CS420 Operations on Regular Languages

Wed Sept 16, 2020

In-class example (from last time)

• Design machine M that recognizes: {w |w has exactly three 1's}

• Where $\Sigma = \{0, 1\},$

DEFINITION 1.5

• Remember:

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the **start state**, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Proving that a language is regular

• Prove that this lang is regular: {w |w has exactly three 1's}

A language is called a *regular language* if some finite automaton recognizes it.

HWO Recap

HW₁

HW1

- Will include core set of pkgs
 - python3
 - default-jdk
 - build-essential
- Any other libraries/tools: manually install in Makefile `setup`

Operations on Regular Languages

From: https://www.umb.edu/it/password

Password Requirements

- » Passwords must have a minimum length of ten (10) characters but more is better!
- » Passwords must include at least 3 different types of characters:
 - » upper-case letters (A-Z)
 - » lower-case letters (a-z)
 - » symbols or special characters (%, &, *, \$, etc.)
 - » numbers (0-9)
- » Passwords cannot contain all or part of your email address
- » Passwords cannot be re-used

Password checker

Want to be able to easily <u>combine</u> finite automata machines

To keep combining operations must be **closed**!

"Closed" Operations

- Natural numbers = {0, 1, 2, ...}
 - Closed under addition: if x and y are Natural, then z = x + y is a Nat
 - Closed under multiplication?
 - yes
 - Closed under subtraction?
 - no
- Integers = {..., -2, -1, 0, 1, 2, ...}
 - Closed under addition and multiplication
 - Closed under subtraction?
 - yes
 - Closed under division?
 - no
- Rational numbers = $\{x \mid x = y/z, y \text{ and } z \text{ are ints}\}$
 - Closed under division?
 - No?
 - Yes if z !=0

Any set is **closed** under some operation if applying that operation to members of the set returns an object still in the set.

Why Closed Operations on RegularLangs?

Closed operations preserves "regularness"

• I.e., it preserves the same computation model

• So result of combining machines can be combined again

Password checker: "Or" operation

A Closed Operation: Union

THEOREM **1.25**

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

- How do we prove that a language is regular?
 - Create a FSM recognizing it!
- Create machine combining machines recognizing A_1 and A_2 .

Kinds of Mathematical Proof

- Proof by construction
 - Construct the mathematical object in question
- Proof by contradiction
- Proof by induction

A Closed Operation: Union

THEOREM **1.25**

The class of regular languages is closed under the union operation.

In other words, if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$.

Proof (implement for hw1)

- Given:
 - machine M_1 (with states Q_1 and transition fn δ_1) recognizing A_1 , and
 - machine M_2 (with states Q_2 and transition fn δ_2) recognizing A_2
- Construct a <u>new</u> machine M, using M₁ and M₂
- Given an input, **M** runs it on <u>both</u> **M**₁ and **M**₂ in <u>parallel</u>
- So a state of M is in Q₁ x Q₂ (<u>Cartesian product</u> of M₁ and M₂'s states)
- M's transition fn δ (q₁, q₂) x = (δ ₁ q₁ x, δ ₂ q₂ x)

Another Operation: Concatenation

THEOREM **1.26**

The class of regular languages is closed under the concatenation operation.

In other words, if A_1 and A_2 are regular languages then so is $A_1 \circ A_2$.

- Can't directly combine A₁ and A₂
 - don't know when to switch from A_1 to A_2 (can only read input once)
- It would create a new kind of machine!
- So is concatenation not closed???

Non-determinism

N is a new kind of machine, an NFA!

N

 N_1

Let N_1 recognize A_1 , and N_2 recognize A_2 .

 N_2

<u>Want</u>: Construction of N to recognize $A_1 \circ A_2$

 ε = empty string = no input

So N can:

- stay in current state and
- move to next state

NFA = Non-deterministic Finite Automata

Nondeterministic Deterministic computation computation • start reject accept or reject accept

Example fig1.27 (JFLAP demo): 010110

Nondeterministic machine can be in multiple states at once

DEFINITION 1.37

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** *Q* is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.

Power Sets

• A power set is the set of all subsets of a set

```
• Example: S = \{a,b,c\}
```

- Power set of S =
 - {{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}

Formal Definition of "Computation"

• DFA:

M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:

- 1. $r_0 = q_0$,
- **2.** $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and
- **3.** $r_n \in F$.

• NFA:

N accepts w if a sequence of states r_0, r_1, \ldots, r_m exists in Q with three conditions:

- 1. $r_0 = q_0$,
- 2 $r_{i+1} \in \delta(r_i, y_{i+1})$, for i = 0, ..., m-1, and
- **3.** $r_m \in F$.

In-class exercise

• Come up with a formal description of the following NFA:

The formal description of N_1 is $(Q, \Sigma, \delta, q_1, F)$, where

1.
$$Q = \{q_1, q_2, q_3, q_4\},\$$

2.
$$\Sigma = \{0,1\},$$

3. δ is given as

	0	1	arepsilon
$\overline{q_1}$	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	\emptyset	$\{q_3\}$
q_3	Ø	$\{q_4\}$	Ø
q_4	$\{q_4\}$	$\{q_4\}$	$\emptyset,$

- **4.** q_1 is the start state, and
- 5. $F = \{q_4\}.$

So is concat not closed for regular langs?

• It is closed!

- Because NFAs <u>also</u> recognize regular languages!
 - Prove it!
 - (How do we prove that a language is regular?)

A language is called a *regular language* if some finite automaton recognizes it.

Need a way to convert NFA -> DFA

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the *set of accept states*.

Proof idea:

Each "state" of the DFA must be a set of states in the NFA

A nondeterministic finite automaton

is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set of states,
- **2.** Σ is a finite alphabet.
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Convert NFA -> DFA

- Let NFA N = $(Q, \Sigma, \delta, q_0, F)$
- Then equivalent DFA M has states Q' = $\mathcal{P}(Q)$ (power set of Q)
- (do the rest for hw2)

Proving NFAs recognize regular langs

- Theorem:
 - · A language is regular if and only if some NFA recognizes it.

How to prove theorem: X if and only if Y

- "X if and only if Y" = X iff Y = X <=> Y = X⇔Y
- Must prove both:
- 1. => if X, then Y
 - i.e., assume X, then use it to prove Y
- 2. <= if Y, then X
 - i.e., assume Y, then use it to prove X

Proving NFAs recognize regular langs

• Theorem:

A language A is regular if and only if some NFA N recognizes it.

Must prove:

- => If A is regular, then some NFA N recognizes it
 - If A is regular, then a DFA recognizes it. But a DFA is also an NFA!
- <= If an NFA N recognizes A, then A is regular.
 - Convert N to DFA

Regular Operations, Revisited

- Regular languages are closed under the following operations:
 - Union
 - Concatenation
 - Kleene Star

Easy to prove (by construction) using NFAs

Let N_1 recognize A_1 , and N_2 recognize A_2 .

Construction of N to recognize $A_1 \circ A_2$

Why do we care?

- These three operations can describe all regular languages!
 - Union
 - Concatenation
 - Kleene Star
- Ie, they define regular expressions

Check-in Quiz 2

End of Class Survey