Zadání příkladů pro cvičení z předmětu Programování pro fyziky

Úloha č. 9 — 13. prosince 2013

Napište program, který obsahuje funkci teziste Usece (vyska, presnost), která pro zadanou výšku v kulové úseče 0 < v < 2 spočte metodou Monte Carlo vzdálenost těžiště homogenní kulové úseče od její podstavy a to se zadanou relativní přesností. Podstava má poloměr $r = \sqrt{1-(1-v)^2}$ neboť se předpokládá jednotkový poloměr koule.

Hlavní program by pak měl voláním funkce teziste Usece z
jistit a následně srozumitelně vypsat tuto hodnotu pro
 $v=0.25, 0.5, 0.75, 1~{\rm s}$ přesností 10^{-4} .

Princip metody

Těžiště počítáme podle vztahu

$$\vec{x}_T = \frac{\int \vec{x} \rho \, \mathrm{d}^3 \mathbf{x}}{\int \rho \, \mathrm{d}^3 \mathbf{x}} \approx \frac{1}{N} \sum_{i=1}^N \vec{x}_i,$$

kde x_i jsou náhodné polohy uvnitř uvažovaného objemu.

Obr. 1. Dvourozměrný náčrt náhodných bodů vyplňujících úseč o výšce v.

Protože předpokládáme $\rho=$ konst., je třeba náhodně rozložené body generovat tak, že vezmeme $\vec{x}_i=\{x,y,z\}$, kde x,y,z jsou náhodná čísla rovnoměrně pokrývající intervaly $x,y\in(-r,r)$ a $z\in(-1,-1+v)$, ovšem když

$$x^2 + y^2 + z^2 > 1,$$

tedy, když bod neležní uvnitř koule, hodnoty x, y, z zavrhneme a zkusíme novou trojici. Z hodnoty \vec{x}_T se pak spočte vzdálenost těžiště homogenní kulové úseče od její podstavy.

Potíž je, že funkce má jako parametr přesnost, nikoli N. Doporučuje se použít následující metodu:

Funkce tezisteUsece nechť tedy spočte pro dané N několik průměrů z_T náhodných poloh a pokud všechny padnou do intervalu o šířce ϵ , je pravděpodobné, že jejich aritmetický průměr bude mít absolutní chybu menší než ϵ . Jistota záleží na tom, kolik průměrů vezmeme. Pro deset, je pravděpodobnost, že průměr bude více jak ϵ od správné hodnoty cca 10^{-6} , pro čtyři až 10^{-2} . I to je pro řešení úlohy dostačující. Také lze hodnotu N odhadnout vzorečkem, ale ten by bylo potřeba nalézt.