SPERA

Artificial Intelligence & Cybersecurity

Generative AI in Healthcare: Applications and Evaluation of Effectiveness

Candidate: Lorenzo Zanolin

Dec 13, 2024

**Supervisor:** 

Prof. Giuseppe Serra

Co-Supervisor:

Prof. Jan Steinbrener



### Background

- Generative AI goal: derive a probability distribution from data to generate new synthetic data.
- Masked Multi-Head Self Attention: captures global dependencies, process sequences in parallel and generates embeddings that improve performance on a wide range of tasks.



### Background

- Generative AI *goal*: derive a probability distribution from data to generate new synthetic data.
- Masked Multi-Head Self Attention: captures global dependencies, process sequences in parallel and generates embeddings that improve performance on a wide range of tasks.

#### Motivations

- Generative AI can be integrated within workflows to help clinicians.
- Absence of a complete evaluation framework in the literature

  → new framework that combines human feedback and
  metric based feedback.



### Salesforce

- Enables companies to manage relationships with customers, prospects and employees through customizable interaction rules.
- Integrates with modules such as Health Cloud and Einstein.



### Salesforce

- Enables companies to manage relationships with customers, prospects and employees through customizable interaction rules.
- Integrates with modules such as Health Cloud and Einstein.

#### Einstein 1

- Enables the use of genAI models within Salesforce.
- Allows for the creation of reusable prompts with database integration (RAG).
- Trust Layer framework to ensure data security during information exchange with LLMs.





















- Application intended for healthcare clinics that manage numerous patients and offer a wide range of services.
- Tasks to be implemented with Copilot:

- Application intended for healthcare clinics that manage numerous patients and offer a wide range of services.
- Tasks to be implemented with Copilot:
  - Patient Summary

- Application intended for healthcare clinics that manage numerous patients and offer a wide range of services.
- Tasks to be implemented with Copilot:
  - Patient Summary
  - List Possible Problems

- Application intended for healthcare clinics that manage numerous patients and offer a wide range of services.
- Tasks to be implemented with Copilot:
  - Patient Summary
  - List Possible Problems
  - Send Visit Details



# **Patient Summary**

Invoked by the doctor before receiving the patient: quick and detailed overview of all the patient's conditions.



Invoked by the doctor before receiving the patient: quick and detailed overview of all the patient's conditions.



Summarize account



Here is the summary of the patient record you requested.

\*\*Patient Overview\*\*

Lorenzo Zanolin, identified by ZNLLNZ00R20G888E, is a 24-year-old male from Polcenigo. His date of birth is October 20, 2000. He can be contacted at I.zanolin@reply.it.

\*\*Health Conditions\*\*

Lorenzo Zanolin has been diagnosed with two health conditions. The first condition is Crohn's Disease, a chronic inflammatory bowel disease that affects the lining of the digestive tract. This condition has been confirmed and is classified as severe. The second condition is Obstructive Sleep Apnea, where breathing repeatedly stops and starts during sleep. This condition has also been confirmed and is classified as moderate. Both conditions were observed during a clinical encounter on July 17, 2024, between 20:00 and 21:15, with noted problems affecting the nose and bowel.

\*\*Person Allergies\*\*

Lorenzo Zanolin has an allergy to lactose, classified under food allergies. This information is relevant to his overall health profile and should be considered in his medical management.



### List Possible Problems

Identifies potential conditions based on the patient's symptoms, providing a list of possible diagnoses and medications, with dosage calculations for all of them.



### List Possible Problems

Identifies potential conditions based on the patient's symptoms, providing a list of possible diagnoses and medications, with dosage calculations for all of them.



what could be the problem related to CON-0010?



Here are the possible problems related to the symptom associated with CON-0010.

According to the symptom Diarrhea, here is a list of the possible problems with this symptom:

- Crohn's Disease: A chronic inflammatory bowel disease that affects the lining of the digestive tract.
- Ulcerative Colitis: A chronic inflammatory bowel disease that causes inflammation in the digestive tract.

Suggested medications for this situation, every dosage is mg / day:

- Cortisone: 33 mg/day.

# Creates a draft email summarizing the patient's latest Clinical Encounter for the doctor to review and edit.



For each task, the output of each model was evaluated in comparison to the clinician's notes.

For each task, the output of each model was evaluated in comparison to the clinician's notes.

### **Automatic Evaluation:**

 Metrics: ROUGE, BLEU, METEOR, Word2Vec and BERTScore.



For each task, the output of each model was evaluated in comparison to the clinician's notes.

#### **Automatic Evaluation:**

 Metrics: ROUGE, BLEU, METEOR, Word2Vec and BERTScore.

#### **Human Evaluation:**

- A sample of 20 physicians tested the system, providing feedback via a Likert scale (1-5) on four aspects:
  - Accuracy: alignment with clinician notes
  - Relevance: appropriateness to the query
  - Coverage: completeness of information
  - Clarity: syntax and overall quality



### Evaluation Framework - cont'd

### **G-Eval Evaluation**:

- Framework used to evaluate model outputs, consistently using the clinician's notes as a reference.
- Compared against human evaluation.





### **Automatic Evaluation**

| Model                  | Rouge1 | Rouge2 | RougeL | BLEU   | METEOR | Word2Vec | BERTscore |  |  |
|------------------------|--------|--------|--------|--------|--------|----------|-----------|--|--|
| Patient Summary        |        |        |        |        |        |          |           |  |  |
| GPT4                   | 0.3966 | 0.1139 | 0.2380 | 0.1470 | 0.2198 | 0.9035   | 0.8458    |  |  |
| GPT4 32k               | 0.3963 | 0.1043 | 0.2439 | 0.1742 | 0.2349 | 0.9150   | 0.8428    |  |  |
| GPT4 Omnni             | 0.4286 | 0.1438 | 0.2857 | 0.2013 | 0.2692 | 0.8987   | 0.8572    |  |  |
| Anthropic              | 0.3761 | 0.1073 | 0.2222 | 0.1054 | 0.1905 | 0.8702   | 0.8504    |  |  |
| List Possible Problems |        |        |        |        |        |          |           |  |  |
| GPT4                   | 0.4444 | 0.1649 | 0.3838 | 0.1851 | 0.3690 | 0.8496   | 0.9007    |  |  |
| GPT4 32k               | 0.4228 | 0.1322 | 0.2927 | 0.2180 | 0.2726 | 0.8819   | 0.8881    |  |  |
| GPT4 Omni              | 0.3800 | 0.0612 | 0.2600 | 0.1366 | 0.2709 | 0.8529   | 0.8789    |  |  |
| Anthropic              | 0.3579 | 0.0645 | 0.2526 | 0.1221 | 0.2480 | 0.8325   | 0.8810    |  |  |
| Email Generation       |        |        |        |        |        |          |           |  |  |
| GPT4                   | 0.3697 | 0.0845 | 0.2129 | 0.1704 | 0.2991 | 0.9164   | 0.8510    |  |  |
| GPT4 32k               | 0.3371 | 0.0460 | 0.1771 | 0.1153 | 0.2811 | 0.8801   | 0.8443    |  |  |
| GPT4 Omni              | 0.4536 | 0.1295 | 0.2526 | 0.2345 | 0.3605 | 0.9295   | 0.8735    |  |  |
| Anthropic              | 0.4375 | 0.1166 | 0.2321 | 0.2037 | 0.3037 | 0.9219   | 0.8739    |  |  |



### Mean and standard deviation of Human Evaluation scores.

| Model                  | Accuracy                      | Relevance                   | Coverage                    | Clarity                     |  |  |  |
|------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|--|
| Patient Summary        |                               |                             |                             |                             |  |  |  |
| GPT4                   | $\mu = 3.83, \sigma = 0.62$   | $\mu = 3.72, \sigma = 0.75$ | $\mu = 3.06, \sigma = 0.73$ | $\mu = 3.83, \sigma = 0.71$ |  |  |  |
| GPT4 32k               | $\mu = 3.72, \sigma = 0.67$   | $\mu=$ 3.78, $\sigma=$ 0.81 | $\mu = 3.22, \sigma = 0.94$ | $\mu=$ 4.06, $\sigma=$ 0.54 |  |  |  |
| GPT4 Omni              | $\mu = 3.83, \sigma = 0.86$   | $\mu = 3.50, \sigma = 1.10$ | $\mu = 3.33, \sigma = 0.77$ | $\mu = 3.89, \sigma = 0.76$ |  |  |  |
| Anthropic              | $\mu = 3.83, \sigma = 1.04$   | $\mu = 3.83, \sigma = 0.99$ | $\mu=$ 3.67, $\sigma=$ 0.59 | $\mu = 4.17, \sigma = 0.86$ |  |  |  |
| List Possible Problems |                               |                             |                             |                             |  |  |  |
| GPT4                   | $\mu =$ 3.95, $\sigma =$ 0.87 | $\mu = 4.00, \sigma = 0.84$ | $\mu = 3.61, \sigma = 0.85$ | $\mu = 3.94, \sigma = 0.73$ |  |  |  |
| GPT4 32k               | $\mu = 3.83, \sigma = 0.79$   | $\mu = 3.94, \sigma = 0.73$ | $\mu = 3.50, \sigma = 0.86$ | $\mu = 4.17, \sigma = 0.79$ |  |  |  |
| GPT4 Omni              | $\mu = 3.90, \sigma = 1.08$   | $\mu = 4.00, \sigma = 0.97$ | $\mu = 3.72, \sigma = 1.02$ | $\mu = 4.05, \sigma = 0.80$ |  |  |  |
| Anthropic              | $\mu = 3.90, \sigma = 0.90$   | $\mu=$ 4.06, $\sigma=$ 0.80 | $\mu = 3.72, \sigma = 1.02$ | $\mu = 3.94, \sigma = 0.94$ |  |  |  |
| Email Generation       |                               |                             |                             |                             |  |  |  |
| GPT4                   | $\mu = 3.17, \sigma = 0.98$   | $\mu = 3.22, \sigma = 0.88$ | $\mu = 2.94, \sigma = 0.99$ | $\mu = 3.28, \sigma = 0.89$ |  |  |  |
| GPT4 32k               | $\mu = 3.00, \sigma = 1.08$   | $\mu = 3.56, \sigma = 0.92$ | $\mu = 3.33, \sigma = 1.00$ | $\mu = 3.44, \sigma = 1.20$ |  |  |  |
| GPT4 Omni              | $\mu = 3.78, \sigma = 0.94$   | $\mu=$ 4.06, $\sigma=$ 0.64 | $\mu=$ 3.72, $\sigma=$ 0.67 | $\mu = 3.94, \sigma = 0.94$ |  |  |  |
| Anthropic              | $\mu = 4.06, \sigma = 0.80$   | $\mu = 4.11, \sigma = 0.76$ | $\mu = 3.90, \sigma = 0.90$ | $\mu = 4.06, \sigma = 0.97$ |  |  |  |



## Human Evaluation - cont'd

### Inter-rater agreement

for all pairs of raters

$$P = \{\{R_i = [r_{i,1}, \dots, r_{i,n}], R_j = [r_{j,1}, \dots, r_{j,n}]\} | R_i, R_j \in R, R_i \neq R_j\}$$

the corresponding  $\kappa_{w_{i,j}}$  values were calculated.

Subsequently, the average  $\kappa_w = \frac{1}{|P|} \sum_{(i,j) \in P} \kappa_{w_{i,j}}$  was computed.

| GPT4                   | GPT4 32K          | GPT4 Omni         | Anthropic         |  |  |  |  |
|------------------------|-------------------|-------------------|-------------------|--|--|--|--|
| Patient Summary        |                   |                   |                   |  |  |  |  |
| $\kappa_w = 0.25$      | $\kappa_w = 0.29$ | $\kappa_w = 0.37$ | $\kappa_w = 0.52$ |  |  |  |  |
| List Possible Problems |                   |                   |                   |  |  |  |  |
| $\kappa_w = 0.61$      | $\kappa_w = 0.63$ | $\kappa_w = 0.63$ | $\kappa_w = 0.57$ |  |  |  |  |
| Email Generation       |                   |                   |                   |  |  |  |  |
| $\kappa_w = 0.53$      | $\kappa_w = 0.61$ | $\kappa_w = 0.69$ | $\kappa_w = 0.72$ |  |  |  |  |

Comparison of each metric between G-Eval and Human scores.





#### Results

- Generative AI can increase productivity
- New proposed framework that includes human and automatic evaluation
  - Sematical metrics work better in this context
  - Raters gave similar scores to shorter text

#### Results

- Generative AI can increase productivity
- New proposed framework that includes human and automatic evaluation
  - Sematical metrics work better in this context
  - Raters gave similar scores to shorter text

#### **Future Directions**

• Conduct a number of measurements with G-Eval equal to the number of raters to compare G-Eval with Human Feedback.