A MM C	1																						D	193	M	A
	110																					_				
			1		-	,			٨	1																
1 200		H	+	+	14	ab	XX	2	140	stc	inc	2	0	0.3	*	1	-	H	1	-16		0		21	-	
			211	11			1		+)	00	-				1		G	-1	0	- 13	2%	-	-4		
Nowpis:	100	Jay	5	AVE	X	191	361			C)(VIC.	_	Q	110	W.C	1			H							
techa:	G la	10	025	,				24	- Q	2-	7 (3	3		X	559	2	9		- 1	t	3 -	0	8	- 87		
											3						- 9	V.	7 8		1/4	0	1	U	48	-
Carso:	400	250	10	C	A	0							Ö	-(3	Q	3	- 3	J			7	03	-		
																1		79	6	100		25				
· Ecoa	ciano	5	21.6	sea	cic	ele	5					0					8	- (3	3	- 1	3		0			
1 1 1 2		H	4	1																						
- C \	1	2					1		. (34	1	0.0	- 23		V	1	2.		- 71			
· Cansu	101	d	eli	Stab	10 ;		Ot	- 0	epi	Ca	CIC	sae	5	_(11	e e	aci	a 10	()	Œ	0	0	2	00	(MO
o superi	51 tf	H																- 1								
S ouper.		1	5		18			- 6		, =	3/	U								e i						
	9,	4		13	9.4	7 4	C		18		-															
- Eyemp	101	e W	age	140	9	de	0	es	pla	479	LEA	len	10							À	1		j			
36 36 36	140	98	1	X E	8	7	2	34	25	80		9		7												
0																		7 9	13	100			H			
Una f	jer7a	06	40	0	1	6	5+3	re		in		60	250	w 1-6	2 ,	8 14	1. (Jai	a	MI	250	u	de		70	600
se syeta					20		000		6	1	0.3	0	1			1	1	-6	col	0	1,		200	er!	Ūq.	de
a syem	60 Y	PX	I GO	9	00		600	011	8	7	6	26	lu	-	- 1	11	U	de	000		100	1	000		- 1	
eguilibr	10 0	on	.0		10	10	cio	Ces	1	20	rio	10	a		nac	ia	a	r1	60		de		to.	11/	5.	14
1										18	-							7								
la ecoció	on d	15	mo	si on	ea	10		1/8	15			y-j	0	A												
	M		4	1											A	7	8									
Datos			-	10.8	5 3		9			1 1		1 2	134	3.)			-			H	1			H		
F- 400	11 -	2	0 .	- to	2	0.1			7.0	1																-
F= 400	N - 6	101		10		34			3	2	2	27	1	S.V		M										
		N		49	P																					
	40	0/	2 =	4																					1	
10 1 1 10 10 10 10 10 10 10 10 10 10 10	31/4	1	M	13	ð.	16	10		ti	6	7.3	(0)	3-	A	5-1		×	3	1	1		. 9	×	1	28	54
		W;	20	C		- 1															U	0		-	-]	
		2.7						- 1									108		8	-		23	A	361	O.	
		W .	= 91	1	w	22		3												- 1				1	H	
	dx	(+ =0	-	-4	0	2	30		5 1		×	5		- 6		- 1	-		-	K	-	10.2	28	83	
	of	0	1	1																						
131747			1						JAN.		2.3		5	N	- 6				ő		A	2				
						,			1												8	8	V			
- George	100	136	mo	jui ~	ic	10	-	5	0	X	-	12	00	X	-	0										
									11					+				51			-6	15				
	240	113	370	19		25-		1	-	1	4	K.	- 0)									0	F	=	
10 × 100																							20	157		

x(f)= a cascul + casen -t w(1)= (1.cos 1 + + co sen 21 91 = 2 x'(a) = [-40 = -2 ser 21 + ce cos 21] x(0)= [-10 = 202] x (+) = 2 cos gt - 5 ser 2+ Example 2: Vibraciones Angitiquades Una masa de 1616 osta unida a un resorte de 10 pres. Caarelo la masa lega a descantar en la posición de equilloro el resolte orice 15 pies 4 in. El sistema se sumege en un medito que imponste una fuerza de constrapación iguala 5952 reas la velocidad instantanga de la masa. Encuentra la equación de movimiento si la musa es empojada navia arriba desde la posicion de eguilibrio con una redocidad ascordente inicial de spies/seg. à Cual es la posicion de la masa despues de la say à Educiela de de 16 ft sesticamento del osorte m=1 -> masa 3 x' +3 X-0 2 dax +5x +6x = 0 -> solvain genera

MM x (+)= c1e = + C2c 3+ ces de 105: x(10) = -50 20 + 50° =-1,0303 X 10 3=0 de equilibrio: x'(+) = 10e a la posición 1000 de 105 00 masa x(10) = 100 resultado que la musa appears