CP2K/QUICKSTEP: Accuracy and Efficiency

Basis sets and Pseudopotentials

Matthias Krack

Paul Scherrer Institute

1st CP2K tutorial: enabling the power of imagination in MD simulations CECAM / ETHZ, February 9–13, 2009

ocal part:

$$V_{\text{loc}}^{\text{PP}}(r) = -\frac{Z_{\text{ion}}}{r} \operatorname{erf}\left(\alpha^{\text{PP}}r\right) \\ + \sum_{i=1}^{4} C_{i}^{\text{PP}}\left(\sqrt{2}\alpha^{\text{PP}}r\right)^{2i-2} \exp\left[-\left(\alpha^{\text{PP}}r\right)^{2}\right]$$
 with $\alpha^{\text{PP}} = \frac{1}{\sqrt{2} R^{\text{PP}}}$

Goedecker-Teter-Hutter (GTH) pseudopotentials

Goedecker-Teter-Hutter (GTH) pseudopotentials

ocal part:

$$\begin{array}{lcl} V_{\text{loc}}^{\text{PP}}(r) & = & -\frac{Z_{\text{ion}}}{r} \operatorname{erf}\left(\alpha^{\text{PP}}r\right) \\ & & + \sum_{i=1}^{4} \frac{C_{i}^{\text{PP}}}{r} \left(\sqrt{2}\alpha^{\text{PP}}r\right)^{2i-2} \exp\left[-\left(\alpha^{\text{PP}}r\right)^{2}\right] \end{array}$$
 with $\alpha^{\text{PP}} = \frac{1}{\sqrt{2}r^{\text{PP}}}$

Goedecker-Teter-Hutter (GTH) pseudopotentials

Non-local part:

$$V_{\mathsf{nl}}^{\mathsf{PP}}(\boldsymbol{r},\boldsymbol{r}') = \sum_{lm} \sum_{ij} \langle \boldsymbol{r} | \boldsymbol{\rho}_{i}^{lm} \rangle \, h_{ij}^{l} \langle \boldsymbol{\rho}_{j}^{lm} | \boldsymbol{r}' \rangle$$

with the Gaussian-type projectors

$$\langle \mathbf{r} \mid p_i^{lm} \rangle = N_i^l Y^{lm}(\hat{r}) r^{l+2i-2} \exp \left[-\frac{1}{2} \left(\frac{r}{r_l} \right)^2 \right]$$

Goedecker-Teter-Hutter (GTH) pseudopotentials

Non-local part:

$$V_{\mathsf{nl}}^{\mathsf{PP}}(\boldsymbol{r}, \boldsymbol{r}') = \sum_{lm} \sum_{ij} \langle \boldsymbol{r} | \boldsymbol{p}_{i}^{lm} \rangle \frac{\boldsymbol{h}_{ij}^{l}}{\boldsymbol{h}_{ij}^{l}} \langle \boldsymbol{p}_{j}^{lm} | \boldsymbol{r}' \rangle$$

with the Gaussian-type projectors

$$\langle \mathbf{r} \mid p_i^{lm} \rangle = N_i^l Y^{lm}(\hat{r}) r^{l+2i-2} \exp \left[-\frac{1}{2} \left(\frac{r}{r_l} \right)^2 \right]$$

GTH pseudopotential parameters

GTH pseudopotential database

- LDA (PADE): H-Rn
- PBE: H–Rn (except Lanthanides and Actinides)
- BLYP: H–Kr plus a few selected
- BP: H–Kr
- HCTH/n: only for a few first-row elements

GTH pseudopotential generation protocol

- Checkout pseudopotential database: cvs co potentials
- Read potentials/Goedecker/atom/README
- Compile all-electron atom code:
 - cd potentials/Goedecker/atom
 - g95 -02 atom.f hcth.f90 -o atom.x
- Generate atomic all-electron reference wavefunctions: atom.x
- Read potentials/Goedecker/pseudo/v2.2/README
- Compile GTH pseudopotential fitting code:
 - cd /potentials/Goedecker/pseudo/v2.2
 - make
- Perform pseudopotential fit: pseudo.x -orth -c100 -n600
- Check pseudopotential fit: gnuplot pswf.gnu

Generate atomic all-electron reference

Example: atom.dat input file for Oxygen

tutorial	0			
	PBE			
	relati	visti	LC	
	20	.00	10.00	100.00
			1.38	2.75
	1	9		
	2	0	2.00	0.00
	3	0	0.00	0.00
	4	0	0.00	0.00
	2	1	4.00	0.00
	3	1	0.00	0.00
	1	1.	0 00	0 00

rmax, aa, bb rcov, rprb core, valence orb.

• Copy atom.ae to ... /psp_pbe/

0.00 0.00

0.00

0.00

0.00

Perform pseudopotential fitting w.r.t. AE reference

• Select fitting parameters in the file FITPAR:

```
Fit Parameter
t t t f f rloc,gpot(1,..,4)

1 lmax
t t f f f f f rl(1),h11,h12,h22,h13,h23,h33 (1=0)
t t f f f f f rl(2),h11,h12,h22,h13,h23,h33 (1=1)
f f f f f f f rl(3),h11,h12,h22,h13,h23,h33 (1=2)
f f f f f f f rl(4),h11,h12,h22,h13,h23,h33 (1=3)
```

Define weights in the file weights.par:

```
Initial weight-guess from atomic-program
```

```
.1E+03
          weight_psir0
        eigval
                        dchrq
                              ddchrq
    SO
                chrq
                                      res
                                             rnode
0 0.50
        1.0e2
                1.0e2
                        0.0e0
                               0.0e0
                                      1.0e0
                                             1.0e0
0 0.50 1.0e0
               1.0e0
                        0.0e0
                              0.0e0
                                      0.0e0
                                             0.0e0
0 0.50
       0.0e0
                0.0e0
                        0.0e0
                              0.0e0
                                      0.0e0
                                             0.0e0
1 0.50
      1.0e1
                1.0e1
                        0.0e0
                              0.0e0
                                      1.0e0
                                             1.0e0
1 0.50
        1.0e1
                1.0e0
                        0.0e0
                              0.0e0
                                      1.0e0
                                             1.0e0
```


Gaussian basis sets

QUICKSTEP	Pople notation	all-electron (Gaussian 03)
SZV	4G	STO-3G
DZV	41G	6-31G
DZVP	41G*	6-31G*
TZVP	511G*	6-311G*
TZV2P	511G(2d,2p)	6-311G(2df,2pd)
QZV3P	6111G(3d,3p)	6-311G(3df,2pd)

QUICKSTEP can handle efficiently

- Large Gaussian basis sets
- High angular momentum quantum numbers

Gaussian basis sets

Nomenclature

single-zeta valence, i.e. 1 contracted function per orbital SZV:

DZV: double-zeta valence, i.e. 2 contracted functions per orbital

DZVP: double-zeta valence, i.e. 2 contracted functions per orbital plus 1 set of polarization functions with $I = I_{max} + 1$

TZV2P: triple-zeta valence, i.e. 3 contracted functions per orbital plus 2 sets of polarization functions with $l > l_{\text{max}}$

QZV3P: quadruple-zeta valence, i.e. 4 contracted functions per orbital plus 3 sets of polarization functions with $l > l_{\text{max}}$

Accuracy of QUICKSTEP

Structure optimization of small molecules

Functional: Local density approximation (LDA)

- Test set of 39 molecules: H₂, Li₂, LiH, BH₃, CH₄, C₂H₂, C₂H₄, C₂H₆, N₂, NH₃, HCN, H₂O, H₂O₂, CO, CO₂, CH₃OH, N₂O, F₂, HF, LiF, CH₃F, OF₂, AlH, SiH₄, SiO, P₂, PH₃, HCP, PN, S₃, H₂S, CS, CS₂, SO₂, COS, SF₆, HCl,
- 52 bond distances
- 18 bond angles

CH₃Cl, LiCl

compared to NUMOL* (basis set free LDA results)

Pseudopotentials: Goedecker, Teter, and Hutter (GTH)

NUMOL: R. M. Dickson and A. Becke, J. Chem. Phys. 99, 3898 (1993)

Comparison with NUMOL

 Δ_{max} : Maximum deviation

σ: Standard deviation

Basis set	Distan	ces [Å]	Angle	Angles [°]	
	Δ_{max}	σ	Δ_{max}	σ	
DZVP	0.107	0.027	6.4	1.6	
TZVP	0.040	0.013	8.5	2.1	
TZV2P	0.015	0.006	1.7	0.6	
QZV3P	0.011	0.004	0.7	0.3	

- Treatment of the core electrons

Comparison with NUMOL

 Δ_{max} : Maximum deviation

 σ : Standard deviation

Basis set	Distan	ces [Å]	Angle	Angles [°]	
	Δ_{max}	σ	Δ_{max}	σ	
DZVP	0.107	0.027	6.4	1.6	
TZVP	0.040	0.013	8.5	2.1	
TZV2P	0.015	0.006	1.7	0.6	
QZV3P	0.011	0.004	0.7	0.3	

- Different LDA implementation
- Treatment of the core electrons

Generate QS optimised Gaussian basis sets

- Checkout basis set database: cvs co basis_sets
- Compile optimiser code:
 - cd basis_sets/source
 - make
- Run optbas 0-q6 in working directory

Basis set optimization

Sample input file for oxygen

```
tutorial
```

```
&ATOM
# Optimisation parameters
&END

&BASIS
# PGF exponents for each angular momentum number 1
&END

&POTENTIAL
# GTH pseudopotential in CPMD format
&END
```

Basis set optimization

Sample input file for oxygen

```
RCOV
        1.379
 MOTA &
 NAME
        2.759
 RPRB
 PPOT
        1.0D-9
 OPTI
 ZVAL
        8
 ZEFF
 LMAX
 OCCU
 1 2
        0.2
 IXIM
        1.0D-14
 CONV
 ITER
        200
 IPPN
        100
XCFN
        PADE
&END
```

Basis set optimization

Sample input file for oxygen

```
tutorial
```

&BASTS

```
GAUS
 8.4855854223 2.5642200801 0.8065658147 0.2368483892
 8.4855854223 2.5642200801 0.8065658147 0.2368483892
& END
&POTENTIAL
  GTH pseudopotentials in CPMD format
&END
```

Oxygen basis set

DZVP-GTH-q6 DZVP-GTH

8.304386 0.151017

2.457948 -0.039320

0.759737 - 0.6971720.213639 -0.384113

2. 2.

1.000000 1.185000

0.000000 -0.0995680.000000 -0.3011420.000000 0.000000

0.000000 -0.4750860.000000 1.000000

-0.379878

1.000000

- Compact accurate basis sets
- Include smooth primitive Gaussian functions → reduces BSSE
- Polarisation functions are also optimised
- Especially suited for condensed phase systems or surfaces
- Suggestion: Try also MOLOPT basis sets
- Optimisation procedure is difficult and computationally expensive

Forces (liquid water, 32 H₂O)

Matthias Krack (Paul Scherrer Institute)

CP2K/QUICKSTEP: Accuracy and Efficiency CECAM/ETHZ - Feb 12, 2009

Forces (liquid water, 32 H₂O)

Matthias Krack (Paul Scherrer Institute)

Forces (liquid water, 32 H₂O)

Efficiency and scalability of QUICKSTEP

Benchmark systems

Functional: Local density approximation (LDA)

Pseudopotentials: Goedecker, Teter, and Hutter (GTH)

Basis set: TZV2P (40 basis function per water molecule)

Density cutoff: 280 Rydberg

System	Cell	Atoms	Orbitals	Plane waves (10 ⁶)
32 H ₂ O	9.9 Å	96	1280	1.3
64 H ₂ O	12.4 Å	192	2560	2.0
128 H ₂ O	15.6 Å	384	5120	4.1
256 H ₂ O	19.7 Å	768	10240	9.3
512 H ₂ O	24.9 Å	1536	20480	16.0
1024 H ₂ O	31.3 Å	3072	40960	32.8
2048 H ₂ O	39.5 Å	6144	81920	64.0

Efficiency of scalability of QUICKSTEP

Cray XT3 (palu, CSCS)

Efficiency of scalability of QUICKSTEP

IBM Power6 (vip, RZG) versus Cray XT3 (palu, CSCS)

!!! Thanks for attention !!!

??? Questions ???