MA525 Homework 2

**Aaron Cornelius** 

2020-10-11

### **Problem 1**

Consider data  $\omega_n$  where  $n=1,\ldots,N$  indexes individual measurements. Each  $\omega_n$  is obtained through a  $\operatorname{Normal}(\mu,\nu)$  distribution. Assume the variance  $\nu$  has a known value. On  $\mu$  use a  $\operatorname{Normal}(M,V)$  prior where M,V have known values.

(i)

In statistical notation, this problem can be written as:

$$\mu \sim \text{Normal}(M, V)$$
 $\omega_n | \mu \sim \text{Normal}(\mu, \nu)$ 

(ii)

$$p(\mu) = \text{Normal}(\mu; M, V) = \frac{1}{\sqrt{2\pi \nu}} \exp\left(-\frac{1}{2\nu}(x - \mu)^2\right)$$

The PDF of the normal distribution, written using the variance, is:

$$p(x) = \frac{1}{\sqrt{2\pi v}} \exp\left(-\frac{1}{2v}(x-\mu)^2\right)$$

Therefore, there are two probability functions. The first explicitly defines the probability density of the distribution of  $\mu$ :

$$p_{\mu}(\mu) = \frac{1}{\sqrt{2\pi V}} \exp\left(-\frac{1}{2V}(\mu - M)^2\right)$$

The second defines the probability of an observed value  $\omega$  conditioned on  $\mu$ :

$$p_{\omega}(\omega|\mu) = \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{1}{2\nu}(\omega-\mu)^2\right)$$

The likelihood is taken by, the likelihood function for some set of observations  $\omega_n$  is:

$$p(\omega_{1:N}|\mu;) = \prod_{n=1}^{N} p(\omega_n|\mu)$$

$$= \prod_{n=1}^{N} \left( \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{1}{2\nu} (\omega_n - \mu)^2\right) \right)$$

$$= \prod_{n=1}^{N} \left( \frac{1}{\sqrt{2\pi\nu}} \right) \prod_{n=1}^{N} \left( \exp\left(-\frac{1}{2\nu} (\omega_n - \mu)^2\right) \right)$$

$$= \left( \frac{1}{\sqrt{2\pi\nu}} \right)^N \exp\left(-\frac{1}{2\nu} \sum_{n=1}^{N} (\omega_n - \mu)^2\right)$$

The posterior can be calculated by multiplying the likelihood by the prior distribution:

$$\begin{split} & p(\mu|\omega_{1:N}) \propto p(\omega_{1:N}|\mu) p(\mu) \\ & = \left( \left( \frac{1}{\sqrt{2\pi \nu}} \right)^N \exp\left( -\frac{1}{2\nu} \sum_{n=1}^N \left( \omega_n - \mu \right)^2 \right) \right) \left( \frac{1}{\sqrt{2\pi V}} \exp\left( -\frac{1}{2V} (\mu - M)^2 \right) \right) \\ & \propto \exp\left( -\frac{1}{2\nu} \sum_{n=1}^N \left( \omega_n - \mu \right)^2 \right) \exp\left( -\frac{1}{2V} (\mu - M)^2 \right) \\ & = \exp\left( -\frac{1}{2\nu} \sum_{n=1}^N \left( \omega_n - \mu \right)^2 - \frac{1}{2V} (M - \mu)^2 \right) = \exp\left( -\frac{1}{2} \left( \frac{1}{\nu} \sum_{n=1}^N \left( \omega_n - \mu \right)^2 + \frac{1}{V} (M - \mu)^2 \right) \right) \end{split}$$

To simplify the equation, define  $f=\frac{1}{v}\sum_{n=1}^N{(\omega_n-\mu)^2}+\frac{1}{V}(M-\mu)^2$ . Therefore, by defining  $\bar{\omega}=\frac{1}{N}\sum_{n=1}^N{\omega_n}$ :

$$\begin{split} & p(\mu|\omega_{1:N}) \propto \exp\left(-\frac{1}{2}f\right) \\ & f = \frac{1}{v} \sum_{n=1}^{N} \left(\omega_{n} - \mu\right)^{2} + \frac{1}{V}(M - \mu)^{2} \\ & = \frac{1}{v} \sum_{n=1}^{N} \left((\omega_{n} - \overline{\omega}) + (\overline{\omega} - \mu)\right)^{2} + \frac{1}{V}(M - \mu)^{2} \\ & = \frac{1}{v} \left(\sum_{n=1}^{N} \left(\omega_{n} - \overline{\omega}\right)^{2} + 2\sum_{n=1}^{N} \left(\omega_{n} - \overline{\omega}\right)(\overline{\omega} - \mu) + \sum_{n=1}^{N} \left(\overline{\omega} - \mu\right)^{2}\right) + \frac{1}{V}(M - \mu)^{2} \\ & = \frac{1}{v} \left(\sum_{n=1}^{N} \left(\omega_{n} - \overline{\omega}\right)^{2} + 2(\overline{\omega} - \mu)\sum_{n=1}^{N} \left(\omega_{n} - \overline{\omega}\right) + N(\overline{\omega} - \mu)^{2}\right) + \frac{1}{V}(M - \mu)^{2} \end{split}$$

Since  $\sum_{n=1}^{N} (\omega_n - \overline{\omega}) = 0$ , this further simplifies to:

$$\begin{split} f &= \frac{1}{v} \left( \sum_{n=1}^{N} (\omega_n - \overline{\omega})^2 + N(\overline{\omega} - \mu)^2 \right) + \frac{1}{V} (M - \mu)^2 \\ &= \frac{1}{v} \sum_{n=1}^{N} (\omega_n - \overline{\omega})^2 + \frac{1}{v} N(\overline{\omega} - \mu)^2 + \frac{1}{V} (M - \mu)^2 \end{split}$$

Substituting back into the original equation:

$$\begin{split} &p(\mu|\omega_{1:N}) \propto \exp\left(-\frac{1}{2}\left(\frac{1}{v}\sum_{n=1}^{N}(\omega_{n}-\bar{\omega})^{2}+\frac{1}{v}N(\bar{\omega}-\mu)^{2}+\frac{1}{V}(M-\mu)^{2}\right)\right) \\ &=\exp\left(-\frac{1}{2v}\sum_{n=1}^{N}(\omega_{n}-\bar{\omega})^{2}\right)\exp\left(-\frac{1}{2}\left(\frac{1}{v}N(\bar{\omega}-\mu)^{2}+\frac{1}{V}(M-\mu)^{2}\right)\right) \\ &\propto \exp\left(-\frac{1}{2}\left(\frac{1}{v}N(\bar{\omega}-\mu)^{2}+\frac{1}{V}(M-\mu)^{2}\right)\right) \end{split}$$

Now define a quadratic polynomial:

$$\begin{split} g &= \frac{N}{v} (\overline{\omega} - \mu)^2 + \frac{1}{V} (M - \mu)^2 \\ &= \frac{N}{v} \mu^2 - \frac{2N\overline{\omega}\mu}{v} + \frac{N\overline{\omega}^2}{v} + \frac{M^2}{V} - \frac{2M\mu}{V} + \frac{\mu^2}{V} \\ &= \left(\frac{N}{v} + \frac{1}{V}\right) \left(\mu^2 - \frac{2\mu}{\frac{N}{v} + \frac{1}{V}} \left(\frac{N\overline{\omega}}{v} + \frac{M}{V}\right) + \frac{1}{\frac{N}{v} + \frac{1}{V}} \left(\frac{N\overline{\omega}^2}{v} + \frac{M^2}{V}\right)\right) \end{split}$$

Now some proportionality constant K can be multiplied in, allowing the formula to be written:

$$g = \left(\frac{N}{v} + \frac{1}{V}\right) \left(\mu - \frac{\left(\frac{N\overline{\omega}}{v} + \frac{M}{V}\right)}{\frac{N}{v} + \frac{1}{V}}\right)^2 + K$$

In the original equation, this equals:

$$\begin{split} p(\mu|\omega_{1:N}) &\propto \exp\left(-\frac{1}{2}g\right) = \exp\left(-\frac{1}{2}K\right) \exp\left(-\frac{1}{2}\left(\frac{1}{\left(\frac{N}{v} + \frac{1}{V}\right)^{-1}}\right) \left(\left(\mu - \frac{\left(\frac{N\overline{\omega}}{v} + \frac{M}{V}\right)}{\frac{N}{v} + \frac{1}{V}}\right)^{2}\right)\right) \\ &\propto \exp\left(-\frac{1}{2}\left(\frac{1}{\left(\frac{N}{v} + \frac{1}{V}\right)^{-1}}\right) \left(\left(\mu - \frac{\left(\frac{N\overline{\omega}}{v} + \frac{M}{V}\right)}{\frac{N}{v} + \frac{1}{V}}\right)^{2}\right)\right) \end{split}$$

This matches the form of the normal distribution Normal  $(\mu^*, \nu^*)$  where:

$$v^* = \frac{1}{\left(\frac{N}{v} + \frac{1}{V}\right)}, \mu^* = v^* \left(\frac{N\overline{\omega}}{v} + \frac{M}{V}\right)$$

These can also be simplified:

$$\begin{split} v^* &= \frac{1}{\left(\frac{N}{v} + \frac{1}{V}\right)} = \frac{1}{\frac{V}{V}\frac{N}{v} + \frac{v}{v}\frac{1}{V}} = \frac{1}{\frac{VN + v}{Vv}} = \frac{Vv}{VN + v} \\ \mu^* &= \frac{Vv}{VN + v}\left(\frac{N\overline{\omega}}{v} + \frac{M}{V}\right) = \frac{Vv}{VN + v}\left(\frac{V}{V}\frac{N\overline{\omega}}{v} + \frac{v}{v}\frac{M}{V}\right) \\ &= \frac{Vv}{VN + v}\left(\frac{VN\overline{\omega} + vM}{Vv}\right) \\ &= \frac{VN\overline{\omega} + vM}{VN + v} \end{split}$$

The equation can thus be written:

$$\begin{split} &p(\mu|\omega_{1:N}) \propto \exp\left(-\frac{1}{2\nu^*}(\mu-\mu^*)^2\right) \\ &\Rightarrow p(\mu|\omega_{1:N}) = C \cdot \exp\left(-\frac{1}{2\nu^*}(\mu-\mu^*)^2\right) = p(\operatorname{Normal}(\mu^*,\nu^*)) = p_{\mu}(\mu) = \frac{1}{\sqrt{2\pi\nu^*}} \exp\left(-\frac{1}{2\nu^*}(\mu-\mu^*)^2\right) \\ &\Rightarrow C = \frac{1}{\sqrt{2\pi\nu^*}} \end{split}$$

Therefore:

$$p(\mu|\omega_{1:N}) = \frac{1}{\sqrt{2\pi v^*}} \cdot \exp\left(-\frac{1}{2v^*}(\mu - \mu^*)^2\right), \text{ where } v^* = \frac{\text{Vv}}{\text{VN} + v}, \mu^* = \frac{\text{VN}\overline{\omega} + \text{vM}}{\text{VN} + v}$$

#### (iii)

This graph compares the prior and posterior results for the distribution of  $\mu$ . The prior distribution was very wide, indicating great uncertainty about what the true mean was. After the sample points are added, the posterior has converged much more strongly towards a single value.



### (iv)

The probability that  $\mu < 0$  can be found by integrating the prior and posterior probabilties from negative infinity. Since it is not possible to numerically integrate negative infinity, the integrals will instead be performed from -100 to 0. From visual inspection of the graph of the prior and posteriors, it can be see that the probability past -10 is extremely low, and thus there will be little effect on the overall integration.

$$p(\mu) < 0.5 \approx \int_{-100}^{0} p(\mu) d\mu = 0.5 = 50\%$$
  
$$p(\mu|\omega_{1:N}) < 0.5 \approx \int_{-100}^{0} p(\mu|\omega_{1:N}) d\mu \approx 3.44 \cdot 10^{-13} = 3.44 \cdot 10^{-11}\%$$

These results make intuitive sense: the prior has a mean of 0, so there is a 50% chance that the value will be less than the mean (i.e., negative.) The posterior is centered roughly around  $\mu=1$ , with very little probability that  $\mu<0$ .

(v)

The maximum a posteriori estimate for  $\mu$  can be found by differentiating the probability distribution and finding the point where the slope is equal to zero.

$$p(\mu|\omega_{1:N}) = \frac{1}{\sqrt{2\pi v^*}} \cdot \exp\left(-\frac{1}{2v^*}(\mu-\mu^*)^2\right), \text{ where } v^* = \frac{\mathbf{V}\mathbf{v}}{\mathbf{V}\mathbf{N}+v}, \mu^* = \frac{\mathbf{V}\mathbf{N}\overline{\omega} + \mathbf{v}\mathbf{M}}{\mathbf{V}\mathbf{N}+v}$$

$$\frac{d}{d\mu} \, p(\mu \big| \omega_{1:N}) = \frac{1}{\sqrt{2\pi v^*}} \cdot \left( f'(g(\mu)) \cdot g'(\mu) \right) \text{, where } f(\mu) = \exp(\mu), g(\mu) = -\frac{1}{2v^*} (\mu - \mu^*)^2$$

$$\begin{split} &= \frac{1}{\sqrt{2\pi v^*}} \cdot \exp\left(-\frac{1}{2v^*} (\mu - \mu^*)^2\right) \cdot \left(-\frac{1}{v^*} (\mu - \mu^*)\right) \\ &0 = \frac{1}{\sqrt{2\pi v^*}} \cdot \exp\left(-\frac{1}{2v^*} (\mu - \mu^*)^2\right) \cdot \left(-\frac{1}{v^*} (\mu - \mu^*)\right) = \exp\left(-\frac{1}{2v^*} (\mu - \mu^*)^2\right) \cdot \left(-\frac{1}{v^*} (\mu - \mu^*)\right) \end{split}$$

This is true when either  $\exp\left(-\frac{1}{2\nu^*}(\mu-\mu^*)^2\right)=0$  or  $\left(-\frac{1}{\nu^*}(\mu-\mu^*)\right)=0$ . However, the exponential function can never be equal to zero. Therefore:

$$\left(-\frac{1}{v^*}(\mu - \mu^*)\right) = 0 = (\mu - \mu^*)$$

$$\Rightarrow \mu = \mu^* = \frac{VN\overline{\omega} + vM}{VN + v} \approx 1.4335$$

This result makes intuitive sense: the peak of a normal distribution is always at its mean value.

### (vi)

Each measurement  $\omega_n$  is in units of  $[\mathrm{au}]$ . In the  $\mathrm{Normal}(\mu,\nu)$  distribution that the measurements are drawn from, each measurement is subtracted from the mean value  $\mu$ . Therefore, they must have the same units, so the units of  $\mu$  must also be  $[\mathrm{au}]$ . Similarly, in the prior distribution  $\mathrm{Normal}(M,V)$ , each value of  $\mu$  is subtracted from the prior mean M, so the units of M must also be  $[\mathrm{au}]$ . In both cases, the differences between the mean values  $\mu$ , M and the observed values  $\omega_n$ ,  $\mu$  are then squared (giving units of  $[\mathrm{au}^2]$ ), and divided by the relevant variances  $\nu$ ,  $\nu$ . The result of that division must be unitless for the exponential. Therefore,  $\nu$ ,  $\nu$  must have the same units as  $\omega_n^2$ ,  $\mu^2$ :  $[\mathrm{au}^2]$ .

In summary:

 $\mu : [au]$  M : [au]

 $v : [au^2]$ 

 $V: [au^2]$ 

# **Problem 2**

Set up a Bayesian model for discrete measurements. Consider data  $\omega_n$ , where each value  $n=1,\ldots,N$  is an individual measurement.  $\omega_n$  is drawn from a Geometric  $(\pi)$  distribution with probability mass given by:

$$p(\omega) = \begin{cases} (1-\pi)^{\omega}\pi & \omega \ge 0\\ 0 & \text{else} \end{cases}$$

The prior of  $\pi$  is defined with a  $Beta(\alpha, \beta)$  distribution where  $\alpha, \beta$  have known values. The probability density of the Beta distribution is:

$$p(\pi) = \begin{cases} \frac{\pi^{\alpha - 1} (1 - \pi)^{\beta - 1}}{B(\alpha, \beta)} & 0 \le \pi \le 1\\ \text{else} & 0 \end{cases}$$

where  $B(\alpha, \beta)$  is the Beta function:

$$B(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

(i)

In statistical notation, this problem can be written as:

$$\pi \sim \text{Beta}(\alpha, \beta)$$
 $\omega_n | \pi \sim \text{Geometric}(\pi)$ 

$$p(\omega|\pi) = (1 - \pi)^{\omega} \pi$$

$$p(\pi) = \frac{\pi^{\alpha - 1} (1 - \pi)^{\beta - 1}}{B(\alpha, \beta)}$$

(ii)

The posterior can be calculated as  $p(\pi|\omega_{1:N}) = C \ p(\omega_{1:N}|\pi) \ p(\pi)$ .  $p(\pi)$  is defined from the posterior. The next step is to calculate  $p(\omega_{1:N}|\pi)$ , which can be done by taking the product of the probability of each individual observation conditioned on  $\pi$ :

$$p(\omega_{1:N}|\pi) = \prod_{n=1}^{N} p(\omega_n|\pi) = \prod_{n=1}^{N} \left( (1-\pi)^{\omega_n} \pi \right) = \pi^N (1-\pi)^{\sum_{n=1}^{N} \omega_n}$$

Therefore, the posterior can be written:

$$\begin{split} p(\pi \, | \, \omega_{1:N}) & \propto \, p(\omega_{1:N} | \pi) \, \, p(\pi) = \pi^N (1-\pi)^{\sum\limits_{n=1}^N \omega_n} \frac{\pi^{\alpha-1} (1-\pi)^{\beta-1}}{B(\alpha,\beta)} \\ & \propto (1-\pi)^{n=1} \, \, \pi^{\alpha-1} (1-\pi)^{\beta-1} = \pi^{N+\alpha-1} (1-\pi)^{\frac{\beta}{n-1}} \frac{1}{n} \sum_{n=1}^N \omega_n \, \, \frac{\beta}{n} \end{split}$$

It is known that  $\int_0^1 p(\pi|\omega_{1:N}) = 1$ . The next step is to find the normalization coefficient C. This is simple for this equation: the posterior  $p(\pi|\omega_{1:N})$  is proportional to a beta distribution with updated parameters  $\alpha^*$ ,  $\beta^*$  where:

$$\alpha^* = \alpha + N, \beta^* = \beta + \sum_{n=1}^N \omega_n. \text{ Therefore:}$$

$$p(\pi | \omega_{1:N}) = C\pi^{\alpha^* - 1} (1 - \pi)^{\beta^* - 1}$$

$$\Rightarrow 1 = \int_0^1 C\pi^{\alpha - 1} (1 - \pi)^{\beta - 1 + \sum_{n=1}^N \omega_n} d\pi = \int_0^1 \frac{\pi^{\alpha^* - 1} (1 - \pi)^{\beta^* - 1}}{B(\alpha^*, \beta^*)} d\pi$$

$$= \frac{1}{B(\alpha^*, \beta^*)} \int_0^1 \pi^{\alpha^* - 1} (1 - \pi)^{\beta^* - 1} d\pi$$

$$\Rightarrow C = \frac{1}{B(\alpha^*, \beta^*)} = \frac{1}{B(\alpha + N, \beta + \sum_{n=1}^N \omega_n)}$$

$$\Rightarrow p(\pi | \omega_{1:N}) = \frac{\pi^{\alpha + N - 1} (1 - \pi)^{\beta + \sum_{n=1}^N \omega_n - 1}}{B(\alpha + N, \beta + \sum_{n=1}^N \omega_n)}$$

(iii)

The following graph compares the prior and posterior distributions of  $\pi$  when  $\alpha=\beta=1$  and updating using the provided observations  $\omega_{1:N}$ . It can be seen that the prior distribution is entirely uniform over  $0 \le \pi \le 1$ . This makes sense since for the case  $\alpha=\beta=1$ , the prior distribution PDF simplifies to  $p(\pi)=\frac{\pi^0(1-\pi)^0}{B(1,1)}=\frac{1}{B(1,1)}$  when  $0 \le \pi \le 1$ .



# (iv)

The probability that  $\pi > 0.15$  can be determined by integrating the prior and posterior distributions from 0.15 to 1. This is done numerically. Therefore:

$$p(\pi) > 0.15 = \int_{0.15}^{1} \frac{\pi^{\alpha - 1} (1 - \pi)^{\beta - 1}}{B(\alpha, \beta)} d\pi = 0.85 = 85\%$$

$$p(\pi | \omega_{1:N}) > 0.15 = \int_{0.15}^{1} \frac{\pi^{\alpha - 1} (1 - \pi)^{\beta - 1}}{B(\alpha, \beta)} d\pi \approx 0.0034 \approx 0.34\%$$

This matches up with visual inspection from the graph above: the posterior is uniform and thus the probability will be proportional to the percentage of the range integrated over (i.e., 100% - 15% = 85%), but the posterior is extremely confident that the value of  $\pi$  will be just below 0.1, with very little probability where  $\pi > 0.15$ .

# (v)

The maximum value of the posterior can be analytically determined by differentiating the posterior probability distribution  $p(\pi|\omega_{1:N})$  and finding the zero-slope point:

$$\begin{split} &\frac{d}{d\pi} \, p(\pi|\omega_{1:N}) = \frac{1}{B(\alpha^*,\beta^*)} \Bigg( \left(\frac{d}{d\pi} \pi^{a+N-1}\right) (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 1} + \left(\frac{d}{d\pi} (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 1}\right) \pi^{a+N-1} \Bigg) \\ &= \frac{1}{B(\alpha^*,\beta^*)} \Bigg( (\alpha+N-1) \pi^{a+N-2} (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 1} + \left(-\beta + \sum\limits_{n=1}^{N} \omega_n - 1\right) (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 1} \pi^{a+N-1} \Bigg) \\ &0 = \frac{1}{B(\alpha^*,\beta^*)} \Bigg( (\alpha+N-1) \pi^{a+N-2} (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 1} + \left(-\beta + \sum\limits_{n=1}^{N} \omega_n - 1\right) (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 1} \pi^{a+N-1} \Bigg) \\ &= \Bigg( (\alpha+N-1) \pi^{a+N-2} (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 1} + \left(-\beta + \sum\limits_{n=1}^{N} \omega_n - 1\right) (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 2} \pi^{a+N-1} \Bigg) \\ &\Rightarrow (\alpha+N-1) \pi^{a+N-2} (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 1} = \left(\beta + \sum\limits_{n=1}^{N} \omega_n - 1\right) (1-\pi)^{\beta + \sum\limits_{n=1}^{N} \omega_n - 2} \pi^{a+N-1} \\ &\Rightarrow (\alpha+N-1) (1-\pi) = \left(\beta + \sum\limits_{n=1}^{N} \omega_n - 1\right) \pi \\ &\Rightarrow (\alpha+N-1) (1-\pi) = \left(\beta + \sum\limits_{n=1}^{N} \omega_n - 1\right) \pi \\ &\Rightarrow \frac{(1-\pi)}{\pi} = \frac{\left(\beta + \sum\limits_{n=1}^{N} \omega_n - 1\right)}{(a+N-1)} = \frac{1}{\pi} - 1 \\ &\sum\limits_{n=1}^{N} \omega_n = 162, N = 14, \alpha = 1, \beta = 1 \\ &\Rightarrow \frac{1}{\pi} - 1 = \frac{(1+162-1)}{(1+14-1)} = \frac{162}{14} \\ &\Rightarrow \pi = \frac{176}{14} \\ &\Rightarrow \pi = \frac{114}{176} - 0.0795 \end{aligned}$$

This matches up with visual inspection of the graph above: the peak is slightly below  $\pi=0.1$ . This can also be verified by evaluating  $p(\pi|\omega_{1:N})$  at points slightly above and below  $\frac{14}{176}$  and making sure that both points are lower than  $p\left(\frac{14}{176}\left|\omega_{1:N}\right.\right)$ :

$$p\left(\frac{13}{176} \middle| \omega_{1:N}\right) \approx 17.7754$$
$$p\left(\frac{14}{176} \middle| \omega_{1:N}\right) \approx 19.5531$$
$$p\left(\frac{15}{176} \middle| \omega_{1:N}\right) \approx 18.8391$$

### **Problem 3**

Determine if the models in the previous problems belong to the exponential family. For this to be true, with x as the parameters and y as the measurements, the function must be able to be written as:

$$p(x) \propto (G(x))^{\eta} \exp(\phi(x)\nu)$$
  
$$p(y|x) = F(y)G(x) \exp(\phi(x)U(y))$$

(i)

For the conjugate model to belong to the exponential family, the following must be true:

$$p(\mu) \propto G(\mu)^{\eta} \exp(\phi(\mu) \nu)$$
  
$$p(\omega|\mu) = F(\omega)G(\mu) \exp(\phi(\mu)U(\omega))$$

Start by looking at the probability of  $\omega$  conditioned on  $\mu$  first:

$$\begin{split} p(\omega|\mu) &= \left(\frac{1}{\sqrt{2\pi\nu}}\right) \exp\left(-\frac{1}{2\nu}(\omega - \mu)^2\right) \\ &= \left(\frac{1}{\sqrt{2\pi\nu}}\right) \exp\left(-\frac{1}{2\nu}(\omega^2 - 2\omega\mu) + \mu^2\right) \\ &= \left(\frac{1}{\sqrt{2\pi\nu}}\right) \exp\left(-\frac{\omega^2}{2\nu}\right) \exp\left(\frac{\omega\mu}{\nu} - \frac{\mu^2}{2\nu}\right) \end{split}$$

Define  $F(\omega) = \exp\left(-\frac{\omega^2}{2v}\right)$  . Therefore:

$$p(\omega|\mu) = F(\omega) \left(\frac{1}{\sqrt{2\pi v}}\right) \exp\left(\omega \frac{\mu}{v} - \frac{\mu^2}{2v}\right)$$

Define  $G(\mu) = \left(\frac{1}{\sqrt{2\pi \nu}}\right) \exp\left(-\frac{\mu^2}{2\nu}\right)$  . Therefore:

$$p(\omega|\mu) = F(\omega)G(\mu)\exp\left(\frac{\omega\mu}{v}\right)$$

Define 
$$\phi(\mu) = \frac{\mu}{\nu}, U(\omega) = \omega$$
:

$$p(\omega|\mu) = F(\omega)G(\mu)\exp(\phi(\mu)U(\omega))$$

Now, the prior  $p(\mu)$  must be defined using this same set of equations:

$$p(\mu) = \frac{1}{\sqrt{2\pi V}} \exp\left(-\frac{1}{2V}(\mu - M)^2\right) \propto G(\mu)^{\eta} \exp(\phi(\mu) \nu)$$

$$= \left(\left(\frac{1}{\sqrt{2\pi v}}\right) \exp\left(-\frac{\mu^2}{2v}\right)\right)^{\eta} \exp(\nu \mu)$$

$$= \left(\frac{1}{\sqrt{2\pi v}}\right)^{\eta} \exp\left(\nu \mu - \eta \frac{\mu^2}{2v}\right)$$
If  $\eta = \frac{v}{V}$  and  $\nu = \frac{M}{V}$ :
$$p(\mu) \propto \left(\frac{1}{\sqrt{2\pi v}}\right)^{\frac{v}{V}} \exp\left(\frac{M}{V}\mu - \frac{v}{V}\frac{\mu^2}{2v}\right)$$

$$\propto \exp\left(\frac{M\mu}{V} - \frac{\mu^2}{2V}\right)$$

$$\propto \exp\left(\frac{M\mu}{V} - \frac{\mu^2}{2V}\right) \exp\left(-\frac{1}{2}\frac{M^2}{V}\right)$$

$$= \exp\left(\frac{M\mu}{V} - \frac{\mu^2}{2V} - \frac{M^2}{2V}\right)$$

$$= \exp\left(-\frac{1}{2V}(\mu^2 - M\mu + M^2)\right)$$

$$= \exp\left(-\frac{1}{2V}(M - \mu)^2\right)$$

This is the correct form for the prior, with  $p(\mu) = C \cdot \exp\left(-\frac{1}{2V}(M-\mu)^2\right)$ . Therefore, the normal

conjugate model from problem 1 is part of the exponential family. While this examination only looked at the case where there was a single observation (i.e., N=1), this scales to any number of examples, since the posterior resulting from updating with all samples simultaneously is equal to the posterior obtained by chaining the samples by applying a sample, taking the posterior, and treating it as the prior for the next sample, throughout all the samples.

## (ii)

For the conjugate model to belong to the exponential family, the following must be true:

$$p(\pi) \propto G(\pi)^{\eta} \exp(\phi(\pi) \nu)$$
  
$$p(\omega | \pi) = F(\omega)G(\pi) \exp(\phi(\pi)U(\omega))$$

The prior is:

 $p(\pi) = \frac{\pi^{\alpha-1}(1-\pi)^{\beta-1}}{B(\alpha,\beta)} \propto \pi^{\alpha-1}(1-\pi)^{\beta-1}$ , and the likelihood of observing some sample given  $\mu$  is:

$$p(\omega|\pi) = \begin{cases} (1-\pi)^{\omega}\pi & \omega \ge 0\\ 0 & \text{else} \end{cases}$$

First, the probability of  $\omega$  conditioned on  $\pi$  for  $0 \le \pi$  will be examined:

$$\begin{split} &p(\omega|\pi) = (1-\pi)^{\omega}\pi \\ &= \pi \exp(\ln(1-\pi)\omega) \end{split}$$
 Let  $G(\pi) = \pi, \phi(\pi) = \ln(1-\pi), F(\omega) = 1, U(\omega) = \omega$ : 
$$&p(\omega|\pi) = G(\pi) \exp(\phi(\pi)U(\omega)) \end{split}$$

Now the prior  $p(\pi)$  must be constructed using these equations:

$$p(\pi) = \pi^{\alpha - 1} (1 - \pi)^{\beta - 1} \propto G(\pi)^{\eta} \exp(\phi(\pi) \, \nu) = \pi^{\eta} \exp(\ln(1 - \pi) \, \nu)$$

Assume  $\eta = \alpha - 1$ :

$$\begin{split} p(\pi) &\propto \pi^{\alpha-1} \exp(\ln(1-\pi) \ \nu) \\ &= \pi^{\alpha-1} (1-\pi)^{\nu} \end{split}$$

Assume  $\nu = \beta - 1$ :

$$p(\pi) \propto \pi^{\alpha-1} (1-\pi)^{\beta-1}$$

This is of the correct form for the input beta distribution, with  $p(\pi) = C \cdot \pi^{\alpha-1} (1-\pi)^{\beta-1}$ . Therefore the beta conjugate model from problem 1 is part of the exponential family. As before, while only a single sample was examined for the likelihood function, this is equivilent to evaluating the likelihood for an arbitrary number of samples.