Module: Programmation linéaire (PL)

Juin 2021

Code	Cours	TD/TP	HNE			
MS-09	9 h	12 h	30 h			

Responsable Module	Fayçal Mtar (faycel.mtar@esprit.tn)							
Unité pédagogique	Mathématique							
Unité d'enseignement	Recherche opérationnelle (RO)							
Prérequis	Eléments d'algèbre linéaire et de géométrie.							

Mode d'évaluation :

La moyenne de ce module est calculée comme suit :

Moyenne = Contrôle Continu*20%+Examen*80%

Le contrôle continu : épreuve écrite (test, Quiz, QCM, TP, mini projet sur PULP).

Acquis d'apprentissage :

À la validation de ce module, l'étudiant sera capable de :

- Formuler en un programme linéaire, un problème d'optimisation, avec les composantes appropriées: variables de décision, fonction-objectif et contraintes.
- Classifier un programme linéaire suivant la nature de ces variables de décision.
- Résoudre graphiquement un programme linéaire mixte.
- Appliquer la méthode du simplexe pour la résolution d'un programme linéaire.
- Interpréter le tableau optimal du simplexe (valeur marginale, ressources épuisées, contraintes saturées)
- Formuler le dual d'un programme linéaire (primal).
- Identifier l'utilité de la transformation primal/Dual sur le plan de l'interprétation économique ainsi que sur la résolution du PL.
- Utiliser un le solveur (PULP sur python) pour la résolution numérique des programmes linéaires.

Contenu détaillé

Modélisation (7H30)

- Exemples de modélisation avec variables réelles, entiers et binaires, mixtes.

- Traiter les programmes linéaires particuliers : planification, production, l'emplacement des installations (facility location), transport.

A la fin de ce chapitre, l'étudiant sera capable de:

- 1. Analyser un problème réel
- 2. Définir les variables de décisions et leurs natures
- 3. Définir la fonction-objectif
- 4. Définir les contraintes liées au PL
- 5. Etablir les relations entre les éléments
- 6. Formuler un programme linéaire
- 7. Classifier un programme linéaire

Résolution graphique d'un programme linéaire à deux variables (3H)

A la fin de ce chapitre l'étudiant sera capable de :

- Énoncer les différentes définitions relatives à ce chapitre (domaine réalisable, solution réalisable, solution réalisable de base, domaine convexe).
- 2. Dessiner les contraintes
- 3. Déterminer domaine réalisable
- 4. Appliquer la méthode d'énumération pour résoudre graphiquement un PL avec 2 variables de décisions
- 5. Appliquer la méthode du gradient pour résoudre graphiquement un PL avec 2 variables de décisions.
- 6. Classifier un programme linéaire suivant la nature de son ensemble de solutions (solution unique, solution non bornée, solutions multiples, programme impossible).
- 7. Citer les limites de la méthode de résolution graphique

Résolution algébrique d'un programme linéaire et algorithme du simplexe (6H)

A la fin de ce chapitre l'étudiant sera capable de :

- 1. Énoncer les différentes définitions relatives à ce chapitre (forme canonique, forme standard, solution de base, solution hors base)
- 2. Ecrire la forme matricielle d'un programme linéaire
- 3. Ecrire la forme canonique de tout programme linéaire
- 1. Déterminer la forme standard du programme linéaire.
- 2. Appliquer les différentes phases de l'algorithme du simplexe pour résoudre un problème de maximisation sous sa forme canonique.
- 3. Lire le résultat du dernier dictionnaire de l'algorithme du simplexe.
- 4. Interpréter le résultat de l'algorithme du simplexe (valeurs marginales, ressources excédantes, ressources épuisées)
- 5. Classifier un programme linéaire suivant la nature de son ensemble de solutions (solution unique, solution non bornée, solutions multiples, (programme impossible).
- 6. Citer les avantages de l'algorithme de simplexe.

TP1 (solveur PULP sur python)

Dualité (4H30)

A la fin de ce chapitre l'étudiant sera capable de:

- 1. Construire le problème Dual.
- 2. Interpréter le problème dual d'une vision économique.
- 3. Déterminer le Dual de tout programme linéaire avec deux méthodes :
 - En passant par la forme canonique
 - En utilisant le tableau de transformation
- 4. Définir la notion d'une contrainte saturée
- 5. Déterminer la solution du Dual (resp. du Primal) à partir du celle du Primal (resp. du Dual) :
 - En utilisant le théorème des écarts complémentaires
 - En utilisant le tableau simplexe
- 6. Discuter les différents cas de résolution Primal/Dual :
 - Solution non bornée
 - Solution optimale
 - Pas de solution

TP2 (solveur PULP sur python)

Textbook :	Recherche opérationnelle et applications, Bernard Foltz, 2012-2013. Lien: http://homepages.ulb.ac.be/~bfortz/ro.pdf						
	INTRODUCTION TO OPERATIONS RESEARCH. Modeling and Solution, 2001. FREDERICK S. HILLIER, GERALD J. LIEBERMAN. Disponible à la bibliothèque d'ESPRIT.						

Matrice de compétences

	L'acquisition des connaissances techniques et la maîtrise de leur mise en œuvre					L'adaptation aux exigences propres de l'entreprise et de la société					Prise en compte de la dimension organisationnelle personnelle, et culturelle				
	1	2	3	4	5	6	7		8	9	10	11	12	13	14
Programmation Linéaire	Х	Х	Х		Х	Χ	Χ				Х	Χ		Χ	

Compétence n° 1 : La connaissance et la compréhension d'un large champ de sciences fondamentales et la capacité d'analyse et de synthèse qui leur est associée.

Compétence n° 2: L'aptitude à mobiliser les ressources d'un champ scientifique et technique liées à une spécialité.

Compétence n° 3 : La maîtrise des méthodes et des outils de l'ingénieur.

Compétence n° 4 : La capacité à concevoir, concrétiser, tester et valider des solutions, des méthodes, produits, systèmes et services innovants.

Compétence n°5 : La capacité à effectuer des activités de recherche, maîtriser les dispositifs expérimentaux et le travail collaboratif.

Compétence n°6:La capacité à trouver l'information pertinente, à l'évaluer et à l'exploiter : compétence informationnelle.

Compétence n° 7 : L'aptitude à prendre en compte les enjeux de l'entreprise: dimension économique, respect de la qualité, compétitivité et productivité, exigence commerciales, intelligence économique.

Compétence n° 8 : L'aptitude à prendre en compte les enjeux des relations au travail, d'éthique, de sécurité et de santé au travail.

Compétence n° 9: L'aptitude à prendre en compte les enjeux environnementaux, notamment par application des principes du développement durable.

Compétence n° 10 : L'aptitude à prendre en compte les enjeux et les besoins de la société.

Compétence n° 11 : La capacité à s'insérer dans la vie professionnelle, à s'intégrer dans une organisation, à l'animer et à la faire évoluer: exercice de responsabilité, esprit d'équipe, engagement et leadership, management de projets, maitrise d'ouvrage, communication avec des spécialistes comme avec des non-spécialistes.

Compétence n° 12 : La capacité à entreprendre et innover, dans le cadre de projets personnels ou par l'initiative et l'implication au sein de l'entreprise dans des projets entrepreneuriaux.

Compétence n° 13: l'aptitude à travailler en contexte international : maitrise d'une ou plusieurs langues étrangères et ouverture culturelle associée, capacité d'adaptation aux contextes internationaux.

Compétence n° 14: La capacité à se connaître, à s'auto évaluer, à gérer ses compétences à opérer ses choix professionnels.