FLIP FLOP

Flip-Flop

- Combinational Circuit = Gate Sequential Circuit = Gate + F/F
- The storage elements employed in clocked sequential circuit
- A binary cell capable of storing one bit of information
- SR(Set/Reset) F/F

S	SET	Q
>		
R	CLR	Q

١	S	R		Q(t+1)
Ī	0	0	Q(t)	no change
	0	1	0	clear to 0
	1	0	1	set to 1
	1	1	?	Indeterminate

D(Data) F/F

D		Q(t+1)
0	0	clear to 0
1	1	set to 1

- "no change" condition
 - 1) Disable Clock
 - 2) Feedback output into input

JK(Jack/King) F/F

J	K		Q(t+1)
0	0	Q(t)	no change
0	1	0	clear to 0
1	0	1	set to 1
1	1	Q(t)	Complement

- JK F/F is a refinement of the SR F/F
- The indeterminate condition of the SR type is defined in complement

■ T(Toggle) F/F

-	Q(t+1)
0	Q(t) no change
1	Q'(t) Complement

T=1(J=K=1), T=0(J=K=0)

FLIP FLOP

SR(Set/Reset) F/F

■ D(Data) F/F

JK(Jack/King) F/F

■ T(Toggle) F/F

Working of a master slave flip flop –

- When the clock pulse goes to 1, the slave is isolated; J and K inputs may affect the state of the system. The slave flip-flop is isolated until the CP goes to 0. When the CP goes back to 0, information is passed from the master flip-flop to the slave and output is obtained.
- Firstly the master flip flop is positive level triggered and the slave flip flop is negative level triggered, so the master responds before the slave.
- If J=0 and K=1, the high Q' output of the master goes to the K input of the slave and the clock forces the slave to reset, thus the slave copies the master.
- If J=1 and K=0, the high Q output of the master goes to the J input of the slave and the Negative transition of the clock sets the slave, copying the master.
- If J=1 and K=1, it toggles on the positive transition of the clock and thus the slave toggles on the negative transition of the clock.
- If J=0 and K=0, the flip flop is disabled and Q remains unchanged.

Timing Diagram of a Master flip flop -

- When the Clock pulse is high the output of master is high and remains high till the clock is low because the state is stored.
- Now the output of master becomes low when the clock pulse becomes high again and remains low until the clock becomes high again.
- Thus toggling takes place for a clock cycle.
- When the clock pulse is high, the master is operational but not the slave thus the output of the slave remains low till the clock remains high.
- When the clock is low, the slave becomes operational and remains high until the clock again becomes low.
- Toggling takes place during the whole process since the output is changing once in a cycle.