Circuiti Elettrici

Capitolo 7 Circuiti del secondo ordine

Prof. Cesare Svelto

Circuiti del secondo ordine – Cap. 7

- 7.0 Introduzione
- 7.1 Circuiti RLC in evoluzione libera
 Analisi ed eq.diff. del 2° ordine omogenea
 Soluzioni nei 4 casi possibili (sovrasmorzato, a
 smorzamento critico, sottosmorzato, non smorzato)
- 7.2 Circuiti RLC con un generatore costante
- 7.3 Circuiti del 2° ordine: soluz.gen. e stabilità
- 7.4 Circuiti del secondo ordine autonomi Metodo sistematico per circ. 2° ord. autonomi
- 7.X Sommario

7.0 Introduzione

- Un circuito dinamico caratterizzato dalla presenza di due elementi dinamici (di solito 1 induttore e 1 condensatore oppure 2 induttori oppure 2 condensatori) e descritto da una eq. differenziale del secondo ordine è un circuito del secondo ordine
- La soluzione dei circuiti del secondo ordine è la combinazione lineare di due esponenziali con esponenti complessi coniugati. La parte immaginaria da luogo a una sinuoside
- Impareremo a ricavare la **risposta del circuito** senza generatori (risposta libera) o con generatori indipendenti (risposta forzata)

7.0 Introduzione

- In ogni circuito dinamico lineare (stabile) si può scomporre la risposta in una parte transitoria (transitorio) [in cui si ridistribuisce e consuma l'energia inizialmente accumulate negli elementi dinamici] e una parte permanente (regime) [imposta dai generatori]: sovrapposizione degli effetti
- Il comportamento di alcuni **sistemi dinamici lineari** (meccanici, termici, economici, ...) che coinvolgono due tipologie di energia può essere rappresentato come un circuito del secondo ordine, <u>"sistema di tipo "RLC"</u>, caratterizzato da una <u>risposta in transitorio</u> e una <u>risposta di regime</u> (o a transitorio esaurito) e da una potenziale condizione di risonanza

7.1 Circuiti RLC in evoluzione libera

 Consideriamo due circuiti elettrici con proprietà duali che saranno descritti dalla stessa equazione diff. del secondo ordine (coeff.cost. e omogenea):

RLC serie
$$\frac{\mathrm{d}^{2}x(t)}{\mathrm{d}t^{2}} + 2\alpha \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \omega_{0}^{2}x(t) = 0 \quad \text{RLC}$$
parallelo
$$x(t) = i_{\text{ser}}(t) = i_{\text{L}}(t) \text{ o}$$

$$x(t) = i_{\text{ser}}(t) = i(t) = i_{\text{L}}(t) \text{ o}$$

$$x(t) = v_{\text{par}}(t) = v(t) = v_{\text{C}}(t)$$

$$\alpha = R/2L$$

$$\alpha = 1/2T_{RL}$$

$$\alpha = 1/2T_{RC}$$

$$\alpha = 1/2T_{RC}$$

• Due parametri ω_0 [rad/s] pulsazione di risonanza e α [1/s] costante di smorzamento del circuito RLC

7.1 Circuiti RLC liberi (analisi)

Risolviamo i circuiti (KVL, KCL, ed eq. caratteristiche R, C, L)

$$Ri + L\frac{\mathrm{d}i}{\mathrm{d}t} + \left[v_{\mathrm{C}}(0) + \frac{1}{C}\int_{0}^{t}i(t')\mathrm{d}t'\right] = 0 \qquad \frac{v(t)}{R} + \left[i_{\mathrm{L}}(0) + \frac{1}{L}\int_{0}^{t}v(t')\mathrm{d}t'\right] + C\frac{\mathrm{d}v}{\mathrm{d}t} = 0$$

$$R\frac{\mathrm{d}i}{\mathrm{d}t} + L\frac{\mathrm{d}^2i}{\mathrm{d}t^2} + \frac{i}{C} = 0$$

$$\frac{\mathrm{d}^2 i}{\mathrm{d}t^2} + \frac{R}{L} \frac{\mathrm{d}i}{\mathrm{d}t} + \frac{1}{LC} i = 0$$

$$\omega_0^2 = \frac{1}{LC}$$

RLC parallelo
$$i_{R} \downarrow i_{L} \quad i_{C} \downarrow i_{C}$$

$$\frac{v(t)}{R} + \left[i_{L}(0) + \frac{1}{L} \int_{0}^{t} v(t') dt'\right] + C \frac{dv}{dt} = 0$$

$$\frac{1}{L} \frac{dv}{dt} + \frac{v}{L} \frac{d^{2}v}{dt} = 0$$

$$\frac{1}{R}\frac{\mathrm{d}v}{\mathrm{d}t} + \frac{v}{L} + C\frac{\mathrm{d}^2v}{\mathrm{d}t^2} = 0$$

$$\omega_0^2 = \frac{1}{LC} \qquad \frac{\mathrm{d}^2 v}{\mathrm{d}t^2} + \frac{1}{RC} \frac{\mathrm{d}v}{\mathrm{d}t} + \frac{1}{LC} v = 0$$

$$\alpha = \frac{R}{2L} = \frac{1}{2\tau_{\rm RL}}$$

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + 2\alpha \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \omega_0^2 x(t) = 0$$

$$\alpha = \frac{1}{2RC} = \frac{1}{2\tau_{RC}}$$

7.1 Circuiti RLC liberi (soluzioni)

Equazione differenziale del secondo ordine, lineare, a coefficienti costanti e omogena nell'incognita x(t) [var. stato]

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + 2\alpha \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \omega_0^2 x(t) = 0$$
 eq.diff. in forma standard

compaiono le derivate dell'incognita $x \rightarrow \text{eq.diff.}$ combinazione lineare dei termini \rightarrow lineare compare la derivata seconda \rightarrow 2° ordine coefficenti che non variano \rightarrow a coeff.cost. tutti i termini contengono l'incognita $x \rightarrow \text{omogenea}$ (non vi è un termine noto)

Equazione caratteristica $s^2 + 2\alpha s + \omega_0^2 = 0$

con due radici $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$ e 4 casi possibili:

1.
$$\alpha > \omega_0$$
 2. $\alpha = \omega_0$ 3. $\alpha < \omega_0$ 4. $\alpha = 0$ consideriamo per adesso $\alpha > 0$ (circ.stab. come con $R_{eq} > 0$ per circ. 1° ord.)

7.1 RLC sovrasmorzato

1. $\alpha > \omega_0 \rightarrow s_1$ e s_2 radici reali e distinte (entrambe negative)

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$\chi(t) = A_1 \cdot e^{s_1 t} + A_2 \cdot e^{s_2 t}$$
 risposta sovrasmorzata

Le due costanti A_1 e A_2 si ottengono dalle due condizioni iniziali x(0) e $\mathrm{d}x/\mathrm{d}t(0)$

x(t) è somma di due esponenziali decrescenti $(\tau_1=-1/s_1, \tau_2=-1/s_2)$ e il valore di regime (per $t\to\infty$) è nullo

possibili anche $A_1 < 0$ e $A_2 > 0$ $A_1 < 0$ e $A_2 < 0$ $A_1 > 0$ e $A_2 > 0$

al crescere di $\alpha \Rightarrow s_1 \rightarrow 0$ $(\tau_1 \rightarrow \infty)$ e $s_2 \rightarrow \infty$ $(\tau_2 \rightarrow 0)$ e dunque il primo esponenziale domina sul secondo, con un transitorio che si esaurisce in tempi molto lunghi

7.1 Circuito RLC con smorzamento critico

2. $\alpha = \omega_0 \rightarrow s_1$ e s_2 radici reali e concidenti $(s_{1,2} = -\alpha < 0)$

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$
 $\chi(t) = (A_1 t + A_2) \cdot e^{-\alpha t}$ risp. con smorzamento critico

Le due costanti A_1 e A_2 si ottengono dalle due condizioni iniziali x(0) e $\mathrm{d}x/\mathrm{d}t(0)$

Il valore iniziale è A_2 e il valore di regime è nullo

possibili anche $A_1 < 0$ e $A_2 < 0$ $A_1 < 0$ e $A_2 < 0$ $A_1 < 0$ e $A_2 < 0$

la risposta presenta un massimo (o un minimo) per $t_{\rm MAX/MIN}$ =1/ α - A_2/A_1 [se $t_{\rm MAX/MIN}$ ≤ 0 non vi è MAX/MIN] e poi tende asintoticamente a zero

7.1 RLC sottosmorzato

3. $\alpha < \omega_0 \rightarrow s_1$ e s_2 radici complesse e coniugate (Re $(s_{1,2}) < 0$)

$$\begin{split} s_{1,2} &= -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \\ s_1 &= -\alpha + j\sqrt{\omega_0^2 - \alpha^2} = -\alpha + j\beta \end{split} \qquad \qquad s_2 &= -\alpha - j\sqrt{\omega_0^2 - \alpha^2} = -\alpha - j\beta \end{split}$$

$$x(t) = [A_1 \cos(\beta t) + A_2 \sin(\beta t)] \cdot e^{-\alpha t}$$
risposta **sottosmorzata**

Le due costanti A_1 e A_2 si ottengono dalle due condizioni iniziali x(0) e $\mathrm{d}x/\mathrm{d}t(0)$

x(t) è somma di due funzioni sinusoidali moltiplicate per un esponenziale decrescente o equivalentemente

$$x(t) = A\cos(\beta t + \phi) \cdot e^{-\alpha t}$$
 risposta **sottosmorzata**

$$A = \sqrt{A_1^2 + A_2^2} \qquad \phi = -\tan^{-1}(A_2 / A_1)$$

$$A_1 = A\cos(\phi) \qquad A_2 = A\sin(\phi)$$

7.1 RLC sottosmorzato

3. $\alpha < \omega_0 \rightarrow s_1$ e s_2 radici complesse e coniugate (Re $(s_{1,2}) < 0$)

x(t) è una oscillazione sinusoidale di pulsazione $\omega = \beta$ smorzata da un esponenziale decrescente $\tau = 1/\alpha$

7.1 "R"LC senza smorzamento

4. $\alpha = 0 \rightarrow s_1$ e s_2 radici immaginarie pure $(s_{1,2} = \pm j\omega_0)$

$$\begin{aligned} s_{1,2} &= -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \\ x\left(t\right) &= A_1 \cos(\omega_0 t) + A_1 \sin(\omega_0 t) = \\ &= A \cos(\omega_0 t + \phi) \quad \text{risp. senza smorzamento} \end{aligned}$$

Le due costanti A_1 e A_2 si ottengono dalle due condizioni iniziali x(0) e $\mathrm{d}x/\mathrm{d}t(0)$

Rispetto al circuito sottosmorzato, adesso lo smorzamento è andato a zero ($R_{\rm serie}$ =0 o $R_{\rm parallelo}$ = $\infty \Rightarrow \alpha$ =0 e τ =1/ α = ∞), quindi **permane l'oscillazione sinusoidale** con pulsazione ω_0

L'oscillazione si sostiene idealmente per un tempo infinito ma questo è impossibile in un circuito reale che avrà sempre delle perdite (*R* non scompare)

7.1 Circuito LC ideale (lossless)

4. $\alpha = 0 \rightarrow s_1$ e s_2 radici immaginarie pure $(s_{1,2} = \pm j\omega_0)$

x(t) è una oscillazione sinusoidale non smorzata e con pulsazione ω_0 per cui $x(t) = A\cos(\omega_0 t + \phi)$ analisi di v, I, ed E

$$E(t) = \frac{1}{2}Li^{2} + \frac{v(t) = A\cos(\omega_{0}t + \phi)}{i(t) = C\frac{dv}{dt} = -CA\omega_{0}\sin(\omega_{0}t + \phi)}$$

$$E(t) = \frac{1}{2}Li^{2} + \frac{1}{2}Cv^{2} = ... = \frac{1}{2}CA^{2} = \text{costante}$$

L'energia del circuito non dipende dal tempo: quando l'energia del condensatore aumenta quella dell'induttore diminuisce e viceversa, di modo da conservare l'energia complessiva del circuito che infatti è privo di dissipazione (ricordiamo che L reale ha una R_L in serie e C reale ha una R_C in parallelo, entrambe $\neq 0$)

7.1 Soluzioni del circuito RLC e Condizioni Iniziali

Soluzioni dell'equazione differenziale del 2° ordine omogenea:

$$\begin{aligned} \alpha > \omega_0 & \text{ sovra } \quad s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \\ \alpha = \omega_0 & \text{ critico } \quad s_1 = s_2 = -\alpha = -\omega_0 \\ \alpha < \omega_0 & \text{ sotto } \quad s_{1,2} = -\alpha \pm j\sqrt{\omega_0^2 - \alpha^2} = -\alpha \pm j\beta \end{aligned} \qquad \begin{aligned} x(t) &= A_1 \cdot e^{s_1 t} + A_2 \cdot e^{s_2 t} \\ x(t) &= (A_1 t + A_2) \cdot e^{-\alpha t} \\ x(t) &= A \cos(\beta t + \phi) \cdot e^{-\alpha t} \\ x(t) &= A \cos(\beta t + \phi) \cdot e^{-\alpha t} \end{aligned}$$

$$\alpha = 0 \quad \text{lossles} \quad s_{1,2} = \pm j\omega_0$$

$$x(t) = A \cos(\omega_0 t + \phi)$$

Per calcolare le costanti A_1 e A_2 (e dunque A e ϕ) della soluzione, dobbiamo impiegare le **condizioni iniziali** x(0) e dx/dt(0) che nel caso del circuito RLC sono le tensioni dei condensatori e le correnti degli induttori (variabili di stato e quindi grandezze continue)

Per ricavare le condizioni iniziali risolviamo un primo circuito per $t=0^-$ (ricavando immediatamente $x(0^-)=x(0)$ che è la 1ª condizione iniziale) e quindi un secondo circuito per $t=0^+$ (ricavando da esso $\mathrm{d}x/\mathrm{d}t(0^+)$ che è la 2ª condizione iniziale)

7.2 RLC con generatore cost.

 Consideriamo il circuito elettrico RLC + generatore di tensione costante (con duale RLC parallelo + gen.corr.cost.) che sarà descritto dalla eq.diff. del secondo ordine (coeff.cost. e omogenea):

RLC serie + gen.cost
$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + 2\alpha \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \omega_0^2 x(t) = 0$$

 $\alpha = 1 / 2 \tau_{RL}$

RLC parallelo + gen.cost

$$\alpha = R/2L$$

$$x(t) = i_{\text{ser}}(t) = i_{\text{L}}(t) \text{ or } R \neq L \neq C$$

$$x(t) = v_{\text{par}}(t) = v_{\text{C}}(t)$$

$$\alpha = R/2L$$

• "Soliti" due parametri ω_0 [rad/s] pulsazione di risonanza e α [1/s] costante di smorzamento del circuito RLC

7.2 RLC + generatore (analisi)

Risolviamo i circuiti (KVL, KCL, ed eq. caratteristiche R, C, L)

16

7.2 RLC + gen. (risposta e valore finale)

 α e ω_0 uguali al caso di RLC libero (in generale i coefficienti α e ω_0 non dipendono dai valori dei generatori)

Il valore di regime $x(t\rightarrow\infty)$ per la variabile di stato, che nel caso della risposta libera era nullo (salvo caso "R=0"), è ora il valore imposto dal generatore:

7.3 Circuiti del 2° ordine (in generale)

Nel caso più generale un circuito del 2° ordine ha forma:

sempre descritto da eq.diff. del tipo:

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + 2\alpha \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \omega_0^2 x(t) = y(t)$$

con x(t) variabile di stato di un elemento dinamico, $v_{\rm C}(t)$ o $i_{\rm L}(t)$, e y(t) è la funzione forzante imposta dai generator ${\bf I}$ indipendent ${\bf I}$ con y(t)=0 in assenza di generatori

7.3 Circuiti del 2° ordine (soluz.gen.)

La soluzione di
$$\frac{d^2x(t)}{dt^2} + 2\alpha \frac{dx(t)}{dt} + \omega_0^2x(t) = y(t)$$
 è

$$x(t) = x_0(t) + x_p(t)$$
 con $x_p(t)$ soluzione particolare

mentre $x_0(t)$ ha l'andamento funzionale della sol. gen. dell'eq. omogenea e corrispondente al circuito con i generatori spenti

I coefficienti α e ω_0 non dipendono dai valori dei gen.indip. e quindi sono ricavabili dal circuito con i gen.indip. spenti (stessa condizione trovata per τ nei circuiti del 1° ordine)

7.3 Circuiti del 2° ordine (stabilità)

L'andamento di $x_0(t)$ dipende dalle frequenze naturali

$$S_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

se freq.natsono reali negative o complesse coniugate con parte reale negative il **circuito è stabile** $\Leftrightarrow \alpha > 0$ **e** $\omega_0^2 > 0$

Se $\operatorname{Re}\{s_{1,2}\} > 0$ il circuito è instabile (solo con gen.dip. o OP-AMP)

Con circuito stabile $x_0(t) \to 0$ per $t \to \infty$ ed è la risposta transitoria mentre $x_p(t)$ è la risposta permanente (dovuta ai generatori) Con circuito instabile $x_0(t) \to \pm \infty$ per $t \to \infty$ e si ha risposta divergente

I circuiti passivi sono sempre stabili ma i circuiti attivi, con gen.dip. e/o OP-AMP, possono essere instabili (nel caso limite passivo "senza R" si ha stabilità [non diverge] ma non asintotica [non coverge a un valore])

7.4 Circuiti del 2º ordine autonomi

Con generatori indipendenti costanti (circuito autonomo):

$$y(t)$$
=cost. e dunque $x_p(t)=x_p$ =cost. e allora per $t\to\infty$

$$x(t) \rightarrow x(\infty) = x_0(\infty) + x_p(\infty) = 0 + x_p = x_p$$
 regime costante

esempi di risposta per circuito del 2º ordine

La soluzione di regime costante vale per:

tensione dei <u>condensatori</u> (se $v=\cos t$. $\Rightarrow i=0$ equiv. a <u>circuito aperto</u>) e corrente negli <u>induttori</u> (se $i=\cos t$. $\Rightarrow v=0$ equiv. a <u>corto circuito</u>)

7.4 Circuiti del 2º ordine autonomi

In un circuito autonomo e stabile tutte le tensioni e tutte le correnti diventano costanti per $t \to \infty$

I valori delle grandezze a regime si ottengono risolvendo il circuito equivalente a regime, che è:

Possiamo quindi ricavare un **algoritmo** (metodo sistematico) per la soluzione di un circuito del 2° ordine (2 bipoli dinamici ed eq.diff. 2° ord.) autonomo (gen.indip.cost.) e stabile ($\operatorname{Re}\{s_{1,2}\}<0$) ovvero $\alpha>0$

7.4 Metodo sistematico per circuiti 2º ord. autonomi

- 1. Se le condizioni iniziali $v_C(0)$ o $i_L(0)$ non sono note, ricavarle dal circuito a regime in $t = 0^-$.
- 2. Sostituire ogni condensatore con un circuito aperto ed ogni induttore con un corto circuito; studiare il circuito resistivo ottenuto, ricavando il valore $x(\infty)$ della variabile desiderata.
- 3. Spegnere i generatori indipendenti; scrivere un'equazione differenziale omogenea, determinando α e ω_0 .
- 4. La soluzione cercata è

$$x(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t} + x(\infty) \qquad \text{per} \quad \alpha > \omega_0$$

$$x(t) = (A_1 t + A_2) e^{-\alpha t} + x(\infty) \qquad \text{per} \quad \alpha = \omega_0$$

$$x(t) = e^{-\alpha t} [A_1 \cos \beta t + A_2 \sin \beta t] + x(\infty) \text{ per} \quad \alpha < \omega_0$$

$$\text{dove } s_1, \, s_2 \in \beta \text{ hanno le espressioni } s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \quad \beta = \sqrt{\omega_0^2 - \alpha^2}$$

5. Determinare le costanti A_1 e A_2 utilizzando le condizioni iniziali ricavate al punto 1.

Sommario

Un circuito del secondo ordine, talora indicato con RLC, è un circuito caratterizzato da due elementi dinamici e descritto da una eq.diff. del secondo ordine nella variabile x(t) (tens. $v_{\rm C}(t)$ o corr. $i_{\rm L}(t)$).

$$\frac{\mathrm{d}^2 x(t)}{\mathrm{d}t^2} + 2\alpha \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \omega_0^2 x(t) = y(t)$$
 solo con forzanti (generatori) con valori variabili nel tempo

- In presenza di elementi dissipativi (resistori) e in assenza di elementi attivi (NO generatori dipendenti e OP-AMP), l'evoluzione libera del circuito vede l'energia inizialmente immagazzinata nei bipoli dinamici ridistribuirsi tra gli elementi dinamici e dissiparsi nel tempo. La variabile x(t) passa dal suo valore iniziale a un valore finale nullo, con un andamento nel tempo che è detto **risposta libera del circuito**: $x_0(t)$.
- L'eq.diff. del 2° ord. ha equazione caratteristica $s^2+2\alpha s+\omega_0^2=0$ $\alpha=1/2\tau_{1^\circ {\rm ord.}}$ è il fattore di smorzamento (RC o L/R in RLC serie o parallelo) $\omega_0^2=1/LC$ è la pulsazione critica o frequenza naturale non smorzata A seconda del segno del determinante $\Delta=\alpha^2-\omega_0^2$ (>=< 0) dell'eq.car. si hanno diverse soluzioni e il circuito ha una differente differente risposta libera x(t).

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$
 radici dell'eq.car.

Sommario

- \triangleright Differenti **risposte libere** x(t):
- 1. $\alpha > \omega_0 \rightarrow$ circuito **sovra-smorzato** (radici reali e negative) $s_{1,2} = -\alpha \pm \sqrt{\alpha^2 \omega_0^2}$ risposta smorzata exp. come somma di due esponenziali decrescenti

$$x(t) = A_1 \cdot e^{s_1 t} + A_2 \cdot e^{s_2 t}$$

- 2. $\alpha = \omega_0 \Rightarrow$ circuito con **smorzamento critico** (radici reali e negative coincidenti) risposta con picco iniziale (un MAX/MIN ma NO-oscill.) smorzata exp. $s_{1,2} = -\alpha$ $x(t) = (A_1t + A_2) \cdot e^{-\alpha t}$
- 3. $\alpha < \omega_0 \rightarrow \text{circuito sovra-smorzato}$ (radici complesse coniugate $\text{Re}[s_{1,2}] < 0$) risposta oscillatoria smorzata exp. $s_{1,2} = -\alpha \pm j \sqrt{\omega_0^2 \alpha^2} = -\alpha \pm j \beta$ $\chi(t) = \left[A_1 \cos(\beta t) + A_2 \sin(\beta t) \right] \cdot e^{-\alpha t} = A \cos(\beta t + \phi) \cdot e^{-\alpha t}$
- 4. α = 0 \Rightarrow circuito **senza smorzamento** (*lossless*) (radici immag. pure $\text{Re}[s_{1,2}]$ =0) risposta oscillatoria "permanente" $s_{1,2} = \pm j\omega_0$ $\chi(t) = A\cos(\omega_0 t + \phi)$

Sommario

- Le costanti A_1 e A_2 della risposta libera si ricavano dalle **condizioni iniziali** x(0) e dx/dt(0)
- Se il circuito ha generatori costanti è un circuito autonomo per il quale l'eq.diff. del 2° ordine è ancora omogenea e la risposta transitoria è quella già studiata a cui si aggiunge una risposta permanente x_p (costante) imposta dai generatori che stabiliscono dunque il valore di regime $x(\infty)$:

$$x(t) = x_0(t) + x_p$$

- Se l'eq.car. della eq.diff. ha $\text{Re}[s_{1,2}] > 0$ ($\alpha < 0$) si ha un **circuito instabile** la cui **risposta diverge esponenzialmente** nel tempo (può avvenire solo per circuiti attivi, con gen.dip. o OP-AMP).
- Anche nel caso generale di generatori variabili (nel tempo) la risposta è: $x(t) = x_0(t) + x_{\rm p}(t)$

con una risposta di regime variabile nel tempo come imposto dai gen.

