Rachunek Prawdopodobieństwa 1R Lista zadań nr 6

- 1. Niech (X,Y) będzie 2-wymiarową zmienną losową o rozkładzie zadanym gęstością f(x,y)=C(x+y) dla $0 \le y \le x \le 1$ i f(x,y)=0 poza tym zbiorem. Znajdź wartość C. Znajdź rozkłady brzegowe. Czy zmienne losowe X i Y są niezależne?
- **2.** Zmienna losowa (X,Y) ma rozkład z gęstością $g(x,y) = C \cdot xy \cdot \mathbb{1}_{[0,1]^2}(x,y)$.
 - a) Wyznaczyć C.
 - b) Obliczyć $\mathbb{P}(X + Y \leq 1)$.
 - c) Wyznaczyć rozkład zmiennej losowej X/Y.
 - d) Czy zmienne X i Y są niezależne?
 - e) Czy X/Y i Y są niezależne?
- 3. Niech X i Y będą niezależnymi zmiennymi losowymi, których rozkład jest zadany gestością $2x \cdot \mathbf{1}_{[0,1]}$. Znaleźć prawdopodobieństwo, że a) X + Y < 1/2, b) XY < 1/2, c) |X Y| < 1/2, d) $X^2 + Y^2 \le 1/2$.
- **4.** Niech X_1, \ldots, X_n będą niezależnymi zmiennymi losowymi o rozkładzie wykładnicznym z parametrem 1. Znajdź rozkład $Y = \min_{1 \le i \le n} X_i$. Czy X_n i Y są niezależne?
- 5. Zmienne losowe X i Y są niezależne. Pokaż, że jeżeli X nie ma atomów, to $\mathbb{P}(X=Y)=0$.
- **6.** Zmienne X i Y są niezależne. X ma rozkład jednostajny na przedziale [0,1], a Y ma rozkład zadany przez $\mathbb{P}[Y=-1]=1/3$, $\mathbb{P}[Y=2]=2/3$.
 - a) Oblicz $\mathbb{P}[3X < Y]$.
 - b) Wyznacz rozkład zmiennej XY.
- 7. Pokaż, że zmienne losowe X_1,\ldots,X_n o gęstościach f_1,\ldots,f_n są niezależne wtedy i tylko wtedy, gdy zmienna $X=(X_1,\ldots,X_n)$ ma gęstość

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \dots f_n(x_n).$$

- 8. Z odcinka [0,1] losujemy niezależnie w sposób jednostajny liczby X_1, X_2, \ldots Uzasadnij, że z prawdopodobieństwem 1, ciąg $\{X_n\}$ jest gęsty w odcinku [0,1].
- 9. Zmienne losowe X i Y są niezależne i mają rozkłady wykładnicze z parametrami λ i μ odpowiednio. Znajdź rozkład zmiennej losowej X+Y.
- **10.** Zmienne losowe X i Y są niezależne i mają rozkład wykładniczy z parametrem 1. Udowodnić, że zmienne X/Y oraz X+Y są niezależne.
- **11.** Zmienne losowe $X_1,...,X_n$ są niezależne i mają rozkłady Poissona z parametrami λ_i . Pokaż, że $X_1+..+X_n$ ma rozkład Poissona z parametrem $\lambda_1+...+\lambda_n$.
- 12. Załóżmy, że X_1 i X_2 są niezależnymi zmiennymi losowymi o rozkładach odpowiednio $N(m_1, \sigma_1)$ i $N(m_2, \sigma_2)$. Oblicz rozkład zmiennej losowej $X_1 + X_2$.
- **13.** Niech $\{X_n\}_{n\in\mathbb{N}}$ będzie ciągiem niezależnych zmiennych losowych o rozkładzie N(0,1). Uzasadnij, że z prawdopodobieństwem 1 istnieje nieskończenie wiele indeksów n takich, że

$$|X_{2n} - X_{2n+1}| \le \frac{1}{n}.$$

- **14.** Niech $\{X_i\}_{i=1,\dots,5}$ będzie ciągiem niezależnych zmiennych losowych
 - a) Czy zmienne losowe $X_1 + X_2$ oraz $X_3 + X_4X_5$ są niezależne?
 - b) Czy zmienne losowe X_1 , X_1X_2 są niezależne?