11. Aufgabenblatt zur Vorlesung

Grundlagen der theoretischen Informatik

SoSe 2020

Wolfgang Mulzer

Abgabe bis zum 13. Juli 2020, 10 Uhr, im Whiteboard Dies ist das letzte Aufgabenblatt.

Bitte erläutern und begründen Sie alle Ihre Antworten.

Aufgabe 1 Chomsky Normalform

5+5 Punkte

(a) Sei G eine kontextfreie Grammatik in Chomsky Normalform, und sei $w \in L(G)$ mit $n := |w| \ge 1$. Zeigen Sie, dass jede Ableitung von w genau 2n - 1 Schritte besitzt.

Hinweis: Betrachten Sie den zugehörigen Syntaxbaum.

(b) Sei G eine kontextfreie Grammatik in Chomsky Normalform mit b Variablen. Zeigen Sie: Wenn ein Wort $w \in L(G)$ existiert, so dass eine Ableitung von w mindestens 2^b Schritte benötigt, so ist L(G) unendlich.

Hinweis: Gehen Sie vor wie im Beweis des Pumping-Lemmas.

Aufgabe 2 Pumping-Lemma

3+3+4 Punkte

Zeigen Sie, dass die folgenden Sprachen nicht kontextfrei sind.

- (a) $\Sigma = \{0, 1\}$ und $L = \{w\overline{w} \mid w \in \Sigma^*\}$, wobei \overline{w} aus w hervor geht, indem man jede 0 durch eine 1 und jede 1 durch eine 0 ersetzt.
- (b) $\Sigma = \{0, 1\} \text{ und } L = \{0^n 1^{n^2} \mid n \in \mathbb{N}\}.$
- (c) $\Sigma = \{a, b, c\}$ und $L = \{a^m b^n c^{mn} \mid m, n \in \mathbb{N}\}.$

Aufgabe 3 Verständnisfragen

2+2+2+2+2 Punkte

Welche der folgenden Aussagen treffen zu? Begründen Sie Ihre Antwort jeweils in einem Satz.

- (a) Jede Sprache $L \subseteq \{0,1\}^*$ kann durch eine Grammatik erzeugt werden.
- (b) Jede kontextfreie Sprache hat unendlich viele Wörter.
- (c) Die Vereinigung zweier kontextfreier Sprachen ist wieder kontextfrei.
- (d) Wenn eine Sprache kontextsensitiv ist, dann ist sie auch regulär.
- (e) Die folgende Sprache kann durch eine Grammatik erzeugt werden:
 - $\{\langle M \rangle \mid \text{Die Turingmaschine } M \text{ hält nach höchstens } 16534 \text{ Schritten} \}.$