## Homework 3

Due time: 18:30 on Oct. 28th, 2021

Turn in your homework in class or to tutorial classroom (1B110)

## Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.
- If needed, round the number to the nearest hundredths, i.e., rounding it to 2 decimal places.

12

1. For the circuit below, assume the operational amplifiers are both working in their linear mode, determine the gain  $v_0/v_i$  of the circuit using resistance  $R_1$  to  $R_6$ .





- 2. For the circuit below, assume the operational amplifiers are both working in their linear mode,
- (1) Calculate  $V_0$  in the op amp circuit.
- (2) Calculate  $i_{\theta}$  in the op amp circuit.



3. Find equivalent capacitance C<sub>ab</sub> and inductance L<sub>ab</sub> for the following two





4. For the circuit below

$$v(t) = 5e^{-50t}V, \quad t > 0$$

$$i(t) = 150e^{-50t} mA$$
,  $t > 0$ 

- (1) Find R and C in the circuit.
- (2) Calculate the energy dissipated on R during the time slot of  $0 \le t \le 0.1s$

| II) natural responce: 
$$2' 2'$$
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V_0 e^{-\frac{t}{2}} = 7 = \frac{t}{50} | (s) | v_0 = s(v)$ 
|  $V(t) = V(t) | v_0 = t |$ 



## 5. For the circuit below:

There is no energy stored in the capacitor in the circuit before t = 0s. When t = 0s, Switch 1 is closed. When  $t = 20\mu$ s, Switch 2 is closed. Find  $V_0(t)$  for  $t \ge 0$ .



$$7:RC=\frac{4 \times 10^{3} \times 5 \times 10^{-9}}{2 \times 10^{3} \times 5 \times 10^{-9}} = 2 \times 10^{-5} (g) 2$$

$$x + 20 \times 10^{3} \times 10^{3} \times 10^{3} = 2 \times 10^{-5} (g) 2$$

$$x + 20 \times 10^{3} \times 10^{3} \times 10^{3} = -10 (g) 2$$

$$x + 10 \times 10^{3} \times 10^{3} = -10 (g) = -10 + 10 = -\frac{1}{2} (g)$$

$$x + 10 \times 10^{3} \times 10^{3} = -10 + 10 = -\frac{1}{2} (g)$$

$$x + 10 \times 10^{3} \times 10^{3} = -10 + 10 = -10 + 10 = -10 (g)$$

$$x + 10 \times 10^{3} \times 10^{3} \times 10^{3} = -10 \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{3} = -10 \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{3} = -10 \times 10^{3} \times 10^{3}$$



6. For the circuit below. assume the operational amplifier is always working in its linear mode,  $V_C(0-)=5V$ ,  $R_1=10k\Omega$ ,  $R_2=500\Omega$ ,  $C=10\mu F$ 

$$V_{S}(t) = \begin{cases} 0, & t \le 0 \\ e^{-200t}, & t > 0 \end{cases}$$

Find output voltage of the Op Amp  $V_0(t)$  for t > 0.



## 7. For the circuit below:

The switch in the circuit has been in *position a* for a long time.

At t = 0s, it moves instantaneously to *position b*, where it remains for 5 s before moving instantaneously to *position c*.

Find the expressions for  $V_0(t)$  for  $t \ge 0$ .

