Preliminary migrate analysis of M. californianus

MIGRATION RATE AND POPULATION SIZE ESTIMATION using the coalescent and maximum likelihood or Bayesian inference Migrate-n version 3.7.2 [April-12-18]

Program started at Tue Jun 1 13:45:41 2021 Program finished at Tue Jun 1 18:56:16 2021

Options

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 750185664

Start parameters:

Theta values were generated from guessed values

Theta = 0.01000

M values were generated from guessed values

M-matrix:

100000.00 [all are the same]

Connection type matrix:

where m = average (average over a group of Thetas or M,

s = symmetric M, S = symmetric 4Nm, 0 = zero, and not estimated,

* = free to vary, Thetas are on diagonal

Population	1	2	3	4	5	6	7	8	9	10	11	12
1 ElfinCo	m	m	m	m	m	m	m	m	m	m	m	m
2 Bamfiel	m	m	m	m	m	m	m	m	m	m	m	m
3 PortRen	m	m	m	m	m	m	m	m	m	m	m	m
4 WalkOnB	m	m	m	m	m	m	m	m	m	m	m	m
5 BodegaH	m	m	m	m	m	m	m	m	m	m	m	m
6 Davenpo	m	m	m	m	m	m	m	m	m	m	m	m
7 VistaDe	m	m	m	m	m	m	m	m	m	m	m	m
8 HazardR	m	m	m	m	m	m	m	m	m	m	m	m
9 Refugio	m	m	m	m	m	m	m	m	m	m	m	m
10 Carpint	m	m	m	m	m	m	m	m	m	m	m	m

11 WhitePo	* *	* * *	* * * * * *
	* *	* * *	* * * * * *
12 LaJolla	^ *	^	
Order of param		0	
1	$\Theta_1 =$	Θ_1 [m]	
2	Θ_2 =	Θ_1 [m]	
3	$\Theta_3^2 =$	Θ_1 [m]	
4	$\Theta_4 =$	Θ_1 [m]	
5	$\Theta_5^{T} =$	Θ_1 [m]	
6	Θ_6 =	Θ_1 [m]	
7	$\Theta_7 =$	Θ_1 [m]	
8	$\Theta_8 =$	Θ_1 [m]	
9	$\Theta_{0} =$	Θ_1 [m]	
10	Θ_{10} =	Θ_1 [m]	
11	Θ_{11}		<displayed></displayed>
12	Θ_{12}		<displayed></displayed>
13	$M_{2->1}^{12} =$	$M_{2->1}$ [m]	<displayed></displayed>
14	$M_{3->1} =$	$M_{2->1}$ [m]	
15	$M_{4->1}^{3} =$	$M_{2->1}^{2}$ [m]	
16	$M_{5->1}^{7-1} =$	M $_{2->1}^{2}$ [m]	
17	$M_{6->1}^{5->1} =$	$M_{2->1}^{2->1}$ [m]	
18	$M_{7->1} =$	$M_{2->1}$ [m]	
19	$M_{8->1}^{7->1} =$	$M_{2->1}$ [m]	
20	$M_{9->1}^{6->1} =$	M $_{2->1}^{2->1}$ [m]	
21	M	$M_{2->1}$ [m]	
22	10->1	M $_{2->1}^{2->1}$ [m]	
23	M	M $_{2->1}^{2->1}$ [m]	
24	12->1	$M_{2->1}$ [m]	
25	$M_{1->2} = M_{3->2} = M_{1->2}$	$M_{2->1}$ [m]	
26	$M_{4->2} = M_{4->2}$	$M_{2->1}$ [m]	
27	$M_{5->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
28	$M_{5->2} = M_{6->2} = M_{5->2}$	$M_{2->1}$ [m] $M_{2->1}$ [m]	
29	$M_{6\rightarrow 2} = M_{7\rightarrow 2} =$	M [m]	
30	1-22	$\begin{array}{cc} M & [m] \\ M & [m] \end{array}$	
31	M _{8->2} =	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
32	M _{9->2} =	$M_{2\rightarrow 1} [m]$	
33	$M_{10->2} = M_{10->2}$	M = [m] $M = [m]$	
34	$M_{11->2} = M_{11->2}$	$M = \begin{bmatrix} M \\ 2->1 \end{bmatrix} $ [m]	
35	$M_{12->2} =$	M = [m]	
	$M_{1->3} = M_{1->3}$	$M_{2\rightarrow 1} [m]$	
36	$M_{2->3} =$	$M_{2\rightarrow 1} [m]$	
37	$M_{4->3} =$	$M_{2->1}$ [m]	
38	$M_{5->3} =$	$M_{2->1}$ [m]	
39	IVI _{6->3} =	$M_{2->1}$ [m]	
40	$M_{7->3} =$	$M_{2->1}$ [m]	

41	M _{8->3} =	M _{2->1} [m]
42	$M_{9->3}^{8->3} =$	$ \begin{array}{ccc} M & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 \end{array} $
43	$M_{10->3} =$	$ \begin{array}{ccc} M & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \end{array} $ [m]
44	$M_{11->3}^{10->3} =$	$ \begin{array}{ccc} M & 2 & & \\ 2 & & & \\ 2 & & & \\ \end{array} $
45	$M_{12->3}^{11->3} =$	$ \begin{array}{ccc} M & 2 & 51 & 53 \\ 2 & 2 & 51 & 53 \\ \end{array} $
46	$M_{1->4}^{12->3} =$	$ \begin{array}{ccc} M & 2 \rightarrow 1 & [m] \\ 2 \rightarrow 1 & [m] \end{array} $
47	$M_{2->4}^{1->4} =$	$ \begin{array}{ccc} M & 2->1 & [m] \\ 2->1 & [m] \end{array} $
48	$M_{3->4}^{2->4} =$	$ \begin{array}{ccc} M & 2 & & & \\ 2 & & & & & \\ 2 & & & & & & \\ \end{array} $
49	$M_{5->4}^{5->4} =$	$ \begin{array}{ccc} M & 2 & 2 & 2 \\ 2 & 2 & 2 & 2 \end{array} $ [m]
50	$M_{6->4} =$	$ \begin{array}{ccc} M & 2 & > 1 & \\ 2 & > > 1 & \\ M & 2 & > 1 \end{array} $
51	$M_{7->4}^{0->4} =$	$M_{2->1}^{2->1}$ [m]
52	$M_{8->4} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
53	$M_{9->4}^{6->4} =$	$M_{2\to 1}$ [m]
54	$M_{10->4} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
55	$M_{11->4}^{10->4} =$	$M_{2->1}^{2->1}$ [m]
56	$M_{12->4} =$	$ \begin{array}{ccc} M & 2 & > 1 \\ 2 & > > 1 \end{array} $ [m]
57	$M_{1->5} =$	M _{2->1} [m]
58	M _{2->5} =	$M_{2->1}^{2}$ [m]
59	$M_{3->5}^{2>3} =$	$M_{2->1}$ [m]
60	$M_{4->5}^{5} =$	$M_{2\to 1}$ [m]
61	M _{6->5} =	$M_{2\rightarrow 1}$ [m]
62	M _{7->5} =	$M_{2\rightarrow 1}$ [m]
63	M _{8->5} =	$M_{2\rightarrow 1}$ [m]
64	M _{9->5} =	$M_{2\rightarrow 1}$ [m]
65	$M_{10->5} =$	$M_{2\rightarrow 1}$ [m]
66	$M_{11->5} =$	$M_{2\rightarrow 1}$ [m]
67	$M_{12->5} =$	$M_{2\rightarrow 1}$ [m]
68	M _{1->6} =	$M_{2\rightarrow 1}$ [m]
69	M _{2->6} =	$M_{2\rightarrow 1}$ [m] $M_{2\rightarrow 1}$ [m]
70	$M_{3->6}^{2->0} =$	$M_{2\rightarrow 1}$ [m]
71	IVI _{4->6} =	M _{2->1} [m]
72	IVI _{5->6} =	$M_{2\rightarrow 1}$ [m]
73	IVI _{7->6} =	$M_{2\rightarrow 1}$ [m]
74	IVI _{8->6} =	M _{2->1} [m]
75 70	$M_{9->6} =$	M _{2->1} [m]
76 77	$M_{10->6} =$	M _{2->1} [m]
77	$M_{11->6} =$	$ \begin{array}{c} M \\ 2->1 \end{array} [m] $
78	$M_{12->6} =$	M _{2->1} [m]
79	$M_{1->7} =$	M _{2->1} [m]
80	$M_{2->7} =$	M 2->1 [m]
81	$M_{3->7} =$	$ \begin{array}{c} M \\ 2->1 \end{array} [m] $
82	$M_{4->7}^{5-7} =$	M _{2->1} [m]
83	M _{5->7} =	$ \begin{array}{c} M \\ 2->1 \end{array} [m] $
84	M _{6->7} =	$ \begin{array}{c} M \\ 2->1 \end{array} [m] $
85	M _{8->7} =	$M_{2\rightarrow 1}$ [m]

	Tremminary migrate analysis of M. Camornands COT haplotypes for Evolution 2
86	$M_{9->7} = M_{2->1} [m]$
87	$M_{10-7} = M_{2-1} [m]$
88	$M_{11->7} = M_{2->1} [m]$
89	$M_{12->7} = M_{2->1} [m]$
90	$M_{1->8} = M_{2->1} [m]$
91	$M_{2->8} = M_{2->1} [m]$
92	$M_{3-8} = M_{2-1} [m]$
93	$M_{4-8} = M_{2-1} [m]$
94	M = M = M = M = M = M = M = M = M = M =
95	$M_{6->8}^{3->6} = M_{2->1}^{2->1} [m]$
96	$M_{7-8}^{0-3} = M_{2-31}^{2-31} [m]$
97	$M_{9-8} = M_{2-1} [m]$
98	$M_{10-8} = M_{2-1} [m]$
99	$M_{11-8}^{10-8} = M_{2-1}^{2-1} [m]$
100	$M_{12->8}^{11->8} = M_{2->1}^{2->1} [m]$
101	$M \frac{12->8}{1->9} = M \frac{2->1}{2->1} [m]$
102	M = M = M = M = M = M = M = M = M = M =
103	$M_{3-9}^{2-99} = M_{2-1}^{2-1} [m]$
104	$M_{4\to9}^{3\to9} = M_{2\to1}^{2\to1} [m]$
105	$M_{5->9}^{4->9} = M_{2->1}^{2->1} [m]$
106	$M_{6->9}^{3->9} = M_{2->1}^{2->1} [m]$
107	$M_{7->9}^{6->9} = M_{2->1}^{2->1} [m]$
108	$M_{8-99}^{7-99} = M_{2-91}^{2-91} [m]$
109	$M_{10\to 9}^{8\to 9} = M_{2\to 1}^{2\to 1} [m]$
110	$M_{11->9} = M_{2->1} [m]$
111	$M_{12->9} = M_{2->1} [m]$
112	$M = \frac{12-99}{1->10} = M = \frac{2->1}{2->1} [m]$
113	$M_{2\rightarrow 10}^{1\rightarrow 10} = M_{2\rightarrow 1}^{2\rightarrow 1} [m]$
114	$M_{3\to 10} = M_{2\to 1} [m]$
115	M real
116	$M_{4\rightarrow 10} = M_{2\rightarrow 1} [m]$ $M_{5\rightarrow 10} = M_{2\rightarrow 1} [m]$
117	$M = \frac{5-10}{6-10} = M = \frac{2-1}{2-1} [m]$
118	$M_{7\to 10} = M_{2\to 1} [m]$
119	$M_{8\to 10}^{7\to 10} = M_{2\to 1}^{2\to 1} [m]$
120	$M_{9\rightarrow 10} = M_{2\rightarrow 1} [m]$
121	$M_{11->10} = M_{2->1}$ [m]
122	$M_{12->10} = M_{2->1} [m]$
123	M
124	$M = \frac{1}{1->11}$ <alsplayed> <alsplayed> <alsplayed></alsplayed></alsplayed></alsplayed>
125	$M = \frac{2-311}{3-311}$ <displayed></displayed>
126	M diaplayed
127	M
128	$\begin{array}{c} \text{IVI} & \text{$<$}\text{displayed} \\ \text{M} & \text{6-$}\text{$>$}11 \end{array}$ "><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\displayed>"><\
129	$M_{7\rightarrow11} $ <displayed></displayed>
130	NA / 211
	IVI _{8->11} <asplayed></asplayed>

100000.00

3.00

1.50

Swapping interval is 1

1.00

		1 101111	illiary illigrate all	aryolo or ivi. camorri	narius COT napiotypi	68 101 EVOIUIION 2 3
131	M ₉₋	->11	<	displayed>		
132	N A)->11	<	displayed>		
133	N/I	2->11	<	displayed>		
134	N/I	->12	<	displayed>		
135	R A	->12 ->12	<	displayed>		
136	R A	->12 ->12	<	displayed>		
137	N/I	->12 ->12	<	displayed>		
138	R A	->12 ->12	<	displayed>		
139	R A	->12 ->12	<	displayed>		
140	R A	->12 ->12	<	displayed>		
141	N A	->12 ->12		displayed>		
142	ь л	->12 ->12		displayed>		
143	N/I	->12)->12		displayed>		
144	N/I)->12 1->12		displayed>		
	1	1->12		, ,		
Mutation	rate among loc	i:			Muta	tion rate is constant
Analysis	strategy:					Bayesian inference
Proposal	distributions fo	r naramatar				
Paramet		i parameter	Proposal			
Theta	GI	Mo	etropolis sampling			
M		IVIC	Slice sampling			
IVI			Slice sampling			
Prior dist	tribution for para	ameter				
Paramet	er Prior	Minimum	Mean*	Maximum	Delta	Bins
Theta	Exp window	0.000010	0.010000	10.000000	1.000000	500
М	Exp window	0.000100	100000.000000	1000000.000000	100000.000000	500
 Markov (chain settings:					Long chain
	of chains					1
Record	ded steps [a]					1000
	nent (record eve	ry x step [b]				100
	er of concurrent		cates) [c]			3
	l (sampled) para	` .	,			300000
	er of discard tre					1000
		: p 3: 2::8	/			
Multiple	Markov chains:					
	heating scheme)			4 chains	s with temperatures
				4000	000 00 2 00	4.50

Print options:

Data file:	//mcalifornianus_210528.mig
Output file:	outfile.txt
Posterior distribution raw histogram file:	bayesfile
Print data:	No
Print genealogies [only some for some data type]:	None

Data summary

Datatype: Sequence data
Number of loci: 1

Population	Locus	Gene copies	
1 ElfinCo	1	19	
2 Bamfiel	1	23	
3 PortRen	1	15	
4 WalkOnB	1	16	
5 BodegaH	1	7	
6 Davenpo	1	17	
7 VistaDe	1	19	
8 HazardR	1	23	
9 Refugio	1	16	
10 Carpint	1	19	
11 WhitePo	1	11	
12 LaJolla	1	8	
Total of all populations	1	193	
I and the second			

Bayesian Analysis: Posterior distribution table

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	Θ_1	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_{2}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_3	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_4	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_5	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_6	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_7	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_8	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_9	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_{10}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.00068
1	Θ_{11}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01126
1	Θ_{12}	0.00001	0.00001	0.01001	0.06001	0.16001	0.07001	0.01227
1	M _{2->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{3->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{4->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{5->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{6->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{7->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{8->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{9->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{10->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->1}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{3->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{4->2}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{5->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{6->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{7->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{8->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{9->2}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{10->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->2}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->3}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{2->3}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{4->3}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{5->3}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{6->3}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{7->3}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{8->3}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{9->3}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{10->3}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->3}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->3}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{2->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{3->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{5->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{6->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{7->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{8->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{9->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{10->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->4}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{2->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{3->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{4->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{6->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{7->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{8->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{9->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{10->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->5}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{2->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{3->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{4->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	4->6 M _{5->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	5->6 M _{7->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	7->6 M _{8->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	8->6 M _{9->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	9->6 M _{10->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{12->6}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{2->7}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{3->7}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{4->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{5->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{6->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{8->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{9->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{10->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->7}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{2->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{3->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{4->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{5->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{6->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{7->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{9->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{10->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->8}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{2->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{3->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{4->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{5->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{6->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{7->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{8->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	о->9 М _{10->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->9}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	12->9 M _{1->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	1->10 M _{2->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	2->10 M _{3->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{4->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{5->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{6->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{7->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3

Locus	Parameter	2.5%	25.0%	Mode	75.0%	97.5%	Median	Mean
1	M _{8->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	$M_{9->10}$	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{11->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{12->10}	26000.0	30000.0	45000.0	56000.0	92000.0	55000.0	56071.3
1	M _{1->11}	0.0	0.0	19000.0	40000.0	78000.0	157000.0	155636.1
1	M _{2->11}	0.0	2000.0	19000.0	36000.0	52000.0	105000.0	101802.1
1	M _{3->11}	0.0	2000.0	23000.0	42000.0	56000.0	121000.0	134025.5
1	M _{4->11}	24000.0	114000.0	143000.0	158000.0	174000.0	109000.0	102851.3
1	M _{5->11}	94000.0	128000.0	149000.0	168000.0	206000.0	137000.0	110114.1
1	M _{6->11}	2000.0	60000.0	89000.0	112000.0	142000.0	81000.0	77398.2
1	M _{7->11}	20000.0	34000.0	55000.0	0.00008	178000.0	137000.0	166477.8
1	M _{8->11}	70000.0	168000.0	217000.0	242000.0	294000.0	199000.0	189551.0
1	M _{9->11}	40000.0	52000.0	69000.0	90000.0	270000.0	159000.0	152350.3
1	M _{10->11}	60000.0	74000.0	119000.0	202000.0	288000.0	195000.0	290867.8
1	M _{12->11}	54000.0	78000.0	95000.0	112000.0	146000.0	101000.0	99267.2
1	M _{1->12}	76000.0	100000.0	119000.0	152000.0	234000.0	147000.0	149473.2
1	M _{2->12}	0.0	12000.0	27000.0	48000.0	90000.0	41000.0	41267.0
1	M _{3->12}	68000.0	116000.0	143000.0	166000.0	194000.0	137000.0	133843.7
1	M _{4->12}	38000.0	56000.0	71000.0	90000.0	134000.0	81000.0	82669.6
1	M _{5->12}	18000.0	30000.0	53000.0	74000.0	108000.0	69000.0	103616.1
1	M _{6->12}	156000.0	178000.0	203000.0	238000.0	284000.0	193000.0	174961.2
1	M _{7->12}	30000.0	82000.0	109000.0	124000.0	166000.0	99000.0	97541.1
1	M _{8->12}	98000.0	124000.0	151000.0	170000.0	204000.0	133000.0	113453.6
1	M _{9->12}	24000.0	32000.0	53000.0	72000.0	156000.0	67000.0	80334.2
1	M _{10->12}	18000.0	0.00088	109000.0	130000.0	162000.0	99000.0	92514.0
1	M _{11->12}	18000.0	36000.0	51000.0	64000.0	90000.0	55000.0	54242.8

Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli, and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79.

Bayesian Analysis: Posterior distribution over all loci

Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:

BF = Exp[ln(Prob(D | thisModel) - ln(Prob(D | otherModel) or as LBF = 2 (ln(Prob(D | thisModel) - ln(Prob(D | otherModel)) shows the support for thisModel]

Method	In(Prob(D Model))	Notes
Thermodynamic integration	-2379.677082	(1a)
	-2263.190000	(1b)
Harmonic mean	-1981.952129	(2)

(1a, 1b and 2) are approximations to the marginal likelihood, make sure that the program run long enough! (1a, 1b) and (2) should give similar results, in principle.

But (2) is overestimating the likelihood, it is presented for historical reasons and should not be used (1a, 1b) needs heating with chains that span a temperature range of 1.0 to at least 100,000.

(1b) is using a Bezier-curve to get better approximations for runs with low number of heated chains

Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Acceptance ratios for all parameters and the genealogies

Parameter	Accepted changes	Ratio
Θ_1	17/1045	0.01627
$\Theta_2^{^{1}}$	17/1045	0.01627
Θ_3^2	17/1045	0.01627
Θ_4°	17/1045	0.01627
Θ_5^{T}	17/1045	0.01627
Θ_6°	17/1045	0.01627
Θ_7°	17/1045	0.01627
$\Theta_8^{'}$	17/1045	0.01627
Θ_9°	17/1045	0.01627
$\Theta_{10}^{'}$	17/1045	0.01627
Θ_{11}^{10}	721/985	0.73198
Θ_{12}^{11}	730/1039	0.70260
M ¹² _{2->1}	1057/1057	1.00000
$M_{3\rightarrow 1}^{2\rightarrow 1}$	1057/1057	1.00000
M _{4->1}	1057/1057	1.00000
$\sqrt{\frac{4->1}{5->1}}$	1057/1057	1.00000
М	1057/1057	1.00000
M 6->1 M 7->1	1057/1057	1.00000
M _{8->1}	1057/1057	1.00000
$M_{9->1}^{8->1}$	1057/1057	1.00000
. /	1057/1057	1.00000
VI 10−>1 VI 11 > 1	1057/1057	1.00000
// 11->1 // _{12->1}	1057/1057	1.00000
12->1 . / I	1057/1057	1.00000
1->2	1057/1057	1.00000
3->2 .1	1057/1057	1.00000
4->2	1057/1057	1.00000
3->2 M	1057/1057	1.00000
0->2	1057/1057	1.00000
/->2 M	1057/1057	1.00000
8->2	1057/1057	1.00000
9->2 M	1057/1057	1.00000
10->2 M	1057/1057	1.00000
11->2	1057/1057	1.00000
12->2 M	1057/1057	1.00000
1->3	1057/1057	1.00000
VI 2->3 VI 4 > 2	1057/1057	1.00000

		1 71
M _{5->3}	1057/1057	1.00000
M _{6->3}	1057/1057	1.00000
M _{7->3}	1057/1057	1.00000
M _{8->3}	1057/1057	1.00000
$M_{9->3}$	1057/1057	1.00000
M 10->3	1057/1057	1.00000
M 11->3	1057/1057	1.00000
M _{12->3}	1057/1057	1.00000
M 1->4	1057/1057	1.00000
$M_{2\rightarrow 4}$	1057/1057	1.00000
$M_{3\rightarrow4}$	1057/1057	1.00000
$M_{5->4}$	1057/1057	1.00000
M _{6->4}	1057/1057	1.00000
M 7->4	1057/1057	1.00000
$M_{8->4}$	1057/1057	1.00000
M _{9->4}	1057/1057	1.00000
M 10->4	1057/1057	1.00000
M 11->4	1057/1057	1.00000
M _{12->4}	1057/1057	1.00000
M _{1->5}	1057/1057	1.00000
$M_{2\rightarrow 5}$	1057/1057	1.00000
$M_{3->5}$	1057/1057	1.00000
M _{4->5}	1057/1057	1.00000
M _{6->5}	1057/1057	1.00000
M 7->5	1057/1057	1.00000
M _{8->5}	1057/1057	1.00000
M _{9->5}	1057/1057	1.00000
M _{10->5}	1057/1057	1.00000
M _{11->5}	1057/1057	1.00000
M _{12->5}	1057/1057	1.00000
M _{1->6}	1057/1057	1.00000
M _{2->6}	1057/1057	1.00000
M 3->6	1057/1057	1.00000
M _{4->6}	1057/1057	1.00000
M 5->6	1057/1057	1.00000
M 7->6	1057/1057	1.00000
M 8->6	1057/1057	1.00000
M 9->6	1057/1057	1.00000
M 10->6	1057/1057	1.00000
M 11->6	1057/1057	1.00000
M 12->6	1057/1057	1.00000
M 1->7	1057/1057	1.00000
M 2->7	1057/1057	1.00000
M 3->7	1057/1057	1.00000
M _{4->7}	1057/1057	1.00000
L		

		1 71
M _{5->7}	1057/1057	1.00000
M _{6->7}	1057/1057	1.00000
M _{8->7}	1057/1057	1.00000
M _{9->7}	1057/1057	1.00000
M 10->7	1057/1057	1.00000
M 11->7	1057/1057	1.00000
$M_{12->7}$	1057/1057	1.00000
M _{1->8}	1057/1057	1.00000
$M_{2->8}$	1057/1057	1.00000
$M_{3->8}$	1057/1057	1.00000
M _{4->8}	1057/1057	1.00000
M _{5->8}	1057/1057	1.00000
M _{6->8}	1057/1057	1.00000
M _{7->8}	1057/1057	1.00000
$M_{9->8}$	1057/1057	1.00000
M 10->8	1057/1057	1.00000
$M_{11->8}^{10->6}$	1057/1057	1.00000
$M_{12->8}^{11->6}$	1057/1057	1.00000
M 1->9	1057/1057	1.00000
M _{2->9}	1057/1057	1.00000
$M_{3->9}$	1057/1057	1.00000
M _{4->9}	1057/1057	1.00000
M _{5->9}	1057/1057	1.00000
M _{6->9}	1057/1057	1.00000
M _{7->9}	1057/1057	1.00000
M _{8->9}	1057/1057	1.00000
M _{10->9}	1057/1057	1.00000
M _{11->9}	1057/1057	1.00000
M _{12->9}	1057/1057	1.00000
M _{1->10}	1057/1057	1.00000
M _{2->10}	1057/1057	1.00000
M 3->10	1057/1057	1.00000
M 4->10	1057/1057	1.00000
M 5->10	1057/1057	1.00000
M 6->10	1057/1057	1.00000
M 7->10	1057/1057	1.00000
M 8->10	1057/1057	1.00000
M _{9->10}	1057/1057	1.00000
M 11->10	1057/1057	1.00000
M 12->10	1057/1057	1.00000
M 1->11	1055/1055	1.00000
M 2->11	1040/1040	1.00000
M 3->11	1055/1055	1.00000
M 4->11	1040/1040	1.00000
M _{5->11}	1028/1028	1.00000

M _{6->11}	1049/1049	1.00000
M _{7->11}	999/999	1.00000
M _{8->11}	1017/1017	1.00000
M _{9->11}	1073/1073	1.00000
M 10->11	1058/1058	1.00000
M _{12->11}	1045/1045	1.00000
$M_{1->12}$	1002/1002	1.00000
$M_{2->12}$	1028/1028	1.00000
$M_{3->12}$	1028/1028	1.00000
M _{4->12}	975/975	1.00000
$M_{5->12}$	963/963	1.00000
$M_{6->12}$	1001/1001	1.00000
$M_{7->12}$	1023/1023	1.00000
$M_{8->12}$	1034/1034	1.00000
$M_{9->12}$	1060/1060	1.00000
$M_{10->12}$	1032/1032	1.00000
M 11->12	977/977	1.00000
Genealogies	23146/149876	0.15443

MCMC-Autocorrelation and Effective MCMC Sample Size

Parameter	Autocorrelation	Effective Sampe Size
Θ_1	0.99124	13.19
$\Theta_2^{^1}$	0.99124	13.19
Θ_3^2	0.99124	13.19
Θ_4^3	0.99124	13.19
\mathbf{p}_{5}^{T}	0.99124	13.19
\mathbf{p}_{6}^{3}	0.99124	13.19
) ₇	0.99124	13.19
) ₈	0.99124	13.19
0,9	0.99124	13.19
) 10	0.99124	13.19
11	0.80808	319.19
12	0.82643	285.12
1 2->1	0.98941	15.96
1 3->1	0.98941	15.96
1 3->1 4->1	0.98941	15.96
1 5->1	0.98941	15.96
1 6->1 6->1	0.98941	15.96
7->1	0.98941	15.96
/->1 8->1	0.98941	15.96
1 9->1	0.98941	15.96
10->1	0.98941	15.96
11->1	0.98941	15.96
11->1	0.98941	15.96
1 1->2	0.98941	15.96
$1 \frac{1->2}{3->2}$	0.98941	15.96
1 3->2 4->2	0.98941	15.96
4->2 1	0.98941	15.96
1 5->2 1 _{6->2}	0.98941	15.96
Λ	0.98941	15.96
7 7->2 1 8 3	0.98941	15.96
1 8->2 1 _{9->2}	0.98941	15.96
9->2 1	0.98941	15.96
10->2 1	0.98941	15.96
11->2 1	0.98941	15.96
12->2 1	0.98941	15.96
1->3 1	0.98941	15.96
1 2->3 1 _{4->3}	0.98941	15.96

		1 71
M _{5->3}	0.98941	15.96
M _{6->3}	0.98941	15.96
M 7->3	0.98941	15.96
M _{8->3}	0.98941	15.96
$M_{9->3}^{6->3}$	0.98941	15.96
$M_{10->3}$	0.98941	15.96
$M_{11->3}^{10->3}$	0.98941	15.96
$M_{12->3}^{11->3}$	0.98941	15.96
M 12->3	0.98941	15.96
M 1->4 M 2->4	0.98941	15.96
$M_{3\rightarrow 4}^{2\rightarrow 4}$	0.98941	15.96
$M_{5->4}^{3->4}$	0.98941	15.96
3->4 NA	0.98941	15.96
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98941	15.96
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.98941	15.96
0->4	0.98941	15.96
NA 9->4	0.98941	15.96
10->4	0.98941	15.96
11->4 NA	0.98941	15.96
12->4	0.98941	15.96
1->3	0.98941	15.96
	0.98941	15.96
NA 3->3	0.98941	15.96
4->3	0.98941	15.96
NA (0->3)	0.98941	15.96
NA	0.98941	15.96
NA 0->3	0.98941	15.96
M _{9->5} M _{10->5}	0.98941	15.96
I M	0.98941	15.96
M 11->5 M 12->5	0.98941	15.96
M 1->6	0.98941	15.96
$M_{2\rightarrow 6}$	0.98941	15.96
$M_{3->6}$	0.98941	15.96
M _{4->6}	0.98941	15.96
M 5->6	0.98941	15.96
M 7->6	0.98941	15.96
$M_{8->6}$	0.98941	15.96
$M_{9->6}$	0.98941	15.96
M 10->6	0.98941	15.96
M 11->6	0.98941	15.96
M 12->6	0.98941	15.96
M 1->7	0.98941	15.96
M _{2->7}	0.98941	15.96
M 3->7	0.98941	15.96
M _{4->7}	0.98941	15.96
,		

		1 71
M _{5->7}	0.98941	15.96
M _{6->7}	0.98941	15.96
M _{8->7}	0.98941	15.96
M _{9->7}	0.98941	15.96
M 10->7	0.98941	15.96
M 11->7	0.98941	15.96
M _{12->7}	0.98941	15.96
$M_{1->8}$	0.98941	15.96
M _{2->8}	0.98941	15.96
$M_{3->8}$	0.98941	15.96
$M_{4->8}$	0.98941	15.96
M _{5->8}	0.98941	15.96
M _{6->8}	0.98941	15.96
M 7->8	0.98941	15.96
M _{9->8}	0.98941	15.96
$M_{10->8}$	0.98941	15.96
M 11->8	0.98941	15.96
M _{12->8}	0.98941	15.96
M _{1->9}	0.98941	15.96
M _{2->9}	0.98941	15.96
$M_{3->9}$	0.98941	15.96
M _{4->9}	0.98941	15.96
M _{5->9}	0.98941	15.96
M _{6->9}	0.98941	15.96
M _{7->9}	0.98941	15.96
M _{8->9}	0.98941	15.96
M _{10->9}	0.98941	15.96
M _{11->9}	0.98941	15.96
M _{12->9}	0.98941	15.96
M _{1->10}	0.98941	15.96
M _{2->10}	0.98941	15.96
M 3->10	0.98941	15.96
M 4->10	0.98941	15.96
M 5->10	0.98941	15.96
M 6->10	0.98941	15.96
M 7->10	0.98941	15.96
M 8->10	0.98941	15.96
M 9->10	0.98941	15.96
M 11->10	0.98941	15.96
M 12->10	0.98941	15.96
M 1->11	0.93677	98.22
M 2->11	0.89650	164.12
M 3->11	0.88669	181.11
M 4->11	0.83412	273.50
M _{5->11}	0.89340	169.08

A 7->11 0.87503 200.04 A 8->11 0.91640 131.49 A 9->11 0.91621 131.92 A 10->11 0.92628 115.20 A 12->11 0.84692 249.07 A 1->12 0.94298 88.17 A 2->12 0.88965 177.09 A 3->12 0.89327 169.47 A 4->12 0.86906 211.92 A 5->12 0.89835 162.82 A 6->12 0.91980 125.33 A 7->12 0.90380 152.55 A 8->12 0.91338 136.22 A 9->12 0.88310 186.33 A 10->12 0.90372 152.16	M _{6->11}	0.92582	116.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. /	0.87503	200.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.91640	131.49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.91621	131.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A	0.92628	115.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.84692	249.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.94298	88.17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A	0.88965	177.09
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.89327	169.47
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.86906	211.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Λ	0.89835	162.82
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A	0.91980	125.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.90380	152.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.91338	136.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0.88310	186.33
$1_{11\to 12}$ 0.90372 152.16	1	0.92319	120.22
	Λ	0.90372	152.16
1[[105(5]5]] 24.05	n[Prob(D G)]	0.98373	24.59

Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysis, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior range) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are flagged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for macroscopic species there is rarely the need to increase the prior for Theta beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration routes are estimated poorly because the data contains little or no information for that route. Increasing the range will not help in such situations, reducing number of parameters may help in such situations.

- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Param 1: Effective sample size of run seems too short!
- Dans at 40. Effect! a consideral and a consequence (consideral)
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- _____
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Danier 40 Effecti a a a a la ci a afra a a a a a a a la collecti
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Taram To: Encouve sample size of fair seems too short.
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!
- Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short! Param 13: Effective sample size of run seems too short!

Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
Param 13: Effective sample size of run seems too short!	
·	