学籍番号

名前

演習問題

別途、ノートかルーズリーフか白紙の計算用紙上に、計算過程も含めて、解いてくだ さい。

問題 1

以下の多項式を因数分解せよ.

(1)
$$x^2 + 6x + 9$$

(2)
$$x^2 - 2x - 15$$

(1)
$$x^2 + 6x + 9$$

(2) $x^2 - 2x - 15$
(3) $x^3 - 3x^2 - 13x + 15$
(4) $x^3 - 3x^2 - 10x + 24$

$$(4) x^3 - 3x^2 - 10x + 24$$

問題 2

以下の方程式,不等式を解け.

(1)
$$x^2 + 6x + 9 = 0$$

(2)
$$x^2 + 6x + 9 < 0$$

(3)
$$x^2 - 2x - 15 > 0$$

(1)
$$x^{2} + 6x + 9 = 0$$

(2) $x^{2} + 6x + 9 < 0$
(3) $x^{2} - 2x - 15 \ge 0$
(4) $x^{3} - 3x^{2} - 13x + 15 \le 0$

問題 3

以下の二次関数を平方完成し、グラフを図示せよ.また、それぞれの関数の像を求めよ.

(1)
$$f(x) = x^2 + 6x + 9$$

(2)
$$q(x) = x^2 - 2x - 15$$

(1)
$$f(x) = x^2 + 6x + 9$$

(2) $g(x) = x^2 - 2x - 15$
(3) $h(x) = -(x+2)(x-2)$

以下の代数関数のグラフを図示せよ.

(1)
$$f(x) = 1/(x+2)$$

(2) $g(x) = \sqrt{x+2}$

(2)
$$g(x) = \sqrt{x+2}$$

図 1: xy 平面

学籍番号 名前

演習問題

別途、ノートかルーズリーフか白紙の計算用紙上に、計算過程も含めて、解いてくだ さい。

問題 5

以下の不等式を解け.

- (1) $9^x 12 \cdot 3^x + 27 > 0$ (2) $4^x 2^{x+2} \le 0$

問題 6

閉区間 [-1,2] で定義されている関数 $y=9^{x+1}-18\cdot 3^x+3$ について

- (1) $X=3^x$ とするとき、X の取り得る値の範囲を求めよ。
- (2) 関数 y の最大値と最小値を求めよ.

問題 7

閉区間 [-2,0] で定義されている関数 $y=\left(\frac{1}{4}\right)^x-8\left(\frac{1}{2}\right)^{x-1}+32$ について,関数 y の最 大値と最小値を求めよ.

問題 8

閉区間 [1,8] で定義されている関数 $y = (\log_2 x)^2 - \log_2 x^2$ について

- (1) $X = \log_2 x$ とするとき、X の取り得る値の範囲を求めよ。
- (2) 関数 y の最大値と最小値を求めよ.

 $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ とするとき

- (1) 2^{24} は,何桁の整数か求めよ.(2) 6^{32} は,何桁の整数か求めよ.

学籍番号 名前

演習問題

別途、ノートかルーズリーフか白紙の計算用紙上に、計算過程も含めて、解いてくだ さい。

問題 10

以下の角は, 第何象限に入るか.

$$(1) \frac{5}{6}\pi \qquad (2) \frac{4}{3}\pi \qquad (3) \frac{7}{4}\pi$$

問題 11

以下の値を求めよ.

(1)
$$\cos \frac{5}{6}\pi$$
 (2) $\sin \frac{4}{3}\pi$ (3) $\tan \frac{7}{4}\pi$

(4)
$$\sin \frac{5}{6}\pi$$
 (5) $\tan \frac{5}{6}\pi$ (6) $\cos \frac{7}{4}\pi$

問題 12

角 θ が,第二象限にあり, $\sin\theta=\frac{1}{3}$ のとき,以下の値を求めよ. $(1)\ \cos\theta \quad (2)\ \tan\theta$

以下の方程式・不等式を解け、ただし、 $0 \le \theta < 2\pi$ とする.

$$(1) \cos \theta = \frac{1}{2}$$

(2)
$$\cos \theta \ge \frac{1}{2}$$

問題 14

以下の関数について、最大値・最小値を求めよ.

(1)
$$y = 2\sin\theta + 2\cos^2\theta - 1$$
 $\left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$

(2)
$$y = -2\sin^2\theta + 2\sqrt{3}\cos\theta + 3$$
 $(0 \le \theta \le \pi)$
(3) $y = \sin^2\theta - 2\sin\theta + 2$ $(0 \le \theta < 2\pi)$

(3)
$$y = \sin^2 \theta - 2\sin \theta + 2 \quad (0 \le \theta < 2\pi)$$

学籍番号 名前

演習問題

別途、ノートかルーズリーフか白紙の計算用紙上に、計算過程も含めて、解いてくだ さい。

問題 15

$$\frac{7}{12}\pi = \frac{5}{6}\pi - \frac{\pi}{4}$$
 であることを用いて、以下を求めよ.

(1)
$$\sin \frac{7}{12}\pi$$

(2)
$$\cos \frac{7}{12}\pi$$

$$(1) \sin \frac{7}{12}\pi$$

$$(2) \cos \frac{7}{12}\pi$$

$$(3) \tan \frac{7}{12}\pi$$

問題 16

三角関数の加法定理を用いて,以下の等式を示せ.

(1)
$$\sin \alpha \cos \beta = \frac{\sin(\alpha + \beta) + \sin(\alpha - \beta)}{2}$$

(1)
$$\sin \alpha \cos \beta = \frac{\sin(\alpha + \beta) + \sin(\alpha - \beta)}{2}$$

(2) $\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$
(3) $\sin \alpha \sin \beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$

(3)
$$\sin \alpha \sin \beta = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2}$$

三角関数の加法定理を用いて,以下の等式を示せ.

(1)
$$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

(2)
$$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$$

問題 18

以下の値を求めよ.

- (1) $\arcsin \frac{1}{2}$ (2) $\arccos \left(-\frac{1}{\sqrt{2}}\right)$ (3) $\arctan \sqrt{3}$