Need an amazing tutor?

www.teachme2.com/matric

SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

2018

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 15 pages. *Hierdie nasienriglyne bestaan uit 15 bladsye.*

Physical Sciences P2/Fisiese Wetenskappe V2 2 SCE/SSE – Marking Guidelines/Nasienriglyne DBE/2018

QUESTION 1/VRAAG 1

1.1
$$\mathsf{D}\,\checkmark$$

$$1.2 \qquad A \checkmark \checkmark \tag{2}$$

1.3 B
$$\checkmark\checkmark$$
 (2)

1.4 B
$$\checkmark\checkmark$$
 (2)

1.5 D
$$\checkmark\checkmark$$
 (2)

1.6
$$C \checkmark \checkmark$$
 (2)

1.7 B
$$\checkmark\checkmark$$
 (2)

1.8
$$\mathsf{D}\,\checkmark$$

QUESTION 2/VRAAG 2

2.1

2.1.1 A
$$\checkmark$$
 (1)

2.2 2.2.1

OR/OF

$$\begin{array}{c|c} H & H & O \\ \hline \\ H & C & C & O \\ \hline \\ H & H \end{array}$$

Marking criteria/Nasienriglyne

- Whole structure correct: Hele struktuur korrek:
- Only functional group correct:/Slegs funksionele groep korrek: Max/Maks.: 1/2

Accept/Aanvaar

Any correct arrangement of correct number of atoms

Enige korrekte struktuur met die korrekte aantal atome.

2.2.2 **ANY ONE/ENIGE EEN:**

Methyl ✓ ethanoate ✓ /metieletanoaat **OR/OF**

(2)

Physical Sciences P2/Fisiese Wetenskappe V2 SCE/SSE - Marking Guidelines/Nasienriglyne

DBE/2018

2.3

2.3.1 A large molecule \(\sigma \) composed of smaller monomer units covalently bonded to each other in a repeating pattern. ✓ 'n Groot molekuul √ wat uit kleiner monomeer-eenhede bestaan wat kovalent aan mekaar in 'n <u>herhalende patroon</u> gebind is. ✓

(2)

2.3.2 Polyethene ✓ Polieteen

Accept/Aanvaar:

Polyethylene/polythene Poli-eteen/poli-etileen/politeen

(1)

2.3.3

$$n\begin{pmatrix} H & \downarrow H \\ C & \downarrow C \\ H & H \end{pmatrix} \longrightarrow \begin{pmatrix} H & \downarrow H \\ -C & \downarrow C \\ H & H \end{pmatrix} OR/OF \cdots -C -C -\cdots$$

Accept as reactant/Aanvaar as reaktans:

$$n \left[CH_2 = CH_2 \right] \\
 n \left[C_2H_4 \right]$$

Accept as product/Aanvaar as produk:

$$\left\{ -CH_2-CH_2 \right\}_n$$

Marking guidelines/Nasienriglyne

- Structure shows TWO C atoms with four bonds (ethene) each and FOUR H atoms./Struktuur toon TWEE Catome met vier bindings (eteen) elk na VIER H-atome. ✓
- Structure of product / Struktuur van produk. ✓
- Multiple n and brackets correctly shown for reactant and product./Veelvoud n en hakie korrek getoon vir reaktans en produk. ✓

(3)

2.4 Hydrolysis/Substitution ✓ Hidrolise/Substitusie

(1)

- 2.5 Use concentrated strong base/NaOH/KOH/LiOH OR ethanolic/alcoholic strong base/NaOH/KOH/LiOH. √/Use ethanol instead of water./No water. Gebruik gekonsentreerde sterk basis/NaOH/KOH/LiOH OF etanoliese / alkoholiese sterk basis/NaOH/KOH/LiOH /Gebruik etanol in plaas van water./Geen water nie.
 - Heat strongly/Verhit sterk ✓ **Accept/***Aanvaar*: Increase temperature/*Verhoog temperatuur*

(2) [18] Physical Sciences P2/Fisiese Wetenskappe V2 4
SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

QUESTION 3/VRAAG 3

3.1 • Structure/Struktuur:

The chain length/molecular size /molecular structure/molecular mass/surface area increases. ✓

Die <u>kettinglengte/molekulêre</u> grootte/molekulêre struktuur/molekulêre massa/oppervlakte neem toe.

• <u>Intermolecular forces/Intermolekulêre kragte:</u>

Increase in strength of intermolecular forces/induced dipole /London/dispersion /Van der Waals forces/momentary dipoles.

<u>Toename in sterkte van intermolekulêre kragte/geïnduseerde dipoolkragte/Londonkragte/dispersiekragte/Van der Waalskragte / momentele dipool.</u>

• Energy/Energie:

More energy needed to overcome/break intermolecular forces. ✓ Meer energie benodig om intermolekulêre kragte te oorkom/breek.

OR/OF

• Structure/Struktuur:

From 4 C atoms to 1 C atom/bottom to top the chain length/molecular size/molecular structure/molecular mass/surface area decreases.

Van 4 C-atome na 1 C-atoom/onder na bo neem die kettinglengte/molekulêre grootte/molekulêre struktuur/molekulêre massa/oppervlakte af.

• <u>Intermolecular forces/Intermolekulêre kragte:</u>

Decrease in strength of intermolecular forces/ induced dipole forces/ London forces/dispersion forces. ✓

Afname in sterkte van intermolekulêre kragte/geïnduseerde dipoolkragte/ Londonkragte/dispersiekragte.

• Energy/Energie:

<u>Less energy needed to overcome/break intermolecular forces</u>. ✓ <u>Minder energie benodig om intermolekulêre kragte te oorkom/breek</u>.

• Alkanes have London/dispersion/induced dipole forces. ✓ *Alkane het London-/dispersie-/geïnduseerde dipoolkragte*.

- Alcohols have hydrogen bonding (in addition to London/dispersion/ induced dipole forces and dipole dipole forces). ✓
 Alkohole het waterstofbinding (in toevoeging tot London-/dispersie-/ geïnduseerde dipoolkragte en dipoolkragte).
- Hydrogen bonding are stronger intermolecular forces than London/ dispersion/ induced dipole forces. √
 Waterstofbindings is sterker intermolekulêre kragte as London-/dispersie-/geïnduseerde dipoolkragte.

OR/OF

More energy needed to overcome/break intermolecular forces in alcohols Meer energie benodig om intermolekulêre kragte te oorkom/breek in alkohole.

Alcohols have higher boiling points than alkanes. ✓
 Alkohole het hoër kookpunte as die alkane.

Ikohole het hoër kookpunte as die alkane. (4)

3.3 Decrease/Neem af ✓

(1)

(3)

Physical Sciences P2/Fisiese Wetenskappe V2 SCE/SSE - Marking Guidelines/Nasienriglyne DBE/2018

Lower than/*Laer as* ✓ 3.4

> 2-methylpropane/It is more branched/has a smaller surface area/has a shorter chain length (than butane/chain isomer) ✓

> 2-metielpropaan/Dit is vertak/het 'n kleiner oppervlakte/het 'n korter kettinglengte (as butaan/ketting-isomeer).

OR/OF

Butane/chain isomer is less branched /has larger surface area/longer chain length (than 2-methylpropane).

Butaan/ketting-isomeer is minder vertak/het 'n groter oppervlakte/het 'n langer kettinglengte (as 2-metielpropaan).

(2) [10]

QUESTION 4/VRAAG 4

4.1

4.1.1 Substitution/halogenation/bromonation√ Substitusie/halogenering/halogenasie/brominering/brominasie

(1)

4.1.2 Elimination/dehydration ✓ Eliminasie/dehidrasie/dehidratering

(1)

4.1.3 Esterification/condensation ✓ Esterifikasie/verestering/kondensasie

(1)

Addition/hydrohalogenation/hydrobromonation ✓ 4.1.4 Addisie/hidrohalogenasie/hidrohalogenering/hidrobrominasie/hidrobromonering (1)

- 4.2
- 4.2.1 Catalyst/dehydrating agent/speeds up reaction ✓ Katalisator/dehidreermiddel/versnel die reaksie

(1)

4.2.2 Propyl ✓ ethanoate ✓/Propieletanoaat (2)

4.2.3

Marking criteria/Nasienriglyne:

Whole structure correct Hele struktuur korrek:

Only functional group correct Slegs funksionele groep korrek:

IF/INDIEN:

More than one functional group/Meer as een funksionele groep

 $\frac{0}{2}$

(2)

Physical Sciences P2/Fisiese Wetenskappe V2 SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

Notes/Aantekeninge:

- Accept HBr and H₂O as condensed. /Aanvaar HBr en H₂O as gekondenseerd.
- Any additional reactants and/or products

Enige addisionele reaktanse en/of produkte:

Max./Maks. $\frac{4}{5}$

- Accept coefficients that are multiples. Aanvaar koëffisiënte wat veelvoude is.
- Incorrect balancing/Verkeerde balansering:

Max./Maks.

Molecular/condensed formulae

Molekulêre/gekondenseerde formule:

Max./Maks. 2

(5) [14]

QUESTION 5/VRAAG 5

5.1 ONLY ANY ONE OF/SLEGS ENIGE EEN VAN:

- Change in concentration of products/reactants ✓ per (unit) time. ✓ Verandering in konsentrasie van produkte/reaktanse per (eenheids)tyd.
- Rate of change in concentration. ✓✓ Tempo van verandering in konsentrasie.
- Change in amount/number of moles/volume/mass ✓ of products or reactants per (unit) time. ✓ <u>Verandering in hoeveelheid/aantal mol/volume/massa</u> van produkte of reaktanse per (eenheids)tyd.
- Amount/number of moles/volume/mass (of products) formed/(reactants) used√ per (unit) time.√ Hoeveelheid/aantal mol/volume/massa (van produkte) gevorm/(reaktanse) gebruik per (eenheids)tyd.

5.2

5.2.1 Surface area/State of division ✓ Oppervlakte/Toestand van verdeeldheid

(1)

(2)

5.2.2 ANY ONE/ENIGE EEN:

- Amount/mass of magnesium ✓ Hoeveelheid/massa magnesium
- Concentration of HCl/acid/Konsentrasie van HCl/suur
- (Initial) temperature/(Aanvanklike) temperatuur

(1)

DBE/2018

5.3

Marking criteria/Nasienriglyne 5.3.1

- Calculate change in m(Mg) or n(Mg) ✓ Bereken verandering in m(Mg) of n(Mg)
- Substitute/Vervang 24 g·mol⁻¹ in $n = \frac{m}{M}$
- Use mol ratio/Gebruik molverhouding: $n(Mg) = n(H_2) = 1:1 \checkmark$
- Substitute/Vervang 25 dm³ in $n = \frac{V}{V_m}$.
- Final answer/*Finale antwoord:* 2.5 dm³ ✓

$$\Delta m(Mg) = 2.6 - 0.2 \checkmark$$
= 2.4 g
$$n(Mg_{used/gebruik}) = \frac{m}{M}$$
= $\frac{2.4}{24} \checkmark$
= 0.1 mol
$$n(H_2) = n(Mg) = 0.1 \text{ mol}$$

$$n(H_2) = n(Mg) = 0.1 \text{ mol } \checkmark$$

$$V(H_2) = nV_m$$

 $V(H_2) = (0,1)(25) \checkmark$
 $= 2,5 \text{ dm}^3 \checkmark$

OPTION 3/OPSIE 3

24 g Mg
$$\checkmark \longrightarrow$$
 25 dm³ H₂
 \therefore 2,4 g $\checkmark \longrightarrow$ x dm³ H₂

$$x = \frac{2,4 \times 25}{24} \checkmark$$

$$= 2,5 \text{ dm}^3 \checkmark$$

OPTION 2/OPSIE 2

$$n(Mg)_{t=2s} = \frac{m}{M} = \frac{2,6}{24} = 0,1083 \text{ mol}$$

$$n(Mg)_{t=10s} = \frac{0,2}{24} = 0,0083 \text{ mol}$$

$$\Delta n(Mg) = 0,1083 - 0,0083 \checkmark$$

$$= 0,1 \text{ mol}$$

$$n(H_2) = n(Mg) = 0,1 \text{ mol} \checkmark$$

$$V(H_2) = nV_{m}$$

$$V(H_2) = (0,1)(25) \checkmark$$

$$= 2.5 \text{ dm}^3 \checkmark$$

(5)

DBE/2018

5.3.2 Marking criteria/Nasienriglyne

- Substitute/Vervang 2,08 x 10^{-4} in ave rate / gem. tempo = $\frac{\Delta n}{\Delta t}$ \checkmark
- Substitute/Vervang 10 x 60 s (600 s) in ave rate / gem. tempo = $\frac{\Delta n}{\Delta t}$ \checkmark
- Use mol ratio/Gebruik molverhouding: n(Mg) = n(H₂) = 1:1 √
- Substitute/Vervang 24 g·mol⁻¹ in m = nM. √
- Final answer/*Finale antwoord:* 3 g ✓ (Range/*Gebied* 2,995 3,12 g)

ave rate
$$/$$
 gem. tempo = $\frac{\Delta n}{\Delta t}$
 $\therefore 2,08 \times 10^{-4} = \frac{\Delta n}{(10 \times 60) - 0}$
 $\therefore \Delta n = 0,125 \text{ mol}$
 $n(Mg) = n(H_2) = 0,125 \text{ mol}$
 $m(Mg) = nM$

- Larger surface area/state of division. ✓ Groter reaksieoppervlak/toestand van verdeeldheid
 - More particles (per volume) with correct orientation/Meer deeltjies (per volume) met korrekte oriëntasie. √

OR/OF

 $m(Mg) = 0.125 \times 24 \checkmark$

 $= 3 \text{ g} \checkmark (2.995 \text{ g})$

More contact points./Meer kontakpunte.

More effective collisions per (unit) time./Frequency of effective collisions increases./More particles collide with sufficient kinetic energy & correct orientation per (unit) time.√√

<u>Meer effektiewe botsings per (eenheids)tyd.</u>/Frekwensie van effektiewe botsings verhoog./Meer deeltjies bots met genoeg kinetiese energie & korrekte oriëntasie per tyd(seenheid).

(3) **[17]**

(5)

(2)

QUESTION 6/VRAAG 6

6.1 The stage in a chemical reaction when the rate of forward reaction equals the rate of reverse reaction./Both forward and reverse reactions take place at same rate. ✓✓

Die stadium in 'n chemiese reaksie wanneer die tempo van die voorwaartse reaksie gelyk is aan die tempo van die terugwaartse reaksie./Beide voor- en terugwaartse reaksies vind teen dieselfde tempo plaas.

OR/OF

The stage in a chemical reaction when the concentrations of reactants and products remain constant. <

Die stadium in 'n chemiese reaksie wanneer die konsentrasies van reaktanse en produkte konstant bly.

6.2

6.3 **POSITIVE MARKING FROM QUESTION 6.2.** POSITIEWE NASIEN VANAF VRAAG 6.2.

Marking criteria/Nasienriglyne:

- Substitute/Vervang 8 mol in $c = \frac{n}{V}$
- Substitute/Vervang 4 mol in $c = \frac{\Pi}{V}$
- Substitute/Vervang 12 mol in $c = \frac{n}{V}$
- Substitute/Vervang V = 3 dm³ in the above THREE formulae/in die bostaande DRIE formules. ✓
- K_c expression/uitdrukking ✓
- Substitution of concentrations into K_c expression ✓ Vervanging van konsentrasies in K_c -uitdrukking.
- Final answer/Finale antwoord: 6,75 √

OPTION 1/OPSIE 1

[A] =
$$\frac{8}{3}$$
 = 2,67 mol·dm⁻³

[B] =
$$\frac{4}{3}$$
 = 1,33 mol·dm⁻³

Divide by/Deel deur 3 dm³ √

No K_c expression, correct substitution / Geen K_cuitdrukking, korrekte substitusie: Max./Maks. 6/7

$$[C] = \frac{12}{3} = 4 \text{ mol·dm}^{-3}$$

$$K_{c} = \frac{[C]^{3}}{[A]^{2}[B]} \checkmark$$
(4)³

Wrong K_c expression / *Verkeerde K_c-uitdrukking*: Max./Maks. $\frac{4}{7}$

OPTION 2/OPSIE 2						
		Α	В	С		
Initial quantity (mol) Aanvangshoeveelheid (mol)		16	8	0		
Change (mol) Verandering (mol)		8	4	12		
Quantity at equilibrium (mol) Hoeveelheid by ewewig (mol)		8 ✓	4 🗸	12 ✓		
Equilibrium concentration (mol·dm-3)		8	4	12	Divide by	
Ewewigskonsentrasie (mol·dm ⁻³)		3	3	3	/deel deur 3 dm³ √	
$K_{c} = \frac{[C]^{3}}{[A]^{2}[B]}$	No K_c expression, correct substitution / Geen K_c - uitdrukking, korrekte substitusie: Max./Maks. $\frac{6}{7}$					
$= \frac{(4)^3}{(2,67)^2(1,33)} \checkmark$ = 6,75 \(Wrong K _c expression / <i>Verkeerde K_c-uitdrukking</i> : Max./ <i>Maks</i> . $\frac{4}{7}$					

<u>USING CONCENTRATION/GEBRUIK KONSENTRASIE</u> <u>OPTION 3/OPSIE 3</u>

	Α	В	С	
Initial concentration (mol·dm ⁻³) Aanvangskonsentrasie (mol·dm ⁻³)	$\frac{16}{3}$ = 5,33	$\frac{8}{3}$ = 2,67	0	
Change (mol·dm ⁻³) Verandering (mol·dm ⁻³)	$\frac{8}{3}$ = 2,67	$\frac{4}{3}$ = 1,33	$\frac{12}{3}$ = 4	÷ dr
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	$\frac{8}{3}$ = 2,67 \checkmark	$\frac{4}{3}$ = 1,33 \checkmark	$\frac{12}{3} = 4\checkmark$	

No K_c expression, correct substitution /Geen K_cuitdrukking, korrekte substitusie: Max./Maks. $\frac{6}{7}$

Wrong K_c expression / Verkeerde K_c -uitdrukking: Max./Maks. $\frac{4}{7}$

6.4 Endothermic/Endotermies ✓

- (An increase in temperature) favours the reverse reaction. ✓ ('n Toename in temperatuur)bevoordeel die terugwaartse reaksie.
- An increase in temperature favours an endothermic reaction. ✓
 'n Toename in temperatuur bevoordeel 'n endotermiese reaksie.

(3)

(7)

(7)

[15]

Physical Sciences P2/Fisiese Wetenskappe V2 11
SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

QUESTION 7/VRAAG 7

7.2

- 7.1 Titration/Volumetric analysis √

 Titrasie/Volumetriese analise (1)
- the base. ✓
 Om die (presiese) volume suur te meet wat benodig word om die eindpunt te bereik/om die basis te neutraliseer. (1)

To measure the (exact) volume of acid needed to reach endpoint/to neutralise

7.3 Acids produce hydrogen ions (H⁺)/hydronium ions (H₃O⁺) in solution/when dissolved in water. ✓ ✓

Sure vorm waterstofione(H⁺)/hidroniumione (H₃O⁺) in oplossing/wanneer opgelos in water.

IF/INDIEN:

Acids produce hydrogen ions (H^+)/hydronium ions (H_3O^+). \checkmark Sure vorm waterstofione(H^+)/hidroniumione (H_3O^+). (2)

- 7.4 H_2SO_4 ionises completely./ H_2SO_4 ioniseer volledig. \checkmark (1)
- 7.5 Blue to yellow/Blou na geel ✓ (1)
- 7.6 <u>Marking guidelines/Nasienriglyne:</u>
 - Formula/Formule: $c = \frac{n}{V}/n = cV/\frac{c_a \times V_a}{c_b \times V_b} = \frac{n_a}{n_b} \checkmark$
 - Substitution of/Vervanging van: (0,1)(25)/(0,1)(0,025) √
 - Use mol ratio/Gebruik molverhouding: n_a: n_b = 1:2 √
 - Final answer/Finale antwoord: 12,5 cm³ / 0,0125 dm³ ✓

OPTION 1/OPSIE 1	OPTION 2/OPSIE 2
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b} \checkmark$	$c_b = \frac{n}{V} \checkmark$
$\frac{(0,1)V_a}{(0,1)(25)} = \frac{1}{2} \checkmark$	$0.1 = \frac{n}{0.025} \checkmark$ $n_b = 2.5 \times 10^{-3} \text{ mol}$
$\therefore V_a = 12.5 \text{ cm}^3 \checkmark$	
	$n_a = \frac{1}{2}n_b = \frac{1}{2}(2.5 \times 10^{-3}) \checkmark$ = 1,25 x 10 ⁻³ mol
	$c_a = \frac{n}{V}$
	$0,1 = \frac{1,25 \times 10^{-3}}{V}$
	$\therefore V_a = 0.0125 \text{ dm}^3 / 12.5 \text{ cm}^3 \checkmark$

(4)

7.7 POSITIVE MARKING FROM QUESTION 7.6. POSITIEWE NASIEN VANAF VRAAG 7.6.

Marking guidelines/Nasienriglyne:

- Formula/Formule: $c = \frac{n}{V}$
- Substitution of/*Vervanging van:* (0,1)(0,005)/0,0175 in n = cV ✓
- Substitute/Vervang V = 0,0425 dm³ √
- Use/Gebruik [H₃O⁺]: [H₂SO₄] = 2: 1 √
- Formula/Formule: pH = -log[H₃O⁺] √
- Substitute/Vervang [H⁺] √
- Final answer/Finale antwoord: 1,63 √

OPTION 1/OPSIE 1

$$\begin{split} n_{a(excess/oormaat)} &= cV \checkmark \\ &= (0,1)(0,005) \checkmark \\ &= 5 \times 10^{-4} \text{ mol} \end{split}$$

$$c_{a} &= \frac{n}{V}$$

$$= \frac{5 \times 10^{-4}}{4,25 \times 10^{-2}} \checkmark \\ &= 1,18 \times 10^{-2} \text{ mol} \cdot \text{dm}^{-3} \end{split}$$

$$c(H^{+}) &= 2c_{a}$$

$$= 2(1,18 \times 10^{-2}) \checkmark \\ &= 2,36 \times 10^{-2} \text{ mol} \cdot \text{dm}^{-3} \end{split}$$

$$pH &= -\log[H_{3}O^{+}] \checkmark \\ &= -\log(2,36 \times 10^{-2}) \checkmark \\ &= 1,63 \checkmark$$

OPTION 2/OPSIE 2

$$\begin{split} n_{a(final/finaal)} &= cV \checkmark \\ &= (0,1)(0,0175) \checkmark \\ &= 1,75 \times 10^{-3} \text{ mol} \\ n_{a(exs/oor)} &= n_{a(final/finaal)} - n_{a(react/reageer)} \\ &= 1,75 \times 10^{-3} - 1,25 \times 10^{-3} \\ &= 5 \times 10^{-4} \text{ mol} \\ c_{a} &= \frac{n}{V} \\ &= \frac{5 \times 10^{-4}}{4,25 \times 10^{-2}} \checkmark \\ &= 1,18 \times 10^{-2} \text{ mol} \cdot \text{dm}^{-3} \\ c(H^{+}) &= 2c_{a} \\ &= 2(1,18 \times 10^{-2}) \checkmark \\ &= 2,36 \times 10^{-2} \text{ mol} \cdot \text{dm}^{-3} \\ pH &= -log[H_{3}O^{+}] \checkmark \\ &= -log (2,36 \times 10^{-2}) \checkmark \\ &= 1,63 \checkmark \end{split}$$

OPTION 3/OPSIE 3

$$\begin{split} n_{a(excess/oormaat)} &= cV \checkmark \\ &= (0,1)(0,005) \checkmark \\ &= 5 \times 10^{-4} \text{ mol} \\ n(H^{+}) &= 2n_{a(excess/oormaat)} \\ &= 2(5 \times 10^{-4}) \checkmark \\ &= 1 \times 10^{-3} \text{ mol} \\ c(H^{+}) &= \frac{n}{V} \\ &= \frac{1 \times 10^{-3}}{4,25 \times 10^{-2}} \checkmark \\ &= 2,36 \times 10^{-2} \text{ mol·dm}^{-3} \\ \downarrow \\ pH &= -log[H_{3}O^{+}] \checkmark \\ &= -log \ (2,36 \times 10^{-2}) \checkmark \\ &= 1,63 \checkmark \end{split}$$

[17]

(7)

Physical Sciences P2/Fisiese Wetenskappe V2 SCE/SSE - Marking Guidelines/Nasienriglyne DBE/2018

QUESTION 8/VRAAG 8

8.1

- 8.1.1 Galvanic (cell)/Voltaic (cell) ✓ Galvaniese (sel)/Voltaïese (sel) (1)
- 8.1.2 Indicates phase boundary./Interphase /phase separator√ Dui faseskeiding aan/Interfase /fase onderskeier (1)
- $Fe^{2+} \rightarrow Fe^{3+} + e^{-} \checkmark \checkmark$ 8.1.3

Notes/Aantekeninge

•
$$Fe^{3+} + e^{-} \leftarrow Fe^{2+}$$
 $(\frac{2}{2})$ $Fe^{3+} + e^{-} \Rightarrow Fe^{2+}$ $(\frac{0}{2})$
 $Fe^{2+} \Rightarrow Fe^{3+} + e^{-}$ $(\frac{1}{2})$ $Fe^{3+} + e^{-} \Rightarrow Fe^{2+}$ $(\frac{0}{2})$

- Ignore if charge on electron is omitted./Ignoreer indien lading op elektron uitgelaat is.
- If a charge of an ion is omitted e.g. $Fe^2 \rightarrow Fe^3 + e^{-1}$ / Indien lading op ioon uitgelaat is bv. $Fe^2 \rightarrow Fe^3 + e^2$ Max./Maks: $\frac{1}{2}$

8.1.4

OPTION/OPSIE 1
$$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} \checkmark$$

$$0.03 \checkmark = E_{x/x^{2+}}^{\theta} - (0.77) \checkmark$$

$$E_{x/x^{2+}}^{\theta} = 0.80 \text{ (V)} \checkmark$$

X = Silver / Ag ✓

Notes/Aantekeninge

- Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- · Any other formula using unconventional abbreviations, e.g. $E_{cell}^{\theta} = E_{OA}^{\theta} - E_{RA}^{\theta}$ followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik bv. $E_{sel}^{\theta} = E_{OM}^{\theta} - E_{RM}^{\theta}$ gevolg deur korrekte vervangings: Max/Maks: $\frac{4}{5}$

OPTION/OPSIE 2

X = Silver/Ag/Silwer ✓

(5)

(2)

8.2

8.2.2 Iron(III) (ions)Ferric ions√ Yster(III)-(ione)/Ferri ione

(1)

 $2Fe^{3+} + Cu \checkmark \rightarrow 2Fe^{2+} + Cu^{2+} \checkmark$ 8.2.3 Bal. ✓

Notes/Aantekeninge

- Reactants ✓ Balancing ✓ Products ✓ Reaktanse Produkte Balansering
- Ignore phases./Ignoreer fases.
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10/Nasienreël 6.3.10.

(3)[14] Physical Sciences P2/Fisiese Wetenskappe V2 14
SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

QUESTION 9/VRAAG 9

9.1

9.1.2 Conduct electricity/Carry charges ✓ Gelei elektrisiteit/Dra ladings.

(1)

9.2
$$Cu(NO_3)_2 \checkmark$$
 (1)

9.3 (¬Iron rod/Ysterstaaf ✓

Reduction takes place./Reduksie vind plaas. ✓ (2)

9.4 $Cu \rightarrow Cu^{2+} + 2e^{-} \checkmark \checkmark$

Notes/Aantekeninge

•
$$Cu^{2+} + 2e^{-} \leftarrow Cu$$
 $(\frac{2}{2})$ $Cu^{2+} + 2e^{-} \rightleftharpoons Cu$ $(\frac{0}{2})$ $Cu \rightleftharpoons Cu^{2+} + 2e^{-}$ $(\frac{1}{2})$ $Cu^{2+} + 2e \rightarrow Cu$ $(\frac{0}{2})$

- Ignore if charge on electron is omitted./Ignoreer indien lading op elektron uitgelaat is.
- If a charge of an ion is omitted e.g. $Cu \rightarrow Cu^2 + 2e^{-}/Indien\ lading\ op\ ioon\ uitgelaat\ is\ bv.\ Cu \rightarrow Cu^2 + 2e^{-}$ Max./Maks: $\frac{1}{2}$

(2)

9.5

9.5.1 Copper(II) (ions)/Cu²⁺ ✓ and silver (ions)/Ag⁺ ✓ Koper(II)-(ione) /Cu²⁺ en silwer-(ione) /Ag⁺

Accept/Aanvaar

Cu (ions) and Ag (ions) (lons are stated in the question.)

Cu(-ione) en Ag(-ione) (lone word in vraag genoem.)

(2)

9.5.2 $\underline{\mathsf{Ag}^{+}}/\mathsf{silver}(\mathsf{I})$ ions is a stronger oxidising agent \checkmark than $\mathsf{Cu}^{2+}/\mathsf{Copper}(\mathsf{II})$ ions and will be reduced (more readily) \checkmark to form silver/Ag on the iron rod. $\underline{\mathsf{Ag}^{+}}/\mathsf{silwer}(\mathsf{I})$ ione is 'n sterker oksideermiddel as $\mathsf{Cu}^{2+}/\mathsf{Copper}(\mathsf{II})$ ione en sal (meer geredelik) gereduseer word om silwer/Ag op die ysterstaaf te vorm.

(2) [11] Physical Sciences P2/Fisiese Wetenskappe V2 15 SCE/SSE – Marking Guidelines/Nasienriglyne

DBE/2018

QUESTION 10/VRAAG 10

10.1

- 10.1.1 (Catalytic) oxidation (of ammonia)/(Katalitiese) oksidasie (van ammoniak)√ (1)
- 10.1.2 Neutralisation/acid-base reaction ✓
 Neutralisasie/suur-basisreaksie

(1)

10.2

- 10.2.1 Nitrogen/N₂/Stikstof ✓ (1)
- 10.2.2 NO₂/nitrogen dioxide/*Stikstofdioksied* ✓ (1)
- 10.2.3 Nitric acid/HNO₃/Salpetersuur ✓ (1)

10.3

10.3.1 $2NH_3 + H_2SO_4 \checkmark \rightarrow (NH_4)_2SO_4 \checkmark$ Bal. \checkmark

Notes/Aantekeninge:

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse Produkte Balansering
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10./Nasienreël 6.3.10.

(3)

10.3.2 $4NH_3 + 5O_2 \checkmark \rightarrow 4NO + 6H_2O \checkmark$

Bal. ✓

Notes / Aantekeninge:

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse Produkte Balansering
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10./Nasienreël 6.3.10.

(3)

10.4

$$% N = \frac{28}{80} \times 100$$

$$= 35\% \checkmark$$

(3) **[14]**

TOTAL/TOTAAL: 150