eigenvalues and eigenvectors.	$Au = \lambda u$
O S	→ Au= λIu I: nxn Identity
Suppose AERnxn and uERn	⇒ Au= λIu I: nxn dentity matrix.
8·t	$\Rightarrow (A - \lambda I)\vec{u} = \vec{O}$
Au=λu, žisa	
Scalar.	Homog sys of egns for which
Scalar. we say that non-zero vector is the eigen vector for	Homog. Sys. of egns for which we are looking for a non-trivial
u is the eigen vector for	Solution.
A associated with the	
eigenvalue 2	

Since we want u + 0, we know that the matrix Anxn $(A - \lambda I)$ must be singular \Rightarrow det $(A - \lambda I) = 0$ Characteristic egn of A (iv) Real soots & Complex Conjugati roots det (A-AI) + Char polynomial

The Roots of the characteristic equipment correspond to the eigenvalues of A.

(i) Real distinct roots.

(ü) Keal repeated roots

(ui) Roots of the char egn = 0 (Some of them)

* Algebraic Multiplicity of the * Geometric Multiplicity

eigen values:

> No. of l.i. eigenvectors

> No. of times a farticular associated with a given eigenvalue

eigenvalue repeats is called is called the geometric

the algebraic multiplicity of Multiplicity.

the eigenvalue

Suppose $\lambda_i = 0$ what closs that mean?

(A - λI) $\vec{\lambda}_i = \vec{\delta}$ Suppose if $\lambda_i = 0$ A $\vec{u} = \lambda_i \vec{u} \Rightarrow A\vec{u} = \vec{\delta}$ eigen vector corresp to $\lambda = 0$ is the soln to HSE $A\vec{u} = \vec{\delta}$

Suppose Anx has n-eigenvalues and corresponding eigenvectors

We define a matrix P whose cols are the eigen vectors.

Let $\lambda_1, \lambda_2 \dots \lambda_n$ be the eigenvalues and let $ev_1, ev_2 \dots ev_n$ correspond to the eigenvectors $\lambda_1, \dots \lambda_n$ respectively

eigenvalues

AP = PD.

The eigenvectors corresponding to diff eigenvalues are linearly

independent.

Since the eigenvectors form the Cols of P and are all li, the matrix P is investible.

AP = PD.

AP(P-1) = PD (P-1)

JA = PDP-1 eigendelomp of A.

AP=PD > P-IAP=P-IPD=>

D=P-IAP

if and only if the cols of P are

the eigenvectors of A and the

eliagonal elements of D are

the eigenvalues that correspond
in order to the cols of P.

A square matrix A is diagonalizate if and only if it has n li eigen vectors.

Suppose A is diagonalizable then we have $A = PDP^{-1} \qquad \text{2.} \quad \mathcal{P} = P^{-1}AP.$ A = PDP-1 $A^{2} = A \cdot A = PDP^{-1} \cdot PDP^{-1}$ $A^{2} = A \cdot A = PDP^{-1} \cdot PDP^{-1}$ $A^{2} = PD^{2}P^{-1}$ $A^{3} = A^{2} \cdot A = PD^{2}P^{-1} \cdot PDP^{-1} = PD^{3}P^{-1}$

$$A^{n} = PD^{n}P^{-1}$$

$$A^{-1} = PD^{-1}P^{-1}$$

Provided A is invertible

