IBM Coursera Advanced Data Science Capstone

Rémi MIALON-EVAN

https://github.com/Wardmisp/IBM-Coursera-Data-Science-Capstone

Data set - images

- Images data
- Kaggle Tomato leaf disease detection
- Task: Classify the disease for each plant

Use case - prevents disease

- Maximize rentability for each plant
- Global issue : how to feed the world

Solution algorithm

- Neural Network
- Convolutional Neural Network
- KNN
- Random Forest

Data assessment

Data assessment

```
{(256, 256): 18344}
```

Data assessment

CNN Layers & Random Forest Parameters

For the random forest:

100 estimator with default parameter from scikit-learn.

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	254, 254, 32)	896
batch_normalization (BatchNo	(None,	254, 254, 32)	128
conv2d_1 (Conv2D)	(None,	252, 252, 32)	9248
batch_normalization_1 (Batch	(None,	252, 252, 32)	128
max_pooling2d (MaxPooling2D)	(None,	126, 126, 32)	0
dropout (Dropout)	(None,	126, 126, 32)	0
conv2d_2 (Conv2D)	(None,	124, 124, 64)	18496
batch_normalization_2 (Batch	(None,	124, 124, 64)	256
dropout_1 (Dropout)	(None,	124, 124, 64)	9
conv2d_3 (Conv2D)	(None,	122, 122, 128)	73856
batch_normalization_3 (Batch	(None,	122, 122, 128)	512
max_pooling2d_1 (MaxPooling2	(None,	61, 61, 128)	0
dropout_2 (Dropout)	(None,	61, 61, 128)	0
flatten (Flatten)	(None,	476288)	0
dense (Dense)	(None,	512)	243859968
batch_normalization_4 (Batch	(None,	512)	2048
dropout_3 (Dropout)	(None,	512)	0
dense_1 (Dense)	(None,	128)	65664
batch_normalization_5 (Batch	(None,	128)	512
dropout_4 (Dropout)	(None,	128)	9
dense_2 (Dense)	(None,	10)	1290
Total params: 244,033,002 Trainable params: 244,031,210 Non-trainable params: 1,792			

Model performance: CNN

```
Epoch 1/10
574/574 [============ ] - 122s 199ms/step - loss: 1.7204 - accuracy: 0.4533
                        - 113s 196ms/step - loss: 0.6997 - accuracy: 0.7649
574/574 [=========== ] - 113s 196ms/step - loss: 0.8272 - accuracy: 0.7316
Fnoch 4/10
Epoch 5/10
574/574 [============ ] - 114s 197ms/step - loss: 0.3261 - accuracy: 0.8884
Epoch 6/10
574/574 [-----]
                        - 113s 196ms/step - loss: 0.2814 - accuracy: 0.9094
Epoch 8/10
574/574 [=========== ] - 114s 198ms/step - loss: 0.2131 - accuracy: 0.9272
Epoch 10/10
574/574 [============ ] - 113s 196ms/step - loss: 0.1731 - accuracy: 0.9415
```


Training and Validation Accuracy Training and Validation Loss — Training Loss Validation Loss 0.9 3.0 0.8 2.5 0.7 2.0 1.5 0.6 1.0 0.5 0.4 — Training Accuracy Validation Accuracy

Accuracy before normalization: 0,9415 Accuracy after normalization: 0,9262

Model performance: Random Forest

Accuracy: 0.9838604143947656