

Машинное обучение DS-поток

Лекция 7

Бустинг

Подходы к построению композиций:

- Беггинг
- ▶ Случайный лес
- Бустинг
- Блендинг
- Стекинг
- StackNet

Бустинг

Бустинг в задаче регрессии

Общий случай градиентного бустинга Градиентный бустинг над деревьями

Взвешивание объектов для задачи классификации

Ô

Бустинг в задаче регрессии

Пусть $(x_1, Y_1), ..., (x_n, Y_n)$ — обучающая выборка.

 \mathscr{F} — семейство базовых моделей

Рассматриваем модели вида

$$\widehat{y}_{\mathcal{T}}(x) = \sum_{t=1}^{I} b_t(x),$$
 где $b_t \in \mathscr{F}.$

Как было в беггинге.

Строим каждую модель независимо на случайной подвыборке и другими случайными факторами.

Как будет в бустинге.

- 1. Построим одну модель по всей выборке.
- 2. Посчитаем ошибки модели на обучающей выборке.
- 3. Построим вторую модель предсказывать ошибки.
- 4. И т.д.

Бустинг в задаче регрессии

Оптимизируемый функционал — MSE.

1. Построим первую базовую модель:

$$b_1 = \arg\min_{b \in \mathscr{F}} \frac{1}{2} \sum_{i=1}^n (b(x_i) - Y_i)^2.$$

- 2. Посчитаем остатки первой модели: $e_i^1 = Y_i b_1(x_i)$.
- 3. Построим вторую базовую модель так, чтобы ее ответы как можно лучше приближали остатки e_i^1 :

$$b_2 = \operatorname*{arg\,min}_{b \in \mathscr{F}} \frac{1}{2} \sum_{i=1}^n \left(b(x_i) - e_i^1 \right)^2.$$

4. Каждую следующую модель тоже будем обучать на остатки предыдущих: $_{t-1}$

$$e_i^{t-1} = Y_i - \sum_{k=1}^{t-1} b_k(x_i) = Y_i - \widehat{y}_{t-1}(x_i),$$

$$b_t(x) = \arg\min_{b \in \mathscr{F}} \frac{1}{2} \sum_{i=1}^{n} (b(x_i) - e_i^{t-1})^2.$$

Бустинг в задаче регрессии

Задача построения следующей модели:

$$e_i^{t-1} = Y_i - \widehat{y}_{t-1}(x_i)$$

$$b_t(x) = \operatorname*{arg\,min}_{b \in \mathscr{F}} \frac{1}{2} \sum_{i=1}^n \left(b(x_i) - e_i^{t-1} \right)^2$$

$$\widehat{y}_t(x) = \widehat{y}_{t-1}(x) + b_t(x).$$

Таким образом:

- **b**₁ обучается на выборке $\{(x_i, Y_i)\}_{i=1}^n$,
- $ightharpoonup b_2$ обучается на выборке $\{(x_i,e_i^1)\}_{i=1}^n$,
- **...**
- $ightharpoonup b_t$ обучается на выборке $\{(x_i, e_i^{t-1})\}_{i=1}^n$.

Бустинг в задаче регрессии

Вспомним, что мы оптимизируем

$$Q(Y,\widehat{y}) = \frac{1}{2} \sum_{i=1}^{n} (\widehat{y}(x_i) - Y_i)^2 \longrightarrow \min_{\widehat{y}}.$$

Заметим, что производная Q по ответу модели \widehat{y}_{t-1} на объекте x_i равна $\widehat{y}_{t-1}(x_i)-Y_i=-e_i^{t-1}.$ Получаем $\Rightarrow e^{t-1}=(e_1^{t-1},...,e_n^{t-1})=-\nabla Q(Y,z)|_{z=\widehat{y}_{t-1}}.$

- ⇒ Модель шагает в сторону антиградиента, т.е. направления наискорейшего спуска.
- \Rightarrow Выбирается такая базовая модель, которая как можно сильнее уменьшит ошибку композиции.

Ô

Пример

Пример

В чем смысл?

Кажется, подобная процедура слишком сложная и неоптимальная. Оптимизируем $Q(Y,\widehat{y})=rac{1}{2}\sum_{i=1}^n\left(\widehat{y}(x_i)-Y_i
ight)^2\longrightarrow \min_{\widehat{y}}$.

Решение задачи известно: $Q(Y, \hat{y}) = 0$ при $\hat{y}(x_i) = Y_i$. Зачем же выполнять сложную процедуру и обучать на остатках?

Ответ

Мы не можем *в точности* обеспечить условие $\widehat{y}(x_i) = Y_i$, т.к. ограничены только моделями из класса \mathscr{F} .

Соответственно, имея уже какие-то приближения, хочется понять, в какую сторону стоит сдвинуться, чтобы улучшить предсказания.

Даже любыми моделями, которые умеем строить. Если и построить модель, которая обеспечивает выполнение $\widehat{y}(x_i) = Y_i$, то скорее всего она переобучилась.

Почему бы тогда не строить более глубокие деревья?

Они будут слишком шумными и переобученными, ведь в листья попадет слишком мало объектов. В композиции мы можем точнее предсказывать сдвиги, используя достаточно большую часть объектов в листьях.

Бустинг

Бустинг в задаче регрессии

Общий случай градиентного бустинга

Градиентный бустинг над деревьями

Взвешивание объектов для задачи классификации

Градиентный бустинг

Будем строить взвешенную сумму базовых моделей:

$$\widehat{y}_T(x) = \sum_{t=0}^T \gamma_t b_t(x).$$

Под индексом t=0 обозначена **начальная базовая модель**.

- ightharpoonup Обычно берут $\gamma_0 = 1$.
- Саму базовую модель выбирают очень простой:
 - ightharpoonup нулевой $b_0(x) = 0$;
 - возвращающую самый популярный класс (для классификации):

$$b_0(x) = \operatorname*{arg\,max}_{y \in \mathscr{Y}} \sum_{i=1}^{\infty} I\{Y_i = y\};$$

возвращающую средний ответ (для регрессии):

$$b_0(x) = \frac{1}{n} \sum_{i=1}^n Y_i.$$

Построение очередной базовой модели

Функционал качества $Q(Y,\widehat{y}) = \sum_{i=1}^n \mathcal{L}(Y_i,\widehat{y}(x_i)) \longrightarrow \min_{\widehat{y}},$ где $\mathcal{L}(y,z)$ — кусочно дифф. функция потерь.

Забудем о том, что нам нужно построить новую модель.

Рассмотрим пространство \mathbb{R}^n , в котором решим задачу оптимизации

$$Q(Y,s) = \sum_{i=1}^{n} \mathcal{L}(Y_i, s_i) \longrightarrow \min_{s \in \mathbb{R}^n}$$

градиентным спуском

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Построение новой базовой модели

Теперь вспомним про модель. В идеале должно быть

$$\widehat{y}_{t}(x_{i}) = \widehat{y}_{t-1}(x_{i}) - \eta \widetilde{g}_{i}^{t}$$

$$\widetilde{g}^{t} = \left(\left. \nabla_{s} \mathcal{L}(Y_{i}, s) \right|_{s = \widehat{y}_{t-1}(x_{i})} \right)_{i=1}^{n}$$

То есть модель должна выдавать \widetilde{g}_i^t на объектах x_i . Но такой модели может не быть в \mathscr{F} .

Тогда просто **обучим новую модель** по выборке $(x_1, -\widetilde{g}_1^t), ..., (x_n, -\widetilde{g}_n^t)$, оптимизируя MSE

$$b_t(x) = \operatorname*{arg\,min}_{b \in \mathscr{F}} \sum_{i=1}^n \left(b(x_i) + \widetilde{g}_i^t \right)^2.$$

Ô

Замечания

- 1. В случае регрессии \widehat{y} возвращает действительные числа, а в случае классификации вероятности классов. И то, и другое можно настраивать по MSE.
- 2. Мы получили *приближение* градиентного спуска в пространстве \mathbb{R}^n на объектах обучающей выборки, дополненное на все признаковое пространство \mathscr{X} .
- 3. В общем случае мы также не можем в точности обеспечить $\widehat{y}(x_i) = Y_i$ и пытаемся идти в сторону уменьшения ошибки.
- 4. Оптимизируем с/к функцию потерь независимо от функционала исходной задачи вся информация о \mathcal{L} находится в векторе \widetilde{g}^t .
- 5. Можно использовать и другие функционалы, но с/к ошибки обычно достаточно.

Выбор коэффициента при базовой модели

Коэффициент при b_t подберем без учета шага обучения η :

$$\widetilde{\gamma}_t = \operatorname*{arg\,min}_{\gamma \in \mathbb{R}} \sum_{i=1}^n \mathcal{L}(Y_i, \widehat{y}_{t-1}(x_i) + \gamma b_t(x_i)).$$

Зачем он нужен?

Мы выполнили только приближение градиентного спуска, теперь можно немного поправить значения.

Итог:

$$\widehat{y}_t(x) = \widehat{y}_{t-1}(x) + \underbrace{\eta \widetilde{\gamma}_t}_{\gamma_t} b_t(x)$$

Смысл η

Понижаем доверие к направлению, предсказан. базовой моделью. Обычно, чем меньше η , тем лучше качество итоговой композиции, но требуется больше итераций для сходимости.

Итог

- 1. Выбрать базовую модель $b_0(x)$, положить $\widehat{y}_0(x) = b_0(x)$.
- 2. Повторять для t = 1, ..., T:
 - 2.1 Вычислить градиенты по обучающей выборке

$$\widetilde{g}^t = \left(\left. \nabla_s \mathcal{L}(Y_i, s) \right|_{s = \widehat{y}_{t-1}(x_i)} \right)_{i=1}^n.$$

2.2 Обучить новую модель по MSE по выборке

$$(x_1, -\widetilde{g}_1^t), ..., (x_n, -\widetilde{g}_n^t).$$

2.3 Подобрать коэффициент при b_t

$$\widetilde{\gamma}_t = \operatorname*{arg\,min}_{\gamma \in \mathbb{R}} \sum_{i=1}^n \mathcal{L}(Y_i, \widehat{y}_{t-1}(x_i) + \gamma b_t(x_i)).$$

2.4 Добавить модель к композиции

$$\widehat{y}_t(x) = \widehat{y}_{t-1}(x) + \eta \widetilde{\gamma}_t b_t(x).$$

Схема градиентного бустинга

Стохастический градиентный спуск бустинг

Модель b_t обучается не по всей выборке X, а лишь по ее случайному подмножеству $X_{\star}^* \subset X$.

Подмножество X_{t}^{*} выбирается для каждой итерации заново.

Плюсы:

- ▶ Понижается уровень шума в обучении
- Повышается эффективность вычислений
- ▶ Повышается обобщающая способность

Рекомендация:

Брать подвыборки, размер которых вдвое меньше исходной выборки.

Частные случаи: Регрессия

MSE

$$\begin{split} \mathcal{L}(y,z) &= \frac{1}{2} \left(y - z \right)^2, & \frac{\partial \mathcal{L}(y,z)}{\partial z} = z - y, \\ \widetilde{g}^t &= \frac{\partial \mathcal{L}(Y_i, \widehat{y}_{t-1}(x_i))}{\partial z} = \widehat{y}_{t-1}(x_i) - Y_i \end{split}$$

 $\Rightarrow b_t$ обучается на выборке $(x_i, Y_i - \widehat{y}_{t-1}(x_i))_{i=1}^n$.

MAE

$$\mathcal{L}(y,z) = |y-z|, \qquad \frac{\partial \mathcal{L}(y,z)}{\partial z} = \operatorname{sign}(z-y),$$
$$\widetilde{g}^{t} = \frac{\partial \mathcal{L}(Y_{i}, \widehat{y}_{t-1}(x_{i}))}{\partial z} = \operatorname{sign}(\widehat{y}_{t-1}(x_{i}) - Y_{i})$$

 $\Rightarrow b_t$ обучается на выборке $(x_i, -\mathrm{sign}(\widehat{y}_{t-1}(x_i) - Y_i))_{i=1}^n$.

Частные случаи: Классификация

Рассмотрим задачу бинарной классификации: $Y_i \in \{-1, +1\}$.

Тогда решающее правило принимает вид $f(x) = \operatorname{sign}(\widehat{y}(x))$.

Экспоненциальная функция потерь:

$$\mathcal{L}(y,z) = \exp(-yz),$$

$$\frac{\partial \mathcal{L}(y,z)}{\partial z} = -y \exp(-yz),$$

$$\widetilde{g}^{t} = \frac{\partial \mathcal{L}(Y_{i}, \widehat{Y}_{t-1}(x_{i}))}{\partial z} = -Y_{i} \cdot \exp(-Y_{i} \cdot \widehat{Y}_{T-1}(x_{i})),$$

 \Rightarrow b_t обучается на выборке $(x_i, Y_i \cdot \exp(-Y_i \cdot \widehat{y}_{T-1}(x_i)))_{i=1}^n$.

Бустинг

Бустинг в задаче регрессии Общий случай градиентного бустинга

Градиентный бустинг над деревьями

Взвешивание объектов для задачи классификации

Градиентный бустинг над деревьями

Решающее дерево разбивает все пространство на *непересек. области*, в которых его ответ равен константе:

$$b_T(x) = \sum_{k=1}^{\ell_T} b_{Tk} \cdot I\{x \in R_k\}$$

где $k=1,\ldots,\ell_T$ — индексы листьев,

$$R_k$$
 — соответствующие области разбиения: $\bigsqcup_{k=1}^{\ell_T} R_k = \mathscr{X}$, b_{Tk} — значения в листьях.

 $Ha\ T$ -й итерации композиция обновляется как

$$\widehat{y}_{T}(x) = \widehat{y}_{T-1}(x) + \gamma_{T} \sum_{k=1}^{\ell_{T}} b_{Tk} I\{x \in R_{k}\} = \widehat{y}_{T-1}(x) + \sum_{k=1}^{\ell_{T}} \underbrace{\gamma_{T} b_{Tk}}_{\gamma_{Tk}} I\{x \in R_{k}\}$$

 \Rightarrow Добавление в композицию дерева с ℓ_T листьями равносильно добавлению ℓ_T базовых моделей, представляющих собой предикаты вида $I\{x \in R_k\}$.

Если вместо общего $\gamma_{\mathcal{T}}$ будет свой $\gamma_{\mathcal{T}k}$ при каждом предикате, то можем его подобрать так, чтобы повысить качество композиции.

Перенастройка в листьях

Схема:

- ightharpoonup Обучим дерево $b_T \Rightarrow$ структура дерева задана.
- Сделаем перенастройку в листьях обученнного дерева.

Тогда потребность в γ_T и b_{Tk} отпадает:

$$\sum_{i=1}^{n} \mathcal{L}\left(Y_{i}, \ \widehat{y}_{T-1}(x_{i}) + \sum_{k=1}^{\ell_{T}} \gamma_{Tk} \cdot I\{x \in R_{k}\}\right) \longrightarrow \min_{\{\gamma_{Tk}\}_{k=1}^{\ell_{T}}}$$

Т.к. области разбиения R_k не пересекаются, задача распадается на ℓ_T независимых подзадач:

$$\gamma_{Tk} = \underset{\gamma}{\operatorname{arg\,min}} \sum_{x_i \in R_k} \mathcal{L}(y_i, \widehat{y}_{T-1}(x_i) + \gamma), \qquad k = 1, \dots, \ell_T$$

В некоторых случаях оптимальные γ_{Tk} можно найти аналитически — например, для квадратичной и абсолютной ошибки.

Перенастройка в листья

Рассмотрим экспоненциальную функцию потерь.

$$\sum_{i=1}^n e^{-Y_i \cdot \widehat{y}(x_i)} = \sum_{i=1}^n \exp\left(-Y_i \cdot \left[\widehat{y}_{T-1}(x_i) + \gamma_T b_T(x_i)\right]\right) \longrightarrow \min_{b_T}.$$

После построения дерева в каждом листе решаем задачу

$$F_j^T(\gamma) = \sum_{x_i \in R_j} \exp\left(-Y_i \cdot \left[\widehat{y}_{T-1}(x_i) + \gamma\right]\right) \longrightarrow \min_{\gamma}.$$

Аналитической записи нет, только итерационные методы.

На практике обычно не нужно искать точное решение — достаточно сделать один шаг метода Ньютона из нач. приближения $\gamma_{Tj}=0$:

$$\gamma_{Tj} = -\frac{\partial F_j^T(0)}{\partial \gamma} \middle/ \frac{\partial^2 F_j^T(0)}{\partial \gamma^2} = -\sum_{x_i \in R_i} \widetilde{g}_i^T \middle/ \sum_{x_i \in R_i} Y_i \cdot \widetilde{g}_i^T.$$

Bias-variance

Какие деревья используются в случайных лесах?

Глубокие

Почему?

Базовые модели должны иметь низкое смещение, разброс устраняется за счёт усреднения ответов.

Какие деревья используются в бустинге?

Неглубокие

Почему?

Бустинг понижает смещение моделей, а разброс либо останется таким же, либо увеличится.

 \Rightarrow Нужны модели с большим смещением и низким разбросом. Обычно используются неглубокие решающие деревья (3-6 уровней).

Бустинг

Бустинг в задаче регрессии
Общий случай градиентного бустинга
Градиентный бустинг над деревьями

Взвешивание объектов для задачи классификации

Ô

Отступ на объекте

Рассмотрим задачу бинарной классификации: $Y_i \in \{-1, +1\}$.

Решающее правило: $f(x) = sign(\widehat{y}(x))$.

Введем понятие **отступа на объекте**: $M_i = Y_i \cdot \widehat{y}(x_i)$.

Свойства:

- ▶ $M_i > 0 \Leftrightarrow$ объект x_i классифицируется верно.
- ▶ $M_i < 0 \Leftrightarrow$ объект x_i классифицируется неверно.
- ▶ Чем больше $|M_i|$, тем больше уверенность в своем ответе.

Функционал качества — число ошибок на обучении:

$$Q = \sum_{i=1}^{n} I\{M_i < 0\} = \sum_{i=1}^{n} I\{Y_i \cdot \widehat{y}_{\mathcal{T}}(x_i) < 0\}$$

В качестве аппроксимации пороговой функции потерь $I\{M<0\}$ используются разные гладкие функции.

Бустинг для задачи бинарной классификации

$$L(M)=log(1+e^{-M})$$
 — логарифмическая (LogitBoost) $Q(M)=(1-M)^2$ — квадратичная (GentleBoost) $G(M)=exp(-cM(M+s))$ — гауссовская (BrownBoost) $S(M)=2(1+e^M)^{-1}$ — сигмоидальная $V(M)=(1+M)_+$ — кусочно-линейная

Взвешивание объектов для задачи классификации

Экспоненциальная функция потерь.

$$Q(Y, \widehat{y}_{T}) = \sum_{i=1}^{n} \exp\left(-Y_{i} \cdot \widehat{y}_{T}(x_{i})\right) =$$

$$= \sum_{i=1}^{n} \exp\left(-Y_{i} \cdot \left[\widehat{y}_{T-1}(x_{i}) + \gamma_{T} b_{T}(x_{i})\right]\right) =$$

$$= \sum_{i=1}^{n} \exp\left(-\underbrace{Y_{i} \, \widehat{y}_{T-1}(x_{i})}_{w_{i}}\right) \cdot \exp\left(-Y_{i} \, \gamma_{T} b_{T}(x_{i})\right).$$

Если $M_i \gg 0$, то данный объект вносит малый вклад в ошибку. Если $M_i \ll 0$, то данный объект вносит большой вклад в ошибку.

 $\Rightarrow w_i$ — мера важности объекта x_i на T-ой итерации. Причем, что b_t обучается на выборке $\left(x_i, Y_i \exp(-Y_i \widehat{y}_{T-1}(x_i))\right)_{i=1}^n$.

Базовый классификатор настраивается только на шумовые объекты, что приводит к неустойчивости ответов и переобучению.

Обозначим

$$\widetilde{W}=(\widetilde{w_1},..,\widetilde{w_n}), \quad \widetilde{w_i}=w_i\left/\sum_{j=1}^n w_j - ext{отнормированные веса,}
ight. \ N(b,\widetilde{W})=\sum_{i=1}^n \widetilde{w_i}\cdot I\{b(x_i)=-Y_i\} - ext{взвешенное число} \$$
 ошибочных классификаций.

Teopeма (Freund, Schapire, 1995)

Пусть для любого нормированного вектора весов U существует базовая модель $b\in \mathscr{F}$, классифицирующая выборку хотя бы немного лучше, чем наугад: $N(b,U)<\frac{1}{2}.$

Тогда минимум функционала Q достигается при

$$b_T = \operatorname*{arg\,min}_{b \in \mathscr{F}} \mathcal{N}(b, \widetilde{W}), \qquad \gamma_T = \frac{1}{2} \log \frac{1 - \mathcal{N}(b_T, \widetilde{W})}{\mathcal{N}(b_T, \widetilde{W})}.$$

- 1. Инициализировать веса объектов: $\widetilde{w_i} = \frac{1}{n}$.
- 2. Для всех *t* от 1 до *T*:
 - 2.1 Обучить базовую модель: $b_t = \operatorname*{arg\ min}_{b \in \mathscr{F}} \mathcal{N}(b,\widetilde{W}).$
 - 2.2 Вычислить коэффициент $\gamma_t = \frac{1}{2}\log \frac{1-N(b_t,\widetilde{W})}{N(b_t,\widetilde{W})}.$
 - 2.3 Обновить веса объектов: $\widetilde{w}_i = \widetilde{w}_i \cdot \exp(-Y_i \gamma_t b_t(x_i))$.
 - 2.4 Нормировать веса: $\widetilde{w}_i = \widetilde{w}_i \left/ \sum_{j=1}^n \widetilde{w}_j \right.$
 - 2.5 Отсев шума: отбросить объекты с наибольшими w_i (опционально).

AdaBoost был придуман из соображений взвешивания объектов, хотя по сути является частным случаем градиентного бустинга.

Сравнение градиентного бустинга и леса

Случайный лес.

- Требуют большего числа деревьев
- Деревья могут строиться паралельно
- Особо не переобучаются
- Каждое дерево строится дольше
- Проще подбирать гиперпараметры
- Быстрее обучаются

Градиентный бустинг.

- Требуют небольшого числа деревьев
- Деревья строятся последовательно.
- Могут переобучаться
- Каждое дерево строится быстрее
- Сложнее подбирать гиперпараметры
- Дольше обучаются

