Math 5050 – Special Topics: Manifolds– Spring 2025 w/Professor Berchenko-Kogan

Paul Carmody Notes – Februaray 4, 2025

Section 2: 1, 3, 4

2.1. Vector fields

Let X be the vector field $x\partial/\partial x + y\partial/\partial y$ and f(x,y,z) the function $x^2 + y^2 + z^2$ on \mathbb{R}^3 . Complete Xf.

2.3. Vector space structure on derivations at a point

Let D and D' be derivation at p in \mathbb{R}^n , and $c \in \mathbb{R}$. Prove that

- (a) the sum D + D' is a derivation at p.
- (b) the scalar multiple cD is a derivation at p.

2.4. Product of derivations

Let A be an algebra over a field K. If D_1 and D_2 are derivations of A, show that $D_1 \circ D_2$ is not necessarily a derivation (it is if D_1 or $D_2 = 0$), but $D_1 \circ D_2 - D_2 \circ D_1$ is always a derivation of A.