15.401 Recitation

6: Portfolio Choice

Learning Objectives

- ☐ Review of Concepts
 - O Portfolio basics
 - O Efficient frontier
 - O Capital market line
- □ Examples
 - OXYZ
 - O Diversification
 - O Sharpe ratio
 - O Efficient frontier

Review: portfolio basics

 \square A portfolio is a collection of N assets $(A_1, A_2, ..., A_N)$ with weights $(w_1, w_2, ..., w_N)$ that satisfy

- \square Each asset A_i has the following characteristics:
 - O Return: \widetilde{r}_i (random variable)
 - O Mean return: \overline{r}_i
 - O Variance and std. dev. of return: σ_i^2, σ_i
 - O Covariance with A_{j} : σ_{ij}

Review: portfolio basics

☐ The return of a portfolio is

$$\widetilde{r}_p = \sum_{i=1}^N w_i \widetilde{r}_i$$

☐ The mean/expected return of a portfolio is

$$E(r_p) = \overline{r}_p = \sum_{i=1}^N w_i \overline{r}_i$$

☐ The variance of a portfolio is

$$\sigma_p^2 = \sum_{i=1}^N \sum_{j=1}^N w_i w_j \sigma_{ij}; \quad \sigma_p = \sqrt{\sigma_p^2}$$

 \square Note: $\sigma_{ii} \equiv \sigma_i^2$; $\sigma_{ij} = \rho_{ij}\sigma_i\sigma_j$

	E(r)	Variance-Covariance			
		X	Υ	Z	
X	15%	0.090	0.125	0.144	
Υ	10%		0.040	-0.036	
Z	20%			0.625	

- What is the expected return and variance of a portfolio of ...
 - a. (X, Y) with weights (0.4, 0.6)?
 - b. (X, Y, Z) with weights (0.2, 0.5, 0.3)?
 - c. (X, Y, Z) with weights (1/3, 1/3, 1/3)?

☐ Answer:

a.
$$E(r_p) = 12\%$$
; $\sigma_p^2 = 0.08880$; $\sigma_p = 29.80\%$

b.
$$E(r_p) = 14\%; \sigma_p^2 = 0.10133; \sigma_p = 31.83\%$$

c.
$$E(r_p) = 15\%$$
; $\sigma_p^2 = 0.13567$; $\sigma_p = 36.83\%$

☐ What is the minimum possible variance of a portfolio with only Y and Z?

	E(r)	Variance-Covariance		
		X	Υ	Z
X	15%	0.090	0.125	0.144
Υ	10%		0.040	-0.036
Z	20%			0.625

☐ Answer:

Let (w, 1-w) be the weights for (Y, Z), then

$$\arg\min_{w} \left[w^2 \cdot 0.04 + 2w(1-w)(-0.036) + (1-w)^2 \cdot 0.625 \right]$$

☐ First-order condition:

$$2w \cdot 0.04 + 2(1 - 2w)(-0.036) - 2(1 - w) \cdot 0.625 = 0$$
$$w^* = 0.8969$$

☐ The minimum variance portfolio is (0.8969, 0.1031)

- □ Suppose that your portfolio consists of *N* equally weighted identical assets in the market, each of which has the following properties:
 - O Mean = 15%
 - O Std dev = 20%
 - O Covariance with any other asset = 0.01
- What is the expected return and std dev of return of your portfolio if...
 - O N = 2?
 - ON = 5?
 - ON = 10?
 - $O N = \infty$?

☐ Answer:

O Expected return

$$E(r_p) = \sum_{i=1}^{N} \frac{1}{N} \cdot 0.15 = 0.15$$

O Variance

$$\sigma(r_p) = \sum_{i=1}^{N} \frac{0.2^2}{N^2} + \sum_{i=1}^{N} \sum_{j \neq i} \frac{0.01}{N^2} = N \left(\frac{0.2^2}{N^2}\right) + N(N-1) \frac{0.01}{N^2}$$
$$= \frac{0.04}{N} + \left(1 - \frac{1}{N}\right) 0.01 = 0.01 + \frac{0.03}{N}$$

☐ Answer:

ON = 2:

$$E(r_p) = 15\%; \sigma_p^2 = 0.0250; \sigma_p = 15.81\%$$

ON = 5:

$$E(r_p) = 15\%; \sigma_p^2 = 0.0160; \sigma_p = 12.65\%$$

ON = 10:

$$E(r_p) = 15\%; \sigma_p^2 = 0.0130; \sigma_p = 11.40\%$$

 $ON = \infty$:

$$E(r_p) = 15\%; \sigma_p^2 = 0.0100; \sigma_p = 10.00\%$$

Review: diversification

- □ Given two assets, we can form portfolios with weights (w, 1–w). As we vary w, we can plot the **path** of the **mean return** and **standard deviation of return** of the resulting portfolio.
- ☐ The shape of the path depends on the correlation between the two assets.
- ☐ When the correlation is low, a large portion of asset return variation comes from idiosyncratic risk that can be diversified away.

- ρ = 1perfectly correlatedno risk reduction potential
- -1 < ρ < 1imperfectly correlatedsome risk reduction potential
- ρ = -1 perfectly negatively correlated most risk reduction potential

Image by MIT OpenCourseWare.

 \Box We can repeat the previous exercise for N assets:

□ The efficient frontier can be described by a function $\sigma^*(r_p)$, which minimizes the portfolio std dev given an expected return:

$$\sigma^{*}(r_{p}) \equiv \min_{\{w_{i}\}} \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} w_{i} w_{j} \sigma_{ij}} \quad \text{s.t.} \quad \begin{cases} \sum_{i=1}^{N} w_{i} = 1 \\ \sum_{i=1}^{N} w_{i} \overline{r_{i}} = r_{p} \end{cases}$$

 \square Analytical solution for $\sigma^*(r_p)$ is possible but difficult to derive.

Review: capital market line

☐ Efficient frontier + risk-free asset = CML

Image by MIT OpenCourseWare.

□ The Sharpe ratio measures the reward-risk tradeoff of an asset or a portfolio. It is defined as

$$S = \frac{\overline{r} - r_f}{\sigma}$$

□ The higher Sharpe ratio, the more desirable an asset / a portfolio is. Suppose $r_f = 5\%$. What is the portfolio of (A, B) with the highest Sharpe ratio?

	F(s)	COV-VAR		
	E(r)	Α	В	
А	15%	0.090	0.015	
В	10%		0.040	

☐ Answer:

$$\max_{w} S_{p} = \max_{w} \frac{wr_{A} + (1 - w)r_{B} - r_{f}}{\sqrt{w^{2}\sigma_{A}^{2} + 2w(1 - w)\sigma_{AB} + (1 - w)^{2}\sigma_{B}^{2}}}$$

- ☐ Method 1: grid search
 - 1. Set up a grid for w, e.g., w = 0, 0.1, 0.2, ..., 1.0 The finer the grid, the more accurate the result
 - 2. Calculate the Sharpe ratio for each w
 - 3. Find the maximum Sharpe ratio.

☐ Method 1: grid search

W	1-W	$r_p - r_f$	$\sigma_{_{p}}$	S_p
0	1	0.0500	0.2000	0.2500
0.1	0.9	0.0550	0.1897	0.2899
0.2	0.8	0.0600	0.1844	0.3254
0.3	0.7	0.0650	0.1844	0.3525
0.4	0.6	0.0700	0.1897	0.3689
0.5	0.5	0.0750	0.2000	0.3750
0.6	0.4	0.0800	0.2145	0.3730
0.7	0.3	0.0850	0.2324	0.3658
0.8	0.2	0.0900	0.2530	0.3558
0.9	0.1	0.0950	0.2757	0.3446
1	0	0.1000	0.3000	0.3333

2010 / Yichuan Liu

☐ Method 2: Excel Solver

					
	А	В	C	D	E
1			E(r)	Asset A	Asset B
2				=B3	=B4
3	Asset A		0.15	0.09	0.015
4	Asset B	=1-B3	0.1	0.015	0.04
5					
6			$r_p - r_f$	$\sigma_{_{p}}$	5
7			=f	=g	=C7/D7

f: SUMPRODUCT(B3:B4, C3:C4) - 0.05

g: SQRT(B3*D2*D3+B3*E2*E3+B4*D2*D4+B4*E2*E4)

<u>Solver</u>

Set Target Cell:

\$E\$7

Equal To:

Max

By Changing Cell:

\$B\$3

☐ Method 2: Excel Solver

	А	В	С	D	E
1			E(r)	Asset A	Asset B
2				0.52	0.48
3	Asset A	0.52	0.15	0.09	0.015
4	Asset B	0.48	0.1	0.015	0.04
5					
6			$r_p - r_f$	$\sigma_{\!p}$	5
7			0.076	0.202583	0.375154

■ Method 3: analytical solution○ Full derivation:

$$\frac{\partial S}{\partial w} = \frac{(\bar{r}_A - \bar{r}_B)(\sigma_P^2)^{\frac{1}{2}} - \frac{1}{2}(\sigma_p^2)^{-\frac{1}{2}}(2w\sigma_A^2 + 2(1-2w)\sigma_{AB} - 2(1-w)\sigma_B^2)(\bar{r}_p - r_f)}{(\sigma_p^2)^{\frac{1}{2}}}$$

$$= \frac{(\bar{r}_A - \bar{r}_B)(w^2\sigma_A^2 + 2w(1-w)\sigma_{AB} + (1-w)^2\sigma_B^2) - (w\sigma_A^2 + (1-2w)\sigma_{AB} - (1-w)\sigma_B^2)(w\bar{r}_A + (1-w)\bar{r}_B - r_f)}{\sigma_p^2}$$

$$= 0$$

$$0 = (\bar{r}_A - \bar{r}_B)(w^2\sigma_A^2 + 2w(1-w)\sigma_{AB} + (1-w)^2\sigma_B^2) - (w\sigma_A^2 + (1-2w)\sigma_{AB} - (1-w)\sigma_B^2)(w\bar{r}_A + (1-w)\bar{r}_B - r_f)$$

$$= (\bar{r}_A - \bar{r}_B)(w^2\sigma_A^2 + 2w(1-w)\sigma_{AB} + (1-w)^2\sigma_B^2) - (w\sigma_A^2 + (1-2w)\sigma_{AB} - (1-w)\sigma_B^2)(w(\bar{r}_A - \bar{r}_B) + \bar{r}_B - r_f)$$

$$= (\bar{r}_A - \bar{r}_B)(w\sigma_{AB} + (1-w)\sigma_B^2) - (w\sigma_A^2 + (1-2w)\sigma_{AB} - (1-w)\sigma_B^2)(\bar{r}_B - r_f)$$

$$= (\bar{r}_A - \bar{r}_B)\sigma_B^2 - (\sigma_{AB} - \sigma_B^2)(\bar{r}_B - r_f) - [(\bar{r}_A - \bar{r}_B)(\sigma_B^2 - \sigma_{AB}) + (\sigma_A^2 - 2\sigma_{AB} + \sigma_B^2)(\bar{r}_B - r_f)]w$$

$$= [(\bar{r}_A - r_f)\sigma_B^2 - (\bar{r}_B - r_f)\sigma_{AB}] + [(\bar{r}_A - r_f)(\sigma_B^2 - \sigma_{AB}) + (\bar{r}_B - r_f)(\sigma_A^2 - \sigma_{AB})]w$$

$$w^* = \frac{(\bar{r}_A - r_f)\sigma_B^2 - (\bar{r}_B - r_f)\sigma_{AB}}{(\bar{r}_A - r_f)(\sigma_B^2 - \sigma_{AB}) + (\bar{r}_B - r_f)(\sigma_A^2 - \sigma_{AB})}$$

$$= 0.52$$

2010 / Yichuan Liu

- Method 3: analytical solution
 - O Result only:

The general solution for the 2-asset Sharpe ratio maximization problem is

$$w^* = \frac{(\overline{r}_A - r_f)\sigma_B^2 - (\overline{r}_B - r_f)\sigma_{AB}}{(\overline{r}_A - r_f)(\sigma_B^2 - \sigma_{AB}) + (\overline{r}_B - r_f)(\sigma_A^2 - \sigma_{AB})}$$

☐ Given the risky assets A and B in the previous question, what is the efficient frontier?

	E(x)	COV-VAR		
	E(r)	Α	В	
А	15%	0.090	0.015	
В	10%		0.040	

☐ Given 5% risk-free rate, what is the capital market line?

☐ Table from the previous question:

	<u>- </u>	<u>-</u>	
W	1-W	r_p	$\sigma_{_{p}}$
0	1	0.1000	0.2000
0.1	0.9	0.1050	0.1897
0.2	0.8	0.1100	0.1844
0.3	0.7	0.1150	0.1844
0.4	0.6	0.1200	0.1897
0.5	0.5	0.1250	0.2000
0.6	0.4	0.1300	0.2145
0.7	0.3	0.1350	0.2324
0.8	0.2	0.1400	0.2530
0.9	0.1	0.1450	0.2757
1	0	0.1500	0.3000

 \square Scatter plot of (r_p, σ_p) pairs:

□ Capital market line:

- ☐ The moral of the story:
 - O The CML is tangent to the efficient frontier at the tangency portfolio.
 - O The tangency portfolio is the portfolio of risky assets that maximizes the Sharpe ratio.
 - O The slope of the CML is the maximum Sharpe ratio.
 - O Rational investors always hold a combination of the tangency portfolio and the risk-free asset. The proportion depends on investors' risk preferences.

Sneak Peak: CAPM

- ☐ The tangency portfolio is the market portfolio.
- ☐ An asset's **systematic risk** is measured by **beta**, which is defined as the **correlation** of its return and the market return, normalized by the variance of market return:

$$eta_i = rac{\sigma_{im}}{\sigma_m^2}$$

☐ Since investors are only compensated for **systematic risk**, asset return is an increasing function of beta:

$$E(\widetilde{r}_i) = r_f + \beta_i (\widetilde{r}_i - r_f)$$

MIT OpenCourseWare http://ocw.mit.edu

15.401 Finance Theory I Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.