Lecture 3 (1.4-2.3)

Rui Li

September 10, 2018

1

Contents

1.4.3 Negation of Quantified statements

1.4.3 Negation of Quantified statements

Consider: "Everyone in this room is right handed" Which in symbols is $\forall x \in S, P(x)$

S = set of people in room $P(\mathbf{x}) \text{ is "x is right-handed"}$ The negation is "Someone in the room is not right-handed" $\exists x \in S, \neg P(x)$ Thus, $\neg(\forall x \in S, P(x)) = \exists x \in S, \neg P(x)$ Also since $\neg(\neg P) = P$ $\neg(\exists x \in S), P(x)) = \forall x \in S, \neg P(x)$

Negation of $x^2-x>=0$ for all real numbers x (false) is $x^2-x<0$ for some real numbers x (true) $\neg(\forall x\in\mathbb{R})$