Category Theory - Lecture 6 (Notes)

Vorashil Farzaliyev

September 2024

From last time...

Proposition 0.1. Let $\phi: F \Rightarrow G$ be a natural transformation.

Assume that for all $A \in \mathbb{C}$, $\phi_A : FA \longrightarrow GA$ is an isomorphism with inverse $\phi_A^{-1} : GA \longrightarrow FA$. Then $\phi^{-1} : G \Rightarrow F$ is defined by

$$(\phi^{-1})_A = (\phi_A)^{-1}$$
 for all $A \in \mathbf{C}$

Proof. We show that the naturality, as a family of maps, is given by

We have

We show that (1) commutes by post-composing it with ϕ_B , ϕ_A , 1_{GA} , 1_{GB} and showing the following equality holds.

$$\phi_A^{-1} F f = G f \phi_B^{-1}$$

1 Equivalence of categories

1.1 Motivation

We often have

but asking

$$GFA = A$$
 for all $A \in \mathbf{C}$
 $FGX = X$ for all $X \in \mathbf{D}$

is too restrictive. Because we are interested in isomorphisms, not the equality of objects

Definition 1.1. Let $F : \mathbf{C} \longrightarrow \mathbf{D}$ be a functor.

We say F is an equivalence if there exists a functor $G: \mathbf{D} \longrightarrow \mathbf{C}$ and following natural transformations

$$\eta: 1_{\mathbf{C}} \Rightarrow GF$$
 $\xi: FG \Rightarrow 1_{\mathbf{D}}$

Note 1.1. The components of η and ξ are isomorphisms.

$$\underbrace{A \xrightarrow{\eta_A} GFA}_{in \ \mathbf{C}} \qquad \underbrace{FGX \xrightarrow{\xi_X} X}_{in \ \mathbf{D}} \\ \forall A \in \mathbf{C} \qquad \forall X \in \mathbf{D}$$

Theorem 1.1. Let $F: \mathbf{C} \longrightarrow \mathbf{D}$ be a functor.

Then F is an equivalence if and only if F is essentially surjective and fully faithful.

Proof. (\Rightarrow) : Exercise.

 (\Leftarrow) : Assume F is essentially surjective and fully faithful.

Assume
$$F$$
 is essentially surjective \Rightarrow $(\forall X \in \mathbf{D})(\exists A \in \mathbf{C})(\exists \text{ isomorphism } FA \longrightarrow X)$
 $\downarrow \text{ (axiom of choice)}$
 \Rightarrow we have a function $G: Ob(\mathbf{D}) \longrightarrow Ob(\mathbf{C})$
a family of maps $(\xi_X: FGX \longrightarrow X|X \in \mathbf{D})$
such that $\xi_X: FGX \longrightarrow X$ is an isomorphism $\forall X \in \mathbf{D}$

Task 1: Extend G to a functor G and ξ to natural transformation.

For $f: X \longrightarrow Y$ in **D**, we need to define $G(f): GX \longrightarrow GY$ in **C**. We use the fact that F is fully faithful

$$\mathbf{C}(GX,GY) \xrightarrow{F} \mathbf{D}(FGX,FGY)$$
 is bijection.

This means for every $FGX \xrightarrow{v} FGY$ there is a unique $GX \xrightarrow{u} GY$ s.t

$$FGX \xrightarrow{Fu} FGY = FGX \xrightarrow{v} FGY$$

So to show that G(gf) = G(g)G(f), we show G(g)G(f) has the same property, i.e

$$F(G(g)G(f)): FGX \longrightarrow FGZ = FGX \xrightarrow{\xi_X} X \xrightarrow{gf} Z \xrightarrow{\xi_Z^{-1}} FGZ$$

We know

$$FGX \xrightarrow{\xi_X} X$$

$$\downarrow^{FG(gf)} \qquad \qquad \downarrow^{gf}$$

$$FGZ \xrightarrow{\xi_Z} Z$$

Consider

$$FGX \xrightarrow{\xi_X} X \xrightarrow{f} Y \xrightarrow{\xi_Y^{-1}} FGY$$

So there is a unique map, which we write $Gf: GX \longrightarrow GY$ such that

$$FGf = FGX \longrightarrow FGY = FGX \xrightarrow{\xi_X} X \xrightarrow{f} Y \xrightarrow{\xi_Y^{-1}} FGY \quad (*)$$

Here

$$(*) \Leftrightarrow \begin{array}{c} FGX \xrightarrow{\xi_X} & X \\ \downarrow^{FG(gf)} & \downarrow^{gf} \text{ commutes} \\ FGZ \xrightarrow{\xi_Z} & Z \end{array}$$

To check G is a functor, let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be in **D** and show

$$G(qf): GX \longrightarrow GZ = G(q)G(f): GX \longrightarrow GZ$$

By definition, G(gf) is the unique map

$$u:GX\longrightarrow GZ$$

such that

$$F(u): FGX \longrightarrow FGZ = FGX \xrightarrow{\xi_X} X \xrightarrow{f} Z \xrightarrow{\xi_Z^{-1}} FGZ$$

We need to show following diagram commutes

But this follows from

Since both (1), (2) commute. In the same way we show

$$G(1_X) = 1_{GX}$$