

Angle is measure of rotation of a given ray about its intial point.

· The original ray is called initial side of angle.

• The final position of ray after notation is called final side of angle

· The point of notation is called the vertex.

· Direction of rotation -> clockwise -> angle is (-ve)

· Direction of rotation -anti-clockwise + angle is (+ve)

Vegree measure: If the rotation of initial side to terminal side is $(\frac{1}{360})^{+}$ of a revolution then the angle is said to be have measure of 1 degree, written as 1.

Radian measure: Angle subtended by 1 unit length of are at centre of 1 unit rivide is ralled radian measure.

$$\theta = \frac{\ell}{r}$$

Relation blev degree & Radian:

Radian measure =
$$\frac{\pi}{180} \times \text{degree measure}$$

Degree measure = $\frac{180}{\pi} \times \text{Radian measure}$.

Sign of trignometric function:

Trignometric Formulas

Pythagorean Identity

 $sin^2\theta + cos^2\theta = 1$ $tan^2\theta + 1 = sec^2\theta$ $1 + cot^2\theta = cosec^2\theta$

Even - Odd Adentities Sin (-x) = -sinx $\cos(-x) = \cos x$ $\tan(-x) = -\tan x$ Reciproral Edentity

cosec $\theta = \frac{1}{sin\theta}$ sec $\theta = \frac{1}{cos\theta}$ cot $\theta = \frac{1}{tan\theta}$.

Sum & difference formula $sin(x \pm y) = sin \times cosy \pm cosx siny$ $ros(x \pm y) = ros \times cosy \mp sin \times siny$ $tan(x \pm y) = tan \times \pm tany$ $1 \mp tan \times tany$

Cot(x±y) = Cotxcoty +1

coty ± cotx

Sin $\left(\frac{\pi}{2} - x\right) = \cos x$ $\sin \left(\frac{\pi}{2} + x\right) = \cos x$

$$sin(\sigma-x) = sinx$$

$$sin (J+x) = -sin x$$

 $sin (2J-x) = -sin x$

$$\cos\left(\frac{\pi}{2} - \kappa\right) = \sin \kappa$$

$$\cos\left(\frac{\Im}{2}+\kappa\right) = -\sin\kappa$$

$$cos(\pi-x) = -cosx$$

$$\frac{\text{Double - angle formula}}{\sin 2\theta = 2 \sin \theta \cos \theta = \frac{2 + \tan \theta}{1 + \tan^2 \theta}}$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

$$tan 2x = \frac{9 tann}{1 - tan^2 x}$$

Deiple - angle formula :-

$$\sin 3x = 3 \sin x - 4 \sin^3 x$$

$$\cos 3x = 4 \cos^3 x - 3 \cos x$$

$$\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$$

$$sun\left(\frac{\kappa}{2}\right) = \pm \sqrt{\frac{1 - \cos \kappa}{2}}$$

$$cos\left(\frac{\kappa}{2}\right) = \pm \sqrt{\frac{1 + \cos \kappa}{2}}$$

$$ton\left(\frac{\kappa}{2}\right) = \pm \sqrt{\frac{1 + \cos \kappa}{2}}$$

$$ton\left(\frac{\kappa}{2}\right) = \pm \sqrt{\frac{1 + \cos \kappa}{2}}$$

$$\frac{\text{flatf-angle formula;}}{\sin\left(\frac{\kappa}{2}\right) = \pm \sqrt{\frac{1-\cos\kappa}{2}}}$$

$$\cos\left(\frac{\kappa}{2}\right) = \pm \sqrt{\frac{1+\cos\kappa}{2}}$$

$$\tan\left(\frac{\kappa}{2}\right) = \frac{(1-\cos\kappa)}{\sin\kappa}$$

$$\cos x + \cos y = 2\cos \frac{x+y}{2}\cos \frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin \frac{x-y}{2}\sin \frac{x-y}{2}$$

$$\sin x + \sin y = 2\sin \frac{x+y}{2}\cos \frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos \frac{x+y}{2}\sin \frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos \frac{x+y}{2}\sin \frac{x-y}{2}$$

•
$$2\sin \frac{x}{2} \cdot \cos \frac{x}{2} = \sin x$$

$$\cdot 1 - \cos x = 2 \sin^2 x$$

• Cos
$$2\alpha = 1 - 9\sin^2\alpha$$

$$1 - \cos 2n = 2 \sin^2 x$$

	0°	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1
tan	0	$\frac{1}{\sqrt{3}}$	1	√3	not defined	0	not _ defined	0