COL 351: Analysis and Design of Algorithms

Lecture 35-36

Vertex Cover

Given: A graph G = (V, E) with n vertices.

Def: A subset $W \subseteq V$ such that for each edge $(a, b) \in E$, either a or b lies in W.

Decision Version:

Find if there is a vertex-cover of size $\leq k$.

Verifier((G, k), S)

- 1. If $|S| \ge k$:

 Return False
- 2. For each $e = (u, v) \in E$: If both u, v not in S: Return *False*
- 3. Return True

Dominating Set

Given: A graph G = (V, E) with n vertices.

Def: A subset $D \subseteq V$ such that for each $v \notin D$, a neighbour of v lies in set "D".

Decision Version:

Find if there is a dominating-set of size $\leq k$.

Verifier((G, k), S)

- 1. If $|S| \geq k$:
 - Return False
- 2. For each $v \in (V \setminus S)$:

 If $N(v) \cap S = \emptyset$:

 Return False
- 3. Return True

NP Class

 The class of ALL <u>decision</u> problems which have <u>Polynomial-time</u>
 Verifier.

P Class

 The class of ALL <u>decision</u> problems which have <u>Polynomial-time</u> <u>algorithm</u>.

Open Problem: As P = NP?

NP Class

A "Decision-problem" *X* is said to be in NP iff for every instance *I* of problem *X*:

• There is a polynomial time algorithm/verifier **A** with output {yes,no} satisfying

For any proposed **certificate** "S" of length $O(|I|^c)$, **A** runs in $O(|I|^d)$ time over (I, S) to check if S is a valid solution to I.

- If I is "YES"-instance, then there exists an "S" of length $O(|I|^c)$ such that A(I,S) = YES
- If I is "NO"-instance, then for all "S" of length $O(|I|^c)$ A(I, S) = NO

NP-Complete problem — Hardest problem in NP class

<u>Definition:</u> A problem X in NP class is **NP-Complete** if for every $A \in NP$, we have $A \leq_P X$

SAT (Circuit-Satisfiability problem)

Given: A DAG with nodes corresponding to AND, NOT, OR gates and *n* boolean inputs.

Problem: Is there an assignment of n inputs which gives output 1.

Vertex-Cover \leq_P **SAT**

Dominating-Set \leq_P **SAT**

Independent-Set \leq_P SAT

A set S is called Independent if there is no edge in G with both endpoints in S.

Cook Levin Theorem — SAT is NP-complete

AT is NP-complete high level intuition, actual proof is quite involved a not past of syllabors

Theorem 1: For any problem X in NP-class, $X \leq_P SAT$

Proof Sketch:

$\begin{tabular}{ll} \textbf{VertexCover-Verifier (} (G,k),S \textbf{)} \\ \end{tabular}$

- 1. If $|S| \ge k$:
 Return *False*
- 2. For each $e = (u, v) \in E$: If both u, v not in S: Return False
- 3. Return True

Algorithm A

Verifier (G, k), S

etc.

Re write algo steps without loops, jumps, Fn calls,

SAT instance

Note: This is

New algorithm A' (without for loops/jumps)

size = poly in input

3-SAT (3-Circuit-Satisfiability problem)

Given: A SAT which is an AND of clauses containing 3 literals.

(A clause is just **OR** of literals).

Problem: Is there an assignment of n inputs which gives output 1.

Example:

$$C = (x_1 \lor \bar{x}_2 \lor x_3) \land (\bar{x}_4 \lor \bar{x}_2 \lor x_1) \land (x_2 \lor \bar{x}_3 \lor x_1) \land (x_4 \lor \bar{x}_3 \lor x_1)$$

Theorem 1: For each problem X in NP we have: $X \leq_P SAT$.

Theorem 2: SAT \leq_P 3-SAT.

Theorem 2: SAT \leq_P 3SAT

Proof: Homework (Tutorial 11)

• Step 1: Push negations to literals by De-Morgan's Law:

• Step 2: Make transformation to get a CNF.

Step 3: <u>Transform CNF into 3-SAT</u> by introducing new variables.

NP-Complete problems

3-SAT ≤*^P* VC

• Graph corresponding to **3-SAT** instance: $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$

3-SAT instance ϕ n variables, m clauses

Vertex-cover instance G_{ϕ} 2n+3m vertices, and k=n+2m

Claim 1: If 3-SAT instance ϕ is satisfiable, then G_ϕ has a vertex cover of

size
$$k = n + 2m$$

Proof:

<u>Top Layer:</u> For $i \in [1, n]$ if $x_i = 1$, then choose x_i in vertex-cover, else choose $x_i = 1$ in vertex-cover.

Bottom Triangles: In each clause, ∃ at most two literals with "0" value, we put them in vertex-cover.

Claim 2: If G_{ϕ} has a vertex cover of size k=n+2m, then 3-SAT instance ϕ is satisfiable.

Proof: Set $x_i = 1$ iff x_i is in VC in top-layer.

A vertex cover of size k = n + 2m will satisfy:

- · Top Layer: For $i \in [1, n]$ exactly one of x_i and $\neg x_i$ is chosen in VC.
- <u>Bottom Triangles:</u> In each clause, exactly two literals must be chosen in VC. In a triangle, if a literal.

 x_j (or $\neg x_j$) is not in VC, then corresponding variable x_j (or $\neg x_j$) must be 1. This ensures satisfiability.

Some NP Complete Problems

