Logic

Kin Hei Wong

April 7, 2024

Presentation overview

- **1** 7A: The algebra of sets
- **2** 7B: Switching circuits
- 3 7C: Boolean algebra
- 4 7D: Logical connectives and truth tables
- **5** 7E: Valid argument
- 6 7F: Logic circuits
- **7** 7G: Karnaugh maps

The algebra of sets

Kin Hei Wong

April 7, 2024

All subset of a set

It always apply 2^n when a set has n element.

E.g.
$$\xi = a, b, c, d$$

Kin Hei Wong Logic April 7, 2024 4/66

Axioms

Laws of the algebra of sets For $A, B, C \subseteq \xi$, the following are true: Primary $\blacksquare A \cup A = A$ $A \cap A = A$ $A \cup \emptyset = A$ $A \cap \xi = A$ $A \cup \xi = \xi$ $A \cap \emptyset = \emptyset$ Associativity $\blacksquare (A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$ Commutativity \blacksquare $A \cup B = B \cup A$ $A \cap B = B \cap A$ **Distributivity** $\blacksquare A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \blacksquare A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Absorption $\blacksquare A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$ Complements $\blacksquare A \cup A' = \xi$ $A \cap A' = \emptyset$ Ø′ = E $(A \cup B)' = A' \cap B'$ $(A \cap B)' = A' \cup B'$ (A')' = AAlgebra of sets $A \cup \emptyset = A$ $A \cap \xi = A$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $a \times 1 = a$

a + 0 = a

Algebra of numbers

 $a \times (b + c) = a \times b + a \times c$

Dual statements

For a given statement about sets, the dual statement is obtained by interchanging:

$$\cup$$
 with \cap , \emptyset with ξ , \subseteq with \supseteq

Write the dual of $(A \cap B') \cap B = \emptyset$.

Kin Hei Wong Logic April 7, 2024 6/6

Equality for sets

When proving that two sets are equal, we can use the following equivalence:

$$X \subseteq Y$$
 and $Y \subseteq X \iff X = Y$

- Illustrate $(A \cup B)' = A' \cap B'$ with Venn diagram.
- **2** Prove $(A \cup B)' = A' \cap B'$.

7/66

Simplify each of the following expressions:

- $2 X' \cup (Y \cap X)$
- $3 [X' \cup (Y \cap X)']$

9/66

Exercise 7A

Kin Hei Wong Logic April 7, 2024 11/66

Switching circuits

Kin Hei Wong

April 7, 2024

Circuits table

Switches x and y in parallel

х	у	State of system
open	open	open
open	closed	closed
closed	open	closed
closed	closed	closed

Switches x and y in series

	OWITOTIOS X and y in sorios				
х	у	State of system			
open	open	open			
open	closed	open			
closed	open	open			
closed	closed	closed			

New notation

Open circuit: 0 Closed circuit: 1

$$x \cup y = x \vee y$$

$$x \cap y = x \wedge y$$

x' for complement

Kin Hei Wong Logic April 7, 2024 14/66

Evaluate $(1 \lor 0) \land 1'$.

Kin Hei Wong Logic April 7, 2024 15/66

Consider the expression

$$(x \wedge y) \vee (z \wedge x')$$

- Draw the switching circuit that is represented by this expression
- ② Give a table that describes the operation of this circuit for all possible combinations of switches x, y and z being open (0) and closed (1).

16/66

Exercise 7B

Kin Hei Wong Logic April 7, 2024 17/66

Boolean algebra

Kin Hei Wong

April 7, 2024

More axioms

- **1** A1(Commutative): $x \lor y = y \lor x$ $x \land y = y \land x$
- 2 A2(Associative): $(x \lor y) \lor z = x \lor (y \lor z) \quad | \quad (x \land y) \land z = x \land (y \land z)$
- **3** A3: $x \lor (y \land z) = (x \lor y) \land (x \lor z) \quad | \quad x \land (y \lor z) = (x \land y) \lor (x \land z)$
- **4** A4: $x \lor 0 = x \quad | \quad x \land 1 = x$
- **5** A5(Complementation): $x \lor x' = 1$ $x \lor x' = 0$

19/66

Prove that, for each Boolean algebra B and all $x, y, a, b \in B$:

- $x \lor 1 = 1$
- $\mathbf{2} x \wedge 0 = 0$
- 3 If $a \lor b = 1$ and $a \land b = 0$, then a' = b'.

20/66

Properties of Boolean algebras

Properties of Boolean algebras				
Primary	■ $x \lor x = x$ ■ $x \lor 0 = x$ (A4) ■ $x \lor 1 = 1$	$ x \wedge x = x $ $ x \wedge 1 = x (A4) $ $ x \wedge 0 = 0 $		
	$ (x \lor y) \lor z = x \lor (y \lor z) $	$ (x \wedge y) \wedge z = x \wedge (y \wedge z) $		
Commutativity (A1) Distributivity (A3)	$ x \lor y = y \lor x $ $ x \lor (y \land z) = (x \lor y) \land (x \lor z) $	$ x \wedge y = y \wedge x $ $ x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) $		
Absorption	$ x \lor (x \land y) = x$	$ x \wedge (x \vee y) = x $		
Complements	a $x \lor x' = 1$ (A5) b $0' = 1$ c $(x \lor y)' = x' \land y'$ d $(x')' = x$	■ $x \wedge x' = 0$ (A5) ■ $1' = 0$ ■ $(x \wedge y)' = x' \vee y'$		

Kin Hei Wong Logic April 7, 2024 22/66

Boolean expressions and functions

 $f: 0, 1 \rightarrow 0, 1,$ $f(x) = x \lor 1$ In this case, we have $f(0) = 0 \lor 1 = 1$ and $f(1) = 1 \lor 1 = 1$. In general, a Boolean function has one or more inputs from 0, 1 and outputs in 0, 1.

Give the table of values for the Boolean function $f(x, y) = (x \land y) \lor y'$.

23/66

Find a Boolean expression for the Boolean function given by the following table.

	х	у	z	f(x, y, z)				
1	0	0	0	0				
2	0	0	1	0				
3	0	1	0	1				
4	0	1	1	0				
5	1	0	0	1				
6	1	0	1	0				
7	1	1	0	1				
8	1	1	1	1				

Kin Hei Wong Logic April 7, 2024 24/66

Equivalent Boolean expressions

Two Boolean expressions are **equivalent** if they represent the same Boolean function.

Consider the two Boolean expressions

$$((x \lor y) \land (x' \lor y)) \lor x \text{ and } x \lor y$$

Show that these two expressions are equivalent by:

- showing that they represent the same Boolean function
- using the axioms and properties of Boolean algebras

26/66

Exercise 7C

Kin Hei Wong Logic April 7, 2024 27/66

Logical connectives and truth tables

Kin Hei Wong

April 7, 2024

28/66

What is a statement?

A statement is a sentence that is either true or false. Examples of statments are:

- The boy plays tennis
- **2** 5 + 7 = 12
- **3** 5 + 7 = 10

29/66

Logical: 'or', 'and', 'not'

Let G be the statement 'n is odd', H be the statement 'n > 10'
Or (Disjoint) And (Conjoint) Not (Negation)

Kin Hei Wong Logic April 7, 2024 30/66

Write the truth table for $\neg(A \lor B)$.

Kin Hei Wong Logic April 7, 2024 31/66

Write the truth table for $(A \wedge B) \wedge (\neg A)$.

Kin Hei Wong Logic April 7, 2024 32/66

Show that $\neg(A \land B)$ is logically equivalent to $\neg A \lor \neg B$.

Kin Hei Wong Logic April 7, 2024 33/66

Show that $(\neg A) \lor (A \lor B)$ is a tautology.

Kin Hei Wong Logic April 7, 2024 34/66

Show that $(A \vee B) \wedge (\neg A \wedge \neg B)$ is a contradiction.

Kin Hei Wong Logic April 7, 2024 35/66

Implication

Implication is probably one of the most confusing logical connective. It understands as If A, then B, notation as: $A \implies B$.

E.g.

A = 'I am elected'

B = 'I will make public tranport free'

36/66

Give the truth table for $B \implies (A \vee \neg B)$.

Kin Hei Wong Logic April 7, 2024 37/66

Give the truth table for $(\neg A \lor \neg B) \iff \neg (A \land B)$..

Kin Hei Wong Logic April 7, 2024 38/66

Negation of implication

Try writing down a negation of the conditional statement $A \implies B$. What do you realise?

Kin Hei Wong Logic April 7, 2024 39/66

For each of the following conditional statements:

- write the converse
- write the contrapositive
- 3 write the negation
 - 1 If you know the password, then you can get in.
 - 2 Let $n, a, b \in \mathbb{N}$. If n does not divide ab, then n does not divide a and n does not divide b.

40/66

The Boolean algebra of statements

We use equivalence (\equiv) instead of equality (=). E.g. $A \vee \neg A \equiv T$ and $A \wedge \neg A \equiv F$

Kin Hei Wong Logic April 7, 2024 41/66

Exercise 7D

Kin Hei Wong Logic April 7, 2024 42/66

Valid argument

Kin Hei Wong

April 7, 2024

By constructing a truth table, decide whether or not the following argument is valid.

Premise 1: If Australia is democracy, then Australians have the right to vote.

Premise 2: Australia is a democracy.

Conclusion: Australians have the right to vote.

44/66

By constructing a truth table, decide whether or not the following argument is valid.

Premise 1: If you invest in Company W, then you get rich.

Premise 2: You did not invest in Company W.

Conclusion: You did not get rich.

45/66

Valid arguments with false conclusions

Premise 1: If 2 is odd, then 3 is even.

Premise 2: The number 2 is odd.

Conclusion: The number 3 is even

46/66

Invalid argument with true conclusions

Premise 1: If 2 is odd, then 3 is even.

Premise 2: The number 2 is even.

Conclusion: THe number 3 is odd.

Kin Hei Wong Logic April 7, 2024 47/66

Checking for tautology - Example 20

Investigate the validity of each of the following arguments by checking whether or not an appropriate compound statement is a tautology:

- In March, there are strong winds every day. The wind is not strong today. Therefore it is not March.
- On Mondays I go swimming. Today is not Monday. Therefore I do not swim today.

48/66

Kin Hei Wong Logic April 7, 2024 49/66

Exercise 7E

Kin Hei Wong Logic April 7, 2024 50/66

Logic circuits

Kin Hei Wong

April 7, 2024

Kin Hei Wong Logic

Logic gates

If you are about to study/studying electricity, you are in luck. This is basic for you.

Give the gate representation of the Boolean expression $(A \land B) \lor C$.

Kin Hei Wong Logic April 7, 2024 53/66

- Give the gate representation of the Boolean expression $A \vee (\neg A \wedge B)$.
- 2 Describe the operation of this circuit through a truth table.

54/66

Consider the truth table shown below.

- 1 Using the technique from Example 8, construct a Boolean expression to match this truth table.
- Draw a circuit for this expressions.
- Use the properties of Boolean algebras to simplify the expression, and hence draw a simpler circuit that is equivalent to the circuit from b.

	A	В	Output
1	0	0	1
2	0	1	1
3	1	0	1
4	1	1	0

Kin Hei Wong Logic April 7, 2024 56/66

Exercise 7F

Kin Hei Wong Logic April 7, 2024 57/66

Karnaugh maps

Kin Hei Wong

April 7, 2024

58/66

Kin Hei Wong Logic A

Minimal representation

Karnaugh maps allow to have more simpler circuit by more compact and cheaper to produce from Boolean expressions.

Minimal representation

Let f be a non-constant Boolean function. Then a **minimal** representation of f is a Boolean expression E which represents f and satisfies the following:

- **1** The expression E has the form $E_1 \vee E_2 \vee \dots E_n$, where each E_i is an expression such as $x \wedge y$ or $x' \wedge y' \wedge z$ or $y \wedge z'$.
- ② If F is any other expression of this form which also represents f, then the number of terms F_i is greater than or equal to the number of terms E_i .
- 3 If F and E have the same number of terms, then the number of variables in F is greater than or equal to the number of variables in E.

Two variables

Try writing the truth table for $f(x, y) = (x' \land y') \lor (x' \land y) \lor (x \land y)$.

60/66

Karnaugh map calculation

$$(x' \wedge y') \vee (x' \wedge y) \vee (x \wedge y) =$$

Kin Hei Wong Logic April 7, 2024 61/66

Simplify $(x \land y) \lor (x \land y') \lor (x' \land y)$.

Kin Hei Wong Logic April 7, 2024 62/66

Rules for using Karnaugh maps

Blocks in Karnaugh maps

- 1 You may use an $m \times n$ block in a Karnaugh map if both m and n are powers of 2. (So you may use $1 \times 1, 1 \times 2, 1 \times 4, 2 \times 1, 2 \times 2, 2 \times 4$)
- 2 You always try to form the biggest blocks that you can, and to use the least number of blocks that you can.

Simplify $(x \land y \land z) \lor (x \land y \land z') \lor (x \land y' \land z') \lor (x' \land y \land z')$.

Kin Hei Wong Logic April 7, 2024 64/6

Write a minimal Boolean expression for the following truth table.

х	у	z	f(x, y, z)
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

Kin Hei Wong Logic April 7, 2024 65/66

Exercise 7G

Kin Hei Wong Logic April 7, 2024 66/66