

#### Datenbanken

Informatik, ICS und als Wahlfach

4. Logisches (relationales) Modell

Prof. Dr. Markus Goldstein

SoSe 2022

#### **Inhalt**



- 4.1 Überblick Transformation
- 4.2 Duale Beziehungstypen
- 4.3 Rekursive Beziehungstypen

#### Wiederholung ..



- Konzeptionelles Schema
  - unabhängig von der Datenbank bzw. dem Datenbankmodell
  - Trennung zur externen Ebene: Logische Datenunabhängigkeit
- Logisches Schema
  - Abhängig vom Datenmodell (z.B. relational)
  - Erstellt aus dem konzeptionellen Schema
  - Physische Datenunabhängigkeit zur internen Ebene
- Entity-Relationship-Modell
  - Beschreibungssprache für konzeptionelles und logisches Schema
  - Meta-Modell (Fachkonzept) für Objekt- und Beziehungstypen

#### Phasenmodell für Datenbankentwurf



Dieses Kapitel:
 Vom konzeptionellen Schema zum logischen Schema



(angelehnt an Thomas Kudraß, Taschenbuch Datenbanken, 2. Auflage, Hanser Verlag 2015, S. 45 ff)

#### Fallstudie - Kiosk



- Sie haben ein konzeptionelles Datenmodell für Ihren Kiosk erstellt (z.B. mit dem SAP PowerDesigner).
- Um später mit Hilfe von SQL auf die Daten zugreifen zu können, entscheiden Sie sich für eine relationale Datenbank.
- Hierzu muss das konzeptionelle Modell aber zunächst in ein logisches Modell transformiert werden.
- Hierfür benutzen wir im folgenden Transformationsregeln (Txx)
  - einige sind Ihnen ggf. schon bekannt

## T1: Regel für Entitätstypen



- Jeder Entitätstyp wird im RDBM zu einer Tabelle
  - Attribute werden zu Spalten
  - (Teil) identifizierende Attribute werden zu Schlüsselattributen
    - → Primärschlüssel



## T1: Regel für Beziehungstypen



 Beziehungstypen werden über Fremdschlüssel modelliert (ugs: "Verweis/Link" auf A)



- Fremdschlüssel werden mit Pfeilen dargestellt: ↑fk↑
- Zusammengesetzte Schlüssel werden mit "+" dargestellt: fname+vorname+geb\_Datumf
- Primärschlüssel werden unterstrichen:
  name+vorname+geb Datum

#### Regeln



Im Folgenden werden zwei Charakteristika für Spalten verwendet

- "Unikal": UNIQUE Attributwert darf nur einmal in der Tabelle vorkommen
  - Ein Primärschlüssel ist immer UNIQUE
- "Eingabepflicht": NOT NULL Attributwert darf nicht ausgelassen werden
  - Ist z.B. ein Fremdschlüssel verpflichtend, muss dieser bei jeder Entität vorhanden sein → keine Optionalität möglich

#### T2: Schwache Entitätstypen



- Bei schwachem Entitätstyp
  - Fremdschlüssel wird Teil des Primärschlüssel
  - Identifizierende Beziehung (durchgezogene Linie in MWB)



#### **Inhalt**



#### 4.1 Überblick Transformation

#### 4.2 Duale Beziehungstypen

#### 4.3 Rekursive Beziehungstypen

#### Duale Beziehungstypen



Wir müssen die folgenden Fälle betrachten ...



## 1:1 Beziehungstypen



- Unterscheidung nach Semantik
  - Überflüssig/ sinnvoll





## T3: 1:1 Beziehungstyp (überflüssig)



- Beziehungstyp überflüssig
  - Eine Tabelle/ Entitätstyp



## T4: 1:1 Beziehungstyp (sinnvoll)



- Beziehungstyp sinnvoll
  - Zwei Tabellen/ Entitätstypen mit gemeinsamen Primär-/Fremdschlüssel



### 1:C Beziehungstypen



- Unterscheidung nach Auftreten
  - Selten (die meisten A's haben keine Beziehung zu B's
  - Oft (Fast alle A's haben eine Beziehung)



#### 1:C Beziehungstypen



Beispiele "oft" vs "selten"



### T5: 1:C Beziehungstypen (oft)



Auftreten "oft" → eine Tabelle



## T6: 1:C Beziehungstypen (selten)



Auftreten "selten" → zwei Tabellen mit Fremdschlüssel



### C:C Beziehungstypen



Wie viele Beziehungen gibt es? (viele vs. wenige)



## T7: C:C Beziehungstypen (viele Beziehungen)



- Viele Beziehungen: zwei Tabellen mit Fremdschlüssel
  - Fremdschlüssel so wählen, dass wenige NULL Werte existieren



# T8: C:C Beziehungstypen (wenige Beziehungen)



- Wenige Beziehungen: drei Tabellen mit Fremdschlüsseln
  - Einführung einer Koppel-Entität
  - Eher selten verwendet



# T8: C:C Beziehungstypen (wenige Beziehungen)



Wenige Beziehungen: drei Tabellen mit Fremdschlüsseln



#### 1:CN Beziehungstypen



Fremdschlüssel kann in B mehrfach vorkommen



Beispiel



### T9: 1:CN Beziehungstypen



Zwei Tabellen mit Fremdschlüssel



## C:CN Beziehungstypen



- Unterscheidung
  - Viele vs wenige Beziehungen



Standardfall



## T10: C:CN Beziehungstypen (viele Partner)



Realisierung über Fremdschlüssel und zwei Tabellen



## T11: C:CN Beziehungstypen (wenige Partner)



Realisierung über drei Tabellen mit Koppel-Entität



#### 1:N Beziehungstypen



- Jeder Primärschlüssel aus A muss als Fremdschlüssel in B referenziert werden
  - Referentielle Integrität beachten!



#### 1:N Beziehungstypen



- Jeder Primärschlüssel aus A muss als Fremdschlüssel in B referenziert werden
  - Bedingung lässt sich so im (logischen) relationalen Modell nicht abbilden!
  - T9 mit "Eingabepflicht eines B in der Anwendung"



### C:N Beziehungstypen



- Jeder Primärschlüssel aus A muss als Fremdschlüssel in B referenziert werden
  - Bedingung lässt sich so im (logischen) relationalen Modell nicht abbilden!
  - T10 mit "Eingabepflicht eines B in der Anwendung"
  - Beispiel:



### CM:CN Beziehungstypen



 Dies lässt sich im logischen Modell nur mit Hilfe einer Koppel-Entität lösen (3. Tabelle verknüpft A zu B)



### T12: CM:CN Beziehungstypen



Einführung einer Koppel-Entität mit identifizierender Beziehung



Beispiel:



### T12: CM:CN Beziehungstypen



#### Einführung einer Koppel-Entität



#### M:CN Beziehungstypen



Nach Regel T12 (erneut Verpflichtung von >=1 nicht modellierbar!)



Beispiel:



### M:N Beziehungstypen



Regel T12 (erneut Verpflichtungen von >=1 nicht modellierbar!)



Beispiel:



#### **Inhalt**



- 4.1 Überblick Transformation
- 4.2 Duale Beziehungstypen
- 4.3 Rekursive Beziehungstypen

### Rekursive Beziehungstypen



#### Überblick



#### Rekursiv-Beziehungstypen



Im Folgenden: Sender-Empfänger-Modell



Dabei können (Entitäts-)Zyklen entstehen:



### T13: 1:1 Rekursiv-Beziehungstypen



- Eine Tabelle
- Fremdschlüssel verweist auf einen Primärschlüssel
- Guten Rollennamen wählen (aussagekräftig)!



### T13: 1:1 Rekursiv-Beziehungstypen



Beispiel: Turner stehen im Kreis



Zyklik von Entitäten entstehen



## C:C Rekursiv-Beziehungstypen



Unterscheidung: viele/wenige Beziehungen





# T14: C:C Rekursiv-Beziehungstypen (viele Sender)



Fremdschlüssel in einer Tabelle (wie T7)



# T15: C:C Rekursiv-Beziehungstypen (wenige Sender)



Realisierung mit zusätzlicher Tabelle (wie T8)



## C:C Rekursiv-Beziehungstypen



- Optionalität ermöglicht
  - Entitätszyklen
  - Entitätsketten
  - Keine Partner



# 1:CN Rekursiv-Beziehungstypen



- Optionalität ermöglicht
  - Entitätszyklen (eigentl. 1:1)
  - Monohierarchien mit Zyklus an der Wurzel





## T16: 1:CN Rekursiv-Beziehungstypen



Realisierung über Fremdschlüssel (NOT NULL)



#### C:CN Rekursiv-Beziehungstypen



- Möglich sind hiermit
  - Lineare Listen
  - Hierarchien mit Wurzel (ohne "Wurzelzyklus")
- Wieder Unterscheidung nach
  - Viele Empfänger
  - Wenige Empfänger



### C:CN Rekursiv-Beziehungstypen



Zusätzliche Tabelle für wenige Empfänger



# T17: C:CN Rekursiv-Beziehungstypen (viele Partner)



Realisierung über Fremdschlüssel (wie T10)



# T18: C:CN Rekursiv-Beziehungstypen (wenige Partner)



Realisierung über Koppel-Entität



# CM:CN Rekursiv-Beziehungstypen



Auch Polyhierarchien möglich





### T19: CM:CN Rekursiv-Beziehungstypen



Realisierung über zweite Tabelle



### M:CN Rekursiv-Beziehungstypen



- Mit T19
- Auch wieder Verlust der >=1
  Bedingung (nicht-modellierbar)
- "Eingabeverpflichtung" im Anwendungsprogramm





### M:N Rekursiv-Beziehungstypen



- Mit T19
- Auch wieder Verlust der >=1
  Bedingung (nicht-modellierbar)
- "Eingabeverpflichtung" im Anwendungsprogramm





## Fazit Transformationsregeln



- Konzeptionelles Datenmodell in logisches Datenbankmodell überführbar
- Bei mehrfach/mehrfach Kardinalitäten wird eine Koppel-Entität zwingend erforderlich
- Teilweise Verlust der >=1 Bedingung (muss dann durch das Anwendungsprogramm überprüft werden)

### Aufgaben



Bitte bearbeiten Sie jetzt die Aufgaben in Moodle zum Kapitel 4.

Teil A