A ladder of 6 m length, which is in contact with a vertical wall and horizontal ground slides
down the vertical plane. When the lower end is at a distance of 3 m from wall, its velocity
is 4 m/s. What is the velocity of the upper end at that instant?

(a)
$$\frac{4}{\sqrt{3}}m/s$$

(a)
$$\frac{4}{\sqrt{3}}m/s$$
 (b) $-\frac{4}{\sqrt{3}}m/s$ (c) $\frac{4}{3}m/s$ d) $-\frac{3}{4}m/s$

(c)
$$\frac{4}{3}m/s$$

$$d) - \frac{3}{4}m/s$$

- 2. Two particles are thrown up simultaneously with a velocity of 30 m/s, one thrown vertically up and another at 45° with respect to horizontal. Find out the distance between them at t =1.5 s.
 - (a) 35.44 m
- (b) 34.44 m
- (c) 33.44 m
- d) 36.44 m
- The radius of the earth's orbit around the sun (assumed to be circular) is 1.5 x 108 km and the earth travels around this orbit in 365 days. (i) The magnitude of the orbital velocity of the earth in m/s is $\frac{2\pi \times 1.5 \times 10^{11}}{365 \times 24 \times 3600}$ (ii) The radial acceleration of the earth toward the sun, in m/s^2 is $\frac{4\pi^2 \times 1.5 \times 10^{11}}{(365 \times 24 \times 3600)^2}$.
 - (a) Both (i) and (ii) are correct
 - (b) (i) is correct but (ii) is wrong
 - (c) (i) is wrong but (ii) is correct
 - (d) both (i) and (ii) are wrong
- 4. A canoe has a velocity of 0.40 m/s southeast relative to the earth. The canoe is on a river that is flowing 0.50 m/s east relative to the earth. Find the velocity (magnitude and direction) of the canoe relative to the river.
 - (a) 3.6 m/s, 380 west of south
 - (a) 3.6 m/s, 38° south of west
 - (a) 0.36 m/s, 380 south of west
 - (b) 0.36 m/s, 380 west of south

5.	Passengers on a carnival ride move at constant speed in a horizontal circle of radius 5.0 m,
	making a complete circle in 4.0 s. What is their acceleration?

(a) 10.0 m/s^2 (b) 11.0 m/s^2 (c) 12.0 m/s^2 d) 20.0 m/s^2

- 6. An airplane's compass indicates that it is headed due north, and its airspeed indicator shows that it is moving through the air at 240 km/h. If there is a 100-km/h wind from west to east, what is the velocity of the plane relative to the earth?
 - (a) 260 km/h with 230 north of east
 - (b) 260 km/h with 230 south of east
 - (c) 260 km/h with 230 east of north
 - (d) 340 km/h with 230 north of east
 - (e) 140 km/h with 230 north of east
- 7. Suppose the nose of an airplane is pointed due east and the airplane has an airspeed of 150 km/h. Due to the wind, the airplane is moving due north relative to the ground and its speed relative to the ground is 150 km/h. What is the velocity of the air relative to the earth?
 - (a) 150 km/h from east to west
 - (b) 150 km/h from south to north
 - (c) 150 km/h from southeast to northwest
 - (d) 212 km/h from south to north
 - (e) 212 km/h from southeast to northwest
- A particle experiences four times the acceleration at the bottom of a vertical loop as it does
 at the top of the loop. Compared to its speed at the top of the loop, is its speed at the bottom
 of the loop
 - (a) $\sqrt{2}$ times as less (b) $2\sqrt{2}$ times as great (c) 2 times as great (d) 4 times as great

Passage

- A car is speeding up along a circular path.
- (ii) A car is slowing down along a circular path
- (iii) A car is moving along a circular path with constant speed

9. Which of the following is wrong?

- I
- (a) For cases (i) and (ii) the acceleration is not directed along the radius
- (b) For case (iii) the acceleration is not directed along the radius
- (c) Component of acceleration perpendicular to velocity changes car's direction in all three cases
- (d) Component of acceleration parallel to velocity changes car's speed in all three cases 10. Which of the following is correct?
 - (a) For cases (i) and (ii) the acceleration make acute angle with the velocity
 - (b) For cases (iii) the acceleration is perpendicular to the velocity
 - (c) For cases (i) and (ii) the acceleration make obtuse angle with the velocity
 - (d) For cases (i) and (ii) the acceleration make right angle with the velocity