LITERATURE REVIEW

There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

(*Hamlet*, Act 1, Scene 5)

In this section, the relevant background information is given. This starts with a brief outline of the function and structure of the heart, ranging from the high order organisation of the heart into functional compartments, down to the cellular level. Further details are then given on the physiological aspects of some of the subcellular components of cardiac tissue. The evolution of computational models to describe the electrical activity of the heart is charted briefly, with special attention given to models specifically used in this thesis. Variation is then described, both in experimental and physiological measurements, and how this variation has been addressed in computational models. Then the pathological condition of ischamia will be described, and the computational efforts to model this outlined.

1.1 Cardiac Physiology

At the most general level, the heart serves as a pump to transport blood around the body to deliver nutrients and remove waste products. It does this by rhythmic, organised contraction—the rate of this contraction varies depending on species, age, condition of the heart and the activity being undertaken by the organism.

I.I.I Structure of the Mammalian Heart

Fig. 1.1 shows the anatomical structure of the mammalian heart—while the size obviously varies widely between mammals, the overall architecture remains constant. It is split into two halves, left and right, by a muscular wall called the *septum*, and then further subdivided into two chambers, the larger, lower chamber being a *ventricle*, and the smaller, upper chamber called an *atrium*.

The passage of blood through the heart follows thus: firstly, deoxygenated blood from the body enters the heart via the superior and inferior/posterior *vena cava*, with superior and inferior representing

Figure 1.1: Diagram of the longitudinal cross-section of a mammalian heart. The direction of blood flow is shown by white arrows, and all major structural components are labelled.

whether the blood comes from the upper or lower half of the body respectively. Via this channel, it enters the *right atrium*. Passing through the *tricuspid valve* (also known as the right atrioventricular valve), the blood enters the *right ventricle*, where it is then pumped via the *pulmonary artery* to the lungs, where it is oxygenated. The blood returns to the heart via the *pulmonary vein*, entering the *left atrium*, before moving through the *mitral valve* (also known as the left atrioventricular valve) into the *left ventricle*. The blood is then pumped via the *aorta* to the rest of the body. The valves in the heart serve to ensure the flow of blood is always in the correct direction.

The walls of the heart are mostly composed of muscular tissue known as *myocardium*. The thickness of the myocardium is not constant throughout the heart, being thickest in the left ventricle, which requires the greatest force of contraction to pump the blood from the heart to the rest of the body. The myocardium can be split into three different regimes, as labelled in italics in Fig. 1.1: the *epicardium* is the outermost layer of the myocardium, the *midmyocardium* is the middle layer, and the *endocardium* is the innermost layer. The cells composing these different layers possess different electrophysiological properties; the differences, and the consequences, will be expanded upon in §1.1.2.

The structure within the myocardium is shown in Fig. 1.2a: it is composed of a series of sheets of tissue (usually 4 to 6 cells thick) separated by collagen. The myocytes themselves lie longitudinally in these sheets to form fibres, with myocytes connected to each other by intercalated discs spanning the 100 - 200 Å separation between the cells (as opposed to skeletal muscle, which is composed of multinucleated fibres); this structure is seen in Fig. 1.2b. One attribute of these discs is the presence of *gap junctions*, which serve to electrically couple the myocytes by allowing ion flow between neighbouring myocytes. It has been shown the Ca^{2+} ions can crosss the gap junctions in a so-called *calcium wave*, triggering activity in neighbouring cells (Miura et al., 1998). This Ca^{2+} -based 'triggered propogated contraction' moves more slowly than the Na^+ -dependent action potential (the usual means for conducting the electrical activity through the heart tissue) (Clusin, 2003). It should be noted that the cells are electrically coupled by more than just gap junctions, *e.g.* ephaptic coupling and K^+ accumulation in the membrane space; for a full review of these coupling methods, see Sperelakis and McConnell (2002).

In the ventricles, the gap junction distribution is even between fibre direction and off-direction, with

Figure 1.2: (1.2a) Schematic of the structure of myocardial sheets and fibres. (1.2b) Image of cardiomyocytes demonstrating the interconnected nature of the individual myocytes into fibres (Girod and Becker, 2006).

each myocyte being electrically coupled to ~ 11 neighbouring myocytes (Smaill et al., 2013). This arrangement allows isotropic spread of an AP through the ventricle. In the atria, the gap junctions are preferentially in the fibre direction, meaning the AP spread is far more anisotropic (Saffitz et al., 1994). The arrangement of the myocytes into fibres, and the arrangement of these fibres into sheets, allows for ordered contraction in the fibre direction; the fibrous structure also allows the heart to twist as it contracts, leading to a more efficient pumping mechanism.

The conduction pattern of the heart is key to the effective pumping mechanism—by controlling the sequence of electrical events in the heart, the sequence of conduction is similarly controlled. An outline of the conduction pattern of the heart is shown in Fig. 1.3. The sequence of activation starts amongst a complex of self-excitatory cells at the top of the right atrium, called the *sinoatrial node*. This node is electrically isolated from the atria, save for specialised conduction pathways; this both prevents depression of the self-excitation of the node by the hyperpolarising influence of the surrounding atrium, and allows several excitation locations, depending on the condition of the heart (Fedorov et al., 2012). Once the node self-excites, a wave of depolaristion spreads from this node; the depolarisation of the atrial cardiac cells causes the atrium to contract, for reasons detailed in §1.1.2. This depolarisation then reaches the atrioventricular node—this is the only pathway for electrical excitation to pass from the atria to the ventricles. From the atrioventricular node, the excitation wave passes to the Bundle of His, which conducts the electrical stimulus via the left and right bundle branches into the Purkinje system near the bottom of the heart, which transmits the stimulus to the ventricular surface; as the stimulus has thus been transmitted directly from the atria to the bottom of the ventricles, the excitation wave thus spreads upwards through the ventricles, allowing the ventricles to contract from the bottom up as required.

1.1.2 Electrophysiological Properties of Cardiomyocytes

As previously stated, the main rôle of the heart is to serve as a pump to circulate the blood around the body. To do this effectively, it requires coordinated contraction, and this is achieved through the use of coupling the electrical activity of the heart of the mechanical activity (the details of this mechanism will be expanded upon in §1.1.2).

Figure 1.3: Schematic outline of the sequence of electrical activation in the mammalian heart. Image originally downloaded from www.nottingham.ac.uk on 10th December 2012.

Physically, cardiomyocytes are typically $10-20\mu m$ in diameter, and $50-100\mu m$ in length. They are cells bound by a lipid bilayer membrane, separating intracellular space (containing the cytoplasm, nuclei and other organelles) from the extracellular space. The intracellular space has a very different composition to the extracellular space, with the intracellular space containing a high and low concentration of potassium (K⁺) and sodium (Na⁺) ions respectively; the reverse is true for the extracellular space. These concentration differences are the main reason behind their being an electric potential difference set up across the cell membrane, referred to as the *membrane potential* (V_m); this potential is defined as negative when the intracellular space contains a greater negative charge than the extracellular space. At rest, due to the high K⁺ and low Na⁺ in the cell,this potential is negative, though the magnitude varies depending upon the location in the heart; a cardiomyocyte in the ventricles typically has a resting potential ($V_{\rm rest}$) of about $-80 \, {\rm mV}$, while the sinoatrial node has a resting potential of between -50 and $-60 \, {\rm mV}$.

Embedded within the bilayer are various membrane-bound proteins which serve to transport ions across the membrane, allowing the membrane to be selectively permeable to particular ions, and allowing regulation of this permeability as required. These transporters can be classed as either *channels* (allowing ions to move according to their electrochemical gradient), *pumps* (translocating ions in the opposite direction to their electrochemical gradient by the use of energy) or *exchangers* (translocates a number of ions of one type across the membrane in 'exchange' for a number of ions of another type). Most of these transporters are ion-specific, though some are not exclusively selective. Most of these channels are also controlled by, amongst other things, the membrane potential itself (Bezanilla, 2000). The membrane potential causes a conformational change in the ion channel protein, causing it to 'open' or 'close'; that is, to allow ions to be conducted through it or not.

These ion channels are discrete molecular entities, and thus the conformational changes that lead to their open/close state are stochastic; the effects of this stochasticity are discussed in greater detail in §1.3. However, each type of ion channel possesses its own range of attributes, such as the time it takes to inactivate, the time it takes to reactivate, its permeability to different types of ions, and its

Figure 1.4: Schematic of a ventricular cardiac AP, with the different 'phases' of the AP shown, and which key currents are involved in each phase. Upward arrows represent outward currents, inward currents represent inward currents, and double arrows represent exchangers, i.e. where current moves in both an inward and outward direction.

susceptibility to other gating factors. Comprehensive summaries of the properties of ion channels are given in Carmeliet and Vereecke (2002); Roden et al. (2002).

Electrically, the heart can be modelled with great success as an analogue to an electrical circuit (Carmeliet and Vereecke, 2002), where the lipid bilayer is represented as a capacitor, and the various ion channels and transporters that span the membrane are represented as resistors, which change their 'resistance' depending on their state. By altering the resistance of these channels, ion flow across the membrane is permitted via an ionic current. It is a point of nomenclature that an 'inward' current represents the movement of positive ions from the extracellular to the intracellular space, and an 'outward' current is the reverse. This definition is based on the movement on electrical charge, and not on the movement of ion flow. This is subtly different to the definition of an inward or outward rectifier current, where an inward rectifier current passes current more easily inward than outward, and vice versa for an outward rectifier current.

The Action Potential

The changes in internal/external ion concentrations which result from these currents changes V_m . The cyclic, periodic change in membrane potential is referred to as the *action potential* (AP). An example of an action potential, showing the different 'phases', is shown in Fig. 1.4.

The AP is considered to consist of 5 different phases, outlined below. The important currents in each phase are mentioned, and greater details are given for a number of these current in §1.1.2.

Phase 4: The resting phase. For ventricular and atrial cardiomyocytes, this phase is marked by a relatively constant value for V_m . The negative resting potential is largely achieved by the inwardly rectifying potassium current ($I_{\rm K1}$) remaining open during this phase. For pacemaker cells, $I_{\rm K1}$ is absent, and thus the resting phase is actually a period of slow depolarisation, until V_m reaches the threshold value for phase o. There is also an inward current due to the Na⁺-Ca²⁺ exchanger

current (I_{NaCa}), which moves 3 Na⁺ ions into the cell and one Ca²⁺ ion out at the resting potential.

Phase 0: Period of rapid depolarisation that marks the start of the AP. It is initiated by V_m reaching a threshold value which causes the $I_{\rm Na}$ current to activate, causing a rapid influx of Na⁺ into the cell. In response to this, the direction of $I_{\rm NaCa}$ reverses, and this newly outward current brings in Ca²⁺ and removes Na⁺.

Phase I: Transient repolarisation. The Na⁺ channels rapidly deactivate (the process leading to reactivation does not start until the cell repolarises at the end of the AP), and the activation of the transient K^+ outward current (I_{to} , occasionally referred to as I_{toI}) results in a period of rapid, partial repolarisation. There may also be a contribution from a Ca²⁺-activated Cl⁻(I_{CaCI} , or I_{to2}). Depending on the strength of this current, this repolarisation may be to the extent that there is a 'notch' in the AP, where the cell transiently repolarises beyond the susbequent plateau phase potential. For example, there is a notch in the AP for ventricular epicardial cells, but no notch for ventricular endocardial cells. The characteristics of this phase are also species-dependent (Carmeliet, 2006).

Phase 2: Plateau phase. The membrane potential is sustained at a relatively constant level by a balance of calcium ($\mathrm{Ca^{2+}}$) influx via the L-type calcium current ($I_{\mathrm{Ca,L}}$), and potassium efflux, through the rectifier K⁺ currents (rapid, I_{Kr} , and slow, I_{Ks}). Despite being a rapidly activated current, I_{Kr} does not carry large current early during this phase, but only peaks at the end. I_{K1} shows a dramatic fall in conductance during this phase. While most I_{Na} is inactivated during phase I, there is a small contribution from I_{Na} when V_m is in the limited range where activation and inactivation both occur. Late during phase 2, due to the increase in $[\mathrm{Ca^{2+}}]_{\mathrm{i}}$, the reversal potential for I_{NaCa} increases to a value greater than V_m , and thus I_{NaCa} returns to being an inward current.

Phase 3: Repolarisation. The L-type Ca^{2+} current channels close, while the I_{Ks} channels remain open, allowing continuing K^+ efflux resulting in a repolarisation of the cell to the original resting potential. I_{K1} opens during this phase, to remain open during phase 4 to maintain a steady resting potential.

It should be noted that the above description of which currents act during which phase is only an outline. While the upstroke of the AP is due mostly to the action of $I_{\rm Na}$ and the associated rapid influx of Na⁺ ions into the cell, causing the rapid depolarisation, the remaining phases of the AP are more complex, and the failure or part failure of any individual component of the cell mechanism does not necessarily lead to the failure of the whole system. This pseudo-redundancy was first termed repolarisation reserve in Roden (1998), and was demonstrated experimentally in Varró et al. (2000). It is essentially the concept that a loss in repolarisation function caused by a reduction or loss of function in one repolarising current can be recovered by increased action of an alternative repolarising current. Such a loss of function can have many possible causes, e.g. loss-of-function mutations in the genotype (Rosati and McKinnon, 2004). Most often, the term repolarisation reserve is applied to K⁺ channels, and specifically for the interaction between $I_{\rm Kr}$ and $I_{\rm Ks}$ (Xiao et al., 2008). Several currents are noted for their rôle in maintaining the repolarisation reserve of the cell, some of which have already been mentioned: $I_{\rm Kr}$, $I_{\rm Ks}$, $I_{\rm K1}$, $I_{\rm to}$, $I_{\rm Ca,L}$, $I_{\rm Na}$ (Varró and Baczkó, 2011). The repolarisation reserve is not constant, but rather is dynamic with pacing rate, and variable between species and tissues within the heart (Carmeliet, 2006).

It is not just the repolarisation reserve that is dynamic, but the entire action potential itself—most notably, there can be significant variations in the AP morphology between different regions of the heart (caused in turn by different ion channel concentrations) (Giles and Imaizumi, 1988). Beyond this so-called 'developmental regulation', it is also possible for the myocyte to adapt to environmental changes, and to ensure the phenotype of the heart is appropriate for the demands placed upon it ('homeostatic regulation') (Rosati and McKinnon, 2004).

Even within a particular region of the heart, the AP duration (APD) varies according to the pacing rate. The manner in which the APD varies with pacing rate is often described using a restitution curve, which shows the relation between APD and the *diastolic interval*, which is itself defined according to the quiescent phase of the cell; the sum of APD and DI equals the *cycle length* (CL), *i.e.* APD + DI = CL. The graphical representation and interpretation of the APD in this manner, with a view to a predicting APD changes after rate changes, was first suggested by Nolasco and Dahlen (1968).

The APD restitution curve describes the duration of the (i+1)-th APD as a function f of the time since the preceding AP, *i.e.* the i-th DI. This is typically a monotonically increasing function, and can be expressed as $APD_{i+1} = f(DI_i)$. If we linearise this around the fixed point APD^* , and describe APD as small perturbations round this point $(APD_i = APD^* + \delta APD_i)$, we can obtain the following (also making use of the Taylor expansion of $f(DI_i)$ and assuming $\mathcal{O}(\delta DI^2)$ is small):

$$APD^* + \delta APD_{i+1} = f(DI_i) \tag{1.1}$$

$$= f(\mathrm{DI}^*) + f'(\mathrm{DI}^*)\delta\mathrm{DI} + \mathscr{O}(\delta\mathrm{DI}^2) \tag{1.2}$$

$$\approx f(\mathrm{DI}^*) + f'(\mathrm{DI}^*)\delta\mathrm{DI} \tag{1.3}$$

By recalling that CL = APD + DI and $APD^* = f(DI^*)$, this be further simplified:

$$\delta APD_{i+1} = -f'(DI^*)\delta APD_i \tag{1.4}$$

Based on this, it can be seen that a bifurcation exists (which manifests as alternans) whenever |f'(DI)| > 1, due to the amplifying effects of deviations from the fixed point APD*. This is represented graphically in Fig. 1.5. The gradient of the restitution curve is still of key experimental import, as a steep curve is taken to imply an increased possibility of wave breakup and subsequent fibrillation from tachycardia (Riccio et al., 1999); mechanisms that lead to arrhythmogenesis shall be examined in greater detail in §1.4.2.

However, it should be noted that this approach is limited, as it presents the oversimplification that the APD is dependent purely on the preceding DI. Thus, while the resitution curve can be a useful indicator of a tissue's susceptibility to fibrillation and other disorders, it is by no means the only such indicator (Riccio et al., 1999). Furthermore, it makes no account of the $[Ca^{2+}]_i$ dynamics—this is discussed further in §1.4.2.

Ion Channel Dynamics

It should be borne in mind that knowledge of ion channel dynamics is not appropriate solely for cell simulations, but is important for the implications of how such changes cascade through the different spatial and temporal scales. Thus, knowledge of how ion channel dynamics affects cellular AP dynamics leads to knowledge of tissue dynamics implications, and so on (Spach et al., 1988). The emphasis on what follows is on the ion channel dynamics of rabbits—while there are many similarities

Figure 1.5: Example of a restitution curve with alternans predicted. The blue line represents the restitution curve; pacing at a constant CL can be represented by the red straight line. A small perturbation (represented by the star) from the equilibrium point (represented by the circle) can lead to growing perturbations, that eventually settle to alternans. This instability is due to the equilibrium point existing where the gradient is greater than 1. Figure originally from Weiss et al. (2006).

in these channels between mammalian species, it is important to remember that species differences can be significant (Bassani et al., 1994). For example, I_{to} plays an important rôle in repolarisation in rodents, and thus strongly influences APD, while playing a relatively minor rôle in repolarisation in larger mammels (Rosati and McKinnon, 2004).

 $I_{\rm Kr}$, as the name implies, is the more rapidly activating of the two rectifier K⁺ currents ($\tau \sim 40 {\rm ms}$ at $+30 {\rm mV}$), and rapidly activates once V_m increases above $-30 {\rm mV}$. However, the channel inactivates even more rapidly in a process that precedes voltage-dependent inactivation (Varró and Baczkó, 2011; Spector et al., 1996; Carmeliet, 2006). Due to this, $I_{\rm Kr}$ channels are largely closed during the plateau phase of the AP, only reopening when V_m returns to about omV. The transient nature of the current is due to its rapid recovery from inactivation, and subsequent slow deactivation. At slow rates, the contribution of $I_{\rm Kr}$ diminishes further, resulting in a positive feedback look regarding prolongation of the AP duration (APD) (the same is observed for $I_{\rm K1}$) (Virág et al., 2009). This same vulnerability of the repolarisation is evident when depolarising factors (e.g. $I_{\rm Na}$, $I_{\rm Ca,L}$) are augmented or repolarising factors (e.g. $I_{\rm Ks}$, $I_{\rm K1}$) diminished.

If the function of $I_{\rm Kr}$ is impaired substantially in some way, APD is measured to be significantly prolonged, both by direct measurement of the membrane potential, and QT interval measurements in electrocardiograms (ECGs) (the QT interval serves as a marker for the time taken for ventricular depolarisation and repolarisation in a clinical setting (Yan and Antzelevitch, 1998)), suggesting especial importance in cellular repolarisation (Varró et al., 2000; Lengyel et al., 2001; Jost et al., 2005). When $I_{\rm Kr}$ is only impaired in a minor way, APD may not necessarily increase due to the action of the repolarisation reserve. $I_{\rm Kr}$ passes via a channel encoded by the human ether-á-go-go related gene (HERG), and is known for being its susceptibility to the effects of drug block, making it of key pharmocological

importance (Vandenberg et al., 2001; Haverkamp et al., 2000). It can also be noted that, in spite of what may be predicted by the Nernst potential for I_{Kr} (see §1.2.1), increased extracellular K^+ is known to enhance I_{Kr} (Sanguinetti and Jurkiewicz, 1992; Yang et al., 1997).

 $I_{\rm Ks}$ takes longer to activate than its partner (500-1000ms at plateau phase), and deactivates rapidly at negative V_m (Jost et al., 2005; Varró and Baczkó, 2011). It carries a slowly rising current over the duration of the plateau phase. At rapid pacing rates, the current carried by the $I_{\rm Ks}$ channel increases—this is thought to be due to the kinetics of the channel, with an 'inactivated' state being intermediate between the open and closed state. At rapid pacing rates, there is less time to transition fully to the closed state, and thus there is a greater proportion of $I_{\rm Ks}$ channels available for immediate opening (Silva and Rudy, 2005). $I_{\rm Ks}$ is also modelled as having a sensitivity to $[{\rm Ca}^{2+}]_i$, replicating the results of potassium currents' sensitivity to $[{\rm Ca}^{2+}]_i$ (Meech and Standen, 1975).

Drug block of $I_{\rm Ks}$ causes AP prolongation, but not to the same extent as $I_{\rm Kr}$; while direct measurements show a slight increase in APD, there is very little or no change in QT intervals ECG measurements (Varró et al., 2000; Lengyel et al., 2001; Jost et al., 2005). This implies that its amplitude, compared to that of $I_{\rm Kr}$, during a typical AP is small—this has been confirmed experimentally under normal conditions (Varró and Baczkó, 2011). Combined with its slow activation, there is thus relatively little $I_{\rm Ks}$ active during the AP (Jost et al., 2005). However, its long activation time also means the effect of $I_{\rm Ks}$ block is more pronounced when APD is prolonged, due to (i) the net outward current at long pacing rates is smaller, so the fractional effect of $I_{\rm Ks}$ is greater, and (ii) more channels are activated during a long AP (Carmeliet, 2006). Due to this action, and the response of $I_{\rm Ks}$ to sympathetic stimulation, the current provides a negative feedback for APD prolongation, acting to curtail the increased action of $I_{\rm Ca,L}$ that occurs at longer pacing rates. Thus, while under 'normal' circumstances $I_{\rm Ks}$ has limited effect on the repolarisation reserve of the cell, it acts as an effective buffer when APD is longer than normal.

The transmural differences in the expression of $I_{\rm Ks}$ is a large reason behind the transmural variation of APD, and also explains why $I_{\rm Kr}$ block can have a greater or lesser effect, depending on the abundance of the compensatory effect of $I_{\rm Ks}$; the scarcity of $I_{\rm Ks}$ can be noted in Purkinje fibres and M-cells, while it is abundant in subepicardial and subendocardial cells (Vandenberg et al., 2001; Carmeliet, 2006). The density of $I_{\rm Ks}$ channels has also been shown to increase in response to sustained $I_{\rm Kr}$ block, demonstrating its importance to the repolarisation reserve (Xiao et al., 2008).

 $I_{\rm K1}$ is a strongly inwardly rectifying K⁺ current, which means that when V_m is greater than $-30 \, {\rm mV}$, the channel is inactivated. Thus it plays a negligible rôle during the plateau phase of the AP, but has a self-reinforcing role in the repolarisation of the cell once V_m decreases to the extent that $I_{\rm K1}$ can be activated. It should be noted that this is not a voltage-dependent activation, but is based on an unblocking of the channel: when $V_m > -30 \, {\rm mV}$, the channel is blocked by ${\rm Mg^{2+}}$ and polyamines which enter the channel from the intracellular side in a voltage-dependent manner. As the current is fully open at $V_{\rm rest}$, it resists depolarisation caused by either increased pacemaker activity, or ${\rm Ca^{2+}}$ overload-related delayed afterdepolarisations (DADs). Consequently, $I_{\rm K1}$ may be considered to play an unusual rôle in the repolarisation reserve, and impairment of its function could lead to proarrhythmic effects by making the cell more susceptible to extrasystoles.

 $I_{\rm to}$ is actually composed of two separate currents, a rapidly recovering component ($I_{\rm to,f}$) and a slowly recovering component ($I_{\rm to,s}$). As a combined unit, it both activates and inactivates rapidly for $V_m > -20 \, {\rm mV}$, and is of greatest importance during the phase I repolarisation. As such, it is believed to have little influence directly on the end repolarisation of the cell, but due to its early role, and its consequent

effect on the plateau potential, it is believed to have influence on subsequent currents, which lead to great indirect influence. $I_{\rm to}$ is also known for its transmural variation, being greater in epicardial than endocardial tissue.

 $I_{\rm NaK}$ is caused due to the Na⁺-K⁺ pump, which is an electrogenic exchanger, moving 3 Na⁺ ions out of the cell in exchange for 2 K⁺ ions. It thus works to maintain the concentration gradients and the resting membrane potential, and provides an outward current in support of the repolarisation reserve. It is, however, sensitive to intracellular Na⁺ concentration ([Na⁺]_i), and consequently to the rate of stimulation.

The influence of $I_{\rm Ca,L}$ on the repolarisation of the cell is complex due to its complicated inactivation. It inactivates due to voltage slowly, and thus the main reason for its inactivation is due to ${\rm Ca^{2+}}$ -induced inactivation, and is thus in response to local ${\rm Ca^{2+}}$ concentration, which is dynamically changing during the plateau phase. This inactivation is modulated via a protein called calmodulin, and thus can be modulated further. If the AP is extended during the range of activation/inactivation for $I_{\rm Ca,L}$, some $I_{\rm Ca,L}$ channels may reactivate. This resurgence of the inward current can lead to secondary depolarisations or early after-depolarisations (EADs) (Carmeliet, 2006).

It should be noted that $I_{\text{Ca,L}}$ is a highly localised current—the responsible channels are not distributed uniformly throughout the sarcolemma, but are instead localised to close proximity to other channels important in the contractile mechanism of the cell, serving to co-ordinate the release of Ca^{2+} throughout the cell; this is explored in greater depth in §1.1.2. This localisation is not unique to $I_{\text{Ca,L}}$ —it has recently been demonstrated that I_{Na} is also highly localised (Bhargava et al., 2013).

If $I_{Ca,L}$ (or I_{Na}) are augmented and have their activity increased, this serves to make the plateau potential more positive. While at first glance this may indicate that AP may lengthen, it is rather the case that this may serve to enhance activation of outward K^+ currents, thus shortening APD.

The Na⁺-Ca²⁺ exchange current (I_{NaCa} , also referred to as I_{NCX}), like I_{NaK} , is an electrogenic exchanger, this time exchanging 3 Na⁺ ions for one Ca²⁺ ion. By this process, it is, with the SERCA pump, largely responsible for restoring the low cytosolic Ca²⁺ concentration during diastole; it is the main means for extruding Ca²⁺ from the cell, responsible for 70-90% of the Ca²⁺ efflux (Eisner and Sipido, 2004). Despite this, the activity of I_{NaCa} can be inhibited by 80-90% with cardiac function still being maintained (Henderson et al., 2004)—another example of effective repolarisation reserve. I_{NaCa} depends strongly on V_m and $[Ca^{2+}]_i$ (Clusin, 1983), and thus its magnitude during the AP is difficult to estimate (a problem compounded by the lack a specific inhibitor for the current). It is an outward current at the start of the AP, when V_m and $[Ca^{2+}]_i$ are both low, but then changes to an inward current during the late plateau phase. Due to its sensitivity to $[Ca^{2+}]_i$, in times of Ca^{2+} -overload I_{NaCa} can provide a depolarising current, thus increasing the likelihood of DADs and EADs (Clusin, 2003). The density of I_{Na} is also known to depend heavily on $[Ca^{2+}]_i$, decreasing when $[Ca^{2+}]_i$ is high; the gating of the channel is not affected.

These, and other, currents are susceptible to alteration, and demonstrate varying degrees of importance during physiological and pathological conditions; the arrhythmogenic properties of some of these currents will be discussed further in §1.4.2.

Excitation-Contraction Coupling

Arguably, the complex electrical activity of the AP just described exists for the sole purpose of ensuring the heart acts as an effective mechanical pump. As such, the linking of the electrical activity of the heart to its mechanical contraction is vital, as is referred to as *excitation-contraction coupling*. What follows is a brief summary of the mechanism of this link (the reverse side of this mechanism, termed mechanoelectric feedback, shall not be discussed here). More details of the mechanical aspect of the cardiac cycle, and of the attempts to model it and integrate it with electrical models, can be found in Trayanova et al. (2011). A summary of Ca²⁺-handling in the cell is provided by Eisner et al. (2000).

For this discussion, the cell may be decomposed into units called calcium release units (CRUs), also known as dyads (Cleemann et al., 1998). These CRUs are spread roughly evenly throughout the cell to allow for a uniform action throughout—the number of CRUs in the cell has been estimated to be between 10,000 and 100,000 (Cleemann et al., 1998; Greenstein and Winslow, 2002). Anatomically, the CRU may be considered to be a section of the cell containing a section of the cell membrane, with some L-type Ca²⁺ channels, and a section of the sarcoplasmic reticulum (SR). The primary rôle of the SR is to sequester and release Ca²⁺ when the required stimulus is given. This release is predominately by ryanodine receptors (RyR), but at least one other channel (Inositol triphosphate-activated channels, or IP₃) is known to play a part, and others are reported (Pozzan et al., 1994). This stimulus is the rise in local concentration of Ca²⁺ precipitated by the opening of the L-type Ca²⁺ current channels, and is termed calcium-induced calcium release (CICR) (Fabiato, 1992). The result is that a great deal of Ca²⁺ is released into the cytosol of the cell during phase 2 of the AP under 'normal' conditions. It can thus be noted that the Ca²⁺ system of the cell is dependent on the AP, which is in turn affected by the Ca²⁺ dynamics (both due to the positive charge associated with Ca²⁺, and due to Ca^{2+} -sensitive membrane currents, e.g. $I_{Ca,L}$ (Weiss et al., 2006). The release of Ca^{2+} from the SR is modulated by means of a Ca²⁺-binding protein within the SR called calsequestrin (CSQN) computational modelling of its effects by Restrepo et al. (2008) demonstrate that this is behind the steep load-release relationship exhibited by SR release.

The reason this is vital for ECC is due to the interaction between Ca^{2+} and the contractile units of the cell, called the sarcomere. When the cytosolic concentration of Ca^{2+} ($[Ca^{2+}]_i$) rises, the free Ca^{2+} binds to a part of the contractile machinisms of the cell, which then removes the inhibition between the two critical contractile parts of the mechanism, allowing contraction to take place. It should be remembered that the Ca^{2+} transients *precede* contraction, and the upstroke velocity of the transient is faster than the rise in force (Lee et al., 1988).

Subsequent to contraction, the Ca^{2+} released from the SR is recovered by the sarco/endoplasmic reticulum Ca^{2+} -ATPase pumps (referred to as SERCA) (Franzini-Armstrong et al., 2005) (which is inhibited by a protein called phospholamban, among other factors (Talukder et al., 2009; Xu et al., 1993; Eisner et al., 2000)). Further Ca^{2+} is extruded from the cell by I_{NaCa} (Laurita and Rosenbaum, 2008) (it should be noted that I_{NaCa} brings in 3 Na^+ ions for every Ca^{2+} ion extruded, making it an eletrogenic current). Other mechanisms for removing cytosolic Ca^{2+} are negligible (Bassani et al., 1994). At steady state, the influx from $I_{Ca,L}$ and the efflux from I_{NaCa} are equal. When not in steady state, the value of $[Ca^{2+}]_i$, influenced by SR Ca^{2+} release (and thus SR Ca^{2+} load), operates to return the system to steady state. This process has been referred to as 'autoregulation' (Eisner et al., 2000).

The end $[Ca^{2+}]_i^{dia}$ is heavily dependent on this uptake/extrusion process—if there is an inhibition/upregulation of either process, it can have a significant beat-to-beat effect on $[Ca^{2+}]_i^{dia}$. It should be

noted that neither the reduction of $[Ca^{2+}]_i$, nor the involved buffering, are not linear processes. Bers and Berlin (1995) demonstrated a that SERCA demonstrates Michaelis-Menten kinetics in the buffering/sequestration process—this is ideal for the requirements of the system, in that it increases the rate of decay of $[Ca^{2+}]_i$ when $[Ca^{2+}]_i$ is increased, *i.e.* if the Ca^{2+} transient is greater, the cell is able to return $[Ca^{2+}]_i$ to a diastolic value within a similar amount of time as for a small transient.

There is a long-known association between alternans in the Ca^{2+} -handling mechanisms of the cell and arrhythmias, on the basis of the feedback between the Ca^{2+} system and the AP itself. However, the precise mechanism, and the causal links involved, are still the topic of much debate, and work is ongoing to establish the means by which alternans and arrhythmias are linked (Alvarez-Lacalle et al., 2013; Chen et al., 2009; Restrepo et al., 2008). More details as given in §1.4.2.

1.2 Computational Cell Models

It is often not practicable to test hypotheses in full experimental conditions. Under such circumstances, computational/mathematical models have become increasingly important in recent years, as they have developed from their original humble origins (Jalife, 2013). The focus of computational models can be broken down to three areas of scale: the cellular, the tissue, and the organ. It should be noted that there is considerable overlap between each of these scales, and it would be a mistake to think of models other than cellular models as entirely being tissue or otherwise models.

There are three key methods for computational modelling of the heart, each appropriate for different scales and different hypotheses. They are, in order of computational complexity: eikonal modelling, phenomenological modelling and ion channel modelling. Eikonal modelling (which can only be used with any accuracy on length scales greater than that of individual cells) concerns itself with modelling the spread of the action potential wave by modelling the wave propogation directly, without attempting to recreate the AP itself (Keener and Sneyd, 2009). Phenomenological modelling attempts to recreate the AP directly using differential equations adapted specifically for the AP (Bueno-Orovio et al., 2008). Finally, ionic models attempt to recreate in a biophysically detailed manner the ion currents involved in the creation of the AP. This is the most computationally intensive of the three approaches, but allows a wide range of hypotheses to be addressed. Each of these modelling approaches bring their own series of benefits and costs, with implications based on the trade-off between computational complexity and biophysical detail. It should be remembered that a biophysically detailed ionic model has, almost be necessity, a large number of parameters to fit to match the data, and fitting these parameters increases not only the complexity, but also the possible sources for error (Relan et al., 2011). Ionic models are the focus of this thesis.

Great advances have been made in accurately modelling individual ion channels, assessing the importance of stochasticity, and probing the interplay between systems and levels in complicated simulations. What follows is a summary of some of the key concepts that are of use in computational models in §1.2.1, and then a brief background on the evolution and development of computational cell models from their early days in §1.2.2. Various difficulties and problems in model construction that need to be borne in mind when using such models are outlined in §1.2.3.

When considering computational models, it is worth remembering that, from the outset, a model is *wrong* in some way—it is useful insofar as it can answer a posed question. A good model will be able to address a wide range of questions, and will direct future research. This is not necessarily a

bad thing—much can be learned from the failure of models, as well as from the success (Noble and Rudy, 2001; Quinn and Kohl, 2013). Indeed, computational models are a natural extension of the usual scientific process: a hypothesis is conceived, a model designed to test the hypothesis, and thus the hypothesis is either validated, and further questions may be asked, or falsified.

1.2.1 Key Concepts

The model's purpose defines what variables are considered, and how these variables are determined. Some models (e.g. Restrepo et al. (2008)) define a certain section of the cellular mechanism as of interest, and thus the output is defined accordingly. However, most models are trained according to the membrane potential, and thus that is considered the primary output. In modelling the cell as an electrical circuit with the membrane considered as a capacitor, the instantaneous change in membrane potential is calculated according to

$$\frac{\mathrm{d}V_m}{\mathrm{d}t} = -\frac{1}{C_m}(I_{ion} + I_{stim}),\tag{1.5}$$

where C_m is the membrane capacitance, I_{ion} is the sum of all ionic currents in and out of the cell, and I_{stim} is the stimulus current, if applied, to initiate an AP. In experiments and simulation, the value of I_{stim} can vary, but it is usually at least 1.5 times the minimum value required to initiate activation (the activation threshold) (Sutton et al., 2000; Riccio et al., 1999; Ferrero et al., 2003b).

It should be noted that the membrane potential method can also be calculated according to an 'algebraic method', based on the charge conservation principle and the charge-voltage relation of a capacitor; identical results are produced by both methods (Hund et al., 2001; Rudy and Silva, 2006).

In biophysically detailed models of electrically excitable cells, most ionic currents are modelled according to:

$$I_X = q_X(\mathbf{x})(V_m - E_X),\tag{1.6}$$

where I_X represents the ionic current being modelled, $g_X(\mathbf{x})$ represents the conductance of the channel and E_X represents the Nernst potential, also known as the reversal potential of the cell. This is the potential at which there is no net ion flow through the channel, *i.e.* there will be no ionic current. The general form of E_X is explained in §1.2.1. $g_X(\mathbf{x})$ is current-dependent variable, and can be modelled as varying with time, voltage, extra-/intracellular ion concentration, etc..

Nernst Potential

Of key importance in mathematical modelling of electrically active cells is the *Nernst equation*. A full derivation is given in the appendix, but the key result is thus:

$$E_X = \frac{RT}{z_X F} \ln \frac{[X]_o}{[X]_i} \tag{1.7}$$

In the above equation, R represents the gas constant, z_X represents the valence of ion X, F represents the Faraday constant, and $[X]_o$ and $[X]_o$ represent the extracellular and intracellular concentrations of X respectively. The quantity of interest, E_X is the Nernst potential or reversal potential, and represents the value of V_m required to maintain the intra-/extracellular concentration ratio constant, *i.e.* to make the net ionic flux across the cell membrane zero.

When a channel is entirely selective, the reversal potential (which can now be thought of as the potential at which there will be no net flux of ions) is given by the Nernst equation for the specific ion. However, some ion channels are permeable to more than one type of ion, in which case their reversal potential for channel α is given by the *Goldman-Hodgkin-Katz equation*:

$$E_{\alpha} = \frac{RT}{F} \ln \frac{\sum_{i}^{N} P_{A_{i}^{+}}[A_{i}^{+}]_{o} + \sum_{j}^{M} P_{B_{j}^{-}}[B_{j}^{-}]_{i}}{\sum_{i}^{N} P_{A_{i}^{+}}[A_{i}^{+}]_{i} + \sum_{j}^{M} P_{B_{i}^{-}}[B_{j}^{-}]_{o}}$$
(1.8)

The above equation describes the situation for N different monovalent positive ionic species and M monovalent negative ionic species; different valencies complicate matters further. In it, E_{α} represents the reversal potential for the channel, *i.e.* the potential at which, with the given ion concentrations, no net electric flow will occur. The permeability of the membrane is given by P_X ; as with the concentrations, the terms have been split into positive (A_i^+) and negative (B_i^-) ionic terms.

Hodgkin-Huxley Current

As previously stated, the seminal work presented in Hodgkin and Huxley (1952) modelled currents as being composed of one of more activation/inactivation gates. It should be noted that the original paper was at pains to emphasise that this was not intended as a description of the actual, physical channel, but was to be used as is: as a mathematical equation that provides a fidelity to the experimental data. It is of note, however, that it is the case that the structure of the K^+ channel does consist of four identical subunits, which does correspond with the four gating variables required in the Hodgkin-Huxley formulation of the current.

Within the Hodgkin-Huxley framework, the current conductance can be modelled according to

$$g_X = \overline{g}_X m^a h^b, \tag{1.9}$$

where \overline{g}_X represents the maximum conductance through the channel, a and b are constants, m represents the activation gate and h the inactivation gate. In Hodgkin and Huxley (1952), a physical basis was given to m and h by describing them as proportions of 'activating molecules' and 'inactivating molecules', respectively—the conductance through the channel is thus proportional to the proportion of these molecules that are within and outwith the cell. The change in these variables are described according to

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \alpha_m (1 - m) - \beta_m,\tag{1.10}$$

where α_m and β_m are functions of V_m . It can be noted that this is often expressed as

$$\frac{\mathrm{d}m}{\mathrm{d}t} = \frac{m_{\infty} - m}{\tau_m} \tag{I.II}$$

where $m_{\infty} = \frac{\alpha_m}{\alpha_m + \beta_m}$ and $\tau_m = \frac{1}{\alpha_m + \beta_m}$, and are the steady state value of m and the time constant, respectively.

Markov Models

The Hodgkin-Huxley formulation is computationally efficient, but does not represent a physical reality of the channel state. As such, it is poorly suited to model state specific processes, such as mutation

effects or stochasticity (Adeniran et al., 2011). It also relies on the independence of the activation and inactivation processes—the formulation assumes these depend only on V_m . However, this assumption is not always valid: inactivation of I_{Na} has a greater probability of occurring when the channel is open (Bezanilla and Armstrong, 1977; Armstrong and Bezanilla, 1977).

To address these limitations, Markov modelling can be used (it should be noted that in the formalism presented here, it is not suited to modelling stochastic processes, but can be adapted to do so). Markov modelling works by assuming that the channel can exist in any one of n discrete states, i.e. it attempts to directly model the ion channel state. These states can be open, closed or inactivated, and there can be multiple types of each state. The simplest form is a two state system, such as

$$C \stackrel{k_{\text{on}}}{\underbrace{k_{\text{off}}}} O$$
,

where $k_{\rm on}$ and $k_{\rm off}$ represent the transition rates between these two states—in cardiac modelling, these transition rates typically depend only on the membrane potential. The key requirement for a Markov model is the *Markov property*, which states that the transition to the next state depends only on the current state, and there is no cumulative history of the system that influences its future. Thus, if $x_i(t)$ represents the proportion of channels in state i at time t, and k_{ij} represents the transition rate from state i to state j, the transition rates for a system containing m different states may be modelled according to

$$\frac{\mathrm{d}x_i}{\mathrm{d}t} = \sum_{j=1}^{m} (k_{ji}x_j - k_{ij}x_i). \tag{1.12}$$

The conductance of the channels for a particular current is thus calculated by multiplying the maximum conductance by the proportion of the channels that currently exist in an open state. It should be noted that, when the transitions between states are independent, the Markov formulation devolves to the Hodgkin-Huxley formulation—for further details, see Rudy and Silva (2006).

1.2.2 Development

What follows is a summary of the progression and development of computational cardiac models. For further details of the models themselves, the reader is referred to the original papers, and for more in depth summaries of the development, the reader is referred to the reviews given in Noble and Rudy (2001); Noble et al. (2012); Noble (2011); Puglisi et al. (2004); Rudy and Silva (2006); Niederer et al. (2009).

The precursor to all computational models of cardiac cells was the model developed in Hodgkin and Huxley (1952). This model described the electrical acitivity of a giant squid axon. It described the ionic currents required to explain the change in membrane potential, using a model for each current of a series of activation and inactivation gating variables (details given in $\S1.2.1$). This model was able to sufficiently model the AP of the neuron using only three ionic currents: a K^+ current, a Na^+ current, and a 'leak' current of other ions. It was further developed by Fitzhugh (1960), which even then recognised that, while the 'truth' of the model was not universally accepted, the model nonetheless was successful in reproducing experimental results. However, FitzHugh was able to demonstrate that, with the correct adaptations of the model equations, the output could be altered to reproduce the longer APs of cardiac cells.

The Hodgkin-Huxley model was hugely successful, and paved the way for the extension of the computational modelling approach to cardiac cells. Preliminary work was shown in Hutter and Noble (1960); Noble (1960), which presented an adaptation of the Hodgkin-Huxley model for the AP of cardiac pacemaker cells. The same 3 currents were used, with adaptations in $I_{\rm K}$ to reproduce the longer AP of cardiac cells. The model was subsequently refined and expanded to reproduce the AP of Purkinje fibre cells (Noble, 1962), taking into account experimental data demonstrating the existence of at least two K⁺ currents (labelled $I_{\rm K}$ and $I_{\rm KI}$) with the resulting change in K⁺ permeabilities of the cell membrane (Hutter and Noble, 1960; Carmeliet, 1961; Hall et al., 1963).

This model was followed by a model designed to reproduce the AP of a ventricular myocyte (Krause et al., 1966). The Noble and Krause models were both based on the Hodgkin-Huxley model, with the Noble model being used as the seed for future developments in the computational cardiac modelling field. The next major refinement of the model came with that proposed by McAllister et al. (1975). In response to experimental data, this model greatly expanded the number of ion channels that were being modelled—the previous 4 ODEs of the Noble model were now replaced with 10. This included modelling the components of I_K separately as I_{Kr} and I_{Ks} , as well as incorporating a Ca²⁺ current based on experimental recordings from patch clamp experiments. This model, despite its success in reproducing experimental data, also contained an impressive flaw, in that it posited the slow conductance changes near the resting potential to an outward current, activated by depolarisation. In fact, the change was due to an inward current activated by hyperpolarisation (the so-called 'pacemaker current' $(I_{\rm F})$). Despite this flaw, the overall model remained sound, and iterations of the current continued through to DiFrancesco and Noble (1985), which was the first model to incorporate a formulation for the Na⁺-K⁺ exchanger, and made most intracellular ion concentrations dynamics. It also managed to model SR Ca²⁺ release, and demonstrated the stoichiometry of the Na⁺-Ca²⁺ exchanger had to be 3:1, not 2:1 as had previously been supposed—consequently, the resulting current from this exchange (I_{NaCa}) was incorporated into future models.

While this progress was still being made in the modelling of Purkinje fibre APs, a new focus was found in modelling the AP of ventricular myocytes. While this had already been achieved to some extent in Krause et al. (1966), the first widely used ventricular model was that proposed in the work of Beeler and Reuter (1977). This model was also the first to make more explicit mention of the internal calcium dynamics of the cell, by simulating the Ca^{2+} release from the sarcoplasmic reticulum. Of particular note in the further development of the field is the so-called Luo-Rudy model, first published in Luo and Rudy (1991). This model was originally designed to study arrhythmias in guinea pig ventricular cells, but has been subsequently developed for a wide variety of different tasks, and key components have been adapted into other models for other species (Shaw and Rudy, 1997a,c; Wagner et al., 1999; Viswanathan and Rudy, 1999; Garfinkel et al., 2000; Shannon et al., 2004; Mahajan et al., 2008). Specifically, the model was further adapted in two papers (Luo and Rudy, 1994b,a) to include dynamic intracellular ion concentrations, and $I_{Ca,L}$ was reformulated. Significantly, I_K was separated into the two constituent currents of I_{Kr} and I_{Ks} in Zeng et al. (1995), based on experimental evidence for this separation (Sanguinetti and Jurkiewicz, 1990). The Luo-Rudy model was also adapted to be able to model ischæmia by the incorporation of $I_{\text{K-ATP}}$ (Shaw and Rudy, 1997b) (further details of the modelling of ischæmia can be found in §1.4.1). A further significant advance came with Clancy and Rudy (1999), which for the first time incorporated Markov modelling into a cell model (Markov modelling is described in greater detail in §1.2.1).

Stern (1992) noted a short-coming of the Luo-Rudy model by its inability to reproduce the graded relationship between $I_{Ca,L}$ and the SR Ca^{2+} release—this was due to what was termed the 'common pool'

model for Ca^{2+} . This can be overcome by introducing a compartmentalised system to model Ca^{2+} dynamics. This allowed for modelling of not only graded Ca^{2+} release (local $I_{Ca,L}$ influx causes local SR Ca^{2+} release, which spreads across the cell in a Ca^{2+} wave), but also predicted the phenomenon of Ca^{2+} sparks, which were observed experimentally in Cleemann et al. (1998). The model was subsequently revised and expanded by Shiferaw et al. (2003) to include SR load-release dependence, although on a purely phenomenological basis. This model has been used as the basis for more elaborate models, incorporating greater biophysical details, including 3D cellular architecture (Restrepo et al., 2008; Chen et al., 2009).

It should be noted that almost all currents in the models described above still use the some basic model form as that given in Hodgkin and Huxley (1952)—details and nuances have been added to some equations, and other equations have been formulated using entirely different methods (e.g. Markov modelling), but the underlying modelling philosophy has remained rather steady, and been found sufficient to the present day.

It is through this evolution of models from relatively humble beginnings that we have reached the point where we are today—computational models of cardiac systems can be used to model anything from the subcellular to the full organ level, with specialisations depending on species, location and situation. In this thesis, focus is mainly devoted to the models presented in Shannon et al. (2004) and Mahajan et al. (2008). These are both models for rabbit ventricular myocytes, with the latter model being itself based on the former—they are both in turn based in large part on the Luo-Rudy model. However, it should not be thought that it is a direct step from the Luo-Rudy model to the Shannon model to the Mahajan model—there are numerous intervening steps (Zeng et al., 1995; Puglisi and Bers, 2001; Bassani et al., 2004).

Further developments in modelling are constantly being made. Work is also now being increasingly focused on tissue and organ simulations, and the pathologies that one encounters under such situations (Pitt-Francis et al., 2009; Arevalo et al., 2007). Such higher order simulations are computationally far more expensive, and some work has been conducted to investigate the specific effect of tissue level effects (Viswanathan and Rudy, 2000). Molecular simulations are being conducted, but due to their computational intensity, they are limited to ion channel investigations (Nekouzadeh and Rudy, 2011). Work is also ongoing on using bioenergetic considerations to model the system (Niederer, 2013). On a purely practical level, work is also increasingly being performed to standardise the computational tools used for simulation, to support reuse of code and replicability of results (Pitt-Francis et al., 2009; Mirams et al., 2013), and advances in the techniques used to perform the simulations are ongoing (Dangerfield et al., 2012).

1.2.3 Difficulties in Model Construction

The first difficulty in model construction is perhaps the most obvious: the data used to construct a model are finite—sometimes surprisingly so, especially if the model is designed to reproduce healthy human hearts. But even if the possible problems of limited sample size are ignored (it is beyond the scope of this thesis to discuss the different possible methods of using data for validation and verification), there are other problems (Marder and Taylor, 2011). One of the foremost problems faced in cardiac modelling is that of scale: the processes involved in the full functioning of the heart can vary across several orders of magnitude (10^9 spatially and 10^15 temporally). It is thus currently impossible to model every single aspect of the heart, and it is essential to use approximations (Abramson et al.,

2010).

As shall be expanded upon further in §1.3, variation is a constant in dealing with experimental data, but methods of dealing with this variation are still being developed. Until recently, a model would be designed to reproduce the 'data', without reproducing the variation. The choice of what 'data' to fit was therefore important, and yet fraught with difficulties. For example, should one fit to the maximum measured value on the basis that voltage-clamp experiments tend to make the currents appear smaller and slower than they are, or should one fit to the mean value in order to use a greater range of data? Both approaches have problems, not least that a model with mean parameters can fail to have properties exhibited by all of the test subjects (Golowasch et al., 2002; Marder and Taylor, 2011). Not only does each choice have inherent problems, but the associated variation, expressed often in experimental work as a standard deviation, is often ignored in model construction (Carusi et al., 2012).

A further problem comes with unknown parameters—even in well-studied systems, there are parameters that, for whatever reason, are not well-defined. There are two possible options to deal with this: (1) adopt a parameter derived from a similar system, *e.g.* the peak conductance used in a model for a different species, or (2) adjust the parameter on the basis of producing the expected output (so-called *phenomenological fitting*). This problem is especially prevalent for fitting parameters that describe peak/maximum conductance of ion channels; in voltage clamp experiments, it is often the most poorly defined parameter, due to both the possible detrimental effects of the initial cell isolation procedure on ion channels (Yue et al., 1996), and due to the drug block used to try and isolate particular ion channels for measurement being either incomplete or non-specific.

Further difficulties can arise when fitting data due to the experimentally verified repolarisation reserve. While this is a genuine physical phenomenon, when fitting parameters for a computational model, it is possible that, due to the relations between currents and ion concentrations, the model may present with a wide range of possible values that fit the experimental data, with the computational repolarisation reserve being very different to the physiological repolarisation reserve.

1.3 Variation

Stochasticity has been mentioned in passing already in this dissertation. Stochasticity, and more generally variation, is now being recognised as being of key importance in many biological questions. Variation exists at all ranges, and at all scales. It is at this point that is is useful to draw a distinction between *intrinsic* and *extrinsic* noise/variability. Simply put, intrinsic variability is considered to be due to variation within the system being considered (e.g. stochastic opening/closing events of ion channels in a cardiac cell), while extrinsic variability is due to changes outwith the system (e.g. environmental factors). It should be noted that there is the capacity for overlap and thus confusion within this system. For example, environmental factors (extrinsic) can influence the expression of certain genes, but this expression is due to mRNA levels, which are subject to intrinsic variability; as such, extrinsic variability can link to intrinsic variability and *vice versa*, and the dividing line can be blurred. However, the definition given is sufficient for the purposes of this thesis.

In §1.3.1, the various possible sources and problems of variation in biological settings are discussed, and in §1.3.2, the various methods used so far to address this variation in computational models are outlined.

1.3.1 Experimental & Physiological Variation

As stated, variation exists at all scales, both temporally and spatially: from individual ion channels, to the level of the cell, to tissue, to organ, and to organism. At the scale of ion channels, variation has been noted in the mRNA concentrations that are translated to functional ion channels (Gaborit et al., 2007). While it has been noted that mRNA levels do not translate directly to ion channel concentrations for numerous reasons (Edelman and Gally, 2001; Nattel et al., 2010), a link has still been demonstrated between mRNA levels and observable effects on the AP (Walmsley et al., 2013). There is also a substantial body of evidence for notable variation in cellular processes—in neuronal studies, maximal conductance of ion channels has been shown to vary substantially (Marder and Taylor, 2011; Goaillard et al., 2009; Schulz et al., 2006), both in theoretical and experimental studies.

As has previously been commented upon, there are notable differences in cellular APs depending the the spatial location on the cell—this is evident from variation between ventricular and atrial (and other) cardiac cells (Carmeliet and Vereecke, 2002), to transmural variation (Antzelevitch et al., 1991). Furthermore, temporal variation is also a common phenomenon (Walmsley et al., 2010). At the organ level, numerous factors have been cited as having notable effects on the AP (Taylor and Lipsitz, 1997). At the organismal level, different individuals react differently to different therapies (Kannankeril et al., 2010). After considering all these changes, there are still notable differences that can be attributed to gender, age, and experimental method (Yang and Clancy, 2012; Kurokawa et al., 2012).

A complete and comprehensive discussion of experimental variation is beyond the scope of this dissertation. However, mention shall be made for the experimentally observed variation that is of note for the models and experiments contained within this thesis. The complete gamut of experimental values is almost impossible to find—rather, some measure of the experimental range can be ascertained from the literature by the error values given, which represent the standard deviation of the results from the presented mean value.

Action Potential Variation

Collaborators from the University of Szeged have been able to obtain AP traces for ventricular tissue at pacing rates of 600ms and 1,000ms. These preparations are internally consistent—the trace for each preparation comes from a single sample (although the electrode recording the potential occasionally lost contact, and thus had to be reapplied, thus leading to the recording not necessarily coming for the same individual myocyte). These valuable data allow assessment of the intra-preparation variation in AP, and inter-preparation variation. Using data for APD₉₀ (arguably the most common AP metric), these data suggest an intra-preparation variability of $\sim 3.5\%$, and an inter-preparation variability of $\sim 10\%$.

However, these data come from a single laboratory—a full literature review provides a much greater range of values. From these results, it is possible to generate a range of APD₉₀ values that can be regarded as physiologically realistic. While many of these values come from tissue preparations, preliminary experiments with the Mahajan model suggest that there is little difference between cellular and tissue results for APD₉₀. The results of such a literature search gives the physiological range for APD₉₀ to be 142-185ms for a CL of 400ms, 160-220ms for a CL of 600ms, and 167-230ms for a CL of 1,000ms (Biagetti and Quinteiro, 2006; Szigligeti et al., 1996; Yan et al., 2001; Jung et al., 2011; Goldhaber et al., 2005; Wu et al., 2011, 2008b,a; Chen et al., 2006; Kirchhof et al., 2003; Eckardt et al.,

Current	Location	Value (pApF ⁻¹)	Percentage Variation
I_{to}	Apex	29.6 ± 5.7	$\pm 19.3\%$
	Base	16.5 ± 4.4	$\pm 26.6\%$
$I_{ m Ks,peak}$	Apex	5.61 ± 0.43	±7.7%
	Base	2.14 ± 0.18	$\pm 8.4\%$
$I_{ m Ks,tail}$	Apex	1.65 ± 0.21	$\pm 12.7\%$
	Base	0.85 ± 0.19	$\pm 22.4\%$
$I_{ m Ca,L}$	Apex	-5.85 ± 0.76	±13.0%
	Base	-7.17 ± 0.63	$\pm 8.8\%$

Table 1.1: A summary of the results for the current densities of basal and apical ventricular tissue in human and canine myocytes and tissue, obtained from Szentandrássy et al. (2005).

1998; Zabel et al., 1997b,a; Kurz et al., 1993; McIntosh et al., 2000). Subsequent to these ranges being established and the populations being derived (see Chapter ??), further literature was discovered that could expand these ranges further, but not to such an extent that it was felt that the population would change dramatically (Wu et al., 2006).

Ion Channel Variation

Many experiments, aware of the added variation associated with differences in gender and age, pick the experimental test subjects to be as homogeneous as possible. Even with that, notable variations can be found. Fülöp et al. (2004) used experimental data to determine properties of $I_{\text{Ca,L}}$, and found (amongst other details) that the density of peak $I_{\text{Ca,L}}$ in human ventricular myocytes was $-5.5 \pm 0.4 \text{pApF}^{\text{--}}$ ($\pm 7.27\%$). Similar values were obtained by Li et al. (1999), with even greater variation reported for plateau $I_{\text{Ca,L}}$ (up to 18.2%). In the work of Fink et al. (2008), by fitting to experimental data, g_{KI} was determined to be $0.5871 \pm 0.0503 \text{pApF}^{\text{--}}\text{mV}^{\text{--}}$.

Notable work has also been carried out in Szentandrássy et al. (2005), which examined the amplitude (and time constants) of several ion channel currents in human and canine tissue to study the inhomogeneities between basal and apical ventricular tissue—a summary of these results is given in Table I.I. It can be seen that the individual results demonstrate significant variation, and variation between apical and basal values is often noteworthy.

The effect of gender is addressed in humans in Verkerk et al. (2005), and in rabbits in Sims et al. (2008), which also examines the effect of age. The data for humans is not statistically significant, but still shows consistent bias. For example, $I_{\rm Ca,L}$ density in female ventricular myocytes is consistently greater than in male at all voltages (e.g. 129% at omV) and for $I_{\rm to}$, female $I_{\rm to}$ density at 50mV is 84% of the male. The individual measurements in Sims et al. (2008) show up to 9.4% variation in individual measurements, but the gender difference can be far greater—from 22% in prepubertal rabbit ventricular myocytes, to 32% in adult myocytes extracted from the base of the ventricle.

1.3.2 Computational Modelling of Variation

It is a handicap that is only recently being overcome that, in constructing cell models, the focus has been on fitting the model output to one particular value, whether this is the mean or some other

measure. As such, these models are often poorly equipped to reproduce the variation that is seen in the original experimental data.

When modelling variation, it must be remembered once again that models are only useful up to the point of answering the question posed to them—taking a model further than its original purpose is useful only when this new purpose does not stray irrevocably from the original, and the original models assumptions and approximations remain valid. As such, reproduction of variation using existing computational models is fraught with difficulties when translating the results to the real system. For example, Davies et al. (2012) showed that by allowing parameters describing peak ion channel conductance to vary, a wide range of possible values could be made to fit experimental AP, with peak conductance varying by factors of 0.1 to 7.43 of the original model's peak conductance value. However, this demonstrates one possible problem in simply fitting parameters: numerically, it may well be entirely accurate, but it may not represent physiological reality (experimental data for conductance variation implies a variation of as much as threefold (Schulz et al., 2006)).

As a tangent to this problem of maintaining the link between reality and model, it has been shown that, under particular conditions, a computational model can produce identical AP traces while using two vastly different input parameter sets. However, these models can then differ in other important regards; Sarkar and Sobie (2010) used two parameter sets for the same model to produce near identical AP traces, but very different data for $[Ca^{2+}]_i$. Obviously, if the model is required only to reproduce the AP, both models are entirely adequate. However, the problem is demonstrated further in Cherry and Fenton (2007) in a comparison between two different canine ventricular models: while both produce APs of similar morphologies, there are significant underlying differences, and these are reflected in different responses to certain conditions. Similar conclusions have been reached in Romero et al. (2011), and work has been made in finding some way of curating models according to their differences in response (Terkildsen et al., 2008; Cooper et al., 2011).

It is generally felt that a 'good' model should be able to reproduce a wide range of data. If a biophysically detailed model can reproduce a wide range of data, it gives us greater confidence that the underlying details of the model can be said to represent reality. By combining a consideration of the model response to different conditions with data regarding the model response to variation, a model's accuracy and efficacy may be assessed, and new experimental directions suggested to either determine which of certain models' hypotheses regarding cell mechanics is accurate, or to elucidate other questions raised.

Methods of determining the sources of variability in computational models can be divided into two arenas: stochastic variation, by which it is meant that stochastic, random properties are introduced into the model, and deterministic variation, by which it is meant that known variation is applied to the model to observe the resulting effect. These arenas are not mutually exclusive, and it is perhaps more useful to consider both methods as tools: the former is adapted for recreation of the actual physical environment, and the latter is adapted for mapping the input/output parameter space. For the purposes of this thesis, they will be discussed seperately below.

Stochastic Methods

Increasing effort has been focused of late on incorporating stochasticity into computational models, and using this to reproduce experimentally observed variation. Previously, the requirement for multiple simulations to determine the statistical properties of the model prohibited large scale use of

such methods, but this restriction has diminished with increasing computational power. It should be noted at this point that stochasticity may be introduced to a model in more than one way—the two most common manners are to introduce stochastic differential equations to the model, or to introduce stochastic state transitions to a Markov model (if one is present). Heijman et al. (2013) were able to demonstrate that the latter approach produces results that more closely correlate with experimentally observed short and long term variability.

Tanskanen et al. (2005) introduced stochastic gating to Ca^{2+} dynamics, and were able to demonstrate the important implications of stochastic events in observable phenomena, in their case the occurance of early after-depolarisations (for details of this pathology, see §1.4.2). Further work in Sato et al. (2009) demonstrated that inclusion of stochastics in I_{Ks} was able to reproduce chaotic occurence of EADs (though it should be noted that this paper also demonstrated that many seemingly random events relating to EADs could rather be explained by model sensitivity to initial conditions leading to chaotic outcomes). Pueyo et al. (2011) and Lemay et al. (2011) showed that stochastic variation in ion channels, both in terms of channel conductances and channel numbers, has a measurable effect on APD variation. However, in constrast to this, Sato et al. (2010) appear to demonstrate that the main cause behind APD variation is chaotic variation, and not stochasticity (though it is admitted that stochasticity could be a potentiating factor).

While such effects are masked by inter-cellular electrotonic interactions in tissue (Zaniboni et al., 2000; Heijman et al., 2013), the effects could become more noted under some pathological conditions, *e.g.* intercellular uncoupling due to acidosis. It should also be noted that there is a spatial scale beyond which the 'smoothing' effects of tissue electrotonic interactions are reduced (Xie et al., 2007; Sato et al., 2009). However, both experimental and computational studies of sino-atrial node cells indicate that stochastic fluctuations remain important for observed variation in beat rate (Ponard et al., 2007).

Deterministic Methods

The interplay between input parameters and output parameters is decidely non-linear, and the effects of changes in one, or many parameters, cannot easily be predicted (Sarkar et al., 2012); this is illustrated in Fig. 1.6. The previous modelling paradigm has been to consider the model as occupying a single point in the input/output parameter space—this is represented by the blue point in the figure. However, it is becoming increasingly prevalent to consider variation in both input and output parameter space, represented by the cloud of red points in the figure. However, the mapping between the input and output spaces is non-linear, and there is no guarantee that a point in the middle of the input cloud translates to a point in the middle of the output cloud, or even if the clouds are the same shape (as shown in the figure). This point is worth restating: due to the complicated interactions between input components, the effect of a specified change in one input parameter may produce an entirely different effect if other input parameters are altered. Furthermore, the problem increases in complexity as one considers more input parameters and output metrics.

There are many different ways to try and elucidate this input/output mapping. One methods is *parameter sensitivity analysis*, which varies one individual input parameter at a time to elucidate the effect this parameter has on a given set of output metrics, and expressing this effect in a quantitative manner (e.g., $\Delta_{\text{output}}/\Delta_{\text{parameter}}$). This work successfully indicates which parameters are most directly responsible for which output metric (Nygren et al., 1998; Romero et al., 2009a, 2010; Corrias et al., 2011; Romero et al., 2011). This method (and many of the following methods) has obvious extensions

Figure 1.6: Illustration of the effect of possible parameter variation on model output. In this example, two given input parameters $(p_1 \text{ and } p_2)$ have a complicated effect on two measured outputs of the model $(o_1 \text{ and } o_2)$; one possible example data point is highlighted in blue. Based on a figure from Sarkar et al. (2012).

to computational predictions for pharmocological ion channel block.

The above methods are predominately for single parameter variation, and biophysically accurate cell models are highly inter-connected, through membrane channel currents' dependence on V_m , ion concentrations etc.. As such, with increasing computational power available, more work is being conducted to examine the multi-dimensional parameter space of a model.

To explore the effect of changing the input of a model, with a given set p of input parameters (e.g., g_{NaK} , τ_{NaK} , etc.), a range of possible values for each parameter can be defined. There are numerous methods in itself to define this range: it could be based on a percentage range, e.g., $\pm 15\%$, or based on the range observed for a given parameter in the literature, or by using log-normal distributions of the parameters (the range will equally represent halving and doubling the parameter).

However, as the number of parameters being varied increases, the size of the space increases exponentially. As such, to minimise the computational cost, it is common to survey a sample of the parameter space. There are many ways to extract such a sample, the simplest being a simple random sampling technique. Alternative methods include stratified sampling and Latin hypercube sampling, which attempt to ensure that the parameter space is evenly tested (McKay et al., 1979).

An elegant method to extract the required data from this multi-demonsional sample was demonstrated in Sobie (2009). For a parameter space surveying the effects of p parameters, a sample of size n parameter sets (where the complete size of the space can be represented by N parameter sets) is selected. Models using these parameter sets are simulated, and the result of these models is recorded according to m output metrics (e.g., APD_{90} , $[Ca^{2+}]^{sys}_{i}$, etc.). Before further analysis, the data are mean-centred and normalised by the standard deviation, i.e. $x_{new} = (x_{orig} - \mu_x)/\sigma_x$, where x_{new} and x_{orig} are the new and original data values, and μ_x and σ_x are the population mean and standard deviation for the data, respectively.

The data are now organised into matrices: the input parameter data are organised into an input $n \times p$ matrix (**X**), and the output metric data are organised into a $n \times m$ output matrix (**Y**). Each column thus represents one of the input parameters/output metrics, and each row represents one of the parameter sets simulated, and the resulting output. Multivariable regression analysis is then used to derive the effect matrix **B** such that

$$\mathbf{XB} = \mathbf{\hat{Y}} \approx \mathbf{Y},\tag{1.13}$$

where $\hat{\mathbf{Y}}$ is a close approximation of \mathbf{Y} . The result of this analysis is the $p \times m$ matrix of regression coefficients, and has been utilised as each row representing the effect of a given input parameter on

the numerous output metrics, and each column representing the effect of various input parameters on a particular output metric. This has been shown to be successful in predicting the output of a new parameter set (Sobie, 2009), implying the underlying assumption that the relations remain linear is relatively well-founded while ion concentrations are not varied too much (Sobie, 2009; Sarkar and Sobie, 2010). The method has also been used to replicate the results of the original parameter sensitivity analysis, *i.e.* to demonstrate the effect of a series of input parameters on a given output metric. This method has been used to investigate the effect of such variability on the repolarisation reserve (Sarkar and Sobie, 2011), and also to investigate the possible range of variability in a given set of parameters given the experimentally observed variation in certain output metrics by reversing the regression analysis (*i.e.* calculating **B** such that $\mathbf{X} \approx \hat{\mathbf{X}} = \mathbf{Y}\mathbf{B}^{-1}$) (Sarkar and Sobie, 2010).

This method is an elegant method of investigating the effect of multiple parameter variation on multiple model outputs. However, it should be noted that this method still, to some degree, reduces the multi-dimensional parameter variation to a single-dimensional result. The interactions are still tested, and are thus present in an intrinsic sense in the resulting matrix **B**. Extracting these interactions in an explicit manner is not so simple, and thus the results of the multi-dimensional parameter variation are, in effect, reduced to the result of a single-dimensional parameter variation.

Despite this apparent limitation, the conclusions reached by this method are often robust. Furthermore, the methodology has been shown to be adaptable to stochastic simulations—Heijman et al. (2013) used the methodology to examine variation in maximal conductance in ion channels when stochasticity was also included. This was used to determine effects that were not apparent when single ion channel stochasticity was tested.

An alternative method is to take advantage of so-called genetic algorithms to tune models to given experimental data. This has been used to provide single parameter sets, and adapt models to new data (Kherlopian et al., 2011). It has also been successfully adapted to find multiple parameter sets that reproduce experimental data, where the parameter sets are not considered part of a continuum of models, with minor variations accounting for the different sets (Achard and De Schutter, 2006; Syed et al., 2005). While that work reproduced a single set of experimental data, it is not unreasonable to expect this method to be easily adapted to reproduce a range of experimentally observed values.

The effects of multiple parameter variation can also be addressed via a comprehensive parameter sweep (this approach has also been referred to as a database method). The guiding principle of such a method is to comprehensively examine a given parameter space—for example, if the effect of variation in p different parameters is being investigated, the model is simulated for every single possible combination of these parameters. If there are q different possible values for each parameter, this leads to p^q different simulations that would be run, unless measures are taken to limit this by some means (such as by taking advantage of experimentally demonstrated correlations between parameters (Schulz et al., 2006)). While this method can be computationally expensive, such a parameter search is also often embarrassingly parallel, and thus can be performed rapidly in real-time using such facilities as the Nimrod computing system (Abramson et al., 2000, 1997, 2009, 2010).

The parameter sweep method was first used in Prinz et al. (2003), which applied variation to eight maximal conductances in a model of a lobster stomatogastric neuron to generate a database of about 1.7million different models, and then classified these models according to their activity pattern. This database could then be searched for different models that satisfied a prescribed set of criteria. Similar work has been carried out to investigate CICR (Sobie and Ramay, 2009). Indeed, there is increasing traction for replacing the previous paradigm of a single parameter set with a single model with a pa-

rameter 'space' for a model, leading to a population of models (Davies et al., 2012; Taylor et al., 2009; Prinz et al., 2003; Marder and Taylor, 2011).

It is of note, and one of the topics addressed in this thesis, that the progress in investigating parameter variation is in its infancy, and thus it is not surprising that some aspects are not readily addressed. Specifically, while model populations have been used to recreate experimental variation, little investigation has been done on the population itself, *i.e.* what relations exist between the parameters involved in these individual models. Furthermore, while work has shown how the effects of disease and other pathological conditions can be recreated by simulataneous variation of input parameters, this has not yet been linked to the variation already in evidence under physiological conditions. This may be considered the main thurst of this DPhil thesis: to bridge the gap between recreation of physiological evidence, and the investigation of the changes inherent in disease states.

1.4 Cardiac Disease

Cardiac disease is a costly condition for Western countries. In the UK, cardiovascular disease (CVD) was the biggest killer in 2010, with 180,000 people dying and 46,000 of those deaths being premature; 80,000 of these deaths were from coronary heart disease. This costs the UK health system £8.7 billion, and the economy as a whole £19 billion (Townsend et al., 2012). On a global scale, the World Health Organisation estimates CVD is responsible for \sim 30% of deaths worldwide, equating to \sim 17.3 million people in 2008 (Alwan et al., 2011).

However, the pathology of CVD can often be complicated. In-depth analysis of the mechanisms for disease is vital in determining how to treat diseases at a more fundamental level than symptomatically. As such, research has demonstrated many causal links between the cellular mechanisms, such as ion channels and their links to pacing rate, etc., and pathologies (Inoue et al., 2006; Kurz et al., 1993; Rodríguez et al., 2006; Dumaine et al., 1996; Nattel et al., 2010; Jurkat-Rott and Lehmann-Horn, 2005; Biagetti and Quinteiro, 2006).

Using the multi-parameter matrix regression method mentioned in §1.3.2, it is possible to simulate the effects on the model output of the known changes in input parameters in disease conditions. The data from the effect matrix **B** can then be used to determine which of the parameter changes causes which effect on the output, and to what degree (Sarkar et al., 2012).

As with computational modelling in general, the importance of the possible effects of variation are coming into focus in disease modelling as well. The focus in this dissertation thus far has been on the importance of modelling variation to gain insight into the mechanics underlying cellular processes, and the different methods that have been used in this goal thus far. However, one key area of work is not just to understand variability under normal conditions, but under pathological conditions—it has already been established that variation can have significant, meaningful effects to the outcome of pathological conditions, either by exacerbating or ameliorating the condition (Sarkar et al., 2012; John et al., 2012). For example, a particular variation can lead to either an increase or a reduction in the repolarisation reserve. The possible consequences of the changes that this variation could lead to are significant, not least due to providing a key to understanding the differing responses to different therapies, including the effects of drug block.

A leading area of research to that effect has been on drug-induced Long QT Syndrome (diLQTS).

Drug-induced or not, LQTS represents a condition where repolarisation is extended; the name derives from the prolongation of the QT interval on an ECG. The most common genetic form of LQTS (Type 1) is caused by a mutation in one of the subunits of the $I_{\rm Ks}$ channel, which works to delay the channel activation (Jons et al., 2011; Hoefen et al., 2012; Jou et al., 2013), though other forms have also been determined with mutations in the $I_{\rm Na}$ channel (Hashambhoy et al., 2011). Where LQTS is druginduced, the most common causative drug action is to block the action of $I_{\rm Kr}$ (in the literature, this may also be referred to as HERG block, named after the gene that produces the channel). However, not only is the response to $I_{\rm Kr}$ -blocking drugs variable (Kannankeril et al., 2010), but the degree of response appears uncorrelated with baseline ECG recordings. The causes for these differences are only beginning to be elucidated, but it has been theorised that it may be due to differing repolarisation reserves (Varró and Baczkó, 2011), which in turn may be due to variation—variation which may be amenable to computational modelling (it should be noted that drug effects are subject to variation at many levels, and the variation that has been the subject of this dissertation—ion channel variation—is only one). Novel work has been performed in Sarkar and Sobie (2011) to investigate the link between different input parameter values and the resulting change in output when drug block is simulated.

It is of note that the 'opposite' condition, Short QT Syndrome (SQTS), is also a clinically recognised phenomenon, and instead of being anti-arrhythmic, is also pro-arrhythmic (Adeniran et al., 2011). This serves to underline how the AP, while adaptive, is also tightly constrained, with alterations of properties in either positive or negative manner leading to subsequent loss of stability.

1.4.1 Ischæmia

A particularly active area of research in cardiac disease is that of *ischamia*, due to its being one of the main causes of sudden cardiac death (SCD): 80% of those who fall victim to SCD have some form of coronary heart disease. Ischæmia represents a cessation of normal blood flow to an area of tissue, which leads to waste products not being removed, and nutrients not being delivered. This results in a series of changes to the tissue and the surrounding area, which, if left untreated, can lead to irreversible damage to the cells in the tissue and cell death (Carmeliet, 1999). At the tissue/organ level, this process can lead to subsequent fibrillation, arrhythmia and the failure of the pump action of the heart (Harris et al., 1954).

As such, investigation into the effects and possible treatments of ischæmia is of high value. Due to the difficulty of gathering human data, especially during an ischæmic event, animal experiments have moved to fill the gap where possible. To that end, rabbit data has been shown to reproduce many of the salient features of human data (Giles and Imaizumi, 1988; Barrett et al., 1997; Panfilov, 2006), and many metrics can be adapted according to a body mass relation (Noujaim et al., 2007). Computational models are also of vital importance, as they allow probing of questions that, due to the rapidity of the evolution of acute iscæmia and the difficulties of getting transmural experimental data, are currently untenable to be answered experimentally.

As has been discussed previously, ion channels are the key determinant for many of the mechanisms of the cell that relate to its pump action, notably the membrane potential and the concurrent change in $[Ca^{2+}]_i$ that leads to cardiac contraction. Changes to these channels thus have a profound effect on the action of the cardiomyocyte, and thus the heart itself; drug block has already been mentioned as one means for changing the action of these channels. Under conditions of ischæmia, however, the key changes come from changes in the extra- and intra-cellular concentrations of ions and metabo-

lites. From the Nernst potential, for example, one can plainly see that changing concentrations will impact on the action of channels. During ischæmia, however, it is more than just ion concentrations that change. With pumps such as the Na-K pump, changes in the concentrations of ATP and ADP drastically affect the response.

Studies have shown that, in some drug trials intended to treat arrhythmic effects, the drug actually had a delitrious effect (Ch'en et al., 1998), emphasising the complicated nature of these pathological conditions.

As with all computational modelling of complex biological systems, it is necessary to determine what are the salient features of a system, and aim to model only those changes: it is unnecessary to model every known aspect of a system. In this thesis, the focus is on the acute inital phase of ischæmia (phase 1A), which is considered as the first ~ 10 minutes following the onset of ischæmic conditions. For a summary of the changes involved in phase 1A acute ischæmia, and how these changes can be effectively modelled computationally, the reader is referred to (Rodríguez et al., 2006). It is noted that there is much work done on ischæmia beyond this stage, in terms of (a) reperfusion, (b) longer infarct times and (c) cardiac remodelling, but these studies are not addressed in detail here as beyond the remit of this work.

Ischæmic Changes in AP

The ischæmic changes in AP are well-documented, and are an increase in $V_{\rm rest}$, and a decrease in APD, AP amplitude, and the maximum rate of membrane depolarisation ((${\rm d}V_m/{\rm d}t$)_{max}) (Carmeliet, 1999; Weiss and Shine, 1982; Weiss et al., 1992; Kléber et al., 1987b; Barrett et al., 1997; Janse et al., 2001). These changes are not minor— $V_{\rm rest}$ is increased by $15 \, {\rm mV}$, APD₉₀ is reduced by approximately 50%, and AP amplitude is reduced from $\sim 120 \, {\rm mV}$ to $\sim 90 \, {\rm mV}$ (Rodríguez et al., 2002). As a result of these changes, and other underlying changes, ischæmic tissue is known for its arrhythmogenic properties—3 to 9 min after occlusion, APD alternans can be observed in the ventricles, which can then degenerate into spontaneous fibrillation (Downar et al., 1977). Computer models of ischæmia have also noted the importance of increased heterogeneity within the tissue (Avitall, 1979; Behrens et al., 1997).

Under normal conditions, in well-oxygenated myocardium, the cell recovers its excitability almost simultaneously with its repolarisation. As such, the APD is a good indicator of the *effective refractory period (ERP)*, defined as the minimum length of time a cell requires before another AP can be elicited (Huang et al., 2004). However, with ischæmic conditions leading to the impaired recovery of $I_{\rm Na}$, the cell recovery is also impaired, and the ERP lengthens beyond the APD; the difference between the two is referred to as the PRR period. Some work has shown an initial decrease in ERP during early acute ischæmia (Downar et al., 1977), while other work has shown a consistent increase (Sutton et al., 2000) during the first three minutes of ischæmia. In both cases, however, the correlation between APD and ERP breaks down, leading to an increase in PRR.

Simulations have demonstrated that the changes in the AP can be reproduced by simulating the effects of three changes of ischæmia (Shaw and Rudy, 1997b,a; Ferrero et al., 1996; Rodríguez et al., 2004): the removal of oxygen from the environment (*anoxia*), and the increase in extracellular potassium (*by-perkalamia*), and the increase in intracellular and extracellular pH (*acidosis*); it should be noted that some simulations of ischæmia simulate a partial block of the flow of oxygen instead of the complete block: this is referred to as *hypoxia*. Furthermore, studies have shown that each of these conditions are required for 'successful' ischæmia—individually applied, the conditions present different pathologies

(Rodríguez et al., 2006; Sharma et al., 1983). The time course of each of these separate pathologies during ischæmia is poorly defined (Niederer, 2013).

The key methods of simulating these changes is explained in more detail below, but briefly, these are:

Anoxia: Activation of I_{K-ATP} channels.

Hyperkalæmia: Increase in extracellular K^+ concentration ($[K^+]_o$).

Acidosis: Decrease in peak conductance of I_{Na} and $I_{\text{Ca,L}}$ by 25%.

While simulation of these three conditions as described has been shown to reproduce the changes in the AP, it must be remembered that the ischæmic milieu is complicated: these changes offer the most efficient means of reproducing the AP effects of ischæmia. However, one may also reproduce ischæmia using alternative formulations, or include other aspects. A common method is to model the changes as a direct response to the changing concentrations of ATP and ADP. Another important consideration can be the inhibition of $I_{\rm NaK}$ caused by anoxia. This, coupled with the decrease in $[{\rm Na^+}]_{\rm o}$ caused by the lack of perfusion, leads to an increase in $[{\rm Na^+}]_{\rm i}$ and an inhibition of $I_{\rm NaCa}$. Finally, recent research has shown the $I_{\rm to}$ downregulation caused by hypertrophy could have significant implications for AP repolarisation (Verkerk et al., 2011).

It should be noted that the ischæmic conditions described here are correct for fully ischæmic tissue. In reality, however, it is rarely the case that fully ischæmic tissue arises in isolation, and instead there are three distinct areas of concern: normal tissue, the central ischæmic zone, and the so-called *border zone*, which is the interface between normal and ischæmic tissue. This border zone experiences varying degrees of anoxia, acidosis and hyperkalæmia over different spatial ranges. There are several very important consequences of this spatial heterogeneity, which have been examined in depth in the literature: what follows is a brief outline of the relevant points for this thesis, whose focus is not specifically on the effects of spatial heterogeneity. However, the heterogeneities mentioned here may also be found to be due to parameter variation, which is the focus of this thesis.

An example model of the spatial distribution of anoxia, acidosis and hyperkalæmia is presented in Tice et al. (2007). The used spatial variation is shown in Fig. 1.7, and demonstrates that the individual components of ischæmia do not vary uniformly across the defined border zone. This sets up the stage for heterogeneity in tissue responses. One key feature of this is the evolution of APD and ERP: in both the central ischæmic zone (CIZ) and border zone (BZ), APD decreases. However, due to the anoxic conditions with normal $[K^+]_o$ in the border zone, there is no concurrent increase in ERP in the border zone, while the ERP increases as described above ~ 6 minutes post-occlusion in the CIZ (Tice et al., 2007; Coronel et al., 2012). A further important heterogeneity is that of APD between the CIZ/BZ and the normal zone (NZ): due to the difference in repolarisation state, there can be a current flow from tissue with late repolarisation to tissue with early repolarisation (CIZ/BZ to NZ). This current flow causes depolarisation of the NZ; if this depolarisation reaches the threshold value, a spontaneous, ectopic beat is generated, in what is referred to as *phase 2 reentry* (Coronel et al., 2009; Lukas and Antzelevitch, 1996; Coronel et al., 2012).

It should be remembered that the BZ is not a simple 'buffer' between the CID and the NZ: Experimental data have also shown that a majority of extrasystoles occur in the peri-infarct zone, corresponding here with the BZ, *i.e.* these data imply that the conditions in the BZ, and not just in the CID, promote arrhythmogenesis (Chou et al., 2007). This may be due in part to the difference in conditions between the CIZ and the NZ leading to a sharp heterogeneity present in the BZ, which then gives rise

Figure 1.7: Distribution of hyperkalamia, anoxia and acidosis in a transmural ischamic tissue simulation. In non-transmural tissue, there is no gradient of $[K^+]_0$ and $f_{\rm ATP}$ values within their respective ischamic zones. This figure demonstrates the different ranges of border zones for the different components of ischamia. Figure originally from Tice et al. (2007).

to arrhythmogenic conditions (more detail is given in §1.4.2). Furthermore, it has been shown that the heterogeneity within the BZ is not uniform, by which it is meant that the concentration gradients of different ions are not the same across the BZ (Niederer, 2013).

Ischæmic Changes in [Ca²⁺]_i

However, it should be noted that changes during ischæmia are not limited to changes in the action potential—notable changes also occur in $[Ca^{2+}]_i$ and the contractile mechanisms of the cell (for a more detailed discussion of ischæmic changes in other ion concentrations, the reader is referred to Carmeliet (1999); Niederer (2013)). Immediately post-occlusion, there is an increase in $[Ca^{2+}]_i$ until \sim 2 min post-occlusion, followed by a decline (possibly to pre-occlusion levels), followed by a secondary increase at 5-15 min post-occlusion (see Fig. 1.8) (Lee et al., 1988; Mohabir et al., 1991; Camacho et al., 1993). The increase in $[Ca^{2+}]_i$ can be describe more fully as

- Elevation of $[Ca^{2+}]_i^{sys}$,
- Elevation of $[Ca^{2+}]_{i}^{dia}$,
- Broadening of systolic Ca²⁺ peak (indicative of reduced SR uptake function),
- Increase in net amplitude of the Ca^{2+} transient (though this is not always observed (Camacho et al., 1993)).

Results indicate that the increase in $[Ca^{2+}]_i$ is due mostly to the effects of acidosis, but other mechanisms are required in addition to explain the initial increase (Bers and Ellis, 1982; Mohabir et al., 1991). It has been hypothesised that the initial increase may be due to reduced SR uptake. The later increase may be augmented due to increased activation of $I_{\text{Ca,L}}$ caused by the increase in V_{rest} , though Niederer (2013) concluded that the increase in $[Ca^{2+}]_i^{\text{dia}}$ is due primarily to inhibition of I_{NaK} .

The increase in $[Ca^{2+}]_i$ could be in small part be responsible for the increase in V_{rest} due to the action of Ca^{2+} -activated cation channels (Colquhoun et al., 1981). The increase in $[Ca^{2+}]_i$ also occurs for low-flow ischæmia, *i.e.* it is also likely to be present in the border zone to ischæmic tissue (Camacho et al., 1993).

Figure 1.8: Mean systolic fluoresence ratio for rabbit hearts under ischamic conditions, normalised to pre-ischamic values. Data obtained using whole rabbit hearts loaded with indo-1, a cell-permeant fluorescent indicator for Ca^{2+} , and demonstrate an initial increase in $[Ca^{2+}]_i$, followed by a marginal decrease at 5-10 min post-occlusion, before increasing further. Figure originally from Mohabir et al. (1991).

The secondary increase coincides with pH_i increasing to a 'tipping point' at which changes in $[Ca^{2+}]_i$ are noted in purely acidic conditions, thus implying that this secondary increase is due entirely to decreasing pH_i .

There is a large body of evidence that the time constant of $[Ca^{2+}]_i^{dia}$ decline increases during ischæmia (Allen and Orchard, 1983; Camacho et al., 1994; Lee et al., 1988) (though not during hypoxia (Silverman et al., 1991)). This may be achieved via a change in either Ca^{2+} uptake to the SR, or via reduced extrusion of Ca^{2+} via I_{NaCa} ; evidence indicates that there is minimal change in Ca^{2+} -uptake from the extracellular space during ischæmia (Bourdillon and Poole-Wilson, 1982).

For a fuller summary of the changes in SR function during ischæmia, both in terms of uptake (SERCA) and release (RyR), the reader is referred to Mubagwa (1995). Other details of changes in Ca^{2+} handling during ischæmia are given in Talukder et al. (2009). Note that possible changes in mitochondrial Ca^{2+} handling are not considered in this thesis, as the consensus is that Ca^{2+} pathophysiology is mainly due to changes in the SR (Fauconnier et al., 2013).

Kinetic studies have demonstrated a decrease in action of SERCA with no change in Ca^{2+} sensitivity, *i.e.* there is a change in the number, not properties, of active SERCA. There is a large body of evidence for impaired SERCA action during ischæmia (Dhalla et al., 1988; Temsah et al., 1999; Lee et al., 1967; Toba et al., 1978; Kaplan et al., 1992). Krause and Hess (1984) present results indicating SERCA becomes more sensitive to $[Ca^{2+}]_i$ as pH_i decreases, with a reduction in maximal velocity. However, while a decrease in maximal velocity was also seen in Kaplan et al. (1992), there was no observed change in dissociation constant, representing Ca^{2+} sensitivity. Antibody assays indicate a reduction in the number of active SERCA channels (Levitsky et al., 1989). As such, these results indicate that the conditions reduce the open probability of the SERCA channel. The reduction in SERCA action

may be caused by ATP deficiency (Camacho et al., 1993), accompanied by other acidic effects (Krause and Hess, 1984). It has been suggested that free radicals are the means by which SERCA is impaired (Temsah et al., 1999; Wang et al., 2013; Xu et al., 1997; Zweier, 1988). The decrease in SERCA function persists after treatment for assays and the like, thus indicating that the causative agent in the change is not $[Ca^{2+}]_i$, and the recovery of SERCA action after reperfusion indicates SERCA is not denatured. It is of note that results indicate that expression of SERCA and phospholamban are altered during cardiac remodelling post-infarct (Sun et al., 2005).

It is unclear if release from the SR is also affected during ischæmia (increased loss would have a similar effect to reduced gain), with conflicting results. For example, Feher et al. (1989) used RyR blockers during ischæmia to achieve a reduction in rate of Ca²⁺ uptake, indicating an influence of RyR in the process, and Fauconnier et al. (2011) demonstrated an increase SR leak (though this is likely a reperfusion effect). However, other results do not indicate a change in release (Kaplan et al., 1992), and others indicate RyR action is actually decreased (RyR channels are inhibited by NADH (Wang et al., 2013), which increases during ischæmia (Esumi et al., 1991)).

The rôle of $I_{\rm NaCa}$ during ischæmia is unclear—that it transiently reverses direction is not in doubt, but it is considered unlikely that this is a permanent feature of the ischæmic milieu (Noble, 2002; Rodríguez et al., 2006); the reverse action of $I_{\rm NaCa}$ brings about the exact conditions required to return the exchanger to its normal operation, indicating that, at most, there is a reduction in $I_{\rm NaCa}$ during ischæmia. This inhibition is brought about not just due to the changes in ${\rm Ca}^{2+}$ concentration—it is also driven by the changing ${\rm Na^+}$ gradient, with a decrease in $[{\rm Na^+}]_{\rm o}$ caused by lack of perfusion, and an inhibition of $I_{\rm NaK}$ caused by anoxia. Noble (2002) used simulations to demonstrate the requirement of this increase in $[{\rm Na^+}]_{\rm o}$ to be modelled to account fully for the increase in $[{\rm Ca}^{2+}]_{\rm i}$, driven by the reduction in action of $I_{\rm NaCa}$.

The reduction in I_{NaCa} hypothesis has been used computationally (Pollard et al., 2002), with peak I_{NaCa} reduced by 80% for simulation of Phase 1B ischæmia. Tani and Neely (1989) demonstrated that the decrease in pH led to an rapid initial increase in $[\text{Na}^+]_i$ (via the "-Na⁺ exchanger), which then correlated with an increase in $[\text{Ca}^{2+}]_i$, and Cross et al. (1998) demonstrated a correlation in male mice between increased I_{NaCa} and declined ischæmic recovery. Furthermore, inhibiton of I_{NaCa} has been shown to have cardioprotective properties.

Opposing this increase in $[Ca^{2+}]_i$, there is a counter-intuitive decrease in contractile strength of the myocyte (Lee et al., 1988; Kaplan et al., 1992), accompanied by an increase in diastolic tension (Mubagwa, 1995). There are many suggested mechanisms to explain this decline in contractile strength, despite the increase in $[Ca^{2+}]_i$. Mohabir et al. (1991) postulated competitive inhibition by with Ca^{2+} in the troponin-C complex (Blanchard and Solaro, 1984), and thus the ischæmic decline in pH_i is responsible. Alternatively, Camacho et al. (1993) suggests the increase in inorganic phosphate (P_i) also attendant to ischæmia is responsible. However, against this fact is that contractile strength is reported to increase under hypoxic conditions (Kihara et al., 1989).

Another way to explain the decrease in contractile strength is to appeal to the 'garden hose effect', which is that the contractile strength of the myofilaments are reduced if the preceding relaxation is reduced (Camacho et al., 1993; Kléber et al., 1987a; Kléber, 1987; Vogel et al., 1982) (though some findings dispute such a mechanism *in vivo* (Zhao et al., 1988)). As such, while an increase in $[Ca^{2+}]_i^{sys}$ might indicate an increase in contractile strength, it is the increase in $[Ca^{2+}]_i^{dia}$, preventing relaxation, that is more influential by this hypothesis. Of note for this hypothesis is the increase in the time constant for decline in left ventricular pressure (Serizawa et al., 1981; Applegate et al., 1987; Serizawa et al., 1987;

Isoyama et al., 1987).

At 2-3 min post-occlusion, $[Ca^{2+}]_i$ alternans develops. This is likely due to the function of the sar-coplasmic reticulum, rather than APD alternans: the smaller transient follows a higher diastolic $[Ca^{2+}]_i$, indicating reduced SR release due to reduced SR sequestration. This is not to say that the SR release is impaired; rather it is a consequence of the steep-load relation of the SR previously mentioned (Shiferaw et al., 2003; Restrepo et al., 2008).

Other Ischæmic Changes

It has also been shown that $[Na^+]_i$ and $[Na^+]_o$ change during ischæmia, although the degree of this change is subject to some debate. Carmeliet (1999) provides a comprehensive review of the available literature at the time regarding changes the occur during ischæmia, concluding that there is a sustained monotonic increase in $[Na^+]_i$ during ischæmia, leading to a two- to five-fold increase (leading to values of 20-25 mM 15-20 min after ischæmia). However, within the realm of acute ischæmia which concerns this thesis, the increase is more often noted as $\sim 50\%$ (Malloy et al., 1990; Pike et al., 1993; van Echteld et al., 1991; Tani and Neely, 1989).

Noble (2002) obtained good agreement with experimental data regarding the changes in $[Ca^{2+}]_i$ by modelling a $\sim 30\%$ decrease in $[Na^+]_o$, coupled with a threefold increase in $[Na^+]_i$.

Results from Coetzee and Opie (1987) indicate that (mainly as a result of hypoxia), ischæmia reduces the incidence of DADs in guinea pigs, which would ordinarily be expected to increase in conditions of increased $\lceil Ca^{2+} \rceil_i$.

Anoxia

Anoxia represents the loss of oxygen from the ischæmic milieu, and is not directly modelled in most simulations, but is instead modelled by the effect on cellular respiration and the consequent decrease in ATP availability and increase of APD concentration. This change in ATP concentration is mainly felt through the activation of the $I_{\text{K-ATP}}$ channel, which is the single greatest contributor to the shortening of the AP. This shortening of the AP, along with the increased inexcitability and shift of V_{rest} , works to protect the cell by avoiding excessive K^+ loss (Carmeliet, 1999).

Two important different formulations of this channel have been developed: the first was originally by Ferrero et al. (1996), and has been subsequently used by Trénor et al. (2007), while the second was originally shown in Michailova et al. (2005), and has been implemented in Terkildsen et al. (2007) and Michailova et al. (2007). Both are dependent on both the ATP and ADP concentrations, and also $[K^+]_o$. The Ferrero implementation was used in a Luo-Rudy model, which can be considered as a general mammalian model, but much of its components are derived from guinea pig data. It includes dependency on the intracellular concentrations of Na^+ and Mg^{2+} . The Michailova model was originally implemented in a canine model, was subsequently adapted for a rabbit ventricular model, and lacks the sensitivity to Na^+ and Mg^{2+} . Both models are detailed in the appendix (§??).

Activation of the $I_{\text{K-ATP}}$ channels is achieved by decreasing [ATP]_i and increasing [ADP]_i. However, experimental data on the channel itself demonstrated that full activation of the channel in the cell would require a change in concentrations that are significantly greater than actually observed. It is thus currently thought that only minimal activation of the $I_{\text{K-ATP}}$ channels is required to effect the

changes in ischæmia; under this 'spare channel' hypothesis (Cook et al., 1988), activation has been postulated as being $\sim 0.8\%$ (Rodríguez et al., 2002; Weiss et al., 1992; Ferrero et al., 1996; Trénor et al., 2007; Ferrero et al., 2003b). This small degree of activation allows for a very finely balanced activation of the channel to achieve the desired affect: consequently, it has been noted that the degree of activation of this channel is important for determining the vulnerability of the tissue/organ to reentry in regional ischæmia (Ferrero et al., 2003a; Trénor et al., 2005). However, within the ischæmic tissue, the activation of $I_{\text{K-ATP}}$ is usually modelled as a linear increase of activation until it reaches maximum activation at 10 minutes post-occlusion (Trénor et al., 2007; Tice et al., 2007).

Hyperkalæmia

The onset of hyperkalæmia is known to follow a biphasic pattern: a rapid rise for the first ~ 10 minutes of ischæmia, followed by a plateau phase (changes later in time are not discussed here) (Wilde et al., 1988). This rise is partly caused by the efflux of K^+ from the cell caused by activation of I_{K-ATP} , but this impact is negligible on its own—simulations have demonstrated that the increase requires the coordinated action of I_{K-ATP} with both inhibition of I_{NaK} and activation of an inward Na^+ -pump, I_{NaS} (Rodríguez and Ferrero, 2001b,a; Rodríguez et al., 2002; Terkildsen et al., 2007).

The rate of increase, and final plateau level, of $[K^+]_o$ has been shown to be rate-dependent, with values of $[K^+]_o$ ranging from 12-17 mM reached within 10-15 min (Rodríguez et al., 2002; Coetzee and Opie, 1987). However, most simulation models take the time to plateau to be 10 min, and the plateau concentration to be ~ 12 mM, though higher values have also been used in simulation (Ferrero et al., 2003a; Trénor et al., 2007). Research indicates that hyperkalæmia (with $[K^+]_o$ greater than 12.5 mM) is vital to the development of reentry, with its absence precluding reentry (Ferrero et al., 2003b).

The hyperkalæmia is secondary to $I_{\text{K-ATP}}$ in shortening the APD—its main effect is to affect the excitatory properties of the cell/tissue. For the first few minutes of ischæmia, the rise in $[K^+]_o$ and its attendant rise in V_{rest} brings the cell closer to the activation threshold, and thus facilitates an increase in conduction velocity in tissue. However, once $[K^+]_o$ rises beyond 8mM, the process of reactivation of I_{Na} is inhibited by the increase in V_{rest} . This reduces the number of I_{Na} channels available at the start of the AP, and this reduction in I_{Na} magnitude is reflected in a reduction in the rate of depolarisation of the cell (a reduction in $(dV_m/dt)_{\text{max}}$); it has been shown that the recovery of $(dV_m/dt)_{\text{max}}$ and the h.j inactivation gates of I_{Na} are similar (Shaw and Rudy, 1997b). In severe ischæmia (10-12 minutes after onset), this can lead to a biphasic upstroke (Barrett et al., 1997): the first phase corresponds to the reduced activation of I_{Na} , and the second phase corresponds to the activation of $I_{\text{Ca,L}}$ that completes the depolarisation. It should be noted that $(dV_m/dt)_{\text{max}}$ is proportional as the square root to conduction velocity in tissue, so changes in cellular $(dV_m/dt)_{\text{max}}$ correlates with changes in tissue restitution properties (Kléber and Rudy, 2004; Walton and Fozzard, 1983; Tasaki and Hagiwara, 1957)—ischæmia is known to lead to a reduction in conduction velocity in tissue (Caldwell et al., 2007), though this is likely partly due to electrical uncoupling of the cells in ischæmic tissue (Kléber et al., 1987a).

The reduction in availability of I_{Na} channels is also one of the main causative agents behind ischæmic post-repolarisation refractoriness (PRR), and changes in myocardial excitability generally (Coronel et al., 2012).

Acidosis

The acidosis inherent in ischæmia is due mostly to the accumulation of CO_2 that arises due to the cessation of blood flow, with a lesser rôle being played by the accumulation of lactate (Ichihara et al., 1984). The concentration of hydrogen ions that is represented by the pH is normally a tightly regulated feature of the cell, with small changes being responsible for major cellular dysfunction (Ch'en et al., 1998). During the first 10 minutes of ischæmia, intra- and extra-cellular pH drop linearly with time, with a ~ 1 pH unit drop after 10 minutes (Shaw and Rudy, 1997b; Neely et al., 1975; Mohabir et al., 1991)¹.

Prior work in computational modelling has shown the key importance of the impact this has on the ion flow through the $I_{\rm Na}$ and $I_{\rm Ca,L}$ channels. It is postulated that acidosis is one of the key factors behind reduced uptake of ${\rm Ca^{2+}}$ into the SR during ischæmia (Krause and Hess, 1984). The ischæmic pH drop reduces $I_{\rm Na}$ maximum conductance by 25% (as well as shifting its voltage-current dependence by $3.4~{\rm mV}$) (Kagiyama et al., 1982). For guinea pig ventricular cells, a sigmoidal decrease in maximum conductance of $I_{\rm Ca,L}$ has been noted (with a 50% reduction at pH 6.6). In computational models of ischæmia, the effect of acidosis is thus modelled as a linear reduction in maximum conductance of $I_{\rm Na}$ and $I_{\rm Ca,L}\sim 5$ minutes after the onset of ischæmia, until a 25% reduction is reached after 10 minutes (Trénor et al., 2007); this corresponds to a pH of ~ 6.4 (Ferrero et al., 2003b). This, combined with the previously mentioned effects of hyperkalæmia, leads to a marked decrease in cell excitability and (${\rm d}V_m/{\rm d}t$)_{max}, leading to a decrease in membrane exitability conduction velocity in tissue (Shaw and Rudy, 1997b).

The ischæmic suppression of I_{NaK} (Dhalla et al., 1988) has been shown to be due to acidosis, which linearly affects I_{NaK} (Severi et al., 2002).

1.4.2 Arrhythmogenesis

One of the key reasons for studying ischæmia, as mentioned previously, is due to the cost of sudden cardiac death, and the rôle ischæmia plays in sudden cardiac death. As such, one of the key areas of research is how ischæmia can lead to sudden cardiac death, and thus the study of ischæmic arrhythmogenesis is vital.

Studies have been conducted to establish the means by which ischæmic conditions can provide the substrate for arrhythmogenesis, and how it can lead to sustained arrhythmias. It should be emphasised at this point that arrhythmogenesis is not the preserve of ischæmia—arrhythmias can develop for any number of reasons, ischæmia being just one of them. It is of note that increasing susceptibility to arrhythmias is a consequence of something as harmless as aging, due to the increasing heterogeneity presented by certain breakdowns in the heart structure that occur naturally (Spach et al., 1988). Furthermore, it is not the case that tissue will 'become' arrhythmic, and then, inevitably, arrhythmia will occur. Rather, tissue changes dynamically, and while it may have greater arrhythmogenic properties, this does not necessarily guarantee arrhythmia (Weiss et al., 2006).

Fibrillation in ventricular tissue can be initiated and maintained by several different mechanisms, including:

 $^{^{1}}$ It should be noted that the value of pH falls approximately linearly (see Fig. 10 in Mohabir et al. (1991)), and not the concentration of "

- Ectopic beats (Haïssaguerre et al., 1998; Tobón et al., 2010; Zhang et al., 2011);
- Spiral/scroll waves and rotors (Jalife, 2003, 2009; Pandit and Jalife, 2013);
- Stable points of reentry (Mandapati et al., 2000; Allessie et al., 1977);
- Unidirectional block (Allessie et al., 1976; Gough et al., 1985);
- Vortex formation (Cabo et al., 1996).

Ischæmia has been shown to provide the substrate for all of these mechanisms. Furthermore, research has demonstrated that structural heterogeneities, another potential side-effect of ischæmia, can increase incidence of arrhythmia and other atypical electrical activity, *e.g.* early after-depolarisations (EADs) (Auerbach et al., 2011).

This increase in *dispersion* of electrophysiological properties is a key area for investigation for its arrhythmogenic properties (Kuo et al., 1983). Recently, there has been increased awareness of the importance of multiple different factors simulataneously for the development of arrhythmias in ischæmic tissue. While ischæmia is well known to increase the vulnerability to ectopic beats (Zhang et al., 2011), the 'width' of the vulnerability window (the range of coupling intervals at which an ectopic beat will lead to sustained arrhythmias) does not increase throughout the onset of ischæmia, i.e. arrhythmogenic risk does not increase linearly with duration of ischæmia (Tice et al., 2007; Romero et al., 2009b; Barrett et al., 1997). Furthermore, the properties of the tissue play a profound rôle in arrhythmogenesis. For example, it is insufficient to only have unidirectional block in tissue for a sustained arrhythmia: an interaction between the coupling interval, the unidirectional block, the restitution properties of the tissue, the scale of the block, and the conduction velocity in the tissue are all required (Coronel et al., 2009; Cherry et al., 2012). As a consequence, there is a minimum size of tissue for which arrhythmias can be maintained, though this size can vary depending on the circumstances of the tissue (Adeniran et al., 2011). This is not to say that increased dispersion, evident on the cellular scale, is meaningless—quite the opposite. Rather, the dispersion can provide the underlying properties that, given the correct interaction, leads to dangerous tissue properties.

As has previously been noted, the cardiac system is an inherently dynamic one—multiple different currents interact in a time- and voltage-dependent manner with each other, and other complicating factors, to produce the complete AP and associated cardiac contraction. These interactions vary depending on the condition of the heart, and the environment the heart is found in. This dynamic nature is true not only for the normal, 'healthy' conditions, but also for the pathological conditions such as arrhythmia and ischæmia. As such, with the consideration that the key thrust of this thesis is concerned with variability in ion channel properties and its correlation with experimentally observed variation, it is necessary to consider the ionic bases that exist for arrhythmias, and how these manifest in arrhythmia.

What follows is a brief summary of some pertinent ion channel mutations, their possible effects, and how these electrical alterations can lead to arrhythmia; I do not pretend to present a comprehensive compilation of the possible mutations, for the simple fact that they are legion, and it is beyond the remit of this thesis to discuss them.

Delayed & Early After Depolarisations

Delayed after depolarisations (DADs) refer to a spontaneous depolarisation of the cell after cellular repolarisation with no external stimulus. Along with early after depolarisations (see next section), these can provide the source for ectopic beats, which lead to reentry. DAD frequency is sensitive to increases in $[Ca^{2+}]_i$. The underlying mechanism by which the $[Ca^{2+}]_i$ overload can occur is usually attributed to changes in $I_{Ca,L}$, but can also be due to alterations in CICR (a mechanism which can also result in EADs) (Volders et al., 1997). Due to the increased $[Ca^{2+}]_i$, this activates I_{NaCa} , which due to its electrogenic properties, depolarises the cell, causing a DAD (Clusin, 2003).

The occurence of DADs is reduced during ischæmia (though not in the border zone or otherwise partly ischæmic tissue), mostly due to the action of hypoxia, but DAD amplitude increases after reperfusion of the ischæmic tissue (Coetzee and Opie, 1987; Ferrier et al., 1985).

Early after depolarisations (EADs) are spontaneous, premature depolarisations that occur before the original cellular repolarisation is completed, and usually occur under situations when the AP is prolonged. There are many possible ionic causes for EADs: the most commonly muted ionic bases for EADs are changes in $I_{\text{Ca,L}}$ and I_{Na} : I_{Na} mutations resulting in reduced inactivation work to prolong the action potential (Clancy and Kass, 2005; Hashambhoy et al., 2011; Hiraoka et al., 1992). If the Ca²⁺ concentration near the sarcolemmal surface remains high during the AP, an EAD may also be initiated by I_{NaCa} (Volders et al., 1997). The upstroke of an EAD is often slower than the usual AP upstroke, due to the fact that it is based on $I_{\text{Ca,L}}$, rather than I_{Na} (the lack of repolarisation means the I_{Na} current is still deactivated) (Clusin, 2003).

In addition to defects in the currents regulating repolarisation causing EADs, it is also possible for defects in the Ca^{2+} -handling system to be responsible. Moreover, it has been demonstrated that the stochastic effects within each of these systems can increase the likelihood of the development of EADs (Tanskanen et al., 2005; Sato et al., 2009; Heijman et al., 2013).

There are clinical similarities between EADs and the presentation of LQTS, but the rôle has not been confirmed (Clusin, 2003).

The mode of transmission from the occurrence of DAD/EAD to arrhythmia is complicated, especially in connexion with the effects of cell coupling, but recent research is beginning to unravel the substrate requirements for an after depolarisation event to graduate to an arrhythmogenic event (Tanskanen et al., 2005).

Alternans

Alternans is a phenomenon wherein the AP or $[Ca^{2+}]_i$ alternate properties from beat to bear. Usually (and for the majority of the following discussion), this is defined in terms of the duration of the AP alternating between long/short duration and the $[Ca^{2+}]_i$ transient alternating between large/small magnitude, respectively. However, it should be remembered that alternans of the AP amplitude also exists, and may reflect the inability of I_{Na} to fully recover between beats. Such a process could lead to a reduction in plateau amplitude, which in turn could lead to $[Ca^{2+}]_i$ alternans (Clusin, 2003). AP amplitude and APD alternans are not exclusive of each other.

In tissue, alternans can be either spatially concordant or spatially discordant (Fig. 1.9). Qian et al. (2001) demonstrated that Ca^{2+} alternans 'self-organises' into regions of tissue with the same phase,

Figure 1.9: Spatially cordant (left column, A) and spatially discordant (right column, B) alternans in cardiac tissue. The top panel shows the AP and [Ca²⁺]_i data for two separate locations in the tissue. The second panel shows the APD during each beat, with the third panel showing the APD gradient resulting from such distributions. The bottom panel shows the simulated ECG for each tissue. These simulations were performed using a modified Luo-Rudy model from Qu et al. (2000). Figure originally from Weiss et al. (2006).

and hypothesised that this was due to movement of Ca^{2+} across gap junctions to neighbouring cells allowed some degree of synchronisation.

It is a consequence of spatially discordant alternans that, between the out-of-phase regions there is a region where no alternans is present (referred to as the *nodal line*). It is this region that, due to the APD/[Ca²⁺]_i gradients being steepest here, is most predisposed to develop unidirectional conduction block—a region with long APD remains inexcitable when a region with short APD is excited, with the resulting AP being blocked initially, forming a reentrant circuit (Laurita and Rosenbaum, 2008). As concordant alternans does not demonstrate this dispersion of properties, it is less arrhythmogenic than discordant alternans. It has been shown that heterogeneity is not required for spatially discordant alternans to occur—due to the dependence of conduction velocity on diastolic interval (conduction velocity restitution), rapid pacing can induce spatially discordant alternans in homogeneous tissue (Watanabe et al., 2001). It should be noted that the ischæmic reduction in I_{Na} availability increases the DI range over which CV varies, and thus increases the risk of this phenomenon. Ectopic beats have also been shown to induce spatially discordant alternans in homogeneous tissue.

There is no firm evidence as to whether APD alternans drives Ca^{2+} alternans or vice versa, but mounting evidence indicates the latter to be the case. Evidence for this is varied. Lee et al. (1988) demonstrated that, when APD alternans and Ca^{2+} alternans were both present (and recorded simultaneously), there was no variation in the APD until after the Ca^{2+} transient had reached its peak—it was only after this that the APD alternans manifested. Chudin et al. (1999) were able to induce Ca^{2+} alternans without APD alternans at rapid pacing rates in cell (demonstrating an instability in the Ca^{2+} system independent of the AP). Similar results have been achieved *in vivo* (Aistrup et al., 2006) and *in silico* (Sato et al., 2006).

Research is ongoing to determine the mechanisms behind Ca^{2+} alternans. A simple hypothesis is that, at rapid pacing rates, there is simply not enough time for the SR to resequester the Ca^{2+} it has previously expended. Thus, the subsequent Ca^{2+} release from the SR is smaller, leaving more time for a complete resequestration of the Ca^{2+} by the SR. Mechanistically, Shiferaw et al. (2003) were able to reproduce Ca^{2+} alternans at rapid pacing rate without APD alternans by including a steep release-load relation for the Ca^{2+} sequestered in the SR. On a molecular level, evidence indicates that alternans prone regions express significantly less SERCA2a and RyR—this indicates responsibility lies with both SR uptake and release. Research is ongoing to find methods to protect these functions in ischæmia/reperfusion therapy (Wang et al., 2013).

The coupling between APD and Ca^{2+} alternans can be either positive or negative, *i.e.* a long APD corresponds with a large $[Ca^{2+}]_i$ transient, or with a small $[Ca^{2+}]_i$ transient. Which of these relations predominates depends on the dominant current—a large $[Ca^{2+}]_i$ transient enhances both I_{Ks} and inactivation of $I_{Ca,L}$ (which would shorten the APD, *i.e.* negative coupling), but this process also enhances the activity of the exchanger I_{NaCa} (which would prolong the APD, *i.e.* positive coupling) (Shiferaw et al., 2005). Whether postive or negative coupling predominates suggests which mechanism is the primary. Positive coupling is the more common of the two (Laurita and Rosenbaum, 2008), but negative coupling has been noted in ischæmia (Lee et al., 1988).

The question can be asked: is it APD alternans that leads to Ca^{2+} alternans, or vice versa? Mounting experimental evidence indicates that the onset of APD alternans is caused by instability in the cellular $[Ca^{2+}]_i$ dynamics, rather than by a steep APD restitution curve (Goldhaber et al., 2005; Pruvot et al., 2004). There are also expected spatial differences in the nodal line distributions depending on whether the alternans are AP or Ca^{2+} driven (Weiss et al., 2006).

while the restitution curve can provide a useful indication of when tissue is at risk of developing alternans (when the gradient is greater than 1), it must be remembered that this assumes that the APD depends entirely on the preceding DI—this is not the case. It has been observed that alternans can occur when the restitution curve is flat, and no alternans when it is steep (Shiferaw et al., 2005). Part of the reason for these anomalies is the influence of $[Ca^{2+}]_i$. It is of note that ischæmia has been observed to flatten the restitution curve (Taggart et al., 1996) while the occurence of alternans is increased (Qian et al., 2001). Much work has been conducted to try and determine the mechanisms behind Ca^{2+} alternans (Shiferaw et al., 2003; Weiss et al., 2006).

Spiral Waves & Rotors

Spiral/scroll waves and rotors are a key area of research in arrhythmias, and consist of a curved wavefront and curved wavetail that meet each other at a 'phase singularity' (Fitzhugh, 1960, 1961; Gray et al., 1998). This singularity processes around an excitable core, with this core able to be either stationary or mobile. Not only do spiral waves represent a local source of activation within ventricular tissue, they are also liable to break-up, leading to fibrillation (Riccio et al., 1999).

Of the previously discussed ion channels, three are known to have an effect on rotor dynamics: I_{Na} , I_{K1} and I_{Ks} . Block of $I_{Ca,L}$ has been shown to stabilise reentry, but its exact rôle is still unclear (Jalife, 2003, 2009). I_{Na} is of note due to its impact on the conduction velocity of the AP, and thus affects the speed (and thus dominant frequency) of the spiral wave. Reducing I_{Na} also increases the meander of the core of the rotor. I_{K1} mediates the electrotonic interactions between the unexcited core and the immediate surroundings. It also stabilises reentry due to its ability to shorten APD and reduce conduction velocity near the core, thus preventing wavefront-wavetail interactions that could destabilise and breakup the rotor. Furthermore, by decreasing the resting membrane potential, it facilitates the reactivation of I_{Na} (Pandit and Jalife, 2013). I_{Kr} has been shown to accelerate the rotor, but not to a degree comparable to the effect of I_{K1} . While I_{Ks} does not in itself change the rotor dynamics, it is important in determining post-repolarisation refactoriness and wave break formation, and thus important for the transition from tachycardia to fibrillation. It is also interesting to note that regional cooling of a rotor decreases its frequency and increases the rotor's meander, causing it to collide with a boundary and extinguish (Yamazaki et al., 2012).

Re-entry

Generally speaking, *re-entry* refers to the mechanism by which the electrical activity of the heart does not complete its 'normal' circuit, but instead enters a process whereby it self-excites itself (hence the term)—the process has also been termed 'circus movement'. Such a process can occur in many forms, as spiral waves (§1.4.2) or figure-of-eight patterns (Ferrero et al., 2003b) to name but two. Modes of reentry are often associated with tachycardia, and can subsequently lead to fibrillation and other forms of arrhythmogenesis.

It must be noted that ectopic beats are not required to initiate reentry—dispersion of electric properties in the tissue are sufficient (Xie et al., 2007). An example is the case where there are two regions with different effective refactory periods (ERPs), one of which is greater than the CL, the other where it is less. The region with ERP > CL is thus unexcitable when the wavefront is incident, and conduction block occurs at this region. However, the region with ERP < CL is excitable, and thus the wavefront progresses through this region, and subsequently may excite the previously blocked region in a figure-of-eight reentry pattern (Weiss et al., 2006).

Bibliography

- Abramson, D., Bernabeu, M. O., Bethwaite, B., Burrage, K., Corrias, A., Enticott, C., Garic, S., Gavaghan, D. J., Peachey, T., Pitt-Francis, J., Pueyo, E., Rodríguez, B., Sher, A., and Tan, J. (2010). High-throughput cardiac science on the Grid. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 368(1925):3907–23.
- Abramson, D., Bethwaite, B., Enticott, C., Garic, S., and Peachey, T. (2009). Parameter Space Exploration Using Scientific Workflows. In Allen, G., Nabrzyski, J., Seidel, E., Albada, G. D., Dongarra, J., and Sloot, P. M. A., editors, *Computational Science ICCS 2009*, volume 5544 of *Lecture Notes in Computer Science*, pages 104–113. Springer Berlin Heidelberg, Berlin, Heidelberg.
- Abramson, D., Foster, I., Giddy, J., Lewis, A., Sosic, R., Sutherst, R., and White, N. (1997). The Nimrod Computational Workbench: A Case Study in Desktop Metacomputing. In *20th Australasian Computer Science Conference*.
- Abramson, D., Giddy, J., and Kotler, L. (2000). High performance parametric modeling with Nimrod/G: killer application for the global grid? In 14th International Parallel and Distributed Processing Symposium, pages 520–528, Cancun, Mexico. IEEE Comput. Soc.
- Achard, P. and De Schutter, E. (2006). Complex parameter landscape for a complex neuron model. *PLoS Computational Biology*, 2(7):e94.
- Adeniran, I., McPate, M. J., Witchel, H. J., Hancox, J. C., and Zhang, H. (2011). Increased vulnerability of human ventricle to re-entrant excitation in hERG-linked variant 1 short QT syndrome. *PLoS Computational Biology*, 7(12):e1002313.
- Aistrup, G. L., Kelly, J. E., Kapur, S., Kowalczyk, M., Sysman-Wolpin, I., Kadish, A. H., and Wasserstrom, J. A. (2006). Pacing-induced heterogeneities in intracellular Ca2+ signaling, cardiac alternans, and ventricular arrhythmias in intact rat heart. *Circulation Research*, 99(7):e65–73.
- Allen, D. G. and Orchard, C. H. (1983). Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. *The Journal of Physiology*, 339(1983):107–22.
- Allessie, M. A., Bonke, F. I. M., and Schopman, F. J. G. (1976). Circus movement in rabbit atrial muscle as a mechanism of tachycardia. II. The role of nonuniform recovery of excitability in the occurrence of unidirectional block, as studied with multiple microelectrodes. *Circulation Research*, 39(2):168–77.
- Allessie, M. A., Bonke, F. I. M., and Schopman, F. J. G. (1977). Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The "leading circle" concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. *Circulation Research*, 41(1):9–18.

- Alvarez-Lacalle, E., Cantalapiedra, I. R., Peñaranda, A., Cinca, J., Hove-Madsen, L., and Echebarria, B. (2013). Dependency of calcium alternans on ryanodine receptor refractoriness. *PloS One*, 8(2):e55042.
- Alwan, A., Armstron, T., Bettcher, D., Branca, F., Chisholm, D., Ezzati, M., Garfield, R., MacLean, D., Mathers, C., Mendis, S., Poznyak, V., Riley, L., Tang, K. C., and Wild, C. (2011). World Health Organisation Global status report on noncommunicable diseases 2010. Technical report.
- Antzelevitch, C., Sicouri, S., Litovsky, S. H., Lukas, A., Krishnan, S. C., Di Diego, J. M., Gintant, G. A., and Liu, D.-W. (1991). Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells. *Circulation Research*, 69(6):1427–1449.
- Applegate, R. J., Walsh, R. A., and O'Rourke, R. A. (1987). Effects of nifedipine on diastolic function during brief periods of flow-limiting ischemia in the conscious dog. *Circulation*, 76(6):1409–21.
- Arevalo, H., Rodríguez, B., and Trayanova, N. A. (2007). Arrhythmogenesis in the heart: Multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity. *Chaos*, 17(1):015103.
- Armstrong, C. M. and Bezanilla, F. (1977). Inactivation of the sodium channel. II. Gating current experiments. *Journal of General Physiology*, 70(5):567–90.
- Auerbach, D. S., GrzÄŻda, K. R., Furspan, P. B., Sato, P. Y., Mironov, S., and Jalife, J. (2011). Structural heterogeneity promotes triggered activity, reflection and arrhythmogenesis in cardiomyocyte monolayers. *The Journal of Physiology*, 589(Pt 9):2363–81.
- Avitall, B. (1979). Computer simulation of ventricular tachyarrhythmias during coronary artery ligation and release. *Journal of Electrocardiology*, 12(1):17–22.
- Barrett, T. D., MacLeod, B. A., and Walker, M. J. A. (1997). A model of myocardial ischemia for the simultaneous assessment of electrophysiological changes and arrhythmias in intact rabbits. *Journal of Pharmacological and Toxicological Methods*, 37(1):27–36.
- Bassani, J. W. M., Bassani, R. A., and Bers, D. M. (1994). Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. *The Journal of Physiology*, 476(2):279–93.
- Bassani, R. A., Altamirano, J., Puglisi, J. L., and Bers, D. M. (2004). Action potential duration determines sarcoplasmic reticulum Ca2+ reloading in mammalian ventricular myocytes. *The Journal of Physiology*, 559(Pt 2):593–609.
- Beeler, G. W. and Reuter, H. (1977). Reconstruction of the Action Potential of Ventricular Myocardial Fibres. *The Journal of Physiology*, 268:177–210.
- Behrens, S., Li, C., and Franz, M. R. (1997). Effects of myocardial ischemia on ventricular fibrillation inducibility and defibrillation efficacy. *Journal of the American College of Cardiology*, 29(4):817–24.
- Bers, D. M. and Berlin, J. R. (1995). Kinetics of [Ca]i decline in cardiac myocytes depend on peak [Ca]i. *The American Journal of Physiology*, 268(1 Pt 1):C271–7.
- Bers, D. M. and Ellis, D. (1982). Intracellular calcium and sodium activity in sheep heart Purkinje fibres. Effect of changes of external sodium and intracellular pH. *Pflügers Archiv: European Journal of Physiology*, 393(2):171–8.

- Bezanilla, F. (2000). The voltage sensor in voltage-dependent ion channels. *Physiological Reviews*, 80(2):555–92.
- Bezanilla, F. and Armstrong, C. M. (1977). Inactivation of the sodium channel. I. Sodium Current Experiments. *Journal of General Physiology*, 70(5):549–66.
- Bhargava, A., Lin, X., Novak, P., Mehta, K., Khorchev, Y., Delmar, M., and Gorelik, J. (2013). Super-Resolution Scanning Patch-Clamp Reveals Clustering of Functional Ion Channels in the Adult Ventricular Myocyte. *Circulation Research*, pages 1112–1120.
- Biagetti, M. O. and Quinteiro, R. A. (2006). Gender differences in electrical remodeling and susceptibility to ventricular arrhythmias in rabbits with left ventricular hypertrophy. *Heart Rhythm: the Official Journal of the Heart Rhythm Society*, 3(7):832–9.
- Blanchard, E. M. and Solaro, R. J. (1984). Inhibition of the activation and troponin calcium binding of dog cardiac myofibrils by acidic pH. *Circulation Research*, 55(3):382–91.
- Bourdillon, P. D. and Poole-Wilson, P. A. (1982). The effects of verapamil, quiescence, and cardioplegia on calcium exchange and mechanical function in ischemic rabbit myocardium. *Circulation Research*, 50(3):360–8.
- Bueno-Orovio, A., Cherry, E. M., and Fenton, F. H. (2008). Minimal model for human ventricular action potentials in tissue. *Journal of Theoretical Biology*, 253(3):544–60.
- Cabo, C., Pertsov, A. M., Davidenko, J. M., Baxter, W. T., Gray, R. A., and Jalife, J. (1996). Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle. *Biophysical journal*, 70(3):IIO5–II.
- Caldwell, J., Burton, F. L., Smith, G. L., and Cobbe, S. M. (2007). Heterogeneity of ventricular fibrillation dominant frequency during global ischemia in isolated rabbit hearts. *Journal of Cardiovascular Electrophysiology*, 18(8):854–61.
- Camacho, S. A., Brandes, R., Figueredo, V. M., and Weiner, M. W. (1994). Ca2+ transient decline and myocardial relaxation are slowed during low flow ischemia in rat hearts. *The Journal of Clinical Investigation*, 93(3):951–7.
- Camacho, S. A., Figueredo, V. M., Brandes, R., and Weiner, M. W. (1993). Ca(2+)-dependent fluorescence transients and phosphate metabolism during low-flow ischemia in rat hearts. *The American Journal of Physiology*, 265(1 Pt 2):H114–22.
- Carmeliet, E. (1961). Chloride ions and the membrane potential of Purkinje fibres. *The Journal of Physiology*, 156:375–388.
- Carmeliet, E. (1999). Cardiac ionic currents and acute ischemia: from channels to arrhythmias. *Physiological Reviews*, 79(3):917–1017.
- Carmeliet, E. (2006). Repolarization Reserve in Cardiac Cells. *Journal of Medical and Biological Engineering*, 26(3):97–105.
- Carmeliet, E. and Vereecke, J. (2002). Cardiac Cellular Electrophysiology. Springer.
- Carusi, A., Burrage, K., and Rodríguez, B. (2012). Bridging experiments, models and simulations: an integrative approach to validation in computational cardiac electrophysiology. *American Journal of Physiology Heart and Circulatory Physiology*, 303(2):H144–55.

- Ch'en, F. F.-T., Vaughan-Jones, R. D., Clarke, K., and Noble, D. (1998). Modelling myocardial ischaemia and reperfusion. *Progress in Biophysics and Molecular Biology*, 69(2-3):515–38.
- Chen, W., Wasserstrom, J. A., and Shiferaw, Y. (2009). Role of coupled gating between cardiac ryanodine receptors in the genesis of triggered arrhythmias. *American Journal of Physiology Heart and Circulatory Physiology*, 297(1):H171–80.
- Chen, X., Cordes, J. S., Bradley, J. A., Sun, Z., and Zhou, J. (2006). Use of arterially perfused rabbit ventricular wedge in predicting arrhythmogenic potentials of drugs. *Journal of Pharmacological and Toxicological Methods*, 54(3):261–72.
- Cherry, E. M. and Fenton, F. H. (2007). A tale of two dogs: analyzing two models of canine ventricular electrophysiology. *American Journal of Physiology Heart and Circulatory Physiology*, 292(1):H43-55.
- Cherry, E. M., Fenton, F. H., and Gilmour, R. F. (2012). Mechanisms of ventricular arrhythmias: a dynamical systems-based perspective. *American Journal of Physiology Heart and Circulatory Physiology*, 302(12):H2451–63.
- Chou, C.-C., Zhou, S., Hayashi, H., Nihei, M., Liu, Y.-B., Wen, M.-S., Yeh, S.-J., Fishbein, M. C., Weiss, J. N., Lin, S.-F., Wu, D., and Chen, P.-S. (2007). Remodelling of action potential and intracellular calcium cycling dynamics during subacute myocardial infarction promotes ventricular arrhythmias in Langendorff-perfused rabbit hearts. *The Journal of Physiology*, 580(Pt.3):895–906.
- Chudin, E., Goldhaber, J. I., Garfinkel, A., Weiss, J. N., and Kogan, B. (1999). Intracellular Ca(2+) dynamics and the stability of ventricular tachycardia. *Biophysical Journal*, 77(6):2930–41.
- Clancy, C. E. and Kass, R. S. (2005). Inherited and acquired vulnerability to ventricular arrhythmias: cardiac Na+ and K+ channels. *Physiological Reviews*, 85(1):33-47.
- Clancy, C. E. and Rudy, Y. (1999). Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. *Nature*, 400(6744):566–9.
- Cleemann, L., Wang, W., and Morad, M. (1998). Two-dimensional confocal images of organization, density, and gating of focal Ca2+ release sites in rat cardiac myocytes. *Proceedings of the National Academy of Sciences of the United States of America*, 95(18):10984–9.
- Clusin, W. T. (1983). Caffeine induces a transient inward current in cultured cardiac cells. *Nature*, 301(5897):248–50.
- Clusin, W. T. (2003). Calcium and cardiac arrhythmias: DADs, EADs, and alternans. *Critical Reviews in Clinical Laboratory Sciences*, 40(3):337–75.
- Coetzee, W. A. and Opie, L. H. (1987). Effects of components of ischemia and metabolic inhibition on delayed afterdepolarizations in guinea pig papillary muscle. *Circulation Research*, 61(2):157–65.
- Colquhoun, D., Neher, E., Reuter, H., and Stevens, C. F. (1981). Inward current channels activated by intracellular Ca in cultured cardiac cells. *Nature*, 294(5843):752–4.
- Cook, D. L., Satin, L. S., Ashford, M. L. J., and Hales, C. N. (1988). ATP-sensitive K+ channels in pancreatic beta-cells. Spare-channel hypothesis. *Diabetes*, 37(5):495–8.
- Cooper, J., Mirams, G. R., and Niederer, S. A. (2011). High-throughput functional curation of cellular electrophysiology models. *Progress in Biophysics and Molecular Biology*, 107(1):11–20.

- Coronel, R., Janse, M. J., Opthof, T., Wilde, A. A. M., and Taggart, P. (2012). Postrepolarization refractoriness in acute ischemia and after antiarrhythmic drug administration: action potential duration is not always an index of the refractory period. *Heart Rhythm: the Official Journal of the Heart Rhythm Society*, 9(6):977–82.
- Coronel, R., Wilms-Schopman, F. J. G., Opthof, T., and Janse, M. J. (2009). Dispersion of repolarization and arrhythmogenesis. *Heart Rhythm: the Official Journal of the Heart Rhythm Society*, 6(4):537–43.
- Corrias, A., Giles, W. R., and Rodríguez, B. (2011). Ionic mechanisms of electrophysiological properties and repolarization abnormalities in rabbit Purkinje fibers. *American Journal of Physiology Heart and Circulatory Physiology*, 300(5):H1806–13.
- Cross, H. R., Lu, L., Steenbergen, C., Philipson, K. D., and Murphy, E. (1998). Overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ischemia/reperfusion injury in male, but not female, transgenic mice. *Circulation Research*, 83(12):1215–23.
- Dangerfield, C. E., Kay, D., and Burrage, K. (2012). Modeling ion channel dynamics through reflected stochastic differential equations. *Physical Review E, Statistical, Nonlinear, and Soft Matter Physics*, 85(5 Pt 1):051907.
- Davies, M. R., Mistry, H. B., Hussein, L., Pollard, C. E., Valentin, J.-P., Swinton, J., and Abi-Gerges, N. (2012). An in silico canine cardiac midmyocardial action potential duration model as a tool for early drug safety assessment. *American Journal of Physiology Heart and Circulatory Physiology*, 302(7):H1466–80.
- Dhalla, N. S., Panagia, V., Singal, P. K., Makino, N., Dixon, I. M. C., and Eyolfson, D. A. (1988). Alterations in heart membrane calcium transport during the development of ischemia-reperfusion injury. *Journal of Molecular and Cellular Cardiology*, 20 Suppl 2(Supplement II):3–13.
- DiFrancesco, D. and Noble, D. (1985). A Model of Cardiac Electrical Activity Incorporating Ionic Pumps and Concentration Changes. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 307(1133):353–398.
- Downar, E., Janse, M. J., and Durrer, D. (1977). The effect of acute coronary artery occlusion on subepicardial transmembrane potentials in the intact porcine heart. *Circulation*, 56(2):217–224.
- Dumaine, R., Wang, Q., Keating, M. T., Hartmann, H. A., Schwartz, P. J., Brown, A. M., and Kirsch, G. E. (1996). Multiple mechanisms of Na+ channel–linked long-QT syndrome. *Circulation Research*, 78(5):916–24.
- Eckardt, L., Haverkamp, W., Göttker, U., Madeja, M., Johna, R., Borggrefe, M., and Breithardt, G. (1998). Divergent effect of acute ventricular dilatation on the electrophysiologic characteristics of d,l-sotalol and flecainide in the isolated rabbit heart. *Journal of Cardiovascular Electrophysiology*, 9(4):366–83.
- Edelman, G. M. and Gally, J. A. (2001). Degeneracy and complexity in biological systems. *Proceedings of the National Academy of Sciences of the United States of America*, 98(24):13763-8.
- Eisner, D. A., Choi, H. S., Díaz, M. E., O'Neill, S. C., and Trafford, A. W. (2000). Integrative analysis of calcium cycling in cardiac muscle. *Circulation Research*, 87(12):1087–94.

- Eisner, D. A. and Sipido, K. R. (2004). Sodium calcium exchange in the heart: necessity or luxury? *Circulation Research*, 95(6):549–51.
- Esumi, K., Nishida, M., Shaw, D., Smith, T. W., and Marsh, J. D. (1991). NADH measurements in adult rat myocytes during simulated ischemia. *The American Journal of Physiology*, 260(6 Pt 2):H1743-52.
- Fabiato, A. (1992). Two kinds of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac cells. *Advances in Experimental Medicine and Biology*, 311:245–62.
- Fauconnier, J., Meli, A. C., Thireau, J., Roberge, S., Shan, J., Sassi, Y., Reiken, S. R., Rauzier, J.-M., Marchand, A., Chauvier, D., Cassan, C., Crozier, C., Bideaux, P., Lompré, A.-M., Jacotot, E., Marks, A. R., and Lacampagne, A. (2011). Ryanodine receptor leak mediated by caspase-8 activation leads to left ventricular injury after myocardial ischemia-reperfusion. *Proceedings of the National Academy of Sciences of the United States of America*, 108(32):13258–63.
- Fauconnier, J., Roberge, S., Saint, N., and Lacampagne, A. (2013). Type 2 ryanodine receptor: a novel therapeutic target in myocardial ischemia/reperfusion. *Pharmacology & Therapeutics*, 138(3):323–32.
- Fedorov, V. V., Glukhov, A. V., and Chang, R. (2012). Conduction barriers and pathways of the sinoatrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. *American Journal of Physiology Heart and Circulatory Physiology*, 302(9):H1773–83.
- Feher, J. J., LeBolt, W. R., and Manson, N. H. (1989). Differential effect of global ischemia on the ryanodine-sensitive and ryanodine-insensitive calcium uptake of cardiac sarcoplasmic reticulum. *Circulation Research*, 65(5):1400–8.
- Ferrero, J. M., Sáiz, N. V., and Thakor, N. V. (1996). Simulation of Action Potentials From Metabolically Impaired Cardiac Myocytes. *Circulation Research*, 79(2):208–221.
- Ferrero, J. M., Trénor, B., Rodríguez, B., and Sáiz, J. (2003a). Electrical Activity and Reentry During Regional Myocardial Ischemia: Insights From Simulations. *International Journal of Bifurcation and Chaos*, 13(12):3703–3715.
- Ferrero, J. M., Trénor, B., Sáiz, J., Montilla, F., and Hernandez, V. (2003b). Electrical activity and reentry in acute regional ischemia: insights from simulations. In *Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, pages 17–20. IEEE.
- Ferrier, G. R., Moffat, M. P., and Lukas, A. (1985). Possible mechanisms of ventricular arrhythmias elicited by ischemia followed by reperfusion. Studies on isolated canine ventricular tissues. *Circulation Research*, 56(2):184–94.
- Fink, M., Noble, D., Virág, L., Varró, A., and Giles, W. R. (2008). Contributions of HERG K+ current to repolarization of the human ventricular action potential. *Progress in Biophysics and Molecular Biology*, 96(1-3):357–76.
- Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. *Journal of General Physiology*, 43:867–96.
- Fitzhugh, R. (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane. *Biophysical Journal*, 1(6):445–66.

- Franzini-Armstrong, C., Protasi, F., and Tijskens, P. (2005). The assembly of calcium release units in cardiac muscle. *Annals of the New York Academy of Sciences*, 1047:76–85.
- Fülöp, L., Bányász, T., Magyar, J., Szentandrássy, N., Varró, A., and Nánási, P. P. (2004). Reopening of L-type calcium channels in human ventricular myocytes during applied epicardial action potentials. *Acta Physiologica Scandinavica*, 180(1):39–47.
- Gaborit, N., Le Bouter, S., Szuts, V., Varró, A., Escande, D., Nattel, S., and Demolombe, S. (2007). Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart. *The Journal of Physiology*, 582(Pt 2):675–93.
- Garfinkel, A., Kim, Y.-H., Voroshilovsky, O., Qu, Z., Kil, J. R., Lee, M.-H., Karagueuzian, H. S., Weiss, J. N., and Chen, P.-S. (2000). Preventing ventricular fibrillation by flattening cardiac restitution. *Proceedings of the National Academy of Sciences of the United States of America*, 97(11):6061–6.
- Giles, W. R. and Imaizumi, Y. (1988). Comparison of potassium currents in rabbit atrial and ventricular cells. *The Journal of Physiology*, 405:123–45.
- Girod, S. and Becker, A. (2006). Cardiac muscle.
- Goaillard, J.-M., Taylor, A. L., Schulz, D. J., and Marder, E. (2009). Functional consequences of animal-to-animal variation in circuit parameters. *Nature Neuroscience*, 12(11):1424–30.
- Goldhaber, J. I., Xie, L.-H., Duong, T., Motter, C., Khuu, K., and Weiss, J. N. (2005). Action potential duration restitution and alternans in rabbit ventricular myocytes: the key role of intracellular calcium cycling. *Circulation Research*, 96(4):459–66.
- Golowasch, J., Goldman, M. S., Abbott, L. F., and Marder, E. (2002). Failure of averaging in the construction of a conductance-based neuron model. *Journal of Neurophysiology*, 87(2):1129–31.
- Gough, W. B., Mehra, R., Restivo, M., Zeiler, R. H., and El-Sherif, N. (1985). Reentrant ventricular arrhythmias in the late myocardial infarction period in the dog. 13. Correlation of activation and refractory maps. *Circulation Research*, 57(3):432–42.
- Gray, R. A., Pertsov, A. M., and Jalife, J. (1998). Spatial and temporal organization during cardiac fibrillation. *Nature*, 392(6671):75–8.
- Greenstein, J. L. and Winslow, R. L. (2002). An integrative model of the cardiac ventricular myocyte incorporating local control of Ca2+ release. *Biophysical Journal*, 83(6):2918–45.
- Haïssaguerre, M., Jaïs, P., Shah, D. C., Takahashi, A., Hocini, M., Quiniou, G., Garrigue, S., Le Mouroux, A., Le Métayer, P., and Clémenty, J. (1998). Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. *The New England Journal of Medicine*, 339(10):659–66.
- Hall, A. E., Hutter, O. F., and Noble, D. (1963). Current-Voltage Relations of Purkinje Fibres in Sodium Deficient Solutions. *The Journal of Physiology*, 166:225–240.
- Harris, A. S., Bisteni, A., Russell, R. A., Brigham, J. C., and Firestone, J. E. (1954). Excitatory factors in ventricular tachycardia resulting from myocardial ischemia; potassium a major excitant. *Science*, 119(3085):200–3.

- Hashambhoy, Y. L., Winslow, R. L., and Greenstein, J. L. (2011). CaMKII-dependent activation of late INa contributes to cellular arrhythmia in a model of the cardiac myocyte. *Conference proceedings:* ... *Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference*, 2011:4665–8.
- Haverkamp, W., Breithardt, G., Camm, A. J., Janse, M. J., Rosen, M. R., Antzelevitch, C., Escande, D., Franz, M., Malik, M., Moss, A. J., and Shah, R. (2000). The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. *Cardiovascular Research*, 47(2):219–33.
- Heijman, J., Zaza, A., Johnson, D. M., Rudy, Y., Peeters, R. L. M., Volders, P. G. A., and Westra, R. L. (2013). Determinants of Beat-to-Beat Variability of Repolarization Duration in the Canine Ventricular Myocyte: A Computational Analysis. *PLoS Computational Biology*, 9(8):e1003202.
- Henderson, S. A., Goldhaber, J. I., So, J. M., Han, T., Motter, C., Ngo, A., Chantawansri, C., Ritter, M. R., Friedlander, M., Nicoll, D. A., Frank, J. S., Jordan, M. C., Roos, K. P., Ross, R. S., and Philipson, K. D. (2004). Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCXI. *Circulation Research*, 95(6):604–11.
- Hiraoka, M., Sunami, A., Fan, Z., and Sawanobori, T. (1992). Multiple ionic mechanisms of early afterdepolarizations in isolated ventricular myocytes from guinea-pig hearts. *Annals of the New York Academy of Sciences*, 644:33–47.
- Hodgkin, A. L. and Huxley, A. F. (1952). A quantative description of membrane current and its application to conduction and excitation in nerve. *The Journal of Physiology*, 117:500–544.
- Hoefen, R., Reumann, M., Goldenberg, I., Moss, A. J., O-Uchi, J., Gu, Y., McNitt, S., Zareba, W., Jons, C., Kanters, J. K., Platonov, P. G., Shimizu, W., Wilde, A. A. M., Rice, J. J., and Lopes, C. M. B. (2012). In silico cardiac risk assessment in patients with long QT syndrome: type 1: clinical predictability of cardiac models. *Journal of the American College of Cardiology*, 60(21):2182–91.
- Huang, C., Bao, M., Jiang, H., Liu, J., Yang, B., and Wang, T. (2004). Differences in the changing trends of monophasic action potential duration and effective refractory period of the ventricular myocardium after myocardial infarction in vivo. *Circulation Journal: Official Journal of the Japanese Circulation Society*, 68(12):1205–9.
- Hund, T. J., Kucera, J. P., Otani, N. F., and Rudy, Y. (2001). Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. *Biophysical Journal*, 81(6):3324–31.
- Hutter, O. F. and Noble, D. (1960). Rectifying properties of heart muscle. *Nature*, 188:495.
- Ichihara, K., Haga, N., and Abiko, Y. (1984). Is ischemia-induced pH decrease of dog myocardium respiratory or metabolic acidosis? *The American Journal of Physiology*, 246(5 Pt 2):H652-7.
- Inoue, R., Jensen, L. J. r., Shi, J., Morita, H., Nishida, M., Honda, A., and Ito, Y. (2006). Transient receptor potential channels in cardiovascular function and disease. *Circulation Research*, 99(2):119–31.
- Isoyama, S., Apstein, C. S., Wexler, L. F., Grice, W. N., and Lorell, B. H. (1987). Acute decrease in left ventricular diastolic chamber distensibility during simulated angina in isolated hearts. *Circulation Research*, 61(6):925–33.

- Jalife, J. (2003). Rotors and spiral waves in atrial fibrillation. *Journal of Cardiovascular Electrophysiology*, 14(7):776–80.
- Jalife, J. (2009). Inward rectifier potassium channels control rotor frequency in ventricular fibrillation. Heart Rhythm: the Official Journal of the Heart Rhythm Society, 6(11 Suppl):S44–8.
- Jalife, J. (2013). Introduction to the Series on Computational Approaches to Cardiac Arrhythmias: Translation Into Diagnostics and Therapy. *Circulation Research*, 112(5):831–833.
- Janse, M. J., Vermeulen, J. T., Opthof, T., Coronel, R., Wilms-Schopman, F. J. G., Rademaker, H. M. E., Baartscheer, A., and Dekker, L. R. C. (2001). Arrhythmogenesis in heart failure. *Journal of Cardiovascular Electrophysiology*, 12(4):496–9.
- John, R. M., Tedrow, U. B., Koplan, B. A., Albert, C. M., Epstein, L. M., Sweeney, M. O., Miller, A. L., Michaud, G. F., and Stevenson, W. G. (2012). Ventricular arrhythmias and sudden cardiac death. *Lancet*, 380(9852):1520–9.
- Jons, C., O-Uchi, J., Moss, A. J., Reumann, M., Rice, J. J., Goldenberg, I., Zareba, W., Wilde, A. A. M., Shimizu, W., Kanters, J. K., McNitt, S., Hofman, N., Robinson, J. L., and Lopes, C. M. B. (2011). Use of mutant-specific ion channel characteristics for risk stratification of long QT syndrome patients. *Science Translational Medicine*, 3(76):76ra28.
- Jost, N., Virág, L., Bitay, M., Takács, J., Lengyel, C., Biliczki, P., Nagy, Z., Bogáts, G., Lathrop, D. A., Papp, J. G., and Varró, A. (2005). Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle. *Circulation*, 112(10):1392–9.
- Jou, C. J., Barnett, S. M., Bian, J.-T., Weng, H. C., Sheng, X., and Tristani-Firouzi, M. (2013). An In Vivo Cardiac Assay to Determine the Functional Consequences of Putative Long QT Syndrome Mutations. *Circulation Research*, pages 826–830.
- Jung, B.-C., Lee, S.-H., Cho, Y.-K., Park, H.-S., Kim, Y.-N., Lee, Y.-S., and Shin, D.-G. (2011). Role of the alternans of action potential duration and aconitine-induced arrhythmias in isolated rabbit hearts. *Journal of Korean Medical Science*, 26(12):1576–81.
- Jurkat-Rott, K. and Lehmann-Horn, F. (2005). Muscle channelopathies and critical points in functional and genetic studies. *Journal of Clinical Investigation*, 115(8):2000–9.
- Kagiyama, Y., Hill, J. L., and Gettes, L. S. (1982). Interaction of acidosis and increased extracellular potassium on action potential characteristics and conduction in guinea pig ventricular muscle. *Circulation Research*, 51(5):614–23.
- Kannankeril, P., Roden, D. M., and Darbar, D. (2010). Drug-induced long QT syndrome. *Pharmacological Reviews*, 62(4):760–81.
- Kaplan, P., Hendrikx, M., Mattheussen, M., Mubagwa, K., and Flameng, W. (1992). Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. *Circulation Research*, 71(5):1123–1130.
- Keener, J. and Sneyd, J. (2009). *Mathematical Physiology*, volume 8/2 of *Interdisciplinary Applied Mathematics*. Springer New York, New York, NY, 2nd edition.
- Kherlopian, A. R., Ortega, F. A., and Christini, D. J. (2011). Cardiac myocyte model parameter sensitivity analysis and model transformation using a genetic algorithm. In 13th Annual Conference

- Companion on Genetic and Evolutionary Computation, page 755, New York, New York, USA. ACM Press.
- Kihara, Y., Grossman, W., and Morgan, J. P. (1989). Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. *Circulation Research*, 65(4):1029–1044.
- Kirchhof, P., Degen, H., Franz, M. R., Eckardt, L., Fabritz, L., Milberg, P., Läer, S., Neumann, J., Breithardt, G., and Haverkamp, W. (2003). Amiodarone-induced postrepolarization refractoriness suppresses induction of ventricular fibrillation. *Journal of Pharmacology and Experimental Therapeutics*, 305(1):257–263.
- Kléber, A. G. (1987). Conduction of the impulse in the ischemic myocardium–implications for malignant ventricular arrhythmias. *Experientia*, 43(10):1056–61.
- Kléber, A. G., Riegger, C. B., and Janse, M. J. (1987a). Electrical uncoupling and increase of extracellular resistance after induction of ischemia in isolated, arterially perfused rabbit papillary muscle. *Circulation Research*, 61(2):271–279.
- Kléber, A. G., Riegger, C. B., and Janse, M. J. (1987b). Extracellular K+ and H+ shifts in early ischemia: mechanisms and relation to changes in impulse propagation. *Journal of Molecular and Cellular Cardiology*, 19 Suppl 5(Supplement V):35–44.
- Kléber, A. G. and Rudy, Y. (2004). Basic mechanisms of cardiac impulse propagation and associated arrhythmias. *Physiological Reviews*, 84(2):431–88.
- Krause, H., Antoni, H., and Fleckenstein, A. (1966). [An electronic model for the formation of local and transmitted stimuli on the myocardium fibers based upon variable current-voltage characteristics for potassium and sodium ions]. *Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere*, 289(1):12–36.
- Krause, S. and Hess, M. L. (1984). Characterization of cardiac sarcoplasmic reticulum dysfunction during short-term, normothermic, global ischemia. *Circulation Research*, 55(2):176–84.
- Kuo, C.-S., Munakata, K., Reddy, C. P., and Surawicz, B. (1983). Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. *Circulation*, 67(6):1356–1367.
- Kurokawa, J., Kodama, M., Furukawa, T., and Clancy, C. E. (2012). Sex and gender aspects in antiarrhythmic therapy. *Handbook of Experimental Pharmacology*, (214):237–63.
- Kurz, R. W., Mohabir, R., Ren, X. L., and Franz, M. R. (1993). Ischaemia induced alternans of action potential duration in the intact-heart: dependence on coronary flow, preload and cycle length. *European Heart Journal*, 14(10):1410–20.
- Laurita, K. R. and Rosenbaum, D. S. (2008). Cellular mechanisms of arrhythmogenic cardiac alternans. *Progress in Biophysics and Molecular Biology*, 97(2-3):332-47.
- Lee, H.-C., Mohabir, R., Smith, N., Franz, M. R., and Clusin, W. T. (1988). Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. *Circulation*, 78(4):1047–59.

- Lee, K. S., Ladinsky, H., and Stuckey, J. H. (1967). Decreased Ca2+ Uptake by Sarcoplasmic Reticulum after Coronary Artery Occlusion for 60 and 90 Minutes. *Circulation Research*, 21(4):439–444.
- Lemay, M., de Lange, E., and Kucera, J. P. (2011). Effects of stochastic channel gating and distribution on the cardiac action potential. *Journal of Theoretical Biology*, 281(1):84–96.
- Lengyel, C., Iost, N., Virág, L., Varró, A., Lathrop, D. A., and Papp, J. G. (2001). Pharmacological block of the slow component of the outward delayed rectifier current (I(Ks)) fails to lengthen rabbit ventricular muscle QT(c) and action potential duration. *British Journal Of Pharmacology*, 132(1):101–10.
- Levitsky, D. O., Benevolensky, D. S., Ikemoto, N., Syrbu, S. I., and Watras, J. (1989). Monoclonal antibodies to dog heart sarcoplasmic reticulum as markers of endoplasmic reticulum. *Journal of Molecular and Cellular Cardiology*, 21 Suppl I(Supplement I):55–8.
- Li, G.-R., Yang, B., Feng, J., Bosch, R. F., Carrier, M., and Nattel, S. (1999). Transmembrane ICa contributes to rate-dependent changes of action potentials in human ventricular myocytes. *American Journal of Physiology*, 276(1 Pt 2):H98–H106.
- Lukas, A. and Antzelevitch, C. (1996). Phase 2 reentry as a mechanism of initiation of circus movement reentry in canine epicardium exposed to simulated ischemia. *Cardiovascular Research*, 32(3):593–603.
- Luo, C.-H. and Rudy, Y. (1991). A Model of the Ventricular Cardiac Action Potential: Depolarization, Repolarization and Their Interaction. *Circulation Research*, 68:1501–1526.
- Luo, C.-H. and Rudy, Y. (1994a). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. *Circulation Research*, 74(6):1071–96.
- Luo, C.-H. and Rudy, Y. (1994b). A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. *Circulation Research*, 74(6):1097–113.
- Mahajan, A., Shiferaw, Y., Sato, D., Baher, A., Olcese, R., Xie, L.-H., Yang, M.-J., Chen, P.-S., Restrepo, J. G., Karma, A., Garfinkel, A., Qu, Z., and Weiss, J. N. (2008). A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates. *Biophysical Journal*, 94(2):392–410.
- Malloy, C. R., Buster, D. C., Castro, M. M. C. A., Geraldes, C. F. G. C., Jeffrey, F. M. H., and Sherry, A. D. (1990). Influence of global ischemia on intracellular sodium in the perfused rat heart. *Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine*, 15(1):33–44.
- Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., and Jalife, J. (2000). Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. *Circulation*, 101(2):194–9.
- Marder, E. and Taylor, A. L. (2011). Multiple models to capture the variability in biological neurons and networks. *Nature Neuroscience*, 14(2):133–8.
- McAllister, R. E., Noble, D., and Tsien, R. W. (1975). Reconstruction of the electrical activity of cardiac Purkinje fibres. *The Journal of Physiology*, 251(1):1–59.
- McIntosh, M. A., Cobbe, S. M., and Smith, G. L. (2000). Heterogeneous changes in action poten-

- tial and intracellular Ca2+ in left ventricular myocyte sub-types from rabbits with heart failure. *Cardiovascular Research*, 45(2):397–409.
- McKay, M. D., Beckman, R. J., and Conover, W. J. (1979). Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. *Technometrics*, 21(2):239–245.
- Meech, R. W. and Standen, N. B. (1975). Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. *The Journal of Physiology*, 249(2):211–39.
- Michailova, A., Lorentz, W., and McCulloch, A. D. (2007). Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes. *American Journal of Physiology Cell Physiology*, 293(2):C542–57.
- Michailova, A., Saucerman, J., Belik, M. E., and McCulloch, A. D. (2005). Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+. *Biophysical Journal*, 88(3):2234–49.
- Mirams, G. R., Arthurs, C. J., Bernabeu, M. O., Bordas, R., Cooper, J., Corrias, A., Davit, Y., Dunn, S.-J., Fletcher, A. G., Harvey, D. G., Marsh, M. E., Osborne, J. M., Pathmanathan, P., Pitt-Francis, J., Southern, J., Zemzemi, N., and Gavaghan, D. J. (2013). Chaste: an open source C++ library for computational physiology and biology. *PLoS Computational Biology*, 9(3):e1002970.
- Miura, M., Boyden, P. A., and ter Keurs, H. E. (1998). Ca2+ waves during triggered propagated contractions in intact trabeculae. *The American Journal of Physiology*, 274(1 Pt 2):H266-76.
- Mohabir, R., Lee, H.-C., Kurz, R. W., and Clusin, W. T. (1991). Effects of ischemia and hypercarbic acidosis on myocyte calcium transients, contraction, and pHi in perfused rabbit hearts. *Circulation Research*, 69(6):1525–1537.
- Mubagwa, K. (1995). Sarcoplasmic reticulum function during myocardial ischaemia and reperfusion. *Cardiovascular Research*, 30(2):166–75.
- Nattel, S., Frelin, Y., Gaborit, N., Louault, C., and Demolombe, S. (2010). Ion-channel mRNA-expression profiling: Insights into cardiac remodeling and arrhythmic substrates. *Journal of Molecular and Cellular Cardiology*, 48(1):96–105.
- Neely, J. R., Whitmer, J. T., and Rovetto, M. J. (1975). Effect of coronary blood flow on glycolytic flux and intracellular pH in isolated rat hearts. *Circulation Research*, 37(6):733–41.
- Nekouzadeh, A. and Rudy, Y. (2011). Continuum molecular simulation of large conformational changes during ion-channel gating. *PloS One*, 6(5):e20186.
- Niederer, S. (2013). Regulation of ion gradients across myocardial ischemic border zones: a biophysical modelling analysis. *PloS One*, 8(4):e60323.
- Niederer, S. A., Fink, M., Noble, D., and Smith, N. P. (2009). A meta-analysis of cardiac electrophysiology computational models. *Experimental Physiology*, 94(5):486–95.
- Noble, D. (1960). Cardiac Action and Pacemaker Potentials based on the Hodgkin-Huxley Equations. *Nature*, 4749:495–497.
- Noble, D. (1962). A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. *The Journal of Physiology*, 160:317–52.

- Noble, D. (2002). Simulation of Na/Ca exchange activity during ischemia. *Annals of the New York Academy of Sciences*, 976:431–7.
- Noble, D. (2011). Successes and failures in modeling heart cell electrophysiology. *Heart Rhythm: the Official Journal of the Heart Rhythm Society*, 8(11):1798–803.
- Noble, D., Garny, A., and Noble, P. J. (2012). How the Hodgkin-Huxley equations inspired the Cardiac Physiome Project. *The Journal of Physiology*, 590(Pt 11):2613–28.
- Noble, D. and Rudy, Y. (2001). Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 359(1783):1127–1142.
- Nolasco, J. B. and Dahlen, R. W. (1968). A graphic method for the study of alternation in cardiac action potentials. *Journal of Applied Physiology*, 25(2):191–6.
- Noujaim, S. F., Berenfeld, O., Kalifa, J., Cerrone, M., Nanthakumar, K., Atienza, F., Moreno, J., Mironov, S., and Jalife, J. (2007). Universal scaling law of electrical turbulence in the mammalian heart. *Proceedings of the National Academy of Sciences of the United States of America*, 104(52):20985–9.
- Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., and Giles, W. R. (1998). Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. *Circulation Research*, 82(1):63–81.
- Pandit, S. V. and Jalife, J. (2013). Rotors and the Dynamics of Cardiac Fibrillation. *Circulation Research*, 112(5):849–862.
- Panfilov, A. V. (2006). Is heart size a factor in ventricular fibrillation? Or how close are rabbit and human hearts? *Heart Rhythm: the Official Journal of the Heart Rhythm Society*, 3(7):862–4.
- Pike, M. M., Luo, C. S., Clark, M. D., Kirk, K. A., Kitakaze, M., Madden, M. C., Cragoe, E. J., and Pohost, G. M. (1993). NMR measurements of Na+ and cellular energy in ischemic rat heart: role of Na(+)-H+ exchange. *The American Journal of Physiology*, 265(6 Pt 2):H2017–26.
- Pitt-Francis, J., Pathmanathan, P., Bernabeu, M. O., Bordas, R., Cooper, J., Fletcher, A. G., Mirams, G. R., Murray, P., Osborne, J. M., Walter, A., Chapman, S. J., Garny, A., van Leeuwen, I. M., Maini, P. K., Rodríguez, B., Waters, S. L., Whiteley, J. P., Byrne, H. M., and Gavaghan, D. J. (2009). Chaste: A test-driven approach to software development for biological modelling. *Computer Physics Communications*, 180(12):2452–2471.
- Pollard, A. E., Cascio, W. E., Fast, V. G., and Knisley, S. B. (2002). Modulation of triggered activity by uncoupling in the ischemic border. A model study with phase 1b-like conditions. *Cardiovascular Research*, 56(3):381–92.
- Ponard, J. G. C., Kondratyev, A. A., and Kucera, J. P. (2007). Mechanisms of intrinsic beating variability in cardiac cell cultures and model pacemaker networks. *Biophysical Journal*, 92(10):3734–52.
- Pozzan, T., Rizzuto, R., Volpe, P., and Meldolesi, J. (1994). Molecular and cellular physiology of intracellular calcium stores. *Physiological Reviews*, 74(3):595–636.
- Prinz, A. A., Billimoria, C. P., and Marder, E. (2003). Alternative to hand-tuning conductance-based

- models: construction and analysis of databases of model neurons. *Journal of Neurophysiology*, 90(6):3998–4015.
- Pruvot, E. J., Katra, R. P., Rosenbaum, D. S., and Laurita, K. R. (2004). Role of calcium cycling versus restitution in the mechanism of repolarization alternans. *Circulation Research*, 94(8):1083–90.
- Pueyo, E., Corrias, A., Virág, L., Jost, N., Szél, T., Varró, A., Szentandrássy, N., Nánási, P. P., Burrage, K., and Rodríguez, B. (2011). A multiscale investigation of repolarization variability and its role in cardiac arrhythmogenesis. *Biophysical Journal*, 101(12):2892–902.
- Puglisi, J. L. and Bers, D. M. (2001). LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. *American Journal of Physiology Cell Physiology*, 281(6):C2049-60.
- Puglisi, J. L., Wang, F., and Bers, D. M. (2004). Modeling the isolated cardiac myocyte. *Progress in Biophysics and Molecular Biology*, 85(2-3):163–78.
- Qian, Y.-W., Clusin, W. T., Lin, S.-F., Han, J., and Sung, R. J. (2001). Spatial Heterogeneity of Calcium Transient Alternans During the Early Phase of Myocardial Ischemia in the Blood-Perfused Rabbit Heart. *Circulation*, 104(17):2082–2087.
- Qu, Z., Garfinkel, A., Chen, P.-S., and Weiss, J. N. (2000). Mechanisms of Discordant Alternans and Induction of Reentry in Simulated Cardiac Tissue. *Circulation*, 102(14):1664–1670.
- Quinn, T. A. and Kohl, P. (2013). Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. *Cardiovascular Research*, 97(4):601–11.
- Relan, J., Pop, M., Delingette, H., Wright, G. A., Ayache, N., and Sermesant, M. (2011). Personalization of a cardiac electrophysiology model using optical mapping and MRI for prediction of changes with pacing. *IEEE Transactions on Biomedical Engineering*, 58(12):3339–49.
- Restrepo, J. G., Weiss, J. N., and Karma, A. (2008). Calsequestrin-mediated mechanism for cellular calcium transient alternans. *Biophysical Journal*, 95(8):3767–89.
- Riccio, M. L., Koller, M. L., and Gilmour, R. F. (1999). Electrical restitution and spatiotemporal organization during ventricular fibrillation. *Circulation Research*, 84(8):955–63.
- Roden, D. M. (1998). Taking the "idio" out of "idiosyncratic": predicting torsades de pointes. *Pacing and Clinical Electrophysiology: PACE*, 21(5):1029–34.
- Roden, D. M., Balser, J. R., George Jr., A. L., and Anderson, M. E. (2002). Cardiac ion channels. *Annual Review of Physiology*, 64:431–75.
- Rodríguez, B. and Ferrero, J. M. (2001a). Integrated mechanisms of K+ loss in myocardial ischemia: a simulation study. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 1, pages 48–51. IEEE.
- Rodríguez, B. and Ferrero, J. M. (2001b). Mechanistic investigation of the causes of cellular K+ loss during acute myocardial ischemia: a simulation study. In *Computers in Cardiology 2001. Vol.28* (*Cat. No.01CH37287*), pages 361–364. IEEE.
- Rodríguez, B., Ferrero, J. M., and Trénor, B. (2002). Mechanistic investigation of extracellular K+ ac-

- cumulation during acute myocardial ischemia: a simulation study. *American Journal of Physiology Heart and Circulatory Physiology*, 283(2):H490-500.
- Rodríguez, B., Tice, B. M., Eason, J. C., Aguel, F., and Trayanova, N. A. (2004). Cardiac vulnerability to electric shocks during phase 1A of acute global ischemia. *Heart Rhythm : the Official Journal of the Heart Rhythm Society*, 1(6):695–703.
- Rodríguez, B., Trayanova, N. A., and Noble, D. (2006). Modeling cardiac ischemia. *Annals of the New York Academy of Sciences*, 1080:395–414.
- Romero, L., Carbonell, B., Trénor, B., Rodríguez, B., Sáiz, J., and Ferrero, J. M. (2010). Human and rabbit inter-species comparison of ionic mechanisms of arrhythmic risk: A simulation study. In *Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, volume 2010, pages 3253–6.
- Romero, L., Carbonell, B., Trénor, B., Rodríguez, B., Sáiz, J., and Ferrero, J. M. (2011). Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models. *Progress in Biophysics and Molecular Biology*, 107(1):60–73.
- Romero, L., Pueyo, E., Fink, M., and Rodríguez, B. (2009a). Impact of ionic current variability on human ventricular cellular electrophysiology. *American Journal of Physiology Heart and Circulatory Physiology*, 297(4):H1436–45.
- Romero, L., Trénor, B., Alonso, J. M., Tobón, C., Sáiz, J., and Ferrero, J. M. (2009b). The relative role of refractoriness and source-sink relationship in reentry generation during simulated acute ischemia. *Annals of Biomedical Engineering*, 37(8):1560–71.
- Rosati, B. and McKinnon, D. (2004). Regulation of ion channel expression. *Circulation Research*, 94(7):874-83.
- Rudy, Y. and Silva, J. R. (2006). Computational biology in the study of cardiac ion channels and cell electrophysiology. *Quarterly Reviews of Biophysics*, 39(1):57–116.
- Saffitz, J. E., Kanter, H. L., Green, K. G., Tolley, T. K., and Beyer, E. C. (1994). Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. *Circulation Research*, 74(6):1065–1070.
- Sanguinetti, M. C. and Jurkiewicz, N. K. (1990). Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. *Journal of General Physiology*, 96(1):195–215.
- Sanguinetti, M. C. and Jurkiewicz, N. K. (1992). Role of external Ca2+ and K+ in gating of cardiac delayed rectifier K+ currents. *Pflügers Archiv: European Journal of Physiology*, 420(2):180–6.
- Sarkar, A. X., Christini, D. J., and Sobie, E. A. (2012). Exploiting mathematical models to illuminate electrophysiological variability between individuals. *The Journal of Physiology*, (212):2555–2567.
- Sarkar, A. X. and Sobie, E. A. (2010). Regression analysis for constraining free parameters in electrophysiological models of cardiac cells. *PLoS Computational Biology*, 6(9):e1000914.
- Sarkar, A. X. and Sobie, E. A. (2011). Quantification of repolarization reserve to understand interpatient variability in the response to proarrhythmic drugs: a computational analysis. *Heart Rhythm* : the Official Journal of the Heart Rhythm Society, 8(11):1749–55.

- Sato, D., Shiferaw, Y., Garfinkel, A., Weiss, J. N., Qu, Z., and Karma, A. (2006). Spatially discordant alternans in cardiac tissue: role of calcium cycling. *Circulation Research*, 99(5):520–7.
- Sato, D., Xie, L.-H., Nguyen, T. P., Weiss, J. N., and Qu, Z. (2010). Irregularly appearing early afterdepolarizations in cardiac myocytes: random fluctuations or dynamical chaos? *Biophysical Journal*, 99(3):765–73.
- Sato, D., Xie, L.-H., Sovari, A. A., Tran, D. X., Morita, N., Xie, F., Karagueuzian, H., Garfinkel, A., Weiss, J. N., and Qu, Z. (2009). Synchronization of chaotic early afterdepolarizations in the genesis of cardiac arrhythmias. *Proceedings of the National Academy of Sciences of the United States of America*, 106(9):2983–8.
- Schulz, D. J., Goaillard, J.-M., and Marder, E. (2006). Variable channel expression in identified single and electrically coupled neurons in different animals. *Nature Neuroscience*, 9(3):356–62.
- Serizawa, T., Momomura, S.-i., Kohmoto, O., Ohya, T., Sato, H., Takahashi, T., Mochizuki, T., Iizuka, M., and Sugimoto, T. (1987). Mechanisms of abnormal myocardial relaxation induced by ischemia: comparison of low flow ischemia and hypoxia in isolated rabbit heart. *Japanese Circulation Journal*, 51(1):90–7.
- Serizawa, T., Vogel, W. M., Apstein, C. S., and Grossman, W. (1981). Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia. Role of myocardial oxygen supply-demand imbalance. *The Journal of Clinical Investigation*, 68(1):91–102.
- Severi, S., Cavalcanti, S., Mancini, E., and Santoro, A. (2002). Effect of electrolyte and pH changes on the sinus node pacemaking in humans. *Journal of Electrocardiology*, 35(2):115–24.
- Shannon, T. R., Wang, F., Puglisi, J. L., Weber, C., and Bers, D. M. (2004). A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. *Biophysical Journal*, 87(5):3351–71.
- Sharma, A. D., Saffitz, J. E., Lee, B. I., Sobel, B. E., and Corr, P. B. (1983). Alpha adrenergic-mediated accumulation of calcium in reperfused myocardium. *The Journal of Clinical Investigation*, 72(3):802–18.
- Shaw, R. M. and Rudy, Y. (1997a). Electrophysiologic effects of acute myocardial ischemia. A mechanistic investigation of action potential conduction and conduction failure. *Circulation Research*, 80(1):124–38.
- Shaw, R. M. and Rudy, Y. (1997b). Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. *Cardiovascular Research*, 35(2):256–72.
- Shaw, R. M. and Rudy, Y. (1997c). Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. *Circulation Research*, 81(5):727–41.
- Shiferaw, Y., Sato, D., and Karma, A. (2005). Coupled dynamics of voltage and calcium in paced cardiac cells. *Physical Review E*, 71(2):021903.
- Shiferaw, Y., Watanabe, M. A., Garfinkel, A., Weiss, J. N., and Karma, A. (2003). Model of intracellular calcium cycling in ventricular myocytes. *Biophysical Journal*, 85(6):3666–86.

- Silva, J. R. and Rudy, Y. (2005). Subunit interaction determines IKs participation in cardiac repolarization and repolarization reserve. *Circulation*, 112(10):1384–91.
- Silverman, H. S., Ninomiya, M., Blank, P. S., Hano, O., Miyata, H., Spurgeon, H. A., Lakatta, E. G., and Stern, M. D. (1991). A cellular mechanism for impaired posthypoxic relaxation in isolated cardiac myocytes. Altered myofilament relaxation kinetics at reoxygenation. *Circulation Research*, 69(1):196–208.
- Sims, C., Reisenweber, S., Viswanathan, P. C., Choi, B.-R., Walker, W. H., and Salama, G. (2008). Sex, age, and regional differences in L-type calcium current are important determinants of arrhythmia phenotype in rabbit hearts with drug-induced long QT type 2. *Circulation Research*, 102(9):e86–100.
- Smaill, B. H., Zhao, J., and Trew, M. L. (2013). Three-Dimensional Impulse Propagation in Myocardium: Arrhythmogenic Mechanisms at the Tissue Level. *Circulation Research*, 112(5):834–848.
- Sobie, E. A. (2009). Parameter sensitivity analysis in electrophysiological models using multivariable regression. *Biophysical Journal*, 96(4):1264–74.
- Sobie, E. A. and Ramay, H. R. (2009). Excitation-contraction coupling gain in ventricular myocytes: insights from a parsimonious model. *The Journal of Physiology*, 587(Pt 6):1293–9.
- Spach, M. S., Dolber, P. C., and Heidlage, J. F. (1988). Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation. *Circulation Research*, 62(4):811–32.
- Spector, P. S., Curran, M. E., Zou, A., Keating, M. T., and Sanguinetti, M. C. (1996). Fast inactivation causes rectification of the IKr channel. *Journal of General Physiology*, 107(5):611–9.
- Sperelakis, N. and McConnell, K. (2002). Electric field interactions between closely abutting excitable cells. . *IEEE Engineering in Medicine and Biology Magazine : The Quarterly Magazine of the Engineering in Medicine & Biology Society*, 21(1):77–89.
- Stern, M. D. (1992). Theory of excitation-contraction coupling in cardiac muscle. *Biophysical Journal*, 63(2):497–517.
- Sun, Y.-L., Hu, S.-J., Wang, L.-H., Hu, Y., and Zhou, J.-Y. (2005). Effect of beta-blockers on cardiac function and calcium handling protein in postinfarction heart failure rats. *Chest*, 128(3):1812–21.
- Sutton, P. M. I., Taggart, P., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., and Kallis, P. (2000). Repolarisation and refractoriness during early ischaemia in humans. *Heart (British Cardiac Society)*, 84(4):365–9.
- Syed, Z., Vigmond, E., Nattel, S., and Leon, L. J. (2005). Atrial cell action potential parameter fitting using genetic algorithms. *Medical & Biological Engineering & Computing*, 43(5):561–71.
- Szentandrássy, N., Banyasz, T., Biro, T., Szabo, G., Toth, B. I., Magyar, J., Lazar, J., Varró, A., Kovacs, L., and Nanasi, P. P. (2005). Apico-basal inhomogeneity in distribution of ion channels in canine and human ventricular myocardium. *Cardiovascular Research*, 65(4):851–60.
- Szigligeti, P., Pankucsi, C., Bányász, T., Varró, A., and Nánási, P. P. (1996). Action potential duration

- and force-frequency relationship in isolated rabbit, guinea pig and rat cardiac muscle. *Journal of Comparative Physiology*. *B, Biochemical, Systemic, and Environmental Physiology*, 166(2):150–5.
- Taggart, P., Sutton, P. M. I., Boyett, M. R., Lab, M., and Swanton, H. (1996). Human ventricular action potential duration during short and long cycles. Rapid modulation by ischemia. *Circulation*, 94(10):2526–34.
- Talukder, M. A. H., Zweier, J. L., and Periasamy, M. (2009). Targeting calcium transport in ischaemic heart disease. *Cardiovascular Research*, 84(3):345–52.
- Tani, M. and Neely, J. R. (1989). Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. *Circulation Research*, 65(4):1045–1056.
- Tanskanen, A. J., Greenstein, J. L., O'Rourke, B., and Winslow, R. L. (2005). The role of stochastic and modal gating of cardiac L-type Ca2+ channels on early after-depolarizations. *Biophysical Journal*, 88(1):85–95.
- Tasaki, I. and Hagiwara, S. (1957). Capacity of muscle fiber membrane. *American Journal of Physiology*, 188(3):423–9.
- Taylor, A. L., Goaillard, J.-M., and Marder, E. (2009). How multiple conductances determine electrophysiological properties in a multicompartment model. *Journal of Neuroscience*, 29(17):5573–86.
- Taylor, J. A. and Lipsitz, L. A. (1997). Heart rate variability standards. *Circulation*, 95(1):280-1.
- Temsah, R. M., Netticadan, T., Chapman, D., Takeda, S., Mochizuki, S., and Dhalla, N. S. (1999). Alterations in sarcoplasmic reticulum function and gene expression in ischemic-reperfused rat heart. *The American Journal of Physiology*, 277(2 Pt 2):H584–94.
- Terkildsen, J. R., Crampin, E. J., and Smith, N. P. (2007). The balance between inactivation and activation of the Na+-K+ pump underlies the triphasic accumulation of extracellular K+ during myocardial ischemia. *American Journal of Physiology Heart and Circulatory Physiology*, 293(5):H3036-45.
- Terkildsen, J. R., Niederer, S. A., Crampin, E. J., Hunter, P. J., and Smith, N. P. (2008). Using Physiome standards to couple cellular functions for rat cardiac excitation-contraction. *Experimental Physiology*, 93(7):919–29.
- Tice, B. M., Rodríguez, B., Eason, J. C., and Trayanova, N. A. (2007). Mechanistic investigation into the arrhythmogenic role of transmural heterogeneities in regional ischaemia phase 1A. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology, 9 Suppl 6:vi46–58.
- Toba, K., Katagiri, T., and Takeyama, Y. (1978). Studies of the cardiac sarcoplasmic reticulum in myocardial infarction. *Japanese Circulation Journal*, 42(4):447–53.
- Tobón, C., Ruiz, C., Rodríguez, J. F., Hornero, F., Ferrero, J. M., and Sáiz, J. (2010). Vulnerability for reentry in a three dimensional model of human atria: a simulation study. In *Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, volume 2010, pages 224–7.

- Townsend, N., Wickramasinghe, K., Bhatnagar, P., Smolina, K., Nichols, M., Leal, J., Luengo-Fernandez, R., and Rayner, M. (2012). *Coronary Heart Disease Statistics 2012 Edition*. British Heart Foundation: London.
- Trayanova, N. A., Constantino, J., and Gurev, V. (2011). Electromechanical models of the ventricles. *American Journal of Physiology Heart and Circulatory Physiology*, 301(2):H279–86.
- Trénor, B., Ferrero, J. M., Rodríguez, B., and Montilla, F. (2005). Effects of pinacidil on reentrant arrhythmias generated during acute regional ischemia: a simulation study. *Annals of Biomedical Engineering*, 33(7):897–906.
- Trénor, B., Romero, L., Ferrero, J. M., Sáiz, J., Moltó, G., and Alonso, J. M. (2007). Vulnerability to reentry in a regionally ischemic tissue: a simulation study. *Annals of Biomedical Engineering*, 35(10):1756–70.
- van Echteld, C. J. A., Kirkels, J. H., Eijgelshoven, M. H. J., van der Meer, P., and Ruigrok, T. J. C. (1991). Intracellular sodium during ischemia and calcium-free perfusion: a 23Na NMR study. *Journal of Molecular and Cellular Cardiology*, 23(3):297–307.
- Vandenberg, J. I., Walker, B. D., and Campbell, T. J. (2001). HERG K+ channels: friend and foe. *Trends in Pharmacological Sciences*, 22(5):240–6.
- Varró, A. and Baczkó, I. (2011). Cardiac ventricular repolarization reserve: a principle for understanding drug-related proarrhythmic risk. *British Journal Of Pharmacology*, 164(1):14–36.
- Varró, A., Baláti, B., Iost, N., Takács, J., Virág, L., Lathrop, D. A., Csaba, L., Tálosi, L., and Papp, J. G. (2000). The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. *The Journal of Physiology*, 523 Pt I(2000):67–81.
- Verkerk, A. O., Baartscheer, A., de Groot, J. R., Wilders, R., and Coronel, R. (2011). Etiology-dependency of ionic remodeling in cardiomyopathic rabbits. *International Journal of Cardiology*, 148(2):154–60.
- Verkerk, A. O., Wilders, R., Veldkamp, M. W., de Geringel, W., Kirkels, J. H., and Tan, H. L. (2005). Gender disparities in cardiac cellular electrophysiology and arrhythmia susceptibility in human failing ventricular myocytes. *International Heart Journal*, 46(6):1105–18.
- Virág, L., Acsai, K., Hála, O., Zaza, A., Bitay, M., Bogáts, G., Papp, J. G., and Varró, A. (2009). Self-augmentation of the lengthening of repolarization is related to the shape of the cardiac action potential: implications for reverse rate dependency. *British Journal Of Pharmacology*, 156(7):1076–84.
- Viswanathan, P. C. and Rudy, Y. (1999). Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. *Cardiovascular Research*, 42(2):530–42.
- Viswanathan, P. C. and Rudy, Y. (2000). Cellular Arrhythmogenic Effects of Congenital and Acquired Long-QT Syndrome in the Heterogeneous Myocardium. *Circulation*, 101(10):1192–1198.
- Vogel, W. M., Apstein, C. S., Briggs, L. L., Gaasch, W. H., and Ahn, J. (1982). Acute alterations in left ventricular diastolic chamber stiffness. Role of the "erectile" effect of coronary arterial pressure and flow in normal and damaged hearts. *Circulation Research*, 51(4):465–78.
- Volders, P. G., Kulcsar, A., Vos, M. a., Sipido, K. R., Wellens, H. J., Lazzara, R., and Szabo, B. (1997).

- Similarities between early and delayed afterdepolarizations induced by isoproterenol in canine ventricular myocytes. *Cardiovascular research*, 34(2):348–59.
- Wagner, M. B., Namiki, T., Wilders, R., Joyner, R. W., Jongsma, H. J., Verheijck, E. E., Kumar, R., Golod, D. A., Goolsby, W. N., and van Ginneken, A. C. G. (1999). Electrical interactions among real cardiac cells and cell models in a linear strand. *American Journal of Physiology Heart and Circulatory Physiology*, 276:H391–H400.
- Walmsley, J., Mirams, G. R., Bahoshy, M., Bollensdorff, C., Rodríguez, B., and Burrage, K. (2010). Phenomenological modeling of cell-to-cell and beat-to-beat variability in isolated Guinea Pig ventricular myocytes. In *Annual International Conference of the IEEE Engineering in Medicine and Biology Society*, volume 2010, pages 1457–60.
- Walmsley, J., Rodríguez, J. F., Mirams, G. R., Burrage, K., Efimov, I. R., and Rodríguez, B. (2013). mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study. *PloS One*, 8(2):e56359.
- Walton, M. K. and Fozzard, H. A. (1983). The conducted action potential. Models and comparison to experiments. *Biophysical Journal*, 44(1):9–26.
- Wang, C., Liu, N., Luan, R., Li, Y., Wang, D., Zou, W., Xing, Y., Tao, L., Cao, F., and Wang, H. (2013). Apelin protects sarcoplasmic reticulum function and cardiac performance in ischaemia-reperfusion by attenuating oxidation of sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. *Cardiovascular Research*.
- Watanabe, M. A., Fenton, F. H., Evans, S. J., Hastings, H. M., and Karma, A. (2001). Mechanisms for discordant alternans. *Journal of Cardiovascular Electrophysiology*, 12(2):196–206.
- Weiss, J. N., Karma, A., Shiferaw, Y., Chen, P.-S., Garfinkel, A., and Qu, Z. (2006). From pulsus to pulseless: the saga of cardiac alternans. *Circulation Research*, 98(10):1244–53.
- Weiss, J. N. and Shine, K. I. (1982). [K+]o accumulation and electrophysiological alterations during early myocardial ischemia. *American Journal of Physiology*, 243(2):H318-27.
- Weiss, J. N., Venkatesh, N., and Lamp, S. T. (1992). ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle. *The Journal of Physiology*, (447):649–673.
- Wilde, A. A. M., Peters, R. J. G., and Janse, M. J. (1988). Catecholamine release and potassium accumulation in the isolated globally ischemic rabbit heart. *Journal of Molecular and Cellular Cardiology*, 20(10):887–96.
- Wu, L., Guo, D., Li, H., Hackett, J., Yan, G.-X., Jiao, Z., Antzelevitch, C., Shryock, J. C., and Belardinelli, L. (2008a). Role of late sodium current in modulating the proarrhythmic and antiarrhythmic effects of quinidine. *Heart rhythm: the official journal of the Heart Rhythm Society*, 5(12):1726–34.
- Wu, L., Ma, J., Li, H., Wang, C., Grandi, E., Zhang, P., Luo, A., Bers, D. M., Shryock, J. C., and Belardinelli, L. (2011). Late sodium current contributes to the reverse rate-dependent effect of IKr inhibition on ventricular repolarization. *Circulation*, 123(16):1713–20.
- Wu, L., Rajamani, S., Shryock, J. C., Li, H., Ruskin, J., Antzelevitch, C., and Belardinelli, L. (2008b). Augmentation of late sodium current unmasks the proarrhythmic effects of amiodarone. *Cardiovascular Research*, 77(3):481–8.

- Wu, L., Shryock, J. C., Song, Y., and Belardinelli, L. (2006). An increase in late sodium current potentiates the proarrhythmic activities of low-risk QT-prolonging drugs in female rabbit hearts. *The Journal of Pharmacology and Experimental Therapeutics*, 316(2):718–26.
- Xiao, L., Xiao, J., Luo, X., Lin, H., Wang, Z., and Nattel, S. (2008). Feedback remodeling of cardiac potassium current expression: a novel potential mechanism for control of repolarization reserve. *Circulation*, 118(10):983–92.
- Xie, Y., Hu, G., Sato, D., Weiss, J. N., Garfinkel, A., and Qu, Z. (2007). Dispersion of refractoriness and induction of reentry due to chaos synchronization in a model of cardiac tissue. *Physical Review Letters*, 99(11):118101.
- Xu, A., Hawkins, C., and Narayanan, N. (1993). Phosphorylation and activation of the Ca(2+)-pumping ATPase of cardiac sarcoplasmic reticulum by Ca2+/calmodulin-dependent protein kinase. *The Journal of Biological Chemistry*, 268(12):8394–7.
- Xu, K. Y., Zweier, J. L., and Becker, L. C. (1997). Hydroxyl radical inhibits sarcoplasmic reticulum Ca(2+)-ATPase function by direct attack on the ATP binding site. *Circulation Research*, 80(1):76–81.
- Yamazaki, M., Honjo, H., Ashihara, T., Harada, M., Sakuma, I., Nakazawa, K., Trayanova, N., Horie, M., Kalifa, J., Jalife, J., Kamiya, K., and Kodama, I. (2012). Regional cooling facilitates termination of spiral-wave reentry through unpinning of rotors in rabbit hearts. *Heart rhythm: the official journal of the Heart Rhythm Society*, 9(1):107–14.
- Yan, G.-X. and Antzelevitch, C. (1998). Cellular Basis for the Normal T Wave and the Electrocardiographic Manifestations of the Long-QT Syndrome. *Circulation*, 98(18):1928–1936.
- Yan, G.-X., Rials, S. J., Wu, Y., Liu, T., Xu, X., Marinchak, R. A., and Kowey, P. R. (2001). Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early afterdepolarization. *American Journal of Physiology Heart and Circulatory Physiology*, 281:H1968–H1975.
- Yang, P.-C. and Clancy, C. E. (2012). In silico Prediction of Sex-Based Differences in Human Susceptibility to Cardiac Ventricular Tachyarrhythmias. *Frontiers in Physiology*, 3(September):360.
- Yang, T., Snyders, D. J., and Roden, D. M. (1997). Rapid inactivation determines the rectification and [K+]0 dependence of the rapid component of the delayed rectifier K+ current in cardiac cells. *Circulation Research*, 80(6):782–9.
- Yue, L., Feng, J., Li, G. R., and Nattel, S. (1996). Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. *The American Journal of Physiology*, 270(6 Pt 2):H2157–68.
- Zabel, M., Hohnloser, S. H., Behrens, S., Woosley, R. L., and Franz, M. R. (1997a). Differential effects of D-sotalol, quinidine, and amiodarone on dispersion of ventricular repolarization in the isolated rabbit heart. *Journal of Cardiovascular Electrophysiology*, 8(11):1239–45.
- Zabel, M., Woosley, R. L., and Franz, M. R. (1997b). Is dispersion of ventricular repolarization rate dependent? *Pacing and Clinical Electrophysiology : PACE*, 20(10 Pt 1):2405–11.
- Zaniboni, M., Pollard, A. E., Yang, L., and Spitzer, K. W. (2000). Beat-to-beat repolarization variability in ventricular myocytes and its suppression by electrical coupling. *American Journal of Physiology Heart and Circulatory Physiology*, 278(3):H677–87.

- Zeng, J., Laurita, K. R., Rosenbaum, D. S., and Rudy, Y. (1995). Two Components of the Delayed Rectifier K+ Current in Ventricular Myocytes of the Guinea Pig Type: Theoretical Formulation and Their Role in Repolarization. *Circulation Research*, 77(1):140–152.
- Zhang, H., Wang, J., Yang, L., Wu, R.-J., Mei, X., and Zhao, W. (2011). Vulnerability in simulated ischemic ventricular transmural tissues. *Chinese Journal of Physiology*, 54(6):427–34.
- Zhao, M., Franzen, D., and Eng, C. (1988). The effect of coronary arterial pressure on myocardial distensibility. Absence of a "garden hose" effect during in-vivo conditions. *Basic Research in Cardiology*, 83(6):626–33.
- Zweier, J. L. (1988). Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury. *The Journal of Biological Chemistry*, 263(3):1353–7.