Prealgebra Activity 4 Math-T101 Spring 2014 Jerife Sens

Problem 1. (Algebraic teacher's solution) Suzi is 20 pounds lighter than Anne. Their total weight is 230 lbs. Find Suzi's weight.

Algebraic Solution; X = Suzi's weight (165) X+20= Anne's weight (16) x + (x+20) = 2302x + 20 = 230

Problem 2. (Bar diagram, algebraic teacher's solution using only one variable and using x = 105 multiple variables) Jenny, Tina, and Suzie went to the mall larger x = 105of \$100 while Jenny and Suzie spent a total of \$150. If you know that Suzie spent 3 times weightis as much as Tina did, then how much did Jenny spend?

Suzi's weight is 1051b.

Bar Diagram

Jemy Spent \$75.

Algebraic Solution using only one variable:

$$\begin{cases} 100 - X = 150 - 3X \end{cases}$$

105165

$$100 - x = 150 - 3x$$

 $-100 - 100$
 $-x = 50 - 3x$
 $+3x + 3x$
 $2x = 50$

Algebraic solution using multiple variables:

$$9+2=150$$

 $3x+2=150$
 $2x+1x+2=150$
 $2x+100=150$

x+2=(00 Jenny spent \$75.

2= Jenny spent

Problem 3. (Bar diagram, algebraic teacher's solution using only one variable) Jeff and Bob began their day by splitting a bag of M & M's equally among themselves. Throughout the day Jeff ate 600 M & M's while Bob only ate 240. At the end of the day Bob observed that he still had 7 times as many M & M's as did Jeff. How many M & M's were in the original bag?

Bar Diagram:

There were 1320 M & Ms in the original bog.

Algebraic Solution with one voriable:

x= * of Mkms Jeff had after cating 600 M&Ms

TX= * of M & ms 80b had after eating 240 M&Ms

$$X+600=X$$
 of Malus Teff had at first $X+600=7X+240$
 $7X+240=X$ of Malus Bob had at first $X+360=7X$

M & Ms in the

Problem 4. Evaluate the following numerical expressions:

a)
$$(8 \div 2) \times 4 = 4 \times 4 = 16$$

b)
$$8 \div (2 \times 4) = 8 \div 8 = 1$$

c)
$$8 \div 2 \times 4 = 4 \times 4 = 16$$

d)
$$16 \div (4 \div 2) = 16 \div 2 = 8$$

e)
$$(16 \div 4) \div 2 = 4 \div 2 = 2$$

$$f) \ 16 \div 4 \div 2 = 4 \div 2 = 2$$

$$g) 24 \div 4 + 2 = 6 + 2 = 8$$

h)
$$24 + 6 \div 2 \times 3 = 24 + 3 \times 3 = 24 + 9 = 33$$

Problem 5. Use the identity $(a+b)^2 = a_2 + 2ab + b^2$ or $(a-b)^2 = a_2 - 2ab + b^2$ to calculate the following.

a)
$$68^2 = (60+8)^2$$

= $60^2 + 2.60.8 + 8^2$
= $3600 + 960 + 64 = 4624$

b)
$$\frac{((27)_8)^2}{(20)_8} = \left[(20)_8 + (7)_8 \right]^2$$

= $(20)_8^2 + 2 \cdot (20)_8 \cdot (7)_8 + (7)_8^2$
c) $\frac{121^2}{(120+1)^2} = \frac{(400)_8}{(120+1)^2} + \frac{(340)_8}{(120+1)^2} + \frac{(1021)_8}{(120+1)^2}$

$$68^{2} = (70 - 2)^{2}$$

$$= 70^{2} - 2.70.2 + 2^{2}$$

$$= 4900 - 280 + 4 = 4624$$

$$(27)_{8}^{2} = [(30)_{8} - (1)_{8}]^{2}$$

$$= (30)_{8}^{2} - 2.(30)_{8}.(1)_{8} + (1)_{8}^{2}$$

$$= (100)_{8} - (60)_{8} + (1)_{8} = (1021)_{8}$$

$$= (130 - 9)^{2} = 130^{2} - 2.130 - 9 + 9^{2}$$

$$= 16900 - 2340 + 81 = 1464$$

Problem 6. Use a rectangular array model to find the following squares.

(i)
$$19^2 = (10+9)^2 = (20-1)^2$$

10 9

10 | 10×9 | Total orea = $19 \times 19 = 19^2$

= $10 \times 10 + 9 \times 10 + 9 \times 10 + 9 \times 9$

= $100 + 90 + 90 + 81$

= $10^2 + 2 \cdot 9 \cdot 10 + 9^2$

= 361

(ii)
$$((24)_8)^2 = (20)_8 + (4)_8$$

$$(20)_8 + (4)_8$$

$$(20)_8 + (20)_8$$

$$(400)_8 + (4)_8$$

$$(400)_8 + (4)_8 \times (4)_8 = (20)_8$$

$$(4)_8 + (4)_8 \times (4)_8 = (20)_8$$

Problem 12. Show that $a^m \cdot b^m = (ab)^m$ if a, b, and m are nonzero whole numbers.

$$a^{m}$$
, b^{m} = $(a.a...a)$. $(b.b...b)$ by defin of exponents a m factors a m factors a mand a and a are whole numbers and a m if a is a nonzero whole numbers, then a^{-k} is defined to be $\frac{1}{a^{k}}$. Special case: if a if a m = a m if a , or a m if a m = a m if a m = a m if a is defined to a is a nonzero whole numbers, then a^{-k} is defined to a is a m = a m if a m = a m if a m is a m is a m if a m is a m is a m if a m is a m. Note: If a m is a m. Note: If a m is a m is a m is a m is a m. Note: a m is a m is a m is a m. Note: a m is a m is a m is a m. Note: a m is a m is a m. Note: a m is a m is a m. Note: a m is a m is a m. Note: a m is a m is a m. Note: a m is a m is a m. Note: a m is a m is a m. Note: a m is a m is a m. Note: a m is a m is a m. Note: a m is

a is a nonzero whole numbers, then
$$a^{-k}$$
 is defined to be $\frac{1}{a^k}$.

Special case: if $m = 0$, $n = k$
 $a^m = a^{m-n}$

Then $\frac{m > n}{see}$, or $\frac{m < n}{see}$, or $\frac{m < n}{see}$

Show $\frac{a^m}{a^n} = a^{m-n} = \frac{1}{a^{n-m}}$

Problem 14. The above rules can be extended to the case in which m and n are allowed to be 0 (but a and b are still nonzero). If a is a nonzero whole number, how should a^0 be defined? Justify this by the natural extensions of previous problems (rules).

Problem 15. Calculate the following mentally using $2^5 = 32$, $2^8 = 256$, and $2^{10} = 1024$.

a)
$$1024 \div 256 \ge \frac{2^{10}}{2^8} = 2^2 = 4$$

b)
$$64 \times 128 = 2^{6}, 2^{7} = 2^{13}$$

c)
$$2048 \div 256 \times 16 = \frac{2''}{2^8} \cdot 2^4$$

= $2'''^{-8} \cdot 2^4$
= $2^3 \cdot 2^4 = 2^{3+4} = 2^7$

d)
$$(2^3)^5 \div 2^9 = \frac{2^{15}}{2^9} = 2^{15-9} = 2^6$$

(e)
$$8^5 \div 512 = \frac{(2^3)^5}{2^9} = \frac{2^{15}}{2^9} = 2^{15-9} = 2^6$$

$$f) 256 \times 5^3 = 2^8 \times 5^3 = 2^5 \cdot 2^{3} \cdot 5^{3} = 2^5 \cdot 10^3 = 32 \cdot 10^3 = 32 \cdot 1000 = 32000$$

g)
$$80^3 = 8^3 \cdot 10^3 = (2^3)^3 \cdot 2^3 \cdot 5^3 = 2^9 \cdot 2^3 \cdot 5^3 = 2^{12} \cdot 5^3$$

Problem 16. Let a and b be non-zero whole numbers. Simplify as much as possible, factoring the numbers and leaving the answer in the exponential form.

a)
$$\frac{2^5 \cdot 6^2 \cdot 18^2}{3^4 \cdot 4^2} = \frac{2^5 \cdot (2 \cdot 3)^2 \cdot (2 \cdot 3^2)^2}{3^4 \cdot (2^2)^2} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot (3^2)^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2 \cdot 3^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2 \cdot 2^2}{3^4 \cdot 2^4} = \frac{2^5 \cdot 2^2 \cdot 3^2}{3^4 \cdot 2^4$$

b)
$$\frac{2^{5} \cdot (2b)^{2} \cdot (2b^{2})^{2}}{b^{4} \cdot 4^{2}} = \frac{2^{5} \cdot 2^{2} b^{2} \cdot 2^{2} (b^{2})^{2}}{b^{4} \cdot (2^{2})^{2}} = \frac{2^{9} \cdot b^{2} \cdot b^{4}}{b^{4} \cdot 2^{4}} = 2^{9} \cdot b^{2}$$

$$c) \frac{a^{5} \cdot (ab)^{2} \cdot (ab^{2})^{2}}{b^{4} \cdot (a^{2})^{2}} = \frac{a^{5} \cdot a^{2} \cdot b^{2} \cdot a^{2} \cdot (b^{2})^{2}}{b^{4} \cdot (a^{2})^{2}} = \frac{a^{5} \cdot a^{2} \cdot b^{2} \cdot a^{2} \cdot b^{4}}{b^{4} \cdot a^{2}}$$

$$= a^{5} \cdot b^{2}$$