Ajuste de curvas por mínimos cuadrados

Contents

- 3.1. Introducción
- 3.2. Otros modelos lineales
- 3.3. Regresión por mínimos cuadrados generalizado
- 3.4. Mínimos cuadrados en python
- 3.5. Referencias

MFC301 - Métodos Numéricos

Profesor: Francisco Ramírez Cuevas

Fecha: 22 de Agosto 2022

3.1. Introducción

La gran mayoría de las fórmulas en la ciencia no pueden ser determinadas de forma teórica y debemos recurrir a relaciones empíricas en base a experimentos.

Por ejemplo, en mecánica de fluidos decimos que la fuerza de arrastre, F_D sobre un cuerpo es proporcional al cuadrado de la velocidad del flujo alrededor el cuerpo, V.

$$F_D = C_D V^2$$

Aunque esta relación es válida para cualquier cuerpo, el valor del coeficiente de arrastre C_D , cambia dependiendo del objeto.

En la gran mayoría de los casos, este valor no se puede determinar de forma analítica, y debemos recurrir a ensallos en un tunel de viento para determinar la relación entre estas dos variables.

El valor de ${\cal C}_D$ estará dado por la curva que mejor se ajuste a estos valores experimentales.

3.1.1. Regresión lineal unidimensional

Consideremos el caso más simple donde buscamos la recta y=f(x) que mejor se ajuste a nuestros datos.

$$y = a_0 + a_1 x,$$

donde a_0 y a_1 son coeficientes representando el intercepto y la pendiente, respectivamente.

¿Cómo determinamos los coeficientes? Se puede demostrar que la mejor forma de determinar los coeficientes a_0 y a_1 es minimizando el error cuadrático:

$$S_r = \sum_{i=1}^m \left(y_i - a_0 - a_1 x_i
ight)^2$$

donde $i = 1, \dots, m$ son los datos de la muestra considerando un total de m datos.

Este criterio se denomina **ajuste por mínimos cuadrados**, y tiene un número de ventajas, como por ejemplo, entregar una solución única para un set de datos.

3.1.2. Ajuste por mínimos cuadrados paso a paso

Primero, para buscar el mínimo de S_r aplicamos la derivada respecto a sus variables, es decir, a_0 y a_1

$$egin{aligned} rac{\partial S_r}{\partial a_0} &= -2 \sum \left(y_i - a_0 - a_1 x_i
ight) \ rac{\partial S_r}{\partial a_1} &= -2 \sum \left[(y_i - a_0 - a_1 x_i) x_i
ight] \end{aligned}$$

El mínimo está dado cuando ambas derivadas son 0.

$$0 = \sum y_i - a_0 \sum 1 - a_1 \sum x_i \ 0 = \sum y_i x_i - a_0 \sum x_i - a_1 \sum x_i^2$$

El resultado podemos expresarlo como un sistema de ecuaciones lineales:

$$\begin{bmatrix} m & \sum x_i \\ \sum x_i & \sum x_i^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_i y_i \end{bmatrix}$$

La solución de este sistema nos entregará los valores de a_0 y a_1

Consideremos los datos del problema del tunel de viento

```
Modelo lineal:
y = -234.286 + 19.470*x
```

```
# ploteamos nuestro resultado
import matplotlib.pyplot as plt
plt.rcParams.update({'font.size': 18})

# contruimos el modelo
y = lambda x: a[0] + a[1]*x
x = np.linspace(0,85,100) # creamos un arreglo para ploteo

plt.figure(figsize = (7,6))
plt.plot(xi, yi, 'bo')
plt.plot(x, y(x), '-r')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```


3.1.3. Cuantificación del error

Para cuantificar la calidad de nuestro modelo utilizamos el **coeficiente de** determinación, r^2 :

$$r^2 = \frac{S_t - S_r}{S_t} \tag{3.1}$$

donde S_r es el error del modelo lineal, y $S_t = \sum (y_i - \bar{y})^2$ es la desviación de los datos respecto a la media \bar{y} .

El coeficiente de determinación nos permite cuantificar la calidad de nuestro modelo para representar una muestra, en comparación con la media \bar{y} .

En python este valor está dado por la función r2_score de la librería scikit-learn

```
from sklearn.metrics import r2_score
print('coef. de determinación')
print('r2 = %.4f' % r2_score(yi,y(xi)))
```

```
coef. de determinación
r2 = 0.8805
```

El resultado indica que el modelo lineal explica un 88.05% de los datos

Notar que r2_score(yi,y(xi))) requiere dos arreglos de iguales dimensiones.

3.1.4. Linealización de funciones no lineales

Existen algúnos modelos no lineales comúnes en ingeniería que pueden ser linealizados para luego realizar ajuste por mínimos cuadrados.

Algúnos ejemplos son:

• modelo exponencial

$$y = \alpha e^{\beta x} \Rightarrow \ln(y) = \ln(\alpha) + \beta x$$

• modelo de potencia

$$y = lpha x^eta \Rightarrow \log(y) = \log(lpha) + eta \log(x)$$

• modelo de tasa de crecimiento de saturación

$$y = \alpha \frac{x}{\beta + x} \Rightarrow \frac{1}{y} = \frac{1}{\alpha} + \frac{\beta}{\alpha} \frac{1}{x}$$

Para el modelo de potencia, podemos usar " \log " o " \ln " para linealizar, tomando la precausión de usar la función inversa correcta para recuperar el modelo original, es decir:

$$y = 10^{\log \alpha + \beta \log x}$$
 o $y = e^{\ln \alpha + \beta \ln x}$

Los coeficientes del modelo linealizado serán diferentes dependiendo de si se usa " \log " o " \ln ". Sin embargo, el modelo original debe ser el mismo, independientemente de la función utilizada para la linealización.

Analicemos el ejemplo anterior, ahora ajustando los datos al modelo de potencia $y=\alpha x^{\beta}$

```
import numpy as np
from numpy import \log \# en \ python \ log(x) = ln(x)
xi = np.array([10, 20, 30, 40, 50, 60, 70, 80])
yi = np.array([ 25, 70, 380, 550, 610, 1220, 830, 1450])
# linealizamos las variables
log xi = log(xi)
log_yi = log(yi)
\# construimos un sistema Ax = b
m = len(xi) # numero de datos
A = np.array([[ m , np.sum(log_xi) ],
              [np.sum(log_xi), np.sum(log_xi**2)]])
b = np.array([[np.sum(log_yi)],
              [np.sum(log yi*log xi)]])
# resolvemos el sistema
a = np.linalg.solve(A,b)
print('Modelo linealizado: \ln \log(y) = \%.3f + \%.3f*\log(x)'
     % (a[0], a[1]))
```

```
Modelo linealizado:
log(y) = -1.294 + 1.984*log(x)
```

Para retornar al modelo original, aplicamos

$$y=e^{(a_0+a_1\ln x)}$$

```
from numpy import exp
print('Modelo no-lineal')
print('y = %.3f*x^%.3f' % (exp(a[0]), a[1]))
```

```
Modelo no-lineal y = 0.274*x^1.984
```

Graficamos el resultado linealizado y sin linealizar

```
from numpy import exp

# reconstrumimos el modelo original con: exp(log(a)+b log(x))
y = lambda x: exp(a[0] + a[1]*log(x))
```

```
# modelo linealizado
import matplotlib.pyplot as plt
x = np.linspace(1,85,100) # arreglo para ploteo

plt.rcParams.update({'font.size': 18})
plt.figure(figsize = (6,5))
plt.plot(log_xi, log_yi, 'bo')
plt.plot(log(x), log(y(x)), '-r')
plt.xlabel('log x')
plt.ylabel('log y')
plt.show()
```



```
# modelo original
import matplotlib.pyplot as plt
x = np.linspace(1,85,100) # arreglo para ploteo

plt.rcParams.update({'font.size': 18})
plt.figure(figsize = (6,5))
plt.plot(xi, yi, 'bo')
plt.plot(x, y(x), '-r')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```


Analizamos la calidad del modelo

```
# analizamos la calidad del modelo
from sklearn.metrics import r2_score

print('coef. de determinación')
print('r2 = %.4f' % r2_score(yi,y(xi)))

coef. de determinación
r2 = 0.8088
```

El resultado indica que el modelo lineal explica un 80.88% de los datos

El coeficiente de determinación para el modelo no-lineal ($r^2=80.88\%$) es menor que para el modelo lineal ($r^2=88.05\%$). Sin embargo, el modelo no-lineal se ajusta mejor al modelo físico (por ejemplo, F=0 para v=0).

Por lo tanto, el modelo de potencia:

$$y = 0.274x^{1.984},$$

es el más adecuado para los datos.

3.2. Otros modelos lineales

El procedimiento de ajuste de curva por mínimos cuadrados se puede extender para modelos de ajuste más complejos, tales como:

- Regresión polinomial
- Regresión lineal multivariable

3.2.1. Regresión polinomial

En su forma general, el modelo polinomial corresponde a una función univariable de la forma

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots a_n x^n \tag{3.2}$$

Por ejemplo, consideremos el modelo $y=a_0+a_1x+a_2x^2$. Según el método de regresión por mínimos cuadrados, la mejor curva está dada por el mínimo de:

$$S_r = \sum_{i=1}^m ig(y_i - a_0 - a_1 x_i - a_2 x_i^2ig)^2,$$

Aplicando $rac{\partial S_r}{\partial a_0}=0$, $rac{\partial S_r}{\partial a_1}=0$ y $rac{\partial S_r}{\partial a_2}=0$, llegamos al sistema de ecuaciones:

$$egin{bmatrix} m & \sum x_i & \sum x_i^2 \ \sum x_i & \sum x_i^2 & \sum x_i^3 \ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 \end{bmatrix} egin{bmatrix} a_0 \ a_1 \ a_2 \end{bmatrix} = egin{bmatrix} \sum y_i \ \sum x_i y_i \ \sum x_i^2 y_i \end{bmatrix}$$

Cuya solución nos entrega el valor de los coeficientes a_0 , a_1 y a_2

```
Modelo polinomial:
y = -178.482 + 16.122*x + 0.037*x^2
```

```
# reconstrumimos como exp(log(a)+b log(x))
y = lambda x: a[0] + a[1]*x + a[2]*x**2

# analizamos la calidad del modelo
from sklearn.metrics import r2_score

print('coef. de determinación')
print('r2 = %.4f' % r2_score(yi,y(xi)))
```

```
coef. de determinación
r2 = 0.8818
```

Notar como gráficamente el modelo sigue una tendencia casi lineal.

```
import matplotlib.pyplot as plt
x = np.linspace(1,85,100) # arreglo para ploteo

plt.rcParams.update({'font.size': 18})
plt.figure(figsize = (6,5))
plt.plot(xi, yi, 'bo')
plt.plot(x, y(x), '-r')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```


Al incluir término a_2x^2 en nuestro modelo lineal, a_0+a_1x , esperabamos un mejor ajsute con el modelo físico $F_D=C_DV^2$.

Sin embargo, la tendencia del método por minimizar el error (en otras palabras, mejorar r^2) lleva a forzar una curva lineal que no se ajusta a la física del problema.

3.2.2. Regresión lineal multidimensional

Para problemas con más de una variable independiente se deben untilizar modelos multidimencionales. Un modelo común corresponde al modelo linear de la forma:

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n$$
(3.3)

Por ejemplo, para dos dimensiones tenemos:

$$y = a_0 + a_1 x_1 + a_2 x_2$$

la mejor curva está dada por el mínimo de:

$$S_r = \sum_{i=1}^m \left(y_i - a_0 - a_1 x_{1,i} + a_2 x_{2,i}
ight)^2,$$

Aplicando $rac{\partial S_r}{\partial a_0}=0$, $rac{\partial S_r}{\partial a_1}=0$ y $rac{\partial S_r}{\partial a_2}=0$, llegamos al sistema de ecuaciones:

$$egin{bmatrix} m & \sum x_{1,i} & \sum x_{2,i} \ \sum x_{1,i} & \sum x_{2,i} & \sum x_{1,i}x_{2,i} \ \sum x_{2,i} & \sum x_{1,i}x_{2,i} & \sum x_{2,i}^2 \end{bmatrix} egin{bmatrix} a_0 \ a_1 \ a_2 \end{bmatrix} = egin{bmatrix} \sum y_i \ \sum x_{1,i}y_i \ \sum x_{2,i}y_i \end{bmatrix}$$

Cuya solución nos entrega el valor de los coeficientes a_0 , a_1 y a_2

Gráficamente, el método de regresión por mínimos cuadrados corresponde a determinar el plano que minimice el error cuadrático.

3.3. Regresión por mínimos cuadrados generalizado

3.3.1. Modelo lineal generalizado

Todos los modelos revisados anteriormente pertenecen a un modelo lineal general con la forma:

$$y = a_0 z_0 + a_1 z_1 + a_2 z_2 + \dots + a_n z_n, \tag{3.4}$$

donde z_0, z_1, \ldots, z_n son funciones base.

Por ejemplo:

modelo	z_0	z_1	z_2
linear unidimensional	1	x	
polinomial	1	x	x^2
linear multidimensional	1	x_1	x_2

El término "lineal" hace referencia al tipo de dependencia entre las funciones base. Tal como sucede con el modelo polinomial, las funciones base z_i pueden ser no-lineales. Por ejemplo, sinusoides:

$$y = a_0 + a_1 \cos(x) + a_1 \sin(x) + a_3 \cos(2x) + a_4 \sin(2x) \dots,$$

3.3.2. Regresión por mínimos cuadrados

En general, se busca minimizar el error:

$$S_r = \sum_{i=1}^m (y(x_i) - y_i)^2 = \sum_{i=1}^m \left[\sum_{j=1}^n a_j z_j(x_i) - y_i \right]^2.$$
 (3.5)

Se puede demostrar que la minimización de este error está dado por la solución del sistema:

$$Z^T Z \alpha = Z^T Y \tag{3.6}$$

donde:

$$Z = egin{bmatrix} z_0(x_1) & z_1(x_1) & \cdots & z_n(x_1) \ z_0(x_2) & z_1(x_2) & \cdots & z_n(x_2) \ dots & dots & \ddots & dots \ z_0(x_m) & z_1(x_m) & \cdots & z_n(x_m) \end{bmatrix}; \qquad lpha = egin{bmatrix} a_0 \ a_1 \ dots \ a_n \end{bmatrix}; \qquad Y = egin{bmatrix} y_1 \ y_2 \ dots \ y_m \end{bmatrix}$$

La solución está dada por $lpha = \left(Z^TZ\right)^{-1}Z^TY$.

La matriz $\left(Z^TZ
ight)^{-1}Z^T$ se conoce como **matriz pseudo-inversa**

3.4. Mínimos cuadrados en python

Analicemos distintos métodos en python para ajustar el modelo de ajuste para el experimento del tunel de viento

3.4.1. numpy.linalg.pinv (matriz pseudo inversa)

Una forma directa de encontrar los coeficientes del modelo de regresión es determinando la matriz pseudo inversa directamente

Consideremos un modelo lineal, $y = a_0 + a_1 x$ para el ejemplo del tunel de viento.

La matriz Z en este caso es:

$$Z = egin{bmatrix} 1 & x_1 \ 1 & x_2 \ dots & dots \ 1 & x_m \end{bmatrix}$$

```
import numpy as np
from numpy.linalg import pinv # pseudo-inverse

# recopilación de la muestra
xi = np.array([ 10, 20, 30, 40, 50, 60, 70, 80])
yi = np.array([ 25, 70, 380, 550, 610, 1220, 830, 1450])

# construimos la matriz Z en base al modelo a0 + a1*x
Z = np.vstack((xi**0, xi**1)).T

# matriz pseudo-inversa (A^T*A)^(-1)*A^T
a = np.dot(pinv(Z),yi)
print('Modelo lineal: y = %.3f + %.3f*x' % (a[0], a[1]))
```

```
Modelo lineal: y = -234.286 + 19.470*x
```

La función numpy.vstack genera una matriz $k \times N$, considerando k arreglos 1D con N elementos cada uno. **Es la forma más segura de apilar vectores fila** (ver documentación <u>acá</u>).

3.4.2. numpy.linalg.lstsq (solución de sistemas lineales por mínimos cuadrados)

Es un método general para resolver sistemas lineales de la forma Ax=b, independiente la relación entre el número de ecuaciones linealmente independientes y el número de incognitas (es decir, sistemas $\operatorname{rank}\left([A|b]\right) \neq \operatorname{rank}\left(A\right)$). Se basa en minimizar la norma de Frobenius $\|Ax-b\|$.

La función 1stsq genera más de un output (ver documentación <u>acá</u>). Para conceptos del modelo de ajuste, solo necesitamos el primer output [0]

```
import numpy as np
from numpy.linalg import lstsq

# construimos el modelo
xi = np.array([ 10, 20, 30, 40, 50, 60, 70, 80])
yi = np.array([ 25, 70, 380, 550, 610, 1220, 830, 1450])

# construimos la matriz Z en base al modelo a0 + a1*x
Z = np.vstack((xi**0, xi**1)).T

a = np.linalg.lstsq(Z, yi, rcond=None)[0]
print('Modelo lineal: y = %.3f + %.3f*x' % (a[0], a[1]))
```

```
Modelo lineal: y = -234.286 + 19.470*x
```

3.4.3. numpy.polyfit (sistemas polinomiales de unidimencionales)

Esta función está especificamente diseñada para modelos polinomiales de una dimensión, es decir, $y=a_0+a_1x+a_2x^2+\dots a_nx^n$

Los coeficientes de polyfit están ordenados de mayor potencia a menor potencia.

Por ejemplo, para generar un modelo en base a un polinomio de orden 2,

```
a = numpy.polyfit(xi,yi,2) # coeficientes a0, a1, a2, ...
```

```
donde a_0 = a[2], a_1 = a[1], a_2 = a[0]
```

Para evitar confusiones con el orden de los coeficientes, **se recomienda utilizar** numpy.polyval(a,x) para genera una función en base al modelo determinado, donde x es un valor arbitrario y a son los coeficientes determinados por polyfit.

```
y = numpy.polyval(a,x) # función en base al modelo y(x) = a\theta + a1*x + ... am*x^m
```

```
import numpy as np

# construimos el modelo
xi = np.array([ 10, 20, 30, 40, 50, 60, 70, 80])
yi = np.array([ 25, 70, 380, 550, 610, 1220, 830, 1450])

# Aplicamos modelo polinomial con polyfit
a = np.polyfit(xi,yi,2)
print('Modelo polinomial:')
print('y = %.3f + %.3f*x + %.3f*x^2' % (a[2], a[1], a[0]))
```

```
Modelo polinomial:
y = -178.482 + 16.122*x + 0.037*x^2
```

```
# evaluamos el modelo con polyval
import matplotlib.pyplot as plt
x = np.linspace(1,85,100) # arreglo para ploteo

plt.rcParams.update({'font.size': 18})
plt.figure(figsize = (6,5))
plt.plot(xi, yi, 'bo')
plt.plot(x, np.polyval(a,x), '-r') # y(x) con polyval
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```


3.4.4. scipy.optimize.curve_fit (regresión no-lineal)

Esta función utiliza un método iterativo para ajustar una curva a una muestra. La función curve_fit puede ser utilizada para cualquier tipo de modelo, linear o no-linear, unidimensional o multidimensional.

La función entrega una serie de outputs (ver documentación <u>acá</u>). Sin embargo, para determinar los coeficientes solo necesitamos el output [0]

Por ejemplo, ajustemos los datos al modelo $y=\alpha x^{\beta}$

```
import numpy as np
from scipy.optimize import curve_fit

xi = np.array([ 10, 20, 30, 40, 50, 60, 70, 80])
yi = np.array([ 25, 70, 380, 550, 610, 1220, 830, 1450])

# definimos nuestro modelo en formato de función
def model(x,a,b):
    y = a*x**b
    return y

a = curve_fit(model, xdata = xi, ydata = yi)[0]
print('Modelo no-lineal')
print('y = %.3f*x^%.3f' % (a[0], a[1]))
```

```
Modelo no-lineal
y = 2.538*x^1.436
```

```
import matplotlib.pyplot as plt
x = np.linspace(1,85,100) # arreglo para ploteo

plt.rcParams.update({'font.size': 18})
plt.figure(figsize = (6,5))
plt.plot(xi, yi, 'bo')
plt.plot(x, model(x,a[0],a[1]), '-r')
plt.xlabel('x')
plt.ylabel('y')
plt.show()
```


Notar que los coeficientes de este modelo son diferentes a los que determinamos mediante regresión lineal en la función linealizada.

$$y = 0.274x^{1.984} \quad (r^2 = 80.88\%)$$

Esto es debido a que la regresión no-lineal busca minimizar el error

$$S_r = \sum_{i=1}^m (f_{
m nl}(x_i) - y_i)^2,$$

de forma iterativa, y sin linealizar el modelo no-lineal $f_{\rm nl}(x)$. Así, curve_fit permite buscar soluciones con valores r^2 más cercanos a 1 que no son accesibles para el modelo lineal

En efecto, si analizamos el coeficiente de determinación del modelo generado por curve_fit:

```
from sklearn.metrics import r2_score
print('coef. de determinación')
print('r2 = %.4f' % r2_score(yi,model(xi,a[0],a[1])))
```

```
coef. de determinación
r2 = 0.8769
```

En el caso de un modelo lineal, ambos métodos generan el mismo modelo

```
import numpy as np
from scipy.optimize import curve_fit

xi = np.array([ 10, 20, 30, 40, 50, 60, 70, 80])
yi = np.array([ 25, 70, 380, 550, 610, 1220, 830, 1450])

def model(x,a,b):
    y = a+ b*x
    return y

a = curve_fit(model, xdata = xi, ydata = yi)[0]
print('Modelo lineal: y = %.3f + %.3f*x' % (a[0], a[1]))
```

```
Modelo lineal: y = -234.286 + 19.470*x
```

3.4.5. Regresión lineal vs no-lineal

Respecto a la regresión no-lineal:

Ventajas

- Permite trabajar con modelos más generales.
- Para modelos no-lineales, el método produce curvas con mejores coeficientes de determinación en comparación con modelos lineales en base a linealización.

Desventajas

• Como todo método iterativo, el metodo puede sufrir problemas de inestabilidad condicionados al modelo propuesto, $f_{\rm nl}(x)$. Esto puede derivar en problemas de convergencia, soluciones locales, o sensibilidad a los valorse iniciales.

En general, se recomienda **utilizar** scipy.optimize.curve_fit, u otros métodos de ajuste no-lineal, **exclusivamente para modelos no-lineales**.

3.5. Referencias

- Kong Q., Siauw T., Bayen A. M. Chapter 16: Least Square Regression in <u>Python Programming and Numerical Methods A Guide for Engineers and Scientists</u>, 1st Ed., Academic Press, 2021
- Chapra S., Canale R. Capítulo 17: Regresión por mínimos cuadrados en Métodos Numéricos para Ingenieros, 6ta Ed., McGraw Hill, 2011

By Francisco V. Ramirez-Cuevas

© Copyright 2022.