ЛЕКЦІЯ 9

ОСНОВНІ РОЗПОДІЛИ НЕПЕРЕРВНИХ ВИПАДКОВИХ ВЕЛИЧИН

9.1. Рівномірний розподіл

Рівномірний розподіл неперервної випадкової величини X виникає в випробуваннях типу кидання навмання точки на відрізок [a;b] (X — відстань точки від границі a відрізка), або в випробуваннях, зв'язаних з округленням вимірювань фізичних величин за допомогою приладів (X — похибка округлень).

Неперервна випадкова величина X, яка приймає можливі значення з відрізку [a;b], називається *рівномірно розподіленою*, якщо її щільність розподілу має стале значення на цьому відрізку:

$$f(x) = \begin{cases} C, \text{ де } x \in [a; b]; \\ 0, \text{ де } x \notin [a; b]. \end{cases}$$

Значення сталої величини C знаходиться з умови:

$$\int_{a}^{b} f(x) dx = C \cdot \int_{a}^{b} dx = C \cdot (b - a) = 1$$
, звідки $C = \frac{1}{b - a}$.

Отже, *щільність розподілу* рівномірно розподіленої на відрізку [a; b] випадкової величини приймає вигляд (9.1):

$$f(x) = \begin{cases} \frac{1}{b-a}, \text{де } x \in [a;b]; \\ 0, \text{ де } x \notin [a;b]. \end{cases}$$
 (9.1)

Графік щільності ймовірності приведений на рис. 9.1.

Рис. 9.1. Графік функції щільності f(x) рівномірного розподілу

Властивості рівномірного розподілу

1. Функція розподілу F(x) для випадкової величини X, що має рівномірний розподіл, має вигляд (9.2):

$$F(x) = \begin{cases} 0, & \text{де } x < a; \\ \frac{x-a}{b-a}, & \text{де } a \le x \le b; \\ 1, & \text{де } x > b. \end{cases}$$
 (9.2)

Доведення. Функція розподілу F(x) на відрізку [a;b] знаходиться за стандартною формулою:

$$F(x) = \int_{a}^{x} f(x)dx = \frac{1}{b-a} \cdot \int_{a}^{x} dx = \frac{x-a}{b-a},$$

а за властивістю 4 функції розподілу F(x) = 0 при x < a і F(x) = 1 при x > a*b*, отже.

$$F(x) = \begin{cases} 0, & \text{де } x < a; \\ \frac{x-a}{b-a}, \text{де } a \leq x \leq b; \\ 1, & \text{де } x > b. \end{cases}$$
 Графік функції розподілу $F(x)$ поданий на рис. 9.2.

Рис. 9.2. Графік функції розподілу F(x) рівномірного розподілу

2. Числові характеристики $M(X), D(X), \sigma(X)$ рівномірно розподіленої випадкової величини обчислюються за формулами (9.3)-(9.5):

$$M(X) = \frac{a+b}{2};$$

$$D(X) = \frac{(b-a)^2}{12};$$
(9.3)

$$D(X) = \frac{(b-a)^2}{12}; (9.4)$$

$$\sigma(X) = \frac{b-a}{2\cdot\sqrt{3}}.\tag{9.5}$$

Доведення. Числові характеристики знаходяться відповідно за стандартними формулами для неперервних величин:

$$M(X) = \int_{a}^{b} (x \cdot f(x)) dx = \frac{1}{b-a} \cdot \int_{a}^{b} x dx = \frac{b^{2} - a^{2}}{2 \cdot (b-a)} = \frac{a+b}{2},$$

тобто математичне сподівання M(X) співпадає з серединою відрізка [a;b].

$$D(X) = \int_{a}^{b} (x^{2} \cdot f(x)) dx - (M(X))^{2} =$$

$$= \frac{1}{b-a} \cdot \int_{a}^{b} x^{2} dx - \left(\frac{a+b}{2}\right)^{2} = \frac{b^{3} - a^{3}}{3 \cdot (b-a)} - \frac{(a+b)^{2}}{4} =$$

$$= \frac{b^{2} + a \cdot b + a^{2}}{3} - \frac{b^{2} + 2 \cdot a \cdot b + a^{2}}{4} = \frac{(b-a)^{2}}{12};$$

$$\sigma(X) = \sqrt{D(X)} = \frac{b-a}{2 \cdot \sqrt{3}};$$

3. Ймовірність того, що в результаті випробування рівномірно розподілена випадкова величина X прийме можливе значення з інтервалу $(\alpha; \beta)$, який міститься у відрізку $[\alpha; b]$, обчислюється за добре відомою формулою (9.6):

$$P\{\alpha < X < \beta\} = \frac{\beta - \alpha}{b - a}.\tag{9.6}$$

Доведення. За властивість 2 щільності розподілу

$$P\{\alpha < X < \beta\} = \int_{\alpha}^{\beta} f(x) dx = \frac{1}{b-a} \cdot \int_{\alpha}^{\beta} dx = \frac{\beta - \alpha}{b-a}.$$

4. Pівномірний розподіл ϵ багатомодальним.

Доведення. Оскільки в рівномірному розподілі всі значення в інтервалі [a, b] рівноймовірні, то будь-яке значення з інтервалу [a, b] є його модою.

5. Медіана рівномірного розподілу дорівнює середині інтервалу [a, b].

Доведення. Як можна побачити на рис. 9.2, графік щільності розподілу можна візуально розділити навпіл по вертикальній асимптоті, проведеній через точку $x = \frac{a+b}{2}$. Отже, вона і буде медіаною рівномірного розподілу.

6. Коефіцієнт асиметрії рівномірного розподілу As(X) = 0. Ексцес рівномірного розподілу Es(X) = -1,2. Тобто графік щільності рівномірного розподілу є симетричним та має меншу «піковість» в порівнянні з нормальним розподілом (де ексцес дорівнює 0).

Доведення. Для визначення коефіцієнту асиметрії обчислимо центральний момент 3-го порядку за формулою (7.24) лекції 7.

$$v_1(X) = \frac{a+b}{2}, v_2(X) = \frac{b^2 + a \cdot b + a^2}{3}.$$

$$v_{3}(X) = \int_{a}^{b} (x^{3} \cdot f(x)) dx = \frac{1}{b-a} \cdot \int_{a}^{b} x^{3} dx = \frac{b^{4} - a^{4}}{4 \cdot (b-a)}$$

$$= \frac{(a+b) \cdot (a^{2} + b^{2})}{4} = \frac{a^{3} + a \cdot b^{2} + a^{2} \cdot b + b^{3}}{4}.$$

$$\mu_{3}(X) = v_{3}(X) - 3 \cdot v_{2}(X) \cdot v_{1}(X) + 2 \cdot v_{1}^{3}(X)$$

$$= \frac{a^{3} + a \cdot b^{2} + a^{2} \cdot b + b^{3}}{4} - 3 \cdot \frac{b^{2} + a \cdot b + a^{2}}{3} \cdot \frac{a + b}{2} + 2 \cdot \frac{a^{3} + 3 \cdot a^{2} \cdot b + 3 \cdot a \cdot b^{2} + b^{3}}{3} = 0.$$

За означенням коефіцієнта асиметрії (7.27) лекції 7

$$As(X) = \frac{\mu_3(X)}{\sigma^3(X)} = 0.$$

Для визначення ексцесу обчислимо центральний момент 4-го порядку за формулою (7.24) лекції 7.

$$v_{1}(X) = \frac{a+b}{2}, v_{2}(X) = \frac{b^{2}+a\cdot b+a^{2}}{3},$$

$$v_{3}(X) = \frac{a^{3}+a\cdot b^{2}+b^{2}\cdot a+b^{3}}{4},$$

$$v_{4}(X) = \int_{a}^{b} (x^{4}\cdot f(x))dx = \frac{1}{b-a} \cdot \int_{a}^{b} x^{4}dx = \frac{b^{5}-a^{5}}{5\cdot (b-a)}.$$

$$\mu_{4}(X) = v_{4}(X) - 4 \cdot v_{3}(X) \cdot v_{1}(X) + 6 \cdot v_{2}(X) \cdot v_{1}^{2}(X) - 3 \cdot v_{1}^{4}(X)$$

$$= \frac{(b-a)^{4}}{80},$$

$$\sigma(X) = \sqrt{D(X)} = \frac{b-a}{2\cdot \sqrt{3}}.$$

За означенням коефіцієнта асиметрії (7.27) лекції 7

$$Es(X) = \frac{\mu_4(X)}{\sigma^4(X)} - 3 = \frac{\frac{(b-a)^4}{80}}{\frac{(b-a)^4}{144}} - 3 = 1.8 - 3 = -1.2.$$

7. Ентропія рівномірного розподілу дорівнює (9.7):

$$H(X) = \log_2(b - a). \tag{9.7}$$

Доведення. Ентропія рівномірного розподілу визначається за формулою:

$$H(X) = -\int_{-\infty}^{+\infty} \left(f(x) \cdot \log_2(f(x)) \right) dx =$$

$$= -\int_a^b \left(\frac{1}{b-a} \cdot \log_2\left(\frac{1}{b-a}\right) \right) dx = -\left(\frac{1}{b-a} \cdot \log_2\left(\frac{1}{b-a}\right) \right) \cdot \int_a^b dx =$$

$$= \log_2(b-a).$$

Приклад 9.1. Автобуси «Політ» вирушають до аеропорту Бориспіль з інтервалом 30 хв. Час очікування автобуса на зупинці – випадкова рівномірно розподілена величина X. **1.** Знайти функцію розподілу, числові характеристики цієї випадкової величини, а також ймовірність того, що час очікування для пасажира, який в випадковий момент підійшов до зупинки, не перевищить 5 хв. 2. Обчислити інформаційну ентропію випадкової величини.

Розв'язання. 1. Випадкова величина X рівномірно розподілена на відрізку [0; 30], тому на цьому відрізку щільність розподілу $f(x) = \frac{1}{20}$, а функція розподілу, згідно з формулою (9.2)

F(x) =
$$\begin{cases} 0, & \text{де } x < 0; \\ \frac{x}{30}, & \text{де } 0 \le x \le 30 \\ 1, & \text{де } x > 30. \end{cases}$$

Числові характеристики знаходяться за формулами (9.3)-(9.5):

$$M(X) = 15$$
; $D(X) = 75$; $\sigma(X) \approx 8,66$,

а ймовірність того, що час очікування не перевищить 5 хв. — за формулою (9.6):

$$P\{0 < X < 5\} = \frac{1}{6}.$$

2. За формулою (9.7)

$$H(X) = log_2$$
 (30) ≈ 4,91 біта.

Відповідь: 1. M(X) = 15; D(X) = 75; $\sigma(X) \approx 8,66$; $P\{0 < X < 5\} = \frac{1}{6}$; 2. $H(X) \approx 4.91$ біта.

Приклад 9.2. Ребро l кубу виміряне приблизно, причому $a \le l \le b$. Розглядаючи довжину ребра куба як неперервну випадкову величину X, розподілену рівномірно на [a; b], знайти математичне сподівання та дисперсію об'єму кубу.

Розв'язання. Складемо функцію щільності для випадкової величини X = l.

$$f(X) = \begin{cases} \frac{1}{b-a}, \text{де } l \in [a;b]; \\ 0, \text{ де } l \notin [a;b]. \end{cases}$$

 $f(X) = \begin{cases} \dfrac{1}{b-a}, \text{де } l \in [a;b]; \\ 0, & \text{де } l \notin [a;b]. \end{cases}$ Враховуючи, що $V_{\text{кубу}} = X^3 = l^3$, обчислимо числові характеристики для випадкової величини X^3

$$M(X^{3}) = \int_{a}^{b} \left(l^{3} \cdot \frac{1}{b-a} \right) dx = \frac{l^{4}}{4 \cdot (b-a)} \Big|_{a}^{b} = \frac{b^{4} - a^{4}}{4 \cdot (b-a)}.$$

$$M(X^{6}) = \int_{a}^{b} \left(l^{6} \cdot \frac{1}{b-a} \right) dx = \frac{l^{7}}{7 \cdot (b-a)} \Big|_{a}^{b} = \frac{b^{7} - a^{7}}{7 \cdot (b-a)}.$$

$$D(X^3) = M(X^6) - (M(X^3))^2 = \frac{b^7 - a^7}{7 \cdot (b - a)} - \left(\frac{b^4 - a^4}{4 \cdot (b - a)}\right)^2 =$$

$$= \frac{9 \cdot a^8 - 16 \cdot a^7 \cdot b - 16 \cdot a \cdot b^7 + 14 \cdot a^4 \cdot b^4 + 9 \cdot b^8}{112}.$$
Відповідь: $M(X^3) = \frac{b^4 - a^4}{4 \cdot (b - a)}$; $D(X^3) = \frac{b^7 - a^7}{7 \cdot (b - a)} - \left(\frac{b^4 - a^4}{4 \cdot (b - a)}\right)^2.$
9.2. Нормальний розподіл

Нормальний закон розподілу неперервної випадкової величини є одним із найбільш часто вживаних в практичних застосуваннях розподілів. Йому підлягають похибки вимірювань різних фізичних величин, розміри або маса виробів, які сходять з поточної лінії, тощо. Взагалі, будь-яка випадкова величина, яка являє собою суму багатьох незалежних випадкових величин, кожна з яких відіграє незначну роль в утворенні суми, має нормальний розподіл.

Неперервна випадкова величина X називається розподіленою за *нормальним законом* (або *законом Гауса*) з параметрами a (в деяких підручниках позначається μ) і σ , якщо її *щільність розподілу* має вигляд (9.8):

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-a)^2}{2 \cdot \sigma^2}}$$
(9.8)

для всіх $x \in (-\infty; +\infty)$.

Дамо коротку характеристику графіка щільності ймовірності f(x) нормального розподілу, який називається нормальною кривою або кривою Гаусса:

- Оскільки різниця x a входить в аналітичний вираз f(x) (9.8) в квадраті, нормальна крива симетрична відносно прямої x = a.
- Перша похідна $f'(x) = -\frac{x-a}{\sigma^3 \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-a)^2}{2 \cdot \sigma^2}}$ в точці x = a перетворюється в нуль, а при переході через цю точку змінює знак з + на -, отже, в точці x = a функція f(x) має максимум $f(a) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}}$.
- -, отже, в точці x=a функція f(x) має максимум $f(a)=\frac{1}{\sigma\cdot\sqrt{2\cdot\pi}}$.

 Друга похідна $f''(x)=\frac{(x-a)^2-\sigma^2}{\sigma^5\cdot\sqrt{2\cdot\pi}}\cdot e^{-\frac{(x-a)^2}{2\cdot\sigma^2}}$ в точках $x=a\pm\sigma$ перетворюється в нуль, а при переході через ці точки змінює знак, отже, в точках $x=a\pm\sigma$ графік функції має перегин

$$f(a \pm \sigma) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi \cdot e}}.$$

- При $x \to \pm \infty$ $f(x) \to 0$, отже, вісь абсцис є лівою і правою асимптотою графіка функції f(x).

Графік щільності ймовірності f(x) поданий на рис. 9.3.

Рис. 9.3. Графік функції щільності f(x) нормального розподілу

Властивості нормального розподілу

1. Функція розподілу F(x) нормально розподіленої випадкової величини X має вигляд (9.9):

$$F(x) = \Phi\left(\frac{x-a}{\sigma}\right) + 0.5. \tag{9.9}$$

Доведення. З формули (9.9) отримуємо:

1.

$$F(x) = P\{X < x\} = P\{-\infty < X < x\} = \Phi\left(\frac{x - a}{\sigma}\right) - \Phi(-\infty)$$
$$= \Phi\left(\frac{x - a}{\sigma}\right) + 0.5.$$

Перевіримо, чи задовольняє функція F(x) властивостям функції розподілу випадкової величини.

При
$$\frac{x-a}{\sigma} \to -\infty$$
 $F(x) = -0.5 + 0.5 = 0; \frac{x-a}{\sigma} \to +\infty$ $F(x) = 0.5 + 0.5 = 0$

Графік функції розподілу наведено на рис. 9.4.

Рис. 9.4. Графік функції розподілу F(x) нормального розподілу

2. Параметри нормального розподілу мають такий ймовірнісний зміст: у нормально розподіленої випадкової величини

$$M(X) = a$$
; $D(X) = \sigma^2$; $\sigma(X) = \sigma$.

Доведення. Математичне сподівання випадкової величини X:

$$M(X) = \int_{-\infty}^{+\infty} (x \cdot f(x)) dx = \int_{-\infty}^{+\infty} \left(x \cdot \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-a)^2}{2 \cdot \sigma^2}} \right) dx =$$

$$\begin{bmatrix} t = \frac{x-a}{\sigma \cdot \sqrt{2}} \\ x = t \cdot \sigma \cdot \sqrt{2} + a; dx = (\sigma \cdot \sqrt{2}) dt \end{bmatrix} = \int_{-\infty}^{+\infty} \left((t \cdot \sigma \cdot \sqrt{2} + a) \cdot \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-t^2} \right) \cdot$$

$$(\sigma \cdot \sqrt{2}) dt = \frac{\sigma \cdot \sqrt{2}}{\sqrt{\pi}} \cdot \int_{-\infty}^{+\infty} (t \cdot e^{-t^2}) dt + \frac{a}{\sqrt{\pi}} \cdot \int_{-\infty}^{+\infty} e^{-t^2} dt = 0 + \frac{a}{\sqrt{\pi}} \cdot \sqrt{\pi} = a.$$

Перший інтеграл дорівнює нулю, як інтеграл від непарної функції; другий інтеграл – інтеграл Ейлера-Пуассона $\int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.

Інтегруємо частинами.

$$= 0 + \frac{\sigma^2}{\sqrt{\pi}} \cdot \sqrt{\pi} = \sigma^2.$$

$$\sigma(X) = \sqrt{D(X)} = \sigma.$$

3. Ймовірність того, що в результаті випробування нормально розподілена випадкова величина X прийме можливе значення з інтервалу $(\alpha; \beta)$, обчислюється за формулою (9.10):

$$P\{\alpha < X < \beta\} = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right). \tag{9.10}$$

Доведення. Ймовірність того, що в результаті випробування нормально розподілена випадкова величина X прийме можливе значення з інтервалу $(\alpha; \beta)$, обчислюється за стандартною формулою:

$$P\{\alpha < X < \beta\} = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \int_{\alpha}^{\beta} e^{-\frac{(x-\alpha)^2}{2 \cdot \sigma^2}} dx$$

Застосовуємо заміну $t=\frac{x-a}{\sigma}$, одержуємо $dx=\sigma dt$ і межі інтегрування для змінної t від $\frac{\alpha-a}{\sigma}$ до $\frac{\beta-a}{\sigma}$, отже,

$$\frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \int_{\frac{\alpha - a}{\sigma}}^{\frac{\beta - a}{\sigma}} e^{-\frac{t^2}{2}} \cdot \sigma dt = \frac{1}{\sqrt{2 \cdot \pi}} \cdot \left(\int_{\frac{\alpha - a}{\sigma}}^{0} e^{-\frac{t^2}{2}} dt + \int_{0}^{\frac{\beta - a}{\sigma}} e^{-\frac{t^2}{2}} dt \right) = \frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{0}^{\frac{\beta - a}{\sigma}} e^{-\frac{t^2}{2}} dt = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right),$$
 де $\Phi(x)$ — функція Лапласа (формула (4.5) лекції 4). Що й треба було довести.

4. Ймовірність того, що відхилення нормально розподіленої випадкової величини X від її математичного сподівання за абсолютним значенням буде меншим заданого ε дорівню ε (9.11):

$$P\{|X - a| < \varepsilon\} = 2 \cdot \Phi\left(\frac{\varepsilon}{\sigma}\right). \tag{9.11}$$

Доведення. З формули (9.10) маємо:

$$P\{|X-a|<\varepsilon\} = P\{a-\varepsilon < X < a+\varepsilon\} = \Phi\left(\frac{a+\varepsilon-a}{\sigma}\right) - \Phi\left(\frac{a-\varepsilon-a}{\sigma}\right) = 2\cdot\Phi\left(\frac{\varepsilon}{\sigma}\right).$$

5. Правило «трьох сігм». *Ймовірність того, що випадкова величина* приймає значення з інтервалу $(\alpha - 3 \cdot \sigma; \alpha + 3 \cdot \sigma)$, близька до 1, отже, ця подія є практично достовірною. Виконання цього правила дає підставу вважати випадкову величину X розподіленою за нормальним законом.

Доведення. З формули (9.11) випливає:

При $\varepsilon = \sigma$ маємо $P\{|X - a| < \sigma\} = 2 \cdot \Phi(1) \approx 0.6827$;

При $\varepsilon = 2 \cdot \sigma$ маємо $P\{|X - a| < 2 \cdot \sigma\} = 2 \cdot \Phi(2) \approx 0.9545$;

При $\varepsilon=3\cdot\sigma$ маємо $P\{|X-a|<3\cdot\sigma\}=2\cdot\Phi(3)\approx 0,9973.$

Отже, дійсно, ймовірність того, що випадкова величина приймає значення з інтервалу $(a-3\cdot\sigma;a+3\cdot\sigma)$, близька до 1.

6. Мода та медіана випадкової величини X, що має нормальний розподіл, співпадають з її математичним сподіванням (9.12).

$$Mo(X) = Me(X) = a. (9.12)$$

Доведення. З властивостей функції щільності f(x) випливає, що $x_{max} = a$ (рис. 9.3). Отже Mo(X) = a.

Оскільки функції щільності f(x) є симетричною відносно прямої x = a, то Me(X) = a.

7. Коефіцієнт асиметрії та ексцес випадкової величини X, що має нормальний розподіл дорівнюють: As(X) = Es(X) = 0.

Доведення. Оскільки функції щільності f(x) є симетричною відносно прямої x = a, то As(X) = 0.

Для обчислення ексцесу, враховуємо, що для нормального розподілу всі непарні центральні моменти дорівнюють нулю, а парні моменти можуть бути виражені через дисперсію σ^2 . Зокрема, четвертий центральний момент дорівнює $\mu_4(X) = 3 \cdot \sigma^4$. Тобто

$$Es(X) = \frac{\mu_4(X)}{\sigma^4(X)} - 3 = 0.$$

8. Інформаційна ентропія випадкової величини X, що має нормальний розподіл, дорівнюють (9.13):

$$H(X) = \frac{1}{2} \cdot \log_2(2 \cdot \pi \cdot e \cdot \sigma^2) . \tag{9.13}$$

Доведення. Ентропія нормального розподілу визначається за формулою:

$$H(X) = -\int_{-\infty}^{+\infty} \left(f(x) \cdot \log_2(f(x)) \right) dx =$$

$$= -\int_{-\infty}^{+\infty} \left(\frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-a)^2}{2 \cdot \sigma^2}} \cdot \log_2\left(\frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-a)^2}{2 \cdot \sigma^2}} \right) \right) dx =$$

$$= \frac{1}{2} \cdot \log_2(2 \cdot \pi \cdot e \cdot \sigma^2).$$

Приклад 9.3. Нормально розподілена випадкова величина X задана щільністю ймовірності

$$f(x) = \frac{1}{2 \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-3)^2}{8}}.$$

Знайти: 1. Скласти функцію розподілу випадкової величини X; 2. Обчислити квантиль порядку 0,75; 3. Інформаційну ентропію випадкової величини.

Розв'язання. За умовою. для випадкової величини X, a=3, $\sigma=2$.

1. За формулою (9.9)

$$F(x) = \Phi\left(\frac{x-3}{2}\right) + 0.5.$$

2. За означенням квантиля випадкової величини (формула (7.30) лекції 7):

$$F(x_{0,75}) = 0,75;$$

$$\Phi\left(\frac{x_{0,75}-3}{2}\right) + 0,5 = 0,75;$$

$$\Phi\left(\frac{x_{0,75}-3}{2}\right) = 0,25;$$

$$\frac{x_{0,75}-3}{2} = 0,68;$$

$$x_{0,75} = 4,36.$$

(значення функції $\Phi(x)$ взяті із таблиці значень функції Лапласа (рис. 4.4 лекції 4).

3. За формулою (9.13)

$$H(X) = \frac{1}{2} \cdot \log_2(2 \cdot \pi \cdot e \cdot \sigma^2) = \frac{1}{2} \cdot \log_2(8 \cdot \pi \cdot e) \approx 3,047 \text{ бira.}$$

Відповідь: 1.
$$F(x) = \Phi\left(\frac{x-3}{2}\right) + \frac{1}{2}$$
; 2. $x_{0,75} = 4,36$; 3. $H(X) \approx 3,047$ біта.

Приклад 9.4. За даними відділу технічного контролю 10% виробів підприємства має довжину, меншу 14,7 см, а 20% — довжину, більшу 15,2 см. Довжина виробів — нормально розподілена випадкова величина X. Знайти середній (номінальний) розмір виробів і його середнє квадратичне (стандартне) відхилення.

Розв'язання. За умовою задачі $P\{X < 14,7\} = 0,1; P\{X > 15,2\} = 0,2.$ Згідно з формулою (9.10)

$$P\{X < 14,7\} = P\{-\infty < X < 14,7\} = \Phi\left(\frac{14,7-a}{\sigma}\right) - \Phi(-\infty) = \Phi\left(\frac{14,7-a}{\sigma}\right) + 0,5 = 0,1,$$

звідки $\Phi\left(\frac{14,7-a}{\sigma}\right) = -0,4.$

Із таблиці значень функції Лапласа (рис. 4.4 лекції 4) за відомим значенням функції знаходимо

$$\frac{14,7-a}{\sigma} = -1,28$$
 a fo $a - 1,28 \cdot \sigma = 14,7$.

Аналогічно за формулою (9.9)

$$P\{X > 15,2\} = P\{15,2 < X < +\infty\} = \Phi(+\infty) - \Phi\left(\frac{15,2-a}{\sigma}\right) = 0.5 - \Phi\left(\frac{15,2-a}{\sigma}\right) = 0.2,$$

звідки $\Phi\left(\frac{15,2-a}{\sigma}\right)=0,3; \frac{15,2-a}{\sigma}=0,84$ або $a+0,84\cdot\sigma=15,2.$

Одержана система

$$\begin{cases} a - 1,28 \cdot \sigma = 14,7; \\ a + 0,84 \cdot \sigma = 15,2 \end{cases}$$

має розв'язок a=15; $\sigma=0.235$.

Відповідь: Середній розмір виробів дорівнює 15 см, а стандартне відхилення 0,235 см.

Приклад 9.5. Систематична похибка утримання висоти літаком складає $\pm 20\,$ м, а випадкова похибка розподілена нормально з середнім квадратичним відхиленням 75 м. Для польоту літаку надано коридор висотою $100\,$ м. Знайти ймовірність того, що політ буде відбуватись а) нижче; б) всередині; в) вище коридора, якщо літаку задана висота, відповідна середині коридора.

Розв'язання. Позначимо через X сумарну похибку утримання висоти. Її систематична складова ± 20 м, середнє квадратичне відхилення $\sigma = 75$ м. Оскільки літаку задана висота, відповідна середині коридора, для того, щоб політ відбувався нижче коридора, повинно бути X < -50, всередині коридора -50 < X < 50 і вище коридора X > 50.

За формулою (9.10) одержимо

a)
$$P\{X < -50\} = P\{-\infty < X < -50\} = \Phi\left(\frac{-50-20}{75}\right) - \Phi(-\infty) = \Phi(-0.93) + 0.5 = -0.3238 + 0.5 = 0.1762;$$

6)
$$P\{-50 < X < 50\} = \Phi\left(\frac{50-20}{75}\right) - \Phi\left(\frac{-50-20}{75}\right) = \Phi(0,4) - \Phi(-0,93) = 0.1554 + 0.3238 = 0.4792;$$

B)
$$P\{X > 50\} = P\{50 < X < +\infty\} = \Phi(+\infty) - \Phi\left(\frac{50-20}{75}\right) = 0.5 - \Phi(0.4) = 0.5 - 0.1554 = 0.3446.$$

Очевидно, розглянуті події утворюють повну групу, тому їх сумарна ймовірність дорівнює одиниці.

Відповідь: a)
$$P\{X < -50\} = 0.1762$$
; б) $P\{-50 < X < 50\} = 0.4792$; в) $P\{X > 50\} = 0.3446$.

Приклад 9.6. Коробка з мармеладом пакується автоматично. В середньому маса однієї коробки становить 1,06 кг. Знайти середнє квадратичне відхилення, якщо 5% коробок мають масу не більшу за 1 кг. (Вважається, що ваги коробок розподілені за нормальним законом).

Розв'язання. Оскільки 5% коробок з мармеладом важать менше, ніж 1 кг, а M(X) = 1,06, то $|X - 1,06| \ge 0,06$.

$$P\{|X-1,06| \ge 0,06\} = 0,05,$$

тоді, ймовірність протилежної події дорівнює:

$$P\{|X-1,06|<0,06\}=0,95.$$

За формулою (9.11)

$$P\{|X-1,06|<0,06\}=2\cdot\Phi\left(\frac{0,06}{\sigma}\right)=0,95.$$

Розв'яжемо рівняння

$$2 \cdot \Phi\left(\frac{0,06}{\sigma}\right) = 0,95;$$

$$\Phi\left(\frac{0,06}{\sigma}\right) = 0,475;$$

$$\frac{0,06}{\sigma} = 1,96;$$

$$\sigma \approx 0.03.$$

Відповідь: $\sigma \approx 0.03$.

Приклад 9.7. Випадкова величина X має нормальний розподіл з математичним сподіванням a = 25. Ймовірність попадання випадкової величини X в інтервал (20; 30) дорівнює 0,09. Чому дорівнює ймовірність попадання в інтервал (35; 40)?

Розв'язання. Щільність та функція розподілу випадкової величини мають вигляд:

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(x-25)^2}{2 \cdot \sigma^2}}; F(x) = \Phi\left(\frac{x-25}{\sigma}\right) + 0.5.$$

$$20 < X < 30 \Rightarrow 20 - 25 < X - 25 < 30 - 25 \Rightarrow |X - 25| < 5.$$

$$P\{|X - 25| < 5\} = 2 \cdot \Phi\left(\frac{5}{\sigma}\right) = 0.09.$$

Розв'яжемо рівняння

$$2 \cdot \Phi\left(\frac{5}{\sigma}\right) = 0.09;$$

$$\Phi\left(\frac{5}{\sigma}\right) = 0.045;$$

$$\frac{5}{\sigma} = 0.11;$$

$$\sigma \approx 45.$$

Таким чином

$$F(x) = \Phi\left(\frac{x-25}{45}\right) + 0.5.$$

За формулою (9.10) одержимо

$$P\{35 < X < 40\} = \Phi\left(\frac{40 - 25}{45}\right) - \Phi\left(\frac{35 - 25}{45}\right) =$$
$$= \Phi\left(\frac{1}{3}\right) - \Phi\left(\frac{2}{9}\right) \approx 0,1293 - 0,0871 \approx 0,0422.$$

Відповідь: $P{35 < X < 40} \approx 0,0422.$

9.3. Показниковий розподіл

Показниковий або експоненціальний розподіл неперервної випадкової величини має широке застосування в теорії надійності технічного обладнання для характеристики терміну безвідмовної роботи елементів та пристроїв і в теорії масового обслуговування для характеристики тривалості обслуговування або технологічних процесів.

Неперервна випадкова величина X називається розподіленою за показниковим (експоненціальним) законом з параметром λ , якщо її щільність розподілу (9.14)

$$f(x) = \begin{cases} \lambda \cdot e^{-(\lambda \cdot x)}, \text{ де } x > 0; \\ 0, \text{ де } x \le 0. \end{cases}$$
 (9.14)

Графік щільності ймовірності f(x) поданий на рис. 9.5.

Рис. 9.5. Графік функції щільності f(x) показникового розподілу

Властивості показникового розподілу

1. Функція розподілу F(x) має вигляд (9.15):

$$F(x) = \begin{cases} 1 - e^{-(\lambda \cdot x)}, & \text{de } x > 0; \\ 0, & \text{de } x \le 0. \end{cases}$$
 (9.15)

Доведення. При x > 0

$$F(x) = \int_0^x f(x)dx = \lambda \cdot \int_0^x e^{-(\lambda \cdot x)} dx = -e^{-(\lambda \cdot x)} \Big|_0^x = 1 - e^{-(\lambda \cdot x)}.$$

При $x \leq 0$

$$F(x) = \int_{-\infty}^{x} f(x) dx = 0.$$

Графік функції розподілу F(x) подані відповідно на рис. 9.6.

Рис. 9.6. Графік функції розподілу F(x) показникового розподілу

2. Числові характеристики $M(X), D(X), \sigma(X)$ показниково розподіленої випадкової величини обчислюються за формулами (9.16)-(9.18):

$$M(X) = \frac{1}{3};$$
 (9.16)

$$D(X) = \frac{1}{\lambda^2}; (9.17)$$

$$M(X) = \frac{1}{\lambda};$$
 (9.16)
 $D(X) = \frac{1}{\lambda^2};$ (9.17)
 $\sigma(X) = \frac{1}{\lambda}.$ (9.18)

Доведення. Математичне сподівання M(X) обчислюється за стандартною формулою:

$$M(X) = \lambda \cdot \int_{0}^{+\infty} \left(x \cdot e^{-(\lambda \cdot x)}\right) dx =$$

$$= \lambda \cdot \lim_{b \to +\infty} \int_{0}^{b} \left(x \cdot e^{-(\lambda \cdot x)}\right) dx = \begin{bmatrix} u = x; du = dx \\ dv = e^{-(\lambda \cdot x)} dx; v = -\frac{e^{-(\lambda \cdot x)}}{\lambda} \end{bmatrix}$$

$$= \lambda \cdot \lim_{b \to +\infty} \left(-\frac{x \cdot e^{-(\lambda \cdot x)}}{\lambda} \Big|_{0}^{b} + \frac{1}{\lambda} \cdot \int_{0}^{b} e^{-(\lambda \cdot x)} dx\right) =$$

$$= \lambda \cdot \lim_{b \to +\infty} \left(-\frac{b \cdot e^{-(\lambda \cdot b)}}{\lambda} - \frac{e^{-(\lambda \cdot x)}}{\lambda^{2}} \Big|_{0}^{b}\right) =$$

$$= \lambda \cdot \lim_{b \to +\infty} \left(-\frac{b \cdot e^{-(\lambda \cdot b)}}{\lambda} - \frac{1}{\lambda^{2}} \cdot \left(e^{-(\lambda \cdot x)} - 1\right)\right) =$$

$$= \lim_{b \to +\infty} \left(-b \cdot e^{-(\lambda \cdot b)} - \frac{1}{\lambda} \cdot \left(e^{-(\lambda \cdot b)} - 1\right)\right) = \frac{1}{\lambda},$$

 $\lim_{b \to +\infty} \left(b \cdot e^{-(\lambda \cdot b)} \right) = 0$ за правилом Лопіталя.

Тобто математичне сподівання показникового розподілу ϵ величина, обернена до параметра λ .

Дисперсію D(X) обчислимо за стандартною формулою:

$$D(X) = \lambda \cdot \int_{0}^{+\infty} \left(x^{2} \cdot e^{-(\lambda \cdot x)}\right) dx - \frac{1}{\lambda^{2}} = \lambda \cdot \lim_{b \to +\infty} \int_{0}^{b} \left(x^{2} \cdot e^{-(\lambda \cdot x)}\right) dx - \frac{1}{\lambda^{2}} =$$

$$= \begin{bmatrix} u = x^{2}; du = (2 \cdot x) dx \\ dv = e^{-(\lambda \cdot x)} dx; v = -\frac{e^{-\lambda \cdot x} e^{-(\lambda \cdot x)}}{\lambda} \end{bmatrix} =$$

$$= \lambda \cdot \lim_{b \to +\infty} \left(-\frac{x^{2} \cdot e^{-(\lambda \cdot x)}}{\lambda} \Big|_{0}^{b} + \frac{2}{\lambda} \cdot \int_{0}^{b} \left(x \cdot e^{-(\lambda \cdot x)}\right) dx\right) - \frac{1}{\lambda^{2}} =$$

$$= \lambda \cdot \lim_{b \to +\infty} \left(-\frac{b^{2} \cdot e^{-(\lambda \cdot b)}}{\lambda} + \frac{2}{\lambda} \cdot \int_{0}^{b} \left(x \cdot e^{-(\lambda \cdot x)}\right) dx\right) - \frac{1}{\lambda^{2}} =$$

$$= \lim_{b \to +\infty} \left(-b^{2} \cdot e^{-(\lambda \cdot b)} + 2 \cdot \int_{0}^{b} \left(x \cdot e^{-(\lambda \cdot x)}\right) dx\right) - \frac{1}{\lambda^{2}} =$$

$$= \frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}},$$

 $\lim_{b\to +\infty} \left(b^2\cdot e^{-(\lambda\cdot b)}\right)=0$ за правилом Лопіталя, а $\int_0^b \left(x\cdot e^{-(\lambda\cdot x)}\right)dx=\frac{M(X)}{\lambda}=\frac{1}{\lambda^2}$

$$\sigma(X) = \sqrt{D(X)} = \frac{1}{4}.$$

3. Ймовірність того, що випадкова величина X, яка має показниковий розподіл, в результаті випробування прийме можливе значення з інтервалу (a;b) при a>0; b>0, дорівнює (9.19):

$$P\{a < X < b\} = e^{-(\lambda \cdot a)} - e^{-(\lambda \cdot b)}.$$
 (9.19)

Доведення. За стандартною формулою

$$P\{a < X < b\} = \int_a^b f(x)dx = \lambda \cdot \int_a^b e^{-(\lambda \cdot x)}dx = -e^{-(\lambda \cdot x)} \Big|_a^b = e^{-(\lambda \cdot a)} - e^{-(\lambda \cdot b)}.$$

4. Мода та медіана випадкової величини X, що має показниковий розподіл, відповідно дорівнюють (9.9):

$$Mo(X) = 0; Me(X) = \frac{\ln(2)}{\lambda}.$$
 (9.20)

Доведення. Функція щільності показникової випадкової величини Х

$$f(x) = \lambda \cdot e^{-(\lambda \cdot x)} = \frac{\lambda}{e^{(\lambda \cdot x)}}$$
, де $x > 0$,

досягає свого максимального значення $f_{max} = \lambda$ в точці $x_{max} = 0$ ($f(0) = \lambda$). Цей факт є очевидним, оскільки вираз $\frac{\lambda}{e^{\lambda \cdot x}} \to 0$ при $x \to +\infty$, а, тому немає необхідності досліджувати на екстремуми за допомогою похідних (також це видно з рис. 9.5). Таким чином, Mo(X) = 0.

3 формули (6.18) лекції 6

$$F(Me(X)) = 0.5;$$

$$1 - e^{-(\lambda \cdot Me(X))} = 0.5;$$

$$e^{-(\lambda \cdot Me(X))} = 0.5;$$

$$-\lambda \cdot Me(X) = l n(0.5);$$

$$-\lambda \cdot Me(X) = -l n(2);$$

$$Me(X) = \frac{ln(2)}{\lambda}.$$

5. Коефіцієнт асиметрії випадкової величини X, що має показниковий розподіл, As(X) = 2. Ексцес випадкової величини X, що має показниковий розподіл, Es(X) = 6. Тобто показниковий розподіл не є симетричним (зсув праворуч від моди) в порівнянні з нормальним розподілом (де коефіцієнт асиметрії дорівнює 0). Також даний розподіл має більшу «піковість» в порівнянні з нормальним розподілом (де ексцес дорівнює 0).

Доведення. Для визначення коефіцієнту асиметрії обчислимо центральні момент 3-го порядку. З формули (7.24) лекції 7

$$\mu_3(X) = M\left(X - M(X)\right)^3 = M\left(X - \frac{1}{\lambda}\right)^3 = \lambda \cdot \int_0^{+\infty} \left(\left(x - \frac{1}{\lambda}\right)^3 \cdot e^{-(\lambda \cdot x)}\right) dx$$
$$= \frac{2}{\lambda^3}.$$

Тоді коефіцієнт асиметрії дорівнює:

$$As(X) = \frac{\mu_3(X)}{\sigma^3(X)} = \frac{\frac{2}{\lambda^3}}{\frac{1}{\lambda^3}} = 2.$$

Для визначення ексцесу обчислимо центральні момент 4-го порядку. З формули (7.25) лекції 7

$$\mu_4(X) = M\left(X - M(X)\right)^4 = M\left(X - \frac{1}{\lambda}\right)^4 = \lambda \cdot \int_0^{+\infty} \left(\left(x - \frac{1}{\lambda}\right)^4 \cdot e^{-(\lambda \cdot x)}\right) dx$$
$$= \frac{9}{\lambda^4}.$$

Тоді ексцес дорівнює:

$$Es(X) = \frac{\mu_4(X)}{\sigma^4(X)} - 3 = \frac{\frac{9}{\lambda^4}}{\frac{1}{\lambda^4}} - 3 = 6.$$

6. Інформаційна ентропія випадкової величини X, що має показниковий розподіл, дорівнюють (9.21):

$$H(X) = \log_2\left(\frac{e}{\lambda}\right). \tag{9.21}$$

Доведення. Ентропія показникового розподілу визначається за формулою:

$$H(X) = -\int_{-\infty}^{+\infty} \left(f(x) \cdot \log_2(f(x)) \right) dx =$$

$$= -\lambda \cdot \int_0^{+\infty} \left(e^{-(\lambda \cdot x)} \cdot \log_2(\lambda \cdot e^{-(\lambda \cdot x)}) \right) dx =$$

$$= -\lambda \cdot \int_0^{+\infty} \left(e^{-(\lambda \cdot x)} \cdot \left(\log_2(\lambda) + \log_2(e^{-(\lambda \cdot x)}) \right) \right) dx =$$

$$= -\lambda \cdot \int_0^{+\infty} \left(e^{-(\lambda \cdot x)} \cdot \left(\log_2(\lambda) - (\lambda \cdot x) \cdot \log_2(e) \right) \right) dx =$$

$$= -\lambda \cdot \log_2(\lambda) \cdot \int_0^{+\infty} e^{-(\lambda \cdot x)} dx + \lambda^2 \cdot \log_2(e) \cdot$$

$$\cdot \int_0^{+\infty} \left(x \cdot e^{-(\lambda \cdot x)} \right) dx = \log_2(e) - \log_2(\lambda) = \log_2\left(\frac{e}{\lambda}\right).$$

Приклад 9.8. Час обслуговування пасажира в авіакасі — випадкова величина T, розподілена за показниковим законом з середнім значенням, рівним 5 хв. Знайти ймовірність того, що пасажир, який звернувся до каси буде обслуговуватись: **a**) від 2,5 до 5 хв.; **б**) більше 10 хв.

Розв'язання. а) За умовою задачі математичне сподівання (середнє значення) M(T) = 5, тому за формулою (9.16) параметр розподілу $\lambda = 0.2$. Ймовірність того, що час обслуговування пасажира буде знаходитись в межах від 2,5 до 5 хв., обчислюється за формулою (9.19):

$$P{2,5 < X < 5} = e^{-(0,2\cdot2,5)} - e^{-(0,2\cdot5)} = e^{-0,5} - e^{-1} \approx 0,2386.$$

б) Ймовірність того, що час обслуговування буде більший 10 хв., також обчислюється за формулою (9.19):

$$P{X > 10} = P{10 < X < +\infty} = e^{-2} \approx 0.1353.$$

Відповідь. a)
$$P{2,5 < X < 5} \approx 0,2386$$
; б) $P{X > 10} \approx 0,1353$.

Якщо випадкова величина T з показниковим розподілом — тривалість безвідмовної роботи деякого елемента, а λ — інтенсивність відмов цього елемента, то функція розподілу $F(t) = 1 - e^{-(\lambda \cdot t)}$ ($\lambda > 0$) визначає ймовірність відмови елемента за час t. При цьому функція $R(t) = e^{-(\lambda \cdot t)}$ визначає ймовірність безвідмовної роботи елемента за час t і називається функцією надійності.

Приклад 9.9. Тривалість часу безвідмовної роботи елемента системи — випадкова величина T, розподілена за показниковим законом з функцією розподілу $F(t) = 1 - e^{-(0,01 \cdot t)}$. Знайти ймовірність того, що протягом доби елемент: a) відмовить; b0 не відмовить.

Розв'язання. a) Розглянемо подію: $A = \{$ елемент системи відмовить $\}$.

Ймовірність відмови P(A) елемента на протязі доби дорівнює значенню функції розподілу F(t) при t=24 год.:

$$P(A) = F(24) = 1 - e^{-0.24} \approx 0.2134.$$

б) Розглянемо подію: $\bar{A} = \{$ елемент системи не відмовить $\}$.

Ймовірність невідмови $P(\bar{A})$ елемента на протязі доби дорівнює значенню функції надійності R(t) при t=24 год.:

$$P(\bar{A}) = 1 - P(A) = R(t) = e^{-0.24} \approx 0.7866.$$

Відповідь. а) $P(A) \approx 0.2134$; б) $P(\bar{A}) \approx 0.7866$.

Приклад 9.10. Можна вважати, що час роботи електричної лампи до перегоряння— це неперервна випадкова величина X, що має показниковий тип розподілу. Припускаючи, що з ймовірністю р лампа може перегоріти при включені, знайти середній час роботи лампи (лампа вмикається лише один раз).

Розв'язання. Нехай T — момент часу, коли лампа перегорить.

$$P\{0 < X < T\} = 1 - e^{-\left(T \cdot \frac{1}{M(X)}\right)} = p;$$
$$1 - e^{-\left(T \cdot \frac{1}{M(X)}\right)} = p;$$

$$e^{-\left(T \cdot \frac{1}{M(X)}\right)} = 1 - p;$$

$$-\left(T \cdot \frac{1}{M(X)}\right) = \ln(q);$$

$$M(X) = -\frac{T}{\ln(q)}.$$

Відповідь.
$$M(X) = -\frac{T}{\ln(q)}$$
.

9.4. Логнормальний розподіл

Логнормальний розподіл — це ймовірнісний розподіл випадкової величини, логарифм якої має нормальний розподіл. Іншими словами, якщо випадкова величина X має логнормальний розподіл, то ln(X) буде мати нормальний розподіл.

Нехай розподіл випадкової величини X задається *щільністю ймовірності*, що має вигляд (9.22):

$$f(x) = \frac{1}{\sigma \cdot x \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(\ln(x) - \ln(a))^2}{2 \cdot \sigma^2}}$$
, де $x > 0$; $a > 0$. (9.22)

Тоді кажуть, що X має *погнормальний розподіл* з параметрами a і σ .

Графік щільності ймовірності f(x) поданий на рис. 9.7.

Рис. 9.7. Графік функції щільності f(x) логнормального розподілу

Властивості логнормального розподілу

1. Функція розподілу F(x) має вигляд (9.23): $F(x) = \Phi\left(\frac{\ln(x) - \ln(a)}{\sigma}\right) + 0,5.$

$$F(x) = \Phi\left(\frac{\ln(x) - \ln(a)}{\sigma}\right) + 0.5. \tag{9.23}$$

Доведення. Оскільки при x > 0 нерівності X < x та ln(X) < ln(x) рівносильні, то функція розподілу логнормального розподілу співпадає з функцією розподілу нормального розподілу для випадкової величини ln(X), тобто

$$F(x) = P\{ln(X) < ln(x)\} = P\{-\infty < ln(X) < ln(x)\} =$$

$$= \Phi\left(\frac{ln(x) - ln(a)}{\sigma}\right) - \Phi(-\infty) =$$

$$= \Phi\left(\frac{ln(x) - ln(a)}{\sigma}\right) + 0.5,$$

Графік функції розподілу F(x) подані відповідно на рис. 9.8.

Рис. 9.8. Графік функції розподілу F(x) показникового розподілу

2. Числові характеристики M(X), D(X), $\sigma(X)$ логнормально розподіленої випадкової величини обчислюються за формулами (9.24)-(9.26):

$$M(X) = a \cdot e^{\left(\frac{\sigma^2}{2}\right)};$$

$$D(X) = a^2 \cdot e^{\sigma^2} \cdot \left(e^{\sigma^2} - 1\right);$$
(9.24)
$$(9.25)$$

$$D(X) = a^2 \cdot e^{\sigma^2} \cdot (e^{\sigma^2} - 1); \tag{9.25}$$

$$\sigma(X) = a \cdot e^{\left(\frac{\sigma^2}{2}\right)} \cdot \sqrt{e^{\sigma^2} - 1}.$$
 (9.26)

Доведення.

$$M(X) = \int_{-\infty}^{+\infty} (x \cdot f(x)) dx = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \int_{0}^{+\infty} e^{-\frac{(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} dx$$

$$= \left[\frac{\ln(x) - \ln(a)}{\sigma} = t; x = e^{(\ln(a) + t \cdot \sigma)} \right] =$$

$$= \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{+\infty} e^{-\left(\frac{t^{2}}{2}\right)} \cdot \left(\sigma \cdot e^{(\ln(a) + t \cdot \sigma)}\right) dt =$$

Після спрощення

$$e^{\left(-\frac{t^2}{2}+l\,n(a)+t\cdot\sigma\right)}=a\cdot e^{-\frac{1}{2}\cdot(t^2-2\cdot t\cdot\sigma)}=a\cdot e^{-\frac{1}{2}\cdot((t-\sigma)^2-\sigma^2)}=a\cdot e^{-\frac{(t-\sigma)^2}{2}}\cdot e^{\left(\frac{\sigma^2}{2}\right)}$$
 отримуємо

$$= a \cdot e^{\left(\frac{\sigma^2}{2}\right)} \cdot \left(\frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{-\infty}^{+\infty} e^{-\frac{(t-\sigma)^2}{2}} dt\right) = a \cdot e^{\left(\frac{\sigma^2}{2}\right)} \cdot 1 = a \cdot e^{\left(\frac{\sigma^2}{2}\right)}.$$

Інтеграл
$$\int_{-\infty}^{+\infty} e^{-\frac{(t-\sigma)^2}{2}} dt = \begin{bmatrix} u = t - \sigma \\ dt = du \end{bmatrix} = \int_{-\infty}^{+\infty} e^{-\left(\frac{u^2}{2}\right)} du = \sqrt{2 \cdot \pi}.$$

$$D(X) = \int_{-\infty}^{+\infty} \left(x^2 \cdot f(x)\right) dx - \left(M(X)\right)^2 = 0.$$

Інтеграл

$$\int_{-\infty}^{+\infty} (x^2 \cdot f(x)) dx = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \int_{0}^{+\infty} \left(x \cdot e^{-\frac{(\ln(x) - \ln(a))^2}{2 \cdot \sigma^2}} \right) dx = e^{(2 \cdot \ln(a) + 2 \cdot \sigma^2)} =$$

$$= a^2 \cdot e^{(2 \cdot \sigma^2)}.$$

обчислюється аналогічно інтегралу при обчисленні математичного сподівання (та сама заміна та спрощення степеня експоненти).

$$= a^2 \cdot e^{2 \cdot \sigma^2} - a^2 \cdot e^{\sigma^2} = a^2 \cdot e^{\sigma^2} \cdot \left(e^{\sigma^2} - 1 \right).$$

$$\sigma(X) = \sqrt{D(X)} = a \cdot e^{\left(\frac{\sigma^2}{2}\right)} \cdot \sqrt{e^{\sigma^2} - 1}.$$

3. Ймовірність того, що в результаті випробування логнормально розподілена випадкова величина X прийме можливе значення з інтервалу $(\alpha; \beta)$, обчислюється за формулою (9.27):

розновитела ванавнова вели ина и пришле зновение зна тения в интервату
$$(\alpha; \beta)$$
, обчислюється за формулою (9.27):
$$P\{\alpha < X < \beta\} = \Phi\left(\frac{\ln(\beta) - \ln(a)}{\sigma}\right) - \Phi\left(\frac{\ln(\alpha) - \ln(a)}{\sigma}\right). \tag{9.27}$$

Доведення. Оскільки функція розподілу логнормального розподілу співпадає з функцією розподілу нормального розподілу для випадкової величини ln(X), то ймовірність того, що в результаті випробування логнормально розподілена випадкова величина X прийме можливе значення з інтервалу $(\alpha; \beta)$, обчислюється за стандартною формулою:

$$P\{\alpha < X < \beta\} = F(\beta) - F(\alpha) =$$

$$= 0.5 + \Phi\left(\frac{\ln(\beta) - \ln(\alpha)}{\sigma}\right) - \left(0.5 + \Phi\left(\frac{\ln(\alpha) - \ln(\alpha)}{\sigma}\right)\right) =$$

$$= \Phi\left(\frac{\ln(\beta) - \ln(\alpha)}{\sigma}\right) - \Phi\left(\frac{\ln(\alpha) - \ln(\alpha)}{\sigma}\right)$$

де $\Phi(x)$ — функція Лапласа (формула (4.5) лекції 4). Що й треба було довести.

4. Мода та медіана випадкової величини X, що має логнормальний розподіл, відповідно дорівнюють (9.28):

$$Mo(X) = a \cdot e^{-\sigma^2}; Me(X) = a. \tag{9.28}$$

Доведення. Обчислимо моду.

Знайдемо похідну функції
$$f(x) = \frac{1}{\sigma \cdot x \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(\ln(x) - \ln(a))^2}{2 \cdot \sigma^2}}$$
.

$$f'(x) = -\frac{1}{\sigma \cdot x^{2} \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} - \frac{\ln(x) - \ln(a)}{\sigma^{3} \cdot x^{2} \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}}$$
$$= -\frac{\sigma^{2} + \ln(x) - \ln(a)}{\sigma^{3} \cdot x^{2} \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}}.$$

Знайдемо стаціонарні точки.

$$\sigma^{2} + \ln(x) - \ln(a) = 0;$$

$$\ln(x) = -\sigma^{2} + \ln(a)$$

$$x = a \cdot e^{-\sigma^{2}}.$$

Обчислимо 2-гу похідну:

$$f''(x) = -\frac{\sigma^{3} \cdot x \cdot \sqrt{2 \cdot \pi} - 2 \cdot x \cdot \sigma^{3} \cdot \sqrt{2 \cdot \pi} \cdot (\sigma^{2} + \ln(x) - \ln(a))}{(\sigma^{3} \cdot x^{2} \cdot \sqrt{2 \cdot \pi})^{2}} \cdot e^{\frac{-(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} + \frac{(\sigma^{2} + \ln(x) - \ln(a)) \cdot (\ln(x) - \ln(a))}{\sigma^{5} \cdot x^{3} \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} = \\ = -\frac{1 - 2 \cdot (\sigma^{2} + \ln(x) - \ln(a))}{\sigma^{3} \cdot x^{3} \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} \cdot e^{\frac{-(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} \cdot e^{\frac{-(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} \cdot f''(a \cdot e^{-\sigma^{2}}) = \\ = -\frac{1 - 2 \cdot (\sigma^{2} - \sigma^{2})}{\sigma^{3} \cdot (a \cdot e^{-\sigma^{2}})^{3} \cdot \sqrt{2 \cdot \pi}} \cdot e^{-(\frac{\sigma^{2}}{2})} - \frac{(\sigma^{2} - \sigma^{2}) \cdot \sigma^{2}}{\sigma^{5} \cdot (a \cdot e^{-\sigma^{2}})^{3} \cdot \sqrt{2 \cdot \pi}} \cdot e^{-(\frac{\sigma^{2}}{2})} = -\frac{e^{(2, 5 \cdot \sigma^{2})}}{\sigma^{3} \cdot a^{3} \cdot \sqrt{2 \cdot \pi}} < 0.$$

Тобто $x = a \cdot e^{-\sigma^2}$ – точка максимуму. Отже $Mo(X) = a \cdot e^{-\sigma^2}$. Обчислимо медіану.

$$F(Me(X)) = 0.5;$$

$$\Phi\left(\frac{\ln(Me(X)) - \ln(a)}{\sigma}\right) + 0.5 = 0.5;$$

$$\Phi\left(\frac{\ln(Me(X)) - \ln(a)}{\sigma}\right) = 0;$$

$$\frac{\ln(Me(X)) - \ln(a)}{\sigma} = 0;$$

$$\ln(Me(X)) - \ln(a) = 0;$$

$$Me(X) = a.$$

5. Чим менше значення параметру σ , то ближчими один до одного ϵ значення моди, медіани та математичного сподівання, а крива розподілу — ближчою до симетрії. Якщо в нормальному законі параметр α виступа ϵ як середн ϵ значення випадкової величини, то в логнормальному — як медіана.

6. Коефіцієнт асиметрії та ексцес випадкової величини X, що має логнормальний розподіл, відповідно дорівнюють (9.29):

$$As(X) = (e^{\sigma^2} + 2) \cdot \sqrt{e^{\sigma^2} - 1}; Es(X) = e^{(4 \cdot \sigma^2)} + 2 \cdot e^{(3 \cdot \sigma^2)} + 3 \cdot e^{(2 \cdot \sigma^2)} - 6.(9.29)$$

Доведення. Довести формули (9.29) самостійно.

7. Інформаційна ентропія випадкової величини X, що має логнормальний розподіл, дорівнюють (9.30):

$$H(X) = \frac{1}{2} \cdot \ln(2 \cdot e \cdot \pi \cdot \sigma^2 \cdot a^2) . \tag{9.30}$$

Доведення. Ентропія логнормального розподілу визначається за формулою:

$$H(X) = -\int_{-\infty}^{+\infty} \left(f(x) \cdot \ln(f(x)) \right) dx =$$

$$= \int_{0}^{+\infty} \left(\frac{1}{\sigma \cdot x \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} \right) \cdot \ln\left(\frac{1}{\sigma \cdot x \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(\ln(x) - \ln(a))^{2}}{2 \cdot \sigma^{2}}} \right) dx =$$

$$= \frac{1}{2} \cdot \ln(2 \cdot \pi \cdot e \cdot \sigma^{2} \cdot a^{2}).$$

Логнормальний розподіл використовують для опису розподілу доходів, банківських вкладів, цін активів, місячної заробітної плати, посівних площ під різні культури, довговічності виробів у режимі зношування та старіння тощо.

Приклад 9.11. Проведене дослідження показало, що вклади населення, розміщені в даному банку, можна описати випадковою величиною X, що має логнормальний розподіл з параметрами: a = 530; $\sigma^2 = 0,64$. Знайти: a) середній розмір вкладу; δ) долю вкладників, розмір вкладу яких складає не менше 1000 грн.; ϵ) моду та медіану випадкової величини Δ .

Розв'язання. а) Середній розмір вкладу – математичне сподівання, тому:

$$M(X) = 530 \cdot e^{\left(\frac{0.64}{2}\right)} \approx 730 \,(\text{грн}).$$

б) Доля вкладників, розмір вкладу яких не менше 1000 грн., обчислюється за формулою (9.27).

$$P\{X \ge 1000\} = P\{1000 \le X < +\infty\} = \Phi(+\infty) - \Phi\left(\frac{\ln(1000) - \ln(530)}{0.8}\right)$$
$$= 0.5 - \Phi(0.7936) \approx 0.5 - 0.285 \approx 0.2148.$$

в) За формулою (9.28)

$$Mo(X) = 530 \cdot e^{-0.64} \approx 280 \text{ (грн)};$$

 $Me(X) = 530 \text{ (грн)}.$

Відповідь. а) $M(X) \approx 730$ грн; б) $P\{X \ge 1000\} \approx 0,2148$; в) $Mo(X) \approx 280$ грн; Me(X) = 530 грн.

Приклад 9.12. Обчислити інформаційну ентропію випадкової величини X, що має логнормальний розподіл з параметрами: $\alpha = 1$; $\sigma^2 = 1$, а також її коефіцієнт асиметрії та ексцес.

Розв'язання. За формулою (9.30)

$$H(X) = \frac{1}{2} \cdot ln(2 \cdot e \cdot \pi \cdot 1^2 \cdot 1^2) = \frac{1}{2} \cdot ln(2 \cdot e \cdot \pi) \approx 1,418.$$

За формулою (9.29)

$$As(X) = (e^1 + 2) \cdot \sqrt{e^1 - 1} = (e + 2) \cdot \sqrt{e - 1} \approx 6,185;$$

 $Es(X) = e^4 + 2 \cdot e^3 + 3 \cdot e^2 - 6 \approx 119,936.$

Тобто даний розподіл не ϵ симетричним (зсув праворуч від моди) в порівнянні з нормальним розподілом (де коефіцієнт асиметрії дорівню ϵ 0).

Також даний розподіл має більшу «піковість» або «випуклість» в порівнянні з нормальним розподілом (де ексцес дорівнює 0).

Адекватність отриманих результатів можна побачити на рис. 9.9.

Рис. 9.9. Графік функції $f(x) = \frac{1}{x \cdot \sqrt{2 \cdot \pi}} \cdot e^{-\frac{(\ln(x))^2}{2}}$, де x > 0

Відповідь. $H(X) \approx 1,418$; $As(X) \approx 6,185$; $Es(X) \approx 119,936$.