```
#importing libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.io import loadmat
from \ sklearn.model\_selection \ import \ train\_test\_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from \ sklearn.metrics \ import \ classification\_report, \ confusion\_matrix, \ accuracy\_score, \ mean\_absolute\_error \ accuracy\_score, \ acc
X = loadmat("/Indian_pines_corrected.mat")["indian_pines_corrected"]
y = loadmat("/Indian_pines_gt.mat")["indian_pines_gt"]
#shape of the dataset
print(f"Indian_Pines: {X.shape} \nGround_Truth: {y.shape}")
               Indian_Pines: (145, 145, 200)
               Ground_Truth: (145, 145)
#visualizing the bands
fig = plt.figure(figsize = (10, 5))
for i in range(1, 7):
           fig.add_subplot(2,3, i)
           q = np.random.randint(X.shape[2])
           plt.imshow(X[:,:,q], cmap = "jet")
           plt.axis("off")
           plt.title(f"Band_No - {q}")
                              Band_No - 96
                                                                                                                                     Band_No - 106
                                                                                                                                                                                                                                             Band_No - 108
                            Band No - 153
                                                                                                                                    Band No - 112
                                                                                                                                                                                                                                             Band No - 199
#visualizing of groundtruth
plt.figure(figsize = (10, 5))
plt.imshow(y, cmap = "jet")
plt.axis("off")
plt.colorbar()
plt.show()
```

pines.head()


```
#extracting the pixels
def extract_pixels(X, y):

    data = X.reshape(-1, X.shape[2])
    pines = pd.DataFrame(data = data)
    pines = pd.concat([pines, pd.DataFrame(data = y.ravel())], axis = 1)
    pines.columns= [f"band{i}" for i in range(1, 1+X.shape[2])] + ["class"]
    pines.to_csv("Dataset.csv")
    return pines

pines = extract_pixels(X, y)
```

band1 band2 band3 band4 band5 band6 band7 band8 band9 band10 ... band192 band193 band194 band195 band196 band197 t

```
pines.shape
     (21025, 201)
pines.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 21025 entries, 0 to 21024
     Columns: 201 entries, band1 to class
     dtypes: uint16(200), uint8(1)
     memory usage: 8.0 MB
pines.isnull().sum()
     band1
     band2
                0
     band3
                0
     band4
                0
     band5
                0
     band197
                0
     band198
                0
     band199
                0
     band200
                0
     class
     Length: 201, dtype: int64
pines.duplicated().sum()
```

0

pines.describe()

	band1	band2	band3	band4	band5	band6	band7	band8	band9	
count	21025.000000	21025.000000	21025.000000	21025.000000	21025.000000	21025.000000	21025.000000	21025.000000	21025.000000	210
mean	2957.363472	4091.321237	4277.502259	4169.956671	4516.678668	4790.595149	4848.317574	4714.732509	4668.904828	44
std	354.918708	230.390005	257.827640	280.761254	346.035984	414.382138	469.247667	491.728349	533.232855	Ę
min	2560.000000	2709.000000	3649.000000	2810.000000	3840.000000	4056.000000	4004.000000	3865.000000	3775.000000	27
25%	2602.000000	3889.000000	4066.000000	3954.000000	4214.000000	4425.000000	4421.000000	4263.000000	4173.000000	36
50%	2780.000000	4106.000000	4237.000000	4126.000000	4478.000000	4754.000000	4808.000000	4666.000000	4632.000000	44
75%	3179.000000	4247.000000	4479.000000	4350.000000	4772.000000	5093.000000	5198.000000	5100.000000	5084.000000	48
max	4536.000000	5744.000000	6361.000000	6362.000000	7153.000000	7980.000000	8284.000000	8128.000000	8194.000000	79
8 rows × 201 columns										

```
#visualizing spectral signatures

def plot_signature(pines):
    plt.figure(figsize = (10, 5))
    pixel_no = np.random.randint(pines.shape[0])
    plt.plot(range(1, 201), pines.iloc[pixel_no, :-1].values.tolist(), "b--", label = f"Class - {pines.iloc[pixel_no, -1]}")
    plt.legend()
    plt.title(f"Pixel({pixel_no}) signature", fontsize = 10)
    plt.xlabel("Band Number", fontsize = 10)
    plt.ylabel("Pixel Intensity", fontsize = 10)
    plt.show()
```



```
#box plot bands
```

```
n = int(input("Enter the band Number(1-200)"))
plt.figure(figsize = (10, 5))
sns.boxplot(x = pines["class"], y = pines["band1"]);
plt.title("Box Plot of Band1", fontsize = 10)
plt.xlabel("Class", fontsize = 10)
plt.ylabel(f"Band {n}", fontsize = 10)
plt.show()
```

Enter the band Number(1-200)55

#band details

```
print(f"Details\ of\ Band\ -\ \{n\}:\ \n\prines['band'+str(n)].describe()\}")
```

```
Details of Band - 55:
         21025.00000
count
          4333.39396
mean
           591.08510
std
min
          2084.00000
25%
          4021.00000
50%
          4297.00000
          4685.00000
          6256.00000
max
Name: band55, dtype: float64
```

```
#distribution plot of band55

plt.figure(figsize = (10, 5))
sns.distplot(pines["band"+str(n)], color = "red", bins = 100, hist_kws = {"alpha": 0.4});
plt.xlabel("Band " +str(n), fontsize = 10)
plt.title("Disrtibution Plot of Band " +str(n), fontsize = 10)
plt.show()

<ipython-input-17-c99157d3cb19>:4: UserWarning:
   `distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
```

 $sns.distplot(pines["band"+str(n)], color = "red", bins = 100, hist_kws = \{"alpha": 0.4\});\\$


```
#Principal Component Analysis(PCA)
from sklearn.decomposition import PCA
pca = PCA(n_components = 80)
principalComponents = pca.fit_transform(pines)
ev = pca.explained_variance_ratio_
ev
     array([6.84937528e-01, 2.35313543e-01, 1.49635396e-02, 8.21543227e-03,
            6.95012750e-03, 5.17010701e-03, 3.99681154e-03, 3.62359908e-03,
            3.07127269e-03, 2.93211761e-03, 2.67352834e-03, 2.49229944e-03,
            2.24688212e\hbox{-}03,\ 1.89388676e\hbox{-}03,\ 1.69434305e\hbox{-}03,\ 1.56043702e\hbox{-}03,
            1.53162388e-03, 1.35012957e-03, 1.00138965e-03, 9.24874694e-04,
            8.47884121e-04, 7.64385411e-04, 6.64597007e-04, 6.45680426e-04,
            6.16360583e-04, 5.61408927e-04, 5.43160665e-04, 5.15585128e-04,
            4.21073623e-04, 3.65029748e-04, 3.62711009e-04, 3.53239515e-04,
            3.24037211e-04, 3.13691891e-04, 3.03385418e-04, 2.87733751e-04,
            2.79164296e-04, 2.72731345e-04, 2.62985400e-04, 2.50311312e-04,
            2.46112535e-04, 2.32228734e-04, 2.11368775e-04, 1.94079618e-04,
            1.81978323e-04, 1.70834583e-04, 1.55749869e-04, 1.41898394e-04,
            1.37335867e-04, 1.36430858e-04, 1.33485423e-04, 1.23374680e-04,
            1.21877860e-04,\ 1.20991207e-04,\ 1.14749909e-04,\ 1.13124570e-04,
            1.04952992e-04, 1.02963502e-04, 9.31343947e-05, 8.91228226e-05,
            8.49670157e-05, 8.41797452e-05, 7.60502138e-05, 7.02624120e-05,
            6.77546758e-05, 6.28505367e-05, 6.23339259e-05, 6.03196039e-05,
            5.56434115e-05, 5.29588809e-05, 5.09735498e-05, 4.56128071e-05,
            4.20708046e-05, 4.14508367e-05, 3.92575510e-05, 3.85389786e-05,
            3.74666798e-05, 3.64689847e-05, 3.57606693e-05, 3.46685538e-05])
plt.figure(figsize=(10, 5))
plt.plot(np.cumsum(ev))
plt.xlabel("Number of components")
plt.ylabel("Cumulative explained variance")
plt.show()
```

p_data.head()

#select 40 components for PCA

pca = PCA(n_components = 40)
data = pca.fit_transform(pines)
p_data = pd.concat([pd.DataFrame(data = data), pd.DataFrame(data = y.ravel())], axis = 1)
p_data.columns = [f"PC-{i}" for i in range(1,41)] + ["class"]

	PC-1	PC-2	PC-3	PC-4	PC-5	PC-6	PC-7	PC-8	PC-9	PC-10	
0	5014.905666	1456.863532	72.697658	71.201107	-435.684655	-68.843392	134.809841	-304.368847	256.430470	-66.626401	 1
1	5601.383449	-2023.449776	350.135434	-528.457143	148.103477	-288.362818	202.955984	240.853090	-474.858947	93.492081	 9
2	5796.135157	-3090.394530	490.540544	-760.205251	259.951266	-131.614633	172.926575	205.913482	572.491544	-191.616243	 3
3	5586.204284	-2369.375772	356.275521	-502.679332	146.569636	-306.682882	251.070325	234.970823	-314.024411	54.961267	 12
4	5020.990484	339.603668	-23.006921	-92.558409	-368.488742	-438.269715	502.715682	-345.532591	-188.355243	-67.505651	 -8:
5 rows × 41 columns											

```
#plotting the bands after pca

fig = plt.figure(figsize = (10, 5))

for i in range(1, 7):
    fig.add_subplot(2,3, i)
    plt.imshow(p_data.loc[:, f"PC-{i}"].values.reshape(145, 145), cmap = "jet")
    plt.axis("off")
    plt.title(f"Band {i}")
```



```
# saving to .csv
p_data.to_csv("Pines_PCA.csv", index=False)
x = p_data[p_data["class"] != 0]
X = x.iloc[:, :-1].values
y = x.loc[:, "class"].values
names = ["Alfalfa", "Corn-notill", "Corn-mintill", "Corn", "Grass-pasture", "Grass-trees", "Grass-pasture-mowed", "Hay-windrowed", "Oats
X_{train}, X_{test}, y_{train}, y_{test} = train_{test_split}(X, y, test_{size} = 0.2, random_{state} = 11, stratify = y)
svm = SVC(C = 100, kernel = "rbf", cache_size = 10*1024)
svm.fit(X_train, y_train)
                    SVC
      SVC(C=100, cache_size=10240)
X_train_prediction = svm.predict(X_train)
training_data_accuracy = accuracy_score(y_train, X_train_prediction)
print("Accuracy score of the training data is: ", training_data_accuracy)
     Accuracy score of the training data is: 0.9224295645810465
y_prediction = svm.predict(X_test)
test_data_accuracy = accuracy_score(y_prediction, y_test)
print("Accuracy score of the test data is: ", test_data_accuracy)
     Accuracy score of the test data is: 0.8863414634146342
c_matrix = confusion_matrix(y_test, y_prediction)
data_cmatrix = pd.DataFrame(c_matrix, columns = np.unique(names), index = np.unique(names))
data_cmatrix.index.name = "Actual_Classes"
data_cmatrix.columns.name = "Predicted_Classes"
plt.figure(figsize = (10,5))
#sns.set(font_scale = 1.4) #for label size
sns.heatmap(data_cmatrix, cmap = "Reds", annot = True, annot_kws = {"size": 16}, fmt = "d")
     <Axes: xlabel='Predicted_Classes', ylabel='Actual_Classes'>
        0 1
                                                              6
                                                                 37
                                                                                     0
                                                                                              400
                                           0 2
                               10 134 2
                        Corn - 0
                                                       0
                                                                 17
                                                                                     0
                                                              0
                                    2 37
                                               0
                                                   0
                                                       0
                                                          0
                   Corn-mintill - 0
                                6
                                                                                             - 350
                                        1 93 0
                                                       0
                    Corn-notill - 0
                                                   0
                                            1 143 0
                                                                                             - 300
                                                       0
                                                              0
                 Grass-pasture - 0
            Grass-pasture-mowed - 0
                                                                                             - 250
                                0
                                                   0 96 0
                   Grass-trees - 0
                Hay-windrowed - 0
                                0
                                        0
                                                                                             - 200
                        Oats - 0
                                6
                                        0
                 Soybean-clean - 0
                                                                                             - 150
                Soybean-mintill - 0
                                        0
                                            0
                                                   0
                 Soybean-notill - 0
                                0
                                        0
                                            0
                                               0
                                                   0
                                                       0
                                                          0
                                                              0
                                                                  0
                                                                      0
                                                                         41
                                                                             0
                                                                                             - 100
              Stone-Steel-Towers - 0
                                0
                                        0
                                               1
                                                   0
                                                          0
                                                              0
                                                                      0
                                                                         0
                                                                            10 55 0
                      Wheat - 0
                                0
                                    0
                                        0
                                                   0
                                                       0
                                                                      0
                                           0
                                               0
                                                          0
                                                                  0
                                                                        0
                                0
                                    0
                                        0
                                                   0
                                                              0
                                                                     0
                      Woods - 0
                                                       0
                                                                            0
                                    Corn
                                                       trees.
                                 Buildings-Grass-Trees-Drives
                                        mintill
                                            Corn-notill
                                               Grass-pasture
                                                   -pasture-mowed
                                                              Oats
                                                                      Soybean-mintill
                                                                         Soybean-notill
                                        Corn
```

print("Classification Report", classification_report(y_test, y_prediction, target_names = names))

Predicted_Classes

```
Classification Report
                                                      precision
                                                                    recall f1-score support
                     Alfalfa
                                    1.00
                                               0.89
                                                         0.94
                                                                       9
                 Corn-notill
                                    0.82
                                               0.80
                                                         0.81
                                                                     286
                Corn-mintill
                                    0.89
                                               0.81
                                                         0.85
                                                                     166
                                    0.77
                                               0.79
                                                         0.78
                                                                     47
                        Corn
               Grass-pasture
                                               0.96
                                                                     97
                                    0.92
                                                         0.94
                 Grass-trees
                                    0.97
                                               0.98
                                                         0.97
                                                                     146
         Grass-pasture-mowed
                                    1.00
                                               0.80
                                                         0.89
                                                                      5
                                    0.99
               Hay-windrowed
                                               1.00
                                                         0.99
                                                                     96
                        0ats
                                    0.60
                                               0.75
                                                         0.67
                                                                      4
              Soybean-notill
                                    0.88
                                               0.80
                                                         0.84
                                                                     194
             Soybean-mintill
                                    0.84
                                               0.91
                                                         0.87
                                                                     491
               Soybean-clean
                                    0.85
                                               0.90
                                                         0.87
                                                                     119
                       Wheat
                                    0.95
                                               1.00
                                                         0.98
                                                                     41
                                    0.96
                       Woods
                                               0.98
                                                         0.97
                                                                     253
Buildings-Grass-Trees-Drives
                                    0.92
                                               0.71
                                                         0.80
                                                                     77
          Stone-Steel-Towers
                                    1.00
                                               1.00
                                                         1.00
                                                                     19
                                                         0.89
                                                                    2050
                    accuracy
                                    9.99
                                               0.88
                   macro avg
                                                         0.89
                                                                    2050
                weighted avg
                                    0.89
                                               0.89
                                                         0.89
                                                                    2050
```

```
1 =[]
for i in range(p_data.shape[0]):
    if p_data.iloc[i, -1] == 0:
        l.append(0)
    else:
        l.append(svm.predict(p_data.iloc[i, :-1].values.reshape(1, -1)))

plt.figure(figsize = (6, 5))
clmap = np.array(1).reshape(145, 145).astype("float")
plt.imshow(clmap, cmap = "jet")
plt.colorbar()
plt.axis("off")
plt.axis("off")
plt.title("SVM Classification Map")
plt.savefig("svm_classification_map.png")
plt.show()
```

<ipython-input-30-7a65eac540c6>:2: VisibleDeprecationWarning: Creating an ndarray fro
 clmap = np.array(l).reshape(145, 145).astype("float")


```
import math
MSE = np.square(np.subtract(y_test,y_prediction)).mean()
RMSE = math.sqrt(MSE)
print("Root Mean Square Error:\n", RMSE)

Root Mean Square Error:
    2.196671539775243

print("Mean Absolute Error (MAE)", mean_absolute_error(y_test,y_prediction))
    Mean Absolute Error (MAE) 13.562926829268292
Start coding or generate with AI.
```

Start coding or generate with AI.

Start coding or generate with AI.

Start coding or generate with AI.