几何中的向量丛

G.Li

1 流形的切从

给定一个 n 维的微分流形 M,有光滑函数层 $C^{\infty}(-)$,进而可以定义一点 x 的光滑函数芽

$$C_x^{\infty} := \operatorname{colim}_{x \in U} C^{\infty}(U),$$

由于流形的局部完全由 \mathbb{R}^n 中的开集决定,且可以选取足够小的的邻域而不改变光滑函数芽. 点 x 上的一个切向量是一个 \mathbb{R} 线性映射

$$v: C_x^\infty \to \mathbb{R}$$

满足 Leibnitz 定律

$$v(f \cdot g) = v(f)g(x) + f(x)v(g).$$

例如,对 M 上过点 x 的可微曲线 $\gamma: (-\epsilon, \epsilon) \to M$ (满足 $\gamma(0) = x$),

$$v(f) := \frac{\mathrm{d}}{\mathrm{d}t} (f \circ \gamma(t)) \Big|_{t=0}$$

是切向量. 切向量实际是方向导数.

一点 $x \in M$ 上的所有切向量组成的集合有自然的 \mathbb{R} 线性空间结构,称这个空间为 M 在点 x 的切空间,记为 T_xM . 切空间 T_xM 的维数恰好等于流形 M 的维数,这因为可以选取 x 附近充分小的邻域 (U,x^1,\cdots,x^n) 使得对应到 \mathbb{R}^n 中是一个球 $B(0,\epsilon)$,如前例子取 M 中的曲线

$$\gamma_i: (-\epsilon, \epsilon) \to M, 1 \le j \le n,$$

满足 $x^i(\gamma_j(t)) = \delta^i_j t$, 其中 δ^i_j 是 Kroneker 记号. 定义

$$\frac{\partial}{\partial x^j} := \frac{\mathrm{d}}{\mathrm{d}t} (-\circ \gamma_j(t)) \bigg|_{t=0},$$

这些构成了 T_xM 的一组基. T_xM 的对偶空间称为余切空间,它的对偶基记为 $\{dx_i\}_{1\leq i\leq n}$,任给定一个函数 $f\in C_x^\infty$,都有余切向量 df 满足

$$\left\langle \mathrm{d}f, \frac{\partial}{\partial x^j} \right\rangle = \mathrm{d}f \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial}{\partial x^j} f.$$

给定光滑流形间的光滑映射 $\varphi: M \to N$, 自然诱导了一个映射

$$\varphi^*: C^{\infty}_{\varphi(x)} \to C^{\infty}_x$$
$$f \mapsto f \circ \varphi,$$

1 流形的切丛 2

于是这自然可以称为一个映射

$$\varphi_*: T_x M \to T_{\varphi(x)} N$$

$$v \mapsto v(-\circ \varphi),$$

该映射称为切映射.

定理 1.1. 设 $M \in n$ 维光滑流形,令

$$TM := \coprod_{x \in M} T_x M$$

是 M 上的切向量的全体, 那么存在 TM 上的拓扑和光滑结构使得 TM 是一个 2n 维光滑流形.

证明. 按定义, TM 中的点是形如 (x,v) 的配对, 其中 $x \in M$, $v \in T_xM$. 定义映射

$$\pi: TM \to M$$

$$(x, v) \mapsto x,$$

这样对于任意一点 $x \in M$, $\pi^{-1}(x) = T_x M$.

假定 M 的光滑结构是 $\{(U_{\lambda}, \varphi_{\lambda}: U_{\lambda} \to \mathbb{R}^{n})\}_{\lambda \in \Lambda}$, 考虑

$$\pi^{-1}(U_{\lambda}) = \bigcup_{x \in U_{\lambda}} T_x M,$$

于是 $TM = \bigcup_{\lambda \in \Lambda} \pi^{-1}(U_{\lambda})$. 借助 φ_{λ} , 我们给定局部的同胚

$$\psi_{\lambda}: U_{\lambda} \times \mathbb{R}^n \to \pi^{-1}(U_{\lambda})$$

满足对于 $x \in U_{\lambda}, y = (y^1, \dots, y^n) \in \mathbb{R}^n$,

$$\psi_{\lambda}(x,y) = \sum_{i=1}^{n} y^{i} \frac{\partial}{\partial x_{\lambda}^{i}} \bigg|_{x}$$

其中 $x_{\lambda}^{i} = (\varphi_{\lambda})^{i}$, $i = 1, \dots, n$ 是 U_{λ} 上由坐标映射 φ_{λ} 给出的局部坐标系. 很明显这个映射是集合上的双射. 借助局部的乘积空间,可以给出 TM 一个拓扑结构. 考虑 TM 中的子集族

$$\mathcal{B} := \{ \psi_{\lambda}(W) \mid W \neq U_{\lambda} \times \mathbb{R}^n \text{ 中的开集} \},$$

这可以构成 TM 的一个拓扑基: 首先 $\{(U_{\lambda}\}_{\lambda\in\Lambda}$ 是 M 的一个开覆盖, 因此 \mathcal{B} 是 TM 的开覆盖; 接下来还需要 验证对任意 $(x,v)\in TM$,若有 $B_1,B_2\in\mathcal{B}$ 使得 $(x,v)\in B_1\cap B_2$ 则有 $B\in\mathcal{B}$ 满足 $(x,v)\in B\subseteq B_1\cap B_2$. 由于 $U_{\lambda}\times\mathbb{R}^n$ 具有乘积拓扑结构,因而可以找到 U_{λ},U_{μ} 中的开集 D_1,D_2 和 \mathbb{R}^n 中的开集 V_1,V_2 使得 $\psi_{\lambda}(D_1\times V_1)\subseteq$ $B_1,\psi_{\mu}(D_2\times V_2)\subseteq B_2$,这样只要证明存在某个 U_{ν} 中的开集 D 和 \mathbb{R}^n 中的开集 V 使得

$$(x,v) \in \psi_{\nu}(D \times V) \subseteq \psi_{\lambda}(D_1 \times V_1) \cap \psi_{\mu}(D_2 \times V_2),$$

如此可得到 TM 上的拓扑,并且这是一个第二可数的 Hausdorff 空间. 在上述假定下,

$$x = \pi(x, v) \in D_1 \cap D_2 \subseteq U_\lambda \cap U_\mu$$

且

$$v = \sum_{i=1}^{n} y^{i} \frac{\partial}{\partial x_{\lambda}^{i}} \bigg|_{x} = \sum_{i=1}^{n} \tilde{y}^{i} \frac{\partial}{\partial x_{\mu}^{i}} \bigg|_{x} = \sum_{i,j=1}^{n} \tilde{y}^{j} \frac{\partial x_{\lambda}^{i}}{\partial x_{\mu}^{j}} (\varphi_{\lambda}(x)) \frac{\partial}{\partial x_{\lambda}^{i}} \bigg|_{x},$$

其中 $(y^1, \dots, y^n) \in V_1$, $(\tilde{y}^1, \dots, \tilde{y}^n) \in V_2$, 因此它们之间有关系式

$$y^{i} = \sum_{i=1}^{n} \tilde{y}^{i} \frac{\partial x_{\lambda}^{i}}{\partial x_{\mu}^{j}},$$

 $\frac{\partial x_{\lambda}^{i}}{\partial x_{\mu}^{j}}$ 是光滑流形 M 从局部坐标系 $(U_{\lambda}, x_{\lambda}^{i})$ 到 (U_{μ}, x_{μ}^{i}) 的坐标变换 Jacobi 矩阵. 考虑映射 $\Phi_{\lambda,\mu}: (U_{\lambda}\cap U_{\mu})\times\mathbb{R}^{n}\subseteq U_{\mu}\times\mathbb{R}^{n} \to (U_{\lambda}\cap U_{\mu})\times\mathbb{R}^{n}\subseteq U_{\lambda}\times\mathbb{R}^{n}$ 使得

$$\Phi_{\lambda,\mu}(x,(\tilde{y}^1,\cdots,\tilde{y}^n))=(x,(y^1,\cdots,y^n)),$$

其中 (y^1, \dots, y^n) 与 $(\tilde{y}^1, \dots, \tilde{y}^n)$ 服从之前计算的关系式,因此 y^i 是关于 $x, \tilde{y}^1, \dots, \tilde{y}^n$ 的光滑函数.由于

$$\det \frac{\partial x_{\lambda}^{i}}{\partial x_{\mu}^{j}} \neq 0,$$

所以 $\Phi_{\lambda,\mu}$ 有逆映射 $\Phi_{\mu,\lambda} = \Phi_{\lambda,\mu}^{-1}$, 且它也是光滑的, 这意味着 $\Phi_{\lambda,\mu} : (U_{\lambda} \cap U_{\mu}) \times \mathbb{R}^{n} \to (U_{\lambda} \cap U_{\mu}) \times \mathbb{R}^{n}$ 是光 滑同胚. 由定义可知

$$\psi_{\lambda} \circ \Phi_{\lambda,\mu} \circ \psi_{\mu}^{-1} = \mathrm{id} : \pi^{-1}(U_{\lambda} \cap U_{\mu}) \to \pi^{-1}(U_{\lambda} \cap U_{\mu}),$$

即有交换图

$$U_{\mu} \times \mathbb{R}^{n} \xrightarrow{\Psi_{\lambda,\mu}} U_{\lambda} \times \mathbb{R}^{n}$$

$$\pi^{-1}(U_{\lambda} \cap U_{\mu}).$$

在先前的设定下不妨取 $D_1 = D_2 = D_1 \cap D_2$,由于 $\Psi_{\lambda,\mu}(D_2 \times V_2)$ 是 $U_\lambda \times \mathbb{R}^n$ 的开集,并且 $\Phi_{\lambda,\mu} \circ \psi_\mu^{-1}(x,v) =$ $\psi_{\lambda}^{-1}(x,v) \in D_1 \times V_1$, 所以开集 $\Phi_{\lambda,\mu}(D_2 \times V_2)$ 与开集 $D_1 \times V_1$ 相交非空, 因此存在点 $\Phi_{\lambda,\mu} \circ \psi_{\mu}^{-1}(x,v) = \psi_{\lambda}^{-1}(x,v)$ 在开集 $\Phi_{\lambda,\mu}(D_2 \times V_2) \cap D_1 \times V_1$ 中的邻域 $D \times V$, 其中 $D \neq U_\lambda$ 的开子集, $V \neq \mathbb{R}^n$ 的开子集. 这样 $\psi_\lambda(D \times V) \in \mathcal{B}$ 目.

$$(x, v) \in \psi_{\lambda}(D \times V) \subseteq \psi_{\mu}(D_2 \times V_2) \cap \psi_{\lambda}(D_1 \times V_1),$$

于是 \mathcal{B} 是 TM 的拓扑基.

事实上,在TM上建立拓扑的直观意义很明确,在给定两个邻近的切向量 $(x_1,v_1),(x_2,v_2)$ 时,首先它们 的起点 x_1, x_2 是邻近的,因而可以落在同一个坐标邻域内,于是经过坐标变换 v_1, v_2 可以在同一个坐标系内 表示出来. 那么,切向量 $(x_1,v_1),(x_2,v_2)$ 相互邻近的第二个要求就是当它们在同一个坐标系内表示出来时,分 量的差别很小. 这就是这里给定的拓扑.

接下来再建立微分结构. 如前所述, $\{\pi^{-1}(U_{\lambda})\}_{\lambda\in\Lambda}$ 构成了 TM 的一个开覆盖,对每个指标 $\lambda\in\Lambda$,定义 映射

$$\xi_{\lambda}: \pi^{-1}(U_{\lambda}) \to \mathbb{R}^{2n}$$

$$\sum_{i=1}^{n} y^{i} \frac{\partial}{\partial x^{i}} \bigg|_{x} \mapsto (x_{\lambda}^{1}, \cdots, x_{\lambda}^{n}, y^{1}, \cdots, y^{n}).$$

1 流形的切丛 4

这样 ξ_{λ} 是从 $\pi^{-1}(U_{\lambda})$ 到 \mathbb{R}^{2n} 中的开集 $\varphi_{\lambda}(U_{\lambda}) \times \mathbb{R}^{n}$ 的同胚,因此 $(\pi^{-1}(U_{\lambda}), \xi_{\lambda})_{\lambda \in \Lambda}$ 是 TM 的一个坐标卡,使得它成为一个拓扑流形. 如此,还需要证明坐标卡是 C^{∞} 相关的. 注意到 $\pi^{-1}(U_{\lambda})$ 与 $\pi^{-1}(U_{\mu})$ 相交非空的 充要条件是 $U_{\lambda} \cap U_{\mu} \neq \emptyset$,此时坐标变换

$$\xi_{\mu} \circ \xi_{\lambda}^{-1} : \varphi_{\lambda}(U_{\lambda} \cap U_{\mu}) \times \mathbb{R}^{n} \to \varphi_{\mu}(U_{\lambda} \cap U_{\mu}) \times \mathbb{R}^{n}$$

由下式给出

$$(x_{\lambda}^1, \cdots, x_{\lambda}^n, y^1, \cdots, y^n) \mapsto (x_{\mu}^1, \cdots, x_{\mu}^n, \tilde{y}^1, \cdots, \tilde{y}^n),$$

其中 $x_{\mu}^{i} = (\varphi_{\mu} \circ \varphi_{\lambda}^{-1})^{i}(x_{\lambda}^{1}, \cdots, x_{\lambda}^{n})$,且

$$\tilde{y}^i = \sum_{i=1}^n y^i \frac{\partial x^i_\mu}{\partial x^j_\lambda}.$$

这样, x_{μ}^{i} , \tilde{y}^{i} 都是 x_{λ}^{i} , y^{i} 的光滑函数, 因此 TM 是光滑流形.

注意到在 TM 的这个光滑结构下,映射 $\pi:TM\to M$ 限制在局部坐标 $\pi^{-1}(U)$ 上的表达式为

$$\varphi_{\lambda} \circ \pi \circ \xi_{\lambda}^{-1}(x_{\lambda}^{1}, \cdots, x_{\lambda}^{n}, y^{1}, \cdots, y^{n}) = (x_{\lambda}^{1}, \cdots, x_{\lambda}^{n}),$$

于是 π 是光滑映射. 另外,

$$\xi_{\lambda} \circ \psi_{\lambda}(x, (y^1, \cdots, y^n)) = \xi_{\lambda} \left(\sum_{i=1}^n y^i \frac{\partial}{\partial x_{\lambda}^i} \Big|_x \right) = (x_{\lambda}^1, \cdots, x_{\lambda}^n),$$

所以 $\psi_{\lambda}: U_{\lambda} \times \mathbb{R}^{n} \to \pi^{-1}(U_{\lambda})$ 是光滑同胚. 同时该光滑同胚满足对所有的 $(x,y) \in U_{\lambda} \times \mathbb{R}^{n}$,

$$\pi \circ \psi_{\lambda}(x,y) = x,$$

即有交换图

$$U_{\lambda} \times \mathbb{R}^{n} \xrightarrow{\psi_{\lambda}} \pi^{-1}(U_{\lambda})$$

$$U_{\lambda}.$$

再固定 $x \in U_{\lambda}$, 考虑映射

$$\psi_{\lambda}(x,-): \mathbb{R}^n \to \pi^{-1}(x)$$

 $y \mapsto \psi_{\lambda}(x,y),$

按定义它将 (y^1,\cdots,y^n) 映到 $\sum_{i=1}^n y^i \frac{\partial}{\partial x_\lambda^i}\Big|_x$,因此是一个线性同构. 这样当 $x\in U_\lambda\cap U_\mu$ 时,存在两个线性同构 $\psi_\lambda(x,-),\psi_\mu(x,-):\mathbb{R}^n\to\pi^{-1}(x)$,因而有线性同构

$$\psi_{\mu}(x,-)\circ\psi_{\lambda}(x,-)^{-1}:\mathbb{R}^n\to\mathbb{R}^n,$$

这个同构是证明中的映射

$$(y^1, \cdots, y^n) \mapsto (\tilde{y}^1, \cdots, \tilde{y}^n),$$

恰好是局部坐标变换 $\varphi_{\mu} \circ \varphi_{\lambda}^{-1}$

例 1. 考虑 $S^2 \subseteq \mathbb{R}^3$, 有嵌入 $S^2 = \{(x,y,z) \mid x^2 + y^2 + z^2 = 1\}$. 那么 S^2 的切丛可表示为

$$TS^2 = \{((x, y, z), (u, v, w)) \mid xu + yv + zw = 0\} \subseteq S^2 \times \mathbb{R}^3.$$

2 流形的向量丛 5

2 流形的向量从

将切丛的概念做推广,我们得到了如下流形上向量丛的概念:

定义. 设 E,B 是两个光滑流形, $\pi:E\to B$ 是光滑的满映射. 若存在 M 的一个开覆盖 $\{U_{\lambda}\}_{\lambda\in\Lambda}$ 以及一组被称为局部平凡化 (local trivialization) 的光滑同胚

$$\psi_{\lambda}: U_{\lambda} \times \mathbb{R}^n \to \pi^{-1}(U_{\lambda})$$

使得

1. 下图交换

$$U_{\lambda} \times \mathbb{R}^{n} \xrightarrow{\psi_{\lambda}} \pi^{-1}(U_{\lambda})$$

$$U_{\lambda}.$$

2. 对任意给定的 $x \in U_{\lambda}$, 由局部平凡化诱导的

$$\psi_{\lambda}(x,-): \mathbb{R}^n \to \pi^{-1}(x)$$

 $\mathbf{v} \mapsto \psi_{\lambda}(x,\mathbf{v})$

是拓扑空间的同胚,且对于任意 $x \in U_{\lambda} \cap U_{\mu}$,复合映射

$$g_{\mu,\lambda}(x) := \psi_{\mu}^{-1}(x,-) \circ \psi_{\lambda}(x,-) : \mathbb{R}^n \to \pi^{-1}(x) \to \mathbb{R}^n$$

是线性同构, 即 $g_{\mu,\lambda} \in GL_n(\mathbb{R})$.

3. 上一部分确定的映射

$$g_{\mu,\lambda}:U_{\lambda}\cap U_{\mu}\to GL_n(\mathbb{R})$$

是光滑的.

都满足,则称 (E,π) 是 B 上的秩 (rank) 为 n 的向量丛 (vector bundle).

对任意 $x \in B$, $E_x := \pi^{-1}(x)$ 被称为 E 在点 x 上的纤维 (fibre). 我们注意到,

例 2. 设 $G_k(\mathbb{R}^n)$ 是 Grassmann 流形, 定义

$$\gamma_{k,n} := \{ (V, v) \in G_k(\mathbb{R}^n) \times \mathbb{R}^n \mid v \in V \subseteq \mathbb{R}^n \},$$

 $\pi: \gamma_{k,n} \to G_k(\mathbb{R}^n)$ 是映射 $(V,v) \mapsto V$. 如下的构造使得 $\pi: \gamma_{k,n} \to G_k(\mathbb{R}^n)$ 是一个向量丛,称为万有向量丛 (universal bundle). 对于流形 $G_k(\mathbb{R}^n)$,存在开覆盖

$$U_{i_1,\dots,i_k} := \{ A \in M_{n,k}(\mathbb{R}) \mid \det A_{i_1,\dots,i_k} \neq 0 \}$$

其中 $1 \le i_1 < \cdots < i_k \le n$ 是 k 个不同的正整数, A_{i_1,\dots,i_k} 是取 A 中第 i_1,\dots,i_k 行组成的子矩阵. 存在唯一的列变换(这里只能用列变换,因为我们不想改变生成的子空间)使得 $A_{i_1,\dots,i_k} = I_k$,而剩余行组成 A 对应到 $\mathbb{R}^{k \times (n-k)}$ 中的坐标. 于是,可以构造以下的结构

2 流形的向量丛 6

$$U_{i_1,\dots,i_k} \times \mathbb{R}^k \xrightarrow{\psi_{i_1,\dots,i_k}} \pi^{-1}(U_\lambda)$$

$$U_{i_1,\dots,i_k},$$

其中 ψ_{i_1,\dots,i_k} 是映射

命题 2.1. 若 $\pi: E \to B$ 是 n 秩光滑向量丛,则 E 上任意点 x 上的纤维 E_x 都有自然的线性结构使得 E_x 是 n 维向量空间.

事实上,我们并不需要一个向量丛的基是流形,对于一般的(好的)拓扑空间,同样可以定义向量丛:

定义.

定理 2.2. 设 $f:D\to B$ 是连续映射, $p:E\to B$ 是秩为 n 的向量丛, 那么拓扑空间

$$f^*E := \{(d, e) \in D \times E \mid f(d) = p(e)\}$$

是 D 上的向量丛. f^*E 称为向量丛 E 的拉回 (pullback), 如下图

$$\begin{array}{ccc}
f^*E & \longrightarrow E \\
\downarrow & & \downarrow^p \\
D & \xrightarrow{p|_S} B.
\end{array}$$

证明.

习题 2.1. 设 $i:Y \hookrightarrow X$ 是子空间的嵌入映射,证明

$$i^*(E) \cong E|_Y$$
.

习题 2.2. \mathbb{CP}^n 的 tautological 线丛的 Thom 空间是 \mathbb{CP}^{n+1} .

例 3. 所有光滑流形的切丛都可以称为某个向量丛的拉回.

拓扑上,向量从的分类是一个核心而且有趣的问题.

命题 2.3. 设 $\pi: E \to B$ 是秩为 n 的光滑向量丛,那么它的转移函数族 $\{g_{\mu,\lambda}: U_\lambda \cap U_\mu \to GL_n(\mathbb{R})\}$ 满足下列相容性条件:

- 1. $g_{\lambda\lambda}(p) = I$ 对所有点 $p \in U_{\lambda}$ 成立, 其中 I 是单位矩阵;
- 2. 若 $U_{\lambda} \cap U_{\mu} \cap U_{n} \neq \emptyset$, 那么对任意 $p \in U_{\lambda} \cap U_{\mu} \cap U_{n}$,

$$g_{\lambda,\mu}(p) \cdot g_{\mu,\eta}(p) = g_{\lambda,\eta}(p).$$

定理 2.4. 设 M 是 n 维流形, $\{M_{\lambda}\}_{\lambda\in\Lambda}$ 是一个开覆盖. 若对任意一对指标 λ,μ ,在 $U_{\lambda}\cap U_{\mu}\neq\emptyset$ 时都指定了一个光滑映射

$$g_{\lambda,\mu}: U_{\lambda} \cap U_{\mu} \to GL_r(\mathbb{R}),$$

满足命题 2.3中的条件,则存在同构下唯一的 r 秩向量丛 $\pi: E \to M$,以 $\{g_{\lambda,\mu}\}_{\lambda,\mu\in\Lambda}$ 为转移函数.

3 复流形的向量丛 7

定理 2.5. 设 E,F 是 B 上的两个向量丛,那么 $\mathcal{H}om(E,F):=\coprod_{x\in B} Hom(E_x,F_x)$ 有自然的拓扑结构使得 $\mathcal{H}om(E,F)$ 成为 B 上的向量丛,且每个截面 $s:B\to\mathcal{H}om(E,F)$ 都是一个向量丛态射 $E\to F$.

推论 2.5.1. 若 $\varphi \in \Gamma \mathcal{H} \text{om}(E, F)$ 满足对每个 $x \in B$, φ_x 都是同构, 那么 φ^{-1} 存在且 φ^{-1} 是连续的.

习题 2.3. 设 $E \in X$ 上的向量丛,证明存在自然同构

$$\mathscr{H}$$
om $(E,F)\cong E^*\otimes F$.

例 4. 设 $\pi_1: E_1 \to B, \pi_2: E_2 \to B$ 是两个

3 复流形的向量从

4 概型的向量从

例 5. 考虑 $X = \operatorname{Spec} \mathbb{R}[x,y,z]/(x^2+y^2+z^2-1)$, M 是 $R = \mathbb{R}[x,y,z]/(x^2+y^2+z^2-1)$ 模 $R \oplus R \oplus R$ 的 子模

$$\{(u, v, w) \in R \oplus R \oplus R \mid xu + yv + zw = 0\},\$$

那么 \tilde{M} 是局部自由的,它对应了一个向量丛.

例 6. 考虑 $X = \operatorname{Spec} \mathbb{Z}[\sqrt{-5}] = \operatorname{Spec} R$, $I = (2, 1 + \sqrt{-5})$. 这个理想不是主理想,因而 $R \not\cong I$. 但是 $R_2 \cong I_2$, $R_3 \cong I_3$,且 D(2), D(3) 是 $\operatorname{Spec} R$ 的开覆盖,因此 \tilde{I} 是局部自由的.

5 G 主丛

考虑李群 G 作用在给定的流形 M 上,如果作用是自由的,那么任意点 $x \in M$ 的轨道 $O_x \cong G$. 例如,SO(2) 在 $\mathbb{R}^2 - \{(0,0)\}$ 的作用.

定义. 给定拓扑群 G 和纤维丛 $\pi: P \to B$, 满足如下条件

- 1. *G* 在 *P* 上有自由的(右)作用,
- 2. 存在同胚 $f: B \to P/G$ 满足

$$P \xrightarrow{\mathrm{id}} P$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \xrightarrow{f} P/G,$$

即 $P \to B$ 与 $P \to P/G$ 作为纤维丛是同构的,

则称 $P \to B$ 是一个 G 主丛 (principal G-bundle).

例 7. Hopf 纤维化 $S^1 \hookrightarrow S^3 \to S^2$ 是一个 S^1 主丛.

5 G主丛 8

例 8. 任意给定一个光滑流形 M,且维数 $\dim M = n$,定义空间 $LM \to M$ 如下:对任意点 $x \in M$,

$$L_xM := \{(e_1, \dots, e_n) \mid \{e_1, \dots, e_n\}$$
构成 T_xM 的一组基 $\} \cong GL(n, \mathbb{R}),$

且 $LM := \coprod_{x \in M} L_x M$,类似于之前 TM 的构造,给 LM 一个由 M 诱导的坐标图卡. 接下来我们说明 LM 是一个 $GL(n,\mathbb{R})$ 主丛.

定义. 设 $P_1 \xrightarrow{\pi_1} B_1$ 和 $P_2 \xrightarrow{\pi_2} B_2$ 分别是给定的 G_1 主丛和 G_2 主丛,那么一个主丛态射 (morphism) 是映射 对 $(f: P_1 \to P_2, g: B_1 \to B_2, \varphi: G_1 \to G_2)$,满足图

$$P_{1} \xrightarrow{f} P_{2}$$

$$\pi_{1} \downarrow \qquad \qquad \downarrow^{\pi_{2}}$$

$$B_{1} \xrightarrow{g} B_{2}$$

是交换图,且 f关于 φ 是等变的.

引理 5.1. 给定流形 B 上的两个 G 主丛 $\pi_1: P_1 \to B$ 和 $\pi_2: P_2 \to B$,若 $f: P_1 \to P_2$ 是丛态射,那么 f 是同构.

证明. 1. 设 P_1 中的两点 x, y 满足 f(x) = f(y),那么由于 f 是丛态射,因此 $\pi_1(x) = \pi_1(y)$,这样 x, y 在同一点的纤维上,于是存在唯一的 $g \in G$ 使得 $x = y \cdot g$. 这样,

$$f(x) = f(y \cdot g) = f(y) \cdot g = f(y),$$

于是 g = e, 这意味着 x = y.

 \square

这意味着给定基流形的所有主丛的范畴是一个群胚.

定理 5.1. G 主丛 $\pi: P \to B$ 是平凡的当且仅当存在截面 $s: B \to P$.

证明. 给定截面 $s: B \to P$, 那么对于任意 $x \in P$, 那么存在唯一的(依赖于 x 的) $\chi(x) \in G$ 使得

$$s(\pi(x)) \cdot \chi(x) = x,$$

并且对于任意 $g \in G$,

$$\chi(x \cdot g) = \chi(x)g.$$

这是因为,一方面,对 $s(\pi(x)) \cdot \chi(x) = x$ 两边都取 g 的作用有 $s(\pi(x)) \cdot (\chi(x)g) = (s(\pi(x)) \cdot \chi(x)) \cdot g = x \cdot g$,另一方面 $s(\pi(x)) \cdot \chi(x \cdot g) = s(\pi(x \cdot g)) \cdot \chi(x \cdot g) = x \cdot g$,根据唯一性得证.

因此定义

$$f: P \to B \times G$$

 $x \mapsto (\pi(x), \chi(x)),$

这样只需要证明它是 G 等变的纤维丛映射. 纤维丛映射是显然的,并且

$$f(x \cdot g) = (\pi(x \cdot g), \chi(x \cdot g)) = (\pi(x), \chi(x)g) = f(x) \cdot g.$$

最后,

5 G主丛 9

例 9. 考虑 S^2 的 $GL(2,\mathbb{R})$ 主丛 LS^2 ,

定理 5.2. 给定 G 主丛 $\pi: P \to B$ 和 G 在空间 F 的左作用,那么存在空间 $P \times^G F$ 使得 $P \times^G F \to B$ 是以 F 为纤维的纤维丛.

证明. 定义

$$P \times^G F := P \times F / \sim$$
,

其中等价关系定义为 $(x \cdot g, y) \sim (x, g \cdot y)$. 于是,映射 $p: P \times^G F \to B$ 定义为

$$(x,y)\mapsto \pi(x),$$

注意到这是个良定义,因为若 $(x_1,y_1) \sim (x_2,y_2)$,那么存在 $g \in G$ 使得 $y_1 = g \cdot y_2$,这样 $x_2 = x_1 \cdot g$,因此二者在同一点的纤维上.

考虑任意 $b \in B$, 那么对任意 $x \in \pi^{-1}(b)$, 存在连续映射

$$F \to p^{-1}(b)$$
$$y \mapsto (x, y)$$

和它的逆映射

最后来证明局部平凡化.

例 10. 任意给定底空间 B 和 G 主丛 $P \rightarrow B$,考虑 G 在空间 F 上的平凡作用,那么直接由定义,

例 11. 设 M 是给定的 n 维流形, $LM \to M$ 是 $GL(n,\mathbb{R})$ 主丛,考虑 $GL(n,\mathbb{R})$ 在 \mathbb{R}^n 上的自然作用,那么

命题 5.3. 任意给定纤维丛 $F\hookrightarrow E\stackrel{p}{\to} B$ 并选定 F 的自同构群 $\operatorname{Aut}(F)$,那么存在 $\operatorname{Aut}(F)$ 主丛 $\pi:P\to B$ 使得 $E\cong P\times^{\operatorname{Aut}(F)} F$.

证明. 任意给定 $b \in B$, 令

$$P_b := \{ \varphi : F \to p^{-1}(b) \mid \varphi$$
是同构},

那么有自然的 Aut(F) 在 P_b 上的作用. 于是定义

$$P := \coprod_{b \in B} P_b.$$