

Indice

1 Introduzione										2																
	1.1 Gli eventi e la probabilità																									2

Capitolo 1

Introduzione

1.1 Gli eventi e la probabilità

Definizione (1.1): Uno spazio di probabilità è una terna (Ω, \mathcal{F}, P) dove:

- Ω è un insieme non vuoto (che rappresenta l'insieme dei possibili risultati del fenomeno aleatorio in esame).
- \mathcal{F} è una famiglia di sottoninsiemi di Ω detti **eventi**.
- P è una misura di probabilità.

In genere si suppone che la famiglia \mathcal{F} abbia proprietà ragionevoli, cioè che $\Omega \in \mathcal{F}$ e che presenta una chiusura rispetto alle operazion insiemistiche: ciò permette di identificare l'insieme \mathcal{F} come una σ -algebra. Nel caso in cui Ω sia un insieme discreto, cioè finito o numerabile, possiamo presupporre che \mathcal{F} sia l'insieme delle parti di Ω .

Definizione (1.2): Una **misura di probabilità** P è una funzione $P: \mathcal{F} \to [0, \infty)$ tale che $P(\Omega) = 1$ e, per ogni successione di eventi $\{E_n\}_n$ disgiunti a due a due (cioè $E_i \cap E_j = \emptyset$ per $i \neq j$), si ha $P(\bigcup_n E_n) = \sum_n P(E_n)$.

Tramite il teorema appena definito è possibile dimostrare le seguenti affermazioni:

- $\emptyset \in \mathcal{F} \in P(\emptyset) = 0$.
- Per ogni scelta di $E, F \in \mathcal{F}$ tali che $E \subset F$ si ha che $P(E) \leq P(F)$.
- Per ogni scelta di $E \in \mathcal{F}$ si ha che $P(E) \in [0,1]$ ed inoltre si ha che $P(E) = 1 P(E^C)$ e $P(E^C) = 1 P(E)$.
- Per ogni famiglia finita di eventi $\{E_n\}_n$ disgiunti a due a due, si ha che $P(\cup_n E_n) = \sum_n P(E_n)$.
- Per ogni scelta di $E, F \in \mathcal{F}$ si ha che $P(E) = P(E \cap F) + P(E \cap F^C)$.

Notare che nel caso in cui $\Omega = \bigcup_n \{w_n\}$, per n che appartiene ad un insieme finito o numerabile, l'insieme dei valori $\{P(\{w_n\})\}_n$ consente di determinare il valore di P(E) per ogni $E \in \mathcal{F}$; infatti:

$$E = \bigcup_{n:\omega_n \in E} \{\omega_n\}$$
 implica $P(E) = \sum_{n:\omega_n \in E} P(\{\omega_n\})$

Questo perché $E \cup_{n:\omega_n \in E} \{\omega_n\}$ è un'unione di insieme disgiunti a due a due. Spesso nei risultati generati che vengono forniti si sottintende di avere uno spazio di probabilità (Ω, \mathcal{F}, P) assegnato, non necessariamente con Ω finito o numerabile.

Lemma (1.2a): Per ogni scelta di $E_1, E_2 \in \mathcal{F}$ si ha $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$

Lemma (1.2a): Osserviamo che $E_1 \cup E_2 = (E_1 \cap E_2^C) \cup (E_1 \cap E_2) \cup (E_1^C \cap E_2)$, la quale è l'unione di eventi disgiunti a due a due, pertanto:

$$P(E_1 \cup E_2) = P(E_1 \cap E_2^C) + P(E_1 \cap E_2) + P(E_1^C \cap E_2)$$

Allora, sommando e sottraendo $P(E_1 \cap E_2)$, si ha:

$$P(E_1 \cup E_2) = \underbrace{P(E_1 \cap E_2^C) + P(E_1 \cap E_2)}_{P(E_1)} + \underbrace{P(E_1 \cap E_2) + P(E_1^C \cap E_2)}_{P(E_2)} - P(E_1 \cap E_2)$$

Lemma (1.2b) (Union Bound): Per ogni famiglia finita o successione $\{E_n\}_n$ di elementi di \mathcal{F} si ha $P(\cup_n E_n) \leq \sum_n P(E_n)$

Lemma (1.2b): Consideriamo i seguenti eventi $\{\hat{E}_n\}_n$:

$$\hat{E}_1 = E_1; \hat{E}_n = E_n \cap (E_1 \cup E_2 \cup ... \cup E_{n-1})^C \text{ per } n \ge 2$$

Allora si ha $\bigcup_n E_n = \bigcup_n \hat{E}_n$ e gli eventi $\{\hat{E}_n\}_n$ sono disgiunti a due a due. Quindi, essendo anche per costruzione $\hat{E}_n \subset E_n$ per ogni scelta di n, si ha:

$$P(\cup_n E_n) = P(\cup_n \hat{E}_n) = \sum_n P(\hat{E}_n) \le \sum_n P(E_n)$$

Lemma (1.2c) (Principio di inclusione-esclusione): Per ogni famiglia finita o successione $\{E_n\}_n$ di elementi di \mathcal{F} si ha che:

$$P(E_1 \cup E_2 \cup ... \cup E_n) = \sum_{i} P(E_i) - \sum_{i < j} P(E_i \cap E_j) + \sum_{i < j < k} P(E_i \cap E_j \cap E_k) + ... + (-1)^n P(E_1 \cap E_j \cap E_k)$$

Definizione (1.3) (Indipendenza tra eventi): Due eventi $E, F \in \mathcal{F}$ sono indpendenti se $P(E \cap F) = P(E)P(F)$. In generale, data un'arbitraria famiglia di eventi $\{E_n\}_n$, abbiamo eventi indipendenti se, presa una qualsiasi sottofamiglia finita con almeno due eventi $E_{i_1}, E_{i_2}, ..., E_{i_k}$ con $k \geq 2$, si ha che:

$$P(E_{i_1} \cap E_{i_2} \cap ... \cap E_{i_k}) = P(E_{i_1})P(E_{i_2})...P(E_{i_k})$$

Definizione (1.4) (Formula delle probabilità totali): Sia $\{E_n\}_n$ una famiglia finita o una successione di eventi disgiunti a due a due, e tali che $\bigcup_n E_n = \Omega$ (ossia $\{E_n\}_n$ è una partizione finita o numerabile). Allora, per ogni $B \in \mathcal{F}$, si ha che:

$$P(B) = \sum_{n} P(B|E_j)P(E_j)$$

Teorema (1.1) (Formula delle probabilità totali): Sia $\{E_n\}_n$ una famiglia finita o una successione di eventi disgiunti a due a due, e tali che $\bigcup_n E_n = \Omega$ (ossia $\{E_n\}_n$ è una partizione finita o numerabile). Allora, per ogni $B \in \mathcal{F}$, si ha che:

$$P(B) = \sum_{n} P(B|E_j)P(E_j)$$

Teorema (1.1): Osservando che gli eventi $\{B \cap E_n\}_n$ sono disgiunti a due a due, si ha:

$$P(B) = P(B \cap \Omega) = P(B \cap (\cup_n E_n)) =$$

$$= P(\cup_n (B \cap E_n)) =$$

$$= \sum_n P(B \cap E_n) =$$

$$= \sum_n P(B|E_n)P(E_n)$$

Teorema (1.2) (Formula di Bayes): Nelle ipotesi del Teorema (1.1), e supponendo che $P(B) \neq 0$, si ha che:

$$P(E_j|B) = \frac{P(B|E_j)P(E_j)}{\sum_n P(B|E_n)P(E_n)} \text{ per ogni indice } j$$

Teorema (1.2): Si tratta di una verifica diretta, usando la definizione della probabilità condizionata e la formula delle probabilità totali:

$$P(E_j|B) = \frac{P(B \cap E_j)}{P(B)} = \frac{P(B|E_j)P(E_j)}{\sum_n P(B|E_n)P(E_n)} \text{ per ogni indice } J$$