Odpowiedzi i schematy oceniania

Arkusz 3

Zadania zamknięte

Numer	Poprawna	Wskazówki do rozwiązania zadania	
zadania	odpowiedź		
1.	B.	5n+3 – ponieważ pierwszy składnik sumy jest podzielny przez 5 i	
		pozostaje reszta 3.	
2.	В.	$\frac{5^{18}5^3}{(5^2)^6} = \frac{5^{21}}{5^{12}} = 5^9$	
3.	В.	$\log_{3\sqrt{3}} \frac{1}{81} = x \Leftrightarrow \left(3\sqrt{3}\right)^x = \frac{1}{81} \Leftrightarrow 3^{\frac{3}{2}} = 3^{-4} \Leftrightarrow \frac{3}{2}x = -4 \Leftrightarrow x = -\frac{8}{3}$	
4.	C.	$ x > 7 \Leftrightarrow x < -7 \lor x > 7$	
5.	D.	$\frac{5}{x-3} = 2 \Rightarrow 5 = 2x - 6 \Rightarrow 2x = 11 \Rightarrow x = \frac{11}{2}$	
6.	A.	W = (x-3) - (-x+5) = x-3 + x-5 = 2x-8	
7.	C.	Pierwiastkami równania są liczby (-5) i 1. Liczba 4 nie jest	
		pierwiastkiem, gdyż nie należy do dziedziny równania.	
8.	C.	$x^2 < 9 \Leftrightarrow x \in (-3,3)$, zatem $-\sqrt{10} \notin (-3,3)$	
9.	D.	$W = x^{2}(x+5) - 9(x+5) = (x+5)(x^{2}-9) = (x+5)(x-3)(x+3)$	
10.	D.	$f(4) = 4^2 + 1 = 17$	
11.	C.	$1 - \sqrt{3}m < 0 \Rightarrow -\sqrt{3}m < -1 \Rightarrow m > \frac{1}{\sqrt{3}} \Rightarrow m > \frac{\sqrt{3}}{3}$	
12.	B.	Funkcja jest malejąca i przecina oś OY powyżej osi OX.	
13.	В.	Parabola ma ramiona skierowane w dół i $y_w = 4$.	
14.	A.	$x_W = 3 \notin \langle 4,5 \rangle$, zatem najmniejsza wartość to $f(4) = 0$	
		(ponieważ $f(5) = 3$).	
15.	B.	Proste $x = 0$, $y = -5$ to asymptoty wykresu, a prosta $y = -x - 5$ leży	
		w innych éwiartkach niż hiperbola.	
16.	A.	$2n+3 < 50 \Rightarrow n < \frac{47}{2} \land n \in N_+$, zatem są 23 ujemne wyrazy ciągu.	

17.	B.	$20^{\circ} + 20^{\circ} + r + 20^{\circ} + 2r = 180^{\circ} \Rightarrow r = 40^{\circ}$
18.	C.	$x^2 = \frac{1}{4} \cdot \frac{1}{2} \Rightarrow x = \sqrt{\frac{1}{8}} \Rightarrow x = \frac{\sqrt{2}}{4}$ (ujemny wynik odrzucamy, gdyż ciąg miał być rosnący).
19.	C.	$\frac{\sin \alpha}{\cos \alpha} = \frac{2}{5} \wedge \sin^2 \alpha + \cos^2 \alpha \Rightarrow \cos \alpha = \frac{5}{6}$
20.	В.	$ AE = \sqrt{a^2 + \frac{a^2}{4}} \Rightarrow AE = \frac{a\sqrt{5}}{2}, \sin \alpha = \frac{\frac{a}{2}}{\frac{a\sqrt{5}}{2}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$
21.	В.	$a\sqrt{2} = \sqrt{5} \Rightarrow a = \frac{\sqrt{10}}{2}$
22.	D.	$k^2 = \frac{98}{49} \Longrightarrow k = \sqrt{2}$
23.	D.	Środek okręgu $S = (-3,5)$, $f(-3) = 5$ dla czwartej funkcji liniowej.

Zadania otwarte

Numer	Modelowe etapy rozwiązywania zadania	Liczba
zadania		punktów
24.	Zapisanie liczby pod pierwiastkiem jako kwadratu różnicy:	1
	$\sqrt{\left(1-\sqrt{2}\right)^2}-\sqrt{2}.$	
	Wyciągnięcie pierwiastka i zredukowanie wyrazów podobnych,	1
	co wykazuje tezę zadania: $\left 1-\sqrt{2}\right -\sqrt{2}=\sqrt{2}-1-\sqrt{2}=-1$.	
25	Zapisanie równania z niewiadomą x – cena płaszcza przed	1
	obniżką: $x - 0.15x = 510$.	
	Rozwiązanie równania: $x = 600 \text{ (z} ^{2}\text{)}.$	1
26.	Wprowadzenie oznaczeń i wyznaczenie pól wymienionych kół:	1
	a, b, c – odpowiednio dwie przyprostokątne i	
	przeciwprostokątna,	
	$P_1 = \frac{1}{4}\pi a^2$, $P_2 = \frac{1}{4}\pi b^2$, $P_3 = \frac{1}{4}\pi c^2$.	

	Wykazanie tezy zadania: $P_1 + P_2 = \frac{1}{4}\pi(a^2 + b^2) = \frac{1}{4}\pi c^2 = P_3$.	1
27.	Wyznaczenie liczebności zbioru zdarzeń elementarnych:	1
	$\overset{=}{\Omega} = 90.89.$	
	Wyznaczenie liczebności zdarzeń elementarnych sprzyjających	1
	zdarzeniu $A: \bar{A} = 45.44$ i prawdopodobieństwa zdarzenia	
	$A:P(A)=\frac{22}{89}.$	
28.	Zapisanie warunku w postaci iloczynowej: $(x^2 - 2)(x - 7) \neq 0$.	1
	Rozwiązanie warunku i zapisanie odpowiedzi:	1
	$D = R \setminus \left\{ -\sqrt{2}, \sqrt{2}, 7 \right\}.$	
29.	Wyznaczenie pierwiastków trójmianu kwadratowego:	1
	$x_1 = -5, x_2 = 3.$	
	Rozwiązanie nierówności: $x \in (-\infty, -5) \cup (3.+\infty)$.	1
30.	Wyznaczenie pola trójkąta: $P = 30$.	1
	Wyznaczenie przeciwprostokątnej trójkąta: $c = 13$.	1
	Zapisanie równania z niewiadomą r – promień okręgu	1
	wpisanego w trójkąt: $\frac{1}{2}r(5+12+13) = 30$.	
	Rozwiązanie równania: $r = 2$.	1
31.	Wykonanie rysunku z oznaczeniami lub wprowadzenie	1
	precyzyjnych oznaczeń, np.:	
	a = 12, $h - krawędź$ podstawy i wysokość, prostopadłościanu	
	ABCD, A'B'C'D' – dolna i górna podstawa prostopadłościanu,	
	$\left \angle BCD \right = 60^{\circ}$,	
	eta – kąt nachylenia przekątnej ściany bocznej do płaszczyzny	
	podstawy prostopadłościanu.	
	Wyznaczenie przekątnej ściany bocznej: $12\sqrt{2}$.	1
	Wyznaczenie wysokości prostopadłościanu: $h = 12$.	1
	Obliczenie pola powierzchni całkowitej prostopadłościanu:	1
	$P_{c} = 864$.	

	Obliczenie kąta nachylenia przekątnej ściany bocznej do	1
	płaszczyzny podstawy prostopadłościanu: $\beta = 45^{\circ}$.	
32.	Wyznaczenie współrzędnych wierzchołka A równoległoboku:	1
	A = (2,-1).	
	Wyznaczenie współrzędnych wierzchołka przeciwległego:	1
	C = (8,5).	
	Wyznaczenie równania prostej, w której zawarty jest bok	2 (1 punkt za
	CB: y = 2x - 11.	współczynnik
		kierunkowy
		i 1 za pozostałe
		obliczenia)
	Wyznaczenie współrzędnych punktu $B: B = (6, 1)$.	2 (1 punkt za
		zapisanie
		odpowiedniego
		układu równań
		i 1 za
		rozwiązanie)