制管机通信协议 - v5.4

1. 协议说明

上位机使用串口连接主控板,串口使用波特率 115200bps、8 位数据位、没有校验位、1 位停止位数据格式如下所示。

1.1. 上位机给下位机发送内容

帧头	长度	地址	读写	命令	数据	校验
2byte	1byte	1byte	1byte	1byte	N byte	1byte

• 帧头: 2 个字节, 0xab 0xcd 代表是激光器命令; 0xba 0xdc 代表控制板命令

◆ 长度: 1 个字节, 地址+读写+命令+数据+校验的数据长度, 1+1+1+N+1

• 地址: 1 个字节, 模块地址, 其中 0xff 代表激光器地址, 0x00 代表主控板地址

• 读写: 1 个字节, 0x00 写, 0x01 读, 有其他见说明

• 命令: 1 个字节, 见下表

• 数据: 0-N 个字节, 见下表

• 校验: 1 个字节, 求和校验 (CHECKSUM-8), (帧头+长度+地址+读写+命令+数据) 取低四位

1.2. 下位机给上位机反馈内容

帧头	长度	地址	命令	数据	校验
2byte	1byte	1byte	1byte	N byte	1byte

• 帧头: 2 个字节, 0xef 0xef 代表是激光器返回命令; 0xfe 0xfe 代表控制板返回命令

◆ 长度: 1 个字节, 地址+命令+数据+校验的数据长度, 1+1+N+1

• 地址: 1 个字节,模块地址,其中 0xff 代表激光器地址,0x00 代表主控板地址

• 命令: 1 个字节, 见下表

• 数据: 0-N 个字节, 见下表

校验: 1 个字节,求和校验(CHECKSUM-8),(帧头+长度+地址+命令+数据)取低四位

2. 协议内容

2.1. 上位机给主控板下发内容

含义	命令	数据含义	单位	注意
电机 X 角度	0x00	实际角度 = Data*1.8	度	
电机 Y 角度	0x01	实际角度 = Data*1.8	度	

含义	命令	数据含义	单位	注意
焊接操作	0x02	0x00 为关, 0x01 为开		
报警信息	0x03			只读
当前温度	0x04	实际温度 = Data*0.1	°C	只读
当前湿度	0x05	实际湿度 = Data*0.1	%RH	只读
当前焊接长度	0x06	实际长度 = Data*0.01	m	只读
总焊接长度	0x07	实际长度 = Data*0.01	m	只读
当前机器时间	0x08			只读
焊缝跟踪开关	0x09	0x00 为关,0x01 为开		
焊缝位置坐标	0x0a	实际位置		
所有参数	0xff	按以上的数据顺序一起上报给上位机(仅合并数据部分)		只读

2.1.1. 设置电机 (+) X 方向按角度运动

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x00	0x00	Degree/1.8	CHECKSUM-8

默认示例:以 (+) X 方向运动 1.8° 为例: ba dc 05 00 00 00 01 9c

2.1.2. 设置电机 (+) X 方向连续运动

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x03	0x00	0x00	CHECKSUM-8

默认示例: ba dc 05 00 03 00 00 9e

2.1.3. 设置电机 (-) X 方向按角度运动

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x00	Degree/1.8	CHECKSUM-8

默认示例:以(-) X 方向运动 1.8° 为例: ba dc 05 00 01 00 01 9d

2.1.4. 设置电机 (-) X 方向连续运动

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x04	0x00	0x00	CHECKSUM-8

默认示例: ba dc 05 00 04 00 00 9f

2.1.5. 设置电机 X 方向连续运动停止

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x05	0x00	0x00	CHECKSUM-8

默认示例: ba dc 05 00 05 00 00 a0

2.1.6. 读取电机 X 方向角度

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x02	0x00	0x00	CHECKSUM-8

默认示例: ba dc 05 00 02 00 00 9d

2.1.7. 设置电机 (+) Y 方向按角度运动

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x00	0x01	Degree/1.8	CHECKSUM-8

默认示例:以(+)Y方向运动1.8°为例: ba dc 05 00 00 01 01 9d

2.1.8. 设置电机 (+) Y 方向连续运动

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x03	0x01	0x00	CHECKSUM-8

默认示例: ba dc 05 00 03 01 00 9f

2.1.9. 设置电机 (-) Y 方向按角度运动

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x01	Degree/1.8	CHECKSUM-8

默认示例:以 (-) Y方向运动 1.8°为例: ba dc 05 00 01 01 01 9e

2.1.10. 设置电机 (-) Y 方向连续运动

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x04	0x01	0x00	CHECKSUM-8

默认示例: ba dc 05 00 04 01 00 a0

2.1.11. 设置电机 Y 方向连续运动停止

帧头	长度	地址	读写	命令	数据	校验
----	----	----	----	----	----	----

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x05	0x01	0x00	CHECKSUM-8

默认示例: ba dc 05 00 05 01 00 a1

2.1.12. 读取电机 Y 方向角度

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x02	0x01	0x00	CHECKSUM-8

默认示例: ba dc 05 00 02 01 00 9e

2.1.13. 停止焊接

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x00	0x02	0x00	CHECKSUM-8

默认示例: ba dc 05 00 00 02 00 9d

2.1.14. 开始焊接

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x00	0x02	0x01	CHECKSUM-8

默认示例: ba dc 05 00 00 02 01 9e

2.1.15. 读取焊接开关状态

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x02	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 02 00 9e

2.1.16. 读取报警信息

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x03	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 03 00 9f

2.1.17. 读取当前温度

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x04	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 04 00 a0

2.1.18. 读取当前湿度

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x05	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 05 00 a1

2.1.19. 读取当前焊接长度

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x06	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 06 00 a2

2.1.20. 读取总焊接长度

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x07	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 07 00 a3

2.1.21. 读取当前机器时间

	帧头	长度	地址	读写	命令	数据	校验
0>	xba 0xdc	0x05	0x00	0x01	0x08	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 08 00 a4

2.1.22. 停止焊缝追踪

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x00	0x09	0x00	CHECKSUM-8

默认示例: ba dc 05 00 00 09 00 a4

2.1.23. 开始焊缝追踪

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x00	0x09	0x01	CHECKSUM-8

默认示例: ba dc 05 00 00 09 01 a5

2.1.24. 读取焊缝跟踪开关状态

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0x09	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 09 00 a5

2.1.25. 读取所有参数状态

帧头	长度	地址	读写	命令	数据	校验
0xba 0xdc	0x05	0x00	0x01	0xa0	0x00	CHECKSUM-8

默认示例: ba dc 05 00 01 a0 00 a6

2.2. 主控板给上位机返回内容

2.2.1. 电机 X 角度

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x07	0x00	0x00	Data	CHECKSUM-8

Data: 4 byte, Data 为 Data1 Data2 Data3 Data4, 低位在前, 高位在后 Data = (Data1|(Data2>>8)|(Data3>>16)|(Data2>>24)) 角度 = (Data*1.8)°

默认示例: 角度为 (20*1.8)°: fe fe 07 00 00 14 00 00 00 17

2.2.2. 电机 Y 角度

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x07	0x00	0x01	Data	CHECKSUM-8

Data: 4 byte, Data 为 Data1 Data2 Data3 Data4, 低位在前, 高位在后

Data = (Data1|(Data2>>8)|(Data3>>16)|(Data2>>24)) 角度 = (Data*1.8)°

默认示例: 角度为 (20*1.8)°: fe fe 07 00 01 14 00 00 00 18

2.2.3. 焊接开关状态 (与激光器指令重复, 暂时弃用)

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x04	0x00	0x02	Data	CHECKSUM-8

Data: 1 byte, 0x00 为关, 0x01 为开

默认示例: 焊接开关开启状态: fe fe 04 00 02 01 03

2.2.4. 报警信息

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x05	0x00	0x03	Data	CHECKSUM-8

Data: 2 byte, 为 w1 w2, 16 个位, 1 报警 0 正常

W1 Bit1: 电机 X 错误
W1 Bit2: 电机 Y 错误
W1 Bit3: 电机 Z 错误
W1 Bit4: 水冷机错误
W1 bit5: 其它错误

W2 Bit1: 温湿度模块初始化错误W2 Bit2: 内存 24512 初始化错误

默认示例:

全部报警状态: fe fe 05 00 03 1f 03 26全部正常状态: fe fe 05 00 03 00 00 04

2.2.5. 当前温度

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x05	0x00	0x04	Data	CHECKSUM-8

Data: 温度*10, 2 byte, 为 tempL tempH , temp = ((tempL|(tempH>>8))*0.1)℃

默认示例: 温度为 25℃: fe fe 05 00 04 fa 00 ff

2.2.6. 当前湿度

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x05	0x00	0x05	Data	CHECKSUM-8

Data: 湿度*10, 2 byte, 为 humL humH , hum=((humL|(humH>>8))*0.1)%RH

默认示例: 湿度为 30%RH: fe fe 05 00 05 2c 01 33

2.2.7. 当前焊接长度

0xfe 0xfe	0x07	0x00	0x06	Data	CHECKSUM-8
-----------	------	------	------	------	------------

Data: 长度*100, 4 byte, 为 data1 data2 data3 data4, 低位在前, 高位在

后, length = ((data1|(data2>>8)|(data3>>16)|(data4>>24))*0.01)m

默认示例: 当前焊接长度为 1 m: fe fe 07 00 06 64 00 00 00 6d

2.2.8. 总焊接长度

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x07	0x00	0x07	Data	CHECKSUM-8

Data: 长度*100, 4 byte, 为 data1 data2 data3 data4, 低位在前, 高位在

后, length = ((data1|(data2>>8)|(data3>>16)|(data4>>24))*0.01)m

默认示例: 总焊接长度为 2 m: fe fe 07 00 07 c8 00 00 00 d2

2.2.9. 当前机器时间

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x0a	0x00	0x08	Data	CHECKSUM-8

Data: 7 byte, 为 yearL yearH month day hour minute second

当前时间: (yearL|(yearH>>8))年 month 月 day 日 hour 时 minute 分 second 秒

默认示例:

2022 年 6 月 29 日 11 时 08 分 12 秒: fe fe 0a 00 08 e6 07 06 1d 0b 08 0c 3d

2.2.10. 焊缝跟踪开关状态

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x04	0x00	0x09	Data	CHECKSUM-8

Data: 0x00 为关, 0x01 为开

默认示例: 焊缝开关开启状态: fe fe 04 00 09 01 0a

2.2.11. 焊缝位置坐标

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x05	0x00	0x0a	Data	CHECKSUM-8

Data: 2 byte, 为 data1 data2, 位置 = (data1|(data2>>8))

默认示例: 位置为 0.05 m: fe fe 05 00 0a 05 00 10

2.2.12. 所有参数返回信息

帧头	长度	地址	命令	数据	校验
0xfe 0xfe	0x24	0x00	0xff	Data	CHECKSUM-8

Data: 33 byte, 各 data 按上述返回规范

为 data1 data2 data3 data9 data10 data11

- data1: 4 byte, 为电机 X 角度
- data2: 4 byte, 为电机 Y 角度
- data3: 1 byte, 为焊接开关状态
- data4: 2 byte, 为报警信息
- data5: 2 byte, 为当前温度
- data6: 2 byte, 为当前湿度
- data7: 4 byte, 为当前焊接长度
- data8: 4 byte, 为总焊接长度
- data9: 7 byte, 为当前机器时间
- data10: 1 byte, 为焊缝跟踪开关状态
- data11: 2 byte, 为焊缝位置坐标

默认示例:

电机 X 为 (20*1.8)°, 电机 Y 为 (20*1.8)°, 焊接开关状态为开启,报警信息为全部正常,当前温度为 25℃,当前湿度为 30%RH,当前焊接长度为 1 m,总焊接长度为 2 m,当前机器时间为 2022 年 6 月 29 日 11 时 08 分 12 秒,焊缝跟踪开光状态为开启,焊缝位置坐标为 144:

fe fe 24 00 ff 14 00 00 00 14 00 00 01 00 00 fa 00 2c 01 64 00 00 00 c8 00 00 e6 07 06 1d 0b 08 0c 01 90 00 5B

2.3. 上位机给激光器下发内容

含义	命令	注意
读写 Pout (0~10V) (用于设置激光功率)	0x37	
内外控模式控制开关	0x3A	
红光控制开关	0x3B	
软件出光控制开关	0x3C	只读
内控 START 键功能	0x3D	只写
内控使能切换开关	0x3E	
报警信息	0x80	只读

2.3.1. 读 Pout (0~10V)

帧头	长度	地址	读写	命令	校验
0xab 0xcd	0x04	0xff	0x01	0x37	CHECKSUM-8

默认示例: ab cd 04 ff 01 37 b3

2.3.2. 写 Pout (0~10V)

帧头	长度	地址	读写	命令	数据	校验
0xab 0xcd	0x05	0xff	0x00	0x37	Data	CHECKSUM-8

Data: 1 byte, 0~100 对应输出功率为 0~100%。

默认示例: 设置输出功率为 10%: ab cd 05 ff 00 37 0a bd

2.3.3. 读内外控模式控制开关状态

帧头	长度	地址	读写	命令	校验
0xab 0xcd	0x04	0xff	0x01	0x3a	CHECKSUM-8

默认示例: ab cd 04 ff 01 3a b6

2.3.4. 写内外控模式控制开关状态

帧头	长度	地址	读写	命令	数据	校验	
0xab 0xcd	0x05	0xff	0x00	0x3a	Data	CHECKSUM-8	

Data: 1 byte, 0x55 外控, 0xAA 内控

默认示例: 设置为内控模式: ab cd 05 ff 00 3a aa 60

2.3.5. 读红光控制开关状态

帧头	长度	地址	读写	命令	校验
0xab 0xcd	0x04	0xff	0x01	0x3b	CHECKSUM-8

默认示例: ab cd 04 ff 01 3b b7

2.3.6. 二.3.6 写红光控制开关状态

帧头	长度	地址	读写	命令	数据	校验
0xab 0xcd	0x05	0xff	0x00	0x3b	Data	CHECKSUM-8

Data: 1 byte, 0x55 OFF, 0xAA ON

默认示例: 设置红光开启: ab cd 05 ff 00 3b aa 61

2.3.7. 读软件出光控制开关状态

帧头	长度	地址	读写	命令	校验
0xab 0xcd	0x04	0xff	0x01	0x3c	CHECKSUM-8

默认示例: ab cd 04 ff 01 3c b8

2.3.8. 写内控出光控制开关 (START) 状态

帧头	长度	地址	读写	命令	数据	校验
----	----	----	----	----	----	----

帧头	长度	地址	读写	命令	数据	校验
0xab 0xcd	0x05	0xff	0x00	0x3d	Data	CHECKSUM-8

Data: 1 byte, 0x55 OFF, 0xAA ON

默认示例:设置内控出光控制开关状态为关闭: ab cd 05 ff 00 3d 55 0e

2.3.9. 读内控使能切换开关状态

帧头	长度	地址	读写	命令	校验
0xab 0xcd	0x04	0xff	0x01	0x3e	CHECKSUM-8

默认示例: ab cd 04 ff 01 3e ba

2.3.10. 写内控使能切换开关状态

帧头	长度	地址	读写	命令	数据	校验
0xab 0xcd	0x05	0xff	0x00	0x3e	Data	CHECKSUM-8

Data: 1 byte, 0x55 OFF, 0xAA ON

默认示例:设置内控使能切换开关状态为关闭: ab cd 05 ff 00 3e 55 0f

2.3.11. 读报警信息

帧头	长度	地址	读写	命令	校验
0xab 0xcd	0x04	0xff	0x01	0x80	CHECKSUM-8

默认示例: ab cd 04 ff 01 80 fc

2.3.12. 读激光器状态信息

帧头	长度	地址	读写	命令	校验
0xab 0xcd	0x04	0xff	0x01	0x87	CHECKSUM-8

默认示例: ab cd 04 ff 01 87 03

2.3.13. 读机器状态 2

帧头	长度	地址	读写	命令	校验
0xab 0xcd	0x04	0xff	0x01	0x9c	CHECKSUM-8

默认示例: ab cd 04 ff 01 9c 18

2.4. 激光器给上位机返回内容

2.4.1. 当前 Pout (0~10V)

帧头	长度	地址	命令	数据	校验
0xef 0xef	0x04	0xff	0x37	Data	CHECKSUM-8

Data: 1 byte, 0~100 对应输出功率为 0~100%。

默认示例: 输出功率为 10%: ef ef 04 ff 37 0a 22

2.4.2. 写内外控模式控制开关状态

帧头	长度	地址	命令	数据	校验
0xef 0xef	0x04	0xff	0x3a	Data	CHECKSUM-8

Data: 1 byte, 0x55 外控, 0xAA 内控

默认示例:状态为内控模式: ef ef 04 ff 3a aa c5

2.4.3. 红光控制开关状态

	帧头	长度	地址	命令	数据	校验
0x	ef 0xef	0x04	0xff	0x3b	Data	CHECKSUM-8

Data: 1 byte, 0x55 OFF, 0xAA ON

默认示例: 状态为红光开启: ef ef 04 ff 3b aa c6

2.4.4. 软件出光控制开关状态

帧头	长度	地址	命令	数据	校验
0xef 0xef	0x04	0xff	0x3c	Data	CHECKSUM-8

Data: 1 byte, 0x55 OFF, 0xAA ON

默认示例:软件出光控制为开启状态: ef ef 04 ff 3c aa c7

2.4.5. 内控出光控制开关 (START) 状态

帧头	长度	地址	命令	数据	校验
0xef 0xef	0x04	0xff	0x3d	Data	CHECKSUM-8

Data: 1 byte, 0x55 OFF, 0xAA ON

默认示例:内控出光控制为开启状态: ef ef 04 ff 3d aa c8

2.4.6. 内控使能切换开关状态

帧头	长度	地址	命令	数据	校验
0xef 0xef	0x04	0xff	0x3e	Data	CHECKSUM-8

Data: 1 byte, 0x55 OFF, 0xAA ON

默认示例:内控使能切换开关为开启状态: ef ef 04 ff 3e aa c9

2.4.7. 报警信息

帧头	长度	地址	命令	数据	校验
0xef 0xef	0x07	0xff	0x80	Data	CHECKSUM-8

Data: 4 bytes, 各位具体定义如下, 0 正常, 1 报警

Bit0: 过压告警Bit1: 欠压告警Bit2: 水流量告警Bit3: 急停告警

Bit4: QBH 安装告警Bit5: QBH 温度告警Bit6: 电水冷板温度告警

• Bit7: 异常断电报警

• Bit8: 泵源电流告警 (过流告警)

Bit9: 泵源温度告警Bit10: PD_SD1 告警Bit11: PD1 告警

Bit12: 光模块温度告警(非致命)Bit13: 光模块湿度告警(非致命)Bit14: 红光电流告警(非致命)

Bit15: 剥模器 1 温度告警Bit16: 剥模器 2 温度告警Bit17: 光水冷板温度 1 告警Bit18: 光水冷板温度 2 告警

Bit19: 电模块温度告警(非致命)Bit20: 电模块湿度告警(非致命)

Bit21: Power AC AlarmBit22: Power DC Alarm

Bit23: PD2 告警
Bit24: 超强回光告警
Bit25: 普通回光告警
Bit26: 回光预警(非致命)
Bit27: 合束器温度告警

Bit28: FPGA 加载失败告警Bit29: FPGA 握手失败告警Bit30: 系统时钟失效(非致命)

• Bit31: 水冷板低温告警

默认示例: 无报警信息: ef ef 07 ff 80 00 00 00 00 64

2.4.8. 激光器状态信息

帧头	长度	地址	命令	数据	校验
0xef 0xef	0x05	0xff	0x87	Data	CHECKSUM-8

Data: 2 bytes, 各位具体定义如下,

• Bit0: 内外控指示, 0 外控, 1 内控

• Bit1: 激光器出光指示, 0 没出光, 1 出光

• Bit2: 主电源启动指示, 0 关闭, 1 启动

• Bit3:

• Bit4:

• Bit5: 结露指示, 0 正常, 1 报警

• Bit6:

• Bit7:

• Bit8: 连续前向光锁机标志, 0 未锁机, 1 已锁机

• Bit9: 外控线 EN, 0 低电平, 1 高电平

• Bit10: 外控线调制 PWM, 0 低电平, 1 高电平

• Bit11: 外控线 0~10V, 0 低电平, 1 高电平

• Bit12: 外控线 Control, 0 低电平, 1 高电平

• Bit13: 连续 QBH 温度锁机标志, 0 未锁机, 1 已锁机

• Bit14: 连续回光锁机标志, 0 未锁机, 1 已锁机

• Bit15:

默认示例: 部分 bit 位未知, 无法给出示例

2.4.9. 机器状态 2

帧头	长度	地址	命令	数据	校验
0xef 0xef	0x05	0xff	0x9c	Data	CHECKSUM-8

Data: 2 bytes, 各位具体定义如下,

• Bit0:

• Bit1: SD 卡状态, 0 未连接, 1 已连接

• Bit2:

• Bit3: RTC 状态, 1 锁机, 0 正常 (有加密数据, RTC 时间不正确)

• Bit4: 互锁状态, 0 未连接, 1 已连接

• Bit5: 后气动门/互锁 2 状态, 0 未连接, 1 已连接

•

• Bit15:

默认示例: 部分 bit 位未知, 无法给出示例

3. 上位机对于焊缝跟踪协议

见《TCD1304 模块资料》

4. 上位机通信步骤

- 1. 主控板默认会间隔 1000 ms 发送一次时间反馈,格式见 2.2.9. 当前机器时间。
- 2. 首次串口链接成功后,发送**一次**指令查询 x_degree 和 y_degree 的值,格式见 2.1.6. 读取电机X方向角度 和 2.1.12. 读取电机X方向角度,后续更新依赖于主控板主动上报。
- 3. 上位机定时 100 ms 查询激光器状况,格式见 2.3.12. 读激光器状态信息 和 2.3.13. 读机器状态2。
- 4. 上位机在与激光器通讯正常后,发送**一次**指令查询内外控模式控制开关、红光控制开关和内控使能切换开关,格式见 2.3.3. 读内外控模式控制开关状态、2.3.5 读红光控制开关状态 和 2.3.9 读内控使能切换开关状态。
- 5. 上位机与主控板通讯异常判断依据:
 - 1. 3000 ms 内主控板未上报当前机器时间。
 - 2. 任意查询或控制指令没有返回。
 - 3. 当有任意串口反馈,格式正确解析的情况下,应该判断为与主控板通讯正常。
- 6. 上位机与激光器通讯异常判断依据:
 - 1. 任意与激光器相关的查询或控制指令没有返回。
 - 2. 当有串口反馈,格式正确解析的情况下,格式判断为主控板反馈信息,而在 3000 ms 内没有激光器反馈信息,判断为通讯异常。
 - 3. 当有任意串口反馈,格式正确解析的情况下,格式判断为激光器反馈信息,应该判断为与激光器通讯正常。