Сравнение эффективности базовых моделей и моделей, предобученных для решения задачи анализа тональности текста, при дообучении для анализа тональности именованных сущностей

Кравчук Мария Ожогова Элина Тыщишина Таисия

TSC

Таргетированный анализ тональности (TSC, *target-dependent sentiment classification*) — это подзадача анализа тональности, нацеленная на определение отношения к конкретным **сущностям** и их **свойствам** или **темам**.

Δ Δ

aspect-1 aspect-2

Предыдущие подходы

Классическое ML

- тщательное конструирование признаков
- составление словарей
 эмоционально окрашенной
 лексики
- F1 = 63.3

Эмбеддинги и DL

- разработка нейронных архитектур
- тонкая настройка базовых языковых моделей
- F1 = 75.8

Особенности новостных текстов

Нейтральный стиль

Язык новостных статей зачастую нейтрален, авторы не выражают своё отношение эксплицитно

Разные интерпретации

Разные читатели могут по-разному оценивать отношение статьи к целевой сущности

[Hamborg et al., 2021]

Одатасете

• Итоговая разметка: сущность, тип сущности, метка класса (-1, 0, 1)

SENTENCE	ENTITY	ENTITY_TAG	LABEL
Восемь бадминтонисток были дисквалифицированы на Олимпийских играх	бадминтонисток	PROFESSION	-1
Ещё недавно, после завершения матча сборной России и Португалии, Юрий приезжал в Тамбов с семьёй.	Португалии	COUNTRY	0 .
Владислав первым заметил возгорание и начал тушить его.	Владислав	PERSON	1

Распределение классов в датасете

• Большинство примеров в обучающей выборке относятся к нейтральному классу

Расширение датасета

- Для борьбы с дисбалансом классов был расширен набор данных положительного и отрицательного классов с помощью автоматического перефразирования.
- Модель для перефразирования: rut5-base-paraphraser* (парафразер для предложений на русском языке, обученный на корпусах субтитров и новостных заголовков).

print(paraphrase('Владислав первым заметил возгорание и начал тушить его.'))

Владислав первый заметил пожар и начал его тушить.

^{* &}lt;a href="https://huggingface.co/cointegrated/rut5-base-paraphraser">https://huggingface.co/cointegrated/rut5-base-paraphraser

Распределение классов в датасете

• В связи с более равномерным распределением примеров по классам ожидается повышение качества при дообучении на обновленном датасете

Цель

• Сравнить качество базовых и предобученных (анализу тональности текстов) моделей при дообучении анализу тональности к именованным сущностям

Задачи

- 1. Выравнивание количества данных в разных классах с помощью автоматического перефразирования
- 2. Дообучение базовой LLM на полученном датасете
- 3. Дообучение предобученной анализу тональности текстов LLM
- 4. Ансамбль моделей

Гипотеза

- Ожидается повышение качества при дообучении на расширенном датасете.
- Модели, предобученные на анализ тональности, будут справляться с анализом тональности к именованным сущностям лучше базовых.

Базовая модель

- В качестве базовой непредобученной модели была выбрана: DeepPavlov/rubert-base-cased*.
 - Модель RuBERT (12-layer, 768-hidden, 12-heads, 180М параметров) была обучена на русскоязычной Википедии и новостных текстах.

^{*} https://huggingface.co/DeepPavlov/rubert-base-cased

Предобученные модели

Все предобученные модели были настроены на задачу распознавания тональности в русскоязычных текстах (классификация по трем классам):

- blanchefort/rubert-base-cased-sentiment*
- seara/rubert-base-cased-russian-sentiment**
- r1char9/rubert-base-cased-russian-sentiment***
- cointegrated/rubert-tiny-sentiment-balanced****

^{*} https://huggingface.co/blanchefort/rubert-base-cased-sentiment
** https://huggingface.co/seara/rubert-base-cased-russian-sentiment
*** https://huggingface.co/r1char9/rubert-base-cased-russian-sentiment
**** https://huggingface.co/cointegrated/rubert-tiny-sentiment-balanced

Дообучение

- Задача анализа тональности как классификация пары предложений.
- Были протестированы различные варианты вопросов, однако наилучший результат показало решение (Golubev et al. 2023):
 - На вход подаются два предложения, разделенные токеном [SEP]:
 - вопрос "Как относятся к Х?" где X − сущность в дательном падеже;
 - о текст предложения.

Промптинг

- В ходе работы были предложены различные промпты, однако качества выше, чем в [Golubev et al. 2023] добиться не удалось.
- Качество базовой модели на валидационной выборке в зависимости от промпта:

	F1(P,N,0)-macro	F1(P,N)-macro
Как относятся к Х?	0.69	0.45
Что думают о X?	0.68	0.44
Каково мнение о Х?	0.66	0.43
Как оценивают Х?	0.69	0.45

Результаты на валидации

 Для сравнения качества все модели были дообучены как на базовом датасете, так и на расширенном датасете

	base	enlarged	base	enlarged
	F1_PN0	F1_PN0	F1_PN	F1_PN
Модель без предобучения	0.67	_	0.43	_

Предобученные модели:

seara/rubert-base-cased-russian-sentiment	0.69	0.67	0.46	0.43
r1char9/rubert-base-cased-russian-sentiment	0.67	0.66	0.45	0.42
cointegrated/rubert-tiny-sentiment-balanced	0.54	0.55	0.33	0.39
blanchefort/rubert-base-cased-sentiment	0.36	0.28	0.11	0.00

Результаты на тестовой выборке

	F1(P,N,0)-macro	F1(P,N)-macro
Модель без предобучения	64.77	54.21
Предобученные модели:		
blanchefort/rubert-base-cased-sentiment	36.41	14.05
seara/rubert-base-cased-russian-sentiment	63.13	52.37

32.82

46.81

8.97

30.91

r1char9/rubert-base-cased-russian-sentiment

cointegrated/rubert-tiny-sentiment-balanced

Лучшие результаты на CodaLab

• Макро F-мера по двум классам (**F1(P,N)-macro**) на тестовой выборке на платформе CodaLab

	Базовый датасет	Расширенный датасет
Модель без предобучения	55.24	54.21
Предобученная модель	54.49	52.37

Ансамбль моделей

• гипотеза: повышение качества

Модели в ансамбле

• Качество моделей на тестовой выборке на платформе CodaLab:

	F1(P,N,0)-macro	F1(P,N)-macro
Модель без предобучения	62.19	50.62
seara/rubert-base-cased-russian-sentiment	61.87	49.77
cointegrated/rubert-tiny-sentiment-balanced	47.28	34.00

Архитектура ансамбля: 1

Ансамбль из трёх моделей:

- базовая модель;
- seara/rubert-base-cased-russian-sentiment;
- cointegrated/rubert-tiny-sentiment-balanced.

Ансамбль выбирает тот класс, за который проголосовало большинство моделей.

Результаты на CodaLab

	F1(P,N,0)-macro	F1(P,N)-macro
Ансамбль из трёх моделей	62.34	50.73
Ср. с моделями, вошедшими в ансамбль:		
Модель без предобучения	62.19	50.62
seara/rubert-base-cased-russian-sentiment	61.87	49.77
cointegrated/rubert-tiny-sentiment-balanced	47.28	34.00

Архитектура ансамбля: 2

- Модели из ансамбля предсказывают ответы на валидационной (или обучающей!) выборке.
- Далее линейная модель (логистическая регрессия) обучается на предсказанных ансамблем метках классов и реальных ответах.
- Веса классов сбалансированы в зависимости от размера класса.

Результаты на CodaLab: итог

	F1(P,N,0)-macro	F1(P,N)-macro
Второй ансамбль	62.19	50.62
Первый ансамбль	62.34	50.73
Модель без предобучения на базовом датасете: лучший результат	65.33	55.24

Обсуждение

Использование моделей, предобученных для решения анализа тональности текста, не дало ожидаемого роста качества.
 Вероятно, несмотря на внешнюю схожесть, в сущности SA и TSC – разные задачи, и предобучение только путает модели. Стоит также отметить, что предобучение проводилось на текстах из отзывов и постов из социальных сетей, которые значительно отличаются по стилю от новостных текстов.

Обсуждение

• Расширение датасета не помогло решить проблему несбалансированности выборки. Вероятно, чтобы преодолеть порог F-меры в 64-65% для трёх классов (54-55% для двух классов), необходимо расширить датасет естественным образом (либо применить методы взвешивания классов, как было проделано в конкурсных решения на RuSentNE-2023).

Литература

- Golubev et al., 2023 Golubev, A., Rusnachenko, N., & Loukachevitch, N. (2023). RuSentNE-2023: Evaluating entity-oriented sentiment analysis on Russian news texts. arXiv preprint arXiv:2305.17679.
- Hamborg et al., 2021 Hamborg, F., Donnay, K., & Gipp, B. (2021). Towards target-dependent sentiment classification in news articles. In Diversity, Divergence, Dialogue: 16th International Conference, iConference 2021, Beijing, China, March 17–31, 2021, Proceedings, Part II 16 (pp. 156-166). Springer International Publishing.