

Faculty of Engineering & Technology Electrical & Computer Engineering Department

Communication Lab - ENEE4113

Experiment 4: Frequency Modulation Prelab #3

Student Name: Maha Maher Mali

Student ID: 1200746

Instructor: Dr. Ashraf Al_Rimawi

Teacher Assistant: Eng. Mohammed Battat

Section: 4

Date: 7-8-2023

Contents

Software Prelab (Simulink MATLAB)	5
Extract the message signal m(t) from s(t)	5
Plot 5 cycle from Message signal m(t) and s(t)	6
Block Diagram	6
Message Signal	7
Modulated signal s(t)	8
Differentiate s(t) with respect to t and plot ds(t)/dt	10
By Hand Solution	10
Using Simulink	11
Apply ds(t)/dt to an ideal envelope detector	13
By Hand Solution	13
Extract message signal by using phase-locked loop (PLL)	14
Block Diagram	14
In time Domine	14
In frequency Domine	15
Extract the message signal by using the envelop detector	16
Block Diagram	16
In Time Domine	16
In frequency Domine	17

Table of Figures

Figure 1:Stepes to Extract the message signal m(t) from s(t)s(t)	5
Figure 2:Message Signal	6
Figure 3: FM Modulation Block Diagram	6
Figure 4: Message Signal in Time domine	7
Figure 5: Frequency Domine	7
Figure 6: Modulated signal In Time Domine	8
Figure 7: Modulated signal in frequency Domine	9
Figure 8: Differentiate s(t)	10
Figure 9: Block Diagram to Differentiate s(t)	
Figure 10: Differentiate s(t) in time domine	11
Figure 11: Differentiate s(t) in frequency domine	12
Figure 12: Apply ds(t)/dt to an ideal envelope detector	13
Figure 13:FM Demodulation by PLL Block Diagram	14
Figure 14: Demodulated signal in time domine	14
Figure 15: Demodulated signal in frequency domine	15
Figure 16::FM Demodulation by using the envelop detector Block Diagram	16
Figure 17: Demodulated signal in time domine	16
Figure 18: Demodulated signal in time domine	17

Software Prelab (Simulink MATLAB)

Extract the message signal m(t) from s(t)

Figure 1:Stepes to Extract the message signal m(t) from s(t)

The figure shows the calculation to find the message signal:

Figure 2:Message Signal

Plot 5 cycle from Message signal m(t) and s(t) Block Diagram

Figure 3: FM Modulation Block Diagram

Message Signal

Time Domine

Figure 4: Message Signal in Time domine

From this graph we notice that we got the m(t) that we calculate it by hand with amplitude 1 .

Frequency Domine

Figure 5: Frequency Domine

$$M(t) = 1coos(1000\pi t)$$

$$M(f) = \frac{1}{2}\delta(f - 500) + \frac{1}{2}\delta(f + 500)$$

The figure 5 show that we have two delta one at $500\,\mathrm{Hz}$, and another on - $500\,\mathrm{Hz}$, according the equation for m(f).

Modulated signal s(t)

Time Domine

Figure 6: Modulated signal In Time Domine

Frequency Domine

Figure 7: Modulated signal in frequency Domine

Differentiate s(t) with respect to t and plot ds(t)/dt By Hand Solution

Figure 8: Differentiate s(t)

The differentiation of function s(t) unveils a transition from a rapidly changing frequency modulation (FM) waveform to a slower amplitude modulation (AM) pattern. The original FM waveform, characterized by a 20,000 Hz carrier frequency and modulation, evolves into the

derivative waveform ds(t)/dt. This shift from FM to AM-like behavior is a result of differentiation's emphasis on higher frequencies and its impact on reshaping signal traits

Using Simulink Block Diagram

Figure 9: Block Diagram to Differentiate s(t)

Time domine

Figure 10: Differentiate s(t) in time domine

Frequency domine

Figure 11: Differentiate s(t) in frequency domine

Apply ds(t)/dt to an ideal envelope detector

By Hand Solution

Figure 12: Apply ds(t)/dt to an ideal envelope detector

Extract message signal by using phase-locked loop (PLL) Block Diagram

Figure 13:FM Demodulation by PLL Block Diagram

In time Domine

Figure 14: Demodulated signal in time domine

The figure 14 shows the amplitude of the demodulated signal has the same amplitude of message signal which is 1.

In frequency Domine

Figure 15: Demodulated signal in frequency domine

The figure show that the demodulated signal has the same frequency of message signal which is 500 Hz.

Extract the message signal by using the envelop detector Block Diagram

Figure 16::FM Demodulation by using the envelop detector Block Diagram

In Time Domine

Figure 17: Demodulated signal in time domine

In frequency Domine

Figure 18: Demodulated signal in time domine

The figure show that the demodulated signal has the same frequency of message signal which is 500 Hz.