Nociones teóricas

Para una distribución de masa ρ

- De la ley de Newton la fuerza gravitatoria ejercitada en el punto x es: $F(x) = G \int \frac{x'-x}{|x'-x|^3} \rho(x') d^3x$ y despues de hacer cálculos llegamos a $\nabla F(x) = -4\pi G \rho(x)$
- Definimos el potencial gravitatorio $\Phi(x) = -G \int \frac{\rho(x')}{|x'-x|} d^3x$. Observamos que $F(x) = -\nabla \Phi$ y después de reemplazar en la ecuación de antes se obtiene la ecuación de Poisson: $\nabla^2 \Phi = 4\pi G \rho$
- En coordenadas esféricas (r, θ, φ) con simetria esférica (las funciones solo dependen de r y no de la posición en la esfera de radio r: los angulos θ y φ), asi que las derivadas totales coinciden con las derivadas parciales $\frac{d\Phi(r)}{dr} = \frac{\partial\Phi(r)}{\partial r}; \nabla\Phi(r) = \frac{\partial\Phi(r)}{\partial r}$ y $\nabla^2\Phi(r) = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial\phi(r)}{\partial r})$ La ecuacion Poisson: $\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial\phi(r)}{\partial r}) = 4\pi G\rho(r) \implies r^2\frac{\partial\phi(r)}{\partial r} = 4\pi G\int r^2\rho(r)dr + K_1 \implies \frac{\partial\Phi(r)}{\partial r} = \frac{4\pi G}{r^2}\int r^2\rho(r)dr + \frac{K_1}{r^2} \implies \Phi(r) = 4\pi G\int \frac{1}{r^2}(\int r^2\rho(r)dr)dr + K_1\int \frac{1}{r^2}dr + K_2 = 4\pi G\int \frac{1}{r^2}(\int r^2\rho(r)dr)dr + \frac{K_1}{r} + K_2, K_1, K_2 \in \mathbb{R}(elsigno-conK_1)$
- Definimos la velocidad circular: la velocidad de una particula en una orbita circular de radio r: $v_c^2(r) = r \frac{\partial \Phi(r)}{\partial r} \implies v_c^2(r) = \frac{4\pi G}{r} \int r^2 \rho(r) dr + \frac{K}{r}, K \in \mathbb{R} \implies v_c(r) = (\frac{4\pi G}{r} \int r^2 \rho(r) dr + \frac{K}{r})^{\frac{1}{2}}, K \in \mathbb{R}$

La masa
$$M(r) = 4\pi \int r^2 \rho(r) dr + K, K \in \mathbb{R}$$

- Las constantes de integración se eligen de tal forma que verifiquen las condiciones de contorno: $\lim_{x\to+\infty} \Phi(x) = 0, v_c(0) = 0, M(0) = 0$
- En un sistema con simetria esférica: la proyección de una función f(r) en el plano y,z (a lo largo de la línea de visión OX)es la funcción: $F(s) = \int_{-\infty}^{\infty} f(r)dx$ donde s es la distancia desde el centro del circulo en el plano proyectado $(s^2 = y^2 + z^2)$

$$r^2 = x^2 + s^2$$
 y la simetría esférica $\implies F(s) = 2 |\int_0^\infty f(\sqrt{x^2 + s^2}) dx|$

Problema de la práctica

Hipótesis: $\rho(r) = \rho_c e^{-\frac{r}{r_0}}$

Determinar $\Phi(r)$, M(r), $M_p(r)$, $v_c(r)$

Para calcular estas funciones de forma numérica hay que establecer los límites de integración y las constantes

Miramos el gráfico de la función: $f(r) = r^2 \rho_c exp(-r/r0)$ observamos que f

Figura 1: $r^2 \rho_c e^{\frac{-r}{r_0}}$

es continua y f(0) = 0

$$\int r^2 e^{-Br} dr = \int_0^r x^2 e^{-Bx} dx$$

Miramos el gráfico de la función $f(r) = \frac{1}{r^2} \int_0^r \rho_c e^{-\frac{r}{r^0}}$ que no está definida en 0 pero es continua en $(0,\infty)$ y $\lim_{x\to 0} f(x) = 0$

Figura 2: $\frac{1}{r^2} \int_0^r x^2 \rho_c e^{\frac{-x}{r_0}} dx$

 $\Phi(r)=4\pi G\rho_c\int_\varepsilon^r\frac{1}{x^2}(\int_0^xa^2e^{-\frac{a}{r_0}}da)dx+K_2$ (elegimos $K_1=0$ y K_2 de tal manera que $\lim_{x\to+\infty}\Phi(x)=0,$ en práctica $K_2=-\Phi(R_{max}))$

 $v_c(r)=(\frac{4\pi G\rho_c}{r}\int_0^r x^2 e^{-\frac{x}{r_0}}dx)^{\frac{1}{2}}$ (la constante de integración es 0 porque $v_c(0)=0)$

 $M(r)=4\pi\rho_c\int_0^r x^2e^{-\frac{x}{r_0}}dx$ (la constante de integración es 0 porque M(0)=0)

La proyección de la distribución de densidad en el plano YOZ $D_p(s)=2\rho_c|\int_0^\infty e^{-\frac{\sqrt{s^2+x^2}}{r_0}}dx|$

Los gráficos se realizaron con un programa python (en el repositorio git: https://github.com/beevageeva/potencial) tomando las constantes de integración 0 y usando las expresiones iniciales(sin hacer la integración por partes). Las integraciones se calculan de forma numérica y observando los gráficos de las funciones que se integran estas son continuas y tienen el valor 0 en el punto 0 así que se pueden tomar los límites de integración 0 y r. Se muestran los gráficos para ρ_c en $\{0.5*10^5, 10^5, 1.5*10^5, 2.0*10^5\}$ y r_0 en $\{0.5*10^9, 10^9, 1.5*10^9, 2*10^9\}$. Todas las cantidades estan expresadas en las unidades SI: densidad kg/m3,

distancia m, potencial J/kg, densidad proyectada kg/m2, velocidad m/s y se consideró la constante gravitacional $G=6.6*10^{-11}m3/(kgs^2)$

Figura 3: Densidad

Figura 4: Potencial

Figura 5: Velocidad circular

Figura 6: Masa

Figura 7: Densidad proyectada

- $\rho(r) = Ae^{-Br} = \rho_c e^{-\frac{r}{r_0}}, A, B > 0, \rho_c = A, r_0 = \frac{1}{B}$ en un sistema con simetria esférica
- Integrando por partes 2 veces:
- $\Longrightarrow \int_{\varepsilon}^{r} \frac{1}{x^{2}} (\int_{0}^{x} y^{2} e^{-By} dy) dx = -\frac{1}{B} (-\frac{2}{B^{2}} \int_{\varepsilon}^{r} \frac{1}{x^{2}} dx + \frac{1}{B^{2}} \int_{\varepsilon}^{r} \frac{1}{x^{2}} e^{-Bx} dx + \frac{2}{B} \int_{\varepsilon}^{r} \frac{1}{x^{2}} e^{-Bx} dx + \int_{\varepsilon}^{r} e^{-Bx} dx) = \frac{1}{B^{2}} (\frac{2}{B} (\frac{1}{\varepsilon} \frac{1}{r}) + e^{-Br} \frac{1}{B} \int_{\varepsilon}^{r} \frac{1}{x^{2}} e^{-Bx} dx 2 \int_{\varepsilon}^{r} \frac{1}{x^{2}} e^{-Bx} dx)$
- $\bullet \implies \Phi(r) = \frac{4\pi GA}{B^2} \left(\frac{2}{B} \left(\frac{1}{\varepsilon} \frac{1}{r} \right) + e^{-Br} \frac{1}{B} \int_{\varepsilon}^{r} \frac{1}{x^2} e^{-Bx} dx 2 \int_{\varepsilon}^{r} \frac{1}{x} e^{-Bx} dx \right)$
- $M(r) = 4\pi A \int_0^r x^2 e^{-Bx} dx = -\frac{4\pi A}{B} \left(-\frac{2}{B^2} + \frac{2}{B^2} e^{-Br} + \frac{2}{B} r e^{-Br} + r^2 e^{-Br} \right)$
- $v_c(r) = \left(\frac{4\pi GA}{r} \int_0^r x^2 e^{-Bx} dx\right)^{\frac{1}{2}} = \left(-\frac{4\pi GA}{B} \left(\frac{2}{B^2 r} e^{-Br} + \frac{2}{B} e^{-Br} + r e^{-Br} \frac{2}{B^2 r}\right)\right)^{\frac{1}{2}}$
- Hay otro programa python mas general que tiene como entrada la función de densidad (que puede tener parámetros que se pueden variar durante la ejecución a través de un slider) y calcula el potencial, velocidad circular, masa y distribución proyectada de masa según el caso general, pero tiene la posibilidad de representar el gráfico de las funciones calculadas de modo analítico (ver readme en la misma carpeta)
- \bullet Para el potencial resolver la ecuación diferencial de segundo grado implica tener 2 constantes de integración, para la V_c y masa hay solo una, variando la segunda constante en el caso del potencial y la única constante para la masa y velocidad y distribución proyectada solo hace una traslación a los gráficos de las funciones(sumando la constante), pero la forma queda igual así que solo tiene sentido tener en cuenta variar K1 en el caso del potencial
- Hay un slider con cual se puede cambiar el rango del radius desde 10**1 hasta 10**30

• Se muestran los gráficos en el caso A = B = 1 ($\implies r_0 = \rho_c = 1$) y constantes de integración 0 para poder comprobarlos con los otros (donde hay 2 gráficos, el segundo está calculado con las fórmulas de la integración por partes: ver calc_exp.py)

Figura 8: Potencial

Figura 9: Velocidad circular

Figura 10: Masa

Figura 11: $Densidad\ proyectada$