Unsupervised ML

- Idea: Find patterns & trends in the data, without any prior knowledge
- These patterns may give us new insights into our data
- Main Types:
 - Clustering
 - Dimensionality reduction

Clustering

- Group datapoints into «close» groups
 - → Works on some measure of similarity / distance
- Applications:
 - Customer segmentation
 - Recomender Systems
 - Anomaly Detection

K-Means

Algorithm

- Initialize k random centroids
- 2. do{
 - re-assign all points to closest centroid
 - 2. Recalculate centroid
 - } while #reasignements > 0

K-Means

Dimensionality Reduction

 Idea: represent a highdimensional dataset in lower dimensions, while preserving local structures

• Uses:

- Data visualisation
- Denoising

Principal Component Analysis

For dimensionality reduction

- Idea: Find the principal components that best describe the variations in the data
 - Intuitive explanation of PC:
 Main axis of variance

 Implemented in sklearn.decomposition.PCA

Additional Information Unsupervised Learning

- kMeans: https://www.youtube.com/watch?v=mfqmoUN-Cuw
- PCA: <a href="https://www.youtube.com/watch?v="https:

Hands-On

Part 3

- Implement the K-Means Algorithm for a set of random 2D datapoints (use the 'sklearn make_blobs' function to get a random dataset with underlying clusters
 - 1. Visualize your results (Bonus: can you animate the graph to show each iteration of the algorithm?)
- 2. Think about how you could use your implementation to categorize a new (previously unknown) datapoint.
 - 1. Bonus: Implement your idea and visualize the result

