Stat 5170
Homework 1
Yunin Li

Question 3

(a)
$$V_{\alpha \Gamma}(x) = E(x^2) - [E(x)]^2 \Rightarrow E(x^2) = V_{\alpha \Gamma}(x) + (E(x))^2 = 4 + 0 = 4$$
.
 $C_{\alpha \Gamma}(x, Y) = C_{\alpha \Gamma}(x, Y) \Rightarrow C_{\alpha \Gamma}(x, Y) = C_{\alpha \Gamma}(x, Y) \cdot V_{\alpha \Gamma}(x) \cdot V_{\alpha \Gamma}(x)$

$$(ov(x,Y) = E(xY) - E(x)E(Y) \Rightarrow E(x,Y) = (ov(x,Y) + E(x)E(Y) = 1 + 0 = 1)$$

 $(ov(x,X+Y) = E(x^2+xY) - E(x)E(x+Y)$
 $= E(x^2) + E(xY) - [E(x)]^2 - E(x)E(Y)$
 $= 4 + 1 - 0 - 0 = 5$

(b)
$$Var(x+Y) = Var(x) + Var(Y) + 2cov(x, Y) = 4 + 1 + 2.0.5 = 6$$

 $Var(x-Y) = Var(x) + Var(Y) - 2cov(x, Y) = 4 + 1 - 2.0.5 = 4$
 $Cov(x+Y, x-Y) = E(x^2-Y^2) - E(x+Y)E(x-Y)$
 $= E(x^2) - E(Y^2) - (E(x))^2 + (E(Y))^2$
 $= Var(x) - Var(Y)$
 $= 4 - 1 = 3$
 $Var(x+Y) Var(x-Y) = \frac{3}{\sqrt{Var(x+Y)}}$

Question 4

The section
$$T$$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \frac{1}{2}$
 $E(g_t) = 0$

when stt, E(zt.zs)=E(zt).E(zs) = 0 <- independence.

thus, $\omega v(xt, xs) = 0$ if $s \neq t$.

when S=t, $Var(Xt) = COV(xt, xt) = E(yt^2(1-yt-1)^2) - E(zt^2)$ = $\frac{1}{2} \cdot \frac{1}{2} \cdot 1 = \frac{1}{4}$

Thus, Ixe's is a white noise.

Then, when $x_{t-1}=1$, this implies $y_{t-1}=1$. This further implies $x_t=y_t(1-y_{t-1})z_t=0$.

We can say P(x+1=1, x+1)=0. However, $P(x+1=1) \cdot P(x+1) = (\frac{1}{2},\frac{1}{2},\frac{1}{2})(\frac{1}{2},\frac{1}{2},\frac{1}{2})$ Thus, {xe} is not independent.