Introduction to machine learning 89-511, Fall 2022

Home Assignment 2

Gal Chechik

Submission date: 2022-11-22

Submit Instructions

Submit to the 'submit' system one file:
- 'solutions.pdf' with your solutions to questions no. 1-5

1. (20 pts) Gaussian noise as a regularizer

For a set of samples $(x_1, y_1) \dots, (x_n, y_n)$ with $x_i \in R$ and $y_i \in R$, we defined in class the problem of polynomial curve fitting as an error-minimization problem. Assume that the labels $\{y_i\}_{i=1}^N$ are i.i.d. and are drawn from a Gaussian distribution with a mean that is the prediction of the model $h_{\mathbf{w}}(x)$, and a standard deviation σ . Formally, $y_i \sim \mathcal{N}(h_{\mathbf{w}}(x_i), \sigma)$.

Show that maximizing the log of the likelihood $P(y_1, ...y_n | \mathbf{w})$ is equivalent to minimizing the squared error $Err(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (h_{\mathbf{w}}(x_i) - y_i)^2$ used in class. Recall that the likelihood of a dataset $S_n = \{x_1, ..., x_n\}$ is defined as $\mathcal{L} = P(S|\mathbf{w})$.

Hint: No need to compute any derivatives.

2. (12 pts) Bayesian decision theory

Show that for the squared cost function $\lambda(\hat{\theta}|\theta) = (\hat{\theta} - \theta)^2$, the optimal Bayes estimator is the conditional expectation.

$$\hat{\theta}_{SE} = E(\theta|S_n) = \int_{-\infty}^{\infty} \theta P(\theta|S_n) d\theta$$
.

Hint: The derivative operator is a linear operator, so it can switch order with the integral (you can use the Leibniz integral rule).

3. (20 pts) The effect of priors

Given a set of samples: $S_n = \{2, 2, 3, 4, 5\}$ drawn from a Poisson distribution. Find the conditional expectation

- (a) Assuming a uniform prior.
- (b) Assuming an exponential prior with parameter value 1 $(P(\theta) = \exp(-\theta))$. Compare to (a).

4. (28 pts) Maximum likelihood estimation

Let $S_n = \{x_1, \dots, x_n\}$ be a random sample from the distributions below. Find the maximum likelihood estimate of the parameter θ .

- (a) Poisson: $P(k|\theta) = \frac{\theta^k}{k!} \exp(-k)$ for $k = 0, 1, \dots$
- (b) Exponential: $P(x|\theta) = \frac{1}{\theta} \exp(-x/\theta)$ for $x \ge 0$.
- (c) $P(x|\theta) = \frac{1}{2} \exp(-|x \theta|)$.
- (d) $P(x|\theta) = \theta x^{\theta-1}$.

5. (20 pts) Bayesian decision boundary

Let X be an R.V. with a Gaussian distribution, where $P(x|\omega=1) = \mathcal{N}(\mu_1, \sigma_1^2)$ and $P(x|\omega=2) = \mathcal{N}(\mu_2, \sigma_2^2)$. σ_1 and σ_2 may not be identical. Assuming the prior is uniform $P(\omega=1) = P(\omega=2)$, find the decision boundary as a function of x, and the parameters $\mu_1, \mu_2, \sigma_1, \sigma_2$.