ЛЕКЦИЯ 4 РАЗДЕЛ ІІІ КОМБИНАТОРИКА

6. ПЕРЕЧИСЛИТЕЛЬНАЯ КОМБИНАТОРИКА

6.1 Принцип комбинаторного сложения. Принцип комбинаторного умножения.

Комбинаторная задача — задача, в которой необходимо определить, сколько из данных элементов можно образовать различных комбинаций, удовлетворяющих тем или иным условиям.

Например, требуется определить сколькими способами можно выбрать двух дежурных из группы в 30 человек.

Пусть $A_1, A_2, ..., A_n$ — элементы конечного множества.

Принцип комбинаторного сложения: если элемент A_1 может быть выбран K_1 способами, элемент $A_2 — K_2$ способами, ..., элемент $A_n — K_n$ способами, то выбор одного из элементов или A_1 , или A_2 , ..., или A_n может быть осуществлен $K_1 + K_2 + ... + K_n$ способами.

Принцип комбинаторного умножения: если элемент A_1 может быть выбран K_1 способами, после каждого такого выбора элемент A_2 может быть выбран K_2 способами, ..., после каждого такого выбора элемент A_n может быть выбран K_n способами, то выбор всех элементов $A_1, A_2, ..., A_n$ в указанном порядке может быть осуществлен $K_1 \cdot K_2 \cdot ... \cdot K_n$ способами.

Пусть множество A_1 содержит n_1 элементов, множество A_2 содержит n_2 элементов, ..., множество A_k содержит n_k элементов.

Число способов выбора по одному элементу от каждого множества равно произведению $n_1 \cdot n_2 \cdot \ldots \cdot n_k$.

Число способов выбора только одного из элементов одного из множеств равно сумме $n_1 + n_2 + ... + n_k$.

6.2 Перестановки.

Если два набора элементов различаются только порядком расположения элементов в наборе, но не самими элементами, и элементы в наборах не повторяются, то речь идет о перестановках без повторений.

Перестановка из n элементов — это упорядочение этих элементов, т.е. расположение n элементов в определенном порядке.

Число перестановок из n элементов есть n! При условии, что элементы не повторяются. Обозначается P_n .

 $P_n = n!$ — перестановки без повторений.

Справочно:

Для обозначения произведения $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 3 \cdot 2 \cdot 1$ используется символ n! (читается $\langle n \rangle$ факториал»). Для любого натурального

n: $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-2) \cdot (n-1) \cdot n$. По определению 0! = 1. Заметим, что 1! = 1; $2! = 1 \cdot 2$; $3! = 1 \cdot 2 \cdot 3$ и т.д.

$$P_5 = 5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120.$$

<u>Пример 1.</u> Определите, сколько четырехзначных чисел можно записать, используя цифры 1, 2, 3 и 4. Цифры в числе не повторяются.

Решение: Для записи четырехзначного числа используются все цифры набора. Количество чисел, удовлетворяющих условию задачи, равно $P_4 = 4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$.

<u>Пример 2</u>: На книжной полке содержится 12 книг по математике, 10 — по биологии и 8 по химии. Сколькими способами можно выбрать одну книгу с полки.

Решение: Множество A_1 книг по математике содержит $n_1 = 12$ элементов. Множество A_2 книг по биологии содержит $n_2 = 10$ элементов, A_3 книг по химии $n_3 = 8$ элементов. Поскольку можно выбрать книгу любой тематики (т.е. один элемент одного из множеств), то согласно принципу комбинаторного сложения, книгу с полки можно выбрать $n_1 + n_2 + n_3 = 12 + 10 + 8 = 20$ способами.

<u>Пример 3</u>. В трех пробирках, поставленных в штатив для пробирок, содержатся различные препараты C_1 , C_2 , C_3 . Сколькими способами можно расположить препараты в штативе?

Решение: Число P_3 перестановок из трех элементов равно 3!: $P_3 = 3! = 1 \cdot 2 \cdot 3 = 6$.

Действительно, возможные расположения (перестановки) таковы: C_1C_2 C_3 ; $C_1C_3C_2$; $C_2C_3C_1$; $C_2C_1C_3$; $C_3C_2C_1$ и $C_3C_1C_2$.

В случае, когда необходимо найти число перестановок из K элементов при условии, что первый элемент повторится n_1 раз, второй — n_2 раза, третий — n_3 и т.д. $(n_1 + n_2 + ... + n_k = n_s)$, речь идет о перестановках с повторениями.

Если два набора элементов различаются только порядком расположения элементов в наборе, но не самими элементами, и элементы в наборах могут повторяться, то речь идет о перестановках с повторениями.

Количество всех перестановок с повторениями из κ элементов, каждый из которых имеет $n_1, n_2 \dots n_{\kappa}$ входящий в каждую перестановку обозначают $P_{n1, n2, \dots, nk}$ и называют **перестановкой с повторениями.**

$$P_{n1, n2, \dots, nk} = \frac{(n_1 n_2 + \dots + n_k)!}{n_1! \bullet n_2! \bullet \dots \bullet n_k!}$$

<u>Пример 4</u>. Сколькими различными анаграммами можно зашифровать слово «математика»?

Решение: Каждая такая анаграмма будет содержать 10 знаков (в слове «математика» 10 букв), причем буква «м» в слове встречается 2 раза $(n_1 = 2)$, буква «а» повторяется трижды $(n_2 = 3)$, буква «т» повторяется дважды $(n_3 = 2)$, буквы «е», «и», «а» — по одному разу (соответственно, $n_4 = 1$, $n_5 = 1$, $n_6 = 1$). Всего $n_1 + n_2 + n_3 + n_4 + n_5 + n_6 = 2 + 3 + 2 + 1 + 1 + 1 = 10$ знаков. Если бы ни

одна из букв не повторялась, то количество апограмм было бы равным 10!, но в нашем случае это $(2+3+2+1+1+1)!/(2!\cdot3!\cdot2!\cdot1!\cdot1!\cdot1!) = 10!/(2\cdot6\cdot2\cdot1\cdot1\cdot1) = 10080$ вариантов записи анаграммы.

6.3 Размещения.

Если два набора элементов различаются и порядком расположения элементов в наборе и самими элементами, а элементы в наборах не могут повторяться, то речь идет о размещениях без повторений.

Размещение из n элементов по \kappa элементов — это выбор \kappa элементов из существующих n элементов с учетом порядка выбора.

Размещение из n элементов по κ элементов обозначается A_{n}^{k} и его можно вычислить как $\frac{n!}{(n-k)!}$. Таким образом $A_{n}^{k} = \frac{n!}{(n-k)!}$.

Если при выборе из n элементов κ элементов допускаются повторения (выбор одного и того же элемента несколько раз), и при этом учитывается порядок выбора элементов, то речь идет о размещениях c повторениями A_n^k .

Справедлива формула: $A_n^k = n^{\kappa}$.

<u>Пример 5</u>. Сколько различных четырехзначных чисел можно записать цифрами 1, 2, 3, 4, 5, 6, если цифры в числе не повторяются?

Решение: Для записи четырехзначного числа выбираем 4 цифры из имеющихся шести, учитывая порядок выбора. Это можно сделать $A_{_{\! 6}}{}^{^4}=$

$$\frac{6!}{(6-2)!} = \frac{6!}{4!} = 5 \cdot 6 = 30$$
 способами.

<u>Пример 6</u>. Кодовый замок открывается только в том случае, если правильно набран пятизначный код, состоящий из нулей и единиц. Угадать код удалось только на последней из предпринятых попыток. Сколько попыток предшествовало удачной?

Решение: Попыткой считается набор пятизначного кода, для чего нужно набрать пять цифр (из имеющегося количества в две цифры). Два кода считаются различными, если они отличаются как порядком следования элементов, так и самими элементами. Цифры при наборе могут повторяться. С учетом этого существует $A_2^5 = 2^5 = 32$ различных кода. До последней попытки была сделана 31 неудачная.

6.4 Сочетания.

Если два набора элементов различаются только самими элементами набора и элементы в наборах не могут повторяться, то речь идет о сочетаниях без повторений.

Сочетание из n элементов по \kappa элементов — это выбор κ элементов из существующих n элементов без учета порядка выбора.

Сочетание из *n* элементов по *к* элементов обозначается $C_{w}^{k} = \frac{n!}{k!(n-k)!}$.

<u>Пример 7</u>. В лабораторной клетке содержат 8 белых и 6 коричневых мышей. Сколькими способами можно выбрать пять мышей из клетки, если:

- а) Они могут быть любого цвета?
- б) Три из них должны быть белыми, а две коричневыми?
- в) Они должны быть одного цвета?

Решение: В первом случае цвет мыши не имеет значения, и нужно выбрать пять животных из имеющихся четырнадцати $C_4^{\ 5} = \frac{14!}{5!(14-5)!} = \frac{14!}{5! \cdot 9!} = \frac{10 \cdot 11 \cdot 12 \cdot 13 \cdot 14}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 2002$ способами.

Во втором случае существует $C_8^3 = 56$ способов выбора трех белых мышей и $C_6^2 = 15$ способов выбора коричневых мышей. Одновременно пять мышей нужного нам цвета можно выбрать $56 \cdot 15 = 840$ способами.

В третьем случае существует $C_8^5 = 56$ способов выбора пяти белых мышей и $C_6^5 = 6$ способов выбора пяти коричневых мышей. Так как можно выбрать пять коричневых или 5 белых мышей, существует 56 + 6 = 62 способа это сделать.

<u>Пример 8</u>. 16 человек требуется разбить на три группы по 4, 6 и 2 человека. Сколькими способами это можно сделать?

Решение: Первую группу, когда требуется выбрать 4 человек из 16 (порядок выбора значения не имеет), можно выбрать C_{16}^{-4} способами. Четыре человека считаются после этого выбранными, потому следующую группу в 6 человек можно выбирать уже из оставшихся восьми человек. Сделать это можно C_8^{-6} способами. Оставшиеся два человека образуют третью группу ($C_2^{-2} = \frac{2!}{2!(2-2)!} = \frac{1}{0!} = \frac{1}{1} = 1$). Поскольку один и тот же человек не может быть одновременно выбран в разные группы, воспользуемся принципом комбинаторного умножения для нахождения общего числа разбиений: $C_{16}^{-4} \cdot C_8^{-6} \cdot C_2^{-2} = \frac{16!}{4!(16-4)!} \cdot \frac{12!}{6!(12-6)!} \cdot 1 = \frac{16! \cdot 12!}{4! \cdot 12! \cdot 6! \cdot 6!} = \frac{16!}{4! \cdot (6!)^2}$

Самостоятельно практическому занятию по теме (четвертое практическое занятие): записать формулу сочетаний с повторениями и подобрать пример для ее иллюстрации (пример + решение).