7 Полный расчет надежности

Надежность является одним из главных технических параметров, характеризующих РЭС.

Исходные данные для расчета надежности зависят от вида учитываемых отказов, количества подлежащих расчету показателей надежности, степень точности расчета [10]. В нашем случае расчет будет выполнен для периода нормальной эксплуатации при следующих основных допущениях:

- отказы случайны и независимы;
- учитываются только внезапные отказы;
- имеет место экспоненциальный закон надежности.

При расчете будут учитываться не только элементы электрической схемы, но и элементы конструкции (монтажное соединения, печатная плата, монтажные проводники, несущие конструкции и т.д.).

Кроме того, при расчете надежности будет произведен точный учет электрического режима и эксплуатационных условий работы элементов.

Исходными данными для полного расчета надежности будут:

- схема электрическая принципиальная с перечнем используемых в конструкции элементов;
 - значения коэффициентов электрической нагрузки элементов;
 - справочные значения интенсивностей отказов элементов;
- условия эксплуатации элементов с учетом внешних и внутренних воздействующих факторов таких как : температура корпусов элементов, относительная влажность, уровень вибрации, передаваемый на элементы и т.д.;
 - заданное время непрерывной работы устройства, t.

Расчет надежности выполняется в два этапа. На первом этапе лабораторные значения интенсивностей отказа элементов пересчитываются на конкретный электрический режим и условия эксплуатации по формуле (7.36):

$$\lambda_i = \lambda_{oi} \cdot \prod_{j=1}^m \alpha_j, \tag{7.36}$$

где λ_i — значение интенсивности отказа i-го элемента с учетом режима и условий работы;

 λ_{oi} — справочное значение интенсивности отказа i-го элемента;

 $lpha_j$ – поправочный коэффициент, учитывающий j-ый фактор;

m - общее число учитываемых эксплуатационных факторов.

В качестве поправочных коэффициентов будем использовать коэффициент, учитывающий влияние температуры и электрической нагрузки α_{12} , и коэффициент, учитывающий влияние влажности и механических воздействий - α_{34} .

На втором этапе вычисляют значение суммарной интенсивности отказов по формуле (7.37):

$$\lambda = \lambda_i \cdot n,\tag{7.37}$$

где λ – суммарная интенсивность отказов;

n – число однотипных элементов конструкции.

При равенстве значений интенсивностей отказов однотипных элементов рекомендуется объединять их в группы. Тогда формула (7.37) примет вид:

$$\lambda = \sum_{h=1}^{k} \lambda_h \cdot n_h, \tag{7.38}$$

где λ_h, n_h - соответственно интенсивность отказа и число элементов в h-ой группе;

k – общее число групп.

Далее по общепринятым формулам определяем значения наработки на отказ $T_{\mathcal{O}}$ и вероятности безотказной работы P(t):

$$T_o = \frac{1}{\lambda},\tag{7.39}$$

$$P(t) = e^{-\lambda \cdot t},\tag{7.40}$$

Если расчетное значение показателей надежности не отвечает требованиям технического задания, то необходимо принять меры по повышению надежности. Например, можно заменить наиболее ненадежные пассивные элементы на другие типы, а после этого снова повторить расчет.

Расчет производился на ЭВМ при помощи программы, написанной на кафедре РЭС – "SNAD.EXE". Исходные данные для этой программы приведены в табл. 7.3.

Таблица 7.3 – Исходные данные для расчета полной надежности.

№	Наименование группы элементов	n_i	$\lambda_i \times 10^{-6}$ $1/y$	К _н	a_{12}	a 34	\pmb{a}_{Σ}	$\lambda_i \cdot n_i \times 10^{-6}$ $1/4$	τ _j , ч	$\lambda_{i} \cdot n_{i} \cdot \tau_{j} \times 10^{-6}$ $1/4$
1	Резисторы	44	0,05	0,35	0,53	1,6	0,85	0,85	0,6	1,32
2	Конденсаторы (неполярные)	28	0,05	0,4	0,03	1,6	0,05	0,05	1,1	1,54
3	Конденсаторы (подстрочные)	1	0,5	0,3	0,3	1,6	0,48	0,48	0,6	0,3
4	Микросхемы аналоговые	4	0,65	0,4 6	0,3	1,6	0,48	0,48	1,2	3,12
5	Микросхемы цифровыые	1	0,6	0.6	0,55	1,6	0,88	0,88	0,5	0,3
6	Кнопки*	4	0,37	-	0,7	1,6	1,12	1,12	0,6	0,888
7	Диоды	11	0,3	0,6	0,4	1,6	0,64	0,64	0,6	1,98
8	Дроссель	2	0,7	0,5 4	0,55	1,6	0,88	0,88	0,6	0,84
9	Индикатор ЖК	1	0,7	0,5	0,5	1,6	0,8	0,8	1,2	0,84
10	Транзисторы	5	0,4	0,4	0,45	1,6	0,72	0,72	0,8	1,6
11	Резонатор кварцевый	1	0,37	0,6	0,4	1,6	0,64	0,64	0,8	0,296
12	Соединители *	6	0,2	0,3 7	0,35	1,6	0,56	0,56	2	2,4
13	Печатная плата	1	0,45	-	0,65	1,6	1,04	1,04	3	1,35
14	Соединения пайкой	314	0,03	-	0,7	1,6	1,12	1,12	-	0
	Итого:							10,26		16,774

Примечания:

* - на один контакт при номинальном электрическом режиме и числе коммутационных циклов, указанных в ТУ;

Исходные данные вводимые для расчета:

- время непрерывной работы изделия	- 1000 ч
- Задание (допустимое) время восстановления изделия	- 1ч
- Достаточное число отказов	- 15

Результаты вычислений представлены в табл. 7.4.

Таблица 7.4 – Результаты расчета полной надежности.

Характеристика, рассчитанная на ПЭВМ.	Значение.
Средняя наработка на отказ, ч.	110815,6
Вероятность безотказной работы.	0,99102
Среднее время восстановления, ч.	0,9
Вероятность восстановления.	0,68068
Коэффициент готовности.	0,99999
Коэффициент ремонтопригодности	0,00001
Вероятность безотказной работы с учетом восстановления	0,99712
Вероятность нормального функционирования	0,99101
Доверительные границы для наработки на отказ	75901,1179798,2

При увеличении числа отказов увеличивается доверительный границы для наработки на отказ.

Таким образом, полученные данные удовлетворяют требованиям ТЗ по надежности, так как при заданном времени непрерывной работы t=1000 ч проектируемый блок будет работать с вероятностью P(t)=0,99. При этом он будет иметь среднюю наработку на отказ T_o =32056 ч и вероятность восстановления, $V(\tau)$ =0,68 следовательно, дополнительных мер по повышению надежности не требуется.

8 Обоснование выбора средств автоматизированного проектирования

8.1 Применение ЭВМ и САПР в процессе проектирования

Проектирование РЭС и создание оптимального технического решения в сжатые сроки связано с трудностями, основными из которых является:

- невозможность учёта человеком огромного количества разнообразных факторов, влияющих на техническое решение;
- большая стоимость и трудоёмкость изготовления макета изделия, особенно при интегральной технологии;
- сложность имитации условий, в которых должна работать современная РЭС.

Один из путей преодоления этих трудностей без существенного увеличения численности работающих – использование возможностей современных ЭВМ.

При проектировании только незначительную часть общего объёма работ (10...20)% выполняется инженерами высокой квалификации. Опыт и высокая эрудиция инженера играют основную роль при разработки технического задания на проектирование и при выборе принципов конструирования и элементной базы. Но основной объём работ по конструкторскому проектированию состоит из таких этапов как компоновка, размещение модулей, трассировка монтажных соединений и выпуск технической документации. Эти этапы трудоёмки, так как связаны с просмотром большого количества вариантов решения, но не требуют высокой квалификации.

В связи с совершенствованием элементной базы РЭС, а также конструктивнотехнологических характеристик проектируемых модулей всех типов, в несколько раз увеличилась трудоёмкость составления технической документации. Всё это приводит к необходимости совершенствования методов конструкторского проектирования РЭС, основой которого является автоматизация процесса проектирования.

Одной из важнейших задач конструирования РЭС является максимальное внедрение методов автоматизированного проектирования, что в итоге должно привести к минимальному участию человека в процессе создания конструкции. В этом случае инженер на всём протяжении разработки конструкции составляет формализованное задание для ЭВМ, анализирует результаты и делает предположения о возможных причинах несоответствия получаемых характеристик требованиям технического задания. Основную работу по созданию конструкции проводит ЭВМ, оснащенная соответствующим информационным и программным обеспечением. В итоге синтезируется конструкция, в идеальном случае удовлетворяющая требованиям технического задания (ТЗ).

Правильное разделение функции между человеком и ЭВМ приводит к схеме автоматизированного проектирования, в котором человек выполняет задачи

творческого характера, то есть анализирует Т3, управляет поиском требуемого решения, осуществляет трудно формализуемые задачи проектирования реальной РЭС задачи принятия решений.

Анализ результатов, полученных ЭВМ, и заключение о доработке делает конструктор. Методика итеративной доработки конструкции с использованием ЭВМ как инструмента для получения необходимых характеристик хорошо обеспечена алгоритмами и программами.

процессе проектирования возникает необходимость большого вычислений, обращения к стандартным алгоритмам решения типовых задач, увязки различных требований этапов функционального и конструкторского проектирования, а также проверки правильности результатов различных этапов проектирования. В связи с этим целесообразно объединить отдельные алгоритмы единую (САПР автоматическую систему конструкторского проектирования КΠ), ориентированную на конкретную базу конструкций.

Применение САПР КП при решении задач конструкторского проектирования позволит: сократить трудоёмкость решения конструкторских задач; повысить качество полученных решений; провести оптимизацию модуля на всех иерархических уровнях.

Существующие системы автоматизированного проектирования представляют собой системы типа «человек – машина», для реализации которых необходим целый технических средств: ЭВМ, координатографы, печатающие запоминающие устройства, графопостроители и прочее; и специализированное математическое обеспечение, предназначенное для решения задач конструкторского проектирования модулей различных уровней иерархии. Эти системы предполагают разработчика возможность непосредственного вмешательства В процесс проектирования для корректировки машинных решений.

В общем случае САПР осуществляют проектирование, начиная от функциональной схемы и заканчивая всей необходимой технической документацией для изготовления, наладки и эксплуатации ЭВМ в целом. Проектирование модулей каждого уровня, начиная от интегральной микросхемы до РЭС в целом, выделяется в самостоятельные этапы. Однако многие САПР ориентированы на модули второго и третьего уровней.

Несмотря на различия в любой САПР можно выделить следующие самостоятельные этапы конструкторского проектирования, характерные для модуля любого уровня иерархии:

- введение исходной информации, контроль правильности подготовки и колировки исходных данных с входного языка во внутреннее представление;
- компоновка функциональной структуры по модулям всех уровней на основе выбранных показателей качества;

- размещение скомпонованных функциональных элементов по конструкциям модулей всех уровней, составление соответствующего технического документа;
- трассировка соединений между модулями в соответствии со схемой связей и ограничениями на их раскладку для данного базового модуля, составление электромонтажных чертежей, контроль правильности составления документации;
 - составление сводных текстовых документов, устанавливаемых ЕСКД [12].

8.2 Перечень и содержание конструкторских работ, выполненных с применением САПР

В данном курсовом проекте были использованы следующие САПР:

- o SolidWorks 2006.
- o AutoCAD 2008;
- o PCAD 2008;
- Specctra 15

SolidWorks 2006 - мощное средство проектирования, ядро интегрированного комплекса автоматизации предприятия, с помощью которого осуществляется поддержка изделия на всех этапах жизненного цикла в полном соответствии с концепцией CALS-технологий.

Основное назначение SolidWorks - это обеспечение сквозного процесса проектирования, инженерного анализа и подготовки производства изделий любой сложности и назначения, включая создание интерактивной документации и обеспечение обмена данными с другими системами.

Возможности SolidWorks (базовая версия):

- Гибридное параметрическое моделирование: 2D и 3D эскизы, твердые тела (бобышки и отверстия, элементы по сечениям и траектории, скругления, фаски и т.д.), поверхности (сшивка, обрезка, удлинение, скругление, стыковка по 2-й производной), справочная геометрия (плоскости, оси, системы координат); дерево конструирования; работа с конфигурациями; массивы элементов; двунаправленная ассоциативность модели и чертежа; технологии Windows: drag-and-drop, cut-and-paste, контекстные меню, всплывающие подсказки.
- Проектирование деталей: единая библиотека физических свойств материалов, текстур и штриховок; моделирование на основе объемных элементов; управление историей построения модели; ручное и автоматическое образмеривание; динамичное внесение изменений в режиме реального времени.
- Проектирование сборок: проектирование "снизу вверх" и "сверху вниз", контекстное редактирование, автосопряжения, режим для работы с большими

сборками; массивы компонентов, вырезы и отверстия в контексте сборки; объединение и разделение деталей; контекстная замена компонентов, реструктуризация сборок.

- Проектирование изделий с учетом специфики изготовления: Листовой материал построение разверток; моделирование "от детали к развертке" и "от развертки к детали"; вырезы для снятия напряжений; настраиваемые таблицы гибов; Пресс-формы и штампы анализ уклонов; линии и поверхности разъема; генерация матрицы и пуансона, знаков, ползунов и т.д.; Сварные конструкции проектирование рамных или ферменных конструкций по набору 2D или 3D эскизов; разделка под сварку, заглушки, косынки и др. элементы.
- Библиотека проектирования: конструктивные элементы, стандартные детали (крепеж по ГОСТ), стандартные узлы, элементы листовых деталей и т.п.; мастер отверстий (с цековкой, зенковкой, гладкие, резьбовые).
- Экспресс-анализ: массово-инерционные характеристики, имитация работы механизмов, анализ интерференции; контактные взаимодействия, гравитация, пружины, кулачки; MoldflowXpress: анализ проливаемости пресс-форм; COSMOSXpress: определение напряжений, деформаций, расчет коэффициента запаса прочности.
- Оформление чертежей по ЕСКД: создание чертежных видов по 3D модели: разрезы, сечения, местные виды и т.п.; автообразмеривание, простановка баз, шероховатостей, допусков на размеры, отклонений формы; нанесение технических требований, создание таблиц, автоматическое заполнение основной надписи.
- Трансляция данных: трансляторы IGES, VDAFS, STEP, Parasolid, ACIS, STL, VRML, DXF, DWG, Pro/ENGINEER, CADKEY, Unigraphics, Solid Edge, Inventor, AutoCAD, MDT, IDF, PDF.
- API SDK API Help, макросы, редактор VBA, поддержка Visual C++ и др. языков.
- eDrawings создание интерактивных моделей и чертежей в форматах EXE, HTML и STL; просмотр и печать документов SolidWorks и других САПР.
 - DWGEditor редактор чертежей DWG/DXF

С помощью SolidWorks можно быстро и безошибочно спроектировать любую конструкции, а так же легко сделать чертежи всех входящих в неё деталей.

В SolidWorks 2006 был полностью спроектирован универсальный измерительный прибор на микроконтроллере. Были созданы чертежи устройства и деталей. Данный чертежи были сохранены в dwg формат для дальнейшего оформления в **AutoCAD 2008.**

В **AutoCAD** реализовано векторное представление объектов, что обусловлено задачами САПР. Чертёж — это файл с информацией, описывающей графический

объект. AutoCAD позволяет создавать и редактировать чертёж множеством различных способов. Любое изображение создаётся с помощью базового набора примитивов.

Кроме преимуществ, укладываемых в рамки традиционного черчения, САПР предоставляет возможность создания архива типовых фрагментов чертежей и использования его при создании новых разработок (блоки). Существенным преимуществом компьютерной графики является автоматизация большинства рутинных операций, связанных с оформлением чертёжной документации: штриховки, нанесения размеров, выполнения надписей, отрисовки штампов и тому подобное.

В AutoCAD 2008 осуществлялось окончательное оформление всех чертежей согласно ГОСТ.

Для разработки топологии печатной платы использовалась система автоматического проектирования **PCAD 2002**.

Система PCAD 2002 позволяет выполнять следующие проектные операции: создание символов элементов принципиальной электрической схемы и корпусов; графический ввод принципиальной электрической схемы и конструктивов плат проектируемого устройства; ручную и автоматическую трассировку печатных проводников произвольной ширины; автоматизированный контроль результатов проектирования ПП на соответствие принципиальной электрической схеме и технологическим ограничениям, а также требованиям, предъявляемым к печатному монтажу.

Программный комплекс PCAD 2002 включает в себя взаимосвязанные пакеты программ, образующих систему сквозного проектирования ПП электронной аппаратуры. В ее состав входят следующие программы:

- Schematic Editor графический ввод и редактирование принципиальной электрической схемы;
- Symbol Editor графический ввод и редактирование символов радиоэлектронных компонентов на принципиальных схемах;
- PCB Editor графический ввод и редактирование конструктивов ПП, автоматическое или ручное размещение компонентов на плате;
- Pattern Editor графический ввод и редактирование корпусов компонентов РЭА и стеков контактных площадок.

С помощью САПР **Specctra 15** была разведена печатная плата устройства, которая затем посредствам DXF формата была передана в САПР AutoCAD для последующего оформления конструкторской документации.

При расчёте тепловых режимов и надежности изделия использовалось, созданное на кафедре РЭС программное обеспечение.

Применение ЭВМ при оформлении пояснительной записки позволило проводить оперативное внесение изменений в текст записки, упростило создание таблиц и рисунков.

9 Технико-экономическое обоснование

В данной курсовом проекте требовалось разработать универсальный измерительный прибор на микроконтроллле.

Данное устройство может найти широкое применение в различных учреждениях (промышленных, научных, и т. п.) в связи с чем, потенциальный спрос на этот модуль достаточно широк.

Использование современной поверхностно монтируемой элементной базы позволило значительно уменьшить габаритные размеры печатной платы, а также резко снизить трудоемкость изготовления устройства, за счет применения автоматизации и механизации сборочных работ.

В результате, все вышеперечисленное, привело к снижению себестоимости готовой продукции, а, следовательно, и отпускной цены устройства. Что в свою очередь делает данное устройство более конкурентоспособным нежели устройства-аналоги.