

Exercise:Cu⁺...H₂ IR modes

MHG Group UC Berkeley Thursday, February 9th 2023

Why?

- Modeling heterogeneous catalysis
- Finding spectroscopic signatures of adsorption and other surface processes
- Today:
 - Model of a surface -> Cu⁺ atom
 - o "Adsorption" of H₂

How? Cu⁺...H₂

- Open "cu+_h2_geom.xyz" with IQMOL
- 2. First job: geometry optimization
 - a. Calculate -> Geometry
 - b. Method: w97X-D
 - c. Basis: def2-svpd (change manually!)
 - d. Charge = +1, Multiplicity = 1
 - e. Manually add "SYMMETRY = FALSE"
- 3. Second job: frequencies
 - a. Click on the green "+"
 - b. Calculate -> Frequencies

What? IR modes and bond strength

- Which mode corresponds to a H-H stretch?
 - a. Look at mode "coordinates" from the output
- IQMOL -> Frequencies
- Compare with H-H mode of free H₂ (~4401 cm⁻¹) and equilibrium distance (0.75Å).
 - a. What does it tell us tell about the bond strength of the "adsorbed" vs free H₂?
 - b. Is this reflected on the bond distance?
 - Use the selection/wand tool to measure the distance between the H atoms
 - c. Is this what we want in a catalytic process?

