

Internet and Data Centers

un algoritmo per il calcolo dello spanning tree nelle reti locali

G. Di Battista, M. Patrignani

copyright notice

- all the pages/slides in this presentation, including but not limited to, images, photos, animations, videos, sounds, music, and text (hereby referred to as "material") are protected by copyright
- this material, with the exception of some multimedia elements licensed by other organizations, is property of the authors and/or organizations appearing in the first slide
- this material, or its parts, can be reproduced and used for didactical purposes within universities and schools, provided that this happens for non-profit purposes
- any other use is prohibited, unless explicitly authorized by the authors on the basis of an explicit agreement
- this copyright notice must always be redistributed together with the material, or its portions

l'algoritmo sta e le reti locali

- lo spanning tree algorithm (sta) è pensato per essere utilizzato in una rete locale nella quale siano presenti switch (bridge)
- si assume che gli switch compilino automaticamente le proprie tabelle d'instradamento facendo backward learning
 - l'interfaccia su cui instradare un pacchetto viene inferita in base agli indirizzi mittente dei pacchetti in ingresso

le reti locali e i cicli

 in una rete locale costituita da bridge e domini di collisione la presenza di cicli renderebbe impossibile l'operazione di backward learning

i pacchetti provenienti dallo stesso mittente potrebbero giungere a un

bridge su porte diverse

 rinunciare del tutto alla presenza di cicli comporterebbe la rinuncia alla ridondanza offerta da questi

scopo dello spanning tree algorithm

- lo spanning tree algorithm (sta) è un algoritmo distribuito preposto al calcolo di un albero ricoprente (spanning tree) in una rete magliata (cioè con cicli)
- grazie allo spanning tree algorithm è possibile:
 - garantire il funzionamento del backward learning
 - utilizzando per l'inoltro dei pacchetti esclusivamente l'albero computato
 - conservare la ridondanza offerta dai cicli
 - nel caso di guasti l'albero viene ricalcolato

lo spanning tree algorithm in sintesi

- è descritto nello standard IEEE 802.1D
- è un algoritmo distribuito che calcola un albero ricoprente della rete
 - l'albero calcolato è radicato a un bridge che viene scelto come radice: il root bridge
 - al termine della computazione alcuni bridge mettono alcune porte in "blocking state"
 - le porte in blocking non vengono utilizzate
- l'amministratore può influenzare l'esito del calcolo modificando opportuni parametri di configurazione

requisiti dell'algoritmo

robustezza

 l'albero ricoprente deve essere computato in maniera distribuita

efficacia

 la formazione di cicli deve essere esclusa sia in condizioni stazionarie che transitorie

efficienza

 lo spanning tree calcolato deve corrispondere ad un uso efficiente delle risorse di rete disponibili

bandwidth

 pacchetti scambiati dai bridge (bridge pdu, bpdu) devono comportare un limitato consumo di banda

requisiti dell'algoritmo

tempo

- la computazione dell'albero deve essere più veloce possibile per limitare il disservizio
 - tipicamente 30-40 secondi sono sufficienti allo sta per convergere

flessibilità

 l'amministratore deve poter assegnare priorità a ciascun bridge e a ciascuna porta per influire sull'output dell'algoritmo

facilità d'uso

 l'algoritmo deve essere in grado di funzionare correttamente anche in assenza di configurazione dell'amministratore

input dello spanning tree algorithm

- una topologia costituita da:
 - un insieme di LAN (domini di collisione)
 - un insieme di bridge le cui porte afferiscono alle LAN
- un identificatore (detto bridge-id) distinto per ogni bridge della rete
 - un id più basso indica un bridge preferibile
- un identificatore (detto port-id) per ogni porta di ogni bridge
 - unico all'interno del bridge
 - un id più basso indica una porta preferibile
- un valore (detto costo) per ogni LAN
 - il costo viene effettivamente associato alle porte che afferiscono alla LAN e convenzionalmente sommato in ingresso

output dello spanning tree algorithm

- un insieme di porte che, una volta messe in blocking, garantiscano:
 - che ci sia piena connettività
 - esista un cammino tra ogni coppia di LAN
 - che non ci siano cicli
 - il cammino tra ogni coppia di LAN sia unico
- caratteristiche desiderabili
 - il costo dei cammini sia contenuto
 - la minimalità non è garantita
 - si minimizza il costo dei soli cammini tra la radice dell'albero ricoprente e qualsiasi altro bridge

identificatori dei bridge e delle loro porte

- il *bridge-id* è costituito dalla concatenazione di due parti:
 - 2 byte di "priorità" scelti dall'amministratore (il default è spesso: 80-00)
 - 6 byte corrispondenti all'indirizzo mac della prima porta del bridge (per esempio: 23-ef-c0-4b-93-a0)
 - è dunque lungo 8 byte (per esempio: 80-00/23-ef-c0-4b-93-a0)
- anche la port-id è costituita dalla concatenazione di due parti:
 - un byte di "priorità" scelto dall'amministratore (il default è spesso: 80)
 - un byte corrispondente al numero della porta sul bridge (per esempio:
 0a per la decima porta)
 - è dunque lunga 2 byte (per esempio: 80/0a)

costi delle LAN

- il costo di attraversamento delle LAN (domini di collisione) è specificato sulle porte afferenti alle LAN stesse
- può essere modificato dall'amministratore
- il valore di default è inversamente proporzionale alla banda della tecnologia utilizzata:
 - costo 100 per una LAN a 10 Mb/s
 - costo 10 per una LAN a 100 Mb/s
 - costo 1 per una LAN a 1 Gb/s

fasi dello spanning tree algorithm

1. elezione del root bridge

un singolo bridge è selezionato per essere la radice dell'albero

2. identificazione della *root port* su ogni bridge

 ogni bridge diverso dal root bridge seleziona una delle sue porte come quella "più conveniente" per connettersi al root bridge

3. determinazione delle designated ports

 per ogni LAN una porta di un bridge è scelta come quella che connetterà la LAN allo spanning tree

4. blocco di porte ridondanti

 le porte inutilizzate (non root ports e non designated ports) sono messe in blocking

pacchetti utilizzati

- i pacchetti scambiati dai bridge vengono chiamati bpdu (bridge protocol data unit)
- le bpdu viaggiano a bordo di
 - pacchetti LLC con dsap = ssap = 0x42, che a loro volta sono incapsulati in...
 - pacchetti MAC con sorgente l'indirizzo della porta mittente e destinazione multicast 01:80:c2:00:00:00
- sono previsti due tipi di bpdu:
 - la configuration bpdu contiene tutte le informazioni necessarie per lo spanning tree algorithm
 - la topology change bpdu non contiene nessun dato
 - non la vedremo in dettaglio, serve solo a segnalare che un cambio di topologia è in atto e a gestire i timer del protocollo

configuration bpdu

- la configuration bpdu contiene in particolare le seguenti informazioni:
 - root-bridge-identifier
 - l'attuale root dello spanning tree
 - root-path-cost
 - il costo del cammino verso il root bridge
 - bridge-identifier
 - l'id del bridge che invia questa bpdu
 - port-identifier
 - la porta da cui è uscita questa bpdu
- esempio:

root-bridge-identifier	80-00/23-ef-00-a1-32-4d
root-path-cost	310
bridge-identifier	80-00/2d-12-d4-23-8e-5f
port-identifier	80/06

fase 1: elezione del root bridge

- ogni bridge invia una configuration bpdu nella quale specifica il proprio bridge-id come root-identifier
- quando un bridge riceve una configuration bpdu con un valore più basso di bridge-id
 - smette di produrre configuration bpdu con il suo bridge-id come root-identifier
 - propaga la nuova configuration bpdu su tutte le porte
- il root bridge è quello che continuerà a produrre configuration bpdu con il suo bridge-id nel campo root-identifier

inoltro delle configuration bpdu

- quando una configuration bpdu è prodotta dal root bridge il suo campo root-path-cost è posto a zero
- quando una configuration bpdu è inoltrata da un bridge che non è il root bridge, i suoi campi sono aggiornati come segue:
 - il root-path-cost è incrementato con il costo della porta del bridge che riceve la configuration bpdu
 - il bridge-identifier è sostituito con il bridge-id del bridge corrente
 - la port-identifier è sostituita con l'id della porta da cui la bpdu sarà inviata

root-bridge-id	00-00/23-ef
root-path-cost	100
bridge-id	10-00/2d-12
port-id	00/06

root-bridge-id	00-00/23-ef
root-path-cost	200
bridge-id	10-00/43-2f
port-id	00/05

fase 2: identificazione delle root port

- ogni bridge diverso dal root bridge identifica la porta attraverso la quale il root bridge è più facilmente raggiungibile
- la root port è quella che riceve le configuration bpdu tali che (in ordine di priorità):
 - 1.il root-path-cost della bpdu sommato al costo della porta ricevente è il più basso
 - 2. il bridge-identifier specificato nella bpdu è il più basso
 - 3. la port-identifier specificata nella bpdu è la più bassa
 - 4. la port-identifier della porta ricevente è la più bassa

fase 3: determinazione delle designated port

- per ogni LAN una porta di un bridge è scelta come designated port in base alle configuration bpdu che sono inviate nella LAN da quella porta
- la designated port è quella che invia le configuration bpdu con (in ordine di priorità):
 - 1.root-path-cost più basso
 - 2.bridge-identifier più basso
 - 3.port-identifier più basso

fase 4: blocking

- tutte le porte che non sono root-ports o designated-ports sono poste in blocco
- tutte le root-ports e designated-ports sono poste in stato di forwarding

topology change notification bpdu

- un bridge può rilevare un cambiamento di topologia nella rete
 - un cambiamento di topologia può generare cicli, questi a loro volta possono portare a pacchetti che girano a vuoto e/o a saturazione della rete
- il bridge che rileva un cambiamento di topologia lo comunica al root bridge con una topology change notification bpdu
 - la topology change notification bpdu raggiunge il root bridge attraverso le root port
 - il root bridge comunica il cambiamento con delle configuration bpdu con topology change flag ad 1
 - il pacchetto topology change notification viene trasmesso dal bridge fino a quando non riceve una configuration bpdu con acknowledgement
 - tutti i bridge abbassano i valori dei timer del protocollo in risposta alla temporanea instabilità della rete

valori contenuti nelle configuration bpdu

- flag di topology change
- flag di topology change acknowledgement
- root-bridge-id (identificatore del root bridge)
- root-path-cost (aggiornato ad ogni attraversamento di un bridge)
- sender bridge-id (id del bridge che ha trasmesso la bpdu)
- sender port-id (id della porta che ha trasmesso la bpdu)
- tempo stimato da quando il root-bridge ha emesso la bpdu
- tempo in cui scartare la bpdu
- tempo tra due bpdu successive
- tempo da attendere per effettuare le transizioni delle porte listening-learning-forwarding

notazione utilizzata negli esempi ed esercizi

esempio (dallo standard IEEE 802.1D)

fase 1: elezione del root bridge

fase 2: identificazione delle root port

fase 3: determinazione delle designated port

fase 4: blocking

altro esempio

fase 1: elezione del root bridge

fase 2: identificazione delle root port

fase 3: determinazione delle designated port

fase 4: blocking

esercizio più complesso

 tutti i costi e le priorità delle porte sono posti amministrativamente a zero

