Lecture 24: Attention

NLP Lectures: Part 3 of 4

Harvard IACS

CS109B

Pavlos Protopapas, Mark Glickman, and Chris Tanner

Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)

Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)

Previously, we learned about word embeddings

INPUT PROJECTION OUTPUT

millions of books

word2vec

word embeddings (type-based)

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

Previously, we learned about word embeddings

word embeddings (type-based)

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

"The food was delicious. Amazing!" — 4.8/5 **yelp

word embeddings (type-based)

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

"The food was delicious. Amazing!" — 4.8/5 **yelp

word embeddings (type-based)

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

"Waste of money. Tasteless!" — 2.4/5 kyelp

word embeddings (type-based)

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

"Daaang. What?! Supa Lit" 4.9/5 ** yelp

Strengths and weaknesses of word embeddings (type-based)?

word embeddings (type-based)

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

Strengths:

- Leverages tons of existing data
- Don't need to depend on our data to create embeddings

word embeddings (type-based)

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

Issues:

- Out-of-vocabulary (OOV) words
- Not tailored to this dataset

word embeddings (type-based)

- count-based/DSMs (e.g., SVD, LSA)
- Predictive models (e.g., word2vec, GloVe)

Previously, we learned about word embeddings

Output layer

Hidden layer x_1 x_2 x_3 Output Layer

LSTM

contextualized embeddings (token-based)

approaches:

7192. Underdog Hot Chicken

Chicken Wings, Chicken Shop

*** * * * * 4**5

Review #1

contextualized embeddings (token-based)

approaches:

*** * * * * 4**5

Chicken Wings, Chicken Shop

Review #2

contextualized embeddings (token-based)

approaches:

7192. Underdog Hot Chicken

Chicken Wings, Chicken Shop

*** * * * * 4**5

Review #53,781

contextualized embeddings (token-based)

approaches:

Chicken Wings, Chicken Shop

Review #53,781

contextualized embeddings (token-based)

approaches:

Review #53,781

contextualized embeddings (token-based)

approaches:

Chicken Wings, Chicken Shop

Predictive models (e.g., BiLSTMs, GPT-2, BERT)

the

Strengths and weaknesses of contextualized embeddings (aka token-based)?

Review #53,781

contextualized embeddings (token-based)

approaches:

Strengths:

- Tailored to your particular corpus
- No out-of-vocabulary (OOV) words

Review #53,781

contextualized embeddings (token-based)

approaches:

Weaknesses:

- May not have enough data to produce good results
- Have to train new model for each use case
- Can't leverage a wealth of existed text data (millions of books)???

found a hair in the

Review #53,781

contextualized embeddings (token-based)

approaches:

Weaknesses:

- May not have enough data to produce good results
- Have to train new model for each use case
- Can't leverage a wealth of existed text data (millions of books)???

WRONG! We can leverage millions of books!

Review #53,781

contextualized embeddings (token-based)

approaches:

Language Modelling

(let's input 1 million documents)

Language Modelling

(let's input 1 million documents)

The contextualized embeddings for 1 million docs aren't useful to us for a new task (e.g., predicting Yelp reviews), but the learned weights could be!

Using these "pre-trained" W and V, we can possibly

increase our performance on other tasks (e.g., Yelp reviews), since they're very experienced with producing/capturing "meaning"

RECAP

- Language Modelling may help us for other tasks
- LSTMs do a great job of capturing "meaning", which can be used for almost every task
 - Given a sequence of N words, we can produce 1 output
 - Given a sequence of N words, we can produce N outputs

RECAP

- Language Modelling may help us for other tasks
- LSTMs do a great job of capturing "meaning", which can be used for almost every task
 - Given a sequence of N words, we can produce 1 output
 - Given a sequence of N words, we can produce N outputs
 - What if we wish to have M outputs?

We want to produce a **variable-length** output (e.g., n → m predictions)

Thank you for visiting!

Děkujeme za návštěvu!

Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)

Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)

- If our input is a sentence in Language A, and we wish to translate it to Language B, it is clearly sub-optimal to translate word by word (like our current models are suited to do).
- Instead, let a sequence of tokens be the unit that we ultimately wish to work with (a sequence of length N may emit a sequences of length M)
- Seq2seq models are comprised of 2 RNNs: 1 encoder, 1 decoder

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

DECODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

DECODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

DECODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

The final hidden state of the encoder RNN is the initial state of the decoder RNN

ENCODER RNN

ENCODER RNN

ENCODER RNN

See any issues with this traditional seq2seq paradigm?

ENCODER RNN

It's crazy that the entire "meaning" of the 1st sequence is expected to be packed into this one embedding, and that the encoder then never interacts w/ the \hat{y}_1 decoder again. Hands free. h_2^E h_3^E h_4^E Hidden layer Input layer chien The brown brun dog <s> a couru ran

Instead, what if the decoder, at each step, pays attention to a distribution of all of the encoder's hidden states?

Instead, what if the decoder, at each step, pays attention to a distribution of all of the encoder's hidden states?

Intuition: when we (humans) translate a sentence, we don't just consume the original sentence then regurgitate in a new language; we continuously look back at the original while focusing on different parts.

Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)

Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

Attention (raw scores)

 e_1 1.5

 $e_2 \ 0.9$

 e_3 0.2

 $e_4 - 0.5$

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

A: Let's base it on our decoder's current hidden state (our current representation of meaning) and all of the encoder's hidden layers!

ENCODER RNN

Attention (raw scores)

$$e_1$$
 1.5

$$e_2 \ 0.9$$

$$e_3$$
 0.2

$$e_4 - 0.5$$

Attention (softmax'd)

$$a_i^1 = \frac{\exp(e_i)}{\sum_{i=1}^{N} \exp(e_i)}$$

Q: How do we determine how much to pay attention to each of the encoder's hidden layers?

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

ENCODER RNN

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

ENCODER RNN

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

REMEMBER: each attention weight a_i^j is based on the decoder's current hidden state, too.

For convenience, here's the Attention calculation summarized on 1 slide

For convenience, here's the Attention calculation summarized on 1 slide

all encoder states one decoder state

Popular Attention Scoring functions:

seq2seq + Attention

Attention:

- greatly improves seq2seq results
- allows us to visualize the contribution each encoding word gave for each decoder's word

Image source: Fig 3 in <u>Bahdanau et al., 2015</u>

Image source: Fig 3 in <u>Bahdanau et al., 2015</u>

SUMMARY

- LSTMs yielded state-of-the-art results on most NLP tasks (2014-2018)
- seq2seq+Attention was an even more revolutionary idea (Google Translate used it)
- Attention allows us to place appropriate weight to the encoder's hidden states
- But, LSTMs require us to iteratively scan each word and wait until we're at the end before we can do anything

Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)

Outline

- How to use embeddings
- seq2seq
- seq2seq + Attention
- Transformers (preview)

Transformer Encoder r_{Δ} Encoder FFNN FFNN FFNN FFNN Self-attention Head The dog brown ran X_2 X_4 X_3 X_1

Transformer Encoder uses attention on itself (self-attention) to create very rich embeddings which can be used for any task.

Transformer Encoder. You can attach a final layer that performs whatever task you're interested in (e.g., Yelp reviews).

Its results are unbelievably good.

BERT (a Transformer variant)

BERT is trained on a lot of text data:

Yay, for transfer learning!

- BooksCorpus (800M words)
- English Wikipedia (2.5B words)

BERT-Base model has 12 transformer blocks, 12 attention heads,

110M parameters!

BERT-Large model has 24 transformer blocks, 16 attention heads,

340M parameters!

Transformer

What if we want to generate a new output sequence?

GPT-2 model to the rescue!

Generative Pre-trained Transformer 2

GPT-2 (a Transformer variant)

- GPT-2 uses only Transformer Decoders (no Encoders) to generate new sequences
- As it processes each word/token, it cleverly masks the "future" words and conditions itself on the previous words
- Can generate text from scratch or from a starting sequence.
- Easy to fine-tune on your own dataset (language)

GPT-2 (a Transformer variant)

GPT-2 is:

- trained on 40GB of text data (8M webpages)!
- 1.5B parameters

GPT-3 is an even bigger version (175B parameters) of GPT-2, but isn't open-source

Yay, for transfer learning!

QUESTIONS?