An introduction to Longitudinal Modified Treatment Policies

A framework for defining, identifying, and estimating complex, continuous, and/or time-varying exposures

Kat Hoffman TGIF November 22, 2024

An introduction to LMTPs

References and Caveats

This talk will be based on,

Hoffman K.L., Salazar D., Williams, N., Rudolph, K., Díaz, I. Studying continuous, time-varying, and/or complex exposures using longitudinal modified treatment policies. *Epidemiology* (2024)

...which is itself based on,

Díaz, I., Williams, N., Hoffman, K. L., & Schenck, E. J. Nonparametric Causal Effects Based on Longitudinal Modified Treatment Policies. *Journal of the American Statistical Association* (2021)

• TGIF caveat: my contributions to LMTP to date are practical, not theoretical.

An introduction to LMTPs

Today's talk

- 1. Motivation
- 2. Setup
- 3. Defining an LMTP intervention
- 4. Identification assumptions
- 5. Estimation procedures
- 6. Extensions and applications

#1: Continuous/multi-valued exposures are difficult to study

 Most methods estimate the dose-response curve. Informative, but...

- Most methods estimate the dose-response curve. Informative, but...
 - For some exposures it is difficult to conceive an intervention that would set all units to a static intervention, even in principle

- Most methods estimate the dose-response curve. Informative, but...
 - For some exposures it is difficult to conceive an intervention that would set all units to a static intervention, even in principle
 - Summarizing the infinite-dimensional dose-response curve, e.g. through a Marginal Structural Model, typically requires restrictive and arbitrary parametric assumptions

- Most methods estimate the dose-response curve. Informative, but...
 - For some exposures it is difficult to conceive an intervention that would set all units to a static intervention, even in principle
 - Summarizing the infinite-dimensional dose-response curve, e.g. through a Marginal Structural Model, typically requires restrictive and arbitrary parametric assumptions
 - Difficult to interpret under model misspecification (Neugebauer and van der Laan, 2007)

- Most methods estimate the dose-response curve. Informative, but...
 - For some exposures it is difficult to conceive an intervention that would set all units to a static intervention, even in principle
 - Summarizing the infinite-dimensional dose-response curve, e.g. through a Marginal Structural Model, typically requires restrictive and arbitrary parametric assumptions
 - Difficult to interpret under model misspecification (Neugebauer and van der Laan, 2007)
 - Non-parametric estimation approaches of the dose-response cannot achieve $n^{1/2}$ -consistency, because it is not a pathwise-differentiable parameter

#2: Time-varying exposures are difficult to study

Time varying covariates require careful adjustment

- Time varying covariates require careful adjustment
- Time-varying interventions require positivity at every time point for identification of parameters

- Time varying covariates require careful adjustment
- Time-varying interventions require positivity at every time point for identification of parameters
 - Multiple time points make a positivity violation more likely to occur

- Time varying covariates require careful adjustment
- Time-varying interventions require positivity at every time point for identification of parameters
 - Multiple time points make a positivity violation more likely to occur
- Ignoring a time-varying exposure mechanism for practical purposes can cause serious time-alignment biases

- Time varying covariates require careful adjustment
- Time-varying interventions require positivity at every time point for identification of parameters
 - Multiple time points make a positivity violation more likely to occur
- Ignoring a time-varying exposure mechanism for practical purposes can cause serious time-alignment biases
 - Frequently done in practice, e.g. treat all units receiving exposure within a certain time interval from baseline as "treated," otherwise "untreated"

LMTP's Methodological contribution

Extending MTPs to the time-varying setting

- Formally defining LMTP estimands
- Identification assumptions
- Estimators two are efficient and one is sequentially doubly robust
- Open source R package {Imtp}
 - Author/maintainer: Nick Williams

Notation

- $Z_1,...,Z_t$: a sample of i.i.d observations, $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t : intervention variables, e.g. treatment and/or censoring status
- L_t : time-varying covariates
- $Y = L_{\tau+1}$: outcome at the end of follow-up

SetupNotation

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- $\bullet \ \ L_{t} \ {\rm time-varying} \ {\rm covariates}$
- $\mathit{Y} = \mathit{L}_{\tau+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

SetupNotation

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- History of one variable, $\bar{X}_t = (X_1, ..., X_t)$
- Future of one variable, $\underline{X}_t = (X_t, ..., X_\tau)$
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history of all variables up until just before A_t
- Parentheses denote counterfactual variables

Non-parametric structural equation model (Pearl, 2009)

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Assume the existence of deterministic functions f_{L_t}, f_{A_t}, f_Y s.t.

•
$$L_t = f_{L_t}(A_{t-1}, H_{t-1}, U_{L,t})$$

$$\bullet \ A_t = f_{A_t}(H_t, U_{A,t})$$

•
$$Y = f_Y(A_\tau, H_\tau, U_Y)$$

• where $U=(U_{L,t},U_{A,t},U_Y\colon t\in\{1,\ldots,\tau\})$ are a vector of exogenous variables with unrestricted joint distribution

Directed Acyclic Graph (Pearl, 2009)

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Defining an LMTP intervention

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Consider a user-defined intervention d
- LMTP effects defined as hypothetical interventions where we replace

$$A_t = f_{A_t}(H_t, U_{A,t})$$

in the SEM with a **new random variable**,

$$A_t^{\,\mathsf{d}}$$

Defining an LMTP intervention

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- ullet A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Defining an LMTP intervention

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- ullet A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Defining an LMTP intervention

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- ullet A_t intervention variables
- L_{t} time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Defining an LMTP intervention

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- ullet A_t intervention variables
- L_{t} time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Defining an LMTP intervention

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Z_1,\ldots,Z_t i.i.d observations $Z=(L_1,A_1,L_2,A_2,\ldots,L_{\tau},A_{\tau},Y)\sim \mathsf{F}$
- A_t intervention variables
- \bullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

SetupDefining an LMTP intervention

Consider a user-defined intervention d

•
$$Z_1,\ldots,Z_t$$
 i.i.d observations
$$Z=(L_1,A_1,L_2,A_2,\ldots,L_{\tau},A_{\tau},Y)\sim {\sf F}$$

- ullet A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Consider a user-defined intervention d
- LMTP effects defined as hypothetical interventions where we replace $A_t = f_{A_t}(H_t, U_{A,t})$ in the SEM with a new random variable $A_t^{\,\mathrm{d}}$

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Consider a user-defined intervention d
- LMTP effects defined as hypothetical interventions where we replace $A_t = f_{A_t}(H_t, U_{A,t})$ in the SEM with a new random variable $A_t^{\,\mathrm{d}}$
 - Counterfactual history: $H_t(\bar{A}_{t-1}^d) = (\bar{A}_{t-1}^d, \bar{L}_t(\bar{A}_{t-1}^d))$

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Consider a user-defined intervention d
- LMTP effects defined as hypothetical interventions where we replace $A_t = f_{A_t}(H_t, U_{A,t})$ in the SEM with a new random variable $A_t^{\,\mathrm{d}}$
 - Counterfactual history: $H_t(\bar{A}_{t-1}^d) = (\bar{A}_{t-1}^d, \bar{L}_t(\bar{A}_{t-1}^d))$
 - Counterfactual covariates: $L_t(\bar{A}_{t-1}^d) = f_{L_t}(A_{t-1}^d, H_{t-1}(\bar{A}_{t-2}^d), U_{L,t})$

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- L_{t} time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Consider a user-defined intervention d
- LMTP effects defined as hypothetical interventions where we replace $A_t = f_{A_t}(H_t, U_{A,t})$ in the SEM with a new random variable $A_t^{\,\mathrm{d}}$
 - Counterfactual history: $H_t(\bar{A}_{t-1}^{\rm d})=(\bar{A}_{t-1}^{\rm d},\bar{L}_t(\bar{A}_{t-1}^{\rm d}))$
 - Counterfactual covariates: $L_t(\bar{A}_{t-1}^d) = f_{L_t}(A_{t-1}^d, H_{t-1}(\bar{A}_{t-2}^d), U_{L,t})$
 - Natural value of treatment: $A_t(\bar{A}_{t-1}^d) = f_{A_t}(H_t(\bar{A}_{t-1}^d), U_{A,t})$

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Consider a user-defined intervention d
- LMTP effects defined as hypothetical interventions where we replace $A_t = f_{A_t}(H_t, U_{A,t})$ in the SEM with a new random variable $A_t^{\,\mathrm{d}}$
 - Counterfactual history: $H_t(\bar{A}_{t-1}^d) = (\bar{A}_{t-1}^d, \bar{L}_t(\bar{A}_{t-1}^d))$
 - Counterfactual covariates: $L_t(\bar{A}_{t-1}^d) = f_{L_t}(A_{t-1}^d, H_{t-1}(\bar{A}_{t-2}^d), U_{L,t})$
 - Natural value of treatment: $A_t(\bar{A}_{t-1}^d) = f_{A_t}(H_t(\bar{A}_{t-1}^d), U_{A,t})$

Setup

Natural value of treatment

- Natural value of treatment: $A_t(\bar{A}_{t-1}^d) = f_{A_t}(H_t(\bar{A}_{t-1}^d), U_{A,t})$
 - Value of treatment that would have been observed at time t under an intervention carried out up until time t — 1 and then discontinued (Richardson and Robins, 2013; Young et al., 2014)

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Setup

Natural value of treatment

- Natural value of treatment: $A_t(\bar{A}_{t-1}^{\mathsf{d}}) = f_{A_t}(H_t(\bar{A}_{t-1}^{\mathsf{d}}), U_{A,t})$
 - Value of treatment that would have been observed at time t under an intervention carried out up until time t — 1 and then discontinued (Richardson and Robins, 2013; Young et al., 2014)

- + $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Setup

Natural value of treatment

- Natural value of treatment: $A_t(\bar{A}_{t-1}^d) = f_{A_t}(H_t(\bar{A}_{t-1}^d), U_{A,t})$
 - Value of treatment that would have been observed at time t under an intervention carried out up until time t — 1 and then discontinued (Richardson and Robins, 2013; Young et al., 2014)
 - At time point 1, the observed treatment and natural value of treatment are equivalent

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Types of interventions Brief review of static and dynamic

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{I}$
- A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Types of interventions Brief review of static and dynamic

• Static intervention: d is a constant function

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{I}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Types of interventions Brief review of static and dynamic

- Static intervention: d is a constant function
 - "Treat everyone at all time points of the study"

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathbf{I}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Brief review of static and dynamic

- Static intervention: d is a constant function
 - "Treat everyone at all time points of the study"

$$d_t = 1$$
 for all $t \in 1, ... \tau$

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Brief review of static and dynamic

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Static intervention: d is a constant function
 - "Treat everyone at all time points of the study"

$$d_t = 1$$
 for all $t \in 1, ... \tau$

• Dynamic intervention: d is a function of a unit's covariate history h_t

Brief review of static and dynamic

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Static intervention: d is a constant function
 - "Treat everyone at all time points of the study"

$$d_t = 1$$
 for all $t \in 1, ... \tau$

- **Dynamic intervention:** d is a function of a unit's covariate history h_t
 - Example: initiate corticosteroids for COVID-19 patients for 6 days if a patient's oxygen levels drop (Hoffman et al., 2022)

Brief review of static and dynamic

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{F}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Static intervention: d is a constant function
 - "Treat everyone at all time points of the study"

$$d_t = 1$$
 for all $t \in 1, ... \tau$

- **Dynamic intervention:** d is a function of a unit's covariate history h_t
 - Example: initiate corticosteroids for COVID-19 patients for 6 days if a patient's oxygen levels drop (Hoffman et al., 2022)

$$\mathbf{d}_t(h_t) = \begin{cases} 1 & \text{if } l_s^* = 1 \text{ for any } s \in \{t - 5, \dots, t\} \\ 0 & \text{otherwise} \end{cases}$$

Brief review of static and dynamic

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim {\rm F}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- Static intervention: d is a constant function
 - "Treat everyone at all time points of the study"

$$d_t = 1$$
 for all $t \in 1, ... \tau$

- **Dynamic intervention:** d is a function of a unit's covariate history h_t
 - Example: initiate corticosteroids for COVID-19 patients for 6 days if a patient's oxygen levels drop (Hoffman et al., 2022)

$$\mathbf{d}_t(h_t) = \begin{cases} 1 & \text{if } l_s^* = 1 \text{ for any } s \in \{t - 5, \dots, t\} \\ 0 & \text{otherwise} \end{cases}$$

where L_t^* is a variable in H_s denoting first instance of low oxygen

Modified Treatment Policies

•
$$Z_1,...,Z_t$$
 i.i.d observations
$$Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{F}$$

- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

$$d(a_t, h_t)$$

Modified Treatment Policies

(Díaz and van der Laan, 2012; Haneuse and Rotnitzky, 2013)

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

In modified treatment policies (MTPs), the intervention d is a function of the natural value of treatment

$$d(a_t, h_t)$$

Modified Treatment Policies

- Z_1,\ldots,Z_t i.i.d observations $Z=(L_1,A_1,L_2,A_2,\ldots,L_{\tau},A_{\tau},Y)\sim \mathsf{F}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Modified Treatment Policies

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Threshold intervention: all natural exposure values that fall outside of a certain boundary are intervened on to meet a constant value (Taubman et al., 2009)

Modified Treatment Policies

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{F}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Threshold intervention: all natural exposure values that fall outside of a certain boundary are intervened on to meet a constant value (Taubman et al., 2009)
- Example: categorize average number of drinks per week as 1="none", 2="1-5", 3="6-10", 4="11-15", 5="25", then intervene to lower all individuals in the highest two drinks-per-week category to "6-10"

Modified Treatment Policies

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Threshold intervention: all natural exposure values that fall outside of a certain boundary are intervened on to meet a constant value (*Taubman et al., 2009*)
- Example: categorize average number of drinks per week as 1="none", 2="1-5", 3="6-10", 4="11-15", 5="25", then intervene to lower all individuals in the highest two drinks-per-week category to "6-10"

$$d_t(a_t) = \begin{cases} a_t & \text{if } a_t < 4\\ 3 & \text{otherwise} \end{cases}$$

Modified Treatment Policies

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Modified Treatment Policies

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Randomizer intervention: d_t is a function of some randomizer, ϵ_t , and the natural value of treatment

Modified Treatment Policies

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Randomizer intervention: d_t is a function of some randomizer, e_t , and the natural value of treatment
- Example: Smoking cessation policy (Robins et al. 2004). Consider an intervention in which half of all current smokers quit smoking forever. Define A_t a random variable denoting smoking status, and ϵ a random draw from a Uniform(0,1).

Modified Treatment Policies

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Randomizer intervention: d_t is a function of some randomizer, ϵ_t , and the natural value of treatment
- Example: Smoking cessation policy (Robins et al. 2004). Consider an intervention in which half of all current smokers quit smoking forever. Define A_t a random variable denoting smoking status, and ϵ a random draw from a Uniform(0,1).

$$d_t(a_t, \epsilon_t) = \begin{cases} 0 & \text{if } \epsilon < 0.5 \text{ and } a_t = 1\\ a_t & \text{otherwise} \end{cases}$$

Modified Treatment Policies

- Z_1,\ldots,Z_t i.i.d observations $Z=(L_1,A_1,L_2,A_2,\ldots,L_{\tau},A_{\tau},Y)\sim \mathsf{F}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Modified Treatment Policies

(Díaz and van der Laan, 2012; Haneuse and Rotnitzky, 2013)

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{F}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

• Shift function: assign treatment by modifying the natural value of the exposure by some constant δ

Modified Treatment Policies

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Shift function: assign treatment by modifying the natural value of the exposure by some constant δ
- Example: Improving air quality. Consider an intervention in which we lower daily PM2.5 levels by 10% for all US counties with PM2.5 levels greater than 5 μg/m³

Modified Treatment Policies

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Shift function: assign treatment by modifying the natural value of the exposure by some constant δ
- Example: Improving air quality. Consider an intervention in which we lower daily PM2.5 levels by 10% for all US counties with PM2.5 levels greater than 5 μg/m³

$$d_t(a_t) = \begin{cases} a_t * 0.9 & \text{if } a_t > 5 \\ a_t & \text{otherwise} \end{cases}$$

Setup Causal effects

- $\bullet \ \ L_{t} \ {\rm time-varying} \ {\rm covariates} \\$
- $Y=L_{\tau+1}$ outcome at end of follow-up
 $H_t=(\bar{A}_{t-1},\bar{L}_t)$ history until just before A_t
- Once an intervention d is specified, causal effects will be defined in terms of the distribution of the counterfactual outcome

$$Y(\bar{A}^{d}) = f_{Y}(A_{\tau}^{d}, H_{\tau}(\bar{A}_{\tau-1}^{d}), U_{Y})$$

- Specifically, our causal parameter of interest is $\theta = E[Y(\bar{A}_{\tau}^{d})]$
- In *Epidemiology* tutorial, we focus on distributions of the contrast $E[Y(\bar{A}_{\tau}^{d}) - Y(\bar{A}_{\tau}^{d'})]$, where d and d' are two different interventions

Assumptions

- $\begin{array}{c} \bullet \ Z_1,...,Z_t \ \text{i.i.d observations} \\ Z=(L_1,A_1,L_2,A_2,...,L_\tau,A_\tau,Y) \sim \mathsf{P} \\ \\ \bullet \ A_t \ \text{intervention variables} \end{array}$
- \bullet L_t time-varying covariates
- $Y=L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Assumptions

• Positivity: If $(a_t, h_t) \in \operatorname{supp}\{A_t, H_t\}$ then $(\operatorname{d}(a_t, h_t), h_t) \in \operatorname{supp}\{A_t, H_t\}$ for $t \in \{1, \dots, \tau\}$

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathbf{I}$
- A_t intervention variables
- $\bullet \ \ L_{t} \ {\rm time-varying} \ {\rm covariates} \\$
- $Y = L_{\tau+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Assumptions

- Positivity: If $(a_t, h_t) \in \operatorname{supp}\{A_t, H_t\}$ then $(\operatorname{d}(a_t, h_t), h_t) \in \operatorname{supp}\{A_t, H_t\}$ for $t \in \{1, \dots, \tau\}$
- Standard sequential randomization:

$$U_{A,t} \perp \underline{U}_{L,t+1} \mid H_t \text{ for all } t \in \{1, \dots, \tau\}$$

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathbf{I}$
- A_t intervention variables
- \bullet L_{t} time-varying covariates
- $\mathit{Y} = \mathit{L}_{\tau+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Assumptions

- Positivity: If $(a_t, h_t) \in \operatorname{supp}\{A_t, H_t\}$ then $(\operatorname{d}(a_t, h_t), h_t) \in \operatorname{supp}\{A_t, H_t\}$ for $t \in \{1, \dots, \tau\}$
- Standard sequential randomization: $U_{A,t} \perp \underline{U}_{L,t+1} \mid H_t$ for all $t \in \{1,...,\tau\}$
- Strong sequential randomization:

$$U_{A,t} \perp (\underline{U}_{L,t+1},\underline{U}_{A,t+1}) \mid H_t \text{ for all } t \in \{1,...,\tau\}$$

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathbf{I}$
- A_t intervention variables
- \bullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Assumptions

- Positivity: If $(a_t,h_t)\in \mathrm{supp}\{A_t,H_t\}$ then $(\mathrm{d}(a_t,h_t),h_t)\in \mathrm{supp}\{A_t,H_t\}$ for $t\in\{1,\ldots,\tau\}$
- Standard sequential randomization: $U_{A,t} \perp \underline{U}_{L,t+1} \mid H_t$ for all $t \in \{1,...,\tau\}$
- Strong sequential randomization:

$$U_{A,t} \perp (\underline{U}_{L,t+1},\underline{U}_{A,t+1}) \mid H_t \text{ for all } t \in \{1,\ldots,\tau\}$$

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Needed for static, dynamic, and (interestingly!) stochastic* LMTPs

*See LMTP-SI discussion in Diaz et al.

Assumptions

- Positivity: If $(a_t,h_t)\in \mathrm{supp}\{A_t,H_t\}$ then $(\mathrm{d}(a_t,h_t),h_t)\in \mathrm{supp}\{A_t,H_t\}$ for $t\in\{1,\ldots,\tau\}$
- Standard sequential randomization: $U_{A,t} \perp \underline{U}_{L,t+1} \mid H_t$ for all $t \in \{1,...,\tau\}$
- Strong sequential randomization: $U_{A,t} \perp (\underline{U}_{L,t+1},\underline{U}_{A,t+1}) \mid H_t$ for all

$$t \in \{1, ..., \tau\}$$

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Needed for LMTPs

Sequential randomization

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

A DAG for two time points

Sequential randomization

Standard sequential randomization:

$$U_{A,t} \perp \underline{U}_{L,t+1} \mid H_t \text{ for all } t \in \{1,...,\tau\}$$

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Sequential randomization

Strong sequential randomization:

$$U_{A,t} \perp (\underline{U}_{L,t+1},\underline{U}_{A,t+1}) \mid H_t \text{ for all } t \in \{1,\dots,\tau\}$$

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- \bullet A_t intervention variables
- L_t time-varying covariates
- $Y=L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Positivity Assumption

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- $\bullet \ \ L_{t} \ {\rm time-varying} \ {\rm covariates} \\$
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

```
Positivity: if (a_t, h_t) \in \text{supp}\{A_t, H_t\} then (d(a_t, h_t), h_t) \in \text{supp}\{A_t, H_t\} for t \in \{1, ..., \tau\}
```

- The distribution of interest is supported in the data (Young et al. 2014)
- If it is possible to find a unit with history h_t and exposure a_t at time t, then it is also possible to find a unit with history h_t and exposure $d(a_t, h_t)$
- If exposure is multivariate (e.g. includes a loss-to-follow-up indicator), we also require a positive probability of observing a patient who is not lost to follow up

Positivity Assumption

Violations to positivity can be

- Structural: certain characteristics of an individual or unit which will never yield receipt of the treatment assignment under the intervention
- Practical: due to random chance or small datasets, certain covariate combinations have zero or near zero predicted probabilities of treatment

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Positivity assumption

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

 By design, non-static interventions may help define estimands with plausible positivity

- Z_1,\ldots,Z_t i.i.d observations $Z=(L_1,A_1,L_2,A_2,\ldots,L_{\tau},A_{\tau},Y)\sim {\sf F}$
- ullet A_t intervention variables
- \bullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Under Positivity and Strong Sequential Randomization, an LMTP estimand is identified by an alternative expression of the extended g-formula (Robins et al. 2004, Richardson and Robins, 2013)

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- $\bullet \ \ L_{t} \ {\rm time-varying} \ {\rm covariates} \\$
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Under Positivity and Strong Sequential Randomization, an LMTP estimand is identified by an alternative expression of the extended g-formula (Robins et al. 2004, Richardson and Robins, 2013)
- Let $m_{\tau+1} = Y$. For $t = \tau, ..., 1$, recursively define,

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Under Positivity and Strong Sequential Randomization, an LMTP estimand is identified by an alternative expression of the extended g-formula (Robins et al. 2004, Richardson and Robins, 2013)
- Let $m_{\tau+1} = Y$. For $t = \tau, ..., 1$, recursively define,

$$m: (a_t, h_t) \mapsto E[m_{\tau+1}(A_{t+1}^d, H_{t+1}) | A_t = a_t, H_t = h_t]$$

General formula

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Under Positivity and Strong Sequential Randomization, an LMTP estimand is identified by an alternative expression of the extended g-formula (Robins et al. 2004, Richardson and Robins, 2013)
- Let $m_{\tau+1} = Y$. For $t = \tau, ..., 1$, recursively define,

$$m: (a_t, h_t) \mapsto E[m_{\tau+1}(A_{t+1}^d, H_{t+1}) | A_t = a_t, H_t = h_t]$$

• Define $\theta = E[m_1(A_1^d, L_1)].$

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- $lacktriangledown A_t$ intervention variables
- ullet L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Under Positivity and Strong Sequential Randomization, an LMTP estimand is identified by an alternative expression of the extended g-formula (Robins et al. 2004, Richardson and Robins, 2013)
- Let $m_{\tau+1} = Y$. For $t = \tau, ..., 1$, recursively define,

$$m: (a_t, h_t) \mapsto E[m_{\tau+1}(A_{t+1}^d, H_{t+1}) | A_t = a_t, H_t = h_t]$$

- Define $\theta = E[m_1(A_1^d, L_1)].$
- Under the previously discussed assumptions, $\theta={\rm E}[Y(\bar A_1^{\rm d})]$ is identified by $\theta={\rm E}[m_1(A_1^{\rm d},L_1)].$

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim 1$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- + $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

- $Z_1,...,Z_t$ i.i.d observations $Z=(L_1,A_1,L_2,A_2,...,L_{\tau},A_{\tau},Y)\sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- 1.Let the true conditional expectation of Y be denoted $Q_2(a_2, h_2) = E[Y|A_2 = a_2, H_2 = h_2].$

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- $\bullet \ \ L_{t} \ {\rm time-varying} \ {\rm covariates} \\$
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- 1.Let the true conditional expectation of Y be denoted $Q_2(a_2,h_2)=$ ${\rm E}[Y|A_2=a_2,H_2=h_2].$
- 2.Evaluate the above conditional expectation if A_2 were changed to $A_2^{\rm d}={\rm d}(A_2,H_2)$. This is the pseudo-outcome $\tilde{Y}_2=Q_2(A_2^{\rm d},H_2)$.

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- ullet A_t intervention variables
- ullet L $_t$ time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- 1.Let the true conditional expectation of Y be denoted $Q_2(a_2,h_2)=$ ${\rm E}[Y|A_2=a_2,H_2=h_2].$
- 2.Evaluate the above conditional expectation if A_2 were changed to $A_2^{\rm d}={\rm d}(A_2,H_2)$. This is the pseudo-outcome $\tilde{Y}_2=Q_2(A_2^{\rm d},H_2)$.
- 3. Now let the true expectation of \tilde{Y}_2 on $A_1=a_1$ and $H_1=h_1$ be denoted by the function $Q_1(a_1,h_1)$.

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- 1.Let the true conditional expectation of Y be denoted $Q_2(a_2,h_2)=$ ${\rm E}[Y|A_2=a_2,H_2=h_2].$
- 2.Evaluate the above conditional expectation if A_2 were changed to $A_2^{\rm d}={\rm d}(A_2,H_2)$. This is the pseudo-outcome $\tilde{Y}_2=Q_2(A_2^{\rm d},H_2)$.
- 3. Now let the true expectation of \tilde{Y}_2 on $A_1=a_1$ and $H_1=h_1$ be denoted by the function $Q_1(a_1,h_1)$.
- 4.Evaluate the above conditional expectation if A_1 were changed to $A_1^{\rm d}={\rm d}(A_1,H_1)$. This is the pseudo-outcome $\tilde{Y}_1=Q_1(A_1^{\rm d},H_1)$.

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- ullet A_t intervention variables
- ullet L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- 1.Let the true conditional expectation of Y be denoted $Q_2(a_2,h_2)=$ ${\rm E}[Y|A_2=a_2,H_2=h_2].$
- 2. Evaluate the above conditional expectation if A_2 were changed to $A_2^{\rm d}={\rm d}(A_2,H_2)$. This is the pseudo-outcome $\tilde{Y}_2=Q_2(A_2^{\rm d},H_2)$.
- 3. Now let the true expectation of \tilde{Y}_2 on $A_1=a_1$ and $H_1=h_1$ be denoted by the function $Q_1(a_1,h_1)$.
- 4.Evaluate the above conditional expectation if A_1 were changed to $A_1^{\rm d}={\rm d}(A_1,H_1)$. This is the pseudo-outcome $\tilde{Y}_1=Q_1(A_1^{\rm d},H_1)$.
- 5.Under identifying assumptions, $\mathsf{E}[Y(\bar{A}_{\tau}^{\mathsf{d}})] = \mathsf{E}[\tilde{Y}_{1}]$

Substitution estimator

 The simplest form of estimation is to use a plug-in estimator

$$\hat{\theta}_{sub} = \frac{1}{n} \sum_{i=1}^{n} \hat{m}_{1}(A_{1,i}^{d}, L_{1,i})$$

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$ A_t intervention variables
- ullet L_t time-varying covariates
- $\mathit{Y} = \mathit{L}_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Pseudo-R Algorithm:

1. fit_y <- glm(Y
$$\sim$$
 A2 + L2 + A1 + L1)

Inverse Probability Weighting

- Z_1,\ldots,Z_t i.i.d observations $Z=(L_1,A_1,L_2,A_2,\ldots,L_{\tau},A_{\tau},Y)\sim \mathsf{F}$
- A_t intervention variables
- L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t

Inverse Probability Weighting

- $Z_1, ..., Z_t$ i.i.d observations $Z = (L_1, A_1, L_2, A_2, ..., L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- ullet L_t time-varying covariates
- $Y = L_{\tau+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Or, use an alternative expression of the parameter of interest with

the density ratio,
$$r_t(a_t, h_t) = \frac{g_t^d(a_t | h_t)}{g_t(a_t | h_t)}$$

Inverse Probability Weighting

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- A_t intervention variables
- ullet L_{t} time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Or, use an alternative expression of the parameter of interest with

the density ratio,
$$r_t(a_t, h_t) = \frac{g_t^d(a_t | h_t)}{g_t(a_t | h_t)}$$

$$\theta = E\left[\left(\prod_{t=1}^{\tau} r_t(A_t, H_t)\right) Y\right]$$

Inverse Probability Weighting

- Z_1, \ldots, Z_t i.i.d observations $Z = (L_1, A_1, L_2, A_2, \ldots, L_\tau, A_\tau, Y) \sim \mathsf{P}$
- lacktriangle A_t intervention variables
- L_t time-varying covariates
- $Y=L_{ au+1}$ outcome at end of follow-up
- $H_t = (\bar{A}_{t-1}, \bar{L}_t)$ history until just before A_t
- Or, use an alternative expression of the parameter of interest with

the density ratio,
$$r_t(a_t, h_t) = \frac{g_t^d(a_t | h_t)}{g_t(a_t | h_t)}$$

$$\theta = E\left[\left(\prod_{t=1}^{\tau} r_t(A_t, H_t)\right) Y\right]$$

And estimate with an inverse probability weighted estimator (Young et al., 2014)

Inverse Probability Weighting

- L_t time-varying covariates
- $Y=L_{\tau+1}$ outcome at end of follow-up
 $H_t=(\bar{A}_{t-1},\bar{L}_t)$ history until just before A_t
- Or, use an alternative expression of the parameter of interest with the density ratio, $r_t(a_t, h_t) = \frac{g_t^d(a_t | h_t)}{g_t(a_t | h_t)}$

$$\theta = E\left[\left(\prod_{t=1}^{\tau} r_t(A_t, H_t)\right) Y\right]$$

 And estimate with an inverse probability weighted estimator (Young) et al., 2014)

$$\hat{\theta}_{IPW} = \frac{1}{n} \sum_{i=1}^{n} \left(\prod_{t=1}^{\tau} \hat{\mathbf{r}}_{t}(A_{t,i}, H_{t,i}) \right) Y_{i}$$

Motivation for non-parametric estimators

• If \mathbf{m}_t and \mathbf{r}_t are estimated with **pre-specified parametric models**, then by Delta method, $\hat{\theta}_{sub}$ and $\hat{\theta}_{IPW}$ are asymptotically linear

- If \mathbf{m}_t and \mathbf{r}_t are estimated with **pre-specified parametric models**, then by Delta method, $\hat{\theta}_{sub}$ and $\hat{\theta}_{IPW}$ are asymptotically linear
 - If the models are correctly specified, $\hat{\theta}_{sub}$ and $\hat{\theta}_{IPW}$ will be $n^{1/2}$ -consistent

- If \mathbf{m}_t and \mathbf{r}_t are estimated with **pre-specified parametric models**, then by Delta method, $\hat{\theta}_{sub}$ and $\hat{\theta}_{IPW}$ are asymptotically linear
 - If the models are correctly specified, $\hat{\theta}_{sub}$ and $\hat{\theta}_{IPW}$ will be $n^{1/2}$ -consistent
 - Use bootstrap or influence function-based estimator to construct asymptotically correct confidence intervals

Motivation for non-parametric estimators

 But, if time-varying variables are high-dimensional, consistency of m_t and r_t will not be achievable with parametric models

- But, if time-varying variables are high-dimensional, consistency of m_t and r_t will not be achievable with parametric models
 - Could use data-adaptive regressions, but $n^{1/2}$ -consistency of $\hat{\theta}_{sub}$ and $\hat{\theta}_{IPW}$ requires $\hat{\mathbf{m}}_t$ and $\hat{\mathbf{r}}_t$ to be consistent in $L_2(\mathsf{P})$ -norm at parametric rate, which is generally not possible with data-adaptive estimation of high-dimensional regressions

- But, if time-varying variables are high-dimensional, consistency of m_t and r_t will not be achievable with parametric models
 - Could use data-adaptive regressions, but $n^{1/2}$ -consistency of $\hat{\theta}_{sub}$ and $\hat{\theta}_{IPW}$ requires $\hat{\mathbf{m}}_t$ and $\hat{\mathbf{r}}_t$ to be consistent in $L_2(\mathsf{P})$ -norm at parametric rate, which is generally not possible with data-adaptive estimation of high-dimensional regressions
- **Solution:** use the efficient influence function to propose estimators that are $n^{1/2}$ -consistent and efficient under weaker assumptions

EIF Motivation

The efficient influence function will allow us to

- The efficient influence function will allow us to
 - Construct locally efficient estimators

- The efficient influence function will allow us to
 - Construct locally efficient estimators
 - Enjoy multiple robustness properties of our estimator

- The efficient influence function will allow us to
 - Construct locally efficient estimators
 - Enjoy multiple robustness properties of our estimator
 - Use flexible regression techniques in estimating nuisance quantities, since the EIF yields second-order bias terms with slow convergence rates for the nuisance parameters

EIF Conditions

Technical requirements:

Assume d does not depend on P, and one of:

- 1. A_t is a **discrete** random variable for all t
- 2. A_t is a **continuous** random variable and the modified treatment policy d satisfies **piecewise smooth** invertibility

Then, the efficient influence function for estimation of $\theta = \mathrm{E}[\mathrm{m}_1(A^{\mathrm{d}}, L_1)]$ in the non-parametric model is given by

EIF Conditions

Technical requirements:

Assume d does not depend on P, and one of:

- 1. A_t is a **discrete** random variable for all t
- 2. A_t is a **continuous** random variable and the modified treatment policy d satisfies **piecewise smooth** invertibility

Then, the efficient influence function for estimation of $\theta = \mathrm{E}[\mathrm{m}_1(A^{\mathrm{d}}, L_1)]$ in the non-parametric model is given by

$$\phi_1(Z) - \theta$$

EIF Formula

Efficient influence function: $\phi_1(Z) - \theta$

Where,

$$\phi_t : z \mapsto \sum_{s=t}^{\tau} \left(\prod_{k=t}^{s} \mathsf{r}_k(a_k, h_k) \right) \{ \mathsf{m}_{s+1}(a_{s+1}^\mathsf{d}, h_{s+1}) - \mathsf{m}_s(a_s, h_s) \} + m_t(a_t^\mathsf{d}, h_t)$$

Recall $\mathbf{r}_t(a_t, h_t)$ is the density ratio,

$$\mathbf{r}_t(a_t, h_t) = \frac{g_t^{\mathsf{d}}(a_t | h_t)}{g_t(a_t | h_t)}$$

Non-parametric estimators

- Two estimators for LMTP proposed in Díaz et al. and implemented in {Imtp} using m_t, r_t, and the derived EIF:
 - 1. Targeted Minimum Loss-Based Estimation (TMLE)
 - 2. Sequentially doubly robust (SDR) estimation
- Utilize sample splitting and cross-fitting (Klassen, 1987; Zheng and van der Laan, 2011; Chernozhukov et al., 2018)
- Algorithms formally proposed in Díaz et al. (2021); pseudo-R code given in Appendix of Hoffman et al. (2024)

Estimation TMLE

- A generalization of estimators proposed for MTPs in a single time point setting in (*Díaz and van der Laan, 2018; van der Laan and Gruber, 2012*)
- A substitution estimator that uses an estimate \tilde{m}_1 (within cross-fitting folds) carefully constructed to solve a cross-validated efficient influence function estimating equation
- Motivated by the decomposition of the EIF as a sum of terms of the form,

$$\left(\prod_{k=1}^{t} \mathsf{r}_{k}(a_{k}, h_{k})\right) \{\mathsf{m}_{t+1}(a_{t+1}^{\mathsf{d}}, h_{t+1}) - \mathsf{m}_{t}(a_{t}, h_{t})\}$$

SDR Estimator

- SDR is an extension of estimators for dynamic treatment regimes proposed by *Luedtke et al.* (2017) and *Rotnitzky et al.* (2017)
- Sequentially regress a multiply robust unbiased data transformation related to ϕ_{t+1} to construct pseudo-outcomes, and eventually, $\hat{\theta}_{SDR}$
- Not a substitution estimator, so SDR can yield estimates that are outside the bounds of Y, but it has better consistency properties than TMLE in the event of model misspecification

Comparing statistical properties of proposed estimators

Statistical property	Sub.	IPW	TMLE	SDR	iTMLE
Doubly robust			X	X	X
Sequentially doubly robust				X	X
Valid inference using parametric regressions	X	X	X	X	X
Valid inference using data-adaptive regressions			X	X	X
Guaranteed to stay within outcome range	X	50	X		X

LMTP extension papers

LMTP extension papers

Competing risks

LMTP extension papers

Competing risks

Díaz, I., Hoffman, K.L. & Hejazi, N.S. Causal survival analysis under competing risks using longitudinal modified treatment policies. *Lifetime Data Analysis* (2024)

LMTP extension papers

Competing risks

Díaz, I., Hoffman, K.L. & Hejazi, N.S. Causal survival analysis under competing risks using longitudinal modified treatment policies. *Lifetime Data Analysis* (2024)

LMTP extension papers

Competing risks

Díaz, I., Hoffman, K.L. & Hejazi, N.S. Causal survival analysis under competing risks using longitudinal modified treatment policies. *Lifetime Data Analysis* (2024)

Mediation

LMTP extension papers

Competing risks

Díaz, I., Hoffman, K.L. & Hejazi, N.S. Causal survival analysis under competing risks using longitudinal modified treatment policies. *Lifetime Data Analysis* (2024)

Mediation

Gilbert, B., Hoffman, K.L., Williams N.T., Rudolph, K.E., Schenck E.J., Díaz, I., Identification and estimation of mediational effects of longitudinal modified treatment policies. *Under review/on arxiv*

LMTP extension papers

Competing risks

Díaz, I., Hoffman, K.L. & Hejazi, N.S. Causal survival analysis under competing risks using longitudinal modified treatment policies. *Lifetime Data Analysis* (2024)

Mediation

Gilbert, B., Hoffman, K.L., Williams N.T., Rudolph, K.E., Schenck E.J., Díaz, I., Identification and estimation of mediational effects of longitudinal modified treatment policies. *Under review/on arxiv*

LMTP extension papers

Competing risks

Díaz, I., Hoffman, K.L. & Hejazi, N.S. Causal survival analysis under competing risks using longitudinal modified treatment policies. *Lifetime Data Analysis* (2024)

Mediation

Gilbert, B., Hoffman, K.L., Williams N.T., Rudolph, K.E., Schenck E.J., Díaz, I., Identification and estimation of mediational effects of longitudinal modified treatment policies. *Under review/on arxiv*

{Imtp} software tutorial

LMTP extension papers

Competing risks

Díaz, I., Hoffman, K.L. & Hejazi, N.S. Causal survival analysis under competing risks using longitudinal modified treatment policies. *Lifetime Data Analysis* (2024)

Mediation

Gilbert, B., Hoffman, K.L., Williams N.T., Rudolph, K.E., Schenck E.J., Díaz, I., Identification and estimation of mediational effects of longitudinal modified treatment policies. *Under review/on arxiv*

{Imtp} software tutorial

Williams, N.T. & Díaz, I. Imtp: An R Package for Estimating the Causal Effects of Modified Treatment Policies. *Observational Studies* (2023)

Selected applications to date

• Effect of **delaying intubation** on {14-day mortality, 14-day acute kidney injury} in COVID-19 patients (*Díaz et al., Hoffman et al.*)

- Effect of **delaying intubation** on {14-day mortality, 14-day acute kidney injury} in COVID-19 patients (*Díaz et al., Hoffman et al.*)
- Effect of increasing PaO2/FiO2 by 50 units on 28-day mortality in Acute Respiratory Distress Patients (Díaz et al.)

- Effect of **delaying intubation** on {14-day mortality, 14-day acute kidney injury} in COVID-19 patients (*Díaz et al., Hoffman et al.*)
- Effect of increasing PaO2/FiO2 by 50 units on 28-day mortality in Acute Respiratory Distress Patients (Díaz et al.)
- Effect of increasing mobility rates on COVID-19 case rates (Nugent and Balzer)

- Effect of **delaying intubation** on {14-day mortality, 14-day acute kidney injury} in COVID-19 patients (*Díaz et al., Hoffman et al.*)
- Effect of increasing PaO2/FiO2 by 50 units on 28-day mortality in Acute Respiratory Distress Patients (Díaz et al.)
- Effect of increasing mobility rates on COVID-19 case rates (Nugent and Balzer)
- Effect of Naxolone access laws on opioid overdose rates (Rudolph et al.)

- Effect of **delaying intubation** on {14-day mortality, 14-day acute kidney injury} in COVID-19 patients (*Díaz et al., Hoffman et al.*)
- Effect of increasing PaO2/FiO2 by 50 units on 28-day mortality in Acute Respiratory Distress Patients (Díaz et al.)
- Effect of increasing mobility rates on COVID-19 case rates (Nugent and Balzer)
- Effect of Naxolone access laws on opioid overdose rates (Rudolph et al.)
- Effect of **lowering self-reported knee pain scores** on knee replacement surgery (*Jafarzadeh et al.*)

- Effect of **delaying intubation** on {14-day mortality, 14-day acute kidney injury} in COVID-19 patients (*Díaz et al., Hoffman et al.*)
- Effect of increasing PaO2/FiO2 by 50 units on 28-day mortality in Acute Respiratory Distress Patients (Díaz et al.)
- Effect of increasing mobility rates on COVID-19 case rates (Nugent and Balzer)
- Effect of Naxolone access laws on opioid overdose rates (Rudolph et al.)
- Effect of **lowering self-reported knee pain scores** on knee replacement surgery (*Jafarzadeh et al.*)
- Effect of increases in number of primary care physicians on post-operative outcomes for elective total joint replacement (Mehta et al.)

- Effect of **delaying intubation** on {14-day mortality, 14-day acute kidney injury} in COVID-19 patients (*Díaz et al., Hoffman et al.*)
- Effect of increasing PaO2/FiO2 by 50 units on 28-day mortality in Acute Respiratory Distress Patients (Díaz et al.)
- Effect of increasing mobility rates on COVID-19 case rates (Nugent and Balzer)
- Effect of Naxolone access laws on opioid overdose rates (Rudolph et al.)
- Effect of **lowering self-reported knee pain scores** on knee replacement surgery (*Jafarzadeh et al.*)
- Effect of increases in number of primary care physicians on post-operative outcomes for elective total joint replacement (Mehta et al.)
- Effect of increasing numbers of tooth retention and social participation among older adults in Japan (Cooray et al.)

Concluding thoughts

Concluding thoughts

 LMTP allows researchers to define, identify, and estimate novel and scientifically relevant estimands

Concluding thoughts

- LMTP allows researchers to define, identify, and estimate novel and scientifically relevant estimands
 - Enables researchers to take advantage of statistical learning algorithms to estimate nuisance parameters, increasing the likelihood of estimator consistency

Concluding thoughts

- LMTP allows researchers to define, identify, and estimate novel and scientifically relevant estimands
 - Enables researchers to take advantage of statistical learning algorithms to estimate nuisance parameters, increasing the likelihood of estimator consistency
- Limitations:

Concluding thoughts

- LMTP allows researchers to define, identify, and estimate novel and scientifically relevant estimands
 - Enables researchers to take advantage of statistical learning algorithms to estimate nuisance parameters, increasing the likelihood of estimator consistency

Limitations:

Requires discretizing time over intervals

Concluding thoughts

- LMTP allows researchers to define, identify, and estimate novel and scientifically relevant estimands
 - Enables researchers to take advantage of statistical learning algorithms to estimate nuisance parameters, increasing the likelihood of estimator consistency

Limitations:

- Requires discretizing time over intervals
- Formulating alternative estimands to satisfy the positivity assumption must be done with scientific reason, and practical positivity violations may still occur

Concluding thoughts

- LMTP allows researchers to define, identify, and estimate novel and scientifically relevant estimands
 - Enables researchers to take advantage of statistical learning algorithms to estimate nuisance parameters, increasing the likelihood of estimator consistency

Limitations:

- Requires discretizing time over intervals
- Formulating alternative estimands to satisfy the positivity assumption must be done with scientific reason, and practical positivity violations may still occur
 - Solutions to practical violations (e.g. truncation of density ratios) are arbitrary and may lead to biases

Thank you!

Questions, comments, suggestions?

