

Illustration of VaR backtesting

Risk Management in Banking HSE & LSE

Value At Risk

• Value at risk (VaR) is a statistic that quantifies the extent of possible financial losses over a specific time frame.

Advantages	Disadvantages
 It is a single easily interpreted number, expressed in % or \$. Can be compared across different types of assets. Due to popularity, VaR is often included and calculated in various financial software tools. 	 No standard protocol for the statistics used to determine the risk, rarely account for extreme or black swan events. Criticized for offering a false sense of security: most likely outcome isn't always the actual outcome.

Portfolio Construction

BlackRock (BLK)

		Asets			Retu	ırns	
Date	BLK	TAP	TSLA	BLK	TAP	TSLA	Portfolio
16.12.2021	870,92	42,53	308,97				
17.12.2021	863,38	42,28	310,86	-0,87%	-0,58%	0,61%	-0,19%
20.12.2021	847,99	41,00	299,98	-1,78%	-3,04%	-3,50%	-2,85%
21.12.2021	860,83	42,09	312,84	1,51%	2,67%	4,29%	2,97%
22.12.2021	861,46	42,21	336,29	0,07%	0,27%	7,49%	3,10%
23.12.2021	863,71	43,09	355,67	0,26%	2,08%	5,76%	3,01%
27.12.2021	871,88	43,17	364,65	0,95%	0,20%	2,52%	1,35%
28.12.2021	871,17	43,26	362,82	-0,08%	0,20%	-0,50%	-0,17%
29.12.2021	859,74	43,43	362,06	-1,31%	0,39%	-0,21%	-0,36%
30.12.2021	863,56	43,38	356,78	0,44%	-0,11%	-1,46%	-0,48%
31.12.2021	865,26	43,80	352,26	0,20%	0,98%	-1,27%	-0,15%
03.01.2022	861,64	44,75	399,93	-0,42%	2,16%	13,53%	5,93%
04.01.2022	866,83	46,21	383,20	0,60%	3,27%	-4,18%	-0,51%

Timeseries of prices and returns

$$r_{portfolio} = w_{BLK} \times r_{BLK} + w_{TAP} \times r_{TAP} + w_{TSLA} \times r_{TSLA}$$

Historical Method

Historical
$$VaR_{p\%} = |Quantile_{p\%}(r_1, r_2, \dots, r_n)|$$

CI	Hist VaR (%)	Hist VaR (\$)
90 %	2.39	2388.86
95 %	3.26	3256.59
97.5 %	4.27	4272.91
99 %	5.04	5040.18

Advantages	Disadvantages
 Reflects Real Market Conditions No Distributional Assumptions 	 No Forward-Looking Information Sensitive to Sample Size Assumes Stationarity Ignores Structural Changes No Confidence Intervals

Parametric & Cornish-Fisher Methods

Parametric VaR =
$$|\mu$$
 – Z-Score $\times \sigma|$

VCV			
Advantages	Disadvantages		
 Analytical and Efficient Useful for Normally Distributed Returns Provides Confidence Intervals 	 Normality Assumption Sensitive to Outliers Not Robust to Non- Normal Distributions Ignores Changes in Volatility 		

Modified (Cornish-Fisher) VaR = $|\mu$ Adjusted Z-Score $\times \sigma|$

Adjusted Z-Score = Z-Score + $\frac{1}{6}$ (Z-Score² – 1) × Skewness + $\frac{1}{24}$ (Z-Score³ – 3Z-Score) × Kurtosis – $\frac{1}{36}$ (Z-Score⁴ – 6Z-Score² + 3) × Skewness²

CF			
Advantages	Disadvantages		
 Adjustment for Non-Normality Improved Accuracy Tailored to Portfolio Characteristics 	 Sensitivity to Extreme Values Assumption of Stationarity Complexity 		

Monte Carlo Method

MC VaR = |Quantile(Portfolio Returns)|

Advantages	Disadvantages
 Flexibility Incorporation of Tail Risk Scenario Analysis Handling Non-Normal Distributions 	 Computational Intensity Data Requirements Potential for "Garbage In, Garbage Out"

Conditional Value At Risk

• The Conditional Value at Risk (CVaR), also known as Expected Shortfall (ES), is the expected value of losses exceeding the Value at Risk (VaR).

Kupiec & Standard Coverage Tests

• The Kupiec test is based on the binomial distribution, it assesses whether the observed number of exceptions falls within the expected range.

• Kupiec Test Statistic
$$= -2 \cdot \left(\ln \left(1 - p \right) + n_e \cdot \ln \left(\frac{1 - \alpha}{p} \right) \right)$$

• The Standard Coverage Test assesses the consistency between the actual and expected number of exceptions using a chi-squared statistic.

$$\chi^2 = \frac{(n_e - n \cdot p)^2}{n \cdot p \cdot (1 - p)}$$