CS102: Big Data

Tools and Techniques, Discoveries and Pitfalls

Spring 2017 Ethan Chan, Lisa Wang

Lecture 3: Relational Databases and SQL

Announcements

- Namecards! We want to get to know you!
- Homework 1 due this Sunday

Ethan Chan, Lisa Wang

Limitations of Spreadsheets

Data type

Only on structured data

Data size

Google sheets: 400,000 cells

Mechanics

Header rows, empty cells, strange behaviors, ...

Some analyses are difficult

• E.g., 2 restaurants closest to each other (easy in SQL)

Traceability

Tools & Techniques

Learning Goals

- Learn what are Relational Databases
- Learn what is a Data Scientist
- Familiarize yourself with Jupyter Notebook
- Get comfortable with SQL queries

Ethan Chan, Lisa Wang

Relational Databases and SQL

Relational Databases

- What are databases?
 - A large, integrated collection of data
 - Model of the real world
 - Entities (Students, Courses)
 - Relationships (Alice is taking CS102)

Ethan Chan, Lisa Wang

Example (Axess)

Students

Name	Year	Major
Alice	Senior	Undeclared
Bob	Junior	Sociology
Charlie	Grad	MS&E

Enrollment

Student Name	Class	Quarter	Grade
Alice	CS102	SP17	Α
Alice	TAPS103	FA16	В
Charlie	ME101	FA16	С
Dory	CS102	SP17	Α

Courses

Class	Instructor	Location	Days
CS102	Ethan, Lisa	Lathrop	T,Th
TAPS103	Dan Klein	Memaud	MW
ME101	Lillie	Quad	MWF
PE 3	Lillie	Track	F

Example (Axess)

Students

Name	Year	Major
Alice	Senior	Undeclared
Bob	Junior	Sociology
Charlie	Grad	MS&E

Enrollment

Student Name	Class	Quarter	Grade
Alice	CS102	SP17	Α
Alice	TAPS103	FA16	В
Charlie	ME101	FA16	С
Dory	CS102	SP17	A

Courses

Class	Instructor	Location	Days
CS102	Ethan, Lisa	Lathrop	T,Th
TAPS103	Dan Klein	Memaud	MW
ME101	Lillie	Quad	MWF
PE 3	Lillie	Track	F

What is SQL?

- SQL is a standard language for:
 - Defining your data (update/insert/delete)
 - Manipulating your data (aggregation / joins / ...)
- SQL
 - Structured
 - Query
 - Language
- SQL is a declarative language
 - You tell the computer <u>what</u> you want (A Query)
 - Instead of telling it how to get what you want
 - Computer handles the logic on the backend

Why Learn Relational Databases?

- Relational database management systems (RDBMS) have been around for more than 40 years
- \$30+ billion per year industry, increasing yearly

Why so successful?

- Simple model, high-level expressive query language, reliable and scalable systems.
- Dark times 5 years ago
 - Today's 'NoSQL' systems are starting to look more and more like RDBMSs.
 - Most "Big Data" systems now include SQL language

Why Learn SQL?

- One of oldest languages still in use (1978)
- Supported by all RDBMSs
- Standardized across products
- Interactive or embedded in programs

SQL Systems

- Commercial Proprietary systems:
 - Oracle
 - Microsoft SQL Server
 - o IBM DB2
 - 0 ..
- Open Source Systems
 - MySQL
 - SQLite (using this for class)
 - PostgreSQL
 - 0 ...

Basic Concepts

Definition: Relation (Table)

Relation

Name: Product

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks
SingleTouch	\$149.99	Canon
MultiTouch	\$203.99	Hitachi

Definition: Attribute (Column)

Product

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks
SingleTouch	\$149.99	Canon
MultiTouch	\$203.99	Hitachi

Definition: Tuple (Row)

Product

PName	Price	Manufacturer	
Gizmo	\$19.99	GizmoWorks	
Powergizmo	\$29.99	GizmoWorks	
SingleTouch	\$149.99	Canon	
MultiTouch	\$203.99	Hitachi	

SQL Types and Domains

Types

- VARCHAR / TEXT
- BOOLEAN
- DATE
- TIME
- ...

Domains

- Constraint for each type
 - E.g. VARCHAR (256)
 - Maximum of 256 characters of text

Differences Between Table and Spreadsheet

Table (Relation)

- Name is significant
 - Watch out for spaces and capitalization of letters!
- Order is not significant
 - can change on re-open
- Regular structure, more "row-oriented"
- Data elements always values, not formulas

Creating and Loading Data

System-dependent, but can nearly always start with .CSV file or similar

Ethan Chan, Lisa Wang

SQL Query (Basics)

SQL Query

Basic form (there are many many more bells and whistles)

```
SELECT <attributes>
FROM <one or more relations>
WHERE <conditions>
```

Call this a SFW query.

Ethan Chan, Lisa Wang

Selecting all Columns (Select *)

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

SELECT * Product Category = 'Gadgets'

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks

Selecting specific Columns

PName	Price	Category	Manufacturer
Gizmo	\$19.99	Gadgets	GizmoWorks
Powergizmo	\$29.99	Gadgets	GizmoWorks
SingleTouch	\$149.99	Photography	Canon
MultiTouch	\$203.99	Household	Hitachi

SELECT Pname, Price, Manufacturer Product FROM Category = 'Gadgets' WHERE

PName	Price	Manufacturer
Gizmo	\$19.99	GizmoWorks
Powergizmo	\$29.99	GizmoWorks

Adapted from CS145: Databases

24

Querying

A query is executed over one or more tables, returns a table as its result

city

temperature EU

Tidbit of the day...

What is a Data Scientist?

Data Scientist

"A data scientist is a statistician who lives in San Francisco."

"Person who is better at statistics than any software engineer and better at software engineering than any statistician."

Data Scientist

```
Someone who
            asks the right questions
            collects the data
            cleans and processes data
            makes sense of it
                       +
            tells a story
```

Data Scientist (tools)

```
Someone who
            asks the right questions
            collects the data (SQL/Python/..)
            cleans and processes data (Python)
            makes sense of it (SQL / Python / R...)
                       +
            tells a story (Charts / Tableau)
```

Ethan Chan, Lisa Wang

Data Scientist (Example)

```
Someone who
```

asks the right questions

"Which customers are most likely to leave my website?"

collects the data

Talks to various teams within the firm to get the data

cleans and processes data

Most of time the data is always incomplete / messy

makes sense of it

Build a machine learning model to predict who will leave

tells a story

Tells the sales/marketing team who to focus on

Data Scientist (Example)

Someone who

asks the right questions

"Which customers are most likely to leave my website?"

collects the data

Talks to various teams within the firm to get the data cleans and processes data

Most of time the data is always incomplete / messy

makes sense of it

Build a machine learning model to predict who will leave tells a story

Tells the sales/marketing team who to focus on

~80% of your time

Data Scientist Venn Diagram

Ethan Chan, Lisa Wang

Ethan Chan, Lisa Wang

Jupyter Notebooks

Jupyter Notebooks

(formerly iPython notebooks)

- Modelled after "laboratory notebooks"
- can combine text boxes ("markdown") with boxes containing executable code
- Can run/re-run boxes (cells) individually, or run/re-run entire notebook
- Rapid adoption in many sectors
- Notebooks run in a web browser (no internet needed)

In Class Demo

About the Data we're using

1. CityTemps (city, state, lat, lng, temp)

city	state	lat	Ing	temp
Mobile	Alabama	31.2	88.5	44
Montgomery	Alabama	32.9	86.8	38
Phoenix	Arizona	33.6	112.5	35
Little Rock	Arkansas	35.4	92.8	31
Los Angeles	California	34.3	118.7	47

2. Regions (state, region, coastal)

state	region	coastal
Maine	Northeast	Υ
Vermont	Northeast	N
Rhode Island	Northeast	Υ
New York	Midatlantic	Υ

Launch the Jupyter Notebook!

- 1. Download the following files (ensure both of them are in the same folder):
 - a. SQLLecture.ipynb
 - b. Weather.db
- 2. Run Jupyter notebook to open SQLLecture.ipynb
- 3. SQL Lecture notes posted online

SQL Features not Covered

- Set Operators
 - Union, Intersect, Except
- Keys
 - Designated column that must have unique value in each row
 - Or designated set of columns
- Null values
 - Special value usually denoting unknown or undefined
 - Not included in aggregations, =, <, etc.
 - Example: ... where temp <= 10 or temp > 10
- Outer joins

Please give us feedback here: http://bit.ly/cs102_feedback

End.