

Mech. Dept. LIBRARY

UNIVERSITY OF CALIFORNIA.

Received Oct. 1895

Accessions No. 60850. Class No.

ARMATURE WINDINGS

OF

ELECTRIC MACHINES

BY

H. F. PARSHALL

MEMBER AMERICAN INSTITUTE ELECTRICAL ENGINEERS, MEMBER INSTITUTION ELECTRICAL ENGINEERS GREAT BRITAIN, MEMBER AMERICAN SOCIETY OF MECHANICAL ENGINEERS, ETC.

AND

H. M. HOBART, S.B.

NEW YORK
D. VAN NOSTRAND COMPANY

LONDON
ROBERT W. BLACKWELL

39 VICTORIA STREET, WESTMINSTER

1895

TK247
P3
Engineering
Library

Copyright, 1895,
By D. VAN NOSTRAND COMPANY.

TABLE OF CONTENTS.

00:00:00 TABLE OF CONTENTS LIST OF DIAGRAMS INTRODUCTORY . Multipolar commutating dynamos - Limits of bipolar dynamos - Considerations governing choice of windings -Cases in which two-circuit windings may be employed — Importance of symmetry — Extent to which symmetry may be departed from in certain cases - Gramme windings - Lack of symmetry introduced by spider arms - Utility of twocircuit, multiple windings - Conditions affecting voltage between adjacent commutator segments - Slotted armatures -Interdependence of re-entrancy, conductors per slot, number of slots, and number of poles - Interpretation of formulæ in case of coils consisting of several conductors bound together - Alternate-current armature windings. PART I. CONTINUOUS-CURRENT ARMATURE WINDINGS. CHAPTER I. - SINGLE-WOUND GRAMME RINGS Characteristics - Methods of cross-connecting - Use of only two sets of brushes with multipolar dynamos - Methods of reducing the number of commutator segments relatively to the number of winding sections - Windings suitable for poorly balanced magnetic circuits - Diminution of sparking by use of resistances. CHAPTER II. - DOUBLE-WOUND GRAMME RINGS . Multiple windings - Their advantages - Limiting conditions - Importance of symmetry with small numbers of conductors - Singly and multiply re-entrant windings - Importance of avoiding the use of interpolations and cross-connections. CHAPTER III. - TWO-CIRCUIT, SINGLE-WOUND, MULTIPOLAR RINGS .

of potential existing between adjacent sections of the winding - Modified types.

Cases permitting the employment of two-circuit windings — Characteristics — Lack of symmetry of the armature coils — Short-connection and long-connection types — Effect of unequal air gaps — Use of long-connection type advisable for high potential armatures — Formulæ and tables for use with the long-connection gramme winding — Definition of "pitch," y — Table for use in determining permissible angular distance between brushes with different numbers of poles — Examples of two-circuit gramme windings — Chief objection to the short-connection type is the great difference

CHAPTER IV. — Two-Circuit, Multiple-Wound, Multipolar Rings	PAGE 40
Formula — Meaning of symbols — Rule for re-entrancy — Examples.	10
Formula — Meaning of symbols — Rule for re-entrancy — Examples.	
CHAPTER V.— Drum Armature Windings	51
General observations—Bipolar drum windings—The von Hefner-Alteneck winding—Short-chord windings; their properties and limitations—Windings in which the two active sides of a coil are diametrically opposite—Term "conductors" often used for convenience, when "groups of conductors" would be more exact—"One-layer" and "two-layer" windings—Windings in which the two short-circuited coils are situated on the same diameter.	
CHAPTER VI. — MULTIPLE-CIRCUIT, SINGLE-WOUND, MULTIPOLAR DRUMS	71
Discussion — Explanation of diagrammatical methods for representing multipolar drum windings — Effect of different pitches with same number of face conductors — Connection at ends always made between odd and even numbered conductors — Other rules and limitations — Magnitude of differences of potential between adjacent conductors.	
CHAPTER VII. — MULTIPLE-CIRCUIT, MULTIPLE-WOUND, MULTIPOLAR DRUMS	77
Rules controlling conductors, pitches, and re-entrancy—Irregularities of windings much exaggerated by the small number of conductors necessarily chosen for the illustrative diagrams—Examples of various cases.	
CHAPTER VIII. — Two-Circuit, Single-Wound, Drum Armatures	87
Description of characteristics — Comparison of the merits and faults of the two-circuit and multiple-circuit windings — Formulæ and rules for applying two-circuit single windings to drum armatures — Choice of even integers for "y" involving the use of different pitches at the two ends, but increasing the range of choice — Comparison of the conditions with one pair and with several pairs of brushes upon the commutator — Description of some two-circuit windings with cross-connected commutators possessing distinctive features with regard to the possible numbers of coils — Description of a two-circuit drum winding devised by Wenström.	
CHAPTER IX.—INTERPOLATED COMMUTATOR SEGMENTS	107
A study of the distribution of potential in winding and commutator in the case of some two-circuit drum windings with interpolated commutator segments — Discussion of results.	
CHAPTER X. — Two-Circuit, Multiple-Wound, Drum Armatures	114
General formula — Meaning of symbols — Rules — Conditions of re-entrancy — Scheme of symbolical representation of two-circuit multiple windings — Numerous examples.	
Chapter XI.—The Sayers Winding	158
PART II.	
WINDINGS FOR ALTERNATE-CURRENT DYNAMOS AND MOTORS.	
Chapter XII. — Alternating-Current Windings	163
Comparison of alternating-current with continuous-current windings — Special considerations involved in design of alternating-current windings — Multi-coil and uni-coil windings — Slotted (or ironclad) and smooth-core construction — High and low voltage windings — Alternating continuous-current commutating machines — Explanation of diagrams — Advantages of multi-coil construction in certain cases.	

TABLE OF CONTENTS.	V
CHAPTER XIII. — SINGLE-PHASE WINDINGS	PAGE 166
Examples of uni- and multi-coil windings — Bar windings — Windings that may be used interchangeably for single and multiphase work — Advantages of symmetry and simplicity — Windings that permit the armature to be built and shipped in segments — Unevenly distributed windings.	
Chapter XIV. — Quarter-Phase Windings	213
Meaning of the term "uni-coil" when applied to multiphase windings — Examples of quarter-phase windings, uni-coil and multi-coil — Windings for quarter-phase, continuous-current, commutating machines — Use of two-circuit and multiple-circuit windings for such machines — Ratio of collector ring to commutator voltage in this class of commutating machines.	
Chapter XV. — Three-Phase Windings	245
Typical diagram — Discussion of three-phase windings — Rules regarding voltage — "Y" connection — Delta (Δ) connection — Directions for making these connections — Examples of three-phase windings — Induction motors — Three-phase, continuous-current, commutating machines — Relation of voltage between collector rings to continuous-current voltage at commutator in case of three-phase, continuous-current, commutating machines.	
PART III.	
WINDING FORMULÆ AND TABLES.	
Chapter XVI. — Formulæ for Electromotive Force	275
Alternating-current windings — Continuous-current windings — Windings for alternating, continuous-current, commutating machines, quarter-phase and three-phase.	
CHAPTER XVII. — METHOD OF APPLYING THE ARMATURE-WINDING TABLES	277
Illustrative examples.	
Chapter XVIII. — Armature-Winding Tables	279
Drum-Winding Constants	280
SUMMARIZED CONDITIONS FOR TWO-CIRCUIT SINGLE WINDINGS	281
SUMMARIZED CONDITIONS FOR TWO-CIRCUIT DOUBLE WINDINGS	282
SUMMARIZED CONDITIONS FOR TWO-CIRCUIT TRIPLE WINDINGS	283
WINDING TABLES FOR TWO-CIRCUIT SINGLE WINDINGS	285
WINDING TABLES FOR TWO-CIRCUIT DOUBLE WINDINGS	295
WINDING TABLES FOR TWO-CIRCUIT TRIPLE WINDINGS	305
WINDING TABLES FOR MULTIPLE-CIRCUIT SINGLE WINDINGS	315
Winding Tables for Multiple-Circuit Double Windings	331
WINDING TABLES FOR MULTIPLE-CIRCUIT TRIPLE WINDINGS	041

LIST OF DIAGRAMS.

PART I.

CHAPTER I. - SINGLE-WOUND GRAMME RINGS.

TO UND						PAGE
1. — Gramme ring — Four-circuit, single winding — Four poles						3
2. — Gramme ring — Two-circuit, single winding — Two poles						3
3. — Gramme ring — Four-circuit, single winding — Four poles — Cross-connected .						5
4. — Gramme ring — Four-circuit, single winding — Four poles — Cross-connected .						6
5. — Gramme ring — Four-circuit, single winding — Four poles						9
6. — Gramme ring — Four-circuit, single winding — Four poles — One-half normal m						10
7 Gramme ring - Four-circuit, single winding - Four poles - One-fourth normal			-			13
8. — Gramme ring — Fonr-circuit, single winding — Coils of one circuit from brush t						14
OHADED H. DOUBLE WOUND OF COME	DIMAG					
CHAPTER II.—DOUBLE-WOUND GRAMME	RINGS					
9. — Gramme ring — Two-circuit, doubly re-entrant, double winding — Two poles .						17
10. — Gramme ring — Four-circuit, doubly re-entrant, double winding — Four poles .						18
11. — Gramme ring — Four-circuit, singly re-entrant, double winding — Four poles .						21
CHAPTER III TWO-CIRCUIT, SINGLE-WOUND, MU	ILTIPOL	AR RING	S.			
7 10 0110 011, 011 011 1, 0012, 140						
	No. of pole $= n$.	No. of coils	= y.	No. of comm tator segmen		
12. — Gramme ring — Two-circuit, single winding — Long-connection type	. 4	15	7	15		25
13. — Gramme ring — Two-circuit, single winding — Long-connection type	. 10	51	10	51		26
14. — Gramme ring — Two-circuit, single winding — Long-connection type	. 10	46	9	46		29
15. — Gramme ring — Two-circuit, single winding — Long-connection type (modified)	. 4	19	9	28		30
16. — Gramme ring — Two-circuit, single winding — Long-connection type (modified)	. 6	19	6	57		33
17. — Gramme ring — Two-circuit, single winding — Short-connection type	. 4	34	7 & 9	17		34
18. — Gramme ring — Two-circuit, single winding — Short-connection type	. 4	22	5	11		37
19. — Gramme ring — Two-circuit, single winding — Long-connection type (modified)	-Four	poles — One	-half a	s many cor	11-	
mntator segments as coils						38

CHAPTER IV. - TWO-CIRCUIT, MULTIPLE-WOUND, MULTIPOLAR RINGS.

			vo. of wind-	Re-	Pitch = y .	-
FIGURE CO. C.	=n.	= 8.	ings = m.	entrancy.		PAGE
20. — Gramme ring — Two-circuit, doubly re-entrant, double winding		26	2	00	12	41
21. — Gramme ring — Two-circuit, singly re-entrant, double winding	. 4	24	2 2	0	I1 7	42
22. — Gramme ring — Two-circuit, singly re-entrant, double winding 23. — Gramme ring — Two-circuit, singly re-entrant, triple winding	. 6	23	_	(D)	7	45
	. 4	23	3	@	10	46
24. — Gramme ring — Two-circuit, singly re-entrant, triple winding. Twice normal-number of commutator segments		23	9		TO	40
Twice normal number of commutator segments	. 4	20	3	@	10	49
CHAPTER V.—DRUM ARMA	ATURE W	INDINGS.				
25 Bipolar drum - Two-circuit, single winding - One layer - Sixt	een conduct	ors				53
26. — Bipolar drum — Two-circuit, single winding — One layer — Sho			nductors .			54
27. — Bipolar drum — Two-circuit, single winding — One layer — Thir				metrically	y opposite	57
28. — Bipolar drum — Two-circuit, single winding — One layer — Shor	rt chord — I	Chirty conduc	tors .			58
29. — Bipolar drnm — Two-circuit, single winding — One layer — Shor	rt chord — I	Thirty conduc	tors .		Manager and the second	61
30 (a, b, c, and d). — Bipolar drums — Two-circuit, single windings —	One and two	o layers — Fo	urteen and	sixteen co	onductors	62
31. — Bipolar drum — Two-circuit, single winding — Two layers — Th	irty-two con	ductors - Ty	vo sides o	f coil dian	metrically	
opposite						65
32. — Bipolar drum — Two-circuit, single winding — Two layers — Sho	ort chord —	Thirty-two co	nductors.			66
33. — Bipolar drum — Two-circuit, single winding — Two layers — Tw	enty-eight c	onductors — (Coils of on	ter and in	ner layers	
alternately connected						69
CHAPTER VI MULTIPLE-CIRCUIT, SINGI	E-WOUNI), MULTIPO	LAR DR	UMS.		
		No, of pole $= n$,		onductors	Pitch $= y$.	
34. — Multipolar drum — Six-circuit, single winding		. 6		50	7 & 9	70
35. — Multipolar drum — Six-circuit, single winding		. 6		50	5 & 7	73
36. — Multipolar drum — Six-circuit, single winding		. 6		80	11 & 13	74
CHAPTER VII MULTIPLE-CIRCUIT, MULTI	DIE WOU					
CHAILER VII.—MULIIILE-CIRCUII, MULII			DOMESTIC TO	PINIC		
		ooles No. of con-	No. of wind	- Re-	Pitch = y.	
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding	No. of p	ooles No. of con- ductors = C.	No. of wind	- Re-		79
	No. of p = n	No. of conductors = C.	No. of wind ings $= m$.	Re- entrancy.	= y.	79 80
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding	No. of p = n 6 inding 4	No. of conductors = C. 50 44	No. of wind ings = m .	Re- entrancy.	= y. 5 & 1I	
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi	No. of p = n 6 inding 4 inding 4	ooles No. of conductors = C. 50 44 44	No. of wind ings = m .	Re- entrancy.	= y. 5 & 11 5 & 13	80
 37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 39. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 	No. of p = n 6 inding 4 inding 4	ooles No. of conductors = C. 50 44 44	No. of wind ings = m. 3 4	Re- entrancy.	= y. 5 & 11 5 & 13 7 & 15	80
 37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 39. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 	No. of 1 = n 6 inding 4 inding 4 6	50 ductors = C. 50 44 44 50	No, of wind ings = m . 3 4 2	Re- entrancy.	= y. 5 & 11 5 & 13 7 & 15	80
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 39. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 40. — Multipolar drum — Six-circuit, singly re-entrant, double winding	No. of part of the second seco	ooles No. of conductors = C. 50 44 44 50 DRUM AI	No, of wind ings = m . 3 4 2	Re- entrancy.	= y. 5 & 11 5 & 13 7 & 15	80
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 39. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 40. — Multipolar drum — Six-circuit, singly re-entrant, double winding CHAPTER VIII. — TWO-CIRCUIT, SINGLE No. of poles = n.	No. of part No. of part No. of part No. of conductors = C.	50 de solo No. of conductors = C. 50 d4 d4 d4 50 DRUM AI	No, of wind ings = m . 3 4 2	Re- entrancy.	= y. 5 & 11 5 & 13 7 & 15	80 83 84
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 39. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 40. — Multipolar drum — Six-circuit, singly re-entrant, double winding CHAPTER VIII. — TWO-CIRCUIT, SINGLE No. of poles = n. 41. — Multipolar drum — Two-circuit, single winding 4	No. of part of the state of the	boles No. of conductors = C. 50 44 44 50 DRUM AI Pitch = y. 9	No, of wind ings = m . 3 4 2	Re- entrancy.	= y. 5 & 11 5 & 13 7 & 15	80 83 84
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 39. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 40. — Multipolar drum — Six-circuit, singly re-entrant, double winding CHAPTER VIII. — TWO-CIRCUIT, SINGLE No. of poles = n. 41. — Multipolar drum — Two-circuit, single winding	No. of p = n 1. 6 1. 7	50 44 44 50 DRUM AI Pltch = y. 7 & 9	No, of wind ings = m . 3 4 2	Re- entrancy.	= y. 5 & 11 5 & 13 7 & 15	80 83 84 89 90
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 39. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 40. — Multipolar drum — Six-circuit, singly re-entrant, double winding CHAPTER VIII. — TWO-CIRCUIT, SINGLY No. of poles = n. 41. — Multipolar drum — Two-circuit, single winding	No. of p = n 6 inding 4 inding 4 6 E-WOUND, No. of condutors = C. 34 34 68	50 44 44 50 DRUM AI DRUM AI Pitch = y. 7 & 9 . 11 .	No, of wind ings = m . 3 4 2	Re- entrancy.	= y. 5 & 11 5 & 13 7 & 15	80 83 84 89 90 93
37. — Multipolar drum — Six-circuit, singly re-entrant, triple winding 38. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 39. — Multipolar drum — Four-circuit, doubly re-entrant, quadruple wi 40. — Multipolar drum — Six-circuit, singly re-entrant, double winding CHAPTER VIII. — TWO-CIRCUIT, SINGLE No. of poles = n. 41. — Multipolar drum — Two-circuit, single winding	No. of p = n 1. 6 1. 7	50 44 44 50 DRUM AI Pltch = y. 7 & 9	No, of wind ings = m . 3 4 2	Re- entrancy.	= y. 5 & 11 5 & 13 7 & 15	80 83 84 89 90

46. — Multipolar drum — Two-circuit, single winding	97 98 01 02
46. — Multipolar drum — Two-circuit, single winding	98 01 02
47. — Multipolar drum — Two-circuit, single winding	01
48. — Multipolar drum — Two-circuit, single winding	02
49. — Multipolar drum — Two-circuit, single winding — Four-pole wire-wound armature (Wenström)	
CHAPTER IX.—INTERPOLATED COMMUTATOR SEGMENTS. No. of poles Pitch=y. No. of conductors = C. Vo. of commutator segments. 50.—Multipolar drum—Two-circuit, single winding	55
No. of poles Pitch=y. No. of conductors=C. No. of commutator segments. 50. — Multipolar drum — Two-circuit, single winding	
No. of poles Pitch=y. No. of conductors=C. No. of commutator segments. 50. — Multipolar drum — Two-circuit, single winding	
50. — Multipolar drum — Two-circuit, single winding 6 13 80 80 10	
50. — Multipolar drum — Two-circuit, single winding 6 13 80 80 10	
51 — Multipolar drum — Two-circuit single winding	06
51.—Multipolar drum—Two-circuit, single winding 6 7 44 66 10	9
52. — Multipolar drum — Two-circuit, single winding 8 5 42 42 11	10
53. — Multipolar drum — Two-circuit, single winding 8 5 42 84 11	13
CHAPTER X. — TWO-CIRCUIT, MULTIPLE-WOUND, DRUM ARMATURES.	
No. of No. of No. of Poles conductors windings Re-entrancy. Pitch= y . = n . = C . = m .	
	15
54. — Multipolar drum — Two-circuit, singly re-entrant, double winding, 4 32 2 @ 7 11 55. — Multipolar drum — Two-circuit, singly re-entrant, double winding, 4 32 2 @ 7 11	
56. — Multipolar drum — Two-circuit, singly re-entrant, triple winding . 4 70 3 © 15 & 17 11	
57. — Multipolar drum — Two-circuit, triply re-entrant, triple winding . 4 66 3 000 15 12	
58. — Multipolar drum — Two-circuit, singly re-entrant, double winding, 6 58 2	
59. — Multipolar drum — Two-circuit, doubly re-entrant, double winding, 6 52 2 0 7 & 9 12	
60. — Multipolar drum — Two-circuit, triply re-entrant, triple winding . 6 60 3 00 9 12	
61. — Multipolar drum — Two-circuit, singly re-entrant, triple winding . 6 54 3	
62. — Multipolar drum — Two-circuit, triply re-entrant, triple winding . 6 78 3 000 11 & 13 13	
63.—Multipolar drum—Two-circuit, singly re-entrant, quadruple	
winding 6 50 4 (000) 7 13	32
64. — Multipolar drum — Two-circuit, quadruply re-entrant, quadruple	-
winding	35
65. — Multipolar drum — Two-circuit, doubly re-entrant, quadruple	
winding	36
66. — Multipolar drum — Two-circuit, quadruply re-entrant, quadruple	
winding	39
67. — Multipolar drum — Two-circuit, quadruply re-entrant, quadruple	
winding 6 104 4 0000 15 & 17 14	10
68.—Multipolar drum—Two-eircuit, quadruply re-entrant, quadruple	
winding	13
69. — Multipolar drum — Two-circuit, triply re-entrant, sextuple winding, 6 66 6 @@@ 9 14	
70. — Multipolar drum — Two-circuit, doubly re-entrant, sextuple	
winding	<u>1</u> 7
71. — Multipolar drum — Two-circuit, singly re-entrant, sextuple winding, 6 78 6 00000 11 14	
72. — Multipolar drum — Two-circuit, sextuply re-entrant, sextuple	
winding	

FIGURE	o. of poles $= n$.	No. of conductors=C.	No. of wind- ings= m.	Re- entrancy		Pitch = y.	PAGE
73. — Multipolar drum — Two-circuit, doubly re-entrant, double winding.	8	84	2	00		& 11	152
74. — Multipolar drum — Two-circuit, singly re-entrant, double winding .	8	84	2	0		11	155
75. — Multipolar drum — Two-circuit, singly re-entrant, double winding .	8	92	2	0		11	156
OHADIED VI THE CAVEDO		NING.					
CHAPTER XI.—THE SAYERS	WINL	DING.					
76. — Diagram of the Sayers winding							159
PART II.							
CHAPTER XII. — ALTERNATING-CUF	RENT	WINDI	NGS.				
CHAPTER XIII.—SINGLE-PHAS	E WIN	TOTACC					
		DINGS.					
77. — Uni-coil winding — Two coils per group — Sixteen poles — Sixteen coi							167
78. — Uni-coil winding — One coil per group — Twenty-four poles — Twelve	coils					-	168
79. — Bar winding — Twenty-four poles — Twenty-four conductors							171
80. — Overlapping, uni-coil winding — Twenty-four poles — Twelve coils .							172
81. — Two-coil winding — One coil per group — Sixteen poles — Sixteen coil	ls .						175
82. — Bar winding — Sixteen poles — Thirty-two conductors							176
83. — Two-coil winding — One coil per group — Sixteen poles — Sixteen coil							179
84. — Overlapping, two-coil winding — One coil per group — Sixteen poles -	-Sixtee	n coils					180
85. — Bar winding — Sixteen poles — Thirty-two conductors					.0 .		183
86. — Overlapping, two-coil winding — One coil per group — Sixteen poles -	-Sixtee	n coils					184
87. — Overlapping, two-coil winding — Two coils per group — Sixteen poles	— Thir	ty-two coil	ls .				187
88. — Overlapping, three-coil winding — Oue coil per group — Sixteen poles				. 13.			188
89. — Bar winding — Sixteen poles — Forty-eight conductors							191
90. — Overlapping, three-coil winding — One coil per group — Sixteen poles-							192
91. — Bar winding — Sixteen poles — Forty-eight conductors							195
92. — Partially overlapping, three-coil winding — One coil per group — Sixte							196
93. — Bar winding — Sixteen poles — Forty-eight conductors							199
94. — Partially overlapping, three-coil winding — One coil per group — Sixte					100		200
95. — Three-coil winding — One coil per group — Sixteen poles — Twenty-fo					70.00		203
96. — Non-overlapping winding with one and one-half coils per pole piece — T	wocoils	ner groun -	_ Twenty	noles — '	Thirty	oils	204
97. — Unevenly distributed, two-coil winding — Twelve poles — Twelve coils		· ·		50105	z miroj c	ons.	207
98. — Unevenly distributed bar winding — Eight poles — Twenty-four condu						153	208
99. — Unevenly distributed two-coil winding — Sixteen poles — Sixteen coils							211
out out and and the out which state poice - state of contract		•			1 = 1	- 4	6.4.4
CHAPTER XIV. — QUARTER-PHA	SE WI	NDINGS.					
100. — Overlapping, uni-coil winding — Oue coil per group — Sixteen poles —	Sixteer	coile	1			540	212
101. — Bar winding — Sixteen poles — Thirty-two conductors							215
102. — Non-overlapping, uni-coil winding — Two coils per group — Eight pol				TILE			216
103. — Overlapping, uni-coil winding — Two coils per group — Sixteen poles						1	219
104. — Two-coil winding — Twelve poles — Twenty-four coils	Lilli	J tho cons		- 1			220

LIST OF	DIA	GR.	AMS	8.									хi
105. — Two-coil winding — Twelve poles — Twenty-four coils								200					PAGE . 223
106. — Bar winding — Twelve poles — Forty-eight conductors	11												. 224
107. — Bar winding — Twelve poles — Forty-eight conductors													. 227
108. — Bar winding — Twelve poles — Forty-eight conductors													. 228
109. — Bar winding — Twelve poles — Forty-eight conductors													. 231
110. — Three-coil winding — Eight poles — Twenty-four coils													. 232
111. — Three-coil winding — Eight poles — Twenty-four coils													. 235
112. — Bar winding — Eight poles — Forty-eight conductors .													. 236
113. — Bar winding — Eight poles — Sixty-four conductors .	1.13												. 239
114. — Two-circuit winding for quarter-phase, continuous-curren	t, com	muta	ating	macl	hine -	-Six	pole	s — S	Sixtv-e	ight	cond	uctors	240
115. — Twelve-circuit winding for quarter-phase, continuous-curre			_							-			. 243
CHAPTER XV.—TH	REE-	-PHA	SE	WIN	DIN	GS.							
116. — Uni-coil winding — Twenty poles — Thirty coils	•	•	•	•		•			•	•		1	. 244
117. — Diagrams showing "delta" (Δ) and "Y" connections						•	•			•	•	•	. 247
118. — Bar winding — Twenty poles — Sixty conductors .	•	•		•			٠				•		. 248
119. — Non-overlapping winding — Two coils per group — Twen	ty pol	les —	Thi	rty co	ils —	One	and	one-b	alf co	ils pe	r pol	e piece	3
per phase				•	•	٠	٠						. 251
120. — Bar winding — Twenty poles — Sixty conductors .	٠				•		•	٠					. 252
121. — Two-coil winding — Eight poles — Twenty-four coils .					•	•	•						. 255
122. — Bar winding — Eight poles — Forty-eight conductors			٠			•			-				. 256
123. — Two-coil winding — Eight poles — Twenty-four coils .										•			. 259
124. — Bar winding — Eight poles — Forty-eight conductors													. 260
125. — Bar winding — Six poles — Fifty-four conductors												•	. 263
126. — Bar winding — Four poles — Fifty-one conductors .													. 264
127. — Bar winding — Six poles — Fifty-one conductors									0.11				. 267
128 - Two-circuit winding for a three-phase, continuous-curren	t. com	mut	ating	mac	hine -	-Six	pole	es — 5	Sixty	eight	cond	nctors	268

129.—Six-circuit winding for a three-phase, continuous-current, commutating machine—Six poles—108 conductors .

-00-00-0-

The present treatise is the outcome of an investigation made a number of years ago, before the principles of the armature winding of multipolar commutating dynamos were generally understood by electricians. At that time it appeared that the demand for dynamos of greater current output could only be met satisfactorily by dynamos of the multipolar type, since with bipolars beyond a certain output the number of commutator segments compatible with freedom from sparking was found to be incompatible with the maximum armature reaction which experience has shown to be permissible. After some study it was concluded the only feature of the multipolar dynamo requiring special study was that of the armature windings.

A considerable number of diagrams were prepared and classified; the advantages and disadvantages of each, and the comparative fitness of these windings for different purposes, noted. Inasmuch as it was found convenient to refer to this data frequently, and on account of the comparative inaccessibility of such information when in the form of notes, we decided that it would be a great convenience to electricians generally if our notes were published in book form. We therefore proceeded to do this; but owing to the intervention of certain circumstances contingent to our position in an industrial concern, it became necessary to lay aside this work until those competent to judge of its nature should feel able to permit us to proceed as we had wished. The delay has not been disadvantageous, since in the meantime we have not laid the work aside; on the contrary, we have made a study of the properties of a number of the more important windings, so that the original manuscript has been largely added to.

In the section on continuous-current armature windings our endeavor has been to include only those windings that possess some practical merit, and we have frequently pointed out the advantages and disadvantages peculiar to certain classes of windings. The thought will probably occur to the reader, which one of these windings should be selected for a given voltage after the number of poles and the magnitude of the magnetic flux at the poles have been assigned a proper value. We cannot point out the fitness of each winding for a given purpose, since this is more or less dependent upon the magnetic characteristics peculiar to any particular design. Thus in some machines of particularly good characteristics two-circuit windings have been used in the generation of comparatively large currents with some success, when had the magnetic characteristics of the dynamos been ordinarily good, the use of the two-circuit winding would have been attended with results entirely unsatisfactory.

In general, we may state, the type of winding should be determined with reference to the magnitude of the current to be generated. Any deviation from a perfectly symmetrical arrangement of the armature conductors should be inversely proportional to the magnitude of the currents to be generated. When the currents to be generated are large, the coils should be similarly situated with respect to each other, and should all have the same resistance and inductance. It has been frequently found that when the conductors are dissimilarly situated with respect to each other or to any other body that can affect the armature conductors inductively, the wearing away of the commutator is uneven, the trouble increasing more and more as the currents in the conductors are increased, or the resistance of the collecting brushes diminished. Especially in armatures in which there are more than two coils in a slot this uneven wearing away of the commutator has been noticed. In this case the coils are of slightly unequal area, due to the progression of the winding from slot to slot.

In gramme windings the lack of symmetry may be due to some of the coils being longer than the others, or carried near the spider arms.

It may, therefore, be stated generally that when a given result has to be obtained without experimenting, such windings as these are to be avoided when the currents in the conductors have to be of any considerable magnitude.

The utility of the double, triple, and quadruple windings shown and described depends very largely upon the maximum are upon the commutator over which uniform contact resistance can be obtained. With the thickness of segments now common in practice, only double and triple windings appear to be of practical value, since, in general, brushes cannot be relied upon to maintain a uniform contact over an arc of much more than three-quarters of an inch in width. When the width of the brush has to exceed this amount, it is found that it bridges imperfectly from commutator bar to commutator bar in the same winding, thereby causing sparking.

A feature peculiar to these windings, as well as to some of the two-circuit single windings, is that the voltage between adjacent commutator sections is affected by the angular distance between the different sets of collecting brushes. With some of these windings the voltage between adjacent commutator sections varies simply according to the field strength when the angle between the different sets of brushes corresponds to the angle between the centers of the poles. In other windings the voltage between adjacent commutator sections varies by jumps, but may be made to vary according to the field strength by slightly varying the position of some one set of brushes with respect to the other sets. This feature of the different windings is a subject for special investigation, and is of more or less importance, according to the nature of the winding and the average voltage between commutator bars.

We have frequently made mention of the number of slots. With respect to slotted armatures in general, it is to be remembered that an additional condition to that for smooth-core armatures has to be fulfilled; *i.e.* the total number of the conductors to suit the equations for re-entrancy has to be divisible by the number of conductors possible to place in a slot, this number being dependent upon the number of poles. The number of conductors permissible per slot for two-circuit windings for different numbers of poles is shown in a table.

We have omitted any reference to mechanical details of construction of armature windings, since these permit of great variety, without in any way modifying the results. Further, they are a part of the stock in trade of the electrical manufacturer.

The drum windings considered are principally those in which the end connections are interchangeable, and

are in the form of evolutes, as in the Eickemeyer and Hopkinson windings, description of which will be found in Weymouth's "Drum Armatures and Commutators" ("The Electrician" Printing and Publishing Company, London, 1893). In general, such windings possess the advantages that all coils are of equal inductance and resistance, are equally accessible, have equal radiating surfaces, and are most easily repaired. When a coil consists of a number of conductors, bound together so as to be considered a single unit mechanically, it is so considered in the text, and in the formulæ for the arrangement of conductors.

These windings appear to have been invented by Bollmann, Desroziers, Fritsche, Pischon, Eickemeyer, and others; but inasmuch as it is a disputed question as to which of these inventors has the right to claim priority, and as there may be more or less litigation before the question is settled, we have considered it best to omit all discussion as to who may have invented any of the windings. Where with a winding is given the name of a supposed inventor, it is simply because that winding has been known under that name, and not because the writers possess any special evidence to show by whom the winding was invented. After the possibility of litigation has ceased we hope to do justice to all inventors concerned, giving to each his proper proportion of credit for the work he has done.

We believe that the tables on drum windings are a feature that should meet with especial favor, since after the number of conductors required for a given type of winding has been determined, the proper pitches for any style of winding can be found in the tables. Further, by referring opposite to this number of conductors in the different tables it may be ascertained at a glance whether, by slightly changing the end connections, the winding may be adapted to some other voltage. Such features, peculiar to certain numbers of conductors, are frequently in practice of the greatest importance. As a practical example take the following case: In a six-pole machine with 104 armature conductors, the winding may be connected for a two-circuit single winding by making the pitch 17 on each end, or for a two-circuit, doubly re-entrant double winding, by making the pitch 17 on one end and 19 on the other; this second arrangement being suitable for the same watt output as the first, at one-half the voltage.

In the section on alternate-current armature windings are included a number of windings that have now only a limited application in practice, as it is thought that, on account of the very limited literature on this subject, a description of all windings of any practical use will be appreciated.

With respect to the work in general, we should be glad to receive the suggestions and criticisms of all who are interested in this subject.

The following articles on armature windings have been consulted in the preparation of this book, and are mentioned here for reference:—

Arnold — Die Ankerwicklungen der Gleichstrom-Dynamomaschinen. Berlin, 1891.

Fritsche — Die Gleichstrom-Dynamomaschine. Berlin, 1889.

Kapp — Practical Electrical Engineering, Vol. II., p. 43. London, 1893.

Kittler — Handbuch der Elektrotechnik, Vol. I. Stuttgart, 1892.

Rechniewski — L'Electricien, Vol. V. Jan. 14, 1893 et seq.

Thompson — Dynamo-Electric Machinery. London, 1892.

Weymouth — The Electrician, Vol. XXV. Nov. 7 to Dec. 19, 1890.

PART I.

CONTINUOUS-CURRENT ARMATURE WINDINGS.

CHAPTER I.

SINGLE-WOUND GRAMME RINGS.

THESE are the simplest windings in use, and will require only a very few diagrams and explanations. Many complex connections have been proposed, but only such forms will be discussed as are of general practical use.

The plain gramme ring, with a single winding, is shown in Figs. 1 and 2, from which it may be seen that the construction, as far as concerns location of coils, connectors, and commutator segments, is independent of the number of poles. The number of coils should be a multiple of the number of poles in order to maintain

5

Fig. I
FOUR-CIRCUIT, SINGLE-WINDING.

Fig. 2
TWO-CIRCUIT, SINGLE-WINDING.

symmetry among all the branches from brush to brush. The number of commutator segments is equal to the number of coils. It is desirable to minimize the turns per coil, and consequently the inductance of the short-circuited elements, by as large a number of segments as practicable.

A further discussion of these two diagrams would be superfluous, beyond calling attention to the progressive nature of the rise of potential around the ring, whereby the contiguous wires have only the small difference of potential of one turn, making the question of insulation very simple.

In cases where it is desirable to use but two brushes in multipolar rings with more than two circuits, the method of cross-connecting, shown in Fig. 3, may be used. The number of commutator segments remains equal to the number of coils. An inspection of the diagram will show that it really consists in connecting in parallel those coils occupying corresponding positions in the various fields.

It would seldom be desirable to utilize this method of connection, except in very small machines, as the use of only one pair of sets of brushes would necessitate lengthening the commutator in order to retain the proper extent of brush contact surfaces.

FOUR CIRCUIT, SINGLE WINDING.

Fig. 4
FOUR CIRCUIT SINGLE WINDING

Figure 4 differs from Fig. 3 only in the use of two cross-connecting leads instead of one. This diagram would sometimes be of advantage, inasmuch as it utilizes the available space more completely and symmetrically. Each cross-connecting conductor could be of smaller cross-section than if only one were used.

Both this and the preceding method have the disadvantage that the two parallel sections have unequal resistance, due to one section having the long cross-connecting leads in series with it, and the other merely the regular short leads to the commutator.

Failure to give due attention to this point often causes serious trouble.

Figure 5 gives a winding which is wrong, but which has been given in the treatises of many of the specialists on windings, none of whom, except Herr Arnold, criticise it.

The fault is that the positions of the coils bear such a relation to the positions of their respective commutator segments, that during each revolution of the armature the position given in the figure is the only one in which the brushes are properly placed with regard to the diameter of commutation. In order that the brushes should always be in a position to properly perform their commutative function, they would have to be revolved in a direction opposite to that of the armature, and with a velocity equal to it.

The characteristic of the winding is that it brings together into one segment each pair of cross-connected segments of the previous diagram. As above stated, however, this diagram is worthless, except to call attention to its character, so that the text-books in which it is described shall not be misleading.

See Arnold — Die Ankerwicklungen der Gleichstrom-Dynamomaschinen, Fig. 42.

KITTLER — Handbuch der Elektrotechnik, 1892, Fig. 401 C.

FRITSCHE - Die Gleichstrom-Dynamomaschinen, Fig 64.

FOUR CIRCUIT SINGLE WINDING.

Fig. 6
FOUR CIRCUIT SINGLE WINDING.

In Fig. 6 the number of commutator segments is made equal to half the number of coils by connecting two coils in series between each pair of adjacent segments. The coils so connected in series are situated in adjoining fields of opposite polarity. This winding has the disadvantage that coils at quite different potentials are adjacent, as may be seen by following through the various armature circuits from brush to brush. This increases the difficulty of insulating. The volts per bar also, for the same number of conductors per coil, are twice as high as in the simple gramme ring. If it is necessary, for any reason, to halve the number of bars, it would be preferable to combine two adjacent coils into one, and retain the advantages of the simple gramme ring connection.

But in cases where the shape of the frame necessitates somewhat unequal magnetic circuits, this connection averages up the unequal induction in the various coils, and therefore tends to diminish the sparking which might, with a simple gramme ring in such an unbalanced magnetic system, be considerable.

If s= number of coils, and n= number of poles, then any coil is connected across to one $\left(\frac{s}{n}\pm 1\right)$ in advance of it, and the two free ends of this pair of coils are connected to adjacent commutator segments.

Figure 7 is merely a step in advance of Fig. 6, and the advantages and disadvantages pointed out in the discussion of Fig. 6 apply in still greater degree to Fig. 7.

It will be seen that the number of commutator segments is reduced to one-fourth of the number of coils by the connecting in series of four coils, one in each field, between two adjacent segments of the commutator.

As in the previous figure, the rule for connecting the coils is to connect each coil to one $\left(\frac{s}{n} \pm 1\right)$ in advance.

Fig. 7
FOUR CIRCUIT SINGLE WINDING.

Fig. 8
FOUR CIRCUIT, SINGLE WINDING.

Figure 8 represents a winding in which the coils of one circuit, from brush to brush, instead of being adjacent to each other, are situated in different fields. For instance, the circuits through the armature in the position shown are,—

It is important to note that when the armature has entered the position in which four coils are short-circuited, the short-circuiting of any coil occurs, not at any one brush, but through the pair of brushes of like polarity. This would enable sparking to be diminished by connecting the two positive brushes together through a suitable resistance (ohmic or inductive), and leading off to the load from the middle point of this resistance. The magnitude of the resistance, if ohmic, would be limited only by the permissible loss therein. High resistance leads to the commutator, and high-resistance brushes have been used with considerable success; but in both of these cases heat has to be developed in undesirable localities. But in the above method of connection, the insertion of this resistance externally to the brushes will not increase the heating of the machine. This resistance is also so located that it could be adjusted in experimental work, and the difference in sparking noted by having a short-circuiting switch shunted around the resistance.

Another advantage of this winding is that pointed out in the remarks on Fig. 6, that in cases where the shape of the frame necessitates somewhat unequal magnetic circuits, this connection will average up the unequal induction in the various coils, and thereby diminish the sparking that would otherwise occur.

CHAPTER II.

DOUBLE-WOUND GRAMME RINGS.

FIGURE 9 and the immediately following diagrams relate to a class of very great importance, which are known as double, triple, quadruple, etc., windings.

Very satisfactory results have been attained by the use of windings of this class. The most important advantage of the double winding is that the current is commutated at two different parts of the bearing surface of the brush; each independent volume of current being, therefore, only one-half of what it would be for a single winding. The importance of this feature has in practice been found to be very great.

Another important feature of this winding is that the successive commutator bars of one winding are not adjacent to each other, but alternate with the bars of the other winding; the two windings being put in parallel by the use of wide brushes. The result is that a section is very unlikely to be short-circuited by dirt or an arc. It also makes a very flexible winding, owing to the readiness with which any number of parallels may be arranged. Thus, in a six-pole field, we may have four, six, eight, etc., parallels.

It is necessary for a double winding that the brush should bear over a surface greater than the width of one segment (plus insulation); for a triple winding, greater than the width of two segments, etc.

In Fig. 9, which represents a two-circuit, doubly re-entrant, double-wound, simple gramme ring, the circuits through the armature are, —

After the armature has revolved through $\frac{360}{20 \times 2} = 9^{\circ}$, coils 3 and 8 will be short-circuited, and the circuits through the armature will become,—

Thus it will be seen that there will be a lack of balance between the two windings. First they will be of equal length; after 9° revolution, one will have one less section in series between the brushes; 9° later they will be equal again; and after still another 9° the other winding will have the smaller number of turns. This lack of symmetry will be less apparent as the number of sections is increased, and becomes of very little importance with the large numbers of conductors employed in practical work.

Fig. 9
TWO CIRCUIT DOUBLE WINDING

FOUR CIRCUIT DOUBLE WINDING.

Figure 10 shows a similar winding in a four-pole field. The circuit through the armature in the position shown is,—

After turning through $\frac{360}{40 \times 2} = 4.5^{\circ}$, coils 15', 20', 5', and 10' will be short-circuited, and the circuits through the armature will be,—

Here can be seen again the lack of symmetry noted in remarks on Fig. 9.

A very useful winding is that shown in Fig. 11. It, also, is a four-circuit double winding. It is one of a class with very interesting properties. It differs from the double winding shown in Fig. 10, in that the two windings are components of one re-entrant system. Any one section is no longer exclusively an element of one of two windings, but changes from one winding to the other four times per revolution, being short-circuited at the neutral point for a brief period at the occurrence of each of these transfers. These features are secured by adding one section to the doubly re-entrant double winding shown in Fig. 10, and, as in that figure, making the connections, not between adjacent sections, but always by passing over one section. The number of sections being odd, it will be seen that after having progressed twice around the ring, all sections will have been passed through, and the winding will have arrived at the other terminal of the section from which it started.

Triple, quadruple, and higher orders of windings may be treated analogously. The circuits through the armature in the position shown in Fig. 11 are,—

Coil 10 is, at this instant, short-circuited. An instant later coil 10 becomes active, and coil 2 becomes short-circuited. The circuits through the armature then become,—

The order in which the various coils will be short-circuited is 10, 2, 15, 7, 20, 12, 4, 17, etc., so that the 21 coils will each have been short-circuited once when the armature shall have revolved through $\frac{360^{\circ}}{4} = 90^{\circ}$. Therefore the angular interval between corresponding positions of two successive short circuits is $\frac{90^{\circ}}{21} = 4.28^{\circ}$.

¹ Such windings will be designated as singly re-entrant, to distinguish them from others, such as those of Figs. 9 and 10, which are doubly re-entrant.

Fig. 11
FOUR CIRCUIT DOUBLE WINDING

All of the windings so far described have as many circuits through the armature as there are pole pieces, and form a class by themselves known as multiple-circuit windings. Four-pole fields have usually been considered, but the modifications of the diagrams and text to apply them to larger numbers of poles, are obvious.

In general, the number of sets of brushes equals the number of poles and the number of circuits through the armature. Different numbers of segments and brushes are due to modifications, and do not affect the underlying character of the windings as a class. Some of these modifications have been described. Others can be worked out as the occasion requires.

Too much importance cannot be attached to the general rule that interpolations and cross-connections are almost always very undesirable.

CHAPTER III.

TWO-CIRCUIT, SINGLE-WOUND, MULTIPOLAR RINGS.

The next windings to be considered form a class which, independently of the number of poles, have only two circuits through the armature. These are known as two-circuit windings. Such windings possess the practical advantage that the number of conductors, as compared with multiple-circuit windings, is only $\frac{2}{N}$ as great, hence the space required for insulation is only $\frac{2}{N}$ as great as with the multiple-circuit windings, in consequence of which the diameter of the armature, or the depth of space occupied by the armature conductors, may be less than with the multiple-circuit windings, thereby diminishing the cost of material.

Further, on account of the lesser number of conductors, the cost of the labor of winding is corre-

spondingly diminished.

In practice, the two-circuit gramme windings have been applied only to armatures of small output, under which condition lack of symmetry of the armature coils with respect to the points of commutation is not particularly objectionable. Only two sets of collecting brushes are necessary for the collection of current; in practice generally but two sets have been used.

In the "short-connection" type of two-circuit gramme windings, the circuits from brush to brush consist of conductors influenced by all the poles, so that the electromotive forces generated in the two circuits are necessarily equal, a feature that may prove advantageous when the depth of air-gap is so small that any slight eccentricity of the armature affects the magnetic flux at the different poles.

In the "long-connection" type of two-circuit gramme winding, the two circuits from brush to brush consist of conductors influenced by only one-half of the poles, so that the electromotive forces generated in the two circuits are unequal, unless the sum of the lines at the poles of the same sign is equal to the sum of the lines at the poles of the opposite sign. In magnetic circuits of ordinarily good design this condition is fulfilled even though the fluxes at the different poles are unequal. So the winding is practically as good as the "short-connection" winding, and possesses certain other advantages stated in the text, that make its use preferable.

For armatures the outputs of which are so great that several sets of collecting brushes are required, these windings possess the same disadvantages as two-circuit drum windings, a discussion of which is to be found under that caption.

¹ Called "short-connection" type because coils in adjacent fields are connected together. This distinguishes it from the "long-connection" type, in which coils twice as far apart are connected together.

Figure 12 represents one of the most practicable two-circuit windings for multipolar-ring armatures. It may be designated as the long-connection type of the two-circuit gramme winding, and one of its chief advantages is, that no great differences of potential exist between adjacent coils.

In the figure is shown the case of a four-pole, two-circuit, single-wound, long-connection ring armature. In the position chosen, the circuits through the armature are,—

Coils 3 and 10, in series, are at this instant short-circuited by the negative brush. A little later, coils 7 and 15 will be short-circuited by the positive brush. When this occurs, the negative brush will bear upon the middle of a segment.

The number of commutator segments is equal to the number of coils, and must be odd for armatures with an even number of pairs of poles; but may be odd or even for armatures with an odd number of pairs of poles. The relation that must subsist in two-circuit, multipolar-ring, long-connection windings, between the number of coils (s) and the number of poles (n), is,—

$$s=\frac{n}{2}y\pm 1,$$

where y = pitch. (The pitch is the number of coils to be advanced through in arranging the end connections. In the diagram, for instance, the pitch y = 7, and the end of coil 1 is joined to the beginning of coil 1 + 7 = 8; the end of 8 to the beginning of 8 + 7 = 15; the end of 15 to the beginning of 15 + 7 = 22 (or 7), etc.) Mr. Gisbert Kapp has prepared the following table for two-circuit, multipolar-ring, long-connection windings by substituting numerical values for n in the above formula:—

TWO-CIRCUIT, MULTIPOLAR-RING, LONG-CONNECTION WINDINGS.

	MACHINE HAS							
	4 poles	6 poles	8 poles	10 poles	12 poles	·14 poles		
The number of coils must be equal to	$2y \pm 1$	$3y \pm 1$	$4y\pm1$	$5y \pm 1$	$6y \pm 1$	$7y\pm 1$		

For two-circuit, multipolar-ring machines with long-connection windings, y, the pitch, may be any integer. (Note that these conditions do not hold for drum windings.)

Mr. Kapp has also prepared the following table, showing the practicable choice of angular distances between brushes in these two-circuit, multipolar windings:—

Number of Poles.	A	NGULAR DIST	ANCE BETW	EEN BRUSHI	ES.
2	180				
4	90				
6	60	180			
8	45	135			
10	36	108	180		
12	30	90	150		
14	25.7	77	128	180	
16	22.5	67.5	112	158	
18	20.	60	100	140	180
20	18	54	90	126	162

The smaller possible angles, namely, 20° for 18 poles, and 18° for 20 poles, are in practice too small to be admissible, and are, therefore, not given in the table.

Fig. 12

TWO CIRCUIT, SINGLE WINDING.

Fig. 13
TWO CIRCUIT, SINGLE WINDING.

Figure 13 represents a two-circuit, single-wound, long-connection, ten-pole ring armature. Substituting in the formula for the number of coils

$$s = \frac{n}{2} y \pm 1$$

the pitch, y = 10, and the number of poles, n = 10, gives $s = \frac{10}{2} \cdot 10 \pm 1 = 51$ or 49. 51 coils are taken in this case. The end of coil 1 is joined to the beginning of coil 1+10=11; the end of 11 to the beginning of 21, etc.

The brushes are shown 180° apart, and at the position given the negative brush short-circuits the coils 9, 19, 29, 39, and 49. The circuits through the armature are,—

This diagram and table show very clearly that with an odd number of pairs of poles and an odd number of coils, an odd number of coils are short-circuited at one time, so that, as the total number of coils is odd, an even number is left to be divided between the two armature circuits, which are, therefore, equal. Referring back to Fig. 12, it will be seen that in the case of an even number of pairs of poles, an even number of coils are short-circuited, and as the total number of coils is necessarily odd, an odd number remains to be divided between the two armature circuits, so that these are necessarily unequal.

If, however, in Fig. 13 the brushes are put 108° apart instead of 180°, coil 24 would be taken from the circuit given in the upper line of numbers and put in the other circuit. There would then be 24 coils in one circuit, and 22 in the other, instead of 23 in both. With the large number of coils used in practice, however, these slight inequalities cause no trouble.

If y were chosen odd, 9 for instance, s would equal 46 or 44.

$$S = \frac{n}{2} \cdot y \pm 1 = \frac{10}{2} \cdot 9 \pm 1 = 46 \text{ or } 44.$$

This is in accordance with the observation made above, that in the case of an odd number of pairs of poles the number of coils may be even. The diagram for this case is given in Fig. 14, where s=46, n=10, y=9. In the position shown, coils 8, 17, 26, 35, and 44 are short-circuited by the negative brush, and coils 31, 40, 3, 12, and 21 by the positive brush. The circuits through the armature are,—

giving, as in Fig. 13, two equal paths through the armature.

Fig. 14
TWO CIRCUIT, SINGLE WINDING.

Fig. 15
TWO CIRCUIT, SINGLE WINDING.

In Fig. 15 is given a winding that has been used in practice with considerable success, owing partly to the extreme regularity of all connections, and still more to the fact that it involves the use of twice as many commutator segments as coils. Only one coil in series is short-circuited at each brush, and the volts per segment are one-half what they would be in the unmodified long-connection winding. The number of coils to be used is, as in the unmodified winding, $s = \frac{n}{2} \cdot y \pm 1$. Thus, in Fig. 15, n = 4, y = 9, $s = \frac{4}{2} \cdot 9 + 1 = 19$. Coil 1 is connected to coil 10, etc.

It will also be noted that those segments $\left[\frac{360}{\frac{n}{2}}\right]^{\circ}$ from each

other are connected together. The number of segments = $\frac{n}{2} \cdot s$, of which $\frac{n}{2}$, at distances of $\left[\frac{360}{\frac{n}{2}}\right]^{\circ}$ from each other, are

connected together. If every other one of the radial connections from the coils to the commutator are discarded, the winding becomes once more the plain, long-connection, two-circuit, gramme winding.

. At the position shown, coil 13 is short-circuited by the negative brush, and the circuits through the armature are,—

$$\longrightarrow -\left\{ \begin{array}{l} 3-12-2-11-1-10-19-9-18\\ 4-14-5-15-6-16-7-17-8 \end{array} \right\} + \longrightarrow$$

Figure 16 is an application of the same type of winding to a six-pole gramme ring. n=6, y=6, $s=\frac{n}{2}y\pm 1=\frac{6}{2}\cdot 6+1=19$. There are $19\times\frac{6}{2}=57$ segments. All segments distant from each other by $\frac{360}{\frac{n}{2}}=120^{\circ}$ should be connected together. Some of the cross-connections are shown inside the armature.

At the position shown, coil 12 is short-circuited by the positive brush. The circuits through the armature are—

$$\longrightarrow -\left\{ \begin{array}{c} 9-3-16-10-4-17-11-5-18 \\ 15-2-8-14-1-7-13-19-6 \end{array} \right\} + \longrightarrow$$

If the connections shown inside the commutator, together with one-third of the segments, had been omitted, there would have been an unequal distribution of potential about the commutator. Between two segments would be found a certain voltage, V, and between the next two 2V; then V again, etc.

If it should be desirable to diminish the number of commutator segments to one-half the number of coils, it may be done by the method of connection shown in Fig. 17, page 34, which will be recognized at once as the multipolar ring counterpart of the two-circuit winding as applied to multipolar drums. This winding will be referred to as a "short connection," two-circuit gramme winding. In the "long-connection" type, examples of which have just been given, connection has been made between coils situated in fields of like polarity. But in the "short-connection" type, connection is made between coils in adjacent fields. Both methods are feasible in ring windings, because the two ends of a coil located at a certain point of the periphery are accessible for connection at the commutator end if desired, but in drum windings only one end of a conductor located at a given point of the periphery is accessible at the commutator end, the other end of the conductor being necessarily connected across at the opposite end of the armature, and in consequence, also, must be connected over to a conductor in an adjacent field of unlike polarity, in order that the electromotive force, which is, say, from front to back in the first conductor, may add itself to that in the second conductor, which must therefore be from back to front; that is, the second conductor must be situated in a field of opposite polarity. Thus there are two sub-classes of two-circuit, multipolar ring windings, in the first of which (the "long-connection" winding) coils in fields of like polarity are connected in succession, and in the second of which, as in the two-circuit, multipolar drum winding, the conductors immediately succeeding each other are situated in fields of opposite polarity.

In this "short-connection" winding for two-circuit multipolar rings the formula for determining the proper number of coils, s, for any number of poles, n, is —

$$s = ny \pm 2$$
,

where y, the pitch, may equal any integer, odd or even.

In connecting up this "short-connection" type of winding the following additional rule should be borne in mind in the interpretation and application of the meaning of the pitch, y: The number of coils in this winding, being from the formula always even, if y is also even, it is necessary in connecting up to use as the pitch, alternately, (y-1) and (y+1) instead of always y. Otherwise, if the coils are numbered successively

Fig. 16
TWO CIRCUIT, SINGLE WINDING.

Fig. 17
TWO CIRCUIT, SINGLE WINDING.

from No. 1 on, the even-numbered coils would never be touched, if an odd-numbered conductor were started with, and *vice versa*. If y were used every time as the pitch, a double winding would be obtained. This case will be treated later.

It may also be well to note that (y-3) and (y+3) could be used alternately as the pitch. It is thought, however, that no advantages, and several disadvantages, would result from such a choice of pitches.

Figure 17 represents a two-circuit, single-wound, four-pole ring of the "short-connection" type just described.

$$n = 4$$
, $y = 8$, $s = ny \pm 2 = 4 \times 8 + 2 = 34$.

This is the case referred to above, in which, s being even and also y, (y-1) and (y+1) must be used alternately as the pitch in connecting up. The sequence of connections will be seen in the figure to be 1, 1+7=8, 8+9=17, 17+7=24, etc.

Number of commutator segments = $\frac{34}{6}$ = 17.

In the position shown, coils 7, 14, 23, and 30, in series, are short-circuited at the negative brush, and the circuits through the armature are, —

$$\longrightarrow -\left\{ \begin{smallmatrix} 5-12-21-28-& 3-10-19-26-1-& 8-17-24-33-& 6-----\\ 32-25-16-& 9-34-27-18-11-2-29-20-13-& 4-31-22-15 \end{smallmatrix} \right\} + \longrightarrow$$

There are 14 coils in one path and 16 in the other. A little later, coils 6, 33, 24, and 17 in series, will be short-circuited by the positive brush, and coils 7, 14, 23, and 30 will take their place, the circuits through the armature then becoming,—

$$\longrightarrow -\left\{ \begin{smallmatrix} 7-14-23-30-&5-12-21-28-3-10-19-26-1-&8----\\ 32-25-16-&9-34-27-18-11-2-29-20-13-4-31-22-15 \end{smallmatrix} \right\} + \longrightarrow$$

A further inspection of the diagram will show the unsymmetrical arrangement of the short-circuited and adjacent coils, causing the induction in some coils to act in opposition to that in others with which it is in series. This is less marked with large numbers of coils.

The chief disadvantages of the "short-connection" winding are that adjacent coils have between them, periodically, the full E.M.F. of the armature, and that the end windings are complicated.

Figure 18 represents another two-circuit, single-wound, "short-connection" gramme winding, in which $s = ny \pm 2$ = $4 \times 5 \pm 2 = 22$. In this case y, the pitch, is odd, and consequently the sequence of connections is 1, 1+5=6, 6+5=11, 11+5=16, etc., thus advancing each time by 5, and not, as in the case of Fig. 17, page 34, where y was even, alternately by (y+1) and (y-1). Corresponding ends of coils are connected together; thus, the end of 1 and the end of 6, the beginning of 6 and the beginning of 11, etc.

At the position shown, coils 5, 10, 15, and 20 are short-circuited by the negative brush, and the circuits through the armature are,—

The winding is subject to the disadvantages noted in connection with Fig. 17, page 34.

Instead of having the objectionable crossings at the terminals of the coils, as shown in Fig. 18, page 37, alternate coils should be wound right and left handedly. This would only be useful in cases where all the connecting is done at one end, which should be avoided when possible.

Fig. 18
TWO CIRCUIT, SINGLE WINDING.

Fig. 19
TWO CIRCUIT, SINGLE WINDING.

Instead of connecting together in pairs coils lying in fields of opposite polarity, as in Figs. 17 and 18, adjacent coils may be connected together as shown in Fig. 19, and these connected across to coils in the nearest field of like polarity. The number of commutator segments is equal to one-half of the number of coils. The inherent identity of this and the "long-connection" winding may be seen by doing away with the leads to the commutator segments, and substituting leads from the eleven points lettered a, b, c, d, etc. The result will be a simple "long-connection" gramme winding, with half as many coils of twice as many turns each.

Therefore, the best way of laying out such a winding is to apply the rules for the "long-connection" winding, and make the connections shown in Fig. 19, instead of those of the regular "long-connection" gramme winding.

This winding gives half as many commutator segments as coils.

In the position shown, coils 5, 14, 15, and 2 are short-circuited by the positive brush, and the circuits through the armature are,—

$$\longrightarrow -\left\{ \begin{smallmatrix} 8-21-20-11-10-&1-22-13-12-3\\ 9-18-19-&6-&7-16-17-&4---- \end{smallmatrix} \right\} + \quad \longrightarrow$$

CHAPTER IV.

TWO-CIRCUIT, MULTIPLE-WOUND, MULTIPOLAR RINGS.

THE next class is that of the two-circuit, multiple-wound, long-connection ring windings. The general formula is,—

 $s = \frac{n}{2} \times y \pm m,$

where

s = number of coils,

n = number of poles,

y = pitch,

m = number of windings.

The "m" windings will consist of a number of independently re-entrant windings equal to the greatest common factor of "y" and "m."

Therefore, when it is desired that the "m" windings shall combine to form one re-entrant system, it will be necessary that the G.C.F. of "y" and "m" shall be made equal to 1.

Figure 20 represents a two-circuit, doubly re-entrant, double-wound ring armature.

$$s = 26,$$
 $n = 4,$ $m = 2.$
 $s = \frac{n}{2} \times y \pm m,$ $26 = \frac{4}{2} \times y + 2,$ $\therefore y = 12.$

Greatest common factor of y (12) and m (2) is 2. Therefore the winding will be doubly re-entrant. At the position shown, coils 24 and 12, in series, are short-circuited by the negative brush. The circuits through the armsture are,—

Fig. 20
TWO CIRCUIT, DOUBLE WINDING,

Fig. 21
TWO CIRCUIT, DOUBLE WINDING,

43

Figure 21 represents a two-circuit, singly re-entrant, double-wound ring armature.

In this case y=11, n=4, and m=2. $s=\frac{4}{2}\times 11\pm 2=20$ or 24. 24 coils are taken. G.C.F. of "y" and "m" being 1, the winding is singly re-entrant.

In the position given, coils 9 and 22 are short-circuited at the negative brush, and 4 and 15 at the positive. The circuits through the armature are,—

Figure 22 represents another two-circuit, singly reentrant, double-wound ring armature.

$$m=2, \ n=6, \ y=7, \ s=\frac{n}{2}y\pm 2=\frac{6}{2}\times 7\pm 2=19 \text{ or } 23.$$

"y" and "m" being prime, the winding is singly reentrant.

At the position shown, coils 4, 11, and 18 are short-circuited at the positive brush, and the circuits through the armature are:—

Two two-circuit, singly re-entrant, triple windings for gramme rings are given below without diagrams:—

$$m=3, n=6, y=7, s=\frac{n}{2} \times y \pm 3 = \frac{6}{2} \times 7 + 3 = 24.$$

The connections would be, -

$$\begin{array}{c} 1 - 8 - 15 - 22 - 5 - 12 - 19 - 2 - 9 - 16 - 23 - 6 - 13 - 20 - 3 - 10 - 17 - 24 - 7 - 14 - 21 \\ - 4 - 11 - 18 - 1 \end{array}$$

$$m=3$$
, $n=10$, $y=10$, $s=\frac{10}{2}\times 10-3=47$.

$$\begin{array}{c} 1-11-21-31-41-4-14-24-34-44-7-17-27-37-47-10-20-30-40-3\\ -13-23-33-43-6-16-26-36-46-9-19-29-39-2-12-22-32-42\\ -5-15-25-35-45-8-18-28-38-1 \end{array}$$

Fig. 22
TWO CIRCUIT, DOUBLE WINDING.

Fig. 23
TWO CIRCUIT, TRIPLE WINDING.

Figure 23 represents a two-circuit, singly re-entrant, triple winding.

$$m=3$$
, $n=4$, $y=10$, $s=\frac{4}{2}\times 10\pm 3=23$.

"m" and "y" being prime, the winding is singly re-entrant.

In the position shown, coils 5 and 15, in series, are short-circuited by the positive brush. The circuits through the armature are,—

The extreme irregularity of the various circuits in multiple is not characteristic of the winding, but is merely due to the very small number of coils chosen. In practical cases it would be negligible.

From the formula and conditions of page 40, and from the examples just given, it will be seen that two-circuit, multiple-wound, ring windings may be divided into the three following cases:—

CASE I.—"y" and "m" are mutually prime. This gives a singly re-entrant winding of "m" multiple windings.

Illustration: -

$$n=4$$
, $y=7$, $m=4$, $s=\frac{4}{9}\times 7+4=18$.

Connections are, -

May be expressed symbolically as (000)

Case II. — "y" a multiple of "m." This gives "m" independently re-entrant windings.

Illustration: -

$$n=4$$
, $y=8$, $m=4$, $s=\frac{4}{2}\times 8+4=20$.

Connections are, -

May be expressed symbolically as $\bigcirc \bigcirc \bigcirc$.

CASE III. — "y" and "m" have common factors. This gives a number of independently re-entrant windings, equal to the greatest common factor of "y" and "m."

Illustration: -

$$n=4$$
, $y=6$, $m=4$, $s=\frac{4}{2}\times 6+4=16$.

The result is a two-circuit, quadruple winding with two independently re-entrant windings, because 2 is the greatest common factor of "y" and "m."

The connections are, -

May be expressed symbolically as @ @.

Case II. is really a special instance of Case III.

The above formula and controlling conditions will be found to hold for all numbers of poles, coils, pitches, and windings of the two-circuit, long-connection type of gramme-ring armature windings.

Figure 24 is a two-circuit, singly re-entrant triple winding of the type described in connection with Figs. 15 and 16, which, it should be remembered, is only a modification of the long-connection type.

$$n=4$$
, $y=10$, $m=3$, $s=\frac{n}{2} \times y \pm m = \frac{4}{2} \times 10 + 3 = 23$.

At the position shown, coil 21 is short-circuited at the negative brush, and coils 3 and 4 at the positive brush. The circuits through the armature are,—

Figure 24 should be compared with Figs. 15 and 16.

Fig. 24
TWO CIRCUIT, TRIPLE WINDING.

CHAPTER V.

DRUM ARMATURE WINDINGS.

In drum windings, all connections from bar to bar must be made upon the rear and front ends exclusively, it not being practicable to bring connections through inside from back to front as is the case with rings. Consideration of this limitation will show that the two sides of any one coil must be situated in fields of opposite polarity, so that the electromotive forces, generated in the active conductors of a coil by their passage through their respective fields, shall be in the same direction.

In the case of a drum, it should also be noted that a coil is linked with the whole or nearly the whole flux from one pole piece, instead of, as in the ring armature, with only one-half of the flux.

BIPOLAR DRUM WINDINGS.

The winding of bipolar armatures is much less simple in the case of drums than in that of rings, and it will therefore be necessary to give considerable attention to the various methods in which such windings may be carried out. Figure 25 represents essentially the winding devised by von Hefner-Alteneck. It is used chiefly for small, smooth-core, wire-wound armatures, and the element of the winding, represented in the diagram by a pair of face conductors, and a back connection consists usually, in practice, of a coil of several turns, comparable in some respects to the coil of the ring windings; but in the diagram only one turn per coil will be shown. This will also be advantageous, inasmuch as large, iron-clad, bar-wound, multipolar drum armatures are derived from, and diagrammatically are very analogous to, the wire-wound, smooth-core armatures now under consideration.

An examination of Fig. 25 shows that, starting from a commutator segment, the winding proceeds over the front end to conductor No. 1; down No. 1 over the back to conductor No. 8, which, it should be noted, is adjacent to the conductor diametrically opposite No. 1. From No. 8 the winding returns to the next commutator segment, and is then carried to conductor No. 3 (skipping No. 2, which will later be joined over the back to a conductor almost diametrically opposite to it), down No. 3, over the back to No. 10, etc. From this it is seen that the "pitch" on the back end is 7 and on the front end is -5.

In the position shown, the circuits through the armature are, -

$$\longrightarrow -\left\{ \begin{array}{ccc} 10-&3-8-&1-&6-15\\ 7-14-9-16-11-&2 \end{array} \right\} + \longrightarrow$$

The coil represented by the conductors 13 and 4 is short-circuited at the positive brush, and coil 12-5 at the negative brush.

The eustomary convention is adopted in the diagram, \otimes indicating a current from the observer into the paper, and \otimes a current up out of the surface of the paper toward the observer.

A serious fault of this winding is that large differences of potential exist between adjacent conductors (or, usually, groups of conductors). This would be of no importance with the small numbers of conductors represented in these diagrams, but in actual cases, large numbers of conductors are used, and are placed close together in order to waste no available space.

Fig. 25
TWO CIRCUIT, SINGLE WINDING.

Fig. 26
TWO CIRCUIT, SINGLE WINDING.

Figure 26 gives the diagram of a winding discussed by Swinburne. Its characteristic feature is the use of a small pitch (in the figure the pitch at the back end is 11, and at the front end it is -9), whereby the turns consist of conductors separated by a much smaller angular distance than in the von Hefner-Alteneck winding.

An advantage of this winding is that there is much less crossing of the end connections than is the case where the pitch is taken larger. Thus the difficult question of insulation at the ends of the armature is greatly simplified.

Still further, it has been pointed out by Swinburne that the demagnetizing effect of the armature on the field is reduced, as may be seen from the fact that the currents in the conductors in the demagnetizing belt between the pole tips, namely, 23, 24, 25, and 26, and in 7, 8, 9, and 10, are alternately in opposite directions, and thus neutralize each other.

A serious disadvantage is that the short-circuited coils, 6-27 and 11-22, are considerably removed from the neutral line. This, together with the fact that the counter-electromotive forces present in several conductors of the circuit between brushes detract from the volts per unit of length of armature wire, reduces to rather small limits the extent to which such connecting over short chords should be carried.

In the position shown, the circuits through the armature are,—

$$\longrightarrow \quad - \left\{ \begin{smallmatrix} 20- & 9-18- & 7-16- & 5-14- & 3-12- & 1-10-31- & 8-29 \\ 13-24-15-26-17-28-19-30-21-32-23- & 2-25- & 4 \end{smallmatrix} \right\} + \quad \longrightarrow$$

In Fig. 27 it will be seen that the number of coils is odd (in the two preceding diagrams it was even), with the result that the two active sides of such coils may now be diametrically opposite.

This would not, however, usually be advisable, as it makes many more crossings at the ends, and therefore increases the difficulty of insulating.

Some advantage results from bringing the short-circuited coil (in the figure, coil 24-9 is short-circuited by the negative brush), exactly in the neutral line, this being, of course, only possible when the conductors forming its active sides are diametrically opposite.

The circuits through the armature in the position shown are,—

The pitch on the back end is 15, and on the front end it is -13.

Owing to the number of segments being odd, only one coil is short-circuited at once, unless wide brushes are used.

Fig. 27
TWO CIRCUIT, SINGLE WINDING.

Fig. 28
TWO CIRCUIT, SINGLE WINDING.

In Fig. 28 there is also an odd number of coils (and therefore an odd number of commutator segments). But instead of connecting over the back from No. 1 to No. 16 (the conductor diametrically opposite No. 1) as in Fig. 17, connection is made over the back from No. 1 to No. 14, then over the front to No 3, etc., the pitch at the back end being 13, and on the front end -11. It is, therefore, a mild form of the Swinburne chord winding, as described in connection with Fig. 26. The end connections are better distributed and have fewer crossings than was the case in Fig. 27, where diametrically opposite conductors were connected into coils.

In the position shown, coil 22-9 is short-circuited at the negative brush, and the circuits through the armature are,—

$$\longrightarrow -\left\{ \begin{smallmatrix} 11-24-13-26-15-28-17-30-19-&2-21-&4-23-&6\\ 20-&7-18-&5-16-&3-14-&1-12-29-10-27-&8-25 \end{smallmatrix} \right\} + \longrightarrow$$

In Fig. 29 the winding is carried on over a still shorter chord, the pitch at the back end being 11 and at the front end -9.

It is very instructive to compare Figs. 27, 28, and 29, all of which have 30 face conductors (15 coils). But in Fig. 27 diametrically opposite conductors are connected over the back, the back pitch being 15. Figure 28 is a weak chord winding, the back pitch being 13. Figure 29 is a decided chord winding, the back pitch being 11. The points to be compared are the positions of the short-circuited conductors with reference to the neutral line; the amount of neutralizing of the effect of the demagnetizing belt between pole tips, and the comparative amount of crossing of connectors at the ends.

In Fig. 27 it was shown that diametrically opposite conductors could be connected into coils if the number of coils were chosen odd.

The same object may be attained with an even number of coils by winding them in two layers instead of in one layer, as has been the case in all the heretofore described bipolar drum armatures.

It should be again noted that the term "conductors" is used in these explanations, although "groups of conductors" could often be substituted therefor in small, smooth-core, wire-wound armatures.

Thus the set of "one-layer windings," just described, are those in which "conductors" or "groups of conductors" are, in the completed winding, arranged in one layer, although the individual wires of such a group may optionally occupy one or several layers. In the same way, the two-layer windings now to be described are those in which the completed winding consists of "conductors" or "groups of conductors" arranged in two layers, although the actual depth of individual wires may, when desirable, be greater than two.

Fig. 29
TWO CIRCUIT, SINGLE WINDING.

In Fig. 30, diagrams a and b represent a single-layer bipolar drum winding with an odd number of coils, in which diametrically opposite conductors are connected together into coils. In diagram a the first half of the winding is carried out and proceeds from a commutator bar to conductor No. 1, to 8, to 3, to 10, to 5, to 12, to 7, to 14, and is then ready for the second half. It will be seen that at this stage only every other coil is connected up, and that only one-half of the commutator segments are utilized. Diagram b shows the winding completed. This winding, which is of the type shown in Fig. 27, is given here for comparison with the two-layer winding shown in diagrams c and d. In Fig. c it will be seen that the first half is exactly the same as the first half of the one-layer winding (except that it contains eight conductors instead of seven), and at the completion of the first half all the conductors of the lower layer are connected up in the order 1-9-3-11-5-13-7-15, and only one-half of the commutator segments are connected in. The coils remaining for the second half, instead of lying between those of the first half, occupy an outer layer. Diagram d shows the completed winding, with all the coils and commutator segments utilized.

Figure 31 represents a two-layer winding with thirty-two conductors, with diametrically opposite conductors connected into coils over the back end.

These back-end connections are not shown, because they would interfere with the clearness of the diagram. The connections are 1-17-3-19-5-21, etc. In the position shown, coil 25-9 is short-circuited at the negative brush and 26-10 at the positive brush, and the circuits through the armature are,—

It will be seen from this table that maximum difference of potential exists between conductors lying directly over each other in different layers, such as 27 and 28, or 7 and 8. But adjacent conductors have only small differences of potential; therefore, the two layers should be carefully insulated from each other.

It is an advantage to have the conductors 25-9 and 26-10 of the two short-circuited coils all situated on one diameter, as they may therefore be brought diametrical, and therefore are capable of being short-circuited more nearly in the neutral position.

A disadvantage of the winding is that, one-half being wound exclusively in the lower layer and the other half in the upper, they have unequal lengths and different peripheral speeds, and in those recurring positions in which the two circuits through the armature consist respectively of the lower and the upper layer, the condition will be unbalanced.

In practice, however, it is frequently found expedient to use this connection because of the ease of winding, the inequality being made as small as possible. It will be shown later how this inequality may be obviated; the winding will be, however, less easy to execute.

Fig. 31
TWO CIRCUIT, SINGLE WINDING.

Fig. 32
TWO CIRCUIT, SINGLE WINDING

In Fig. 32 the winding is of the Swinburne type, being connected over the ends along a short chord. Thus, starting from a commutator segment, it passes down No. 1, over the back to No. 13, over the front to No. 3, and so on through 3, 15, 5, 17, 7, 19, 9, 21, 11, 23; but coming over the front from 23 it would naturally go to 13 of the lower layer. This, however, is already used, so the winding continues by No. 14, which is directly over No. 13 in the top layer, and then on through 25–16–27–18–29–20–31–22. From 22 it would naturally go to No. 1, but, as the winding is not yet completed, it must go instead to No. 2, which is directly over No. 1, and then proceed from 2 through 24–4–26–6–28–8–30–10–32–12, and then it closes on itself at No. 1. This winding is not at all difficult, because, although the lower layer is not entirely completed before beginning to wind the upper layer, yet in that part of the armature on which it is desired to wind the upper layer, the lower layer is entirely completed, and for quite a distance beyond, so that there would be no trouble in inserting the necessary insulation, etc.

In the position shown, coil 28-8 is short-circuited at the positive brush, and coil 23-11 at the negative brush. It is a disadvantage to have the short-circuited coils so far from the neutral line.

The circuits through the armature in the given position are, —

$$\longrightarrow \quad -\left\{ \begin{smallmatrix} 21- & 9-19- & 7-17- & 5-15- & 3-13-1-12-32-10-30 \\ 14-25-16-27-18-29-20-31-22-2-24- & 4-26- & 6 \end{smallmatrix} \right\} + \quad \longrightarrow$$

It will be seen that in this armature there can be no position in which one layer belongs exclusively to one circuit and the other to the other circuit. Therefore the discrepancy in lengths and peripheral speeds of the two circuits through the armature will, at the most unfavorable moment, be less than when diametrically opposite conductors are connected into coils. The winding has, in common with all chord windings, the advantage of less crossings of the end connections. The diagram shows particularly well the absence of demagnetizing action in the zone of conductors between pole tips.

If, in Fig. 32, page 66, conductor No. 1 had been connected over the back to No. 15 instead of to No. 13, it would still have been a chord winding, but with somewhat less marked characteristics than that of Fig. 32. All the advantages and disadvantages would have been on a smaller scale.

Figure 33 represents a winding in which coils of the outer and inner layer are alternately connected. The rearend connections are not drawn, but are diametrical. Thus the series is 1–15–4–18–5–19–8–22–9–23–12–26–13–27–16–2–17–3–20–6–21–7–24–10–25–11–28–14–1. This makes both circuits through the armature of very nearly equal length and of very nearly equal average peripheral speed.

In the position shown, coil 21–7 is short-circuited by the positive, and 22–8 by the negative brush. The circuits through the armature are,—

$$\longrightarrow -\left\{ \begin{smallmatrix} 19-& 5-18-& 4-15-& 1-14-28-11-25-10-24\\ 9-23-12-26-13-27-16-& 2-17-& 3-20-& 6 \end{smallmatrix} \right\} + \longrightarrow$$

For this winding to be regular, the number of conductors must be an odd multiple of **4**.

Other bipolar drum windings have been proposed by Hering, Western Electric Company, and others, each of which possesses certain special advantages. It might be well especially to consult an article by Hering in "Electrician and Electrical Engineer," Vol. 4, 1885, p. 423, and Vol. 5, 1886, p. 84.

Fig. 33
TWO CIRCUIT, SINGLE WINDING.

SIX CIRCUIT, SINGLE WINDING.

CHAPTER VI.

MULTIPLE-CIRCUIT, SINGLE-WOUND, MULTIPOLAR DRUMS.

For multiple-circuit, multipolar drums, the condition to be fulfilled to make the winding re-entrant is that there shall be an even number of bars. The pitch at one end of the armature must exceed that at the other end by 2 (for single windings), each of these pitches being odd. If n is the number of poles and C the number of face conductors, the average pitch should not differ much from $\frac{C}{n}$; for if it is much less, two successive conductors will often lie under the same pole piece, and their induced electromotive forces will be in opposition to each other, whereas they should be additive. If the average pitch is much greater than $\frac{C}{n}$, the cross-connections will be unnecessarily long, and the armature resistance and cost of copper unnecessarily high. Suppose a preliminary calculation for a single-layer, six-pole machine shows that about 49 conductors are required, it will be seen that $\frac{C}{n} = \frac{49}{6} = 8.17$. The two-end pitches must both be odd numbers, and must differ by 2. Therefore, take 7 and 9. The mean pitch is 8. The condition to be fulfilled by the total number of conductors is that it shall be an even number. Let it be 50.

This case is shown in Fig. 34. In this diagram the radial lines represent the face conductors. The connecting lines on the inside represent the end connections at the commutator end, and those on the outside represent the end connections at the pulley end. The brushes are placed inside the commutator for convenience.

At the position shown, the conductors without arrow-heads are short-circuited. The circuits through the armature are,—

The front-end pitch is y=9, and the back-end pitch is y=-7.

If the pitches had been taken 7 and -5 instead of 9 and -7, retaining the same number (50) of face conductors, the diagram given in Fig. 35 would have been the result. This, it will be seen, is an application of the ehord winding to a multipolar armature. The current in the conductors in the neutral zone is alternately in opposite directions, so that the demagnetizing action of the armature is small. The end connections are shorter, occupying less room and reducing the armature resistance and cost of copper. The short-circuited conductors are, however, at some distance from the neutral lines, and, although the electromotive forces in each pair will partly neutralize each other, it would be advisable, in cases where such chord windings are adopted, to have as great distances between pole tips as other circumstances permit.

In the given position, the short-circuited conductors are 4-49, 12-7, 20-15 28-23, 38-33, 46-41. The armature circuits are,—

The front-end pitch is y=7, and the back-end pitch y=-5.

If it should be considered desirable to have all the paths through the armature contain exactly the same number of conductors, then the number of face conductors should be chosen a multiple of the number of poles. But with a large number of conductors this would generally not be an important consideration.

In modern practice the conductors in large multipolar machines frequently consist of bars arranged in slots. The end connections then become strips arranged in two or more spiral layers at each end. If there were only one conductor per slot, two layers at each end would still be necessary, as it would be the same as if the lower conductors were brought up side of the upper conductors, and every other conductor would, therefore, as before, be connected over in an opposite direction from its neighbor.

For multiple-circuit, single-wound armatures there may be any even number of conductors per slot, and any number of slots. No new diagrams are necessary to show the cases of two or more conductors per slot, as Figs. 34 and 35 may be interpreted as having twenty-five slots and two conductors per slot, in which case odd-numbered conductors may be considered to belong to the upper layer, and even-numbered conductors to the lower layer. Connection is always made between odd and even numbered conductors, the pitch being always odd. The front-end and back-end pitches must differ by 2, and must have opposite signs.

SIX CIRCUIT, SINGLE WINDING.

Fig. 36
SIX CIRCUIT, SINGLE WINDING.

Figure 36 represents a six-circuit, single-wound, drum winding with eighty conductors. The number of conductors is purposely taken large, so that a study of the diagram and winding table may show the magnitude of the differences of potential in neighboring conductors.

At the given position, conductors 75-6, 9-20, 21-32, 35-46, 49-60, and 61-72 are short-circuited at the brushes. The circuits through the armature are,—

An inspection of the above table will show that the full difference of potential exists at recurring intervals between each pair of sequential conductors, such as 7 and 8, or 47 and 48. In practice, such conductors will often consist of two bars lying one above the other in the same slot. This shows that such upper and lower layers in a slot should be carefully insulated. On the other hand, alternately sequential conductors, as 5 and 7, or 47 and 45, have between them only the small difference of potential of two conductors in series; so that, in practice, where such conductors usually belong both to the upper or both to the lower layer of the same slot, comparatively thin layers of insulation suffice. For instance, it is often the ease in multiple-circuit windings that there are four conductors per slot, arranged two wide and two deep. This case would require that the horizontal layer of insulation between conductors should be much thicken than the vertical layer.

For this class of windings (multiple-circuit, single-wound drums) a formula is superfluous, and the following summary of conditions will suffice:—

There may be any even number of conductors, except that in ironclad windings the number of conductors must also be a multiple of the number of conductors per slot.

The front and back pitches must both be odd, and must differ by 2; therefore the average pitch is even.

The average pitch "y" should not be very different from $\frac{c}{n}$, where c=number of conductors, and n=number of poles. For chord windings, "y" should be smaller than $\frac{c}{n}$ by as great an amount as other conditions will permit.

CHAPTER VII.

MULTIPLE-CIRCUIT, MULTIPLE-WOUND, MULTIPOLAR DRUMS.

THE next windings to be considered are multiple-circuit, multiple-wound, multipolar drums.

The following rules control these windings: -

The number of conductors, C, must be an even number. The pitches must be odd. If y=frontend pitch, then -(y-2m)=back-end pitch, where m=number of windings (double, triple, quadruple, etc.).

These "m" windings may form one re-entrant winding, "m" independent re-entrant windings, or a number of re-entrant windings equal to some factor of "m," each of which re-entrant windings is composed of two or more components.

To determine the proper number of conductors for any of the above cases, the following rule should be observed:—

If "m" equals the number of windings, and "C" equals the number of face conductors, then the number of independently re-entrant windings will be equal to the greatest common factor of $\frac{C}{2}$ and m.

For instance, if a quadruple winding has 28 conductors, then the greatest common factor of (m=4) and $\left(\frac{C}{2} = \frac{28}{2} = 14\right)$ is 2, and the quadruple winding will consist of two independent double windings, each of the two being re-entrant. This may be represented symbolically as \bigcirc \bigcirc .

If C=24, and m=4, the greatest common factor of $\left(\frac{C}{2}=\frac{24}{2}=12\right)$ and (m=4) is 4, and the quadruple winding will be made up of *four* independent single windings. This may be represented symbolically as $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$.

If C=26 and m=4, the greatest common factor of $\left(\frac{C}{2} = \frac{26}{2} = 13\right)$ and (m=4) is 1, and the quadruple winding will consist of *one* singly re-entrant quadruple winding. This may be represented symbolically as $\overline{\text{QOO}}$.

The above rule applies to any winding (double, triple, quadruple, etc.).

It is interesting to note that, for "multiple-circuit" windings, the rule for the number of multiple windings is independent of the number of poles and of the pitch.

The number of conductors, "C," the average pitch, "y," and the number of poles, "n," should be so chosen that $n \times y$ shall be somewhere nearly equal to C, being preferably a little smaller than C.

Figure 37 which, like Figs. 34 and 35, has six poles and fifty conductors, is a singly re-entrant triple winding. C=50; m=3. Greatest common factor of $\frac{C}{2}$ and m is 1. Therefore, by the preceding rule, the result is one singly re-entrant triple winding. The winding may be represented symbolically as \bigcirc .

The average pitch should be a little less than $\frac{C}{n} = \frac{50}{6} = 8.33$, and the forward and backward pitches must differ by (2m=6). Therefore the front end pitch is taken y=11, and the back-end pitch y=-5.

In the given position, conductors 49 and 4 are short-circuited at a negative brush, and 12 and 7 at a positive brush. The circuits through the armature are,—

SIX CIRCUIT, TRIPLE WINDING.

8 poles
276 boos
138 slots

Fig. 38
FOUR CIRCUIT, QUADRUPLE WINDING.

Figure 38 is a four-circuit, doubly re-entrant quadruple winding in which n=4, C=44, and m=4. The greatest common factor of $\frac{C}{2}$ and "m," i.e., of 22 and 4, is 2; therefore there are two independent, singly re-entrant, double windings. The winding may be represented symbolically by \bigcirc \bigcirc . These two windings are represented on the diagram by full and dotted lines. The front-end pitch has been taken 13, and the back-end pitch -5, the difference being necessarily 2m=8. Inspection will show that the two windings are,—

and 3-16-11-24-19-32-27-40-35-4-43-12-7-20-15-28-23-36-31-44-39-8-3

In the given position, 9-14 and 31-36 are short-circuited at the positive brushes. The circuits through the armature are,—

The extreme irregularity exhibited in the diagrams and tables of the multiple windings is due to the necessarily small numbers of conductors chosen. With the magnitudes taken in practical work, everything will be sufficiently regular.

Figure 39 is the same quadruple winding as Fig. 38, except that the pitches are taken 15 and -7 instead of 13 and -5. This was drawn to emphasize the fact that there is nothing absolute in the choice of the pitch in these multiple circuit armatures, except that in the case of the multiple windings, the numerical differences between the forward and backward pitches must be equal to 2 m, where "m" is the number of windings. As before stated, the average pitch should not differ much from $\frac{C}{n}$, and should be somewhat less, rather than greater.

Figure 38, which partakes in a small degree of the nature of the short chord windings (as compared with Fig. 39), has a very much larger percentage of the conductors subjected to counter-induction than would be the ease in actual practice with large numbers of conductors.

For instance, the average pitch might often be represented by some such number as 75. If it were to be a quadruple winding, the two pitches should differ by 2m or 8. Therefore the forward pitch would be taken 79, and the backward pitch -71, so that the order of the winding would be 1-80-9-88, etc., whereas in the ease of small numbers of conductors, such as in Fig. 38, the order of the winding was 1-14-9-22-17-30, etc. It will be evident that the distinction between these two eases is, that with the larger number of conductors there are many forward and backward steps before the original loop is crossed, thus:—

But in the ease of the small number of conductors the loop is crossed almost at once, thus: —

In other words, with multiple windings and small numbers of conductors, the numerical differences between the forward and backward pitches is a large percentage of the average pitch, whereas with the large numbers of conductors used in practice, it is a very small percentage of the average pitch.

The fact that irregularities are much exaggerated by the necessary choice of rather small numbers of conductors should be borne in mind in the study of these diagrams, particularly those of multiple windings.

If, instead of the quadruple windings consisting of two independent doubly re-entrant windings of Figs. 38 and 39, one singly re-entrant quadruple winding is desired, a number of conductors must be

FOUR CIRCUIT, QUADRUPLE WINDING.

Fig. 40
SIX CIRCUIT, DOUBLE WINDING.

chosen such that $\frac{C}{2}$ and "m" (4) shall be mutually prime. Take C=42. Then $\frac{C}{2}=21$, and m=4, which are mutually prime. If the forward pitch is taken y=13, and the backward pitch y=-5, the winding will be,—

$$\begin{array}{c} 1-14-9-22-17-30-25-38-33-4-41-12_{+}7-20-15-28-23-36-31-2-39-10-5-18-13-26\\ -21-34-29-42-37-8-3-16-11-24-19-32-27-40-35-6-1 \end{array}$$

This would be represented symbolically as (000), and would be a singly re-entrant quadruple winding.

If four entirely independent windings are desired, $\frac{C}{2}$ and "m" must have 4 for their greatest common factor. Taking C=40, and making the front and back pitches respectively y=13 and y=-5, the winding would be,—

This could be represented symbolically as $\bigcirc\bigcirc\bigcirc$, and would be a quadruply re-entrant, quadruple winding.

In Fig. 40 is shown a six-circuit, singly re-entrant, double winding. C=50, n=6, m=2. The greatest common factor of $\frac{C}{2}$ and "m" being 1, the winding is singly re-entrant, and may be represented symbolically as \odot .

The forward pitch is y=9, and the backward pitch is y=-5.

In the given position, conductors 49-4, 7-12, and 15-20 are short-eircuited. The circuits through the armature are,—

CHAPTER VIII.

TWO-CIRCUIT, SINGLE-WOUND, DRUM ARMATURES.

THE "two-circuit" windings now to be considered are distinguished by the fact that the *pitch is always* forward, instead of alternately forward and backward, as in the "multiple-circuit" windings, just described.

The sequence of connections leads the winding from a certain bar opposite one pole piece to a bar similarly situated opposite the next pole piece, and so on, so that as many bars as pole pieces are passed through before another bar in the original field is reached. Such progression around the armature is continued until all the bars are connected in, and the winding returns on itself.

Two-circuit, drum windings, like the two-circuit, gramme-ring windings, have for a given voltage the fraction $\frac{2}{n}$ as many conductors as multiple-circuit windings, with the attendant advantages, stated for the two-circuit, gramme-ring windings. The advantages, that the circuits from brush to brush consist of conductors influenced by all the poles, are — when there is but one turn in each coil — the same as in the two-circuit, short-connection ring winding. When there are several turns in the coil, the advantages are subject to the same reservations as in the two-circuit, long-connection, ring winding. The advantages, due to such arrangements of the conductors, have been confined to machines of small electrical output. In machines of large electrical output, in which there are a number of sets of brushes of the same sign (otherwise the cost of the commutator is excessive), the advantages possible from equal currents in the circuits have been overbalanced by the increased sparking due to unequal division of the current between the different sets of brushes of the same sign.

An examination of the diagrams will show that in the two-circuit windings the drop in the armature, likewise the armature reaction, is independent of any manner in which the current may be subdivided among the different sets of brushes, but depends only upon the sum of the currents at all the sets of brushes of the same sign. There are, in the two-circuit windings, no features that tend to cause the current to subdivide equally between the different sets of brushes of the same sign, and, in consequence, if there is any difference in contact resistance between the different sets of brushes, or if the brushes are not set with the proper lead with respect to each other, there will be an unequal division of the current.

When there are as many sets of brushes as poles, the density at each pole must be the same, otherwise the position of the different sets of brushes must be shifted with respect to each other to correspond to the different intensities, the same as in the multiple-circuit windings.

In practice it has been found difficult to prevent the shifting of the current from one set of brushes to another. The possible excess of current at any one set of brushes increases with the number of sets; likewise the possibility of excessive sparking. For this reason the statement has been sometimes made that the disadvantages of the two-circuit windings increase with the number of poles.

From the above, it may be concluded that any change of the armature with respect to the poles will in the case of two-circuit windings be accompanied by shifting of the current between the different sets of brushes; therefore to maintain a proper subdivision of the current the armature must be maintained in one position, with respect to the poles, and with exactness, since there is no counter action in the armature to prevent the unequal division of the current.

In the case of multiple-circuit windings, it will be noted that the drop in any circuit, likewise the armature reaction in the field in which the current is generated, tends to prevent the excessive flow of current from the corresponding set of brushes. On account of these features, together with the consideration that when there are as many brushes as poles the two-circuit armatures require the same nicety of adjustment with respect to the poles as the multiple-circuit windings, the multiple-circuit windings are generally preferable, even when the additional cost is taken into consideration.

Denoting the number of face conductors by "C," the number of poles by "n," and the average pitch by "y," the formula controlling the two-circuit, single-wound, multipolar drum, is,—

$$C = ny \pm 2$$
.

It is preferable to have the pitch "y" the same at the two ends, because the two sets of end connections will then be of the same length, but the choice of the number of conductors "C" for any particular case is less restricted (when the number of poles is greater than four) if the front and back pitches are permitted to differ by 2. Each pitch, must, moreover, be an odd number, as, in order that the winding may pass through all the conductors before returning upon itself, it must pass alternately through odd and even numbered conductors. Also when, as is usually the case, the bars occupy two layers, it is necessary to connect from a conductor of the upper to one of the lower layer so as to obviate interference in the positions of the spiral end connections. Where different pitches are used at the front and back ends, each being odd, the average "y" appearing in the formula will be even.

In Fig. 41 is given a two-circuit, single winding for a four-pole drum. The pitch is y=9 at both ends.

$$C=ny\pm 2=4\times 9\pm 2=34$$
 or 38.

Thirty-four conductors were taken. If it is necessary to have thirty-four conductors, it would be better to take the average "y" equal to eight, and then to use y=9 at one end and y=7 at the other. It is thus possible to shorten the end connections at the end at which the shorter pitch is used, and thus avoid using an unnecessary amount of copper. This will also make the armature resistance less, and will give more room for the end connections.

Fig. 41,
TWO CIRCUIT, SINGLE WINDING.

Fig. 42
TWO CIRCUIT, SINGLE WINDING,

In Fig. 42 this has been done, the front-end pitch being y=9 as before, but the back-end pitch being y=7. The average pitch is y=8.

$$C = ny \pm 2 = 4 \times 8 \pm 2 = 30$$
 or 34.

Thirty-four conductors have been taken.

If thirty-eight conductors should be preferable to thirty-four, then the best arrangement would be to use y=9 at both ends.

$$C = ny \pm 2 = 4 \times 9 \pm 2 = 34$$
 or 38.

This case has not been drawn, but it would be the proper method for thirty-eight conductors, as the only other way would be to have a front-end pitch y=11 and a back-end pitch y=9, giving an average pitch y=10.

$$C = ny \pm 2 = 4 \times 10 \pm 2 = 38$$
 or 42.

This last choice, *i.e.* pitches of 9 and 11, would be undesirable, as the connections at the end with a pitch of 11 would be unnecessarily long. Therefore, as a general rule, the pitch should be chosen a little less than $\frac{C}{n}$, and when this would result in an even pitch, the pitch at one end may be made (y+1) and at the other end (y-1). Of course, the advantage of having both sets of end connections exactly equal might offset the small saving in material. This would have to be determined for the case in hand. Often, however, even where the same pitch is used at both ends, other considerations make it necessary to use two differently proportioned sets of connecting strips.

This matter of the possibility of using two different pitches, so that the "y" of the equation $C=ny\pm 2$ may be any integer, odd or even, is not so very important in the ease of four-pole armatures, as it does not increase the range of choice of conductors. But for six, eight, and higher numbers of poles the introduction of even integers for "y" gives many more possible numbers of conductors than if it were necessary to be

confined to odd integers.

Thus, for the case of six-pole windings, the formula $C = iy \pm 2$ becomes $C = 6y \pm 2$. If "y" is put successively equal to 10, 11, 12, 13, 14, and 15, the possible numbers of bars will become as follows:—

$$y=10$$
 $C=60\pm 2=58$ or 62
 $y=11$ $C=66\pm 2=64$ or 68
 $y=12$ $C=72\pm 2=70$ or 74
 $y=13$ $C=78\pm 2=76$ or 80
 $y=14$ $C=84\pm 2=82$ or 86
 $y=15$ $C=90\pm 2=88$ or 92 .

Thus it may be seen that if it were only permissible to use odd integers for "y," the possible conductors for this range would be limited to 64, 68, 76, 80, 88, and 92; but by using unequal pitches at the two ends, the average "y" becomes even, and the possible numbers of conductors to which the choice is limited is doubled. It is very important that this point should be borne in mind, as the rule often used for four-pole machines that C must equal number of poles times an odd number, plus or minus two, is sometimes mistakenly extended to larger numbers of poles, and a number of conductors is chosen either larger or smaller than is desired; whereas, if different pitches at the two ends had been used, a much more suitable choice might have been made.

Another limiting consideration is, that the numbers of conductors per slot is governed largely by the capacity and voltage of the machine, so that sometimes two, sometimes four, and in exceptional cases even six or eight, bars might be desired per slot, therefore, the total number of conductors "C" must be a multiple of 2, 4, 6, or 8, as the case may be. If, in the case of a six-pole armature, only two conductors per slot are desired, the pitch may be either odd or even; but it will be found that where four conductors per slot are wanted, and where, therefore, "C" must be a multiple of 4, that only the numbers of conductors obtained by making "y" an odd integer meet the requirement. And if six conductors per slot should be wanted (and it seldom would be, because the mechanical fitting of the connections would be so troublesome), neither the use of an odd nor of an even integer would (in the case of a six-pole armature) give a possible number for "C."

In the following illustrative diagrams it will not be necessary to take pains to show how many conductors there are per slot. They will be drawn with the conductors spaced at equal intervals, and one, two, four, or more, as desired, may be supposed to be brought together in a slot.

In Fig. 43 is given a diagram for a six-pole, two-circuit, single-wound, drum armature. The pitch is y=11 at both ends.

$$C = ny \pm 2 = 6 \times 11 \pm 2 = 66 \pm 2 = 64$$
 or **68**.

Sixty-eight conductors were taken, and they could be arranged one, two, or four per slot, as other conditions might determine.

In the position shown, the positive brush short-circuits the group of conductors 5-62-51-40-29-18, all in series. The circuits through the armature are,—

An examination of the preceding table will show that immediately sequential conductors, such as 6 and 7, have between them, at recurring periods, the full difference of potential of the winding. But alternately sequential pairs of conductors, as 6 and 4, or 63 and 65, have between them only the difference of potential of "n" bars.

For the above analysis, only the two full-lined brushes were supposed to be in service. If, however, the four brushes shown by the dotted lines were added, the short-circuited bars would consist of groups of two each, in series between different brushes of like sign. In the given position, these groups would be 5–62, 51–40, and 29–18 at the positive brushes, and 63–52, 41–30, and 17–6 at the negative brushes. The circuits through the armature would be the same, with the exception that the bars short-circuited by the negative brushes would now disappear from the list. These six conductors, 6, 17, 63, 52, 41, 30, have been underlined in the table, and are marked on the diagram by small circles.

Fig. 44
TWO CIRCUIT, SINGLE WINDING.

In Fig. 44 is given a diagram for a two-circuit, six-pole armature. The back-end pitch is y=7, and the front-end pitch is y=9. Therefore the average pitch is y=8.

$$C = ny \pm 2 = 6 \times 8 \pm 2 = 46$$
 or 50.

Fifty conductors are taken. As in the preceding diagram, only the six conductors without arrow-heads are short-circuited when the two full-line brushes alone are active. But when all six brushes bear on the commutator, the conductors designated by small circles are also short-circuited.

TWO-CIRCUIT WINDINGS WITH CROSS-CONNECTED COMMUTATORS.

Figures 45, 46, 47, and 48 are illustrative of a class of two-circuit windings that possess the distinctive feature that the number of coils may bear a relation to the number of poles not possible with the other two-circuit windings described. An examination of the diagrams will show that the different coils of a winding may be subdivided in groups, each group having either as many coils as there are pairs of poles, or half as many, these different groups being connected in series by a cross-connected commutator.

Figure 45 is an example of this class. As will be seen, it consists of an eight-pole drum armature, with fifty-six conductors connected up as a two-circuit, single winding.

The underlying principle is best understood by noting one "element" of the winding, such as the eight polar conductors drawn with very heavy lines. It starts from a certain commutator segment, and after proceeding under each of the eight pole pieces, it returns to the adjacent segment. It should be further observed that, unlike the heretofore described two-circuit drum armatures, the conductors of this element are separated from each other by an angular distance equal exactly to $\frac{360}{8} = 45^{\circ}$, instead of, as in the ordinary two-circuit drum windings, being separated by an angular distance a little greater or less than this.

$$C=56$$
, $n=8$, y (the "pitch") = $\frac{56}{8}=7$.

It should be particularly noted that, with this winding, a number of conductors is used which is an exact multiple of the number of poles. This, of course, is not possible with the ordinary two-circuit drum windings, which are controlled by the formula —

$$C = ny \pm 2$$
.

As will be seen from the diagram, this winding requires cross-connection of the commutator, but in many machines this disadvantage might be offset by the fact that, owing to the symmetrical arrangement of the conductors with reference to the pole pieces, the objectionable "selective commutation" of the ordinary type would probably be avoided.

To return to a study of the diagram, it will be seen that there are $\frac{C}{n} = \frac{56}{8} = 7$ sets of "elements" exactly the same as that above described, except that each is located at an angular distance of $\frac{360}{7}$ from the preceding one. To facilitate comprehension of the diagram, these seven "elements" have been drawn in with different styles of lines, and are readily distinguishable.

It is therefore obvious that, if it were not for the commutator cross-connections, the winding would consist of seven sets of eight conductors each, and that each such set has its two terminals at a pair of adjacent segments. These individual coils are put in the proper series relation between brushes by the commutator cross-connection. The resultant design is perfectly symmetrical.

Fig. 46

Figure 46 differs only in having forty-eight conductors, with the necessary consequence that, the pitch being even $(\frac{4}{8} = 6)$, it has to be different at the front and back. It is seven at the commutator end, and five at the other end. This slight irregularity makes the wording of the description of Fig. 45 not absolutely applicable to this diagram, the chief difference being that, although every pair of successive conductors are exactly similarly located with respect to a pair of poles as every other pair, the same cannot be said of every individual conductor of an element, the distance between them being successively greater and less than $(\frac{360}{8})$.

Figure 47 represents a two-circuit single-winding, identical with Fig. 45, except that the connecting leads at the front end are twice as long.

This is used in some "form" windings, where the two ends of a coil are brought out in front at a point half-way between the two slots holding the wires of a coil. The long front connections would never be used in bar windings, where each face conductor of the diagram represents only one conductor, for it would be a waste of copper. Short leads such as those of Fig. 45 would, for such bar windings, always be used.

An "element" of the winding may be readily seen from the heavy lining in the diagram.

Windings of same type as Fig. 47 could be made corresponding to Fig. 46, as well as to Fig. 45. In fact, the underlying principle of this winding is identical with that of the type illustrated by Figs. 45 and 46.

Fig. 48

Figure 48 represents a two-circuit single winding for an eight-pole machine, in which four conductors constitute an element. The number of conductors is here taken to be fifty-two. There are therefore $\frac{5}{4}^2 = 13$ elements. It is a condition of this winding that the number of elements must be an odd number. From this it follows that the total number of conductors cannot be a multiple of the number of poles.

It serves, therefore, for numbers of conductors with which the previously described winding (where C is a multiple of n) could not be used. It probably, however, would not be so well balanced as in the case where C is a multiple of n. The commutator requires cross-connecting, as shown in the diagram. The cross-connections at the front end are of twice the usual length.

WENSTRÖM TWO-CIRCUIT, WIRE-WOUND ARMATURE.

Figure 49 represents a winding devised by Wenström to lessen the depth of the end windings of wire wound armatures.

The particular case represented by the diagram had thirty-five lozenge-shaped slots, each containing four conductors. For the sake of clearness only the connections of the wires between two adjacent commutator segments are shown, and no difficulty will be found in completing the winding, by continuing on through the remaining segments.

This method is, of course, only suitable for wire-wound armatures and like most such wire windings, it is difficult to repair.

It is to be noted that these armatures, which have been quite extensively used, were completely ironclad, there being no slot opening.

Fig. 49

Fig. 50
TWO CIRCUIT, SINGLE WINDING.

CHAPTER IX.

INTERPOLATED COMMUTATOR SEGMENTS.

In Fig. 50 is given a two-circuit single winding. n=6, y=13, $C=ny\pm 2=6\times 13\pm 2=76$ or 80. Eighty conductors have been taken. This would naturally give forty commutator segments. Suppose speed, strength of field, and active length of conductors to be of such magnitudes as to generate one volt per conductor. Noting that, as shown in the figure, twelve conductors are short-circuited, there will be $\frac{80-12}{2}=34$ active conductors in series between brushes. Therefore the total E.M.F. will be 34 volts. There would be (before interpolating) $\frac{40-6}{6}=5.67$ segments between every two neutral points of the commutator. Therefore there would be $\frac{34}{5.67}=6$ volts between every two adjacent segments.

Suppose this to be higher than is desired. It might then be proposed to double the number of segments by the method of cross-connecting shown in Fig. 50. This will increase the number of segments to eighty. Following the circuit through from the negative to the positive brush, the conductors have been labeled 1 volt, 2 volts, 3 volts, etc., adding one volt for each conductor. Taking the potential of the negative brush as zero, this gives the potential of each conductor. Following down from each conductor to its attached segments, they have been numbered in a corresponding manner; thus the four segments connected to the two bars at 20 volts potential have been marked 20, etc.

An examination of the figure will now make it apparent that proceeding from the neutral points (at zero potential) the voltage increases alternately by two and by four volts per segment, the average being three volts per segment. Therefore, although the average volts per segment have been decreased to one-half of what they were for forty segments, half of the segments have between them only one-third, and the remainder, two-thirds, of the original volts per segment. Therefore, for a six-pole armature, the volts per segment cannot be halved by interpolation. And in order to reduce them to one-third throughout, it is not sufficient to cross-connect as shown in the figure, but it is necessary to triple the natural number of segments and cross-connect every three corresponding segments. This would be far from simple.

A fairly large number of conductors was taken in Fig. 50, in order to give a thorough explanation of the principles involved in interpolating segments. The further study of the subject can, however, be more satisfactorily carried on with small numbers of conductors.

In Fig. 51 is shown another two-circuit, single winding, with n=6, y=7, $C=ny\pm 2=6\times 7\pm 2=40$ or 44. Forty-four conductors are taken. Without interpolation, twenty-two segments would be used. Here $3\times 22=66$ segments are used. This is arrived at by connecting together every three corresponding commutator segments.

If, as in the preceding figure, only two segments had been cross-connected, the connections shown by the full lines would have sufficed. Cross-connecting every three corresponding segments involved the addition of the dotted line connections. This, as the diagram shows, doubles the total number of commutator cross-connections, and is therefore mechanically objectionable.

But the volts between bars are now everywhere equal instead of being alternately V and 2V as in Fig. 50. This may be seen by an examination of the numbers on the conductors and segments, which have been arranged according to the conventional method described.

Thus, proceeding from the segments under the negative brush, the voltage would increase regularly by two volts per segment up to the positive brush, so that whereas, in the former cases, the order was 2, 4, 8, 10, 14, 16, etc., it is now 2, 4, 6, 8, 10, 12, 14, 16, etc.

Fig. 52
TWO CIRCUIT, SINGLE WINDING.

In Fig. 52 is given the diagram of a two-circuit, single-wound, eight-pole armature with forty-two conductors. $C=ny\pm 2$; $8\times 5+2=42$. It is given to show that, with even numbers of pairs of poles, the number of commutator bars may be doubled by interpolation, and that the result will be to halve the volts between every two segments instead of producing the unsymmetrical result observed in the case of an odd number of pairs of poles.

An examination of Fig. 52 will show that commutator segments 180° apart are cross-connected. The scheme of studying the relative potential of conductors and commutator segments is the same as that used in the case of the two preceding figures, and can be followed through without trouble. Some confusion may result from the fact that owing to the small number of conductors taken, the length of the two eircuits through the armature are quite unequal, one path consisting of twelve conductors, and the other of fourteen. As the positive neutral points where these two paths meet must be at the same potential, all the segments at these positions have been indicated as being at a potential of fourteen volts, so that the sequence of figures giving the potentials of the segments is, in four of the eight cases, 0, 4, 8, 12, 14; increasing regularly by four volts until the very end, where the increase is but two volts.

In the other four cases, for the same reason, the sequence is 0, 2, 6, 10, 14, showing the irregularity at the negative neutral points. With the large number of conductors used in practice no misunderstanding would result.

With an even number of pairs of poles it is not necessary to be confined to using only twice the natural number of commutator segments. Thus in Fig. 53 is given the same eight-pole winding as in Fig. 52, with the exception that eighty-four segments are used instead of forty-two. The natural number of segments would be twenty-one.

As the conventions used in the previous descriptions are followed in mapping out the relative potentials of the various parts, no further explanations will be necessary.

CHAPTER X.

TWO-CIRCUIT, MULTIPLE-WOUND, DRUM ARMATURES.

THE next class is that of the two-circuit, multiple-wound, drum armature.

The general formula is: -

 $C = ny \pm 2 m$,

where

C = number of face conductors, n = number of poles,

y = average pitch,

m = number of windings.

The "m" windings will consist of a number of *independently* re-entrant windings, equal to the greatest common factor of "y" and "m." Therefore, where it is desired that the "m" windings shall combine to form *one re-entrant* system, it will be necessary that the greatest common factor of "y" and "m" be made equal to 1.

Also, when "y" is an even integer, the pitch must be taken alternately as (y-1) and (y+1).

In Fig. 54 is reproduced a winding described by E. Arnold ("Die Ankerwicklungen der Gleichstrom-Dynamomaschinen," p. 70, Fig. 80), and by Dr. Kittler ("Handbuch der Elektrotechnik," 2d ed., p. 535, Fig. 403, b). It is classified by them as a four-circuit, single winding. They show four narrow brushes, and point out that the winding has the peculiarities that, in connecting up, the pitch is always taken forward, and that the short-circuiting of a coil occurs between opposite brushes of like polarity, instead of entirely at one brush, as is usually the case. They give no further instances of the application of this winding, except that Herr Arnold proposes for it the formula:—

 $C=n(y\pm 1),$

and adds that if $\frac{C}{2}$ and "y" have a common factor, a singly re-entrant winding is not obtained, several independently re-entrant windings being the result. He follows this statement with a diagram having C=28, n=4, and y=6.

[28=4(6+1)],

which gives two independently re-entrant windings, and shows, as before, four points of commutation.

Returning to a consideration of Fig. 54, it may be seen that at the given position, conductors 5–12 and 21–28 are short circuited at the negative brushes, and 13–20 and 29–4 at the positive.

The circuits through the armature are, -

Fig. 55
TWO CIRCUIT, DOUBLE WINDING.

Now in Fig. 55 will be found the very same winding as in Fig. 54, with the exception that two wide brushes are shown instead of four narrow ones. Short-circuiting of a coil now necessarily occurs at one brush, and a study of the winding shows that it is one of the singly re-entrant multiple-wound type, this particular one being a two-circuit, singly re-entrant, double winding.

At the position shown, conductors 7-14-21-28 are short-circuited at the negative brush, and 15-22-29-4 at the positive. The circuits through the armature are:—

It will be seen that, owing to the very small number of conductors, the winding is extremely irregular, but it will not be difficult to perceive that the nature of the course taken by the current through the armature remains essentially unaltered from that of Fig. 54, consisting, as there, of four paths with an average of six conductors in series per path. The current, however, enters the armature from one wide brush, which always spans more than one segment, and departs from a similar wide brush $\left(\frac{360}{n}\right)^{\circ}$ removed. But in the former case (Fig. 54), it entered two of the paths by one narrow negative brush, and the other two by another, situated $\left[\frac{360}{n}\right]^{\circ}$ distant.

It appears, therefore, conclusive that Fig. 54 is in all essential respects identical with a two-circuit, singly re-entrant, double winding, but this was probably not perceived by the above-mentioned authors: otherwise they would undoubtedly have extended the principle to higher orders of multiples and other numbers of poles. An eight-pole, two-circuit, singly re-entrant, triple winding (which would, of course, follow six paths through the conductors of the armature) would probably not have been considered possible, their conception of the winding apparently being that it was a multiple winding with as many paths through the conductors of the armature as the machine had poles. The formula and rules enunciated in this investigation follow naturally from the true conception of this winding, whereas the formula and condition stated by Herr Arnold may be seen, by a few attempts to apply it, to be entirely inadequate for the purpose of obtaining the necessary data for constructing such windings.

The two preceding figures (54 and 55) were given for the purpose of showing in how far the two-circuit, multiple windings have been understood in the past. The numbers of conductors were, however, entirely inadequate to fully illustrate the nature of the windings.

As this class promises to have a somewhat wide application, it is proposed to give a good many examples, selecting for the purpose various values of "C," "n," "y" and "m," and briefly analyzing each case on the basis of the rules given on page 114.

The symbolical representations heretofore used will be continued, thus:

represent a	singly re-entrant single winding,
represent a	singly re-entrant double winding,
represent a	doubly re-entrant double winding,
represent a	singly re-entrant triple winding,
represent a	triply re-entrant triple winding,
represent a	singly re-entrant quadruple winding,
represent a	doubly re-entrant quadruple winding,
represent a	quadruply re-entrant quadruple winding.
	represent a represent a represent a represent a represent a represent a

According to the above nomenelature, Fig. 40 would be a six-circuit, singly re-entrant, double winding [@]; Fig. 37 would be a six-circuit, singly re-entrant, triple winding [@]; and Fig. 38 a four-circuit, doubly re-entrant, quadruple winding [@@]. The use of the middle expression, "singly, doubly, etc., re-entrant," is unavoidable for absolute definiteness, but it will in most cases be sufficiently definite to speak, for example, of a "six-circuit, triple winding" and a "two-circuit, quadruple winding," where absolute exactness would require them to be spoken of respectively as a "six-circuit, singly re-entrant, triple winding" and a "two-circuit, doubly re-entrant, quadruple winding."

Figure 56 is a four-pole, two-circuit, singly re-entrant, triple winding. It is represented symbolically thus: \bigcirc . n=4, and m=3. In order that it should be singly re-entrant, it was necessary for the greatest common factor of "m" and "y" to be 1. Therefore "y" was taken equal to 16.

$$C = ny \pm 2 m = 4 \times 16 \pm 2 \times 3 = 58 \text{ or } 70.$$

Seventy conductors have been taken, and "y" is alternately 15 and 17, it being, of course, impossible to use 16

In the position shown, the conductors without arrowheads are short-circuited, and the circuits through the armature are:—

$$\begin{array}{c} \longrightarrow \\ - \begin{cases} 67-50-35-18- & 3-56-41-24 \\ 65-48-33-16- & 1-54-39-22 \\ 63-46-31-14-69-52-37-20- & 5-58-43-26 \\ 10-27-42-59- & 4-21-36-53-68-15 \\ 8-25-40-57- & 2-19-34-51-66-13 \\ 6-23-38-55-70-17-32-49-64-11 \\ \end{array} \right\} + \begin{array}{c} \longrightarrow \\ \end{array}$$

TWO CIRCUIT, TRIPLE WINDING.

TWO CIRCUIT, TRIPLE WINDING.

Figure 57 is a four-pole, two-circuit, triply re-entrant, triple winding. It would be represented symbolically as $\bigcirc\bigcirc\bigcirc$ n=4, and m=3. In order that it should be triply re-entrant, it was necessary for the greatest common factor of "m" and "y" to be 3. Therefore "y" was taken equal to 15.

$$C = ny \pm 2 m = 4 \times 15 \pm 2 \times 3 = 54$$
 or 66.

Sixty-six conductors have been taken. The three independently re-entrant windings have been shown by three different styles of lines.

In the position shown, the conductors without arrowheads are short-circuited, and the circuits through the armature are:—

It is interesting to compare this winding and table with the preceding, and to notice how very slightly they differ.

Figure 58 is a six-pole, two-circuit, singly re-entrant, double winding. It would be represented symbolically as \bigcirc . n=6, and m=2.

In order that it should be singly re-entrant, it was necessary for the greatest common factor of "m" and "y" to be 1. Therefore "y" was taken equal to 9.

$$C = ny \pm 2 m = 6 \times 9 \pm 2 \times 2 = 50 \text{ or } 58.$$

Fifty-eight conductors have been taken.

In the position shown, the circuits through the armature are:—

TWO CIRCUIT, DOUBLE WINDING.

TWO CIRCUIT, DOUBLE WINDING.

Figure 59 is a six-pole, two-circuit, doubly re-entrant, double winding, the symbolical representation being \bigcirc \bigcirc . n=6, and m=2. In order that it should be doubly re-entrant, it was necessary for the greatest common factor of "m" and "y" to be 2. Therefore "y" was taken equal to 8.

$$C = ny \pm 2 m = 6 \times 8 \pm 2 \times 2 = 44 \text{ or } 52.$$

Fifty-two conductors have been taken, and "y" is alternately 7 and 9, it being, of course, impossible to use y=8.

In the position shown, the conductors without arrowheads are short-circuited, and the circuits through the armature are:—

$$\longrightarrow - \left\{ \begin{array}{c} 51\text{-}44\text{-}35\text{-}28\text{-}19\text{-}12 \\ 49\text{-}42\text{-}33\text{-}26\text{-}17\text{-}10\text{-}} & 1\text{-}46\text{-}37\text{-}30\text{-}21\text{-}14 \\ 6\text{-}13\text{-}22\text{-}29\text{-}38\text{-}45\text{-}} & 2\text{-}9\text{-}18\text{-}25\text{-}34\text{-}41\text{-}50\text{-}} & 5 \\ 4\text{-}11\text{-}20\text{-}27\text{-}36\text{-}43\text{-}52\text{-}} & 7 \end{array} \right\} + \longrightarrow$$

As frequently remarked in connection with other diagrams having small numbers of conductors, the very unequal lengths of the different paths through the armature is entirely caused by this choice of a small number of conductors, and would, to a large extent, disappear with all practicable numbers of conductors.

The two independently re-entrant windings are drawn respectively with full and with dotted lines.

Figure 60 is a six-pole, two-circuit, triply re-entrant, triple winding. It would be represented symbolically as $\bigcirc\bigcirc$ \bigcirc n=6, and m=3. In order that it should be triply re-entrant, it was necessary for the greatest common factor of "m" and "y" to be 3. Therefore "y" was taken equal to 9.

$$C = ny \pm 2m = 6 \times 9 \pm 2 \times 3 = 48$$
 or 60.

Sixty conductors have been taken.

The three independently re-entrant windings have been represented by three different styles of lines.

$$\rightarrow \begin{bmatrix} 59-50-41-32-23-14 \\ 57-48-39-30-21-12 \\ 55-46-37-28-19-10-1-52-43-34-25-16 \\ 6-15-24-33-42-51-60-9 \\ 4-13-22-31-40-49-58-7 \\ 2-11-20-29-38-47-56-5 \end{bmatrix} + \rightarrow$$

TWO CIRCUIT, TRIPLE WINDING.

TWO CIRCUIT, TRIPLE WINDING.,

Figure 61 is a six-pole, two-circuit, singly re-entrant, triple winding. It may be symbolically expressed as \bigcirc . n=6, and m=3. In order that it should be singly re-entrant, it was necessary for the greatest common factor of "m" and "y" to be 1. Therefore "y" was taken equal to 8.

$$C = ny \pm 2m = 6 \times 8 \pm 2 \times 3 = 42 \text{ or } 54.$$

Fifty-four conductors have been taken, "y" is alternately 7 and 9, as it would, of course, be impossible to let y=8.

$$\rightarrow \begin{bmatrix} 53-46-37-30-21-14 \\ 51-44-35-28-19-12 \\ 49-42-33-26-17-10-1-48-39-32-23-16 \\ 8-15-24-31-40-47-2-9 \\ 6-13-22-29-38-45-54-7 \\ 4-11-20-27-36-43-52-5 \end{bmatrix} + \rightarrow$$

Figure 62 is a six-pole, two circuit, triply re-entrant, triple winding. It would be represented symbolically as $\bigcirc\bigcirc\bigcirc$ n=6, m=3. In order that it should be triply re-entrant, it was necessary for the greatest common factor of "y" and "m" to be 3. Therefore "y" was taken equal to 12.

$$C = ny \pm 2 \ m = 6 \times 12 \pm 2 \times 3 = 66 \text{ or } 78.$$

Seventy-eight conductors have been taken, and "y" is alternately 11 and 13, as it would not be possible to let "y"=12.

The three independently re entrant windings have been represented by three different styles of lines.

In the position shown, the short-circuited conductors are those without arrow-heads. The circuits through the armature are:—

$$\rightarrow - \left\{ \begin{matrix} 75-64-51-40-27-16-& 3-70-57-46-33-22-& \\ 73-62-49-38-25-14-& 1-68-55-44-31-20-& \\ 71-60-47-36-23-12-77-66-53-42-29-18-& \\ 10-21-34-45-58-69-& 4-15-28-39-52-63-76-9 \\ 8-19-32-43-56-67-& 2-13-26-37-50-61-74-7 \\ 6-17-30-41-54-65-78-11-& \end{matrix} \right\} + \longrightarrow$$

Fig. 62
TWO CIRCUIT, TRIPLE WINDING.

Fig. 63
TWO CIRCUIT, QUADRUPLE WINDING

$$C = ny \pm 2$$
 $m = 6 \times 7 \pm 2 \times 4 = 34$ or 50.

Fifty conductors have been taken.

Figure 64 is a six-pole, two-circuit, quadruply re-entrant, quadruple winding. It would be represented symbolically as $\bigcirc\bigcirc\bigcirc\bigcirc$ n=6, and m=4. In order that it should be quadruply re-entrant, it was necessary for the greatest common factor of "y" and "m" to be 4. Therefore "y" was taken equal to 8.

$$C = ny \pm 2 m = 6 \times 8 \pm 2 \times 4 = 40 \text{ or } 56.$$

Fifty-six conductors have been taken. "y" is alternately 7 and 9, as it is obviously impossible to let y=8.

$$\rightarrow \begin{array}{c} 55\text{-}48\text{-}39\text{-}32\\ 53\text{-}46\text{-}37\text{-}30\\ 51\text{-}44\text{-}35\text{-}28\text{-}19\text{-}12\text{-}} & 3\text{-}52\text{-}43\text{-}36\\ 49\text{-}42\text{-}33\text{-}26\text{-}17\text{-}10\text{-}} & 1\text{-}50\text{-}41\text{-}34\\ 8\text{-}15\text{-}24\text{-}31\text{-}40\text{-}47\text{-}56\text{-}} & 7\text{-}16\text{-}23\\ 6\text{-}13\text{-}22\text{-}29\text{-}38\text{-}45\text{-}54\text{-}} & 5\text{-}14\text{-}21\\ 4\text{-}11\text{-}20\text{-}27\\ 2\text{-}} & 9\text{-}18\text{-}25 \end{array} \right] + \longrightarrow$$

Fig. 64.
TWO CIRCUIT QUADRUPLE WINDING.

Fig. 65
TWO CIRCUIT, QUADRUPLE WINDING.

Figure 65 is a six-pole, two-circuit, doubly re-entrant, quadruple winding. It would be represented symbolically as \bigcirc \bigcirc n=6, and m=4. In order that it should be doubly re-entrant, it was necessary for the greatest common factor of "y" and "m" to be 2. Therefore "y" was taken equal to 10.

$$C = ny \pm 2 m = 6 \times 10 \pm 2 \times 4 = 52 \text{ or } 68.$$

Sixty-eight conductors have been chosen. "y" is alternately 9 and 11, because its average value, being even, could not be used.

The two independently re-entrant windings have been represented respectively by light and by heavy lines.

$$\longrightarrow - \begin{cases} 67-58-47-38 & \\ 63-54-43-34-23-14-3-62-51-42 \\ 65-56-45-36-25-16-5-64-53-44 \\ 61-52-41-32-21-12-1-60-49-40 \\ 10-19-30-39-50-59-2-11-22-31 \\ 6-15-26-35-46-55-66-7-18-27 \\ 8-17-28-37-48-57-68-9-20-29 \\ 4-13-24-33 & \end{bmatrix} + \longrightarrow$$

Figure 66 is a six-pole, two-circuit, quadruply re-entrant, quadruple winding $[\bigcirc\bigcirc\bigcirc\bigcirc]$. n=6, and m=4. In order that it should be quadruply re-entrant, it was necessary that the greatest common factor of "y" and "m" should be 4. Therefore "y" was taken equal to 12.

$$C = ny \pm 2$$
 $m = 6 \times 12 \pm 2 \times 4 = 64$ or 80.

Eighty conductors have been taken. "y" is alternately 11 and 13, its average value being even.

The four independently re-entrant windings have been represented by four varieties of lines.

Fig. 66
TWO CIRCUIT, QUADRUPLE WINDING.

Fig. 67
TWO CIRCUIT, QUADRUPLE WINDING.

Figure 67 is a six-pole, two-circuit, quadruply re-entrant, quadruple winding. It would be represented symbolically as $\bigcirc\bigcirc\bigcirc\bigcirc$. n=6, and m=4. In order that it should be quadruply re-entrant, it was necessary that the greatest common factor of "y" and "m" should be 4. Therefore "y" was taken equal to 16.

$$C = ny \pm 2 m = 6 \times 16 \pm 2 \times 4 = 88 \text{ or } 104.$$

One hundred and four conductors have been taken. "y" is 17 at the front end, and 15 at the back end, thus averaging 16.

The four independently re-entrant windings have been represented by four different styles of lines.

Figure 68 differs from Fig. 67 in the use of the negative instead of the positive sign in the formula. It is given to emphasize the fact that this has no influence on the type of winding. It requires, however, a greater length of copper for a given number of conductors. Like Fig. 67, it is a six-pole, two-circuit, quadruply re-entrant, quadruple winding. It would be represented symbolically as $\bigcirc\bigcirc\bigcirc$ \bigcirc n=6, and m=4. In order that it should be quadruply re-entrant, it was necessary for the greatest common factor of "y" and "m" to be 4. Therefore "y" was taken equal to 16.

$$C = ny \pm 2 m = 6 \times 16 \pm 2 \times 4 = 88 \text{ or } 104.$$

Eighty-eight conductors have been taken. "y" is 17 at the front, and 15 at the back end.

The four independently re-entrant windings have been represented by different kinds of lines.

$$\rightarrow \begin{array}{c} \begin{bmatrix} 58-73-&2-17-34-49-66-81-&&&\\ 56-71-88-15-32-47-64-79-&&&\\ 54-69-86-13-30-45-62-77-&&&\\ 52-67-84-11-28-43-60-75-&4-19-36-51-68-83\\ 33-18-&1-74-57-42-25-10-&&&\\ 35-20-&3-76-59-44-27-12-&&&\\ 37-22-&5-78-61-46-29-14-&&&\\ 39-24-&7-80-63-48-31-16-87-72-55-40-23-&8 \end{bmatrix} + \begin{array}{c} \\ \\ \\ \end{array}$$

TWO CIRCUIT, SEXTUPLE WINDING.

The next four diagrams (Figs. 69, 70, 71, 72) form a group of sextuple windings. It is thought that an examination of this group will bring out very clearly the method of applying and the interpretation of the rules concerning two-circuit, multiple windings. The following table will be of assistance in studying them:—

Figure.	n	y	m	C	G.C.F. of m and y.	Name of Winding.	Symbol.
69 70	6	9 10	6	66 72	3 2	Two-circuit, triply re-entrant, sextuple winding. Two-circuit, doubly re-entrant, sextuple winding.	@@@
71 72	6	11 12	6	78 84	6	Two-circuit, singly re-entrant, sextuple winding. Two-circuit, sextuply re-entrant, sextuple winding.	00000

Figure 69 is a six-pole, two-circuit, triply re-entrant, sextuple winding. It would be symbolically represented as $\bigcirc \bigcirc \bigcirc \bigcirc$. n=6, and m=6. In order that it should be triply re-entrant, it was necessary that the greatest common factor of "m" and "y" should be 3. Therefore "y" was taken equal to 9.

$$C = ny \pm 2 m = 6 \times 9 \pm 2 \times 6 = 42 \text{ or } 66.$$

Sixty-six conductors were taken. The three independently re-entrant windings have been represented respectively by light, heavy, and broken lines.

Figure 70 is a six-pole, two-circuit, doubly re-entrant, sextuple winding. It would be represented symbolically as \bigcirc \bigcirc \bigcirc \bigcirc n=6, and m=6. In order that it should be doubly re-entrant, it was necessary that the greatest common factor of "m" and "y" should be 2. Therefore "y" was taken equal to 10.

$$C = ny \pm 2 m = 6 \times 10 \pm 2 \times 6 = 48 \text{ or } 72.$$

Seventy-two conductors have been taken. The two independently re-entrant windings have been represented respectively by full and dotted lines.

TWO CIRCUIT, SEXTUPLE WINDING.

Fig. 71
TWO CIRCUIT, SEXTUPLE WINDING.

Figure 71 is a six-pole, two-circuit, singly re-entrant, sextuple winding. It would be represented symbolically as 0000. n=6, and m=6. In order that it should be singly re-entrant, it was necessary that the greatest common factor of "m" and "y" should be 1. Therefore "y" was taken equal to 11,

$$C = ny \pm 2 m = 6 \times 11 \pm 2 \times 6 = 54 \text{ or } 78.$$

Seventy-eight conductors have been chosen.

Figure 72 is a six-pole, two-circuit, sextuply re-entrant, sextuple winding. It would be represented symbolically as $\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$. n=6, and m=6. In order that it should be sextuply re-entrant, it was necessary that the greatest common factor of "m" and "y" should be 6. Therefore "y" was taken equal to 12.

$$C = ny \pm 2 m = 6 \times 12 \pm 2 \times 6 = 60$$
 or 84.

Eighty-four conductors have been taken.

The six independently re-entrant windings are represented respectively by different styles of lines. "y," of course, is taken alternately 11 and 13.

TWO CIRCUIT, SEXTUPLE WINDING.

Fig. 73
TWO CIRCUIT, DOUBLE WINDING.

Figure 73 is an eight-pole, two-circuit, doubly re-entrant, double winding. It would be represented symbolically as \bigcirc \bigcirc . n=8, and m=2. In order that it should be doubly re-entrant, it was necessary that the greatest common factor of "m" and "y" should be 2. Therefore "y" was taken equal to 10.

$$C = ny \pm 2 m = 8 \times 10 \pm 2 \times 2 = 76 \text{ or } 84.$$

Eighty-four conductors have been taken.

The two independently re-entrant windings are represented respectively by full and dotted lines. "y" is taken alternately 11 and 9, the average pitch being 10.

In the given position, the circuits through the armature are: —

$$\longrightarrow \begin{bmatrix} 8-17-28-37-48-57-68-77-&4-13-24-33-44-53-64-73-84-&9-20-29-40-49-60-69\\ 6-15-26-35-46-55-66-75-&2-11-22-31-42-51-62-71\\ 81-72-61-52-41-32-21-12-&1-76-65-56-45-36-25-16-&5-80\\ 79-70-59-50-39-30-19-10-83-74-63-54-43-34-23-14-&3-78 \end{bmatrix} + \longrightarrow$$

Figure 74 is an eight-pole, two-circuit, singly re-entrant, double winding. It would be represented symbolically as o. n=3, and m=2. In order that it should be singly re-entrant, it was necessary that the greatest common factor of "y" and "m" should be 1. Therefore "y" was taken equal to 11.

$$C = ny \pm 2 m = 8 \times 11 \pm 2 \times 2 = 84 \text{ or } 92.$$

Eighty-four conductors have been taken just as in the preceding figure. In the given position, the circuits through the armature are:—

$$\longrightarrow \left. - \left\{ \begin{array}{c} 8-19-30-41-52-63-74-1-12-23-34-45-56-67- \\ 6-17-28-39-50-61-72-83-10-21-32-43-54-65-76-3-14-25-36-47-58-69- \\ 81-70-59-48-37-26-15-4-77-66-55-44-33-22-11-84-73-62-51-40-29-18-7-80 \\ 79-68-57-46-35-24-13-2-75-64-53-42-31-20-9-82- \end{array} \right\} + \longrightarrow \right.$$

Fig. 74
TWO CIRCUIT, DOUBLE WINDING.

Fig. 75
TWO CIRCUIT, DOUBLE WINDING.

Figure 74 was obtained by using the negative sign in the formula — $\,$

 $C = ny \pm 2 m$.

This is, as has been pointed out, rather wasteful of copper, and was only done to demonstrate the fact that in certain cases with a given number of conductors, either a singly or a doubly re-entrant, double winding may be used.

In Fig. 75, the positive sign was used. It will, however, not be necessary to analyze it, it not being materially different from Fig. 74.

Numerous interesting deductions concerning two-circuit, multiple-wound, drum armatures may be made from the data contained in the tables in Chapter XVIII.

CHAPTER XI.

THE SAYERS WINDING.

THE armature coils of dynamos have, in addition to their function of establishing the electromotive force required external to the armature, the function of setting up in the arc of commutation an electromotive force to reverse the current in them as they successively pass the collecting brushes (by arc of commutation is meant the arc in which the current in the armature coils is reversed, the extent of this arc being determined by the length of the arc of contact of the collecting brushes). In the ordinary methods of armature winding the electromotive force for reversing the current in the coils is obtained by giving the collecting brushes an angular lead, the amount of which depends upon the distribution of the magnetic flux in the air gap, the coefficient of self-induction of the armature coils when in the arc of commutation, and the rate of change of the current in the coils, while the current is being reversed. In generators this angular lead is in such direction that the magnetomotive force of the armature is opposed to the magnetomotive force of the field magnets to an extent proportional to the angle of lead, in consequence of which the reversing field becomes of diminished intensity for an increase of current in the armature, when it needs to be increased.

Mr. Sayers, of Glasgow, has patented a winding in which the commutation of the current in the main armature coils is effected by an additional set of coils which may be termed commutating coils. These coils are applicable to any form of armature winding suitable for commutating machines. One of these coils is connected between each commutator bar and the connections joining the main armature coils in series with each other. These commutating coils are located on the periphery of the armature in such a position with respect to the main coils that the magnetomotive force of the main coils tends with increasing current to increase the flux through them, and further so that the magnetomotive force of the armature acts with the magnetomotive force of the field magnets instead of against it as in ordinary dynamos. It is possible, therefore, through a certain range of output to sparklessly operate a generator at constant voltage without changing the lead of the brushes or the excitation of the field magnets. It may be noted that when one of the main coils is short-circuited by the collecting brushes it is through two of these commutating coils, and the electromotive force from these coils effective for reversing the current in the main coil is the excess of the electromotive force generated in the leading coil over that in the following coil. The position, then, of the reversing field, if effective, is fixed as to angular extent between very narrow limits. It does not appear to the writers that the reversing field can be so localized for great changes of current in the armature as one might infer from reading the discussion of Mr. Sayers' paper at the Institution of Electrical Engineers. (See Vol. XXII., pages 377-441, Journal Ins. Elect. Engrs., London). Within certain limits, however, it appears that the magnetomotive force of the armature may be utilized in creating proper strength of reversing field.

This method, as applied to a bi-polar drum winding, is illustrated in Fig. 76. It will be seen to consist of a regular drum winding, with the difference that the connections from the winding to the commutator segments,

instead of consisting of short leads, consist of auxiliary force conductors which pass from the winding, backward, a short distance against the direction of rotation, and then parallel to the regular face conductors to the back of the armature. The conductor then passes forward in the direction of rotation, and again crossing the armature, is carried to the commutator segment.

In the diagram, the current in the coil A^2 has just been reversed. The coil A^1 is, by the two adjacent commutator segments under the brush, short-circuited while its main conductors are still moving through intense fields, tending to maintain the current in its original direction. But this short circuit contains, in series with the main coil, the two connections to the commutator segments, both of which are so linked with the magnetic flux from the pole piece, that electromotive forces are induced. Of the electromotive forces induced in the two commutator loops, that in the loop drawn in the figure is added to that of the short-circuited main coil, but this loop is farther out of the magnetic field than the remaining loop (not drawn) of the short-circuited section. This latter loop, leading from the segment next adjacent on the left of that shown at

Fig. 76.

C, being well under the pole pieces, has induced in it a strong electromotive force, which opposes that in the rest of the short-circuited section, and enables a current to be generated in the direction of that in the half of the armature circuit of which it is soon to become a part.

In such a drum winding, Mr. Sayers refers to these commutator connections as "reverser bars." As they carry the current only during the short time that their corresponding sections are passing under the brushes, they may be of much smaller cross-section than the main conductors.

It will be seen from the above description that the winding is particularly adapted for use with ironclad armatures with very small air gaps, for the effectiveness of the arrangement is largely dependent upon the differential inductive action upon two successive reverser bars, and the more abrupt the demarcation of the magnetic flux, the greater will be this differential effect.

It should be clearly understood that this winding is equally applicable to rings, discs, and other types of armature.

PART II.

WINDINGS FOR ALTERNATING-CURRENT DYNAMOS AND MOTORS.

CHAPTER XII.

ALTERNATING-CURRENT WINDINGS.

In general, any of the continuous-current armature windings may be employed for alternating-current work, but the special considerations leading to the use of alternating currents generally make it necessary to abandon the styles of winding best suited to continuous-current work, and to use windings specially adapted to the conditions of alternating-current practice.

Attention should be called to the fact that all the re-entrant (or closed circuit) continuous-current windings must necessarily be two-circuit or multiple-circuit windings, while alternating-current armatures may, and almost always do from practical considerations, have one-circuit windings, i.e. one circuit per phase. From this it follows that any continuous-current winding may be used for alternating-current work, but an alternating-current winding cannot generally be used for continuous-current work. In other words, the windings of alternating-current armatures are essentially non-re-entrant (or open circuit) windings, with the exception of the ring-connected polyphase windings, which are re-entrant (or closed circuit) windings. These latter are, therefore, the only windings which are applicable to alternating-continuous current, commutating machines.

Usually, high voltages are desired, and in such cases windings are generally adopted in which heavily insulated coils are imbedded in slots in the armature surface. Often, for single-phase alternators, one slot or coil per pole piece is used, as this permits of the most effective disposition of the armature conductors as regards generation of electromotive force. If more slots or coils are used, or, in the case of face windings, if the conductors are more evenly distributed over the face of the armature, the electromotive forces generated in the various conductors are in different phases, and the total electromotive force is less than the algebraic sum of the effective electromotive forces induced in each conductor. But, on the other hand, the subdivision of the conductors in several slots or angular positions per pole, or, in the case of face windings, their more uniform distribution over the peripheral surface, decreases the self-induction of the windings with its attendant disadvantages. It also utilizes more completely the available space and tends to bring about a better distribution of the necessary heating of core and conductors. Therefore, in cases where the voltage and the corresponding necessary insulation permit, the conductors are sometimes spread out to a greater or less extent from the elementary groups necessary in cases where very high potentials are used.

Windings in which such a subdivision is adopted, will be referred to as having a multi-coil construction, as distinguished from the form in which the conductors are assembled in one group per pole piece, which latter will be called uni-coil windings.

The terms uni- and multi-slot have been applied to alternating-current ironclad armatures, but the modified nomenclature described in the preceding paragraph will be preferable, in that it does not distinguish between armatures where the groups are arranged on the periphery, and those in which the groups are imbedded in slots. A little consideration will show the advisability of this nomenclature, as it will often permit one description to suffice for a winding which may be used either for ironclad or smooth-core construction.

It will be seen later, that in most *multiphase windings*, multi-coil construction involves only very little sacrifice of electromotive force for a given total length of armature conductor, and in good designs is generally adopted to as great an extent as proper space allowance for the insulation will permit.

Often in alternating current installations, step-up or step-down transformers, or both, are used, and in such cases the other extreme is approached, and the apparatus is built for very low voltages. This permits the use of very small space for insulation; and conductors of large cross-section, often arranged with only one conductor per group, are used. Here the multi-coil construction is less difficult, although still attended to some extent with the disadvantage of obtaining less than the maximum possible voltage per unit length of armature conductor.

Examples of windings adapted respectively to both of the above extremes will be given in the following chapters.

It will now be readily understood that the ordinary continuous-current windings are not, in the great majority of cases, adaptable to the work to be done. They should, however, always be kept in mind, and will often be found to work in nicely in special cases.

A class of apparatus, best termed alternating continuous-current, commutating machines, is now being found of much value in various ways. They are in a general way used for feeding continuous-current circuits, from single-phase or multiphase circuits (or vice versa), and also sometimes for feeding alternating circuits of one class (for example, single- or quarter-phase) from those of another (say three-phase). This type of armature may usually be best laid out by employing regular continuous-current windings and tapping them off in the proper manner. Examples will be given.

A wide variety of styles of armature construction have been employed in alternating-current machinery. Rings, drums (both ironclad and smooth-core), discs, and very many other types have been successfully built. Iron cores are used by some makers, and carefully avoided by others. Internal and external rotating parts have each found advocates. This great variety renders detailed treatment difficult, and in the following discussion it has been generally assumed that the windings are laid on the periphery of a drum, either on the surface, or imbedded in slots, and that the necessary connections are made at the ends of the armature. These peripheral conductors are represented diagrammatically by radial lines, and the end connections by crooked lines. Thus, re-entrant polygons drawn with heavy lines may be taken to represent coils of the desired number of turns, the lighter lines representing the connections of these coils to each other.

In the case of bar windings, no difficulty will be found in understanding the diagrams, as they correspond quite nearly to the continuous-current windings. Small, heavy circles in the middle of the diagram represent collector rings. If a winding is desired, for a disc or some other type, the diagrams will generally be found amply suggestive. Pancake coils and other types of windings, not specifically described, may be readily planned by slight modifications of the diagrams.

No examples have been given of gramme-ring alternating-current windings, as these may be found in text books, and are so easily understood as to require no discussion.

Before concluding these general considerations, it is desirable to emphasize the following points regarding the relative merits of uni- and multi-coil construction:—

With a given number of conductors arranged in a multi-coil winding, less terminal voltage will be obtained at no load than would be the case if they had been arranged in a uni-coil winding, and the discrepancy will be greater in proportion to the number of coils into which the conductors per pole piece are subdivided, assuming that the spacing of the groups of conductors is uniform over the entire periphery.

Thus, if the terminal voltage at no load be taken as 1 for a uni-coil construction, it will, for the same total number of conductors, be .707 for a two-coil, .667 for a three-coil, .654 for a four-coil, etc.

But when the machine is loaded, the current in the armature causes reactions which play an important part

in determining the voltage at the generator terminals, and this may only be maintained constant as the load comes on, by increasing the field excitation, often by a very considerable amount. Now, with a given number of armature conductors, earrying a given current, these reactions are greatest when the armature conductors are concentrated in one group per pole piece, that is, when the uni-coil construction is adopted, and they decrease to a considerable degree as the conductors are subdivided into small groups distributed over the entire armature surface, that is, they decrease when the multi-coil construction is used. The ratios given above for the relative voltages at no load, for uni- and multi-coil construction, do not, therefore, represent the relative values of the windings under working conditions, and it is believed that careful consideration should in many cases be given to both styles of winding, before deciding upon the one best suited for the purpose.

Multi-coil design also results in a much more equitable distribution of the conductors, and, in the case of ironelad construction, permits of coils of small depth and width which cannot fail to be much more readily maintained at a low temperature for a given cross-section of conductor, or, if desirable to take advantage of this point in another way, it should be practicable to use a somewhat smaller cross-section of conductor for a given temperature limit. And similarly, when we consider smooth-core construction, we find that the distribution of conductors over the entire surface carries with it great advantages from a mechanical standpoint.

CHAPTER XIII.

SINGLE-PHASE WINDINGS.

FIGURE 77 is a diagram of a winding for single-phase alternating-current generators and synchronous motors, which has been very extensively used. It has one group per pole piece, consisting of adjacent halves of two coils of the proper number of turns. These are interconnected as shown by the light lines. The adjacent halves of the two coils are usually arranged side by side, but it might sometimes be of advantage to place them one over the other. The arrangement of two coils side by side has been satisfactorily applied in various types of ironclad armatures. In Figs. 102 and 119 are given examples of this style of winding connected respectively for quarter-phase and for three-phase work. It should be noted, however, that the same armature can be used for three-phase purposes only by having fields with different numbers of pole pieces.

The avoidance of crossings at the ends, and the extreme simplicity of this style of winding, are its chief advantages.

In Fig. 78 is given another uni-coil winding, but here only one coil is placed in each slot. In many cases this might be preferable to the arrangement shown in Fig. 77, but the ends of the armatures are not so completely occupied by the ends of the coils, which wastes room and tends to bring about a less even distribution of the loss by heating. The use of only half as many coils is, of course, generally an advantage, on account of simplicity, but it is usually necessary for each coil to be wound deeper, which is objectionable from a thermal standpoint, as well as from the fact that a greater depth of space has to be allowed for the winding at the ends of the armature.

It should not be overlooked that if half the number of pole pieces is odd, the armature coils could not be connected up in two parallels, which would in practice be a very considerable objection, as it would limit the use of the armature for other purposes than that contemplated in laying out the original design.

One feature of this winding worthy of consideration is the great ease of insulation, it being, in this respect, superior to Fig. 77, one of the groups of which consists of adjacent halves of two coils, having between them the entire voltage of the armature.

Figure 79 is a bar winding, with one bar per pole piece, corresponding to the coil winding of Fig. 78. This would be used for low voltages, and in the case of generators of large capacity, such windings are practicable for high voltages. It is typical of the simplest form of a multipolar, single-phase alternator, and has been used in some very large machines.

Fig. 80

Figure 80 is another uni-coil winding. It is given largely as a matter of interest; for, as will be seen, it has undesirable crossings and very long end connections, which would be very wasteful of copper unless the length of the magnet cores parallel to the shaft is great compared with the length of the pole arc. Even in such a case there would be no advantage over Fig. 78, unless for the fact that Fig. 80 is a very good winding for a three-phase alternator of one-third the number of poles, and the case might occur where it would be of advantage to use the same armature and winding for both cases. This would make an excellent three-phase winding for one-third as many poles, and would then be similar to the three-phase winding given in Fig. 116.

The corresponding diagram for a bar winding, with one bar per pole piece, is sufficiently evident from Fig. 80, and, in view of its unimportance, will not be given.

The following diagrams are multi-coil, single-phase alternators. As a class they have been very thoroughly discussed in the general remarks of the preceding chapter.

Figure 81 represents a very simple two-coil winding. It is to be noted that this winding is mechanically identical, with the exception of the interconnection of the coils, with the winding of Fig. 78, but it is put in a frame with half as many poles as there are groups of conductors, instead of, as was the case in Fig. 78, being laid out for a frame with a number of poles equal to the number of groups of conductors.

As already pointed out, such multi-coil windings do not at no load generate so great an electromotive force per unit of length of face conductor, as uni-coil windings. It has, however, been also shown on page 164 that this objection does not have such great weight as would at first sight appear to be the case.

Fig. 81

Fig. 82

Figure 82 gives a bar winding with two bars per pole piece. It corresponds to the coil winding of Fig. 81. These two windings (Figs. 81 and 82) could probably be used to advantage in many cases, but, of course, their disadvantages should be carefully considered.

Figure 83 represents another two-coil winding. It would seldom be used, as it has the faults and lacks the merit of the winding given in Fig. 81.

If, however, the coils, instead of being evenly spaced, were brought into groups of two, not very far apart, it would, to some extent, have part of the advantages of the uni-coil construction, and would partly overcome some of the faults of the latter. If modified in this way, it would partake of the nature of the windings given in Figs. 97, 98, and 99, and the remarks made in connection with these figures should be referred to.

If Figs. 81 and 82 should be similarly treated (that is, if the coils should be brought into groups of two coils each, not very far apart), the result would be a winding comparable to those given in Figs. 97 and 99.

Fig. 83

Fig. 84

Figure 84 is a diagram of another two-coil winding. It is connected as a single-phase alternator, but except for the manner of interconnection of the coils it is identical with the quarter-phase winding given in Fig. 100. It will give the same voltage as would Fig. 100, if the two components of the quarter-phase winding should be connected in series.

For this reason (that is, because when reconnected, it makes a good quarter-phase winding), it might sometimes be used, but of course, would, as stated in connection with previous windings, require a greater length of wire to generate the same voltage than a uni-coil winding, and would naturally have a greater armature self-induction. But, of course, the decrease in self-induction due to the multi-coil construction would somewhat compensate for this increase.

Figure 85 gives a diagram for a single-phase bar winding, corresponding to Fig. 84. It is only of interest as showing that it is identical with Fig. 82, except that the long-end connections which were at the collector ring end in Fig. 82 are now at the other end.

It should be noted that all these multi-coil windings now under consideration would, for a given terminal voltage, require much more field excitation at no load than corresponding uni-coil windings. But at full load they would, in some cases, require little if any more field excitation than would be the case with uni-coil windings. As a result of these considerations it will be seen to be necessary in any particular case to observe the requirements for the field excitation as regards permissible regulation, heating, etc., when deciding upon the type of armature winding to adopt.

Fig. 86

Figure 86 should be compared with Fig. 80. It is quite like the latter, except that it has two coils per pole piece instead of one. It would, of course, not be used, as it has such long end connections.

The number of poles is sixteen. Such a winding with twelve, eighteen, or twenty-four poles could be used in a three-phase armature of one-third the number of poles by merely changing the interconnections of the coils. Figure 123 gives such a diagram for a three-phase alternator in an eight-pole frame.

The mechanical arrangement of such windings as those given in Figs. 80, 86, and 123 is exceptionally good, although in the case of Figs. 80 and 86, they are much less simple, as single-phase windings, than those that do not cross.

Figure 87 represents a winding with two groups of coils per pole, and two coils per group. It will be seen to be identical with the two-phase winding of Fig. 103, except that it is connected up as a single-phase winding. With the exception of the sequence of interconnection of the coils, it may be considered to be two windings like Fig. 77, one of which is displaced 90°, so that its conductors lie half way between those of the other.

Its end connections permit of good mechanical arrangement; very much, in fact, like that of Figs. 80, 86, and 123.

Fig. 87

Fig. 88'

Figure 88 shows a useful three-coil winding. It has all the advantages and disadvantages already noted of multi-coil armatures.

The end connections can be very nicely arranged, so as to permit of winding on forms and slipping them into slots. Only two different shapes of forms are necessary; one-half of the coils would be wound in one of them, and the rest in the other.

It will be seen that it is really the three-phase winding of Fig. 116 connected up as a single-phase winding. For this reason, among others, it might be expected to be of service where it would be of advantage to have armatures which could be used interchangeably for single- or three-phase work. Most three-phase windings could, of course, be similarly used.

As a single-phase winding per se, Fig. 88 is excelled by the windings of Figs. 92 and 94, which require a smaller length of end conductors.

Figure 89 is the bar winding corresponding to the coil winding of Fig. 88. It is not a generally useful winding. Among other faults it has three different lengths of end connections, half of them being very long. In this respect it is excelled by the winding given in Fig. 93. The end connections at one end are perfectly regular, but this would seldom be considered to compensate for the needlessly great length of copper employed.

This winding is an example of the importance of thoroughly examining many diagrams before adopting a winding for a certain case; for it is not at once apparent that this winding could be improved upon, and if thought of first, might be chosen without further investigation.

Fig. 89

Fig. 90

Figure 90 gives a coil winding very similar to that of Fig. 88. But the end crossings would render it very inconvenient, and the space at the ends of the armature is not so well utilized as it was in Fig. 88. This would tend to an undesirable concentration of the heating.

Unlike Fig. 88, the winding would not interfere with the armature, being made in segments for convenience of shipment. But Figs. 92 and 94, which require less copper in the end connections, also possess this advantage, Fig. 94 to the greatest extent of all.

Figure 91 has all the faults of Figs. 89 and 90. It is the bar winding corresponding to Fig. 90. It is inferior to the winding shown in Fig. 93.

It has the advantage that the winding is more symmetrical as a whole than many better windings, and it is for this reason readily constructed and connected up, with little liability of error. It is a great help for the winder to be able to intelligently perform his work, and windings that are, electrically and mechanically, to a small extent inferior, might in some cases consistently be adopted because of the simplicity of winding. They also permit of the more ready locating and correcting of faults that are liable to develop during the practical operation of the machinery.

Fig. 91

Fig. 92

Figure 92 is another three-coil winding. It gives the same results as Figs. 88 and 90, but with less copper, as it has shorter end connections. It is also simpler, as there is much less overlapping at the ends. Only two sizes of coils are necessary.

The chief point of inferiority to Figs. 88 and 90 is that it cannot be connected up as a three-phase armature.

Even Fig. 92 is not so good as Fig. 94 (to be described later), which latter has still shorter end connections and less crossings.

There is no good bar winding corresponding to Fig. 92. Figure 92 possesses the advantage noted in the discussion of Fig. 90, that the armature may be built and shipped in sections without interfering with the winding.

Figure 93 is the best bar winding for three bars per pole piece. It is distinctly superior to Figs. 89 and 91, as it has much shorter end connections. It requires, moreover, only two different lengths of end connections, whereas Figs. 89 and 91 each require three.

The following diagram is a section of a bar winding with five bars per pole piece:—

Fig. 93

Fig. 94

Figure 94 is the coil winding corresponding to the bar winding of Fig. 93.

This coil winding is superior to that of Figs. 88, 90, and 92, in that it gives the same result with much shorter end connections and with fewer crossings of the end connections. Like Fig. 92, it cannot be connected up as a three-phase alternator, it being in this respect inferior to Figs. 88 and 90.

The winding of Fig. 94 could readily be built in sections in cases where it would be necessary to ship the armature in segments.

Figure 95 is a coil winding electrically equivalent to Figs. 88, 90, 92, and 94.

Windings of this class may readily be derived from the example given in Fig. 95, for any desired number of coils per pole piece. It often works out well from a mechanical standpoint, and although the end connections are necessarily longer than in the preceding windings, it will frequently be found useful.

The various coils might with advantage be grouped to a greater or less extent, in accordance with the principles exemplified in Figs. 97, 98, and 99, which, together with the accompanying text, should be consulted in this connection.

Fig. 95

Fig. 96 `

Figure 96 gives a coil winding with one and one-half coils per pole piece. It has two coils per group. It is really a winding such as Fig. 77, put in a field with two-thirds as many poles as the armature has coils. Thus in Fig. 96 there are thirty armature coils and twenty field poles. There is disadvantageous counter-induction which makes the use of more armature copper necessary than would be used in a uni-coil winding. The armature could, however, be used interchangeably in fields with n and with $\frac{2}{3}n$ poles, which property permits of the use of the armature in cases where different speeds or periodicities may be called for.

Also by changing the interconnections of the coils, an excellent three-phase armature is obtained. The three-phase connections of such a winding are given in Fig. 119.

Moreover, owing to the fact that when one side of a coil is under a field pole, the other is between two poles, the self-induction of such a winding is low, and is fairly uniform for all positions of the armature.

Many of the multi-coil windings given heretofore have been somewhat undesirable by reason of the counter-induction, which made it necessary to have a greater length of conductor for a given voltage than would have been necessary if the conductors had been concentrated in one coil per pole piece.

Figure 97 is a winding which, while retaining to a great extent many of the advantages of multi-coil windings, is usually as good with regard to its freedom from counter-induction as a uni-coil winding with evenly spread coils.

It is in fact one of the two windings of the quarter-phase diagram of Fig. 104.

Figure 98 does not differ essentially from Fig. 97 as far as regards the point that it is intended to illustrate. It, also, is one of the two windings of a quarter-phase armature, being in fact derived from the quarter-phase diagram of Fig. 112.

Other excellent diagrams of this type may be derived by considering one of the two windings of the quarter-phase armatures shown in Figs. 105, 106, 107, and 111.

Figure 99, like its predecessors, Figs. 97 and 98, has its coils arranged in groups in the periphery of the armature. It has to some extent their advantages and disadvantages. It differs from them in utilizing two-thirds of the available space, instead of one-half, and is more of a compromise with the uniformly distributed windings.

It is obvious that windings such as the three just given may readily be derived from any of the evenly distributed multiphase windings by simply discarding one or more of the windings belonging to the respective phases of such diagrams. They may also be derived from many of the single-phase windings by shifting the coils laterally from the normal position into the desired groups.

Fig. 99

Fig. 100

CHAPTER XIV.

QUARTER-PHASE WINDINGS.

FIGURE 100 represents a quarter-phase coil winding with one group of conductors per pole piece per phase. In accordance with the nomenclature already adopted, this would be known as a uni-coil winding; although it has but one coil per pole piece per phase, it has two coils per pole piece.

The two windings are represented, respectively, by full and broken lines. The winding is quite simple, but has the objection of crossings at the ends. In this respect it is inferior to the style of winding represented by the diagram of Fig. 102.

Three collector rings could be used, one of them being common to each winding. In the diagrams, however, four collector rings will be shown, this being the method now generally used. In connection with a system employing three collector rings, the standard quarter-phase commutating machines (to be described later) could not be used.

Figure 101 is the bar winding corresponding to Fig. 100. It does not well utilize all of the available space on the armature ends. This is generally not a great objection in the case of uni-coil windings, as there is in such cases plenty of room on the ends, but, other things being equal, it is of course preferable to have windings uniformly distributed at the ends as well as on the surface. In this connection Fig. 109 should be studied, and it will be seen that by placing two conductors in a group a perfectly symmetrical design is obtained with one group per pole piece.

A decided objection to this arrangement would be that adjacent conductors would have between them large differences of potential, whereas in Fig. 101 there are but few points in which neighboring conductors have between them any considerable percentage of the total terminal voltage.

Figure 102 is a non-overlapping quarter-phase winding with one group of conductors per pole piece per phase. It has the advantage over Fig. 100 that there are no crossings at the ends of the armature, and that it utilizes the end space more completely, thus bringing about a better distribution of the necessary heating losses in the copper. Its chief fault is that if the width of the pole face is over one-half of the distance between pole centers, the coils never embrace the total flux from one pole piece. However, at full load, the area occupied by the flux is narrower, and a greater portion would be included than at no load, so that this objection would not be so serious as would appear at first sight. Moreover, the necessary space allowance for the field winding will in many cases not permit the width of the pole piece to be sufficiently great to cause any trouble in this respect. Mechanically, this is an excellent winding, being, in fact, the single-phase winding given in Fig. 77, for double the number of poles.

The remarks made in connection with Fig. 96 (single-phase alternating winding with one and one-half slots per pole piece) should also be considered in studying this winding. Consult also Fig. 119 and corresponding text.

Figure 103, which like Fig. 102 has two coils per group, is not open to the objection discussed on the preceding page. It has, however, crossings at the ends. It is to be preferred to Fig. 100 for the reason that the end space is more effectively utilized, but the additional crossings would require a somewhat greater length of wire than would be necessary in Fig. 100.

Bar windings could be built corresponding to the coil windings of Figs. 102 and 103. They would not be symmetrical at both ends, but might advantageously prove applicable for certain cases. The two bars of a group could be placed either over each other, or side by side. With smooth-core construction the latter arrangement would be adopted, and often also in ironclad armatures with bar windings.

Fig. 103

Figure 104 is a quarter-phase coil winding with two conductors per pole piece per phase. It is entirely symmetrical, and utilizes all the winding space to the best advantage. The crossings at the ends are unavoidable, but may be made thoroughly satisfactory from a mechanical standpoint by proceding in the manner shown most clearly in the diagram of Fig. 123.

Such windings are applicable to quarter-phase armatures with any even number of coils per pole piece per phase.

In studying Fig. 104 it will be instructive to examine Fig. 97, which is one of the two windings of Fig. 104.

Figure 105 is electrically equivalent to Fig. 104. The winding might sometimes be used, although it would for most purposes be excelled by Fig. 104.

It will be noted that the end connections are longer, and that they occupy a greater depth. Much of the end space is wasted. This winding is superior to that of Fig. 104, in that the coils are so located as to make it very plain how the connections should run. This would be of great assistance to the winder, and would, moreover, facilitate the detection and correction of faults that might develop in practical working.

An armature with such a winding could be built and shipped in segments.

Fig. 105

Fig. 106

Figure 106 is a bar winding differing but little in principle from the coil winding of Fig. 105. The space is uniformly occupied at the collector ring end, but is not at the other end.

This lack of uniformity in end connections is not of very great moment in bar windings with few bars per pole piece. Other things being equal, however, it would on the whole seem best to avoid it, although in special cases such disposition of the end-connections allows room much needed for mechanical arrangements.

Figure 107 is a bar winding corresponding to Fig. 104. It is a good example of the fact that very symmetrical coil windings often correspond to very unsymmetrical bar windings, and *vice versa*. But, as noted on the preceding page, this lack of symmetry is in such cases not a great objection, and has, incidentally, some redeeming features.

One of the two windings of this diagram would, as mentioned on page 209, work out very well for a single-phase armature.

Fig. 108

Figure 108 is a much better bar winding than Fig. 107, though electrically equivalent.

It will be seen to be unsymmetrical at two points at the end distant from the collector This irregularity consists in the end connections of the two adjacent bars starting off in the same direction, instead of, as in all other parts of the winding except these two, going in opposite directions. Four of the end connections have to be longer than the rest.

This winding is practically the same as the following one, Fig. 109, except that the above described irregularity is introduced instead of making use of the cross-connections shown in Fig. 109.

Figure 109 is a symmetrical quarter-phase bar winding with two conductors per pole piece per phase. If used for an ironclad or projection armature, it may have four slots per pole piece with one conductor per slot, or two slots per pole piece with two conductors per slot.

Examination will show that it is essentially a twelve-pole armature with four separate series of windings of twelve bars each. These four windings are connected up into two windings of twenty-four conductors each.

At the front end y=5, and at the back end y=3, therefore average y=4.

As pointed out in the discussion of Fig. 101, Figs. 108 and 109 have the fault that neighboring conductors have between them large percentages of the total potential of the armature, and this would sometimes be objectionable in cases of high potential windings.

It will doubtless have been observed that in the case of quarter-phase windings, multi-coil construction does not have to so great an extent the fault pointed out in the case of corresponding single-phase windings, of useless counter-electromotive forces.

The coils of one phase usually embrace practically the entire flux, because the two groups of conductors, forming respectively the two sides of a coil, are usually separated by a group forming one side of a coil belonging to the winding of the other phase.

This advantage is possessed in a still greater degree by the three-phase windings, which will be discussed later.

Exceptions to the above statement often occur in cases where single and multi-phase alternating windings are obtained from ordinary direct-current windings.

Fig. 109

Figure 110 represents a quarter-phase coil winding with three slots per pole piece per phase. It does not utilize very uniformly the end space on the armature, the end connections being three layers deep at some points and much less at others.

An advantage of this winding is the well-defined nature of the coils, rendering it easy to see just how they should be connected. The winding might also be necessary, if it should be required that the armature should be built so that it could be shipped in segments.

Figure 111 is electrically equivalent to Fig. 110, but the end connections are only two layers deep, are shorter, and are better distributed over the ends of the armature. Where the number of coils per pole piece per phase must be odd, windings such as those given in Figs. 110 and 111 must for quarter-phase armatures often be chosen. It is quite apparent that, except in special cases, the style of diagram shown in Fig. 111 will give the best result.

Figure 112 is a bar winding corresponding to the coil winding of Fig. 111. Although not symmetrical, the end connections are fairly well distributed, and there would be in but very few places any great percentage of the total difference of potential between adjacent conductors. Several different lengths of end connections would necessarily have to be employed.

One of the two windings of this diagram has already been given in Fig. 98 in Chapter XIII. on Single-Phase Windings.

Figure 113 represents a quarter-phase bar winding with four conductors per pole piece per phase. It is perfectly symmetrical, and may have one, two, or four conductors per slot, as desired.

This winding is like that of Fig. 109, except that four sets of elementary windings are connected in series to form one of the two phases, instead of two sets, as was the case in Fig. 109.

If one-half or one-quarter as great a terminal electromotive force should be desired, two, or all four, of these elementary windings could be connected in parallel between the collector rings, instead of joining them in series as shown.

Fig. 114

TWO-CIRCUIT WINDING FOR QUARTER-PHASE CONTINU-OUS CURRENT COMMUTATING MACHINE.

Figure 114 is the diagram for the winding for a commutating machine for deriving a continuous current from a quarter-phase alternating supply, or *vice versa*, or for a generator for supplying both continuous and quarter-phase systems.

Examination will show that it is the two-circuit single winding of Fig. 43 (Chap. VIII.), tapped off from four approximately equidistant points to four collector rings. As the winding consists of sixty-eight conductors, there should be seventeen conductors in each section, but for the convenience of having all the connections to the collector rings made at one end, the divisions are 16, 16, 18, and 18. With the large numbers of conductors used in practice, the irregularity produced by one conductor more or less would be of less importance, though always undesirable. In such a winding four points only of the armature are tapped independently of the number of poles.

TWELVE-CIRCUIT WINDING FOR QUARTER-PHASE CONTINUOUS-CURRENT COMMUTATING MACHINE.

Figure 115 is another winding for a quarter-phase continuous-current commutating machine. It is fundamentally a multiple-circuit, continuous-current winding, and requires four leads (one to each collector ring) for each *pair* of poles.

It is to be remembered that in quarter-phase continuouscurrent commutating machines, the effective voltage between collector rings 180° apart equals the continuous-current voltage multiplied by .707 (or divided by 1.414).

Fig. 116

CHAPTER XV.

THREE-PHASE WINDINGS.

FIGURE 116 is a three-phase coil winding with one set of conductors per pole piece per phase. The coils belonging to the three windings may be distinguished from each other by the three different styles of lines. The armature is connected in a manner technically known as the "Y" connection. The characteristic of this style of connecting three-phase windings is that one end of each of the three windings is brought to a common connection, the other three ends being carried to three collector rings.

Inasmuch as three-phase alternators have but recently been used to any considerable extent in practice, it may not be out of place to give as concisely as possible a few of the leading considerations involved in their practical construction and operation, as far as relates to the armature windings.

One complete cycle is passed through by any armature conductor while passing from a certain point opposite one pole piece, say the middle of the north pole, to the corresponding point opposite the next pole piece of the same polarity. This angular distance is usually spoken of as 360°, independently of the number of poles of the machine. Now, a three-phase armature winding is merely three single-phase windings, laid on the same armature, the conductors of the three windings, however, being located 120° (one-third of a cycle) behind each other. Any conductor of one winding is, therefore, at any instant, in a different phase from that of the conductors of the other windings. Thus, in the position represented in Fig. 116, the conductors represented by heavy lines are directly opposite the middle of the pole pieces, the light line conductors are located 120° behind them, and the dotted conductors are 120° behind the light conductors and 240° behind the heavy conductors.

Now it follows from the relative positions of the conductors of the three phases, that the electromotive forces generated in the three windings are 120° behind each other, and if they are sine waves, they may be represented, as in the following figure, by three sine curves displaced 120° behind each other.

If the three circuits are equally loaded, these curves may also be considered to represent the corresponding instantaneous values of the current.

It will be noted that at every instant, the algebraic sum of the three currents is zero. Now instead of having three *pairs* of lines and brushes and collector rings, one end of each of the three windings is brought to a common connection, and a conductor from this common connection could be used as a common return for each of the three circuits. But, since the resultant current at every instant is zero, this conductor becomes superfluous and is omitted.

If the voltage between any ring and the common connection, that is, the voltage per phase, is equal to v, then the volts V between any pair of collector rings will be,—

$$V = \sqrt{3} v \text{ or } 1.732 v.$$

The effective current will be equal in each of the three lines, and may be represented by C. With a non-inductive load, the watts output, W, will be,—

$$W=3 Cv = \frac{3 CV}{\sqrt{3}} = 1.732 CV.$$

If the load is inductive, the current C, for a given output W, will be greater than with a non-inductive load.

A safe and easily understood way of connecting the three windings correctly to the three collector rings and the common connection, is to consider that the winding whose conductors occupy the position in the middle of the pole piece, is carrying the maximum current, and to indicate its direction on the winding diagram by an arrow. The currents at the same instant in the conductors immediately next to it on the right and left are in the same direction, and should be so marked by arrow-heads. Now, from the sine curves given above, it will be seen that where one curve has a maximum value, the other two have a value half as great, and in the opposite direction. Therefore consider that the current in the winding occupying the position at the middle of the pole face is flowing away from the common connection. Then the currents in the other two windings, which are each of half the magnitude of the former, must both be flowing into the common connection; therefore join those ends of the three windings to the common connection, which will bring about this condition at this instant. Carry the other three ends to the three rings. This has been done in the upper diagram of Fig. 117, which represents a "Y" connected three-phase winding.

Another way of connecting up three-phase armatures is to connect the three windings in series in a closed circuit, and at every third of the total way through the circuit thus formed, to carry off a lead to one of the collector rings.

In the case of this, technically called the "delta" (Δ) connection, the current C in the line (i.e. beyond the collector rings) is $C = \sqrt{3} c$, or C = 1.732 c, where c = current in the winding. The volts per winding are in this case equal to the volts between each pair of collector rings; that is, to the volts per phase. The watts output of a machine are,—

$$W = 3 \ cV = \frac{3 \ CV}{\sqrt{3}} = 1.732 \ CV.$$

Examples of each of these two connections are given in Fig. 117.

The upper diagram represents a "Y" connected three-phase armsture, and the lower diagram represents the very same armsture, but with a "delta" (Δ) connection.

In connecting up the separate windings for a "delta" (Δ) connection, it is most convenient to choose the instant when the conductors of one phase are opposite the middle of a pole piece. Then assume these conductors to be carrying the maximum current, which is illustrated in the figure by the larger arrow-head.

Fig. 118

The other two windings are at the same instant having induced in them currents of only one-half this magnitude. The condition of affairs in line and in winding is, for the instant, as represented in the follow-

ing diagram.

From this it is seen, that, starting from the middle collector ring (corresponding to point a in the diagram), and following the direction of the current, we must pass through the heavy winding, carrying the large current to the outer ring (corresponding to point b of diagram). In the other direction, we must pass from the middle ring (i.e. point a), through the dotted winding, which carries one-half as great a current, to the inner collector ring (corresponding to point c of diagram). Then we must continue through the light winding, still in the direction of the current, until we again reach the outer collector ring, or point b of diagram.

Any of the following three-phase diagrams may be connected either "delta" or "Y," but they will usually be shown with the "Y" connection.

It is well to keep in mind that if a "Y" connected armature is changed over to the "delta" connection, it may with the same regulation and heating give 1.732 times as much current, but only $\frac{1}{1.732}$ times the voltage. The reverse holds true in changing from "delta" (Δ) to "Y."

Figure 118 is the bar winding corresponding to Fig. 116. It has one bar per pole piece per phase. This winding, while partaking of all the advantages and disadvantages of multi-coil construction, would be particularly unsatisfactory for a three-phase *motor* on account of the dead points that it would develop at starting. These dead points are much less marked with multi-coil windings and with windings like those in Figs. 119 and 120.

In the case of induction motors, it is customary to make use of such windings as those given in Figs. 126 and 127, where smoother action is obtained partly by virtue of the choice of a number of conductors, prime, or nearly so, to the number of poles.

Figure 119 is a non-overlapping, three-phase, coil winding, with only one and one-half coils per pole piece per phase. It is the winding which was given with its single-phase connection, in Fig. 96. This should make a very excellent three-phase winding, as there is no crossing of the coils. It is a regular thirty-pole, single-phase winding, connected up as a three-phase armature for twenty poles. This diagram should be compared with Fig. 77, Fig. 96, and Fig. 102. It should be particularly suitable for use in three-phase motor work, as it should have very weakly defined dead points. In a projection armature, when a slot is opposite a certain pole piece, spaces between two slots will be opposite the adjacent pole pieces, thus giving a more equitable distribution of the magnetic flux.

The inductance of such a winding is low and fairly uniform, for the reason that when one side of a coil occupies a position under a pole piece, the other side of the coil is between two pole pieces.

Fig. 119

Fig. 120

Figure 120 represents the corresponding bar winding. In the case of projection or ironclad armatures, it would have two bars per slot, which might be arranged one over the other or side by side. It is interesting to note that each slot would contain one bar of each of two windings, two bars of the same winding never occupying the same slot.

All the remarks regarding the winding of Fig. 119 apply equally well to Fig. 120.

Figure 121 is a three-phase coil winding, with two groups of conductors per pole piece per phase. The mechanical arrangement of the coils at the ends of the armature could not be designed nearly so satisfactorily from a mechanical point of view, as in the style of winding given in Fig. 123. It is believed that in most instances the style of winding shown in Fig. 123 will be found to give the best results.

Fig. 122

Figure 122 is the bar winding corresponding to Fig. 121. The end connections are perfectly symmetrical and well distributed at one end, but are far from it at the other. Its point of superiority over Fig. 124 is that it has, as a rule, no great differences of potential between adjacent conductors.

As already stated, the irregular distribution of the end conductors is not, at least in the case of bar windings, so great an objection in cases where there are comparatively few bars per pole piece. And in this instance there is a sort of a regularity about their grouping, that might be found of advantage on account of the large spaces that it makes available for mechanical arrangements.

Figure 123, which was devised by Mr. Thorburn Reid, who has devised a number of useful windings, is superior in the mechanical arrangement of the coils, to the winding of Fig. 121. The corresponding bar winding is not drawn, but it may be readily seen that it would have no very obvious advantages.

Coil windings of the same style as that of Fig. 123 may be constructed with any number of coils per pole piece per phase, and are frequently superior to other arrangements.

It is thought that the style of lining adopted in the diagram will indicate fairly well the arrangement of the end connections, if care is taken to note that the conductors of some groups of coils are carried directly over in the same plane as the face wires, to the conductors forming the other side of the group. The end conductors of the other coils have to be bent down out of the plane of the face conductors and then back again into their plane. The coils are usually wound in forms and then laid in place on the armature.

Fig. 123

Fig. 124

Figure 124 is a three-phase bar winding, with two bars per pole piece per phase. It is perfectly symmetrical, and may have either one or two conductors per group. It is inferior to Fig. 122, in that, from the nature of the winding, there are much greater differences of potential between adjacent conductors than in Fig. 122.

In Fig. 124, the pitch is 5 at one end and 7 at the other. Two sets of conductors, each set having as many conductors as there are pole pieces, are joined in series to form each one of the three windings. If an armature for half the voltage had been wished, the two sets of conductors forming each winding would have been connected in parallel.

This winding, as well as the next (Fig. 125), is of the same general character as those shown in Figs. 109 and 113.

Figure 125 is similar in all respects to Fig. 124, except that it has three conductors per pole piece per phase. The pitch is 9 at both ends. It could be connected so as to give one-third as great a terminal electromotive force by joining the three elementary groups of which each winding is formed, in parallel, instead of in series.

In connection with Figs. 124 and 125, emphasis should be laid on the fact that in virtue of the nature of these windings, whereby adjacent conductors have between them large differences of potential, valuable space has to be sacrificed to make room for the proper thickness of insulation, which, with types of winding not possessing this character, could be usefully employed.

Figure 126 is a four-pole, three-phase bar winding of a very irregular character. It has fifty-one conductors, seventeen per phase. There are, therefore, unequal numbers of conductors, both per phase and per pole, opposite the different pole pieces.

This style of winding has been used with success in induction motors, where it is important to choose a number of slots on the armature, which is prime, or nearly so, to the number of slots on the field. It may be well to state that, in the case of induction motors, the field, in the most successful types, consists merely of an assembly of annular punchings with radial slots within which the cylindrical drum armature revolves. It is practically a transformer, one of the elements, usually the secondary, being movable. It has become customary to call the moving element, the armature, and the stationary, the field. In the types, and for the voltages generally employed, it has been found best to use a coil winding for the field, the coils often being wound on forms and slipped into the slots. In the armature, which is practically a short-circuited secondary, the number of conductors and slots is determined by the permissible inductance, the actual voltage of the armature being to a great extent immaterial. In certain types the ratio of field to armature conductors has been something like 6:1. It is in connection with such motors as these, that the winding diagram of Fig. 126 will be found of greatest service. There cannot well be more than one bar per slot, because of the irregularity of the end connections.

Figure 127 is another three-phase bar winding with fiftyone conductors. It has six poles, and is even more irregular
than the winding of Fig. 126. It, like Fig. 126, will find
its chief use in the design of induction apparatus. Windings, almost as irregular, might be used in large polyphase
generators, where it is desired to have but one conductor
per slot.

Fig. 127

Fig. 128

TWO-CIRCUIT WINDING FOR THREE-PHASE CONTINUOUS-CURRENT, COMMUTATING MACHINE.

Figure 128 represents the same winding as Fig. 114, except that here it is tapped off at three nearly equidistant points instead of at four, as was the case in Fig. 114.

The result is a winding for a three-phase, continuouscurrent, commutating machine.

The total sixty-eight bars are divided up into sets of twenty-two, twenty-two, and twenty-four conductors, respectively, which are represented on the diagram by heavy, light, and dotted lines.

If the conductors are arranged in groups of two each, as would frequently be the case in projection armatures, where two conductors would often be placed together in each slot, it is of interest to note that these two conductors never belong to the same phase.

SIX-CIRCUIT WINDING FOR THREE-PHASE, CONTINUOUS-CURRENT, COMMUTATING MACHINE.

Figure 129 is still another three-phase, continuous-current, commutating machine, but with a six-circuit winding. It requires three leads per pair of poles; therefore, in this case, nine leads. It is quite analogous to the quarter-phase, continuous-current, commutating machine of Fig. 115.

It is of interest to notice the relation of the voltage between collector rings to the continuous-current voltage at the commutator, in the case of three-phase, continuous-current, commutating machines. It will have been observed that they have "delta" connected windings.

Let V = continuous-current voltage at the commutator; then, taking the point of zero potential to be at the middle of the winding, the electromotive force of each half of the winding is $\frac{V}{2}$. But the corresponding effective alternating electromotive force will be $\frac{V}{2\sqrt{2}}$. This, therefore, will correspond to the voltage between common connection

(point of zero potential), and collector ring, for an equivalent "Y" connected three-phase armature winding. Now the voltage between the collector rings of the "delta" connected armature winding will be $\sqrt{3}$ times as great as the voltage to the common connection of this equivalent "Y" winding, therefore the voltage between the collector rings will be,—

$$\frac{\sqrt{3}V}{2\sqrt{2}} = .612V,$$

where V=continuous-current voltage at commutator.

Inasmuch as a "delta" connected winding cannot be readily conceived to have a point of zero potential, the above subterfuge of substituting for it, the equivalent "Y" connected winding, will often be found to facilitate the handling of three-phase winding problems. When doing so, the equivalent "Y" potential and the equivalent "Y" current may be spoken of as attributes of a "delta" connected armature. In the accompanying figure, an equivalent "Y" connected winding is diagrammatically shown dotted within a "delta" connected winding.

Fig. 129

PART III.

WINDING FORMULÆ AND TABLES.

678) 444 678) 43960 678) 47800 678) 47800 678) 47800 678) 47800 678) 47800 678) 47800 678) 47800 678) 47800 678) 47800 678) 47800 678) 47800 678) 47800 678) 478

CHAPTER XVI.

FORMULÆ FOR ELECTROMOTIVE FORCE.

COMPREHENSIVE formulæ for the calculation of the electromotive force set up in armatures may be derived from the formula for the voltage in a circuit, in which the variation of magnetic flux is a simple harmonic function of the time. These formulæ are:—

- 1. $V = 6.28 \ TNM \ 10^{-8}$, the maximum voltage set up in a cycle; 1.000
- 2. $V = 4.44 \ TNM \ 10^{-8}$, the effective voltage set up in a cycle; . 707
- 3. $V = 4.00 \ TNM \ 10^{-8}$, the mean or average voltage set up in a cycle, $6.3 \ 7$

where V is the voltage generated, in volts; T the number of turns in series, M the number of cgs lines included or excluded by each of the T turns in a magnetic cycle, and N the number of magnetic cycles per second.

In armatures of alternators, the effective, or square root of the mean square of the electromotive forces is required, since this is proportional to the effective voltage, *i.e.* the voltage to maintain current C (square root of the mean square of the current), in a non-inductive resistance. In this case it is supposed that the T turns are so situated as to be simultaneously affected by any change of the magnetic flux, otherwise the voltage for each of the turns differently situated must be calculated separately and properly combined to obtain the resultant voltage.

In the case of multi-phase alternating-current machines, the voltage in each circuit should be calculated, and the resultant voltage derived according to the method of connection, and addition of vectors according to the angle by which the several phases differ from each other.

In quarter-phase machines with common connection, the resultant voltage is $\sqrt{2}$, or 1.414 times the voltage generated in one circuit.

In three-phase apparatus, the resultant voltage is the same as the voltage generated in one circuit when the circuits are connected "delta"; and $\sqrt{3}$, or 1.732 times the voltage generated in one circuit when the circuits are connected "Y."

In alternating-current commutating machines, the ratio of the voltage between the continuous and the alternating current circuits is 1:.707 in the case of single-phase and quarter-phase commutating machines, and 1:.612 in the case of three-phase commutating machines. In other words, if the voltage at the con-

tinuous current side is known, the voltage between collector rings will be .707 times as great in the case of single and quarter phase commutating machines, and will be .612 times as great in the case of three-phase commutating machines.

In armatures of continuous-current dynamos, the voltage at the terminals is constant during any period considered, and is the integral of all the voltages successively set up in the different armature coils according to their position in the magnetic field; and since in this case only average voltages are considered, the resultant voltage is independent of any manner in which the magnetic flux may vary through the coils.

Formula 3 is applicable to all continuous-current armatures, whether ring, drum or disc, two-circuit or multiple circuit, and whether the winding be single or multiple.

The simplicity and wide applicability of these formulæ make them preferable to many others that are difficult to interpret, because of the many accessory conditions that must be kept in mind.

Although, by the constants given above, the voltages may be obtained at the alternating current, as well as at the continuous current terminals of commutating machines, the former, *i.e.* the voltages at the alternating current terminals, may be obtained from the following formulæ, in which V is the required voltage between collector rings, T is the number of turns in series between collector rings, M is the magnetic flux from one pole piece into the armature, and N is the number of cycles per second:—

For single and quarter phase commutating machines, $V=2.83\ TNM\ 10^{-8}$. For three-phase commutating machines, $V=3.69\ TNM^{-8}$.

CHAPTER XVII.

METHOD OF APPLYING THE ARMATURE WINDING TABLES.

THE nature and use of the tables may be most easily understood by applying them to the solution of a few examples.

Example 1.—If we wish a two-circuit, triple winding for a drum armature, with about 670 conductors and six poles, what is the exact number of conductors that must be employed to give us a singly reentrant winding?

Turning to page 312, we find that a two-circuit, triple winding with 670 conductors, is impossible for six poles, but that 672 conductors may be used; and to have the winding singly re-entrant, the front and back pitches must each equal 113. If the front and back pitches should be taken equal to 111, a triply re-entrant winding would result.

EXAMPLE 2. — We next wish to ascertain how many volts this machine will give when the armature is driven at 440 r.p.m., if the flux from each pole piece into the armature equals 2.25 megalines.

The table of Drum Winding Constants on page 280 tells us that with 100 conductors, 100 r.p.m., and a flux equal to one megaline, the terminal volts will, for a six-pole machine, be equal to 1.667. Therefore, in the case before us, we have

$$V = 1.667 \times 6.72 \times 4.40 \times 2.25 = 111$$
 volts.

From the same table we find that for a two-circuit, triple winding with six poles, we have .200 average volts between commutator segments per megaline and per 100 r.p.m. So, in this case, we shall have $.200 \times 2.25 \times 4.40 = 1.98$ average volts between commutator segments.

EXAMPLE 3. — Certain conditions fix the flux of a dynamo from one pole piece into the armature at 8.30 megalines, and the speed at 100 r.p.m. If we wish to employ an eight-pole, two-circuit, double winding, how many conductors do we need, to obtain 150 volts?

Consulting the table of Drum Winding Constants, on page 280, we find that for eight-pole, two-circuit, double windings, we have 3.33 volts per 100 conductors with 100 r.p.m., and one megaline of flux. Therefore, we shall require $\frac{150}{3.33} \times \frac{100}{8.30} = 544$ conductors.

By reference to page 301, it will be seen that for eight poles, the nearest number of conductors that we can use in order to have a two-circuit, double winding, is 540 or 548. Suppose we use 540 conductors. If we wish a doubly re-entrant winding, we shall take the pitch at one end equal to 67, and that at the other end equal to 69.

EXAMPLE 4. — A slotted armature is to have ten poles, and a two-circuit, triple winding, with eight conductors per slot.

By reference to the table of Summarized Conditions for Two-Circuit, Triple Windings, on page 283, we find that it may be either singly or triply re-entrant, according to the number of conductors used.

The winding is to have 424 conductors. Turning to page 310, it is seen that the pitch must be 43 at both ends, and that for 424 conductors the winding must be singly re-entrant.

If the flux is 20.0 megalines, and the speed 105 r.p.m., we find from page 280 that the voltage will be

 $2.78 \times 4.24 \times 1.05 \times 20.0 = 247$ volts.

The average volts per bar are

 $.556 \times 20.0 \times 1.05 = 11.7$ volts.

EXAMPLE 5.—An eight-pole armature has a multiple-circuit, double winding, with 1258 conductors. By consulting page 343, we find that it is singly re-entrant, and that the pitch should be 155 at one end, and 159 at the other. It is, of course, understood that these pitches are taken in opposite directions. One of them might have been indicated as positive, and the other as negative. It may be well to point out here that the letters F and B at the head of the tables, meaning respectively, "front" and "back," are interchangeable, meaning merely that the one figure represents the pitch at one end, and the other figure, that at the other end. This is true in regard to all the tables, both two-circuit and multiple-circuit.

Returning to Example 5, the voltage of the machine, assuming the flux equals 7.85 megalines, and a speed of 300 r.p.m., is found by the table of Drum Winding Constants on page 280, to be

 $.833 \times 12.58 \times 3.00 \times 7.85 = 247$ volts.

The average volts per bar are

 $.1333 \times 7.85 \times 3.00 = 3.14$ volts.

Example 6. — A two-circuit, single winding is wanted, with four conductors per slot.

From the table of Summarized Conditions for Two-Circuit, Single Windings, on page 281, it may be seen that this is only possible with 6, 10, 14, etc., poles; being impossible with 4, 8, 12, 16, etc., poles. The winding is designed for fourteen poles, and 660 conductors. We find from page 329, that the pitch is 47 at both ends. The machine gives 160 volts, and the speed is 75 r.p.m. By the aid of the table on page 280, we find that the flux is equal to

 $\frac{160}{11.67 \times 6.60 \times .75}$ = 2.77 megalines.

Average volts per commutator segment = $3.27 \times 2.77 \times .75 = 6.80$ volts.

The above examples have all been chosen merely to illustrate the use of the tables, and the relative magnitudes employed in any one example are not such as would occur in practice.

The tables on pages 280, 281, 282, and 283 are constructed on the assumption that no interpolated commutator segments are employed, and that no portion of the normal number of commutator segments is omitted, and when this is not the case, the results should be properly modified, as may readily be done.

In all the tables, a proper interpretation of the term "conductors" should be made. As stated in the introductory chapter, "groups of conductors" may often be substituted therefor.

It is believed that after becoming familiar with the arrangement of the tables, their use will be found to be of value in a great variety of problems connected with armature windings. Any single result can, however, be obtained by an application of the rules and formulæ given in the text, but after these rules and formulæ are once understood, it will be found that subsequent problems will generally be most conveniently solved by means of the tables.

CHAPTER XVIII.

ARMATURE WINDING TABLES.

DRUM WINDING CONSTANTS.

						NUMB	ER OF F	POLES		
		CLA	SS OF WINDING.	4	6	8	10	12	14	16
	RS	₩ ⊢	Single	1.667	1.667	1.667	1.667	1.667	1.667	1.667
	AND LINE.	MULTIPLE	Double	.833	.833	.833	.833	.833	.833	.833
Line 9	CONDUCTORS P. M. AND MEGALINE.	MUL	Triple	.556	.556	^.556	.556	.556	.556	.556
S.			Single	3.33	5.00	6.67	8.33	10.00	11.67	13.33
JRE	TS PER 100 PER 100 R. FLUX-ONE	TWO	Double	1.667	2.50	3.33	4.17	5.00	5.83	6.67
RMATURES	VOLTS PER 100 PER 100 R. FLUX-ONE	T V CIRC	Triple	1.111	1.667	2.22	2.78	3.33	3.89	4.44
M	00									
AR	MMUTA-	шь	Single	.1333	.200	.267	.333	.400	.467	.533
M	MWW S WE	MULTIPLE	Double &	.0668	.100	.1333	.1667	.200	.233	.267
DRUM	GE N. CC S PEF 10. OF	MUL	Triple 🛞	.0445	.0667	.0888	.1111	.1333	.1555	.1778
<u> </u>	VERA WEE IENT		Single	.267	.600	1.068	1.668	2.40	3.27	4.27
	AVERAGE VOLTS BETWEEN COMMUTA- TOR SEGMENTS PER MEGA LINE & PER 100 R. P. M. (INDEPENDENT OF NO. OF CONDS.)	TWO	Double 🛞	.1333	.300	.534	.834	1.200	1.635	2.14
	VOLTS TOR S LINE	CIR	Triple 🛞	.0888	.200	.356	.556	.800	1.09	1.42

With Multiple Windings, the maximum Volts per bar is much more greatly in excess of the average Volts per bar than in Single Windings. This may be seen by a careful analysis of such Windings; which also shows that this may be more or less overcome by careful mutual adjustment of the position of the Brushes. This would not, however, be practicable with present methods.

DATA F	OR AI					UIT, S		E WI	NDINGS	VOLTS PER 100 CONDESS PER 100	GALINE	AVERAGE VOLTS BETWEEN COMR. SEGTS PER MEGALINE & PER 100 R. P. M
NUMBER OF POLES				COND	истог	RS PER	SLOT			VOLTS P CONDRS.	== 1 ME	AVERAGE VOLTS BETW COMR. SEGTS MEGALINE & 100 R. P. M
4	1	2		6	3.3		.267					
6	1	2	4		8	16	5.0	0	.600			
8	1	2		6		10		6.6	7	1.068		
10	1	2	4	6	8		12	14	16	8.3	3	1.668
12	1	2				10		14		10.0	0	2.40
14	1	2	4	6	8	10	12		16	11.6	7	3.27
16	1	2		6		10		14		13.3	3	4.27
	⊗ Inde	epender	nt of nu	mber of	Condu	ctors						

From the above Table the following Rule may be deduced:

In the ordinary two-circuit single winding, "C" is always such a number that the number of conductors per slot, and "n" the number of poles, cannot have a common factor greater than 2.

DATA FO	RAPP		G TWO				BLE W	INDIN	igs,	VOLTS PER 100 CONDRS. PER 100 R.P.M. WITH FLUX = 1 MEGALINE	AVERAGE VOLTS BETWEEN COMR. SEGTS. PER MEGALINE & PER 100 R. P. M.
NUMBER OF			(OONDU	CTORS I	PER SL	т			TS P DRS. A. WI 1 ME	AVERAG COMR. SEGT MEGALINE.
POLES	1	2	4	6	8	10	12	14	16	VOL CON E.P.n	VOL COM MEG
4	00	@	@	000	0	1.667	.1333				
6	00	000	00	00	2.50	300					
8	000	00	00	00		000	@	@		3,33	.534
10	800	00	00	00	00		00	000	00	4.17	.834
12	(Q)	000	00		@	©		000	0	5.00	1.200
14	8	000	00	00	00	000	00		00	5.83	1.635
16	(B)	00	800	@		000	000	000		6.67	2.14
	Ø Indep	endent	of numb	er of Co	nductors						

Moreover, in multiple Windings this value is merely nominal, as a careful analysis of Multiple Windings shows that if this value can be approached at all, it is only by means of more careful mutual adjustment of the Brushes than is practicable with present methods.

4	CONDUC		VOLTS PER 100 CONDRS. PER 100	VOLTS BETWEEN COMMR. SEGTS.				
4		TONS	PER SLC	T			R.P.M. WITH FLUX = 1 MEGALINE	PER MEGALINE & PER 100 R. P. M.
	6	8	10	12	14	16		8
D	1.111	.0888						
	(M)	@	(QQ)	(QQ)	@	@	1.667	.200
00	000		(Q) 000		(Q)		2.22	.356
0 000	000	@		000	@	(QQ)	2.78	.556
000	(QQ)		(Q) 000		000		3.33	.800
000	000	(Q) (000	@	000		@	3.89	1.09
000	000		@		000		4,44	1.42
		000		000 000	000	000 @ @	000 @ @	000 @ 4.44

Moreover, in Multiple Windings this value is merely nominal, as a careful analysis of Multiple Windings shows that if this value can be approached at all, it is only by means of more careful mutual adjustment of the Brushes than is practicable with present methods.

WINDING TABLES FOR TWO-CIRCUIT, SINGLE WINDINGS FOR DRUM ARMATURES.

TAE	BLE C	FTV	VO-C	IRCU	JIT, s	SINC	LE W	VIND	INGS	, FO	R DF	RUM .	ARM	ATUI	RES.
ORS					FR	ОИТ	AND	BACK	X PITO	CHES					ORS
No. OF CONDUCTORS	ll .	4 LES	Po	B LES	31	B LES	POI	0 LES	POI	2 LES		4 LES	1 Poi	6 LES	No, OF CONDUCTORS
No. OF	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF
102	25 25	25 27	17	17	13	13	9	11							102 104
106	25, 27	27 27	17	19	13	13	11	11	9	9				-	106 108
108 110	27 27	27 29	17	19	13	15	11	11	9	9	7	9	7	7	110
112 114	27	29 29	19	19	13	15	11	11			7	9	7	7	112 114
116 118	29 29	29 81	19 19	19 21	15	15	11	13	9	11					116 118
120 122	29 31	31 81	19	21	15	15	11	13	9	11					120 122
124			21	21		17	11_	10	.,	11	9	9	7	0	124 126
126 128	81 31	81 83	21	21	15		13	13			9	9	7	9	128
$\begin{array}{c c} 130 \\ 132 \end{array}$	81 83	83 33	21_	23	15	17	13	13	11	11			7	9	130 132
134 136	83 33	38 85	21 23	23 23	17	17			11	11					134 136
138 140	33 35	35 35	23		_17	17	13	15			9	11			138
142	35 35	85 87	23	23 25	_17	19	13	15	11	13	9	11_	9	9	140 142
144 146	85 87	87 37	23	25	17	19			11	13			9	9	144
148 150	87 37	87 89	25	25	19	19	1.5	15							148 150
$\begin{array}{ c c c }\hline 152\\\hline 154\\ \end{array}$	87 89	89 89	25 25	25 27	19	19	_15	15	13	13	11	11			152 154
156			25			21	18	1.77			11	11		11	156
158 160	39 39	89 41	27	$\frac{27}{27}$	19		15	17	13	13			9	11	158 160
162 164	85 41	41 41	27	27	19	21	15	17					9	11	162 164
166 168	41 41	41 43	27	29	21	21	17	17	13	15	11	13			166 168
170 172	41 43	43 43	27 29	29 29	21	21	17	17	13	15	11	13			170 172
174	43 43	43 45			21	23	11	14					11	11	174
176 178	43 45	45 45	29 29	29 31	21	23	17	19	15	15			11	11	176 178
180 182	45 45	45	29	31	23	23	17	19	15	15	13	13			180 182
184 186	45 47	47 47	31	31	23	23					13	13			184 186
188 190	47 47 47		31	31		25	19	19	15	17			11	19	188
192		47 49	31	33	23		19	19	15				11_	13	190 192
194 196	47	49	31 33	33 33	23	25			15	17	13	15	11	13	194 196
198 200	49 49	49 51	33	33	25	25	19	21			13	15			198 200
	4	t		5	8	3	1	0	1	2	1	4	1	6	

TAI	BLE (OF T	WO-0	CIRC	UIT,	SINC	GLE V	VIND	ING	s, F0	R DI	RUM	ARM	ATU	RES.
TORS					FRO	NT A	ND B	ACK I	PITCH	IES.					TORS
No. OF CONDUCTORS	Po	LES		6 LES	11	8 LES	10	0 LES		2 LES	1	4 LES		6 LES	No. OF CONDUCTORS
0.05 FO.05	F	В	F	В	F	В	F	В	F	В	F	В	F	В	Z 0.0 P
202	49 51	61 61	33	35	25	25	19	21	17	17					202 204
206	51 51	51 68	33	35	25	27		24	17	17			13	13	206
208 210	61 68	53 58	35	35	25	27	21	21			15	15	13	13	208
212 214	68	53 56	35 35	35 37	27	27	21	21	17	19	15	15			212 214
216 218	53 55	55 55	35	37	27	27	21	23	17	19					216 218
$\begin{array}{c} 220 \\ 222 \end{array}$	55 55	85 57	37	37	27	29	21	23			15	17	13	15	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
224 226	65 57	57 57	37	37 39	27	29			19	19	15	17	13	15	224 226
228 230	57 57	57 59	37	39	29	29	23	23	19	19					228 230
232 234	87 59	69 59	39	39	29	29	23	23							232234
236 238	69	59 61	39 39	39 41	29	31	23	25	19	21	17	17	15	15	236
$\frac{240}{242}$	69 61	61 61 61	39	41	29	31	23	25	19	21	17	17	15	15	$ \begin{array}{c c} 240 \\ \hline 242 \end{array} $
244 246	61	61 61 63	41	41	31	31	20	20	10	41			10	10	244 246
248			41	41			25	25	01	0.1	17	10			248
250 252	61 63	68	41	43	31	31	25	25	21	21		19	4 ~	157	250 252
254 256	63	63 65	41 43	43	31	33	25	0.7	21	21	17	19	15	17	254 256
258 260	63	65 65	43	43	31	33	25	27					15	17	258 260
262 264	65 65	65 67	43	45	33	33	25	27	21	23	19	19			262 264
266 268	65 67	67 67	43	45 45	33	33	27	27	21	23	19	19			266 268
270 272	67 67	67 69	45	45	33	35	27	27					17	17	270 272
274 276	67	69	45	47	33	35			_ 23	23			17	17	$\begin{array}{ c c c }\hline 274 \\ 276 \\ \end{array}$
278	69	69 71	45	47	35	35	27	29	23_	23	19	21			278
282 284	69 71	71 71	47	47	35	35	27	29			19	21			282 284
286 288	71	71 73	47	49	35	37	29	29	23	25			17	19	286 288
290 292	71 78	78 78	47	49	35	37	29	29	23	25	21	21	17	19	290 292
294 296	73 73	78 75	49	49	37	37	40	AU.			21	21			294 296
298 300	78 25	78 75	49	51	37	37	29	31	25	25					298 300
	4	t	(3		8	1	0	1	2	1	4	1	6	30

TAE	BLE (OF T	WO-C	CIRC	UIT,	SINC	LE V	VIND	INGS	s, FO	R DF	RUM	ARM	ATU	RES.
ORS		THE			FRC	NT A	ND E	BACK	PITC	HES					ORS
No. OF CONDUCTORS	Pol	4 LES	li .	6 LES		8 LES	11	0 LES		2 LES		4 LES	1 Poi	6 LES	No. OF CONDUCTORS
N 0, 0 F	F	В	F	В	F	В	F	В	F	В	F	В	F	В	Z 0.0 F
302 304	75 75	75 77	49 51	51 51	37	39	29	31	25	25			19	19	302 304
306	75 77	77	51	51	37	39	31	31			21	23	19	19	306 308
310 312	77	77 79	51	53	39	39	31	31	25	27	21	23			310 312
314 316	77 79	79 79	51 53	53 53	39	39			25	27					314
318 320	79 79	79 81	53	53	39	41	31	33			23	23	19	21	318 320
322 324	79 81	81 81	53	55	39	41	31	33	27	27	23	23	19	21	322 324
326 328	81	81 83	53 55	55 55	41	41	33	33	27	27					326 328
330	81 83	83 88	55	55	41	41	33	33							330
334	83 83	83 85	55	57	41	43			27	29	23	25	21	21	334 336
338	83 85	85 85	55 57	57 57	41	43	33	35	27	29	23	25	21	21	338
$ \begin{array}{r} 342 \\ \hline 344 \\ \hline 346 \end{array} $	85 86 85 87	85 87 87 87	57	57 59	43	43	33	35	29	29					342
348 350	87 87	87 87 89	57	59	43	45	35	35	29	29	25	25	21	23	346
352 354	87 87 89	89 89	59	59	43	45	35	35	23	231	25	25	21	23	350 352 354
356 358	89 89	89 91	59 59	59 61	45	45	35	37	29	31			21	20	356 358
360 362	89 91	91 91	59	61	45	45	35	37	29	31	25	27			360 362
364 366	91 91	91 93	61	61	45	47					25	27	23	23	364
368 370	91 93	93 93	61	61 63	45	47	37	37	31	31			23	23	368 370
372 374	93 93	93	61	63	47	47	37	37	31	31					372 374
376	93 95	95 93	63	63	47	47	37	39			27	27			376 378
380 382 384	95 95	95 97	63 63	63 65	47	49	37	39	31	33	27	27	23	25	380 382
386 388	95 97	97 97	63 65	65 65	47	49	39	39	31	33			23	25	384 386 388
390	97 97	97 99	65	65	49	49	39	39			27	29			390 392
394 396	97	งง จจ	65	67	49	49	00	00	33	33	27	29			394 394 396
398 400	99	99	65 67	67 67	49	51	39	41	33	33			25	25	398 400
	4	Ł	6	3	8	3	1	0	1	2	1	4	1	6	

TA	BLE	OF T	WO-	CIRC	UIT,	SIN	GLE '	WINI	DING	S, FC	OR D	RUM	ARM	IATU	RES.
rors					FRO	NT A	ND B	ACK	PITCI	HES					rors
No. OF CONDUCTORS		4 LES		6 LES	II.	8 LES	II.	O LES	3	2 LES		4 LES	1	6 LES	No. OF CONDUCTORS
No. OF	F	В	F	В	F	В	·F	В	F	В	F	В	F	В	No.0F
402	99 101	101	67	67	49	51	39	41			29	29	25	25	402
406	101 101	101 -103	67	69_	51	51	41	41	33	35	29	29			406
410	101	108 103	67 69	69 69	51	51	41	41	33	35					410
414	108	108 106	69	69	51	53							25	27	414 416
418 420	103 105	105 106	69	71	51	53	41	43	35	35	29	31	25	27	418 420
422 424	105 105	106	69 71	71 71	53	_53	41	43	35	35	29	31			422 424
426 428	106	107	71	71	53	53	43	43							426 428
430 432	107	107	71	73	53	55	43	43	35	37	31	31	27	27	430
434	107	109	71 73	73 73	53	55	10	4.7	35	37	31	31	27	27	434
438 440 442	109	109	73	73	55	55 55	43	45	0.7	0.77					438
442 444 446	109 111 111 111 111	111 111 111 111 113	73 73	75 75	55 55	57	43	45	37	37	31	33	27	29	442 444 446
448	111 113	113 118 113	75	75	55	57	45	45	- 31	01	31	33	27	29	448
452 454	113 113 113	113 113 115	75 75	75 77	57	57	45	45	37	39	91	00	41	40	452 454
456 458	113 113 115	115 115 115	75	77	57	57	45	47	37	39					456 458
460 462	115 115	115 117	77	77	57	59	45	47			33	33	29	29	460
464 466	115 117	117 117	77	77 79	57	59			39	39	33	33	29	29	464
468 470	117 117	117 119	77	79	59	59	47	47	39	39		•			468
472 474	117 119	119 119	79	79	59	59	47	47			33	35			472 474
476 478	119 119	119 121	79 79	79 81	59	61	47	49	39	41	33	35	29	31	476 478
480	119 121	121 121	79	81	59	61	47	49	39	41			29	31	480
484 486 488	121 121	121 123	81	81	61	61	49	49			0.5	0.5			484
490	121 123	123 198	81	83	61	61	49	49	41	41	35	35			488
494 496	123 123	123 125	81 83	83 83	61	63	49	49	41	41	35	35	31	31	492 494 496
498	123 125	125 125	83	83	61_	63	49	51					31	31	498 500
	4	t	(8	3	1	0	1	2	1	4	1	6	

TAB	LE C)F TV	vo c	IRCU	JIT, S	SING	LE W	IND	INGS	, FO	RDR	UM.	ARM	ATUI	RES.
TORS					FRO	NT A	AND	BACK	PITO	CHES					TORS
No. OF CONDUCTORS	. 4		6			3		0	1			4		6	No. OF CONDUCTORS
F CO	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	F CO
	F	В	F	В	F	В	F	В	F	В	F	В	F	B	N O
502 504	125 125	125 127	83	85	63	63	49	51	41	43	35	37			502 504
506 508	125 127	127 127	83 85	85 85	63	63	51	51	41	43	35	37			506
$\begin{array}{c c} 510 \\ \hline 512 \end{array}$	127 127	127 129	85	85	63	65	51	51					31	33	510
514	127 129	129 129	85	87	63	65		**	43	43	37	37	31	33	514 516
518 520	129 129	120	85 87	87 87	65	65	51	53	43	43	37	37			518 520
$ \begin{array}{r} 522 \\ 524 \\ \hline 526 \\ \end{array} $	129 131 131 131	131 131 131 133	87	87 89	65	65	51	93	43	45			33	33	522 524 526
528 530	131 131 133	133 133 133	87	89	65	67	53	53	43	45	37	39	33	33	528 530
532 534	133 138	133 133 135	89	89	67	67	53	53	40	40	37	39	- 33	- 35	532 534
536 538	133 135	135 135	89 89	89 91	67	67	53	55	45	45				,	536
540 542	135 136	135 137	89	91	67	69	53	55	45	45			33	35	540 542
544 546	135 137	137 137	91	91	67	69					39	39	33	35	544 546
548 550	137 137	137 139	91 91	91 93	69	69	55	55	45	47	39	39			548 550
552 554	137 139	139 139	91	93	69	69	55	55_	45	47					552 554
556 558	139 139	139 141	93	93	69	71	55	57			39	41	35	35	556 558
560 562 564	139 141	141 141	93	93 95	69	71	55	57	47	47	39	41	35	35	560 562
566	141	141	93 95	95 95	71	71	57	57	47	47					564 566 568
570 572	141 143	143 143	95	95	71	71	57	57			41	.41			570 572
574 576	143 143	143 145	95	97	71	73		-	_ 47	49	41	41	35	37	574 576
578 580	143 145	145 145	95 97	97 97	71	73	57	59	47	49			35	37	578 580
582 584	145 145	145 147	97	. 97	73	73	57	59							582 584
586 588	146	147	97	99	73	73	59	59	49	49	41	43			586 588
590 592	147	147	97	99	73	75	59	_59	49	49	41	43	37	37	590 592
594 596 598	147 149 149 149	149 149 149	99	99	73 75	75 75	59	61	49	51			37	37	594 596
600	149	151	33	101	10	15	อล	01	49	91	43	43			598 600
	4	1	(5	8	8	1	0	1	2	1	4	1	6	

ТА	BLE	OF T	wo	CIRC	UIT	SINC	ILE V	VINE	ING	s FO	R DR	UM .	ARM	ATUF	
TORS					FRC	NTA	ND E	BACK	PITC	HES					TORS
No. OF CONDUCTORS	0	4 LES		6 LES		B LES	POI	0 LES		2 LES	П	4 LES	POI	6 LES	No. OF CONDUCTORS
No. 04	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF
602 604	149 151	151 151	99	101 101	75	75	59	61	49	51	43	43			602 604
606	151 151	151 153	101_	101	75	77	61	61					37	39	606
610 612 614	151 153	153 163	101	103	75	77	61	61	51	51	40	15	37_	39	610 612 614
616 618	153 153 153 155	153 158 155 155	101	103 103	77	77	61	63	51	91	43	45			616
620 622	155 155	155 157	103 103	103 105	77	79	61	63	51	53	40	40	39	39	620 622
624 626	155 157	157 157	103	105	77	79		40	51	53			39	39	624
$628 \\ 630 \\ 632$	157 157	157 159	105	105	79	79	63	63			45	45			628 630 632
634 636	167 169	159 159	105	107	79	79	00	00	53	53	40	45			634 636
638 640	159 159	159 161	105 107	107 107	79	81_	63	65	53	53			39	41	638 640
642	169 161	161 161	107	107	79	81	63	65	70	~ ~	45	47	39	41	642
646 648 650	161 161 161 161 168	161 163 168	107	109	81	81	65	65	53	55 55	45	47			646 648 650
652 654	168 163	168 165	109	109	81	83	65	65					41	41	652 654
656 658	163 165	165 165	109 109	109 111	81	83	65	67	55	55	47	47	41	41	656 658
$\frac{660}{662}$	165 165	158 167	109	111	83	83	65	67	55	55	47	47			660 662 664
666	165 167	167 167	111	111	83	83	67	67							666 668
670 672	167	167 109	111	113	83	85	67	67	55	57	47	49	41	43	670 672
674 676 678	167 169 169 169	159 169 169 171	111	113 113	83	85	67	69	55	57	47	49	41	43	674 676 678
680 682	169 169 171	171 171 171	113 113	113 115	85	85	67	69	57	57					680
684 686	171 171	171	113	115	85	87			57	57	49	49	43	43	684 686
688	171 173	172 173	115	115	85	87	69	69			49	49	43	43	688 690
692 694 696	178 178	173 175	115 115	115 117	87	87	69	69	57	59					692 694 696
698 700	173 175	175 175	115 117	117 117	87	87_	69	71	57	59	49	51			698 700
	1	t	(3	8	3	1	0	1	2	1	4	1	6	

TAI	BLE	OF T	wo	CIRC	UIT	SING	LE V	VIND	INGS	FOI	RDR	UM A	ARMA	ATUF	RES.
TORS					FRO	NT A	ND I	BACK	PITC	HES.					TORS
No. OF CONDUCTORS		4 LES	1	3 LES		B LES	1 Po	0 LES		2 LES	1	4 LES		6 LES	No. OF CONDUCTORS
. OF 0	F	В	F	В	F	В	F	В	F	В	F	В	F	В	. OF 0
702	175 175	175			87	89	69	71	1	D	49	51	43	45	702
704 706	175 177	177 177	117 117	117 119	87_	89			59	59			43	45	704 706
708	177 177	177 179	117	119	89	89	71	71	59	59					708 710
712	177 179	179 179	119	119	89	89	71	71			51	51			712 714
716	179 179	179 181	119 119	119 121	89	91	71	73	59	61	51	51	45	45	716 718
$ \begin{array}{r} 720 \\ 722 \\ 724 \end{array} $	179	181 181	119 121	121 121	89	91	71	73	59	61			45	45	720 722 724
726 728	181	181 183	121	121	91	91	73	73			51	53			726 728
730	181	183 183	121	123	91	91	73	73	61	61	51	53			730 732
734 736	183 183	183 185	121 123	123 123	91	93			61	61			45	47	734 736
738 740	183 185	185 185	123	123	91	93	73	75			53	53	45	47	738 740
$\begin{array}{r} 742 \\ \hline 744 \end{array}$	185 185	185	123	125	93	93	73	75	61	63	53	53_			742 744
746 748	185	187 187	$\frac{123}{125}$	125 125	93	93	75	75_	61	63					746 748
750 752	187 187 187 189	187 189 189 189	125	125	93	95	75	75	20	20			47	47	750 752
754 756 758	189 189 189	189 189 191	$-rac{125}{125}$	127	93	95	75	77	63	63	53	55	47	47	754 756
760 762	189	191 191 191	127	127	95	95	75	77	00	69	53	55			$ \begin{array}{r} 758 \\ 760 \\ \hline 762 \end{array} $
764 766	191	191 191 193	127 127	$\frac{127}{129}$	95	97	- 10	,,	63	65			47	49	764 766
768 770	191 193	198 198	127	129	95	97	77	77	63	65	55	55	47	49	768 770
772 774	193	193 195	129	129	97	97	77	77			55	55			772 774
776 778	193 195	195 195	129 129	129 131	97	97	77	79	65	65					776
780 782	195 195	195 197	129	131	97	99	77	79	65	65	55	57	49	49	780 782
784 786 788	195 197	197 197	131	131	_ 97	99		70			55	57	49	49	784 786
790 792	197 197	197 199	131	133	99	99	79	79 - 79	65	67					788 790
794 796	197 199	199 199	131 133	133 133	_99	99	10	10	65	67	57	57		-	792 794 796
798	199 199	199 201	133	133	99	101	79	81			57	57	49	51	798 800
	4		6	3	8	3	1	0	1	2	1		1	6	

WINDING TABLES FOR TWO-CIRCUIT, DOUBLE WINDINGS FOR DRUM ARMATURES.

ТА	BLI	E O	FT	wo	-CI	RC	UIT	, D	וטכ	BLE	W	ND	INC	GS,	FOI	R D	RU	M A	RIV	IAT	URI	ES.
rors					ij.		F	RON	IT A	AND	BA	CK :	PITO	CHE	S							ORS
No. OF CONDUCTORS	P	4 OLI	ES	P	6 OL	ES	P	8 OLI	ES	P	10 OLI	ES	P	12 OLI	ES	P	14 OLE		P	16 OLE		No. OF CONDUCTORS
	F	RE-	В	F	RE- ENTRANC	В	F	RE-	В	F	RE-	В	F	RE-	В	F	RE-		F	RE- ENTRANCY	В	4
102	25 27	@	26 27	17	00	19				9	00	11	9	@	9	7	@	7				102
106 108	26 27	00	27 29	17	0	17	13 13	8	13 15	11	0	11		-3		7	00	9	7	@	7	106 108
110 112	27 29	@	27 29	19 17	00	19						11	9	@	9							110 112
114 116 118	27 29	00	29 31	19	00	21	13 15	ဆိ	15 15	11	00	11 13	9	00	11	7	00	9	7	@	7	114 116 118
$\frac{120}{122}$	29 31	@	29 81	21	@	21										9	@	9				$\frac{110}{120}$
124 126	29 31	00	81 83	19	00	21	15 15	R	15 17	11 13	。。 @	13 13	9	00	11_		00		7	00	9	124 126
128 130	31 88	@	81 83	21 21	00 @	23 21							11	@	11	9	@	9				128 130
132 134	33	00	83 85	23	0	23	15 17	88	17	13	@	13							7	00	9	132 134
136 138	88 85	@	88 85	21	00	23	12	(0)	17	13	00	15	11_	(0)	11	9	00	11			0	136 138
140 142	38 35 35	00 @	85 87 85 87	23	(D)	25 23	17	88	17	13	00	18	11	00	13	9		11	9	@	9	140 142 144
144 146 148	35 87 35 37	00	37 37 39	25 23	<u>@</u>	$\begin{array}{c} 25 \\ 25 \end{array}$	17	25	19	15	@	15 15	11	00	13	9	00	11	9	@	9	146 148
150 152	87	@	87 89	25	00	27	19	8	19				13	@	13	11	@	11		00		$150 \ 152$
154 156	87 89	00	39 41	25	@	25	19	8	19 21	15 15	00	15 17							9	00	11	154 156
158 160	89 41	@	89 41	27 25	00	27 27							_13	(D)	13	11	@	11				158 160
162 164	39 41	00	41 43	27	00	29	19 21	88	21 21	15	00	17	13	00	15	11	00	13	9	00	11	162 164
166 168 170	41 43	@	41 43	27	(Q) (Q)	27				17	@	17										166 168
$\frac{170}{172}$	41 43	00	43 45	27	00	29	21 21	88	21 23	17	@	17	13	00	15	11	00	13	11	@	11	170 172 174
176 178	43 45	0	43 45	29	00 @	31				17	00	19	15	@	15	13	@	13				176 178
180 182	43 45	00	45 47	31	@	31	21 23	88	28 23										11	@	11	180 182
184 186	45 47	@	45 47	29	00	31				17 19	00 @	19 19	15	@	15	13	@	13				184 186
188 190	45	00	47 49	31	00 00	33 31	28 28	88	23 25				15	00	17				11_	00	13	188 190
192 194	47	@	47 49	33	@	33	29	0.0	25	19	@	19	1 ==		15	_13	00	15	11		10	192 194
196 198 200	49 51	00	49 51 49 51	31	00	33	23 25	88	25 25	19	00	21	15	00 @	17	13	00	15	11	00	13	196 198 200
	JII.	4	91		6	50		8			10			12	11	10	14	10		16		200

38	1	rwo	о-с	IRC	UI	Т, D					DIN					JM	ARI	MA	ΓUΈ	RES		3S
CONDUCTORS	P	4 OLE	ES	P	6 OLI	ES		8 OLI			10 OLI			12 OLI		F	14 OLI	ES	P	16 OLE	ES	OF CONDUCTORS
No. OF	F	RE- ENTRANC	В	F	NE-		F	RE-	В	F	RE-	В	F	RE-	В	F	RE-	В	F	RE-	В	o Z
202 204 206 208	49 51	00	51 53	35	(S)	35	25 25	R	95 27	19 21	00 00	21 21	16	,	117	15_	@	15	13_	@	13	202 204 206
210 212 214	51 68 51 53	00	51 68 63 65	33 35 35	00	35 37 35	25 27	88	27 27	21	@	21	17	00	17	15	(D)	15	13	@	13	208 210 212
216 218 220	58 55 68 55	@ °°	58 56 57	37	(B)	37	27 27	88	27 29	21	00	23	17	00	19	15	00	17	13	00	15	
$ \begin{array}{r} 222 \\ 224 \\ 226 \end{array} $	65 67	<u>@</u>	55 57	37	00	39 37	27			21 23	。。 ②	23 23	19	@	19	10	- 00		10		10	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
228 230 232	55 57 57 59	00 00	57 59 57 59	39	00	39 39	27 29	88	22 23			- 0.0	19	@	19	15	00	17	13	00	15	228 230 232
234 236 238 240	57 59	00	59 61 89	39	00 00	41 39	29 29	es es	29	23	00	23 25	19	00	21	17	@	17	15	@	15	234 236 238
242 244 246	59 51	00	61 61 63	41 39	00	41	29 81	88	81 81	23 25	00	25 25	19	00	21	17	@	17	15_	@	15	240 242 244 246
$ \begin{array}{r} 248 \\ 250 \\ 252 \end{array} $	61 68 61 68	00	61 88 63 65	41	00 00	43 41	81 81	68	31 33	20		20	21	@	21	17	00	19	15	00	17	$ \begin{array}{r} 248 \\ 250 \\ 252 \end{array} $
$254 \\ 256 \\ 258$	68 66	@	68 65	43	00	43		,		25 25	00	25 27	21	ග	21	17	00	19				254 256 258
$ \begin{array}{r} 260 \\ 262 \\ \hline 264 \\ \hline 266 \\ \end{array} $	68 65 65 67	00 00	56 87 65 67	43 43 45	(a)	45 43	81 83	88	33 88	25	00	27	21	00	23	19	@	19	15	00	17	260 262 264
$ \begin{array}{r} 268 \\ 270 \\ 272 \end{array} $	85 67 87 69	00 @	87 89 87 69	43	00	45 45 47	88 83	R	88 85	27	0	27	21	00 @	23	19	@	19	17	@	17	266 268 270 272
274 276 278	67 59	00	59	45	@ @	45	83 85	86	35 36	27 27	00	27 29	20		20	19	00	21	17	@	17	274 276 278
280 282 284	69 71 69 71	00	59 71 71 73	45	00	49	3.5 3.5	R	85 87	27	00	29	23	00	23	19	00	21	17	00	19	$ \begin{array}{r} 280 \\ 282 \\ 284 \end{array} $
286 288 290 292	71 78	© °°	71 73	49	(G)	49	26	010	97	29	8	29	000		0.7	21	@	21				286 288 290
294 296 298	73 75	@	76 75 75 75	49	00	51 49	85	88	81	29 29	@ ••	29 31	23	<u>@</u>	25 25	01		01	17	00	19	292 294 296 298
300	78 75	4	75 77	10		10	87 87	8	67 89		10			12				41	19	19 @ 19		
	8 49 @ 49					31 87	8	67 89		10		12			21	14	21		19			

		TW	O-C	IR	CUI	Т, [oou	BL	EV	VIN	DIN	igs	, F(OR :	DR	UM	AR	MA	TUI	RES		
TORS							FF	RON	ТА	ND	BAC	CK F	PITC	HE	S							TORS
CONDUCTORS	P	4 6 POLES					P	8 OLE	ES	10 POLES			12 POLES			P	14 OLE	ES	P	16 OLE	ES	CONDUCTORS
No. OF	F	RE-	В	F	RE- ENTRANCY	В	F	RE-	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	No.OF
302 304 306	75 77	@	75 77	51 49	00	51				29 31	00	31	25	@	25_	21_	00	23				302 304 306
308 310	75 77	00	73	51 51	(D)	53 51	37 39	88	39 39				25	00	27				19	@	19	308 310
312 314 316	779	00	77 79 79 81	53 51	@ ••	53 53	89 39	, ag	89 41	31	@ 00	31	25	00	27	21	00	23	19	00	21	312 314 316
318 320	79 79 81	0	70 81	53	00	55	39	00	-41	01	00	00	27	@	27	23	@	23	13	00	41	318 320
$ \begin{vmatrix} 322 \\ 324 \\ 326 \end{vmatrix} $	79 81	00	81 84	53	@	55	89 41	282	1	31	00	33				23	@	23	19	00	21	322 324 326
328 330	81 83	0	81 83	53	00	55			- 41				27	@	27				24			328 330
332 334 336	81 83 88 86	00	83 85 83 86	55 55	00 00	57 55	41 41	8	41 43	33	@	33 35	27	00	29	23	00	25	21	Ø.	21	332 334 336
338	83 86	00	86 87	57 55	<u>ම</u>	57 57	41 43	88	43 43				27	00	29	23	00	25_	21	@	21	338 340
342 344 346	85 87	@	85 87	57 57	。 @	59 57				33 35	00	35 35	29	0	29	25	@	25				342 344 346
348 350 352	86 87 87 89	00	87 89 87 89	59 57	@ °°	59 59	48 43	8	43 45		1000		29	@	29				21	00	23	348 350
354 356	89 87 89	00	89 89 91	59	00	61	43	88	45	35 35	@ ••	35 37	29	00	31	25	@	25	21_	00	23_	352 354 356
$ \begin{array}{r} 358 \\ \hline 360 \\ \hline 362 \\ \end{array} $	89 91	@	89 91	61	(G)	59 61										25	00	27				358 360 362
364 366	91	00	91 93	59	00	61	45 45	8	45 47	35 37	00 (B)	37 37	29	00	31	25			23_	@	23	364 366
368 370 372	91 93 91 93	0000	93 93 95	61	(Q)	63	45 47	88	47 47				31	@	31	25	00	27	23	@	23	368 370 372
374 376	93 96	@	93	63 61	000	63 63				37 37	@ ••	37 39	31	@	31_	27	@	27_				374 376
378 380 382	93 96	00	96 97	63 63	00 (D)	65 63	43	8	17		-		31	00	33	27	@	27	23	00	25	378 380 382
384 386 388	95 97 95 97	@ ••	96 97 97 99	65 63	@ ••	65 65	4 7	88	49	37 39	00 00	39 39	31	00	33	27	00	29	23	00	25	384 386 388
390 392	97 97 99	<u>@</u>	99 97 99	65	00	67	49		49				33	@	33	21	00		40	00	40	390 392
394 396 398	97	00	99 101	65	(G)	65	49	R	49 51	39 39	00	39 41				27	00	29	25	@	25	394 396 398
400	99 101	0	99 101	65	00	67	0 10						33	@ 12	33		11.			400		
		4			6			8			10			1,2			14					

		TW	0-0	CIR	CUI	IT, 1	DOI	JBL	EV	VIN	DIN	NGS	, F	OR	DR	UM	AR	MA	TU	RES	3.	
ORS			*				F	RON	TA	ND	BA	CK I	PITO	HE	S						51	ORS
CONDUCTORS	P	4 OLE	ES	P	6 OLI	ES	P	8 OLE	ES	F	10 OLI	ES	12 POLES			P	14 OLE		Р	16 OLE	S	CONDUCTORS
No. 0F	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE- ENTRANC	В	F	RE-	В	F	RE- ENTRANCY	В	No.0F
402	09 101	00	101	67	00	69	49 51	88	51	39	00	41	33	00	35	29	0	29	25	0	25	404
406 408	101	@	101 103	67	0	67	- 01		- 01	41	0	41										406
410				69	0	69	61		63						0.5	29	0	29	0.5			410
412	101	00	103	67	00	69	51 51	8	51 63	41	@	41	33_	00	35				25	00	27	412 414
416	108 105	@	108	69	00	71 69				41	00	43	35	0	35	29	00	31				416 418
420 422	108	00	105 107	71	@	71	51 53	88	53 53										25	00	27	$\frac{420}{422}$
424	105 107	@	105	69	00	71				41	00	43	35	@	35	29	00	31				424 426
426 428	106	00	107	71	00	73	53 58	88	53 56	40	@	_40_	35	00	37	0.1		01	27	@	27	428
430 432	107	@	107	71	0	71_										31	@	31				430 432
434	107	00	109	73	00	73	68	86	55 55	43	00	43	35	00	37				27	0	27	434
438 440	109	@	109	73	00	75							37	@	37	31	0	31				438 440
442				73	@	73	55	(0)	55	40		45	01	- 00	01	01		00	07			442
444	109	00	111 113	75	@	75	55 55	88	55 57	43	00 00	45 45				31	00	33	27	00	_29	444
448 450	111	@	1117	73	00	75_							37	@	37			-				448
452 454	111	00	113 115	75 75	00	77	55 57	88	57 57	45	@	45	37	00	39	31	00	33	27	00	29	452 454
456 458	113 115	@	113 115	77	@	77				45	00	47				33	@	33				456 458
460	118 115	00	115 117	75	00	77	57 57	æ	57 59				37	00	39	90	GC	99	29	_ @	29	460
462	115	@	115 117	77	00	79				45	00	47	39_	@	39							462
466 468	115	00	117 119	77	@_	77	57 59	88	59 59	47	@	47	4			33	Ø	33	29	@	29	466 468
470	217 119	@	117 119	79	00	79 79							39	ā	39	33	00	35				470 472
474	117	00	119 121	79	00	81	59 59	æ	59 61	47	@ ••	47	39	00	41				29	00	31	474 476
478 480				79	@	79	9.8	- 00	61	±1	- 00	20	00	00	31	00	0.0	0.5	40	00	01	478
482		0	119	81	@	81										33	00	35				480 482
484	119 121	00	121	79	00	81	69	88	61 61	47	00 @	49 49	39	00	41	35	_ @	35	_29	00	31	484 486
488	121 123	0	121 123	81 81	00 (B)	83 81							41	@	41						077	488 490
492 494	121 123	00	123 125	83	@	83	61 61	æ	61 63	49	@	49				35	(D)	35	31	@	31	492 494
496 498	123 125	0	123 125	81	00	83				49	00	51	41	@	41	00	00	00			6	496
500	123 126	00	125 127	83	00	85	61 63	89	63 63				41	00	43	35	00	37	31	@	31	498 500
		4			6			8			10			12			14			16		

		ΓW	0-C	IRO	CUI	Т, Е	oou	BL	EW	VIN	DIN	GS	, FC	OR I	DRU	JM_	AR	MA	TUF	RES		
rors						33	FI	RON	ТА	ND	BAG	CK I	PITC	CHE	S			E				LORS
CONDUCTORS	4 6 POLES POLES				ES	P	8 OLE	S	P	10 OLE	S	12 POLES			P	14 OLE		P	CONDUCTORS			
No.0F	F	RE-	В	F	RE-	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	No. OF
502	125 127	0	125 127	83	0	83				49	00	51										502 504
506 508	126 127	00	127 129	85 83	00	85 85	68	(B)	68 65	51	0	51	41	00	43	35	00	37	31	00	33	506 508
510 512	127 129	@	127 129	85	00	87							43	@	43							510 512
514 516	127 129	00	129	85	0	85	63 65	000	05 65	51 51	00	51 53				37	0	37	31	00	33	514 516
518				87	@	87	65	65	<u>65</u>	01	00	00	43		43				91		_00	518 520
$ \begin{array}{r r} $	129 131 129 131	00	129 131	85	00	87	65 66	- Go	65 67	51	00	53	43	00	45	37	@	37_	33	@	33	$\frac{520}{522}$
526			131	87	@	87	66	60	67	53	@	53	40	00	40	0.17		39	90	(0)	90	524 526 528
528 530	131	@	131	89	0	89_	45	0.0	47				10		100	37	00	39	00		00	530
532 534	131 133	00	138 135	87	00	89	65 67	සී	67	53	@	53	43	00	45				33	@_	33	532 534
536 538	133 135	@	133 136	89	00	91 89				53	00	55	45	@	45_	37	00	39				536 538
540 542	138 135	00	136 137	91	@	91	67 67	© Co	67 69							39	0	39	33_	00	35	540 542
544 546	135 137	0	135 137	89	00	91				53 55	00 @	55 55	45	0	45							544 546
548 550	135 137	00	137 139	91 91	00 @	93 91	67 69	800	69				45	00	47	39	(D)	39	33	00	35	548 550
552 554	137 139	@_	137 139	93	(3)	93				55	@	55				00		00				552 554
556 558	137 139	00	139	91	00	93	69	88	69 71	55	00	57	45	00	47	39	00	41	35	0	35	556 558
560	139 141	@	139 141	93	00	95							47	. @	47_							560
562 564	139	00	141 143	93	@_	93	69 71	88	71 71	55	00	57				39	00	41	35	@_	35	562 564
566 568	141 143	(Q)	141 143	95	00	95 95				57_	0	57	47	@	47							566 568
570 572	141 143	00	143 145	95	00	97	71 71	88	71 73				47	00	49	41	@	41	35	00	37	570 572
574 576	148 145	@	143 145	95	@	95				57 57	00	57 59										574 576
578 580	143 145	00	145 147	97 95	00	97 97	71 73	88	73 78				47	00	49	41	@	41	35	00	37	578 580
582 584	145 147	(D)	145 147	97	00	99				57	00	59	49	@	49	41	00	43				582 584
586 588	145	00	147 149	97	@	97	78 73	88	78 75	59	@	59							37	0	37	586 588
590 592	147 147 149	@	149 147 149	99	00	99	78	-00	75				49	(0)	49	41	0.0	42	-01_	W.	91_	590 592
594 596	149 147 149	00	149 149 151	99	00	101	78 75	86	75 75	59 59	@	59 61	49	0	51	41	00	43	37	(6)	37	594
598				99	@	99	75	GO	75	99	00	01	49	00	91	43	<u> </u>	43	31	@	01	596 598
600	149	4	151		6			8			10			12			14			600		

TWO-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES PP No.OF RE-RE-RE-F RE-F RE-F RE-F F F B B B B B F B B No. 155 155 45 | 39 159 157 B 159 161 0.0 ಜಿ 165 107 169 85 .43 B B

		TW	0-0	CIRC	CUI	Т, [οοι	JBL	EV	VIN	DIN	IGS	, F(OR :	DR	UM	AR	MA	TUI	RES	.	
rors							FI	RON	ТА	ND	BAG	CK I	PITC	CHE	S							LORS
No. OF CONDUCTORS	Р	4 OLE	ES	P	6 OLE	ES	P	8 OLE	S	P	10 OLE	S	Р	12 OLE	ES	P	14 OLE	S	P	16 OLE	S	CONDUCTORS
702	F	RE-	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE-	В	F	RE~	В	F	RE-	В	F	RE- ENTRANCY	В	702
704 706	175 177	@	175 177	117 117	00	119 117				69 71	00	71 _71	59	@	59	49	00	51				704 706
708 710 712	175 177 177 179	(D)	177 179	119	@	119 119	87 89	89	89 89				59	(Q)	59	51	@	51	43	00	45	708 710 712
714 716 718	177	00	179 181	119 119	00	121 119	89	8	,89 V1	71 71	00	71 73	59_	00	61	51	(2)	51	45	@	45	714 716 718
$\begin{array}{c} 720 \\ 722 \end{array}$	179	@_	179 191	121	@	121	80	0.0	91	61	0.0	70	E0.		0.1		@		45		45	$\begin{array}{c c} 720 \\ 722 \end{array}$
724 726 728	181 183	(D)	181 183 181 183	119	00	121	89	88	91	71 73	(O)	73 73	59 61	00 00	61	51	00	53	45	0	45	724 726 728
730 732 734	181 183	00	183 185	121	@	121	91	60	91 98	73	@	73				51	00	53	45	00	47	730 732 734
736 738 740	188 185 183 185	00	188 185	121	00	123 125	91 93	26	93	73	00	75	61	00	61	53	0	53	45	00	47	736 738 740
742 744 746	185 187	@	185 187	123	@	123			98	73	00	75	01		00	70		50	1.0		- II	742 744 746
748 750	185	00	187	125 123	00	125 125	93	88	93 95	75	@	75	61	00	63	53	<u> </u>	53	47_	@	47	748 750
752 754 756	187 189 187 189	00	187 189 189	125 125	00 Ø	127 125	93 95	88	95 95	75 75	(D) 00	75 77	63	@	63	53_	00	55	47	@	47	752 754 756
758 760 762	189 191	@	189 191	127 125	00	127 127							63	@	63	53	00	55				758 760 762
764 766 768	189 191 191 193	00 @	191 193 191 193	127 127	00 00	129 127	95 95	88	96 97	75 77	00 00	77	63	00	65	55	@	55	47	00	49	764 766 768
770 772 774	191	00	193 195	129 127	00	129 129	95 97	88	97 97	77	@	77	63	00	65	55	@	55	47	00	49	770 772 774
776 778 780	193 195 193 195	00	193 195 196 197	129 129	00 @	131 129	97	88	97	77	00	79	65	@	65	55		57	49	(2)	49_	776 778 780
782 784	195 195 197	@	197 195 197	131 129	00	131 131	97	00	97 99	77	00	79	65	0	65	55	00	91	45	@	4.0	782 784
786 788 790	195	00	197	131 131	00 00	133 131	97 99	88	99	79_	@	79	65	00	67	55	00	57	49	@	49	786 788 790
792 794 796	197 199 197 199	00	197 199 199 201	133 131	@ 00	133 133	99	88	99 101	79 79	@ 00	79 81	65	00	67	57	@	57	49	00	51	792 794 796
798 800	199 201	@	199 201	133	00	135																798 800
		4			6			8			10			12			14			16		

WINDING TABLES FOR TWO-CIRCUIT, TRIPLE WINDINGS FOR DRUM ARMATURES.

TABLE OF TWO-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES OF OF F RE+ F RE-RE-B B B B B B F B Š. 27 (22) @ (00) (00) 21 19 31 31 $\frac{118}{120}$ 21 31 $\frac{124}{126}$ (00) 21 33 35 (00) 23 @ (00) @ हिंग्ड 28 25 23 37 37 (00) (00) (00) @ (00) 39 25 @ हुन 41 41 11 (22) 13 27 E 43 43 @ 45 29 @ (00) 180 31 @ 31 (00) (00) 188 (00) 83 83 @ 83 @ 85 11 000

TABLE OF TWO-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES.

SRS							F	RON	ТА	ND	BAG	CK. I	PITO	CHE	S							SRS
CONDUCTORS		4			6			8			10			12			14			16		UCTO
COND	P	OLI	ES	P	OLI	ES	P	OLE	CS	P	OLE	ES	P	OLE	ES	F	OLI	ES	F	OLE	ES	COND
No. OF	F	RE-	В	F	RE-	В	F	RE-	В	F	RE-	В	F	RE-	В	F	RE-	В	F	RE-	В	No. OF CONDUCTORS
202	49 51	@	49 53	- 09	000	100	25	@	27	0.4		0.1				13	@	15	13	@	13	202
204	49 53	@	61 53	33 35	000	333	25	@	25	21 19	000	21				15	000	15				204
208 210	51 58	000	51 55	33 35	888	35 37	27	000	27				17 17	888	17							208 210
212 214	51 56	@	5-3 56				25	@	27	21	@	23							13	@	13	212 214
216 218	63 55	@	53 57	35 37	@	35 87	27	@	29	21	000	21				15 15	000	15 17	13	@	15	216 218
220 222	53 57	000	δδ 57	35 37	000	37 39	27	000	27				17	000	19							220
224	\$6 57	@	55 59			02	29	@	29	23 21	@	23 23										224 226
228 230	55 59	(QQ) 55 59 37 878 (QQ) 57 59 69				87 89	27	@	29							15	@	17	13	@	15	228 230
232	57 59	000	(D) 67 80 808				29	000	31	23	000	25	19		19	17	@	17	15	000	_15	232
236	67	@	59 61	***	000	1043	29	@	29	23	00	23				-						236
240	61	@	59 63	80 41	000	41	31	@	31	0.5		0.5										240 242
244	\$9 63	000	63	89 41	888	41 43	29	000	31	25 23	000	25 25	19 21	æ	21	17 17	000	17 19	15	000	15	244
248 250	63	@	61 65	4)		41	31	@	33										15	@	17	248
252 254 256	65	@	63 65	41 43	@	41 43	31	@	31	25	@	27										252 254
258	68 65	000	63 67	43 48	000	48 46	33	000	33	25	@	25	21 21	000	21 23	17	000	19				256 258
$ \begin{array}{r} 260 \\ 262 \\ 264 \end{array} $	63 67	@	G5 67	42		43	31	@	33	0.57		0.5				19	@	19_	15_	@	17	260 262
266 268	65 67	@	66 69	43 45	888	43 45	33	@	35	27 25	000 000	27 27							17	@	17	264
270 272	66 69	000	67 69	43 46	@	45 47	33	000	33				21 23	43	28 28	19	(0)	19				268 270
274 276	67 69	@	77	46	•	45 47	35	@	35	27	@	29				19	@	21				272 274
278 280	6T 71	@	69 71	45	800	47	33	@	35	21_	000	27							17	@	17	276 278 280
282 284	69 71	000	69 73	45 47	878	47 49	35	000	37	29	@	29	28 23	888	23 25				17_	000	19	280 282 284
286 288	69 73	@	71 73	47	(M)	47 49	35	@	35	27	@	29				19	000	21				284 286 288
290 292	71 78	71 QQ 71 45 QQ				49	37	@	37							21	000	21				290 292
294 296	71 75					49 51	35	000	37	29 29	000	31 29	23 25	000	25 25				17	000	19	294 296
298 300	18					49 51	37	@	39	MU.	(XX)	40				21	000	21	19	@	19	298 300
	4 6							8			10			12		21	14	21		16		330

	BL	EC	FT	W	O-C	IRC					BAG					R DI	RUN	ЛΑ	RM.	ATU	JRE	
CONDUCTORS	P	4 OLE	ES	P	6 OLE	ES		8 OLE			10 OLE			12 OLE		P	14 OLE	ES	P	16 OLE	S	CONDUCTORS
No. OF	F	RE- ENTRANCY	В	F	RE-	В	F	RE-	В	F	RE-	В	F	RE-	В	F	RE- ENTRANCY	В	F	RE-	В	No.0F
302 304	77	@	75 77				37	@	37	31	@	31_				21_	@	23				302 304
306	75 77	000	75 79	51	@	51 53	39	000	39	29	000	31	25 25	E	25 27				10		10	308
$ \begin{array}{r} 310 \\ \hline 312 \\ \hline 314 \end{array} $	75 79 77 79	@	77 79	61 63	000	51 58	37	@	39	31		33				21	@	23	19	@	19	310 312 314
316 318	79 77 81	000	81 79 81	51 53	883	58 55	39	000	39	31	@	31	25 27	FF8	27 27	23	@	23	19	(UU)	21	316 318
$\begin{array}{c} 320 \\ 322 \end{array}$	79 81	@	79 83				41	@	41				41									320 322
$ \begin{vmatrix} 324 \\ 326 \\ \hline 328 \end{vmatrix} $	79 83	@	81 88	58 65	@	53 55	39	@	41	33_	000	33				23	(00)	23	19	@	21	324 326 328
330 332	81 83	000	81 85	58 55	000	65 57	41	000	43				27 27	000	27 29	23	000	25	21	000	21	330
334	81 85	@	83 85	65 67	883	55 57	41	@	41	33 33	000	35 33										334 336
$ \begin{array}{r} 338 \\ 340 \\ \hline 342 \end{array} $	83 85 88 87	000	88 87 85 87	55 57	@	67 59	43	000	43				27	Gan Gan	29 29	23	000	25	21	000	21	338 340 342
344	86 87	@	85 89			59	43	@	45	35 33	(Q)	35 35	29	CILIP	29	25	@	25	21	@	23_	344
348 350	85 89	@	87 89	67 59	000	67	43	@	43													348
352 354 356	87 89	000	87 91	57 59	858	50 61	45	000	45	35 35	000	37	20 29	888	29 31	25	@	25				352 354 356
358 360	87 91	@	89 91	59	(D)	69 61	43	@	45	00						25	<u>@</u>	27	21	@	23	358 360
362	89 91	@	93	50	000	61	45	@	47	37	@	37	96		IR.				23	@	23	364 364
366 368 370	91 93	000	91 93 91 95	59 61	(E)	61 68	45	000	45	35	000	37_	29 31	000	81	25	@	27				366 368 370
372 374	91 96	@	98 95	61 63	888	61 63	45	@	47	37	(00)	39				27	000	27	23	@	23	372 374
376 378	98	000	98 97	61 63	@	63 65	47	000	49	37	@	37	31 31	&	31 88				23	000	25_	376 378 380
380 382 384	98 97	@	95 97	63 65	000	68 66	47	@	47	39	000	39				27	000	27				382
386 388	95 97	@	95 99				49	@	49	37	@	39				27	@	29	0.7			386 388
390 392 394	95 99 97 99	000	97 99 97 101	63 06	888	66 67	49	000	51	39	@	41	31 88	888	83				23	000	25 25	390 392 394
396 398	97 101	@	99	65 67	@	65 67	49	@	49	39	000	39				27	@	29	20		20	396 398
400					C						10			10		29	@	29		10		400
	4 6							8			10			12			14			16		

	BL	EO	FT	W	D-C	IRC	רוט:	r, T	RIP	LE	WII	NDI	NG	S, F	OF	R D	RUN	ΛА	RM	ATU	JRE	ES.
TORS							F	RON	TA	ND	BAG	CK I	PITC	HE	S							TORS
No. OF CONDUCTORS	P	4 OLE	ES	P	6 ole	ES	P	8 OLE	S	P	10 OLE	ES	P	12 OLE	ES	Р	14 OLE	cs	P	16 OLE	es_	No. OF CONDUCTORS
No. 0	F	RE- ENTRANCY	В	F	RE-	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	F	RE-	В	F	RE- ENTRANCY	В	F	RE- ENTRANCY	В	No. O
402	101	000	99 103	65	000	07 89	51	000	51	41	@	41	33 .	000	88 86							402
406 408	99 108	@	101 103	67 69	888	67	49	@	51	39	@	41							25	@	25	406
410 412	101	@	101	09	_000	09	51	@	53							29	@	29	25	@	27	410
414	101	000	103	67	@	69 71	51	000	51	41	000	43	38 35	G	35 36	29	000	31				414
416 418 420	108 105	@	108	69	000	69	53	@	53	41	@	41										418
420 422 424	108	@	105 107	69 71	900	,69 71	51	00	53	43	(0)	43							25	00	27	420 422 424
426 428	105	000	106	69 71	888	73	53_	000	55	41	000	43	35 35	888	35 37	29 31	000	31	27	000	27	424 426 428
430 432	106	@	107	71 78	@	71 78	53	@	53							01	(VV)	01				430
434	107	@	101	18	000	78	55	@	55	43	@	45										434
438 440	107	000	109 111	71 78	000	78 75	53	000	55	43	00	43_	35 37	ಀ	37 37	31	(0)	01	27	000	27	438 440
442	109	@	109 113	78 75	888	73	55	@	57	45	000	15				31	@	31	27	@	29	442
446	109	@	111 113	75	900	75	55	@	55	43	@	45 45										444
450 452	111	000	111 115	78 75	@	75 77	57_	000	57				37 87	G	37 89							448
454 456	111 115	@	118 115	76 77	000	75 77	55	@	57	45	@	47				31	@	33	27	@	29	452 454
458	118	@	118 117	77	(a)	77	57	@	59	45	000	45				33	000	_33_	29	(00)	29	456 458
460 462 464	113 117	000	115	75 77	888	,779	57	000	57	AFT		457	37 39	æ	39							460
466 468	115 117	@	115 119	77 79	(a)	77	59	@	59	47	@	47				00		00				464
470 472	115	@	117	79	@	77	57	@	59							33	000 (III)	33	29	@	29	468
474	117	000	117	79	800	79 81	59	000	61	47	000	49	39 39	000	39 41				29	000	31	474
478 480	117	@	119 121	79	GD.	79	59	@	59	47	@	47										476 478
482	119 121	@	119 123	81	888	81	61	@	61	49	@	49				33	@	35				480
486 488	119 123	000	121	79 81	@	81. 83	59	000	61	49	000	49	89 A1	G	41 41	35	@	35	29	000	31	484
490	121 123	@	121 165	81	000	81 83	61	@	63										31	@	31_	488
494 496	121 125	@	123 125	88	ක	83	61	@	61	49	@	51				25	6	35				492 494 496
498 500	122 000 123 15 868 868						63	000	63	49	@	49	41	893	41 48	35 35	000	37				498 498 500
550	4 (8			10			12			14			16		000

	BL										-	CK I		CHE								
CONDUCTORS	P	4 OLI	ES	P	6 OLI	ES	P	8 OLE	ES	P	10 OLE	ES	P	12 OLE	es :	F	14 OLI	ES	F	16 OLI	ES	No. OF CONDUCTORS
No. 0F	F	RE-	В	F	RE-	В	F	RE+	В	F	RE- ENTRANCY	В	F	RE-	В	F	RE-	В	F	RE-	В	No. OF
502 504	128 127	@	125 127	88 85	(2)	83 85	61	@	63	51	000	51							31	@	31	50
506 508	125 127	@	125 129	80		80	63	@	65	49	@	51			4				31_	@	33	50
510	125 129	000	127 129	88 85	000	85 87	63	000	63				41 43	<u></u>	43 43	35	000	37				51
512 514	127 129	@	127 131				65	@	65	51	@	53				37_	@	37				51 51
516 518	127 131	@	129 131	85 87	888	85 87	63	@	65	51	000	51							31	@	33_	51
$\begin{array}{c} 520 \\ 522 \end{array}$	129 131	000	129 138	86 87	@	87 89	65	000	67				43 48	E	43 45				33	000	33	52 52
524 526	129 133	@	131 133				65	.00	65	53 51	@ @	53 53				37	@	37 39				52 52
528 530	131	@	131 135	87 89	000	87 89	67	(0)	67													52
532· 534	131 185	000	138 135	87 89	869	89 91	65	000	67	53	000	55	43 45	888	45 45				33	000	33	53 53
536	138 136			89	000	91	67		69	53	@	53	40	000	45	37	(a)	39	33	@	35	53
538 540		@	133 137	89 91	@	89 91		00								39	000	39	00	(WD)	30	54
542 544	133	@	135- 137				67	@	67	55	(D)	55			1-1							54 54
546 548	135 137	000	135 139	18 89	ေ	93	69	000	69	53	000	55	45 45	co G	45 47							54 54
550 552	135 139	@	137 139	91 93	888	91 93	67	@	69							39	000	39	33	@	35	55 55
554 556	137 139	@	137 141				69	@	71	55 55	@ @	57 55				39	@	41_	35	@	35	55 55
558 560	137 141	000	139	91 93	@	93 96	69	000	69	00		- 00	45 47	- E	47 47							55 56
562	130	@	189 143	93	000	ug .	71	00	71	FR		FP										56
564 566	139 143	@	141 143	93 96	000	93 96	69	@	71	57 55	000	57 57				39	@	41	35	@	35	56 56
568 570	141 143	000	141 145	93 96	888	96 97	71	000	73				47	88	47 49	41	@	41	35	000	37_	56 57
572 574	141 145	@	143 145				71	@	71	57	@	59			79							57
576 578	143 145	@	1+3	95 97	@	96 97	73	@	73	57	000	57				,						57 57
580 582	143	000	145	96 97	V00	97	71	000	73				47 49	000	49	41	000	41 43	35	000	37	58
584 586	145 147	@	145	97	نفعا	An	73	@	75	59 57	@	59 59	49	رق	49	7.1		10	37	@	37	58
588				97 99	ક્લ્ક	97 99				01	w	00							01	(QQ)	01	588
590 592	145 149	@	147	07		00	73	(W)	73			0.5	40									599 599
594 596	147	000	147	97 99	@	101	75	000	75	59 59	000	61 59	49	E	61	41 43	000	43				59. 596
598 600	151	@	149 151	99 101	000	99	73	@	75										37_	@	37	598 600
		4			6			8			10			12			14			16		

TABLE OF TWO-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES OF RE-F B F B F F B F B F B F B B Š. 151 153 (00) @ (20) 153 51 51 (00) (00) (00) (22) 51 157 @ 105 159 @ @ (22) @ (00) 161 (00) (00) (1) (00) (00) (00) 165 167 @ 167 (00) @ 器 (00) @ @ @ 118 -(00) 178 (00) @ @ 115 @ @ (00) (00)

TABLE OF TWO-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES, CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES P.O RE-B F RE-B F B F B F B F B F RE-B Š ENTRANC ENTRANCY ENTRANCI ENTRANC 117 59 @ (3) 00) (00) 119 179 @ @ @ 61 @ 181 @ (2) 121 726185 @ (00) 123 हुन 123 185 @ (00) (00) 125 $\frac{738}{740}$ 187 187 (00) $\frac{744}{746}$ 125 @ (00) (00) (00) (00) 127 हुन 756 @ 127 @ 127 (00) (00) 129 @ $\frac{772}{774}$ 195 @ 65 (00) (00) 195 @ (00) (00) @ .195 199 @ @ (00) @ (00) 133 67

WINDING TABLES FOR MULTIPLE-CIRCUIT, SINGLE WINDINGS FOR DRUM ARMATURES.

I	MULT	ripli	E-CIF	RCUI	T, SI	NGLE	IW E	NDIN	GS,	FOR	DRU	JM A	RMA	TURI	ES.
ORS					FRO	NT A	ND B	ACK :	PITCE	HES		le s			ORS
No. OF CONDUCTORS	Pol	4 LES	Poi	ES	Pol	8 LES	1 Poi	0 LES	(1	.2 LES	11	.4 LES	11	6 LES	No. OF CONDUCTORS
No. OF	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF
202	49	51 51	33 33	35 35	25 25	27 27	19 19	21 21	15 15	17 17	13 13	15 15	11 11	13 13	$\frac{202}{204}$
206 208	51 51	53 53	33 33	35 35	25 25	27 27	19 19	21 21	17 17	19 19	13 13	15 15	11 11	13 13	206 208
210 212	51 51	53 53	33 35	35 37	25 25	27 27	19	21 23	17 17	19 19	13 15	15 17	13 13	15 15	210
214 216	53	55 55	35 35	37 37	25 25	27 27	21 21	23 23	17	19 19	15 15	17	13 13	15 15	214 216
218 220	53 53	55 55	35 35	37 37	27 27	29 29	21 21	23 23	17	19 19	15 15	17 17	13 13	15 15	218 220
222 224	55 55	57 57	35 37	37 39	27 27	29 29	21 21	23 23	17 17	19 19	15 15	17 17	13 13	15 15	222
226 228	55 55	57 57	37 37	39 39	27 27	29 29	21 21	23 23	17 17	19 19	15 15	17 17	13 13	15 15	226 228
$\begin{array}{r} 230 \\ \hline 232 \end{array}$	57 57	59 59	37 37	39 39	27	29	21 23	23 25	19 19	21 21	15 15	17 17	13 13	15 15	230
234 236	57 57	59 59	37 39	39 41	29 29	31 31	23	25 25	19 19	21 21	15 15	17 17	13 13	15 15	234 236
$ \begin{array}{r} 238 \\ 240 \end{array} $	59 59	61	39 39	41	29 29	31 31	23 23 •	$\begin{array}{c} 25 \\ 25 \end{array}$	19 19	21 21	15 17	17 19	13 13	15 15	238 240
242	59 59	61	39	41	29	31 31	23	25 25	19 19	21	17	19 19	15 15	17 17	242
$ \begin{array}{r} 246 \\ \hline 248 \\ \hline 250 \end{array} $	61 61 61	63 63 63	39 41 41	41 43 43	29 29 31	31 31 33	23 23 23	$\begin{array}{r} 25 \\ 25 \\ \hline 25 \end{array}$	19 19 19	21 21 21	17	19 19 19	15 15 15	17 17 17	246 248 250
252 254	61 63	63	41 41	43	31	33	25 25	$\frac{27}{27}$	19 21	21 23	17 17 17	19 19	15 15	17 17	252 254
256 258	63	65	41 41	43	31 31	33	25 25	$\frac{27}{27}$	21 21	23 23	17	19 19	15 15	17	256 258
$\frac{260}{262}$	63	65 67	43	45	31 31	33	25 25	27 27	21 21	23	17 17	19 19	15 15	17 17	260 262
264 266	65	67 67	43	45 45	31 33	33 35	25 25	27 27	21 21	23 23	17 17	19 19	15 15	17	264 266
268 270	65 67	67 69	43	45 45	33 33	35 35	25 25	27 27	21 21	23	19 19	21 21	15 15	17 17	268 270
272 274	67	69 69	45 45	47	33 33	35 35	27	29 29	21 21	23 23	19 19	21 21	15 17	17 19	272 274
276 278	67	69	45 45	47	33 33	35 35	27 27	29 29	21 23	23 25	19 19	21 21	17 17	19 19	276 278
280	69	71 71	45 45	47	33	35 37	27 27	$\frac{29}{29}$	23 23	25 25	19 19	21 21	17 17	19 19	280 282
284	69 71	71 73	47	49	35 35	37 37	27	29 29	23	25 25	19	21	17	19 19	284
288	71 71	73 73	47	49	35	37	27	29	23	25 25	19	21	17	19	288
292 294 296	71 73 73	73 75 75	47 47 49	49	35 35 35	37	29 29 29	31	23	25 25	19 19	21	17	19 19	292
298 300	73 73	75 75	49	51 51 51	37	37 39 39	29 29 29	31 31 31	23 23 23	25 25 25	21 21 21	$\begin{array}{c} 23 \\ 23 \\ \hline 23 \end{array}$	17 17 17	19 19 19	296 298 300

N	IULT	IPLE	-CIR	CUIT	r, sin	NGLE	WIN	IDIN	GS, F	ORI	DRUI	M AR	MAT	URE	s.
OF CONDUCTORS					FRC	NT A	ND E	BACK	PITC	HES.					No. OF CONDUCTORS
4 DUC	4			3		3		0	1	2	_ 1		_1	_	000
F CO	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	F C01
0 0	F	В	F	В	F	В	F	В	F	В	F	В	F	В	
302	75 75	77	49	51	37	39	29	31	25 25	27	21	23	17 17	19 19	302
306	75	77	49	51	37	39	29	31	25	27	21	23	19	21	306
308	75 77	77 79	51	53 53	37 37	39 39	29	31	25 25	27 27	21 21	23 23	19 19	$\begin{array}{c} 21 \\ 21 \end{array}$	308
312	77	79	51	53	37	39	31	33	25	27	21	23	19	21	312
314	77	79	51	53	39	41	31	33	25	27	21	23	19	21_	314
316	77	79	51	53	39	41	31	33	25	27	21	23	19	21	316
318 320	79 79	81 81	51 53	53 55	39	41	31 31	33 33	25 25	27 27	21	23 23	19 19	21 21	318
322	79	81	53	55	39	41	31	33	25	27	21	23	19	21	322
324	79	81	53	55	39	41	31	33	25	27_	23	25	19	21	324
326 328	81 81	83 83	53 53	55 55	39 39	41	31 31	33	27	29 29	23	$\begin{array}{c} 25 \\ 25 \end{array}$	19 19	$\begin{array}{c} 21 \\ 21 \end{array}$	326 328
330	81	83	53	55	41	43	31	33	27	29	23	$\frac{25}{25}$	19	21	330
332	81	83	_ 55	57	41	43	33	35	27	29	23	25	19	21	332
334	. 83	85	55	57	41	43	33	35	27	29	23	25	19	21	334
336 338	83_ 83	85 85	55 55	57 57	41	43	33 33	35 35	27	29	23	$\begin{array}{c} 25 \\ 25 \end{array}$	19 21	$\begin{array}{c} 21 \\ 23 \end{array}$	336
340	83	85	55	57	41	43	33	35	27	29	23	25	21	23	340
342	85	87	55	57	41	43	33	35	27	29	23	25	21_	23	342
344	85 85	87 87	57 57	59 59	41	43	33	35 35	27	29 29	23 23	$\frac{25}{25}$	21 21	23 23	344
348	85	87	57	59	43	45	33	35	27	29	23	25	21	23	348
350	87	89	57	59	43	45	33	35	29	31	23	25	21	23	350
352 354	87 87	89 89	57 57	59 59	43	45	35	37 87	29	31	25	27	21	23	352
356	87	89	59	61	43	45 45	35	37	29 29	31 31	25 25	27 27	21 21	23	354 356
358	89	91	59	61	43	45	35	37	29	31	25	27	21	23	358
360	89	91	59	61	43	45	35	37	29	31	25	27	21	23	360
362	89 89	91	59 59	61	45 45	47	35 35	37	29	31	25	27	21	23	362
366	91	93	59	61	45	47	35	37	29	31 31	$\begin{array}{c c} 25 \\ \hline 25 \end{array}$	27 27	21 21	23 23	364
368	91	93	61	63	45	47	35	37_	29	31	25	27	21	23	368
370	91	93	61	63	45	47	35	37	29	31	25	27	23	25	370
374	91	95	61	63	45	47	37	39	29 31	31 33	25 25	27 27	23	$\frac{25}{25}$	372 374
376	93	95	61	63	45	47	37	39	31	33	25	27	23	25	376
378	93	95	61	63	47	49	37	39	31	33	25	27	23	25	378
380	93	95	63 63	65 65	47	49	37	39	31	33	27	29	23	25	380
384	95	97	63	65	47	49	37	39	31	33	27	29 29	23 23	$\frac{25}{25}$	382 384
386	95	97	63	65	47	49	37	39	31	33	27	29	23	25	386
388	$\frac{95}{97}$	97	63	65	47	49	37	39	31	33	27	29	23	25	388
392	97	99	65	67	47	49	37	39 41	31 _ 31	33	27	29 29	23	25 25	390 392
394	97	99	65	67	49	51	39	41	31	33	27	29	23	$\frac{25}{25}$	394
396	97	99	65	67	49	51	39	41	31	33	27	29	23	25	396
398	99	101	65	67	49	51 51	39	41	33	35 35	$\frac{27}{27}$	29	23	25	398
200	4.1	101	0.50		10	01	00	21	00	00	41	_29	23	25	400

MULTIPLE-CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES PP OF F F B B F B F B F B F B F B Š Š. 51 71 71 $\frac{105}{105}$ $\frac{27}{27}$ $\frac{71}{71}$ 37 37 $\frac{107}{107}$ 73 71 33 $\frac{27}{27}$ 111 75 73 31 $\frac{27}{27}$ 111 77 77 75 113 115 55 115 115 $\frac{117}{117}$ 79 77 31 $\frac{117}{117}$ 77 81 $\overline{79}$ $\overline{39}$ $\frac{121}{121}$ 81 $\frac{123}{123}$

Above choice of Pitches will prove most satisfactory, although, as stated in text, the absolute magnitude of average pitch may be varied within reasonable limits.

41

43

33

83

I	MULT	TIPLE	E-CIF	RCUI	T, SI	NGLE	EWII	NDIN	IGS,	FOR	DRU	M AF	RMAT	URE	s.
OF CONDUCTORS					FRO	NT A	ND E	BACK	PITC	HES					No. OF CONDUCTORS
pnc	1			3		8	1			2	1	4	1	6	tonc
F CON	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	F 00 P
No.	F	В	F	В	F	В	F	В	F	В	F	В	F	В	O
502 504	125 125	127 127	83	85 85	61	63	49	51 51	41	43	35 35	37 37	31	33 33	502
506	125	127	83	85	63	65	49	51	41	43	35	37	31	33	506
508	$\begin{array}{ c c c }\hline 125 \\ \hline 127 \\ \hline \end{array}$	127 129	83	85 85	63	65 65	49	51 51	41	43	35 35	37 37	31 31	33 33	508 510
512	127	129	85	87	63	65	51	53	41	43	35	37	31	33	512
514	127	129	85	87	63	65	51	53_	41	43	35	37	31	33	514
516 518	127 129	129 131	85 85	87 87	63	65 65	51	53 53	41_43	43	35 35	37 37	31	33	516 518
520_	129	131	85	87	63	65	51	53	43	45	37	39	31	33	520
522	129	131	85	87	65	67	51	53_	43	45	37	39	31	33	522
524 526	129 131	131 133	87 87	89	65	67	51 51	53 53	43	45 45	37	39	31	33	524 526
528	131	133	87	89	65	67	51	53	43	45	37	39	31	33	528
530	131	133	87	89	65	67	51	53	43	45	37	39	33	35	530
532	131 133	133 135	87 87	89 89	65	67	53 53	55 55	43	45 45	37	39	33	35 35	532 534
536	133	135	89	91	65	67	53	55_	43	45	37	39	33	35	536
538	133	135	89	91	67	69	53	55	43	45	37	39	33	35	538
540 542	133	135 137	89 89	91	67	69 69	53_ 53	55 55	43	45	37	39	33	35 35	540 542
544	135	137	89	91	67	69	53	55	45	47	37	39	33	35	544
546	135	137	89	91	67	69	53	55	45	47	37_	39	33	35	546
548 550	135 137	137 139	91 91	93	67	69 69	53	55 55	45	47	39	41	33	35 35	548 550
552	137	139	91	93	67	69 .	55	57	45	47	39	41	33	35	552
554	137	139	91	93	69	71	55	57	45	47	39	41	33	35	554
556 558	137 139	139	91 91	93	69 69	71 71	55 55	57 57	45	47	39	41	33	35 35	556 558
560	139	141	93	95	69	71	55	57	45	47	39	41	33	35	560
562	139	141	93	95	69	71	55	57	45	47	39	41	35	37	562
564 566	139 141	141 143	93	95 95	69	71 71	55 55	57 57	45	47	39	41	35 35	37 37	564 566
568	141	143	93	95	69	71	55	57	47	49	39	41	35_	37	568
570 572	141	143	93	95	71	_ 73	55	57	47	49	39	41	35	37	570
574	143	143 145	95 95	97	$\frac{71}{71}$	73 73	57 57	59 59	47	49	39	41	35 35	37	572 574
576	143	145	95	97	71	73	57	59	47	49	41	43	35	37	576
578	143	145	95	97	71	73	57	59	47	49	41	43	35	37	578
580 582	143	145	95	-97 - 97	$\frac{71}{71}$	73	57 57	59 59	47	49	41	43	35 35	37	580 582
584	145	147	97	99	71	73	57	59	47	49	41	43	35	37	584
586 588	145 145	147 147	$\frac{97}{97}$	99	73	75	57	59	47	49	41	43	35	37	586
590	143	149	97	99	73	75 75	57 57	59 59	47	49 51	41	43	35 35	37	588 590
592	147	149	97	99	73	75	59	61	49	51	41	43	35	37	592
594 596	147 147	149	97	99	73 73	75 75	59 59	61_	49	51	41	43	37	39	594
598	149	151	99	101	73	75	59	61	49	51 51	41	43	37	39	596 598
600	149	151	99	101	73	75	59	61	49	51	41	43	37	39	600

MULTIPLE-CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES OF P 0 F B F F B F B F B F B F B B Š Š $\overline{59}$ $\overline{59}$ 77 $\frac{75}{75}$ 79 $\begin{array}{c} 105 \\ 105 \end{array}$ 77 77 $\frac{79}{79}$ $\frac{155}{157}$ 77 77 79 $\frac{107}{107}$ $\frac{79}{79}$ 1.61 $5\overline{3}$ 87

MULTIPLE-CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES.

RS S					FR	ТИС	AND	BACK	PITO	CHES					SRS
No. OF CONDUCTORS		4		6	8	3	1	0	1	2		4	VF	6	No. OF CONDUCTORS
P C0		LES	Poi		Poi	LES	Poi	LES		LES		LES	Po	LES	P C0
	F	В	F	В	F	В	F	В	F	В	F	В	F	В	
702 704	175 175	177 177	115 117	117 119	87 87	89 89	69 69	71 71	57 57	59 59	49	51 51	43	45 45	702 704
706	175	_177	117	119	87	89	69	71	57	59	49	51	43	45	706
708 710	175 177	177 179	117 117	119 119	87	89 89	69 69	71 71	57 59	59 61	49	51 51	43	45 45	708 710
712 714	177 177	179 179	117 117	119 119	87 89	89 91	71 71	73 73	59 59	61	49	51 51	43	45 45	712 714
716	177	179	119	121	89	91	71	73	59	61	51	53	43	45	716
718 720	179 179	181 181	119 119	121 121	89 89	91 91	71 71	73 73	59 59	61 61	51 51	53 53	43	45 45	718 720
$\begin{array}{c c} 722 \\ \hline 724 \end{array}$	179 179	181 181	119 119	121 121	89 89	91 91	71 71	73 73	59 59	61 61	51 51	53 53	45	47	$\begin{array}{ c c c }\hline 722\\ 724\\ \end{array}$
726	181 181	183	119	121	89	91	71	73	59	61	51	53	45	47	726
728 730	181	183 183	121 121	123 123	89 91	91 93	71 71	73 73	59 59	61	51 51	53 53	45	47	728 730
732 734	181 183	183 185	$\begin{array}{c} 121 \\ 121 \end{array}$	$\begin{array}{c} 123 \\ 123 \end{array}$	91	93	73 73	75 75	59 61	61	51 51	53 53	45 45	47	732 734
736	183	185	121	123	91	93	73	75	61	63	51	53	45	47	736
738 740	183 183	185 185	121 123	123 125	91 91	93 93	73 73	75 75	61 61	63	51 51	53 53	45	47	738 740
$\begin{array}{r} 742 \\ 744 \end{array}$	185 185	187 187	123 123	$\begin{array}{c} 125 \\ 125 \end{array}$	91	93 93	73 73	75 75	61	63	51 53	<u>53</u> 	45	47	742 744
746 748	185 185	187 187	123 123	125 125	93	95 95	73	75	61	63	53	55 .	45	47	746
750	187	189	123	125	93	95	73 73	75 75	61	63 63	53 53	55 55	45 45	47	748 750
752 754	187 187	189 189	125 125	$\frac{127}{127}$	93 93	95 95	75 75	77	61	63 63	53 53	55 55	45	47	752 754
756 758	187 189	189 191	$\frac{125}{125}$	127 127	93 93	95	- 75	77	61	63	53	55_	47	49	756_
760	189	191	125	127	93	95 95	75 75	77	63	65 65	53 53	55 55	47	49	758 760
$\frac{762}{764}$	189 189	191 191	$\begin{array}{c c} 125 \\ 127 \end{array}$	$\frac{127}{129}$	95 95	97 97	75 75	77	63	65 65	53 53	55 55	47	49	762 764
766 768	191 191	193 193	127 127	129 129	95 95	97	75	77	63	65	53	55	47	49	766
770	191	193	127	129	95	97	75 75	77	63 63	65 65	53	55 55	47	49	768 770
$\frac{772}{774}$	191 193	193 195	$\begin{array}{c c} 127 \\ 127 \end{array}$	129 129	95 95	97 97	77	79 79	63	65 65	55 55	57 57	47	49	772 774
776 778	193 193	195 195	129 129	131 131	95 97	97 99	77	_79	63	65	55	57	47	49	776
780	193_	195	129	131	97	99	77	79 79	63	65 65	55 55	57 57	47	49 49	778 780
782 784	195 195	197 197	129 129	131 131	97	99	77	79 79	65 65	67 67	55 55	57 57	47	49	782 784
786 788	195 195	197 197	129 131	131 133	97 97	99	77	79	65	67	55	57	49	51	786
790	197	199	131	133	97	99	77	79 79	65	67	55 55	57 57	49	51_ 51	788 790
792 794	197 197	199	131	133 133	97	99	79 79	81 81	65	67 67	55 55	57 57	49	51 51	792 794
796 798	197 199	199 201	131 131	133 133	99	101	79	81	65	67	55	57	49	51	796
800	199	201	133	135	99	101 101	79 79	81 81	65 65	67	55	57 59	49	51 51	798 800

MULTIPLE-CIRCUIT SINGLE WINDINGS, FOR DRUM ARMATURES. OF CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES OF F F F F F F F B B B B B В B ŝ So. $\frac{71}{71}$ 139 141 141 143 73 $\frac{71}{71}$ 145 75 $\frac{147}{147}$ 73 $\frac{221}{221}$ $\frac{147}{147}$ 73 149

MULTIPLE-CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES.

ORS					FRC	NT A	ND E	BACK	PITC	HES					CORS
Long	-	4	11	3		8	1	0		2	1	4	1		DOC
00 00	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	CON
No. OF CONDUCTORS	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF CONDUCTORS
902	225	227	149	151	111	113	89	91	75	77	63	65	55	57	902
904	225 225	227	149 149	151 151	111	113 115	89 89	91	75 75	77	63	65	55	57 57	904
908	225	227 227	151	153	113	115	89	91	75	77	63	65 65	55	57	906
910	227	229	151	153	113	115	89	91	75	77	63	65	55	57	910
912	227	229	151	153	113	115	91	93	75	77	65	67	55	57	912
914	227	229	151	153	113	115	91	93	75	77	65	67	57	59	914
916 918	227	229 231	151 151	153 153	113 113	115 115	91	93	75 75	77	65	67 67	57 57	59 59	916 918
920	229	231	153	155	113	115	91	93	75	77	65	67	57	59	920
922	229	231	153	155	115	117	91	93	75	77	65	67	57	59	922
924	229	231	153	155	115	117	91	93	75	77	65	67	57	59	924
926	231	233 233	153 153	155 155	115 115	117 117	91	93	77	79 79	65 65	67 67	57 57	59 59	926 928
930	231	233	153	155	115	117	91	93	77	79	65	67	57	59	930
932	231	233	155	157	115	117	93	95	77	79	65	67	57	59	932
934	233	235	155	157	115	117	93	95	77	79	65	67	57	59	934
936 938	233	235 235	155 155	157 157	115 117	117 119	93	95	77	79	65	67	57	59	936
940	233	235	155	157	117	119	93 93	95 95	77 77	79 79	65	67 69	57 57	59 59	938 940
942	235	237	155	157	117	119	93	95	77	79	67	69	57	59	942
944	235	237	157	159	117	119	93	95	77	79	67	69	57	59	944
946	235	237	157	159	117	119	93	95	77	79	67	69	59	61	946
948	235	237 239	157 157	159 159	117 117	119 119	93 93	95 95	77 79	79 81	67	69 69	59	61	948 950
952	237	239	157	159	117	119	95	97	79	81	67	69	59 59	61	952
954	237	239	157	159	119	121	95	97	79	81	67	69	59	61	954
956	237	239	159	161	119	121	95	97	79	81	67	69	59	-61	956
958 960	239 239	241	159 159	161 161	119 119	121 121	95 95	97	79 79	81 81	67	69 69	59	61	958
962	239	241	159	161	119	121	95	97	79	81	67	69	59 59	61	960 962
964	239	241	159	161	119	121	95	97	79	81	67	69	59	61	964
966	241	243	159	161	119	121	95	97	79	81	67	69	59	61	966
968 970	241	243	161 161	163 163	119 121	121 123	95 95	97	79	81 81	69	71	59	61	968
972	241	243	161	163	121	123	97	97	79 79	81	69	71 71	59 59	61	970 972
974	243	245	161	163	121	123	97	99	81	83	69	71	59	61	974
976	243	245	161	163	121	123	97	99	81	83	69	71	59	61	976
978	243	245	161	163	121	123	97	99	81	83	69	71	61	63	978
980 982	243 245	245	163 163	165 165	121 121	123 123	97 97	99	81 81	83 83	69	71 71	61	63	980 982
984	245	247	163	165	121	123	97	99	81	83	69	71	61	63	984
986	245	247	163	165	123	125	97	99	81	83	69	71	61	63	986
988	245	247	163	165	123	125	97	99	81	83	69	71	61	63	988
990	247	249	163 165	165 167	123 123	125 125	97	99	81	83	69	71	61	63	990
994	247	249	165	167	123	125	99	101	81 81	83	69	71 71	61	63	992
996	247	249	165	167	123	125	99	101	81	83	71	73	61	63	996
998	249	251	165	167	123	125	99	101	83	85	71	73	61	63	998
1000	249	251	165	167	123	125	99	101	83	85	71	73	61	63	1000

MULTIPLE CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES OF OF F B F B F \mathbf{B} F B F В F B F \mathbf{B} $\frac{71}{71}$ $\frac{171}{171}$ 67 75 75 $\frac{77}{77}$ $\frac{179}{179}$ $\frac{267}{267}$ $\frac{177}{177}$ $\frac{105}{105}$ $\frac{107}{107}$ 87 75 $\frac{77}{77}$ $\frac{67}{67}$ $\frac{177}{179}$ 75 77 77 $\frac{77}{77}$ 79 $\frac{77}{77}$

MULTIPLE-CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES PO OF F B F F F B F B F B F B B B S. ŝ $\frac{71}{71}$ $\frac{277}{277}$ 141 $\frac{71}{71}$ 71 141 187 $\frac{79}{79}$ 115 $\frac{71}{71}$ $\begin{array}{c} 1140 \\ 1142 \end{array}$ 113 145 147 115 117 97 $\overline{2}93$ $\frac{147}{147}$ 73 119 75

MULTIPLE-CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES OF OF F B F B F B F B F B F B F B $\frac{77}{77}$ 77 $\frac{153}{153}$ 77 $\frac{121}{121}$ $\frac{123}{123}$ $\frac{103}{103}$ $\frac{101}{101}$ $\frac{75}{75}$ 75 79 $\begin{array}{c} 105 \\ 105 \end{array}$ $\frac{77}{77}$ 87 77 79 $\frac{211}{211}$ $\frac{157}{159}$ 77 $\frac{127}{127}$.161 $\begin{array}{c} 217 \\ 217 \end{array}$

N	NULT	IPLE	E-CIR	CUIT	r, s11	NGLE	WIN	NDIN	GS, F	FOR	DRUI	MAR	MAT	URE	s.
CONDUCTORS					FRC	NT A	ND E	BACK	PITC	HES					TORS
NDOC	4		_ 6		1	3		0	14	2	lt.	4		6	CONDUCTORS
00	Pol	LES	PO	LES	PO.	LES	Po.	LES	, Po	LES	Po	LES	РО	LES	
No. 0F	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF
1302 1304	325 325	327 327	215 217	217 219	161 161	163 163	129 129	131 131	107	109	91	93	81 81	83 83	1302 1304
1306 1308	325 325	327 327	217 217	219 219	163 163	165 165	129 129	131 131	107	109	93	95 95	81	83 83	1306 1308
1310 1312	$\frac{327}{327}$	329 329	$\begin{array}{c c} 217 \\ 217 \end{array}$	219 219	163 163	165 165	129 131	131 133	109	111 111	93	95 95	81 81	83 83	1310 1312
1314	327	329	217	219	163	165	131	133	109	111	93	95	81	83	1314
1316 1318	327 329	329 331	219 219	$\begin{array}{c} 221 \\ 221 \end{array}$	163 163	165 165	131 131	133 133	109 109	111 111	93	95 95	81 81	83 83	1316 1318
1320 1322	329 329	331 331	219	$\begin{array}{c} 221 \\ 221 \end{array}$	163 165	165 167	131 131	133 133	109	111 111	93	95 95	81 81	83 83	1320 1322
1324 1326	329 331	331	219 219	221 221	165 165	167 167	131 131	133 133	109	111	93	95 95	81 81	83 83	1324 1326
1328	331	333	221	223	165	167	131	133	109	111	93	95	81	83	1328
1330 1332	331 331	333 333	221 221	223 223	165 165	$\begin{array}{r} 167 \\ \hline 167 \end{array}$	131 133	133 135	109	111 111	93	95 97	83 83	85 85	1330 1332
1334 1336	333	335 335	221 221	223 223	165 165	$\frac{167}{167}$	133	135 135	111 111	113 113	95 95	97 97	83	85 85	1334 1336
1338 1340	333 333	335 335	221 223	223 225	167 167	169 169	133 133	135 135	111 111	113 113	95 95	97 97	83 83	85 85	1338 1340
1342	335	337	223	225	167	169	133	135	111	113	95	97	83	85	1342
1344 1346	335 335	337 337	223 223	$\begin{array}{c} 225 \\ 225 \end{array}$	167 167	169 169	133 133	135 135	111 111	113 113	95 95	97 97	83 83	85 85	1344 1346
1348 1350	335 337	337 339	223 223	$\begin{array}{c} 225 \\ 225 \end{array}$	167 167	169 169	133 133	135 135	111 111	113 113	95 95	97	83	85 85	1348 1350
1352 1354	337 337	339 339	$\begin{array}{c c} 225 \\ 225 \end{array}$	$\begin{array}{r} 227 \\ 227 \end{array}$	167 169	169 171	135 135	137 137	111 111	113 113	95 95	97 97	83 83	85 85	1352 1354
1356	337	339	225	227	169	171	135	137	111	113	95	97	83	85	1356
1358 1360	339	341 341	$\begin{array}{c} 225 \\ 225 \end{array}$	$\begin{array}{c} 227 \\ \hline 227 \end{array}$	169 169	171 171	135 135	137 137	113 113	115 115	95 97	97 99	83 83	85 85	1358 1360
1362 1364	339 339	341	$\begin{array}{c c} 225 \\ 227 \end{array}$	$\begin{array}{c} 227 \\ 229 \end{array}$	169 169	171 171	135 135	137 137	113 113	115 115	97 97	99	85 85	87 87	1362 1364
1366 1368	341 341	343	$\frac{227}{227}$	229 229	169 169	171 171	135 135	137 137	113 113	115 115	97 97	99	85 85	87 87	1366 1368
1370 1372	341	343	227	229 229	171	173	135	137	113	115	97	99	85	87	1370
1374	343	343 345	227 227	229	171 171	173 173	137 137	139 139	113 113	115 115	97 97	99	85 85	87 87	1372 1374
1376 1378	343	345	229 229	231 231	171	173 173	137 137	139 139	113 113	115 115	97	99	85 85	87 87	1376 1378
1380 1382	343 345	345 347	229 229	231 231	171 171	173 173	137 137	139 139	113 115	115 117	97 97	99	85 85	87 87	1380 1382
1384	345	347	229	231	171	173	137	139	115	117	97	99	85	87	1384
1386 1388	345 345	347 347	229 231	231 233	173 173	175 175	137 137	139 139	115 115	117 117	97 99	99 101	85 85	87 87	1386 1388
1390 1392	347	349 349	231 231	233	173 173	175 175	137 139	139 141	115 115	117 117	99 99	101 101	85 85	87 87	1390 1392
1394 1396	347 347	349 349	231 231	233 233	173 173	175 175	139 139	141	115	117	99	101	87	89	1394
1398	349	351	231	233	173	175	139	141	115 115	117 117	99	101	87 87	89 89	1396 1398
1400	349	351	233	235	173	175	139	141	115	117	99	101	87	89	1400

MULTIPLE-CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES OF OF F F F B F B F B F B F B B B $\frac{177}{177}$ 87 $\frac{177}{177}$ $\frac{237}{237}$ $177 \\ 177 \\ 177$ $\frac{179}{179}$ 87 $\frac{179}{179}$ $36\bar{3}$ $\frac{143}{143}$ $\frac{145}{145}$ $\frac{1448}{1450}$ $\frac{121}{121}$ $\frac{183}{183}$ $\frac{121}{121}$ $\frac{123}{123}$ $\frac{105}{105}$ $\overline{123}$ $\frac{245}{245}$ $\frac{247}{247}$ $\frac{149}{149}$ $\frac{125}{125}$ $\frac{147}{147}$

MULTIPLE-CIRCUIT, SINGLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES POLES POLES POLES POLES POLES POLES POLES OF F B F B F B F B F B F B F B Š. $\begin{array}{c} 1526 \\ 1528 \end{array}$ $\frac{1526}{1528}$ 111 1.95 111 131 $\frac{135}{135}$ 113 115

WINDING TABLES FOR MULTIPLE-CIRCUIT, DOUBLE WINDINGS FOR DRUM ARMATURES.

	MUL	TIPL	E-CI	RCU	IT, E	ooui	BLE	WINI	DINC	GS, F	OR I	DRUI	M AF	RMAT	TURE	ES.
λo	rors				FF	RONT	AND	BAC	K PI	TCHE	ES					TORS
RE-ENTRANCY	CONDUCTORS	Poi	4	Pol	6	Ĭ .	8 LES	1 POI		POI	2		4 LES	П	6 LES	No. OF CONDUCTORS
RE-EN	P 0	F	В	F	В	F	В	F	В	F	B	F	В	F	·B	OF CC
(7)	202	49	53	31	35	23	27	19	23	15	19	13	17	11	15	202
00	204	49	53	31	35	23	27	19	23	15	19	13	17	11	15	202
0	206	49	_53	33	37	23	27	19	23	15	19	13	17	11	15	206
00	208	49	53	33	37	23	27	19	23	15	19	13	17	11_	15	208
00	$\begin{array}{c c} 210 \\ 212 \end{array}$	51	55 55	33	37 37	25 25	29	19 19	23 23	15 15	19 19	13	17 17	11	15 15	210
@	214	51	55	33	37	25	29	19	23	15	19	13	17	11	15	212 214
00	216	51	55	33	37	25	29	19	23	15	19	13	17	11	15	216
0	218	53	57	_ 35	39	25	29	19	23	17	21	13	17	11	15	218
00	$\begin{array}{c} 220 \\ 222 \end{array}$	53	57 57	35	39	25 25	29	19	23	17	21	13	17	11	15	220
00	224	53	57	35	39	25	29	$\frac{21}{21}$	$\begin{array}{c} 25 \\ 25 \end{array}$	17	21 21	13	17	11	15 15	222 224
@	226	55	59	35	39	27	31	21	25	17	21	15	19	13	17	226
00	228	55	59	35	39	27	31	21	25	17	21	15	19	13	17	228
0	230	55	59	37	41	27	31	21	25	17	21	15	19	13	17	230
00	232	55 57	59 61	37	41	27	31	21	$\frac{25}{25}$	17	21 21	15 15	19 19	13	17	232
00	236	57	61	37	41	27	31	21	25	17	21	15	19	13	17	236
0	238	57	61	37	41	27	31	$\frac{21}{21}$	25	17	21	15	19	13	17	238
00	240	57	61	37	41	27	31	21	25	17	21	15	19	13	17	240
00	242	59	63	39	43	29	33	23	27	19	23	15	19	13	17	242
0	$\begin{array}{c c} 244 \\ \hline 246 \end{array}$	59 59	63 63	39	43	29 29	33 33	23 23	$\frac{27}{27}$	19 19	$\begin{array}{c c} 23 \\ \hline 23 \end{array}$	15 15	19 19	13	17 17	244 246
00	248	59	63	39	43	29	33	23	27	19	23	15	19	13	17	248
@	250	61	65	39	43	29	33	23	27	19	23	15_	19	13	17	250
00	252	61	65	39	43	29	33	23	27	19	23	15	19	13	17	252
00	$\begin{array}{c} 254 \\ 256 \end{array}$	61	65 65	41	45 45	29 29	33	23	$\frac{27}{27}$	19 19	23 23	17 17	$\begin{array}{c} 21 \\ 21 \end{array}$	13 13	17	254 256
@	258	63	67	41	45	31	35	23	27	19	23	17	21	15	19	258
00	260	63	67	41	45	31	35	· 23	27	19	23	17	21	15	19	260
0	262	63	67	41	45	31	35	25	29	19	23	17	21	15	19	262
00	264	63	67	41	45	31	35	25	29	19	23	17	21	15	19	264
00	$\begin{array}{c c} 266 \\ \hline 268 \end{array}$	65 65	69	43	47	31 31	35 35	$\begin{array}{c c} 25 \\ 25 \end{array}$	29 29	$\frac{21}{21}$	$\begin{array}{c c} 25 \\ \hline 25 \end{array}$	17 17	$\frac{21}{21}$	$\begin{array}{c} 15 \\ 15 \end{array}$	19 19	$\frac{266}{268}$
@	270	65	69	43	47	31	35	25	29	21	25	17	21	15	19	270
00	272	65	69	43	47	31	35	25	29	21	25	17	21	15	19	272
@	274	67	71	43	47	33	37	25	29	21	25	17	21	15	19	274
00	276	67	71	43	47	33	37	25	29	21	25	17	21	15	19	276
00	278 280	67	71 71	45 45	49	33 33	37 37	$\begin{array}{ c c c }\hline 25 \\ \hline 25 \\ \hline \end{array}$	29 29	21 21	$\begin{array}{c c} 25 \\ 25 \end{array}$	17	$\begin{array}{c} 21 \\ 21 \end{array}$	15 15	19 19	278 280
0	282	69	73	45	49	33	37	27	31	$\frac{21}{21}$	25	19	23	15	19	282
00	284	69	73	45	49	33	37	27	31	21	25	19	23	15	19	284
@	286	69	73	45	49	33	37	27	31	21	25	19	23	15	19	286
@	288	69	73 75	45	49 51	33	37	27	31 31	21	25	19	23	15	19	288
00	292	71	75	47	51	35	39	$\frac{27}{27}$	31	23	27	19 19	23	17	21 21	290
@	294	71	75	47	51	35	39	27	31	23	27	19	23	17	21	294
00	296	71	75	47	51	35	39	27	31	23	27	19	23	17	21	296
00	298	73	77	47	51	35	39	27	31	23	27	19	23	17	21	298
	300	73	77	47	51	35	39	27	31	23	27	19	23	17	21	300

ľ	MULTIPLE-CIRCUIT, DOUBLE WINDING, FOR DRUM ARMATURES.															
>	TORS		FRONT AND BACK PITCHES													
BANG	CONDUCTORS	4 6				8 10			1	2	1	4	16		DOC	
RE-ENTRANCY		Po	LES	Po	LES	Po	POLES		LES	POLES		POLES		POLES		COO
88	No. OF	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF CONDUCTORS
(0)	302	73	77	49	53	35	39	29	33	23	27	19	23	17	21	302
00	304	73	77	49	53	35	39	29	33	23	27	19	23	17	21	304
00	306	75 75	79 79	49	53 53	37 37	41	29	33	23	27	19 19	23	17	$\frac{21}{21}$	306
@	310	75	79	49	53	37	41	29	33	23	27	21	25	17	21	310
00	312	75	79	49	53	37	41	29	33	23	27	21	25	17	21	312
@	314	77	81	51	55	37	41	29	33	25	29	21	25	17	21	314
00	316	77	81	51	55	37	41	29	33	25	29	21	25	17	21	316
00	318 320	77	81 81	51	55 55	37	41	29	33	25 25	29	21 21	25 25	17	$\frac{21}{21}$	318 320
0	322	79	83	51	55	39	43	31	35	25	29	21	25	19	23	322
00	324	79	83	51	55	39	43	31	35	25	29	21	25	19	23	324
0	326	79	83	53	57	39	43	31	35	25	29	21	25	19	23	326
00 (D)	328 330	79 81	83 85	53	57 57	39 39	43	31	35 35	25 25	29 29	21 21	25 25	19	23	328 330
00	332	81	85	53	57	39	43	31	35	25	29	21	25	19	23	332
@	334	81	85	53	57	39	43	31	35	25	29	21	25	19	23	334
00	336	81	85	53	57	39	43	31	35	25	29	21	25	19	23	336
0	338	83	87	55	59	41	45	31	35	27	31	23	27	19	23	338
00	$\frac{340}{342}$	83	87	55 55	59 59	41	45 45	31 33	35 37	27	31	23	27	19 19	$\frac{23}{23}$	340
00	344	83	87	55	59	41	45	33	37	27	31	23	27	19	23	344
0	346	85	89	55	59	41	45	33	37	27	31	23	27	19	23	346
00	348	85	80	55	59	41	45	93	37	27	31	23	27	19	23	348
@	350	85	89	57	61	41	45	33	37	27	31	23	27	19	23	350
00	352 354	85 87	89	57 57	61	41 43	45 47	33	37	27	31	23	27 27	19 21	23 25	352 354
00	356	87	91	57	61	43	47	33	37	27	31	23	27	21	25	356
(0)	358	87	91	57	61	43	4.7	99	37	27	31	23	27	21	25	358
00	360	87	91	57	61	43	47	33	37	27	31	23	27	21	25_	360
00	362	89	93	59	63	43	47	35	39	29	33	23	27	21_	25	362
(3)	364 366	89 89	93	59 59	63 63	43	47	35 35	39 39	$\frac{29}{29}$	33	23 25	27	$\frac{21}{21}$	25 25	364
00	368	89	93	59	63	43	47	35	39	29	33_	25	29	21	25	368
0	370	91	95	59	63	45	49	35	39	29	33	25	29	21	25	370
00	372	. 91	95	59	63	45	49	35	39	29	33	25	29	21	25	372
00	374	91	95 95	$\frac{61}{61}$	65 65	45	49	35 35	39	29	33	25	29	21	25	374
@	378	93	97	61	65 65	45 45	49 49	35	39 39	29	33	25 25	29 29	21 21	25 25	376
00	380	93	97	61	65	45	49	35	39	29	33	25	29	21	25	380
0	382	_ 93	97	61	65	45	49	37	41	29	33	25	29	21	25	382
00	384	93	97	61	65	45	49	37	41	29	33	25	29	21	25	384
00	386 388	$\frac{95}{95}$	99	63 63	67	$-\frac{47}{47}$	51 51	37	41	31_	35 35	25 25	29	23	27	386
@	390	95	99	63	67	47	51	37	41	31	35	25	29 29	23	27	390
00	392	95	99	68	67	47	51	37	41	31	35	25	29	23	27	392
@	394	97	101	63	67	47	51	37	41	31	35	27	31	23	27	394
00	396	97	101	63	67	47	51	37	41	31	35	27	31	23	27	396
00	398 400	97	101	65	69	47	51 51	37	41	31	35 35	27	31	23	27	398 400
	100	01	LUL	00	00	21	01	01	41	OI	00	21	OI	40	41	100

MULTIPLE-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES.																
72	TORS	FRONT AND BACK PITCHES														TORS
RE-ENTRANCY	CONDUCTORS	4 POLES		6		8		10		12		14		16		No. OF CONDUCTORS
RE-EN		-		POLES		POLES		POLES		POLES		POLES		POLES		OF CO
	Š	F	В	F	В	F	В	F	В	F	В	F	В	F	В	-
00	402	99	103	65	69 69	49	53	39	43	31	35 35	27 27	31	23_23	27	402
@	406	99	103	65	69	49	53	39	43	31	35	27	31	23	27	406
00	408	99	103	65	69	49	53	39	43	31	35	27	31	23	27	408
0	410	101	105	67	71	49	53	39	43	33	37	27	31	23	27	410
00	412	101	105	_67	71	49	53_	39	43	33	37	27	31	23	27	412
0	414	101	105	67	71	49	53	39	43	33_	37	27	31	23	27	414
00	416	101	105 107	67	$\frac{71}{71}$	49 51	53 55	39	43	33	37	27 27	31	23 25	27 29	416
00	418	103	107	67	71	51	55	39	43	33	37	27	31	25	29	418
0	422	103	107	69	73	51	55	41	45	33	37	29	33	25	29	422
00	424	103	107	69	73	51_	55	41	45	33	37	29	33	25	29	424
0	426	105	109	69	73	51	55	41	45	33	37	29	33	25	29	426
00	428	105	109	69	73	51	55	41	45	33	37	29	33_	25	29	428
00	430	105	109	69	73 73	51 51	55 55	41	45	33	37 37	29	33	25 25	29 29	430
@	434	107	111	71	75	53	57	41	45	35	39	29	33	25	29	434
00	436	107	111	71	75	53	57	41	45	35	39	29	33	25	29	436
0	438	107	111	- 71	75	53	57	41	45	35	39	29	33	25	29	438
00	440	107	111	71	75	53	57	41	45	35	39	29	33	25	29	440
0	442	109	113	71	75	53	57	43	47	35	39	29	33_	25	29	442
00	444	109 109	113 113	71 73	75 77	53	57 57	43	47	35	39	29 29	33	$\frac{25}{25}$	29 29	444
00	448	109	113	73	77	53	57	43	47	35	39	29	33	25	29	448
0	450	111	115_	73	77	55	59	43	47	35	39	31	35	27	31	450
00	452	111	115_	73	77	55	59	43	47	35_	39_	31	35	27	31	452
0	454	111	115	73	77	55	_59	43	47	35_	39	31	35	27	31	454
00	456	111	115	73_	77	55_	59	43	47	35_	39	31	35	27_	31	456
@	458	113	117	75 75	79 79	55 55	59 59	43	47	37	41	31 31	35 35	27	31	458
(Q)	462	113	117	75	79	55	59	45	49	37	41	31	35	27	31	462
00	464	113	117	75	79	55	59	45	49	37	41	31	35	27	31	464
@	466	115	119	75	79	57	61	45	49	37	41	31	35	27	31_	466
00	468	115	119	75	79	57	61	45	49	37	41	31	35	27	31	468
@	470	115	119	77	81	57	61	45	49	37	41	31	35	27	31	470
00 0	472	115 117	119 121	77	81 81	57 57	61 61	45 45	49	37	41	31	35 35	27	31	472
00	476	117	121	77	81	57	61	45	49	37	41	31	35	27	31_	476
0	478	117	121	77	81	57	61	45	49	37	41	33	37	27	31	478
00	480	117	121	77	81	57	61	45	49	37	41	33	37	27	31	480
@	482	119	123	79	83	59	63_	47	51	39	43	33	37_	29	33	482
00	484	119	123	79	83	59	63	47	51	39	43	33	37	29	33_	484
00	486	119 119	123 123	79 79	83 83	59 59	63 63	47	51 51	39	43	33	37	29	33	486
@	490	121	125	79	83	59	63	47	51	39	43	33	37	29	33	490
00	492	121	125	79	83	59	63	47	51	39	43	33	37	29	33	492
0	494	121	125	81	85	59	63	47	51	39	43	33	37	29	33	494
00	496	121	125	81	85	59	63	47	51	39	43	33	37	29	33	496
@_	498	123	127	81	85	61_	65	47	51	39	43	33	37	29	33	498
00	500	123	127	81	85	61	65	47	51	39	43	33	37	29	33	500

MULTIPLE-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES.														ES.		
>	CONDUCTORS	FRONT AND BACK PITCHES												TORS		
SANO	RANC		4		6		8		10		12		14		16	
RE-ENTRANCY	CON	Po	LES	Po	LES	POLES		POLES		POLES		POLES		POLES		CON
RE	No. OF	F	FB		F B		F B		В	F	FB		В	F	В	No. OF CONDUCTORS
@	502	123	127	81	85	61	65	49	53	39	43	33	37	29	33	502
00	504	123	127	81	85	61	65_	49	53 53	39	43	33_	37	29	33_	504
00	506	125 125	129 129	83	87	61	65	49	53	41	45	35	39	29	33	506
@	510	125	129	83	87	61	65	49	53	41	45	35	39	29	33	510
00	512	125	129	83	87	61	65	49	53	41	45	35	39	29	33	512
@	514	127	131	83	87	63	67	49	53	41	45	35	39	31	35	514
00	516	127	131	83	87	63	67_	49	53	41	45	35	39	31	35_	516
@	518	127	131	85_	89	63	67_	49	53	41	45	35	39	31	35	518
00	520	127	131	85	89	63	67	49	53	41	45	35	39	31	35	520
@	522 524	129 129	133	85 85	89	63	67	51	55	41	45	35	39	31	35	522
00 @	524	129	133	85	89	63	67	51	55	41	45	35	39	31	35	526
00	528	129	133	85	89	63	67	51	55	41	45	35	39	31	35	528
@	530	131	135	87	91	65	69	51_	55	43	47	35	39	31	35	530
00	532	131	135	87	91	65	69	51	55	43	47	35	39	31	35	532
@	534	131	135	87	91	65	69	51	55_	43	47	37	41	31	35	534
00	536	131	135	87	91	65	69_	51	55_	43	47	37	41	31	35	536
@	538	133	137	87	91	65_	69	51	55_	43	47	37	41	31	35	538
00	540	133	137	87	91	65	69	51_	55	43	47	37	41	31	35	540
@_	542	133	137	89	93	65	69	53 53	57 57	43	47	37	41	31	35	544
(D)	544	135	139	89	93	67	71	53	57	43	47	37	41	33	37	546
00	548	135	139	89	93	67	71	53	57	43	47	37	41	33	37	548
0	550	135	139	89	93	67	71	53	57	43	47	37	41	33	37	550
00	552	135	139	89	93	67	71	53	57	43	47	37	41	33	37	552
@	554	137	141	91	95	67	71	53	57_	45	49	37	41	33	37	554
00	556	137	141	91_	95	67	71	53	57	45	49	37	41	33	37	556
@	558	137	141	91	95	67	71	53	57	45	49	37	41	33	37	558
00	560 562	137 139	141	91	95 95	67 69	71	53	57 59	45_	49	37	41 43	33	37	560 562
00	564	139	143 143	91	95	69	73 73	55 55	59	45	49	39	43	33	37	564
@	566	139	143	93	97	69	73	55	59	45	49	39	43	33	37	566
00	568	139	143	93	97	69	73	55	59	45	49	39	43	33	37	568
@	570	141	145	93	97	69	73	55	59	45	49	39	43	33	37	570
00	572	141_	145	93	97	69	73	55	59	45	49	39	43	33	37	572
@	574	141	145	93	97	69	73	55	59_	45	49	39	43	33	37	574
00	576	141	145	93	97	69	73	55	59	45	49	39	43	33	37	576
@	578	143	147	95_	99	71	75	55	59	47	51	39	43	35_	39	578
00	580 582	143	147	95	99	71 71	75 75	55	59 61	47	51	39	43	35	39	580 582
00	584	143	147	95	99	71	75	57	61	47	51	39	43	35	39	584
@	586	145	149	95	99	71	75	57	61	47	51	39	43	35	39	586
00	588	145	149	95	99	71	75	57	61	47	51	39	43	35	39	588
0	590	145	149	97	101	71	75	57	61	47	51	41_	45	35	39	590
00	592	145	149	97	101	71	75	57	61	47	51	41	45	35	-39	592
@	594	147	151	97	101_	73	77	57	61	47	51	41	45	35_	39	594
00	596	147	151	97	101	73	77	57	61	47	51	41	45	35	39	596
@	598	147	151	97	101	73	77	57	61	47	51	41	45	35	39	598
00	600	147	151	97	101	73	77	57	61	47	51	41	45	35	39	600

MULTIPLE-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS FRONT AND BACK PITCHES CONDUCTORS RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES PF P F F \mathbf{F} F B F B B F B F B B B å 79 $\frac{153}{153}$ 75 49 47 79 79 109 81 113 87 $\frac{171}{171}$ 111 115 83 $\frac{65}{65}$ 69 $\frac{47}{47}$ 51 (31) (0) 71 113 $\frac{71}{71}$ 119 85 (CD) 57 51 $\frac{61}{61}$

MULTIPLE-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES. FRONT AND BACK PITCHES CONDUCTORS CONDUCTORS RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES PO OF F F F B B F B F B F B B F <u>73</u> 73 177 117 73 $\frac{724}{726}$ 179 119 71 75 738 $\frac{71}{71}$ 75 51 $\frac{125}{125}$ $\frac{125}{127}$ 73 51 49 $\begin{array}{c} 754 \\ 756 \end{array}$ 123 $\frac{127}{127}$ 187 73 73 77 77 97 61 57 49 $\frac{756}{758}$ 53 768 189 193 129 93 75 57 $\frac{125}{125}$ $\frac{97}{97}$ 79 $\frac{766}{768}$ 75 193 197 75 780 79 $\frac{67}{67}$ 51 780 77 77 77 133 @ 197 197 131 97

I	MUL	TIPL	E-CI	RCU	IT, E	OUE	BLE V	WINI	DINC	S, F	ORE	RUN	MAR	TAM	URE	
>	TORS				FF	RONT	'ANI	BAC	CK PI	TCHE	ES					LORS
RE-ENTRANCY	CONDUCTORS		4 LES	10	3 LES		B LES		0 LES		2 LES		4 LES	II.	6 LES	No. OF CONDUCTORS
RE	No. OF	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No, 0F
@	802	199	203	131	135	99	103	79	83	65	69	55	59	49	53	802
00	804 806	199 199	203	131 133	135 137	99	103	79 79	83	65 65	69	55 55	59	49	53	804_
00	808	199	203	133	137	99	103	79	83	65	69	55	59	49	53	808
0	810_	201_	205	133	137	99	103	79	83	65	69	55	59	49	53	810
00	812	201	205	133	137	99	103	79	83	65	69	55	59	49	53	812
0	814	201	$\frac{205}{205}$	133	137 137	99	103	79	83	65	69	57 57	61	49	53	814 816
00	818	203	207	135	139	101	105	79	83	67	71	57	61	49	53	818
00	820	203	207	135	139	101	105	79	83	67	71	57	61	49	53	820
0	822	203	207	135	139	101	105	81	85	67	71_	57	61	49	53	822
00	824 826	203	$\frac{207}{209}$	135 135	139 139	101	105 105	81	85 85	67	71	57	61	49	53	824
00	828	205	209	135	139	101	105	81	85	67	71	57	61	49	53	826 828
0	830	205	209	137	141	101	105	81	85	67	71	57	61	49	53	830
.00	832	205	209	137	141	101	105	81	85	67	71	57	61	49	53	832
0	834	207	211	137	141	103	107	81	85	67	71	57	61	51	_55	834
00	836	207	$\begin{array}{c c} 211 \\ 211 \end{array}$	137	141 141	103	107	81	85	67	71	57	61	51	55	836
00	840	207	211	137	141	103	107	81	85 85	67	71	57	61	51	55	838
@	842	209	213	139	143	103	107	83	87	69	73	59	63	51	55	842
00	844	209	213	139	143	103	107	83	87	69	73	59	63	51	55	844
0	846	209	213	139	143	103	107	83	87	69	73	59	63	51	55	846
00	848 850	209	$\begin{array}{c c} 213 \\ 215 \end{array}$	139 139	143 143	103	107 109	83	87 87	69	73 73	59	63	51	55	848
00	852	211	215	139	143	105	109	83	87	69	73	59	63	51	55	852
@	854	211	215	141	145	105	109	83	87	69	73	59	63	51	55	854
00	856	211	215	141_	_145	105	109	83	87	_69	73	59	63	51	55	856
0	858	213	217	141	145	105	109	83	87	69	73	59	63	51	55	858
00	860	213	$\begin{array}{c c} 217 \\ \hline 217 \end{array}$	141	145 145	105 105	109 109	83 85	87	69	73 73	59 59	63	51 51.	55	860 862
00	864	213	217	141.	145	105	109	85	89	69	73	59	63	51	55	864
@	866	215	219	143	147	107	111	85	89	71	75	59_	63	53	57	866
00	868	215	219	143	147	107	111	85	89	71	75	59	63	53	57	868
0	870	215	219	143 143	147 147	107	111	85	89	71	75	61	65	53	57	870
00	872 874	$\begin{array}{c c} 215 \\ \hline 217 \end{array}$	$\begin{array}{c c} 219 \\ \hline 221 \end{array}$	143	147	107	111 111	85 85	89 89	71 71	75 75	61	65	53	57	872 874
00	876	217	221	143	147	107	111	85	89	71	75	61	65	53	57	876
@	878	217_	221	145	149	107	111	85	89	71	75	61	65	53	57	878
00	880	217	221	145	149	107	111	85	89	71	75	61_	65	53	57	880
00	882	$\frac{219}{219}$	$\begin{array}{c} 223 \\ 223 \end{array}$	145	149	109	113	87	91 91	71 71	75 75	61	65	53 53	57 57	882 884
@	886	219	223	145	149	109	113	87	91	71	75	61	65	53	57	886
00	888	219	223	145	149	109	113	87	91	71	75_	61_	65	_53	57	888
@_	890	221	225	147	151	109	113	87	91	73	77	61	65	53	57	890
00	892	221	225	147	151	109	113	87_	91	73	77	61	65	53	57	892
00	894	$\frac{221}{221}$	$\begin{array}{c c} 225 \\ 225 \end{array}$	147	151 151	109	113 113	87	91	73 73	77	61	65 65	53 53	57 57	894 896
@	898	223	227	147	151	111	115	87	91	73	77	63	67	55	59	898
00	900	223	227	147	151	111	115	87	91	73	77	63	67	55	59	900

MULTIPLE-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES.

	88				בים	TIAO	' A NTT	DAC	ות ער	TCH	20					28
5	TO					B										101
A N	200	4	4	(3	8	3	1	0	1	2	1	4	1	6	200
RE-ENTRANCY	CONDUCTORS	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	No. OF CONDUCTORS
ä	No. OF	E	D	E	D	E	D	D	D	E	T	E	D	E	D	9
		F	В	F	В	F	В	F	В	F	В	F	В	F	В	
00	902	223	227	149 149	153 153	111	115 115	89	93	73	77	63	67	55 55	59	902
0	904	225	229	149	153	111	115	89	93	73 73	77	63	67	55	59	904
00	908	225	229	149	153	111	115	89	93	73	77	63	67	55	59	908
0	910	225	229	149	153	111	115	89	93	73	77	63	67	.55	59	910
00	912	225	229	149	153	111	115	89	93	73	77	63	67	55	59	912
@	914	227	231	151	155_	113	117	89	93	75	79	63	67	55	59	914
00	916	227	231	151	155	113	117	89	93	75	79	63	67	55	59	916
00	918	$\begin{array}{c c} 227 \\ 227 \end{array}$	$\frac{231}{231}$	151	155	113	117	89	93	75	79	63	67	55	59_	918
0	922	229	233	151 151	155 155	113 113	117	89 91	93	75 75	79 79	63	67	55 55	59 59	922
00	924	229	233	151	155	113	117	91	95	75	79	63	67	55	59	924
@	926	229	233	153	157	113	117	91	95	75	79	65	69	55	59	926
00	928	229	233	153	157	113	117	91_	95	75	79	65	69_	55	59	928
@	930	231	235	153	157	115	119	91	95	75	79	65	69_	57	61	930
00	932	231	235	153	157	115	119	91	95	75	79	65	69	57	61	932
00	934 936	231 231	235 235	153 153	157 157	115 115	119 119	91	95 95	75 75	79 79	65	69 69	57 57	61	934
0	938	233	237	155	159	115	119	91	95	77	81	65	69	57	61	938
00	940	233	237	155	159	115	119	91	95	77	81_	65	69	57	61	940
0	942	233	237	155	159	115	119	93	97	77	81	65	69	57	61	942
00	944	233	237	155	159	115	119_	93	97	77	81	65_	69	57	61	944
@	946	235	239	155	159	117	121	93	97	77	81	65	69	_ 57	61	946
00	948	235	239	155	159	117	121	93	97	77	81	65	69	57	61	948
00	$\frac{950}{952}$	235 235	239 239	157 157	161 161	117 117	121 121	93 93	97	77	81	65	69	57 57	61	950 952
@	954	237	241	157	161	117	121	93	97	77	81	67	71	57	61	954
00	956	237	241	157	161	117	121	93	97	77	81	67	71	57	61	956
0	958	237	241	157	161	117	121	93	97	77	81	67	71	57	61	958
00	960	237	241	157	161	117	121	93	97	77	81	67	71	57	61,	960
@	962	239	243	159	163	119	123	95_	99	79	83	67	71	59	63	962
00	964	239	243	159	163	119	123	95	99	79	83	67	71	59_	63	964
00	966	239 239	$\begin{array}{c c} 243 \\ 243 \end{array}$	159 159	163 163	119 119	123 123	$\frac{95}{95}$	99	79 79	83 83	67	71 71	59 59	63	966
@	970	241	245	159	163	119	123	95	99	79	83	67	71	59	63	970
00	972	241	245	159	163	119	123	95	99	79	83	67	71	59	63	972
0	974	241	245	161	165	119	123	95	99	79	83	67	71	59	63	974_
00	976	241	245	161	165	119	123	95	99	79	83	_67_	71	59	63	976
0	978	243	247	161	165	121	125	95	99	79	83	67	71	59	63	978
00	980	243	247	161	165	121	125	95	99	79	83	67	71	59	63	980
00	982 984	243 243	247	161 161	165 165	121 121	125 125	97 97	101	79 79	83 83	69	73 73	59 59	63 63	982 984
@	986	245	249	163	167	121	125	97	101	81	85	69 69	73	59	63	986
00	988	245	249	163	167	121	125	97	101	81	85	69	73	59	63	988
0	990	245	249	163	167	121	125	97	101	81	85	69	73	59	63	990
00	992	245	249	163	167	121	125	97	101	81	85	69	73	59	63	992
0	994	247	251	163	167	123	127	97	101	81	85	69	73	61	65	994
00	996	247	251	163	167	123	127	97	101	81	85	69	73	61	65_	996
00	998 1000	$\begin{array}{c} -247 \\ \hline 247 \end{array}$	$\begin{array}{c c} 251 \\ 251 \end{array}$	165 165	169 169	123 123	127	97	101	81	85	69	73	61	65	998
00	2000	21	201	100	100	120	121	91	101	81	85	69	73	61	65	1000

N	NULT	ΓIPL	E-CI	RCU	IT, D	OUE	BLE \	WINE	DING	S, F	OR D	RUN	/ AR	MAT	URE	s.
>	rors				F	RONT	ANI	D BAC	CK PI	TCH	ES					ORS
RE-ENT RANCY	CONDUCTORS		4 LES	II .	6 LES		8 LES		O LES	il .	.2 LES	H	4 LES	II .	6 LES	No. OF CONDUCTORS
RE	No. OF	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF
0	1002	249	253	165	169	123	127	99	103	81	85	69	73	61	65	1002
00	1004	249 249	253 253	165 165	169 169	123 123	$\frac{127}{127}$	99	103	81	85	69	73 73	61	65	1004
00	1008	249	253	165	169	123	127	99	103	81	85	69	73	61	65	1008
0	1010	251	255	167	171	125	129	99	103	83	87	71	75	61	65	1010
00	1012	251	255	167	171	125	129	99	103	83	87	71	75	61	65	1012
0	1014	251	255	167	171	125	129	99	103	83	87	71	75	61	65	1014
	1016 1018	251 253	255 257	167 167	171 171	125	129 129	99	103 103	83	87	71.	75	61	65	1016
00	1020	253	257	167	171	125 125	129	99	103	83	87 87	71 71	75 75	61	65	$1018 \\ 1020$
0	1022	253	257	169	173	125	129	101	105	83	87	71	75	61	65	1020
00	1024	253	257	169	173	125	129	101	105	83	87	71	75	61	65_	1024
0	1026	255	259	169	173	127	131	101	105	83	87	71	75	63	67	1026_
00	1028 1030	255 255	259 259	169 169	173 173	127 127	131 131	101	105	83	87 87	71	75	63	67	1028 1030
00	1032	255	259	169	173	127	131	101	105	83	87	71	75 75	63	67	1030
0	1034	257	261	171	175	127	131	101	105	85	89	71	75	63	67	1034
00	1036	257	261	171	175	127	131	101	105	85	89	71	75	63	67	1036
0	1038	257	261	171	175	127	131	101	105	85	89	73	77	63	67	1038
00	$1040 \\ 1042$	$\begin{array}{c c} 257 \\ 259 \end{array}$	$\begin{array}{c c} 261 \\ \hline 263 \end{array}$	171 171	175 175	127	131 133	101 103	105	85	89	73	77	63	67	1040
00	1044	259	263	171	175	129	133	103	107	85 85	89 89	73 73	77	63	67	1042
0	1046	259	263	173	177	129	133	103	107	85	89	73	77	63	67	1046
00	1048	259	263	173	177	129	133	103	107	85	89	73	77	63	_ 67	1048
0	1050	$\frac{261}{261}$	$\begin{array}{c c} 265 \\ \hline 265 \end{array}$	173	177	129	133	103	107	85	89	73	77	63	67	1050
(Q)	1052 1054	261	265	173 173	177 177	129 129	133 133	103	107 107	85 85	89 89	73 73	77	63	67	1052 1054
00	1056	261	265	173	177	129	133	103	107	85	89	73	77	63	67	1054
@	1058	263	267	175	179	131	135	103	107	87	91	73	77	65	69	1058
00	1060	263	267	175	179	131	135_	103	107	87	91	73	77	65	69	1060
0	1062	263	267	175	179	131	135	105	109	87	91	73	77	65	69	1062
00 (D)	1064 1066	$\frac{263}{265}$	267 269	175 175	179 179	131	135 135	105	109	87 87	91 91	73 75	77 79	$\frac{65}{65}$	69	1064 1066
00	1068	265	269	175	179	131	135	105	109	87	91	75	79	65	69	1068
@	1070	265	269	177	181	131	135	105	109	87	91	75	79	65	69	1070
00	1072	265	269	177	181	131	135	105	109	87	91	75	79	65	69	1072
@	1074	267	271	177	181	133	137	105	109	87	91	75	79	65	69	1074
_ 00	1076 1078	$\frac{267}{267}$	$\begin{array}{c c} 271 \\ \hline 271 \end{array}$	177 177	181 181	133 133	137 137	105 105	109	87 87	91	75 75	79 79	65 65	69 _	1076 1078
00	1080	267	271	177	181	133	137	105	109	87	91	75	79	65	69	1078
0	1082	269	273	179	183	133	137	107	111	89	93	75	79	65	69	1082
00	1084	269	273	179	183	133	137	107	111	89	93	75	_ 79	65	69	1084
00	1086	269 269	$\begin{array}{c c} 273 \\ \hline 273 \end{array}$	179	183	133	137	107	111	89	93	75	79	65	69	1086
@	1090	$\frac{269}{271}$	275	179 179	183 183	133 135	137 139	107 107	111 111	89 89	93	75 75		65 67	$\frac{69}{71}$	1088 1090
00	1092	271	275	179	183	135	139	107	111	89	93	75	79	67	71	1090
0	1094	271	275	181	185	135	139	107	111	89	93	77	81	67	71	1094
00	1096	271	275	181	185	135	139_	107	111	89	93	77	81	67	71	1096
00	1098 1100	273	277	181	185	135	139	107	111	89	93	77	81	67	71	1098
	1100	273	277	181	185	135	139	107	111	_89	93	77	81	67	71	1100

MULTIPLE-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS FRONT AND BACK PITCHES CONDUCTOR RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES OF OF F B F F B F B F B F B F B B $\frac{277}{279}$ @ $\frac{71}{71}$ $\frac{77}{77}$ 79 $\frac{71}{73}$ 139 $\frac{279}{279}$ 79 79 $\frac{285}{287}$ 73 $\frac{73}{73}$ 1146 193 $\frac{145}{145}$ 117 $\frac{113}{113}$ $\frac{141}{141}$ (0) 71 71 81 143 $\frac{71}{71}$ 119 140 121 $\frac{145}{145}$ $\frac{71}{71}$ 75 $\frac{147}{147}$ 77

Above choice of Pitches will prove most satisfactory, although, as stated in text, the absolute magnitude of average pitch may be varied within reasonable limits.

MULTIPLE-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES RE-FNTRANCY POLES POLES POLES POLES POLES POLES POLES OF P F B F B F B F B F B F B F B $\frac{151}{151}$ 7.9 75 75 311 315 $\begin{array}{c} 211 \\ 211 \end{array}$ $\frac{125}{125}$ $\frac{107}{107}$.77 $\begin{array}{c} 1272 \\ 1274 \end{array}$ 319 $\frac{325}{325}$ $\frac{217}{217}$ $\frac{213}{213}$ 159 $\frac{321}{321}$ 79 $\frac{127}{127}$

MULTIPLE-CIRCUIT, DOUBLE WINDINGS, FOR DRUM ARMATURES. FRONT AND BACK PITCHES 4 6 8 10 12 14 16

>	ORS				FI	RONT	' ANI	D BA	CK PI	TCH	ES					ORS
RE-ENTRANCY	UCT		4		6		8	1	.0	-	12	1	4		6	5
A F	QNO	11	LES	II.	LES	H	LES	11	LES	II .	LES	ll .	LES	11	LES	QNO
iii iii	00	10	1	10		10		10		10	LLO	10	T		LLO	F C
OC.	No. OF CONDUCTORS	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF CONDUCTORS
@	1302	323	327	215	219	161	165	129	133	107	111_	91	95	79	83	1302
00	1304	323	327	215	219	161	165	129	133	107	111	91	95	79	83	1304
00	1306 1308	325	329	215 215	219 219	161 161	165 165	129 129	133	107	111	91	95	79	83	1306
@	1310	325	329	217	221	161	165	129	133	107	111	91	95	79	83	1310
00	1312	325	329	217	221	161	165	129	133	107	111	91	95	79	83	1312
0	1314	327	331	217	221	163	167	129	133	107	111	91	95	81	85	1314
00	1316	327	331	217	221	163	167	129	133	107	111	91	95	81 .	85	1316
00	1318	327	331 331	$\begin{array}{ c c c c }\hline 217\\\hline 217\\\hline \end{array}$	$\begin{array}{c} 221 \\ 221 \end{array}$	163 163	167 167	129 129	133 133	107	111	93	$\frac{97}{97}$	81	85 85	1318 1320
@	1322	329	333	219	223	163	167	131	135	109	113	93	97	81	85	1322
00	1324	329	333	219	223	163	167	131	135	109	113	93	97	81	85	1324
0	1326	329	333	219	223	163	167	131	135	109	113	93	97	81	85	1326
00	1328 1330	329	333	219 219	$\begin{array}{c} 223 \\ 223 \end{array}$	163 165	167 169	131 131	135 135	109	113	93	97	81	85	1328
00	1332	331	335	219	223	165	169	131	135	109	113 113	93	97	81	85 85	1330 1332
0	1334	331	335	221	225	165	169	131	135	109	113	93	97	81	85	1334
00	1336	331	335	221	225	165	169	131	135	109	113	93	97	81	85	1336
0	1338	333	337	221	225	165	169	131	135	109	113	93	97	81	85	1338
00	1340	333	337	221	225	165	169	131	135	109	113	93	97	81	85	1340
00	1342 1344	333 333	337	$\begin{array}{c} 221 \\ 221 \end{array}$	$\begin{array}{c} 225 \\ 225 \end{array}$	165 165	169 169	133 133	137 137	109 109	113 113	93	97	81	85 85	1342 1344
0	1346	335	339	223	227	167	171	133	137	111	115	95	99	83	87	1346
00	1348	335	339	223	227	167	171	133	137	111	115	95	99	83	87	1348
0	1350	335	339	223	227	167	171	133	137	111	115	95	99	83	87	1350
00	1352	335	339	223	227	167_	171	133	137	111	115	95	_99	83	87	1352
00	1354 1356	337 337	341	223 223	$\begin{array}{c} 227 \\ 227 \end{array}$	167	171	133	137	111	115	95	99	83	87	1354
@	1358	337	341	225	229	167 167	171 171	133 133	137 137	111	115 115	95 95	99	83	87 87	1356 1358
00	1360	337	341	225	229	167	171	133	137	111	115	95	99	83	87	1360
@	1362	339	343	225	229	169	173	135	139	111	115	95	99	83	87	1362
00	1364	339	343	225	229	169	173	135_	139	111	115	95	99	83	87	1364
00	1366 1368	339 339	343	$\begin{array}{c} 225 \\ 225 \end{array}$	$\frac{229}{229}$	169	173	135	139	111	115	95	99	83	87	1366
@	1370	341	345	227	231	169 169	173 173	135 135	139 139	111	115	95 95	99	83	87 87	1368 1370
00	1372	341	345	227	231	169	173	135	139	113	117	95	99	83	87	1372
0	1374	341.	345	227	231	169	173	135	139	113	117	97	101	83	87	1374
00	1376	341	345	227	231	169	173	135 135	139	113	117 117	97	101	83	87	1376
@	1378	343	347	227	231	171	175		139	113		97	101	85	89	1378
00	1380 1382	343	347	227 229	231 233	171 171	175 175	135 137	139 141	113	117 117	$\frac{-97}{97}$	101	85 85	89 89	$1380 \\ 1382$
00	1384	343	347	229	233	171	175	137	141	113	117	97	101	85	89	1384
@	1386	345	349	229	233	171	175	137	141	113	117	97	101	85	89	1386
00	1388	345	349	229	233	171	175	137	141	113_	117	97	101	85	89	1388
00	1390	345	349	229	233	171	175	137	141	113	117	97	101	85	89	1390
@	1392 1394	345	349 351	$\begin{array}{c} 229 \\ 231 \end{array}$	233	171 173	175 177	137 137	141	113 115	117	97	101 101	85 85	89	1392 1394
00	1396	347	351	231	235	173	177	137	141	115	119 119	97	101	85	89	1396
@	1398	347	351	231	235	173	177	137	141	115	119	97	101	85	89	1398
00	1400	347	351	231	235	173	177	137	141	115	119	97	101	85	89	1400

I	MUL	TIPL	E-CI	RCU	IT, E	OUE	BLE	WINI	DINC	GS, F	ORI	DRUI	MAR	TAM	URE	S.
>	TORS				FF	RONT	'ANI	BAC	CK PI	ТСНІ	ES					No. OF CON'DUCTORS
SANC	CONDUCTORS	11	4		3		8	81	0		2	1			6	DOG
RE-ENT RANCY	CON	Po	LES	Po	LES	Po	LES	Pol	LES	Po	LES	Pol	LES	Po	LES	OO
8	No.0F	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. 0F
00	1402 1404	349	353 353	231 231	235 235	173 173	177 177	139 139	143 143	115 115	119 119	99	103 103	85 85	89 89	1402 1404
0	1406	349	353	233	237	173	177	139	143	115	119	99	103	85	89	1404
00	1408	349	353	233	237	173	177	139	143	115	119	99	103	85	89	1408
0	1410	351	355	233	237	175	179	139	143	115	119	99	103	87	91	1410
00	1412	351	355	233	237	175	179	139	143	115	119	99	103	87	91	1412
00	1414 1416	351	355	233	237	175 175	179 179	139	143 143	115 115	119	99	103	87	91	1414
@	1418	353	357	235	239	175	179	139	143	117	121	99	103	87	91	1418
00	1420	353	357	235	239	175	179	139	143	117	121	99	103	87	91	1420
@_	1422	353	357	235	239	175	179	141	145	117	121	99	103	87	91	1422
00	1424 1426	353	$\frac{357}{359}$	$\frac{235}{235}$	239 239	175 177	179 181	141	$\frac{145}{145}$	117	121 121	99	103 103	87 87	91 91	1424 1426
00	1428	355	359	235	239	177	181	141	145	117	121	99	103	87	91	1428
0	1430	355	359	237	241	177	181	141	145	117	121	101	105	87	91	1430
. 00	1432	355	359	237	241	177	181	141	145	117	121	101	105	87	91	1432
00	1434 1436	357 357	361 361	237	$\begin{array}{c} 241 \\ 241 \end{array}$	177 177	181	141	145	117	121	101	105 105	87 87	91	1434
(3)	1438	357	361	237	241	177	181 181	141	145 145	117	$\frac{121}{121}$	101	105	87	91	1438
00	1440	357	361	237	241	177	181	141	145	117	121	101	105	87	91	1440
@_	1442	359	363	239	243	179	183	143	147	119	123	101	105	89_	93	1442
00	1444	359	363	239	243	179	183	143	147	119	123	101	105	89	93	1444
00	1446 1448	359 359	363 363	239 239	243 243	179 179	183 183	143	$\frac{147}{147}$	119 119	123 123	101 101	105 105	89	93 93	1446 1448
0	1450	361	365	239	243	179	183	143	147	119	123	101	105	89	93	1450
00	1452	361	365	239	243	179	183	143	147	119	123	101	105	89	93	1452
0	1454	361	365	241	245	179	183	143	147	119	123	101	105	89	93	1454
00 @	$\frac{1456}{1458}$	361	365 367	$\begin{array}{ c c c }\hline 241\\\hline 241\\\hline \end{array}$	$\begin{array}{c c} 245 \\ \hline 245 \end{array}$	179 181	183 185	143	147	119 119	123 123	101	105 107	89	93	1456 1458
00	1460	363	367	241	245	181	185	143	147	119	123	103	107	89	93	1460
@	1462	363	367	241	245	181	185	145	149	119	123	103	107	89	93	1462
00	1464	363	367	241	245	181	185	145	149	119	123	103	107	89	93	1464
00	1466	365	369	243 243	247	181	185	145	149	121	125	103	107	89	93	1466
0	1468 1470	365 365	369	243	$\begin{array}{c c} 247 \\ \hline 247 \end{array}$	181 181	185 185	145	$\frac{149}{149}$	121 121	$125 \\ 125$	103	107	89 89	93 93	1468 1470
00	1472	365	369	243	247	181	185	145	149	121	125	103	107	89	93	1472
0	1474	367	371	243	247	183	-187	145	149	121	125	103	107	91	95	1474
00	1476	367	371	243	247	183	187	145	149	121	125	103	107	91	95	1476
00	1478 1480	367	371	245	249	183	187	145	149	121	125	103	107	91	95_	1478
@	1482	367 369	371 373	$\begin{array}{c} 245 \\ 245 \end{array}$	$\begin{array}{c} 249 \\ 249 \end{array}$	183 183	187 187	145	$\frac{149}{151}$	$\begin{array}{c c} 121 \\ \hline 121 \end{array}$	$\frac{125}{125}$	103	107 107	91	95 95	$\begin{array}{c c} 1480 \\ 1482 \end{array}$
00	1484	369	373	245	219	183	187	147	151	121	125	103	107	91	95	1484
0	1486	369	373	245	249	183	187	147	151	121	125	105	109	91	95	1486
00	1488	369	373	245	249	183	187	147	151	121	125	105	109	91	95	1488
00	$\begin{array}{c} 1490 \\ 1492 \end{array}$	371	375 375	$\frac{247}{247}$	$\begin{array}{c} 251 \\ \hline 251 \end{array}$	$\frac{185}{185}$	$\frac{189}{189}$	147 147	151 151	123 123	$\begin{array}{c c} 127 \\ \hline 127 \end{array}$	105 105	109	91	95 95	1490
0	1494	371	375	247	251	185	189	147	151	123	127	105	109	91	95	$\begin{array}{ c c c }\hline 1492\\\hline 1494\\ \end{array}$
00	1496	371	375	247	251	185	189	147	151	123	127	105	109	91	95	1496
0	1498	373	377	247	251	185	189	147	151	123	127	105	109	91	95	1498
00	1500	373	377	247	251	185	189	147	151	123	127	105	109	91	95	1500

	MUL	TIPL	E-C	IRCU	IIT, I	DOU	BLE	WIN	DIN	GS, F	OR I	DRU	M AF	RMAT	ruri	ES.
>:	CONDUCTORS				FI	RONT	ANI	BAC	CK PI	ТСНІ	ES					ORS
RANG	ona		4	1	6		8	1	0	1	2 .	1	4	1	6	Lona
E-ENTRANCY		Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	CON
R	No.0F	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF CONDUCTORS
0	1502	373	377	249	253	185	189	149	153	123	127	105	109	91	95	1502
00	1504 1506	373 375	377 379	249	$253 \\ 253$	185 187	189	149 149	153 153	123 123	$\frac{127}{127}$	105	109	91 93	95	1504
00	1508	375	379	249	253	187	191	149	153	123	127	105	109	93	97	1506 1508
0	1510	375	379	249	253	187	191	149	153	123	127	105	109	93	97	1510
00	1512	375	379	249	253	187	191	149	153	123	127	105	109	93	97	1512
0	1514	377	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													
00	1516															1516
00	1518 1520															1518
@	1522	379	383	251	255	189	193	151	155	125	129	107	111	93	97	$1520 \\ 1522$
00	1524	379	383	251	255	189	193	151	155	125	129	107	111	93	97	1524
0	1526	379	383	253	257	189	193	151	_155	125	129	107	111_	93	97	1526
00	1528	379	383	253	257	189	193	151	155	125	129	107	111	93	97	1528
00	1530 1532	381	385 385	$\frac{253}{253}$	$\frac{257}{257}$	189 189	193 193	151 151	$\begin{array}{r} 155 \\ 155 \end{array}$	$\begin{array}{r} 125 \\ \hline 125 \end{array}$	129 129	107	111 111	93	97	1530
@	1534	381	385	253	257	189	193	151	155	125	129	107	111	93	97	1532 1534
00	1536	381	385	253	257	189	193	151	155	125	129	107	111	93	97	1534
@	1538	383	387	255	259	191	195	151	155	127	131	107	111	95	99	1538
00	1540	383	387	255	259	191	195	151	155	127	131	107	111	95	99	1540
00	1542	383	387	255	259	191	195	153	157	127	131	109	113	95	99	1542
@	1544 1546	383	387	$\begin{array}{r} 255 \\ 255 \end{array}$	259 259	191 191	195 195	153 153	157 157	$\begin{array}{ c c c c }\hline 127\\\hline 127\\\hline \end{array}$	131	109	113	95	99	1544
00	1548	385	389	255	259	191	195	153	157	127	131	109	113 113	95	99	1546 1548
0	1550	385	389	257	261	191	195	153	157	127	131	109	113	95	99	1550
00	1552	385	389	257	261	191	195	153	157	127	131	109	113	95	99	1552
@	1554	387	391	257	261	193	197	153	157	127	131	109	113	95	99	1554
00	1556 1558	387	391 391	257 257	$\frac{261}{261}$	193 193	197 197	153	157	127	131	109	113	95	99	1556
00	1560	387	391	257	261	193	197	153 153	$\frac{157}{157}$	127 127	131 131	109	113	95	99	1558 1560
@	1562	389	393	259	263	193	197	155	159	129	133	109	113	95	99	1562
00	1564	389	393	259	263	193	197	155	159	129	133	109	113	95	99	1564
0	1566	389	393	259	263	193	197	155	159	129	133	109_	113	95	99	1566
00	1568 1570	389	393 395	259	263	193	197	155	159	129	133	109	113	95	99	1568
00	1570	391	395	259 259	263 263	195 195	199 199	155 155	159	129	133	111	115	97	101	1570
0	1574	391	395	261	265	195	199	155	$\frac{159}{159}$	129 129		111	115 115	97	101 101	1572 1574
00	1576	391	395	261	265	195	199	155	159	129	133	111	115	97	101	1576
0	1578	393	397	261	265	195	199	155	159	129	133	111	115	97	101	1578
00	1580	393	397	261	265	195	199	155	159	129	133	111	115	97	101	1580
00	1582 1584	393	397 397	$\frac{261}{261}$	$\frac{265}{265}$	195	199	157	161	129	133	111	115	97	101	1582
@	1586	395	399	263	267	195 197	199 201	157 157	161 161	129 131	133 135	111	115	97	101	1584
00	1588	395	399	263	267	197	201	157	161	131	135	111 111	115 115	97	101	1586 1588
0	1590	395	399	263	267	197	201	157	161	131	135	111	115	97	101	1590
00	1592	395	399	263	267	197	201	157	161	131	135	111	115	97	101	1592
@	1594	397	401	263	267	197	201	157	161	131	_135	111	115	97	101	1594
00 (D)	1596 1598	397	401	$\begin{array}{c} 263 \\ 265 \end{array}$	$\frac{267}{269}$	197 197	201	157	161	131	135	111	115	97	101	1596
00	1600	397	401	265	269	197	201	157 157	161 161	131	135 135	$\frac{113}{113}$	117	97 97	101	1598 1600
			About	chaica	of Dilah	201	202	101	101	TOT	100	110	111	91	101	1000

WINDING TABLES FOR MULTIPLE-CIRCUIT, TRIPLE WINDINGS FOR DRUM ARMATURES.

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. OF CONDUCTORS FRONT AND BACK PITCHES CONDUCTORS RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES OF F F B F B F B B F B F B F B å @ (1) $\frac{37}{37}$ $\frac{17}{17}$ @ @ (W) $\frac{218}{220}$ @ യ 11 @ $\frac{17}{17}$ $\overline{25}$ @ $\frac{27}{27}$ $\frac{21}{21}$ $\frac{27}{27}$ $\frac{236}{238}$ $\frac{37}{37}$ $\frac{19}{19}$ $\overline{21}$ @ @ 13 15 $\frac{21}{21}$ (00) $\frac{1}{27}$ @ $\overline{21}$ æ 67 $\frac{23}{23}$ @ @ 23 23 W $\frac{19}{19}$ Q @ 71 @ $\frac{25}{25}$ $\frac{276}{278}$ $\frac{37}{37}$ **@** @ 75 @ @

Above choice of Pitches will prove most satisfactory, although, as stated in text, the absolute magnitude of average pitch may be varied within reasonable limits.

 $\frac{27}{27}$

(QQ)

@

 $\frac{27}{27}$

 $\frac{25}{25}$

	MUL	TIPL	E-C	IRCL	IIT, T	TRIP	LE V	VIND	ING	s, Fo	OR D	RUM	ARI	MAT	URE	s.
>	ORS				FI	RONT	ANI	D BAG	CK PI	TCH	ES.					ORS
RE-ENTRANCY	CONDUCTORS		4 LES	ll .	B LES	11	8 LES	1)	0 LES		2 LES		4 LES		6 LES	No. OF CONDUCTORS
2	No.0F	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No.0F
@	302	73	73 79 47 53 35 41 27 33 23 29 19 25 15 21 30 73 79 47 53 35 41 27 33 23 29 19 25 15 21 30 73 79 47 53 35 41 27 33 23 29 19 25 15 21 30												302	
@	304		73 79 47 53 35 41 27 33 23 29 19 25 15 2													304
000	306	73	79	47	55	35	41		33	23	29		$\frac{25}{25}$			306
@	310	75	81	49	55	35	41	27	33	23	29	19	25	17	23	308
000	312	75	81	49	55	35	41	29	35	23	29	19	25	17	23	312
00	314	75	81	49	55	37	43	29	35	23	29	19	25	17	23	314
(QQ)	316	75	81	49	55	37	43	29	35	23	29	19	25	17	23	316
000	318	77	83	49	55	37	43	29	35	23	29	19	25	17	23	318
(S)	320	77	83	51	57_	37	43	29	35	23	29	19	25	17	23	320
000	$\begin{array}{c} 322 \\ 324 \end{array}$	77	83	51	57 57	37	43	29	35	23	$\frac{29}{29}$	19	$\frac{25}{27}$	17	23	322
@	326	79	85	51	57	37	43	29	35	25	31	21	27	17	23	326
@	328	79_	85	51	57	37	43	29	35	25	31	21	27	17	23	328
000	330	79	85	51	57	39	45	29	35	25	31	-21	27	17	23	330
@	332	79	85	53	59	39	45	31	37	25	31	21	27	17	23	332
@	334	81	87	53	59	39	45	31	37	25	31	21	27	17	23	334
000	336	81	87	53 53	59 59	39	45	31	37	25	31	21	27	17	23	336
@	340	81	87	53	59	39	45	31	37	$\begin{array}{c} 25 \\ 25 \end{array}$	31	$\frac{21}{21}$	27	19 19	25 25	338
000	342	83	89	53	59	39	45	31	37	25	31	21	27	19	25	342
(QQ)	344	83	89	55	61	39	45	31	37	25	31	21	27	19	25	344
@	346	83	89	55_	61	41	47	31_	37	25	31	21	27	19	25	346
000	348	83	89	55	61	41	47	31	37	25	31	21	27	19	25	348
@	350 352	85 85	91	55 55	61	41	47	31	37	27	33_	21	27	19	25	350
000	354	85	91	55	61	41	47	33	39	27 27	33	23	29	19 19	$\begin{array}{r} 25 \\ 25 \end{array}$	352 354
@	356	85	91	57	63	41	47	33	39	27	33	23	29	19	25	356
(QQ)	358	87	93	57	63	41	47	33	39	27	33	23	29	19	25	358
000	360	87	93	57	63	41	47	33	39	27	33	23	29	19	25	360
(0)	362	87	93	57	63	43	49	33	39	27	33	23	29	19	25	362
000	364	87 89	93	57 57	63	43	49	33	39	27	33	23	29	19	25	364
@	368	89	95 95	59	63	43	49	33	39 39	27 27	33	23	29 29	19 19	$\begin{array}{r} 25 \\ \hline 25 \end{array}$	366 368
@	370	89	95	59	65	43	49	33	39	27	33	23	29	21	27	370
000	372	89	95	59	65	43	49	35	41	27	33	23	29	21	27	372
@	374	91	97	59	65	43	49	35	41	29	35	23	29	21	27	374
000	376	91	97	59	65	43	49	35	41	29	35	23	29	21	27	376
@	378	91	97	59 61	65	45	51 51	35	41	29	35	23	29	$\frac{21}{21}$	27	378
@	382	93	99	61	67	45	51	35	41	29 29	35 35	25	31 31	$\frac{21}{21}$	27 27	380
000	384	93	99	61	67	45	51	35	41	29	35	25	31	21	27	384
@	386	93	99	61	67	45	51	35	41	29	35	25	31	21	27	386
@	388	93	99	61	67	45	51	35	41	29	35	25	31	21	27	388_
000	390	95	101	61	67	45	51	35	41	_29	35	25	31	21	27	390
@	392 394	95 95	101	63	69	45	51	37	43	29	35	25	31	21	27	392
000	396	95	101	63	69	47	53 53	37 37	43	29	35	25	31	21	27	394
@	398	97	103	63	69	47	53	37	43	29 31	35 37	$\begin{array}{c} -25 \\ -25 \end{array}$	31	$\begin{array}{c c} 21 \\ 21 \end{array}$	$\frac{27}{27}$	396 398
@	400	97	103	63	69	47	53	37	43	31	37	25	31	21	27	400

MULTIPLE-CIRCUIT TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS FRONT AND BACK PITCHES CONDUCTOR RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES OF F F F F F F B B F B B B B B @ @ $\frac{71}{71}$ $\overline{29}$ @ @ @ 73 55 $\frac{23}{23}$ @ @ 75 29 @ $\frac{45}{47}$ (00) @ 71 @ @ 59 35 $\frac{25}{25}$ $\frac{31}{31}$ @ 117 79 79 73 @ (00) 113 75 75 $\begin{array}{c} 61 \\ 61 \end{array}$ $\frac{35}{35}$ @ 119 (00) $\frac{37}{37}$ (00) 37 77 77 (20) 37 @ 79 $\frac{27}{27}$ @ 31 @ $\frac{127}{127}$ 81 59 $\frac{65}{65}$ 53 39 33 39 $\frac{29}{29}$ (20)

I		TIPL	E-CI	RCU	ІТ, Т	RIP	LE W	IND	INGS	s, FO	R DI	RUM	ARN	/ATU	JRES	
<u>}</u>	CONDUCTORS				FI	RONT	'ANI	BAC	CK PI	TCHI	ES					No. OF CONDUCTORS
SANC	DOC		4	(3		8	1	0	1	2	1	4	1	6	DOC
RE-ENTRANCY		Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	COO
in an	No. 0F	F	В	F	В	F	В	F	В	F	В	F	В	F	В	9. OF
@	502	123	129	81	87	59	65	47	53	39	45	33	39	29	35	502
000	504	123	129	81	87	59	65	47	53	39	45	33	39	29	35	504
(B)	506 508	123 123	129 129	81 81	87 87	61	67	47	53 53	39	45	33	39	29	35 35	506 508
000	510	125	131	81	87	61	67	47	53	39	45	33	39	29	35	510
@	512	125	131	83	89	61	67	49	55	39	45	33	39	29	35	512
@	514	125	131	83	89	61	67	49	55	39	45	33	39	29	35	514
000	516 518	$125 \\ 127$	131 133	83	89 89	61	67	49	55 55	39_	45	33	39	29	35 35	516 518
@	520	127	133	83	89	$\frac{61}{61}$	67	49	55	41	47	35	41	29	35	520
000	522	127	133	83	89	63	69	49	55	41	47	35	41	29	35	522
@	524	127	133	85	91	63	69	49	55	41	47	35	41	29	35_	524
000	$\frac{526}{528}$	129 129	135 135	85 85	91 91	63	69	49	55 55	41	47	35	41	29	35	526 528
@	530	129	135	85	91	63	69	49	55	41	47	35 35	41	31	37	530
@	532	129	135	85	91	63	69	.51	57	41	47	35	41	31	37	532
000	534	131	137	85	91	63	69	51	57	41	47	35	41	31	37	534
<u>@</u>	536	131	137	87	93	63	69	51	57	41	47	35	41	31	37	536
000	538 540	131	137 137	87 87	93 93	65 65	71 71	51	57 57	41	47	35 35	41	31	37	538
@	542	133	139	87	93	65	71	51	57	43	49	35	41	31	37	542
@	544	133	139	87	93	65	71	51	57	43	49	35	41	31	37	544
000	546	133	139	87	93	65	71	51	57	43	49	35	41	31	37	546
@	548 550	133 135	139 141	89 89	95 95	65	$\frac{71}{71}$	51	57	43	49	37	43	31	37	548
000	552	135	141	89	95	65 65	71	51 53	57 59	43_	49	37	43	31	37	550 552
@	554	135	141	89	95	67	73	53	59	43	49	37_	43	31	37	554
00	556	135	141	89	95	67	73	53	59	43	49	37	43	31	37	556
000	558	137	143	89	95	67	73	53	59	43	49	37	43	31	37	558
@ @	560 562	137 137	143 143	$\frac{-91}{91}$	$\frac{97}{97}$	67 67	73 73	53 53	59 59	43	49	37	43	31	37	560 562
000	564	137	143	91	97	67	73	53	59	43	49	37 37	43	33	39	564
(QQ)	566	139	145	91	97	67 67	73	53	59	45	51	37	43	33	39	566
@	568	139	145	91	97		73	53	59	45	51	37	43	33	39	568
000	570	139	145	91	97	69	75	53	59	45	51	37	43	33	39	570
@	572 574	$\frac{139}{141}$	$\begin{array}{c} 145 \\ \hline 147 \end{array}$	93 93	99	$\frac{69}{69}$	75 75	55 55	61	45 45	51 51	37	43	33	39_	572 574
000	576	141	147	93	99	69	75	55	61	45	51	39	45	33	39	576
00	578	141	147	93	99	69	75	55	61	45	51	39	45	33	39	578
@	580	141	147	93	99	69	75	55	61	45	51	39	45	33	39	580
000	$\begin{array}{r} 582 \\ 584 \end{array}$	143	149 149	93 95	99	69	75	55	61	45	_51	39	45	33	39	582
@	586	$\frac{143}{143}$	149	$-\frac{95}{95}$	101	69	75 77	55 55	$\begin{array}{c c} 61 \\ \hline 61 \end{array}$	45 45	51 51	39	45	33	39	584 586
000	588	143	149	95	101	71	77	55	61	45	51	39	45	33	39	588
യ	590	145	151	95	101	71	77	55	61	47	53	39	45	33	39	590
(20)	592	145	151	95	101	71	77	57	63	47	53	39	45	33	39	592
000 (QQ)	594 596	145 145	151 151	95 97	101 103	71 71	77	57	63	47	53	39	45	35	41	594
<u>@</u>	598	147	153	97	103	71	77	57 57	63	47	53 53	$-\frac{39}{39}$	45 45	35	41	596 598
000	600	147	153	97	103	71	77	57	63	47	53	39	45	35	41	600

	MUL	TIPL	E-C	RCU	IT, 1	TRIP	LE W	IND	INGS	5, FC	R D	RUM	ARN	JATU	JRES	3.
>-	TORS				FF	RONT	ANI	BAC	CK PI	TCHI	ES					TORS
RE-ENT RANCY	CONDUCTORS		4		3	IT	3		0		2	11	4		.6	No. OF CONDUCTORS
FENT	OF CON	Po	LES	Po	LES	Po	LES	РО	LES	Po	LES	Po	LES	РО	LES	F CO
	0.0 0	F	В	F	В	F	В	F	В	F	В	F	В	F	В	
 @	$\frac{602}{604}$	147 147	153 153	97	103 103	73 73	79 79	57 57	63	47	53	39 41	45	35 35	41 41	602
000	606 608	149 149	155 155	97	103 105	73 73	79 79	57 57	63 63	47	53 53	41	47	35	41	606
@	610	149	155	99	105	73	79	57	63	47	53	41	47	35 35	41	610
000	$\frac{612}{614}$	149 151	155 157	99	$\begin{array}{c c} 105 \\ 105 \end{array}$	73 73	79 79	59 59	65 65	47	53	41	47	35	41	612
000	616 618	151 151	157 157	99	$\frac{105}{105}$	73 75	79 81	59 59	65 65	49	55 55	41	47	35	41	616
@	620	151	157	101	107	75	81	59	65	49	55	41	47	35	41	620
000	$\begin{array}{c} 622 \\ 624 \end{array}$	153 153	159 159	101	107 107	75 75	81 81	59 59	65 65	49	55 55	41	47	35	41	622 624
@	626 628	153 153	159 159	101	107 107	75	81 81	59 59	65 65	49	55 55	41	47	37 37	43	626 628
000	630	155	161	101	107	75 75	81	59	65	49	55	41	47	37	43	630
@	$\frac{632}{634}$	155 155	161 161	103	109 109	75 77	81 83	61	67	49	55	43	49	37	43	632
000	636	155	161	103	109	77	83	61	67	49	55	43	49	37	43	636
@	638	157 157	163 163	103	109	77	83	$\frac{61}{61}$	$\frac{67}{67}$	51	57	43	49	37	43	638
000	642	157	163	103	109	77	83	61_	67	51	57	43	49	37	43	642
@	644	157 159	163 165	105	111 111	77	83 83	61	67	51 51	57 57	43	49	37	43	644
000	648	159	165	105	111	77	83	61	67	51	57	43	49	37	43	648
@	$650 \\ 652$	159 159	$\frac{165}{165}$	105 105	111 111	79 79	85 85	61	67 69	51 51	57 57	43	49	37	43	650 652
000	654 656	161	167	105	111 113	79	85 85	63	69 69	51 51	57 57	43	49 49	37	43	654 656
@	658	161 161	167 167	107	113	79 79	85	63	69	51	57	43	49	39	45	658
000	$\frac{660}{662}$	161 163	167 169	107 107	113 113	79 79	85 85	63	69 69	51 53	57 59	45 45	51 51	39	45 45	660
@	664	163	169	107	113	79	85	63	69	53	59	45	51	39	45	664
000 @	666	163 163	$\frac{169}{169}$	107 109	113 115	81	87 87	63	69	53 53	59 59	45 45	51 51	39	45 45	668
@	670	165	171	109	115	81	87	63	69	53	59	45	51	39	45	670
000	$\frac{672}{674}$	165 165	171 171	109	115 115	81 81	87 87	65	71 71	53 53	59 59	45 45	51	39	45	672
@	676	165	171	109	115	81	87	65	71	53	59	45	51	39_	45	676
000	678 680	167 167	173 173	109	115 117	81 81	87 87	65	71 71	53 53	59 59	45 45	51 51	39	45 45	680
@	682	167	173	111	117	83	89	65	71	53	59	45	51	39	45	682
000	$\frac{684}{686}$	167 169	173 175	111	117 117	83 83	89	65 65	$\begin{array}{c c} 71 \\ \hline 71 \end{array}$	53_	59 61	45	51 51	39	45 45	684
00	688	169	175	111	117	83	89	_65	71	55	61	47	53	39	45	688
000	$\frac{690}{692}$	169 169	175 175	111	117	83_	89 89	$\frac{65}{67}$	$\begin{array}{c c} 71 \\ 73 \end{array}$	55 55	61	47	53 53	41	47	690
@	694	171	177	113	119	83	89	67	73	55	61	47	53	41	47	694
000 (QQ)	696 - 698	171 171	177 177	113 113	119 119	83 85	89 91	67 67	73 _73	55 55	61	47	53 53	41 41	47	696 698
@	700	171	177	113	119	85	91	67	73	55	61	47	53	41	47	700

	MUL	TIPL	E-CI	RCU	IT, 7	TRIP	LEW	VIND	ING	s, FC	R D	RUM	ARI	MAT	JRES	3.
>	CONDUCTORS				FF	RONT	ANI	BAC	CK PI	ТСНІ	ES					ORS
RANG	ono	4	4	(3		3	1	0	1	2	1	4		16	DUG
RE-ENTRANCY	CON	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	Po	LES	CON
88	No.0F	F	В	F	В	F	В	F	В	F	В	F	В	F	В	No. OF CONDUCTORS
000	702	173	179	113	119	85	91_	67	73	55	61	47	53	41	47	702
@	704 706	173 173	179 179	115 115	121 121	85 85	91	67	73 73	55	61	47	53 53	41	47	704
000	708	173	179	115	121	85	91	67	73	55	61	47	53	41	47	708
@	710 712	175 175	181 181	115 115	121 121	85 85	91 91	67 69	73 75	57 57	63	47	53	41	47	$\begin{array}{ c c c c }\hline 710 \\ \hline 712 \\ \hline \end{array}$
000	714	175	181	115	121	87	93	69	75	57	63	47	53	41	47	714
@	716	175	181	117	123	87	93	69	75	57	63	49	55	41	47	716
@	718 720	177	183 183	117	123	87	93	69	75	57	63	49	55	41	47	718
000	722	177	183	117	123 123	87 87	93	69	75 75	57 57	63	49	55 55	41 43	47	720
@	724	177	183	117	123	87	93	69	75	57	63	49	55	43	49	724
000	726 728	179 179	185	117	123	87	93	69	75	57	63	49	55	43	49	726
@	730	179	185	119	$\begin{array}{c} 125 \\ 125 \end{array}$	87 89	95	69	75 75	57	63	49	55 55	43	49	728 730
000	732	179	185	119	125	89	95	71	77	57	63	49	55	43	49	732
@	734	181	187	119	125	89	95	71	77	59	65	49	55	43	49	734
000	736 738	181 181	187 187	119 119	$\begin{array}{c} 125 \\ 125 \end{array}$	89 89	95 95	71 71	77	59 59	65	49	55 55	43	49	736 738
@	740	181	187	121	127	89	95	71	77	59	65	49	55	43	49	740
@	742	183	189	121	127	89	95	71_	77	59	65	49	55_	43	49	742
000	744 746	183 183	189 189	121 121	127 127	89 91	95 97	71 71	77	59	65	51	57 57	43	49	744
@	748	183	189	121	127	91	97	71	77	59	65	51	57	43	49	748
000	750	185	191	121	127	91	97	71	77	59	65	51	57	43	49	750
(0)	752 754	185 185	191 191	123 123	129 129	91 91	97	73 73	79 79	59 59	65	51 51	57	43	49	752
000	756	185	191	123	129	91	97	73	79	59	65	51	57 57	45	51 51	754 756
(W)	758	187	193	123	129	91	97	73	79	61	67	51	57	45	51	758
000	760	187	193	123	129	91	97	73	79	61	67	51	57	45	51	760
@	762 764	187 187	193 193	123 125	129 131	93 93	99	73 73	79 79	61	67	51	57 57	45	51 51	762 764
<u>@</u>	766	189	195	125	131	93	99	73	79	61	67	51	57	45	51	766
000	768	189	195	125	131	93	99	73	79	61	67	51	57	45	51	768
@	770 772	189 189	195 195	$\begin{array}{c c} 125 \\ \hline 125 \end{array}$	131 131	93	99	73 75	79 81	61	67	51	57. 59	45	51	770
000	774	191	197	125	131	93	99	75	81	61	67	53	59	45	51 .	772
(QQ)	776	191	197	127	133	93	99	75	81	61	67	53	59	45	51	776
@	778 780	191 191	197	$\begin{array}{c c} 127 \\ 127 \end{array}$	133	95 95	101	75	81	61	67	53	59	45	51_	778
000	782	193	197	$\frac{127}{127}$	133 133	95	101	75 75	81 81	$\frac{61}{63}$	67 69	53 53	59 59	45 45	51 51	780 782
@	784	193	199	127	133	95	101	75	81	63	69	53	59	45	51	781
000	786	193	199	127	133	95	101	75	81	63	69	53	59	47	53	786
@	788 790	193 195	199	129 129	135 135	95 95	101	75 75	81 81	63 63	69	53	59	47	53	788
000	792	195	201	129	135	95	101	77	83	63	69	53 53	<u>59</u> 	47	53 53	790 792
@	794	195	201	129	135	97	103	77	83	63	69	53	59	47	53	794
000	796 798	195 197	201	129 129	135 135	97	103	77	83	63	69	53	59	47	53	796
@	800	197	203	131	137	97	103 103	77	83 83	63	69	53 55	59 61	47	<u>53</u> 	798 800

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS OF CONDUCTORS FRONT AND BACK PITCHES RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES OF F F B B F B F B F B F B F B No. @ $\frac{77}{77}$ @ 85 $\frac{65}{65}$ $\frac{71}{71}$ @ $\frac{201}{201}$ 133 139 71 <u>55</u> @ @ 141 $\frac{211}{211}$ (00) @ @ $\frac{143}{143}$ $\frac{213}{213}$ **@** @ $\frac{67}{67}$ @ $\frac{143}{145}$ 57 Q 57 @ @ @ @ $\frac{219}{219}$ $\frac{147}{147}$ 111 @ @ @ @ 149 @ $\overline{107}$ $\frac{71}{71}$ $\frac{77}{77}$ @ (W) $\overline{225}$ $\frac{151}{151}$ @ $\frac{71}{71}$ @ 77 @ $\frac{71}{71}$ $\frac{153}{153}$ @ $\frac{115}{115}$ $\frac{147}{147}$ $\frac{109}{109}$ $\frac{67}{67}$ $\frac{1}{227}$

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES S O F B F B F B F B F F B F B B Š. @ @ @ Q @ @ 111 Q Q 75 81 @ @ @ 153 115 75 63 55 @ @ @ 57 155 115 $\frac{121}{121}$ @ @ .115 @ @ 77 Q @ @ $\frac{71}{73}$ @ (W) $\overline{125}$ @ @ $\begin{array}{c} 159 \\ 161 \end{array}$ $\frac{101}{101}$ 79 73 (W) 119 101 @ @ @ $\overline{127}$ @ (00) $\frac{127}{127}$

Above choice of Pitches will prove most satisfactory, although, as stated in text, the absolute magnitude of average pitch may be varied within reasonable limits.

@

@

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. OF CONDUCTORS OFCONDUCTORS FRONT AND BACK PITCHES REENTRANCY POLES POLES POLES POLES POLES POLES POLES F F F F B B F F B B В F B B ô (W) $\overline{61}$ $\frac{123}{123}$ @ @ @ $\frac{173}{173}$ $\frac{125}{125}$ 75 @ @ 131 $\overline{125}$ @ 175 $\begin{array}{c} 125 \\ 125 \end{array}$ 131 101 $\frac{105}{107}$ 83 71 $\frac{77}{77}$ (W) @ 71 71 77 77 @ $\frac{1038}{1040}$ @ 171 $\frac{127}{127}$ $\frac{133}{133}$ $\frac{177}{177}$ @ 71 71 @ $\frac{77}{77}$ 173 $\frac{129}{129}$ 135 103 91 @ @ 173 @ @ 131 137 1068 $\frac{175}{175}$ 181 73 91 @ $\frac{271}{271}$ 175 181 131 @ $\frac{137}{137}$ @ 177 71 71 $\frac{273}{273}$ $\begin{array}{c} 183 \\ \overline{1}83 \end{array}$ $\frac{131}{133}$ 75 81 $\frac{177}{177}$ 11: Q $\frac{71}{71}$ 75 @ $\frac{105}{105}$ 133 113 87 $\frac{275}{277}$ @ $\overline{133}$ (00) $\frac{65}{65}$ $\frac{71}{71}$ $\frac{271}{271}$ $\frac{277}{277}$ $\frac{179}{181}$ $\frac{135}{135}$ $\frac{141}{141}$ 75 81

Above choice of Pitches will prove most satisfactory, although, as stated in text, the absolute magnitude of average pitch may be varied within reasonable limits.

@

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES OF F F B B F B F B F B F B F B @ 1106 73 @ Q @ (W $\frac{183}{183}$ $\frac{137}{137}$ $\frac{143}{143}$ $\frac{109}{109}$ $\frac{115}{115}$ $\begin{array}{c} 1120 \\ 1122 \end{array}$ $\frac{143}{145}$ $\frac{117}{117}$ 75 79 @ @ @ @ @ 141 $\frac{147}{147}$ @ 75 @ $\overline{197}$ $\frac{143}{143}$ @ 113 119 $\frac{149}{149}$ 75 @ (20) $\frac{121}{121}$ 87 $\frac{71}{71}$ @ Q Q 71 Q $\frac{147}{147}$ $\begin{array}{c} 153 \\ 153 \end{array}$ $\begin{array}{c} 123 \\ 123 \end{array}$ (00) 117

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES OF F F F B F B F B F B B B F B No. @ @ @ @ @ @ (W) 73 79 @ @ @ 121 @ @ $\frac{121}{121}$ 81 $\frac{127}{127}$ Q @ $\frac{1242}{1244}$ 313 $\frac{159}{159}$ 91 $\frac{101}{101}$ $\frac{75}{75}$ $\overline{127}$ @ (00) @ $\frac{211}{211}$ @ @ $\frac{123}{123}$ @ @ @ 77 @ (00) @ 77 @ @ 77 $\frac{127}{127}$ (W) @ @

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. OFCONDUCTORS FRONT AND BACK PITCHES OFCONDUCTORS RE-ENT RANCY POLES POLES POLES POLES POLES POLES POLES F F F B F B B B F B F B F B å @ (22) @ @ 113 $\frac{79}{79}$ $\frac{135}{135}$ @ (22) @ @ (00) $\frac{227}{227}$ $\frac{171}{171}$ (00) 115 @ @ @ @ @ (00) $\frac{173}{173}$ @ $\frac{117}{117}$ @ @ (00) @ $\frac{177}{177}$ @ @ (00) $\frac{351}{353}$ 119 (20) @

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS FRONT AND BACK PITCHES CONDUCTORS ENTRANCY POLES POLES POLES POLES POLES POLES POLES OF 9F F F B F F B F B \mathbf{B} F B F B B ŝ @ $\frac{143}{143}$ @ (00) @ 139 99 $\frac{1418}{1420}$ $\frac{105}{105}$ $\begin{array}{c} 175 \\ 175 \end{array}$ $\frac{145}{145}$ $\frac{115}{115}$ $\frac{121}{121}$ @ $\frac{145}{145}$ $\frac{115}{115}$ $\frac{175}{175}$ @ @ @ $\frac{147}{147}$ (00) $\frac{117}{117}$ Q (20) $\frac{241}{241}$ @ @ 181 $\begin{array}{c} 125 \\ 125 \end{array}$ $\begin{array}{c} 107 \\ 107 \end{array}$ $\frac{247}{247}$ 101 $\frac{1466}{1468}$ **@** @ @ 151 $\frac{121}{121}$ $\begin{array}{c} 127 \\ 127 \end{array}$ 103 @ @ @ @ $\frac{1488}{1490}$ $\frac{151}{151}$ @ @ @ $\frac{377}{377}$ $\frac{147}{147}$ $\frac{153}{153}$ $\begin{array}{c} 127 \\ 127 \end{array}$ (00)

MULTIPLE-CIRCUIT, TRIPLE WINDINGS, FOR DRUM ARMATURES. CONDUCTORS CONDUCTORS FRONT AND BACK PITCHES RE-ENTRANCY POLES POLES POLES POLES POLES POLES POLES OF B F F B F B F B F B F B F B @ $\frac{153}{153}$ $\frac{147}{147}$ @ @ œ @ @ (00) Q @ @ @ @ @ (W) Q @ W @ @ @ @ @ @ @ (30) @ (00) @ Q @

LIST OF WORKS

ON

ELECTRICAL SCIENCE.

PUBLISHED AND FOR SALE BY

D. VAN NOSTRAND COMPANY,

23 Murray and 27 Warren Streets, New York.

- ABBOTT, A. V. The Electrical Transmission of Energy. A Manual for the Design of Electrical Circuits.

 8vo, cloth. (In press.)
- ARNOLD, E. Armature Windings of Direct Current Dynamos. Extension and application of a general winding rule. Translated from the original German by Francis B. DeGress, M. E. (In press)
- ATKINSON, PHILIP. Elements of Static Electricity, with full description of the Holtz and Topler Machines, and their mode of operating. Illustrated. 12mo, cloth. \$1.50.
 - The Elements of Dynamic Electricity and Magnetism. Second Edition. Illustrated. 12mo, cloth. \$2.00.
 - Elements of Electric Lighting, including Electric Generation, Measurement, Storage, and Distribution. Seventh Edition. Fully revised and new matter added. Illustrated. 8vo, cloth. \$1.50.
 - The Electric Transformation of Power and its Application by the Electric Motor, including Electric Railway Construction. Illustrated. 12mo, cloth. \$2.00.
- BADT, F. B. Dynamo Tender's Handbook. 70 Illustrations. 16mo, cloth. \$1.00.

 Electric Transmission Handbook. Illustrations and Tables. 16mo, cloth. \$1.00.

 Incandescent Wiring Handbook. Fourth Edition. Illustrations and Tables. 12mo, cloth. \$1.00.

 Bell Hanger's Handbook. Illustrated. 12mo, cloth. \$1.00.
- BIGGS, C. H. W. First Principles of Electrical Engineering. Being an attempt to provide an Elementary Book for those who are intending to enter the profession of Electrical Engineering. Second Edition. Illustrated. 12mo, cloth. \$1.00.
- BLAKESLEY, T. H. Papers on Alternating Currents of Electricity. For the use of Students and Engineers. Third Edition, enlarged. 12mo, cloth. \$1.50.
- BOTTONE, S. R. Electrical Instrument-Making for Amateurs. A Practical Handbook. Fourth Edition. Enlarged by a chapter on "The Telephone." With 48 Illustrations. 12mo, cloth. 50 cents.
 - Electric Bells, and All about Them. A Practical Book for Practical Men. With over 100 Illustrations. 12mo, cloth. 50 cents.
 - The Dynamo: How Made and How Used. A Book for Amateurs. Sixth Edition. 100 Illustrations. 12mo, cloth. \$1,00.
 - Electro-Motors: How Made and How Used. A Handbook for Amateurs and Practical Men. Illustrated. 12mo, cloth. 50 cents.

- CLARK, D. K. Tramways: Their Construction and Working. Embracing a Comprehensive History of the System, with Accounts of the Various Modes of Traction, a Description of the Varieties of Rolling Stock, and Ample Details of Cost and Working Expenses; with Special Reference to the Tramways of the United Kingdom. Second Edition. Revised and rewritten. With over 400 Illustrations. Thick 8vo, cloth. \$9.00.
- CROCKER, F. B., and WHEELER, S. S. The Practical Management of Dyamos and Motors. Third Edition. Illustrated. 12mo, eloth. \$1.00.
- CROCKER, F. B. Electric Lighting. (In press.)
- CUMMING, LINNÆUS, M.A. Electricity Treated Experimentally. For the Use of Schools and Students. Third Edition. 12mo, cloth. \$1.50.
- **DESMOND, CHAS.** Electricity for Engineers. Part I.: Constant Current. Part II.: Alternate Current. Revised Edition. Illustrated. 12mo, cloth. \$2.50.
- DU MONCEL, Count TH. Electro-Magnets: The Determination of the Elements of their Construction.

 16mo, cloth. (No. 64 Van Nostrand's Science Series.) 50 cents.
- DYNAMIC ELECTRICITY. Its Modern Use and Measurement, chiefly in its application to Electric Lighting and Telegraphy, including: 1. Some Points in Electric Lighting, by Dr. John Hopkinson. 2. On the Treatment of Electricity for Commercial Purposes, by J. N. Schoolbred. 3. Electric-Light Arithmetic, by R. E. Day, M.E. 18mo, boards. (No. 71 Van Nostrand's Science Series.) 50 cents.
- EMMETT, WM. L. Alternating Current Wiring and Distribution. 16mo, cloth. Illustrated. \$1.00.
- EWING, J. A. Magnetic Induction in Iron and Other Metals. Second issue. Illustrated. 8vo, cloth. \$4.00.
- FISKE, Lieut. BRADLEY A., U.S.N. Electricity in Theory and Practice: or, The Elements of Electrical Engineering. Eighth Edition. 8vo, cloth. \$2.50.
- FLEMING, Prof. J. A. The Alternate-Current Transformer in Theory and Practice. Vol. I.: The Induction of Electric Currents. 500 pp. Second Edition. Illustrated. 8vo, cloth. \$3.00. Vol. II.: The Utilization of Induced Currents. 594 pp. Illustrated. 8vo, cloth. \$5.00.
 - Electric Lamps and Electric Lighting. 8vo, cloth. \$3.00.
- GORDON, J. E. H. School Electricity. 12mo, cloth. \$2.00.
- GORE, Dr. GEORGE. The Art of Electrolytic Separation of Metals (Theoretical and Practical). lllustrated. 8vo, eloth. \$3.50.
- GUILLEMIN, AMÉDÉE. Electricity and Magnetism. Translated, revised, and edited by Prof. Silvanus P. Thompson, 600 Illustrations and several Plates. Large 8vo, cloth. \$8.00.
- GUY, ARTHUR F. Electric Light and Power, giving the result of practical experience in Central-Station Work. 8vo, cloth. Illustrated. \$2.50.
- HASKINS, C. H. The Galvanometer and its Uses. A Manual for Electricians and Students. Fourth Edition, revised. 12mo, morocco. \$1.50.
 - Transformers: Their Theory, Construction, and Application Simplified. Illustrated. 12mo, eloth. \$1.25.

- HAWKINS, C. C., and WALLIS, F. The Dynamo: Its Theory, Design, and Manufacture. 190 Illustrations. 8vo, cloth. \$3.00.
- HOBBES, W. R. P. The Arithmetic of Electrical Measurements. With numerous examples, fully worked. New Edition. 12mo, cloth. 50 cents.
- HOSPITALIER, E. Polyphased Alternating Currents. Illustrated. 8vo, cloth. \$1.40.
- HOUSTON, Prof. E. J. A Dictionary of Electrical Words, Terms, and Phrases. Third Edition. Rewritten and greatly enlarged. Large 8vo, 570 illustrations, cloth. \$5.00.
- INCANDESCENT ELECTRIC LIGHTING. A Practical Description of the Edison System, by H. Latimer. To which is added, The Design and Operation of Incandescent Stations, by C. J. Field; A Description of the Edison Electrolyte Meter, by A. E. Kennelly; and a Paper on the Maximum Efficiency of Incandescent Lamps, by T. W. Howells. Illustrated. 16mo, cloth. (No. 57 Van Nostrand's Science Series.) 50 cents.
- INDUCTION COILS: How Made and How Used. Fifth Edition. 16mo, cloth. (No. 53 Van Nostrand's Science Series.) 50 cents.
- KAPP, GISBERT, C.E. Electric Transmission of Energy and its Transformation, Subdivision, and Distribution. A Practical Handbook. Fourth Edition, thoroughly revised. 12mo, cloth. \$3.50.
 - Alternate-Current Machinery. 190 pp. Illustrated. (No. 96 Van Nostrand's Science Series.) 50 cents.
 - Dynamos, Alternators, and Transformers. Illustrated. 8vo, cloth. \$4.00.
- KEMPE, H. R. The Electrical Engineer's Pocket-Book: Modern Rules, Formulæ, Tables, and Data. 32mo, leather. \$1.75.
 - A Handbook of Electrical Testing. Fifth edition. 200 illustrations. 8vo, cloth. \$7.25.
- KENNELLY, A. E. Theoretical Elements of Electro-Dynamic Machinery. Vol. I. Illustrated. 8vo, eloth. \$1.50.
- KILGOUR, M. H., and SWAN, H., and BIGGS, C. H. W. Electrical Distribution: Its Theory and Practice. Illustrated. 8vo, cloth. \$4.00.
- LOCKWOOD, T. D. Electricity, Magnetism, and Electro-Telegraphy. A Practical Guide and Handbook of General Information for Electrical Students, Operators, and Inspectors. Fourth Edition. Illustrated. 8vo, cloth. \$2.50.
- LORING, A. E. A Handbook of the Electro-Magnetic Telegraph. 16mo, cloth. (No. 39 Van Nostrand's Science Series.) 50 cents.
- MARTIN, T. C., and WETZLER, J. The Electro-Motor and its Applications. Third Edition. With an Appendix on the Development of the Electric Motor since 1888, by Dr. L. Bell. 300 Illustrations. 4to, cloth. \$3.00.
- MORROW, J. T., and REID, T. Arithmetic of Magnetism and Electricity. 12mo, cloth. \$1.00.
- MUNRO, JOHN, C.E., and JAMIESON, ANDREW, C.E. A Pocket-Book of Electrical Rules and Tables. For the use of Electricians and Engineers. Tenth Edition. Revised and enlarged. With numerous diagrams. Pocket size, leather. \$2.50.
- NIPHER, FRANCIS E., A.M. Theory of Magnetic Measurements. With an Appendix on the Method of Least Squares. 12mo, cloth. \$1.00.

- NOAD, H. M. The Student's Text-Book of Electricity. A New Edition. Carefully revised by W. H. Preece. 12mo, cloth. Illustrated. \$4.00.
- OHM, Dr. G. S. The Galvanic Circuit Investigated Mathematically. Berlin, 1827. Translated by William Francis. With Preface and Notes by the Editor, Thos. D. Loekwood. 12mo, eloth. (No. 102 Van Nostrand's Science Series.) 50 cents.
- PALAZ, A. Treatise on Industrial Photometry. Specially applied to Electric Lighting. Translated from the French by G. W. Patterson, Jr., Assistant Professor of Physics in the University of Michigan, and M. R. Patterson, B.A. Fully Illustrated. 8vo, cloth. \$4.00.
- PERRY, NELSON W. Electric Railway Motors. Their Construction, Operation, and Maintenance. An Elementary Practical Handbook for those engaged in the management and operation of Electric Railway Apparatus, with Rules and Instructions for Motormen. 12mo, cloth. \$1.00.
- PLANTÉ, GASTON. The Storage of Electrical Energy, and Researches in the Effects created by Currents combining Quantity with High Tension. Translated from the French by Paul B. Elwell. 89 Illustrations. 8vo. \$4.00.
- POOLE, J. The Practical Telephone Handbook. Illustrated. 8vo, cloth. \$1.00.
- POPE, F. L. Modern Practice of the Electric Telegraph. A Handbook for Electricians and Operators.

 An entirely new work, revised and enlarged, and brought up to date throughout. Illustrations.

 8vo, eloth. \$1.50.
- PREECE, W. H., and STUBBS, A. J. Manual of Telephony. Illustrated. 12mo, cloth. \$4.50.
- RECKENZAUN, A. Electric Traction. Illustrated. 8vo, eloth. \$4.00.
- RUSSELL, STUART A. Electric-Light Cables and the Distribution of Electricity. 107 Illustrations. 8vo, cloth. \$2.25.
- SALOMONS, Sir DAVID, M.A. Electric-Light Installations. A Practical Handbook. Seventh Edition, revised and enlarged. Vol. I.: Management of Accumulators. Illustrated. 12mo, eloth. \$1.50. Vol. II.: Apparatus. Illustrated. 12mo, eloth. \$2.25. Vol. III.: Application. Illustrated. 12mo, eloth. \$1.50.
- SCHELLEN, Dr. H. Magneto-Electric and Dynamo-Electric Machines. Their Construction and Practical Application to Electric Lighting and the Transmission of Power. Translated from the third German edition by N. S. Keith and Percy Neymann, Ph.D. With very large Additions and Notes relating to American Machines, by N. S. Keith. Vol. I. with 353 Illustrations. Second Edition. \$5.00.
- SLOANE, Prof. T. O'CONOR. Standard Electrical Dictionary. 300 Illustrations. 8vo, cloth. \$3.00.
- SNELL, ALBION T. Electric Motive Power. The Transmission and Distribution of Electric Power by Continuous and Alternate Currents. With a Section on the Applications of Electricity to Mining Work. Illustrated. 8vo, cloth. \$4.00.
- SWINBURNE, JAS., and WORDINGHAM, C. H. The Measurement of Electric Currents. Electrical Measuring Instruments. Meters for Electrical Energy. Edited, with Preface, by T. Commerford Martin. Folding Plate and numerous Illustrations. 16mo, cloth. 50 cents.

- THOM, C., and JONES, W. H. Telegraphic Connections, embracing recent methods in Quadruplex Telegraphy. Twenty colored Plates. Svo, cloth. \$1.50.
- THOMPSON, EDWARD P. How to Make Inventions; or, Inventing as a Science and an Art. An Inventor's Guide. Second Edition. Revised and Enlarged. Illustrated. 8vo, paper. \$1.00.
- THOMPSON, Prof. S. P. Dynamo Electric Machinery. With an Introduction and Notes by Frank L. Pope and H. R. Butler. Fully Illustrated. (No. 66 Van Nostrand's Science Series.) 50 cents.
 - Recent Progress in Dynamo-Electric Machines. Being a Supplement to "Dynamo-Electric Machinery." Illustrated. 12mo, cloth. (No. 75 Van Nostrand's Science Series.) 50 cents.
 - The Electro-Magnet and Electro-Magnetic Mechanism. Second Edition, revised. 213 Illustrations. 8vo, cloth. \$6.00.
- TREVERT, E. Practical Directions for Armature and Field-Magnet Winding. Illustrated. 12mo, eloth. \$1.50.
 - How to Build Dynamo-Electric Machinery. Embracing Theory Designing and the Construction of Dynamos and Motors. With Appendices on Field-Magnet and Armature Winding. Management of Dynamos and Motors, and useful Tables of Wire Gauges. Illustrated. 8vo, cloth. \$2.50.
- TUMLIRZ, Dr. Potential, and its Application to the Explanation of Electrical Phenomena. Translated by D. Robertson, M.D. 12mo, cloth. \$1.25.
- TUNZELMANN, G. W. de. Electricity in Modern Life. Illustrated. 12mo, cloth. \$1.25.
- URQUHART, J. W. Dynamo Construction. A Practical Handbook for the Use of Engineer Constructors and Electricians in Charge. Illustrated. 12mo, cloth. \$3.00.
- WALKER, FREDERICK. Practical Dynamo-Building for Amateurs. How to Wind for any Output. Illustrated. 16mo, cloth. (No. 98 Van Nostrand's Science Series.) 50 cents.
- WALMSLEY, R. M. The Electric Current. How Produced and How Used. With 379 Illustrations. 12mo, cloth. \$3.00.
- WEBB, H. L. A Practical Guide to the Testing of Insulated Wires and Cables. Illustrated. 12mo, cloth. \$1.00.
- WORMELL, R. Electricity in the Service of Man. A Popular and Practical Treatise on the Application of Electricity in Modern Life. From the German, and edited, with copious additions, by R. Wormell, and an Introduction by Prof. J. Perry. With nearly 850 Illustrations. Royal 8vo, cloth. \$6.00.
- WEYMOUTH, F. MARTEN. Drum Armatures and Commutators. (Theory and Practice.) A complete treatise on the theory and construction of drum-winding, and of commutators for closed-coil armatures, together with a full résumé of some of the principal points involved in their design; and an exposition of armature reactions and sparking. Illustrated. 8vo, cloth. \$3.00.

UNIVERSITY OF CALIFORNIA LIBRARY BERKELEY

Return to desk from which borrowed.

This book is DUE on the last date stamped below.

OCT 2 1 1950

LD 21-100m-9,'48(B399s16)476

