Game theoretic models of moral behaviour

Sarita Rosenstock

Game Theory is like decision theory but PVP

$$Exp(\ref{eq}) = P(\ref{eq})^*U(\ref{eq}) + P(\ref{eq})^*U(\ref{eq})$$

Examples

Prisoner's Dilemma

Pure Coordination

Stag Hunt

Hawk-Dove (AKA Chicken)

	Alban is deferential	Alban is aggressive
I'm deferential		
I'm aggressive		

Analysing Games

Characterising Strategy pairs

A pair of strategies is a <u>Nash equilibrium</u> if neither player can benefit by *unilaterally* changing strategy.

Other properties of strategy pairs:

- Total utility
- "Fairness"

Prisoner's Dilemma

Pure Coordination

Stag Hunt

Hawk-Dove (AKA Chicken)

	Alban is deferential	Alban is aggressive
I'm deferential		
I'm aggressive		

Irrational Behaviour?

The Ultimatum Game

Player 1: choose how to divide the pie.

Player 2: accept or reject offer.

Evolving Strategies

Adding Dynamical Evolution

Evolutionarily Stable Strategy (ESS)

A pair of strategies (A, B) is **evolutionarily stable** if

- 1. Exp(A, A) > Exp(B, A), **or**
- 2. Exp(A, A) = Exp(A, B) and E(A,B) > E(B,B)

Idea: ESSs are robust against invasion by an alternate strategy.

Replicator Dynamics

State = (portion of pop playing strategy $S_1, S_2, ...$)

Fitness

$$f_i(x_1,\ldots,x_i,\ldots) = \sum_j (ext{prob of interacting with } j ext{-player}) * U_i(i,j)$$

Average fitness

$$F = \sum f_i(\mathbf{x}) * x_i$$

Dynamical Equation

$$\dot{x}_i = x_i * (f_i(\mathbf{x}) - F)$$

Basins of Attraction

How can ethical behaviour evolve?

Iterated Prisoner's Dilemma

Param	eters
--------------	-------

n = chance of repeat encounter

 ε = probability of error

c = cost of apology

p = chance apology is believed

Strategies

Always Cooperate

Always Defect

(Guilt Prone) Grim Trigger

(Guilt Prone) Tit-for-tat

Faker (defector who apologises)

What if you actually care about ethics?

Change the Utility Function

Design games to maximise ethical objectives

Veil of Ignorance

How does game theory relate to ethics?

> Functionalism

 Moral norms can be adopted intentionally to push us towards more cooperative, mutually beneficial strategies and avoid pitfalls of rational self-interest

Bargaining Theory & Contractarianism

Game theory helps us model a bargaining process for the fair aggregation of preferences

Recovery

 EGT shows how moral norms can naturally evolve as heuristic solutions to collective action problems

Questions?

Combinatorics Question

How many "qualitatively different" 2x2 games are there?

Bonus Material

https://ncase.me/trust/