《 数值分析 》期末考试卷 (A、B)										本题 得分 二 二、单选题 〖每个×分,共计××分〗
使用专业、班级 学号			_ 姓名				1. 设 x^* 为方程 $x = \varphi(x)$ 的不动点, $\varphi'(x)$ 在 x^* 的邻近连续且(),则不动点 迭代法 $x_{k+1} = \varphi(x_k)$ 在 x^* 邻近具有局部收敛性。			
题 数	_	二	三	四	五.	六	七	总	分	$A \varphi'(x^*) < 1$ $B 0 < \varphi'(x^*) < 1$
得分										$C \varphi'(x^*) < 1$ $D \varphi'(x^*) \le 1$
										2. 下列哪种说法正确()。
本题										A Gauss-seidel 迭代法比 Jacobi 迭代法收敛快 B 等距节点多项式插值次数越高逼近效果越好 C 线性方程组的基本迭代法性质取决于迭代矩阵,与初值选取无关 D 非线性方程的基本迭代法性质取决于迭代函数,与初值选取无关 3. 显式 Euler 方法的绝对稳定区间是()。
2. Newton-Cotes 公式的系数和 $\sum_{k=0}^{n} C_k^{(n)} = $ 。										3. 业人 Eulei 万石的绝对 怎是区内是(
3. Simpson 公式具有次代数精度。										$A -2 \le \lambda h \le 0 \qquad B -2.51 \le \lambda h \le 0$
5. Simpson 女共共 [$C -2.785 \le \lambda h \le 0 \qquad D -\infty < \lambda h \le 0$	
4. 用改进 Euler 法求解初值问题										是 4. 迭代法 $x_{k+1} = \frac{2}{3} x_k + \frac{1}{x_k^2}$ 收敛于 $x^* = \sqrt[3]{3}$,此迭代序列是() 阶收敛的。
										A 一阶 B 二阶
5. 若 x* 是函数	f(x)的	m 重根,	则满足	$f(x^*) =$	$f'(x^*) =$	$\cdots = f^{(m-1)}$	$(x^*) = 0$	且		C 三阶
。 6. 解一阶常微分方程初值问题的改进 Euler 法具有										

考试形式开卷()、闭卷(),在选项上打(√) 开课教研室______ 命题教师_____ 命题时间_____ 使用学期______ 总张数_____ 教研室主任审核签字 ______

1

	正而入 1 3 网 6 4 /1	-14
本题 得分 三、确定以下求积公式中的求积系数,使其代数	本题 本题 得分 [本版] [本版] [本版] [本版] [本版] [本版] [本版] [本版]	四、用 Romberg 求积公式计算 $\int_1^3 \frac{dx}{x}$, 要求误差不超过 $\frac{1}{2} \times 10^{-4}$
造的求积公式所具有的代数精度: $\int_{-2h}^{2h} f(x) dx \approx A_{-1} f(-h) + A_0 f(0) + A_1 f(h)$		
V -2 <i>n</i>		

	江南大学考试卷专用纸							
7	本题 本题	本题						
	$\begin{cases} y' = -y \\ y(0) = 1 \end{cases}, 0 \le x \le 1$							
y(E明其近似解为 $y_k = (\frac{2-h}{2+h})^k$,并且当 $h \to 0$ 时,收敛于该初值问题的精确解 $(x) = e^{-x}$ 。							
		本题 得分 七、求改进 Euler 法的绝对稳定区间。						