

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0 9 2 8 2 9 3 8 0 6

FURTHER MATHEMATICS

9231/33

Paper 3 Further Mechanics

October/November 2021

1 hour 30 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m\,s^{-2}}$.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

BLANK PAGE

One end of a light elastic string, of natural length a and modulus of elastic point O on a smooth horizontal plane. A particle P of mass m is attached and moves in a horizontal circle with centre O . The speed of P is $\sqrt{\frac{4}{3}ga}$.	d to the other end of the string
Find the extension of the string.	[4

	$a = \frac{v(1-2t^2)}{t},$	
whe	ere $v \mathrm{ms^{-1}}$ is the velocity of P at time $t \mathrm{s}$.	
(a)	Find an expression for v in terms of t and an arbitrary constant.	[3]
		••••••
(b)	Given that $a = 5$ when $t = 1$, find an expression, in terms of m and t , for the horizontal	
	on P at time t .	force acting [3]
		[3]
	on P at time t.	[3]
	on P at time t.	[3]
	on P at time t.	[3]
	on P at time t.	[3]
	on P at time t.	[3]
	on P at time t.	[3]
	on P at time t.	[3]
	on P at time t.	[3]

A light elastic string has natural length a and modulus of elasticity attached to a fixed point O . The other end of the string is attached to a hangs in equilibrium vertically below O . The particle is pulled vertic with the extension of the string equal to e , where $e > \frac{1}{3}a$. In the su	a particle of mass m . The particle ally down and released from re-
speed $\sqrt{2ga}$ when it has ascended a distance $\frac{1}{3}a$.	
Find e in terms of a .	[

A uniform lamina AECF is formed by removing two identical triangles BCE and CDF from a square lamina ABCD. The square has side 3a and EB = DF = h (see diagram).

Find the distance of the centre of mass of answers in terms of a and h .			
	•••••	•••••	•••••
			•••••
		•••••	
	•••••		

The lamina AECF is placed vertically on its edge AE on a horizontal plane.

	, in terms											
•••••	•••••						•••••	•••••	 		•••••	
		•••••							 			
•••••							•••••		 •••••			• • • • • • • • • • • • • • • • • • • •
•••••	•••••								 			• • • • • • •
									 			• • • • • • • •
•••••	•••••								 			• • • • • • •
•••••	••••••			• • • • • • • • • • • • • • • • • • • •				•••••	 	• • • • • • • • • • • • • • • • • • • •		•••••
•••••	•••••		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	 		•••••	•••••
•••••		•••••							 			• • • • • • •
•••••	•••••		• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	 		•••••	•••••
•••••		•••••							 			• • • • • • • • • • • • • • • • • • • •
•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	 	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	 		•••••	

	ra
Find the value of u .	[7

A particle P, of mass m, is attached to one end of a light inextensible string of length a. The other end of the string is attached to a fixed point O. The particle P moves in complete vertical circles about O with the string taut. The points A and B are on the path of P with AB a diameter of the circle. OA makes an angle θ with the downward vertical through O and OB makes an angle θ with the upward vertical through O. The speed of P when it is at A is $\sqrt{5ag}$.

The ratio of the tension in the string when P is at A to the tension in the string when P is at B is 9:5. (a) Find the value of $\cos \theta$. [6]

The smooth vertical walls AB and CB are at right angles to each other. A particle P is moving with speed u on a smooth horizontal floor and strikes the wall CB at an angle α . It rebounds at an angle β to the wall CB. The particle then strikes the wall AB and rebounds at an angle γ to that wall (see diagram). The coefficient of restitution between each wall and P is e.

	$B = e \tan \alpha$.	[3
Express γ in te	rms of α and explain what this result means about	out the final direction of motion of I
Express γ in te	rms of α and explain what this result means about	
Express γ in te	rms of α and explain what this result means about	
Express γ in te	rms of α and explain what this result means about	
Express γ in te	rms of α and explain what this result means abo	
Express γ in te	rms of α and explain what this result means abo	

As a result of the two impacts the particle loses $\frac{8}{9}$ of its initial kinetic energy. (c) Given that $\alpha + \beta = 90^{\circ}$, find the value of e and the value of $\tan \alpha$.	•••••
(c) Given that $\alpha + \beta = 90^{\circ}$, find the value of e and the value of $\tan \alpha$.	
(c) Given that $\alpha + \beta = 90^{\circ}$, find the value of e and the value of $\tan \alpha$.	
(c) Given that $\alpha + \beta = 90^\circ$, find the value of e and the value of $\tan \alpha$.	
(c) Given that $\alpha + \beta = 90^\circ$, find the value of e and the value of $\tan \alpha$.	
(c) Given that $\alpha + \beta = 90^{\circ}$, find the value of e and the value of $\tan \alpha$.	
	[4]
	•••••
	•••••
	•••••
	•••••

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.