Lecture Notes

Kyle Chui

2022-01-04

Contents

1	Lec	ture 1
	1.1	Introduction to Dynamical Systems
		1.1.1 Where Do "Dynamical Systems" Come From?
	1.2	Autonomous ODEs
2	Lec	ture 2
	2.1	Reducing ODEs to First Order Autonomous Systems
		2.1.1 Flows on the Line
		2.1.2 Fixed Points
		2.1.3 Stability
3		ture 3
	3.1	Potentials
4	Lec	ture 4
	4.1	Impossibility of Oscillations
	4.2	Numerical Methods
		4.2.1 Integral Equations
		4.2.2 Numerical Approximation

1 Lecture 1

1.1 Introduction to Dynamical Systems

Models of real-world phenomena can often be classified as either *static* or *dynamic*. Furthermore, these systems can either be *discrete* $(x_1, x_2, ...$ where $x_i \in \mathbb{R}$ for $i \geq 1$) or *continuous* (x = x(t)) where $t \geq 0$ and $x \in \mathbb{R}$, and $\dot{x} = f(x)$.

1.1.1 Where Do "Dynamical Systems" Come From?

- 1. Observed phenomena
- 2. Mathematical model
- 3. "Solve" the model
- 4. Make predictions

1.2 Autonomous ODEs

Definition. Autonomous ODEs

We say that an ordinary differential equation is autonomous if the right-hand side does not depend on t.

• The SIR (susceptible, infected, recovered) model is an example of a *first order* system of *autonomous* ODEs.

$$\begin{cases} \dot{x}_1 = f_1(x_1, \dots, x_n) \\ \vdots \\ \dot{x}_n = f_1(x_1, \dots, x_n) \end{cases}$$

• We will refer to n as the *dimension* of the system.

2 Lecture 2

2.1 Reducing ODEs to First Order Autonomous Systems

Consider the set of differential equations given by

$$\begin{cases} \dot{x} = -\kappa(t)xy, \\ \dot{y} = \kappa(t)xy - \delta y, \\ \dot{z} = \delta y. \end{cases}$$

Introduce a new variable, i.e. $\tau = \tau(t) = t$. Then we may rewrite the above as

$$\begin{cases} \dot{x} = -\kappa(\tau)xy, \\ \dot{y} = \kappa(\tau)xy - \delta y, \\ \dot{z} = \delta y, \\ \dot{\tau} = 1. \end{cases}$$

Note that the above system is now autonomous.

Example. The Pendulum

We can model the angle θ of a pendulum of length L > 0 by

$$\ddot{\theta} + \frac{g}{L}\sin\theta = 0.$$

Applying Newton's Second Law, we can get the equations

$$mL\ddot{\theta} = -mg\sin\theta$$
$$\theta = \theta(t).$$

Observe that if we let $x = \theta$ and $y = \dot{\theta}$, then we get

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{g}{L}\sin\theta. \end{cases}$$

Example. Pendulum with an external force

If we add an external force to our pendulum, then we get

$$\ddot{\theta} + \frac{g}{L}\sin\theta = \frac{1}{m}F(t).$$

Thus if we let $x = \theta$, $y = \dot{\theta}$, and z = t, then we get

$$\begin{cases} \dot{x} = y \\ \dot{y} = -\frac{g}{L}\sin x + \frac{1}{m}F(z) \\ \dot{z} = 1. \end{cases}$$

Note. In general, higher order ODEs of the form

$$\frac{\mathrm{d}^k x}{\mathrm{d}t^k} = f(x, \frac{\mathrm{d}x}{\mathrm{d}t}, \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}, \dots, \frac{\mathrm{d}^{k-1} x}{\mathrm{d}t^{k-1}})$$

can be converted into a first order system by taking

$$z_1 = x, z_2 = \frac{dx}{dt}, \dots, z_k = \frac{d^{k-1}x}{dt^{k-1}}.$$

We get the system

$$\begin{cases} \dot{z}_1 = \frac{\mathrm{d}x}{\mathrm{d}t} = z_2 \\ \dot{z}_2 = \frac{\mathrm{d}^2x}{\mathrm{d}t^2} = z_3 \\ \vdots \\ \dot{z}_k = f(z_1, z_2, \dots, z_k) \end{cases}$$

2.1.1 Flows on the Line

We will now consider systems of the form

$$\dot{x} = f(x)$$

where $f : \mathbb{R} \to \mathbb{R}$ is a smooth function.

Example. Consider the ODE given by

$$\dot{x} = x(x+1)(x-1)^2.$$

We could use separation of variables to solve this.

Note. Solutions to ODEs usually come in three different flavors:

- Analytic methods (separation of variables)
- Geometric methods (direction fields)
- Numerical methods (Euler's method)

Definition. Phase Space

To help us analyze these differential equations, we can plot \dot{x} against x on a graph, and see the behavior around zeroes. This is called a *phase space*. If some neighborhood of points around a zero x tend towards x, then x is called a *stable point*. If they tend to move away from x, then x is an *unstable point*. On a phase space graph, we denote stable points with \bullet , unstable points with \circ , and other points with a half-filled circle.

2.1.2 Fixed Points

Definition. Fixed Point

We say that x^* is a fixed point of the system

$$\dot{x} = f(x)$$

if $f(x^*) = 0$. If x^* is a fixed point then the system has a constant solution given by $x(t) = x^*$. These points are also known as equilibrium points, stationary points, rest points, critical points, and steady states.

2.1.3 Stability

Definition. Stability

Let x^* be a fixed point of the system

$$\dot{x} = f(x).$$

For now, we say that x^* is:

- Stable if solutions starting close to x^* approach x^* as $t \to \infty$.
- Unstable if solutions starting close to x^* diverge from x^* as $t \to \infty$.
- Half-stable if solutions starting close to x^* approach x^* from one side, but diverge from the other side.

3 Lecture 3

Question. Can we say more about what happens close to fixed points?

Example. Consider the equation given by

$$\dot{x} = x(x+1)(x-1)^2,$$

which has stable points at -1, 0, and 1.

We will use something called the *local method*. We define a new function $\eta(t) = x(t) + 1$, so $x(t) = \eta(t) - 1$. Hence $\dot{x}(t) = \dot{\eta}(t)$. Furthermore,

$$x(x+1)(x-1)^{2} = (\eta - 1)\eta(\eta - 2)^{2}$$

= $-4\eta + O(\eta^{2}),$ $(\eta \to 0)$

so $\dot{\eta} \approx -4\eta$. Near $x=-1, \eta=x+1$ and it satisfies $\dot{\eta}=-4\eta$, so $\eta(t)\approx Ce^{-4t}$. We can see that this approaches 0 as $t\to\infty$, so points around x=-1 will approach -1.

In general, we have the following method:

Assume that x^* is a fixed point of $\dot{x} = f(x)$, i.e. $f(x^*) = 0$. Let $\eta = x - x^*$. Then

$$\dot{\eta} = \dot{x}
= f(x)
= f(x^*) + f'(x^*)\eta + \frac{1}{2}f''(x^*)\eta^2 + \cdots
= f'(x^*)\eta + O(\eta^2).$$
($\eta \to 0$)

Hence the equation

$$\dot{\eta} = f'(x^*)\eta$$

is the linearization at $x = x^*$. We know that the solution to such a differential equation is

$$\eta(t) = Ce^{f'(x^*)t} = \begin{cases} 0, & f'(x^*) < 0 \\ \pm \infty, & f'(x^*) > 0 \end{cases}$$

as $t \to \infty$. In the first case, the terms near x^* will tend towards x^* , and in the latter they will diverge from x^* .

Theorem. Suppose that x^* is a fixed point of the system $\dot{x} = f(x)$. Then if

- $f'(x^*) < 0$, the fixed point x^* is stable.
- $f'(x^*) > 0$, the fixed point x^* is unstable.

Question. What happens if $f'(x^*) = 0$? Anything can happen/the test is inconclusive.

- Consider the equation $\dot{x} = x^3$. We see that $x^* = 0$ is a critical point, and that $f'(x) = 3x^2$, so $f'(x^*) = 0$. Using our usual graphical methods, we can see that points to the left of x^* will approach x^* , and so will points to the right, and so $x^* = 0$ is a stable point.
- If we use the equation $\dot{x} = -x^3$, we get the direct opposite, that is $x^* = 0$ is unstable despite having the same critical point.
- If we look at the behavior of $\dot{x} = x^2$, then we get that the critical point at $x^* = 0$ is half-stable.
- If we consider the equation $\dot{x} = 0$, then every number on the real line is a critical point, and so the solutions don't move at all.

3.1 Potentials

• Let $f \colon \mathbb{R} \to \mathbb{R}$ be smooth and consider the system

$$\dot{x} = f(x).$$

• A function $V : \mathbb{R} \to \mathbb{R}$ so that

$$f(x) = -V'(x)$$

is called a potential for f.

• Our system can be written as a gradient flow

$$\dot{x} = -V'(x).$$

Note. Potential functions are not unique, since you can always add a constant.

4 Lecture 4

Example. Consider the differential equation $\dot{x} = x - x^3$. Since we have $\dot{x} = -V'(x)$, we have

$$V(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 = \frac{1}{4}(x^2 - 1)^2 - \frac{1}{4}.$$

When we look at the graph of V'(x), we may pretend that there is a ball rolling down a hill from every point, which tells us how to find the stability of points. Each point will settle in the first "well" that it meets.

Theorem. Let $V: \mathbb{R} \to \mathbb{R}$ be smooth and consider the system

$$\dot{x} = -V'(x).$$

Then the potential energy V(x(t)) is non-increasing (as a function of time). Furthermore, if x(t) is not a fixed point for all $t \in (T_1, T_2)$, then the potential energy is strictly decreasing on (T_1, T_2) .

Proof. Observe that

$$\frac{\mathrm{d}}{\mathrm{d}t}V(x(t)) = V'(x(t)) \cdot \dot{x}(t)$$
$$= -V'(x(t))^{2}.$$

Hence the potential energy is non-increasing, as its derivative is always non-positive. Thus if $V'(x_1) = 0$, then x_1 is a critical point!

Corollary. Let $V: \mathbb{R} \to \mathbb{R}$ be smooth and consider the system

$$\dot{x} = -V'(x).$$

If x^* is an isolated critical point of V then

- If it is a local minima of V, it is a stable fixed point.
- If it is a local maxima of V, it is a unstable fixed point.
- If it is an inflection point of V, it is a half-stable fixed point.

Proof. If we imagine the ball analogy again, we can see that if x^* is a local minima then points around it will tend towards x^* , and so it is stable. The opposite happens for divergence near a local maxima, and the analogy still holds for the half-stableness when x^* is an inflection point.

Note. Every one dimensional system is a gradient flow, because if f is smooth, then we can take the integral and define

$$V(x) := -\int_0^x f(s) \, \mathrm{d}s.$$

4.1 Impossibility of Oscillations

Definition. Periodic Functions

If there exists a constant p > 0 so that for all t we have

$$x(t+p) = x(t)$$
.

then we say that p is periodic.

Note. All constant functions are periodic.

Theorem. There are no non-constant periodic solutions of the system

$$\dot{x} = f(x).$$

Proof. Suppose that x is a periodic solution, with period p > 0. If $0 \le t \le p$ then, as the potential energy is non-increasing,

$$V[x(p)] \le V[x(t)] \le V(x(0)).$$

Since x(p) = x(0), we have V[x(t)] is constant. Hence x(t) is constant.

4.2 Numerical Methods

4.2.1 Integral Equations

We want to find a solution of the equation

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

Observe that

$$\dot{x} = f(x)$$

$$\int_0^t \frac{\mathrm{d}x(s)}{\mathrm{d}s} \, \mathrm{d}s = \int_0^t f(x(s)) \, \mathrm{d}s$$

$$x(t) - x(0) = \int_0^t f(x(s)) \, \mathrm{d}s$$

$$x(t) = x_0 + \int_0^t f(x(s)) \, \mathrm{d}s.$$

We call this an *integral equation*, because the unknown now appears in the integral.

Example. Write the equation

$$\begin{cases} \dot{x} = \sin x \\ x(0) = 1 \end{cases}$$

as an integral equation.

We have that

$$x(t) = 1 + \int_0^t \sin(x(s)) \, \mathrm{d}s.$$

4.2.2 Numerical Approximation

Suppose we have the equation

$$\begin{cases} \dot{x} = f(x) \\ x(0) = x_0 \end{cases}$$

Let's take $\Delta t > 0$ small. Then we have

$$x(\Delta t) = x_0 + \int_0^{\Delta t} f(x(s)) ds.$$

We will approximate $x(s) \approx x_0$ on the interval $(0, \Delta t)$. Thus we have

$$x(\Delta t) = x_0 + \int_0^{\Delta t} f(x(s)) ds$$

$$= x_0 + \int_0^{\Delta t} f(x_0) ds$$

$$= x_0 + f(x_0) \Delta t. \qquad (x_1 := x_0 + f(x_0) \Delta t)$$

Euler's method is to repeat the above to get $x_2 \approx x(2\Delta t)$. We have

$$x_2 = x_1 + f(x_1)\Delta t,$$

$$x_3 = x_2 + f(x_2)\Delta t,$$

$$\dots$$

$$x_{n+1} = x_n + f(x_n)\Delta t.$$