НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет Программной Инженерии и Компьютерной Техники

Информатика Лабораторная работа № 6

> Выполнил студент Лукьянчук Ярослав Евгеньевич Группа № Р3123 Преподаватель: Болдырева Елена Александровна

можно получить

$$-\frac{\Delta N}{\Delta r} = N \frac{mg}{kT}.$$
 (1)

Из выражений (3) и (4) найдем окончательно

$$-\frac{\Delta n}{n\Delta r} \approx \alpha N \frac{mg}{kT}$$

Подставляя сюда значения нужных величин для обеих планет, получим следующую таблицу (здесь $m_p = 1,67\cdot 10^{-27}$ кг - масса протона):

(-/	$\cdots p$	-,				-I) .
	m/m_p	T, K	R, м	$g, M/c^2$	1/R,	$\frac{ \Delta n }{n\Delta r}$,
					$c M^{-1}$	M^{-1}
Земля	29	300	9,8	$6, 4 \cdot 10^6$	$1, 6 \cdot 10^{-7}$	$3, 4 \cdot 10^{-8}$
Венера	44	800	8, 5	$6, 2 \cdot 10^6$	$1, 6 \cdot 10^{-7}$	$1, 1 \cdot 10^{-8}$

Из последнего столбца следует, что кривизна луча на уровне Земли меньше, чем кривизна поверхности планеты, в то время как в атмосфере Венеры луч «кривее» ее поверхности. Это явление и называют сверхрефракцией.

Напомним, что при вычислениях использовалось значение концентрации молекул у поверхности планеты. Поднимаясь все выше – в горы или на аэростате, – можно найти такую точку О над поверхностью Венеры, что луч, выпущенный горизонтально, возвратится к нам, обогнув планету. И осуществится мечта: мы увидим-таки свой затылок далеко впереди. Если, конечно, пренебречь поглощением света в атмосфере.

Рефракция имеет место и в атмосфере Солнца (фотосфере). Казалось бы, какое нам дело до той рефракции? А вот и есть дело. Ученые как-то решили понаблюдать, как свет звезды, заходящей за диск Солнца, отклоняется в поле тяготения. Ведь каждый фотон обладает массой hv/c^2 (h – постоянная Планка, v – частота); следовательно, пролетая у поверхности гравитирующего тела, он должен испытывать отклонение в сторону его центра.

Оценим прежде всего порядок величины этого угла отклонения θ . Очевидно, что наибольшая сила, действующая на фотон, будет на самом краю солнечного диска:

$$F_{max} = -G \left(\frac{hv}{c^2}\right) \frac{M_{\odot}}{R_{\odot}^2}$$

где G — гравитационная постоянная, \odot — астрономический знак Солнца. Очевидно также, что наиболее существенное отклонение фотон будет испытывать не вдалеке, а где-то в пределах расстояний, сравнимых с размерами самого Солнца, и за время $\Delta t \sim 2R_{\odot}/c$. Таким образом, радиальное изменение пульса фотона равно

$$\Delta P_r = F_{max} \Delta t.$$

Значит, искомый угол (а он заведомо мал) будет порядка (см. рисунок θ)

$$\theta \sim \frac{\Delta P_r}{P} = \frac{F_{max}\Delta t}{hv/c} \sim -G\frac{2M_{\odot}}{c^2R_{\odot}}$$

Интересно, что он одинаков для фотонов любой частоты. Подставляя чсиленные значения ($M_{\odot}=2\cdot 10^{30} \kappa r$, $R_{\odot}=0,7\cdot 10^9 M$), найдем

$$|\theta| \sim \frac{2 \cdot 2 \cdot 10^{30} \, \text{ke} \cdot 6,67 \cdot 10^{11} \, \text{m}^3 / \text{ke} \cdot c^2}{\left(3 \cdot 10^8 \, \text{m} / c\right)^2 \cdot 0,7 \cdot 10^9 \, \text{m}} = 4,2 \cdot 10^{-6} \, \text{pad} = 0,87''$$

(меньше одной угловой секунды).

Значение, предсказываемое общей теорией относительности (ОТО), вдвое больше: $\theta_{OTO}=1,7''$ (это объясняется искривлением пространства около гравитирующего тела—что не учитывает ньютоновская теория тяготения).

Конечно, измерение этого угла принципиально важно для проверки теории. Но дело в том, что неоднородность атмосферы Солнца может как-то маскировать исследуемый эффект. Рассмотрим поэтому и рефракцию электромагнитной волны в плазме фотосферы.

Ясно, что электрическое поле электромагнитной волны \overrightarrow{E} стремится сместить положительные заряды вдоль своего направления, отрицательные заряды (электроны) — в противоположном направлении. Но первые гораздо массивнее вторых (даже самый легкий из ионов — протон — почти в 2000 раз «тяжелее» электрона), так что смещением ионов можно пренебречь. Сила же, действующая на электрон, равна -eE(t). Пусть электрическое поле в волне колеблется с частотой ω , так что в рассматриваемой точке его можно записать, например, в виде

$$E(t) = E_m sin\omega t,$$

где E_m – амплитуда. Это поле стремится много раз в секунду $(v=\omega/(2\pi))$ «таскать» электроны вверх-вниз. Но каждый из них обладает массой m_e , которая есть мера инертности, т.е. нежелания смещаться из положения равновесия. Если в единице объема находится N_e электронов, их массовая плотность равна m_eN_e . Понятно, что все перечисленные факторы как-то должны войти в окончательное выражение для скорости распространения волны в плазме c_n . Оставляя в стороне строгий вывод (в него входят еще рассуждения о различии ϕ азовой и ϵ рупповой скоростей волны), приведем окончательный результат:

$$c_n = c\sqrt{1 - \frac{\omega_*^2}{\omega^2}}$$

где в выражение для ω_* (*плазменной* частоты) вошли перечсиленные выше параметры:

$$\omega_*^2 = \frac{N_e e^2}{\varepsilon_0 m_e} \tag{2}$$

И значит, электромагнитная волна, проходя у края диска Солнца, должна отклоняться от «прямой линии». Таким образом, искомый эффект, действительно, может быть замаскирован атмосферной рефракцией.

Но можно подобрать такие частоты ω , на которых рефракция была бы несущественной. В самом деле, плазменная частота зависит от концентрации электронов (5), а последняя – от высоты над поверхностью Солнца. Следовательно, можно найти относительное приращение $\frac{\Delta n}{\Delta r}$ (продифференцировав (6) при фикисрованном значении ω или графически) и потребовать, чтобы эта величина была много меньше, чем кривизна $1/R_{\odot}$, — точно так же, как это было сделано для Земли и Венеры. А отсюда и можно найти допустимые значения ω . Но эту работу предоставим сделать перед сном самому Читателю.

Рис. 1: Интересная картинка