.

COMPUTATIONS

206

204

FIG. 2

202

COMPUTATIONS

104

RESULTS 212

FIG. 4

$$X = [\underline{x}, \overline{x}] = \{x \in \Re^* | \underline{x} \le x \le \overline{x}]$$

$$Y = \left[\underline{\nu}, \overline{\nu} \right] = \left\{ y \in \Re^* | \underline{\nu} \le y \le \overline{\nu} \right\}$$

(1)
$$X + Y = \left[\sqrt{\underline{x} + \underline{y}}, \uparrow \overline{x} + \overline{y} \right]$$

(2)
$$X - Y = \left[\sqrt{\underline{x} - \overline{y}}, \uparrow \overline{x} - \underline{y} \right]$$

(3)
$$X \times Y = \left[min\left(\sqrt{\underline{x}} \times \underline{y}, \underline{x} \times \overline{y}, \overline{x} \times \underline{y}, \overline{x} \times \overline{y} \right), max\left(\sqrt{\underline{x}} \times \underline{y}, \underline{x} \times \overline{y}, \overline{x} \times \underline{y}, \overline{x} \times \underline{y} \right) \right]$$

(4)
$$X/Y = \left[min\left(\sqrt{x}/\underline{y}, \overline{x}/\overline{y}, \overline{x}/\overline{y}\right), max\left(\sqrt{x}/\underline{y}, \overline{x}/\overline{y}, \overline{x}/\overline{y}, \overline{x}/\overline{y}\right) \right], if 0 \notin Y$$

$$X/Y = \Re^*$$
, $if \ 0 \in Y$

FIG. 5

INTERVAL

REPRESENTATION

[empty]

$$[-\infty, +\infty]$$

$$\{-\infty, +\infty\}$$

$$[-\delta, b]$$
, $-fp_max \le b \le +fp_max$

$$[a, 0]$$
, $-fp_{max} \le a \le -fp_{min}$

$$[\epsilon, b]$$
, $+fp_min \le b \le +fp_max$

$$[a, -\epsilon]$$
, $-fp_{max} \le a \le -fp \ min$

$$[0, b]$$
, $+fp_min \le b \le +fp_max$

$$[a, +\delta]$$
, -fp_max $\leq a \leq +fp$ max

$$[-\infty, b]$$
, $-fp_{max} \le b \le +fp_{max}$

$$[a, +\infty]$$
, $-fp_{max} \le a \le +fp_{max}$

$$[-\infty, a] \cup [b, +\infty]$$

-fp $max \le a < b \le +fp \ max$

$$[NaN_{\varnothing}, NaN_{\varnothing}] \qquad (1)$$

$$[-inf, +inf]$$
 (2)

$$[+inf, -inf] \tag{3}$$

$$[-inf, B]$$
 (4)

$$[A, B] (5)$$

$$[A, +0] \tag{6}$$

$$[-0, +0]$$
 (7)

$$[+0, B] \tag{8}$$

$$[A, -0] \tag{9}$$

$$[-0, B] \tag{10}$$

$$[A, +inf] \tag{11}$$

$$[+inf, B] \tag{12}$$

$$[A, -inf] \tag{13}$$

$$[B,A] \tag{14}$$

FIG. 6