Module 2

Recap Last Week

- Reviewed dates in R
 - as.Date()
 - Different date formats
 - Used math to create date variables
- ► Reviewed how to create simple linear regressions using lm()
- Reviewed how to display our results in stargazer()
- Performed a preliminary exploration of the relationship between home prices and distance from the metro

Recap Last Week

STATEVA

Table 1: Impact of Distance From Metro on Price

	I MCL/ JQUANE.I LL
metro_distance	-79.955***
	(8.361)
days_on_market	0.154
	(0.741)
STATEMD	-93.597^{***}

PROPERTY. TYPEMulti-Family (2-4 Unit)

PROPERTY. TYPEMulti-Family (5+ Unit)

DRICE/SOLIABE EEE

(17.828)

-24.480 (15.311)

-408.467** (182.010)

-224.425 (183.797)

Goals for Today

R:

- Create non-linear models in R
- Review how to save fitted values and residuals

Economics:

- Investigate non-linear relationship of location and distance on home prices
- Familiarize ourselves with different methods to account for non-linear effects

Getting Started

- Let's read in the updated version of our data
 - Cleaned
 - Includes metro_distance and days_on_market

```
library(tidyverse)
library(stargazer)

setwd() #Include your directory here
joined_data <- read_csv("joined_data_v3.csv")</pre>
```

Introduction to Non-Linear Models

- Made some improvements to our model, but we can still do better
- Let's think more about metro distance
 - As we move farther away from the metro, distance probably matters less
 - ▶ The effect of distance likely varies from state to state
- ▶ We are unable to investigate either of the above relationships with a simple linear model

Looking Back at Distance

Source: Redfin and WMATA

Adding A Quadratic Term

- ▶ In our previous models, moving from 0.5 to 0.6 miles away from the metro has the same effect on price as 2.9 to 3.0 miles away
- ► Can imagine that people pay extra to live in walking distance
 - ► The farther we move away from the metro, the less distance affects price
- ▶ We are able to apply mathematical transformations to the continous variables in our model
 - We would like to use a quadratic term in our model

Adding A Quadratic Term

- There are two ways we can include a quadractic term in our data:
 - 1. Using formula functions provided by R
 - Constructing a new variable called dist_sq and adding it to the model
- First, let's try to use the caret to take the exponenet

Did It Work?

Table 2: Impact of Distance From Metro on Price

	PRICE/SQUARE.FEET	
	(1)	(2)
metro_distance	-93.621***	-93.621***
	(6.467)	(6.467)
Constant	503.684***	503.684***
	(8.202)	(8.202)
Observations	1,179	1,179
R^2	0.151	0.151
Adjusted R ²	0.150	0.150
Note:	*p<0.1; **p<	0.05; ***p<0.01

Correcting Our Formula

- ► When we are working with formulas in R, our math operators have different meanings
 - ^ and * are used to create interactions
- Use I() to apply our math operators

Did It Work?

Table 3: Impact of Distance From Metro on Price

	PRICE/SQUARE.FEET	
	(1)	(2)
metro_distance	-93.621***	-200.919***
	(6.467)	(17.263)
I(metro_distance^2)		32.547***
		(4.869)
Constant	503.684***	554.116***
	(8.202)	(11.036)
Observations	1,179	1,179
R^2	0.151	0.182
Adjusted R ²	0.150	0.181
Note:	*p<0.1; **p<0.05; ***p<0.01	

Manually Constructing the Variable

- ▶ We should be right but let's double check to be sure
- Create a new variable metro_sq and use it to create a non-linear regression model
 - Compare this new model with the previous model in stargazer()
 - Are the coefficients the same?

Interpreting Our Results

- Let's look back at our regression table, do the magnitidues in our table make sense?
- Direct interpretation of our coefficients becomes much more difficult
 - The effect changes as we move farther away from a metro station
 - Should check when the effect of metro distance becomes 0
 - Can evaluate the effect at the mean metro distance
- Helpful to create a graph to visualize this relationship

broom()

- ► Recall our 3 main functions from the broom package
 - tidy() for creating a data frame of component statistics
 - augment() for observation level statistics (like fitted values and residuals)
 - glance()- for model level statistics (like R-squared etc.)
- ▶ We'll want to use augment() to plot our fitted values

Visulaizing the Relationship

Source: Redfin and WMATA

Visulaizing the Relationship

▶ Fill in the code to create the graph from the previous slide

Interactions

- ► Sometimes the effect of certain variables differs across groups in our data
- ► The importance of distance from the metro likely varies from state to state
 - ▶ Why might that be the case?
- To account for this type of non-linear effect we use an interaction term
 - Price/Sq Ft = $\beta_0 + \beta_1$ distance + β_2 MD + β_3 VA + β_4 MD × distance + β_5 VA × distance

A Closer Look at Interactions

- ► Adding dummy variables changes the *intercept* of our equations, while interactions change the *slope*
- In our model, we have 3 seperate equations for each state: Plugging in for the values of our dummy variables we can solve for 3 seperate equations:
 - 1. DC: (Price/Sq Ft) = $\beta_0 + \beta_1$ distance
 - 2. *MD*: (Price/Sq Ft) = $(\beta_0 + \beta_2) + (\beta_1 + \beta_3)$ distance
 - 3. VA: (Price/Sq Ft) = $(\beta_0 + \beta_3) + (\beta_1 + \beta_4)$ distance

Visualizing the Changes: Just Dummies

Visualizing the Changes: With Interactions

Modeling Interactions in R

- Luckily, our * operator functions the way we think it would when we work with interactions
 - Make sure to include all of the components for your interaction in the model

Is Our Intuition Correct?

Table 4: Impact of Distance From Metro on Price

	PRICE/SQUARE.FEET	
	(1)	(2)
metro_distance	-81.569***	-198.865***
	(7.352)	(18.531)
STATEMD	-54.973***	-180.975 ***
	(14.816)	(22.751)
STATEVA	0.995	-63.581***
	(13.996)	(22.916)
metro_distance:STATEMD	` ,	151.857***
		(20.861)
metro_distance:STATEVA		110.939***
_		(22.916)
Constant	505.487***	577.092* [*] *
	(8.592)	(13.394)
Observations	1,179	1,179
R^2	0.163	0.199
Adjusted R ²	0.161	0.196
Note:	*p<0.1; **p<0.05; ***p<0.01	

Evaluating Our Model

- Has our model improved? How can you tell?
- What would be the affect of living one mile farther from the metro in Maryland be?
- Do homes in Maryland tend to be more or less expensive than homes in Virginia as they move further away from the metro?

Evaluating Our Model

Source: Redfin and WMATA

Improving Our Model Further

- Create a regression model that investigates the relationship between the distance from a metro and the price per square foot of a home
 - ▶ You are free to use any variable in our data set
 - ▶ Include at least 1 interaction
 - Use augment() and ggplot() to plot the residuals of your model. Are we over- or under-predicting?

Accounting for Non-Linearities

Source: Redfin and WMATA

Accounting for Non-Linearities

- ► The distribution of our price data is heavily skewed to the right
- Can transform our variables to account for this
- ▶ We've been accounting for this by using price per square foot
- ▶ Unfortunately we can't use some variables in our analysis

The Natural Log

- ▶ A common remedy we use in economics is the natural log
 - ▶ Particularly for income data
- Recall the three important assumption we make to use regression analysis
 - Want our data to be normally distributed
- ▶ log() allows us to take the natural log of a vector of numbers

```
joined_data <- joined_data %>%
  mutate(lprice = log(PRICE))
```

Should We Use the Natural Log

Should We Use the Natural Log

Moving Ahead

Table 5: Impact of Distance From Metro on Price

	PRICE/SQUARE.FEET	lprice
	(1)	(2)
SQUARE.FEET		0.0004***
		(0.00001)
metro_distance	-198.865***	-0.429***
	(18.531)	(0.060)
I(metro_distance^2)		0.012
,		(0.018)
STATEMD	-180.975***	-0.237***
	(22.751)	(0.076)
STATEVA	-63.581***	-0.087
	(22.916)	(0.065)
metro_distance:STATEMD	151.857***	0.221***
	(20.861)	(0.074)
metro_distance:STATEVA	110.939***	0.216***
	(22.916)	(0.067)
Constant	577.092***	12.731***
	(13.394)	(0.041)
Observations	1,179	1,179
R^2	0.199	0.490

Interpreting Our Results

► We can use this table as a general guideline when interpreting log coefficients:

Model	Dependent Variable	Independent Variable	Interpretaion of eta_1
Level-level	у	Х	$\Delta y = \beta_1 \Delta x$
Level-log	у	log(x)	$\Delta y = (\beta_1/100)\%\Delta x$
Log-level	log(y)	X	$\%\Delta y = (100\beta_1)\Delta x$
Log-log	log(y)	log(x)	$\%\Delta y = (\beta_1/100)\%\Delta x$