Linear Block Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

July 28, 2014

Binary Block Codes

Binary Block Code

Let \mathbb{F}_2 be the set $\{0,1\}$.

Definition

An (n, k) binary block code is a subset of \mathbb{F}_2^n containing 2^k elements

Example

$$n = 3, k = 1, C = \{000, 111\}$$

Example

 $n \ge 2$, $C = \text{Set of vectors of even Hamming weight in } \mathbb{F}_2^n$,

$$k = n - 1$$

$$n = 3, k = 2, C = \{000, 011, 101, 110\}$$

This code is called the single parity check code

Encoding Binary Block Codes

The encoder maps k-bit information blocks to codewords.

Definition

An encoder for an (n, k) binary block code C is an injective function from \mathbb{F}_2^k to C

Example (3-Repetition Code) $0 \rightarrow 000, 1 \rightarrow 111$ or $1 \rightarrow 000, 0 \rightarrow 111$

Decoding Binary Block Codes

The decoder maps *n*-bit received blocks to codewords

Definition

A decoder for an (n, k) binary block code is a function from \mathbb{F}_2^n to C

```
Example (3-Repetition Code) n = 3, C = \{000, 111\} 000 \rightarrow 000 \quad 111 \rightarrow 111 001 \rightarrow 000 \quad 110 \rightarrow 111 010 \rightarrow 000 \quad 101 \rightarrow 111 100 \rightarrow 000 \quad 011 \rightarrow 111
```

Since encoding is injective, information bits can be recovered as $000 \rightarrow 0, 111 \rightarrow 1$

Optimal Decoder for Binary Block Codes

- Optimality criterion: Maximum probability of correct decision
- Let $\mathbf{x} \in C$ be the transmitted codeword
- Let $\mathbf{y} \in \mathbb{F}_2^n$ be the received vector
- Maximum a posteriori (MAP) decoder is optimal

$$\hat{\mathbf{x}}_{MAP} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{x} | \mathbf{y})$$

 If all codewords are equally likely to be transmitted, then maximum likelihood (ML) decoder is optimal

$$\hat{\mathbf{x}}_{ML} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{y} | \mathbf{x})$$

• Over a BSC with $p < \frac{1}{2}$, the minimum distance decoder is optimal if the codewords are equally likely

$$\hat{\mathbf{x}} = \operatorname{argmin}_{\mathbf{x} \in C} d(\mathbf{x}, \mathbf{y})$$

Error Correction Capability of Binary Block Codes

Definition

The minimum distance of a block code C is defined as

$$d_{min} = \min_{\mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y})$$

Example (3-Repetition Code)

 $C = \{000, 111\}, d_{min} = 3$

Example (Single Parity Check Code)

C = Set of vectors of even weight in \mathbb{F}_2^n , $d_{min} = 2$

Theorem

For a binary block code with minimum distance d_{min} , the minimum distance decoder can correct upto $\lfloor \frac{d_{min}-1}{2} \rfloor$ errors.

Complexity of Encoding and Decoding

Encoder

- Map from \mathbb{F}_2^k to C
- Worst case storage requirement = O(n2^k)

Decoder

- Map from \mathbb{F}_2^n to C
- $\hat{\mathbf{x}}_{ML} = \operatorname{argmax}_{\mathbf{x} \in C} \Pr(\mathbf{y} | \mathbf{x})$
- Worst case storage requirement = O(n2^k)
- Time complexity = $O(n2^k)$

Need more structure to reduce complexity

Binary Linear Block Codes

- Define the following operations on F₂
- Addition +
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 1 + 0 = 1
 - 1 + 1 = 0
- Multiplication ×
 - $0 \times 0 = 0$
 - $0 \times 1 = 0$
 - $1 \times 0 = 0$
 - 1 × 1 = 1
- F₂ is also represented as GF(2)

Fact

The set \mathbb{F}_2^n is a vector space over \mathbb{F}_2

Binary Linear Block Code

Definition

An (n, k) binary linear block code is a k-dimensional subspace of \mathbb{F}_2^n

Theorem

Let S be a nonempty subset of \mathbb{F}_2^n . Then S is a subspace of \mathbb{F}_2^n if $\mathbf{u} + \mathbf{v} \in S$ for any two \mathbf{u} and \mathbf{v} in S.

Example (3-Repetition Code)

$$C = \{000, 111\} \neq \phi$$

 $000 + 000 = 000, 000 + 111 = 111, 111 + 111 = 000$

Example (Single Parity Check Code)

 $C = \text{Set of vectors of even weight in } \mathbb{F}_2^n$

$$\mathsf{wt}(\mathbf{u} + \mathbf{v}) = \mathsf{wt}(\mathbf{u}) + \mathsf{wt}(\mathbf{v}) - 2\,\mathsf{wt}(\mathbf{u} \cap \mathbf{v})$$

Encoding Binary Linear Block Codes

Definition

A generator matrix for a k-dimensional binary linear block code C is a $k \times n$ matrix G whose rows form a basis for C.

Linear Block Code Encoder

Let \mathbf{u} be a 1 \times k binary vector of information bits. The corresponding codeword is

$$\mathbf{v} = \mathbf{u}\mathbf{G}$$

Example (3-Repetition Code)

$$\mathbf{G} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} & = & \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \\ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} & = & \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Encoding Binary Linear Block Codes

Example (Single Parity Check Code) n = 3, k = 2, $C = \{000, 011, 101, 110\}$

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} & = & \begin{bmatrix} 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} & = & \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} & = & \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} & = & \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Encoding Complexity of Binary Linear Block Codes

- Need to store G
- Storage requirement = O(nk) ≪ O(n2^k)
- Time complexity = O(nk)
- Complexity can be reduced further by imposing more structure in addition to linearity
- Decoding complexity? Next lecture

Questions? Takeaways?