実験報告書:抵抗の測定

国立長野高専1年1組1番 電気電子 太郎

2025年7月7日

1 目的

本実験は、既知の抵抗および未知の抵抗の抵抗値をデジタルマルチメータを用いて測定し、抵抗器のカラーコードの読み方、および測定値の誤差について理解することを目的に実施した。

2 原理

2.1 抵抗カラーコード

炭素皮膜抵抗などの抵抗器には、抵抗値と誤差の許容範囲(公差)を示す色の帯が印刷されている。本実験で用いる4本帯の抵抗では、第1色帯と第2色帯が抵抗値の最初の2桁の数値を、第3色帯が乗数を、第4色帯が公差を表す。

2.2 測定誤差

測定値と真の値との差を誤差という。本報告書では、公称値を真の値とみなし、測定値とのずれを評価するために相対誤差を用いる。相対誤差は式 (1) で算出される。

相対誤差[%] =
$$\frac{|測定値 - 公称値|}{公称値} \times 100$$
 (1)

3 実験方法

まず、用意された 3 本の抵抗器について、カラーコードからそれぞれの公称値と公差を読み取った。次に、デジタルマルチメータを用いて各抵抗器の抵抗値を 3 回測定し、その測定値の平均を算出した。最後に、式 (1) を用いて、測定値の平均と公称値との間の相対誤差を計算した。

4 使用機器

本実験で使用した機器を、表1にまとめる。

表 1: 使用機器一覧

機器名	メーカー名	型番	備品番号	
デジタルマルチメータ	HIOKI	DT4256	E-123	
抵抗器セット	(不明)	(不明)	(なし)	

5 結果および考察

表 2 に、抵抗値の測定結果を示す。この表には、カラーコードから読み取った公称値、3 回の測定値とその平均値、そして公称値に対する相対誤差をまとめた。

表 2: 抵抗値の測定結果

抵抗器	公称值 [kΩ]	測定値 $1 [k\Omega]$	測定値 $2~[k\Omega]$	測定値 $3~[k\Omega]$	平均値 [kΩ]	相対誤差 [%]
R1	1.0	1.01	1.02	1.01	1.01	1.00
R2	4.7	4.68	4.69	4.68	4.68	0.43
R3	10	10.2	10.1	10.1	10.1	1.00

測定された3本の抵抗器の相対誤差は、すべて公称値の公差である $\pm 5\%$ の範囲内に収まっており、測定は正しく行われたと考えられる。測定値のばらつきは小さく、デジタルマルチメータによる測定が安定していることがわかる。誤差の主な原因としては、抵抗器自体の製造公差が考えられる。

6 報告事項

6.1 抵抗のカラーコードの読み方について説明する

抵抗のカラーコードは、抵抗値と公差を色の帯で示したものである。例えば、本実験で用いた抵抗 R1 のカラーコードは「茶黒赤金」であった。これはそれぞれ数値の 1、0、乗数 10^2 、公差 $\pm 5\%$ に対応する。したがって、抵抗値は $10\times 10^2=1000\Omega=1.0$ k Ω 、公差は $\pm 5\%$ と読み取ることができる。

6.2 なぜ測定を複数回行う必要があるのか考察する

測定には常に誤差が伴う可能性がある。測定を複数回行い、その平均値をとることで、偶然誤差の影響を 低減し、より信頼性の高い測定値を得ることができる。また、測定値のばらつき(標準偏差など)を評価す ることで、測定の安定性を評価することも可能となる。

参考文献

- [1] 国立長野高専 電気電子工学科, 実験報告書の書き方 詳細分析, 平成 30 年 12 月版.
- [2] アールエスコンポーネンツ, 抵抗器のカラーコード, https://jp.rs-online.com/web/generalDisplay.html?id=ideas-and-advice/resistor-colour-code-guide (2025 年 7 月 7 日閲覧).