Time series analysis

Maths

ARMA theory (optional)

Théorème 2.1 : Filtrage linéaire des processus bornés

Soit $\alpha = (\alpha_k)_{k \in \mathbb{Z}} \in \ell^1(\mathbb{Z})$ et soit $X = (X_t)_{t \in \mathbb{Z}}$ un processus, borné dans L^p avec $p \ge 1$, c'est-à-dire que $\sup_{t \in \mathbb{Z}} \mathbb{E}(|X_t|^p) < \infty$. Posons

$$\forall t \in \mathbb{Z}, \ \forall m, n \in \mathbb{N}, \ Y_{t,m,n} = \sum_{k=-m}^{n} \alpha_k X_{t-k}.$$

Alors pour tout $t \in \mathbb{Z}$ la famille $(Y_{t,m,n})_{m,n\geq 1}$ converge presque-sûrement et dans L^p lorsque $m,n\to\infty$ vers une variable aléatoire $Y_t\in L^p$:

$$Y_{t,m,n} \xrightarrow[m,n \to \infty]{\text{p.s.}} Y_t \in \mathcal{L}^p \quad \text{et} \quad \lim_{m,n \to \infty} \mathbb{E}(|Y_{t,m,n} - Y_t|^p) = 0.$$

De plus, le processus $(Y_t)_{t\in\mathbb{Z}}$ est bien défini p.s. et est borné dans \mathcal{L}^p .

Théorème 2.2 : Filtrage de processus stationnaires

Soit $\alpha \in \ell^1(\mathbb{Z})$ et soit $(X_t)_{t \in \mathbb{Z}}$ un processus stationnaire de moyenne μ_X d'autocovariance $\gamma_X(h)$. Alors le processus $Y := F_{\alpha}(X)$ défini par

$$\forall t \in \mathbb{Z}, \quad (F_{\alpha}X)_t = \sum_{k \in \mathbb{Z}} \alpha_k X_{t-k}$$

est un processus du second ordre et stationnaire, de moyenne et d'autoc

$$\mu_Y = \mu_X \sum_{k \in \mathbb{Z}} \alpha_k$$
 et $\gamma_Y(h) = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \alpha_j \alpha_k \gamma_X(h+j-k)$.

Exemple 2.3 : Processus linéaires : filtrage d'un BB

Si $(Z_t)_{t\in\mathbb{Z}}$ est un BB $(0,\sigma^2)$, $\mu\in\mathbb{R}$, et $\alpha\in\ell^1(\mathbb{Z})$, alors le théorème $X=\mu+F_{\alpha}Z$ est un processus stationnaire de moyenne μ et d'autocovar

$$\gamma_X(h) = \sigma^2 \sum_{j \in \mathbb{Z}} \alpha_j \alpha_{j+h}.$$

C'est l'image d'un BB par une application linéaire : on parle de processu

Causality and invertibility

Définition 2.5 : Causalité et inversibilité

Si Z est stationnaire, on dit que le filtre $X=\mu+F_{\alpha}Z$ de Z est un processus...

— causal lorsque $\alpha_k = 0$ pour tout k < 0 (X_t ne dépend pas du futur de Z_t). C'est le cas par exemple des processus MA(q), $q \ge 1$, qui vérifient

$$\forall t \in \mathbb{Z}, \quad X_t = Z_t + \theta_1 Z_{t-1} + \dots + \theta_q Z_{t-q}.$$

Plus généralement, les processus linéaires causaux (Z BB) avec $\alpha_0 = 1$ sont les processus MA(∞) (un processus MA(q) est un MA(q') pour tout $q' \ge q$);

— **inversible** lorsque Z est un processus causal de X, c'est-à-dire qu'il existe un $\beta \in \ell^1(\mathbb{Z})$ tel que $Z = F_{\beta}(X)$ avec $\beta_k = 0$ pour tout k < 0. C'est le cas par exemple des processus AR(p), $p \ge 1$, qui vérifient Z = F(X) car

$$\forall t \in \mathbb{Z}, \quad X_t - \varphi_1 X_{t-1} - \dots - \varphi_p X_{t-p} = Z_t.$$

Plus généralement, les processus linéaires inversible (Z BB) avec $\alpha_0 = 1$ sont les processus $AR(\infty)$ (un AR(p) est un AR(p') pour tout $p' \ge p$).

Convolution and power series

Théorème 2.8 : Inversibilité pour la convolution et séries de puissances

Soit $\alpha \in \ell^1(\mathbb{Z})$ tel que $P_\alpha(z) = \sum_{k \in \mathbb{Z}} \alpha_k z^k$ est un polynôme, c'est-à-dire que α est à support fini et ≥ 0 . Les trois propriétés suivantes sont équivalentes :

- α est inversible pour le produit de convolution dans ℓ¹(Z);
- P_α n'a pas de racine de module 1;
- 3. $z\mapsto 1/P_{\alpha}(z)$ est développable en série de puissances de z, absolument convergente dans une couronne de $\mathbb C$ contenant le cercle unité :

$$\frac{1}{P_{\alpha}(z)} = \sum_{k \in \mathbb{Z}} \beta_k z^k, \quad \beta \in \ell^1(\mathbb{Z}).$$

Lorsque ces propriétés ont lieu, alors $\alpha^{-1} = \beta$. De plus, si P_{α} n'a pas de racine de module < 1 alors le support de α^{-1} est ≥ 0 , c'est-à-dire que $\{k \in \mathbb{Z} : \alpha_k^{-1} \neq 0\} \subset \mathbb{N}$.

Définition 3.1 : AR, MA, ARMA

Soient $p, q \in \mathbb{N}$, $\varphi \in \mathbb{R}^p$ et $\theta \in \mathbb{R}^q$ des coefficients fixés, et $(Z_t)_{t \in \mathbb{Z}} \sim \mathrm{BB}(0, \sigma^2)$. On dit que $(X_t)_{t \in \mathbb{Z}}$ est un **processus ARMA**(p, q), ou ARMA d'ordre (p, q), lorsqu'il est stationnaire et vérifie l'équation de récurrence linéaire suivante a :

$$\forall t \in \mathbb{Z}, \ X_t = \sum_{k=1}^p \varphi_k X_{t-k} + Z_t + \sum_{k=1}^q \theta_k Z_{t-k}.$$

De plus :

— si
$$\theta \equiv 0$$
 ou $q = 0$ alors on dit qu'il s'agit d'un **processus** $AR(p)$;
— si $\varphi \equiv 0$ ou $p = 0$ alors on dit qu'il s'agit d'un **processus** $MA(q)$.

a. Avec la convention
$$\sum_{k=0}^{-1} = \sum_{z} = 0$$
 utile quand $p = 0$ ou $q = 0$.

Théorème 3.6 : Existence des processus ARMA

Soient Φ et Θ les polynômes associés à l'équation ARMA(p, q).

- 1. Si Φ n'a pas de racine de module 1 alors ARMA(p,q) possède une unique solution stationnaire, donnée par le processus linéaire $F_{\alpha}Z$ où $\alpha=\alpha_{\theta}*\alpha_{\varphi}^{-1}$ où α_{φ}^{-1} est l'inverse de α_{φ} pour * (existe : théorème 2.8);
- 2. Si ARMA(p,q) admet un processus linéaire $F_{\alpha}Z$ avec $\alpha \in \ell^1(\mathbb{Z})$ comme solution alors toute racine de module 1 de Φ est également racine de Θ .

Théorème 3.9 : Causalité et inversibilité des ARMA

Considérons une équation ARMA(p,q) $F_{\alpha_{\varphi}}X = F_{\alpha_{\theta}}Z$ et ses polynômes $\Phi = P_{\alpha_{\varphi}}$ et $\Theta = P_{\alpha_0}$. On suppose que Φ n'a pas de racines de module 1, ce qui assure l'existence d'une solution stationnaire unique $X=F_{\alpha_{\omega}^{-1}*\alpha_{\theta}}Z$ (théorème 3.6). Alors — la solution X est causale si Φ n'a pas de racine de module ≤ 1;

— la solution X est inversible si Θ n'a pas de racine de module ≤ 1.

Remarque 3.11 : Résolution pratique des ARMA inversibles

La résolution pratique des ARMA(p,q) inversible peut être menée grâce à la remarque 2.10. En effet, on résout en ξ le système

$$\left(\sum_{k\in\mathbb{Z}}\xi_kz^k\right)(1-\varphi_1z-\cdots-\varphi_pz^p)=1+\theta_1z+\cdots+\theta_qz^q$$
 en identifiant les coefficients, ce qui donne dans le cas causal le système triangulaire

$$\xi_0= heta_0=1 \ -\xi_0arphi_1+\xi_1= heta_1$$

$$-\xi_0\varphi_1 + \xi_1 = \theta_1$$
$$-\xi_0\varphi_2 - \xi_1\varphi_1 + \xi_2 = \theta_2$$

Note : si $P_{\alpha_{ij}}$ divise $P_{\alpha_{ij}}$ (c'est-à-dire que si z_i est racine de $P_{\alpha_{ij}}$ de multiplicité m_i alors elle est aussi racine de $P_{\alpha_{\theta}}$ de multiplicité $\geq m_j$) alors P_{ε} est un polynôme. Dans le cas contraire, P_{ε} n'est pas un polynôme et contient des puissances de z de degré arbitrairement grand. Exemple : la solution de ARMA(1, 1) quand $|\varphi_1| < 1$ est donnée par $P_{\xi}(z) = 1 + \sum_{k=1}^{\infty} (\varphi_1 + \theta_1) \varphi_1^k z^k$, qui vérifie bien $(1 - \varphi_1 z) P_{\xi}(z) = 1 + \theta_1 z$. Ici, $P_{\alpha_{\varphi}}$ divise $P_{\alpha_{\theta}}$ ssi $-1/\theta_1 = 1/\varphi_1$, c'est-à-dire ssi $P_{\xi}(z) = 1$ (et on a $P_{\alpha_{\varphi}} = P_{\alpha_{\theta}}$).