7

1º iMAT - Algorítmica

Tema 7: Estrategias y algoritmos avanzados.

COMILLAS Algoritmo voraz

Algoritmo voraz (I)

- La solución se va construyendo con 'las mejores opciones' en cada momento.
- En cada iteración se escoge el elemento que ofrece la mejor solución inmediata
- La solución local 'óptima' en cada momento conduce a una solución óptima global.

IMAT

Algoritmo voraz (I)

- Producir un resultado "óptimo" a partir de un conjunto de opciones candidatas
 - Optimizar cierta medida o función objetivo
 - Cumpliendo ciertas restricciones
- Hipótesis de partida:
 - Al menos existe una solución óptima, si hay varias equivalentes
- Características de este enfoque:
 - La solución se va formando poco a poco (incrementalmente)
 - Se elige la mejor forma de incrementar la solución parcial eligiendo la mejor opción candidata
 - Una vez incrementada (mejorada) la solución parcial, no se puede modificar eliminando elementos de la misma²⁰²²

Algoritmo voraz (II)

Esquema general

```
sol = Voraz (candidatos)
sol = \{ \};
1 while (candidatos ≠ { } AND NoEsSolucion(sol) )
   mejor = Seleccionar (candidatos);
   candidatos = candidatos - {mejor};
   2 if EsValida (sol ∪ {mejor} )
        sol = sol \cup \{mejor\};
   end 2
end 1
Fin
```


Algoritmo voraz: Problema del cambio

- Dado un importe, desglosarlo en el menor número de billetes y monedas posible
- Útil en una máquina que tenga que devolver cambio (por ej. una expendedora de billetes de metro)

Algoritmo voraz: Problema del cambio

- Desglose de un importe
 - Dado un importe, desglosarlo en el menor número de billetes y monedas posible
 - Útil en una máquina que tenga que devolver cambio (por ej. una expendedora de billetes de metro)
- Se plantea utilizando un par de vectores:

Se supone que el importe se puede desglosar perfectamente

IMAT

- El desglose del dinero se puede plantear como un algoritmo voraz ya que:
 - Conjunto de candidatos
 - Cada una de las monedas disponibles
 - Solución posible
 - Conjunto de monedas tal que sumen el importe a desglosar
 - Condición de factibilidad (EsValida)
 - En todo momento la suma de las monedas tiene que ser menor o igual al importe
 - Función de selección
 - Elegir, mientras sea posible, la moneda de valor mayor de entre las candidatas
 - Función objetivo
 - Minimizar el número de monedas

• Desglose de un importe, tres posibles

```
cant = DesgloseVersion1 (importe, val, N)
cant = ceros (N); % inicializa a ceros
i=1:
1 while (i \le N \& importe > 0)
 2 if (val(i) ≤ importe)
     cant(i) = cant(i) + 1;
     importe = importe - val(i);
  else 2
     i = i + 1;
  end 2
end 1
           cant = DesgloseVersion3 (importe, val, N)
Fin
           cant = ceros (N); % inicializa a ceros
           i=1:
           1 while (i \le N \& importe > 0)
             cant(i) = floor (importe / val(i));
             importe = mod (importe, val(i));
             i = i + 1;
           end 1
           Fin
```

```
cant = DesgloseVersion2 (importe, val, N)

cant = ceros (N); % inicializa a ceros

i=1;

1 while (i \leq N & importe > 0)

2 while (val(i) \leq importe)

cant(i) = cant(i) + 1;

importe = importe - val(i);

end 2

i = i + 1;

end 1

Fin
```

- ¿Son teóricamente equivalentes en cuanto a tiempo de ejecución?
- Desde el punto de vista práctico ¿existirán diferencias?

• Desglose de un importe

- Problema desglose de actividades:
 - Dado un conjunto de actividades N, con sus horas de inicio y finalización, seleccionar el número máximo de actividades que puede realizar una persona, teniendo en cuenta que una persona sólo puede estar en una actividad en un tiempo determinado.

Actividad	A1	A2	А3	A4	A5	A6
H.Inicio	0	3	1	5	5	8
H. Fin	6	4	2	8	7	9

• Problema desglose de actividades:

Actividad	A1	A2	А3	A4	A5	A6
H.Inicio	0	3	1	5	5	8
H. Fin	6	4	2	8	7	9

Si comenzamos por A0, sólo podemos hacer 2 actividades

Actividad	А3	A2	A1	A5	A4	A6
H.Inicio	1	3	0	5	5	8
H. Fin	2	4	6	7	8	9

Ordenadas por H. Fin

Problema de la mochila

 Es un problema de optimización combinatoria, es decir, que busca la mejor solución entre un conjunto finito de posibles soluciones a un problema.

Wt. = 5Wt. = 8Value = 10Value = 20 **Value = 25** Maximum wt. = 13

13

 $Wt_{\cdot} = 4$

Value = 8

Problema de la mochila

• Introducir un número de objetos en la mochila de tal manera que el peso no se excede y el valor es el máximo.

Problema de la mochila – pasos a seguir

- Calcular la densidad o beneficio por unidad de medida de cada elemento
- 2. Ordenar los elementos en base a este beneficio
- 3. Introducirlos en la mochila siempre que el peso lo permita
- 4. Añadir el siguiente elemento tan fraccionado como se pueda.

Algoritmo voraz:

Algoritmo voraz:

Selección Directa

COMILLAS Algoritmo voraz:

Grafos

Grafos y caminos: Definiciones (I)

Friendship network in a 34-person karate club [Zachary 1977]

E-mail communication network among 436 HP employees [Adamic & Adar 2005]

Network of friendship, marital tie, and family tie among 2200 people [Christakis & Fowler 2007]

Grafos y caminos: Definiciones (I)

Transportation and Mobility Networks

Network of direct flights around the world [Bio.Diaspora]

Human mobility network based on location of dollar bills (Where's George) [Thiemann et al. 2010]

Ann Arbor bus transportation network

Grafos y caminos: Definiciones (I)

- Grafo: G(V, A)
 - Conjunto de vértices (nodos) conectados a través de un conjunto de aristas (arcos)
 - Las aristas pueden tener un coste o peso asociado
 - Digrafo: grafo dirigido (aparecen flechas, aristas con dirección)

• Camino:

- Secuencia de vértices conectados por aristas
- Longitud sin pesos del camino: número de aristas
- Longitud con pesos del camino: suma del coste de las aristas de ese camino

Otros conceptos:

• Los vértices adyacentes de un nodo son aquellos Algoritmos correctados mediante una única arista

Grafos y caminos: Definiciones (II)

Ejemplo:

Grafos y caminos: Ejemplos reales

• Ejemplo: MLP, modelos de markov

Grafos y caminos: Representación (I)

- Matriz de adyacencia:
 - Matriz bidimensional para representar grafos densos
 - Grafo sin pesos: Cada elemento representa la existencia (0/1) de la arista entre dos nodos
 - Grafo con pesos: Cada elemento representa el coste o peso de la arista entre dos nodo. Si no hay arista se guarda un infinito lógico
 - El espacio consumido es cuadrático en el número de vértices

_			3	4	_5
1	0	1	0	0	1
2	0	0	1	0	0
3	0	0	0	0	0
4	0	0	1	0	0
5	0	0	_1_	1	0

	1	2	3	4	5	6
1	0	3	∞	∞	∞	5
2	∞	0	7	∞	∞	1
3	∞	∞	0	5	1	Q
4	∞	∞	∞	0	6	∞
5	∞	∞	∞	∞	0	7
6	∞	∞	8	2	∞	0

Grafos y caminos: Representación (II)

- Lista de adyacencia:
 - Vector de listas enlazadas para representar grafos dispersos
 - Para cada vértice se tiene una lista con todos los nodos adyacentes
 - El orden de los nodos en las listas no es importante, se inserta por la cabeza
 - Si es un grafo con pesos también se guarda el peso de la arista en los elementos de las listas
 - El espacio consumido es lineal en el número de vértices

Grafos y caminos: Representación (III)

- Internamente los vértices no se gestionan directamente con su nombre, se les asigna un "número interno"
- Información adicional
 - Normalmente los nodos de un grafo suelen tener un nombre asociado
 - Pueden tener otros valores asociados como las coordenadas x.y si se representa gráficamente, el color, etc
- La Matriz de adyacencia no permite almacenar esa información de los vértices (la lista de adyacencia sí)
 - Si se utiliza la matriz de adyacencia es necesario tener un diccionario para guardar la información adicional de los vértices, así como la relación entre esa información y los números internos (típicamente mediante una tabla hash)
 - Sin embargo, aunque consuma más memoria en grafos dispersos y no permita almacenar la información adicional, los algoritmos son más sencillos y rápidos

Grafos y caminos: Ejemplos (I)

Grafo completo (número de aristas máximo posible) N*(N-1)/2:

Bytes (matriz normal): 800

Grafos y caminos: Ejemplos (II)

• Grafo con la mitad del número de aristas máximo posible:

Grafos y caminos: Ejemplos (III)

• Grafo disperso, con un 17% del número de aristas máximo

posible:

- Técnica que permite dividir un problema de optimización en subproblemas y aplicando el concepto de que la solución óptima del problema global es la solución óptima de cada subproblema.
- Optimización del paradigma divide y vencerás
- 'Recuperamos' la solución de otros problemas y la aplicamos, no la volvemos a calcular.
- \bullet 1+1+1+1+1+1=7
- 1+1+1+1+1+1+1+2=9

Algoritmos y estructuras de datos

- Estructura óptima (fib(n)=fib(n-1)+fib(n-2))
- Sobreposición de problemas

- Técnicas de memorización:
- Se trata de ir resolviendo recursivamente subproblemas e ir memorizando los resultados para utilizarlos en los siguientes subproblemas.
- Estructura top-down con memorización
- Ej: Si tenemos la serie de Fibonacci:
- 0,1,1,2,3,5,8,13,21,34,55....

```
def Fibonacci(n):
    if n<1 :
        return "ERROR"
    elif n==1:
        return 0
    elif n==2:
        return 1
    else:
        return Fibonacci(n-1)+Fibonacci(n-2)</pre>
Divide y vencerás
```


Algoritmos y estructuras de datos

 Si mostramos el árbol de recursión, aparecen 3 veces Fib(3), 5 veces Fib(2)...complejidad

 Si mostramos el árbol de recursión, aparecen 3 veces Fib(3), 5 veces Fib(2)...complejidad exponencial:

```
import time
start=time.time()
Fibonacci(40)
end=time.time()
print(end-start)
55.022984981536865
```

```
def Fibonaccim(n,memo):
    if n<1 :
        return "ERROR"

if n==1:
        return 0

if n==2:
        return 1

if not n in memo:
        memo[n]= Fibonaccim(n-1,memo)+Fibonaccim(n-2,memo)
    return memo[n]</pre>
```

```
import time
start=time.time()
dicti={}
print(Fibonaccim(150,dicti))
end=time.time()
print(end-start)
```

6161314747715278029583501626149 0.000997304916381836

Tabulación ej.: fib(n)=fib(n-1)+fib(n-2)

F1	F2	F3	F4	F5	F6
0	1				F4+F5
F1	F2	F3	F4	F5	F6
0	1			F3+F4	F4+F5
F1	F2	F3	F4	F5	F6
0	1		F2+F3	F3+F4	F4+F5
F1	F2	F3	F4	F5	F6
0	1	F1+F2	F2+F3	F3+F4	F4+F5
F1	F2	F3	F4	F5	F6
0	1	1	F2+F3	F3+F4	F4+F5
F1	F2	F3	F4	F5	F6

IMAT

• Tabulación:

- El planteamiento es el inverso, resolvemos los problemas de abajo a arriba
- No tiene recursividad y resolvemos los problemas 'pequeños' hasta que por agregación de subproblemas resolvemos el problema principal.
- Se resuelve rellenando una table, y en base a los resultados que obtengamos podremos resolver el problema global.

Tabulación ej.: fib(n)=fib(n-1)+fib(n-2)

F1	F2	F3	F4	F5	F6
0	1	F1+F2			
F1	F2	F3	F4	F5	F6
0	1	1			
F1	F2	F3	F4	F5	F6
0	1	1	F2+F3		
F1	F2	F3	F4	F5	F6
0	1	1	2		
F1	F2	F3	F4	F5	F6
0	1	1	2	F3+F4	
F1	F2	F3	F4	F5	F6
0	1	1	2	3	

- Ejercicio: Dado un número N, encontrar las formas de expresarlo como sumas de 1, 3 y 4:
- N=5 \rightarrow 6 formas: (4,1), (1,4), (3,1,1),(1,3,1),(1,1,3),(1,1,1,1)
- N=4 \rightarrow 4 formas
- Realizar la versión recursiva, y luego ambas versiones, con memorización y con tabulación.

- Ejercicio: Dado un número N, encontrar las formas de expresarlo como sumas de 1, 3 y 4:
- N=5 \rightarrow 6 formas: (4,1), (1,4), (3,1,1), (1,3,1), (1,1,3), (1,1,1,1,1)
- N=4 \rightarrow 4 formas

Número factorizado

```
# Versión recursiva:
def NumFactor(N):
    if N in (0,1,2):
        return 1
    if N == 3 : return 2
    else:
        rec1= NumFactor(N-1)
        rec2= NumFactor(N-3)
        rec3= NumFactor(N-4)
    return rec1+rec2+rec3
print(NumFactor(4))
```


- Ejercicio: Dado un número N, encontrar las formas de expresarlo como sumas de 1, 3 y 4:
- N=5 \rightarrow 6 formas: (4,1), (1,4), (3,1,1), (1,3,1), (1,1,3), (1,1,1,1,1)
- N=4 \rightarrow 4 formas
- CON MEMORIZACIÓN:

```
# Versión memorización:
def NumFactorM(N,dic):
    if N in (0,1,2):
        return 1
    if N == 3 : return 2
    else:
        if N not in dic:
            rec1= NumFactorM(N-1,dic)
            rec2= NumFactorM(N-3,dic)
            rec3= NumFactorM(N-4,dic)
            dic[N]=rec1+rec2+rec3
        return dic[N]
dic={}
print(NumFactorM(8,dic))
```

40

- Ejercicio: Dado un número N, encontrar las formas de expresarlo como sumas de 1, 3 y 4:
- N=5 \rightarrow 6 formas: (4,1), (1,4), (3,1,1),(1,3,1),(1,1,3),(1,1,1,1,1)
- N=4 \rightarrow 4 formas
- CON TABULACIÓN:

```
# Versión Tabulada:
def NumFactorTab(N):
    tb=[1,1,1,2]
    for i in range (4, N+1):
        tb.append(tb[i-1]+tb[i-3]+tb[i-4])

    return tb[N]

print(NumFactorTab(8))
```


Algoritmos Heurísticos y Algoritmos aproximados

- Algoritmo heurístico:
- Procedimiento que puede producir una solución no muy alejada de la óptima, o la óptima si tenemos suerte!
- Algoritmo aproximado:
- Procedimiento que proporciona una solución aproximada, que si bien no es la óptima, se puede 'medir' lo cerca que está.
- Los algoritmos heurísticos y aproximados no garantizan encontrar la solución óptima.
- Los algoritmos aproximados establecen una cota de error.

IMAT

Algoritmos Heurísticos y Algoritmos aproximados

- Ejemplo Algoritmo heurístico:
- https://www.youtube.com/watch?v=L-DebhVbYyl

- Método de Montecarlo:
- https://www.youtube.com/watch?v=WJjDr67frtM

