Deep Learning

Multi-layer perceptron

hidden layer 1 hidden layer 2

David Rumelhart, Geoffrey Hinton and Ronald Williams, 1986

Convolution

Convolution

Image

Convolved Feature

Convolution

Image

Kernel 3x3, Stride 1

Convolved Feature

Convolution examples

$$egin{bmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 - 1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Next convolutions

Convolution layers

Pooling

Pooling

Kernel 2x2

Stride 2

Padding

1	6	5
7	10	9
7	10	8

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0								0
0	0		28 x 28					0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0							0	0
0	0						0	0	
0	0					0	0		
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Deep learning

Deep learning

AlexNet (2012)

IM GENET

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

AlexNet

 Scale all images to 256x256, then take random 224x224 patches and mirror them.

Subtract average pixel value from each pixel.

• ReLU $(f(x) = \max(0, x))$

• Dropout 0.5

• Batch size 128, SGD with momentum (0.9), L2 weight decay ($\lambda = 0.0005$)

AlexNet, first convolution

"The kernels on GPU 1 are largely color-agnostic, while the kernels on on GPU 2 are largely color-specific. This kind of specialization occurs during every run and is independent of any particular random weight initialization (modulo a renumbering of the GPUs)"

Visualization of convolutions

Deep Visualization Toolbox

yosinski.com/deepvis

#deepvis

Jason Yosinski

Jeff Clune

Anh Nguyen

Thomas Fuchs

Hod Lipson

Very Deep Convolutional Networks (VGGNet), 2014

ConvNet Configuration							
A	A-LRN	В	C	D	E		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224×224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
		max	pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
		max	pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
maxpool							
FC-4096							
FC-4096							
FC-1000							
soft-max							

Very Deep Convolutional Networks (VGGNet), 2014

ConvNet Configuration							
A	A-LRN	В	C	D	Е		
11 weight	11 weight	13 weight	ght 16 weight 16 weight		19 weight		
layers	layers	layers	layers	layers	layers		
	input (224×224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
		max	pool				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
			pool				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
	conv1-512 conv3-512 conv3-51				conv3-512		
					conv3-512		
			pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
maxpool							
FC-4096							
FC-4096							
FC-1000							
soft-max							

ImageNet Challeng result:

VGGNet (D+E) -7.3% (2nd)

Inception (Google 2014)

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Using 1x1 convolutions to decrease a number of maps in layers.

GoogLeNet

Convolutions

MaxPooling

Concatenation

AveragePooling

Softmax

GoogLeNet (2014)

Team	Year	Place	Error (top-5)
SuperVision	2012	1 st	16.4%
Clarifai	2013	1 st	11.7%
MSRA	2014	3 rd	7.35%
VGG	2014	2 nd	7.32%
GoogLeNet	2014	1 st	6.67%

Residual Learning

Now called "skip-connections".

ResNet (2015)

ResNet

method	top-5 err. (test)
VGG [41] (ILSVRC'14)	7.32
GoogLeNet [44] (ILSVRC'14)	6.66
VGG [41] (v5)	6.8
PReLU-net [13]	4.94
BN-inception [16]	4.82
ResNet (ILSVRC'15)	3.57

Transfer learning and finetuning

Image segmentation and U-Net

Variational Autoencoder (VAE)

Variational Autoencoder (VAE)

Variational Autoencoder (VAE)

Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN)

