化学物质基本概念·四·「离子检验」

大题通用术语: 取少量待测液于洁净试管中, 滴加....... 观察......

阳离子

- Na+:用 铂丝 蘸其溶液,用酒精灯火焰上灼烧,火焰呈 黄色
- K+:用 铂丝 蘸其溶液,用酒精灯火焰上灼烧,透过蓝色钻玻璃观察,火焰呈 紫色

通过焰色反应检验离子

- \circ $\mathrm{Na^+}$ 与 $\mathrm{K^+}$ 在自然界中往往同时存在,火焰的紫色可能被黄色遮盖,因此判断 $\mathrm{K^+}$,需透过蓝色钻玻璃观察
- 。 需使用铂丝或干净的铁丝,不得使用玻璃棒(Na_2SiO_3)
- $\mathrm{Mg^{2+}} \xrightarrow{ \wp \sqsubseteq \mathrm{NaOH} }$ 白色沉淀 $\mathrm{Mg(OH)_2} \downarrow \xrightarrow{\mathrm{\ddot{a}m\ NaOH\Xi z \dot{z} \sqsubseteq}}$ 白色沉淀不溶解
- $\mathrm{Al}^{3+} \xrightarrow{\phi \equiv \mathrm{NaOH}}$ 白色沉淀 $\mathrm{Al}(\mathrm{OH})_3 \downarrow \xrightarrow{\mathrm{\ddot{m}n} \mathrm{NaOH} \oplus \mathrm{D}^{\pm}}$ 白色沉淀完全溶解 AlO_2^-

如果白色沉淀部分溶解则说明均含有 Mg^{2+} 与 Al^{3+}

- Fe³⁺
 - 1. 待测液 $\stackrel{ ext{KSCN}{ ilde{ imes}{ ilde{ imes}}}}{\longrightarrow}$ 溶液变为血红色 $ext{Fe}(ext{SCN})_3$
 - 2. 待测液 $\stackrel{
 m NaOH}{----}$ 产生红褐色沉淀 ${
 m Fe}({
 m OH})_3$
 - 3. 待测液 ^{苯酚} 溶液显紫色
- Fe²⁺
 - 1. 待测液 $\xrightarrow{\mathrm{K}_3[\mathrm{Fe}(\mathrm{CN})_6]}$ 产生蓝色沉淀
 - 2. 待测液 $\xrightarrow{
 m NaOH\overset{}_{lpha\overset{}_{lpha}}{\sim}}$ 白色絮状沉淀 \longrightarrow 灰绿色沉淀 \longrightarrow 红褐色沉淀
- 有 Fe²⁺ 无 Fe³⁺

待测液
$$\xrightarrow{\text{KSCN}\ddot{\text{R}}\ddot{\text{R}}}$$
 $\ddot{\text{R}}$ $\ddot{$

• NH₄⁺

待测液 $\stackrel{\mathbb{Z} \pm \, \mathrm{NaOH}}{\longrightarrow}$ $\stackrel{\mathrm{inh}}{\longrightarrow}$ 产生无色、具有刺激性气味 且 可使湿润的红色石蕊试纸变蓝的气体

 $\mathrm{NH_4^+}$ 与 NaOH 反应先生成一水合氨,只有一部分分解出氨气,且由于其氨气对水溶解性过大,会溶解在水中加热用于促进一水合氨分解 且 降低氨气对水的溶解度

- Cu²⁺
 - 一般可通过溶液颜色直接判断是否含有 $\mathbf{C}\mathbf{u}^{2+}$,但如果溶液中含有多个有色离子则难以判断,需通过化学检验的方式判断

待测液 $\stackrel{\mathrm{NaOH}}{\longrightarrow}$ 蓝色沉淀 $\mathrm{Cu}(\mathrm{OH})_2$

- Ag⁺
 - 1. 待测液 $\xrightarrow[\overline{\hbox{\scriptsize @}{}}]{\hbox{\scriptsize HNO}_3}$ 无沉淀(排除 ${
 m SiO}_3^{2-}$ 干扰) $\xrightarrow[\overline{\hbox{\scriptsize HCl}}]{\hbox{\scriptsize HCl}}$ 白色沉淀 ${
 m AgCl}$

2. 待测液 $\stackrel{\phi \equiv g_{\Lambda}}{-\!-\!-\!-\!-}$ $AgOH \downarrow$ (不稳定) \longrightarrow 棕褐色沉淀 $Ag_2O \stackrel{g_{\Lambda}}{-\!-\!-\!-}$ 沉淀溶解 $[Ag(NH_3)_2]OH$

阴离子

• Cl⁻

教材对比实验

在三支试管中分别加入 2~3mL 稀盐酸、NaCl 溶液、 Na_2CO_3 溶液,然后各滴入几滴 $AgNO_3$ 溶液,观察现象。再分别加入少量稀硝酸,观察现象

物质	加入 ${ m AgNO}_3$ 溶液后	加入稀硝酸后	解释或离子方程式
稀盐酸	白色沉淀(AgCl)	不溶解	$ m Ag^+ + Cl^- \ = AgCl \downarrow$
NaCl 溶液	白色沉淀(AgCl)	不溶解	$ m Ag^+ + Cl^- \ = AgCl \downarrow$
$ m Na_2CO_3$ 溶液	白色沉淀(${ m Ag}_2{ m CO}_3$)	溶解并产生气泡	$egin{aligned} 2\mathrm{Ag^{+}} + \mathrm{CO_{3}^{2-}} &= \mathrm{Ag_{2}CO_{3}} \downarrow \ \mathrm{Ag_{2}CO_{3}} + 2\mathrm{H^{+}} &= 2\mathrm{Ag^{+}} + \mathrm{H_{2}O} + \mathrm{CO_{2}} \uparrow \end{aligned}$

• Br⁻

待测液 $\stackrel{{rac{8}}^{\,\,\,\,\,\,\,\,\,}}{\longrightarrow}$ 溶液变黄 $\stackrel{{
m CCl}_4}{\longrightarrow}$ 分层,且下层油状液体(有机层)呈橙色

- I-
 - 1. 待测液 $\stackrel{{\rm fill}}{\longrightarrow}$ 溶液变黄 $\stackrel{{\rm fill}}{\longrightarrow}$ 分层,且上层油状液体(有机层)呈紫色
- ullet Br $^-$ & I $^-$

待测液
$$\xrightarrow{\mathrm{AgNO_3}$$
溶液 $}$ $\left\{ egin{array}{ll} \begin{array}{ll} \$

- SO₄²⁻
 - 1. 原理:在溶液中, $\mathrm{SO_4^{2-}}$ 可与 $\mathrm{Ba^{2+}}$ 反应,生成 **不溶于稀盐酸** 的白色 $\mathrm{BaSO_4}$ 沉淀

强酸根形成的沉淀往往难溶于强酸,例如 BaSO_4 、 AgCl 不溶于盐酸、硝酸

- 2. 操作方法
 - 1. 取少许待测液于洁净试管中, 先加入足量稀盐酸酸化

 $\mathrm{Ba^{2+}}$ 与 $\mathrm{SO_4^{2-}}$ 、 $\mathrm{CO_3^{2-}}$ 、 $\mathrm{SO_3^{2-}}$ 形成沉淀, $\mathrm{Ag^{+}}$ 与 $\mathrm{Cl^{-}}$ 形成沉淀;稀盐酸可排除 $\mathrm{CO_3^{2-}}$ 、 $\mathrm{SO_3^{2-}}$ 、 $\mathrm{Cl^{-}}$ 的干扰

- 2. 上一步后无明显现象(若有沉淀,则静置后取上层清液),滴加 ${f BaCl_2}$ 溶液
- 3. 若有白色沉淀产生,则说明待测液中含有 SO_4^{2-} 若无白色沉淀产生,则说明待测液中不含 SO_4^{2-}
- 3. 注意事项
 - $lacksymbol{\bullet}$ 不能只加入 BaCl_2 ,且盐酸和 BaCl_2 的顺序不可以颠倒

例如:待测液先加入 $BaCl_2$,发现白色沉淀,再加入稀盐酸,观察到沉淀不消失,不可判断是 SO_4^{2-} 因为虽然排除了 $BaCO_3$ 和 $BaSO_3$ 的干扰,但也有可能是 AgCl (HCl 不会使 AgCl 沉淀消失)

■ 不可以引入硝酸根,例如不可以加 \mathbf{HNO}_3 酸化或是加 $\mathbf{Ba}(\mathbf{NO}_3)_2$

会使得溶液中可能存在的 SO_3^- 氧化为 SO_4^{2-}

• $SO_3^{2-} \& HSO_3^-$

$$egin{cases} \mathrm{SO_3^{2-}} & \xrightarrow{\mathrm{CaCl_2}} & \mathrm{De}$$
 白色沉淀 $\xrightarrow{\mathbb{Z} \oplus \mathrm{HCl}} & \mathrm{De}$ 白色沉淀完全溶解 $\\ \mathrm{HSO_3^{-}} & \xrightarrow{\mathrm{CaCl_2}} & \mathrm{E}$ 无沉淀 $\xrightarrow{\mathbb{Z} \oplus \mathrm{HCl}} & \longrightarrow & \\ \end{bmatrix} \longrightarrow \mathtt{tot}$ 生成无色具有刺激性 且 可使品红溶液褪色的气体 $(\mathrm{SO_2})$

ullet CO $_3^{2-}$ & HCO $_3^-$

$$\left\{ \begin{matrix} \mathrm{CO}_3^{2-} & \xrightarrow{\mathrm{CaCl}_2} & \text{ 白色沉淀} & \xrightarrow{\mathbb{Z} \oplus \mathrm{HCl}} & \text{ 白色沉淀完全溶解} \\ \mathrm{HCO}_3^{-} & \xrightarrow{\mathrm{CaCl}_2} & \text{ 无沉淀} & \xrightarrow{\mathbb{Z} \oplus \mathrm{HCl}} & \xrightarrow{\mathbb{Z} \oplus \mathrm{HCl}} \end{matrix} \right\} \longrightarrow \texttt{生成无色无味 且 可使澄清石灰水变浑浊的气体 } \left(\mathrm{CO}_2\right)$$

• $AlO_2^- \& SiO_3^{2-}$

• $S_2O_3^{2-}$

待测液 $\stackrel{\mathrm{HCl}}{\longrightarrow}$ 黄色沉淀 且 生成具有刺激性气味的气体

$${
m S}_2{
m O}_3^{2-} + 2\,{
m H}^+ \ = \ {
m S}\downarrow \ + {
m SO}_2\uparrow \ + {
m H}_2{
m O}$$

• S²⁻

- 1. 待测液 $\stackrel{\mathrm{Cu}^{2+}}{\longrightarrow}$ 黑色沉淀 CuS
- 2. 待测液 $\xrightarrow{\{ar{x}^{\Lambda}\}}$ 黄色沉淀 S

• NO₃

待测液 $\xrightarrow{\text{浓缩}}$ $\xrightarrow{\text{H}_2\text{SO}_4$ 、 $\text{Cu}}$ 红棕色气体 NO_2 (或 无色气体 NO 随后立即变为红棕色)