RxODE user manual

Matthew Fidler

2020-12-15

Contents

1	Inti	roduction	5				
2	Rel	Related R packages					
	2.1	ODE solving	7				
	2.2	PK Solved systems	8				
3	Installation						
	3.1	Development Version	10				
4	Getting Started 11						
	4.1	Specify ODE parameters and initial conditions	12				
	4.2	Specify Dosing and sampling in RxODE	12				
	4.3	Solving ODEs	14				
5	Rx	ODE syntax	17				
	5.1	Example	17				
	5.2	Syntax	18				
	5.3	Logical Operators	20				
	5.4	$\operatorname{cmt}()$ changing compartment numbers for states $\ \ \ldots \ \ \ldots \ \ \ldots$	20				
6	Rx	ODE events	29				
	6.1	Bolus/Additive Doses	32				
	6.2	Infusion Doses	34				
	6.3	Steady State	42				

6.4	Reset Events	46
6.5	Turning off compartments	49
6.6	Classic RxODE events	52

Introduction

Welcome to the RxODE user guide; **RxODE** is an R package for solving and simulating from ode-based models. These models are convert the RxODE minilanguage to C and create a compiled dll for fast solving. ODE solving using RxODE has a few key parts:

- RxODE() which creates the C code for fast ODE solving based on a simple syntax (Chapter 5) related to Leibnitz notation.
- The event data, which can be:
 - a NONMEM or deSolve compatible data frame (Chapter 6), or
 - created with et() or EventTable() for easy simulation of events(Chapter ??)
 - The data frame can be augmented by adding time varying or adding individual covariates (iCov= as needed)
- rxSolve() which solves the system of equations using initial conditions and parameters to make predictions
 - With multiple subject data, this may be parallelized.
 - With single subject the output data frame is adaptive
 - Covariances and other metrics of uncertanty can be used to simulate while solving.

While this is the user guide, there are other places that you can visit for help:

This book was assembled on Tue Dec 15 $13:57:11\ 2020$ with RxODE version 1.0.0.0 automatically by github actions.

Related R packages

2.1 ODE solving

This is a brief comparison of pharmacometric ODE solving R packages to RxODE.

There are several R packages for differential equations. The most popular is deSolve.

However for pharmacometrics-specific ODE solving, there are only 2 packages other than RxODE released on CRAN. Each uses compiled code to have faster ODE solving.

- mrgsolve, which uses C++ lsoda solver to solve ODE systems. The user is required to write hybrid R/C++ code to create a mrgsolve model which is translated to C++ for solving.
 - In contrast, RxODE has a R-like mini-language that is parsed into C code that solves the ODE system.
 - Unlike RxODE, mrgsolve does not currently support symbolic manipulation of ODE systems, like automatic Jacobian calculation or forward sensitivity calculation (RxODE currently supports this and this is the basis of nlmixr's FOCEi algorithm)
- dMod, which uses a unique syntax to create "reactions". These reactions create the underlying ODEs and then created c code for a compiled deSolve model.

In contrast RxODE defines ODE systems at a lower level. RxODE's parsing of the mini-language comes from C, whereas dMod's parsing comes from R.

Like RxODE, dMod supports symbolic manipulation of ODE systems and calculates forward sensitivities and adjoint sensitivities of systems.

Unlike RxODE, dMod is not thread-safe since deSolve is not yet thread-safe.

And there is one package that is not released on CRAN:

PKPDsim which defines models in an R-like syntax and converts the system to compiled code.

Like mrgsolve, PKPDsim does not currently support symbolic manipulation of ODE systems.

PKPDsim is not thread-safe.

The open pharmacometrics open source community is fairly friendly, and the RxODE maintainers has had positive interactions with all of the ODE-solving pharmacometric projects listed.

2.2 PK Solved systems

RxODE supports 1-3 compartment models with gradients (using stan math's auto-differentiation). This currently uses the same equations as PKADVAN to allow time-varying covariates.

RxODE can mix ODEs and solved systems.

2.2.1 The following packages for solved PK systems are on CRAN

- mrgsolve currently has 1-2 compartment (poly-exponential models) models built-in. The solved systems and ODEs cannot currently be mixed.
- pmxTools currently have 1-3 compartment (super-positioning) models built-in. This is a R-only implementation.
- PKPDmodels has a one-compartment model with gradients.

2.2.2 Non-CRAN libraries:

PKADVAN Provides 1-3 compartment models using non-superpositioning.
 This allows time-varying covariates.

Installation

You can install the released version of RxODE from CRAN with:

```
install.packages("RxODE")
```

To build models with RxODE, you need a working c compiler. To use parallel threaded solving in RxODE, this c compiler needs to support open-mp.

You can check to see if R has working c compiler you can check with:

```
## install.packages("pkgbuild")
pkgbuild::has_build_tools(debug = TRUE)
```

If you do not have the toolchain, you can set it up as described by the platform information below:

3.0.1 Windows

In windows you may simply use install rto install rtools:

```
install.packages("installr")
library(installr)
install.rtools()
```

Alternatively you can download and install rtools directly.

3.0.2 Mac OSX

To get the most speed you need OpenMP enabled and compile RxODE against that binary. Here is some discussion about this:

https://mac.r-project.org/openmp/

3.0.3 Linux

To install on linux make sure you install gcc (with openmp support) and gfortran using your distribution's package manager.

3.1 Development Version

Since the development version of RxODE uses StanHeaders, you will need to make sure your compiler is setup to support C++14, as described in the rstan setup page

Once the C++ toolchain is setup appropriately, you can install the development version from GitHub with:

```
# install.packages("devtools")
devtools::install_github("nlmixrdevelopment/RxODE")
```

Getting Started

The model equations can be specified through a text string, a model file or an R expression. Both differential and algebraic equations are permitted. Differential equations are specified by d/dt(var_name) =. Each equation can be separated by a semicolon.

To load RxODE package and compile the model:

```
library(RxODE)

#> RxODE 1.0.0.0 using 4 threads (see ?getRxThreads)

library(units)
```

#> udunits system database from /usr/share/xml/udunits

```
mod1 <-RxODE({
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri) = Q*C2 - Q*C3;
    d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
})</pre>
```

#> qs v0.23.4.

4.1 Specify ODE parameters and initial conditions

Model parameters can be defined as named vectors. Names of parameters in the vector must be a superset of parameters in the ODE model, and the order of parameters within the vector is not important.

```
theta <-
c(KA=2.94E-01, CL=1.86E+01, V2=4.02E+01, # central
Q=1.05E+01, V3=2.97E+02, # peripheral
Kin=1, Kout=1, EC50=200) # effects
```

Initial conditions (ICs) can be defined through a vector as well. If the elements are not specified, the initial condition for the compartment is assumed to be zero.

```
inits <- c(eff=1);</pre>
```

If you want to specify the initial conditions in the model you can add:

```
eff(0) = 1
```

4.2 Specify Dosing and sampling in RxODE

RXODE provides a simple and very flexible way to specify dosing and sampling through functions that generate an event table. First, an empty event table is generated through the "eventTable()" function:

```
ev <- eventTable(amount.units='mg', time.units='hours')</pre>
```

Next, use the add.dosing() and add.sampling() functions of the EventTable object to specify the dosing (amounts, frequency and/or times, etc.) and observation times at which to sample the state of the system. These functions can be called multiple times to specify more complex dosing or sampling regiments. Here, these functions are used to specify 10mg BID dosing for 5 days, followed by 20mg QD dosing for 5 days:

If you wish you can also do this with the mattigr pipe operator %>%

The functions get.dosing() and get.sampling() can be used to retrieve information from the event table.

```
head(ev$get.dosing())
     id low time high
                            cmt
                                  amt rate ii addl evid ss dur
        NA
               0
                   NA (default) 10000
                                         0 12
                                                 9
                                                      1
        NA
                   NA (default) 20000
                                         0 24
           120
head(ev$get.sampling())
                        cmt amt rate ii addl evid ss dur
     id low time high
#> 1 1
                   NA (obs)
                                                O NA
               0
                                                      NA
         NA
                             NA
                                  NA NA
                                          NΑ
#> 2
     1
         NA
               1
                   NA (obs)
                             NA
                                  NA NA
                                          NA
                                                O NA
                                                      NA
#> 3 1
        NA
               2
                  NA (obs)
                             NA
                                 NA NA
                                          NA
                                                O NA
                                                      NA
         NA
               3
                   NA (obs)
                             NA
                                  NA NA
                                          NA
                                                O NA
                                                      NA
                                                O NA
#> 5 1 NA
               4
                   NA (obs)
                                  NA NA
                                                      NA
                             NA
                                          NA
#> 6 1 NA
               5
                   NA (obs)
                            NA
                                  NA NA
                                          NA
                                                O NA
                                                      NA
```

You may notice that these are similar to NONMEM event tables; If you are more familiar with NONMEM data and events you could use them directly with the event table function et

```
ev <- et(amountUnits="mg", timeUnits="hours") %>%
  et(amt=10000, addl=9,ii=12,cmt="depot") %>%
  et(time=120, amt=2000, addl=4, ii=14, cmt="depot") %>%
  et(0:240) # Add sampling
```

You can see from the above code, you can dose to the compartment named in the RxODE model. This slight deviation from NONMEM can reduce the need for compartment renumbering.

These events can also be combined and expanded (to multi-subject events and complex regimens) with rbind, c, seq, and rep. For more information about creating complex dosing regimens using RxODE see the RxODE events vignette.

4.3 Solving ODEs

The ODE can now be solved by calling the model object's run or solve function. Simulation results for all variables in the model are stored in the output matrix **x**

```
x <- mod1$solve(theta, ev, inits);
knitr::kable(head(x))
```

time	C2	C3	depot	centr	peri	eff
0	0.00000	0.0000000	10000.000	0.000	0.0000	1.000000
1	44.37555	0.9198298	7452.765	1783.897	273.1895	1.084664
2	54.88296	2.6729825	5554.370	2206.295	793.8758	1.180825
3	51.90343	4.4564927	4139.542	2086.518	1323.5783	1.228914
4	44.49738	5.9807076	3085.103	1788.795	1776.2702	1.234610
5	36.48434	7.1774981	2299.255	1466.670	2131.7169	1.214742

You can also solve this and create a RxODE data frame:

```
x <- mod1 %>% rxSolve(theta, ev, inits);
#> _____ Solved RxODE object _____
#> -- Parameters (x$params): -----
#>
      ٧2
            VЗ
                   ΚA
                         CL
                                Q
                                     Kin
                                           Kout
#> 40.200 297.000
                0.294 18.600 10.500 1.000
                                          1.000 200.000
#> -- Initial Conditions (x$inits): ------
#> depot centr peri
                  eff
#>
     0
          0
               0
#> -- First part of data (object): -----
#> # A tibble: 241 x 7
#>
    time
           C2
               СЗ
                  depot centr peri
#>
     [h] <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
                  10000
#> 1
       0
         0 0
                          0
                               0
#> 2
       1 44.4 0.920 7453. 1784.
                             273. 1.08
       2 54.9 2.67
                   5554. 2206. 794. 1.18
#> 4
                   4140. 2087. 1324. 1.23
       3 51.9 4.46
#> 5
       4 44.5 5.98
                   3085. 1789. 1776. 1.23
       5 36.5 7.18
                  2299. 1467. 2132. 1.21
#> # ... with 235 more rows
#> _____
```

This returns a modified data frame. You can see the compartment values in the plot below:

```
library(ggplot2)
plot(x,C2) + ylab("Central Concentration")
```


Or,

```
plot(x,eff) + ylab("Effect")
```


Note that the labels are automatically labeled with the units from the initial event table. RxODE extracts units to label the plot (if they are present).

RxODE syntax

This briefly describes the syntax used to define models that RxODE will translate into R-callable compiled code. It also describes the communication of variables between R and the RxODE modeling specification.

5.1 Example

5.2 Syntax

An RxODE model specification consists of one or more statements optionally terminated by semi-colons; and optional comments (comments are delimited by # and an end-of-line).

A block of statements is a set of statements delimited by curly braces, { . . . }.

Statements can be either assignments, conditional if/else if/else, while loops (can be exited by break), special statements, or printing statements (for debugging/testing)

Assignment statements can be:

- simple assignments, where the left hand is an identifier (i.e., variable)
- special **time-derivative** assignments, where the left hand specifies the change of the amount in the corresponding state variable (compartment) with respect to time e.g., d/dt(depot):
- special **initial-condition** assignments where the left hand specifies the compartment of the initial condition being specified, e.g. depot(0) = 0
- special model event changes including bioavailability (f(depot)=1), lag time (alag(depot)=0), modeled rate (rate(depot)=2) and modeled duration (dur(depot)=2). An example of these model features and the event specification for the modeled infusions the RxODE data specification is found in RxODE events vignette.
- special change point syntax, or model times. These model times are specified by mtime(var)=time
- special Jacobian-derivative assignments, where the left hand specifies the change in the compartment ode with respect to a variable. For example, if d/dt(y) = dy, then a Jacobian for this compartment can be specified as df(y)/dy(dy) = 1. There may be some advantage to obtaining the solution or specifying the Jacobian for very stiff ODE systems. However, for the few stiff systems we tried with LSODA, this actually slightly slowed down the solving.

Note that assignment can be done by =, <- or \sim .

When assigning with the ~ operator, the **simple assignments** and **time-derivative** assignments will not be output.

Special statements can be:

• Compartment declaration statements, which can change the default dosing compartment and the assumed compartment number(s) as well as add extra compartment names at the end (useful for multiple-endpoint nlmixr models); These are specified by cmt(compartmentName)

5.2. SYNTAX 19

• Parameter declaration statements, which can make sure the input parameters are in a certain order instead of ordering the parameters by the order they are parsed. This is useful for keeping the parameter order the same when using 2 different ODE models. These are specified by param(par1, par2,...)

An example model is shown below:

```
# simple assignment
C2 = centr/V2;

# time-derivative assignment
d/dt(centr) = F*KA*depot - CL*C2 - Q*C2 + Q*C3;
```

Expressions in assignment and if statements can be numeric or logical, however, no character nor integer expressions are currently supported.

Numeric expressions can include the following numeric operators +, -, *, /, and those mathematical functions defined in the C or the R math libraries (e.g., fabs, exp, log, sin, abs).

You may also access the R's functions in the R math libraries, like lgammafn for the log gamma function.

The RxODE syntax is case-sensitive, i.e., ABC is different than abc, Abc, etc.

5.2.1 Identifiers

Like R, Identifiers (variable names) may consist of one or more alphanumeric, underscore _ or period . characters, but the first character cannot be a digit or underscore _.

Identifiers in a model specification can refer to:

- State variables in the dynamic system (e.g., compartments in a pharmacokinetics model).
- Implied input variable, t (time), tlast (last time point), and podo (oral dose, in the undocumented case of absorption transit models).
- Special constants like pi or R's predefined constants.
- Model parameters (e.g., ka rate of absorption, CL clearance, etc.)
- Others, as created by assignments as part of the model specification; these are referred as *LHS* (left-hand side) variable.

Currently, the RxODE modeling language only recognizes system state variables and "parameters", thus, any values that need to be passed from R to the ODE

model (e.g., age) should be either passed in the params argument of the integrator function rxSolve() or be in the supplied event data-set.

There are certain variable names that are in the RxODE event tables. To avoid confusion, the following event table-related items cannot be assigned, or used as a state but can be accessed in the RxODE code:

- cmt
- dvid
- addl
- SS
- rate
- id

However the following variables are cannot be used in a model specification - evid - ii

Sometimes RxODE generates variables that are fed back to RxODE. Similarly, nlmixr generates some variables that are used in nlmixr estimation and simulation. These variables start with the either the rx or nlmixr prefixes. To avoid any problems, it is suggested to not use these variables starting with either the rx or nlmixr prefixes.

5.3 Logical Operators

Logical operators support the standard R operators ==, != >= <= > and <. Like R these can be in if() or while() statements, ifelse() expressions. Additionally they can be in a standard assignment. For instance, the following is valid:

```
cov1 = covm*(sexf == "female") + covm*(sexf != "female")
```

Notice that you can also use character expressions in comparisons. This convenience comes at a cost since character comparisons are slower than numeric expressions. Unlike R, as.numeric or as.integer for these logical statements is not only not needed, but will cause an syntax error if you try to use the function.

5.4 cmt() changing compartment numbers for states

The compartment order can be changed with the <code>cmt()</code> syntax in the model. To understand what the <code>cmt()</code> can do you need to understand how <code>RxODE</code> numbers the compartments.

Below is an example of how RxODE numbers compartments

5.4.1 How RxODE numbers compartments

RxODE automatically assigns compartment numbers when parsing. For example, with the Mavoglurant PBPK model the following model may be used:

```
library(RxODE)
pbpk <- RxODE({</pre>
    KbBR = exp(1KbBR)
   KbMU = exp(1KbMU)
   KbAD = exp(1KbAD)
    CLint= exp(lCLint + eta.LClint)
   KbBO = exp(1KbBO)
   KbRB = exp(1KbRB)
    ## Regional blood flows
    # Cardiac output (L/h) from White et al (1968)
    CO = (187.00*WT^0.81)*60/1000;
    QHT = 4.0 *CO/100;
    QBR = 12.0*CO/100;
    QMU = 17.0*CO/100;
    QAD = 5.0 *CO/100;
    QSK = 5.0 *CO/100;
    QSP = 3.0 *CO/100;
    QPA = 1.0 *CO/100;
    QLI = 25.5*CO/100;
    QST = 1.0 *CO/100;
    QGU = 14.0*CO/100;
    # Hepatic artery blood flow
    QHA = QLI - (QSP + QPA + QST + QGU);
    QBO = 5.0 *CO/100;
    QKI = 19.0*CO/100;
    QRB = CO - (QHT + QBR + QMU + QAD + QSK + QLI + QBO + QKI);
    QLU = QHT + QBR + QMU + QAD + QSK + QLI + QBO + QKI + QRB;
    ## Organs' volumes = organs' weights / organs' density
   VLU = (0.76 *WT/100)/1.051;
   VHT = (0.47 *WT/100)/1.030;
    VBR = (2.00 *WT/100)/1.036;
   VMU = (40.00*WT/100)/1.041;
   VAD = (21.42*WT/100)/0.916;
   VSK = (3.71 *WT/100)/1.116;
   VSP = (0.26 *WT/100)/1.054;
   VPA = (0.14 *WT/100)/1.045;
   VLI = (2.57 *WT/100)/1.040;
   VST = (0.21 *WT/100)/1.050;
   VGU = (1.44 *WT/100)/1.043;
```

```
VBO = (14.29*WT/100)/1.990;
VKI = (0.44 *WT/100)/1.050;
VAB = (2.81 *WT/100)/1.040;
VVB = (5.62 *WT/100)/1.040;
VRB = (3.86 *WT/100)/1.040;
## Fixed parameters
BP = 0.61; # Blood:plasma partition coefficient
fup = 0.028; # Fraction unbound in plasma
fub = fup/BP; # Fraction unbound in blood
KbLU = exp(0.8334);
KbHT = exp(1.1205);
KbSK = exp(-.5238);
KbSP = exp(0.3224);
KbPA = exp(0.3224);
KbLI = exp(1.7604);
KbST = exp(0.3224);
KbGU = \exp(1.2026);
KbKI = exp(1.3171);
S15 = VVB*BP/1000;
C15 = Venous_Blood/S15
d/dt(Lungs) = QLU*(Venous_Blood/VVB - Lungs/KbLU/VLU);
d/dt(Heart) = QHT*(Arterial Blood/VAB - Heart/KbHT/VHT);
d/dt(Brain) = QBR*(Arterial Blood/VAB - Brain/KbBR/VBR);
d/dt(Muscles) = QMU*(Arterial_Blood/VAB - Muscles/KbMU/VMU);
d/dt(Adipose) = QAD*(Arterial Blood/VAB - Adipose/KbAD/VAD);
d/dt(Skin) = QSK*(Arterial_Blood/VAB - Skin/KbSK/VSK);
d/dt(Spleen) = QSP*(Arterial_Blood/VAB - Spleen/KbSP/VSP);
d/dt(Pancreas) = QPA*(Arterial_Blood/VAB - Pancreas/KbPA/VPA);
d/dt(Liver) = QHA*Arterial_Blood/VAB + QSP*Spleen/KbSP/VSP +
  QPA*Pancreas/KbPA/VPA + QST*Stomach/KbST/VST +
  QGU*Gut/KbGU/VGU - CLint*fub*Liver/KbLI/VLI - QLI*Liver/KbLI/VLI;
d/dt(Stomach) = QST*(Arterial_Blood/VAB - Stomach/KbST/VST);
d/dt(Gut) = QGU*(Arterial_Blood/VAB - Gut/KbGU/VGU);
d/dt(Bones) = QBO*(Arterial_Blood/VAB - Bones/KbBO/VBO);
d/dt(Kidneys) = QKI*(Arterial_Blood/VAB - Kidneys/KbKI/VKI);
d/dt(Arterial_Blood) = QLU*(Lungs/KbLU/VLU - Arterial_Blood/VAB);
d/dt(Venous_Blood) = QHT*Heart/KbHT/VHT + QBR*Brain/KbBR/VBR +
  QMU*Muscles/KbMU/VMU + QAD*Adipose/KbAD/VAD + QSK*Skin/KbSK/VSK +
  QLI*Liver/KbLI/VLI + QBO*Bones/KbBO/VBO + QKI*Kidneys/KbKI/VKI +
```

VLU = (0.76 * WT/100)/1.051

#>

```
QRB*Rest_of_Body/KbRB/VRB - QLU*Venous_Blood/VVB;
   d/dt(Rest_of_Body) = QRB*(Arterial_Blood/VAB - Rest_of_Body/KbRB/VRB);
})
If you look at the summary, you can see where RxODE assigned the compart-
ment number(s)
summary(pbpk)
#> RxODE 1.0.0-0 model named rx b16bf3219bce4489d0dc93c431c7a8a0 model (ready).
#> DLL: /home/matt/.cache/R/RxODE/rx_b16bf3219bce4489d0dc93c431c7a8a0__.rxd/rx_b16bf3219bce4489d0
#> NULL
#>
#> Calculated Variables:
                                "CLint" "KbBO"
#> [1] "KbBR"
                        "KbAD"
                                                         "CO"
                                                                 "QHT"
                                                                         "QBR"
                "KbMU"
                                                 "KbRB"
#> [10] "QMU"
                "QAD"
                        "QSK"
                                "QSP"
                                        "QPA"
                                                 "QLI"
                                                         "QST"
                                                                 "QGU"
                                                                         "QHA"
#> [19] "QBO"
                "QKI"
                                        "VLU"
                                                 "VHT"
                                                         "VBR"
                                                                 "VMU"
                                                                         "VAD"
                        "QRB"
                                "QLU"
#> [28] "VSK"
                "VSP"
                        "VPA"
                                "VLI"
                                        "VST"
                                                 "VGU"
                                                         "VBO"
                                                                 "VKI"
                                                                         "VAB"
                "VRB"
                                                        "KbSP"
#> [37] "VVB"
                                "KbLU"
                                        "KbHT"
                                                 "KbSK"
                                                                 "KbPA" "KbLI"
                        "fub"
#> [46] "KbST" "KbGU" "KbKI" "S15"
                                        "C15"
            _____ RxODE Model Syntax _____
#> RxODE({
#>
       KbBR = exp(1KbBR)
#>
       KbMU = exp(1KbMU)
#>
       KbAD = exp(1KbAD)
#>
       CLint = exp(lCLint + eta.LClint)
#>
       KbBO = exp(1KbBO)
#>
       KbRB = exp(1KbRB)
#>
       CO = (187 * WT^0.81) * 60/1000
#>
       QHT = 4 * CO/100
#>
       QBR = 12 * CO/100
#>
       QMU = 17 * CO/100
#>
       QAD = 5 * CO/100
#>
       QSK = 5 * CO/100
       QSP = 3 * CO/100
#>
#>
       QPA = 1 * CO/100
#>
       QLI = 25.5 * CO/100
#>
       QST = 1 * CO/100
#>
       QGU = 14 * CO/100
#>
       QHA = QLI - (QSP + QPA + QST + QGU)
#>
       QBO = 5 * CO/100
#>
       QKI = 19 * CO/100
#>
       QRB = CO - (QHT + QBR + QMU + QAD + QSK + QLI + QBO + QKI)
#>
       QLU = QHT + QBR + QMU + QAD + QSK + QLI + QBO + QKI + QRB
```

```
#>
       VHT = (0.47 * WT/100)/1.03
       VBR = (2 * WT/100)/1.036
#>
#>
       VMU = (40 * WT/100)/1.041
#>
       VAD = (21.42 * WT/100)/0.916
#>
       VSK = (3.71 * WT/100)/1.116
#>
       VSP = (0.26 * WT/100)/1.054
#>
       VPA = (0.14 * WT/100)/1.045
#>
       VLI = (2.57 * WT/100)/1.04
       VST = (0.21 * WT/100)/1.05
#>
#>
       VGU = (1.44 * WT/100)/1.043
#>
       VBO = (14.29 * WT/100)/1.99
#>
       VKI = (0.44 * WT/100)/1.05
#>
       VAB = (2.81 * WT/100)/1.04
#>
       VVB = (5.62 * WT/100)/1.04
#>
       VRB = (3.86 * WT/100)/1.04
#>
       BP = 0.61
#>
       fup = 0.028
#>
       fub = fup/BP
#>
       KbLU = exp(0.8334)
#>
       KbHT = exp(1.1205)
#>
       KbSK = exp(-0.5238)
#>
       KbSP = exp(0.3224)
#>
       KbPA = exp(0.3224)
#>
       KbLI = exp(1.7604)
#>
       KbST = exp(0.3224)
#>
       KbGU = exp(1.2026)
#>
       KbKI = exp(1.3171)
#>
       S15 = VVB * BP/1000
#>
       C15 = Venous Blood/S15
#>
       d/dt(Lungs) = QLU * (Venous_Blood/VVB - Lungs/KbLU/VLU)
#>
       d/dt(Heart) = QHT * (Arterial_Blood/VAB - Heart/KbHT/VHT)
#>
       d/dt(Brain) = QBR * (Arterial_Blood/VAB - Brain/KbBR/VBR)
#>
       d/dt(Muscles) = QMU * (Arterial_Blood/VAB - Muscles/KbMU/VMU)
#>
       d/dt(Adipose) = QAD * (Arterial_Blood/VAB - Adipose/KbAD/VAD)
#>
       d/dt(Skin) = QSK * (Arterial_Blood/VAB - Skin/KbSK/VSK)
#>
       d/dt(Spleen) = QSP * (Arterial_Blood/VAB - Spleen/KbSP/VSP)
       d/dt(Pancreas) = QPA * (Arterial_Blood/VAB - Pancreas/KbPA/VPA)
#>
#>
       d/dt(Liver) = QHA * Arterial_Blood/VAB + QSP * Spleen/KbSP/VSP +
#>
           QPA * Pancreas/KbPA/VPA + QST * Stomach/KbST/VST + QGU *
           Gut/KbGU/VGU - CLint * fub * Liver/KbLI/VLI - QLI * Liver/KbLI/VLI
#>
#>
       d/dt(Stomach) = QST * (Arterial_Blood/VAB - Stomach/KbST/VST)
#>
       d/dt(Gut) = QGU * (Arterial_Blood/VAB - Gut/KbGU/VGU)
#>
       d/dt(Bones) = QBO * (Arterial_Blood/VAB - Bones/KbBO/VBO)
#>
       d/dt(Kidneys) = QKI * (Arterial_Blood/VAB - Kidneys/KbKI/VKI)
       d/dt(Arterial Blood) = QLU * (Lungs/KbLU/VLU - Arterial Blood/VAB)
#>
#>
       d/dt(Venous_Blood) = QHT * Heart/KbHT/VHT + QBR * Brain/KbBR/VBR +
```

In this case, Venous_Blood is assigned to compartment 15. Figuring this out can be inconvenient and also lead to re-numbering compartment in simulation or estimation datasets. While it is easy and probably clearer to specify the compartment by name, other tools only support compartment numbers. Therefore, having a way to number compartment easily can lead to less data modification between multiple tools.

5.4.2 Changing compartments by pre-declaring with cmt()

To add the compartments to the RxODE model in the order you desire you simply need to pre-declare the compartments with cmt. For example specifying is Venous_Blood and Skin to be the 1st and 2nd compartments, respectively, is simple:

```
pbpk2 <- RxODE({</pre>
  ## Now this is the first compartment, ie cmt=1
  cmt(Venous Blood)
  ## Skin may be a compartment you wish to dose to as well,
  ## so it is now cmt=2
  cmt(Skin)
  KbBR = exp(1KbBR)
  KbMU = exp(1KbMU)
  KbAD = exp(1KbAD)
  CLint= exp(lCLint + eta.LClint)
  KbBO = exp(1KbBO)
  KbRB = exp(1KbRB)
  ## Regional blood flows
  # Cardiac output (L/h) from White et al (1968)m
  CO = (187.00*WT^0.81)*60/1000;
  QHT = 4.0 *CO/100;
  QBR = 12.0*C0/100;
  QMU = 17.0*CO/100;
  QAD = 5.0 *CO/100;
  QSK = 5.0 *CO/100;
```

```
QSP = 3.0 *CO/100;
QPA = 1.0 *CO/100;
QLI = 25.5*CO/100;
QST = 1.0 *CO/100;
QGU = 14.0*CO/100;
QHA = QLI - (QSP + QPA + QST + QGU); # Hepatic artery blood flow
QBO = 5.0 *CO/100;
QKI = 19.0*CO/100;
QRB = CO - (QHT + QBR + QMU + QAD + QSK + QLI + QBO + QKI);
QLU = QHT + QBR + QMU + QAD + QSK + QLI + QBO + QKI + QRB;
## Organs' volumes = organs' weights / organs' density
VLU = (0.76 *WT/100)/1.051;
VHT = (0.47 *WT/100)/1.030;
VBR = (2.00 *WT/100)/1.036;
VMU = (40.00*WT/100)/1.041;
VAD = (21.42*WT/100)/0.916;
VSK = (3.71 *WT/100)/1.116;
VSP = (0.26 *WT/100)/1.054;
VPA = (0.14 *WT/100)/1.045;
VLI = (2.57 *WT/100)/1.040;
VST = (0.21 *WT/100)/1.050;
VGU = (1.44 *WT/100)/1.043;
VBO = (14.29*WT/100)/1.990;
VKI = (0.44 *WT/100)/1.050;
VAB = (2.81 *WT/100)/1.040;
VVB = (5.62 *WT/100)/1.040;
VRB = (3.86 *WT/100)/1.040;
## Fixed parameters
BP = 0.61; # Blood:plasma partition coefficient
fup = 0.028; # Fraction unbound in plasma
fub = fup/BP; # Fraction unbound in blood
KbLU = exp(0.8334);
KbHT = exp(1.1205);
KbSK = exp(-.5238);
KbSP = exp(0.3224);
KbPA = exp(0.3224);
KbLI = exp(1.7604);
KbST = exp(0.3224);
KbGU = \exp(1.2026);
KbKI = exp(1.3171);
```

```
S15 = VVB*BP/1000;
  C15 = Venous_Blood/S15
  d/dt(Lungs) = QLU*(Venous_Blood/VVB - Lungs/KbLU/VLU);
  d/dt(Heart) = QHT*(Arterial_Blood/VAB - Heart/KbHT/VHT);
  d/dt(Brain) = QBR*(Arterial_Blood/VAB - Brain/KbBR/VBR);
  d/dt(Muscles) = QMU*(Arterial_Blood/VAB - Muscles/KbMU/VMU);
  d/dt(Adipose) = QAD*(Arterial_Blood/VAB - Adipose/KbAD/VAD);
  d/dt(Skin) = QSK*(Arterial_Blood/VAB - Skin/KbSK/VSK);
  d/dt(Spleen) = QSP*(Arterial_Blood/VAB - Spleen/KbSP/VSP);
  d/dt(Pancreas) = QPA*(Arterial_Blood/VAB - Pancreas/KbPA/VPA);
  d/dt(Liver) = QHA*Arterial_Blood/VAB + QSP*Spleen/KbSP/VSP +
    QPA*Pancreas/KbPA/VPA + QST*Stomach/KbST/VST + QGU*Gut/KbGU/VGU -
    CLint*fub*Liver/KbLI/VLI - QLI*Liver/KbLI/VLI;
  d/dt(Stomach) = QST*(Arterial_Blood/VAB - Stomach/KbST/VST);
  d/dt(Gut) = QGU*(Arterial_Blood/VAB - Gut/KbGU/VGU);
  d/dt(Bones) = QBO*(Arterial_Blood/VAB - Bones/KbBO/VBO);
  d/dt(Kidneys) = QKI*(Arterial_Blood/VAB - Kidneys/KbKI/VKI);
  d/dt(Arterial_Blood) = QLU*(Lungs/KbLU/VLU - Arterial_Blood/VAB);
  d/dt(Venous_Blood) = QHT*Heart/KbHT/VHT + QBR*Brain/KbBR/VBR +
    QMU*Muscles/KbMU/VMU + QAD*Adipose/KbAD/VAD + QSK*Skin/KbSK/VSK +
    QLI*Liver/KbLI/VLI + QBO*Bones/KbBO/VBO + QKI*Kidneys/KbKI/VKI +
    QRB*Rest_of_Body/KbRB/VRB - QLU*Venous_Blood/VVB;
  d/dt(Rest_of_Body) = QRB*(Arterial_Blood/VAB - Rest_of_Body/KbRB/VRB);
})
```

You can see this change in the simple printout

```
pbpk2
```

```
#> RxODE 1.0.0-0 model named rx_1fda8295091ca6d0012077b24d579018 model (ready).
#> x$state: Venous_Blood, Skin, Lungs, Heart, Brain, Muscles, Adipose, Spleen, Pancreas, Liver, S
#> x$params: 1KbBR, 1KbMU, 1KbAD, 1CLint, eta.LClint, 1KbBO, 1KbRB, WT, BP, fup
#> x$lhs: KbBR, KbMU, KbAD, CLint, KbBO, KbRB, CO, QHT, QBR, QMU, QAD, QSK, QSP, QPA, QLI, QST, C
```

The first two compartments are Venous_Blood followed by Skin.

5.4.3 Appending compartments to the model with cmt()

You can also append "compartments" to the model. Because of the ODE solving internals, you cannot add fake compartments to the model until after all the differential equations are defined.

For example this is legal:

```
ode.1c.ka <- RxODE({
    C2 = center/V;
    d / dt(depot) = -KA * depot
    d/dt(center) = KA * depot - CL*C2
    cmt(eff);
})
print(ode.1c.ka)
#> RxODE 1.0.0-0 model named rx_673f6105e66276a1ff77b53712cdf722 model (ready).
#> $state: depot, center
#> $stateExtra: eff
#> $params: V, KA, CL
#> $1hs: C2
But compartments defined before all the differential equations is not supported;
So the model below:
ode.1c.ka <- RxODE({
    cmt(eff);
    C2 = center/V;
    d / dt(depot) = -KA * depot
    d/dt(center) = KA * depot - CL*C2
})
will give an error:
Error in rxModelVars_(obj) :
  Evaluation error: Compartment 'eff' needs differential equations defined.
```

RxODE events

In general, RxODE event tables follow NONMEM dataset convention with the exceptions:

- The compartment data item (cmt) can be a string/factor with compartment names
 - You may turn off a compartment with a negative compartment number or "-cmt" where cmt is the compartment name.
 - The compartment data item (cmt) can still be a number, the number of the compartment is defined by the appearance of the compartment name in the model. This can be tedious to count, so you can specify compartment numbers easier by using the cmt(cmtName) at the beginning of the model.
- An additional column, dur can specify the duration of infusions;
 - Bioavailability changes will change the rate of infusion since dur/amt are fixed in the input data.
 - Similarly, when specifying rate/amt for an infusion, the bioavailability will change the infusion duration since rate/amt are fixed in the input data.
- Some infrequent NONMEM columns are not supported: pcmt, call.
- Additional events are supported:
 - evid=5 or replace event; This replaces the value of a compartment with the value specified in the amt column. This is equivalent to deSolve=replace.
 - evid=6 or multiply event; This multiplies the value in the compartment with the value specified by the amt column. This is equivalent to deSolve=multiply.

Here are the legal entries to a data table:

Data		
Item	Meaning	Notes
id	Individual identifier	Can be a integer, factor, character, or numeric
time	Individual time	Numeric for each time.
amt	dose amount	Positive for doses zero/NA for observations
rate	infusion rate	When specified the infusion duration will be dur=amt/rate
		rate = -1, rate modeled; rate = -2, duration modeled
dur	$rac{1}{2}$ infusion $rac{1}{2}$	When specified the infusion rate will be rate = amt/dur
evid	event ID	0=Observation; 1=Dose; 2=Other; 3=Reset; 4=Reset+Dose; 5=Replace; 6=Multiply
cmt	Compartment	Represents compartment #/name for dose/observation
SS	Steady State Flag	0 = non-steady-state; 1=steady state; 2=steady state +prior states
ii	Inter-dose	Time between doses.
	Interval	
addl	# of additional doses	Number of doses like the current dose.

Other notes:

- The evid can be the classic RxODE (described here) or the NONMEM-style evid described above.
- NONMEM's DV is not required; RxODE is a ODE solving framework.
- $\bullet\,$ NONMEM's MDV is not required, since it is captured in EVID.
- Instead of NONMEM-compatible data, it can accept deSolve compatible data-frames.

When returning the RxODE solved data-set there are a few additional event ids (EVID) that you may see depending on the solving options:

- EVID = -1 is when a modeled rate ends (corresponds to rate = -1)
- EVID = -2 is when a modeled duration ends (corresponds to rate=-2)
- EVID = -10 when a rate specified zero-order infusion ends (corresponds to rate > 0)
- EVID = -20 when a duration specified zero-order infusion ends (corresponds to dur > 0)

• EVID = 101, 102, 103,... These correspond to the 1, 2, 3, ... modeled time (mtime).

These can only be accessed when solving with the option combination addDosing=TRUE and subsetNonmem=FALSE. If you want to see the classic EVID equivalents you can use addDosing=NA.

To illustrate the event types we will use the model from the original RxODE tutorial.

```
library(RxODE)
## Model from RxODE tutorial
m1 <-RxODE({
    KA=2.94E-01;
    CL=1.86E+01;
    V2=4.02E+01;
    Q=1.05E+01;
    V3=2.97E+02;
    Kin=1;
    Kout=1;
    EC50=200;
    ## Added modeled bioavaiblity, duration and rate
    fdepot = 1;
    durDepot = 8;
    rateDepot = 1250;
    C2 = centr/V2;
    C3 = peri/V3;
    d/dt(depot) =-KA*depot;
    f(depot) = fdepot
    dur(depot) = durDepot
    rate(depot) = rateDepot
    d/dt(centr) = KA*depot - CL*C2 - Q*C2 + Q*C3;
    d/dt(peri) =
                                      Q*C2 - Q*C3;
    d/dt(eff) = Kin - Kout*(1-C2/(EC50+C2))*eff;
    eff(0) = 1
});
```

6.1 Bolus/Additive Doses

A bolus dose is the default type of dose in RxODE and only requires the amt/dose. Note that this uses the convenience function et() described in the RxODE event tables

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12,until=24) %>%
    et(seq(0, 24, length.out=100))
```

```
#> ------ EventTable with 101 records -----
#>
#>
     1 dosing records (see x$get.dosing(); add with add.dosing or et)
     100 observation times (see x$get.sampling(); add with add.sampling or et)
#>
     multiple doses in 'addl' columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------
#> # A tibble: 101 x 5
#>
         time
               \mathtt{amt}
                    ii addl evid
          [h] <dbl>
                    [h] <int> <evid>
#>
                        NA 0:Observation
#> 1 0.0000000
                   NA
                   12
                          2 1:Dose (Add)
#> 2 0.0000000 10000
#> 3 0.2424242 NA NA NA 0:Observation
#> 4 0.4848485 NA NA NA 0:Observation
#> 5 0.7272727 NA NA NA 0:Observation
#> 6 0.9696970 NA NA NA 0:Observation
#> 7 1.2121212 NA NA NA 0:Observation
#> 8 1.4545455 NA NA NA 0:Observation
#> 9 1.6969697
                   NA NA 0:Observation
               NA
#> 10 1.9393939
              NA
                     NA NA 0:Observation
#> # ... with 91 more rows
```

```
rxSolve(m1, ev) %>% plot(C2) +
    xlab("Time")
```


6.2 Infusion Doses

There are a few different type of infusions that RxODE supports:

- Constant Rate Infusion (rate)
- Constant Duration Infusion (dur)
- Estimated Rate of Infusion
- Estimated Duration of Infusion

6.2.1 Constant Infusions (in terms of duration and rate)

The next type of event is an infusion; There are two ways to specify an infusion; The first is the $\tt dur$ keyword.

An example of this is:

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12,until=24, dur=8) %>%
    et(seq(0, 24, length.out=100))
```

```
----- EventTable with 101 records ------
#>
#>
     1 dosing records (see x$get.dosing(); add with add.dosing or et)
     100 observation times (see x$get.sampling(); add with add.sampling or et)
#>
     multiple doses in 'addl' columns, expand with x=expand(); or etExpand(x)
#>
  -- First part of x: -----
  # A tibble: 101 x 6
#>
          time
                 amt
                        ii addl evid
                                                dur
           [h] <dbl>
                       [h] <int> <evid>
                                                [h]
#>
   1 0.0000000
#>
                       NA
                             NA 0:Observation
                                                 NA
   2 0.0000000 10000
                             2 1:Dose (Add)
                                                 8
   3 0.2424242
                        NA
                             NA 0:Observation
                                                 NA
   4 0.4848485
                        NA
                             NA 0:Observation
                                                 NA
   5 0.7272727
                             NA 0:Observation
                                                 NA
                  NA
                        NA
   6 0.9696970
                  NA
                             NA 0:Observation
                                                 NA
   7 1.2121212
                             NA 0:Observation
                  NA
                        NA
                                                 NA
   8 1.4545455
                  NA
                        NA
                             NA 0:Observation
                                                 NA
   9 1.6969697
                  NA
                        NA
                             NA 0:Observation
                                                 NA
#> 10 1.9393939
                             NA 0:Observation
                                                 NA
                  NA
                        NA
#> # ... with 91 more rows
```


It can be also specified by the rate component:

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12,until=24, rate=10000/8) %>%
    et(seq(0, 24, length.out=100))
```

```
#> ----- EventTable with 101 records -----
#>
#>
     1 dosing records (see x$get.dosing(); add with add.dosing or et)
     100 observation times (see x$get.sampling(); add with add.sampling or et)
     multiple doses in 'addl' columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------
#> # A tibble: 101 x 6
#>
         time amt rate
                             ii addl evid
          [h] <dbl> <rate/dur> [h] <int> <evid>
#>
#> 1 0.0000000 NA NA
                             NA
                                 NA 0:Observation
#> 2 0.0000000 10000 1250
                             12
                                   2 1:Dose (Add)
#> 3 0.2424242 NA NA
                             NA NA 0:Observation
#> 4 0.4848485 NA NA
                             NA NA 0:Observation
#> 5 0.7272727 NA NA
                             NA NA 0:Observation
                            NA NA 0:Observation
#> 6 0.9696970 NA NA
#> 7 1.2121212 NA NA
                            NA NA 0:Observation
#> 8 1.4545455 NA NA
                            NA NA 0:Observation
#> 9 1.6969697
                             NA NA 0:Observation
               NA NA
#> 10 1.9393939
              NA NA
                             NA NA 0:Observation
#> # ... with 91 more rows
```

```
rxSolve(m1, ev) %>% plot(depot, C2) +
    xlab("Time")
```


These are the same with the exception of how bioavailability changes the infusion.

In the case of modeling rate, a bioavailability decrease, decreases the infusion duration, as in NONMEM. For example:

```
rxSolve(m1, ev, c(fdepot=0.25)) %>% plot(depot, C2) +
    xlab("Time")
```


Similarly increasing the bioavailability increases the infusion duration.

```
rxSolve(m1, ev, c(fdepot=1.25)) %>% plot(depot, C2) +
    xlab("Time")
```


The rationale for this behavior is that the rate and amt are specified by the event table, so the only thing that can change with a bioavailability increase is the duration of the infusion.

If you specify the amt and dur components in the event table, bioavailability changes affect the rate of infusion.

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12,until=24, dur=8) %>%
    et(seq(0, 24, length.out=100))
```

You can see the side-by-side comparison of bioavailability changes affecting rate instead of duration with these records in the following plots:

6.2.2 Modeled Rate and Duration of Infusion

You can model the duration, which is equivalent to NONMEM's rate=-2. As a mnemonic you can use the dur=model instead of rate=-2

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12,until=24, dur=model) %>%
    et(seq(0, 24, length.out=100))
ev
```

```
#> ----- EventTable with 101 records -----
#>
#>
     1 dosing records (see x$get.dosing(); add with add.dosing or et)
#>
     100 observation times (see x$get.sampling(); add with add.sampling or et)
     multiple doses in 'addl' columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: -----
#> # A tibble: 101 x 6
                               ii addl evid
#>
         time amt rate
          [h] <dbl> <rate/dur> [h] <int> <evid>
#>
#> 1 0.0000000
               NA NA
                              NA NA 0:Observation
                             12
#> 2 0.0000000 10000 -2:dur
                                      2 1:Dose (Add)
                               NA
#> 3 0.2424242 NA NA
                                     NA 0:Observation
                              NA
#> 4 0.4848485 NA NA
                                     NA 0:Observation
#> 5 0.7272727 NA NA
                              NA NA 0:Observation
                             NA NA 0:Observation
NA NA 0:Observation
NA NA 0:Observation
NA NA 0:Observation
#> 6 0.9696970 NA NA
#> 7 1.2121212 NA NA
#> 8 1.4545455 NA NA
#> 9 1.6969697 NA NA
                                NA NA 0:Observation
#> 10 1.9393939
              NA NA
                                NA NA 0:Observation
#> # ... with 91 more rows
```

```
rxSolve(m1, ev, c(durDepot=7)) %>% plot(depot, C2) +
    xlab("Time")
```


Similarly, you may also model rate. This is equivalent to NONMEM's rate=-1 and is how RxODE's event table specifies the data item as well. You can also use rate=model as a mnemonic:

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12,until=24, rate=model) %>%
    et(seq(0, 24, length.out=100))
ev
           ----- EventTable with 101 records ------
#>
#>
      1 dosing records (see x$get.dosing(); add with add.dosing or et)
#>
      100 observation times (see x$get.sampling(); add with add.sampling or et)
      multiple doses in 'addl' columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: --
#> # A tibble: 101 x 6
#>
                 amt rate
          time
                                    ii addl evid
#>
            [h] <dbl> <rate/dur>
                                   [h] <int> <evid>
   1 0.0000000
                  NA NA
                                   NA
                                          NA 0:Observation
#>
   2 0.0000000 10000 -1:rate
                                           2 1:Dose (Add)
#>
                                    12
   3 0.2424242
                  NA NA
                                    NA
                                          NA 0:Observation
   4 0.4848485
                  NA NA
                                    NA
                                          NA 0:Observation
  5 0.7272727
                  NA NA
                                    NA
                                          NA 0:Observation
#> 6 0.9696970
                  NA NA
                                    NA
                                          NA 0:Observation
```

```
#>
   7 1.2121212
                   NA NA
                                     NA
                                           NA 0:Observation
#> 8 1.4545455
                   NA NA
                                     NA
                                           NA 0:Observation
#> 9 1.6969697
                   NA NA
                                           NA 0:Observation
                                     NA
#> 10 1.9393939
                   NA NA
                                     NA
                                           NA 0:Observation
#> # ... with 91 more rows
```

```
rxSolve(m1, ev, c(rateDepot=10000/3)) %>% plot(depot, C2) +
    xlab("Time")
```


6.3 Steady State

#>

These doses are solved until a steady state is reached with a constant inter-dose interval.

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12, ss=1) %>%
    et(seq(0, 24, length.out=100))
```

----- EventTable with 101 records ------

```
#>
      1 dosing records (see x$get.dosing(); add with add.dosing or et)
#>
      100 observation times (see x$get.sampling(); add with add.sampling or et)
#> -- First part of x: -----
  # A tibble: 101 x 5
#>
#>
           time
                  amt
                         ii evid
                                             SS
#>
            [h] <dbl>
                        [h] <evid>
                                          <int>
#>
   1 0.0000000
                         NA 0:Observation
                                             NA
   2 0.0000000 10000
#>
                         12 1:Dose (Add)
                                              1
   3 0.2424242
                         NA 0:Observation
#>
                   NA
                                             NA
#>
   4 0.4848485
                   NA
                         NA 0:Observation
                                             NA
   5 0.7272727
                         NA 0:Observation
                                             NA
   6 0.9696970
                   NA
                         NA 0:Observation
                                             NA
   7 1.2121212
                   NA
                         NA 0:Observation
                                             NA
   8 1.4545455
                         NA 0:Observation
                                             NA
                   NA
   9 1.6969697
                   NA
                         NA 0:Observation
                                             NA
                         NA 0:Observation
#> 10 1.9393939
                   NA
                                             NA
#> # ... with 91 more rows
```


6.3.1 Steady state for complex dosing

By using the ss=2 flag, you can use the super-positioning principle in linear kinetics to get steady state nonstandard dosing (i.e. morning 100 mg vs evening

150 mg). This is done by:

- Saving all the state values
- Resetting all the states and solving the system to steady state
- Adding back all the prior state values

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=24, ss=1) %>%
    et(time=12, amt=15000, ii=24, ss=2) %>%
    et(time=24, amt=10000, ii=24, addl=3) %>%
    et(time=36, amt=15000, ii=24, addl=3) %>%
    et(seq(0, 64, length.out=500))

library(ggplot2)

rxSolve(m1, ev,maxsteps=10000) %>% plot(C2) +
    annotate("rect", xmin=0, xmax=24, ymin=-Inf, ymax=Inf, alpha=0.2) +
    annotate("text", x=12.5, y=7, label="Initial Steady State Period") +
    annotate("text", x=44, y=7, label="Steady State AM/PM dosing")
```


You can see that it takes a full dose cycle to reach the true complex steady state dosing.

6.3.2 Steady state for constant infusion or zero order processes

The last type of steady state that RxODE supports is steady-state constant infusion rate. This can be specified the same way as NONMEM, that is:

- No inter-dose interval ii=0
- A steady state dose, ie ss=1
- Either a positive rate (rate>0) or a estimated rate rate=-1.
- A zero dose, ie amt=0
- Once the steady-state constant infusion is achieved, the infusion is turned off when using this record, just like NONMEM.

Note that rate=-2 where we model the duration of infusion doesn't make much sense since we are solving the infusion until steady state. The duration is specified by the steady state solution.

Also note that bioavailability changes on this steady state infusion also do not make sense because they neither change the rate or the duration of the steady state infusion. Hence modeled bioavailability on this type of dosing event is ignored.

Here is an example:

```
ev <- et(timeUnits="hr") %>%
    et(amt=0, ss=1,rate=10000/8)

p1 <- rxSolve(m1, ev) %>% plot(C2, eff)

ev <- et(timeUnits="hr") %>%
    et(amt=200000, rate=10000/8) %>%
    et(0, 250, length.out=1000)

p2 <- rxSolve(m1, ev) %>% plot(C2, eff)

library(patchwork)

p1 / p2
```


Not only can this be used for PK, it can be used for steady-state disease processes.

6.4 Reset Events

Reset events are implemented by evid=3 or evid=reset, for reset and evid=4 for reset and dose.

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12, addl=3) %>%
    et(time=6, evid=reset) %>%
    et(seq(0, 24, length.out=100))
```

```
#>
             [h] <dbl>
                         [h] <int> <evid>
#>
    1 0.0000000
                    NA
                          NA
                                 NA 0:Observation
    2 0.0000000 10000
                          12
                                 3 1:Dose (Add)
    3 0.2424242
                                 NA 0:Observation
#>
                    NA
                          NA
    4 0.4848485
#>
                    NA
                          NA
                                NA 0:Observation
                    NA
    5 0.7272727
                          NA
                                NA 0:Observation
#>
    6 0.9696970
                    NA
                          NA
                                NA 0:Observation
#>
    7 1.2121212
                    NA
                          NA
                                NA 0:Observation
    8 1.4545455
                                NA 0:Observation
#>
                    NA
                          NA
    9 1.6969697
#>
                    NA
                          NA
                                NA 0:Observation
#> 10 1.9393939
                    NA
                          NA
                                 NA 0:Observation
#> # ... with 92 more rows
```

The solving show what happens in this system when the system is reset at 6 hours post-dose.

```
rxSolve(m1, ev) %>% plot(depot,C2, eff)
```


You can see all the compartments are reset to their initial values. The next dose start the dosing cycle over.

```
ev <- et(timeUnits="hr") %>%
  et(amt=10000, ii=12, addl=3) %>%
  et(time=6, amt=10000, evid=4) %>%
```

```
et(seq(0, 24, length.out=100))
ev
```

```
#> ----- EventTable with 102 records -----
#>
     2 dosing records (see x$get.dosing(); add with add.dosing or et)
#>
#>
     100 observation times (see x$get.sampling(); add with add.sampling or et)
     multiple doses in 'add1' columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: ------
#> # A tibble: 102 x 5
#>
         time
               amt
                     ii addl evid
#>
          [h] <dbl>
                     [h] <int> <evid>
  1 0.0000000
#>
              NA
                     NA
                         NA 0:Observation
   2 0.0000000 10000
                           3 1:Dose (Add)
#>
                     12
#> 3 0.2424242
             NA NA NA 0:Observation
#> 4 0.4848485
              NA NA NA 0:Observation
#> 5 0.7272727 NA NA NA 0:Observation
#>
   6 0.9696970
              NA NA NA 0:Observation
#> 7 1.2121212 NA NA NA 0:Observation
#> 8 1.4545455 NA
                     NA NA 0:Observation
#> 9 1.6969697
                NA
                     NA
                        NA 0:Observation
#> 10 1.9393939
                NA
                     NA
                          NA 0:Observation
#> # ... with 92 more rows
```

In this case, the whole system is reset and the dose is given

```
rxSolve(m1, ev) %>% plot(depot,C2, eff)
```


6.5 Turning off compartments

ev <- et(timeUnits="hr") %>%

You may also turn off a compartment, which is similar to a reset event.

```
et(amt=10000, ii=12, addl=3) %>%
   et(time=6, cmt="-depot", evid=2) %>%
   et(seq(0, 24, length.out=100))
ev
      ----- EventTable with 102 records -----
     2 dosing records (see x$get.dosing(); add with add.dosing or et)
#>
     100 observation times (see x$get.sampling(); add with add.sampling or et)
     multiple doses in 'addl' columns, expand with x$expand(); or etExpand(x)
#> -- First part of x: -----
#> # A tibble: 102 x 6
                              ii addl evid
#>
         time cmt
                       \mathtt{amt}
                      <dbl>
                              [h] <int> <evid>
#>
          [h] <chr>
#> 1 0.0000000 (obs) NA NA
                                  NA 0:Observation
#> 2 0.0000000 (default) 10000 12 3 1:Dose (Add)
#> 3 0.2424242 (obs) NA NA 0:Observation
```

```
#>
    4 0.4848485 (obs)
                              NA
                                     NA
                                           NA 0:Observation
    5 0.7272727 (obs)
                              NA
                                     NA
                                           NA 0:Observation
#>
    6 0.9696970 (obs)
                              NA
                                     NA
                                           NA 0:Observation
                                           NA 0:Observation
#>
    7 1.2121212 (obs)
                              NA
                                     NA
#>
   8 1.4545455 (obs)
                              NA
                                    NA
                                           NA 0:Observation
   9 1.6969697 (obs)
                              NA
                                     NA
                                           NA 0:Observation
#> 10 1.9393939 (obs)
                                     NA
                                           NA 0:Observation
                              NA
#> # ... with 92 more rows
```

Solving shows what this does in the system:

```
rxSolve(m1, ev) %>% plot(depot,C2, eff)
```


In this case, the depot is turned off, and the depot compartment concentrations are set to the initial values but the other compartment concentrations/levels are not reset. When another dose to the depot is administered the depot compartment is turned back on.

Note that a dose to a compartment only turns back on the compartment that was dosed. Hence if you turn off the effect compartment, it continues to be off after another dose to the depot.

```
ev <- et(timeUnits="hr") %>%
  et(amt=10000, ii=12, addl=3) %>%
  et(time=6, cmt="-eff", evid=2) %>%
```

```
et(seq(0, 24, length.out=100))
rxSolve(m1, ev) %>% plot(depot,C2, eff)
```


To turn back on the compartment, a zero-dose to the compartment or a evid=2 with the compartment would be needed.

```
ev <- et(timeUnits="hr") %>%
    et(amt=10000, ii=12, addl=3) %>%
    et(time=6, cmt="-eff", evid=2) %>%
    et(time=12, cmt="eff", evid=2) %>%
    et(seq(0, 24, length.out=100))

rxSolve(m1, ev) %>% plot(depot, C2, eff)
```


6.6 Classic RxODE events

Originally RxODE supported compound event IDs; RxODE still supports these parameters, but it is often more useful to use the the normal NONMEM dataset standard that is used by many modeling tools like NONMEM, Monolix and nlmixr, described in the RxODE event types article.

Classically, RxODE supported event coding in a single event id evid described in the following table.

100+ cmt	Infusion/Event Flag	<99 Cmt	SS flag & Turning of Compartment
100+ cmt	0 = bolus dose	< 99 cmt	1 = dose
	1 = infusion (rate)		10 = Steady state 1 (equivalent to $SS=1$)
	2 = infusion (dur)		20 = Steady state 2 (equivalent to SS=2)
	6 = turn off		30 = Turn off a compartment
	modeled duration		(equivalent to -CMT $w/EVID=2$)
	7 = turn off		
	modeled rate		
	8 = turn on		
	modeled duration		

100+	Infusion/Event	<99	SS flag & Turning of Compartment
cmt	Flag	Cmt	
	9 = turn on modeled rate 4 = replace event 5 = multiply event		

The classic EVID concatenate the numbers in the above table, so an infusion would to compartment 1 would be 10101 and an infusion to compartment 199 would be 119901.

EVID = 0 (observations), EVID=2 (other type event) and EVID=3 are all supported. Internally an EVID=9 is a non-observation event and makes sure the system is initialized to zero; EVID=9 should not be manually set. EVID 10-99 represents modeled time interventions, similar to NONMEM's MTIME. This along with amount (amt) and time columns specify the events in the ODE system.

For infusions specified with EVIDs > 100 the amt column represents the rate value.

For Infusion flags 1 and 2 +amt turn on the infusion to a specific compartment -amt turn off the infusion to a specific compartment. To specify a dose/duration you place the dosing records at the time the duration starts or stops.

For modeled rate/duration infusion flags the on infusion flag must be followed by an off infusion record.

These number are concatenated together to form a full RxODE event ID, as shown in the following examples:

6.6.1 Bolus Dose Examples

A 100 bolus dose to compartment #1 at time 0

time	evid	amt
0	101	100
0.5	0	0
1	0	0

A 100 bolus dose to compartment #99 at time 0

time	evid	amt
0	9901	100
0.5	0	0
1	0	0

A 100 bolus dose to compartment #199 at time 0

time	evid	amt
0	109901	100
0.5	0	0
1	0	0

6.6.2 Infusion Event Examples

Bolus infusion with rate 50 to compartment 1 for 1.5 hr, (modeled bioavailability changes duration of infusion)

time	evid	amt
0	10101	50
0.5	0	0
1	0	0
1.5	10101	-50

Bolus infusion with rate 50 to compartment 1 for 1.5 hr (modeled bioavailability changes rate of infusion)

time	evid	amt
0	20101	50
0.5	0	0
1	0	0
1.5	20101	-50

Modeled rate with amount of 50

time	evid	amt
0	90101	50
0	70101	50
0.5	0	0

time	evid	amt
1	0	0

Modeled duration with amount of 50

time	evid	amt
0	80101	50
0	60101	50
0.5	0	0
1	0	0

6.6.3 Steady State for classic RxODE EVID example

Steady state dose to cmt 1

time	evid	amt
0	110	50

Steady State with super-positioning principle for am 50 and pm 100 dose

time	evid	amt
0	110	50
12	120	100

6.6.4 Turning off a compartment with classic RxODE $\overline{\text{EVID}}$

Turn off the first compartment at time 12

time	evid	amt
0	110	50
12	130	NA

Event coding in RxODE is encoded in a single event number evid. For compartments under 100, this is coded as:

• This event is 0 for observation events.

- For a specified compartment a bolus dose is defined as:
 - -100*(Compartment Number) + 1
 - The dose is then captured in the amt
- For IV bolus doses the event is defined as:
 - -10000 + 100*(Compartment Number) + 1
 - The infusion rate is captured in the amt column
 - The infusion is turned off by subtracting amt with the same evid at the stop of the infusion.

For compartments greater or equal to 100, the 100s place and above digits are transferred to the 100,000th place digit. For doses to the 99th compartment the evid for a bolus dose would be 9901 and the evid for an infusion would be 19901. For a bolus dose to the 199th compartment the evid for the bolus dose would be 109901. An infusion dosing record for the 199th compartment would be 119901.