### SC2001 Lab 2

#### Group 3:

Karthik Raj U2320917J Ishita Jain U2321668B Jayakumar Thirunithiyan U2321424H

### Table of contents

01

#### **Dijkstras Algorithm**

Adjacency Matrix and Array PQ implementation

03

#### **Dijkstras Algorithm**

Adjacency List and Minheap implementation

02

### Time complexity

Theoretical and empirical results

04

#### Comparison

Empirical analysis using sparse and dense graphs

# Ol Adjacency Matrix implementation

### Adjacency Matrix formation





V<sup>2</sup> Slots in Adjacency Matrix

Therefore, time complexity is **V**<sup>2</sup> for generation

```
# Function to generate a sparse or dense directed graph
def generate_directed_graph(vertices, edges):
    graph = [[0 for _ in range(vertices)] for _ in range(vertices)]
    edge_count = 0

while edge_count < edges:
    u = random.randint(0, vertices - 1)
    v = random.randint(0, vertices - 1)
    if u != v and graph[u][v] == 0:
        weight = random.randint(1, 10)
        graph[u][v] = weight # Directed graph, only u -> v
        edge_count += 1

return graph
```

# Our code that is implementing the algorithm

# Our code for generating the graph

```
# Dijkstra's algorithm using adjacency matrix for directed graph
def dijkstra_matrix_directed(graph, src):
   vertices = len(graph)
   dist = [sys.maxsize] * vertices
   dist[src] = 0
   visited = [False] * vertices
   for _ in range(vertices):
       min distance = sys.maxsize
       min index = -1
       for v in range(vertices):
           if not visited[v] and dist[v] < min distance:
               min_distance = dist[v]
               min index = v
       u = min index
       visited[u] = True
       for v in range(vertices):
           if graph[u][v] > 0 and not visited[v] and dist[v] > dist[u] + graph[u][v]:
               dist[v] = dist[u] + graph[u][v]
   return dist
```

```
# Measure the execution time for varying vertices for sparse and dense directed graphs
def measure time matrix directed(vertex range):
    time results sparse = []
    time results dense = []
    for v in vertex range:
        sparse edges = v - 1 # Sparse graph with v-1 edges
        dense edges = v * (v - 1) # Dense graph with max edges for directed graph
        sparse graph = generate directed graph(v, sparse edges)
        dense graph = generate directed graph(v, dense edges)
        # Measure time for sparse graph
        start time = time.time()
       dijkstra matrix directed(sparse graph, 0)
        time results sparse.append(time.time() - start time)
        # Measure time for dense graph
        start time = time.time()
       dijkstra matrix directed(dense graph, 0)
        time_results dense.append(time.time() - start time)
    return time results sparse, time results dense
```

## Our code to plot the graph

### Our code to compute the runtime and return that value

```
range(50, 1001, 50)) # Vertices from 50 to 1000 in increments of 50
                        ise = measure time matrix directed(vertex range)
    # Fit best-fit lines (polynomial regression) with degree 3
    sparse fit = polynomial fit(vertex range, time sparse, 3)
    dense fit = polynomial fit(vertex range, time dense, 3)
    # Plot original data
    plt.plot(vertex range, time sparse, 'o', label="Sparse Graph (Directed, Matrix)", markersize=4)
    plt.plot(vertex_range, time_dense, 'o', label="Dense Graph (Directed, Matrix)", markersize=4)
    # Plot best-fit lines
    plt.plot(vertex range, sparse_fit, label="Best-Fit Line (Sparse Graph)", linestyle='--', color='blue')
    plt.plot(vertex range, dense fit, label="Best-Fit Line (Dense Graph)", linestyle='--', color='red')
    plt.xlabel('Number of Vertices')
    plt.ylabel('Execution Time (seconds)')
    plt.title('Dijkstra\'s Algorithm (Adjacency Matrix): Sparse vs Dense (Vertices 50 to 1000)')
    plt.legend()
    plt.grid(True)
    plt.show()
plot_results_part_a_with_fit()
```

ertices from 50 to 1000 in increments of 50 with best-fit line

with fit():



coefficients = np.polyfit(x, y, degree)
polynomial = np.poly1d(coefficients)

return polynomial(x)

# 02

Time complexity
Adjacency Matrix
and Array Queue

### Theoretical Analyis

**Overall Time Complexity** 

$$= (V-1)(V+V)+ V^2 = 3V^2-2V$$

$$= O(V^2)$$





When checking all the potential vertices, pick the minimum distance vertex from the set of vertices not yet processed



(V+V)

First V -> finding the minimum distance vertex.

Second V -> updating the distances for the adjacent vertices of the chosen vertex



 $V^2$ 

Derived the adjacency matrix



# 03 MinHeap Implementation

**Insert**: Add a new element to the heap, maintaining the min-heap property.

**Extract Min**: Remove the minimum element (the root) and adjust the heap to maintain the min-heap property.

**Heapify**: A utility function to ensure the min-heap property is maintained.



### Complete Binary Tree -> Root Note Smallest Element



```
# Function to generate a sparse or dense directed graph as adjacency list
def generate_directed_graph_list(vertices, edges):
    graph = {i: [] for i in range(vertices)}
    edge_count = 0

while edge_count < edges:
    u = random.randint(0, vertices - 1)
    v = random.randint(0, vertices - 1)
    if u != v and all(v != dest for dest, _ in graph[u]):
        weight = random.randint(1, 10)
        graph[u].append((v, weight))
        edge_count += 1

return graph</pre>
```

# Our code for min heap for priority Q

```
# Dijkstra's algorithm using adjacency list for directed graph
def dijkstra list directed(graph, src):
    vertices = len(graph)
    dist = [sys.maxsize] * vertices
    dist[src] = 0
    priority queue = [(0, src)]
    while priority queue:
        current dist, u = heapq.heappop(priority queue)
        if current dist > dist[u]:
            continue
        for v, weight in graph[u]:
            distance = current dist + weight
            if distance < dist[v]:</pre>
                dist[v] = distance
                heapq.heappush(priority_queue, (distance, v))
    return dist
```

```
Measure the execution time for varying vertices for sparse and dense directed graphs using adjacency list
def measure time list directed(vertex range):
    time results sparse = []
    time results dense = []
    for v in vertex range:
        sparse edges = v - 1 # Sparse graph with v-1 edges
        dense edges = v * (v - 1) # Dense graph with max edges for directed graph
        sparse graph = generate directed graph list(v, sparse edges)
        dense graph = generate directed graph list(v, dense edges)
        # Measure time for sparse graph
        start time = time.time()
        dijkstra list directed(sparse graph, 0)
        time results sparse.append(time.time() - start time)
        # Measure time for dense graph
        start time = time.time()
        dijkstra list directed(dense graph, 0)
        time results dense.append(time.time() - start time)
    return time results sparse, time results dense
```

# Our code for plotting graphs against runtime

Added best fit line to combat against the fluctuations of python

```
# Function to add polynomial best-fit line
def polynomial_fit(x, y, degree):
    coefficients = np.polyfit(x, y, degree)
    polynomial = np.poly1d(coefficients)
    return polynomial(x)
```

```
# Plotting results for vertices from 1 to 100 in increments of 100 with best-fit line
def plot results part b with fit():
   vertex range = list(range(1, 101, 10)) # Vertices from 1 to 100 in increments of 10
   time sparse, time dense = measure time list directed(vertex range)
   # Fit best-fit lines (polynomial regression) with degree 3
   sparse fit = polynomial fit(vertex range, time sparse, 3)
   dense fit = polynomial fit(vertex range, time dense, 3)
   # Plot original data
   plt.plot(vertex range, time sparse, 'o', label="Sparse Graph (Directed, List)", markersize=4)
   plt.plot(vertex range, time dense, 'o', label="Dense Graph (Directed, List)", markersize=4)
   # Plot best-fit lines
   plt.plot(vertex range, sparse fit, label="Best-Fit Line (Sparse Graph)", linestyle='--', color='blue')
   plt.plot(vertex range, dense fit, label="Best-Fit Line (Dense Graph)", linestyle='--', color='red')
   plt.xlabel('Number of Vertices')
   plt.vlabel('Execution Time (seconds)')
   plt.title('Dijkstra\'s Algorithm (Adjacency List): Sparse vs Dense (Vertices 1 to 100)')
   plt.legend()
   plt.grid(True)
   plt.show()
plot results part b with fit()
```

### For Empirical Data for List with Min Heap

### Our graph plotted for varying V in respect to Sparse and Dense Graph





Dense = (n\*n-1) - Directed Sparse = n-1 - Directed

# Time complexity with adjacency list and MinHeap queue

- 1. Create a list for every vertex, so there are V vertices so it takes O(V)
- 2. After creating the lists, fill up the lists with every edge that exists in the graph -> O(E) for E edges.
- 3. In total, to create the adjacency list, it takes O(V+E)

#### **Extracting the minimum vertex:**

Its an operation that takes log(V) time and you do it for V vertices so in total it takes Vlog(V)

#### **Edge relaxation:**

Its an operation that takes log(V) time and you do it for E edges so you have Elog(V)

### Theoretical Analysis

Thus we have the total complexity of:

V [Initialization of adjacency list]

- +E [Adding edges to the list]
- +VlogV [Extraction of minimum element]
- +ElogV [Processing Adjacent Vertices Edge Relaxation

The V+E from the list construction gets dominated because its time complexity becomes insignificant, so we can ignore it when calculating the total time taken:

Simplifying, we get VlogV + ElogV = (V+E) logV



# 04 Comparison Analaysis



### **Comparison Analysis**

#### **Dense Graph**



### **Sparse Graph**



#### **Adjacency Matrix:**

- -Suitable for dense graphs
   (|E|>>|V|), to reduce the effect of
   the value of |E| on time.
- -Edge operations/lookup take
   Constant time: O(1)
- Traversal of neighbors takes
   O(V) (Linear) time for each
   Vertice

#### **Adjacency List:**

- -Suitable for sparse graphs, where |V|>>|E|, saving time and space.
- -Edge operations/lookup take
   Linear time: O(deg V)
- Traversal of neighbors takes
   O(deg V) (Linear) time for each
   vertice, which is better