In-Class Lab: Estimating Pl

Problem: Estimating the value of π

The value of π can be estimated by the following serial algorithm.

Algorithm: EstimatePI(n)

n, number of points Input:

PI, an estimate value of π Output:

- Inscribe a circle in a square
- Randomly generate n points in the square
- Determine m, the number of points in the square that are also in the circle
- 4. PI = 4 * m / n

Note that the more points that are generated, the better the approximation.

$$A_S = (2r)^2 = 4r^2$$

 $A_C = \pi r^2$
 $\pi = 4 \times \frac{A_C}{2}$

Question

 Apply Foster's methodology to parallelize the EstimatePI algorithm. Develop parallel algorithms for shared-memory and distributed-memory systems

Performance

Assumptions:

$$T_{Serial} = (A + B)n$$

- A:time to generate a random point
- B: time to test if the point is inside the circle

Performance

- Define a parametrized formula for T_{parallel}
 Your formula should use n, p, the same A and B defined for the serial program and additional constants for other computations or overhead
- Derive formulas for speedup and efficiency, as functions of n and p.
- Based on your analysis, does it appear that your algorithms are scalable?

Question2

 Suppose that 20% of a program is not parallelizable, for a particular problem size. What is the maximum speedup that can be expected if that program were parallelized for that particular problem size?