

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds

Yifan Zhang, Qingyong Hu, Guoquan Xu, Yanxin Ma, Jianwei Wan, Yulan Guo National University of Defense Technology, University of Oxford

ABSTRACT

- Single-stage point-based 3D detector (IA-SSD)
 - Reduce memory and computational costs:
 - > Two-learnable, task-oriented, instance-aware downsampling
 - > Contextual centroid perception
- Compare with task-agnostic sampling
- · Outperform in terms of detection accuracy and runtime efficiency

PREVIOUS WORKS

- Voxel-based Detectors: first convert raw point clouds into intermediate regular representation
- Good detection performance with complex modules (two- stage) to overcome quantization error but greatly increasing computational costs
- Point-based Detectors: directly operate on raw point clouds (PointNet or variants)
- Limited detection performance and expensive computational/memory costs due to the unstructured and orderless nature of 3d point clouds.

METHODS

The single-stage point-based 3D Detector **IA-SSD** main differences with previous point-based detectors:

- 1. Instance-aware sampling
- 2. Contextual instance centroid perception

In this paper, we argue that **not all points are equally important to the task of object detection**. We only care about the foreground points.

- 1. Feature extraction: Set Abstraction layers
- 2. Instance-aware Downsampling Strategy: preserve foreground points
 - Class-aware Sampling: 2 MLPs used to learn semantic categories of each point
 - Centroid-aware Sampling: give higher weights to points closer to the instance centroid

$$L_{cls} = -\sum_{i=1}^{C} (Mask_i * s_i \log(\widehat{s_i}) + (1 - s_i)\log(1 - \widehat{s_i}))$$

3. Contextual Instance Centroid Perception: exploit also surrounding points from a large context around the objects

$$L_{\text{cent}} = -\frac{1}{|F_{+}|} \frac{1}{|S_{+}|} \sum_{i} \sum_{j} (\left| \Delta \widehat{c_{ij}} - \Delta c_{ij} \right| + \left| \widehat{c_{ij}} - \overline{c_{i}} \right|) I_{s}(p_{ij})$$

- **4. Centroid-based Instance Aggregation**: MLPs and symmetric function to learn a feature representation for each instance using the neighboring points.
- **5. Proposal Generation Head**: multidimensional representation of the bounding box with location, scale and orientation. Then filtering using 3D-NMS with a IoU threshold.

	Method	Reference	Туре	3D Car (IoU=0.7)			3D Ped. (IoU=0.5)			3D Cyc. (IoU=0.5)			Carad
	Method			Easy	Mod.	Hard	Easy	Mod.	Hard	Easy	Mod.	Hard	Speed
Voxel-based	VoxelNet [61]	CVPR 2018	1-stage	77.47	65.11	57.73	39.48	33.69	31.5	61.22	48.36	44.37	4.5
	SECOND [49]	Sensors 2018	1-stage	84.65	75.96	68.71	45.31	35.52	33.14	75.83	60.82	53.67	20
	PointPillars [18]	CVPR 2019	1-stage	82.58	74.31	68.99	51.45	41.92	38.89	77.10	58.65	51.92	42.4
	3D IoU Loss [59]	3DV 2019	1-stage	86.16	76.50	71.39	-	-	-	-	-	1.7	12.5
	Associate-3Ddet [7]	CVPR 2020	1-stage	85.99	77.40	70.53	-	-		-		100	20
	SA-SSD [11]	CVPR 2020	1-stage	88.75	79.79	74.16	100	-	10.1	-		100	25
	CIA-SSD [58]	AAAI 2021	1-stage	89.59	80.28	72.87	-	-	-	-		-	32
	TANet [24]	AAAI 2020	2-stage	84.39	75.94	68.82	53.72	44.34	40.49	75.70	59.44	52.53	28.5
	Part-A ² [39]	TPAMI 2020	2-stage	87.81	78.49	73.51	53.10	43.35	40.06	79.17	63.52	56.93	12.5
Point-Voxel	Fast Point R-CNN [3]	ICCV 2019	2-stage	85.29	77.40	70.24	(-)		-	-	-	-	16.7
	STD [53]	ICCV 2019	2-stage	87.95	79.71	75.09	53.29	42.47	38.35	78.69	61.59	55.30	12.5
	PV-RCNN [36]	CVPR 2020	2-stage	90.25	81.43	76.82	52.17	43.29	40.29	78.60	63.71	57.65	12.5
	VIC-Net [16]	ICRA 2021	1-stage	88.25	80.61	75.83	43.82	37.18	35.35	78.29	63.65	57.27	17
	HVPR [29]	CVPR 2021	1-stage	86.38	77.92	73.04	53.47	43.96	40.64	-	12	-	36.1
Point-based	PointRCNN [38]	CVPR 2019	2-stage	86.96	75.64	70.70	47.98	39.37	36.01	74.96	58.82	52.53	10
	3D IoU-Net [19]	Arxiv 2020	2-stage	87.96	79.03	72.78	-	- 2		-	12	-	10
	Point-GNN [40]	CVPR 2020	1-stage	88.33	79.47	72.29	51.92	43.77	40.14	78.60	63.48	57.08	1.6
	3DSSD [52]	CVPR 2020	1-stage	88.36	79.57	74.55	54.64	44.27	40.23	82.48	64.10	56.90	25
	3DSSD [†] (Reproduced)	CVPR 2020	1-stage	87.73	78.58	72.01	35.03	27.76	26.08	66.69	59.00	55.62	23
	3DSSD [‡] (OpenPCDet)	CVPR 2020	1-stage	87.91	79.55	74.71	3.63	3.18	2.57	27.08	21.38	19.68	28
	IA-SSD (single-class)	-	1-stage	88.87	80.32	75.10	49.01	41.20	38.03	80.78	66.01	58.12	85
	IA-SSD (multi-class)	-	1-stage	88.34	80.13	75.04	46.51	39.03	35.60	78.35	61.94	55.70	83

LIMITATIONS

The instance-aware downsampling relies on the semantic prediction of each point, which is susceptible to class imbalances distribution.