Math 1080: Spring 2019

Homework #1

Due Jan 18

Problem 1:

Let *B* be a 4x4 matrix to which we apply the following operations:

- 1. Double column 3
- 2. Add row 2 to row 1
- 3. Interchange columns 2 and 3
- 4. Halve row 4
- 5. Replace column 4 by sum of columns 1 and 3

Each of these operations can be performed by multiplying B on the left or on the right by a specific matrix E_k (where k stands for the operation above) Find the matrices E_k . Then find matrices A and C such that the result is obtained as a product ABC

Problem 2:

Consider the matrix

$$Q = \frac{1}{3} \begin{bmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{bmatrix}$$

Show that Q is an orthogonal matrix. What transformation of \mathbb{R}^3 does it correspond to?

(Hint: Find the vector a that is invariant under Q. Pick a vector b orthogonal to a. Find the angle α between b and Qb. If this angle is independent of the choice of b, then Q corresponds to a rotation about a by the angle α . Think about other possibilities.)

Problem 3:

Find the 2x2 orthogonal matrix Q that corresponds to the reflection over the line 2x - 3y = 0.

Problem 4:

Let u, v be two vectors and $A = I + uv^T$ a matrix. Show that if A is invertible, its inverse is the matrix $A^{-1} = I + \alpha uv^T$ and find the scalar α . When is A singular?

Problem 5:

- (a) Compute the norms $||w||_1$, $||w||_2$, $||w||_{\infty}$ for the vector $w = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$
- (b) Compute the norms $||A||_1$, $||A||_2$, $||A||_{\infty}$ for the matrix $A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & -1 & 1 \\ -1 & 0 & 2 \end{bmatrix}$
- (c) Verify the inequalities $||Aw||_p \le ||A||_p ||w||_p$.