PROGRAMACIÓN FUNCIONAL

Lambda Cálculo: Semántica por Equivalencias

- Métodos para dar semántica
- Semántica por equivalencias
- \bullet Equivalencia entre λ -expresiones
 - α-equivalencia
 - β-reducción y β-equivalencia
 - η-equivalencia

- → ¿Cómo dar semántica a un lenguaje de programación?
 - Semántica algebraica
 - dar ecuaciones que indiquen cuando dos términos tienen el mismo significado (i.e. cocientar el conjunto de strings)
 - Semántica denotacional
 - dar una función que a cada término le asigna su significado (¡debe fijarse el conjunto de llegada!)
 - Semántica operacional
 - dar reglas que digan cómo calcular el resultado de computar un término (reducción o transición)

- → ¿Cuál forma es más conveniente?
 - Depende del lenguaje
 - Puede usarse más de una
- → ¿Y cómo sabemos que están bien?
 - Debe demostrarse que distintas formas de dar significado son equivalentes
 - puede hacerse en general, o en cada caso
- ◆ Estos temas en general corresponden a una materia de semántica de lenguajes de programación

- ¿Y para el λ-cálculo?
 - Veremos
 - una semántica algebraica
 - relaciones de equivalencia entre λ -expresiones
 - en particular, α , β y η -equivalencia
 - una semántica operacional
 - \bullet relaciones de reducción entre λ -expresiones
 - en particular β-reducción y η-reducción
- ightharpoonup La semántica denotacional del λ -cálculo es muy compleja, y escapa al alcance del curso

- Renombre de variables
 - ◆ El nombre de una variable ligada no es importante
 - → ¿Cómo capturar esto con una relación de equivalencia?
 - → Dos términos deben ser equivalentes si difieren sólo en el nombre de variables ligadas (intuitivamente representan a la misma función, y por ello queremos que sean equivalentes)
 - Ejemplos:
 - $(\lambda x.x)$ es equivalente a $(\lambda y.y)$
 - $(\lambda xy.xy)$ es equivalente a $(\lambda zw.zw)$
 - pero (λx.xy) NO es equivalente a (λz.zw) (¿por qué?)

- ▶ Def: α-equivalencia (o α-conversión)
 - → Sea \approx_{α} la menor relación que satisface las siguientes reglas (*M*,*N*,*P*,*x*,*y* se asumen universalmente cuantificadas):
 - si y no ocurre libre en M, entonces $(\lambda x.M) \approx_{\alpha} (\lambda y.M\{x \leftarrow y\})$ (axioma α)
 - $M \approx_{\alpha} M$
 - si $M \approx_{\alpha} N$ y $N \approx_{\alpha} P$, entonces $M \approx_{\alpha} P$
 - si $M \approx_{\alpha} N$, entonces $N \approx_{\alpha} M$
 - si $M \approx_{\alpha} N$, entonces $MP \approx_{\alpha} NP$, $PM \approx_{\alpha} PN$ y $\lambda x.M \approx_{\alpha} \lambda x.N$

 \bullet Consideremos el conjunto $\Lambda_{/\approx_{\alpha}}$, definido por

$$\Lambda/_{\approx_{\alpha}} = \{ \{ N / N \in \Lambda \land N \approx_{\alpha} M \} \mid M \in \Lambda \}$$

- Los elementos son conjuntos de λ -términos α -equivalentes (llamados α -clases de equivalencia)
 - Ej: { λx.x, λy.y, λz.z, λw.w, ... }
- Todos los elementos de un conjunto significan lo mismo
- ◆ Por lo tanto, podemos usar cualquiera de ellos indistintamente (elegimos el representante que más nos conviene)
- Podemos denotar un conjunto mediante uno cualquiera de sus representantes

- De aquí en más, trabajaremos con elementos de $\Lambda_{/_{\approx_{\alpha}}}$ como si fueran elementos de Λ
 - O sea, permitiremos renombrar las variables ligadas siempre que sea conveniente
 - Simplifica las definiciones posteriores

Hipótesis de Barendregt:

todas las variables ligadas de un λ -término son distintas entre sí, y distintas de todas sus variables libres

→ ¡Esta hipótesis puede hacerse pues siempre existe un representante que cumple la condición!

- Aplicación funcional
 - La expresión que aplica una función a su argumento denota el mismo valor que el resultado
 - ¿Cómo expresamos esta propiedad con una equivalencia?
 - Dos términos deben ser equivalentes si se pueden cambiar aplicaciones por sus resultados
 - Ejemplos:
 - $(\lambda fx.fx)(\lambda z.z)y$ es equivalente a $(\lambda x.(\lambda z.z)x)y$
 - $(\lambda fx.fx)(\lambda z.z)y$ es equivalente a $(\lambda z.z)y$
 - (λw.w)y es equivalente a y

- Def: β-equivalencia (o β-conversión)
 - ◆ Sea ≈_β la menor relación que satisface las siguientes reglas (M,N,P,x) se asumen universalmente cuantificadas):
 - $(\lambda x.M)N \approx_{\beta} M\{x \leftarrow N\}$ (axioma β)
 - $M \approx_{\beta} M$
 - si $M \approx_{\beta} N$ y $N \approx_{\beta} P$, entonces $M \approx_{\beta} P$
 - si $M \approx_{\beta} N$, entonces $N \approx_{\beta} M$
 - si $M \approx_{\beta} N$, entonces $MP \approx_{\beta} NP$, $PM \approx_{\beta} PN$ y $\lambda x.M \approx_{\beta} \lambda x.N$

- Observaciones
 - Los términos M, N, etc. utilizados en la definición son α clases de equivalencias
 (o equivalentemente, se puede usar la hipótesis de Barendregt)
 - ◆ La primer regla hace que una aplicación de función y su resultado sean equivalentes
 - La sustitución se utiliza para modelar el cambio de un parámetro formal por uno real
- ◆ Ejemplos:
 - → g(gz) \approx_{β} (λ f. λ x.f(fx))(λ y.gy)z \approx_{β} (λ h.h(hz))g
 - $(\lambda x.xx)(\lambda z.z) \approx_{\beta} (\lambda z.z)(\lambda w.w) \approx_{\beta} (\lambda y.y)$

• Consideremos el conjunto $\Lambda_{/_{\approx_{\alpha}\approx_{\beta}}}$, definido por

$$\Lambda/_{\approx_{\alpha}\approx_{\beta}} = \{ \cup \{ \mathcal{P} \mid \mathcal{P} \in \Lambda/_{\approx_{\alpha}} \land \mathcal{P} \approx_{\beta} \mathcal{M} \} \mid \mathcal{M} \in \Lambda/_{\approx_{\alpha}} \}$$

- Los elementos son conjuntos de λ -términos $\alpha\beta$ -equivalentes (llamados $\alpha\beta$ -clases de equivalencia)
 - Ej: { $\lambda x.x$, $(\lambda y.y)(\lambda z.z)$, $(\lambda wx.wx)(\lambda z.z)(\lambda u.u)$, ... }
- → Todos los elementos de un conjunto significan lo mismo
- → Podemos elegir el representante que más nos conviene
- Pero, no todos los elementos son iguales en su forma... ¿cuál nos convendrá utilizar?

- De manera equivalente
 - definir una relación $\approx_{\alpha\beta}$ y el conjunto $\Lambda_{\approx_{\alpha\beta}}$
 - luego mostrar que $\Lambda_{\approx_{\alpha\beta}} = \Lambda_{\approx_{\alpha}\approx_{\beta}}$
- ¿Alcanza $\Lambda_{\approx_{\alpha\beta}}$ para dar significado a Λ ?
 - O sea, ¿cada elemento de $\Lambda_{\approx_{\alpha\beta}}$, representa a una función diferente?
 - No. Por ejemplo ($\lambda x.fx$) no es $\alpha\beta$ -equivalente a f
 - → ¡sin embargo, para todo M, $((\lambda x.fx)M) \approx_{\alpha\beta} (fM)!$

- Extensionalidad
 - Queremos que dos funciones sean iguales si y sólo si dan el mismo resultado al ser aplicadas al mismo valor
 - ¿Cómo expresamos esta propiedad con una equivalencia?
 - ▶ Dos términos deben ser equivalentes si pueden cambiar un término M por uno de la forma $(\lambda x.Mx)$ (siempre que x no ocurra libre en M)
 - Ejemplos:
 - $(\lambda x.fx)$ es equivalente a f
 - $(\lambda z.(\lambda y.y)z)$ es equivalente a $(\lambda y.y)$
 - $(\lambda w.(\lambda y.wy))$ es equivalente a $(\lambda w.w)$

- ▶ Def: η-equivalencia (o η-conversión)
 - → Sea \approx_{η} la menor relación que satisface las siguientes reglas (*M*,*N*,*P*,*x* se asumen universalmente cuantificadas):
 - si x no ocurre libre en M, entonces $(\lambda x.Mx) \approx_{\eta} M$ (axioma η)
 - $M \approx_{\eta} M$
 - si $M \approx_{\eta} N y N \approx_{\eta} P$, entonces $M \approx_{\eta} P$
 - si $M \approx_{\eta} N$, entonces $N \approx_{\eta} M$
 - si $M \approx_{\eta} N$, entonces $MP \approx_{\eta} NP$, $PM \approx_{\eta} PN$ y $\lambda x.M \approx_{\eta} \lambda x.N$

- ◆ En realidad
 - definir una relación $\approx_{\alpha\beta\eta}$ y el conjunto $\Lambda_{\approx_{\alpha\beta\eta}}$
- ¿Alcanza $\Lambda_{\approx_{\alpha\beta\eta}}$ para dar significado a Λ ?
 - O sea, ¿cada elemento de $\Lambda_{\approx_{\alpha\beta\eta}}$, representa a una función diferente?
 - No. Sólo funciona para los términos definidos (o sea, cuya computación termina)
 - ◆ Para los otros, hay que hacer algunas definiciones extras, y juntar todos los que no terminan

Resumen

- Las semántica de lenguajes de programación es un tema muy importante
- Existen diversos métodos para dar semántica
- El más usado en λ-cálculo es cocientar las expresiones mediante *equivalencias* adecuadas
- ◆ Estas equivalencias son 3:
 - α-equivalencia: modela el renombre de variables
 - β-equivalencia: modela la reducción
 - η-equivalencia: modela la extensionalidad