Succinct Arguments for Circuit Sat, Merkle Trees and Polynomial Commitment Schemes

Alexander Lindenbaum

Notes are from Chapter 7 of [Tha22].

1 Arithmetic Circuit Satisfiability

In the arithmetic circuit satisfiability problem, you have a fixed circuit C(x, w). with inputs in \mathbb{F}^n . Given x and an output(s) y, the problem is to find w so that C(x, w) = y. We care about this problem because arithmetic circuits encode time-bounded computation. The problem of, whether a TM M on input x outputs y in time $\leq T$ can be reduced the arithmetic circuit satisfiability, where $\operatorname{size}(\mathcal{C}) \approx T$ and $\operatorname{depth}(\mathcal{C}) \approx O(\log T)$. Arithmetic circuits also encode commonly used circuits like SHA-256, which we would want to prove we have a w such that SHA-256(w) = y.

[GKR08] gives an IP for evaluating a circuit \mathcal{C} on an input. In GKR, the prover runs in time polynomial in the size of \mathcal{C} , and the verifier runs in polylog($n + \text{depth}(\mathcal{C}) \log(\text{size}(\mathcal{C}))$).

A naive IP for circuit satisfiability: \mathcal{P} sends w such that $\mathcal{C}(x, w) = y$. Then \mathcal{P} and \sqsubseteq simulate GKR on (x, w).

But this is not a "succinct" IP, because \mathcal{P} has to send a proof of size |w|. We are shooting for total communication which is sublinear in |w|. Without going into too much detail for GKR, the way to get a shorter proof is to have \mathcal{P} commit to a low-degree polynomial $\tilde{w}(x)$, and \mathcal{V} only needs to ask for its evaluation on a single field element.

2 Polynomial Commitment Schemes

2.1 (String) Commitment Schemes

A sender has a message $m \in \Sigma^n$ which they want to commit to. Sender uses randomness to generate and send a commitment string com_m to receiver. When the receiver wants to "open" the commitment, they ask for the random bits and run a verification algorithm on com_m , m and the random bits. A proper commitment scheme holds two properties:

1. Hiding: (t, ε) -hiding: for all messages m and m' of the same size, the distributions com(m, r) and com(m', r) are (t, ε) -indistinguishable, where the distributions are over the random bits r.

2. Binding: (this is "perfect binding") for all messages m and random bits r, r',

$$\operatorname{ver}(\operatorname{com}(m,r),r')$$

is either m itself or "FAIL".

One way to obtain a commitment scheme is by using a collision-resistant hash function (CRHF) $H: \mathcal{M} \times \mathcal{R} \to \mathcal{C}$. We would have:

$$com(m,r) = H(m,r),$$

 $ver(m, com, r) = 1 \iff com = H(m, r).$

(The form of the verification function is slightly different here from above. These forms are all equivalent.)

2.2 Functional Commitment Schemes

Fix a function family $\mathcal{F} = \{f : \mathcal{X} \to \mathcal{Y}\}$. For example, \mathcal{F} could be $\mathbb{F}_p^{(\leq d)}[X]$, the set of all univariate polynomials of degree $\leq d$, over a prime field. Or \mathcal{C}_s , the set of all arithmetic circuits of size $\leq s$. The idea is now the sender "commits to a function" $f \in \mathcal{F}$. The reciever can query the sender on a particular input $x \in \mathcal{X}$, and can verify that the response y is indeed the output of f on input x.

[KZG10] gives a formal definition of a polynomial commitment scheme, and provides constructions based on the discrete log, and elliptic curves and pairings. I will only go over the definition informally.

Definition 1. A polynomial commitment scheme is six algorithms: Setup, Commit, Open, Verify-Poly, CreateWitness, and VerifyEval:

- Setup(1^{λ} , t) generates an appropriate algebraic structure \mathcal{G} and a public key-private key pair (pk, sk) to commit to a polynomial of degree $\leq d$.
- Commit(pk, $\phi(x)$) belongs to \mathcal{P} . Commit outputs a commitment \mathcal{C} to a polynomial $\phi(x)$ for public key pk, and also outputs decommitment information d.
- Open(pk, C, $\phi(x)$, d) belongs to \mathcal{P} . At request of \mathcal{V} , opens the commitment to $\phi(x)$ by simply sending $\phi(x)$ (in case we study the adversarial situation, Open reveals some other polynomial).
- VerifyPoly(pk, \mathcal{C} , $\phi(x)$, d) belongs to \mathcal{V} . Verifies that \mathcal{C} is indeed a commitment to $\phi(x)$.
- CreateWitness(pk, $\phi(x)$, i, d) belongs to \mathcal{P} . Outputs $\langle i, \phi(i), w_i \rangle$, where w_i is a witness for the evaluation of $\phi(i)$.
- VerifyEval(pk, C, i, $\phi(i)$, w_i) belongs to V. Verifies that $\phi(i)$ is indeed the evaluation of i on the polynomial committed to by C.

2.3 An impractical polynomial commitment scheme

Given in [Tha22]. It is "impractical" because the prover has large runtime, but still worth studying. Uses Merkle Trees and a low-degree test, which we will cover.

Merkle Trees [Mer79] Merkle Trees (or hash trees) are immediately used for string commitment schemes. The idea is to construct a perfect binary tree bottom-up. Say \mathcal{P} wants to commit to a string $s \in \Sigma^n$:

- Leaves of the tree: symbols s_i in s.
- Internal nodes: the hash of its two children.
- The final commitment string: the root of the tree.

Suppose \mathcal{P} is asked to reveal s_i . \mathcal{P} would send the value of s_i , every node along the root-to-leaf path for s_i , and all nodes which are siblings to nodes along that path. That way, \mathcal{V} can verify the committed string by hashing themselves the correct pairs to go from s_i to the root. The depth of the tree is $O(\log n)$, meaning that the sender sends $O(\log n)$ hash values for each symbol revealed.

So how do we get a polynomial commitment scheme from a Merkle Tree? If \mathcal{P} commits to a polynomial p, they commit to the string which prints all evaluations of p, $p(\ell_1), \dots, p(\ell_N)$, where ℓ_1, \dots, ℓ_N form the domain of p. When \mathcal{V} asks for $p(\ell_i)$, \mathcal{P} the root-to-leaf path for $p(\ell_i)$ and all sibling nodes.

But this is not a correct polynomial commitment scheme, because \mathcal{P} could simply commit to a polynomial which does not have degree $\leq d$, or any arbitrary function. The only guarantee that \mathcal{V} will have is that \mathcal{P} is committing to the function they originally chose. For this, \mathcal{V} needs to test that the function is of low-degree

Low-degree tests In this model, either the receiver has black-box query access to a function, or they are reading off a string s of concatenated evaluations. The function is m-variate, inputs over field \mathbb{F} . There are $|\mathbb{F}|^m$ possible inputs, so s contains a list of $|\mathbb{F}|^m$ elements of \mathbb{F} .

The problem: is s consistent with a polynomial of degree $\leq d$? We want to answer this problem without looking at too many bits in s. [Tha22] confirms that we have strong randomized tests for this. The procedures tend to be simple, but analyses are tricky (I suspect one of these methods could use Shwartz-Zippel Lemma).

Thus, we have a protocol for committing to a low-degree polynomial: \mathcal{P} merkle-hashes evaluations of p, and when \mathcal{V} asks to reveal evaluations of p, they run a low-degree polynomial test.

References

- [GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive proofs for muggles. In STOC'08, pages 113–122. ACM, New York, 2008.
- [KZG10] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg. Constant-size commitments to polynomials and their applications. In Advances in Cryptology-ASIACRYPT 2010: 16th International Conference on the Theory and Application of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings 16, pages 177–194. Springer, 2010.

- $[{\rm Mer}79]$ Ralph Charles Merkle. Secrecy, authentication, and public key systems. Stanford university, 1979.
- [Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Foundations and Trends in Privacy and Security, $4(2-4):117-660,\ 2022.$