RAM/ ARBEITSSPEICHE R

Präsentation Sharies Schmalriede, Michael Seifert

Inhaltsverzeichnis

Grundkenntniss e zum Arbeitsspeicher

2. Die Geschichte

3. Unterschied der 2 RAM Arten

4. VRAM

5. Swapping

5.1 Lösungen der Probleme

6. Wie funktioniert die Adressierung?

7. Cache

8. Unterschied zwischen RAM und Festplatte

8.1 Festplatte

8.2 RAM

1. Grundkenntsnisse zum Arbeitsspeicher

- Kurzbezeichnung: RAM (Random-Access Memory)
- Der Arbeitsspeicher oder Hauptspeicher eines Computers
- Der Hauptspeicher ist eine Komponente der Zentraleinheit
- Speicherhierarchie zwischen dem Prozessor und der Festplatte

2. Die Geschichte

- Die ersten Computer hatten keinen Arbeitsspeicher
- Typische Großrechner waren Mitte der 1960er Jahre mit 32 bis 64 Kilobyte großen Hauptspeichern ausgestattet
- Ende der 1970er Jahre wurden dynamische Arbeitsspeicher entwickelt
- Typische Größen Mitte der 1980er waren 64 Kbit pro IC
- Im Juni 2012 neue kleinere Bauform für Arbeitspeicher

3. Unterschied der 2 RAM Arten

SRAM

- Speicherung erfolgt in Flip-Flops
- sehr schnell
- kein Refresh nötig
- hoher Stromverbrauch
- Einsatz als L1-, L2- und L3-Cache
 - Kondensator als Speicherelement
 - Speicherhaltung durch Refresh der Speicherzellen
 - langsam
 - geringer Stromverbrauch
 - Einsatz als Arbeitsspeicher oder Hauptspeicher

4. VRAM

- VRAM ☑ Video RAM ☑ Video Random Access Memory
- Speicher der Grafikkarte
- kann nicht erweitert oder entfernt werden
- Grafikarte = wichtigste Komponente eines Gaming-PC´s

5. Swapping

- Kein freier Speicher = Auslagerung um Platz im Arbeitsspeicher zu schaffen
- Die für diese Zwecke eingesetzte, im Hintergrund arbeitende Software-R
- Swapping gab es schon vor dem Paging

5.1 Lösungen der Probleme

- Beim Swapping müssen zwei Probleme gelöst werden
- Die Speicheradressen der lokalen Variablen können sich zwischen Auslagerung und erneutem Einlesen verändern, wenn sich die Größe des Speichersegmentes ändert
- Der Speicherschutz des verwaltenden Betriebssystems

6. Wie funktioniert die Adressierung?

- Adressierung?
 Heute haben RAM-Chips meist weniger Datenpins als die Wortbreite des Prozessors
- "Bank"
- RAS (englisch row address strobe)
- CAS (englisch column-address strobe).

7. Cache

- Pufferspeicher oder Cache-RAMs (kurz "Cache")
- Der Cache ist im Verhältnis zu anderen Speichern sehr schnell
- In der Regel nur ein paar Megabyte groß
- Assoziativspeicher
- mindestens 256 Bit (sogenannter Burst-Modus)

8. Unterschied zwischen RAM und Festplatte

- Zwei Arten von Speichern, die in Computern verwendet werden
- Festplatte ► dauerhafte Speicherung
- RAM **S** speichert kurzfristige Verwendungen des Prozessors

8.1 Festplatte

- ■Festplattengröße ist größer als die Ramgröße
- Sekundäres Speichergerät
- Dauerhafte Speicherung
- ■Speichert Daten, die permanenten Speicherplatz benötigen

8.2 RAM

- Festkörpergerät
- Flüchtiger Speicher
- →Stromabschaltung = Daten werden zerstört
- Speichert aktive Programme
- ■auf die Daten kann schneller zugegriffen werden

9. Quellen

Static random-access memory - Wikipedia

1970: MOS Dynamic RAM Competes with Magnetic

Core Memory on Price | The Silicon Engine | Computer History Museum

<u>Arbeitsspeicher - Wikipedia</u>

CHIP | News, Downloads, Tech- & Verbraucherberatung