Ecole Polytechnique de Sousse RO & Optimisation

TD 2: Méthode du simplexe

Exercice 1

Résoudre, par la méthode du simplexe, les programmes linéaires suivants :

$$(PL1) \begin{cases} \max z = 3x_1 + 2x_2 \\ x_1 - x_2 \le 4 \\ x_1 - x_2 \le 2 \\ x_1, x_2 \ge 0 \end{cases} ; \quad (PL2) \begin{cases} \max z = 3x_1 + 2x_2 + 5x_3 \\ x_1 + 2x_2 + x_3 \le 430 \\ 3x_1 + 2x_3 \le 460 \\ x_1 + 4x_3 \le 420 \\ x_1, x_2, x_3 \ge 0 \end{cases} ; \quad (PL3) \begin{cases} \max z = 107x_1 + x_2 + 2x_3 \\ 14x_1 + x_2 - 6x_3 + 3x_4 \le 7 \\ 16x_1 + \frac{1}{2}x_2 + 6x_3 \le 5 \\ 3x_1 - x_2 - x_3 \ge 10 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Exercice 2 Résoudre, par la méthode du simplexe à deux phases puis par la méthode du grand M les programmes linéaires suivants :

$$(PL1) \begin{cases} \min z = 4x_1 + x_2 \\ 3x_1 + x_2 = 3 \\ 4x_1 + 3x_2 \ge 6 \\ x_1 + 2x_2 \le 3 \\ x_1, x_2 \ge 0 \end{cases} ; \qquad (PL2) \begin{cases} \min z = 3x_1 + 4x_2 + 5x_3 \\ x_1 + 2x_2 + 3x_3 \ge 5 \\ 2x_1 + 2x_2 + x_3 \ge 6 \\ x_1, x_2, x_3 \ge 0 \end{cases} ;$$

Exercice 3:

Montrer que le PL suivant est non borné

(PL)
$$\begin{cases} \max z = 3x_1 + 6x_2 \\ 3x_1 + 4x_2 \ge 12 \\ -2x_1 + x_2 \le 4 \end{cases}$$
;
$$x_1, x_2 \ge 0$$

Exercice 4:

On donne un tableau du simplexe rencontré lors de la résolution d'un modèle linéaire qui comporte 3 contraintes technologiques de signe " \leq " et où il est question de maximiser la fonction objectif $z=2x_1+3x_2+4x_3$

c_j		•	•	•				b_i
Base		x_1	x_2	x_3	s_1	s_2	s_3	D_i
	x_3		-4/9		1/3			
	s_2		-5/9	0	4/3	1	-10/9	175
	x_1				0		1/3	25
z_j								z = .
$\delta_j = c_j - z_j$		0	-1/9	0	-4/3		-2/9	

- 1) Compléter le tableau.
- 2) Ce tableau est-il optimal? Si oui, donner la solution et la valeur de la fonction objectif.