21-238, Math Studies Algebra 2. Department of Mathematical Sciences, Carnegie Mellon University Spring 2012: Monday, Wednesday, Friday, 10:30 am, Doherty Hall 1211.

Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 2 - Tuesday February 14, 2012. Due Monday February 20

Exercise 6: Let W be a non-negative continuous function on $[\alpha, \beta] \subset \mathbb{R}$ which is not identically 0, and consider on $\mathbb{R}[x]$ the Euclidean structure defined by the scalar product $(f,g) = \int_{\alpha}^{\beta} f(x) g(x) W(x) dx$ for all $f,g \in \mathbb{R}[x]$. Let $P_0 = 1, P_1, \dots, P_n, \dots$ be the orthogonal monic polynomials obtained by the Gram–Schmidt orthogonalization process from the basis $1, x, \ldots, x^n, \ldots$ of $\mathbb{R}[x]$.

i) Show that for $n \geq 2$ there exist $\lambda_n, \mu_n \in \mathbb{R}$ such that $P_n = (x + \lambda_n) P_{n-1} + \mu_n P_{n-2}$. ii) Denoting a_m the coefficient of x^{m-1} in P_m for $m \geq 1$, and b_m the coefficient of x^{m-2} in P_m for $m \geq 1$. 2, express λ_n, μ_n in terms of the a_i s and b_k s. Deduce the induction relation satisfied by the Legendre polynomials (i.e. the case W=1 with $\alpha=-1,\beta=+1$).

Exercise 7: For any field E and $n \geq 2$, find an $n \times n$ matrix A with entries in E such that, whatever the field extension F of E, one cannot find an $n \times n$ matrix B with entries in F satisfying $B^2 = A$.

Exercise 8: i) Let A, B be $n \times n$ matrices with entries in a field E, and such that $A^n = 0$ and $det(B) \neq 0$. Show that if X is an $n \times n$ matrix (with entries in E) such that AX + XB = 0, then X = 0.

ii) Let M be an $n \times n$ matrix which is block diagonal (i.e. $M_{i,j} = 0$ for $i \neq j$), where for $i = 1, ..., m, M_{i,i}$ is $d_i \times d_i$ matrix (with $d_1 + \ldots + d_m = n$) having only eigenvalue λ_i , with $\lambda_1, \ldots, \lambda_m$ distinct. Show that if Y is an $n \times n$ matrix which commutes with M, then Y is block diagonal (so that only its entries in the $d_i \times d_i$ blocks may be non-zero).

Exercise 9: If U_m is an $m \times m$ invertible real matrix, v a (column) vector in \mathbb{R}^m , $w = U_m^T v$, $\alpha \in \mathbb{R}$, and Athe $(m+1) \times (m+1)$ (symmetric) real matrix defined by

$$A = \begin{pmatrix} U_m^T U_m & w \\ w^T & \alpha \end{pmatrix}.$$

i) show that A is positive definite (i.e. (Ax,x) > 0 for all non-zero $x \in \mathbb{R}^{m+1}$) if and only if $\alpha > ||v||^2$, and prove that in this case one has

$$A = U_{m+1}^T U_{m+1}$$
 with $U_{m+1} = \begin{pmatrix} U_m & v \\ 0 & \beta \end{pmatrix}$ for some $\beta > 0$.

ii) Show that if B is an $n \times n$ positive definite symmetric matrix, then there exists a lower triangular matrix L with positive diagonal elements such that $B = L L^T$.

iii) Show that an $n \times n$ symmetric matrix C is positive definite if and only if its principal determinants $\Delta_1, \ldots, \Delta_n$ are > 0, where Δ_j is the determinant of the $j \times j$ matrix made of the first j rows and the first j columns of C, for $i = 1, \ldots, n$.

Exercise 10: Let G be an interior point of a (non-degenerate) triangle (in \mathbb{R}^2) with vertices A_1, A_2, A_3 and

for i < j let $A_{i,j} = \frac{A_i + A_j}{2}$. i) Given a scalar $\alpha_i \in \mathbb{R}$ and a vector $\xi_i \in \mathbb{R}^2$ for each vertex A_i , a scalar value $\beta_{i,j}$ for each middle $A_{i,j}$, as well as a scalar $\gamma \in \mathbb{R}$ and a vector $\eta \in \mathbb{R}^2$ for G, show that there is a unique continuous function ψ in the triangle such that for all i < j the restriction $\psi_{i,j}$ of ψ to the triangle with vertices A_i, A_j, G is a polynomial of degree ≤ 3 satisfying $\psi_{i,j}(A_i) = \alpha_i$, $D\psi_{i,j}(A_i) = \xi_i$, $\psi_{i,j}(A_j) = \alpha_j$, $D\psi_{i,j}(A_j) = \xi_j$, $\frac{\partial \psi_{i,j}(A_{i,j})}{\partial n} = \beta_{i,j}$, and $\psi_{i,j}(G) = \gamma$, $D\psi_{i,j}(G) = \eta$ (where D is the total derivative, and $\frac{\partial}{\partial n}$ is the normal derivative to the side). ii) Given a scalar $\alpha_i \in \mathbb{R}$ and a vector $\xi_i \in \mathbb{R}^2$ for each vertex A_i , a scalar value $\beta_{i,j}$ for each middle $A_{i,j}$,

show that there is a unique choice of $\gamma \in \mathbb{R}$ and a vector $\eta \in \mathbb{R}^2$ to use at G such that the corresponding ψ is continuously differentiable on the triangle.