QUESTION # 11

Find general flow pattern of the network shown in figure. Ascuming that flows are all non-negative. What is the longest possible values for x3?

SOLUTION:

Node	Flowin		Flowout
Α	x,+ x3	Ξ	20
В	$\chi_{\underline{\iota}}$	ε	$x_3 + x_4$
С	80	Ξ	x,+ 22
Total Flows:	80	=	x4 + 20

Arranging Equations:

$$x_{1} + x_{3} = 20$$
 $x_{2} - x_{3} - x_{4} = 0$
 $x_{1} + x_{2} = 80$
 $x_{4} = 60$

$$\begin{bmatrix}
1 & 0 & 1 & 0 & 20 \\
0 & 1 & -1 & -1 & 0 \\
1 & 1 & 0 & 0 & 80 \\
0 & 0 & 0 & 1 & 60
\end{bmatrix}
\xrightarrow{R_3 - R_1}
\begin{bmatrix}
1 & 0 & 1 & 0 & 20 \\
0 & 1 & -1 & -1 & 0 \\
0 & 1 & -1 & 0 & 60 \\
0 & 0 & 0 & 1 & 60
\end{bmatrix}$$

 $\begin{cases} x_1 = 20 - x_3 \\ x_2 = 60 + x_3 \\ x_3 \text{ is free} \\ x_4 = 60 \end{cases}$

As x, cannot be negative so larger value of 23 is 20.

GUESTION # 12

(a) Find the general traffic pattern in subway retwork shown in figure.

(b) Describe the general traffic pattern when the road

whose flow ic 24 is closed.

(c) When xy = 0, what is minimum value of x_1 ?

SOLUTION

9ntersection Flow in Flow out

A:
$$x_1 = x_3 + x_4 + 40$$

B: $200 = x_1 + x_2$

C: $x_2 + x_3 = x_5 + 100$

D: $x_4 + x_5 = 60$

Total Flow: 200 = 40+100+60 = 200

Arranging Equations:

$$x_1 - x_3 - x_4 = 40$$
 $x_1 + x_2 = 200$
 $x_2 + x_3 - x_5 = 100$

Mahix form:

$$\begin{bmatrix}
1 & 0 & -1 & -1 & 0 & 40 \\
1 & 1 & 0 & 0 & 0 & 200 \\
0 & 1 & 1 & 0 & -1 & 100 \\
0 & 1 & 1 & 0 & -1 & 100 \\
0 & 0 & 0 & 1 & 1 & 60
\end{bmatrix}
\xrightarrow{\sim R, -R_1}
\begin{bmatrix}
1 & 0 & -1 & -1 & 0 & 40 \\
0 & 1 & 1 & 0 & 160 \\
0 & 0 & 0 & 1 & 100 \\
0 & 0 & 0 & 1 & 1 & 60
\end{bmatrix}$$

$$\begin{cases} x_1 = 100. + x_3 - x_5 \\ x_2 = 100 - x_3 + x_5 \\ x_3 \text{ is free} \\ x_4 = 60 - x_5 \\ x_5 \text{ is free} \end{cases}$$

(6)

If xy will be 0 then xs most be 60. The general pawern will be;

$$\begin{cases} x_1 = 40 + 23 \\ x_2 = 160 - 23 \\ x_3 \text{ is free} \\ x_4 = 0 \\ x_5 = 60 \end{cases}$$

(c) Minum value of x1 is 40 cars/minute, because x3 connot be negative.

GUESTION # 13

(a) Find the general flow pattern in network show in figure

(b) Assuming that flow must be in branches devioled by X21 X51 X41 X5

SOLUTION

(a) Intersection Flow in Flow out

A
$$x_1 + 30 = x_1 + 80$$

B $x_3 + 75 = x_2 + 74$

C $x_6 + 100 = x_6 + 90$

E $x_1 + 60 = x_3 + 20$

Total Flow: 230

230

Arranged Equation:

$$x_1 - x_2 = -50$$
 $x_2 - x_3 + x_4 - x_5 = 0$
 $x_5 - x_6 = 60$
 $x_4 - x_6 = 50$
 $x_1 - x_3 = -40$

Matrix form:

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & -50 \\ 0 & 1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 60 \\ 0 & 0 & 0 & 1 & 0 & -1 & 50 \\ 0 & 0 & -1 & 0 & 0 & -40 \\ \end{bmatrix} \xrightarrow{\sim R_5 \cdot R_1} \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 60 \\ 0 & 0 & 0 & 1 & 0 & -1 & 50 \\ 0 & 1 & -1 & 0 & 0 & 0 & 10 \\ \end{bmatrix}$$

$$\begin{array}{c} \sim R_{1} + R_{2} \\ \sim R_{1} + R_{2} \\ \sim R_{1} + R_{2} \\ \sim R_{2} + R_{3} \\ \sim R_{1} + R_{2} \\ \sim R_{2} + R_{3} \\ \sim R_{3} + R_{4} \\ \sim R_{2} + R_{3} \\ \sim R_{3} + R_{4} \\ \sim R_{2} + R_{3} \\ \sim R_{3} + R_{4} \\ \sim R_{2} + R_{3} \\ \sim R_{3} + R_{4} \\ \sim R_{3} + R_{4} \\ \sim R_{2} + R_{3} \\ \sim R_{3} + R_{4} \\ \sim R_{3} + R_{4} \\ \sim R_{3} + R_{4} \\ \sim R_{2} + R_{3} \\ \sim R_{3} + R_{4} \\ \sim R_{4} + R_{4} \\ \sim R_{4} + R_{4} \\ \sim R_$$

General Solution:

$$\begin{cases} x_1 = x_3 - 40 \\ x_2 = x_3 + 10 \\ x_3 = x_5 + 50 \\ x_4 = x_6 + 50 \\ x_5 = x_6 + 60 \\ x_6 = x_6 + 60 \end{cases}$$

(b) As x_1 cannot be negative so $x_3 \succeq 40$ x_2 will be $x_2 \succeq 50$ As x_6 cannot be negative se $x_4 \succeq 50 \iff x_5 \succeq 60$. Minimum flows are:

where x1 = x6 = 0

QUESTION # 14

Intersections in England are often constructed as one-way "round abouts". Assume that traffic must bravel in show directions. Find general solution and smallest possible value of 26 to 150

SOLUTION

50

By Cartings

80

Intersection	Flowin	Flowoul
A	x, =	2, +100
В	x2+50 =	x 3
С	α3 =	14+120
Ь	24 + 150 =	×s
ξ	25 =	26+80
F	76 + 100 =	₹ ₁

Arranged Equations

$$x_{1} - x_{2} = 100$$
 $x_{1} - x_{3} = -50$
 $x_{3} - x_{4} = 120$
 $x_{4} - x_{5} = -150$
 $x_{5} - x_{6} = 80$
 $x_{7} + x_{6} = -100$

Matrix Form:

$$\begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 100 \\
0 & 1 & -1 & 0 & 0 & 0 & -50 \\
0 & 0 & 1 & -1 & 0 & 0 & 120 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 120 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
1 & -1 & 0 & 0 & 0 & 0 & 100 \\
0 & 1 & -1 & 0 & 0 & 0 & -50 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 120 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 120 \\
0 & 0 & 0 & 0 & 1 & -1 & 80 \\
0 & 0 & 0 & 0 & 1 & -1 & 80 \\
0 & -1 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}$$

General Form:

$$\begin{cases} \chi_1 = 100 + \chi_0 \\ \chi_2 = \chi_0 \\ \chi_3 = 50 + \chi_0 \\ \chi_4 = -70 + \chi_0 \\ \chi_5 = 80 + \chi_0 \\ \chi_6 = 6 \end{cases}$$

de 24 cannot be negative so the minimum positive value of 16 is 70.