Avances: Modelado de Objetos Autogravitantes

Juan Sebastian Alba Gamboa

Nicolas Mantilla Molina

Santiago Andrés Montes

Escuela de Física Bucaramanga, Santander 2023

Universidad Industrial de Santander

Universidac

Industrial de

La anisotropía en cuerpos autogravitantes

La naturaleza puede seguir principios anisótropos, en este caso, contempla una presión radial tangencial diferentes

Entonces, se modelan cuerpos autogravitantes mediante las siguientes ecuaciones (adimensionalizada):

$$\frac{\mathrm{d}\tilde{P}}{\mathrm{d}\tilde{r}} = -\frac{\mu}{\kappa} \frac{\tilde{m}\,\tilde{\rho}}{\tilde{r}^2} \left[\left(1 + \kappa \frac{\tilde{P}}{\tilde{\rho}} \right) \left(1 + 3\eta \kappa \frac{\tilde{P}\tilde{r}^3}{\tilde{m}} \right) \left(1 - 2\mu \frac{\tilde{m}}{\tilde{r}} \right)^{-1} \right] + 2 \frac{\tilde{P}_{\perp}(\tilde{P}, \tilde{\rho}, r) - \tilde{P}}{\tilde{r}} \qquad \frac{\mathrm{d}\tilde{P}}{\mathrm{d}\tilde{r}} = -\frac{\mu}{\kappa} \frac{\tilde{m}\,\tilde{\rho}}{\tilde{r}^2} + 2 \frac{\tilde{P}_{\perp}(\tilde{P}, \tilde{\rho}, r) - \tilde{P}}{\tilde{r}}$$

$$\frac{\mathrm{d}\tilde{m}}{\mathrm{d}\tilde{m}} = m\tilde{r}^2 \tilde{\rho},$$

$$\begin{array}{lcl} \frac{\mathrm{d}\tilde{P}}{\mathrm{d}\tilde{r}} & = & -\frac{\mu}{\kappa}\frac{\tilde{m}\,\tilde{\rho}}{\tilde{r}^2} + 2\frac{\tilde{P}_{\perp}(\tilde{P},\tilde{\rho},r) - \tilde{P}}{\tilde{r}} \\ \frac{\mathrm{d}\tilde{m}}{\mathrm{d}\tilde{r}} & = & \eta\tilde{r}^2\tilde{\rho}, \end{array}$$

Soluciones a la aproximación newtoniana

Perfil de densidades de tipo Gokhroo-Mehra

$$\tilde{\rho} = \left(1 - B\tilde{r}^2\right)$$

Universidad Industrial de

donde
$$B = \frac{5}{3} \left(1 - \frac{3}{\eta} \right)$$

$$\eta = \frac{\text{Densidad Central}}{\text{Densidad promedio}}$$

$$\Delta = \mathcal{C}\frac{m(r)\rho(r)}{r}$$

Modelo anisotrópico Newton

Somos **el mejor** escenario de creación e innovación

Universidad Industrial de Santander

Observaciones

- Según el perfil de densidad usado, la presión central debe ser de, por lo menos, tres veces la presión promedio.
- Al pasar de cierto radio, la anisotropía se hace negativa, lo cual indica una dominancia de la presión radial sobre la tangencial.

 Con los datos numéricos utilizados, la presión nunca llega a cero.

$$\tilde{\rho} = \left(1 - B\tilde{r}^2\right)$$

$$B = \frac{5}{3} \left(1 - \frac{3}{\eta} \right)$$

$$\eta = \frac{\rho_0}{\bar{\rho}}$$

Siguiente paso

Universidad Industrial de Santander

Encontrar y analizar una solución de presión para la corrección relativista

$$\frac{\mathrm{d}P(r)}{\mathrm{d}r} = -\frac{Gm(r)\rho(r)}{r^2} \left(1 + \frac{P(r)}{\rho(r)c^2}\right) \left(1 + \frac{4\pi r^3 P(r)}{m(r)c^2}\right) \left(1 - 2\frac{Gm(r)}{rc^2}\right)^{-1} + 2\frac{P_\perp(r) - P(r)}{r}$$

$$\Delta = \frac{\mathcal{C}}{r} \left(1 + \frac{P(r)}{\rho(r)}\right) \left(1 + \frac{4\pi r^3 P(r)}{m(r)}\right) \left(1 - 2\frac{m(r)}{r}\right)^{-1}$$

$$\frac{\mathrm{d}\tilde{P}}{\mathrm{d}\tilde{r}} = -\frac{\mu}{\kappa} \frac{\tilde{m}}{\tilde{r}^2} \left(1 + \kappa \frac{\tilde{P}}{\tilde{\rho}}\right) \left(1 + 3\eta \kappa \frac{\tilde{P}\tilde{r}^3}{\tilde{m}}\right) \left(1 - 2\mu \frac{\tilde{m}}{\tilde{r}}\right)^{-1} + 2\frac{\tilde{P}_\perp(\tilde{P}, \tilde{\rho}, r) - \tilde{P}}{\tilde{r}}$$

- Comparar la presión newtoniana con la relativista y analizar la compatibilidad del perfil de densidad y propuesta de anisotropía
- Contemplar la implementación de otras ecuaciones de estado, de anisotropía o de densidad

Universidad Industrial de Santander

#LaUISqueQueremos

Gracias!