Computed Tomography Reconstruction: Compressed Sensing Approach

Darshan Tank - 150020012, Sachin Goyal - 150020069, Saqib Azim - 150070031

Prof. Amit Sethi

Electrical Engineering Department Indian Institute of Technology, Bombay

November 25, 2018

Basics of CT

Aim of CT

Task of reconstructing a 2D image (object) from its 1D projections, or a 3D image (object) from its 2D projections

Mathematical Model for CT Projection data

Radon Transform of image f(x,y) is given by

$$R(f) = g(\rho, \theta) = \sum_{x=0}^{M-1} \sum_{x=0}^{N-1} f(x, y) \delta(x \cos \theta + y \sin \theta - \rho)$$
 (1)

Reconstruction using Filtered Back-Projection

Algorithms for Image Reconstruction from projections can be divided into two classes

- Analytical Method
- Algebraic Method (Iterative Approach)

Analytical Methods

- High Computational Speed or short computation time
- If Projection data is densely sampled
 ⇒ accurate reconstruction
- If Projection data sparsely sampled over angular range

 reconstruction images will have aliasing artifacts such as sharp streaks
- Examples are FBP method

Algebraic Methods

- can reconstruct images with relatively less projection data
- Longer Computational Time compared to Analytical Methods
- Examples are ART method

Aim of the project

Reduce Scanning Time and Radiation Dose without reducing image quality

1st Approach

Decrease exposure time at each projection \implies Lower SNR of projection data \implies Lower Reconstructed image quality

2nd Approach

Reduce the number of projections

CS-based algorithm may be used to reconstruct images from substantially reduced projection data.

Overview of CS

Image should have a sparse representation in known transform domain

$$f = \psi x \tag{2}$$

where $f \in R^{N \times 1}$ is sparse in the $\psi \in R^{N \times N}$ domain and $x \in R^{N \times 1}$ is its sparse representation

In our case, the sparse representation of f can be the gradient image ∇f

$$f = \psi \nabla f \tag{3}$$

Projection-data of image f are modeled by a discrete linear system

$$g = \phi f = \phi \psi x = \phi' x \tag{4}$$

where $g \in R^{M \times 1}$, $\phi \in R^{M \times N}$ and since $M < N \implies \textit{infinitelymanyxthatsatisfyg} = \phi^{'} x$

(ロ) (団) (団) (団) (団) (田)

Overview of CS

Image Reconstruction is aimed at finding the vector \mathbf{x} in transform domain

$$x = \operatorname{argmin} \|\tilde{x}\|_1 \quad \text{subject to} \quad \|g - \phi^{'} \tilde{x}\| < \epsilon$$
 (5)

Reconstruction Algorithm

Step 1 : Initialization of image f

$$f^{(0)} = 0 (6)$$

Step 2 : Algebraic Reconstruction Technique

$$f^{(k)} = f^{(k-1)} + \lambda \frac{g_i - \phi_i \cdot f^{(k-1)}}{\phi_i \cdot \phi_i} \phi_i$$
 (7)

where $\lambda \in R^+$. k = 1 to M

Step 3: Gradient Descent Iteration

Initialization of gradient descent image $\hat{f}^{(0)} = f^{(M)}$

Gradient Descent Iteration
$$\hat{f}^{(l)} = \hat{f}^{(l-1)} - \alpha \vec{\Delta}$$
 (8)

Finally after the iteration, $f^{(0)} = \hat{f}^{(end)}$ then go to STEP 1 until some stopping criteria

Figure: Original Image

Figure: Radon Transform

Figure: FBP Reconstruction

Figure: ART Reconstructed Image

Figure: original - fbp

Figure: original - art

Figure: Compressed Sensing Reconstruction

FBP	ART
RMSE: 29.2	RMSE: 21.31
SSIM: 0.3977	SSIM: 0.4887
PSNR: 18.82	PSNR: 21.56
UQI: 0.5771	UQI: 0.6436
SCC: 0.243	SCC: 0.2197

CS

RMSE: 20.38

Figure: Original Image

Figure: Radon Transform

Figure: FBP Reconstruction

Figure: ART Reconstructed Image

Figure: original - fbp

Figure: original - art

Figure: Compressed Sensing Reconstruction

Figure: original - cs

ART	
RMSE: 14.19	
SSIM: 0.4623	
PSNR: 25.09	
UQI: 0.4557	
SCC: 0.08446	
	RMSE: 14.19 SSIM: 0.4623 PSNR: 25.09 UQI: 0.4557

CS

RMSE: 14.08

Figure: Original Image

Figure: Radon Transform

Figure: FBP Reconstruction

Figure: ART Reconstructed Image

Figure: original - fbp

Figure: original - art

Figure: Compressed Sensing Reconstruction

FBP	ART	
RMSE: 42.76	RMSE: 32.1	
SSIM: 0.3756	SSIM: 0.4883	
PSNR: 15.51	PSNR: 18	
UQI: 0.5941	UQI: 0.6476	
SCC: 0.211	SCC: 0.2386	

CS

RMSE: 31.27

References

Xueli Li and Shuqian Luo

A compressed sensing-based iterative algorithm for CT reconstruction and its possible application to phase contrast imaging

Algebraic Reconstruction Technique - ART

Amit Sethi

EE 610 : Tomographic Reconstruction Slides

Ajit Rajwade

CS 754: Tomographic Reconstruction Slides

Ajit Rajwade

CS 754 : Compressive Sensing Theory

Thank You:)