$12n_{0578} \ (K12n_{0578})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle b-u,\ u^{23}-u^{22}+\dots+16a+1,\ u^{25}-u^{24}+\dots+3u^2-1\rangle\\ I_2^u &= \langle -36334607050217u^{29}+39477995355924u^{28}+\dots+2200950009156001b-1119770521665287,\\ &-u^{29}+u^{28}+\dots+7a-6,\ u^{30}-u^{29}+\dots+6u+7\rangle\\ I_3^u &= \langle b+1,\ a^4+4a^3+9a^2+10a+7,\ u-1\rangle\\ I_4^u &= \langle b-1,\ a^4-4a^3+7a^2-6a+1,\ u+1\rangle\\ I_5^u &= \langle b+1,\ a+1,\ u-1\rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 64 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle b - u, u^{23} - u^{22} + \dots + 16a + 1, u^{25} - u^{24} + \dots + 3u^2 - 1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{16}u^{23} + \frac{1}{16}u^{22} + \dots - 2u - \frac{1}{16} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{1}{16}u^{23} - \frac{1}{16}u^{22} + \dots + u + \frac{1}{16} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -\frac{1}{16}u^{23} + \frac{1}{16}u^{22} + \dots - u - \frac{1}{16} \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} \frac{1}{16}u^{24} - \frac{1}{16}u^{23} + \dots + \frac{1}{16}u + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} \frac{9}{16}u^{24} - \frac{5}{8}u^{23} + \dots + \frac{11}{16}u + \frac{15}{16} \\ -\frac{1}{16}u^{24} + \frac{1}{16}u^{23} + \dots + u^{2} - \frac{1}{16}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{16}u^{23} + \frac{1}{16}u^{22} + \dots + u - \frac{1}{16} \\ -0.0625000u^{24} + 0.500000u^{23} + \dots + 0.937500u + 0.562500 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.18750u^{24} - 1.81250u^{23} + \dots + 0.812500u + 0.625000 \\ -0.625000u^{24} + 1.43750u^{23} + \dots + 0.625000u + 1.18750 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{9}{4}u^{24} \frac{15}{8}u^{23} + \dots + u \frac{19}{8}$

Crossings	u-Polynomials at each crossing
c_1	$u^{25} + 7u^{24} + \dots + 6u + 1$
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$u^{25} - u^{24} + \dots + 3u^2 - 1$
c_3	$u^{25} + 3u^{24} + \dots - 688u - 178$
c_4, c_5, c_9	$u^{25} - 3u^{24} + \dots - 5u^2 - 2$
c_{8}, c_{10}	$u^{25} + 9u^{24} + \dots + 92u + 14$

Crossings	Riley Polynomials at each crossing
c_1	$y^{25} + 33y^{24} + \dots + 2y - 1$
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$y^{25} - 7y^{24} + \dots + 6y - 1$
c_3	$y^{25} - 9y^{24} + \dots - 428404y - 31684$
c_4, c_5, c_9	$y^{25} - 21y^{24} + \dots - 20y - 4$
c_{8}, c_{10}	$y^{25} + 15y^{24} + \dots - 244y - 196$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.785518 + 0.372640I		
a = 0.62353 - 2.12777I	-2.17521 + 5.68827I	-0.75349 - 8.49425I
b = -0.785518 + 0.372640I		
u = -0.785518 - 0.372640I		
a = 0.62353 + 2.12777I	-2.17521 - 5.68827I	-0.75349 + 8.49425I
b = -0.785518 - 0.372640I		
u = 0.755648 + 0.329653I		
a = -0.90101 - 2.06111I	-6.02340 - 1.36429I	-4.30078 + 5.12755I
b = 0.755648 + 0.329653I		
u = 0.755648 - 0.329653I		
a = -0.90101 + 2.06111I	-6.02340 + 1.36429I	-4.30078 - 5.12755I
b = 0.755648 - 0.329653I		
u = -0.845914 + 0.820525I		
a = -0.231288 - 1.378290I	1.53021 + 1.97230I	-1.25071 - 1.01903I
b = -0.845914 + 0.820525I		
u = -0.845914 - 0.820525I		
a = -0.231288 + 1.378290I	1.53021 - 1.97230I	-1.25071 + 1.01903I
b = -0.845914 - 0.820525I		
u = 0.265507 + 0.770529I		
a = -0.071679 - 1.030960I	4.72198 - 3.16963I	6.44572 + 4.63465I
b = 0.265507 + 0.770529I		
u = 0.265507 - 0.770529I		
a = -0.071679 + 1.030960I	4.72198 + 3.16963I	6.44572 - 4.63465I
b = 0.265507 - 0.770529I		
u = -0.730832 + 0.286998I		
a = 1.17630 - 1.94700I	-2.02761 - 2.93831I	0.12922 - 1.80135I
b = -0.730832 + 0.286998I		
u = -0.730832 - 0.286998I		
a = 1.17630 + 1.94700I	-2.02761 + 2.93831I	0.12922 + 1.80135I
b = -0.730832 - 0.286998I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.964582 + 0.777415I		
a = 0.38162 - 1.45780I	3.01562 - 5.74190I	0.65811 + 6.60844I
b = 0.964582 + 0.777415I		
u = 0.964582 - 0.777415I		
a = 0.38162 + 1.45780I	3.01562 + 5.74190I	0.65811 - 6.60844I
b = 0.964582 - 0.777415I		
u = 0.834411 + 0.917128I		
a = 0.245471 - 1.273980I	6.70653 + 1.49728I	3.61002 - 0.12989I
b = 0.834411 + 0.917128I		
u = 0.834411 - 0.917128I		
a = 0.245471 + 1.273980I	6.70653 - 1.49728I	3.61002 + 0.12989I
b = 0.834411 - 0.917128I		
u = 1.075630 + 0.727569I		
a = 0.57040 - 1.51015I	2.19442 - 6.05278I	-0.77143 + 3.74618I
b = 1.075630 + 0.727569I		
u = 1.075630 - 0.727569I		
a = 0.57040 + 1.51015I	2.19442 + 6.05278I	-0.77143 - 3.74618I
b = 1.075630 - 0.727569I		
u = -1.129150 + 0.745345I		
a = -0.64410 - 1.44902I	-0.44383 + 10.34840I	-3.77176 - 7.45516I
b = -1.129150 + 0.745345I		
u = -1.129150 - 0.745345I		
a = -0.64410 + 1.44902I	-0.44383 - 10.34840I	-3.77176 + 7.45516I
b = -1.129150 - 0.745345I		
u = -1.040970 + 0.866286I		
a = -0.469635 - 1.328000I	9.76977 + 6.71873I	4.67666 - 4.93521I
b = -1.040970 + 0.866286I		
u = -1.040970 - 0.866286I		
a = -0.469635 + 1.328000I	9.76977 - 6.71873I	4.67666 + 4.93521I
b = -1.040970 - 0.866286I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.156880 + 0.765655I		
a = 0.66857 - 1.39962I	4.4401 - 14.5092I	0.55817 + 8.79115I
b = 1.156880 + 0.765655I		
u = 1.156880 - 0.765655I		
a = 0.66857 + 1.39962I	4.4401 + 14.5092I	0.55817 - 8.79115I
b = 1.156880 - 0.765655I		
u = -0.260838 + 0.456783I		
a = 0.277904 - 0.859001I	0.037229 + 0.975136I	0.76804 - 7.07893I
b = -0.260838 + 0.456783I		
u = -0.260838 - 0.456783I		
a = 0.277904 + 0.859001I	0.037229 - 0.975136I	0.76804 + 7.07893I
b = -0.260838 - 0.456783I		
u = 0.481143		
a = -1.25216	2.56662	2.00450
b = 0.481143		

II.
$$I_2^u = \langle -3.63 \times 10^{13} u^{29} + 3.95 \times 10^{13} u^{28} + \dots + 2.20 \times 10^{15} b - 1.12 \times 10^{15}, \ -u^{29} + u^{28} + \dots + 7a - 6, \ u^{30} - u^{29} + \dots + 6u + 7 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} \frac{1}{7}u^{29} - \frac{1}{7}u^{28} + \dots - \frac{76}{7}u + \frac{6}{7} \\ 0.0165086u^{29} - 0.0179368u^{28} + \dots - 3.56720u + 0.508767 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.159366u^{29} - 0.160794u^{28} + \dots - 13.4243u + 1.36591 \\ 0.139320u^{29} - 0.0522821u^{28} + \dots - 3.67419u + 0.518764 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.159366u^{29} - 0.160794u^{28} + \dots - 14.4243u + 1.36591 \\ 0.0165086u^{29} - 0.0160794u^{28} + \dots - 14.4243u + 1.36591 \\ 0.0165086u^{29} - 0.0179368u^{28} + \dots - 3.56720u + 0.508767 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0741092u^{29} + 0.213429u^{28} + \dots + 2.77558u - 4.11884 \\ -0.00142820u^{29} + 0.124240u^{28} + \dots + 0.409715u - 1.11556 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.156177u^{29} + 0.104902u^{28} + \dots + 1.37289u - 3.42762 \\ -0.173390u^{29} + 0.0449879u^{28} + \dots + 0.143610u - 0.680215 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.0971736u^{29} - 0.270564u^{28} + \dots - 12.6008u + 0.726652 \\ -0.0512747u^{29} - 0.0842981u^{28} + \dots - 2.49055u + 1.09324 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.167585u^{29} - 0.278986u^{28} + \dots - 14.6020u - 3.43422 \\ -0.446571u^{29} - 0.0855200u^{28} + \dots - 2.42870u + 1.17310 \end{pmatrix}$$

(ii) Obstruction class = -1

Crossings	u-Polynomials at each crossing
c_1	$u^{30} + 13u^{29} + \dots + 1100u + 49$
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$u^{30} - u^{29} + \dots + 6u + 7$
c_3	$(u^{15} - u^{14} + \dots - 2u - 1)^2$
c_4, c_5, c_9	$(u^{15} + u^{14} + \dots - 2u - 1)^2$
c_{8},c_{10}	$(u^{15} - 3u^{14} + \dots + 4u^2 - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1	$y^{30} + 7y^{29} + \dots - 441680y + 2401$
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$y^{30} - 13y^{29} + \dots - 1100y + 49$
<i>c</i> ₃	$(y^{15} - 17y^{14} + \dots + 8y - 1)^2$
c_4, c_5, c_9	$(y^{15} - 13y^{14} + \dots + 8y - 1)^2$
c_{8}, c_{10}	$(y^{15} + 7y^{14} + \dots + 8y - 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.933632 + 0.405000I		
a = -0.901456 + 0.391043I	-1.99092 + 1.64925I	-2.39367 - 0.16522I
b = -1.243160 + 0.162791I		
u = 0.933632 - 0.405000I		
a = -0.901456 - 0.391043I	-1.99092 - 1.64925I	-2.39367 + 0.16522I
b = -1.243160 - 0.162791I		
u = 0.666225 + 0.833796I		
a = -0.584884 + 0.731996I	3.47397 + 0.15908I	1.79403 + 0.85194I
b = 0.815806 - 0.779519I		
u = 0.666225 - 0.833796I		
a = -0.584884 - 0.731996I	3.47397 - 0.15908I	1.79403 - 0.85194I
b = 0.815806 + 0.779519I		
u = -0.786352 + 0.445678I		
a = 0.962512 + 0.545520I	-5.46412 + 1.81248I	-5.85619 - 4.33913I
b = 1.273190 + 0.075844I		
u = -0.786352 - 0.445678I		
a = 0.962512 - 0.545520I	-5.46412 - 1.81248I	-5.85619 + 4.33913I
b = 1.273190 - 0.075844I		
u = 1.10731		
a = -0.903090	2.23561	5.03940
b = -0.270107		
u = -0.582390 + 0.944453I		
a = 0.473038 + 0.767119I	1.23287 - 4.11725I	-1.40312 + 3.71929I
b = -0.944169 - 0.806161I		
u = -0.582390 - 0.944453I		
a = 0.473038 - 0.767119I	1.23287 + 4.11725I	-1.40312 - 3.71929I
b = -0.944169 + 0.806161I		
u = 0.815806 + 0.779519I		
a = -0.640758 + 0.612257I	3.47397 - 0.15908I	1.79403 - 0.85194I
b = 0.666225 - 0.833796I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.815806 - 0.779519I		
a = -0.640758 - 0.612257I	3.47397 + 0.15908I	1.79403 + 0.85194I
b = 0.666225 + 0.833796I		
u = 0.689418 + 0.518899I		
a = -0.925949 + 0.696926I	-1.10658 - 5.45324I	-0.00468 + 6.35130I
b = -1.305660 + 0.019757I		
u = 0.689418 - 0.518899I		
a = -0.925949 - 0.696926I	-1.10658 + 5.45324I	-0.00468 - 6.35130I
b = -1.305660 - 0.019757I		
u = -1.13884		
a = 0.878083	-2.69194	4.62820
b = 0.734573		
u = 0.583255 + 1.014300I		
a = -0.426049 + 0.740911I	6.22908 + 8.01682I	3.04132 - 4.89679I
b = 0.987724 - 0.853962I		
u = 0.583255 - 1.014300I		
a = -0.426049 - 0.740911I	6.22908 - 8.01682I	3.04132 + 4.89679I
b = 0.987724 + 0.853962I		
u = -0.944169 + 0.806161I		
a = 0.612560 + 0.523023I	1.23287 + 4.11725I	-1.40312 - 3.71929I
b = -0.582390 - 0.944453I		
u = -0.944169 - 0.806161I		
a = 0.612560 - 0.523023I	1.23287 - 4.11725I	-1.40312 + 3.71929I
b = -0.582390 + 0.944453I		
u = -1.243160 + 0.162791I		
a = 0.790842 + 0.103561I	-1.99092 + 1.64925I	-2.39367 - 0.16522I
b = 0.933632 + 0.405000I		
u = -1.243160 - 0.162791I		
a = 0.790842 - 0.103561I	-1.99092 - 1.64925I	-2.39367 + 0.16522I
b = 0.933632 - 0.405000I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.803987 + 0.969115I		
a = 0.507062 + 0.611206I	10.5121	5.97706 + 0.I
b = -0.803987 - 0.969115I		
u = -0.803987 - 0.969115I		
a = 0.507062 - 0.611206I	10.5121	5.97706 + 0.I
b = -0.803987 + 0.969115I		
u = 0.734573		
a = -1.36134	-2.69194	4.62820
b = -1.13884		
u = 1.273190 + 0.075844I		
a = -0.782653 + 0.046623I	-5.46412 + 1.81248I	-5.85619 - 4.33913I
b = -0.786352 + 0.445678I		
u = 1.273190 - 0.075844I		
a = -0.782653 - 0.046623I	-5.46412 - 1.81248I	-5.85619 + 4.33913I
b = -0.786352 - 0.445678I		
u = 0.987724 + 0.853962I		
a = -0.579361 + 0.500902I	6.22908 - 8.01682I	3.04132 + 4.89679I
b = 0.583255 - 1.014300I		
u = 0.987724 - 0.853962I		
a = -0.579361 - 0.500902I	6.22908 + 8.01682I	3.04132 - 4.89679I
b = 0.583255 + 1.014300I		
u = -1.305660 + 0.019757I		
a = 0.765721 + 0.011587I	-1.10658 - 5.45324I	-0.00468 + 6.35130I
b = 0.689418 + 0.518899I		
u = -1.305660 - 0.019757I		
a = 0.765721 - 0.011587I	-1.10658 + 5.45324I	-0.00468 - 6.35130I
b = 0.689418 - 0.518899I		
u = -0.270107		
a = 3.70223	2.23561	5.03940
b = 1.10731		

III.
$$I_3^u = \langle b+1, \ a^4+4a^3+9a^2+10a+7, \ u-1 \rangle$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1 \\ -a - 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} a - 1 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} a \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} a^{2} + a + 1 \\ -a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a + 2 \\ a^{2} + 3a + 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a^{3} + a^{2} + a - 3 \\ -a^{3} - 5a^{2} - 9a - 9 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4a^2 8a 16$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	$(u-1)^4$
c_3, c_8, c_{10}	$u^4 + 3u^2 + 3$
c_4, c_5, c_9	$u^4 - 3u^2 + 3$
c_6, c_{11}, c_{12}	$(u+1)^4$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_8, c_{10}	$(y^2 + 3y + 3)^2$
c_4, c_5, c_9	$(y^2 - 3y + 3)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.65937 + 1.27123I	-3.28987 + 4.05977I	-6.00000 - 3.46410I
b = -1.00000		
u = 1.00000		
a = -0.65937 - 1.27123I	-3.28987 - 4.05977I	-6.00000 + 3.46410I
b = -1.00000		
u = 1.00000		
a = -1.34063 + 1.27123I	-3.28987 - 4.05977I	-6.00000 + 3.46410I
b = -1.00000		
u = 1.00000		
a = -1.34063 - 1.27123I	-3.28987 + 4.05977I	-6.00000 - 3.46410I
b = -1.00000		

IV.
$$I_4^u = \langle b-1, \ a^4-4a^3+7a^2-6a+1, \ u+1 \rangle$$

a) Art colorlings
$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ -a+2 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a+1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -a \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} a^2 - a + 1 \\ a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a-2 \\ -a^2 + 3a - 3 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a^3 + 3a^2 - 5a + 3 \\ -a^3 + 3a^2 - 5a + 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4a^2 8a$

Crossings	u-Polynomials at each crossing
c_1, c_6, c_{11} c_{12}	$(u-1)^4$
c_2, c_7	$(u+1)^4$
c_3, c_8, c_{10}	$u^4 + u^2 - 1$
c_4, c_5, c_9	$u^4 - u^2 - 1$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	$(y-1)^4$
c_3, c_8, c_{10}	$(y^2+y-1)^2$
c_4, c_5, c_9	$(y^2-y-1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000 + 1.27202I	-7.23771	-10.47214 + 0.I
b = 1.00000		
u = -1.00000		
a = 1.00000 - 1.27202I	-7.23771	-10.47214 + 0.I
b = 1.00000		
u = -1.00000		
a = 1.78615	0.657974	-1.52790
b = 1.00000		
u = -1.00000		
a = 0.213849	0.657974	-1.52790
b = 1.00000		

V.
$$I_5^u = \langle b+1, a+1, u-1 \rangle$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$q_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	u-1
$c_3, c_4, c_5 \\ c_8, c_9, c_{10}$	u
c_6, c_{11}, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_{11}, c_{12}$	y-1
c_3, c_4, c_5 c_8, c_9, c_{10}	y

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-3.28987	-12.0000
b = -1.00000		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^9)(u^{25} + 7u^{24} + \dots + 6u + 1)(u^{30} + 13u^{29} + \dots + 1100u + 49)$
c_2, c_7	$((u-1)^5)(u+1)^4(u^{25}-u^{24}+\cdots+3u^2-1)(u^{30}-u^{29}+\cdots+6u+7)$
c_3	$u(u^{4} + u^{2} - 1)(u^{4} + 3u^{2} + 3)(u^{15} - u^{14} + \dots - 2u - 1)^{2}$ $\cdot (u^{25} + 3u^{24} + \dots - 688u - 178)$
c_4, c_5, c_9	$u(u^{4} - 3u^{2} + 3)(u^{4} - u^{2} - 1)(u^{15} + u^{14} + \dots - 2u - 1)^{2}$ $\cdot (u^{25} - 3u^{24} + \dots - 5u^{2} - 2)$
c_6, c_{11}, c_{12}	$((u-1)^4)(u+1)^5(u^{25}-u^{24}+\cdots+3u^2-1)(u^{30}-u^{29}+\cdots+6u+7)$
c_{8}, c_{10}	$u(u^{4} + u^{2} - 1)(u^{4} + 3u^{2} + 3)(u^{15} - 3u^{14} + \dots + 4u^{2} - 1)^{2}$ $\cdot (u^{25} + 9u^{24} + \dots + 92u + 14)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^9)(y^{25} + 33y^{24} + \dots + 2y - 1)$ $\cdot (y^{30} + 7y^{29} + \dots - 441680y + 2401)$
$c_2, c_6, c_7 \\ c_{11}, c_{12}$	$((y-1)^9)(y^{25} - 7y^{24} + \dots + 6y - 1)(y^{30} - 13y^{29} + \dots - 1100y + 49)$
c_3	$y(y^{2} + y - 1)^{2}(y^{2} + 3y + 3)^{2}(y^{15} - 17y^{14} + \dots + 8y - 1)^{2}$ $\cdot (y^{25} - 9y^{24} + \dots - 428404y - 31684)$
c_4, c_5, c_9	$y(y^{2} - 3y + 3)^{2}(y^{2} - y - 1)^{2}(y^{15} - 13y^{14} + \dots + 8y - 1)^{2}$ $\cdot (y^{25} - 21y^{24} + \dots - 20y - 4)$
c_{8}, c_{10}	$y(y^{2} + y - 1)^{2}(y^{2} + 3y + 3)^{2}(y^{15} + 7y^{14} + \dots + 8y - 1)^{2}$ $\cdot (y^{25} + 15y^{24} + \dots - 244y - 196)$