.v_y$, matematicamente podemos representar a mesma equação como: $\frac{dv_y}{dt} + \frac{k}{m}.v_y = g$, já que a aceleração nada mais é que a variação da velocidade pelo tempo, obtendo assim uma equação diferencial ordinária linear.

Já no caso de um lançamento de projétil é necessário uma outra abordagem, mas muito similar a apresentada acima. A diferença se dá no fato de que o movimento não é mais em apenas uma dimensão (eixo vertical), agora, o corpo se movimenta lateralmente e verticalmente, logo temos que considerar não só as componentes y do movimento, mas também as componentes x. Como veremos na próxima seção. Segue o exemplo para a velocidade:

Imagem 2: Decomposição da Velocidade em duas dimensões

1.2 MODELO FÍSICO E COMPUTACIONAL

Para a simulação do problema proposto em sala (Lançamento de Projétil com Resistência do ar), vamos utilizar uma abordagem bem similar a apresentada na seção anterior, que difere em partes no modelo apresentado em sala, já que consideramos como orientação positiva o movimento para cima e negativo, o movimento para baixo em relação aos componentes de y. Enquanto que os componentes de x possuem a mesma orientação vista no modelo da aula (movimento a direita é positivo, e a esquerda é negativo). Assim, o diagrama de forças do projétil sendo lançado é o seguinte:

Imagem 3: Diagrama de forças do projétil.

O método numérico para obtermos os resultados das velocidades numa variação de tempo a cada 0.01 segundos (Δt), a partir da solução da equação diferencial da velocidade apresentada a seguir, é o Método de Euler. Com as velocidades em x e y, podemos obter a solução das outras equações que dependem dela, como o deslocamento em x e y. Para uma boa compreensão do método utilizado para simular o lançamento é necessário entender que $\frac{ds}{dt}$, ou seja, a taxa de variação da posição para valores infinitesimais foram aproximados para $\frac{\Delta s}{\Delta t}$, com $\Delta t = 0.01$.

Segue as equações utilizadas no processo de simulação:

$$\sum F_y = m.a_y = +k.v_y - m.g \iff a_y = -g + \frac{k}{m}.v_y \Rightarrow \frac{dv_y}{dt} = -g + \frac{k}{m}.v_y \Rightarrow \Delta v_y = (-g + \frac{k}{m}.v_y).\Delta t \Rightarrow v_y(t + \Delta t) = v_y(t) + (-g + \frac{k}{m}.v_y).\Delta t$$

$$\sum F_x = m.a_x = -k.v_x \iff a_x = -\frac{k}{m}.v_x \Rightarrow \frac{dv_x}{dt} = -\frac{k}{m}.v_x \Rightarrow \Delta v_x = (-\frac{k}{m}.v_x).\Delta t \Rightarrow v_x(t + \Delta t) = v_x(t) + (-\frac{k}{m}.v_x).\Delta t$$

Afim de simplificar as equações vamos tomar:

$$\alpha(t) = (-g + \frac{k}{m} v_y) \in \beta(t) = -\frac{k}{m} v_x$$

Seguindo o mesmo método é possível definir as equações que retornam a posição em ambos os eixos:

Vamos denotar o deslocamento como s:

Temos que $\frac{ds}{dt}=v$, aplicando o método de Euler, temos que $\frac{\Delta s}{\Delta t}=v$, logo é possivel notar que a variação da posição, ou seja $\Delta s=v.\Delta t$.

Utilizando as equações da velocidade, podemos concluir que:

$$\Delta s_y = v_y(t) \cdot \Delta t + \alpha(t) \cdot \Delta t^2 \Rightarrow s_y(t + \Delta t) = s_y(t) + v_y(t) \cdot \Delta t + \alpha(t) \cdot \Delta t^2.$$

$$\Delta s_x = v_x(t) \cdot \Delta t + \beta(t) \cdot \Delta t^2 \Rightarrow s_x(t + \Delta t) = s_x(t) + v_x(t) \cdot \Delta t + \beta(t) \cdot \Delta t^2.$$

Para a energia cinética, é necessário analisar o módulo da velocidade, ou seja, tomando $v=\sqrt{v_y^2+v_x^2},$ ou seja:

$$E_c = \frac{1}{2}.m.v^2$$

Para a energia potencial gravitacional, temos a seguinte fórmula:

$$E_p = m.g.s_y$$

1.3 MATERIAIS

O código para a simulação foi feito na linguagem C, no software Code::Blocks. Enquanto que para gerar os gráficos da próxima seção, foram utilizados os dados provenientes da simulação do código em C que foram impressos em um arquivo .txt para gerar os gráficos no software Scilab a partir de plot de matrizes

Por fim, este relatório foi escrito utilizando o conjunto de macros LaTeX.

2.1 GRÁFICOS E RESULTADOS

Logo após a implementação do código com a simulação, decorre os seguintes resultados:

Simulação 1

Parâmetros:

Velocidade Inicial = 15 m/s , Altura Inicial = 250m, Gravidade = 9,8 (m/s^2) , Massa do Corpo = 1kg, Coeficiênte de Atrito 0.25, $\Delta t=0.01$ s, Theta = $\pi/4$

.

Simulação 2

Parâmetros:

Velocidade Inicial = 20 m/s , Altura Inicial = 50m, Gravidade = 9,8 (m/s^2) , Massa do Corpo = 100kg, Coeficiênte de Atrito 0.027, $\Delta t=0.01$ s, Theta = $\pi/3$

Energia Potencial

Energia Cinética