Heuristic Bias Correction - Conditional Poisson Distribution

April 6, 2019

Contents

1	Description	1
2	Bias Function	5
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8
4	Ratio of bias to sd $4.1 \hat{\lambda} \dots \dots \dots$	27 27
5	Histograms	33
6	Boxplots	58

1 Description

The MLE is only meaningful for non-degenerate data. However, the bias correction does not take this fact properly into account.

The probability of obtaining data with $\sum_{k=1}^{n} N_k = N$ is given by

$$q_1 := \left(\sum_{j=1}^n Q_{\boldsymbol{e}_j}\right)^N,\tag{1}$$

where

$$Q_{\mathbf{e}_j} = \frac{e^{\lambda p_j} - 1}{e^{\lambda} - 1}. (2)$$

The probability that only one lineage is observed in the data is given by

$$\sum_{j=1}^{n} Q_{\boldsymbol{e}_{j}}^{N}.$$

In this case there are no signs of super-infections. Hence, the MLE is not uniquely defined, rather all admissible values of λ are equally likely given that $p_j = 1$ if only lineage A_j is observed. The probability of obtaining data with no sings of super-infection but at least two different lineages present, $\sum_{k=1}^{n} N_k = N$ and $N_k \neq N$ for all k = 1, 2, ..., n, is given by

$$q_2 := \left(\sum_{j=1}^n Q_{\mathbf{e}_j}\right)^N - \sum_{j=1}^n Q_{\mathbf{e}_j}^N.$$
 (3)

In this case the MLE would formally be $\hat{\lambda} = 0$. The probability of obtaining data with $N_k = N$ for at least one k is given by

$$q_3 := \frac{1}{(1 - e^{-\lambda})^N} \left(1 - \prod_{j=1}^n \left(1 - (1 - e^{-\lambda p_j})^N \right) \right) \tag{4}$$

in which case no MLE exists. In summary the probability of having degenerate data becomes

$$q := q_3 + q_2 \tag{5}$$

These facts are not properly addressed by the bias correction. A regular dataset \boldsymbol{X} , where \boldsymbol{X} is a 0-1 matrix of size $N \times n$, is a dataset where $N_k = \sum_{j=1}^N \boldsymbol{X}_{kj} \neq N$ for $k = 1, 2, \ldots n$ and $\sum_{k=1}^n N_k = \sum_{k=1}^n \sum_{j=1}^N \boldsymbol{X}_{kj} > N$. Let \mathcal{X} be the set of all regular datasets. By iterated expectation we have

$$\mathbb{E}\{\hat{\lambda}^{(\mathrm{bc})}\} = \mathbb{E}\{\mathbb{E}[\hat{\lambda}^{(\mathrm{bc})}|\mathbb{1}_{\mathcal{X}}(\boldsymbol{X})\}\}$$
(6a)

$$= \Pr\{\mathbb{1}_{\mathcal{X}}(\boldsymbol{X}) = 1\} \mathbb{E}\{\hat{\lambda}^{(\mathrm{bc})} | \mathbb{1}_{\mathcal{X}}(\boldsymbol{X}) = 1\} + \Pr\{\mathbb{1}_{\mathcal{X}}(\boldsymbol{X}) = 0\} \mathbb{E}\{\hat{\lambda}^{(\mathrm{bc})} | \mathbb{1}_{\mathcal{X}}(\boldsymbol{X}) = 0\}$$
 (6b)

$$\approx \Pr\{\mathbb{1}_{\mathcal{X}}(\boldsymbol{X}) = 1\} \mathbb{E}\{\hat{\lambda}^{(bc)} | \mathbb{1}_{\mathcal{X}}(\boldsymbol{X}) = 1\}$$
(6c)

where

$$\Pr\{\mathbb{1}_{\mathcal{X}}(\boldsymbol{X}) = 1\} = 1 - q \tag{7}$$

is the probability of regular data. Asymptotically equality holds in 6c. However, if N is small and λ moderate and the lineage frequencies are highly skewed, second term in 6c contributes substantially to the sum. In moderate settings, a better bias-corrected estimate would be

$$\tilde{\lambda}^{(bc)} = (1 - q)\hat{\lambda}^{(bc)} \tag{8}$$

where q_3 and q_2 are evaluated at MLE. If the bias function is non-constant, preferably the analytic bias expression should be evaluated at BCMLE (MacKinnon and Smith-1998). Consequently a better estimate for q is derived at the bias-corrected estimate $\hat{\lambda}^{(bc)}$.

Remark 1. A better bias-corrected estimate of MOI parameter is

$$\tilde{\lambda}^{(bc)} = (1 - q)\hat{\lambda}^{(bc)},\tag{9}$$

where q is the probability of having pathological data. Similarly, we can obtain better estimations for lineage frequencies

$$\hat{p}_k^{bc} = (1 - q)\hat{p}_k^{bc}. (10)$$

Let $r = \frac{1-q_3}{1-q_1}$ an alternative estimate is introduced in the next remark.

Remark 2. An alternative bias-corrected estimate is

$$\tilde{\lambda}^{(bc)} = \hat{\lambda} - \operatorname{bias}(\hat{\lambda})r,\tag{11}$$

where q_1 , q_3 and bias $\hat{\lambda}$ are evaluated at $\hat{\boldsymbol{\theta}}^{(bc)}$.

2 Bias Function

Figure 1: **Bias function**. The figure shows the behavior of average approximation of theoretical bias from S = 10,000 simulated datasets (solid lines) versus the theoretical bias at the true parameter (long-dashed lines). Different sample sizes are specified with different colors.

Figure 2: Bias function. Same as Figure 1

3 Alternative bias-corrected estimators

3.1 Bias in %

3.1.1 $\hat{\psi}$

Figure 3: **Bias of alternative estimators in**⁸%. The figure shows the bias in % of different estimators of $\psi = \frac{\lambda}{1-e^{-\lambda}}$ (average MOI). We have HBCMLE1 = $(\hat{\lambda} - \text{bias}(\hat{\lambda})|_{\lambda=\hat{\lambda}})(1-q_1-q_3+q_2)$ where q_1 , q_2 and q_3 are evaluated at MLE. Further, HBCMLE2 = $\hat{\lambda} - \text{bias}(\hat{\lambda})|_{\lambda=\hat{\lambda}} \frac{1-q_3}{1-q_1}$ and HBCMLE3 = $(\hat{\lambda} - \text{bias}(\hat{\lambda})|_{\lambda=\hat{\lambda}})(1-q_1-q_3+q_2)$ and HBCMLE4 = $\hat{\lambda}*(1-q_3-q_1+q_2) - \text{bias}(\hat{\lambda})|_{\lambda=\hat{\lambda}}$ and HBCMLE5 = $(\hat{\lambda} - \text{bias}(\hat{\lambda})|_{\lambda=\hat{\lambda}^{(\text{bc})}})*(1-q_3-q_1+q_2)$ where q_1 , q_2 and q_3 are evaluated at BCMLE. The transformation $\frac{\lambda}{1-e^{-\lambda}}$ is applied afterwards.

Figure 4: Same as Figure 3 but for different lineage-frequency distributions.

Figure 5: Same as Figure 3 but for different lineage-frequency distributions.

Figure 6: Bias of alternative estimators in %. Similar to Figure 3.

Figure 7: Same as Figure 3 but for different lineage-frequency distributions.

Figure 8: Same as Figure 3 but for different lineage-frequency distributions.

3.2 CV in percent

Figure 9: CV of alternative estimators in %. Same as Figure ?? but for CV

4 Ratio of bias to sd

4.1 $\hat{\lambda}$

Figure 21: Ratio of MLE to BCMLE. The figure shows ratio of MLE to BCMLE. Different colors correspond to different ratios. The dotted and dashed lines correspond to true q 5 and r 2, respectively.

Figure 22: Same as Figure 21 but for different lineage-frequency distributions.

Figure 23: Same as Figure 21 but for different lineage-frequency distributions.

Figure 24: Ratio of alternative estimators to BCMLE. Similar to Figure 21

Figure 25: Same as Figure 21 but for different lineage-frequency distributions.

Figure 26: Same as Figure 21 but for different lineage-frequency distributions.

5 Histograms

Figure 27: **Histograms**. The figure shows histograms of 10,000 estimations of ψ for a specific sample size N and true ψ . Each plot corresponds to a different estimator.

Figure 28: Same as Figure 27.

Figure 29: Same as Figure 27.

Figure 30: Same as Figure 27.

Figure 31: Same as Figure 27.

Figure 32: Same as Figure 27.

Figure 33: Same as Figure 27.

Figure 34: Same as Figure 27.

Figure 35: Same as Figure 27.

Figure 36: Same as Figure 27.

Figure 37: Same as Figure 27.

Figure 38: Same as Figure 27.

Figure 39: Same as Figure 27.

Figure 40: Same as Figure 27.

Figure 41: Same as Figure 27.

Figure 42: Same as Figure 27.

Figure 43: Same as Figure 27.

Figure 44: Same as Figure 27.

Figure 45: Same as Figure 27.

Figure 46: Same as Figure 27.

Figure 47: Same as Figure 27.

Figure 48: Same as Figure 27.

Figure 49: Same as Figure 27.

Figure 50: Same as Figure 27.

6 Boxplots

Figure 51: **Boxplots**. The figure shows boxplots of 10,000 estimations of ψ for a specific sample size N. Colors correspond to different estimators. Each plot corresponds to a different value of true parameter ψ .

Figure 52: Same as Figure 51

Figure 53: Same as Figure 51

Figure 54: Same as Figure 51

Figure 55: Same as Figure 51 $\,$

Figure 56: Same as Figure 51

Figure 57: Same as Figure 51

Figure 58: Same as Figure 51

Figure 59: Same as Figure 51

Figure 60: Same as Figure 51

Figure 61: Same as Figure 51

Figure 62: Same as Figure 51