Теория автоматов и формальных языков Введение

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

6 сентября 2016г.

Контекст: языки

- Естественные
 - Русский, английский...

Контекст: языки

- Естественные
 - Русский, английский...
- Искусственные
 - ▶ Эсперанто, ложбан...
 - Клингонский, эльфийский...

Контекст: языки

- Естественные
 - Русский, английский...
- Искусственные
 - Эсперанто, ложбан...
 - Клингонский, эльфийский...
 - ► C++, Java, C#, Haskell, OCaml, Perl, Coq, Agda...

Контекст: языковые процессоры

- Текстовые редакторы
- Компиляторы, интерпретаторы, трансляторы
- Среды разработки
- Все нуждаются в некотором формализованном представлении языка

Язык программирования

- Синтаксис правила построения программ из символов
- Семантика правила истолкования программ, определяющие их смысл

Пример: язык арифметических выражений

- Алфавит символов: цифры, скобки, знаки арифметических операций (+,-,*,/)
- Синтаксис
 - ► **Терм**: последовательность цифр или любое **выражение** в скобках
 - Слагаемое: последовательность термов, соединненых знаками умножения и деления
 - ► Выражение: последовательность слагаемых, соединенных знаками сложения и вычитания (перед первым слагаемым может стоять минус)
- Семантика
 - Значение выражения

- Язык, на котором дано описание языка
 - ▶ Естественный язык

- Язык, на котором дано описание языка
 - Естественный язык
 - Язык металингвистичесих формул Бэкуса (БНФ)

- Язык, на котором дано описание языка
 - ▶ Естественный язык
 - Язык металингвистичесих формул Бэкуса (БНФ)
 - ▶ Синтаксические диаграммы

- Язык, на котором дано описание языка
 - Естественный язык
 - Язык металингвистичесих формул Бэкуса (БНФ)
 - ▶ Синтаксические диаграммы
 - Грамматики...

Алфавит

- Алфавит конечное множество символов
 - $\blacktriangleright \{a, b, c, \dots, z\}$
 - $\blacktriangleright \{\alpha, \beta, \gamma, \dots, \omega\}$
 - **▶** {0, 1}
 - ▶ { <u>let</u>, <u>in</u>, <u>where</u>, . . . }

Цепочка

- Цепочка (предложение, слово) любая конечная последовательность символов алфавита
 - cat
 - ▶ κατ
 - 011000110110000101110100
 - ▶ main = putStrLn . show . inc 2 where inc = \x -> x + 1
- ullet Пустая цепочка arepsilon цепочка, не содержащая ни одного символа
 - ightharpoonup arepsilon не является символом алфавита

Конкатенация строк

- Конкатенация строк α и β ($\alpha \cdot \beta = \alpha \beta$) результат приписывания строки β в конец строки α
 - $\forall \alpha \beta \gamma. (\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$
 - $\forall \alpha.\alpha \cdot \varepsilon = \varepsilon \cdot \alpha = \alpha$

БНФ — Бэкуса-Наура форма

- Символ элементарное понятие языка
 - + означает сложение в языке арифметических выражений
- Метапеременная сложное понятие языка
 - ▶ Переменной <выражение> можно обозначить выражение
- Формула
 - ▶ <определяемый символ>::=<посл. $1>|\dots|<$ посл.n>
 - В правой части формулы альтернатива конкатенаций строк, составленных из символов и метапеременных
- Пример: число
 - <число>::=<цифра> | <цифра><число>

Расширенная форма Бэкуса Наура (EBNF)

- Более емкие операции
- Итерация

▶
$$<$$
х $>$::= $\{<$ у $>\}$ эквивалентно: $<$ х $>$::= ε $|$ $<$ у $><$ х $>$

- Условное вхождение
 - ▶ <х> ::= [<у>] эквивалентно: <х> ::= ε | <у>
- Скобки для группировки
 - ► (<x> | <y>) <z> эквивалентно: <x><z> | <y><z>

Пример: арифметические выражения

```
< expr > ::= [-] < factor > {< +- > < factor >} 
 < +- > ::= +|- 
 < factor > ::= < term > {< */ > < term >} 
 < */ > ::= *|/ 
 < term > ::= < number > | (< expr >)
```


Операции над строками

- Обращение (реверс) цепочки a^R цепочка, символы которой записаны в обратном порядке
 - ► Если x = abc, $x^R = cba$
 - $ightharpoonup \varepsilon^R = \varepsilon$
- n-я степень цепочки a^n конкатенация n повторений цепочки
 - $a^0 = \varepsilon$
 - $a^n = a \cdot a^{n-1} = a^{n-1} \cdot a$
- Длина цепочки |a| количество составляющих ее символов
 - $|babb| = 4, |babb|_a = 1, |babb|_b = 3, |babb|_c = 0$
 - $|\varepsilon|=0$

Формальный язык

- V алфавит
 - $V = \{0, 1\}$
- V^* множество, содержащее все цепочки в алфавите V, включая пустую цепочку
 - $V^* = \{\varepsilon, 0, 1, 00, 11, 01, 10, 000, 001, 011, ...\}$
- $V^+ = V^* \setminus \{\varepsilon\}$
 - $V^+ = \{0, 1, 00, 11, 01, 10, 000, 001, 011, \dots\}$
- V подмножество множества всех цепочек в этом алфавите.
 - lacktriangle Для любого языка L справедливо $L \in V^*$

Описание языка: формальная грамматика

- ullet Порождающая грамматика G это четверка $\langle V_T, V_N, P, S
 angle$
 - V_T алфавит терминальных символов (терминалов)
 - $ightharpoonup V_N$ алфавит нетерминальных символов (нетерминалов)
 - $\star V_T \cap V_N = \emptyset$
 - ★ $V ::= V_T \cup V_N$
 - ▶ Р конечное множество правил вида $\alpha \to \beta$
 - $\star \quad \alpha \in V^* V_N V^*$
 - \star $\beta \in V^*$
 - lacktriangle S начальный нетерминал грамматики, $S\in \mathcal{N}$

Пример: язык чисел в двоичной системе счисления

$$V_T = \{0, 1\}; V_N = \{S, N, A\}$$

$$\begin{array}{ccc} S & \rightarrow & 0 \\ S & \rightarrow & N \\ S & \rightarrow & -N \\ N & \rightarrow & 1A \\ A & \rightarrow & 0A \\ A & \rightarrow & 1A \\ A & \rightarrow & \varepsilon \end{array}$$

Пример: язык чисел в двоичной системе счисления

Пример: язык чисел в двоичной системе счисления

$$V_T = \{0, 1\}; V_N = \{S, N, A\}$$

$$S \rightarrow 0$$

 $S \rightarrow N$
 $S \rightarrow -N$
 $N \rightarrow 1A$
 $A \rightarrow 0A$
 $A \rightarrow 1A$
 $A \rightarrow \varepsilon$

$$S \rightarrow 0$$
 $S \rightarrow 0 \mid N \mid -N$ $S \rightarrow 0 \mid [-]N$ $S \rightarrow 0 \mid [-]N$ $S \rightarrow N$ $S \rightarrow 0 \mid [-]N$ $S \rightarrow 1A$ $S \rightarrow -N$ $S \rightarrow 0A \mid 1A \mid \varepsilon$ $S \rightarrow 0A \mid 1A \mid \varepsilon$

$$\begin{array}{ccc} S & \rightarrow & 0 \mid [-]N \\ N & \rightarrow & 1A \\ A & \rightarrow & (0 \mid 1)A \mid A \end{array}$$

Отношение непосредственной выводимости

- $\bullet \ \alpha \to \beta \in P$
- $\gamma, \delta \in V^*$
- $\gamma\alpha\delta\Rightarrow\gamma\beta\delta$: $\gamma\beta\delta$ непосредственно выводится из $\gamma\alpha\delta$ при помощи правила $\alpha\to\beta$

Отношение выводимости

- $a_0, a_1, a_2, \ldots, a_n \in V^*$
- $a_0 \Rightarrow a_1 \Rightarrow a_2 \Rightarrow \cdots \Rightarrow a_n$
- $a_0 \stackrel{*}{\Rightarrow} a_n$: a_n выводится из a_0
- $S \Rightarrow -N \Rightarrow -1A \Rightarrow -11A \stackrel{*}{\Rightarrow} -1101A \Rightarrow -1101$

Отношение выводимости

- $a_0, a_1, a_2, \ldots, a_n \in V^*$
- $a_0 \Rightarrow a_1 \Rightarrow a_2 \Rightarrow \cdots \Rightarrow a_n$
- $a_0 \stackrel{*}{\Rightarrow} a_n$: a_n выводится из a_0
- $S \Rightarrow -N \Rightarrow -1A \Rightarrow -11A \stackrel{*}{\Rightarrow} -1101A \Rightarrow -1101$
- $\forall a \in V^*.a \stackrel{*}{\Rightarrow} a$
- ullet $a_0 \stackrel{+}{\Rightarrow} a_n$: вывод использует хотя бы одно правило грамматики
- $a_0 \stackrel{k}{\Rightarrow} a_n$: вывод происходит за k шагов

Язык, порождаемый грамматикой $\textit{G} = \langle \textit{V}_{\textit{T}}, \textit{V}_{\textit{N}}, \textit{P}, \textit{S}
angle$

•
$$L(G) = \{ \omega \in V_T^* \mid S \stackrel{*}{\Rightarrow} \omega \}$$

Эквивалентность грамматик

ullet Грамматики G_1 и G_2 эквивалентны, если $L(G_1) = L(G_2)$

Эквивалентность грамматик

ullet Грамматики G_1 и G_2 эквивалентны, если $L(G_1) = L(G_2)$

$$V_{T} = \{0,1\}$$

$$V_{N} = \{S,N,A\}$$

$$S \rightarrow 0 |N| - N$$

$$N \rightarrow 1A$$

$$A \rightarrow 0A |1A| \varepsilon$$

Эквивалентность грамматик

ullet Грамматики G_1 и G_2 эквивалентны, если $L(G_1) = L(G_2)$

$$V_{T} = \{0,1\}$$
 $V_{N} = \{0,1\}$ $V_{N} = \{0,1\}$ $V_{N} = \{S,A\}$
 $S \to 0 |N| - N$ $S \to 0 |1A| - 1A$ $A \to 0A |1A| \varepsilon$

Контекстно-свободная грамматика

• Контекстно-свободная грамматика — грамматика, все правила которой имеют вид $A \to \alpha, A \in V_N, \alpha \in V^*$

Дерево вывода

Дерево является **деревом вывода** для $G = \langle V_N, V_T, P, S \rangle$, если:

- ullet Каждый узел помечен символом из алфавита V
- Метка корня S
- Листья помечены терминалами, остальные узлы нетерминалами
- Если узлы n_0, \dots, n_k прямые потомки узла n, перечисленные слева направо, с метками A_0, \dots, A_k ; метка n-A, то $A \to A_0 \dots A_k \in P$

Пример дерева вывода

$$G = \langle \{S, A\}, \{a, b\}, \{S \rightarrow aAS | a, A \rightarrow SbA | ba | SS\}, S \rangle$$

 $S \Rightarrow aAS \Rightarrow aSbAS \Rightarrow aabbaS \Rightarrow aabbaa$

Пример дерева вывода

$$G = \langle \{S, A\}, \{a, b\}, \{S \rightarrow aAS | a, A \rightarrow SbA | ba | SS\}, S \rangle$$

 $S \Rightarrow aAS \Rightarrow aSbAS \Rightarrow aabbaS \Rightarrow aabbaa$

Вывод и дерево вывода

Теорема

Пусть $G = \langle V_N, V_T, P, S \rangle$ — KC-грамматика Вывод $S \stackrel{*}{\Rightarrow} \alpha$, где $\alpha \in V^*, \alpha \neq \varepsilon$ существует \Leftrightarrow существует дерево вывода в грамматике G с результатом α