Segundo Teste da Avaliação Contínua / Análise Matemática I

Duração: 2 horas 17 de Novembro de 2010

Notas importantes: 1. Os resultados usados devem ser enunciados com precisão. O rigor das deduções e o cuidado prestado à sua redacção são elementos importantes para a apreciação da qualidade das respostas.

- 2. Não é permitido usar máquinas de calcular, consultar apontamentos ou quaisquer outros elementos.
- 3. Qualquer tentativa de fraude implica (entre outras consequências) a classificação de zero.
- 4. Se tiver dúvidas na interpretação das questões, explicite-as na prova.
- 5. A cotação de cada pergunta está indicada entre parêntesis rectos.
 - 1. [4.0] Seja $f: D \subset \mathbb{R} \to \mathbb{R}$ e p um ponto de acumulação de D.
 - (a) Defina a noção de limite da função f no ponto p.
 - (b) Demonstre que $\lim_{x\to p} f(x) = b \in \mathbb{R}$ <u>se e só se</u> para cada sucessão $(u_n)_{n\in\mathbb{N}}$ de limite p, com $u_n \in D \setminus \{p\}$ (para todo o $n \in \mathbb{N}$), a sucessão $(f(u_n))_{n\in\mathbb{N}}$ tem por limite b.
 - 2. [1.0] Enuncie o Teorema dos Valores Intermédios (ou Teorema de Bolzano).
 - 3. [1.0] Discuta a existência do seguinte limite: $\lim_{x\to +\infty} e^{-x} \sin x$.
 - 4. [2.0] Considere $p \in \mathbb{R}$. Utilize o *critério de condensação de Cauchy* para demonstrar que a série $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge <u>se e só se</u> p > 1.
 - 5. [3.0] Seja $\sum_{n=1}^{+\infty} a_n$ uma série de termos positivos. Indique, justificando, a natureza das séries:

(a)
$$\sum_{n=1}^{+\infty} (1+a_n)$$
; (b) $\sum_{n=1}^{+\infty} \frac{1}{n^2+a_n}$.

6. [9.0] Estude a natureza das seguintes séries numéricas, indicando, em caso de convergência, se se trata de convergência simples ou absoluta.

(a)
$$\sum_{n=1}^{+\infty} \frac{\sin^2 n}{e^n n^2}$$
; (b) $\sum_{n=1}^{+\infty} (-1)^n \left(\frac{n+1}{n}\right)^n$; (c) $\sum_{n=1}^{+\infty} \frac{n!}{2^n - 1}$;

(d)
$$\sum_{n=1}^{+\infty} (-1)^n \sin \frac{1}{n}$$
; (e) $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{\sqrt{n^5} + 1}$; (f) $\sum_{n=1}^{+\infty} \frac{1}{(3 + (-1)^n)^n}$.