Теоретично домашно

Александър Гуров 21 януари 2023 г.

1 Задача

а) Функцията $f: \mathbb{R} \to \mathbb{R}$ е ограничена отгоре, ако съществува $\lambda \in \mathbb{R}$, за което е изпълнено условието: $\exists \lambda \in \mathbb{R} \ \forall x \in \mathbb{R} : f(x) \leq \lambda$ и λ се нарича горна граница (мажоранта). Функцията f не е ограничена отгоре, ако е изпълнено:

$$\neg(\exists \lambda \in \mathbb{R} \ \forall x \in \mathbb{R} : f(x) \le \lambda) \equiv$$

$$\equiv \forall \lambda \in \mathbb{R} \ \neg(\forall x \in \mathbb{R} : f(x) \le \lambda) \equiv$$

$$\equiv \forall \lambda \in \mathbb{R} \ \exists x \in \mathbb{R} : \neg(f(x) \le \lambda) \equiv$$

$$\equiv \forall \lambda \in \mathbb{R} \ \exists x \in \mathbb{R} : f(x) > \lambda$$

б) Функцията $f: \mathbb{R} \to \mathbb{R}$ има най-голяма стойност, ако съществува $x_1 \in \mathbb{R}$, за което е изпълнено условието: $\exists x_1 \in \mathbb{R} \ \forall x_2 \in \mathbb{R} : f(x_1) \geq f(x_2)$ и λ се нарича горна граница (мажоранта). Функцията f няма най-голяма стойност, ако е изпълнено:

$$\neg(\exists x_1 \in \mathbb{R} \ \forall x_2 \in \mathbb{R} : f(x_1) \ge f(x_2)) \equiv \exists \forall x_1 \in \mathbb{R} \ \neg(\forall x_2 \in \mathbb{R} : f(x_1) \ge f(x_2)) \equiv \exists \forall x_1 \in \mathbb{R} \ \exists x_2 \in \mathbb{R} : \neg(f(x_1) \ge f(x_2)) \equiv \exists \forall x_1 \in \mathbb{R} \ \exists x_2 \in \mathbb{R} : f(x_1) < f(x_2)$$

в) (Коши) Нека $f: D \to \mathbb{R}, D \subset \mathbb{R}$. f е непрекъсната в $x_0 \in D$, ако за всяко $\varepsilon > 0$ съществува $\delta > 0$ такова, че ако $x \in D$ и $|x - x_0| < \delta$, то $|f(x) - f(x_0)| < \varepsilon$. Функцията f се нарича непрекъсната, ако f е непрекъсната във всяка точка от дефиниционната си област, тоест:

$$\forall x_0 \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D, |x - x_0| < \delta : \ |f(x) - f(x_0)| < \varepsilon$$

Функцията f не е непрекъсната, когато:

$$\neg(\forall x_0 \in D \ \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D, |x - x_0| < \delta : |f(x) - f(x_0)| < \varepsilon) \equiv \\ \equiv \exists x_0 \in D \ \neg(\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D, |x - x_0| < \delta : |f(x) - f(x_0)| < \varepsilon) \equiv \\ \equiv \exists x_0 \in D \ \exists \varepsilon > 0 \ \neg(\exists \delta > 0 \ \forall x \in D, |x - x_0| < \delta : |f(x) - f(x_0)| < \varepsilon) \equiv \\ \equiv \exists x_0 \in D \ \exists \varepsilon > 0 \ \forall \delta > 0 \ \neg(\forall x \in D, |x - x_0| < \delta : |f(x) - f(x_0)| < \varepsilon) \equiv \\ \equiv \exists x_0 \in D \ \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D, |x - x_0| < \delta : |f(x) - f(x_0)| < \varepsilon) \equiv \\ \equiv \exists x_0 \in D \ \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D, |x - x_0| \ge \delta : |\neg(|f(x) - f(x_0)| < \varepsilon) \equiv \\ \equiv \exists x_0 \in D \ \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D, |x - x_0| \ge \delta : |f(x) - f(x_0)| < \varepsilon) \equiv \\ \equiv \exists x_0 \in D \ \exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x \in D, |x - x_0| \ge \delta : |f(x) - f(x_0)| \le \varepsilon$$

(Хайне) Нека $f: D \to \mathbb{R}$, $D \subset \mathbb{R}$. Казваме, че функцията f е непрекъсната в $x_0 \in D$, ако за всяка редица $\{x_n\}_{n=1}^{\infty} \subset D$ от стойности на аргумента, която клони към x_0 , съответната редица от функционални стойности $f(x_n)_{n=1}^{\infty}$ клони към $f(x_0)$. Функцията f е непрекъсната, ако f е непрекъсната във всяка точка от дефиниционната си област, тоест:

$$\forall x_0 \in D \ \forall \{x_n\}_{n=1}^{\infty} \subset D, \ x_n \xrightarrow[n \to \infty]{} x_0 : f(x_n) \xrightarrow[n \to \infty]{} f(x_0)$$

 Φ ункцията f не е непрекъсната, когато:

$$\neg(\forall x_0 \in D \ \forall \{x_n\}_{n=1}^{\infty} \subset D, \ x_n \xrightarrow[n \to \infty]{} x_0 : f(x_n) \xrightarrow[n \to \infty]{} f(x_0)) \equiv$$

$$\equiv \exists x_0 \in D \ \neg(\forall \{x_n\}_{n=1}^{\infty} \subset D, \ x_n \xrightarrow[n \to \infty]{} x_0 : f(x_n) \xrightarrow[n \to \infty]{} f(x_0)) \equiv$$

$$\equiv \exists x_0 \in D \ \exists \{x_n\}_{n=1}^{\infty} \subset D, \ \neg(x_n \xrightarrow[n \to \infty]{} x_0) : \neg(f(x_n) \xrightarrow[n \to \infty]{} f(x_0)) \equiv$$

$$\equiv \exists x_0 \in D \ \exists \{x_n\}_{n=1}^{\infty} \subset D, \ \neg(x_n \xrightarrow[n \to \infty]{} x_0) : \neg(f(x_n) \xrightarrow[n \to \infty]{} f(x_0))$$

2 Задача

- а) Числовата редица $\{a_n\}_{n=1}^{\infty}$ е ограничена, следователно $\exists b,c \in \mathbb{R} \ \forall n \in \mathbb{N}: b \leq a_n \leq c$ По теоремата на Болцано-Вайерщрас (Принцип за компактност), в числовата редица същесвува поне една точка на сгъстяване. Дефиницията на $\limsup a_n$ е най-дясната точка на сгъстяване на редицата. Следователно $\forall \varepsilon > 0 \ \forall n \in \mathbb{N}: |a_n \lim \sup a_n| < \varepsilon$. Множеството $V = \{\forall n \in \mathbb{N} \ \forall \varepsilon > 0: \lim \sup a_n + \varepsilon < a_n \leq c\}, V \subseteq \mathbb{N}$ от индекси на елементи от числовата редица, които се намират между $\limsup a_n$ и горната граница на числовата редица $\{a_n\}_{n=1}^{\infty}$ ще бъде крайно или празно. Тоест допълнението на V, \overline{V} ще бъде кофинитно и ще бъде дефинирано $\overline{V} = \{\forall n \in \mathbb{N} \ \forall \varepsilon > 0: a_n < \limsup a_n + \varepsilon\}$, с което доказваме, че $\limsup a_n$ е същесвена мажоранта. Множеството от същесвените мажоранти съвпада с множеството V, от което е очевидно, че е ограничено отдолу и долната му граница съвпада с $\limsup a_n$.
 - **б)** Можем да представим редицата c_n , като $sup(\{a_k\}_{k=1}^{\infty} \setminus \{a_k\}_{k=1}^n)$. Тогава

$$\lim_{n \to 0} \sup(\{a_k\}_{k=1}^{\infty} \setminus \{a_k\}_{k=1}^n) = \sup(\{a_k\}_{k=1}^{\infty}) = \lim \sup a_n$$

- в) Както доказахме в 2a), \overline{V} е кофинитно и $\overline{V} = \{ \forall n \in \mathbb{N} \ \forall \varepsilon > 0 : a_n < lim \ sup \ a_n + \varepsilon \}$, следователно почти всички членове на редицата се намират в $(-\infty, lim \ sup \ a_n + \varepsilon)$.
 - г) От точките на сгъстяване на $\{a_n\}_{n=1}^{\infty}$ и $\{b_n\}_{n=1}^{\infty}$:

$$\forall \varepsilon > 0 \ \forall n_1 \in \mathbb{N}, \ \forall n \ge n_0 : a_n \le \lim \sup a_n + \frac{\varepsilon}{2}$$
$$\forall \varepsilon > 0 \ \forall n_2 \in \mathbb{N}, \ \forall n \ge n_0 : b_n \le \lim \sup b_n + \frac{\varepsilon}{2}$$

При $n_0 = max(n_1, n_2)$. Следователно

$$\forall \varepsilon > 0 \ \forall n \geq n_0 : a_n + b_n \leq \lim \sup a_n + \lim \sup b_n + \varepsilon$$

Тогава $\lim \sup_{n\to 0} (a_n + b_n) \le \lim \sup_{n\to 0} a_n + \lim \sup_{n\to 0} b_n$.

3 Задача

Функцията $f:(a,+\infty)\to\mathbb{R}$ е диференцируема и от това знаем, че е непрекъсната. Следователно за $\forall x\in(a,+\infty)$ съществува f'(x). Също знаем, че f е ограничена, тоест $\forall x\in(a,+\infty)$ $\exists b,c\in\mathbb{R}:b\leq f(x)\leq c$. Нека вземем две произволни точки $m,n\in(a,+\infty),n>m$. От теоремата на Лагранж знаем, че съществува $\xi\in(m,n)$, за което е изпълнено

$$f'(\xi) = \frac{f(n) - f(m)}{n - m}$$

Нека съставим две редици $\forall \varepsilon > 0 \ \{m_k\}_{k=1}^{\infty}, m_k = a+k, \ \forall \varepsilon > 0 \ \{n_k\}_{k=1}^{\infty}, n_k = a+k+1.$ Нека разгледаме производната на $x_k \in (m_k, n_k), k \to \infty$:

$$f'(x_k) = \frac{f(n_k) - f(m_k)}{n_k - m_k}$$

Със сигурност можем да съставим $\{x_k\}_{k=1}^\infty$, които имат производна, само трябва да докажем, че f'(x)=0. f е ограничена, следователно $b\leq f(m_k)\leq c$ и $b\leq f(n_k)\leq c$ и

$$2b \le \frac{f(n_k) - f(m_k)}{n_k - m_k} \le 2c$$

От редиците $n_k - m_k = a + k + 1 - a - k = 1$:

$$2b \le f(n_k) - f(m_k) \le 2c$$

ако d = max(b, c), то

$$|f(n_k) - f(m_k)| \le 2d$$

Тъй като f е ограничена, разликата на $f(n_k)$ и $f(m_k)$ ще намалява и ще се изпълни сходимостта във формата на Коши:

$$|f(n_k) - f(m_k) - 0| \le \varepsilon \Rightarrow f(n_k) - f(m_k) \xrightarrow[k \to \infty]{} 0$$

$$f'(x_k) \xrightarrow[k \to \infty]{} 0$$