Cloud technologies

ACTS, CDAC Bangalore.

Topics for the day

- Cloud Computing
- Virtualization
- Containerization
- Cloud Service models
- Cloud Deployment models
- Services provided by Cloud
- Cloud development best practices
- Introduction to AWS and Services

Introduction to cloud

- Cloud computing is the on-demand availability of computer system resources, especially data storage and computing power, without direct active management by the user.
- The availability of high-capacity networks, low-cost computers and elastic-storage as well as the widespread adoption of hardware virtualization, service-oriented architecture and autonomic and utility computing has led to growth in cloud computing.
- cloud computing allows companies to avoid or minimize up-front IT infrastructure costs
- The main enabling technology for cloud computing is **virtualization**.

What is it?

- Act of creating a virtual (rather than actual) version of something including:
- Virtual computer hardware platforms
- Operating systems
- Storage devices
- Computer network resources.

■ Key Technology in Cloud Computing

Cloud Computing Virtualization

Virtualization

Cloud Computing

How does it work?

- Virtualization transforms hardware into software.
- It is the creation of a fully functional virtual computer that can run its own applications and operating system.
- Creates virtual elements of the CPU, RAM, and hard disk.

History

Introduction to Virtualization

Outline

- Goals
 - Understanding the benefits of virtualization in IT industry and how to virtualize HW resources
- Schedule
 - Introduction to virtualization
 - OS vs. VMM
 - CPU virtualization and scheduling
 - Memory virtualization and management
 - I/O virtualization
 - Live VM migration
 - Introduction to Systemtap

What is Virtualization?

- Multiple OSes on a single machine
 - Giving an <u>illusion</u> that each OS is running on real HW
 - Virtual Machine Monitor (VMM)
 - Another layer of kernel to virtualize multiple OSes
 - Also called "<u>hypervisor</u>"
 - An OS as a supervisor is no more HW-dictator!

History – Born and Died (1/4)

- 1960s-1970s
 - High cost of computing machines
 - IBM VM/370: A VMM for IBM mainframe

- 1980s-1990s
 - But, lost attentions since PC era (1980s)
 - Cheap HW → No need to share hardware
 - CPU did not support virtualization well
 - High engineering cost and overhead

History - Reborn (2/4)

- The late 1990s
 - Regain attention for "server consolidation"
 - Toward cost-effective large-scale computing
 - Stanford's research project: Disco

Disco: Running Commodity Operating Systems on Scalable Multiprocessors [SOSP'97]

They founded VMware in 1998

History - Renaissance (3/4)

- 1998-2002
 - VMware
 - "Full-virtualization"
 - Running unmodified OS
 - Starting with SW-based binary translation
 - Success in industry and academia
 - VMware's state-of-the-art techniques in SOSP and OSDI

2003

- Xen
 - University of Cambridge's project: Open source!!!
 - "Xen and Art of Virtualization" [SOSP'03]
 - "Para-virtualization"
 - Modified OS for near-native performance: <u>Linux on x86</u>
 - 2003-
 - Virtualization research renaissance based on Xen
 - 2007: Acquired by Citrix

History - Ubiquitous (4/4)

- 2005-2006
 - HW-assisted virtualization
 - x86 virtualization
 - Intel VT-x & AMD-V
 - Running unmodified OS with near-native performance

amazon

web services"

- Default functionality now
- 2006-now
 - Cloud computing
 - Infrastructure-as-a-Service (laaS)
 - Virtual desktop infrastructure (VDI)
 - Mobile virtualization
 - ARM virtualization technology (Cortex-A15)

Why Virtualization? (1/6)

- Efficient resource utilization
 - Low resource utilization of each server machine
 - Low total cost of ownership (TCO)
 - Low cost of infrastructure and energy

Why Virtualization? (2/6)

- Flexible VM relocation
 - "Live VM migration"
 - Flexible VM relocation with near-zero downtime
 - Flexible load balancing
 - Relieving resource bottleneck

Why Virtualization? (3/6)

- Flexible VM relocation
 - "Live VM migration"
 - Flexible VM relocation with near-zero downtime
 - High availability

Why Virtualization? (4/6)

- Strong isolation
 - Strong isolation between co-located VMs

Fault containment or isolation

drivers

An empirical study of operating systems errors [SOSP'01]

net

arch/i386

other

VMM is much smaller than OS

→ Low trusted computing base (TCB)

Why Virtualization? (5/6)

- Multiple OSes on a single device
 - OS dependency of legacy SW
 - Linux + Windows, Android + iOS
 - Different requirements of SW
 - Virtualization for embedded or mobile systems
 - RTOS + GPOS
 - Building secure systems
 - Security-enhanced OS + GPOS

Why Virtualization? (6/6)

- Other benefits
 - Strong security monitoring
 - Security monitoring outside OSes
 - Ease of deployment
 - Virtual appliance
 - A bundle of OS and applications
 - Flexible testing and debugging
 - Building distributed environments on a single machine
 - Kernel development and debugging
 - VM-based recording and replaying

Use Cases

- Cloud computing
- Virtual desktop infrastructure
- Mobile virtualization

Virtualization & Cloud Computing

- VM-based resource pool for various demands
 - Infrastructure-as-a-Service (laaS)

Virtualization & Cloud Computing

 Many providers use commercial & open-source VMMs

Virtualization Solutions	Cloud Providers		
wmware [®]	terremark CONTEGIX bluemile		
Xen ^m	amazon webservices Crackspace. SOFTLAYER HOSTING		
KVM	IBM. DATAPIPE Joyent ElasticHosts Flexible servers in the cloud		

Virtual Desktop Infrastructure (VDI)

Desktop provisioning

Dedicated workstations

- Energy wastage by idle desktops
- Resource underutilization
- High management cost
- High maintenance cost
- Low level of security

VM-based shared environments

- + Energy savings by consolidation
- + High resource utilization
- + Low management cost (flexible HW/SW provisioning)
- + Low maintenance cost (dynamic HW/SW upgrade)
- + High level of security (centralized data containment)

Virtual Desktop Infrastructure (VDI)

- VMware VDI
 - Pioneer of VDI

Mobile Virtualization

- Trends of consumer electronics
 - Digital convergence
 - What do consumer electronics(CE) devices want to achieve?

Reliability

Trustworthiness for primary functions

Business Phone

Extensibility

Flexibility for adding features as needed

Personal Phone

Mobile Virtualization

- Embracing all apps in a unified market
 - iOS + Android + Windows
 - Technically possible, but not yet by industry
 - Currently, not much attractive.
 - Multiple Androids
 - Android + RTOS
 - Issues
 - Performance, performance, performance...
 - Graphics acceleration → Challenging
 - CPU, memory limitation
 - High-end smartphones can resolve this limitation

Basic Terminologies

- Types of VMMs
 - Type-1 vs. Type-2
- Virtualization methods
 - Full-virtualization vs. Para-virtualization

Type-1 vs. Type-2

Depending on what sits right on HW

Type-1: VMM on HW

- Xen, VMware ESX server, Hyper-V
- Mostly for server, but not limited
- VMM by default
- OS-independent VMM

Type-2: Host OS on HW

- KVM, VMware Workstation, VirtualBox
- Mostly for client devices, but not limited
- VMM on demand
- OS-dependent VMM

Xen: Type-1 VMM

- Type-1 VMM
 - Para-virtualization and full-virtualization
 - Domain0
 - Privileged VM for guest VM (domainU) management
 - Handling I/O operations requested from domainUs
 - Including native device drivers to directly access HW

KVM: Type-2 VMM

- Type-2 VMM for Linux as a host OS
 - Based on HW-assisted virtualization
 - Linux kernel mainline (2.6.20~)

Full- vs. Para-virtualization

- Depending on whether OS source is modified
 - Full-virtualization = No OS source modification
 - SW-based full virtualization
 - Emulation
 - HW-based full virtualization
 - HW-assisted virtualization
 - Para-virtualization = OS source modification
 - Virtualization-aware OS
 - Bridging semantic gap between VMM and OS
 - Mostly for performance

Today's virtualization solutions adopt both approaches for optimized performance

Hardware enabled virtualization

- the virtual machine has its own hardware and allows a guest OS to be run in isolation.
- Intel VT (IVT)
- AMD virtualization (AMD-V)
- **■** Examples:
 - VMware Fusion
 - Parallels Desktop for Mac
 - Parallels Workstation

Apps	Apps	Apps	
Guest OS	Guest OS	Guest OS	חדה
Hardware VM A		Hardware VM B	
Hardware			

Operating system-level virtualization

- virtualizing a physical server at the operating system level, enabling multiple isolated and secure virtualized servers to run on a single physical server.
- Examples:
 - Parallels Workstation
 - Linux-VServer, Virtuozzo
 - OpenVZ, Solaris Containers
 - FreeBSD Jails
 - Chroot ?

Application Virtualization

- typically for the purpose allowing application binaries to be portably run on many different computer architectures and operating systems.
- http://en.wikipedia.org/wiki/Comparison of Application Virtual Machines
- Examples:
 - .NET CLR
 - JVM
 - Script Languages:Python,Ruby,Javascript...

Resource Virtualization

- ✓ LVM
- ✓ SAN
- ✓ VPN/NAT
- Multiprocessor and multi-core
- Cluster and Grid computing
- Partitioning

Virtualization Under Linux(1)

- ✓ / UML (User Mode Linux)
 - http://user-modelinux.sourceforge.net/
 - KVM (Kernal-based Virtual Machine)
 - ✓ From Linux-2.6.20
 - http://kvm.qumranet.com/kvmwiki
- ✓ XEN
 - http://xen.xensource.com/

Virtualization Under Linux(2)

- QEMU
 - http://fabrice.bellard.free.fr/qemu/
- QEMU Accelerators
 - KQEMU
 - **■** QVM86
 - VirtualBox (released in January 2007)
 - KVM with QEMU

Virtualization Under Linux(3)

- Bochs (GPLed, very slow)
 - A portable x86 and AMD64 PCs emulaior mosily written in C++ and distributed as free software under GPL.
 - http://bochs.sourceforge.net/
- VirtualBox(commercial&open source, fast)
 - http://www.virtualbox.org/
- VMWare (Workstation, Server, Player)

Virtualization Under Linux(4)

- SWSOFT Virtualizations

http://www.parallels.com/ PARALLELS*

- Linux-VServer

- Compare with:
 - FreeBSD Jail
 - Solaris Containers (Zones)

Linux Virtualization in Windows(1)

- ✓ VMWare
- ✓ Virtual PC
- ✓ VirtualBox
- ✓ Bochs
- ✓ QEMU