

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

REC'D 0 1 SEP 2003

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

3 June 2003

1. Your reference

23AUG0 40088-3 p02093 P01/7700 0.60-0219612.9

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaster from the Patent Office to help you fill in this form)

The Patent Office

Cardiff Road Newport South Wales NP10 8QQ

BECT

PPD 70035/GB/P

2. Patent application number (The Patent Office will fill in this pa

0219612.9

22 AUG 2002

3. Full name, address and postcode of the or of each applicant (underline all surnames)

SYNGENTA Participations AG Intellectual Property Department Schwarzwaldallee 215 CH-4058 Basel SWITZERLAND

Patents ADP number (if you know it)

If the applicant is a corporate body, give the country/state of its incorporation

SWITZERLAND

8330748001

4. Title of the invention

CHEMICAL COMPOUNDS

5. Name of your agent (if you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (Including the postcode)

Martin Keith Osborn
Intellectual Property Department
Syngenta Limited
Jealott's Hill International Research Centre
PO Box 3538
Bracknell, Berkshire, RG42 6YA
UNITED KINGDOM

Patents ADP number (if you know it)

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (If you know it) the or each application number

Country

Priority application number
(If you know It)

Date of filing (day / month / year)

 If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' tf:

a) any applicant named in part 3 is not an inventor, or

there is an inventor who is not named as an applicant, or

c) any named applicant is a corporate body.See note (d))

YES (b)

Patents Form 1/77 9. Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document Continuation sheets of this form Description Claim(s) Abstract 00 Drawing(s) 10. If you are also filing any of the following, state how many against each item. Priority documents Translations of priority documents Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for substantive examination (Patents Form 10/77)

Request for preliminary examination

and search (Patents Form 9/77)

Any other documents (please specify)

I/We request the grant of a patent on the basis of this application. Syngenta Participations AG 11. Signature Authorised Signatory 12. Name and daytime telephone number of

person to contact in the United Kingdom

Clare DOWLING = 01344 414834

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to probibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

10

20

CHEMICAL COMPOUNDS

The present invention relates to novel 1,2,3-triazole derivatives which have microbiocidal activity, in particular fungicidal activity. The invention also relates to the preparation of these compounds, to novel intermediates used in the preparation of these compounds, to agrochemical compositions which comprise at least one of the novel compounds as active ingredient, to the preparation of the compositions mentioned and to the use of the active ingredients or compositions in agriculture or horticulture for controlling or preventing infestation of plants by phytopathogenic microorganisms, preferably fungi.

The present invention provides a compound of formula (I):

where A is an ortho-substituted ring selected from formulae (A1) to (A22);

$$R^{7}, R^{8}, R^{9}, R^{10}$$
(A1)

$$R^{11}, R^{12}$$
 R^{5}
 R^{5}
 R^{5}
 R^{11}, R^{12}
 R^{11}, R^{12}

10

$$R^{6}$$
 R^{6}
 R^{6}
 R^{11}
 R^{11}

(A22)

Q is a single or a double bond;

X is O, N(R¹⁸), S or $(CR^{19}R^{20})(CR^{21}R^{22})_m(CR^{23}R^{24})_n$;

m is 0 or 1;

5 n is 0 or 1:

25

 R^1 is halogen, cyano, nitro, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy or C_{1-4} haloalkoxy or optionally substituted C_{2-4} alkenyl, optionally substituted C_{2-4} alkynyl or optionally substituted $SO_2(C_{1-4})$ alkyl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C_{1-4} alkoxy);

R² is C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy(C₁₋₄)alkyl or C₁₋₄ alkylthio(C₁₋₄)alkyl or optionally substituted aryl(C₁₋₄)alkyl or optionally substituted aryloxy(C₁₋₄)alkyl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C₁₋₄ alkoxy);

R³ is hydrogen, CH₂C=CR⁴, CH₂CR⁴=C(H)R⁴, CH=C=CH₂ or COR⁵ or optionally substituted C₁₋₄ alkyl, optionally substituted C₁₋₄ alkoxy or optionally substituted (C₁₋₄) alkylC(=O)O (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C₁₋₄ alkoxy, C₁₋₄ alkyl, C₁₋₂ haloalkoxy, hydroxy, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, methylsulfonyl and ethylsulfonyl);

each R^4 is, independently, hydrogen, halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy or C_{1-4} alkoxy(C_{1-4})alkyl;

 R^5 is hydrogen or optionally substituted C_{1-6} alkyl, optionally substituted C_{1-4} alkoxy, optionally substituted C_{1-4} alkoxy(C_{1-4})alkyl, optionally substituted

 C_{1-4} alkylthio(C_{1-4})alkyl or optionally substituted aryl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen, C_{1-6} alkoxy, C_{1-6} haloalkoxy, cyano, hydroxy, methoxycarbonyl and ethoxycarbonyl);

10

20

a 5- or 6-membered heterocyclic ring [in which the ring contains 1 to 3 heteroatoms (each independently chosen from oxygen, sulphur and nitrogen) and the ring is optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C(H)=N-O-(C_{1-6}$ alkyl) and $C(C_{1-6}$ alkyl)= $N-O-(C_{1-6}$ alkyl)],

 C_{3-12} alkyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C_{1-4} alkoxy, C_{1-4} thioalkyl, COO- C_{1-4} alkyl, =N-OH, =N-O- C_{1-4} alkyl, C_{3-8} cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy) and

 C_{4-8} cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy)],

 C_{2-12} alkenyl [optionally substituted by up to 6 substituents, independently selected from halogen, cyano, C_{1-4} alkoxy, C_{1-4} thioalkyl, COO-(C_{1-4} alkyl), =N-OH, =N-O-(C_{1-4} alkyl), C_{3-8} cycloalkyl (itself optionally substituted by up to 3 substituents, each independently

selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy) and C_{4-8} cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy)],

 C_{2-12} alkynyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C_{1-4} alkoxy, C_{1-4} thioalkyl, COO- C_{1-4} alkyl, =N-OH,

=N-O-(C₁₋₄ alkyl), C₃₋₈ cycloalkyl (itself optionally substituted by C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy or C₁₋₄ haloalkoxy), Si(CH₃)₃ and C₄₋₈ cycloalkenyl (itself optionally substituted by C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy or C₁₋₄ haloalkoxy)],

 C_{3-8} cycloalkyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} thioalkyl,

C₃₋₆ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected halogen atoms)],

30

C₄₋₈ cycloalkenyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, $C_{1\text{--}4}$ thioalkyl, $C_{3\text{--}6}$ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy) and 5 phenyl (itself optionally substituted by up to five independently selected halogen atoms)], C₆₋₁₂ bicycloalkyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C₁₋₄ alkyl and C₁₋₄ haloalkyl] or an aliphatic or alicyclic, saturated or unsaturated group [in which the group contains three to thirteen carbon atoms and at least one silicon atom and, optionally, one to three 10 heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms]; R⁷, R⁸, R⁹, R¹⁰, R¹¹ and R¹² are each, independently, hydrogen, halogen, cyano, nitro, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} thioalkyl or C_{1-4} thiohaloalkyl; R^{13} , R^{14} , R^{15} , R^{16} and R^{17} are each, independently, hydrogen, halogen, C_{1-4} alkyl, 15 $C(O)CH_3$, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} thioalkyl, C_{1-4} thiohaloalkyl, hydroxymethyl or C₁₋₄alkoymethyl; R^{18} is hydrogen, C_{1-4} alkyl or C_{1-4} alkoxy(C_{1-4})alkyl; and $R^{19}, R^{20}, R^{21}, R^{22}, R^{23}$ and R^{24} are each, independently, hydrogen, C_{1-4} alkyl or 20 C_{1-4} alkoxy.

Halogen is fluoro, chloro, bromo or iodo.

Each alkyl moiety is a straight or branched chain and is, for example, methyl, ethyl, *n*-propyl, *n*-butyl, *n*-pentyl, *n*-hexyl, *iso*-propyl, *sec*-butyl, *iso*-butyl, *tert*-butyl, *neo*-pentyl, *n*-heptyl, 1,3-dimethylbutyl, 1,3-dimethylpentyl, 1-methyl-3-ethyl-butyl or 1,3,3-trimethylbutyl.

Haloalkyl moieties are alkyl moieties which are substituted by one or more of the same or different halogen atoms and are, for example, CF₃, CF₂Cl, CHF₂, CH₂F, CCl₃, CF₃CH₂, CHF₂CH₂, CH₂FCH₂, CH₃CHF or CH₃CF₂.

Alkenyl and alkynyl moieties can be in the form of straight or branched chains. The alkenyl moieties, where appropriate, can be of either the (E)- or (Z)-configuration. Examples are vinyl, allyl, ethynyl and propargyl.

Cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl cyclohexyl, cycloheptyl and cyclooctyl.

Cycloalkenyl includes cyclobutenyl, cyclopentenyl, cyclohexenyl and cycloheptenyl. Bicycloalkyl includes bicyclo[1,1,1]pentyl, bicyclo[2,1,1]hexyl,

bicyclo[2,2,1]heptyl, bicyclo[2,2,2]octyl, bicyclo[3,2,1]octyl and bicyclo[3,2,2]nonyl.

Aryl includes phenyl, naphthyl, anthracyl, fluorenyl and indanyl but is preferably phenyl.

Preferably A is selected from formulae (A1), (A2), (A3), (A16), (A17), (A18), (A19), (A20) and (A22).

More preferably A is selected from formulae (A1), (A2), (A18), (A19) and (A22). Even more preferably A is selected from one of the following ortho-substituted rings:

$$\bigcap_{\mathbf{R}^6} \bigcap_{\mathbf{R}^6} \bigcap_{\mathbf{R}^6$$

15

30

5

10

where Ra and Rb are, independently, selected from H and C1-4 alkyl.

Preferably X is O, S or $(CR^{19}R^{20})(CR^{21}R^{22})_m(CR^{23}R^{24})_n$.

More preferably X is O or $(CR^{19}R^{20})(CR^{21}R^{22})_m(CR^{23}R^{24})_n$.

Preferably R¹ is C₁₋₄ alkyl, C₁₋₄ haloalkyl, NO₂, CN or OCF₃.

20 More preferably R¹ is CHF₂, CF₃, CH₂F, CF₂Cl, CH₃ or C₂H₅.

Even more preferably R¹ is CHF₂, CF₃, CH₂F, CF₂Cl or CH₃.

Most preferably R¹ is CHF₂, CF₃ or CH₂F.

Preferably R^2 is C_{1-4} alkyl, C_{1-4} alkoxy(C_{1-4})alkyl or C_{1-4} alkylthio(C_{1-4})alkyl.

More preferably R^2 is CH_3 , C_2H_5 , CH_2OCH_3 or CH_2SCH_3 .

Even more preferably R^2 is CH_3 or C_2H_5 .

Most preferably R² is CH₃.

Preferably R³ is hydrogen, CH₂C≡CR⁴, CH₂CR⁴=C(H)R⁴, CH=C=CH₂ or COR⁵.

More preferably R^3 is H, $CH_2C\equiv CH$, $CH=C=CH_2$, $CH_2CH=CH_2$ or $COCH_3$.

Still more preferably R^3 is H, $CH_2C=CH$, $CH=C=CH_2$ or $CH_2CH=CH_2$.

Even more preferably R^3 is H, $CH_2C=CH$ or $CH=C=CH_2$.

10

20

Most preferably R³ is H.

Preferably each R^4 is, independently, H, halogen, C_{1-4} alkyl or C_{1-4} alkoxy.

More preferably each R⁴ is, independently, H, Cl, Br, CH₃ or CH₃O.

Still more preferably each R⁴ is, independently, H, Cl or CH₃.

Most preferably each R⁴ is H.

Preferably R^5 is H, C_{1-6} alkyl, C_{1-4} alkoxy or C_{1-4} alkoxy(C_{1-4})alkyl.

More preferably R⁵ is H, methyl, OC(CH₃)₃ or CH₂OCH₃.

Even more preferably R⁵ is H or methyl.

Preferably R^6 is chosen from C_{3-8} alkyl, C_{3-8} haloalkyl, C_{3-7} cycloalkyl [optionally substituted by C_3 cycloalkyl (itself optionally substituted by C_{1-2} alkyl) or by up to two C_{1-4} alkyl groups], an aliphatic group [which contains three to ten carbon atoms and at least one silicon atom], thienyl [optionally substituted by halo], furyl [optionally substituted by halo], pyridyl [optionally substituted by halo], oxazolyl, isoxazolyl and

$$\blacktriangleleft \cdots \bigwedge_{\mathbb{R}^d}^{\mathbb{R}^c}$$

where R^c and R^d are, independently, H, Cl, Br, F, I, CN, NO₂, C₁₋₄ alkyl, CF₃, SCF₃, OCF₃, CH=NOH, CH=N-OC₁₋₆ alkyl, C \equiv CH, C \equiv C-Si(CH₃)₃, C(H)=CH₂ or C(H)=CH(C₁₋₄ alkyl).

More preferably R^6 is C_{3-7} alkyl, C_{3-6} cycloalkyl [optionally substituted by C_{1-4} alkyl or a C_3 cycloalkyl (itself optionally substituted by C_{1-2} alkyl)], an aliphatic group (which contains three to eight carbon atoms and at least one silicon atom) or

where R^e is Cl, Br, F, CF₃, OCF₃, CH=N-OC₁₋₄ alkyl, C=CH or C(H)=CH₂.

Even more preferably R⁶ is chosen from one of the following moieties:

where R^e is Cl, Br, F, CF₃, C=CH or CH=N-OC₁₋₄ alkyl.

Preferably R⁷ is H, F or CH₃.

5 Preferably R⁸ is H.

Preferably R⁹ is H.

Preferably R¹⁰ is H.

Preferably R¹¹ is H.

Preferably R¹² is H.

Preferably R¹³, R¹⁴, R¹⁵, R¹⁶ are, independently, H, CH₃, CH₃O or CH₃OCH₂.

More preferably R¹³, R¹⁴, R¹⁵, R¹⁶ are, independently, H or CH₃.

Preferably R¹⁷ is H.

Preferably R¹⁸ is H, CH₃ or C₂H₅.

More preferably R^{18} is CH_3 or C_2H_5 .

Preferably R¹⁹, R²⁰, R²¹, R²², R²³ and R²⁴ are, independently, H or CH₃.

Compounds of formula (II):

where R^1 and R^2 are as defined above for a compound of formula (I) and Y is halogen, 20 hydroxy or C_{1-5} alkoxy, are also novel and are useful as intermediates in the preparation of compounds of formula (I).

10

15

20

Therefore, in another aspect the present invention provides a compound of formula (II) where R^1 and R^2 are as defined above for a compound of formula (I) and Y is halogen, hydroxy or C_{1-5} alkoxy.

Preferably Y is hydroxy, chloro, fluoro or C_{1-3} alkoxy.

Anilines of formula (IIIa) are also novel

where R¹³, R¹⁴, R¹⁵, R¹⁶, Q and X are as defined above for a compound of formula (I), provided that when Q is a double bond and R¹³, R¹⁴, R¹⁵ and R¹⁶ are each H then X is not CH₂ or CH₂CH₂ and when Q is a single bond, R¹³ is OCH₃, R¹⁴ is CH₃ and R¹⁵ and R¹⁶ are both H then X is not CH₂CH₂.

Therefore, in a further aspect, the present invention provides a compound of formula (IIIa) where R^{13} , R^{14} , R^{15} , R^{16} , Q and X are as defined above for a compound of formula (I), provided that when Q is a double bond and R^{13} , R^{14} , R^{15} and R^{16} are each H then X is not CH₂ or CH₂CH₂ and when Q is a single bond, R^{13} is OCH₃, R^{14} is CH₃ and R^{15} and R^{16} are both H then X is not CH₂CH₂.

The compounds of formula (I), (II) and (IIIa) may exist as different geometric or optical isomers or in different tautomeric forms. This invention covers, for each formula, all such isomers and tautomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds.

The compounds in Tables 1 to 26 below illustrate compounds of the invention.

Table 1 provides 59 compounds of formula (II) wherein R¹, R² and Y are as defined in Table 1.

Table 1

Compound Number	R ¹	\mathbb{R}^2	Y
1.01	CHF ₂	CH ₃	OH
1.02	CHF ₂	CH ₃	Cl
1.03	CHF ₂	CH ₃	OCH ₃
1.04	CHF ₂	CH ₃	OC ₂ H ₅
1.05	CHF ₂	CH ₃	$OC_3H_7(n)$
1.06	CHF ₂	CH ₃	OC ₃ H ₇ (i)
1.07	CHF ₂	C ₂ H ₅	OH

1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23	CHF ₂ CHF ₂ CHF ₂ CHF ₂ CHF ₂ CF ₃	C ₂ H ₅ C ₁ H ₅ CH ₃ C ₂ H ₅	Cl OCH ₃ OC ₂ H ₅ OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃ OC ₂ H ₅ OC ₃ H ₇ (n) OC ₃ H ₇ (n) OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OH
1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22	CHF ₂ CHF ₂ CF ₃	C ₂ H ₅ C ₂ H ₅ C ₂ H ₅ CH ₃	$\begin{array}{c} OC_2H_5\\ OC_3H_7(n)\\ OC_3H_7(i)\\ OH\\ Cl\\ OCH_3\\ OC_2H_5\\ OC_3H_7(n)\\ OC_3H_7(i)\\ OH\\ Cl\\ OCH_3\\ \end{array}$
1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22	CHF ₂ CHF ₂ CF ₃	C ₂ H ₅ C ₂ H ₅ CH ₃ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃ OC ₂ H ₅ OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃
1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22	CHF ₂ CF ₃	C ₂ H ₅ CH ₃ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	OC ₃ H ₇ (i) OH Cl OCH ₃ OC ₂ H ₅ OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃
1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22	CF ₃	CH ₃ CH ₄ CH ₅ C ₂ H ₅ C ₂ H ₅	OH Cl OCH ₃ OC ₂ H ₅ OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃
1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22	CF ₃	CH ₃ CC ₂ H ₅ C ₂ H ₅ C ₂ H ₅	Cl OCH ₃ OC ₂ H ₅ OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃
1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22	CF ₃	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	OCH ₃ OC ₂ H ₅ OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃
1.16 1.17 1.18 1.19 1.20 1.21 1.22	CF ₃	CH ₃ CH ₃ CH ₃ C2H ₅ C2H ₅ C2H ₅	OC ₂ H ₅ OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃
1.17 1.18 1.19 1.20 1.21 1.22	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃ CF ₃	CH ₃ CH ₃ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	OC ₃ H ₇ (n) OC ₃ H ₇ (i) OH Cl OCH ₃
1.18 1.19 1.20 1.21 1.22	CF ₃ CF ₃ CF ₃ CF ₃ CF ₃	CH ₃ C ₂ H ₅ C ₂ H ₅ C ₂ H ₅	OC ₃ H ₇ (i) OH Cl OCH ₃
1.19 1.20 1.21 1.22	CF ₃ CF ₃ CF ₃ CF ₃	C_2H_5 C_2H_5 C_2H_5	OH Cl OCH ₃
1.20 1.21 1.22	CF ₃ CF ₃ CF ₃	C_2H_5 C_2H_5	Cl OCH ₃
1.21 1.22	CF ₃	C_2H_5	OCH ₃
1.22	CF ₃		
		C ₂ H ₅	1
	CF ₂	~ 4J	OC ₂ H ₅
	~-J {	C_2H_5	$OC_3H_7(n)$
1.24	CF ₃	C_2H_5	$OC_3H_7(i)$
1.25	CF ₃	CH ₂ OCH ₃	OH
1.26	CF ₃	CH ₂ OCH ₃	Cl
1.27	CF ₃	CH ₂ OCH ₃	OCH ₃
1.28	CF ₃	CH ₂ OCH ₃	OC ₂ H ₅
1.29	CF ₃	CH ₂ OCH ₃	$OC_3H_7(n)$
1.30	CF ₃	CH ₂ OCH ₃	OC ₃ H ₇ (i)
1.31	CF ₃	СН₃	F
1.32	CHF ₂	CH ₃	F
1.33	CHF ₂	CH ₂ OCH ₃	OH
1.34	CHF ₂	CH ₂ OCH ₃	OCH ₃
1.35	CHF ₂	CH ₂ OCH ₃	OC ₂ H ₅
1.36	CF ₃	CH ₂ SCH ₃	OH
1.37	CF ₃	CH ₂ SCH ₃	OCH ₃
1.38	CN	CH ₃	OCH ₃
1.39	OCF ₃	CH ₃	OCH₃
1.40	NO ₂	CH ₃	OCH ₃
1.41	CH₃	CH ₃	OH
1.42	CH₃	CH₃	OCH ₃
1.43	CH₃	CH ₃	Cl
1.44	CH ₃	C ₂ H ₅	OH
1.45	C_2F_5	CH ₃	OCH ₃
1.46	CF ₃	CF ₃	OCH₃
1.47	CH ₃	CF ₃	OCH₃
1.48	CH ₂ F	CH ₃	OH
1.49	CH ₂ F	CH ₃	Cl
1.50	CH ₂ F	CH ₃	OCH ₃
1.51	CH ₂ F	CH ₃	OC ₂ H ₅
1.52	CH ₂ F	CH ₃	$OC_3H_7(n)$
1.53	CH ₂ F	CH ₃	OC ₃ H ₇ (i)

1.54	CH ₂ F	C ₂ H ₅	OH
1.55	CH ₂ F	C_2H_5	Cl
1.56	CH ₂ F	C ₂ H ₅	OCH ₃
1.57	CH ₂ F	C_2H_5	OC ₂ H ₅
1.58	CH ₂ F	C ₂ H ₅	$OC_3H_7(n)$
1.59	CH ₂ F	C_2H_5	$OC_3H_7(i)$

Table X represents Table 2 [when X is 2], Table 3 [when X is 3], Table 4 [when X is 4], Table 5 [when X is 5], Table 6 [when X is 6] and represents Table 7 [when X is 7].

5 <u>Table X</u>

Cmpd. No.	R ²	R ³	R ⁶	R ⁷	R ⁸	R ⁹	R ¹⁰
X.001	CH ₃	H	phenyl				
X.002	CH ₃	CH ₂ C≡CH	phenyl	H	H	H	H
X.003	CH ₃	H	2'-fluorophenyl	H	H	H	H
X.004	CH ₃	H	3'-fluorophenyl	H	H	H	H
X.005	CH ₃	H	4'-fluorophenyl	H	H	H	H
X.006	C ₂ H ₅	H	4'-fluorophenyl	H	H	H	H
X.007	CH ₂ OCH ₃	H	4'-fluorophenyl	H	H	H	H
X.008	CH ₃	COCH ₃	4'-fluorophenyl	H	H	H	H
X.009	CH ₃	COCH ₂ OCH ₃	4'-fluorophenyl	H	H	H	H
X.010	CH ₃	CH ₂ C≡CH	4'-fluorophenyl	H	H	H	H
X.011	CH ₃	CH=C=CH ₂	4'-fluorophenyl	H	H	H	H
X.012	CH ₃	COO-tert-Bu	4'-fluorophenyl	H	H	H	H
X.013	CH ₃	Н	4'-fluorophenyl	H	H	H	H
X.014	CH ₃	H	4'-fluorophenyl	F	H	H	H
X.015	CH ₃	Н	2'-chlorophenyl	CH ₃	H	H	H
X.016	CH ₃	Н	3'-chlorophenyl	H	H	H	H
X.017	CH ₃	Н	4'-chlorophenyl	H	H	H	H
X.018	C ₂ H ₅	Н	4'-chlorophenyl	H	H	H	H
X.019	CH ₂ OCH ₃	H	4'-chlorophenyl	H	H	H	H
X.020	CH ₃	COCH ₃	4'-chlorophenyl	H	H	H	H
X.021	CH ₃	COCH ₂ OCH ₃	4'-chlorophenyl	H	H	H	H
X.022	CH ₃	CH ₂ C≡CH	4'-chlorophenyl	H	H	H	H
X.023	CH ₃	CH=C=CH ₂	4'-chlorophenyl	H	H	H	H
X.024	CH ₃	COO-tert-Bu	4'-chlorophenyl	H	H	H	H
X.025	CH ₃	H	4'-chlorophenyl	H	H	H	H
X.026	CH ₃	H	4'-chlorophenyl	F	H	H	H
X.027	CH ₃	Н	2'-bromophenyl	CH ₃	H	H	H
X.028	CH ₃	H	3'-bromophenyl	H	H	H	H
X.029	CH ₃	· H	4'-bromophenyl	H	H	H	H
X.030	C ₂ H ₅	H	4'-bromophenyl	H	H	H	H
X.031	CH ₂ OCH ₃	H	4'-bromophenyl	H	H	H	H
X.032	CH ₃	COCH ₃	4'-bromophenyl	H	H	H	H
X.033	CH ₃	COCH ₂ OCH ₃	4'-bromophenyl	H	<u>H</u>	H	H
X.034	CH ₃	CH ₂ C≡CH	4 -bromophenyl	H	H	H	H
X.035	CH ₃	CH=C=CH ₂	4'-bromophenyl	H	H	H	H
X.036	CH ₃	COO-tert-Bu	4'-bromophenyl	H	H	H	H
X.037	CH ₃	H	4 -bromophenyl	H	H	H	H
			4 -bromopnenyi	F	H	H	H

77.000	- CTT		A' bromonhonyl	CH ₃	н	H	н
X.038	CH ₃	H	4'-bromophenyl	H	H	H	H
X.039	CH ₃	H	2'-iodophenyl	H	H	H	H
X.040	CH ₃	H	3'-iodophenyl	H	H	H	H
X.041	CH ₃	H	4'-iodophenyl	H	H	H	H
X.042	CH ₃	H	2'-CF ₃ -phenyl	H	H	H	H
X.043	CH ₃	H	3'-CF ₃ -phenyl	H	H	H	H
X.044	CH ₃	H	4'-CF ₃ -phenyl	H	H	H	$\frac{\pi}{H}$
X.045	C ₂ H ₅	H	4'-CF ₃ -phenyl	H	H	H	H
X.046	CH ₂ OCH ₃	H	4'-CF ₃ -phenyl	H	H	H	H
X.047	CH ₃	COCH ₃	4'-CF ₃ -phenyl		H	H	H
X.048	CH ₃	COCH ₂ OCH ₃	4'-CF ₃ -phenyl	H	H	H	H
X.049	CH ₃	CH ₂ C≡CH	4'-CF ₃ -phenyl		H	H	H
X.050	CH ₃	COO-tert-Bu	4'-CF ₃ -phenyl	H		H	H
X.051	CH ₃	<u>H</u>	2'-OCF ₃ -phenyl	H	H		H
X.052	CH ₃	H	3'-OCF ₃ -phenyl	H	H	H	H
X.053	CH ₃	H	4'-OCF ₃ -phenyl	H	H	H	
X.054	C ₂ H ₅	Н	4'-OCF ₃ -phenyl	H	H	H	H
X.055	CH ₂ OCH ₃	H	4'-OCF ₃ -phenyl	H	H	H	H
X.056	CH ₃	COCH ₃	4'-OCF ₃ -phenyl	H	H	H	H
X.057	CH ₃	COCH ₂ OCH ₃	4'-OCF ₃ -phenyl	H	H	H	H
X.058	CH ₃	CH ₂ C≡CH	4'-OCF ₃ -phenyl	H	H	H	H
X.059	CH ₃	COO-tert-Bu	4'-OCF ₃ -phenyl	H	H	H	H
X.060	CH₃	CH=C=CH ₂	4'-OCF ₃ -phenyl	H	H	H	H
X.061	CH ₃	H	4'-SCF ₃ -phenyl	H	H	H	H
X.062	CH ₃	H	2'-CH=NOH-phenyl	H	H	H	H
X.063	CH ₃	H	3'-CH=NOH-phenyl	H	H	H	H
X.064	CH ₃	H	4'-CH=NOH-phenyl	H	-		H
X.065	CH ₃	H	2'-CH=NOCH ₃ -phenyl	H	H	H	H
X.066	CH ₃	H	3'-CH=NOCH ₃ -phenyl	H	H	H	H
X.067	CH ₃	H	4'-CH=NOCH ₃ -phenyl	H			
X.068	CH ₃	H	2'-CH=NOC ₂ H ₅ -phenyl	H	H	H	H
X.069	CH ₃	H	3'-CH=NOC ₂ H ₅ -phenyl	H			H
X.070	CH ₃	H	4'-CH=NOC ₂ H ₅ -phenyl	H	H	H	H
X.071	CH ₃	H	2'-CN-phenyl	H	H	H	H
X.072	CH ₃	H	3'-CN-phenyl	H	H	H	H
X.073	CH ₃	H	4'-CN-phenyl	H		H	
X.074	CH ₃	H	2'-NO ₂ -phenyl	H	H	H	H
X.075	CH ₃	Н	3'-NO ₂ -phenyl	H			
X.076	CH ₃	H	4'-NO ₂ -phenyl	H	H	H	H
X.077	CH ₃	H	3',4'-difluorophenyl	H	H	H	H
X.078	C ₂ H ₅	H	3',4'-difluorophenyl	H	H		H
X.079	CH ₂ OCH ₃		3',4'-difluorophenyl	H	H		H
X.080	CH ₃	COCH ₃	3',4'-difluorophenyl	H	H		H
X.081	CH ₃	COCH ₂ OCH ₃	3',4'-difluorophenyl	H	H		H
X.082	CH ₃	CH ₂ C≡CH	3',4'-difluorophenyl	H	H		H
X.083	CH ₃	COO-tert-Bu	3',4'-difluorophenyl	H	H		H
X.084	CH ₃	CH=C=CH ₂	3',4'-difluorophenyl	H	H		H
X.085	CH ₃	H	3',4'-difluorophenyl	F	H		H
X.086	CH ₃	<u> </u>	3',4'-difluorophenyl	CH			H
X.087	CH ₃	Н	3',4'-dichlorophenyl	H			H
X.088	C_2H_5	H	3',4'-dichlorophenyl	H			
X.089	CH ₂ OCH		3',4'-dichlorophenyl	H			
X.090	CH ₃	COCH ₃	3',4'-dichlorophenyl	H			
X.091	CH ₃	COCH ₂ OCH ₃		H			
X.092	CH ₃	CH ₂ C≡CH	3',4'-dichlorophenyl	<u> </u>	I.	<u> </u>	H

- 13 -

X.093	CH ₃	COO-tert-Bu	3',4'-dichlorophenyl	1			
X.094	CH ₃	CH=C=CH ₂	3',4'-dichlorophenyl	H	H		H
X.095	CH ₃	H	3',4'-dichlorophenyl	H	H		H
X.096	CH ₃	Н	3',4'-dichlorophenyl	F	H		
X.097	CH ₃	Н	4'-chloro-3'-fluoro-phenyl	CH ₃		_	H
X.098	C_2H_5	H	4'-chloro-3'-fluoro-phenyl	H	H		H
X.099	CH ₂ OCH ₃	H	4'-chloro-3'-fluoro-phenyl	<u> </u>	H		H
X.100	CH ₃	COCH ₃	4'-chloro-3'-fluoro-phenyl	H	H	_	H
X.101	CH ₃	COCH ₂ OCH ₃	4'-chloro-3'-fluoro-phenyl	H	H	_	H
X.102	CH ₃	CH ₂ C≡CH	4'-chloro-3'-fluoro-phenyl	H	H	H	H
X.103	CH ₃	COO-tert-Bu	4'-chloro-3'-fluoro-phenyl	H	H	H	H
X.104	CH ₃	CH=C=CH ₂	4'-chloro-3'-fluoro-phenyl	H	H	H	H
X.105	CH ₃	H	4'-chloro-3'-fluoro-phenyl	H	H	H	H
X.106	CH ₃	Н	4'-chloro-3'-fluoro-phenyl	F	H	H	H
X.107	CH ₃	Н	3'-chloro-4'-fluoro-phenyl	CH ₃	H	H	H
X.108	C ₂ H ₅	H	3'-chloro-4'-fluoro-phenyl	H	H	H	H
X.109	CH ₂ OCH ₃	H	3'-chloro-4'-fluoro-phenyl	H	H	H	H
X.110	CH ₃	COCH ₃	3'-chloro-4'-fluoro-phenyl	H	H	H	H
X.111	CH ₃	COCH ₂ OCH ₃	3'-chloro-4'-fluoro-phenyl	H	H	H	H
X.112	CH ₃	CH ₂ C≡CH	3'-chloro-4'-fluoro-phenyl	H	H	H	H
X.113	CH ₃	COO-tert-Bu	3'-chloro-4'-fluoro-phenyl	H	H	H	H
X.114	CH ₃	CH=C=CH ₂	3'-chloro-4'-fluoro-phenyl	H	H	H	H
X.115	CH ₃	H	3'-chloro-4'-fluoro-phenyl	H	H	H	H
X.116	CH ₃	H	3'-chloro-4'-fluoro-phenyl	F	H	H	H
X.117	CH ₃	H	2'-4'-dichloro-phenyl	CH ₃	H	H	H
X.118	CH ₂ OCH ₃	H	2'-4'-dichloro-phenyl	H	H	H	H
X.119	CH₃	H	2'-4'-difluoro-phenyl	H	H	H	H
X.120	CH ₂ OCH ₃	H	2'-4'-difluoro-phenyl	H	H	H	H
X.121	CH ₃	H	CH ₂ CH ₂ CH ₃	H	H	H	H
X.122	C ₂ H ₅	H	CH ₂ CH ₂ CH ₃		H	H	H
X.123	CH ₂ OCH ₃	Н	CH ₂ CH ₂ CH ₃	H	H	H	H
X.124	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH ₃	H	H	H	H
X.125	CH ₃	H	CH ₂ CH ₂ CH ₃	H	H	H	H
X.126	C ₂ H ₅	H	CH ₂ CH ₂ CH ₂ CH ₃	H	H	H	H
X.127	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₂ CH ₃	H	H	H	H
X.128	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH ₃	H	H	H	H
X.129	CH ₃	H	CH ₂ CH ₂ CH ₃	F	H	H	H
X.130	CH ₃	H	CH ₂ CH ₂ CH ₂ CH ₃		H	H	H
X.131	CH ₃	H	$CH_2CH_2CH_2(C_2H_5)$	CH₃ H	H	H	H
X.132	C_2H_5	H	$CH_2CH_2CH_2(C_2H_5)$		H	H	H
X.133	CH ₂ OCH ₃	H	$CH_2CH_2CH_2(C_2H_5)$	H	H	H	H
X.134	CH ₃	CH ₂ C≡CH	$CH_2CH_2CH_2(C_2H_5)$	H	H	H	H
X.135	CH ₃	H	$CH_2CH_2CH_2(C_2H_5)$	F	H	H	H
X.136	CH ₃	H	$CH_2CH_2CH_2(C_2H_5)$		H	H	H
X.137	CH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₃	H	H	H
X.138	C_2H_5	H	CH ₂ CH ₂ CH(CH ₃) ₂	H	H	H	H
X.139	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	H	H	H	H
X.140	CH ₃	COCH ₃	CH ₂ CH ₂ CH(CH ₃) ₂		H	H	H
X.141	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	H	H	H	H
X.142	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH(CH ₃) ₂	H	H	H	H
X.143	CH ₃	COO-tert-Bu	CH ₂ CH ₂ CH(CH ₃) ₂	H	H	H	H
X.144	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	H	H	H	H
X.145	CH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	F	H	H	H
X.146	CH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	CH ₃	H	H	H
X.147	CH ₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)		H	H	H
			2(3)((-2115)	H	H	H	H

_ 14 _	

X.148	C ₂ H ₅	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.148 X.149	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.150	CH ₃	COCH ₃	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	Н	H	H	H
X.151		COCH ₂ OCH ₃	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.152	CH ₃	CH ₂ C≡CH	$CH_2CH_2CH(CH_3)(C_2H_5)$	H	H	H	H
X.152	CH ₃	COO-tert-Bu	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	Н	H	H	H
X.154	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.155	CH ₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	F	Н	H	Н
X.156	CH ₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	CH ₃	H	H	H
X.150 X.157	CH ₃	H	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	H	Н	H
X.158	C ₂ H ₅	H	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	Н	H	H
X.159	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	Н	H	H
X.160	CH ₃	COCH ₃	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	Н	H	H
X.161	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.161 X.162	CH ₃	CH ₂ C≡CH	$CH_2CH_2CH(C_2H_5)_2$	H	H	Н	H
X.162 X.163	CH ₃	COO-tert-Bu	$CH_2CH_2CH(C_2H_5)_2$	Н	H	H	H
	CH ₃	CH=C=CH ₂	$CH_2CH_2CH(C_2H_5)_2$	H	H	H	H
X.164	CH ₃	H	$CH_2CH_2CH(C_2H_5)_2$	F	Н	H	H
X.165	CH ₃	H	$CH_2CH_2CH(C_2H_5)_2$	CH ₃	H	H	Н
X.166	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₃	H	H	Н	H
X.167	C_2H_5	H	CH ₂ CH ₂ C(CH ₃) ₃	H	H	H	H
X.168	CH ₂ OCH ₃	H	CH ₂ CH ₂ C(CH ₃) ₃	H	H	H	Н
X.169	CH ₂ OCH ₃	COCH ₃	CH ₂ CH ₂ C(CH ₃) ₃	H	H	H	Н
X.170	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ C(CH ₃) ₃	H	H	H	H
X.171		CH ₂ C≡CH	CH ₂ CH ₂ C(CH ₃) ₃	H	H	H	H
X.172	CH ₃	COO-tert-Bu	CH ₂ CH ₂ C(CH ₃) ₃	H	H	H	H
X.173	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ C(CH ₃) ₃ CH ₂ CH ₂ C(CH ₃) ₃	H	H	H	H
X.174	CH ₃		CH ₂ CH ₂ C(CH ₃) ₃ CH ₂ CH ₂ C(CH ₃) ₃	F	H	H	H
X.175	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₃ CH ₂ CH ₂ C(CH ₃) ₃	CH ₃	H	H	H
X.176	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₃ CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.177	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.178	C ₂ H ₅		CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.179	CH ₂ OCH ₃	COCH ₃	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.180	CH ₃	COCH ₂ OCH ₃		H	H	H	H
X.181	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.182	CH ₃	COO-tert-Bu		H	H	H	H
X.183	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.184	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	F	H	H	H
X.185		H	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	CH:			
X.186	CH ₃	H	CH ₂ CH ₂ C(CH ₃)/(C ₂ H ₅) ₂	H	H		
X.187		H	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H		
X.188	C ₂ H ₅		CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H		
X.189		COCH ₃	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H		
X.190	CH ₃	COCH ₂ OCH		H	H		
X.191	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H			
X.192	CH ₃	COO-tert-Bu		H	_		
X.193	CH ₃	CH=C=CH ₂		H			
X.194	CH ₃	H	$CH_2CH_2C(CH_3)(C_2H_5)_2$ $CH_2CH_2C(CH_3)(C_2H_5)_2$	F			
X.195	CH ₃	H	$CH_2CH_2C(CH_3)(C_2H_5)_2$ $CH_2CH_2C(CH_3)(C_2H_5)_2$	CH			
X.196	CH ₃	H	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₃) ₂ CH(CH ₃)CH ₂ CH ₃	H			
X.197	CH ₃	$\frac{H}{H}$	CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₃	H			
X.198	CIL OCI		CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₃	H			
X.199	CH ₂ OCH			H			
X.200	CH ₃	CH ₂ C≡CH	CH(Ch ₃)CH ₂ CH ₃ CH(C ₂ H ₅)CH ₂ CH ₃	H			
X.201	CH ₃	<u> </u>	CH(C ₂ H ₅)CH ₂ CH ₃ CH(C ₂ H ₅)CH ₂ CH ₃	H			
X.202	C_2H_5	H	CH(C2H5)CH2CH3		1 1	- 1 -	

,	
()
`	

X.203	CH₂OCH₃	H	CH(C ₂ H ₅)CH ₂ CH ₃	Н	1 77	T	T
X.204	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ CH ₃	H	H	H	H
X.205	CH ₃	H	CH(CF ₃)CH ₂ CH ₃	H	H	H	H
X.206	C ₂ H ₅	H	CH(CF ₃)CH ₂ CH ₃	H	H	H	H
X.207	CH ₂ OCH ₃	H	CH(CF ₃)CH ₂ CH ₃	H	H	H	H
X.208	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ CH ₃	$\frac{H}{H}$	H	H	H
X.209	CH ₃	H	CH(CH ₃)CH ₂ CH ₂ CH ₃		H	H	H
X.210	C ₂ H ₅	Н	CH(CH ₃)CH ₂ CH ₂ CH ₃	H	H	H	H
X.211	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ CH ₂ CH ₃	H	H	H	H
X.212	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH ₂ CH ₃	H	H	H	H
X.213	CH ₃	H	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H	H	H	H
X.214	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H	H	H	H
X.215	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H	H	H	H
X.216	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H	H	H	H
X.217	CH ₃	H	CH(CF ₃)CH ₂ CH ₂ CH ₃	H	H	H	H
X.218	C ₂ H ₅	H	CH(CF ₃)CH ₂ CH ₂ CH ₃	H	H	H	H
X.219	CH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.220	C_2H_5	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.221	CH ₂ OCH ₃	Н	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.222	CH ₃	COCH ₃	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.223	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.224	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.225	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.226	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.227	CH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.228	CH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂	F	H	H	H
X.229	CH₃	H	CH(CH ₃)CH ₂ CH(CH ₃) ₂ CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	CH₃	H	H	H
X.230	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.231	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.232	CH₃	COCH ₃	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.233	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.234	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.235	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.236	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.237	CH ₃	Н	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.238	CH ₃	Н	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	F	H	H	H
X.239	CH ₃	H	CH(CH ₃)CH ₂ CH(C ₂ H ₅)	CH ₃	H	H	H
X.240	C ₂ H ₅	Н	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.241	CH ₂ OCH ₃	Н	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.242	CH ₃	COCH ₃	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	<u>H</u>
X.243	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.244	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂ CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.245	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂ CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.246	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.247	CH ₃	H	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.248	CH ₃	Н	CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	F	H	H	H
X.249	CH ₃	Н	CH(C ₂ H ₅)CH ₂ CH(C ₂ H ₅) ₂ CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	CH ₃	H	H	H
X.250	C ₂ H ₅	Н	CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂	<u> </u>	H	H	H
X.251	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.252	CH ₃	COCH ₃	$\frac{\text{CH}(C_2\text{H}_5)\text{CH}_2\text{CH}(\text{CH}_3)_2}{\text{CH}(C_2\text{H}_5)\text{CH}_2\text{CH}(\text{CH}_3)_2}$	H	H	H	H
X.253	CH ₃	COCH ₂ OCH ₃	$\frac{\text{CH}(C_2\text{H}_5)\text{CH}_2\text{CH}(\text{CH}_3)_2}{\text{CH}(C_2\text{H}_5)\text{CH}_2\text{CH}(\text{CH}_3)_2}$	H	H	H	H
X.254	CH ₃	CH ₂ C≡CH	$\frac{\text{CH}(\mathbb{C}_2 \mathbb{H}_5) \text{CH}_2 \text{CH}(\mathbb{C} \mathbb{H}_3)_2}{\text{CH}(\mathbb{C}_2 \mathbb{H}_5) \text{CH}_2 \text{CH}(\mathbb{C} \mathbb{H}_3)_2}$	H	H	H	H
X.255	CH ₃	COO-tert-Bu	CH(C ₂ H ₂)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.256	CH ₃	CH=C=CH ₂	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.257	CH ₃	H	$\frac{\text{CH}(C_2H_5)\text{CH}_2\text{CH}(\text{CH}_3)_2}{\text{CH}(C_2H_5)\text{CH}_2\text{CH}(\text{CH}_3)_2}$	H	H	H	H
	——————————————————————————————————————		CAA(C/A15/C112CH(CH3/2	F	H	H	H

X.258		CH ₃	н	CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	CH ₃	H	Н	H
X.259		CH ₃	H	CH(C ₂ H ₅)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.260		C ₂ H ₅	Н	CH(C ₂ H ₅)CH ₂ CH(CH ₃)(C ₂ H ₅)	Н	H	H	H
X.261	C	H ₂ OCH ₃	Н	CH(C ₂ H ₅)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.262	- -	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H	H	H
X.263		CH ₃	H	CH(C ₂ H ₅)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.264		C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ CH(C ₂ H ₅) ₂	Н	H	H	H
X.265		CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ CH(C ₂ H ₅) ₂	H	Н	Н	H
X.266		CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ CH(C ₂ H ₅) ₂	Н	H	H	H
X.267		CH ₃	H	CH(CF ₃)CH ₂ CH(CH ₃) ₂	H	H	H	H
X.268		C ₂ H ₅	H	CH(CF ₃)CH ₂ CH(CH ₃) ₂	H	Н	H	H
X.269		CH ₂ OCH ₃	H	CH(CF ₃)CH ₂ CH(CH ₃) ₂	H	Н	H	H
X.270		CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ CH(CH ₃) ₂	H	Н	Н	H
X.271		CH ₃	H	CH(CF ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	Н	H	H
X.272		CH ₃	H	CH(CF ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H	H	H
X.273		CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H	H	H
X.274		C ₂ H ₅	H	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H	H	H
X.275		CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H	H	H
X.276		CH ₃	COCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H	H	H
X.277		CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H	H	H
X.278		CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H	H	H
X.279		CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H	H	H
X.280		CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H	H	H
X.28		CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₃	F	H	H	H
X.28		CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₃	CH ₃	H	H	H
X.28		CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.28		C ₂ H ₅	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.28		CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.28		CH ₂ OCH ₃	COCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.28		CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.28		CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.28		CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.29		CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.29		CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	F	H	H	H
X.29		CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	CH		H	H
X.29		CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H	H	H
X.29		C ₂ H ₅	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H	H	
X.29		CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H	H	
X.29		CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H		
X.29		CH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H	H		
X.2		C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H	H		
X.2		CH ₂ OCH ₃		CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H	H		
X.3		CH ₃	CH ₂ C≡CH	CH(C ₂ H ₃)CH ₂ C(CH ₃) ₃	H			
X.3		CH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H			
X.3		C_2H_5	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H			
X.3		CH ₂ OCH ₃		CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H			
X.3		CH ₂ OCH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H			
X.3		CH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) ₂ CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H			
X.3		C_2H_5	H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂ CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H			
X.3		CH ₂ OCH ₂		CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂ CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H			
X.3		CH ₂ OCH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂ CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H			
	309	CH ₃	H	CH(C ₂ H ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂ CH(CF ₃)CH ₂ C(CH ₃) ₃	H			
			H	CH(CF ₃)CH ₂ C(CH ₃) ₃ CH(CF ₃)CH ₂ C(CH ₃) ₃	H			
	310 311	C ₂ H ₅		CH(CF ₃)CH ₂ C(CH ₃) ₃ CH(CF ₃)CH ₂ C(CH ₃) ₃	H			
	312	CH ₂ OCH	CH ₂ C≡CH	CH(CF ₃)CH ₂ C(CH ₃) ₃ CH(CF ₃)CH ₂ C(CH ₃) ₃	H			
Λ	J14	UT13	LI12C-CH	1 011(013)01120(0113)3				

							
X.313	CH ₃	H	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H	H	H
X.314	C ₂ H ₅	H	$CH(CF_3)CH_2C(CH_3)_2(C_2H_5)$	Н	H	H	H
X.315	CH ₂ OCH ₃	H	$CH(CF_3)CH_2C(CH_3)_2(C_2H_5)$	H	H	H	H
X.316	CH ₃	CH ₂ C≡CH	$CH(CF_3)CH_2C(CH_3)_2(C_2H_5)$	H	H	Н	H
X.317	CH ₃	H	$CH(CF_3)CH_2C(CH_3)(C_2H_5)_2$	H	H	Н	H
X.318	C ₂ H ₅	H	$CH(CF_3)CH_2C(CH_3)(C_2H_5)_2$	H	H	H	H
X.319	CH ₂ OCH ₃	H	$CH(CF_3)CH_2C(CH_3)(C_2H_5)_2$	H	H	H	H
X.320	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H	H	H
X.321	CH₃	H	2'-tert-butyl-cyclopropyl	H	H	H	H
X.322	C ₂ H ₅	H	2'-tert-butyl-cyclopropyl	H	H	H	Н
X.323	CH ₂ OCH ₃	H	2'-tert-butyl-cyclopropyl	H	H	H	H
X.324	CH ₃	CH ₂ C≡CH	2'-tert-butyl-cyclopropyl	H	H	H	H
X.325	CH ₃	H	2'-isobutyl-cyclopropyl	H	H	H	H
X.326	C ₂ H ₅	H	2'-isobutyl-cyclopropyl	H	H	H	H
X.327	CH ₂ OCH ₃	H	2'-isobutyl-cyclopropyl	H	H	H	H
X.328	CH ₃	CH ₂ C≡CH	2'-isobutyl-cyclopropyl	H	H	Н	H
X.329	CH ₃	H	4',4'-dimethyl-cyclobutyl	H	H	Н	H
X.330	C ₂ H ₅	H	4',4'-dimethyl-cyclobutyl	H	Н	H	H
X.331	CH ₂ OCH ₃	H	4',4'-dimethyl-cyclobutyl	Н	H	H	H
X.332	CH ₃	CH ₂ C≡CH	4',4'-dimethyl-cyclobutyl	H	H	Н	H
X.333	CH ₃	H	cyclopentyl	H	H	H	Н
X.334	C ₂ H ₅	H	cyclopentyl	H	H	H	H
X.335	CH ₂ OCH ₃	H	cyclopentyl	Н	Н	H	H
X.336	CH ₃	CH ₂ C≡CH	cyclopentyl	H	H	H	H
X.337	CH ₃	H	3'-methyl-cyclopentyl	Н	H	H	H
X.338	C ₂ H ₅	H	3'-methyl-cyclopentyl	H	Н	H	H
X.339	CH ₂ OCH ₃	H	3'-methyl-cyclopentyl	Н	Н	H	H
X.340	CH ₃	CH ₂ C≡CH	3'-methyl-cyclopentyl	H	Н	H	Н
X.341 X.342	CH ₃	H	cyclohexyl	H	Н	H	H
X.342 X.343	CH OCY	Н	cyclohexyl	H	Н	H	H
X.344	CH ₂ OCH ₃	H	cyclohexyl	Н	H	H	Н
X.345	CH ₃	CH ₂ C≡CH	cyclohexyl	H	Н	H	H
X.345	CH₃	H	3'-methyl-cyclohexyl	H	H	H	H
X.347	CIL OCIL	H	3'-methyl-cyclohexyl	H	H	H	H
X.347	CH ₂ OCH ₃	H	3'-methyl-cyclohexyl	H	H	H	H
X.349	CH ₃	CH ₂ C≡CH	3'-methyl-cyclohexyl	H	H	H	H
X.350		H	4'-methyl-cyclohexyl	H	H	H	H
X.351	C ₂ H ₅ CH ₂ OCH ₃	H	4'-methyl-cyclohexyl	H	H	H	H
X.352		H	4'-methyl-cyclohexyl	H	H	H	H
X.352	CH ₃	CH ₂ C≡CH	4'-methyl-cyclohexyl	H	H	H	H
X.354	C_2H_5	H	cycloheptyl	H	H	H	H
X.355	CH ₂ OCH ₃	H	cycloheptyl	H	H	H	H
X.356	CH ₂ UCH ₃		cycloheptyl	H	H	H	H
X.357	CH ₃	CH ₂ C≡CH	cycloheptyl	H	H	H	H
X.358	C_2H_5	H	2'-thienyl	H	H	H	H
X.359	CH ₂ OCH ₃	H	2'-thienyl	H	H	H	H
X.360	CH ₂ UCH ₃	H H	2'-thienyl	H	H	H	H
X.361	CH ₃	CH ₂ C≡CH	2'-thienyl	H	H	H	H
X.362	C_2H_5	H	3'-thienyl	H	H	H	H
X.363	CH ₂ OCH ₃	H H	3'-thienyl	H	H	H	Н
X.364	CH ₂ UCH ₃		3'-thienyl	H	H	H	H
X.365	CH ₃	CH ₂ C≡CH	3'-thienyl	H	H	H	H
X.366	C_2H_5	H	5'-chloro-2'-thienyl	H	H	H	H
X.367	CH ₂ OCH ₃	H	3 -chloro-2'-thienyl	H	H	H	H
12.307	LITZUCH3	H	5'-chloro-2'-thienyl	H	Н	Н	H

X.368	CH ₃	CH ₂ C≡CH	5'-chloro-2'-thienyl	Н	H	H	Н
X.369	CH ₃	H	2'-furyl	H	H	H	H
X.370	C ₂ H ₅	H	2'-furyl	H	H	H	H
X.371	CH ₂ OCH ₃	H	2'-furyl	H	H	H	H
X.372	CH ₃	CH ₂ C≡CH	2'-furyl	H	H	H	H
X.373	CH ₃	H	5'-chloro-2'-furyl	H	H	H	H
X.374	C ₂ H ₅	H	5'-chloro-2'-furyl	H	H	H	H
X.375	CH ₂ OCH ₃	H	5'-chloro-2'-furyl	H	H	H	H
X.376	CH ₃	CH ₂ C≡CH	5'-chloro-2'-furyl	H	Н	H	H
X.377	CH ₃	H	2'-pyridyl	H	H	H	H
X.378	C ₂ H ₅	H	2'-pyridyl	H	H	H	H
X.379	CH ₂ OCH ₃	H	2'-pyridyl	H	H	H	H
X.380	CH ₃	CH ₂ C≡CH	2'-pyridyl	H	H	Н	Н
X.381	CH ₃	H	3'-pyridyl	H	Н	H	H
X.382	C ₂ H ₅	H	3'-pyridyl	Н	Н	H	H
X.383	CH ₂ OCH ₃	H	3'-pyridyl	H	H	Н	H
X.384	CH ₃	CH ₂ C≡CH	3'-pyridyl	Н	H	Н	H
X.385	CH ₃	Н	4'-pyridyl	H	H	H	H
X.386	C ₂ H ₅	H	4'-pyridyl	H	Н	H	H
X.387	CH ₂ OCH ₃	H	4'-pyridyl	Н	H	H	H
X.388	CH ₃	CH ₂ C≡CH	4'-pyridyl	Н	Н	Н	H
X.389	CH ₃	H	6'-chloro-3'-pyridyl	H	Н	H	Н
X.390	C ₂ H ₅	Н	6'-chloro-3'-pyridyl	Н	Н	Н	H
X.391	CH ₂ OCH ₃	H	6'-chloro-3'-pyridyl	H	Н	H	H
X.392	CH ₃	CH ₂ C≡CH	6'-chloro-3'-pyridyl	Н	Н	Н	H
X.393	CH ₃	Н	6'-fluoro-3'-pyridyl	H	H	H	H
X.394	C ₂ H ₅	Н	6'-fluoro-3'-pyridyl	H	Н	Н	H
X.395	CH ₂ OCH ₃	Н	6'-fluoro-3'-pyridyl	H	H	Н	H
X.396	CH ₃	CH ₂ C≡CH	6'-fluoro-3'-pyridyl	H	H	H	Н
X.397	CH ₃	H	6'-bromo-3'-pyridyl	H	H	H	Н
X.398	C ₂ H ₅	H	6'-bromo-3'-pyridyl	H	H	H	Н
X.399	CH ₂ OCH ₃	H	6'-bromo-3'-pyridyl	H	H	H	H
X.400	CH ₃	CH ₂ C≡CH	6'-bromo-3'-pyridyl	H	H	H	H
X.401	CH ₃	H	2'-oxazolyl	H	H	H	H
X.402	CH ₃	H	3'-isoxazolyl	H	H	Н	H
X.403	CH ₃	H	CH(CH ₃) ₂	H	H	H	Н
X.404	C ₂ H ₅	H	CH(CH ₃) ₂	H	H	H	H
X.405	CH ₂ OCH ₃	H	CH(CH ₃) ₂	H	H	H	H
X.406	CH ₃	CH ₂ C≡CH	CH(CH ₃) ₂	Н	Н		Н
X.407	CH ₃	H	4'-CH=NO(n)-C ₄ H ₉ -phenyl	H	H	H	H
X.408	CH ₃	H	4'-CH=NO(iso)-C ₄ H ₉ -phenyl	H	H	H	H
X.409	CH₃	H	4'-CH=NO(iso)-C ₃ H ₇ -phenyl	H	H		H
X.410	CH ₃	H	4'-CH=NO(n)-C ₃ H ₇ -phenyl	H	H		H
X.411	CH ₃	H	Si(CH ₃) ₃	H	H		H
X.412	C_2H_5	H	Si(CH ₃) ₃	H	H		H
X.413	CH ₂ OCH ₃	H	Si(CH ₃) ₃	H	H		H
X.414	CH3_	CH ₂ C≡CH	Si(CH ₃) ₃	H	H		
X.415	CH ₃	H	CH ₂ Si(CH ₃) ₃	H	H		
X.416	C ₂ H ₅	H	CH ₂ Si(CH ₃) ₃	H	H		
X.416	CH ₂ OCH ₃		CH ₂ Si(CH ₃) ₃	H	H		
X.418	CH3	CH ₂ C≡CH	CH ₂ Si(CH ₃) ₃	H	H		
X.419	CH ₃	H	CH(CH ₃)Si(CH ₃) ₃	H	H		
X.420	C_2H_5	H	CH(CH ₃)Si(CH ₃) ₃	H	H		
X.421	CH ₂ OCH ₃		CH(CH ₃)Si(CH ₃) ₃	H	H		
X.422	CH3	CH ₂ C≡CH	CH(CH ₃)Si(CH ₃) ₃	H	H	H	H

X.423	CH ₃	H	CH ₂ CH ₂ Si(CH ₃) ₃	H	H	Н	TT
X.424	C ₂ H ₅	H	CH ₂ CH ₂ Si(CH ₃) ₃	H	H	H	H
X.425	CH ₂ OCH ₃	H	CH ₂ CH ₂ Si(CH ₃) ₃	H	H	H	H
X.426	CH3	CH ₂ C≡CH	CH ₂ CH ₂ Si(CH ₃) ₃	H	H	H	H
X.427	CH₃	H	CH(CH ₃)CH ₂ Si(CH ₃) ₃	H	H	H	H
X.428	C ₂ H ₅	H	CH(CH ₃)CH ₂ Si(CH ₃) ₃	H	H	H	H
X.429	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ Si(CH ₃) ₃	H	H	H	H
X.430	CH3	CH ₂ C≡CH	CH(CH ₃)CH ₂ Si(CH ₃) ₃	H	H	H	H
X.431	CH₃	H	CH ₂ CH ₂ CH ₂ Si(CH ₃) ₃	H	H	H	H
X.432	C ₂ H ₅	H	CH ₂ CH ₂ CH ₂ Si(CH ₃) ₃	H	H	H	H
X.433	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₂ Si(CH ₃) ₃	H	H	H	H
X.434	CH3	CH ₂ C≡CH	CH ₂ CH ₂ CH ₂ Si(CH ₃) ₃	H	H	H	H
X.435	CH ₃	H	CH ₂ Si(CH ₃) ₂ C ₂ H ₅	H	H	H	H
X.436	CH ₃	H	CH ₂ Si(CH ₃) ₂ CH(CH ₃) ₂	H	H	H	H
X.437	CH ₃	H	CH ₂ Si(CH ₃) ₂ OCH ₃	H	H	H	H
X.438	CH ₃	H	CH ₂ CH ₂ Si(CH ₃) ₂ OCH ₃	H	H	H	H
X.439	CH ₃	H	CH(CH ₃)Si(CH ₃) ₂ OCH ₃	H	H	H	H
X.440	CH ₃	H	CH(CH ₃)CH ₂ Si(CH ₃) ₂ OCH ₃	H	H	H	H
X.441	CH ₃	H	2'-cyclopropyl-cyclopropyl	H	H	H	H
X.442	C ₂ H ₅	H	2'-cyclopropyl-cyclopropyl	H	H	H	H
X.443	CH ₂ OCH ₃	H	2'-cyclopropyl-cyclopropyl	H	H	H	H
X.444	CH ₃	CH ₂ C≡CH	2'-cyclopropyl-cyclopropyl	H	H	H	H
X.445	CH ₃	H	2'-(α-CH ₃ -cyclopropyl)-cyclopropyl	H	H	H	H
X.446	C ₂ H ₅	H	2'-(α-CH ₃ -cyclopropyl)-cyclopropyl	H	H	H	H
X.447	CH ₂ OCH ₃	Н	2'-(α-CH ₃ -cyclopropyl)-cyclopropyl	H	H	H	H
X.448	CH ₃	CH ₂ C≡CH	2'-(α-CH ₃ -cyclopropyl)-cyclopropyl	H	H	H	H
X.449	CH ₃	H	2'-cyclobutyl-cyclopropyl	H	H	H	H
X.450	CH ₃	H	2'-cyclopentyl-cyclopropyl	H	H	H	H
X.451	CH ₃	H	2'-cyclohexyl-cyclopropyl	H	H	H	H
X.452	CH₃	H	4'-C≡CH-phenyl	H	H	H	H
X.453	C ₂ H ₅	Н	4'-C≡CH-phenyl	H	H	H	- H
X.454	CH ₃	Н	4'-C≡C-Si(CH ₃) ₃ -phenyl	H	H	H	
X.455	C ₂ H ₅	Н	4'-C≡C-Si(CH ₃) ₃ -phenyl	H	H	H	H
X.456	CH ₃	H	4'-C(H)=CH ₂ -phenyl	H			H
X.457	C ₂ H ₅	H	4'-C(H)=CH ₂ -phenyl	H	H	H	H
			· C(11)-C112-piletty1	п	н	H	H

Table 2 provides 457 compounds of formula (I-2):

wherein R^2 , R^3 , R^6 , R^7 , R^8 , R^9 and R^{10} are as defined in Table 2. Table 3 provides 457 compounds of formula (I-3):

$$F_{2}HC \longrightarrow N \qquad R^{8}$$

$$R^{10} \longrightarrow R^{7}$$

$$R^{10} \longrightarrow R^{10}$$

$$R^{10} \longrightarrow R^{1$$

wherein R^2 , R^3 , R^6 , R^7 , R^8 , R^9 and R^{10} are as defined in Table 3. Table 4 provides 457 compounds of formula (I-4):

$$\begin{array}{c|c}
R^{9} & R^{8} \\
R^{10} & R^{7} \\
R^{10} & R^{6}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{6} \\
R^{3} & R^{6}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10} \\
R^{10} & R^{10} & R^{10}
\end{array}$$

wherein R², R³, R⁶, R⁷, R⁸, R⁹ and R¹⁰ are as defined in Table 4.

Table 5 provides 457 compounds of formula (I-5):

$$\begin{array}{c|c}
R^{9} & R^{8} \\
R^{10} & R^{7} \\
R^{10} & R^{8}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{6} \\
R^{10} & R^{10}
\end{array}$$

$$\begin{array}{c|c}
R^{10} & R^{10} & R^{10}
\end{array}$$

wherein R², R³, R⁶, R⁷, R⁸, R⁹ and R¹⁰ are as defined in Table 5.

Table 6 provides 457 compounds of formula (I-6):

wherein R², R³, R⁶, R⁷, R⁸, R⁹ and R¹⁰ are as defined in Table 6.

Table 7 provides 457 compounds of formula (I-7):

wherein R^2 , R^3 , R^6 , R^7 , R^8 , R^9 and R^{10} are as defined in Table 7.

Table Y represents Table 8 [when Y is 8], Table 9 [when Y is 9], Table 10 [when Y is 10], Table 11 [when Y is 11], Table 12 [when Y is 12], Table 13 [when Y is 13], Table 14 [when Y is 14], Table 15 [when Y is 15], Table 16 [when Y is 16], Table 17 [when Y is 17], Table 18 [when Y is 18] and represents Table 19 [when Y is 19].

Table Y

15

10

5

Compound No.	R ²	R ³	\mathbb{R}^6	R ¹¹	R ¹²
Y.001	CH ₃	Н	phenyl	H	H
Y.002	CH ₃	CH ₂ C≡CH	phenyl	H	H
Y.003	CH ₃	Н	2'-fluorophenyl	H	H
Y.004	CH ₃	H	3'-fluorophenyl	H	H
Y.005	CH₃	H	4'-fluorophenyl	H	H
Y.006	C ₂ H ₅	· H	4'-fluorophenyl	H	H
Y.007	CH ₂ OCH ₃	Н	4'-fluorophenyl	H	H
Y.008	CH ₃	COCH ₃	4'-fluorophenyl	H	H
Y.009	CH ₃	COCH ₂ OCH ₃	4'-fluorophenyl	H	H
Y.010	CH ₃	CH ₂ C≡CH	4'-fluorophenyl	H	H
Y.011	CH ₃	CH=C=CH ₂	4'-fluorophenyl	H	H
Y.012	CH ₃	COO-tert-Bu	4'-fluorophenyl	H	H
Y.013	CH ₃	Н	2'-chlorophenyl	H	H
Y.014	CH ₃	Н	3'-chlorophenyl	H	H

37.045	CTT	- tr	4' ablorophonyl	Н	H
Y.015	CH ₃	H	4'-chlorophenyl	H	H
Y.016	C ₂ H ₅	H	4'-chlorophenyl	H	H
Y.017	CH ₂ OCH ₃	H	4'-chlorophenyl	H	H
Y.018	CH ₃	COCH ₃	4'-chlorophenyl 4'-chlorophenyl	H	H
Y.019	CH₃	COCH ₂ OCH ₃		H	H
Y.020	CH ₃	CH ₂ C≡CH	4'-chlorophenyl		H
Y.021	CH ₃	CH=C=CH ₂	4'-chlorophenyl	H	
Y.022	CH ₃	COO-tert-Bu	4'-chlorophenyl	H	H
Y.023	CH ₃	<u> </u>	2'-bromophenyl	H	H
Y.024	CH ₃	H	3'-bromophenyl	H	H
Y.025	CH ₃	H	4'-bromophenyl	H	H
Y.026	C ₂ H ₅	H	4'-bromophenyl	H	H
Y.027	CH₂OCH₃	H	4'-bromophenyl	H	H
Y.028	CH ₃	COCH₃	4'-bromophenyl	H	H
Y.029	CH ₃	COCH ₂ OCH ₃	4'-bromophenyl	H	H
Y.030	CH ₃	CH ₂ C≡CH	4'-bromophenyl	H	H
Y.031	CH ₃	CH=C=CH ₂	4'-bromophenyl	H	H
Y.032	CH ₃	COO-tert-Bu	4'-bromophenyl	H	H
Y.033	CH ₃	H	2'-iodophenyl	H	H
Y.034	CH ₃	H	3'-iodophenyl	H	H
Y.035	CH₃	H	4'-iodophenyl	H	H
Y.036	CH ₃	H	2'-CF ₃ -phenyl	H	H
Y.037	CH ₃	H	3'-CF ₃ -phenyl	H	H
Y.038	CH ₃	H	4'-CF ₃ -phenyl	H	H
Y.039	C ₂ H ₅	H	4'-CF ₃ -phenyl	H	H
Y.040	CH ₂ OCH ₃	H	4'-CF₃-phenyl	H	H
Y.041	CH ₃	COCH₃	4'-CF ₃ -phenyl	H	H
Y.042	CH ₃	COCH ₂ OCH ₃	4'-CF ₃ -phenyl	H	H
Y.043	CH ₃	CH ₂ C≡CH	4'-CF ₃ -phenyl	H_	H
Y.044	CH ₃	COO-tert-Bu	4'-CF ₃ -phenyl	H	H
Y.045	CH ₃	H	2'-OCF ₃ -phenyl	H	H
Y.046	CH ₃	H	3'-OCF ₃ -phenyl	H	H
Y.047	CH ₃	H	4'-OCF ₃ -phenyl	H	H
Y.048	C ₂ H ₅	H	4'-OCF ₃ -phenyl	H	H
Y.049	CH ₂ OCH ₃	Н	4'-OCF ₃ -phenyl	H	H
Y.050	CH ₃	COCH ₃	4'-OCF ₃ -phenyl	H	H
Y.051	CH ₃	COCH ₂ OCH ₃	4'-OCF ₃ -phenyl	H	Н
Y.052	CH ₃	CH ₂ C≡CH	4'-OCF ₃ -phenyl	H	H
Y.053	CH ₃	COO-tert-Bu	4'-OCF ₃ -phenyl	H	H
Y.054	CH ₃	CH=C=CH ₂	4'-OCF ₃ -phenyl	H	H
Y.055	CH ₃	Н	4'-SCF ₃ -phenyl	H	H
Y.056	CH ₃	H	2'-CH=NOH-phenyl	H	H
Y.057	CH ₃	Н	3'-CH=NOH-phenyl	Н	H
Y.058	CH ₃	Н	4'-CH=NOH-phenyl	H	H
Y.059	CH ₃	H	2'-CH=NOCH ₃ -phenyl	H	H
Y.060	CH ₃	Н	3'-CH=NOCH ₃ -phenyl	Н	H
Y.061	CH ₃	H	4'-CH=NOCH ₃ -phenyl	H	H
Y.062	CH ₃	H	2'-CH=NOC ₂ H ₅ -phenyl	H	H
Y.063	CH ₃	Н	3'-CH=NOC ₂ H ₅ -phenyl	H	Н
Y.064	CH ₃	H	4'-CH=NOC ₂ H ₅ -phenyl	H	H
Y.065	CH ₃	H	2'-CN-phenyl	H	Н
Y.066	CH ₃	H	3'-CN-phenyl	H	H
Y.067	CH ₃	H	4'-CN-phenyl	H	H
Y.068	CH ₃	H	2'-NO ₂ -phenyl	H	H
Y.069	CH ₃	H	3'-NO ₂ -phenyl	H	H
1.002					

Y.070	CH ₃	H	4'-NO ₂ -phenyl	H	H
Y.071	CH ₃	H	3',4'-difluorophenyl	H	H
Y.072	C ₂ H ₅	H	3',4'-difluorophenyl	H	H
Y.073	CH ₂ OCH ₃	H	3',4'-difluorophenyl	H	H
Y.074	CH ₃	COCH ₃	3',4'-difluorophenyl	H	H
Y.075	CH ₃	COCH ₂ OCH ₃	3',4'-difluorophenyl	H	H
Y.076	CH ₃	CH ₂ C≡CH	3',4'-difluorophenyl	H	H
Y.077	CH ₃	COO-tert-Bu	3',4'-difluorophenyl	Н	H
Y.078	CH ₃	CH=C=CH ₂	3',4'-difluorophenyl	H	H
Y.079	CH ₃	H	3',4'-dichlorophenyl	H	H
Y.080	C ₂ H ₅	H	3',4'-dichlorophenyl	H	H
Y.081	CH ₂ OCH ₃	H	3',4'-dichlorophenyl	H	H
Y.082	CH ₃	COCH ₃	3',4'-dichlorophenyl	H	H
Y.083	CH ₃	COCH ₂ OCH ₃	3',4'-dichlorophenyl	H	H
Y.084	CH ₃	CH ₂ C≡CH	3',4'-dichlorophenyl	H	H
Y.085	CH ₃	COO-tert-Bu	3',4'-dichlorophenyl	H	H
Y.086	CH ₃	CH=C=CH ₂	3',4'-dichlorophenyl	H	H
Y.087	CH ₃	H	4'-chloro-3'-fluoro-phenyl	H	H
Y.088	C ₂ H ₅	H	4'-chloro-3'-fluoro-phenyl	H	H
Y.089	CH ₂ OCH ₃	H	4'-chloro-3'-fluoro-phenyl	H	H
Y.090	CH ₃	COCH ₃	4'-chloro-3'-fluoro-phenyl	H	H
Y.091	CH ₃	COCH ₂ OCH ₃	4'-chloro-3'-fluoro-phenyl	H	H
Y.092	CH ₃	CH ₂ C≡CH	4'-chloro-3'-fluoro-phenyl	H	H
Y.093	CH ₃	COO-tert-Bu	4'-chloro-3'-fluoro-phenyl	H	H
Y.094	CH ₃	CH=C=CH ₂	4'-chloro-3'-fluoro-phenyl	H	H
Y.095	CH ₃	H	3'-chloro-4'-fluoro-phenyl	H	H
Y.096	C ₂ H ₅	H	3'-chloro-4'-fluoro-phenyl	H	H
Y.097	CH ₂ OCH ₃	H	3'-chloro-4'-fluoro-phenyl	H	H
Y.098	CH ₃	COCH ₃	3'-chloro-4'-fluoro-phenyl	H	H
Y.099	CH ₃	COCH ₂ OCH ₃	3'-chloro-4'-fluoro-phenyl	H	H
Y.100	CH ₃	CH ₂ C≡CH	3'-chloro-4'-fluoro-phenyl	H	H
Y.101	CH ₃	COO-tert-Bu	3'-chloro-4'-fluoro-phenyl	H	H
Y.102	CH ₃	CH=C=CH ₂	3'-chloro-4'-fluoro-phenyl	H	H
Y.103	CH ₃	H	2'-4'-dichloro-phenyl	H	H
Y.104	CH ₂ OCH ₃	H	2'-4'-dichloro-phenyl	H	H
Y.105	CH ₃	H	2'-4'-difluoro-phenyl	H	H
Y.106	CH₂OCH₃	H	2'-4'-difluoro-phenyl	H	H
Y.107	CH ₃	H	CH ₂ CH ₂ CH ₃	H	H
Y.108	C_2H_5	H	CH ₂ CH ₂ CH ₃	H	H
Y.109	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₃	H	H
Y.110	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH ₃	H	H
Y.111	CH ₃	H	CH ₂ CH ₂ CH ₂ CH ₃	H	H
Y.112	C ₂ H ₅	H	CH ₂ CH ₂ CH ₂ CH ₃	H	H
Y.113	CH₂OCH₃	H	CH ₂ CH ₂ CH ₂ CH ₃	H	H
Y.114	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH ₃	H	H
Y.115	CH ₃	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)	H	H
Y.116	C ₂ H ₅	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)	H	
Y.117	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH ₂ (C ₂ H ₅)	H	H
Y.118	CH ₃	CH ₂ C≡CH	$CH_2CH_2CH_2(C_2H_5)$	H	H
Y.119	CH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	H	H
Y.120	C ₂ H ₅	H	CH ₂ CH ₂ CH(CH ₃) ₂	H	H
Y.121	CH ₂ OCH ₃	H	CH ₂ CH ₂ CH(CH ₃) ₂	H	H
Y.122	CH ₃	COCH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	н	H
Y.123	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(CH ₃) ₂	H	H
Y.124	CH ₃	CH ₂ C≅CH	CH ₂ CH ₂ CH(CH ₃) ₂	H	H

Y.125	CH ₃	COO-tert-Bu	CH ₂ CH ₂ CH(CH ₃) ₂	H	H
Y.126	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(CH ₃) ₂	H	H
Y.127	CH ₃	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H
Y.128	C ₂ H ₅	H	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H
	CH ₂ OCH ₃	Н	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H
Y.130	CH ₃	COCH ₃	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H
Y.131		COCH ₂ OCH ₃	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H
Y.132	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H
	CH ₃			н	H
Y.133		COO-tert-Bu	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)		
Y.134	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅)	H	H
Y.135	CH ₃	<u>H</u>	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	H
Y.136	C ₂ H ₅	H	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	H
Y.137	CH ₂ OCH ₃	H	$CH_2CH_2CH(C_2H_5)_2$	H	H
Y.138	CH ₃	COCH₃	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	H
Y.139	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	H
Y.140	CH₃	CH ₂ C≡CH	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	H
Y.141	CH ₃	COO-tert-Bu	$CH_2CH_2CH(C_2H_5)_2$	H	H
Y.142	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ CH(C ₂ H ₅) ₂	H	H
Y.143	CH ₃	Н	CH ₂ CH ₂ C(CH ₃) ₃	H	H
Y.144	C ₂ H ₅	H	CH ₂ CH ₂ C(CH ₃) ₃	Н	Н
Y.145	CH ₂ OCH ₃	Н	CH ₂ CH ₂ C(CH ₃) ₃	H	Н
Y.146	CH ₃	COCH ₃	CH ₂ CH ₂ C(CH ₃) ₃	H	H
Y.147	CH ₃	COCH ₂ OCH ₃	CH ₂ CH ₂ C(CH ₃) ₃	H	H
Y.148	CH ₃	CH ₂ C≡CH	CH ₂ CH ₂ C(CH ₃) ₃	H	H
Y.149	CH ₃	COO-tert-Bu	CH ₂ CH ₂ C(CH ₃) ₃	H	H
Y.150	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ C(CH ₃) ₃	H	H
Y.151	CH ₃	H	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
		H		H	H
Y.152	C ₂ H ₅ CH ₂ OCH ₃	H	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.153			CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)		
Y.154	CH₃	COCH ₃	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.155	CH₃	COCH ₂ OCH ₃	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.156	CH₃	CH ₂ C≡CH	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H	H
Y.157	CH ₃	COO-tert-Bu	CH ₂ CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.158	CH ₃	CH=C=CH ₂	$CH_2CH_2C(CH_3)_2(C_2H_5)$	H	H
Y.159	CH ₃	H	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H	H
Y.160	C ₂ H ₅	H	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H	H
Y.161	CH ₂ OCH ₃	H	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H	H
Y.162	CH ₃	COCH ₃	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H	H
Y.163	CH ₃	COCH ₂ OCH ₃	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H	H
Y.164	CH ₃	CH ₂ C≡CH	$CH_2CH_2C(CH_3)(C_2H_5)_2$	H	H
Y.165	CH ₃	COO-tert-Bu	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂	Н	Н
Y.166	CH ₃	CH=C=CH ₂	CH ₂ CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.167	CH ₃	H	CH(CH ₃)CH ₂ CH ₃	H	H
Y.168	C ₂ H ₅	H	CH(CH ₃)CH ₂ CH ₃	H	H
Y.169	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ CH ₃	H	H
Y.170	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ CH ₃ CH(CH ₃)CH ₂ CH ₃	H	H
Y.171	CH ₃	H	CH(C ₂ H ₅)CH ₂ CH ₃ CH(C ₂ H ₅)CH ₂ CH ₃	H	H
					
Y.172	CIL OCIL	H	CH(C ₂ H ₅)CH ₂ CH ₃	H	H
Y.173	CH ₂ OCH ₃		CH(C ₂ H ₅)CH ₂ CH ₃	H	H
Y.174	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ CH ₃	H	H
Y.175	CH ₃	H	CH(CF ₃)CH ₂ CH ₃	H	H
Y.176	C ₂ H ₅	H	CH(CF ₃)CH ₂ CH ₃	H	H
Y.177	CH ₂ OCH ₃		CH(CF ₃)CH ₂ CH ₃	H	H
Y.178	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ CH ₃	H	H
Y.179	CH ₃	H	CH(CH ₃)CH ₂ CH ₂ CH ₃	H	H

No. Caps	Y.180	CIT	T			
Y.182 CH ₂ C=CH CH(CH ₃)CH ₂ CH ₂ CH ₃ H H Y.183 CH ₃ H CH(CH ₃)CH ₂ CH ₂ CH ₃ H H Y.184 CH ₃ H CH(CH ₃)CH ₂ CH ₂ CH ₃ CH ₃ H H Y.185 CH ₂ OCH ₃ H CH(CH ₃)CH ₂ CH ₂ CH ₃ H H Y.185 CH ₂ OCH ₃ H CH(CH ₂)CH ₂ CH ₂ CH ₃ H H Y.187 CH ₄ H CH(CH ₂)CH ₂ CH ₂ CH ₃ H CHCH ₂ CH		CVL OCIV	H	CH(CH ₃)CH ₂ CH ₂ CH ₃	H	H
Y.183 CH5 H CHCH3CH2CH2CH2CH3CH3 H H Y.184 C.H5 H CHCH3CH2CH2CH3 H CH				CH(CH ₃)CH ₂ CH ₂ CH ₃	H	H
Y.184 C.H. H. CHCRAINCRAPHAGE H. H. Y.185 CH3CCH3 H. CHCHCH3CH3CH5CH5CH3 H. H. Y.186 CH3 CH3 CH CHCH3CH3CH3CH5CH5CH3 H. H. Y.187 CH3 H. CHCF3CH3CH3CH3 H. H. Y.188 CH3 H. CHCF3CH4CH3CH3 H. H. Y.189 CH3 H. CHCF3CH4CHCH32 H. H. Y.190 CA3 H. CHCF3CH4CHCH32 H. H. Y.191 CF3CH3 H. CHCH3CH3CHCH32 H. H. Y.191 CF3CCH3 H. CHCH3CH3CHCH32 H. H. Y.191 CF3CCH3 H. CHCH3CH3CHCH32 H. H. Y.192 CH3 COCH3 CHCH3CH3CHCH32 H. H. Y.193 CH4 CH3CH3CH3CHCH3CHCH32 H.				CH(CH ₃)CH ₂ CH ₂ CH ₃	Н	H
Y.185 CH ₂ OCH ₃ H CHCR ₂ D ₃ CH ₂ CH ₂ CH ₂ CH ₃ CH ₃ H H Y.186 CH ₃ CH ₂ CCH CHC ₃ CH ₃ CH ₂ CH ₂ CH ₂ CH ₃ H H Y.187 CH ₃ H CHC ₃ CH ₂ CH ₂ CH ₂ CH ₃ H H Y.188 CH ₅ H CHC(CF ₃)CH ₂ CH ₂ CH ₃ H H Y.189 CH ₅ H CHC(CF ₃)CH ₂ CH ₃ CH ₃ H H Y.190 CH ₅ H CHC(CF ₃)CH ₂ CH ₃ CH ₃ CH ₃ H H Y.190 CH ₅ H CHC(CF ₃)CH ₂ CH ₃ CH ₃ CH ₃ H H Y.191 CH ₅ COCH ₅ CHC(CH ₃)CH ₂ CH(CH ₃) H H Y.192 CH ₅ CH ₅ CHC(CH ₃)CH ₂ CH(CH ₃) H H H Y.192 CH ₅ CH ₅ CHC(CH ₃)CH ₂ CH(CH ₃) H H H H H H H H H H H H H H H H H H H <				CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H	H
Y.186 CH ₂ CH ₃ CH ₂ C=CH CH(CF ₃)CH ₂ CH ₂ CH ₂ CH ₃ H H Y.187 CH ₃ H CH(CF ₃)CH ₂ CH ₂ CH ₃ H H Y.188 CH ₅ H CH(CF ₃)CH ₂ CH ₂ CH ₃ H H Y.189 CH ₄ H CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y.191 CH ₅ OCH ₃ H CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y.191 CH ₂ OCH ₃ H CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y.192 CH ₃ COCH ₃ CH(CH ₃)CH ₂ CH(CH ₃) ₃ H H		C ₂ H ₅		CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H	H
Y.187 CH. H. CHCP3/CH_CR_CH3 H. H Y.188 C ₂ P ₅ H. CH(CF_3)CH_CH_CR_CH3 H. H. Y.189 CH3 H. CH(CF_3)CH_CH_CH3, CH3 H. H. Y.190 C,H ₅ H. CH(CH_3)CH_CH(CH3) H. H. Y.191 CH_OCH3 H. CH(CH_3)CH_CH(CH3) H. H. Y.191 CH_OCH3 CHCH3)CH_CHC(CH3) H. H. Y.192 CH3 COCH3 CH(CH3)CH_CH(CH3) H. H. Y.193 CH3 COCH4,CH3 CH(CH3)CH_CH(CH3) H. H. Y.194 CH3 COCH4,CH4 CHCH3)CH2,CHC(CH3) H. H. Y.195 CH3 COCH4,CH4 CHCCH3)CH2,CH(CH3) H. H. Y.196 CH3 COCH4 CHCCH3,CH4,CHCH3,CHCH3 H. H. Y.197 CH3 CHC-CH2 CHCH3)CH2,CHC(CH3) H. H. Y.197 CH3 COCH3 CHCCH3,CH2,CHC(C					H	H
T.187				CH(C ₂ H ₅)CH ₂ CH ₂ CH ₃	H	H
Y.189					H	Н
Y.190				CH(CF ₃)CH ₂ CH ₂ CH ₃	H	H
Y.191 CH₂OCH₃ H CH(CH₃)CH₂CH;CH(CH₃)₂ H H Y.192 CH₃ COCH₃ CH(CH₃)CH₂CH(CH₃)₂ H H Y.193 CH₃ COCH₃CH₃ CH(CH₃)CH₂CH(CH₃)₂ H H Y.194 CH₃ CH₂C=CH CH(CH₃)CH₂CH(CH₃)₂ H H Y.195 CH₃ COO-tert-Bu CH(CH₃)CH₂CH(CH₃)₂ H H Y.195 CH₃ CH=C=CH₂ CH(CH₃)CH₂CH(CH₃)₂ H H Y.196 CH₃ CH=C=CH₂ CH(CH₃)CH₂CH(CH₃)₂ H H Y.197 CH₃ H CH(CH₃CH₂CH(CH₃)∠CH₃ H H Y.198 CH₃ H CH(CH₃CH₂CH(CH₃)∠CH₃CH,CH₃) H H Y.199 CH₂COH₃ CHCH₃CH₂CH,CH₃CH(CH₃)(CH₃) H H H Y.200 CH₃ COCH₃ CH(CH₃CH,CH₃CH)(CH₃)(CH₃) H H H Y.201 CH₃ COCH₃ CH(CH₃CH,CH)(CH₃)(CH₃) H H H H Y Y </td <td></td> <td></td> <td></td> <td>CH(CH₃)CH₂CH(CH₃)₂</td> <td>H</td> <td>Н</td>				CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	Н
Y,192 CH ₃ COCH ₃ CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y,193 CH ₃ COCH ₅ CCH ₃ CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y,194 CH ₃ COCH ₅ CCH CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y,195 CH ₃ CH ₂ CCH CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y,196 CH ₃ CH ₂ CH ₂ CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y,197 CH ₃ H CH(CH ₃)CH ₂ CH(CH ₃)(C ₃ H ₃) H H Y,197 CH ₃ H CH(CH ₃)CH ₂ CH(CH ₃)(C ₃ H ₃) H H Y,198 C ₃ H ₄ H CH(CH ₃)CH ₂ CH(CH ₃)(C ₃ H ₃) H H Y,199 CH ₂ OCH ₃ H CH(CH ₃)CH ₂ CH(CH ₃)(C ₃ H ₃) H H Y,200 CH ₃ COCH ₃ CH(CH ₃)CH ₂ CH(CH ₃)(C ₃ H ₃) H H Y,201 CH ₃ COCH ₃ COH ₃ CH(CH ₃)CH ₂ CH(CH ₃)(C ₃ H ₃) H H Y,2020 CH ₃ CH ₄ C=CH CH(CH ₃)C				CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	Н
Y,193 CH ₃ COCH ₂ OCH ₃ CH(CH ₃)CH ₂ CH,CH(CH ₃) ₂) H H Y,194 CH ₃ CH ₂ C=CH CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y,195 CH ₃ CO-Ceten-Bu CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y,196 CH ₃ CH=C-CH ₂ CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y,197 CH ₃ H CH(CH ₃)CH ₂ CH(CH ₃)C(H ₃) H H Y,197 CH ₃ H CH(CH ₃)CH ₂ CH(CH ₃)C(CH ₃) H H Y,198 CH ₃ H CH(CH ₃)CH ₂ CH(CH ₃)C(CH ₃) H H Y,290 CH ₃ CH ₂ CH CH(CH ₃)CH ₂ CH(CH ₃)C(CH ₃) H H Y,200 CH ₃ COCH ₃ CH CH(CH ₃)CH ₂ CH(CH ₃)C(CH ₃) H H Y,201 CH ₃ COCH ₃ CH CH(CH ₃)CH ₂ CH(CH ₃)C(CH ₃) H H Y,202 CH ₃ CH ₂ C=CH CH(CH ₃)CH ₂ CH(CH ₃)C(CH ₃) H H Y,203 CH ₃ CH ₂ C=CH CH(CH ₃)CH ₂ CH				CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	H
1.195				CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	
Y.195 CH₃ COO-tert-Bu CH(CH₃)CH₅CH(CH₃)₂ H H Y.196 CH₃ CH=C-CH₂ CH(CH₃)CH₅CH(CH₃)₂ H H Y.197 CH₃ H CH(CH₃)CH₅CH(CH₃)₂ H H Y.198 C₃H₃ H CH(CH₃)CH₅CH(CH₃)(CH₃) H H Y.199 CH₃OCH₃ H CH(CH₃)CH₅CH(CH₃)(CH₃) H H Y.200 CH₃ COCH₃ CH(CH₃)CH₅CH(CH₃)(CJ₃) H H Y.201 CH₃ COCH₃ CH(CH₃)CH₅CH(CH₃)(CJ₃) H H Y.201 CH₃ COCH₃ CH(CH₃)CH₅CH(CH₃)(CJ₃) H H Y.202 CH₃ COCH₃ CH(CH₃)CH₅CH(CH₃)(CJ₃) H H Y.203 CH₃ COO-ter-Bu CH(CH₃)CH₅CH(CH₃)(CJ₃) H H Y.204 CH₃ CH-C-CH₂ CH(CH₃)CH₅CH(CJ₃) H H Y.205 CH₃ H CH(CH₃)CH₂CH(CH₃) H H Y.206 CJ₃ H CH(CH₃)				CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	
CHS				CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	
Y.197 CH ₃ H CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₃) H H Y.198 C ₂ H ₃ H CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₃) H H Y.198 C ₂ H ₃ H CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₃) H H Y.199 CH ₂ OCH ₅ H CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₃) H H Y.200 CH ₃ COCH ₂ OCH ₅ CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₃) H H Y.201 CH ₃ COCH ₂ OCH ₅ CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₃) H H Y.202 CH ₃ CH ₂ CECH CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₃) H H Y.203 CH ₃ COO-tert-Bu CH(CH ₃)CH ₂ CH(CH ₃)(C ₃ H ₃) H				CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	
1.197 CH ₃				CH(CH ₃)CH ₂ CH(CH ₃) ₂	H	
Y.199				CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	
Y.200		C ₂ H ₅		CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	
Y.201 CH3 COCH ₃ OCH3 CMC(H ₃)CH(CH ₃)(C,H ₅)(C,H ₅) H H Y.202 CH3 CH ₂ C=CH CM(CH ₃)CH ₂ CH(CH ₃)(C,H ₅) H H Y.203 CH3 COO-tert-Bu CH(CH ₃)CH ₂ CH(CH ₃)(C,H ₅) H H Y.204 CH3 CH=C=CH ₂ CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅) H H Y.205 CH3 H CH(CH ₃)CH ₂ CH ₂ CH(CH ₃)(C ₂ H ₅) H H Y.206 C,H ₅ H CH(CH ₃)CH ₂ CH ₂ CH ₂ CH ₂ CH ₃) H H Y.207 CH ₂ OCH3 H CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.208 CH3 COCH3 CH(CH3)CH ₂ CH(C ₂ H ₃) H H Y.209 CH3 COCH3 CH(CH3)CH ₂ CH(C ₂ H ₃) H H Y.210 CH5 CH ₂ C=CH CH(CH3)CH ₂ CH(C ₂ H ₃) H H Y.211 CH3 CH ₂ C=CH CH(CH ₃)CH ₂ CH(C ₃ H ₃) H H Y.212 CH3 CH-C=CH2 CH(CH ₃)CH ₂ CH(C ₃ H ₃)					H	
Y.201 CH ₃ COCH ₃ OCH ₅ CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅) H H Y.203 CH ₃ CH ₂ C=CH CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅) H CH(CH ₃)CH ₂ CH(C ₂ H ₅) H H H H CH(CH ₃)CH ₂ CH(C ₂ H ₅) H				$CH(CH_3)CH_2CH(CH_3)(C_2H_5)$	H	H
Y.202 CH ₃ CH ₅ CCH CH ₁ CH ₂ CH ₂ CH ₃ (CH ₃)(C ₂ H ₃) H H Y.203 CH ₃ COO-tert-Bu CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₃) H H Y.204 CH ₃ CH=C=CH ₂ CH(CH ₃)CH ₂ CH(Ch ₃)(C ₂ H ₃) H H Y.205 CH ₃ H CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.206 C ₂ H ₃ H CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.206 C ₂ H ₃ H CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.207 CH ₂ OCH ₃ H CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.208 CH ₃ COCH ₃ CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.209 CH ₃ COCH ₂ OCH ₃ CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.210 CH ₃ CH ₂ CECH CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.211 CH ₃ CH ₂ C=CH CH(CH ₃)CH ₂ CH(C ₂ H ₃) H H Y.212 CH ₃ CH ₂ C=CH CH(CH ₃)CH ₂ CH(C ₂ H ₃)				CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	
Y.204 CH3 COO-tert-Bu CH(CH3)CH2CH(CH3)(C2H4) H H Y.205 CH3 H CHC=C=CH2 CH(CH3)CH2CH(C3H3)(C3H3) H H Y.206 C2H3 H CHC(CH3)CH2CH(C2H3)2 H H Y.207 CH4OCH3 H CH(CH3)CH2CH(C2H3)2 H H Y.208 CC3 H CH(CH3)CH2CH(C2H3)2 H H H Y.208 CH3 COCH3 CH(CH3)CH2CH(C2H3)2 H <t< td=""><td></td><td></td><td></td><td>CH(CH₃)CH₂CH(CH₃)(C₂H₅)</td><td>H</td><td></td></t<>				CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)	H	
Y.204 CH3 CH=C=CH2 CH(CH3)CH2CH(CH3)(CH3) H H Y.206 C,H3 H CH(CH3)CH2CH(CH3)2 H H Y.206 C,H3 H CH(CH3)CH2CH(C2H3)2 H H Y.207 CH2OCH3 H CH(CH3)CH2CH(C2H3)2 H H Y.208 CH3 COCH3 CH(CH3)CH2CH(C2H3)2 H H Y.209 CH3 COCH2COCH3 CH(CH3)CH2CH(C2H3)2 H H Y.210 CH3 CH2CECH CH(CH3)CH2CH(C2H3)2 H H Y.211 CH3 COC-terr-Bu CH(CH3)CH2CH(C2H3)2 H H Y.211 CH3 CH=C=CH2 CH(CH3)CH2CH(C3H3)2 H H H H H Y.211 CH3 CH=C=CH2 CH(CH3)CH2CH(C2H5)2 H H H H H Y.211 CH3 COC+ter-Bu CH(CH3)CH2CH(CH3)2 H H H H H H H H H H H Y			COO-tert-Bu	CH(CH ₃)CH ₂ CH(CH ₃)(C ₂ H ₄)	H	
17.205 CH3 H CH(CH3)CH2CH(C2H5)2 H H Y 206 C₂H5 H CH(CH3)CH2CH(C2H5)2 H H Y 207 CH2OCH3 H CH(CH3)CH2CH(C2H5)2 H H Y 208 CH3 COCH3 CH(CH3)CH2CH(C2H5)2 H H Y 209 CH3 COCH2OCH3 CH(CH3)CH2CH(C2H5)2 H H Y 210 CH3 COCH2CEH CH(CH3)CH2CH(C2H5)2 H H Y 211 CH3 COO-tert-Bu CH(CH3)CH2CH(C2H5)2 H H Y 211 CH3 COO-tert-Bu CH(CH3)CH2CH(CH3)2 H H Y 212 CH3 CH=C=CH2 CH(CH3)CH2CH(CH3)2 H H Y 213 CH3 H CH(C2H3)CH2CH(CH3)2 H H Y 214 C,H3 H CH(C2H3)CH2CH(CH3)2 H H H H H H H H H H H H H Y 216 CH2H3				$CH(CH_3)CH_2CH(CH_3)(C_2H_5)$	H	
1.206 C2H5 H CH(CH3)CH2CH(C2H5)2 H H Y.207 CH2OCH3 H CH(CH3)CH2CH(C2H5)2 H H Y.208 CH3 COCH3 CH(CH3)CH2CH(C2H5)2 H H Y.209 CH3 COCH3OCH3 CH(CH3)CH2CH(C2H5)2 H H Y.210 CH3 CH2C=CH CH(CH3)CH2CH(C2H5)2 H H Y.211 CH3 COO-tert-Bu CH(CH3)CH2CH(C2H5)2 H H Y.211 CH3 COO-tert-Bu CH(CH3)CH2CH(CH3)2 H H Y.212 CH3 CH=C=CH2 CH(CH3)CH2CH(CH3)2 H H Y.213 CH3 H CH(C2H3)CH2CH(CH3)2 H H H Y.214 CyH5 H CH(C2H3)CH2CH(CH3)2 H <td></td> <td></td> <td></td> <td>$CH(CH_3)CH_2CH(C_2H_5)_2$</td> <td>H</td> <td></td>				$CH(CH_3)CH_2CH(C_2H_5)_2$	H	
Y.207 CH₂OCH₃ H CH(CH₃)CH₂CH(C₂H₅)₂ H H Y.208 CH₃ COCH₃ CH(CH₃)CH₂CH(C₂H₅)₂ H H Y.209 CH₃ COCH₂OCH₃ CH(CH₃)CH₂CH(C₂H₅)₂ H H Y.210 CH₃ CH₂C≡CH CH(CH₃)CH₂CH(C₂H₅)₂ H H Y.211 CH₃ COO-tert-Bu CH(CH₃)CH₂CH(C₂H₅)₂ H H Y.212 CH₃ CH=C=CH₂ CH(CH₃)CH₂CH(C₂H₅)₂ H H Y.213 CH₃ H CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.214 C₂H₃ H CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.214 C₂H₃ H CH(C₂H₃)CH₂CH(CH₃)₂ H <t< td=""><td></td><td></td><td></td><td>CH(CH₃)CH₂CH(C₂H₅)₂</td><td></td><td></td></t<>				CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂		
17.208 CH ₃ COCH ₃ CH(CH ₃)CH ₂ CH(C ₂ H ₃) ₂ H H Y.209 CH ₃ COCH ₂ OCH ₃ CH(CH ₃)CH ₂ CH(C ₂ H ₃) ₂ H H Y.210 CH ₃ CH ₂ C≡CH CH(CH ₃)CH ₂ CH(C ₂ H ₃) ₂ H H Y.211 CH ₃ CH ₂ C=CH CH(CH ₃)CH ₂ CH(C ₂ H ₃) ₂ H H Y.212 CH ₃ CH=C=CH ₂ CH(CH ₃)CH ₂ CH(CH ₃) ₂ H H Y.213 CH ₃ H CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂ H H Y.214 C ₂ H ₃ H CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂ H H Y.215 CH ₂ OCH ₃ H CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂ H H Y.216 CH ₃ COCH ₃ CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂ H H Y.217 CH ₃ COCH ₃ CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂ H H Y.217 CH ₃ CH ₂ C=CH CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂ H H Y.218 CH ₃ CH ₂ C=CH CH(C ₂ H ₃)CH ₂ CH(CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	
Y.210	1.208 V 200			$CH(CH_3)CH_2CH(C_2H_5)_2$	H	
Y.211 CH3 COO-tert-Bu CH(CH3)CH2-CH(C2H3)2 H H Y.212 CH3 CH=C=CH2 CH(CH3)CH2-CH(C2H5)2 H H Y.213 CH3 H CH(C2H3)CH2-CH(C43)2 H H Y.214 C2H3 H CH(C2H3)CH2-CH(CH3)2 H H Y.215 CH2OCH3 H CH(C2H3)CH2-CH(CH3)2 H H Y.216 CH3 COCH3 CH(C,H3)CH2-CH(CH3)2 H H Y.216 CH3 COCH3 CH(C,H3)CH2-CH(CH3)2 H H Y.217 CH3 COCH2-CCH3 CH(C,H3)CH2-CH(CH3)2 H H Y.218 CH3 COO-tert-Bu CH(C2H3)CH2-CH(CH3)2 H H Y.219 CH3 COO-tert-Bu CH(C2H3)CH2-CH(CH3)2 H H Y.2219 CH3 COO-tert-Bu CH(C2H3)CH2-CH(CH3)2 H H Y.2219 CH3 CH=C=CH2 CH(C2H3)CH2-CH(CH3)2 H H Y.2221 CH3 H </td <td></td> <td></td> <td></td> <td>CH(CH₃)CH₂CH(C₂H₅)₂</td> <td>H</td> <td>H</td>				CH(CH ₃)CH ₂ CH(C ₂ H ₅) ₂	H	H
Y.212 CH₃ CH=C=CH₂ CH(CH₃)CH₂CH(C₂H₃)₂ H H Y.213 CH₃ H CH(CH₃)CH₂CH(CH₃)₂ H H Y.214 C₂H₃ H CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.215 CH₂OCH₃ H CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.216 CH₃ COCH₃ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.216 CH₃ COCH₃ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.217 CH₃ COCH₂OCH₃ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.217 CH₃ COCH₂OCH₃ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.218 CH₃ COCH₂OCH₃ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.218 CH₃ CH₂C≡CH CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.219 CH₃ CH₃ CH₂C≡CH CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.220 CH₃ CH=C=CH₂ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.221 CH₃ H				$CH(CH_3)CH_2CH(C_2H_5)_2$	Н	Н
Y.213 CH ₃ H CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂ H H Y.214 C ₂ H ₅ H CH(C ₂ H ₃)CH ₂ CH(CH ₃) ₂ H H Y.215 CH ₂ OCH ₃ H CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.216 CH ₃ COCH ₃ CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.217 CH ₃ COCH ₂ OCH ₃ CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.218 CH ₃ CH ₂ C=CH CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.218 CH ₃ CH ₂ C=CH CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.218 CH ₃ CH ₂ C=CH CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.218 CH ₃ CH ₂ C=CH CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.218 CH ₃ CH ₂ C=CH CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.219 CH ₃ CH ₂ C=CH CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂ H H Y.221 CH ₃ H CH(C ₂ H ₅)CH ₂ CH(CH					H	H
Y.214 C₂H₂ H CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.215 CH₂OCH₃ H CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.216 CH₃ COCH₃ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.217 CH₃ COCH₂OCH₃ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.218 CH₃ CH₂C≡CH CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.218 CH₃ COO-tert-Bu CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.219 CH₃ COO-tert-Bu CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.219 CH₃ COO-tert-Bu CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.221 CH₃ CH=C=CH₂ CH(C₂H₃)CH₂CH(CH₃)₂ H H Y.2221 CH₃ H CH(C₂H₃)CH₂CH(CH₃)(C₂H₃) H H Y.2222 C₂H₃ H CH(C₂H₃)CH₂CH(CH₃)(C₂H₃) H H Y.2223 CH₂OCH₃ H CH(C₂H₃)CH₂CH(CH₃)(C₂H₃) H H Y.2244 CH₃ CH₃					H	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					H	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	H
Y.217 CH3 COCH2OCH3 CH(C2H5)CH2CH(CH3)2 H H Y.218 CH3 CH2CECH CH(C2H5)CH2CH(CH3)2 H H Y.219 CH3 COO-test-Bu CH(C2H5)CH2CH(CH3)2 H H Y.219 CH3 COO-test-Bu CH(C2H5)CH2CH(CH3)2 H H Y.220 CH3 CH=C=CH2 CH(C2H5)CH2CH(CH3)4 H H Y.221 CH3 H CH(C2H5)CH2CH(CH3)(C2H5) H H Y.221 CH3 H CH(C2H5)CH2CH(CH3)(C2H5) H H Y.222 C2H5 H CH(C2H5)CH2CH(CH3)(C2H5) H H Y.223 CH2OCH3 H CH(C2H5)CH2CH(CH3)(C2H5) H H Y.224 CH3 CH2C=CH CH(C2H5)CH2CH(CH3)(C2H5) H H Y.225 CH3 H CH(C2H5)CH2CH(C2H5)2 H H H Y.226 C2H5 H CH(C2H5)CH2CH(C2H5)2 H H H Y.227 <				CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	Н
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	Н
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	Н
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(C ₂ H ₅)CH ₂ CH(CH ₃) ₂	H	Н
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$CH(C_2H_5)CH_2CH(CH_3)(C_2H_5)$	H	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$CH(C_2H_5)CH_2CH(CH_3)(C_2H_5)$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$CH(C_2H_5)CH_2CH(CH_3)(C_2H_5)$	H	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$CH(C_2H_5)CH_2CH(CH_3)(C_2H_5)$	H	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(C ₂ H ₅)CH ₂ CH(C ₂ H ₅) ₂	H	H
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					H	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					H	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$CH(C_2H_5)CH_2CH(C_2H_5)_2$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(CF ₃)CH ₂ CH(CH ₃) ₂		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(CF ₃)CH ₂ CH(CH ₃) ₂		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				CH(CF ₃)CH ₂ CH(CH ₃) ₂		
Y 234 CH H CH(CF ₃)CH ₂ CH(CH ₃)(C ₂ H ₅) H H				CH(CF ₃)CH ₂ CH(CH ₃) ₂		
1./34 ('bl. II OTT/OTT) cert cert				CH(CF ₃)CH ₂ CH(CH ₃)(C ₂ H ₅)		
	1.234	I CH₃	H	CH(CF ₃)CH ₂ CH(C ₂ H ₅) ₂		

Y.235	CH ₃	н	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	Н
Y.236	C ₂ H ₅	H	CH(CH ₃)CH ₂ C(CH ₃) ₃ CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H
Y.237	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H
Y.238	CH ₃	COCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H
Y.239	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H
Y.240	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H
Y.241	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H
Y.242	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ C(CH ₃) ₃ CH(CH ₃)CH ₂ C(CH ₃) ₃	H	H
Y.243	CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.244	C_2H_5	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.245	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.246	CH ₃	COCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.247	CH ₃	COCH ₂ OCH ₃	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.248	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.249	CH ₃	COO-tert-Bu	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.250	CH ₃	CH=C=CH ₂	CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅) CH(CH ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.251	CH ₃	H	CH(CH ₃)CH ₂ C(CH ₃)/2(C ₂ H ₅) ₂ CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.252	C ₂ H ₅	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.253	CH ₂ OCH ₃	H	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂ CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.254	CH ₃	CH ₂ C≡CH	CH(CH ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.255	CH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H	H
Y.256	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H	H
Y.257	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃ CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H	H
Y.258	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃ CH(C ₂ H ₅)CH ₂ C(CH ₃) ₃	H	H
Y.259	CH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.260	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.261	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.262	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.263	CH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.264	C ₂ H ₅	H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.265	CH ₂ OCH ₃	H	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.266	CH ₃	CH ₂ C≡CH	CH(C ₂ H ₅)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.267	CH ₃	H	CH(CF ₃)CH ₂ C(CH ₃) ₃	H	H
Y.268	C ₂ H ₅	H	CH(CF ₃)CH ₂ C(CH ₃) ₃	H	H
Y.269	CH ₂ OCH ₃	Н	CH(CF ₃)CH ₂ C(CH ₃) ₃	H	H
Y.270	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ C(CH ₃) ₃	H	H
Y.271	CH ₃	Н	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.272	C ₂ H ₅	Н	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	H	H
Y.273	CH ₂ OCH ₃		CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	Н	H
Y.274	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ C(CH ₃) ₂ (C ₂ H ₅)	Н	H
Y.275	CH ₃	H	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	Н
Y.276	C ₂ H ₅	Н	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	Н	H
Y.277	CH ₂ OCH ₃		CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	Н	Н
Y.278	CH ₃	CH ₂ C≡CH	CH(CF ₃)CH ₂ C(CH ₃)(C ₂ H ₅) ₂	H	H
Y.279	CH ₃	H	2'-tert-butyl-cyclopropyl	Н	H
Y.280	C ₂ H ₅	Н	2'-tert-butyl-cyclopropyl	Н	Н
Y.281	CH ₂ OCH ₃		2'-tert-butyl-cyclopropyl	H	H
Y.282	CH ₃	CH ₂ C≡CH	2'-tert-butyl-cyclopropyl	H	Н
Y.283	CH ₃	H	2'-isobutyl-cyclopropyl	Н	H
Y.284	C ₂ H ₅	H	2'-isobutyl-cyclopropyl	H	H
Y.285	CH ₂ OCH ₃		2'-isobutyl-cyclopropyl	Н	H
Y.286	CH ₃	CH ₂ C≡CH	2'-isobutyl-cyclopropyl	Н	H
Y.287	CH ₃	Н	4',4'-dimethyl-cyclobutyl	Н	Н
Y.288	C ₂ H ₅	Н	4',4'-dimethyl-cyclobutyl	H	Н
Y.289	CH ₂ OCH		4',4'-dimethyl-cyclobutyl	Н	Н
					

Y.290		·			
Y.291	CH ₃	CH₂C≡CH	4',4'-dimethyl-cyclobutyl	Н	Н
	CH ₃	H	cyclopentyl	H	H
Y.292	C_2H_5	H	cyclopentyl	H	H
Y.293	CH ₂ OCH ₃	H	cyclopentyl	H	H
Y.294	CH ₃	CH ₂ C≡CH	cyclopentyl	H	H
Y.295	CH ₃	H	3'-methyl-cyclopentyl	H	
Y.296	C ₂ H ₅	Н	3'-methyl-cyclopentyl		H
Y.297	CH ₂ OCH ₃	Н	3'-methyl-cyclopentyl	H	H
Y.298	CH ₃	CH ₂ C≡CH	3'-methyl-cyclopentyl	H	<u>H</u>
Y.299	CH ₃	Н	cyclohexyl	H	H
Y.300	C ₂ H ₅	H	cyclohexyl	H	H
Y.301	CH ₂ OCH ₃	H	cyclonexyl	H	H
Y.302	CH ₃	CH ₂ C≡CH	cyclohexyl	H	H
Y.303	CH ₃	H	cyclohexyl	H	H
Y.304	C ₂ H ₅	H	3'-methyl-cyclohexyl	H	H
Y.305	CH ₂ OCH ₃	H	3'-methyl-cyclohexyl	H	H
Y.306	CH ₃		3'-methyl-cyclohexyl	H	H
Y.307	CH ₃	CH ₂ C≡CH	3'-methyl-cyclohexyl	H	H
Y.308		H	4'-methyl-cyclohexyl	H	H
Y.309	CH OCT	H	4'-methyl-cyclohexyl	H	H
Y.310	CH ₂ OCH ₃	H	4'-methyl-cyclohexyl	H	H
	CH ₃	CH ₂ C≡CH	4'-methyl-cyclohexyl	Н	H
Y.311	CH ₃	H	cycloheptyl	H	H
Y.312	C_2H_5	H	cycloheptyl	H	H
Y.313	CH ₂ OCH ₃	H	cycloheptyl	H	H
Y.314	CH ₃	CH ₂ C≡CH	cycloheptyl	H	
Y.315	CH ₃	H	2'-thienyl	H	H
Y.316	C_2H_5	Н	2'-thienyl		H
Y.317	CH ₂ OCH ₃	Н	2'-thienyl	H	H
Y.318	CH ₃	CH ₂ C≡CH	2'-thienyl	Н	H
Y.319	CH ₃	Н	3'-thienyl	H	H
Y.320	C_2H_5	H	3'-thienyl	H	H
Y.321	CH ₂ OCH ₃	H		H	H
Y.322	CH ₃	CH ₂ C≡CH	3'-thienyl	H	H
Y.323	CH ₃	H	3'-thienyl	H	H
Y.324	C ₂ H ₅	H	5'-chloro-2'-thienyl	H	H
Y.325	CH ₂ OCH ₃	H	5'-chloro-2'-thienyl	H	H
Y.326	CH ₃		5'-chloro-2'-thienyl	H	H
Y.327	CH ₃	CH ₂ C≡CH	5'-chloro-2'-thienyl	H	H
Y.328		H	2'-furyl	H	H
Y.329	CH OCH	H	2'-furyl	H	H
Y.330	CH₂OCH₃	H	2'-furyl	H	H
Y.331	CH ₃	CH ₂ C≡CH	2'-furyl	Н	H
	CH ₃	H	5'-chloro-2'-furyl	H	H
Y.332	C_2H_5	H	5'-chloro-2'-furyl	H	H
Y.333	CH ₂ OCH ₃	H	5'-chloro-2'-furyl	H	H
Y.334	CH ₃	CH ₂ C≡CH	5'-chloro-2'-furyl	H	H
Y.335	CH ₃	H	2'-pyridyl	H	H
Y.336	C ₂ H ₅	H	2'-pyridyl	H	
Y.337	CH ₂ OCH ₃	H	2'-pyridyl		H
Y.338	CH ₃	CH ₂ C≡CH	2'-pyridyl	H	H
Y.339	CH ₃	H	2 -pyridyl 3'-pyridyl	H	<u>H</u>
Y.340	C ₂ H ₅	H		H	H_
Y.341	CH ₂ OCH ₃	H	3'-pyridyl	H	<u>H</u>
Y.342	CH ₃	CH ₂ C≡CH	3'-pyridyl	<u>H</u>	H
Y.343	CH ₃		3'-pyridyl	H	H
Y.344	C ₂ H ₅	H	4'-pyridyl	H	H
		H	4'-pyridyl	H	H

Y.345	CH ₂ OCH ₃	H	4'-pyridyl	H	H
Y.346	CH ₃	CH ₂ C≡CH	4'-pyridyl	H	H
Y.347	CH ₃	H	6'-chloro-3'-pyridyl	H	H
Y.348	C ₂ H ₅	H	6'-chloro-3'-pyridyl	H	H
Y.349	CH ₂ OCH ₃	Н	6'-chloro-3'-pyridyl	H	H
Y.350	CH ₃	CH ₂ C≡CH	6'-chloro-3'-pyridyl	H	H
Y.351	CH ₃	Н	6'-fluoro-3'-pyridyl	H	H
Y.352	C ₂ H ₅	H	6'-fluoro-3'-pyridyl	Н	H
Y.353	CH ₂ OCH ₃	H	6'-fluoro-3'-pyridyl	H	Н
Y.354	CH ₃	CH ₂ C≡CH	6'-fluoro-3'-pyridyl	Н	H
Y.355	CH ₃	H	6'-bromo-3'-pyridyl	H	H
Y.356	C ₂ H ₅	H	6'-bromo-3'-pyridyl	H	H
	CH ₂ OCH ₃	H	6'-bromo-3'-pyridyl	Н	H
Y.357	CH ₃	CH ₂ C≡CH	6'-bromo-3'-pyridyl	H	H
Y.358	CH ₃	H	2'-oxazolyl	H	H
Y.359	CH ₃	H	3'-isoxazolyl	H	H
Y.360	CH ₃	H	CH(CH ₃) ₂	Н	H
Y.361		H	CH(CH ₃) ₂	H	H
Y.362	CIL OCIL	H	CH(CH ₃) ₂	H	H
Y.363	CH ₂ OCH ₃		CH(CH ₃) ₂	H	H
Y.364	CH ₃	CH ₂ C≡CH	CII(CII3/2		

Table 8 provides 364 compounds of formula (I-8):

$$F_3C \xrightarrow{R^{12}} S \xrightarrow{R^6} R^6$$

$$N \xrightarrow{N} N \xrightarrow{R^3} (I-8)$$

wherein R², R³, R⁶, R¹¹ and R¹² are as defined in Table 8.

Table 9 provides 364 compounds of formula (I-9):

$$F_{2}HC \xrightarrow{R^{12}} S$$

$$0$$

$$R^{12}$$

$$R^{6}$$

$$R^{6}$$

$$R^{12}$$

$$R^{6}$$

$$R^{12}$$

$$R^{6}$$

$$R^{12}$$

$$R^{12}$$

$$R^{13}$$

$$R^{14}$$

$$R^{12}$$

$$R^{14}$$

$$R^{15}$$

10

wherein R^2 , R^3 , R^6 , R^{11} and R^{12} are as defined in Table 9. Table 10 provides 364 compounds of formula (I-10):

10

15

wherein R², R³, R⁶, R¹¹ and R¹² are as defined in Table 10. Table 11 provides 364 compounds of formula (I-11):

$$R^{12}$$
 R^{12}
 R^{12}
 R^{13}
 R^{14}
 R^{15}
 R^{12}
 R^{15}
 R^{15}

wherein R², R³, R⁶, R¹¹ and R¹² are as defined in Table 11.

Table 12 provides 364 compounds of formula (I-12):

$$R^{12}$$
 R^{12}
 R^{12}
 R^{13}
 R^{12}
 R^{12}
 R^{13}
 R^{12}
 R^{12}
 R^{13}
 R^{12}
 R^{12}
 R^{13}
 R^{12}
 R^{13}
 R^{13}
 R^{13}
 R^{14}
 R^{15}
 R^{15}
 R^{15}

wherein R², R³, R⁶, R¹¹ and R¹² are as defined in Table 12.

Table 13 provides 364 compounds of formula (I-13):

$$H_5C_2$$
 N
 N
 N
 R^{11}
 R^{11}
 R^{11}
 R^{12}
 R^{11}
 R^{11}

wherein R^2 , R^3 , R^6 , R^{11} and R^{12} are as defined in Table 13. Table 14 provides 364 compounds of formula (I-14):

 $F_{3}C$ N N R^{11} R^{12} R^{3} R^{3} R^{3} R^{3} R^{3} R^{4}

wherein R^2 , R^3 , R^6 , R^{11} and R^{12} are as defined in Table 14. Table 15 provides 364 compounds of formula (I-15):

10

5

$$F_{2}HC \xrightarrow{N}_{N}^{N}$$

$$\downarrow_{R^{2}}^{R^{11}}$$

$$R^{12}$$

wherein R^2 , R^3 , R^6 , R^{11} and R^{12} are as defined in Table 15.

Table 16 provides 364 compounds of formula (I-16):

15

10

15

$$FH_{2}C \xrightarrow{R^{1}} R^{12}$$

$$0 \qquad N$$

$$N$$

$$R^{3}$$

$$|R^{2}$$

$$|R^{2}$$

$$|R^{2}$$

$$|R^{3}$$

$$|R^{3}$$

$$|R^{3}$$

$$|R^{3}$$

$$|R^{3}$$

$$|R^{3}$$

wherein R², R³, R⁶, R¹¹ and R¹² are as defined in Table 16.

Table 17 provides 364 compounds of formula (I-17):

 CIF_2C N N N R^3 R^{11} R^{12} R^{12} R^3 R^{12} R^3 R^3

wherein R², R³, R⁶, R¹¹ and R¹² are as defined in Table 17.

Table 18 provides 364 compounds of formula (I-18):

wherein R², R³, R⁶, R¹¹ and R¹² are as defined in Table 18.

Table 19 provides 364 compounds of formula (I-19):

۲,

wherein R^2 , R^3 , R^6 , R^{11} and R^{12} are as defined in Table 19.

Table Z represents Table 20 [when Z is 20], Table 21 [when Z is 21], Table 22 [when Z is 22], Table 23 [when Z is 23], Table 24 [when Z is 24] and represents Table 25 [when Z is 25].

Table Z

Compound No.	\mathbb{R}^2	R ³	A
Z.001	СН₃	Н	.8
Z.002	C ₂ H ₅	Н	.8
Z.003	CH₂OCH₃	Н	.Q
Z.004	CH₃	CH ₂ C≡CH	.8
Z.005	СН₃	Н	. H ₃ C
Z.006	C ₂ H ₅	Н	. H ₃ C
Z.007	CH₂OCH₃	Н	. H ₃ C
Z.008	CH ₃	CH ₂ C≡CH	. H ₃ C
Z.009	CH₃	Н	. Съсн,
Z.010	C ₂ H ₅	Н	. С
Z.011	CH ₂ OCH ₃	Н	, CH _s
Z.012	CH ₃	CH ₂ C≡CH	. СН3
Z.013	CH₃	Н	. CH ₃
Z.014	C ₂ H ₅	Н	· CH ₃

5

Z.015	CH₂OCH₃	Н	H₃CH₃
Z.016	CH ₃	CH₂C≡CH	· H ₃ C CH ₃
Z.017	СН₃	Н	CH ₃ CH ₃
Z.018	C₂H₅	Н	CH ₃ CH ₃
Z.019	CH₂OCH₃	Н	CH ₃ CH ₃
Z.020	СН₃	CH₂C≡CH	CH ₃ CH ₃
Z.021	СН₃	Н	CH ₃ CH ₃
Z.022	C₂H₅	Н	CH ₃ CCH ₃
Z.023	CH ₂ OCH ₃	Н	CH ₃ CH ₃
Z.024	СН₃	CH₂C≡CH	CH ₃ CH ₃
Z.025	СН₃	н	H ₃ C CH ₃
Z.026	C₂H₅	Н	H ₃ C CH ₃
Z.027	CH₂OCH₃	Н	H ₃ C CH ₃
Z.028	СН₃	CH₂C≡CH	H ₃ C CH ₃
Z.029	СН₃	Н	· H ₃ C

Z.030	C₂H₅	н	. H ₃ C
Z.031	CH₂OCH₃	Н	. H _s C
Z.032	СН₃	CH₂C≡CH	. H ₉ C
Z.033	CH₃	н	, CO CH3
Z.034	C ₂ H ₅	н	. CH3
Z.035	CH ₂ OCH ₃	Н	. С
Z.036	CH ₃	CH ₂ C≡CH	. С
Z.037	CH₃	н	. 🖓
Z.038	C ₂ H ₅	Н	. 🖓
Z.039	CH₂OCH₃	Н	. 🖓
Z.040	CH₃	CH₂C≡CH	. 🖓
Z.041	CH₃	Н	H _s CH _s
Z.042	C ₂ H ₅ H		H ₃ CH ₃
Z.043	CH₂OCH₃	Н	H ₃ CH ₃
Z.044	CH₃	CH ₂ C≡CH	CH ₃ CH ₃ CH ₃
Z.045	CH ₃	Н	H ₃ C CH ₃
Z.046	C ₂ H ₅	Н	H ₃ C CH ₃

Z.047	CH₂OCH₃	Н	H ₃ CH ₃
Z.048	CH₃	CH ₂ C≡CH	H ₃ CH ₃
Z.049	CH ₃	Н	H _s C S
Z.050	C₂H₅	Н	H _s C
Z.051	CH₂OCH₃	Н	H ₃ C
Z.052	. CH₃	СН₂С≡СН	·H ₃ C
Z.053	CH₃	н	. C→cH₃
Z.054	C ₂ H ₅	H	. C→cH₃
Z.055	CH₂OCH₃	Н	. C→CH _s
Z.056	CH₃	CH₂C≡CH	, CH _s CH _s
Z.057	CH₃	н	. Qs
Z.058	C₂H₅	Н	. Cs
Z.059	CH₂OCH₃	Н	. Qs
Z.060	СН₃	CH ₂ C≡CH	.Qs
Z.061	СН₃	Н	.8
Z.062	C ₂ H ₅	Н	.8
Z.063	CH₂OCH₃	Н	.8

Z.064	CH ₃	CH ₂ C≡CH	.8
Z.065	CH₃	Н	H ₃ C
Z.066	C ₂ H ₅	Н	H ₃ C
Z.067	CH₂OCH₃	Н	H _s c
Z.068	СН₃	CH₂C≡CH	H _s C
Z.069	СН₃	н	. CH ₃
Z.070	C ₂ H ₅	Н	. CH ₃
Z.071	CH₂OCH₃	Н	. CH _s
Z.072	CH ₃	CH ₂ C≡CH	. CH ₃
Z.073	CH₃	н	· CH ₃
Z.074	C ₂ H ₅	н	H ₃ C CH ₃
Z.075	CH₂OCH₃	н	H ₃ C
Z.076	CH₃	CH ₂ C≡CH	· CH ₃
Z.077	CH ₃	н	CH ₃ CH ₃
Z.078	C ₂ H ₅	н	CH ₃ CH ₃
Z.079	CH₂OCH₃	Н	H _s C

			
Z.080	СН₃	CH₂C≡CH	CH ₃ H ₃ C
Z.081	СН₃	н	- H ₃ CCH ₃
Z.082	C ₂ H ₅	н	H ₃ C
Z.083	CH₂OCH₃	н	H ₃ CCH ₃
Z.084	СН₃	CH₂C≡CH	H ₃ CCH ₃
Z.085	СН₃	н	H ₃ C
Z.086	C₂H₅	H _.	H ₃ C
Z.087	СН₂ОСН₃	н	H _g C
Z.088	CH₃	CH₂C≡CH	H _s C
Z.089	СН₃	Н	. CH ₃
Z.090	C ₂ H ₅	Н	. С
Z.091	91 CH₂OCH₃ H		. С
Z.092	СН₃	CH₂C≡CH	. CH ₃
Z.093	СН₃	Н	.O
Z.094	C₂H₅	H	.Q
Z.095	CH₂OCH₃	Н	.Q
Z.096	СН₃	CH ₂ C≡CH	.8

Z.097	СН₃	Н	
Z.098	C₂H₅	Н	
Z.099	CH ₂ OCH₃	Н	.0
Z.100	СН₃	CH₂C≡CH	.%
Z.101	СН₃	Н	.8
Z.102	C ₂ H ₅	н	.8
Z.103	CH₂OCH₃	н	.8
Z.104	CH ₃	CH ₂ C≡CH	.8
Z.105	CH₃	Н	
Z.106	CH₃	н	.5
Z.107	CH₃	н	.95
Z.108	СН₃	Н	· Q
Z.109	CH₃	Н	.04
Z.110	CH₃	Н	. С. сн.
Z.111	СН₃	Н	. С
Z.112	CH ₃	Н	. CH ₃ CH ₃

Z.113	CH₃	н	CH ₃
Z.114	CH₃	Н	. 📞
Z.115	CH ₃	н	. 📞
Z.116	C₂H₅	Н	. 🕒
Z.117	CH₂OCH₃	Н	. 📞
Z.118	CH ₃	CH₂C≡CH	. Co
Z.119	CH ₃	Н	. 95
Z.120	CH₃	Н	. So
Z.121	$\mathrm{C_2H_5}$	Н	. So
Z.122	CH₂OCH₃	н	. So
Z.123	СН₃	СН₂С≡СН	. 95
Z.124	СН₃	Н	. So
Z.125	CH₃	Н	. 🕞
Z.126	CH₃ H		. Por
Z.127	СН₃	Н	. Por
Z.128	СН₃	Н	Pop
Z.129	СН₃	Н	. 90

	СН₃	Н	
	СН₃	Н	. Q3
	C ₂ H ₅	н	. (3)
	CH₂OCH₃	Н	. (3)
	CH₃	CH ₂ C≡CH	. (3)
	CH₃	Н	. 9
5	СН₃	Н	· Per
7	C ₂ H ₅	Н	· Q3
8	CH₂OCH₃	н	. 9
9	CH₃	CH ₂ C≡CH	· G
0	СН₃	Н	. 🕞
-1	CH ₃	Н	. 🕞
12	СН₃	Н	. \$3
4 3	CH₃	Н	.) 5
44	СН3 Н		. Con
45	CH ₃	Н	
46	CH ₃	н	. CH ₃
		CH ₃ C ₂ H ₅ CH ₂ OCH ₃ CH ₃	CH ₃ H C ₂ H ₅ H CH ₂ OCH ₃ H CH ₂ C=CH CH ₃ CH ₂ C=CH CH ₃ H CH ₃ H CH ₄ CH ₂ C=CH CH ₃ H CH ₄ CH ₂ C=CH CH ₃ H CH ₄ CH ₃ H

Z.147	CH ₂	Ľ	a
	011,		CH,

Table 20 provides 147 compounds of formula (I-20):

$$F_3C \longrightarrow N \longrightarrow R^3$$

$$N \longrightarrow N \longrightarrow R^3$$

$$I_2$$

$$R^2$$
(I-20)

wherein R², R³ and A are as defined in Table 20.

Table 21 provides 147 compounds of formula (I-21):

10

5

wherein R², R³ and A are as defined in Table 21.

Table 22 provides 147 compounds of formula (I-22):

$$FH_{2}C$$

$$N$$

$$N$$

$$N$$

$$R^{3}$$

$$N$$

$$R^{2}$$

$$(I-22)$$

15

wherein R², R³ and A are as defined in Table 22.

Table 23 provides 147 compounds of formula (I-23):

10

wherein R², R³ and A are as defined in Table 23.

Table 24 provides 147 compounds of formula (I-24):

wherein R², R³ and A are as defined in Table 24.

Table 25 provides 147 compounds of formula (I-25):

wherein R², R³ and A are as defined in Table 25.

Table 26 provides 99 compounds of formula (IIIa) where where R¹³, R¹⁴, R¹⁵, R¹⁶, Q and X are as defined in Table 26.

Table 26

Compound.	R ¹³	R ¹⁴	R ¹⁵	R ¹⁶	Q - single bond = double bond	х
26.001	CH₃	CH ₃	Н	Н	=	0
26.002	CH ₃	H	H	H	=	<u> </u>
26.003	H	CH ₃	H	H	=	0
26.004	CH ₃	CH ₃	C(O)CH ₃	Н	=	0
26.005	CH ₃	CH ₃	H	C(O)CH ₃	=	0
	CH ₃	C(O)CH ₃	H	H	=	0
26.006	H	H	H	Н	=	0
20.007		1				

26.008	CF ₃	CF ₃	77			
26.009	OCH ₃		H	H	=	0
26.010	H	OCH ₃	H	H	=	0
26.011		H	CH ₃	CH ₃	=	0
26.012	CIT	C ₂ H ₅	H	H	=	0
	CH ₃	H	CH₃	H	=	0
26.013	H	CH₃	H	CH₃	=	0
26.014	CH₃	CH ₃	H	H		0
26.015	CH ₃	H	H	H	_	0
26.016	H	CH ₃	H	H	_	0
26.017	CH ₃	CH ₃	C(O)CH ₃	H	_	0
26.018	CH ₃	CH ₃	H .	C(O)CH ₃	-	0
26.019	CH ₃	C(O)CH ₃	H	H	_	0
26.020	H	H	H	H		0
26.021	CF₃	CF ₃	H	H	_	0
26.022	OCH ₃	OCH₃	H	H	_	0
26.023	H	H	CH ₃	CH ₃	_	0
26.024	C_2H_5	C_2H_5	H	H	_	O
26.025	CH₃	H	CH ₃	H	_	O
26.026	H	H	H	H	_	CH ₂
26.027	CH ₃	H	CH ₃	Н	_	CH ₂
26.028	CH ₃	H	CH ₃	Н	=	CH ₂
26.029	H	CH ₃	H	CH ₃		CH ₂
26.030	H	CH ₃	Н	CH₃	=	CH ₂
26.031	CH ₃	CH ₃	CH ₃	CH ₃	=	CH ₂
26.032	CH ₃	CH ₃	CH ₃	CH ₃		CH ₂
26.033	CH ₃	CH ₃	CH ₃	CH₃	=	CH(CH ₃)
26.034	CH ₃	CH ₃	CH ₃	CH ₃		CH(CH ₃)
26.035	H	H	Н	H	=	CH(CH ₃)
26.036	H	H	Н	H		
26.037	H	H	Н	H		CH(CH ₃)
26.038	H	Н	Н	н		CH(C ₂ H ₅) CH ₂ CH ₂
26.039	CH ₃	CH ₃	Н	H	=	
26.040	CH ₃	CH ₃	Н	H		CH ₂ CH ₂
26.041	H	H	CH ₃	CH ₃		CH ₂ CH ₂ CH ₂ CH ₂
26.042	H	Н	CH₃	CH ₃		
26.043	H	Н	OCH ₃	H		CH ₂ CH ₂
26.044	H	Н	H	OCH ₃		CH ₂ CH ₂
26.045	H	Н	H	H		CH ₂ CH ₂
26.046	H	Н	H	H	=	CH ₂ CH ₂ CH ₂
26.047	H	H	CH ₃	CH ₃		CH ₂ CH ₂ CH ₂
26.048	H	Н	CH ₃	CH ₃		C(CH ₃) ₂
26.049	CH ₃	CH ₃	CH ₃	CH ₃		C(CH ₃) ₂
26.050	CH ₃	CH ₃	CH ₃	CH ₃	=	C(CH ₃) ₂
26.051	CH ₃	H	CH ₃	H H		C(CH ₃) ₂
26.052	H	CH ₃	H			C(CH ₃) ₂
26.053	CH ₃	H	CH ₃	CH₃	-	C(CH ₃) ₂
26.054	H	CH ₃	H H	H	=	C(CH ₃) ₂
26.055	CH ₃	CH ₃	CH ₃	CH₃	=	C(CH ₃) ₂
26.056	H	H	H H	CH ₃		$C(CH_3)(C_2H_5)$
26.057	H	H	H	H	_	$C(CH_3)_2$
			п	H	=	$C(CH_3)_2$

26.252	- CTT	OTT T	TT	Н		C(CH ₃) ₂
26.058	CH₃	CH ₃	H			$C(CH_3)_2$
26.059	CH ₃	CH ₃	H	H	=	$C(OCH_3)_2$
26.060	H	H	H	H	=	
26.061	H	H	H	H		CH(OCH ₃)
26.062	H	H	H	H	=	S
26.063	H	H	H	H		S
26.064	CH ₃	CH ₃	H	<u>H</u>	=	S
26.065	CH ₃	CH ₃	H	H		S
26.066	H	H	CH ₃	CH ₃	=	S
26.067	H	H	CH ₃	CH ₃	_	S
26.068	OCH ₃	OCH ₃	H	H	=	S
26.069	OCH ₃	OCH₃	H	H		S
26.070	H	CH₃	H	H	=	S
26.071	H	CH ₃	H	H		S
26.072	CH₃	H	H	H	=	S
26.073	CH ₃	H	H	H		S
26.074	CH ₃	H	CH ₃	H	=	S
26.075	CH ₃	Н	CH ₃	H	_	S_
26.076	Н	CH ₃	Н	CH ₃	=	S
26.077	Н	CH ₃	Н	CH ₃	_	S
26.078	Н	OCH₃	Н	H	=	S
26.079	Н	OCH ₃	H	Н	T -	S
26.080	OCH₃	Н	H	H	=	S
26.081	OCH ₃	Н	H	H	_	S
26.082	CH ₃	Н	CH ₃	CH ₃	=	S
26.083	CH ₃	Н	CH ₃	CH ₃	_	S
26.084	H	CH ₃	CH ₃	CH ₃	=	S
26.085	H	CH ₃	CH ₃	CH ₃		S
26.086	H	Н	CH ₃	H	=	S
26.087	H	H	CH ₃	Н	_	S
26.088	H	H	H	CH ₃	=	S
26.089	H	H	H	CH ₃	_	S
26.090	H	H	OCH ₃	Н	=	S
26.091	H	H	OCH ₃	H	_	S
26.092	H	H	H	OCH ₃	=	S
26.093	 	H	H	OCH ₃		S
26.094	+ H	H	H	H	=	N(CH ₃)
26.095	H	H	H	H	 	N(CH ₃)
26.095	CH ₃	CH ₃	H	H	 	N(CH ₃)
	CH ₃	CH ₃	H	H	_	N(CH ₃)
26.097	H H	H H	H	H	=	N(C ₂ H ₅)
26.098		H	H	H	 	$N(C_2H_5)$
26.099	H	n n	<u> </u>	<u> </u>		11(02115)

Throughout this description, temperatures are given in degrees Celsius; "NMR" means nuclear magnetic resonance spectrum; MS stands for mass spectrum; and "%" is percent by weight, unless corresponding concentrations are indicated in other units.

The following abbreviations are used throughout this description:

m.p. =melting pointb.p.=boiling point.s = singletbr = broadd = doubletdd = doublet of doubletst = tripletq = quartetm = multipletppm = parts per million

Table 27 shows selected melting point data for compounds of Tables 1 to 26.

Table 27

Compound No.	m.p. / (°C)
1.03	56-57
1.15	liquid
1.50	64-66
2.005	146-147
2.017	148
2.029	148-149
2.067	165-166
2.070	139-142
2.219	94.6-95.4
2.273	125-126
2.321	124-125
2.419	103-105
2.423	105
2.445	98-99
3.005	143-145
3.017	155-156
3.029	154-155
3.067	144-145
3.070	136-137
3.219	71-73
3.273	87-88
3.321	121-122
3.407	83-85
3.419	75-76
3.423	121-122
3.445	94-95
4.017	158-159
8.189	104-106
9.189	82-83
20.017	167-169
20.022	121-122
20.065	144-145

10

	_
20.073	157-158
20.097	108-109
20.101	155-157
21.097	107-109
21.101	120-122
21.017	175-177
21.022	125-126
21.065	114-116
21.073	135-137
22.101	89-91
26.001	92-96
26.014	92-93
26.015	115-116
26.016	92-93
26.020	75-76
26.038	oil

The compounds according to formula (I) may be prepared according to the following reaction schemes.

(a) Preparation of a compound of formula (II).

Schemes 1, 2 and 3 demonstrate that a compound of formula \underline{E} , \underline{H} , \underline{K} , \underline{L} , \underline{N} , \underline{O} , \underline{P} , \underline{R} , \underline{S} , \underline{T} , \underline{U} , \underline{V} , \underline{W} , \underline{Y} or \underline{Z} [where R^1 and R^2 are as defined above for formula (II); and R' is C_{1-5} alkyl] {each of which is a compound of formula (II), as defined above} may be prepared by a reaction sequence starting with a 1,2,3-triazole-4,5-dicarboxylic acid diester of formula \underline{A} [Y.Tanaka et al., *Tetrahedron*, 29, 3271 (1973)] [where each R' is, independently, C_{1-5} alkyl] (preferably the dimethyl ester).

Scheme 1

10

15

20

25

30

Treatment of $\underline{\mathbf{A}}$ with an alkylating agent [such as \mathbb{R}^2 -halo (where \mathbb{R}^2 is as defined above for formula (II); and halo is preferably iodo) or an appropriate sulphate, sulphonate or carbonate ester] in the presence of a base [such as K_2CO_3 , Na_2CO_3 or NEt_3] in a suitable solvent [such as acetonitrile, DMF or dimethylacetamide] at ambient to elevated temperatures furnishes a mixture of regioisomers, of formulae $\underline{\mathbf{B}}$ and $\underline{\mathbf{C}}$, which may be separated by conventional methods. Saponification of a compound of formula $\underline{\mathbf{B}}$ with up to one equivalent of a base [such as KOH, NaOH or LiOH] in a protic solvent [such as methanol], preferably under reflux conditions, provides a mono-ester of formula $\underline{\mathbf{D}}$. Subsequent reaction of a compound of formula $\underline{\mathbf{D}}$ with a fluorinating agent [such as DAST (diethylamino sulphur trifloride) or, preferably, SF_4] in the presence of hydrofluoric acid gives a 5-CF₃-1,2,3-triazole-4-carboxylic acid ester of formula $\underline{\mathbf{E}}$.

Alternatively, treatment of a compound of formula $\underline{\mathbf{D}}$ with a chlorinating agent [such as thionyl chloride or phosgene] under standard conditions results in an acid chloride of formula $\underline{\mathbf{F}}$ which may be reduced catalytically in an inert solvent [for example ethyl acetate or THF] in the presence of a base [for example Hünig base] to give an aldehyde-ester of formula $\underline{\mathbf{G}}$ (modified *Rosenmund* conditions). Fluorination of a compound of formula $\underline{\mathbf{G}}$ by means of DAST, dimethoxy-DAST or SF₄ in the presence of hydrofluoric acid, optionally with solvent, preferably at elevated temperatures, forms a 5-difluoromethyl-1,2,3-triazole-4-carboxylic acid ester of formula $\underline{\mathbf{H}}$.

Metal hydride reduction of a compound of formula \underline{G} [for example by NaBH₄ or LiBH₄] in methanol provides a 5-hydroxymethyl-1,2,3-triazole of formula \underline{I} , from which a 5-fluoromethyl derivative of formula \underline{K} may be obtained by fluorination under mild conditions, preferably with DAST at low temperatures (0 to -78° C) in an inert solvent [such as dichloromethane].

Alternatively, hydride reduction of a compound of formula $\underline{\mathbf{J}}$ by conventional methods [for example via its mesylate, tosylate or iodide] results in a 5-methyl-1,2,3-triazole of formula $\underline{\mathbf{L}}$.

Chlorination of compound of formula $\underline{\mathbf{D}}$ [for example by thionyl chloride] followed by treatment with ammonia, preferably in a protic solvent [such as water, methanol or ethanol] furnishes an amide of formula $\underline{\mathbf{M}}$ from which a 5-cyano-1,2,3-

10

15

20

triazole of formula N may be obtained by means of a dehydrating agent [such as phosphorylchloride].

Further transformations to prepare a compound of formula (II) [where R^1 and R^2 are as defined above for formula (I); Y is OR' and R' is C_{1-5} alkyl] include a *Hofmann* rearrangement of an amide of formula \underline{M} with NaOBr or NaOCl in the presence of NaOH to give a 5-amino-1,2,3-triazole of formula \underline{O} .

Diazotation of a compound of formula $\underline{\mathbf{O}}$ by means of sodium nitrite under aqueous acidic conditions [for example sulphuric acid] or with a nitrite ester [for example (i)-amyl nitrite] in an organic solvent [for example acetone, dichloromethane or THF] in the presence of a halogenide [such as CuCl or CuBr] gives a 5-halo-1,2,3-triazole of formula $\underline{\mathbf{P}}$ [where halo is Cl or Br] which on treatment with a fluorinating agent [such as KF or CsF], preferably in DMF or N-methylpyrrolidone at elevated temperatures, results in a 5-fluoro-1,2,3-triazole of formula $\underline{\mathbf{V}}$.

By diazotation of a compound of formula $\underline{\mathbf{O}}$ and subsequent acidic aqueous hydrolysis under heating, a 5-hydroxy-1,2,3-triazole of formula $\underline{\mathbf{O}}$ may be obtained. Treatment of a compound of formula $\underline{\mathbf{O}}$ with an alkylating agent [such as methyl iodide, dimethylsulphate or dimethylcarbonate] and a base [for example NaH, K_2CO_3 or Na_2CO_3] in a polar solvent [for example DMF, DMSO or CH₃CN] gives a 5-methoxy-1,2,3-triazole of formula $\underline{\mathbf{R}}$ which may be converted to a trichloromethoxy derivative of formula $\underline{\mathbf{S}}$ with

a chlorinating agent [such as chlorine] in the presence of azoisobutyronitrile (AIBN) or ultra-violet irradiation at elevated temperature. By treatment of a compound of formula \underline{S} with a fluorinating agent [for example KF or SbF₃] a 5-trifluoromethoxy-1,2,3-triazole of formula \underline{T} may be prepared.

Oxidation of a compound of formula $\underline{\mathbf{O}}$ with [for example sodium perborate] or treatment according to A. Sudalai et al. [Angew. Chem. Int. Ed. 40, 405 (2001)] leads to a 5-nitro derivative of formula $\underline{\mathbf{U}}$. Alternatively, a compound of formula $\underline{\mathbf{U}}$ may also be obtained by treatment of a compound of formula $\underline{\mathbf{P}}$ or $\underline{\mathbf{V}}$ with NaNO₂ in an polar solvent [such as DMF, sulpholane or N-methylpyrrolidone] at elevated temperatures.

Scheme 3

н 7

10

15

20

5

Transformations of a compound of formula (II') [where R^1 and R^2 are as defined in formula (I); Y is OR'; and R' is C_{1-5} alkyl] to give a compound of formula (II) [where R^1 and R^2 are as defined in formula (I) and Y is halo or hydroxy] includes saponification with a base [such as KOH or NaOH] in a protic solvent [such as methanol, ethanol or water], at ambient or elevated temperature to give a 1,2,3-triazole-4-carboxylic acid of formula $\underline{\mathbf{W}}$. Chlorination of a compound of formula $\underline{\mathbf{W}}$ under standard conditions [for example with thionyl chloride, phosgene or oxalyl chloride] yields an acid chloride of formula $\underline{\mathbf{Y}}$.

Fluorination of a compound of formula $\underline{\mathbf{W}}$ with DAST or SF₄ under mild conditions [low to ambient temperatures], preferably in an inert solvent [such as dichloromethane] gives an acid fluoride of formula $\underline{\mathbf{Z}}$.

(b) Preparation of a compound of formula (III).

(II')

A compound of formula (III)

where A is as defined above for a compound of formula (I), is useful as an intermediate in the preparation of a compound of formula (I).

Most o-substituted amino-aryls and amino-heteroaryls of formula (III) are known from the literature, but some are novel.

A compound of formula (IIIa) may be obtained according to scheme 4:

Treatment of an *ortho*-substituted nitrobenzonorbornadiene of formula <u>AA</u> (where R¹³, R¹⁴, R¹⁵, R¹⁶ and X are as defined above for a compound of formula (I) [obtained through *Diels-Alder* addition of an *in situ* generated benzyne derived from 6-nitroanthranilic acid according to, or by analogy to, L. A. Paquette et al. *J. Amer. Soc.* 99, 3734 (1977) or T. Nishiyama et al. *Rikagaku-hen, 28, 37* (2000)] with Zn, in the presence of ammonium chloride or an aluminium amalgam, in a protic solvent [such ethanol or water] gives an aniline of formula <u>CC</u>, whilst catalytic hydrogenation of a compound of formula <u>AA</u> with RaNi in the presence of a solvent [for example ethyl acetate, methanol or ethanol] affords an aniline of formula <u>BB</u>.

Compounds of formula (IIIb)

20

10

15

where R⁶ is an aliphatic or alicyclic, saturated or unsaturated group [in which the group contains three to thirteen carbon atoms and at least one silicon atom and, optionally, one

10

15

20

25

to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms] and R⁷⁻¹⁰ are as defined in formula (I) may be prepared by analogy with literature examples. References include e.g. E.A.Chernyshew et al., Bull. Acad. Sci. USSR, 1960, 1323; K.T.Kang et al., Tetrahedron Letters, 32, 4341 (1991), Synthetic Comm., 24, 1507 (1994); M.Murata et al., Tetrahedron Letters 40, 9255 (1999); A.Falcou et al., Tetrahedron 56, 225 (2000); A.Arcadi et al., Tetrahedron Letters 27, 6397 (1986); K.C.Nicolaou et al., Chem.Eur. J. 1, 318 (1995); N.Chatani et al., J.Org. Chem. 60, 834 (1995); T. Stuedemann et al., Tetrahedron 54, 1299 (1998); P.F.Hurdlik et al., J. Org. Chem. 54, 5613 (1989); K.Karabelas et al., J. Org. Chem. 51, 5286 (1986); T.Jeffery, Tetrahedron Letters 40, 1673 (1999) and Tetrahedron Letters 41, 8445 (2000); K.Olofson et al., J. Org. Chem. 63, 5076 (1998); H.Uirata et al., Bull. Chem. Soc. Jap. 57, 607 (1984); and G.Maas et al., Tetrahedron 49, 881 (1983); and references cited therein.

Recent reviews for the introduction of Si-containing functionalities into phenyl derivatives can be found in "The Chemistry of Organosilicon Compounds", Vols. 1-3, S.Patai, Z.Rappaport and Z.Rappaport, Y.Apeloid eds., Wiley 1989, 1998, 2001 and "Houben-Weyl Science and Synthesis", Organometallics Vol. 4, I.Fleming ed., G.Thieme 2002.

Another group of anilines comprises compounds of formula (IIIc)

where R' represents C_{2-4} alkyl, C_{2-4} haloalkyl or C_{3-6} cycloalkyl (itself optionally substituted by up to 3 substituents, independently selected from halo, C_{1-3} alkyl, C_{1-3} haloalkyl and C_{1-4} haloalkoxy).

A compound of formula (IIIc) may be prepared by a reaction sequence starting with a crossed aldol condensation of benzaldehyde with a ketone of formula CH₃C(O)R' [where R' is as defined above for a compound of formula (IIIc)] in the presence of NaOH or KOH in a solvent (such as water or ethanol) and usually under reflux conditions or alternatively by reaction of benzaldehyde with a Wittig reagent under standard conditions.

10

15

The resulting α,β -unsaturated ketone of formula (IV) [where R' is as defined above for a compound (IIIc)]:

may then be converted into a compound of formula (V') [where R' is as defined above for a compound (IIIc)]:

by reacting first with hydrazine hydrate in ethanol under reflux conditions and then heating (in the range of from 150 to 250°C) in the presence of KOH (distilling off the solvent). After nitration with HNO₃-H₂O or HNO₃-acetic anhydride in a cooled vessel (in the range of from -30°C to 0°C), the resulting *olp*-mixture of a nitrobenzene of formula (VI) [where R' is as defined above for a compound (IIIc)]:

may then be separated and catalytically reduced (Pt/C/ H₂ or Ra-Ni/H₂) in a solvent (such as methanol, ethanol of THF) at ambient temperature to give a compound of formula (IIIc).

Alternatively the synthesis of a compound of formula (IIId) [where R'a is hydrogen or methyl]

may be accomplished by a reaction sequence started by a Wittig reaction of

o-nitrobenzaldehyde with an ylide, prepared from a

cyclopropylmethyltriphenylphosphonium bromide in the presence of a strong base [such

10

15

as NaH] in a solvent [such as DMSO], in the range of 0-85°C. The resulting E/Z-mixture of a compound of formula (VII)

[where R'a is hydrogen or methyl] may be converted to a compound of formula (VIII)

by the application of the Simmons Smith reaction (Zn-Cu, CH₂I₂, ether as a solvent) to the olefin group of a compound of formula (VII) to give a compound of formula (VIII). The reduction of the nitro moiety of a compound of formula (VIII) to give a compound of formula (IIIc) may be performed by using the same conditions as described above for a compound of formula (VI).

(c) Preparation of a compound of formula (I).

Scheme 5

A compound of formula (I) [where A, R^1 and R^2 are as defined above and R^3 is H] may be synthesized by reacting a compound of formula (II') [where R^1 and R^2 are as defined above and R' is C_{1-5} alkyl] with an aniline of formula (III) [where A is as defined above for a compound of formula (I)] in the presence of NaN(TMS)₂ at -10 °C to ambient temperature, preferably in dry THF, as described by J.Wang et al., Synlett, 2001, 1485.

Scheme 6

$$H^{1}$$
 H^{2}
 H^{2}
 H^{2}
 H^{2}
 H^{2}
 $H^{3} = H$

Alternatively, a compound of formula (I) [where A, R¹ and R² are as defined above and R³ is H] may be prepared by reacting a compound of formula (II) [where R¹ and R² are as defined above and Y is OH] with a compound of formula (III) [where A is as defined above for a compound of formula (I)] in the presence of an activating agent [such as BOP-Cl] and two equivalents of a base [such as NEt₃] or by reacting a compound of formula (II) [where Y is Cl, Br or F] with a compound of formula (III) in the presence of one equivalent of a base [such as NEt₃, NaHCO₃, KHCO₃, Na₂CO₃ or K₂CO₃] in a solvent [such as dichloromethane, ethyl acetate or DMF] preferably at -10 to 30°C.

10

5

Scheme 7

A compound of formula (I) [where R³ is as defined above for formula (I), except that it is not hydrogen] may be prepared by reacting a compound of formula (I) [where R³ is hydrogen] with a species Y-R³ [where R³ is as defined for formula (I), except that it is not hydrogen; and Y is halogen, preferably Cl, Br or I; or Y is such that Y-R³ is an anhydride: that is, when R³ is COR*, Y is OCOR*] in the presence of a base [for example NaH, NEt₃, NaHCO₃ or K₂CO₃] in an appropriate solvent [such as ethyl acetate] or in a biphasic mixture [such as dichloromethane/water mixturte], at -10 to 30°C.

20

15

Surprisingly, it has now been found that the novel compounds of formula (I) have, for practical purposes, a very advantageous spectrum of activities for protecting plants against diseases that are caused by fungi as well as by bacteria and viruses.

10

15

20

25

30

The compounds of formula (I) can be used in the agricultural sector and related fields of use as active ingredients for controlling plant pests. The novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and are used for protecting numerous cultivated plants. The compounds of formula I can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms.

It is also possible to use compounds of formula (I) as dressing agents for the treatment of plant propagation material, in particular of seeds (fruit, tubers, grains) and plant cuttings (e.g. rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.

The compounds of formula (I) are, for example, effective against the phytopathogenic fungi of the following classes: Fungi imperfecti (e.g. Botrytis, Pyricularia, Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria) and Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia). Additionally, they are also effective against the Ascomycetes classes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula) and of the Oomycetes classes (e.g. Phytophthora, Pythium, Plasmopara). Outstanding activity has been observed against powdery mildew (Erysiphe spp.). Furthermore, the novel compounds of formula I are effective against phytopathogenic bacteria and viruses (e.g. against Xanthomonas spp, Pseudomonas spp, Erwinia amylovora as well as against the tobacco mosaic virus).

Within the scope of present invention, target crops to be protected typically comprise the following species of plants: cereal (wheat, barley, rye, oat, rice, maize, sorghum and related species); beet (sugar beet and fodder beet); pomes, drupes and soft fruit (apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries and blackberries); leguminous plants (beans, lentils, peas, soybeans); oil plants (rape, mustard, poppy, olives, sunflowers, coconut, castor oil plants, cocoa beans, groundnuts); cucumber plants (pumpkins, cucumbers, melons); fibre plants (cotton, flax, hemp, jute); citrus fruit (oranges, lemons, grapefruit, mandarins); vegetables (spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, paprika); lauraceae (avocado,

10

15

20

25

30

cinnamomum, camphor) or plants such as tobacco, nuts, coffee, eggplants, sugar cane, tea, pepper, vines, hops, bananas and natural rubber plants, as well as ornamentals.

The compounds of formula (I) are used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they are conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.

Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers. Such carriers are for example described in WO97/33890.

The compounds of formula (I) are normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds. These further compounds can be e.g. fertilizers or micronutrient donors or other preparations which influence the growth of plants. They can also be selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.

The compounds of formula (I) can be mixed with other fungicides, resulting in some cases in unexpected synergistic activities. Mixing components which are particularly preferred are azoles, such as azaconazole, BAY 14120, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, pefurazoate, penconazole, pyrifenox, prochloraz, propiconazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole; pyrimidinyl carbinole, such as ancymidol,

fenarimol, nuarimol; 2-amino-pyrimidines, such as bupirimate, dimethirimol, ethirimol; morpholines, such as dodemorph, fenpropidine, fenpropimorph, spiroxamine, tridemorph; anilinopyrimidines, such as cyprodinil, mepanipyrim, pyrimethanil; pyrroles, such as fenpicionil, fludioxonil; phenylamides, such as benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl; benzimidazoles, such as benomyl, carbendazim, 5 debacarb, fuberidazole, thiabendazole; dicarboximides, such as chlozolinate, dichlozoline, iprodione, myclozoline, procymidone, vinclozoline; carboxamides, such as carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, thifluzamide; guanidines, such as guazatine, dodine, iminoctadine; strobilurines, such as azoxystrobin, kresoxim-methyl, metominostrobin, SSF-129, trifloxystrobin, picoxystrobin, BAS 500F (proposed name 10 pyraclostrobin), BAS 520; dithiocarbamates, such as ferbam, mancozeb, maneb, metiram, propineb, thiram, zineb, ziram; N-halomethylthiotetrahydrophthalimides, such as captafol, captan, dichlofluanid, fluoromides, folpet, tolyfluanid; Cu-compounds, such as Bordeaux mixture, copper hydroxide, copper oxychloride, copper sulfate, cuprous oxide, mancopper, oxine-copper; nitrophenol-derivatives, such as dinocap, nitrothal-isopropyl; 15 organo-p-derivatives, such as edifenphos, iprobenphos, isoprothiolane, phosdiphen, pyrazophos, tolclofos-methyl; various others, such as acibenzolar-S-methyl, anilazine, benthiavalicarb, blasticidin-S, chinomethionate, chloroneb, chlorothalonil, cyflufenamid, cymoxanil, dichlone, diclomezine, dicloran, diethofencarb, dimethomorph, SYP-LI90 (proposed name: flumorph), dithianon, ethaboxam, etridiazole, famoxadone, fenamidone, 20 fenoxanil, fentin, ferimzone, fluazinam, flusulfamide, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, IKF-916 (cyazofamid), kasugamycin, methasulfocarb, metrafenone, nicobifen, pencycuron, phthalide, polyoxins, probenazole, propamocarb, pyroquilon, quinoxyfen, quintozene, sulfur, triazoxide, tricyclazole, triforine, validamycin, zoxamide (RH7281). 25

A preferred method of applying a compound of formula (I), or an agrochemical composition which contains at least one of said compounds, is foliar application. The frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen. However, the compounds of formula I can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granular form (soil application). In crops of water rice such granulates can be

10

15

20

25

applied to the flooded rice field. The compounds of formula I may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.

A formulation [that is, a composition containing the compound of formula (I)] and, if desired, a solid or liquid adjuvant, is prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).

The agrochemical formulations will usually contain from 0.1 to 99% by weight, preferably from 0.1 to 95% by weight, of the compound of formula I, 99.9 to 1% by weight, preferably 99.8 to 5% by weight, of a solid or liquid adjuvant, and from 0 to 25% by weight, preferably from 0.1 to 25% by weight, of a surfactant.

Advantageous rates of application are normally from 5g to 2kg of active ingredient (a.i.) per hectare (ha), preferably from 10g to 1kg a.i./ha, most preferably from 20g to 600g a.i./ha. When used as seed drenching agent, convenient dosages are from 10mg to 1g of active substance per kg of seeds.

Whereas it is preferred to formulate commercial products as concentrates, the end user will normally use dilute formulations.

The following non-limiting Examples illustrate the above-described invention in more detail.

EXAMPLE 1

This Example illustrates the preparation of Compound No. 1.15 [2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester].

- a) <u>Preparation of 2-methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid dimethylester and 1-methyl-1H-1,2,3-triazole-4,5-dicarboxylic acid dimethylester.</u>
- 1,2,3-Triazole-4,5-dicarboxylic acid dimethyl ester (Y. Tanaka et al. *Tetrahedron* 29, 3271 (1973)) (74.06g; 0.40mol), potassium carbonate (110.57g; 0.80mol) and methyl iodide (73.81g; 0.52mol) were reacted in acetonitrile (1000ml) at 40°C for 20minutes and then for 20hours at ambient temperature. The mixture was poured onto ice-water and extracted with ether to give the crude product (70.66g) as a mixture of isomers.
- Separation on silica gel in ethyl acetate-hexane (2:3) yielded 36.51g (46%) of 2-methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid dimethylester [m.p. 86-87°C; ¹H-NMR (300 MHz, DMSO-d₆), δ(ppm): 4.27(s,3H), 3.88(s,6H)] and 26.92g (34%) of 1-methyl-1H-1,2,3-

10

15

20

25

triazole-4,5-dicarboxylic dimethylester [m.p. 63-64 $^{\circ}$ C; 1 H-NMR (300MHz, DMSO-d₆), δ (ppm): 4.19(s,3H), 3.93(s,3H), 3.87(s,3H)].

b) Preparation of 2-methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid monomethyl ester

To a solution of 2-methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid dimethylester
(1.2g; 6mmol) in 30ml methanol was added 358mg KOH (assay 86%; 5.5mmol). The
mixture was heated at reflux temperature for 48hours. The solvent was evaporated and
the residue was then taken into water and extracted with ethyl acetate (3 times). The
combined organic phases contained non-reacted starting material. The aqueous phase was
acidified with 2N HCl (pH2-3) and extracted with ethyl acetate (3 times). The extracts
were combined, dried (anhydrous MgSO4) and evaporated to dryness to give 803mg
(72%) of the desired compound (m.p. 125-126°C; ¹H-NMR (300 MHz, DMSO-d₆),
δ(ppm): 13.7(br.s,1H, exchangable with D₂O), 4.24(s,3H), 3.84(s,3H).
c) Preparation of 2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid methyl
ester [Compound Number 1.15].

2-Methyl-2H-1,2,3-triazole-4,5-dicarboxylic acid monomethyl ester (2.9g; 15.66mmol) and dichloromethane (160ml) were placed in an 0.3litre monel autoclave. Under an inert atmosphere and cooling with dry ice, gaseous HF (27g) was introduced at -50°C followed by gaseous SF₄ (distilled, 6.9g; 64.23mmol). The autoclave was heated to 80°C for 6hours. The maximum pressure amounted 9.8bar. After cooling to ambient temperature the reaction mixture was poured onto ice-dichloromethane and adjusted to pH7 with aqueous NaHCO₃. Extraction with dichloromethane (3 times), drying over Na₂SO₄ and evaporation under reduced pressure afforded the crude product. Purification by Kugelrohr-distillation at 3mbar and ca.180°C gave 2.8g (85%) of Compound No.1.15 as a yellowish liquid.

¹H-NMR (300 MHz, CDCl₃), δ(ppm): 4.29(s,3H), 3.97(s,3H);

¹⁹F-NMR (235 MHz, CDCl₃), δ (ppm): -61.7.

¹³C-NMR (125 MHz, CDCl₃), δ(ppm): 159.05, 139.65 (q, $J_{C(5)F}$ = 40.8 Hz), 137.20, 119.63 (q, J_{CF} = 269.4 Hz, CF₃), 52.96, 43.01.

30

EXAMPLE 2

This Example illustrates the preparation of Compound No.1.03 [2-methyl-5-difluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester].

10

15

20

a) Preparation of 5-Chlorocarbonyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester.

Methyl 2-methyl-1,2,3-triazole-4,5-dicarboxylate (2.3g; 0.011mol) was reacted with oxalyl chloride (1.46ml; 0.014mol) plus two drops of DMF in dichloromethane (20ml) at 20°C. When the vigourous reaction ceased the temperature was raised to reflux for 15hours. The mixture was evaporated to dryness to give 2.7g of the acid chloride as a solid. $^1\text{H-NMR}$ (300 MHz, CDCl₃), δ (ppm): 4.48(s, H), 4.0(s,3H).

b) Preparation of 5-formyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester.

To a solution of freshly prepared 5-Chlorocarbonyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (2.7 g, ca. 13 mmol) in THF (270 ml) was added ethyl-diisopropyl-amine (1.88 g, 1.1 eq.). The mixture was hydrogenated in the presence of 2.7 g 10% Pd/C at 0-5°C at normal pressure for $2\frac{1}{2}$ h and subsequently filtered from the catalyst. The clear solution was evaporated to give the crude as a solid which was dissolved again in ethyl acetate and stirred for a couple of minutes with silica gel. After filtration and evaporation 1.77 g (84%) of pure product as off-white crystals were obtained [m.p. 107-108°C; 1 H-NMR (300 MHz, CDCl₃), δ (ppm): 10.43(s,1H), 4.33(s,3H), 4.01(s,3H)].

c) Preparation of 2-methyl-5-difluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester. [Compound No.1.03.]

5-Formyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (600mg; 3.5mmol) in 0.5ml CHCl₃ were reacted with (bis(2-methoxyethyl)amino) sulfurtrifluoride (1350mg; 6.1mmol) at ambient temperature to 50°C for 6days. The resulting orange solution was carefully quenched with 6ml of a saturated aqueous NaHCO₃ solution (vigorous reaction) and extracted with ethyl acetate (twice). The combined organic phases were washed with aqueous NaHCO₃-solution, dried over anhydrous MgSO₄ and evaporated to give 351mg (52%) of colourless crystals [m.p. 56-57°C; 1 H-NMR (300MHz, CDCl₃), δ (ppm): 7.15(t, J_{HF} = 53.5 Hz, 1H, H-CF₂), 4.30(s,3H), 3.98(s,3H); 19 F-NMR (235 MHz, CDCl₃), δ (ppm): -116.1; 13 C-NMR (125MHz, CDCl₃), δ (ppm): 160.0, 143.6(t, $J_{C(5)F}$ = 25.6 Hz), 137.2, 108.0(t, $J_{(CF)}$ = 237.8 Hz, CHF₂), 52.6, 42.7].

25

10

15

20

25

EXAMPLE 3

This Example illustrates the preparation of Compound No.1.50 [2-methyl-5-fluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester].

a) Preparation of 5-hydroxymethyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester.

2.6g (13.3mmol) of 5-formyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (see Example 2a) in methanol (100ml) was treated with NaBH₄ (601mg) under stirring for 1hour at ambient temperature. The reaction mixture was quenched with saturated aqueous ammonium chloride solution, extracted with ethyl acetate, dried with Na₂SO₄ and evaporated to give the crude as an oil. Purification on silica gel in ethyl acetate: hexane (2:1) yielded 1.85g (81%) of the crystalline product,m.p. 112-113°C.

¹H-NMR (300MHz, CDCl₃), δ (ppm): 4.86(d, J = 6.9 Hz, 1H), 4.22(s,3H), 3.98(s,3H), 3.53(t; J = 6.9 Hz, exchangeable with D₂O).

b) Preparation of 2-methyl-5-fluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester. [Compound No.1.50.]

A solution of 5-hydroxymethyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (200mg; 1.1mmol) in CH₂Cl₂ (15ml) was reacted with 0.26ml diethylamino sulfur trifluoride (2mmol) for 15minutes at -40°C followed by 15hours at ambient temperature. After evaporation, the crude product was purified on silica gel in ethyl acetate: hexane (3:1) to give 181mg (95%) of the desired product, m.p. 64-66°C.

¹H-NMR (300MHz, CDCl₃), δ (ppm): 5.66(d, J_{HF} = 47.5 Hz, 2H, H₂-CF), 4.26(s,3H), 3.96(s,3H).

 19 F-NMR (235 MHz, CDCl₃), δ (ppm): -214.

¹³C-NMR (125MHz, CDCl₃), δ (ppm): 161.6, 145.86 (d, $J_{C(5)F}$ = 18.7 Hz), 137.09, 74.82(d, J_{CF} = 166.6 Hz, CH₂F), 52.2, 42.3.

EXAMPLE 4

This Example illustrates the preparation of Compound No.3.017

[5-difluoromethyl-2-methyl-2H-1,2,3-triazole-4-carboxylic acid (4`-chloro-biphenyl-2yl)-amide].

10

15

20

25

To a solution of 2-methyl-5-difluoromethyl-2H-1,2,3-triazole-5-carboxylic acid methyl ester (300mg; 1.57mmol) and 4`-chloro-biphenyl-2-ylamine (320mg; 1.57mmol) in THF (3ml) was added sodium bis(trimethylsilyl)-amide (0.88ml 2M in THF; 1.76mmol; 1.12eq.) by syringe at 0°C over 1.5minutes. The reaction mixture was stirred at 0°C for 15minutes and then at ambient temperature for 22 hours. It was then poured on cold saturated NH₄Cl solution and extracted with ethyl acetate. After washing with brine it was dried (anhydrous MgSO₄) and evaporated to dryness to give a solid, which was triturated with hexane. The colourless crystalline product was filtered and dried: 300mg (53%) [m.p. 155-156°C; 1H-NMR (300MHz, CDCl₃), δ (ppm): 8.5(br, exchangeable with D₂O, 1H), 8.4 (d, 1H), 7.5-7.2(m,7H), 7.38 (t, J_{HF} = 52.5 Hz,1H, CHF₂), 4.2(s,3H), LC-MS: 363(M+H)].

EXAMPLE 5

This Example illustrates the preparation of Compound No.2.219 [2-mehyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid [2-(1,3-dimethyl-butyl)-phenyl]-amide].

To a solution of 2-methyl-5-trifluoromethyl-2H-1,2,3-triazole-4-carboxylic acid methyl ester (150mg; 0.75mmol) and 2-(1,3-dimethyl-butyl)-phenylamine (133mg; 0.75mmol) in 1.5ml THF was added sodium bis(trimethylsilyl)-amide (0.638ml 2M in THF; 1.7eq.) by syringe at ambient temperature. The reaction mixture was stirred for 20hours and was then poured on cold saturated NH₄Cl solution and extracted with ethyl acetate. After washing with brine it was dried (anhydrous MgSO₄) and evaporated to dryness to give the crude product, which was purified on silica gel in cyclohexane-ethyl acetate (18:1) The crystalline product was triturated in hexane, filtered and dried *in vacuo* to yield 130mg (49%) of Compound No. 2.219 [mp 94.6-95.4°C; 1H-NMR (300MHz, CDCl₃), δ (ppm): 8.5(br.s, exchangeable with D₂O,1H), 8.0(d,1H), 7.3-7.15(m,3H), 4.33(s,3H), 3.0(m,1H), 1.55-1.35(m,3H), 1.26(d,3H), 0.9(2d,6H); LC-MS: 355.6(M+H)].

EXAMPLE 6

This Example illustrates the preparation of Compound No.26.014 [1,8-Dimethyl-11-oxa-tricyclo[6.2.1.0*2.7*]undeca-2,4,6-trien-3-yl-amine]. A solution of 1,4-dimethyl-5-nitro-1,4-dihydro-1,4-epoxynaphthalene (5.49g; 25.27mmol) (see T. Nishiyama et al., *Rikagaku-hen*, 28, 37-43 (2000)) in 55ml THF was hydrogenated in the presence of RaNi (1.1g) at ambient temparature. Hydrogen uptake was 2.23litre (97%) after 18hours. After filtering off the catalyst, the filtrate was evaporated and taken into ether, washed with aqueous NaHCO₃-solution and dried (NaSO₄) to give 4.60g of crude product, as an oil. Trituration with hexane and a trace of ether furnished a total of 4.5g (94%) of reddish crystalline product, m.p.92-93°C.

 1 H-NMR (300 MHz, CDCl₃), δ (ppm): 7.05(t,1H), 6.7(t,2H), ca.5(br.,exchangeable with D₂O, 2H), 2.0(s,3H), 1.9(m,2H), 1.8(s,3H), 1.7(m,1H), 1.5(m,1H).

EXAMPLE 7

This Example illustrates the preparation of Compound No.26.001 [1,8-Dimethyl-11-oxa-tricyclo[6.2.1.0*2.7*]undeca-2,4,6,9-tetraen-3-yl-amine].

To 1,4-dimethyl-5-nitro-1,4-dihydro-1,4-epoxynaphthalene (4.22g; 19.43mmol) (see Example 5) in ethanol (60ml) was added a solution of ammoniumchloride (2.08g) in H₂O (5.2ml) at 47°C. Under vigorous stirring, zinc powder (9.10g; 0.14mol) was added in portions over a period of 5minutes. The suspension was heated to reflux for 5½hours followed by filtration through HyfloTM to give a clear yellow filtrate. After evaporation, the crude product amounted 4.57g, as a viscous oil. Column chromatography on silica gel in ethyl acetate-hexane (1:4) gave 1.24g (34%) of the desired product, as brownish crystals, m.p. 92-96°C.

 1 H-NMR (300 MHz, CDCl₃), δ (ppm): 6.85 and 6.7(two m, 2x2H), 6.47(t,1H), ca.5-3 (br., exchangeable with D₂O,2H), 2.07(s,3H), 1.85(s,3H).

FORMULATION EXAMPLES FOR COMPOUNDS OF FORMULA (I)

Working procedures for preparing formulations of the compounds of formula I such as Emulsifiable Concentrates, Solutions, Granules, Dusts and Wettable Powders are described in WO97/33890.

30

25

10

15

20

BIOLOGICAL EXAMPLES: FUNGICIDAL ACTIONS

Example B-1: Action against Puccinia recondita / wheat (Brownrust on wheat)

10

15

20

25

30

1 week old wheat plants cv. Arina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the wheat plants are inoculated by spraying a spore suspension (1x10⁵uredospores/ml) on the test plants. After an incubation period of 2 days at 20°C and 95%r.h. the plants are kept in a greenhouse for 8days at 20°C and 60%r.h. The disease incidence is assessed 10days after inoculation.

Infestation is prevented virtually completely (0-5% infestation) with each of Compounds 2.273, 3.219, 3.273, 3.321, 8.189, 9.189, 20.017, 20.022, 21.017 and 21.022.

Example B-2: Action against Podosphaera leucotricha / apple (Powdery mildew on apple)

5 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after, the application apple plants are inoculated by shaking plants infected with apple powdery mildew above the test plants. After an incubation period of 12 days at 22°C and 60%r.h. under a light regime of 14/10hours (light/dark) the disease incidence is assessed.

Compounds 2.005, 3.017, 3.219 and 9.189 each exhibit strong efficacy (<20% infestation).

Example B-3: Action against Venturia inaequalis / apple (Scab on apple)

4 week old apple seedlings cv. McIntosh are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the apple plants are inoculated by spraying a spore suspension (4x10⁵conidia/ml) on the test plants. After an incubation period of 4 days at 21°C and 95%r.h. the plants are placed for 4 days at 21°C and 60%r.h. in a greenhouse. After another 4 day incubation period at 21°C and 95%r.h. the disease incidence is assessed.

Compounds 3.017, 3.219 and 9.189 each exhibit strong efficacy (<20% infestation).

Example B-4: Action against Erysiphe graminis / barley (Powdery mildew on barley)

1 week old barley plants cv. Regina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the barley plants are inoculated by shaking powdery mildew infected plants above the test plants. After an

10

15

20

25

30

incubation period of 6 days at 20°C / 18°C (day/night) and 60%r.h. in a greenhouse the disease incidence is assessed.

Compounds 2.017, 2.029, 2.273, 3.005, 3.017, 3.029, 3.067, 3.070, 3.219, 3.273, 3.321, 3.407, 8.189, 9.189 and 21.017 each exhibit strong efficacy (<20% infestation).

Example B-5: Action against Botrytis cinerea / grape (Botrytis on grapes)

5 week old grape seedlings cv. Gutedel are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. Two days after application, the grape plants are inoculated by spraying a spore suspension (1x10⁶ conidia/ml) on the test plants. After an incubation period of 4 days at 21°C and 95%r.h. in a greenhouse the disease incidence is assessed.

Compounds 2.029, 3.017 and 3.219 each show good activity in this test (<50% disease incidence).

Example B-6: Action against Botrytis cinerea / tomato (Botrytis on tomatoes)

4 week old tomato plants cv. Roter Gnom are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. Two days after application, the tomato plants are inoculated by spraying a spore suspension (1x10⁵conidia/ml) on the test plants. After an incubation period of 4 days at 20°C and 95%r.h. in a growth chamber the disease incidence is assessed.

Compounds 2.029, 3.005, 3.029, 3.067, 3.070, 3.219, 3.273, 9.189 and 20.017 each exhibit good efficacy (<50% disease incidence).

Example B-7: Action against Septoria nodorum / wheat (Septoria leaf spot on wheat)

1 week old wheat plants cv. Arina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the wheat plants are inoculated by spraying a spore suspension (5x10⁵conidia/ml) on the test plants. After an incubation period of 1 day at 20°C and 95%r.h. the plants are kept for 10 days at 20°C and 60%r.h. in a greenhouse. The disease incidence is assessed 11 days after inoculation.

Compounds 3.273 and 9.189 each show good activity in this test (<50% disease incidence).

Example B-8: Action against Helminthosporium teres / barley (Net blotch on barley)

1 week old barley plants cv. Regina are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. Two days after application, the barley plants are inoculated by spraying a spore suspension (3x10⁴conidia/ml) on the test plants. After an incubation period of 4 days at 20°C and 95%r.h. in a greenhouse the disease incidence is assessed.

Compounds 2.005, 2.017, 2.029, 2.067, 2.070, 2.273, 3.005, 3.017, 3.029, 3.067, 3.070, 3.219, 3.407, 9.189 and 21.017 each show good activity in this test (<20% disease incidence).

10

15

20

25

5

Example B-9: Action against Alternaria solani / tomato (Early blight on tomatoes)

4 week old tomato plants cv. Roter Gnom are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. Two days after application, the tomato plants are inoculated by spraying a spore suspension (2x10⁵conidia/ml) on the test plants. After an incubation period of 3 days at 20°C and 95%r.h. in a growth chamber the disease incidence is assessed.

Compounds 2.005, 2.029, 3.005, 3.017, 3.029 and 9.189 each show good activity in this test (<20% disease incidence).

Example B-10: Action against Uncinula necator / grape (Powdery mildew on grapes)

5 week old grape seedlings cv. Gutedel are treated with the formulated test compound (0.02% active ingredient) in a spray chamber. One day after application, the grape plants are inoculated by shaking plants infected with grape powdery mildew above the test plants. After an incubation period of 7 days at 26°C and 60%r.h. under a light regime of 14/10hours (light/dark) the disease incidence is assessed.

Compounds 3.017, 3.219 and 9.189 each show good activity in this test (<20% disease incidence).

CLAIMS

1. A a compound of formula (I):

5

where A is an ortho-substituted ring selected from formulae (A1) to (A22);

$$R^7, R^8, R^9, R^{10}$$
 (A1)

10

15

$$R^{11}, R^{12}$$
 R^{11}, R^{12}
 R^{1

$$(A16) \qquad \qquad (A17) \qquad \qquad (A17) \qquad \qquad (A18) \qquad (A19) \qquad (A20) \qquad (A21)$$

5

(A22)

15

20

25

30

Q is a single or a double bond; X is O, N(R¹⁸), S or $(CR^{19}R^{20})(CR^{21}R^{22})_m(CR^{23}R^{24})_n$; m is 0 or 1; n is 0 or 1;

R¹ is halogen, cyano, nitro, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy or C_{1-4} haloalkoxy or optionally substituted C_{2-4} alkenyl, optionally substituted C_{2-4} alkynyl or optionally substituted $SO_2(C_{1-4})$ alkyl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C_{1-4} alkoxy);

 R^2 is C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy(C_{1-4})alkyl or C_{1-4} alkylthio(C_{1-4})alkyl or optionally substituted aryloxy(C_{1-4})alkyl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C_{1-4} alkoxy);

 R^3 is hydrogen, $CH_2C\equiv CR^4$, $CH_2CR^4=C(H)R^4$, $CH=C=CH_2$ or COR^5 or optionally substituted C_{1-4} alkyl, optionally substituted C_{1-4} alkoxy or optionally substituted (C_{1-4}) alkylC(=O)O (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen and C_{1-4} alkoxy, C_{1-4} alkyl, C_{1-2} haloalkoxy, hydroxy, cyano, carboxyl, methoxycarbonyl, ethoxycarbonyl, methylsulfonyl and ethylsulfonyl);

each R^4 is, independently, hydrogen, halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy or C_{1-4} alkoxy(C_{1-4})alkyl;

 R^5 is hydrogen or optionally substituted C_{1-6} alkyl, optionally substituted C_{1-4} alkoxy, optionally substituted C_{1-4} alkoxy(C_{1-4})alkyl, optionally substituted C_{1-4} alkylthio(C_{1-4})alkyl or optionally substituted aryl (where the optionally substituted moieties may each have up to 3 substituents, each independently selected from halogen, C_{1-6} alkoxy, C_{1-6} haloalkoxy, cyano, hydroxy, methoxycarbonyl and ethoxycarbonyl);

 R^6 is phenyl [optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} haloalkylthio, C(H)=N-OH, $C(H)=N-O(C_{1-6}$ alkyl), $C(C_{1-6}$ alkyl)=N-OH, $C(C_{1-6}$ alkyl)= $N-O-(C_{1-6}$ alkyl), $C(C_{1-6}$ alkyl)= $C(C_{1-6}$ alkyl)= $C(C_{1-6}$ alkyl)= $C(C_{1-6}$ alkyl)= $C(C_{1-6}$ alkyl)= $C(C_{1-6}$ alkyl), $C(C_{1-6}$ alkyl)= $C(C_{1-6}$ alkyl)=

 $C(H)=CH_2$, $C(H)=CH(C_{1-4} \text{ alkyl})$ and $Si(C_{1-4} \text{ alkyl})_3$],

10

15

20

25

30

a 5- or 6-membered heterocyclic ring [in which the ring contains 1 to 3 heteroatoms (each independently chosen from oxygen, sulphur and nitrogen) and the ring is optionally substituted by up to 3 substituents, each independently selected from halogen, cyano, nitro, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C(H)=N-O-(C₁₋₆ alkyl) and C(C₁₋₆ alkyl)=N-O-(C₁₋₆ alkyl)], C₃₋₁₂ alkyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ thioalkyl, COO-C₁₋₄ alkyl, =N-OH, =N-O-C₁₋₄ alkyl, C₃₋₈ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and C₄₋₈ cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy)],

 C_{2-12} alkenyl [optionally substituted by up to 6 substituents, independently selected from halogen, cyano, C_{1-4} alkoxy, C_{1-4} thioalkyl, COO-(C_{1-4} alkyl), =N-OH, =N-O-(C_{1-4} alkyl), C_{3-8} cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy) and C_{4-8} cycloalkenyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy)],

C₂₋₁₂ alkynyl [optionally substituted by up to 6 substituents, each independently selected from halogen, cyano, C₁₋₄ alkoxy, C₁₋₄ thioalkyl, COO-C₁₋₄ alkyl, =N-OH, =N-O-(C₁₋₄ alkyl), Si(CH₃)₃, C₃₋₈ cycloalkyl (itself optionally substituted by C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy or C₁₋₄ haloalkoxy) and C₄₋₈ cycloalkenyl (itself optionally substituted by C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy or C₁₋₄ haloalkoxy)], C₃₋₈ cycloalkyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C₁₋₄ alkyl, C₁₋₄ haloalkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkoxy, C₁₋₄ thioalkyl, C₃₋₆ cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C₁₋₄ alkyl, halogen, C₁₋₄ alkoxy and C₁₋₄ haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected halogen atoms)],

 C_{4-8} cycloalkenyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy,

10

15

20

25

 C_{1-4} haloalkoxy, C_{1-4} thioalkyl, C_{3-6} cycloalkyl (itself optionally substituted by up to 3 substituents, each independently selected from C_{1-4} alkyl, halogen, C_{1-4} alkoxy and C_{1-4} haloalkoxy) and phenyl (itself optionally substituted by up to five independently selected halogen atoms)],

 C_{6-12} bicycloalkyl [optionally substituted by up to 3 substituents, each independently selected from halogen, C_{1-4} alkyl and C_{1-4} haloalkyl] or an aliphatic or alicyclic, saturated or unsaturated group [in which the group contains three to thirteen carbon atoms and at least one silicon atom and, optionally, one to three heteroatoms, each independently selected from oxygen, nitrogen and sulphur, and the group is optionally substituted by up to four independently selected halogen atoms];

 R^7 , R^8 , R^9 , R^{10} , R^{11} and R^{12} are each, independently, hydrogen, halogen, cyano, nitro, C_{1-4} alkyl, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} thiohaloalkyl;

 R^{13} , R^{14} , R^{15} , R^{16} and R^{17} are each, independently, hydrogen, halogen, C_{1-4} alkyl, $C(O)CH_3$, C_{1-4} haloalkyl, C_{1-4} alkoxy, C_{1-4} haloalkoxy, C_{1-4} thioalkyl, C_{1-4} thiohaloalkyl, hydroxymethyl or C_{1-4} alkoymethyl; R^{18} is hydrogen, C_{1-4} alkyl or C_{1-4} alkoxy(C_{1-4})alkyl; and R^{19} , R^{20} , R^{21} , R^{22} , R^{23} and R^{24} are each, independently, hydrogen, C_{1-4} alkyl or C_{1-4} alkoxy.

2. A compound of formula (II):

$$R^{1}$$
 N
 N
 N
 R^{2}
(II)

where R^1 and R^2 are as defined in claim 1 and Y is halogen, hydroxy or C_{1-5} alkoxy.

3. A compound of formula (IIIa)

where R¹³, R¹⁴, R¹⁵, R¹⁶, X and Q are as defined in claim 1, provided that when Q is a double bond and R¹³, R¹⁴, R¹⁵ and R¹⁶ are each H then X is not CH₂ or CH₂CH₂ and when Q is a single bond, R¹³ is OCH₃, R¹⁴ is CH₃ and R¹⁵ and R¹⁶ are both H then X is not CH₂CH₂

- 4. A composition for controlling microorganisms and preventing attack and infestation of plants therewith, wherein the active ingredient is a compound of formula (I) as claimed in claim 1 together with a suitable carrier.
- 5. A method of controlling or preventing infestation of cultivated plants by phytopathogenic microorganisms by application of a compound of formula (I) as claimed in claim 1 to plants, to parts thereof or the locus thereof.