Exercícios – Circuitos Digitais

Sistemas de numeração - conversão entre bases

- 1. Conversão do sistema binário para o sistema decimal.
- a) $(1010)_2 = (?)_{10}$
- b) $(10000000)_2 = (?)_{10}$
- c) $(111111111)_2 = (?)_{10}$
- d) $(100000001)_2 = (?)_{10}$
- e) (1101110111)₂ = (?)₁₀
- 2. Conversão do sistema hexadecimal para o sistema decimal.
- a) $(352)_{16} = (?)_{10}$
- b) $(40A)_{16} = (?)_{10}$
- c) $(100)_{16} = (?)_{10}$
- d) $(FF)_{16} = (?)_{10}$
- e) $(F4D0)_{16} = (?)_{10}$
- 3. Conversão do sistema decimal para o sistema binário.
- a) $(20)_{10} = (?)_2$
- b) $(40)_{10} = (?)_2$
- c) $(64)_{10} = (?)_2$
- d) $(493)_{10} = (?)_2$
- e) $(100)_{10} = (?)_2$
- 4. Conversão do sistema decimal para o sistema hexadecimal.
- a) $(512)_{10} = (?)_{16}$
- b) (513)₁₀ = (?)₁₆
- c) $(2533)_{10} = (?)_{16}$
- d) $(1000)_{10} = (?)_{16}$
- e) (6312)₁₀ = (?)₁₆
- 5. Conversão do sistema binário para o sistema hexadecimal.
- a) $(1001101110001110)_2 = (?)_{16}$
- b) (1111111011)₂ = (?)₁₆
- c) $(1010010100110001)_2 = (?)_{16}$
- d) $(100000001111111111000000011)_2 = (?)_{16}$
- e) (11110111001100010000)₂ = (?)₁₆

6. Conversão do sistema hexadecimal para o sistema binário.
a) (B9FA) ₁₆ = (?) ₂
b) (5D8F) ₁₆ = (?) ₂

d)
$$(221A5)_{16} = (?)_2$$

c) $(42E1)_{16} = (?)_2$

7. Conversão do sistema binário para o sistema decimal.

```
a) (11,11)<sub>2</sub>
```

8. Conversão do sistema decimal para o sistema binário.

c)
$$(0,7)_{10}$$

Operações Aritméticas no Sistema Binário

9. Efetue as operações:

10. Efetue as operações utilizando o complemento de 2:

11. Efetue em binário as operações, utilizando a aritmética do complemento de 2:

$$\begin{array}{ccc} AB9_{(16)} & DF1_{(16)} \\ + & \underline{35F_{(16)}} & -\underline{A1F_{(16)}} \end{array}$$

$$\begin{array}{c} 1AD3_{(16)} \\ + \quad \underline{DAF_{(16)}} \end{array}$$

$$\begin{array}{c} 1AF_{(16)} \\ - \underline{BF_{(16)}} \end{array}$$

$$\begin{array}{c} 2DE1_{(16)} \\ + \underline{AF5}_{(16)} \end{array}$$

12. Determine a expressão booleana característica e a tabela verdade dos circuitos:

c)

d)

12. Determine a tabela verdade das expressões e desenhe o circuito:

- a) $(A + B) \cdot (B + A)$
- b) $((A \oplus B) \oplus (A \oplus B)) \oplus (A \oplus B)$
- c) $(A.B.C) \oplus (A+B+C)$
- d) $\sim (\sim A + B) \cdot \sim B$
- e) (~ A . B) ⊕(A . ~B)

13. Determine a expressões booleana e desenhe o circuito a partir das tabelas verdade:

a)

١.	`
n	١
u	,

А	В	С	S
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Α	В	С	D	S
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0