(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 18 April 2002 (18.04.2002)

(10) International Publication Number WO 02/30268 A2

(51) International Patent Classification7: A61B

Brisbane, CA 94005 (US). HEVEZI, Peter; 1360 11th Avenue, San Francisco, CA 94122 (US).

Townsend and Crew LLP, Two Embarcadero Center, 8th

(21) International Application Number: PCT/US01/32045

(22) International Filing Date: 12 October 2001 (12.10.2001)

(25) Filing Language:

(26) Publication Language:

English

US

(30) Priority Data:

09/847,046

60/288.589

ritority Data.		
09/687,576	13 October 2000 (13.10.2000)	US
09/733,742	8 December 2000 (08.12.2000)	US
09/733,288	8 December 2000 (08.12.2000)	US
60/263,957	24 January 2001 (24.01.2001)	US:
60/276,888	16 March 2001 (16.03.2001)	US
60/276,791	16 March 2001 (16.03.2001)	US
60/281,922	6 April 2001 (06.04.2001)	US
60/286,214	24 April 2001 (24.04.2001)	US

30 April 2001 (30.04.2001)

4 May 2001 (04.05.2001)

- (71) Applicant: EOS BIOTECHNOLOGY, INC. [US/US]: 225A Gateway Boulevard, South San Francisco, CA 94080-7019 (US).
- (72) Inventors: GISH, Kurt, C.; 40 Perego Terrace #2, San Francisco, CA 94131 (US). MACK, David, H.; 2076 Monterey Avenue, Menlo Park, CA 94025 (US). WILSON, Keith, E.; 219 Jeter Street, Redwood City, CA 94062 (US). AFAR, Daniel; 435 Visitacion Avenue,

(74) Agents: BASTIAN, Kevin, L. et al.; Townsend and

Floor, San Francisco, CA 94111-3834 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSIS OF PROSTATE CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF PROSTATE CANCER

(57) Abstract: Described herein are genes whose expression are up-regulated or down-regulated in prostate cancer. Also described are such genes whose expression is further up-regulated or down-regulated in drug-resistant prostate cancer cells. Related methods and compositions that can be used for diagnosis and treatment of prostate cancer are disclosed. Also described herein are methods that can be used to identify modulators of prostate cancer.

METHODS OF DIAGNOSIS OF PROSTATE CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF PROSTATE CANCER

5.

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims priority from the following applications: USSN 09/687,576 filed October 13, 2000, USSN 60/276,791 filed March 16, 2001; USSN 60/288,589, filed May 4, 2001; USSN 09/733,742, filed December 8, 2000; USSN 09/733,288, filed December 8, 2000; USSN 09/847,046, filed April 30, 2001; USSN 60/276,888, filed March 16, 2001; USSN 60/286,214, filed April 24, 2001; USSN 60/281,922, filed April 6, 2001; USSN 60/263,957, filed January 24, 2001, which are incorporated herein by reference in their entirety.

15

25

10

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in prostate cancer; and to the use of such expression profiles and compositions in the diagnosis, prognosis and therapy of prostate cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit prostate cancer.

BACKGROUND OF THE INVENTION

Prostate cancer is the most commonly diagnosed internal malignancy and second most common cause of cancer death in men in the U.S., resulting in approximately 40,000 deaths each year (Landis et al., *CA Cancer J. Clin.* 48:6-29 (1998); Greenlee et al., *CA Cancer J. Clin.* 50(1):7-13 (2000)), and incidence of prostate cancer has been increasing rapidly over the past 20 years in many parts of the world (Nakata et al., *Int. J. Urol.* 7(7):254-257 (2000); Majeed et al., *BJU Int.* 85(9):1058-1062 (2000)). It develops as the

result of a pathologic transformation of normal prostate cells. In tumorigenesis, the cancer cell undergoes initiation, proliferation and loss of contact inhibition, culminating in invasion of surrounding tissue and, ultimately, metastasis.

Deaths from prostate cancer are a result of metastasis of a prostate tumor. Therefore, early detection of the development of prostate cancer is critical in reducing mortality from this disease. Measuring levels of prostate-specific antigen (PSA) has become a very common method for early detection and screening, and may have contributed to the slight decrease in the mortality rate from prostate cancer in recent years (Nowroozi et al., Cancer Control 5(6):522-531 (1998)). However, many cases are not diagnosed until the

disease has progressed to an advanced stage.

5

10

15

20

25

Treatments such as surgery (prostatectomy), radiation therapy, and cryotherapy are potentially curative when the cancer remains localized to the prostate. Therefore, early detection of prostate cancer is important for a positive prognosis for treatment. Systemic treatment for metastatic prostate cancer is limited to hormone therapy and chemotherapy. Chemical or surgical castration has been the primary treatment for symptomatic metastatic prostate cancer for over 50 years. This testicular androgen deprivation therapy usually results in stabilization or regression of the disease (in 80% of patients), but progression of metastatic prostate cancer eventually develops (Panvichian et al., Cancer Control 3(6):493-500 (1996)). Metastatic disease is currently considered incurable, and the primary goals of treatment are to prolong survival and improve quality of life (Rago, Cancer Control 5(6):513-521 (1998)).

Thus, methods that can be used for diagnosis and prognosis of prostate cancer and effective treatment of prostate cancer, and including particularly metastatic prostate cancer, would be desirable. Accordingly, provided herein are methods that can be used in diagnosis and prognosis of prostate cancer. Further provided are methods that can be used to screen candidate bioactive agents for the ability to modulate, e.g., treat, prostate cancer. Additionally, provided herein are molecular targets and compositions for therapeutic intervention in prostate cancer and other cancers.

SUMMARY OF THE INVENTION

The present invention therefore provides nucleotide sequences of genes that are up- and down-regulated in prostate cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate prostate cancer, such as hormones or antibodies. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

In one aspect, the present invention provides a method of detecting a prostate cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16.

In one embodiment, the present invention provides a method of determining the level of a prostate cancer associated transcript in a cell from a patient.

In one embodiment, the present invention provides a method of detecting a prostate cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16.

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-16. In another embodiment, the polynucleotide comprises a sequence as shown in Tables 1-16.

In one embodiment, the biological sample is a tissue sample. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label.

In one embodiment, the polynucleotide is immobilized on a solid surface.

In one embodiment, the patient is undergoing a therapeutic regimen to treat prostate cancer. In another embodiment, the patient is suspected of having metastatic prostate cancer.

In one embodiment, the patient is a human.

In one embodiment, the patient is suspected of having a taxol-resistant cancer.

In one embodiment, the prostate cancer associated transcript is mRNA.

3

20

5

10

15

25

30

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

5

10

15

20

25

30

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of prostate cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a prostate cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16, thereby monitoring the efficacy of the therapy. In a further embodiment, the patient has metastatic prostate cancer. In a further embodiment, the patient has a drug resistant (e.g., taxol resistant) form of prostate cancer.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the prostate cancer-associated transcript to a level of the prostate cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

Additionally, provided herein is a method of evaluating the effect of a candidate prostate cancer drug comprising administering the drug to a patient and removing a cell sample from the patient. The expression profile of the cell is then determined. This method may further comprise comparing the expression profile to an expression profile of a healthy individual. In a preferred embodiment, said expression profile includes a gene of Tables 1-16.

In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1-16.

In one embodiment, an expression vector or cell comprises the isolated nucleic acid.

In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-16.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1-16.

In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical.

In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

5

10

15

20

25

30

In one aspect, the present invention provides a method of detecting a prostate cancer cell in a biological sample from a patient, the method comprising contacting the biological sample with an antibody as described herein.

In another aspect, the present invention provides a method of detecting antibodies specific to prostate cancer in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprising a sequence from Tables 1-16.

In another aspect, the present invention provides a method for identifying a compound that modulates a prostate cancer-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a prostate cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect.

In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant.

In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation of a prostate cancer-associated cell to treat prostate cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein.

In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having prostate cancer or to a cell sample isolated therefrom; (ii) comparing the level of gene expression of a

polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell sample or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of prostate cancer.

5

10

15

20

25

30

In one embodiment, the control is a mammal with prostate cancer or a cell sample therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal.

In one embodiment, the test compound is administered in varying amounts or concentrations. In another embodiment, the test compound is administered for varying time periods. In another embodiment, the comparison can occur after addition or removal of the drug candidate.

In one embodiment, the levels of a plurality of polynucleotides that selectively hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1-16 are individually compared to their respective levels in a control cell sample or mammal. In a preferred embodiment the plurality of polynucleotides is from three to ten.

In another aspect, the present invention provides a method for treating a mammal having prostate cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having prostate cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

In one aspect, the present invention provides a method of screening drug candidates by providing a cell expressing a gene that is up- and down-regulated as in a prostate cancer. In one embodiment, a gene is selected from Tables 1-16. The method further includes adding a drug candidate to the cell and determining the effect of the drug candidate on the expression of the expression profile gene.

In one embodiment, the method of screening drug candidates includes comparing the level of expression in the absence of the drug candidate to the level of expression in the presence of the drug candidate, wherein the concentration of the drug

candidate can vary when present, and wherein the comparison can occur after addition or removal of the drug candidate. In a preferred embodiment, the cell expresses at least two expression profile genes. The profile genes may show an increase or decrease.

Also provided is a method of evaluating the effect of a candidate prostate cancer drug comprising administering the drug to a transgenic animal expressing or over-expressing the prostate cancer modulatory protein, or an animal lacking the prostate cancer modulatory protein, for example as a result of a gene knockout.

5

10

15

20

25

30

Moreover, provided herein is a biochip comprising one or more nucleic acid segments of Tables 1-16, wherein the biochip comprises fewer than 1000 nucleic acid probes. Preferably, at least two nucleic acid segments are included. More preferably, at least three nucleic acid segments are included.

Furthermore, a method of diagnosing a disorder associated with prostate cancer is provided. The method comprises determining the expression of a gene of Tables 1-16, in a first tissue type of a first individual, and comparing the distribution to the expression of the gene from a second normal tissue type from the first individual or a second unaffected individual. A difference in the expression indicates that the first individual has a disorder associated with prostate cancer.

In a further embodiment, the biochip also includes a polynucleotide sequence of a gene that is not up- and down-regulated in prostate cancer.

In one embodiment a method for screening for a bioactive agent capable of interfering with the binding of a prostate cancer modulating protein (prostate cancer modulatory protein) or a fragment thereof and an antibody which binds to said prostate cancer modulatory protein or fragment thereof. In a preferred embodiment, the method comprises combining a prostate cancer modulatory protein or fragment thereof, a candidate bioactive agent and an antibody which binds to said prostate cancer modulatory protein or fragment thereof. The method further includes determining the binding of said prostate cancer modulatory protein or fragment thereof and said antibody. Wherein there is a change in binding, an agent is identified as an interfering agent. The interfering agent can be an agonist or an antagonist. Preferably, the agent inhibits prostate cancer.

Also provided herein are methods of eliciting an immune response in an individual. In one embodiment a method provided herein comprises administering to an

individual a composition comprising a prostate cancer modulating protein, or a fragment thereof. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-16.

Further provided herein are compositions capable of eliciting an immune response in an individual. In one embodiment, a composition provided herein comprises a prostate cancer modulating protein, preferably encoded by a nucleic acid of Tables 1-16, or a fragment thereof, and a pharmaceutically acceptable carrier. In another embodiment, said composition comprises a nucleic acid comprising a sequence encoding a prostate cancer modulating protein, preferably selected from the nucleic acids of Tables 1-16, and a pharmaceutically acceptable carrier.

5

10

15

20

25

30

Also provided are methods of neutralizing the effect of a prostate cancer protein, or a fragment thereof, comprising contacting an agent specific for said protein with said protein in an amount sufficient to effect neutralization. In another embodiment, the protein is encoded by a nucleic acid selected from those of Tables 1-16.

In another aspect of the invention, a method of treating an individual for prostate cancer is provided. In one embodiment, the method comprises administering to said individual an inhibitor of a prostate cancer modulating protein. In another embodiment, the method comprises administering to a patient having prostate cancer an antibody to a prostate cancer modulating protein conjugated to a therapeutic moiety. Such a therapeutic moiety can be a cytotoxic agent or a radioisotope.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and prognosis evaluation for prostate cancer (PC), including metastatic prostate cancer, as well as methods for screening for compositions which modulate prostate cancer. Also provided are methods for treating prostate cancer.

In addition to the other nucleic acid and peptide sequences, the present invention also relates to the identification of PAA2 as a gene that is highly over expressed in prostate cancer patient tissues. PAA2 sequence is identical to the zinc transporter ZNT4. Results presented herein demonstrate that PAA2/ZNT4 is highly expressed in prostate cancer cells. The prostate gland is unique in that it has the highest capacity of any organ in the body

to accumulate zinc. Zinc uptake is regulated by prolactin and testosterone, which induce the expression of a member of the ZIP family of zinc transporters (Costello et al., 1999, J. Biol. Chem. 274:17499-17504). Zinc accumulation in the prostate functions to inhibit citrate oxidation, which results in a decrease in cellular ATP production (Costello and Franklin, 1998, Prostate 35:285-296). Cancer cells are more sensitive to decreased ATP production and have evolved to prevent zinc accumulation. Without wishing to be bound by theory, the up-regulation of ZNT4 in prostate cancer cells may result in protection of the cells from high zinc levels by its ability to pump accumulated zinc out of the cells.

The present invention also relates to nucleic acid sequencess encoding PBH1. PBH1 is related to human TRPC7 (transient receptor potential-related channels, NP_003298), a putative calcium channel highly expressed in brain (Nagamine et al., Genomics 54:124-131 (1998)). Trp is related to melastatin, a gene down-regulated in metastatic melanomas (Duncan et al., Cancer Res. 58:1515-1520 (1998)), and MTR1, a gene locallized to within the Beckwith-Wiedemann syndrome/Wilm's tumor susceptability region (Prawitt et al., Hum. Mol. Genet. 9:203-216 (2000)). Without wishing to be bound by theory, it is believed that PBH1 functions as a calcium channel.

10

20

25

30

As a calcium channel, PBH1 is an ideal target for a small molecule therapeutic, or a therapeutic antibody that disrupts channel function. CD20, the target of Rituximab in non-Hodgekin's lymphoma (Maloney et al., Blood 90:2188-2195 (1997); Leget and Czuczman, Curr. Opin. Oncol. 10:548-551 (1998)), is a plasma membrane calcium channel expressed in B cells (Tedder and Engel, Immunol. Today 15:450-454 (1994)). Similarly, a small molecule, or antibody that inhibits or alters a calcium signal mediated by PBH1, will result in the death of prostate cancer cells.

PBH1, and other genes of the invention, are also be useful as targets for cytotoxic T-lymphocytes. Genes that are tumor specific, or that are expressed in immune-privileged organs, are currently being used as potential vaccine targets (Van den Eynde and Boon, Int. J. Clin. Lab. Res. 27:81-86 (1997)). The expression pattern of PBH1 indicates that it is an ideal target for cytotoxic T-lymphocytes. Thus, therapies that utilize PBH1-specific cytotoxic T-lymphocytes to induce prostate cancer cell death are also provided by this invention. See, e.g., U.S. Patent No. 6,051,227 and WO 00/32231, the disclosures of which are herein incorporated by reference.

The present invention is also related to the identification of PAA3 as a gene that is important in the modulation of prostate cancer and or breast cancer.

Tables 1-16 provide unigene cluster identification numbers, exemplar accession numbers, or genomic nucleotide position numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in prostate cancer samples.

Definitions

5

10

15

20

25

30

The term "prostate cancer protein" or "prostate cancer polynucleotide" or "prostate cancer-associated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologues that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a unigene cluster of Tables 1-16; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1-16, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1-16 and conservatively modified variants thereof or (4) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1-16. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "prostate cancer polypeptide" and a "prostate cancer polynucleotide," include both naturally occurring or recombinant forms.

A "full length" prostate cancer protein or nucleic acid refers to a prostate cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains all of the elements normally contained in one or more naturally occurring, wild type prostate cancer

polynucleotide or polypeptide sequences. For example, a full length prostate cancer nucleic acid will typically comprise all of the exons that encode for the full length, naturally ocurring protein. The "full length" may be prior to, or after, various stages of post-translation processing or splicing, including alternative splicing.

5

10

15

20

25

30

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of a prostate cancer protein, polynucleotide or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention *in vivo*. Archival tissues, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions

and/or additions, as well as those that have substitutions, as well as naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

5

10

15

20

25

30

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of one of the number of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Current Protocols in Molecular Biology (Ausubel et al., eds. 1995 supplement)).

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402 (1977) and Altschul et al., J. Mol. Biol. 215:403-410 (1990). BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of

the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

5

10

15

20

25

30

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be large negative numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

An indication that two nucleic acid sequences or polypeptides are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid, as described below. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions, as described below. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

10

15

20

25

30

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (*see, e.g.*, the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant from the composition to be purified. In this sense, purification does not require that the purified compound be homogenous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding

naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions similarly to a naturally occurring amino acid.

10

15

20

25

30

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. One of skill will recognize that in certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the

only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, often silent variations of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid.

Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention typically conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5)

Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts et al., Molecular Biology of the Cell (3rd ed., 1994) and Cantor & Schimmel, Biophysical Chemistry Part I: The Conformation of Biological Macromolecules (1980). "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, Carbohydrate Modifications in Antisense Research, Sanghui & Cook, eds.. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g. to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

10

15

20

25

30

A variety of references disclose such nucleic acid analogs, including, for example, phosphoramidate (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Patent No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all

of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Patent Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, "Carbohydrate Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. Biomolecular NMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, "Carbohydrate 10 Modifications in Antisense Research", Ed. Y.S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp 169-176). Several nucleic acid analogs are described in Rawls, C & E News June 2, 1997 page 35. All of these references are hereby 15 expressly incorporated by reference.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4°C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

20

25

30

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and

combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g. the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

10

15

20

25

30

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The radioisotope may be, for example, 3H, 14C, 32P, 35S, or 125I. In some cases, particularly using antibodies against the proteins of the invention, the radioisotopes are used as toxic moieties, as described below. The labels may be incorporated into the prostate cancer nucleic acids, proteins and antibodies at any position. Any method known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter et al., Nature, 144:945 (1962); David et al., Biochemistry, 13:1014 (1974); Pain et al., J. Immunol. Meth., 40:219 (1981); and Nygren, J. Histochem. and Cytochem., 30:407 (1982). The lifetime of radiolabeled peptides or radiolabeled antibody compositions may extended by the addition of substances that stablize the radiolabeled peptide or antibody and protect it from degradation. Any substance or combination of substances that stablize the radiolabeled peptide or antibody may be used including those substances disclosed in US Patent No. 5,961,955.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed *in vitro*, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear

form, or an expression vector formed *in vitro* by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e., using the *in vivo* cellular machinery of the host cell rather than *in vitro* manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as depicted above.

10

15

20

25

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

A "promoter" is defined as an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

30

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a

particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed operably linked to a promoter.

5

10

15

20

25

30

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence that is determinative of the presence of the nucleotide sequence, in a heterogeneous population of nucleic acids and other biologics (e.g., total cellular or library DNA or RNA). Similarly, the phrase "specifically (or selectively) binds" to an antibody or "specifically (or selectively) immunoreactive with," when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein, in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay or nucleic acid hybridization conditions, the specified antibodies or nucleic acid probes bind to a particular protein nucleotide sequences at least two times the background and more typically more than 10 to 100 times background.

Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies raised to a particular protein, polymorphic variants, alleles, orthologs, and conservatively modified variants, or splice variants, or portions thereof, can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with the desired prostact cancer protein and not with other proteins. This selection may be achieved by subtracting out antibodies that cross-react with other molecules. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, Antibodies, A Laboratory Manual (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in

5

10

15

20

25

30

Tijssen, Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10°C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5x SSC, and 1% SDS, incubating at 42°C, or, 5x SSC, 1% SDS, incubating at 65°C, with wash in 0.2x SSC, and 0.1% SDS at 65°C. For PCR, a temperature of about 36°C is typical for low stringency amplification, although annealing temperatures may vary between about 32°C and 48°C depending on primer length. For high stringency PCR amplification, a temperature of about 62°C is typical, although high stringency annealing temperatures can range from about 50°C to about 65°C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90°C - 95°C for 30 sec - 2 min., an annealing phase lasting 30 sec. - 2 min., and an extension phase of about 72°C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.).

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize

under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 1X SSC at 45°C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and Current Protocols in Molecular Biology, ed. Ausubel, et al.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a prostate cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the prostate cancer protein or nucleic acid, e.g., a functional, physical, or chemical effect, such as the ability to decrease prostate cancer. It includes ligand binding activity; cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis in vivo; mRNA and protein expression in cells undergoing metastasis, and other characteristics of prostate cancer cells. "Functional effects" include in vitro, in vivo, and ex vivo activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a prostate cancer protein sequence, e.g., functional, enzymatic, physical and chemical effects. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the prostate cancer protein; measuring binding activity or binding assays, e.g. binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on prostate cancer can also be performed using prostate cancer assays known to those of skill in the art such as an *in vitro* assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein

expression in cells undergoing metastasis, and other characteristics of prostate cancer cells. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for prostate cancer-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of prostate cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of prostate cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of prostate cancer proteins, e.g., antagonists. Antisense nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate prostate cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of prostate cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the prostate cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of prostate cancer can also be identified by incubating prostate cancer cells with the test compound and determining increases or decreases in the expression of 1 or more prostate cancer proteins, e.g., 1; 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more prostate cancer proteins, such as prostate cancer proteins encoded by the sequences set out in Tables 1-16.

Samples or assays comprising prostate cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%,

preferably 50%, more preferably 25-0%. Activation of a prostate cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

The phrase "changes in cell growth" refers to any change in cell growth and proliferation characteristics *in vitro* or *in vivo*, such as formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. *See, e.g.*, Freshney, *Culture of Animal Cells a Manual of Basic Technique* pp. 231-241 (3rd ed. 1994).

5

10

15

20

25

30

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

"Cancer cells," "transformed" cells or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy (see, Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed. 1994)).

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul, Fundamental Immunology.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂ a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Fundamental Immunology (Paul ed., 3d ed. 1993). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., Nature 348:552-554 (1990))

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler & Milstein, Nature 256:495-497 (1975); Kozbor et al., Immunology Today 4:72 (1983); Cole et al., pp. 77-96 in Monoclonal Antibodies and Cancer Therapy (1985); Coligan, Current Protocols in Immunology (1991); Harlow & Lane, Antibodies, A Laboratory Manual (1988); and Goding, Monoclonal Antibodies: Principles and Practice (2d ed. 1986)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that

specifically bind to selected antigens (see, e.g., McCafferty et al., Nature 348:552-554 (1990); Marks et al., Biotechnology 10:779-783 (1992)).

A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

10

15

20

25

30

Identification of prostate cancer-associated sequences

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue (e.g., normal prostate or other tissue) may be distinguished from cancerous or metastatic cancerous tissue of the prostate, or prostate cancer tissue or metastatic prostate cancerous tissue can be compared with tissue samples of prostate and other tissues from surviving cancer patients. By comparing expression profiles of tissue in known different prostate cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained.

The identification of sequences that are differentially expressed in prostate cancer versus non-prostate cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to down-regulate prostate cancer, and thus tumor growth or recurrence, in a particular patient. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Metastatic tissue can also be analyzed to determine the stage of prostate cancer in the tissue. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to

mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the prostate cancer expression profile. This may be done by making biochips comprising sets of the important prostate cancer genes, which can then be used in these screens. These methods can also be done on the protein basis; that is, protein expression levels of the prostate cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the prostate cancer nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the prostate cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs.

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in prostate cancer, herein termed "prostate cancer sequences." As outlined below, prostate cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in prostate cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the prostate cancer sequences are from humans; however, as will be appreciated by those in the art, prostate cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other prostate cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets, e.g., (dogs, cats, etc.). Prostate cancer sequences from other organisms may be obtained using the techniques outlined below.

10

15

20

25

30

Prostate cancer sequences can include both nucleic acid and amino acid sequences. As will be appreciated by those in the art and is more fully outlined below, prostate cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the prostate cancer sequences can be generated.

A prostate cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the prostate cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions.

For identifying prostate cancer-associated sequences, the prostate cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing prostate cancer samples with metastatic cancer samples from other cancers, such as lung, breast, gastrointestinal cancers, ovarian, etc. Samples of different stages of prostate cancer, e.g., survivor tissue, drug resistant states, and tissue undergoing metastasis, are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, e.g. from Affymetrix. Gene expression profiles as described herein are generated and the data analyzed.

5

10

15

20

25

30

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal prostate, but also including, and not limited to lung, heart, brain, liver, breast, kidney, muscle, colon, small intestine, large intestine, spleen, bone and placenta. In a preferred embodiment, those genes identified during the prostate cancer screen that are expressed in any significant amount in other tissues are removed from the profile, although in some embodiments, this is not necessary. That is, when screening for drugs, it is usually preferable that the target be disease specific, to minimize possible side effects.

In a preferred embodiment, prostate cancer sequences are those that are up-regulated in prostate cancer; that is, the expression of these genes is higher in the prostate cancer tissue as compared to non-cancerous tissue. "Up-regulation" as used herein often means at least about a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being preferred. All unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al., Nucleic Acids Research 26:1-7 (1998) and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ).

In another preferred embodiment, prostate cancer sequences are those that are down-regulated in prostate cancer; that is, the expression of these genes is lower in prostate

cancer tissue as compared to non-cancerous tissue (see, e.g., Tables 8, 12 and 14). "Down-regulation" as used herein often means at least about a 1.5-fold change more preferrably a two-fold change, preferably at least about a three fold change, with at least about five-fold or higher being most preferred.

5

10

15

20

25

30

Informatics

The ability to identify genes that are over or under expressed in prostate cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with prostate cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson, Pharmaceutical Proteomics: Targets, Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in substantially any form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for any assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample undergoing prostate cancer, i.e., the identification of prostate cancer-associated sequences described herein, provide an abundance of information, which can be correlated with pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, gene-disease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, prior data processing using high-speed computers is utilized.

10

15

20

25

30

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount et al., Bioinformatics (2001); Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (Durbin et al., eds., 1999); Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (Baxevanis & Oeullette eds., 1998)); Rashidi & Buehler, Bioinformatics: Basic Applications in Biological Science and Medicine (1999); Introduction to Computational Molecular Biology (Setubal et al., eds 1997); Bioinformatics: Methods and Protocols (Misener & Krawetz, eds, 2000); Bioinformatics: Sequence, Structure, and Databanks: A Practical Approach (Higgins & Taylor, eds., 2000); Brown, Bioinformatics: A Biologist's Guide to Biocomputing and the Internet (2001); Han & Kamber, Data Mining: Concepts and Techniques (2000); and Waterman, Introduction to Computational Biology: Maps, Sequences, and Genomes (1995).

5

10

15

20

25

30

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for prostate cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment,

the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

5

10

15

20

25

30

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the

degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data file, which comprises a binary description of an assay result.

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC, MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SGRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values:

25

30

5

10

15

20

Characteristics of prostate cancer-associated proteins

Prostate cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the prostate cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such

proteins often results in unregulated or disregulated cellular processes (see, e.g., Molecular Biology of the Cell (Alberts, ed., 3rd ed., 1994). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

5

10

15

20

25

30

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2 domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of primary sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman et al., Nuc. Acids Res. 28:263-266 (2000); Sonnhammer et al., Proteins 28:405-420 (1997); Bateman et al., Nuc. Acids Res. 27:260-262 (1999); and Sonnhammer et al., Nuc. Acids Res. 26:320-322-(1998)).

In another embodiment, the prostate cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described

for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

5

10

15

20

25

30

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 20 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the localization and number of transmembrane domains within the protein may be predicted (see, e.g. PSORT web site http://psort.nibb.ac.jp/). Important transmembrane protein receptors include, but are not limited to the insulin receptor, insulin-like growth factor receptor, human growth hormone receptor, glucose transporters, transferrin receptor, epidermal growth factor receptor, low density lipoprotein receptor, epidermal growth factor receptor, leptin receptor, interleukin receptors, e.g. IL-1 receptor, IL-2 receptor,

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, neurotrophic factors and the like. Extracellular domains also

bind to cell-associated molecules. In this respect, they mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Prostate cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins in situ. Alternatively, antibodies can also label intracellular proteins, in which case samples are typically permeablized to provide access to intracellular proteins.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the prostate cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; by virtue of their circulating nature, they serve to transmit signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor) or an endocrine manner (acting on cells at a distance). Thus secreted molecules find use in modulating or altering numerous aspects of physiology. Prostate cancer proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests.

Use of prostate cancer nucleic acids

5

10

15

20

25

30

As described above, prostate cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the prostate cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either

homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The prostate cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1-16, can be fragments of larger genes, i.e., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the prostate cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., supra. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

10

15

20

25

30

Once the prostate cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire prostate cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant prostate cancer nucleic acid can be further-used as a probe to identify and isolate other prostate cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant prostate cancer nucleic acids and proteins.

The prostate cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the prostate cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, vaccine, and/or antisense applications. Alternatively, the prostate cancer nucleic acids that include coding regions of prostate cancer proteins can be put into expression vectors for the expression of prostate cancer proteins, again for screening purposes or for administration to a patient.

In a preferred embodiment, nucleic acid probes to prostate cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the prostate cancer nucleic acids, *i.e.* the target sequence (either the target

sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under normal reaction conditions, particularly high stringency conditions, as outlined herein.

5

10

15

20

25

30

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally whole genes are not used. In some embodiments, much longer nucleic acids can be used, up to hundreds of bases.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a particular target. The probes can be overlapping (i.e., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical

equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to the biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

10

15

20

25

30

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified to contain discrete individual sites appropriate for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silicabased materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in copending application entitled Reusable Low Fluorescent Plastic Biochip, U.S. Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to,

amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g. using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (*see* 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

In this embodiment, oligonucleotides are synthesized as is known in the art, and then attached to the surface of the solid support. As will be appreciated by those skilled in the art, either the 5' or 3' terminus may be attached to the solid support, or attachment may be via an internal nucleoside.

10

15

25

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized in situ, using well known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affimetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of prostate cancer-associated sequences. These assays are typically performed in conjunction with reverse transcription. In such assays, a prostate cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of prostate cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for

quantitative PCR are provided, e.g., in Innis et al., PCR Protocols, A Guide to Methods and Applications (1990).

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu & Wallace, Genomics 4:560 (1989), Landegren et al., Science 241:1077 (1988), and Barringer et al., Gene 89:117 (1990)), transcription amplification (Kwoh et al., Proc. Natl. Acad. Sci. USA 86:1173 (1989)), self-sustained sequence replication (Guatelli et al., Proc. Nat. Acad. Sci. USA 87:1874 (1990)), dot PCR, and linker adapter PCR, etc.

Expression of prostate cancer proteins from nucleic acids

10

15

20

25

30

In a preferred embodiment, prostate cancer nucleic acids, e.g., encoding prostate cancer proteins are used to make a variety of expression vectors to express prostate cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, supra, and Gene Expression Systems (Fernandez & Hoeffler, eds, 1999)) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the prostate cancer protein. The term "control sequences" refers to DNA sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation.

Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the prostate cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

10

15

20

25

30

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences encode either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g. in mammalian or insect cells for expression and in a procaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating vector may be directed to a specific locus in the host cell by selecting the

appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez & Hoeffler, *supra*).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

5

10

15

20

25

30

The prostate cancer proteins of the present invention are produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a prostate cancer protein, under the appropriate conditions to induce or cause expression of the prostate cancer protein. Conditions appropriate for prostate cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are Saccharomyces cerevisiae and other yeasts, E. coli, Bacillus subtilis, Sf9 cells, C129 cells, 293 cells, Neurospora, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the prostate cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. One expression vector system is a retroviral vector system such as is generally described in PCT/US97/01019 and PCT/US97/01048, both of which are hereby expressly incorporated by reference. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez & Hoeffler, supra). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory

regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenlyation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used.

Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

5

10

15

20

25

30

In a preferred embodiment, prostate cancer proteins are expressed in bacterial systems. Bacterial expression systems are well known in the art. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the prostate cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez & Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, prostate cancer proteins are produced in insect cells.

Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, prostate cancer protein is produced in yeast cells.

Yeast expression systems are well known in the art, and include expression vectors for Saccharomyces cerevisiae, Candida albicans and C. maltosa, Hansenula polymorpha, Kluyveromyces fragilis and K. lactis, Pichia guillerimondii and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The prostate cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the prostate cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the prostate cancer protein may be made as a fusion protein to increase expression, or for other reasons. For example, when the prostate cancer protein is a prostate cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the prostate cancer protein is purified or isolated after expression. Prostate cancer proteins may be isolated or purified in a variety of ways known to those skilled in the art depending on what other components are present in the sample. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the prostate cancer protein may be purified using a standard anti-prostate cancer protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes, *Protein Purification* (1982). The degree of purification necessary will vary depending on the use of the prostate cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the prostate cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, etc.

10

15

20

25

Variants of prostate cancer proteins

10

15

25

30

In one embodiment, the prostate cancer proteins are derivative or variant prostate cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative prostate cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at any residue within the prostate cancer peptide.

Also included within one embodiment of prostate cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the prostate cancer protein, using cassette or PCR mutagenesis or other techniques well known in the art, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant prostate cancer protein fragments having up to about 100-150 residues may be prepared by in vitro synthesis using established techniques. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the prostate cancer protein amino acid sequence. The variants typically exhibit the same qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

While the site or region for introducing an amino acid sequence variation is predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed prostate cancer variants screened for the optimal combination of desired activity. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of the mutants is done using assays of prostate cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger

insertions may be tolerated. Deletions range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. However, larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of the prostate cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution relationships provided in the definition section.

The variants typically exhibit the same qualitative biological activity and will elicit the same immune response as the naturally-occurring analog, although variants also are selected to modify the characteristics of the prostate cancer proteins as needed. Alternatively, the variant may be designed such that the biological activity of the prostate cancer protein is altered. For example, glycosylation sites may be altered or removed.

10

15

20

25

30

Substantial changes in function or immunological identity are made by selecting substitutions that are less conservative than those described above. For example, substitutions may be made which more significantly affect: the structure of the polypeptide backbone in the area of the alteration, for example the alpha-helical or beta-sheet structure; the charge or hydrophobicity of the molecule at the target site; or the bulk of the side chain. The substitutions which in general are expected to produce the greatest changes in the polypeptide's properties are those in which (a) a hydrophilic residue, e.g. seryl or threonyl is substituted for (or by) a hydrophobic residue, e.g. leucyl, isoleucyl, phenylalanyl, valyl or alanyl; (b) a cysteine or proline is substituted for (or by) any other residue; (c) a residue having an electropositive side chain, e.g. lysyl, arginyl, or histidyl, is substituted for (or by) an electronegative residue, e.g. glutamyl or aspartyl; or (d) a residue having a bulky side chain, e.g. phenylalanine, is substituted for (or by) one not having a side chain, e.g. glycine.

Covalent modifications of prostate cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a prostate cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a prostate cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking prostate cancer polypeptides to a water-insoluble support matrix or surface for

use in the method for purifying anti-prostate cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

5

10

15

20

25

30

Other modifications include dearnidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl, threonyl or tyrosyl residues, methylation of the amino groups of the lysine, arginine, and histidine side chains (Creighton, *Proteins: Structure and Molecular Properties*, pp. 79-86 (1983)), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the prostate cancer polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence prostate cancer polypeptide, and/or adding one or more glycosylation sites that are not present in the native sequence prostate cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express prostate cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to prostate cancer polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence prostate cancer polypeptide (for O-linked glycosylation sites). The prostate cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the prostate cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the prostate cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330, and in Aplin & Wriston, CRC Crit. Rev. Biochem., pp. 259-306 (1981).

Removal of carbohydrate moieties present on the prostate cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo-and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of prostate cancer comprises linking the prostate cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

10

15

20

25

30

Prostate cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a prostate cancer polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a prostate cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the prostate cancer polypeptide. The presence of such epitope-tagged forms of a prostate cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the prostate cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a prostate cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field et al., Mol. Cell. Biol. 8:2159-2165 (1988)); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto (Evan et al., Molecular and Cellular Biology 5:3610-3616 (1985)); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky et al.,

Protein Engineering 3(6):547-553 (1990)). Other tag polypeptides include the Flag-peptide (Hopp et al., BioTechnology 6:1204-1210 (1988)); the KT3 epitope peptide (Martin et al., Science 255:192-194 (1992)); tubulin epitope peptide (Skinner et al., J. Biol. Chem. 266:15163-15166 (1991)); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA 87:6393-6397 (1990)).

Also included are other prostate cancer proteins of the prostate cancer family, and prostate cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related prostate cancer proteins from humans or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include the unique areas of the prostate cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. The conditions for the PCR reaction are well known in the art (e.g., Innis, PCR Protocols, supra).

Antibodies to prostate cancer proteins

10

15

20

25

30

In a preferred embodiment, when the prostate cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the prostate cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller prostate cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment; the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are known to the skilled artisan (e.g., Coligan, supra; and Harlow & Lane, supra). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of the figures or fragment thereof or a fusion protein thereof. It

may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler & Milstein, Nature 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of Tables 1-16 fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, pp. 59-103 (1986)). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a

protein encoded by a nucleic acid Tables 1-16 or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to prostate cancer protein are capable of reducing or eliminating a biological function of a prostate cancer protein, as is described below. That is, the addition of anti-prostate cancer protein antibodies (either polyclonal or preferably monoclonal) to prostate cancer tissue (or cells containing prostate cancer) may reduce or eliminate the prostate cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

10

15

20

25

30

In a preferred embodiment the antibodies to the prostate cancer proteins are humanized antibodies (e.g., Xenerex Biosciences, Mederex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol. 2:593-596 (1992)). Humanization

can be essentially performed following the method of Winter and co-workers (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature 332:323-327 (1988); Verhoeyen et al., Science 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom & Winter, J. Mol. Biol. 227:381 (1991); Marks et al., J. Mol. Biol. 222:581 (1991)). The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, p. 77 (1985) and Boerner et al., J. Immunol. 147(1):86-95 (1991)). Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10:779-783 (1992); Lonberg et al., Nature 368:856-859 (1994); Morrison, Nature 368:812-13 (1994); Fishwild et al., Nature Biotechnology 14:845-51 (1996); Neuberger, Nature Biotechnology 14:826 (1996); Lonberg & Huszar, Intern. Rev. Immunol. 13:65-93 (1995).

10

15

20

25

30

By immunotherapy is meant treatment of prostate cancer with an antibody raised against prostate cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. As appreciated by one of ordinary skill in the art, the antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic

acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the prostate cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted prostate cancer protein.

5

10

20

25

30

In another preferred embodiment, the prostate cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment, bind the extracellular domain of the prostate cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The antibody may cause down-regulation of the transmembrane prostate cancer protein. As will be appreciated by one of ordinary skill in the art, the antibody may be a competitive, noncompetitive or uncompetitive inhibitor of protein binding to the extracellular domain of the prostate cancer protein. The antibody is also an antagonist of the prostate cancer protein. 15 Further, the antibody prevents activation of the transmembrane prostate cancer protein. In one aspect, when the antibody prevents the binding of other molecules to the prostate cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody belongs to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, prostate cancer is treated by administering to a patient antibodies directed against the transmembrane prostate cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be any number of molecules, including labelling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of the prostate cancer protein. In another aspect the therapeutic moiety modulates the activity of molecules associated with or in close proximity to the prostate cancer protein. The therapeutic moiety

may inhibit enzymatic activity such as protease or collagenase or protein kinase activity associated with prostate cancer.

5

10

15

20

25

30

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to prostate cancer tissue or cells, results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with prostate cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against prostate cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane prostate cancer proteins not only serves to increase the local concentration of therapeutic moiety in the prostate cancer afflicted area, but also serves to reduce deleterious side effects that may be associated with the therapeutic moiety.

In another preferred embodiment, the prostate cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the prostate cancer protein can be targeted within a cell, i.e., the nucleus, an antibody thereto contains a signal for that target localization, i.e., a nuclear localization signal.

The prostate cancer antibodies of the invention specifically bind to prostate cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding is also important.

Detection of prostate cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the prostate cancer phenotype. Expression levels of genes in normal tissue

(i.e., not undergoing prostate cancer) and in prostate cancer tissue (and in some cases, for varying severities of prostate cancer that relate to prognosis, as outlined below) are evaluated to provide expression profiles. An expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state. While two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

10

15

20

25

30

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g., normal versus prostate cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart, Nature Biotechnology 14:1675-1680 (1996), hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

Evaluation may be at the gene transcript, or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the DNA or RNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the prostate cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to prostate cancer genes, i.e., those identified as being important in a prostate cancer phenotype, can be evaluated in a prostate cancer diagnostic test.

5

10

15

20

25

30

In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In this embodiment, the prostate cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of prostate cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity.

In a preferred embodiment nucleic acids encoding the prostate cancer protein are detected. Although DNA or RNA encoding the prostate cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a prostate cancer protein is detected. Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed in situ. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a prostate cancer protein is detected by binding the digoxygenin with an anti-digoxygenin

secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

10

15

20

25

30

As described and defined herein, prostate cancer proteins, including intracellular, transmembrane or secreted proteins, find use as markers of prostate cancer. Detection of these proteins in putative prostate cancer tissue allows for detection or diagnosis of prostate cancer. In one embodiment, antibodies are used to detect prostate cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the prostate cancer protein is detected, e.g., by immunoblotting with antibodies raised against the prostate cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the prostate cancer protein find use in *in situ* imaging techniques, e.g., in histology (e.g., *Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993)). In this method cells are contacted with from one to many antibodies to the prostate cancer protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label. In another method the primary antibody to the prostate cancer protein(s) contains a detectable label, e.g. an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of prostate cancer proteins. As will be appreciated by one of ordinary skill in the art, many other histological imaging techniques are also provided by the invention.

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing prostate cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of prostate cancer proteins.

Antibodies can be used to detect a prostate cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous prostate cancer protein.

In a preferred embodiment, in situ hybridization of labeled prostate cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including prostate cancer tissue and/or normal tissue, are made. In situ hybridization (see, e.g., Ausubel, supra) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to prostate cancer, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. As above, prostate cancer probes may be attached to biochips for the detection and quantification of prostate cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

Assays for therapeutic compounds

5

10

15

20

25

30

In a preferred embodiment members of the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The prostate cancer

proteins, antibodies, nucleic acids, modified proteins and cells containing prostate cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al., Science 279:84-8 (1998); Heid, Genome Res 6:986-94, 1996).

5

10

15

20

25

30

In a preferred embodiment, the prostate cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified prostate cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the prostate cancer phenotype or an identified physiological function of a prostate cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified the differentially expressed genes herein, a variety of assays may be executed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene as up regulated in prostate cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the prostate cancer protein. "Modulation" thus includes both an increase and a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing prostate cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in prostate cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in prostate cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the prostate cancer protein and standard

immunoassays. Proteomics and separation techniques may also allow quantification of expression.

In a preferred embodiment, gene expression or protein monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein.

In this embodiment, the prostate cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of prostate cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

10

15

20

25

30

Expression monitoring can be performed to identify compounds that modify the expression of one or more prostate cancer-associated sequences, e.g., a polynucleotide sequence set out in Tables 1-16. Generally, in a preferred embodiment, a test modulator is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate prostate cancer, modulate prostate cancer proteins, bind to a prostate cancer protein, or interfere with the binding of a prostate cancer protein and an antibody or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes any molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the prostate cancer phenotype or the expression of a prostate cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles, or expression profile nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a prostate cancer phenotype, e.g. to a normal tissue fingerprint. In another embodiment, a modulator induced a prostate cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

Drug candidates encompass numerous chemical classes, though typically they are organic molecules, preferably small organic compounds having a molecular weight of

more than 100 and less than about 2,500 daltons. Preferred small molecules are less than 2000, or less than 1500 or less than 1000 or less than 500 D. Candidate agents comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules including peptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Particularly preferred are peptides.

In one aspect, a modulator will neutralize the effect of a prostate cancer protein. By "neutralize" is meant that activity of a protein is inhibited or blocked and the consequent effect on the cell.

10

15

20

25

30

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a prostate cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound

length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop *et al.*, *J. Med. Chem.* 37(9):1233-1251 (1994)).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, 5 peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka, Pept. Prot. Res. 37:487-493 (1991), Houghton et al., Nature, 354:84-88 (1991)), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., Proc. Nat. Acad. Sci. USA 10 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., J. Amer. Chem. Soc. 114:6568 (1992)), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann et al., J. Amer. Chem. Soc. 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., J. Amer. Chem. Soc. 116:2661 (1994)), oligocarbamates (Cho, et al., Science 261:1303 (1993)), and/or peptidyl phosphonates 15 (Campbell et al., J. Org. Chem. 59:658 (1994)). See, generally, Gordon et al., J. Med. Chem. 37:1385 (1994), nucleic acid libraries (see, e.g., Strategene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn et al., Nature Biotechnology 14(3):309-314 (1996), and PCT/US96/10287), carbohydrate libraries (see, 20 e.g., Liang et al., Science 274:1520-1522 (1996), and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum, C&EN, Jan 18, page 33 (1993); isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

Devices for the preparation of combinatorial libraries are commercially available (*see, e.g.*, 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

25

30

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka,

Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. Any of the above devices are suitable for use with the present invention. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

5

10

15

20

25

30

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect enhancement or inhibition of prostate cancer gene transcription, inhibition or enhancement of polypeptide expression, and inhibition or enhancement of polypeptide activity.

High throughput assays for the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins, U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate entire procedures, including all sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

5

10

15

20

25

30

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins as is outlined above, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.

Modulators of prostate cancer can also be nucleic acids, as defined below. As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. For

example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In certain embodiments, the activity of a prostate cancer-associated protein is down-regulated, or entirely inhibited, by the use of antisense polynucleotide, *i.e.*, a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a prostate cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or inter-sugar linkages. Exemplary among these are the phosphorothicate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the prostate cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

10

15

20

25

30

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the anti-sense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for prostate cancer molecules. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, e.g., Stein & Cohen (Cancer Res. 48:2659 (1988 and van der Krol et al. (BioTechniques 6:958 (1988)).

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of prostate cancer-associated nucleotide sequences. A ribozyme is an

RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto et al., Adv. in Pharmacology 25: 289-317 (1994) for a general review of the properties of different ribozymes).

5

10

15

20

25

30

The general features of hairpin ribozymes are described, e.g., in Hampel et al., Nucl. Acids Res. 18:299-304 (1990); European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang et al., Proc. Natl. Acad. Sci. USA 90:6340-6344 (1993); Yamada et al., Human Gene Therapy 1:39-45 (1994); Leavitt et al., Proc. Natl. Acad. Sci. USA 92:699-703 (1995); Leavitt et al., Human Gene Therapy 5:1151-120 (1994); and Yamada et al., Virology 205: 121-126 (1994)).

Polynucleotide modulators of prostate cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of prostate cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

As noted above, gene expression monitoring is conveniently used to test candidate modultors (e.g., protein, nucleic acid or small molecule). After the candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence to be analyzed is added to the biochip. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an in vitro transcription

with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemicalminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

10

15

20

25

30

As will be appreciated by those in the art, these assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos. 5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allows formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

10

15

20

25

30

Screens are performed to identify modulators of the prostate cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state, screens are performed to identify agents that bind and/or modulate the biological activity of the gene product.

In addition screens can be done for genes that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a prostate cancer expression pattern leading to a normal expression pattern, or to modulate a single prostate cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated prostate cancer tissue reveals genes that are not expressed in normal tissue or prostate cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for prostate cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the

PCT/US01/32045 WO 02/30268

agent induced proteins and used to target novel therapeutics to the treated prostate cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of prostate cancer cells, that have an associated prostate cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once the test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

10

15

20

30

Thus, e.g., prostate cancer tissue may be screened for agents that modulate, e.g., induce or suppress the prostate cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on prostate cancer activity. By defining such a signature for the prostate cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular 25 differentially expressed gene as important in a particular state, screening of modulators of either the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "prostate cancer proteins" or a "prostate cancer modulatory protein". The prostate cancer modulatory protein may be a fragment, or alternatively, be the full length protein to the fragment encoded by the nucleic acids of Tables 1-16. Preferably, the prostate cancer modulatory protein is a fragment. In a preferred embodiment, the prostate cancer amino acid sequence which is used to determine

sequence identity or similarity is encoded by a nucleic acid of Tables 1-16. In another embodiment, the sequences are naturally occurring allelic variants of a protein encoded by a nucleic acid of Tables 1-16. In another embodiment, the sequences are sequence variants as further described herein.

5

10

15

20

25

Preferably, the prostate cancer modulatory protein is a fragment of approximately 14 to 24 amino acids long. More preferably the fragment is a soluble fragment. Preferably, the fragment includes a non-transmembrane region. In a preferred embodiment, the fragment has an N-terminal Cys to aid in solubility. In one embodiment, the C-terminus of the fragment is kept as a free acid and the N-terminus is a free amine to aid in coupling, i.e., to cysteine.

In one embodiment the prostate cancer proteins are conjugated to an immunogenic agent as discussed herein. In one embodiment the prostate cancer protein is conjugated to BSA.

Measurements of prostate cancer polypeptide activity, or of prostate cancer or the prostate cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the prostate cancer polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of prostate cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian prostate cancer polypeptide is typically used, e.g., mouse, preferably human.

Assays to identify compounds with modulating activity can be performed in vitro. For example, a prostate cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the prostate cancer polypeptide levels are determined in vitro by measuring the level of protein or mRNA. The level of protein is measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the prostate cancer

polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

5

10

15

20

25

30

Alternatively, a reporter gene system can be devised using the prostate cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed genes are sometimes referred to herein as "prostate cancer proteins." The prostate cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the prostate cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a prostate cancer protein and a candidate compound, and determining the binding of the compound to the prostate cancer protein. Preferred embodiments utilize the human prostate cancer protein,

although other mammalian proteins may also be used, e.g. for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative prostate cancer proteins may be used.

5

10

15

20

25

30

Generally, in a preferred embodiment of the methods herein, the prostate cancer protein or the candidate agent is non-diffusably bound to an insoluble support having isolated sample receiving areas (e.g. a microtiter plate, an array, etc.). The insoluble supports may be made of any composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of any convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

In a preferred embodiment, the prostate cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the prostate cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled in vitro protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the prostate cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the prostate cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

5

10

15

20

25

30

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor is a binding moiety known to bind to the target molecule (i.e., a prostate cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40°C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

In a preferred embodiment, the competitor is added first, followed by the test compound. Displacement of the competitor is an indication that the test compound is binding to the prostate cancer protein and thus is capable of binding to, and potentially modulating, the activity of the prostate cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the prostate cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the prostate cancer protein.

5

10

15

20

25

30

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the prostate cancer proteins. In this embodiment, the methods comprise combining a prostate cancer protein and a competitor in a first sample. A second sample comprises a test compound, a prostate cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the prostate cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the prostate cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native prostate cancer protein, but cannot bind to modified prostate cancer proteins. The structure of the prostate cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a prostate cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results. Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background

interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a prostate cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising prostate cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a prostate cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

5

10

15

20

25

30

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g. hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (i.e. cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate prostate cancer agents are identified.

Compounds with pharmacological activity are able to enhance or interfere with the activity of the prostate cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting prostate cancer cell division is provided. The method comprises administration of a prostate cancer inhibitor. In another embodiment, a method of inhibiting prostate cancer is provided. The method comprises administration of a prostate cancer inhibitor. In a further embodiment, methods of treating cells or individuals with prostate cancer are provided. The method comprises administration of a prostate cancer inhibitor.

In one embodiment, a prostate cancer inhibitor is an antibody as discussed above. In another embodiment, the prostate cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example,

transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of prostate cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney, Culture of Animal Cells a Manual of Basic Technique (3rd ed., 1994), herein incorporated by reference. See also, the methods section of Garkavtsev et al. (1996), supra, herein incorporated by reference.

Contact inhibition and density limitation of growth

10

15

20

25

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), supra. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a prostate cancer-associated sequence and are grown for 24 hours at saturation density in non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. *See*, Freshney (1994), *supra*.

Growth factor or serum dependence

Transformed cells have a lower serum dependence than their normal counterparts (see, e.g., Temin, J. Natl. Cancer Insti. 37:167-175 (1966); Eagle et al., J. Exp. Med. 131:836-879 (1970)); Freshney, supra. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

Tumor specific markers levels

10

15

20

30

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, Angiogenesis, tumor vascularization, and potential interference with tumor growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985)). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman, Angiogenesis and Cancer, Sem Cancer Biol. (1992)).

Various techniques which measure the release of these factors are described in Freshney (1994), supra. Also, see, Unkless et al., J. Biol. Chem. 249:4295-4305 (1974); Strickland & Beers, J. Biol. Chem. 251:5694-5702 (1976); Whur et al., Br. J. Cancer 42:305-312 (1980); Gullino, Angiogenesis, tumor vascularization, and potential interference with tumor growth. in Biological Responses in Cancer, pp. 178-184 (Mihich (ed.) 1985); Freshney Anticancer Res. 5:111-130 (1985).

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate prostate cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), *supra*, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some

other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), supra.

5

10

15

20

25

30

Tumor growth in vivo

Effects of prostate cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the prostate cancer gene is disrupted or in which a prostate cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous prostate cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous prostate cancer gene with a mutated version of the prostate cancer gene, or by mutating the endogenous prostate cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi et al., Science 244:1288 (1989)). Chimeric targeted mice can be derived according to Hogan et al., Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory (1988) and Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed., IRL Press, Washington, D.C., (1987).

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella et al., J. Natl. Cancer Inst. 52:921 (1974)), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley et al., Br. J. Cancer 38:263 (1978); Selby et al., Br. J. Cancer 41:52 (1980)) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a prostate cancer-associated sequences are injected subcutaneously. After a

suitable length of time, preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

5 Methods of identifying variant prostate cancer-associated sequences

10

15

20

25

30

Without being bound by theory, expression of various prostate cancer sequences is correlated with prostate cancer. Accordingly, disorders based on mutant or variant prostate cancer genes may be determined. In one embodiment, the invention provides methods for identifying cells containing variant prostate cancer genes, e.g., determining all or part of the sequence of at least one endogenous prostate cancer genes in a cell. This may be accomplished using any number of sequencing techniques. In a preferred embodiment, the invention provides methods of identifying the prostate cancer genotype of an individual, e.g., determining all or part of the sequence of at least one prostate cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced prostate cancer gene to a known prostate cancer gene, i.e., a wild-type gene.

The sequence of all or part of the prostate cancer gene can then be compared to the sequence of a known prostate cancer gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the prostate cancer gene of the patient and the known prostate cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the prostate cancer genes are used as probes to determine the number of copies of the prostate cancer gene in the genome.

In another preferred embodiment, the prostate cancer genes are used as probes to determine the chromosomal localization of the prostate cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the prostate cancer gene locus.

Administration of pharmaceutical and vaccine compositions

10

15

20

25

30

In one embodiment, a therapeutically effective dose of a prostate cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel et al., Pharmaceutical Dosage Forms and Drug Delivery; Lieberman, Pharmaceutical Dosage Forms (vols. 1-3, 1992), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd, The Art, Science and Technology of Pharmaceutical Compounding (1999); and Pickar, Dosage Calculations (1999)). As is known in the art, adjustments for prostate cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration, drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art. U.S. Patent Application N. 09/687,576, further discloses the use of compositions and methods of diagnosis and treatment in prostate cancer is hereby expressly incorporated by reference.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

The administration of the prostate cancer proteins and modulators thereof of the present invention can be done in a variety of ways as discussed above, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the prostate cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a prostate cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the

biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

10

15

20

25

30

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose, lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that prostate cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a prostate cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may

be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Goodman & Gillman, The Pharmacologial Basis of Therapeutics (Hardman et al., eds., 1996)).

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gillman, The Pharmacologial Basis of Therapeutics, supra.

10

15

20

25

30

The compositions containing modulators of prostate cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic

treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer.

It will be appreciated that the present prostate cancer protein-modulating compounds can be administered alone or in combination with additional prostate cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

5

10

15

20

25

30

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in Tables 1-16, such as antisense polynucleotides or ribozymes, will be introduced into cells, in vitro or in vivo. The present invention provides methods, reagents, vectors, and cells useful for expression of prostate cancer-associated polypeptides and nucleic acids using in vitro (cell-free), ex vivo or in vivo (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Berger & Kimmel, Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 (Berger), Ausubel et al., eds., Current Protocols (supplemented through 1999), and Sambrook et al., Molecular Cloning - A Laboratory Manual (2nd ed., Vol. 1-3, 1989.

In a preferred embodiment, prostate cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, prostate cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the prostate cancer coding regions) can be administered in a gene therapy application. These prostate cancer genes can include antisense applications, either as gene therapy (i.e. for incorporation into the genome) or as antisense compositions, as will be appreciated by those in the art.

Prostate cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL and antibody responses.. Such vaccine

compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, A. et al., J. Clin. Invest. 95:341 (1995)), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, (1991); Alonso et al., Vaccine 12:299-306 (1994); Jones et al., Vaccine 13:675-681 (1995)), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875 (1990); Hu et al., Clin Exp Immunol. 113:235-243 (1998)), multiple antigen peptide systems (MAPs) (see, e.g., Tam, Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413 (1988); Tam, J. Immunol. Methods 196:17-32 (1996)), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., In: Concepts in vaccine development (Kaufmann, ed., p. 379, 1996); Chakrabarti, et al., Nature 320:535 (1986); Hu et al., Nature 320:537 (1986); Kieny, et al., AIDS Bio/Technology 4:790 (1986); Top et al., J. Infect. Dis. 124:148 (1971); Chanda et al., Virology 175:535 (1990)), particles of viral or synthetic origin (see, e.g., Kofler et al., J. Immunol. Methods. 192:25 (1996); Eldridge et al., Sem. Hematol. 30:16 (1993); Falo et al., Nature Med. 7:649 (1995)), adjuvants (Warren et al., Annu. Rev. Immunol. 4:369 (1986); Gupta et al., Vaccine 11:293 (1993)), liposomes (Reddy et al., J. Immunol. 148:1585 (1992); Rock, Immunol. Today 17:131 (1996)), or, naked or particle absorbed cDNA (Ulmer, et al., Science 259:1745 (1993); Robinson et al., Vaccine 11:957 (1993); Shiver et al., In: Concepts in vaccine development (Kaufmann, ed., p. 423, 1996); Cease & Berzofsky, Annu. Rev. Immunol. 12:923 (1994) and Eldridge et al., Sem. Hematol. 30:16 (1993)). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

10

15

20

25

30

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides;

polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

5

10

15

20

25

30

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode prostate cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata et al., Mol Med Today 6:66-71 (2000); Shedlock et al., J Leukoc Biol 68:793-806 (2000); Hipp et al., In Vivo 14:571-85 (2000)).

Methods for the use of genes as DNA vaccines are well known, and include placing a prostate cancer gene or portion of a prostate cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a prostate cancer patient. The prostate cancer gene used for DNA vaccines can encode full-length prostate cancer proteins, but more preferably encodes portions of the prostate cancer proteins including peptides derived from the prostate cancer protein. In one embodiment, a patient is

immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a prostate cancer gene. For example, prostate cancer-associated genes or sequence encoding subfragments of a prostate cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, the DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the prostate cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

10

15

20

25

30

In another preferred embodiment prostate cancer genes find use in generating animal models of prostate cancer. When the prostate cancer gene identified is repressed or diminished in cancer tissue, gene therapy technology, e.g., wherein antisense RNA directed to the prostate cancer gene will also diminish or repress expression of the gene. Animal models of prostate cancer find use in screening for modulators of a prostate cancer-associated sequence or modulators of prostate cancer. Similarly, transgenic animal technology including gene knockout technology, e.g. as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the prostate cancer protein. When desired, tissue-specific expression or knockout of the prostate cancer protein may be necessary.

It is also possible that the prostate cancer protein is overexpressed in prostate cancer. As such, transgenic animals can be generated that overexpress the prostate cancer protein. Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene. Animals generated by such methods find use as animal models of prostate cancer and are additionally useful in screening for modulators to treat prostate cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits

may include any or all of the following: assay reagents, buffers, prostate cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, dominant negative prostate cancer polypeptides or polynucleotides, small molecules inhibitors of prostate cancer-associated sequences *etc.* A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing directions (i.e., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of prostate cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a prostate cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing prostate cancer-associated activity. Optionally, the kit contains biologically active prostate cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

20

5

10

15

EXAMPLES

Example 1: Tissue Preparation, Labeling Chips, and Fingerprints

5 Purifying total RNA from tissue sample using TRIzol Reagent

10

15

20

25

The sample weight is first estimated. The tissue samples are homogenized in 1 ml of TRIzol per 50 mg of tissue using a homogenizer (e.g., Polytron 3100). The size of the generator/probe used depends upon the sample amount. A generator that is too large for the amount of tissue to be homogenized will cause a loss of sample and lower RNA yield. A larger generator (e.g., 20 mm) is suitable for tissue samples weighing more than 0.6 g. Fill tubes should not be overfilled. If the working volume is greater than 2 ml and no greater than 10 ml, a 15 ml polypropylene tube (Falcon 2059) is suitable for homogenization.

Tissues should be kept frozen until homogenized. The TRIzol is added directly to the frozen tissue before homogenization. Following homogenization, the insoluble material is removed from the homogenate by centrifugation at 7500 x g for 15 min. in a Sorvall superspeed or 12,000 x g for 10 min. in an Eppendorf centrifuge at 4°C. The cleared homogenate is then transferred to a new tube(s). Samples may be frozen and stored at -60 to -70°C for at least one month or else continue with the purification.

The next process is phase separation. The homogenized samples are incubated for 5 minutes at room temperature. Then, 0.2 ml of chloroform per 1ml of TRIzol reagent is added to the homogenization mixture. The tubes are securely capped and shaken vigorously by hand (do not vortex) for 15 seconds. The samples are then incubated at room temp. for 2-3 minutes and next centrifuged at 6500 rpm in a Sorvall superspeed for 30 min. at 4oC.

The next process is RNA Precipitation. The aqueous phase is transferred to a fresh tube. The organic phase can be saved if isolation of DNA or protein is desired. Then 0.5 ml of isopropyl alcohol is added per 1ml of TRIzol reagent used in the original homogenization. Then, the tubes are securely capped and inverted to mix. The samples are then incubated at room temp. for 10 minutes an centrifuged at 6500 rpm in Sorvall for 20 min. at 4°C.

The RNA is then washed. The supernatant is poured off and the pellet washed with cold 75% ethanol. 1 ml of 75% ethanol is used per 1 ml of the TRIzol reagent used in the initial homogenization. The tubes are capped securely and inverted several times to loosen pellet without vortexing. They are next centrifuged at $<8000\,$ rpm ($<7500\,$ x g) for 5 minutes at 4° C.

5

10

15

20

25

The RNA wash is decanted. The pellet is carefully transferred to an Eppendorf tube (sliding down the tube into the new tube by use of a pipet tip to help guide it in if necessary). Tube(s) sizes for precipitating the RNA depending on the working volumes. Larger tubes may take too long to dry. Dry pellet. The RNA is then resuspended in an appropriate volume (e.g., 2 -5 ug/ul) of DEPC H₂0. The absorbance is then measured.

The poly A+ mRNA may next be purified from total RNA by other methods such as Qiagen's RNeasy kit. The poly A + mRNA is purified from total RNA by adding the oligotex suspension which has been heated to 37°C and mixing prior to adding to RNA. The Elution Buffer is incubated at 70°C. If there is precipitate in the buffer, warm up the 2 x Binding Buffer at 65°C. The the total RNA is mixed with DEPC-treated water, 2 x Binding Buffer, and Oligotex according to Table 2 on page 16 of the Oligotex Handbook and next incubated for 3 minutes at 65°C and 10 minutes at room temperature.

The preparation is centrifuged for 2 minutes at 14,000 to 18,000 g, preferably, at a "soft setting," The supernatant is removed without disturbing Oligotex pellet. A little bit of solution can be left behind to reduce the loss of Oligotex. The supernatant is saved until satisfactory binding and elution of poly A+ mRNA has been found.

Then, the preparation is gently resuspended in Wash Buffer OW2 and pipetted onto the spin column and centrifuged at full speed (soft setting if possible) for 1 minute.

Next, the spin column is transferred to a new collection tube and gently resuspended in Wash Buffer OW2 and centrifuged as described herein.

Then, the spin column is transferred to a new tube and eluted with 20 to 100 ul of preheated (70°C) Elution Buffer. The Oligotex resin is gently resuspended by pipetting up and down. The centrifugation is repeated as above and the elution repeated with fresh elution buffer or first eluate to keep the elution volume low.

The absorbance is next read to determine the yield, using diluted Elution Buffer as the blank.

Before proceeding with cDNA synthesis, the mRNA is precipitated before proceeding with cDNA synthesis, as components leftover or in the Elution Buffer from the Oligotex purification procedure will inhibit downstream enzymatic reactions of the mRNA. 0.4 vol. of 7.5 M NH4OAc + 2.5 vol. of cold 100% ethanol is added and the preparation precipitated at -20°C 1 hour to overnight (or 20-30 min. at -70°C), and centrifuged at 14,000-16,000 x g for 30 minutes at 4°C. Next, the pellet is washed with 0.5 ml of 80% ethanol (-20°C) and then centrifuged at 14,000-16,000 x g for 5 minutes at room temperature. The 80% ethanol wash is then repeated. The last bit of ethanol from the pellet is then dried without use of a speed vacuum and the pellet is then resuspended in DEPC H₂0 at 1ug/ul concentration.

Alternatively the RNA may be purified using other methods (e.g., Qiagen's RNeasy kit).

No more than 100 ug is added to the RNeasy column. The sample volume is adjusted to 100 ul with RNase-free water. 350 ul Buffer RLT and then 250 ul ethanol (100%) are added to the sample. The preparation is then mixed by pipetting and applied to an RNeasy mini spin column for centrifugation (15 sec at >10,000 rpm). If yield is low, reapply the flowthrough to the column and centrifuge again.

Then, transfer column to a new 2 ml collection tube and add 500 ul Buffer RPE and centrifuge for 15 sec at >10,000 rpm. The flowthrough is discarded. 500 ul Buffer RPE and is then added and the preparation is centriuged for 15 sec at >10,000 rpm. The flowthrough is discarded. and the column membrane dried by centrifuging for 2 min at maximum speed. The column is transferred to a new 1.5-ml collection tube. 30-50 ul of RNase-free water is applied directly onto column membrane. The column is then centrifuged for 1 min at >10,000 rpm and the elution step repeated.

The absorbance is then read to determine yield. If necessary, the material may be ethanol precipitated with ammonium acetate and 2.5X volume 100% ethanol.

First Strand cDNA Synthesis

10

15

20

25

30

The first strand can be make using using Gibco's "SuperScript Choice System for cDNA Synthesis" kit. The starting material is 5 ug of total RNA or 1 ug of polyA+ mRNAl. For total RNA, 2 ul of SuperScript RT is used; for polyA+ mRNA, 1 ul of SuperScript RT is used. The final volume of first strand synthesis mix is 20 ul. The RNA should be in a volume no greater than 10 ul. The RNA is incubated with 1 ul of 100 pmol T7-T24 oligo for 10 min at 70°C followed by addition on ice of 7 ul of: 4ul 5X 1st Strand Buffer, 2 ul of 0.1M DTT, and 1 ul of 10mM dNTP mix. The preparation is then incubated at 37°C for 2 min before addition of the SuperScript RT followed by incubation at 37°C for 1 hour.

10

15

20

25

Second Strand Synthesis

For the second strand synthesis, place 1st strand reactions on ice and add: 91 ul DEPC H₂0; 30 ul 5X 2nd Strand Buffer; 3 ul 10mM dNTP mix; 1 ul 10 U/ul E.coli DNA Ligase; 4 ul 10 U/ul E.coli DNA Polymerase; and 1 ul 2 U/ul RNase H. Mix and incubate 2 hours at 16°C. Add 2 ul T4 DNA Polymerase. Incubate 5 min at 16°C. Add 10 ul of 0.5M EDTA.

Cleaning up cDNA

The cDNA is purified using Phenol:Chloroform:Isoamyl Alcohol (25:24:1) and Phase-Lock gel tubes. The PLG tubes are centrifuged for 30 sec at maximum speed. The cDNA mix is then transferred to PLG tube. An equal volume of phenol:chloroform:isamyl alcohol is then added, the preparation shaken vigorously (no vortexing), and centrifuged for 5 minutes at maximum speed. The top aqueous solution is transferred to a new tube and ethanol precipitated by adding 7.5X 5M NH4OAc and 2.5X volume of 100% ethanol. Next, it is centrifuged immediately at room temperature for 20 min, maximum speed. The supernatant is removed, and the pellet washed with 2X with cold 80% ethanol. As much ethanol wash as possible should be removed before air drying the pellet; and resuspending it in 3 ul RNase-free water.

In vitro Transcription (IVT) and labeling with biotin

10

15

20

25

In vitro Transcription (IVT) and labeling with biotin is performed as follows: Pipet 1.5 ul of cDNA into a thin-wall PCR tube. Make NTP labeling mix by combining 2 ul T7 10xATP (75 mM) (Ambion); 2 ul T7 10xGTP (75 mM) (Ambion); 1.5 ul T7 10xCTP (75 mM) (Ambion); 3.75 ul 10 mM Bio-11-UTP (Boehringer-Mannheim/Roche or Enzo); 3.75 ul 10 mM Bio-16-CTP (Enzo); 2 ul 10x T7 transcription buffer (Ambion); and 2 ul 10x T7 enzyme mix (Ambion). The final volume is 20 ul. Incubate 6 hours at 37°C in a PCR machine. The RNA can be furthered cleaned. Clean-up follows the previous instructions for RNeasy columns or Qiagen's RNeasy protocol handbook. The cRNA often needs to be ethanol precipitated by resuspension in a volume compatible with the fragmentation step.

Fragmentation is performed as follows. 15 ug of labeled RNA is usually fragmented. Try to minimize the fragmentation reaction volume; a 10 ul volume is recommended but 20 ul is all right. Do not go higher than 20 ul because the magnesium in the fragmentation buffer contributes to precipitation in the hybridization buffer. Fragment RNA by incubation at 94 C for 35 minutes in 1 x Fragmentation buffer (5 x Fragmentation buffer is 200 mM Tris-acetate, pH 8.1; 500 mM KOAc; 150 mM MgOAc). The labeled RNA transcript can be analyzed before and after fragmentation. Samples can be heated to 65°C for 15 minutes and electrophoresed on 1% agarose/TBE gels to get an approximate idea of the transcript size range.

For hybridization, 200 ul (10 ug cRNA) of a hybridization mix is put on the chip. If multiple hybridizations are to be done (such as cycling through a 5 chip set), then it is recommended that an initial hybridization mix of 300 ul or more be made. The hybridization mix is: fragment labeled RNA (50 ng/ul final conc.); 50 pM 948-b control oligo; 1.5 pM BioB; 5 pM BioC; 25 pM BioD; 100 pM CRE; 0.1 mg/ml herring sperm DNA; 0.5 mg/ml acetylated BSA; and 300 ul with 1xMES hyb buffer.

The hybridization reaction is conducted with non-biotinylated IVT (purified by RNeasy columns) (see example 1 for steps from tissue to IVT): The following mixture is prepared:

IVT antisense RNA; 4 μ g: μ l Random Hexamers (1 μ g/ μ l): 4 μ l H₂O: μ l 14 μ l

5 Incubate the above 14 μl mixture at 70°C for 10 min.; then put on ice.

The Reverse transcription procedure uses the following mixture:

0.1 M DTT: 3 μl
50X dNTP mix: 0.6 μl
H₂Q: 2.4 μl
10 Cy3 or Cy5 dUTP (1mM): 3 μl
SS RT II (BRL): 1 μl

The above solution is added to the hybridization reaction and incubated for 30 min., 42°C. Then, 1 µl SSII is added and incubated for another hour before being placed on ice.

The 50X dNTP mix contains 25mM of cold dATP, dCTP, and dGTP, 10mM of dTTP and is made by adding 25 μ l each of 100mM dATP, dCTP, and dGTP; 10 μ l of 100mM dTTP to 15 μ l H₂O.]

RNA degradation is performed as follows. Add 86 µl H2O, 1.5 µl 1M NaOH/
20 2 mM EDTA and incubate at 65°C, 10 min.. For U-Con 30, 500 µl TE/sample spin at 7000 g
for 10 min, save flow through for purification. For Qiagen purification, suspend u-con
recovered material in 500 µl buffer PB and proceed using Qiagen protocol. For DNAse
digestion, add 1 ul of 1/100 dilution of DNAse/30 ul Rx and incubate at 37°C for 15 min.
Incubate at 5 min 95°C to denature the DNAse.

25

15

Sample preparation

For sample preparation, add Cot-1 DNA, 10 μ l; 50X dNTPs, 1 μ l; 20X SSC, 2.3 μ l; Na pyro phosphate, 7.5 μ l; 10 mg/ml Herring sperm DNA; 1 ul of 1/10 dilution to 21.8 final vol. Dry in speed vac. Resuspend in 15 μ l H₂0. Add 0.38 μ l 10% SDS. Heat

95°C, 2 min and slow cool at room temp. for 20 min. Put on slide and hybridize overnight at 64°C. Washing after the hybridization: 3X SSC/0.03% SDS: 2 min., 37.5 ml 20X SSC+0.75ml 10% SDS in 250ml H₂O; 1X SSC: 5 min., 12.5 ml 20X SSC in 250ml H₂O; 0.2X SSC: 5 min., 2.5 ml 20X SSC in 250ml H₂O. Dry slides and scan at appropriate PMT's and channels.

Example 2: Taxol resistant Xenograft Model of Human Prostate Cancer

5

10

15

20

25

30

Treatment regimens that include paclitaxel (Taxol; Bristol-Myers Squibb Company, Princeton, NJ) have been particularly successful in treating hormone-refractory prostate cancer in the phase II setting (Smith et al., Semin. Oncol. 26(1 Suppl 2):109-11 (1999)). However, many patients develop tumors which are initially, or later become, resistant to taxol. To identify genes that may be involved with resistance to taxol, or are regulated in response to taxol resistance, and therefore may be used to treat, or identify, taxol resistance in patients, the following experiments were carried out.

The androgen-independent human cell line CWR22R was grown as a xenograft in nude mice (Nagabhushan et al., Cancer Res. 56(13):3042-3046 (1996); Agus et al., J. Natl. Cancer Inst.91(21):1869-1876 (1999); Bubendorf et al., J. Natl. Cancer Inst. 91(20):1758-1764 (1999)). Initially, these xenograft tumors were sensitive to therapeutic doses of taxol. The mice were treated continuously with sub-therapeutic doses, and the tumors were allowed to grow for 3-4 weeks, before surgical removal of the tumors. The tumor from an individual mouse was then minced, and a small portion was then injected into a healthy nude mouse, establishing a second

passage of the tumor. This mouse was then treated continuously with the same sub-therapeutic dose of taxol. This process was repeated 14 times, and a portion of each generation of xenograft tumor was collected. There was increasing resistance to therapeutic doses of taxol with each generation. Bythe end of the process, the tumors were fully resistant to therapeutic doses of taxol. RNA from each generation of tumor was then isolated, and individual mRNA species were quantified using a custom Affymetrix GeneChip® oligonucleotide microarray, with probes to interrogate approximately 35,000

unique mRNA transcripts. Genes were selected that showed a statistically significant upregulation, or down-regulation, during the subsequent generations of increasingly taxol-resistant tumors. Only one gene was significantly up-regulated, whereas 24 genes were down-regulated; these are presented in Table 10.

The gene sequences identified to be overexpressed in prostate cancer may be used to identify coding regions from the public DNA database. The sequences may be used to either identify genes that encode known proteins, or they may be used to predict the coding regions from genomic DNA using exon prediction algorithms, such as FGENESH (Salamov and Solovyev, 2000, Genome Res. 10:516-522). In addition, one of ordinary skill in the art would understand how to obtain the unigene cluster identification and sequence information according to the exemplar accession numbers provided in Tables 1-16. (see,

10 http://www.ncbi.nlm.nih.gov/UniGene/).

TABLE1: shows genes, including expression sequence tags, differentially expressed in prostate tumor tissue compared to normal tissue as analyzed using the Affymetrix/Eos Hu01 GeneChip array. Shown are the relative amounts of each gene expressed in prostate tumor samples and various normal tissue samples showing the highest expression of the gene.

Pkey: 10 ExAct Unige Unige R1:		number, Genbank accession number
--	--	----------------------------------

	nı.		nauy or willor	to normal body assue	
15					
13	Pkey	UnigeneiD	ExAccn	Uningene Title	R1
	131919	Hs.272458	AA121266	ESTs	37.2
		Hs.290905		ESTs; Weakly similar to (defline not ava	32.6
20		Hs.31412		ESTs	30.1
		Hs.1852	M24902	acid phosphatase; prostate	25.2
		Hs.279477		ESTs	24.8
		Hs.183752		microseminoprotein; beta-	23.8
		Hs.171995		kallikrein 3; (prostate specific antigen	21.4
25		Hs.57771		Homo sapiens mRNA for serine protease (T	18.9
		Hs.162859		ESTs	18.6
		Hs.30343		ESTs	17.4
		Hs.1832		neuropeptide Y	17.3
		Hs.1915		folate hydrolase (prostate-specific memb	17
30		Hs.40808		ESTs	16.9
		Hs.262476		S-adenosylmethionine decarboxylase 1	16.7
		Hs.33287		ESTs	16.5
		Hs.11260		ESTs	16.4
				Antigen, Prostate Specific, Alt. Splice	16
35		Hs.181350		kaltikrein 2; prostatic	15.4
		Hs.99872		fetal Alzheimer antigen	15
		Hs.62192		coagulation factor III (thromboplastin;	13.9
		Hs.8236	D62633	ESTs	12.7
		Hs.7780	AA045870	ESTs	12.5
40		Hs.193380	AA176428	ESTs	12.3
		Hs.2178	X57985	H2B histone family; member Q	11.8
		Hs.182339	AA149007	ESTs	11.8
		Hs.172129		yp19h1.r1 Soares breast 3NbHBst Homo sap	11.8
		Hs.102720		ESTs	11.6
45		Hs.14846		ESTs	11.4
		Hs.78045		actin; gamma 2; smooth muscle; enteric	11
		Hs.268744		ESTs: Moderately similar to KIAA0273 [H.	10.9
		126645	Al167942	Homo sapiens BAC done RG041D11 from 7q2	10.7
		Hs.95420		Homo sapiens mRNA for JM27 protein; comp	10.6
50		Hs.113314		ESTs	- 10.6
	118417		N66048	ESTs; Weakly similar to polymerase [H.sa	10.5
	126758	Hs.293960	W37145	ESTs	10.2
		Hs.8364		ESTs	10.1
	134989	Hs.92381	AA236324	ESTs; Weakly similar to !!!! ALU CLASS A	10.1
55	107102	Hs.30652	AA609723	ESTs	10.1
		Hs.15641		ESTs	10.1
	115719	Hs.59622	AA416997	ESTs	10
	123209	Hs.203270	AA489711	ESTs	9.9
		Hs.121017		H2A histone family; member A	9.8
60	112971	Hs.83883	T17185	ESTs	9.7
		Hs.80296		Purkinje cell protein 4	9.7
	117984	Hs.106778	N51919	ESTs	9.7
	105840	Hs.22209	AA398533	ESTs	9.4
	129523	Hs.274509	M30894	T-cell receptor; gamma cluster	9.4
65	132964	Hs.167133	AA031360	ESTs	9.2
		Hs.98502	AA425887	ESTs	9

	115784	Hs.91011	AA421562	anterior gradient 2 (Xenopus laevis; sec	8.9
		Hs.55999	W47380	ESTs	8.9
				Protein Kinase Ht31, Camp-Dependent	8.9
		Hs.23317	AA281245	ESTs	8.8
5		Hs.76422	M22430	phospholipase A2; group IIA (platelets;	8.7
	131725	Hs.31146	AA456264	ESTs; Highly similar to (defline not ava	8.5
	124526	Hs.293185	N62096	yz81c5.s1 Soares_multiple_sclerosis_2NbH	8.5
		Hs.49397	N67889	ESTs	8.2
		Hs.76704	T68510	ESTs	8.2
10		Hs.334762		ESTs; Weakly similar to KIAA0319 [H.sapi	8.1
		Hs.20415	AA402000	ESTs; Weakly similar to GS3786 [H.sapien	8
		Hs.278695		ESTs	8
		Hs.66052	D84276	CD38 antigen (p45)	8
15		Hs.24192	Z38688	ESTS	7.9 7.7
15		Hs.301527	AA456135	tumor necrosis factor (ligand) superfami ESTs	7.6
		Hs.23023 Hs.105700		secreted frizzled-related protein 4	7.5
_		Hs.72472	AA250737	ESTs	7.A
		Hs.22627	R43162	ESTs	7.1
20	102398	110122021	U42359	Human N33 protein form 1 (N33) gene, exo	7
		Hs.2256	122524	matrix metalloproteinase 7 (matrilysin;	6.9
		Hs.288462		ESTs	6.9
		Hs.169849		myosin-binding protein C; slow-type	6.9
	101803	Hs.155691	M86546	pre-B-cell leukernia transcription factor	6.8
25	120562	Hs.302267	AA280036	ESTs; Weakly similar to W01A6.c [C.elega	6.8
		Hs.257924		ESTs .	6.8
		Hs.326416		ESTs	6.7
		Hs.173684		ESTs; Weakly similar to (defline not ava	6.7
00		Hs.171995		kallikrein 3; (prostate specific antigen	6.6
30		Hs.26691		ESTs	6.6
		Hs.16193	AA281591	Homo sapiens mRNA; cDNA DKFZp586B211 (fr	6.6
		Hs.59838		ESTS	6.6 6.6
		Hs.323378		H.sapiens mRNA for transmembrane protein atdehyde dehydrogenase 6	6.5
35		Hs.75746 Hs.278628	U07919 AA490262	ESTs; Moderately similar to APXL gene pr	6.5
<i>JJ</i>		Hs.108787		Homo sapiens Mod4p homolog mRNA; complet	6.5
		Hs.126085		ESTs	6.5
		Hs.3383	AA010163	upstream regulatory element binding prot	6.5
		Hs.7232	T23670	ESTs	6.4
40		Hs.8768	AA236559	ESTs; Weakly similar to neuronal thread	6.4
	104674	Hs.26289	AA009527	ESTS	6.4
	100727	Hs.334786	X07290	Human HF.12 gene mRNA	6.3
	130150	Hs.15113	AF000573	homogentisate 1,2-dioxygenase (homogenti	6.3
		Hs.278428		Homo sapiens mRNA for KIAA0896 protein;	6.3
45		Hs.250528		ESTs; Weakly similar to ANKYRIN; BRAIN V	6.3
		Hs.296638		prostate differentiation factor	6.3
		Hs.279923		ESTs; Weakly similar to similar to GTP-b	6.2
	101233		L29008	sorbitol dehydrogenase ESTs	6.2 6.2
50	127248	Hs.37744	AA011176 AA325029	EST27953 Cerebellum II Homo sapiens cDNA	6.2
.50		Hs.179902		ESTs; Weakly similar to (define not ava	6.2
		Hs.222399		ESTs	6.1
		Hs.2714	X74142	forkhead (Drosophila)-like 1	6.1
		Hs.40289	AA234767	ESTs	6
55		Hs.203213		ESTs	5.9
	115357	Hs.72988	AA281793	ESTs	5.8
	105496	Hs.301997		ESTs	5.7
		Hs.48948		ESTs	5.7
C O		Hs.61539	AA034020	ESTs	5.7
60		Hs.125019		ESTs; Weakly similar to IIII ALU SUBFAMI	5.6
		Hs.289072		ESTs	5.6
		Hs.170195		bone morphogenetic protein 7 (osteogenic	5.6 5.6
		Hs.140237 Hs.337616		ESTs; Weakly similar to neuronal thread phosphodiesterase 3B; cGMP-inhibited	5.6
65		Hs.62354		Human beige-like protein (BGL) mRNA; par	5.5
5 5		Hs.45107		ESTs	5.5
		Hs.281434		heat shock 70kD protein 1	5.5
		Hs.98732		Homo saplens Chromosome 16 BAC clone CIT	5.5
	133723	Hs.262476	AA088851	S-adenosylmethionine decarboxylase 1	5.5

	113938		W81598	ESTs	5.4
		Hs.246315		ESTs	5.4
		Hs.75722		ribophorin II	5.4
_		Hs.80120		UDP-N-acetyl-alpha-D-galactosamine:polyp	5.4
5		Hs.7780	AA056482	ESTs	5.3
		Hs.21223		calponin 1; basic; smooth muscle	5.3
		Hs.326392		Human guanine nucleotide exchange factor	5.3 5.3
		Hs.98944 Hs.167531		ESTs Weekly similar to (deffine not sup	5.3
10		Hs.108336		ESTs; Weakly similar to (defitne not ava ESTs; Weakly similar to IIII ALU SUBFAMI	5.3
10		Hs.25351		iroquols-class homeodomain protein	5.3
		Hs.194369		Homo sapiens chromosome 1 atrophin-1 rel	5.3
		Hs.109201		ESTs; Highly similar to (defline not ava	5.2
		Hs.79428	U15174	BCL2/adenovirus E1B 19kD-interacting pro	5.2
15		Hs.159872		ESTs	5.2
	104787		AA027317	ESTs; Weakly similar to IIII ALU SUBFAMI	5.2
	123527	Hs.108327	AA608679	damage-specific DNA binding protein 1 (1	5.2
	116646	Hs.194228	F03048	ESTs; Moderately similar to IIII ALU SUB	5.2
	101448	Hs.195850	M21389	keratin 5 (epidermolysis bullosa simplex	5.1
20	116188	Hs.184598	AA464728	ESTs; Weakly similar to IIII ALU SUBFAMI	5.1
		Hs.281428		ESTs; Moderately similar to !!!! ALU SUB	5.1
		Hs.169119		ESTs	5.1
		Hs.54416		sine oculis homeobox (Drosophila) homolo	5.1
25		Hs.106778		ESTs; Highly similar to (define not ava	5.1
25		Hs.148932		ESTs; Moderately similar to semaphorin V	5.1 5.1
		Hs.226434		ESTs ESTs	5
		Hs.47144 Hs.80342	X07696	keratin 15	5
		Hs.326035		early growth response 1	5
30	126023	IISOLOGO	H58881	yr36d09.ri Soares fetal liver spleen 1NF	5
50		Hs.13804		ESTs	5
		Hs.39288		ESTs; Weakly similar to !!!! ALU SUBFAMI	5
		Hs.89732		zinc finger protein 273	5
		Hs.23311	AB002365	Human mRNA for KIAA0367 gene; partial cd	4.9
35	132047	Hs.3796	D83492	EphB6	4.9
	132880	Hs.177537	AA444369	ESTs	4.9
		Hs.74519		primase; polypeptide 2A (58kD)	4.8
		Hs.71119	U42360	Human N33 mRNA; complete cds	4.8
40	104776		AA026349	ESTs	4.8
40		Hs.128749		Homo sapiens alpha-methylacyl-CoA racema	4.8
		Hs.143087		ESTs Homo sapiens mRNA for KIAA0860 protein;	4.8 4.8
		Hs.26009 Hs.3585	W86307 AA233168	ESTs; Weakly similar to coded for by C.	4.8
		Hs.284186		ESTS, WEARNY SHIMMA TO COULED TO TOY O.	4.8
45		Hs.183390		ESTs; Weakly similar to ZINC FINGER PROT	4.8
		Hs.288126		ESTs .	4.8
	125982		R98091	RAE1 (RNA export 1; S.pombe) homolog	4.8
		Hs.26243	W44682	ESTs	4.8
	103023	Hs.117950	X53793	multifunctional polypeptide similar to S	4.7
50	129735		W80701	ESTs; Weakly similar to HERV-E envelope	4.7
		Hs.106390		ESTs	4.7
	103731		AA070545	zm7c3.r1 Stratagene neuroepithelium (#93	4.7
		Hs.127602		ESTs -	4.7
55	124578	Hs.231500		Human glucose transporter-like protein-l	4.7 4.7
55	130017	Hs.1674 Hs.91622	M90516 H06373	glutamine-fructose-6-phosphate transamin Homo sapiens clone 24456 mRNA sequence	4.7
		Hs.82007	D42084	Human mRNA for KIAA0094 gene; partial cd	4.7
		Hs.89576	Al479264	ESTs	4.7
		Hs.32990	AA610086	ESTs	4.7
60		Hs.239489		TIA1 cytotoxic granule-associated RNA-bi	4.7
••		Hs.91011	AA055768	ESTs	4.6
	103806		AA130614	zo1f2.r1 Stratagene neuroepithelium NT2R	4.6
	130529		AA173238	small inducible cytokine A5 (RANTES)	4.6
		Hs.82065	AA406546	ESTs	4.6
65		Hs.293798		ESTs	4.6
		Hs.29679	AA452411	ESTs	4.6
		Hs.14158	W86835	copine III	4.6
		Hs.100070	M91493 HG371-HT1063	EST Mucin 1, Epithelial, Alt. Splice 6	4.6 4.6
	100//4	Hs.89603	1103/17111003	much 1, Episiosa, Ast. Opiso 0	4.0

	400000	11- 440000	LICODOC LITTODAO	Det Transfermine Cone	4.6
				Ret Transforming Gene	
		Hs.3731	D11900	ESTs	4.8
	126086		H70975	yr73g01.r1 Soares fetal liver spleen 1NF	4.6
	130888	Hs.173094	F03819	ESTs	4.6
5	106390	Hs.20166	AA446964	Prostate stem cell antigen	4.6
_	126959		AA199853	ESTs; Moderately similar to !!!! ALU SUB	4.5
		Hs.29117	X91648	H.sapiens mRNA for pur alpha extended 3'	4.5
		Hs.20953	AA039481	ESTs	4.5
		TIS.20533			4.5
10	125661		R50319	ESTs	
10		Hs.234726		alpha-1-antichymotrypsin	4.5
	103928	Hs.199160	AA280085	ESTs	4.5
	102899	Hs.75730	X06272	signal recognition particle receptor ('d	4.5
	100892	Hs 180789	HG4557-HT4962	Small Nuclear Ribonucleoprotein U1, 1snr	4.5
		Hs.7956	AA425906	ESTs	4.5
15		Hs.317584		ESTs	4.5
IJ				= -	4.5
		Hs.24758		ESTs	
		Hs.44566	U28831	Human protein immuno-reactive with anti-	4.4
		Hs.38176	T89386	Homo sapiens mRNA for KIAA0606 protein;	4.4
	133718	Hs.198760	X15306	neurofilament; heavy potypeptide (200kD)	4.4
20	101470	Hs.1846	M22898	tumor protein p53 (Li-Fraumeni syndrome)	4.4
		Hs.284296	AA143019	ESTs; Highly similar to surface 4 integr	4.4
		Hs.22514		ESTs	4.4
				ESTs	4.4
		Hs.119394			4.4
0.5		Hs.29894		ESTs	
25		Hs.98518	AA429278	ESTs	4.4
	134401	Hs.211577	AA243746	ESTs; Highly similar to CG1 protein [H.s	4.4
	126458	Hs.288969	AA815252	ESTs; Weakly similar to IIII ALU SUBFAMI	4.4
	133435	Hs.323966	T23983	ESTs: Moderately similar to IIII ALU SUB	4.4
		Hs.21941		ESTs	4.3
30	127315	11021017	AA840834	nr27b06_r1 NCI_CGAP_Pr3 Homo sapiens cDN	4.3
50		Hs.54424		H.saplens mRNA for hepatocyte nuclear fa	4.3
					4.3
		Hs.282990		ESTs; Weakly similar to F52C12.2 [C.eleg	
		Hs.47567		EST	4.3
	130008	Hs.278427	M31423	cerebellar degeneration-related protein	4.3
35	126607	Hs.114688	W87424	ESTs	4.3
	123061	Hs.105130	AA482030	EST	4.3
		Hs.184245		ESTs	4.3
	109175	1,21,10 12 10	AA180496	ESTs	4.3
		Hs.173540		ESTs; Wealdy similar to (defline not ava	4.3
40					4.3
40		Hs.46638		chromosome 11 open reading frame 8	
		Hs.79993		peroxisomal biogenesis factor 7	4.3
	104258	Hs.5462	AF007216	solute carrier family 4; sodium bicarbon	4.3
	130759	Hs.18946	AA094720	ESTs; Weakly similar to (defline not ava	4.3
•	132160	Hs.295923	AA281770	seven in absentia (Drosophila) homolog 1	4.3
45		Hs.93872		ESTs	4.3
		Hs.334762		ESTs; Weakly similar to KIAA0319 [H.sapi	4.2
					4.2
		Hs.98747		EST	4.2
		Hs.6574	AF007165	suppressin (nuclear deformed epidermal a	
F 0		Hs.20843		ESTs	4.2
50	133294	Hs.69997	R79723	H.saplens mRNA for translin associated z	4.2
	134436	Hs.83190	S80437	fatty acid synthase (3' region) [hurnan,	4.2
		Hs.251064		NBR2	4.2
		Hs.27413	AA436158	ESTs	. 4.2
		Hs.248210		H.sapiens Mahlavu hepatocellular carcino	42
55		Hs.59815		EST TEST	42
33					4.2
		Hs.283978		ESTs; Highly similar to (define not ava	
	129637	Hs.1179	D90359	TATA box binding protein (TBP)-associate	4.2
	106566		AA455921	ESTs; Weakly similar to !!!! ALU SUBFAMI	4.2
		Hs.29852	R79220	ESTs	42
60		Hs.279929		H.sapiens mRNA for gp25L2 protein	4.2
		Hs.57419		transcriptional repressor	4.2
		Hs.326292		ESTs	4.2
				ESTs	42
		Hs.94109			4.1
~~		Hs.105938		lactotransferrin	
65		Hs.108850		yg95c6.r1 Soares infant brain 1NIB Homo	4.1
	133167	Hs.6641	N98707	kinesin family member 5C	4.1
	126871	Hs.14051	AA351779	ESTs	4.1
		Hs.45032		ESTs	4.1
		Hs.327179		solute carrier family 17 (sodium phospha	4.1
	101010	10.02/1/0		and annual second in faceton broading	

	128517	Hs.100861	AA280617	ESTs; Weakly similar to p60 katanin [H.s	4.1
	130555	Hs.116774	AA450324	ESTs	4.1
		Hs.24183		ESTs	4.1
					4.1
_		Hs.26369		ESTs	
5		Hs.181889		ESTs	4.1
	117280	Hs.172129	N22107	ESTs; Moderately similar to IIII ALU SUB	4.1
	100234	Hs.3085	D29677	KIAA0054 gene product	4.1
		Hs.118127		actin; alpha; cardiac muscle	4.1
		Hs.12913			4.1
10				ESTs; Weakly similar to (defline not ava	
10		Hs.8859	AA128486	ESTs	4.1
	126735	Hs.226795	AA808949	glutathione S-transferase pi	4.1
	113056	Hs.8036	T26471	ESTs; Moderately similar to !!!! ALU SUB	4
		Hs.211582	114R959	Homo sapiens myosin light chain kinase (4
		Hs.26813			4
15				ESTs; Weakly similar to (defline not ava	
15		Hs.104207		ESTs	4
		Hs.267967		ESTs; Weakly similar to !!!! ALU SUBFAMI	4
	105329	Hs,22862	AA234561	ESTs	4
	115504	Hs.42736	AA291946	ESTs	4
		Hs.97293		ESTs	4
20					4
20		Hs.94560		desmoglein 2	*
		Hs.144941		ESTs	4
	106394	Hs.25320	AA447223	ESTs	4
	128048		AA873285	ESTs	4
		Hs.114366		pyrroline-5-carboxylate synthetase (glut	4
25					4
23		Hs.27004		ESTS	
		Hs.86276	W27601	ESTs; Moderately similar to (define not	4
	129593	Hs.98314	AA487015	ESTs; Weakly similar to !!!! ALU SUBFAMI	3.9
	110151	Hs.31608	H18836	ESTs	3.9
		Hs.8645	AA235303	ESTs	3.9
30		Hs.301871		ESTs	3.9
30					
		Hs.111496		ESTs	3.9
	127800	Hs.79428 ·	AA521047	BCL2/adenovirus E1B 19kD-interacting pro	3.9
	114555	Hs.167904	AA058594	ESTs	3.9
	122138	Hs.163960	AA435549	ESTs	3.9
35		Hs.198726		vasoactive intestinal peptide receptor 1	3.9
<i>JJ</i>				vasoacuve unosunai papude receptor i	
		Hs.75216		protein tyrosine phosphatase; receptor t	3.9
	133908	Hs.325474	M83216	caldesmon 1	3.9
	105635	Hs.301985	AA281508	ESTs	3.9
	134285	Hs.81086	AA460012	solute carrier family 22 (organic cation	3.9
40		Hs.50421	R38102	KIAA0203 gene product	3.9
70					
		Hs.241493		natural killer-tumor recognition sequenc	3.9
		Hs.186600		ESTs	3.9
	100642	Hs.182183	HG2743-HT3926	Caldesmon 1, Alt. Splice 6, Non-Muscle	3.9
	104334	Hs.78771	D82614	ESTs	3.9
45		Hs.19978		ESTs	3.9
		Hs.289008		ESTs	3.9
				-	
		Hs.303193		zt87e9.r1 Soares_testis_NHT Homo sapiens	3.9
	105823	Hs.293960	AA398197	ESTs	3.9
	126499	Hs.110445	AA315671	ESTs; Moderately similar to unknown [M.m	3.9
50	130752	Hs.18895	D50927	KIAA0137 gene product	3.8
•		Hs.112110		ESTs	3.8
				ESTs	3.8
		Hs.32478			
		Hs.71721	AA142913	ESTs	- 3.8
	115506	Hs.45207	AA292537	ESTs	3.8
55	100452	Hs.241552	D87742	Human mRNA for KIAA0268 gene; partial cd	3.8
	104454	Hs.129228	M84443	galactokinase 2	3.8
		Hs.102859		ESTs .	3.8
		Hs.24427	AA24778B	ESTs; Highly similar to (defline not ava	3.8
60		Hs.269228		ESTs	3.8
60	104946	Hs.73848	AA069549	ESTs	3.8
	106932	Hs.9394	AA495926	ESTs	3.8
	101724		M69225	bullous pemphigoid antigen 1 (230/240kD)	3.8
					3.8
		Hs.14912	AA424524	Homo sapiens mRNA for KIAA0286 gene; par	
~=		Hs.269721		ESTs	3.8
65		Hs.58694		ESTs	3.8
	126457	Hs.50382	AA007489	zh98g04.r1 Soares_fetal_liver_spleen_1NF	3.8
		Hs.112969		EST	3.7
		Hs.17752	H95978	Homo saplens phosphatidylserine-specific	3.7
	130577		M35410	insulin-like growth factor binding prote	3.7
	130311	113,102	HIDOTTU	meant-ma Rount mores parmitA biora	3.1

	117667	Hs.44708	N39214	ser-Thr protein kinase related to the my	3.7
		Hs.39712	N77278	ESTs; Weakly similar to BONE/CARTILAGE P	3.7
		Hs.278721		Homo sapiens mRNA for membrane protein w	3.7
		Hs.305971		ESTs	3.7
5		Hs.193700		ESTs; Moderately similar to IIII ALU SUB	3.7
3		Hs.1592	U18291	CDC16 (cell division cycle 16; S. cerevi	3.7
		Hs.183475		ESTs; Moderately similar to IIII ALU SUB	3.7
		Hs.272531		EST	3.7
		Hs.23837	N22222	yw34b06.s1 Morton Fetal Cochlea Homo sap	3.7
10		Hs.60293	AA496037	ESTs	3.7
		Hs.15683	T92030	ESTs	3.7
		Hs.279952	AA027793	ESTs; Highly similar to (defline not ava	3.7
		Hs.19347	AA248406	ESTs	3.7
		Hs.291025	AA495836	EST	3.7
15		Hs.22380		ESTs	3.7
	103153	Hs.75295	X66534	guanylate cyclase 1; soluble; alpha 3	3.7
	129201	Hs.109390	H19969	ESTS	3.7
	114798	Hs.54900	AA159181	ESTs	3.7
	126801	Hs.7337	AA512802	ESTs	3.7
20	105503	Hs.31707	AA256616	ESTs	3.7
	104260	Hs.194283	AF008192	Homo saplens putative GR6 protein (GR6)	3.7
	125980	Hs.35699	R97219	ESTs	3.7
	123255	Hs.105273	AA490890	ESTs	3.6
		Hs.6363	AA206625	ESTs	3.6
25	100696	Hs.121686	HG3162-HT3339	Transcription Factor lia	3.6
	134917	Hs.166994		FAT tumor suppressor (Drosophila) homolo	3.6
	103520		Y10511	H.sapiens mRNA for CD176 protein	3.6
		Hs.302738		ESTs	3.6
	101838	Hs.75511	M92934	connective tissue growth factor	3.6
30	113702		T97307	ESTs; Moderately similar to IIII ALU SUB	3.6
		Hs.48428		EST	3.6
		Hs.68554		EST	3.6
		Hs.22983		ESTs; Moderately similar to UDP-GLUCOSE:	3.6
25		Hs.170291		ESTS	3.6 3.6
35		Hs.27973	AA806365	oc26h07.s1 NCL_CGAP_GCB1 Homo saplens cD	3.6
	101964	11- 000440	S81578	dioxin-responsive gene (putative polyade	3.6
		Hs.326416		ESTs ESTs	3.6
		Hs.337434 Hs.142296		ESTS	3.6
40				V-Erba Related Ear-3 Protein	3.6
		Hs.164018		ESTs ·	3.6
		Hs.274265		talin	3.6
		Hs.44155	T52099	creatine kinase; mitochondrial 2 (sarcom	3.6
		Hs.183639		ESTs	3.6
45		Hs.184325		ESTs	3.6
		Hs.270696		ESTs: Moderately similar to !!!! ALU SUB	3.6
		Hs.199067		v-erb-b2 avian erythroblastic leukemia v	3.6
		Hs.44829		ESTs; Moderately similar to IIII ALU SUB	3.6
		Hs.35841	AA436459	nuclear factor I/X (CCAAT-binding transc	3.6
50	131898	Hs.279780	N52232	ESTs	3.6
	133444	Hs.73793	M27281	vascular endothelial growth factor	3.6
	128232	Hs.334641	H06296	ESTs	3.6
	135357	Hs.79572	AA235803	ESTs -	3.5
	457951		Al369384	arylsulfatase D	3.5
55	108407		AA075519	zm87h9.s1 Stratagene ovarian cancer (#93	3.5
	126659		T16245	a disintegrin and metalloproteinase doma	3.5
	104189	Hs.301804	AA485805	ESTs	3.5
		Hs.129014		EST ₈	3.5
		Hs.79386		Human mRNA for a 64 Kd autoantigen expre	3.5
60	133011	Hs.171921	AA042990	sema domain; immunoglobulin domain (lg);	3.5
	131379	Hs.26176	H49035	ESTs	3.5
		Hs.169359		yr57e06.r1 Soares fetal liver spleen 1NF	3.5
	105560	Hs.306915	AA262783	ESTs	3.5
65	118472	Hs.42179	N66818	ESTs	3.5
65		Hs.30127		ESTs; Highly similar to !!!! ALU SUBFAMI	3.5
			AA172076	ESTs; Moderately similar to IIII ALU SUB	3.5
		Hs.26771	AA126472	ESTs	3.5
			AA128997	phosphodiesterase 9A	3.5 3.5
	117473	Hs.155560	N3U15/	ESTs	3.0

	102663	Hs.168075	1170322	karyopherin (importin) beta 2	3.5
		Hs.13531	AA442868	ESTs; Weakly similar to (define not ava	3.5
		Hs.41119		ESTs (Vocato) daniele de (domino riotata	3.5
		Hs.30696			3.5
·5				transcription factor-like 5 (basic helix	3.5
J		Hs.163191		EST	
		Hs.189810		Human DNA sequence from PAC 388M5 on chr	3.5
	119071		R31180	ESTs	3.5
		Hs.96593		ESTs	3.5
	110721	Hs.31319	H97678	ESTs	3.5
10	126586	Hs.43086	AA011247	ESTs	3.5
	103106	Hs.1857	X62025	phosphodiesterase 6G; cGMP-specific; rod	3.5
	116357	Hs.90797	AA504806	Homo saplens clone 23620 mRNA sequence	3.5
		Hs.4104	AA233790	ESTs	3.5
		Hs.19525	R39390	ESTs	3.5
15		Hs.52184	AA167708	ESTs ·	3.5
13		Hs.2839	X65724	Norrie disease (pseudoglioma)	3.5
					3.5
		Hs.301449		adenovirus 5 E1A binding protein	
		Hs.49418	N6796B	ESTS	3.5
00		Hs.11223	U82389	Human putative cytosolic NADP-dependent	3.4
20		Hs.6456	T69868	chaperonin containing TCP1; subunit 2 (b	3.4
	109160	Hs.301997	AA179387	ESTs	3.4
	105327	Hs.211593	AA234440	ESTs	3.4
	106586	Hs.57787	AA456598	ESTs	3.4
	122635		AA454085	EST	3.4
25		Hs.260116		metalloprotease 1 (pitrilysin family)	3.4
		Hs.34956	AA283620	ESTs	3.4
		Hs.182793		ESTs	3.4
		Hs.292503		ESTs; Weakly similar to KIAA0601 protein	3.4
			. "		3.4
20		Hs.184298		cyclin-dependent kinase 7 (homolog of Xe	
30		Hs.237658		ESTs; Highly similar to apolipoprotein A	3.4
	118475		N66845	ESTs; Weakly similar to IIII ALU CLASS B	3.4
		Hs.88959		ESTs; Wealdy similar to IIII ALU SUBFAMI	3.4
	128307	Hs.132005	Al453794	ESTs	3.4
	112254	Hs.25829	R51831	ESTs	3.4
35	125408	Hs.89578	N72353	yv37e12.r1 Soares fetal liver spleen 1NF	3.4
		Hs.175955		ESTs	3.4
		Hs.20191		seven in absentia (Drosophila) homolog 2	3,4
		Hs.20843		nj68h04.s1 NCI_CGAP_Pr10 Homo sapiens cD	3.4
		Hs.42500		ESTs	3.4
40		Hs.295978		stimulated trans-acting factor (50 kDa)	3.4
40					3.4
		Hs.187983		ESTS	
		Hs.92127		ESTS	3.4
		Hs.8868	AA481414	golgi SNAP receptor complex member 1	3.4
		Hs.166196		ESTs	3.4
45		Hs.155983		H.saplens mRNA for 5'UTR for unknown pro	3.4
	134835	Hs.89925	L04569	calcium channel; voltage-dependent; L ty	3.4
	130568	Hs.16085	AA232535	ESTs; Highly similar to (defline not ava	3.4
	111331	Hs.15978	N78773	ESTs	3.4
	106036	Hs.10653	AA412505	ESTs	3.4
50		Hs.21893		ESTs	3.4
		Hs.35828	R98192	ESTs	3.4
		Hs.255015		ob93c10.s1 NCI_CGAP_GCB1 Homo sapiens cD	3.4
		Hs.75616		KIAA0018 gene product	3.4
				Homo sapiens DNA binding protein for sur	3.4
55		Hs.247992			3.4
22		Hs.20621	T08287	ESTs	
		Hs.26994	AA489009	ESTS	3.4
		Hs.302267		ESTS	3.4
	125957		H45213	yoO3b08.r1 Soares adult brain N2b5HB55Y	3.3
		Hs.146085		ESTs	3.3
60	109826	Hs.75354	F13702	ESTs	3.3
	125355	Hs.170098	R45630	ESTs; Highly similar to KIAA0372 [H.sapi	3.3
	104182	Hs.143792	AA479990	ESTs; Weakly similar to glioma amplified	3.3
		Hs.75454	D49396	Human mRNA for Apo1_Human (MER5(Aop1-Mou	3.3
		Hs.30692	U24153	p21 (CDKN1A)-activated kinase 2	3.3
65		Hs.88201	AA481256	ESTs; Weakly similar to (defiine not ava	3.3
35		Hs.230	U05291	fibromodulin	3.3
		Hs.14658	R99606	Human chromosome 5q13.1 clone 5G8 mRNA	3.3
		Hs.159456		ESTs; Highly similar to (defline not ava	3.3
				Meis (mouse) homolog 2	3.3
	128/0/	Hs.104105	MA1304/4	אופום (ייוטעספי) וועוזוטוטן ב	3.3

	115048	Hs.190057	AA252668	ESTs	3.3
		Hs.31110		ESTs	3.3
		Hs.24192	R31679	ESTs	3.3
_		Hs.2877	X63629	cadherin 3; P-cadherin (placental)	3.3
5		Hs.62604		ESTs	3.3
		Hs.79284		mesoderm specific transcript (mouse) hom	3.3
		Hs.301804		ESTs	3.3 3.3
		Hs.159627		Death associated protein 3 solute carrier family 15 (H+/peptide tra	3.3
10		Hs.182575 Hs.140942		ESTs	3.3
10			HG3264-HT3441		3.3
		Hs.61635		Homo sapiens BAC clone RG041D11 from 7q2	3.3
		Hs.65114		keratin 18	3.3
	132616	Hs.283558	AA386264	ESTs	3.3
15	125132	Hs.129781	W15495	ESTs	3.3
		Hs.31652		ESTs	3.3
		Hs.87113		ESTs ·	3.3
		Hs.112227		ESTS	3.3 3.3
20		Hs.12315 Hs.178604		ESTs ESTs	3.3
20		Hs.155995		Homo sapiens mRNA for KIAA0643 protein;	3.3
		Hs.284294		ESTs	3.3
		Hs.7569	T26893	EST	3.3
		Hs.82318	S69790	Brush-1	3.3
25		Hs.333256		ESTs; Moderately similar to IIII ALU SUB	3.3
		Hs.294105		ESTs	3.3
		Hs.194215		ESTs	3.3
		Hs.299867		hepatocyte nuclear factor 3; alpha	3.3 3.3
30		Hs.190151		ESTs; Weakly similar to IIII ALU SUBFAMI	3.3
30		Hs.47402 Hs.11500		ESTS WEARY SHIRIED TO HIT ALO SODE AVII	3.3
		Hs.126494		ESTs	3.3
	127265	110.120404	AA332751	EST37214 Embryo, 8 week I Homo sapiens c	3.3
		Hs.41143	AA011027	Homo sapiens mRNA for KIAA0581 protein;	3.2
35	104866	Hs.293691	AA045342	ESTs	3.2
		Hs.250655		H.sapiens mRNA for Ptg-12 protein	3.2
		Hs.334334		ESTs	3.2
		Hs.251946		ESTs	3.2
40		Hs.44481		forkhead (Drosophila)-like 6	3.2 3.2
40		Hs.32425 Hs.169780		ESTs homologous to yeast nitrogen permease (c	3.2
		Hs.292581		ESTs	3.2
		Hs.284207		ESTs	3.2
		Hs.105116		EST	3.2
45		Hs.63908		ESTs	3.2
		Hs.194657		H.sapiens gene encoding E-cadherin, exon	3.2
		Hs.270016		ESTs	3.2
		Hs.74137		Homo sapiens (clone s153) mRNA fragment	3.2 3.2
50	101183 125596	M\$./95	L19779 R25698	H2A histone family; member O yg44h11.r2 Soares infant brain 1NIB Homo	3.2
50	127261		AA661567	nu86b02.s1 NCL_CGAP_AIV1 Homo sapiens cD	3.2
		Hs.59554		ESTs	3.2
		Hs.166982		phosphatidylinositol glycan; class F	3.2
	120923	Hs.97129	AA382283	ESTS	3.2
55		Hs.274256		ESTs	3.2
		Hs.191185		ESTs	3.2
		Hs.99913		adrenergic; beta-1-; receptor	3.2
		Hs.278634		Human mRNA for KIAA0146 gene; partial cd	3.2 3.2
60		Hs.192803 Hs.84072		xeroderma pigmentosum; complementation g transmembrane 4 superfamily member 3	3.2
JU		Hs.116774		Integrin; alpha 1	3.2
		Hs.24095		ESTs	3.2
		Hs.70937	Z83735	H3 histone family; member K	3.2
		Hs.189716		ESTs	3.2
65		Hs.104696		ESTs .	3.2
		Hs.6639	W28406	ESTs	3.2
		Hs.334335 Hs.185766		ESTs ESTs	3.2 3.2
	,	Hs.130760		Homo sapiens mRNA; cDNA DKFZp586N0318 (f	3.2
	101012	113.100100	-V1003113	Home school many cours ou choostools (

	102214	Hs.32964	U23752	SRY (sex-determining region Y)-box 11	3.2
	123147		AA487961	ab11h6.s1 Stratagene lung (#93721) Homo	3.2
		Hs.272138		ye87g03.r1 Soares fetal liver spleen 1NF	3.2
					3.2
_		Hs.250646		ESTs; Highly similar to ubiquitin-conjug	
5	105169	Hs.180789	AA180321	Homo sapiens (clone S164) mRNA; 3' end o	3.2
		Hs.78344		myosin; heavy polypeptide 11; smooth mus	3.2
				ESTs	3.2
		Hs.304389			
	133205	Hs.67619	AA089559	Homo sapiens mRNA; chromosome 1 specific	3.2
	102988	Hs.182378	X17648	colony stimulating factor 1 (macrophage)	3.2
10		Hs.242894		ADP-ribosylation factor-like 1	3.1
10					3.1
		Hs.234896		ESTs; Highly similar to geminin [H.sapie	
	104281	Hs.5669	C14290	ESTs	3.1
	123926	Hs.227933	AA621348	ESTs; Highly similar to (defline not ava	3.1
		Hs.239720		ESTs; Weakly similar to Rga [D.melanogas	3.1
15					3.1
13		Hs.16346		ESTs	
	100631	Hs.48332	HG2709-H12805	Serine/Threonine Kinase (Gb:Z25431)	3.1
	130791	Hs.199263	AA259102	ESTs; Highly similar to (defline not ava	3.1
		Hs.300855		ESTs	3.1
				ESTs	3.1
00		Hs.123642			
20	125562	Hs.98968	AJ484372	ESTs	3.1
	134110	Hs.79136	U41060	Human breast cancer; estrogen regulated	3.1
		Hs.47334		ESTs; Moderately similar to !!!! ALU SUB	3.1
					3.1
		Hs.296842		ESTs; Moderately similar to non-muscle m	
	125863	Hs.40719	AA299096	Homo sapiens mRNA; cDNA DKFZp564M0916 (f	3.1
25	105811	Hs.286192	AA394121	ESTs	3.1
		Hs.296141		ESTs	3.1
					3.1
		Hs.178294		ESTs	
	107332	Hs,183297	T87750	ESTs	3.1
	123570	Hs.109653	AA608955	EST8	3.1
30		Hs.90800		matrix metalloproteinase 16 (membrane-in	3.1
50					3.1
		Hs.38972		tetraspan 1	
	133284	Hs.182828	U09367	zinc finger protein 136 (clone pHZ-20)	3.1
	131839	Hs.33010	H80622	Homo sapiens mRNA for KIAA0633 protein;	3.1
		Hs.44698		ESTs	3.1
25					3.1
35		Hs.287849		ESTs	
	125180	Hs.103120	W58344	ESTs	3.1
	100789		HG3893-HT4163	Phosphoglucomutase 1, Alt. Splice	3.1
		Hs.159440		ESTs	3.1
					3.1
40		Hs.247324		Homo sapiens DNA sequence from PAC 262D1	
40	129077	Hs.108479	H78886	ESTs	3.1
	126563	Hs.181368	W26247	U5 snRNP-specific protein (220 kD); orth	3.1
		Hs.118258		ESTs	3.1
		113.110220	AA599033	ESTs	3.1
	123465				
			AA345339	EST51345 Gall bladder II Homo saplens cD	3.1
45	126460	Hs.167031	W01616	za36d05.r1 Soares fetal liver spieen 1NF	3.1
		Hs.43234		ESTs	3.1
		Hs.38057		ESTs	3.1
			AA971439	ESTs	3.1
	124984	Hs.223241	T47566	yb15c11.s1 Stratagene placenta (#937225)	3.1
50	103903	Hs.15220	AA249334	312 seq.F Human fetal heart, Lambda ZAP	3.1
		Hs.22242		ESTs	3.1
				==::-	
		Hs.20993		ESTs; Weakly similar to Ydr374cp [S.cere	3
			W92779	ESTs	- 3
	128835	Hs.106390	W15528	ESTs	3
55	103887	Hs.247815	780788	H.sapiens H4/I gene	3
55				yy13h06.r1 Soares melanocyte 2NbHM Homo	3
		Hs.250614			
	132626	Hs.21275	U25/55	ESTs	3
	131107	Hs.75354	N87590	ESTs	3
	126780	Hs.5811	R12421	ESTs	3
60			AA307744	Homo sapiens Cdc14B1 phosphatase mRNA; c	3
vv					9
			AA016186	ESTs	3
	102589	Hs.8867	U62015	Homo sapiens Cyr61 mRNA, complete cds	3
		Hs.24336	W37999	ESTs	3
		Hs.301404		RNA binding motif protein 3	3
45					9
65			AA292689	ESTs	3
	101038	Hs.79411	J05249	replication protein A2 (32kD)	3
	102856	Hs.248177	X00090	Human histone H3 gene	3
		Hs.30738	AA257971	ESTs	3
					3
	13113/	Hs.33287	U85193	nuclear factor I/B	3

	107001	Hs.241551	MISEASSA	ESTs	3
			R26708	ESTs	3
					3
			U26174	granzyme K (serine protease; granzyme 3;	3
_				Serine/Threonine Kinase (Gb:Z25428)	3
5			W86838	EST	
		Hs.118281		zinc finger protein 266	3
		Hs.76152	M14219	decorin	3
			AA010889	ESTs	.3
	126371	Hs.304139	N57645	EST	3
10	127635	Hs.116346	AA766903	ESTs	3
	128434	Hs.143880	Al190914	ESTs	3
	435761	Hs.187555	AA701941	ESTs	3
	125025	Hs.50748	T71561	ESTs	3
	124940	Hs.103804	R99599	heterogeneous nuclear ribonucleoprotein	3
15		Hs.251531		proteasome (prosome; macropain) subunit;	3
		Hs.10450	AA621125	Homo sapiens chromosome 2; 10 repeat reg	3
		Hs.22545	R43910	ESTs	3
		Hs.263727		ESTs; Moderately similar to IIII ALU SUB	3
		Hs.21739	AA370302	Homo sapiens mRNA; cDNA DKFZp58611518 (f	3
20		Hs.274407		thymus specific serine peptidase	3
20		Hs.75847	N79435	ESTs	3
		Hs.227949		ESTs; Highly similar to SEC13-RELATED PR	3
			N30426	ESTs	3
		Hs.44189		ESTS	3
25		Hs.112699			3
25			AA298588	EST114219 HSC172 cells II Homo sapiens c	3
		Hs.7367	AA112222	ESTs; Moderately similar to (defline not	2.9
-		Hs.80975	AA255903	CD39-like 4	
		Hs.89890	S72370	pyruvate carboxylase	2.9
		Hs.101810		ESTs; Weakly similar to !!!! ALU SUBFAM!	2.9
30		Hs.7980	F09570	ESTs	2.9
	123522	Hs.112575		ESTs	2.9
	107109	Hs.32793	AA609943	ESTs	2.9
		Hs.88556	D50405	histone deacetylase 1	2.9
	134399	Hs.82689	H99801	tumor rejection antigen (gp96) 1	2.9
35		Hs.174139	AA398710	H. sapiens RNA for CLCN3	2.9
	106683	Hs.14512	AA461495	ESTs	2.9
	108555		AA084963	zn13e12.s1 Stratagene hNT neuron (#93723	2.9
		Hs.2110	HG945-HT945	Nucleic Acid-Binding Protein (Gb:L12693)	2.9
		Hs.16492	AA173998	ESTs; Weakly similar to weakly similar t	2.9
40		Hs.139226		replication factor C (activator 1) 2 (40	2.9
		Hs.286	AA459950	ESTs	2.9
		Hs.108708		calcium/calmodulin-dependent protein kin	2.9
		Hs.251871		stromal cell-derived factor 1	2.9
		Hs.9857	AA433946	ESTs; Weakly similar to (defline not ava	2.9
45		Hs.301636		peroxisomal biogenesis factor 6	2.9
73		Hs.98074	AA056263	ESTs; Moderately similar to IIII ALU SUB	2.9
		Hs.9701	AA402224	Homo sapiens growth arrest and DNA-damag	2.9
	108552	110.0701	AA084912	zn11c7.s1 Stratagene hNT neuron (#937233	2.9
		Hs.190057		16a11 Human retina cDNA randomly primed	2.9
50		Hs.79086	X06323	Human MRL3 mRNA for ribosomal protein L3	2.9
JU				eukaryotic translation initiation factor	2.9
		Hs.211539		Homo sapiens mRNA for cadherin FIB3, par	2.9
		Hs.277422			2.9
		Hs.44104	N29862	ESTS -	2.9
سے سے		Hs.36688	AA437258	ESTs; Moderately similar to WAP four-dis	2.9
55		Hs.250870		protein kinase; mitogen-activated; kinas	
		Hs.32995	AA398412	ESTs	2.9
		Hs.26267	AA458904	ESTs; Weakly similar to torsinA [H.sapie	2.9
	134087	Hs.173824	U51166	thymine-DNA glycosylase	2.9
				Caldesmon 1, Alt. Splice 4, Non-Muscle	2.9
60	104602		R86920	ESTs	2.9
	117203	Hs.42738	H99799	ESTs	2.9
	131889	Hs.34073	AA401912	BH-protocadherin (brain-heart)	2.9
		Hs.155212		methylmalonyi Coenzyme A mutase	2.9
		Hs.5724	AA279422	ESTs	2.9
65		Hs.287912		lectin; mannose-binding; 1	2.9
		Hs.19762		ESTs	2.9
		Hs.285728		H.sapiens mRNA for ArgBPIB protein	2.9
		Hs.132390		ESTs	2.9
		Hs.161002		absent in melanoma 1	2.9

	404740	11- 00005	A A00000F	COT-, I linkly similar to Irisling and our	2.9
		Hs.30985	AA233225	ESTs; Highly similar to (defline not ava	
		Hs.268903		ESTs	2.9
		Hs.15535	Al417137	Homo sapiens done 24582 mRNA sequence	2.9
_	104229	Hs.61289	AB002346 ·	inositol phosphate 5'-phosphatase 2 (syn	2.9
5	126600	Hs.191385	AA699949	ESTs	2.9
	125175	Hs.303030	W52355	EST	2.9
		Hs.34578		ESTs; Weakly similar to IIII ALU SUBFAMI	2.9
		Hs.78961	U14575	protein phosphatase 1; regulatory (inhib	2.9
		Hs.107815		ESTs	2.9
10					2.9
10		Hs.303125		ESTs	
		Hs.218329		heat shock 70kD protein 1	2.9
		Hs.75462	U72649	Human BTG2 (BTG2) mRNA; complete cds	2.9
	105182	Hs.18271	AA191014	ESTs; Weakly similar to Ydr372cp [S.cere	2.9
	133968	Hs.232068	D15050	Human mRNA for transcription factor AREB	2.9
15	117425	Hs.336901	N27154	ESTs	2.9
		Hs.37637	N59845	ESTs	2.9
		Hs.11805	N66066	ESTs	2.9
				ESTs	2.9
		Hs.102897			2.9
20		Hs.79265	AA114183	ESTs; Moderately similar to glutamate py	
20		Hs.267812		sorting nextn 4	2.9
		Hs.279609		pigment epithelium-derived factor	2.9
	103803	Hs.106149	AA127696	ESTs	2.9
	102139	Hs.2128	U15932	dual specificity phosphatase 5	2.9
	128104		AA971000	op67g11.s1 Soares_NFL_T_GBC_S1 Homo sapi	2.8
25		Hs.337631		nz22d08.s1 NCI_CGAP_GCB1 Homo sapiens cD	2.8
23		Hs.180952		ESTs	2.8
					2.8
		Hs.217916		ESTs	
		Hs.93883		myelin protein zero (Charcot-Marie-Tooth	2.8
	126323	Hs.68644	N45014	yy80g06.r1 Soares_multiple_sclerosis_2Nb	2.8
30	121873	Hs.145696	AA426270	ESTs	2.8
	122090	Hs.98684	AA432141	ESTs	2.8
		Hs.322645	N73705	ESTs	2.8
		Hs.99915	M23263	androgen receptor (dihydrotestosterone r	2.8
		Hs.129998		ESTs	2.8
35		Hs.109019		ESTs	2.8
33					2.8
		Hs.12186		cyclin K	
		Hs.32149	H45968	ESTs	2.8
		Hs.5409	AF008442	RNA polymerase I subunit	2.8
	105366	Hs.282093	AA236356	ESTs	2.8
40	106070	Hs.5957	AA417761	Homo sapiens clone 24416 mRNA sequence	2.8
		Hs.25960	M13241	v-myc avian myelocytomatosis viral relat	2.8
		Hs.26255	R42714	EST	2.8
		Hs.250175		Homo sapiens clone 23904 mRNA sequence	2.8
				ESTs	2.8
15		Hs.33130	H44825		2.8
45		Hs.72085	AA236843	ESTs; Weakly similar to unknown [S.cerev	
	128152		R20353	yg20f10.r1 Soares infant brain 1NIB Homo	2.8
	107008	Hs.23740	AA598710	ESTs	2.8
	135243	Hs.97101	AA215333	ESTs	2.8
	103058	Hs.184510	X57348	stratifin	2.8
50		Hs.293845		ESTs	2.8
		Hs.292566		ESTs	2.8
		Hs.12372	H98141	ESTS	2.8
			AA282787		2.8
		Hs.98541		ESTs; Highly similar to (defline not ava	
	115119	Hs.46847	AA256524	Human DNA sequence from clone 30M3 on ch	2.8
55	133865	Hs.170290	F09315	discs; large (Drosophila) homolog 5	2.8
	109415	Hs.110826	AA227219	Homo sapiens CAGF9 mRNA; partial cds	2.8
	128687	Hs.23767	Z38910	ESTs	2.8
	109984	Hs.10299	H09594	ESTs; Moderately similar to IIII ALU SUB	2.8
		Hs.66731	U81599	homeo box B13	2.8
60		Hs.336629		ESTs; Weakly similar to zinc finger prot	2.8
50		Hs.25067	R49116	EST	2.8
				ESTs: Moderately similar to (defline not	2.8
		Hs.173694			
		Hs.6019	AA430108	ESTs	2.8
		Hs.22564	AA160890	myosin VI	2.8
65		Hs.40919		ESTs	2.8
		Hs.1594	U14518	centromere protein A (17kD)	2.8
		Hs.79981	U79242	Human clone 23560 mRNA sequence	2.8
		Hs.274324	W92041	PCAF associated factor 65 alpha	2.8
		Hs.181297		ESTs	2.8

					••
		Hs.134342		ESTs; Weakly similar to seventransmembra	2.8
	107316	Hs.193700	T63174	ESTs; Moderately similar to IIII ALU SUB	2.8
	128059	Hs.145098	AA972446	ESTs	2.8
	124447		N48000	ESTs	2.8
5		Hs.125565		deafness; X-linked 1; progressive	2.8
•		Hs.79018	U20979	chromatin assembly factor I (150 kDa)	2.8
				ESTs	2.8
		Hs.100912			2.8
		Hs.326416		ESTS	2.8
•		Hs.97312		ESTs	
10		Hs.75319		ribonucleotide reductase M2 polypeptide	2.8
		Hs.35198		ESTs	2.8
	104425	Hs.35380	H88496	ESTs ·	2.8
	132991	Hs.62245	AA446906	solute carrier family 25 (mitochondrial	2.8
		Hs.29669		ESTs	2.8
15		Hs.97694		ESTs	2.8
15		Hs.243901		ESTs	2.8
				ESTs	2.8
		Hs.22869			2.8
		Hs.168818		ESTs; Moderately similar to roundabout 1	
		Hs.181444		ESTs; Weakly similar to R12C12.6 [C.eleg	2.8
20	127383	Hs.190478	AA447990	ESTs	2.8
	132598	Hs.530	M81379	collagen; type IV; alpha 3 (Goodpasture	2.8
	101121	Hs.1313	L09753	tumor necrosis factor (ligand) superfami	2.8
		Hs.105640	AA479347	ESTs	2.8
		Hs.1755	AA404324	ESTs	2.8
25			HG1098-HT1098		2.7
23				ESTs	2.7
		Hs.283683			2.7
		Hs.169001		ESTs; Weakly similar to cytochrome P-450	
	432888		T86823	ESTs	2.7
		Hs,188898		ESTs	2.7
30		Hs.155313		Human mRNA for KIAA0333 gene; partial cd	2.7
	121103	Hs.97697	AA398936	ESTs; Wealdy similar to (deffine not ava	2.7
	131129	Hs.23240	R27296	ESTs	2.7
		Hs.272429		calcium-sensing receptor (hypocalciuric	2.7
		Hs.87819		ESTs; Weakly similar to keratin 9; cytos	2.7
35		Hs.25318		ESTs	2.7
<i></i>		Hs.173334		ESTs	2.7
				yx92a07.r1 Soares melanocyte 2NbHM Homo	2.7
		Hs.40639			2.7
		Hs.75262		cathepsin O	
	127230	Hs,274170		Homo sapiens Opa-interacting protein OIP	2.7
40	101584	Hs.84072	M35252	transmembrane 4 superfamily member 3	2.7
	124131	Hs.167489	H19980	ESTs	2.7
	129689	Hs.77873	AA130156	ESTs	2.7
		Hs.9973	W92797	ESTs	2.7
		Hs.132967		ESTs ·	2.7
45		Hs.85963		ESTs; Moderately similar to !!!! ALU SUB	2.7
72		Hs.256301		ESTs	2.7
				ESTs; Weakly similar to HEM45 [H.sapiens	2.7
		Hs.332541		Luman anam manhman amin'n DC 62 mDMA	2.7
		Hs.179825		Human sperm membrane protein BS-63 mRNA,	2.7
		Hs.99598		ESTs	
50		Hs.196384		prostaglandin-endoperoxide synthase 2 (p	2.7
	120537	Hs.160422	AA262790	ESTs .	2.7
		Hs.174140		ATP citrate lyase	2.7
		Hs.211582		ESTs	- 2.7
		Hs.106529		zv81e01.r1 Soares_total_fetus_Nb2HF8_9w	2.7
55	110755	Hs.306044	B03802	ESTs	2.7
55		110,0000	AA323591	EST26392 Cerebellum II Homo saplens cDNA	2.7
	423239	11- 10001	AA127240	ESTs	2.7
		Hs.12321			2.7
		Hs.187516		ESTs	
	102116		U13706	Human ELAV-like neuronal protein 1 isofo	2.7
60		Hs.237225		ESTs; Weakly similar to (defline not ava	2.7
		Hs.278439	C00358	ESTs	2.7
	107614	Hs.40241	AA004878	ESTs; Highly similar to (defline not ava	2.7
		Hs.1259	X55283	asialoglycoprotein receptor 2	2.7
		Hs.283309		ESTs; Weakly similar to !!!! ALU SUBFAM!	2.7
65	128422		T85681	yd60c06.r1 Soares fetal liver spleen 1NF	2.7
UJ		Hs.43899	AA233702	ESTs	2.7
				Homo sapiens RNA polymerase III largest	2.7
		Hs.292284		ESTs; Highly similar to histone H2A [H.s	2.7
		Hs.36727	AA416963		2.7
	104440	Hs.284380	L20492	gamma-glutamyltransferase 1	2.1

	129426	Hs.111323	AA412087	EST; Highly similar to (defline not avai	2.7
					2.7
	123798		AA620411	small inducible cytokine A5 (RANTES)	
	106716	Hs.238928	AA464962	ESTs	2.7
	103663		Z78291	Z78291 Homo saplens brain fetus Homo sap	2.7
<i>E</i> *					
5	114162	Hs.22265	Z38909	ESTs	2.7 .
	113063	Hs.5027	T32438	ESTs	2.7
		110.000			2.7
	127897		AA773857	af80c09.r1 Soares_NhHMPu_S1 Homo sapiens	
	130621	Hs.16803	AA621718	ESTs; Weakly similar to (defline not ava	2.7
		Hs.42796		ESTs; Highly similar to (defline not ava	2.7
10		NS.42/80	AA479958		
10	125499		R11878	yi49d11.r1 Soares infant brain 1NIB Homo	2.7
	133960	Hs.77899	M19267	tropomyosin 1 (alpha)	2.7
	1044/0	Hs.246358	N28843	ESTs; Weakly similar to Similar to colla	2.7
	134982	Hs.92308	N46086	ESTs	2.7
				ESTs	2.7
		Hs.284295			
15	104899	Hs.285574	AA054726	ESTs	2.7
	125401	Hs.337585	A1204637	ESTs; Moderately similar to KIAA0350 [H.	2.7
		Hs.15768		ESTs; Moderately similar to !!!! ALU SUB	2.7
	118449	Hs.164478	N68413	ESTs; Weakly similar to (defline not ava	2.7
					2.7
00		Hs.84318		replication protein A1 (70kD)	
20	121609	Hs.98185	AA416867	EST	2.7
	112225	Hs.27475	W56590	ESTs	2.7
	113962	Hs.285290	W86375	ESTs; Highly similar to (defline not ava	2.7
	121913	Hs.98558	AA428062	ESTs	2.7
		Hs.216717		ESTs	2.7
	108194	HS.216/1/			
25	130799	Hs.12696	AA464273	ESTs	2.7
		Hs.18166	AA489072	Homo saplens mRNA for KIAA0870 protein;	2.7
	103420	Hs.173497	X97065	SEC23-like protein B	2.7
	106186	Hs.6315	AA427398	acetylserotonin N-methyltransferase-like	2.7
		110,0010			2.7
	101349		L77559	Homo sapiens DGS-B partial mRNA	
30	112954	Hs.6655	T16559	ESTs	2.7
		Hs.291079	D07876	ESTs; Wealty similar to unknown [S.cerev	2.7
	128131	Hs.25640	Al283162	claudin 3	2.6
	101864	Hs.75777	M95787	transgelin	2.6
					2.6
~~		Hs.26303		ESTs	
35	130145	Hs.151051	U07620	protein kinase mitogen-activated 10 (MAP	2.6
		Hs.23964	Al362218	ESTS	2.6
	117903	Hs.47111	N50740	ESTs	2.6
	116345	Hs.199067	AA496981	ESTs	2.6
					2.6
40		Hs.4248	AA412620	ESTS	
40	125746	Hs.274256	H03574	yi42b06.r1 Soares placenta Nb2HP Homo sa	2.6
	105073	Hs.89463	AA137034	ESTs	2.6
		110,000			
	102764		U82310	Homo sapiens unknown protein mRNA, parti	2.6
	131367	Hs.173933	AA456687	ESTs	2.6
				nuclear localization signal deleted in v	2.6
4.5		Hs.19500			
45	107427	Hs.46736	W26975	ESTs	2.6
	117877	Hs.44175	N30328	ESTs	2.6
	106290	Hs.16364	AA435542	ESTs	2.6
	126829	Hs.7910	R11547	ESTs	2.6
		Hs.173001		ESTs	2.6
EΛ					_
50	100147	Hs.136348	D13666	osteoblast specific factor 2 (fasciclin	2.6
	104278	Hs.109253	C02582	ESTs; Highly similar to (define not ava	2.6
				ESTs	
		Hs.83484			2.6
	126081	Hs.227835	AJ346024	collagen; type I; alpha 1	2.6
	123579		AA608983	at5d4.s1 Soares_testis_NHT Homo sapiens	2.6
EE					
55		Hs.149923		X-box binding protein 1	2.6
	101434	Hs.1430	M20218	coagulation factor XI (plasma thrombopla	2.6
		Hs.104720		ESTs; Moderately similar to IIII ALU SUB	2.6
	126151	Hs.40808	AA324743	ESTs	2.6
		Hs.21851	D61676	Homo sapiens mRNA; cDNA DKFZp586J2118 (f	2.6
60					
UU		Hs.103391		insulin-like growth factor binding prote	2.6
	130296	Hs.154103	R09286	LIM protein (similar to rat protein kina	2.6
		Hs.191637		ESTs	2.6
	129273	Hs.109968	W63783	ESTs	2.6
		Hs.7788	F07759	ESTs	2.6
65					
O)		Hs.321264		ESTs	2.6
	130963	Hs.21639	U57099	nuclear protein; marker for differentiat	2.6
		Hs.194154		ESTs; Weakly similar to IIII ALU SUBFAMI	2.6
		Hs.103267	AA490858	ESTs; Moderately similar to Rabin3 [R.no	2.6
	121710	Hs.96744	AA419011	ESTs	2.6

	405455	11.004	1157.4000	PAY . I P. I.I I . II . A. AdaMas A	0.0
	125428		W74608	ESTs; Highly similar to (defline not ava	2.6
		Hs.82302	AA436616	ESTs	2.6
	108432		AA076626	Homo sapiens clone 23851 mRNA sequence	2.6
_	126191	Hs.191911	H97728	ESTs	2.6
5	106164	Hs.281434	AA425773	ESTs	2.6
	111519	Hs.268615	R08165	ESTs	2.6
	134590	Hs.173840	W58612	ESTs	2.6
	102565		U59748	Human desert hedgehog (hDHH) mRNA, parti	2.6
	129879	Hs.13109	AA194973	ESTs	2.6
10		Hs.334609		ESTs	2.6
		Hs.21104		ESTs	2.6
		Hs.321709		purinergic receptor P2X; ligand-gated io	2.6
		Hs.29889		ESTs	2.6
		Hs.8535	AA303088	ESTs; Weakly similar to transformation-r	2.6
15		Hs.97967		ESTs	2.6
13		Hs.155485		Human huntingtin interacting protein (HI	2.6
		Hs.102329		ESTs	2.6
		Hs.97199		ESTs	2.6
		Hs.180591			2.6
20				ESTs; Weakly similar to weak similarity	2.6
20		Hs.11463		ESTs; Wealdy similar to (defline not ava	
		Hs.26904		ESTs	2.6
,		Hs.112981		ESTs	2.6
		Hs.104835		ESTs	2.6
~~		Hs.110637		Homo sapiens homeobox protein A10 (HOXA1	2.6
25		Hs.153934		core-binding factor; runt domain; alpha	- 2.6
		Hs.1435	M24470	guanosine monophosphate reductase	2.6
				Trithorax Homolog Hrx	2.6
	104965	Hs.30177	AA084104	ESTs	-2.6
	117711	Hs.46485	N45201	EST	2.6
30	124792	Hs.48712	R44357	EST8	2.6
	111299	Hs.74313	N73808	ESTs .	2.6
	103616	Hs.32971	Z46973	phosphoinositide-3-kinase; class 3	2.6
		Hs.195614	D13642	KIAA0017 gene product	2.6
		Hs.169977		ESTs	2.6
35	100858			Forkhead Family Afx1	2.6
-		Hs.301927		T-cell receptor; alpha (V;D;J;C)	2.6
		Hs.133865		ESTs	2.6
		Hs.92137		v-myc avian myelocytomatosis viral oncog	2.6
		Hs.10247	U30999	Human (memc) mRNA, 3'UTR	2.6
40		Hs.191538		ESTs	2.6
70		Hs.34136		ESTs	2.6
		Hs.268601		ESTs; Weakly similar to (defline not ava	2.6
					2.6
		Hs.21201	Z39338	ESTs; Highly similar to (defline not ava	
15		Hs.40022		EST	2.6
45		Hs.306995		ESTs	2.6
		Hs.78202		SWI/SNF related; matrix associated; acti	2.6
				Caldesmon 1, Alt. Splice 3, Non-Muscle	2.6
		Hs.285996		ESTs	2.6
		Hs.6540	Z40861	ESTs	2.6
50	106060	Hs.171391	AA417287	C-terminal binding protein 2	2.5
	107748	Hs.60772		EST	2.5
	100134	Hs.49	D13264	macrophage scavenger receptor 1	2.5
	133969	Hs.78	U13044	GA-binding protein transcription factor;	2.5
	130992	Hs.74316	AA455001	ESTs	2.5
55	127493	Hs.291701	AA808081	oc39a08.s1 NCI_CGAP_GCB1 Homo sapiens cD	2.5
		Hs.203961		ESTs	2.5
		Hs.44583	N34415	EST	2.5
		Hs.109654		ESTs	2.5
		Hs.2785	Z19574	keratin 17	2.5
60		Hs.5897	AA047151	ESTs	2.5
		Hs.82643	U02680	protein tyrosine kinase 9	2.5
		Hs.20159	AA454156	ESTs	2.5
		Hs.193784		ESTs	2.5
		Hs.24908		ESTs	2.5
65		Hs.75275	D50916	homolog of yeast (S. cerevisiae) ufd2	2.5
U J					2.5
		Hs.121524		glutathione reductase	2.5
		Hs.6166	AA047818	ESTs uridine monophosphate synthetase (orotat	
		Hs.2057	AA128100	C-10 mellon-distributes of the control of	2.5
	129645	Hs.118131	170350	5;10-methenyltetrahydrofolate synthetase	2.5

	126399	Hs.83883	AA128075	zi16d08.r1 Soares_pregnant_uterus_NbHPU	2.5
	134069	Hs.78935	U29607	Homo sapiens elF-2-associated p67 homolo	2.5
	109816	Hs.61960	F11013	ESTs: Weakly similar to KIAA0176 [H.sapi	2.5
	134801	Hs.89695	X02160	insulin receptor	2.5
5	104232	Hs.10587	AB002351	Human mRNA for KIAA0353 gene; partial cd	2.5
	107361	Hs.159486	U72513	Human RPL13-2 pseudogene mRNA; complete	2.5
	106057	Hs.289074	AA417067	ESTs	2.5
	134252	Hs.80720	AA031782	Homo sapiens mRNA; cDNA DKFZp586B1722 (f	2.5
	128062	Hs.105547	AA379500	ESTs	2.5
10	110009	Hs.6614	H10933	ESTs	2.5
	111375	Hs.20432	N93696	ESTs ·	2.5
	122642	Hs.99361	AA454186	ESTs	2.5
	127999	Hs.69851	AA837495	ESTs; Weakly similar to Wiskott-Aldrich	2.5
	105029	Hs.13268	AA126855	ESTs	2.5
15	400000	11-00705	A A 4 40700	POT-, Misside similar to Dimilarity to C	2.5

TABLE 1A show the accession numbers for those primekeys lacking unigeneID's for Table 1. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	CAT number: Gene		que Eos probeset Identifier number ne cluster number nbank accession numbers				
15	Pkey	CAT number	Accessions				
20	126023 126086 102565	111555_1 1596090_1 1606216_1 32479_1	AA071210 AA069899 AA071438 AA084912 AA084803 AA079371 AA079370 H57661 H58881 H75681 H70975 AB010994 U59748 AA064660				
25	125499 125596	481587 1562851_1 1708455_1 37186_1	\$81578 H10543 R11878 R25698 R56582 R56018 AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 AI636743 AW614951 BE467547 AI680833 AI633818 N29986 U87592 U87593 U87590 U87591 S46404 U87587 AA463992 AW206802 AI970376 AI583718 AI672574 N25695 AW665466 AIB18326 AA126128 AI480345 AW013827 AA248638 AI214968 AA204735 AA207155 AA206262				
30	125561	327827_1	AA204833 AW003247 AW496808 Al080480 Al631703 Al651023 Al867418 AW818140 AA502500 Al206199 Al671282 Al352545 BE501030 Al652535 BE465762 AA206331 AW451866 AA471088 AA206342 AA204834 AA206100 AW021661 AA332822 N66048 AA703396 H92278 AW139734 H92683 U87589 U87595 H69001 U87594 BE466420 Al624817 BE466611 Al206344 AA574397 AA348354 Al493192 AA491830 R50173 R55192 R50320 Al732306 Al732305 Al820727 Al820728 R55191 R50319 R50227				
35	125957 125982 127248 103731	1583542_1 1766315_1 227560_1 112052_1	H41694 H45213 R98091 W82898 AA364195 AA325029 AW962050 AA070545 AA131490 AA131373				
40	127265 126659 127315	231687_1 232391_1 1541209_1 37938_1 112618_1	AA330501 AA661567 AA331503 AA332751 AW962542 T16245 R19694 F13545 H10299 T66048 T65279 H18006 AF116622 A1114507 AA640834 AA377999 AA130614 AA071410				
45	104602 128152 128422 127897	502608_1 524482_2 297868_1 1811283_1 446527_1	AA906093 AA971000 H47610 R86920 F07973 R20353 AA442660 T77794 T85681 AA773681 AA773857				
50		120358_1 44573_2	BE288210 Al672315 AW086489 BE298417 AA455921 AA902537 BE327124 R14963 AA085210 AW274273 Al333584 Al369742 Al039658 Al885095 Al476470 Al287650 Al885299 Al985381 AW592624 AW340136 Al266556 AA456390 Al310815 AA464951 Al950087 N70208 R97040 N36809 Al308119 AW967677 N35320 Al251473 H59397 AW971573 R97278 W01059 AW967671 AA908598 AA251875 Al820501 Al820532 W87891 T85904 U71456 T82391 BE328571 T75102 R34725				
55			AA884922 BE326517 Al219788 AA884444 N92578 F13493 AA927794 Al560251 AW874068 AL134043 AW235363 AA663345 AW008282 AA488964 AA283144 Al890387 Al950344 Al741346 Al689062 AA282915 AW102898 Al872193 Al763273 AW173586 AW150329 Al653832 Al762688 AA988777 AA488892 Al356394 AW103813 Al539642 AA642789 AA856975 AW505512 Al961530 AW629970 BE612681 AW276997 AW513601 AW512843 AA044209 AW856538 AA180009 AA337499 AW961101 AA251669 AA251874 Al819225 AW205862 Al683338 Al858509 AW276905 Al633006				
60		2198022 158447_1	AA972584 AA908741 AW072629 AW513986 AA293273 AA969759 N75628 N22398 H84729 H60052 T92487 AI022058 AA780419 AA551005 W80701 AW613456 AI373032 AI564269 F00531 H83488 W37181 W78802 R66056 AI002839 R67840 AA300207 AW959581 T63226 F04005 AA487961 AA178953 AA192740				
65	123579 109175 100789	genbank_AA600 genbank_AA180 tigr_HT4163 tigr_HT4515	3983 AA608983				

	123798	579959_1	AA620411 AA287491
	102116	entrez_U13706	U13706
	102398	entrez_U42359	U42359
	102764	entrez_U82310	U82310
5	118475	genbank_N66845	N66845
	104776	genbank_AA026349	AA026349
	104787	genbank_AA027317	AA027317
	113702	genbank_T97307	T97307
	113938	genbank_W81598	W81598
10	122635	genbank_AA454085	AA454085
	108407	genbank_AA075519	AA075519
	108432	genbank_AA076626	
	108555	genbank_AA084963	AA084963
	101349	entrez_L77559	L77559
15	124447	genbank_N48000	N48000
	119071	genbank_R31180	R31180
	103520	entrez_Y10511	Y10511
	103663	genbank_Z78291	Z78291
2.2	128046	877605_1	AA873285 Al025762
20	126959	546044_1	AA199853 AA206355
	123465	genbank_AA599033	AA599033

MISSING AT THE TIME OF PUBLICATION

TABLE 2: shows a preferred subset of the Accession numbers for genes found in Table 1 which are differentially expressed in prostate tumor tissue compared to normal prostate tissue.

5

Pkey: Unique Eos probeset identifier number ExAcon: Exemplar Accession number, Genbank accession number UnigenelD: Unigene number 10 Unigene Title: Unigene gene title Ratio of tumor to normal body tissue (Relaxed ratio (87/70) R1: UnigeneiD Unigene Title R1 Pkey ExAcen 15 37.2 131919 AA121266 Hs.272458 ESTs 120328 AA196979 Hs.290905 ESTs; Weakly similar to (defline not ava 32.6 101486 M24902 Hs.1852 acid phosphatase; prostate 25.2 119073 R32894 Hs.279477 ESTs 24.8 20 133428 M34376 Hs.183752 microseminoprotein; beta-23.8 128180 AA595348 Hs.171995 kallikrein 3; (prostate specific antigen 21.4 Hs.57771 Homo sapiens mRNA for serine protease (T 18.9 104080 AA402971 127537 AA569531 Hs.162859 ESTs 18.8 Hs.30343 ESTs 131665 R22139 17.À 25 101050 K01911 Hs.1832 neuropeptide Y 17.3 folate hydrolase (prostate-specific memb 130771 N48056 Hs.1915 17 107485 W63793 Hs.262476 S-adenosylmethionine decarboxylase 1 16.7 106155 AA425309 Hs.33287 **ESTs** 16.5 129534 R73640 Hs.11260 ESTs 30 100569 HG2261-HT2351 Antigen, Prostate Specific, Alt. Splice 16 101889 S39329 Hs.181350 kallikrein 2; prostatic 135389 U05237 Hs.99872 fetal Alzheimer antigen 15 12.5 133944 AA045870 Hs.7780 **ESTs** H2B histone family; member Q 130974 X57985 Hs.2178 11.B 35 114768 AA149007 Hs.182339 ESTs 11.B 104660 AA007160 Hs.14846 ESTs 11.4 131061 N64328 Hs.268744 ESTs; Moderately similar to KIAA0273 [H. 10.9 Homo sapiens BAC clone RG041D11 from 7q2 10.7 Hs 61635 126645 Al167942 Homo sapiens mRNA for JM27 protein; comp 10.6 135153 N40141 Hs.95420 40 107033 AA599629 Hs.113314 ESTs 10.6 118417 N66048 ESTs; Weakly similar to polymerase [H.sa 10.5 126758 W37145 Hs.293960 ESTs 10.2 107102 AA609723 Hs.30652 **ESTs** 10.1 116787 H28581 Hs.15641 **ESTs** 10.1 45 Hs.59622 10 115719 AA416997 **ESTs** Hs.203270 ESTs 123209 AA489711 9.9 101664 M60752 Hs.121017 H2A histone family; member A 8.8 Hs.83883 ESTs 9.7 112971 T17185 Hs.106778 ESTs 117984 N51919 9.7 50 Hs.274509 T-cell receptor; gamma cluster 129523 M30894 9.4 132964 AA031360 Hs.167133 ESTs 92 121853 AA425887 119617 W47380 Hs.98502 ESTs 9 8.9 Hs.55999 **ESTs** 105627 AA281245 Hs.23317 **ESTs** 8.8 55 101461 M22430 phospholipase A2; group IIA (platelets; Hs.76422 8.7 124526 N62096 Hs.293185 yz61c5.s1 Soares_multiple_sclerosis_2NbH 133845 T68510 Hs.76704 ESTs 133354 AA055552 Hs.334762 ESTs; Weakly similar to KIAA0319 [H.sapi 119018 N95796 Hs.278695 ESTs 60 100394 D84276 Hs.66052 CD38 antigen (p45) 106579 AA456135 Hs.23023 **ESTs** 7.6 114965 AA250737 Hs.72472 **ESTs** 7.4 112033 R43162 Hs.22627 **ESTs** 7.1 102398 U42359 Human N33 protein form 1 (N33) gene, exo 101201 L22524 matrix metalloproteinase 7 (matrilysin; 65 6.9 Hs.2256

6.8

Hs.155691 pre-B-cell leukemla transcription factor

Hs.302267 ESTs; Weakly similar to W01A6.c [C.elega

101803 M86546

120562 AA280036

	109112	AA169379	Hs.257924	ESTs	6.8
	109795	F10707	Hs.326416	ESTs	6.7
	130336	X07730	Hs.171995	kallikrein 3; (prostate specific antigen	6.6
	131425	AA219134	Hs.26691	ESTs	6.6
5	132902	AA490969	Hs.59838	ESTs	6.6
	133724	U07919	Hs.75746	aldehyde dehydrogenase 6	6.5
	120215	Z41050	Hs.108787	Homo sapiens Mcd4p homolog mRNA; comp	let 6.5
	131881	AA010163	Hs,3383	upstream regulatory element binding prot	6.5
	100727	X07290	Hs.334786	Human HF.12 gene mRNA	6.3
10	121770	AA421714	Hs.278428	Homo sapiens mRNA for KIAA0896 protein;	6.3
	123475	AA599267	Hs.250528	ESTs; Weakly similar to ANKYRIN; BRAIN V	6.3
	133061	AB000584	Hs.296638	prostate differentiation factor	6.3
		AA609710	Hs.279923	ESTs; Weakly similar to similar to GTP-b	6.2
	101233	L29008	Hs.878	sorbitol dehydrogenase	6.2
15	104691	AA011176	Hs.37744	ESTs	6.2
		AA325029		EST27953 Cerebellum II Homo sapiens cDN	A6.2
	105500	AA258485	Hs.222399		6.1
		AA053400	Hs.203213		5.9
••		AA281793	Hs.72988	ESTs	5.8
20		AA491457	Hs.48948	ESTs	5.7
		Z38B39		ESTs; Weakly similar to !!!! ALU SUBFAMI	5.6
		AA443993	Hs.289072		5.6
		R41933		ESTs; Weakly similar to neuronal thread	5.6
05		M83822		Human beige-like protein (BGL) mRNA; par	5.5
25		N41002	Hs.45107	ESTs	5.5
		AA431407	Hs.98732	Homo sapiens Chromosome 16 BAC clone C	
		AA088851	Hs.262476	S-adenosylmethionine decarboxylase 1	5.5
		W81598	11.040045	ESTs	5.4
30		AA047036	Hs.246315		5.4
<i>3</i> 0		AA056482	Hs.7780	ESTs	5.3
		N25110		Human guanine nucleotide exchange factor	5.3
		AA365031	Hs.98944	ESTs	5.3
		N31952		ESTs; Weakly similar to (defline not ava	5.3 5.3
35		H70627		ESTs; Weakly similar to !!!! ALU SUBFAMI Homo sapiens chromosome 1 atrophin-1 rel	
JJ		AA284143 W26769		ESTs; Highly similar to (defline not ava	5.3 5.2
		M21389		keratin 5 (epidermolysis bullosa simplex	5.1
		AA464728		ESTs; Weakly similar to !!!! ALU SUBFAMI	5.1
		AA402613	Hs.169119		5.1
40		X91868	Hs.54416	sine oculis homeobox (Drosophila) homolo	5.1
-70		AA400271		ESTs; Highly similar to (define not ava	5.1
		AA479362	Hs.47144	ESTs	5
		X07696	Hs.80342	keratin 15	5
		X52541		early growth response 1	5
45	118981	N93839	Hs.39288	ESTs; Weakly similar to IIII ALU SUBFAMI	5
				,,	_

TABLE 2A shows the accession numbers for those primekeys lacking unigeneID's for Table 2. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: CAT number: Accession:				
15	Pkey	CAT number	Accession	
20	118417	37186_1	AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 Al636743 AW614951 BE467547 Al680833 Al633618 N29986 U87592 U87593 U87590 U87591 \$46404 U87587 AA463992 AW206802 Al970376 Al583718 Al672574 N25685 AW665466 Al818326 AA126128 Al480345 AW013827 AA248638 Al214968 AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 Al080480 Al631703 Al651023 Al867418 AW818140 AA502500 Al206199 Al671282 Al382545 BE501030 Al652535 BE465762 AA206331 AW451866 AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703386 H92278 AW139734 H92683 U87595 H69001 U87594 BE466420 Al624817	
25	127248 107033 102398 113938	227560_1 235652_1 entrez_U42359 genbank_W815	BE466611 Al206344 AA574397 AA346354 Al493192 AA384195 AA325029 AW962050 Al141999 AA730176 R44544 R41778 AW300793 AW966157 AA918501 AA599629 Al082195 Al196537 AW006520 AW236663 AW151420 Al826987 Al810832 Al669102 Al201981 N27331 AA335566 T84622 BE085347 BE085269 U42359 BW81598	

TABLE 3: shows genes, including expression sequence tags, differentially expressed in prostate tumor tissue compared to normal tissue as analyzed using the Affymetrix/Eos Hu02 GeneChip array. Shown are the relative amounts of each gene expressed in prostate tumor samples and various normal tissue samples showing the highest expression of the gene.

10	Pkey: ExAccn: UnigeneID: Unigene Title: R1:		Exemplar A Unigene nu Unigene ge			
15						
	Pkey	ExAccn	UnigenelD	Unigene Title	R1	
20	100235 100570	D12485 D29954 HG2261-HT23 HG4020-HT42		phosphodiesterase Vnucleotide pyrophosp KIAA0056 protein Hs.171995 Hs.2387	6.3 5.1 Antigen, Prostate Specific, Alt. Splice Transglutaminase 10.5	9
25	101247 101416 101447	L00354 L33801 M17254 M21305		cholecystokinin glycogen synthase kinase 3 beta v-ets avian erythroblastosis virus E26 o Human alpha satellite and satellite 3 ju	8.5 4.7 4.7 11	
30	101514 101626 101663	M24736 M28214 M57399 M60750 M77836	Hs.89546 Hs.123072 Hs.44 Hs.2178 Hs.79217	selectin E (endothelial adhesion molecul RAB3B; member RAS oncogene family plelotrophin (heparin binding growth fac H2B histone family; member A pyrroline-5-carboxylate reductase 1	9.8 6.2 8.4 4.9 5.4	
35	101768 101817 101888 102031	M81118 M88163 M99701 U04898	Hs.78989 Hs.152292 Hs.95243 Hs.2156	SWI/SNF related; matrix associated; acti transcription elongation factor A (SII)- RAR-related orphan receptor A	7.5 5.5 5.7 13.2	
40	102221 102233 102302 102348 102457 102473	U07559 U24576 U26173 U33052 U37519 U48807 U49957		ISL1 transcription factor; LIM/homeodoma LIM domain only 4 nuclear factor, interleukin 3 regulated protein kinase C-like 2 aldehyde dehydrogenase 8 dual specificity phosphatase 4 LIM domain-containing preferred transloc	8.9 5.8 7.4 8.2 5.9 5.1	
45 .	102698 102751 102823 102869	U71207 U75272 U80034 U90914 X02544	Hs.29279 Hs.1867 Hs.68583 Hs.5057 Hs.572	eyes absent (Drosophila) homolog 2 progastricsin (pepsinogen C) mitochondrial intermediate peptidase carboxypeptidase D orosomucoid 1	9 10.6 15.6 4.9 22.6	
50	103043 103093 103376 103401	X54667 X55733 X60708 X92098 X95240	Hs.54431	eukaryotic translation Initiation factor dipeptidylpeptidase IV (CD26; adenosine coated vesicle membrane protein specific granule protein (28 kDa); cyste	4.7 4.9 5.8 - 5.2 7.4	
55	103677 103962 104084 104257	Z46629 Z83806 AA298180 AA410529 AF006265	Hs.2316 Hs.83243 Hs.30732 Hs.9222	SRY (sex-determining region Y)-box 9 (ca H.sapiens mRNA for axonemal dynein heavy ESTs ESTs estrogen receptor-binding fragment-assoc	5.2 4.9 6 6.4 6.8	
60	104769 104851 104896 104956	D45332 AA025887 AA040882 AA054228 AA074880	Hs.10290 Hs.23165 Hs.20509	ESTs ESTs; Weakly similar to IIII ALU SUBFAMI US snRNP-specific 40 kDa protein (hPrp8- ESTs ESTs; Weakly similar to hypothetical pro	10.5 6.3 4.9 5.8 6.4	
65	104967 105099	AA074919 AA084506 AA150776 AA233459	Hs.10026 Hs.291000 Hs.23729 Hs.26369	ESTs; Weakly similar to ORF YJL063c [S.c ESTs Homo saptens clone 24405 mRNA sequence ESTs	4.8 6.5 7 5.1	

	400004	4.4000250	11- 4000pm	FAT.	
		AA233553	Hs.190325		4.7
		AA236476	Hs.22791	ESTs; Weakly similar to transmembrane pr	10.3
		AA251330	Hs.28248	ESTs	5
-		AA261858		ESTs; Weakly similar to heat shock prote	8.8
5		AA281251	Hs.79828	ESTs; Weakly similar to putative zinc fi	5.5
		AA281623	Hs.6685	ESTs; Weakly similar to KIAA0742 protein	8
	105645	AA282138	Hs.11325	ESTs	14
	105691	AA287097	Hs.289068	transcription factor 4	6.3
	105730	AA292701	Hs.5364	DKFZP564l052 protein	4.9
10	105808	AA393808	Hs.286131	KIAA0438 gene product	7
	105826	AA398243	Hs.194477	ESTs: Moderately similar to similar to N	5
	105903	AA401433	Hs.200016	ESTs; Weakly similar to diphosphoinosito	9.9
	105906	AA401633	Hs.22380	ESTs	11.5
	106065	AA417558	Hs.25206	ESTs	5.1
15	106094	AA419461	Hs.23317	ESTs	10.9
	106157	AA425367	Hs.34892	ESTs	6.6
	106184	AA426643	Hs.10762	ESTs	8.5
	106211	AA428240	Hs.126083	ESTs	8.4
A	106213	AA428258	Hs.8769	Homo sapiens mRNA; cDNA DKFZp564E153 (fr	5.7
20	106272	AA432074	Hs.323099	ESTs	5.8
	106369	AA443828	Hs.288856	ESTS	6.3
	106400	AA447621	Hs.94109	ESTs	5.4
	106474	AA450212	Hs.42484	Homo sapians mRNA; cDNA DKFZp564C053 (fr	9.2
	106507	AA452584	Hs.267819	protein phosphatase 1; regulatory (inhib	5.6
25	106523	AA453441	Hs.31511	ESTs	4.7
		AA453628	Hs.37443	ESTs	4.7
	106557	AA455087	Hs.22247	ESTs	5.7
	106575	AA456039	Hs.105421	ESTs	7.2
	106618	AA459249	Hs.8715	ESTs; Weakly similar to Similarity with	5.6
30	106820	AA481037	Hs.12592	ESTs .	5.4
	106846	AA485223	Hs.34892	ESTs .	5.3
	106973	AA505141	Hs.11923	Human DNA sequence from clone 167A19 on	7.5
	107110	AA609952	Hs.12784	KIAA0293 protein	6.1
	107127	AA620504	Hs.179898	ESTs	7.1
35	107159	AA621340	Hs.10600	ESTs; Weakly similar to ORF YKR081c [S.c	5.2
	107217	D51095	Hs.35861	DKFZP586E1621 protein	15.1
	107365	U78294	Hs.111256	arachidonate 15-lipoxygenase; second typ	4.7
	107630	AA007218	Hs.60178	ESTs	5.3
	107734	AA016225	Hs.7517	ESTs ·	4.8
40	107760	AA018042	Hs.252085	EST	7.6
	107997	AA037388	Hs.82223	Human DNA sequence from clone 141H5 on c	10.5
	108012	AA039616	Hs.173334	ESTs	6.5
	108520	AA084138	Hs.46786	ESTs	7.9
	108583	AA088276	Hs.68826	ESTs	5.8
45	108613	AA100967	Hs.69165	ESTs	6
	108664	AA113349	Hs.69588	EST	6.3
	108677	AA115629	Hs.118531	ESTs -	5.9
	108807	AA129968	Hs.49376	ESTs; Weakly similar to PROTEIN PHOSPHAT	5.8
~~	108910	AA136590		ESTs .	5
50	108933	AA147224	Hs.337232	ESTs	12.7
	108948	AA149579	Hs.118258		6.8
	109014	AA156790	Hs.262036		15.3
	109124	AA171529	Hs.183887		6.1
		AA176438	Hs.41295	ESTs	5.1
55	109277	AA196332		ESTs .	5.5
	109342	AA213620		Homo sapiens mRNA; cDNA DKFZp586M1418 (
	109562			ESTs; Moderately similar to voltage-gate	10.8
	109565	F01930	Hs.23648	ESTs	7
		F04600	Hs.7154	ESTs	9.9
60		F10770	Hs.180378	Homo sapiens done 669 unknown mRNA; com	6.4
	109859	H02308	Hs.20792	ESTs	5.3
		H20276	Hs.31742	ESTs	16.8
		N32919	Hs.27931	ESTs	10
		N47938	Hs.12940	yy84a09.s1 Soares_muftiple_sclerosis_2Nb	5.6
65		N55514	Hs.318584		6.9
		N59858	Hs.33032	Homo sapiens mRNA; cDNA DKFZp434N185 (fr	
		N66613	Hs.99364	ESTs	5
		N66857		ESTs; Weakly similar to IIII ALU CLASS C	5.6
	111221	N68869	Hs.15119	ESTs	6.2

				Par.	
	111348		Hs.9585	ESTS	5.4
	111353		Hs.6616	ESTs	5.3
	111495		Hs.9683	ESTs	5.8
5	111540		Hs.9786	ESTs	6 12.6
5	111579			KIAA0830 protein	7.1
	111581		Hs.5794	ESTS	6.2
	111734		Hs.128749	ESTs	9.4
	111861	_	Hs.25231 Hs.18685	ESTs; Weakly similar to hypothetical pro	6.5
10	111870 111937			Homo saplens mRNA; cDNA DKFZp564D016 (fr	
10	111987		Hs.6763	KIAA0942 protein	6.4
	112184		Hs.330242	·	5.6
•	112286			KIAA0981 protein	9.3
	112380		Hs.5740	ESTs	4.7
15	112452		Hs.157461		6
13	112601			annexin A1	5.4
	112753		Hs.169882		5.8
	112902		Hs.129190		5.1
	112984		Hs.289014		4.9
20	113021			KIAA1028 protein	10.8
20	113083			ESTs; Weakly similar to heat shock prote	5.7
		T57773			7.3
	113494		Hs.86538	ESTs	8.7
		W60439	Hs.8858	ESTs; Moderately similar to cbp146 [M.mu	4.9
25		W72382		oxidative 3 alpha hydroxysteroid dehydro	4.7
		W85765	Hs.30504	Homo saplens mRNA; cDNA DKFZp434E082 (fr	6.7
	113986	W87462	Hs.21894	ESTs	5.9
	113989	W87544	Hs.268828	ESTs	4.7
	114124	Z38595	Hs.125019	ESTs; Highly similar to KIAA0886 protein	21.3
30	114340	Z41395	Hs.143611	ESTs	9.6
	114346	Z41450	Hs.130489		5.2
		AA018216		Bicaudal D (Drosophila) homolog 1	7.4
		AA025370		KIAA0872 protein	8.2
25		AA101416		ESTs; Weakly similar to PTB-ASSOCIATED S	5.4
35		AA131450	Hs.103822		4.8
		AA133527		ESTs; Weakly similar to The KIAA0138 gen	5.1 5.5
		AA234362 AA235112	Hs.87159 Hs.42179	ESTs; Moderately similar to CGI-66 prote ESTs; Moderately similar to similar to m	6.3
		AA235811	Hs.293672		5.2
40		AA236177	Hs.76591	KIAA0887 protein	4.7
10		AA236545	Hs.54973	ESTs	5.2
		AA242751	Hs.16218	KIAA0903 protein	5.7
		AA255566	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	52
		AA258030		ESTs; Weakly similar to supported by GEN	5.9
45	115468	AA287061	Hs.48499	ESTs; Highly similar to Bdeight protein	4.7
	115583	AA398913	Hs.45231	LDOC1 protein	7.6
		AA412519	Hs.58279	ESTs	4.8
		AA423972	Hs.131740		5
50		AA424029		ESTs; Moderately similar to dynamin; int	5.4
50		AA424038	Hs.81897	ESTS	5
		AA427528		ESTs; Weakly similar to ZINC FINGER PROT	13.7 10.6
		AA446121	Hs.44198	Homo sapiens BAC done RG054D04 from 7q3 Human DNA sequence from clone 718J7 on c	6.8
		AA451748 AA457566	Hs.83883 Hs.28777	ESTs	6
55 .		AA459117	Hs.31575	SEC63; endoplasmic reticutum translocon	7.3
JJ .		AA460701	Hs.15423	ESTs	5.5
		AA489033	Hs.62601	Homo sapiens mRNA; cDNA DKFZp586K1318 (i	5.7
		AA521472	Hs.71252	ESTs	5.9
	116393	AA599463	Hs.306051	protein phosphatase 2 (formerly 2A); reg	5.9
60	116401	AA599963	Hs.59698	ESTs	7.9
		AA609219	Hs.39982	ESTs	9.2
		D59325	Hs.121429		5.2
		D80055	Hs.45140	ESTs .	4.9
		F09156	Hs.66095	ESTs	7.2
65		F13654	11- 05	HSFIH32 Stratagene cat#937212 (1992) Hom	5.5
		H13260	Hs.95097	ESTS	5.9
		N29568		thyroid hormone receptor-associated prot	6.9
		N33920	Hs.44532	diubiquitin	4.8
	117708	N45114	Hs.126280	E019	6.3

	440004	NICOACA	11- 494 49	POT-	44.4
		N52151	Hs.47447	F-1	11.4 6.2
		N62339 N69207		heat shock 90kD protein 1; alpha	5.8
		N70358	Hs.203697	growth hormone receptor	7.1
5		N89881	Hs.44577		6
5		N94303	Hs.55028		9.3
		R42424	Hs.63841	ESTs	6
		R45175	Hs.117183		17.9
		T16387	Hs.65328		6
10		T78324	Hs.250895		5
		W69440	Hs.48376	ESTs	15.4
		W70205	Hs.43670	kinesin family member 3A	10.1
		W72967			5.3
		Z41078	Hs.66035		4.8
15		AA173939			8.8
		AA190888			4.9
		AA236010	Hs.26613		4.7
	120486	AA253400	Hs.137569	turnor protein 63 kDa with strong homolog	5.6
	120524	AA261852	Hs.192905	ESTs	4.9
20	120571	AA280738	Hs.34892	ESTs	8.8
	120596	AA282074	Hs.237323	ESTs	6.2
		AA292655	Hs.96557	ESTs	9.9
	120992	AA398246	Hs.97594	ESTs	16.4
	121429	AA406293	Hs.41167	ESTs	6.9
25	121503	AA412049	Hs.290347		7.6
		AA412105	Hs.193736		5.8
		AA424814	Hs.48827		4.6
		AA431302	Hs.98721		5.6
20		AA437311	Hs.98927		5.7
30		AA446859	Hs.99083		6.5
		AA460158		KIAA1028 protein	12.4
		AA460225			5.1
		AA478539	Hs.104336		4.9
35		AA485724			5.4
22		AA485957			5 4.7
		AA495981 AA496252	Hs.250830 Hs.105069		7.4
		AA609006	Hs.111240		9.1
		AA609200	113,111240		4.7
40		AA609310	Hs.188691		4.8
		AA609651	Hs.112742		7
		C14333			5
	124178		Hs.97101		6.6
		N21626	Hs.102406		10.2
45	124357			yw37g07.s1 Morton Fetal Cochlea Homo sap	10.6
	124515	N58172	Hs.109370	ESTs	142
	124911	R88992	Hs.174195	ESTs	4.8
	125154	W38418		ESTs	4.7
	125992	W01626			5.1
50		AA947601	Hs.97056		5.1
	126812				4.6
		AA662913	Hs.190173		5
		AA507628	Hs.334390		4.8
55	127370	Al024352			4.7
55		Al457411	Hs.106728		4.8
		AA828760	Hs.292059		4.8
		A1400862	Hs.265130 Hs.279009		5
		AI039722		ESTs; Weakly similar to unknown [H.sapie	5.8 17
60		AI088155 AA176446		ESTs; Weakly similar to hypothetical 43.	4.8
00	128610		Hs.10247		7.9
		AA242816		ESTs; Weakly similar to KIAA0437 [H.sapi	8.1
		AA446990	Hs.103135	ESTs	6.5
		AA215971			5.2
65	129138		Hs.250723		5.1
		AA234048	Hs.7753		5.8
		AA211941			5.8
	129386				5.2
		AA410311	Hs.44208		5.1

	129564	H22136	Hs.75295	guanylate cyclase 1; soluble; alpha 3	16.3
		AA458578	Hs.12017	KIAA0439 protein; homolog of yeast ubiqu	9.2
	129821		Hs.12696	cortactin SH3 domain-binding protein	8.6 9.1
5	129823	X00948 W46767		relaxin 2 (H2) ESTs; Weakly similar to RNA POLYMERASE I	5.4
5		AA047344		ESTs; Highly similar to NY-REN-6 antigen	6.5
	129958		Hs.1378	annexin A3	5.1
	129977	J04076	Hs.1395	early growth response 2 (Krox-20 (Drosop	8.6
10		U82256		arginase; type II	7.4
10	130241	U78313 N21679	Hs.153203 Hs.180059	MyoD family inhibitor	4.9 5.8
•	130541			neurofilament; light polypeptide (68kD)	6.7
		AA477739	Hs.12532	ESTs	6.4
	130925		Hs.169378	multiple PDZ domain protein	7.9
15		AA013250	Hs.21398	ESTs; Moderately similar to PUTATIVE GLU	6.2
	130971 131066		Hs.22588	signal sequence receptor; gamma (translo ESTs	6.4 5
	131126			myotubularin related protein 2	6.4
	131310		Hs.2551	adrenergic; beta-2-; receptor; surface	7.9
20		AA253220	Hs.27373	Homo sapiens mRNA; cDNA DKFZp564O1763 (
	131561			pre-B-cell leukemia transcription factor	7.6
	131562 131579		Hs.28777 Hs.29088	H2A histone family; member L ESTs	5.1 11
		AA442119	Hs.238809		4.9
25		AA428368		ESTs	4.8
		R68657	Hs.90421	ESTs; Moderately similar to IIII ALU SUB	6.5
		N32724	Hs.32317	Sox-like transcriptional factor	5.6 7.2
	132053	U65092	Hs.38085 Hs.40403	ESTs; Wealty similar to putative glycine Cbp/p300-interacting transactivator; wit	5.6
30		AA449431		KIAA0741 gene product	8 '
-		AA608856	Hs.431	murine leukemia viral (bml-1) oncogene h	5.5
		AA429478		ESTs; Highly similar to CGI-49 protein [6.6
		AA021608	Hs.172510		5.8 6.2
35		AA448297 R42266	Hs.52256	signal recognition particle 72kD ESTs; Weakly similar to beta-TrCP protei	16
55		N47109	Hs.5521	ESTs	6.8
	132701	AA279359	Hs.55220	BCL2-associated athanogene 2	5.3
	132725			splicing factor; arginine/serine-rich 7	7.8
40		N74897 X75535		DEAD/H (Asp-Giu-Ala-Asp/His) box polypep peroxisomal famesylated protein	5.9 8
70		U76189	Hs.61152	exostoses (multiple)-like 2	5.2
	133142		Hs.65874	ESTs	5.2
		U29589	Hs.7138	cholinergic receptor; muscarinic 3	10.3
45		AA278852	Hs.30212 Hs.73826	ESTs protein tyrosine phosphatase; non-recept	5.8 4.9
47		M68941 X74331	Hs.74519	primase; polypeptide 2A (58kD)	13.1
		T33873	Hs.74624	protein tyrosine phosphatase; receptor t	4.6
		D13315	Hs.75207	glyoxalase I	4.8
50		H75939	Hs.75277	Homo sapiens mRNA; cDNA DKFZp586M141 (fr	
50		D21262 S66431	Hs.75337 Hs.76272	nucleolar phosphoprotein p130 retinoblastoma-binding protein 2	6.3 6
		N34096	Hs.7766	ubiquitin-conjugating enzyme E2E 1 (homo	5.4
		U47414	Hs.79069	cyclin G2	5.2
		N89827	Hs.80667	RALBP1 associated Eps domain containing	6.5
55		AA418230	Hs.8172 Hs.83484	ESTs SRY (sex determining region Y)-box 4	7 4.7
		X70683 X57025	Hs.85112	insulin-like growth factor 1 (somatomedi	7.7
		U66615	Hs.172280		6.4
		U82613		Alu-binding protein with zinc finger dom	5.4
60		W23625	Hs.8739	ESTs; Weakly similar to ORF YGR200c [S.c	5 5.4
		AA482319 Z49099	Hs.8752 Hs.89718	putative type II membrane protein spermine synthase	5.4 6.7
		AA431480	Hs.169358		9.8
		X04602	Hs.93913	Interleukin 6 (Interferon; beta 2)	5.7
65		AA358268		ESTs; Moderately similar to transcriptio	4.9
		L10333	Hs.99947	reticulon 1 AFFX control: 18S ribosomal RNA	5.3 4.6
		M10098 AW079607	Hs.55610	ESTs; Weakly similar to ZnT-3 [H.sapiens	7.8
		AW013907		ESTs; Moderately similar to predicted us	11.5

	300319	AW157646	Hs.153506	ESTs; Weakly similar to microtubule-acti	8.5
	300566	H86709		son of seveniess (Drosophila) homolog 1	5.8
	300578	AI989417	Hs.134289	ESTs	4.4
, _	300671	Al239706		ESTs	7.9
5 .	300675	AA039352	Hs.125034	ESTs; Weakly similar to ORF YDL040c [S.c	4.5
	300680	AW468066	Hs.24817	ESTs; Weakly similar to KIAA0986 protein	5.2
		AJ497778	Hs.20509	ESTs	6.4
		A1076890	Hs.146847		5.8
		AA406411		ESTs; Weakly similar to KIAA0989 protein	10.6
10		A1863068		ESTs; Weakly similar to putative zinc fi	5.6
		AF109300	Hs.147924		6.7
		AW136372	Hs.1852	ESTs	7.6 5.5
		AA593373	Hs.293744		7
15		AA947682	Hs.20252	ESTs; Weakly similar to Chain A; Cdc42hs	24.9
15		Al659131	Hs.197733	ESTS	11.8
		AW161535	Hs.23782	EST cluster (not in UniGene) with exon h	4.3
		A1049624 H29500	Hs.7130	ESTs; Moderately similar to N-copine [H.	4.3
		AA156879		ESTs; Weakly similar to ZINC FINGER PROT	6.6
20		AI802946	Hs.44208		5.7
20		AW008475		EST cluster (not in UniGene) with exon h	6.8
		Z44810		ESTs; Weakly similar to similar to C.ele	6.3
		AL046347	Hs.83937		6.2
		A1800004		ESTs; Weakly similar to MesP1 [M.musculu	8.5
25		R20002	Hs.6823	ESTs; Weakly similar to intrinsic factor	4.6
		AF131855		Homo saplens clone 25056 mRNA sequence	6.3
		A1869666	Hs.123119	·	36.8
	302056	Al457532	Hs.30488	ESTs; Moderately similar to ROSA26AS [M.	9.5
		H05698	Hs.222399	ESTs; Weakly similar to protein-tyrosine	5.8
30	302099	AL021397	Hs.137576	ribosomal protein L34 pseudogene 1	8.8
	302147	AB022680	Hs.151717	KIAA0437 protein	5.9
	302214	AJ001454		Homo sapiens mRNA for testican-3	4.3
	302236	Al128606	Hs.6557	zinc finger protein 161	4.3
~~		D81150		EST cluster (not in UniGene) with exon h	5.5
35		NM_004917		EST cluster (not in UniGene) with exon h	26.8
		AC003682		multiple UniGene matches	8.2
		NM_000522		EST cluster (not in UniGene) with exon h	6.4 5
		AA425562	Hs.11065		4.8
40		AA343696	Hs.46821	relaxin 1 (H1)	78.8
40		AA508353	Hs.42346		8.5
		N58545 AW118352		EST cluster (not in UniGene) with exon h	7.4
		AW263124		EST cluster (not in UniGene) with exon h	5.5
		AF199613	18615111	EST cluster (not in UniGene) with exon h	4.6
45		AF161352	Hs.111782	EST cluster (not in UniGene) with exon h	5.8
		AI571580	Hs.170307		4.3
		AA215297	Hs.61441	EST cluster (not in UniGene) with exon h	6.4
		AL134164	Hs.145416	ESTs	6.6
	303344	AA255977	Hs.250646	ESTs; Highly similar to ubiquitin-conjug	19.5
50	303380	AA298471		EST cluster (not in UniGene) with exon h	6.6
	303401	AA758552	Hs.309497		6.8
		AW516519	Hs.273294		4.8
		AA348111	Hs.96900	ESTS	12.1
		AA355607		ESTs; Weakly similar to MMSET type I [H.	8.2
55		AW338520	Hs.242540	ESIS	8.4 4.9
		AW500106	Hs.23643	EST cluster (not in UniGene) with exon h EST cluster (not in UniGene) with exon h	15.7
		D30891	Hs.19525	ESTs; Weakly similar to 73 kDA subunit o	6.3
		AW500748	Hs.114658		4.6
60	303/10	AI741397 AA521510	Hs.145010		12.5
UU		AW502405		ESTs; Weakly similar to tumor suppressor	4.3
		AA707750	Hs.169055	ESTs; Weakly similar to dis-Golgi matrix	5.4
		AI017286	Hs.5957	EST cluster (not in UniGene) with exon h	5.3
		AW503733	Hs.9414	ESTs	13
65		AI275850	Hs.114658	EST cluster (not in UniGene) with exon h	7.8
	304053	R00493	Hs.125565	translocase of inner mitochondrial membr	4.8
	304218	N66373	Hs.27973	ESTs; Weakly similar to ZK354.7 [C.elega	6
	305200	AA668128	Hs.45207		5.7
	306716	AI024916	Hs.251354	EST8	5.7

	307848	Al364186		EST singleton (not in UniGene) with exon	7.3
		Al368665	Hs.31476		5.4
		Al460004	Hs.31608		8.1
		AI613519		EST singleton (not in UniGene) with exon	5.5
5		AI863051	Hs.279815		4.4
9		Al927149	Hs.29797		4.5
		AW075342	Hs.9271	EST singleton (not in UniGene) with exon	7.4
		AW205604		ESTs; Weakly similar to IIII ALU SUBFAMI	5
		Al921750	Hs.144871		5
10		AI685841	Hs.161354		11.6
		AJ478629	Hs.158465		5.8
		AJ262148	Hs.145569		9.7
		A)734009		EST duster (not in UniGene)	10.4
		Al612775	Hs.145710		4.6
15	310431	A1420227	Hs.149358	ESTs	72.9
	310573	AW292180	Hs.156142	ESTs	7.6
	310598	Al338013	Hs.140546	ESTs	9.2
	310639	AW269082	Hs.175162		4.5
		AW262580	Hs.147674		4.9
20		Al973051	Hs.224965		7.6
	311251	A1655662	Hs.197698		41.3
		A1767957		ESTs; Weakly similar to Y38A8.1 gene pro	4.5
		A1679524		ESTs; Moderately similar to IIII ALU SUB	4.6
		AW136713		ESTs	5.9
25		AI824863	Hs.211420		4.8
		A1828254	Hs.271019		5.8
		AI682088	Hs.79375	ESTs	26.4
		AI809519	Hs.27133	ESTs	6.4
20		AW025661	Hs.240090		7.4
30		A1682478	Hs.13528		4.6
		AA765470	Hs.85092	ESTS	6.7
		AW014013	Hs.107056		5.3
		R16890	Hs.137135		5.6 4.3
25		AW451654	Hs.257482		11
35		AA759250		cytochrome b-561	16.9
		AA834800	Hs.125276	EST cluster (not in UniGene)	4.7
		Al380207 C01367	Hs.127128		5.3
		R46180	Hs.153485		6.2
40		AA847398	Hs.291997		4.8
+0		R49353	Hs.283892		5.2
		R68651	Hs.144997		9.5
		C17785	Hs.182738		6.3
		AA033609	Hs.239884		112
45		Al695522	Hs.191271		4.7
		AI004377	Hs.200360		7
		Al623511	Hs.118567		5.1
		AA976064	Hs.180842	ESTs	6.5
	312623	AA694607	Hs.176956	EST cluster (not in UniGene)	10.8
50		AA772279	Hs.126914	ESTs	5
	312890	AI813654	Hs.5957	ESTs	5.8
	312903	AA939266	Hs.278626	ESTs	7.7
		H92571	Hs.234478	ESTs	6.5 -
		AA836271	Hs.125830		4.6
55		A1079278	Hs.269899		5.1
	312996	AA249018		EST duster (not in UniGene)	7
	313035	N36417	Hs.144928		6.3
		Al801098	Hs.151500		4.3
60		AJ039702		collagen; type I; alpha 2	4.8
60		AA827805	Hs.124296		5
		Al200281	Hs.123910		5.9
		AJ420611	Hs.127832		4.6
		AI088120	Hs.122329	EXIS	7.4
CF		AA745689		ESTs; Weakly similar to similar to zinc	6.3
65		Al261390	Hs.146085	_	5.6
		A1797301	Hs.5740	ESTS	5.9 4.3
		AW467376	Hs.129840	ESTs; Weakly similar to ZK1058.5 [C.eleg	4.5 4.6
		Al273419	He 207224	EST cluster (not in UniGene)	6.8
	313003	AW468119	US-50/031	CO I GUSTAI (HOLAI OLEGERA)	0.0

	210015	AMPORTOA	No 201007	DVE7D494N196 ambin	E 9
		AW295194 AW468402		DKFZP434N126 protein	5.2 7.8
		AA688292			4.4
	313635	AA507227	Hs.6390	ESTS	8.1
5		AI753075	Hs.104627		6.7
3		C16690		EST duster (not in UniGene)	4.4
		W49823	Hs.104613		4,4
	313676	AAR61607	He 120591	EST duster (not in UniGene)	13.4
	3137/13	AA861697 Al161293 AA768553	He 280380	ESTs; Weakly similar to KIAA0525 protein	10
10	313712	AA768553	Hs.74170		5.2
10	313800	AW296132	Hs.55098		5.4
		AI535895	Hs.221024		4.3
		Al732100	Hs.187619		13.6
•		AW245993	Hs.223394		6.4
15	314171	AIR21895	Hs.193481		29.4
	314188	AL138431	Hs.164243		4.6
	314219	AL036001			5.7
	314236	AA743396	Hs.189023	ESTs	4.9
	314237	AA732359 AA731431 Al280112	Hs.96264	ESTs	4.4
20	314284	AA731431	Hs.293464	EST duster (not in UniGene)	6.4
	314305	Al280112	Hs.125232	ESTs	5.3
	314343	AI754701	Hs:328476	ESTs; Weakly similar to alternatively sp	6.2
	314530	AI052358	Hs.193726	ESTs	4.5
	314691	AW207206	Hs.136319	ESTs	17
25	314695	AW502698	Hs.118152	ESTs	8.9
	314785	AI538226	Hs.32976		9.4
	314801	AA481027 AA493811 Al672225	Hs.109045	ESTs; Weakly similar to ORF YGR245c [S.c	8
	314864	AA493811	Hs.294068		6 ·
20	314907	Al672225	Hs.222888	ESTs	19.3
30	314916	AA548906 AA521381 AA524953 AA533447	Hs.122244	ESTs	4.5
	314954	AA521381	Hs.187726	ESTs	5.3
	314981	AA524953	Hs.293334	EST8	4.6
	315021	AA533447	Hs.312989	EST duster (not in UniGene)	5.1
25	315051	AW282425 AA876910	Hs.163484	LUI	15.5
35					20
		AW452948	Hs.257631		5.3
	315084	Al821085	11-04774	ESTs	8.2
		Al915927	Hs.34771		5.4
40		AI420753	Hs.66731		5.1
40		Al985544	Hs.12450		5.8
		Al222165 AW291563	Hs.144923 Hs.104696		4,5 8
		AA764918			4.8
	915379	Al263383			6.2
45 -	215270	Al378329	Hs.126629		5.4
		AW293424			5.1
		AA977935			6.6
		AW003416			5.5
		R37257	Hs.184780		8.1
50		AW198103			9.9
	315634	AA837085	Hs.220585	ESTs	7.8
	315705	AA837085 AW449285	Hs.313636	ESTs	8.9
	315707	AJ418055	Hs.161160	ESTs	5.1 -
	315714	AA744015	Hs.298138	EST cluster (not in UniGene)	6.1
55	315740	T05558	Hs.156880	EST cluster (not in UniGene)	6.8
		Al391470	Hs.158618		5.3
	315769	AA744875	Hs.189413		5
	315843	AA679430	Hs.191897	ESTs	5.7
		AI800041	Hs.190555	ESTs	9.2
60		AA764950	Hs.119898		4.3
		AA708016	Hs.190389		5.9
		AA693880		EST cluster (not in UniGene)	6.7
		AW517542	Hs.293273		5.5
		AW203986			5.1
65		Al127483	Hs.120451	ESTS	8.2
		AA760894	Hs.153023		17.1
		AA766025	Hs.186854	ESI	4.6
		AW135854	Hs.132458	ESIS	4.3
	316667	AW015940	Hs.232234	EDIS	7.6

	316854	AA831215	Hs.159066	ESTs; Weakly similar to predicted using	5.1
	316905	AW138241	Hs.210846	ESTs	6.4
		AW051597	Hs.143707	FSTe	4.4
					11
_		AA864968	Hs.127699		
5	317194	AW445167	Hs.126036		13.5
	317224	D56760	Hs.93029	ESTs	8.7
	317404	AI806867	Hs.126594	ESTs	8.7
		AA931245	Hs.137097		11.1
					14.2
10		Al654187	Hs.195704		
.10	317651	AW292779	Hs.169799		5.8
	317758	AI733277	Hs.128321	ESTs	5.4
	317850	N29974	Hs.152982	EST cluster (not in UniGene)	11.4
		AW295184		ESTs; Wealdy similar to DEÓXYRIBONUCLEAS	138
		A1828602	Hs.211265		5.3
1.5					
15		AI565071	Hs.159983		7.7
	318239	A1085198	Hs.164226	ESTS	13.1
	318268	AI817736	Hs.182490	ESTs	6.2
	318327	AW294013	Hs.200942	ESTs	4.6
		R45530		gamma-aminobutyric acid (GABA) A recepto	6
20					12.3
20		A1949409	Hs.194591		
		AI151010	Hs.157774		4.3
	318524	AW291511	Hs.159066	ESTS	25.9
	318540	T30280	Hs.274803	EST duster (not in UniGene)	7
		AW206806	Hs.115325		4.8
25		Al133617	Hs.10177		5.5
23				- -	5.7
		AW175665	Hs.278695		
		A1493742	Hs.165210		11
	318668	W26276	Hs.136075		5.9
	318753	AA578265	Hs.7130	copine IV	5.5
30		Z45131	Hs.23023		16.9
50		F06504		EST cluster (not in UniGene)	4.6
		AF071538		F	6.6
	319233	R21054	Hs.180532		4.9
	319586	D78808	Hs.283683	ESTs	8.2
35	319750	AA621606	Hs.117956	ESTs .	9.3
		AA460775	Hs.6295	ESTs	14.3
		AA424266		EST cluster (not in UniGene)	12.8
		AA337642		nuclear factor related to kappa B bindin	5.1
	319913	AA179304	Hs.271586	ESTs; Moderately similar to IIII ALU SUB	4.3
40	319964	T80579	Hs.290270	ESTs	5.8
	320076	Al653733	Hs.271593	ESTs ·	8.5
		AW296219		RAB7; member RAS oncogene tamily-like 1	9.8
	320187			EST cluster (not in UniGene)	9.8
45		AL039402		DEME-8 protein	7.9
45	320324	AF071202		ATP-binding cassette; sub-family C (CFTR	562
	320455	R49889	Hs.24144	EST duster (not in UniGene)	8.3
	320464	Al089817	Hs.237146	ESTs	5.4
		NM_006953		EST cluster (not in UniGene)	7
		AL049443	He 151000	Homo sapiens mRNA; cDNA DKFZp586N2020 (f	44
50			110-101600	Homo saplens mRNA; cDNA DKFZp564C122 (fr	67
20		AL049977			
		AW263086	Hs.118112		6
	320796	AF038966	Hs.31218	secretory carrier membrane protein 1	13.5
	320800	Al681006	Hs.71721	ESTs	6.2
	320813	AW360847	Hs.16578	ESTs	9.3
55		Al473796	Hs.135904		8.1
55		D59945		EST cluster (not in UniGene)	6
		AA633772	Hs.116796		9.2
		AW195012	Hs.293970		5
	320973	H19732	Hs.247917	ESTs	5.9
60		AA018386		ESTs	4.6
		H52462		EST cluster (not in UniGene)	5.8
				EST cluster (not in UniGene)	8.4
		AB033041			
		AW372449		EST cluster (not in UniGene)	7.3
		AW297633	Hs.118498		14.7
65	321538	H80483	Hs.46903	EST duster (not in UniGene)	9.2
		H86021	Hs.182538	ESTs; Weakly similar to hMmTRA1b [H.sapi	4.8
		Al791838 -	Hs.193465		5.5
		AI356352	Hs.108932		4.6
					6.6
	JZ 1044	Al204177	Hs.237396	EGIP	0.0

		AA233821 .		EST duster (not in UniGene)	4.6
	321726	X91221		EST cluster (not in UniGene)	5
		U29112	Hs.196151	EST duster (not in UniGene)	6.2
	321877	AL109784	Hs.189222	EST duster (not in UniGene)	4.6
5	321899	N55158	Hs.29468		4.6
	321902	AA746374	Hs.145010		8.2
		AW410646	Hs.164649		5.1
		AL137646		EST cluster (not in UniGene)	4.3
		AF085833		EST cluster (not in UniGene)	4.3
10					
10		AI890619	HS.178002	nucleosome assembly protein 1-like 1	4.4
		AF086283		EST cluster (not in UniGene)	5.8
		W07459		EST cluster (not in UniGene)	22
		AW393804		ESTs; Weakly similar to rabaptin-4 [H.sa	4.4
		AF143235		EST cluster (not in UniGene)	7.2
15	322782	AA056060	Hs.202577	EST duster (not in UniGene)	18.4
	322811	AA782292	Hs.105872	ESTs	6.9
	322818	AW043782	Hs.293616	ESTs	10.7
	322826	A1807883	Hs.180059	ESTs	5
	322887	A1986306	Hs.86149	ESTs; Weakly similar to KIAA0969 protein	11.9
20	322889	AA081924	Hs.124918		7.1
		AA669253	Hs.136075		4.5
		Al351191	Hs.128430		6.6
		AA422116	Hs.191461		4.7
		AA336609	Hs.10862	ESTs	6.9
25					
4 J		AL118747	Hs.26691	EST cluster (not in UniGene)	8.3
		AA148950	Hs.188836		4.6
		AL118923		EST cluster (not in UniGene)	7.5
		AA157726	Hs.264330		7.5
~~		AA157867	Hs.5722	ESTs	4.7
30	323097	Z44354	Hs.296261	guanine nucleotide binding protein (G pr	4.9
	323131	AA176982		EST duster (not in UniGene)	6.1
	323136	AL120351	Hs.30177	EST cluster (not in UniGene)	4.3
	323175	Al827137	Hs.336454		6.2
	323218	AF131846	Hs.13396	Homo sapiens clone 25028 mRNA sequence	6.3
35	323226	AF055019	Hs.21906		12.6
		AA363148	Hs.293960		10.9
		AI829770	Hs.190642		7.6
		AA836452	Hs.323822		7.6
		AA639902	Hs.104215		24.7
40		A1655499	Hs.161712		14.1
TU		AL134875	Hs.108646		5.3
				=	
		AL135067	Hs.117182		6.1
		C05278		ESTs; Moderately similar to [PYRUVATE DE	8.5
45		AI826801	Hs.300700		4.5
45	323507		Hs.128387		4.4
		Al814405	Hs.224569		5.8
		AA314280	Hs.146589	EST cluster (not in UniGene)	5
		AW263526	Hs.243023		7.7
	323691	AA317581	Hs.145599	EST duster (not in UniGene)	5.9
50	323810	AA740405	Hs.108806		6.2
	323846	AA337621	Hs.137635	ESTs	6
	323929	AA354940	Hs.145958	ESTs	10.7
	323959	AI636775	Hs.6831	ESTs	5.4
	323996	AA367032	Hs.217882		5.8
55		AA844907	Hs 274454	EST cluster (not in UniGene)	4.4
		AW177009		EST cluster (not in UniGene)	4.6
		AL046575	Hs.130198		11
		Al146686	Hs.143691		13.7
		AI524039	Hs.192524		6.8
60					
50		AA627642	Hs.4994	transducer of ERBB2; 2 (TOB2) EST cluster (not in UniGene)	4.9
		AA884766	Un 204047		4.3
	324385			EST cluster (not in UniGene)	4.7
		AA464018		EST cluster (not in UniGene)	13.6
45		AW014022	Hs.170953		7.6
65		AW501974	Hs.74170		5.6
		AW016378	Hs.292934		24.2
		AA508552	Hs.195839		54
		Al346282	Hs.87159		4.6
	324620	AA448021	Hs.94109	EST cluster (not in UniGene)	5.7

```
324626 Al685464
                                                                                 9
        324658 Al694767
                             Hs.129179 ESTs
                                                                                 22
        324676 AW503943
                             Hs.112451 ESTs
                                                                                 4.9
                             Hs.293341 ESTs; Wealdy similar to Pro-a2(XI) [H.sa
                                                                                  10.6
        324691 Al217963
 5
                                                                                  10.2
                             Hs.257339 ESTs
        324696 AA641092
                                                                                 5.5
7.2
                             Hs.163440 ESTs
        324713 AW340249
                             Hs.131798 EST cluster (not in UniGene)
        324715 AI739168
                                                                                 34.4
        324718 Al557019
                             Hs.116467 ESTs
                                                                                 4.8
        324720 AA578904
                             Hs.292437 ESTs
                             Hs.272072 ESTs; Moderately similar to !!!! ALU SUB
10
                                                                                 7.9
        324752 Al279919
                             Hs.144871 EST cluster (not in UniGene)
                                                                                 5.2
        324753 AA612626
                             Hs.159337 ESTs
                                                                                 7.6
        324790 Al334367
                             Hs.14553 ESTs
        324801 Al819924
                                                                                  12.6
                                       ESTs
                                                                                 6.5
        324804 Al692552
                             Hs.337533 ESTs
                                                                                 4.5
15
        324845 AA361016
                             Hs.136102 KIAA0853 protein
                                                                                 4.4
        324888 Al564134
                                                                                 6.5
        324929 Al741633
                             Hs.125350 ESTs
                                       EST cluster (not in UniGene)
        324961 AA613792
                                                                                 5.1
        325108 AA401863
                             Hs.22380
                                       ESTs
                                                                                 7.1
20
                                       CH.20_hs gl[6552458
                                                                                 9.6
        326816
                                       CH.21_hs gij5867660
        326997
                                                                                 4.8
                                       CH.21_hs gij6682516
                                                                                 4.3
        327098
                                       CH.07_hs gij5868455
                                                                                 5.8
        328492
                                       CH.X_hs gi|5868837
                                                                                 4.3
        329362
                                       CH.16_p2 gij6165201
CH.16_p2 gij5091594
CH.16_p2 gij6671887
25
                                                                                 5.5
        320020
                                                                                 7.6
        329960
                                                                                 6
        330020
                                                                                  12.6
                                       CH.05_p2 gij6013592
        330211
                                        androgen receptor (dihydrotestosterone r
        330384 M23263
30
                                       Hs.321110
                                                                                 Antigen, Prostate Specific, Alt. Splice
                                                                                                                            13.8
        330430 HG2261-HT2352
                             Hs.299867 guanine nucleotide binding protein 4
        330546 U31382
                                                                                 4.9
        330551 U39840
                                        hepatocyte nuclear factor 3; alpha
                             Hs.30732
        330658 AA319514
                                       ESTs
                                                                                 6
                                                                                 5.5
        330700 AA037415
                             Hs.20999
                                       ESTs
35
        330704 AA056557
                             Hs.6759
                                       ESTs
                                                                                  5.1
                             Hs.157078 ESTs
                                                                                  11.7
        330705 AA102571
        330706 AA121140
                             Hs.177576 ESTs; Moderately similar to kynurenine a
                                                                                  14.5
        330712 AA167269
330725 AA252033
                             Hs.52620 ESTs
                                       ESTs; Weakly similar to IIII ALU SUBFAMI
                                                                                  72
                             Hs.24052
        330732 AA281092
40
                             Hs.35254
                                       ESTs
                                                                                  4.9
                             Hs.15251 Human DNA sequence from done 437M21 on
                                                                                  18.5
        330762 AA449677
        330763 AA450200
                             Hs.143187 FK506-binding protein 3 (25kD)
                                                                                  4.3
                                                                                  5.8
                             Hs.11356 ESTs
        330772 AA479114
                                       EST
                                                                                  4.6
         330786 D60374
45
                             Hs.91202 ESTs
                                                                                  15.3
        330892 AA149579
                             Hs.142896 ESTs
                                                                                  10.3
        330949 H01458
        330977 H20826
                             Hs.315181 ESTs
                                                                                  4.4
        331017 N24619
                             Hs.108920 ESTs
                                                                                  11.8
        331099 R36671
                             Hs.14846 ESTs
                                                                                  11.6
50
                             Hs.268714 ESTs
                                                                                  4.8
        331128 R51361
        331151 R82331
                             Hs.268838 ESTs
                                                                                  13
        331195 T64447
                             Hs.168439 ESTs
                                                                                  4.9
        331320 AA262999
                             Hs.300141 ESTs
                                                                                  4.8
        331321 AA278355
331337 AA287662
                             Hs.87929 ESTs
                                                                                  6.1
55
                             Hs.118630 ESTs
                                                                                  9.2
                             Hs.88143 ESTs
                                                                                  9.9
        331348 AA400596
                             Hs.81897
                                                                                  4.3
         331359 AA416979
                                       ESTs
                             Hs.43543 ESTs
                                                                                  4.6
         331383 AA454543
                             Hs.237339 ESTs; Moderately similar to !!!! ALU SUB
                                                                                  4.9
         331422 F10802
60
                             Hs.41223 ESTs
        331442 H77381
                                                                                  7.5
                             Hs.43455 ESTs
        331466 N21680
                                                                                  5.4
                             Hs.44076 ESTs
        331479 N27154
                                                                                  6.5
                             Hs.291039 ESTs; Weakly similar to hypothetical 43.
        331490 N32912
                                                                                  12.5
         331493 N34357
                             Hs.93817 ESTs
                                                                                  4.6
65
                             Hs.48703 ESTs
                                                                                  9.2
         331561 N62780
                             Hs.5472
                                        ESTs
                                                                                  4.6
         331615 N92352
        331659 W48868
                             Hs.334305 ESTs
                                                                                  8.7
                             Hs.65949 KIAA0888 protein
         331696 Z38907
                                                                                  10.3
         331811 AA404500
                             Hs.187958 ESTs
                                                                                  4.8
```

	331848	AA417039	Hs.98268	signal recognition particle 72kD	7.5
		AA429445	Hs.98640	ESTs	6.5
•		AA431407	Hs.98802	Homo sapiens Chromosome 16 BAC clone CIT	33.6 6.8
5		AA460158 AA464518	Hs.99589 Hs.105322		5.3
J		AA490831	Hs.201591		10.8
		AA599477	Hs.291156	ESTs .	4.4
	332173		Hs.100725		5.5
10	332247		40440	ESTS	14.2
10	332325	N62098	Hs.194140 Hs.339667		7.2 5.6
		AA340504	110.000007	ESTs; Weakly similar to similar to human	21.2
	332434		Hs.237731	transcription factor 4	15.3
	332493	N95495	Hs.56729		7.1
15	332522			glutathlone S-transferase theta 2	6.6
		AA281753 M31682	Hs.17731 Hs.19280		5.8 5.5
		M99487		folate hydrolase (prostate-specific memb	38.1
		N48715	Hs.20991	ESTs	6.5
20	332546		Hs.22587	solute carrier family 35 (UDP-galactose	4.8
		AA279313	Hs.32951	methyl CpG binding protein 2	5.6
		AA412405 N95742	Hs.40513 Hs.6390	ESTs; Weakly similar to BETA GALACTOSIDA ESTs	5.6 6.9
	332697		Hs.75725	carboxypeptidase E	24.3
25		D26070	Hs.79306	inositol 1;4;5-triphosphate receptor; ty	9.9
	332716		Hs.79630	v-myc avian myelocytomatosis viral oncog	5.6
		R72029	Hs.83428	synaptophysin-like protein	5 4.5
	332797	AA233258		ESTs; Weakly similar to D1007.5 [C.elega CH22_FGENES.6_2	30.8
30	332798			CH22_FGENES.6_5	8.89
	332799			CH22_FGENES.6_6	19.8
	332933			CH22_FGENES.38_7	5.6
	332980 332984			CH22_FGENES.54_1 CH22_FGENES.54_6	5.5 4.9
35	333168			CH22_FGENES.94_1	4.7
-	333169			CH22_FGENES.94_2	4.4
	333452			CH22_FGENES.157_1	4.8
	333456			CH22_FGENES.157_5	4.3 4.6
40	333458 333611			CH22_FGENES.157_7 CH22_FGENES.217_6	4.7
	333621			CH22_FGENES.219_5	5.5
	333814			CH22_FGENES.282_2	7.1
	333849			CH22_FGENES.290_8	6.2
45	333949 333951			CH22_FGENES.303_5 CH22_FGENES.303_7	4.3 4.9
73	333955			CH22_FGENES.303_11	5.6
	334150			CH22_FGENES.339_1	5.1
	334223	•		CH22_FGENES.360_4	20.3
50	334297			CH22_FGENES.372_3 CH22_FGENES.387_2	9.4 4.6
50	334443 334444			CH22_FGENES.387_4	5.6
	334447			CH22_FGENES.387_7	13.1
	334570			CH22_FGENES.405_11	5.4 -
EE	334749			CH22_FGENES.427_1	5.3
55	334777 334960	•		CH22_FGENES.430_9 CH22_FGENES.465_29	4.7 5.2
	335179			CH22_FGENES.504_9	8.8
	335293			CH22_FGENES.527_6	4.7
CO	335550			CH22_FGENES.576_11	5.1
60	335581 335586			CH22_FGENES.581_19 CH22_FGENES.581_25	5.7 4.3
	335809			CH22_FGENES.617_6	6.2
	335810			CH22_FGENES.617_7	5.8
15	335822			CH22_FGENES.619_7	7.1
65	335824			CH22_FGENES.619_11 CH22_FGENES.626_5	8.5 4.3
	335853 335886			CH22_FGENES.632_4	4.3
	336034			CH22_FGENES.678_5	6.8
	336441			CH22_FGENES.827_7	7.6

	336624	CH22_FGENES.6-3	43.3
	336625	CH22_FGENES.6-4	37.9
	336679	CH22_FGENES.43-7	5.3
	337577	CH22_C65E1.GENSCAN.8-1	4.9
5	338255	CH22_EM:AC005500.GENSCAN.276-3	13.4
	338260	CH22_EM:AC005500.GENSCAN.279-10	4.6
	338561	CH22_EM:AC005500,GENSCAN.421-5	4.6
	338562	CH22_EM:AC005500.GENSCAN.421-6	4.3
	338759	CH22_EM:AC005500.GENSCAN.517-6	5.1
10	338763	CH22_EM:AC005500.GENSCAN.517-16	5.5
	338764	CH22 EM:AC005500.GENSCAN.517-17	7.1

TABLE 3A shows the accession numbers for those primekeys lacking unigeneID's for Table 3. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers				
15	Pkey	CAT number		Accession			
	123619	371681_1		AA602964 AA609200			
		143512_1		Z24878 AA494098 F13654 AA494040 AA143127			
		41847_1		Z83806 AJ132091 AJ132090			
20		1589048_1		H48372 W01626			
		genbank AA2	13620	AA213620			
		genbank_W38		W38419			
		entrez M2130		M21305			
		genbank_N22		N22401			
25		genbank_AA1		AA136590			
		47271_1		W69304 AF086283 W69200			
		350959_1		AI821085 AW973464 AA554802 AI821831 AA657438 AA640756 AA650339			
	324019	262792_1		AW177009 Al381610			
	324330	300543_1		AA884766 AW974271 AA592975 AA447312			
30	324626	336411_1		Al685464 AW971336 AA513587 AA525142			
		37699_1		AF199613 AF108756			
	324804	398093_1		Al692552 Al393343 Al800510 Al377711 F24263 AA661876			
		376239_1		AA613792 AW182329 T05304 AW858385			
0.5		c_x_hs	41				
35		CH22_4071F0					
		CH22_4072F0					
		CH22_4157F0					
			3_LINK_EM:AC00				
40			3_LINK_EM:AC00				
40		c16_p2					
		C16_p2	G_LINK_EM:AC00				
			3_LINK_EM:AC00				
			S_LINK_EM:AC00				
45			S_LINK_EM:AC00				
			G LINK EM:ACOO				
			94_1_LINK_EM:A				
			94_2_LINK_EM:A				
			157_1_LINK_EM:				
50			157_5_LINK_EM:				
•	333458	CH22_708FG	157_7_LINK_EM:				
	333611	CH22_872FG_	_217_6_LINK_EM:				
	333621	CH22_882FG_	_219_5_LINK_EM:				
			3_282_2_LINK_EM	•			
55 °			3_290_8_LINK_EM				
			3_504_9_LINK_EM				
			3_303_5_LINK_EM				
			3_303_7_LINK_EM				
60			3_303_11_LINK_E				
oo			3_527_6_LINK_EM				
	326816						
	326997		5 576 11 LINK E				
			3_5/6_11_LINK_E 3_581_19_LINK_E				
65			3_581_25_LINK_E				
	•••••	~: "FF_F0+41 F	~~~~ : _!~~_!~!!!_E				

	328492	c_7_hs	
	335809	CH22_3181FG_617_6_LINK_EN	4
		CH22_3182FG_617_7_LINK_EN	
		CH22_3185FG_619_7_LINK_EN	
5		CH22_3197FG_619_11_LINK_E	
J			
		CH22_3228FG_626_5_LINK_EN	
		CH22_3261FQ_632_4_LINK_EA	Λ
		c16_p2	
	330211	c_5_p2	•
10	337577	CH22_5864FGLINK_C65E1.G	ì .
	307848	Al364186	•
	332797	CH22 13FG 6 2 LINK C4G1.0	
	332798	CH22_14FG_6_5_LINK_C4G1.0	
		CH22_15FG_6_6_LINK_C4G1.6	
15		CH22_1429FG_339_1_LINK_EN	
		CH22 154FG 38 7 LINK C20H	
		CH22 204FG 54 1 LINK EM:A	
		CH22 208FG 54 6 LINK EM:A	
		CH22_1507FG_360_4_LINK_EN	
20			
20		CH22_1588FG_372_3_LINK_EN	A
		c21_hs	
		CH22_1742FG_387_2_LINK_EN	
		CH22_1743FG_387_4_LINK_EN	
25		CH22_1746FG_387_7_LINK_EN	
25		CH22_1875FG_405_11_LINK_E	
		CH22_2061FG_427_1_LINK_EN	
		CH22_2089FG_430_9_LINK_EN	
		CH22_3419FG_678_5_LINK_DJ	
		CH22_2281FG_465_29_LINK_E	
30		CH22_3861FG_827_7_LINK_DJ	
	330551	9851_2	U39840 NM_004496 AW135607 BE087458 BE087567 AA177116 AW195705 AW750756 AI811008 AI694151
			BE348594 AW971075 Al347950 Al201455 Al073898 AA652680 AA613671 Al318364 AA507550 AA693692
			AI032599 AA991871 AI269801 AW948974 T74639 AA532907 AW949173
	330786	53973_3	BE379594 AI192455 AL039862 AI744012 AI761735 AW243181 AI743687 AI928223 AI423022 AI627855
35			AI636059 AI651571 AW802044 AI826995 AI431733 AI539125 AA863056 AW270910 AI768930 AW008835
			AW615183 AW591147 Al695294 Al672106 AA506358 Al308060 AA011556 AA962437 Al935488 BE219625
			Al004356 AW151394 Al218466 N66178 Al419784 AW242519 AW946907 D60374 AA989263 Al698799
			AA470460 Al824167
	332247	372969_1	AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118292 AA579216 N58172
40		20265_1	AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798
••	00000		R17370 Al908947 AA382932 R58449 H18732 AA371231 AW962899 AA713530 AW892946 R53463 H11063
			AW068542 Z40761 BE176212 BE176155 W23952 W92188 AW374883 AA303497 AW954769 AA036808
			BE168063 AW382073 AW382085 AL041475 H80748 AI078161 BE463983 AI805213 AI761264 W94885
	•		N94502 Al623772 Al419532 Al810302 Al634190 AW002516 AW150777 Al352312 Al367474 AW204807
45			AI675502 AI337026 AW134715 BE328451 AI123157 AI560020 AI300745 AI608631 AI248873 AA742484
73			AW051635 H18646 Al245045 AA507111 Al640510 Al925594 AA115747 AA143035 AA151106
	222701	32044 1	AK001764 BE313896 AA380199 AA380151 AA194996 AW118089 AA495871 AW975219 AW085598
	332/01	OZUPP_I	AI378909 AW992310 AW992409 AI911857 AA657643 AI804471 AI242589 AI623968 R08556 AI129100
			AI376909 AV1992310 AV1992409 AI911697 AA637643 AI604471 AI246369 AI663366 AI86336 AI729160 AI206500 AA680094 AA677784 AI623178 AI277519 AA424742 AI240654 AA232846 AI804273 AI382376
50			A200500 AA000094 AA077764 A025176 A1277519 A4424742 A1240054 AA22004 A1004275 A1506576 AA001729 W90780 BE090656 AW295015 A1674596 A1431734 A1420517 AW769185 A1128355 A1192474
30			
			AIB20001 AA001929 AA706925 AI076676 AI499119 AI200493 AI695919 AI376217 W69195 W69261
			AW305099 W90320 BE048357 Al658856 AA838534 AA233258 Al753393 AA709227 Al674387 Al872616

TABLE 3B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 3. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5

10	Strand: Nt_posit			NA strand from which exons were predicted. ucleotide positions of predicted exons.
15	Pkey	Ref	Strand	Nt_position
1,5	333611	Dunham, I. et.al.	Plus	6548368-6548507
		Dunham, I. et.al.		8597414-8597560
		Dunham, I. et.al.		7894165-7894252
	333849	Dunham, I. et.ai.	Plus	8018323-8018472
20	333949	Dunham, I. et.al.	Plus	8589634-8589791
	333951			8592501-8592637
		Dunham, I. et.al.		8597414-8597560
		Dunham, I. et.al.		10529221-10529854
05		Dunham, I. et.al.		13420934-13421058
25		Dunham, I. et.al.		14298981-14299056
		Dunham, I. et.al.		14306433-14306492
		Dunham, I. et.al.		14308764-14308824
		Dunham, I. et al.		14994868-14994943
30		Dunham, I. et.al.		16259588-16260166 21634405-21634526
30		Dunham, I. et.al. Dunham, I. et.al.		24976198-24976334
		Dunham, I. et.al.		24990333-24990497
		Dunham, I. et.al.		26310772-26310909
		Dunham, I. et.al.		26314767-26314849
35		Dunham, I. et.al.		26364087-26364196
		Dunham, I. et.al.		26376860-26376942
		Dunham, i. et.al.		26934235-26934364
		Dunham, I. et.al.		29014404-29014590
	336441			34187606-34187663
40	337577	Dunham, I. et.al.		595377-595678
	338260	Dunham, I. et.al.	Plus	15458919-15459257
		Dunham, I. et.al.		216964-216798
		Dunham, I. et.al.		232147-231974
40		Dunham, I. et.al.		232421-232307
45		Dunham, Letal.		2035790-2035681
		Dunham, I. et.al.		5136165-5136019
		Dunham, I. et.al.		2632606-2632457
		Dunham, I. et.al.		3729896-3729788
50		Dunham, I. et.al. Dunham, I. et.al.		3730864-3730767 5136165-5136019
50		Dunham, I. et.al.		2631933-2631797
		Dunham, I. et.al.		5143942-5143806
		Dunham, I. et al.		12734365-12734269
	334749			16090686-16090106
55	334960			20160968-20160795
		Dunham, I. et.al.		22316408-22316275
		Dunham, I. et.al.		24668714-24668658
		Dunham, I. et.al.		26614829-26614506
	336624	Dunham, I. et.al.	Minus	227714-227577
60	336625	Dunham, I. et.al.	Minus	229124-229024
	336679	Dunham, I. et.ai.	Minus	2035790-2035681
	338255	Dunham, I. et.al.		15242294-15242231
	338561	Dunham, I. et.al.		22311966-22311856
	338562			22312594-22312465
65	338759	Dunham, I. et.al.		26582475-26582199
		Dunham, I. et.al.		26628148-26628009
	338764	Dunham, I. et.al.	Minus	26841232-26641101

	329960	5091594	Minus	1031-1162
	329929	6165201	Minus	156410-156553
	330020	6671887	Plus	172397-172491
	326816	6552458	Plus	198354-198436
5	326997	5867660	Minus	71389-72147
	327098	6682516	Minus	1061684-1062361
	330211	6013592	Plus	59158-59215
	328492	5868455	Minus	46094-46241
	329362	5868837	Minus	65688-68173
10				

TABLE 4: shows a preferred subset of the Accession numbers for genes found in Table 3 which are differentially expressed in prostate tumor tissue compared to normal prostate tissue.

	Pkey:		Unique Eos	probeset identifier number				
	ExAccn:		Exemplar A	ccession number, Genbank accession number	ī			
	UnigenelD:		Unigene number					
10	Unigene Title:		Unigene ge					
	R1:		Ratio of tun	nor to normal body tissue				
		P		**-1				
15	Pkey	ExAccn	UnigeneiD	Unigene Title	R1			
15	400040	110 1000 17710	0011- 0007	Toward desirant	40.5			
		HG4020-HT42			10.5			
		U75272	Hs.1867	progastricsin (pepsinogen C)	10.6			
		X02544	Hs.572	orosomucoid 1	22.6			
20		AA236476	Hs.22791	ESTs; Weakly similar to transmembrane pr	10.3			
20		AA282138	Hs.11325	ESTs	14			
		AA419461	Hs.23317	ESTs	10.9			
		AA156790	Hs.262036		15.3			
		F01811		ESTs; Moderately similar to voltage-gate	10.8			
25		T23855		KIAA1028 protein	10.8			
25		Z38595		ESTs; Highly similar to KIAA0886 protein	21.3			
		AA460158		KIAA1028 protein	12.4			
		N21626	Hs.102406		10.2			
		Al659131	Hs.197733		24.9			
20		AI869666	Hs.123119		36.8			
30		NM_004917	H\$.218366	EST duster (not in UniGene) with exon h	26.8			
		AA508353		relaxin 1 (H1)	78.8			
		AA255977		ESTs; Highly similar to ubiquitin-conjug	19.5			
		AW503733	Hs.9414	ESTS	13			
25		A1420227	Hs.149358		72.9			
35		AI655662	Hs.197698		41.3			
		A1682088	Hs.79375		26.4			
		AA759250		cytochrome b-561	11			
		AA033609	Hs.239884		112			
40		AA861697		EST cluster (not in UniGene)	13.4			
40		AI821895	Hs.193481		29,4			
		Al672225	Hs.222886		19.3			
		AW292425	Hs.163484		15.5			
		AAB76910	Hs.134427		20			
45		AI654187	Hs.195704		14.2			
43		AW295184		ESTs; Weakly similar to DEOXYRIBONUCLE				
		A1949409	Hs.194591		12.3 25.9			
		AW291511	Hs.159066 Hs.23023		16.9			
	319080	AA460775	Hs.6295	ESTs	14.3			
50		AF071202		ATP-binding cassette; sub-family C (CFTR	56.2			
50		AW297633	Hs.118498		14.7			
		W07459		EST duster (not in UniGene)	22			
		AA056060		EST duster (not in UniGene)	18.4			
		AW043782	Hs.293616		10.7			
55		AA639902	Hs.104215		24.7			
<i></i>		AW016378	Hs.292934		24.7			
		AA508552	Hs.195839		54			
		A1694767	Hs.129179		22			
		Al217963		ESTs; Weakly similar to Pro-a2(XI) [H.sa	10.6			
60		AA641092	Hs.257339		10.0			
50		AI557019	Hs.116467		34.4			
	330211	M357015	113.110407		12.6			
		HG9961 LITTO	59 He 20141	CH.05_p2 gi 6013592 O Antigen, Prostate Specific, Alt. Splice	13.8			
		AA121140		ESTs; Moderately similar to kynurenine a	14.5			
65		AA449677		Human DNA sequence from clone 437M21 o				
J.J		AA149579	Hs.91202	FSTe	15.3			
		H01458	Hs.142896		10.3			
	300513	. 10 1700	10-1-2000	2010	10.0			

Ĺ

5

	331099	R36671	Hs.14846	ESTs	11.6
	331151	R82331	Hs.268838	ESTs	13
	331889	AA431407	Hs.98802	Homo sapiens Chromosome 16 BAC clon-	e CIT 33.6
	332247	N58172		ESTs	14.2
5	332396	AA340504		ESTs; Weakly similar to similar to human	21.2
	332533	M99487	Hs.325825	folate hydrolase (prostate-specific memb	38.1
	332697	T94885	Hs.75725	carboxypeptidase E	24.3
	332797			CH22_FGENES.6_2	30.8
	332798			CH22_FGENES.6_5	66.8
10	332799			CH22_FGENES.6_6	19.8
	334223			CH22_FGENES.360_4	20.3
	336624			CH22_FGENES.6-3	43.3
	336625			CH22 FGENES.6-4	37.9

TABLE 4A shows the accession numbers for those primekeys lacking unigeneID's for Table 4. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene ctuster number Genbank accession numbers		
15	Pkey	CAT number		Accession	
20	336625 330211 332797 332798 332799	CH22_14FG_ CH22_15FG_		*	
25		372969_1 20265_1		AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118292 AA579216 N58172 AW579842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798 R17370 AI908947 AA382932 R58449 H18732 AA371231 AW962899 AA713530 AW892946 BE3483 H14064 AW962897 AA74550 AW892946	
30				RS3463 H11063 AW068542 Z40761 BE176212 BE176155 W23952 W92188 AW374883 AA303497 AW954769 AA036808 BE168063 AW382073 AW382085 AL041475 H80748 AU78161 BE483983 A1805213 AJ761264 W94885 N94502 AI623772 AI419532 AI810302 AI634190 AW002516 AW150777 AI352312 AI367474 AW204807 AI675502 AI337026 AW134715 BE328451 AI123157 AI560020 AI300745 AI608631 AI248873 AA742484 AW051635 H18646 AI245045 AA507111 AI640510 AI925594 AA115747 AA143035 AA151106	

TABLE 4B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 4. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkøy: Ref:	Sequer	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham L et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham L et al., Nature (1999) 402-499-495.				
	Strand: Nt_position	Indica	es DNA stra	nd from which exons were predicted. e positions of predicted exons.	·		
15	Pkey	Ref	Strand	Nt_position			
	332797	Dunham, I. et.al.	Minus	216964-216798			
	332798	Dunham, I. et.al.	Minus	232147-231974			
20	332799	Dunham, I. et.al.	Minus	232421-232307			
20	334223	Dunham, I. et.al.	Minus	12734365-12734269			
	336624	Dunham, I. et.al.	Minus	227714-227577			
	336625	Dunham, I. et.al.	Minus	229124-229024	•		
	330211	6013592	Plus	59158-59215			

TABLE 5: 1170 GENES UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

Table 5 shows 1170 genes up-regulated in prostate cancer compared to normal adult tissues. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" prostate cancer to "average" normal adult tissues was greater than or equal to 3.44. The "average" prostate cancer level was set to the 85th percentile amongst 73 prostate cancers. The "average" normal adult tissue level was set to the 85th percentile amongst 162 non-malignant tissues. In order to remove gene-specific background levels of non-specific hybridization, the 7.5th percentile value amongst the 162 non-malignant tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

15	Pkey: ExAccn: UnigenelD: Unigene Title: R1:		Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Ratio of tumor to normal tissue			
20	Pkey	ExAcen	UnigeneiD	Unigene Title .	R1	
	446057 400302 414569	Al420227 N48056 AF109298	Hs.149358 Hs.1915 Hs.118258	ESTs, Weakly similar to A46010 X-linked fotate hydrotase (prostate-specific memb prostate cancer associated protein 1	86.42 68.46 58.36	
25	417407 431579 409361 409731	AA923278 AW971082 NM_005982 AA125985	Hs.290905 Hs.222886 Hs.54416 Hs.56145	ESTs, Weakly similar to protease [H.sapi ESTs, Weakly similar to TRHY_HUMAN TRICH sine oculis homeobox (Drosophila) homolo thymosin, beta, identified in neuroblast	56.16 53.38 48.28 45.24	
30	400298 420154 433466 400296	AA032279 Al093155 AA508353 AA305627	Hs.61635 Hs.95420 Hs.105314 Hs.139336	six transmembrane epithelial antigen of JM27 protein relaxin 1 (H1) ATP-binding cassette, sub-family C (CFTR	43.48 41.12 39.88 38.42	
35	400292 432887 439176	AA250737 AI926047 AI446444	Hs.72472 Hs.162859 Hs.190394	ESTs ESTs ESTs, Weakly similar to B28096 line-1 pr	38.00 36.48 36.45 33.20	
	430722 437052 418396 434036	AW968543 AA861697 Al765805 Al659131	Hs.203270 Hs.120591 Hs.26691 Hs.197733	ESTs, Weakly similar to ALU1_HUMAN ALU S ESTs ESTs hypothetical protein MGC2849	33.02 32.68 32.44	
40	407709 426747 407168	AA456135 AA535210 R45175	Hs.23023 Hs.171995 Hs.7130	ESTs kallikrein 3, (prostate specific antigen ESTs copine IV	32.10 31.80 31.72 30.52	
45	440260 421513 416370 407122	A1972867 X00949 N90470 H20276	Hs.105314 Hs.203697 Hs.31742	relaxin 1 (H1) ESTs, Weakly similar to 138022 hypotheti ESTs	30.10 29.68 29.24	
50	400287 432244 451939 415989	S39329 Al669973 U80456 Al267700	Hs.181350 Hs.200574 Hs.27311 Hs.111128	kallikrein 2, prostatic ESTs single-minded (Drosophila) homolog 2 ESTs	28.90 28.74 28.74 28.34	
	418961 425628 458509 448290	AW967646 NM_004476 AA654650 AK002107	Hs.23023 Hs.1915 Hs.282906 Hs.20843	ESTs folate hydrolase (prostate-specific memb ESTs Homo sapiens cDNA FLJ11245 fis, cione PL	27.34 27.32 27.24 27.16	
55	428336 450096 400299	AA503115 Al682088 X07730	Hs.183752 Hs.223368 Hs.171995	microseminoprotein, beta- holocarboxylase synthetase (biotin-[prop kallikrein 3, (prostate specific antigen	26.17 25.60 24.91	
60	437571 453160 453096 425075 407202	AA760894 AI263307 AW294631 AA506324 N58172	Hs.153023 Hs.146228 Hs.11325 Hs.1852 Hs.109370	ESTs H2B histone family, member L ESTs acid phosphatase, prostate ESTs	24.74 24.66 24.46 24.23 24.18	

	424846	AU077324	Hs.1832	neuropeptide Y	23.57
	453370	AJ470523	Hs.182356	ATP-binding cassette, sub-family C (CFTR	23.16
	422805	AA436989	Hs.121017	H2A histone family, member A	22.52
	444917	R68651	Hs.144997	ESTs	22.26
5	408826	AF216077	Hs.48376	Homo sapiens clone HB-2 mRNA sequence	
,	413597	AW302885			22.02
	426429	X73114	Hs.117183	ESTs	21.76
	_		Hs.169849	myosin-binding protein C, slow-type	21.32
	435981	H74319	Hs.188620	ESTs	21.12
10	432956	AA650114		ESTs	21.07
10	418848	Al820961	Hs.193465	ESTs	21.06
	405685				20.90
	443271	BE568568	Hs.195704	ESTs	19.98
	418819	AA228776	Hs.191721	ESTs	19.94
	420757	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	19.72
15	418994	AA296520	Hs.89546	selectin E (endothelial adhesion molecul	19.56
	429918	AW873986	Hs.119383	ESTs	19.04
	415539	AI733881	Hs.72472	ESTs	18.43
	450382	AA397658	Hs.60257	Homo sapiens cDNA FLJ13598 fis, clone PL	18.34
	418829	AA516531	Hs.55999	NK homeobox (Drosophila), family 3, A	18.28
20	429984	AL050102	Hs.227209	hypothetical protein FLJ21617	17.82
	443822	Al087412	Hs.143611	ESTs, Weakly similar to 2004399A chromos	17.66
	431676	Al685464	Hs.292638	gb:tt88f04_x1 NCI_CGAP_Pr28 Homo sapiens	17.64
	410330	AW023630	Hs.46786	ESTs	
	432441	AW292425	Hs.163484	ESTs	17.52
25	452792	AB037765	Hs.30652	KIAA1344 protein	17.41
دي					17.39
	445472	AB006631	Hs.12784	Homo sapiens mRNA for KIAA0293 gene, par	17.00
	414565	AA502972	Hs.183390	hypothetical protein FLJ13590	16.82
	430487	D87742	Hs.241552	KIAA0268 protein	16.72
20	431716	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	16.60
30	419536	AA603305		gb:np12d11.s1 NCI_CGAP_Pr3 Homo sapiens	16.50
	439677	R82331	Hs.164599	ESTs	16.46
	449625	NM_014253	Hs.23796	odz (odd Oz/ten-m, Drosophila) homolog 1	16.32
	408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	16.28
~ =	447033	Al357412	Hs.157601	ESTs	16.02
35	453006	A1362575	Hs.167133	ESTs	15.74
	431474	AL133990	Hs.190642	ESTs	15.70
	420218	AW958037	Hs.22437	ribosomal protein L4	15.64
	408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.54
	416208	AW291168	Hs.41295	ESTs, Weakly similar to MUC2_HUMAN MUCIN	15.48
40	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	15.40
	415263	AA948033	Hs.130853	ESTs	15.38
	432437	W07088	Hs.293685	ESTs	15.26
	428398	Al249368	Hs.98558	ESTs	15.21
	429900	AA460421	Hs.30875	ESTs	14.90
45	449156	AF103907	Hs.171353	prostate cancer antigen 3	14.89
	411096	U80034	Hs.68583	mitochondrial intermediate peptidase	14.81
	435974	U29690	Hs.37744	Homo sapiens beta-1 adrenergic receptor	14.76
	444484	AK002126	Hs.11260	hypothetical protein FLJ11264	14.76
	422728	AW937826	Hs.103262	ESTs, Weakly similar to ZN91_HUMAN ZINC	14.60
50	418601	AA279490	Hs.86368	calmegin	14.56
50	448999	AF179274	Hs.22791		
	445885			transmembrane protein with EGF-like and	14.55
	452712	AI734009	Hs.127699	KIAA1603 protein	14.44
		AW838616		gb:RC5-LT0054-140200-013-D01 LT0054 Homo	14.22
55	432189 424565	AA527941	U. Troop	gb:nh30c04.s1 NCL_CGAP_Pr3 Homo saplens	14.12
JJ		AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	13.78
	429290	AF203032	Hs.198760	neurofilament, heavy polypeptide (200kD)	13.57
	419264	AA877104	Hs.293672	ESTs, Weakly similar to ALUB_HUMAN !!!!	13.40
	416445	AL043004	Hs.300678	KIAA0135 protein	13.32
<i>-</i> 0	407275	Al364186		gb:qw34h07.x1 NCI_CGAP_Ut4 Homo sapiens	13.24
60	408369	R38438	Hs.182575	solute carrier family 15 (H+/peptide tra	13.21
	446720	AJ439136	Hs.140546	ESTs	13.06
	434988	Al418055	Hs.161160	ESTs	13.02
	448172	N75276	Hs.135904	ESTs	12.98
	416182	NM_004354	Hs.79069	cyclin G2	12.94
65	420544	AA677577	Hs.98732	Homo sapiens Chromosome 16 BAC clone CIT	12.79
	445413	AA151342	Hs.12677	CGI-147 protein	12.64
	452588	AA889120	Hs.110637	homeo box A10	12.62
	407819	R42185	Hs.274803	ESTs	12.60
	433444	AW975324	Hs.129816	ESTs	12.60

	421059	AI654133	Hs.30212	thyrold receptor interacting protein 15	12.30
	420077	AW512260	Hs.87767	ESTs	12.24
	453930	AA419466	Hs.36727	hypothetical protein FLJ10903	12.22
	441610	AW576148	Hs.148376	ESTs	12.20
5					12.18
J	451009	AA013140	Hs.115707	ESTs	
	433764	AW753676	Hs.39982	ESTs	12.16
	440286	U29589	Hs.7138	cholinergic receptor, muscarinic 3	12.04
	443912	R37257	Hs.184780	ESTs	11.92
	419526	AJ821895	Hs.193481	ESTs	11.91
10					
10	423073	BE252922	Hs.123119	MAD (mothers against decapentaplegic, Dr	11.87
	452784	BE463857	Hs.151258	hypothetical protein FLJ21062	11.86
	414422	AA147224	Hs.71814	ESTs	11.76
	450203	AF097994	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	11,68
	436679	AI127483	Hs.120451	ESTs, Weakly similar to unnamed protein	11.60
15					11.60
13	440901	AA909358	Hs.128612	ESTs	
	448045	AJ297436	Hs.20166	prostate stem cell antigen	11.51
	433887	AW204232	Hs.279522	ESTs	11.50
	434980	AW770553	Hs.293640	sterol O-acyltransferase (acyl-Coenzyme	11.38
	425905	AB032959	Hs.161700	novel C3HC4 type Zinc finger (ring finge	11,33
20					11.32
20	434680	T11738	Hs.127574	ESTs	
	449650	AF055575	Hs.297647	calcium channel, voltage-dependent, L ty	11.18
	431173	AW971198	Hs.294068	ESTs	11.16
	434539	AW748078	Hs.214410	ESTs, Wealdy similar to MUC2_HUMAN MUCIN	11.16
	410037	AB020725	Hs.58009	KIAA0918 protein	11.14
25					
23	417708	N74392	Hs.50495	ESTs	11.14
	458332	Al000341	Hs.220491	ESTs	11.12
	420381	D50640	Hs.301782	phosphodiesterase 3B, cGMP-inhibited	11.10
	425665	AK001050	Hs.159066	hypothetical protein FLJ10188	11.08
	425710	AF030880	Hs.159275	solute carrier family, member 4	11.08
30					11.04
30	428728	NM_016625	Hs.191381	hypothetical protein	
	407021	U52077		gb:Human mariner1 transposase gene, comp	11.02
	410733	D84284	Hs.66052	CD38 antigen (p45)	11.02
	401714				10.90
	434485	Al623511	Hs.118567	ESTs	10.89
35			Hs.257924	hypothetical protein FLJ13782	10.87
22	415786	AW419196			
	452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	10.85
	453628	AW243307	Hs.170187	hypothetical protein	10.72
	408063	BE086548	Hs.42346	calcineurin-binding protein calsarcin-1	10.67
	417687	AI828596	Hs.250691	ESTs	10.64
40			Hs.112259		10.53
40	434666	AF151103		T cell receptor gamma locus	
	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PL	10.50
	428819	AL135623	Hs.193914	KIAA0575 gene product	10.48
	413409	AI638418	Hs.21745	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	10.44
	428775	AA434579	Hs.143691	ESTs	10.21
45	436556	Al364997	Hs.7572	ESTs	10.20
43					
	441690	RB1733	Hs.33106	ESTs	10.14
	419852	AW503756	Hs.286184	hypothetical protein dJ551D2.5	10.10
	421991	NM_014918	Hs.110488	KIAA0990 protein	10.04
	423698	AA329796	Hs.1098	DKFZp434J1813 protein	10.02
50	452039		Hs.172510	ESTs	10.00
20		A1922988			9.98
	433043	W57554	Hs.125019	ESTs	
	433927	AI557019	Hs.116467	small nuclear protein PRAC	9.97
	445424	AB028945	Hs.12696	contactin SH3 domain-binding protein	9.96
	432240	AI694767	Hs.129179	Homo sapiens cDNA FLJ13581 fis, clone PL	88.8
55	433104	AL043002	Hs.128246	ESTs, Moderately similar to unnamed prot	9.84
55				Homo sapiens mRNA; cDNA DKFZp434E082 (fr	9.82
	452744	Al267652	Hs.30504		
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	9.75
	427398	AW390020	Hs.20415	chromosome 21 open reading frame 11	9.70
	446896	T15767	Hs.22452	Homo sapiens mRNA for KIAA1737 protein,	9.70
60	421470	R27496	Hs.1378	annexin A3	9.64
00			. 10. 1070	Markett (W	9.60
	406554				
	401424				9.58
	407902	AL117474	Hs.41181	Homo sapiens mRNA; cDNA DKFZp727C191 (fr	9.56
	423545	AP000692	Hs.129781	chromosome 21 open reading frame 5	9.54
65	439024	R96696	Hs.35598	ESTs	9.51
0.5					9.48
	431548	AI834273	Hs.9711	novel protein	
	409262	AK000631	Hs.52256	hypothetical protein FLJ20624	9.45
	446271	D82484	Hs.100469	ESTs	9.42
	448692	AW013907	Hs.224276	methylcrotonoyl-Coenzyme A carboxylase 2	9.26

	414140	AA281279	Hs.23317	hypothetical protein FLJ14681	9.24
			Hs.129142	deoxyribonuclease II beta	9.24
	435980	AF274571			9.20
	421246	AW582962	Hs.300961	CGI-47 protein	
_	427304	AA761526	Hs.163853	ESTs	9.16
5	442914	AW188551	Hs.99519	hypothetical protein FLJ14007	9.16
	413627	BE182082	Hs.246973	ESTS	9.14
	439699	AF086534	Hs.187561	ESTs, Moderately similar to ALU1_HUMAN A	9.10
	437718	Al927288	Hs.196779	ESTs	9.07
10	439820	AL360204	Hs.283853	Homo sapiens mRNA full length insert cDN	9.06
10	447342	Al199268	Hs.19322	Homo saplens, Similar to RIKEN cDNA 2010	9.05
	446223	BE300091	Hs.119699	hypothetical protein FLJ12969	9.04
	410001	AB041036	Hs.57771	kallikrein 11	9.03
	424012	AW368377	Hs.137569	turnor protein 63 kDa with strong homolog	9.03
	441791	AW372449	Hs.175982	hypothetical protein FLJ21159	9.02
15	448206	BE622585	Hs.3731	ESTs, Moderately similar to 138022 hypot	9.02
	414269	AA298489		olfactory receptor, family 51, subfamily	8.99
	442081	AA401863	Hs.22380	ESTs	8.98
	420092	AAB14043	Hs.88045	ESTs	8.85
	411630	U42349	Hs.71119	Putative prostate cancer tumor suppresso	8.80
20	421863	A1952677	Hs.108972	Homo sapiens mRNA; cDNA DKFZp434P228 (fr	8.80
	454141	AW138413	Hs.182356	ATP-binding cassette, sub-family C (CFTR	8.80
	418278	A1088489	Hs.83937	hypothetical protein	8.78
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	8.76
	432415	T16971	Hs.289014	ESTs, Weakly similar to A43932 mucin 2 p	8.75
25	424906	Al566086	Hs.153716	Homo sapiens mRNA for Hmob33 protein, 3'	8.74
	415245	N59650	Hs.27252	ESTs	8.72
	442409	BE208843	Hs.129544	hypothetical protein MGC15438	8.70
	404571				8.66
	418033	W68180	Hs.259855	elongation factor-2 kinase	8.64
30	456497	AW967956	Hs.123648	ESTs, Weakly similar to AF108460 1 ubinu	8.56
	405876				8.54
	448807	Al571940	Hs.7549	ESTs	8.52
	445372	N36417	Hs.144928	ESTs	8.48
	425171	AW732240	Hs.300615	ESTs	8.44
35	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	8.36
	407385	AA610150	Hs.272072	ESTs, Weakly similar to I38022 hypotheti	8.31
	433172	AB037841	Hs.102652	hypothetical protein ASH1	8.30
	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.27
	412719	AW016610	Hs.129911	ESTs	8.24
40	418849	AW474547	Hs.53565	Homo saplens PIG-M mRNA for mannosyltran	8.22
	444922	Al921750	Hs.144871	Homo sapiens cONA FLJ13752 fis, done PL	8.22
	427674	NM_003528	Hs.2178	H2B histone family, member Q	8.20
	432101	Al918950	Hs.11092	EphA3	8.17
	416288	H51299		gb:yp07c06.s1 Soares breast 3NbHBst Homo	8.15
45	404915				8.08
	440106	AA864968	Hs.127699	KIAA1603 protein	8.07
	442861	AA243837	Hs.57787	ESTs .	8.06
	452259	AA317439	Hs.28707	signal sequence receptor, gamma (translo	8.06
	443250	AI041530	Hs.132107	ESTs	8.06
50	437267	AW511443	Hs.258110	ESTs	8.04
	452891	N75582	Hs.212875	ESTs, Weakly similar to DYH9_HUMAN CILI	8.02
	422219	AW978073		regulator of mitotic spindle assembly 1	8.00
	453049	BE537217	Hs.30343	ESTs	8.00
	439731	Al953135	Hs.45140	hypothetical protein FLJ14084	7.98
55	408554	AA836381	Hs.7323	nuclear receptor co-repressor/HDAC3 comp	7.94
	421154	AA284333	Hs.287631	Homo sapiens cDNA FLJ14269 fis, clone PL	7.94
	430107	AA465293	Hs.105069	ESTs	7.94
	433404	T32982	Hs.102720	EST ₈	7.93
	450813	AI739625	Hs.203376	ESTs	7.90
60	416239	AL038450	Hs.48948	ESTs	7.85
	448212	Al475858		gb:tc87d07.x1 NCI_CGAP_CLL1 Homo sapiens	7.82
	449532	W74653	Hs.271593	ESTs, Moderately similar to A47582 B-cel	7.82
	413930	M86153	Hs.75618	RAB11A, member RAS oncogene family	7.80
	458191	Al420611	Hs.127832	ESTs	7.80
65	444858	Al199738	Hs.208275	ESTs, Weakly similar to ALUA_HUMAN !!!!	7.78
	457498	Al732230	Hs.191737	ESTs	7.78
	407235	D20569	Hs.169407	SAC2 (suppressor of actin mutations 2, y	7.76
	433759	AA680003	Hs.109363	Homo sapiens cDNA: FLJ23603 fis, clone L	7.74
	433805	AA706910	Hs.112742	ESTs	7.74

	426485	NM_006207	Hs.170040	platelet-derived growth factor receptor-	7.72
	446028	R44714	Hs.106795	Homo saplens cDNA FLJ13136 fis, clone NT	7.72
	418555	Al417215	Hs.87159	hypothetical protein FLJ12577	7.70
_	447499	AW262580	Hs.147674	protocadherin beta 16	7.70
5	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	7.68
	416857	AA188775	Hs.292453	ESTs	7.68
	413801	M62246	Hs.35406	ESTs, Highly similar to unnamed protein	7.66 7.66
	425480	AB023198	Hs.158135	KIAA0981 protein	7.64
10	420120	AL049610	Hs.95243	transcription elongation factor A (SII)-	7.64
10	424099	AF071202 T50083	Hs.139336 Hs.9094	ATP-binding cassette, sub-family C (CFTR ESTs	7.63
	446307 429220	AW207206	Hs.136319	ESTs	7.59
	420345	AW295230	Hs.25231	ESTs	7.54
	429208	AA447990	Hs.190478	ESTs	7.54
15	447247	AW369351	Hs.287955	Homo sapiens cDNA FLJ13090 fis, clone NT	7.53
	440995	T57773	Hs.10263	ESTs	7.53
	448706	AW291095	Hs.21814	interleukin 20 receptor, alpha	7.52
	410227	AB009284	Hs.61152	exostoses (multiple)-like 2	7.49
20	431616	AA508552	Hs.195839	ESTs, Weakly similar to I38022 hypotheti	7.46
20	434217	AW014795	Hs.23349	EST8	7.44
	431467	N71831	Hs.256398	Homo sapiens mRNA; cDNA DKFZp434E0528 (f	7.42 7.42
	448519	AW175665	Hs.244334 Hs.34981	Homo sapiens prostein mRNA, complete cds ESTs	7.40
	446791 419743	A1632278 AW408762	Hs.127478	Homo sapiens clone 24416 mRNA sequence	7.39
25	445855	BE247129	Hs.145569	ESTs	7.36
25	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	7.35
	419131	AA406293	Hs.301622	ESTs	7.34
	400294	N95796	Hs.179809	Homo sapiens prostein mRNA, complete cds	7.33
••	441736	AW292779	Hs.169799	ESTs	7.28
30	427701	AA411101	Hs.221750	nuclear autoantigenic sperm protein (his	7.24
	457733	AW974812	Hs.291971	ESTs	7.24
	418432	M14156	Hs.85112	insulin-like growth factor 1 (somatomed)	7.22 7.21
	441201	AW118822	Hs.128757 Hs.125752	ESTs ·	7.20
35	419953 419991	BE267154 AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	7.20
55	425018	8E245277	Hs.154196	E4F transcription factor 1	7.20
	424560	AA158727	Hs.150555	protein predicted by clone 23733	7.18
	435380	AA679001	Hs.192221	ESTs	7.14
	420658	AW965215	Hs.130707	ESTs	7.12
40	408291	AB023191	Hs.44131	KIAA0974 protein	7.10
	409110	AA191493	Hs.48778	niban protein	7.10
	414485	W27026	Hs.182625	VAMP (vesicle-associated membrane protei	7.10
	430039	BE253012	Hs.153400	ESTs, Weakly similar to ALU1_HUMAN ALU S ESTs	7.10 7.10
45	450832 417153	AW970602 X57010	Hs.105421 Hs.81343	collagen, type II, alpha 1 (primary oste	7.08
73	412446	A1768015	Hs.92127	ESTs	7.07
	412953	Z45794	Hs.238809	ESTs	7.06
	418051	AW192535	Hs.19479	ESTs	7.06
	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	7.04
50	446999	AA151520	Hs.279525	hypothetical protein MGC4485	7.04
	440529	AW207640	Hs.16478	Homo sapiens cDNA: FLI21718 fis, clone C	7.04
	441111	A1806867	Hs.126594	ESTs	7.01
	451027	AW519204	Hs.40808	ESTS -	7.00 7.00
55	408432	AW195262	Hs.285336	gb:xn67b05.x1 NCL_CGAP_CML1 Homo sapiens Homo sapiens, done IMAGE:3460280, mRNA	7.00
33	432223 444805	AA333283 AB007899	Hs.12017	homolog of yeast ubiquitin-protein ligas	6.99
	414212	AA136569	Hs.295940	KIAA0187 gene product	6.98
	431725	X65724	Hs.2839	Norrie disease (pseudoglioma)	6.98
	449685	AW296669	Hs.66095	ESTs	6.97
60	447313	U92981	Hs.18081	Homo sapiens done DT1P1B6 mRNA, CAG rep	6.96
	424590	AW966399	Hs.46821	hypothetical protein FLJ20086	8.94
	449655	AI021987	Hs.59970	ESTS	6.92
	419563	AA526235	Hs.193162	Homo sapiens cDNA FLJ11983 fis, clone HE	6.90
65	434163	AW974720	Hs.25206	group XII secreted phospholipase A2 ESTs	6.89 6.86
UJ.	415809 425782	Z32789 U66468	Hs.46601 Hs.159525	cell growth regulatory with EF-hand doma	6.85
	417958	AA767382	Hs.193417	ESTs	6.84
	427408	AA583206	Hs.2156	RAR-related orphan receptor A	6.79
	445873	AA250970	Hs.251946	poly(A)-binding protein, cytoplasmic 1-l	6.74

	410718	Al920783	Hs.191435	ESTs	6.74
	432363	AA534489		gb:nf76g11.s1 NCL_CGAP_Co3 Homo sapiens	6.74
	436521	AW203986	Hs.213003	ESTs PAGE	6.73
5	435604	AA625279	Hs.26892	uncharacterized bone marrow protein BM04	6.73 6.72
J	419083 418245	AI479560 AA088767	Hs.98613 Hs.83883	Homo sapiens cDNA FLJ12292 fis, ctone MA transmembrane, prostate androgen induced	6.70
	420714	BE172704	Hs.222746	KIAA1610 protein	6.70
	412707	AW206373	Hs.16443	Homo sapiens cDNA: FLJ21721 fis, clone C	6.67
	421896	N62293	Hs.45107	ESTs	6.66
10	411078	A1222020	Hs.182364	CocoaCrisp	6.66
	452465	AA610211	Hs.34244	ESTs	6.66
	422763	AA033699	Hs.83938	ESTs, Moderately similar to MAS2_HUMAN M	6.66
	444618	AV653785	Hs.300171	ELL-RELATED RNA POLYMERASE II, ELONGATIO	6.64 6.63
15	450164 431060	Al239923 AF039307	Hs.30098 Hs.249171	homeo box A11	6.62
13	408031	AA081395	Hs.42173	Homo sapiens cDNA FLJ10366 fis, clone NT	6.62
	420285	AA258124	Hs.293878	ESTs, Moderately similar to ZN91_HUMAN Z	6.62
	444670	H58373	Hs.37494	hypothetical protein MGC5370	6.62
	444489	AJ151010	Hs.157774	ESTs	6.60
20	445685	AW779829	Hs.263436	gb±n88a05.x1 NCI_CGAP_Kid11 Homo sapien	6.60
	435677	AA694142	Hs.293726	ESTs, Weakly similar to TSGA RAT TESTIS	6.59
	452221	C21322	Hs.11577	hypothetical protein FLJ22242	6.59 6.56
	431510	AA580082 AF091622	Hs.112264 Hs.78893	ESTs KIAA0244 protein	6.54
25	415874 418405	AIB68282	Hs.11898	ESTs, Highly similar to KIAA1370 protein	6.54
23	452768	AW069459	Hs.61539	ESTs	6.54
	401451		7.0.0.000		6.52
	416289	W26333		ESTs	6.52
	431778	AL080276	Hs.268562	regulator of G-protein signalling 17	6.51
30	409089	NM_014781	Hs.50421	KIAA0203 gene product	6.50
•	442833	AA328153	Hs.88201	ESTs, Weakly similar to A Chain A, Cryst	6.50 6.49
	431992 418833	NM_002742 AW974899	Hs.2891 Hs.292776	protein kinase C, mu ESTs	6.48
	429163	AA884766	115.252110	gb:am20a10.s1 Soares_NFL_T_GBC_S1 Homo s	6.46
35	430403	AF039390	Hs.241382	tumor necrosis factor (ligand) superfami	6.46
	443058	AW451642	Hs.16732	ESTs	6.46
	418564	AA631143	Hs.179809	Homo sapiens prostein mRNA, complete cds	6.44
	432674	AA641092	Hs.257339	ESTs, Weakly similar to I38022 hypotheti	6.44
40	423600	A1633559	Hs.29076	ESTs	6.44 6.42
40	404253 433610	AA806822	Hs.112547	ESTs	6.42
	421552	AF026692	Hs.105700	secreted frizzled-related protein 4	6.41
	407118	AA156790	Hs.262036	ESTs, Weakly similar to Z223_HUMAN ZINC	6.40
	408608	N79738	Hs.138102	KIAA0853 protein	6.40
45	421452	Al925946	Hs.104530	fetal hypothetical protein	6.40
	433285	AW975944	Hs.237396	ESTs	6.40
	434926	BE543269	Hs.50252	mitochondrial ribosomal protein L32	6.40
	446189	H85224	Hs.214013	ESTs peroxisomal blogenesis factor 7	6.40 6.38
50	416806 416467	NM_000288 H57585	Hs.79993 Hs.37467	ESTs	6.36
50	453403	BE466639	Hs.61779	Homo sapiens cDNA FLJ13591 fis, clone PL	6.34
	429769	NM_004917	Hs.218366	kaliikrein 4 (prostase, enamel matrix, p	6.34
	423642	AW452650	Hs.157148	hypothetical protein MGC13204	6.32
~ ~	425843	BE313280	Hs.159627	death associated protein 3	6.32
55	439221	AA737106	Hs.32250	ESTs, Moderately similar to 178885 serin	6.32
	428194	AA765603	Hs.180877 Hs.2877	H3 histone, family 3B (H3.3B) cadherin 3, type 1, P-cadherin (placenta	6.30 6.30
	431958 439366	X63629 AF100143	Hs.6540	fibroblast growth factor 13	6.30
	452789	AW081626	Hs.242561	ESTs	6.30
60	416836	D54745	Hs.80247	cholecystokinin	6.30
	436962	AW377314	Hs.5364	DKFZP564I052 protein	6.29
	433383	AF034837	Hs.192731	double-stranded RNA specific adenosine d	6.29
	418636	AW749855	LIA OPOOO	gb:QV4-BT0534-281299-053-005 BT0534 Homo	6.26 6.25
65	450728	AW162923 AI004193	Hs.25363 Hs.22123	preseniin 2 (Alzheimer disease 4) ESTs	6.24
5 5	440293 453745	AA952989	Hs.63908	hypothetical protein MGC14726	6.24
	426595	AW971980	Hs.62402	p21/Cdc42/Rac1-activated kinase 1 (yeast	6.24
	444412	Al147652	Hs.216381	Homo saplens clone HH409 unknown mRNA	6.24
	413384	NM_000401	Hs.75334	exostoses (multiple) 2	6.22

	426320	W47595	Hs.169300	transforming growth factor, beta 2	6.22
	423349	AF010258	Hs.127428	homeo box A9	6.20
	429165	AW009886	Hs.118258	prostate cancer associated protein 1	6.18
_	424800	AL035588	Hs.153203	MyoD family inhibitor	6.18
5	409564	AA045857	Hs.54943	fracture callus 1 (rat) homolog	6.16 6.16
	438796 425451	W67821 AF242769	Hs.109590 Hs.157481	genethonin 1 mesenchymal stem cell protein DSC54	6.14
	451683	A1872360	Hs.209293	ESTs	6.14
	413623	AA825721	Hs.246973	ESTs	6.12
10	452232	AW020603	Hs.271698	radial spoke protein 3	6.12
	453390	AA862496	Hs.28482	ESTs	6.12
	435542	AA687376	Hs.269533	ESTs	6.12
	420424	AB033036	Hs.97594	KIAA1210 protein	6.11
15	407103	AA424881	Hs.256301	hypothetical protein MGC13170	6.10 6.10
15	409734 432686	BE161664 BE223007	Hs.56155 Hs.152460	hypothetical protein Homo saplens cDNA FLJ12909 fis, clone NT	6.10
	438361	AA805668	Hs.146217	Homo sapiens cDNA: FLJ23077 fis, clone L	6.10
	411479	AW848047	110.170211	gb:lL3-CT0214-291299-052-A12 CT0214 Homo	6.10
	438849	W28948	Hs.10762	ĔSTs	6.08
20	452726	AF188527	Hs.61661	ESTs, Weakly similar to AF174605 1 F-box	6.08
	445895	D29954	Hs.13421	KIAA0056 protein	6.08
	440774	Al420611	Hs.127832	ESTs	6.07
	422583	AA410506	Hs.118578	KIAA0874 protein	6.06 6.04
25	427500 443646	AW970017 AI085198	Hs.293948 Hs.298699	ESTs, Weakly similar to S65657 alpha-1C- ESTs	6.04
2.7	410566	AA373210	Hs.43047	Homo sapiens cDNA FLJ13585 fis, clone PL	6.02
	417845	AL117461	Hs.82719	Homo saplens mRNA; cDNA DKFZp586F1822 (f	6.02
	430273	Al311127	Hs.125522	ESTs	6.02
••	434792	AA649253	Hs.132458	EST8	6.01
30	442490	AW965078	Hs.30212	thyroid receptor interacting protein 15	6.01
	420026	AI831190	Hs.166676	ESTS	6.00 6.00
	437782	Al370876 NM_012093	Hs.123163 Hs.18268	exportin 1 (CRM1, yeast, homolog) adenylate kinase 5	6.00
	447359 447713	AJ420733	Hs.207083	ESTs	6.00
35	451073	AI758905	Hs.206063	ESTs	6.00
٠.	451640	AA195601	Hs.26771	Human DNA sequence from done 747H23 on	6.00
	410889	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	5.97
	441222	Al277237	Hs.44208	hypothetical protein FLJ23153	5.96
40	447732	AI758398	Hs.161318	ESTs	5.96 5.95
40	437756 408829	AA767537 NM_006042	Hs.197096 Hs.48384	ESTs heparan sulfate (glucosamine) 3-O-sulfot	5.94
	453911	AW503857	Hs.4007	Sarcolemmal-associated protein	5.94
	414085	AA114016	Hs.75746	aldehyde dehydrogenase 1 family, member	5.93
	408875	NM_015434	Hs.48604	DKFZP434B168 protein	5.92
45	439451	AF086270	Hs.278554	heterochromatin-like protein 1	5.92
	423853	AB011537	Hs.133466	slit (Drosophila) homolog 1	5.91
	453060	AW294092	Hs.21594	hypothetical protein MGC15754	5.91
	420407 450480	AA814732 X82125	Hs.145010 Hs.25040	lipopolysaccaride-specific response 5-li zinc finger protein 239	5.91 5.90
50	408446	AW450669	Hs.45068	hypothetical protein DKFZp434I143	5.88
-	421039	NM_003478	Hs.101299	culin 5	5.88
	451684	AF216751	Hs.26813	CDA14	5.88
	436063	AK000028	Hs.250867	ribosomal protein S24	5.86
E E	410507	AA355288	Hs.271408	transitional epithelia response protein	5.86
55	420179	N74530	Hs.21168	ESTs DC32	5.84 5.84
	453878 452270	AW964440 AW975014	Hs.19025 Hs.26	ferrochelatase (protoporphyria)	5.83
	435867	AA954229	Hs.114052	ESTs	5.82
	417683	AW566008	Hs.239154	ankyrin repeat, family A (RFXANK-like),	5.82
60	432005	AA524190	Hs.120777	ESTs, Weakly similar to ELL2_HUMAN RNA P	5.81
	406815	AA833930	Hs.288036	tRNA isopentenylpyrophosphate transferas	5.80
	437980	R50393	Hs.278436	KIAA1474 protein	5.80
	425856	AA364908 X03635	Hs.98927 Hs.1657	hypothetical protein FLJ13993 estrogen receptor 1	5.79 5.78
65	400301 446261	AA313893	Hs.13399	hypothetical protein FLJ12615 similar to	5.78
0.5	410141	R07775	Hs.287657	Homo sapiens cDNA: FLJ21291 fis, clone C	5.77
	427258	AA400091	Hs.39421	ESTs	5.76
	419108	AA389724	Hs.191264	ESTs, Weakly similar to ALU7_HUMAN ALU S	5.76
	442029	AW956698	Hs.14456	neural precursor cell expressed, develop	5.76

	407783	AW996872	Hs.172028	a disintegrin and metalloproteinase doma	5.75
	434408	AI031771	Hs.132586	ESTs	5.74
	415077	L41607	Hs.934	glucosaminyi (N-acetyi) transferase 2, i	5.74
5	432435	BE218886	Hs.282070	ESTs	5.74 5.73
3	433313 431740	W20128 N75450	Hs.296039 Hs.183412	ESTs ESTs, Moderately similar to AF116721 67	5.73
	412991	AW949013	113.100412	gb:QV4-FT0005-110500-201-e12 FT0005 Homo	5.72
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069	5.72
	418882	NM_004996	Hs.89433	ATP-binding cassette, sub-family C (CFTR	5.72
10	446867	AB007891	Hs.16349	KIAA0431 protein	5.72
	437866	AA156781	Hs.83992	metallothionein 1E (functional)	5.72
	410232	AW372451	Hs.61184	CGI-79 protein	5.70
	414452	AA454038	Hs.29032	ESTS	5.70 5.70
15	422762 428730	AL031320 AA625947	Hs.119976 Hs.25750	Human DNA sequence from clone RP1-20N2 o ESTs	5.70
13	431571	AW500486	Hs.180610	splicing factor proline/glutamine rich (5.70
	433393	AF038564	Hs.98074	itchy (mouse homolog) E3 ubiquitin prote	5.70
	450616	AL133067	Hs.25214	hypothetical protein	5.70
••	443774	AL117428	Hs.9740	DKFZP434A236 protein	5.69
20	446100	AW967109	Hs.13804	hypothetical protein dJ462023.2	5.69
	419168	Al336132	Hs.33718	Homo seplans cDNA FLJ12841 fis, clone NT	5.68
	416653 452679	AA768553 Z42387	Hs.77496 Hs.4299	metallothionein 1E (functional) transmembrane, prostate androgen induced	5.67 5.66
	450244	AA007534	Hs.125062	ESTs	5.66
25	408621	Al970672	Hs.46638	chromosome 11 open reading frame 8	5.65
	450325	Al935962	Hs.26289	ESTs	5.65
	439671	AW162840	Hs.6641	kinesin family member 5C	5.64
	452387	Al680772	Hs.4316	trinucleotide repeat containing 12	5.64
30	413992	W26276	Hs.136075	RNA, U2 small nuclear	5.63
30	444151 417791	AW972917 AW965339	Hs.128749 Hs.111471	alpha-methylacyl-CoA racemase ESTs	5.63 5.62
	410196	A1936442	Hs.59838	hypothetical protein FLJ10808	5.60
	415123	D60925	. 10.0000	ESTs	5.60
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	5.60
35	434415	BE177494		gb:RC6-HT0596-270300-011-C05 HT0596 Homo	5.60
	440738	A1004650	Hs.225674	WD repeat domain 9	5.60
	443830	Al142095	Hs.143273	ESTs	5.60
	449603 414342	AI655662 AA742181	Hs.197698 Hs.75912	ESTs KIAA0257 protein	5.60 5.59
40	422634	NM_016010	Hs.118821	CGI-62 protein	5.56
	435047	AA454985	Hs.54973	cadherin-like protein VR20	5.55
	400268			•	5.55
	452055	Al377431	Hs.293772	hypothetical protein MGC10858	5.54
45	437073	Al885608	Hs.94122	ESTs	5.54
45	434072	H70854	Hs.283059	Homo sapiens PRO1082 mRNA, complete cds	5.53 5.52
	418339 434551	AA639902 BE387162	Hs.104215 Hs.280858	ESTs, Moderately similar to SPCN_HUMAN S ESTs, Highly similar to A35661 DNA excis	5.52
	439569	AW602166	Hs.222399	CEGP1 protein	5.51
	441102	AA973905	Hs.16003	intermediate filament protein syncollin	5.50
50	448310	Al480316		gb:tm26h09.x1 Soares_NFL_T_GBC_S1 Homo s	5.50
	413173	BE076928	Hs.70980	ESTs	5.48
	436246	AW450983	Hs.119991	ESTs -	5.48
	449300 452823	Al656959 AB012124	Hs.222165 Hs.30696	transcription factor-like 5 (basic helix	5.48 5.48
55	451403	AA885569	Hs.15727	Homo sapiens cDNA FLJ14511 fis, clone NT	5.46
	417061	Al675944	Hs.188691	Homo sapiens cDNA FLJ12033 fis, clone HE	5.44
	429126	AW172356	Hs.99083	ESTs	5.44
	431316	AA502663	Hs.145037	ESTs	5.44
60	439192	AW970536	Hs.105413	ESTS	5.44
60	431938 451552	AA938471 AA047233	Hs.115242 Hs.33810	specific granule protein (28 kDa); cyste ESTs	5.44 5.43
	416991	N36389	Hs.295091	KIAA0226 gene product	5.42
	427638	AA406411	Hs.208341	ESTs, Weakly similar to KIAA0989 protein	5.42
	427718	A1798680	Hs.25933	ESTS	5.42
65	438710	AAB33907	Hs.178724	ESTs, Weakly similar to ALU1_HUMAN ALU S	5.42
	406076	AL390179	Hs.137011	Homo sapiens mRNA; cDNA DKFZp547P134 (fr	5.40
	431263	AW129203 AL039123	Hs.13743 Hs.103042	ESTs microtubule-associated protein 1B	5.40 5.38
	421264 421685	AE189723	Hs.106778	ATPase, Ca++ transporting, type 2C, memb	5.37
	761000	103120	. 10. 1007 70	and an i amphainfl the naturality	5.01

	408460	AA054726	Hs.285574	ESTs	5.36
	409091	AW970386	Hs.269423	ESTs	5.36
			Hs.286131	CGI-101 protein	5.36
	421987	AI133161	ns.200131		5.36
5	428002	AA418703	11-040046	gb:zv98c03.s1 Soares_NhHMPu_S1 Homo sapi	5.36
J	441217	Al922183	Hs.213246	ESTs .	5.35
	426006	R49031	Hs.22627	ESTs	5.34
	422806	BE314767	Hs.1581	glutathione S-transferase theta 2	
	432281	AK001239	Hs.274263	hypothetical protein FLJ10377	5.32
10	451982	F13038	Hs.27373	Homo saplens mRNA; cDNA DKFZp564O1763 (f	5.32
10	421129	BE439899	Hs.89271	ESTS	5.31
	444042	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	5.31
	410150	AW382942	Hs.6774	ESTs	5.30
	423952	AW877787	Hs.136102	KIAA0853 protein	5.30
	452822	X85689	Hs.288617	hypothetical protein FLJ22621	5.30
15	447752	M73700	Hs.347	lactotransferrin	5.29
	441766	R53790	Hs.23294	hypothetical protein FLJ14393	5.29
	431359	AW993522	Hs.292934	ESTs	5.27
	427212	AW293849	Hs.58279	ESTs, Weakly similar to ALU7_HUMAN ALU S	5.27
	449916	T60525	Hs.299221	pyruvate dehydrogenase kinase, isoenzyme	5.27
20	454014	AW016670	Hs.233275	ESTs	5.27
	419714	AA758751	Hs.98216	ESTs	5.26
	428845	AL157579	Hs.153610	KIAA0751 gene product	5.26
	417333	AL157545	Hs.42179	bromodomain and PHD finger containing, 3	5.24
	419986	Al345455	Hs.78915	GA-binding protein transcription factor,	5.24
25	407182	AA312551	Hs.230157	ESTs	5.22
	420111	AA255652		gb:zs21h11.r1 NCI_CGAP_GCB1 Homo sapiens	5.22
	428058	AI821625	Hs.191602	ESTs	5.22
	459551	AI472808		gb:tj70e07.x1 Soares_NSF_F8_9W_OT_PA_P_S	5.22
	432524	Al458020	Hs.293287	ESTs	5.22
30	436207	AA334774	Hs.12845	hypothetical protein MGC13159	5.22
	410870	U81599	Hs.66731	homeo box B13	5.22
	451418	BE387790	Hs.26369	hypothetical protein FLJ20287	5.22
	409757	NM_001898	Hs.123114	cystatin SN	5.21
	441124	T97717	Hs.119563	ESTs	5.21
35	428593	AW207440	Hs.185973	degenerative spermatocyte (homolog Droso	5.21
	436401	A1087958	Hs.29088	ESTs	5.20
	437113	AA744693		gb:ny26c10.s1 NCI_CGAP_GCB1 Homo sapiens	5.20
	450947	Al745400	Hs.204662	ESTS	5.20
	453279	AW893940	Hs.59698	ESTs	5.20
40	445467	Al239832	Hs.15617	ESTs, Weakly similar to ALU4_HUMAN ALU S	5.19
	448944	AB014605	Hs.22599	atrophin-1 interacting protein 1; activi	5.19
	412198	AA937111	Hs.69165	ESTs	5.18
	422646	H87863	Hs.151380	ESTs, Weakly similar to T16584 hypotheti	5.18
	438986	AF085888	Hs.269307	ESTs	5.18
45	453954	AW118338	Hs.75251	DEAD/H (Asp-Glu-Ala-Asp/His) box binding	5.18
	447541	AK000288	Hs.18800	hypothetical protein FLJ20281	5.18
	434029	AA621763	Hs.170434	Homo sapiens cDNA FLJ14242 fis, clone OV	5.16
	459294	AW977286	Hs.169531	RBP1-like protein	5.16
	429441	AJ224172 `	Hs.204096	Epophilin B (uteroglobin family member)	5.16
50	424692	AA429834	Hs.151791	KIAA0092 gene product	5.15
	427359	AW020782	Hs.79881	Homo sapiens cDNA: FLJ23006 fis, clone L	5.15
	419872	AJ422951	Hs.146162	ESTs	5.15
	429422	AK001494	Hs.202596	Homo sapiens cDNA FLJ10632 fis, cloné NT	5.14
	448902	Z45998	Hs.22543	Homo sapiens mRNA; cDNA DKFZp76111912 (f	5.14
55	459055	N23235	Hs.30567	ESTs, Weakly similar to B34087 hypotheti	5.14
	431318	AA502700	Hs.293147	ESTs, Moderately similar to A46010 X-lin	5.14
	452953	Al932884	Hs.271741	ESTs, Weakly similar to A46010 X-linked	5.13
	428372	AK000684	Hs.183887	hypothetical protein FLJ22104	5.12
	434401	AI864131	Hs.71119	Putative prostate cancer tumor suppresso	5.12
60	416434	AW163045	Hs.79334	nuclear factor, interleukin 3 regulated	5.11
	410268	AA316181	Hs.61635	six transmembrane epithelial antigen of	5.10
	417517	AF001176	Hs.82238	POP4 (processing of precursor, S. cerev	5.10
	453616	NM_003462	Hs.33846	dynein, axonemal, light intermediate pol	5.10
	427958	AA418000	Hs.98280	potassium intermediate/small conductance	5.09
65	407945	X69208	Hs.606	ATPase, Cu++ transporting, alpha polypep	5.08
	425154	NM_001851	Hs.154850	collagen, type IX, alpha 1	5.08
	412863	AA121673	Hs.59757	zinc finger protein 281	5.06
	420807	AA280627	Hs.57846	ESTs	5.06
	430568	AA769221	Hs.270847	delta-tubulin	5.06

	400007	A A740004		gb:ny57g01.s1 NCLCGAP_Pr18 Homo sapiens	5.06
	433687	AA743991	11-000004		5.06
	438375	AW015940	Hs.232234	ESTs	
	418092	R45154	Hs.106604	ESTs	5.06
-	418576	AW968159	Hs.289104	Alu-binding protein with zinc finger dom	5.05
5	413328	Y15723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	5.04
	414271	AK000275	Hs.75871	protein kinase C binding protein 1	5.04
	432729	AK000292	Hs.278732	hypothetical protein FLI20285	5.04
	433433	AI692623	Hs.121513	Homo sapiens done Z'3-1 placenta expres	5.04
	439662	H97552	Hs.269060	ESTs	5.04
10	439743	AL389956	Hs.283858	Homo sapiens mRNA full length insert cDN	5.04
	417511	AL049176	Hs.82223	chordin-like	5.02
	437814	AI088192	Hs.135474	ESTs, Weakly similar to DDX9_HUMAN ATP-D	5.02
	426342	AF093419	Hs.169378	multiple PDZ domain protein	5.02
	429782	NM_005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	5.02
15	429975	Al167145	Hs.165538	ESTs	5.02
	436209	AW850417	Hs.254020	ESTs, Moderately similar to unnamed prot	5.02
	438571	AW020775	Hs.56022	ESTs	5.02
	450223	AA418204	Hs.241493	natural killer-tumor recognition sequenc	5.02
	408267	AW380525	Hs.267705	tubulin-specific chaperone e	5.01
20	417730	Z44761	110.207700	gb:HSC28F061 normalized infant brain cDN	5.00
20	425465	L18964	Hs.1904	protein kinase C, lota	5.00
	430599	NM_004855	Hs.247118	phosphatidylinositol glycan, class B	5.00
		AW978813	Hs.250867	metallothionein 1E (functional)	5.00
	450961		Hs.26334	spastic paraplegia 4 (autosomal dominant	5.00
25	451388	AB029006			4.99
25	420380	AA640891	Hs.102406	ESTS	4.99
	424947	R77952	Hs.239625	ESTs, Weakly similar to alternatively sp	4.98
	442653	BE269247	Hs.170226	gb:601185486F1 NIH_MGC_8 Homo sapiens cD	4.97
	457211	AW972565	Hs.32399	ESTs, Weakly similar to \$51797 vasodilat	
	425851	NM_001490	Hs.159642	glucosaminyl (N-acetyl) transferase 1, c	4.97
30	446279	AA490770	Hs.182382	ESTs	4.96
	433377	Al752713	Hs.43845	ESTs	4.96
	450218	R02018	Hs.168640	ankylosis, progressive (mouse) homolog	4.96
	412715	NM_000947	Hs.74519	primase, polypeptide 2A (58kD)	4.94
	448164	R61680	Hs.26904	ESTs, Moderately similar to Z195_HUMAN Z	4.94
35	420121	AW968271	Hs.191534	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.94
	421689	N87820	Hs.106826	KIAA1696 protein	4.93
	445808	AV655234	Hs.298083	ESTs, Moderately similar to PC4259 femi	4.92
	416533	BE244053	Hs.79362	retinoblastoma-like 2 (p130)	4.92
	418049	AA211487	Hs.190488	Homo sapiens, Similar to nuclear localiz	4.92
40	436039	AW023323	Hs.121070	ESTs	4.92
	432653	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	4.91
	420324	AF163474	Hs.96744	prostate androgen-regulated transcript 1	4.91
	403047			F	4.91
	436899	AA764852	Hs.291567	ESTs	4.90
45	431117	AF003522	Hs.250500	delta (Drosophila)-like 1	4.90
73	427617	D42063	Hs.179825	RAN binding protein 2	4.88
	428804	AK000713	Hs.193736	hypothetical protein FLJ20706	4.88
		A1093930	Hs.163440	Homo sapiens cDNA: FLi21000 fis, clone C	4.88
	433050	AA225313	Hs.222886	ESTs, Weakly similar to TRHY_HUMAN TRICH	4.86
50	418575			ESTs, Weakly similar to I54374 gene NF2	4.86
20	432615	AA557191	Hs.55028		4.86
	412652	A1801777	Hs.6774	ESTs	4.86
	432473	A1202703	Hs.152414	ESTs	4.86
	449071	NM_005872	Hs.22960	breast carchoma amplified sequence 2	4.85
	450654	AJ245587	Hs.25275	Kruppel-type zinc finger protein	
55	418866	T65754	Hs.100489	gb:yc11c07.s1 Stratagene lung (937210) H	4.85
	407596	R86913		gb:yq30f05.r1 Soares fetal liver spleen	4.84
	456516	BE172704	Hs.222746	KIAA1610 protein	4.84
	426501	AW043782	Hs.293616	ESTs	4.84
	448730	AB032983	Hs.21894	KIAA1157 protein	4.84
60	458339	AW976853	Hs.172843	ESTs	4.83
	422083	NM_001141	Hs.111256	arachidonate 15-lipoxygenase, second typ	4.82
	420159	Al572490	Hs.99785	Homo saplens cDNA: FLJ21245 fis, done C	4.82
	424103	NM_001918	Hs.139410	dihydrolipoamide branched chain transacy	4.82
	449535	W15267	Hs.23672	low density lipoprotein receptor-related	4.82
65	422048	NM_012445	Hs.288126	spondin 2, extracellular matrix protein	4.82
	416737	AF154335	Hs.79691	LIM domain protein	4.82
	419972	AL041465	Hs.294038	golgin-67	4.81
	420235	AA256756	Hs.31178	ESTs	4.81
	423412	AF109300	Hs.147924	prostate cancer associated protein 5	4.80

	429598	AA811257	Hs.269710	ESTs	4.80
	457114	Al821625	Hs.191602	ESTs	4.80
	421828				4.79
		AW891965	Hs.289109	histone deacetylase 3	4.78
5	424602	AK002055	Hs.301129	hypothetical protein FLJ11193	4.76 4.78
5	428364	AA426565	Hs.160541	ESTs, Moderately similar to ALU1_HUMAN A	
	452335	AW188944	Hs.61272	ESTs	4.78
	410765	AI694972	Hs.66180	nucleosome assembly protein 1-like 2	4.77
	421040	AA715026	Hs.135280	ESTs	4.76
10	421518	AI056392	Hs.208819	ESTs	4.76
10	452560	BE077084		ESTs	4.76
	409752	AW963990		gb:EST376063 MAGE resequences, MAGH Homo	4.75
	439703	AF086538	Hs.196245	ESTs	4.75
	418836	AI655499	Hs.161712	ESTs	4.74
15	450642	R39773	Hs.7130	copine IV	4.74
15	419879	Z17805	Hs.93564	Homer, neuronal immediate early gene, 2	4.74
	411440	AW749402		gb:QV4-BT0383-281299-061-c06 BT0383 Homo	4.74
	450649	NM_001429	Hs.297722	E1A binding protein p300	4.74
	408738	NM_014785	Hs.47313	KIAA0258 gene product	4.73
20	435020	AW505076	Hs.301855	DiGeorge syndrome critical region gene 8	4.72
20	411624	BE145964		KIAA0594 protein	4.72
	439360	AA448488	Hs.55346	ribosomal protein L44	4.72
	440491	R35252	Hs.24944	ESTs, Weakly similar to 2109260A B cell	4.72
	442611	BE077155	Hs.177537	hypothetical protein DKFZp761B1514	4.72
05	443555	N71710	Hs.21398	ESTs, Moderately similar to A Chain A, H	4.72
25	453800	BE300741	Hs.288416	hypothetical protein FLJ13340	4.72
	457528	AW973791	Hs.292784	ESTs	4.72
	416795	Al497778	Hs.168053	HBV pX associated protein-8	4.71
	407302	R74206	Hs.268755	ESTs, Weakly similar to 178885 serine/th	4.71
20	404721				4.70
30	426261	AW242243	Hs.168670	peroxisomal famesylated protein	4.70
	431924	AK000850	Hs.272203	Homo saplens cDNA FLJ20843 fis, clone AD	4.70
	435256	AF193766	Hs.13872	cytokine-like protein C17	4.70
	438295	Al394151	Hs.37932	ESTs	4.70
0.5	442655	AW027457	Hs.30323	ESTs, Weakly similar to B34087 hypotheti	4.70
35	415788	AW628686	Hs.78851	KIAA0217 protein	4.69
	442760	8E075297	Hs.10067	ESTs, Weakly similar to A43932 mucin 2 p	4.69
	432432	AA541323	Hs.115831	ESTs	4.68
	454398	AA463437	Hs.11556	Homo saplens cDNA FLJ12566 fis, clone NT	4.68
	452741	BE392914	Hs.30503	Homo sapiens cDNA FLJ11344 fis, done PL	4.67
40	424853	BE549737	Hs.132967	Human EST clone 122887 mariner transposo	4.67
	419706	C04649	Hs.77899	tropomyosin 1 (alpha)	4.66
	412088	Al689496	Hs.108932	EST8	4.65
	416276	U41060	Hs.79136	LIV-1 protein, estrogen regulated	4.64
4.00	429281	AA830856	Hs.29808	Homo sapiens cDNA: FLI21122 fis, clone C	4.64
45	448207	A1475490	Hs.170577	ESTs	4.64
	408374	AW025430	Hs.155591	forkhead box F1	4.64
	447162	BE328091	Hs.157396	ESTs, Weakly similar to A46010 X-linked	4.64
	451900	AB023199	Hs.27207	KIAA0982 protein	4.63
~ 0	421437	AW821252	Hs.104336	hypothetical protein	4.63
50	418624	AI734080	Hs.104211	ESTs	4.63
	426172	AA371307	Hs.125056	ESTs	4.62
	439831	AW136488	Hs.25545	ESTs	4.61
	452994	AW962597	Hs.31305	KIAA1547 protein -	4.61
E E	457726	Al217477	Hs.194591	ESTs	4.60
55	434629	AA789081	Hs.4029	glioma-amplified sequence-41	4.60
	403764				4.58
	410659	AI080175	Hs.68826	ESTs	4.58
	432383	AK000144	Hs.274449	Homo saplens cDNA FLJ20137 fis, done CO	4.58
<i>6</i> 0	451246	AW189232	Hs.39140	cutaneous T-cell lymphoma tumor antigen	4.58
60	433234	AB040928	Hs.65366	KIAA1495 protein	4.57
	424983	A1742434	Hs.169911	ESTs	4.56
	437812	Al582291	Hs.16846	ESTs, Wealdy similar to O4HUD1 debrisoqu	4.56
	438447	Al082883	Hs.167593	hypothetical protein FLJ13409; KIAA1711	4.55
65	434715	BE005346	Hs.116410	ESTs	4.55
65	447673	Al823987	Hs.182285	ESTs	4.54
	408897	N50204	Hs.283709	lipopolysaccharide specific response-7 p	4.54
	436645	AW023424	Hs.156520	ESTS	4.54
	421247	BE391727	Hs.102910	general transcription factor IIH, polype	4.53
	450377	AB033091	Hs.24936	KIAA1265 protein	4.53

	433644	AW342028	Hs.256112	gb:hb75d03.x1 NCI_CGAP_Ut2 Homo sapiens	4,53
					4,53
	408321	AW405882	Hs.44205	cortistatin	
	439225	AA192669	Hs.45032	ESTs	4.52
_	440348	AW015802	Hs.47023	ESTs	4.52
5	446351	AW444551	Hs.258532	x 001 protein	4.52
•	451212	AW902672	Hs.287334	ESTs	4.52
	430294		Hs.135184	guanine nucleotide binding protein 4	4.52
		A1538226			
	435005	U80743	Hs.4316	trinucleotide repeat containing 12	4.52
	448072	A1459306	Hs.24908	EST8	4.50
10	403721				4.50
	451018	AW965599	Hs.247324	mitochondrial ribosomal protein S14	4.50
					4.49
	453070	AK001465	Hs.31575	SEC63, endoplasmic reticulum translocon	
	417412	X16896	Hs.82112	interieukin 1 receptor, type l	4.48
	439735	A1635386	Hs.142846	hypothetical protein	4.48
15	435663	AI023707	Hs.134273	ESTs	4.48
	424036	AA770688	Hs.81946	H2A histone family, member L	4.48
	426386	AA748850	Hs.174877	bladder cancer overexpressed protein	4.48
	408622	AA056060	Hs.202577	Homo sapiens cDNA FLJ12166 fis, clone MA	4.47
	444269	AI590346	Hs.146220	ESTs	4.47
20	430187	A1799909	Hs.158989	ESTs	4.46
	427761	AA412205	Hs.140996	ESTs	4.46
	430261	AA305127	Hs.237225	hypothetical protein HT023	4.46
					4.44
	444169	AV648170	Hs.58756	ESTs	
~=	430598	AK001764	Hs.247112	hypothetical protein FLJ10902	4.44
25	412903	BE007967	Hs.155795	ESTs	4.44
	417048	AJ088775	Hs.55498	geranylgeranyl diphosphate synthase 1	4.44
	442710	AI015631	Hs.23210	ESTs	4.44
					4.44
	457413	AA743462	Hs.165337	ESTs	
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	4.42
30	443268	AJ800271	Hs.129445	hypothetical protein FLJ12496	4.42
	438209	AL120659	Hs.6111	aryl-hydrocarbon receptor nuclear transl	4.42
	431724	AA514535	Hs.283704	ESTs	4.41
		AW205116	Hs.272814	hypothetical protein DKFZp434E1723	4.40
	412280				
~~	440801	AA906366	Hs.190535	ESTs	4.40
35	452959	AI933416	Hs.189674	ESTs	4.40
	453861	A1026838	Hs.30120	ESTs, Weakly similar to NUCL_HUMAN NUCLE	4.40
	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	4.40
	447270	AC002551	Hs.331	general transcription factor IIIC, polyp	4.38
			113,001	gb:Human endogenous retrovirus K clone 1	4.38
40	433641	AF080229	11-004570		
40	447078	AW885727	Hs.301570	ESTs .	4.38
	424242	AA337476		hypothetical protein MGC13102	4.37
	408170	AW204516	Hs.31835	ESTs	4.36
	448757	Al366784	Hs.48820	TATA box binding protein (TBP)-associate	4.36
	420021	AA252848	Hs.293557	ESTs	4.36
45				ESTs	4.36
43	449694	A1659790	Hs.253302		
	453867	A1929383	Hs.108196	hypothetical protein DKFZp434N185	4.36
	458712	A1347502	Hs.173066	hypothetical protein FLJ20761	4.36
	417251	AW015242	Hs.99488	ESTs, Weakly similar to YK54_YEAST HYPOT	4.35
	434423	NM_006769	Hs.3844	LIM domain only 4	4.35
50	423427	AL137612	Hs.285848	KIAA1454 protein	4.34
50			15200040	ESTs	4.33
	415715	F30364		E018	
	404561				4.32
	422969	AA782536	Hs.122647	N-myristoyitransferase 2 -	4.32
	423685	BE350494	Hs.49753	uveal autoantigen with colled coll domai	4.32
55	443977	AL120986	Hs.150627	ESTs. Weakly similar to I38022 hypotheti	4.32
	425071	NM_013989	Hs.154424	deiodinase, lodothyronine, type II	4.32
	431583	AL042613	Hs.262476	S-adenosylmethionine decarboxylase 1	4.31
	411379	AI816344	Hs.12554	ESTs, Weakly similar to NPL4_HUMAN NUCLE	4.30
	421476	AW953805	Hs.21887	ESTs	4.30
60	425178	H16097	Hs.161027	ESTs	4.30
	439262	AA832333	Hs.124399	ESTs	4.30
				hypothetical protein FLJ10879	4.30
	442818	AK001741	Hs.8739		
	421977	W94197	Hs.110165	ribosomal protein L26 homolog	4.29
	437114	AA836641	Hs.163085	ESTs	4.28
65	420195	N44348	Hs.300794	Homo sapiens cDNA FLJ11177 fis, clone PL	4.28
-	418330	BE409405	Hs.94722	ESTs	4.27
	419750	AL079741	Hs.183114	Homo sapiens cDNA FLJ14236 fis, clone NT	4.26
			Hs.103238	ESTs	4.26
	437065	AL036450	115.143230		
	455276	BE176479		gb:RC3-HT0585-160300-022-b09 HT0585 Homo	4.24

	416292	A A 170000	Un 40000	nearther week analysis are a superstitution	404
		AA179233	Hs.42390	nasopharyngeal carcinoma susceptibility	4.24
	423740	Y07701	Hs.132243	aminopeptidase puromydin sensitive	4.24
	442023	Al187878	Hs.144549	ESTs	4.24
5	426764	AA732524	Hs.151464	ESTs, Wealdy similar to ALUC_HUMAN !!!!	4.23
5	454058	Al273419	Hs.135146	hypothetical protein FLJ13984	4.23
	456511	AA282330	Hs.145668	ESTs	4.22
	448330	AL038449	Hs.207163	ESTs	4.22
	424701	NM_005923	Hs.151988	mitogen-activated protein kinase kinase	4.21
4.0	432621	Al298501	Hs.12807	ESTs, Weakly similar to T46428 hypotheti	4.20
10	445707	Al248720	Hs.114390	ESTs	4.20
	419910	AA662913	Hs.190173	ESTs, Weakly similar to A46010 X-linked	4.20
	424085	NM_002914	Hs.139226	replication factor C (activator 1) 2 (40	4.20
	440749	W22335	Hs.7392	hypothetical protein MGC3199	4.20
	442787	W93048	Hs.227203	hypothetical protein MGC2747	4.20
15	443414	R54594	Hs.25209	ESTs	4.20
	443556	AA256769	Hs.94949	methylmalonyl-CoA epimerase	4.20
	444170	AW613879	Hs.102408	ESTs	4.20
	446751	AA766998	Hs.85874	Human DNA sequence from clone RP11-16L21	4.20
	421041	N36914	Hs.14691	ESTs, Moderately similar to 138022 hypot	4.19
20	447476	BE293466	Hs.20880	ESTs, Weakly similar to I38022 hypotheti	4.19
	448543	AW897741	Hs.21380	Homo saplens mRNA; cDNA DKFZp586P1124 (f	4.18
	410294	AB014515	Hs.288891	KIAA0615 gene product	4.18
	433607	AA602004	Hs.23260	EST8	4.18
	435552	A1668636	Hs.193480		4.18
25				ESTs, Moderately similar to ALU8_HUMAN A	
23	447124	AW976438	Hs.17428	RBP1-like protein	4.18
	453308	AW959731	Hs.32538	ESTS	4.17
	439328	W07411	Hs.118212	ESTs, Moderately similar to ALU3_HUMAN A	4.16
	430473	AW130690	Hs.299842	ESTS	4.16
30	437257	Al283085	Hs.290931	ESTs, Weakly similar to YFJ7_YEAST HYPOT	4.16
30	438018	AK001160	Hs.5999	hypothetical protein FLJ10298	4.16
	443857	A1089292	Hs.287621	hypothetical protein FLJ14069	4.15
	446711	AF169692	Hs.12450	protocadherin 9	4.15
	419103	Z40229	Hs.96423	hypothetical protein FLJ23033	4.14
25	405403				4.14
35	407378	AA299264		ESTs, Moderately similar to I38022 hypot	4.14
	408986	AW298602	Hs.197687	ESTs	4.14
	418727	AA227609	Hs.94834	ESTs	4.14
	434400	Al478211	Hs.186896	Homo sapiens cONA FLJ11417 fis, done HE	4.14
4.0	438578	AA811244	Hs.164168	ESTs	4.14
40	450459	AI697193	Hs.299254	Homo sapiens cDNA: FLJ23597 fis, clone L	4.14
	429887	AW366286	Hs.145696	splicing factor (CC1.3)	4.13
	448148	NM_016578	Hs.20509	HBV pX associated protein-8	4.13
	450316	W84446	Hs.17850	hypothetical protein MGC4643	4.12
	417531	NM_003157	Hs.1087	serine/threonine kinase 2	4.12
45	431592	R69016	Hs.293871	hypothetical protein MGC10895s	4.12
	432463	AA548518	Hs.186733	ESTs	4.12
	433613	AA836126	Hs.5669	ESTs	4.12
	434739	AA804487	Hs.144130	ESTs	4.12
	438259	AW205969	Hs.131808	ESTs	4.12
50	425810	Al923627	Hs.31903	ESTs	4.10
	432672	AW973775	Hs.130760	myosin phosphatase, target subunit 2	4.10
	433345	Al681545	Hs.152982	hypothetical protein FLJ13117	4.10
	432712	AB016247	Hs.288031	sterol-C5-desaturase (fungal ERG3, delta	4.09
	453020	AL162039	Hs.31422	Homo sapiens mRNA; cDNA DKFZp434M229 (fr	4.09
55	412045	AA099802	Hs.4299	transmembrane, prostate androgen induced	4.09
-	435114	AA775483	Hs.288936	mitochondrial ribosomal protein L9	4.08
	443204	AW205878	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	4.08
	445459	Al478629	Hs.158465	likely ortholog of mouse putative IKK re	4.08
	438938	H46212	Hs.137221	ESTs	4.07
60	454119	BE549773	Hs.40510	uncoupling protein 4	4.06
J-J	411000	N40449	Hs.201619	ESTs, Weakly similar to S38383 SEB4B pro	4.06
	418926	AA232658	Hs.87070	UDP-glucose:glycoprotein glucosyltransfe	4.06
	424432	AB037821	Hs.146858	protocadherin 10	
		AA002064	Hs.18920	•	4.06
65	449673	AA002064 AI620463		ESTs	4.06
U	429299		Hs.99197	hypothetical protein MGC13102	4.06
	422174	AL049325	Hs.112493	Homo sapiens mRNA; cDNA DKFZp564D036 (fr	4.05
	455497	AA112573	Hs.285691	Homo sapiens prostein mRNA, complete cds	4.05
	415138	C18356	Hs.78045	tissue factor pathway inhibitor 2	4.04
	402791				4.04

	426792	AL044854	Hs.172329	KIAA0576 protein	4.04
	438660	U95740	Hs.6349	Homo sapiens, done IMAGE:3010666, mRNA,	4.04
	442768	AL048534	Hs.48458	ESTs, Weakly similar to ALU8_HUMAN ALU S	4.04
5	44756B	AF155655	Hs.18885	CGI-116 protein	4.04
3	428342	AI739168	Hs.131798	Homo sapiens cDNA FLJ13458 fis, clone PL	4.04 4.02
	453439 453857	A1572438 Al080235	Hs.32976 Hs.35861	guanine nucleotide binding protein 4 DKFZP586E1621 protein	4.02
	428249	AA130914	Hs.183291	zinc finger protein 268	4.02
	432015	AL157504	Hs.159115	Homo sapiens mRNA; cDNA DKFZp586O0724 (f	4.02
10	445495	BE622641	Hs.38489	ESTs, Weakly similar to 138022 hypotheti	4.02
	451746	M86178		ESTs	4.02
	452211	AI985513	Hs.233420	ESTs	4.02
	453046	AA284040	Hs.219441	ESTs, Highly similar to CA5B_HUMAN CARBO	4.02
- 15	456038 452449	AA203285	Hs.294141	ESTs, Weakly similar to alternatively sp	4.02
13	407204	AW068658 R41933	Hs.20943 Hs.140237	ESTs ESTs, Weakly similar to ALU1_HUMAN ALU S	4.02
	428046	AW812795	Hs.155381	ESTs, Moderately similar to I38022 hypot	4.01
	438520	AA706319	Hs.98416	ESTs	4.01
	443292	AK000213	Hs.9196	hypothetical protein	4.01
20	432715	AA247152	Hs.200483	ESTs, Wealty similar to KIAA1074 protein	4.00
	403797				4.00
	418347	AA216419	Hs.269295	gb:nc16e03.s1 NCI_CGAP_Pr1 Homo sapiens	4.00 4.00
	419459 420911	AW291128 U77413	Hs.278422 Hs.100293	DKFZP586G1122 protein O-linked N-acetylglucosamine (GlcNAc) tr	4.00
25	425176	AW015644	Hs.301430	TEA domain family member 1 (SV40 transcr	4.00
	447505	AL049266	Hs.18724	Homo saplens mRNA; cDNA DKFZp564F093 (fr	4.00
	453773	AL133761		gb:DKFZp761C1413_r1 761 (synonym: hamy2)	4.00
	434384	AA631910	Hs.162849	ESTs	3.99
20	422471	AA311027	Hs.271694	ESTs, Weakly similar to 138022 hypotheti	3.99
30	427386	AW836261	Hs.177486	ESTs	3.98
	433394 441269	Al907753 AW015206	Hs.93810 Hs.178784	cerebral cavernous malformations 1 ESTs	3.98 3.97
	419629	AB020695	Hs.91662	KIAA0888 protein	3.96
	435008	AF150262	Hs.162898	ESTs	3.96
35	456649	R74441	Hs.117176	poly(A)-binding protein, nuclear 1	3.96
	418723	AA504428	Hs.10487	Homo sapiens, done IMAGE:3954132, mRNA,	3.96
	428738	NM_000380	Hs.192803	xeroderma pigmentosum, complementation g	3.95
	430456	AA314998	Hs.241503	hypothetical protein	3.95
40	422017 409960	NM_003877 BE261944	Hs.110776 Hs.153028	STAT induced STAT inhibitor-2 hexokinase 1	3.95 3.95
-10	455309	AW894017	113.700020	gb:RC4-NN0027-150400-012-g04 NN0027 Homo	3.95
	450295	AJ766732	Hs.201194	ESTs	3.94
	456660	AA909249	Hs.112282	solute carrier family 30 (zinc transport	3.94
40	410908	AA121686	Hs.10592	ESTs	3.94
45	447145	AA761073	Hs.192943	TRAF family member-associated NFKB activ	3.94
	449318	AW236021	Hs.108788	Homo saplens, Similar to RIKEN cDNA 5730	3.94
	449869 411887	W57990 AW182924	Hs.60059 Hs.128790	Homo sapiens cDNA FLJ11478 fis, clone HE ESTs	3.94 3.93
	437531	Al400752	Hs.112259	T cell receptor gamma locus	3.93
50	452238	F01811	Hs.187931	ESTs	3.93
	410486	AW235094	Hs.193424	zinc finger protein	3.92
	424882	Al379461	Hs.153636	far upstream element (FUSE) binding prot	3.92
	426269	H15302	Hs.168950	Homo sapiens mRNA; cDNA DKFZp568A1046 (f	3.92
55	427043 440404	AA397679 AI015881	Hs.298460 Hs.125616	ESTs mitochondrial ribosomal protein S5	3.92 3.92
33	452762	AW501435	Hs.171409	v-akt murine thymoma viral oncogene homo	3.92
	453058	AW612293	Hs.288684	Homo sapiens cDNA FLJ11750 fis, clone HE	3.92
	423583	AL122055	Hs.129836	KIAA1028 protein	3.92
C C	408001	AA046458	Hs.95296	ESTs	3.92
60	419197	N48921	Hs.27441	KIAA1615 protein	3.91
	428695	Al355647	Hs.189999	purinergic receptor (family A group 5)	3.91
	401747 410011	AB020641	Hs.57856	PFTAIRE protein kinase 1	3.91 3.91
	432205	AB020041 Al806583	Hs.125291	ESTs	3.91
65	447657	AA081218	Hs.58608	Homo sapiens cDNA FLJ14206 fis, clone NT	3.91
	446494	AA463276	Hs.288906	WW Domain-Containing Gene	3.91
	409928	AL137163	Hs.57549	hypothetical protein dJ473B4	3.90
	411598	BE336654	Hs.70937	H3 histone family, member A	3.90
	424790	AL119344	Hs.13326	ESTs, Weakly similar to 2004399A chromos	3.90

	425707	AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	3.90
	431325	AW026751	Hs.5794	ESTs, Weakly similar to 2109260A B cell	3.89
	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	3.89
	401045	_			3,89
_		111100 1700	11. 04404	0	
5	433023	AW864793	Hs.34161	thrombospondin 1	3.89
	452160	BE378541	Hs.279815	cysteine sulfinic acid decarboxylase-rei	3.89
	437372	AA323968	Hs.283631	hypothetical protein DKFZp547G183	3.89
	417067	AJ001417	Hs.81086	solute carrier family 22 (extraneuronal	3.88
	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	3.88
10	422660	AW297582	Hs.237062	hypothetical protein FLJ22548 similar to	3.88
					3.88
	431930	AB035301	Hs.272211	cadherin 7, type 2	
	453047	AW023798	Hs.286025	ESTs	3.88
				gb:no97h03.s1 NCt CGAP_Pr2 Homo sapiens	3.88
	433891	AA613792		Brance virgo et MCI COME LES HOURS exhibits	
	401785				3.88
15	431088	AA491824	Hs.196881	ESTs	3.88
IJ					
	451952	AL120173	Hs.301663	ESTs	3.87
	422089	AA523172	Hs.103135	ESTs, Weakly similar to SFR4_HUMAN SPLIC	3.87
	452277	AL049013	Hs.28783	KIAA1223 protein	3.87
	438279	AA805166	Hs.165165	HIV-1 rev binding protein 2	3.86
20					
20	. 458229	Al929602	Hs.177	phosphatidylinositol glycan, class H	3.86
	406414	•			3.86
		41000400	11- 000000	humathatiani ambala El 10070E	
	417193	Al922189	Hs.288390	hypothetical protein FLJ22795	3.85
	413174	AA723564	Hs.191343	ESTs	3.85
	433332	Al367347	Hs.127809	Homo sapiens clone TCCCTA00151 mRNA sequ	3.85
25	411089	AA456454	Hs.118637	cell division cycle 2-like 1 (PITSLRE pr	3.85
				ADP-ribosylation factor domain protein 1	3.84
	412494	AL133900	Hs.792		
	413530	AA130158	Hs.19977	ESTs, Moderately similar to ALU8_HUMAN A	3.84
	459592	AL037421	Hs.208746	ESTs, Moderately similar to pot. ORF1	3.84
	418329	AW247430	Hs.84152	cystathionine-beta-synthase	3.83
30	451468	AW503398	Hs.210047	ESTs, Moderately similar to I38022 hypot	3.83
50			113210047		
	434804	AA649530		gb:ns44f05.s1 NCI_CGAP_Alv1 Homo sapiens	3.83
	401819			;	3.82
				11	
	424179	F30712		Homo sapiens, done IMAGE:4285740, mRNA	3.82
	424850	AA151057	Hs.153498	chromosome 18 open reading frame 1	3.82
25					
35	426472	BE246138	Hs.30853	ESTs	3.82
	426625	T78300	Hs.171409	serologically defined colon cancer antig	3.82
					3.82
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	
	427756	A)376540	Hs.15574	ESTs ·	3.82
				ESTs	3.82
	444701	Al916512	Hs.198394		
40	423052	M28214	Hs.123072	RAB3B, member RAS oncogene family	3.82
	429259	AA420450	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	3.82
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (3.82
	433586	T85301		gb:yd78d06.s1 Soares fetal liver spleen	3.81
	438527	Al969251	Hs.143237	RAB7, member RAS oncogene family-like 1	3.81
45	410297	AA148710	Hs.159441	lumican	3.81
	429898	AW117322	Hs.42366	ESTs	3.81
	409079	W87707	Hs.82065	interleukin 6 signal transducer (gp130,	3.80
	419423	D26488	Hs.90315	KIAA0007 protein	3.80
	429843	AA455889	Hs.187548	FYVE-finger-containing Rab5 effector pro	3.80
50	431499	NM 001514	Hs.258561	general transcription factor IIB	3.80
J U					
	445060	AAB30811	Hs.88808	ESTs	3.80
	449419	R34910	Hs.119172	ESTs	3.80
•	450584	AA040403	Hs.60371	ESTs -	3.80
	426137	AL040683	Hs.167031	DKFZP566D133 protein	3.79
E E					
55	420185	AL044056	Hs.158047	ESTs	3.79
	410076	T05387	Hs.7991	ESTs	3.78
	444078	BE246919	Hs.10280	U5 snRNP-specific 40 kDa protein (hPrp8-	3.78
	417318	AW953937	Hs.12891	ESTs	3.78
					3.78
	414664	AA587775	Hs.66295	multi-PDZ-domain-containing protein	
60	410275	U85658	Hs.61796	transcription factor AP-2 gamma (activat	3.77
				KIAA1702 protein	3.77
	410503	AW975746	Hs.188662		
	434170	AA626509	Hs.122329	ESTs	3.77
	421838	AW881089	Hs.108806	Homo sapiens mRNA; cDNA DKFZp566M0947 (f	3.77
	425268	Al807883	Hs.156932	Homo sapiens cDNA FLJ20653 fis, clone KA	3.76
65	431696	AA259068	Hs.267819	protein phosphatase 1, regulatory (inhib	3.76
J					
	411990	AW963624	Hs.31707	ESTs, Weakly similar to YEW4_YEAST HYPOT	3.76
	430291	AV660345	Hs.238126	CGI-49 protein	3,76
	448779	BE042877	Hs.177135	ESTs	3.76
	452682	AA456193	Hs.155606	progesterone membrane binding protein	3.75

	452598	AI831594	Hs.68647	ESTs, Weakly similar to ALU7_HUMAN ALU S	3.75
	439498	AA908731	Hs.58297	CLLL8 protein	3.75
	440258	Al741633	Hs.125350	ESTs	3.74
	456848	AL121087	Hs.296406	KIAA0685 gene product	3.74
5	415082	AA160000	Hs.137396	ESTs, Weakly similar to JC5238 galactosy	3.74
	420653	Al224532	Hs.68550	ESTs	3.74
	431637	Al879330	Hs.265960	hypothetical protein FLJ 10563	3.74
	440411	N30256	Hs.156971	hypothetical protein DKFZp434G1415	3.74
••	405917				3.74
10	419440	AB020689	Hs.90419	KIAA0882 protein	3.74
	451230	BE546208	Hs.26090	hypothetical protein FLJ20272	3.73
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	3.73
	430144	Al732722	Hs.187694	ERGL protein; ERGIC-53-like protein	3.72
15	438394	BE379623	Hs.27693	peptidylprolyl isomerase (cyclophilin)-l	3.72
15	440527	AV657117	Hs.184164	ESTs, Moderately similar to S65657 alpha	3.72
	449433 456228	AI672098 BE503227	Hs.9012 Hs.134759	ESTs, Weakly similar to S26650 DNA-bindi ESTs	3.72 3.72
	448663	BE614599	Hs.106823	hypothetical protein MGC14797	3.72
	415075	L27479	Hs.77889	Friedreich ataxia region gene X123	3.72
20	433544	Al793211	Hs.165372	ESTs, Moderately similar to ALU1_HUMAN A	3.71
20	418293	Al224483	Hs.16063	hypothetical protein FLJ21877	3.71
	449897	AW819642	Hs.24135	transmembrane protein vezatin; hypotheti	3.71
	420297	Al628272	Hs.88323	ESTs, Weakly similar to ALU1_HUMAN ALU S	3.70
	423065	R96158	Hs.194606	Homo saplans, done MGC:5406, mRNA, comp	3.70
25	429340	N35938	Hs.199429	Homo sapiens mRNA; cDNA DKFZp434M2216 (f	3.70
	437777	AA768098	Hs.189079	ESTs	3.70
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	3.70
	443603	BE502601	Hs.134289	ESTs, Wealty similar to KIAA1063 protein	3.70
20	446965	BE242873	Hs.16677	WD repeat domain 15	3.70
30	412350	Al659306	Hs.73826	protein tyrosine phosphatase, non-recept	3.70
	433852	Al378329	Hs.126629	ESTs	3.70
	433142	AL120697	Hs.110640	ESTs	3.69
	419994	AA282881	Hs.190057	ESTS	3.69
35	412628	AI972402	Hs.173902	hypothetical protein MGC2648 ESTs	3:69 3.69
J J	431416 439444	AA532718 Al277652	Hs.178604 Hs.54578	ESTs, Weakly similar to I38022 hypotheti	3.68
	414709	AA704703	Hs.77031	Sp2 transcription factor	3.68
	447397	BE247676	Hs.18442	E-1 enzyme	3.68
	405718	52241070	10110112	a runayna	3.68
40	425217	AU076696	Hs.155174	CDC5 (cell division cycle 5, S. pombe, h	3.68
	442242	AV647908	Hs.90424	Homo sapiens cDNA: FLJ23285 fis, done H	3.68
	424690	BE538356	Hs.151777	eukaryotic translation initiation factor	3.68
	421734	Al318624	Hs.107444	Homo sapiens cDNA FLJ20562 fis, clone KA	3.67
	427221	L15409	Hs.174007	von Hippel-Lindau syndrome	3.67
45	439864	A[720078	Hs.291997	ESTs, Weakly similar to A47582 B-cell gr	3.68
	402408				3.66
	426327	W03242	Hs.44898	Homo sapiens clone TCCCTA00151 mRNA sequ	3.66
	427119	AW880562	Hs.114574	ESTS	3.66
50	427356	AW023482	Hs.97849	ESTS	3.66 3.66
50	452946 419078	X95425 M93119	Hs.31092 Hs.89584	EphA5 insulinoma-associated 1	3.66
	416295	AI064824	Hs.193385	ESTs	3.65
	427144	X95097	Hs.2126	vasoactive intestinal peptide receptor 2	3.65
	447500	Al381900	Hs.159212	ESTs	3.65
55	453127	AI696671	Hs.294110	ESTs	3.65
	423396	Al382555	Hs.127950	bromodomain-containing 1	3.65
	419346	AI830417		polybromo 1	3.64
	441540	C01387	Hs.127128	ESTs	3.64
<i>-</i> 0	446501	Al302616	Hs.150819	ESTs	3.64
60 ·	459527	AW977556	Hs.291735	ESTs, Weakly similar to 178885 serine/th	3.63
	446320	AF126245	Hs.14791	acyl-Coenzyme A dehydrogenase family, me	3.63
	435706	W31254	Hs.7045	GL004 protein	3.63
	400110	D4020**	Lia dorno	FOT-	3.62
65	410313	R10305	Hs.185683	ESTS	3.62
UJ	414713 436279	BE465243 AW900372	Hs.12664 Hs.180793	ESTs ESTs, Weakly similar to \$65657 alpha-1C-	3.62 3.62
	439818	AU360137	Hs.19934	Homo saplens mRNA full length insert cDN	3.62
	451797	AW663858	Hs.56120	small inducible cytokine subfamily E, me	3.62
	451294	AI457338	Hs.29894	ESTs	3.62

	434194	AF119847	Hs.283940	Homo sapiens PRO1550 mRNA, partial cds	3.62
	404939				3.62
	408101	AW968504	Hs.123073	CDC2-related protein kinase 7	3.62
	435846	AA700870	Hs.14304	ESTs	3.61
5	432833			ESTs	3.61
5		N51075	Hs.47191		
	427276	AA400269	Hs.49598	ESTs	3.61
	433495	AW373784	Hs.71	alpha-2-glycoprotein 1, zinc	3.60
	403137				3.60
	404165				3.60
a 10	409571	AA504249	Hs.187585	ESTs	3.60
310					
	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	3.60
	412924	BE018422	Hs.75258	H2A histone family, member Y	3.60
	434228	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	3.60
	436797	AA731491	Hs.178518	hypothetical protein MGC14879	3.60
15	437162	AW005505	Hs.5464	thyroid hormone receptor coactivating pr	3.60
	437444	H46008	Hs.31518	ESTs	3.60
		11-000	115201515	2010	
	404210	D. 2000000	11. 404710	11 1 BUL TI DOGGO F 4 11	3.59
	446157	BE270828	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H	3.59
	437587	Al591222	Hs.122421	Human DNA sequence from clone RP1-187J11	3.58
20	423147	AA987927	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H	3.57
	452226	AA024898	Hs.296002	ESTs	3.56
		AF291664	Hs.204732	matrix metalloproteinase 26	3.56
	443775				
	452501	AB037791	Hs.29716	hypothetical protein FLJ10980	3.56
	428647	AA830050	Hs.124344	ESTs	3.56
25	422443	NM_014707	Hs.116753	histone deacetylase 78	3.55
	447966	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	3.55
	420892	AW975076	Hs.172589	nuclear phosphoprotein similar to S. cer	3.55
					3.55
	420230	AL034344	Hs.298020	forkhead box C1	
20	418428	Y12490	Hs.85092	thyroid hormone receptor interactor 11	3.54
30	428949	AA442153	Hs.104744	hypothetical protein DKFZp434J0617	3.54
	444929	Al685841	Hs.161354	ESTs	3.54
	433339	AF019226	Hs.8036	glioblastoma overexpressed	3.54
	424369	R87622	Hs.26714	KIAA1831 protein	3.54
					3.53
25	433002	AF048730	Hs.279906	cyclin T1	
35	435425	H16263	Hs.31416	ESTs	3.53
	415621	A1648602	Hs.131189	ESTs	3.53
	416974	AF010233	Hs.80667	RALBP1 associated Eps domain containing	3.53
	405793			· · · · · · · · · · · · · · · · · · ·	3.52
	409770	AW499536		gb:UI-HF-BR0p-aji-o-12-0-UI.r1 NIH_MGC_5	3.52
40	425305	AA363025	Hs.155572	Human done 23801 mRNA sequence	3.52
40					
	428939	AW236550	Hs.131914	ESTs	3.52
	438388	AAB06349	Hs.44698	ESTs	3.52
	443703	AV646177	Hs.213021	ESTs	3.52
	457940	AL360159	Hs.30445	Homo sapiens TRipartite motif protein ps	3.52
45	402444				3.52
	409643	AW450866	Hs.257359	ESTs	3.51
				·	
	418250	U29926	Hs.83918	adenosine monophosphate deaminase (isofo	3.51
	432745	AJ821926	Hs.269507	gb:nt78f05.x5 NCI_CGAP_Pr3 Homo saplens	3.51
	414222	AL135173	Hs.878	sorbitol dehydrogenase	3.51
50	430061	AB037817	Hs.230188	KIAA1396 protein	3.51
	421491	H99999	Hs.42736	ESTs	3.50
	422384	AA224077	Hs.42438	Sm protein F	3.50
			110.76100		
	434565	T52172	** *****	ESTs	3.50
	438379	N23018	Hs.171391	C-terminal binding protein 2	3.50
55	439741	BE379646	Hs.6904	Homo sapiens mRNA full length insert cDN	3.50
	447311	R37010	Hs.33417	Homo sapiens cDNA: FLJ22806 fis, clone K	3.50
	447805	AW627932	Hs.19614	gemin4	3.50
	454265	H03556	Hs.300949	ESTs, Weakly similar to thyroid hormone	3.50
	418838		Hs.35198		3.50
60		AW385224		ectonucleotide pyrophosphatase/phosphodi	
60	448804	AW512213	Hs.42500	ADP-ribosylation factor-like 5	3.50
	409617	BE003760	Hs.55209	Homo sapiens mRNA; cDNA DKFZp434K0514 (f	3.49
	434075	AW003416	Hs.160604	ESTs	3.49
	444190	AI878918	Hs.10526	cysteine and glycine-rich protein 2	3.49
	435017	AA336522	Hs.12854	angiotensin II, type I receptor-associat	3.48
65	423445	NM_014324	Hs.128749		3.48
UJ.				alpha-methylacyl-CoA racemase	
	420271	AI954365	Hs.42892	ESTs	3.48
	443684	A1681307	Hs.166674	ESTs	3.48
	444168	AW379879		gb:RC1-HT0256-081199-011-f01 HT0256 Homo	3.48
	446074	AA079799	Hs.29263	hypothetical protein FLJ11896	3.48

	452582	AL137407	Hs.29911	Homo saplens mRNA; cDNA DKFZp434M232 (fr	3.48
	431542	H63010	Hs.5740	ESTs	3.48
	432697	AW975050	Hs.293892	ESTs, Weakly similar to ALU4_HUMAN ALU S	3.48
	435572	AW975339	Hs.239828	ESTs, Weakly similar to GAG2_HUMAN RETRO	3.47
5	407192	AA609200		gb:af12e02.s1 Soares_testis_NHT Homo sap	3.47
	413435	X51405	Hs.75360	carboxypeptidase E	3.46
	447210	AF035269	Hs.17752	phosphatidylserine-specific phospholipas	3.46
	447958	AW796524	Hs.68644	Homo sapiens microsomai signal peptidase	3.46
	425312	AA354940	Hs.145958	ESTs	3.46
10	442007	AA301116	Hs.142838	nucleolar phosphoprotein Nopp34	3.46
	417455	AW007066	Hs.18949	ESTs, Weakly similar to CA2B_HUMAN COLLA	3.45
	426931	NM_003416	Hs.2076	zinc finger protein 7 (KOX 4, done HF.1	3.45
	408739	W01556	Hs.238797	ESTs, Moderately similar to 138022 hypot	3.45
	436024	AI800041	Hs.190555	ESTs	3.45
15	408418	AW963897	Hs.44743	KIAA1435 protein	3.45
	409151	AA306105	Hs.50785	SEC22, vesicle trafficking protein (S. c	3.44
	418626	AW299508	Hs.135230	ESTs	3.44
	420560	AW207748	Hs.59115	ESTs	3.44
	420686	Al950339	Hs.40782	ESTs	3.44
20	428870	AA436831	Hs.36049	ESTs	3.44
	436754	AI061288	Hs.133437	ESTs	3.44
	437960	Al669586	Hs.222194	ESTs	3.44
	452300	AW628045	Hs.28896	Homo sapiens mRNA full length insert cDN	3.44
~-	421887	AW161450	Hs.109201	CGI-86 protein	3.44
25					

TABLE 5A shows the accession numbers for those primekeys lacking a unigeneID in Tables 5, 6, and 7. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

	Pkev:		Unique Eos probeset identifier number
	CAT number:		Gene cluster number
	Accession:		Genbank accession numbers
10	Pkey	CAT number	Accession
	407596	1003489_1	R86913 R86901 H25352 R01370 H43764 AW044451 W21298
	408432	1058667_1	AW195262 R27868 AW811262
15	409752	115301_1	AW963990 AA078196 AW749482 AA077468 BE151571 AA376917
	409770	1154048_1	AW499538 AW499553 AW502138 AW499537 AW502136 AW501743
	411440	124577_1	AW749402 AW749403 Z45743 R80378 AA093358
	411479	1247077_1	AW848047 AW848202 AW848631 AW848142 AW848702 AW848121 AW848632 AW848140 AW848571 AW848009 AW848067 AW848069 AW848905 AW848214
20	411624	1252166_1	BE145964 BE146286 AW854564
	412991	134248_1	AW949013 AA126111
	414269	143133_1	AA288489 AA137165
	415123	1523390_1	D60925 D60828 D80787
	415715	1548818_1	F30364 F36559 T15435
25	416288	1585983_1	H51299 H44619 H46391 R86024 H51892 T72744
	416289	1586037_1	W26333 R05358 H44682
	417730	1695795_1	Z44761 R25801 R11926 R35604
	418636	177402_1	AW749855 AA225995 AW750208 AW750206
20	419346	184129_1	AIB30417 AA236612
30	419536	185688_1	AA803305 AA244095 AA244183
	420111	190755_1	AA255652 AA280911 AW967920 AA262684
	422219	213547_1	AW978073 AW978072 AA807550 AA308587
	424179	236389_1	F30712 F35665 AW263898 AI904014 AI904018 AA336927 AA336502
35	424242	237181_1	AA337476 AW966227 AA450376 AW960222 AA381051
22	428002	285602_1 300543_1	AA418703 AA418711 BE071915 BE071920 BE071912 AA884766 AW974271 AA592975 AA447312
	429163 432189	300543_1 342819_1	AA604700 AW974271 AA632575 AA447512 AA527941 AI810608 AI620190 AA635266
	432340	345248 1	AA534222 AA632632 TB1234
	432363	345469_1	AA534489 AW970240 AW970323
40	432966	356839 1	AA650114 AW974148 AA572946
TU	433586	370470_1	T85301 AW517087 AA601054 BE073959
	433641	37186_1	AF080229 AF080231 AF080230 AF080232 AF080233 AF080234 BE550633 Al636743 AW614951 BE467547
	400071	57 100_1	AI680833 AI633818 N29986 U87592 U87593 U87590 U87591 S46404 U87587 AA463992 AW206802 AI970376
			AI583718 AI672574 N25695 AW665466 AI818326 AA126128 AI480345 AW013827 AA248638 AI214968
45			AA204735 AA207155 AA206262 AA204833 AW003247 AW496808 AI080480 AI631703 AI651023 AI867418
			AW818140 AA502500 Al206199 Al671282 Al352545 BE501030 Al652535 BE465762 AA206331 AW451866
			AA471088 AA206342 AA204834 AA206100 AW021661 AA332922 N66048 AA703396 H92278 AW139734
			H92683 U87589 U87595 H69001 U87594 BE466420 Al624817 BE466611 Al206344 AA574397 AA348354
			Al493192
50	433687	373061_1	AA743991 AA604852 AW272737
	433891	376239_1	AA613792 AW182329 T05304 AW858385
	434415	385931_1 [°]	BE177494 AW276909 AA632849
	434565	38898_1	T52172 AF147324 T52248
	434804	393481_1	AA649530 AA659316 H64973
55	437113	433234_1	AA744693 AW750059
	444168	593829_1	AW379879 Al126285 H12014
	448212	755099_1	Al475858 AW969013
	448310	757918_1	A480316 AW847535
	451746	883303_1	M86178 AI813822 D56993
			160

	452560	922216_1	BE077084 AW13983 AW863127 AW806209 AW806204 AW806205 AW806206 AW806211 AW806212 AW806207 AW806208 AW806210 Al907497
	452712 453773	928309_1 980699_1	AW838616 AW838660 BE144343 Al914520 AW888910 BE184854 BE184784 AL133761 AL133767
5	455276	1272541_1	BE176479 BE176678 BE176357 BE176550 AW886079 BE176676 BE176615 BE176555 BE176489 BE176610 BE176362
	455309	1278153_1	AW894017 AW893956 AW894032

TABLE 5B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Tables 5, 6, and 7. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Unique number corresponding to an Eos probeset

Pkey:

10	O Ref:		Sequence sou publication en	roe. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the titled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.
	Strand:		Indicates DNA	strand from which exons were predicted.
	Nt_position	on:	Indicates nucl	eotide positions of predicted exons.
	_			
15				
	Pkey	Ref	Strand	Nt_position
	401045	8117619	Plus	90044-90184,91111-91345
20	401424	8176894	Plus	24223-24428
	401451	6634068	Minus	119926-121272
	401714	6715702	Plus	98484-96681
	401747	9789672	Minus	118596-118816,119119-119244,119609-119761,120422-120990,130161-130381,130468-130593,131097- 131258,131868-131932,132451-132575,133580-134011
25	401785	7249190	Minus	165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942
	401819	7467933	Minus	28217-28486
	402408	9796239	Minus	110326-110491
	402444	9796614	Plus	28391-28517
	402791	6137008	Minus	51036-51207
30	403047	3540153	Minus	59793-59968
	403137	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337
	403721	7528046	Minus	156647-157366
	403764	7717105	Minus	118692-118853
	403797	8099896	Minus	123065-125008
35	404165	9926489	Minus	69025-69128
	404210	5006246	Plus	169926-170121
	404253	9367202	Minus	55675-56055
	404561	9795980	Minus	69039-70100
	404571	7249169	Minus	112450-112648
40	404721	9856648	Minus	173763-174294
	404915	7341766	Minus	100915-101087
	404939	6862697	Pius	175318-175476
•	405403	6850244	Minus	37491-37670,40951-41031
	405685	4508129	Minus	37956-38097
45	405718	9795467	Pius	113080-113266
	405793	1405887	Minus	89197-89453
	405876	6758747	Plus	39594-40031
	405917	7712162	Minus	106829-107213
	406414	9256407	Pius	49593-49850
50	406554	7711566	Plus	106956-107121

TABLE 6:286 GENES ENCODING EXTRACELLULAR OR CELL SURFACE PROTEINS UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

5

Table 6 shows 286 genes up-regulated in prostate cancer compared to normal adult tissues that are likely to be extracellular or cell-surface proteins. These were selected as for Table 5 and the predicted protein contained a structural domain that is indicative of extracellular localization (e.g. egf, 7tm domains).

Pkey: ExAccn: UnigeneID: Unigene Title R1:	9:	Exemplar Acc Unigene numb Unigene gene	Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number Unigene gene title Ratio of tumor to normal tissue					
Pkey	ExAccn	UnigenelD	Uningene Title	R1				
409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	48.28				
409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	45.24				
400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.48				
420154	Al093155	Hs.95420	JM27 protein	41.12				
426747	AA535210	Hs.171995	kalikrein 3, (prostate specific antigen	31.80				
400299	X07730	Hs.171995	kallikrein 3, (prostate specific antigen	24.91				
425075	AA506324	Hs.1852	acid phosphatase, prostate	2423				
424846	AU077324	Hs.1832		24.23 23.57				
405685	AUU/1324	H8.1032	neuropeptide Y					
	V70000	U- 0004F	anderson manufactifications at a second	20.90				
420757	X78592	Hs.99915	androgen receptor (dihydrotestosterone r	19.72				
418994	AA296520	Hs.89546	selectin E (endothelial adhesion molecul	19.56				
452792	AB037765	Hs.30652	KIAA1344 protein	17.39				
445472	AB006631	Hs.12784	Homo saplens mRNA for KIAA0293 gene, par	17.00				
414565	AA502972	Hs.183390	hypothetical protein FLJ13590	16.82				
431716	D89053	Hs.268012	fatty-acid-Coenzyme A ligase, long-chain	16.60				
408430	S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	16.28				
408000	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.54				
430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	15.40				
444484	AK002126	Hs.11280	hypothetical protein FLJ11264	14.76				
418601	AA279490	Hs.86368	calmegin	14.56				
448999	AF179274	Hs.22791	transmembrane protein with EGF-like and	14.55				
416182	NM_004354	Hs.79069	cydin G2	12.94				
420544	AA677577	Hs.98732	Homo sapiens Chromosome 16 BAC clone CIT	12.79				
445413	AA151342			12.79				
		Hs.12677	CGI-147 protein					
453930	AA419466	Hs.36727	hypothetical protein FLJ10903	12.22				
440286	U29589	Hs.7138	cholinergic receptor, muscarinic 3	12.04				
452784	BE463857	Hs.151258	hypothetical protein FLJ21062	11.86				
450203	AF097994	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	11.68				
448045	AJ297436	Hs.20166	prostate stem cell antigen	11.51				
449650	AF055575	Hs.23838	calcium channel, voltage-dependent, L ty	11.18				
420381	D50640	Hs.337616	phosphodiesterase 3B, cGMP-inhibited	11.10				
425665	AK001050	Hs.159066	hypothetical protein FLJ10188	11.08				
425710	AF030880	Hs.159275	solute carrier family, member 4	11,08				
428728	NM_016625	Hs.191381	hypothetical protein	11.04				
407021	U52077		gb:Human marineri transposase gene, comp	11.02				
410733	D84284	Hs.66052	CD38 antigen (p45)	11.02				
452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	10.85				
428819	AL135623	Hs.193914	KIAA0575 gene product	10.48				
421991	NM_014918	Hs.110488	KIAA0990 protein	10.04				
431217	NM_013427	Hs.250830	Rho GTPase activating protein 6					
	R27496			9.75				
421470		Hs.1378	annexin A3	9.64				
409262	AK000631	Hs.52256	hypothetical protein FLJ20624	9.45				
435980	AP274571	Hs.129142	deoxyribonuclease II beta	9.24				
421246	AW582962	Hs.102897	CGI-47 protein	9.20				
410001	AB041036	Hs.57771	kallikrein 11	9.03				
441791	AW372449	Hs.175982	hypothetical protein FLJ21159	9.02				

	404571				8.66
	456497	AW967956	Hs.123648	ESTs, Weakly similar to AF108460 1 ubinu	8.56
	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	8.36
	433172	AB037841	Hs.102652	hypothetical protein ASH1	8.30
5	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.27
	427674	NM_003528	Hs.2178	H2B histone family, member Q	8.20
	404915				8.08
	452259	AA317439	Hs.28707	signal sequence receptor, gamma (translo	8.06
10	452891	N75582	Hs.212875	ESTs, Weakly similar to DYH9_HUMAN CILIA	8.02
10	439731	AI953135	Hs.45140	hypothetical protein FLJ14084	7.98 7.68
	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	7.64
	420120	AL049610	Hs.95243	transcription elongation factor A (SII)- ATP-binding cassette, sub-family C (CFTR	7.64
	424099 448706	AF071202 AW291095	Hs.139336 Hs.21814	interleukin 20 receptor, alpha	7.52
15	410227	AB009284	Hs.61152	exostoses (multiple)-like 2	7.49
	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	7.35
	441736	AW292779	Hs.169799	ESTS	7.28
	419991	AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	7.20
	425018	BE245277	Hs.154196	E4F transcription factor 1	7.20
∙20	424560	AA158727	Hs.150555	protein predicted by clone 23733	7.18
	409110	AA191493	Hs.48778	niban protein	7.10
	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	7.04
	431725	X65724	Hs.2839	Norrie disease (pseudoglioma)	6.98
25	425782	U66468	Hs.159525	cell growth regulatory with EF-hand doma	6.85 6.79
25	427408 435604	AA583206	Hs.2156 Hs.26892	RAR-related orphan receptor A uncharacterized bone marrow protein BM04	6.73
	435604	AA625279 AF091622	Hs.78893	KIAA0244 protein	6.54
	401451	NI USTOLL	118.10050	terrace process	6.52
	431778	AL080276	Hs.268562	regulator of G-protein signalling 17	6.51
30	409089	NM_014781	Hs.50421	KIAA0203 gane product	6.50
	431992	NM_002742	Hs.2891	protein kinase C, mu	6.49
	404253	- -			6.42
	421552	AF026692	Hs.105700	secreted frizzled-related protein 4	6.41
0.5	416806	NM_000288	Hs.79993	peroxisomal biogenesis factor 7	6.38
35	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	6.30
	439366	AF100143	Hs.6540	fibroblast growth factor 13	6.30
	416836	D54745	Hs.80247	cholecystokinin	6.30 6.29
	433383 450728	AF034837 AW162923	Hs.192731 Hs.25363	double-stranded RNA specific adenosine d presentilin 2 (Alzheimer disease 4)	6.25
40	413384	NM_000401	Hs.75334	exostoses (multiple) 2	6.22
40	423349	AF010258	Hs.127428	homeo box A9	6.20
	424800	AL035588	Hs.153203	MyoD family inhibitor	6.18
	425451	AF242769	Hs.157461	mesenchymal stem cell protein DSC54	6.14
	447359	NM_012093	Hs.18268	adenylate kinase 5	6.00
45	410889	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	5.97
	408829	NM_006042	Hs.48384	heparan sulfate (glucosamine) 3-O-sulfot	5.94
	453911	AW503857	Hs.4007	Sarcolemmal-associated protein	5.94
	408875	NM_015434	Hs.48604	DKFZP434B168 protein	5.92 5.90
50	450480 451684	X82125 AF216751	Hs.25040 Hs.26813	zinc finger protein 239 CDA14	5.88
50	400301	X03635	Hs.1657	estrogen receptor 1	5.78
	415077	L41607	Hs.934	glucosaminyi (N-acetyl) transferase 2, I	5.74
	418852	BE537037	Hs.273294	hypothetical protein FLJ20069	5.72
	446867	AB007891	Hs.16349	KIAA0431 protein	5.72
55	410232	AW372451	Hs.61184	CGI-79 protein	5.70
	422762	AL031320	Hs.119976	Human DNA sequence from clone RP1-20N2 o	5.70
	450616	AL133067	Hs.302689	hypothetical protein	5.70
	408621	Al970672	Hs.46638	chromosome 11 open reading frame 8	5.65
60	439671	AW162840	Hs.6641	kinesin family member 5C	5.64 5.60
UU	410196 429170	A1936442 NM_001394	Hs.59838 Hs.2359	hypothetical protein FLJ10808 dual specificity phosphatase 4	5.60
	440738	A1004650	Hs.225674	WD repeat domain 9	5.60
	414342	AA742181	Hs.75912	KIAA0257 protein	5.59
	422634	NM_016010	Hs.118821	CGI-62 protein	5.56
65	400268			•	5.55
	439569	AW602166	Hs.222399	CEGP1 protein	5.51
	452823	AB012124	Hs.30696	transcription factor-like 5 (basic helix	5.48
	431938	AA938471	Hs.54431	specific granule protein (28 kDa); cyste	5.44
	427638	AA406411	Hs.208341	ESTs, Wealdy similar to KIAA0989 protein	5.42

				·	
	421264	AL039123	Hs.103042	microtubule-associated protein 1B	5.38
	421685	AF189723	Hs.106778	ATPase, Ca++ transporting, type 2C, memb	5.37
		Al133161	Hs.288131	CGI-101 protein	5.36
	421987				5.34
_	422806	BE314767	Hs.1581	glutathione S-transferase theta 2	
5	432281	AK001239	Hs <i>.</i> 274263	hypothetical protein FLJ10377	5.32
	451982	F13036	Hs.27373	Homo sapiens mRNA; cDNA DKFZp56401763 (f	5.32
	444042	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	5.31
				lactotransferrin	5.29
	447752	M73700	Hs.105938		
	451418	BE387790	Hs.26369	hypothetical protein FLJ20287	5.22
10	428593	AW207440	Hs.185973	degenerative spermatocyte (homolog Droso	5.21
10	447541	AK000288	Hs.18800	hypothetical protein FLJ20281	5.18
					5.16
	459294	AW977286	Hs.17428	RBP1-like protein	
	424692	AA429834	Hs.151791	KIAA0092 gene product	5.15
	416434	AW163045	Hs.79334	nuclear factor, interleukin 3 regulated	5.11
15	410268	AA316181	Hs.61635	six transmembrane epithelial antigen of	5.10
13			Hs.82238	POP4 (processing of precursor, S. cerev	5.10
	417517	AF001176			
	453616	NM_003462	Hs.33846	dynein, exonemal, light intermediate pol	5.10
	427958	AA418000	Hs.98280	potassium intermediate/small conductance	5.09
	407945	X69208	Hs.606	ATPase, Cu++ transporting, alpha polypep	5.08
20		AW968159	Hs.289104	Alu-binding protein with zinc finger dom	5.05
20	418576				5.04
	413328	Y15723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	
	432729	AK000292	Hs.278732	hypothetical protein FLJ20285	5.04
	426342	AF093419	Hs.169378	multiple PDZ domain protein	5.02
	429782	NM 005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	5.02
25					5.02
25	438209	AW850417	Hs.254020	ESTs, Moderately similar to unnamed prot	
	430599	NM_004855	Hs.247118	phosphatidylinositol glycan, class B	5.00
	451386	AB029006	Hs.26334	spastic paraplegia 4 (autosomal dominant	5.00
	457211	AW972565	Hs.32399	ESTs, Wealdy similar to S51797 vasodilat	4.97
			Hs.159642	glucosaminyl (N-acetyl) transferase 1, c	4.97
20	425851	NM_001490			4.93
30	421689	N87820	Hs.106826	KIAA1696 protein	
	416533	BE244053	Hs.79362	retinoblastoma-like 2 (p130)	4.92
	432653	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci	4.91
	403047	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************************************		4.91
		AFOOOFOO	He DEDEDO	dolto (Oroganhiis) Lika 1	4.90
0.5	431117	AF003522	Hs.250500	delta (Orosophila)-like 1	4.88
35	427617	D42063	Hs.199179	RAN binding protein 2	
	428804	AK000713	Hs.193736	hypothetical protein FLJ20706	4.88
	449071	NM_005872	Hs.22960	breast carcinoma amplified sequence 2	4.86
	407596	R86913		gb:yq30f05.r1 Soares fetal liver spleen	4,84
			11-000740		4.84
40	456516	BE172704	Hs.222746	KIAA1610 protein	
40	458339	AW976853	Hs.172843	ESTs	4.83
	422083	NM_001141	Hs.111256	arachidonate 15-lipoxygenase, second typ	4.82
	449535	W15267	Hs.23672	low density lipoprotein receptor-related	4.82
	422048	NM_012445	Hs.288126	spondin 2, extracellular matrix protein	4.82
		_			4.78
	424602	AK002055	Hs.151046	hypothetical protein FLJ11193	
45	410765	A1694972	Hs.66180	nucleosome assembly protein 1-like 2	4.77
	419879	Z17805	Hs.93564	Homer, neuronal immediate early gene, 2	4.74
	450649	NM_001429	Hs.25272	E1A binding protein p300	4.74
		BE145964	Hs.103283	KIAA0594 protein	4.72
	411624	DE 140504	NS. 103203	Unamosa bronsu	4.70
	404721				
50	426261	AW242243	Hs.168670	peroxisomal famesylated protein	4.70
	416276	U41060	Hs.79136	LIV-1 protein, estrogen regulated	4.64
	408374	AW025430	Hs.155591	forkhead box F1	4.64
				KIAA0982 protein	4.63
	451900	AB023199	Hs.27207		
	421437	AW821252	Hs.104336	hypothetical protein	4.63
55	434629	AA789081	Hs.4029	glioma-amplified sequence-41	4.60
	403764			-	4.58
		BE391727	Hs.102910	general transcription factor IIH, polype	4.53
	421247	0531161	110.102810	Annual amountain woon in it houlds	4.50
	403721			areas and already with the transfer of	
	453070	AK001465	Hs.31575	SEC63, endoplasmic reticulum translocon	4.49
60	417412	X16896	Hs.82112	interleukin 1 receptor, type I	4.48
- •	439735	AI635386	Hs.142846	hypothetical protein	4.48
	430261	AA305127	Hs.237225	hypothetical protein HT023	4,46
				hypothetical protein FLJ10902	4.44
	430598	AK001764	Hs.247112		
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	4.42
65	438209	AL120659	Hs.6111	aryl-hydrocarbon receptor nuclear transl	4.42
	417421	AL138201	Hs.82120	nuclear receptor subtamily 4, group A, m	4.40
				general transcription factor IIIC, polyp	4.38
	447270	AC002551	Hs.331		4.35
	434423	NM_006769	Hs.3844	LIM domain only 4	لتدبه
	404561				4.32

	422969	AA782536	Hs.122647	N-myristoy/transferase 2	4.32
	423685	BE350494	Hs.49753	uveal autoantigen with colled coil domail	4.32
	425071	NM_013989	Hs.154424	deiodinase, iodothyronine, type II	4.32
_	431583	AL042613	Hs.262476	S-adenosylmethionine decarboxylase 1	4.31
5	442818	AK001741	Hs.8739	hypothetical protein FLJ10879	4.30
	423740	Y07701	Hs.293007	aminopeptidase puromycin sensitive	4.24 4.21
	424701 424085	NM_005923	Hs.151988	mitogen-activated protein kinase kinase	4.20
	424085 410294	NM_002914 AB014515	Hs.139226 Hs.323712	replication factor C (activator 1) 2 (40 KIAA0615 gene product	4.18
10	447124	AW976438	Hs.17428	RBP1-like protein	4.18
10	438018	AK001160	Hs.5999	hypothetical protein FLJ10298	4.16
	443857	Al089292	Hs.287621	hypothetical protein FLJ14069	4.15
	446711	AF169692	Hs.12450	protocadherin 9	4.15
	405403				4.14
15	448148	NM_016578	Hs.20509	HBV pX associated protein-8	4.13
	417531	NM_003157	Hs.1087	serine/threonine kinase 2	4.12
	433345	Al681545	Hs.152982	hypothetical protein FLJ13117	4.10
	432712	AB016247	Hs.288031	sterol-C5-desaturase (fungal ERG3, delta	4.09 4.08
20	435114	AA775483 AI478629	Hs.288936 Hs.158465	mitochondrial ribosomal protein L9 likely ortholog of mouse putative IKK re	4.08
20	445459 402791	M410029	FIS. 130403	axely dilliolog of mouse putative interior	4.04
	438660	U95740	Hs.6349	Homo sapiens, clone IMAGE:3010666, mRNA,	4.04
	447568	AF155655	Hs.18885	CGI-116 protein	4.04
	452211	Al985513	Hs.233420	ESTs	4.02
25	443292	AK000213	Hs.9196	hypothetical protein	4.01
	420911	U77413	Hs.100293	O-linked N-acetylglucosamine (GlcNAc) tr	4.00
	428738	NM_000380	Hs.192803	xeroderma pigmentosum, complementation g	3.95
	430458	AA314998	Hs.241503	hypothetical protein	3.95
20	437531	Al400752	Hs.112259	T cell receptor gamma locus	3.93
30	428695	AI355647	Hs.189999	purinergic receptor (family A group 5)	3.91 3.91
	410011 446494	AB020641 AA463276	Hs.57856 Hs.288906	PFTAIRE protein kinase 1 WW Domain-Containing Gene	3.91
	409928	AL137163	Hs.57549	hypothetical protein dJ47384	3.90
	411598	BE336654	Hs.70937	H3 histone family, member A	3.90
35	425707	AF115402	Hs.11713	E74-like factor 5 (ets domain transcript	3.90
••	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	3.89
	401045	_			3.89
	437372	AA323968	Hs.283631	hypothetical protein DKFZp547G183	3.89
40	417067	AJ001417	Hs.81086	solute carrier family 22 (extraneuronal	3.88
40	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	3.88
	431930	AB035301	Hs.272211	cadherin 7, type 2	3.88
	453047	AW023798	Hs.286025	ESTs	3.88 3.88
	401785 458229	Al929602	Hs.177	phosphatidylinositol glycan, class H	3.86
45	406414	MIDEOUUL	na.1/1	hughiamilmostor Biloguit crass 11	3.86
45	412494	AL133900	Hs.792	ADP-ribosylation factor domain protein 1	3.84
	418329	AW247430	Hs.84152	cystathionine-beta-synthase	3.83
	424850	AA151057	Hs.153498	chromosome 18 open reading frame 1	3.82
	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	3.82
50	423052	M28214	Hs.123072	RAB3B, member RAS oncogene family	3.82
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (3.82
	419423	D26488	Hs.90315	KIAA0007 protein	3.80
	429643	AA455889	Hs.167279	FYVE-finger-containing Rab5 effector pro	3.80 3.80
55	431499 444078	NM_001514	Hs.258561 Hs.10290	general transcription factor IIB U5 snRNP-specific 40 kDa protein (hPrp8-	3.78
22	430291	BE246919 AV660345	Hs.238126	CGI-49 protein	3.76
	431637	AI879330	Hs.265960	hypothetical protein FLJ10563	3.74
	440411	N30256	Hs.151093	hypothetical protein DKFZp434G1415	3.74
	405917				3.74
60	451230	BE546208	Hs.26090	hypothetical protein FLJ20272	3.73
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	3.73
	415075	L27479	Hs.77889	Friedreich ataxia region gene X123	3.72
	440351	AF030933	Hs.7179	RAD1 (S. pombe) homolog	3.70
6 5	443603	BE502601	Hs.134289	ESTs, Wealdy similar to KIAA1063 protein	3.70
65	446965		Hs.16677	WD repeat domain 15	3.70 3.70
	412350	A1659306 A1378329	Hs.73826 Hs.126629	protein tyrosine phosphatase, non-recept ESTs	3.70
	433852 447397	BE247676	Hs.18442	E-1 enzyme	3.68
	405718				3.68

	425217 421734 427221	AU076696 Al318624 L15409	Hs.155174 Hs.107444 Hs.174007	CDC5 (cell division cycle 5, S. pombe, h Homo sapiens cDNA FLJ20562 fis, clone KA von Hippel-Lindau syndrome	3.68 3.67 3.67
5	402408 452946	X95425	Hs.31092	EphA5	3.66 3.66
	419078	M93119	Hs.89584 Hs.2126	insulinoma-associated 1 vasoactive intestinal peptide receptor 2	3.66 3.65
	427144 423396	X95097 Al382555	Hs.127950	bromodomain-containing 1	3.65
	446320	AF126245	Hs.14791	acyl-Coenzyme A dehydrogenase family, me	3.63
10	404939	Fit TEACHS	110111111	20), 000,2,110,, 001, 110, 110, 110, 110, 1	3.62
	403137				3.60
	437162	AW005505	Hs.5464	thyroid hormone receptor coactivating pr	3.60
	404210				3,59
	443775	AF291664	Hs.204732	matrix metalloproteinase 26	3.56
15	452501	AB037791	Hs.29716	hypothetical protein FLJ10980	3.56
	422443	NM_014707	Hs.116753	histone deacetylase 7B	3.55
	420230	AL034344	Hs.284186	forkhead box C1	3.55
	418428	Y12490	Hs.85092	thyroid hormone receptor interactor 11	3.54
	433002	AF048730	Hs.279906	cyclin T1	3.53
20	405793				3.52
	457940	AL360159	Hs.306517	Homo sapiens TRIpartite motif protein ps	3.52
	402444				3.52
	418250	U29926	Hs.83918	adenosine monophosphate deaminase (isofo	3.51
	414222	AL135173	Hs.878	sorbitol dehydrogenase	3.51
25	422384	AA224077	Hs.42438	Sm protein F	3.50
	447805	AW627932	Hs.19614	gemin4	3.50
	454265	H03556	Hs.300949	ESTs, Weakly similar to thyroid hormone	3.50
	423445	NM_014324	Hs.128749	alpha-methylacyl-CoA racemase	3.48
	413435	X51405	Hs.75360	carboxypeptidase E	3.46
30	447210	AF035269	Hs.17752	phosphatidylserine-specific phospholipas	3.46
	426931	NM 003416	Hs.2076	zinc finger protein 7 (KOX 4, clone HF.1	3.45
	408418	AW963897	Hs.44743	KIAA1435 protein	3.45
	421887	AW161450	Hs.109201	CGI-86 protein	3.44

Table 7: 42 GENES ENCODING SMALL MOLECULE TARGETS UP-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL ADULT TISSUES

Table 7 shows 42 genes up-regulated in prostate cancer compared to normal adult tissues that are likely to be small molecule targets. These were selected as for Table 5 and the predicted protein contained a structural domain that is indicative of a drugable structure (e.g. protease, kinase, phosphatase, receptor). The functional domain is indicated for each gene.

10	Pkev:	Unique Eos probeset identifier number
	ExAcon:	Exemplar Accession number, Genbank accession number
	UnigenelD:	Unigene number
	Unigene Title:	Unigene gene title
	PSDomain:	Protein Structural Domain
15	R1:	Ratio of tumor vs. normal tissue

	Pkey	ExAcen	UnigenelD	Unigene Title	PSDomain	R1	
20	426747	AA535210	Hs.171995	kallikrein 3, (prostate specific antigen	trypsin	31.80	
		X07730		kallikrein 3, (prostate specific antigen	trypsin	24.91	
		X78592	Hs.99915	androgen receptor (dihydrotestosterone r	Androgen_recep,hormone_rec,zf-C4	19.72	
		S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	DPPIV_N_term,Peptidase_S9	16.28	
		BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	7tm_1	15.40	
25		U80034	Hs.68583	mitochondrial intermediate peptidase	Peptidase_M3	14.81	
		U29589	Hs.7138	cholinergic receptor, muscarinic 3	7tm_1	12.04	
	420381	D50640	Hs.337616	phosphodiesterase 3B, cGMP-Inhibited	PDEase	11.10	
	407021	U52077		gb:Human mariner1 transposase gene, comp	SET,Transposase_1	11.02	
	401424			, , ,	arginase	9.58	
30	410001	AB041036	Hs.57771	kallikrein 11	trypsin	9.03	
	428330	L22524	Hs.2256	matrix metalloproteinase 7 (matrilysin,	Peptidase_M10	8.76	
	424099	AF071202	Hs.139336	ATP-binding cassette, sub-family C (CFTR	ABC_tran,ABC_membrane	7.64	
	419991	AJ000098	Hs.94210	eyes absent (Drosophila) homolog 1	Hydrolase	7.20	
	431992	NM_002742	Hs.2891	protein kinase C, mu	pkinase,DAG_PE-blnd,PH	6.49	
35	447359	NM_012093	Hs.18268	adenylate kinase 5	adenylatekinase	6.00	
	400301	X03635	Hs.1657	estrogen receptor 1	Oest_recep,zf-C4,hormone_rec	5.78	
	421685	AF189723	Hs.106778	ATPase, Ca++ transporting, type 2C, memb	E1-E2_ATPase,Hydrolase	5.37	
	444042	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	ABC_tran	5.31	
		M73700		lactotransferrin	transferrin,7tm_1	5.29	
40	407945	X69208	Hs.606	ATPase, Cu++ transporting, alpha polypep	E1-E2_ATPase,Hydrolase,HMA	5.08	
	403047				trypsin	4.91	
	427617			RAN binding protein 2	Ran_BP1,zf-RanBP,TPR,pro_isomera:		4.88
		NM_001141		arachidonate 15-lipoxygenase, second typ	lipoxygenase,PLAT	4.82	
4 ~		W15267	Hs.23672	low density lipoprotein receptor-related	ldl_recept_b.ldl_recept_a,EGF	4.82	
45		NM_013989		deiodinase, iodothyronine, type II	T4_delodinase	4.32	
	423740			aminopeptidase puromycin sensitive	Peptidase_M1	4.24	
		NM_005923	Hs.151988	mitogen-activated protein kinase kinase	pkinase	4.21	
		NM_002914		replication factor C (activator 1) 2 (40	AAA,Viral_helicase1	4.20	
50		NM_003157	Hs.1087	serine/threonine kinase 2	pkinase	4.12	
50		Al355647		purinergic receptor (family A group 5)	7tm_1	3.91	
		AB020641		PFTAIRE protein kinase 1	pkinase	3.91	
		AA151057		chromosome 18 open reading frame 1	ldLrecept_a	3.82	
		Al659306		protein tyrosine phosphatase, non-recept	Y_phosphatase,Band_41,PDZ	3.70	
55		BE247676		E-1 enzyme	Hydrolase	3.68	
33	452946		Hs.31092	EphA5	EPH_lbd,fn3,pkinase,SAM	3.66 3.65	
	427144	AF291664		vasoactive intestinal peptide receptor 2	7tm_2	3.56	
				matrix metalloproteinase 26	Peptidase_M10	3.52	
	45/940	AL360159	Hs.83918	Homo sapiens TRipartite motif protein ps adenosine monophosphate deaminase (isofo	SPRY,7tm_1	3.52	
- 60	418230		Hs.75360	carboxypeptidase E	Zn_carbOpept	3.46	
- 00		AF035269	Hs.17752	phosphatidylserine-specific phospholipas	Zn_carbopept libase	3.46	
	44/210	AFU33203	110.17702	huoshianakisainia shaciic huoshianbas	ιφασσ	0.40	

TABLE 8: 136 GENES SIGNIFICANTLY DOWN-REGULATED IN PROSTATE CANCER COMPARED TO NORMAL PROSTATE

Unique Eos probeset identifier number

10

Pkey:

Table 8 shows 136 genes significantly down-regulated in prostate cancer compared to normal prostate. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" normal prostate to "average" prostate cancer tissues was greater than or equal to 2. The "average" normal prostate level was set to the mean amongst 4 normal prostate tissues. The "average" prostate cancer level was set to the 85th percentile amongst 73 tumor samples. In order to remove gene-specific background levels of non-specific hybridization, the 10th percentile value amongst all the tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

1	15	UnigenelD: Unigene Unigene Title: Unigene		Unigene Unigene	r Accession number, Genbank accession number number gene title normal prostate to prostate cancer				
,	20	Pkey	ExAcon	UnigeneiD	Unigene Title	R1			
_	20	425932	M81650	Hs.1968	semenogelin I	57.69			
		425545			Human mRNA for myosin light chain 3 (MLC	19.70			
			X69490	Hs.172004		15.25			
		442082	R41823	Hs.7413	ESTs; calsyntenin-2	10.05			
- 2	25	407245	X90568	Hs.172004	tiùn .	9.38			
		422711	D60641	Hs.21739	Homo sapiens mRNA; cDNA DKFZp586l1518 (f	9.05			
		420813	X51501	Hs.99949	prolactin-induced protein	8.18			
		411987	AA375975	Hs.183380	"ESTs, Moderately similar to ALU7_HUMAN	7. 4 5			
		404567				5.62			
3	30	416030		Hs.21948		5.51			
				Hs.148565		5.27			
		444573	AW043590	Hs.225023	ESTs	5.20			
				Hs.233462		5.08			
			AA846804	Hs.123694	ESTS	4.95			
3	35	404113				4.75			
			AA286844		hypothetical protein FLJ13164	4.75			
				Hs.188181		4.63			
			AV654382	Hs.17947	*ESTs, Weakly similar to K02F3.10 [C.ele	4.53			
	10	405163				4.49			
-	10	405227			-1-4 - 3-	4.45 4.45			
			NM_003154		statherin	4.40			
			Al138635	Hs.22968	ESTS	4.40			
			U35637		"gb:Human nebulin mRNA, partial cds"	4.02			
,	1 5	403612	A A 004400	U= 40EC40	ECT.	4.00			
-	13			Hs.135646	Homo sapiens clone TUA8 Cri-du-chat regi	3.98			
					*ESTs, Weakly similar to KIAA0465 protei	3.95			
			BE148877	NS. 120330	"gb:CM4-HT0244-111189-040-h12 HT0244 Hom	3.95			
				He 175783	zinc transporter	3.92			
4	50		AW860972	113.110100	"gb:QV0-CT0387-180300-167-h07 CT0387 Hom	3.85			
•	,,			Hs.87150		3.75			
			AF069478	1,000,100	*rp:AF069478 Homo saplens astrocytoma li	3.61			
		403649			,	3.60			
			H13139	Hs.92282	palred-like homeodomain transcription fa	3.58			
- 4	55		AA196241	Hs.73980	"troponin T1, skeletal, slow"	3.51			
	-	414206	AW276887	Hs.46609	ESTs	3.45			
		427419	NM_000200	DHs.177888	histatin 3	3.37			
		420777	AA280223	Hs.130865	ESTs	3.35			
		428134	AA421773	Hs.161008	ESTs	3.31			
(50		R02018		*Ank, mouse, homolog of	3.30			
					*EST, Highly similar to ubiquitin-protei	3.30			
		418833	AW974899	Hs.292778		3.26			
		400440	X83957	Hs.83870	nebulin	3.16			
					· ·				

	413778	AA090235	Hs.75535	*myosin, light polypeptide 2, regulatory	3.06
		AW838068		°gb:QV3-LT0048-010300-109-622 LT0048 Hom	3.05
	445060	AA830811	Hs.88808	ESTS	2.98
	457065	Al476318	Hs.192480	ESTs	2.95
5		H00093		"gb:ph8f12u_19/1TV Outward Alu-primed hn	2,92
,		1100033		Sphilaira_19/11 4 Odiwad Mahaneo III	
	405678				2.85
	406707	S73840	Hs.931	"myosin, heavy polypeptide 2, skeletal m	2.81
		AW189097			2.78
	433968	AL157518	Hs.90421	PRO2463 protein	2.73
10	438522	AA809431	Hs.258886	ESTs	2.73
		H71937		"complement component 1, s subcomponent"	2.68
		AA102268	MS.42175		2.67
	455590	BE072259		*gb:QV4-BT0536-271299-059-g04 BT0536 Hom	2.65
•	415380		He 16085	putative G-protein coupled receptor	2.65
					2.64
15			ns.191436	hypothetical protein FLJ10619	
	408537	AW207734		"gb:UI-H-BI2-age-h-01-0-UI.s1 NCI_CGAP_S	2.63
	424706	AA741336	Hs.152108	transcriptional unit N143	2.63
					2.63
		BE072092		*gb:PM4-BT0532-160200-003-b11 BT0532 Hom	
	406704	M21665	Hs.929	"myosin, heavy polypeptide 7, cardiac mu	2.62
20	437507	AA758538	Hs.246882	ESTa	2.60
		A1933794			2.58
	408074	R20723	Hs.124764	ESTS	2.58
	436653	AA829828	Hs.292402	ESTs	2.52
				"ESTs, Highly similar to FXD3_HUMAN FORK	2.51
25					
25		A1689154			2.50
	436915	AA737400	Hs.142230	ESTs	2.50
		AW576454			2.46
	448920	AW408009	HS.22580	alkylglycerone phosphate synthase	2.45
	422046	A1638562		"gb:ts50a10.x1 NCI_CGAP_Ut1 Homo sapiens	2.44
30		AA015767	He 103597		2.40
50					2.36
		H87863	Hs.151380		
	451237	AW600293		gb:EST00049 pGEM-T library Homo sapiens	2.36
	400001			AFFX control: BioB-3	2.36
		745005			2.36
0.5	415835			"gb:HSC2NF061 normalized infant brain cD	
35	439706	AW872527	Hs.59761	ESTS	2.36
	423341	AW242394	Hs 252495	ESTs	2.36
		AA742221			2.35
			115.120055		
		AJ002784		gb:Homo sapiens mRNA; fetal brain cONA 5	2.33
	430573	AA744550	Hs.136345	ESTs	2.32
40	401974				2.31
70		41 044400	11-400000	PPOT- Marking Indiana PUIDOT Tours	2.31
				"ESTs, Weakly similar to PH0217 reverse	
	430751	NM 01247	Hs.247868	transient receptor potential channel 5	2.25
			Hs.153089		2.25
					2.25
		R15337	Hs.21958	"Homo sapiens cDNA FLJ10532 fis, clone N	
45	451130	A1762250	Hs.211347	ESTs	2.24
	405420				2.23
		AMME40E0		Babilli a CTOORD 150000 DCE LIGE CTOORD Lion	2.23
		AW851258		"gb:IL3-CT0220-160200-066-H06 CT0220 Hom	
	438224	AA933999		"gb:on91f04.s1 Soares_NFL_T_GBC_S1 Homo	2.23
	407764	BE008347		"gb:CM0-BN0154-080400-325-h04 BN0154 Hom	2.23
50		BE252470		"gb:601108292F1 NIH_MGC_16 Homo sapiens	2.23
50				<u>-</u>	
		AA741368			2.23
	435111	Al914279	Hs.213740	ESTs	2.22
	403375			•	2.21
		*******		Edinor Otogro Operos 000 con Charles Here	2.21
		AW853441		"gb:RC1-CT0252-030100-023-g09 CT0252 Hom	
55		AW854153		"gb:RC3-CT0254-060400-029-d03 CT0254 Hom	2.20
	421154	AA2RARR3	Hs 287631	*Homo sapiens cDNA FLJ14269 fis, clone P	2.19
		70.000			2.18
	401963				
	435034	AF168711	HS.159397	x 010 protein	2.18
	448996	AW998989	Hs.105749	KIAA0553 protein	2.18
60		AW297599			2.17
00					
		Al733395			2.17
	419310	AA236233	Hs.188716	ESTs	2.16
		H91800	Hs.124156		2.16
		R54109	Hs.26096		2.16
65	432744	AA988835	Hs.38664	ESTs	2.15
		Al133482			2.15
			. 10. 1002 10	JohnsudCoff of Consen Intel Setup NINOLIES	
		AA425562		gb:zw46e05.r1 Soares_total_fetus_Nb2HF8	2.15
		AA744518			2.15
				"ESTs, Highly similar to collapsin-2-lik	2.15
	100100	. 10001001		man and a construction of the contraction of the co	

	415708	H56475		"gb:yt87d11.r1 Soares_pineal_gland_N3HPG	2.13
	459619				2.12
	427506	AK000134	Hs.179100	hypothetical protein FLJ20127	2.12
			Hs.184354		2.10
5		AW809157		"ab:RC0-ST0118-041099-031-c07_1 ST0118 Homo sapiens cDNA, mRNA sequence"	2.10
-	403087	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2,10
	403869				2.10
		D81194	Hs.282499	FCTe	2.10
		H29505	115.202400	"gb:ym60d10.r1 Soares infant brain 1NIB Homo sapiens cDNA clone 5', mRNA sequence"	2.10
10		H11257	Hs.295233		2.09
10			Hs.190044		2.08
		BE218221	ns. 190044		2.08
		BE274360		"gb:601121068F1 NIH_MGC_20 Homo saplens cDNA clone 5', mRNA sequence"	2.08
	405455			The Corporate Community Co	2.00
1 5	423843	AA332652		"gb:EST36627 Embryo, 8 week I Homo sapiens cDNA 5' end similar to similar to	2.08
15				monoamine oxidase B, mRNA sequence"	
	406135				2.07
		BE246180	Hs.121385	ESTS	2.07
	403493				2.05
	444514	A1682905	Hs.270431	"ESTs, Weakly similar to ALU1_HUMAN ALU SUBFAMILY J SEQUENCE	
20				CONTAMINATION WARNING ENTRY [H.saplens]*	2.05
	435884	AA701443	Hs.192868	ESTs	2.05
	419629	AB020695	Hs.91662	KIAA0888 protein	2.03
	405900				2.03
	457350	AW974438	Hs.194136	"ESTs, Moderately similar to AF091457 1 zinc finger protein RIN ZF [R.norvegicus]"	2.02
25	400007			AFFX control: BioDn-5	2.01
		M64358		"ab:Human rhorn-3 gene, exon."	2.00

TABLE 8A shows the accession numbers for those primekeys lacking a unigeneID in Table 8. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15	Pkey	CAT number	Accessions
	407764	1014849_1	BE008347 BE008320 BE083307 BE083311 AW075968
	408537	1064753_1	AW207734 D60164 D81150 D81078 D61356 AW996804
			AW854153 AW500210 BE145772 AW501310
20		1225682_1	AW809157 AW812181 AW812175 AW812172 AW812161 AW812165
		1256908_1	AW860972 AW862598 AW860988 AW860983 AW860898 AW860925 AW860922 AW860986 AW860984 AW860989
		1353792_1	BE072092 BE072106 BE072098 BE072098 BE072103
		1375933_2	BE252470 BE147573
25		1548209_1	H56475 F29401 F34552
23		1558511_1	Z45365 R25905 H05203 T77496
		210744_1	AIG38562 T16929 H13401 F07773 R55836 AW838068 AW837986 AW838067 AA322487 AW837936
		225415_1	ANGSSESS ANGS7500 ANGSSES? ANGS7500 AAS32652 AAS31633 AW999369 AW902993 BE170475 AA378845 AW964175 AI475221
		232510_1 243504_1	AAA25562 AI880208 AA346646 N22655 AW811775 AW811786
30		274259_•1	RE274360
50		347718.2	H00093 H00079 H00070 H00054 H00049 H00063 AW905306 AW905241 AW905410 AW905307 AW905411 AW905240
	AW9052		Thousan Hadrid Hadrid Hadrid Hadrid Madager Madager Madager
	71110000		AW905352 AW905304 AW905239 AW905242 AW905243 H00087
	438224	452656_1	AA933999 AA781181
35		740749_1	H29505 R18575 Z43580 T48738 Al435454 BE004683
		863269_1	AW600293 Al767468
	455029	1249374_1	AW851258 AW851435 AW851106 AW851421
	455060	1251259_1	AW853441 BE145228 BE145218 BE145162 BE145283
	455590	1335127_1	BE072259 BE072230 BE007911
40	458311	543550_1	AF069478 AF069479 AF069480

TABLE 8B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in table 8. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5							
	Pkey: Ref:		Unique number Sequence sour publication entil	r corresponding to an Eos probeset ce. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the tied "The DNA			
.0	Strand: Nt_position:		sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.				
5	Pkey	Ref	Strand	Nt_position			
	401963	3126783	Plus	51382-51521			
	401974	3126777	Plus	85330-85683			
	403087	8954241	Plus	169511-169795			
)	403375	9255944	Minus	92554-92795			
•	403493	7341425	Plus	157568-159084			
	403612	8469060	Minus	94723-94859			
	403649	8705159	Minus	27141-27247			
	403869	7280046	Minus	34379-34583			
5	404113	9588571	Minus	13448-13646			
	404567	7249169	Minus	101320-101501			
	405163	9966267	Minus	161171-161299			
	405227	6731245	Minus	22550-22802			
	405420	7211837	Minus	13428-13582			
)	405455	7656675	Plus	134112-134671			
	405678	4079670	Pius	151821-152027			
	405900	6758785	Minus	71181-71535			
	406135	9164918	Minus	65489-65715			

TABLE 9: 1001 GENES SIGNIFICANTLY UP-REGULATED IN NORMAL PROSTATE COMPATED TO PROSTATE CANCER

Table 9 shows 1001 genes significantly up-regulated in prostate cancer compared to normal prostate. These were selected from 59680 probesets on the Affymetrix/Eos Hu03 GeneChip array such that the ratio of "average" normal prostate to "average" prostate cancer tissues was greater than or equal to 8.14. The "average" normal prostate level was set to the mean amongst 4 normal prostate tissues. The "average" prostate cancer level was set to the 85th percentile amongst 73 tumor samples. In order to remove gene-specific background levels of non-specific hybridization, the 10th percentile value amongst all the tissues was subtracted from both the numerator and the denominator before the ratio was evaluated.

Unique Eos probeset identifier number

Pkev:

15	EXAcon: 15 UnigeneID: Unigene Title: R1:			Examplar Accession number, Genbank accession number Unigene number Unigene gene title Ratio of prostate cancer to normal prostate					
20	Pkey	ExAccn	UnigeneiD	Unigene Title	R1				
20	451002	AA013299	Hs.8018	ESTs, Weakly similar to ALU3_HUMAN ALU S	1684.00				
		AA689465	Hs.188999		738.00				
		AI078027	Hs.169338		246.86				
		AA928116	Hs.272065	ESTs	245.20				
25	400452	AK000185		gb:Homo sapiens cDNA FLJ20178 fls, clone	222.00				
	405932				221.33				
	427906	AA864330	Hs.166520	ESTs	212.00				
	443685	Al686550	Hs.174481	ESTs	163.20				
		Al474866	Hs.193237		149.45				
30	418323	NM_002118	Hs.1162	major histocompatibility complex, class	126.11				
	429480	M36860	Hs.9295	elastin (supravalvular aortic stenosis,	123.27				
	426025	AW138330	Hs.233778		120.00				
	418917	X02994	Hs.1217	adenosine deaminase	106.75				
	404407				105.71				
35		A1652926	Hs.128395		100.53				
		AA608684	Hs.121705	ESTs, Moderately similar to ALUC_HUMAN !	94.00				
		U83527		gb:HSU83527 Human fetal brain (M.Lovett)	89.18				
		F06495		gb:HSC1AB051 normalized infant brain cDN	87.73				
40		M67439		dopamine receptor D5	86.82				
40		AW747996	Hs.160999	ESTS	86.43				
	401672			6040 - 11	77.26				
		AW383947	Hs.246381	CD68 antigen	68.47				
		BE074959	11 400010	gb:PM0-BT0582-310100-001-f08 BT0582 Homo	68.00 61.26				
15		AI766053	Hs.188346		57.71				
45		BE540279	Hs.220826	gb:601059857F1 NIH_MGC_10 Homo sapiens c	- 56.40				
		AW451693	MS.220020	2018	54.67				
	402964	NECOCOT		gb:yv59d11.r1 Soares fetal liver spleen	54.00				
		N59027 AA372275	Ha 270000	Homo sapiens cDNA FLJ11383 fis, done HE	54.00				
50		R32704	Hs.301298		52.96				
50	405172	N32/04	115.001200	2013	52.96				
		AW137088	Hs.144857	FSTs	52.32				
		AW592931	Hs.256298	FSTs	51.63				
		AB028989		mitogen-activated protein kinase 8 inter	50,98				
55		AA703679		ESTs, Weakly similar to SYT5_HUMAN SYNAP	49.60				
55		AA339666	113.10000	gb:EST44776 Fetal brain I Homo sapiens c	48.90				
		T54095		gb:ya92c05.s1 Stratagene placenta (93722	47.98				
		AA424163	Hs.156895		46.83				
		Al700148	Hs.283626		43.57				
60		AA485224	Hs.57734	G protein-coupled receptor kinase-intera	43.00				
-		AA837098	Hs.269933	ESTs	42.70				
		AF074994	Hs.24240		42.67				

	406134				42.43
		AA480895	Hs 201552	ESTs, Weakly similar to T17288 hypotheti	42.31
		AA070266		gb:zm69d04.r1 Stratagene neuroepithelium	42.25
	401124				41.61
5	429316	Al371157	Hs.178538	ESTs	40.00
	420317	AB006628	Hs.98485	KIAA0290 protein	39.64
		AW062439		gb:MR0-CT0060-120899-001-f08 CT0060 Homo	39.60
		AA923278		ESTs, Weakly similar to protease [H.sapi	38.73
10		BE221682	Hs.178364		38.06
10		W79114	Hs.58558		36,69
		AA604799		ESTs, Moderately similar to ALU1_HUMAN A	36.29 36.18
		AW963705 AA936282	Hs.120397	ESTs, Weakly similar to ALU7_HUMAN ALU S	36.10
		AA333990		coagulation factor XIII, A1 polypeptide	36.08
15		BE314852	Hs 168694	hypothetical protein FLJ10257	36.00
		H08796	Hs.124952		36.00
		AA076049	Hs.274415	Homo sapiens cDNA FLJ10229 fis, clone HE	35.23
		NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	35.20
	401468				34.89
20		Al220150	Hs.211195		34.60
		BE350738	Hs.123993	ESTs, Weakly similar to T00366 hypotheti	33.24
		AW848032		gb:JL3-CT0214-231299-053-D11 CT0214 Homo	32.96
	402828	*********	LI- TOOOF	University of the FL 100105 for sleep i	32.93 31.76
25	414522	AW518944	MS.70323	Homo sapiens cDNA: FLJ23125 fis, clone L	31.68
23		AA285363		gb:HTH280 HTCDL1 Homo sapiens cDNA 51/31	31.59
	401631		Hs.1799	CD1D antigen, d polypeptide	31.26
		AW139565	110.1100	gb:Ul-H-Bi1-aea-d-04-0-Ul.s1 NCI_CGAP_Su	31.24
		H81795		gb:ys68a10.r1 Soares retina N2b4HR Homo	31.20
30		T87479	Hs.291797	ESTs	31.09
		AF103907		prostate cancer antigen 3	29.78
		AU076734	Hs.193665	solute carrier family 28 (sodium-coupled	29.76
		Al907039		gb:PM-BT134-020499-566 BT134 Homo sapien	29.59
25		BE244074		regulator of Fas-induced apoptosis	29.53
35		Al870175	Hs.13957		29.47 29.22
		R07566 W07808	Hs.73817	Small inducible cytokine A3 (homologous gb:zb03a12.r1 Soares_fetal_lung_NbHL19W	29.20
		AW102670	Hs.122464		29.13
		U80456		single-minded (Drosophila) homolog 2	28.74
40		W84893	Hs.9305	angiotensin receptor-like 1	28.61
	457324	AB028990	Hs.243901	KIAA1067 protein	28.24
		X14008		lysozyme (renal amyloidosis)	28.18
		Al279960	Hs.178140		28.12
15		AW972917	Hs.128749	alpha-methylacyl-CoA racemase	28.06
45		AW104257		ESTs, Weakly similar to putative serine/	27,61 27,36
	405495	AV650262	ns./5/00	GRO2 oncogene	27.33
	406516				27.25
		AW135429	Hs.243577	ESTs	26.96
50		AW452332	Hs.257554	ESTs	26.36
		T97490	Hs.50002	small inducible cytokine subfamily A (Cy	26.34
	402838				26.32
		Al979284	Hs.200552		26.21
55		X57010	Hs.81343		26.20
55		NM_014856	Hs.6684	KIAA0476 gene product	25.91 25.60
		A1682088 AL133660	Hs.223368	Homo sapiens mRNA; cDNA DKFZp434M0927 (f	25.57
		BE391090	Hs.280278		25.57
		NM_005188		Cas-Br-M (murine) ecotropic retroviral t	25.48
60		AA251048		lymphocyte antigen 9	25.42
		AA063426		gb:zf70c08.s1 Soares_pineal_gland_N3HPG	25.25
		AW083491	Hs.31196		25.22
		W28573		gb:51f10 Human retina cDNA randomly prim	25.01
45		T74588	Hs.8509	ESTs, Weakly similar to CO3_HUMAN COMPLE	24.85
65		BE077458	Un dennon	gb:RC1-BT0606-090500-015-b04 BT0606 Homo	24.76 24.74
		AA760894 Al014723	Hs.153023 Hs.131770		24.74 24.57
•		BE019557		Human DNA sequence from clone RP4-583P15	24.53
		AF026692	Hs.105700	secreted frizzled-related protein 4	24.49

	443668	U25758	Hs.134584	ESTs	24.49
		AL035588	Hs.153203	MyoD family inhibitor	24.10
		AA357001	Hs.34045		24.04
_		AL122081		cadherin related 23	24.00
5		Al208611	Hs.12066		23.89
		AA215672	41: 45050	gb:zr96e09.s1 NCI_CGAP_GCB1 Homo saplens	23.83
		AW449674	Hs.47359	ESTs	23.73 23.62
		AF204231	Hs.182982		23.39
10		AA136301	He 167970	gb:zk93g04.s1 Soares_pregnant_uterus_NbH cancer/testis antigen	23.20
10		NM_001327 AF123050	Hs.44532		22.68
		BE243877	Hs.76941	ATPase, Na+/K+ transporting, beta 3 poly	22.65
		AA279530	Hs.83968	integrin, beta 2 (antigen CD18 (p95), ly	22.38
		R68651	Hs.144997		22.26
15		BE387335	Hs.283713	ESTs	22.08
	415788	AW628686	Hs.78851	KIAA0217 protein	22.04
•		AW809637		gb:MR4-ST0124-261099-015-b07 ST0124 Homo	22.00
		Al431708	Hs.820	homeo box C6	21.95
20		AV653846	Hs.126261	Homo sapiens Chromosome 16 BAC clone CIT	21.94
20		BE071874	11- 47404	gb:RC2-BT0522-120200-014-a06 BT0522 Homo	21.84 21.26
		J05500	Hs.47431	spectrin, beta, erythrocytic (includes s gb:ym18c10.r1 Soares infant brain 1NIB H	21.24
		H14487 Al207936	Hs.7195	gamma-aminobutyric acid (GABA) A recepto	21.14
		AI623698		Homo sapiens cDNA: FLJ23529 fis, done L	21.11
25		X89887		HIR (historie cell cycle regulation defec	21.10
		AW502139		gb:UI-HF-BR0p-air-e-05-0-UI.rl NIH_MGC_5	21.07
•	405685				20.90
	457359	Al983207	Hs.192481	ESTs, Weakly similar to SYPH_HUMAN SYNAP	20.84
		AA321355	Hs.285401		20.74
30		AW403724	Hs.140	immunoglobulin heavy constant gamma 3 (G	20.73
	401201		11- 400040	COT-	20.73
		W28912	Hs.129019	and the second s	20.68 20.67
		H66948 H42679	Hs.77522	gb:yr86d10.r1 Soares fetal liver spleen major histocompatibility complex, class	20.66
35	400926	H42079	NS.11322	major matocompatibility complex, class	20.66
33		NM_004197	Hs.444	serine/threonine kinase 19	20.64
		AW500221	Hs.43616	Homo sapiens mRNA for FLJ00029 protein,	20.61
		X60992	Hs.81226	CD6 antigen	20.61
	405777		•		20.51
40		AW966158	Hs.58582		20.20
		X58288		protein tyrosine phosphatase, receptor t	20.10
		BE568568	Hs.195704		19.98 19.98
		Al245432 AA228776	Hs.101382	tumor necrosis factor, alpha-induced pro	19.94
45		AA584854	112.121121	gb:no09h11.s1 NCI_CGAP_Phe1 Homo sapiens	19.90
73	404426	700000		Bourson to the Court of the traine advanta	19.84
		U43143	Hs.74049	fms-related tyrosine kinase 4	19.79
		NM_012211		integrin, alpha 11	19.62
	414002	NM_006732	Hs.75678		19.57
50		AA296520	Hs.89546		19.56
		AW090198	Hs.4779	KIAA1150 protein	19.52
		AA156781	Hs.83992	ESTs	19.44
		AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m Human pTR7 mRNA for repetitive sequence	- 19.34 19.22
55		X15675 AW449808		glucosamine (N-acetyl)-6-sulfatase (Sanf	19.21
33		AA284477	Hs.96618	ESTs	18.77
		Al247422	Hs.129966		18.76
		AL355743	Hs.56663		18.65
		AI807264	Hs.205442	ESTs, Weakly similar to AF117610 1 inner	18.64
60	437820	AA769062	Hs.16029		18.62
		AW043951	Hs.38449	ESTs	18.59
		AW247430	Hs.84152		18.58
		AI673027	Hs.143271		18.55 18.52
65		AF113925 R42863	Hs.7124	caspase recruitment domain 4 ESTs	18.47
95		AA912815	Hs.222078		18.40
		A1085846	Hs.25522		18.32
		U51166		thymine-DNA glycosylase	18.28
		AW501751	Hs.279733		18.15

	417240	N57568	Hs.176028	EST	18.13
	435732	AF229178	Hs.123136	leucine rich repeat and death domain con	18.12
		AW977385	Hs.278615		18.12
					17.90
~		N90866		CDW52 antigen (CAMPATH-1 antigen)	
5		Al971131		ESTs, Weakly similar to alternatively sp	17.82
	429984	AL050102	Hs.227209	DKFZP586F1019 protein	17.82
	449214	AIB89114	Hs.195663		17.75
		AK000596	Hs.3618	hippocalcin-like 1	17.72
					17.71
10		AW977724	ris./5908	thymosin, beta 4, X chromosome	
10	401515				17.67
	444045	AI097439	Hs.135548	ESTs	17.58
	442754	AL045825	Hs.210197	ESTs	17.55
	426559	AB001914	Hs 170414	paired basic amino acid cleaving system	17.54
		T16971	Hs.289014		17.50
15					17.50
13		Al188225	Hs.127462		
	432518	R08003	Hs.188013		17.44
	435259	AA152106	Hs.4859	cyclin L ania-6a	17.36
	414989	TB1668		gb:yd29c04.r1 Soares fetal liver spleen	17.31
		AW118683	Hs.154150		17.30
20					17.27
20		R06874	Hs.268628		
	453457	AL037103		ESTs, Weakly similar to unnamed protein	. 17.22
	424246	AW452533	Hs.143604	Kalso	17.22
	41907R	M93119	Hs.89584	Insulinoma-associated 1	17.18
		BE241624		.CD69 antigen (p60, early T-cell activati	17.14
25					17.14
25		AF003522	HS.250500	dalta (Drosophila)-like 1	
	455254	AW877015		gb:QV2-PT0010-250300-096-f12 PT0010 Homo	17.14
	425782	U66468	Hs.159525	cell growth regulatory with EF-hand doma	17.12
	426678	H08170	Hs.113755	ESTs	17.12
		NM 000361		thrombomodulin	17.01
30		AB032959		KIAA1133 protein	17.00
JU					
		AW451157	Hs.181157		16.98
	420940	AA830664	Hs.143974		16.94
	459234	Al940425		gb:CM0-CT0052-150799-024-c04 CT0052 Homo	16.92
	404756				16.91
35		U18244	He 113602	solute carrier family 1 (high affinity a	16.90
JJ					
		F09247		protocadherin alpha 5	16.88
		A1076765	Hs.269899		16.80
	438703	Al803373	Hs.31599	ESTs	16.78
	411424	AW845985		gb:RC2-CT0163-200999-002-H08 CT0163 Homo	16.70
40	402895			•	16.69
-10		NM_006441	No 110121	5,10-methenylietrahydrofolate synthetase	16.68
		AW449602		ESTs, Moderately similar to NK-TUMOR REC	16.65
	448520	AB002367	Hs.21355	doublecortin and CaM kinase-like 1	16.54
	438567	AW451955	Hs.153065	ESTs	16.52
45		AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	16.50
		R23534	Hs.2730	heterogeneous nuclear ribonucleoprotein	16.50
		AB018319	Hs.5460	KIAA0776 protein	16.40
	408182	AA047854		gb:zf49g04.r1 Soares retina N2b4HR Homo	16.32
	417315	A1080042	Hs.180450	ribosomal protein S24	16.30
50	431840	AA534908	Hs.2860	POU domain, class 5, transcription facto	16.28
		AA847856	Hs.124565		16.20
		AW135221	Hs.130812		16.09
			115.100012		
		AW796342		gb:PM2-UM0027-230200-002-h02 UM0027 Homo	16.04
		AL049610		transcription elongation factor A (SII)-	16.04
55	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	16.02
		Al357412	Hs.157601	EST - not in UniGene	16.02
		BE281591		hypothetical protein FLJ10511	15.94
		AA055800	Hs.222933		15.93
<i>(</i> 0		AV656098	HS. 172382	hypothetical protein FLJ20001	15.86
60		AA076769		gb:7B02B10 Chromosome 7 Fetal Brain cDNA	15.85
	405934				, 15.84
		AA622037	Hs.166468	programmed cell death 5	15.84
		AW291168	Hs.41295		15.48
C E		AA534370		Homo sapiens cDNA: FLJ22756 fis, done K	15.42
65		Al199268	Hs.19322		15.38
	454563	AW807530		gb:CM0-ST0081-130999-054-d02 ST0081 Homo	15.37
	411507	AW850140		gb:IL3-CT0219-261099-023-D11 CT0219 Homo	15.36
		Al916685	Hs.194601		15.29
		AA179233	Hs.42390	nasopharyngeal carcinoma susceptibility	15.26
	410236				.020

	406638	M13861		gb:Human T-cell receptor active beta-cha	15.26
	446686	AW138043	Hs.156307		15.25
		Al623511	Hs.118567		15.24
5		AW292830	Hs.255609		15.22
3		BE147740	Hs.104558		15.22
		BE244854 AA279956	Hs.88672	Homo sapiens mRNA for FLJ00020 protein,	15.16 15.14
		AA410506		H.sapiens mRNA for ribosomal protein L18	15.14
		AB023185		calcium/calmodulin-dependent protein kin	15.12
10		AJ862096	Hs.60640		15.12
	437495	BE177778		gb:RC1-HT0598-310300-012-f07 HT0598 Homo	15.12
		AI239832	Hs.15617	_ : •	15.06
		AW006783	Hs.6686	ESTs	15.03
15	402812	4.4700400	Lie goorge	ECT-	15.02
13	400991	AA732480	Hs.293581	E318	15.00 15.00
		BE314524	Hs.78776	Human putative transmembrane protein (nm	14.96
		AA460421	Hs.30875	ESTs	14.90
	403683				14.84
20		NM_004293		guanine deaminase	14.80
		AL120173	Hs.301663		14.72
		J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	14.69
		BE617135 AB021225	He 150501	gb:S01441677F1 NIH_MGC_65 Homo sapiens c matrix metalloproteinase 17 (membrane-in	14.67 14.65
25		A1638449	Hs.173031		14.63
		BE041395		ESTs, Weakly similar to unknown protein	14.60
		A1903354		gb:RC-BT029-100199-117 BT029 Homo saplen	14.55
	449650	AF055575	Hs.297647	ESTs, Moderately similar to calcium chan	14.54
20	400952				14.46
30		AI734009		EST duster (not in UniGene)	14.44
		AA905097 Al685464	Hs.292638	phospholamban	14.42 14.40
		AA311443		Homo sapiens mRNA; cDNA DKFZp586E2317 (f	14.36
		AB023199		KIAA0982 protein	14.36
35		AA126419	Hs.301632		14.32
		AW945992		Immunoglobulin lambda tocus	14.31
		AW304028	Hs.300578		14.23
		W57550		Homo sapiens cDNA FLJ13181 fis, done NT	14.22
40		AL049278 BE242639		Homo sapiens mRNA; cDNA DKFZp564l153 (fr ubiquitin associated protein	14.22 14.22
40		Al934365		osteoglycin (osteoinductive factor, mime	14.22
		AW838616		gb:RC5-LT0054-140200-013-D01 LT0054 Homo	14.22
		AW503398	Hs.210047		14.16
		Y14443		zinc finger protein 200	14.14
45		S78187		cell division cycle 25B	14.07
		AW880709	Hs.283683		14.07
		AI815831 AI745649	Hs.184378	ESTs, Weakly similar to T00066 hypotheti	14.05 14.02
	410020		Hs.728	ribonuclease, RNase A family, 2 (liver,	13.98
50		NM_002890	Hs.728 Hs.758	RAS p21 protein activator (GTPase activa	13.98
		AF145439		chemokine (C-C motif) receptor 9	13.95
		BE159999		gb:QV1-HT0412-270300-123-d10 HT0412 Homo	13.90
	400125	4142400000	11. 00700	han albaticalt-1-	- 13.88
55		AW406289		hypothetical protein	13.85
33		A1479094 AA315158	Hs.170786	gb:EST186956 HCC cell line (matastasis t	13.80 13.80
		AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	13.78
		H30340	Hs.173705	Homo sapiens cDNA: FLJ22050 fls, clone H	13.78
		A1935400	Hs.217286		13.76
60		AW860158	11. 00744	gb:RC0-CT0379-290100-032-b04 CT0379 Homo	13.75
	410889		Hs.66744	twist (Drosophila) homolog (acrocephalos gb:IL-BT166-180399-010 BT166 Homo sapien	13.74 13.72
		Al908236 AW857913		gb:RCO-CT0323-231199-031-b05 CT0323 Homo	13.72
		AW015238	Hs.128453		13.67
65		AA385752	Hs.155965		13.62
	402359				13.60
	401044			FOT- MILLS N	13.53
		AW502498		ESTs, Weakly similar to zinc finger prot	13.53
	423090	AA329648	Hs.23804	LOIS	13.49

	430685	Al690234	Hs.191666	ESTs, Weakly similar to reverse transcri	13.47
	414052	AW578849	Hs.283552	ESTs, Weakly similar to unnamed protein	13.46
		AW080339	Hs.211911		13.44
_		Al573283	Hs.38458		13.44
5	439120	H56389		gb:yt87c03.r1 Soares_pineal_gland_N3HPG	13.43
	402788				13.40
		A A D D C # # D	Hs.146278	ECTo	13.40
		AA886446	NS. 140270	E318	
	405411				13.38
	426558	AW188574	Hs.24218	ESTs	13.34
10		AA132818		ESTs, Weakly similar to coded for by C.	13.33
10					
		AL043004		Human serine/threonine kinase mRNA, part	13.32
	457084	Al074149	Hs.150905	ESTs, Weakly similar to chondroitin 4-su	13.32
	403838				13.32
		740000	He 170000	Enforcement of InC Inv offinite IIIh a	13.30
15		Z46223		Fc fragment of IgG, low affinity IIIb, r	
15	434318	AW207552	Hs.116328	ESTs, Weakly similar to dJ134E15.1 [H.sa	13.28
	435193	N41359	Hs.218107	ESTs	13.28
	414756	AW451101	Hs 159489	ESTs, Moderately similar to hexokinase I	13.27
					13.26
		AF043722		RAS guanyl releasing protein 2 (calcium	
	420052	AA418850	Hs.44410	ESTS	13.25
20	414020	NM_002984	Hs.75703	small inducible cytokine A4 (homologous	13.25
	403851				13.24
		111071100	11.457404	COT-	
		W07492	Hs.157101		13.21
	433598	A1762836	Hs.271433	ESTs, Moderately similar to ALU2_HUMAN A	13.21
	409065	AB033113	Hs.50187	KIAA1287 protein	13.20
25				G protein-coupled receptor kinase-intera	13.19
43		R21966			
	439367	BE386844	Hs.248746		13.17
	451957	A1796320	Hs.10299	Homo sapiens cDNA FLJ13545 fis, clone PL	13.16
		AA278362	Hs 289062	Homo sapiens cDNA FLJ12334 fis, clone MA	13.14
			Hs.4909		13.07
20		BE262802		dickkopf (Xenopus laevis) homolog 3	
30	426490	NM_001621	Hs.170087	aryl hydrocarbon receptor	13.06
	414789	AA155859	Hs.79708	ESTs	13.05
		BE387790	Hs.26369		13.04
		T99719		Homo sapiens cDNA: FLJ22389 fis, clone H	13.03
	425878	AW964806	Hs.38085	ESTs, Weakly similar to putative glycine	13.02
35	431912	Al660552	Hs.154903	ESTs, Weakly similar to A56154 Abl subst	13.00
		H20276	Hs.31742		13.00
		AL137466	Hs.97277	Homo sapiens mRNA; cDNA DKFZp434H1322 (f	12.99
	448172	N75276	Hs.135904	ESTS	12.98
	452144	AA032197	Hs.102558	ESTs	12.96
40		BE267154	Hs.125752		12.96
70					12.94
		NM_004354	Hs.79069	cyclin G2	
	451154	AA015879	Hs.33536	ESTs	12.93
	412257	AW903830		gb:CM4-NN1037-250400-155-h04 NN1037 Homo	12.93
		AW161319	Hs.12915	ESTs	12.92
15					
45		D63480		KIAA0146 protein	12.92
	454105	NM_001259	Hs.38481	cyclin-dependent kinase 6	12.92
	439093	AA534163	Hs.5476	serine protease inhibitor, Kazal type, 5	12.90
		H41324	Hs.31581	ESTs, Moderately similar to ST1B_HUMAN S	12.88
50		D63216		frizzled-related protein	12.88
50		AU076649	Hs.76558	growth arrest and DNA-damage-inducible 3	12.88
	414664	AA587775	Hs.66295	Homo sapiens HSPC311 mRNA, partial cds	12.84
		BE077084		gb:RC5-BT0603-220200-013-C07 BT0603 Homo	12.84
			Hs.75596		12.80
		NM_000878		interleukin 2 receptor, beta	
	452359	BE167229	Hs.29206	Homo sapiens clone 24659 mRNA sequence	12.80
55	435886	BE265839	Hs.12126	hepatocellular carcinoma-associated anti	12.78
	445230	U97018	Hs.12451	echinoderm microtubule-associated protei	12.78
				gb:15d7 Human retina cONA randomly prime	12.77
		W26786			
		AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	12.76
	447769	AW873704	Hs.48764	ESTs	12.76
60		Al306389	Hs.76240	adenylate kinase 1	12.76
50		D83407			12.68
				Down syndrome critical region gene 1-lik	
		H85157	Hs.40696	ESTs	12.66
	405856				12.66
		BE267045	Hs.75064	tubulin-specific chaperone c	12.65
65	402802				12.62
U.J		4 4 0 0 0 1 0 0		Hamas have 440	
		AAB89120		Homeo box A10	12.62
	419978	NM_001454	Hs.93974	forkhead box J1	12.62
	403137				12.60
		BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	12.57
	-			menority fluid more to a sometimes and second	,

	450462	AJ133123 F07097	Hs.20196 Hs.300828	adenylate cyclase 9 Homo sapiens mRNA full length insert cDN	12.56 12.54
	405236				12.52
5		AA071051	Un 10040	gb:zm58e05.s1 Stratagene fibroblast (937	12.47
,		AA767669 AW978731	Hs.10242 Hs.301824	ESTs	12.47
		Al039201	Hs.54548	ESTs	12.44 12.42
		BE077548	Hs.31447		12.42
		AW984111	110101111	gb:RC0-HN0007-160300-011-f09 HN0007 Homo	12.40
10		Al926047	Hs.162859		12.37
	410494	M36564	Hs.64016	protein S (alpha)	12.36
		R96696	Hs.35598		12.36
		AW189232	Hs.39140		. 12.36
15		AL042615	Hs.15995	ESTs	12.35
15		AI348838	Hs.13073		12.35
		Al307802 BE410734	Hs.279551	gb:601301619F1 NiH_MGC_21 Homo sapiens c	12.34 12.29
		AL048542	Hs.16291	ESTs	12.28
	401286		110110201	2013	12.26
20		AW962845	Hs.256527	ESTs	12.24
	420077	AW512260	Hs.87767	ESTs	12.24
	443837	Al984625	Hs.9884	spindle pole body protein	12.24
		X64979		gb:H.sapiens mRNA HTPCRX01 for olfactory	12.23
25		AF249744	Hs.25951	Rho guanine nucleotide exchange factor (12.22
25		AW973653	Hs.20104	hypothetical protein FLJ00052	12.20
	405325	AA010140	Un 440707	ECTA	12.20
		AA013140 Y18264	Hs.115707 Hs.120171		12.18
		AI623752	Hs.163603		12.17 12.16
30		N77999	Hs.8963	Homo sapiens mRNA full length insert cON	12.15
		AA250970		Homo sapiens cDNA: FLJ23107 fis, clone L	12.14
		AW836724	Hs.33190		12.11
	440106	AA864968	Hs.127699	ESTs	12.10
25		AF006809	Hs.82294		12.10
35		U29589	Hs.7138	cholinergic receptor, muscarinic 3	12.04
		AW024937	Hs.29410	ESTs	12.02
		Al022813 Al222658	Hs.92679	Homo saplens clone CDABP0014 mRNA sequen ESTs, Weakly similar to la costa [D.mela	11.96
		U29926	Hs.83918		11.95 11.94
40		AI990287	Hs.270798		11,93
		D11928	Hs.76845	phosphoserine phosphatase-like	11.92
		AW075485		phosphoserine aminotransferase	11.92
	443912	R37257	Hs.184780	ESTs	11.92
45		AA343936		gb:EST49786 Gall bladder I Homo sapiens	11.90
45		AW014795	Hs.23349	ESTs	11.90
		NM_004657	Hs.26530	serum deprivation response (phosphatidy)	11.90
		AP283777 AW386461	ns.110481	CD72 antigen	11.89
		AB011537	He 133466	gb:PM4-PT0019-121299-004-F02 PT0019 Homo slit (Drosophila) homolog 1	11.89 11.82
50		Al074413	Hs.14220		11.80
		D80004	Hs.75909	KIAA0182 protein	11,80
	406538				11.79
		AW450502	Hs.24218	ESTs	- 11.79
e e		BE247676	Hs.18442	E-1 enzyme	11.78
55		AF216751	Hs.26813	CDA14	11.76
		R23765	Hs.23575		11.74
		NM_014363 AL048842	Hs.194019	spastic ataxia of Charlevoix-Saguenay (s	11.72 11.72
		NM_014158		HSPC067 protein	11.72
60		BE293466	Hs.20880		11.72
-		BE245374	Hs.27842	hypothetical protein FLJ11210	11.72
		M60721	Hs.74870	H2.0 (Drosophila)-like homeo box 1	11.72
		NM_005578	Hs.180398	LIM domain-containing preferred transloc	11.69
C E		BE548555	Hs.118554	CGI-83 protein	11.68
65		AF097994	MS.301528	L-kynurenine/alpha-aminoadipate aminotra	11.68
		AW752953	He 117107	gb:QV0-CT0224-261099-035-g02 CT0224 Homo	11.67
		W28517 Al750878		Homo sapiens cDNA: FLJ23067 fis, clone L thrombospondin 1	11.66
	400557	M100010	1001400	minorioosponum I	11.64 11.62
	100001			•	1122

	A16100	BE157260	He 70070	v-myc avian myelocytomatosis viral oncog	11.60
				ESTs	11.59
		AW952771	Hs.90043		
		Al986160	Hs.88446	ESTs	11.59
_	400885				11.57
5	409853	AW502327		gb:UI-HF-BR0p-aka-a-07-0-UI.r1 NIH_MGC_5	11.56
	400802			•	11.56
		NM_016045	Hs.5184	TH1 drosophila homolog	11.55
		M55994		tumor necrosis factor receptor superfami	11.55
		S55736		ESTs, Weakly similar to hypothetical pro	11.54
10					11.53
10		AA460479	Hs.4096	KIAA0742 protein	
		Z42047		ESTs; KIAA0738 gene product	11.52
	420729	AW964897	Hs.290825		11.52
	428328	AA426080	Hs.98489	ESTs	11.50
	433887	AW204232	Hs.279522	ESTs	11.50
15		X72755	Hs.77367	monokine induced by gamma interferon	11.46
		F18572	Hs.22978		11.44
		AA453208	Hs.28726		11,42
				fibroblast growth factor 12	11.42
		AA131376			11.39
20		Al127958	Hs.83393		
20		AW975944	Hs.237396		11.38
		AW291876	Hs.196986	=:-	11.37
	447861	A1434593	Hs.164294		11.37
	456023	R00028		gb:ye70a06.s1 Soares fetal liver spleen	11.36
	439444	AI277652	Hs.54578		11.31
25	401163				11.31
20		L36149	He 2/8116	chemokine (C motif) XC receptor 1	11.28
		AW246803	Hs.47289		11.28
					11.27
		AL044829	Hs.29331		
00		NM_014253	Hs.23796		11.26
30		AA075687		epidermal growth factor receptor substra	11.24
	439328	W07411	Hs.118212	ESTs, Moderately similar to ALU3_HUMAN A	11.24
	432093	H28383		gb:yl52c03.r1 Soares breast 3NbHBst Homo	11.24
	407335	AA631047	Hs.158761	Homo sapiens cONA FLJ13054 fis, clone NT	11.23
		AA315267	Hs.23128		11.22
35		AJ237672		5,10-methylenetetrahydrofolate reductase	11.21
JJ		R35398	1100214142	gb:yg64g10.r1 Soares infant brain 1NIB H	11.20
			He 70000		11.20
		X84908	Hs.78060		11.20
		AV660122	Hs.282675		
40		C21322	Hs.11577		11.20
40	418261	W78902	Hs.293297		11.17
	433332	Al367347	Hs.127809	ESTs	11.16
	434539	AW748078	Hs.214410	ESTs	11.16
	413471	BE142098		gb:CM4-HT0137-220999-017-d11 HT0137 Homo	11.14
		AB020725	Hs.58009	KIAA0918 protein	11.14
45	405601				11.13
1.5		AI000341	Hs.220491	ESTe	11.12
					11.12
		AA410183	Hs.137475		
		N77624		phosphatidic acid phosphatase type 2B	11.10
		AJ567669	Hs.287316		11.10
50	425710	AF030880	Hs.159275	solute carrier family, member 4	11.08
	413748	AW104057	Hs.19193	ESTs	11.07
	409208	Y00093	Hs.51077	integrin, alpha X (antigen CD11C (p150),	11.07
		W92745	Hs.193324	ESTs	- 11.03
		U52077		gb:Human mariner1 transposase gene, comp	11.02
55		AF055581	Hs.13131	lymphocyte adaptor protein	11.02
23		AW867079	110.10101	gb:MR1-SN0033-120400-002-c10 SN0033 Homo	10.95
		BE382701	Hs.25960	v-myc avian myelocytomatosis viral relat	10.95
					10.94
		AW006969	Hs.6311	hypothetical protein FLJ20859	
C D		AW591783	Hs.36131		10.94
60		AA530994		ghrefin precursor	10.92
		AW246428	Hs.75355	ubiquitin-conjugating enzyme E2N (homolo	10.92
	400132				10.92
		AA443966	Hs.31595	ESTs	10.90
		NM_000328		retinitis pigmentosa GTPase regulator	10.88
65		D85782	Hs.3229	cysteine dioxygenase, type I	.10.88
JJ		Al386213		KIAA1605 protein	10.87
			. 10. 11 0765	gb:RC0-MT0013-280300-031-a12 MT0013 Homo	10.85
		AW948126		Any top. In the top form on the let in the to Unite	10.80
	400615		Un 454400	E4E transcription factor 1	
	425018	BE245277	US' 124 180	E4F transcription factor 1	10.80

		DE0 10000		1	40 90
		BE243628		gb:TCBAP1D1053 Pediatric pre-B cell acut	10.79
	455982	BE176862		gb:RC4-HT0587-170300-012-a04 HT0587 Homo	10.74
	450418	BE218418	Hs.201802	ESTs	10.73
	412490	AW803564	Hs.288850	ESTs	10.72
5	436962	AW377314	Hs.5364	DKFZP564I052 protein	10.70
-		Al383497		ESTs, Wealdy similar to ALU1_HUMAN ALU S	10.70
		R40978		ESTs, Moderately similar to ALU1_HUMAN A	10.70
		AA694070	Hs.268835		10.68
10		NM_006558	Hs.13565	Sam68-like phosphotyrosine protein, T-ST	10.68
10		U24578		complement component 4A	10.66
		AW863261	Hs.15036		10.64
	420090	AA220238	Hs.94986	ribonuclease P (38kD)	10.64
	451593	AF151879	Hs.26706	CGI-121 protein	10.62
	438893	AF075031	Hs.29327	ESTs	10.62
15	459324	AW080953		gbxx28c12.x1 NCI_CGAP_Co18 Homo sapiens	10.61
		AL359652	Hs.171096	Homo sapiens EST from clone DKFZp434A041	10.58
		AA715328	Hs.291205		10.57
		AA128423		calpain 3, (p94)	10.57
		D50918		KIAA0128 protein; septin 2	10.56
20					
20		R10184		ESTs, Weakly similar to ALU1_HUMAN ALU S	10.56
		Al142350	Hs.146735		10.55
		AA178955	Hs.271439		10.54
	410102	AW248508	Hs.279727	ESTs;	10.52
	406577				10.52
25	408405	AK001332	Hs.44672	hypothetical protein FLJ10470	10.51
	428966	AF059214	Hs.194687	cholesterol 25-hydroxylase	10.50
	400880				10.48
		AA894876	Hs.5687	protein phosphatase 1B (formerly 2C), ma	10.48
		BE005346	Hs.116410		10.46
30		AA609784			10.44
50				major histocompatibility complex, class	
		Al638418	Hs.21745	ESTs	10.44
		U76421	Hs.85302	adenosine dearninase, RNA-specific, B1 (h	10.44
		AW500239	Hs.21187	Homo sapiens cDNA: FLJ23068 fis, clone L	10.44
0.5		Al909154		gb:QV-BT200-010499-007 BT200 Homo sapien	10.44
35	432180	Y18418		RuvB (E coll homolog)-like 1	10.44
	413822	R08950	Hs.272044	ESTs, Weakly similar to ALU1_HUMAN ALU S	10.42
	437446	AA788946		ESTs, Moderately similar to CA1C RAT COL	10.41
		NM_003878	Hs.78619	gamma-glutamyl hydrotase (conjugase, fol	10.41
		NM_003500	Hs.9795	acyl-Coenzyme A oxidase 2, branched chai	10.40
40		AW150717		STAT induced STAT inhibitor 3	10.38
-10		AA160000	Hs.137396		10.37
		AW505086		minor histocompatibility antigen HA-1	10.36
		AB011151	Hs.81505		10.34
45		AW067805		methylenetetrahydrofolate dehydrogenase	10.34
45		NM_000030		alanine-glyoxylate aminotransferase homo	10.33
	446099	T93096	Hs.17126	ESTs	10.32
	423445	NM_014324	Hs.128749	alpha-methylacyl-CoA racemase	10.31
	409995	AW960597	Hs.30164	ESTs	10.30
	432242	AW022715	Hs.162160	ESTs, Weakly similar to ALU4_HUMAN ALU S	10.30
50	406394	AA172106		Rag C protein	10.30
	406189				10.29
		AW411307	Hs 114311	CDC45 (cell division cycle 45, S.cerevis	10.26
		AA172106		Rag C protein	- 10.26
		T89832	Hs.170278		10.26
55		NM 006762			10.24
JJ				Lysosomal-associated multispanning membr	
		NM_005211	MS.1/4142	colony stimulating factor 1 receptor, fo	10.24
	401384				10.23
		D13168		endothelin receptor type B	10.22
		AF037062		retinol dehydrogenase 5 (11-cisand 9-cis	10.21
60		Al684746	Hs.119274	ESTs	10.20
	436556	Al364997	Hs.7572	ESTs .	10.20
	418400	BE243026	Hs.301989	KIAA0246 protein	10.19
		AA757196	Hs.121190		10.19
	403690				10.17
65		BE152393		gb:CM2-HT0323-171199-033-a08 HT0323 Homo	10.16
		AA305599	He 238205	hypothetical protein PRO2013	10.16
		AW975009	Hs.292274		10.16
		Z68128			
		AI288430	Hs.3109	Rho GTPase activating protein 4	10.16
	43200V	UCHOUSE	Hs.64004	LUID	10.14

	452234	AW084176	Hs.223296	ESTs		10.14
	445629	Al245701		gbxqk31f05.x1 NCI_CGAP_Kid3 Homo sapiens		10.13
	457236	AA626142	Hs.179991	ESTs, Weakly similar to KPCE_HUMAN PROTE		10.13
	444605	A1174603		enolase 1, (aipha)		10.12
5	450313	Al038989	Hs.24809			10.12
	407482	NM_006056		., .		10.12
		AA807346	Hs.288581	Homo sapiens cDNA FLJ14296 fis, clone PL		10.11
	441201	AW118822	Hs.128757			10.10
		AW014605	Hs.179872			10.10
10		H60720	Hs.81892			10.09
		Al204266	Hs.179303	• •		10.05
		Al433833		ESTs, Weakly similar to ALU1_HUMAN ALU S		10.04
		BE614599	Hs.106823	H.saptens gene from PAC 42616, similar t		10.04
		BE552368		Homo sapiens cDNA FLJ13445 fis, clone PL		10.04
15		AA329796	Hs.1098			10.02
		AW206373		Homo sapiens cDNA: FLJ21721 fis, done C		10.00
		X58528	Hs.76781	ATP-binding cassette, sub-family D (ALD)		10.00
		NM 016098		HSPC040 protein		10.00
		M90516	Hs.1674	glutamine-fructose-6-phosphate transamin		10.00
20		Al922988	Hs.172510			10.00
		AW137442	Hs.136965			10.00
		AA418280		Homo saplens cDNA: FLI22439 fis, clone H		10.00
		BE501815	Hs.198011			9.99
		AA425310	Hs.155766			9.98
25		Al147652		Homo sapiens clone HH409 unknown mRNA		9.98
		N72394	Hs.44862			9.96
		M62505	Hs.2161	complement component 5 receptor 1 (C5a I		9.96
		AB028945		cortactin SH3 domain-binding protein		9.96
		AW009605	Hs.231923			9.96
30		AW474513		ESTs, Weakly similar to 848013 proline-r		9.94
-		AA704703		Sp2 transcription factor		9.94
		T59538		gb:yb65g12.s1 Stratagene ovary (937217)		9.94
		BE276115	Hs.144980	ESTs, Weakly similar to CA13_HUMAN COLLA		9.93
		AA033813	Hs 79018	chromatin assembly factor 1, subunit A (9.92
35		AF010258	Hs.127428	homeo box A9		9.92
-		AW975531		minichromosome maintenance deficient (S.		9.92
		AW192307		dolichyl-P-Glc:Man9GlcNAc2-PP-dolichylgl		9.90
		AA481003	Hs.97128			9.90
		D87450		KIAA0261 protein		9.90
40		AW976507	Hs.293515			9.90
		AW972187		hypothetical protein FLJ22215		9.89
		NM_005291		G protein-coupled receptor 17		9.88
		AI097570	Hs.71222			9.87
		AW801383		H.sapiens mRNA for ribosomal protein L18		9.86
45		Al278802	Hs.25661			9.85
	450360	AW117416	Hs.245484	ESTs		9.85
		AL043002	Hs.128246	ESTs, Moderately similar to unnamed prot		9.84
		Al962552	Hs.226765			9.84
	452744	Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr		9.82
50	431066	AF026273	Hs.249175	Interleukin-1 receptor-associated kinase		9.82
	426457	AW894667	Hs.169965	chimerin (chimaerin) 1		9.80
	443371	Al792888	Hs.145489			9.80
	437159	AL050072		gb:Homo sapiens mRNA; cDNA DKFZp566E1346	•	9.75
	425242	D13635	Hs.155287	KIAA0010 gene product		9.74
55	447498	N67619	Hs.43687	ESTs		9.74
	426759	Al590401	Hs.21213	ESTs		9.73
	435129	Al381659	Hs.267086	ESTs		9.72
	437672	AW748265	Hs.5741	flavohemoprotein b5+b5R		9.72
	438209	AL120659	Hs.6111	KIAA0307 gene product		9.72
60	438440	AA807228	Hs.225161			9.72
		AA311152	Hs.288708	ESTs; Weakly similar to KIAA0226 [H.sapi		9.72
	414291	Al289619	Hs.13040	ESTs		9.72
		AK001451	Hs.265561	CD2-associated protein		9.70
		T15767	Hs.22452	Homo sapiens cDNA: FLJ21084 fis, clone C		9.70
65	412667	AW977540	Hs.269254			9.70
	423301	S67580	Hs.1645	cytochrome P450, subfamily IVA, polypept		9.67
	440757	AW118645	Hs.160004	ESTs		9.67
		AI393657	Hs.159750			9.66
	421044	AF061871	Hs.101302	collagen, type XII, alpha 1		9.66

		BE466863	Hs.280099		9.66
	418485	R91679	Hs.124981	ESTs	9.66
	433480	X02422	Hs.181125	immunoglobulin lambda locus	9.65
		Al248301	Hs.127112		9.65
5		D53304	Hs.65394		9.65
9	421470				9.64
			Hs.1378	annexin A3	
		C05569		hypothetical protein FLJ13057 similar to	9.64
		AA488101		inactivation escape 1	9.62
	450244	AA007534	Hs.125062	ESTs	9.62
10	407660	AW063190	Hs.279101	ESTs	9.61
	406554				9.60
		AA377607	Hs.273138	FSTs	9.58
		AW392394		KIAA0064 gene product	9.58
					9.58
15		AK001578		hypothetical protein FLJ10716	
15		Al494332	Hs.196963		9.58
		AL117474	Hs.41181		9.56
		AV659151	Hs.282961		9.56
	459245	BE242623	Hs.31939	manic fringe (Drosophila) homolog	9.55
	423545	AP000692	Hs.129781	chromosome 21 open reading frame 5	9.54
20	414697	BE266134	Hs.76927	translocase of outer mitochondrial membr	9.54
	410846	AW807057		gb:MR4-ST0062-031199-018-b03 ST0062 Homo	9.52
		NM_005574	Hs.184585	LIM domain only 2 (rhombotin-like 1)	9.52
	427308			KIAA0033 protein	9.52
		NM 004573	Hs.994		9.51
25				phospholipase C, beta 2	
25		AW295389	Hs.119768		9.51
		AA742181		Homo sapiens cDNA: FLJ22199 fis, clone H	9.50
	416959			ubiquitin-conjugating enzyme E2A (RAD6 h	9.50
		AA094538	Hs.6588	ESTs	9.50
	439312	AA833902	Hs.270745	ESTs	9.48
30	449375	R07114	Hs.271224	ESTs	9.48
	436357	AJ132085		gb:Homo sapiens mRNA for axonemal dynein	9.44
	458723	AW137726	Hs.244352	ESTs, Moderately similar to laminin alph	9.44
		AW450584		ESTs, Wealdy similar to RIBB [H.sapiens]	9.43
	404741			word, crossing amount of the formation	9.43
35		NM_005428	He 116227	vav 1 oncogene	9,43
<i>JJ</i>	403708	THIS COURSE	113.110207	tat i olicogolic	9.42
		A1A/D 4704 4	Ha gonnoe	Home essions of NALEL 191599 for close C	
		AW847814	NS-209000	Homo sapiens cDNA: FLJ21532 fis, clone C	9.42
	417380			gb:EST04698 Fetal brain, Stratagene (cat	9.42
40		AA354690	Hs.144967		9.42
40	426197	AA004410		acyl-Coenzyme A oxidase 1, palmitoyi	9.42
	452624	AU076606	Hs.30054	coagulation factor V (proaccelerin, labi	9.42
	412110	AW893569		gb:RC0-NN0021-040400-021-c10 NN0021 Homo	9.41
	414158	AA361623	Hs.288775	Homo sapiens cDNA FLJ13900 fis, clone TH	9.41
		AW968504		CDC2-related protein kinase 7	9.40
45		AA360328	Hs.865	RAP1A, member of RAS oncogene family	9.40
	415947		Hs.78934		9.40
		BE262745	110.70007	gb:601153869F1 NIH_MGC_19 Homo sapiens c	9.39
			U- 477000		
		AI689987		ESTs, Weakly similar to RMS1_HUMAN REGUL	9.39
50		BE514362	HS.290422	FK506-binding protein 3 (25kD)	9.39
50	402835				9.38
	404632				9.38
	446566		Hs.17914		9.37
	455369	AW903533		gb:CM1-NN1031-060400-178-d05 NN1031 Homo	° 9.37
	444001	Al095087	Hs.152299	ESTs, Moderately similar to ALU5_HUMAN A	9.36
55	458191	AJ420611	Hs.127832	ESTs	9.36
	431374	BE258532	Hs.251871	CTP synthase	9.34
		AA283981		prostaglandin E receptor 4 (subtype EP4)	9.33
	407061			gb:H.sapiens PTX3 gene promotor region.	9.33
		BE616731	Hs.80645	interferon regulatory factor 1	9.33
60		AW875443	Hs.22209	secreted modular calcium-binding protein	9.33
J U					
		AA693960	Hs.103158		9.33
		BE513731	Hs.88959	Human DNA sequence from clone 967N21 on	9.32
		AA033699	Hs.83938	ESTs, Moderately, similar to MASP-2 [H.sa	9.32
<i>CE</i>		NM_007274	Hs.8679	cytosolic acyl coenzyme A thioester hydr	9.32
65	452859	Al300555	Hs.288158	Homo sapiens cDNA: FLJ23591 fis, clone L	9.32
	403237				9.32
	415000	AW025529		ESTs, Weakly similar to CALM_HUMAN CALMO	9.31
	417951	AW976410	Hs.289069	Homo sapiens cDNA: FLJ21016 fis, clone C	9.30
	419066	Z98492	Hs.6975	PRO1073 protein	9.30
				•	

		AW167128	Hs.231934	ESTs	9.30
	405125			-1411115 00051 00 0111 -4 1111 1400 5	9.30
		AW499566 Al191811	Hs.54629	gb:Ul-HF-BR0p-aji-h-03-0-Ul.r1 NIH_MGC_5 ESTs	9.28 9.28
5		AP000652	Hs.8180	syndecan binding protein (syntenin)	9.27
		AJ250839	Hs.58241	gene for serine/threonine protein kinase	9.26
		AW013907	Hs.224276	ESTs, Moderately similar to predicted us	9.26
		AF164142	Hs.82042	solute carrier family 23 (nucleobase tra	9.25
10		D29642	Hs.1528	KIAA0053 gene product	9.25
10		AA281279 AF274571	Hs.23317	ESTs ESTs; Weakly similar to DEOXYRIBONUCLEAS	9.24 9.24
		BE395035		ESTs, Weakly similar to KIAA0874 protein	9.24
	402585	D1333000	114.100000	2010, Would, Silina to the Paor 4 proper	9.24
		AA280700		gb:zs95h11.s1 NCI_CGAP_GCB1 Homo sapiens	9.23
15		AA431791	Hs.183001		9.22
		U42349	Hs.71119		9.22
		AW582962		ESTs, Highly similar to AF151805 1 CGI-4	9.20
		BE514514 AL039185	Hs.77558	coronin, actin-binding protein, 1A thyroid hormone receptor interactor 7	9.19 9.18
20		Al206589	Hs.116243		9.17
		U61412		PTK6 protein tyrosine kinase 6	9.17
	428242	H55709	Hs.2250	leukemia inhibitory factor (cholinergic	9.16
		AW080356		ESTs, Weakly similar to alternatively sp	9.15
25		BE182082	Hs.246973		9.14
25		AA528402	Hs.74861		9.14
		AW151660 U54727	Hs.31444 Hs.191445		9.14 9.14
		Al911527	Hs.11805		9.14
		BE075281		gb:PM1-BT0585-290200-005-d07 BT0585 Homo	9.12
30	413450	Z99716	Hs.75372	N-acetylgalactosaminidase, alpha-	9.12
		BE221533	Hs.257858		9.12
		AA810021	Hs.136906		9.12
		M24283		Intercellular adhesion molecule 1 (CD54)	9.11
35		AA402307 AA913736	Hs.73818 Hs.126715	ubiquinol-cytochrome c reductase hinge p	9.10 9.10
<i>JJ</i>		NM_014720		Ste20-related serine/threonine kinase	9.10
		AF086534		ESTs, Moderately similar to ALU1_HUMAN A	9.10
	430799	C19035	Hs.164259	ESTs	9.09
40		M88700		dopa decarboxylase (aromatic L-amino aci	9.08
40		- AW190920	Hs.19928	ESTs	9.08
		T68073 Al624436	Hs.194488	serine (or cysteine) proteinase inhibito	9.08 9.07
		BE328153	Hs.240087		9.06
		R71543	Hs.18713		9.05
45		AA065131	Hs.233439	ESTs, Wealty similar to ALU7_HUMAN ALU S	9.05
		BE300091		hypothetical protein FLJ12969	9.04
		AW369351		Homo sapiens cDNA FLJ13090 fis, clone NT	9.04
		AJ174947 AW301344	Hs.295789 Hs.195969	Homo sapiens mRNA; cDNA DKFZp564D1164 (f	9.04
50		AVV301344 AU076730		kinesin 2 (60-70kD)	9.04 9.02
50		BE386750	Hs.86978	prolyl endopeptidase	9.02
		M81590		5-hydroxytryptamine (serotonin) receptor	9.02
		AA326108	Hs.53631	ESTs	9.02
<i></i>		BE622585	Hs.3731	ESTs	9.02
55		AW572659		adenosine A2b receptor pseudogene	9.01
		R99876 AW972330	Hs.269882	triggering receptor expressed on myeloid	9.01 9.01
		AW295840	Hs.14555	Homo sapiens cDNA: FLJ21513 fis, clone C	9.00
		AB008681	Hs.23994	activin A receptor, type IIB	9.00
60		AA902386	Hs.286	ribosomal protein L4	8.99
	429169	AW341130		ESTs, Moderately similar to FGFE_HUMAN F	8.99
		AF051428		estrogen receptor 2 (ER beta)	8.97
		AA883316	Hs.255221		8.98
65		BE000707 Al051313	Hs.29567 Hs.143315		8.96 8.96
JJ		BE614387	Hs.47378	ESTS	8.96
		Al084125		transcription factor	8.95
	438707	L08239	Hs.5326	porcupine	8.95
	402240				8.95

	444152	Al125694	Hs.149305	Homo sapiens cDNA FLJ14264 fis, done PL	8.95
		AW501756		gb:UI-HF-BR0p-ajm-c-09-0-UI.r1 NIH_MGC_5	8.94
	416277	W78765	Hs.73580	ESTs	8.94
		AI908006	Hs.111334	ferritin, light polypeptide	8.94
5	410762	AF226053		HSKM-B protein	8.92
	412942	AL120344	Hs.75074	mitogen-activated protein kinase-activat	8.92
	442320	Al287817	Hs.129636		8.92
	449673	AA002064	Hs.18920	ESTs	8.91
	411486	N85785	Hs.181165	eukaryotic translation elongation factor	8.90
10	437916	BE566249	Hs.20999	Homo sapiens cDNA: FLJ23142 fis, clone L	8.90
	442732	AA257161	Hs.8658	hypothetical protein DKFZp434E0321	8.89
	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C	8.89
		AW849292		gb:lL3-CT0215-020300-090-E06 CT0215 Homo	8.89
		AW971228	Hs.290259		8.89
15		D00723	Hs.77631	glycine cleavage system protein H (amino	8.88
		Z37976	Hs.83337	latent transforming growth factor beta b	8.87
	406422		11- 404740	1 - 6	8.87
		NM_016102		ring finger protein 16	8.87
20		D50030	Hs.104	HGF activator	8.86
20		X54942	Hs.83758		8.86
		AA744529	Hs.86575		8.85
		H66566	Hs.271711		8.85
		AA076049		Homo sapiens cDNA FLJ10229 fis, clone HE	8.84 8.83
25		Al952797		.Homo sapiens cDNA: FLJ21559 fis, clone C	8.83
23		T89839 U51333	Hs.119471	hexokinase 3 (white cell)	8.82
		AL041465		ESTs, Moderately similar to ALU2_HUMAN A	8.82
		AL041403 Al683487		Homo sapiens cDNA FLJ11441 fis, clone HE	8.82
		D82520		Homo sapiens cDNA FLJ10952 fis, clone PL	8.82
30		AA435997	Hs.104930		8.82
50		R40611	Hs.137565		8.81
		N34145	Hs.250614		8.80
		AW043637	Hs.21766		08.8
		Al952677		Homo sapiens mRNA; cDNA DKFZp434P228 (fr	08.8
35		AW292577	Hs.94445	ESTs	8.80
		BE063380		gb:PM0-BT0275-291099-002-g10 BT0275 Homo	8.80
	403259			6	8.78
		AW850473		gb:iL3-CT0219-280100-061-B11 CT0219 Homo	8.78
		BE264645	Hs.282093	Homo sapiens cDNA: FLJ21918 fis, clone H	8.77
40	413654	AA331881	Hs.75454	peroxiredoxin 3	8.76
	401744				8.76
	425348	AL137477	Hs.155912	cadherin-like 24	8.76
	423396	Al382555		bromodomain-containing 1	8.75
	450649	NM_001429	Hs.297722	Human DNA sequence from clone RP1-85F18	8.75
45		NM_007240		dual specificity phosphatase 12	8.74
		AB020316		uronyl 2-sulfotransferase	8.74
		AI566086		Homo sapiens mRNA for Hmob33 protein, 3'	8.74
		AA449506		Homo sapiens mRNA; cDNA DKFZp586H1921 (f	8.73
50		AA551010	Hs.216640		8.72
50		AL137527		Homo sapiens mRNA; cDNA DKFZp434P1018 (f	8.72
		Al472111	Hs.292507		8.71
		AW385597		ESTs, Weakly similar to B34087 hypotheti	8.71
		H59955	Hs.127829		* 8.70
55		AL033527 D87470		v-myc avian myelocytomatosis viral oncog KIAA0280 protein	8.70 8.70
<i>JJ</i>			Hs.7045		8.70
		W31254 AA609019	Hs.159343	GL004 protein	8.70
		Z97989		FYN oncogene related to SRC, FGR, YES	8.69
		AA317036		ESTs	8.67
60		Al225235		Homo saplens cDNA: FLt23231 fis, clone C	8.67
55		AA811813	Hs.119421		8.66
		AA256756	Hs.31178	ESTs	8.66
		NM_002104	Hs.3066	granzyme K (serine protease, granzyme 3;	8.66
		BE244076		Homo saplens mRNA for FLJ00020 protein,	8.65
65		BE246449	Hs.2157	Wiskott-Aldrich syndrome (eczema-thrombo	8.64
		W68180	Hs.259855	Homo sapiens cDNA FLJ12507 fis, clone NT	8.64
		AJ001443		splicing factor 3b, subunit 3, 130kD	8.64
		NM_006895	Hs.81182		8.64
		NM_004736		xenotropic and polytropic retrovirus rec	8.63
	-	-		•	

	422631	BE218919	Hs.118793	hypothetical protein FLJ10688	8.63
	410879	AW795196 ·		ring finger protein 14	8.63
				hypothetical protein FLJ10326	8.62
		BE242803	HS.202023	Hishornerran brongin t. Co. 10050	
	401851				8.62
5	401866				8.62
•		AW996872	Hs 172028	a disintegrin and metalloproteinase doma	8.62
				PIBF1 gene product	8.62
		AA251594	HS.43913	FIDE I Gelle pioduci	
	422250	AW408530		ClpX (caseinolytic protease X, E. coli)	8.62
	430259	BE550182	Hs.127826	RaiGEF-like protein 3, mouse homolog	8.62
10		AI831594	Hs 68647	ESTs, Weakly similar to ALU7_HUMAN ALU S	8.62
10		AW749617	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	gb:RC3-BT0502-130100-012-g07 BT0502 Homo	8.60
					8.60
		Al767756	Hs.82302		
	429328	AA829402	Hs.47939		8.60
	451491	A1972094	Hs.286221	Homo sapiens cDNA FLJ13741 fis, clone PL	8.60
15		Al692181		KIAA1634 protein	8.60
13		AF009746		ATP-binding cassette, sub-family D (ALD)	8,60
					8.60
		X54136		immunoglobulin lambda locus	
	430900	U91939	Hs.248123	G protein-coupled receptor 25	8.60
	405074				8.59
20		Al479773	Hs.181679	ESTs	8.59
20		BE328882		ESTs, Moderately similar to U119_HUMAN U	8.58
			113.133030		8.57
		AA091228		gb:cchr2152.seq.F Human fetal heart, Lam	
	418452	BE379749		C-type (calcium dependent, carbohydrate-	8.56
		AL008637	Hs.196352	neutrophil cytosolic factor 4 (40kD)	8.56
25		AW947164	Hs.195641	FSTs	8.56
23			Hs.199371		8.55
		AW204272	U2'188211		8.54
		H55883		gb:yq94h03.r1 Soares fetal liver splaen	
	445988	BE007663	Hs.13503	Inactivation escape 2	8.54
	405876				8.54
30		D20569	He 160/07	SAC2 (suppressor of actin mutations 2, y	8.54
50			115.105407	hydroxyprostaglandin dehydrogenase 15-(N	8.54
		Al738616			
	425671	AF193812		tunatic fringe (Drosophila) homolog	8.54
	452413	AW082633	Hs.212715	ESTs	8.54
	421620	AA446183	Hs.91885	ESTs	8.53
35		Al955765	Hs.146907		8.52
J.J					8.51
		M31899	HS.//929	excision repair cross-complementing rode	
	405552				8.51
	418068	AW971155	Hs.293902	ESTs, Weakly similar to prolyl 4-hydroxy	8.50
	420133	AA426117	Hs.14373		8.50
40		R68857	Hs.265499		8.50
40			11a200400	ESTs; Moderately similar to IIII ALU SUB	8.50
		Al765890			
	446585	AV659397	Hs.282948	ESTS	8.50
	441896	AW891873		gb:CM3-NT0090-040500-173-b02 NT0090 Homo	8.50
	437718	Al927288	Hs.196779	ESTs	8.48
45		AA279098	Hs.187636		8,48
73			Hs.44238		8,48
		AW137635	RS.44236	ES18	
	450624	AL043983	HS.125063	Homo sapiens cDNA FLJ13825 fis, clone TH	8.48
	452573	Al907957	Hs.287622	Homo sapiens cDNA FLJ14082 fis, clone HE	8.48
	456341	AA229126	Hs.122647	N-myristoyitransferase 2	8.48
50		AA593731	Hs 75613	CD36 antigen (collagen type I receptor,	8.47
50			Un 150077	ESTs, Weakly similar to ALU1_HUMAN ALU S	8,46
		AL038704	110.10002/	regulator of G-protein signalling 17	8.46
		AL080276	MS.268562	regulator of G-brotein signatury 17	-
	400268				8.48
	421828	AW891965	Hs.289109	dimethylarginine dimethylaminohydrolase	8.45
55	A17022	NM_014737	Hs.80905	Ras association (RalGDS/AF-6) domain fam	8.44
-		AW057782	Hs.293053		8.44
			Hs.300615		8.44
		AW732240	DS.300010	EDIS	
		AI814302		gb:wj71c12.x1 NCI_CGAP_Lu19 Homo sapiens	8.42
	406006				8.42
60	412643	AW971239	Hs.293982	ESTs	8.42
		AB014540		SWAP-70 protein	8.42
			He 105255	ESTs; Weakly similar to S59501 interfero	8.42
		AW136083			
		Al458653	Hs.201881	COIS	8.41
	407183	AA358015		gb:EST66864 Fetal lung III Homo sapiens	8.40
65	412324	AW978439	Hs.69504	ESTs	8.40
		AA013051	Hs.91417	topoisomerase (DNA) II binding protein	8.40
		AW972830		gb:EST384925 MAGE resequences, MAGL Homo	8.40
			Un COTOOF	UDP-Gal:betaGlcNAc beta 1,3-galactosyitr	8.40
		AA305688	rts.20/095	ODT-MILIERANION DOM 1/74MMOSSIII	
	438582	Al521310	HS.283365	ESTs, Weakly similar to ALU5_HUMAN ALU S	8.40

	447685	AL122043	Hs.19221	hypothetical protein DKFZp566G1424	8.40
	459119	AW844498	Hs.289052	Homo saplens LENG8 mRNA, variant C, part	8.38
	400817				8.37
	425265	BE245297		gb:TCBAP1E2482 Pediatric pre-B cell acut	8.37
5	409385	AA071267		gb:zm61g01.r1 Stratagene fibroblast (937	8.36
	439121	BE047779	Hs.44701	ESTs	8.36
	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	8.36
	408327	AW182309	Hs.249963	ESTs, Highly similar to dJ1170K4.4 [H.sa	8.35
	403976				8.34
10	448064	AA379036		gb:EST91809 Synovial sarcoma Homo sapien	8.33
		AW188551	Hs.99519	Homo sapiens cDNA FLJ14007 fis, clone Y7	8.33
		AW997704	Hs.11493		8.32
		AF119847		Homo sapiens PRO1550 mRNA, partial cds	8.32
	458677	AW937670	Hs.254379		8.32
15	420925	NM_015698	Hs.100391	T54 protein	8.30
		T70298		gb:yd26g02.s1 Soares fetal liver spleen	8.30
	416852	AF283776	Hs.80285	Homo sapiens mRNA; cDNA DKFZp586C1723 (f	8.30
		AF084866		gb:Homo saplens envelope protein RIC-3 (8.30
		Al732694	Hs.98520	ESTs	8.29
20	435343	AW194962	Hs.199028	ESTs	8.29
	450783	BE266695		gb:601190242F1 NIH_MGC_7 Homo sapiens cD	8.29
	404946			•	8.28
	422942	AF054839	Hs.122540	tetraspan 2	8.28
	453716	AA037675	Hs.152675	ESTs	8.28
25		AA744488	Hs.132842	ESTs, Moderately similar to ALU1_HUMAN A	8.28
	443907	AU076484	Hs.9963	TYRO protein tyrosine kinase binding pro	8.27
	401930	AF106069	Hs.23168	ublquitin specific protease 15	8.26
	446554	AA151730	Hs.301789	ESTs, Wealty similar to similar to C.ele	8.26
	426290	AB007918		KIAA0449 protein	8.25
30	419904	AA974411	Hs.18672	ESTs	8.25
	413886	AW958264	Hs.103832	ESTs, Weakly similar to TRHY_HUMAN TRICH	8.24
	424738	Al963740	Hs.46826	ESTs	8.24
	427359	AW020782	Hs.79881	Homo sapiens cDNA: FLJ23006 fis, clone L	8.24
	424534	D87682	Hs.150275	KIAA0241 protein	8.24
35	424429	U63830		TRAF family member-associated NFKB activ	8.24
	442604	BE263710	Hs.279904		8.22
		Al914699	Hs.13297		8.22
		BE396283		eukaryotic translation initiation factor	8.22
4.0		BE222450	Hs.266390		8.21
40	423730	AA330214		gb:EST33935 Embryo, 12 week Il Homo sapi	8.21
		AA888624	Hs.19121	adaptor-related protein complex 2, alpha	8.20
		AA835868	Hs.25253	Homo saplens cDNA: FLJ20935 fis, clone A	8.20
		R40739	Hs.21326		8.20
4.5		W25760	Hs.77631	glycine deavage system protein H (amino	8.20
45		AU077143		minichromosome maintenance deficient (S.	8.20
		AV654978	Hs.19904	cystathionase (cystathionine gamma-lyase	8.19
		A1828596	Hs.250691		8.18
		NM_015896		BLu protein	/ 8.18
50	425397			topoisomerase (DNA) II alpha (170kD)	8.18
50		M21305		Human alpha satellite and satellite 3 ju	8.18
		U42349	Hs.71119	Putative prostate cancer tumor suppresso	8.18
		NM_001838	Hs.1652	chemokine (C-C motif) receptor 7	8.18
		AL133017	Hs.2210	thyroid hormone receptor interactor 3	- 8.17
55	401519	1105100	11- 47004	Harrandara anni Ar Ingala Canada and an Ara-	8.17
55		H65423	Hs.17631	Homo saplens cDNA FLJ20118 fis, clone CO	8.16
		AI263293		cytochrome P450, subfamily IIJ (arachido	8.16
		AJ278120	Hs.4996	DKFZP564D166 protein	8.14
		AW885606	Hs.5064	ESTs	8.14
60		AA278536	Hs.23262	ribonuclease, RNase A family, k6	8.14
UU		Al139058	Hs.23296 Hs.131284		8.14 8.14
		Al018406	Hs.89271	ESTS	8.14
	421129	BE439899	1 13.034 / 1	LUIS	0.14

TABLE 9A shows the accession numbers for those primekeys lacking a unigeneID in Table 9. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

```
10
        Pkey:
                            Unique Eos probeset identifier number
                            Gene cluster number
        CAT number:
        Accession:
                            Genbank accession numbers
15
        Pkey
               CAT number Accession
        408057 1035720_-1
                            AW139565
        408069 103655_1
                            H81795 Z42291 R20973 AA046920
        408182
               104479_1
                            AAD47854 AAD57506 AA053841
20
        408338 1052148_1
                           AW867079 AW867086 AW182772
        408828
               108463_1
                            BE540279 AW410659 AA057857 R77693 BE278674
        409126 110159_1
                           AA063426 AW962323 AW408063 AA063503 AA772927 AW753492 BE175371 AA311147
        409292 111586_1
                            AA071051 AA070584 AA069938 AA102136 AA074430
        409314 111841_1
                            AA070266 AA084967 AA126998
25
        409385 112523_1
                            AA071267 T65940 T64515 AA071334
                           AW386461 AW876408 AW386672 AW386599 AW876258 AW386619 AW386289 AW876136 AW876203 AW876213 AW876301
        409398 1126716_1
                            AW876295 AW876349 AW876365 AW876160 AW876369 AW876352 AW876271
        409671 114731_1
                           AA076769 AA076781 Al087968
                           AW499566 AW502378 AW499522 AW502046 AW502671 AW501917 AW501868 AW501721 AW502813
        409768 1154035_1
30
        409841 1156088_1
                           AW502139 AW502432 AW502235 AW501683 AW502647
        409842 1156119_1
                           AW501756 AW502096 AW502465 AW501715
        409853
               1156226_1
                           AW502327 AW502488 AW501829 AW502625 AW502687
        410531 1207200_1
                           AW752953 H88044 BE156092
        410688
               1216101_1
                           AW796342 AW798356 BE161430
35
                           AW807057 AW807054 AW807189 AW807193 AW807369 AW807429 AW807364 AW807365 AW807078 AW807256 AW807180
        410846 1223902_1
                            AW807331
        410896 1226053_1
                           AW809637 AW809697 AW810554 AW809707 AW809885 AW810000 AW810088 AW809742 AW809816 AW809749 AW809639
                           AW809722 AW809836 AW809774 AW810023 AW810013 AW809813 AW809660 AW809728 AW809768 AW809951 AW809657
                           AW809954
40
                           AA091228 H71860 H71073
       411079 123128_1
                           AW845985 AW845991 AW845962
        411424 1245497_1
                           AW849292 AW849431 AW849422 AW849428 AW849420 AW849424 AW849427
        411499 1248105_1
        411507
               1248607_1
                           AW850140 AW850195 AW850192
        411534 1248827_1
                           AW850473 AW850471 AW850431 AW850523
       411972
               1268491_1
                           BE074959 AW880160
                           AW893569 AW893571 AW893588 AW893593
        412110 1277844_1
                            W26786 AW998612 AW902272
        412226
               1284289_1
       412257 1285376_1
                           AW903830 BE071916
                           AW948126 AW948139 AW948196 AW948145 AW948162 AW948134 AW948127 AW948124 AW948153 AW948157 AW948125
       412405 1293012_1
50
                           AW948131 AW948158 AW948164 AW948151
        413260 1356003 1
                           BE075281 BE075219 BE075123 BE075119 BE075046
       413471 1371778 1
                           BE142098 BE142092
                           BE159999 BE160056 BE160107 BE160139
               1385114 1
       413729
                           AA136301 Al381776 AA136321
        414182 142409_1
55
        414989 1511339_1
                           T81668 C19040 C17569
                           F06495 R24336 R13046
        415354
               1534763_1
        416011 1566439_1
                           H14487 R50911 Z43216
               1596398_1
                           T70298 H58072 R02750
        416475
       417380 1672461_1
                           T06809 N75735
       419392
               1843934_-1
                           W28573
       419541 185724_1
                           AW749617 R64714 AA244138 AA244137 BE094019
                           Al909154 AA526337 AA244193 Al909153
       419544 185760_2
                           AA280700 AW975494 AA687385
       420819 196721_1
                           AA285363 AA285333 AA285359 AA285326 AA285350
        421245 200620_1
                           N59027 AA314694 N53937 R08100
        422673 219674_1
```

	100005	040000 4	A AGRECO ALIDOGRADA NIZORITA ALIDOGRADA ALICO AGRECANO ALIDOGRADA
		219996_1	AA315158 AW861298 N76067 AW802759 Al858495 W04474
		. 222209_1	R35399 BE252179 AA318153
		223106_1	BE077458 AA337277 AA319285
~		231462_1	AA330214 AW982519 T54709
5		232031_1	BE152393 AA330984 BE073904
		238731_1	AA339666 AW952809 AA349119
		241409_1	AA343936 AA344060 AW963081
	425265	249175_1	BE245297 AA353976 AW505023
	426959	2738301	BE262745
10	430676	32168_1	AF084866 AF084870 AF084864 AF084867 AF084869 AF084865 AF084868 AW818206 AW812038 BE144813 BE144812
			AW812041 AW812040 AW812067 BE061583 BE061604 T05808 Al352469 AA580921 BE141783 BE141782 BE061601
			AW814393 AW885029
	430968	326269_1	AW972830 AA527647 AA489820 AA570362
	431180	328906_1	H55883 AW971249 AA493900 H55788
15		341283_1	H28383 AW972670 H28359 AA525808
	434596	38937_1	T59538 T59589 T59598 T59542 AF147374
		41842_1	AJ132085 Z83805
	437159	43393_1	AL050072 AW900148
	437495	43765_1	BE177778 BE177779 AL390180 AA359908
20	439097	46858_1	H66948 AF085954 H66949
		46879 1	H56389 AF085977 H56173
	440134	48675_1	BE410734 BE560117 BE270054 BE298330 BE267957 Al003007 BE545259
		52842 1	AW891873 AW891897 BE564764
·		645767_1	Al245701 BE272724
25		71288_1	BE617135 AW504051 AW504283
		74761_1	AA379036 AA150589 Al696854 BE621316
		84655 1	BE266695 BE265474 N53200 BE267333
		85673_1	AA215672 AI696628 AA013335 H86334 AA017006
		921802_1	Al907039 Al907081
30		922216_1	BE077084 AW139963 AW863127 AW806209 AW806204 AW806205 AW806206 AW806211 AW806212 AW806207 AW806208
			AW806210 AI907497
	452712	928309_1	AW838615 AW838660 BE144343 Al914520 AW888910 BE184854 BE184784
		980026_1	U83527 AL120938 U83522
		1007366_1	AW860158 AW862385 AW860159 AW862386 AW862341 AW821869 AW821893 AW062660 AW062656
35		1224342_1	AW807530 AW807540 AW807537 AW846086 BE141634 AW846089 AW807499 AW807533 AW838499
		1234759_1	BE071874 BE071882 AW820782 AW821007
		1247099_1	AW848032 AW848630 AW848478 AW848623 AW848484 AW848169 AW848830 AW848149 AW848119 AW848893 AW848903
			AW848407
	455131	1254674_1	AW857913 AW857916 AW857914 AW861627 AW861626 AW861624
40		1259023_1	AW984111 AW863918 AW863856
		1266449_1	AW877015 AW877133 AW876978 AW877071 AW876988 AW877069 AW877063 AW877013
			AW903533 AW903516 AW903562 BE085202 BE085215 BE085214 BE085209 BE085172 BE085175 BE085193 BE085211
	10000		BE085199
	455982	1396849_1	BE176862 BE176876 BE176947 BE176878
45		1410860_1	BE243628 BE246081 BE247016 BE241984 BE241534 BE246091 BE245679 BE243620 BE245998 BE242329 BE241417
	100011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BE241457 BE242522 BE241989 BE241464
	456023	1416335_1	R00028 BE247630
		360505_1	AW062439 AW751554 AA579483
		364225 -1	AA584854
50		399422_1	Al908236 AA663731
50		883688_1	AIB14302 AIB14428
		889426_1	W07808 AI822066
		918957_1	AI903354 AI903489 AI903488
			BE063380 BE063346 Al906097
55		9452401	Al940425
	700007	- 100191	· •• •• •••

TABLE 9B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 9. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: Unique number corresponding to an Eos probeset
Ref: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.

Strand: Indicates DNA strand from which exons were predicted.
Indicates nucleotide positions of predicted exons.

		-			
	Pkey	Ref	Strand	Nt_position	
15	400452	8113550	Minus	90308-90505	
	400557	9801261	Plus	208453-208528,209633-209813	
	400615	9908994	Pius	118036-118166,118681-118807	
	400802	8567867	Minus	174571-174856	
		8569994	Plus	170793-170948	
20	400880	9931121	Plus	29235-29336,36363-36580	
	400885	9958187	Minus	58242-58733	
	400926	7651921	Minus	52033-52158,53956-54120,54957-55052,55420-55480,56452-56666,57221-57718	
	400952	7658481	Plus	192667-192826,194387-194876	
		8096825	Plus	159197-159320	
25	401044	8117619	Plus	73501-73874	
		8570296	Minus	124181-124391	
	401163	6981820	Plus	5302-5545	
	401201	9743387	Minus	138534-138629,139234-139294,140121-140335,142033-142479	
		9801342	Minus	147036-147318	
30		6850939	Minus	58360-58545	
		6433826	Plus	13056-13482	
		7630851	Plus	29929-30126	
		6649315	Plus	157315-157950	
		9838136	Plus	128526-128704,130755-130860	
35		2576349	Plus	14595-14751	
		7770425	Minus	146443-146664,147794-147971,148351-148480,148980-149111,149801-149949	
		8018106	Plus	73126-73623	
		7690131	Plus	104382-104527,106136-106372	
		9211204	Minus	40403-41961	
40	402585	9908890	Minus	174893-175050,183210-183435	
		9796102	Plus	98273-101430	
	402802	3287156	Minus	53242-53432	
	402812	6010110	Plus	25026-25091,25844-25920	
	402828	8918414	Plus	69071-69642	
45		9187337	Plus	26961-27101	
	402838	9369121	Minus	32589-32735,35478-35666	
	402842	9369121	Minus	76355-76479	
		9967547	Plus	85537-85671,86379-86469	
	402964	9581599	Minus	48824-46784	
50	403137	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337	
	403237	7637807	Plus	7271-7527	
	403259	7770585	Plus	4693-4857	
	403683	7331517	Plus	217175-217446	
	403690	7387384	Minus	78627-79583	
55	403708	5705981	Minus	134394-134812	
	403838	4176355	Pius	19197-19502	
	403851	7708872	Plus	22733-23007	
	403976	7657840	Plus	24755-24969	
	404407	7329316	Minus	48154-48499	
60	404426	7407959	Plus	77842-77954	
	404632	9796668	Plus	45096-45229	
		8574139	Plus	143025-143467	
		7706327	Plus	82849-83627	
		7382189	Plus	134445-134750	
65		7770440	Plus	44340-44559,44790-45059	
		8247873	Pius	137113-137814	
	405172	9966752	Plus	153027-153262	

	405236 7249076	Minus	151699-151915
	405325 6094661	Minus	25818-26380
	405411 3451356	Minus	17503-17778,18021-18290
	405495 8050952	Minus	72182-72373
5	405552 1552506	Plus	45199-45647
	405601 5815493	Minus	147835-147935,149220-149299
	405685 4508129	Minus	37956-38097
	405777 7263187	Minus	104773-105051
	405856 7653009	Plus	101777-102043
10	405876 6758747	Plus	39694-40031
	405932 7767812	Minus	123525-123713
	405934 6758795	Plus	159913-160605
	406006 8247801	Minus	42640-42776
	406134 9163473	Plus	153291-153452
15	406189 7289992	Minus	22007-22234
	406422 9256411	Plus	163003-163311
	406516 7711422	Minus	128375-128449,128560-128784
	406538 7711478	Plus	35196-35367,38229-38476,40080-40216,43522-43840
	406554 7711566	Plus	106956-107121
20	406577 7711730	Plus	11377-11509

TABLE 10: shows genes, including expression sequence tags differentially expressed in taxol resistant prostate tumor xenografts as compared to taxol sensitive prostate tumor xenografts. The genes are indicated as either being upregulated or downregulated during the induction of taxol resistance in sequential passages of the grafts.

10	Pkey: ExAccn: UnigenelD: Unigene Title: Eos: F00-F14:		Exemplar A Unigene nu Unigene ge Internal Eos	nique Eos probeset identifier number xemplar Accession number, Genbank accession number nigene number nigene gene title ternal Eos name assage number																
1.7																				
	Pkey	ExAcon	UnigenelD	Unigen Title	Eos	Resp.	F00	F00	F02	F02	F05	F05	F07 -	F09	F10	F11	F13	F14		
20	117921	N51002	Hs.47170	Liprin A2	PM28	UP	1	9	8	9	32	20	34	122	105	82	71	111		
	112971	T17185	Hs.4299	ESTs	CHA1	down	290	281	267	33 5	270	284	150	157	83	89	49	75		
	126645	AJ167942	Hs.61635	STEAP	PAA5	down	106	111	103	71	34	67	33	14	2	1	1	1		
	119018	N95798	Hs.179809	ESTs	PAB2	down	765	841	757	909	742	704	478	428	253	175	228	238		
	110844	N31952	Hs.167531	ESTs	PAV7	down	175	192	147	141	123	129	73	65	55	48	54	84		
25	100654	HG2841-HT29	89	Hs.75442	Album	in, A	PMO:	l down	666	605	504	728	357	445	602	187	117	127	117	113
	100655	HG2841-HT29	170	Hs.75442	Album	in, A	PM02	2down		653	486	688	368	386	606	175	101	95	115	97
	102076	U09579	Hs.252437	cyclin-dep	PM03	down	101	94	143	190	105	107	88	40	34	31	46	22		
	102208	U22961	Hs.75442	albumin	PM04	down	495	424	323	518	252	296	467	188	169	143	165	145		
		AA075779	-	mitochondr	PM05	down	75	190	606	230	378	106	218	88	69	192	69	99		
30	107036	AA599690	Hs.15725	SBBI48	PM06	down	87	124	115	188	132	111	66	71	49	70 ′	38	50		
		AA062746	-	ESTs	PM07	down	14	20	252	13	22	43	193	10	10	104	21	18		
	108282	AA065143	_	sotute car	PM08	down	27	54	178	73	108	37	53	24	14	53	15	34		
•	108679	AA115963	- '	beta-1-glo	PM09	down	680	893	1292	656	869	389	1	74	118	662	359	409		
	108731	AA126313	Hs.107476	ATP syntha	PM10	down	10	19	185	25	60	1	32	3	7	14	1	1		
35	110675	H89355	Hs.6598	adrenergic	PM11	down	207	334	237	239	231	220	119	145	93	64	56	124		
	115412	AA283804	Hs.193552	ESTs	PM12	down	146	316	282	271	340	334	115	238	100	196	83	207		
	115844	AA430124	Hs.234607	MDM2	PM13	down	49	93	94	154	132	91	23	54	23	76	14	41		
	120588	AA281591	Hs.16193	ESTs	PM14	down	80	157	58	141	159	127	39	83	35	37	16	46		
	132349	Y00705	Hs.181286	serine pro	PM15	down	146	217	214	150	106	128	177	85	54	63	68	56		
40	132888	AA490775	Hs.5920	N-ecetylma	PM16	down	92	150	132	178	126	139	53	94	48	67	41	80		
	132967	AA032221	Hs.61635	STEAP	PM17			208	203	215	205	180	132	65	68	50	48	63		
	133063	AA283085	Hs.64065	ESTs	PM18	down	85	148	161	150	92	108	42	99	42	65	29	126		
	134374	D62633	Hs.8236	ESTs	PM19	down	230	240	194	212	231	189	89	123	107	95	68	91		
		M23263	Hs.99915	androgen r	PM20	down	36	167	99	178	132	101	23	71	26	122	14	44		
45																				

TABLE 11: shows genes, including expression sequence tags that are up-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu01 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5 Pkey: Unique Eos probeset identifier number ExAcon: Exemplar Accession number, Genbank accession number UnigenelD: Unigene number Unigene Title: Unigene gene title Background subtracted normal prostate : prostate tumor tissue R1 Pkey ExAcon UnigenelD Unigene Title 101336 L49169 Hs.75678 FBJ murine osteosarcoma viral oncogene homolog B 0.012 10 M63438 Hs.156110 Immunoglobulin kappa variable 10-8 0.015 130842 glyceraldehyde-3-phosphate dehydrogenase Hs.195188 0.017 133512 X01677 immediate early protein POU domain; class 2; transcription factor 2 133436 H44631 Hs.737 0.017 Hs.1101 0.019 129292 X13810 Microtubule-Associated Protein Tau, Alt. Splice 3, Exon 8 100610 HG2566-HT4792 0.02 15 Hs.170116 immunoglobulin lambda-like polypeptide 3 0.021 M34516 133448 CD74 antigen (invariant polypeptide of major histocompatibility Hs.84298 125193 W67577 0.022 complex; class II antigen-associated) 133456 T49257 Hs.183704 ubiquitin C 0.022 Homo sapiens mRNA; cDNA DKFZp586L1722 (from clone 134546 AA459310 Hs.8518 20 DKFZp586L1722) 0.023 102131 U15085 Hs.1162 major histocompatibility complex; class II; DM beta 0.023 M13560 Hs.84298 CD74 antigen (invariant polypeptide of major histocompatibility 101375 0.023 complex; class II antigen-associated) HG3033-HT3194 Spliceosomal Protein Sap 62 0.024 100674 25 0.027 Hs.82240 syntaxin 3A 134365 R32377 ESTs 132335 D60387 Hs.189885 110303 H37901 Hs.32706 **ESTs** 0.028 0.028 N59162 Hs.30542 131678 **ESTs** 0.029 Hs 250879 D80046 **ESTs** 116599 30 0.029 Hs.75968 133769 M17733 thymosin; beta 4; X chromosome 0.03 107904 AA026648 Hs.61389 0.03 129427 T80746 Hs.111334 ferritin; light polypeptide 105987 AA406631 Hs.110299 mitogen-activated protein kinase kinase 7 0.03 F03233 Hs.27189 0.032 131466 35 X00274 Hs.76807 Human HLA-DR alpha-chain mRNA 0.032 102859 S82198 caldecrin (serum calcium decreasing factor; elastase IV) 0.032 134626 Hs.8709 134170 M63138 Hs.79572 cathepsin D (lysosomal aspartyl protease) 0.033 Hs.181125 0.034 131713 X57809 Immunoglobulin lambda gene cluster 100748 HG3517-HT3711 Alpha-1-Antitrypsin, 5' End 0.034 40 N74496 **ESTs** 0.034 118769 R25375 0.036 111734 Hs.126916 **ESTs** 0.036 Hs.85840 ESTs; Weakly similar to stac [H.sapiens] AA192755 109221 Hs.76719 0.036 133846 AA480073 U6 snRNA-associated Sm-like protein 0.037 135281 AA401575 Hs.97757 45 0.037 119073 R32894 Hs.45514 v-ets avian erythrobiastosis virus E26 oncogene related HG3576-HT3779 Major Histocompatibility Complex, Class II Beta W52 0.037 100760 0.038 101426 M19483 Hs.25 ATP synthase; H+ transpring; mitochndrl F1 complex; beta polypept 129568 AA428025 Hs.114360 transforming growth factor beta-stimulated protein TSC-22 0.038 130900 Z38468 Hs.21036 ESTs; Moderately similar to F25965_3 [H.sapiens] 0.039 50 v-raf murine sarcoma 3611 viral oncogene homolog 1 0.039 133879 M13829 Hs.77183 100627 HG2702-HT2798 Serine/Threonine Kinase (Gb:Z25424) 0.039 129424 M55593 Hs.111301 matrix metalloproteinase 2 (gelatinase A; 72kD gelatinase; 0.039 72kD type IV collagenase) ESTs; Weakly similar to similar to SP:YR40_BACSU [C.elegans] 128652 AA621245 Hs.103147 0.039 0.039 55 129979 T72635 Hs.13956 major histocompatibility complex; class II; DQ beta 1 0.04 13346B XOZOGR Hs.73931 U67092 Human ataxia-telangiectasia locus protein (ATM) gene, exons 102636 1a, 1b, 2, 3 and 4, partial cds 0.04 0.04 M33493 129536 Hs.184504 tryptase; alpha 0.041 60 133599 M64788 Hs.75151 RAP1; GTPase activating protein 1

	102104	U12139		Human alpha1(XI) collagen (COL11A1) gene, 5' region and exon 1	0.041
	131340	AA478305	Hs.25817	Homo sapiens chromosome 19; cosmid R27216	
				nono sapialis citudiosonia 13, costino n2/210	0.041
	130446	X79510	Hs.155693	protein tyrosine phosphatase; non-receptor type 21	0.042
-	101352	L 7 77701	Hs.16297	COX17 (yeast) homolog; cytochrome c oxidase assembly protein	0.042
5	122593	AA453310	Hs.128749	alpha-methylacyl-CoA racemase	0.042
	130181	R39552	Hs.151608	Homo sapiens clone 23622 mRNA sequence	0.042
	134071	Z14093			0.042
	134071	214093	Hs.78950	branched chain keto acid dehydrogenase E1; alpha polypeptide	
				(maple syrup urine disease)	0.042
	108129	AA053252	Hs.185848	ESTs; Weakly similar to II ALU SUBFAMILY J WARNING	
10				ENTRY I! [H.sapiens]	0.043
	130511	L32137	Hs.1584	cartilage oligomeric matrix protein (pseudoachondroplasia;	0.040
	100011	LOE IO	115,1004		
				epiphyseal dysplasia 1; multiple)	0.043
	133336	AA291456	Hs.71190	ESTs	0.043
	132982	L02326	Hs.198118	immunoglobulin lambda-like polypeptide 2	0.044
15	131880	AA047034	Hs.33818	RecQ protein-like 5	
~~	130540			nowa protein the of the state o	0.044
		U35234	Hs.159534	protein tyrosine phosphatase; receptor type; S	0.044
	133467	AA258595	Hs.73931	major histocompatibility complex; class (i; DQ beta 1	0.044
	101191	L20688	Hs.83656	Rho GDP dissociation inhibitor (GDI) beta	0.044
	101860	M95610	Hs.37165	collagen; type IX; alpha 2	0.044
20	102799	U88898	18307100		0.044
20	105188			Human endogenous retroviral H protease/integrase-derived ORF1	
				mRNA, complete cds, and putative envelope prot mRNA, partial cds	0.044
	107200	D20350	Hs.5628	ESTs	0.044
	101166	L14927	Hs.2099	lipocalin 1 (protein migrating faster than albumin; tear prealbumin)	0.044
	134289	M54915	Hs.81170		
25				pim-1 oncogene	0.044
23	135329	AA436026	Hs.98858	ESTs	0.044
	124950	T03786	Hs.151531	protein phosphatase 3 (formerly 2B); catalytic subunit; beta isoform	
				(calcineurin A beta)	0.044
	102919	X12447	Hs.183760	aldolase A; fructose-bisphosphate	
	100574		110.100700		0.044
30		HG2279-HT2375		Triosephosphate Isomerase	0.045
<i>3</i> 0	131286	AA450092	Hs.25300	Homo sapiens clones 24718 and 24825 mRNA sequence	0.045
	102675	U72512		Human B-cell receptor associated protein (hBAP) alternatively	
				spliced mRNA, partial 3'UTR	0.045
	131332	R50487	Hs.25717	ESTs	
					0.045
25	101634	M57731	Hs.75765	GRO2 oncogene	0.046
35	113118	T47906	Hs.220512	EST8	0.046
	124884	R77276	Hs.120911	ESTs	0.046
	130523	W76097	Hs.214507	ESTs	0.046
	110244	H26742	Hs.25367		
				ESTs; Weakly similar to ALR [H.sapians]	0.046
40	131932	AA454980	Hs.25601	chromodomain heticase DNA binding protein 3	0.046
40	132509	H09751	Hs.5038	neuropathy target esterase	0.046
	133372	AA291139	Hs.72242	ESTs	0.046
	100817	HG4011-HT4804		Dystrophin-Associated Glycoprotein, 50 Kda, Alt. Splice 2	
	106746	AA476438	U. 7004		0.047
			Hs.7991	ESTs	0.047
	135401	L14813	Hs.169271	carboxyl ester lipase-like (bile salt-stimulated lipase-like)	0.047
45	130479	R44163	Hs.12457	Homo sapiens clone 23770 mRNA sequence	0.047
	102589	U62015	Hs.8867	cysteine-rich; angiogenic inducer; 61	0.047
	121521	AA412165	Hs.97358	EST	
					0.048
	135340	AA425137	Hs.99093	Homo sapiens chromosome 19; cosmid R28379	0.048
	132336	AA342422	Hs.45073	ESTs	0.048
50	115368	AA282133	Hs.88960	ESTs; Weakly similar to similar to collagen [C.elegans]	0.048
	101278	L38487	Hs.110849	estrogen-related receptor alpha	0.048
	103284	X80200	Hs.8375	TNF receptor-associated factor 4	
			H8.00/0		0.048
	100564	HG2239-HT2324		Potassium Channel Protein-(Gb:Z11585)	0.048
	133132	Z40883	Hs.65588	ESTs; Wealty similar to dJ393P12.2 [H.sapiens]	0.048
55	121811	AA424535	Hs.98416	ESTs	0.048
	129613	AA279481	Hs.238831	ESTs; Weakly similar to collagen alpha 1(XVIII) chain [M.musculus]	0.049
	132468	S79854			
•			Hs.49322	delodinase; lodothyronine; type III	0.049
	120111	W95841	Hs.136031	ESTs	0.049
	103668	Z83741	Hs.248174	H2A histone family; member M	0.049
60	130386	F10874	Hs.234249	mitogen-activated protein kinase 8 interacting protein 1	0.049
	104275	C02170	Hs.39387	ESTs; Weakly smir to weak smirity to ribosomal prot L14 [C.elegans]	
					0.049
	106305	AA436146	Hs.12828	ESTS	0.05
	116431	AA609878	Hs.55289	ESTs; Weakly smit to 110 KD CELL MEMBRANE GLYCOPROTEIN [H.sapiens]	0.813
	120339	AA206465	Hs.256470	EST	0.05
65	114427	AA017063		ESTs; Highly similar to Miz-1 protein [H.sapiens]	0.05
	118821	N78070	Hs.94789	ESTs	
					0.05
	118979	N93788	Hs.43666	protein tyrosine phosphatase type IVA; member 3	0.05
	107495	W78776	Hs.90375	EST8	0.051
	120240	Z41732	Hs.66049	ESTs	0.051

			11 40 400	FOT:	0.051
	114331	Z41309	Hs.12400	ESTs	
	130947	R40037	Hs.21506	ESTs	0.052
	129242	W81679	Hs.5174	ribosomal protein S17	0.052
	131413	AA482390	Hs.26510	ESTs; Modly smlr to vacuolar prot sorting homolog r-vps33b [R.norvegicus]	0.052
5	112304	R54798	Hs.26239	ESTs	0.052
	101418	M17254	Hs.45514	v-ets avian erythrobiastosis virus E26 oncogene related	0.052
	131201	AA426304	Hs.24174	ESTs	0.052
	101054	K02405	Hs.73933	Human MHC class II HLA-DQ-beta mRNA (DR7 DQw2); complete cds	0.052
	101306	L41143	Hs.232069	T-cell teukemia translocation altered gene	0.053
10			113202003	yb45c08.r1 Stratagene fetal spicen (#937205) Homo sapiens cDNA	0.000
10	129311	T55087			0.053
		. toward	15- 444440	clone IMAGE:74126 5', mRNA sequence.	
	129942	U95301	Hs.144442	phospholipase A2; group X	0.053
	119210	R93340	Hs.92995	ESTs	0.053
	101046	K01160		Accession not listed in Genbank	0.053
15	114086	Z38266	Hs.12770	Homo sapiens PAC clone DJ0777023 from 7p14-p15	0.053
	110171	H19964	Hs.31709	ESTs	0.053
	101004	J04101	Hs.248109	v-ets avian erythroblastosis virus E26 oncogene homolog 1	0.053
	129715	N58479	Hs.12126	ESTs; Weakly similar to LR8 [H.sapiens]	0.053
	101581	M34996	Hs.198253	major histocompatibility complex; class II; DQ alpha 1	0.053
20	113285	T66830	Hs.182712	ESTs	0.053
20	127537	AA569531	Hs.162859	ESTs	0.054
	100813	HG3995-HT4265	13.10000	Cpg-Enriched Dna, Clone S19	0.054
			Ha 70000	3-hydroxybutyrate dehydrogenase (heart; mitocfiondrial)	0.054
	101841	M93107	Hs.76893		0.054
05	135053	R77159	Hs.93678	ESTs S4	
25	101419	M17886	Hs.177592	ribosomai protein; large; P1	0.054
	119724	W69468	Hs.47622	ESTs	0.055
	102673	U72509		Human alternatively spliced B8 (B7) mRNA, partial sequence	0.055
	129877	AA248589	Hs.13094	ESTs; Wealty similar to ORF YGR101w [S.cerevisiae]	0.055
	114788	AA156737	Hs.103904	EST	0.055
30	123812	AA620607	Hs.111591	ESTs	0.055
	117669	N39237	Hs.44977	ESTs	0.055
	123782	AA610111	Hs.162695	EST	0.055
	102395	U41767	Hs.92208	a disintegrin and metalloproteinase domain 15 (metargidin)	0.055
	133795	M12529	Hs.169401	apolipoprotein E	0.055
35	123193	AA489228	Hs.136956	ESTs	0.056
33	132595	AA253369	Hs.155742	glyoxylate reductase/hydroxypyruvate reductase	0.056
			Hs.7724	KIAA0983 protein	0.056
	104161	AA456471			0.056
	115330	AA281145	Hs.88827	ESTs	0.056
40	112893	T08000	Hs.194684	bassoon (presynaptic cytomatrix protein)	
40	133475	L29217	Hs.73987	CDC-like kinase 3	0.056
	128699	K03207	Hs.103972	profine-rich protein BstNi subfamily 4	0.056
	102940	X13956	Hs.24998	Hu 12S RNA induced by poly(rl); poly(rC) and Newcastle disease virus	0.056
	131299	AA431464	Hs.25426	ESTs; Weakly similar to unknown [H.sapiens]	0.057
	102495	U51240	Hs.79356	Lysosomal-associated multispanning membrane protein-5	0.057
45	129594	R70379	Hs.115396	Human germline IgD chain gene; C-region; C-delta-1 domain	0.057
	118593	N69020	Hs.207689	EST	0.057
	126702	U54602	Hs.2785	keratin 17	0.057
	124386	N27368	Hs.212414	sema domain; immunoglobulin domain (lg); short basic domain;	
			* *	secreted; (semaphorin) 3E	0.057
50	130538	M20786	Hs.159509	alpha-2-plasmin inhibitor	0.057
20	114299	Z40782	Hs.22920	similar to \$68401 (cattle) glucose induced gene	0.057
	115604	AA400378	Hs.49391	ESTs	0.057
	106052	AA416947	Hs.6382	ESTs; Highly similar to KIAA0612 protein [H.sapiens]	0.057
					0.057
55	131730	U05681	Hs.31210	B-cell CLL/lymphoma 3	0.058
55	131285	AA479498	Hs.25274	ESTs; Modily smir to putative seven pass transmembrane prot [H.sapiens]	0.058
	129705	X78706	Hs.12068	camitine acetyltransferase	
	123175	AA489010	Hs.178400	ESTs	0.058
	103592	Z30844	Hs.123059	chioride channel Kb	0.058
	118196	N59478	Hs.48396	ESTs; Moderately similar to tumor necrosis factor-alpha	
60				-Induced protein B12 [H.sapiens]	0.058
	104886	AA053348	Hs.144626	growth differentiation factor 11	0.058
	104250	AF000575	Hs.105928	leukocyte immunoglobulin-like receptor, subfamily B (with TM	
				and ITIM domains); member 3	0.058
	113301	T67452	Hs.13104	EST	0.058
65	110441	H50302	Hs.19845	ESTs; Highly smlr to prot phosphatase 2A BR gamma subunit [H.sapiens]	0.058
05	125297	Z39215	Hs.159409	ESTs	0.058
	135258	AA292423	Hs.97272	ESTs; Weakly similar to d.1281HB.2 [H.saplans]	0.058
	130633	T92363	Hs.178703	ESTs	0.058
	112006	R42607	Hs.22241	hypothetical protein	0.058
	112000	1746001	U9'CCCA1	silkononen kiones	3,000

	130805	U12194	Hs.170238	sodium channel; voltage-gated; type I; beta polypeptide	0.058
	134907	D80002	Hs.178292	KIAA0180 protein	0.058
	132619	AA404565	Hs.53447	ESTs; Moderately similar to kinesin light chain 1 [M.musculus]	0.058
5	135115	N35489	Hs.94653	neurochondrin	0.058
3	100531	HG1872-HT1907	11- 400000	Major Histocompatibility Complex, Dg	0.058
	124530	N62256	Hs.102727	EST	0.058
	119960	W87533	Hs.32699	ESTs; Moderately similar to LIV-1 protein [H.sapiens]	0.058
	132793	AA478999	Hs.56966	KIAA0906 protein	0.058
10	101076	L04270 N92934	Hs.1116	lymphotoxin beta receptor (TNFR superfamily; member 3	0.058
10	130655	AA192614	Hs.17409 Hs.83577	cysteine-rich protein 1 (Intestinal) cysteine and glycine-rich protein 3 (cardiac LIM protein)	0.058 0.058
	134458 105904	AA192014 AA401452	Hs.32060	ESTs	0.059
	132878	AA026793	Hs.58679	ESTs; Weakly similar to 4F2/CD98 light chain [M.musculus]	0.059
	121828	AA425166	Hs.98497	ESTS	0.059
15	133418	U76366	Hs.172727	Treacher Collins-Franceschetti syndrome 1	0.059
10	129317	N46244	Hs.110373	ESTs	0.059
	130153	D85815	Hs.15114	ras homolog gene family; member D	0.059
	124403	N31745	Hs.102493	ESTs	0.059
	127683	AA668123	Hs.134170	ESTs	0.059
20	129814	W20070	Hs.168625	KIAA0979 protein	0.059
	131770	D59682	Hs.31833	ESTs	0.06
	117557	N33920	Hs.44532	diublquitin	0.06
	103522	Y10514		H.sapiens mRNA for CD152 protein	0.06
	120029	W91960	Hs.250640	sequence-specific single-stranded-DNA-binding protein	0.06
25	102135	U15460	Hs.41691	activating transcription factor B	0.06
	123617	AA609183	Hs.181131	ESTs	0.06
	112136	R46100	Hs.9739	ESTs	0.061
	133725	V00563	Hs.179543	immunoglobulin mu	0.061
	102069	U09196	Hs.82520	Hu 1.1 kb mRNA upregited in retinoic acid treated HL-60 neutrophilic cells	0.061
30	106555	AA455000	Hs.16725	ESTs	0.061
	123269	AA491226	Hs.105280	ESTs; Weakly similar to dJ963K23.2 [H.sapiens]	0.061
	109088	AA166837	Hs.72620	DKFZP434l114 protein	0.061
	129399	AA263028	Hs.111076	malate dehydrogenase 2; NAD (mitochondrial)	0.061
25	129375	W79850	Hs.11081	ESTs; Weakly similar to HPBRII-7 protein [H.saplens]	0.061
35	135271	AA397763	Hs.97562	ESTs	0.061
	132958	W90398	Hs.6147	KIAA1075 protein	0.061
	129364	AA477106	Hs.110757	DNA segment on chromosome 21 (unique) 2056 expressed sequence	0.061
	123427	AA598548	Hs.112471	ESTS	0.061 0.061
40	105236	AA219179	Hs.19105	translocase of inner mitochondrial membrane 17 (yeast) homolog B	0.062
70	101012 134791	J04444 L18983	Hs.697 Hs.89655	cylochroma c-1	0.062
	133700	K01396	Hs.75621	protein tyrosine phosphatase; receptor type; N protease inhibitor 1 (anti-elastase); alpha-1-antitrypsin	0.062
	123887	AA621065	Hs.112943	ESTs	0.062
	129363	H05704	Hs.110746	H saplens HCR (a-helix coiled-coil rod homologue) mRNA; complete cds	0.062
45	105719	AA291644	Hs.36793	ESTs	0.062
1.5	124226	H62396	Hs.190266	ESTs	0.062
	117437	N27645	113.130200	yw5e3.s1 Welzmann Olfactory Epithellum H sapiens cDNA clone	0.002
		1.2.015		IMAGE:255676 3' smir to contains L1.13 L1 repetitive element; mRNA seq	0.062
	132741	AA394133	Hs.55898	ESTs; Highly similar to OASIS protein [M.musculus]	0.062
50	134437	M26041	Hs.198253	major histocompatibility complex; class II; DQ alpha 1	0.062
	107664	AA010594	Hs.5326	ESTs; Moderately similar to pim-1 protein [H.sapiens]	0.062
	120844	AA349417	Hs.96917	ESTs	0.062
	101574	M34182	Hs.158029	protein kinase; cAMP-dependent; catalytic; gamma	0.062
	131219	C00476	Hs.24395	small inducible cytokine subfamily B (Cys-X-Cys); member 14 (BRAK)	0.062
55	103495	Y09022	Hs.153591	Not56 (D. melanogaster)-like protein	0.062
	129607	AA404594	Hs.11607	ESTs	0.062
	106467	AA450040	Hs.154162	ADP-ribosylation factor-like 2	0.062
	128841	T16358	Hs.106443	ESTs	0.062
	100515	HG1723-HT1729		Macrophage Scavenger Receptor, Alt. Splice 2	0.062
60	119332	T54095		ESTs; Weakly similar to II ALU SUBFAMILY J WARNING ENTRY II [H.sapiens]	0.062
	134516	AA171939	Hs.23413	ESTs	0.062
	135012	X73608	Hs.93029	spardosteonectin; cwcv and kazal-like domains proteoglycan (testican)	0.063
	103575	Z26256		H.saplens isoform 1 gene for L-type calcium channel, exon 1	0.063
65	115514	AA297739	Hs.55609	ESTs; Weakly similar to ISOLEUCYL-TRNA SYNTHETASE;	
65		4444455		CYTOPLASMIC [H.sapiens]	0.063
	103996	AA321355	11-00/00	EST2393 Bone marrow Homo sapiens cDNA 5' end, mRNA sequence	0.063
	110505	H55992	Hs.20495	DKFZP434F011 protein	0.063
	133912	X62744	Hs.77522	major histocompatibility complex; class II; DM alpha	0.063
	129581	M33600	Hs.180255	major histocompatibility complex; class II; DR beta 1	0.063

	130139	R38280	Hs.150922	BCS1 (yeast homolog)-like	0.064
	105817	AA397825	Hs.5307	synaptopodin	0.064
				ESTs	0.064
	134658	AA410617	Hs.178009		
~	100306	D50495	Hs.80598	transcription elongation factor A (SiI); 2	0.064
5	100277	D42053	Hs.75890	site-1 protease (subtilisin-like; sterol-regulated; cleaves sterol regulatory	
				element binding proteins)	0.064
	133116	D61259	Hs.6529	ESTs	0.064
					0.064
	134809	AA521488	Hs.90998	KIAA0128 protein	
	130319	X74794	Hs.154443	minichromosome maintenance deficient (S. cerevisiae) 4	0.064
10	132057	AA102489 -	Hs.173484	ESTs	0.064
	108334	AA070473		zm7c8.s1 Stratagene neuroepithelium (#937231) Homo sapiens cDNA	
	100007			cione IMAGE:5399 3', mRNA sequence	0.064
	400700	E4004E	11- 40070		
	129763	F10815	Hs.12373	KIAA0422 protein	0.064
	135112	T67464	Hs.94617	ESTs; Weakly simitar to predicted using Genefinder [C.elegans]	0.064
15	122269	AA436856	Hs.98910	ESTs	0.064
	133082	AA457129	Hs.6455	RuvB (E coll homolog)-like 2	0.064
	113213	T58607		ya94a02.s1 Stratagene placenta (#937225) Homo sapiens cDNA clone	•
	110210	100007			0.065
				IMAGE:69290 3', mRNA sequence.	
	106228	AA429290	Hs.17719	ESTs	0.065
20	130192	Y12661	Hs.171014	VGF nerve growth factor inducible	0.065
	104894	AA054087	Hs.18858	phospholipase A2; group IVC (cytosolic; calcium-independent)	0.065
	103508	Y10141		H.saplens DAT1 gene, partial, VNTR	0.065
			U= 400000	ligase III; DNA; ATP-dependent	0.065
	128474	U40671	Hs.100299		
	134012	AA417821	Hs.237924	ESTs; Highly similar to CGI-69 protein [H.sapiens]	0.065
25	134536	AA457735	Hs.850	IMP (inosine monophosphate) dehydrogenase 1	0.065
	111714	R23146	Hs.23466	ESTS	0.065
	110521	H57060	Hs.108268	ESTs	0.065
		X80198	Hs.77628	steroidogenic acute regulatory protein related	0.065
	103282				
20	113921	W80730	Hs.28355	ESTs	0.065
30	129331	N93465	Hs.110453	ESTs; Highly similar to CGI-38 protein [H.sapiens]	0.065
	111316	N74597	Hs.180535	ESTs; Weakly similar to mitogen inducible gene mig-2 [H.saplens]	0.065
	135138	AA036794	Hs.95196	ESTs; Weakly similar to T20B12.3 [C.elegans]	0.065
	107289	T10792	Hs.172098	ESTs	0.065
					0.065
25	121405	AA406083	Hs.98007	ESTs	
35	124965	T16275	Hs.106359	ESTs	0.065
	106595	AA456933	Hs.174481	ESTs	0.066
	100106	AF015910		Homo sapiens unknown protein mRNA, partial cds	0.066
	134715	AA282757	Hs.89040	prepronociceptin	0.066
				TYRO protein tyrosine kinase binding protein	0.066
40	135367	AA480109	Hs.9963		
40	111533	R08548	Hs.251651	EST	0.066
	128509	R53109	Hs.247362	dimethylarginine dimethylaminohydrolase 2	0.066
	101030	J05037	Hs.76751	serine dehydratase	0.066
	102753	U80226		Human gamma-aminobutyric acid transaminase mRNA, partial cds	0.067
	126991	R31652	Hs.821	bigiycan	0.067
45					0.067
43	109583	F02322	Hs.26135	ESTs	
	119241	T12559	Hs.221382	ESTs	0.067
	130569	AA156597	Hs.256441	EST; Moderately similar to CGI-136 protein [H.sapiens]	0.067
	112926	T10316	Hs.4302	ESTs	0.067
	120495	AA256073	Hs.190626	ESTs	0.067
50	130931	AA278412	Hs.21346	ESTs; Weakly similar to F42C5.7 gene product [C.elegans]	0.067
50					0.067
	129982	M87789	Hs.140	immunoglobulin gamma 3 (Gm marker)	
	133832	H03387	Hs.241305	estrogen-responsive B box protein	0.067
	110697	H93721	Hs.20798	ESTs -	0.067
	121183	AA400138	Hs.97703	ESTs	0.067
55	130953	U12707	Hs.2157	Wiskott-Aldrich syndrome (ecezema-thrombocytopenia)	0.067
55				phosphofructokinase; muscle	0.067
	102218	U24183	Hs.75160		
	114181	Z39079	Hs.8021	KIAA1058 protein	0.067
	116581	D51287	Hs.82148	ribosomal protein S12	0.067
	132498	T87708	Hs.50098	ESTs	0.068
60	103788	AA096014	Hs.9527	ESTs; Highly similar to HSPC013 [H.sapiens]	0.068
-			11010001	Human amiloride-sensitive epithelial sodium channel gamma subunit mRNA,	
	102459	U48936			0.000
				5' end, partial cds	0.068
	100373	D79999	Hs.77225	ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 1	0.068
	132717	AA203321	Hs.151696	DKFZP727G051 protein	0.068
65	128863	D87462	Hs.106674	BRCA1 associated protein-1 (ubiquitin carboxy-terminal hydrolase)	0.068
	115193	AA262029	Hs.88218	ESTs	0.068
					0.069
	124558	N66046	Hs.141605	ESTs	
	117225	N20392	Hs.42846	ESTs	0.069
	110665	H83380	Hs.32757	ESTs	0.069

	132905	U70663	Hs.182965	Kruppel-like factor 4 (gut)	0.069
	105778	AA348910	Hs.153299	DOM-3 (C. elegans) homolog Z	0.069
	134770	R72079	Hs.89575	CD79B antigen (immunoglobulin-associated beta)	0.069
	123097	AA485869	Hs.105671	ESTs	0.069
5	100750	HG3523-HT4899	110,100071	Proto-Oncogene C-Myc, Ait. Splice 3, Orf 114	0.069
,	125091	T91518		ye20f05.s1 Stratagene lung (#937210) H sapiens cDNA clone IMAGE:	
	123091	191010		3' similar to contains Atu repetitive element contains MER12 repetitive element	
				·	0.069
		Hearen I France		mRNA sequence.	0.069
10	100756	HG3565-HT3768	11. 40400	Zinc Finger Protein (Gb:M88357)	0.069
10	113483	T87768	Hs.16439	ESTs	0.069
•	101119	L09708	Hs.2253	complement component 2	
	102286	U31628	Hs.12503	interleukin 15 receptor; alpha	0.07
	135349	D83174	Hs.9930	collagen-binding protein 2 (colligen 2)	0.07
	100991	J03764	Hs.82085	plasminogen activator inhibitor; type i	0.07
15	133675	AA443720	Hs.7551	ESTs; Weakly similar to T25G3.1 [C.elegans]	0.07
	105422	AA251014	Hs.12210	ESTs	0.07
	102932	X13334	Hs.75627	CD14 antigen	0.07
	119147	R58878	Hs.65739	ESTs	0.07
	104900	AA055048	Hs.180481	ESTs; Weakly similar to ACROSIN PRECURSOR [H.sapiens]	0.07
20	133185	AA481404	Hs.6686	ESTs	0.07
	115496	AA290674	Hs.71819	eukaryotic translation initiation factor 4E binding protein 1	0.07
	121005	AA398332	Hs.97613	ESTs	0.07
	124869	R69088	Hs.28728	ESTs; Weakly similar to F55A12.9 [C.elegans]	0.071
	129154	N23673	Hs.108969	mannosidase; alpha; class 2B; member 1	0.071
25	112161	R48295	•	ESTs: Wkly smlr to I! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.071
	125251	W87486	Hs.141464	ESTs	0.071
	134298	J00116	Hs.81343	collagen; type II; alpha 1 (primary osteoarthritis; spondyloepiphyseal	
	.0.200			dysplasia; congenital)	0.071
	119745	W70264	Hs.58093	ESTs	0.071
30	131306	AA232686	Hs.25489	ESTs	0.071
50	107776	AA018820	Hs.221147	ESTs	0.071
	134271	AA199630	Hs.184456	ESTs; Widy smir to II ALU SUBFAMILY SX WARNING ENTRY II [H.sapiens]	0.071
	101798	M85220	1101101100	Accession not listed in Genbank	0.071
	135402	S76942	Hs.99922	dopamine receptor D4	0.071
35	118742	N74052	Hs.50424	EST	0.071
55	131867	N64656	Hs.3353	Homo sapiens done 24940 mRNA sequence	0.071
	102923	X12517	Hs.1063	small nuclear ribonucleoprotein polypeptide C	0.072
	100775	HG371-HT26388	110.1000	Mucin 1, Epithelial, Alt. Splice 9	0.072
	111020	N54361	Hs.185726	ESTs	0.072
40	134224	X80822	Hs.163593	ribosomal protein L18a	0.072
40	124059	F13673	Hs.89769	ESTs	0.072
	133972	AA160743	Hs.78019	Homo sepiens clone 24432 mRNA sequence	0.072
	129681	AA436009	Hs.178186	ESTs; Weakly similar to WASP-family protein [H.sapiens]	0.072
	103065	X58399	Hs.81221	Human L2-9 transcript of unrearranged immunoglobutin V(H)5 pseudogene	0.072
45	124966	T19271	Hs.155560	calnexin	0.072
43	112270	R53021	Hs.203358	ESTs	0.072
	118704	F10183	Hs.66140	EST	0.072
		M13699	Hs.111461	cerulopiasmin (ferroxidase)	0.072
	129890	M13099 AA972008	Hs.166253	ESTs; Highly similar to KIAA0476 protein [H.sapiens]	0.072
50	127345	R63090	Hs.28391	ESTs Tagaily samual to retreat to product a tagatorist	0.072
20	112436	AA053033	Hs.203330	ESTs	0.072
	114531		Hs.94814	ESTs	0.072
	135122	H99080	Hs.134200	Homo sapiens mRNA; cDNA DKFZp564C186 (from clone DKFZp564C186)	0.072
	103934	AA281338	Hs.185764	ESTs; Weakly similar to hypothetical protein [H.sapiens]	0.072
55	109363	AA215369	Hs.33403	ESTS THE ANY SURLICE IN HYPOLICUCAL PROCESS [T.Sapiono]	0.073
22	112647	R83329		otoferlin	0.073
	127083	Z44079	Hs.91608 Hs.63236	synuclein; gamma (breast cancer-specific protein 1)	0.073
	133027	AA402624	Hs.250986	EST	0.073
	122086	AA432121		ESTs	0.073
6 0	110405	H47542	Hs.33962		0.073
60	128697	AB002344	Hs.103915	KIAA0346 protein ESTs	0.073
	112221	R50380	Hs.25670		0.073
	100478	HG1067-HT1067	Un 65795	Mucin (Gb:M22406) ESTs	0.073
	115598	AA400129	Hs.65735	KIAA0828 protein	0.073
65	132491	AA227137	Hs.4984	Human alpha-1 collagen type II gene, exons 1, 2 and 3	0.073
O)	101655	M60299	Hs.34737	ESTs	0.073
	106018	AA411887	Hs.158196	DKFZP434B103 protein	0.073
	129683	W05348	Hs.79347	KIAA0211 gene product	0.073
	134137	F10045	Hs.19872	ESTs	0.073
	114008	W89128	110.10012	·	4

	107653	AA010210	Hs.47041	ESTs	0.073
	104798	AA029462	Hs.17235	ESTs	0.073
			Hs.79006		0.073
	134082	L16991		deoxythymidylate kinase	
_	119180	R80413	Hs.92520	ESTs	0.073
5	107741	AA016982	Hs.64341	ESTs	0.073
	133683	AA335223	Hs.75558	pepsinogen 5; group I (pepsinogen A)	0.073
	111694	R22035	Hs.23331	ESTs	0.073
					0.073
	120764	AA338729	Hs.133096	ESTs	
	119389	T88826	Hs.90973	ESTs	0.074
10	100929	HG688-HT688		Major Histocompatibility Complex, Class II, Dr Beta 2 (Gb:X65561)	0.074
	119388	T88798		plasminogen activator inhibitor, type i	0.074
	133019	AF009674	Hs.184434	axin	0.074
					0.074
	105185	AA191495	Hs.189937	ESTs	
	133413	S72043	Hs.73133	metallothionein 3 (growth inhibitory factor (neurotrophic))	0.074
15	101017	J04599	Hs.821	biglycan	0.074
	132865	K02765	Hs.251972	complement component 3	0.074
	110882	N36001	Hs.17348	ESTs; Wkly smir to II ALU SUBFAMILY SQ WARNING ENTRY II [H.sapiens]	0.074
	129197	T90303	Hs.109308	ESTs; Widy smir to leucine-rich glioma-inactivated prot precursor [H.sapiens]	0.074
00	101184	L19871	Hs.460	activating transcription factor 3	0.075
20	134910	AA431320	Hs.9100	ESTs	0.075
	119411	T96621	Hs.203656	EST	0.075
	102000	U01824	Hs.380	solute carrier family 1 (glial high affinity glutamate transporter); member 2	0.075
	114691	AA121893	Hs.103779	ESTs: Weakly similar to envelope protein [H.saptens]	0.075
					0.075
05	134179	U53204	Hs.79706	plectin 1; intermediate filament binding protein; 500kD	0.075
25	134503	U34880	Hs.84183	diptheria toxin resistance protein required for diphthamide	
				biosynthesis (Saccharomyces)-like 1	0.075
	129719	N66396	Hs.167766	ESTs: Moderately similar to Pro-a2(XI) [H.sapiens]	0.075
	113916	W80464	Hs.31928	ESTs; Wkly smir to alternatively spliced product using exon 13A [H.sapiens]	0.075
			Hs.4947	ESTs	0.075
20	113897	W73926			
30	129697	R00841	Hs.172069	DKFZP434C212 protein	0.075
	112078	R44155	Hs.112218	ESTs	0.075
	121980	AA429886	Hs.110407	ESTs; Weakly similar to coded for by C. elegans cDNA yk173c12.5 [C.elegans]	0.075
	100898	HG4638-HT5050		Spliceosomal Protein Sap 49	0.075
	121626	AA416974	Hs.98174	ESTs	0.075
35					0.075
22	133670	AA243416	Hs.75470	hypothetical protein; expressed in osteoblast	_
	131879	AA017161	Hs.33792	ESTs	0.075
	100254	D38037	Hs.77643	FK506-binding protein 1B (12.6 kD)	0.075
	133194	AA291726	Hs.67201	ESTs	0.075
	106081	AA418394	Hs.25354	ESTs	0.075
40		AA351433	Hs.66187	Homo sapiens clone 23700 mRNA sequence	0.076
40	115544				0.076
	119955	W87460	Hs.58989	ESTs	
	104407	H61361	Hs.102171	immunoglobulin superfamily containing leucine-rich repeat	0.076
	135019	X58431	Hs.98428	Human Hox2.2 gene for a homeobox protein	0.076
	114815	AA161488	Hs.103931	DKFZP434B0335 protein	0.076
45	119471	W31352	Hs.55445	ESTs	0.076
-1.5				ESTs	0.076
	117788	N48292	Hs.46849		
	119406	T95064	Hs.193771	EST	0.076
	130777	R61742	Hs.256554	ESTs	0.076
	130494	L13197	Hs.75874	pregnancy-associated plasma protein A	0.076
50	104107	AA424111	Hs.12598	T-cell tymphoma invasion and metastasis 2	0.076
-	121483	AA411981	Hs.25274	ESTs; Modily smir to putative seven pass transmembrane prot [H.sapiens]	0.076
					0.076
	104451	M13299	Hs.102119	blue cone pigment	
	118027	N52770	Hs.75968	thymosin; beta 4; X chromosome	0.076
	109419	AA227560	Hs.86987	receptor-Interacting serine-threonine kinase 3	0.076
55	115783	AA424487	Hs.72289	EST's; Wealdy similar to LIV-1 protein [H.sapiens]	0.076
	110585	H62223	Hs.133526	ESTs; Wkly smlr to !!!ALU SUBFAMILY SB1 WARNING ENTRY !!![H.sapiens]	0.076
		AA488863	Hs.105216	ESTs; Weakly smir to !!ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.077
	123165				
	103966	AA303166	Hs.127270	ESTs	0.077
	109549	F01528	Hs.21192	Homo sapiens done 25155 mRNA sequence	0.077
60	106730	AA465520	Hs.22313	ESTs	0.077
	120310	AA193676	Hs.118926	DKFZP586K0919 protein	0.077
	104078	AA402801	Hs.222010	ESTs	0.077
				ESTs	0.077
	117624	N35978	Hs.82364		
<i>C</i> =	112421	R62441	Hs.23127	ESTs	0.077
65	106958	AA497026	Hs.22059	ESTs	0.077
	129984	W92811	Hs.183927	ESTs; Wealdy similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.saplens]	0.077
	122044	AA431456	Hs.98736	EST	0.077
			Hs.175144	ESTs	0.077
	123280	AA491285			0.01 1
	115710	AA412535	Hs.55235	sphingomyelin phosphodiesterase 2; neutra	

				I membrane (neutral sphingomyetinase)	0.077
-	134129	D87444	Hs.79305	KIAA0255 gene product	0.077
	129321	AA224502	Hs.206501	Homo sapiens clone 643 unknown mRNA; complete sequence	0.078
	130513	AA460257	Hs.15866	ESTs	0.078
5	100996	J03909	Hs.14623	interieron; gamma-inducible protein 30	0.078
•	128358	Al095718	Hs.135015	ESTs	0.078
	128544	R59352	Hs.119273	KIAA0296 gene product	0.078
	106040	AA412681	Hs.125139	ESTs	0.078
	106495	AA452113	Hs.32454	ESTs: Moderately similar to KIAA0544 protein [H.saplens]	0.078
10	131833	R40899	Hs.32973	glycine receptor; beta	0.078
10	119219	R97176	Hs.110783	ESTs	0.078
	135415	X60655	Hs.99967	even-skipped homeo box 1 (homolog of Drosophila)	0.078
	109457	AA232646	Hs.68061	ESTs; Weakly similar to sphingosine kinase [M.musculus]	0.078
	117137	H96670	Hs.42221	ESTs	0.078
15	107094	AA609614	Hs.5241	ESTs	0.078
13	130165	T90529	Hs.251613	EST	0.078
	124072	H05252	Hs.101637	EST: Weakly similar to hypothetical protein [H.sapiens]	0.078
	126151	AA324743	Hs.40808	ESTs	0.078
	119035	R01779	Hs.7740	ESTs	0.078
20	110157	H18987	Hs.169731	ESTs	0.078
20	128515	AA149044	Hs.10086	ESTs; Highly similar to HYPOTHETICAL PROTEIN KIAA0195 [H.sapiens]	0.078
	133069	U94836	Hs.6430	protein with polyglutamine repeat	0.078
	112209	R49644	Hs.24865	ESTs	0.078
	133361	R28279	Hs.71848	Human clone 23548 mRNA sequence	0.078
25	134714	U89922	Hs.890	lymphotoxin beta (TNF superfamily; member 3)	0.078
45	129805	T86796	Hs.132875	ESTs: Weakly similar to predicted using Genefinder [C.elegans]	0.079
	120421	AA236166	Hs.132957	ESTs: Weakly similar to chondromodulin-I precursor [H.saplens]	0.079
	100885	HG4490-HT4876	710.702.00	Proline-Rich Protein Pro4. Allele	0.079
	102789	U86759	Hs.158336	netrin 2 (chicken)-like	0.079
30	120139	Z39273	Hs.77876	Human DNA from chromosome 19-specific cosmid R30923; genomic sequence	0.079
50	135238	U76343	Hs.96970	Human liver GABA transport protein mRNA; 3' end	0.079
	129618	N54845	Hs.173030	ESTs	0.079
	132960	AA609742	Hs.6150	KIAA0521 protein	0.079
	108751	AA127063	Hs.203717	ESTs	0.079
35	134060	D42039	Hs.78871	KIAA0081 protein	0.079
55	111338	N79778	Hs.35094	extracellular matrix protein 2; female organ and adipocyte specific	0.079
	112345	R56880	Hs.26563	ESTs	0.079
	126456	W00881		za56d02.r1 Soares fetal liver splean 1NFLS Homo sapiens cDNA done	
				IMAGE:296547 5', mRNA sequence.	0.079
40	128937	Z39939	Hs.10726	ESTs	0.079
••	103485	Y08409 ·	Hs.248415	thyrold hormone responsive SPOT14 (rat) hornolog	0.079
	111202	N68280	Hs.107922	ESTs	0.079
	132625	AA429890	Hs.166066	cisplatin resistance associated	0.079
	103434	X98085	Hs.54433	tenascin R (restrictin; janusin)	0.079
45	102616	U65581	Hs.159191	ribosomal protein L3-like	0.079
	102667	U70867	Hs.83974	solute carrier family 21 (prostaglandin transporter); member 2	0.079
	111422	R01127	Hs.19104	ESTs	0.079
	101411	M16938	Hs.820	homeo box C6	0.08
	113267	T65058	Hs.12725	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	0.08
50	103559	Z19585	Hs.75774	thrombospondin 4	80.0
	131588	AA258613	Hs.29189	KIAA1021 protein	0.08
	107821	AA020991	Hs.172856	ESTs	0.08
	134278	H82839	Hs.81001	ESTs; Wealdy similar to DY3.6 [C.elegans]	0.08
	120893	AA369800	Hs.97058	EST; Highly similar to CMP-N-acetylneuraminic acid hydroxylase [H.sapiens]	80.0
55	108786	AA128999		zo8f12.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens	
				cDNA clone IMAGE:567119 3', mRNA sequence	0.08
	106890	AA489245	Hs.88500	KIAA1066 protein; JSAP1 homolog (mouse); JIP3 homolog (mouse)	0.08
	119760	W72267	Hs.58219	ESTs	0.08
	132999	Y00787	Hs.624	interleukin 8	0.08
60	129156	AA028195	Hs.108973	dolichyl-phosphate mannosyltransferase polypeptide 2; regulatory subunit	0.08
	121171	AA400008	Hs.161814	ESTs	0.08
	103864	AA207264	Hs.181077	ESTs; Weakly similar to Miller-Dieker lissencephaly gene [H.sapiéns]	0.08
	128591	AA255537	Hs.102057	ESTs; Weakly similar to O-linked GlcNAc transferase [H.sapiens]	0.08
	122172	AA435753	Hs.161854	EST	0.08
65	112802	R97647	Hs.174855	EST	80.0
	107723	AA015967	Hs.60680	EST	0.08
	113011	T23737	Hs.1600	chaperonin containing TCP1; subunit 5 (epsilon)	0.081
	131279	AA089853	Hs.25197	STIP1 homotogy and U-Box containing protein 1	0.081
	103190	X70083	Hs.58414	filamin C; gamma (actin-binding protein-280)	0.081

	103956	AA292411	Hs.233348	ESTs	0.081
	112706	R89828	Hs.138493	ESTs	0.081
	126126	M85370		EST01884 Fetal brain, Stratagene (cat#936206) Homo sapiens cDNA	
-		*****		clone HFBCH10, mRNA sequence.	0.081
5	130094	H43286	Hs.167017	gamma-aminobutyric acid (GABA) B receptor; 1	0.081
	100800	HG3945-HT4215	11- 04040	Phospholipid Transfer Protein	0.081
	108675	AA115240	Hs.61816	ESTs ESTs	0.081
	129420 129666	AA234259 M77349	Hs.99816 Hs.118787	transforming growth factor; beta-induced; 68kD	0.081
10	101645	M59807	Hs.943	natural killer cell transcript 4	0.081
10	130536	T17045	Hs.159492	spastic ataxia of Charlevoix-Saguenay (sacsin)	0.081
	107732	AA0161B1	Hs.59752	ESTs	0.081
	123071	AA482593	Hs.104285	ESTs	0.081
	113537	T90457	Hs.191293	ESTs	0.081
15	101250	L34060	Hs.79133	cadharin 8	0.081
	122521	AA449433	Hs.149227	ESTs; Weakly similar to PROLINE-RICH PROTEIN MP-3 [M.musculus]	0.081
	133914	N32811	Hs.77542	ESTs	0.081
	102038	U05659	Hs.477	hydroxysteroid (17-beta) dehydrogenase 3	0.081
••	110336	H40338	Hs.174094	ESTs; Weakly similar to 11 ALU SUBFAMILY J WARNING ENTRY 11 [H.sapiens]	0.081
20	118637	N70274	Hs.49822	ESTs	0.081
	117966	N51589	Hs.94012	ESTs	0.082
	104424	H87671	Hs.182320	ESTs; Weakly similar to Mouse 19.5 mRNA; complete cds [M.musculus]	0.082
	100361	D78361	Hs.125078	Human mRNA for omithine decarboxylase antizyme; ORF 1 and ORF 2	0.082
25.	112974	T17291	Hs.101174	microtubule-associated protein tau KIAA0148 gene product	0.082 0.082
23 .	132832 132039	D63482 Z39489	Hs.57734 Hs.3781	Homo sapiens BAC done RG118D07 from 7q31	0.082
	113272	T65383	Hs.12807	ESTs	0.082
	104924	AA058532	Hs.28774	ESTs	0.082
	111061	N58054	Hs.36859	ESTs	0.082
30	129269	R45977	Hs.163593	ribosomal protein L18a	0.082
•	102453	U48437	Hs.74565	arnyloid beta (A4) precursor-like protein 1	0.082
	126204	Al080388	Hs.134296	ESTs	0.082
	116615	D80666	Hs.45203	ESTs	0.082
~ ~	128856	AA219552	Hs.204144	ESTs; Modly smlr to turnor necrosis factor-alpha-induced prot B12 [H.sapiens]	0.082
35	112776	R95850	Hs.34494	ESTs	0.082
	105494	AA256273	Hs.29288	Homo sapiens mRNA; cDNA DKFZp434P174 (from clone DKFZp434P174)	0.082
	117000	H84718	Hs.112236	ESTs; Wealdy similar to repressor protein [H.sapiens]	0.082
	112656	R85260	Hs.133151	transient receptor potential channel 7	0.082
40	128963	J03890	Hs.1074	surfactant; pulmonary-associated protein C	0.083
40	116957 101057	H79292 K03430	Hs.39960	ESTs Human complement C1q B-chain gene, exon A+1	0.083
	121948	AA429452	Hs.98582	ESTs	0.083
	130822	M80647	Hs.2001	thromboxane A synthase 1 (platelet; cytochrome P450; subfamily V)	0.083
	122743	AA458674	Hs.99478	EST	0.083
45	114569	AA063316		zm2d1.s1 Stratagene comeal stroma (#937222) Homo sapiens cDNA clone	
				IMAGE:512947 3' similar to TR:E198281 E198281 THIOREDOXIN	
				REDUCTASE ; contains Alu repetitive element, mRNA sequence	0.083
	132270	U70671	Hs.43509	ataxin 2 related protein	0.083
	108126	AA052951	Hs.47413	ESTs	0.083
50	102880	X04325	Hs.2679	gap junction protein; beta 1; 32kD (connexin 32; Charcot-Marie-Tooth	
				neuropathy, X-linked)	0.083
	115365	AA282089	Hs.88599	ESTs	0.083
	114529	AA052980 AA249586	Hs.206704	ESTS - STANDARD OF SACTOMEDIN DELATED	0.083
5 5	135017	AA249566	Hs.9315	ESTs; Weakly similar to NEURONAL OLFACTOMEDIN-RELATED ER LOCALIZED PROTEIN (H.Sapiens)	0.083
33	123776	AA610071	Hs.112813	ESTs	0.083
	114454	AA021091	Hs.226208	ESTs .	0.083
	101246	L33799	Hs.202097	procollagen C-endopeptidase enhancer	0.083
	107366	U78310	Hs.13501	pescadillo (zebrafish) homolog 1; containing BRCT domain	0.083
60	132779	T89601	Hs.95497	ESTs; Weakly similar to GLUCOSE TRANSPORTER TYPE 5;	
				SMALL INTESTINE [H.sapiens]	0.083
	129709	AA112209	Hs.1209	acyl-Coenzyme A dehydrogenase; long chain	0.083
	115244	AA278767	Hs.914	Human mRNA for SB classil histocompatibility antigen alpha-chain	0.083
~ ~	123253	AA490878	Hs.111334	ferritin; light polypeptide	0.083
65	128469	T23724	Hs.258677	EST	0.083
	132220	AA431847	Hs.42409	ESTs; Highly similar to CGI-146 protein [H.sapiens]	0.083
	111664	R17939	Hs.22344	ESTS	0.084
	102354 112828	U38268 R98774	Hs.194338	Human cytochrome b pseudogene, partial cds ESTs	0.084
	112020	Naul I-4	113.104330	6010	Q.

	110410	H47868	Hs.34024	EST6	0.084
	102620	U66052		Human clone W2-6 mRNA from chromosome X	0.084
	102550	U58087	Hs.14541	cullin 1	0.084
	108417	AA075716		zm89e5.s1 Stratagene ovarian cancer (#937219) H sapiens cDNA clone	
5				IMAGE:54512 3' similar to gb:X14723 CLUSTERIN PRECURSOR	
				(HUMAN);, mRNA sequence	0.084
	113299	T67285	Hs.13089	ESTs ·	0.084
	117869	N49947	Hs.46990	ESTs	0.084
	113734	T98484	Hs.18377	EST	0.084
10	133325	C00424	Hs.7101	periodontal ligament fibroblast protein	0.084
	123368	AA505022	Hs.124838	ESTs .	0.084
	101615	M55153	Hs.8265	transglutaminase 2 (C polypeptide; protein-glutamine	
				-gamma-glutamyltransferase)	0.084
	119352	T65972	Hs.193365	ESTs; Moderately similar to alternatively spliced product	•
15				using exon 13A [H.sapiens]	0.084
	123828	AA620686	Hs.112884	EST	0.084
	103611	Z38133	Hs.113973	myosin; heavy polypeptide 8; skeletal muscle; perinatal	0.084
	131289	AA485697	Hs.25334	ESTs; Weakly similar to ION CHANNEL HOMOLOG RIC	
	•			PRECURSOR [M.musculus]	0.084
20	128678	T15896	Hs.103535	ESTs ·	0.084
	130814	AA256695	Hs.19813	ESTs '	0.084
	133391	X57579	Hs.727	inhibln; beta A (activin A; activin AB alpha polypeptide)	0.084
	129322	AA437153	Hs.110407	ESTs; Weakly similar to coded for by C. elegans CDNA yk173c12.5 [C.elegans]	0.084
	109284	AA196995	Hs.86092	ESTs	0.084
25	116689	F09222	Hs.66099	ESTs .	0.085
	100545	HG2147-HT2217		Mucin 3, Intestinal (Gb:M55405)	0.085
	102634	U66711	Hs.77667	lymphocyte antigen 6 complex; locus E	0.085
	111735	R25389	Hs.23856	ESTs; Weakly similar to FAST kinase [H.saplens]	0.085
	105181	AA190676	Hs.10974	ESTs; Moderately similar to unknown [R.norvegicus]	0.085
30	122681	AA455350	Hs.99401	EST	0.085
	114543	AA056121	Hs.158419	ESTs .	0.085
	133597	AA425908	Hs.75139	partner of RAC1 (artaptin 2)	0.085
	121064	AA398647	Hs.97406	ESTs	0.085
	122231	AA436369	Hs.197728	ESTs; Weakly similar to ZINC FINGER PROTEIN 135 [H.sapiens]	0.085
35	100309	D50550	Hs.95659	lethal giant larvae (Drosophila) homolog 1	0.085
	101727	M73481	Hs.73883	gastrin-releasing peptide receptor	0.085
	131226	AA165400	Hs.24476	ESTs	0.085
	133580	AA095041	Hs.181073	ESTs	0.085
	102792	U87964	Hs.227576	GTP binding protein 1	0.085
40	104976	AA086480	Hs.183669	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.saplens]	0.085
	120865	AA350631	Hs.96963	EST	0.085
	106080	AA418046	Hs.35124	ESTs	0.085 0.085
	128571	AA416619	Hs.101661	ESTs .	0.085
	101838	M92934	Hs.75511	connective tissue growth factor	0.085
45	128514	H84261	Hs.100843	ESTs; Weakly similar to similar to GTP-binding protein [C.alegans]	0.085
	123099	AA485931	Hs.79	aminoacylase 1	0.085
	134067	Y08200	Hs.78920	Rab geranylgeranyltransferase; alpha subunit	0.085
	116967	H80336	Hs.40124	EST	0.085
50	110053	H12586	Hs.89563	nuclear cap binding protein 1; 80kD	0.085
50	114395	AA007313	Hs.110155	ESTs	0.085
	107465	W44681	Hs.251385	murine retrovirus integration site 1 homolog	0.085
	101983	S85655	Hs.75323	prohibitin	0.086
	112544	R70948	Hs.29153	ESTs - ESTs	0.086
55	111423	R01165	Hs.188507	Human germline IgD chain gene; C-region; C-delta-1 domain	0.006
55	127918	AA806043	Hs.115396	ESTs	080.0
	107300	T40348	Hs.90488	yi71a08.rl Soares breast 2NbHBst Homo sapiens cDNA done IMAGE:154166	0.00-
	134947	R51194		5' similar to gb:111284 DUAL SPECIFICITY MITOGEN-ACTIVATED PROTEIN	
				KINASE KINASE 1 (HUMAN);, mRNA sequence.	0.086
60	40 <i>4E</i> 70	NC024E	Hs.127179	ESTS; Weakly similar to TERATOCARCINOMA-DERIVED GROWTH	
UU	124579	N68345	112.12/1/3	FACTOR 1 (H.sapiens)	0.086
	420/74	70000	Hs.183706	adducin 1 (alpha)	0.086
	130471	Z68280	Hs.92955	ESTs	0.086
	116596 105069	D60755 AA136345	Hs.23617	ESTs; Weakly similar to ZFOC1 gene product [H.saplens]	0.086
65	102491	U51010	110/2001/	Human nicotinamide N-methyltransferase gene, exon 1 and 5' flanking region	0.086
UJ	130069	AA055896	Hs.146428	collagen; type V; alpha 1	0.086
	130234	AA280413	Hs.157441	spleen focus forming virus (SFFV) proviral integration oncogene spl1	0.086
	120540	AA262992	Hs.96417	ESTs	0.086
	122508	AA449221	Hs.20432	ESTs	0.086
			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

	128054	Al205718	Hs.125416	ESTs	0.086
	133020	AA053248	Hs.185182	ESTs; Highly similar to 40S RIBOSOMAL PROTEIN S10 [H.saplens]	0.086
	130056	AA017356	Hs.171900	armadillo repeat gene deletes in velocardiofacial syndrome	0.086
	130504	U48865	Hs.158323	CCAAT/enhancer binding protein (C/EBP); epsilon	0.086
5	133978	W73859	Hs.78061	transcription factor 21	0.086
•	105265	AA227941	Hs.26088	ESTs	0.086
	133035	T15965	Hs.6333	ESTs	0.086
	100768	HG3636-HT3846	110,0000		0.006
			Un 47074	Myosin, Heavy Polypeptide 9, Non-Muscle	
10	129338	T56800	Hs.47274	Homo sapiens mRNA; cDNA DKFZp564B176 (from clone DKFZp564B176)	0.086
10	132789	W23761	Hs.56876	ESTs	0.086
	116099	AA456309	Hs.58831	regulator of Fas-induced apoptosis	0.086
	100721	HG3355-HT3532		Peroxisome Proliferator Activated Receptor (Gb:Z30972)	0.087
	112569	R73150	Hs.75270	GTP-binding protein homologous to Saccharomyces cerevisiae SEC4	0.087
	130645	AA020942	Hs.17200	STAM-like protein containing SH3 and ITAM domains 2	0.087
15	100751	HG3527-HT3721		Luteinizing Hormane, Beta Subunit	0.087
	134550	M27161	Hs.85258	CD8 antigen; alpha potypeptide (p32)	0.087
	130885	AA338646	Hs.20912	adenomatous polyposis coll fike	0.087
	101446	M21302	Hs.56306	small proline-rich protein 2A	0.087
	116287	AA487856	Hs.155829	KIAAD676 protein	0.087
20	134034	X89267	Hs.78601	uroporphyrinogan decarboxylase	0.087
20	130860	U66061	Hs.241395	protease; serine; 1 (trypsin 1)	0.087
	109901	H04992	Hs.30499	ESTs	0.087
					0.007
	107537	Z 20777	Hs.9857	ESTs; Weakly similar to peroxisomal short-chair alcohol	0.007
25		4 4 400000		dehydrogenase [H.sapiens]	0.087
25	133232	AA496030	Hs.6845	ESTs	0.087
	108559	AA085161		zn12c5.s1 Stratagene hNT neuron (#937233) H sapiens cDNA clone	
				IMAGE:54728 3' similar to TR:G1151228 G1151228 LPG1P.;, mRNA seq	0.087
	121288	AA401735	Hs.97340	EST	0.087
	108844	AA132916	Hs.177961	Human Chromosome 16 BAC clone CIT987SK-A-388D4	0.087
30	129874	AA406488	Hs.181551	ESTs	0.087
	105139	AA164543	Hs.110082	ESTs	880.0
	124789	R43803	Hs.78110	ESTs; Weakly similar to F17A9.2 [C.elegans]	0.088
	115923	AA441929	Hs.38205	ESTs	0.088
	123640	AA609292	Hs.112681	ESTs	0.088
35	131607	AA351409	Hs.172740	microtubule-associated protein; RP/EB family; member 3	0.088
55	130064	T67053	Hs.181125	immunoglobulin lambda gene cluster	0.088
	108752	AA127070	Hs.71055	ESTs	0.000
				=-:-	0.088
	124249	H68077	Hs.108211	ESTS	
40	100109	AJ000480	Hs.143513	phosphoprotein regulated by mitogenic pathways	0.088
40	104642	AA004662	Hs.184245	KIAA0929 protein Msx2 interacting nuclear target (MINT) homolog	0.088
	131752	AA453311	Hs.31566	ESTs	0.088
	114727	AA132545	Hs.190202	ESTs	0.088
	120965	AA398089	Hs.179715	EST8	0.088
	100396	D84361	Hs.151123	Human mRNA for p52 and p64 isoforms of N-Shc; complete cds	0.088
45	106218	AA428451	Hs.91146	DKFZP586E0820 protein	0.088
	111562	R09567	Hs.187569	ESTs	0.088
	121219	AA400606	Hs.144344	EST	0.088
	101187	L20316	Hs.208	alucación receptor	880.0
	101513	M28210	Hs.27744	RAB3A; member RAS oncogene family	0.088
50	116454	AA621071	Hs.42034	ESTs; Moderately similar to T-complex protein 10A [H.sapiens]	0.088
	116171	AA463434	Hs.42658	ESTs	0.089
	117500	N31909	Hs.44278	ESTs	0.089
	119978	W88623	Hs.59190	EST .	0.089
	132005	D58231	Hs.173091	DKFZP434K151 protein	0.089
55					
<i>JJ</i>	109914	H05529	Hs.194704	leucine-rich; glioma inactivated 1	0.089
	130370	M55265	Hs.155140	caseln kinase 2; alpha 1 polypeptide	0.089
-	104262	AF009801	Hs.105941	bagpipe homeobox (Drosophila) homolog 1	0.089
	129708	AA417181	Hs.120858	ESTs	0.089
	106398	AA447545	Hs.18268	adenylate kinase 5	0.089
60	120884	AA365356	Hs.97041	ESTs	0.089
	130404	X72012	Hs.76753	endoglin (Osler-Rendu-Weber syndrome 1)	0.089
	114072	Z38184	Hs.123633	ESTs	0.089
	131470	X54938	Hs.2722	inositol 1;4;5-trisphosphate 3-kinase A	0.089
	124573	N67935	Hs.194703	adaptor-related protein complex 4; mu 1 subunit	0.089
65	114717	AA131240	Hs.252014	EST	0.089
	133806	M12759	Hs.76325	Human Ig J chain gene	0.09
	130470	AA398552	Hs.15711	KIAA0639 protein	0.09
	133182	Z80787	Hs.240135	H4 histone family; member J	0.09
	116036	AA452572	Hs.43866	ESTs	0.09
	110000	romacui C	1 NO. TOUGO	Loro	4.03

	132404	AA393903	Hs.4768	ESTs	0.09
	122695	AA456048	Hs.99403	ESTs; Moderately similar to undulin 2 [H.saplens]	0.09
	125975	AA495891	Hs.152290	ESTs; Highly similar to PACAP type-3/VIP type-2 receptor [H.sapiens]	0.09
_	110783	N23669	Hs.26407	ESTs	0.09
5	129860	AA410343	Hs.129826	tetraspan transmembrane 4 super family	0.09
	120740	AA302650	Hs.96654	EST	0.09
	119564	W38206		Accession not listed in Genbank	0.09
	134474	AA054746	Hs.8379	ESTs	0.09
1	119014	N95435	Hs.55144	ESTs	0.09
10	109791	F10669	Hs.13228	DRE-antagonist modulator; calsenilin	0.09
	117605	N35073	Hs.44433	ESTs	0.09
	121589	AA416627	Hs.191598	ESTs	0.09
	104326	D81655	Hs.143067	ESTs	0.09
	129861	N69507	Hs.129849	DKFZP564M182 protein	0.09
15	102795	U88667	Hs.198396	ATP-binding cassette; sub-family A (ABC1); member 4	0.09
	119626	W49499	Hs.184456	ESTs; Wkly smlr to II ALU SUBFAMILY SX WARNING ENTRY II [H.sapiens]	0.09
	110516	H56894	Hs.37368	EST	0.09
	105382	AA236853	Hs.111801	Homo sapiens mRNA; cDNA DKFZp564H2023 (from clone DKFZp564H2023)	0.09
	123754	AA609964	Hs.102021	ESTs ·	0.09
20	108008	AA039430	Hs.61920	ESTs :	0.09
	121057	AA398619 ·	Hs.142375	ESTs; Moderately similar to putative envelope protein [H.saplens]	0.091
	123675	AA609474	Hs.112713	EST	0.091
	135194	C20975	Hs.9613	ESTs; Highly similar to angiopoietin-related protein (H.sapiens)	0.091
	127070	AA641812	Hs.190037	ESTs	0.091
25	134051	S67070	Hs.78846	heat shock 27kD protein 2	0.091
	133382	AA112532	Hs.7247	ESTs	0.091
	103615	Z46967	Hs.115460	calicin	0.091
	118457	N66593	Hs.49230	EST	0.091
	118504	N67334	Hs.50158	ESTs	0.091
30	112915	T10176	Hs.4254	ESTs	0.091
	132088	AA470121	Hs.243960	HLA-B associated transcript-3	0.091
	101504	M27288	Hs.248156	oncostatin M	0.091
	112550	R71391	Hs.29074	ESTs	0.091
~ ~	128551	H09058	Hs.237323	N-acetylglucosamine-phosphate mutase; DKFZP434B187 protein	0.091
35	112879	T03541	Hs.115960	ESTs	0.091
	127079	Al364691	Hs.128628	ESTs; Moderately similar to CL3BC [R.norvegicus]	0.091
	101993	U01062	Hs.77515	inositol 1;4;5-triphosphate receptor; type 3	0.091
	113020	T23830	Hs.7303	ESTs; Weakly similar to PROHIBITIN [H.saplens]	0.091
40	120465	AA251505	Hs.130861	ESTs Control of the fact A	0.091
40	130152	U32645	Hs.151139	E74-like factor 4 (ets domain transcription factor)	0.091
	104941	AA065169	Hs.17805	ESTS	0.091
	110090	H16076	Hs.6915	ESTS	0.091 0.091
	135375	AA480888	Hs.99741	ESTs; Wealdy similar to BRAIN PROTEIN H5 [H.sapiens]	0.092
AE	123799	AA620418	Hs.112861	ESTS	0.092
45	118966	N93438	Hs.76907	ESTs; Highly similar to HSPC002 (H.sapiens)	0.092
	116969	H80633	Hs.143038	ESTS	0.092
	125147	W38150		Accession not listed in Genbank	0.092
	100836	HG4113-HT4383	Un 400007	Olfactory Receptor Or17-201	0.092
50	114726	AA132509	Hs.103827	EST ESTs	0.092
30	107311	T57738	Hs.174112		0.032
	112863	T03148	Hs.4810	EST ESTs	0.092
	129290	AA521407 X92762	Hs.110095	tafazzin (cardiomyopathy; dilated 3A (X-linked); endocardial	0.032
	103384	. 482/02	Hs.79021	fibroelastosis 2; Barth syndrome)	0.092
55	112508	D20010	He 20047		0.092
33	111863	R68213 R37495	Hs.28847 Hs.23578	ESTS ESTS	0.092
	131184	AA452705	Hs.23954	ESTs; Weakly similar to KIAA0584 protein [H.sapiens]	0.092
	107420	W26567	Hs.4775	ESTs	0.092
	111768	R27606	Hs.24185	ESTs	0.092
60	112290	R53940	Hs.26016	ESTs	0.092
00	130581	AA481982	Hs.16258	ESTs; Weakly similar to RAS-RELATED PROTEIN RAB-5A [H.sapiens]	0.092
	120744	AA302772	Hs.228649	EST	0.093
	112226	R50761	Hs.25738	ESTs	0.093
	116154	AA460951	Hs.57100	ESTs	0.093
65	102640	U67674	Hs.194783	solute carrier family 10 (sodium/bile acid cotransporter family); member 2	0.093
05	129797	X53595	Hs.1252	apolipoprotein H (beta-2-glycoprotein I)	0.093
	102705	U77180	Hs.50002	small inducible cytokine subfamily A (Cys-Cys); member 19	0.093
	132408	AA035547	Hs.47822	KIAA0380 gene product; RhoA-specific guanine nucleotide exchange factor	0.093
	108441	AA079079		zm97c9.s1 Stratagene colon HT29 (#937221) Homo sapiens cDNA clone	

				IMAGE:545872 3' similar to contains element MER22 MER22 repetitive	
				element ;, mRNA sequence	0.093
	108145	AA054133	Hs.63085	ESTs	0.093
_	106466	*AA449990	Hs.76057	lysophospholipase II	0.093
5	101697	M64358		Human rhom-3 gene, exon	0.093
	121294	AA401958	Hs.240170	ESTs; Moderately similar to alternatively spliced product using	0.000
				exon 13A [H.sapiens]	0.093
	117824	N49065	Hs.125201	ESTs; Weakly similar to B7 [M.musculus]	0.093
10	115771	AA422049	Hs.40780	ESTs .	0.093
10	102303	U33053	Hs.2499	protein kinase C-like 1	0.093
	131405	U79255	Hs.26468	amyloid beta (A4) precursor protein-binding; family A; member 2 (X11-like)	0.093
	112909	T10069	Hs.101094	ESTs	0.093
•	124173	H41281	Hs.107619	ESTs	
15	112488	R66896	Hs.28788	ESTs	0.093
13	130554	X593Q3	Hs.159637	valyl-IRNA synthetase 2	0.093
	106413	AA447964 R22891	Hs.6311	ESTs ESTs	0.094
	111711		Hs.7093	EST	0.094
	117595 113813	N34933 W45174	Hs.44664 Hs.31382	ESTs	0.094
20		AA018449	Hs.125220	Homo sapiens DNA from chromosome 19-cosmids R30102:R29350:R27740	0.004
20	107769	WIND	115, 120220	containing MEF2B; genomic sequence	0.094
	114966	AA250743	Hs.92198	ESTs; Highly similar to calcium-regulated heat stable protein	0.054
	1 (4900	MAZ3U143	U2'95 190	CRHSP-24 [H.sapiens]	0.094
	130297	H94949	Hs.171955	trophinin-assisting protein (tastin)	0.094
25	109589	F02429	Hs.6581	ESTs .	0.094
23	112592	R77631	Hs.29126	ESTs	0.094
	102314	U34038	Hs.154299	coagulation factor II (thrombin) receptor-like 1	0.094
	116128	AA459915	Hs.112193	mutS (E. coli) homolog 5	0.094
	106809	AA479704	Hs.220324	Human DNA sequence from done 283E3 on chromosome 1p36.21-36.33.	
30	100000	101110101	1.0220024	Contains the alternatively spliced gene for Matrix Metalloproteinase in the	
-				Female Reproductive tract MIFR1; -2; MMP21/22A; -B and -C; a novel gene;	
				the alternatively spliced CDC2L2 gene for	0.094
	130607	AA043894	Hs.16603	ESTs	0.094
	120592	AA281929	Hs.143974	ESTs	0.094
35	117230	N20535	Hs.43265	melastatin 1	0.094
	105948	AA404597	Hs.7133	ESTs	0.094
	101333	L47738	Hs.80313	p53 inducible protein	0.094
	101909	S69265		Homo sepiens mRNA for PLE21 protein; complete cds	0.094
	106959	AA497031	Hs.8657	ESTs; Highly similar to CTG7a [H.saplens]	0.094
40	127034	AA352389		ESTs; Wkly smir to glucose-6-phosphatase catalytic subunit [R.norvegicus]	0.095
	134430	H52105	Hs.8309	KIAA0747 protein	0.095
	120342	AA207105	Hs.45068	Homo sapiens mRNA; cDNA DKFZp434I143 (from clone DKFZp434I143)	0.095
	104450	L77564	Hs.103978	serine/threonine kinase 22B (spermiogenesis associated)	0.095
	130902	AA424530	Hs.21061	ESTs	0.095
45	102708	U77594	Hs.37682	retinoic acid receptor responder (tazarotene induced) 2	0.095
	107373	U85773	Hs.154695	phosphomannomutase 2	0.095
	123569	AA608952	Hs.195292	ESTs; Wealty similar to RNA helicase HDB/DICE1 [H.sapiens]	0.095
	102687	U73379	Hs.93002	ubiquitin carrier protein E2-C	0.095
~^	128888	AA034951	Hs.106893	ESTs	0.095
50	100283	D43642	Hs.2430	transcription factor-like 1	0.095
	102747	U79303	Hs.82482	protein predicted by clone 23882	0.095
	107798	AA019346	Hs.60918	EST	0.095
	123565	AA608907	Hs.112614	EST -	0.095
55	116010	AA449450	Hs.56421	ESTs; Weakly similar to Similarity to H.influenza ribonuclease PH [C.elegans]	0.095 0.095
55	117155	H97536	Hs.42391	EST	
	133094	AA115572	Hs.64746	chloride intracellular channel 3	0.095 0.095
	113174	T54659	Hs.9779	ESTs	0.095
	102016	U03270	Hs.122511	centrin; EF-hand protein; 1	0.095
60	130126	AB002318 X14767	Hs.150443 Hs.89768	KIAA0320 protein gamma-aminobutyric acid (GABA) A receptor; beta 1	0.095
UU	134813	N69440		ESTs	0.095
	132055 122229	AA436198	Hs.38132 Hs.103902	ESTS	0.095
		AA907314	Hs.188905	ESTS	0.096
	127574	AA053022	Hs.8312	ESTS	0.096
65	134432 128052	AA878398	Hs.190491	ESTS	0.096
O.J	101637	M58285	Hs.132834	hematopoletic protein 1	0.096
	103386	X92972	Hs.80324	protein phosphatase 6; catalytic subunit	0.096
	133079	AA477561	Hs.6449	ESTs	0.036
	120328	AA196979	Hs.104129	ESTs; Weakly similar to protease [H.saplens]	0.096
	150050	141100010	1100107120	me and examined an interesting to be a common of	

	107640	A A00004E	Hs.257808	ESTs	0.096
	123389	AA009815	Hs.221231	ESTS	0.096
		AA521176			
	103222	* X74795	Hs.77171	minichromosome maintenance deficient (S. cerevisiae) 5 (cell division cycle 46)	
5	111704	R22450	Hs.23396	ESTs; Highly similar to ZINC FINGER PROTEIN 140 [H.sapisns]	0.096
3	126856	AA306523		EST177475 Jurkat T-cells VI Homo saplens cDNA 5' end, mRNA sequence.	0.733
	127071	AA250806	11 484844	ESTs	0.096
	114550	AA056755	Hs.151714	ESTs	0.096
	125955	AJ356943	Hs.143761	ESTs	0.096
10	134363	M37033	Hs.82212	CD53 antigen	0.096
10	128550	W76492	Hs.170142	ESTs	0.096
	122598	AA453465	Hs.99329	ESTs	0.096
	118898	N90703	Hs.4236	KIAA0478 gene product	0.096
	117661	N39092	Hs.44940	EST8	0.096
	120996	AA398281	Hs.143684	EST8	0.096
15	123388	AA521172	Hs.134417	ESTs	0.096
	106700	AA463929	Hs.28701	ESTs	0.096
	112962	T16814	Hs.6828	ESTs	0.096
	121262	AA401372	Hs.97723	ESTs .	0.096
	134551	R44839	Hs.8526	i-beta-1;3-N-acetylglucosaminytiransferase	0.096
20	112060	R43754	Hs.21164	ESTs	0.096
	134678	AA039935	Hs.182595	dynein; axonemal; light polypeptide 4	0.096
	100855	HG4234-HT4504	113.102.000	Methylenetetrahydrofolate Reductase	0.097
	132414	N91183	Hs.48145	ESTs ~	0.097
					0.097
25	112900	T08758	Hs.3813	ESTs	0.097
25	115989	AA447777	Hs.93135	ESTs	
	103561	Z21488	Hs.143434	contactin 1	0.097
	131087	AA009738	Hs.22824	ESTs; Weakly similar to p160 myb-binding protein [M.musculus]	0.097
	120293	AA190859	Hs.191428	ESTs	0.097
20	111830	R36081	Hs.25085	EST .	0.097
30	113654	T95770	Hs.17666	ESTs	0.097
	132675	AA179338	Hs.5476	serine proteinase inhibitor	0.097
	120182	Z40125	Hs.91968	ESTs	0.097
	132879	U16282	Hs.5881	ELL gene (11-19 lysine-rich leukemia gene)	0.097
	134211	AA056681	Hs.80021	ESTs; Weakly similar to 62D9.p (D.melanogaster)	0.097
35	115448	AA284845	Hs.165051	ESTs .	0.097
	118118	N56901	Hs.47995	ESTs .	0.097
	107598	AA004528	Hs.169444	ESTs ·	0.097
	128933	H01824	Hs.760	GATA-binding protein 2	0.097
	114892	AA235988	Hs.86024	ESTs	0.097
40	101922	S75168	Hs.274	megakaryocyte-associated tyrosine kinase	0.097
	105444	AA252374	Hs.19333	ESTs; Weakly similar to ATP(GTP)-binding protein [H.sapiens]	0.097
	128155	AA926843	Hs.143302	ESTs	0.097
	116276	AA485870	Hs.44914	ESTs	0.097
	111964	R41227	Hs.21860	ESTs	0.097
45	135100	AA398926	Hs.251108	Homo sapiens mRNA; chromosome 1 specific transcript KIAA0493	0.097
	124872	R69251	Hs.101506	EST	0.097
	103084	X59932	Hs.77793	c-src tyrosine kinase	0.097
	124138	H23199	Hs.107010	ESTs	0.098
	130048	R31745	Hs.211612	SEC24 (S. cerevisiae) related gene family; member A	0.038
50				ocoze (o. celevisiae) leialeu gelle lalluy, monutei A	0.098
JU	100208	D26129	Hs.78224	ribonuclease; RNase A family; 1 (pancreatic)	
	123537	AA608775	Hs.112589	ESTS .	0.098
	118999	N95019	Hs.55092	ESTs	0.098
	119847	W80384	Hs.9853	ESTs -	0.098
E E	112819	R98618	Hs.35984	ESTs	0.098
55	131080	J05008	Hs.2271	endothelin 1	0.098
	127353	AA190853	Hs.155360	ESTs	0.098
	132068	X66365	Hs.38481	cyclin-dependent kinase 6	0.098
	105744	AA293436	Hs.12909	ESTs	0.098
	133680	M92357	Hs.101382	tumor necrosis factor; alpha-induced protein 2	0.098
60	122899	AA469960	Hs.178420	ESTs; Highly similar to WASP Interacting protein [H.sapiens]	0.098
	128700	U59286	Hs.103982	small inducible cytokine subfamily B (Cys-X-Cys); member 11	0.098
	104393	H46486	Hs.226499	nesca protein	0.098
•	123320	AA496792	Hs.139572	EST	0.098
	129169	N31641	Hs.109058	ribosomal protein S6 kinase; 90kD; polypeptide 5	0.098
65	135093	U51333	Hs.159237	hexpkinase 3 (white cell)	0.098
	113269	T65159	Hs.85044	ESTs	0.098
	124283	H86783	Hs.194136	ESTs: Moderately similar to zinc finger protein RIN ZF [R.norvegicus]	0.098
	114376	GMCSF		Accession not listed in Genbank	0.099
	100881	HG4458-HT4727		Immunoglobulin Heavy Chain, Vdic Regions (Gb:L23563)	0.099
				A	

	116572	D45654	Hs.65582	DKFZP586C1324 protein	0.099
	123956	AA621747	Hs.112847	EST	0.099
	100818	HG4018-HT4288	1101112011	Oploid-Binding Cell Adhesion Molecule	0.099
	132754	W47419	Hs.56007	Human DNA from chromosome 19-specific cosmid F25965; genomic sequence	0.099
5	112741	R93080	Hs.35035	ESTs	0.099
J	112748	R93299	Hs.166492	ESTs	0.099
	130858	S57235	Hs.246381	CD68 antigen	0.099
	124870	R69233	Hs.101504	ESTs	0.099
	125304	Z39833	Hs.124940	GTP-binding protein	0.099
10	121297	AA401995	Hs.97860	ESTs	0.099
10	128602	AA046103	Hs.102367	ESTs	0.099
		H00440	Hs.144524	ESTs; Weakly similar to signal transducer and activator of	0.000
	124062	1100440	ris. 144024	transcription 2 [M.musculus]	0.099
	400547	HG2149-HT2219		Mucin (Gb:M57417)	0.099
15	100547	AA282505	Hs.19015	ESTs	0.099
13	105652		Hs.72660	KIAA0585 protein	0.099
	133390	AA459945	Hs.743	Fc fragment of IgE; high affinity I; receptor for; gamma polypeptide	0.000
	133503	M33195		ESTs	0.099
	109461	AA232667	Hs.58210	phospholipase C; delta 1	0.099
20	102068	U09117	Hs.80776	Prospioupase C, deliza 1 ESTs	0.099
20	113464	T86931	Hs.16295		0.099
	104240	AB002368	Hs.70500	KIAA0370 protein	0.055
	121113	AA399109	Hs.161813	ESTS	V.1
	122896	AA469952	Hs.97899	ESTs; Weakly similar to dai2; len:343; CAI: 0.17; ALC_YEAST P25335	0.1
05		****		ALLANTOICASE [S.cerevisiae]	0.1
25	102405	U43148	Hs.159526	patched (Orosophila) homolog	0.1
	103599	Z33905	Hs.81218	receptor associated protein of the synapse; 43kD	0.1
	121079	AA398719	Hs.14169	ESTs; Weakly similar to CREB-binding protein [H.sapiens]	0.1
	115820	AA427487	Hs.39619	ESTs; Weakly similar to RETICULOCALBIN 1 PRECURSOR [H.sapiens]	0.781
	125106	T95766	Hs.189760	ESTs	
30	131373	N68116	Hs.26146	Down syndrome critical region gene 3	0.1
	120224	Z41239	Hs.106960	ESTs	0.1
	133090	AA448228	Hs.6468	EST8	0.1
	132300	AA133244	Hs.44234	EST8	0.1
	113129	T49384	Hs.8988	EST	0.1
35	110638	H73197	Hs.17241	ESTs	0.1
	131364	R53255	Hs.26010	ESTs	0.1
	105370	AA236476	Hs.22791	ESTs; Weakly similar to transmembrane protein with EGF-like and two	
				follistatin-like domains 1 [H.sapiens]	0.238

TABLE 11A shows the accession numbers for those primekeys lacking unigeneID's for Table 11. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT number: Accession:		Unique Eos probeset identifier number Gene duster number Genbank accession numbers				
15	Pkey	CAT number	Accession				
20	100610	19864_1	AW161357 AI879062 AI928938 AW161097 AW161167 BE314465 AA351715 F07098 AA179034 F08510 F00853 AI936671 AA476718 AW772454 AI807703 R44253 AA976867 AI985186 AI650254 H38942 R84829 AA018724 AA001000 H85934 AA019126 H85609 AA017000 AA339355 AW950556 D51397 AA213981 BE548002 AI056359 AA001560 AW952113 AA317769 AI857477 AI857475 AW249771 AW162661 H38943 AA018628 R85885 AI984613 AI934765 AT796172 AW157488 AI929191 R85523 D51221 D53851 H85610 AI749674 F21582 AA323145 AA019127 AA687444 T06754 AI699293 H29532 AA214029 AA223656 NM_016834 X14474 R19697 H09695 R17455 R13812 R19066 AI681231 AI590200 R37671 AA881828 AI990023 AI935689 AW005821 AA324561 H17335 R37659 R42802 R46242 R60938 R59731 H28993 AA479907 R44570				
25	100674	21517_2	Al890696 AA308884 AA507078 R41274 Al365507 T16348 Al560453 F03259 F04722 T16312 AA016081 AW073061 BE314824 W28930 R44098 R51045 AW403342 AW248986 BE561709 AA357312 BE311834 BE389496 BE294887 AW732696 BE047868 Al702383 BE019155				
30	400550	44400.0	Al702367 BE408966 BE280458 BE313759 BE513492 BE535404 BE280258 AC005263 NM_007165 L21990 AW732711 Al564920 AW249094 BE265365 AW607186 AW607346 BE005217 H27211 U46230 BE260066 BE207043 BE546782 AW248659 AA665164				
	100721 100748	41469_9 19818_1 41861_1 15759_1	AA085228 AA085161 L40904 NM_005037 X90563 AB005526 H21598 AA088517 X06096 X05826 BE157260 BE157265 R48118 H43827 Z17877 AW379070 AW291778 M20605 J03253 M14206 V00568 AI860465 AW296022				
35	100100	15755_1	M13930 AL047400 J00120 BE018476 AW675223 T26980 F06694 R22709 R24720 H22753 AI903100 AI903094 AW937823 X00364 D10493 K01904 K01906 K00535 L00058 AA410662 AW384760 AA304930 AI680985 X00198 H58025 AW998901 AV653447 N31654 AW610357 AW610369 AW862480 BE223010 AW384172 AW384219 AW384171 AW384218 AA298522 BE140421 AW945162 AW751711 AA514409 AW747912 AI214214 W87741 AA972406 AA554513 BE302087 AI249030				
40			AA477850 AV653129 Al281360 Al274110 W87881 AA641368 X66258 Al051600 AA877139 AA527483 AA857219 Al250782 AA625531 AA807892 Al278811 Al224033 H24033 AA593398 AW129709 R45453 N22772 AA235530 T29737 Al016409 Al688907 AA568370 AA72760 Al539329 AA550843 AW674698 Al538452 Al538453 Al337957 AA477744 AA464600 Al140319 AW949294 Al339781 Al828736 AA323634 AA344094 Al278350 AA975567 AA8598416 AA857170 AW023520 R43413 R48004 F02958 Al989493 R11207 AA737307 D10493 AW950652 Al093842 Al474024 AA703369 R11264 M13930 M				
45	100751	24700_1	N32759 N29730 N30831 N32604 N31955 Al206390 H87574 R23494 Al186215 N30036 Al741512 J00117 NM_000737 Al453626 AA330974 Al188729 Al188604 Al188964 N30276 Al188947 Al188830 Al188303 Al200457 Al219166 Al192459 Al183280 Al189275 Al188639 Al186353 Al189616 Al184224 Al130720 Al188454 Al188391 Al148857 Al192447 Al209155 Al190013 Al206355 Al188721 Al188428 Al189384 Al186330 Al431595 Al189595 Al188781 Al148647 Al200022 Al221552				
50	-		Al220923 Al188728 AA233034 Al189807 Al189641 Al219044 Al149774 Al200658 W71989 Al207360 Al188824 Al200559 Al200270 AA644163 Al199943 Al151301 Al189555 Al262724 Al148590 Al148695 Al126906 Al149163 K03189 K03189 Al189842 Al221014 N30608 Al188465 Al220865 Al188498 Al138226 Al189968 Al221019 Al138197 Al149426 Al148904 Al186218 Al188348 Al160579 Al198460 Al149039 Al160936 Al219055 Al184784 Al221580 Al161082 Al160814 Al123896 Al417614 Al126101 Al188872 Al149571 Al168533 Al149072 Al149467 Al131286 N30684 Al160705 Al160692 Al149559				
55			A1273580 A1189442 A1138448 A1149591 N27302 AA400910 A1138431 A1138435 A1128407 N30216 A1128296 A1219589 A1188492 A1149447 A1168482 H95374 A1219009 N31616 A1276216 N32233 A1291937 N30741 A1188689 N27111 R23214 A1221605 A1188484 A1200375 H94451 N26397 A1871881 AA232905 N30833 A1220780 H94446 N30822 H87464 R68815 N30290 A1128424 H12587 T47334 H87631 H87156 A1219133 A1868741 A4330859 H8693 AA330431 H93666 N30817 T90191 H93868 A1200054 H95207 T47316 H95381 T49170 R00880 T49171 N27381 H869352 T85053 AW451899 H86142 N20313 H04016 H9697 T98778 N30771 C18824 A A020273 A A020273 A127678 N30778 N30831 R69143 N30778				
60			H95142 N30313 H94015 H86987 T28278 N29701 C18834 AA331267 AA330939 Al654493 N27073 N29831 R68113 N30758 R26086 N32108 H95135 AA330414 AA330978 Al219422 Al189453 Al199951 X00264 NM_000894 AA371909 AA063496 T29543 AA371971 AA372026 AA371978 AA371346 Al051683 Al186418 Al220659 Al189068 Al219268 Al186552 Al188715 Al149156				
65		1334_7 18179_3	AW794626 M27126 M27014 J05581 M61170 T27692 M34088 M34089 AW860335 AW579047 AW610437 AW610386 AW610422 AW610473 AW579078 AW604897 AW860163 AW579067 AW862410 AIB16584 AW177757 AW602769 AI909790 AW860331 AI909787 AI909811				

5		AI909813 AW845083 AI905920 AW387919 BE140766 AI909279 AW369405 AA428321 AA428320 AA367451 AA847972 AW001137 AI567905 T84561 AI631295 AA151351 H02932 AI884519 AA367457 AW369421 AI678846 AW391803 AI610869 AW182838 AI922289 AI952140 AI910233 AI479474 AW001395 AA488073 AI985760 AW130017 AI858369 AA827845 AW081805 AA158866 AI624443 AA344985 AA569783 R72486 AI588329 AI903204 AI269939 AA641284 AI279932 AA149270 AI697120 AA729146 AI589353 AA480067 AI923310 AA530908 AI275395 AA425062 AA580280 AA889527 AA158866 AW131341 AA573028 AA877326 T29335 AW951288 H04235 AA099243 AA994659 AI659618 AA887919 AI280297
10	100800 24735_1	AW001116 AW263844 Al270578 AA970828 AW572126 AA775299 AW369449 AW369398 AW369452 Al933677 Al870710 Al092911 Al582464 Al497674 AA937026 AA865855 L38597 AA908325 AW369432 AW026623 AA627778 Al264942 AA932409 Al187328 Al672970 Al866098 AW440471 AW138860 Al866858 Al802528 Al926172 AW243914 Al933690 AA996114 AA536189 AW009937 Al918060 Al270379 Al973169 AW175638 AW369413 NM_008227 L26232 R50649 AU077024 AL008726 AA411079 R35151 BE278153 BE278139 Al459777 R88036 Z43210
15		F07326 AF052157 R17844 BE615476 T82160 R71985 H21963 AA299158 AW368246 R48123 R50628 R70441 H27245 H72015 R72345 R39392 AI909738 BE612778 BE613234 D52116 D52136 D52132 D52067 D51922 D51995 D51905 N34249 N25459 AA484438 AA297350 AA297466 RB1736 H02737 AW582505 R72523 AI894241 AW130667 W72668 W76428 AA46428 AM462606 D52067 AM462600 D5
13		AA358363 R50262 AW473880 H52335 H43953 H21864 T39505 AI887517 AW156925 AW839850 H02628 AW007705 AI561008 F22392 R71279 AA995433 R50725 W24462 R71931 AA464437 AW591731 R25667 R52695 R50810 AI560805 AI089266 H68886 H41353 H28590 AW001860 AI41623 AA250773 AI284778 AW511412 AW083975 AA130377 AW026047 R50551 R81494 AI357668 AI078272 F32666 F36881 AW304865 H43906 AA931068 R48010 AI540217 AI017339 AI291812
20	`	AI741954 AA458490 AI088378 AA298764 H61168 AA358362 AA298725 AA298515 AA464148 AA443538 R43046 AA084314 T40641 T47608 T48940 AI082477 AW470145 N92284 AI758958 AA298512 AA284586 AI597777 AA480277 AI932559 AI869081 AA476615 AA503651 AI656024 AW168522 AI682051 AI689106 AI274592 AI520917 BE258916 BE615861 BE280282 R53386 BE278255 BE278398 T47607 AA477662 H68385
25		100817 19648_1 L34355 L46810 NM_000023 U08895 AA424260 Al097272 AA424162 N79764 F18290 F25278 Al479385 AA460662 AA432059 AW016935 F25770 F32549 F36677 F33016 F35992 F36010 AW172497 AA835076 F28727 AA211643 AA453282
20	100818 19604_3	U79251 AAB43851 R38201 R66461 R44908 AA683289 H17477 R37364 R52832 AW298336 AA351391 NM_002545 L34774 AA296886 AW967001 T28889 R13451 T77331 AL119196 AL118830 H08459 AW892812 AW905838 H17685 R52878
20	100881 458_127	BE561958 BE561728 BE397612 BE514391 BE269037 BE514207 BE562381 BE514256 BE514403 BE514250 BE397832 BE269598 BE559865 BE396881 BE560031 BE514199 BE560037 BE560454
30	100885 12707_3 100898 8542_1	X07881 NM_006249 X07637 AA376715 AA376677 X07715 X07704 S80916 BE387614 R51501 AA199714 AW874779 F08178 BE269071 AA376313 H08264 AA380420 H18785 AL042151 BE277758 BE267438 NM_005850 L35013 BE540833 BE390902 BE391494 BE277459 BE385592 BE390612 BE384263 BE387779
35		BE388647 BE537373 BE547158 AW409585 AW374033 AW602185 AA355725 AW577548 AW935015 AW935160 W40232 AW938647 AW374332 AA434040 BE293488 AL138361 BE560260 AI745075 AA317980 AW949382 AI834311 AI653582 AI831042 AI361878 AA618606 AA729052 AI424969 AA199715 AW769374 AI828422 AW044307 AI862816 AI203583
55		AW084461 AW514655 AA831883 AA290672 AA831286 AA578510 AW089865 AW150746 AA292743 H22232 Al469275 AW439312 AA292744 AW471443 Al473989 AA593336 AA464070 Al678937 AW069451 AA970763 AA610480 AA593328 AA464009 AA768985 Al298928 AA436600 AA464718 AA699361 D61482 D55935 Al389591 AA470695 Al809135 AA640627
40		Al568446 R51502 W45467 Al655316 AA463934 AW168609 AW518663 BE045525 Z41251 Al868091 AA908160 Al026697 Al886259 Al612932 AA215437 Al956014 BE541087 BE255652 BE265878 BE394102 W27502
	102459 3556_1	U48936 L36592 X87160 NM_001039 AL036606 AL036420 U35630 AW298574
	126126 1630017_1 102620 16821_37	W80551 M85370 AA976427 U66052
45	102673 24986_6 102675 5145 4	Al457548 U72509 U72512 T88357 R31335 F18090
73	102753 2226_1	L32961 NM_000663 U80226 S75578 AA425061 AA429917 AIB15143 AA910669 AI286022 AI286019
	102799 34624_4 127034 51148 2	U88896 U88898 AA916056 T03285 Al341594 Al359534 Al634031 U88897 BE397750 AA232171 BE562900 BE384894 BE242228 BE206819 BE261742 AA296468 AW959763 BE276164 BE264109
	12/034 51146_2	BE392626 BE256735 AA301453 N55872 H01676 AA292746 AA427485 AA496400 AA352389
50	103522 21640_1	Y10518 Y10514 ZB3935 Y10508 AK000055 Y10519 AI142012 AI681175 BE222219 AA890586 BE504347 BE328064 N63044 N51226 AI151248 AI521996 AI924777 AW375954 AI860275 W00549 AI742673 AW612288 AI763062 AA632510 AI087347 AI088070 AZ14349 AA890297 AI94156 AI898598 AA631658 AA504593 AA860733 AI266761 AW663214 AW771231
	127071 188097_1	AA639610 AI769806 AI769746 AW014326 AI288611 - AA250806 AA459220
55	126456 291965_1	AA429212 W00881
	119388 1762256_1 126856 20669_1	T88798 R92430 Al084125 Al083773 Al479687 Al939609 Al968662 AF129507 NM_013282 AW971840 AW298508 AA744240 AA811217 AA827671 AA811055 AA806567 AA888977 AA908902 Al637637 AA927056 Al870139 AW340492 AA488755 AA129794
60	103996 224545_1	AA306523 AA354253 BE256277 AC063467 AW962084 AA321355 AW964592 R23284 H73883 R23382 N47914 C01377 H04668 AW606248 R34447 AA847136 Al684489 Al523112 AW044269 Al379138 N29366 AA761543 N79248 AA960845 AA768316 Al147926 Al718599 Al880620 R67467 Al216016 Al738663 H04648
	113213 23798_1	A1/30005 RU4040 NM_001395 Y08302 A1434619 A1470328 A1261807 AW024865 A1806537 A1830549 A1640337 A1219065 AW271700 AW028488 A1133339 A1859205 R51175 U87167 BE378324 BE392008 AA340819 AA343110 T57275 D59164 AW299312
65		Al434422 Al936390 AW024975 R40262 AW269126 R09430 T56590 Al367247 Al253132 BE464248 T58658 AW207785 T58607
	134947 844579_1	R51194 A1732276 R53587 A1820697 AK000526 BE550084 W30689 AW271859 AA411456 A1341551 AA242990 AA243027 H87046 D20360 A1184053 AA146956
	129311 16078_1	AKOUUS26 BESSUURA WAXOOS AW271699 AAA114956 AJ721023 AJ718944 AA146955 F18215 AA903890 AJ700355 AJ075430 AA411584 AA878210 A4476760 AW945637 AA630596

```
AA431522 AA301989 AI909058 D12149 N41960 BE222214 AA609922 AA828176 AA393359 AA398693 AW024958
                                      BE467805 AW298623 AW264085 AW264084 AW264719 AH31927 T55087 AH611014 T54920 AA131253 AH436344 AA017176 AH359979 AA047836 AA017063 AA016303 AA001545
          114427 9724_2
          114569 110077_1
                                       AA063315 AA063316
  5
          100106 15621_-5
          100515 342_1
                                       AA305746 D90187 T63943 AW951154 T29182 AI734941 D13264 AI299239 Z18812 AW299859 W24476 AA933064
                                       AA489759
                                       AW888554 AW607282 AA319986 M28590
          100531 46038_1
                                       M55405 AW752552
          100545 22955_11
                                       AA326895 M10036 NM_000365 N84665 H69414 N84657 AA380453 AA329743 AA357367 AA188770 AA376532 AA353653
10
          100574 17320_2
                                       AA158953 AA083176 BE537313 AA181433 D53373 R57376 AA206698 R14807 H18899 H11191 H93892 R25593 T61134
                                      AA188953 AA083176 BE537315 AA181433 D53373 R57376 AA206698 R14807 H18899 H17191 H93892 R25593 161134 N93285 AA083081 AA831789 H13137 AA497014 AA079330 AA182861 H13138 W47161 R62913 AA687089 AA211112 AA429237 AL035923 AA100070 AW392898 AI556433 AA866006 AA214002 AW392865 N79454 AA197181 AI660371 AA176501 AA737967 AI089225 F34874 AW571437 AI820620 AA573489 AA423816 AA164917 AA458455 T47072 AI569087 AI261656 AA730919 AI833441 AW195182 AI351622 AW243465 AI872649 AI359227 AA987941 AI693770 T47073 AW779948 AW510580 AI635626 AW627601 AA864326 AA953578 AI341418 BE222853 AI241963 AI094863 AA928390 AA493373 AW043762 AI377783 AW953987 BE519760 AA385240 BE277975 BE280035 AW631443 AA581048 BE618715 BE299610
15
                                       C14874 BE559858 BE378455 BE618290 BE544585 Al525575 BE548897 BE267110 AA804738 BE269821 AA918133
                                       BE277647 AA599947 BE280735 BE390239 N74150 T12504 AI208197 AW955527 AA113897 N40081 H73835 H70393
20
                                       A1434041 W22950 A1192661 BE264461 W26486 AA626424 AA196694 T69209 AA857976 A1540287 AA410599 AA864287
                                       AW950564 AA013320 T49283 Al541438 AW804703 AA335534 AA335659 BE562269 BE618802 BE277850 BE548413
                                       BE280994 AA204813 BE561694 BE543524 BE253647 AW001452 W19116 BE542508 AA205894 BE254875 BE270033
                                       AI525906 BE251792 AA975700 BE272138 AW607671 N87686 M10036 BE515060 BE298607 AI745178 U47924 H03193
          100627 tigr_HT2798
                                       Z25424
25
          100756 .tigr_HT3768
                                       M88357
          100768 tigr_HT3846
                                       L29141 M69180 M81105
          100813 tigr_HT4265
                                       L33999
          100836 tigr_HT4383
                                       U04688
          100855 tigr_HT4504
                                       U09806
30
          102104 entrez_U12139 U12139
          125091 genbank_T91518 T91518
          100929 tigr_HT688
                                       X65561
          125147 _entrez_W38150 W38150
          102354 entrez_U38268 U38268
          102491 entrez_U51010 U51010
35
          102636 entrez_U67092 U67092
          118769 genbank_N74496 N74496
          101046 entrez_K01160 K01160
          101057 entrez_K03430
                                     K03430
40
          108334 genbank_AA070473
                                                AA070473
          108417 483241_1 AA
108441 genbank_AA079079
                                     AA070853 AA075749 AA075716
                                                AA079079
          108786 genbank_AA128999
                                                AA128999
          101655 entrez_M60299 M60299
45
          101697 entrez_M64358 M64358
          117437 genbank_N27645 N27645
          101798 entrez_M85220 M85220
          101909 entrez_$69265
                                      S69265
                                      Y10141
           103508 entrez_Y10141
50
          103575 entrez_Z26256
                                      Z26256
          119332 genbank_T54095 T54095
          112161 genbank_R48295 R48295
          119564 NOT_FOUND_entrez_W38206
                                                             W38206
          114376 NOT_FOUND_entrez_GMCSF
                                                             GMCSF
55
          100478 tigr_HT1067
                                       M22406
           100547 tigr_HT2219
                                       M57417
           100564 tigr_HT2324
                                       Z11585
```

TABLE 12: shows genes, including expression sequence tags, that are down-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu01 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5

	Pkey: ExAccn:		Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number						
10	Unigene	UnigenetD:		ımber					
		Unigene Title:		Unigene gene title					
	R1:			d subtracted normal prostate: prostate tumor tissue					
15	Pkey	ExAcon	UnigenelD	Unigene Title	R1				
	100522	HG1763-HT1	780	Protactin-Induced Protein '	17.4				
	130803	M81650	Hs.1968	semenogelin I	16.785				
	118068	N53943	Hs.13743	ESTs	13.225				
20	114251	Z39898	Hs.21948	EST8	12.7				
	112134	R46025	Hs.7413	ESTs	8.735				
	101436	M20642	Hs.158295	Human alkali myosin light chain 3 mRNA; complete cds	8.175				
	104028	AA361094	Hs.221128	ESTs	8.15				
	108944	AA149204	Hs.175783	ESTs; Highly similar to growth arrest inducible gene product [H.sapiens]	7.535				
25	103838	AA174173	Hs.12622	ESTs	7.212				
	120469	AA251741	Hs.25882	DKFZP586M1824 protein	7.175				
	110279	H29231	Hs.27384	ESTs	6.701				
	127472	AA761378	Hs.192013	ESTs	6.642				
	133301	N35229	Hs.7037	pallid (mouse) homolog; pallidin	6.411				
30	102457	U48807	Hs.2359	dual specificity phosphatase 4	6.395				
		W90385	Hs.15082	ESTs	6.15				
		L33881	Hs.1904	protein kinase C; lota	6				
		AA491209		ESTs; Weakly similar to reverse transcriptase [M.musculus]	6				
~~		T49655		ESTs; Modily smir to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	5.95				
35		M61906	Hs.6241	phosphoinositide-3-kinase; regulatory subunit; polypeptide 1 (p85 alpha)	5.925				
		· AA399218	Hs.92423	ESTs	5.7				
		AA281780		ESTs; Weakly similar to similar to Knuppel-like zinc finger protein [C.elegans]	5.7				
		F10192		Tubulin; alpha; brain-specific	5.625				
40		X80507	Hs.8939	yes-associated protein 65 kDa	5.5				
40		AA234048	Hs.7753	calumenin	5 <i>.</i> 486				
	120390	AA233122	Hs.111460	ESTs; Highly similar to multifunctional calcium/calmodulin-dependent protein					
				kinase II delta2 isoform [H.sapiens]	5.4				
		R68657	Hs.90421	ESTs; Modly smir to !! ALU SUBFAMILY SX WARNING ENTRY !! [H.sapiens]	5.279				
45		N71503	Hs.43087	ESTs; Weakly similar to dysferlin [H.sapiens]	5.266				
45		U14528	Hs.29981	solute carrier family 26 (sulfate transporter); member 2	5.151				
		AA196635	Hs.86081	ESTS	5.134				
		F09739		Homo sapiens mRNA full length insert cDNA done EUROIMAGE 21920	5.075				
		AA045709			5.075				
50		M21665	Hs.929	myosin; heavy polypeptide 7; cardiac muscle; beta	5.055				
30		R80664	Hs.77067	ESTs -	5.033				
		R62444		KIAA0931 protein	4.675				
-		M20543	Hs.1288	actin; alpha 1; skeletal muscle	4.626				
		R93943	11- 004404	yt72c12.r1 Soares retina N2b4HR Homo sapiens cDNA clone IMAGE:275735 5',					
55		W87544	Hs.221184		4.559				
22		J03460			4.451				
		R56068	Hs.4268	ESTS	4.45				
		R16833	Hs.53106		4.45				
		R40873		KIAA0432 gene product	4.301				
60		AA448286 AA447006	⊓\$.86U/4	ESTs; Highly similar to atrophin-1 interacting protein 4 [H.sapiens]	4.2 4.175				
UU		N32787	He 11100	ESTs; Moderately similar to !! ALU SUBFAMILY SQ WARNING ESTs; Moderately similar to hypothetical protein 2 [H.sapiens]	4.175				
		N32787 Z84483	Hs.11123	Human DNA sequence from PAC 46H23, BRCA2 gene region chromosome 13q1:					
		Z40186	Hs.26409		4.05				
		AA262491	Hs.186572		4.048				
65		AA609749		ESTs; Highly similar to unknown protein [R.norvegicus]	4.041				
0.7		H97993		ESTs; Weakly similar to KIAA0512 protein [H.sapiens]	4.028				
	120:00	1101000	110.176700	man at a series arriver to consuce become ferresheers!	7.000				

	120217		Hs.66035	ESTs	4.028
	108536	AA084524		zn19d8.s1 Stratagene neuroepithelium NT2RAMI 937234 Homo sapiens cDNA	4.023
		AA400030	Hs.8360	ESTs; Weakly similar to II ALU CLASS 8 WARNING ENTRY II [H.saplens]	3.925
~		AA236010	Hs.26613	Homo sapiens mRNA; cDNA DKFZp586F1323 (from clone DKFZp586F1323)	3.91
5	132783		Hs.5683	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 15	3.889
	125052			ESTs; Moderately similar to similar to NEDD-4 [H.sapians]	3.85
		AA099585	Hs.41175	ESTs	3.833
		X61100	Hs.8248	NADH dehydrogenase (ubiquinone) Fe-S protein 1 (75kD) (NADH-coenzyme	3.818
10		H06773	Hs.93850	protein kinase; AMP-activated; gamma 2 non-catalytic subunit	3.792
10		AA258144	Hs.221576		3.779
		R37460	Hs.25231		3.768 3.75
		W86600	Hs.9842	ESTs	3.708
		AA481254	Hs.30120		3.707
15		R94659	Hs.12420		3.7
15		H20568	Hs.33665	phospholipase A2-activating protein	3.7
		R87160 AA375791	Hs.131894		3.674
					3.653
		W92797		DKFZP434G162 protein	3.625
20		AA252079		dachshund (Drosophila) homolog	3.62
20		AA242751 AA487228	Hs.19479	KIAA0903 protein ESTs	3.614
				NADU debudracenses (chiquinens) 1 clobe cubecompley: 5 (12kD: B12)	3.613
		AA024664	Hs.220839	NADH dehydrogenase (ubiquinone) 1 aipha subcomplex; 5 (13kD; B13)	3.6
		R42493 AA025399	Hs.169737		3.592
25					3.568
23		AA211320	Hs.99722	nauron-specific protein ESTs; Weakly similar to 78 KD GLUCOSE REGULATED PROTEIN	0.500
	104 160	AA455706	NS.88122	PRECURSOR	3.559
	105504	AA258158	He 22162	ESTs; Weakly similar to KIAA0352 [H.sapiens]	3.542
		H19673	Hs.176586		3.525
30		AA233299	Hs.72158		3.522
50		F02367	Hs.27252		3.5
		AA257107	Hs.194331		3.5
		AA455653		ESTs; Weakly similar to HEAT SHOCK 70 KD PROTEIN 6 [H.sapiens]	3.459
		AA261852	Hs.192905		3.45
35		H74330	Hs.150000		3.425
55		AA256976		ESTs; Weakly similar to KIAA0579 protein [H.sapiens]	3.42
	107513	X05451		Human alkali myosin light chain 3 mRNA; complete cds	3.417
		N70298	Hs.49829		3,407
		AI028384	Hs.127331		3.399
40		AA159953		ESTs; Weakly similar to anyisulfatase B precursor [H.sapiens]	3.325
		AA600116	Hs.112526		3.318
	132389	N50866	Hs.47135	ESTs	3.317
		AA287097	Hs.75356	transcription factor 4	3.315
	131505	H85897	Hs.27755	ESTs	3.309
45		AA342104	Hs.96777	EST	3.3
	105579	AA278824	Hs.19218	ESTs	3.295
	128190	AA946876	Hs.148376	ESTs	3.292
	100819	HG4020-HT42	90	Transglutaminase	3.288
	130217	D29956		ubiquitin specific protease 8	3.273
50	130068	AA608903	Hs.106220	KIAA0336 gene product	3.269
		L07515	Hs.89232	chromobox homolog 5 (Drosophila HP1 alpha)	3.266
	110277	H29209	Hs.151231	ESTs; Highly similar to FYVE finger-containing phosphoinositide kinase [M.muscu	itus] 3.26
	127354	AA416880	Hs.185797		3.212
		R60523	Hs.109087		3.197
55		AA970504	Hs.146103		3.179
		R94500	Hs.108046		3.175
		AA448164		ESTs; Highly similar to CGI-73 protein [H.sapiens]	3.151
		AA431302		EST; Weakly similar to N-copine [H.saplens]	3.151
~		X85134	Hs.72984		3.15
60		M95767		chitoblase; di-N-acetyl-	3.15
		AA057341	Hs.87889		3.15
		AA018219	Hs.226923		3.125
		AA421773	Hs.161008		3.125
65		AA149007		Ets homologous factor	3.12 3.11
65		N48818	Hs.46884		3.104
		AA485973	Hs.143947		3.104
		AA400080	Hs.97774		3.075
		T80620	Hs.186473		3.066
	100909	AA401739	Hs.5111	ESTs	J.500

	119767	W72562	Hs.58119	ESTs	3.057
		AA424038	Hs.58197	FSTs	3.056
		R22988	Hs.220950		3.05
_		AA280047	Hs.43948	·-	3.05
5	118448	N66412	Hs.49189	ESTS	3
	106586	AA456598	Hs.256269	ESTs	2.995
	110415	H48239	Hs.29739	ESTs; Weakly similar to RAS-RELATED PROTEIN RAB-3A [H.saplens]	2.979
		AA182030	Hs.8364	ESTs	2.978
• •		L07594	Hs.79059	transforming growth factor; beta receptor III (betaglycan; 300kD)	2.976
10	110543	H58383	Hs.258544		2.976
	125593	R24464	Hs.202949	KIAA1102 protein	2.964
	100824	HG4058-HT43	28	Oncogene Ami1-Evi-1, Fusion Activated	2.957
		AA481068	Hs.31835	ESTs	2.95
				ESTs	2.95
15		D11930	Hs.3592		
15		N68869	Hs.15119		2.936
	113620	T93795	Hs.17252	EST	2.917
	105220	AA210695	Hs.17212	ESTs	2.917
		AA490227	Hs.105252	ESTs	2.904
		W87465		ESTs; Weakly similar to D2092.2 [C.elegans]	2.9
20					2.9
20		AA465160	Hs.63386	ESTS	
		AA432243	Hs.41086	ESTs; Weakly similar to OXYSTEROL-BINDING PROTEIN [H.sapiens]	2.896
	111712	R22905	Hs.113716	ESTs	2.895
	126589	W78107	Hs.187698	ESTs; Wealdy similar to Yer140wp [S.cerevisiae]	2.895
		N64378		ESTs; Highly similar to unknown function [H.sapiens]	2,894
25			Hs.191346		2.886
23		AA280300			
		AA152263		KIAA0849 protein	2.883
	129486	H03686	Hs.220689	Ras-GTPase-activating protein SH3-domain-binding protein	2.879
	119805	W73788	Hs.43213	ESTs	2.875
		R59881	Hs.7503	ESTs	2.871
30		AA028171	Hs.153688		2.868
50					2.866
		AI088155		ESTs; Weakly similar to unknown [H.saplens]	
		AA280738	Hs.128679		2.863
	123059	AA482019	Hs.238202	EST	2.86
	129462	D84239	Hs.111732	lgG Fc binding protein	2.856
35		W45491		nucleobindin 1	2.854
55		W01626		za36e07.r1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone	2.852
			12- 4000C		2.85
		AA227972	Hs.43635	ESTs	
	105077	AA142919	Hs.5558	ESTs	2.847
	131388	R34531	Hs.92200	KIAA0480 gene product	2.846
40	121080	AA398720	Hs.177953	ESTs	2.838
		R73816	Hs.17385		2.836
					2.825
		R26206		KIAA0701 protein	
		AA427783	Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)	2.816
		AA504356	Hs.88650	ESTs	2.813
45	115316	AA280627	Hs.57846	ESTs	2.806
		U48736	Hs.198891	serine/threonine-protein kinase PRP4 homolog	2.8
		H20332	Hs.28707	signal sequence receptor; gamma (translocon-associated protein gamma)	2.799
					2.795
		AA252863	Hs.87729		
		AA063546	Hs.202968		2.792
50	124308	H93575		Homo sapiens mRNA; cDNA DKFZp564J142 (from clone DKFZp564J142)	2.783
	125502	AA732329	Hs.191959	ESTs	2.778
		AA159825	Hs.131887	ESTs; Weakly similar to ORF YNL227c [S.cerevislae]	2.768
		AA242816		ESTs; Weakly similar to KIAA0437 [H.sapiens]	2.766
•					
55		H51098		PDZ domain protein (Drosophila inaD-like)	2.75
ככ		AA620504	Hs.22119		2.742
	113547	T90746	Hs.15233	ESTs	2.734
	104639	AA004622	Hs.18214	ESTs	2.727
		AA622559	Hs.150318		2.726
		AA490964	Hs.10056		2.725
60			113.10000		2.725
W		R52088		yg85c3.s1 Soares infant brain 1NIB Homo sapiens cDNA clone	
		H98683	Hs.154054		2.708
	117634	N36421	Hs.107854	ESTs; Weakly similar to SODIUM- AND CHLORIDE-DEPENDENTGLYCINE	
			TRANSP		2.706
	101609	M54927	Hs.1787	proteolipid protein 1 (Pelizaeus-Merzbacher disease; spastic paraplegia 2;	
65			uncomplica		. 2.704
J.J	447410	Macana	•	•	2.7
		H96908	Hs.42251		
		R79147	Hs.203365		2.695
	106828	AA481505	Hs.13797	ESTs .	2.68
	124377	N25996	Hs.179833	ESTs	2.675

		J04970		carboxypeptidase M	2.675
		N66393	Hs.102754		2.675
		H02494	Hs.101615		2.671 2.66
5		R12777. N49602	Hs.13308	ESTs; Weakly similar to ARGINYL-TRNA SYNTHETASE [H.sapiens]	2.65
J		N54839		ESTs; Highly similar to mediator [H.sapiens]	2.633
		AA421714		KIAA0896 protein	2.63
		U32519		Ras-GTPase-activating protein SH3-domain-binding protein	2.626
		R62452	Hs.191265		2.625
10		AA451679	Hs.194410		2.625
	134425	X90568	Hs.172004	tiin	2.624
	111114	N63391	Hs.9238	ESTs	2.619
		AA459242		ESTs; Weakly similar to Ketch motif containing protein [H.saplens]	2.615
1 -		R44164	Hs.23014		2.6
15		AA481271	Hs.193945		2.591
		H52617	Hs.144167		2.586 2.58
		H14437	Un AFOCO	y/25a04.r1 Soares breast 3NbHBst Homo sapiens cDNA clone	2.575
		N40184 D30037	Hs.45050	phosphotidylinositol transfer protein; beta	2.575
20		AA215647	Hs.200332		2.568
20		U71203		Ric (Drosophila)-like; expressed in many tissues	2.564
		N40467	Hs.93834	FSTe	2.557
		N78582	Hs.50732	protein kinase; AMP-activated; beta 2 non-catalytic subunit	2.552
		AA405657	Hs.128791	Human DNA sequence from clone 967N21 on chromosome 20p12.3-13. Contains	2.55
25	114860	AA235112	Hs.106227	ESTs; Moderately similar to similar to murine RNA-binding protein [H.sapiens]	2.549
	121857	AA426017	Hs.62694	ESTs; Highly similar to DNA-REPAIR PROTEIN COMPLEMENTING	2.548
		H20560	Hs.244624		2.548
		AA045333		ESTs; Weakly similar to !! ALU SUBFAMILY SB2 WARNING ENTRY !! [H.sapiens]	2.542
30		F09729	Hs.12780		2.537 2.525
30		AA410391 R37027	Hs.94592 Hs.5737		2.525
		R73588	Hs.101533	KIAA0475 gene product	2.525
		AA174190	Hs.50932		2.525
		R22196	Hs.34492		2.519
35		AA234362		ESTs; Moderately similar to CGI-66 protein [H.sapiens]	2.507
		T23555	Hs.103288		2.5
	123312	AA496258	Hs.99601	ESTs	2.499
	121873	AA426270	Hs.145696	splicing factor (CC1.3)	2.491
40		AA496884	Hs.23972		2.491
40		AA018042	Hs.95078		2.483
		U60808		CDP-diacytylycerol synthase (phosphatidate cytidylytransferase) 1	2.481 2.475
	103053	R38100	Hs.5947 Hs.106294	mel transforming oncogene (derived from cell line NK14)- RAB8 homolog	2.475
		T15665	Hs.6185	ESTs; Weakly similar to BcDNA.GH12174 [D.melanogaster]	2.475
45		W58202	Hs.125731		2.475
		R62447	Hs.22123		2.471
		AA600323	Hs.112535		2.462
	102842	U95020	Hs.21903	calcium channel; voltage-dependent; beta 4 subunit	2.457
~ 0		U42390		triple functional domain (PTPRF interacting)	2.455
50		T56056	Hs.9992	ESTs	2.452
	131687		Hs.3069	heat shock 70kD protein 9B (mortalin-2)	2.448
		AA280583 Al206427	Hs.256501	ESTS; ESTS; Highly similar to Ran-binding protein 2 [H.sapiens]	2.437 2.43
	134281			aldehyde oxidase 1	2.425
55	*****	AA447709		ESTs; Moderately similar to putative transcription factor CA150 [H.sapiens]	2.425
<i></i>	111348		Hs.9585	ESTs	2.418
		AA258842		Homo sapiens done 23777 putative transmembrane GTPase mRNA; partial cds	2.418
		C13990	Hs.76930	synuclein; alpha (non A4 component of amyloid precursor)	2.417
	111164	N66857	Hs.14808	ESTs; Weakly similar to !! ALU CLASS C WARNING ENTRY !! [H.sapiens]	2.416
60		AA257056	Hs.7972	KIAA0871 protein	2.412
		M55047		synaptotagmin 1	2.408
-	114219		Hs.27389		2.406
		H94043		DKFZP586I1419 protein	2.403 2.4
65		AA034325 N62506	Hs.54320 Hs.21958		2.4
0 5		AA195405		Homo sapiens mRNA for alpha integrin binding protein 80; partial	2.397
		N69998	Hs.21801		2.394
		AA608955	Hs.109653		2.389
		AA608893	Hs.190065		2.388

	404540	4.4.000004	11- 00570		
		AA262821	Hs.28578	muscleblind (Drosophila)-like	2.385
		X66141	Hs.75535	myosin; light polypeptide 2; regulatory; cardiac; slow	2.384
		AA609310	Hs.188691		2.383
_		AA001835		zinc finger protein 262	2.379
5		AA428368	Hs.30654	ESTs	2.378
		AA436666	Hs.59761	ESTs	2.375
		W45574	Hs.252497	ESTs	2.372
	123973	C14805	Hs.182151	ESTs	2.361
	135197	U76456		Homo sapiens tissue inhibitor of metalloproteinase 4 mRNA, complete cds	2.357
10	118689	N71545	Hs.184544	ESTs	2.357
	107734	AA016225	Hs.93386	ESTs	2.354
	124590	N69220	Hs.41381	ESTs; Weakly similar to ubiquitin hydrolyzing enzyme I [H.saplans]	2.35
		N66850	Hs.17606		2.348
		R58877	Hs.22665	ESTs; Moderately similar to dJ83L6.1 [H.saptens]	2.345
15		AA262179	Hs.169343		2.345
		R81509		splicing factor; arginine/serine-rich 11	2.341
		H13260	Hs.95097	ESTs	2.336
		AA436853	Hs.34795		2.333
		AA443752	Hs.10784		2.332
20		AA599814		ESTs; Weakly similar to cDNA EST yl\(289g5.5 \) comes from this gene [C.elegans]	2.332
		R06273		ESTs; Modily smir to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	2.322
		AA176688	Hs.221139		2.313
		AA304993		ESTs; Weakly similar to p60 katanin [H.sapiens]	2.307
		AA252621	Hs.93842		2.301
25		W74371	Hs.58383		2.297
45					
		U33052	Hs.69171	protein kinase C-like 2	2.288
		N74353	Hs.16475		2.282
	114161		Hs.22385		2.278
30	130542		11- 00000	Human sperm membrane protein BS-63 mRNA, complete cds	2.277
30	104491		Hs.39328	ESTS	2.275
	116988		11- 7070	ys69e12.s1 Soares retina N2b4HR Homo sapiens cDNA clone	2.275
		AA370120	Hs.7870	ESTs; Weakly similar to Ylr350wp [S.cerevisiae]	2.273
		AA129731	Hs.90424	ESTs	2.273
25	101310		Hs.934	glucosaminyi (N-acetyl) transferase 2; I-branching enzyme	2.269
35		W19498	Hs.21085		2.255
		AA936428	Hs.128638		2.251
		N91947	Hs.125033		2.249
		Al143906	Hs.125103		2.247
40	101973			UDP-N-acetyl-alpha-D-galactosamine:polypeptide	2.246
40		AA398302	Hs.127437		2.245
		AA599583		HMBA-inducible	2.243
		W88678		heterogeneous nuclear protein similar to rat helix destabilizing protein	2.243
	124222		Hs.222844		2.24
4.00	129199		Hs.128629		2.236
45		AA479101	Hs.16570	ESTs; Weakly similar to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.sapiens]	2.231
	126160		Hs.247277	ESTs; Weakly similar to transformation-related protein [H.sapiens]	2.229
	104627	AA001976	Hs.19603		2.228
		AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (from clone DKFZp564C053)	2.226
	113096		Hs.8345	ESTs	2.225
50		AA452822	Hs.99027	ESTs	2.225
	135344	R62976	Hs.168491	ESTs; Moderately similar to TRF1-interacting ankyrin-related	2.225
	126156	AA508354	Hs.118448	ESTs; Moderately similar to AKT3 protein kinase [H.sapiens]	2.222
	128885	AA397841	Hs.180141	cofilin 2 (muscle)	2.218
	107900	AA026385	Hs.176600	ESTs; Moderately similar to I! ALU SUBFAMILY SB2 WARNING	2.217
55	114481	AA033562	Hs.151572	ESTs	2.212
	109292	AA199828	Hs.188662	ESTs	2.212
	104257	AF006265	Hs.9222	estrogen receptor-binding fragment-associated gene 9	2.209
	132932	T15482	Hs.6093	ESTs	2.204
	127392	AA262728	Hs.14896	Homo sapiens clone 24590 mRNA sequence	2.204
60	104641	AA004652	Hs.18564	ESTs	2.2
	122529	AA449828	Hs.99229		2.195
	124307			proline synthetase co-transcribed (bacterial homolog)	2.193
	133601		Hs.75155		2.193
		W85709		ESTs; Weakly similar to !! ALU SUBFAMILY SP WARNING ENTRY !! [H.sapiens]	
65	100348	_	Hs.4994	transducer of ERBB2; 2 (TOB2)	2.185
		AA351779	Hs.200334		2.18
		Al298835		ESTs; Weakly similar to transcription regulator Staf-50 [H.saplens]	2.178
		AA169253	Hs.8958	ESTs	2.177
		AA405648	. ~~~~	zw39gB.s1 Soares_total_fetus_Nb2HF8_9w H sapiens cDNA clone IMAGE:77247	

			·	0.475
	111836 R36228			2.175
	133394 R16759		ribosomal protein S5 pseudogene 1	2.175
	123207 AA489697	Hs.145053	- ·	2.175
_	129801 F11087	Hs.239666		2.175
5	103393 X94612		protein kinase; cGMP-dependent; type II	2.161
	132415 AA043223	Hs.4815	nudix (nucleoside diphosphate linked motety X)-type motif 3	2.157
	106369 AA443828		ESTs	2.157
	122963 AA478446		KIAA1098 protein	2.156
	133473 M19309	Hs.73980	troponin T1; skeletal; slow	2.155
10	134257 C06270		Homo sapiens mRNA; cDNA DKFZp586L081 (from clone DKFZp586L081)	2.155
	135156 AA056012	Hs.9552	binder of Arl Two	2.151
	104055 AA393755	Hs.117211	ESTs; Highly similar to CGI-62 protein [H.sapiens]	2.15
	102313 U33921		HSU33921 Clontech adult lung cONA library (HL1158a) Homo sapiens cONA	2.15
	109788 F10638	Hs.12432	Homo sapiens clone 24407 mRNA sequence	2.15
15	103507 Y10032		serum/glucocorticold regulated kinase	2.15
	116000 AA448710	Hs.41327		2.15
	105858 AA399164		ESTs; Moderately similar to !! ALU SUBFAMILY SQ	2.137
	103153 X66534	Hs.75295	guanylate cyclase 1; soluble; alpha 3	2.137
	126202 AA652238	Hs.199726		2.135
20	115955 AA446121	Hs.44198	Homo sapiens BAC clone RG054D04 from 7q31	2.134
	104164 AA458770	Hs.27023	KIAA0917 protein	2.132
	108692 AA121270	Hs.82960		2.128
	122878 AA465341	Hs.99640		2.126
	134771 L13939		adaptor-related protein complex 1; beta 1 subunit	2.125
25	104298 D31120		adaptor-related protein complex 1; sigma 2 subunit	2.125
	104840 AA039595		Homo sapiens mRNA; cDNA DKFZp586C1817 (from clone DKFZp586C1817)	2.125
	122180 AA435798		ESTs; Moderately similar to putative ring zinc finger protein	2.125
	131012 H01992		KIAA1102 protein	2.125
	134092 H17490	Hs.7905	ESTs; Highly similar to sorting nextin 9 [H.sapiens]	2.123
30	118617 N69666		ESTs; Modily smir to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	2.123
	107155 AA621202	Hs.7946	DKFZP586D1519 protein	2.12
	130925 N71935		multiple PDZ domain protein	2.12
	135167 U63717		osteoclast stimulating factor 1	2.118
	105952 AA405263	Hs.181400		2.109
35	110308 H38148	Hs.32775		2.108
	116368 AA521186	Hs.94217		2.107
	132939 U76189		exostoses (multiple)-like 2	2.102
	117881 N50073		ESTs; Highly similar to B-IND1 protein [M.muscutus]	2.1
40	121723 AA419622		ESTs; Weakly similar to Mouse 19.5 mRNA; complete cds [M.musculus]	2.096
40	103500 Y09443		alkylglycerone phosphate synthase	2.094
	121429 AA406293	Hs.193498		2.093
	134632 AA398710		chloride channel 3	2.091
	129785 F10980	Hs.184780		2.09
45	111065 N58193		ESTs; Weakly similar to 1-evidence	2.089
45	114710 AA129931	Hs.79081	protein phosphatase 1; catalytic subunit; gamma isoform	2.083 2.083
	132711 N73702	Hs.238927		
	133377 R05490	Hs.7239	SEC24 (S. cerevisiae) related gene family; member B	2.079 2.078
	124773 R40923	Hs.106604		2.076
50	117759 N47587		ESTs; Weakly similar to TROPOMODULIN [H.sapiens]	2.076
50	127386 Al457411	Hs.106728	i company and the company and	2.075
	101167 L15309		zinc finger protein 141 (clone pHZ-44)	2.074
	109597 F02582	Hs.14474		2.07
	124390 N29325	Hs.7535	ESTs; Highly similar to COBW-like placental protein [H:sapiens] Human Chromosome 16 BAC clone CIT987SK-A-735G6	2.07
55	116225 AA478609	NS.4/2/0	spectrin SH3 domain binding protein 1	2.069
23	131243 R16667	15.24/02	ESTs; Weakly similar to line-1 protein ORF2 [H.saplens]	2.067
	130557 T90830		cAMP responsive element modulator	2.064
	134103 D14826		ESTs; Weakly similar to DY3.6 [C.elegans]	2.063
	108833 AA131866		KIAA0981 protein	2.063
60	112286 R53765	U2-130 I33	zg49a01.rl Stratagene hNT neuron (#937233) Homo sapiens cDNA clone	2.061
60	125624 AA165411 124612 N72200	He 12010		2.058
		Hs.13913 Hs.87013		2.057
	116335 AA495830	Hs.23423		2.056
	112248 R51381	Hs.43149	. —	2.056
65	115789 AA424754 107029 AA599219		ESTs; Weakly similar to ALR [H.sapiens]	2.056
UJ	110294 H30270	Hs.165062		2.054
	120532 AA262354	Hs.186648		2.054
	118180 N59249	Hs.48349		2.052
	132018 AA293194	Hs.3737	ESTs	2.052
			== :-	

	132617	AA171913	Hs.5338	carbonic anhydrase XII	2.05
	131526	N36167	Hs.28274	ESTs	2.05
	113254	T64438	Hs.11449	DKFZP564O123 protein	2.05
		AA459978	Hs.99508		2.05
5		D20426	Hs.5656	EST	2.05
•		AA291321		ESTs; Moderately simitar to KIAA1006 protein [H.sapiens]	2.046
		D82675		Homo sapiens clone 25007 mRNA sequence	2.042
		R43845		DKFZP566E2346 protein	2.04
	116405	AA600253	Hs.55601	ESTs; Highly similar to host cell factor 2 [H.sapiens]	2.04
10	125924	AA526849	Hs.82109	syndecan 1	2.039
	105599	AA279442	Hs.143460	protein kinase C; nu	2.037
	119741	W70205		kinesin family member 3A	2.037
		M21494		creatine kinase; muscle	2.036
		AA609943	Hs.32793		2.034
15		H89112	I IGALI OU	yw25e5.s1 Morton Fetal Cochlea Homo sapiens cDNA clone IMAGE:25328	2.034
13		AA142857	Nº 334006	ESTs; Highly similar to geminin [H.saplens]	2.031
			Hs.23467		2.027
		AA255546			
		U04898	Hs.2156	RAR-related orphan receptor A	2.027
00		W80383	Hs.58446		2.024
20		R46482	Hs.106875		2.024
		AA041548	Hs.154023	KIAA0573 protein	2.023
	124457	N50114 -	Hs.128704	ESTs	2.017
	125144	W37999	Hs.24336	ESTs	2.017
		AA281257	Hs.125868		2.014
25		AA062731		thyroid hormone receptor-associated protein; 150 kDa subunit	2.012
		AA278846	Hs.187634		2.011
		W81362	Hs.30567		2.011
		AA485041			
			Hs.104308		2.009
20		AA609323	Hs.112689		2.008
30		H67749	Hs.161022		2.003
		X69398		CD47 antigen (Rh-related antigen; integrin-associated signal transducer)	1.995
		Y07755	Hs.38991		1.995
		N53378	Hs.22543	ESTs	1.995
	120470	AA251797		zs11/3.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clone	1.989
35	112280	R53457	Hs.26040	ESTs; Weakly similar to fatty acid omega-hydroxylase [H.sapiens]	1.989
	114127	Z38652	Hs.106961	ESTs; Weakly similar to TYL [H.sapiens]	1.988
		AA151005		sperm surface protein	1.988
		AA436608		ESTs .	1.988
		AA147224	Hs.71814		1.986
40		AA401633	Hs.22380		1.982
70		AA157911	Hs.72200		1.982
		N66769	Hs.82781		1.975
		AA281886	Hs.88923		1.975
45		AA279060	HS.193516	B-cell CLL/lymphoma 10	1.974
45		AA719776		zh38g04.s1 Soares_pineal_gland_N3HPG Homo sapiens cDNA clone IMAGE:414	
	109547		Hs.26966	ESTs	1.973
	127111	AA805726	Hs.220509	ESTs	1.969
	101266	L36645	Hs.73964	EphA4	1.966
	129319	AA037467	Hs.30340	ESTs	1.965
50	106211	AA428240	Hs.126083	ESTs	1.962
• •		R93696	Hs.169882		1.961
		AA255538	Hs.190504		1.959
		AA458578		KIAA0439 protein; homolog of yeast ubiquitin-protein ligase Rsp5	1.956
		AA251129		ESTs	1.953
55					4.00
<i>J J</i>	134740		110.00400 LI ₀ 0040E	opioid receptor; kappa 1	1.95
		AA210700		Homo sapiens mRNA; cDNA DKFZp564P056 (from done DKFZp564P056)	1.95
		H93043	Hs.107070		1.95
		U36922		Human fork head domain protein (FKHR) mRNA, 3' end	1.948
C O		AA228100	Hs.86998	nuclear factor of activated T-cells 5	1.946
60		AA179573	Hs.90061	progesterone binding protein	1.942
		AA227498	Hs.3623	ESTs	1.942
	130672	L19783	Hs.177	phosphatidylinositol glycan; class H	1.942
	104301	D45332	Hs.6783	ESTs	1.94
		R62589	Hs.167419		1.939
65		AA258063	Hs.23438		1.937
		AA490969	Hs.168147		1.936
	118873		Hs.44577		1.936
	114124			ESTs: Highly similar to KIAA0886 protein [H.sapiens]	1.934
		AA255486			1.933
	113013	~~£33400	Hs.88045	LOID	1.000

	110695	H93483	Hs.124777	ESTS	1.931
		AA236209	Hs.187626		1.931
		T56013		3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (soluble)	1.929
_		AA424814	Hs.187509		1.927
5		R23241		STAT induced STAT inhibitor-2	1.925
		H06245	Hs.106801		1.925
		AA219699		KIAA0929 protein Msx2 interacting nuclear target (MINT) homolog	1.913
		H82165	Hs.40334		1.911
10		AA389027	Hs.71414		1.905
10		W44928	Hs.4878	ESTS	1.905 1.904
		AA070906 AA251875	Do 104479	zm66d1.s1 Stratagene neuroepithelium (#937231) Homo sapiens cDNA done	1.903
		D80063	Hs.241673	ESTs; Weakly similar to Gag-Pol polyprotein [M.musculus]	1.901
		AA399371		ESTs; Weakly similar to zinc finger protein SALL1 [H.sapiens]	1.9
15		AA401804	Hs.114574		1.896
13		F01831	Hs.14838	* *	1.894
		W72982	Hs.58262		1.894
		AA428090	Hs.26102		1.893
		C17938		Homo sapiens mRNA; cDNA DKFZp564O0122 (from done DKFZp564O0122)	1.891
20		AA278907	Hs.24549		1.891
		AA461195	Hs.99580		1.887
		W35390	Hs.55533		1.886
		AA134289		Homo sapiens BAC clone RG114B19 from 7q31.1	1.886
		AA418069		natural killer-tumor recognition sequence	1.886
25		H66947	Hs.14671		1.885
		N22569	Hs.43215	ESTS	1.884
	131406	N92239	Hs.26471	Wnt inhibitory factor-1	1.881
	126428	AA013312	Hs.64988		1.881
	120285	AA182882	Hs.111110	titin-cap (telethonin)	1.878
30		R91753	Hs.17757		1.878
		X63679	Hs.4147	translocating chain-associating membrane protein	1.875
		N26765	Hs.109008		1.875
		N20468		ESTs; Weakly similar to putative p150 [H.sapiens]	1.875
25		AA279991		ESTs; Weakly similar to trithorax homologue 2 [H.sapiens]	1.875
35		N69113	Hs.110855		1.875
		AA285079	Hs.190474		1.873
		AA600012		ESTs; Moderately similar to KIAA0400 [H.sapiens]	1.872
		AA381902		RNA binding protein	1.872
40		AA258366		ras GTPase activating protein-like	1.872
40		U26726	Hs.1376	hydroxysteroid (11-beta) dehydrogenase 2 ol: 18S ribosomal RNA	1.87 1.868
		M10098 AA191353			1.867
		S72869		ESTs; Weakly similar to KIAA0970 protein [H.sapiens] DNA segment; single copy; probe pH4 (transforming sequence; thyroid-1;	1.867
		R44479		KIAA0552 gene product	1.866
45		N26175	Hs.93405		1,864
73		AA053027	Hs.191797		1.863
		AA608794	Hs.112592		1.863
		R78618		ESTs; Weakly similar to RAS-RELATED PROTEIN RAB-8 [H.sapiens]	1.862
		AA233511		ATP-binding cassette; sub-family G (WHITE); member 2	1.861
50		Z20656		myosin; heavy polypept 6; cardiac muscle; alpha (cardiomyopathy; hypertrophic 1)	
• •		T33637	Hs.6841	ESTs ·	1.86
	120407	AA235040	Hs.107283		1.859
	103892	AA243523	Hs.17155	ESTs -	1.858
	123795	AA620381	Hs.70488	ESTs	1.857
55	108524	AA084323	Hs.68138	ESTs	1.857
		W85812	Hs.187554	ESTs	1.856
		H97678	Hs,31319	ESTs	1.856
	_	AA412087		EST; Highly smir to prot inhibitor of activated STAT prot PIASx-alpha [H.sapiens]	1.853
		R44840	Hs.21303		1.852
60		N67317	Hs.50150		1.852
		AA004955	Hs.60015		1.851
		D87446		KIAA0257 protein	1.85
		AA287312	Hs.191648		1.85
65		AA417078	Hs.193767		1.843
65		N26011	Hs.53810	ESIS	1.843
		Y12394	Hs.3886	karyopherin alpha 3 (importin alpha 4)	1.843
		N48593	Hs.121820		1.841 1.838
		AA173440 AA731036	Hs.193919	ribosomal protein S23	1.838
	141440	AM 31000	Hs.3463	mosoma protein ses	1,000

	111837	R36447	Hs.24453	ESTs	1.835
	128727	M64174	Hs.50651	Janus kinase 1 (a protein tyrosine kinase)	1.834
	114439	AA018937	Hs.128629		1.833
		U35637	***************************************	Human nebulin mRNA, partial cds	1.83
5		W72979	Hs.146082		1.83
5		U37122		adducin 3 (gamma)	
			Hs.8110		1.83
		Z39848	Hs.12079		1.828
		D17532	Hs.316	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 6 (RNA helicase; 54kD)	1.823
	108904	AA136521	Hs.71148	ESTs; Weakly similar to putative p150 [H.sapiens]	1.823
10	115084	AA255566	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (from clone DKFZp564C053)	1.823
	131957	AA609008	Hs.183232	ESTs	1.822
	100131	D12485	Hs.11951	phosphodiesterase l/nucleotide pyrophosphatase	
				1 (homologous to mouse Ly-41 antigen)	1.822
	194169	H30539	Hs.189838		1.821
15		N59859	Hs.48443		1.821
15			115.40445	ESTs	
		AA016021		DKFZP434K151 protein	1.82
		D78156		RAS p21 protein activator 2	1.82
		AA489016		ESTs; Highly similar to partial CDS; human putative turnor suppressor [H.sapiens]	
	124833	R54112	Hs.128697	ESTs	1.817
20	122587	AA453255	Hs.6968	ESTs	1.817
	114359	Z41589	Hs.153483	ESTs; Moderately similar to H1 chloride channel [H.sapiens]	1.815
		N72253	Hs.238246		1.813
		N30068	Hs.15347		1.812
		AA422123	Hs.42457		1.811
25				ESTs; Weakly similar to I! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	
23		AA055404			1.253
		AA432080	Hs.81200		1.81
		AA056140	Hs.122684		1.81
		N53158	Hs.102682	ESTs	1.809
	100782	HG3740-HT40	10	Basic Transcription Factor 2, 34 Kda Subunit	1.806
30	106101	AA421053	Hs.34395	ESTs	1.806
	115479	AA287596		zs52h09.s1 NCL_CGAP_GCB1 H sapiens cDNA clone IMAGE:701153	1.804
	116104	AA456635	Hs.78524		1.804
		Z39050	Hs.21963		1.804
		N59764	Hs.5398	guanine-monophosphate synthetase	1.803
35		R49548		death effector domain-containing	1.802
JJ					
		N91087		ESTs; Weakly similar to F55A12.9 [C.elegans]	1.801
		AA177138	Hs.161671		1.8
		N25427	Hs.108812		1.8
	103571	Z25535	Hs.211608	nucleoporin 153kD	1.8
40	105978	AA406367	Hs.15973	ESTs	1.8
	125904	H22372	Hs.163586	ESTs	1.799
	133883	AA397915	Hs,77221	choline kinase	1.798
	105777	AA348412	Hs.23096	ESTs	1.797
		H19480	Hs.174309		1.796
45		AA130273	Hs.7584	ESTs; Weakly similar to hypothetical protein; similar to [H.sapiens]	1.796
		AA251330	Hs.28248		1.795
		AA279757		ESTs; Weakly similar to BACN32G11.d [D.melanogaster]	1.794
	133104		Hs.65029	growth arrest-specific 1	1.794
50		N48674	Hs.23796	Human DNA sequence from clone 1052M9 on chromosome Xq25. Contains the	1.792
50		D13540	Hs.22868	protein tyrosine phosphatase; non-receptor type 11	1.791
		AA331157		EST35035 Embryo, 6 week, subtracted (total cDNA) I Homo sapiens cDNA	1.79
	114157	Z38878	Hs.24979	ESTs	1.79
	125601	Al096717	Hs.247043	KIAA0525 protein -	1.788
	118472	N66818	Hs.42179	ESTs .	1.787
55	112456	R63925	Hs.28464		1.787
		N69682		SC35-interacting protein 1	1.786
		AA600057		KIAA0905 protein	1.784
		R40096	Hs.176578		1.784
		T89386			
60				KIAA0606 protein; SCN Circadian Oscillatory Protein (SCOP)	1.783
60		AA262710		KIAA0627 protein	1.783
		AA489020	Hs.193424		1.782
		AA441792		chord domain-containing protein 1	1.781
		HG2463-HT25	59	Guanine Nucleotide-Binding Protein G25k	1.779
	104038	AA374532		EST86676 HSC172 cells I Homo sapiens cDNA 5' end, mRNA sequence	1.778
65	122235	AA436475	Hs.190104	ESTs	1.777
	105104	AA151771		ATPase; Na+/K+ transporting; beta 3 polypeptide	1.776
		AA004638	Hs.50223		1.776
		W68255		DKFZP434K171 protein	1.776
		N66413	He 179466	ESTs; Weakly similar to KIAA0775 protein [H.saplens]	1.776
			1.3.112400	meral stanial anima is the mise bramit in problem of	

	107969	AA034030	Hs.155212	methylmalonyl Coenzyme A mutase	1.775
	115527	AA342079	Hs.252055	ESTS	1.775
	132471	T16305	Hs.49349	beta-site APP-cleaving enzyme	1.775
	105966	AA406105	Hs.5344	adaptor-related protein complex 1; gamma 1 subunit	1.774
5	127548	AA373091	Hs.93832	Homo sapiens done 24483 unknown mRNA; parital cds	1.774
-	106217	AA428379	Hs.24870	EST8	1.773
		N26777	Hs.172635		1.773
		AA435664	Hs.8583	similar to APOBEC1	1.773
		AA436705	Hs.28020		1.772
10		N93797	Hs.3090	EphB1	1.772
		AA479166	Hs.105633		1.772
		AA291946	Hs.42736		1.771
		AA180208	Hs.16606		1.767
		AA188618		ariadne; Drosophila; homolog of	1.766
15		AA398290	Hs.21965	ESTs	1.764
13		M86917	Hs.24734	oxysterol binding protein	1.764
					1.784
		D13628	Hs.2463	angiopoletin 1	1.763
		R07335	U- 400070	,	1.762
20		AA442257	Hs.192076		1.761
20		H02566		Homo saplans mRNA; cDNA DKFZp434N174 (from clone DKFZp434N174)	1.758
		AA428069		KIAA1046 protein	
		AA620782	Hs.23247		1.757
		AA338960	Hs.28170		1.756
0.5		AA435536	Hs.24336		1.756
25		AA304566	Hs.3542	ESTs .	1.756
		AA234945	Hs.11360		1.756
		N50112	Hs.47023		1.754
		AA599472		succinate-CoA ligase; GDP-forming; beta subunit	1.754
		R45963		ESTs; Weakly similar to ORF2 [M.musculus]	1.753
30		D42047	Hs.82432	KIAA0089 protein	1.753
		N47938		yy84a09.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone	1.751
	133002	AF006082	Hs.62461	ARP2 (actin-related protein 2; yeast) homolog	1.751
	132530	AA455917	Hs.50785	SEC22; vestcle trafficking protein (S. cerevisiae)-like 1	1.75
		N21671	Hs.19025	ESTs	1.75
35	106138	AA424515	Hs.33264	ESTs	1.75
	107348	U43701	Hs.184776	ribosomal protein L23a	1.75
	115867	AA432162	Hs.165986	DKFZP586B2022 protein	1.749
	135398	AA194075	Hs.99908	nuclear receptor coactivator 4	1.747
	113783	W19222	Hs.7041	ESTs; Weakly similar to II ALU SUBFAMILY SQ WARNING ENTRY II [H.saplens]	1.747
40	134898	X98330	Hs.90821	ryanodine receptor 2 (cardiac)	1.745
		T10132	Hs.4236	KIAA0478 gene product	1.744
	104229	AB002346	Hs.61289		1.743
		AA461558	Hs.202949	KIAA1102 protein	1.743
		AA284252	Hs.58372	ESTs	1.743
45		AA236545	Hs.54973	ESTs	1.742
		AA470941	Hs.143162		1.741
		Z38807	Hs.22870		1.739
		T88908	Hs.189746		1.738
		F10577	Hs.70312		1.735
50		R51476		vg76f04_r1 Soares infant brain 1NIB Homo saplens cDNA done	1.733
		AA279654	Hs.194524	70	1.733
		U18242		calcium modulating ligand	1.732
		H88157	Hs.41105		1.731
		R22212	Hs.23361		1.731
55		H72240		ESTs; Moderately similar to KIAA0745 protein [H.sapiens]	1.731
55		AA412063	Hs.6065		1.728
		AA101984		G-protein coupled receptor	1.726
		R12581	Hs.191146		1.726
		L76703	He 173328	protein phosphatase 2; regulatory subunit B (B56); epsilon isoform	1.725
60		AA489086	Hs.36545		1.725
O		N52136	Hs.93828		1.725
			Hs.55896		1.725
		AA400422 AA404995	Hs.192480		1.725
			Hs.23240		1.725
65		R27296	Hs.186726		1.725
UJ.		AA479181 U44754		small nuclear RNA activating complex; polypeptide 1; 43kD	1.724
					1.722
		H29050	Hs.24096		1.722
		AA127395	Hs.222414		1.721
	1100/2	H88477	Hs.191178	E019	:

	120271	AA176404	Hs.111092	ESTs; Weakly similar to ZINC FINGER PROTEIN 136 [H.sapiens]	1.72
	100227	D28915	Hs.82316	interferon-induced; hepatitis C-associated microtubular aggregate prot (44kD)	1.719
		W69459		sex comb on midleg (Drosophila)-like 1	1.719
			Hs.8750	ESTs .	1.717
_		W73367			
5		AA055475	HS.104143	clathrin; light polypeptide (Lca)	1.717
	120582	AA281290	Hs.125287	ESTs; Weakly similar to BC331191_1 [H.sapiens]	1.717
	134891	F03517	Hs.90787	ESTs	1.716
		AA428567		Homo sapiens mRNA; cDNA DKFZp586F1323 (from clone DKFZp586F1323)	1.715
			Hs.13854		1.713
10		AA521311			
10		AA001870		N-acetylglucosamine-phosphate mutase; DKFZP434B187 protein	1.713
	106198	AA427816	Hs.11803	ESTs	1.712
	125136	W31479	Hs.129051	ESTs	1.712
		AA085676	Hs.6763	KIAA0942 protein	1.712
					1,711
1.5		J04813		cytochrome P450; subfamily IIIA (niphedipine oxidase); polypeptide 5	
15		D20899		Homo sapiens mRNA; cDNA DKFZp564G022 (from clone DKFZp564G022)	1.711
	127871	AA766511	Hs.128848	ESTs	1.71
	116089	AA455933	Hs.41324	ESTs	1.709
		AA504153		ESTs; Weakly similar to ORF YGL050w [S.cerevisiae]	1,708
		AA609200	Hs.162686		1.708
20					
20		AA026617		ESTs; Highly similar to BAI1-associated protein 1 [H.saplens]	1.707
	115114	AA256468	Hs.88148	ESTs	1.705
	117852	N49408	Hs.138102	KIAA0853 protein	1.705
		T57570		ribosomal protein S3A	1.704
					1.702
05		N91273	Hs.27179		
25	131721	L36644	Hs.31092		1.7
	132438	F08925	Hs.48610	ESTS	1.7
	132476	N67192	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat region mRNA	1.7
		F02488	Hs.21917		1.7
		AA487503	Hs.100636		1.698
20					
30		AA342337		ESTs; Modity smir to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.saplens]	1.697
		L06133	Hs.606	ATPase; Cu++ transporting; alpha polypeptide (Menkes syndrome)	1.696
	135037	U77948	Hs.184122	general transcription factor II; i	1.696
		H11297	Hs.31050	ESTs	1.695
		AA329274	Hs.82911	protein tyrosine phosphatase type IVA; member 2	1.694
25					1.004
35	102223	U24685	MS.140220	Human anti-B cell autoantibody IgM heavy chain variable V-D-J region (VH4)	4 004
				gene; clone E11; VH4-63 non-productive rearrangement	1.694
	126712	AA205862	Hs.7942	ESTs	1.694
	101507	M27492	Hs.82112	interleukin 1 receptor; type I	1.692
		AA435551	Hs.30824	ESTs	1.691
40			Hs.8215	ESTs; Weakly similar to double-stranded RNA-binding nuclear	,
4 0 ,	110020	H58691	H2-0213		4.00
		_		protein DRSBP76 [H.sapiens]	1.69
	135339	D59269	Hs.127842	Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 783648	1.69
	118250	N62602		yz75b6.s1 Soares_multiple_sclerosis_2NbHMSP Homo sapiens cDNA clone	
				IMAGE:288851 3' similar to contains Alu repetitive element, mRNA sequence	1.689
45	108/70	AA450116	Hs.188180		1.688
T J					
		AA057678	Hs.63408		1.687
	119748	W70313	Hs.126906	ESTS	1.686
	116576	D51228	Hs.79404	neuron-specific protein	1.683
	123035	AA481392	Hs.105166	ESTs	1.683
50		AA011616	Hs.184086		1.681
50					1.678
		M28209		RAB1; member RAS oncogene family	
		U76638	Hs.54089		1.677
	126218	AA256386	Hs.13649	Novel human gene mapping to chomosome 13; similar to rat RhoGAP	1.676
	111180	N67277	Hs.9403	ESTs	1.676
55		AA404342	Hs.173531		1.675
55		Z38520	Hs.175930		1.675
		AA190634		endoplasmic reticulum membrane protein	1.675
	125245	W86608	Hs.7243	ubiquitin specific protease 24	1.675
	102906	X06956	Hs.75318	tubulin; alpha 1 (testis specific)	1.675
60	125914	AA262925	Hs.180034	cleavage stimulation factor; 3' pre-RNA; subunit 3: 77kD	1.674
-		U63289		CUG triplet repeat; RNA-binding protein 1	1.674
					1.673
		F10108	Hs.183333		
		D63876		KIAA0154 protein	1.673
	104079	AA402937	Hs.103238	ESTs	1.671
65		AA001386	Hs.59844		1.671
		AA243139	Hs.4863	Homo sapiens done 25088 mRNA sequence	1.669
		N58172			1.668
			Hs.109370		
		H92575		ESTs; Weakly similar to II ALU SUBFAMILY SQ WARNING ENTRY II [H.sapiens]	1.668
	126809	AA743475	Hs.171693	ESTs	1.667

	106095	AA419547	Hs.11713	ESTs .	1.66
		M77142			
			11- 00000	TIA1 cytotoxic granule-associated RNA-binding protein	1.66
		AA192306	Hs.23926	ESTs	1.66
_	113582	T91371	Hs.16824	EST	1.66
5	119559	W38197		Accession not listed in Genbank	1.66
		W87535	-Hs 59015	ring finger protein 9	1.65
		AA490890	Hs.105273		1.65
	111078	N59230	Hs.186574	ESTS	1.65
	113082	T40528	Hs.8246	ESTs	1.65
10		W44692	Hs.124177		1.652
		D53639	Hs.77904		
					1.65
		X59417	Hs.74077		1.65
	124424	N35314	· Hs.107265		1.65
	128890	AA096157	Hs.182364	ESTs; Weakly similar to 25 kDa trypsin inhibitor [H.sapiens]	1.65
15	119400	T92767		ye27d06.s1 Stratagene lung (#937210) Homo sapiens cDNA clone	
	110700	TOLIGI			4 00
	404004		11 00000	IMAGE:118955 3', mRNA sequence.	1.65
		AA486868	HS.29802	slit (Drosophila) homolog 2	1.65
	118229	N62339	Hs.180532	heat shock 90kD protein 1; alpha	1.649
	118533	N67954	Hs.49413		1.648
20		AA476307		KIAA0737 gene product	
20					1.647
		X60708	HS.44926	dipeptidylpeptidase IV (CD26; adenosine deaminase complexing protein 2)	1.647
	128667	U69140	Hs.103419	fasciculation and elongation protein zeta 2 (zygin II)	1.646
	112933	T15530	Hs.221439		1.646
		AA056263	Hs.132747		1.645
25		AA579377			
40				heat shock 90kD protein 1; alpha	1.644
		AA007595	Hs.220937		1.642
	118836	N79820	Hs.50854	ESTs	1.64
	100401	D85423		Homo sapiens mRNA for Cdc5, partial cds	1.64
		AA284865	He 171228	KIAA1040 protein	1.639
30					
J 0		AA460128	Hs.5074	similar to S. pombe dim1+	1.639
		AA034002	Hs.76359		1.639
	115968	AA447083	Hs.134522	ESTs	1.637
	116370	AA521256	Hs.236204	ESTs; Moderately similar to NUCLEAR PORE COMPLEX	
				PROTEIN NUP107 [R.norvegicus]	1.631
35	400044	E04477	U- 004000		1.001
<i>33</i>	109644	FU44//	HS204802	ESTs; Moderately similar to GLYCERALDEHYDE 3-PHOSPHATE	
				DEHYDROGENASE; LIVER [H.saplens]	1.627
	103427	X97303		H.sapiens mRNA for Ptg-12 protein	1.627
	132186	T33888	Hs 221040	KIAA1038 protein	1.626
	131428				
40				PR domain containing 2; with ZNF domain	1.626
40		AA649257	Hs.188602		1.625
	114503	AA039568	Hs.188083	ESTs	1.625
	121242	AA400857	Hs.97509	EST	1.625
		AA446885		ESTs; Moderately similar to ZINC FINGER PROTEIN 141 [H.sapiens]	1.625
45	110632		Hs.171635		1.624
45	111389	N95837	Hs.169111	ESTs; Weakly similar to LB2A [D.melanogaster]	1.624
	112449	R63802	Hs.124186	ring finger protein 2	1.623
	113070	T33464	Hs.6298	ESTs	1.622
	107229		Hs.34644		
					1.618
50	132710		IIS.552/8	protease inhibitor 5 (maspin)	1.617
50	124664	N94814		ESTs; Weakly similar to KIAA0765 protein [H.sapiens]	1.617
	130166	AA350690	Hs.151411	KIAA0916 protein	1.616
	125040		Hs.199961		1.615
	132972				
				ESTs; Weakly similar to !! ALU SUBFAMILY SB WARNING ENTRY !! [H.sapiens]	1.615
بر ہے		AA433916		heat shock 70kD protein 4	1.611
55	120408	AA235045	Hs.190151	ESTs	1.61
	120934	AA383773	Hs.191500	ESTs	1.61
		AA279071		splicing factor 3b; subunit 1; 155kD	1.609
	134330		Hs.8185	ESTs; Highly similar to CGI-44 protein [H.sapiens]	1.607
~~	115117	AA256492	Hs.49007	poly(A) polymerase	1.606
60	125162	W44682	Hs.109896	ESTs .	1.605
		AA285246		ESTs; Weakly similar to Prt1 homotog [H.sapiens]	1.604
		AA166917	Hs.72639		
					1.603
		AA342301		ESTs; Weakly similar to !! ALU CLASS B WARNING ENTRY !! [H.saplens]	1.602
	129704	W81301	Hs.12064	ubiquitin specific protease 22	1.602
65	109313	AA206800	Hs.86276	ESTs; Moderately similar to zinc finger protein dp [H.sapiens]	1.601
	130457		Hs.155976		1.6
		AA485211	Hs.190046		
					1.6
		AA256460	Hs.44810		1.6
	117731	MARAZZ	He 46600	FC16	4.0

	123344	AA504338	Hs.171857	ESTs	1.599
		X86098	Hs.3238	adenovirus 5 E1A binding protein	1.597
		AA256743		KIAA0092 gene product	1.596
_	114918	AA236813		ESTs; Highly similar to unknown [H.sapiens]	1.596
5	114807	AA160805	Hs.199832		1.596
	105103	AA151593	Hs.10130	EST8	1.594
	125004	T60120		yb68f02.s1 Stratagene ovary (#937217) Homo sapiens cDNA clone	
				IMAGE:76347 3', mRNA sequence.	1.592
		AA282914	Hs.10176	ESTs	1.589
10	110455	H52172		yt85e8.s1 Soares_pineal_gland_N3HPG Homo sapiens cDNA clone	
				IMAGE:23111 3' similar to contains Alu repetitive element, mRNA sequence	1.589
		W72967	Hs.191381	ESTs; Weakly similar to hypothetical protein [H.saplens]	1.587
	126983	AA211537		zn55d01.r1 Stratagene muscle 937209 Homo sapiens cDNA clone	
1.5				IMAGE:562081 5', mRNA sequence.	1.586
15		AA250745			1.584
		AA252033	Hs.15036	ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	1.584
		Z40251			1.584
		AA428137	Hs.86434		1.581
20		AA456311	Hs.93961	ESTs; Weakly similar to II ALU CLASS A WARNING ENTRY II [H.sapiens]	1.581
20		AA479295		Kelch motif containing protein	1.581 1.58
		W67569		ESTs; Weakly similar to SNF2alpha protein [H.sapiens]	1.58
		D80948			1.58
		AA424558	Hs.9302	phosducin-like	1.579
25		AA279422	Hs.5724 Hs.27197	ESTs KIAAG707 ambin	1.577
43		R27598 R98173	Hs.23763	KIAA0797 protein Max-interacting protein	1.575
		N21680	Hs.43047		1.575
		M33772		troponin C2; fast	1.575
		AA459703		v-myc avian myelocytomatosis viral oncogene homolog	1.575
30		W90625	Hs.58432		1.575
50		N32157	Hs.82207		1.574
		AA452865		UDP-Gal:betaGlcNAc beta 1;4- galactosyltransferase; polypeptide 2	1.573
		AA609204		KIAA0874 protein	1.573
		AA810215	Hs.189079		1.571
35		W72798		ESTs; Wkly smlr to cDNA EST EMBL:D32579 comes from this gene [C.elegans]	1.571
		AA135638	Hs.223756		1.571
		AA456112	Hs.99410		1.57
		H12636		ESTs; Weakly similar to reverse transcriptase [H.sapiens]	1.568
		AA609828		ESTs; Highly similar to tetracycline transporter-like protein [M.musculus]	1.568
40		Z41366		KIAA0872 protein	1.567
		N53076	Hs.5996	ESTs	1.567
		AA913491	Hs.189143	ESTs; Modrity smir to !! ALU SUBFAMILY J WARNING ENTRY !! [H.sapiens]	1.567
		R43365	Hs.22273		1.566
	132160	AA281770	Hs.184081	seven in absentia (Drosophila) homolog 1	1.566
45	111568	R10153	Hs.20561		1.566
	127775	H04106	Hs.179902	ESTs; Weakly similar to NG22 [H.sapiens]	1.568
	115359	AA281936	Hs.88914	ESTs	1.566
	121845	AA425734	Hs.165066	ESTs; Weakly similar to hypothetical protein [H.sapiens]	1.565
	127854	AA769520		ESTs; Weakly similar to REGULATOR OF MITOTIC SPINDLE	
50				ASSEMBLY 1 [H.sapiens]	1.564
		AA187679	Hs.111114		1.563
		AA243012	Hs.75928		1.562
		AA031700	Hs.251962		1.562
		U97188		IGF-II mRNA-binding protein 3	1.561
55		H95094		translocase of outer mitochondrial membrane 20 (yeast) homolog	1.561
		AA281244	Hs.65300	ESTs	1.559
		T97931	Hs.18190		1.558
		AA236177	Hs.76591	KIAA0887 protein	1.558
C O		T62571		microtubule-associated protein 7	1.558
60		AA039616	Hs.61933	ESTS	1.558
		AA156499	Hs.8454	protein kinase; cAMP-dependent; regulatory; type II; alpha	1.557
		R82074	Hs.82109	syndecan 1	1.557
		D51401	Hs.70333		1.553 1.553
65		AA490899	Hs.24462		1.553
UJ		N74075	Hs.94293	ESTs; Weakly similar to ZINC FINGER PROTEIN 83 [H.sapians]	1.55
		W20016	Hs.65487		1.55
		AA436720 AA025234	Hs.61260		1.55
		N21407	Hs.257325		1.55
	العتدب	116 1701	وي الحيوا ا	2010	

		F09684	Hs.24792		1.55
	120288	AA187938	Hs.55189	ESTs; Weakly similar to F25B5.3 [C.elegans]	1.548
	106356	AA443277	Hs.31034	peroxisomal biogenesis factor 11A	1.548
		AA235627		APG5 (autophagy 5; S. cerevisiae)-like	1.547
5		D11961	Hs.77823		1.546
•		Al400862	Hs.142607		
					1.546
		Z38909	Hs.22265		1.545
		M86546		pre-B-cell leukemia transcription factor 1	1.544
10		T93630	Hs.17207		1.542
10	104896	AA054228	Hs.23165		1.541
	114477	AA032013	Hs.144260	EST	1.54
	110731	H98653	Hs.188006	KIAA0878 protein	1.54
	130367	Z38501	Hs.8768	ESTs; Widy smlr to !! ALU SUBFAMILY SQ WARNING ENTRY !! [H.saplens]	1.538
		L07044		Homo sapiens calcium/calmodulin-dependent protein kinase II mRNA; partial cds	1.538
15		W60186	Hs 169487	Kreisler (mouse) mai-related leucine zipper homotog	1.537
		W24957	Hs.16281		1.00/
	100000	1124337	115.10201	, , , , , , , , , , , , , , , , , , , ,	4
	400700	4 4 000000		encoded in cosmid T20D3 [H.saplens]	1.537
		AA088851	Hs.75744		1.537
00		AA449469	Hs.11859		1.536
20	104120	AA429838	Hs.89519	KIAA1048 protein	1.536
	100533	HG1879-HT19	19	Ras-Like Protein Tc10	1.535
	130664	R09049	Hs.17625	ESTs	1.535
	127122	AA279153	Hs.190049	ESTs	1.535
	134264		Hs.8087	ESTs	1.535
25		AA418682	Hs.44625		
47		AA286941	Hs.43691	ESTS	1.535
	125003				1.533
			Hs.100445		1.532
	102273		Hs.75981	ublquitin specific protease 14 (tRNA-guanine transglycosylase)	1.532
20		AA426299	Hs.98510		1.532
30	114366		Hs.469	succinate dehydrogenase complex; subunit A; flavoprotein (Fp)	1.531
	132944	AA054515	Hs.6127	ESTs; Weakly similar to prostate-specific transglutaminase [H.sapiens]	1.53
	111199	N68210	Hs.29822	ESTs	1.53
	113494	T88878	Hs.258738	ESTs	1.529
		AA490882	Hs.112227		1.528
35		AA156049	Hs.65490		1.528
55		AA027163	Hs.7942	ESTs	
					1.526
		AA279408	Hs.25866		1.526
	130198			mitogen-activated protein kinase kinase kinase 5	1.526
40	114297			DKFZP434K151 protein	1.525
40	112876		Hs.4842	ESTs `	1.525
	127500	AA525014	Hs.162115	ESTs	1.525
	120519	AA258585	Hs.129887	cadherin 19 (NOTE: redefinition of symbol)	1.525
	119859	W80702	Hs.58461	ESTs	1.525
	129944	L00389	Hs.1361	cytochrome P450; subfamily I (aromatic compound-inducible); polypeptide 2	1.524
45	118864		Hs.42148		1.523
	123964		Hs.210115	, , , , , , , , , , , , , , , , , , , ,	1.523
	111676		Hs.166459		1.522
			Hs.134173		
	130455				1.522
50				N-acetyltransferase 1 (arytamine N-acetyltransferase)	1.521
20	125181		Hs.12396	ESTs .	1.521
	127093	AA768241		oa72d02.s1 NCI_CGAP_GCB1 Homo sapiens cDNA clone	
				IMAGE:1317795 3', mRNA sequence.	1.521
	132156	AA157401	Hs.4113	S-adenosylhomocysteine hydrolase-like 1 -	1.521
	125303	Z39821	Hs.107295	ESTs	1.52
55	132697	AA281951	Hs.5518	Homo sapiens mRNA; cDNA DKFZp566J2146 (from clone DKFZp566J2146)	1.52
	117086	H93135	Hs.41840	ESTs	1.519
	113355		Hs.14480		1.518
			Hs.69506		1.518
			Hs.86849		1.518
60					
UU	128510			RAB28; member RAS oncogene family	1.517
	132968				1.515
•	117035		Hs.41182		1.515
	116781		Hs.52132		1.513
~			Hs.118531		1.513
65	130214	H78003	Hs.15266	ESTs	1.513
	134700	AA481414	Hs.8868	golgi SNAP receptor complex member 1	1.512
	116618		Hs.45224		1.508
	126257			tumor necrosis factor receptor superfamily; member 10b	1.508
				ubiquitin-conjugating enzyme E2D 3 (homologous to yeast UBC4/5)	1.508
				ביילביייי ביילבייים בייבלייים בייבלייים בייבליייי ביילביייי ביילביייי ביילביייים בייבליייים בייבליייים בייבלייים	

	113837	W57698	Hs.8888	ESTs	1.507
	114317	Z41038	Hs.469	succinate dehydrogenase complex; subunit A; flavoprotein (Fp)	1.507
	100311	D50640	Hs.184653	phosphodiesterase 3B; cGMP-inhibited	1.507
	126802	AA947601	Hs.97056	ESTs	1.508
5	128661	R82837	Hs.103329	KIAA0970 protein	1.508
	134194	AA233231	Hs.79828	EST8	1.506
	108953	AA149652	Hs.42128	ESTs	1,504
	133240	D31161	Hs.68613	ESTs	1.502
	132671	X76302	Hs.54649	putative nucleic acid binding protein RY-1	1.501
10	132609	Z48923	Hs.53250	bone morphogenetic protein receptor; type II (serine/threonine kinase)	1.501
	105574	AA278678	Hs.258567		1.5
	113718	T97782	Hs.256268	ESTs	1.5
	127824	Al208365	Hs.127811	ESTs	1.5
	130132	U55936	Hs.184376	synaptosomal-associated protein: 23kD	1.5
15	127394	AA453224		ESTs; Weakly similar to !! ALU SUBFAMILY J WARNING ENTRY !! [H.saplens]	1.5
	100485	HG1111-HT11	11	Ras-Like Protein Tc21	1.5
	101078	L04510	Hs.792	ADP-ribosylation factor domain protein 1; 64kD	1.5
	128611	AA456R45	Hs.102471	KIAA0680 gene product	1.5

TABLE 12A shows the accession numbers for those primekeys lacking unigene D's for Table 12. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (Double Twist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10	Pkey: CAT nui Accessio		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15	Pkey	CAT number	Accession
20	117040 100782	119811_1 46956_1 18457_1	AA084524 AA339253 AW966289 AW970600 AA503323 H89218 AF086031 H89112 AA355435 NM_001516 Z30093 T28405 AW949486 AA461142 AA410532 Al652073 AA521208 Al970141 Al968234 Al026102 AA713583 AW135876 AA936814 AA770300 Al242635 AA377033 AW960263 AW607683 Al273603 AA410287 Al040513 AA460838 Al803916 AW294035 AW448680 AW788677 AW675048 BE542116 AL120521
25		3022_1	L34840 NM_003241 U31905 Al546931 Al791616 Al973065 Al792321 Al546937 Al685880 Al732835 Al682360 AA420653 AA564047 Al682323 Al824614 Al659889 Al680052 Al970887 Al623108 AA420692 Al418074 AA631018 Al810595 AW291463 AW449930 Al668908 Al970818
30	100824	5_36	Al393237 Al521317 Al761348 AF025841 D43968 AW994987 L34598 AF025841 D89789 D89788 D89780 AW998932 Al971742 Al310238 X80976 AW139668 AW674280 Al365552 AA877452 AV657554 C75229 AA376077 Al798056 AW609213 W25586 H30149 BE075089 BE075190 AW580858 H99598 AA425238 AA133916 AW363478 BE158121 BE158127 AW467960 BE158135 BE158126 BE158145 N92860 AA847246 Al961688 Al361423 AA878154 AA043767 Al863712 Al559226 AW339007 Al371266 Al368901 AA046824 AA134739 AW449154 AA130232 Al458720 AA982511 Al700627
25		264197_1	R70437 AW004008 AA045229 AI671572 H99599 AA043768 AI685454 AI871685 N29937 X90977 AA524240 AI142114 AI825750 AI567805 AI631365 AI347893 AA134740 P20669 AA046707 AW793216 AW963298 AW959380 AA363265 AI784593 AI268201 R69451 AV657618 AI695588 BE312163 AI230788 AA374482 AI926059 AA622653 AI860704 BE139185 AW296884 T60238 T60120
35	102313 102337	27608_1 553_1	U33921 A1190489 AA573311 AI814663 AA806761 AA765241 AA019317 AA092255 AA035405 T85079 AA890151 AI373959 T85080 BE153728 AA740848 BE080682 AL048137 AW182316 AI699468 AW274481 AW407538 AA306562 AW950024 AW849943 AL045703 AW843196 W25132 BE612794 AA304266 AW958054 H25673 AV646563 AV646573 BE172890 AW593488 AA385181 AA164998
40			Al246476 AA345406 Al277554 AA134749 AA856624 BE613247 AA299003 AL048138 AA028121 T92510 Al923835 AW020440 Al401594 Al889401 N93280 AA044247 AA028100 Al582845 AA811151 AI741811 Al925678 AA448277 AA172221 Al214783 BE220793 AA022746 Al082882 AA022849 Al928385 AA573472 Al420686 AW072802 Al799493 Al873506 Al468977 Al182079 Al468976 AA044272 AW015701 AW316979 AA933042 AA609017 Al318393 Al424571 Al934945 AA172023 AW050917 AA848180 AA134748 Al003947 Al768769 AW008697 AA653517 AW575680 Al474214 AA401478
45			U36922 AA927064 AA668000 D62654 T91745 AW500202 AA194764 AA746346 AA130464 AW117498 AA054526 N26432 H02534 H04964 AW303367 BE300931 Al218049 Al208073 AW182749 AA983630 Al147585 AA194765 AA054534 AA922720 Al436565 Al346535 AA134269 AA280923 AA897422 AA019559 AW274010 AA035406 AA917879 H99327 W32908 Al216046 AW496823 AA019414 H8298 W35284 Al936621 A767113 AA666177 AW367874 H82398 AF032865 AW300151 AW467069 AA809346 Al188507 Al424178 AA872752 AI650601 AU42752 AI650606 AI832433 AW1975658 AI761654
50	404704	292319 1	AIB04396 AI382221 AIB13840 AI438635 AI523901 AW517242 AI221705 AW298104 AW204560 AW573095 AW028783 AW014650 AI766744 AIB08294 AI698758 AI041809 AI766667 AI478103 AA872797 AA769305 AA765080 AA334166 AI472322 R07335 R07840
55	116988 124825 110455	292319_1 185904_1 330773_1 46874_1 182217_1	AW953879 AW953680 AA244436 H82527 AA361046 AA244483 H82526 AA501669 R52088 H52576 AF085971 H52172 N99638 AW973750 AA328271 H90994 AA558020 AA234435 N59599 R94815
	125624 104038	154135_1 264235_1 43892_1	N99030 AM57330 AA455492 R34539 AA165411 AA374532 AA421255 BE514383 AA071273 AW247987 AW673286 BE312102 AW749824 BE071985 AW577383 BE071945 BE072005 AW577355
60	104142	113242_1	BE071965 AW239231 BE072000 BE071960 AW577360 AW749830 AW373020 X97303 AW999522 BE000192 BE562219 BE266655 BE264970 AA074713 AA447006
	127093	47721_1	AW977549 AA256038 AL365415 AW500455 AA768241 AW968097 Z17849 AA256104

	125873	10492_1	AW271838 AL133805 C01646 H29959 AA999896 D60676 AW999454 AW961176 AA315244 H14437 AW386118 N46512 AW272021 AI768516 BE466421 AI082809 AI804454 AA905101 AW173368 N38942 AW614169 AI080483 N29489 AI500550 AA994475 AA614464 AA707368 AA593145 AA569473 AW627815 AI828244 N63226 N42300
_	125954	4457_1	NM_016353 AB023584 W44753 R09585 AA382865 R23772 Al814257 AA974046 AK001608 Al835638 AW440609 Al420022
5		_	AA777388 AA806969 AI554876 AI584006 AI688556 AI688634 AI697997 AI014540 AI806683 AI741202 AW263154
			AW297238 Al149951 Al589076 AW082158 AW614265 AA931887 AA781969 R09490 AA484643 Al207121 Al088390
			AI538065 AI619547 AI741925 AI702846 H40846 R93943 AW747979 AA461348 U30163 AA326023 AI535992 AW242870
			AI244025 AI222558 W38425 AW473630 AI624599 AI821226 AI683152 AI096458 AI123822 AW170802 C18447 AI337674
			D25726 AW339366 AW771259 AA461174
10	125992	1589048_1	H48372 W01626
		15307_6	AA305278 AA223833
			110924 6443_1 AW058463 AF195766 AA680145 T86901 W60373 W60281 NM_007222 AF106862 AI000785 AA167188
•			AW884503 AW891313 AW891332 AW891312 AI984924 AI123518 N75170 AA131614 H25330 AI913358 AI742277 W25576
			R58771 AW445159 AW888628 AW888627 AW274674 Al088482 N52314 N34282 AW001769 Al338943 T66784 Al288983
15			AW468676 AW237528 H25289 N71690 AA610128 AI143458 AI082599 N49144 AA654773 AW663411 AW610151 N47938
			AW601626 AA167189 AA918304 AA805205 BE069496 AA652836 BE069499 Al699298 AW249926 AW888578 BE567635
			T10726 AW604715 D54245 D53062 D55610 D55555 AA301376 Al133498 N77788 Al936320 AW090734 Al269977 N50828
			AA550814 Al421993 Al005384 N50813 D60292 D59349 AA131710 D81698 D81699
••		232161_1	AA331156 AA331157 AA331155
20	135197	29440_1	U76456 NM_003256 AF057532 AA193414 AW293304 AW963378 AA313095 AK359841 AK969312 AK080163 AW448926
			Al671136 BE466399 Al637967 Al671873 AW196583 AW071635 Al634427 AW296872 AW292470 AA193650
		304844_1	BE161832 AA453224 AA485772
		1860_2	D90391 M55575 Al652268 AA719776
0.5		171841_1	AA524886 AW971347 AA211537
25	_	188975_1	AW971327 AA524988 AW628653 AA251797
		443883_1	AW976798 AA769520
		280429_1	AA432071 AA405648 AW000908 T16347
	106320	6435_1	AB028957 AL 120001 Al267678 H10928 R19844 AW970334 AA393182 F05472 F11711 H09908 N50250 Al815411 BE463679
30			D61468 AW970253 D60889 C15549 D61011 D60867 AI815795 AA534831 D81386 AW235039 AI382158 D81174 AA416899
50			AA852310 H09789 H10929 H09813 F09369 R44721 D51515 Z38456 R14004 T66255 F12148 F12139 AW351702 M85350 AI018713 AW972450 AW972645 AA514964 T66172 F09785 F09776 AA436608 T05327 T07118 AA339352
	115470	201515 1	AW301608 N46706 AA649093 AA287595 AW811753 AA287596 N39260
		11075_1	NM_001874 J04970 TB1426 AW205201 T84979 AA255727 AA847837 R02164 T91339 AV651884 AV651835 AV651350
		1.010_1	AV650118 AV651338 Al272002 Al367796 AA830651 AA262112 AW151198
35	100401	24827_1	AU076696 AA219720 AL135197 AA305877 N56376 AA318063 AA130725 AW854903 BE541230 AW383312 U86753 D85423
			Al679458 Al122932 AB007892 Al583919 BE160134 F08104 R34903 F13440 AA095444 AA262453 AA191036 R17895
			T81266 BE149776 Al279537 Al143113 AA361072 AW959030 AW268817 AA81 1533 BE275179 Al221677 T65147 R49293
			AA249176 BE000290 AA768053 F09494 BE092645 BE172099 Z41177 AA044750 Al909768 BE140795 BE140574 AW845210
			AW752452 BE243244 AA843664 Al300080 BE169032 AW189979 BE004869 AA621872 Al951772 Al678897 Al926598
40			N62813 Al350912 AW608791 Al309602 Al983138 AW875592 Al655073 AW875626 AA130606 Al370827 C75528 C75554
			AW263335 Al344426 BE004788 AA576220 AA604824 Al431405 AA749378 R38882 AW955075 AA173821 C75657
			AA219572 AW768408 R43141 Al431414 AA483343 Al673792 T17294 AW770187 N74285 Al476404 Al088288 AA654152
			AW974864 BE617311 BE243328 BE168049
45	130542	28089_3	U64675 AW167507 AW167508 BE218568 AA778360 W85722 AL044843 BE159404 AF012086 AW898611 AW898610
43			BE159405 BE092191 AW890826 AW369841 AW368064 AW606702 AL044731 R82691 AA419346 AA416558 H96045
			AL040450 AI640531 AI808434 AL046613 AW855784 AW362469 AL048881 AL049015 AA094272 AA888908 AA417294
			AW237786 R59783 AL044916 D82402 Al216854 Al079342 H96406 AL037845 Al915900 AA972133 Al478783 T31074 Z21135 Z21396 AA352182 R13918 AA430178 C17811 Al371824 Al742256 AA926801 N79156 AA350610 AA081971 N83839
			R35544 AA312292 AW952080 N42322 AA171957 AA565297 R89207 AA504106 Al630782 AA826482 AI301579 T36241
50			AW966618 Z28426 AL043480 Al124636 AA393449 T19504 AW887823 Al289814 N53979 AL043571 Al632764 Al859613
			AI986308 AI683212 AI984499 AI133258 C05898 AW512761 AI041260 BE466240 Z19161 AI351190 N67549 AI373374
			AA400873 AW440914 AW514879 AA770146 Al358754 R51113 Al283773 AA649886 T30543 D54358 R37750 T03358
			T15451 T15880 AA999689 N67396 Al056289 T85597 N62441 R89099 R00035 T85596 R61335 R00128 N63359 Al535964
	100485	30576_2	Al207768 M31468 NM_012250 W01322 AA253280 AA253233 AA293148 AW582106 F79880 AA459547 AA363459
55			AA234396 N31669 H44468 AA434587 AW363088 AW993541
		112277_6	AA070906 AA070934
	100522	19669_1	X51501 NM_002652 Y10179 J03460 AI791618 AI821473 AA916588 AA564296 AA916110 AI972286 AI420470 AI568790
	400500	00005 4	ALS97724 AW205207 AI659305 AI791620 AA532383 AI821475 AA526498
60	100533	32905_1	NM_012249 M31470 AL043108 AA262561 AA178883 T29433 AA313329 W48807 AW404323 AA453560 AW403227 H94816
oo	100500	22002 2	W17101 AA165152 W23989 AA091310 AL40170A DE4006 AA40400 DE540006 AA20140 DE540464 AI200040 ALACTED ALCTED A
	100388	23902_2	AL121734 D54896 AA424269 BE242906 AA362118 BE018454 Al280348 AL048769 M35543 AA757734 A128865 H20289
			H23728 AI203445 H41481 H18237 H44081 H92839 AI928621 H75675 D51148 AI796198 AW390453 D55579 D54145 D53996
			D54015 R37664 H17541 AA668681 T65081 R15867 AW468123 R16049 H69030 AA054226 H16070 F09655 R92144 T03521 R05473 H92840 AA018186 R91707
65	102332	14745_3	U35637 AA112989 Z19308
33		genbank_N62602	
		entrez_Z84483	
		genbank_T92767	
		entrez_W38197	

MISSING AT THE TIME OF PUBLICATION

TABLE 13: shows genes, including expression sequence tags, up-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu02 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5

308023 Al452732

Unique Eos probeset identifier number Pkey: ExAccn: Exemplar Accession number, Genbank accession number UnigeneID: Unigene number 10 Unigene Title: Unigene gene title Background subtracted normal prostate: prostate tumor tissue Pkey **ExAccn** UnigenelD Unigene Title R1 15 0.028 333516 CH22_FGENES.173_1 337954 CH22 EM:AC005500.GENSCAN.96-3 0.029 Hs.204354 ras homolog gene family; member B CH22_EM:AC005500.GENSCAN.89-7 332496 R73299 0.03 337944 0.033 CH22_FGENES.330_10 334111 0.033 20 0.034 -333657 CH22_FGENES.241_2 CH.04_hs gi|6525284 CH22_FGENES.817_5 327718 0.034 336355 0.035 322011 AL137354 EST cluster (not in UniGene) 0.035 CH22_FGENES.821_5 336377 0.036 25 AW079607 Hs.188417 ESTs; Weakly similar to ZnT-3 [H.sapiens] 300254 0.037 CH.19_p2 gt|6015278 CH22_FGENES.507_6 330096 0.037 335191 0.038 CH22_FGENES.322_8 334040 0.039 333586 CH22 FGENES 204 2 0.04 30 CH22_FGENES.132_2 333295 0.042 313326 Al088120 Hs.122329 ESTs 0.043 CH.10_p2 gij3983513 CH22_FGENES.144_21 329517 0.043 333403 0.043 335226 CH22_FGENES.513_11 0.044 35 335976 CH22_FGENES.652_11 0.045 333637 CH22_FGENES.229_2 0.046 334582 CH22_FGENES.407_5 0.046 CH22_FGENES.826_4 0.047 336437 CH22_FGENES.782-1 337461 0.047 40 302892 N58545 Hs.6975 histone deacetylase 3 0.049 338689 CH22 EM:AC005500.GENSCAN.475-3 0.049 334721 CH22_FGENES.421_32 0.049 305867 AA864572 EST singleton (not in UniGene) with exon hit 0.049 CH22_FGENES.571_7 335498 0.05 45 311596 Al682088 Hs.223368 ESTs 0.05 CH.21_hs gi|6469836 326959 0.051 311688 AW025661 Hs.240090 ESTs 0.052 317298 Al922374 Hs.158549 ESTs 0.052 332984 CH22_FGENES.54_6 0.052 50 321039 AW247083 EST duster (not in UniGene) 0.053 CH22_FGENES.623_4 0.053 335844 325371 CH.12_hs gij5866920 0.054 CH22_FGENES.590_18 335667 0.054 333635 CH22_FGENES.228_2 0.054 55 336736 CH22_FGENES.110-2 0.055 CH22 FGENES.635 1 0.055 335893 CH22_FGENES.94 5 0.055 333170 CH.14_p2 gi|6015501 CH22_FGENES.320_2 0.055 329768 0.055 334030 60 323359 AA234172 Hs.137418 ESTs 0.055 300453 AW051431 0.055 Hs.113029 ribosomal protein S25 CH22_FGENES.367_12 0.055 334262 306590 Al000246 EST singleton (not in UniGene) with exon hit 0.055 331087 R22520 Hs.23398 **ESTs** 0.055 65 338620 CH22_EM:AC005500.GENSCAN.450-18 0.056 CH22_DA59H18.GENSCAN.28-5 0.056

0.057

EST singleton (not in UniGene) with exon hit

	339067	7		CH22_DA59H18.GENSCAN.33-3	0.057
	335689)		CH22_FGENES.596_4	0.057
	339069)		CH22_DA59H18.GENSCAN,33-5	0.057
	338176	3		CH22_EM:AC005500.GENSCAN.219-4	0.057
5	328159)		CH.06_hs gi 5868065	0.058
	335655	5		CH22_FGENES.590_6	0.058
	336371			CH22 FGENES.820 1	0.058
	336558			CH22_FGENES.842_3	0.059
	337738			CH22_EM:AC000097.GENSCAN.100-4	0.059
10	334273			CH22_FGENES.369_2	0.059
	335889			CH22_FGENES.633_3	0.059
	327807			CH.05_hs gij5867968	0.059
	333315			CH22_FGENES.138_7	
	338825			CH22_DJ246D7.GENSCAN.4-6	0.059
15	337612				0.06
13				CH22_C20H12.GENSCAN.22-5	0.06
	333897			CH22_FGENES.293_4	0.06
•	335990			CH22_FGENES.655_4	0.06
	334264			CH22_FGENES.367_15	0.06
20	338653			CH22_EM:AC005500.GENSCAN.460-39	0.061
20		W07459		EST cluster (not in UniGene)	0.061
	333498			CH22_FGENES.168_8	0.061
	336522			CH22_FGENES.839_3	0.061
	301357	AW295677	Hs.137840	ESTs; Moderately similar to HOMEOBOX	
0.5				PROTEIN SIX1 [H.saptens]	0.062
25		AA876469	Hs.181357	laminin receptor 1 (67kD; ribosomal protein SA)	0.062
	338143			CH22_FGENES.705_5	0.063
	333493			CH22_FGENES.168_2	0.063
	332533	M99487	Hs.1915	folate hydrolase (prostate-specific membrane antigen) 1	0.063
	325844			CH.16_hs gi 6552453	0.063
30	336402			CH22_FGENES.823_17	0.063
	335767			CH22_FGENES.607_1	0.064
	301893	T80334		EST duster (not in UniGene) with exon hit	0.064
	324019	AW177009		EST duster (not in UniGene)	0.064
	305801	AA845997		EST singleton (not in UniGene) with exon hit	0.064
35	335188			CH22_FGENES.507 3	0.065
	337533			CH22_FGENES.828-2	0.065
	333311			CH22_FGENES.138_3	0.065
	335668			CH22_FGENES.590_19	0.065
		AI041589		EST singleton (not in UniGene) with exon hit	0.066
40		AA962086		EST singleton (not in UniGene) with exon hit	0.066
		AA933840		EST singleton (not in UniGene) with exon hit	0.066
	335018	700000		CH22_FGENES.474_6	
	333594			CH22_FGENES.210_3	0.066
	333900				0.066
45	325207			CH22_FGENES.293_7	0.066
73				CH.10_hs gij6552430	0.067
	329888			CH.15_p2 gi 6067149	0.067
	326238			CH.17_hs gij5867260	0.067
	333658			CH22_FGENES.241_4	0.067
50	335809	A10.10.10m		CH22_FGENES.617_6	0.068
30		Al243437		EST singleton (not in UniGene) with exon hit	0.068
		Al949409	Hs.224583		0.069
	327005			CH.21_hs gi 5867664	0.069
		HG998-HT998		Sulfotransferase, Phenol-Preferring	0.069
EE	333318			CH22_FGENES.138_10	0.07
55	333313			CH22_FGENES.138_5	0.07
	325937			CH.16_hs gi 5867132	0.07
	335663			CH22_FGENES.590_14	0.07
	335349			CH22_FGENES.539_2	0.07
	303396	AA224470	Hs.25426	ESTs; Weakly similar to unknown [H.sapiens]	0.07
60	332603	N66681	Hs.33470	ESTs	0.07
	333310			CH22_FGENES.138_2	0.071
	309924	AW340812		EST singleton (not in UniGene) with exon hit	0.071
	336340			CH22_FGENES.814_15	0.071
		Al453365	Hs.172928	collagen; type I; alpha 1	0.071
65		AI055966		EST singleton (not in UniGene) with exon hit	0.071
	335499			CH22_FGENES.571_8	0.071
	329669			CH.14_p2 gil6272129	0.071
		D28390		EST cluster (not in UniGene)	0.071
	338174			CH22_EM:AC005500.GENSCAN.219-2	0.072

	336556		CH22_FGENES.842_1	0.072
	305451 AA738105	Hs.140	immunoglobulin gamma 3 (Grn marker)	0.072
	336684		CH22_FGENES.46-1	0.072
_	326943		CH.21_hs gi 6004446	0.073
5	333947		CH22_FGENES.303_1	0.074
	333214	11- 47-400	CH22_FGENES.104_5	0.074
	331917 AA446572	HS.174007	ESTs; Moderately similar to IIII ALU SUBFAMILY J WARNING	0.074
	339102 328122		CH22_DA59H18.GENSCAN.44-9	0.074
10	332250 N62712	He 226222	CH.06_hs gl 5868031 KIAA0618 gene product	0.075
~ 0	328506	113.220220	CH.07_hs gij5868471	0.075 0.075
	331756 AA291468	Hs.98504		0.075
	335193		CH22_FGENES.507 8	0.076
	317729 AA971718	Hs.128141	ESTs	0.076
15	304515 AA458708		hemoglobin; alpha 2	0.076
	313644 Al565766	Hs.124960		0.076
	326145		CH.17_hs gi 5867204	0.076
	336394		CH22_FGENES.823_6	0.077
20	306516 AA989542 300629 AA152119	Un 155101	EST singleton (not in UniGene) with exon hit	0.077
20	300028 MAI32119	H2.100101	ATP synthase; H+ transporting; mitochondrial F1 complex; alpha isoform 1; cardiac muscle	
	333160		CH22_FGENES.91_2	0.077
	337490		CH22_FGENES.799-5	0.077 <u> </u>
	305403 AA723748		EST singleton (not in UniGene) with exon hit	0.077
25	331747 AA281765	Hs.193689		0.077
	332792		CH22_FGENES.3_2	0.078
	330513 M81057		carboxypeptidase B1 (tissue)	0.078
	308905 AI859636	Hs.8102	ribosomal protein S20	0.078
30	337419		CH22_FGENES.759-4	0.078
30	333459 334851		CH22_FGENES.157_8	0.078
	329046		CH22_FGENES.440_3	0.078
	327879		CH.X_hs gi 5868569 CH.06_hs gi 5868142	0.078
	305830 AA857665		EST singleton (not in UniGene) with exon hit	0.079 . 0.079
35	302928 AL137719		EST cluster (not in UniGene) with exon hit	0.079
	304321 AA136698	Hs.113029	ribosomal protein \$25	0.079
	326390		CH.19_hs gi 5867340	0.079
	335230		CH22_FGENES.514_2	0.08
40	334622		CH22_FGENES.412_6	0.08
40	335331	U. 77004	CH22_FGENES.535_4	0.08
	304753 AA578840 301863 Al418863	Hs.77961	major histocompatibility complex; class I; B	0.08
	336561		EST cluster (not in UniGene) with exon hit CH22_FGENES.842_6	0.081 0.081
	335611		CH22_FGENES.583_5	0.081
45	305060 AA635771		EST singleton (not in UniGene) with exon hit	0.081
	306051 AA905130		EST singleton (not in UniGene) with exon hit	0.082
	308289 Al571211		EST singleton (not in UniGene) with exon hit	0.082
	334365		CH22_FGENES.378_13	0.082
50	335496		CH22_FGENES.571_4	0.082
50	332634 S38953		Human unidentified gene complementary to P450c21	
	337824		gene; partial cds CH22_EM:AC005500.GENSCAN.13-18	0.082
	335822		CH22_FGENES.619_7	0.082
	334758		CH22_FGENES.428_7	0.082 0.082
55	309641 AW194230	Hs.253100		0.082
	333064		CH22_FGENES.75_7	0.083
	338695		CH22_EM:AC005500.GENSCAN.477-25	0.083
	331809 AA402482	Hs.97312		0.083
60	326138		CH.17_hs gij5867203	0.083
oo	328304	1 la 405400	CH.07_hs gi 6004478	0.083
	330570 U60276	rts.165439	arsA (bacterial) arsenite transporter, ATP-binding; homolog 1	0.083
	334305 335885		CH22_FGENES.373_8 CH22_FGENES.632_3	0.083
	325839		CH22_FGENES.032_3 CH.16_hs gi 6552452	0.083 0.083
65	333531		CH: 10_118 g1 0502402 CH:22_FGENES.175_18	0.084
-	330385 AA449749		ESTs; Highly similar to secreted apoptosis related protein	0.007
			1 [H.sapiens]	0.084
	323305 AA811351		Homo sapiens clone 24812 mRNA sequence	0.084
	331698 Z39929	Hs.65843	ESTs	0.084

				•	
	335888			CH22_FGENES.633_2	0.084
	306008	AA894390		EST singleton (not in UniGene) with exon hit	0.084
	334249			CH22_FGENES.385_15	0.084
		AW451197	Hs.113418		0.084
5	330171	711701101	113.110410		0.084
5				CH.02_p2 gij6648220	
	336662			CH22_FGENES.41-1	0.085
	320506	Al815668	Hs.157476	suc1-associated neurotrophic factor target 2	
				(FGFR signalling adaptor)	0.085
	316974	Al740721	Hs.128292	ESTs	0.085
10	336492			CH22_FGENES.832_9	0.085
	335750			CH22_FGENES.602_4	0.085
	335676			CH22_FGENES.594_1	0.086
	336093	41000004	11- 000050	CH22_FGENES.691_2	0.086
15		AI933861	Hs.222852		0.086
15	335160			CH22_FGENES.502_4	0.086
	334306			CH22_FGENES.373_9	0.086
	334793			CH22_FGENES.433_5	0.086
	333936			CH22_FGENES.301_2	0.087
	336413			CH22_FGENES.823_35	0.087
20	333775			CH22_FGENES.272_6	0.087
	335971				0.087
		AID4FOO4			
		Al815981		EST duster (not in UniGene) with exon hit	0.087
	339101			CH22_DA59H18.GENSCAN.44-6	0.087
	327612			CH.04_hs gi 6525283	0.087
25	326241			CH.17_hs gi[5867260	0.088
	338386			CH22_EM:AC005500.GENSCAN.331-4	0.088
	327762			CH.05_hs gi 5867961	0.088
		AA679772		EST singleton (not in UniGene) with exon hit	0.088
	334359			CH22_FGENES.378_4	0.088
30	335500			CH22_FGENES.571_10	0.088
50					
	329687			CH.14_p2 gij6117856	0.088
	333654			CH22_FGENES.240_2	0.088
		AA464018		EST duster (not in UniGene)	0.088
~ =	325999			CH.16_hs gl 5867073	0.089
35	334832			CH22_FGENES.439_1	0.089
	339115			CH22_DA59H18.GENSCAN.49-3	0.089
	300896	Al916902	Hs.213882		0.089
	328784			CH.07_hs gi 5868309	0.089
	335044			CH22_FGENES.480_1	0.089
40	329791			TT	0.089
70				CH.14_p2 gii6469354	
	333656			CH22_FGENES.240_4	0.089
	326180			CH.17_hs gi[5867211	0.089
	333391		•	CH22_FGENES.144_6	0.089
4.00	338324			CH22_EM:AC005500.GENSCAN.306-3	0.089
45	305396	AA721052		EST singleton (not in UniGene) with exon hit	0.089
	337483			CH22_FGENES.795-7	0.09
	326424			CH.19_hs gij5867369	0.09
		AA977992		EST singleton (not in UniGene) with exon hit	0.09
	338893			CH22_DJ32I10.GENSCAN.7-6	0.09
50	327470			CH.02_hs gij5867772	0.09
50	333165			CH22_FGENES.91_7	0.09
		A1400700	LI= 400400		
		Al186738		ribosomal protein S2	0.09
		AA233926	Hs.23635	ESTs -	0.09
	335334			CH22_FGENES.535_10	0.09
55	335907			CH22_FGENES.636_2	0.09
	333885			CH22_FGENES.292_7	0.09
	331034	N51868	Hs.31965	ESTs; Moderately similar to 40S RIBOSOMAL	
				PROTEIN S20 [H.saplans]	0.09
	304660	AA534416	Hs.162185		0.09
60	328217			CH.06_hs gij5868096	0.091
50	336068			CH22_FGENES.684_13	0.091
		A AGOEGG4	Un 44400		
	-	AA295381	Hs.44423	ESTs	0.091
	328668			CH.07_hs glj5868254	0.091
	335309			CH22_FGENES.532_2	0.091
65	338481			CH22_EM:AC005500.GENSCAN.377-5	0.091
	306286	AA936892		EST singleton (not in UniGene) with exon hit	0.091
	305070	AA639783		EST singleton (not in UniGene) with exon hit	0.091
		AA594811	Hs.119122	ribosomal protein L13a	0.091
		AA968589	Hs.944	glucose phosphate isomerase	0.091
	30000		- 1010-17	Sunance hundrens manages	3.00

	323789	Al459812	Hs.170460	ESTs; Wealty similar to KIAA0990 protein [H.sapiens]	0.092
	334910			CH22_FGENES.455_3	0.092
	326382			CH.19_hs gij5867327	0.092
_	332467	AA489630	Hs.119004	KIAA0665 gene product	0.092
5	338534			CH22_EM:AC005500.GENSCAN.402-7	0.092
	336449			CH22_FGENES.829_6	0.092
	333709			CH22_FGENES.250_24	0.092
	336559			CH22_FGENES.842_4	0.092
	333230			CH22_FGENES.107_10	0.093
10	333133			CH22_FGENES.83_9	0.093
	334885			CH22_FGENES.451_11	0.093
		X02419	Hs.77274	plasminogen activator; urokinase	0.093
	336392			CH22_FGENES.823_4	0.093
15	334083			CH22_FGENES.327_38	0.093
15	325469			CH.12_hs gi 6017034	0.093
		R09531	Hs.19039	ESTs	0.093
		AW500732		EST cluster (not in UniGene) with exon hit	0.093
	334218			CH22_FGENES.358_3	0.093
00	336542			CH22_FGENES.840_6	0.093
20	337151			CH22_FGENES.546-1	0.093 0.093
	333642			CH22_FGENES.231_2	0.093
	336863			CH22_FGENES.297-4	0.093
	334680			CH22_FGENES.419_2	0.093
25	326365			CH.18_hs gij5867297 CH22_DJ32110.GENSCAN.23-22	0.093
23	338952			CH22_FGENES.832-4	0.094
	337539 333546			CH22_FGENES.180_2	0.094
	335258			CH22_FGENES.518_3	0.094
	336786			CH22_FGENES.168-19	0.094
30		Al204177	Hs.237396	-	0.094
50	335943	THEOTIT!	. 10.20. 000	CH22_FGENES.646_17	0.094
	327918			CH.06_hs gij5868165	0.094
		AA970548		EST singleton (not in UniGene) with exon hit	0.094
	335671			CH22_FGENES.592_3	0.094
35	335033			CH22_FGENES.475_11	0.094
	338277			CH22_EM:AC005500.GENSCAN.290-2	0.094
		AA504812	Hs.192824	early B-cell factor	0.094
		AA654582	Hs.77039	ribosomal protein S3A	0.094
	333880			CH22_FGENES.292_2	0.094
40	323940	Al864428	Hs.170880		0.094
		AA648796	Hs.129771		0.095
		AA169345		EST cluster (not in UniGene)	0.095
	332930			CH22_FGENES.38_4	0.095
45	335368			CH22_FGENES.543_6	0.095
45	303887	R72672	Hs.193484	ESTs: Weakly similar to Similarity with yeast gene	0.005
				L3502.1 [C.elegans]	0.095 0.095
	336223	A 1		CH22_FGENES.727_3	0.095
		Al767957	MS.19//3/	ESTs; Wealdy similar to Y38A8.1 gene product [C.elegans]	0.095
50	337256	AI819263		CH22_FGENES.648-3 EST singleton (not in UniGene) with exon hit	0.095
50		A1818203		CH22_FGENES.418_7	0.095
	334659 335895			CH22_FGENES.635_3	0.095
		AW388061	Hs.4953	golgi autoantigen; golgin subfamily a; 3	0.095
	336010	A11000001	113.7000	CH22_FGENES.668_8	0.096
55		U21260		EST duster (not in UniGene) with exon hit	0.096
55	333612	02.200		CH22_FGENES.217_7	0.096
		AA584837		EST singleton (not in UniGene) with exon hit	0.096
	335665			CH22_FGENES.590_16	0.096
		AA989598		EST singleton (not in UniGene) with exon hit	0.096
60	335243			CH22_FGENES.516_4	0.096
	335436			CH22_FGENES.559_5	0.096
		Al420256	Hs.161271	ESTs	0.096
	332810			CH22_FGENES.7_12	0.097
		AI735634		EST singleton (not in UniGene) with exon hit	0.097
65	335818			CH22_FGENES.618_6	0.097
	325838			CH.16_hs gl 6552452	0.097
	337482			CH22_FGENES.795-6	0.097
	336645			CH22_FGENES.26-1	0.097
	337293			CH22_FGENES.675-1	0.098

	329893			CH.15_p2 gi 6525313		0.098
	326533			CH.19_hs gli5867441		890.0
	334905			CH22_FGENES.452_20		0.098
		AA961144		EST singleton (not in UniGene) with exon hit		0.098
5	336676	70001177		CH22_FGENES.43-4		0.098
5						
	339166			CH22_DA59H18.GENSCAN.69-7		0.098
	335774			CH22_FGENES.607_10		0.098
	339216			CH22_FF113D11.GENSCAN.6-11		0.098
	335311			CH22_FGENES.532_4		0.098
10	329632			CH.11_p2 gij6729060		0.098
	328595			CH.07_hs glj5868224		0.098
	326928			CH.21_hs gij6456782		0.098
		AI079680	Hs.120770			0.098
			113,120770			0.098
15		AA908508		EST singleton (not in UniGene) with exon hit		
13		AA826544		EST singleton (not in UniGene) with exon hit		0.098
		T30280		EST duster (not in UniGene)		0.099
	337553			CH22_C4G1.GENSCAN.2-1		0.099
	320951	AA344069	Hs.202699	neurexophilin 4		0.099
	303845	T08033		EST cluster (not in UniGene) with exon hit		0.099
20	338981			CH22_DA59H18.GENSCAN.2-5	1	0.099
		R87365	Hs.26058	ESTs; Wealdy similar to p532 [H.sapiens]		0.099
	328348			CH.07_hs gij5868383		0.099
		H49388	Hs.102082			0.099
			H3.102002	EST cluster (not in UniGene) with exon hit		0.099
25		R07064	11-400004			
23		AA608838	Hs.162681			0.099
	333227			CH22_FGENES.107_5		0.099
	316442	AA760894	Hs.153023			0.099
	326001			CH.16_hs gij5867073	1	0.099
	334363			CH22_FGENES.378_11		0.099
30	338895			CH22_DJ32I10.GENSCAN.9-2		0.099
	327460			CH.02_hs gi[6004455		0.099
		T59161	Hs.76293	thymosin; beta 10		0.1
		Al351739		EST singleton (not in UniGene) with exon hit		0.1
		F25037	Hs.225175			0.1
35			16.223173			0.1
33		AA602697		EST singleton (not in UniGene) with exon hit		
	334327	41000100		CH22_FGENES.375_4		0.1
		Al097439	Hs.135548			0.1
	326644			CH.20_hs gl 5867559		0.1
	334454		•	CH22_FGENES.388_3		0.1
40	327959			CH.06_hs gl 5868210	1	0.1
	323783	AA330586	Hs.131819	ESTs	4	0.1
	309198	AI955915	Hs.248038	major histocompatibility complex; class I; C		0.1
	339265			CH22_BA354I12.GENSCAN.10-3		0.1
	-	AL049977	Hs.162209	Homo saplens mRNA; cDNA DKFZp564C122		
45	u			(from done DKFZp584C122)	1	0.1
	338132			CH22_EM:AC005500.GENSCAN.200-2		0.1
						0.101
	333163			CH22_FGENES.91_6		
	337584			CH22_C20H12.GENSCAN.5-1		0.101
50		Al285535		EST singleton (not in UniGene) with exon hit		0.101
50	336969			CH22_FGENES.378-2		0.101
	327535			CH.02_hs gi 6525279	1	0.101
	328732			CH.07_hs gi[5868289	(0.101
	336686			CH22_FGENES.46-3	- 1	0.101
	335777			CH22_FGENES.607_13	1	0.101
55	332944			CH22_FGENES.47_3		0.101
	333174			CH22_FGENES.95_1		0.101
	336380			CH22_FGENES.821_8		0.101
		U60800	Hs.79089	sema domain; immunoglobulin domain (lg);	,	0
	330371	000000	ns./ 5005	cytoplasmic domain; (semaphorin) 4D		0.101
60	***	4.4000704	11- 400740			
60		AA398721	Hs.186749			0.101
	338915			CH22_DJ32 10.GENSCAN.12-1		0.101
	334844			CH22_FGENES.439_24		0.101
	336642			CH22_FGENES.23-4		0.101
	334906			CH22_FGENES.452_21	1	0.101
65	333188			CH22_FGENES.98_8	1	0.101
		AW299993		EST cluster (not in UniGene) with exon hit		0.101
	329373			CH.X_hs gl 6682537		0.102
		R46576	Hs.23239	ESTs		0.102
	335856	,,,,,,,,,,		CH22_FGENES.628_1		0.102
	JUL 000			A: COUT : CONTACTOR .	'	

State		991000	AA/31337	Hs.98017	ESTs	0.102
355889 CH22_FGENES.855.2 C.102			AA401001	113,50017		
304358 A225902 EST singlator (not in Unidane) with exon hit 0.102 (A22 FGENES.607.5 0.103 (A22 FGENES.						
Significant Children Childr			AA235602			
35190	5		MEUNUE			
318595 T38486 Ha.6137 EST6 CH22 FGENES 250 .11 Cl. 102	3					
333897 Size CH22 FIGENES 250			T39486	Hs 6137		
10 328724 AL205612 Hs.73742 CHUT, ha gij686829 Chicago			100100	1100107		
10 328734 Al205612 Hs.73742 Document Potentis Enging. PD 0.103 305872 CH22_FGENES.603 0.103 305872 CH22_FGENES.603 0.103 305873 CH22_FGENES.403 0.103 305873 CH22_FGENES.403 0.103 305860 CH22_FGENES.403 CH22_FGENES.303 0.103 305873 CH22_FGENES.403 CH22_FGENES.403 0.103 305873 CH22_FGENES.403 CH22_FGENES.403 0.103 305894 CH22_FGENES.613 CH22_FGENES.613 0.103 335800 CH22_FGENES.622 0.103 335800 CH22_FGENES.622 0.103 335800 CH22_FGENES.622 0.103 335800 CH22_FGENES.623 0.103 335800 CH22_FGENES.623 0.103 335800 CH22_FGENES.624 0.103 335800 CH22_FGENES.624 0.103 335800 CH22_FGENES.624 0.103 335800 CH22_FGENES.624 0.103 335800 CH22_FGENES.625 0.104			AA989713			
307294 AZ05612 Hs.73742 fbosomal proteils large; PO 0.103 326870 CH22_FGENES.80_3 0.103 335872 CH22_FGENES.80_1 0.103 335871 CH22_FGENES.80_1 0.103 336800 CH22_FGENES.80_1 0.103 335900 CH22_FGENES.30_1 0.103 335900 CH22_FGENES.310_4 0.103 337278 336800 CH22_FGENES.310_4 0.103 337278 336800 CH22_FGENES.310_4 0.103 337278 336800 CH22_FGENES.310_4 0.103 337278 CH22_FGENES.32_15 0.103 300778 AV505363 EST duster (not in Unifoene) with exon hit 0.104 300378 AV505363 EST duster (not in Unifoene) with exon hit 0.104 300378 AV505363 EST duster (not in Unifoene) with exon hit 0.104 300378 AV505363 EST duster (not in Unifoene) with exon hit 0.104 300378 AV505363 EST duster (not in Unifoene) with exon hit 0.104 301730 AV6291683 EST duster (not in Unifoene) with exon hit 0.104 301731 AV6291683 CH22_FGENES.35_3 0.104 301731 AV6291683 CH22_FGENES.35_3 CH22_FGENES.35_3 0.104 301731 AV6291683 CH22_FGENES.35_3 CH22_FGENES.3	10		74.0007.10			
327924 CH.02_Ins_[IBS87751 0.103			Al205612	Hs.73742		
335872						0.103
15 333774						0.103
334774						0.103
326713	15				CH22_FGENES.430_6	0.103
333994		338660			CH22_EM:AC005500.GENSCAN.462-1	0.103
20 318113 A187943 Hs.132322 EST		326713			CH.20_hs gij5867595	0.103
20 318113 A1187943 Hs.132322 ESTs		333994			CH22_FGENES.310_18	0.103
337278		335800			CH22_FGENES.613_4	0.103
335379	20	318113	Al187943	Hs.132322	ESTs	0.103
334790		337278			CH22_FGENES.665-1	0.103
25 336924 CH22_FGENES_839_5 CH04 CH08_bs giseases00 C		336386			CH22_FGENES.822_6	0.103
25 336524 CH22_FGENES.839_5 0.104 328936 CH22_FGENES.839_5 0.104 30935 AA513644 Hs.222815 ESTs_Weakly smillar to Wiskoth-Aldrich Syndrome protein [H.seplens] 0.104 30935 AA513644 Hs.222815 ESTs_Weakly smillar to Wiskoth-Aldrich Syndrome protein [H.seplens] 0.104 317301 AW291683 Hs.226056 ESTs 0.104 337908 CH22_FGENES.535_3 0.104 337908 CH22_FGENES.535_3 0.104 335627 CH22_FGENES.535_3 0.104 335627 CH22_FGENES.535_3 0.104 334730 CH22_FGENES.535_3 0.104 334730 CH22_FGENES.536_2 0.105 334409 CH22_FGENES.383_6 0.105 334409 CH22_FGENES.383_6 0.105 333221 CH22_FGENES.383_6 0.105 333221 CH22_FGENES.383_6 0.105 333221 CH22_FGENES.383_1 0.105 333221 CH22_FGENES.383_1 0.105 333221 CH22_FGENES.536_2 0.105 333225 CH22_EMACOUSCOOLGENSCAN.276-3 0.105 333226 CH22_FGENES.389_1 0.105 333190 CH22_FGENES.389_1 0.105 333111 CH22_FGENES.389_1 0.105 333111 CH22_FGENES.389_1 0.105 333221 CH22_FGENES.389_1 0.105 33483 CH22_FGENES.389_1 0.106 33483 CH22_FGENES.389_1 0.107 34883 CH22_FGENES.389_1 0.10		334790			CH22_FGENES.432_15	0.103
328936		303778	AW505368		EST cluster (not in UniGene) with exon hit	0.104
335102 300935 AA513644 Hs.222815 ESTs; Weakly similar to Wiskoth-Aldrich Syndrome protain [Hasplans] 301 307581 Al284415 FST singleton (not in UniGene) with exon hit 0.104 317301 AW291683 Hs.226056 ESTs 0.104 337968 CH22_EGENES.535_3 0.104 338527 CH22_EGENES.535_3 0.104 338527 CH22_EGENES.535_7 0.104 334730 CH22_EGENES.535_7 0.104 334730 CH22_EGENES.62_2 0.104 334730 CH22_EGENES.62_2 0.104 334730 CH22_EGENES.62_2 0.105 334409 CH22_EGENES.62_2 0.105 334409 CH22_EGENES.63_6 0.105 33321 CH22_EGENES.63_6 0.105 333321 CH22_EGENES.63_6 0.105 333321 CH22_EGENES.138_13 0.106 333738 CH22_EGENES.138_13 0.106 333738 CH22_EGENES.62_2 0.105 338255 CH22_EGENES.62_6 0.105 338252 CH22_EGENES.62_6 0.105 338252 CH22_EGENES.62_6 0.105 338252 CH22_EGENES.62_6 0.105 338253 CH22_EGENES.62_6 0.105 338254 CH22_EGENES.62_6 0.105 338255 CH22_EGENES.62_6 0.105 338255 CH22_EGENES.62_6 0.105 338256 CH22_EGENES.62_6 0.105 338257 CH22_EGENES.62_6 0.105 338150 CH22_EGENES.82_6 0.105 338150 CH22_EGENES.82_6 0.105 338150 CH22_EGENES.82_6 0.105 338150 CH22_EGENES.83_1 0.106	25	336524			CH22_FGENES.839_5	
300335		328936				
Protein [H.ssplens]						0.104
307581 Al284415 EST singlaton (not in UniGene) with exon hit 0.104 317301 AW291683 Hs.226056 ESTs 0.104 335330 337768 CH22_FGENES.535_3 0.104 335627 CH22_FGENES.584_7 0.104 335627 CH22_FGENES.584_7 0.104 335627 CH22_FGENES.584_7 0.104 334730 CH22_FGENES.584_7 0.105 334409 CH22_FGENES.842_5 0.105 334409 CH22_FGENES.838_6 0.105 333321 CH01_hs gifs867544 0.105 333321 CH22_FGENES.383_6 0.105 333321 CH22_FGENES.133_13 0.105 333225 CH22_FGENES.61_2 0.105 334262 CH22_FGENES.61_2 0.105 334262 CH22_FGENES.61_2 0.105 334262 CH22_FGENES.369_12 0.105 336255 CH22_EMACO05500.GENSCAN.276-3 0.105 336251 CH22_FGENES.826 CH22_FGENES.826 0.105 336279 CH22_FGENES.826 0.105		300935	AA513644	Hs.222815	ESTs; Weakly similar to Wiskott-Aldrich Syndrome	
317301 AW291683	•					
335330	30					
337968			AW291683	Hs.226056		
35 336274 CH22_FGENES.584_7 0.104						
355 338274 CH22_FGENES.762_2 0.104 334730 CH22_FGENES.424_5 0.105 334409 CH22_FGENES.424_5 0.105 327237 CH.01_hs gipsor544 0.105 333321 AA452366 EST cluster (not in UniGene) with exon hit 0.105 333738 CH22_FGENES.138_13 0.105 338255 CH22_EMACOOS500.GENSCAN.276-3 0.105 334282 CH22_EMACOOS500.GENSCAN.276-3 0.105 330190 CH22_EMACOOS500.GENSCAN.276-3 0.105 330190 CH22_FGENES.369_12 0.105 338150 CH22_FGENES.269_12 0.105 338150 CH22_FGENES.269_12 0.105 338150 CH22_FGENES.266 0.105 330228 CH.05_p2 gij6165182 0.105 33779 CH22_EMACOOS500.GENSCAN.207-2 0.105 33779 CH22_FGENES.82-6 0.105 338150 CH22_FGENES.82-6 0.105 33779 CH22_FGENES.82-6 0.105 33779 CH22_FGENES.82-6 0.105 33779 CH22_FGENES.82-6 0.105 338150 CH22_FGENES.82-6 0.105 335111 CH22_FGENES.82-6 0.105 334872 CH22_FGENES.82-6 0.105 334873 CH22_FGENES.395_5 0.106 33483 CH22_FGENES.395_5 0.106 33484 CH22_FGENES.395_5 0.106 33483 CH22_FGENES.395_5 0.106 33484 CH22_FGENES.395_5 0.106						
334730	25					
334409 CH22_FGENES.383_6 0.105 327237 CH.01_hs gi5867544 0.105 333321 CH22_FGENES.138_13 0.105 333181 AA452366 EST cluster (not in UniGene) with exon hit 0.105 333738 CH22_FGENES.261_2 0.105 334282 CH22_FGENES.261_2 0.105 334282 CH22_FGENES.369_12 0.105 336190 CH.05_n2 gif6165182 0.105 336190 CH.05_n2 gif6165182 0.105 336719 CH22_FGENES.82-6 0.105 336719 CH22_FGENES.82-6 0.105 33625 S75168 Hs.274 megakanyocyte-associated tyrosine kinase 0.105 334972 CH22_FGENES.395_5 0.106 334972 CH22_FGENES.395_5 0.106 33483 CH22_FGENES.395_5 0.106 334512 CH22_FGENES.395_5 0.106 335513 A769930 Hs.233617 Homo sapisns (clone BSB3E13) Huntingtor's disease candidate region 0.107 33453 CH22_FGENES.376_5 0.107 336560 CH22_FGENES.376_5 0.107 336560 CH22_FGENES.376_5 0.107 336560 CH22_FGENES.384_5 0.107 336560 CH22_FGENES.842_5 0.107 336547 CH22_FGENES.829_4 0.107 336547 CH22_FGENES.829_4 0.107 33703 CH22_FGENES.829_4 0.107	33					
327237 CH.01_hs gi 5867544 0.105 333321 CH22_FGENES.138_13 0.105 40 303181 AA452366 EST cluster (not in UniGene) with exon hit 0.105 333738 CH22_FGENES.261_2 0.105 334282 CH22_FGENES.261_2 0.105 330190 CH22_FGENES.369_12 0.105 33150 CH22_FGENES.369_12 0.105 336719 CH22_FGENES.82-6 0.105 330228 CH.05_p2 gi 6013527 0.105 327801 CH.05_hs gi 5867924 0.105 327801 CH.05_hs gi 5867924 0.105 334972 CH22_FGENES.494_19 0.105 33483 CH22_FGENES.494_19 0.106 334512 CH22_FGENES.494_19 0.106 334512 CH22_FGENES.395_5 0.106 334512 CH22_FGENES.395_10 0.106 334513 CH22_FGENES.395_10 0.106 334514 CH22_FGENES.395_10 0.106 334515 CH22_FGENES.395_10 0.106 334516 CH22_FGENES.395_10 0.106 334517 CH22_FGENES.395_10 0.106 334518 A621363 Hs.233617 Homo sapiens (clone B3B3E13) Huntingtor's disease candidate region 0.107 334533 CH22_EM.CO05500.GENSCAN.288-9 0.107 336560 CH22_FGENES.376_5 0.107 336560 CH22_FGENES.384_5 0.107 336547 CH22_FGENES.829_4 0.107 336647 CH22_FGENES.829_4 0.107 336647 CH22_FGENES.829_4 0.107 336607 CH22_FGENES.829_4 0.107 336207 CH21_Fis gi 5867222 0.107						
333321						
40 303181 AA452366 EST cluster (not in UniGene) with exon hit 0.105 333738 CH22_FGENES.261_2 0.105 334282 CH22_FGENES.261_2 0.105 330190 CH22_FGENES.369_12 0.105 330190 CH.05_p2 gil6165182 0.105 336150 CH22_EM:AC005500.GENSCAN.207-2 0.105 336719 CH22_FGENES.82-6 0.105 330228 CH.05_p2 gil6013527 0.105 330228 CH.05_p2 gil6013527 0.105 330228 CH.05_p2 gil6013527 0.105 330228 CH.05_p2 gil6013527 0.105 3377801 CH.05_hs gil5867924 0.105 334972 CH22_FGENES.486_2 0.105 334972 CH22_FGENES.488_2 0.105 335111 CH22_FGENES.494_19 0.106 334483 CH22_FGENES.494_19 0.106 334483 CH22_FGENES.494_19 0.106 334483 CH22_FGENES.493_5 5 0.106 33483 CH22_FGENES.395_5 0.106 334512 CH.07_hs gil5868337 0.106 334512 CH.07_hs gil5868337 0.106 334512 CH.07_hs gil5868337 0.106 334512 CH.07_hs gil5868337 0.106 334513 CH.22_FGENES.398_10 0.106 334514 CH22_FGENES.398_10 0.106 334515 CH22_FGENES.398_10 0.106 334516 CH22_FGENES.398_10 0.106 334517 CH22_EM:AC005500.GENSCAN.341-6 0.107 338276 CH22_EM:AC005500.GENSCAN.341-6 0.107 338276 CH22_EM:AC005500.GENSCAN.341-6 0.107 338276 CH22_EM:AC005500.GENSCAN.288-9 0.107 33650 CH22_FGENES.842_5 0.107 33650 CH22_FGENES.842_5 0.107 33650 CH22_FGENES.842_5 0.107 33650 CH22_FGENES.829_4 0.107 336507 CH22_FGENES.829_4 0.107 336507 CH21_Fis gil5867222 0.107						
333738	40		AAAEOOCC			
338255	40		MANOCOOD			
334282						
S30190						
45 310748 AW014249 Hs.158698 ESTs 0.105 338150 CH22_EM:AC005500.GENSCAN.207-2 0.105 336719 CH22_FGENES.82-6 0.105 330228 CH.05_p2 gij6013527 0.105 327801 CH.05_hs gij5867824 0.105 334972 CH22_FGENES.498.2 0.105 334972 CH22_FGENES.498.19 0.106 334483 CH22_FGENES.498.19 0.106 328629 CH.07_hs gij5868337 0.106 328629 CH.07_hs gij5868337 0.106 334512 CH22_FGENES.395.5 0.106 334512 CH22_FGENES.398.10 0.106 334510 CH22_FGENES.398.10 0.106 330024 CH.16_p2 gij6671908 0.106 331030 Al769930 Hs.233617 Homo sapiens (clone B3B3E13) Huntington's disease candidate region 0.107 334353 CH22_EM:AC005500.GENSCAN.341-6 0.107 338276 CH22_EM:AC005500.GENSCAN.341-6 0.107 338276 CH22_EM:AC005500.GENSCAN.341-6 0.107 338276 CH22_EM:AC005500.GENSCAN.341-6 0.107 338276 CH22_EM:AC005500.GENSCAN.288-9 0.107 338276 CH22_FGENES.398.25 0.107 338276 CH22_FGENES.842_5 0.107						
338150	45		AW014249	Hs 158698		
336719						
330228						
S27801 CH.05_hs gl 5867824 0.105						
50 330525 S75168 Hs.274 megakaryocyte-associated tyrosine kinase 0.105 334972 CH22_FGENES.468_2 0.105 335111 CH22_FGENES.494_19 0.106 334483 CH22_FGENES.395_5 0.106 328829 CH.07_hs glj5868337 0.106 334512 CH22_FGENES.398_10 0.106 330024 CH.16_p2 glj6671908 0.106 330024 CH.16_p2 glj6671908 0.106 321030 Al769930 Hs.233617 Homo sapians (clone B3B3E13) Huntingtor's disease candidate region 0.107 334353 CH22_EMACOO5500.GENSCAN.341-6 0.107 338276 CH22_EMACOO5500.GENSCAN.341-6 0.107 339263 CHX_Is glj5868574 0.107 335560 CH22_EMACOO5500.GENSCAN.288-9 0.107 336560 CH22_FGENES.842_5 0.107 65 332158 AA621363 Hs.112980 EST CH22_FGENES.829_4 0.107 333703 CH22_FGENES.250_17 0.107 326207 CH.17_hs glj5867222 0.107						
334972 CH22_FGENES.468_2 0.105 335111 CH22_FGENES.494_19 0.106 334483 CH22_FGENES.494_19 0.106 328829 CH.07_hs gi 5868337 0.106 328753 M74299 EST cluster (not in UniGene) with exon hit 0.106 334512 CH22_FGENES.398_10 0.106 330024 CH.16_p2 gi 6671908 0.106 321030 Al769930 Hs.233617 Homo sapiens (clone B3B3E13) Huntington's disease candidate region 0.107 334353 CH22_FGENES.376_5 0.107 334353 CH22_FGENES.376_5 0.107 338276 CH22_EM:AC005500.GENSCAN.241-6 0.107 329053 CH.X. hs gi 5868574 0.107 335560 CH22_FGENES.42_5 0.107 336447 CH22_FGENES.829_4 0.107 33647 CH22_FGENES.829_4 0.107 336207 CH21_FGENES.250_17 0.107	50		S75168	Hs.274	megakarvocyte-associated tyrosine kinase	0.105
335111 CH22_FGENES.494_19 0.106 334483 CH22_FGENES.395_5 0.106 326829 CH.07_hs gij5868337 0.106 336521 CH22_FGENES.398_10 0.106 330024 CH22_FGENES.398_10 0.106 330024 CH.16_p2 gij6671908 0.106 321030 Al769930 Hs.233617 Homo sapians (clone B3B3E13) Huntington's disease candidate region 0.107 334353 CH22_FGENES.376_5 0.107 338276 CH22_EMAC005500.GENSCAN.341-6 0.107 329053 CHX_hs gij5868574 0.107 336560 CH22_FGENES.376_5 0.107 336447 CH22_FGENES.842_5 0.107 336447 CH22_FGENES.829_4 0.107 336207 CH217_hs gij5867222 0.107						0.105
328829 CH.07_hs gil5888337 0.106 334512 CH.27_FGENES.398_10 0.106 334512 CH.27_FGENES.398_10 0.106 330024 CH.16_p2 gil6671908 0.106 321030 Al769930 Hs.233617 Homo sapiens (clone B3B3E13) Huntington's disease candidate region 0.107 33433 CH22_EM.ACO05500.GENSCAN.341-6 0.107 338276 CH22_EM.ACO05500.GENSCAN.341-6 0.107 338276 CH22_EM.ACO05500.GENSCAN.288-9 0.107 329053 CH.X_hs gil5868574 0.107 335560 CH.X_hs gil5868574 0.107 336447 CH.27_FGENES.842_5 0.107 336447 CH22_FGENES.829_4 0.107 336507 CH22_FGENES.829_4 0.107 3365007 CH.17_hs gil5867222 0.107					CH22_FGENES.494_19	0.106
S28829						0.106
334512 CH22_FGENES.398_10 0.106 330024 CH.16_p2 gij6671908 0.106 321030 Al769930 Hs.233617 Homo sapians (clone B3B3E13) Huntingtor's disease candidate region 0.107 334353 CH22_FGENES.376_5 0.107 339276 CH22_FGENES.376_5 0.107 329053 CHX_hs gij5868574 0.107 335560 CH22_FGENES.842_5 0.107 336447 CH22_FGENES.842_5 0.107 336447 CH22_FGENES.829_4 0.107 336207 CH21_FGENES.829_4 0.107 326207 CH.17_hs gij5867222 0.107		328829			CH.07_hs gil5868337	0.106
330024 CH.16_p2 gi[6671908 0.106 321030 Al769930 Hs.233617 Homo sapians (clone B3B3E13) Huntington's disease candidate region 0.107 334353 CH22_FGENES.376_5 0.107 338276 CH22_EMACO05500.GENSCAN.341-6 0.107 329053 CHX_hs gi[5868574 0.107 336560 CH22_FGENES.842_5 0.107 336447 CH22_FGENES.829_4 0.107 336447 CH22_FGENES.829_4 0.107 336207 CH3.15_p3 gi[5867222 0.107	55	302753	M74299		EST cluster (not in UniGene) with exon hit	
321030 Al769930 Hs.233617 Homo sapians (clone B3B3E13) Huntington's disease candidate region 0.107 338410 CH22_EMACO05500.GENSCAN.341-6 0.107 338276 CH22_EMACO05500.GENSCAN.288-9 0.107 329053 CH22_EMACO05500.GENSCAN.288-9 0.107 336560 CH22_FGENES.842_5 0.107 336560 CH22_FGENES.842_5 0.107 33647 CH22_FGENES.829_4 0.107 336703 CH22_FGENES.829_4 0.107 336607 CH21_FGENES.829_4 0.107		334512			CH22_FGENES.398_10	
disease candidate region 0.107		330024				0.106
60 338410 CH22_EM:AC005500.GENSCAN.341-6 0.107 334353 CH22_FGENES.376_5 0.107 339276 CH22_EM:AC005500.GENSCAN.288-9 0.107 329053 CHX_hs g 5868574 0.107 336560 CH22_FGENES.842_5 0.107 65 332158 AA621363 Hs.112980 EST 0.107 336447 CH22_FGENES.829_4 0.107 333703 CH22_FGENES.250_17 0.107 326207 CH.17_hs g 5867222 0.107		321030	A1769930	Hs.233617		
334353 CH22_FGENES.376_5 0.107 338276 CH22_EM:AC005500.GENSCAN.288-9 0.107 329053 CH.X_hs g 5868574 0.107 336560 CH22_FGENES.842_5 0.107 336447 CH22_FGENES.829_4 0.107 333703 CH22_FGENES.250_17 0.107 326207 CH.17_hs g 5867222 0.107						
338276 CH22_EM:AC005500.GENSCAN.288-9 0.107 329053 CH,X_hs gij5868574 0.107 335560 CH22_FGENES.842_5 0.107 336447 CH22_FGENES.829_4 0.107 333703 CH22_FGENES.250_17 0.107 326207 CH.17_hs gij5867222 0.107	60					
329053 CH.X_hs gij5868574 0.107 336560 CH22_FGENES.842_5 0.107 336547 CH22_FGENES.829_4 0.107 333703 CH22_FGENES.829_4 0.107 326207 CH.17_hs gij5867222 0.107						
336560 CH22_FGENES.842_5 0.107 65 332158 AA621363 Hs.112980 EST 0.107 336447 CH22_FGENES.829_4 0.107 333703 CH22_FGENES.250_17 0.107 326207 CH.17_hs.plj5867222 0.107						
65 332158 AA621363 Hs.112980 EST 0.107 336447 CH22_FGENES.829_4 0.107 333703 CH22_FGENES.250_17 0.107 326207 CH.17_hs pij5867222 0.107						
336447 CH22_FGENES.829_4 0.107 333703 CH22_FGENES.250_17 0.107 326207 CH.17_hs pij5867222 0.107	c =			11 44555		
333703 CH22_FGENES.250_17 0.107 326207 CH.17_hs pij5867222 0.107	CO		AA621363	Ms.112980		
326207 CH.17_hs gij5867222 0.107						
01g2_1 01100.100_1		333232			CH22_FGENES.108_1	U. IU/

	334802			CH22_FGENES.435_1	0.107
	303784	AA704983		EST cluster (not in UniGene) with exon hit	0.107
	338847			CH22_DJ246D7.GENSCAN.10-2	0.107
_	339407			CH22_DJ579N16.GENSCAN.1-9	0.108
5	337635			CH22_C20H12.GENSCAN.32-8	0.108
	334650			CH22_FGENES.417_17	0.108
	308511	Al687580		EST singleton (not in UniGene) with exon hit	0.108
	333392			CH22_FGENES.144_8	0.108
10	325840			CH.16_hs gi 6552452	0.108
10		AW205664	Hs.129568		0.108
	333298			CH22_FGENES.133_4	0.108
	335157			CH22_FGENES.501_7	0.108
	333305			CH22_FGENES.137_2	0.108
15	326379			CH.19_hs gij5867327	0.108
15	335050		11- 040000	CH22_FGENES.482_1	0.108
		AA663985	HS.248U38	major histocompatibility complex; class I; C	0.108
	335658	A A000000	U- 40000	CH22_FGENES.590_9	0.108
		AA336609	Hs.10862		0.108
20	337326			CH22_FGENES.699-6	0.108
20	339262	UE4059	Un 102020	CH22_BA354112.GENSCAN.9-6	0.108
	321202	H54052	HS.103003	ESTs; Weakly similar to INTERCELLULAR ADHESION	0.109
	001700	AA398968	Hs.97548	MOLECULE-1 PRECURSOR [H.sapiens]	0.109
	333806	AA030300	U2'81240	CH22_FGENES.278_2	0.109
25		AB033100		EST duster (not in UniGene)	0.109
25		AA435513	He 179170	ESTs; Weakly similar to DUAL SPECIFICITY	0.103
	001010	70400010	113.170170	PROTEIN PHOSPHATASE 3	0.87
	328775			CH.07_hs gl[5868309	0.109
	335105			CH22_FGENES.494_10	0.109
30		Al283548	Hs.149668		0.109
		T31940		EST duster (not in UniGene)	0.109
	333397			CH22_FGENES.144_15	0.109
	336484			CH22_FGENES.831_3	0.109
	335507			CH22_FGENES.571_22	0.109
35	336373			CH22_FGENES.820_3	0.109
	336188			CH22_FGENES.717_12	0.109
	313455	AW081702	Hs.137329	ESTs	0.109
	335185	•		CH22_FGENES.506_4	0.109
40		AI066577		EST singleton (not in UniGene) with exan hit	0.109
40		AJ632322	Hs.195306		0.109
		AW080339	Hs.211911		0.109
		Al346359	Hs.135209		0.11
	300212	AW135925	MS.184552	biphenylhydrolase-like (serine hydrolase; breast epithelial	0.44
45	00000			mucin-assoc.	0.11
43	325675			CH.14_hs gl 5867014	0.11
	330095	A A 4 E 9 O C 4	Hs.99309	CH.19_p2 gl/6015278 .	0.11 0.11
		AA453261	H\$.\$3003	ESTs	0.11
	334723 333614			CH22_FGENES.421_34 CH22_FGENES.217_9	0.11
50	337316			CH22_FGENES.692-1	0.11
50		AA635626	Hs.62954	ferritin; heavy polypeptide 1	0.11
	338704	70.000000	110.0000	CH22_EM:AC005500.GENSCAN.480-3	0.11
	335385			CH22_FGENES.543_27	0.11
	338012			CH22_EM:AC005500.GENSCAN.128-10	0.11
55	329449			CH.Y_hs gi 5868886	0.11
	338980			CH22 DA59H18.GENSCAN.2-4	0.11
	336553			CH22_FGENES.841_10	0.111
	330021			CH.16_p2 gij6671889	0.111
	327579			CH.03_hs gl 5867824	0.111
60	333099			CH22_FGENES.79_4	0.111
	337076			CH22_FGENES.453-4	0.111
•	331388	AA456852	Hs.43543	suppressor of white apricot homolog 2	0.111
	306674	Al005542	Hs.180414	heat shock 70kD protein 10 (HSC71)	0.111
		AA884409		EST singleton (not in UniGene) with exon hit	0.111
65		AA419217	Hs.15911	DKFZP586E1422 protein	0.111
	333780			CH22_FGENES.273_2	0.111
		AI702835	11-06-155	EST duster (not in UniGene)	0.111
		A1868157	Hs.224226		0.111
	309338	AW026946	MS.181165	eukaryofic translation elongation factor 1 alpha 1	0.111

	329317			CH.X_hs gl[6381976	0.112	
	333518			CH22_FGENES.173_3	0.112	
	306982	Al127883		EST singleton (not in UniGene) with exon hit	0.112	
	338225	74.2.000		CH22_FGENES.728_2	0.112	
5					0.112	
J	333698			CH22_FGENES.250_12		
	302173	Al417947	Hs.14068	ESTs	0.112	
	335510			CH22_FGENES.571_25	0.112	
	328042			CH.06_hs gi 5902482	0.112	
	336512			CH22_FGENES.834_7	0.112	
10					0.112	
10	328541	4111000440	11- 400044	CH.07_hs gi 5868486		
		AW205118			0.112	
	323218	AF131846	Hs.13396	Homo sapiens clone 25028 mRNA sequence	0.112	
	302002	AF013956	Hs.123085	chromobox homolog 4 (Drosophila Pc class)	0.112	
	315088	AA557351	Hs 152448	ESTs: Moderately similar to MULTIFUNCTIONAL PROTEIN ADE2	0.112	
15	212501	A1027242	He 176590	chromobox homolog 4 (Drosophila Pc class) ESTs; Moderately similar to MULTIFUNCTIONAL PROTEIN ADE2 ESTs	0.112	
13	000040	A14007240	Hs.125258	ECTA	0.112	
		AW384710	TIS. 120200	T707		
	333659			CH22_FGENES.241_5	0.113	
	327510			CH.02_hs gI[6117815	0.113	
	336520			CH22_FGENES.839_1	0.113	
20	338682			CH22_EM:AC005500.GENSCAN.472-1	0.113	
	334508			CH22_FGENES.398_6	0.113	
		Trocoo			0.113	
		T59538		EST cluster (not in UniGene)	0.110	=
	306873	Al086929			0.113	
	336040			CH22_FGENES.679_2	0.113	
25	303898	T23215		EST cluster (not in UniGene) with exon hit	0.113	
		AW294868	Hs.187226		0.113	
		ATTENTOO	110.101.	CH22_FGENES.506_5	0.113	
	335186					
	333607			CH22_FGENES.216_2	0.113	
	305549	AA773530		EST singleton (not in UniGene) with exon hit	0.113	
30	333686			CH22_FGENES.249_4	0.113	
	334352			CH22 FGENES.376_3	0.113	
	338195			CH22 EM:AC005500.GENSCAN.233-18	0.114	
		•		CH22_FGENES.206_2	0.114	
	333588					
~~	339233			CH22_BA354I12.GENSCAN.2-3	0.114	
35	337455			CH22_FGENES.777-1	0.114	
	309101	Al925108		EST singleton (not in UniGene) with exon hit	0.114	
	328522			CH.07_hs gij5868477	0.114	
		AI537333	Hs.252782		0.114	
		1337333	113202702	CH22_FGENES.173_2	0.114	
40	333517					
40	329935			CH.16_p2 gij6165200	0.114	
	326226			CHL17_hs gi[5867230	0.114	
	335890			CH22_FGENES.633_4	0.114	
	338715			CH22_FGENES.77-1	0.114	
	327640			CH.04_hs gl 5867890	0.114	
45				CH22_DJ246D7.GENSCAN.7-1	0.114	
43	338842	4 1 0 0 4 4 0 0				
		AA991487		EST singleton (not in UniGene) with exon hit	0.114	
	336597			CH22_FGENES.266_1	0.114	
	321010	Y17456	Hs.227150	Homo sapiens LSFR2 gene; last exon	0.114	
	302294	AA159213	Hs.5337	isocitrate dehydrogenase 2 (NADP+); mitochondrial	0.114	
50		N44238	He 77515	inositol 1;4;5-triphosphate receptor; type 3	0.114	
50	327358	1177600	110177010	CH.01_hs gi[6552411	0.114	
		41045450	Un 405400	et manifety als 0 sheembats debudences	0.115	
		Al815153	US' 182 199	glyceraldehyde-3-phosphate dehydrogenase		
	325886			CH.16_hs gi 5867087 -	0.115	
	336850			CH22_FGENES.272-11	0.115	
55	305858	AA863103		EST singleton (not in UniGene) with exon hit	0.115	
		AC004472		multiple UniGene matches	0.115	
	336158			CH22_FGENES.707_2	0.115	
				CH.06_hs gij5868131	0.115	
	327866					
~	339157			CH22_DA59H18.GENSCAN.67-3	0.115	
60	339258			CH22_BA354I12.GENSCAN.8-3	0.115	
	336129			CH22_FGENES.701_17	0.115	
	333684			CH22_FGENES.249_2	0.115	
		AW100169	Hs 184778	ribosomal protein L23a	0.115	
		AW190162	Hs.127523		0.115	
65		AA954097	110.12/020	ECT abusine fact in UniConst with sweethit		
65		AB035698		EST cluster (not in UniGene) with exon hit	0.115	
	328968			CH.08_hs gi 6456775	0.115	
	327902			CH.06_hs gi 5868158	0.115	
		AJ223366		EST duster (not in UniGene)	0.115	
	335962			CH22_FGENES.651_4	0.115	

	334927			CH22_FGENES.460_1	0.115	
	330535	U11872		Human Interleukin-8 receptor type B (IL8RB) mRNA,		
	***********	•		splice variant ILBRB1	0,856	
	328591			CH.07_hs gl[5868227	0.115	
5					0.115	
,	334902			CH22_FGENES.452_16		
	328525			CH.07_hs gi 5868482	0.115	
	325870			CH.16_hs gi 6682492	0.116	
	337522			CH22_FGENES.819-1	0.116	
	305079	AA641329		EST singleton (not in UniGene) with exon hit	0.116	
10	327343			CH.01_hs gij6017017	0.116	
	333918			CH22_FGENES.296_7	0.116	
	333600			CH22_FGENES.213_2	0.116	
				CH22_FGENES.623_6	0.116	
	335846				0.116	
15	333510			CH22_FGENES.171_4		
15	327629			CH.04_hs gij5867872	0.116	
	333470			CH22_FGENES.161_6	0.116	
	326855			CH.20_hs gt 6552460	0.116	
	327008			CH.21_hs gij5867684	0.117	
	337480			CH22_FGENES.795-3	0.117	
20	336425			CH22_FGENES.824_10	0.117	
		AL079687	Hs.171065		0.117	
	335651	10010001	1101111000	CH22_FGENES.590_2	0.117	
		A1004074	U- 1011CE		0.117	4
		AJ521574	ns.101100	eukaryotic translation elongation factor 1 alpha 1		
05	337927			CH22_EM:AC005500.GENSCAN.80-3	0.117	
25	300341	H45095	Hs.153524		0.117	
	300154	Al245127	Hs.179331	ESTs	0.117	
	306295	AA937331		EST singleton (not in UniGene) with exon hit	0.117	
	329670			CH.14_p2 gi 6272129	0.117	
	335612			CH22_FGENES.583_6	0.117	
30		Al363450		EST singleton (not in UniGene) with exon hit	0.117	
50		D28383		Human mRNA for ATP synthase B chain, 5UTR (sequence from the		
	330401	D20303			0.117	
				5'cap to the start codon)		
	327127			CH.21_hs gi 6682520	0.117	
05	333843			CH22_FGENES.280_1	0.117	
35	331083	R17762	Hs.22292	ESTs	0.117	
	329140			CH.X_hs gij6017060	0.117	
	339338			CH22_BA354112.GENSCAN.27-3	0.117	
	331974	AA464518	Hs.99616	ESTs	0.117	
	338631			CH22_EM:AC005500.GENSCAN.454-2	0.117	
40	330299			CH.06_p2 gi 2905881	0.117	
TU					0.117	
	330351	1.174574.4	LI- 4040E7	CH.09_p2 gij3056622		
		AA715714	LI2:101991	laminin receptor 1 (67kD; ribosomal protein SA)	0.117	
	333106			CH22_FGENES.79_12	0.117	
	338514			CH22_EM:AC005500.GENSCAN:392-4	0.117	
45	327335			CH.01_hs gi[5902477	0.117	
	301970	AB028962	Hs.120245	KIAA1039 protein	0.118	
	326339			CH.17_hs gij6056311	0.118	
		X15673	Hs 93174	Human endogenous retrovirus pHE.1 (ERV9)	0.118	
	334178			CH22_FGENES.350_6	0.118	
50				CH.06_hs gij5902482	0.118	
50	328008				0.118	
	329976		11- 400444	CH.16_p2 gli4878063		
		AA897432	Hs.130411		0.118	
	305621	AA789095		EST singleton (not in UniGene) with exon hit	0.118	
	337850			CH22_EM:AC005500.GENSCAN.34-3	0.118	
55	333626			CH22_FGENES.224_2	0.118	
	337672			CH22_EM:AC000097.GENSCAN.67-1	0.118	
	328803			CH.07_hs qi 6004475	0.118	
	325922			CH.16_hs gi 5867122	0.118	
				CH22_FGENES.397_1	0.118	
60	334489	DEATER	Hs.101120		0.118	
50		R54766	110,101120			
		AA569229		EST cluster (not in UniGene)	0.118	
	336958			CH22_FGENES.367-1	0.118	
		AA600176	Hs.112345		0.118	
	306004	AA889992		EST singleton (not in UniGene) with exon hit	0.118	
65	336803			CH22 FGENES.194-1	0.118	
		Al925823		EST singleton (not in UniGene) with exon hit	0.118	
	336859			CH22_FGENES.293-9	0.118	
	337935			CH22 EM:AC005500.GENSCAN.85-6	0.118	
		·		CH.19_hs gij5867422	0.118	
	326492			ALT: 10 719 A19001455	0.110	

		•			
	327289			CH.01_hs gij5867481	0.119
	325818			CH.14_hs gij6682490	0.119
		AW262580	Hs.159040		0.119
	330028	ANEULOUG	110.100010	CH.16_p2 gij6671908	0.119
5					0.119
,	325317			CH.11_hs gij5866878	
	335279			CH22_FGENES.523_7	0.119
		AA192173	Hs.221530	=	0.119
	329186			CH.X_hs gi 5868711	0.119
	316012	AA764950	Hs.119898	ESTs	0.119
10	338316			CH22_EM:AC005500.GENSCAN.304-2	0.119
	326033			CH.17_hs gij5867178	0.119
	334745			CH22_FGENES.426_3	0.119
	333051			CH22_FGENES.73_5	0.119
		R01279		EST cluster (not in UniGene) with exon hit	0.12
15		AA454809	He 172022	collagen; type I; alpha 1	0.12
13	-	AAMOHOUO	115.172020		0.12
	335680			CH22_FGENES.594_5	
		AA548556		EST singleton (not in UniGene) with exon hit	0.12
	335441			CH22_FGENES.560_4	0.12
	336187			CH22_FGENES.717_11	0.12
20	309422	AW087175		EST singleton (not in UniGene) with exon hit	0.12
	336047			CH22_FGENES.679_9	0.12
	309651	AW195850		EST singleton (not in UniGene) with exon hit	0.12
		Al695385	Hs.201903		0.12
		AA399444		EST singleton (not in UniGene) with exon hit	0.12
25	336245	70000444		CH22_FGENES.746_3	0.12
23		Liznoon		EST cluster (not in UniGene) with exon hit	0.12
		H72333			0.12
	335690			CH22_FGENES.596_5	
	328941			CH.08_hs gi[6456765	0.12
••	333873			CH22_FGENES.291_9	0.12
30	317246	AW105092	Hs.155690		0.12
	339288			CH22_BA354I12.GENSCAN.16-6	0.12
	337996			CH22_EM:AC005500.GENSCAN.116-3	0.12
	333304			CH22_FGENES.137_1	0.121
		Al591235		EST singleton (not in UniGene) with exon hit	0.121
35	329319			CH.X_hs gij6381976	0.121
55		X57138		multiple UniGene matches	0.121
	333290	A37 130		CH22_FGENES.129_2	0.121
		A1702000	Un 100E0E	ESTS; Weakly similar to NEUTROPHIL GELATINASE-ASSOCIATE	
	323625	A1793080	HS. 123020		0.121
40				LIPOCALIN PRECURSOR [R.norvegicus]	
40		U64105		Rho guanine nucleotide exchange factor (GEF) 1	0.121
		AA679990	Hs.181165	eukaryotic translation elongation factor 1 alpha 1	0.121
	333647			CH22_FGENES.235_2	0.121
	302251	AA333340		EST cluster (not in UniGene) with exon hit	0.121
	329777			CH.14_p2 gi[6002090	0.121
45	333155			CH22_FGENES.89_5	0.121
	326122			CH.17_hs gij5867194	0.121
	335310			CH22_FGENES.532_3	0.121
	335453			CH22 FGENES.562_13	0.122
		AA643329	He 11193/	ferritin; light polypeptide	0.122
50		ANUNUES	113.111007	CH22_FGENES.667-2	0.122
50	337284				0.122
	337418	*1000710	11- 40000	CH22_FGENES.758-4	
		Al963740	Hs.46826	T74"	0.122
		AW504164		EST cluster (not in UniGene) with exon hit	0.122
	300017				
55		M33197		AFFX control: GAPDH	0.122
	316725	AW135084	Hs.127264	ESTs	0.122
	330738	AA293153	Hs.120980	nuclear receptor co-repressor 2	0.122
	336466			CH22_FGENES.829_25	0.122
	335956			CH22_FGENES.647_3	0.122
60		AA780564	Hs.189053		0.122
	338925			CH22_DJ32I10.GENSCAN.14-3	0.122
				CH22 FGENES.466 2	0.122
	334969	At 197500			0.122
		AL137589		EST cluster (not in UniGene)	
65	339084			CH22_DA59H18.GENSCAN.38-2	0.122
65	338323			CH22_EM:AC005500.GENSCAN.306-2	0.122
	337003			CH22_FGENES.419-7	0.122
	325470			CH.12_hs gi 6017034	0.123
	336503			CH22_FGENES.833_10	0.123
	330786	D60374	Hs.258712	EST	0.123

	329446			CH.Y_hs gi 5868886	0.123
	303326	AA229433	Hs.222634	ESTs; Moderately similar to ubiquitin-like protein /	
				ribosomal protein S30	0.123
	309067	Al916313	Hs.212788	EST	0.123
5	317464	AA968472	Hs.130463	ESTs '	0.123
	328755			CH.07_hs gi 5868301	0.123
	326036			CH.17_hs gij5867178	0.123
	327208			CH.01_hs gi 5867447	0.123
	326124			CH.17_hs gi 5916395	0.123
10	327509			CH.02_hs gl 6117815	0.123
	338398			CH22_EM:AC005500.GENSCAN.336-5	0.123
		AA527782	Hs.84298	CD74 antigen (invariant polypeptide of major	
	00-1002	70027702	11001500	histocompatibility complex; class II antigen-associated)	0.123
	335797			CH22_FGENES.612_6	0.124
15	336714			CH22_FGENES.76-29	0.124
13	327204			CH.01_hs gli5867447	0.124
		AA430672	Hs.123778		0.124
		Al126509	110.120770	EST singleton (not in UniGene) with exon hit	0.124
	336174	AIIZWOO		CH22_FGENES.710_1	0.124
20	338126			CH22_FGENES.701_13	0.124
20	329129				0.124
		AMANTECO		CH.X_hs gi 6588026	0.124
		AW407562		EST cluster (not in UniGene) with exon hit	
	335778			CH22_FGENES.607_14	0.124
25	336601			CH22_FGENES.369_2	0.124
25	334340			CH22_FGENES.375_17	0.124
	337436			CH22_FGENES.767-1	0.124
		AA896990		EST singleton (not in UniGene) with exan hit	0.124
	339213			CH22_FF113D11.GENSCAN.6-8	0.124
20	335355			CH22_FGENES.541_2	0.124
30	336552			CH22_FGENES.841_9	0.124
	336384			CH22_FGENES.822_4	0.124
		Al286202	Hs.149800		0.125
	335840			CH22_FGENES.622_3	0.125
~~	336444			CH22_FGENES.827_10	0.125
35	315703	N36070		EST cluster (not in UniGene)	0.125
	327763			CH.05_hs gi 5867961	0.125
	336383			CH22_FGENES.822_3	0.125
	333496			CH22_FGENES.168_6	0.125
	328662			CH.07_hs gi 6004473	0.125
40	338986			CH22_DA59H18.GENSCAN.5-1	0.125
	328311			CH.07_hs gi 5868371	0.125
	337241			CH22_FGENES.644-2	0.125
	336933			CH22_FGENES.350-7	0.125
	313483	AW294432	Hs.144252	ESTs	0.125
45	326116			CH.17_hs gi[5867193	0.125
	330450	HG363-HT363		Epidermal Growth Factor Receptor-Related Protein	0.125
	307491	Al268539		EST singleton (not in UniGene) with exon hit	0.125
•	331852	AA418988	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120	
				(from clone DKFZp586L0120)	0.125
50	330462	HG944-HT944		Dopamine Receptor D4	0.125
	304410	AA284508		EST singleton (not in UniGene) with exon hit	0.125
	336385			CH22_FGENE\$.822_5	0.125
	336793			CH22_FGENES.176-3 -	0.125
	326243			CH.17_hs gij5867261	0.125
55	327266			CH.01_hs gij5867462	0.125
	320753	AF070579	Hs.181544	Homo sapiens clone 24487 mRNA sequence	0.125
	336960			CH22_FGENES.369-5	0.125
	329667			CH.14_p2 gi 6272129	0.125
	328168			CH.06_hs gli5868071	0.125
60	336534			CH22_FGENES.839_16	0.125
	339289			CH22_BA354I12.GENSCAN.16-9	0.126
		A1970747		EST singleton (not in UniGene) with exon hit	0.126
	339190			CH22_FF113D11.GENSCAN.1-2	0.126
	337086			CH22 FGENES.458-14	0.126
65		R21054	Hs.211522		0.126
	339396			CH22_BA232E17.GENSCAN.6-8	0.126
		AA449077	Hs.179765	Homo sapiens mRNA; cDNA DKFZp586H1921	
				(from clone DKFZp586H192	0.126
	308099	Al475914		EST singleton (not in UniGene) with exon hit	0.126
				O-sear france amount with annual	

	338477			CH22_EM:AC005500.GENSCAN.373-5	0.126
	334286			CH22_FGENES.369_16	0.126
		41005000			
	317245	AI025039	Hs.131732	ESIS	0.126
	335249			CH22_FGENES.516_10	0.126
5	333327			CH22_FGENES.138_20	0.126
-		8.8000000			
		AA009802		EST singleton (not in UniGene) with exon hit	0.126
	335464			CH22_FGENES.562_26	0.126
	335236			CH22_FGENES.515_8	0.126
					0.126
10	334154			CH22_FGENES.340_4	
10	309257	Al984183		EST singleton (not in UniGene) with exon hit	0.126
	310015	Al220122	Hs.201981	ESTs; Weakly similar to breast carcinoma-associated antigen	
				[H.sapiens]	0.126
	328280			CH.07_hs gl 5868352	0.126
	305744	AA831819		EST singleton (not in UniGene) with exon hit	0.126
15	327430			CH.02_hs gij5887754	0.126
	328323			CH.07_hs gl[5868373	0.126
	333274			CH22_FGENES.123_2	0.126
	337193			CH22_FGENES.575-3	0.127
	334820			CH22_FGENES.437_2	0.127
20					
20	328706			CH.07_hs gij5868270	0.127
	331228	W67267	Hs.174911	ESTs	0.127
	307205	Al192479		EST singleton (not in UniGene) with exon hit	0.127
		71102410			0.127
	337123			CH22_FGENES.519-3	
	326201			CH.17_hs gij5867216	0.127
25	335276			CH22_FGENES.523_2	0.127
		T01115	Un 404490		0.127
		T81115	Hs.191136		
	330532	U03187	Hs.121544	Interleukin 12 receptor; beta 1	0.127
	321235	N49521		EST cluster (not in UniGene)	0.127
		F12605	He 204520	ESTs; Weakly similar to reverse transcriptase [H.saplens]	0.127
30		1 12000	110,204060		
JU	328175			CH.06_hs gr 5868073	0.127
	306407	AA971985		EST singleton (not in UniGene) with exon hit	0.127
	327145			CH.01_hs gij5867548	0.127
	327649				0.127
				CH.04_hs gij5867899	
	335142			CH22_FGENES.498_12	0.127
35	333909			CH22_FGENES.295_2	0.127
		X04325	Hs.2679	gap junction protein; beta 1; 32kD (connexin 32;	
	000000	AU-1020	1152015		0.407
				Charcot-Marie-Tooth neuropathy; X-linked)	0.127
	330158			CH.21_p2 gi 6580367	0.127
	320153	AF064594	Hs.120360	phospholipase A2; group VI	0.127
40		AA098835	Hs.224432		0.127
70		AAUSOOO	112254436		
	333383			CH22_FGENES.143_22	0.127
	320663	A1734242	Hs.244473	ESTs	0.128
	326233			CH.17_hs gij5867232	0.128
45	326598			CH.20_hs gl 5867634	0.128
45	335174			CH22_FGENES.504_4	0.128
	319843	H29920	Hs.99486	ESTs; Weakly similar to aralar1 [H.sapiens]	0.128
	335458			CH22_FGENES.562_18	0.128
		•			
	332997			CH22_FGENES.58_4	0.128
	334188			CH22_FGENES.352_3	0.128
50	329759			CH.14_p2 gij6048280	0.128
					0.128
	330348			CH.09_p2 g 4544475	
	326958			CH.21_hs gi 6469836	0.128
	305263	AA679467		EST singleton (not in UniGene) with exon hit -	0.128
	337693			CH22_EM:AC000097.GENSCAN.78-14	0.128
55	326812			CH_20 hs gli6682504	0.128
<i>JJ</i>					
	333237			CH22_FGENES.108_7	0.128
	333699			CH22_FGENES.250_13	0.128
		AI768677	He 200888	ESTs; Weakly similar to phosphatidylserine	
	3				0.128
60				synthase-2 [M.musculus]	
60	336499			CH22_FGENES.833_4	0.128
	320087	AF032387	Hs.113265	small nuclear RNA activating complex; polypeptide 4; 190kD	0.128
		Al184186	Hs.197813		0.128
		AW298468	Hs.250461		0.128
	337011			CH22_FGENES.427-6	0.128
65		AA876910	Hs.134427		0.128
		W22172			0.128
			D18.2380.385	ESTs	0.120
	-	*******		ALIAN FORUEO AND A	A 4AA
	336497			CH22_FGENES.833_2	0.129
	-			CH22_FGENES.833_2 endothelin type b receptor-like protein 2	0.129 0.129
	336497				

		AA158884		EST singleton (not in UniGene) with exon hit	0.129
	304522	AA465405		EST singleton (not in UniGene) with exon hit	0.129
	312407	R46180	Hs.153485	ESTs	0.129
	310098	Al685841	Hs.161354	ESTs	0.129
5		AF142579		EST cluster (not in UniGene) with exon hit	0.129
•		Al985821	Hs.62954		0.129
	-				0.120
	330803	H42142	HS.220090	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 19	0.400
	****			(Dbp5; yeast; homolog)	0.129
10	336949			CH22_FGENES.361-4	0.129
10	330115			CH.19_p2 gi 6015202	0.129
	339212			CH22_FF113D11.GENSCAN.6-7	0.129
	326951			CH.21_hs gij6004446	0.129
		AA662939		EST singleton (not in UniGene) with exon hit	0.129
		AI559492		EST singleton (not in UniGene) with exon hit	0.129
15	337140	71000401		CH22_FGENES.537-5	0.13
13		U29112		EST cluster (not in UniGene)	0.13
			U- 440F00		
				ribosomal protein L3	0.13
		AA745289	Hs.173088		0.13
00	339017			CH22_DA59H18.GENSCAN.20-6	0.13
20	330116			CH.19_p2 gij6015202	0.13
	333312	•		CH22_FGENES.138_4	0.13
	338004			CH22_EM:AC005500.GENSCAN.121-1	0.13
	314141	AA232134	Hs.190028	ESTs	0.13
		Al239845		ESTs; Weakly similar to EG:9587.2 [D.melanogaster]	0.13
25	338530	7112000-10	110.120101	CH22 EM:AC005500.GENSCAN.398-11	0.13
23	335968			CH22_FGENES.652_1	0.13
		A PRODUCE	Hs.187619		
		Al732100	U2' 10' 018		0.13
	337593			CH22_C20H12.GENSCAN.6-8	0.13
20	332881			CH22_FGENES.33_1	0.13
30		AA858043		EST singleton (not in UniGene) with exon hit	0.13
	339059			CH22_DA59H18.GENSCAN.30-5	0.13
	305610	AA782319		EST singleton (not in UniGene) with exon hit	0.13
	305852	AA862455		EST singleton (not in UniGene) with exon hit	0.13
	327409			CH.02_hs gij5867750	0.13
35		Al613089	Hs.164178		0.13
-		Al799268	Hs.209929		0.13
	325961	74100200	110.200020	CH.16_hs gij5867147	0.13
		AW025919	Un 107000		0.13
40		AA057230	rts. 182 135		0.13
40	336441			CH22_FGENES.827_7	0.13
	336339			CH22_FGENES.814_12	0.13
		AI095365		EST singleton (not in UniGene) with exon hit	0.13
	333613			CH22_FGENES.217_8	0.13
	338489		•	CH22_EM:AC005500.GENSCAN.384-17	0.131
45	326904			CH.21_hs gij5867684	0.131
	337337			CH22_FGENES.717-1	0.131
	326752			CH.20_hs gi 5867615	0.131
		AW512978		EST singleton (not in UniGene) with exon hit	0.131
		AA595235		EST cluster (not in UniGene) with exon hit	0.131
50	338448	Massess		CH22_EM:AC005500.GENSCAN.359-22	0.131
<i>3</i> 0					
	333774			CH22_FGENES.272_5	0.131
	332986			CH22_FGENES.54_8	0.131
	335362			CH22_FGENES.541_12	0.131
	335896			CH22_FGENES.635_4	0.131
55	337825			CH22_EM:AC005500.GENSCAN.13-19	0.131
	325257			CH.11_hs gi 5866895	0.131
	331188	T50240	Hs.167837	ESTs	0.131
	330645	Y08302	Hs.144879	dual specificity phosphatase 9	0.131
		AA292721		ESTs; Weakly similar to unknown [H.saplens]	0.131
60		AA513829		ribosomal protein L10	0.131
	335497			CH22_FGENES.571_5	0.131
	334824			CH22_FGENES.437_6	0.131
		D08033	Hs.184221		
		R06933	115.104221		0.131
65	334842			CH22_FGENES.439_21	0.131
65	333335	4.4007.1	41 400.00	CH22_FGENES.139_4	0.131
		AA905178	Hs.130124		0.131
	328034			CH.X_hs gi[5868561	0.131
	305186	AA664230		EST singleton (not in UniGene) with exon hit	0.131
	335755			CH22_FGENES.604_4	0.131

	302143	H15270	Hs.189847	putative neuronal cell adhesion molecule	0.131
	334939			CH22_FGENES.465_3	0.131
	_	C15110	Hs.17802	ESTs	0.131
		CISTIO	115.17002		
_	334498			CH22_FGENES.397_14	0.131
5	333413			CH22_FGENES.146_2	0.132
	329676			CH.14_p2 gl 6272128	0.132
	327277			CH.01_hs gij5887473	0.132
		AA627416		EST singleton (not in UniGene) with exon hit	0.132
		AA021410			
10	336805			CH22_FGENES.196-3	0.132
10	320121	T93657		EST cluster (not in UniGene)	0.132
	334761			CH22_FGENES.428_10	0.132
	339400			CH22_BA232E17.GENSCAN.7-6	0.132
	330301			CH.06_p2 gi 2905862	0.132
		4.4007004	LI- 400007		0.102
1 ~	316822	AA827691	HS. 12990/	ESTs; Weakly similar to neuronal thread protein	
15				AD7c-NTP [H.sapiens]	0.132
	328020			CH.06_hs gi 5902482	0.132
	325327			CH.11_hs gij5866875	0.132
		AA209530		EST cluster (not in UniGene)	0.132
		734.00000			0.132
20	336393			CH22_FGENES.823_5	
20	325905			CH.16_hs gl 5867104	0.132
	305237	AA676286	Hs.2186	eukaryotic translation elongation factor 1 gamma	0.132
	339046			CH22_DA59H18.GENSCAN.28-6	0.132
	325375			CH.12_hs gij5866920	0.132
	333961			CH22_FGENES.304_7	0.132
25					
25	335450			CH22_FGENES.562_8	0.133
	302286	R58438		EST cluster (not in UniGene) with exon hit	0.133
	335116			CH22_FGENES.496_3	0.133
	327333			CH.01_hs ql 5902477	0.133
		AJ470948		EST singleton (not in UniGene) with exon hit	0.133
30					
<i>3</i> 0		Al581855		EST singleton (not in UniGene) with exon hit	0.133
	320813	AW360847	Hs.208839	ESTS	0.133
	323665	AW248307		EST cluster (not in UniGene)	0.133
	328318			CH.07_hs gl 5868373	0.133
		R51419		EST cluster (not in UniGene)	0.133
35		101413			
JJ	332791		11. 400400	CH22_FGENES.3_1	0.133
		AA524725	Hs.162108		0.133
	303309	AL134164	Hs.224868	ESTs	0.133
	320581	R39753	Hs.170187	ESTs	0.133
	333944			CH22_FGENES.302_2	0.133
40		Al733512	Hs.130901		0.133
TU					
		F02383	Hs.26492	beta-1;3-glucuronyltransferase 3 (glucuronosyltransferase I)	0.133
	336659			CH22_FGENES.36-5	0.133
	338887			CH22_DJ32I10.GENSCAN.6-10	0.133
	305273	AA679979	Hs.181165	eukaryotic translation elongation factor 1 alpha 1	0.133
45	333566			CH22_FGENES.183_2	0.134
		AW450033	Hs.163312		0.134
		AVV43UUSS	FIS. 103312		
	333818			CH22_FGENES.283_1	0.134
	328687			CH.07_hs gi 5868262	0.134
	302879	H11802		EST cluster (not in UniGene) with exon hit	0.134
50	336557			CH22_FGENES.842_2	0.134
-	335222			CH22_FGENES.513_5	0.134
	338094				
				CH22_EM:AC005500.GENSCAN.179-3	0.134
	337384			CH22_FGENES.745-1	0.134
	327360			CH.01_hs gl 6552411	0.134
55	328132			CH.06_hs gij5868038	0.134
	323604	Al751438	Hs.182827	ESTs; Weakly similar to !!!! ALU SUBFAMILY SQ	
	-			WARNING ENTRY !!!!	0.134
	227504				
	337591	*****		CH22_C20H12.GENSCAN.6-6	0.134
CO		Al140639		EST singleton (not in UniGene) with exon hit	0.134
60	326896			CH.21_hs gi 5867680	0.134
	333479			CH22_FGENES.163_5	0.134
	337915	* ·	•	CH22_EM:AC005500.GENSCAN.61-3	0.134
	335110			CH22_FGENES.494_18	0.134
					0.134
65	333481			CH22_FGENES.163_9	
U)	327512		11. 66.000	CH.02_hs gil6117815	0.134
	300096	AW328639	Hs.83575	ESTs; Weakly similar to ZC328.3 [C.elegans]	0.134
	330163			CH.02_p2 gi 6042042	0.135
	335752			CH22_FGENES.604_1	0.135
	334857			CH22_FGENES.443_1	0.135
	JU-1001				

	301872 337529 335734	H84730		EST cluster (not in UniGene) with exon hit CH22_FGENES.823-29 CH22_FGENES.601_4	0.135 0.135 0.135
_	337551			CH22_FGENES.847-8	0.135
5	309078	Al920965	Hs.77961	major histocompatibility complex; class 1; B	0.135
	335513			CH22_FGENES.571_28	0.135
	339078			CH22_DA59H18.GENSCAN.37-6	0.135
	321907	N56660	Hs.148722	ESTs; Weakly similar to large tumor suppressor 1 [H.saplens]	0.135
	337189			CH22_FGENES.571-32	0.135
10	329635			CH.12_p2 gi 5302817	0.135
		Al719930		EST singleton (not in UniGene) with exon hit	0.135
		AA627248	Hs.2064	vimentin	0.135
	333894			CH22_FGENES.293_1	0.135
15	322465	AA137152	Hs.3784	ESTs; Highly similar to phosphoserine aminotransferase	0.405
15	005004	4.47000TF .		[H.sapiens]	0.135
		AA780975	11-444054	EST singleton (not in UniGene) with exon hit	0.135
	332160	H10781	ns.141001	ESTs; Moderately similar to IIII ALU SUBFAMILY SB WARNING ENTRY	0.135
	327822			CH.05_hs gij5867968	0.135
20		Al393914	He 160624	ESTs; Weakly similar to similar to CR16; SH3 domain	0.100
20	310007	Alogue 14	113,100064	binding protein	0.135
	328752			CH.07_hs gi 5868298	0.135
	337611			CH22_C20H12.GENSCAN.19-4	0.135
	334470			CH22_FGENES.394_1	0.136
25	335115			CH22_FGENES.496_2	0.136
	328730			CH.07_hs gi 5868289	0.136
	330350			CH.09_p2 gij3056622	0.136
	336971			CH22_FGENES.378-6	0.136
	308258	AI565612		EST singleton (not in UniGene) with exon hit	0.136
30	326745			CH.20_hs gi 5867611	0.136
	335440			CH22_FGENES.560_3	0.136
		AA330746		EST cluster (not in UniGene)	0.136
	328677			CH.07_hs gij5868256	0.136
25	329731	* ******	11- 000074	CH.14_p2 gi 6065783	0.136
35		AA700553	Hs.206974	The state of the s	0.136
	330049			CH.17_p2 gi 4567182	0.136 0.136
,	337070	D44004	Hs.31059	CH22_FGENES.448-3	0.136
		H11324 AW005527	Hs.232820		0.136
40	333458	ATTOOSOE	110202020	CH22_FGENES.157_7	0.136
	329899			CH.15_p2 gij6563505	0.136
		Al275056	Hs.200133		0.136
	333991			CH22_FGENES.310_15	0.136
		AW247252	Hs.75514	nucleoside phosphorylase	0.136
45	310623	AJ341586	Hs.195588	ESTs	0.136
	330489	M23323	Hs.3003	CD3E antigen; epsilon polypeptide (TT3 complex)	0.136
	309646	AW194694		EST singleton (not in UniGene) with exon hit	0.138
	331068	R00071	Hs.191199		0.136
50	334285	-		CH22_FGENES.369_15	0.136
50		F13689	Hs.100725	==:	0.136
		AA827608	11- 0004	EST singleton (not in UniGene) with exon hil	0.136
		AL138110	Hs.8594	Homo sapiens mRNA containing (CAG)4 repeat; clone CZ-CAG-7	0.136
	334543 335384			CH22_FGENES.403_8 CH22_FGENES.543_26	0.136
55	336527			CH22_FGENES.839_8	0.136
55	334951			CH22_FGENES.465_20	0.136
	325882			CH.16 hs gi 5867087	0.137
		AA653159		EST singleton (not in UniGene) with exon hit	0.137
		Al148709		EST singleton (not in UniGene) with exon hit	0.137
60	331943	AA453418	Hs.178272	ESTs	0.137
		R44780	Hs.22634	ESTs	0.137
		AA908877		EST singleton (not in UniGene) with exon hit	0.137
	333561			CH22_FGENES.180_18	0.137
65	321439			EST cluster (not in UniGene)	0.137
65		AA497090		EST duster (not in UniGene)	0.137
•	337926			CH22_EM:AC005500.GENSCAN.77-4	0.137
	337353	AA412295	Hs.104774	CH22_FGENES.726-1	0.137 0.137
		AA412295 Al873242	115.104774	EST singleton (not in UniGene) with exon hit	0.137
	300301	. 201 CE 4E		me and and have a surround that over the	3

	329424			CH.Y_hs gi[5868879	0.137
	325829			CH.15_hs g[5867052	0.137
		4.4.4.0000	U- 00100		
		AA416863	Hs.98183	ESTs	0.137
_	333854			CH22_FGENES.290_13	0.137
5	306591	A1000248		EST singleton (not in UniGene) with excn hit	0.137
	328948			CH.08_hs gij8456765	0.137
	338935			CH22_DJ32I10.GENSCAN.18-12	0.137
	325960				
				CH.16_hs gij5867147	0.137
	328377			CH.07_hs gi 5868390	0.138
10	308851	AJ829820		EST singleton (not in UniGene) with exon hit	0.138
	314620	AA424352	Hs.210586	ESTs	0.138
	337592			CH22_C20H12.GENSCAN.6-7	0.138
					0.138
	338684	4.4.400.400	11-07540	CH22_EM:AC005500.GENSCAN.472-3	
		AA400498	Hs.97543		0.138
15	304587	AA505535		EST singleton (not in UniGene) with exon hit	0.138
	333981			CH22_FGENES.310_4	0.138
	332452	AA040369	Hs.11170	SYT interacting protein	0.138
		AA835278		EST singleton (not in UniGene) with exon hit	0.138
			He DETECT		
20		T65554	Hs.251591		0.138
20	333783			CH22_FGENES.273_5	0.138
	337406		_	CH22_FGENES.754-14	0.138
	327976		•	CH.06_hs gl 5868212	0.138
	325593			CH.13_hs gl 5866992	0.138
25	339425	4.4.4000000		CH22_DJ579N16.GENSCAN.14-4	0.138
25	304475	AA428879		EST singleton (not in UniGene) with exon hit	0.138
	309488	AW131104		EST singleton (not in UniGene) with exon hit	0.138
	337532			CH22_FGENES.827-6	0.138
		AA904448	Hs.126368		0.138
		AA854425	Hs.144455		0.138
30		74004460	113.14400		
30	328927			CH.08_hs gi[5868500	0.138
	336424			CH22_FGENES.824_9	0.138
	326667			CH.20_hs gi 6552455	0.138
	325988			CH.16_hs gl 5867064	0.138
		AW300287		EST cluster (not in UniGene)	0.139
35		ATTOOOLUT			0.139
<i>JJ</i>	336511			CH22_FGENES.834_6	
	335204			CH22_FGENES.508_13	0.139
	303244	AA147472		EST cluster (not in UniGene) with exon hit	0.139
	330870	AA115804	Hs.187593	ESTs	0.139
	329376			CH.X_hs gi 5868859	0.139
40		AA563898		EST singleton (not in UniGene) with exon hit	0.139
70		7700000			
	333653			CH22_FGENES.239_2	0.139
		AI051696		EST singleton (not in UniGene) with exon hit	0.139
	304872	AA595289		EST singleton (not in UniGene) with exon hit	0.139
	330812	AA013001	Hs.60563	ESTs	0.139
45	329568			CH.10_p2 gi[3962490	0.139
		AA253074	Hs.146261		0.139
		741630014	1 13. 14020 1		
	334320		41. 4.0040	CH22_FGENES.374_5	0.139
		Al916949	Hs.149/48	ESTs; Weakly similar to weak similarity to collagens [C.elegans]	0.139
	305868	AA864533	•	EST singleton (not in UniGene) with exon hit	0.139
50	312943	AA984364	Hs.119064	ESTs	0.139
		M99439	Hs.83958	transducin-like enhancer of split 4; homolog of Drosophila E(sp1)	0.139
		Al076204	Hs.135440		0.139
			113.133440		
		AW072970		EST singleton (not in UniGene) with exon hit	0.139
	303273	AA316069		EST cluster (not in UniGene) with exon hit	0.139
55	317484	AW274696	Hs.143921	ESTs	0.139
	333239			CH22_FGENES.111_1	0.139
		Al184951		EST singleton (not in UniGene) with exon hit	0.139
			Un 104517		
		AA826505	Hs.124517		0.139
60		AA281365		ESTs; Wealty similar to KIAA0386 [H.sapiens]	0.139
60		Al700145		poly(A)-binding protein; cytoplasmic 1	0.139
	310784	AW086142	Hs.159017	ESTs	0.139
		AA335715	Hs.200299		0.139
		Al318342		EST singleton (not in UniGene) with exon hit	0.139
65		Al318327		EST cluster (not in UniGene)	0.139
65	327934			CH.06_hs gi 5868184	0.139
		AA670052	Hs.195188	glyceraldehyde-3-phosphate dehydrogenase	0.139
	334756			CH22_FGENES.428_5	0.139
		AA451B67	Hs.99255		0.139
		Al474722		ESTs; Weakly similar to KIAA0644 protein [H.sapiens]	0.139
	55.000			man	200

PCT/US01/32045

	312005	T78450		ESTS	0.139 0.14
	338431	T90496	Hs.16757	CH22_EM:AC005500.GENSCAN.351-4 ESTs	0.14
	333601	180430		CH22_FGENES.213_4	0.14
5		AA278449	Hs.137429		0.14
	336911			CH22_FGENES.344-4	0.14
	338157			CH22_EM:AC005500.GENSCAN.209-5	0.14
	327845	745000		CH.05_hs gij6531962	0.14
10		Z45662		Homo sapiens clone 23620 mRNA sequence CH22_FGENES.428_12	0.14
10	334763 329384			CH.X_hs gi 5868869	0.14
		AF054663		EST duster (not in UniGene) with exon hit	0.14
		AW452656	Hs.209824		0.14
	329916			CH.16_p2 gij6223624	0.14
15		N49826	Hs.18602	ESTS CH22_EM:AC005500.GENSCAN.197-2	0.14 0.14
	338129			CH22_EM.ACCC6500.GENGCAN.197-2 CH.14_hs glj5867028	0.14
	325704 335656			CH22_FGENES.590_7	0.14
		W72366	Hs.40033	ESTs	0.14
20	316807	AI018331	Hs.172444	ESTs; Highly similar to transcription regulator [M.musculus]	. 0.14
		AW449754	Hs.158665		0.14
	326941			CH.21_hs gij6004446	0.14 0.14
	328809	AICEDIC!	Hs.128665	CH.07_hs gi 5868327	0.14
25		AI653164 AA564064	NS.120000	EST singleton (not in UniGene) with exon hit	0.14
23	325666	7000000		CH.14_hs gij6469822	0.14
	333747			CH22_FGENES.265_6	0.14
		AW015616	Hs.143321		0.141
20	332972			CH22_FGENES.51_5	0.141 0.141
30		AA825266	Uc 100102	EST singleton (not in UniGene) with exon hit ESTs; Weakly similar to Nod1 [H.sapiens]	0.141
	327296	AW182805	115.105100	CH.01_hs gi 5867492	0.141
	336400			CH22_FGENES.823_15	0.141
		H26214	Hs.20733	ESTs; Weakly similar to IIII ALU SUBFAMILY SX	
35				WARNING ENTRY	0.141
		Al475995	Hs.122910		0.141 0.141
	335715			CH22_FGENES.599_15 CH22_FGENES.650_2	0.141
	335959 333259			CH22_FGENES.118_7	0.141
40	337382			CH22_FGENES.744-8	0.141
	322346	AA227618	Hs.10882		0.141
	325378			CH.12_hs gi 5866920	0.141 0.141
	338500			CH22_EM:AC005500.GENSCAN.390-1 CH22_EM:AC005500.GENSCAN.362-5	0.141
45	338460	AW511138	Hs.256581		0.141
73		AI539443	Hs.137447		0.141
	333624			CH22_FGENES.222_3	0.141
	329237			CH.X_hs gl 5868729	0.141
50	330117			CH.19_p2 gi 6015201	0.141 0.141
50	338017			CH22_EM:AC005500.GENSCAN.134-1 CH22_EM:AC005500.GENSCAN.38-12	0.142
	337854 329984			CH.16_p2 gi 4646193	0.142
		AA622328	Hs.162762	EST	0.142
		N40373		EST cluster (not in UniGene) with exon hit	0.142
55	327823			CH.05_hs gif5867968	0.142
	326753	4 400 4 400	11. 40777	CH.20_hs gi 5867616	0.142 0.142
	301201	AA904482	Hs.197775	CH22_FGENES.373_6	0.142
	326453			CH.19_hs gij5867399	0.142
60		Al864581	Hs.215477	ESTs	0.142
	308740	AI802711		EST; Weakly similar to aldolase A [H.sapiens]	0.142
		H63959	Hs.142722		0.142 0.142
	338010			CH22_EM:AC005500.GENSCAN.128-8	0.142
65	336326	R44308	Hs.242302	CH22_FGENES.812_4 ESTs	0.142
O)		R55421	110-646-002	EST cluster (not in UniGene)	0.142
	325855			CH.16_hs gi 5867067	0.142
		HG1728-HT1	734	Non-Specific Cross Reacting Antigen (Gb:D90277),	0.440
				Alt. Splice Form 2	0.142

		AA425411	Hs.22581	ESTs	0.142
	326268		11. 45000	CH.17_hs gij5867267	0.142 0.142
		AA460341	Hs.45008	ESTS CHOOLD PROMOCENISCAN 10.16	0.142
5	338904 333096			CH22_DJ32I10.GENSCAN.10-16 CH22_FGENES.79_1	0.143
5		AA446869	Hs.119316		0.143
		Al248004	Hs.125187		0.143
		AW179174	Hs.7984	ESTs	0.143
	316107	Al204001		ribosomal protein L31	0.143
10		AA885317	Hs.190511		0.143
	337392			CH22_FGENES.747-3	0.143
	325543	A A 07000E		CH.12_hs gi 6682452 EST singleton (not in UniGene) with exon hit	0.143 0.143
	332707	AA873085	He 17/185	phosphodiesterase l/nucleotide pyrophosphatase 2 (autotaxin)	0.143
15	337913	L00034	115,174100	CH22 EM:AC005500.GENSCAN.59-10	0.143
		AA961061	Hs.131696		0.143
	335078			CH22_FGENES.486_5	0.143
	338451			CH22_EM:AC005500.GENSCAN:359-39	0.143
20		AJ230640		EST cluster (not in UniGene) with exon hit	0.143
20	330464		Hs.78223	N-acylaminoacyl-peptide hydrolase	0.143 0.143
	328939	H41411	Hs.33855	CH.08_hs gi 6004481	0.143
		Al440174	Hs 228907	EST; Weakly similar to GUANINE NUCLEOTIDE-BINDING	
	000010	7444011-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	PROTEIN BETA SUBUNIT-LIKE PROTEIN	
25				12.3 [H.sapiens]	0.143
	328504			CH.07_hs gi 5868471	0.143
		AA402891	Hs.32951	solute carrier family 29 (nucleoside transporters); member 2	0.143 0.143
	335744	AF077208		CH22_FGENES.601_15 EST cluster (not in UniGene)	0.143
30		AL042661		EST cluster (not in UniGene)	0.143
-		A1939323	Hs.157714	ESTs; Weakly similar to NEURONAL ACETYLCHOLINE	
				RECEPTOR PROTEIN; ALPHA-5 CHAIN PRECURSOR	
				[H.sapiens]	0.143
25	336568	1100018	11. 450004	CH22_FGENES.843_7	0.143 0.143
35	330958	H08815	Hs.159824	CH.04_hs gij5867843	0.143
	335900			CH22_FGENES.635_8	0.144
	336044			CH22_FGENES.679_6	0.144
40	318845	Al815951		ESTs; Weakly similar to estrogen-responsive finger protein;	
40			efp [H.sapi		0.144 0.144
	333483 333337			CH22_FGENES.165_2 CH22_FGENES.139_6	0.144
		AA889197		EST singleton (not in UniGene) with exon hit	0.144
	335719	70 250 151		CH22_FGENES.599_22	0.144
45	325682			CH.14_hs gi]6138923	0.144
	327350			CH.01_hs gi 6249563	0.144
	339291			CH22_BA354I12.GENSCAN.18-1	0.144 0.144
	326358 330316			CH.18_hs gi 5867293 CH.08_p2 gi 6007576	0.144
50		A1499346	Hs 174131	ribosomal protein L6	0.144
-	338065			CH22_EM:AC005500.GENSCAN.164-1	0.144
	339009			CH22_DA59H18.GENSCAN.18-7	0.144
	327776			CH.05_hs gi 5867964	0.145
55	336664	A F070040		CH22_FGENES.41-8	0.145 0.145
33		AF070619 T70147	Hs.12024	EST duster (not in UniGene)	0.145
		AA062892	113,12024	EST singleton (not in UniGene) with exon hit	0.145
		Z45986	Hs.250178		0.145
	327498			CH.02_hs gi 6017023	0.145
60	335227			CH22_FGENES.513_13	0.145
	339022	Licrona	Lia nonno	CH22_DA59H18.GENSCAN.22-1	0.145
	302597	H55661	Hs.33026 TRAB [C.el	ESTs; Weakly similar to similar to Enterococcus faecalis	0.145
	308550	AI697008	Hs.201811	EST	0.145
65		AA262760	Hs.156015	Homo sapiens chromosome 19; cosmld R29381	0.145
_		AA156760		EST duster (not in UniGene) with exon hit	0.145
	337414			CH22_FGENES.757-2	0.145
		Al734009		EST duster (not in UniGene)	0.145 0.145
	329333			CH.X hs ail5868806	U. 140

	336857			CH22_FGENES.291-7	0.145
		AA234896	Hs.25272		0.145
		Al928098	Hs.156832	E1A binding protein p300	0.145
	336318	Alazouao	118.130002	CH22_FGENES.801_1	0.145
5		Al923551	Hs.170843		0.145
-	335346	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CH22_FGENES.537_2	0.145
		T65416	Hs.12826		0.145
	337607	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		CH22_C20H12.GENSCAN.17-3	0.146
		T84096	Hs.15284		0.146
10	301793	T80698		EST cluster (not in UniGene) with exon hit	0.146
	319590	AA210878	•	EST cluster (not in UniGene)	0.146
	311394	Al695374	Hs.256231	ESTs	0.146
	324773	AA632554	Hs.163401		0.146
		Al142359	Hs.155316	==::	0.146
15		N70088	Hs.138467		0.146
	329276			CH.X_hs gi 5868762	0.146
	335887			CH22_FGENES.633_1	0.146
	338294			CH22_EM:AC005500.GENSCAN.297-1	0.146
20	336993			CH22_FGENES.409-4	0.146 0.146
20	334135			CH22_FGENES.336_2	0.146
	326251 337398			CH.17_hs gij5867263 CH22_FGENES.749-1	0.146
	339167			CH22_DA59H18.GENSCAN.69-8	0.146
		AW135418	Hs.161210		0.146
25	325313	ATT 155410	113.101210	CH.11_hs gi[5866865	0.146
		N66918	Hs.32205		0.146
		AL043362		EST cluster (not in UniGene)	0.146
		AF062275		EST cluster (not in UniGene) with exon hit	0.146
	306317	AA947909		EST singleton (not in UniGene) with exon hit	0.146
30	334399			CH22_FGENES.382_5	0.146
	326472			CH.19_hs gij5867404	0.146
	333061			CH22_FGENES.75_4	0.146
	337072			CH22_FGENES.448-5	0.146
0.5	334328			CH22_FGENES.375_5	0.146
35	327039			CH.21_hs gi[6531965	0.146
	325576	A1075004	Un 400000	CH.12_hs gi 6552443	0.147
		A1075804	Hs.132660		0.147 0.147
		AA323758		EST cluster (not in UniGene) CH22_FGENES.397_17	0.147
40	334501 338238			CH22_EM:AC005500.GENSCAN.264-4	0.147
40		Al744063			0.147
	336567	7474000		CH22_FGENES.843_6	0.147
	335819			CH22_FGENES.619_2	0.147
	336950			CH22_FGENES.361-8	0.147
45		Al148477		EST singleton (not in UniGene) with exon hit	0.147
	315134	AW504854	Hs.126714	ESTs	0.147
	335834			CH22_FGENES.621_1	0.147
	327870			CH.06_hs gij5868131	0.147
		AA332011	Hs.250138	protein phosphatase 2C; magnesium-dependent; catalytic subunit	
50	329412	4.4000000		CH.X_hs gi 6682553	0.147
		AA333068		EST duster (not in UniGene)	0.147
		AA385315		EST cluster (not in UniGene)	0.147 0.147
	327865 333445			CH.06_hs gij5868130 CH22_FGENES.154_2	0.147
55		AA021351	He 159497	KIAA0724 gene product	0.147
55	336744	70021001	110.100401	CH22_FGENES.118-9	0.147
		AA323414		EST duster (not in UniGene)	0.148
		H07989		EST duster (not in UniGene)	0.148
		AA749000		EST singleton (not in UniGene) with exon hit	0.148
60		AA780594	Hs.62954	ferritin; heavy polypeptide 1	0.148
	304094	H11295		EST singleton (not in UniGene) with exon hit	0.148
		AW296368		EST cluster (not in UniGene)	0.148
	339034			CH22_DA59H18.GENSCAN.28-2	0.148
65	334504			CH22_FGENES.398_2	0.148
65	334778	177404	He 44000-	CH22_FGENES.431_2	0.148
		U77494		RAN binding protein 8	0.148 0.148
	325826	AW173759	Hs.203401	CH.15_hs gij5867048	0.148
		T55182	Hs.152571	ESTs; Highly similar to IGF-II mRNA-binding protein 2 [H.sapiens]	0.148
	30.106				· · · · •

	325785			CH.14_hs gl[6381957	0.148
	333166			CH22_FGENES.91_8	0.148
	336548			CH22_FGENES.841_5	0.148
_	337552			CH22_C4G1.GENSCAN.1-4	0.148
5 .		AA382742	Hs.97151	EST	0.148
	338936			CH22_DJ32I10.GENSCAN.19-6	0.148
		AA428554	Hs.104894	ESTs; Weakly similar to fibronectin precursor [H.saplens]	0.148
	332865			CH22_FGENES.28_5	0.148
10	328663			CH.07_hs gij6004473	0.148 0.148
10 -	328436			CH.07_hs gi 5868417	
		A1634864	HS.250789	ESTs; Highly similar to similar to NEDD-4 [H.sapiens]	0.148 0.148
	336942	DEDAGO	11-040004	CH22_FGENES.354-2	0.149
	302262	H53169	Hs.246091		0.149
15	333296			CH22_FGENES.132_3	0.149
15	333365	AUMEDOOD	Hs.252854	CH22_FGENES.142_2	0.149
		AW452392	NS,202004	CH22_FGENES.489-2	0.149
	337109	AW173300	Hs.190201		0.149
	333454	V41112200	113.130201	CH22_FGENES.157_3	0.149
20	334784	_		CH22 FGENES.432 9	0.149
20	333255			CH22_FGENES.118_3	0.149
	337518			CH22_FGENES.814-7	0.149
		AA489268		EST cluster (not in UniGene)	0.149
		AA287567		EST cluster (not in UniGene)	0.149
25	328761	, , , ,		CH.07_hs gij5868302	0.149
	328787			CH.07_hs gl[5868309	0.149
	335261			CH22_FGENES.520_2	0.149
		R16689	Hs.106004		0.149
	339263			CH22_BA354I12.GENSCAN.10-1	0.149
30	337412			CH22_FGENES.756-6	0.149
	334414			CH22_FGENES.384_1	0.149
	332931			CH22_FGENES.38_5	0.149
	310801	AW270980	Hs.106346	novel centrosomal protein RanBPM	0.149
~~		AA669056		EST singleton (not in UniGene) with exon hit	0.149
35		AA470122	Hs.190261		0.149
	338414			CH22_EM:AC005500.GENSCAN.341-27	0.149 0.149
		AW247361		EST cluster (not in UniGene) with exon hit	0.149
	337509	41004440		CH22_FGENES.806-4	0.149
40		AI001149	11-040440	EST singleton (not in UniGene) with exon hit	0.149
40		L36149	MS.248116	chemokine (C motif) XC receptor 1	0.149
	336536	700459	Hs.14285	CH22_FGENES.839_18 ESTs	0.149
		T32458	Hs.170013		0.149
	333595	Al767433	N3.170013	CH22_FGENES.211_2	0.149
45	335975			CH22 FGENES.652 9	0.15
43		Al003654		EST singleton (not in UniGene) with exon hit	0.15
	335025	Alwood		CH22_FGENES.475_3	0.15
	328711			CH.07_hs gij5868271	0.15
	328274			CH.07_hs gi]5868219	0.15
50	325505			CH.12_hs gl]6682451	0.15
	329641			CH.14_p2 gij6468233	0.15
	304955	AA613504		EST singleton (not in UniGene) with exon hit	0.15
	339103	•		CH22_DA59H18.GENSCAN.44-10	0.15
	329636			CH.12_p2 gi 5302817	0.15
<i>5</i> 5	310118	Al203293	Hs.157489	The second secon	0.15
	326056			CH.17_hs gi 5867184	0.15
		AA769074	11. 0000	EST cluster (not in UniGene) with exon hit	0.15
	303153	U09759	Hs.8325	mitogen-activated protein kinase 9	0.15

TABLE 13A shows the accession numbers for those primekeys lacking unigeneID's for Table 13. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column

10	Pkøy: CAT nu Accessi		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15	Pikey	CAT number	Accession
20	321439	24275_1 1599424_1 13653_22	AL137589 AA423949 BE222949 BE222694 Al199615 AW873116 Al277950 AW044290 AW630096 H61962 W01567 N75711 BE259906 AA232518 AA013359 AL035788 AW160822 BE367134 BE002954 BE391839 AW161565 Al678841 BE616458 BE409981 BE387308 BE297438 BE315536 AA206924 R12012 AA214169 BE312812 BE387033 H11710 BE312009 BE260569 AA343566 AA219528 R34757 AA219749 BE336733 AA219751 AW411099 AA232408 BE016716 BE398089 AA206253 AA053487 AA114224 AV655868 AW732566 BE394087 AW732574 AA313442 BE336875 AA070548 BE259840
25			BE019828 AW732341 AA299916 BE019253 BE018238 BE387109 AA232304 BE25589 AW732585 AA181436 AA308777 AA075802 AW732521 AA314526 AA226747 BE409513 AA206168 BE388292 BE298782 BE387086 AA306310 AV652723 AA314918 BE615510 AW951763 BE398104 BE3985195 BE407165 BE391336 BE390187 BE389199 BE540650 BE249884 BE385985 BE274245 BE391124 BE260080 AA182600 BE512821 BE390090 BE279398 BE279589 BE263454 BE515194 BE293569 BE272531 BE388814 BE384659 BE271685 BE561043 BE278449 BE302572 AW239076 AI750583 AA376179 AA112632 BE266324 BE266614 R13105 AA132286 BE296305 AI220355 AA205606 AA219527 AA219519 AW804310
30	322303	622937_1 704603_1 27492_1	AA083286 BE171208 T19693 AA338328 BE185868 AA903024 T92162 AA330119 BE410404 BE314668 AW576245 BE207878 AW299993 A1199558 A1285442 AW29994 AW394242 AW394184 A1357412 AIB70708 AI590539 W07459 AW088287 AA310079 BE336702 AA356318 AA306059 AA348785 AW402633 AA311210 AW402909 N76879 AW402913
35	J22354	274021	AW401920 AA321638 AA354474 C17297 C16938 AA311774 M29871 NM_002872 Z82188 AW405674 H94176 R89281 AA214723 AD14482 AW949347 T27749 AW804226 AW786964 AW404581 AF077208 NM_014028 W68830 W79652 AA353375 AW575218 AA552192 AA521232 AA702695 AA033975 AW407827 AA829948 N94402 AW628604 AI523308 N57605 AA641662 H42477 N52784 AI753478 AA768493 AA845729 W47391 N5270 Al090117 R89282 BE206172 AA076650 AA595650 AI218931 BE049397 AI433110 W74114 H94277 AI358627 AI085221 AI682818 AA835967 AW103905 AI640644 AA835507 AA856887 AA694392 AW337542 AI524410 BE045500 AI440060 AI358801 AW028238 AW205248
40		44275_1 155498_1	AI718264 R48618 AA357358 AI695002 AA897549 AW081065 AI433360 AI810783 AI620963 Z82188 AA360224 U29112 AI656540 AI364875 AI656246 AI990940 AA169345 AI762857 AI949997 AI809601 AI681948 AI221079 AW167404 AI347614 AI611090 AI023472 AI347683 AI027467 AW591788 AI380665 AA835735 AA836654 AI244028 AW183159 AI500112 AI918722 AI738693 AI702308 AA805365 AI766842
45	321921	38937_1 34680_1 21620_1	T59538 T59589 T59598 T59542 AF147374 AF070619 R20302 T80358 AJ223366 BE305086 AW820106 AA621983 BE305208 AI738475 AI380189 AW590847 AI127232 AA622706 AI380858 AA621975 AI587036 AA665743 AW204003 AI692234 AI002242 AI692219 AW137282 AW268783 AW295910 AI308015 AW301462 AI318288 AI318575 AI318117 AI345591 AI249650 AI246934 AI246864 AI246971 AW268311 AI249654 BE041907
50		265316_1 14694_7	AW732776 N72324 N52825 W19526 BE143464 AA376060 M83667 NM_005195 S63168 M83667 AW068039 AW630649 Al338577 Al018125 Al269878 AW242440 Al887823 Al342581 BE222416 Al582847 Al651011 Al660815 Al699574 BE550201 Al926996 AW665855 Al827752 Al761857 BE328168
55			BE222451 AI762201 AW000929 AW007207 BE042962 BE551843 BE465373 AI279179 AI949945 BE551862 AW051667 BE328076 BE222286 AW007229 AW772332 AI279801 AI934528 AI831939 AI770103 BE041412 AI417900 AI692655 AI865943 AW270119 AI431739 AI70347 AW770568 AW025473 AI701497 AI128026 BE328147 AW203980 BE046793 AW087704 AI674597 AI650732 AI813691 AI472092 AI695224 AI241217 AW207746 AI206840 AI271362 AI631788 AI911883 AI914619 AI380355 AI767501 AI823759 AI564116 AI190991 AI377369 AI814122 AI221623 AI354793 AI081988 AI391740 AI337435 BE467386 AI824347 AI565325 AI280038 AI640455 AI819744 BE467803 BE327524 AI149402 AI313187 BE219684
60			AW611948 AW665821 Al091260 AW04492 BE220366 AW025381 AW183264 Al694865 Al498474 Al129780 Al202028 Al566792 BE220659 Al928040 Al830696 Al493021 AW612488 Al913152 BE042865 Al631837 Al693873 Al498925 Al768668 Al401544 BE327023 Al693383 Al769874 Al744003 AW082273 Al686501 Al798177 Al985196 Al090033 Al432342 Al689918 Al638308 BE468080 BE219588 Al912119 BE219767 AW005392 BE326564 Al589039 Al860187 Al758143 Al338168 Al702936 BE221985 Al498727 Al918196 Al279735 AW771497 Al860133 AW237834 AW661759 AW028111 BE503416
65			AI360180 AW611715 AI871777 BE045447 BE326444 AI266547 AI800237 AI823315 AI478368 AI264281 AI675841 AI690041

	•	Al498018 Al554124 Al239893 Al864054 Al280099 Al192815 Al620465 Al080201 AW002057 BE500986 Al341131 Al818991 Al566137 Al123403 BE219192 AW183844 Al499842 AW137971 AW138720 AW015528 AW138160 AW243163 AW138705 AW139927 AW140006 AW138810 AW137450 AW206970 AW135419 AW205974 AA043494 BE465106 AW139955 Al741112
5		BE326942 AA043506 AI079957 AI942432 AI392902 AI097047 AI470599 AA514553 AA984008 NA7949 AI654114 AA884832 AI796752 AI765290 AI301155 AW470358 BE222764 AI823569 AI651188 AI692695 AI476643 BE604307 AI767573 BE219719 AI932249 AW467075 AI913633 BE221966 AI091025 AA969215 AI799810 AA931170 BE048559 AI809606 AI138614 AI739456 AI674606 AW772068 AI098286 AI625787 AI263418 AW003638 AI928399 AW628997 AI470010 AI914168 AI760003 AI203060 AI334069 AI694788 BE045337 AI948659 AI912982 AI867131 AI192102 AI767583 AI347518 AI566005 AI625884
10	·	Al215888 Al633904 AW182265 AW614357 Al128030 Al343685 Al914283 Al985003 Al823578 Al493053 Al380285 Al633895 Al267880 Al5338162 Al991552 BE219479 BE219296 Al302178 AW779296 Al913805 Al631644 Al566772 Al985498 Al942289 Al935659 Al339092 Al247432 Al686472 Al766886 Al017228 Al333272 AW301668 Al972218 AW082027 Al632974 Al474761 Al766127 AW236578 AW000986 Al870734 Al222399 Al871249 Al703448 BE464210 Al768037 Al871585 Al767871 Al738757 Al220732 Al681633 Al768783 Al68463 Al307339 Al263203 AW665264 BE463369 Al768786 Al439118 Al179118 BE218324
15		AL672342 BE220052 Al796163 Al221662 AW197672 AW025300 Al769681 AW612448 BE219757 AW072420 Al669980 Al830418 AW204353 AAD47011 AA913868 Al739146 Al669954 AW470507 AW614835 AW302151 AW772372 Al762427 AW339902 AW303370 BE464775 AW299818 AW236072 AW185060 AW274737 AW263062 AW183846 Al868894 AW300493 AW172509 AW516876 AW593773 AW299474 AW303546 Al817323 Al823624 Al694005 Al934589 Al343479 Al961825 Al962726 Al765845 AW080318 Al640227 Al763042 Al768903 AW2235386 AA738489 AW341293 AA588585 BE221732 Al914179 AW611669 Al572789 AW194735 AW236122 AW236007 AW612789 AW197501 AW195046 Al797145 Al664423
20		A1458934 A1342848 A1693227 A1912642 A1689993 AA932572 AA740269 AW470392 AW086020 A1221701 T69326 T70461 A1765579 A1338263 A1431721 A1394249 A1186462 A1823571 A1953665 A1497954 A1761057 A1678228 A1640302 A1948742 AA594626 AA883155 A1972682 A1604774 A1300407 A1433524 AA897341 A1401175 A1291071 AA021213 A1126509 A1948955 A1218835 AA913938 AA502610 A1498320 AA584267 AA935285 A1476253 AA489658 AA975053 AA715326 AA557139
25		AA126417 AA971455 AA557319 AI499738 AA911438 AI913637 AA494506 N90793 AI990724 AA131667 AA128164 AA046840 AI262557 AA131729 AA594926 T59487 AA436907 AA044630 AI589177 AI278237 AI880498 AI431822 AA708934 AW612558 AI634069 WG3610 AI192272 BE550862 AI400879 AA708507 AI128003 AI375230 AI27423 AI199552 AA125977 AI366498 AA458662 AI694382 AA044627 AI636263 AI796270 T90146 AW014724 AI870812 AI987871 AA369965 AI094721 AW271817 AI262898 AI244680 T69252 AI934148 AA046357 W19109 AA028157 AW021824 AA253491 AI189397 AI934388 D58282 W21323 W24288 AI682972 AA293683 AA284566 AV659511 AA434184 H87089 AA040038 N57464 AA343709
30	301119 33384_1	AW805815 R89837 BE621320 BE266806 BE276582 AW516729 AF142578 AW451687 AK000069 AA325236 BE168997 W73105 AA715365 BE278873 AA808894 AA386371 AW517942 AW750993 BE140314 BE392384 BE621757 AA318192 BE548173 AW152607 AW166898 AA352215 AW841506 T59802 AF147378 AA335719 AW956069 T59668 AA826382 AJ961329 AL290469 AW197375 AJ805651 AA160748 AA581089 AJ868889 AA581100 AA501478 AJ821069 AA468534 AA503715 AA658457
35		Al144504 BE387827 AA159880
	324019 262792_1	AW177009 Al381610
	323437 189513_1	AA287567 AA252404 AW967735 AA287568 AA761222 AA865644 AA831245 BE514807 R43224 Al363450 AA450226 AF030942
	307845 19804_10 324126 272259_1	AA385315 Al627453 Al050695 Al348281
40	309101 7570_1	AI340462 AI583268 AA079086 AI950777 AI301868 AI925108 AW876954 AW877000 AA525418 AA888549 AI934220
	-	AW380220 AA804858 AI927576 T61151 AW384053 BE391691 AA533856 AA248400 T48202 N57156 R68346 R26020 AL050332 W30806 H61369 AA092592 AA230324 BE271217 AW372803 T48772 AA358002 AA094302 AA559856 AW373308 AW373315 AW373297 AW373311 AW373314 AW373309 AW877055 AW770140 AW379805 AI581609 AW364144 AA078921 AA715432 AA654210 AI004899 AA602209 W47464 AA506588 R26822 AU076528 AI535743 AI535704 AI535681
45	315703 119175_1	AA402307 D60405 D61237 D59891 AW864877 AA325215 AI459739 N36070 N25658 AA083684 AW293368 AI761958 AI741205 AI693175 AW873603 AI143269 AI187124 N25199 H19823 AI650842 AW316825 AA083842 AA935650 AW298404 AI472001 AI648568 R17676 R41625 AI123237 R17677 AI206866 F36920 AI654713 F34084 AA618029 AI915139 AW275194 AW514577 D80420 AW149850 Z40953 AI887861 AA927547 AA974344 AI825793 AI635565 AI652157 BE504748 AW295759 F16800 AW839786 F01781 AA909730 AA984010
50	301373 368214_1	AA595235 AW973839 T03040
	323665 54093_1	AW248307 AA313452 AW951927 AA355981 BE566080
	323676 220254_1 302086 23306 1	AI702835 AI758919 AI685405 AI952108 AI299207 AI400767 AW105389 AI952710 AA845312 AI784118 AI537315 X57138 NM_003514 Z98744 BE253911 BE256314 AI095013 AI138475
	323731 226193_1	AA323414 AW664013 AI809377 AI276041 AW296883 AI798340
55	323791 232336_1	AA333068 AA331863 AA331838 AW962531 AA331442
	325040 23854_1	AW286368 AA247632 AK002030 R15304 T08775 AW975664 Al186801 AA730688 AW190918 Al141176 AW513211 Al275071 AA988601 BE042933 BE045713 AW087176
	324430 312113_1	AA464018 AA464079 AA468142
60	323892 477253_1	AA846318 W15478 AL042661 AW131104 BE246610
00	309488 1030131_1 302251 27216_4	AA333340 AW955834 R49755 U33428 .
	302286 22717_6	R58438 AA358612
	323915 110063_1	AL043362 AA350031 AW751972 BE549118
65	324594 330528_1	AAA97090 AI351879 AI350914 AIG45091 AEG67060 DEG67060 DEG67091 AAG14730 E13145 E77345 743604 T30049 UB4103 743611 T36364 NA0667
65	301737 65_1	AIB15981 AF287269 BE260960 BE263991 AA311733 F12145 F07345 Z43604 T29948 H64102 Z43611 T35364 N40667 AI909783 AW751045 AA160594 AIB16064 AI307240 AI951554 AA641031 AA293045 AI942492 AI687077 R78689 H12368 AA894728 AI124930 AI423498 AA777759 AA614585 AW071822 T66288 AI418558 H21480 AI335011 AI051728 AA293436 AW302233 AW188628 N26393 AI076557 AI311022 AW451505 H62593 Z39666 H12315 AI761351 AI364142 F02935
		AW571491 T35366 AI240745 H64151 AA503793 AA831948 AI627686 AI761531 F03591 F09782

_	301763 1688575_1 301780 18597_2	R01279 R05896 T86522 R05735 BE349600 R37388 N79751 R10115 AA702039 AA836147 AA505716 Al049681 Al499239 R54072 Al023394 AA827710 W60285 W500038 Al884786 AA827191 AA810075 AW005088 R70248 Al858560 AW078678 AA631306 H52839 AW085835 Al656182 AA737178 AW136923 AA281028 AA570316 AA722871 AA382737 Al217268 BE242373 R01113
5		AA628946 AI394527 AW402308 AI361110 AI917585 T99639 AA805326 N44577 AI394021 AW403385 T23949 AI497766 T96602 AA834947 AI693908 Z33450 T92127 BE541896 AI933301 BE251540 BE252269 N50968 AI695531 AW575523 AW296889 N83796 N89924 AI361804 AI085251 AA810694 BE303011 AA743784 R13478 AA358771 AA325294 AW964880 BE258953 R54116 AW881039 AW602593
10	301793 239325_1 303049 102592_1 301863 19477_1 301872 27494_4	BE265837 AA340632 T96304 T96075 T72780 H51978 R09868 AW408042 AW407562 BE172835 BE396893 BE269184 AA045741 BE004187 AW751261 W74283 BE263301 AI418863 NM_005194 X52560 AW328683 BE298869 D63161 H84730 T73262
15	301893 6561_1	T80334 BE292758 AK000854 H16996 BE253691 R88508 AA357663 AW955288 AW579550 N98864 AA595201 AI742967 AA602658 AI091433 AA813367 AI983217 AW298007 AI628490 AI708037 AI560654 AI032983 R88509 R38972 AI687783 AI560153 AW874581 N69891 AA993617 H51180 AI269042 AI281358 AW591213 AI017724 AI262859 H16997 R38991 AI804355 AI668988 AI669525 AW023081 AL047848
	310382 653318_1 303181 74060_2 302569 17513_2	A1734009 A1263076 AW272255 A1792912 AA452366 AA351338 BE262590 BE262591 AA074050 AA389867 BE161346 AC004472 BE312721 BE273942 F11928 T65358 BE612432 BE261576 BE179884
20	324893 4670_1	AA324119 AW246199 BE395368 BE261676 BE382334 BE394701 BE304548 T31940 BE398128 BE398019 BE296693 BE379584 BE269460 BE397065 Z42029 BE305028 AK000549 BE536182 BE314372 AW393349 T50987 AA069735 BE386997 AW381699 T51050 W95025 AA477678 AA348306 AW956831 AW062919 AL040397 BE305160 AA315419 AW249929 AA295944 AI635946 AI870259 AI951125 AW028250 AI885184 AW873113 AI077544 AW025091 AI817594 AI401718 AW008245 AI499064 AA599687 AI016890 AA765638 W93340 AA588708 AW519173 R51917 AA676778 AI084871
25	303244 9334_1	AA687684 AI860840 AI811921 AW514730 AA477561 N76845 AA779894 AA776559 AI968953 T16188 T32828 AA991426 AI474472 AI473542 AI828972 AW247906 AA977415 AW591489 AA876008 AW191893 AA074278 AW874099 Z40196 AW083815 F01544 T55984 AI290413 AI972167 AI365049 T36028 AI042568 BE560076 W17119 AA196376 T47999 R54309 AK001269 AI_354613 AA147472 AA490803 BE207628 AW816113 AA085574 AW503392 AA299910 AW750305 BE079539
30		BE079484 BE512838 AK001593 AW968772 AW967440 AW206280 AA251270 AI627886 AA303599 AA147473 BE206616 AA490611 AA715039 AW590868 AW590447 AI864512 AA204731 AA894490 BE001136 AA612785 AA237035 AA149980 Z44257 R12986 AA448446 AI734041 AA422167 BE220551 R66041 R32927 R32942 AA258773 AW388142 R53730 N54624 AW880296 AA253485 AW954441 H98989 AW614348 AI654838 AA779793 AW237213 N66635 A1166812 AA947479 BE158011 AI859480 AW805579 N52010 AA806305 AI628445 AW2770990 AA778165 AA149949 AI650728 AA749108 AA687257 AI261661 AA747442 AA481351 AA206339 AA803407 AW473306 AI688930 AA262281 AA448310 AA748820
35		Al347430 BE465692 R32839 AW510564 AA436408 AA257971 AA253362 AA938330 AA513150 AA976840 AA687117 Al281547 AA046243 R32825 Al631554 AW139818 Al244536 R52946 AW235443 R40183 AA299909 AA811958 Al302918 Z40213 BE158047 BE158060 AA767245 AW748159 AW500735 AA094074
40	303252 149690_3 303273 67758_1 302640 21194_1	AW393348 AW393350 AW386713 AW384705 AA316069 BE274224 AL120803 BE170052 BE170039 AI906340 BE091310 AA491506 AW836675 AW863111 AW973784 AW843642 AA557573 AA578088 AI125161 AA349349 AI372794 BE312586 BE312777 T32148 AW239077 AI905357 Z42685 AW298772 R18578 AA780425 AA325971 AI372793 R10658 AA295021 AW885349 AW3885288 BE271987 AW366519 AA349350 AA233207 R88464 AA434299 R02058 R00019 R54563 Z44886 R20150 AW368328 AW368321 AW802152 W79803 H12809 AA028951 AW367382 AA285247 H46355 AA905620 R54564 H12765 AW950608 AA028952 AA366908 AI085652 R43207 R77854 AI672848 T28547 AA427734 AA572853 AA769934 AI242108 R00020 R02059 R10659
45	303342 189722_1	Al185270 Al041890 NM_000080 X66403 F03854 Al652442 Al766431 AA976913 Al989882 AA471024 Al802727 Al824112 F02169 Al890843 BE250876 BE252859 AL157418 R78326 AW068570 AW247361 AA252638 Al751982 BE260758 BE293073 AW293303
50	302703 7075_1	AB040951 AK002094 AA676593 W44644 N42376 Z45942 AW841844 BE541378 AA358274 AA213391 T88771 NM_015493 AL117489 N89248 N31714 N36273 N31721 AW576263 AA449380 Al366135 AA551576 AW149789 Z17418 AW474331 AA056181 A1753611 AA046428 AA488007 AA300764 N44732 AA377697 AA346752 AA485787 AA894546 AA115295 AA299914 R88096 AA367342 AW884666 W84522 AA466325 Al983849 AA673315 AA673307 Al355170 AA534678 AA969227 A1127202 AW083323 Al338244 AW020877 AA780019 N33426 AW069314 N63079 Al926527 AA115270
55		AW886601 AI357402 AA599312 AI460358 AI926969 AA429402 N33197 AW886733 R88205 N52803 AW021988 AA213392 BE139656 AI142383 AA427844 AA954745 AA233622 AW073382 AA426326 AA493560 AA425133 N24819 A418516 AI51515 AI147373 AI628677 AI214877 AA992123 H71599 AA029095 AA6222262 AW117398 AW275286 AI911337 AA864950 T94173 AI475634 AI701411 AI287696 T94091 AA505748 AI184310 AI350967 AI083596 W74274 AI954381 AI822767 AI368443 AA195578 AW874416 AI005421 AW014339 AA908660 AI350791 AW241382 AI473104 AI275186 AA515528 AA194897 AA782901 AW069414 F20248 AA426011 AI305169 AI832109 AI570082 AW072984 AI492474
60	318446 604736_1 302815 42200_1	AA919076 AL049024 W79889 N42400 AA625435 AW963887 AA233420 AW779971 AW300287 AW152002 AW069505 Al866447 Al298231 Al146920 Al692267 Al872876 BE397032 AL292529 N40373 N34073 AA321112 AW959902 AA258103 AW860213 BE549059 BE296027 BE296657 AA300789 Al971491 AW513665 AA909530 Al951045 AW058103 Al971506 Al061239 AA600054 Al000807 AA969975 AA281492 AW593654 AA321111 AW298633 AL278754 AL863862 AL285506 AA989727 F33114 T16079 AL762625 AL492103
65	302979 36555_1 318540 1018709_2 302928 22118_1	AW770346 AW026768 AI468710 AI499987 AA310412 AA622784 AA642297 AI866427 H11802 T66097 AF042831 R42185 AW939055 T30280 Z43366 R54166 AA938905 AA574056 AA714466 AI805592 AI123431 AA229723 AA620759 AI004450 AW299820 AI949299 AW874308 AA626037 A974112 AA931563 AF073924 AA995769 AI766441 AI367730 AI081342 AA235800 AA235801 AI138970

		AA719797 AA759343 X89673 AA759344 AA312909 X87825 Y10529 AC006271 AA758739 BE501015 AA909905 AF065857
		AC006271 AA970044
	304332 28696_41	AA158883 AA171835 AA187049 AA143546 BE299538 BE614280 BE621705 BE299684 BE619550 BE613099 BE619558 BE514331 BE617716 BE612820 BE615742 BE258739 BE621539 AI434511 BE546696 BE614324 BE378359 BE250106
5		BE250881 BE299592 BE300272 BE616805 BE397385 BE562024 BE271246 BE250556 BE280311 BE561995 BE618755
		BE276126 BE546276 BE311547 BE262155 BE281082 BE513087 BE546891 BE514289 BE397389 BE267442 BE545455
		BE614483 BE293447 BE270710 BE281071 BE267458 BE542095 BE262701 BE513634 BE548116 BE299546 BE619604 BE512885 BE616638 BE266173 BE258933 BE259710 BE268569 BE563861 BE614871 BE537509 BE250108 BE515323
		BE538868 BE250081 BE277706 BE410127 BE619445 BE250753 BE304969 BE616348 BE546876 BE544962 BE410346
10		BE267256 X17206 NM 002952 BE304541 BE619171 BE259655 BE549186 BE314944 BE613101 BE378069 BE621110
		BE542752 BE257029 BE531315 BE619306 BE267328 BE259439 BE297093 BE280651 BE407684 BE250201 BE312819
		BE535432 BE279917 BE312626 BE531118 BE378744 BE275370 BE250195 BE409980 BE274432 BE266637 BE279321 BE622382 BE28232 BE283816 BE378977 BE300145 BE250204 BE547609 BE264377 BE266688 BE259746 BE260829
		BE619517 BE388097 BE264025 BE618945 BE614758 BE312249 BE294359 BE531121 BE622300 BE615109 BE544354
15		BE614998 BE393239 BE297520 BE393221 BE278818 BE279309 BE265476 BE618772 BE615185 BE265144 BE249837
		BE312230 BE407843 BE253884 BE407645 BE615804 BE619058 BE559512 BE383249 BE613497 BE294351 BE295062 BE622385 BE390654 BE535438 BE583186 BE396374 BE270842 BE386110 BE260368 BE250186 BE265875 BE537229
		BE253369 BE256997 BE269482 BE264959 BE279072 AA662160 BE280733 AA858428 BE561308 BE267285 BE561422
		BE563181 BE304614 BE295437 BE619424 BE275863 BE394315 BE408109 BE541866 BE253772 BE618236 BE535261
20		BE296490 BE278212 BE563154 BE257245 BE262274 BE513032 BE378567 BE394152 BE618947 BE269302 BE546516
		BE536792 BE615187 BE261186 BE615367 BE619289 BE261184 T49376 AL031671 BE273400 BE563457 BE545597 BE615169 AA150323 AA158723 AA079033 BE313333 AA160100 BE271115 BE294302 BE273051 BE273048 BE622390
		AAB37947 BE387721 AW973277 AA808731 BE280792 AA160444 BE256723 Al745420 AA643017 BE549441 BE293858
0.5		AW975249 AI620819 AW089494 AI434549 BE305231 AA081262 BE280101 AA522507 AI950880 AA187460 BE386860
25		AW859229 BE170489 BE620149 BE548218 AA316696 AA484426 Al567740 AA160605 AW939805 AA089573 BE300194 BE391331 AW975419 H26808 BE545544 BE615974 AW800241 BE616222 W17343 BE387865 T53897 C03943 BE617637
		BE315130 T52942 T50588 N74693 AA187107 T59919 AW797397 AA206447 AA854619 T57175 Al570296 AW517964
		AA158269 Al282220 W25297 AL580710 BE262453 Al185868 AA526485 Al288051 AL582513 AA100675 AW615567
30		BE395354 Al472725 BE314881 BE621281 N99921 Al282689 Al432725 AW732011 AA872254 BE205807 T59435 Al282712 AA650505 Al004374 AA725260 BE313161 T60173 Al371260 BE385641 AW751812 AA078827 Al491858 Al433622
30		AACSUSUS ANUAS/4 AA/25200 BESISIGT TOUT/5 AIS/1200 BESISSIGT AAV/51612 AAC/5027 AI491030 AI40022 AAC19118 AI002092 AAS96003 AA064604 AI250287 AI304397 AI453213 AA653630 AI524573 AI440306 H48802 AA157843
		AA715629 AW973788 AA932493 AI347563 AA181309 T67880 AA643033 AW467498 AA115904 AA935410 AA483032
		AA084568 W25246 Al567568 AA155732 AA158614 AA888319 AA158568 AA188422 Al309183 AA084817 AA157995 AI859859 AA188008 AI287379 AI540675 AA085212 AW028391 AA173297 BE256792 AA182854 BE378771 BE538571
35		A8079037 BE281597 AA643926 W81011 AA159344 AA320691 AA877597 T57107 AW263819 A1690413 A1619605 A1687579
55		AA970560 Al368942 Al927104 AW419220 Al620051 AA128490 AA120825 AA079520 AA199648 AW188403 BE045224
		AW265533 AA074338 AA102685 AW778399 AA192451 AA182771 AW366812 BE281418 AA211094 AA131073 AA487924
		AW674848 AI568103 AA171934 F30349 AW088785 AA581370 AA205482 AW352296 AW517565 AI376249 AA158884 AI340509 T59965 AA085193 AA071570 AI874045 AA852755 BE045217 AW189428 AA211141 AA652134 AI497729
40		AA994817 AI811459 BE535857 AW769697 AW167892 AW149305 AI864981 AW272126 AW023245 AI439266 AI953196
		AA160912 AI718580 BE537547 AA501448 AA069308 L07393 AA353007 AA079235 AI539140 AA740154 W58341 AA888403
	303701 1155179_1	BE299000 AA196413 BE613327 BE261523 AA866599 AW844713 Al691159 Al079975 AW327479 BE180731 AA984805 AW500732 AW504061
	303759 447287_1	AA774672 AW504164
45	303773 356632_1	AA769074 AA570769 AA808585 AA808682
	303778 174437_1	AW505368 AA218610 F11852 T65345 AA397806 BE003711 AWE00571 AA706092
	303784 414659_1 303845 50211_2	BE297711 AW505574 AA704983 F07942 T08033
	303898 162688_3	BE386286 BE148823 T23215 Al906290 AA299906 BE207197 AW074114 Al760368 Al005358 AW662201 AA188988
50		AI690711 AA775103 AW072931 AI684269 AW129364 AW615634 AI049941 AW874040 AI352633 AA188989 AI287775
	20121 452027_1	AA868774 AA599660 AA780365 AA909233 Al275542
	319590 171338_1	AA210878 AA215684 R11101
EE	305186 17456_1	M13560 AA336951 AA161015 R72814 T69687 R75705 T61319 AA158454 R50579 T56649 Al214156 T70375 R31655 H64997 AW800487 H49110 AA634206 H42384 H21783 Al560152 AA664230 H42302 R48708 AA013277 T61901 T92417
55		AAB75985 T61962 T63055 AA430725 AA458984 AA578746 AI582385 T63000 AI499875 H64998 AA022538 AI384804
		AI865211 AI439714 AI224059 AI249917 T59258 AA477806 AA715834 AA916120 R38304 R35899 R82985 H25524 H82984
		AW516728 T54642 AA079866 H27555 AA455820 T63919 R79450 AH31241 AA937349 AA127213 AA421729 H61196
60		T63894 AA013050 AA079133 W96364 AA487926 AI762796 H26377 AI433386 AI865423 AW371475 R98189 AA643978 AI718204 AW381954 AI862735
00	319638 226485_1	AA323758 R12731 R14082
	320257 163534_1	R17531 AW960899 AA338366 AW673294 BE047729 BE047722 AA330746 AW841797 H05030 Al142105 R12654
	320289 115941_1 304703 33971_42	H07989 AJ239462 H24544 AA078369 R74153 BE512926 BE304794 AA129140 AA052922 AA092258 BE378058 BE615391 BE615218 BE616188 Al214126 H05675
65	204102 00011_45	W56857 Al028525 BE617241 BE531271 AW856227 T56489 AA322005 AW794148 AF170577 BE615738 AA005138 L76930
		L76932 L76933 X95410 AW389462 BE563092 AW997937 AA263158 AI520992 AW947350 AA522535 AW945921 AV653776
		AW884835 AW947338 AI687178 AW945799 AI905627 AW948449 AV653751 AW945924 AA563898 AW945810 AW945832 AW371449 AW945864 AW94847 AW945910 AA643002 AA522680 AA522716 AA578840 AA523279 AA826150 AW945809
		AW405998 AA551809 R23173 AA595545 AW389497 AI933770 AI125053 AI471803 AW795856 AW796937 W30675 H70317
		254
		254

5	321039 26338_2	H88296 T59240 AA397650 H59852 AA938072 AA978010 R35643 T89735 AW361585 AW196153 Al538069 AA604540 Al434259 R49181 T58717 AW062486 AW796966 Al648384 R77733 Al623502 BE171342 BE171303 R35668 AW974883 AW149898 Al500045 Al540710 Al540392 AW009172 AW277199 Al371312 Al500096 Al470297 AW372940 AW844562 AW844560 AW797965 Al691146 X07062 AW799199 H60666 AA837684 AF130734 T25952 Al933771 Al914860 AW391925 AW783843 AW795012 AW386709 AW750987 AW750985 R35765 AW844942 AW750986 H64920 R34651 X36703 BE018103 BE018083 BE29253 AW247083 BE207643 BE514793 BE183238 AA376427 AW273850 AW043786 BE439973 ALD45428 Al889050 AA026496 Al422924 Al884485 W96068 AA020872 F37119 AA714378 AA021107 AA011141 Al554001 Al375841 Al469097 AA335219 AW967315 Al692177 AA410448 Al568858 AA582647 AA026419 AA281639 AW515248 AW0077777 AA010840 AW188439 Al805423 Al148210 BE301590 AA744414 AA745392 AW167423 AÁ822659 AW000878 Al432387 AA760930 BE047189 AA021605 AV658045 Al093347 AA588594 H63143 AA639556 Al308976 AA379270
		AA633407 A1874329 A1206484 A1493895 A1694103 A1249682 AA973765 AA872445 A1125446 AA287272 AW069761 AA682569 AW009712 BE542774 R50167 BE301574 AA991202 AA502006 A1219819 AW074373 AA617996 A1521242 F25241 AW615812 R16774 AA335218 AW673800 H26778 A1468557 A1886986 A1560769 A1460075 AA502968 AA503273 AA610680 AA287274 AA554020 AA284889 AA916636 AW469457 AW273250 AW673708 AW512948 AL041071 A1446042 AA903535
15	306051 19085_3	BE172441 Al282411 AW265021 AA810799 Al559865 AA729332 AW004611 AW129451 AA659019 BE208239 AA810825 H03511 BE383995 R16474 AA281701 AW009244 AA287424 AA558139 AW384081 F08147 AW408359 AW949429 R23785 AW247442 AA305512 T29095 AA905130 BE246361 BE244981 AA220199 BE504058 X80878 AA533727 AA608601 AW005964 AB11627 Al367037 Al277985 AL493719 Al277848 AA54982 AW247288 Al216345 AI041295 AI887378 AA781241 AI674270 AW628959 AI383083 BE504391 AA729421 AA552188 AA373387 AW880360
20	321163 171122_1 321235 1102181_1 320603 4297_1	AW875262 AW875369 AW581540 AW875358 AW581568 R23735 AW134768 W03912 AW971410 AA506385 AA209530 H73495 H48629 W56149 H56752 AW340384 N49521 AA853680 AK001668 BE386425 BE563549 BE296124 BE298950 R51419 U46295 BE147292 AA360056 R48018 AW845348
25	000014 407704 4	N47383 AIB17280 AI671902 AA988104 AA479464 N56996 AI192374 AI927558 AA659888 AI799903 AA548397 AI161167 AI656333 AI418829 AW592671 BE327906 AW513346 AI888579 AW469410 AW512809 D25682 AA576079 AA479354 T30342 R51307 T16044 H28063 AW079357 AI339477 R47914 AI986068 AI870065 AI888489 AI521099 AI582732 AA995540 AW957299 AA352608 AA676752 AA610510 AA358874 AI865724 AA853679 AI699265 AW188789 N47380 AA233715
30	320641 185591_1 320651 58648_1 321325 28266_1	BE258194 R55421 R55643 H42362 AA243884 AW886407 AA489268 R57015 R58094 BE077459 BE077423 BE546995 AW849216 T69383 AW938111 H60337 BE221073 AB033100 AA347038 BE260325 AW961669 AL047207 AA347037 AI766894 AA601045 AI559897 AW139033 AW274622
35	305704 4647591 322011 23158_1 306407	AW172884 AW089070 AA804340 AW798925 AA825266 AL137354 AL043375 AA971985
33	306454 306516 306518 306526	AA977992 AA989542 AA989598 AA989713
40	306534 306590 306591 306631 306654	AA991487 Al000246 Al000248 Al001149 Al003654
45	306786 306799 308023 308070 308099	AI041589 AI051696 AI452732 AI470948 AI475914
50	306805 306814 306873 306911 306982	AI055966 AI066577 AI086929 AI095365 AI127883
55	308238 308258 308289 308311 308332	AI559492 AI665612 AI571211 AIS81855 AI591235
60	308511 308601 308612 308636 308814	AI687580 AI719930 AI735634 AI744063 AI819263
65	308851 308981 310570 1071946_1 305022 305060 305070	AI829820 AI873242 AI318327 AI318328 AI318495 AA627416 AA635771 AA639783

	305079		AA641329
	305134		AA653159
	303977		AW512978
_	305216		AA669056
5	305263		AA679467
	305266		AA679772
	305396		AA721052
•	305403		AA723748
10	305488		AA749000
10	305549		-AA773530
	305601		AA780975
	305610		AA782319 ·
	305621		AA789095
	305710		AA826544
15	305724		AA827608
IJ			
	305744		AA831819
	305752		AA835278
	307018		Al140639
	307055		Al148477
20	307058		Al148709
	305801		AA845997
	305830		AA857665
	305836		AA858043
	305852		AA862455
25	305858		AA863103
	305866		AA864533
	305867		AA864572
	307126		Al184951
	305903		AA873085
30			MADISUOS
3 0	328803		
	328809		
	305949		
	328829	c_7_hs	
	330021	c16_p2	
35	330024		
	330028		
	330049		
		AA889197	
40	330095		
40	330096	c19_p2	
	307205		Al192479
	307427		Al243437
	307491		Al268539
	307581		Al284415
45			Al285535
43	307588	Ol bo 000050	
	337672		LINK_EM:ACOO
•		CH22_6030FG	
	337738	CH22_6083FG	LINK_EM:AC00
	307692		Al318342
50	307806		Al351739
	309107		Al925823
	309230		AI970747
		CH22_8300FG_	LINK_BA354I1
	339338	CH22_0300FG_	
E E	309257		Al984183
55	309366		AW072970
	309422		AW087175
	325207	c10_hs	
	325257		
	309646	0110.10	AW194694
60	309651		AW195850
50		att ba	A11 100000
		c11_hs	4110 10010
	309924		AW340812
		CH22_1308FG_3	
	334040	CH22_1318FG_3	322_8_LINK_EM
65	334083	CH22_1361FG_3	327 38 LINK E
	332810	CH22_26FG_7_1	12 LINK C65E1
		32813_1	AF062275 L03830
		33029_1	M74299 M74302 M7430
	302777		AJ230640 AJ230648
	302111	330U3_I	M200040 M200040

	304094		H11295
	302824	35372_1	U21260 U21258
	302996	41196_1	AF054663 AF124197 R70292
_	325870	c16_hs	
5	304240		AA009802
	304410		AA284508
	304443		AA399444
	304475		AA428B79
	304522		AA465405
10	304678		AA548556
	304705		AA564064
	306004		AA889992
	306008		AA894390
	306013		AA896990
15	306082		AA908508
		CH22_3567FG_7	
•	306094		AA908877
	304823		AA584837
00	304872		AA595289
20	304918		AA602697
	304955		AA613504
	306249		AA933840
	306286		AA936892
25	306295		AA937331
25	306317	•	AA947909
	306347		AA981144
	306365		AA962086 AA970548
	306398	antes DODGGG	AA970548 D28383
30		entrez_D28383	NM_001055 AA332948 U26309 U09031 L19955 L10819 Al366043 X84654 U71086 AV654451 AJ007418 AA053625
20	330463	460_2	RE168856 AA376730 H12694 AA810348 AA621972 AI818950 AV645367 AI818986 AA910802 AW512449 H67893 AI310497
			AI304330 AI339217 AW193588 AW438688 AI818970 AW316799 AA906527 AA777570 N47673 AI336428 AW945133
			AIO38606 R29692 AW194197 AI304748 H12639 AA053178 AA493213 AA676958 AA113154 AI313469 AI368239 R93183
			W24532 U52852 U54701 AL046864 AA365795
35	330535	13748	U11872
<i></i>		10404_2	U24488 NM_007116
		14.47_	

TABLE 13B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 13. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5

Pkey: Ref: Strand: Nt_posit	S Ir	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.				
Pkey	Ref	Strand	Nt_position			
332791	Dunham, L et.al.	Plus	72720-73315			
332792	Dunham, I. et.al.	Plus	73381-73768			
332810	Dunham, I. et.al.	Plus	304296-304384			
	Dunham, I. et.al.	Plus	2414825-2414932			
332972	Dunham, I. et al.	Plus	2572152-2572236			
333133	Dunham, I. et.al.	Plus	3360058-3360195			
	Dunham, I. et.al.	Plus	3615887-3616019			
	Dunham, I. et.al.	Plus	3616832-3617003			
333227	Dunham, I. et.al.	Plus	3992866-3992968			
	Dunham, I. et.al.	Plus	3995507-3996507			
	Dunham, I. et al.	Plus	4581537-4581947			
333304	Dunham, I. et al.	Plus	4629943-4630242			
333305	Dunham, I. et al.	Plus	4630388-4630645			
333365	Dunham, I. et.al.	Plus	4786883-4787283			
333383	Dunham, I. et.al.	Plus	4907179-4907277			
333391	Dunham, I. et.al.	Plus	4918697-4916780			
333392	Dunham, I. et.al.	Plus	4918294-4918433			
333397	Dunham, I. et.al.	Plus	4922466-4922635			
333403	Dunham, I. et.al.	Plus	4925140-4925256			
333413	Dunham, I. et al.	Plus	4943824-4943974			
	Dunham, I. et.al.	Pius	5097827-5097885			
	Dunham, I. et.al.	Plus	5272855-5272939			
333481	Dunham, I. et.al.	Plus	5286358-5286505			
333483	Dunham, I. et.al.	Plus	5297945-5298105			
333516	Dunham, I. et.al.	Plus	5570204-5570390			
333517	Dunham, I. et.al.	Plus	5570729-5570925			
	Dunham, I. et.al.	Plus	5571761-5572025			
	Dunham, I. et.al.	Plus	5622622-5622684			
	Dunham, I. et.al.	Plus	5954226-5954473			
	Dunham, I. et.al.	Plus	6026896-6027189			
	Dunham, I. et al.	Plus	6246834-6247314			
	Dunham, I. et.al.	Plus	6255445-6255779			
	Dunham, Letal.	Plus	6308990-6309450			
	Dunham, I. et.al.	Plus	6323103-6323348			
	Dunham, i. et.al.	Plus	6355629-6355925			
	Dunham, I. et.al.	Plus	6360075-6360442			
	Dunham, I. et.al.	Plus	6504431-6504690			
	Dunham, I. et.al.	Plus	6549563-6549697			
	Dunham, I. et al.	Plus	6550643-6550748			
	Dunham, I. et.al.	Plus	6551227-6551389			
	Dunham, I. et.al.	Plus	6595146-6595244			
	Dunham, I. et al.	Plus	6614174-6614467			
	Dunham, I. et al.	Plus	6663683-6663973			
	Dunham, I. et.al.	Plus	6674968-6875134 6709760-6700190			
	Dunham, I. et al.	Plus	6708760-6709139 6772502-6772770			
	Dunham, I. et al.	Plus	6772502-6772779			
	Dunham, I. et al.	Plus	6811130-6811392			
	Dunham, I. et al.	Plus	6816731-6816993 6922097-6922406			
	Dunham, I. et.al.	Plus	6822087-6822406 6821360-6821445			
	Dunham, I. et.al. Dunham, I. et.al.	Plus Plus	6831369-6831445 6835282-6835474			

	000000	Domboo Latel	Disease	6836179-6836248
	333659	Dunham, I. et.al.	Plus	
	333684	Dunham, I. et.al.	Plus	7169561-7169742 7177117-7177302
	333686	Dunham, I. et.al.	Plus	7203859-7203934
5	333697	Dunham, I. et.al.	Plus	7205279-7205383
5	333698	Dunham, I. et.al.	Plus	
	333699	Dunham, I. et.al.	Plus	7206101-7206175 7215559-7215663
	333703 333709	Dunham, I. et.al.	Plus Plus	7219339-7219003
	333747	Dunham, I. et.al. Dunham, I. et.al.	Pius	7605884-7606206
10	333774		Plus	7716509-7716636
10	333775	Dunham, I. et.al. Dunham, I. et.al.	Plus	7729983-7730149
	333806	Dunham, I. et.al.	Plus	7877475-7877666
	333843	Dunham, I. et.al.	Plus	7978762-7978887
	333854	Dunham, I. et.al.	Plus	8029446-8029524
15	333873	Dunham, I. et.al.	Plus	8133266-8133429
	333880	Dunham, I. et.al.	Plus	8151923-8152133
	333885	Dunham, I. et.al.	Plus	8154352-8154437
	333918	Dunham, I. et.al.	Plus	8307124-8307215
	333947	Dunham, I. et.al.	Plus	8579888-8579966
20	333961	Dunham, I. et.al.	Plus	8617999-8618104
	333981	Dunham, I. et.al.	Plus	8782374-8782643
	333991	Dunham, I. et al.	Plus	8837419-8837551
	333994	Dunham, I. et.al.	Plus	8852749-8852894
25	334030	Dunham, I. et.al.	Plus	9288463-9288782
43	334083	Dunham, I. et al.	Plus Plus	9837016-9837081 10279365-10279531
	334111 334135	Dunham, I. et.al. Dunham, I. et.al.	Plus	10457085-10457183
	334218	Dunham, I. et.al.	Plus	12680289-12680378
	334249	Dunham, I. et.al.	Plus	13190430-13190574
30	334262	Dunham, I. et.al.	Plus	13231452-13231581
-	334264	Dunham, I. et.al.	Plus	13234447-13234544
	334327	Dunham, I. et.al.	Plus	13577413-13577496
	334328	Dunham, I. et.al.	Plus	13589868-13589936
	334340	Dunham, I. et.al.	Plus	13642407-13642522
35	334454	Dunham, I. et.al.	Plus	14326506-14326738
	334504	Dunham, I. et.al.	Plus	14510206-14510398
	334508	Dunham, I. et.al.	Plus	14514938-14515122
	334512	Dunham, I. et.al.	Plus	14545933-14546366
40	334582	Dunham, I. et.al.	Plus	15026255-15026371
40	334659	Dunham, I. et.al.	Plus Plus	15460624-15460726 15796816-15796987
	334721 334723	Dunham, I. et.al. Dunham, I. et.al.	Phus	15805317-15805399
	334730	Dunham, I. et.al.	Pius	15967830-15967934
	334774	Dunham, I. et.al.	Pius	16251857-16252178
45	334778	Dunham, I. et.al.	Plus	16276180-16276395
	334851	Dunham, I. et.al.	Plus	17820110-17820810
	334885	Dunham, i. et.al.	Plus	19233667-19233787
	334902	Dunham, I. et.al.	Plus	19317083-19317195
	334905	Dunham, I. et.al.	Plus	19322553-19322680
50	334906	Dunham, L et.al.	Plus	19323493-19323590
	334910	Dunham, i. et.al.	Plus	19398155-19398684
	335018	Dunham, I. et.al.	Plus	20688288-20688415
	335025 335033	Dunham, I. et.al.	Plus Plus	20743941-20744050 20753188-20753314
55	335044	Dunham, I. et.al. Dunham, I. et.al.	Plus	20842088-20842682
JJ	335142		Plus	21465105-21465186
	335157	Dunham, L et.al.	Plus	21543302-21544341
	335160		Plus	21573388-21573497
	335174		Plus	21631301-21631447
60	335188	Dunham, I. et.al.	Plus	21669118-21669328
	335190		Plus	21680807-21680876
	335191	Dunham, I. et.al.	Plus	21681110-21681183
	335193		Plus	21692208-21692362
CF	335204		Plus	21750636-21750726
65	335222		Plus	21885542-21885608
	335226 335227		Pius Pius	21890838-21890930 21892145-21892289
	335309		Plus	22500158-22500276
	335310		Plus	22500714-22500831

PCT/US01/32045

	335311 Dunham, I. et.al.	Plus	22501602-22501676
	335355 Dunham, I. et.al.	Plus	22779222-22779516
	335362 Dunham, I. et.al.	Plus	22809167-22809461
_	335368 Dunham, I. et.al.	Plus	22843040-22843184
5	335384 Dunham, I. et.al.	Plus	22918150-22918263
	335385 Dunham, I. et.al.	Plus	22919072-22919339
	335436 Dunham, I. et.al. 335440 Dunham, I. et.al.	Plus Plus	23427793-23427923 23458702-23459017
	335440 Dunham, I. et al. 335441 Dunham, I. et al.	Plus	23460632-23460724
10	335450 Dunham, I. et.al.	Plus	23480190-23480270
	335453 Dunham, I. et.al.	Plus	23483333-23483459
	335458 Dunham, I. et.al.	Plus	23490034-23490143
	335484 Dunham, I. et.al.	Plus	23500331-23500496
15	335496 Dunham, I. et al.	Plus	24164386-24164545
15	335497 Dunham, I. et.al.	Plus Plus	24167666-24167869 24172082-24172161
	335498 Dunham, I. et.al. 335499 Dunham, I. et.al.	Plus	24176698-24176869
	335500 Dunham, I. et.al.	Plus	24178236-24178326
	335507 Dunham, I. et.al.	Plus	24219973-24220039
20	335510 Dunham, I. et.al.	Plus	24222975-24223118
	335513 Dunham, Letal.	Plus	24224272-24224496
	335627 Dunham, I. et.al.	Plus	25150005-25150061
	335651 Dunham, I. et.al.	Plus	25317560-25317696 25333211-25333369
25	335655 Dunham, I. et.al.	Plus Plus	25333601-25333751
23	335656 Dunham, I. et.al. 335658 Dunham, I. et.al.	Plus	25336315-25336406
	335663 Dunham, I. et.al.	Plus	25342680-25342802
	335665 Dunham, I. et.al.	Plus	25344096-25344287
	335667 Dunham, I. et.al.	Plus	25345735-25345856
30	335668 Dunham, I. et.al.	Plus	25346313-25346447
	335689 Dunham, I. et al.	Plus ·	25454350-25454604 25455442-25455625
	335690 Dunham, I. et al. 335715 Dunham, I. et al.	Plus Plus	25565941-25566052
	335719 Dunham, I. et.al.	Plus	25593936-25594101
35	335734 Dunham, I. et.al.	Plus	25688723-25688869
	335744 Dunham, I. et.al.	Plus	25716483-25716615
	335809 Dunham, I. et.al.	Plus	26310772-26310909
	335819 Dunham, I. et.al.	Plus	26356341-26356470
40	335822 Dunham, I. et.al.	Plus Plus	26364087-26364196 26820760-26820943
40	335872 Dunham, I. et.al. 335885 Dunham, I. et.al.	Plus	26933436-26933534
	335968 Dunham, I. et.al.	Plus	27743843-27744029
	335971 Dunham, I. et.al.	Plus	27752808-27753017
	335975 Dunham, I. et.al.	Plus	27801321-27801391
45	335976 Dunham, I. et.al.	Plus	27809041-27809187
	335989 Dunham, I. et.al.	Plus Plus	27983788-27983860 27988532-27988608
	335990 Dunham, I. et.al. 336010 Dunham, I. et.al.	Pius	28570239-28570330
	336093 Dunham, I. et.al.	Plus	29556922-29557002
50	336126 Dunham, Letal	Plus	30057891-30058105
	336129 Dunham, Letal.		30082259-30062348
	336187 Dunham, I. et.al.		30433494-30433585
	336188 Dunham, I. et.al. 336225 Dunham, I. et.al.		30434870-30435004 30833614-30833788
55	336225 Dunham, I. et.al. 336371 Dunham, I. et.al.		33968108-33968204
23	336373 Dunham, I. et al.		33976308-33976504
	336377 Dunham, I. et.al.	Plus	33994489-33994599
	336380 Dunham, I. et.al.		33995323-33995434
60	336383 Dunham, I. et al.		34005784-34005984 34007429-34007559
60	336384 Dunham, I. et.al. 336385 Dunham, I. et.al.		34007879-34007559
	336386 Dunham, I. et al.		34012965-34013115
	336441 Dunham, I. et.al.	_ :	34187606-34187663
	336444 Dunham, I. et.al.	. Plus	34190585-34190718
65	336484 Dunham, I. et al.	. Plus	34237425-34237505
	336497 Dunham, I. et.al		34267190-34267245
	338499 Dunham, Letal		34267504-34267572 34271306-34271372
	336503 Dunham, I. et.al 336548 Dunham, I. et.al		34353881-34354826
	20040 Dalingin, i. crai		94000001 \$10010E0

WO 02/30268

	336552 Dunham	. I. et.al.	Plus	34356420-34356527
	336553 Dunham		Plus	34356683-34356753
	336567 Dunham	, I. etal.	Plus	34428228-34428395
_	336568 Dunham	, I. etai.	Plus	34428521-34428637
5	336659 Dunham	*	Plus	1896402-1896478
	336715 Dunham		Plus	3110198-3110314
	336803 Dunham	*	Pius Pius	6106904-6106990 6126661-6126786
	336805 Dunham 336850 Dunham	• .	Plus	7745284-7745355
10	336857 Dunham		Plus	8130457-8130612
	336911 Dunham		Plus	11035818-11035984
	336949 Dunham		Plus	12818687-12818891
	336950 Dunham	•	Plus	12875843-12875912
15	336958 Dunham		Plus Plus	13203550-13203973 15096270-15096324
15	336993 Dunham 337076 Dunham	, i. etal	Plus	19338177-19338679
		, I. etal.	Plus	21166580-21166650
	337123 Dunham		Plus	22052874-22052942
	337151 Dunham	, I. et.al.	Plus	23106433-23106510
20		ı, I. et.al.	Plus	24225887-24225954
		ı, I. etal.	Plus	27280182-27280313
		ı, I. et.al. ı, I. et.al.	Plus Plus	30395182-30395285 30804624-30804780
		i, i. etal	Plus	31333399-31333580
25		, i. etal	Phus	31585902-31586067
		, L et.al.	Plus	31953012-31953205
		ı, I. et.al.	Plus	32014049-32014131
		i, I. et.al.	Plus	32803968-32804028
30		ı, l. etal ı. l. etal	Plus Plus	33219714-33219779 33227865-33227946
30		ı, i. etal	Plus	33237292-33237427
		, I. et.al.	Plus	33318571-33318644
		ı, I. et.al.	Plus	33963188-33963979
35		n, L etal	Plus	34187269-34187366 19497-19600
33		n, l. etal n, l. etal	Plus Plus	945236-945452
		n, i. etal.	Plus	1482883-1483016
	337672 Dunhan	n, I. et.al.	Plus	3331236-3331313
40		n, I. et al.	Plus	3575975-3576153
40		n, l. etal. n, l. etal.	Plus Plus	3865738-3865814 6286377-6286470
		n, l. et.al.	Plus	6343033-6343172
		n, I. etal.	Plus	6534661-6534782
		n, I. et.al.	Pius	6589383-6589450
45		n, I. et.al.	Plus	6831483-6831620
		n, L etal	Plus	7445532-7445633 7601363-7601520
		n, I. etal. n, I. etal.	Plus Plus	7863131-7863310
		n, i. etal.	Plus	12771102-12771268
50		n, I. et.al.	Plus	12774072-12774223
	338238 Dunhar	n, I. etal.	Plus	14661936-14662015
		n, i. etal.	Plus	16167622-16167962
		n, l. etal.	Plus	16463958-16464539 17089711-17089988
55	338316 Dunnar 338323 Dunhar	n, Letal. n Letal	Plus Plus	17154655-17154792
55	•••••	n, I. etal.		17155309-17155574
		n, I. et.al.		18611213-18611407
		n, I. etal.		18953492-18953581
<i>5</i> 0		n, I. et.al.		19292807-19292916
60	•======================================	n, I. etal. n, I. etal.		19345573-19345660 20233372-20233488
		n, I. etal.		20942659-20942873
		n, I. et.al.		21142605-21143049
		n, I. et.al.	Plus	21253847-21253974
65		n, I. et.al.		21379420-21379655
		n, l. etal		21636361-21636509 23540239-23540334
		n, I. et.al. n, I. et.al.		23711167-23711241
		n, i. etal m, i. etal		24219427-24219509

	338660	Dunham, I. et.al.	Plus	24387122-24387266
	338704	Dunham, I. et.al.	Plus	25230432-25230548
	338847	Dunham, I. et al.	Plus	27995337-27995420
_	338887	Dunham, I. et.al.	Plus	28465244-28465384
5	338895	Dunham, I. et.al.	Plus	28598893-28599135
	338915	Dunham, L et al.	Plus	28824881-28824977
	338925	Dunham, I. et.al.	Plus	28883892-28884036
	338936	Dunham, I. et.al.	Plus	29148022-29148160
10	338952	Dunham, I. et.al.	Plus	29418831-29418968
10	338980	Dunham, I. et.al.	Plus	29896789-29896874
	338981	Dunham, I. et.al.	Plus	29897917-29898008 30007287-30007415
	338988	Dunham, I. et al.	Plus	30348477-30348598
	339009 339017	Dunham, I. et.al. Dunham, I. et.al.	Pius Pius	30420896-30421090
15	339045	Dunham, I. etal.	Plus	30744286-30744356
IJ	339046	Dunham, I. et.al.	Plus	30746269-30746420
	339059	Dunham, I. et.al.	Plus	30814655-30814801
	339067	Dunham, I. et.al.	Plus	30869347-30869412
	339069	Dunham, I. et.al.	Plus	30880975-30881070
20	339078	Dunham, I. et.al.	Plus	30914310-30914423
	339084	Dunham, I. et.al.	Plus	30944556-30944803
	339101	Dunham, I. et.al.	Plus	31158047-31158123
	339102	Dunham, L et.al.	Plus	31169321-31169563
	339103	Dunham, I. et.al.	Plus	31170343-31170454
25	339115	Dunham, L et.al.	Plus	31459869-31459927
	339157	Dunham, I. et.al.	Plus	32131701-3213183
	339166	Dunham, I. et.al.	Plus	32210902-32211008
	339167	Dunham, I. et.al.	Plus	32213567-32213730
20	339288	Dunham, I. et.al.	Plus	33169611-33169691
30	339289	Dunham, I. et.al.	Plus	33186756-33186903
	339291	Dunham, I. et.al.	Plus	33205057-33205247 34189461-34189620
	339407	Dunham, I. et.al.	Plus Minus	1391482-1391218
	332865	Dunham, I. et.al.	Minus	1563520-1563184
35	332881 332930	Dunham, I. et.al. Dunham, I. et.al.	Minus	2022565-2022497
<i>J J</i>	332931	Dunham, L et.al.	Minus	2023651-2023562
	332984	Dunham, L. et.al.	Minus	2632606-2632457
	332986	Dunham, I. et.al.	Minus	2635398-2635206
	332997	Dunham, I. et.al.	Minus	2710509-2710375
40	333051	Dunham, I. et.al.	Minus	2991973-2991840
	333061	Dunham, I. et.al.	Minus	3029631-3029527
	333064	Dunham, I. et.al.	Minus	3030722-3030623
	333096	Dunham, I. et.al.	Minus	3184234-3184118
	333099	Dunham, L et al.	Minus	3206796-3206674
45	333106	Dunham, L et.al.	Minus	3230744-3230547
	333160		Minus	3654893-3654678
	333163		Minus	3665124-3664962
	333165	Dunham, I. et.al.	Minus	3674052-3673905
50	333166	Dunham, I. et.al.	Minus Minus	3894684-3694567 3733394-3733299
30	333170		Minus	3764284-3764210
	333174 333188		Minus	3826990-3826863
	333214		Minus	3966559-3966437
	333232		Minus	4001551-4001365
55	333237		Minus	4003326-4003219
-	333239		Minus	4095861-4094462
	333255		Minus	4297883-4297716
	333259		Minus	4306769-4306639
	333274	Dunham, I. et.al.	Minus	4389146-4388954
60	333290	Dunham, I. et.al.	Minus	4530734-4530554
	333295		Minus	4549290-4549198
	333296		Minus	4550766-4550644
	333310		Minus	4637315-4637232
CF	333311		Minus	4637933-4637844
65	333312		Minus	4638794-4638635
	333313			4639397-4639277 E40E090-E40E976
	333315			5405980-5405876 4642638-4642564
	333318 333321			4649080-4648934
	اعتنتندا	Pullimity to Ocidio	**********	

	333327	Dunham, I. et.al.	Minus	4657947-4657828
	333335	Dunham, I. et.al.	Minus	4672656-4872564
	333337	Dunham, i. et.al.	Minus	4677930-4677841
	333454	Dunham, i. etal.	Minus	5137007-5136880
5	333458	Dunham, I. et.al.	Minus	5143942-5143806
•	333459	Dunham, I. et.al.	Minus	5144548-5144344
	333470	Dunham, I. et al.	Minus	5223319-5223088
	333493	Dunham, I. et.al.	Minus	4637315-4637232
	333496	Dunham, i. et.al.	Minus	5404643-5404523
10	333498	Dunham, I. et.al.	Minus	5405980-5405876
	333510	Dunham, I. et.al.	Minus	5557628-5557469
	333546	Dunham, I. et.al.	Minus	5886643-5886442
	333561	Dunham, I. et al.	Minus	5903659-5903590
	333738	Dunham, I. et.al.	Minus	7552160-7552084
15	333780	Dunham, I. et.al.	Minus	7750387-7750277
	333783	Dunham, I. et.al.	Minus	7751850-7751777
	333818	Dunham, I. et.al.	Minus	7911959-7911762
	333894	Dunham, I. et.al.	Minus	8188855-8188709
20	333897	Dunham, I. et.al.	Minus	8194390-8194284
20	333900	Dunham, i. et al.	Minus	8200268-8200122
	333909	Dunham, Letal.	Minus	8229639-8229477 8512805-8512564
	333936 333944	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	8557051-8556936
	334040	Dunham, Letal	Minus	9342995-9342934
25	334154	Dunham, I. et.al.	Minus	10570714-10570572
23	334178	Dunham, I. et.al.	Minus	11755052-11754971
	334188	Dunham, I. et.al.	Minus	11925963-11925834
	334273	Dunham, I. et.al.	Minus	13265608-13265522
	334282	Dunham, I. et.al.	Minus	13285293-13285178
30	334285	Dunham, L et al.	Minus	13289990-13289793
	334286	Dunham, I. et.al.	Minus	13291759-13291569
	334303	Dunham, L et.al.	Minus	13454331-13454217
	334305	Dunham, I. et.al.	Minus	13456310-13456209
~-	334306	Dunham, I. et.al.	Minus	13461157-13461049
35	334320	Dunham, I. et.al.	Minus	13496857-13496717
	334352	Dunham, I. et al.	Minus	13675908-13675828
	334353	Dunham, I. et.al.	Minus	13683722-13683596
	334359	Dunham, I. et al.	Minus	13728664-13728534
40	334363	Dunham, I. et.al.	Minus	13740004-13739812
40	334365	Dunham, I. et.al.	Minus	13742078-13741971 14186289-14186163
	334399 334409	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	14195181-14195075
	334414	Dunham, I. et.al.	Minus	14234033-14233932
	334470	Dunham, I. et.al.	Minus	14389581-14389442
45	334483	Dunham, I. et.al.	Minus	14428355-14428281
	334489	Dunham, I. et.al.	Minus	14455428-14454288
	334498	Dunham, I. et.al.	Minus	14483789-14483700
	334501	Dunham, I. et.al.	Minus	14487509-14487356
	334502	Dunham, L. et.al.	Minus	14488605-14488526
50	334543	Dunham, I. et.al.	Minus	14834496-14834116
	334622	Dunham, I. et.al.	Minus	15191678-15191609
	334650	Dunham, I. et.al.	Minus	15371251-15371178
	334680	Dunham, I. et.al.	Minus	15520047-15519887
55	334745	Dunham, I. et.al.	Minus	16049960-16049653
23	334756		Minus	16128678-16128528 16132358-16132233
	334758		Minus Minus	16138424-16138319
	334761 334763	Dunham, I. et.al. Dunham, I. et.al.	Minus	16148136-16148077
	334784		Minus	16294548-16294360
60	334790		Minus	16307576-16307509
55	334783		Minus	16330748-16330681
	334802		Minus	16413158-16413026
	334820		Minus	16764338-16764249
	334824		Minus	16857777-16857674
65	334832		Minus	17173957-17173760
	334842		Minus	17464352-17464181
	334844	Dunham, I. et al.	Minus	17503891-17503768
	334857			18488368-18488242
	334927	Dunham, I. et.al.	Minus	19988711-19987853

	334939	Dunham, I. et.al.	Minus	20131162-20131054
	334951	Dunham, I. et.al.	Minus	20147708-20147502
	334969	Dunham, I. et.al.	Minus	20188176-20188020
	334972	Dunham, I. et.al.	Minus	20294734-20294611
5	335050	Dunham, I. et.al.	Minus	20884109-20883951
,				21059529-21059458
	335078	Dunham, I. et al.	Minus	
	335102	Dunham, I. et al.	Minus	21313841-21313598
	335105	Dunham, I. et.al.	Minus	21320563-21320440
	335110	Dunham, I. et.al.	Minus	21334136-21333811
10	335111	Dunham, I. et.al.	Minus	21335946-21335809
	335115	Dunham, I. et.al.	Minus	21388250-21388146
	335116	Dunham, I. et.al.	Minus	21388573-21388414
	335185	Dunham, I. et.al.	Minus	21651593-21651522
	335186	Dunham, I. et.al.	Minus	21656436-21656338
15		Dunham, I. et.al.		21899517-21898678
IJ	335230		Minus	
	335236	Dunham, I. et.al.	Minus	21915016-21914870
	335243	Dunham, I. et.al.	Minus	21933519-21933365
	335249	Dunham, I. et.al.	Minus	21950851-21950669
	335258	Dunham, I. et.al.	Minus	22043431-22043262
20	335261	Dunham, I. et.al.	Minus	22063937-22063772
	335276	Dunham, I. et.al.	Minus	22154036-22153937
	335279	Dunham, I. et.al.	Minus	22168834-22168638
	335330	Dunham, I. et.al.	Minus	22556589-22558422
			Minus	22556823-22556708
25	335331	Dunham, I. et.al.		
25	335334	Dunham, I. et al.	Minus	22560390-22560136
	335346	Dunham, I. et.al.	Minus	22641097-22640918
	335349	Dunham, I. et.al.	Minus	22661861-22661271
	335611	Dunham, I. et.al.	Minus	25070825-25070706
	335612	Dunham, I. et.al.	Minus	25072328-25072142
30	335671	Dunham, I. et al.	Minus	25358629-25358533
	335676	Dunham, Letal.	Minus	25395274-25395152
	335680	Dunham, I. et.al.	Minus	25402437-25402361
	335750	Dunham, I. et.al.	Minus	25732501-25731972
	335752		Minus	25757026-25756890
35		Dunham, I. et.al.		
22	335755	Dunham, I. et.al.	Minus	25763806-25763747
	335767	Dunham, I. et.al.	Minus	25819547-25819218
	335774	Dunham, I. et.al.	Minus	- 25883733-25883572
	335777	Dunham, I. et.al.	Minus	25885770-25885599
	335778	Dunham, I. et.al.	Minus	25886469-25886334
40	335797	Dunham, L et.al.	Minus	25958182-25958030
	335800	Dunham, Letal.	Minus	25985373-25985280
	335818	Dunham, I. et.al.	Minus	26323886-26323744
	335834	Dunham, I. et.al.	Minus	26391707-26391530
	335840	Dunham, I. et.al.	Minus	26420596-26420538
45	335844	Dunham, I. et.al.	Minus	26433427-26433344
73				26436727-26436621
	335848	Dunham, I. et.al.	Minus	
	335856	Dunham, I. et.al.	Minus	26662452-26662346
	335887	Dunham, I. et.al.	Minus	26939225-26938782
	335888	Dunham, I. et.al.	Minus	26943037-26942820
50	335889	Dunham, I. et.al.	Minus	26946988-26946901
	335890	Dunham, I. et.al.	Minus	26949087-26948665
	335893	Dunham, I. et.al.	Minus	26973898-26973747
	335895	Dunham, I. et.al.	Minus	26975307-26975239
	335896	Dunham, I. et.al.	Minus	26977639-26977558
55		Dunham, I. et.al.	Minus	26980354-26980238
55		Dunham, I. et.al.	Minus	27013352-27013273
				27446610-27446378
	335943		Minus	
		Dunham, I. et al.	Minus	27653729-27653635
CO	335959		Minus	27682313-27682145
60	335962		Minus	27704276-27704144
	336040		Minus	29036458-29036300
	336044	Dunham, I. et.al.	Minus	29043828-29043727
	336047		Minus	29050617-29050466
	336068		Minus	29252077-29251969
65	336143		Minus	30135948-30135854
0.5	336158		Minus	30163730-30163610
				30241988-30241839
	336174		Minus	
	336223	Dunham, I. et.al.	Minus	30816306-30816195
	336245	Dunham, I. et.al.	Minus	31420569-31420509

	336274	Dunban Latel	Minus	32085468-32085303
		Dunham, I. et.al.	Minus	
	336318	Dunham, I. et.al.	Minus	33364452-33364338
	336326	Dunham, I. et.al.	Minus	33567328-33567201
_	336339	Dunham, I. et.al.	Minus	33798479-33798330
5	336340	Dunham, I. et.al.	Minus	33812069-33811915
	336355	Dunham, I. et.al.	Minus	33874750-33874649
	336392	Dunham, I. et.al.	Minus	34015868-34015738
	336393	Dunham, I. et.al.	Minus	34016145-34015951
	336394		Minus	34016457-34016298
10		Dunham, I. et.al.		34023437-34023298
10	336400	Dunham, I. et.al.	Minus	
	336402	Dunham, I. et.al.	Minus	34024090-34023981
	336413	Dunham, I. et.al.	Minus	34046702-34046576
	336424	Dunham, I. et.al.	Minus	34055549-34055491
	336425	Dunham, I. et.al.	Minus	34058544-34058446
15	336437	Dunham, I. et.al.	Minus	34074154-34074090
	336447	Dunham, Letal.	Minus	34198207-34197996
	336449	Dunham, L. et.al.	Minus	34204707-34204577
	336466	Dunham, L. et al.	Minus	34213195-34213046
	336492	Dunham, I. et al.	Minus	34255578-34255437
20			Minus	34277480-34277351
20	336511	Dunham, I. et.al.		
	336512	Dunham, I. et.al.	Minus	34278373-34278275
	336520	Dunham, I. et.al.	Minus	34319184-34319101
	336522	Dunham, I. et.al.	Minus	34320169-34320056
	336524	Dunham, I. et.al.	Minus	34321055-34320921
25	336527	Dunham, I. et.al.	Minus	34322071-34321966
	336534	Dunham, I. et.al.	Minus	34326797-34326620
	336536	Dunham, I. et.al.	Minus	34327678-34327538
	336542	Dunham, L et.al.	Minus	34331316-34331183
	336556		Minus	34375244-34374907
30		Dunham, I. et.al.	Minus	34375443-34375341
50	336557	Dunham, I. et.al.		
	336558	Dunham, I. et.al.	Minus	34375825-34375698
	336559	Dunham, I. et.al.	Minus	34376430-34376261
	336560	Dunham, I. et.al.	Minus	34376814-34376596
	336561	Dunham, I. et.al.	Minus	34377168-34376928
35	336597	Dunham, I. et al.	Minus	7627912-7627757
	336601	Dunham, I. et.al.	Minus	13265853-13265654
	336642	Dunham, I. et.al.	Minus	1304281-1304212
	336645	Dunham, I. et.al.	Minus	1351268-1351168
	336662	Dunham, I. et.al.	Minus	2158060-2157993
40	336684	Dunham, I. et.al.	Minus	1993558-1993481
70			Minus	2022565-2022497
	336676	Dunham, I. et.al.		
	336684	Dunham, I. et.al.	Minus	2158060-2157993
	336686	Dunham, I. et.al.	Minus	2160698-2160486
	336714	Dunham, I. et.al.	Minus	3094026-3093871
45	336719	Dunham, I. et.al.	Minus	3331631-3331503
	336736	Dunham, i. et.al.	Minus	4093128-4093041
	336744	Dunham, Letal.	Minus	4333001-4332848
	336786	Dunham, I. et.al.	Minus	5419973-5419873
	336793	Dunham, L. et.al.	Minus	5631345-5631237
50	336859	Dunham, L. et.al.	Minus	8201756-8201561
	336863	Dunham, L. et.al.	Minus	8396673-8396425
	336933	Dunham, I. et.al.	Minus	11760045-11759981
			Minus	12027537-12027455
	336942	Dunham, I. et.al.		
55	336960	Dunham, I. et.al.	Minus	13267243-13267172
55	336969	Dunham, I. et.al.	Minus	13725722-13725643
	336971	Dunham, I. et.al.	Minus	13732308-13732221
	337003	Dunham, i. et.al.	Minus	15523541-15523422
	337011	Dunham, I. et.al.	Minus	16106423-16106080
	337070	Dunham, I. et.al.	Minus	19034423-19034321
60	337072	Dunham, I. et.al.	Minus	19077452-19077323
	337086	Dunham, I. et.al.	Minus	19657011-19656881
	337140	Dunham, I, et.al.	Minus	22849450-22849388
			Minus	24594969-24594874
	337193	Dunham, I. et.al.	Minus	
65	337256	Dunham, I. et.al.		27659956-27659876
OD	337278	Dunham, I. et.al.	Minus	28429017-28428848
	337284	Dunham, I. et.al.	Minus	28491414-28491094
	337293	Dunham, I. et al.	Minus	28846334-28845873
	337316	Dunham, L et.al.	Minus	29857129-29656997
	337326	Dunham, I. et.al.	Minus	30017199-30017069

	337382	Dunham, I. et.al.	Minus	31233666-31233579
	337392	Dunham, Let.al.	Minus	31442311-31442229
	337406	Dunham, Letal.	Minus	31864840-31864588
	337412	Dunham, Letal.	Minus	31916487-31916312
5	337419	Dunham, I. et.al.	Minus	32021496-32021170
•	337436	Dunham, I. et.al.	Minus	32257869-32257739
	337455	Dunham, I. et.al.	Minus	32434517-32434425
	337509		Minus	33414613-33414498
		Dunham, I. et.al.		33796750-33796647
10	337518	Dunham, I. et.al.	Minus	
10	337529	Dunham, I. et al.	Minus	34043668-34043546
	337533	Dunham, I. et al.	Minus	34193388-34193261
	337539	Dunham, I. et al.	Minus	34254490-34254322
	337551	Dunham, I. et.al.	Minus	34524446-34524362
	337553	Dunham, I. et.al.	Minus	24230-24160
15	337591	Dunham, I. et.al.	Minus	1006414-1006184
	337592	Dunham, I. ot.al.	Minus	1007791-1007634
	337593	Dunham, I. et.al.	Minus	1009460-1009291
	337607	Dunham, I. et.al.	Minus	1355719-1355637
	337612	Dunham, I. et.al.	Minus	1570235-1570142
20	337635	Dunham, I. et.al.	Minus	2169690-2169569
	337824	Dunham, I. et.al.	Minus	4559540-4559266
	337825	Dunham, Letal.	Minus	4567155-4567005
	337850	Dunham, I. et al.	Minus	5077143-5076943
	337854	Dunham, I. et.al.	Minus	5153435-5153272
25		Dunham, I. et.al.	Minus	6149843-6149786
23	337913			5922748-5922690
	337915	Dunham, I. et.al.	Minus	
	337968	Dunham, I. et.al.	Minus	7095797-7095680
	338010	Dunham, I. et.al.	Minus	7754282-7754184
20	338012	Dunham, I. et.al.	Minus	7761421-7761351
30	338017	Dunham, I. et al.	Minus	7864521-7864401
	338065	Dunham, I. et.al.	Minus	7235048-7234950
	338094	Dunham, I. et.al.	Minus	9595602 -9 595440
	338129	Dunham, I. et.al.	Minus	10915338-10915237
	338132	Dunham, I. et.al.	Minus	10989617-10989530
35	338150	Dunham, I. et.al.	Minus	11478551-11478355
	338157	Dunham, I. et.al.	Minus	11731444-11731375
	338195	Dunham, I. et.al.	Minus	13484103-13483972
	338255	Dunham, I. et.al.	Minus	15242294-15242231
	338276	Dunham, I. et.al.	Minus	16109555-16109398
40	338431	Dunham, I. et.al.	Minus	19747608-19747496
	338448	Dunham, I. et.al.	Minus	20151152-20151054
	338451	Dunham, I. et.al.	Minus	20174286-20174193
	338477	Dunham, i. et.al.	Minus	20821897-20821838
	338534	Dunham, I. et.al.	Minus	21771238-21771170
45	338682	Dunham, L et.al.	Minus	24800712-24800461
	338684	Dunham, L. et.al.	Minus	24827522-24827428
	338689	Dunham, I. et.al.	Minus	24893073-24892972
	338695	Dunham, I. et.al.	Minus	25104153-25104016
	338825	Dunham, I. et.al.	Minus	27664798-27664712
50			Minus	27824238-27824079
50	338842	Dunham, Let.al.		28491807-28491631
	338893	Dunham, I. et.al.	Minus	
	338904	Dunham, I. et.al.	Minus	28766345-28766253
	338935	Dunham, I. et.al.	Minus	29071537-29071461
EE	339022	Dunham, I. et.al.	Minus	30523414-30523289
55	339034	Dunham, I. et al.	Minus	30621603-30621422
	339190	Dunham, I. et.al.	Minus	32403103-32402985
	339212	Dunham, I. et.al.	Minus	32494335-32494210
	339213	Dunham, I. et.al.	Minus	32496590-32496440
	339216		Minus	32504250-32504109
60	339233	Dunham, I. etal.	Minus	32751331-32751238
	339258	Dunham, I. et al.	Minus	32934756-32934615
	339262		Minus	32971258-32971090
	339263		Minus	32974634-32974452
	339265		Minus	32975943-32975806
65	339338		Minus	33468728-33468606
	339396		Minus	34017306-34017205
	339400		Minus	34045024-34044940
	339425		Minus	34407911-34407798
	325207		Plus	140049-140170
	-			

	329568	3962490	Plus	36331-36750
	329517	3983513	Minus	53197-53269
	325313 325327	5866865 5866875	Minus	27385-28192 75189-75264
5	325327	5866878	Plus Minus	156551-156649
,	325257	5866895	Plus	10867-10955
	329632	6729060	Plus	192813-193017
•	325371	5866920	Minus	1035422-1035538
	325375	5866920	Minus	1165503-1165810
10	325378	5866920	Minus	1187981-1188167
	325469	6017034	Plus	286823-286991
	325470	6017034	Plus Minus	287578-287663 137769-137894
	325576 325505	6552443 6682451	Minus	240852-240946
15	325543	6682452	Pius	151873-152057
	329835	5302817	Minus	62522-62622
	329636	5302817	Minus	64969-65078
	325593	5866992	Minus	469726-469860
00	325675	5867014		955517-955711
20	325704	5867028	Plus	156198-156387
	325682	6138923	Plus Plus	370618-370763 61849-62003
	325785 325666	6381957 6469822	Plus	16769-16857
	325818	6682490	Minus	120278-120559
25	329777	6002090	Minus	191389-191479
	329768	6015501	Plus	118315-118422
	329759	6048280	Minus	37647-37730
	329731	6065783	Plus	158772-158900
30	329687	6117856	Minus	22165-22288
30	329676 329667	6272128 6272129	Minus Plus	142207-142359 101355-101745
	329669	6272129	Plus	131223-131291
	329670	6272129	Plus	131351-131495
	329641	6468233	Minus	105995-106107
35	329791	6469354	Minus	131982-132089
	325826	5867048	Minus	46361-46458
	325829	5867052	Plus	232674-233060
	329888		Minus Minus	37227-37473 166123-166791
40	329893 329899	6525313 6563505	Minus	111058-111783
70	325988	5867064	Plus	17349-17606
	325855	5867067	Plus	276141-276251
	325999	5867073	Plus	149115-149192
4 00	326001	5867073	Plus	155223-155348
45	325886	5867087	Plus	194694-194915
	325882 325905	5867087 5867104	Minus Plus	8178-8347 78779-78876
	325922	5867122	Minus	329063-329134
	325937	5867132	Minus	152633-152902
50	325960	5867147	Minus	162506-162635
	325961	5867147	Minus	165106-165209
	325838	6552452	Plus	171451-171532
	325839 325840	6552452 6552452	Plus Plus	181964-182037 184380-184547
55	325844	6552453	Minus	14188-14332
33	325870	6682492	Plus	228209-228297
	329984	4646193	Minus	139780-139890
	329976	4878063	Minus	62584-62691
	329935	6165200	Minus	69059-69127
60	329916	6223624	Plus	36396-37195
	330021	6671889 6671908	Plus Minus	120938-121032 1005-1270
	330024	6671908	Minus	30015-30144
	330028 326033	5867178	Plus	37261-37333
65	326036	5867178	Minus	120215-120273
	326056	5867184	Minus	181553-181690
	326116	5867193	Plus	45548-45604
	326122	5867194	Pius	144397-144683
	326138	5867203	Minus	179374-179436

	326145 5867204	Minus	52599-52814
	326180 5867211	Minus	182758-183222
	326201 5867216	Minus	166168-166959
	326207 5867222	Plus	48139-48219
5	326226 5867230	Plus	52644-52705
,	326233 5867232	Plus	124788-124863
	326238 5867260	Plus	64282-64338
			181648-181916
	326241 5867260	Minus	
10	326243 5867261	Plus	123838-123978
10	326251 5867263	Minus	82716-82822
	326268 5867267	Plus	122114-122765
	326124 5916395	Plus	407102-407560
	326339 6056311	Minus	164637-165251
	330049 4567182	Minus	314662-315210
15	326358 5867293	Plus	9122-9195
	326365 5867297	Minus	96630-96764
	326379 5867327	Plus	32299-32402
	326382 5867327	Minus	50420-50503
	326390 5867340	Minus	108814-110592
20	326424 5867369	Minus	168329-168409
20		Pius	86222-86423
	326472 5867404	Plus	293739-293940
	326492 5867422	Plus	120768-120991
	326533 5867441	Minus	.532153-532280
25	330117 6015201	Minus	7340-7680
	330115 6015202	Plus	11403-11677
	330116 6015202	Plus	12109-12418
	330095 6015278	Plus	15343-15814
	330096 6015278	Plus	49370-49458
30	326644 5867559	Phis	42684-42819
-	326713 5867595	Plus	121511-121798
	326745 5867611	Plus	127130-127318
	326752 5867615	Minus	1214-1562
		Pius	12454-12511
25	326753 5867616		
35	326598 5867634	Plus	68955-69014
	326667 6552455	Plus	142311-142441
	326855 6552460	Minus	111390-111463
	326812 6682504	Plus	189811-189941
	327005 5867664	Plus	610847-610907
40	327008 5867664	Plus	928737-928811
	326896 5867680	Minus	12032-12122
	326904 5867684	Minus	9280-9606
	326951 6004446	Plus	193812-193998
	326941 6004446	Plus	62018-62896
45	326943 6004446	Minus	89242-89427
	326928 6456782	Minus	291007-291219
	326958 6469836	Minus	42952-43082
	326959 6469836	Minus	43159-43301
	327039 6531965	Plus	694486-694998
50	327127 6682520	Plus	41925-42083
50	330158 6580367	Plus	81966-82456
	327204 5867447	Plus	165135-165239
			180805-180864
	327208 5867447	Plus	
	327266 5867462	Minus	82400-82615
55	327277 5867473	Minus	165616-165715
	327289 5867481	Plus	49296-49536
	327296 5867492	Plus	7627-8166
	327237 5867544	Minus	59702-59813
***	327145 5867548	Minus	40482-40551
60	327333 5902477	Minus	141448-141609
-	327335 5902477	Minus	142979-143124
	327343 6017017	Minus	12288-12395
	327350 6249563	Minus	41890-41985
	327358 6552411	Minus	3802-3950
65	327360 6552411	Minus	6255-6422
05	327409 5867750	Minus	52949-53011
	327424 5867751	Plus	160442-160598
	327430 5867754	Plus	1320-1403
		Plus	150910-150973
	327470 5867772	rius	120212-120212

	327460 6004455	Plus	175245-175343
	327498 6017023	Minus	42178-42283
	327509 6117815	Minus	54882-55053
	327510 6117815	Minus	56824-56944
5	327512 6117815	Plus	176256-176325
-	327535 6525279	Plus	19105-19175
	330163 6042042	Minus	20321-20385
	330171 6648220	Plus	110889-111575
	327579 5867824	Minus	37229-38335
10	327672 5867843	Minus	69649-69740
	327629 5867872	Plus	49692-49811
	327640 5867890	Plus	9448-9566
	327649 5867899	Plus	205871-205927
	327612 6525283	Plus	2747-2924
15	327718 6525284	Plus	86123-86186
10	327801 5867924	Plus	23239-23348
	327762 5867961	Minus	50303-50439
	327763 5867961	Ptus	229347-229478
	327776 5867964	Minus	164308-164486
20	327822 5867968	Minus	168886-169633
20	327823 5867968	Minus	170359-170433
	327807 5867968	Plus	33745-33811
	327845 6531962	Plus	193402-193549
	330228 6013527	Minus	3719-3787
25	330190 6165182	Plus	36103-38243
2.5	328122 5868031	Plus	158474-158658
	328132 5868038	Minus	126737-126839
	328159 5868065	Minus	52957-53162
	328168 5868071	Plus	60321-60479
30	328175 5868073	Plus	208-271
50	328217 5868096	Minus	3742-4362
	327865 5868130	Plus	61503-62205
	327866 5868131	Minus	2893-3046
	327870 5868131	Plus	53558-53757
35	327879 5868142	Minus	77722-77793
33	327902 5868158	Minus	133339-133467
	327918 586B165	Plus	547530-547591
	327934 5868184	Pius	41830-42036
	327959 5868210	Minus	48497-46682
40	327976 5868212	Minus	348301-349409
-10	328020 5902482	Minus	556386-556652
	328042 5902482	Minus	1985085-1986626
	328008 5902482	Plus	296663-297151
	330301 2905862	Minus	4420-5781
45	330299 2905881	Minus	1020-1382
	328274 5868219	Minus	31244-31439
	328595 5868224	Plus	148738-148967
	328591 5868227	Minus	237647-237726
	328668 5868254	Minus	10888-10984
50	328677 5868256	Minus	58708-58950
	328687 5868262	Plus	624479-624585
	328706 5868270	Plus	165501-165614
	328711 5868271	Minus	97797-97990
	328730 5868289	Plus	8068-8214
55	328732 5868289	Plus	37437-37550
	328734 5868289	Plus	50559-50747
	328752 5868298	Minus	114911-115087
	328755 5868301	Minus	145959-146446
	328761 5868302	Minus	239308-239412
60	328775 5868309	Plus	12845-12920
	328784 5868309	Minus	74523-74604
	328787 5868309	Plus	135772-135963
	328809 5868327	Plus	91792-91849
	328829 5868337	Plus	36309-36630
65	328280 5868352	Plus	160563-160631
	328311 5868371	Minus	170560-170826
	328318 5868373	Plus	414945-415620
	328323 5868373	Minus	1080089-1080235
	328348 5868383	Minus	260272-260379

	328377 5868390	Plus	16947-17023
	328436 5868417	Plus	203760-203904
	328504 5868471	Plus	47064-47217
	328506 5868471	Plus	60716-60830
5	328522 5868477	Plus	1972307-1972452
	328525 5868482	Plus	12387-14313
	328541 5868486	Plus	130956-131050
	328662 6004473	Plus	1184773-1184855
	328663 6004473	Plus	1185279-1186634
10	328803 6004475 -	Minus	291716-291948
	328304 6004478	Minus	3884-3952
	328927 5868500	Minus	428829-428893
	328936 5868500	Minus	1352202-1352259
	328939 6004481	Minus	131139-131320
15	328941 6456765	Minus	9817-9885
	328948 6456765	Plus	28227-28413
	328968 6456775	Plus	117442-118283
	330316 6007576	Minus	119761-119931
	330350 3056622	Minus	26413-26820
20	330351 3056622	Minus	27522-27614
	330348 4544475	Minus	19855-19962
	329034 5868561	Minus	32819-32939
	329046 5868569	Plus	18971-19030
	329053 5868574	Plus	426453-426541
25	329186 5868711	Minus	13108-13225
	329237 5868729	Plus	133238-133339
	329276 5868762	Minus	222629-222709
	329333 5868806	Plus	392666-392748
	329376 5868859	Plus	52356-52694
30 1	329384 5868869	Minus	116524-116662
	329140 6017060	Plus	290842-290905
	329317 6381976	Plus	614823-615209
	329319 6381976	Plus	721390-721470
	329129 6588026	Plus	144569-144712
35	329373 6682537	Minus	38950-39301
	329412 6682553	Minus	68948-69041
	329424 5868879	Plus	362196-362344
	329446 5868886	Plus	84776-84899
	329449 5868886	Plus	97697-97771

TABLE 14: shows genes, including expression sequence tags, down-regulated in prostate tumor tissue compared to normal prostate tissue as analyzed using Affymetrix/Eos Hu02 GeneChip array. Shown are the ratios of "average" normal prostate to "average" prostate cancer tissues.

5

10	Pkey: ExAcon: Unigene Unigene R1:	ID:	Exemplar A Unigene nu Unigene ge		
15	Pkey	ExAcen	UnigeneiD	Unigene Title	R1
13	331328	AA281133	Hs.88808	ESTs	18.53
	320875	D60641	Hs.131921	ESTs :	14.55
	300994	Al251936	Hs.146298	ESTs	12.17
	323461	AA418762	Hs.190044		10.55
20	301015	AA947682		ESTs; Weakly similar to Chain A; Cdc42hs-Gdp Complex [H.sapiens]	10.17
	319419	AA543098		ESTs; Highly similar to mitogen-induced [M.musculus]	9.2
	323486	C05278	Hs.166800	ESTs; Moderately similar to [PYRUVATE DEHYDROGENASE(LIPOAMIDE)]	8.87
	004000	AW419080	Hs.250645	KINASE ISOZYME 4 PRECURSOR [H.sapiens]	8
25		U57796		zinc finger protein 192	7.88
23	330126	03//80	กรอาชา	CH21_p2 gi 6093735	7.8
		AA737400	Hs.142230		7.7
		AA148950	Hs.188836		7.64
		R58399	Hs.146217		7.4
30		AA465192	Hs.16514		7.15
50		AI766732	Hs.201194		7
		AW341754	Hs.189305		6.83
		AW452118	Hs.257533		6.74
		AA743396	Hs.189023		6.49
35	329192			CH.X_hs gij5868716	6.1
	324307	AA627642	Hs.4994	transducer of ERBB2; 2 (TOB2)	5.99
	303685	AW500106		EST cluster (not in UniGene) with exon hit	5.82
	314921	AW452382	Hs.257564		5.8
40		AA679001	Hs.192221		5.68
40		AA034364		ESTs; Weakly similar to III! ALU CLASS B WARNING ENTRY III! [H.sapiens]	5.43
		AW298141	Hs.157975		5.4
		F30712		EST cluster (not in UniGene) with exon hit	5.35
	• • • • • • •	AI627358	Hs.148367		5.31 5.25
AE		D84454	Hs.21899	solute carrier family 35 (UDP-galactose transporter); member 2	5.25
45	334719	4 4040000	11-00000	CH22_FGENES.421_30	5.23 5.22
		AA813958		ESTs; Moderately similar to KIAA0071 [H.sapiens]	5.22
		AI625304	Hs.190312		5.19
		AW511298 H86747	Hs.256067	KIAA1116 protein	5.11
50		A1739168	113.227002	EST duster (not in UniGene)	4.97
50		AW206435	Hs.146057		4.97
		N50080	Hs.117827		4.78
		AW197887	Hs.253353		4.63
		AA766825		EST cluster (not in UniGene)	4.58
55	315850	AW270550	Hs.116957	ESTs	4.53
	303124	AF161350		EST cluster (not in UniGene) with exon hit	4.46
	323346	AL134932	Hs.143607	ESTs	4.4
	301383	AA913591	Hs.126480	ESTs	4.35
	324513	AW501678	Hs.164577	ESTs	4.28
60		AA331906		EST cluster (not in UniGene) with exon hit	4.25
		AA301270		EST duster (not in UniGene)	4.22
		AW468119		EST cluster (not in UniGene)	42
		A1733395	Hs.129124		4.1
65		R42049	Hs.195473		4.08
65		AW451570	Hs.126850		4.03
	319750	AA621606	Hs.117956	EDIS	4.03

	322520			EST cluster (not in UniGene)	4
		AW026761	Hs.134374		4
		AI990652	Hs.208973		3.96
5		Al939339 Al364186	Hs.146883	EST singleton (not in UniGene) with exon hit	3.95
3		AW449204	Hs.257125		3.94
		W60843	Hs.31570		3.93
	324668	Al679131	Hs.201424	EST8	3.9
		AA541323	Hs.115831		3.88
10	300547		Hs.143443		3.83 3.79
		AW203986	Hs.213003	ESTS; Weakly similar to ORF YGR245c [S.cerevisiae]	3.75
		AA481027 D59945	MS.12/336	EST cluster (not in UniGene)	3.74
		A1039702	He 179573	collagen; type I; alpha 2	3.73
15		AA804409	Hs.118920		3.73
		AA765470	Hs.122826	ESTs	3.7
		D81150		EST cluster (not in UniGene) with exon hit	3.68
•		Z38720	Hs.151014		3.66 3.59
20		AA011603	Un 400000	EST cluster (not in UniGene)	3.52
20		H95082 AA631739	Hs.102332	EST cluster (not in UniGene)	3.5
		AA317561		EST cluster (not in UniGene)	3.49
		AW516519	Hs.115130		3.47
	309709	AW242630		EST singleton (not in UniGene) with exon hit	3.46
25	300038			AFFX control: MuriL4	3.38
		Al088192		ESTs; Weakly similar to ATP-DEPENDENT RNA HELICASE A [H.sapiens]	3.36 3.35
		AA731520	Hs.170504	glyceraldehyde-3-phosphate dehydrogenase	3.34
		AA196027 AI948688	Hs.191805		3.33
30	329815	745-1555	110.101000	CH.14_p2 gij6624888	3.32
		AI745387	Hs.239124		3.31
		N53574	Hs.158932		3.3 3.28
	329218	414440740	11- 455550	CH.X_hs gil 5868726	3.28
35		AW440742 AW503637	Hs.155556	EST cluster (not in UniGene) with exon hit	3.25
JJ		A1347274		EST singleton (not in UniGene) with exon hit	3.25
		AA324975	Hs.128993	ESTs; Weakly similar to KIAA0465 protein [H.sapiens]	3.25
		AA700439	Hs.188490		3.25
40	334061			CH22_FGENES.327_14	3.23
40	336036	1107040	U- 0000F0	CH22_FGENES.678_7	3.23 3.21
		H67818 AW139383	Hs.222059 Hs.245437		3.2
		AA811713	Hs.163222		3.2
		AW235248	Hs.79828		3.2
45	323611	AA304986	Hs.145704		3.19
		AA740616		EST cluster (not in UniGene)	3.17 3.16
		AA814859	Hs.179100	EST cluster (not in UniGene)	3.11
		AI833131 AA258222	Hs.87757		3.1
50	317221	AI989538	Hs.191074		3.08
-	316386	AA749062	Hs.180285		3.08
		H26953		EST cluster (not in UniGene)	3.08
		AI824829		EST singleton (not in UniGene) with exon hit	3.08
55		AA236233	Hs.188716		3.07 3.07
55	316667	AW015940 AW503101	Hs.232234	EST cluster (not in UniGene)	3.07
		AW293046	Hs.255158		3.07
		Al239706	Hs.189886		3.06
		AW297967	Hs.188181		3.05
60		AW043620	Hs.236993		3.03
	322957	AA247755	Un 100700	EST duster (not in UniGene)	3.01 3.01
	316848	AA830053 AA009660	Hs.126798	ESTS; Moderately similar to T07D3.7 [C.elegans]	2.99
		T27119	(10.601040	EST cluster (not in UniGene)	2.98
65		A1076370	Hs.134037		2.97
	331389	AA458637	Hs.152207	ESTs	2.96
		AA053294		EST singleton (not in UniGene) with exon hit	2.95
		AW340014	He Oscoo	EST singleton (not in UniGene) with exon hit ESTs; Moderately similar to PUTATIVE GLUCOSAMINE-6-PHOSPHATE	2.95
	319661	H08035	ns.∠1398	ESTS, MODERNEY SHIRKI IN FOTATIVE GEOGGSAMMEDT HOSFMATE	

				ICOVEDACE III conjunct	2.95
	221252	A1699484		ISOMERASE [H.sapiens] EST cluster (not in UniGene)	2.93
		AA149508	Hs.103288		2.93
	332864	AA148300	110,1002.00	CH22_FGENES.28_4	2.92
5	300027			O(#12, GE18020_1	
-	OUGGE	M11507		AFFX control: transferrin receptor	2.91
	324330	AA884766		EST cluster (not in UniGene)	2.88
		AA137114	Hs.170291		2.88
	333916			CH22_FGENES.296_5	2.88
10	318885	Z43272		EST cluster (not in UniGene)	2.87
	318146	A1040125	Hs.150521	ESTs	2.87
		AA233056	Hs.191518		2.85
		AA825148	Hs.21229	F-box protein Fbw1b	2.84
	335862			CH22_FGENES.629_7	2.83 2.82
15		AW205409	Hs.127748		2.81
		AI610397	Hs.159560		2.81
		Al419909	Hs.160994		2.81
		AA382603		EST cluster (not in UniGene) EST cluster (not in UniGene)	2.8
20		R84237 AA864468	Hs.135646		2.8
20		AA913887	Hs.126511		2.78
		AW277121	Hs.254881		2.78
		A1950844	Hs.128738	ESTs; Weakly similar to non-lens beta gamma-crystallin like protein [H.sapiens]	2.77
	332808			CH22_FGENES.7_10	2.75
25		AW293826	Hs.250610	ESTS	2.75
	321992	C06003	Hs.116456	ESTs	2.73
	316074	AW517542	Hs.208382		2.73
	309839	AW295076		EST singleton (not in UniGene) with exon hit	2.73
		AA683529	Hs.143119		2.73
30		AW294020	Hs.117721	ESTS	2.72 2.72
		AA062971	Hs.181161	ESTs; Weakly similar to INHIBITOR OF APOPTOSIS PROTEIN 1 [M.musculus]	2.72
		H53744		EST cluster (not in UniGene)	2.72
		H77679		EST singleton (not in UniGene) with exan hit	2.71
25	325602	DECODE	Hs.136698	CH.13_hs gi 5866994	2.71
35		R59096	ns.130030	EST cluster (not in UniGene) with exon hit	2.71
		N75450 AA831215	He 150066	ESTs; Weakly similar to predicted using Genefinder [C.elegans]	2.69
		AI091458	Hs.134559		2.68
		R38715		Homo sapiens clone 24540 mRNA sequence	2.68
40		AI823999	Hs.162000		2.68
		AA614308		EST singleton (not in UniGene) with exon hit	2.67
	314912	Al431345	Hs.161784	ESTs	2.67
	300767	AW193466	Hs.136525	ESTs	2.67
		A1057369	Hs.122536		2.65
45		AA135565	Hs.250739		2.65
		Al308989	Hs.156939	ESTs	2.65 2.65
		AA704457	Hs.255738	ESTs; Moderately similar to gag [H.sapiens]	2.00
	300336	AW292417	HS.2550/4	ESTs; Moderately similar to high-risk human papilloma viruses E6 oncoproteins targeted protein E6TP1 alpha [H.saplens]	2.64
50	047050	1100074		EST cluster (not in UniGene)	2.64
50	317850	N29974		CH22_DA59H18.GENSCAN.28-7	2.64
		AA492588		EST duster (not in UniGene)	2.63
		AI817933	Hs.209584		2.62
		R06841		EST duster (not in UniGene)	2.62
55 .		AI248571	Hs.186837		2.61
		AA836116		EST cluster (not in UniGene)	2.6
	326505			CH.19_hs gi 5867435	2.6
	314987	AW015506	Hs.130730		2.6
		AF090948		EST cluster (not in UniGene) with exon hit	2.59
60		H24244		ESTs; Weakly similar to /prediction	2.58
		Al209108	Hs.143946		2.57 2.56
	329224			CH.X. hs gi 5868728	2.56
	328018		Ho 177000	CH.06_hs gij5902482	2.55
65		AA324437	Hs.177230 Hs.132910		2.55
55		AW157377 AW138134	Hs.220277		2.55
		Al479011	Hs.170783		2.54
		AJ743261	Hs.131860		2.54
		A14000174	He offers		2.53

	313966	Al807551	Hs.189061	ESTs	2.53
	331263	AA015718		ze31a12.s1 Soares retina N2b4HR Homo sapiens cDNA clone	
				IMAGE:36574 3', mRNA sequence	2.51
_		AW055233	Hs.160870		2.5
5		AA085996	HS.248572	Human PAC clone DJ404F18 from Xq23	2.5
		AJ001408		EST cluster (not in UniGene) with exon hit	2.5 2.49
		Al613519		EST singleton (not in UniGene) with exon hit EST cluster (not in UniGene)	2.49
		AF086538 AA974253	Hs.120319		2.49
10		AA203415	Hs.136200		2.48
10		W76005	Hs.32094		2.48
		AA243617		ESTs; Highly similar to db83 [R.norveglous]	2.48
		AA256675		ESTs; Weakly similar to atypical PKC specific binding protein [R.norvegicus]	2.47
		Al624497		EST singleton (not in UniGene) with exon hit	2.47
15	328744			CH.07_hs gl[5868290	2.47
	332344	W45574	Hs.252497	ESTs	2.47
	328121			CH.06_hs gi 5868031	2.47
		Al670955	Hs.200151		2.46
30		AA521381	Hs.187726		2.45
20		AA18868	Hs.173933	ESTs; Weakly similar to NUCLEAR FACTOR 1/X [H.sapiens]	2.45
	329454			CH.Y_hs gij5868887	2.45
	336605	41444000	II- 070000	CH22_FGENES.420_4	2.45 2.44
		Al444628 AL135067	Hs.256809 Hs.117182		2.44
25		M10098		ol: 18S ribosomal RNA	2.44
		AI671168	Hs.12285		2.43
		Al148353	Hs.120849		2.43
		AI765182	Hs.119903		2.43
		M78276	Hs.255917		2.43
30		AA041455	Hs.209312	ESTs	2.43
	316504	AW135854	Hs.132458	ESTs	2.42
	319401	R01342		EST duster (not in UniGene)	2.42
		AI744361	Hs.205591	ESTs; Weakly similar to zinc finger protein Png-1 [M.musculus]	2.42
25	327871			CH.06_hs glj5868131	2.41
35	337173	4.4.400000		CH22_FGENES.565-3	2.41
		AA465635		EST cluster (not in UniGene) with exon hit	2.41 2.4
		AL118754 Al791138	Un 110700	EST cluster (not in UniGene)	2.4
		AA830515	Hs.116768 Hs.222917		2.4
40		AA253351		STAT induced STAT inhibitor-4	2.4
		AA017595	Hs.32844		2.4
		Al701559		EST singleton (not in UniGene) with exon hit	2.39
	313035		Hs.144928		2.37
	322114	AA643791	Hs.191740	ESTs	2.37
45	313671	W49823	Hs.145553	ESTs	2.37
		AA099548	Hs.191436	ESTs; Highly similar to dJ1118D24.4 [H.saplens]	2.37
		AA932948		EST duster (not in UniGene) with exon hit	2.36
	338165	4.4555050		CH22_EM:AC005500.GENSCAN.212-3	2.36
50		AA557952 AA779704	U- 400000	EST cluster (not in UniGene)	2.35 2.35
JU		R41582	Hs.168830	retinal degeneration B beta	2.35
	318625		Hs.193162		2.35
		AA663726	Hs.116922		2.35
		AA286678		EST cluster (not in UniGene) with exon hit	2.34
55		AW292740	Hs.254815		2.34
		AA682305	Hs.133268		2.33
		AA642912		EST singleton (not in UniGene) with exon hit	2.33
		Al000320		EST singleton (not in UniGene) with exon hit	2.33
CO		Al651016	Hs.246311		2.33
50		Z49979	11-404044	EST duster (not in UniGene)	2.33
		Al903770	Hs.124344		2.32 2.32
	338679	AJ002574		CH22_FGENES.43-7 EST cluster (not in UniGene)	2.32
	321363	-2002314		CH22_FGENES.730-6	2.31
55		AW468068	Hs.257712	ESTs: Weakly similar to KIAA0986 protein [H.saplens]	2.31
-	327120			CH.21 hs qii6531970	2.31
		AW250553		EST cluster (not in UniGene) with exon hit	2.3
	312132	Al475490	Hs.170577	The state of the s	2.3
	315639	AA827652		EST cluster (not in UniGene)	2.3

	312189	T95594	Hs.187435	ESTs	2.3
		AA991705	•	EST singleton (not in UniGene) with exon hit	2.3
		74.001100			2.3
	327061			CH.21_hs gi 6531965	
_	315391	AA759098	Hs.192007	ESTS	2.3
5	322384	Al968646	Hs.33862	ESTs	2.29
-		AA203339	Hs.220750	FSTs	2.29
					2.28
		Al680915	Hs.201379		
	335250			CH22_FGENES.516_11	2.28
	331696	Z38907	Hs.91662	KIAA0888 protein	2.28
10		AW294013	Hs.200942		2.28
		AA969121	Hs.254296		2.28
					2.28
		Al608881	HS.11482	ESTs; Highly similar to junctional adhesion molecule [H.saplens]	
	310601	Al970543	Hs.192605	ESTs	2.28
	318905	Z43395		EST cluster (not in UniGene)	2.28
15		AA252753	Hs.164039		2.27
13		AA342250			2.27
				ubiquitin specific protease 16	
	313352	AW292127	Hs.144758	ESTS	2.27
	316491	AA766025	Hs.238794	EST	2.27
		AI697668	Hs.202241		2.26
20					2.26
20		AA229781	Hs.221962		
	306665	Al004614	Hs.130577	ESI	2.26
	303946	AW474196	Hs.221604	ESTs	2.25
	313435	AA769123		EST cluster (not in UniGene)	2.25
		AA968799	Hs.150289		2.25
05			HS. 130209	' ·	2.25
25		AA330095		EST duster (not in UniGene)	
	306620	Al000929		EST singleton (not in UniGene) with exon hit	2.24
	329109			CH.X_hs gij5868626	2.24
		Al871209	Hs.177128		2.24
					224
		Al458372		ESTs; Weakly similar to synapsin ib [M.musculus]	
30	307223	Al193698	Hs.184776	ribosomal protein L23a	2.24
	309023	Al888045		EST singleton (not in UniGene) with exon hit	2.23
		Al493675	Hs.170332		2.23
					2.22
		Al914939	Hs.212184		
	320409	AA358195		EST cluster (not in UniGene)	2.21
35	333149			CH22_FGENES.87_8	2.21
	324951	M86125	Hs.137487	ESTs	2.21
		AI791617	Hs.145068		2.2
					2.2
		Al863952		arginyltransferase 1	
	320722	R67430	Hs.172787	ESTS	2.2
40	321781	D78667		EST cluster (not in UniGene)	2.2
	328903			CH.08_hs pij5868514	2.2
		T40004		EST cluster (not in UniGene) with exon hit	22
		T19204			2.2
		T08845		EST cluster (not in UniGene)	
	312828	A1865455	Hs.211818	ESTs; Moderately similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.saple	ansj 2.19
45	335109			CH22_FGENES.494_15	2.18
		AA131471	Hs.71440	ESTs	2.18
			Hs.231945		2.18
		Al971362	NS.231945		
	304608	AA513456		EST singleton (not in UniGene) with exon hit	2.18
	337393			CH22_FGENES.747-4	2.18
50	332812			CH22_FGENES.7_14	2.18
	327665			CH.04_hs gij5867839	2.18
		4141704050	11-007040		2.17
		AW504859	Hs.237849	air is a second	
	326508			CH.19_hs gi 6682496	2.17
	301242	AW161535	Hs.258803	ESTs	2.17
55		AI765651	Hs.172900	ESTs	2.17
55			Hs.254859		2.16
		AW276810			
	311179	A1880843	Hs.223333		2.16
	315320	AI084182	Hs.186895	ESTs	2.16
		AI015203	Hs.118015	ESTs	2.16
60		AW139117	Hs.117494		2.15
JU					2.15
		AA406539	Hs.190958		
	314753	AA463262		EST cluster (not in UniGene)	2.15
	322574	AF156548		EST cluster (not in UniGene)	2.15
		C03864		EST cluster (not in UniGene)	2.15
65				EST cluster (not in UniGene).	2.14
U)		AA002047			
	320406	AA353895	Hs.152983	HUS1 (S. pombe) checkpoint homolog	2.14
	337646			CH22_EM:AC000097.GENSCAN.11-2	2.13
		AF174008		EST cluster (not in UniGene) with exon hit	2.13
		AA654772	Hs.186564		2.13
	J Z (5)	MW004112	175.10000		

	000040	\$1000F44		FOT also lates foot in UniOnna) with arms his	
		A1066544	11- 4E0094	EST singleton (not in UniGene) with exon hit 2.13 ESTs 2.12	
		AA602917 AI821782	Hs.156974	ESTS; Moderately similar to IIII ALU SUBFAMILY SC WARNING ENTRY IIII [H.sapiens]	2.12
		Al800041	Hs.190555		2.12
5		R66867	ris. I access	EST cluster (not in UniGene) 2.11	
•		Al167877	Hs.143716		
		AW015206	Hs.178784		
		AA235482		ferritin; heavy polypeptide 1 2.11	
		AA399018	Hs.250835		
10	319881	T72744		EST cluster (not in UniGene) 2.1	
	328078			CH.06_hs gij5868008 2.1	•
	317354	AW090770	Hs.192271		
	308617	Al738720		EST singleton (not in UniGene) with exon hit 2.09	
1.5	311568	AW439969	Hs.218177		
15		Al761786	Hs.204674		
		AA848118	Hs.221216		
	332933			CH22_FGENES.38_7 2.08	
	325498	AW296067	Hs.124106	CH.12_hs gl 5866987 2.08 ESTs 2.08	
20		AW149321	Hs.105411		
20		AA640770	110.100411	EST cluster (not in UniGene) 2.07	
		AA347452		EST cluster (not in UniGene) with exon hit 2.07	
		AW450674	Hs.114696		
	326920			CH.21_hs gi 6456782 2.06	
25	327574			CH.03_hs gi 5867818 2.08	
		Al052785	Hs.192201		
	303753	AW503733	Hs.170315	ESTs 2.05	
		AA670480		EST singleton (not in UniGene) with exon hit 2.05	
00		AA693880		EST cluster (not in UniGene) 2.05	
30		AW445167	Hs.126036		
		AW408683	Hs.32922		
	335146	A1070400	11- 470047	CH22_FGENES.499_2 2.05	
		Al678183 AA120970		prostaglandin E receptor 3 (subtype EP3) 2.04 ESTs 2.04	
35		R62925	Hs.143199 Hs.243665		
33		AA290875	Hs.30120		
		Al215643	Hs.171381		
		W23285	110.11.1001	EST cluster (not in UniGene) 2.03	
		AA282197	Hs.89002	ESTs; Highly similar to CGI-07 protein [H.sapiens] 2.03	
40		AA994530		EST singleton (not in UniGene) with exon hit 2.03	
	317865	Al298794	Hs.129130		
	318667	Al493742	Hs.165210		
		AW294522	Hs.149991		
45		AW245528	Hs.134754		
45	331286	AA137062	Hs.103853		
		Al989942	Hs.232150		
	335601	AI682303	U= 001074	CH22_FGENES.581_41 2.01 ESTs 2.01	
		AA249018	Hs.201274	EST cluster (not in UniGene) 2.01	
50	328190	70243010		CH.06_hs pij5868077 2	
50	338030			CH22_EM:AC005500.GENSCAN.148-16 2	
	333940			CH22_FGENES.301_6 2	
	328227			CH22_FGENES.301_6 2 CH.06_hs gi 5868105 2	
	331481	N27448	Hs.43944		
55	335288			CH22_FGENES.527_1 2	
		Al274307		EST singleton (not in UniGene) with exon hit	
		AL134620		EST cluster (not in UniGene) 2	
		R21945	Hs.256153		
60		AA502583	Hs.197271		
UU	327489	AW175841	He 102102		
		AW168096	Hs.192183 He 105188	glyceraldehyde-3-phosphate dehydrogenase 1.99	
	337043		14.100100	CH22_FGENES.439-19 1.98	
		Al828174	Hs.227049		
65		Al370434		EST singleton (not in UniGene) with exon hit 1.98	
	328656			CH.07_hs gij6004473	
		AA813784	Hs.123001	ESTs 1.98	
		W45302		helicase-moi 1.98	
	315259	AA701499	Hs.148115	ESTs 1.98	

	313171	N67879	Hs.157695	FSTs ·	1.97
			Hs.132236	20.0	1.97
		AI241421		30.0	1,97
		N66393	Hs.102754		
_	312110	Al962180	Hs.226803	20.0	1.97
5	335864			0,000,000,000,000	1.97
	320389	W00545	Hs.171785	ESTs	1.97
		AA868267	Hs.85524	ESTs	1.96
		H15474			1.96
					1.96
10		AA862973	Hs.220704		1.96
10		Al373163	Hs.170333	2010	
	309435	AW090537			1.96
	300129	AW028820		Co. Contra fractic annual of the contract	1.96
	320130	Al820675	Hs.203804		1.95
		AW373446	Hs.169885	ESTs; Weakly similar to cONA EST EMBL:T02216 comes from this gene [C.elegans	3) 1.9
15	338112				1.95
1.7		AMACOADO	Hs.254020		1.95
		AW468402	HS.204020		1.95
	325240			4. 1. to Tare 8 de agos 10	
	331833	AA412102	Hs.250911		1.95
	332252	N63882		za21f9.s1 Soares fetal liver spleen 1NFLS Homo sapiens cDNA clone	
20				IMAGE:293225 3', mRNA sequence	1.95
	300279	AW237425	Hs.253817		1.95
	326023	***************************************			1.95
		Macon4	He 100000	At this Prince and	1.94
		H86021		Total storms to the store of	1.94
0.5		AA402453	Hs.113011	-2010	
25	336276			4,122, 42,124,142	1.94
•	334913				1.94
	325417			CH.12_hs gl[5866925	1.94
	318489	AW043590	Hs.225023	ESTs	1.94
		Al148763			1.94
30				EOT GLOSE (HOLE)	1.94
50		Al092235	U- 057004	201 origination (mer in constant)	1.94
		AW452948	Hs.257631	2010	
		R84687	Hs.226306	2010	1.94
	308521	Al689808		Zot oxigitatin (not in oxino oxino) mor oxino mi	1.93
	306382	AA968967		EST singleton (not in UniGene) with exon hit	1.93
35		AA262999	Hs.42788	ESTs	1.93
-		AA501412		ESTs; Wealty similar to Pro-Pol-dUTPase polyprotein [M.musculus]	1.93
		AW168753	113.13.1000	Edited anomaly entires as a to a contract beniliary from from an anomaly	1.93
		AV 100/55		LOT ON BIOCHT (HOLIT CHICANO) WILL CHICANO	1.93
	327014			0.112.1_10.8.lpco.co.	1.93
40		AW025860		The state of the s	
40	306561	AA995223	Hs.129559		1.92
	330694	AA019806	Hs.108447	spinocerebellar ataxia 7 (olivopontocerebellar atrophy with retinal degeneration)	1.92
	313083	N50545	Hs.159200		1.92
	327752				1.92
		AA295490		EST cluster (not in UniGene)	1.92
45			Hs.255690		1.91
43		AW297762		25.0	
		AA608787	Hs.112590		1.91
	323509	AL036947		EST duster (not in UniGene)	1.91
	321452	AA317554		EST cluster (not in UniGene)	1.91
	311483	Al765013	Hs.209128	ESTs	1.91
50		Al246374	Hs.185881		1.91
-		AA322155		EST cluster (not in UniGene)	1.91
			Hs.166674		1.91
		AW296132			1.91
		AA489697	Hs.145053		
		AW518573	Hs.156110	Immunoglobulin kappa variable 1D-8	1.91
55	322019	AA354549	Hs.41181	Homo saplens mRNA; cDNA DKFZp727C191 (from done DKFZp727C191)	1.91
	334150			CH22_FGENES.339_1	1.9
		AW450967	Hs.235240	ESTs	1.9
		AW207642	Hs.174021	FSTs	1.9
		AI031771	Hs.132586		1.9
60	-		110.106000		1.9
60	326507			CH.19_hs gl 5867435	
		AA405696		EST duster (not in UniGene)	1.9
	336268			CH22_FGENES.758_2	1.9
	315278	AJ985544	Hs.116429	ESTs	1.9
	325824			CH.15_hs qi 5867048	1.9
65		AA737780	Hs.213392		1.9
05		AA418583	Hs.143621		1.9
			Hs.127716		1.89
		AA961643			1.89
		Al147341	Hs.146734		
	วเกรียวก	AIN75RN3		FST singleton (not in UniGene) with exon hit	1.89

		AL049925		DKFZP547G0910 protain	1.89
		H 72 615	Hs.17268	ESTB	1.89
	337736			CH22_EM:AC000097.GENSCAN.100-2	1.89
_	331319	AA262755	Hs.194264	ESTs	1.88
5	310767	AJ377505	Hs.158835	ESTs	1.88
	314880	Al732169	Hs.105429	ESTs	1.88
	312539	AI004377	Hs.200360	ESTs	1.88
	309674	AW205604	Hs.168034	ESTs; Weakly similar to !!!! ALU SUBFAMILY SP WARNING ENTRY !!!! [H.sapien	is] 1.£
		AI627478	Hs.187670		1.88
10		Al972146	Hs.192756		1.88
		AA007374		EST cluster (not in UniGene)	1.88
		U09060		EST cluster (not in UniGene) with exon hit	1.88
	329511	•••••		CH.10_p2 gil3983514	1.88
		Al699412	Hs.201925		1.87
15		AI815985		ubiquitin-conjugating enzyme E2D 1 (homologous to yeast UBC4/5)	1.87
		AA725670		ESTs; Weakly similar to serine/threonine kinase with SH3 domain; leucine	
	001100	7411 2001 0	110.120400	zipper domain and proline rich domain [H.sapiens]	1.87
	930000	N28271	Hs.176618		1.87
		AA055475		clathrin; light polypeptide (Lca)	1.87
20		AI159863	Hs.143713		1.87
20		AW291847		ESTs; Weakly similar to HP protein [H.sapiens]	1.87
			113.121713	EST cluster (not in UniGene) with exon hit	1.86
		AJ827817	Un 40000		1.86
		R84768	Hs.13399	Homo sapiens done 25032 mRNA sequence	1.86
25	325587	41004040	11-450000	CH.12_hs gi[6682462	1.86
23		AJ884313	Hs.158906		1.86
		R13085		EST cluster (not in UniGene)	
		AA317915		EST cluster (not in UniGene) with exon hit	1.86
	338427		11: 404000	CH22_EM:AC005500.GENSCAN.349-1	1.86
20		Al352293	Hs.191098		1.85
30		H85330	Hs.146060		1.85
		F05865	MS.249180	ubiquitin-conjugating enzyme E2E 2 (homologous to yeast UBC4/5)	1.85
		AJ230822		EST singleton (not in UniGene) with exon hit	1.85
		Al679966	Hs.150603		1.85
25		Al239811	Hs.157491		1.85
35		AW016437	Hs.233462		1.84
		AA278347	Hs.126078		1.84
	335586			CH22_FGENES.581_25	1.84
	339209			CH22_FF113D11.GENSCAN.6-4	1.84
40		Al419692		EST singleton (not in UniGene) with exon hit	1.84
40		AF055136		tectorin alpha	1.84
		H87213	Hs.158092		1.84
		AA807558		EST cluster (not in UniGene) with exon hit	1.84
		N75542	Hs.75356	transcription factor 4	1.84
	327192			CH.01_hs glf5867445	1.83
45		Al220072	Hs.165893		1.83
		R33857	Hs.181479	ESTs; Weakly similar to E-SELECTIN PRECURSOR [H.sapiens]	1.83
		W60827		EST cluster (not in UniGene)	1.83
	336616			CH22_FGENES.613_5	1.83
~ 0	328799			CH.07_hs gi 5868316	1.83
50		AW504161		EST duster (not in UniGene)	1.83
		AA766707	Hs.153039		1.83
		L28168		potassium voltage-gated channel; Isk-related family; member 1	1.82
		AL021397	Hs.137576	ribosomal protein L34 pseudogene 1	1.82
		T99949		EST cluster (not in UniGene)	1.82
55	320791	R78808	Hs.93961	ESTs; Weakly similar to !!!! ALU CLASS A WARNING ENTRY !!!! [H.sapiens]	1.82
	305733	AA829535	Hs.84298	CD74 antigen (invariant polypept of MHC; class II antigen-associated)	1.82
	308280	AJ569349	Hs.180920	ribosomal protein S9	1.81
		W78877	Hs.40111		1.81
	312946	AI915122	Hs.204087	ESTs; Weakly similar to F33D11.9b [C.elegans]	1.81
60	319474	H90265	Hs.100636	ESTs	1.81
	329519			CH.10_p2 gi 3983510	1.81
	324685	AA220982		EST duster (not in UniGene)	1.81
		N62937	Hs.139181		1.81
	329246			CH.X_hs gij5868732	1.81
65	332000	AA481271	Hs.193945	ESTs	1.81
	310811	Al420990	Hs.161303		1.81
	325866			CH.16_hs gi 5867076	1.81
	322064	Z78343		EST cluster (not in UniGene)	1.8
	333712			CH22_FGENES.251_1	1.8

				•	
	313457	AA576052	Hs.193223	ESTs	1.8
		H85687	Hs.117927		1.8
	330260		************	CH.05_p2 gi[6671884	1.8
		Al656320	Hs.197711		1.8
5	329522	MOVOLO	113.137711	CH.10_p2 gij3983507	1.8
9		44001004	Un 044447		1.8
		AA081924	Hs.211417		1.8
		Al275011	Hs.204877		
		H20560	Hs.244624		1.8
10		Al341180	HS.196115		1.79
10	319635			EST cluster (not in UniGene)	1.79
		AA730673	Hs.188634		1.79
	303093	Al400310	Hs.148958	ESTs	1.79
	309815	AW292760		EST singleton (not in UniGene) with exon hit	1.79
	326506			CH.19_hs gij5867435	1.79
15	319845	AA649011	Hs.187902	ESTs	1.79
	300280	AI623739	Hs.186387	ESTs	1.79
		Al248285	Hs.118348		1.79
		D81015	Hs.125382		1.79
	330120	2010.0	110.12000	CH.19_p2 gij6671864	1.78
20	328412			CH.07_hs glj5868405	1.78
20		NM_000565		EST cluster (not in UniGene) with exon hit	1.78
		Al475949		EST singleton (not in UniGene) with exon hit	1.78
			No 007514		1.78
		AW205705	Hs.207514		1.78
25	330282			CH.05_p2 gi[6671910	1.78
43	318856		Hs.21169		
		AA845630	Hs.117904	and the second s	1.78
	325450			CH.12_hs gi 5866941	1.78
		H54178	Hs.226469		1.78
		H20826	Hs.31783	The state of the s	1.78
30	303487	AA333666		EST cluster (not in UniGene) with exan hit	1.77
	310398	Al264671	Hs.164166	ESTs	1.77
	313230	AI540168	Hs.129563	ESTs	1.77
	317747	AI683782	Hs.128245	ESTs	1.77
	303381	AL038841	Hs.163313	ESTs; Weakly similar to IIII ALU SUBFAMILY SB WARNING ENTRY IIII [H.sapiens	1.77
35	336123			CH22_FGENES.701_8	1.77
	300185	Al286182	Hs.208484	ESTs	1.77
	316002	AW451733	Hs.119824	ESTs	1.77
	319850	AA001811	Hs.83722	ESTs	1.77
	329941			CH.16_p2 gij6165199	1.77
40	328329		•	CH.07_hs gij5868375	1.77
		A1493054	Hs.158968		1.77
	325902	•		CH.16_hs gl[5867101	1.76
		W01813	Hs.12109	WD40 protein Ciao1	1.76
		AI274851	Hs.258744		1.76
45		AL025527	Hs.222097		1.76
		AA437300	Hs.178210		1.76
		H82449	Hs.116406		1.76
		T52760	115.110400	EST cluster (not in UniGene) with exon hit	1.76
		AA627356	Hs.163315		1.76
50		T26528	He 227175	ESTS; Weakly similar to !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.sapians	
50		120020	11822/119		1.76
	327183	AA029058	Un 1951/6	CH.01_hs gl 5867442	1.76
			Hs.135145		1.76
		A1752482		EST duster (not in UniGene)	1.76
55		AA419617	11- 055000	EST duster (not in UniGene)	
55		AW451142	Hs.255628		1.76
		AW449374	Hs.257149		1.75
	319775	AA504429	Hs.6211	mathyl-CpG binding domain protein 1	1.75
		Al149880	Hs.188809		1.75
CO	337460			CH22_FGENES.780-5	1.75
60	309849	AW297444		EST singleton (not in UniGene) with exon hit	1.75
	301471	AA995014		ESTs; Weakly similar to ORF YLL027w [S.cerevislae]	1.75
		Al318426	Hs.155925		1.75
		H15355	Hs.60887		1.75
	326495			CH.19_hs gi 5867423	1.75
65	337497			CH22_FGENES.801-4	1.75
	322633	AA004534	Hs.153981	ESTs	1.75
		F10812	Hs.101433		1.75
	326930			CH.21_hs gij6456782	1.75
	316893	AAB37332		EST cluster (not in UniGene)	1.75
				•	

	324826	AA704806	Hs.143842	ESTs	1.75
		Al656924	Hs.174257		1.75
	309375	AW075342		EST singleton (not in UniGene) with exon hit	1.75
		AI821895	Hs.193481		1.75
5		AJ990741	Hs.252809	ESTs	1.75
	334387			CH22_FGENES.380_1	1.75
		Al300101	Hs.252222		1.75
		AJ418055	Hs.161160	EST6	1.74
		AW501470		EST cluster (not in UniGene)	1.74
10	300724	Al762929	Hs.206134	ESTs; Weakly similar to similar to reverse transcriptase [C.elegans]	1.74
	309906	AW339340		EST singleton (not in UniGene) with exon hit	1.74
	303714	AW501336		EST cluster (not in UniGene) with exan hit	1.74
	318704			EST cluster (not in UniGene)	1.74
	303027	AF111178		EST cluster (not in UniGene) with exon hit	1.74
15	322601	W92924		EST cluster (not in UniGene)	1.74
	319382	H93199	Hs.33665	ESTs	1.74
	315858	AA737345		EST cluster (not in UniGene)	1.74
	332243	N55484	Hs.220540	ESTs; Highly similar to ARYL HYDROCARBON RECEPTOR NUCLEAR	
				TRANSLOCATOR [H.sapiens]	1.74
20	330951	H02566	Hs.191268	Homo sapiens mRNA; cDNA DKFZp434N174 (from clone DKFZp434N174)	1.74
	324044	AL045752	Hs.211519	ESTs	1.73
	320630	AA199847	•	EST cluster (not in UniGene)	1.73
	327288			CH.01_hs gij5867481	1.73
	314986	Al201367	Hs.142860		1.73
25	319078	H17255	Hs.144515	EST8	1.73
	326278			CH.17_hs gij5867269	1.73
	302552	H49782		EST cluster (not in UniGene) with exon hit	1.73
		AF086431		EST cluster (not in UniGene)	1.73
	327075			CH.21_hs gi 6531965	1.73
30	317392	Al797588	Hs.145459		1.73
		Al076890	Hs.186949	ESTs	1.73
	315978	AA830893	Hs.119769	ESTs	1.73
		AA773580	Hs.193598		1.73
		AA004699	Hs.150580	putative translation initiation factor	1.73
35		AW296802	Hs.255580		1.73
		Al689617	Hs.200934	ESTs	1.73
		F09774	Hs.175971		1.73
		Al984592	Hs.15088		1.73
		AA663560		ESTs; Weakly similar to K11C4.2 [C.elegans]	1.73
40		AW303457		EST duster (not in UniGene)	1.72
••		T71739	Hs.75442		1.72
		AI033922	Hs.122517		1.72
	334379			CH22_FGENES.379_11	1.72
		AAB62733		EST singleton (not in UniGene) with exon hit	1.72
45		N34927	Hs.186566		1.72
	329728			CH.14_p2 gi 6065785	1.72
		N57692	Hs.118064		1.72
		AL134875	Hs.192386		1.72
		AA310580		Homo sapiens chromosome 11; BAC CIT-HSP-311e8 (BC269730)	
50				containing the hFEN1 gene	1.71
	310766	AI971438	Hs.158824		1.71
		AI809985	Hs.203340	ESTs	1.71
		AW238064	Hs.253909		1.71
		H71999		EST cluster (not in UniGene)	1.71
55		T78791	Hs.241569	ESTs; Moderately smir to !!!! ALU SUBFAMILY SQ WARNING ENTRY !!!! [H.sap	iens] 1.71
	302270	R56151		EST cluster (not in UniGene) with exon hit	1.71
	329089	,		CH.X_hs gij5868614	1.71
		AF086467		EST cluster (not in UniGene)	1.71
		Al080361	Hs.134217		1.71
60		AA489792		EST singleton (not in UniGene) with exon hit	1.71
	312681	AI028149	Hs.193124	pyruvate dehydrogenase kinase; isoenzyme 3	1.71
		Al478629	Hs.158465		1.71
	338178			CH22_EM:AC005500.GENSCAN.219-6	1.71
	338910			CH22_DJ32110.GENSCAN.11-2	1.71
65		AL080073	Hs.251414	Homo sapiens mRNA; cDNA DKFZp564B1462 (from clone DKFZp564B1462)	1.7
		AA534550	Hs.539	ribosomal protein S29	1.7
		Al701489	Hs.202501		1.7
		AW452420	Hs.248678		1.7
		AA515602	Hs.152330		1.7

	300580	AA761322	Hs.220538	ESTs		1.7
	304398	AA262785		EST singleton (not in UniGene) with exon hit		1.7
		AW339515	Hs.163700	ESTs		1.7
-	309763	AW270182		EST singleton (not in UniGene) with exon hit		1.7
5		AF085833		EST cluster (not in UniGene)		1.7
		AA764768	Hs.121158			1.7
	325031	T08597		EST cluster (not in UniGene)		1.7
	327157			CH.01_hs gij5866841		1.7
10		Al741461	Hs.161904			1.7 1.69
10		H67220	Hs.146406			1.69
		AW402302	Hs.43616			1.69
	328624	A ADEEDTT		CH.07_hs gij5868246		1.69
		AA255977		ESTs; Highly similar to ubiquitin-conjugating enzyme [M.musculus]		1.69
15	328960	AA657501	Hs.146315	CH.08_hs gi 6456775		1.69
13		AJ224172		lipophilin B (uteroglobin family member); prostateln-like		1.68
		R14537	115.204030	EST duster (not in UniGene)		1.68
		AW137700		EST singleton (not in UniGene) with exon hit		1.68
		D84424	Hs.57697	hyaluronan synthase 1		1.68
20		AA876905	Hs.125286			1.68
	328538			CH.07_hs gij5868485		1.68
		AA354146		EST cluster (not in UniGene)	-	1.68
	320303	AL079289	Hs.137154	Homo sapiens mRNA full length Insert cDNA done EUROIMAGE 35971		1.68
	302967	AI927068	Hs.110853	ESTs; Weakly similar to R10D12.12 [C.elegans]		1.68
25	310695	A1472124	Hs.157757	ESTs		1.68
	307512	Al273815	Hs.242463			1.68
	338506			CH22_EM:AC005500.GENSCAN.390-10		1.68
		AA195405	Hs.110347	Homo sapiens mRNA for alpha integrin binding protein 80; partial		1.68
20		R05385		EST cluster (not in UniGene) with exon hit		1.68
30		Z42977				1.68 1.68
		AW244073	Hs.145946			1.68
		AW137772	Hs.185980			1.67
	325780	ALGOOOD		CH.14_hs gij6381953 EST cluster (not in UniGene)		1.67
35		AL080280 T58960		EST cluster (not in UniGene)		1.67
33		AA249037		EST cluster (not in UniGene)		1.67
		AA424754	Hs.43149			1.67
		AI797592	Hs.207407			1.67
		AA081820	1101201 101	EST cluster (not in UniGene)		1.67
40	330320	71.50.005		CH.08_p2 gij5932415		1.67
••	329081			CH.X_hs gij5868602		1.67
	334026			CH22_FGENES.318_3		1.67
	317791	AJ801500	Hs.128457	ESTs		1.67
	322235	AF086106		EST cluster (not in UniGene)		1.66
45	331148	R73816	Hs.17385	ESTs		1.66
	325452			CH.12_hs gi 5866941		1.66
		AW452184	Hs.232100			1.66
	326014			CH.16_hs gl[5867160		1.66 1.66
50		AI185234	11-004000	EST singleton (not in UniGene) with exon hit		1.66
50		AA524545	Hs.224630			1.66
		W21298	Us 470407	EST cluster (not in UniGene) ESTs; Weakly similar to hyperpolarization-activated; cyclic		1.00
	310889	Al457946	HS.170437	nucleotide-gated channel 2 [H.sapiens]		1.66
	999971	AL135118		EST duster (not in UniGene)		1.66
55	335568	ALISSTIC		CH22_FGENES.581_4		1.66
<i>JJ</i>		AW263086	Hs.118112			1.66
	338983		110.110112	CH22 DA59H18.GENSCAN.3-1		1.65
	330002			CH.16_p2 gtj6623963		1.65
		AW205477	Hs.179891			1.65
60	334487			CH22_FGENES.395_9		1.65
		AI064824	Hs.193385			1.65
	309668	AW204480	Hs.253414	EST		1.65
		AW148928	Hs.248895			1.65
~		Al421641		EST singleton (not in UniGene) with exon hit		1.65
65		AW369770	Hs.130351			1.65
		AA401858	Hs.224843			1.65
	338763		11-454000	CH22_EM:AC005500.GENSCAN.517-16		1.65 1.65
		AA232729 AW138993	Hs.154302			1.65
	313231	WIA 179937	rrs. 103042	LW15		

	334073			01 (22) 0010000. 20	1.65
		T77136	Hs.8765	RNA helicase-related protein	1.65
	326530			CH.19_hs gi]5867441	1.65
		AI802877		ESTs; Weakly similar to dJ1039K5.2 [H.sapiens]	1.65
5		AA827082		EST cluster (not in UniGene)	1.65
5		AA236027		EST singleton (not in UniGene) with exon hit	1.65
		AA099732			1.65
		MAUSS/32			1.64
	337272	4.4000700	Un 040004	O. 22_1 GE120.000 1	1.64
10		AA262768	MS.243901	taration product	1.64
10		Z44266	11-050440	LOT Grant frot at ortication	1.64
		AW342028	Hs.256112	2010	1.64
		AW293704	Hs.122658	Lors	1.64
		AW295409	Hs.137945	2010	1.64
1.5		AI538438	Hs.159087		
15		AA378974	Hs.130720	ESTs; Weakly similar to CELLULAR NUCLEIC ACID BINDING PROTEIN (H.saplens	որ 1.63
		AW074330		Lot ongown (not at otherwise) that other than	1.63
		AW402238		Edit door (not all disactio)	1.63
		AA354940	Hs.145958	2010	1.63
		AA885502	Hs.187032	Luis	
20	333942			O: EL_: 02: 120000	1.63
	327469			Ot 1.02_10 8:0001112	1.63
	301918	AA476777		LOT GOOD (NO. 11 ON CONT.) WILL CHANGE	1.63
	315664	A1744068	Hs.160712	20.0	1.63
	304405	AA282572		. #O t On Bloom (not at orniconte) with order the	1.63
25	310624	Al341594	Hs.157522	To tol trace and entered and trace from the second	1.63
	319250	F11623			1.63
	310608	Al962234	Hs.196102		1.63
	317348	Al348076	Hs.831	3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase (hydroxymethylglutaricaciduria	1.63
	306513	AA989230		EST singleton (not in UniGene) with exon hit	1.63
30		AA086110	Hs.188536		1.63
	303710	A1269069	Hs.250852		1.63
	328291			CH.07_hs gij5868363	1.63
		W93278			1.63
		Al791700	Hs.127893		1.63
35		AW440133	Hs.189690		1.62
-		AI028309	Hs.114246	ESTs	1.62
	325326			CH.11_hs gi 5866875	1.62
		Al953261	Hs.169813		1.62
	327526	,		CH.02 hs gil6381882	1.62
40		AW449679	Hs.156739	ESTs; Highly similar to XG GLYCOPROTEIN PRECURSOR [H.saptans]	1.62
		AA663131		EST singleton (not in UniGene) with exon hit	1.62
		Al021996	Hs.122138		1.62
	329666	74021000	11212100	CH.14_p2 gij6272129	1.62
		AI744130	Hs.131201		1.62
45		AL031709	110.101201	multiple UniGene matches	1.62
73		Al307229	Hs.184304		1.62
		AA496019	Hs.201591		1.62
		Al183686	110201001	EST singleton (not in UniGene) with exon hit	1.62
					1.62
50		N49476	Hs.33439	ESTs; Weakly similar to IIII ALU SUBFAMILY J WARNING ENTRY IIII [H.sapiens]	
50		R87650	полочов	CH22 EM:AC005500.GENSCAN.246-9	1.61
	338220		Un 1109/0	O1 (22_E113-10000000.GE11001-1-1-10-0	1.61
		AW515270	Hs.118342		1.61
		AA984133		o-CbH-interacting protein .	1.61
55		R28628	Hs.203669	EST singleton (not in UniGene) with exon hit	1.61
55	304569	AA490934	Un 121704		1.61
	-	Al076101	Hs.131704		1.61
	326858		Un 400000	CH.20_hs gl[6552462	1.61
		AIB23847	Hs.129986		1.61
<i>(</i> 0		AA350125	Hs.187499		1.61
60		AW451654	Hs.257482	EDIS	1.61
		AA452310		ESTs; Weakly similar to T20B12.1 [C.elegans]	1.61
		Al636253	Hs.196511		1.61
		A1620617	Hs.148565		1.61
	337780			CH22_EM:AC000097.GENSCAN.121-2	1.61
65	327796			CH.05_hs gi 5867982	
		AJ610791	11. 4555	EST singleton (not in UniGene) with exon hit	1.61 1.61
		Al378032	Hs.125892		1.61
	303232	AA437414		EST duster (not in UniGene) with exon hit	1.61
	י מטניביני			LUNCZ ENGAGIAETOLU GENOLWIGOPA	

	303620	AA397546	Hs.119151	ESTs	1.61
	303481	AA336839		EST cluster (not in UniGene) with exon hit	1,61
	314481	AA548589	Hs.105846	EST8	1.61
_		Al908894	Hs.245893	ESTs	1.6
5	323473	AA262442		EST cluster (not in UniGene)	1.6
	326154			CH.17_hs gi 5867170	1.6
	331920	AA446885	Hs.99087 -	ESTs; Moderately similar to ZINC FINGER PROTEIN 141 [H.sapiens]	1.6
	323827	AW406878		EST cluster (not in UniGene)	1.6
	322452	W56710		EST cluster (not in UniGene)	1.6
10		AI739071	Hs.158515	ESTs	1.6
		Al368665	•	EST singleton (not in UniGene) with exon hit	1.6
		AF088005		EST cluster (not in UniGene)	1.6
		Al139857	Hs.143837	ESTs	1.6
		H98987	Hs.102383		1.6
15		M79230	Hs.192398		1.6
		AF052176	Hs.158529	Homo sapiens done 24457 mRNA sequence	1.6
		AW467388		EST cluster (not in UniGene) with exon hit	1.6
		Al241331	Hs.131765		1.6
20		R24204		EST duster (not in UniGene)	1.6
20		A1379982	Hs.158944		1.6
		AW072861	11 040000	EST singleton (not in UniGene) with exon hit	1.6
		AW451454		adenylate kinase 3	1.6
		AA376936	Hs.20998		1.6
25		AA382661	11-043044	EST cluster (not in UniGene) with exon hit	1.6
43		AL138357	Hs.247514	** - · · ·	1.6
		AW300144		EST duster (not in UniGene)	1.6
	333193			CH22_FGENES.98_15	1.6
	336433	A1050000	11-457400	CH22_FGENES.825_12	1.6
30		A1352096	Hs.157169		1.6
30		AW204237 AJ361722		ESTs; Weakly similar to !!!! ALU SUBFAMILY J WARNING ENTRY !!!! [H.sapiens]	
			Hs.192410		1.59
		Al498991	Hs.135655	EST singleton (not in UniGene) with exon hit	1.59
		AA017492	Hs.122952		1.59
35	326983	AA902488	NS. 122832		1.59 1.59
JJ		AW205298	Hs.202372	CH.21_hs gi 5867657	1.59
	328397	AVV2U0290	N3202312		1.59
		AA461084	Hs.187677	CH.07_hs gl 5868397	1.59
		N91419	Hs.12028		1.59
40		Al292181	Hs.150036		1.59
10		Al147545	Hs.114172		1.59
		A1928242	Hs.144383		1.59
		AA731518	1141177000	EST cluster (not in UniGene) with exon hit	1.59
		AI026836	Hs.114689		1.59
45	319142			EST cluster (not in UniGene)	1.59
		AW152263	Hs.249243		1.59
		AA883238		EST singleton (not in UniGene) with exon hit	1.58
	330123			CH.19_p2 gij6671869	1.58
	327819			CH.05_hs gi 5867968	1.58
50		AJ478814	Hs.134603		1.58
	306760	AI034094	Hs.169476	tubulin; alpha; ubiquitous	1.58
	322358	AA220235	Hs.246836		1.58
	317866	AI690269	Hs.201345	ESTs	1.58
	320725	AA703319	Hs.120967	ESTs	1.58
55	311332	AW292247	Hs.255052	ESTs	1.58
	334893			CH22_FGENES.452_7	1.58
	318730	AA398215		EST cluster (not in UniGene)	1.58
	315889	AW271639	Hs.221744		1.58
	303702	AW500748	Hs.224961	ESTs; Weakly similar to 73 kDA subunit of cleavage and polyadenylation	
50				specificity factor [H.sapiens]	1.57
		Al492660	Hs.170935		1.57
		AA156499	Hs.8454	protein kinase; cAMP-dependent; regulatory; type II; alpha	1.57
	335549			CH22_FGENES.576_10	1.57
c	329532			CH.10_p2 gij3983505	1.57
55		AA180467		EST cluster (not in UniGene)	1.57
		AI801098	Hs.151500		1.57
	337896			CH22_EM:AC005500.GENSCAN.56-3	1.57
		AA319514	Hs.211093	==	1.57
	324585	AI823969	Hs.132678	ESTS	1.57

	317151	AW298195	Hs.255735	ESTs .	1.57
	308818	Al819700	Hs.208231	EST	1.57
	326547			CH.19_hs gl[5867307	1.57
_	318833	H06234	Hs.24888	ESTs	1.57
5	320488	R31386		EST cluster (not in UniGene)	1.57
		Al124514		EST singleton (not in UniGene) with exon hit	1.57
	338083			CH22_EM:AC005500.GENSCAN.174-1	1.57
	316868	AI660898	Hs.195602	ESTs	1.57
	310937	Al472880	Hs.170480	ESTs	1.57
10	328638			CH.07_hs gij6004473	1.57
		Al651039	Hs.148559	ESTs	1.56
	327058			CH_21_hs gi[6531965	1.56
		Al653733	Hs.204079	ESTs	1.56
		AF086529		EST cluster (not in UniGene)	1.56
15		AI745498	Hs.204579		1.56
		H49819	Hs.127301		1.56
		AI934464		EST cluster (not in UniGene) with exon hit	1.56
		AJ009849	HS.199297	Homo saplens GNAS1 gene encoding NESP55	1.56
20		AF156271	11- 400400	EST cluster (not in UniGene)	1.56
20		AI052093	Hs.133132		1.56
		AL039604		EST cluster (not in UniGene) with exon hit	1.56
	328369	AA833858		EST cluster (not in UniGene)	1.56
	329415			CH.07_hs gi[5868388	1.56 1.56
25		AW468839	Hs.257767	CH.Y_hs gij5868874	1.56
	338794	A11400033	NS.201101	CH22_EM:AC005500.GENSCAN.528-1	1.56
		AA243481	He 197390	ESTs; Weakly similar to KIAA0346 [H.sapiens]	1.56
		F08434	113,127,020	EST cluster (not in UniGene)	1.56
	334287	100-10-7		CH22_FGENES.369_17	1.56
30		AW024798	Hs.233374		1.55
		AA505833	Hs.162017		1.55
		AA682913		ESTs; Weakly similar to KIAA0319 [H.sapiens]	1.55
		AA603092		EST singleton (not in UniGene) with exon hit	1.55
	324605	AW502851	Hs.249978		1.55
35	324473	AW501163		EST cluster (not in UniGene)	1.55
	300566	H86709	Hs.21371		1.55
	314165	AA761265	Hs.221281		1.55
	302868	AA157392		EST cluster (not in UniGene) with exon hit	1.55
	314034	Al299137	Hs.154214	ESTs	1.55
40	325389			CH.12_hs gi 5866921	1.55
		AA417078	Hs.193767		1.55
		AA331732	Hs.137224		1,55
		AA258033		EST duster (not in UniGene) with exon hit	1.55
15		AA744875	Hs.189413		1.55
15		AA973297	Hs.126101		1.55
		AI827065	Hs.224877		1.55
	304037	*		EST singleton (not in UniGene) with exon hit	1.55
		AW160507	11-400054	EST cluster (not in UniGene)	1.54
50		AW138174 AF086386	Hs.130651		1.54 1.54
,,		AW411383	Hs.169688	EST duster (not in UniGene)	1.54
	325303	A1141 1303	HS.103000	CH.11_hs pij5866908	1.54
		AJ457663	Hs.128127		1.54
		AA582678	113.120127	EST singleton (not in UniGene) with exon hit	1.54
55		AA861571		EST singleton (not in UniGene) with exon hit	1.54
		AA401367	Hs.128647		1.54
		Al381515	Hs.158381		1.54
		AA533505	Hs.185844		1.54
		AA513406	Hs.152307		1.54
50	323097			guanine nucleotide binding protein (G protein); q polypeptide	1.54
		W27919		inositol polyphosphate-4-phosphatase; type I; 107kD	1.54
	307892	Al376086	Hs.158759		1.54
		AA491600	Hs.161942	ESTs	1.54
		A1923673	Hs.212827		1.54
55		AA641092	Hs.257339		1.54
		AF098363		EST cluster (not in UniGene) with exon hit	1.54
		AI459140	Hs.129109		1.54
		AW151933	11. 44	EST singleton (not in UniGene) with exon hit	1.54
	:4011 SER	A1146423	He 146700	PKIC	1.53

	315674	AA651923	Hs.191850	ESTs	1.53
	321861	N79341		EST cluster (not in UniGene)	1.53
	310890	Al184510	Hs.143728	ESTs	1.53
_	330036			CH.17_p2 gij6042048	1.53
5	316907	AA843868	Hs.190567		1.53
	312299	AA972712	Hs.174818		1.53
	331128	R51361	Hs.23423		1.53
		AA663591			1.53
10	337685				1.53
10	335290			CH22_FGENES.527_3	1.53
		AIB58667			1.53
		Al418246			1.53
		AW340374	Hs.121033		1.53
15	335320				1.53 1.53
13	329841	Al565071	Hs.159983	CH.14_p2 gi 6672062	1.53
	332901	A10000/1			1.53
		AA724659			1.53
		AI016387	Hs.184406		1.53
20		AW469180	Hs.170651		1.53
		AA922236	Hs.221037		1.53
		AF038966			1.53
		Al248615			1.53
	323648	A1679968	Hs.152060		1.53
25	331482	N27515	Hs.40296	ESTs	1.53
	318059	Al023175	Hs.167022	ESTs	1.53
	325958			CH.16_hs gl 5867142	1.53
		AA664265	Hs.230213		1.53
20		AW015667	Hs.119427	==:+	1.52
30		AA224368	Hs.185164		1.52
		AA313954			1.52
	338752	*********	•	CH22_EM:AC005500.GENSCAN.513-10	1.52
		AW009312	Lie 400000	EST singleton (not in UniGene) with exon hit	1.52
35	301445	Al208364	MS. 120233	ESTS; Weakly similar to REGULATOR OF CHROMOSOME	1.52
<i>33</i>	200504	AI685263	Hs.201150	CONDENSATION [H.sapiens]	1.52
		AA635305	Hs.121574		1.52
		AI018150	Hs.148781		1.52
	336205	A010100	113.140707	CH22_FGENES.719_10	1.52
40	325701			CH.14_hs gi]5867028	1.52
		AW189460	Hs.208358		1.52
		AW407585	Hs.27769	ESTs; Weakly similar to mCAC [M.musculus]	1.52
	309271	Al986221		EST singleton (not in UniGene) with exon hit	1.52
	328385				1.52
45		Al318545			1.52
		AW103292	Hs.245328		1.52
		AA432067	Hs.258373		1.52
		AA232873			1.52
50		W52674	11- 22220		1.52
30		AW298169	Hs.143202		1.52 1.52
		AW207346 N63406	Hs.258697		1.52
		AF015950			1.52
		AI873046	Hs.258775		1.51
55		AAB87293	110200710	EST singleton (not in UniGene) with exan hit	1.51
		N85789	Hs.224155	ESTs; Weakly similar to PTERIN-4-ALPHA-CARBINOLAMINE	
			•	DEHYDRATASE [H.sapiens]	1.51
	300613	Al932294	Hs.249604	ESTs; Weakly similar to B-CELL LYMPHOMA 6 PROTEIN [H.sapiens]	1.51
	324124	Al554212	Hs.185664	ESTs; Weakly similar to SERINE/THREONINE-PROTEIN KINASE NRK2 [H.sapien	s] 1.51
60	308037	A!458207	Hs.174181		1.51
		AL043148	Hs.186257		1.51
		AW139500	Hs.116135		1.51
		A1022056		EST singleton (not in UniGene) with exon hit	1.51
65	337976	41000000		CH22_EM:AC005500.GENSCAN.107-1	1.51
65		A1083982	U. 471710	EST singleton (not in UniGene) with exon hit	1.51
		AI569399	Hs.174746 Hs.240049		1.51 1.51
		AA531082 AW025248	Hs.202445		1.51
		AW135924	Hs 224883		1.51

	310954 A	W449044	Hs.171298	ESTs	1.51
	312019 T	77046	Hs.188750	ESTs	1.51
	334773			CH22_FGENES.430_5	1.51
_	332043 A	A490831	Hs.125058	ESTs	1.51
5	322950 A	A296219		EST cluster (not in UniGene)	1.51
	337920			CH22_EM:AC005500.GENSCAN.67-3	1.51
	328993			CH.09_hs gi 5868536	1.51
	309245 A	J972447		EST singleton (not in UniGene) with exon hit	1.51
	312172 A	1222168	Hs.191168	ESTs	1.51
10	304039 T	47349		EST singleton (not in UniGene) with exon hit	1.5
	301329 A	J149653	Hs.190496	ESTs	1.5
	313376 A	1949246	Hs.200381	ESTs	1.5
	324248 A	W504918		EST cluster (not in UniGene)	1.5
	308771 A	U809301		EST singleton (not in UniGene) with exon hit	1.5
15	334935			CH22_FGENES.464_3	1.5
	319764 A	A019827		EST cluster (not in UniGene)	1.5
	318519 T	27135		EST cluster (not in UniGene)	1.5
	332807			CH22_FGENES.7_9	1.5
	322310 A	F086376		EST cluster (not in UniGene)	1.5
20	324557 A	VA489166	Hs.156933	ESTs	1.5
	332118 A	VA609585	Hs.162689	EST	1.5
	319539 R	109027		EST duster (not in UniGene)	1.5
	313149 A	W291092	Hs.201058	ESTs	1.5
	329722			CH.14_p2 gij6065785	1.5
25	323514 A	VA861209		EST duster (not in UniGene)	1.5
	308078 A	1472621		EST singleton (not in UniGene) with exon hit	1.5
	337965			CH22_EM:AC005500.GENSCAN.100-10	1.5
	335905			CH22 FGENES.635 13	1.5

TABLE 14A shows the accession numbers for those primekeys lacking unigeneID's for Table 14. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10			
10	Pkey:		Unique Eos probeset identifier number
	CAT nu	mher	Gene cluster number
	Accessi		Genbank accession numbers
15		A4=	According
	Pkey	CAT number	Accession
	322064	234514_1	BE261397 Z78343 BE176419 AA383657 N90640 AA334052 AW955761 BE536232 ÆA374087 AA584776
		197898_1	N71838 AA282003 T54072 AA761419 H92966 AI831371 AI095435 AI690247 R99331 AW964110 AA975590 AA346128
20			H94196 C03864
		46678_1	AF085833 R69689 AW341677 AA923375 BE327566 AW630415 R69601 AW615339
		212379_2	AW962489 H64300 AA329527
		199797_1	AA284333 AW468119 AA284334 AA810992
25	320856	36098_1	AB040928 T94673 Al289313 AL536039 Z44366 BE141499 D60116 D61488 D59945 AA419503 R28090 R72986 H03255
23			Al189112 Al912312 AW511018 Al401349 AW470144 C14624 Al335797 Z40300 Al014456 D60269 D60115 T16722 Al370673 D60270
	222120	46806 1	H53744 AF075088 H53797
		552826 1	BE004271 AI248023 AI022157 H71999
		441212_1	AA766346 AA809877 AA836116 AW469598 AW977404
30		47002_1	AF088005 N51816 N51731
-		47070_1	AF086106 AI193589 AW665594 N71795 AA722627 AW665373 AI300251
		286374 1	AW812795 AA419617 H67827 AW299775 AW382168 AW382133 BE171659 AW392392 BE171641 AA541393
	313833	120893_1	AA766825 AA811180 AA085906 Al762946 AW977820
	322310	47376_1	AF086376 W77804 W72689 AA837735
35		47386_1	AF086386 W77947 W72708
		47434_1	AF086431 AA886756 Al557237
		47467_1	AF086467 W81444 W81445
		47537_1	W95298 AF086529 Al912190 AW294159 Al458747 W94782
40		47545_1	AF086538 W95969 Al631911 W95835
40		187612_1	AA330095 W25112 AA249401 AL080280 T73124 H02689 AL080281
		43998_1 1511778_1	D78667 D78871 C18258
		280469 1	AA904776 AA405696 AA405962
		635249 1	AW028820 Al219068
45		497108_2	Al147202 W56755 W56710
		1651920_1	N79341 N99082 N47551
		159551_1	AA180467 AA449184 AA464831 AA505048
		38916_1	T55958 T57205 AF147346
	321914	85114_1	AA011603 N58604 N58611
50		22297_1	NM_016102 AF156271 AA781868 AW152318 AW770403 AA909463 AA482996 AA758672
		39412_1	AF156548 AA639797 AI675267 AI825497 AI823355
		311451_1	AA463262 AA463615 AW160405 AW407583
	300370	.3910_2	AW136181 AA581839 AK001221 AA694538 AA424043 Al016272 AA098960 AA884473 Al356180 BE391633 AA437086
55			Al277866 AA098827 AA992680 BE172624 AA424101 AA320776 AW962967 N77431 AW858960 AW858897 T85649 AA357743 Al827817 Al905672
33	222201	577912 1	AI082395 W92924 BE048524 AW005302 AI084474 AI369330 AI827710 AW135506 AW298694
		34330_1	AW160507 NM_013367 AF191338 AA384939 AI445790 AA730309 BE397003 BE267753 AI979163 N50386 AW583671
	322013	34300_1	AW583608 BE074466 BE074479 BE074471 AW976283 AA604393 AW162122 W73646 AI823475 N75898 W73713
			AW470099 AW513236 AW025055 AW613115 Al923379 W58081 AW664525 AW196795 Al143619 Al565152 AA025406
60			AA505846 AIG85494 AA829964 N59156 N59163 R15442 AA826919 AIG10221 AIZ00120 AA603279 AW150822 AI189513
			AI807122 AI016368 AI335868 AW583389 AI193892 AI956157 AI628879 AW591589 AW583446 AI955406 AW148396
			AI340255 AI867942 AA748525 AA876991 Z38516 AI874002 AI869474 N63100 AA429094 AA082443
	316055	409389_1	AW105663 AA693880 AW517398 AI768507 BE220851 AW978538 AA831489
	323316	981458_1	BE219300 BE327455 AL134620 R36741 R17996
65	300492	25768_1	AL031709 Al249061 AA907658 Al420444

	323371	423880_2 117336_2 30923_11	AW303457 AA972713 AA724265 N45114 N51465 BE087338 Al083551 AL135118 BE395609 BE280998 BE254670 BE294951 BE564979 AW405364 AA069256 AA129837 Al559667 BE281405 AW410850 BE041153
5			A1254811 AW301340 A1813335 AW301411 A1609469 A1611607 A1611616 A1377623 A1335509 A1613544 BE043165 A1371663 A1340452 A1612066 AW072890 A1254558 A1349884 A1370095 A1613383 A1611946 A1613353 A1307414 A1318229 A1612685 AW305327 AW268924 A1370063 A1349292 BE049068 A1369098 AW274098 A1344845 AW075187 A1053401 A1345220 BE1368515 A1613386 A1563302 AW301955 A1349681 A1307432 A1054168 A1223913 A1612081 A1348942 A1334539 A1309366 A1370098 A1252360 AW086316 AW268811 AW073482 A1054168 A1224284 A1053661 A1334538 A1309369 A1309688 A1310023
10			A1492709 A1335418 A1053999 A1366989 AW0773478 A1247058 A1249584 A1305875 A1308585 AW071272 A1271487 A1340719 A1366995 A1223673 AW271066 A1811938 AW071296 A1270798 A1254385 A1251393 A1252562 AW288236 A1254858 AW071317 A1309102 A1660987 AW2868971 A1583267 A1792484 AW075168 BE138443 A1254128 A1308822 A1310872 A1611953 A1251054 AW276658 A1335405 AW075039 A1311768 A1612028 AW271895 A1612005 A1312240 AW271082 A1371642 A1334879 A1310194 A1310772 A1345419 A1334675 A1223914 A1284707 A1284813 A1349140 A1254853 A131094 A1310170 A1309499 A1312476 A1376484 A1335467 A1340802 A1309815 A1310168 A1611446 A1345824 BES27775 A1318545
15			AISTUT70 AISBREE AIST2476 AIS76464 AIS36467 AISRUBIZ AISBBEE AISTUT66 AIGT1446 AIS46824 BES27775 AISTB645 F17185 AW614950
	308362	792518_1	AW998969 Al613519
		697809_1	AI347274 AW844024
		427238_1	AA731518 AA765714
20	324094	270098_1	BE395109 AW663898 AW237041 Al492154 BE048906 Al651285 Al983290 AW002590 Al201040 F32424 AA992272
20	200022	4737_1	AW271836
	309023	4/3/_1	AF180681 NM_015313 AA229509 AA225792 AA216413 AI888045 BE005205 AB002380 T55518 BE276097 AW380669 BE142836 AW370976 AA479384 R96425 AI680999 AA595138 H54582 AI022709 T55440 AI041769 AA861144 AW392028 AA479287 AA824634 AI638446 H54691 R96382 AA770352 AI640467 AW283491 AA779138 R28298 AA970562 C15590
25			R84455 AA020769 AL036394 H80566 BE548861 AA301207 AW959414 Al284253 AA043173 W52429 BE544571 R24852
23			Z42603 F13120 R24340 R24326 T75305 H70110 N56255 AA334210 F11453 AW947285 H80345 AA298992 AW380931 AI267175 Z45421 AW380981 W86113 AA663590 AA167577 BE566760 BE169166 AA449904 AA459205 N31126 W03564 N31208 AW993277 N44765 AW605275 D61449 W68572 AA258190 D60496 AW992964 U46277 H04097 AA370360
			AW957211 AA159775 Al631243 H83367 H21671 D61077 AW392712 N21112 H98522 N45298 N83629 Al393509 AW022043
20			AA744886 AI580482 AA723286 AI422244 AI423984 D62804 AI088349 AA587890 AI144172 N33275 BE074397 H03399
30			D62578 A1056639 A1829918 AA579584 A1089460 A1350124 W68573 A1580828 H98897 A1570468 H83715 W86114 AA923123
			D57446 AA043174 AW337721 Al266551 Al140017 AW022356 D79855 D79650 D79933 D60495 AA788666 AA693443
			AW516977 W60139 Al628156 AW473223 Al608892 AA159670 AW440366 Al421529 T50751 A1174374 AA912234 AA724248
			AW780400 AA907218 H80514 D57452 AA863419 AA552618 D28614 R44556 T16452 R44935 Z41132 D28188 H69692 Al250176 Al078860 AA370359 AW183108 H74200 AA258183 F10723 C00323 R86148 AA860570 AW130073 AL078946
35			AA410327 AA532614 AA234500 A151507 AA410288 AW969839 AA483232 AI383200 AA236540 AI807672 H73441
-	323473	193878_1	AA262442 AA768862 AA262443
	315639	392767_1	AA827650 AA827652 AW829526 BE044585 AW974451 AA761439 AA648505 AA765803
		117013_1	AA081820 AA082191 AA079811
40		457668_1	AA807558 AA827117 AW629567
40	301256	16720_1	NM, 016603 AF251038 A1124624 AA776579 AW298470 A1904888 AW082724 A1348442 BE218336 N20641 A1018013 AW858832 AW978157 AA815187 AA932948 AF157316 A1444958 W00848 W02935 A1434933 N26335 AA428681 AW371059 A1651612 AW134937 AW968911 AA488815 AL157523 W48766 AW936954 AW936941 AW579205 AW936886 AW936889 N74541 AW939953 AW578421 AW604352 AW367088 AW849258 AW849453 AW371606 A1554921 W49785 H99814
			AA805957 AA904606 AW206696 BE169229 AA333951 AA190704 AW836944 AA463219 AA430306 AW805704 N48503
45			BE222307 Al638612 BE550045 Al805304 Al690987 AA776841 H12690 AW183731 Al380760 Al636261 AA812641
			AW592656 AI686132 AA843424 H99220 AW084996 AW128879 AI800871 AA610135 AA191524 AI150076 AI474530
			AA748461 N29013 AA746372 N59606
		337193_1 247225_2	N75450 AA877636 AW137945 W05248 AA514763 AW972399 AI758397 AW195051
50		247225_2 987739_1	AW402931 BE393099 AL036947 T93676 T85475
50		197787_1	AA641735 AA281881 AA861209 AA934756 AA835887 AA641795 AA748822 AW295703
		466093_1	AW467388 AA826954
		39838_1	AF168711 AA099732 BE019157 Al380212 BE298159 AA249097 AA305112 AW962349 AW962353 AW401801 BE292961
			Al439469 AA442919 Al630537 AA724473 Al814288 AW966815 Al376871 Al860202 Al683132 AA099733 AW627633
55			AI754022 BE206347 AW183349 AI378222 BE178926 AI473282 W52944 AW752469 AW966817
		209807_1	AA301270 AA301379 AA301366
	322950	10774_1	R85652 AA114024 AA296219 AA375304 AW963796 AW885952 AW020969 AA114025 AI804930 BE350971 AI765355
			AW317067 AW974763 H85930 AW172600 AI310231 AW612019 D62808 D62864 AA652738 AI674617 AI494064 AW138666
60	222057	29014_1	A1147620 A1147629 AW611793 Al668922 AI971005 AI884742 AA174171 AK001701 AA134337 AA356202 BE163251 AW875175 AW875181 AW875177 BE163389 AK000741 AA247755 AA120819
00	322831	28014_1	AW868040 AA309118 AW962348 AA471267 AW996843 AK001452 BE005344 BE617899 AA186588 AA120820 AW363311 AA648105 N71529 BE 168417 AW673900 AB58160 AA134338 AA65997 N22162 AI335437 AI311237 AI343171 AI336661
			AW268074 AW274348 AA935005 AW576295 AW262626 AW593153 AA730055 AA662650 AA782687 AW894855 AI933533
6 5			AW193002 AW899448 AW890142 AW812670 AA085664 AA334191 BE178085 BE180553 AA389680 AA984772 AA442527
65			W26560 BE384359 AA847210 AW304931 AI669806 AA085613 AW197240 AI632828 AA581646 AW129348 AI017643
	92/221	975669 1	AW089030 D20893 Al382955 Al557148 AW499979 W60827 AL079968 AL047234
		977901_1	AW504918 N55410 AL118584 AW839266
		221757_1	AA317561 AI793000 AW235111 AI793178 AA767397 AI263113 AA719462
			000

301431 569736_1 R05385 Al061251 324303 233842_1 AL118754 AA333202 H38001 324303 300543_1 AA8B4766 AW974271 AA592975 AA447312 5 300815 41537_2 BE152396 BE152395 AA287516 BE001834 AA286678 AW406477 324349 1154015_1 AW501470 AW502931 AW499500 323715 225129_1 AA322155 AA326396 AA326538 309314 23273_3 AW009312 323758 229624_1 AA833358 AW978090 AA327679 AA810436 10 309375 127_1 AA592452 AB028994 AL043713 AW378914 AA340650 N57166 AW956914 R17981 AA334 AW977867 AW294638 AA927857 AA961627 AW303969 AW894416 AA812119 AA912758 AA424355 AA476693 AA131029 AA127777 AL043714 AA496984 T51117 AA127722 AA594012 A1492876 N7648 AW303419 AI972370 AI768172 AW286350 AW35432 AI379516 AA778421 AI276089 AA424521 N5938 AI867487 AA090677 AI827221 AI351027 W02732 AI810729 AA142848 AI082110 N59379 N29744 AZ AW777845 AI382967 F34319 AI3893934 AI282438 AW183449 AA863467 AA813469 AI092645 AI87077 AI324737 AI324737 AI32473 AI3247 AI32473 AI3247 AI32473 AI3247 AI32473 AI3247 AI324747 AI324747 AI32474 AI325474 AI32474 A	6 AA490582 W30941 83 AW119061 BE464926 81 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
5 324330 300543_1	6 AA490582 W30941 83 AW119061 BE464926 81 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
5 300815 41537_Z 324349 1154015_1 323715 225129_1 309314 23273_3 309314 23273_3 309375 127_1 10 309375 127_1 ABS01470 AVIS02931 AW499500 309375 127_1 ABS08598 AW978090 AA327679 AA810436 AP286598 AW075342 AB028994 AL043713 AW378914 AA340650 N57166 AW956914 R17961 AA336 AW977867 AW294638 AA927857 AA961627 AW303969 AW894416 AA812119 AA912758 AA424355 AA476693 AA131029 AA127777 AL043714 AA498984 T61117 AA127722 AA594012 AI492876 N7648 AW303419 AI972370 AI768172 AI85650 AI4352 AI379516 AA7778421 AI276089 AA424521 N5938 AI857487 AA090677 AI827221 AI351027 W02732 AIB10729 AA142248 AI082110 N59378 N29744 AI2 AW778845 AI382967 F34319 AI369934 AI282438 AW183449 AA863467 AA813469 AI092645 AI8707 325031 266373_2 325031 266373_2 325045 1534945_1 324473 38795_1 323473 38795_1 323473 38795_1 323827 235506_1 324473 38795_1 325031 265973_2 325031 266373_2 325031 36684 42154_1 AW406878 AW8685650 AW966151 AW966498 AA336174 AA335376 AA335537 T65475 R07676 T17017 F08143 Z43548 AW406878 AW9685650 AW966151 AW966498 AA336174 AA335376 AA335537 T52761 T52760 AL277841 AI630669 AI804370 Z41939 AW751251 AA299456 Z44739 AW860471 Z30158 AW105391 AA491201 W84638 AA706815 AI131055 AA483638 AI005075 AW340034 AI332372 AW118195 AI338 AA69332 AI189982 AI193225 AA884163 AA594562 W37747 AA249754 AA746131 AI916540 AI8321 AA833838 Z40584 AA861633 F01447 AA887937 AI933559 AW973250 AA56018 AA313954 AA354146 AI184230 AA643525	6 AA490582 W30941 83 AW119061 BE464926 81 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
324349 1154015_1	6 AA490582 W30941 83 AW119061 BE464926 81 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
323715 225129_1 309314 23273_3 309314 23273_3 309315 229624_1 309375 127_1 309375 1	6 AA490582 W30941 83 AW119061 BE464926 81 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
323758 229824_1 309375 127_1 30	6 AA490582 W30941 83 AW119061 BE464926 81 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
10 309375 127_1	6 AA490582 W30941 83 AW119061 BE464926 81 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
AW977867 AW294638 AA927857 AA961627 AW303969 AW894416 AA812119 AA912758 AA424355	6 AA490582 W30941 83 AW119061 BE464926 81 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
AA476693 AA131029 AA12777 AL043714 AA496984 T51117 AA127722 AA594012 A1492876 N7648 AW303419 AI972370 AI768172 AI826550 AI435432 AI379516 AA778421 AI276089 AA424521 N5938 AI867487 AA090677 AI827221 AI351027 W02732 AI810729 AA142848 AI082110 N59379 N29744 AI2 AW778845 AI382967 F34319 AI369934 AI282438 AW183449 AA863467 AA813469 AI092645 AI87070 T65475 R07676 T17017 F08143 Z43546 325045 1534945_1 324473 38795_1 323827 235506_1 323827 235506_1 AW406878 AW966560 AW966151 AW966498 AA336174 AA335376 AA335537 BE560824 BE513941 AW238907 AA580852 AW501176 BE241846 AW501163 AW751433 AW501340 AW66878 AW9665650 AW966151 AW966498 AA336174 AA335376 AA335537 T52761 T52760 301646 42154_1 AI277841 AI630669 AI804370 Z41939 AW751251 AA299456 Z44739 AW860471 Z30158 AW105391 AA491201 W844836 AA706815 AI131055 AA483836 AI005075 AW340034 AI332372 AW118195 AI338 AA693932 AI189982 AI193225 AA884163 AA594562 W37747 AA249754 AA746131 AI916540 AI8321 AA833838 Z40584 AA861563 F01447 AA887937 AI933559 AW973250 AA566018 AA313954 AA354146 AI184230 AA643525	83 AW119061 BE464926 51 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
AW303419 AI972370 AI768172 AI826550 AI435432 AI379516 AA778421 AI276089 AA424521 N5938 AI867487 AA090677 AI827221 AIS10272 AI810729 AA142848 AI082110 N59379 N29744 AI8 AW778845 AI382967 F34319 AI369934 AI282438 AW183449 AA863467 AA813469 AI092645 AI87077 T65475 R07576 T17017 F08143 Z43546 325045 1534945_1 324473 38795_1 323827 235506_1 BE560824 BE513941 AW2338907 AA580852 AW501176 BE241846 AW501163 AW751433 AW501340 AW406878 AW9668560 AW966151 AW966496 AA336174 AA335376 AA335537 B56151 W91936 T52761 T52760 AI277841 AI630669 AI804370 Z41939 AW751251 AA299456 Z44739 AW860471 Z30158 AW105391 AA491201 W34636 AA706815 AI131055 AA483836 AI005075 AW340034 AI332372 AW116195 AI338 AA69332 A189982 AI189225 AA884163 AA594562 W37747 AA249754 AA746131 AI916540 AI8321 AA3354146 AI184230 AA643525	31 AA723153 AA723176 283747 AI148665 701 AA863119 0 BE241715 AI910774
15	701 AA863119 0 BE241715 Al910774
325031 266373_2 325045 1534945_1 324475 R07576 T17017 F08143 Z435346 T08845 Z43538 F06691 324473 38795_1 BE560824 BE513941 AW238907 AA580852 AW501176 BE241846 AW501163 AW751433 AW501340 AW6878 AW966550 AW966151 AW966498 AA336174 AA335376 AA335537 R56151 W91938 T52761 T52760 AJ277841 AI630669 AI804370 Z41939 AW751251 AA299456 Z44739 AW860471 Z30158 AW105391 AA491201 W84438 AA706815 AI131055 AA483836 AI005075 AW340034 AI332372 AW118195 AI338 AA693832 A189982 AI189225 AA884163 AA594562 W37747 AA249754 AA746131 AI916540 AI8321 AA833838 Z49295_1 AA354146 AI184230 AA643525	0 BE241715 Al910774
20 302270 1734192_1 5560824 BE513941 AW238907 AA580852 AW501176 BE241846 AW501163 AW751433 AW501340 302270 1734192_1 5560824 BE513941 AW238907 AA580852 AW501176 BE241846 AW501163 AW751433 AW501340 302270 1734192_1 756151 W91936 301646 42154_1 F5616 F5616 W91936 W91936 F5616 W91936 W91936 F5616 W91936 W9	
324473 38795_1 323827 235506_1 302270 1734192_1 301618 10987_5 301646 42154_1 AA91201 W84638 AA706815 AII31055 AA483636 AI005075 AW340034 AI332372 AW118195 AI338 AA93232 AI189982 AI193225 AA884163 AA594562 W37747 AA249754 AA746131 AI916540 AI8321 AA833838 Z40584 AA861563 F01447 AA887937 AI933559 AW973250 AA566018 AA313954 AA354146 AI184230 AA643525	
20 323827 235506_1 302270 1734192_1 301618 10967_5 301646 42154_1 AA91201 W84638 AA706815 AII31055 AA83838 AI005075 AW340034 AI332372 AW118195 AI338 25	
301618 10967_5 301646 42154_1 T52760 AJ277841 AI630669 AI804370 Z41939 AW751251 AA299456 Z44739 AW860471 Z30158 AW105391 AA491201 W84638 AA706815 AI131055 AA483836 AI005075 AW340034 AI332372 AW118195 AI338 AA693932 A189982 AI193225 AA884163 AA594562 W37747 AA249754 AA746131 AI916540 AI8321 AA833838 Z40564 AA851563 F01447 AA887937 AI933559 AW973250 AA566018 AA313954 A323423 249295_1 AA354146 AI184230 AA643525	H56997 W84688
301646 42154_1 AL277841 AL630669 AL804370 Z41939 AW751251 AA299456 Z44739 AW860471 Z30158 AW105391 AA491201 W84636 AA706815 AI131055 AA483636 AL005075 AW340034 AL332372 AW118195 AL338 AA693832 AI189982 AI193225 AA884163 AA594562 W37747 AA249754 AA746131 AL916540 AL8321 AA833838 Z40584 AA861563 F01447 AA887937 AL933559 AW973250 AA566018 AA313954 AA354146 AL184230 AA643525	H56997 W84688
AA491201 W84636 AA706815 Al131055 AA483636 Al005075 AW340034 Al332372 AW118195 Al338 AA693832 Al189982 Al193225 AA884163 AA594562 W37747 AA249754 AA746131 Al916540 Al8321 AA833838 Z40584 AA861563 F01447 AA887937 Al933559 AW973250 AA566018 AA313954 AA354146 Al184230 AA643525 AA354146 Al184230 AA643525	H56997 W84688
25 AA693832 AI189982 AI193225 AA884163 AA594562 W37747 AA249754 AA746131 AI916540 AI8321 AA833838 Z40584 AA861563 F01447 AA887937 AI933559 AW973250 AA566018 AA313954 AA354146 AI184230 AA643525	ANDA AIKAKADO
25 AA833838 Z40564 AA861563 F01447 AA887937 AI933559 AW973250 AA566018 AA313954 A3354146 AI184230 AA643525	
323923 249295_1 AA354146 Al184230 AA643525	IOO AITO-TOOO
00/FD0 00000/ 4 44.00F00 14.00F00 14.00F00	
324580 328264_1 AA492588 AA492498 AA492571	
316774 463723_1	
309577 6483_6 AW902251 AW168753 30 302345 29533_1 X12830 NM_000565 AW503691 X58298 S72848 AA193347 AW503481 AW177946 AW178192 AW17/	/R1RR AA2R5233
AA410577 AA193465 AW177939 AW365459 BE221693	010077220250
302358 1064753_1 AW207734 D60164 D81150 D81078 D61356 AW996804	
324614 215437_1 AW503101 AA309184 N56323 R70998	
324661 385257_1 AW504161 AW503601 AW505509 35 324685 41003 1 AF226667 AA207032 AA100804 AA121287 AA488316 Al808218 AW419048 AJ911097 AW132123 AA	1500044 \$15000040
35 324685 41003_1 AF226667 AA207032 AA100804 AA121287 AA488316 AI808218 AW419048 AI911097 AW132123 AA AA100952 AI075431 AW083432 AI990554 BE466029 F28643 AF086422 W79581 AW439007 F37179	
AA731381 AW750380 AA251012 AW589846 AA730238 AA329792 AW087255 AA220982 AA082469 A	
BE298910	
324692 351987_1 AA557952 AA677593 AA618150	
40 316893 473541_1 AW979189 AA837332 AA856946 AA876935	A4004004 A1000040
303027 21796_1 AF111178 NM_005708 AF105267 AW590040 AI979260 AA001322 BE146329 AA702430 AA702429 A AI206285 AW770197 AA923032 AI379586 AA701165 AW594643 AA001909 AW002368	NAD94221 AI200348
\$24715 290035_2 AI739168 AA426249 AI199636 AW505198 AW977291 AA824583 AA883419 AA724079 AI015524 AI3	77728 AW293682
Al928140 AA731438 Al092404 Al085630 AA731340	
45 324771 385085_1 AA631739 AA768584 AW184477	
324783 389615_1 AA640770 AI683112 AA913009	
303114 37417_1 AF090948 AI06489B AI111182 303124 21112_1 AB018257 BE148640 AA081832 AK001915 AF150217 AF161350 AI219174 AW074664 D60040 AA34	16065 H28750
AW151783 BE613360 BE612628 BE502031 AW183790 AA992580 AA505815 Al310432 Al678015 AV	
50 AA806708 AI744110 H24681 C16064 D62900 AI285033 AA346064 AI865123 AW467798 BE221231 A	
Al928370 Al358387 AA748486 AV647478 AV647460 AA312313 Al279340 AW505099	
302552 82290_1 AA005122 H49792	
301918 316229_1 AA476777 T86049 AA437414 AA131479 AA086182 AB037775 AW161063 AW514393 AA332331 AW136197 BE150789 A	203040AA FF22C6AA
55 N88398 Al016201 BE004682 AA291027 R57587 AA424277 AA476391 W07532 T97036 AA218898 AV	
W01278 W90204 W90156 AL119197 R84513 AA280103 AA334994 AW965504 AA460868 AA447470	
W90028 Al078353 W90078 AA699696 N35523 AA704225 AA035059 AW134892 AA115140 Al142854	
AA460694 N46339 AA425344 N56953 AA035569 Al761083 Al658696 Al524818 Al338965 AW069249	
AA460694 N46339 AA425344 N56953 AA035569 A1761083 Al658696 Al524818 Al338965 AW069249 Al189720 AW340682 Al423380 Al275122 H17532 N80735 AA826343 Al039694 BE328398 Al192947 /	
AA460694 N46339 AA425344 N56953 AA035569 Al761083 Al658696 Al524818 Al338965 AW069249	0 Al265915 Al681773
AA460694 N46339 AA425344 N56953 AA035569 AI761083 Al658696 Al524818 Al338965 AW069249 A189720 AW340682 Al423380 Al275122 H17532 N80735 AA826343 Al039694 BE328398 A1192947. 60 Al922902 AW293087 N22141 AA730657 AW316610 N26473 F06663 Z43610 H14783 R59761 H11540 Al031748 BE220636 AW841861 AI702181 Al468447 AA907544 Al273941 AW244034 R37769 AA4460 AA476341 H89994 H29043 AW051211 N49522 AA306977	0 Al265915 Al681773 663 T96929 BE045884
A460694 N46339 AA425344 N56953 AA035569 AI761083 AI658696 AI524818 AI338965 AW069249 A189720 AW340682 A423380 AI275122 H17532 N80735 AA826343 AI039694 BE328398 AI192947. AI922902 AW293087 N22141 AA730657 AW316610 AV374 F06663 Z43810 H14783 R59761 H11540 AI091748 BE220636 AW841861 AI702181 AI468447 AA907544 AI273941 AW244034 R37769 AA4466 AA476341 H89994 H29043 AW051211 N49522 AA306977 302696 33570_1 AK000738 AA347452 AW961713 H70832 AI750643 AA362887 AW955588 W44974 AA278599 AW298	0 Al265915 Al681773 663 T96929 BE045884 8762 AA452666
AA460694 N46339 AA425344 N56953 AA035569 AI761083 Al658696 Al524818 Al338965 AW069249 AI189720 AW340682 AI423380 Al275122 H17532 N80735 AA826343 Al039694 BE328398 AI192947 A AI922902 AW293087 N22141 AA730657 AW316610 N26473 F06663 Z43610 H14783 R59761 H11544 AI091748 BE220636 AW841861 AI702181 AI468447 AA907544 Al273941 AW244034 R37769 AA4466 AA476341 H89994 H29043 AW051211 N49522 AA306977 302696 33570_1 AK000738 AA347452 AW961713 H70832 AI750643 AA362887 AW855588 W44974 AA278599 AW298 AA443355 AI337273 AA446931 AI752977 AA661554 W42674 Al292172 R41163 AA621381 AI244157	0 Al265915 Al681773 663 T96929 BE045884 8762 AA452666
60 AA460694 N46339 AA425344 N56953 AA035569 AI761083 Al658696 Al524818 Al338965 AW069249 AI189720 AW340682 AI423380 Al275122 H17532 N80735 AA826343 Al039694 BE328398 AI192947 A AI922902 AW289087 N22141 AA730657 AW316610 N26473 F06663 Z43610 H14783 R59761 H11544 AI091748 BE220636 AW841861 AI702181 AI468447 AA907544 AI273941 AW244034 R37769 AA4466 AA476341 H89994 H29043 AW051211 N49522 AA306977 AK000738 AA347452 AW961713 H70832 AI750643 AA362887 AW855588 W44974 AA278599 AW286 AA443355 AI337273 AA446931 AI752977 AA661554 W42674 AI292172 R41163 AA621381 AI244157 AJ001409 AJ001410	0 Al265915 Al681773 663 T96929 BE045884 8762 AA452666
60 AA460694 N46339 AA425344 N56953 AA035569 AI761083 Al658696 Al524818 Al338965 AW069249 AI89720 AW340682 Al23380 Al275122 H17532 N80735 AA826343 Al039694 BE328398 AI192947. AI922902 AW293087 N22141 AA730657 AW316610 N26473 F06663 Z43610 H14783 R59761 H11540 AI091748 BE220636 AW841861 AI702181 A468447 AA907544 Al273941 AW244034 R37769 AA4466 AA476341 H89994 H29043 AW051211 N49522 AA306977 AK000738 AA347452 AW961713 H70832 AI750643 AA362887 AW955588 W44974 AA278599 AW298 AA443355 AI337273 AA446931 AI752977 AA661554 W42674 Al292172 R41163 AA621381 Al244157 AJ001409 AJ001410 309917 57485_2 303347 192210_1 AA258033 AA459485	0 Al265915 Al681773 663 T96929 BE045884 8762 AA452666
60 AA460694 N46339 AA425344 N56953 AA035569 AI761083 Al658696 Al524818 Al338965 AW069249 AI189720 AW340682 Al423380 Al275122 H17532 N80735 AA826343 Al039694 BE328398 Al192947 A AI922902 AW293087 N22141 AA730657 AW316610 N26473 F06663 Z43610 H14783 R59761 H11644 AI091748 BE220636 AW841861 AI702181 Al468447 AA907544 Al273941 AW244034 R37769 AA4466 AA476341 H89994 H29043 AW051211 N49522 AA306977 AK000738 AA347452 AW961713 H70832 AI750643 AA362887 AW855588 W44974 AA278599 AW298 AA443355 Al337273 AA446931 AI752977 AA661554 W42674 Al292172 R41163 AA621381 Al244157 AJ001409 AJ001410 AW340014 AW866993 AV651649	0 Al265915 Al681773 663 T96929 BE045884 8762 AA452666

	303388	969232_1	AL039604 AL039497
		45074_1	AW250553 L07876 Z36843 R30693 Al190097 AW965317
		606341_1 363835_1	A1148763 A1903763 A1903753 A1903762 A1903800 A1903801 A1681545 A1951714 A1570397 AW873588 AA838396 A1359986 A1499790 AA773477 A1951615 T07547 AW304709 AF114041
5			BE176629 Z44580 T30422 T32690 AW953065 H10602
	303431	32082_1	NM_000539 AA019013 AA019367 AA056154 H38735 AA057003 AA021051 H38102 AA015774 AA059291 AA019439 H84843 H83375 AA019914 AA017288 R84449 W26519 H38258 AA018736 H84147 AA018577 AA059353 U49742 H38767 AA318341
			AA317553 H86646 H91989 AA317398 AA317378 W29024 W23034 T27877 AW950059 AA017195 R84262 AA057177
10			H89941 AA019904 H84662 AA015775 AA019368 AA020976 H37900 C20733 H38682 H85197 AA018578 AA017252
10			AA019440 AA059059 H38651 H84148 AA018560 W25754 C20752 AA317915 AW952115 AA317369 AA019845 R65402 AA019492 AA017196 AA056093 AA056094 AA058836 AA056155 W25957 W23027 AA056159 W23043 W21890 W28951
			AA317978 W26459 AA317265
		1653640_1 232749_1	N49476 Z45911 R21061 AA331906 AA332484
15		31534_1	AK001952 AA336839 AW249271 BE247287 AF182002 BE613472 AW962673 AA332235 AW849937 AW849814 H49893
			AAA77148 AW968944 AF182003 AW007897 BE246145 W76100 Al480141 AW410205 AA609339 Al209111 AW000979
			AA330280 AW961554 W72865 H49894 AA514317 AA620407 AA504522 AW472833 AA716609 AW129282 AA347351 AA628378 AW589860 Al636696 AA464632 AA464533 AW874189 AA757076 AA479654 AW517910 AW292357 AW872638
20			AW262288 AI910666 AW513749 AW238771 AA215797 BE387073
20	303487	20890_1	BE143533 AW850432 AK000042 AA333666 AA385314 AW966616 AW793068 AW793414 AA361103 AW390841 AA040095 AW385058 AW799162 AI383115 AI990745 AI653703 BE503893 AW150758 AI949919 AW190450 AW512348 AI625970
			AW501057 N52954 Al281378 Al401710 Al648409 AW002659 Al687839 Al093943 R33960 AA040062 Al926267 Al240425
	202400	36085_1	Al520911 Al093428 R52943 Al040372 AB040915 W40569 BE158910 BE158914 D63226 AW025860 AW583088 AA334307 AA210942 AW753212
25	303400	30003_1	AW805322 AAS62635 BE158911 AW891225 AW994862 AA805451 R28541 AA229347 N48266 AI377788 R28682 R36122
			AA811941 Al240742 Al632001 T99965 W01976 AW891205 AW891177 T97433 C15571 AA346850 AA504293 W07500
			Al694503 AA489216 AA327725 AW959917 AA694146 N68514 Al076285 AW016246 T07783 AA642400 AA716133 AA605332 R00312 AA705021 AW498605 AW891723 AW891906 AA808025 N29039 N74897 W60393 AA810184 Al627460 AW057516
30			AA807436 AA760966 Al359295 N78642 N20662 AA830300 W81705 AA832258 AW891718 AI811796 AW515523 Z41735
<i>5</i> 0			AA449978 AW891714 AI684539 AW891896 AW071701 AI890916 AI924994 AI039743 AA888524 AA244214 AI015736 AI270105 AI865077
		236389_1	F30712 F35665 AW263888 AI904014 AI904018 AA336927 AA336502
		164820_1 12593_1	H08370 Z46168 F07366 AA193168 AA193138 AK000290 Al476034 AA465309 BE148761 AW303607 AW958665 AW469635 Al819365 Al243857 AW469326 AA157110
35	302000	12300_1	AA278626 AA496257 AA306656 F29732 AA831859 AA312210 AA584476 AA579065 AA769522 AA740386 Al205635
	210510	1205335_1	AA491643 AA810400 AA417708 Al567332 AA157392 N53817 AA374229 R68545 T27119 R25687 AW750672
		434741_1	H13364 T27135 R61679 AA746905
40		7249410	H77679
40	302948	21445_1	AB038995 NM_016530 AK001111 AA465635 AW968716 U66624 AA865459 AA703019 Al040266 Al018689 Al692886 Al125372 Al376796 Al192040 N58161 AL133607 AW503673 AW505479 AA362265 AJ404671
		244351_1	F11623 H17552 AA347728
	310044	17700_1	BE311816 AK000916 AW868037 AW868039 AF228527 AI752482 AW868041 AA077049 AI201537 W55873 AA206019 AA077918 AW968729 AI978828 AW139620 AI093053 AW204025 AI418805 AA598926 AA586345 AA045669 BE314455
45	040000		AA045668
		204968_1 20640_2	W01166 AW995900 BE184300 Z44887 T34535 R51495 AW886575 AA295490 AA295162 AA295163 AW937125 T56951 BE386106 W52674
	303685		AW500106 BE241915 AW503971 NM_016542 AB040057 AA313812 AK000556 W16504 AI822088 AA259107 AA191319
50			BE085957 AA309584 BE122687 AW952435 T84469 BE088194 BE088132 AA328562 BE092674 AA263102 T39634 AW992380 R79391 R24392 H03060 AW675066 Al299952 AW020325 D25953 N75199 AA361425 AW612302 AW236333
-			AW673897 AW953686 N22323 AA649166 Al377099 H03061 AI660072 AW276405 AA809779 AI803430 AW297484
	318704	799152 1	AW510384 AA814816 AA371522 D63035 AA953567 R79392 R24282 AA876831 AW297542 AI699023 AA992652 AI041436 AI631602 AW589676 728684 724981
	318730	275116_1	Z32887 BE349923 AA398215 AA399231
55		1155758_1 183612_1	AW501336 AW501337 AA236027 BE003275
		10169_1	AA195509 BE394661 AV660757 AA489161 BE165972 AW503705 AA262785 AF123320 Z78357 NM_014171 AF161488
			AA248971 BE568575 AA461410 AA165108 AI637731 H75454 AA372934 AW339334 BE568754 BE564697 BE567299
60			AI681606 BE537269 AW197204 AA290890 AI169393 AW292463 AW470227 F27399 AW611942 BE566888 AW301701 AI675761 AI628429 AA164711 AI797753 AI656879 AI912690 AI675277 AI695099 AI094095 AW014158 BE091059 AI201748
			AW236961 Al038003 Al083606 AA401608 Al079405 Al073516 Al655537 AA401475 Al814532 Al079862 Al093789 Al422084
			Al216476 Al392760 AA926998 AA781782 Z25198 Al086377 Al185511 Al185539 Z28843 Al223792 Al378563 AA706253 Al433798 Al921885 H75455 AW025269 Al224100 Al083611 Al225057 AW196334 Al572254 AA761628 Al472801 AA283784
65		468554_1	AAB30149 AW978407 M85983 AW503637
65		1323199_1 1003489_1	W00973 N56457 AW992226 T84921 R01342 R86913 R86901 H25352 R01370 H43764 AW044451 W21298
	318807	1536467_1	F08434 Z42573 H28810
		765461_1 1534581_1	AI524124 R06841 R06842 Z43108 F06295 R13085
	5.5012		BIRTHU TOWNS LINGWAY

		94880_2 79133_1	AA742999 Z43272 AA345258 AW956677 AA031942 W19557 BE516760 BE259848 BE382680 BE615587 AI934464 AA322745 T07155 AW961174 AA307302 Z41888 AA621992 AA188400 AW770608 AI147458 AI148408 AI696291 AA972591
5	319539	1777183_1 63198_1 1536408_1	T19204 T36109 T36107 R09027 AA344892 AA329574 AW955648 AW978708 Al567804 Al378935 AW014657 Al804134 R08922 N92947 BE546788 F08365 Z43395 R54298
	320187	396254_1 65715_1	T99949 AA654769 AA664550 AW975264 Z44268 H08384 AV655948
10	319635	163534_1 747196_1	R17531 AW860899 AA338366 AW673294 BE047729 BE047722 AA330746 AW841797 H05030 Al142105 R12654 Al458682 H24240 R14537 R18426 AW867082
	319761	1699356_1 75324_2	R24204 R15712 T84695 AW630974 BE005208 R84237 AA724997 AA334867 AW955777 R18816
	319808	88596_1 7069_3	AA019827 R18947 H46852 T58960 AA609180 AA621130 AI927236 AA431075
15		193331_1 43709_1	AA261830 AW967855 H26953 AA262478 AA26869 AA296516 AW959753 AA186390 AL359619 AA356195 AA148427 R22748 AI033624 BE548853 H95327 AW579751 BE561649 AA397533 BE617136 AA236444 T89946 AA247450 N55777 W38725 AI743846 AI808406 AA922229 AI051464 W04713 R11251 W18866 AI042319 AA489276 AI224533 H95274 AW269958 T88311 AI890088 AI862754
20			AIB30958 AI669336 AI589780 AA534557 AW273839 AI338155 AI126632 N83542 BED46048 AA807028 AA848107 AW167978 AA976930 AA148428 AI289304 AI524262 AI625961 AA773469 AI222288 AI280054 AI242371 AA227222
			AA973329 AA296517 AA829436 AA234526 AI149769 AI567865 AA936939 AI590681 AW469308 AI689531 AA486419 AI422051 AI057252 AA626941 AI475352 AW247913 AI222370 AA670122 AW198034 AA486418 AI363794 AA380739
		1585983_1 368456_1	H51299 H44619 H46391 R66024 H51892 T72744 AI817336 R32883 AA595590 A1743065 R31386
25		1545647_1	W23285 H42714 F25381 F37215
	321205	81249_1	AA002047 N72537 H54142 H81580
		375160_1	AA610649 Al699484 H59558
		155125_1 17685_2	AA827082 AA732246 AA167611 AA830741 AA199847 AA410224 R53323 AW936567 AW936569 AW936568 AW936571
30		443527_1	AA769123 AA831715 AW977666 W92553
		82292_1	AA005125 W95019 W93335 AA249037
		82811_1	AA007374 AA007466 Al816886
		41762_1 179960_1	Z49979 D61703 U30168 AA740616 AA654854 AA229923
35		57156_2	R66867 R65678 R82673 W73128 R83101
		41924_1	AW968556 AJ238555 AW968731 AJ002574 AA459446 H70260 AW977557 AA767351 AW268572 AA810719 Al698677
	040000	400000 4	Al300460 AA907450 AA649224 T07415 Al536896 BE018515 Al279885 BE047421
	306513	187327_1	AW368634 AI702169 AI245179 AW368646 BE545574 AA249018 AW368633 N27553 AA989230
40	306537	•	AA991705
	306557		AA994530
	306598		A1000320
	306620 306700		A1020929 A1022058
45	308078		AJ472621
	306813		A1066544
	306830 306855		A1075803 A1083982
		c14_p2	VI002205
50	329728		
	306890		A1092235
	308100 308147		AI475949 AI498991
	306929		A124514
55	308352		Al610791
	308383		A1624497
	308521 308561		Al689808 Al701559
	308617		A1738720
60	308771		Al809301
	308828 308896		A1824829 A1858667
		41850_1	AF098363 AF098365
	303084	44211_1	AF174008 AF174027 AF174106
65		AA642912	A4000004
	305169 305177		AA663591
	305235		AA670480
	305413		AA724659

	305849	AA861571
	305854	AA862733
	307113	Al183688
	307130	· Al185234
5	305937	AA883238
_	305977	AA887293
	307451	Al248615
	307513	Al274307
	307848	Al364186
10	307871	Al368665
10	307881	AI370434
		AJ230822
	307932 307944	AJ230022 AJ418246
	307954	Al419692
15	307965	Al421641
13	309245	AI972447
	309271	A1972447 A1986221
	309365	AW072861
	309372	AW074330
20	309435	AW090537
20		AW137700
	309506	AW151933
	309536 309709	AW242630
		AVV24203U
25	325417 c12_hs	
23	325450 c12_hs	
	325452 c12_hs	AMPROGRES
	309815	AW292760
	309839	AW296076
30	309849	AW297444
3 0	309906	AW339340
	302705 31765_1	U09060 U09061
	304037 -	T26438
	304039	T47349
35	304236	W93278
33	304257	AA053294
	304382	AA232873
	304405	AA282572
	304561	AA489792
40	304569	AA490934
40	304787	AA582678
	304921	AA603092
	327819 c_5_hs	
	304968	AA614308
15	306382	AA968967
45	331263 47479_1	AW780192 AA015718 W02571
	332252 1663967_1	N63882 T91174

TABLE 14B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 14. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref: Strand: Nt_position:	Unique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.
----	--	---

5

	Nt_posi	tion:	ndicates nucle	Olide positions of predicted exons.
15	Pkey	Ref	Strand	Nt_position
13	332807	Dunham, I. et.al	. Plus	297686-297808
		Dunham, I. et.al		298277-298360
		Dunham, I. et.al		309688-310561
		Dunham, I. et.al		1841954-1842090
20		Dunham, I. et.al		3574317-3574413
		Dunham, I. et.al		8298994-8299169
		Dunham, I. et.al		9196549-9196681
		Dunham, I. et al		9686941-9687077
		Dunham, I. et.al		9792201-9792374
25	334150	Dunham, I. et.al.	Plus	10529221-10529854
		Dunham, I. et.al.		13908356-13908467
		Dunham, I. et.al.		15778859-15779026
		Dunham, I. et.al		16235169-16235328
	334893	Dunham, L et.al	. Plus	19302753-19302881
30		Dunham, I. et.al		20108247-20108373
		Dunham, I. et.al.		21491292-21491457
		Dunham, I. et.al.		22542132-22542246
	335568	Dunham, I. et.al.	Plus	24935021-24935655
		Dunham, I. et.al.		24990333-24990497
35		Dunham, I. et.al.		25044923-25045157
	336036	Dunham, I. et.al.	. Plus	29019796-29019877
		Dunham, I. et.al.		30051089-30051186 :
	336268	Dunham, I. et.al.	. Pius	31997555-31998040
	337173	Dunham, I. et.al.	. Plus	23624127-23624224
40	337460	Dunham, I. et.al.	. Plus	32536159-32536395
	337685	Dunham, I. et.al.	. Pius	3547161-3547245
	337736	Dunham, I. et al.	Plus	3850500-3850843
	337780	Dunham, I. et al.	. Plus	4113793-4113990
	337965	Dunham, I. et.al.	. Plus	7034267-7034392
45	337976	Dunham, I. et.al.	Plus	7186011-7166119
		Dunham, I. et.al.		8072708-8072827
		Dunham, I. et.al.		10391398-10391600
		Dunham, I. et.al.		12205719-12205875
5 0		Dunham, I. et.al.		12800037-12800181
50		Dunham, i. et.al.		19685043-19685354
		Dunham, I. et.al.		21221871-21221953
		Dunham, I. et.al.		27114697-27114763
		Dunham, I. et al.		28795375-28795551
~~		Dunham, I. et.al.		30760793-30760968
55		Dunham, I. et.al.		1390386-1390296
		Dunham, I. et.al.		2035790-2035681
		Dunham, I. et.al.		3832993-3832494
		Dunham, I. et.al.		7286177-7286073
60		Dunham, I. et.al.		8523830-8523671
60		Dunham, I. et al.		8552629-8552330
		Dunham, I. et.al.		13294116-13293871
		Dunham, I. et.al.		13946021-13945781
		Dunham, L et.al.		14432191-14432132
65		Dunham, I. et.al.		19463909-19463815
UJ		Dunham, I. et.al. Dunham, I. et.al.		21325792-21325667 21852922-21952826
	33325 0	Danistii, L. CLAL	Millus	₹183€8€€-₹19 √€ 0€0

	335288	Dunham, I. et.al.	Minus	22304275-22303770
		Dunham, I. et.al.	Minus	22309950-22309891
	335549		Minus	24666203-24666128
5	335862	Dunham, I. et.al.	Minus	26690300-26690125
3		Dunham, I. et.al.	Minus	26694537-26694382
	335905	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	26988888-26988719
		Dunham, I. et.al.	Minus	30477456-30477311 32093320-32093181
		Dunham, I. et.al.	Minus	34067540-34067425
10		Dunham, I. et.al.	Minus	15616509-15616358
	336616		Minus	26021027-26020848
		Dunham, I. et.al.	Minus	2035790-2035681
		Dunham, I. et.al.	Minus	17407330-17407251
15	337272		Minus	28241476-28241307
15	337357		Minus	30906179-30906109 31471747-31471569
	337497	Dunham, I. et.al. Dunham, I. et.al.	Minus Minus	33371317-33371258
		Dunham, I. et.al.	Minus	2648689-2648632
		Dunham, I. et.al.	Minus .	6051648-6051510
20		Dunham, I. et.al.	Minus	9318438-9318301
		Dunham, I. et.al.	Minus	14166440-14166104
	338752		Minus	26421374-26421135
		Dunham, L et.al.	Minus	26628148-26628009
25		Dunham, I. et.al.	Minus	29908865-29908702
23	339209		Minus	32492953-32492593
	329532	5866848 3983505	Minus Plus	32301-32650 42937-43014
	329522	3983507	Minus	35265-35458
		3983510	Plus	18407-18597
30	329511	3983514	Plus	20965-21325
	325326		Plus	47726-48024
	325303		Minus	73556-73630
	325389		Plus	239672-239759
35	325417 325450		Minus Minus	110635-110745
55	325452		Minus	435379-435552 704103-704202
	325498	5866967	Plus	173372-173930
	325587	6682462	Plus	126724-126967
	325602		Plus	79122-79251
40	325701	5887028	Minus	72936-73046
	325780		Plus	63634-63873
	329722		Minus	112713-112992
	329728 329666		Minus Plus	207544-207741 98307-98446
45	329815	6624888	Minus	68431-68720
15	329841	6672062	Minus	40181-40331
	325824		Minus	42450-42833
	325866	5867076	Minus	94358-94628
50	325902	5867101	Minus	127729-127842
50	325958		Phus	53437-53550
	326014		Minus	10358-10447
	329941 330002	6165199 6623963	Minus Plus	34319-34411 46097-46158
	326154	5867170	Minus	7103-7179
55		5867245	Plus	171799-171896
	326278	5867269	Plus	75250-75903
	330036	6042048	Plus	117120-117216
	326547		Minus	623677-623870
60		5867423	Plus	11843-11930
60	326507	5867435 5867435	Minus Minus	13038-13111
		5867435	Minus	8818-8949 9368-9509
		5867441	Minus	303000-303122
		6682496	Plus	78904-79112
65		6671864	Minus	127553-127656
		6671869	Minus	35311-35406
		6552462	Minus	69337-69670
		5867657	Minus	16023-16581
	32/014	5867664	Plus	1017630-1017788

	326930	6456782	Ptus	606950-607705
	326920	6456782	Minus	42425-42519
		6531965	Phis	2384268-2384835
	327061		Minus	3486389-3486673
5		6531965	Plus	4041318-4041431
•		6531970	Minus	6-1088
		6093735	Plus	82458-82623
	327157		Minus	4408-4746
		5867442	Plus	84317-84531
10		5867445	Minus	194652-194764
		5867481	Plus	48583-48773
		5867772	Plus	145549-145708
		6004459	Minus	57796-58015
		6381882	Minus	97010-97123
15		5867818	Pius	68767-69126
	327665		Plus	141736-141900
		5867949	Plus	93721-94421
	327819	5867968	Minus	92202-92717
		5867982	Plus	85267-85405
20	330260	6671884	Plus	45203-45269
	330282		Plus	3982-4114
		5868008	Plus	72807-72865
	328121		Plus	153782-153850
	328190	5868077	Plus	21082-21165
25		5868105	Minus	21082-21242
	327871	5868131	Minus	88889-89221
	328018	5902482	Minus	542547-543133
	328624	5868246	Minus	120666-120836
	328744	5868290	Plus	138639-138722
30	328799	5868316	Minus	80771-80923
	328291	5868363	Minus	144244-144434
	328329	5868375	Plus	191709-192239
	328369	5868388	Plus	75371-75583
	328385	5868395	Plus	369952-370155
35	328397	5868397	Plus	344967-345063
	328412	5868405	Plus	86427-86519
	328538	5868485	Plus	3814-4243
	328656	6004473	Plus	792616-792729
	328638	6004473	Plus	294618-294903
40	328903	5868514	Plus	23625-24468
	328960	6456775	Plus	38547-38837
	330320		Minus	54458-54697
	328993	5868536	Plus	49160-50084
	329081	5868602	Plus	93368-93510
45		5868614	Plus	25805-26923
		5868626	Plus	102168-102273
		5868716	Plus	166936-167020
	329218	5868726	Minus	71408-71707
~~		5868728	Plus	27422-27664
50		5868732	Minus	250541-250792
		5868874	Plus	1011438-1011818
	329454	5868887	Plus	51342-51593

TABLE 15: 169 GENES WITH SEQUENCE INFORMATION DEPICTED IN TABLE 16

Table 15 depicts UnigeneID, UnigeneTitle, Primekey, Predicted Cellular Localization, and Exemplar Accession for all of the sequences in Table 16. The information in Table 15 is linked by EosCode to Table 16.

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number

Pkey: ExAcon: UnigeneiD: Unigene Title: 10

5

Unigene number Unigene gene title Internal Eos name

EosCode: Localization:

Predicted cellular localization of gene product

15	Pkey	ExAcon	UnigeneiD	Unigene Title	EosCode	Localization
٠.	100394	D84276	Hs.66052	CD38 antigen (p45)	PBC1	plasma membrane
•		D87742		KIAA0268 protein	PAB7	not determined
,		L33881	Hs.1904	protein kinase C, iota	OAA1	cytoplasmic
20		M24736		selectin E (endothelia) adhesion molecul	ACC5	plasma membrane
	101514	M28214	Hs.123072	RAB3B, member RAS oncogene family	PFJ2	cytoplasmic
	101851	M94250	Hs.82045	midkine (neurite growth-promoting factor	LBH9	secreted
	102398	U42359		gb:Human N33 protein form 1 (N33) gene,	PDG3	
	102522	U53347	Hs.183556	solute carrier family 1 (neutral amino a	PFJ4	plasma membrane
25	102669	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	LEM9	cytoplasmic
		X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	LBG2	plasma membrane
		AA037316		hypothetical protein dJ462O23.2	PDO6	
		AA402971		kallikrein 11	PBA6	secreted
20				hypothetical protein FLJ13590	PDM3	
30		AA011176		Homo sapiens beta-1 adrenergic receptor		plasma membrane
		AA236476		transmembrane protein with EGF-like and		plasma membrane
		AA424881		hypothetical protein MGC13170	PDO8	_l
		AA456135		ESTS	PAA4 PAA3	plasma membrane not determined
35		AA609723 D51095	HS.30002	KIAA1344 protein DKFZP586E1621 protein	PDG8	not defermined
<i>JJ</i>		AA054237	He 40000	ESTs	PBF1	plasma membrane
				ESTs, Weakly similar to Z223_HUMAN ZI		PDG7
				hypothetical protein FLJ13782	BCU4	not determined
		H04649	Hs.20843	Homo sepiens cDNA FLJ11245 fis, clone F		PDG4
40		H18836	Hs.31608	hypothetical protein FLJ20041	PAV9	plasma membrane
		T17185	Hs.83883	transmembrane, prostate androgen induce	d	CHA1 not determined
	113021	T23855	Hs.129836	KIAA1028 protein	PDO3	
		AA236545		cadherin-like protein VR20	PFJ6	plasma membrane
		AA250737	Hs.72472	ESTs	BCY2	mitochondrial
45		AA599463		hypothetical protein MGC2648	PDV3	secreted
		AA609219		ESTs	OAB6	
		N41002	Hs.45107		PDT9	R
		N51919		ATPase, Ca++ transporting, type 2C, mem		PAJ5 not determined
50		N94303 N95796		ESTs, Weakly similar to I54374 gene NF2		DADO electro membrano
50		R45175	Hs.117183	Homo sapiens prostein mRNA, complete c	PBF8	-PAB2 plasma membrane
				KIAA1210 protein	PDG5	
		AA419011	116.01304	prostate androgen-regulated transcript 1	PDV5	
		AA428062		ESTs; protease inhibitor 15 (PI15)	BCU7	vesicular
55			Hs 98732	Homo sapiens Chromosome 16 BAC clone		PAZ1 not determined
				alpha-methylacyl-CoA racemase	PDO1	
				ESTs, Weakly similar to ALU1_HUMAN AL	US	PAA2 plasma membrane
		N62096		ESTs, Weakly similar to JC7328 amino aci		plasma membrane
	126399	AA128075		transmembrane, prostate androgen induce	d	PDY4
60		Al167942	Hs.61635	six transmembrane epithelial antigen of	PAA5	plasma membrane
		R38438		solute carrier family 15 (H+/peptide tra	PDO5	plasma membrane
			Hs.162859		PAA6	not determined
				secreted frizzled-related protein 4	BCX2	secreted
65				calcium/calmodulin-dependent protein kin		imilae
UJ		W26769 AA621604	rts.109201	CGI-86 protein	PAV6 CJA5	vesicular not determined
	128309	MOZ 1004		spondin 2, extracellular matrix protein	CAIN	not determined

	120404	AA172056		ESTs	PAB4	
		R73640	Hs.11260	hypothetical protein FLJ11264	PAJ3	secreted
				phosphodiesterase 9A	PEE6	nuclear
		AA219134		ESTs	PBA7	
5		AA031360		ESTs	PAA7	plasma membrane
		AA032221	Hs.61635	six transmembrane epithelial antigen of	PM17	plasma membrane
		U81599	Hs.66731	homeo box B13	PFJ5	nudear
		U42360	Hs.71119	Putative prostate cancer tumor suppresso		plasma membrane
10		X74331	Hs.74519	primase, polypeptide 2A (58kD)	PDM2	COT1 —Nachandrial
10		U07919	Hs.75746	aldehyde dehydrogenase 1 family, membe		PDT1 mitochondrial PDT1 mitochondrial
		U07919 AA045870	Hs.75746	aldehyde dehydrogenase 1 family, membe Homo sapiens mRNA; cDNA DXFZp564A0		PAB9 cytoplasmic
		U41060	Hs.79136		BCR4	plasma membrane
		AI800004		hypothetical protein	PEU4	nuclear
15		AI869666		MAD (mothers against decapentaplegic, Di		cytoptasmic
	302881	AA508353		relaxin 1 (H1)	PBH3	secreted
	303506	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	PEG4	
		D30891	Hs.19525		PBM4	not determined
		AW503733		KIAA1488 protein	PBY3	not determined
20		AJ460004		hypothetical protein FLJ20041	PEU5	plasma membrane
		A1734009		KIAA1603 protein	PCQ8	
		AM20227			PBH1 PEN3	plasma membrane _
		AVV292100 AJ338013	Hs.156142 Hs.140546		PCW3	plasma membrane
25		A1973051	Hs.224965		PET5	•
		Al682088		holocarboxylase synthetase (blotin-[prop	PBH8	
			Hs.120591		PBY2	
			Hs.187619		PBY1	
	314691	AW207206	Hs.136319	ESTs	BFF8	not determined
30	314785	Al538226		guanine nucleotide binding protein 4	CBO7	cytoplasmic
		Al672225	Hs.222886	ESTs, Weakly similar to TRHY_HUMAN TI		PBM2not determined
		AW292425		ESTs	PBM9	-1
			Hs.134427		PBJ7 PBJ9	plasma membrane
35		AA760894 Al654187	Hs.153023 Hs.195704		PBQ6	
33				deoxyribonuclease II beta	PBQ7	
				hypothetical protein FLJ10188	PBJ1	cytoplasmic
		AF071538	•	prostate epithelium-specific Ets transcr	PEN1	
		AA460775		ESTs, Weakly similar to T17248 hypotheti		
40				ATP-binding cassette, sub-family C (CFTR		plasma membrane
			3Hs.159330		PEL9	plasma membrane
		AF038966		secretory carrier membrane protein 1	PBY4	not determined
				Homo sapiens LUCA-15 protein mRNA, sp		PBY8 not determined
45		W07459	Hs.157601	Homo sapiens cDNA FLJ12166 fis, clone N	CBF9	secreted PBQ1 not determined
73			Hs.293616		PCQ7	plasma membrane
			Hs.21906			PCi2 not determined
				ESTs, Moderately similar to SPCN_HUMAI		PBJ5
		Al146686	Hs.143691		PBQ9	not determined
50	324430	AA464018	Hs.184598	Homo sapiens cDNA: FLJ23241 fis, clone	C	PBY6 not determined
			Hs.292934		PBM3	
			Hs.195839	ESTs, Weakly similar to 138022 hypotheti		cytoplasmic
		A1685464	11- 400470	gb:tti88f04.x1 NCI_CGAP_Pr28 Homo sapl		PCW6
55		A1694767		Homo sapiens cDNA FLJ13581 fis, clone F		PBJ4 plasma membrane
<i>JJ</i>	330211	Al557019	HS.110401	small nuclear protein PHAC	PBJ2	nuclear not determined
		U31382	Hs 299867	guanine nucleotide binding protein 4	PEWI	cytoplasmic
		AA449677		hypothetical protein	PBM1	not determined
		T48536		TMPRSS2, transmembrane protease, serir		PEL3 plasma membrane
60	330892	AA149579	Hs.91202	ESTs	PBQ4	plasma membrane
		R36671	Hs.14846	Homo saplens mRNA; cDNA DKFZp564D0		PCQ1cytoplasmic
		N32912	Hs.291039		PCI4	nuclear
		AA431407	Hs.98802	ESTs, Moderately similar to T14342 NSD1		not determined
65		N58172		gb:za21f09.s1 Soares fetal liver spleen	PBQ5	nuclear PR 19 not determined
U.		AA340504 T94885		gb:hw31a09.x1 NCI_CGAP_Kid11 Homo s transgelin 2	eapien PBQ8	PBJ8 not determined secreted
	332798	1 24003		omiogodii E	PBH2	nudear
	334447			•	PBY9	not determined
	338255				PBY7	not determined

	401424				PFG2	mitochondrial
	407122	H20276	Hs.31742	ESTs	PEW7	
		S79876	Hs.44926	dipeptidylpeptidase IV (CD26, adenosine	PEZ3	plasma membrane
		AF216077		Homo sapiens clone HB-2 mRNA sequence		PEY1
5		AK000631		hypothetical protein FLJ20624	PFG1	nuclear
		NM 00598		sine oculis homeobox (Drosophila) homolo		nuclear
		U80034	Hs.68583	mitochondrial intermediate peptidase	PEZ9	mitochondrial
		BE244589		glyoxalase I	PFJ3	cytopiasmic
			Hs.246973		OBH6	- Jupine
10				Homeo box A13	PFC6	
			Hs.130853		PEZ5	
	417153		Hs.81343	"collagen, type II, alpha 1 (primary ost	PFJ1	secreted
		AA279490	Hs.86368	calmagin	PFA1	ER
	418848	Al820961	Hs.193465	ESTs	PEY4	
15	418882	NM_00499		ATP-binding cassette, sub-family C (CFTR	OBH2	
	419839	U24577	Hs.93304	"phospholipase A2, group VII (platelet-a	PFH9	secreted
	421887	AW161450	Hs.109201	CGI-86 protein	PFH2	plasma membrane
	422083	NM_00114	1Hs.111256	*arachidonate 15-lipoxygenase, second ty	PFH5	cytoplasmic
	424565	AW102723	Hs.75295	guanylate cyclase 1, soluble, alpha 3	PFA3	• •
20			9Hs.154424	"deiodinase, iodothyronine, type il"	PFH6	secreted
	425710	AF030880		solute carrier family, member 4	PFD4	plasma membrane
	427958	AA418000	Hs.98280	potassium Intermediate/small conductance	PFH1	plasma membrane
			Hs.193914	KIAA0575 gene product	PFD6	nuclear
~~		AA460421		ESTs	PEZ7	
25			Hs.119383		PEY5	
		BE245562		adrenergic, beta-2-, receptor, surface	PEZ4	plasma membrane
			7Hs.250830	Rho GTPase activating protein 6	PFG6	nuclear
					PEZ1	
20		NM_00274	2Hs.2891	protein kinase C, mu	PFH4	cytoplasmic
30		AA527941		gb:nh30c04.s1 NCI_CGAP_Pr3 Homo sap		PFA2
		Al669973	Hs.200574		PEW8	
		W07088	Hs.293685		PFG3	
			Hs.325198		PEY3	
35		AJ446444 AJ972867			PEW5	
22			Hs.7130	copine IV	PEW6	
		AB028945	Hs.128612	cortactin SH3 domain-binding protein	PFC8 PEZ6	
		AF126245	Lie 14701	"acyl-Coenzyme A dehydrogenase family, i		PFH7
		AF035269	DS.14/91		n PFH8	rrn/
40		AF103907	No 171959	prostate cancer antigen 3, non-coding DD		
70		NM_01425		odz (odd Oz/ten-m, Drosophila) homolog 1		plasma membrane
		AF055575	Hs.23838	calcium channel, voltage-dependent, L ty		plasma membrane
	451939		Hs.27311	single-minded (Drosophila) homolog 2	PFJB	pidalila membrane
	451982		Hs.27373	Homo saplens mRNA; cDNA DKFZp56401		PFG9plasma membrane
45		AI922988	11327010	ESTs	PFD8	T I Gophastila montonato
		NM_00220	2Hs 505	ISL1 transcription factor, LIM/homeodoma		nuclear
			Hs.151258		PFC5	cytoplasmic
	452946		Hs.31092		PFH3	plasma membrane
					-	F

TABLE 15A shows the accession numbers for those primekeys lacking a unigeneID in Table 15. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

5

10			
	Pkey: CAT nut Accessi		Unique Eos probeset identifier number Gene cluster number Genbank accession numbers
15			
13			•
	Pkey	CAT number	Accession
20	116393	131543_1	AI972402 AI634409 AI523716 AI799749 W44518 AI424438 AI688513 AI971048 AI688324 AW013854 AA588483 AA528111 AI627428 AI582200 AI669296 AI826926 AI620526 AI669958 AI972458 AI924500 AA512903 W44517 AA335363 AW238997 BE300165 BE250665 AA284195 AA523420 W52834 AI471970 AI952824 AW003820 AW009463 AA669796 AA114966 AI653342 AA115038 AI342150 AI092100 AI968211 W51994 AI804005 AI201420 AI123210 AI738405 AI674964 AI970341 AW007500 AI493316 AI333193 AI39353 AA599463 AI655163 AI804200 AI365321 AI990213 AI657011 AA650025 AI968810 AI341978 AA599839 AW592602 AA644289 AI468578 AI565265 AI565228 BIE221535 AW973052
25	101485	18113_1	AA296520 AL021940 M30840 NM_000450 M24736 M61894 AL047443 H39560 Al694691 AA916787 Al214796 AA939085 Al150616 AA412553 AA412545 Al051015 T27654 AA694430
	126399	17331_1	AA088767 AF224278 AA128075 AL035541 AA027926 AI761441 AI972096 AW071693 AI742327 AI377498 AI804815 AI640802 AI885001 AI921394 AA595115 N71820 AI921217 AW007283 AI467828 AI369306 AA917446 AI493698 AA088701 AA126889 AI936228 AW204238 AI039567 AI925027 BE138909 AW452945 AW135998 AA310984 AA027860 AW073519 AI537597 AA953976 AI521341
30			AW273569 AW050740 AA536113 AA559064 AI474392 AW135709 AA535181 AW572959 AA570597 AI905464 AI677810 AI587642 AW975102 AA424310 AA482527 NG4192 AA568276 AW889117 AA486591 AW889172 AI381990 AI381991 AI673419 AI990950 AA487031 AI272934 AI150565 AA229168 AW316722 AI142707 BE222396 AA614168 AA122026 AW338227 AA632457 AI988726 AW369662 AA512956 AA541675 AA451748 AI250993 BE146418 AA122026
35		94346_1 21074_1	A3362575 AIB05082 AW263421 AI432462 AA135870 AA031360 AA031604 AA298475 AA298464 NM_012445 AB027466 BEA07510 BE047605 AA047125 AW084003 AA149494 AA149490 AA292528 AA570505 AA526186 AW006250 AW007762 AI341557 AI799666 AI972710 AI377966 AI962810 AI084783 AI458032 AI190971 AW148913 AA372354 AW970032 AW0077428 AA650188 AI123203 AI122890 AI280975 W73595 W73495 AI863238 AA374109 AA603986 AW149089 AW957523 AI307748 AI921067 AI338463 F24537 AI380460 AI367500 AI189309 AI814701 A7766921 AW572106 AA037024 AW072576 AA578293
40			Al288103 AA235464 AW450642 AA574230 AW294024 AI589229 AI580733 AW512227 AA877009 AI660255 AW188597 AA558228 AI572782 AA658397 AI274628 AI866359 AA864573 AI264439 AA621604 AW515493 AW243333 Z39737 AI567038 AA573997 AA573559 AW236431 AI652870 AI684973 AA034505 AA047126
45	129404 107217	156454_1 9836_1	Al267700 Al720344 AA191424 Al023543 Al469633 AA172056 AW958465 AA172238 AW953397 AA355086 AL080235 AA031750 D81382 Al480231 Al095947 Al560953 BED10721 Al870280 AA374945 AA125792 D51527 D51556 Al685541 D51559 AW117288 AA195741 Al676138 AW593439 Al201885 T30590 AW952100 D51095 AA523864 W70043 AA987586 Al421515 Al205532 AA127069 Al337367 D51595 Al453785 AW075677 AW088359 C14287 C14284
	121710	19266_1	AF163474 NM_016590 AF163475 AI761105 AI770098 AA410580 AA411616 AI590343 AI739050 AL050198 AI882645 AA419104 AA513809 AA333032 AI816915 AW139625 AA640889 AI311391 AI627693 AW135514 AA418011 AI269149 AI245259 AI970008 AI970017 AW139445 AA569503 AI761072 AI766179 AI759995 AI300776 AI870129 AW150770 AA226501 AA226220
50		291015_1	Al249368 Al742316 AA428062 AA442089 Al864189 BE349478 Al803475 Al584049 BE552085 Al088609 Al264197 Al886144 Al129474 Al307145 BE181300 AW058403 Al696838 AW748598 AA442196 Al216428
	315051 324626	entrez_U42359 347217_1 336411_1	AW292425 BE467167 Al702953 BE550961 BE222309 Al299348 Al693336 AA541708 Al685464 AW971336 AA513587 AA525142
55	319181	16065_1	NM_012391 AF071538 AB031549 Al685592 Al745526 AA662204 AW130657 AA662164 AW971121 Al668916 AA513274 Al991223 Al979170 AW298436 AA639821 Al859010 AW513842 Al687669 AA662521 AA546598 Al345056 Al305374 BE043418 Al432856 Al334840 Al379796 Al492693 Al307915 BE042082 Al307858 Al307858 Al309488 BE042210 Al435670 Al371605 Al862491 Al284563 Al308872 Al255044 Al254601 Al251236 Al473073 Al473042 Al432760 Al435664 Al336826 Al289365 Al369096 Al862274 Al334871 Al432856 Al255044 Al254601 Al251236 Al473073 Al473042 Al432760 Al435664 Al336826 Al289365 Al369096 Al862274 Al334871 Al349858 Al375415 Al309895 Al313017 Al862291 Al311936 Al378718 Al305722 Al306769 Al308888 Al334565 Al862296 Al344230 Al435685 Al344087 Al378696 Al311209 Al435775 Al310611 Al311154 Al432289 Al431561 Al492881 Al432867 Al3332288
60			Al492796 Al432769 Al310299 Al432273 Al379820 Al275319 Al435753 Al609441 Al432767 Al369100 Al311420 Al349974 Al247157 Al334677 Al270910 Al224320 Al305608 Al334489 Al377152 Al350012 Al370086 Al335053 Al306781 Al306750 Al334849 Al334874 Al340380 Al307876 Al305974 Al305972 Al311521 Al334872 Al862909 Al311498 Al335051 Al229684 Al310859 Al311862 Al862483 Al492775 Al307906 Al492708 Al289693 Al340373 Al307910 Al311359 Al435663 Al334865 Al311492 Al492809 Al492690 Al431576 Al862268 Al311879 Al308435 Al492792 Al862512 Al275321 Al431568 Al431564 Al307885 Al307926 Al435692 Al435778 Al310182
65			Al308894 Al492707 Al492713 Al308560 Al307829 Al343234 Al580598 AW472796 Al340918 Al310243 Al309368 Al307920 Al289665

			ALICONTER ALICONOMO ALICON
			Al306777 AW086318 AW086292 AW086378 Al310027 Al275293 Al369082 Al340900 Al306749 Al371558 AW086287 BE043803 Al306783 Al306272 Al287948 Al270917 Al284816 Al336813 Al284546 Al308044 Al275280 Al270872 Al306795 Al289687 Al223570
			AI305303 AI289677 AI287742 AI275284 AI306812 AI336701 AI371554 AI378719 AI344988 AI223631 AI335141 AI343222 AI284568
_			Al305357 Al275270 Al345932 Al436549 Al307925 Al311502 Al344238 Al343182 Al308508 Al305988 Al270790 Al379792 Al305647
5			AI305410 AI432251 AI436517 AI343227 AI305534 AI340387 AI271043 AI305499 AI271046 AI305962 AI289465 AI305378 AI289725
			A1310848 A1305848 A1289362 A1252984 A1307049 A1310831 A1306993 A1306796 A1224659 A1305969 A1349855 A1306184 A1306948
			A1284676 A1309155 A1343202 A1432785 A1306815 A1369081 A1270885 A1289699 A1435704 A1309647 A1305716 A1311281 A1287927 A1472995 A1340423 A1270958 A1307069 A1305384 A1270807 A1275306 A1311890 A1275263 A1432750 A1289371 A1432861 A1255113
			AI305709 AI473008 AI311168 AI309711 AI377164 AIZ71201 AI289560 AI309710 AI306195 AI311201 AI287741 AI271066 AI432876
10			A1275281 A1379795 A1472972 A1311967 A1306826 A1305465 A1270792 A1473019 A1305340 A1270922 A1305995 A1305462 A1254144
			AI270969 AI473012 AI305390 AI275278 AI223644 AI289692 AI250318 AI305372 AI289691 AI250521 AI306283 AI306814 AI307933
			A1473160 A1432903 A1223720 A1254979 A1334862 A1306926 A1289541 A1432248 A1435722 A1435698 A1432859 A1310683 A1473175
			A1335144 A1289467 A1436489 A1306928 A1473033 A1305763 A1307868 A1307882 A1348959 A1435736 A1432857 A1432896 A1435735 A1432283 A1473086 A1432863 A1473081 A1432825 A1307840 A1473164 A1432885 A1473166 A1472982 A1435734 A1473060 A1473171
15			Al432279 Al432882 Al334670 Al436512 Al432827 Al432852 Al473051 Al473077 Al435697 Al271509 Al492781 Al472983 Al473018
			Al432897 Al473043 Al432871 Al436536 Al473157 Al349715 Al432777 Al473016 Al473158 Al340369 Al307941 Al432773 Al377146
			A1492791 A1270950 A1305342 A1284604 A1306269 A1284811 A1270811 A1289347 A1334869 A1334852 A1311759 A1250382 A1309520
			Al289550 Al305721 Al340870 Al270901 Al308575 Al307804 Al340715 Al270941 Al309808 Al246867 Al473014 Al307039 Al289360 Al473069 Al492788 Al344013 Al305876 Al436510 Al340742 Al473028 Al307891 BE041871 BE041268 BE042340 BE041946
20			BE041783 Al306173 Al201948 Al926972 Al275769
	338255	CH22_6856F0	G_LINK_EM:ACOO
	330211		
			6_5_LINK_C4G1.G
25		372969_1	G_387_7_LINK_EM AA669097 AA513815 AA026798 AA676526 AA704429 AA704269 AW118282 AA578216 N58172
		20265_1	AW578842 BE156562 BE156690 BE156489 BE081033 AK001559 BE149402 M85387 AW367811 AW367798 R17370 AI908947
		· -	AA382932 R58449 H18732 AA371231 AW962899 AA713530 AW892946 R53463 H11063 AW068542 Z40761 BE176212 BE176155
			W23952 W92188 AW374883 AA303497 AW954769 AA036808 BE168063 AW382073 AW382085 AL041475 H80748 Al078161
30			BE463983 AI805213 AI761264 W94885 N94502 AI623772 AI419532 AI810302 AI634190 AW002516 AW150777 AI352312 AI367474 AW204807 AI675502 AI337026 AW134715 BE328451 AI123157 AI560020 AI300745 AI608631 AI248873 AA742484 AW051635
50			H18646 Al245045 AA507111 Al640510 Al925594 AA115747 AA143035 AA151106
	332697	13699_1	X51405 NM_001873 T11322 AL118886 BE328175 AW136009 BE467445 AW470313 AA774852 BE504139 AW501048 AA082792
			AW389231 AA370044 R36841 AA371457 C04813 R25791 R25556 AW895854 AW903819 AW895671 AW895677 BE159723
35			AW895664 AW895597 AW895595 AW895665 AW888518 AI900724 F06081 F08503 AL119462 AW895730 AW888518 R26511
55			R26489 AA334126 AA327626 N85713 AW895998 AA223622 F05468 AA370749 W05590 M78202 AA371073 AW498607 R15017 T16991 AA001282 AA001138 AA551566 AA330159 AI922855 AA383512 AA029603 D82246 D82171 T84933 H56545 AA348060
			AA176888 R96764 AW451817 AA385766 AA452618 Al690057 AA988822 BE549928 AA150901 W57992 AW899925 C05281
			AA932042 AA370980 AW962877 W04741 AA369982 AW385948 AA922466 N75882 AI422070 AI361256 AI680224 D57122 T94885
40			R53266 R45713 T19071 AW796277 AA325333 F04719 F02334 AA358146 AA626597 AA358304 AW028099 AL119570 D57290
40			D58273 D57796 N48555 Al361969 AA329457 D57225 AW024046 AA992606 AW022118 AW021538 AA935845 H89870 H56546 AW961219 AA453239 AW837541 N45521 BE218029 AA318877 AA327740 AW961809 T92139 D53216 D52365 D53363 D53312
			D53116 Al547267 AA679935 AW026552 AW026418 AW190507 Al927710 AW244108 D50948 AW054991 AW021063 AW022511
			AA493436 Al365636 BE464751 AW149384 AA102442 AW771368 AI818251 AI126368 D51049 AI421542 AI559467 AW079779
45			AW021048 AW023969 AW044214 A458264 AA027274 A1620254 AW028917 BE219511 AA326242 N67561 A1971273 AA878328
43			D57131 AA770662 Al309299 Al796767 AA613338 W58076 Al566287 Al445573 Al880260 AA001919 AW339259 Al492610 Al492611 R97692 Al301425 AA722603 D58361 Al350323 AA973926 Al431263 AA516126 AA865467 Al925177 N39443 AA001943 Al298371
			A1082412 AA665090 AA583433 H89871 AA977231 A1362219 A1056096 A1270446 N67524 N22103 AW614224 AA744054 AW243622
			Al613188 Al929173 Al350243 Al362138 AA744004 AA176661 D56787 Al955625 Al393109 Al094769 Al479728 Al423107 Al955617
50			Al034036 Al582196 AW264534 Al418961 AA570761 Al343538 AA650341 AA982503 AA770004 AL039666 Al862675 AW190335
50			AA610274 AW418627 BE467472 D56786 T28749 Al217610 Al359556 T23523 AL040189 AA846222 AA651636 D51280 Al888986
			Al521167 Al340177 AW612815 Al625285 AA621607 AA177059 AA229768 AA829788 Al749682 AW190631 N75299 AA230089 Al916632 BE069542 AA890020 AA528397 AA995390 BE503860 AA570812 AW339396 Al197986 Al203725 Al282379 AA670375
			AA461513 F01728 AW243599 C00856 N75567 R95995 AA150932 R95961 AA648060 AA833800 AA827073 AA101126 AA864190
			T93566 BE167472
55		25529_1	AF0308B0 NM_000441 AC002467 AA385554 H23053 AW891838 AI139968 AA653057 AI695233
	432189	342819_1	AA527941 Al810608 Al620190 AA635266 AB028945 T77648 F13328 AL157605 Z46212 AA304736 F11855 T66098 T30174 AW954164 AW176301 AW748243 AA456428
	-	W31_1	AJ369958 AAS38565 AW959813 Z42008 AA994779 AJ683909 F11019 F10926 AJ769597 AJ752550 T65015 AJ884314 AA643954
			Z41838 AW020147 Al038822 AW571822 AA299781 AA894928 AF131790 BE005411 Al902476 AW082695 AA464384 R42750
60			AW902301 AA464273 R05837 Z38294 H41098 AL134507 M86079
	447210	7119_1	AF035269 AF035268 NM_015900 T96213 U37591 AA156832 AA299371 A1084325 H95977 A1765967 BE221465 AA156726 A1969563
			AW024539 A436791 AI949451 AA843093 AI452756 AA824232 AI306667 T96131 AW207447 AW243556 AW957032 AI084332 H95978 U30998
	449625	8113_1	NM_014253 AF100772 BE088769 AL022718 BE161779 AW863569 BE161640 AL039060 BE168542 AW296554 AA323193 AA235370
65		_	AW779760 N48674 Al375997 R45432 D59344 Al203107 F07491 R35360 R25094 Al913631 Al498402 T61382 Al016320 N45526
	400000	00040-4	T61415 AA331486
	452039	89513_1	Al922988 H05475 AA021608 AW169947 AA913750 Z41614 AW800012

TABLE 15B shows the genomic positioning for those primekeys lacking unigene ID's and accession numbers in Table 15. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

10	Pkey: Ref: Strand: Nt_position:		Inique number corresponding to an Eos probeset Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the sublication entitled "The DNA equence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Indicates DNA strand from which exons were predicted. Indicates nucleotide positions of predicted exons.				
15	Pkey	Ref	Strand	Nt_position .			
20	332798 338255 330211	Dunham, I. et.al. Dunham, I. et.al. Dunham, I. et.al. 6013592 8176894	Plus Minus Minus Plus Plus	14308764-14308824 232147-231974 15242294-15242231 59158-59215 24223-24428			

5

TABLE 11 AND SEQUENCE LISTING

SEQ ID NO:1 BCU4 DNA SEQUENCE

5 13-1890 (underlined sequences correspond to start and stop codons) Coding sequence: 31 41 51 ATTGGATCAA ACATGTCACA AGAGTCGGAC AATAATAAAA GACTAGTGGC CTTAGTGCCC 60 ATGCCCAGTG ACCCTCCATT CAATACCCGA AGAGCCTACA CCAGTGAGGA TGAAGCCTGG 120 AAGTCATACT TGGAGAATCC CCTGACAGCA GCCACCAAGG CCATGATGAT CATTAATGGT 180 10 GATGAGGACA GTGCTGCTGC CCTCGGCCTG CTCTATGACT ACTACAAGGT TCCTCGAGAC 240
AAGAGGCTGC TGTCTGTAAG CAAAGCAAGT GACAGCCAAG AAGACCAGGA GAAAAGAAAC 300
TGCCTTGGCA CCAGTGAAGC CCAGAGTAAT TTGAGTGGAG GAGAAAACCG AGTGCAAGTC 360 GCATAGAGATC TICCAGTGAA CCTTTCCCTA AATCAAGATC ACCTGGAGAA TICCAAGCCG 420
GAACAGTACA GCATCAGCTT CCCCGAGAGC TCTGCCATCA TCCCGGTGTC GGGAATCACC 480
GTGGTGAAAG CTGAAGATT CACACCAGTT TTCATGGCCC CACCTGTGCA CTATCCCCGG 540
GGAGATGCG 15 CTGGCCACCC ACAGCGCCTA TCTCAAAGAC GACCAGCGCA GCACTCCGGA CAGCACATAC 660 AGCGAGAGCT TCAAGGACGC AGCCACAGAG AAATTTCGGA GTGCTTCAGT TGGGGCTGAG 720 20 GAGTACATGT ATGATCAGAC ATCAAGTGGC ACATTTCAGT ACACCCTGGA AGCCACCAAA 780
TCTCTCCGTC AGAAGCAGGG GGAGGGCCCC ATGACCTACC TCAACAAAGG ACAGTTCTAT 840
GCCATAACAC TCAGCGAGAC CGGAGACAAC AAATGCTTCC GACACCCCAT CAGCAAAGTC 900 AGGAGTGTGG TGATGGTGGT CTTCAGTGAA GACAAAAACA GAGATGAACA GCTCAAATAC 960 25 TGGAAATACT GGCACTCTCG GCAGCATACC GCGAAGCAGA GGGTCCTTGA CATTGCCGAT 1020
TACAAGGAGA GCTTTAATAC GATTGGAAAC ATTGAAGAGA TTGCATATAA TGCTGTTTCC 1080
TTTACCTGGG ACGTGAATGA AGAGGCGAAG ATTTTCATCA CCGTGAATTG CTTGAGCACA 1140 TITIACTIGG ACGIGAATICA AGAGGCGAAG ATTITICATCA ECGIGAATIC CTIGAGCACA 1140
GATTICTICCT CECAAAAAGG GGTGAAAGGA CTICCTITIGA TGATTCAGAT TIGACACATAC 1200
AGTTATAACA ATCGTAGCAA TAAACCCATT CATAGAGCTT ATTIGCCAGAT CAAGGICTTC 1260
TGTGACAAAG GAGCAGAAAG AAAAATCCGA GATGAAGGC AGAAGCAGAA CAGGAAGAAC 1320
GGGAAAGGCC AGGCCTCCCA AACTCAATGC AACAGCTCCT CTGATGGGAA GTTGGCTGCC 1380
ATACCTTTAC AGAAGAAGA TGACATCACC TACTTCAAAA CCATGCCTGA TCTCACACTCA 1440
CAGCCAGTTC TCTTCATACC TGATGTTCAC TTTTGCAAACC TGCAGAGGAC CGGACAGGTG 1500
TATTACAACA CGGATGATGA ACGAGAAGGT GGCAGTGTCC TTGTTAAAAC GATGTTCCGG 1560 30 35 CCCATGGAAG AGGAGTTTGG TCCGGTGCCT TCAAAGCAGA TGAAAGAAGA AGGGACAAAG 1620 CGAGTGCTCT TGTACGTGAG GAAGGAGACT GACGATGTGT TCGATGCATT GATGTTGAAG 1680 TCTCCCACAG TGATGGGCCT GATGGAAGCG ATATCTGAGA AATATGGGCT GCCCGTGGAG 1740 AAGATAGCAA AGCTITTACAA GAAAAGCAAA AAAGGCATCT TGGTGAACAT GGATGACAC 1800
ATCATCGAGC ACTACTCGAA CGAGGACACC TTCATCCTCA ACATGGAGAG CATGGTGGAG 1860
AGCTTCAAGG TCACGCTCAT GGAAATCTAG CCCTGGGTTT GGCATCCGCT TTGGCTGGAG 1920
CTCTCAGTGC GTTCCTCCCT GAGAAGACA GAAGCCCCAG CCCCAGAACC TGGAGAGACCCCA 1980
TCTCCCCCAT CTCACAACTG CTGTTACAAG ACCGTGCTGG GGAGTGGGCC AAGGCACAG 2040
CCCCACAGTC GGTGTGCTTG GCCCATCCAC TGGCACCTAC CACGGACCG AAGCCTGAGC 2100 40 COCTCAGGAA GGTGCTTAG GCCTGTTGGA TTCCTATTTA TTGCCCACCT TTTCTTGGAG 2160
CCCAGGTCCA GGCCCGCCAG GACTCTGCAG GTCACTGCTA GCTCCAGATG AGACCGTCCA 2220
GCGTTCCCCC TTCAAGAGAA ACACTCATCC CGAACAGCCT AAAAAATTCC CATCCCTTCT 2280
TTCTCACCCC TCCATATCTA TATCTCCCGA GTGGCTGGAC AAAATGAGCT ACGTCTGGGT 2340 45 GCAGTAGTTA TAGGTGGGGC AAGAGGTGGA TGCCCACTTT CTGGTCAGAC ACCTTTAGGT 2400
TGCTCTGGGG AAGGCTGTCT TGCTAAATAC CTCCAGGGTT CCCAGCAAGT GGCCACCAGG 2460
CCTTGTACAG GAAGACATTC AGTCACCGTG TAATTAGTAA CACAGAAAGT CTGCCTGTCT 2520 50 GCATTGTACA TAGTGTTTAT AATATTGTAA TAATATATTT TACCTGTGGT ATGTGGGCAT 2580
GTTTACTGCC ACTGGCCTAG AGGAGACACA GACCTGGAGA CCGTTTTAAT GGGGGTTTT 2640
GCCTCTGTGC CTGTTCAAGA GACTTGCAGG GCTAGGTAGA GGGCCTTTGG GATGTTAAGG 2700 GCCICITIGG CIGHTCAAGA GACH IGGAGG GCLAGGTAGA GGGCCTTAG GATTAAGG 2000
TGACTGCAGG TGATGCCAAG ATGGGACTCTG CAATGGGCAT ACCTGGGGGC TCGTTCCCTG 2760
TCCCCAGAGG AAGCCCCCTC TCCTTCTCCA TGGGCATGC TCTCCTTCGA GGCCACCACG 2820
TTTATCTCAC AATGATGTTTTTGCCTGAC TTTCCCTTTGGCT GCGGCATGG CGAAAGGT 2880
CATTCTGTCT GAGACCCCAG CTCCTTCTCC AGCTTTGGCT GCGGCATGG CGAGCCTTT 2940
CTGGAGAGCC TCTGCAGGGG GTTTGCCATC AGGGCCCTGT GCCTGGGTCT GCTGCAGAGC 3000
TCCTTGGCTA TCAGGAGAAT CCTGGACACT GTACTGTGCC TCCCAGTTTA CAAACACGCC 3060 55 60 CTTCATCTCA AGTGGCCCTT TAAAAGGCCT GCTGCCATGT GAGAGCTGTG AACAGCTCAG 3120 CTCTGAGTCG GCAGACTGGG GCTTCCTCCT GGGCCACCAG ATGGAAAGGG GGTATTGTTT 3180 GCCTCACTCC TGGATGCTGC GTTTTAAGGA AGTGAGTGAG AAAGAATGTG CCAAGATACC 3240 TGGCTCCTGT GAAACCAGCC TCAGGAGGGA AACTGGGAGA GAGAAGCTGT GGTCTCCTGC 3300 TACATGCCT GGGAGCTGGA AGAGAAAAAC ACTCCCCTAA ACAATCGCAA AATGATGAAC 3360
CATCATGGGC CACTGTTCTC TTTGAGGGGA CAGGTTTAGG GGTTTGCGTT CGCCCTTGTG 3420
GGCTGAAGCA CTAGCTTTTT GATAGCTAGA CACAACAAGGT TCTCTACAAA 3480
GGCCCAGATT TGTTTTGTAAA GCACTTTTGAC TCTTACCTGG AGGCCCGCTC TCTAAGGGCT 3540
TCCTGCGCTC CCACCTCATC TGTCCCTGAG ATGCAGAGCA GGATGGAGGG TCTGCTTCTA 3600 65 70 GGCAGCCTGA CACAGGCAAC CTACCCCTCT CTCTCCAGCC TCTTTATGAA ACTGTTTGTT 4080
TGCCAGTCCT GCCCTAAGGC AGAAGATGAA TTGAAGATGC TGTGCATGTT TCCTAAGTCC 4140
TTGAGCAATC ATGGTGGTGA CAATTGCCAC AAGGGATATG AGGCCAGTGC CACCAGAGGG 4200

Nucleic Acid Accession #: NM_024915

TGGTGCCAAG TGCCACATCC CTTCCGATCC ATTCCCCTCT GTATCCTCGG AGCACCCCAG 4260

TTTGCCTTTG ATGTGTCCGC TGTGTATGTT AGCTGAACTT TGATGAGCAA AATTTCCTGA 4320 GCGAAACACT CCAAAGAGAT AGGAAAACTT GCCGCCTCTT CTTTTTTGTC CCTTAATCAA 4380 ACTCAAATAA GCTTAAAAAA AATCCATGGA AGATCATGGA CATGTGAAAT GAGCATTTTT 4440 5 TTCTTTTCTT TTTTTTTTT TTTTTTTAAC AAAGTCTGAA CTGAACAGAA CAAGACTTTT 4500 TCCTCATACA TCTCCAAATT GTTTAAACTT ACTTTATGAG TGTTTGTTTA GAAGTTCGGA 4560 CCAACAGAAA AATGCAGTCA GATGTCATCT TGGAATTGGT TTCTAAAAGA GTAAGGCATG 4620 TCCCTGCCCA GAAACTTAGG AAGCATGAAA TAAATCAAAT GTTTATTTTC CTTCTTATTT 4680 AAAATCATGC TAATGCAACA GAAATAGAGG GTTTGTGCCA AATGCTATGA ACGGCCCTTT 4740 10 CTTAAAGACA AGCAAGGGAG ATTGATATAT GTACAATTTG CTCTCATGTT TTT SEQ ID NO:2 BCU4 Protein sequence: NP_079191.1 Protein Accession #: 15 MSQESDNNKR LVALVPMPSD PPFNTRRAYT SEDEAWKSYL ENPLTAATKA MMIINGDEDS 60 AAALGILYDY YKVPRDKRILI SYSKASDSQE DQEKRNCLGT SEAQSNISGG ENRYQYILKTV 12
PVNLSLNQDH LENSKREQYS ISFPESSAII PVSGITVVKA EDFTPVFMAP PVHYPRGDGE 180
EQRVVIFEQT QYDVPSLATH SAYLKDDQRS TPDSTYSESF KDAATEKFRS ASVGAEEYMY 240 20 DQTSSGTRQY TLEATKSLRQ KQGEGPMTYL NKGQFYAITL SETGDNKCFR HPISKVRSVV 300 MVVFSEDKNR DEQLKYWKYW HSRQHTAKQR VLDIADYKES FNTIGNIEEI AYNAVSFTWD 360 VNEEAKIFIT VNCLSTDFSS QKGVKGLPLM IQIDTYSYNN RSNKPIHRAY CQIKVFCDKG 420 25 AERKIRDEEQ KONKKNGKGQ ASQTQCNSSS DGKLAAIPLQ KKSDITYFET MPDLHSQPVL 480, FIPDVHFANL QRTGQVYYNT DDEREGGSVL VKRMFRPMEE EFGPVPSKQM KEEGTKRVLL 540 YVRKETDDVF DALMLKSPTV MGLMEAISEK YGLFVEKIAK LYKKSKKGIL VNMDDNIIEH 600 YSNEDTFILN MESMVEGFKV TLMEI 30 SEQ ID NO:3 BCU7 DNA SEQUENCE VARIANT 1: Nucleic Acid Accession #: AA428062 Coding sequence: 1-777 (entire sequence represents open reading frame) 35 ATGATAGCAA TOTOTGCCGT CAGCAGTGCA CTCCTGTTCT CCCTTCTCTG TGAAGCAAGT ACCOTCOTOC TACTCAATTC CACTGACTCA TCCCCGCCAA CCAATAATTT CACTGATATT 40 GAAGCAGCTC TGAAAGCACA ATTAGATTCA GCGGATATCC CCAAAGCCAG GCGGAAGCGC TACATTTCGC AGAATGACAT GATCGCCATT CTTGATTATC ATAATCAAGT TCGGGGCAAA 180 240 GTGTTCCCAC CGGCAGCAAA TATGGAATAT ATGGTTTGGG ATGAAAATCT TGCAAAATCG GCAGAGGCTT GGGCGCCTAC TTGCATTTGG GACCATGGAC CTTCTTACTT ACTGAGATTT
TTGGGCCAAA ATCTATCTGT ACGCACTGGA AGATATCGCT CTATTCTCCA GTTGGTCAAG 420 45 CCATGGTATG ATGAAGTGAA AGATTATGCT TTTCCATATC CCCAGGATTG CAACCCCAGA TGTCCTATGA GATGITTTGG TCCCATGTGC ACACATTATA CGCAGATGGT TTGGGCCACT TCCAATCGGA TAGGATGCGC AATTCATGCT TGCCAAAACA TGAATGTTTG GGGATCTGTG 540 600 TEGECGACGTE CAGTITACTT GETATECAAC TATECCCCAA AGGGCAATTE GATTEGAGAA GCACCATATA AAGTAGGGGT ACCATGTCA TCTTGTCCTC CAAGTTATGG GGGATCTTGT 50 ACTGACAATC TGTGTTTTCC AGGAGTTACG TCAAACTACC TGTACTGGTT TAAATAA SEQ ID NO:4 BCU7 DNA SEQUENCE VARIANT 2: AA428062 Nucleic Acid Accession #: 1-777 (entire sequence represents open reading frame) Coding sequence: 55 21 31 41 60 ATGATAGCAA TCTCTGCCGT CAGCAGTGCA CTCCTGTTCT CCCTTCTCTG TGAAGCAAGT ACCOTOCTOC TACTOANTIC CACTGACTOA TOCCOGCCAA CCAATAATTT CACTGATATT GAAGCACCTC TGAAAGCACA ATTAGATTCA GOGGATATCC CCAAAGCCAG GOGGAAGCGC 180 TACATTICGC AGAATGACAT GATCGCCATT CTTGATTATC ATAATCAAGT TCGGGGCAAA GTGTTCCCAC CGGCAGCAAA TATGGAATAT ATGGTTTGGG ATGAAAATCT TGCAAAATCG GCAGAGGCTT GGGCGGTAC TTGCATTTGG GACCATGGAC CTTCTTACTT ACTGAGATTT 300 65 360 TTGGGCCAAA ATCTATCTGT ACGCACTGGA AGATATCGCT CTATTCTCCA GTTGGTCAAG CCATGGTATG ATGAAGTGAA AGATTATGCT TTTCCATATC CCCAGGATTG CAACCCCAGA 420 480 TGTCCTATGA GATGTTTTGG TCCCATGTGC ACACATTATA CGCAGATGGT TTGGGCCACT TCCAATCGGA TAGGATCCGC AATTCATACT TGCCAAAACA TGAATGTTTG GGGATCTGTG
TGGCGACGTG CAGTTTACTT GGTATGCAAC TATGCCCCAA AGGGCAATTG GATTGGAGAA 600 70 660 GCACCATATA AAGTAGGGGT ACCATGTTCA TCTTGTCCTC CAAGTTATGG GGGATCTTGT ACTGACAATC TGTGTTTTCC AGGAGTTACG TCAAACTACC TGTACTGGTT TAAATAA SEQ ID NO:5 BCU7 Protein sequence Variant 1: 75 Protein Accession #: 21 51 MIAISAVSSA LLPSLLCEAS TVVLLNSTDS SPPTNNFTDI BAALKAQLDS ADIPKARRKR 60

YEELVDVNCS AVLRFFFCAM YAPICTLEFL HDPIKPCKSV CQRARDDCEP LMKMYNHSWP 120 ESLACDELPV YDRGVCISPE AIVTDLPEDV KWIDITPDMM VOERPLDVDC KRLSPDRCKC 180 KKVKPTLATY LSKNYSYVIH AKIKAVQRSG CNEVTTVVDV KEIFKSSSPI PRTQVPLITN 240 SSCQCPHILP HQDVLIMCYE WRSRMMLLEN CLVEKWRDQL SKRSIQWEER LQEQRRTVQD 300 5 KKKTAGRTSR SNPPKPKGKP PAPKPASPKK NIKTRSAQKR TNPKRV SEQ ID NO:9 CBK1 DNA SEQUENCE Nucleic Acid Accession #: NM_032391 10 129-302 (underlined sequences correspond to start and stop codons) Coding sequence: 15 GTCCTTCCTC TCCTAGCCTA AGGCGTGCAA ACAGAGCGCC ACTGGGAGGC TGAAACCTTT 60 AGGCCGATGC TTGCTTGCAA GGTCAGGCAA GCTGGATTCT GGTCCCCACC TTTGCAGAGA 120 GAACAGCGAT GITGTGCGCC CATTTCTCAG ATCAAGGACC GGCCCATCTT ACTACCTCCA 180 AGAGTGCTTT TCTCTCTAAT AAGAAAACAT CTACTTTGAA ACATCTACTG GGCGAGACCA GGAGTGATGG CTCAGCCTGT AATTCTGGAA TTTCGGGAGG CCGAGGCAGG AAGATTCCTT 240 300 20 GAGCACAGGA GTTCCAGACC AGCCTGGGCA ATGTAGCAAG ACGCTGTCTC TATTTATACA ATAAAATTTT TTTAAAAAAG G SEQ ID NO:10 CBK1 Protein sequence:
Protein Accession #: NP_115767 25 30 MLCAHFSDOG PAHLTTSKSA FLSNKKTSTL KHLLGETRSD GSACNSGISG GRGRKIP SEQ ID NO:11 CHA1 DNA SEQUENCE Nucleic Acid Accession #: NM 020182 35 96-854 (underlined sequences correspond to start and stop codons) Coding sequence: 11 21 31 40 TCCTTGGGTT CGGGTGAAAG CGCCTGGGGG TTCGTGGCCA TGATCCCCGA GCTGCTGGAG AACTGAAGGC GGACAGTCTC CTGCGAAACC AGGCAA<u>TG</u>GC GGAGCTGGAG TTTGTTCAGA TCATCATCAT COTGGTGGTG ATGATGGTGA TGGTGGTGGT GATCACGTGC CTGCTGAGCC ACTACAAGCT GTCTGCACGG TCCTTCATCA GCCGGCACAG CCAGGGGGGG AGGAGAGAAG ATGCCCTGTC CTCAGAAGGA TGCCTGTGGC CCTCGGAGAG CACAGTGTCA GGCAACGGAA 240 300 45 TCCCAGAGCC GCAGGTCTAC GCCCGCCTC GGCCCACGA CCGCCTGGCC GTGCCGCCCT TOGCCCAGGG GGAGGGCTTC CACCGCTTCC AGCCCACCTA TCCGTACCTG CAGCACGAGA
TCGACCTGCC ACCCACCATC TCGCTGTCAG ACGGGGAGGA GCCCCCACCC TACCAGGGCC 420 480 CCTGCACCCT CCAGCTTCGG GACCCCGAGC AGCAGCTGGA ACTGAACCGG GAGTCGGTGC GCGCACCCCC AAACAGAACC ATCTTCGACA GTGACCTGAT GGATAGTGCC AGGCTGGGCG GCCCCTGCCC CCCCAGCAGT AACTCGGGCA TCAGCGCCAC GTGCTACGGC AGCGGCGGGC 600 50 660 GCATGGAGGG GCCGCCCC ACCTACAGCG AGGTCATCGG CCACTACCCG GGGTCCTCCT TCCAGCACCA GCAGAGCAGT GGGCCCCCCT CCTTGCTGGA GGGGACCCGG CTCCACCACA CACACATCGC GCCCTAGAG AGCGCAGCCA TCTGGAGCAA AGAGAAGGAT AAACAGAAAG 780 840 GACACCCTCT CTAGGGTCCC CAGGGGGGCC GGGCTGGGGC TGCGTAGGTG AAAAGGCAGA 55 ACACTCCGCG CITCTTAGAA GAGGAGTGAG AGGAAGGCGG GGGGCGCAGC AACGCATCGT GTGGCCCTCC CCTCCCACCT CCCTGTGTAT AAATATTTAC ATGTGATGTC TGGTCTGAAT 960 1020 CCACAAGCTA AGAGAGCTTG CAAAAAAAAA AAGAAAAAAG AAAAAAAAA ACCACGTTTC TTTGTTGAGC TGTGTCTTGA AGGCAAAAGA AAAAAAATTT CTACAGTAAA AAAAAAAAA 1140 60 SEQ ID NO:12 CHA1 Protein sequence: 65 11 21 31 MAELEFVQII IIVVVMMVMV VVITCLLSHY KLSARSFISR HSQGRRREDA LSSEGCLWPS RASLEVQII IVVVIIIVVV VVIILIBII KUSAKSIISK ISSEKRALUS ESSEKLAMPS ESTYSKAGIP EPOVYAPPRP TORLAVPPPA OREMPHROP TYPYLOHEID LEPTISLEDG EEPPPYQGPC TLQLRDPEQQ LELNRESVRA PPNRTIFDSD LMDSARLGGP CPPSSNSGIS 120 70 ATCYGSGGRM EGPPPTYSEV IGHYPGSSFQ HQQSSGPPSL LEGTRLHHTH IAPLESAAIW 240 SKEKDKOKGH PL SEQ ID NO:13 CJA5 DNA SEQUENCE 75 Nucleic Acid Accession #: NM_012445 276-1271 (underlined sequences correspond to start and stop codons) Coding sequence:

31

305

80

```
GCACGAGGGA AGAGGTGAT CCGACCCGGG GAAGGTCGCT GGGCAGGGCG AGTTGGGAAA
         GCGGCAGCCC CCGCCGCCCC CGCAGCCCCT TCTCCTCCTT TCTCCCACGT CCTATCTGCC
TCTCGCTGGA GCCCAGGCCG TGCAGCATCG AAGACAGGAG GAACTGGAGC CTCATTGGCC
                                                                                             180
         GGCCCGGGGC GCCGGCCTCG GGCTTAAATA GGAGCTCCGG GCTCTGGCTG GGACCCGACC
                                                                                            240
         GCTGCCGGCC GCGCTCCCGC TGCTCCTGCC GGGTGATGGA AAACCCCAGC CCGGCCGCCGCC CCCTGGGCAA GGCCCTCTGC GCTCTCCTCC TGGCCACTCT CGGCGCCGCC GGCCAGCCTC
                                                                                             300
                                                                                            360
         TTGGGGGAGA GTCCATCTGT TCCGCCAGAG CCCCGGCCAA ATACAGCATC ACCTTCACGG
                                                                                             420
         GCAAGTGGAG CCAGACGGCC TTCCCCAAGC AGTACCCCCT GTTCCGCCCC CCTGCGCAGT
         GGTCTTCGCT GCTGGGGGCC GCGCATAGCT CCGACTACAG CATGTGGAGG AAGAACCAGT
                                                                                            540
10
         ACGTCAGTAA CGGGCTGCGC GACTTTGCGG AGCGCGGCGA GGCCTGGGCG CTGATGAAGG
                                                                                            600
         AGATCGAGGC GGCGGGGGAG GCGCTGCAGA GCGTGCACGC GGTGTTTTCG GCGCCCGCCG
         TCCCCAGCGG CACCGGGCAG ACGTCGGCGG AGCTGGAGGT GCAGCGCAGG CACTCGCTGG
TCTCGTTTGT GGTGCGCATC GTGCCCAGCC CCGACTGGTT CGTGGGCGTG GACAGCCTGG
                                                                                            720
                                                                                            780
         ACCTGTGCGA CGGGGACCGT TGGCGGGAAC AGGCGGCGCT GGACCTGTAC CCCTACGACG
15
         CCGGGACGGA CAGCGGCTTC ACCTTCTCCT CCCCCAACTT CGCCACCATC CCGCAGGACA
CGGTGACCGA GATAACGTCC TCCTCTCCCA GCCACCCGGC CAACTCCTTC TACTACCGGC
                                                                                            900
                                                                                            960
         GGCTGAAGGC CCTGCCTCCC ATCGCCAGGG TGACACTGGT GCGGCTGCGA CAGAGCCCCA
         GGGCCTTCAT CCCTCCCGCC CCAGTCCTGC CCAGCAGGGA CAATGAGATT GTAGACAGGG
CCTCAGTTCC AGAAACGCCG CTGGACTGCG AGGTCTCCCT GTGGTCGTCC TGGGGACTGT
                                                                                           1080
                                                                                           1140
20
         GCGGAGGCCA CTGTGGGAGG CTCGGGACCA AGAGCAGGAC TCGCTACGTC CGGGTCCAGC
         CCGCCAACAA CGGGAGCCCC TGCCCCGAGC TCGAAGAAGA GGCTGAGTGC GTCCCTGATA
ACTGCGTC<u>TA</u> AGACCAGAGC CCCGCAGCCC CTGGGGCCCC CGGAGCCATG GGGTGTCGGG
                                                                                           1260
                                                                                           1320
         GGCTCCTGTG CAGGCTCATG CTGCAGGCGG CCGAGGCACA GGGGGTTTCG CGCTGCTCCT
                                                                                           1380
         GACCGCGGTG AGGCCGCGCC GACCATCTCT GCACTGAAGG GCCCTCTGGT GGCCGGCACG
                                                                                           1440
25
         GGCATTGGGA AACAGCCTCC TCCTTTCCCA ACCTTGCTTC TTAGGGGCCC CCGTGTCCCG
                                                                                           1500
         TCTGCTCTCA GCCTCCTCCT CCTGCAGGAT AAAGTCATCC CCAAGGCTCC AGCTACTCTA
        AATTATGGTC TCCTTATAAG TTATTGCTGC TCCAGGAGAT TGTCCTTCAT CGTCCAGGGG
CCTGGCTCCC ACGTGGTTGC AGATACCTCA GACCTGGTGC TCTAGGCTGT GCTGAGCCCA
                                                                                           1620
                                                                                           1680
         CTCTCCCGAG GGCGCATCCA AGCGGGGGCC ACTTGAGAAG TGAATAAATG GGGCGGTTTC
30
         GGAAGCGTCA GTGTTTCCAT GTTATGGATC TCTCTGCGTT TGAATAAAGA CTATCTCTGT
         TGCTCAC
35
        SEQ ID NO:14 CJA5 Protein sequence:
         Protein Accession #:
        40
         PLFRPPAQWS SLLGAAHSSD YSMWRKNQYV SNGLRDFAER GEAWALMKEI EAAGEALQSV
                                                                                            120
        HAVFSAPAVP SGTGQTSAKL EVQRRHSLVS FVVRIVPSFD WFVGVDSLDL CDGDRWREQA
ALDLYPYDAG TDSGFTFSSP NFATIPQDTV TEITSSSPSH PANSFYYPRL KALPPIARVT
                                                                                            180
                                                                                            240
         LVRLRQSPRA FIPPAPVLPS RENEIVDSAS VPETPLDCEV SLWSSWGLCG GHCGRLGTKS
45
         RTRYVRVOPA NNGSPCPELE EEAECVPDNC V
                                                            SEQ ID NO:15 LBH9 DNA SEQUENCE
        Nucleic Acid Accession #: NIM_002391
50
         Coding sequence:
                              26-457 (underlined sequences correspond to start and stop codons)
                                    21
                      11
                                                 31
        CGGGCGAAGC AGCGCGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
55
        CGCCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
                                                                                            120
         CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG
                                                                                            180
         CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT
        GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
                                                                                            300
         TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
60
        CARTGCTCAG TGCCAGGAGA CCATCCGCGT CACCAAGCCT TGCACCCCCA AGACCAAAGC AAAGGCCAAA GCCAAGAAAG GGAAGGGAAA GGACTAGACG CCAAGCCTGG ATGCCAAGGA
                                                                                            480
         GCCCCTGGTG TCACATGGGG CCTGGCCACG CCCTCCCTCT CCCAGGCCCG AGATGTGACC
                                                                                            540
        CACCAGTGCC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC ACTCCCCAGC CCCACCCCTA AGTGCCCAAA GTGGGGAGGG ACAAGGGATT CTGGGAAGCT
                                                                                            600
                                                                                            660
65
         TGAGCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCGCTT TTGTTCTTCC CCACAATTCC
         ATTACTAAGA AACACATCAA ATAAACTGAC TTTTTCCCCC CAATAAAAGC TCTTCTTTTT
        TAATAT
        SEQ ID NO:16 LBH9 Protein sequence:
70
         Protein Accession #:
                                    21
                                                                            51
75
        MOHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECABW AWGPCTPSSK DCGVGFREGT
                                                                                             60
        CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAQCQETI
        RVTKPCTPKT KAKAKAKKGK GKD
```

SEQ ID NO:17 LEM9 DNA SEQUENCE

```
Coding sequence:
                             1-1617 (underlined sequences correspond to start and stop codons)
  5
                     11
                                   21
                                                 31
                                                                           51
         ATGOTAGAAC TAGTGATCTC ACCCAGCCTC ACTGTAAACA GCGATTGTCT GGATAAACTG
         AAGTTTAACC GTGCTGACGC TGCTGTGTGG ACTCTGAGTG ACAGACAAGG CATCACCAAA
                                                                                          120
10
         TCGGCCCCC TGAGAGTGTC CCAGCTCTTC TCCAGATCTT GCCCACGTGT CCTCCCCCGC
         CAGCCTTCCA CAGCCATGGC AGCCTACGGC CAGACGCAGT ACAGTGCGGG GATCCAGCAG
                                                                                          240
         GCTACCCCCT ATACAGCTTA CCCACCTCCA GCACAAGCCT ATGGAATCCC TTCCTACAGC
         ATCAAGACAG AAGACAGCTT GAACCATTCC CCTGGCCAGA GTGGATTCCT CAGCTATGGC
                                                                                          360
         TOCAGOTTCA GCACCTCACC CACTGGACAG AGCCCATACA CCTACCAGAT GCACGCACA
                                                                                          420
15
         ACAGGGTTCT ATCAAGGAGG AAATGGACTG GGCAACGCAG CCGGTTTCGG GAGTGTGCAC
         CAGGACTATC CTTCCTACCC CGGCTTCCCC CAGAGCCAGT ACCCCCAGTA TTACGGCTCA
                                                                                          540
         TOCTACAACC CTCCCTACGT CCCGGCCAGC AGCATCTGCC CTTCGCCCCT CTCCACGTCC
                                                                                          600
         ACCTACGTCC TCCAGGAGGC ATCTCACAAC GTCCCCAACC AGAGTTCCGA GTCACTTGCT
                                                                                          660
        GGTGAATACA ACACACACA TGGACCTTCC ACACCAGCGA AAGAGGGAGA CACAGACAGG
                                                                                          720
20
        CCGCACCGGG CCTCCGACGG GAAGCTCCGA GGCCGGTCTA AGAGGAGCAG TGACCCGTCC
                                                                                          780
         CCGGCAGGGG ACAATGAGAT TGAGCGTGTG TTCGTGTGGG ACTTGGATGA GACAATAATT
         ATTTTCACT CCTTACTCAC GGGGACATTT GCATCCAGAT ACGGGAAGGA CACCACGACG
                                                                                          900
         TCCGTGCGCA TTGGCCTTAT GATGGAAGAG ATGATCTTCA ACCTTGCAGA TACACATCTG
                                                                                          960
         TTCTTCAATG ACCTGGAGGA TTGTGACCAG ATCCACGTTG ATGACGTCTC ATCAGATGAC
25
         AATGECCAAG ATTTAAGCAC ATACAACTTC TCCGCTGACG GCTTCCACAG TTCGGCCCCA
                                                                                         1080
        GGAGCCAACC TOTOCCTGGG CTCTGGCGTG CACGGCGGCG TGGACTGGAT GAGGAAGCTG
GCCTTCCGCT ACCGGCGGGT GAAGGAGATG TACAATACCT ACAAGAACAA CGTTGGTGGG
                                                                                         1140
                                                                                         1200
         1260
        ACAGACCTCT GGCTGACCCA CTCCCTGAAG GCACTAAACC TCATCAACTC CCGGCCCAAC
TGTGTCAATG TGCTGGTCAC CACCACTCAA CTAATTCCTG CCCTGGCCAA AGTCCTGCTA
                                                                                         1320
30
         TATGCCTGG GGTCTGTGTT TCCTATTGAG AACATCTACA GTGCAACCAA GACAGGGAAG
                                                                                         1440
        GAGAGCTGCT TCGAGAGGAT AATGCAGAGA TTCGGCAGAA AAGCTGTCTA CGTGGTGATC
                                                                                         1500
        GGTGATGGTG TGGAAGAGGA GCAAGGAGCG AAAAAGCACA ACATGCCTTT CTGGCGGATA
        TOCTGCCACG CAGACCTGGA GGCACTGAGG CACGCCCTGG AACTGGAGTA TTTA<u>TAG</u>
35
        SEQ ID NO:18 LEM9 Protein sequence:
        Protein Accession #:
40
                                                31
        MVELVISPSL TVNSDCLDKL KFNRADAAVW TLSDROGITK SAPLRVSQLF SRSCPRVLPR
        OPSTAMAAYG OTOYSAGIOO ATPYTAYPPP AQAYGIPSYS IKTEDSLNHS PGQSGFLSYG
SSPSTSPTGQ SPYTYOMHGT TGFYQGGNGL GNAAGFGSVH QDYPSYPGFP QSQYPQYYGS
                                                                                          120
                                                                                          180
        SYNPPYVPAS SICPSPLSTS TYVLQBASHN VPNQSSBSLA GBYNTHNOPS TPAKEGDTDR
         PHRASDGKLR GRSKRSSDPS PAGDNEIERV PVWDLDETII IFHSLLTGTF ASRYGKDTTT
                                                                                          300
        SVRIGLAMEE MIPNLADTHL FFMDLEDCDQ IHVDDVSSDD NGQDLSTYNF SADGFHSSAP
GANLCLGSGV HGGVDWHRKL AFRYRRVKEM YNTYKNNVGG LIGTFKRETW LQLRAELEAL
                                                                                          360
        TDLMLITSLK ALNLINSRPN CVNVLVTTTQ LIPALAKVLL YGLGSVFPIE NIYSATKTGK
ESCPERIMOR FGRKAVYVVI GDGVEEEOGA KKHMMPFWRI SCHADLEALR HALELEYL
                                                                                          480
50
                                                          SEQ ID NO:19 OAA1 DNA SECUENCE
        Nucleic Acid Accession #: NM_002740
55
                             178-1968 (underlined sequences correspond to start and stop codons)
        Coding sequence:
60
          CCGCGGTTCC GGCTGCTCCG GCGAGGCGAC CCTTGGGTCG GCGCTGCGGG CGAGGTGGGC
          AGGTAGGTGG GCGGACGGCC GCGGTTCTCC GGCAAGCGCA GGCGGCGGAG TCCCCCACGG
         CGCCCGAAGC GCCCCCCGCA CCCCCGGCCT CCAGCGTTGA GGCGGGGGAG TGAGGAGATG
CCGACCCAGA GGGACAGCAG CACCATGTCC CACACGGTCG CAGCGGCGG CAGCGGGGGAC
          CATTCCCACC AGGTCCGGGT GAAAGCCTAC TACCGCGGGG ATATCATGAT AACACATTTT
65
         GAACCTTCCA TCTCCTTTGA GGGCCTTTGC AATGAGGTTC GAGACATGTG TTCTTTTGAC AACGAACAGC TCTTCACCAT GAAATGGATA GATGAGGAAG GAGACCCGTG TACAGTATCA
                                                                                           360
          TCTCAGTTGG AGTTAGAAGA AGCCTTTAGA CTTTATGAGC TAAACAAGGA TTCTGAACTC
                                                                                            480
         TIGATICATO TOTTCCCTTG TOTACCAGAA COTCCTGGGA TGCCTTGTCC AGGAGAAGAT AAATCCATCT ACCGTAGAGG TGCACGCCGC TGGAGAAAGC TITATTGTGC CAATGGCCAC
                                                                                           540
70
          ACTITICCAAG CCAAGCGTTT CAACAGGCGT GCTCACTGTG CCATCTGCAC AGACCGAATA
         TGGGGACTTG GACGCCAAGG ATATAAGTGC ATCAACTGCA AACTCTTGGT TCATAAGAAG
TGCCATAAAC TCGTCACAAT TGAATGTGGG CGGCATTCTT TGCCACAGGA ACCAGTGATG
                                                                                           720
          CCCATGGATC AGTCATCCAT GCATTCTGAC CATGCACAGA CAGTAATTCC ATATAATCCT
                                                                                           940
          TCAAGTCATG AGAGTTTGGA TCAAGTTGGT GAAGAAAAAG AGGCAATGAA CACCAGGGAA
                                                                                           900
75
         AGTGGCAAAG CTTCATCCAG TCTAGGTCTT CAGGATTTTG ATTTGCTCCG GGTAATAGGA
          AGAGGAAGTT ATGCCAAAGT ACTGTTGGTT CGATTAAAAA AAACAGATCG TATTTATGCA
                                                                                          1020
          ATGAAGTTG TGAAAAAAGA GCTTGTTAAT GATGATGAGG ATATTGATTG GGTACAGACA
                                                                                          1080
          GAGAAGCATG TGTTTGAGCA GGCATCCAAT CATCCTTTCC TTGTTGGGCT GCATTCTTGC
         TTTCAGACAG AAAGCAGATT GTTCTTTGTT ATAGAGTATG TAAATGGAGG AGACCTAATG
TTTCATATGC AGCGACAAAG AAAACTTCCT GAAGAACATG CCAGATTTTA CTCTGCAGAA
                                                                                          1200
80
```

Nucleic Acid Accession #: NM_005244

5	Gacaatgta Gaaggatta CCTGAAATT	T TACTGGACT C GGCCAGGAG T TAAGAGGAG	C TGAAGGCCA A TACAACCAG A AGATTATGG	C ATTARACTO C ACTITCION T TTCAGTGTIV	A CTGACTACGO G GTACTCCTA G ACTGGTGGG	A TTTGAAACTG G CATGTGTAAG A TTACATTGCT C TCTTGGAGTG	1380 1440 1500
J	CCTGACCAG CCACGTTCT AAGGAACGA	A ACACAGAGG C TGTCTGTAA T TGGGTTGTC	A TTATCTCTT A AGCTGCAAG A TCCTCAAAC	C CAAGTTATT T GTTCTGAAG A GGATTTGCT	r tggaaaaaci a gttttcttai g atattcagg	G CTCCGATAAC A AATTCGCATA A TAAGGACCCT G ACACCCGTTC C CTTTAAACCA	1620 1680 1740
10	AATATTTCT CAGCTCACT TTTGAGTAT AACCATGTA	G GGGAATTTG C CAGATGACG A TCAATCCTC T TCTACTCAT	G TTIGGACAA A TGACATIGT T TTIGATGTC G TTGCCATTE	C TTTGATTCTY G AGGAAGATTY T GCAGAAGAA A ATGCATGGA	C AGTITACTAL C ATCAGTCTGA C GTGTC <u>TGA</u> T C AAACTTGCT	A TGAACCTGTC A ATTTGAAGGT C CTCATTTTTC G CAAGCCTGGA	1860 1920 1980 2040
15	ACTATATGA TCCAGACAA	A TCAATTATT T CATGTCAAA	A CATCTGTTT A TTTAGTTGA	T ACTATGAAA	A AAAAATTAA! C AGTTTTTAA!	r TCTCTTGTAG r ACTACTAGCT A AGGCCTACAG	2160
20	Protein Accessio	_	2731				
	1	11	21	31	41	51	
25	MSHTVAGGGS	GDHSHOVRVK	AYYRGDIMIT	HPEPSISFEG	LCNEVRDMCS	PUNEOLPTMK	60
						EDKSIYRRGA	120
				RIWGLGROGY			180
				NPSSHESLDQ YAMKVVKKEL			240 300
30				LMPHMORORK			360
				CKEGLRPGDT			420
				DNPDQNTEDY			480
				PFFRNVDWDM EGFEYINPLL		KPNI SGEFGL	540
35	DMFDSQFTME	PAGRIFORD	TAKKIDÖSEL	POLEITUADE	MSALECV		
				SEC	2 ID NO:21 OBH2	DNA SEQUENCE	
		ession #: L05628			d to store and store	andara)	
40	Coding sequence	197-47	az (unoeraneo sec	pences correspon	o to start and stop	codons;	
••							
	1	11	21	31	41	51	
	002 0000000		00000000000	CCCTGCGCCG	000000000		60
45				AGCAGCCGGG			120
	TGCCCGCCGC	CCCCCCCCCC	AGCAACCGGG	CCCGATCACC	CGCCGCCCGG	TGCCCGCCGC	180
	CGCCCGCGCC	ACCGGCATGG	CGCTCCGGGG	CTTCTGCAGC	GCCGATGGCT	CCGACCCGCT	240
	CGCCCGCGCC CTGGGACTGG	ACCGGCATGG AATGTCACGT	CGCTCCGGGG GGAATACCAG	CTTCTGCAGC CAACCCCGAC	GCCGATGGCT TTCACCAAGT	CCGACCCGCT GCTTTCAGAA	240 300
50	CGCCCGCGCC CTGGGACTGG CACGGTCCTC	ACCGGCATGG AATGTCACGT GTGTGGGTGC	CGCTCCGGGG GGAATACCAG CTTGTTTTTA	CTTCTGCAGC CAACCCCGAC CCTCTGGGCC	GCCGATGGCT TTCACCAAGT TGTTTCCCCT	CCGACCCGCT GCTTTCAGAA TCTACTTCCT	240 300 360
50	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA	ACCGCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT	CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG	CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC	GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT	CCGACCCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA	240 300
50	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG	ACCGCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC	CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT	CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC	GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCCAACTC	CCGACCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT	240 300 360 420 480 540
	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG	ACCGGCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT	CGCTCCGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA	CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG	GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG	CCGACCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTC	240 300 360 420 480 540 600
50 55	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG	ACCGGCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTCT	CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC	CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC	GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCA	CCGACCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC	240 300 360 420 480 540
	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC	ACCGGCATGG AATGTCACGT GTGTGGGTGG CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCT CTCACTTTCC ACAGCCTTAA TTTTCCCTCT	CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCAT TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA	CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG	GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCTAGCCA CTGTTTCGTG TCCTGTTTCTT	CCGACCCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGAT TCTGGGCAT TCCTGAGATC TCCTGAGATC TCATCACTTT CAGATCGCTC	240 300 360 420 480 540 600 660 720 780
	CGCCCGCGCC CTGGGACTGG CACGGTCCTC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC	ACCGGCATGG AATGTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT GGCATATTCC CTTGCTACCTT TCACTTTCT ACAGCCTTAA TTTTCCCTCT TCGGAAACCA	CGCTCCGGGG GGAATACCAG GGATGCTACTAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC	CTTCTGCAGC CAACCCCGAC CCTCTGGGCACAC CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGGTGGAC GCTCGTCTTG TAATCCCTGC	GCCGATGGCT TTCACCAAGT TGTTTCCCT CCTCTACACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCA CTGTTTCTGT TCCTGTTTCTT CCAGAGTCCA	CCGACCCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CCTTTCTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT	240 300 360 420 480 540 600 660 720 780 840
55	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCAGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTCC	ACCGGCATGG AATGTCACGT GTGTGGGTGC GGACATGACC TTTTTGCTGCT CTTGCTACCT CTCACTTTCT ACAGCCTTAA TTTTCCCTCT TCGGAAACCA ATCACCTTCT	CGCTCCGGGG GGAATACCAG GGATCGTTTTA GAGGCTACAT GGATCGTCTG TGGCCCAGT TTTTAAATTCA GGCTGGTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGATCAC	CTTCTGCAGC CAACCCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT	GCCGATGGCT TTCACCAAGT TGTTTCCCCT CCTCTCAACA CTCTTCTACT AGCCCAACTC AGGAAGGGAG GCCCTAGCCCA CTGTTTCGTG TCCTGTTTTCT CCAGAGTCCA GTCCGGGGCT	CCGACCCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TCCAGACATC TCCAGACATC ACATCACTTT CAGATCGCTC ACCCCAGCC	240 300 360 420 480 540 600 660 720 780 840 900
	CGCCCGCGCC CTGGGACTGG CACGGTCTCC CTATCTCTCC CTATCTCTCC CTACCTTGGGC CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC CCTGTCGAGG CCTGGAGGGC	ACCEGCATEG AATOTCACGT GTGTEGGET CEACATCAC TTTTTGCTGT GGCATATTCC CTCACTTTCT ACASCCTTAA TTTTCCCTCT TCGGAAACCA ATCACCTCT AGTGACCTCT	CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGTAGC	CTTCTGCAGC CAACCCCGAC CCTCTGGGCACAC CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT CCAGGGTGGAC GCTCGTCTTG TAATCCCTGC	GCGATGGCT TTCACCAAGT TGTTTCCCT TGTTTCACA AGCAAGGAG AGCAAGGAG CCCTAGCA CCTTTTCTG TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT ACCTCGGAC	CCGACCCGCT GCTTTCCAGA TCTACTTCCT AAACCAAAAC CTTTCTGGGAT TCTTGGGCAT TCAGTCTTC TCAGATCACTTT CAGATCGCTC GCGCTTCCTT ACGCCAGCC AAGTCGTGCC	240 300 360 420 480 540 600 660 720 780 840
55	CGCCCGCCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CAAAATTATG CTACGTCTAC ACCCCTGTTC CCTGTCGAGGG CCTGGAGGGC TGTTTTGGTA TGTGTACTCCC	ACCGCATGG AATCTCACGT GTGTGGGCATCACC CTTTTTGCTGT GGCATATTCC CTTCACTTTCT ACAGCCTTAA TTTTCCCTCT TCGCAAACCA ATCACCTTCT AGTGACCTCT AGTGACCTCGA AGGACTGGA TCCAAGGATC	CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAAATCA GGCTGGTAGC AAGAGGATGC TACTCATCA TCCACGACC GGTGGATCAC GGTCCTTAAA AGAAGGAATG CTGCCCAGAC CTGCCAGAC CTGCCCAGAC CTGCCCAGAC CTGCCCAGAC CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCCAGC CTTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCAGC CTGCCCAGC CTGCCACG CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCACG CTGCCACG CTGCCACG CTGCCCAGC CTGCCCAGC CTGCCCAGC CTGCCCACG CTGCCCACG CTGCCCACC CTGCCCCACC CTGCCCCACC CTCCCCACC CTCCCCACC CTCCCCACC CTCCCCCACC CTCCCCCCCC	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGCAGAC GTTCTGGTC GCTAGTGTGT CCAGGTGGAC GCTCGTCTTG TAATCCTGC AGGGTTGAT CAAGGAGAC GCCAGAGACT GAAAGAGAGT GAAAGAGAGT	GCGATGGCT TTCACCAGT TGTTTCCCT TGTTTCCCAACA CTCTTCTACT AGCCAACTC AGCCAGGGAG GCCCTAGCCA CTCTTTCCTG TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT ACCTCGGAAC TCCAGGGGCT TCCAGGGGCT	CCGACCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCAGGCAT TTCAGGCAT TTCAGGCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC GCGCTTCCTT ACCGCCAGCC AAGTCGTGCC AAGTCGTGCC AAGTCGTGCC	240 300 360 420 480 540 660 720 780 840 900 960 1020 1080
55	CGCCCGCCC CTGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AGGAGTCGG CACCACGCTG AGGATCATG CAGAATTATG CTACGTCTAC ACCCTGTTC CCTGCCAGG CCTGGAGGGC TGTTTTGGTA TGTGTACTC GGAGGTGAGG	ACCGCATGG AATCTCACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT CTTGCTACCT CTCACTTCAT TTTTCCCTT TCGGAAACCA ATCACCTTAA ATCACCTCA AGGAACCA AGGAACCA AGGAACCA AGGAACCA CCTTCAAGGATC CCTTTGAACGAGATC CCTTTGAACGACCCT CCCAAGGATC CCTTTGATCG	CGCTCCGGGG GGAATACCAG CTTGTTTTTTA GAGGCTACAT GGATCCTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC TACTCATTCA TCCACGACCC TACTCATTCA GGTCCTTAAA AGAAGGAATG CTGCCCAGCCC TCAAGTCCC TCAAGTCCC	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGTT TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAGGAGGAC GAAGAGAGGT GAAGAGAGGAGAC ACAGAAGGAG	GCCGATGGCT TTCACCAGGT TGTTTCCCT CCTCTCACA CTCTTCTACT AGCCAACTC AGGAAGGGG GCCCTACCCA CTGTTTCT CCAGAGTCCA GTCCGGGGCT ACGTCGGAAC AGGAAGCAGC TCCAGGTGG TCCAGGTGG TCCAGGTGG	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGCAT TCTCAGGCAT TCAGTCTTC TCCTGAGATC ACATCACTTC GGGCTTCCTT CAGATCGCC CGGTGAAGGT ATGCGAATGA CTCCTGTTTAA	240 300 360 420 480 540 660 720 780 840 900 1020 1080
55 60	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACCACGCTG AGGGATCATG CTACCTCTAC ACCCCTGTTC CCTGCTCTAC ACCCTGTTC CCTGTCTACAGG CTGTGTTATGTA TGTGTACTCC GGAGGTCGAG GGTGTTATATAC	ACCGCATGA AATCTCACT CTGTGGGTGC CGACATGACC CTTGCTACT CTCACTTCT ACTCCTCT TCGGAAACCA ATCACCTCT AAGAACCA AAGACCTCA ACGACCACC ACACCTCA ACGACCTCA ACGACCTCA ACGACCTCA AAGAACTGA CCCTTTGATCG AAGAACTTGT AAGAACTTGATCG AAGAACTTTGATCG AAGAACTTTGT	CGCTCCGGGG GGAATACCAG CTTOFTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAAGAGGATGC TCCACGACCC GGTGGTACAC GGTCCTTAAA AGAAGGAATG CTCACCAGCC TCAAGTCCCC GGCCTACTT	CTTCTGCAGC CAACCCGAC CACCCGAC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTAGATGAGG CCTAGTGTGT TCATCCTGT TAATCCCTGC AGGGTTGAT CAAGGAGGAC CGCCAAGACT GAAGAGGAC CGCCAAGACT GAAGAGGAC CGCCAAGACT CAAGAAGGAC CCCCATGAGCAC CCTCATGAGC	GCCGATGGCT TTCACCAGT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGCAAGGAG GCCCTAGCAA TCCTGTTTCT TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT TCCAGAGTGGAAC AGGAAGCAGC TCCAAGGTGG TCGAACCCCT TTGGAACCCCT TTGGAACCCTT TTGGAACCCTT	CCGACCGCT GCTTTCAGAA TCTACTTCCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TCAGTCTTC TCAGTCTTC ACATCACTTT ACCGCCAGC AGCTCGCC CGGTGAAGGT ATCCGAATGA CTCTCTTTAA AGGCCATCC	240 300 360 420 480 540 600 720 780 840 900 950 1020 1080 1140 1200
55	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AAGAATCTGG CACAACGCTG AGGGATCATC CAAAATTATC CCTGTCGAGG CCTGCAGGG CTGTCTGCTC GGAGGTGGAG GGGTGCAG GGGGTGCAG CGGACCTCATC CGACCTCATC	ACCGCATGG AATCTCACGT CGGACATCAC CTTGCTGGG GGCATATCC CTCACTTTCT ACACCCTTAA ATCACCTTCT TCGGAAACCA ATCACCTTCT AGGACCAC ATCACTTTCT AGGAACCA ATCACCTTCT AGGAACCA ATCACCTTTCT AGGAACCTA AGGACTGGA TCCAAGGATC GCTTGATCG ATGATTGATCG AAGACTTTCC AAGGTTTCC AAGGTTTCC	CGCTCCGGGG GGAATACCAG CTTOTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TACTACTATCA TCCACGACCC GGTGGTACCA GGTCCTTAAA GAAGGAATG CTGCCCAGCC TCAAGTCCCC TCAAGTCCCC GGCCCTACTT GGCCCCAGAT	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGTT TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAGGAGGAC GAAGAGAGGT GAAGAGAGGAGAC ACAGAAGGAG	GCCGATGGCT TTCACCAGGT TGTTTCCCCT TGTTTCCCCT CCTCTCACA CTCTTCTACT AGGCAAGGCA	CCGACCGCT GCTTTCAGAA TCTACTTCT ARACCAAAAC CTTTCTGGGA TCTTGGGAT TCAGTCTT TCAGTCTT TCAGATCT TCAGATCGCT GCGCTTCCTT ACGGCAGCC AAGTCGGCC CGGTGAAGGT ATGCGAATGA CTCTTTTAA AGGCCATCA TCCTGAATCA	240 300 360 420 480 540 660 720 780 840 900 1020 1080
55 60	CGCCCGCCC CTGGGACTGG CACGGTCCTC CTATCTCTCC CTATCTCTCC TGCCTTGGGA AAGAAGTCGG CACACCGCTG AGGGATCATG CTACCTCTAC ACCCTCTTC CCTCTCTACAGG CCTGCAGGGC TGTTTTGGTA TGTTTACTCC GGACGTGGAG GGTGTTATAC CGACCTGATG CACAAGGCC CCTCCAGACC CCTCCAGACC CCTCCAGACC	ACCGCATGG AATCTACGT CGGACATGACC CTTTTTGCTGT GGGATATCC CTCACTTCTA ATTTTCCCTCT TCGGAAACCA ATCACCTTCT AGGAAACCA ATCACCTTCT AAGAACTGA TCCAAGGATC CCTTTTTTCAAGAACTGA CCTTTTTTCAAGAACTGCA CCTTTTTTCAAGAACTGCA CCTTTTTTTCCG CCAGACTGCC CCCAGCTCCCCCCCCCC	CGCTCCGGGG GGAATACCAG CTTOTTTTTA GAGGCTACAT GGATCGTCTG TTTTAATTCA GGCTGCTAGC AAGAGGATGC TACTCATTCA TCCACGACCC GGTGGTACCC GGTCGTTTAAA AGAAGGAATG CTCCCCAGCC GGCCTACTT GGCCCCAGCC GGCCTACTT AAGAGGATT GGCCCCAGCC AAGAGGATT ACCAGTACTT	CTTCTGCAGC CAACCCGAC CAGCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTAGTGTGT CCTAGTGTGT TAATCCTGC AGGGTGAC CAAGGAGGAC CGCAAGACT GAAGGAGGAC CGCAAGACT GAAGGAGGAC CGCAAGACT CAAGGACGAC CTCAATGAGC CTTCAATGAGC CTTAAAGTTG CTACACCGTG CAACCCTGC CAACACCTG CTACACCGTG CTACACCGTG CCACACTTGC CCACATCTGC CCACATCTGC	GCCGATGGCT TTCACCAGGT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGCAAGCAC GCCCTAGCAA TCCTGTTTCT TCCTGTTTCT CCAGAGTCCA AGCAAGCTGG TCCAAGCTGG TCGAACCCT TTCTTCTTCA TCGTACAGTTCA TCGAACCTTC TTCTTCTTCA TCGTACAAGT TCTACAAGT TCGTACAAGT TTCTTCTTCACAGT TTCTTCTTCACAGT TTCTTCTTCACAGT TTCTTCTTCACAGT TTCTTCTTCATCA	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCT GCGCTTCCTT ACCGCCAGC AAGTCGTGCC CGGTGAAGGT ATCCGAATGA AGGCCATCC TCCTGAATGA TCACTGCATCC TCACTGCATCA TCACTGCCT GCATCAGGT TCACTGCCT GCATCAGGT	240 300 420 480 540 660 720 780 840 900 960 1020 1140 1200 1320 1380
55 60	CGCCCGCGCC CTGGGACTGG CACGGTCTC CTATCTCTCC CTATCTCTCC CTACCTGGA AAGAAGTCGG CACCAGGTG AGGGATCATC CACAAATTATG CCTCTCCAGGGC CTGCTGCAGGGC CTGTCTCGAGGGC CGTGTTTTGGTA TGTGTACTAC CGACGTGAG CGACGTGAG CACAAGACCC CAAGACCGCT CAAGACCGCC CAAGACCGCC CAAGACCGCC CAAGACCGCT	ACCGCATGG AATCTCACGT CTGTGGGGTGC CGACATGACC CTTGCTACTTCT ACACCCTTAC TTTTCCCTCT TCGGAAACCA ATCACCTTCT AGGAACCA ATCACCTTCT AAGACCTGA ACCACCTTGACTCT AAGAACTGGA TCCAAGGATC CCTAGACTGCC CCCAAGGACTGCC CCCAAGCACTGCC CCCAGCTGCC CCTCGTCGCCC GTCATTGGGG	CGCTCCGGGG GGAATACCAG CTTGTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAGAGGATGC TCACGACCC GGTGGATCAC GGTCCTTAAA AGAAGGAATG CTGCCCAGCC TCAAGTCCC GGCCTACTT GGCCCCAGT AGGGCTACTT GGCCCCAGT AGGGCTACTT CTCTCTATCC	CTTCTGCAGC CAACCCGAC CAGCTGGAC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTAGTGTGT CCAGGTGGAC GCTAGTCTTT TAATCCCTGC AGGGTTGATT CAAGGAGAC GAAAGAAGAC GCCAAAGACT GAAAGAAGCAC CCTCATGAGC CCTTAAAGTTG CCACACTTGAC CTACACGTG CACACTTGC GAAAGCCGC GAAAGCCGC CTACACTGGC CACACTTGAC GAAAGCCGC GAAAGCCCT GAAAGCCGC GAAAGCCCT GAAAGCCGC GAAAGCCCT GAAAGCCCCT	GCCGATGGCT TTCACCAGT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGCAAGGGAG GCCTAGCCA CTCTTTCGTC TCCTGTTTCT CCAGAGTCCA GTCCGGGGCT TCCAGAGTCGA AGGAAGCAGC TCCAAGGTGG TGGAACCCCT TTCTTCTTCA CTCATCAAGT CTCATCATTT	CCGACCGCT GCTTTCAGAA TCTACTTCTGGGA TCTTGGGGAT TCTGGGGAT TCAGTCTTC TCAGATCTT TCAGATCTT TCAGATCTT ACCGCCAGCC AAGTCGGCA AAGTCGGCAATGA CTCTGTTAA AGGCCATCA TCGTGAATGA TCAGTCGATGA TCAGCAGGTAAATGA TCAGCAGGTAAATGA TCAGCAGGTAAATGA TCAGCAGGTAAATGA TCAGCAGGTAAATGA TCAGCAGAATGA TCAGCAGAATGA TCAGCAGAATGA TCAGCAGAATGA TCAGCAGAATGA TCACAGCAGAATGA ATTCAGCCAG	240 300 420 480 540 660 720 780 900 950 1020 1140 1200 1320 1380 1440
556065	CGCCGGGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGAGTCATG CAAAATTATG CTACGTCTA ACCCCTGTTC CCTGCGAGGC CGTGGAGGGC TGTTTTGGTA TGTGTACTA GGAGGTGAG GGTGTTATAC CGACGTGAG CGACGTGAG CGACGTGAG CGACGTGAG CGACGTGAG CACAAGAC CACAAGAC CAAAATCCTCC	ACCGCATGG AATCTACGT CGGCATGACC CTCACTTCCT CTTGCTACCT CTCACTTCT TCGCAACCA TTTTCCCTC TCGCAACCA ATACCCTTAA TTTCCCTCT AGGAACCTCA AGGACCTCT AGGACCTTC AGGACCTTC CCAGGGGC CCTGCTGCC CCAGGACTGCC CCAGGACTCC CCAGGACTGCC CCAGGACTGCC CCAGGACTGCC CCAGGACTGCC CCAGGACTGCC CCAGGACTGCC CCAGGACTGCC CCAGGACTCC CCAGACTCC CCAGGACTCC CC	CGCTCCGGGG GGAATACCAG CTTGTTTTTTA GAGGCTACAT GGATCCTACT TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC TACTCATTCA TCCACGACCC TCACGACCC TCAGGACCC TCAGGCACC TCAGGCACC TCAGGCACC TCAGGCACC TCAGGCACC TCAGGCACAT AGGGCATACT ACCAGTACT ACCAGT ACT ACCAGT ACCAG ACCAGT ACCAG ACCA	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GCTGGAGAGG CCTAGTGTGT TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT CAAGGAGGAC CCTCATGAGG CCTCATGAGG CCTCATGAGG CCTCATGAGG CTTAAAGTG CTTACACTGC CAAGGTGC CAAGACT CAAGGAGGAG CCTCATGAGG CCTCATGAGG CCTCATGAGC CAAGACT CCAACACTG CAAGACTGC CAAGACTGC CAAGACTGC CAAGACTGC CAAGACTGC CCACATTGC CCACATTGC	GCCGATGGCT TTCACCAGGT TGTTTCCCT TGTTTCCCT CTCTCAACA CTCTTCTACT AGGAAGGGA GCCCTACCCA AGGAAGGGA TCCTGTTTCT TCCTGTTTCT TCCTGTTTCT TCCAGGGCT ACGTCGGAAC AGGAAGCAGC TCCAGCGGG TGCAGCGGG TGCAGCGGG TGCAGCTGT TCTTCTTCA CTCATCTTTCT TCTCTCTTCA CTCATCTTTCT TTCGTCAGTGG TGGAGCCCCT TTCTTCTTCA CTGCTGTTTT TTCGTCAGTGG TGGATCACCA GTGGACCCCT GTGTATCAGGG GTGGACCCCCT	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGCAT TTCAGTCTTC TCCTGAGATC ACATCACTTT CAGATCGCTC AGGCCTTCCTT CAGATCGCCC AAGTCGTCCC CGGTGAAGGT CTCTGTTAA AGGCCATCCA TCCTGAATGA CTCTGTTTAA AGGCCATCCA TCCTGAATGA TCACTCCCTC GATCAGCGA TCACTCCCTC GATCAGCGA AGAGGTTCAT ATCAGACGA AGAGGTTCAT	240 300 420 480 540 660 720 840 900 950 1020 1080 1140 1320 1320 1320 1440 1500
55 60	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC CTATCTCTCC CTATCTCTCC CTACCTGGGA AAGAAGTCGG CACACGCTG AGGGATCATG CACACGCTTAC ACCCTGTTC ACCCTGTTC ACCTGTTCAAGG CCTGCAGGGC TGTTTTGGTA TGTTTACTCC GGACGTGGAG GGTGTTATAC CGACCTGATAC CACGAAGGCC CACGAAGGCC CACGAAGCCC CACGAACCGCT AAAATCCTCC GGACTTGGCC GAGGACTGGCG GGACTTGGCC GAGGACTGATG	ACCGCATGG AATCTACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT CGCATGACC CTCACTTCA ACACCTTCA ATTTTCCCTT AGGAAACCA ATCACCTCTA AGTGACCTCT AGGAACCTCT AGGAACTGCA CCTTGATGA CCTTTTTCCGG CACACTGCC CCAGACTGCC CTCGTGCTGC GTCATTGGGA ACGTTCGGGGA ACGTTCGGGGA ACGTTCGGGGA ACGTTCGGGGA ACGTTCGGGGA ACGTTCGGGGA ACGTTCGGGGA ACGTACATTA	CGCTCCGGGG GGAATACCAG CTTOTTTTTA GAGGCTACAT GGATCCTCTG TTGGCCCCAGT TTTTAATTCA GGGTGGTAGC AAGAGGATGC AGTGCATTCA TCCACGACCC GGTCCTTAAA AGAAGGAATG CTCCCCAGCC GGCCTACTT AGGCCTACTT AGGCCTACTT ACCGCAGACT CTCAGTCCTT ACCGCTACTT ACCGCTACTT ACCGCTACTT ACCGCTACTT ACCAGTACTT CTGTCTATCA AGATGTACTA ACATGATCTC ACATGATCTC ACATGATCTC	CTTCTGCAGC CAACCCGAC CAGCTGGAC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTAGTGTGT CCAGGTGGAC GCTAGTCTTT TAATCCCTGC AGGGTTGATT CAAGGAGAC GCCAAGACT GAAAGAGAG CCTCATTGAGC CCTCATGAGC CTTAAAGTTG CCTCACTGAGC CTTAAAGTTG CTACACGTG GAAGCCCTG GAAGGCCCTG CACACTTGC CACACTTGC GAAGCCCTG GAAGCCCTG GAAGCCCTG GAAGCCCTG GAAGCCCTG GAAGCCCTG GAAGCCCCTG	GCCGATGGCT TTCACCAGT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGCCAACTC AGCAAGCAG GCCCTAGCCA TCCTGTTTCT TCCTGTTTCT TCCTGTTTCT GCAAGGTCG TCCAAGCTGG TCGAACCCCT TTCTTCTTCA CTCATCAAGTTGG TCGAACCCT TTCTTCTTCA TCTATCAAGTTG TTCTTCATCA TCTATCAAGTTG TTCTTCATCA TCTATCAAGTTG TTCTTCATCA TCTATCAACT TTCTTCATCA TCTATCAACT TTCTTCATCA TCTATCAACT TTCTTCATCA TCTATCAACT TTCTTCATCA TCTATCAACT TTCTTCAACT TTCTTCAACT TCTCAACACC TCTCAAGTCA TCTCAACACC TCTCAAGTCA TCTCAAGTCA TCTCAAGTCA TCTCAAGTCA TCTCAAGTCA TCTCAAGTCA TCTCAAGTCA TCTCAACACC	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGA TTCAGTCTT TCCTGGGATT TCAGTCTT CAGATCGCTT CAGATCGCTC GCGCTTCCTT AACCCAGCC CCGTGAAGGT ATCCGATCA TCCTGATCTA AGGCCATCCA TCCTGATCA TCACTGCCT GCATGAATCA TCCTGATCCA TCACTGCCT GCATGAATCA TCACTGCCT GCATGAGGT ATCCAGATCA ATCACTGCCT GCATGAGGT ATCCACTGCT GCATGAGGT ATCACTGCCT GCATGAGGT ATCCACTGCT ATCACTGCCT GCATGAGGT ATCCACTGCT TCCTTGCTTT TCCTTGCTCT TCCTTCTCTT	240 300 420 480 540 660 720 780 900 950 1020 1140 1200 1320 1380 1440
556065	CGCCGGGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGAGTCATG CACACGCTG AGGAGTCATG CAGAATTATG CTACGTCTAC CCTGCGAGGGC TGTTTTGGTA TGTGTACTAC GGAGGTGAG GGTGTTATAC CGACCTGATC CGACGAGGC CACAGAGCC CACAGACCC CAAGACCGCT AAAATCCTCC GGACTTGCC CTACCTCCTC CTACGTCCC CATGGTGCC CTACGTCCC CTACGTCCC CATGGTGCC CTACCTCCTC CATGGTGCC CTACGTCCCC CACGACCC CTACCTCCTC CATGGTGCC CATGGTGCC CACGACCC CTACCTCCTC CATGGTGCC CACAGGACCC CTACCTCCTC CATGGTGCC CACAGGACCC CTACCTCCTC CATGGTGCC CACGGACTCCCC CACGGACTCCCC CACGACCC CACACGCC CTACCTCCTC CATGGTGCC CACGGACCC CTACCTCCTC CATGGTGCC CACGACCC CTACCTCCTC CATGGTGCC CACGGACCC CTACCTCCTC CATGGTGCC CACGGACCC CACGACCC CTACCTCCTC CATGGTGCC CACGCTCCTC CACGCTCC CACGCTCC CACGCTCC CACGCTCC CACGCTC CACGCTC CACGCTC CACGCTC CACGCTC CACGCT CACCC CACC CACCC CACC CACC CACC CACCC CACC CACCC CACC CACC CACCC CACCC CACCC CACCC CACCC CACCC	ACCGCATGG AATCTACGT CGGCATATACC CTGCTACCT CTTGCTACCT CTGCTACCT CTGCTACCT TCGCTACCT TCGCAACCA ACACCTTTA AGTACCTCT AAGACCTCT AAGACCTCT AAGACCTCT AAGACCTTC CCAAGACCTCC CCAAGACCTGC CCTGCTGCC CCAGACCTGC CCTGCTGCC CCCAGACTGGC ACGTCACTTCATTCCC CCAGACTGGC CTCTTGATCC CTCTTGATCC CTCTTGATCC CTCTACTCGC CCCTCTACTCC CTCTACTCC CTCTTCC CTCTACTCC CTCTTCC CTCTTCC CTCTTCC CTCTTCC CTCTTCC CTCTTCC CTCTTCC CTCTTCC CTCTTC CTCTTCC CTCTTC CTCTTTC CTCTTTTC CTCTTTTC CTCTTTTC CTCTTTTC CTCTTTTC CTCTTTTC CTCTTTTTC CTCTTTTTC CTCTTTTTT	CGCTCCGGGG GGAATACCAG CTTGTTTTTTA GAGGCTACAT GGATCCTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC TACTCATTCA TCCACGACCC TCAGGACCC TCAGGACCC TCAGGCCCC TCAGGCCCT TCAGGCCCC TCAGGCCCT TCAGGCCCT TCAGGCCCT TCAGGCCCTACT ACCAGTACT ACCAGTACT ACCAGTACT ACCAGTACT ACCAGTACT ACTGTCTATC AGATTGTCAA ACATGATCTC TGGGCCCTTCT TGGGCCCTTCT TGGGCCCTTC TGGGCCCTTCT TGGGCCCTTCT TGGGCCCTTCT TGGGCCCTTCT TGGGCCCTTCT TGATGGCGAT	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GCTGGAGAGG CCTAGATGAGC GCTGGTCTTG TAATCCCTGC GAGGGTGAT CAAGGAGGAC GCTCATCATC CAAGGAGGAC CCTCATCAGC CCTCATCAGC CTTAAAGTTG CAACACTTG CAACACTTG CAACACTTG CAACACTTG CAACACTTG CAACACTTG CAACACTTG CCAACACTTG CCACACTTG CCAACACTTG CCAACACTTG CCAACACTTG CCAACACTTG CCAACACTTG CCACACTTG CCAACACCC CGACCACC CGACCACAC CCACACTTC CCAACACTTC CCAACACTC CCACACTTC CCACACTC CCACACT CCACACTC CCACACACT CCACACTC CCACACTC CCACACTC CCACACTC CCACACTC CCACACTC CCACAC CCACACTC CC	GCCGATGGCT TTCACCAGGT TGTTTCCCT TGTTTCCCT TGTTTCCCT CTCTCAACA CTCTTCTACT AGGAAGGGG GCCCTACCCA AGGAAGGGG TCCTGTTTCT TCCTGTTTCT TCCTGTTTCT TCCAGGGCT ACGTCGGAAC AGGAAGCAGC TCCAGCGGCT TCCAGCGGCT TCCAGCGGCT TCCAGCTGTTC TTCATCTCAC GTGGAACCCCT TTCTTCTTCA GTGGAACCCCT TTCTTCTTCA TTCGTCAGTTC TTCGTCAGTTC TTCGTCAGTTC TTCGTCAGTTC TTCGTCAGTTC TTCGTCAGTTC GTGGACCCCT CTGCAAGTCA GGGAGTGCCGC ACGTATCAGG	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGCAT TTCAGTCTTC TCCTGAGATC TCCTGAGATC ACCGCCAGC AAGTCGTCCC AAGTCGTCCC CGGTGAAGGT ATCCGAATGA CTCTGTTTAA AGGCCATCCA TCCTGATTAA AGGCCATCCA TCCTGATGA TCCTGATGA TCCTGATGA TCCTGATGA TCCTGATGA TCCTGATGA TCCTGATGA TCCTGATGA TCCTGATGA TCCTGTCTT TCCTTGCTCT TCGATGACA AGAGGTTCAT TCCTTGCTCT TCGATGACCA TCGATGACCA TCGATGACCA TCGATGACCA TCGATGACCA TCGATGACCA TCGATGACCA TCGATGACCA TCGATGACCA TCGATCACA TCGATCACA TCGATCACACAT	240 300 420 480 660 660 720 780 840 960 1020 1140 1200 1320 1320 1320 1320 1440 1500 1560 1620
556065	CGCCCGCGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC CTATCTCTCC CTATCTCTCC CTACCTGGGA AGGAGTCATG CACACCCTGTC CACACCCTGTC CCTGCAGGGC CTTCGAGG CCTGCAGGGC TGTTTTGGTA TGTGTATCC CGACCTGATC CGACCTGAGC CCTGCAGAC CCTGCAGAC CCTGCAGAC CCTGCAGAC CACAACCCCT CACACCCCTCTC CACACCCCCTCC CACACCCCCTCC CACACCCCCCCC	ACCGCATGG AATCTACGT GTGTGGGTGC CGACATGACC TTTTTGCTGT CGCATATTCC CTCACTTCA ACACCTTCA ATTTTCCCTT AGAACCA ATCACCTCTA AGAACTGA ATCACCTCT AGAACTGA CCTTGATGA ACGACTCT AAGACTGC CCAGACTGC CCAGACTGC CTCGTGCTGC GTCATTGGGA ACGTCGGGGA ACGTCGGGGA ACGTACATTA TGCTGAATCGGA ACAATCGGA ACAATCGGAACATCGAATCATCA ACAATCGGAACATCGGA ACAATCGGAACATCA ACAATCGGAACATCA ACAATCGGAACATCA ACAATCAGGAACATCA ACAATCAGAACATCA ACAATCAGAACATCA ACAATCAGAACATCA ACAATCAGAACATCAATCATCAATCACTCA ACAATCAGAACATCAATCATCAATCACTCAATCACTCAATCACTCAATCATC	CGCTCGGGG GGAATACCAG GGATCGTTGT TTTTAATTCA GGGTGCTAGC TCGCCCCAGT TTTTAATTCA GGGTGGTAGC AAGAGGATGC AGGCTACTT CCACGACC GGTCCTTAAA AGAAGGAATGC CTGCCCAGCC GGCCTACTT ACGCCTACTT ACGCCTACTT ACGCCTACTT ACGCCTACTT ACGCCTACTT ACGCCTACTT ACGGCTACTT ACGGCTACTT ACGGCTACTT ACGGCTACTT ACGGCTACTT CTGTCTATCG AGATCGTCCT TCGATCGTCT TGATCGCCAT TCAAGCTCT TCAAGCTCT TCAAGCTCT TCAAGCTCT TCAAGCTGAT TCAAGCTGAT	CTTCTGCAGC CAACCCGAC CAGATGACA CTGGGCAGAC GCTGGGCAGAC GCTGGTGGTC GCTGGAGAGG CCTAGTGTGT TAATCCCTGC AGGGTGAC CGCCAAGACT CAAGAGGAC CCTCATGATG CAAGAGGAC CTCATGAG CCTCATGAC CTCATGAGC CTCATGAGC CTCATGAGC CTCACATGC CAACTCTG CAACTCTG CAACTCTG CAACTCTG GAAGGCCCTG GTCAGCCCC CGTCCTGGCT GTCAGCCCCC CGTCAGCAG GAACCAAATT	GCCGATGGCT TTCACCAGT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACT AGCCAACTC AGGRAGGAG GCCCTACCCA TCCTGTTTCT TCCTGTTTCT TCCTGTTTCT GCAAGTCCA AGGAAGCAGC TCCAAGTCG TCGAACCCCT TTCTTCTTCA CTCATCAAGTTG TTCGTCAGTTC TTCGTCAGTTC TTCGTCAGTTC TTCGTCAGTTC GTGAACCCCT TTCTTCTCA GTGAACCCCC CTGCAAGTCAG GCAGCCCCC CTCCAAGTCAG GAAGTCACGG GAAGTCACGG GAAGTCACGG GAAGTCACGG CCCAAAGTCA GCAGTCACGG CCCCAATGCG CTCCAATGGGA CTCCAATGGA CTCCAATGACA	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGA TTCAGTCTT TCCTGGGAT TCAGTCTT CAGATCGCTT CAGATCGCTC AAGCCACCC AAGTCGCACC AAGTCGTGC CGGGAAGGT ATCCGAATCA ACGCCATCCA TCCTGATTTAA AGGCCATCCA TCCTGATTCA TCCTGATCGA TCACTGCCT GCATGAGGT ATTCACTGCT TCACTGCCT TCACTGCCT TCACTGCTTCAT TCACTGCT TCATGCCT TCATGCTCT TCATGCTCT TCATGGTCCT TCATAGGTCCT TCGACCACAT TCGACCACAT TCACAACTCCT TCACACTCCT TCACAACTCCT TCACATCCT TCACAACTCCT TCACAACTCT TCACAACTCCT TCACAACTCCT TCACAACTCT TCACAACTCCT TCACAACTCCT TCACAACTCCT TCACAACTCCT TCACAACTCT TCACAACTCT TCACAACTCT TCACAACTCT TCACAACTCT TCACAACTCT TCACAACTCT TCACAACTCT TCACAACTCT TCACAACTC	240 300 420 480 660 660 720 780 840 900 1020 1140 1200 1320 1380 1440 1560 1560 1680 1740
55606570	CGCCCGCCC CTGGACTGG CACGGTCTC CTATCTCTCC CTATCTCTCC CTATCTCTCC CTACCTGGA AGGAGTCAG CACACGCTG AGGGATCATG CCACACTTC CCTCTCTCAGGG CCTGCAGGGC TGTTTTGGTA TGTGTACTCC GGAGGTGGAG CGAGGTGGAG CCTGCAGCC CACAGACCC CAAGACCCC CAAGACCCC CAAGACCCC CAAGACCCC CAAGACCCC CAAGACCCC CAAGACCCC CAAGACCCC CAAGACCAA AAAGCTTTAT	ACCGCATGG AATCTCACT CTGACATTACC CTTACTACT CTCACTTCT ACACCTTA ACACCTTA ACACCTTA ACACCTTC ACACCTTC ACACCTTC ACACCTTC ACACCTTC ACACCTTC ACACCTTC ACACCTTC ACACCTC CTCATCCTC ACCTCACCTC CTCATCCTC ACCTCACCTC CTCATCCTC ACACCTCC ACACCTC ACACCT ACACC ACACCT ACACC ACACCT AC	CGCTCCGGGG GGAATACCAG CTTOTTTTTA GAGGCTACAT GGATCGTCTG TGGCCCCAGT TTTTAATTCA GGCTGGTAGC AAAGAGGATGC TCACAGACCC GGTGGTAGCA TCACGACCC GGTCCTTAAA AGAAGGAATG CTGCCCAGCC TCAAGTCCCC GGCCTACTT GGCCCCAGCT ACCAGACTACT TCAAGTCCT TCAAGTCCT TCAAGTCCT TCAAGTCCT TCAAGTCCT TCAAGTCCT TCAAGTCTTTAAA ACATGATCTC TCGTCTATCT TCGTCTATCT TGGCCCTTC TGATGGCGAT TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTAGTGTGT CCTAGTGTGT TAATCCCTGC CAAGGAGGAC CGCCAAGACT GAAGGAC CCTCATTGAGC CTTAATCTTG GAAGGAC CTTAAAGTTG CTAACCGTG CTAACCGTG GAAGGAC GAAGGAC GAAGGAC GAAGGAC CCTCATGC GAAGACCAGC CGTCCTGGCT GAAGACCAGC CGTCCTGGCT GAAGACCAAG	GCCGATGGCT TTCACCAGT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACT AGCCCAACTC AGCCAACTC AGCAGGGGG TCCTAGCA TCCTGTTTCT CCAGAGTCCA AGGAAGCAGC TCCAAGGTGG TCGAACCCCT TTCTTCTTCA CTCATCAACT CTCATCAACT CTCATCAACT CTCATCAACT CTCGAACCCCT CTCCAAGTCA GGGATCACCA GGGGGCCTC CTCCAAGTCA GGAGTCCCG GAGTGCCGG ACCTATCAGGA CCTCAATCAGGA CCTCAATCA CCCAATCA CCCC	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTT TCAGTCTTT CAGATCGCT GCGCTTCCTT ACCGCCAGC AGATCGCA CCTCTGTAAGGT ATCCGAATGA TCACTGAATGA TCACTGCAATGA TCACTGCATCCT GCATGAATGA TCACTGCT GCATGAGGT ATTCAGGTTCAT TCATGCTT TGATGGTTCT TGATGGTCCT TGATGGTCCT TGCAAGGGT TCATGGTCCT TGATGGTCCT TGCAAGGGT TCATGGTCCT TGATGGTCCT TGCAAGGGT TCAAAGGCT	240 300 420 480 660 660 720 780 840 900 1020 1140 1200 1320 1380 1440 1560 1560 1680 1740
556065	CGCCGGGCC CTGGGACTGG CACGGTCCTC CTATCTCTCC TGCCTTGGGA AGGAGTCATG AGGAGTCATG CACACGCTG AGGGATCATG CAGAATTATG CTACGTCTAC ACCCCTGTTC CTGTCGAGG CCTGGAGGGC TGTTTTTGGTA CGCACGTGTATAC CGACGTGAG CGACGTGAG CGACGTGAG CGACGTGAG CGACGTGAG CGACGAGGCC CACGAGGCC CAAGACCGCT CAAGACCGCT CAAGACCGCT CAAGACCGCT CAAGACCAA AAATCTCC CGACTTGCC CAAGAGCAA AAAATCTTAT CCTCAAGGTT	ACCGCATGE AATCTACET CTGTTGCGTC CGACATGAC TTTTTCCGTT CTTGCTACCT CTCACTTTCT TCGGAACCA ATTTCCCTCT AGGAACCA ATTTCCCTCT AGGAACCTCA AGACCTTCA AGGACCTTCA AGGACCTTCA AGGACCTTCA AGGACCTTCA AGGACCTTCA AGGACCTTCA AGGACCTTCA AGGACCTTCA CCACAGCTGCC CCACACTGCC CTCACTGCTCC CTCACTGCTCC CTCACTGCTCC ACGACTGCC CTCACTGATC GTCAATCCGC GACAATCGGA CCCTCGAGCCC GCCAGGAACCT GTCAATCCGC GCCAGGGAAC CTCAAGGACC CTCAAGGAAC CCCTGGGGAAC CCCTGGGGAAC CCCTGGGGAAC CCCTGGAAGAC CCCTGGAAAC CCCTGGAAAC CCCTGGAAAC CCCTGGGAAC CCCTGGAAAC CCCTGAAGAAC CCCTGAAGAAC CCCTGGAAAC CCCTGAAGAAC CCCTGAACAAC CCCTGAAGAAC CCCTGAAGAAC CCCTGAAGAAC CCCTGAAGAAC CCCTGAAGAAC CCCTGAAGAAC CCCTGAAGAAC CCCTGAAGAAC CCCTGAACAAC CCCTGAAC	CGCTCCGGGG GGAATACCAG CTTGTTTTTTA GAGGCTACAT GGATCCTCTG TTGGCCCCAGT TTTTAATTCA GGCTGGTAGC TACTCATTCA TCCACGACCC TCAAGACCC TCAAGGCATCA GGCCCTACTT ACCAGTACCC TCAAGTCCCC GGCCCTACTT ACCAGTACT ACCAGTACT TCTGTCTATTCA ACATGATCTCA ACATGATCTCA ACATGATCTCA ACATGATCTCA ACATGATCTCA TCGGCCCTTCT TGGATGCCTT TGAAGCTGAT TCAAGCTGAT TCAAGCTAAC TCA	CTTCTGCAGC CAACCCGAC CAGATGACA CTGGGCAGAC GCTGGGCAGAC GCTGGTGGTC GCTGGAGAGG CCTAGTGTGT TAATCCCTGC AGGGTGAC CGCCAAGACT CAAGAGGAC CCTCATGATG CAAGAGGAC CTCATGAG CCTCATGAC CTCATGAGC CTCATGAGC CTCATGAGC CTCACATGC CAACTCTG CAACTCTG CAACTCTG CAACTCTG GAAGGCCCTG GTCAGCCCC CGTCCTGGCT GTCAGCCCCC CGTCAGCAG GAACCAAATT	GCCGATGGCT TTCACCAGGT TGTTTCCCT TGTTTCCCT TGTTTCCCT CTCTCAACA CTCTTCTACT AGGAAGGGG GCCCTACCCA AGGAAGGGG TCCTGTTTCT TCTGTTTCT TCTGTTTCT TCCAGGGCT ACGTCGGAAC AGGAAGCAGC TCCAGCGGCT TCCAGCGGCT TCCAACTCC CTCACTCTTCT TTCGTCAGTG GTGGACCCCT TTCTTCTTCA GTGGACCCCT TTCTTCTTCA GTGGACCCCT CTCCAACTCA GTGGACCCCT CTCCAACTCA GGCACTACGGA CTCAATGGGA CTCAATGGGA CTCGCCATTCA	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGCAT TTCAGTCTTC TCCTGAGATC TCCTGAGATC ACCGCCAGC AAGTCGTCCC CGGTGAAGGT ATCCGAATGA ATCCGAATGA TCCTGATTAA AGGCCATCCA TCCTGATTAA AGGCCATCCA TCCTGATGA TCACTGCCCA GCAGGGT AATCAGCAG TCACTGCTCT TCATGAGGAT TCATTGCTCT TCATGAGGAT TCATGCCAT TCATGCCCT TGGCCCACAT TCAATGGCCT TGGCCCACAT TCAATGGCCT TGGCCCACAT TCAATGGCCT TGGCCCACAT TCAATGGCCT TGGCCCACAT TCAATGGCCT TGGCCCACAT TCAATGGCCT TCGCCCACAT TCAATGGCCT TCGCCACAT TCAATGCCT TCGCCACACT TCAATGCCT TCAATGCCACAT TCAATGCCT TCAATGCT TCAATGCCT TCAATGC	240 300 420 480 540 660 720 840 900 1020 1020 1140 1260 1320 1440 1550 1620 1620 1620 1620
55606570	CGCCCGCCC CTGGACTGG CACGGTCTTC CTATCTCTCC CTATCTCTCC CTATCTCTCC CTATCTCTCC CTATCTCTCC CACACCCGCG AGGGATCATG CAAAATTATG CCTACCTCTAC ACCCCTCTTC CCTGTCTAC ACCCTGTTC CCTGCTGGGG CGTGTTATAC CGACCTGATG CACAGAGCC CAAGACCCTATC CAAGACCCT CAAGACCC CAAGACCCT CAAGACCC CAAGACCCTTACCTCC CATCGTGCCC CATCAGTCCC CATCAGTCCC CATCAGTCCAAGCCC CAAGACCAA AAACCTTTAT CCTAAAGCTC CAACGTCAACCCT CAACGTCAACCCCTC CATCAGACCTC CACCCCTTTAC CACCCCTTTAC CACCCCCTTTAC CACCCCCTTTAC CACCCCCTTTAC CACCCCCTTTAC CACCCCCTTTAC CACCCCCTTTAC CACCCCCTTTACCCTCC CATCCTCGGAC CACCCCCTTTC CACCCCCTTTAC CACCCCCTTTC CACCCCTTC CACCCCCTTTC CACCCCTTTC CACCCCTTTC CACCCCCTTTC CACCCCCTTTC CACCCCCTTTC CACCCCCTTTC CACCCCCTTTC CACCCCCTTTC CACCCCCTTTC CACCCCCTTTC CACCCCCTTTC CACCCCTTC CACCCCTTTC CACCCCTTTC CACCCCTTC CACCCCTTTC CACCCCTTTC CACCCCTTC CACCCTCC CACCCTTC	ACCGCATGG AATCTACGT CTGGTGGGTGC CGACATGACC CTTGCTACT CTGCTACT CTGCACTTCT ACGCCTTAA ATTTCCTGT TCGGAAACCA ATCACCTCT AAGAACCA ATCACCTCT AAGAACTGA CCTTGGTATGC CCTGGTGATGC CCTGGTGTATGC CTCGTGCTGC GTCATTTTCCG GTCATTTTCCG GTCATTTTCCG GTCATTTTCCG GTCATTTTCCG GTCATTGGG ACGTCGGC ACGTCGGGAC CCTGGGAGC CTGGGAGC CTGGGGAGC CTGGGGAGC CTGGGGAGC CTGGGGACAC GCCCAGACAC	CGCTCCGGGG GGAATACCAG CTTOTTTTTA GAGGCTACAT GGATCGTCTG TTTTAATTCA GGCTGCTAGC TACTCAATTCA TCCACGACCC GGTGGTAGC AGAGGATGC GGTCCTTAAA AGAAGGATGC TCAAGTCCCC GGCCTACTT ACCCGACCC GGCCTACTT ACCGCTACTT ACCGCTACTT ACCGCTACTT ACCGCTACTT TCAAGTCCCC TCAAGTCCCC TCAAGTCCCC TCAAGTCCCC TCAAGTCCCT TCAAGTCCCT TCAAGTCCCT TCAAGTCCT TCAGCTACTT TCAGCACTT TCAAGCGCAT TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT TCAGCCTACCT TCGTCCACCTT TCGTCCACCTT TCTTCTGTCC	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTAGTGTGT CCTAGTGTGT TAATCCTGC CAAGGAGGAC CGCCAAGACT GAAGGAGCA CGCCAAGACT GAAGGAGGAC CTTAAAGTTG CCTAATGAG CCTCATGC GAAGGACT GAAGGACT GCACATTGC GAAGGACC GAAGACCAG GAAGAACT GAAGAACT GCACATTGC GAAGACCAG TTCAGCCTT GTCAGCCCTC GTCAGCCTT GTCAGCCTT GTCAGCCTT TCCCGTCTTGC TTCCCCTTCTTCT TTCCCCTTTCT TTCCCCTTTCTT TTCCCCTTTCTT TTCCCCTTTCTTC	GCCGATGGCT TTCACCAGGT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACT AGCCCAACTC AGCAAGGAG GCCCTAGCCA TCCTGTTTCT CCAGAGTCCA AGCAAGGAG ACGAAGCAGC TCCAAGGTGG TCGAACCCT TTCTTCTTCA TTCGTCAGT TTCGTCAGT TTCGTCAGT TTCGTCAGT TTCGTCAGT GTGAACCCC TTCGTATCAACT CTCCAAGTCA GGAGTCGC CTCCAAGTCA GGAGTCACC CTCCAAGTCA GGAGTCACC CTCCAAGTCA GGAGTCACC CTCCAAGTCA GGAGTCACC GCACCTTCA GGCACCTTCA GGCACCATCA GCGCCATCA GGCACCATCA GGCACCATCA GGCACCATCA TTCAACAATCA	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGA TCTTGGGCAT TTCAGTCTTT TCAGTCTTT CAGATCGCTT ACCGCCAGC AAGTCGTGCC CGGTGAAGGT ATCCGAATGA AGGCCATCC TCCTGGATGA AGGCCATCC TCATGCATTA ATCAGCAGC ACAGGATGA TCACTGCT	240 300 420 480 540 660 720 780 840 900 1020 1140 11200 1140 11380 1140 1550 1620 1620 1860 1860 1920
55606570	CGCCGGCCC CTGGGACTGG CACGGTCTCC CTATCTCCC CTATCTCCC CTATCTCCC CTACCTTGGGA AGGAGTCATG CACACGCTG AGGGATCATG CAGAATTATG CTACGTCTAC CAGACTCTAC CAGACTGAGGC CTGGAGGGC TGTTTTTGGTA CGACGTGAGGC CGACGTGAGGC CGACGAGGCC CAGACCCC CAAGACCCC CAAGACCCC CAAGACCCC CAAGACCCC CAAGACCAC CAAGACCAAA AACCTTCCC CAAGACCAAA AACCTTACTC CACGCGTTT CACCCCGTTT CACCCCCTTACCCC CACGCCTTT CACCCCCTTT CACCCCTTT CACCCCTT CCTGAACATT CACCCCTTT CACCCCTT CACCCCTTT CACCCCTTT CACCCCTTT CACCCCTT CACCCCT CACCCCT CACCCCT CACCCCT CACCCCT CACCCC CACCCC CACCCC CACCCC CACCCC CACCC CACC CACCC CACC CACC CACC CACCC CACC CACC CACC CACCC CACCC CACC	ACCGCATGG ANTOTAGGT CGGCATGACC CGACATGACC CTTTTTCCGT CCTCACTTCC CTTGCTACCT CTCACTTCT AGGAACCA ATTTCCCTC AGGAACCA AGGCCTTAA TTTCCCTC AGGAACCTC AGGACCTCC AGGACCTTC CCAGGGT CCAGGGT CCAGGGT ACGTCTCATC CCAGGACTGC CCAGACTGC CCAGACTGC CCCAGACTGC CCCAGACTGC CCCAGACTGC CCCAGACTGC CCCAGACTGC CCCAGACTGC CCCAGACACC CCCCAGACACC CCCCCAGACACC CCCCCAGCACC CCCCCAGCACC CTCCCCCATGC CTCTCCCCCATGC CTCCCCATGC CTCCCCATGC CTCCCCATGC CTCCCCATGC CTCCCCATGC CTCCCCATGC CCCCCATGC CCCCCCATGC CCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCATGC CCCCCATGC CCCCCATGC CCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCATGC CCCCCATGC CCCCCATGC CCCCCCATGC CCCCCCATGC CCCCCATGC CCCCCATGC CCCCCCATGC CCCCCATGC CCCCCCATGC CCCCCATGC CCCCCCATGC CCCCCATGC CCCCCCATGC CCCCCATCC CCCCCATGC CCCCCATCC CCCCATCC CCCCCATCC CCCCCATCC CCCCCATCC CCCCCATCC CCCCCATCC CCCCCATCC CCCCCATCC CCCCCCATCCCCATC CCCCCCATCC CCCCCCATCC CCCCCCATCC CCCCCCATCC CCCCCATCC CCCCCATCC CCCCCATCC CCCCCCATCC CCCCCTC CCCCCCATCC CCCCCATCC CCCCCATC	CGCTCCGGGG GGAATACCAG GGATCACAT GGATCCACAT TGGCCCCAGT TTTTAATTCA GGCTGCTAGC TACTCATTCA TCCACGACCC TCACGACCC TCAAGTCCC TCAAGTCCT TCAAGTCCT TCAAGTCTCA ACATGATCT TCATCACT TCAACTCAT TCAACCTCAT TCACCACAT TCACCTACT TCTCCTACT TCTCTCACT TCATCACACT TCATCACACT TCATCACACT TCATCACACT TCATCACACT TCATCACACT TCATCACACT TCATCACACACT TCATCACACAC TCATCACACACA	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GCTGGAGAGG CCTAGTGTGT TAATCCCTGC CAGGTGAC GCTCGTCTT TAATCCCTGC GCAGAGAGGAC CCTCATCAGC CCTCATCAGC CCTCATCAGC CCTCATCAGC CCTCAACACT GCAACACT CCAACACT GCAACACT GCAACACT GCAACACT GCAACACT GCAACACT GTCAGCCCC GAAGACCGC GAAGACCG GACACCAAG GAACGAAGT GCACAAGGT GCACACGAG TCACCCGC TCACACCGC TCACACCAGC GACACCAAG TCTCACCCCC TCACACCAGC TCCCCTCTAC TCCCCCTCTAC TTCCCCCTCTAC TTTCGCCTTC CATCGCCTCTAC TTTGCCCTTC CATCGCCTCAC CTTCGCCTTCAC TTTGCCCTTC CATCGCCTCAC CTTCGCCTCTAC TTTGCCCTTC CATCGCCCTC CATCGCCTCTAC TTTGCCCTTC CATCGCCCTC CATCGCCTCTAC TTTGCCCTTC CATCGCCCTC CATCGCCCTCTAC TTTGCCCTTC CATCGCCCTC CATCGCCCTCTAC TTTGCCCTTC CATCGCCCTC CATCGCCCTCTAC TTTGCCCTTC CATCGCCCTC CATCGCCCTC CATCGCCCTCTAC TTTGCCCTTC CATCGCCCTC CATCGCCCTCTAC TTTGCCCTTC CATCGCCCTC CATCGCCCC CATCGCCCC CATCGCCCC CATCGCCCC CATCGCCC CATCGCC CATCGCCC CATCGCCC CATCGCC CATCGCCC CATCGCC CATC	GCCGATGGCT TTCACCAGGT TGTTTCCCT TGTTTCCCT TGTTTCCCT CTCTCAACA CTCTTCTACT AGGAAGGGG GCCCTACCCA AGGAAGGGG TCCTGTTTCT TCTGTTTCT TCTGTTTCT TCCTGTTTCT TCCAGGGCT ACGTCGGAAC AGGAAGCAGC TCCAGCGGGT TCCAGGGGGT TCCAGGGGGT TCCAGGTGG TCGAGCTCC TTCTTCTTCA CTGCAGTTCA TTCGTCATTCA TTCGTCAGTGG GTGATCAGG GTGATCAGG GTGATCAGG CTCAATGGGA CTCAATGGGA CTCAATGGGA CTCAATGGA CTGGCCATTA GTGACCATTG TTCACACTTC TTCAACATCC GGCACTTTCA TTCACACTTC TTCACACATTC TTCACACATTC GTGACACTTC GCGAGTTTC GCGAGTTC GCGAGTTTC GCGAGTTTC GCGAGTTC GCGAGTTTC GCGAGTTTC GCGAGTTTC GCGAGTTTC GCGAGTTC GCGAGTTTC GCGAGTTC GCGAGTTTC GCGAGTTC GCGAGTTTC GCGAGTTTC GCGAGTTTC GCGAGTTC GCGAGTTTC GCGAGTTC GCGAGTTTC GCGAGTTTC GCGAGTTC GCGAGTTTC GCGAGTTC GCGAGTT GCGAGTT GCGAGTT GCGAGTT GCGAGTT GCGAGTT GCGAGTT GCGAGTT GCGAGT	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGA TTCAGTCTTC TCCTGAGATC TCCTGAGATC ACCGCCAGC AAGTCGTCC AAGTCGTCC AAGTCGTCC CGGTGAAGGT TCCTGAATGA CTCTGTTTAA AGGCCATCCA TCCTGAATGA CTCTGTTTAA AGGCCATCCA TCCTGATGA TCACTGCCT GCATGAGGT TCATTGCTT TCATGAGGAT TCCTTGATCT TCCTGATGTCT TCGTCAGTCT TCGTCAGTCT TCGTCAGTCT TCGTCAGTCT TCGTCAGTCT TCGTCAGTCT TCAGTCGTCT TCGAGGAGA CCTGGGTCTC ACGAGACAA TCCGGTTCT ACGAGACAA ACCGGAACAA TCCGCTTAAACG CCTCCAAACG	240 300 420 480 660 660 720 780 840 960 1020 1140 1200 1320 1320 1320 1320 1440 1500 1560 1680 1740 1860 1920 1980
55606570	CGCCCGCCC CTGGACTGG CACGGTCTC CTATCTCTC CTATCTCTC CTATCTCTC CTATCTCTC CTATCTCTC CTACCTTGGGC CACACCTG AGGACTCATG CACAACTTAC CCTGTCGACGGC CGTGTGGACG GGTTTATAC CGACCTGATC CGACCTGATC CACGAGCCC CACGAGCC CACGAGCC CACGAGCC CACGAGCC CACGAGCC CACGAGCC CACGAGCC CACGAGCC CTACCTCCC CACCTCCC CACCTCCC CACCTCCC CACCTCCC CACCTCCC CACGACC CTCCCCC CACCTCCC CACCCCCTC CACCCCCTC CACCCCCTC CACCCCCTC CACCCCCTT CCTCAGACATT CCTGAACATT CCTGAACATT CCTGAACATT	ACCGCATGG AATCTACGT CTGTGGGGGGCATGAC CTGATGACC CTGATTTCT CCTTCTTCTTCT CCTGATCCT CTGATTCT ACACCTTCA ACACCTTCA ACTCCTCA ACTCCTCA ACTCCTCA ACTCCTCA ACTCCTCA ACTCCTCA ACTCCTCA ACTCCTCTA ACACCTTC ACGAACCTC ACGAACCTC CCCAGACTGC CTCCTGCTGC CTCATCGGG ACGTTCGGGG ACGTTCGATC GCCAGACTGC CTCAGACTGC CTCAGGAACC CTCCAGACAG CCTGGGGAGC CTGGGGAGC CTGGGGAGC CTGGGGAGC CTGGGGAGC CTGGGGAGC CTGGGGAGC CTCCCAGACAG CCTCCCAGACAG CTCCCCAGCAG CTCCCCAGCAG CTCCCCAGCAG CTCCCCATGG	CGCTCCGGGG GGAATACCAG GGATCCTCTT GGGCTCCAGT TTTTAATTCA GGGTGGTAGC TGCCCCAGT TCTCATTCA TCCACGACCC TCCACGACCC TCCACGACCC GGCCCTACTT AGAGGATCAC GGCCCTACTT AGCGCCTACTT ACCAGTACT TCCAGTCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCAGCCC TCCACCC TCCACCC TCCACCC TCCACCC TCCACCC TCCACCCC TCCACCCC TCCACCC TCCACCACC TCCACC TCCACCACC TCCAC	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GCTGGTGTGC GCTGGTGGTGC CCAGGTGGAC GCTCGTCTTG TAATCCCTGC AGGGTTGATT CAAGGAGGAC CGCCAAGACT GAAGGAGGAC CTTAAAGTTG CAACTGCG GAACCTGC GAAGCCTGC GAAGCCCTG GAAGCCCTG GCAACTTGC GCAACTTGC GAAGCCCTG GAACCAAGTT GCACATCTGC GTCAGCCCC CTCAAGCCCTC GTCAGCCCTC GTCAGCCCTC GTCAGCCCTC GTCAGCCCTC GTCAGCCCTC GTCAGCCCTC GTCAGCCCTC CGTCAGCCTTTG CACACTTGCCTG CACACTGCCTGC CTCAGCCCTTC CTCAGCCCTTG CTCAGCCCTTG CTCAGCCTTG CTCAGCCCTTG CTCAGCCCTTG CTCAGCCCTTG CTCAGCCCTTG CTCAGCCCTTG CTCAGCCCTTG CTCAGCCTTG CCACTCTGCCTG CATCTGCCTTG CATCTGCCTTG CATCTGCCAG	GCCGATGGCT TTCACCAGGT TGTTTCCCT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACT AGGCAAGCAG GCCCTAGCCA AGGAAGGGG GCCCTAGCCA AGGAAGCAGC TCCAGGTTCC ACCTCGCAAGTCC TCCAGGAC TCCAAGTCC TCCATCATCAGT TTCTCTTCA TTCTCTTCA TTCTTCATCA TTCGTACAGT TTCGTACAGT TTCGTACAGT TTCGTACCCC CTGCAAGTCAG GCAAGTCAC GCAAGTCAG GCACCTAC GCAAGTCAC GCACCTAC GCAACTCAC GCACCTAC GCGAGTTCT TTCAACATCC GCGAGTTCT TTCAACATCC GCGAGTTCT AGCATCAGCA GCGAGTTCT AGCATCAGCAC ACGCATCAACATCC GCGAGTTCT AGCATCAGCAC ACGCATCAACATCC GCGAGTTCT AGCATCAGCAC ACGCATCAACACC ACGCACTCAACACC GCGAGTTCT ACCATCAGCAC ACGCATCAACACC ACGCACTCAAC ACGCACCTACA ACCATCAACACC ACGCACTCAAC ACGCATCAACACC ACGCACTCAACACC ACGCACTCAAC ACGCATCAACACC ACGCACTCAAC ACGCATCAACACC ACGCACTCAACACC ACGCACTCAACACC ACGCACTCAACACC ACGCACCTACAACACC ACGCACCTACAACACC ACGCACTCAACACC ACGCACCACACAC ACGCACCACACAC ACGCACCACACAC ACGCACCACACAC ACGCACCACAC ACGCACCACAC ACGCACCACACAC ACGCACCACAC ACCACACACA	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGCAT TTCAGTCTTC TCCTGAGATC CAGATCGCTC CAGATCGCTC CAGATCGCTC CAGATCGCT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCGCT CAGATCACTT TCACTGCT GCATGAGTA TCACTGCTT TCACTGCTT TCATGCCT GCATGAGGAT ATTCACTGCT TCATGCTCT TCATGCTCT TCATGCTCT TCAGACGACAA TCCTGGTTCAT TCAAAGTCCT GCAGAGGAGAA TCCAGGTTCT ACGAGAACAA TCCGGTTTCC CCCTCAAACG GACGACCAT TCCAAACG	240 300 420 480 540 660 720 780 840 960 1020 1140 1200 1320 1340 1500 1560 1680 1740 1860 1980 2040 2040 2040
55606570	CGCCCGCCC CTGGACTGG CACGGTCTC CTATCTCTC CTATCTCTC CTATCTCTC CTATCTCTC CTACCTGGA AGGAGTCAG CACACCCTA AGGAGTCAT CCTACCTTAC ACCCTGTTC CCTGCTTAC ACCCTGTTC CCTGCTAGAG CCTGGAGGC TGTTTTGGTA TGTTTATAC CGACCTGATC CACACAGCC CAAGACCCT AAAATCCTCC CAAGACCC CTACCTCTG CATGGTCCC CAAGACCCTTTAT CCTAAAGATC CACCCCTTT CATCCTCTG CACCCCTTT CATCCTGAACT CACCCCCTTT CATCCTGGAT CCTGAACAT CCTGAAC CCTCTCT CCTGAAC CCTCTCT CCTGAAC CCTCT CCTCCTCT CCTCCT CCTCCT CCTCCT CCTCCT	ACCGCATGG AATCTACT CTGATGCT CGACATGAC CTTGCTACT CTGCTACT CTGCTACT TCGCATTAC TTTTTCCTGT TCGGATACC CTCACTTCT ACACCTTCT ACACCTTCT AAGACCACT ATCACCTCT AAGACCTCT AAGACCTCT AAGACCTCT AAGACCTCT AAGACCTCT AAGACCTCT AAGACCTCT CCAAGGATC CCTGTGCTGC CCTGTGCTGC GCCAGACTGC CTCATGGGA CCTGATGGGA CCTGATGGGA CCTGAAGAAC CTCCAAGAAC CTCAAGAAC CTCGTGGCCC CCCCAAGAAC CTCCCCATGG CCCCAAGAC CTCCCCATGG CCCCAACAG CTCCCCATGG CCCCAGCCG CCCCAGCCG CCCGGGGCACGA	CGCTCCGGGG GGAATACCAG GGATCACAT GGATCCACT TOTTTATTCA GGGTCCAGT TOTTAATTCA GGCTGCAGC AAGAGGATGC AAGAGGATCC GGTGGTACC GGTCCTTAAA AGAAGGATCC GGTCCTTAAA AGAAGGATCC GGCCTACTT AAGCCCAGCC GGCCTACTT AAGCCCAGCC GGCCTACTT AAGCCATACT TCAAGTCCCT TCAAGTCCCT TCAAGTCCT TCAAGTCCT TCAAGTCCT TCAAGTCT TCTGTCTATCG AGATTATT TGGCACTACT TGGCACCTT TGGCACCTT TGGCACCTT TGGCACCTACT TCAAGCTGAT TCAAGCTGAT TCAAGCTGAT TCGCACCTACT TCTGCACACT CTTCTTCTT TCTTCTACACTG TCATCACCAG ACTAGACCATCAC ACAGCATCAC	CTTCTGCAGC CAACCCGAC CCTCTGGGCC TCAGATGACA CTGGGCAGAC GTTTCTGGTC GCTGGAGAGG CCTAGTGTGT TAATCCTGC CAGGTGAAC GCTCGTCTTG TAAACCTGC GAAGGAGAG CCTCATGAGC CTCATGAGC GCCAAGACT GAAGGAGGAC CTTAAACTTG CCACATCTGC GAAGGACT GAAGGACT GAAGGACT GTCAGCCCTC GTCAGCCTTG CTCAGCCGTC TCCCGTCTAC TTTGGCCTTC CATCTGCCGTC CACTCTGCCGTCACCTTGC CTCATGCCGTC CTCAGCCGTC CTCAGCCGTC CTCAGCCGTC CTCAGCCTTAC CTTGCCGTCTAC CTTGCGCTTAC CTTGCGCTTAC CTTGCGCTTAC CTTGGCCTTAC CTTGGCCTTAC CTTGAGCAAC	GCCGATGGCT TTCACCAGT TGTTTCCCT TGTTTCCCT CCTCTCAACA CTCTTCTACA CTCTTCTACT AGCCAACT AGCCAACT AGCCAACT AGCCAACT AGCCAACT CCTGTTCCT CCAGAGTCCA GCAGCAGCAGC TCCAAGCTGG TCGAACCCT TTCTTCTTCA TTCTTCTTCA TTCTTCTTCA TTCTTCTTCA TTCTTCTTCA TTCTTCTTCA GCAGCTCG GCACCTTCA GCACCTTCC TCCAATGGG CTCAATGGG CTCAATGGC CTCAATGGC CTCAATGGC TTCACACT TCCACC TCCACT TTCACACT TCCACC TCCACT TTCACACT TCCACC TCCACT TCCACC	CCGACCGCT GCTTTCAGAA TCTACTTCT AAACCAAAAC CTTTCTGGGA TTCAGTCTTC TCCTGAGATC TCCTGAGATC ACCGCCAGC AAGTCGTCC AAGTCGTCC AAGTCGTCC CGGTGAAGGT TCCTGAATGA CTCTGTTTAA AGGCCATCCA TCCTGAATGA CTCTGTTTAA AGGCCATCCA TCCTGATGA TCACTGCCT GCATGAGGT TCATTGCTT TCATGAGGAT TCCTTGATCT TCCTGATGTCT TCGTCAGTCT TCGTCAGTCT TCGTCAGTCT TCGTCAGTCT TCGTCAGTCT TCGTCAGTCT TCAGTCGTCT TCGAGGAGA CCTGGGTCTC ACGAGACAA TCCGGTTCT ACGAGACAA ACCGGAACAA TCCGCTTAAACG CCTCCAAACG	240 300 420 480 660 660 720 780 840 960 1020 1140 1200 1320 1320 1320 1320 1440 1500 1560 1680 1740 1860 1920 1980

```
CGTGGTGGGC CAGGTGGGCT GCGGAAAGTC GTCCCTGCTC TCAGCCCTCT TGGCTGAGAT 2280
GGACAAAGTG GAGGGGCACG TGGCTATCAA GGGCTCCGTG GCCTATGTGC CACAGCAGGC 2340
        CTGGATTCAG AATGATTCTC TCCGAGAAAA CATCCTTTTT GGATGTCAGC TGGAGGAACC
                                                                                        2400
        ATATTACAGG TCCGTGATAC AGGCCTGTGC CCTCCTCCCA GACCTGGAAA TCCTGCCCAG
TGGGGATCGG ACAGAGATTG GCGAGAAGGG CGTGAACCTG TCTGGGGGC AGAAGCAGCG
                                                                                        2460
                                                                                        2520
        CGTGAGCCTG GCCCGGGCCG TGTACTCCAA CGCTGACATT TACCTCTTCG ATGATCCCCT
                                                                                        2580
        CTCAGCAGTG GATGCCCATG TGGGAAAACA CATCTITGAA AATGTGATTG GCCCCAAGGG
GATGCTGAAG AACAAGACGC GGATCTTGGT CACGCACAGC ATGAGCTACT TGCCGCAGGT
                                                                                       2700
        GGACGTCATC ATCGTCATGA GTGGCGGCAA GATCTCTGAG ATGGGCTCCT ACCAGGAGCT
                                                                                        2760
10
        2820
                                                                                       2880
        AATGGAGAAT GGCATGCTGG TGACGGACAG TGCAGGGAAG CAACTGCAGA GACAGCTCAG
                                                                                        2940
        CAGCTCCTCC TCCTATAGTG GGGACATCAG CAGGCACCAC AACAGCACCG CAGAACTGCA
GAAAGCTGAG GCCAAGAAGG AGGAGACCTG GAAGCTGATG GAGGCTGACA AGGCGCAGAC
                                                                                        3000
                                                                                        3060
15
        AGGGCAGGTC AAGCTTTCCG TGTACTGGGA CTACATGAAG GCCATCGGAC TCTTCATCTC
        CTTCCTCAGC ATCTTCCTTT TCATGTGTAA CCATGTGTCC GCGCTGGCTT CCAACTATTG
GCTCAGCCTC TGGACTGATG ACCCCATCGT CAACGGGACT CAGGAGCACA CGAAAGTCCG
                                                                                       3180
                                                                                       3240
        GCTGAGCGTC TATGGAGCCC TGGGCATTTC ACAAGGGATC GCCGTGTTTG GCTACTCCAT
                                                                                        3300
        GGCCGTGTCC ATCGGGGGGA TCTTGGCTTC CCCCTGTCTG CACGTGGACC TGCTGCACAG
CATCCTGCGG TCACCCATGA GCTTCTTTGA GCGGACCCC AGTGGGAACC TGGTGAACCG
                                                                                       3360
20
                                                                                       3420
        CTTCTCCAAG GAGCTGGACA CAGTGGACTC CATGATCCCG GAGGTCATCA AGATGTTCAT
                                                                                        3480
        GGCCTCCCTG TTCAACGTCA TTGGTGCCTG CATCGTTATC CTGCTGGCCA CGCCCATCGC
CGCCATCATC ATCCCGCCCC TTGGCCTCAT CTACTTCTTC GTCCAGAGGT TCTACGTGGC
                                                                                       3540
                                                                                       3600
        TTCCTCCCGG CAGCTGAAGC GCCTCGAGTC GGTCAGCCGC TCCCCGGTCT ATTCCCATTT
25
        CAACGAGACC TTGCTGGGGG TCAGCGTCAT TCGAGCCTTC GAGGAGCAGG AGCGCTTCAT CCACCAGAGT GACCTGAAGG TGGACGAGAA CCAGAAGGCC TATTACCCCA GCATCGTGGC
                                                                                       3720
                                                                                       3780
        CAACAGGTGG CTGGCCGTGC GGCTGGAGTG TGTGGGGCAAC TGCATCGTTC TGTTTGCTGC
                                                                                       3840
        CCTGTTTGCG GTGATCTCCA GGCACAGCCT CAGTGCTGGC TTGGTGGGCC TCTCAGTGTC
                                                                                       3900
        TTACTCATTG CAGGTCACCA CGTACTTGAA CTGGCTGGTT CGGATGTCAT CTGAAATGGA
                                                                                       3960
30
        AACCAACATC GTGGCCGTGG AGAGGCTCAA GGAGTATTCA GAGACTGAGA AGGAGGCGCC
CTGGCAAATC CAGGAGACAG CTCCGCCCAG CAGCTGGCCC CAGGTGGGCC GAGTGGAATT
                                                                                        4020
                                                                                        4080
        CCGGAACTAC TGCCTGCGCT ACCGAGAGGA CCTGGACTTC GTTCTCAGGC ACATCAATGT
                                                                                        4140
        CACGATCAAT GGGGGAGAAA AGGTCGGCAT CGTGGGGCGG ACGGGAGCTG GGAAGTCGTC
                                                                                        4200
        CCTGACCCTG GGCTTATTTC GGATCAACGA GTCTGCCGAA GGAGAGATCA TCATCGATGG
                                                                                        4260
35
        CATCAACATC GCCAAGATCG GCCTGCACGA CCTCCGCTTC AAGATCACCA TCATCCCCCA
                                                                                        4320
        GGACCCTGTT TTGTTTTCGG GTTCCCTCCG AATGAACCTG GACCCATTCA GCCAGTACTC
                                                                                        4380
        GGATGAAGAA GTCTGGACGT CCCTGGAGCT GGCCCACCTG AAGGACTTCG TGTCAGCCCT
                                                                                        4440
        TCCTGACAAG CTAGACCATG AATGTGCAGA AGGCGGGGAG AACCTCAGTG TCGGGCAGCG
                                                                                        4500
        CCAGCTTGTG TGCCTAGCCC GGGCCCTGCT GAGGAAGACG AAGATCCTTG TGTTGGATGA
                                                                                        4560
40
        GGCCACGGCA GCCGTGGACC TGGAAACGGA CGACCTCATC CAGTCCACCA TCCGGACACA
                                                                                        4620
        GTTCGAGGAC TGCACCGTCC TCACCATCGC CCACCGGCTC AACACCATCA TGGACTACAC AAGGGGTGATC GTCTTGGACA AAGGAGAAAT CCAGGAGTAC GGCGCCCCAT CGGACCTCCT
                                                                                        4740
        GCAGCAGAGA GGTCTTTTCT ACAGCATGGC CAAAGACGCC GGCTTGGTGT GAGCCCCAGA
                                                                                        4800
        GCTGGCATAT CTGGTCAGAA CTGCAGGGCC TATATGCCAG CGCCCAGGGA GGAGTCAGTA
                                                                                        4860
45
        CCCCTGGTAA ACCAAGCCTC CCACACTGAA ACCAAAACAT AAAAACCAAA CCCAGACAAC
                                                                                        4920
        CAAAACATAT TCAAAGCAGC AGCCACCGCC ATCCGGTCCC CTGCCTGGAA CTGGCTGTGA
                                                                                       4980
        AGACCCAGGA GAGACAGAGA TGCGAACCAC C
50
        SEQ ID NO:22 OBH2 Protein sequence:
        Protein Accession #:
                            AAB46616
                                  21
                                               31
        55
        DRGYIOMTPL NKTKTALGPL LWIVCWADLF YSPWERSRGI FLAPVFLVSP TLIGITTLLA
TFLIQLERRK GVQSSGIMLT FWLVALVCAL AILRSKIMTA LKEDAQVDLF RDITFYVYFS
                                                                                        180
        LLLIQUVLSC PSDRSPLPSE TIHDPNPCPE SSASFLSRIT PWWITGLIVR GYRQPLEGSD
        LMSLNKEDTS EQVVPVLVKN WKKECAKTRK OPVKVVYSSK DPAOPKESSK VDANEEVEAL
IVKSPOKEWN PSLFKVLYKT FGPYFLMSFF FKALHDLMMF SGPQILKLLI KFVNDTKAPD
                                                                                         300
60
                                                                                        360
        WQGYFYTVLL FVTACLQTLV LEQYFHICFV SGMRIKTAVI GAVYRKALVI TNSARKSSTV
        GETVNIMSVD AORFMOLATY INMIWSAPLO VILALYLLWI, NIGPSVLAGV AUMVIMUPUN
                                                                                         480
        AVMAMKTKTY QVAHMKSKON RIKLMNEILN GIKVLKLYAW BLAPKOKVLA IRQEELKVLK
                                                                                         540
        KSAYLSAVGT FTWVCTPFLV ALCTFAVYVT IDENNILDAQ TAFVSLALFN ILRFPLNILP
                                                                                         600
65
        MVISSIVQAS VSLKRLRIPL SHEELEPDSI ERRPVKDGGG TNSITVRNAT FTWARSDPPT
                                                                                         660
        LNGITFSIPE GALVAVVGQV GCGKSSLLSA LLAEMDKVEG HVAIKGSVAY VPQQAWIQND
                                                                                         720
        SLRENILFGC QLEEPYYRSV IQACALLPDL ETLPSGDRTE IGEKGVNLSG GQKQRVSLAR
                                                                                         780
        AVYSNADIYL PDDPLSAVDA HVGKHIFENV IGPKGMLKNK TRILVTHSMS YLPQVDVIIV
                                                                                         840
        MSGGKISEMG SYQELLARDG AFAEFLRTYA STEQEODAEE NGVTGVSGPG KEAKOMENGM
70
        LVTDSAGKQL QRQLSSSSY SGDISRHINS TAELQKAEAK KEETWKLMEA DKAQTGQVKL
                                                                                         960
        SVYWDYMKAI GLFISPLSIP LPMCNHVSAL ASNYWLSLWT DDPIVNGTQE HTKVRLSVYG
                                                                                       1020
        ALGISQGIAV PGYSMAVSIG GILASRCLHV DLLHSILRSP MSFFERTPSG NLVNRFSKEL
        DTVDSMIPEV IKMPMGSLFN VIGACIVILL ATPIAAIIIP PLGLIYFFVQ RFYVASSRQL
                                                                                       1140
        KRLESVSRSP VYSHFNETLL GVSVIRAFEE QERPIHQSDL KVDENQKAYY PSIVANRWLA
                                                                                       1200
75
        VRLECVGNCI VLPAALFAVI SRHSLSAGLV GLSVSYSLQV TTYLNWLVRM SSEMETNIVA
                                                                                       1260
        VERLKEYSET EKEAPWOIGE TAPPSSWPOV GRVEFRNYCL RYREDLDFVL RHINVTINGG
                                                                                       1320
        EKVGIVGRTG AGKSSLTLGL PRINESABGE IIIDGINIAK IGLHDLRPKI TIIPQDPVLP
                                                                                       1380
       SGSLRMNLDP PSQYSDEEVW TSLELAHLKD FVSALPDKLD HECAEGGENL SVGQRQLVCL 1440
ARALLRKTKI LVLDEATAAV DLETDDLIOS TIRTOPEDCT VLTIAHRLNT IMMYTRVIVL 1500
80
        DKGEIQEYGA PSDLLQQRGL FYSMAKDAGL V
```

SEQ ID NO:23 PAA2 DNA SEQUENCE

Nucleic Acid Accession #: NM_013309 5 1-1290 (underlined sequences correspond to start and stop codons) Coding sequence: 31 ATGCCCGGCT CTGGCGCGTG GAAGCGCCTC AAATCTATGC TAAGGAAGGA TGATGCGCCG 10 CTOTTTTTAA ATGACACCAG CGCCTTTGAC TTCTCGGATG AGGCGGGGGA CGAGGGGCTT TCTCGGTTCA ACAAACTTCG AGTTGTGGTG GCCGATGACG GTTCCGAAGC CCCGGAAAGG 180 CCTGTTAACG GGGCGCACCC GACCCTCCAG GCCGACGATG ATTCCTTACT GGACCAAGAC TTACCTTTGA CCAACAGTCA GCTGAGTTTG AAGGTGGACT CCTGTGACAA CTGCAGCAAA CAGAGAGAGA TACTGAAGCA GAGAAAGGTG AAAGCCAGGT TGACCATTGC TGCCGTTCTG 360 15 TACTTGCTTT TCATGATTGG AGAACTTGTA GGTGGATACA TTGCAAATAG CCTAGCAATC ATGACAGATG CACTICATAT GTTAACTGAC CTAAGCGCCA TCATACTCAC CCTGCTTGCT TTGTGGCTAT CATCAAAATC ACCAACCAAA AGATTCACCT TTGGATTTCA TCGCTTAGAG 480 540 CTTTTGTCAG CTATGATTAG TGTGCTGTTG GTGTATATAC TTATGGGATT CCTCTTATAT GAACCTUTGC AAAGAACTAT CCATATGAAC TATGAAATAA ATGGAGATAT AATGCTCATC ACCGCAGCTG TTGGAGTTGC AGTTAATGTA ATAATGGGGT TTCTGTTGAA CCAGTCTGGT 660 20 720 CACCGTCACT COCATTCCCA CTCCCTGCCT TCAAATTCCC CTACCAGAGG TTCTGGGTGT GAACGTAACC ATGGGCAGGA TAGCCTGGCA GTGAGAGCTG CATTTGTACA TGCTTTGGGA GATTTGGTAC AGAGTGTTGG TGTGCTAATA GCTGCATACA TCATACGATT CAAGCCAGAA 840 900 TACAAGATTG CTGATCCCAT CTGTACATAC GTATTTTCAT TACTTGTGGC TTTTACAACA 25 TTTCGAATCA TATGGGATAC AGTAGTTATA ATACTAGAAG GTGTGCCAAG CCATTTGAAT 1020 GTAGACTATA TCARAGRAGC CTTGATGARA ATAGRAGATG TATATTCAGT CGRAGATTTA 1080 AATATCTGGT CTCTCACTTC AGGAAAATCT ACTGCCATAG TTCACATACA GCTAATTCCT 1140 GGAAGTICAT CTAAATGGGA GGAAGTACAG TCCAAAGCAA ACCATITATT ATTGAACACA 1200 TTTGGCATGT ATAGATGTAC TATTCAGCTT CAGAGTTACA GGCAAGAAGT GGACAGAACT 1260 30 TGTGCAAATT GTCAGAGTTC TAGTCCCTGA SEQ ID NO:24 PAA2 Protein sequence: 35 Protein Accession #: NP 037441 11 MAGSGAWKRL KSMLRKDDAP LFLNDTSAFD PSDEAGDEGL SRFNKLRVVV ADDGSEAPER 40 PVNGAHPTLQ ADDSLLDQD LPLTNSQLSL KVDSCDNCSK QREILKQRKV KARLTTAAVL YLLFMIGELV GGYIANSLAI MTDALHMLTD LSAIILTLLA LWLSSKSPTK RFTFGFFRLE 180 VLSAMISVLL VYILMGFLLY EAVORTIHMN YEINGDIMLI TAAVGVAVNV IMGFLLNOSG 240 HRHSHSELP SNSPTRGSGC ERNEGODSLA VRAAFVHALG DLVQSVGVLI AAYTIRFRPE YKIADPICTY VPSLLVAFTT FRIIWDTVVI ILEGVPSHLN VDVIKEALMK IEDVYSVEDL 300 360 45 NIWSLTSGKS TAIVHIQLIP GSSSKWEEVQ SKANHLLLAT FGMYRCTIQL QSYRQEVDRT CANCOSSSP SEQ ID NO:25 PAA3 DNA SEQUENCE 50 Nucleic Acid Accession #: AB037765 375-2798 (underlined sequences correspond to start and stop codons) Coding sequence: 21 31 41 51 55 GCCGAGTCGG TGGCGGCTGC AGGCTGGGAG GGAGAAGTGC TACGCCTTTG CAGGTTGGCG AAGTGGTTCC AGGCTACCCG GCTAGTCTGG CACGGCCCCG TCTTCTGCCT CCTCCTCCGT CGCGTGGCGG CGGGAACTGT TGGCCGCGC GCCTCGGGAA CCGCCCAGGT CCCCGCCCGC AGGTCCCGGG CAGATAACAT AGATCATCAG TAGAAAACTT CTTGAAGTTG TTCAAGAAAA 240 60 ATTTGAAAGT AGCAAAATAG AAAATAAAGA ATTAACAGCA GATACAGAGG ACAGCATGGA 300 AGTGTTGTCT TAGGAAACAG AACACAGCAG TGAAAAAACA GACAAAATCC GCTCAGATAC AACTGCAGCT GATAATGTTT TCCGGCTTCA ATGTCTTTAG AGTTGGGATC TCTTTTGTCA 420 TAATGTGCAT TTTTTACATG CCAACAGTAA ACTCTTTACC AGAACTGAGT CCTCAGAAAT 480 ATTITAGTAC ATTGCAACCA GGTCTTGAAG AACTGAATGA GGCTGTTAGA CCTCTGCAGG ACTATGGAAT TTCAGTTGCC AAGGTTAATT GTGTCAAAGA AGAAATATCA AGATACTGTG 65 600 GAAAAGAAAA GGATTIGATG AAAGCATATT TATTCAAGGG CAACATATTG CTCAGAGAAT TCCCTACTGA CACCTTGTTT GATGTGAATG CCATTGTCGC CCATGTTCTC TTTGCTCTTC TTTTTAGTGA AGTGAAATAT ATTACCAACC TGGAAGACCT TCAGAACATA GAAAATGCTC 660 720 780 TGAAAGGAAA AGCAAATATT ATATTCTCAT ATGTAAGAGC CATTGGAATA CCAGAGCACA 840 70 GAGCAGTCAT GGAAGCCGGT TTTGTGTATG GGACTACATA CCAATTTGTC TTAACCACAG AAATTGCCCT TTTGGAAAGT ATTGGCTCTG AGGATGTGGA ATATGCACAT CTCTACTTTT 900 960 TTCATTGTAA ACTAGTCTTG GACTTGACCC AGCAATGTAG AAGAACACTA ATGGAACAGC CATTGACTAC ACTGAACATT CACCTGTTTA TTAAGACAAT GAAAGCACCT CTGTTGACTG 1080 AAGTTGCTGA AGATCCTCAA CAAGTTTCAA CTGTCCATCT CCAACTGGGC TTACCACTGG 1140 75 TITITATIGT TAGCCAACAG GCTACTTATG AAGCTGATAG AAGAACTGCA GAATGGGTTG CTTGGCGTCT TCTGGGAAAA GCAGGACTTC TACTCTTGTT AAGGGACTCT TTGGAAGTGA 1200 1260 ACATTCCTCA AGATGCTAAT GTGGTCTTCA AAAGAGCAGA AGAGGGAGTT CCAGTGGAAT 1320 TTTTGGTATT ACATCATGTT GATTTAATAA TATCTCATGT GGAAAATAAT ATGCACATTG 1380 AGGAAATACA AGAAGATGACA TGGAAGGTCC AGATATAGAT GTTCAGGATG 1440 ATGAAGTGGC AGAAACTGTT TTCAGAGGATA GGAAGAGAAA ATTACCTTTG GAACTTACAG 1500 80

```
TCTATGCTGG TTGGCAAGCA GTATCCATGG CATTTTTGCA ATCCTATATT GATGTGGCAG
                                                                                                1620
         TTAAACTGAA AGGCACATCT ACTATGCTTC TTACTAGAAT AAACTGTGCA GATTGGTCTG
         ATGTATGTAC TAAGCAAAAT GTTACTGAAT TTCCTATCAT AAAGATGTAC AAGAAAAGGCG AGAACCCAGT ATCTTATGCT GGAATGTTAG GAACCAAAGA TCTCCTAAAA TTTATCCAGC
                                                                                                1740
                                                                                                1800
         TCAACAGGAT TTCATATCCA GTGAATATAA CATCGATCCA AGAAGCAGAA GAATATTTAA
         GTGGGGANTT ATATANAGAC CTCATCTTGT ATTCTAGTGT GTCAGTATTG GGACTATTTA
GTCCAACCAT GAANACAGCA AAAGAAGATT TTAGTGARGC AGGRAACTAC CTANAAGGAT
                                                                                                1920
                                                                                                1980
         ATGTTATCAC TGGAATTTAT TCTGAAGAAG ATGTTTTGCT ACTGTCAACC AAATATGCTG
10
         CAAGTCTTCC AGCCCTGCTG CTTGCCAGAC ACACAGAAGG CAAAATAGAG AGCATCCCAC
                                                                                               2100
         TAGCTAGCAC ACATGCACAA GACATAGTTC AAATAATAAC AGATGCACTA CTGGAAATGT
                                                                                               2160
         TTCCGGAAAT CACTGTGGAA AATCTTCCCX GTTATTTCAG ACTTCAGAAA CCATTATTGA
         TTTTGTTCAG TGATGGCACT GTAAATCCTC AATATAAAAA AGCAATATTG ACACTGGTAA AGCAGAAATA CTTGGATTCA TTTACTCCAT GCTGGTTAAA TCTAAAGAAT ACTCCAGTGG
                                                                                               2280
                                                                                               2340
15
         GGAGAGGAAT CTTGCGGGCA TATTTTGATC CTCTGCCTCC CCTTCCTCTT CTTGTTTTGG
                                                                                                2400
         TGAATCTGCA TTCAGGTGGC CAAGTATTTG CATTTCCTTC AGACCAGGCT ATAATTGAAG
AAAACCTTGT ATTGTGGCTG AAGAAATTAG AAGCAGGACT AGAAAATCAT ATCACAATTT
                                                                                               2460
                                                                                               2520
         TACCTGCTCA AGAATGGAAA CCTCCTCTTC CAGCTTATGA TTTTCTRAGT ATGATAGATG
         CCGCAACATC TCAACGTGGC ACTAGGAAAG TTCCCAAGTG TATGAAAGAA ACAGATGTGC AGGAGAATGA TAAGGAACAA CATGAAGATA AATCGGCAGT CAGAAAAGAA CCGATTGAAA
                                                                                               2640
20
                                                                                               2700
         CTCTGAGAAT AAAGCATTGG AATAGAAGTA ATTGGTTTAA AGAAGCAGAA AAATCATTTA
         GACGTGATAA AGAGTTAGGA TGCTCAAAAG TGAACTAATT TTATAGGGCT GTGGTTTCCA
AAATTTTTTT GGCATGATAG ACTTAATTTA TTTCCTTAAA GAATAATATT AAATCATTTC
                                                                                               2820
                                                                                               2880
         AAGTTTGCAG ACTAGTGCCA TCCAATAGAA TTATAATATA AGTCACATAT TTTATTTAAA
25
         ATTITCTAGT AACTACATTA AACAAAGTAA AAGTGAGCAG GGCAAAATAA TITTGATATT
                                                                                               3000
         ACTITICACC CAGTAGTATA CCCAAAATAG CGAAATATAG AAATTATTAA TGAGATATIT
                                                                                               3060
         TACATCCTTT TTTGTACCAA GTCTTCTAAA TGCAGTACAT ATTTTATACT TACTGCATTT
         CTTACTTCCG AGTAGCCATA TTTCAAGTGT TCATTGCCAC ATGTGGCCTG TGACTACTGT
ATTGGACAGT TCAGTACTAG ACAAAAACTA GCATAATTAA CTTAGTTCTA GCCATGATTT
                                                                                               3180
                                                                                               3240
30
         CTATTTGGAT TAAAATTAAA CTCTAATCAC AGTTAACTCC ACAGTGCATT CATGCAGCTG
         ACAGTTATAT TTGTTTTATT GGAGTCATGA TATTAAAATC AGCGTTTGTC AACCTCAGGG
GATATTTAGC AATTGTCGGG AGACATTTTT GATGTCATGA CTAGGGCAGT TATTGACATT
                                                                                               3360
                                                                                               3420
         TAGTGAGTAG AGGCCATGGA TCCTGCTAAA TAACCTGCAT TGGACAGCGC CCCACAACAA
         AGANTTATCC TECCEGANAT GETAGTEGTE CCAAGGETGA GTAACCTTGT GTTAAAAGTA
ACCTGTGGCA GACTAGGTTT CCAGANTTTC CTGGTTCTGC TCACGTATCA TGTTTGAAAA
                                                                                               3540
35
                                                                                               3600
         AATTITGGCT ATTAAAGATA TGTATTAGAT GGTCFTATCC TGATTATTAC CTGGATACAA
         CTTGATCTIT TCTAATATIT TCAGAAAGTG ATGGGATAAC CCTAGAAGAG GACTCAGAAT
GATATTTATA TTTTAAGTGA GTCTTAAAAC CTCCTCTTAT TTCTACAAGT TATATGGCTA
                                                                                               3720
                                                                                               3780
         AATTTCAGAT TGAACAGGGA TTCAGCATTC TGCCATCTCC TCATGGAAAG AGAGGCTCCC
40
         TCATCTGAAG CGTCTCTGAA ATCTACCCTT GCAAGCTTCA GACAAATCAG TTGATCTCCC
                                                                                               3900
         TGAGCCACAC GGCCTCATTC TGTGAGGGAG GGAAAGATTA GCCAAAGAGT TAATTTTCAT
                                                                                               3960
         TCCAAATCAC TTAGCTGTTA GACTGATCTG TTTGTAGCAG TTGTTTGTCT CATTTTTGCT
         CTGTGCATTT TTTGAGACAT TTGTTGAGAA TATTCTATTT GGTGCTCTAC TGTATTTTTC
TTTTTAATAT CTACTTGATA TCTTGTTCTT TAAATTTTCT TCACATATGG TTTGCCTGAT
                                                                                               4080
                                                                                               4140
45
         ACAACTGATT TITATAACTG AAATTTAAGG AATCTAACAG CTAAAACTCA GTAAGTGCAT
         MINITICCIT ATAACATAGA CCCGTTGCTA CTCTCAGCAC CCTCTCCTCA ATTTTTTTTC
CTGTAGCATG TGATGCCTGA TTAAACTCAT TTTCATTTGC TTTTATTTCT AATATGGGAA
                                                                                               4260
                                                                                               4320
         CAATGAGAGT GAACTCTAAA TATAGGTTGT AGTAATAAAA CATCATTAGC CTAATTATTA
         GARANTECTA ATTANGTACC AGCACATAGA AACATGAAAT TGCTTAGTCA TTGTACCTTT
GTCAGCAATT TTGACAGTCA TTAATGTTTG TCATAATTTT AAATAAAGTG TCTGGGTTTC
                                                                                               4440
50
         АGAATACCTT САААААААА ААААА
         SEQ ID NO:26 PAA3 Protein sequence:
         Protein Accession #:
55
                                                                 41
        MPSGPNVFRV GISFVIMCIP YMPTVNSLPE LSPOKYPSTL OPGLEETINEA VRPLODYGIS
         VAKVNCVKEE ISRYCGKEKD LMKAYLPKGN ILLREFPTDT LFDVNAIVAH VLFALLPSEV
                                                                                                120
60
         KYITNLEDLQ NIENALKGKA NIIPSYVRAI GIPEHRAVME AGPVYGTTYQ FVLTTETALL
         ESIGSEDVEY AHLYPFHCKL VLDLTQQCRR TLMEQPLITL NIHLPIKTMK APLLTEVAED PQQVSTVHLQ LGLPLVFIVS QQATYEADRR TAEWVAWRLL GKAGVLLLLR DSLEVNIPQD
                                                                                                300
         ANVVFKRAEE GVFVEFLVLH DVDLIISHVE MNMHIEEIQE DEUNDMEGFD IDVQDDEVAE
         TVFRDRKRKL PLELTVELTE ETYNATVMAS DSIVLFYAGW QAVSMAFLOS YIDVAVKLKG
                                                                                                420
65
         TSTMLLTRIN CADWSDVCTK ONVTEFPIIK MYKKGENPVS YAGMLGTKDL LKFIQLNRIS
                                                                                                480
         YPVNITSIQE AEEYLSGELY KOLILYSSVS VLGLFSPTMK TAKEDFSEAG NYLKGYVITG
IYSEEDVLLL STKYAASLPA LLLARHTEGK IESIPLASTH AQDIVQIITD ALLEMPPEIT
                                                                                                600
         VENLPSYFRL OKPLLILFSD GTVNPOYKKA ILTLVKOKYL DSFTPCWLNL KNTPVGRGIL
                                                                                                660
         RAYFDFLPFL PLLVLVNLHS GGQVFAFPSD QAIIEENLVL WLKKLEAGLE NHITILPAQE
70
         WKPPLPAYDP LSMIDAATSQ RGTRKVPKCM KETDVQENDK EQHEDKSAVR KEPIETLRIK
         HWNRSNWFKE AEKSFRRDKE LGCSKVN
                                                              SEQ ID NO:27 PAAS DNA SEQUENCE
         Nucleic Acid Accession #: NM_012449
75
        Coding sequence:
                               66-1085 (underlined sequences correspond to start and stop codons)
        CCGAGACTCA CGGTCAAGCT AAGGCGAAGA GTGGGTGGCT GAAGCCATAC TATTTTATAG
80
        AATTAATGGA AAGCAGAAAA GACATCACAA ACCAAGAAGA ACTITGGAAA ATGAAGCCTA
```

TGGAACTAAC AGAAGAACA TTTAATGCAA CAGTGATGGC TTCTGACAGC ATAGTACTCT 1560

						AGCATGCTAA	180
	AAAGACCTGT	GCTTTTGCAT	TTGCACCAAA	CAGCCCATGC	TGATGAATTT	GACTGCCCTT	240
						AAAATAGCTG	300
5						AAAGTCTTGC	360 420
						GCAGCAATTG	480
						AAGTGGATGT	540
						GCAATTTATA	600
10						GCATATCAAC ATGGAGATTT	660
10						ACATCTATTC	720 780
						AAGCTAGGAA	840
	TIGITICCCT	TCTACTGGGC	ACANTACACG	CATTGATTTT	TGCCTGGAAT	AAGTGGATAG	900
15	ATATAAAACA	ATTTGTATGG	TATACACCTC	CAACTITTAT	GATAGCTGTT	TTCCTTCCAA	960
13	TIGITGICCT	GATATTTAAA	AGCATACTAT	TCCTGCCATG	CTTGAGGAAG	AAGATACTGA	1020
						TGTTCCCAGT CACCAACATT	
			AAAATGATTA				1140
20		AA5 Protein seque					
	Protein Accession						
	1	11	21	31	41	51	
25			_ !		_		
23						A HADEPDOPSE P ILVINKVLPM	
						P PAVLHAIYSL	180
						L ALLAVTSIPS	
20	VSDSLTWRE	HYIQSKLGI	V SLLLGTIHA	L IFAWNKWID	I KOFVWYTPP	FMIAVPLPIV	300
30	VLIPKSILF	L PCLRKKILK	I RHGWEDVIK	INKTEICSOL			
				SE	Q ID NO:29 PAA7	ONA SEQUENCE	
		ession#: NM_0					
35	Coding sequence	: 1-963 (underlined seque	nces correspond to	start and stop co	dons)	
55	1	11	21 .	31	41	51	
	ī	ī	ī	ĭ	Ĭ .	Ĭ.	
	ATGAGTTCCT	GCAACTTCAC	ACATGCCACC	TTTGTGCTTA	TTGGTATCCC	AGGATTAGAG	60
40						AATGTTTGGA	120
40						GATGTACCTC	180
						GCCTAAGATC TACCCAGATG	240 300
						GGCCTTTGAC	360
						TACAGTAACA	420
45						ACTGCCTCTG	480
						TIGIGICCAC	540
						TGGTCTTACT TTTTCTGATA	600 660
						TGGAACCTGT	720
50						CTCAGTGGTA	780
						CATCTACCTG	840
						GATCAGAACA	900
						GGGAGGCAAG ATTATTTCTA	960 1020
55						CTGGAATAGT	1080
						ATACTAATGA	1140
	AGTATTACAT	GATTTAAAGA	CTACAATAAA	ACCAAACATG	CTTATAACAT	TAAGAAAAAC	1200
						GGAAATGTGC	1260
60						TTCTTTTTTT TCTCGCTCTG	1320 1380
00						ATCCCATGTT	1440
						TGCCACCATG	1500
	ACTGGCTAAT	TTTCTGTATT	TTTTAGTAGA	GACAGAGTTT	CACCATGTTG	GCCAGGATGG	1560
65			GATCCACCCG				1620
65						GATAGCTTCG	1680
						GAATCGCTTG AGCCTGGGCA	1740 1800
							1860
70	AATGAAGCTG	ACAATTTATG	GAAGCCAGGG	CTTGTCACAG	TCTCTACTGT	TATTATGCAT	1920
70						TGTGTGCTCA	1980
						TAACTTTATG	2040
						ATATTATCAA AATTTGATGG	
						TGCCATTTAT	2220
75	TTCCTCAGCT	GTACAAATCC	TCTGTTTTCT	CTCTGTTACA	CACTAACATC	AATGGCTTTG	2280
	TACTTGTGAT	GAGAGATAAC	CTTGCCCTAG	TIGIGGGCAA	CACATGCAGA	ATAATCCTGT	2340
						GAGAATGTTG	
						TGCTCTGTAC	
80		TTTTAAATTT		CIATIGICIG	MACTIGAGIA	Taagataaaa	2520
			-				

SEQ ID NO:30 PAA7 PROTEIN SEQUENCE Protein Accession #: NP_110401

	Protein Accessio	n#: NP_1	10401				
5	1	11	21	31	41	51	
	1	1	1		1	1	
						ERSLHAPMYL	60
	PLCMLAAIDL	ALSTSTMPKI	LALPWYDSRE	ISPEACLTOM	PFIHALSAIE	STILLAMAFD	120
10						NVLSHSYCVH	
10						SERAKAFGTC	240
				VRVVMGDIYL	LLPPVINPII	YGAKTKQIRT	. 300
	RVLAMPKISC	DKDLQAVGGK					
				0.5	O ID 810 04 D411		
15	Musclain Anid Ann	ession #: XM_	050027	. 56	EQ ID NO:31 PAVE	B DNA SEQUENCE	1
	Coding sequence		0 (underlined sequ	ences correspond	to start and stop	endone)	
	- out of out on the		a fancounios soda	C. DCD GOT GOPOTIO	to santane supe	A0010)	
	1	11	21	31	41	51	
20		1	}				
20		AGCTGCTGCT					60
		GCTTCCTGAG					120
	GGACGACGCC	CAGAATGGGA	GCTGACTGAT	ATGGTGGTGT	GGGTGACTGG	AGCCTCGAGT	180
						TGTGCTGTCA	240
25						TGGCAATTTA	300
23						CCATGAAGCG	360
		CTGTTCTCCA GTTCTCTGTG					420 480
		TAGGGACGGT					540
		AGATTGTTAC					600
30	ATTGGATACT	GTGCTAGCAA	GCATGCTCTC	CCCCCLALALA	TTAATGGCCT	TOGRACAGAA	660
		ACCCAGGTAT					720
		ATTCCCTAGC					780
	TCCCACAAGA	TGACAACCAG	TCGTTGTGTG	CGGCTGATGT	TAATCAGCAT	GGCCAATGAT	840
0.5	TTGAAAGAAG	TTTGGATCTC	AGAACAACCT	TICITGTTAG	TAACATATTT	GTGGCAATAC	900
35		GGGCCTGGTG					960
	AAGAGTGGTG	TGGATGCAGA	CTCTTCTTAT	TTTAAAATCT	TTAAGACAAA	ACATGACTGA	
				•			
	SEQ ID NO:32 P	AV6 Protein seque	ence				
40	Protein Accession	n#: XP_0:	50837				
40			••	••			
	1	11	21	31	41	51	
	MOTOR CLEAR T	VLCALLLLLV	OLI BELEVIC	DISTINCTION PMO	CDD DESMIN MD	Management CC	60
						DLTDTGSHEA	
45						KCVLPHMIER	180
7						NICPGPVOSN	240
		TKTIGNNGDQ					300
	MPTWAWWI	IN KMGKKRIE	NF KSGVDAD	SSY FKIFKTKE	ED .	_	
50							
50				SE	Q ID NO:33 PBA6	DNA SEQUENCE	
		ession#: NM_0					
	Coding sequence	20-6/4	(underlined seque	ances correspond i	o start and stop or	oons)	
	1	11	21	31	41	51	
55	ī	ī	ī	ī	Ĩ.	1	
	AGGAATCTGC	GCTCGGGTTC	CGCAGATGCA	GAGGTTGAGG	TGGCTGCGGG	ACTIGGAAGTC	60
	ATCGGGCAGA	GGTCTCACAG	CAGCCAAGGA	ACCTGGGGCC	CGCTCCTCCC	CCCTCCAGGC	120
	CATGAGGATT	CTGCAGTTAA	TCCTGCTTGC	TCTGGCAACA	GGCCTTGTAG	GGGGAGAGAC	180
~	CAGGATCATC	AAGGGGTTCG	AGTGCAAGCC	TCACTCCCAG	CCCTGGCAGG	CAGCCCTGTT	240
60	CGAGAAGACG	CGGCTACTCT	GTGGGGCGAC	GCTCATCGCC	CCCAGATGGC	TCCTGACAGC	300
	AGCCCACTGC	CTCAAGCCCC	GCTACATAGT	TCACCTGGGG	CAGCACAACC	TCCAGAAGGA	360
		GAGCAGACCC					420
		AACAAAGACC					480
65		TGGGCTGTGC					540
UJ	CAGCIGCCIC	ATTTCCGGCT	GGGGCAGCAC	CCACCAGCCCC	CAGTTACGCC	TGCCTCACAC	600
	CITGCGATGC	GCCAACATCA GACACCATGG	CCATCATIGA CCATCATIGA	COTTCOLOGA	TGTGAGAACG	CCTACCCCGG	660 720
	COMMUNICACA	GGGGGCCCTC	TGTGTGCCAG	CCTGCGGGG	CARCCCAMUS	WCTCCTGCCA	780
	CCACCATCC	TGTGCGATCA	CCCCPFFCCC	ACCACACALVA TO	DCCD D DCTCT	CCAAAMANCO	840
70		CAGGAGACGA					900
		TCCACTTGGT					960
		TACGAACATT					1020
	AATCAACCTG	GGGTTCGAAA	TCAGTGAGAC	CTGGATTCAA	ATTCTGCCTT	GAAATATTGT	1080
75	GACTCTGGGA	ATGACAACAC	CTGGTTTGTT	CTCTGTTGTA	TCCCCAGCCC	CAAAGACAGC	1140
75	TCCTGGCCAT	ATATCAAGGT	TTCAATAAAT	atttgctaaa	TGAGTG		

SEQ ID NO:34 PBA6 PROTEIN SEQUENCE Protein Accession 6: NP_006844

	1	11 	21 	31 	41 	51 	
5	AHCLKPRYIV SITWAVRPLT	LATGLVGGET HLGQHNLQKE LSSRCVTAGT VQEGGKDSCQ	EGCEQTRTAT SCLISGWGST	ESPPHPGPNN SSPQLRLPHT	SLPNKDHRND LRCANITIIE	IMLVKMASPV HQKCENAYPG	60 120 180 240
10	DWIGETMENN			ec	O ID NO.9E DDC4	DNA SEQUENCE	
10	Nucleic Acid Acc Coding sequence	ession #: NM_0 : 70-972	01775 (underlined seque				
	1	11	21	31	41	51	
15		1		1	1		
	TGGAGCCCTA	TGGCCAACTG GAGCCCAACT	CGAGTTCAGC	CCGGTGTCCG	GGGACAAACC	CTGCTGCCGG	60 120 180
20	GTGCTCGCGG	TGGTCGTCCC	GAGGTGGCGC	CAGACGTGGA	GCGGTCCGGG	CACCACCAAG	240
20		AGACCGTCCT ACTGCCAAAG					300
		TTACTGAAGA					360 420
	CCTTGCAACA	AGATTCTTCT	TTGGAGCAGA	ATAAAAGATC	TGGCCCATCA	GTTCACACAG	480
25		ACATGTTCAC					540
23		GTGAATTCAA GCAACAACCC					600 660
		GTGATGTGGT					720
		CTTTTGGGAG					780
30		GGGTGATACA AGCTGGAATC					840 900
50		CTGACAAGTT					960
		GAGCCAGTCG					1020
		GACTCAGCAT					1080
35		AATGCCAGAG CCTTTATTGT					1140 1200
		GTATGTTAAG					
		BC1 Protein seque					
40	Protein Accession	1#: NP_00	1766				
70	1	11	21	31	41	51	
	Ī	1	1	1	I	1	
		GDKPCCRLSR					60
45		TEIHPENRHV LAHQFTQVQR					120 180
		TVSRRFABAA					240
	WVIHGGREDS	RDLCQDPTIK	ELESIISKRN	IQFSCKNIYR	PDKFLQCVKN	PEDSSCTSEI	
50	Nucleic Acid Acc	ession#: XM_0	17718	SE	2 ID NO:37 PEH1	DNA SEQUENCE	
	Coding sequence	: 1-3315	(underlined seque	nces correspond t	o start and stop co	dons)	
	1						
55		11	21 	31 	41 	51 	
		GGGCAGCCAG	 GCTCAGCATG	 AGGAACAGAA	 GGAATGACAC	 TCTGGACAGC	60
	ACCCGGACCC	GGGCAGCCAG TGTACTCCAG	 GCTCAGCATG CGCGTCTCGG	 AGGAACAGAA AGCACAGACT	 GGAATGACAC TGTCTTACAG	 TCTGGACAGC TGAAAGCGAC	120
	ACCOGGACCC TTGGTGAATT	GGGCAGCCAG TGTACTCCAG TTATTCAAGC	 GCTCAGCATG CGCGTCTCGG AAATTTTAAG	AGGAACAGAA AGCACAGACT AAACGAGAAT	 GGAATGACAC TGTCTTACAG GTGTCTTCTT	TCTGGACAGC TGAAAGCGAC TACCAAAGAT	120 180
60	ACCOGGACCC TTGGTGAATT TCCAAGGCCA	GGGCAGCCAG TGTACTCCAG	GCTCAGCATG CGCGTCTCGG AAATTTAAG GTGCAAGTGT	AGGAACAGAA AGCACAGACT AAACGAGAAT GGCTATGCCC	GGAATGACAC TGTCTTACAG GTGTCTTCTT AGAGCCAGCA	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC	120
60	ACCCGGACCC TTGGTGAATT TCCAAGGCCA ACCCAGATCA GACGCCTTTG	GGGCAGCCAG TGTACTCCAG TTATTCAAGC CGGAGAATGT ACCAAAGTGA GGGATATTCA	GCTCAGCATG GCTCAGCATG CGCGTCTCGG AAATTTTAAG GTGCAAGTGT GAAATGGAAC GTTTGAGACA	AGGAACAGAA AGCACAGACT AAACGAGAAT GGCTATGCCC TACAAGAAAC CTGGGGAAGA	GGAATGACAC TGTCTTACAG GTGTCTTCTT AGAGCCAGCA ACACCAAGGA AAGGGAAGTA	 TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACGTCTG	120 180 240 300 360
60	ACCCGGACCC TTGGTGAATT TCCAAGGCCA ACCCAGATCA GACGCCTTTG TCCTGCGACA	GGGCAGCCAG TGTACTCCAG TTATTCAAGC CGGAGAATGT ACCAAAGTGA GGGATATTCA CGGACGCGGA	CCTCAGCATG CCCCTCTCGG AAATTTTAAG CTCCAAGTGT GAAATGGAAC GTTTGAGACA AATCCTTTAC	AGGAACAGAA AGCACAGACT AAACGAGAAT GGCTATGCCC TACAAGAAAC CTGGGGAAGA GAGCTGCTGA	GGAATGACAC TGTCTTACAG GTGTCTTCTT AGAGCCAGCA ACACCAAGGA AAGGGAAGTA CCCAGCACTG	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACGTCTG GCACCTGAAA	120 180 240 300 360 420
60	ACCOGGACCC TYGGTGAATT TCCAAGGCCA ACCCAGATCA GACGCCTTTG TCCTGCGACA ACACCCAACC	GGGCAGCCAG TGTACTCCAG TTATTCAAGC CGGAGAATGT ACCAAAGTGA GGGATATTCA	GCTCAGCATG GCGCTCTGG AAATTTTAAG GTGCAAGTGT GAAATGGAAC GTTTGAGCACA AATCCTTTAC TGTGACCGGG	AGGAACAGAA AGCACAGACT AAACGAGAAT GGCTATGCCC TACAAGAAAC CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA	GGAATGACAC TGTCTTACAG GTGTCTTCTT AGAGCCAGCA ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACGTCTG GCACCTGAAA GAAGCCGCGC	120 180 240 300 360
	ACCCGGACCC TTGGTGAATT TCCAAGGCCA ACCCAGATCA GACGCCTTG TCCTGCGACA ACACCCAACC ATGCGCAAGA ACGGGAGGCA	GGGCAGCCAG TGTACTCCAG TTATTCAAGC CGGAGAATGT ACCAAAGTGA GGGATATTCA GGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG	CCTCACCATG CCCCCTCTCCC CCCCCCCCCCCCCCCCC	AGGAACAGAA AGCACAGACT AAACGAGAAT GGCTATGCCC TACAAGAAAC CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAGT TACATCGGGG	GGAATGACAC TGTCTTACAG GTGTCTTCTT AGAGCCAGCA ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTEC AGGTGGTGAG	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACGTCTG GCACCTGAAA GAAGCCGCGC TTGGATTCTC AGATAACACC	120 180 240 300 360 420 480
60 65	ACCCGGACCC TTGGTGAATT TCCAAGGCCA GACGCCTTTG TCCTGCGACA ACACCCAACC ATGCGCAAGC ATGGGAGGAA ATCAGCAGGA	GGGCAGCCAG GGGCAGCCAG TGTACTCCAG TTATTCAAGC CGGAGAATGT ACCAAAGTGA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG CTTCAGAGGA	CCTCAGCATE CCCCTCAGCA AAATTTTAAG CTCCAAGTGT GAAATGGAAC GTTTGAGCA AATCCTTTAC TGTGACCAGG CCTCATCTAC CCTGATGAAG GAATATTGTG	AGGAACAGAA AGCACAGACT AAACGAGAAT GGCTATGCCC TACAAGAAAC CTGGGGAAGA GAGCTGCTGA GGCGCCAAGA ATCGCGCAGT TACATCGGG GCCATTGGCG	GGAATGACAC GGGAATGACAC GTGTCTTCTT AGAGCCAGCA ACACCAAGGA AAGGGAAGTA CCCAGCACTG ACTTCGCCCT CCAAAGGTGC AGGTGTGAG TAGCAGCTTG	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACGTCTG GCACCTGAAA GAAGCCGCGC TTGGATCTC AGATAACACC GGGCATGGTC	120 180 240 300 360 420 480 540 600 660
	ACCCGGACCC TTGGTGAATT TCCAAGGCTCA ACCCAGATCA TCCTGCGACA ACACCCAACC ATGCGCAAGCA ACTGCGGAGGA ACTCAGCAGGA TCCAACCGGG	GGGCAGCCAG TOTACTCAG TOTACTCAG TOTACTCAGC CGGAGAATGT ACCAAAGTGA CGGACGCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGGAGA ACACCCTCAT	GCTCAGCATG GCTCAGCATG GCAACTGT GAAATGGAAC GTTTGAGACA AATCCTTTAC TGTGACCGG GCTCATCTAC CCTGATGAACA CATGATGATGATGATGATGATGATGATGATGATGATGATGA	AGGAACAGAA AGGAACAGACT AAACGAGACT AAACGAGAAT GGCTATGCCC TACAAGAAAC CTGGGGAAGA ATCCCGCAGT TACATCGGGG GCCATTGGCA GATGCTGAGG	GGAATGACAC GGGATTACAG GTGTCTTACAG GTGTCTTCTT AGAGCCAGCA ACACCAAGGA ACACCAAGGA ACTTCGCCCT CCAAGGGTGC ACTTCGCTCAG TAGCAGCTTTG GCTATTTTTT	TCTGGACAGC TGAAAGCCAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACCTCTG GCACCTGAAA GAAGCCGCGC TTGGAATACTC AGATAACACC AGGCATGATC AGCCCAGTAC	120 180 240 300 360 420 480 540 600 660 720
	ACCOGGACCE TTGGTGAATT TCCAAGGCCA ACCCAGATCA GACGCCTTTG TCCTGCGACA ACACCCAACC ACCCGACGCA ACCGGGAGGCA ACCGGGAGGCA ACCAGCAGGC TCCAACCGGG CTTATGGATG CTTATGGATG CTTGCTGGTG	GGGCAGCCAG GGGCAGCCAG TGTATCCAG TTATTCAAGC CGGAGAATGT ACCAAAGTGA CCGACCGGA TGGTCATTTC TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCCTCAT ACTTCACAAA ACAATGCACA	CCTCAGCATE GCTCAGCATE GCAACTGT GAAATGTAAC GTGCAACTGT GAAATGAAC GTTTGACCGG GCTCATCAC CCTGATCAAC CCTGATCAAC GAATATTGTC CAGGAATTGC AGATCCACTG TCATGACACT TCATGACACT	AGGAACAGAA AGGAACAGACT AAACGAGACT AAACGAGACT GGCTATCCCC TACAAGAAAC GACCTCCTGA GGCGCCAAGA ATCGCGCAGT TACATCGGG GCCATTGGCA GATGCTGAG TATATCCTGG CCCACTTTCC	GGRATGACAC GGRATGACAC GTOTCTTACAG GTOTCTTACT AGAGCCAGCA ACACCAAGGA ACTACCAGCACTG ACTTCGCCCT CCAAAGGTAC AGGTGGTGAG TAGCAGCTTTG GCTATTTTTT ACACAACACA	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACGTCTG GCACCTGARA GAAGCCGGC TTGGATTCTC AGATAACACC GGGCATGGTC AGCCCAGTAC AGCCAGTAC CCACACATTTG CCCGAATCAG	120 180 240 300 360 420 480 540 600 660
65	ACCOGGACCC TTGGTGAATT TCCRAGGCA ACCCAGATCA GACCCCTTTG TCCTGCGACA ACACCCAACC ATCCGCAAGA ACGGGAGCCA ATCAGCAGGA TCCAACCGGG CTTATTGGATG CTGCTCGTGG CTTACAGAAGT	GGGCAGCCAG GGGCAGCCAG TTATTCAAGC GGAGAATGTA ACCAAAGTGA GGGATATTCA GGACGCGGA TGGTCATTTC TCTTCACCAG GTTCAGAGGA ACACCCTCAT ACTTCACAAG ACAATGCTG ATATCTCTGA	GCTCAGCATG GCGCATCTGG AAATTTTAAG GTGCAAGTGT GAAATGGAC GTTTGAGACA AATCCTTTAC GTGTACCGG GCTCATCTAC CCTAATGAG GAATATTGTG CAGGAATTGC AGATCACTG TCATGGACAT TCATGGACAT GCCCACTATT	AGGAACAGAA AGCACAGACT AAACGAGAAT GGCTATATCCCC TACAGGAAGA GAGCTGCTGA GGCGCCCAGT TACATCGGGG GCCATTGGCA GATTCCTGGGG GCCATTGGCA GATTCCTGGG TATATCCTGG CCCACTGTCG CAAGATTCCA	GGRATGACAC TGTCTTACAG GTGTCTTCTT AGAGCCAGCA AACGCAAGGA AACGCAAGGA AACTCGCCCTT CCCAAAGGTGC AGCTGGTGAG GGCACTTG ACACACACAC ACACAACAC ACTATGGTGC ACTATGTTTTT ACAACAACCA AAGCAAAGCT ACTATGGTGG	TCTGGACAGC TGAAAGCAT TGAAAGCAC TACCAAAGAT CATGGAAGGC ATTTCTACC TATACCTCTG GCACCTGAAA GAAGCCGCGC TTGGAATACACC AGATAACACC AGACATTTC AGCCCAGTAC CACACATTTG CCGGAATCAG CAAGAATCCCC	120 180 240 300 360 420 480 540 660 720 780 840 900
	ACCOGGACCE TTGGTGAATT TCCRAGGCCA ACCCAGATCA GACGCCTTTG TCCTGCGACA ACACCCAACC ATCCGCAAGA ACGGGAGCA ATCAGCAGGAGCA TCCRACCGG CTTATGGATG CTGCTCCTGG CTTGAGAAGA ATTGTGTTT	GGGCAGCCAG GGGCAGCCAG TGTATCCAGG TGTATCCAGG GGGAGAATGT ACCAAAGTGA GGGATATTCA CGGAOGCGGA TGGTCATTTC CCCATTATGG GTTCAGAGGA ACACCTCAT ACTTCACAAG ACAATGGCTG ACTTCACAAG ACAATGCCTG TTGCCCAAGGT TTGCCCAAGGT ACTTCACAAG ACAATGCCTG	GCTCAGCATE GCTCAGCATE GCCTCTCGG AAATTTAAG GTCCAAGTGT GAAATGGAAC GTTTGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC AGGACTATC TCATGGACAT AGGTCGAAAA	AGGAACAGAA AGCACAGACT AAACGAGAAT AAACGAGAAT CTGGGGAAGA GAGCTCCTGA GAGCACAT TACATCGGG GCCATTGGG GATCCTGAG TATATCCTGG CCACTTTCG CAAGATTCCA GAGATTCCA GAGATTTCA GAGATTTCA GAGATTTCA GAGATTTTGA	GGAATGACAC TGTCTTACAG GTGTCTTCTT AGAGCCAGCA AAGGCAAGTA CCCAGCACTG ACTCAGCACTG ACTCAGCACTG AGGTGTCAG TAGCAGCTTG ACTCAGCACTA ACCAAAGCT AACCAAAGCT AACCAAAGCT AACTATGGTGC AACTATGGTGC AACTATGGTGG AACCAATCAT	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACCTCTG GCACCTGAAA GAAGCCGCGC TTGGAATCTC AGATAACACC GGGCATGGTC CACACATTTG CCGGAATCAG CAAGATCACC CAAGATCACC CAAGATCACC CAAGATCACC CAAGATCACC CAAGATCACC TACCTCCATC	120 180 240 300 360 420 480 540 660 720 780 840 900 960
65	ACCOGGACCE TTGGTGAATT TCCAAGGCCA ACCCAGATCA GACCCCATCG ATCCGCAGA ACCCCAACC ATCGGCAGGA ATCAGCAGGA TCCAACCGGG TCCAACCGGG TCCAACCGGC TTCATGGATG CTTAATGGATG CTGCTCGTGG CTAGAGAAGT AAAAATAAAA	GGGCAGCCAG GGGCAGCCAG TTATTCAAGC GGAGAATGTA ACCAAAGTGA GGGATATTCA GGACGCGGA TGGTCATTTC TCTTCACCAG GTTCAGAGGA ACACCCTCAT ACTTCACAAG ACAATGCTG ATATCTCTGA	CCTCAGCATE GCTCAGCATE GCAAGTGT GAAATGTAAC GTTCGAAGTGT GTTTGACCGG GCTCATCAC CCTGATCAAC CCTGATCAAG GAATATTGTG CAGGAATTGT CAGGAATTGT TCATGGACAT GCGCACTATT AGGTCGAAAA GGTGGAAAA GGTGGGAAAA	AGGAACAGAA AGGAACAGAA AGGACAGACT AAACGAGAAC GGCTATGCCC TACAAGAAC GACCTCCTGA GGCGCCAAGA ATCCGCGAT TACATCGGG GCCATTGGCA GATGCTGAC CACATTGCC CACATTTCCA CACATTCCA CACATTTCA CACATTCCA CACATTTCA CACATTTCA CACATTTCA GCCTCCGGCC	GGAATGACAC TGTCTTACAG GTGTCTTACTA AGAGCCAGCA ACAGGAAAGTA CCCAGCACTG ACTTCGCCCTT ACTTCGCCTT ACTTCGCCTT ACTTCGCTTAC AGGTACTTAC AGGTACTTAC AGGTACTTTAC ACACAAACCA AAGCAAAGCT ACTATGGTGG AAGCCATCAA AAGCATCCTGA	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACACTG GCACCTGAAA GAAGCCGCGC TTGGATTCTC AGGCAGGTCAC AGCCCAGTAC AGCCCAGTAC AGCCCAGTAC CACACATTTG CCAGAATCAC CAAGATCCCC TACCTCCATC TGTGATCGCT	120 180 240 300 360 420 480 540 660 720 780 840 900
65	ACCOGRACCE TTGGTGARTT TCCRAGGCCA ACCCAGATCA ACCCCAACC ATCCGCACA ACCCCAACC ATCCGCACA ACCACCGAGA TCCAACCGGC TCTATGGATG CTTATGGATG CTGCTCGTGG CTAGAGAAGT AAAATAAAA AGCCTGGTGG ATCTTGTGGTG ATTTTTACCCC	GGGCAGCCAG GGGCAGCCAG TTATTCAAGC GGAGAATGT ACCAAAGTGA GGGATATTCA CGGACCGGA TCTTCAGCGG CCCATTATGG CTTCAGAGGA ACAACTCATA ACTTCACAAG ACAACTCAT ACTTCACAAG ACAATGCCTGA TTGCCCAGGG TTCCTTGTGT TGCCCAAGG GCACGTGTT	GCTCAGCATE GCTCAGCATE GCCTCTCGG AAATTTAAG GTCCAAGTGT GAAATGGAAC GTTGGACCGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CCTGATGAAG GAATATTGTG AGATCACTG AGATCACTG AGATCACTG TCATGGACAT AGGTCGAAAA GGTGGTGGAA GGTGGTGGAA TGCCCTGACA CCGGCTTCCCT	AGGAACAGAA AGCACAGACT AAACGAGAAT AAACGAGAAT CTGGGGAAGA CTGGGGAAGA ATCCCCCAT TACATCGGG GCCCCAGT TACATCGGG GCATTCGCG GATCTTGAG TATATCCTGG CCACTTTCG CAAGATTCCA GAGACTTTGA GGCTCGGGC TTTTTTA	GGAATGACAC TGTCTTACAG GTGTCTTACAG GTGTCTTCTT AGAGCCAGCA AAGGGAAGTA CCCAGCACTG ACTCGCCCT CCAAAGGTGC AGGTGCTCAG TACCAGCATT ACAACAACCA AAGCAAAGCT AACAACCA AACAACCA AACAACCA AACAACCA AACAAC	TCTGGACAGC TGAAAGCGAC TGAAAGCAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACCTCTG GCACCTGAAA GAAGCCGCGC TTGGAATCAC AGACACACC AGCCAGATACACC CACACATTTG CCGGAATCAG CAAGATCACC TGTGATCGCT TGCTGCATC GCTGATCGCC GCTGATCACC GCTGATCACC	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020 1080 1140
65 70	ACCOGGACCE TTGGTGAATT TCCAAGGCCA ACCCAGATCA GACCCATTG TCCTGCGACA ACCCCAACC ATCGCAAGA ACCGGAGGCA ATCAGCAGGGA TCCAACCGGG TCCAACCGGG CTTAATGGATG CTTGCTGTGT TATGTTGTTT AAAAATAAA AGCCTGGTGG CTTCTAGTGG TTTTTTACCCC CTCAAAGAAA	GGGCAGCCAG GGGCAGCCAG GGGCAGCAGC TTATTCAAGC GGAGAARGT ACCAAAGTGA ACCAAAGTGA GGGATATTCA CGGACGCGGA TCGTCATTCC CCCATTATGG GTTCAGAGGA ACACCCTCAT ACTTCACAAG ACAATGCTG ATATCTCTGA ATATCTCTGA AGTTCACAGG TTCCTTGTGT AGGTGAGGA AGCCGCGTGTC TTCTCCCAATG	GCTCAGCATG GCTCAGCATG GCAATTTAAG GTGCAAGTGT GAAATGAAC GTTTGACGGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGTG CAGGAATTGG TCATGGACAT TCATGGACAT GCGCACTATT GCGCACTATT TGCTGACACA CCGGCTGCCT TTCTCACACCT TCTCTCACCTT	AGGAACAGAA AGGAACAGAA AGGACAGACT AAACGAGAAT AGGCTATGCCC TACAAGAAC GGCGCCAAGA ATCCCGCAGT TACATCGGGG GCCATTGGCA GATCCTGGG ATGCTGAGG CCACTGTCG CCACTGTCG CAAGATTCCA GGCTCGGGC TTTTTTTCCCGG GGCAGTTGGCA TTTTTTCTCCCG GAGGAGGAGA TTTAACAGTTA	GGRATGACAC GGRATGACAC GTOTOTTACAG GTOTOTTACAG GTOTOTTACAG GTOTOTOTT AGAGCCAGCA AAGGGAAAGTA CCCAGCACTG ACTOCGCCCT ACTACGCCTT ACCAGCATTG GCTATTTTTT ACAACAACA AAGCAAAGCT ACTATGTGG AAGCCATCAA AGATCGCTGA TCAAGGAGAA CTAAGGAGAA	TCTGGACAGC TGAAAGCGAC TACCAAAGAT CATGGAAGCC ATTTCTTACC TATTCTACC GCACCTGAAA GAAGCCGCGC TGGGATCTC AGGATACACC GGGCATGGTC AGCCCAGTAC CACACATTTG CCGGAATCAG CAAGATCCC TGCTGATCCC TGCTGATCCC GCGGATCAG CACACATTTG CCGGAATCAG CACACATTTG CAGGATCCC TGCTGATCGCT GCTGATCGCT GCTGATCGCT GCTGGTCGCG GATCAAATGG AGAAGCTCGG	120 180 240 300 360 420 480 540 600 600 720 780 840 900 960 1020 1080 1140 1200
65	ACCOGGACCE TTGGTGAATT TCCRAGGCA ACCCAGATCA GACCCCTTTG TCCTGCGACA ACACCCAACC ATCGGCAAGA ATCAGCAGGA TCCAACCGG CTTATGGATG ATTAGGATG ATTTGGTTG TTTGTGTTT AAAAATAAAA AGCCTGGTGG TTTTTACCCC CTCAAAGAA GATGAAATTG	GGGCAGCCAG GGGCAGCCAG TGTACTCCAG TTATTCAAGC GGAGAATGT ACCAAAGTGA GGGATATTCA GGGACGCGTA TGGTCATTCACAGG GTTCAGAGGA ACACCCTCAT ACTTCACAGG ACAACGCTGA TTGCCCAGG TTCCTTGAG TTCCCTAGG ACACGCTGT TGCCCAGG GCACGCTGT AGGTGGAGGA TCCCTCAGATG TCCTCGAATG TCCTCGAATG	GCCCAGCATG GGCTCAGCATG GGCTCAGCATG GAAATGTAAG GTTCGAGCAC GTTTGAGCAC AATCCTTTAC CCTGATCAAG GCAATCATG GAATATGTG CAGGAATTGT CAGGAATTGC AGATCACTG GCCACTATT AGGTGGAAAA GCTCGTGAAA TCCCCTGACA CCGCGCTGCCT TTCTCACCTA CATCTCACCA	AGGAACAGAA AGCACAGACT AAACGAGAAT GGCTATACCCC TACAAGAAAC CTGGGGAAGA ATCGCCAGT TACATCGGG GCCCCAAGA ATCGCCAGT TACATCGGG GCATTCGCA GATGCTGAGG CCCACTGTG CCACTGTG CAAGATTCCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACAGACA TTTTCCCGG CGAGGAGGAGA TTAACAAGTTA GCTCTATACA	GGRATGACAC TGTCTTTACAG GTGTCTTCTT AGAGCCAGCA AACGCAAGGA AACGCAAGGA AACGCACTG CCAAAGGTC CCAAAGGTC CCAAAGGTC CCAAAGGTC AGCTGCTCAG AGCACTTC ACAACAACCA AACCAAACCA	TCTGGACAGC TGAAAGCAC TGAAAGCAC TACCAAAGAT CATGGAAGGC ATTTCTACC TATACGTCTG GCACCTGAAA GAAGCCGCGC TTGGATTACTC AGATAACACC AGGCACAGTAC CACACATTTG CCGGAATCAG CAAGATCCC TACCTCCATC TGTGATCGCT GCTGTGCCGC GATCAAATGG AGAACATGGC CACACTGAC CACACTGAC CACACTGAC CACACTGAC CACACTGAC CACACTGAC CACACTGAG CACACTGAG CACACTGAG	120 180 240 300 360 420 480 540 660 720 780 900 960 1020 1080 1140 1200 1260
65 70	ACCOGGACCC TTGGTGAATT TCCRAGGCA ACCCAGATCA GACCCCTTTG TCCTGCGCAA ACACCCAACC ATCCGCAAGA ACCGGAGCCA ATCAGCAGGA TCCAACCGGG CTTATTGGATG TTGTAGGATGT AAAAATAAAA AGCCTGGTGG TTTTTACCCC CTCAAAGAAAT GATGAAATAGAAG GATGAAAATA	GGGCAGCCAG GGGCAGCCAG TTATTCAAGC GGAGAATGT ACCAAAGTGA GGGATATTCA GGACGCGGA TTGTCAGCGG CCCATTATGG GTTCAGAGGA ACAACTCAT ACTTCACAAG ACAATGCCTG TTGCCCAAGG TTCCTTAGGCG GCACGTGTT TTCTCAGAGG TTCCTAGGGGA GCACGCTGT TTCTCGAATG TTCTTGAATG TTGCCAAGG GCACGCTGTC TTCTCGAATG TTGACAATGC TTGACAATGC TTGACAATGC TTGACAATGC ATAACTGGAA	GCTCAGCATE GCTCAGCATE GCTCAGCTAT GTGCAACTGT GAAATGGAAC GTTTGAGCAC AATCCTTTAC TGTGACCGG GCTCATCTAC CCTGATGAAG GAATATTGTG CCAGGAATTGC AGACCACTG TCATGGACAT AGGTGGAAAA GGTGGTGGAAA GGTGGTGGAAA CCGGCTCCT TTCTCACCTAC CATCTCACCTA TGGGCACCTT TGGGCACCT TGGGCACCT TGGGCACCTAC TGGCACCTAC TGGCACCAC TGGCACCTAC TGGCACCAC TGCACCAC TGGCACCAC TGCACCAC TCCACCAC TGCACCAC TCCACCAC TGCACCAC TCCACCAC TGCACCAC TCCACCAC TCCACCA	AGGAACAGAA AGCACAGACT AAACGAGAAT AGCACAGACA AGCACAGACA CTGGGGAAGA ATCCCCCAGT TACAATCGGG GCCATTGGG ATTCCTGGGGATA ATCCCCATTCGG CATATTCCTG CCACTTTCG CAAGATTCCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTTCA CAGGACGAGA ATTAACACTTA AAGCTTCTGCA AAGCTTCTGCA AAGCTTCTCA	GGRATGACAC TGTCTTACAG GTGTCTTTACAG GTGTCTTCTT AGAGCCAGCA AAGGGRAAGTA CCCAGCACTG ACTTCGCCTT CCAAAGGTGC AGGTGCTGAG TAGCAGCTTCA AGCACACCA AAGCAAAGCT ACTAAGCAGCAC AAGCAAAGCT ACTATGGTGG AAGCCATCAA AGATCGCTGA ACTATGGTGG AAGCCTTCAG ACTAAGGAGTTC TTAAAATGGA ACGCTTCAG TGGAGTTGGAT	TCTGGACAGC TGAAAGCAT TGAAAGCAC TACCAAAGAT CATGGAAGGC ATTTCCTACC TATACCTCTG GCACCTGAAA GAAGCCGCGC TTGGATTCTC AGATAACACC GGGCATGGTC AGACCATTTG CACACATTTG CACACATTTG CAGAATCAGC TACCTCCATC TGTGATCGCT GCTGGTCGGC GATCAAATGG AGAAGCTCGG CACCAGTGGA CACACTGGAC CACCAGTGGAC CACCAGTGGAC CACCAGTGGAC CACGTGGAC CCAGCTGGAC CCAGCTGGAC CCAGCTGGAC CCAGCTGGAC CCAGCTGGAC CCAGCTGGAC CCAGCTGGAC CCAGCTGGAC	120 180 240 300 360 420 480 540 600 600 720 780 840 900 960 1020 1080 1140 1200
65 70	ACCOGGACCE TTGGTGAATT TCCAAGGCA ACCCAGATCA GACGCCTTTG TCCTGCGCAAGA ACACCCAACC ATGGCAAGA ATCAGCAGGA TCCAACCGG CTTATGGATG TCTAGATGATG ATGTTGTGTT AAAAATAAAA AGCCTGGTGG TTTTTACCCC CTCAACGAA GATGAAATTG CAAGACAAGG GTTAGAAATTG CAAGACAAGG TTTGCCAATG GTCCAATGTTTA	GGGCAGCCAG GGGCAGCCAG GGGCAGCCAG TTATTCAAGC GGAGAATGT ACCAAAGTGA GGGATATTCA GGGACGCGGA GGGCAGTATCG TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCCTCAT ACTTCACAGG ACACCCTCAT TTCCTGAGT TTCCTTGAG ACACGCCTGC ATATCTCTGA TTCCTTGTGT AGGTGGAGGA GCACGGTGTC TGAGCAATGC ATAACTGGAAT ATGAGCATTC CGGCTCTCAT	GCCCAGCATG GGCTCAGCATG GGCTCAGCATG GTCCAAGTGT GANATGGAC GTTTGAGACA AATCTTTAC GTGATCAGG GCTCATCTAC CCTGATCAAG GAATTATGT CAGGAATTGT AGGTGAAAA GGCACTATT AGGTGGAAAA TGCCCTGACA CCGGCTGCT TTCTCACCTA CATCTCTAC CATCTCTAC CATCTCTAC CACCAATGAC AAAGGACCAG	AGGAACAGAA AGGACAGACT AAACGAGAAT GGCTATTCCCC TACAACGAGAAC CTGGGGAAGA ATCGCCAGT TACATCGGGG GCCACTAGA ATCGCCAGT TACATCGGG CCACTGTCG CAAGATTCCTG CAAGATTCCTG GAGGATCCA GCCTCTCG GCCTCTCGGCC TCTTCTCCCG GAGGAGGAGA TTAACAAGTTA AAGCTTATAC AAGCTTTCGC CCCACGTTCGC CCCACGTTCGC CCCACGTTCGC CCCACGTTCGC CCCACGTTCGC CCCACGTTCGC CCCACGTTTCC	GGAATGACAC GGGATGACAC GGGATGACAG GTGTCTTCTT AGAGCCAGCA AACGGAAGTA ACCCAAGGA AACGGACTGC CCAAAGGTGC AGCTGGTGAG GGTATTTTT ACAACAACA AACCAAAGAC AACCAACAG AACCATCAA CTAAGGTGG AACCATCAA TCAAGGAGTAC TTAAAATGAA AACCATCAA AACCATCAA AACCATCAA TTAAAATGAA AACCATCAA AAGCCTTCAG TGGAGTTGAA AAGCCTTCAG TGGAGTGGAA AGTCTGCTGAA AGTCTGCTGAA AGTCTGCTGAA AGTCTGCTGAA AGTCTGCTGAA TCGGCCTCTT	TCTGGACAGC TGAAAGCAC TGAAAGCAC TACCAAAGAT CATGGAAGGC ATTTCTACC TATACGTCTG GCACCTGAAA GAAGCCGCC TTGGATTACC TGGATACACC AGATAACACC AGCCAGTAC CACACATTTG CCGGAATCAG CAGAATCCC TACTCCATC TGTGATCGCT GCTGGTCGCC GATCAAATAGG CACACTTGGC CACACTCAGC CACACTGGAC CCTCCATC TCTGATCGCT CCTCCATC TCTGATCGCT CCTCTCAGC CCTCTCAGC CCTCTCAGC CCTTCAAGAA TCTGCAGAAT TCTGCAGAAT	120 180 240 300 360 420 6600 6600 720 780 840 900 960 1020 1030 1260 1320 1380 1440
65 70	ACCOGRACCE TTGGTGANTT TCCRAGGCCA ACCCGATCA ACCCGACC ATCCGCACA ACACCCAACC ATCCGCACA ATCCGCACGA TCCAACCGAG TCCAACCGAG TCCAACCGGC TTATGGATG TCTACTGGTG TTTTTACACC TCAAAGAAAT AAATAAAA AAGCATGGTGTG TTTTTACCCC TCAAAGAAAT GATGAAATTA GATGAAATTG GTCATGTTT GGCTTGAACC GTCAAGCAAGG TTACCCAAGCAAGG GTCAAGTTTAA GGCTTGAACC	GGGCAGCCAG GGGCAGCCAG GGGCAGCCAG TTATTCAAGC GGAGAATGT ACCAAAGTGA GGGATATTCA GGGACGCGGA GGGCAGTATCG TCTTCAGCCG CCCATTATGG GTTCAGAGGA ACACCCTCAT ACTTCACAGG ACACCCTCAT TTCCTGAGT TTCCTTGAG ACACGCCTGC ATATCTCTGA TTCCTTGTGT AGGTGGAGGA GCACGGTGTC TGAGCAATGC ATAACTGGAAT ATGAGCATTC CGGCTCTCAT	GCTCAGCATG GCTCAGCATG GCTCAGCATG GAATTTTAAG GTGCAAGTGT GAAATGGAAC GTTTGGACGAG AATCCTTTAC TGTGACCGG GCTCATCTAC CCTGATGAAG GAATATTGTG CAGGAATTGC AGGACTTAT AGGTGGAAAA GGTGGTGGAAA TGCCCTGACA CCGGCTGCT TTCTCACCTA CAGGCAGCT TGTCACCTA TGGGCAGCT TGGGCAGCT TGGGCAGCAG TGGCCACTAGC AAAGGACAGA TCTCACCCAT	AGGAACAGAA AGCACAGAACA AACGAGAACA GGCTATCCCC CTGGGGAAGA ATCCCCCAGA ATCCCCCAGA ATCCCCCAG ATCCCCAG GATCCTCAG GCCATTCAG GCATCTCAG GCATCTCAG GAGACTTCAG GAGACTTCAG GAGACTTCAG GAGACTTCAG GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA GAGACTTCA CCCAAGATTCA AACCTTCAGC GCCCAAGATG CCCCAAGATTC GAGACTTCAG CCCCAAGATTG GATGCCCCCA	GGRATGACAC TGTCTTACAG GTGTCTTTACAG GTGTCTTCTT AGAGCCAGCA AAGGGRAAGTA CCCAGCACTG ACTTCGCCT CCAAAGGTGC AGGTGTGAG TAGCAGCTTG ACTACTTTTT ACAACAACCA AAGCAAAGCT ACTATGGTGG AAGCCATCAA ACTATGGTGG AAGCATCCAAA ACTATGGTGG AAGCCTTCAA ACTATGGTGG AAGCCTTCAA ACTATGGTGG TCAAGAGTTC TTAAAATGGA TGCAGCTTCGA TGCAGCTTCGA TGCAGCTTCGA TCCGCCTCTTCA ACTCTCTCAACTCTTCA	TCTGGACAGC TGGAAGGC TGGAAGGC TACCAAGGAT CATGGAAGGC ATTTCCTACC TATACCTCTG GCACCTGAACA GAAGCCGCGC TTGGATTACC AGATAACAC GGGCATGGT CACACATTTG CACACATTTG CACACATCAC TGTGATCCC TACCTCCATC TGTGATCGC GCTGGTGCGC GATCAAATGC CACACTGGAC CACACTGGAC CCTCCAGGAC CCTCCAACCAC	120 180 240 300 360 420 480 600 660 720 780 840 900 960 1020 1140 1260 1320 1380

			GGTTGCGAAC				1620
	AATGGCCGGG	ACGAGATGGA	CATAGAACTC	CACGACGTGT	CTCCTATTAC	TCGGCACCCC	1680
	CTGCAAGCTC	TCTTCATCTG	GGCCATTCTT	CAGAATAAGA	AGGAACTCTC	CAAAGTCATT	1740
5			CACTCTGGCA				1800
5			CATCAATGCT				1860
			GCTGTTCACT				1920
	GTCCACCCCA	CACACCACCA	CTGTGAAGCT	TGGGGTGGAA	GCAACIGICY	GGAGCTGGCG	1980 2040
			CCGAGACACC				2100
10			TGGCTTTGTA				2160
	AAGAAGCTGC	TTTGGTACTA	TGTGGCGTTC	TTCACCTCCC	CCTTCGTGGT	CTTCTCCTGG	2220
			CTTCCTCCTG				2280
			CGAGCTGGTC				2340
1.5	Gatgaagtga	GACAGTGGTA	CGTAAATGGG	GTGAATTATT	TTACTGACCT	GTGGAATGTG	2400
15			TTACTTCATA				2460
			TGGACGAGTC				2520
			TACTGTAAGC				2580
			GTTCTTCTTC				2640
20			GATCCTTAGG				2700
20			CTACCTGGCC				2760
			CCACTGCACC				2820
			CAACATCCTG				2880 2940
			GGAGAACAAT				3000
25			CCGCCTCAAT				3060
			GTGCTTCAAG				3120
						TGTCATGAAG	3180
	GAAAACTACC	TTGTCAAGAT	CAACACAAAA	GCCAACGACA	CCTCAGAGGA	AATGAGGCAT	3240
20			AAAGCTTAAT	GATCTCAAGG	GTCTTCTGAA	AGAGATTGCT	3300
30	AATAAAATCA	AATGA					
		BH1 Prolein segui					
	Protein Accession	n#: XP_01	17718				
35	1	••	24	24	**		
55	†	11	21	31	41	51	
	MCDDYVDI'GN	DATE DATE OF THE	TRTLYSSASR	empt everen	INDICAND	TD DCG IDDMVD	60
			TOINOSEKWN				120
'			TPNLVISVTG				180
40			ISRSSEENIV				240
			LLVDNGCHGH				300
	IVCFAQGGGK	etlkaintsi	KNKIPCVVVE	GSGQIADVIA	SLVEVEDALT	SSAVKEKLVR	360
			LKEILECSHL				420
45			LANDEIFTND				480
43			PSTLVYRNLQ				540
			LQALFIWAIL				600
			YETRAVELPT				660
			QWYGEISRDT NVVPYIAFLL				720 780
50			MDTLGLFYFI				840
			QRMLIDVFFF				900
			GTTYDFAHCT				960
			YTVGTVQENN				1020
			SVCCPKNEDN				1080
55		DLKGLLKEIA					
	•						
		- 1 A		SE	2 ID NO:39 P8H3	DNA SEQUENCE	
		ession #: XIM_0					
60	Coding sequence	: 1-558 (underlined sequen	ces correspond to	start and stop coc	ions)	
UU							
	1	11	21	31	41	51 -	
	yarananan }	. Waterbarenses 	ו הרשה התפרתה 	CY YURINGIRE	, <u>macmacmor</u> s	CCAATTTTCC	60
						CGAATTAGTT	
65						GAGCCAGGAA	180
						CAACAAAGAT	240
	ACAGAAACTA	TAATTATCAT	GTTGGAATTC	ATTGCTAATT	TGCCACCGGA	GCTGAAGGCA	300
	GCCCTATCTC	AGAGGCAACO	ATCATTACCA	GAGCTACAGC	AGTATGTACC	TGCATTAAAG	360
70						AAGTGAAGCC	420
/U						TCAAAAAAAG	480
			GTTTGAGAAA	TGTTGCCTAA	TIGGTIGTAC	CAAAAGGTCT	540
	CTTGCTAAA1	ATTGCTGA					
	ano		BB 0				
	SEQ ID	<u>NO:40 PI</u>	<u>3H3 PRO</u>	<u>TEIN SEC</u>	DUENCE		
75	Protein Accession	#: NP_00	3842				
	1	11	21	31	41	51	
	1	1		1	1]	_
	MPRLFLFHLL	epclllnops	RAVAAKWKDD	Viklegrelv	RAQIAICGMS	TWSKRSLSQE	60
						_	
					21	•	

		BIVPSFINKD KLIRNRQSEA					120 180
5				SE	Q ID NO:41 PBH	DNA SEQUENCE	
	Nucleic Acid Acc Coding sequence	ession #: NM_0 a: 1-3978		ences correspond	to start and stop c	odons)	
10	1	11	21	31	41 	51	
		TGTACCAGGA					60
		TCTGGTGGCT					120 180
1 5"	CAAGGGTTCT	GGGATAAAGA	AGTTTTAAGA	GCTGAGAATG	ACGCACAGAA	GCCTTCTTTA	240
15		TCATAAAGTG					300
		GTGCCAAAGT ATCCCATGGA					360 420
	CTGACTTTTT	GCACGCTCAT	TTTGGCTATA	CTGCATCACT	TATATTTTTA	TCACGTTCAG	480
20		TGAGGTTACG					540
20		TGGCCATGGG AGTTTGATCA					600 660
		CAGTGACTGC					720
		TAATCATTCT					780
25	ACTICATION	AAACTGCAAC GGATAATAAA	TTTCACGGAT	GCCAGGATCA TCCCAAAACT	GGACCATGAA	TGAAGTTATA	840 900
		AGAAGGAGAT					960
		TTTTCAGTGC					1020
		GTGTGATCAC					1080 1140
30		GAAGAATCCA					1200
		CAGATGGTAA					1260
		AGACCCCAAC TCGGCCCCGT					1320
		CAAGTCACGG					1380 1440
35 .	CAGCCCTGGG	TGTTCTCGGG	AACTCTGAGG	AGTAATATTT	TATTTGGGAA	GAAATACGAA	1500
		ATGAAAAAGT ATCTGACTGT					1560
		ACCTTGCAAG					1620 1680
40	CCTCTCAGTG	CAGTAGATGC	GGAAGTTAGC	AGACACTTGT	TCGAACTGTG	TATTTGTCAA	1740
40		AGAAGATCAC					1800
		TGATATTGAA GTATAGATTT					1860 1920
		CAGGAACTCC					1980
45		CTTCTAGACC					2040
43		TTACACTATC ACTTCAGAGC					2100 2160
		CTCAGGTTGC					2220
		TGCTAAATGT					2280
50		ACTTAGGAAT TATTGGTATT					2340 2400
•		CAATTCTGAA					2460
		GTTTCTCCAA					2520
		TCCAGACATT					2580 2640
55		AAACGTCAAG					2700
		TGTCATCTTC					2760
		AGGAACTGTT					2820 2880
		CCTTTGGGTC					2940
60	TTGGCACTGT	CCTATGCCCT	CACGCTCATG	GGGATGTTTC	AGTGGTGTGT	TCGACAAAGT	3000
		AGAATATGAT CTTGGGAATA					3060 3120
		ACAATGTGAA					3180
65	CTGACAGCAC	TCATTAAATC	ACAAGAAAAG	GTTGGCATTG	TGGGAAGAAC	CGGAGCTGGA	3240
65		TCATCTCAGC TGACAACTGA					3300 3360
		CTGTTTTGTT					3420
	CACACGGATG	AGGAACTGTG	GAATGCCTTA	CAAGAGGTAC	aacttaaaga	AACCATTGAA	3480
70		GTAAAATGGA					3540
10		TGGTGTGCCT					3600 3660
	GAGAAATTTG	CCCACTGCAC	CGTGCTAACC	ATTGCACACA	GATTGAACAC	CATTATTGAC	3720
	AGCGACAAGA	TAATGGTTTT	AGATTCAGGA	AGACTGAAAG	aatatgatga	GCCGTATGTT	3780
75	CCCCTCCC	ATAAAGAGAG TCACTGAAAC	AGCAAAACAG	CTATACTTCA	AAAGAAATTA	TCCACATATT	3840 3900
						CTTAACTATT	3960
	TTCGAGACAG	CACTG <u>TGA</u>					

SEQ ID NO:42 PBH5 PROTEIN SEQUENCE Protein Accession #: NP_005836

5	1	11	21	31	41	51	
3	1	<u> </u>		<u> </u>	<u> </u>	1	
			RVPFWWLNPL				60
			TRAIIKCYWK				120
						CHMIYRKALR	180
10			DVNKFDQVTV LRSKTATFTD				240 300
			LASFPSASKI				360
			VSIRRIQTFL				420
			LAVVGPVGAG				480
			KERYEKVIKA				540
15	ARVNLARAVY	ODADIYLLDD	PLSAVDAEVS	RHLFELCTCO	TLHEKTTTIN	THOLOVIKAA	600
	SOILILKDGK	MVOKGTYTEF	LKSGIDFGSL	LXXDNRRSEO	PPVPGTPTLR	NRTFSESSVW	660
			nvpvtlseen				720
			KOSMLNVTVN				780
			MPESILKAPV				840
20	LDFIQTLLQV	VGVVSVAVAV	IPWIAIPLVP	LGIIFIFLRR	YFLETSRDVK	RLESTTRSPV	900
	PSHLSSSLQG	LWTIRAYKAE	ERCQELFDAH	QDLHSEAWPL	PLTTSRWFAV	RLDAICAMFV	960
	IIVAFGSLIL	AKTLDAGQVG	LALSYALTIM	GMFQWCVRQS	AEVENMMISV	ERVIEYTOLE	1020
			IIFDNVNFMY				1080
25			DKILTTEIGL				1140
25			DLPGKMDTEL				1200
			EKFAHCTVLT				1260
		KMVQQLGKAE	AAALTETAKQ	VYFKRNYPHI	GHTDHMVTNT	SNGQPSTLTI	1320
	FETAL						
30							
30	Shoulate Auto Acc			SE	Q ID NO:43 PBQ7	DNA SEQUENCE	
		ession#: NM_0					
	Coding sequence	E 34-111	9 (underlined seq.	iences correspond	to start and stop (codons)	
	1	11	21	21	41	E1	
35	î	11	21	31	41	51	
-	ATTCCCCAAAAC	ACACCARCAGO	TGGCATGAAA	TABATCABAC	ACABA ATCAT	CCCAAGACTIC	60
			GCTCTTCCTT				120
			AGGGAAAGCT				180
			TGGAGAGACT				240
40			TGAGCAACTA				300
			AGCATATGCC				360
			ACCTGTGAAT				420
			TCAAGGGTTC				480
45			TGATTATCCA				540
45			CAACCAGTAT				600
	AACCCCAACG	TCTATAGCTG	CTCCATCCCA	GCCACCTTTC	ACCAGGAGCT	CATTCACATG	660
	CCCCAGCTGT	GCACCAGGGC	CAGCTCATCA	GAGATTCCTG	GCAGGCTCCT	CACCACACTT	720
			ATTCCTCCAT				780
50			TCAACGGCTG				840
30			TTCAAACTGC				900
			CTCTTATTTC				960
			AAATCGCTGG				1020
			AGGATTCATT				1080
55	TITCAMGGAT	TAGTATTATA	CTATGAAAGC	TGTAAG <u>TAA</u> A	CTTGGTGAAA	GGACACAGGT	
	SEO ID NO:44 PI	3Q7 Protein segue	ence				
	Protein Accession						
	1	11	21	31	41	51	
60	1	1	1		1	1	
	MMARLLRTSP	ALLFLGLFGV	LGAATISCRN	REGKAVDWFT	PYKLPKRONK	ESGETGLEYL	60
			SVLGRTLQQL				120
	GHTKGLLLWN	RVQGFWLIHS	IPQFPPIPEE	GYDYPPTGRR	NGQSGICITE	KYNQYEAIDS	180
65			ELIHMPQLCT				240
65			TETWORKROE				300
	HAKWCISQKO	S TKNRWTCIG	d lnrsphqai	FR SGGFICTQN	IW QIYQA PQ G	LV LYYESCK	
	Mindale & ald Sans		20452	SE	2 ID NO:45 PCQ8	DNA SEQUENCE	
70		ssion #: XM_0				-4	
70	Coding sequence	09-127	3 (underlined sequ	ences correspona	to start and stop o	odons)	
	1	11	21	31	41	51	
	î	i*	ī	1	7.	1	
	CGGTGCCCTC	GGGTGGAATA	TCCCCTACGA	ATTTAACCE	CCCCACTOTOR	ATCCCACTOCH	60
75	GCAGTTCATC	CANANCCACT	TGGATGACAT	GGATGTCANA	AAGGGTYSTY	CCTCGGACCAC	120
			AGATTCAATA				180
			CTAAGGTTTG				240
	CAGTTTTTAC	CAAGGATACA	ATATTCCAAA	ATGCAGCACA	GTGGATAACT	ATCTTCAGTA	300
	TATCCAGAGT	TTGCCTGCCT	ATGACAGCCC	TGAGGTGTTT	GGGCTGCACC	CCAATGCTGA	360

	CATCACCTAC	CAGAGCAAGC	TGGCCAAGGA	CGTGCTGGAC	ACCATCCTAG	GCATCCAACC	420
		TCTGGTGGAG					480
		GAGAAGCTGC					540
		CCATTCCAGC					600
5		AGCCTTGTCC					660
_		AGCGAAAATC					720
		AAAAAAGCTT					780
		AACAGCCAGT					840
		TTTTTTAACC					900
10							960
10		GGCTGGGCTC					
		ATTTCTACCC					1020
		TGGGACAAGA					1080
		CCTGTCATAA					1140
15		CCCATCTATA					1200
13		ACAGCCCAGA					1260
		<u>TAA</u> CATGTGG					1320
		ACCTTTATTT					1380
		CTGCATAGGT					1440
00		TGACCAATGT					1500
20		TCCTAATGAA					1560
		AGACTGACTG					1620
	AGATGGCAAG	ATAGAAAAAT	AAGAACAGAT	GTGATAGCAA	GAATTATAGT	TGGCTTGAAA	1680
	AAATGTGATG	ATCAGGAGAA	AAAATAAAA	AAGGGTAGAA	ATATTAGACG	GTGCGTAGGG	1740
	ACTITCTATG	GACTITITATT	AATTAGGAAA	CATTATCAAA	GGAACTTTTC	ACGTATTTTT	1800
25	CTTTAAATTC	TGGTTAGATG	AATAATTATT	TTCTTCATCT	AACCTACTGA	CTAGAAAATA	1860
	TAGTCAGTAC	TAAATTAGAA	TTGTGGTTTA	TAAACTTTTG	GTTAGCTCTG	GATCTGTATA	1920
		TTTGGATAAA					1980
		GGCTTCATTC					2040
		AGTGGCTCCT					2100
30		TGGTGTGGAT					2160
• •		TGAAAAGCAA					2220
		AAAAAAAAA					
	SEQ ID NO:46 PC	YOR Protein semis	nce				
35	Protein Accession						
55	FIGURAL PLOCESSION	w. DADI.	,, ,,,				
	•		21	31	41	51	
	1	11	1	31	41	27	
	!			L	I TOTAL PROPERTY.		
40						FSFYQGYNIP	60
40	KCSTVDNYLQ	YIQSLPAYDS	PEVPGLHPNA	DITYQSKLAK	DVLDTILGIQ	PKDTSGGGDE	120
40	KCSTVDNYLQ TREAVVARLA	YIQSLPAYDS DDMLEKLPPD	PEVPGLHPNA YVPPEVKERL	DITYQSKLAK QKMGPFQPMN	DVLDTILGIQ IFLRQEIDRM	PKDTSGGGDE QRVLSLVRST	120 180
40	KCSTVDNYLQ TREAVVARLA LTELKLAIDG	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD	PEVFGLHPNA YVPFEVKERL ALDCMFDARI	DITYQSKLAK QKMGPFQPMN PAWWKKASWV	DVLDTILGIQ IFLRQEIDRM PSTLGFWFTE	PKDTSGGGDE QRVLSLVRST LIERNSQFTS	120 180 240
40	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WVFNGRPHCF	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WMTGFFNPQG	PEVPGLHPNA YVPPEVKERL ALDCMPDARI PLTAMRQEIT	DITYQSKLAK QKMGPFQPMN PAWWKKASWV RANKGWALDN	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT	120 180 240 300
	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WVFNGRPHCP EGVYVYGLYL	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM	PEVFGLHPNA YVPPEVKERL ALDCMFDARI PLTAMRQEIT KLIESKPKVL	DITYQSKLAK QRMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRIY	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT	120 180 240
40 45	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WVFNGRPHCP EGVYVYGLYL	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WMTGFFNPQG	PEVFGLHPNA YVPPEVKERL ALDCMFDARI PLTAMRQEIT KLIESKPKVL	DITYQSKLAK QRMGPFQPMN PAWWKKASWV RANKGWALDN FELMPVIRIY	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT	120 180 240 300
	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WVFNGRPHCP EGVYVYGLYL	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM	PEVFGLHPNA YVPPEVKERL ALDCMFDARI PLTAMRQEIT KLIESKPKVL	DITYQSKLAK QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMFVIRIY LL CDVK	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP	120 180 240 300
	KCSTVENYLQ TREAVVARLA LTELKLAIDG WVFNGRPHCP EGVYVYGLYL VRTDLNYIAA	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WHTGFFNPQG EGAGWDKRNM VDLRTAQTPI	PEVFGLHPNA YVPFEVKERL ALDCMFDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVA	DITYQSKLAK QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMFVIRIY LL CDVK	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT	120 180 240 300
	KCSTVENYLQ TREAVVARLA LITELKLAIDG WVPMGRPHCP EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033	PEVFGLHPNA YVPFEVKERL ALLCMPDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVA	DITYQSKLAK QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMFVIRIY LL CDVK	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDGS	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE	120 180 240 300
45	KCSTVENYLQ TREAVVARLA LTELKLAIDG WVFNGRPHCP EGVYVYGLYL VRTDLNYIAA	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033	PEVFGLHPNA YVPFEVKERL ALLCMPDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVA	DITYQSKLAK QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMFVIRIY LL CDVK	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE	120 180 240 300
	KCSTVENYLQ TREAVVARLA LITELKLAIDG WVPMGRPHCP EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033	PEVFGLHPNA YVPFEVKERL ALLCMPDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVA	DITYQSKLAK QKMGPFQPAN PAWWKASW KANKGWALDN FELMPVIRTY LL CDVK SEC	DVLDTILGIQ IFLRQEIDRM PSTLGFWFE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDGS to start and stop of	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons)	120 180 240 300
45	KCSTVENYLQ TREAVVARLA LITELKLAIDG WVPMGRPHCP EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033	PEVFGLHPNA YVPFEVKERL ALLCMPDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVA	DITYQSKLAK QKMGPFQPMN PAWWKKASWV RANKGWALDN FELMFVIRIY LL CDVK	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDPR 2 ID NO:47 PDGS	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE	120 180 240 300
45	KCSTVDNYLQ TREAVVARLA LTELKLAIDA WYPNGRPHCP EGYYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence	YIQSLPAYDS DDMLEKLPPD TIIMSENLQD WHTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSion #: AB033 : 68-334	PEVPGLHPNA YVPPEVKERL ALDCMPDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVA 036 0 (underlined sequ	DITYQSKLAK QKMGPFQPAN PAWWKASW KANKGWALDN FELMPVIRTY LL CDVK SEC	DVLDTILGIQ IFLRQEIDRM PSTLGFWFE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDGS to start and stop of	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons)	120 180 240 300
45	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WYPMGRPHCP EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TIIMSBALQD WMTGFPNPQG EGAGWDKRNM VDLRTAQTPI 255ion #: AB033 : 68-334: 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVA 0036 0 (underlined sequ 21	DITYQSKLAK QRMGPPQPMN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31 CACTACCCCT	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR ID NO:47 PDGS to start and stop c 41 CAGGGGGTTGC	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA	120 180 240 300
45	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WYPMGRPHCP EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TIIMSBALQD WMTGFPNPQG EGAGWDKRNM VDLRTAQTPI 255ion #: AB033 : 58-334 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKPKVL E HWVLRGVA 0036 0 (underlined sequ 21	DITYQSKLAK QRMGPPQPMN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31 CACTACCCCT	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR ID NO:47 PDGS to start and stop c 41 CAGGGGGTTGC	PKDTSGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odoms) 51	120 180 240 300 360
45	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WYPNGRPHCP EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACATC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TIIMSENLQD WMTGFFHPQG EGAGWDKRNM VDLRTAQTPI \$550m \$: AB033 : 68-334 11	PEVFGLHPNA YVPPEVKERL ALDCMPDARI ALDCMPDARI FLTANRGBIT KLIESKPKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYQSKLAK QRIGPPOPMI PAMWKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31	DVLDTILGIQ IFILGELDRIM FSTLGFWFTE MVLCNSVTKW AENNTLRDFR 2 ID NO:47 PDGS to start and stop c 41 CAGGGGTTGC TCCAGRARAG	PKDTSGGGDE QRVLSLVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA	120 180 240 300 360
45	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCC AGATGACATCA ACAGCCCATTA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDIKNM VDLRTAQTPI SSION #: AB033 : 68-334 : 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QREGPROPEN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences corespond 31 CACATACCCCT AGATTTCGGA CATGGTTAGT	DVLDTILGIQ IFILGELORM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop c 41 CAGGGGTTGC TCCAGAAAAG GATCCACAAC	PKDTSGGGDE QKUSLURST LLIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA	120 180 240 300 360 60 120 180
45	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACATT AGATGCAGCT AGATGCAGCT AGATGCAGCT AGATGCAGCT	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TIIMSENLQD WHTGFFNPQG EGAGWDRNIM VDLRTAQTPI ESSION #: AB033 : 68-334 11 ACAACTTCAC GGAGAGGAGAA CGTGAAAACE TTTGGAAACE TTTGGAAACE	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 9 (underlined sequ 21 RACCAGANAC ARGCTGGGA ARGCTGGGA TGGAGACAGT C AGGAGACAGC AGGAGACAGC	DITYQSKLAK QRMGPFQPMN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDGS to start and stop of 41 CAGGGGTTGC TCAGAAAAA GGATCACAAA TCTCTCTCAC	PKDTSGGGDE QRVLSIVRST LIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATAGCATGA TGATGGTGGA TGATGGTGGA	120 180 240 300 360 60 120 180 240
45	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WYPMGRPHCP EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCT AGATGACATC ACAGCCCTATA AGATGACATC AAGCCCTTTCT	YIQSLPAYDS DDMLERUPPD DDMLERUPPD TIIMSENLQD WMTGFFHPQG EGAGWDRNM VDLRTAQTPI SSION #: AB033 : 68-334 11 ACAACTTCAC GGAAGGAGAA CCTGAAAACA TCTGAAAACA TCTGAAACCA TCTGAGAGCCAAC ACAACCCCAAC ACAACCCCAAC ACAACCCCAAC ACAACCCCAAC ACAACCCCCAC ACAACCCCCAC ACAACCCCACC ACAACCCCCACC ACAACCCCAAC ACAACCCCCACC ACAACCCCAAC ACAACCCCAAC ACAACCCCAAC ACAACCCCCACC ACAACCCCAAC ACAACCCCCACC ACAACCCCCACCCCACC ACAACCCCAAC ACAACCCCCACC ACAACCCCAAC ACAACCCCCACCCCACC ACAACCCCCACC ACAACCCCCACC ACAACCCCCACC ACAACCCCCACCCCACCCCCC	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQBIT KLIESKPKVL E HWVLRGVA 0036 0 (underlined sequ 21	DITYQSKLAK QRMGPPQPMN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SE(ences correspond 31	DVLDTILGIQ IFIRQEIDRM FSTIGFWFTE MVLCNEVTRW AENNTLRDFR ID NO:47 PDGS to start and stop c 41 CAGGGGTTGC TCCAGAAAAG GATCCACAAC TCCAGAAAAG GATCCACAAC	PKDTSGGGDE ORVLSIVAST ORVLSIVAST MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATAACATGA TGATGGTGGA TGATGGTGGA CTCAGGTGTT	120 180 240 300 360 60 120 . 180 240 300
45 50 55	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYYVYGLYL VRIDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCC AGATGACATC AGATGACATC AGATGACATC AGATGACATC TATGAATCCT TATGAATCCT	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDIRNM VDLRTAQTPI SSION #: AB033 : 68-334 : 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL 6 HWVLRGVA 21	DITYOSKLAK QREGPROPEN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences corespond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGG TCCAGARAAG GATCCAGAC TCTCTCTCAG GCAGCAGAGGG TTCAGCTTTG	PKUTSGGGDE QKUSLURST LLIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TITCAGATAN CATCAGCAGC CATACCATGA TAATGSTGGA CTCAGGGTGTT ATTTACAAAA	120 180 240 300 360 60 120 180 240 300 360
45 50 55	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCT AGATGAACATC ACAGCCCATA AGATGCAGCT TATGAATCCT GGCCCAATCC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TIIMSENLQD WHTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033: 11 ACAACTTCAC GGAAGGAGRA CCTGAAACE TCTGGAGCTE ACAACCCAAG TCTCAATATCC RAAATGAGGTE ACAACTTCACG	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL 6 HWVLRGVA 036 9 (underined sequ 21 1 1 2ACCAGAAAC ARGCTGGCAT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DITYQSKLAK QRIGFPQPMI PAMWKRASWV RANKGWALDN FELMPVIRIY LL CDVK SE(ences correspond 31 CACCTACCCCT AGATTYCGA CATGCTTACT AGCCAGAGCT TCTCTCAGTA TCAAGAACT TCAAGAACT TCAAGAACT TCAAGAACT	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDGS to start and stop of 41 CAGGGGTTGC TCCAGAAAAA TCTCTCTCAC GCAGCAGAGG TTCAGCTTGC ATCTCACAAAA ATCTGCAAAA ATCTGCAAAA ATCTGCAAAA ATCTGCAAAA ATCTGCAAAA	PKNTSGGGDE QRVLSIARST LIERNSOFTS MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51	120 180 240 300 360 60 120 180 240 300 360
45	KCSTVDNYLQ TREAVVARLA LTELKLAIDG WYPMGRPHCP EGVYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACATC ACAGCCCATT AAGCCTTTCT TATGAATCTC GGCCCAATCTC TGGAAATCTT	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TIIMSBALQD WMTGFFNPQG EGAGWDKRNM VDLRTAQTPI ESSION #: AB033 : 68-334 11 ACAACTTCAC GGAAGGAGAA CCTGAAACCE TCTGGAGCT ACAACCCAAC TATAATGAC TATAATGAC CACCACACCCAC CACCACACCC CACCACACCC	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 0036 0 (underlined sequ 21 1 21 2ARCCAGAAAC ATGCTGGCAT TGGACAATIC AGGAGACAGI AGGAGACAGI AGGAGCCGAG AGGAGCCGAG CAGCCCAGGG TTACAAGG TTACAAGG TTACACAAGI TTACACCAG	DITYQSKLAK QRMGPPQPMN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 10 NO:47 PDGS to start and stop c 41	PKDTSGGGDE ORVLSIVAST ORVLSIVAST MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT ATTACAAAA ATAAAGCCTTC CTACAGCCAA	120 180 240 300 360 60 120 180 240 300 360 420 480
45 50 55	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYYVYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCC AGATGACATC AGATGACATC AGATGACATC TATGAATCCT TGGAAATGT AGAGATTTT TAGGAGATTTTT TAGGAGATTTTT TAGGAGATTTTT TAGGAGATTTTT TAGGAGATTTTT TAGGAGATTTTT TAGGAGATTTTTT TAGGAGATTTTTTTT	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDIKNM VDLRTAQTPI SSION #: AB033 : 68-334 : 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QRIGPROPEN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences corespond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCCAGARARAG GATCCAGAC TCTCTCTCAG GCAGCAGAG TTCAGCTTTC ACTGCARAG ATTGCARAG TTTCAGCTTT ATTGCACAC TTTCAGCTCT	PKUTSGGGDE QKUSLURST LLIERNSQFTS MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51 TITCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGT ATTTACAAAA AAAAGCCTTC CTACAGCCAA CAAGGAAGCC CAAGGAAGC CAAGGAAAGC CAAGGAAGC CAAGGAAAGC CAAGGAAAAGC CAAGAAAAGC CAAGAAAACC CAAGAAAACC CAAGAAAACC CAAGAAAACC CAAGAAAACC CAAGAAAACC CAAGAAAACC CAAGAAACC CAAGAAACC CAAGAAACC	120 180 240 300 360 360 120 180 240 360 420 480 540
45 50 55	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACATC AGATGCAGCT TATGAATCCT GGCCCAATCCT TGGAAATGTT AGGAGATGTT AGGAGATGTT AGGAGATGTAT AGGAGATGTT TGATGCTGAA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033: 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL E HWVLRGVA 036 9 (underined sequent ARCCAGAAAC ARCCAGAAAC ARCCAGAAAC ARGCAGAAAC AGAAGACAG AGAAGACAG AGAAGACAG AGAAGACAG AGTTAGAAGA CTCTGCCTCC CAGATCAGA CTCTCCCTC CAGATCAGA CTCTCCCTC CAGATCAGA CTCTCCCTC CAGATCAGA CTCTCCTCC CAGATCAGA CTCTCAGAG CTCTCCCTC CAGATCAGAG CTCTCAGCT CAGATCAGAG CTCTCCCTC CAGATCCAGG CTCTCCCTC CAGATCCAGG CAGATCAGAG CTCTCCCTC CAGATCCAGG CTCTCCTCC CAGATCCAGC CAGAT	DITYOSKLAK QRIGFFOPM PAMMKRASWV RANKGWALDN FELMFVIRIY LL CDVK SE(ences correspond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR ID NO:47 PDGS to start and stop of 41 CAGGGGTTGC TCCAGAAAAA TCTCTCTCAC GCAGCAGAGG TTCAGCTTGA ATCTGCAAAA ATCAGCAAAGTA TTTCAGTCCT GAGGGGGGGG GAGGGGGGGGGG	PKDTSGGGDE QRVLSLVRST QRVLSLVRST MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 1 TTTCAGATAA CATCAGCAGC CCATACCAGGA TGATGGTGGA TGATGGTGGA TGATGGTGGA AAAAGCCTTC CTACAGCCAAC ATGGTTCTGA ATGGTAGAACAC ATGGTTCTGA ATGGTAGAACAC ATGGTTCTGA	120 180 240 300 360 60 120 180 240 300 360 420 480 540
45 50 55	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVYYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCT AGATGACACC AGATGACACC AGATGACACC TATGAATCCT GGCCAATCC GGCCAATCC TGGAAATCTT AGGAGATGTT AGGAGATGTT TGGAAACTGGCT AGAACTGGCT AGAACTGGCT AGAACTGCAACC TGGAAACTGCAACCC TGGAAACTGCAACCC TGGAAACTGCAACCC TGGAAACCTGAAACCCCAACCC TGGAAACCTGCAACCCCTGAACCCCAACCCCCACCCCCCCC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDRNM VDLRTAQTPI ESSION #: AB033 : 68-334 : 11 ACAACTTCAC GGAAGGAGA CCTGAAACE TCTGGAGCT ACAACCCAG TCTGAAACE TCTGAAACE ACAACCCAG TCTGAAACE ACAACCCAG TCTGAAACE TCTGAAACE ACAACCCAG TCTGAAACE TCTGAAACE ACAACCCAG TCTGAAACE TCTGA	PEVFGLHPNA YVPFEVEREL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 0036 0 (underlined sequ 21 1 ARCCAGANAC ARGCTGGCAI TGGAGACAGI AGAGACAGI AGAGACAGI AGAGACAGI ACTAGCAGA CTTGCCTCC CAGATTCAGA CTTGCCTCC CAGATTCAG CTTCCCCTCC	DITYOSKLAK QRIGIPFOPMN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR ID NO:47 PDGS to start and stop of 41 CAGGGGTTGC TCCAGAAAAA TCCACAAC GCAGCAGAGG TTCAGCTTGA ATGACAAAA ATGACAAAA TTTCAGTCTT GAGGGGGGGG TTTGAGGGGGGGGGG	PKDTSGGGDE ORVLSIVAST DRASEQUENCE ODAN SEQUENCE ODAN SEQUE	120 180 240 300 360 60 120 180 240 300 360 480 540 660
45 50 55 60	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYYVYGLYL VRIDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCATT AGATGACATC TATGAATCCT GGCCCAATCCT TGGAAATGTT TGGAGGATTTT TGGAGGATTTT TGGAGGATTTT TGGAGGATTTT TGGAGGATTTT TGGAGGATTTT TGGAGGATTTT TGGAGATGTT TGGAAATGTT AGAGGATTTT TGTATGCTGAA AGAACTGGCT CTTCTCAGGA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDIRNM VDLRTAQTPI SSION #: AB033 : 68-334 : 11 ACAACTTCAC GGAAGAGGAT ACAACCCAAG TCTCGAGGTC AAAATGAGG TCTCAAAAGT TATGCCAAGA GAAGTCCCI CAAGGCTCCI CAAGGCTCCI CAAGAGT TCTCAAAAGT TCTCAAAAGT	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QRIGPROPEN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC SECS COMESPOND 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCCAGARAGG GATCCACAC TCTCTCTCAC GCAGCAGAGG TTCAGCTTTCA ACTGCAAAG ATTGCAAAG TTTCAGTCTT TTTCAGTCCT GAGGAGGGGG TTTCAGCTGCT TTTCAGTGCT TTTCAGGAGGGGGT TTTCAGGAGGGGGGGGGG	PKUTSGGGDE QKUTSGGGDE LIERNSOFTS MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51 TITCAGATAN CATCAGCAGC CATACCATGA TGATGGTGGTA ATTTACANAN ANAAGCCTTC CTACAGCCAN CAAGGAAGCC ATGGTTCTGA AACAAGAAGT AACAAGAAGT AGCTGGACT AGCTGAGAAGAAGT AGCTGGACT AGCTGAGAAGAAGT AGCTGGACT AGCTGAGAAGAAGT AGCTGGACT AGCTGACT AGCTGGACT AGCTGACT AGCTGGACT AGCTGACT AGCTGGACT AGCTGGACT AGCTGGACT AGCTGGACT AGCTGACT AGCTGGACT AGCTGGACT AGCTGACT AGCTACT AC	120 180 240 300 360 600 120 120 180 240 300 420 420 480 600 660 720
45 50 55	RCSTVDNYLQ TREAVVARIA LTELKIAIDG WVPNGRPHCP EGYYVYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACATC AGATGACATC TATGAAATCCT TGGAAATGTT AGGAGATGTTTT TGATGCTGAA AGAACTGGCT TTGTCTAGAA AGAACTGGCT TTGTCTAGAA CAGATGCCTC CTTCTCAGAA CAGATGCCTC CAGAACTGCCT CTTCTCAGAA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WMTGFFNPQG EGAGWDERNM VDLRTAQTPI SSION #: AB033 : 68-334 11 ACAACTTCAC GGAAGGAGRA CCTGAAACC ACAACCCAAG TCTCATATCC ACAACCCAGC TATACCCAAGG GAGTCTCCT CAGGCTCC CAGGGCTC CACAGACT CCCAGGCTT CCCAGGCTT CCCAGGCTT CCCAGGCTT CCCAGGCTT CCCAGGCTT CCCAGGCTT CCCAGGCTT CCCAGGCTT	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 9 (underlined sequence of the control of	DITYOSKLAK QRIGFPOPM PAMMKKASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31 CACTACCCCT AGATTTCGGA AGCTTCAGAGCT TCTCTCAGTAA TCTAGAAGCT TCTTTTGGGAAG CTGGGGAAG CTTGAGGAAGCT CTTGAGGAAG CTTGAGGAAGCT TGTTAGGGAAG CTTGAGGAAGCT TGTAGAAGCT TGTTAGGGAAG CTTGAGGAAGCT TGTAGAAGCT TGTTAGACAGCT TGTTTTGGGT CAGAAGCT TGTTAGAAGCT TGTAGAAGCT TGTAGAAGCT TGTAGAAGCT TGTAGAAGCT TGTAGAAGCT TGTAGAAGCT	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDGS to start and stop of 41 CAGGGGTTGC TCCAGRARAG GATCCACACA TCTCTCTCAC GCAGCAGAGG TTCAGCAGAG ATGACAGTTG ATCTGCAAAG ATGACAGTTG ATCTGAAGAG TTTTCAGTCT GAGGAGGGGG TTTGAAGAGT TCTGAGGAGG	PKUTSGGGDE QUESLIVAST QUESLIVAST MKDDISTPPT FYSCPIYKKP DNA SEQUENCE odons) 51	120 180 240 300 360 60 120 240 300 360 480 540 660 720 780
45 50 55 60	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVVYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACATT AGAGCCTTCT TATGAATCCT TGGAAATGTT AGGAGATTTT AGGAGATTTT AGGAGATTTT AGAGCTGCT CTCTCAGAA CAGATGCCCC CAGTTATGTT CAGATGCTCC CAGTTATGTT	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDRNIM .VDLRTAQTPI ESSION #: AB033* 11	PEVFGLHPNA YVPFEVEREL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 0036 0 (underlined sequ 1 ARCCAGANAC ARGCTGGCA ARGCTGGCA ARGCTGGCA ARGCTGCAA ARGCTGCAA CAGACAGA CAGCCCAGG TTACAAGA CTCTGCCTC CAGATCAG CTTTGCAGA TTGTTGAGAG TTGTTGAGGG TTGTTGAGGG TTGTTGAGGG TTGTTGAGGG TTGTTGAGGG TTGTTGAGGG TTGTTGAGGG TTGTTGAGGG TTGTTGAGGGA TTGTTGAGGGA TTGTTGAGGGA ACACTTCTGC ACACTTCTGC	DITYOSKLAK QRIGIPOPMI PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDGS to start and stop of 41	PKDTSGGGDE OKVLSIVAST OKVLSIVAST PKSCPIYKKP DNA SEQUENCE odors) 51 TTTCAGATAA CATCAGCAGC CATACCATGA TGATGGTGGA CTCAGGTGTT ATTTACAAAA AAAACCTTC CTACAGCAGA AACAAGAAGA AGACTGACCT CAGAGAAGA AGGAGGAC CAGGTGGACT CAGAGAAGA AACAAGAAGA AACAAGAAGA AACAAGAAGAAGA AACAAGAAGA AACAAGAAGA AACAAGAAGA AACAAGAAGA AACAAGAAGA AACACTGC CAGAATCAAG AAGACCTCC CAGACTCCC	120 180 240 300 360 60 120 180 240 300 360 480 540 660 720 780 840
45 50 55 60	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYYVYGLYL VRIDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCATT AGATGACATT AGATGACCTTTCT TATGAATCCT GGGAATGTT TGATGCTGAA AGATCTGAGA CAGATCTTCAGAA CAGATCTCAGAA CAGATCTCCAGAA CAGATCTCCAGAA CAGATCTCCAGAA CAGATCTCCAGAA CAGATCTCCAGAA CAGATCTCCAGAA CAGATCTCCAGAA CAGATCTCCAGAA CAGATCTCCAGAA CAGATCACACACACACACACACACACACACACACACACAC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDIRNM VDLRTAQTPI SSION #: AB033 11 ACAACTTCAC GGAAGGAGA CCTGGAAACAC TCTCAATATCC AAAATGACC AAGACC TATGCCAAGAC CACAGACC CCCACC CCCACC CCCCCCCC	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QRIGFPOPMI PAMMKRASWV RANKGWALDI FELMPVIRIY LL CDVK SEC CACCACACCC CACCACACCC TCACCACACCC CACCACACCC TCACCACACCC CACCACACCC CACCACACCC TCACCACACCC CACCACACCC CACCACACCC TCACCACACCC CACCACACCC TCACCACACCC CACCACACCC TCACCACACCC TCACCACACCC TCACCACACCC TCACCACACCC TCACCACACCC TCACCACCC TCACCACC TCACCACCC TCACCC TCA	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop c 41 CAGGGGTTGC TCCACAAAAA GATCCACAAC TCTCTCTCACA GCAGCABAGG TTCAGCTTTC ACTGCAAAAA ATGACAACT TTTCAGGTGT TTTCAGGTGT TTTGAGGTGG GAAGTCTTCA AGGTCTCAAAGAA CAACAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	PKUTSGGGDE QKUTSGGGDE QKUTSGGTS LIERNSQFTS MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51 TITCAGATAA CATCAGCAGC CATACCATGA TATTGTGGA CATACCATGA AAAAGCCTTC CTACAGCAAA CAAGGAAGCC ATGGTTCTGA AACAAGAAGT AGCTGGACCT CAGAATCAAG AAGACCTGC CAGAATCAAG AAGACCTGC CAGAATCAAG AAGACCTGCC TCTCCTCTGC	120 180 240 300 360 600 120 180 240 300 420 480 600 660 6720 780 840 900
45 50 55 60	RCSTVDNYLQ TREAVVARIA LTELKIAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACAT AGATGACAT AGATGACAT TATGAATCCT TGGAAATCT TGGAAATCT TGATGCTGAA AGACTGGCT CTTCTAGAA CAGATGCCT CAGTTATGTT TCAGAACAC CTTCAGAACAC TTCAGAACACAC TTCAGAACACACAC TTCAGAACACAC TTCAGAACACACACAC TTCAGAACACACACACACACACACACACACACACACACAC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLOD WHTGFPNPQG EGAGWDERNM VDLRTAQTPI SSION #: AB033 11 ACAACTTCAC GGAAGAGAGA TCTGAAACCC ACAACCCAAC TCTGAAGCCAC TATACCACAC GAAGTCTCC AAAATGAGG GAAGTCTCC CACACACCC TATACCAAC GAAGTCTCC CACACACCC TATACCACAC GAAGTCCC CACACACCC CACACACC CACACACACC CACACACC CACACACACC CACACACC CACACACC CACACACC CACACACC CACACACC CACACACC CACACACACC CACACACC CACACACACC CACACACC CACACACC CACACACC CACACACACC CACACACC CACACACACC CACACACC CACACACC CACACACC CACACACC CACACACC CACACACC CACACACACC CACACACACC CACACACACC CACACACAC CACACACACAC CACACACACACAC CACACACACACACAC CACACACACACAC CACACACACACACACAC CA	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underlined sequence of the control of	DITYOSKLAK ORMOFPOPMN PAMMKKASWV RANKGWALDN FELMPVIRIY LL CDVK SE ences correspond 31 CACTACCCCT AGATTYCGGA CATGGTTAGT AGCCAGAGCT TCTCTCAGTA TCAAGAAGCT TGTTTTTGGGC CAGAGCCT GAATATTCCT GAATATTCCT CAGAGCCT CAGAGCCT TGATTTTTGGGCAGC TGAATATTCCT CAGAGCAGCAGC TGAATTTCAGC TGAAGATCCA TGATTTCAGC TGAAGATCCA TGAATTTCAGC TGAAGATCCA TGAATTTCAGC GCCCAAAAAC TTTTATGCAG	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCCAGRAAAG TCTCTCTCAC GCAGCAGAGG TTCAGCAGAGG TTCAGCAGAGG ATCACAGAGG ATCACAGAGG ATCACAGAGG TTTGAAGAGG GAAGTCTTCA ACCTCAGAGG GAAGTCTTCA ACCTCAGAGG GAAGTCTTCA ACCTCAGAGG CAACAAGAGG CAACAAGAGG CAACAAGAGG CAACAAGAGG CAGCTGCCTT	PKUTSGGGDE QRULSLURSTS QRULSLURSTS MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51	120 180 240 300 360 60 120 240 360 480 540 600 660 720 780 840 900
45 50 55 60 65	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVVYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCT AGATGCAGCT TATGAATCCT GGCCCAATCCT TGGAAATCTT TGATGCTGAA AGAGCTGCT CTTCTCAGAAA CAGATGCTTATT TCATGCTTATTT TCATGCTTATTTT TCATGCTTATTTT TCATGCTCAGAAA TTCTCAGACAAT TTCTCAGCCC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WMTGFFNPQG EGAGWDRRNM VDLRTAQTPI SSION #: AB033: 68-334: 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underlined sequence) ARCCAGANAC ARCCTGGCAN ARGTTGGCAN AGGAGACAGT CAGACCAGG TTACAGGI CTTCCCTCC CCAGATCAGG CTTCTGGCAGC TAGAGGAGC ACACTCTGG ACACTCTG ACACTC	DITYQSKLAK QRIGPFQPMN PAMMKRASWV RANKGWALDN FELMFVIRIY LL CDVK SEC ences correspond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR ID NO:47 PDGS to start and stop of 41 CAGGGGTTGC TCCAGAAAAA GAATCACAAC TCTCTCTCAC GCAGCAGAGG TTCAGCATTG ATCACAAAG ATGACAAGTA TTTGAGGAGG TTTGAGGAGG GAAGTCTTCA GAGAGGGGG GAAGTCTTCA AGCTCAGAGG CAACAAGAGA CAGCTAGAGGAG CAACAAGAGA	PKDTSGGGDE QRVLSIVRST QRVLSIVRST MKDDISTPPT FYSCPIYKRP DNA SEQUENCE codons) TITCAGATAA CATCAGCAGC CATACCATGA ATATACAATAA ATACAGTGA ATATACAATAA ATAGAGAGCC CAGAGTGACCT CTACAGCAGA AGACCTTC CTACAGCAAA AGACCTTC CCAGATCCC CCAGATGCCC CCAGATGCC CCAGATGCCC CCAGATGCCC CCAGATGCCC CCAGATGCCC CCAGATGCCC CCAGATGCC CCAGATGCC CCAGATGCC CCAGATGCC CCAGATGCC CCAGATCC CCAGATGCC CCAGATC CCACATC CC	120 180 240 300 360 60 120 120 240 300 360 660 720 780 840 900 900 900 1020
45 50 55 60	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVYYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCATT AGATGACAGT AGATGACAGT TATGAATCCT GGGAATGTT TGATGCTGAA AGATGCTGAA AGATGCTGAA AGATGCTGAA CAGATGTT TCTCAGGAATGTT TCTCAGGAATGTT TCTCAGGAATTT TCTCAGGAATTTT TCTCAGACAC TTCTAGAACAC TTCTCAGAACAC TTCTCAGAACAC TTCTCAGAACAC TTCTCAGAACAC TTCTCAGAACAC TTCTCAGAACAC TTCTCAGACAC TTCTATAAAA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDIRNM VDLRTAQTPI SSION #: AB033 11 ACAACTTCAC GGAAGGAGA CCTGAAAACA TCTCATATCC AAAATGAGT CACCAGACT TATGCCAGGT TCCAGGAGT TCCAGGAGT CACCAGGCT TCAGAAGT TCCAGGAGT TCCAGGAGT TCCAGGAGT CACCAGGCT TCAGAAGT CCTGCAGG CCTGCTAGG AATATGAAT CCTGCTAGG AATATGAAT CAGAGGT CAGAGGT CAGAAGTAC CAGAGGT CAGAAGTAC CAGAGGT CAGAAGTAC CAGAGGGT CAGAAGTAC CAGAGGGT CAGAAGTAC CAGAGGGT CAGAAGTAC CAGAGGGT CAGAAGTAC CAGAGGGT CAGAGGGGT CAGAGGGGT CAGAGGGGT CAGAGGGGT CAGAGGGGT CAGAGGGGGT CAGAGGGGGT CAGAGGGGGT CAGAGGGGGT CAGAGGGGGGGGGG	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QRIGFPOPM PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC CACCACACCCC CACCACACCCC CACCACACCCC CACCAC	DVLDTILGIQ IFLRGELDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCCACAAAAA GATCCACAAC TCTCTCTCACA GCAGCABAG GCAGCABAG TTCAGCATAAA ATTCACATAA ATTCACATAA TTTCAGTCT GAGGAGGGG TTTCAGAGGA TTTCAGAGAG CAACAAGAAG CAGCTGCCTT AGCTCAGAGG CAACAAGAAG CAGCTGCCTT AGCACACAGTI AGACACCCTT AGACACCCTT AGACACCACAGTI AGACACCCTT AGACACCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCCTT AGACACCTT AGACACCCTT AGACACCTT AGACACCTT AGACACCTT AGACACCTT AGACACCTT AGACACCTT AGACACCT AGACACCT AGACACCT AGACCCTT AGACACCT AGACACCT AGACACCT AGACACCT AGACACCT AGACACCT AGACACCT AGACCCT AGACACCT AGACACCT AGACCCT AGACACCT AGACCCT AGACCCT AGACCCT AGACCCT AGACCCT AGACACCT AGACCCT AGACCT AGACCT AGACCCT AG	PKUTSGGGDE QKUTSGGGE LEIRNSQFTS MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51	120 180 240 300 360 600 120 120 120 360 420 420 480 600 660 600 600 960 1020 1020
45 50 55 60	RCSTVDNYLQ TREAVVARIA LTELKIAIDG WVPNGRPHCP EGYYVYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACAT AGATGACAT AGATGACAT TGATAGCT TGGAAATGTT AGGAAATGTT TGATGCTGAA AGACTGGCT CTTCTCAGAA CAGATGCCT CCAGTTATGTT TCTCAGCAC TTCTAAATAAA GGTGAAACCT TTCTAAGCAC TTCTAAATAAA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WMTGFPNPQG EGAGWDERNM VDLRTAQTPI SSION #: AB033 : 68-334 11 ACAACTTCAC GGAAGAGGAGA CCTGAAAACC ACAACCCAAC TCTCATATCC AAAACCCAAC GAAGTCTCC CACACACCC ATCACACCC CACACCC CACACCC CACACCC CACACCC CACACCC CACACCC CACACACCC CACACCC CACACC CACACCC CACACC	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underlined sequence) 1 1 21 21 21 21 22 32 43 43 43 43 43 44 45 46 46 46 46 47 46 46 46 46 46 46 46 46	DITYOSKLAK ORMOFPOPMI PAMMKKASWV RANKGWALDN FELMPVIRIY LL CDVK SE ences correspond 31 CACTACCCCT AGATTICGA AGATTICGA CATGOTTAGT AGCCAGAGCT TCTCTCAGTA TCAGAAGCT TGTTCAGAGCT CAGAAGCT CAGAGCCT GAATATTCCT CAGAGCAGC TGATTTTGGG TGAGGCAGC TGAGGGCAGC TGAGGGCAGC TGAGGGCAGC TGAGGGCAGC TGAGGGCAGC TGAGGGCAGC TGAGGCAGC TGAGCC TGACC TGAGCC TGAGCC TGAGCC TGAGCC TGAGCC TGAGCC TGAGCC TGAGCC TGAGC TGAGCC TGAGCC TGAGCC TGAGCC TGAGCC TGACC TGAGCC TGAGCC TGACC TGACC TGAGCC TGACC	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCCAGRAARG GATCCACACACACACACACACACACACACACACACACACA	PKUTSGGGDE QKULSURST QKULSURST RKDDISTPPT FYSCPIYKRP DNA SEQUENCE Odons) 51	120 180 240 300 360 360 120 180 240 300 360 480 540 660 720 840 900 1020 1080
45 50 55 60	RCSTVDNYLQ TREAVVARIA LTELKIAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACATC TATGAATCCT TGGAAATCT TGGAAATCT TGGAGCATTCT TGATGCTGAA AGACTGGCT CTTCTCAGAAA CAGATGCCT TCTCAGAAA TTCTCAGCCC TTCTCAGCAA TTCTAAGAATATT TCTCAGCCC TTCTATAAAA GGTGAACCTT GAGCACTTCT TGAGCACCT TCTATAAAA GGTGAACCCT GAGCACTTCT GAGCACCTT GAGCACCT TCTATAAAAA GGTGAACCCT GAGCACTTCT GAGCACCTT GAGCACTTCT GAGCACCTT GAGCACTTTCT GAGCACCTT GAGCACTTTCT GAGCACCTT GAGCACTTTCT GAGCACTTCT GAGCACTTTCT GAGCACTTCT GAGCACTCT GAGCACTTCT GAGCACTTC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDRRNM VDLRTAQTPI SSION #: AB033: 11 ACAACTTCAC GGAAGGAGAR CCTGAAACAT TCTCAGAGCT ACACCAAG TCTCATATCC AAAATGCCAG CATGGTCACT CATGGCAGC CATGGTCACT CATGGCAGC ATATGCAGGT CATGGCAGC ATATGCAGGT CATGGCAGC ATATGCAGGT CATGGCAGC ATTATGAAT CCAGGCT CATGGCAGC ATTATGAAT CAGGCGAT AAAGTGGAGC ATTATGAAT CAGGCGAT AAAGTGGAGC AATGAGCGAT AAAGTGGAGC AATGAGCGAT AAAGTGGAGC AATGAGCGAT AAAGTGGAGC AATGAGCCCT AAGAGTGGAGC AATGAGCCCT AAGAGCGAT AAAGTGGACC AATGAGCCCT AAGAGCCAT AAAGTGGACC AATGAGCCCT AAGAGCCATC AAGAGTGGACC AATGAGCCCT AAGAGCCATC AAGAGCACCT AAGAGCCATC AAGAGCCACC AATGAGCCACC AATGAGCCACC AATGAGCCACC AAGAGCACCACC AAGACCACCACC AAGAGCACCACC AAGAGCACCACC AAGAGCACCACC AAGAGCACCACC AAGACCACCACC AAGACCACCACCACC AAGACCACCACCACC AAGACCACCACCACC AAGACCACCACC AAGACCACCACCACC AAGACCACCACCACCACC AAGACCACCACCACCACCACCACC AAGACCACCACCACCACCACCACCACCACCACCACCACCA	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 3036 Gunderined sequ 1 ARCCAGAAAC ARGCTGGGAA AGGAGGCAA AGGAGGCAA AGGAGGCAA AGGAGGCAA AGGAGGCAA AGGAGGCAA TTGACAGAG TTAGAAGAG TTAGAGGAG TTAGAGGAG CTCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCCTCC	DITYOSKLAK QRIGIPFOPMI PAMMKKASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31 CACTACCCCT AGATITICGAS CARGGITAGT AGCCAGAGCT TCTACAACT CAGAGAGCT CAGAGAGC CAGAGAGCT	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR ID NO:47 PDGS to start and stop of 41 CAGGGGTTGC TCCAGAAAAA GGATCCAGAA TCTCTCTCAC GCAGCAGAGG TTCAGCATTG ATCTGCAAAA ATGACAAGTA TTTTGAGGAGG TTTGAGGAGG GAGTCTTCA AGCACAGAAA CAAGAAA CAAGAAA CAAGAAA CAAGCACCTTT CCCACCAGTT AGAGCACCTTT AGAGCACCTT AGAGCACCTT AGAGCACCTT AGAGCACCTT AGAGCACCTT AGAGCACCT AGAGCACCTT AGAGCACCT AGAGCACCT AGAGCACCT AGAGCACCT AGAGCACCT AGAGCACCT AGAGCACCT CCCACCCTTTA	PROTSGGGDE ORVLSIVAST ORVLSIVAST PYSCPIYKRP DNA SEQUENCE codons) 51 TITCAGATAA CATCAGCAGC CATACCAGCA ATAGAGGAGCC CAGAGCAGA AACAAGAAGT AGCTTGACCAG AACAAGAAGT CAGAGTAGACCTC CTACCCCCCC CAGAGCCAC CAGAGCCAC CAGAGCCC CAGAGCCAC CAGAGCCC CAGAGCCC CAGAGCCC CAGAGCCC CAGAGCCC CAGAGCC CCAGATCC CAGACCAGC CAGAGCC CAGAGC CAGACC CACACC CA	120 180 240 300 360 60 120 . 180 240 300 360 660 720 780 900 900 900 1020 1080 1140
45 50 55 60	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVYYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCATTA AGATGACAGT AGATGACAGT TATGAATCCT GGGAAATGTT TGATGCTGAA AGACTGGCT CAGATTATGTT TCTCAGGACAC TTCTAGGACAC TTCTAGAACAC TTCTAGAACAC TTCTAGAACAC TTCTAGAACAC TTCTAGAACAC TTCTAGAACAC TTCTATAAAAA GGTGAACCCT GAGCATTTCTT AGGAGCACTTCTTATAAAAA GGTGAACCCT GAGCACTTTCTTATAAAAA GGTGAACCCT GAGCATTTCTTAAAAAA GGTGAACCAC TTCTATAAAAA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDIRNM VDLRTAQTPI SSION #: AB033 11 ACAACTTCAC GGAAGGAGA CCTGRAAACA CTTGAGGGTT ACAACCAAG CTTAAACTACCA CAGACCT TATGCCAGGTT TCAARAGTAC CAGACGTT TCAARAGTAC CAGACGTAGAC ACTCTGAGAC ACTC	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QRIGFPOPM PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC SECS COMESPOND 31	DVLDTILGIQ IFLEGELORM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of TCCAGCATAGA GATCCACAGA TCTCTCTCAGA GATCCACAGA TTTCAGCTTTCA ACTGCAAGAG TTTCAGCTTTCA ACTGCAAGAG TTTCAGCTTTCAGCTCT CAGGGGGGGG TTTCAGCTTTCA ACTCCAGAGG CAACAAGAG CAACAAGAGAG CAACAAGAAG CAACACCTTT AGACACCCTT AAGAGCATGG CTTGCAGAGG GTTGCAGAGG TCCCCACAGTT AGACACCCTT AAGAGCATGG CTTGCAGAGG	PKUTSGGGDE QKUTSGGGDE LIERNSGFTS MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51 TITCAGATAN CATCAGCAGC CATACCATGA TGATGSTGGA CATAGCATGA AAAAGCCTTC CATACAGCAAA AAAAGCAGTCT ATTTACAAAA AAAAGCATTC CAAGCAAGAGT AGCTGGACT ACTACTCTGC CAGTGGCCAC CAGTGGCCAC CCAGTGGCCAC TCCAGCCATG TCATCTCTGC TCCAGCCCATG TCATCTAGAAA TCATTTCTGT TCATTCTAGT TCATTCATTCAGT TCATTCTAGT TCATTCTAG	600 120 1300 360 600 120 1300 240 300 420 480 600 660 600 600 960 1020 1080 1140 1260
45 50 55 60 65 70	RCSTVDNYLQ TREAVVARIA LTELKIAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence 1 GGAGCAGCCC AGATGACCAT AGATGACAT AGATGACAT TATGAATCCI GGCCCAATCC TGGAAATCTI TGATGCTGAA AGACTGGCT CTTCTAGAA CAGATGACT TCTCAGAA TTTCTCAGCAC TTCTAATAAA GGTGAACCCT TCTATAAAA GGTGAACCCT GAGCATTTCT AGGAGACCCT GAGCATTTCA AGGCACTTCAACAA AGGCACTTCAACAACAA GGTGAACCCT GAGCACTTCAACAACAA GGTGAACCCT GAGCACTTCAACAACAA GGAGCCACTTCAACAACAA GGAGCCACTTCAACAACAAC GGAGCCACTTCAACACAAC GGAGCCACTTCAACACAAC GGAGCCACTTCAACACAAC GGAGCCACTTCAACACAAC GGAGCCACTTCAACACAAC GGAGCCACTTCAACAAC GGAGCCACTTCAACACAAC GGAGCCACTTCAACAAC GGAGCCACTTCAACAAC GGAGCCACTTCAACAAC GGAGCCACTTCAACAAC GGAGCCACTTCAACAAC GGAGCCACTTCAACAAC GGAGCCACTTCAACAAC GGAGCCACTTCAACACAC GGAGCCACTTCAACACAC GGAGCCACTTCAACACAC GGAGCCACTTCAACACACAC GGAGCCACTTCAACACAC GGAGCCACTTCAACACAC GGAGCCACTTCAACACAC GGAGCCACTTCAACACAC GGAGCCACTTCAACACAC GGAGCCACTTCAACACACAC GGAGCCACTTCAACACACAC GGAGCCACTTCAACACACAC GGAGCCACTTCAACACACAC GGAGCCACTTCAACACACACAC GGAGCCACTTCAACACACACAC GGAGCCACTTCAACACACACAC GGAGCCACTTCAACACACACAC GGAGCCACTTCAACACACACACAC GGAGCCACTTCAACACACACACC GGAGCCACTTCAACACACACACACACACACACACACACAC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFPNPQG EGAGWDERNM VDLRTAQTPI SSION #: AB033 11 C ACAACTTCAC GCAGAGAGAA GCAGAACCCAAA CCTGAAAACCCAC CACACACCCC AAAACTCAC GAAGTCCCC AAAACCCAAA GAAGTCCCC CACACACCC CACACACC CACACACCC CACACACC CACACACACC CACACACC CACACAC CACACACC CACACAC	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underined sequence of the control of	DITYOSKLAK ORMOFPOPMI PAMMKKASWV RANKGWALDN FELMPVIRIY LL CDVK SE CHOCO COMPONION AGATTICGA AGATTICGA CATGAGAGCI TCTICTAGETA CAGAAGCI TCAGAAGCI CAGAAGCI CAGAAGCI TGATTITGGG CAGAAGCI TGATTITGGGGAAG TTATTITGGGI CAGAAGCCI CAGAACAGI CAGAACAGI CAGAACAGI CAGAACAGI CAGAACAGI CACATTICCI CAGAACAGI CAGAACAGI CAGAACAGI CAGAACAGI CAGACAGI CAGA	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TCCAGAAAAG GATCCACAAC TTCAGCAGAAGAG TTCAGCTTTCA AGCTAGAGAG GAAGAGAGG GAAGAGAGG GAAGAGAG GAAGAGAG CAACAAGAAG CAACAAGAAG CAACACCCTT AAGACCCTTCA AAGACCCTTCA AAGACCCTTCA AAGACCCTTCA AAGACCCTTCA AAGACCCTTTCA AAGACCCTTTCA AAGACCCTTTCA AAGACCCTTTCA AAGACCCTTTCA AAGACCCTTTCA AAGACCCCTTTCA CGTTGAGAGAG CAGCCCTTTCA CGTTGAGAGAG CAGCCCTTTCA CGTTGAGAGAG CATCCCTTCAAAGACATCG CAGCCCTTTCA CGTTGAGAGAG CATCCCTCAAAGAG CATCCCTCAAAGACC CGTTGAGAGAG CATCCCTCAAAGACC CGTTGAGAGAG CATCCCCTCAACTCC CCTCCAACTCCCCCCCCCC	PKUTSGGGDE QRVLSLVRST QRVLSLVRST MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51	120 180 240 300 360 60 120 240 300 420 480 540 560 720 780 840 960 1020 1020 1140 1200 1200 1320
45 50 55 60	RCSTVDNYLQ TREAVVARIA LTELKIAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYIAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCT AGATGACATC TATGAATCCT TGGAAATCT TGGAAATCT TGGAATGTT TGATGCTGGA AGACTGGCT TCTACAGAA CAGATGCCT TCTCAGACAC TTCTAACAA TTCTCAGCCC TTCTATAAAA GGTGAACCT TCTATAAAAA GGTGAACCCT TCTATAAAAA GGTGAACCCT AGTTCAACAA GGAGCCATTCT AGTTCAACAA GGAGCATTCT AGTTCAACAA GGAGCCACTT CTCAGAACAC GGAGCCACTT CTCAGAACCC TCTCAGAAAC CTCAGAAACC CTCAGAACC CTCAGAAACC CTCAGAACC CTCAGAAACC CTCAGAACC CTCAGACC CTCAGAACC CTCAGA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB033: 11 ACAACTTCAC GGAAGGAGRA TCTGAAACE TCTGAAACE ACACCAACC AAAACTGCCAAGA TTATGCCAAGA TTCCCAGGCT CAAAAGTTCCC CARGGTCACC CARGAGCGTCC CARGAGCCCC CARCATGTTCI CACCCCCAGAI CACCCCCCCAGAI CACCCCCCCAGAI CACCCCCCCCCC	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL E HWVLRGVA 036 9 (underlined sequence of the control of	DITYOSKLAK QRIGPFOPM PAMMKRASWV RANKGWALDN FELMFVIRIY LL CDVK SEC ences correspond 31	DVLDTILGIQ IFLEGELDRI FSTLGFUFTE MVLCNEVTKW AENNTLRDFR ID NO:47 PDGS to start and stop of 41	PKNTSGGGDE QKVLSLVRST QKVLSLVRST MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51 1 2 TITCAGATAA CATCAGCAGC CATACCAGGA TGATGGTGGA TGATGGTGGA TGATGGTGGA ACAAGAAGT AGCTGCCAA AAGAACTTC CTACAGCCATG AGCTGGACCT CCAGGATCAG AAGACCTC CAGAATCAG AAGACCTC CAGAATCAG AAGAAGT CAGAATCAG CAGAATCAG CAGAATCAG TCAGCCATG CCAGATCAG TCAGCCATG TCAGCCATG TCAGCCATG TCAGCCATG TCAGCCATG TCAGCCATG TCAGCCATG TCAGCCATG TCAGCCATG TCAGCCAATT TCAGCCAATG TCAGCAATG TCA	120 180 240 300 360 120 120 480 540 660 720 840 900 900 1020 1020 1140 1200 1260 1320 1380
45 50 55 60 65 70	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCATT AGATGACCATT AGATGACCTTCT TATGAATCCT GGGAATGTT TGATGCTGAA CAGTTATGTT TCTCAGGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTATAAAA GGTGAACCCT GAGCACTTTCTT GGAGCACTTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTATAAAA GGTGAACCCT GAGCACTTTCT AGTTCACACAC GAGCCACTT CTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCCAGCCC TTCCCAGCCC TTCCCAGCC TTCCCAGCCC TTCCCAGCCC TTCCCAGCCC TTCCCAGCCC TTCCCAGCCC TTCCCAGCCC TTCCCAGCCC TTCCCAGCC TTCCCAGCCC TTCCCAGCC TTCCAGCC TTCCCAGCC TTC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDIRNM VDLRTAQTPI SSION #: AB032 : 68-334 : 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QRIGFPOPMI PAMMKRASWV RANKGWALDIN FELMPVIRIY LL CDVK SEC SICES CORESPOND 31	DVLDTILGIQ IFLEGELDRI FSTLGEWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of TCCACAAAA GATCCACAAA TCTCTCTCACA GCAGCABAGG TTCAGCAGAA ATTCACAAAA ATTCACAAAA TTTCAGGAAGA TTTCAGAGAA CAGCTCCTT AAGACACCTT AAGACACCTT AAGACACCT TAGAGAAA GATCCTCAAA GCCCTTCAAA GCCCTTCAAA CCCCTGCCT AGGAGAGAA GACCCTTCAAA CCCCTGCCT AGTGAGAGA GACCCTTCAAA	PKUTSGGGDE QKUTSGGGDE QKUTSGGGTE LIERNSOFTS MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51 TITCAGATAN CATCAGCAGC CATACCATGA TATTACARAN ANAAGCCTTC CTACAGCAGC ATGTTCTGA AACAGGAAGC AACAGGAAGCC TCTCCTCTGC CAGTGGCCAT CAGTGCCATG TCTCTTGAGA TCATTTCTGT TCAGCCATG TCATTCTGT TCAGCCATG TCATTTCTGT TCAGCCATG TCATTTCTGT TCAGCCAAT TCATTTCTGT TCAGATGCAC TCAGATGCCC TCAGTGGAAT TCATTTCTGT TCCAGATGCCC CAGAATGCCC TCAGATGCCC TCAGATGCCC TCAGATGCCC TCAGATGCCC TCAGATGCCC TCAGATGCCC TCAGATGCCC TCAGATGCCC TCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCCAGATGCCC TCCAGATGCCC CAGAATGCCC TCCAGATGCCC CAGAATGCAC TCCAGATGGAG	600 120 180 360 360 360 420 480 660 660 600 120 1080 1140 1200 1320 1320 1340 1440
45 50 55 60 65 70	RCSTVDNYLQ TREAVVARIA LTELKIAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence 1 GGAGCAGCCC AGATGACATC AGATGACATC TATGAATCCI TGGAAATCT TGATGCTGAA AGACTGCCT CTCTCAGAA CAGATGACT TTCTCAGCC CTTCTAGAA TTCTCAGCC TTCTAATAAT TCTCAGCC TTCTAATAAT GGTGAACCCT GAGCACTT CTAGCACACT CTCAGAAACC TCCAGAAACC TCCAGAAACC TCCAGAAACC TCCAGAAACC TCCAGAAACC TCCAGCC CCAGCCC CAGTCCTGTC	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLOD WHTGFPNPQG EGAGWDERNM VDLRTAQTPI SSION #: AB033 : 68-334 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 36 (underined sequ RTGACAGAAA ATGCAGAAAA ATGCAGAAAA AGGAGACAG AGGAGCCAA CAGCCCAGG TTACAGCAG CTACAGCAGA TTGGTCAGCA TTGGTCAGC CAGATTCAG CTACGCTCC CAGATTCAG AGAAGACT TTGTGGAAA AGAAGTTCT TCGTCAGC CAGATTCAG AGAAGTTCT TCGTCAGC CAGATTCAG AGAAGTTCT TCGTCAGAAT TCGCTCC CAGATTCAG AGAAGTTCT TCGCTCCAGT CCGTGGGAA AGAAGTTCT TCGCTCTCAG AGAAGTTCT TCGCTCTCAG AGAAGTTCCTC AGGAAGGCAC CTACACTTCCTC CCTAGAATTCCTCC CCTAGAATTCCTCC CCTAGAATTCCCCC CCTACAATTCCCCC CCTACAATTCCCCCC CCTACAATTCCCCCC CCTACAATTCCCCCC CCTACAATTCCCCCC CCTACAATTCCCCCC CCTACACAATTCCCCCC CCTACACAATTCCCCCC CCTACACAATTCCCCCCCC	DITYOSKLAK QRIGPEOPEN QRIGPEOPEN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SE ences correspond 31	DVLDTILGIQ IFLRQEIDRM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of 41 CAGGGGTTGC TTCAGAAAAG GATCCACAAA TTTCACTCTA ATCTGCAAAAG TTTCAGTCTT AGCACACATTCAAAGAAG CAACAAGAAG CAACAAGAAG CAACAAGAAG CAACAAGAAG CAACACCTT AAGACCCTT AAGACCCTT AAGACCCTT AAGACCCTT CCCACAGTT CCCCACAGTT CCCCACAGT CCCCCCCCCC	PKNTSGGGDE QRVLSLVRST QRVLSLVRST MKDDISTPPT FYSCPIYKRP DNA SEQUENCE cdons) 51	120 180 240 300 360 60 120 240 300 420 420 480 600 600 600 960 1020 1080 1140 1200 1260 1320 1380 140 1500
45 50 55 60 65 70	RCSTVDNYLQ TREAVVARIA LTELKIALDG WVPNGRPHCP EGYVYGLYL VRTDLNYIAA Nuclet Acid Acce Coding sequence 1 GGAGCAGCCT AGATGACATC AGATGACATC TATGAATCCT TGGAAATCT TGGAAATGT TGGAAATGT TCTCAGGAC CTTCTCAGGAC CTTCTAGAATATT TCTCAGCCC TTCTAAATAAT TTCTCAGCCC TTCTAATAAAT TTCTCAGCCC TTCTAATAAT GGTGAACCCT GGACATTCT AGTTCAACAA GGTGCACCC TTCTAACAAC GGAGCATTCT AGTTCAACAA CGAGCCACTT CTCAGAACCC TTCCAGCCC CTCCAGCACC CTCCAGCC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGCACC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCACC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCACC CTCCAGC CTCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCAGC CTCCA	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDRRM VDLRTAQTPI SSION #: AB033 : 58-334 : 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKFKVL E HWVLRGVA 036 0 (underined sequity ARCCAGAAAC ARCCAGAAAC ARCCAGAAAC ARCCAGAAAC ARCCAGAAAC ARGCAGAATC AGAAGACAGI TAGAAGACAGI TAGACAGI TAGACAGI TAGACGAG TAGAGGCCA CACATTCAG CTTGGCAAT CCTTGGGAAT ACCAGTTCAG TAGAGGAGCC ACACTTCTGG CAGTTCAG TAGAGGAGCC ACACTTCTGG CAGTTCAG CCTTGGGAAT CCTTGGGAAT CCTTGGAAT CCTTGGAAT CCGGTCAGG CTAAGTTCCTC AGGAAGGCC CTAAGTTCCTC AGGAAGGCC CTAAGTTCCTC CCTTCCAAAT CTTCCAAATC CTTCCACAATC CTTCACAATC CTTCACAATC CTTCA	DITYOSKLAK QRIGFPOPM PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC ences correspond 31	DVLDTILGIQ IFLEGELDRI FERGELDRI FSTLGFUFTE MVLCNEVTKW AENNTLRDFR ID NO:47 PDGS to start and stop of 41	PKNTSGGGDE ORVLSIVAST ORVLSIVAST PKSCPIYKRP DNA SEQUENCE odons) 51 TITCAGATAA CATCAGCAGC CATACCAGGA TGATGGTGGA TGATGGTGGA TGATGGTGGA ACAAGAAGT AGCTGCCAA AGCAGGAAGCC CAGAATCAGC CAGGATCCT CAGCCATG CAGGATCCT CAGCCATG TCTCTCTGC CAGGATCCT CAGCCATG TCTTCTGAGCA TCAGCCATG TCTTCTGAGCA TCAGCATG TCAGCATAGT TCAGCAATT AGGACATTTC CAGAATGCAT AGGACATTT AGGACATT AGGACATTT AGGACATTT AGGACATTT AGGACATT AGGACAT AGGACATT AGGACAT AGGACATT AGGACATT AGGACAT AGGA	120 180 240 300 360 120 120 180 240 300 360 660 720 840 900 900 900 1020 1020 1140 1200 1250 1320 1320 1440 1560
45 50 55 60 65 70	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCATT AGATGACCATT AGATGACCATT TATGAATCCT GGGAATGTT TGATGCTGAA CAGTTATGTT TCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTATAAAA GGTGAATCTT GGTGAATCTT TCTCAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC GAGCCACTT CTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCCAGCC CAGTCCTGTT TGAGGAACC TTCCAGCC CAGTCCTGTT TAAGGACCACTT TAAGGACCACT TTAAGGACCACT TTAACT TT	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB032 : 68-334 : 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QRIGPROPEN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC SECS CORESPOND 31	DVLDTILGIQ IFLEGELDRIM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of TCCACAAAA GATCCACAAA GATCCACAAA TTTCTACTACA GCAGCAGAGAG TTTCAGAGAGA ATTTCAGAGAGA TTTCAGAGAGA TTTCAGAGAGAG TTTGAGAGAG TTTGAGAGAG TTTGAGGAGAG CAGCTTCT AAGAGAC TTTGAGGAGAG CAGCTGCTT AAGAGCATG CCACCAGTT AAGAGCATG CCACCGTT AAGAGAGAG GATCTCAAAG GTGGGAGAGG GATCTCAAAG GTGGGAGAG GATCTTCAAGAG GTGGAGAG GATCTTCAAGAG GTGGGAGAG GATCTTCAAGAG GTGGGAGAG GATCTTTGAAG GTGGGAGAG GTGGGAAATA	PKUTSGGGDE QKUTSGGGDE QKUTSGGGDE LIERNSOFTS MKDDISTPPT FYSCPIYKRP DNA SEQUENCE odons) 51 TITCAGATAN CATCAGCAGC CATACCATGA TATTACAGATA AAAAGAAAC CAAGGAGC CTAAGCATC CTACAGCATC AACAAGAAC AACAAGAAC AACAGAAC CAGGTGTTGAA AACAGGAAC CAGGTGGACCT CAGATGCCC TCTCCTCTGC CAGTGGCCAT CAGTGGCCAT TCATCTCTGC CAGTGGCCAT TCATCTCTGC CAGTGGCCAT CAGTGACCT TCAGCCATG CCAGTGCCCT TCAGCCATG CCAGTGCCCT CAGATGCCC CAGATGCCC CAGATGCCC TCAGATGCCC CAGATGCCC CAGATGCC CAGATGC	120 180 240 300 360 600 120 180 240 300 420 480 600 660 600 600 1020 1020 1140 1250 1320 1320 1320 1320 1350 1500 1500 1500 1500
45 50 55 60 65 70	RCSTVDNYLQ TREAVVARLA LTELKLAIDG WVPNGRPHCP EGYVYGLYL VRTDLNYLAA Nucleic Acid Acce Coding sequence 1 GGAGCAGCCCATT AGATGACCATT AGATGACCATT TATGAATCCT GGGAATGTT TGATGCTGAA CAGTTATGTT TCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTATAAAA GGTGAATCTT GGTGAATCTT TCTCAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC TTCTAGACAC GAGCCACTT CTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCCAGCC CAGTCCTGTT TGAGGAACC TTCCAGCC CAGTCCTGTT TAAGGACCACTT TAAGGACCACT TTAAGGACCACT TTAACT TT	YIQSLPAYDS DDMLEKLPPD DDMLEKLPPD TITMSENLQD WHTGFFNPQG EGAGWDKRNM VDLRTAQTPI SSION #: AB032 : 68-334 : 11	PEVFGLHPNA YVPFEVKERL ALDCMPDARI FLTAMRQEIT KLIESKEKVL E HWVLRGVA 036 0 (underlined sequ 21	DITYOSKLAK QRIGPROPEN PAMMKRASWV RANKGWALDN FELMPVIRIY LL CDVK SEC SECS CORESPOND 31	DVLDTILGIQ IFLEGELDRIM FSTLGFWFTE MVLCNEVTKW AENNTLRDFR 2 ID NO:47 PDG5 to start and stop of TCCACAAAA GATCCACAAA GATCCACAAA TTTCTACTACA GCAGCAGAGAG TTTCAGAGAGA ATTTCAGAGAGA TTTCAGAGAGA TTTCAGAGAGAG TTTGAGAGAG TTTGAGAGAG TTTGAGGAGAG CAGCTTCT AAGAGAC TTTGAGGAGAG CAGCTGCTT AAGAGCATG CCACCAGTT AAGAGCATG CCACCGTT AAGAGAGAG GATCTCAAAG GTGGGAGAGG GATCTCAAAG GTGGGAGAG GATCTTCAAGAG GTGGAGAG GATCTTCAAGAG GTGGGAGAG GATCTTCAAGAG GTGGGAGAG GATCTTTGAAG GTGGGAGAG GTGGGAAATA	PKNTSGGGDE ORVLSIVAST ORVLSIVAST PKSCPIYKRP DNA SEQUENCE odons) 51 TITCAGATAA CATCAGCAGC CATACCAGGA TGATGGTGGA TGATGGTGGA TGATGGTGGA ACAAGAAGT AGCTGCCAA AGCAGGAAGCC CAGAATCAGC CAGGATCCT CAGCCATG CAGGATCCT CAGCCATG TCTCTCTGC CAGGATCCT CAGCCATG TCTTCTGAGCA TCAGCCATG TCTTCTGAGCA TCAGCATG TCAGCATAGT TCAGCAATT AGGACATTTC CAGAATGCAT AGGACATTT AGGACATT AGGACATTT AGGACATTT AGGACATTT AGGACATT AGGACAT AGGACATT AGGACAT AGGACATT AGGACATT AGGACAT AGGA	120 180 240 300 360 600 120 180 240 300 420 480 600 660 600 600 1020 1020 1140 1250 1320 1320 1320 1320 1350 1500 1500 1500 1500

ARTARAGTAA TTCTARTGGA ARCATTCAGA TGATTTGACC TARAGATTGG CCTTTAGGTT 4140 TTATGAGCT AGATAGATGC CGCARTATAT TGGTTGTTCC TCTARACTTT GCARGGGATC 4200 CTARARAGAGG CGGTGGAAGT GAAAATTCTTG GGTCCCAGA AAAATTCTCC CACAGCCAGT 4260 TCTCCAATCA CGCTATCACC CCTTGAACA TCTTCCCTGT GTCCCTGGG GCCCTGATG 4260 ACCCCACGTC GACCTGTCAC AGACCTGGGT GTAGCCAGA CACACCCCATTG 4320 ACCCCACGTC GACCTGTCAC AGACCTGGGT GTAGCCAGA CCTCCCTATA ACGCCAGAT 4380 CCAATACTAC TGTGACCCTC TCTGATCGC GCATTACAC AAACCTCCCT CTTTGGACAT 4380 CCAATACTAC TGTGACCCTC TCTGATCGC ACGAAATCAC TGCCTATCAC ATATATCCTC 4500 TTAAGCACAG AGACCCTAT TGAAATTAGA GTTCTACAGA TGCCAAAAGC TGCTATCAC AGACCTTCC 4660 ATCAGCACGA AGGCCCATT TGAAATTAGA GTTCTACAGA TGCCAAAAGC TGCTACACA AGGCCACTTC 4660 TCTCTTGCTT CACAAAGGTT TTAGCCCAAA GCTCCTTGA TGCACATCTC GACCTTCC 4680 ATCAGCCAGA TGGCAAGCTT ACTGCCTTGA TGCACATCTG GACCCATTCC 4680 ATCAGCCACA TGCCAAAGA GTTACTAGCC TGAGTGACT CTTTGTCCTT TCCCTCAGC 4740 TGTCTTTGCT CACAAAGGTT TTAGCCCAAA GCTTTTCAC TCCCCCCACA AGCTCTTTCC 4680 ATCAGCGCAC CACCTCAAAA GTTACTAGCC TGAGAGACC CTTCTGTCCTT TCCCTCACC 4740 CCATCCCCCAG CACCGCAAAA GTTACTAGCC TGAGAGACC CTTCCTACCT CC AGACCCACTT CC 4860 CCATCCCCCAG CACCGCAAAA GTTACTAGCC TGAGAGACC CTTCCTACCAC AGACCCACTT CC 4860 CCATCCCCCAG CACCGGAAA GTGACCACCAC AAAAAGGGA GAGGAACC CTCCCTCTC 5040 CCATCCCCCAG CACCGGAAA GTGACCCACC AGAAAGGGAAC CACCTACAAA GTTACTACCCC AGACCACCT CACCATCATATAA TCCCTCGGCT 5100 GAGAATGAAA ATTAGGCCA CTTTACCCCC AAACCCACCA AAATGTTGAT AACTCTTCCT 5200 GAGAATGAAA CACGTACAAA ACTCTACTCA AGCCACCACA AAACTTAGGG ACCCACCTTC 5280 TTGGATATCA CTGGACTTGC CTCTGTACA CTGGTCTCT TGATCTTCCT TCCTCTCCTC							CCTCACGACT	
CAGRIANTES GENERACIONE CTECCHARTE TECTRICADA ACCTUALADA ACCTUALADA SEGUENATION SEGUENATION AND ACCTUAL SEGUENATION ACCTUAL								
CARGACCAN GITTETCHAG ATTCAGGGGG CTGCAGGGGC CTGGAGGACG CACGAGANA 1980 GRICACTACT ATCAGGAGGG CTCCTGGGAA GTGCAGCAGT TITAAAGAGC CACGAGAANA 1980 CAGGCAGCTT TCCCAGGCT TAGGAGAACC CACGAGAANA 2010 CAGGCAGCTT CCCTAGGAGGG CTCCTGGGAA GTGCAGCAGT TITAAAGAGC CACGAGAANA 2010 TCCCAGTTCT CCTAAAGAGT GGAGGATTC TAAAAAGCG CTCCTCCCC AACATTCTTC 2210 CACGCAGTCTC CCTAAAGAGT GGAGGATTC TAAAAAGCG CTCCTCCCCA AACATTCTTC 2210 CACTGTATAG CAGGAGGAGGA CTGCTGCTTCA AAGATTCTTC 2210 CACTGTATAG CAGGAGGAGGA TTGCAGCACCA CACGAGAACTC TCTCCTCCCA AACATTCTTC 2210 CACTGTATAG CAGGAGGAGA TCCATCAGCTCA CACAGGAGAC CAGGAGAATC 2210 CACTGTATAGA CAGGAGGAGACCA CACTGCATTCA TAAAAGCAC CAGGAGAATC 2210 CACTGTATAGA CAGGAGGAGA TCCATCAGTCA CACAGGAACCACCAAAAAACCACCACAAAAACCACCACAAAAACCACCACA								
GATGERACE A MEMBRICANC CONTRIBUTION OF THEORETICS CONTRIBUTED CONTRIBUTION OF THE CONT	5							
THEOTETIAN TOMORROWS CITCUTEGRAN OF GROCAGEOT TITANAGEA ACCTOCITED 2160 CAGGOGET TOCCAGGOT THORMAN CURRENT CANAMATE COCATATION 2160 COLORGETCA CHARAGET GROCAMITE THANAGEA CICCOTOCCA ANCASTICITE 2220 COTTOCATION CONTINUES AND CONTINUES CANAMATER CONTINUES 2230 COTTOCATION CONTINUES AND CONTINUES CONTINUES CANAMATER 2230 CONTINUES CHARACTURE CONTINUES CONTINUES CONTINUES CANAMATER 2230 CARTESTIC CRAGARAGA ANGARCTIC TOCATION CONTINUES CONTINUES CANAMATER CONTINUES	5							
CAGGCAGCTT TCCCAGGCCT TOMOGRAMCE TRANSPACE COCTOTTEC 2160								
TOCCHORDING CONTRAINED GENERATIVE TANABAGEM CIRCUTCOL ANALATOTIC 2220 ACCOPTANAS CHARGOSCO GRAGARACEA COTRECTOR ATRARGEC CARGARATE 2380 ACCOPTANAS CHARGOSCO GRAGARACEA COTRECTOR ATRARGECCO CAGGARATE 2380 ACCOPTANAS CHARGOSCO GRAGARACEA COTRECTOR ATRARGECCO TOTATIONA CONTROL 2200 CARTRIGHTO CTAGGARAGA ATRARGETTO TOCARCAMA ACCARGANAT TERECOLAGE 2460 TOCARANAC COLTATARAS GARTICORGE CUCCOSCOR OPTICATOR 2200 ACROSTOR AGRICANACA CACATOTICO CUCCOSCOR ANTOCARCA ACCORDANA TERECOLAGE 2460 COTTOTICOS GITCOLORGE CACATORICA NACCOSCOR ANTOCARCA ACCORDANA ACCARGANAT TOROCCARGO CONTROL ANALOS AND ACCORDAN TO TRACACATOR TO TRAC								
CCARACTECA GARRAGETCEA ANTECNECE ACAGARTECA STANGESCE CAGGARTECT 2280 ACCTEPANAG CARGEROGG GENGALGE CHOCKTECA ASTAGETCET TECAGGARTECT STATEMENT TECACACATA 2400 TECCAMANAC COCKTANAGA GCATTCAGC CECTOCTACC ANACCTGAGA ASTTCACCACT 2520 TECCAMANAC COCKTANAGA GCATTCAGC CECTOCTACC ANACCTGAGA ASTTCACCACT 2520 GARGAGGART GOTACATANA ANAGCARTEC ANACCTGAGA ASTTCACCACT 2520 GARGAGTARTA ANACCACACTRA ANAGCAGGART COCKCAGGA AGATTACAGA ASTTCACCACT 2520 GARGACTARA ANACCACACTRA ANAGCAGGART COCKCAGGA AGATTACAGA 2760 GARCACTANA ANACCACACTRA ANAGCAGGA CACTCACCCACA AGATTACAGA GARGAGARTA 2760 GARCACTANA ANACCAGARCA CACCAGGARTACA CACCACATA CACCACACTA AGATCACACTA AGATCACTACACTA								
ACCTOTRAMS CARRIGARGO OTRIGRANCE CONCENTRA APTRIFECTION TOCARCARCA 2340	10							
CARTEGRIC CINCADANA COCATANAGA CANTOCAGO COCACATACO (CANTOCAGO CANTOCAGO CANTOCAGO COCACAGO CANACATOGO COCACAGO CANACATOGO COCACAGO CANACATOGO COCACAGO CANACATOGO CA								
TTCCANAMA COCATAAAGA CATATCAGE COCTACTAC ANACCTOGGA AGTICACCAT 2520 GAGTGOTGAT GOTAATAATA ACCAGCATIC ANACCTATCA ANACAGGATA ATTATAAAA 2640 GOTTITTIGA GITCAGATAA ACCAGCATIC ANACCTATCA ANTAGGATA ATTATAAAA 2640 GOTTITTIGA GITCAGATAA ACCAGCATIC CATGGGGCCA ANTICATACA 2520 GAGACATAAA ATCAGACCA CAGGAGCCC CACCGGGGCCA ANTICATACAG GAGACAGAAAC 2700 GACACTAGA ATCAGAGCC CAGGAGACA CAGGACCAGAA 2720 GACACTAGA TACAGAGCC CAGGAGAACAGAGA CAGGACCAGA 2720 AATANTITTAC GITCAGATA AGCAACAGAG CAGGCCCAAA TATAAAACA TACAGAGAAC CAGGACACAGAAC 2700 TOTAAAACAG GAAAACAA GAGACAGAGA CAGGACCAAA 2820 ATTATGAGGGA GCTACAGACC CAGGACAACAGAG ACCACAGAGAA 2820 ATTATGAGGGA GCTACAGACC CAGGACAACAGAG ACCACACAGAA 2820 ATTATGAGGGA GCTACAGACA CAGGACACAGA ACCACAGAAA CAGACAGAGA CAGACAGA		GGTTCATTCA	AGTTCTGTGA	ATGCTGCTGC	TAGGCGATCT	GTTTTTGAGA	GCAATTCTGA	2400
150 GEGENARIOR CALCITURES GGGENTINA TOTALGAMA ALGARITES ASSESSMENT ASSESSMENT AND CONTINUES OF THE ASSESSMENT AND CONTINUES OF								
GAGTGATGAT GOTALATARIA ACCAGCATIC ANACCAGGAT ANTENGRATA ATTOTIGAMA 2640 GOTTITUTORS GTUCAGCTS ANAGGACC TOCCGCOCA ANTENACA GOTAGARACA 2700 AGRAMACTIC ACCAGCTTG CTICAGTGCC CTICGGGCCA ATTICATICG CTICAGGGGG GACATAMA ATCAGACC CTICAGGGG CTICAGGGG ACTICACACA 222 GGACATAMA ATCAGACC CAGGAGGAGG COCTOGRAT GOTCAGGGA ACTICACACA 2276 GGACATGAT TOCCAGACC CAGGAGGAGGG CAGGCCCAA ATTICATACC CTICAGGGGGA ACTICACACA 2276 ARANCTOGT TOCCAGACC CAGGAGAGGG GAGCCCCAGA TUTUATAGCA GOCACATTIC 3000 TOTALAGAGG CTAGACACC CAGGACACGG GAGCCCAGAT ATCAGAGAT ATCAGACACAC AGACACGAGA ACTACAGAGA CAGACACACACACACACACACACACACACACA	15							
COTTITIORS GITCOLOTER ANABASCICC TOCCIOCAS ANGINARAS GIGAGARAS 2706 AGRICATRAN ATCACANGE CITTOLOGICC TOCCIOGGO ANTICATOCA 2820 ANTICTIC GIGAGARCA CITTOCAGGO GITCOTOGRA GITCAGGAA ACCTACCAA 2820 ANACCIOCIT TECANAGACA CITTOCAGGO GITCOTOGRA CAGTICAGGAA ACCTACCA 2820 ACACCIOCIT TECANAGACA CITCAGACAGA CAGTICAGGAA CAGTICAGAA 2820 ATTACAGGAA GITCAGACAA CAGTICAGAA CAGTICAGAA ACCTACACAA 2820 ATTACAGGGA GITCAGACATA CAGACAGAGA CAGTICAGATA ATGACTATICAGA CACACATATA AGACCATATA CAGTICAGATA CAGTICAG	13							
AGARACTIC ACCAGETRO CITAGRIGGO CITAGRIGGO 2760 ANTATOTICS GITTECRARIA AGARACCA CITACCASAGA 2880 ANTATOTICS GITTECRARIA AGARACCA CITACCAGAGA 2880 CARACCAGTI TEGRARIAC TEGCANAGAC CAGGECCANA TITANAGCA TEGCANGARA 2880 TOTANAGCCAGTI TEGRARIACTA TEGCANAGCA GAGCCCANA TITANAGCA TEGCANGAGA 2880 ATATORIGGO GITTECRARIA TEGCANAGCA GARCCAGATA TETRANAGCA CACCATATA 3000 TOTANAGA GITTANATA TEGCANAGCA GARCCAGATA TETRANACCA CACCATATA 3000 TOTANAGCAGA GITTANATA TEGCANAGCA GARCCAGATA TETRANACCAGA CACCATATA 3000 TOTANACCAGA AGARCANCA CACCATAGA AGARCATACA CACCATANA AGARTATACA CITACCAGA AGARCAGA CACCATAGA AGARTACATA CITACCAGATA TACCAGATA AGARTACATA CITACAGACA TACCAGA AGARCAGA AGARCAGA CACCAGATAGA CACCATAGA AGARCAGA AGARCAGA AGARCAGA CACCAGATAGA CACCATAGA AGARCAGA AGARCAGA AGARCAGA CACCAGATAGA CACCAGATA AGARCAGATA AGARCAGATA AGARCAGA AGARCAGA AGARCAGA CACCAGA AGARCAGA CACCAGA AGARCAGA CACCAGATA AGARCAGA TEGCAGATA TATATATAGAT TITATATATATATATATATATATATATATATATATAT								
APARCETICS TECHAGANCE CTCCCAGGG GENERANCE ACCECAGA ACCTACA 2820 ANACTACT TECHAGACAC CAGGANAGCA GACCCCAN TETRANGCA TECCAGAGA 260 ACACCTACT TECHAGACAC CAGGANAGCA GACCCCANACACA GACCCCATTC CACACTACACACACACACACACACACACAC								
ANTACTICE GITECHARIA AGCANAGAG CAGGCCANA ITTRANAGCA TGGCANGA 2880 GCARCTGGT TGGATRACTA TGGCANAGCA GARGCCGTGTCAC CAGGCTACATT 3000 TOTRANAGG GITANACTA TGGCANAGCA GARGCCGANG ATTRANAGG COCACATTC 3000 ATATRAGGGG GITGGCTCTC CAANGCANA CAGGCCGAN GITTGACAGC CACACATTC 3000 TGAANACGA GARGAGAGAG GACCANCT CACACATAGA AGATTCACAG CACACATAGA CAGCCCANA GARGCCGAN GACACATACA CACACATAA AGATTCACAC CACACATAGA CACACATACA CACACACA								
GCAMCCIGCT TECANAGACC CAGGAMAGCA MAGCAGAMA CATTCAGAG COCACATITC AGRICAGES TIGANACTA AGACCANTC TEGARCCAGA AGAGCATA AGACCATATA AGACCAGATA AGACCANTC TEGARCCAGA AGAGCATA AGACCATATA AGACCAGATA AGACCATACA AGACCAGATA AGACCATACA AGACCAGATA AGACCATACA AGACCAGATACAA CCATANACAG GCATAGACAG TCACCAGCA AAAGACAGA AGACCAGATACAA AGACCAGATACAA AGACCAGATACAA AGACCAGATACAA TCACCAGCA AAAGACCAGACAAA AGACCAGATACAA CCACATACAAA CCACATACAA CCACATACAAA CCACATACAA CCACATACAAA CCACATACAA CCACATACAA CCACATACAAA CCACATACAA AGACCATACAA AGACCATACAACAA AAAAAACATA TAAACAAAACA	20							
25 TOTRABAGIG CTGARAACTA AGACCANTC TGGAGCCCAP CUTGAGACTA AGGAGCTAA 3060 CCATARACAG GAGARGAG CACAGARGAA CACACTARA AGARTACTAC CUTCAGACC ATTRAGAGTAG CACACTAGA AGARTACTAC CACACTAGA AGARTACTAC CACACTAGA AGARTACTAC CACACTAGA AGARTACTAC CACACTAGA AGARTACTAC CACACTAGA AGARTACTAC CACACTAGA CACACTAGA AGARTACTAC CACACTAGA CAC								
ATTURAGEG SCTEGETCE CAARGANAA CCAACTANA AMGATUTCA CTUCCAGOT AGARACAG GEAGARAGAA GEACACTANA CATAGACTAGA AGATACTOS ANGITECTES CARGAGARAAA GEACACTAGA COTRECANAA CAGTUTCANA 3180 CTUCCAGOT ANGITECATA CACCAGTAGA GEACACTAGA CATUTCANC 3300 CAGARAGAAA GAACACTAGATATAT TATTTAGAT TITTTTTTT TITTTTTTTT TUTTTTTTTT TACCAGAT 3420 CTUCCAGOTT CACCAGATATA GEACACTAGA GEACACTAGA GEACACTAGA CACCACTAGA CACCACTAGA GEACACTAGA CACCACTAGA GEACACTAGA CACCACTAGA GACCACTAGA GACCACTAGA GACCACTAGA CACCACTAGA GACCACTAGA CACCACTAGA AAAAAAATA AAACATAAATA ATTUGAAATA AAAAAAGAATA AAACAATAAAA AAAAAAAAAA								
CARRANGE GRANACAG CACAGARGA CCACATAGA CCTACAAAT CAFTICATE BIAGCTICA AMARTACTOC AMAGTICTAGA CARGAAAAA CACAAGCAT CACAGAAGAAA CACAAGCAT GRACACAAA CACAAGCAT GRACACAAAGCAT GRACACAAACAT GRACACAAACAT GRACACAAACAT GRACACAAACAT GRACACAAACAT GRACACAAACAT GRACACAAACAT GRACACAAACAT THITTITITT THITTITTITT GRACACAGAT GRACACACAT CTCCCGGGTT ACCCGGATT TATTITTAGT THITTITITT TTTTTTTTTT GRACACAGAT CACCACACAT CACCACACAT CACCACACAT CACCACACAT CACCACACAT CACCACACAT CACCACACAT CACCACACAT TOCCCGGTTAA THITTITTAGT THITTITTITT THITTITTITT GRACACAGAT CACCACACAC CACCACACAC TAGCACACAC CACCACACAC TAGCACACAC TAGCACACAC AGCATACAC TAGCACACAC AAACACACAC AAACACACAC TACCACACAC TAGCACACAC TAGCACACAC AAACACACAC TAGCACACAC TAGCACACACAC TAGCACACAC TAGCACACACAC TAGCACACACAC TAGCACACACAC TAGCACACACAC TAGCACACACACACACAC TAGCACACACACACACACACACACACACACACACACACAC								
TGAGGTERM ANGATACTOCA ANGTECCE CATGGAANAA GANACCARAC GATCTICANC 3240 CAGGAAGANA GCCAAAGCAT GGAGCCATT GCCAGTATGA TETCAACTGC 3300 CAGGAAGANA GCCAAAGCAT GGAGCCATT GCCAGTATTA TETCAACTGC 3300 CTGCTCTGT TACCCAGATT GGAGCCACT GCCAGAATC ACGCAATANA GAGCTCTTT 3400 CTGCTCTGTT TACCCAGATT GGAGCCACT GCCAGCATT CCCCTCACT CAGGCCGCCACT CCCCCCCCCC	25							
CITCCEAGE AMOTECUAGA ACCEMENTA GEAGANACA CECAGANACA ACCAMENA ACCEMENTA ACCOMENTA ACCORDANCE COCCURRENCE CARGETCEGE 3480 TEGERACICA COCCICCACT TRUTTETTE TITTETTET TRUTTETTE ACCOMENTA ACCORDANCE COCCURRENCE CARGETCEGE 3480 TEGERACICA COCCICCACT TRUTTETTE ACCORDANCE TRACESCORE TRACACCICAC CARGETCEGE 3480 TEGERATICA COCCICACT TRUTTETTE ACCORDANCE TRACESCORE TRACACCICAC CARGETCEGE 3480 TEGERATICA COCCICACT TRUTTETTE ACCORDANCE TRACESCORE TRACACCICAC CARGETCEGE 3480 TOGARDACITA CARGETTA ACCORDANCE ACCOCCICAC COCCURRENCE CACCURRENCE ACCOUNTY ACCOUNTY AMOTECATION ACCOTTAGA ATCORDANCE ACCOUNTY AMOTECATION ACCOTTAGA ATCORDANCE ACCORDANCE ATTITICATE TRACACAACT ACCOUNTY AMOTECATION ACCOTTAGA ATCORDANCE CACACCACA CACACCACA ACACACAAA ATTITICATEGA ACCOTTAGA ATCORDANCE TRACACCACT TRACACACT TRACACACT TRACACACT TRACACACT TRACACACT TRACACACT TRACACACT TRACACACT COCCURRENCE ACCORDANCE ATTITICAC TRACACACT ACCORDANCE ACCOR	23							
GRIGARGANA GUCANAGCAT GRAGECACAT GUCARGANAT AGRACTOTTOT 3340 CTCGCTCTT TACCCAGATT GRAGTCAGT GROCACCACT TACCCAGATT GRAGTCAGT GROCACCACT TACCCAGATT GRAGTCAGT GROCACCACT TACCCAGATT GRAGTCAGT GROCACCACCACT TACCCACCACT CTCCCGCTCACTC CTCCCGGTT CACCCACCACT GROCACCACCACT CTCCCGGTT TACCCAGATT TACCTCTAGCT GROCACCACCACCCCCCC GROCACCAC TTGGCCAGGA TGTTCTTCAT CTCCTGACT TACCCAGGA TACCCACCACCC GROCACCACCACCCCC GROCACACCACCCCCCCC GROCACACCACCCCCCCC GROCACACCACCACCCCCCCC GROCACACCACCCCCCCCC GROCACACCACCCCCCCCC GROCACACCACCCCCCCCC GROCACACCACCCCCCCCC GROCACACCACCCCCCCCC GROCACACCACCCCCCCCCCCCC GROCACACCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCC								
Gregaria accaptant trattagit trittitit trittitit galacadagi 3480 CTCCCCGGCTT CACCCCACT GGGGGGCCACC CGGCCACCA CAAGCCCGC 3480 CTCCCGGGTT CACCCCACC TCCCGGCCT GGGGGCCACCA CAGCTGCACCAC CAAGCCCCC 3540 TTGGCCAGA TGGTTCTACA CTCCTGACC CGGGATACCA CAGCGTTTA AATGATAATT 3720 TTGGCCAGA TGGTTTCAAT CTCCTGACC GGGATACCA CAGCGTTTA AATGATAATT 3720 GGGATTAC AGCCGTAGC CACCCCCCC GGCCAAGCAT CAGCGTTTA AATGATAATT 3720 AAAAAAGTAT TAAGCAAAACA TAAGAATTAA TATGATAATA TAGCAAAAT 3460 AGCCTTCCAC GTATTAATC TATGATGTGA TCTTTTTACT GGACACCT GTATAAACT 3780 AACCTTCCAC GTAGTCACT CAGCACCCA GAAACCAT CAGCGTTTA AATGATAACT 3960 ACCTTCCAC GTAGTCACT CAGCACCCA GAAACCAT AGGAATTAT TAAGCAAAAT 3860 ACCTTCCAC GTAGTCACTG CCAGCACCCA GAAACCAC ATTTCCCTA TTAAAACTAT 3960 CGAAAACAT TCCACTGCT TAAAATTCCA AAAACTTTTAA CTTTGCACAA TGTGCTTTTAC 400 AATAAAGTAA TCCAAATTA AAGAATTCAC TAAATTCCACAACA TGTGCTTTTAC CCCCAACCAC 4000 AATAAAGTAA TCCAAATGGA AACATTCACA TGGTTCTTCC CTCAACCAC 4000 CTAAAAAGAG GGGTGGAAG GAAAACAT TGGTTCTTCA CTCAACCAC 4000 CTAAAAAGAG CGCTAGAAC GAAATCACA TGGTTTTGCC TAAAAGATTG CCTTTAAGCT 4100 CTAAAAAGAG CGCTAGAAC GAAATCACA TGGTTTTGCC TCTAAACTTT CCCCCAACCAC 4200 CTAAAAAGAG CGCTAGAAC GAAATCACA TGGTTCTACC TCTAAACTTT CCCCCAACCAC 4200 CTAAAAAGAG CGCTAGAACA ACATTCACA GGGCCCCCT TAAAACTAC CTCCCACTGAACAC ACTTCCACCAG GACCCACTG 4200 CTAAAAAGAG CCCTATCAC AACATCCAC GGGCCCCTTTAGGCCT 4200 CTAAAAAGAG CCCTATCAC AACATCCAC GGCCCCTTTAGACCA 4200 CTTCCACCCT GACCCACTACAC ACCAAAACAC TCTCCCACT GCCCCAGG GCCCCTTAGA 4200 CTTCTTTGGGCA ATTACCTAC ACCCCACTACAC ACCACCACT CCCCCACTAC 4200 CTTCTTTGGGAAA TATACCTAC TCCACACGCAG GACCCCCAC ACCCCCACTAC 4200 CTTCTTTGGACT AGCCCTACT TCCAATCCAC GCACCTACAC AAAACTCCCTAC ACCCCACTAC 4200 CCAATACCAC AGCCCATACAC ACCCCACTAG GCCCCTTACAC 4200 CCAATACCAC AGCCCACGAG GGGGGGAA GTCCACCACCAC ACCCCACGAGAA ACCTCCCCAC ACCCCACGAACAC CCCCCCACGAACAC CCCCCCACGAACACC CCCCCACGAACAC CCCCCCACGAACAC CCCCCCACGAACAC CCCCCCACGAACAC								
CTCCCGGGT TACCCAGATT GGAGTGCAGT GGGGGATCT COGCTACAG CAGGCATCACG CAGGCACCT TOCCGCCTA TTTCCCGGGT TACCCGGGT TACCCGGGAT TOCCGCCTA TTTGTTTTCG TATTTTAGT AGAGACGGG TACAGGGGC 3840 CGCCAGCAGA TGGTCTCAGC CTCCCAGAAAG 3660 TTGGCAGGATTA AGGCCTAGAG CACCGCCCCC GGCCAAGCC CAGGCTTTAA ATGCAAAATT 3750 GCTAATAGCT GTATTAATC TATGTAGTAA TCTTTTTACT TAGGCACTT GTATTAATTATT TATGTAGTAA TCTTTTTACT TAGGCACTT GTATTAAGCA 3780 AAATAGGTAA TAGGCAATAAT AAGAATTAA TAAGCAAAATT AAGAATTAA TAAGCAAAATA AAGAATTAA TAAGCAAAATA AAGAATTAA TAAGCAAAATA AAGAATTAA TATGAAGAAA AAAAAATAA AAGAATTAA TATGAAGAAA AATAAATA								
CTCCCGGGT CACGCCACT TCCCCCCC GTCTCACCACT TAGTTTER ASAGACCGG TTTCACCATS 3600 TTGCCAGGA TGGTCTTGAT CTCCTGACT CGTGATCGC CCGCCTCAGCCT TGGCCACTAG 3600 TTGCCAGGA TGGTCTTGAT CTCCTGACT CGTGATCGC CCGCCTCAGCCT CTCCCAAAAG 3660 CTGGGATTAC AGGCGTGAGC CACCGCCC GCGCCAAGCAT CAGCGTTTTA ATAGCAAAAT 3800 AAATAAGTAT TAAGCAAAATA TAAGCAAAATA TAGCAAAAT AAGAAATTAT TAAGCAAAAT 3800 AACTTCCAC GTAGTACACTG CCACCCA GAAACCACCA GAAACCAT TCCACTGATAAGCA AACATAAATA TATGAAAATA AAGAAAATA TAGCAAAAT 3800 AACATACCAC GAAAAACAT TTTGTTGGAG CAACTAGAA AATAATACA TGTGACCACAA AACATAAAT TGGAAATAT CTTTGGACAA TGGACTATCAC 4080 AATAAAGTAA TTCTAAATGGA AACATTACAA TGGATTTTGCCTTT CCAACGAGAC 4080 AATAAAGTAA TTCTAAATGGA AACATTACAA TGGATTTTGCCTTT GCAAGGAACA 4080 CTCAAAAGAGG CGGTGGAAGT GAAAATCACA TTGGTTTTTCC TCTAAACCATA TGCAAGAACA ATTCTCATTTC CCAAGGCAGC 4260 CTAAAAGAGG CGGTGGAAGT GAAAATCACA TTGGTTCTTCC TCCAAGACCAGT 4260 CTTCACACCA GGCCATACAC ACCCACCACA TTTCCCCTTC TCCCACGAG 42500 CTAAAACAT TAGAATAAGA AACATCACA ACTCCCAACA AAAATTTCCACA AACATCACA AACATCACACA AACATCACA AACATCACA AACATCACA AACATCACA AACATCACA AACATCACAA AACATCACACA AACATCACAA	30							
TIGGCCAGGA TGGTCTTGAT CTCCTGACCT CGTGATCCC CGCCAGCT CGGCCTAGG CTCCCAAAAG 3660 CTGGGATTAC ATTGTTATATT 3720 CTAATAGTT GTATTAATCT TATGTAGTGA TCTTTTACT GTGACCACT GTATTAATCT 3780 AAATAGATTAT TAACCAAAACT AAGAATTAT TAAGCAAAAT AAGAATTATA TATGTAAGTGA AATAAAATCCA TGAATACCAT 3840 AACATTCCAC GTAGTCACCA GAAACCACC ATTGCCACAC GAAACCACCA GAAACCAC ATTGCCACACAC AAAACATT TCACACCACC TAAAATTCCA AAAACATTAA CCATTCAATGA AACATTAAA CTATTAACCAA TGATTCTTAG 4020 AAGGGGAAAAAAACAT TTTGTTGTGAG CAACTAGAAA ATTGCCAAT TGATCTTTAA CTTTGACACA TGATCTTAGGTT 4140 TTAAGACCAT AGATTAGAGA AACATTCAGA TGATTTGAC TAAAAATTCCA CAAGAGATTCC CCTAAAACAAT GCATACAAC CCTGAAACAAT TGGTTGATTCT CTTAAGCATT CACAGCCACT 4260 CTTAAAAGAGG CGGTGAATGT AACATCAGA GCACATTACC CACAGCCACT 4260 CTTACAACAG GCATACACC CCTGAAACAA TCTTACCATG GCCCACTGGG CCCCTGATG 4220 CTTTCCCATCAC ACCTCCAAACA TCTTACCACT GCCACGGG CCCCTGATG 4220 CTTTCCCTTGAG ATTATCCTTAC CCCTGAACACA TCTTACCACT GCCACTGGG CCCCCTGATG 4220 CCCTTTTAGGCTT CACAGCCTCT CCCTATACCA CACAGCCACT ACCCCCACAC ACCCCACAAA ACCCCACCACACAC ACCCCACAAAA AACATCAC CACAGAAACAC CTTCCTTGAC AGCCCACT CCCTATACCA CACAAACACC CACAAACACA TCTTCCCTTCCA TCCCTCTGAG CCCCTTCTTGCC CACAACACCACACACACACACACACACACACACACA		CTCCCGGGTT	CACGCCACTC	TCCCGCCTCA	GTCTCCCGAC	TAGCTGGGAC	TACAGGCGCC	3540
CCAGGACTACA AGGOSTGANCE CACCGCCCC GOCCAGCAT CAGGOSTITIA ANTGATAATT 3720 ACCAGATAGA TRATATACT TATOTAGTOA TCTITITACT GIRACACTT GATATAGACA 3780 AAATAAGATAT TAAGCAAAAT AAGAATTTAT TAAGCAAAAT AAGAATTAAT TATTGAATGC AAATAAACCA TAGAATACCA TAGAATACCA CAAAAAAACAT TTTGTTAGAG CAACTAGAA AATAACCAC CATTAAGCAT CAAAAAAACAT TTTGTTAGAG CAACTAGAAA AATATTCAATTC CCACCACACCA								
GCTAATAGCT GTATTAATTC TATGTAGTCA TCTTTTACT GTAGCACTT GTATTAAGCA 3780 AAATAGGTAT TAAGCAAACT AAGAATTAT TAAGCAAAAT AAGAATTAT TAAGCAAAAT 3840 ACCTTCAGA ATGCAAACTT AAACATAAT ATTTGAATGA AATAAATCC TAGACAACAT 3860 AACCTTCCAC GTAGTCACTG CCACCACCA GAAACCCAGC ATTTCCTCTA TAAAACTAT 3860 CAAAACATT TCACATCGTG TAAAATTGCA AAATCTTAA CTTTGACACA TGTGCTTTAGA AAGGGAGAAA GCAAAAACAT TTTGTTGGAG CAACTAGAAA ATTGCATTT CCCACAACCA 4080 AATAAAGGAA TCTCAATGGA AACATTCAGA TGATTTGACT TAAAACTAT 3660 CTAAAACAGT TACTAATGGA AACATTCAGA TGATTTGACC TAAAAGATTGC CCTTAAACCAT 4080 AATAAAGGAA GCAAAAACAT TTGTTGGAG CAACTAGAAA ATTGCATTTC CCACAGCAA 4080 AATAAAGGAG GGGTGGAAGT GAAAATTCAG GTCTCCAAG AAAATTCTC CACAGCCAGT 4660 CTAAAACAGG GGGTGGAAGT GAAAATTCAG GTCTCCAAG AAAATTCTC CACAGCCAGT 4660 CTACACCAC GACCATCTACA AGGCCTGGCT GTGCCCTGT GTCCCTGGG GCCCCGTGATG 4260 CTTCTTCTCTT GGGTGATAGT AACATCAGAA GCACTGACCA CCTCCCTATG ACGCAGAATC 4460 CTTCTTTGGA ATTACCTTAC CCCCTGGAG GGTGGAGCA CCTCCCTATG ACGCAGAATC 4460 CTTCTTTGGA ATTACCTTAC CCCCTGGAG GGTTAGTCC TCAAACCATC CTTTGGACAT 4860 CCAATACACC AAGACCTT ACACCCTTGAAG GTCCAACGA TCCACACCA GACCACGATC 4650 TCCCTGGTTC CACCATTAAG GTGGAGAG GTCACCTTG AGCCACATGC 4660 ATGAGCAGA TGGCAAGCTT ACACCCTTAA TGCACATCG CACCACTGA ACCCTCCAAA 4660 ATGAGCAGA TAGACCTAT TCAAACTTAA GTCCTACAGA TCCCAAAACC TTACTTCCC AACACCCCCAG CACCCTGAAA GTGCCACAGA CCTCCCAAAACC TACCCCTCCAC 4740 TCTCTTGTCT CACCACTGGAAA GTGGCAACTT CCATCTCCAC CACCACTGA AGCCACTCCAAA GTGCCACCTCCAA ACCCTTCCAA GTGCACACCTCAC AAAACGCAC CTACCCTCCCA AGCCACTCAC AGCCACTCAC AGCCACTCAC AGCCACCTCAC AGCCACTCAC AGCCACCTCAC AGCCACCTCAC AGCCACCTCAC AGCCACCACCACA GTGCACCACCAC CACCACTCACA ACCCACCACA AGCCACCACCAC AGCCACCACCAC ACCCCTCACA ACCCACCACA AGCCACCACCAC AGCCACCACCAC AGCCACCACCAC ACCCCTCACA ACCCACCACA ACCCACCACA ACCCACCACA ACCCACCA								
AAATAAGTAT TAAGCAAACT AAGATTAT TAAGCAAAAT AAGAATTAT TAAGCAAAAT 3800 AGCCTTCGAA ATGCAAATTA AAACATAATT ATTGAATGA AATAAATGCC ATGATCCTT 3900 AACCTTCCAC GTAGTCACTG CAAGACCCA GAAACCCAC ATTTCCTCTA TTAAAACTAT 3860 CCGAAACATT TGCACTGCTG TAAAATGCCA AAATCTTAAA CTTTGACCAA TGGCTTTAAG AACATAAAGTAA TTCTAAATGCA AACATCACA GATTCACTCTT TGCACCCAC 4080 AATAAAGTAA TTCTAAATGCA CACATCACA TGGTTTTACC CTCTAACCA 4080 AATAAAGTAA TTCTAAATGCA CACATCACA TGGTTTTCC CTCTAAGCAT 4100 CTAAAAAGAGA CGAAAAAATT TTGTTGCAGCA GAATTCATT TGCTTGTTCC CCCCACACCA 4200 CTAAAAAGAGA GCGTGGAAACA CCTTGAAACA TCTTCCCTTT GCACAGCCAGT 4200 CTAAAAAGAG CGGTGGAAAC GAAATTCTG GGTCTCCAAA AAAATTCTTG CACAGCCAGT 4200 CTACATCAC GCCTATCACC CCTTGAAACA TCTTCCCTTG TCCCTGGGG GCCCCTGATCAC CTTCTTGGGT GACCTTCACC CCTTGAAACA TCTTCCCTTG TCCCTGGGG GCCCCTGATCAC CTTCTTGGGT ATTATCTTAC TCCTCTGGAG GGTTACACC ACCATACTAC TCTTGCACCA GCCTTTCACC AAAACATCC TCCTCTTCACA AAAACATCA TGCCAAAACC TCTTTGGACAT 4800 CCTTCTTGGGT AACATCACC CCTTCAACAC GCACTTACAC AAAACTCC TCCTATCAC AAAACACCAC ACCATACACA TCTTCACCACA AACACCCACA AAAAACACCA CACATCACAA AAAACACCACAC AACACACAC	25							
ACCTTAGAA ATCACAATTA AARCATAATT ATTAGATCA AATAAATCC ATGACTCCA GAACCCAC GAACCCAC ATTCCTCTA TTAAAATCATA 3960 ACCTACAC GTAGTCACTG CCAGCACCA GAAACCAGC ATTTCCTCTA TTAAAACTAT 3960 AARGAGAAACAT TECACTGCTG TAAAATTGCA AAATCTTAA CTTTGGACAA TAGGCTTTAG 4020 AARGAGAGAA GCAAAAACAT TTTGTTGGAG CAACTAGAAA ATGTCATTT CCCTCAACCA 4080 AATAAAGTAA TTCTAAATGCA AACATTCACA TGATTTGAC TAAAAGTATG CCTTTAGGCTT 4140 TTATGAGCCT AGATAGATGC CGCAATTATT TGGTTGTCC TCTAAGCTTT GCACAGCAGT 4260 CCTAAAAGGG CGGTGGAAGT GAAAACTACT TGGTTGTCC TCTAAGCTTT GCACAGCAGT 4260 CCTTCTCCTC GGGTGATAGT AACATCACAC GCCCTCTTTCCCTTG TGCCCTGGGG GCCCTGATG 4270 ACCCACGTC GACCTGTCAC AGGCCTGGT GTAGCGCAC CTTCCTAGCACT AAAGCTCCCT CTTTGGACAT 4360 ACCCACGTC GACCTGTCAC AGGCCTGGT GTAGCGACA CTTCCTATG ACGCAGATG 4440 CCTTCTTGGGA ATTATCTTAC TCCTCTGGAG GGTTAGTCA TCAATGTTTT GCTTCTTTCC 4550 CCAATTCAC TGTGACCCT TCTGATCACA AGGAATCAC TGCCTATCAC ATATATCTC 4550 CCAATTCAC TGTGACCCT TCTGATCACA ACCTCCAAAAC TGCCTATCAC ATATATCTC 4550 ATCAGGCAGA TGGCAATAAG GTAGCATAAA GTAACACTACAA TGCAAAACC TGTCCTTCC 4680 ATCAGGCAGA TGGCAATAAG GTAGCATAAA GTAACTCTC 4680 ATCAGGCACA CACCTCAAAA GTAACTTAAG TGCAATAAC TCTTCCCAAGA GACCCTCTCC 4740 TGTCTTTCCT TCACAAGGT TTAGCACAAA GCAAGACC CTACCTTCC 4740 CCACTCTCCC ACCCTCAAAA GTAACTCAC TGAGAAAAC CTTCCCAAC GCACCACAC ACCCTCAAAA GTAACTTCA GGGGACC CTACCTTCC 4740 CCACTCTCCC ACCCTCAAAA GTAACTCAC TGAGAAAAC GTACCTTCC 4740 CCACTCTCCC ACCCTCAAAA GTAACTCATTTC TGGAGAAC CTACCTTCC 5740 CCACTCTCCC ACCCGCAGAA GAGGGAGACC CAAAAAGGGA AAATGTTGAT GCCCTCCCCCC 4740 CCACTCTCCC ACCCGCAAAA GAGGGAGACC CAAAAAGGGA AAATGTTGAT GCCCTCCTC 5040 CCACTCTCCC ACCCGCAAAA CAATCTCATTTC AGGTCAAGC CAACACCTCACT TTCCTTCTT TCCTCTCACC CTCCTTCC TTCCTTTCC TCCTCTCCC CTCCTTCC TCCTCTTC TCCTCTTCT	JJ							
ACCITICAC GTAGTCACTG CAGCACCCA GAAACCCAC ATTCCTCTA TTAAAACTAT 3560 CGAAAACATT TECACTGCTG TAAAATTGCA AAACTTTAA CTTTEGACAA TGTGCTTTAGA AAGGGAGAAA GCAAAAACAT TTTTTTGGAG CAACTTGAACA ATTGTCATTTA CCCTCAACCA AAGGGAGAAA GCAAAAACAT TTTTTTGGAG CAACTTGAAC TAAAGATTAG CCTTAAGGTT TTTTTTAGACCT AGATGACATC CCCATTATT TGGTTGTTC CTTAACCTT CCCTCAACCA 45 CTTCCCAACA GCGCAATACAC CCCTTGAAACA TCTTCCCTGT GTCCTTGGGG GCCCTGATG ACCCACGTC GACCTTCAC AGGCTGGCT GTAGGCAC CCTCCTTTTTGACCT TGGACT 4260 CTTCTTGGGA ATTATCTCA CCCTCAGACA TCTTCCCTGT GTCCTTGGGG GCCCTGATG 4260 CTTCTTGGGA ATTATCTAC CCCTCAGACA TCTTCCCTGT GTCCTTGGG GCCCTCTTTTGACAT 4260 CTTCTTGGGA ATTATCTAC CCCTCAGACA CACCTCACA AAAACTTCT GCCTTTGGACAT 4260 CTTCTTGGGA ATTATCTAC CAGGCTGGT GTAGGCAGAC CCTCCTATA ACCACCACT ACCACCACACA ACCACCACACACA								
GRARACATT TRICACTECT TARABITISCA ANATOTITA CITTEGRA TRICCITAGO 4080 ARGRAGAA GCAAAAACAT TITGITGGA CAACTACAAA ATTGICATIT COCTCAACCA 4080 ARGRAGAA TICTAATGGA AACATTCAGA TGATTTACC TARAGATTGC CITTAGGTT 4140 TRAIGAGCT AGATAGATC COCATTATT TGGTTGTCC TARAGATGC COCTTAGGTT 4140 TEACAAGAGGA GGGTGGAAGT GAAAATTCTG GGTCCCAGA CAAAATTCTCG CACAGCCAGT 4200 TCTCCAATCA GCCTATCACC CCTTGAACA TCTTCCCTGT GTCCTGGGG GCCCCTGATG 4200 ACCCACGTC GACCTGTCAC CCCTTGAACA TCTTCCCTGT GTCCTGGGG GCCCCTGATG 4320 ACCCACGTC GACCTGTCAC AGCCTGGGT GTGGGGGCA CTCCCTTATA AGGCAGATG 4440 CTTCTTGGGA ATTATCTTAC TCCTCTGGAG GGTTAGTCCA TCAATGTTTT GCTTCTTTCC 4500 CCAATACTAC TGTGACCCTC TCTGATCCC AGAAATCAC TGCCAAAAGC TCTCCTTCC 4560 TTAAGCACTG AAGACCCTAT TGAAATTAGA GTTCTACAGA TGCCAAAAGC TCTCCTTCC 4660 TCTCTGTCC CAGCATTACA GGTGGAGACT CAATACTACC ACATACTTCC 4560 ATCAGCAGA TGGCAAGCTT ACTGCCTTGA TGCACATCTG GAGCCACTGG ACCTCCTTCC 4660 TCTCTTGTTC TCACAAGGTT AGCCCTTC TCTGATCCCA AGAACTCTTCC 4660 TCTCTTGTTC TCACAAGGTT TTAGCCCAA GCACATCAGA TCCCACAGAAAC TCTCCTCCAGA GCACACTGAA GCACATCATCC 4660 TCTCTTGTTC CAGCAGGTT TTAGCCCAA GCACAGAACT CCCTCCAAAAC GTACACTTCC 4660 TCTCTTGTTC CGCTACCTGG AAGCTTTAGA TGCACATCTG GACCCACTG ACCTCCTTCC 4660 CATCCCCCAG CACCGGAAA GTTACAGCC TGAAGACT CATCCTCCAA GCCACCTGC 4660 CATCCCCCAG CACCGGAAA GTTACATCAC AACCTACACA AATCTCCAAA GTACCTCCAC 4660 CATCCCCCCAG CACCGGAAA GTACACTTAGC TGAGAGACC CATCACTACAA GTACCTACCA ACCGTCTTTTC 4660 CACCAGAGAGAA AGCTTACACC CATTACAAA GTACATCACCACA AACCTACACA AAAAAGGGA GAGGACCC CACCAGAAAAAAAAA	•							
ARTARAGTAN TICTARIGGA ARCATICAGA TGATITICAC TANAGATTIC CCITTAGGET 4140 TIANGAGCT RATAGATGC CSCANTAIT TGGTTGTTC TOTARACTIT GCARGGGAC 4200 CTARARAGAGG CGGTGGAAGT GANAATTCTG GGTCTCCARG NAAATTCTC CACAGGCAGT 4260 TCTCCAATCA CGCTATCACC CCTGAAACA TCTTCCCTGT GTCCCTGGGG GCCCTGATG 4260 ACCCCACGTC GACCTGTCAC AGGCCTGGCT GTACCGACCA ANACTCCCC TTTGGACCAT 4380 ACCCCACGTC GACCTGTCAC AGGCCTGGCT GTACGGAGCA CCTCCCTATA ACGCCAGAT 4380 CCAATACTAC TOTGGACCT TCGATGGG GGTATGTCAC TCAATGTTTT GCTCTTTGTC 4500 CCAATACTAC TOTGGACCT TCGATGCAC ACAAAACACA TGCCCAAAGAC AGGCAGAATCAC AGAAACACA TGCCAAAGAC AGGCAGCACT TGCAATGCTTC AGGAAACACA TGCCAAAACAC TGCCAAAGAC TGCCAAACAC TGCCAACCT TAAGGCACA TGCCAATCCT TCGACCTTGA TGCACATCTG GACCCATCC 4680 TTAAGGCACA TGGCAACCTT TAAGCCTTGA TGCACATCTG GACCCATTCC 4680 TCTCTTGGTC TCACAAGGTT TTAGCCCAAA GCACACTGG ACCCCTTCC 4680 ATCAGCCACA CACCCCAAAA GCTACTTGAC TGGACTACTC TCCCCTCCC 4740 TGTCTTTGCT TCACAAGGTT TTAGCCCAAA GCAAGAGACA TACCCCAAAG CCACCTCAAAA GCTACTTCAGC TGGAGGACCA CACCCTCAAAA GCTACTTCAGC TGGAGGACC CATCCTTCCA AGCCCACTTCC 4680 ATCAGGCACAC CACCCTAAAA GTTACTAGC TGGAGGACC CAACTCCTTCC 4680 CCATCCCCCAG CACCCTAAAA GTTACTAGC TGGAGGACC CAACTCCTTCC 4680 CCATCCTCCC ACACGGACAA GAGGGGAGAC CAAAAAGGGG AGACCACCTCCTTCC 4680 CCATCCTCCC ACACGGACAA GAGGGGAGAC CAAAAAGGGG AGAGCACCACCTCCTTC 5040 CCATCCTCCC ACACGGACAA GTTACTCCCC AGACCCACC AAATGTTGAT CCCCTCCCTTC 5040 CCATCCTCCC ACACGGACAA CCCCCTAAAA ACTCACCCAA ACACTACTACA ACCTCCATCA ACCTCATCTC AGACCCACT AAATGTTGAT CCCCTCCCTTC 5040 GAGGATGAAA CCACCCTAGA ACCTCATCAT TTTCTTTCAGA GACCACCAAAAAAAT CCCCCCACA ACCCCACAAAAAAAA								
TRAIGAGE AGATAGANGE CGCAATTATT TOGTTGTTGE TCTAAGCTTT GCAAGGGATC 4200 CTAAAAGAGG CGGTGGAAGT GAAATTCTG GGTCTCCAAG AAAATTCTG CACAGCCAGT 4260 TCTCCAATCA GCCTATCACC CCTTGAAACA TCTTCCCTGT GTCCTGGGG GCCCCTGATG 4320 ACCCACGTC GACCTGCAC AGGCCTGGCT GTAGCGAGC CTTCTGAGAAT 4380 ACCCACGTC GACCTGCAC AGGCCTGGCT GTAGCGAGC CTCCCTATG AGCCAGAATG 4440 CTTCTTGGGA ATTATCTTAC TCTCTGGAG GGTTAGTCCA TCAAGTTTT GCTTCTTGTC 4500 CCAATACTAC TGTGACCCTC TCGATGGG GGTTAGTCCA TCAAGTTTT GCTTCTTTGC 4560 TTAAGGACTG AGGCCCTAT TCAAATTAGA GTTCTACACA TGCCATACAC ATATATCCTG 4560 ATCAGGCGGA TGGCCAAGCTT ACAAGTTTAGA GTTCTACACA TGCCATACAC ATATATCCTG 4620 ATCAGGCGGA TGGCCAAGCTT ACAGCTTTCA GGCCACTCG AGCCCCTCC 4680 ATCAGGCCAG AGCCCTCTAAA GGAGGAGAC CCAAGAAGC TCTCCTCCAC 4740 TGTCTTTGCT TCACAAGGTT TTAGCCCAAA GCAAGAGTC CAACAGAAAG CACAGAGAA ATGAACTTC CGCTACCTGG AAGCTTAAG TGGGATAAAAT AGCCATACAC GCACAGAGAA AGGATGAGA CACCCAAAA GTTACTAGG TGGGAGACC CTACCTTCCA GTGCACCACAGAAA AGGCACAGAGAA GGGATGGAG CACAGGGAGA CAGGGGAGAC CAAAAAGGGA CAGAAAAGGA CAGACAGA	40	AAGGGAGAAA	GCAAAAACAT	TTTGTTGGAG	CAACTAGAAA	ATTGTCATTT	CCCTCAACCA	4080
CTARARGAGG CGGTGGAAGT GARARTTCTG GGTCTCCAMG ARARTTCTG CACAGGCAGT 4260 TCTCCAATCA GCCTATCACC CCTTGAAGA TCTTCCCTGT GTCCTGGGG GCCCCTGATG 4320 CTTCTTCTCTT GGGTGGATAGT ARCATGCAGA GCACTTACAC ARARGCTCCT CTTTTGGGACT 4380 ACCCCACGTC GACCTGTCAC AGGCCTGCT GTAGCGACA CATCCCTATG ACCCAGATG 4440 CTTCTTTGGGA TATATCTTAC TCCTCTGGAG GGTTTAGTCA TCATATCTTT GCTTCTTTGCT 4560 CCAATACTAC TGTGACCCCT TCGATGGGA GGTTAGTCA TCATATCTTT GCTTCTTGTC 4560 TTAAGCACTG AAGACCCTAT TGAAATTAGA GTTCTACAGA TGCCAATAGC ATATATCCTT 4620 ATCAGGCAGA TGGCAACCTT TGAAATTAGA GTTCTACAGA TGCCAATAGC TGCTCTTCC 4680 TCTCTGGTTC CAGCATTAAG GTGGAGAACTC TCTTGTGCTCT TCCCTCTAGC 4740 TGTCTTTGCT TCACAAGGTT TTAGCCCAAA GCAAGAACCAC TCTTCTCCCCTCAGC 4740 TGTCTTTGCT TCACAAGGTT TTAGCCCAAA GCAAGAGAACAC TCTTCCCCTCAGC 4740 TGTCTTTGCT TCACAAGGTT TTAGCCCAAA GCAAGAGAAC AACCCAAAA GCTTCCTCCCAC 4860 CCATCCCCCAG CCACCGAAAA GTTATAGGC TGGGAGACAC CTACCTTCAC 4860 CAACACGCACA CACCTCAAAA GTTATAGGC TGGGAGACAC CTACCTTCAC GGACCACCT 4920 CAACAGGACA GCACCCTAAAA GTTATAGGC TGGGAGACAC CTACCTTCAC GGACCACCT 4920 CAACAGGACA ACCCCTAAAA GTTATACGCC TGGGAGACAC CTACCTTCAC GTGACCCACT 4920 CAACAGGACA ACCCCCAAAA GTTACACCC AACACACCAA AAAATTTGAT GCCTCCCTTC 5040 CCACCAGAGAGA ATCTCACTCA GACCACCAA AAAATTTGAT GCCTCCCTTC 5040 CCACCAGACAG CCACCCTAGA ACCTCACTCA GACCACCAC AAAATTGAT CCTCTCGCTC 5100 GAGATGAGA ATCTCATCA GGTTCACCC AACCACCAA AAACTTAGTA GCTCCCCTTC 5100 GAGATGACA CCACCCTAGA ACCTCACATCA ACCACCAAA AAAATTAGT AACCACCAAA AAAATTAGT AACCACCAAA AAAATTAGT AACCACCAAAAAAATCAA CACCACCAAA AAAATTAGT AACCACCAAA AAAATTAGT TGCATGAGT CTCTTGGCT TTCCTTTACCC CACCAGAGA GACCTCCCT 5280 TCTCTGTGTT TCCCTTCACT CCTCTCTCCC ACCACCACAAAAAAATCAAC AACATTAATG AAGAATTACA CTGTGTCTC CTCTTTACCC TTTTTTCTA GCTTCCTTTTACA CTGTGCTCT TTGCTTTAAACAA TTTTCCTTTTCA AACCACCAAA AACATTATT TGCATTGATT TGCATCTATT TGCATCTATT TAACGTTTACA CTGTGTCTC TTTTTTCAA GCTTCTTTTT TAACCTTTTTT TAACGTTTAT TAACGTTTAT TTTTTTTCAA GCTTCTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTTTTT TAACCTTT								
45 CTITICTICTI GGGTGATAGT AACHTGAGA TCTTCCCTGT GTCCCTGGGG GCCCTGATG 4320 ACCCACGTC GACCTGTCAC AACTGGAGA GCACTTACAC AAAGCTCCCT CTTTGGAAT 4380 ACCCACGTC GACCTGTCAC AGGCCTGGCT GTAGCGAGAC CCTCCCTATG ACGCAGAATG 4440 CTTCTTGGGA ATTATCTTAC TCTCTGGAG GGTTAGTCAC TCACATGTTT GCTTCTGTC 4560 CCAATACTAC TOTGACCCTC TCTGATGCAC AGGAAATCAC TCACATGTTTT GCTTCTTGTC 4560 TTAAGCACTG AAGACCCTAT TCAAATTAGA GTTCTACAGA TCCCAATACAC ATATACCTG 4620 ATCAGGCAGA TGGCAAGCTT ACACACTTGA GGCCACTGG AGCTCCTCCC 4680 TCTCTGGTTC CAGCATTAAG GTGGAGAACC CATGTAGCT TCTTGTCCTT TCCCTCACC 4740 TGTCTTTGCT TCACAAGGTT TTACCCCAA GCAAGATGC CACCACAGG AGCTCCTCCC 4860 ATGAGCACA CACCTCAAAA GTTACTAGGC TCTACTTTCCC CTCCCATCC 4740 ATGAGGCACA CACCTCAAAA GTTACTAGGC TGGAGAACC CAAAAAGGGA CACCTCACTTCC GGGCACTGGA GGGGAAGAC CACCACAGAG GAGGGACAC CAAAAAAGGGA CACCTCACTTTCC TCCCCCAC CACCACAGA GTTACTTAGGC TGGAGAACC CAAAAAAGGGA GAGGAAGAC CACCTCACAC ACACCACGAA ACACTACACAG GGGAAGAC CAAAAAAGGGA CACCACCAAAA GTTACTTGGC TCCCCCAA ACACCACCAA ACACTACAGG ACACGGTCAT TTCTTTTTTT AGCACACCCAA AAAATTTGAT GCCTCCCCTTC 5040 CCATCTTCCC ACACCGTCATA ACCTCACTAT AGCACCACCAA AAACTTAATGG CTCCCCTTC 5100 GAGGATGCAAG CACCCCTAGA ACCTCACTAT GGTCACCTTACATTGG CTCCCCTTC 5100 GAGGATGCAAG CACCCCTAGA ACCTCACTAT AGCACCACCAA AAACTTAATGG CTGCCTTCT 5100 GAGGATGCAAG CACCCCCTAGA ACCTCACTAT TCTCTTCTTCT TCTCTTCATT CCATCCCCCA AACCCACCAA ACACTAAGAG AGCTCCCTTC 5280 TCTCTGTCTTT TCTCTTCATT CCATCCCCCA AACCCACCAA ACACTAAGAG TGACCTCCCT 5280 TCTCTGTCTTT TCTCTTCATT CCATCCCCCA AACCCACCAA ACACTAAGAG TGACCTCCCT 5280 GCCTGGACAT CTGACTTTGC CTTTATTCT TGAGTGGGT TGGCTTTATT AGCTCTCGT 5520 ATAATGGACA CAGCACTAAA ACTTATTTCTTTTCTAGG GCCCCCAAGAG TGACTTCTTGA 5340 GCCTGGACAT CTGACTTCC CTTTATTCT TGATGTGGT TGCTTTAAT ACACTCCTTT TCTCTTTATT TCCCATCATA ATTTTCTAGGA GACCCCACAAAAATTCT TGGTTTAAT AACATCTATT 5560 TGGTAGATTA GCTGTTTACAC CTCTCTCTCC TTTTTTTAT TAAGGTTAAT TCCCTATAT TCCCTTTTTTTT TCCCTATATA ATTTTCCATCA TTAACAATTT TCCCTTTTTTT TCCCTTTTTTC CAGTGTAACAA TAACAATTT TCTCTTTTAC TGACTTTTT TAACTTTTTT TAACTTTTTT CAACACCTCC TTTTTTTT								
45 CTTICTCTT GGGTGATAGT AACATGCAGA GCACTTACAC AAAGCTCCC CTTTGACAT 4380 ACCCACGTC GACCTGCTAC AGGCTGGCT GTAGCGAGA CCTCCCTATG AGCCAGATG 4440 CTTCTTGGGA ATTATCTTAC TCCTCTGGAG GGTTAGTCCA TCAATGTTT GCTTCTTTGC 4500 CCAATACTAC TGTGACCCTC TCTGATGCA CAGAAATCAC TGCCTATCAC ATATATCCTG 4560 TTAAGCACTG AAGACCCTAT TGAAATTAGA GTTCTACAGA TGCCAAAAGC TGTACTTCC 4680 ACCACGAA TGCCCAATGC TGAAAATTAGA GTTCTACAGA TGCCAAAAGC TGTACTTCC 4680 ACCACGTCCTTC CAGCACTTGA GAGCACCTTGC GAGCACCTGC GAGCACCTTGC 4680 ATCACGGCAGA GTACCTTCC CAGCACTTGA GAGCACCTGC AAGCCCACAGA GCAACACCCAAAA GCTATCTCC CTCCACACC CACCGCAGAA GTTACTAGGC TGAAGAACAC CAACCCCAAA ACCACCCAAA ACCACCCAC								
ACCCACGIC GACCITCAC AGGCCTGGCT GTAGCGAGCA CCTCCTARG ACGCAGARTG 4440 CTATITIGGA ATTACTITAC TOCKTGGAGG GGTTAGTCCA TCARGITTT GCTTCTTGTC 4500 CCARTACTAC TOTGACCCCC TCTGATCGCA CAGAACTCAC TCCCTATCAC ATATACCCTG 4560 TTAAGCACTG AAGACCCTAT TGAAATTAGA GTTCTACAGA TGCCAATACCA ATATACCCTG 4620 ATCAGGCAGA TGGCAAGCTT ACTGCTTTCA TGCACATCTG GAGCCACTGG AGCTCCTTCC 4680 TCTCTGTGTTC CAGCATTAGA GTGGGAGAACCA TCTTGTCTCTT TCCCCTCAGC 4740 TGTCTTTGCT TCACAAGGTT TTAGCCCAAA GCAAGAAGCA TCTTCCACTCAGC 4740 ATGAACTTTC CGCTACCTGG AAGCTTTAAG TGGAGAACCA CTACCTCACA GCACCACTAGA GCAAGAAACAA GTACCAAAA GTTACTACAGC TGGAGCCACCT 4920 CATCCCCCAG CCACGGAGAA GAGGGAGAC CAAAAAGGGA GAGGACCACCT 4920 CATCCCCCAG CCACGGAGAA GAGGGAGAC CAAAAAGGGA GAGGACACCT 5490 CAAGAGGACA GACCCCAAAA GTTACAGCC TGGAGCCACC CAATACATCA GCACCCCTACT 5400 CAAGAGCAGA ATCTCATCAC GAGGGAGAA CAGCTCACTTCC GTGACCCACC 4920 CACCAGCAGAA ATTTAGGC TGGAGCACC CACCTCATTCC GTGACCCACC 5400 CAAGAAGAGA ATGTAGGCA CTTTACCCC AGACCACCAC AAAATTTGAT GCCTCCCTTC 5040 CACCAGCAGAC CCACCCTAGA ATCTCACTCA GGTCACACCCC CACTACATAC TCCCCCCAACACCCCAAAAAAACACCACCAAA AACCTCACAGA GAGCCTCCCT 5280 TCTCTGTCTT TCCCTTCACT CCTCCCCCA AACCCACCAA AACCACCAAA AAAATTACTAC CTCTGGCTC 5280 TCTCTGTCTT TCCCTTCACT CCCCCAACCACCAAAAAAAAAA	45							
CTICTIGGGA ATTATCTIAC TCCTCGGAG GGTTAGTCCA TCAATGTTTT GCTTCTTGCC 4500 CCAATACTAC TGTGACCCTC TCGAATGAC TGCCTATCAC ATATATCCTG 4560 ATCAGGCAGA TGGCAAGCTT ACTGACTCAC TGCTTATCACAC TGCCTATCAC ATATATCCTG 4560 ATCAGGCAGA TGGCAAGCTT ACTGCCTTGA TGCAATGAC TGCCAAAAGC TGTACTTTCC 4620 ATCAGGCAGA TGGCAAGCTT ACTGCCTTGA TGCACATCTG GAGCCACTGG AGCTCCTTCC 4680 ATGAACTTC CGCTACCTGG AAGCCTTAAG TGAGTAAATC ACTGCTTCC TCCCCTCAGC 4740 ATGAACTTC CGCTACCTGG AAGCTTAAG TGAGTAAATC ACTCTTCCC AGCACAGAGA 4800 ATGAACTTC CGCTACCTGG AAGCTTAAG TGAGTAAATC ACCTTTCCC GTGACCCAC 4920 CAACTCCCCCAG CCACGGAGAA GAGCGCAAGAC CGAGAGAGGA CAAAAAGGGA CAAAAAGGGA CAACTGACAAA 4980 GGGATGGCAC CACCGGAGAA GAGGGGAGAC CAAAAAGGGA CAAAAAGGGA CAAAAAGGAA CACACGAGAA 4980 GGGATGGCAC ACCGGTCTT TTTCTTTTGT AGCACACCT CAATTAATAA CTCCTCGGCT 5100 CAACTTTGCC ACACGGTCTT TTTCTTTTGT AGCACACCT CAATTAATAA CTCCTCGGCT 5100 GAGGATGCAGA CTTTACCCCC AGAGCCACCA AAACTTAATGA CTCCTCGGCT 5100 GAGGATGCAGA CCACCCTAGA ACCTCACCCA AACCCACAA ACACTAAGGG AGAGCCCCTTC 5280 TCTCTGCTTT TCCTTCATT CCATCCCCA AACCCACAA ACACTAAGGG AGACTCCCT 5280 GTCACTTCTC GGCGCACTAAA CCTTACCCCCA AACCCACAA ACACTAAGGG AGACTCCCT 5280 GCCTGGACAT CTGACTGTC CTTTATATC TGGTTCATCA TGGCTTGTT TGGTTTAAAC AGAAAAAAAAA 5460 CCAAGAAGAGT AGTGACGTCT CAGACCTAAA CACTTAAGGA GACCCACAA ACACTAAGGG AGAAAAAAAT 5460 CCAAGAAGAGT AGTGACGTCT CAGACCTAAA CACTTAAGTA AGAAATACAA TACACTCTATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTCATATT TCCCTTCATT TCCCTCATATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTCATT TTCCTTCTATT TCCCTCTATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTTCATT TCCCTTTATT TCCCTTCATT TCCCTTCATT TCCCTTTTTT TCCCTTCATT TCCCTTCATT TCCCTTTTTT TCCCTTCATT TCCCTTTTTT TCCCTTCCCT TCCCTTTTTTTCCACACCTTCC TTTTTTTCCACCT TCGCTTTTTCCACCT TCGGTTTTTCT TCCCTTTTTCCACCACCTTCCC TTTTTTTCCACC TTTTTTTCCACCT TGAGACCTTT TCCACTCT TCCCTTTTTTTTCCACCT TGAGAACTCT TACCTTTTTC TAACCTTTTTT TAAC								
TRAGGCATG ARGACCTAT TGANATAGA GTTCTACAGA TGCCANAAGC TGTACTTTCC 4620 ATCAGGCAGA TGGCAAGCTT ACTGCTTTCA TGCACATCTG GAGCCACTGA GCCACTGAGCAGAGA TGTCTTGTT CACCATTAGA GTGGAGAACT CAGAGTAGAT TCTTGTCCTT TCCCCCTCAGC TGTCTTTGCT TCACCAGGTT TTAGCCCAAA GCARGAGTC AATCCCAAG CCACAGAGAA 4800 ATGAACTTTC CGCTACCTGG AAGCTTTAAG TGAGGAGACC CTACCTTCCA GTGACCCACT 4920 SCATCCCCCAG CCACCGAAAA GTTACTAGGC TGGAGGACAC CTACCTTCCA GTGACCCACT 4920 CCACCTCACC CCACCGAGAA GAGGGAGAC CAAAAAGGGA GAGGATGAGA CACCACCAA AAATTTGAT CCCTCCCCA AACCACCAA AAATTTGAT CCCTCCCTTC 5160 GAGATGCAGA CCACCCTAGA ATCTCATCTA GGTTCACTCA GAGGCACCCC CACTAGATAA CTCCTCGGCT 5100 GAGATGCAGA CCACCCTAGA ATCTCACTCA GGTTCACTCA GAGGCACCACC CACTAGATAA CTCCTGGCTCT TCTCTTACTCC TCCTCTACCCC AACCACCAA AACCACCAA AACCACCAA AAATTAGTA AACCATCCAA GAGGCTCCCC 5280 GCTGGACATT TGCTCTACTC CTCCCCCA AACCACCAA AACCACCAA AAATTAGTA AACCATCCCC 34ACCACCAA AACCACCAA AAATTAGTA CACACCACCAA GAGGCTCCCC 5280 GCTGGACATT CGGGCATAA CCTCCCCCA AACCACCAA AACCACCAA AAATTAGTA AACCATCTAGA GAGACTCCCC 5280 GCTGGACATC CTGACTCACT CTCCTTACCCC AACCACCAA AACCACCAA AACCACCAA AAATTACAA CACATCAAAAAATCACA CACAACAAA CACCACCAAA AACAATTACA CTGAGGGGT GAGCCTCCCT GAAAAAAAT 5460 CCAGAGAGGT AGTGAGGTGT CAGAGCTAAA CACTTCGTCT TTGCTTAAACAA GAAATTACAAT TTCCCTATATA AACAATCTATT 5580 TTCCTCTATA CCAGTTACAC CTCCTTTTTTTAAACAATTTTTCCATCATT TGCATTGATT TCCATCTATT TACACTTTTTT TCCCATCAATT TCCATCTATT TACACTTTTTTCAACAATTT TCCATCTATT TACACTTTTTC TCCATCAATTT TCCATCTATTT TACACTTTTTCAACAATTT TCTTTTCACAA GAGACTCCCC TTTTTTTCAACAATTT TCTTTTCACAACATTT TCTTTTCACAA GAGACTCCC TTTTTTTTAACAAATTT TCACGTTTAACAATTT TCACGTTTAACAATTT TCACGTTTAACAATTT TCTTTTCACAA GAGACTATTC TTTTTTCAACAATTT TCACGTTTAACAATTT TCACGTTTAACAATTT TCACGTTTAACAATTT TCACCTTTAACAATTT TCACGTTTAACAATTT TCACGTTTAACAATTT TCACGTTTAACAATTT								
ATCAGGCAGA TEGCAAGCTT ACTECCTIVA TEGCACATCIN GAGCCACTEG ACCTCCTCACC TCTCTEGOTIC CAGCATTAAG GTGGAGAACT CCATGTAGCT TCTCTTCCTT TCCCCTCAGC TGTCTTTGCT TCACCAAGGCTT TAGCCCAAA CAGAGAGTGC AATCCCAAAG CACCAGAGAA 4800 ATGAACTTC CGCTACCTGG AAGCTTTAAG TGAGTAAATC AGCTTTCCC CTCTCATCC TAGAGGCACA CACCTCAAAA GTTACTAGGC TGGGAGACCC CTACCTTCCA GTGACCCACT 4920 CCACCTCCCCAG CCACCGGAGAA GAGGGGAGACA CAAAAAAGGCA GAGTGAGAAA 4980 GGGATGGTCA GCTGTGAGGG GAGGGGAGAC CAAAAAAGGCA GAGTGAGAAA GCCCCCTCC 5040 CCACCTTGCC ACACGGTCTT TTTCTTTTTT AGCACAGCCT CCATTAATAA CTCCTCCGGCT 5100 GAGGATGCAGA CACCACCACAA AACCACACCAC AAAATTTCAT TCCTTCCT								
TCTCTGGTTC CAGCATTAAG GRGGAGACT CCARGRAGCT TCTCTCTCTT TCCCCTCAGC 4740 TGTCTTTTGCT TCACAAGGTT TTAGCCCAAA GCAAGAGTGC AATCCCAAG CCACAGAGAA ATGACTTC CGCTACCTCG AAGCTTAAG TGAGTAATC ACCTTTCCC CTCTCATCC 4860 TAGAGGCCAC CACCTCAAAA GTTACTAGGC TGGAGAGAC CTACCTTCC GTGACCCACT 4920 CATCCCCCAG CCACGGAGAA GAGGGAAGAC CAAAAAGGGA GAGTGAGAAA GAGGATGAGA 4980 GGGATGGTGA GCTGTGAGGG GAGGGGCCAA GAGTGAGAAAA GAGGATGAGA 4980 CCATCTTGCC ACACGGTCTT TTTCTTTTGT AGCACCAGT CAATTATAA CTCCTCGGCT 5040 CCATCTTGCC ACACGGTCTT TTTCTTTTGT AGCACAGAT CCATTAATAA CTCCTCGGCT 5100 GAGGATGAGA ATTAGGCAC CTTTACCCCC AGAGCCAGTT CCTTAATTAG CTGCTCTCT 5160 GAGGATGAGA CCACCCTAGA ATCCTCACTCA GGTTCACTCAA AAAGTGAGTAA AACTCTCCTT 5220 TCTCTGTCTT TCTCTCATT CCATCCCCA AACCCACAA ACACTAAGGG AGAGCCCCT 5280 GTAGTTATCA CTGTGTCTCC CTCTGTTACA TTTTCTTAGGA GACCCAGAAG TGACTTCTGA 5340 GCCTGGACAT CTGACTGCC CTTTATATTC TGAGTGGGT TCTGCTTAAAC AGAAATCCAG 5400 GCCTGGACAT CTGACTGCC CTTTATATTC TGAGTGGGT TGCTTAAAC AGAAATCCAG 5400 GCCTGGACAT CTGACTGCC CTTTATATTC TGAGTGGGT TGCTTTAAAC AGAAATCCAG 5500 CCAGAGAGGT AGTGAGGTGT CAGACCTAAA CACTTGGTG TGCTTTTAAC AGAAATCCAG 5500 TTTCCTCTATA CTGTCTCC CTCTTTTATATT TGAGTGGGT TGGTTTTAT TACACTCTTT TTCCTTCATA TACACTCTTA TACATGTAA ACATCTTATT TGATTGGAT GAACATCTTAT TACATGTATA TACATCCTAT TACATGTATA TACATCCTAT TACATGTATA TACATCTATT TGATTGAGT GAACATCTTAT TGCTTAACA ACATCTATT TGCTTTACC TTGCTTAACA ACATCTATT TGAGTTACC CTCCTTCCC TTTTTTTCCAG TGAACCACTA TCCATTTAC TACACTCTA TACAGGTACAC TTTTTCCAGA GTACACCTT TTCAGTTATC TGGTAACAAC CACCTTATC TGGTAACAAC CACCTTATC TGGTAACAAC CACCTTATC TACACTATA TACAGATATT TCTTTTCCAG TGAACCTCCT TGAGAACACTT TCTATTTTCCAG TGAACCACCT TTACAGTTATC 5820 ACCTCCCTTC CTTTTTTTCA CAGTGAACCT GTATTCAGCT ATTCCACTC TGAGAACACTT TCTACTTTAC TGAGTACTCC TGAGAACACTT TCTACTTTTCCAG TGAACACTTT TTACATTTTC TGAGTTAACC ACACTTATC TACACTTTAC TACACTTTAC TACACTTTT TACACTTATC TGAGTAACACT TTACACTTAC ACAGTTAACA ACAACTTTC TCTACTTTCT TAACCTTTTTT TAACTTTTTT TAACTTTTTTC ACAGTTAACAACTT TCTACTTCCT TTAACAACTT TCTACTTCTT TAACCTTTTTTTT	50							
TGTCTTTGCT TCACAAGGTT TTAGCCCAAA GCAAGAGTCC AATCCCAAG CCACAGAGAA 4800 ATGAACTTTC CCCTACCTGG AAGCTTTAAG TGAGTAAATC ACCTTTTCCC CTCACTTCC 4860 ATGAGGCCAC CACCTCAAAA GTTACTAGGC TGGAGACAC CTACCTTCCA GTGACCCACT 4920 CATCCCCCAG CCACGGAGAA GAGGGAGAC CAAAAAGGGA GAGGTGAGAA GAGGATGAGA 4980 GGGATGGTCA GCTGTGAGGG GAGGGGCCAA GTGCCCACC AAAATGTTGAT GCCTCCCTTC 5040 CCACCTTGCC ACACGGTCT TTCTTTTTTTTA AGCACAGCTC CCATTACATAA CTCCTCCGTC 5100 GAGGATGAAG ATGTAGGCAC CTTTACCCCC AGACCAGCAA AAATTTGATA CTCCTCGGCT 5100 GAGATGCAGA ATGTAGGCAC CTTTACCCCC AGACCAGCAA AAATTTGATAA CTCCTCGGCT 5100 GAGATGCAGA ACCACCAAA ACCCACCAA AAACTTAGTGA GAGCCTCCCT 5280 TCTCTGTCTT TCCCTTCACTC CATCCCCCA AAACCACCAA AAACTTAGTGA GAGCCTCCCCT 5280 GCAGGACAT TCCCTTACTC CATCCCCCA AAACCACCAA AAACTTAGTGA GAGCCTCCCCT 5280 GCAGGAGGT TCCCTTACTC CATCCCCA AAACCACCAA AAACCACCAAA GAGCCTCCCCT 5280 GCAGGAGGT TCCCTTACTC CATCATCAC CTGTGCTGCT TTGCTTAAACAAATTCCGT 5340 GCAGGAGGT AGGGGGTAAA CCTAGCTCAT TTTTCTAGGA GACCTCCCCT 5380 CCAGAGAGGT AGTGAGGTGT CAGAGCTAAA CACTTAGGAG GAGCCTCCCT GCAAAAAAAT 5460 CCAGAGAGGT AGTGAGGTGT CAGAGCTAAA CACTTCGTC TGGTTTACT TGAATAGAAT 5460 CCAGAGAGGT AGTGAGGTGT CAGAGCTAAA ATTTTGCATT TTCCTATATA AACATCTATT 5580 TTTCCTCGTAC CTGTGTCTC CTTTTTATATC TGAGTGGGT GCTGCCCCAT GCAAAAAAAT 5460 TCCTTTGTAT TCCCATAGTG AACAATATAT TAAGGTAGAT TTCCTATATA AACATCTATT 5580 TTCCTCGTAC CTGTGTACAC CTCCCTTCCC TTTTTTACAC GTTAACCACAT TCCGTTAACC ACCTCCCTC CTTTTTTCCA ACAACAATT TTTTTTCACAC GTTAACCAC CAGCTTTACC 5820 ACCTCCCTC CTTTTTTCC ACAGTTAACA TTTTTCCACC TTAACCACTT TCACTTTATT 5860 ACCTCCCTC CTTTTTTCCA ACAGTTAACAT TCTTTTCCACC GTTAACAAC ACAGTTATC 5820 ACCTCCCTC CTTTTTTCCA ACAGTTAACAT TCTTTTCCACC GTTAACAAC ACAGTTATC 5820 ACCTCCCTTC CTTTTTTCCA ACAGTTATC TGACCACTT TCTACTCTC TGAGGAACTC 5880 ACCTCCCTTC CTTTTTTCCA ACAGTTATC TGACCACTTT TCTACTCTC TGAGGAACTCT 5880 ACCTCCCTTC CTTTTTTCCA ACAGTTATC TGACCACTTT TCTACTCTC TGAGGAACTTT TCACTTTCT TAACTTTTTT AAATGCAACTT TCTTTTCCAC CTTAACACACTT TAACTTTTTTT AACAGTTATC TGACCACTTT TCTACTTCT TAACTTTTTT TAACTTTTTT AACATTTTTTT AACATTTTTTT AACATTTTTTT AACATTTTTTT AACATTTT	3 0							
ATGACTITC CGCTACCTGG AAGCTTAAG TGAGTAAATC AGCTITTCCC CTCTCATTCC 4860 TAGAGGCAC ACCTCAAAA GTTACTAGGC TGAGAGACC CTACCTTCCA GTGACCCACT 4920 CATCCCCCAG CCACGGAGA GAGGGGAGAC CAAAAAGGGA GAGTGAGAAA GAGGATGAGA 4980 GGGATGGTCA GCTGTGAGGG GAGGGGGAGAC CAAAAAGGGA GAGTGAGAAA GAGGATGAGA 4980 CCACCTTCCC ACACGGTCTT TTTCTTTTGT AGCACAGCCT CCATTAATAA CTCCTCGGCT 5100 GAGATGCAGA ATGTAGGCAC CTTTACCCCC AGAGCCAGTT CCTTAATTAG CTCGCCTTC 5160 GAGATGCAGA CCACCCTAGA ATCTCATCTA GGTTCACTAG AAGTTAGTA AACCTTCCTT 5220 TCTCTGTCTT TCTCTTCATT CCATCCCCA AACCACCAA ACACTAAGGG AGACCTCCT 5280 GTGAGTATCA CTCGTCTCC CTCTGTTACA CTGGTCTGT TTGCTTAAAC AGAAATCCAG 5340 GTAGTTATCA CTCTGTCTCC CTCTGTTACA CTGTGCTGT TTGCTTAAAC AGAAATCCAG 5400 GCCTGGACAT CTGACTGTCC CTCTGTTACA CTGTGCTGCT TTGCTTAAAC AGAAATCCAG 5400 CCAGAGAGGT AGTGAGGTCT CAGACCTACA ACTCTTGCCCCAT GCAAAAAAAAT 5460 CCAGAGAGGT AGTGAGGTCT CAGACCTACAA CACTTGGTCC TTGCTTTAATC TGACTCTGTT 5520 ACTTCCTTTGAT CTGTCCCTT GCCATTTTCA TAATGCTAT TTCCTTTATAT AACATCTATT 5580 TTTCCTGATA CTGTCCCTTT GCCATTTTGA TAATGCTAT TTCCTTTATAT AACATCTATT 5560 TCGTTTGTAT TCCCATAGTG AACAATATAT TAAGGTTAGT TGCATTACAC CACCTTTATC TGGTACCCC TGAAAAAAAAT TCCTTTTTTATA TCCCATAGTG AACAATATAT TAAGGTTAGT TTCCTTTATAT TCCGTTATT 5560 TCGTCACTCTGA GCAGTTACAC CTCCCTTCC TTTTTTACAC GTAAACAACA CACCTGTTAC 5700 TCGTAGATAA GCGATTACAC CTCCCTTCC TTTTTTACAC GTAACACTCT TTCGTTTACT 5580 ACCCCCTTC CTTTTTTTCA CAGTGAACCT GTATTCCACT TGAACCTCTC TGAGAACTCT 5880 CCACATAACAA TTTCTTTTCC ACAGTTAACA ACAAAGTTC GTTTTTAAAC GAAGAGTTT 5560 ACCCCCTTC CTTTTTTTCA CAGACTATAC TGACACCTTT TCTACTTTTT TAACTTTTTT 6600 GTCACTTTTT AAATGCAAAG CAAATAAATT CAATAAAGCC T 75 SEO ID NO.48 PDG5 Protein sequence Protein Accession #: 8AA86524								
TAGASGCACA CACCTCAAAA GTTACTAGGC TGGAGAGAC CTACCTTCCA GTGACCCACT 4920 CATCCCCCAG CCACGGAGAA GAGGGAAGAC CAAAAAGGGA GAGTGAGAAA 4980 GGGATGGTCA GCTGTCAGGG GAGGGAAGAC CAAAAAGGGA GAGTGAGAAA 4980 CCATCTTCC ACACGGTCTT TTTCTTTTTT AGCACAGCAC								
CATCCCCCAG CCACGAGAA GAGGGAAGAC CAAAAAGGA GAGTGAGAA GAGGATGAGA 4980 GGGATGGTCA GCTGTGAGGG GAGGGGCCAA GTGGCCCAGC AAAATTTGAT GCCTCCCTTC 5040 CCACCTICCC ACACGGTCTT TTCTTTTTTTTTTA GAGCAGCCT CCATTAATAA CTCCTCGGCT 5100 GAGGATGAAG ATGTAGGCAC CTTTACCCCC AGACCAGCAT CCTTAATTGG CTGCCTTTCT 5160 GAGATGCAG CCACCCTAGA ATCTCATCTA GGTTCACTAG AAGTTAGTTAA ATCTTCCTT 5220 TCTCTGTCTT TCTCTTTCATT CCATCCCCC AAACCACCAA AACCACCAA GAGCCTCCCT 5280 GTAGTTATCA CTAGTCTCC CTCTCTTACA CTGTCCTGC TTGCTTAAACA GAAAATTCAG 5400 GCCTGGACAT CTGACTATCC CTCTTTACAC CTGTGCTGC TTGCTTAAAC AGAAATAATCAG 5400 GCCTGGACAT CTGACTATCC CTCTTATATC CTGTGCTGC TTGCTTAAACA AGAAATTCAG 5400 CCAGAGAGGT AGTGAGGTGT CAGAGCTAAA ACTTTGGTG GCTGCCCCAT GCAAAAAAAT 5460 CCAGAGAGGT AGTGAGGTGT CAGAGCTAAA ACTTTGGTGC TGGGTCTTGT TGAATAAAAT 5460 CCAGAGAGGT AGTGAGGTGT CAGAGCTAAA ACTTTGGTGC TGGGTCTCCT GAAAAAAAT 5460 TCCTTTGTAT TCCCATAGTG AACAATATAT TAGAGGGAGT GCTGCCCCAT GAAAAAAAT 5580 TTCCTGTAA CTGTGCCTT GCCATTTGA TAAAGCATAT TGAGTGGAGT GAATTTTATT 5540 TCCTTTGTAT TCCCATAGTG AACAATATAT TAAGGTAGTA TTGATTGAGT GAATTTTATT 5640 TCGTAGATTA GCTGTTTACAC CTCCCTTCCC TTTTTTCACA GTTAACCACTT TCCGTTTACC ACCTCCCTC CTTTTTTCA CAGTGAACATT TCTTTTCACAC GTTAACACAC CAGCGTTTAC 5820 ACCTCCCTC CTTTTTTCA ACAGTTAACA ACAAATTTC TCTTTCACAC GTTAACACAC ACACGTTTAC 5820 ACCTCCCTT CTTTTTTCA ACAGTTAACA ACAAATTTC TCTACTTCT TAACTTTTTT 6800 GATTTAAGAT ATATGCAAAG CAAATAAAT CAATAAAGCC T SEQ ID NO:48 PDG5 Protein sequence Protein Accession #: BAA86524								
GGGATGGTCA GCTGTGAGGG GAGGGGGCAA GTGGCCCAGC AAATGTTGAT GCCTCCCTTC 5040 CCATCTTGCC ACACGGTCTT TTTCTTTTGT AGCACAGCT CCATTARTAA CTCCTCGGCT 5100 GAGGATGAGA CACCCAGCA TTTCTCTTTGT AGCACAGCT CCATTARTAA CTCCTCGGCT 5100 GAGATGCAGA CCACCCTAGA ATCTCACCCC AGACCCAGA CCTAGATTGG CTGGCTTTCT 5160 TCCTGTGTTT TCTCTTCATT CCATCCCCC AACCCAAA ACACTAAGGG AGACCCCCT 5280 TTTGGATGTCT GGGCAGAAA CCTAGCTCAT TTTCTAGGA GACCCAGAAG TGACTTCTGA 5340 GTAGTTATCA CATGTCTCC CCTCTTACA CTGTGCTGCT TTGCTTAAAC AGAAATACAG 5400 CCAGAGAGGT AGTGAGGTGT CAGAGCTAAA CACTTGGTCC TGGGTTTTTGT TGATGCTGGT 5520 ATAAATGTGAC ACAGTACAAT TACAGGCTAA CACTTGGTCC TGGGTTTTTGT TGATGCTGGT 5520 TCTCCTGTAA CACTGTACA CACTTGTATT TCCCTATATT 5580 TCTCTTTTTAT TCCCATAGGA AACAATATAT TAAGGTAGAT TTCCTATATT 5640 TCCTTTTTTAT TCCCATAGGA AACAATATAT TAAGGTAGAT TGCCCTTTATC TGGTACCCCT 5700 TGGTGAGATTA CCCCATAGAG AACAATATAT TAAGGTAGAT TGAACCCTGTA TTCCGTTAATT 5760 GTCACTCTGA GAACTCCCA ATAACAATTT CTTTTTCACA GTTAACAACA CAGCTGTTAC AACACCTCCC CTTTTTTTCA CAGTGAACCT GTATTCCACC CTGCTTCTCT TTTTTTACAG TAACAACAC CAGCTGTTAC 5820 ACCTCCCTC CTTTTTTTCA ACAGTTAACA ACAACATTT CTTTTTCACA GTTAACAACA CAGCTGTTAC 5820 ACCTCCCTC CTTTTTTTCA ACAGTTAACA ACAACATTT CTTTTTCACT TGAGAACTCT TAACATTTT TAACTTTTTT AACTTTTTTC ACAGTTATAT TGACAACTTT TCTACTTCACT TGAGAACTCT TAACATTTT TAACTTTTTT TAACTTTTTTT TAACTTTTTTT TAACTTTTTTT TAACTTTTTTT TAACTTTTTTT TAACTTTTTTT TAACTTTTTTT TAACTTTTTTT TAACTTTTTTT TAACTTTTTTTT	55							
GAGGATGANG ATGTAGGCAC CTTTACCCCC AGAGCCAGTT CCTTAATTGG CTGGCTTTCT 5160 GAGATGCAGA CCACCTAGA ATCTCATCTA GGTTCACTA AAGTTAGTATA AATCTTCCTT 5220 TCTCTGTCTT TCTCTTCACTAC CCTCCCCCA AACCACCAA AACCACCAA ACACTACAGG GAGCCTCCCCT 5280 GTAGTTATCA CTAGTCTCC CTCTTTACAC CTGTGCTGCT TTGCTTAAAC AGAAATACAG 5400 GCCTGGACAT CTGACTGCTC CTTTATATC TGAGTGGGT GCTGCCCCT GCAAAAAAAT 5460 CCAGAGAGGT AGTGAGGTG CAGAGCTAAA CACTTCGTC TGCTTATAT AACACTCTATT 5580 CCAGAGAGGT AGTGAGGTG CAGAGCTAAA ATTTTGCATT TTGCATTAGT AACACTCTATT 5580 TTCCTCGTAC CTGTCTCTT GCCATTTGA TAATGCTATT TGCATTGAT GAATTTATT TGCATTGAT TGCATTTATT 5640 TCCTTTGTAT TCCCATAGTG AACAATATAT TAAGGTAGAT TGCATCTAT TGCATTGATT ACACTCTATT TGCATGAGT GAATTTATT 5600 TGGTAGATTA GCTGTTTACAC CTCCCTTCCC TTTTTTCACAC GTTAACCACTT TCCAGTTATC 5820 ACCTCCCTC CTTTTTTCA CAGTGAACACT GTATTCACACT TTCAGTTAACT 5820 ACCTCCCTTC CTTTTTTCA ACAGTTAACAA TTTCTCTACAC GTTAACAACA CAGCGTGTAC 5820 ACCTCCCTTC CTTTTTTCA ACAGTTAACAA ACAAATTTC TCTACTCACT TGAGGAACTTC 5880 CCAAAAAAAA TTTCTTTTCA ACAGTTAACAA ACAAATTTC TCTACTCACT TGAGGAACTTC 5880 ACTTCCTTT AAATGCAAAA CACAATATC TCTACTTCT TAACTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T 75 SEQ ID NO:48 PDG5 Protein sequence Protein Accession 6: BAA66524	_							
GAGATGCAGA CCACCCTAGA ARCTCATCTA GGITCACTAG AAGTTAGTTA AATCTTCCTT 5220 TCCCTGTCTT TCCTCTACATT CCATCCCCCA AACCACAAA ACACTAAGGG AGAGCTCCCT 5280 TTGGATGTCT GGGCAGTAAAA CCTAGCTCAT TTTTCTAGGA GACCCGAGAG TGACTTCTGA 5340 GCTGGACAT CTGACTGTCC CTCTGTTACA CTGTGCTGCT TTGCTTAAAC AGAAATGCAG 5460 CCAGGAGAGT AGTGAGGTGT CAGAGCTAAA CACTTGTGC TGGGTTTTTGT TGATGCTGGT 5520 ATAAATGTGAC ACAGTACAAT TACATGCTCA ATTTTCCATTAT TTCCTCTATAT TCCTCTGATA CTGTGCCTTT GCCATTTTGA TAAAGCTATT TTCCTCTATAT AACAATCTATT 5580 TTTCCTGATA CTGTGCCTTT GCCATTTTGA TAAAGGTAGAT GCCCTTTATAT 55640 TCCTTGTAT TCCCATAGTG AACAAATATAT TAAGGTAGAT GCCCTTTATC TGGGTACTCC 700 TGGTGAGATTA GCTGTTACAC CTCCCTTCCC TTTTTTACAC TGAACCACTAT TTCCAGTTATT 5760 GTCACTCTGA GAACTCTCCA ATAACAATTT CTTTTCCACA GTTAACAACA CAGCTGTTAC 5820 ACCTCCCTTC CTTTTTTTCC ACAGTTAACA ACAAAGTTCT GTTTTTAAAT GAAGAACTTA 5940 AGTTCTTTTT AAATGCCTAA AGGCATATTC TGACCACTTT TCACTTCATT TAACTTTTTT 5940 AGTTCTTTTT AAATGCCTAA AGGCATATTC TGACCACTTT TCACTTCTT TAACTTTTTT 6000 GATTAAGAA ATATGCAAAG CAAATAAATT CAATAAAGCC T 75 SEO ID NO:48 PDG5 Protein sequence Protein Accession #: 8AA86524								
TCTCTGTCTT TCTCTTCATT CCATCCCCA AACCCACAA ACACTAAGGG AGACCTCCCT 5280 TTGGATTATCA GGGCAGTARA CCTAGCTCAT TTTTCTAGGA GACCCAGAAG TGACTTCTGA 5340 GCCTGGACAT CTGACTGCC CTCTGTTACA CTGTGCTGCT TTGCTTAAAC AGAAATACAG 5400 GCCTGGACAT CTGACTGCC CTTTATATTC TGAGTGGGGT GCTGCCCCAT GCAAAAAAAT 5460 CCAGAGAGGT AGTGACGTGT CAGACCTAAA CACTTGGTC TCGGTTTTTG TGATCCTGGT 5520 ATAATGTGAC ACAGTACAAT TACAGGCTAAA CACTTGGTC TCGGTTTTTAT TACACTCTATT 5580 TTTCCTGATA CTGTGCCTTT GCCATTTTGA TAATGCTAAT TTCCTCTATAT AACACTCTATT 5640 TCGTTGATA CCTGTCCCTT GCCATTTTGA TAATGCTAAT TTCAGTTTATT 5760 TGGTAGATTA GCCTGTTACAC CTCCCTTCCC TTTTTTACAG TGAACCTGTA TTCAGTTATT 5760 GTCACCTGA GAACTCTCCA ATAACAATTT CTTTTTCCACA GTTAACAACA CACGCTGTATC 5820 ACCCCCCTC CTTTTTTCC ACAGTTAACA ACAAAGTTC GTTTTTAAAT GAAGGATTA 5940 AGTTCTTTTT AAATGCCTAA AGGCATATTC TGACAACTTT TCTACTTCTT TAACTTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T SEO ID NO:48 PDG5 Protein sequence Protein Accession #: BAA86524								
TTGGATGTCT GGGCAGTARA CCTAGCTCAT TTTTCTAGGA GACCCAGARG TGACTTCTGA 5340 GTAGTTATCA CTAGTACTCC CTCTGTTACA CTGGCTCT TTGCTTARAC AGARATCAG 5400 GCCTGGACAT CTGACTGCTC CTTTATACT TGAGTGGGT GCTGCCCCAT GCARARAAAT 5460 CCAGAGAGGT AGTGAGGTGT CAGAGCTARA CACTTCGTC TGGGTTTTGT TGATCTGGT 5520 ATRACTGTAC ACAGTACAAT TACATGCTAA ATTTTCCATT TGATTGAGT GAATTTTATT 5640 TCCTTTGTAT TCCCATAGTG AACAATATAT TAAGGTAGAT TGCATCTAGT GAATTTTATT 5640 TGGTAGATTA GCTGTTACAC CTCCCTTCC TTTTTTCACA GTAAACAATTTC TGAGTGAGT AGACTTTAC 5760 TGGTAGATTA GCTGTTACAC CTCCCTTCC TTTTTTCACA GTAAACACTCT ATCCGTTATC 5820 ACCTCCCTC CTTTTTTCC ACAGTACACTT TTTTTCCACT GTATCACCT CAGGTACTAC 5820 ACCTCCCTC CTTTTTTCC ACAGTTAACA ACAAATTTC TCTACTCACT TGAGGAACTTC 5880 CCAATAACAA TTTCTTTTCC ACAGTTAACA ACAAATTTC TCTACTTCT TAACTTTTTT AAATGCCATA AGGACATTT TCTACTTCT TAACTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGC T 75 SEQ ID NO:48 PDG5 Protein sequence Protein Accession #: BAA66524	60							
GTAGTTATCA CYGGATGTC CYCTGTTACA CTGTGCTGCT TTGCTTAAAC AGAAATGCAG 5400 GCCTGGACAT CTGACTGTGC CTTTATATTC TGAGTGGGT GCTGCCCCAT GCAAAAAAAT 5460 CCCCGAGGAGGT AGTGAGGTGT CAGACCTAAA ACCTTGCTGC TGGGTTTTTGT TGATTGGGT 5520 ATAATGTGAC ACAGTACAAT TACATGCTAA ATTTTGCATT TYCTCTATAT AACACTCATT 5580 TTTCCTGATA CYGTGCCTTT GCCATTTTGA TAATGCTAAT TTGATTGAT GGAATTTTATT 55640 TCGTTAGATA CCCCTTTACCAT GCCATTTTGA TAATGCTAATT TTGATTGAT GGAATTTTATT 5760 TGGTAGATTA GCCATTACCA CTCCCTTCCC TTTTTTACAG TGAACCACTAA TTCCAGTTAATT 5760 GTCACTCTGA GAACTCTCCA ATAACAATTT CTTTTCCACA GTTAACAACA CAGCTGTTAC 5820 ACCTCCCTTC CTTTTTTTCC ACAGTTAACA ACAAAGTTC GTTTTTAAAT GAAGAGATTA 5940 AGTTCTTTTT AAATGCCTAA AGGCATATC TGACAACTTT TCTACTTCTT TAACTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAAATT CAATAAAGCC T	w							
GCCTGGACAT CTGACTOTGC CTTTATATTC TGACTGGGCT GCTGCCCCAT GCAAAAAAAT 5460 CCAGAGAGGT AGTGAGGTCT CAGAGCTAAA CACTTGGTCC TGGGTTTTGT TGATGCTGGT 5520 ATAAATGTGAC ACAGTACAAT TACAGGCTAA CACTTGGTCT TCTCTTATAT AACATCTATT 5580 TTTCCTGATA CTGTGCCTTT GCCATTTGA TAATGCTAAT TTGATTGAT GAAACTCTATT 5640 TCCTTTGTAT TCCCATAGTG AACAATATAT TAAGGTAGAT GGCCTTTTATC TGGGTACTCC 5700 TGGTAGATA GCGTGTACCC CTCCTTCC TTTTTTACAG TGAAACTCTAT TTCAGTTATC 5620 ACCTCCCTTC CTTTTTTCA ATAACAATTT CTTTTCCACA GTTAACAAC CAGCTGTAC 5880 CCCAATAACAA TTTCTTTTCC ACAGTTAACA ACAAAGTTC GTTTTTAAAT GAAGAGCTCT 5880 CCAATAACAA TTTCTTTTC ACAGTTATAC ACAAAGTTC GTTTTTAAAT GAAGAGCTT 5940 AGTTCTTTT AAATGCCAAA AGGCATATTC TGACAACTTT TCTACTTCTT TAACTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T								
CCAGAGAGGT AGRAGGTGT CAGAGCTANA CACTIGGTGC TGGGTTTTGT TGATGCTGGT 5520 ATANTGTGAC ACAGTACANT TACATGGTAN ATTITGCATT TICTCTATAT AACATCTATT 5580 TTTCCTGATA CROTGCCTTT GCCATTTGA TANTGCTATT TIGATTGAGT GAATTTTTTT 5640 TCCTTTGTAT TCCCATAGTG AACAATATAT TAAGGTAGAT GCCCTTTATC TGGGTACTCC 5700 TGGTAGATTA GCTGTTACAC CTCCCTTCCC TTTTTTCACAG TGAACCTGTAT TCGGTTATC 7660 ACCTCCCTG GAACCTCCCA ATAACAATT TTTTTCCACAG CTGATACAC CAGCTGTTAC 5820 ACCTCCCTC CTTTTTTCC ACAGTTAACA ACAAAGTTCT GTTTTTAAAT GAAGAGATTA 5940 AGTTCTTTT AAATGCCATA AGGCAATTT TCTACTTCTT TAACTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T SEQ ID NO:48 PDG5 Protein sequence Protein Accession #: BAA66524								
TITICTIGATA CTOTGCCTIT GCCATTITGA TAATGCTATT TIGATTGAGT GAATTTATT 5640 TCCTTTOTAT TCCCATAGTG AACAATATAT TAAGGTAGAT GCCCTTTATC TGGTACTCC 7500 TGGTAGATTA GCTGTTACAC CTCCCTTCCC TITITTACAG TGAACCTGTA TTCAGTTATT 5760 GTCACTCTGA GAACTCTCCA ATAACAATTT CTTTTCACA GTTAACAACA CAGCTGTTAC ACCTCCCTTC CTTTTTTCA CAGTGAACCT GTATTCAGCT ATTCCACTC TGAGAACTCT 5880 CCAATAACAA TTTCTTTTCC ACAGTTAACA ACAAAGTTC GTTTTTAAAT GAAGAGATTA 5940 AGTTCTTTTT AAATGCCTAA AGGCATATTC TGACAACTTT TCTACTTCTT TAACTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T 75 SEO ID NO:48 PDG5 Protein sequence Protein Accession #: 8AA86524								
TOCTITOTAT TOCCATAGIG AACAATATAT TAAGGTAGAT GOCCITTATC TGGGTACTCC 5700 TGGTAGATTA GCTGTTACAC CTCCCTTCC TTITTACAG TGAACCTGTA TICAGTTATT 5760 GTCACTCTGA GAACTCTCCA ATAACAATTT CTTTTCCAC GTAACCAAC CAGCTGTTAC 5820 ACCTCCCTC CTTTTTTCA CAGTGAACCT GTATTCAGCT ATTCCACTC TGAGAACTCT 5880 CCAATAACAA TTTCTTTTCC ACAGTTAACA ACAACTTT TCTACTCTT TAACTGTTTTT AAATGCCATAA AGACAACTTT TCTACTCTT TAACTGTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T 75 SEQ ID NO:48 PDG5 Protein sequence Protein Accession #: BAA86524	65	ATAATGTGAC	ACAGTACAAT	TACATGCTAA	ATTTTGCATT	TTCTCTATAT	AACATCTATT	5580
TGGTAGATTA GCTGTTACAC CTCCCTTCCC TTTTTTACAG TGAACCTGTA TTCAGTTATT 5760 GTCACTCTGA GAACTCTCCA ATAACAATTT CTTTTCCACA GTTAACAACA CACCTGTTAC 5820 ACCTCCCTC CTTTTTTTCA CAGTGAACCT GTATTCAGCT ATTCCACTC TAGGAACTCT 5880 CCAATAACAA TTTCTTTTCC ACAGTTAACA ACAAACTTCT GTTTTTAAAT GAAGAGATTA 5940 AGTTCTTTT AAATGCCTAA AGGCATATTC TGACAACTTT TCTACTTCTT TAACTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T 75 SEQ ID NO:48 PDG5 Protein sequence Protein Accession #: 8AA86524								
70 GTCACTCTGA GAACTCTCCA ATAACAATTT CTTTTCCACA GTTAACAACA CAGCTGTTAC 5820 ACCTCCCTTC CTTTTTTTCA CAGTGAACCT GTATTCCACCT TAGACACTT TGS880 CCAATAACAA TTTCTTTTCC ACAGTTAACA ACAAAGTTCT GTTTTTAAAT GAACAGATTA 5940 AGTTCTTTTT AAATGCCTAA AGGCATATTC TGACAACTTT TCTACTTCTT TAACTTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T 75 SEQ ID NO:48 PDG5 Protein sequence Protein Accession #: 8AA86524								
ACCICCTC CITITITICA CAGIGAACCT GIATICAGCI ATTCICACTC TGAGAACTCT 5880 CCARTAACAA TITCITITICA CAGITAACAA ACAAAGTICT GITTITIAAAT GAAGAGATTA 5940 AGTICITITI AAATGCCTAA AGGCATATIC TGACAACTIT TCTACTICTT TAACTITITT 6000 GATITAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T 75 SEO ID NO:48 PDG5 Protein sequence Protein Accession #: BAA86524								
CCARTARCA TTTCTTTCC ACACTTARCA ACARACTTCT CTTTTTARAT GARGAGATTA 5940 AGTICITITI ARATGCCTAR AGGCATATIC TGACACTTT TCTACTTCTT TARCTITITT 6000 GATTTARGAT ATATGCARAG CARATARATT CARTARAGCC T SEQ ID NO:48 PDG5 Protein sequence Protein Accession #: 8AA86524	70							
AGTTCTTTT AAATGCCTAA AGGCATATTC TGACAACTTT TCTACTTCTT TAACTTTTT 6000 GATTTAAGAT ATATGCAAAG CAAATAAATT CAATAAAGCC T SEQ ID NO:48 PDG5 Protein sequence Protein Accession #: 8AA86524 1 11 21 31 41 51	,,							
75 SEO ID NO:48 PDG5 Protein sequence Protein Accession #: BAA86524								
Protein Accession #: 6AA86524 1 11 21 31 41 51 CO								
Protein Accession #: 6AA86524 1 11 21 31 41 51 CO								
		1 3	11 2	1 3	31 (11 5	51	
OU EQPITSQPET TTPQGLLSDK DDMGRRNAGI DPGSRKASAA QPIPENMINS MVSDPQPYHE 60	90							خد
	OU	EQPTTSQPET T	TPQGLLSDK I	DMGRRNAGI I	OPGSRKASAA (Obibenudus P	VSDPQPYKE	60

PCT/US01/32045 WO 02/30268

120

```
DAASGAEKTE ARASLSLMVE SLSTTQEEAI LSVAAEAQVF MNPSHIQLED QEAFSFDLQK
         AQSKMESAQD VQTICKEKPS GNVHQTPTAS VLGMTSTTAK GDVYAKTLPP RSLFQSSRKP
         DAEEVSSDSE NIPEEGDGSE ELAHGHSSOS LGKFEDEOBY PSESKSFVED LSSSEEELDL
                                                                                              240
         RCLSQALEEP EDAEVFTESS SYVEKYNTSD DCSSSEEDLP LRHPAQALGK PKNQQEVSSA
                                                                                               300
  5
         SNNTPEEOND PMOOLPSRCP SOPIMNPTVQ QQVPTSSVOT SIKQSDSVEP IPPRHPPOPW
         VNPKVEQBVS SSPKSMAVEE SISMKPLPPK LLCQPLMNPK VQQNMPSGSE DIAVERVISV
EPLLPRYSPQ SLTDPQIRQI SESTAVEEGT YVEPLPPRCL SQPSERPKFL DSNSTSABWS
                                                                                               420
                                                                                               480
         SPVAPTPSKY TSPPWVTPKF EELYQLSAHP ESTTVEEDIS KEQLLPRHLS QLTVGNKVQQ
         LSSNFERAAI EADISGSPLP PQYATQFLKR SKVQEMTSRL EKMAVEGTSN KSPIPRRPTQ
                                                                                               600
10
         SPVKFMAOOI FSESSALKEG SDVAPLPPNL PSKSLSKPEV KHOVFSDSGS ANPKGGISSK
                                                                                               660
         MLPMKHPLQS LGRPEDPQKV FSYSERAPGK CSSPKEQLSP RQLSQALRKP EYEQKVSPVS
         ASSPKEMBNS KKOLPPKIES QASDRSKPOP OMSSKGFVNV PVKOSSGEKH LPSSSPPQOQ
VHSSSVNAAA RRSVFESNSD NWFLGRDEAF AIKTKKPSQG SKNPIKSIPA PATKPGKPTI
AFVROTSTSG GIYSKKEDLE SGDGNNNQHA NLSNQDDVEK LPGVRLKRAP PSQKYKSEKQ
                                                                                               780
                                                                                               840
                                                                                              900
15
         DNFTQLASVP SGPISSSVGR GHKIRSTSQG LLDAAGNLTK ISYVADKQQS RPKSESMAKK
                                                                                              960
         QPACKTPGKP AGQQSDYAVS EPVWITHAKQ KQKSPKAHIS VXELKTKSNA GADABTKEPK
YEGAGSANEN QPKKMFTSSV HKQEKTAQMK PPKPTKSVGP BAQKILQVPA MEKETKRSST
                                                                                             1020
         LPAKPONPVE PIEPVWPSLA RKKAKAWSHM AEITO
20
                                                             SEQ ID NO:49 PAB7 DNA SEQUENCE
         Nucleic Acid Accession #: D87742
                              208-3582 (underlined sequences correspond to start and stop codons)
         Coding sequence:
                       11
25
         GCTTTCCTTT CTAAAGTAGA AGAGGATGAT TATCCCTCTG AAGAACTACT AGAGGATGAA
         AACGCTATAA ATGCAAAACG GTCTAAAGAA AAAAACCCTG GGAATCAGGG CAGGCAGTTT
         GATGITAATC TGCAAGTCCC TGACAGAGCA GTTTTAGGGA CCATTCATCC AGATCCAGAA
ATTGAAGAAA GCAAGCAAGA AACTAGT<u>ATG</u> ATTTTGGATA GTGAAAAAAC AAGTGAGACT
GCTGCCAAAG GGGTCAACAC AGGAGGCAGG GAACCAAATA CAATGGTGGA AAAAGAACGC
                                                                                              180
                                                                                              240
30
         CCTCTGGCAG ATAAGAAAGC ACAGAGACCA TTTGAACGAA GTGACTITTC TGACAGCATA
AAAATTCAGA CTCCAGAATT AGGTGAAGTG TTTCAGAATA AAGATTCTGA TTATCTGAAG
                                                                                               420
         AACGACAACC CTGAGGAACA TCTGAAGACC TCAGGGCTTG CAGGGGAGCC TGAGGGAGAA
         CTCTCAAAAG AGGACCATGG GAACACAGAG AAGTACATGG GCACAGAAAG CCAGGGGTCT
                                                                                              540
35
         GCTGCTGCAG AACCTGAAGA TGACTCGTTC CACTGGACTC CACATACAAG TGTAGAGCCA
                                                                                               600
         GGGCATAGTG ACAAGAGGGA GGACTTACTT ATCATAAGCA GCTTCTTTAA AGAACAACAG
         TCTTTGCAGC GGTTCCAGAA GTACTTTAAT GTCCATGAGC TGGAAGCCTT GCTACAAGAA
                                                                                              720
         ATGTCATCAA AACTGAAGTC AGCGCAGCAG GAGAGCCTGC CCTATAATAT GGAAAAAGTC
         CTAGATAAGG TCTTCCGTGC TTCTGAGTCA CAAATTCTGA GCATAGCAGA AAAAATGCTT
40
         GATACTCGTG TGGCTGAAAA TAGAGATCTG GGAATGAACG AAAATAACAT ATTTGAAGAG
GCTGCAGTGC TTGATGACAT TCAAGACCTC ATCTATTTTG TCAGGTACAA GCACTCCACA
                                                                                              900
                                                                                              960
         CCAGAGGAGA CAGCCACACT GGTGATGGCA CCACCTCTAG AGGAAGGCTT GGGTGGAGCA
                                                                                             1020
         ATEGAAGAGA TOCAACCACT GCATGAAGAT AATTTCTCAC GAGAGAAGAC AGCAGAACTT
AATGTGCAGG TTCCTGAAGA ACCCACCCAC TTGGACCAAC GTGTGATTGG GGACACTCAT
                                                                                             1080
                                                                                             1140
45
         GCCTCAGAAG TGTCACAGAA GCCAAATACT GAGAAAGACC TGGACCCAGG GCCAGTTACA
                                                                                             1200
         ACAGARGACA CTCCTATGGA TGCTATTGAT GCAAACAAGC AACCAGAGAC AGCCGCCGAA
GAGCCGGCAA GTGTCACACC TTTGGAAAAC GCAATCCTTC TAATATATTC ATTCATGTTT
                                                                                             1260
                                                                                             1320
         TATTTAACTA AGTCGCTAGT TGCTACATTG CCTGATGATG TTCAGCCTGG GCCTGATTTT
                                                                                             1380
         TATGGACTGC CATGGAAACC TGTATTTATC ACTGCCTTCT TGGGAATTGC TTCGTTTGCC
                                                                                             1440
50
         ATTTTCTTAT GGAGAACTGT CCTTGTTGTG AAGGATAGAG TATATCAAGT CACGGAACAG
                                                                                             1500
         CARATTICTO AGRAGITGAA GACTATCATO ARAGARARTA CAGRACTIGI ACARARATTO TCARATTATO ARCAGRAGAT CRAGGRATCA ARGARACATO TTCAGGRARC CAGGRARCAR
                                                                                            1560
                                                                                            1620
         AATATGATTC TCTCTGATGA AGCAATTAAA TATAAGGATA AAATCAAGAC ACTTGAAAAA
         AATCAGGAAA TICTGGATGA CACAGCTAAA AATCTICGTG TTATGCTAGA ATCTGAGAGA
GAACAGAATG TCAAGAATCA GGACTTGATA TCAGAAAACA AGAAATCTAT AGAGAAGTTA
                                                                                            1740
55
                                                                                             1800
         AAGGATGTTA TITCAATGAA TGCCTCAGAA TITTCAGAGG TTCAGATTGC ACTTAATGAA
         GCTAAGCTTA GTGAAGAGAA GGTGAAGTCT GAATGCCATC GGGTTCAAGA AGAAAATGCT
                                                                                            1920
         AGGCTTAAGA AGAAAAAAGA GCAGTTGCAG CAGGAAATCG AAGACTGGAG TAAATTACAT
                                                                                             1980
         GCTGAGCTCA GTGAGCAAAT CAAATCATTT GAGAAGTCTC AGAAAGATTT GGAAGTAGCT
60
         CTTACTCACA AGGATGATAA TATTAATGCT TTGACTAACT GCATTACACA GTTGAATCTG
                                                                                            2100
         TTAGACTUTG AATCTGAATC TGAGGGTCAA AATAAAGGTG GAAATGATTC AGATGAATTA
                                                                                             2160
         GCAAATGGAG AAGTGGGAGG TGACCGGAAT GAGAAGATGA AAAATCAAAT TAAGCAGATG
         ATGGATOTOT CTCGGACACA GACTGCAATA TCGGTAGTTG AAGAGGATCT AAAGCTTTTA
CAGCTTAAGC TAAGAGCCTC CGTGTCCACT AAATGTAACC TGGAAGACCA GGTAAAGAAA
                                                                                            2280
                                                                                             2340
65
         TTGGAAGATG ACCGCAACTC ACTACAAGCT GCCAAAGCTG GACTGGAAGA TGAATGCAAA
                                                                                             2400
         ACCTTGAGGC AGAAAGTGGA GATTCTGAAT GAGCTCTATC AGCAGAAGGA GATGGCTTTG
                                                                                             2460
         CAAAAGAAAC TGAGTCAAGA AGAGTATGAA CGGCAAGAAA GAGAGCACAG GCTGTCAGCT
                                                                                             2520
         GCAGATGAAA AGGCAGTTTC GGCTGCAGAG GAAGTAAAAA CTTACAAGGG GAGAATTGAA
GAAATGGAGG ATGAATTACA GAAGACAGAG CGGTCATTTA AAAACCAGAT CGCTACCCAT
                                                                                             2580
                                                                                             2640
70
         GAGAAGAAG CTCATGAAAA CTGGCTCAAA GCTCGTGCTG CAGAAAGAGC TATAGCTGAA
         GAGAAAAGGG AAGCTGCCAA TTTGAGACAC AAATTATTAG AATTAACACA AAAGATGGCA
                                                                                             2760
         ATGCTGCARG ARGACCTGT GATTGTAAAA CCAATGCCAG GAAAACCAAA TACACAAAAC
                                                                                             2820
         CCTCCACGGA GAGGTCCTCT GAGCCAGAAT GGCTCTTTTG GCCCATCCCC TGTGAGTGGT
         GGAGAATGCT CCCCTCCATT GACAGTGGAG CCACCCGTGA GACCTCTCTC TGCTACTCTC
                                                                                             2940
75
         ARTCGARGE STATECCTAG ARGTGARTTT GGATCAGTGG ACGGCCTCT ACCTCATCCT
                                                                                             3000
         CGATGGTCAG CTGAGGCATC TGGGAAACCC TCTCCTTCTG ATCCAGGATC TGGTACAGCT
                                                                                             3060
         ACCATGATGA ACAGCAGCTC AAGAGGCTCT TCCCCTACCA GGGTACTCGA TGAAGGCAAG
GTTAATATGG CTCCAAAAGG GCCCCCTCCT TTCCCAGGAG TCCCTCTCAT GAGCACCCCC
                                                                                            3120
                                                                                             3180
         ATGGGAGGCC CTGTACCACC ACCCATTCGA TATGGACCAC CACCTCAGCT CTGCGGACCT
80
         TTTGGGCCTC GGCCACTTCC TCCACCCTTT GGCCCTGGTA TGCGTCCACC ACTAGGCTTA
```

		CACCAGGCGT					3360	
	TITITACCIG	GACACGCACC	ATTTAGACCT	TTAGGTTCAC	TTGGCCCAAG	AGAGTACTTT	3420	
		ACTTACTGCC				ACCACCACCT	3480 3540	
5		ACTITACIGCO					3600	
•		AGAAAGTGTA					3660	
		AGTTTATTTT					3720	
		CCAAACAATT					3780	
10		TCCTTACAAC					3840	
10		TAATTGCAAA					3900	
		AAGAACATGT					3960	
						TGTTACGCTA TTTGTAGTAA	4020 4080	
						TIGGACTGTT	4140	
15		TGCCATTTGG					4200	
•		ACTTCCGGCT					4260	
		AAGTTTATTT					4320	
		TGAGAATGGT					4380	
20		CCATTGTTTT					4440	
20						ATGTACAGTC AAAAGATTGG	4500 4560	
		TGCCATGAGA					4620	
						GGCGACAGAT	4680	
~ =		AATTAATATT					4740	
25						ACTGTCTTTA	4800	
						ACATTTTAAT		
						TAAAATCATA	4920	
		TTGAAACCTA				AGTCCTATGA	4980 5040	
30		AAAAAGGAGC					5100	
-						ACTCTGTCAA	5160	
		GAATATAAAA					5220	
		AGAATAGAAG					5280	
35		AAAAATAAGA					5340	
22						ATGTCATTTA	5400 5460	
		ATGCCATCTA TTAGAGTATT					5520	
		AGAAACTGGT					5580	
40		ATAACTGCTT					5640	
40		TGCCAATATG					5700	
						GTCTGGATTT	5760	
						AGCATTTCT		
						CATTTTCTCG		
45		GTCTGAATTA						
		AB7 Protein seque						
50	Protein Accession	n#: BAA13	448					
50	1	11	21	31	41	51		
	ī	ī	ī	Ĭ	i	Ĭ-		
	AFLSKVEEDD	YPSEELLEDE	NAINAKRSKE		DVNLQVPDRA	VLGTIHPDPE	60	
		ILDSEKTSET					120	
55		FONKDSDYLK					180	
		HWTPHTSVEP ESLPYNMEKV					240 300	
		IYFVRYKHST					360	
		LDQRVIGDTH					420	
60		AILLIYSFMP					480	
		KDRVYQVTEQ					540	
		YKDKIKTLEK					600	
		FSEVQIALNE					660 720	
65		EKSQKDLEVA EKMKNQLKQM					780	
05		AKAGLEDECK					840	
		EVKTYKRRIB					900	
		KLLELTQKMA					960	
70		PPVRPLSATL					1020	
70		SPTRVLDEGK					1080	
		GPGMRPPLGL HGPQEYPPPP					1140	
	IPGIRDFFFI	DGFQEIFFFF	AVRIDIDES	KDEFFFASQS	TOROCOGNUN	Ast		
	SEQ ID NO:51 PAB9 DNA SEQUENCE							
<i>7</i> 5	Nucleic Acid Accession #: NM_006457							
	Coding sequence	: 84-187	4 (underlined sequ	rences correspond	to start and stop o	codons)		
			21	21	41	61		
	1	11	21	31	41 I	51 !		
80	AGACTGAGG	GGAGGCAGC	CCCCCCCCCC	COGGACCOG	GCATATTTC	TTTTCTGTCA	60	
- •	3.4						••	
					32	1		
						•		

```
TTGGACTTTG AGCCATTAGA ACCATGAGCA ACTACAGTGT GTCACTGGTT GGCCCAGCTC
CTTGGGGTTT CCGGCTGCAG GGCGGTAAGG ATTTCAACAT GCCTCTGACA ATCTCTAGTC
                                                                                                        180
           TAAAAGATGG CGGCAAGGCA GCCCAGGCAA ATGTAAGAAT AGGCGATGTG GTTCTCAGCA
                                                                                                        240
           TTGATGGAAT AAATGCACAA GGAATGACTC ATCTTGAAGC CCAGAATAAG ATTAAGGGTT GTACAGGCTC TTTGAATATG ACTCTGCAAA GAGCATCTGC TGCACCCAAG CCTGAGCCGG
                                                                                                        300
  5
                                                                                                        360
            TTCCTGTTCA AAAGGGAGAA CCTAAAGAAG TAGTTAAACC TGTGCCCATT ACATCTCCTG
                                                                                                        420
           CTGTGTCCAA AGTCACTTCC ACAAACAACA TGGCCTACAA TAAGGCACCA CGGCCTTTTG
                                                                                                        ARD
           GTTCTGTGTC TTCACCAAAA GTCACATCCA TCCCATCACC ATCGTCTGCC TTCACCCCAG
                                                                                                        540
           CCCATGCGAC CACCTCATCA CATGCTTCCC CTTCACCCGT GGCTGCCGTC ACTCCTCCCC
10
           TGTTCGCTGC ATCTGGACTG CATGCTAATG CCAATCTTAG TGCTGACCAG TCTCCATCTG
                                                                                                        660
           CACTGAGCGC TGGTAAAACT GCAGTTAATG TCCCACGGCA GCCCACAGTC ACCAGCGTGT
                                                                                                        720
           GTTCCGAGAC TTCTCAGGAG CTAGCAGAGG GACAGAGAAG AGGATCCCAG GGTGACAGTA
           AACAGCAAAA TGGCCCACCA AGAAAACACA TTGTGGAGCG CTATACAGAG TTTTATCATG
                                                                                                        840
           TACCCACTCA CAGTGATGCC AGCAAGAAGA GACTGATTGA GGATACTGAA GACTGGCGTC
CAAGAACTGG AACAACTCAG TCTCGCTCTT TCCGAATCCT TGCCCAGATC ACTGGGACTG
                                                                                                        900
15
           AACATITIGAA AGAATCIGAA GCCGATAATA CAAAGAAGGC AAATAACTCT CAGGAGCCTT
CTCCGCAGIT GGCTTCCTTG GTAGCTTCCA CACGGAGCAT GCCCGAGAGC CTGGACAGCC
CAACCTCTGG CAGACCAGGG GTTACCAGCC TCACAACTGC AGCTGCCTTC AAGCCTGTAG
                                                                                                       1020
                                                                                                       1080
           GATCCACTGG COTCATCAAG TCACCAAGCT GGCAACGGCC AAACCAAGGA GTACCTTCCA
CTGGAAGAAT CTCAAACAGC GCTACTTACT CAGGATCAGT GGCACCAGCC AACTCAGCTT
                                                                                                       1200
20
                                                                                                      1260
           TGGGACAAAC CCAGCCAAGT GACCAGGACA CTTTAGTGCA AAGAGCTGAG CACATTCCAG
           CAGGGAAACG AACTCCGATG TGCGCCCATT GTAACCAGGT CATCAGAGGA CCATTCTTAG
                                                                                                      1380
           TGGCACTGGG GAAATCTTGG CACCCAGAAG AATTCAACTG CGCTCACTGC AAAAATACAA
                                                                                                      1440
           TGGCCTACAT TGGATTTGTA GAGGAGAAAG GAGCCCTGTA TTGTGAGCTG TGCTATGAGA
25
           AATTCTTTGC CCCTGAATGT GGTCGATGCC AAAGGAAGAT CCTTGGAGAA GTCATCAATG
                                                                                                      1560
           CGTTGAAACA AACTTGGCAT GTTTCCTGTT TTGTGTGTGT AGCCTGTGGA AAGCCCATTC
                                                                                                      1620
           GGAACAATGT TTTTCACTTG GAGGATGGTG AACCCTACTG TGAGACTGAT TATTATGCCC
                                                                                                      1680
           TCTTTGGTAC TATATGCCAT GGATGTGAAT TTCCCATAGA AGCTGGTGAC ATGTTCCTGG
                                                                                                      1740
           ABGUTUTGG CTACACCTGG CATGACACTT GCTTTGTATG CTCAGTGTGT TGTGAAAGTT
                                                                                                      1800
30
           TGGAAGGTCA GACCTTTTC TCCAAGAAGG ACAAGCCCCT GTGTAAGAAA CATGCTCATT
           1920
                                                                                                      1980
           AGTGGCCCTG AAGGAATAAA TTCCAGCTTT AAAAACCAAG TCTGAGGAAA TATTTGGCTT
           CATAAAGTAA AGAGACGGTT TGGCATTTAT TATTACTTTT TCCTGTATTT TATGCCCATA
AAATAAGCTT TATAAAAACC AATTTCCTGA TGGACTATTA AATTCATCTT AGAATAAATT
                                                                                                      2100
35
                                                                                                       2160
           AGTGAAGAAT TTAATTTAG AATAAATAAT CCAATCTGAA ATAATTATAC CTTCTTTCCT
           TGTTAGGTAG TTATGAGTAA ATCTGCAAAA GGCAATGAAA ATGCCTTAAA TTTTATCAAT
AACAGAATTA TTGTATTTAA AAAAAAACTA ATACTTATCT TTAAAATAGT AAATAGGATT
                                                                                                      2280
                                                                                                      2340
           TTAAACAGAG AATTTTATCA GTAATAGGTG TCAGTTTTTA AAAAATTGCT TGTAGGCTGA
40
           GCGCGGTGGC TCACGCCTGT AATCCCAGCA CTTTGGGAGG CCAAGGTGGG TGGACCACAT GAGGTCAGGA GTTTGAGATC AGCCTGGCCA ACATGGTGAA ACCCCATCTC TACTAAAAAAT
                                                                                                      2460
                                                                                                       2520
           ACAAAATTA GCCGGACGCA GTGGCACGCG CCTGTAATCC CAGCTACTCA AGAGGCTGAG
                                                                                                       2580
           GCACGAGAAT CACTTGAACC CGGGAGGGAG AGGTTGCAGT GAGCCAAGAT CGTACCACTG
CACTCCAGCC TGGGTGACAG AGTGAGACTC CGTCTCCAAA AAAAAACTTT GCTTGTATAT
                                                                                                      2640
                                                                                                      2700
45
           TATTTTTGCC TTACAGTGGA TCATTCTAGT AGGAAAGGAC AATAAGATTT TTTATCAAAA
           TGTGTCATGC CAGTAAGAGA TGTTATATTC TTTTCTTATT TCTTCCCCAC CCAAAAATAA
GCTACCATAT AGCTTATAAG TCTCAAATTT TTGCCTTTTA CTAAAATGTG ATTGTTTCTG
                                                                                                      2820
                                                                                                      2880
           TTCATTGTGT ATGCTTCATC ACCTATATTA GGCAAATTCC ATTTTTTCCC TTGCGCTAAG
                                                                                                       2940
           GTARAGATTT AATTAAATAA TTITGGCCTC TCATAGTTTT CTCTCTCTT AAAGAGAATA
AATAGAGGGC CAGGTGTGGT GGCTCACGCC TGTGATCCCA GCACTTTGGG AGGCCAAGAC
                                                                                                      3000
50
                                                                                                      3060
           GGGCGGATCA TGAGGTCAAG AGATCAAGAT CATCCTGGCC AACATGGTGA AACCCTGTCT
                                                                                                      3120
           CTACTAAAAA TACAAAAATG AGCTGGGCAT GGTGGGGCGT GCCTGTAGTC CCATGTACTT
                                                                                                      3180
           GGGAGGCTGA GGCAGGAAAA TTCTTGAACC CAGGAGACGG AAGTTGCAGT GAGCTGAGAT 3240
           CACACCACTG CACTCCAGCC TGGTGACAGA GCAAGACTCC GGCTCTT
55
         SEQ ID NO:52 PA89 Protein sequence
Protein Accession #: NP_006448
                                NP 006448
                                                                              41
                                                              31
60
             1 MENYSVSLVE PAPMEFRLQE GKDPNMPLTI SSLKDEGKAA QANVRIEDVV LSIDGINAQE
61 MTHLEADNKI KECTESLNMT LORASAAPKP EFVFVOKEEP KEVVKPVPIT SPAVSKVTST
121 NNMAYNKAPR PFCSVSSPKV TSIPSPSSAF TPARATTSSH ASFSPVAAVT PPLFAASCH
                                                                                                               180
             181 AMANLSADOS PSALSAGKTA VAVPROPTVT SVCSETSOEL ABGORGGGG DSKOONGPFR
241 KHIVERYTEF YHVPTHSDAS KKRLIEDTED WRPRTGTTOS RSFRILAQIT GTEHLKESEA
                                                                                                               240
65
             301 DNTKKANNSQ EPSPQLASLV ASTREMPESL DSPTSGRPGV TSLTTAAAPK FVGSTGVIKS
361 PSWORPNOGV PSTGRISNSA TYSGSVAPAN SALGOTOPSD ODTLVORAEH IPAGKRTFMC
                                                                                                               360
                                                                                                               420
             421 AHCNOVIRGP FLVALGKSWH PEEFNCAHCK NIMAYIGFVE EKGALYCELC YEKFFAPECG
             481 RCQRKILGEV INALKQTWHV SCFVCVACGK PIRNNVFHLE DGEPYCETDY YALFGTICHG
541 CEPPIEAGDM FLEALGYTWH DTCFVCSVCC ESLEGQTFFS KKDKPLCKKH AHSVNF
                                                                                                               540
70
                                                                  SEQ ID NO:53 PBH7 DNA SEQUENCE
          Nucleic Acid Accession #: AA431407
                                 1-864 (underlined sequences correspond to start and stop codons)
          Coding sequence:
75
                                         21
                                                        31
                                                                       41
           ATGGCCAACT GTAAAATGAC CAAAAGCATC AGGTTCCCTG CCCTGGAGCA CTGCTATACT
GGCGGGGAGG TCGTGTTGCC CAAGGATCAG GAGGACTGGA AAAGACGGAC GGGCCTTCTG
CTCTACGAGA ACTATGGGCA GTCGGAAACG GGACTAATTT GTGCCACCTA CTGGGGAATG
80
```

5	GAGGCCTCAG GGCATCACAC AACACAGAG TGCTATGAGG GGGGACAGAG ATCATTAATC CACCCAGCGG GTGAAGACTGG AAGGACTGG GAGTTTGTCT	TTGAAAACTY ACAGCCTCTT GAAACATTGG GTGACCCAGG GAAGATTGGG CCTCTGGGTAG TTGGCGGAGTY TTATTGTCCT AGCAGCATGC CAGAGCTGCCT	GATTATTOM GCTACAGGT GCTACAGGT GCTACAGAT GAAGACAGC TGAAGAGGGG TGCCATCGGT GACCCCACAGT CCAAGTCAGT CAAGTCAGT CAAGTCAGT CAAGACAGT CAAAAACCAT	G AGCATGAAC. ATTGATGAC. AAACTGTC. AAAGTGGAA. TACATTTGT. GCCAGCAGAGG GCCAGCCCAA TTCCTGTCCC ACAGCCCCAA ACTGCCAAGAG ACTGCCAAGAG	A CCGCTGACCA A AGGGCAGCA A GGGCTGTGAA T GTGGGGACT T TCCTGGGGA 3 TTGAAAGCG A ACCAGATTCC C ATGACAGGA T ACCAGTACCA A TTGAACGGAA	A GTTTCATATG T TGGCAGCCAG T CCTGCTCATC T CTACAACACT GAGTGATGAC TTTGGTTGAC A TCAGCTGACC AAGGAAGGTG A GGAACTTCAG C AACACTGAGG AACACTGAGG AACACTGAGG AACACTGAGG AACACTGAGG AACACTGAGG	360 420 480 540 600 660 720 780 840				
15	CAAATCCCTC TGTTGATTTC AATTCAGTTC	GCCACTITAC GGAAAGTATC	TOTOCCAC AGGAGTGCC TOCAAGTCC	PATGGTGAGGA ATGATTCCAAT PCTGTATCTT	CGAGGGTGG	GCATTGAGAG TTTTAAATTA AGGTGAGCAC	960 1020				
20	SEQ ID NO:54 PBH7 Protein sequence Protein Accession #: FGENESH predicted										
25	KIKPGFMGKA NTEGNIGIRI IINASGYRIG	11 RFPALEHCYT TPPYDVQFHM KPVRPVSLFM PABVESALVE TAPYKYPRKV	EASVENCIIV CYEGDPEKTA HPAVAESAVV	SMNTADPGSQ KVECGDPYNT GSPDPIRGEV	GITHSLLLQV GDRGKMDEEG VKAFIVLTPQ	YICFLGRSDD	60 120 180 240				
20	SEQ ID NO:55 PBJ5 DNA SEQUENCE										
30	Nucleic Acid Acco	ession #: AF388 r: 33-137		ences correspond	to start and stop co	odons)					
	- • •	11		31	41	51					
35	TGGTTTTGAA TGGAAAAGGG	GGCAGAAGAG AATGGAGAAA TCACTGAAAT TGAAGAAAGC	AAGAGTGAGG GGGACGACAT	CGATGTGCTG AACTGAGAAA GAACTCAAGG	TGAAATCTAC CATGGATGGC AGGCTATTTA	TACCGTTTGC CTTGGGAACG TGACCATGTC	60 120 180 240				
40	TAATACAAAA AGAAACTTGA CACGGGGAAT		ARTCCCTCTG ATATAAGAAC TATGAGTCCC	TTTCTTATGT TTAATGTGTA TTTTCACGAT	TTATGCCAAC ATTAAGAAAG GCGATGTCAT	TTCAACAAAA AACTCTCCAC	300 360 420 480				
45		BJ5 Protein seque n #: AAK8									
	1	11	21	31	41	51					
50	MCCEIYYRLL	 VLKMEKKSEE	LRNMDGLGNV	ekgh	1	1					
	Nucleic Acid Acco	ession #: AA876				DNA SEQUENCE					
55	Coding sequence	: 1-2064	(underlined seque	inces correspond	to start and stop or	odons)					
55	1	11	21	31	41	51					
	ATGGACAGTT	GCCTGCAACA	TATGAGAGAC	CTACTTTACC	TCCTTCAGGA	GCTCAGGTGT	60				
60	TTAAATCCAG	CTACACTACT	CCCTGATCCA	GACTCCACTA	CTCCTGTTCA	TGACTGTCAG	120				
00		AAACTACCAA CTGTGTTCAC					180 240				
	GTTTCTTTTC	CACAGCCAGA	TCTGCCTGAC	AATCCCACAT	ACTCAACAGA	AGAAGAAAA	300				
	TGGAGGGCCG	ATGTTCGAGC GTACCTCCAA	GGAAGTCTCC	TTTGCAGTTG	ATTTATGTGT	ACTGTTCCCA	360 420				
65	GAGCCAGCTC	GTACCCATGA CAGGATTTGG	AGAGCAACAT	AATTTGCCGG	TCATAGGAGC	AGGAAGTGTC	480 540				
		GGCTCCAAAA					600				
		ATACTTACCA GATCAACTAG					660 720				
70	TTATGTACTA	GAAAAATTG	TAATCCTCTT	ACTATAACTG	TCCATGACCC	TAATGCAGCT	780				
		ATGGCATGTC CCATCCAAAA					840 900				
	CCTTTAACTG	ATCTAGGTGA	CCCTATATTC	CAGAAACACC	CTGACAAAGT	TGATTTAACT	960				
75	GTTCCTCTGC	CATTCTTAGT TACTAGGTGG	TCCTAGACCC	CAGCTACAAC	AACAACATCT	TCAACCCAGC	1020 1080				
15	CAAGATTGTT	GGCTATGTTT	AAAAGCAAAA	CCCCCTTATT	ATGTAGGATT	aggagtagaa	1140				
	GCCACACTTA	AACGTGGCCC	TCTATCTTGT	CATACACGAC	CCCGTGCTCT	CACAATAGGA	1200				
		GAAATGCTTC CTTGTAATCA					1260 1320				
80						TAATGGAACT	1380				

	GGACCAGAAG GTCCCACTTC		CATCGCTCCC ATTGGCTGGT	CCTGAGTTAC CTTAGCATAG	ATCCCAGGTT CTGGATCAGC	GCACCAAGCT AGCCATTGGT	1440 1500 1560				
5	GATTTTAGTA GAAGTAGTTC TGTGCAGCTC	ACCTCCAGTC TTCAAAACTG TAGGAGAAAG	TGCCATAGAT CCGATGCTTA TTGTTGCTTC	ATACTACATT GATCTGCTAT TATGCCAATC	CCCAGGTAGA TCCTCTCTCA AATCTGGAGT	GGTGGATGCT GTCTCTGGCT AGGAGGTTTA CATAAAAGGT AAATAACATC	1620 1680 1740 1800 1860				
10	CCCTGGTATC GCTGGACCTC TTTCTTAATT	AAAGCATGTT TCCTCATCCT	TAACTGGAAC ACTATTAAGT ACGCATAGCT	CCATGGCTAA TTAATTTTTG	CTACTTTAAT GGCCTTGTAT	CACTGGGTTA ATTAAATTCG TAAGACTCAA	1920 1980				
15	SEQ ID NO:58 P Protein Accession	BJ7 Protein seque n#: FGENE	nce ESH predicted								
	1	11 -	21 ·	31 	41 	51 					
20	ADATVPTDGS WRAGTSKEVS AEKGLQNVDF	PAVDLCVLPP	VSFPQPDLPD EPARTHEEQH SCRDTYQFFC	NPTYSTEERK NLPVIGAGSV PDWTCVTLAT	LASDVGANKN DLAAGFGHSG YSGGSTRSST	QEGRVFANTT SQTGCGSSKG LSISRVFHPK	60 120 180 240 300				
25	QDCWLCLKAK FQATCNQSLL GPEGRQLIAP DFSNLQSAID	TSISTSVSYQ PELHPRLHQA	ATLKRGPLSC APNNTWLACT VPLLVPLLAG EVVLQNCRCL	HTRPRALTIG SGLTRCINGT LSIAGSAAIG DLLPLSQGGL	DVSGNASCLI EPGPLLCVLV TAALVQGETG CAALGESCCF	STGYNLSASP HVLPQVYVYS LISLSQQVDA YANQSGVIKG	360 420 480 540 600 660				
30		SVKLTYLKTQ		PWDITEITGD	WASAUTHERS	LIFGECILAS	660				
	SEQ ID NO:59 PCQ1 DNA SEQUENCE Nucleic Acid Accession #: NDM_019005										
35	Coding sequence		85 (underlined sec		·	·					
	1	11 	21 	31	41 	51					
40		AATTTCTTGA ACACAGAATC					60 120				
40		AAACTTGAAA ACCAAACCTG					180 240				
	GTGTGACTCA	GAACTAAGTC	TTTATCATGT	GGAATCTACT	GTGAATTCAG	AACTCAAAGC	300				
4.50		CGTTTATCTG AAATGTGTTG					360 420				
45		AATGGTCGAG ATAGGAAAAG					480 540				
	CTGGAATCCA	CTGGATAGTA	ACTGGCTAGC	TGCTGGTTTA	GATAAGCACA	GAGCTGACTT	600				
						CCATGGAAAA CACTTTATGA	660 720				
50	GTTAGGACAG	AATGATGCTT	GTCTGTCTCT	TTGTTGGCTT	CCACGAGACC	AGAAACTTCT	780				
		ATGCATCGTA ACAAAAGCTG					840 900				
	TGCTTCCTTC	TATGAAGGTC	AGGTTGCAAT	ATGGGATCTT	AGAAAATTTG	AGAAGCCAGT	960				
55						CCACTAGGAC ATATGCAGCA	1020 1080				
	TACACCCACT	CCCATTGGGG	ATGAAACTGA	ACCCACAATA	ATTGAAAGAA	GTGTGCAACC	1140				
						GAATGATAGT CTCTTGCCTG	1200 1260				
60	GAGCCCAATT	ACATCTTTAA	TGTGGGCTTG	TGGTCGTCAT	TTATATGAAT	GTACGGAAGA	1320				
UU						GGGCTTTATC GAAATGAAGA	1380 1440				
						CAGAAGATAT	1500				
		TCTCCAGGCA TTGGGAATGG				TGGATAAGCA	1560 1620				
65						GTGGGTGGAT AAGAAGGGGA	1680 1740				
						CAATCCAAAT	1800				
						GTGGTAGCAA TGTAGCACAC					
70						ACAAGTGAAA					
	CAGGATCTTA	CGATGGAGTT	TTGTATGAAA	ACAAAGTTGC	AGTACGTGAC	AGAGTGGCAT TGAAATGAAA	2040				
						AGTGGACTTA					
75	ATGGAGAGTT	ATGTTGATAG	AACTGGAGAT	GTTCAAACAG	CAAGTTACTG	TATGTTACAG	2220				
,,	AATTTATTAG	ATGCCTGGAG	GTTTTGGCAT	AAACGAGCTG	AATTTGATAT	GAATTATAGA TCACAGGAGT	2340				
	AAGTTGGATC	CCAGTTCCAA	GCCTTTAGCA	CAAGTTTTTG	TGAGTTGCAA	TTTCTGTGGC	2400				
						TAGTCAGTAT TCGAAAACCA					
80						CTGTCCTGGA					

5	GATACAACGG AGAGAACCCT	CATGGTGTCA ACCATGCAGA GGAATCTGGT TCAAGTGTGG CCATTCATGA	TAATTGCAGG GTGCCCTGTG ACCTGCAGAG AGCTTTCTAG	CACGGTGGAC TCTGCATGCA ACTGTCCAGC TAGGTGTCCT	ATGCTGGACA CGTGTAAATG CATAAAATGT TCATAGCTCA	TATGCTTAGT TATGCAGTTG TACCACCTTA	2640 2700 2760 2820 2880 2940			
10	SEQ ID NO:60 PC Protein Accession									
15	 MSGTKPDILW PYMKCVAWYL WNPLDSNWLA	nydpecilav agldkhradf cwlprdqkll	GQANGRVVLT SVLIWDICSK LAGMHRNLAI	SLGQDHNSKF YTPDIVPMEK FDLRNTSQKM	KDLIGKEFVP VKLSAGETET FVNTKAVQGV	KHARQCNTLA TLLVTKPLYE TVDPYFHDRV	60 120 180 • 240			
20	TPTPIGDETE SPITSLMWAC PQLKSLWYTL SDIONLNEER LNEGASSEKG	GRHLYECTEE HFMKQYTEDM ILALQLCGWI	endnslekdi Doksponkgs Kkotdvdvgp	ATKMRLRALS LVYAGIKSIV	RYGLDTEQVW KSSLGMVESS	RNHILAGNED RHNWSGLDKQ	360 420 480 540			
25				SEC	ID NO:61 PDG3	DNA SEQUENCE				
	Nucleic Acid Accession 4: U42359 Coding sequence: 563-775 (underlined sequences correspond to start and stop codons)									
20	1	11	21	31	41	51				
30	GATCAGCCCA GAGTCCTGGC	CAGTACACAT TTTGTAAAAT	CATTGATGAG GACTTATAAA	AATTTCACTG GGTCCAAGGA	GTCTCAACCT	ATGGTGTGAT TTCTCATGCT ATTAAGAGAT TAAAGAATGT	60 120 180 240			
35	AGTGCTAAAT CCATATTGTT TGTGATTTGG CTGAGCCTCA	CTTGTAATAA GTATTTCATT ACCATGGCAC GTTTTCCTCA	TATTGTACAA GTGGTGTATT TTAAAAACTC TTTTTCAAAT	ATGGAAATTC GGAAAGTGAT TATAACCTCA ATAGAGAGTA	AATCTTAAGG CTGGACTTTG GGCAAGTCTT TAACATTTAT	ATTATTTTT AGTGAGAAGA TTAATCTTCT CTCATAAGAC	300 360 420 480			
40	TTCCAGTCTT TACCAAAAGA CAAATATACT AAATATTTTT	ACATTATTAT CTGACACGTG TTCTTTAACT	GITTATCTGC GAGTTAATCA TCTGTGTGGG TTAGGAAAAA	CACAGGGAGA TTTGACAGAT TATCACTTAG TTGTAGNCAA	AGTCCTCAGA GCAAATGCTT GGAAAAAAA ATCTTTTNT	AGATTCCATA TAAAAATGTC CCACCCCCAA GCAGGCAACA CCCATTAACA AAACAGGTAA	540 600 660 720 780 840			
45	CTTACTTGAA SEQ ID NO:62 PD Protein Accession	G3 Protein seque		,						
50	 MGARGAPSRR	 RQAGRRLRYL	 PTGSFPFLLL	rppecióres 	GOKKKENILLA		60			
55	SRRSIFRMNG AFCNKLFFSM WIADRTDVHI AMTSGOMWNH AATSKGDVGK	VDYDEGTDVF RVFRPFNYSG IRGPPYAHKN	QQLNMNSAPT TIALALLVSL PHNGQVSYIH	PXHXPPKGRP VGGLLYXRRN GSSQAQFVAE	Kradtfolor Nlefiynktg Shiilvlnaa	igfaaeqlak Wamvslcivf	120 180 240 300			
60	Nucleic Acid Acces Coding sequence:			SEC ences correspond		DNA SEQUENCE odons)				
	1	11	21	31	41	51				
65	GGGGCGCCCA CAGGGCGAGC CCGGGCTGGC	CCGCGCTGCC CGCTGCATTT GGCTGAACCG	AGCCTACCCC CTGCTGCCTA TAAGCCCATT	GCGGCCGAGC GACTTCAGCC GAGTCCACGC	TGGAGGAGCT TGGTGGCCTG	CGCCACCGCC GCTGTGGCTG GCAGGGCGAG CTTCATGACC	60 120 180 240			
70	TTCCTGCCCA GCCGCAGTGC GCGGCCGTCA CTGTGTCCGC	ACGGCATGGA CCGCAGGGAC CTTCGGGGGT GCGCGCGGGT	ACAGCGCCGG CACCGCAGCC GGCGACCAAG GCCTTTCCCG	ACCACCGCCA GCCGCCGCCG TGACCCGCTC CCGGGGACTC	GCACCACCGC CCGCCGCTGC CGCTCCTCCC	CTTCGTGCTG				
75	AAGCAAGGTT GGGTGGGATC CATCCCCTG	TGTGCTGCGC GCAGCTCCGA CCCGACTCCT	TTCCAGTTCC AGACGGAGAG TCCCCGCACC	GAAAAGCAGA GAGGGAAATG CACGTGCCCT	GGGCCCTTTC AGATTCATGG	CGCCTTTGAA CTTGGACTGA CCCTCTATTG CAGAAAATGA GTTTTAGTAA				
80	AAAAAATACA	AAACAAAAAG	ATTAAATTGC	TATTGCTGTA	GTAAGAGAAG	CTCTTTGTAT GGGGGGAGGG	900 960			

	TCCAAGTTG		r GACGTGGCC	r getegeest	r TCTTCTTGT	T ATGAACCTTT A CTTATGTGGT	1020 1080
5	SEQ ID NO:64 P Protein Accession	DG8 Protein sequ n #: CAB4					
10	PGWRLNRKPI	11 AAPSAAAATA ESTLVACFMT A AAAAAAAA	LVIVVWSVAA	LIWPVPIIAG			60 120
15	Nucleic Acid Acc Coding sequence	ession #: NM_0 r: 149-11	06765 95 (underlined sec			DNA SEQUENCE codors)	
20 .	1	<u>1</u> 1	21	31	41	51	
20	TCCCGGAGGC	CCGGGTCCCT TGGCCGGGCA AGACACTGCC	GCCGTGGTGC	GCGGTAGGAG	CTGGGCGCGC	ACGGCTACCG	60 120 180
25	GCAAGCGGGG GCTGCTGCTC AAAAGTAGAG	CGGCGGCTGC TGCATCCAGC	GGTACCTGCC TCGGGGGAGG AATGGAGTTC	CACCGGGAGC ACAGAAGAAA CAGACGCTCA	TTTCCCTTCC AAGGAGAATC ATCTTCCGAA	TTCTCCTGCT TTTTAGCTGA TGAATGGTGA	240 300
30	TGCTCTTCAG ACTGGCGAAC GGACTATGAT CAYGCATTTW	CCTCAGCGGC TCCTGGCGCT GAGGGGACAG CCTCCAAAAG	AGTGTTCTGT ATTCATCTGC ACGTTTTTCA GCAGACCTAA	GTGCAGGCAA TTTTTGTAAC GCAGCTCAAC GAGAGCTGAT	GCTAATGAAG AAGCTCTTCT ATGAACTCTG ACTTTTGACC	AATATCAAAT TCAGTATGGT CTCCTACATT TCCAAAGAAT	480 540 600 660
35	GGTTTTCAGA TGGAGGTTTG	CCACCCAACT CTTTATINGA	ACTCTGGTAC GAAGGAACAA	CATTGCTTTG CTTGGAGTTC	GCCCTGTTAG ATCTATAACA		720 780 840 900
40	GAGCAGCCAG CACCATGGGG ACGGATAATT	ATGGTTCTTC TGCCTAGTGG	TGGCAGAATC TAAATGAAGC GATTGGGCCT	ACACATTATT AGCAACTTCG GGTGGTCTTC	CTGGTACTGA AAAGGCGATG TTCTTCAGTT	ATGCCGCTAT TTGGAAAAAG TTCTACTTTC	960 1020 1080 1140
40	TGTGATTTGG CAAGTGGGAT	ACCATGGCAC TTGCATAAAG	TTAAAAACTC TGAATGTTTA	TATAACCTCA CCATGAAGAT	GCTTTTTAAT AAACTGTTCC	AGTGAGAAGA TAAATGAAGC TGACTTTATA ACTTTTTTA	1200 1260 1320 1380
45	ACAAAGGAAA		TTTTTCAAGC			TTAGTAATCT CACAGGATTG	1440 1500
50	SEQ ID NO:66 P Protein Accession	DM1 Protein sequ n#: NP_00					
55	SRRSIFRMNG APCNKLPPSM WIADRTDVHI AMTSGOMWNH	VDYDEGTDVF RVFRPPNYSG IRGPPYAHKN	PRNYSMIVMP QQLNMNSAPT TIALALLVSL PHNGQVSYIH	TALQPQRQCS FXHXPPKGRP VGGLLYXRRN GSSQAQFVAE	VCRQANEEYQ KRADTFDLQR NLEFIYNKTG SHIILVLNAA	ILANSWRYSS IGPAAEQLAK WAMVSLCIVF	60 120 180 240 300
60	AATSKGDVGK	RRIICLVGLG	LVVFFFSFLL			-	
65	Nucleic Acid Acc Coding sequence	ession #: NM_0 :: 88-161	00947 7 (underlined sequ			ONA SEQUENCE (codons)	
	1	11 	21 	31 	41 }	51 	
70	GAGTTTGTAT AGGTTGGCAG CCACCTTCTG	GTGACCAGAG AAAACATATC	GACCAAGATG GAATGCTTCC TTTAACAGAA	GAGTTTTCTG TACCCTCATT TTTGAAAACT	GAAGAAAGCG GCCTTCAGTT TGGCTATTGA	TGTGTTTTCC GAGGAAGCTG TTACTTGCAG TAGAGTTAAA ACAATACCAG	60 120 180 240 300
75	AGTAAGTTGG GAATATGAAC CAGTCTGAAG TTTAGTATTT	AGAGTGAGCT CACGAAGAAG AACTTAGACG TACCCAAGGA	TCGGAAGCTC AGATCATATT CTGGTTCATT TAAAATTCAG	AAGTTTTCCT TCTCATTTTA CAACAAGAAA GATTTCTTAA	ACAGAGAGAA TTTTGCGGCT TGGATCTCCT AGGATAGCCA	GCTAGAAGAT TGCTTATTGC TCGATTTAGA ATTGCAGTTT CTCATCACCA	540
80	AGTTTAAGTG	GACTTAAGTT	GGGGTTCGAG	TOCATTTATA	AGATCCCTTT	TGCTGATGCT CGTACCACTT	660 720

```
AAGGACATTG TGGCAATCAT CCTGAATGAA TTTAGAGCCA AACTGTCCAA GGCTTTGGCA
        TTARCAGCCA GGTCCTTGCC TGCTGTGCAG TCTGATGAAA GACTTCAGCC TCTGCTCAAT CACCTCAGTC ATTCCTACAC TGGCCAAGAT TACAGTACCC AGGGAAATGT TGGGAAGATT
                                                                                         900
         TCTTTAGATC AGATTGATTT GCTTTCTACC AAATCCTTCC CACCTTGCAT GCGTCAGTTA
  5
        CATAAAGCCT TGCGGGAAAA TCACCATCTT CGTCATGGAG GCCGAATGCA GTATGGCCTA
TTTCTGAAGG GCATTGGTTT AACTITGGAA CAGGCATTGC AGTICTGGAA GCAAGAATTT
                                                                                       1020
                                                                                        1080
        ATCARAGGAA AGATGGATCC AGACAAGTTT GATARAGGTT ACTCTTACAA CATCCGTCAC
        AGCTTTGGAA AGGAAGGCAA GAGGACAGAC TATACACCTT TCAGTTGCCT GAAGATTATT
CTGTCCAATC CACCAAGCCA AGGGGATTAT CATGGGTGCC CATTCCGTCA CAGTGATCCA
                                                                                        1200
                                                                                        1260
10
        GAGCTGCTGA AGCAAAAGTT GCAGTCATAC AAGATCTCTC CTGGAGGGAT AAGCCAGATT
        TTGGATTTAG TAAAGGGGAC ACATTACCAG GTAGCCTGTC AAAAATACTT TGAGATGATA
CACAATGTGG ATGATTGTGG CTTTTCTTTG AATCATCCTA ATCAGTTCTT TTGTGAGAGG
                                                                                       1380
                                                                                        1440
        CARCGTATTC TARATGGTGG TARAGACATA ARGAAGGAAC CTATCCAACC AGAAACTCCT
                                                                                        1500
        CAACCCAAAC CAAGTGTCCA GAAAACCAAG GATGCATCAT CTGCTCTGGC CTCTTTAAAT
                                                                                       1560
15
        TCCTCTCTGG AAATGGATAT GGAAGGACTA GAAGATTACT TTAGTGAAGA TTCTTAGGCA
                                                                                        1620
         GTTTTATAAC CCTTTTCCT CAATAGCCTG TTTCCTGTTT TTAAGATTTT GCCTTTGTTG
        TTGAAAAAGG CTTTCACTGT CACCAAGGCT TAGTGCAGTG ACACAATTAC AGCTGATTGC AGCCTTGACC TTCCCAAGTC AAGTGATCCT CCTACCTCAG CCTCCCAAGT AGTTAGGACA
                                                                                       1740
                                                                                       1800
        CACAGGTGTG CACCTCATAT CCAGATAATT TTTTTCAATT TTTTTTGTA GAGGTGGGGG
                                                                                        1860
20
        1920
                                                                                        1980
        TAACCTTTTC GTTTAACTTC TCTCTTCACT GCATCCCAAT CCATCTACAG GCATGCACAC
                                                                                       2040
        TTATTAGGAA AGGAGGTTTG AGGTAACAAC AGAGACTTTC ACTATATTTT GCTTTGACAG
                                                                                       2100
        AAGGAAAGAG GAGGAGTTTC TATTAAAATC TGTCACTTGA GTGATGTCAT TTAAGTCCTA
                                                                                       2160
25
        TTTTAGGAGA TAAAAACAGC TTTGGGGACT GGTTAAAGTC CCCCAGAAAC TACAATAAAG
                                                                                       2220
        ARCARCTEPP GETTERACTC TERRECACTT TGERRETTTTG ACTCRATCCT TTTCTGGACC 2280
        ATTTTTTTA ATAAATATCA AAGTGT
        SEQ ID NO:68 PDM2 Protein sequence:
30
         rotein Accession #:
                                                31
                                                                          51
35
        MEPSGRKRRK LRLAGDORNA SYPHCLOPYL OPPSENISLT EPENLAIDRY KLLKSVENLG
        VSYVKGTEQY QSKLESELRK LKFSYREKLE DEYEPRRRDH ISHFILRLAY CQSEELRRWF
        IQQEMDLLRF RYSILPKDKI QDFLKDSQLQ FEAISDEEKT LREQEIVASS PSLSGLKLGF
                                                                                         180
        ESTYKIPFAD ALDLFRGRKV YLEDGFAYVP LKDIVAIILN EFRAKLSKAL ALTARSLPAV
                                                                                         240
        QSDERLQPLL NHLSHSYTGQ DYSTQGNVGK ISLDQIDLLS TKSFPPCMRQ LHKALRENHK
40
        LRHGGRMQYG LFLKGIGITL EQALQFWKQE FIKGKMDFDK FDKGYSYNIR HSFGKEGKRT
DYTFFSCLKI ILSNPPSQGD YHGCPFRHSD PELLKQKLQS YKISPGGISQ ILDLVKGTHY
                                                                                         360
        QVACQKYFEM IHNVDDCGFS LNHPNQFFCE SQRILNGGKD IKKEPIQPET PQPKPSVQKT
        KDASSALASL NSSLEMDMEG LEDYFSEDS
45
                                                          SEQ ID NO:69 PDM3 DNA SEQUENCE
        Nucleic Acid Accession #: NM_024840
                             108-491 (underlined sequences correspond to start and stop codons)
        Coding sequence:
                                                 31
50
          AATTCATACA GGAGAGAAGT CATATATATG CAGTGATTGT GGAAAAGGCT TCATCAAGAA
         GTCTCGGCTC ATTANTCATC AGAGAGTTCA TACAGGAGAG AAACCACATG GATGCAGCCT
GTGTGGGAAG GCCTTCTCCA AAAGGTCCAG GCTCACTGAA CACCAGAGAA CTCATACAGG
                                                                                          120
                                                                                          180
          AGAGAAGCCC TATGAATGCA CTGAATGTGA CAAAGCATTC CGCTGGAAAT CACAGCTCAA
                                                                                          240
55
         TGCACATCAG AAAGCTCACA CAGGAGAGAA GTCATATATA TGCCGTGATT GTGGAAAAGG
CTTCATTCAG AAGGGAAATC TCATTGTACA TCAGCGAATT CATACTGGAG AAAAACCCTA
                                                                                          300
                                                                                          360
          TATATGCAAT GAATGTGGAA AAGGCTTCAT CCAAAAGGGC AACCTCCTTA TTCATCGACG
                                                                                          420
          TACTCACACT GGAGAGAAC CCTATGAATG CAATGAATGT GGGAAAGGCT TCAGCTAGAA
                                                                                          480
          GACATGITTA ATATCCCATC AGAGATITCA CACAGGAAAG ACACCCTTTG TATGTACTGA
60
          GTGTGGAAAA TCCTGCTCAC ACAAGTCAGG TCTCATTAAC CACCAGAGAA TTCACACAGG
                                                                                          600
          AGAGAAACCC TATACATGCA GTGACTGTGG GAAAGCTTTC AGAGATAAAT CATGTCTCAA
                                                                                          660
          CAGACATCGG AGAACTCATA CAGGGGAGAG ACCGTATGGA TGCTCTGATT GTGGGAAAGC
         TITCTCCCAC TIGTCATGCC TIGTITATCA TAAGGGAATG CIGCATGCAA GAGAGAATG
TGTAGGTTCA GTCAAATTGG AAAATCCTTG CTCAGAGAGT CATAGCTTAT CACATACACG
                                                                                          780
                                                                                          840
65
          TGATCTCATA CAGGATAAAG ACTCTGTTAA CATGGTGACT CTGCAGATGC CTTCTGTGGC
         AGCTCAGACC TCATTAACTA ACACTGCGTT CCAAGCAGAG AGCAAAGTAG CCATTGTGAG
CCAGCCTGTT GCCAGAAGTT CAGTCTCAGC AGATAGTAGA ATTTGCACAG AATAAAAACC
                                                                                          960
                                                                                         1020
          ATATGAATGC AGTGAATGTG GTAGTGCTTT CAGTGATCAA TTACATCATA TGTCACAAAA
                                                                                         1080
          AACACAGAGG AACAAACTGA TATATTCAAG GTGGAAAGCC CTTGAATAAA ACCTTATGGC
                                                                                         1140
70
          TAATAAGCAT ATACTCAGAG AAAAATAGTA TGAAGTGGAG ACTGGGAAAT TCTTTTATGG
                                                                                         1200
          GAAGATAGAT CTTCTCATCA GTGACCATAG ATCACATCTT CAGTGAGCTT ATAGTTGGTA
                                                                                         1260
          GAAATATAAT GATCATGGAA AAGTCCTTGT TCAGAAACAG TACGCCAGTA GGTATCAGGG
                                                                                         1320
          GGTTTACACA GGAGAGAAC TTTTGGAAGA CCTTTGAAGG CTATGAATGT GGCAGGGTTG
                                                                                         1380
          CTAGTGGTAC ATTCTCCTT ATCCTCAGAG GGAATCATAT AGAAATAAAA CTATGAAAAT
GTAACTAGAA CATCTTCATC AAAATATGAA AGAACACACG AAGCAAATAA GCCCTGTGAA
                                                                                         1440
75
                                                                                         1500
          ARGGAGTATT TTAGAGATTT CGATCAGAAA TCTAACATCA TTATATGGCA GATAATATAC
                                                                                         1560
          AGGATGTGTA TTTTAGGACA ATATACCTTG AATCACTAGT TGATATGTCA ATGACTAATT
                                                                                         1620
          AAAAGGGTT GTCAGTGTTA CACATCATTG GTTAAATTTA TAGCACAATG TACCTCTTCC
          CCCTTTTTG ATAAGAGTCT TCTATTCCCA ACCAAGATCA TTATATGATT AGCTCTTGTG
80
          TITCTITGAT TCCAAATTTC TTCACTTGTT ATTTCAGACT ACTGAAGCTC TTCAAAAGGA
                                                                                         1800
```

алалтстатт таатттаата атстаасаса асаясттос атстстттаа стутатааат 1860 аатсасссса дассатсаа стутааласт тотсаатаас с

5	SEQ ID NO:70 P Protein Accession	DM3 Protein secu	rence: 79116				
	1	11	21	31	41	51	
10			<u></u>]	1	<u> </u>	
	MDAACVGRPS IVEKASFRRE ASARRHV	PKGPGSLNTR ISLYISEFIL	ELIQERSPMN EKNPIYAMNV	ALNVTKHSAG EKASSKRATS	NHSSMHIRKL LFIDVLTLER	TQERSHIYAV NPMNAMNVGK	60 120
15				SE	Q ID NO:71 PDM8	DNA SEQUENCE	
15	Coding sequence	ession #: NM_(:: 341-95		iences correspond	i to start and stop	codons)	
	1	11 .	.21	31 	41 	51	
20	AAGCCGACTG AGGTTGCACA	ACATAAGCCA CTTCTAAGAA	GGTCCTAACG GAGCGCCGTG	TCCACTGGGG GAGCCTATGT GGGGGCTCGG	CACGGCAGCG GTAAGTCCAC CGACCTTCGC	TCTAAGCCAC TACTGGTGCA TTCAGTCGCT	120 180
						GTGGGCGGAC	240
25						AACAGCTCTT CTGTTGCTGA	300 360
						TCCTGAAGGC	420
	CTGGGATTTT	TTGTCTGAAA	ATCAACTGCA	GACTGTAAAT	TTCCGACAGA	GAAAGGAATC	480
						GTGATGCTGC	
30	CCTGTTAGAC	ATCATTTATA	TGCAATTTCA	TCAGCACCAG	AAAGTTTGGG	ATGTTTTCA	600 660
50						TTAAAAATTC GAGAAACTGA	
						CAAACCAGTA	
						CCTCCTCCAT	
35						AAATCTACCT ATTAGTGAAC	
JJ,		AATAAAAATT				ATTAGTGAAL	300
40	Protein Accession	DM8 Protein secunds: NP_0	50925				
	1	11	21 	31	41	51	
	MDETVAEFIK	RTILKIPMNE	LTTILKAWDP	LSENOLOTVN	FRORKESVVO	HLIHLCEEKR	60
4.5	ASISDAALLD	IIYMQFHQHQ	KVWDVFQMSK	GPGEDVDLFD	MKQFKNSPKK	ILQRALKNVT	120
45		VWIRIAWGTQ BIILDITEMK		YVVYYSQTPY	AFTSSSMLRR	NTPLLGQELE	180
				SE	Q ID NO:73 PDM9	DNA SEQUENCE	
50		ession #: NM_0 : 1-1125		ences correspond (to start and stop or	odons)	
•	1	11	21	31	41	51	
	Ī		Ĩ	ì	1	Ī	
55						GGGCTTTTGC	60
	TGGCTGCTGC	TGCTGCCCGT	CATGCTACTC	ATCGTAGCCC	GCCCGGTGAA	GCTCGCTGCT TGGTTATGAT	120 180
						TGGGGAATGT	
						TGACTATGTG	
60	CCTGTGTGTG	GCTCCAATGG	GGAGAGCTAC	CAGAATGAGT	GTTACCTGCG	ACAGGCTGCA	360
60	TGCAAACAGC	AGAGTGAGAT	ACTTGTGGTG	TCAGAAGGAT	CATGTGCCAC	AGATGCAGGA	420
	TCAGGATCTG	GAGATGGAGT	CCATGAAGGC	TCTGGAGAAA	CTAGTCAAAA	TGTCTGGTGT	480 540
	GTGTGTAATA	TTGACTGTTC	TCAAACCAAC	TTCAATCCCC	TCTGCGCTTC	TGATGGGAAA	600
	TCTTATGATA	ATGCATGCCA	AATCAAAGAA	GCATCGTGTC	AGAAACAGGA	GAAAATTGAA	660
65						TGAAGATGGG	
						TGCCAGAGAA GTGTGAGCAT	780 840
						ACAACACTGT	900
70	GAAAAAAAGG	ACTACAGTGT	TCTATACGTT	GTTCCCGGTC	CTGTACGATT	TCAGTATGTC	960
70					TCTGTGTGGT		1020
		AATGCCCCAG ACAATACAAC				TACAGGGCAC	1080
	TACAGTICAG	NOME TACABL	AAGAGCGTCC	ALUAUTTAA	TCIGN		

```
SEQ ID NO:74 PDM9 Protein sequence:
            otein Accession #:
                                                  21
                                                                                 41
                                                                                                51
  5
               1 MVLWESPRQC SSWTLCEGFC WLLLLPVMLL IVARPVKLAA FPTSLSDCQT PTGWNCSGYD
             61 DRENDLFICO TWYCKFDGEC LRIGDTVTCV CQFKCNNDYV PVCGSNGESY QNECYLRQAA
121 CKQQSEILVV SEGSCATDAG SGSGDGVHEG SGETSQKETS TCDICQFGAE CDEDAEDVWC
                                                                                                                   120
            181 VCNIDCSQTN FNFLCASDGK SYDNACQIKE ASCORQEKIE VMSLGRCQUN TTTTTKSEDG
241 HYARTDYAEN ANKLEESARE HHIPCPEHYN GPCMEGKCEH SINHQEPSCR CDAGYTGQHC
301 EKKDYSVLYV VPGPVRPQYV LIAAVIGTIQ IAVICVVVLC ITRKCPRSNR IHRQKQNFGH
                                                                                                                   240
10
                                                                                                                   300
                                                                    SEQ ID NO:75 PDO1 DNA SEQUENCE
15
          Nucleic Acid Accession #: NM_014324
                                  89-1237 (underlined sequences correspond to start and stop codons)
          Coding sequence:
                         11
20
          GGCGCCGGGA TYGGGAGGGC TYCTYGCAGG CYGCTGGGCT GGGGCTAAGG GCTGCYCAGY
          TTCCTTCAGC GGGGCACTGG GAAGCGCCAT GGCACTGCAG GGCATCTCGG TCGTGGAGCT
          STOCGGOOTG GOOCGGGOO STATCTGTGC TATGGTCCTG GCTGACTTCG GGGCGCGTGT
                                                                                                          180
          GGTACGCGTG GACCGGCCCG GCTCCCGCTA CGACGTGAGC CGCTTGGGCC GGGGCAAGCG
                                                                                                          240
          CTCGCTAGTG CTGGACCTGA AGCAGCCGCG GGAGCCGCGT GCTGCGGCGT CTGTGCAAGC
25
          GGTCGGATGT GCTGCTGGAG CCCTTCCGCC GCGGTGTCAT GGAGAAACTC CAGCTGGGCC
                                                                                                          360
          CAGAGATTCT GCAGCGGGAA AATCCAAGGC TTATTTATGC CAGGCTGAGT GGATTTGGCC
                                                                                                          420
          AGTTCAGGAA AGCTTCTGCC GGTTAGCTGG CCACGATATC AACTATTTGG CTTTGTCAGG
          TGTTCTCTCA AAAATTGGCA GAAGTGGTGA GAATCCGTAT GCCCCGCTGA ATCTCGTGGC
                                                                                                          540
          TGACTTTGCT GGTGGTGGCC TTATGTGTGC ACTGGGCATT ATAATGGCTC TTTTTGACCG CACACGCACT GACAAGGGTC AGGTCATTGA TGCAAATATG GTGGAAGGAA CAGCATATTT
                                                                                                          600
30
          AAGTTCTTTT CTGTGGAAAA CTCAGAAATC GAGTCTGTGG GAAGCACCTC GAGGACAGAA
                                                                                                          720
          CATGITIGGAT GGTGGAGCAC CITITCIATAC GACTITACAGG ACAGCAGATG GGGAATTCAT
GGCTGITIGGA GCAATAGAAC CCCAGITCIA CGAGCIGCIG ATCAAAAGGAC TIGGACTAAA
                                                                                                          780
          GTCTGATGAA CTTCCCAATC AGATGAGCAC GGATGATTGG CCAGAAATGA AGAAGAAGTT
                                                                                                          900
35
          TGCAGATGTA TTTGCAAAGA AGACGAAGGC AGAGTGGTGT CAAATCTTTG ACGGCACAGA
TGCCTGTGTG ACTCCGGTTC TGACTTTTGA GGAGGTTGTT CATCATGATC ACAACAAGGA
                                                                                                          960
          ACGGGGCTCG TTTATCACCA GTGAGGAGCA GGACGTGAGC CCCCGCCTTG CACCTCTGCT
                                                                                                         1080
          GTTANACACC CCAGCCATCC CTTCTTCCAA AGGGGATCCT TTCATAGGAG AACACACTGA
                                                                                                         1140
          GGAGATACTT GAAGAATTTG GATTCAGCCG AGAAGAGATT TATCAGCTTA ACTCAGATAA
                                                                                                         1200
40
          ANTENTICAN AGTANTAGG TANAAGCTAG TETETAGET CEAGGECEAE GGETENAGTG
ANTITGANTA CTGENTITAE AGTGTAGAGT AACACATAAC ATTGTATGCA TGGANACATG
                                                                                                         1260
                                                                                                         1320
          GAGGAACAGT ATTACAGTGT CCTACCACTC TAATCAAGAA AAGAATTACA GACTCTGATT
          CTACAGRAT GATTGAATIC TAAAAARGGT TATCATTAGG GCTTTTGATT TATAAAACTT TGGGTACTTA TACTAAATTA TGGTAGTTAT TCTGCCTTCC AGTTTGCTTG ATATATTTGT TGATATTAAG ATTCTTGACT TATATTTTGA ATGGGTTCTA GTGAAAAAGG AATGATATAT
                                                                                                         1440
                                                                                                         1500
45
          TCTTGRAGAC ATCGATATAC ATTTATTTAC ACTCTTGATT CTACAATGTA GAAAATGAG
AAATGCCACA AATTGTATGG TGATAAAAGT CACGTGAAAC AGAGTGATTG GTTGCATCCA
GGCCTTTTGT CTTGGTGTTC ATGATCTCCC TCTAAGCACA TTCCAAACTT TAGCAACAGT
                                                                                                         1620
                                                                                                         1680
          TATCACACTT TGTAATTIGC AAAGAAAAGT TTCACCTGTA TTGAATCAGA ATGCCTTCAA
CTGAAAAAAA CATATCCAAA ATAATGAGGA AATGTGTTGG CTCACTACGT AGAGTCCAGA
                                                                                                         1800
50
                                                                                                         1860
          GGGACAGTCA GITTIAGGGI TGCCTGTATC CAGTAACTCG GGGCCTGTTT CCCCGTGGGT
                                                                                                         1920
          CTCTGGGCTG TCAGCTTTCC TTTCTCCATG TGTTTGATTT CTCCTCAGGC TGGTAGCAAG 1980
TTCTGGATCT TATACCCAAC ACACAGCAAC ATCCAGAAAT AAAGATCTCA GGACCCCCCA 2040
          AAAAAAA AAAAAAAA AAAAAAAA
55
          SEQ ID NO:76 PDO1 Protein sequence
                               NP_055139
          Protein Accession #:
                                                              31
                                                                              41
60
                61 REPRAAASVQ AVGCAAGALP FRCHGETPAG PRDSAAGKSK AYLCQAEWIW FVQESFCRLA
121 GHDINYLALS GYLSKIGRSG ENPYAPLNLV ADFAGGGLMC ALGIIMALFD RTRTDKGQVI
                                                                                                                   120
             181 DANMVEGTAY LSSPLWKTOK SSLWEAFRGO NMLDGGAPFY TTYRTADGEF MAVGALEPOF
                                                                                                                   240
65
             241 YELLIKGIGI KSDELPNOMS TODWIPEMKKK FADVPAKKTK AEWCQIFDGT DACVTFVLTF
301 EEVVHIDHNK ERGSFITSEE ODVSPRLAFL LINTPAIPSS KGDFFIGEHT EEILEEFGFS
                                                                                                                   300
             361 REETYQLNSD KIIESNKVKA SL
                                                                     SEQ ID NO:77 PDO3 DNA SEQUENCE
70
          Nucleic Acid Accession #: AB028951
                                   97-1128 (underlined sequences correspond to start and stop codons)
          Coding sequence:
75
          GITARATCCT TACTITACCA GATTCTTGAT GGTATCCATT ACCTCCATGC AAATTGGGTG
          CTTCACAGAG ACTTGAAACC AGCAAATATC CTAGTAATGG GAGAAGGTCC TGAGAGGGGG
          AGACTCAAAA TAGCTGACAT GGGTTTTGCC AGATTATTCA ATTCTCCTCT AAAGCCACTA
GCAGATTTGG ATCCAGTAGT TGTGACATTT TGGTATCGGG CTCCAGAACT TTTGCTTGGT
GCAAGGCATT ATACAAAGGC CATTGATATA TGGGCAATAG GTTGTATATT TGCTGAATTG
                                                                                                          180
80
          TIGACTICGG AACCTATITT TCACTGTCGT CAGGAAGATA TAAAAACAAG CAATCCCTTT
```

	CATCATGATC	AACTGGATCG	GATATTTAGT	GTCATGGGGT	TTCCTGCAGA	TAAAGACTGG	420
		GAAAGATGCC					480
		GTAGCCTCAT					540
		TGCTTCAGAA					600
5		AGGATCCCTA					660
9		TTCCATACCC					720
		ATCAGCAACA					780
						GACCAACGGG	840
10		GGGCTGGGGC					900
10		TGAACCAGGT					960
	AACTCAGGTG	GACCTGTGAT	GCCCTCGGAT	TATCAGCACT	CCAGTTCTCG	CCTGAATTAC	1020
	CAAAGCAGCG	TTCAGGGATC	CTCTCAGTCC	CAGAGCACAC	TTGGCTACTC	TTCCTCGTCT	1080
	CAGCAGAGCT	CACAGTACCA	CCCATCTCAC	CAGGCCCACC	GGTACTGACC	AGCTCCCGTT	1140
						TGAAAAGAAC	1200
15						AAACCTTATA	
						ATTCTTGTGA	1320
						TAAAGCGTCT	1380
		CAGCACTTCT					1440
20						ATAGGATTTT	1500
20						CTGATTTAGC	
						ACTGTTCTGC	1620
		CTTAAACAGA					1680
	TTTATCTAGT	TTCAGGGAAG	GTCTAATAAA	AAGACAAGCG	GTGGGACAGA	GGGAACCTAC	1740
						ACTGAAGTAT	1800
25						CTTATTCTGA	
						CTACCTTAAA	
						AAGAGAGTAA	1980
							2040
30						AACCATTGGT	
30							2160
							2220
						atgittaaag	2280
	TATGTATTAT	GTATGCATAA	TTTTGCTGTT	GTTACTGAAA	CTTAATTCTA	TCAAGAATCT	2340
	TTTTCATTGC	ACTGAATGAT	TTCTTTTGCC	CCTAGGAGAA	AACTTAATAA	TTGTGCCTAA	2400
35	AAACTATGGG	CCGATAGTAT	AAGACTATAC	TAGACAAAGT	GAATATTTGC	ATTTCCATTA	2460
						ACTCCCCAGA	
						AGAAATTTGT	
						GAGCTAGAAG	
						CTTTCTGAAC	2700
40							
40						TAGACAGAAG	
						TACTGATCTC	2820
						GACTGAAGAT	
						TITTACCCCT	
4.00	TCCATTTTTT	AAAATAAGAA	ATTAGCAGCC	CTCTGCATAA	TGTAGCTGCC	TATATGCAGT	3000
45	TTTATCCTGT.	GCCCTAAAGC	CTCACTGTCC	AGAGCTGTTG	GTCATCAGAT	GCTTATTGCA	3060
	CCCTCACCAT	GTGCCTGGTG	CCCTGCTGGG	TAGAGAACAC	AGAGGACAGG	GCATACTTCT	3120
						GTGCCATGTG	3180
						TTCTAAACCC	
						GGGTTTCTAT	
50						ACGTATCTTT	3360
50							
						GAACATACTC	3420
						TCTCAAGGAG	3480
							3540
F F						ACAGAACTAC	3600
55	CCTGTTTTCC	TTGTATATAA	TGACTTTTGC	TGGCAGAACT	Gaaatataaa	CTGTAAGGGG	3660
	ATTTCGTCAG	TTGCTCCCAG	TATACAATAT	CCTCCAGGAC	ATAGCCAGAA	ATCTCCATTC	3720
	CACACATGAC	TGAGTTCCTA	TCCCTGCACT	GGTACTGGCT	CTTTTCTCCT	CTTTCCTTGC	3780
	CTCAGGGTTC	GTGCTACCCA	CTGATTCCCT	TTACCCTTAG	TAATAATTT	GGATCATTTT	3840
	CTTTCCTTTA	AAGGGGAACA	AAGCCTTTTT	TTTTTTTGAG	ACGGAGTGTT	GCTCTGTCAC	3900
60							3960
						CACCACGTCT	
						GCTGGTCTTG	
						ATTATAGGTG	4140
						CCCTCAAACC	
65							
UJ						TTGTGGTCCC	
						AAGGGTACAG	
						ACAGGAAGGA	
	ATGAATCCA	CTGAAGGCTT	TCTGCTCTTC	: GTGTTACAA	CCAGTTTCAC	AGTTAGCTTT	4440
70	CTGGGGAGGT	GTGTGTTTGT	GAAAGGAATI	CAAGTGTTGC	AGGACAGATY	AGCTCAAGGT	4500
70						TGATGAAGTA	
						CTGTGGTTTT	
						r acgaacataa	
						ATTCCTGGTG	
						CCTAAAGGTA	
75						TTTGAGTAAA	
,,,							
						AATCCAAAAC	
						TAGACCAACA	
						TTTAGGTCCC	
00						AAAAATTTTT :	
80	ACGTGTTGT	CCTAAGGCCA	TACTTACTCT	TCTATGCTAT	CACTGCAAA	GGGTGATATG	5160

						T ATTTAGTAAA	5220
						T ATTACACAAA	5280
						A TATGTTATGT T TGTGAAGTGT	5340 5400
5						A TATGGTTATA	5460
-						C GCTGCACCCC	5520
						GGTTTCCTGC	5580
						A AATTACATTG	5640
10	CATTTATTT	T ATATTCTTG	G TTGAAATAA	A ATTTAATTG	A CTTIG		
10	6EO ID NO-70 D	DO2 Dordola com					
	Protein Accession	DO3 Protein sequ n #: BAA8	2980				
15	1	11	21	31	41	51	
15	<u> </u>	!		!	1		_
						PA RLPNSPLKPI CR QEDIKTSNPR	
						YM EKHKVKPDSP	
						RE FLNEDDPEEK	
20						VG GTGAGLQHSQ	
			ea insggpvmp:	SD YQHSSSRLI	MY QSSVQGSS	QS -QSTLGYSSSS	36
	QQSSQYHPS	H QAHRY					
				SF	O ID NO-79 PDO:	DNA SEQUENCE	
25	Nucleic Acid Acc	ession#: XM_0	02922	0.0	Q ID 110.73 7 00.	DIVICEGOLIUE	
	Coding sequence			ences correspond	to start and stop co	odons)	
	•		•	•	·		
	1	11	21	31	41	51	
30	 	TCCAGAAAAA	TCACTCCA AC	CANACTOCITA	distance of concession	Cacco andress	60
50		CTCGACCACC					120
		TGAGCATTGC					180
	TATGGAATGA	AAGCTGTGCT	GATCCTGTAT	TTCCTGTATT	TCCTGCACTG	GAATGAAGAT	240
35		CTATATACCA					300
33		CTGACTCGTG					360 420
		GCCATGTGAT					480
		TGGCAGCTTT					540
40		TCTCAGTCTT					600
40		TGCTGAGAGG					660
		CAGGACTGCT					720 780
		CCAATCGTTT					840
		CAGCTGAGAA					900
45		TCCTTTATAT					960
		CTTTGCAAGC					1020
		TCCAGGTTCT					1080 1140
		TGATCCTAGC					1200
50		TGGCCCCAGC					1260
		ATGAGGTGAA					1320
		AATCCTTTCA					1380
		TTCACTTCCA AGAACTGGTA					1440 1500
55		AGGATACAGA					1560
		ATAAAGATGT					1620
		GTGTGTCTGC					1680
		AAGATAAGAA					1740
60		TTATTACTAA ACAAAATGTC					1800 1860
00		TGTTCTCTGT					1920
	ATGAAATCTG	TGCTCCAGGC	AGCTTGGCTA	TTGACAATTG	CAGTTGGGAA	TATCATCGTG	1980
	CTTGTTGTGG	CACAGTTCAG	TGGCCTGGTA	CAGTGGGCCG	AATTCATTTT	GTTTTCCTGC	2040
65		TGATCTGCCT					2100
00		TGCGGGGTCC			ACATCCAGGG	GAACATGATC	2160
•	AAACTAGAGA	CCAAGAAGAC	AAAACICIGA				
	SEQ ID NO:80 P	DO5 Protein sequ	ence:				
	Protein Accession						
70							
	1	11	21	31	41	51	
	MIDEONIECE	ETLFSPVSIE	 	VEDCOMICCS	NVDI CTAPTI	[60
		PLYPLHWNED					120
75		GALPILGGQV					180
-	TRYFSVFYLS	INAGSLISTP	ITPMLRGDVQ	CFGEDCYALA	FGVPGLLMVI	ALVVFAMGSK	240
		IVAQVPKCIW					300
		MFWALLDQQG					360
80 ·		GINFSSLRKM VGNENNSLLI					420 480
			Aut Aut L		- Kana are semply		

5	EDYGVSAYRT IPANKMSIAW	VQRGEYPAVH QLPQYALVTA	MMVKDTESRT CRTEDKNFSL GBVMFSVTGL LLLVICLIFS	NLGLLDFGAA EFSYSQAPSS	YLFVITNNIN MKSVLQAAVL	QGLQAWKIED LTIAVGNIIV	540 600 660 720
10	Nucleic Acid Acc Coding sequence	ession #: NM_0 e: 1-1221	20448 (underlined seque			B DNA SEQUENCE odons)	
10	1	11	21	31	41	51	
	1	Ī	Ī ·	ī	Ī	Ī	
			AGCCCTGAAG				60
15			CAGCATTGCA				120 180
15			CCGGGCCTAT				240
			GCTGGGTGTG				300
			AGTTTCTGTG.				360
20			GAAAGACTTT				420
20			TACCTACCTG				480 540
			CTGCTTGCTG				600
			CTTGGTGGCG				660
25			TGTCTTGTCC				720
25			GTGCATGGTG				780
			CGACTCCTCT				840 900
			ACTGGGGTGC				960
~~						TGCCATGCCA	1020
30			TAAAGGGATG				1080
						TGCCACCCTG	1140
		AGAAGGAATG	CGGCTCCAGA	AGIGCCICIG	GGGTCCCCTA	CCGAGTCCTA	1200
	GAGCACACCA	AGAMGGAM <u>IG</u>	<u>.</u>				
35	SEQ ID NO:82 P Protein Accession	DO6 Protein segui n #: NP_06					
	1	11	21	31	41	51	
40	1	1	1	1	1	1	
40			SAVSEASFSY FLMLLGELGV				60 120
			CGLAVVGTYL				180
			NIVVILLLVA				240
45			SQASQMYDSS				300
45			TRNRKKPIPF PVMQEEHGSR			TVQPELKASF	360
	21 GADMANN	TOPTIMENTO	ACEMING MA	SASGVEINVE	DELLERE		
				SE	2 ID NO:83 PDO8	DNA SEQUENCE	
50		ession #: NM_0					
50	Coding sequence	: 555-90	B (underlined sequ	iences correspond	to start and stop o	odans)	
	1	11	21	31	41	51	
	ī	î ·	ī	ī	i -	ī	
	CACTCATTAA	GAACAGAGGA	GCTGCCTGT	TACTCCTGGT	GTTGCATCCC	TCCAGACACT	60
55			GTGGCTGCAG				120
			TGCTCCTGCT GGCTCTCCTG				180 240
			AGCTGCTGCT				300
			CAAGGCCCTG				360
60	GGCTGCTGAT	GCCTGGTGC	CAGCTGGGAG	TCCTCCCGGC	ACTTCGAGGC	CACTGAGCCA	420
			CATGGACAGG				480
			CCCAAGGACA GTGCTGGAGG				540 600
			CCAGGGCCCG				660
65			CTGCTGAGCC				720
	TACCAAGGGC	TTCCTGCAGG	CTAGGGGAGG	AGCCACCCCC	GCTTCCCTAT	TGTGACCAGG	780
			ATACGCCACC				B40
			CCAGGGGTGA AAGTGCGGGA				900
70			TTCGGTGTCC				960 1020
			GGTGTCTGCC				1080
	GATGTCATGA	GGGAAGCAGG	CCTTGTGAGT	GGACACTGAC	CATGAGTCCC	TGGGGGGAGT	1140
			CCATGTTGCA				1200
75			ACCACATGGG AAGCATCTTG				1260
	SEQ ID NO:84 PI Protein Accession	008 Protein seque					
80	1	11	21	31	41	51	
					22		

	1	1	1	1	1	1	
	MTVLEAVLEI						60
	CRLGEEPPPL	PYCDQAYGEE :	LSIRHRETWA 1	WLSRTDTAWP	Gapgvkqari	LGELLLV	
5	•			054	ID 410.05 DDT4		
3	Nucleic Acid Acce	colon # N/N/ OO	0603	SEC	1 ID NO:85 PD11	DNA SEQUENCE	
	Coding sequence:		(underlined seque	nces correspond	o etart and eton c	orions)	•
	Course Section for	00-1001	formormico andac	and duriciporiu	io otali and otop o	0000)	
	1	11	21	31	41	51	
10	1	1	1.		1	1	
						CCATGCCAC	60
						TGCCGCGCCC	120
						GGCACGAATC TATGTGAAGT	180 240
15						TTGCCTTCCA	300
10						TGCACCAGCT	360
						TGGATACAGG	420
	GAAGCCATTT	CTTCATGCTT	TTTTCATCGA	CCTGGAGGGC	TGTATTAGAA	CCCTCAGATA	480
20						ACAACGTCGT	540
20						GGAACTTCCC	600
						CCATGGTCCT	660 720
						TCAAAGAGGC TGGGAGCAGC	780
						AGGTTGGAAA	840
25						AGCTGGGGG	900
-						AGTGTGCCCA	960
						TGTTCGTGGA	1020
						AACGGCCCGT	1080
30						AGCAGTTCGA	1140
30						AATGCGGGGG AAGTCACAGA	1200 1260
						TGAAGTTCAA	1320
						CAGCAGCCGT	1380
~ =						CTGGAACGGT	1440
35						TTAAAATGTC	1500
						TGAAAACTGT	1560
						CCTCAAACAT	
						GCTGTTTTCC	1680 1740
40						TGAAATCGCA	1800
						CAGATCCTGG	1860
						TCCAGCAGTT	1920
						CCTGTGTGTT	1980
45						CAGAGCAAGC	2040
43						CAGTAAGGTT TGAGAAAGTT	2100 2160
						TTGACATTGA	2220
						AATAGCCCAG	2280
						TTAAGCAGAA	2340
50						CAACAGCATA	2400
						TCACTTTAAC	2460
						AGTCTTCCTT	2520
						AAGACTGCTG ATTAGTTAGT	2580 2640
55						GAGTATTTCA	2700
						GTGCAATTTC	2760
						AAACAAATGT	2820
						GAAAGTAGTG	2880
60						TAACAGAACC	2940
UU						CCAATAACTT	3000 3060
						AGTAGATATA	3120
	GACACTAACC	TTGATAGTGA	TACGTTAGAG	GGTTCCTATT	CTTCCATTGT	ACGATAATGT	3180
	CTTTAATATG	AAATGCTACA	TTATTTATAA	TTGGTAGAGT	TATTGTATCT		3240
65	GTAAGTACAC	agaggtggta	TATTTAAACT	TCTGTAATAT	ACTGTATTTA	GAAATGGAAA	
						GTTTAAAAAT	
				CAGATCGCAT	CCCACAATGC	GAGAATGATA	3420
	AAATAAAATT	GGATATTTGA	GA				
70	CEO ID	MARC DE	יים מידי	PERMICE CONTRACT	AT HEATCHE		
70	SEQ ID			EIN SEC	UENCE		
	Protein Accession	#: NP_000	684				
				34	44	E1	
	1	11 :			41	51	
75	MATANGAVEN	GOPDGKPPAT.			HESKSGKKFA	TONESTREOT	60
	CEVEEGDKPD						120
	DTGKPFLHAF						180
	nppllmlvwk	LAPALCCGNT	MVLKPAEQTP	LTALYLGSLI :	KEAGPPPGVV	NIVPGFGPTV	240
	GAAISSHPQI	nkiaftgste '	vgklvkeaas 1	RSNLKRVTLE	LGGRNPCIVC	ADADLDLAVE	300

5	QFDKILELIE KFKSIEEVIK	SGRKEGAKLE RANSTDYGLT	FVEEQVYSEF CGGSAMEDKG AAVFTKNLDK KTVTIKLGDK	LPIKPTVFSE ALKLASALES	VTDNMRIAKE	RIFGPVQPIL	360 420 480
-				SE	Q ID NO:87 PDV3	DNA SEQUENCE	
	Nucleic Acid Acco	ession #: NM_0 : 184-12	32642 63 (underlined sec	puences correspon	d to start and stop	codons)	
10	1 '	11	21	31	41	51	
	1	1	1	1		1	
			GCCTGTCTTT CAGGACCAGA				60 120
1.5	ACAGAGGGAA	CCCTACTCTG	GAAACTGTCA	GTCCCAGGGC	ACTGGGGAGG	GCTGAGGCCG	180
15			GCTGTTCACG				240
			GTGGTCATTA CGTGTGCAGT				300 360
	AAGCTGTGCC	AATTGTACCA	GGAGCACATG	GCCTACATAG	GGGAGGGAGC	CAAGACTGGC	420
20			GTTCCGGCAG				480 540
20			CATGCAGATA				600
	ACCTGCGGCT	GCAGCCGGAC	GGCGCGGCCC	AAGGACCTGC	CCCGGGACTG	GCTGTGGGGC	660
•			GTACGGCTAC				720 780
25			CARAGGATCA				840
	CACGGCGTCT	CGGGGTCCTG	CAGCCTCAAG	ACCTGCTGGC	TGCAGCTGGC	CGAGTTCCGC	900
			GGAGAAGTAC				960
			CAACAGCCGC				1020 1080
30			GACCTCGGAG				1140
			CAAGAGCGTG				1200
			TAAGAAGTGC				1260 1320
~~			TTTATATTTG				1380
35			AAGAGCTTAT				1440
			CTTGGTGGGT GACTTGGAAA				1500 1560
			GGAGGAGATG				1620
40			CCTGGCCACT				1680
40	ACTCAGCTTC	AACCTCGATG	TCTTCAGGGT	CTTGTCCAGA	ATGTAGATGG	GTTCCGTAAG	1740 1800
			ATGAGAAGTC				1860
	GAGATCTGCA	CCTCCCGGAC	TTCAGGCCTG	CCTTTCCAGC	GAGAATTCTT	CATCCTCCAC	1920
45			AAGAGGAAAG CCTGGGCTGC				1980 2040
7.5			CACCCCCGGG				2100
	CTCCACCGAG	GGAGGCCTCA	CAAACCACAG	GACGCTGCAA	CGGGTCAGGC	TGGCGGGCCC	2160
			CCCAGGTGTA AAAAAAAAA		CTGACATTAA	ATGCCCTTCA	2220
50	1000000000	Managaran	MUMMUUM	AA.			
	SEQ ID NO:88 P Protein Accession	DV3 Protein seque 1#: NP_11				٠	
	1	11 .	21	31	41	51	
55	Ī	1		1	1	1	
			TDANSWWSLA KECQHQFRQR				60 120
			CGCSRTARPK				180
60	REKNFAKGSE	EQGRVLMNLQ	NNEAGRRAVY	KMADVACKCH	GVSGSCSLKT	CWLQLAEFRK	240
60			GRLELVNSRF				300
	GRIANKISEG	MDGCELMCCG	RGYNQFKSVQ	VERCECKFHW	CCFVRCRRCT	PIADGIICK-	
				SE	Q ID NO:89 PDT9	DNA SEQUENCE	
65	Nucleic Acid Acce Coding sequence	ession #: NM_0 : 58-638	33280 (underlined seque	ences correspond t	o start end stop co	odans)	
	1	11	21	31	41	51	
	1	1	1		1	1	
70			AGAGCCGGCG				60
,,			GGCTCATCTC. CCAGCTCTAT				120 180
	TCTTCTGCAC	TCATGATATG	GAAAGGCTTG	ATCGTGCTCA	CAGGCAGTGA	GAGCCCCATC	240
			TATGGAGCCG				300
75			AATCAGAGCT CAGAGTAATC				360 420
	AAATTTCTGA	CTARAGGAGA	TARTARTGAR	GTTGATGATA	GAGGCTTGTA	CAAAGAAGGC	480
	CAGAACTGGC	TGGAAAAGAA	GGACGTGGTG	GGAAGAGCAA	GAGGGTTTTT	ACCATATGTT	540
			GAATGACTAT AAAACGTGAA				600 660
80			AAAAAGAGAA				720

	tgtataaaag aaaaaaaaa		GGAGATGTTT	TTGTCTTGTC	CAAATAAAAG	ATTCACCAGT	780
5	SEQ ID NO:90 Protein Accession	DT9 Protein seque					•
	1	11	21	31	41	51	
	Ī	ī	ī	Ī		Ĭ	
	MVRAGAVGAH	LPASGLDIFG	DLKKMNKRQL	YYQVLNFAMI	VSSALMIWKG	LIVLTGSESP	60
10	IVVVLSGSME	PAPHRGDLLF	LINFREDPIR	AGBIVVFKVB	GRDIPIVHRV	IKVHEKDNGD	120
				VGRARGFLPY			180
	VMGAYVLLKR		_				
				SE	Q ID NO:91 PDV5	DNA SEQUENCE	
15	Nucleic Acid Acc	ession #: NM_0	16590				
	Coding sequence	r 691-97	5 (underlined sequ	ences correspond	to start and stop o	odons)	
	1	11	21	31	41	51	
20			1	001.0001.000	1	01,000111,000	60
20				TCAGCTATTT			120
				CATTAAGGCA			180
				ACGCTGGGCT			
				AACAAGTCTA			240
25				ATTCTACACA			300 360
				ACAGCTTCCT			420
				GAGCAAGGTC			
				GTCCCAGAAA			480
				CTATATGAGA			540
30				CAGAGATAAC			600
5 U	TGGAAAACAA	GCCCTTTATT	GAATTITCAA	CACAGACTCC	CIGCITCICA	TCTCCTTAAT	660
				ATGTTCAAAT			720
				AGTCATTTCA			780
				CTCCGAAGAA			840
35				TGGAAGCTTT			900 960
)				TCCCCTGGCT			1020
				CTCATCTGTT			
				GACCAGCACT			1080
				CTGGGACTCG			1140
40				GGGGCAACCT			1200
+0				CATAATATGC			1260
	AGCCTGTGCA	AAACAAAGCA	ATGGAAAAGG	AAACTAAAAA	ATATACATAC	TAGTACCATT	1320
				CACGTCAGTC			1380 1440
				TCTGGCTAGA			1500
45				CAGGCCCTAT			1560
ŧJ				TTGCTCATAT			1620
				AAAAATTGCT ATTAGAGCAA			1680
				GGTCCATAAG			1740
	TCTCAAAATC	TGGGCCAAGA	ATGATTGCTA	AGTAAACTAT	CIMATTIGIC	TGGCCTTGCC	1800
50				CAGGGTATTA			1860
J U	CIGITAGIAT	GICAAAICAA	CTAAGACTGG	AGCCTCTACC	MARCONINC	AGGIGALATO	1920
				AGTTTCAATG			1980
				GCTTTTTAAA			2040
				TAATTCAAAT			2100
55	AAAAAAA	CHANGCANAN	AAAAA 1GC11	Inti I Chroni	Immurical	GATACTIONS.	2100
	7000000						
	SEQ ID NO:92 P	DV5 Protein segui	ence				
	Protein Accession						
60	1	11	21	31	41	51	
	1			1	1		
	MQCQLFRTE	T SKAVSELN	D YICIKACTO	R PQGTPTIGL	v llvrwaiiy	E TELQSQPIT	
c =				SE	Q ID NO:93 PEE6	DNA SEQUENCE	
65		ession#: NM_0					
	Coding sequence	E 61-18	42 (underlined seq	uences correspon	to start and stop	codons)	
				••	40		
	1	11	21	31	41	51	
70		1	1	1	1	000000000000000000000000000000000000000	60
, 0				AAAAGTCCGA			60
				AAGGCCATCT			120
	ATTCAGAAGG	TAATCTTCAG	CAAGTACTGC	AACTCCAGCG	ACATCATGGA	CCTGTTCTGC	180
				ATCTCCCTGC			240
75				TCAGAACGCA			300
75				GAGGACAAGA			360
				GTTGTGGGCC			420
				AGGCCCAGAG			480
	GAAGGCCAGC	GCATCCCTCC	AGAGAGAA	GAATTAATCC	AGAGCGTGCT	GGCGCAGGTT	540
80				AATGAACTGA			600 660
1317	AMERICAL ALCOHOL:	TO DE LIBERTARIA	THE PLANTAGE IN		ALTERICATION AND AND AND AND AND AND AND AND AND AN	LACTOR AND A PROPERTY OF A PARTY	nov

```
TGCAAGAGTG ACATTAAGAA GATGAGGGAG GAGCTGGCGG CCAGAAGCAG CAGGACCAAC
         TGCCCCTGTA AGTACAGTIT TITTGGATAAC CACAAGAAGT TGACTCCTCG ACGCGATGTT CCCACTTACC CCAAGTACCT GCTCTCTCA GAGACCATCG AGGCCCTGCG GAAGCCGACC
         TTTGACGTCT GGCTTTGGGA GCCCAATGAG ATGCTGAGCT GCCTGGAGCA CATGTACCAC
                                                                                                   900
         GACCYCGGGC TGGTCAGGGA CTTCAGCATC AACCCTGTCA CCCTCAGGAG GTGGCTGTTC
                                                                                                   960
         TGTGTCCACG ACAACTACAG AAACAACCCC TTCCACAACT TCCGGCACTG CTTCTGCGTG
         GCCCAGATGA TGTACAGCAT GGTCTGGCTC TGCAGTCTCC AGGAGAAGTT CTCACAAACG
                                                                                                  1080
         GATATCCTGA TCCTAATGAC AGCGGCCATC TGCCACGATC TGGACCATCC CGGCTACAAC
                                                                                                  1140
         AACACGTACC AGATCAATGC CCGCACAGAG CTGGCGGTCC GCTACAATGA CATCTCACCG
                                                                                                  1200
10
         CTGGAGAACC ACCACTGCGC CGTGGCCTTC CAGATCCTCG CCGAGCCTGA GTGCAACATC
         TTCTCCAACA TCCCACCTGA TGGGTTCAAG CAGATCCGAC AGGGAATGAT CACATTAATC
                                                                                                  1320
         TTGGCCACTG ACATGGCAAG ACATGCAGAA ATTATGGATT CTTTCAAAGA GAAAATGGAG
                                                                                                  1380
         AATTTTGACT ACAGCAACGA GGAGCACATG ACCCTGCTGA AGATGATTTT GATAAAATGC
                                                                                                  1440
         TOTGATATCT CTAACGAGGT CCGTCCAATG GAAGTCGCAG AGCCTTGGGT GGACTGTTTA
                                                                                                  1500
15
         TTAGAGGAAT ATTTTATGCA GAGCGACCGT GAGAAGTCAG AAGGCCTTCC TGTGGCACCG
                                                                                                  1560
         TTCATGGACC GAGACAAAGT GACCAAGGCC ACAGCCCAGA TTGGGTTCAT CAAGTTTGTC
                                                                                                  1620
         CTGATCCCAA TETTTGAAAC AGTGACCAAG CTCTTCCCCA TGGTTGAGGA GATCATGCTG
CAGCCACTTT GGGAATCCCG AGATCGCTAC GAGGAGCTGA AGCGGATAGA TGACGCCATG
                                                                                                  1680
         AAAGAGTTAC AGAAGAAGAC TGACAGCTTG ACGTCTGGGG CCACCGAGAA GTCCAGAGAG
                                                                                                  1800
20
         AGRAGCAGAG ATGTGAAAAA CAGTGAAGGA GACTGTGCCT GAGGAAAGCG GGGGGCCTTGC
CTGCAGTTCT GGACGGGCTG GCCGAGCTGC GCGGGATCCT TGTGCAGGGA AGAGCTGCCC
                                                                                                  1860
         TGGGCACCTG GCACCACAAG ACCATGTTTT CTAAGAACCA TTTTGTTCAC TGATACAAAA
25
         SEQ ID NO:94 PEE6 Protein sequence
Protein Accession #: NP_00259
         MGSGSSSYRP KATYLDIDGR IQKVIPSKYC NSSDIMDLPC IATGLPRWIT ISLLTIDDAM
VSIDPIMPAN SERTPYKVRP VAIKQLSAGV EDKRITSRGQ SAERPLRDRR VVGLEQPRRB
30
         GAPESGOVEP RPREPOGCYO EGORIPPERB ELIQSVLAGV ABOPSRAPKI NELKAEVANH
LAVLEKRVEL EGLKVVEIEK CKSDIKKMRE ELAARSSRIN CPCKYSFLDN HKKLIPRRDV
PTYPKYLLSP ETIBALRKPI PDVWLMEPNE MLSCLEHMYH DLGLVRDFSI NFVILRRWLF
                                                                                                   180
                                                                                                   240
                                                                                                   300
35
         CVEINYRINIP FENFRECFCV AQMMYSMUWL CSLQEKFSQT DILILMTAAI CHDLDHPGYN
NTYGINARTE LAVRYNDISP LEMEHCAVAF QILAEPECNI FSNIPPDGPK QIRQGMITLI
                                                                                                   360
                                                                                                   420
         LATDMARHAE IMDSPKERME NFDYSNEEHM TLLKMILIKC CDISNEVRPM EVAEPWVDCL
                                                                                                   480
         LEBYPMOSDR EKSEGLPVAP FMDRDKVTKA TADIGFIKFV LIPMFETVTK LFPMVEEIML OPDWESRDRY EELKRIDDAM KELQKKTDSL TSGATEKSRE RSRDVKNSEG DCA
                                                                                                   540
40
                                                                SEO ID NO:95 PEG4 DNA SEQUENCE
         Nucleic Acid Accession #: none
                                41-559 (undefined sequences correspond to start and stop codons)
         Coding sequence:
45
                                      21
                                                     31
         CAGTCACAGG CGAGAGCCYT GGGATGCACC GGCCAGAGGC ATGCTGCTGC TGCTCACGCT
         TECCCTCCTG GGGGGCCCCA CCTGGGCAGG GAAGATGTAT GGCCCTGGAG GAGGCAAGTA
TTTCAGCACC ACTGAAGACT ACGACCATGA AATCACAGGG CTGCGGGTGT CTGTAGGTCT
                                                                                                   180
50
         TCTCCTGGTG AAAAGTGTCC AGGTGAAACT TGGAGACTCC TGGGACGTGA AACTGGGAGC
CTTAGGTGGG AATACCCAGG AAGTCACCCT GCAGCCAGGC GAATACATCA CAAAAGTCTT
                                                                                                   240
         TGTCGCCTTC CAAGCTTTCC TCCGGGGTAT GGTCATGTAC ACCAGCAAGG ACCGCTATTT
                                                                                                   360
         CTATTITIGGG AAGCTIGATG GCCAGATCTC CTCTGCCTAC CCCAGCCAAG AGGGGCAGGT
GCTGGTGGGC ATCTATGGCC AGTATCAACT CCTTGGCATC AAGAGCATTG GCTTTGAATG
                                                                                                   420
55
                                                                                                   540
         GAATTATCCA CTAGAGGAGC CGACCACTGA GCCACCAGTT AATCTCACAT ACTCAGCAAA
         CTCACCCGTG GGTCGCTAGG GTGGGGTATG GGGCCATCCG AGCTGAGGCC ATCTGTGTGG
                                                                                                   600
         TGGTGGCTGA TGGTACTGGA GTAACTGAGT CGGGACGCTG AATCTGAATC CACCAATAAA
         TARACCTTCT GCAGAATCAG TGAAAAAAA A
         SEQ ID NO:96 PEG4 Protein sequence
Protein Accession #: FGENESH predicted
60
                                                     31
                                                                    41
                       11
65
         HLLLITLALL GGPTWAGKMY GPGGGKYPST TEDYDHEITG LRVSVGLLLV KSVQVKLGDS
         WDVKLGALGG NTQEVTLQPG EYITKVFVAF QAPLRGMVMY TSKDRYFYFG KLDGQISSAY
         PSQEGQVLVG IYGQYQLLGI KSIGPEWNYP LEEPTTEPPV NLTYSANSPV GR
70
                                                                SEQ ID NO:97 PEL9 DNA SEQUENCE
         Nucleic Acid Accession #: NM_006953
Coding sequence: 33-896(underlined sequences correspond to start and stop codons)
         Coding sequence:
75
         COSTICUEGE CICIEGUESE TOCICCUEGE CENTECCICC ECTOTEGECC CIECUEGECC
         TCGGCTGCCT GCGGTTCGGC TCGGCTGTGA ACCTGCAGCC CCAACTGGCC AGTGTGACTT
TCGCCACCAA CAACCCACA CTTACCACTG TGGCCTTGGA AAAGCCTCTC TGCATGTTTG
         ACAGCAAAGA GGCCCTCACT GGCACCCACG AGGTCTACCT GTATGTCCTG GTCGACTCAG
80
         CONTINUES GARTGETTCA GTGCAAGACA GCACCAACAC CCCACTGGGC TCAACGTTCC
```

```
TACAAACAGA GGGTGGGAGG ACAGGTCCCT ACAAAGCTGT GGCCTTTGAC CTGATCCCCT
        GCASTGACCT GCCCAGCCTG GATGCCATTG GGGATGTGTC CAAGGCCTCA CAGATCCTGA
ATGCCTACCT GGTCAGGGTG GGTGCCAACG GGACCTGCCT GTGGGATCCC AACTTCCAGG
                                                                                     420
                                                                                     480
        GCCTCTGTAA CGCACCCCTG TCGGCAGCCA CGGAGTACAG GTTCAAGTAT GTCCTGGTCA
                                                                                      540
        ATATGTCCAC GGGCTTGGTA GAGGACCAGA CCCTGTGGTC GGACCCCATC CGCACCAACC
                                                                                     600
        660
        TCATCACTIC CATCCTGGGC TCCCTGCCCT TCTTTCTACT TGTGGGTTTT GCTGGCGCCA
        TTGCCCTCAG CCTCGTGGAC ATGGGGAGTT CTGATGGGGA AACGACTCAC GACTCCCAAA
                                                                                     780
        TCACTCAGGA GGCTGTTCCC AAGTCGCTGG GGGCCTCGGA GTCTTCCTAC ACGTCCGTGA
                                                                                     840
10
        ACCGGGGGCC GCCACTGGAC AGGGCTGAGG TGTATTCCAG CAAGCTCCAA GACTGAGCCC
        AGCACCACCC CTGGGCAGCA GCATCCTCCT CTCTGGCCTT GCCCCAGGCC CTGCAGCGGT
                                                                                     960
        GGTTGTCACA CCCTGACTTC AGGGAAGGTG AAACAGGGCT TGTCCCTCCA ACTGCAGGAA 1020
        AACCCTTAAT AAAATCTTCT GATGAGTTCT AAAAAAAA
        SEQ ID NO:98 PEL9 Protein sequence
Protein Accession #: NP_008884
15
                                 21
                                              31
                                                          41
                                                                       51
20
        MPPLMALLAL GCLRFGSAVN LOPOLASVTF ATMNPTLTTV ALEKPLCMPD SKEALTGTHE
        VYLYVLVDSA ISRNASVQDS TNTPLGSTFL QTEGGRTGPY KAVAFDLIPC SDLPSLDAIG
                                                                                     120
        DVSKASOILN AYLVRVGANG TCLWDPNFOG LCNAPLSAAT EYRFKYVLVN MSTGLVEDOT
                                                                                     180
        LWSDPIRTNO LTPYSTIDTW PGRRSGGMIV ITSILGSLPF FLLVGFAGAI ALSLVDMGSS
        DGETTHDSQI TQEAVPKSLG ASESSYTSVN RGPPLDRAEV YSSKLQD
25
                                                       SEQ ID NO:99 PEN1 DNA SEQUENCE
        Nucleic Acid Accession #: NM_012391
        Coding sequence:
                           416-1423 (underlined sequences correspond to start and stop codons)
30
        GTCTGACTTC CTCCCAGCAC ATTCCTGCAC TCTGCCGTGT CCACACTGCC CCACAGACCC
        AGTCCTCCAA GCCTGCTGCC AGCTCCCTGC AAGCCCCTCA GGTTGGGCCT TGCCACGGTG
        CCAGCAGGCA GCCCTGGGCT GGGGGTAGGG GACTCCCTAC AGGCACGCAG CCCTGAGACC
                                                                                     180
35
        TCAGAGGGCC ACCCCTTGAG GGTGGCCAGG CCCCCAGTGG CCAACCTGAG TGCTGCCTCT
        GCCACCAGCC CTGCTGGCCC CTGGTTCCGC TGGCCCCCCA GATGCCTGGC TGAGACACGC
        CAGTGGCCTC AGCTGCCCAC ACCTCTTCCC GGCCCCTGAA GTTGGCACTG CAGCAGACAG
CTCCCTGGGC ACCAGGCAGC TAACAGACAC AGCCGCCAGC CCAAACAGCA GCGGCATGGG
                                                                                     360
                                                                                      420
        CAGCGCCAGC CCGGGTCTGA GCAGCGTATC CCCCAGCCAC CTCCTGCTGC CCCCCGACAC
                                                                                     480
40
        GETETCGCGG ACAGGCTTGG AGAAGGCGGC AGCGGGGGCA GTGGGTCTCG AGAGACGGGA
                                                                                     540
        CTGGAGTCCC AGTCCACCCG CCACGCCCGA GCAGGGCCTG TCCGCCTTCT ACCTCTCCTA
                                                                                     600
        CTTTGACATG CTGTACCCTG AGGACAGCAG CTGGGCAGCC AAGGCCCCTG GGGCCAGCAG
                                                                                     660
        TCGGGAGGAG CCACCTGAGG AGCCTGAGCA GTGCCCGGTC ATTGACAGCC AAGCCCCAGC
                                                                                     720
        GGGCAGCCTG GACTTGGTGC CCGGCGGGCT GACCTTGGAG GAGCACTCGC TGGAGCAGGT
                                                                                      780
45
        GCAGTCCATG GTGGTGGGCG AAGTGCTCAA GGACATCGAG ACGGCCTGCA AGCTGCTCAA
                                                                                     840
        CATCACCGCA GATCCCATGG ACTGGAGCCC CAGCAATGTG CAGAAGTGGC TCCTGTGGAC AGAGCACCAA TACCGGCTGC CCCCCATGGG CAAGGCCTTC CAGGAGCTGG CGGCCAAGGA GCTGTGCGCC ATGTCGGAGG AGCAGTTCCG CCAGGCGCTCG CCCCTGGGTG GGGATGTGCT
                                                                                     900
                                                                                    1020
        GCACGCCCAC CTGGACATCT GGAAGTCAGC GGCCTGGATG AAAGAGCGGA CTTCACCTGG
                                                                                    1080
50
        GGCGATTCAC TACTGTGCCT CGACCAGTGA GGAGAGCTGG ACCGACAGCG AGGTGGACTC
        ATCATECTCC GGGCAGCCCA TCCACCTGTG GCAGTTCCTC AAGGAGTTGC TACTCAAGCC
CCACAGCTAT GGCCGCTTCA TTAGGTGGCT CAACAAGGAG AAGGGCATCT TCAAAAATTGA
GGACTCAGCC CAGGTGGCCC GGCTGTGGGG CATCCGCAAG AACCGTCCCG CCATGAACTA
                                                                                    1200
                                                                                    1260
        CGACAAGCTG AGCCGCTCCA TCCGCCAGTA TTACAAGAAG GGCATCATCC GGAAGCCAGA
                                                                                    1380
55
        1440
        GGGGAAAACG GGCAGTCTGC TCTGCTGCTC TGACCTTCCA GAGCCCAAGG TCAGGGAGGG
                                                                                    1560
        GCAACCAACT GCCCCAGGGG GATATGGGTC CTCTGGGGCC TTCGGGACCA TGGGGCAGGG
GTGCTTCCTC CTCAGGCCCA GCTGCTCCCC TGGAGGACAG AGGGAGACAG GGCTGCTCCC
                                                                                    1620
                                                                                     1680
60
        CARCACCTGC CTCTGACCCC AGCATTTCCA GAGCAGAGCC TACAGAAGGG CAGTGACTCG
                                                                                    1740
        ACAAAGGCCA CAGGCAGTCC AGGCCTCTCT CTGCTCCATC CCCCTGCCTC CCATTCTGCA
                                                                                    1800
        CCACACCTGG CATGGTGCAG GGAGACATCT GCACCCCTGA GTTGGGCAGC CAGGAGTGCC 1860
        CCCGGGAATG GATAATAAAG ATACTAGAGA ACTG
        SEQ ID NO:100 PEN1 Protein sequence
65
        Protein Accession #:
                                              31
                                                           41
70
        MGSASPGLSS VSPSHLLLPP DTVSRTGLEK AAAGAVGLER RDWSPSPPAT PEQGLSAFYL
        SYPOMLYPED SSWAAKAPGA SSREEPPEEP EQCPVIDSQA PAGSLDLVPG GLTLEEHSLE
        OVOSMVVGEV LKDIETACKL LNITADPMDW SPSNVQKWLL WTEHQYRLPP MGKAFQELAG
                                                                                     180
        KELCAMSEEO FRORSPLGGD VLHAHLDIWK SAAWMKERTS PGAIHYCAST SEESWTDSEV
                                                                                     240
        DSSCSGOPIH LWOPLKELLL KPHSYGRFIR WLNKEKGIPK IEDSAGVARL WGIRKNRPAM
75
        NYDKLSRSIR OYYKKGIIRK PDISQRLVYQ PVHPI
                                                       SEQ ID NO:101 PEN3 DNA SEQUENCE
        Nucleic Acid Accession #: NM_000742
                            555-2144 (underlined sequences correspond to start and stop codons)
        Coding sequence:
80
```

```
GAGAGAACAG CGTGAGCCTG TGTGCTTGTG TGCTGAGCCC TCATCCCCTC CTGGGGCCAG
        GCTTGGGTTT CACCTGCAGA ATCGCTTGTG CTGGGCTGCC TGGGCTGTCC TCAGTGGCAC
  5
        CTGCATGAAG CCGTTCTGGC TGCCAGAGCT GGACAGCCCC AGGAAAACCC ACCTCTCTGC
                                                                                    180
        AGAGCTTGCC CAGCTGTCCC CGGGAAGCCA AATGCCTCTC ATGTAAGTCT TCTGCTCGAC
                                                                                    240
        GGGGTGTCTC CTAAACCCTC ACTCTTCAGC CTCTGTTTGA CCATGAAATG AAGTGACTGA
                                                                                    300
        GCTCTATTCT GTACCTGCCA CTCTATTTCT GGGGTGACTT TTGTCAGCTG CCCAGAATCT
                                                                                    360
        CCAAGCCAGG CTGGTTCTCT GCATCCTTTC AATGACCTGT TTTCTTCTGT AACCACAGGT
TCGGTGGTGA GAGGAAGCCT CGCAGAATCC AGCAGAATCC TCACAGAATC CAGCAGCAGC
                                                                                    420
10
                                                                                    480
        TCTGCTGGGG ACATGGTCCA TGGTGCAACC CACAGCAAAG CCCTGACCTG ACCTCCTGAT
                                                                                    540
        GCTCAGGAGA AGCCATGGGC CCCTCCTGTC CTGTGTTCCT GTCCTTCACA AAGCTCAGCC
                                                                                    600
        TGTGGTGGCT CCTTCTGACC CCAGCAGGTG GAGAGGAAGC TAAGCGCCCA CCTCCCAGGG
                                                                                    660
        CTCCTGGAGA CCCACTCTCC TCTCCCAGTC CCACGGCATT GCCGCAGGGA GGCTCGCATA
                                                                                    720
        CCGAGACTGA GGACCGCTC TTCAAACACC TCTTCCGGGG CTACAACCGC TGGGCGCGCC
                                                                                   780
        840
        TCGATGTGGA TGAGAAGAAC CAAATGATGA CCACCAACGT CTGGCTAAAA CAGGAGTGGA
                                                                                    900
        GCGACTACAA ACTGCGCTGG AACCCCGCTG ATTTTGGCAA CATCACATCT CTCAGGGTCC
                                                                                   960
        CTTCTGAGAT GATCTGGATC CCCGACATTG TTCTCTACAA CAATGCAGAT GGGGAGTTTG
                                                                                  1020
20
        CAGTGACCCA CATGACCAAG GCCCACCTCT TCTCCACGGG CACTGTGCAC TGGGTGCCCC
                                                                                  1080
        CGGCCATCTA CAAGAGCTCC TGCAGCATCG ACGTCACCTT CTTCCCCTTC GACCAGCAGA
                                                                                  1140
        ACTGCAAGAT GAAGTTTGGC TCCTGGACTT ATGACAAGGC CAAGATCGAC CTGGAGCAGA
                                                                                  1200
        TGGAGCAGAC TGTGGACCTG AAGGACTACT GGGAGAGCGG CGAGTGGGCC ATCGTCAATG
                                                                                  1260
        CCACGGCAC CTACAACAGC AAGAAGTACG ACTGCTGCGC CGAGATCTAC CCCGACGTCA
                                                                                  1320
25
        CCTACGCCTT CGTCATCCGG CGGCTGCCGC TCTTCTACAC CATCAACCTC ATCATCCCCT
                                                                                  1380
        GCCTGCTCAT CTCCTGCCTC ACTGTGCTGG TCTTCTACCT GCCCTCCGAC TGCGGCGAGA
                                                                                  1440
        AGATCACGCT GTGCATTTCG GTGCTGCTGT CACTCACCGT CTTCCTGCTG CTCATCACTG
AGATCATCCC GTCCACCTCG CTGGTCATCC CGCTCATCGG CGAGTACCTG CTGTTCACCA
                                                                                  1500
                                                                                  1560
        TGATCTTCGT CACCCTGTCC ATCGTCATCA CCGTCTTCGT GCTCAATGTG CACCACCGCT
                                                                                  1620
30
        CCCCAGGAC CCACACCATG CCCCACTGGG TGCGGGGGGC CCTTCTGGGC TGTGTGCCCC
                                                                                  1680
        GGTGGCTTCT GATGAACCGG CCCCACCAC CCGTGGAGCT CTGCCACCCC CTACGCCTGA
                                                                                  1740
        AGCTCAGCCC CTCTTATCAC TGGCTGGAGA GCAACGTGGA TGCCGAGGAG AGGGAGGTGG
                                                                                  1800
        TGGTGGAGGA GGAGGACAGA TGGGCATGTG CAGGTCATGT GGCCCCCTCT GTGGGCACCC
                                                                                  1860
        TCTGCAGCCA CGGCCACCTG CACTCTGGGG CCTCAGGTCC CAAGGCTGAG GCTCTGCTGC
                                                                                  1920
35
        AGGAGGGTGA GCTGCTGCTA TCACCCCACA TGCAGAAGGC ACTGGAAGGT GTGCACTACA
                                                                                  1980
        TTGCCGACCA CCTGCGGTCT GAGGATGCTG ACTCTTCGGT GAAGGAGGAC TGGAAGTATG
                                                                                  2040
        TTGCCATGGT CATCGACAGG ATCTTCCTCT GGCTGTTTAT CATCGTCTGC TTCCTGGGGA
                                                                                  2100
        CCATCGGCCT CTTTCTGCCT CCGTTCCTAG CTGGAATGAT CTGACTGCAC CTCCCTCGAG
                                                                                  2160
        CTGGCTCCCA GGGCAAAGGG GAGGGTTCTT GGATGTGGAA GGGCTTTGAA CAATGTTTAG
                                                                                  2220
40
        ATTTGGAGAT GAĞCCCAAAG TGCCAGGGAG AACAGCCAGG TGAGGTGGGA GGTTGGAGAG
                                                                                  2280
        CCAGGTGAGG TCTCTCTAAG TCAGGCTGGG GTTGAAGTTT GGAGTCTGTC CGAGTTTGCA
                                                                                  2340
        GGGTGCTGAG CTGTATGGTC CAGCAGGGA GTAATAAGGG CTCTTCCCGA AGGGGAGGAA
                                                                                  2400
        GCGGGAGGCA GGCCTGCACC TGATGTGGAG GTACAGGCAG ATCTTCCCTA CCGGGGAGGG
        ATGGATGGTT GGATACAGGT GGCTGGGCTA TTCCATCCAT CTGGAAGCAC ATTTGAGCCT
                                                                                  2520
45
        CCAGGCTTCT CCTTGACGTC ATTCCTCTCC TTCCTTGCTG CAAAATGGCT CTGCACCAGC
                                                                                  2580
        CGGCCCCCAG GAGGTCTGGC AGAGCTGAGA GCCATGGCCT GCAGGGGCTC CATATGTCCC 2640
        TACGCGTGCA GCAGGCAAAC AAGA
        SEQ ID NO:102 PEN3 Protein sequence
50
                                            31
                                21
        MGPSCPVFLS PTKLSLWWLL LTPAGGEEAK RPPPRAPGDP LSSPSPTALP QGGSHTETED
55
        RLFKHLFRGY NRWARFVPNT SDVVIVRFGL SIAOLIDVDE KNOMMTTNVW LKOEWSDYKL
                                                                                   120
        RWNPADPGNI TSLRVPSEMI WIPDIVLYNN ADGEFAVTHM TKAHLPSTGT VHWVPPAIYK
       SSCSIDVTFF PFDQQNCKMK PGSWTYDKAK IDLEQMEQTV DLKDYWESGE WAIVNATGTY
NSKKYDCCAE IYFDVTYAFV IRRLPLFYTI NLIIPCLLIS CLTVLVFYLP SDCGEKITLC
                                                                                   240
                                                                                   300
        ISVLLSLTVF LLLITEIIPS TSLVIPLIGE YLLFTMIFVT LSIVITVFVL NVHHRSPSTH
60
        TMPHWVRGAL LGCVFRWLLM NRPPPPVELC HPLRLKLSPS YHWLESNVDA ERREVVVEEE
DRWACAGHVA PSVGTLCSHG HLHSGASGFK ARALLQEGEL LLSPHMQKAL EGVHYIADHL
                                                                                   420
        RSEDADSSVK EDWKYVAMVI DRIFLWLFII VCFLGTIGLF LPPFLAGMI
                                                     SEQ ID NO:103 PEU4 DNA SEQUENCE
65
        Nucleic Acid Accession #: NM_018670
        Coding sequence:
                          87-893 (underlined sequences correspond to start and stop codons)
70
         CACGAGGCTG GAAGGGGCCA CTTCACACCT CGGGCTCGGC ATAAAGCGGC CGCCGGCCGC
         CGGCCCCCAG ACGCGCCGCC GCTGCCATGG CCCAGCCCCT GTGCCCGCCG CTCTCCGAGT
         CCTGGATGCT CTCTGCGGCC TGGGGCCCAA CTCGGCGGCC GCCGCCCTCC GACAAGGACT
GCGGCCGCTC CCTCGTCTGG TCCCCAGACT CATGGGGCAG CACCCCAGCC GACAGCCCCG
                                                                                    180
         TGGCGAGCCC CGCGCGGCCA GGCACCCTCC GGGACCCCCG CGCCCCCTCC GTAGGTAGGC
75
         GCGGCGCGC CAGCAGCCCC CTGGGCAGCG GGCAGAGGCA GAGCGCCAGT GAGCGGGAGA
AACTGCGCAT GCGCACGCTG GCCCGCCC TGCACGAGCT GCGCCGCTTT CTACCGCCGT
         COGTGGCGCC CGCGGGCCAG AGCCTGACCA AGATCGAGAC GCTGCGCCTG GCTATCCGCT
                                                                                     480
        ATATOGGCCA CCTGTCGGCC GTGCTAGGCC TCAGCGAGGA GAGTCTCCAG CGCCGGTGCC
GGCAGCGCGG TGACGCGGGG TCCCCTCGGG GCTGCCCGCT GTGCCCCGAC GACTGCCCCCG
                                                                                    540
80
         CGCAGATGCA GACACGGACG CAGGCTGAGG GGCAGGGGCA GGGGCGCGGG CTGGGCCTGG
```

5	CTGCACCCGI AGGCGATGGI AGACCTGGAT CAACTGACGC CCTTGGCAGI GGGTGAGAGC ATAGGCTAA	A GCCGCGCGA A GCCAAGCCC F GCCCTCTCC C CGTCTCTCTC A CTGCCTTTCA C CGTCCCACC G ACACTTTGAC F GTACTGGTGT PEU4 Protein segu	C CCGCCTGCGC C CCGTCCCCGC C CCTCTGGAG; C AGCACCGAGC C TGGAAGAGGGCCC G GCAAGCAGGC T CAAAAAAAA	TGTTCGCCGA TCCTTCCGGC GGCTGCCTGA GCTTTTTGGCC GCACGGGCGAT TTCTCAGCCCA GGCTCTGCCTA	A GÓCGGCGTGC G CGACGTGCTC A GGAGCCCAAC TCAGCACCTT CCCGACGGGC CTCCCTCCAT AATGTGAATT	C GGAGCCCGAG CCGGAAGGGC GCTCTGTTGG GTGACAAGGGA CCGAAGTGGTT GGAGGGACCC TATTTATTTG	720 780 840 900 960 1020 1080 1140
		_					
15 20	LRDPRAPSVG TKIETLRLAI EGQGQGRGLG	11 ESWMLSAAWG RRGARESRLG RYIGHLSAVL LVSAVRAGAS LETWMPLSPL	SGQRQSASER GLSEESLQRR WGSPPACPGA	EKLRMRTLAR CRORGDAGSP	ALHELRRFLP RGCPLCPDDC	PSVAPAGQSL PAQMQTRTQA	60 120 180 240
				SEC	ID NO:105 PEU!	DNA SEQUENCE	
25	Nucleic Acid Acce Coding sequence	ssion #: NM_0 : 324-33	17636 74 (underlined seq	wences correspon	d to start and stop	codons)	
	1	11	21	31	41	51	
	(C)(C)(C)(C)	GCCCACCGAT	CCEACCEAG	ACCURCA CUT		GCCCCCFFCC	60
00	ACAGCAATTT	CCTCCGGCTC	TCTGACCGAA	CGGATCCAGC	TGCAGTTTAT	AGTCTGGTCA	120
30		GGGCTTCCGT					180 240
		CCAGACCTGG					300
	GTGTGGCTGT	ACGGGACCAT	CAGATGGCCA	GCACTGGGGG	CACCAAGGTG	GTGGCCATGG	360
35		CTGGGGTGTG					420
22		GGCCTTCTTC					480 540
		CTTGCGCCTG					600
		CATCCCTGTC					660
40		CGCCACCCAG					720 780
40		AGCCCGAGAT					840
	TGCAGGCCCA	GGTGGAGAGG	ATTATGACCC	GGAAGGAGCT	CCTGACAGTC	TATTCTTCTG	900
		TGAGGAATTC					960
45	GCTCGGAGGC	CTCAGCCTAC GAGTGAACTC	CTGGATGAGC	TGCGTTTGGC	CCCCCCCTCC	CATCTCGAAG	1020 1080
	CTTCCCTCAT	GGACGCCCTG	CTGAATGACC	GGCCTGAGTT	CGTGCGCTTG	CTCATTTCCC	1140
	ACGGCCTCAG	CCTGGGCCAC	TTCCTGACCC	CGATGCGCCT	GGCCCAACTC	TACAGCGCGG	1200
		CTCGCTCATC					1260 1320
50		CCTAAAAGGG GCTGGGGAAG					1380
		CCAGGGCTTC					1440
		GGATGCTGGC					1500
		CAGGGCACAG					1560 1620
55		ACGGAGGAAA					1680
	TTGGCGAGTG	CTATCGCAGC	AGTGAGGTGA	GGGCTGCCCG	CCTCCTCCTC	CGTCGCTGCC	1740
	CGCTCTGGGG	GGATGCCACT TGGGGTACAG	TGCCTCCAGC	TGGCCATGCA	AGCTGACGCC	CGTGCCTTCT	1800 1860
		CTGGGCCCTG					1920
60	TCATCACCTT	CAGGAAATCA	GAAGAGGAGC	CCACACGGGA	GGAGCTAGAG	TTTGACATGG	1980
		TAATGGGGAA					2040
		CCGCTGGTTC					2100 2160
	TGGTCAGCTA	CCTGCTGTTC	TIGCIGCITT	TCTCGCGGGT	GCTGCTCGTG	GATTTCCAGC	2220
65		CGGCTCCCTG					2280
	AGGAACTGCG	CCAGGGCCTG	AGCGGAGGCG	CCTCTACCT	CGCCAGCGGG	TGGAACCAGT	2340 2400
		GGCTCTCACC					2460
70	TGTACCACCT	GGGCCGCACT	GTCCTCTGCA	TCGACTTCAT	GGTTTTCACG	GTGCGGCTGC	2520
70						AGCAAGATGA	2580 2640
		GTTCTTCTTC GCTCCTGAGG					2700
	TCTACCGTCC	CTACCTGCAG	ATCTTCGGGC	AGATTCCCCA	GGAGGACATG	GACGTGGCCC	2760
75	TCATGGAGCA	CAGCAACTGC	TCGTCGGAGC	CCGGCTTCTG	GGCACACCCT	CCTGGGGCCC	2820
7 5	AGGCGGGCAC	CTGCGTCTCC	CAGTATGCCA	ACTGGCTGGT	GGTGCTGCTC	AGTTACACAT	2880 2940
		ACAGGGCAAC					3000
	GGGAATTCCA	CTCTCGGCCC	GCGCTGGCCC	CGCCCTTTAT	CGTCATCTCC	CACTTGCGCC	3060
80						CCGGCCCTCG	3120
OU	AGCATTTCCG	GGTTTACCTT	TCTAAGGAAG	CCGAGCGGAA	GCTGCTAACG	TGGGAATCGG	3180

```
TGCATAAGGA GAACTTTCTG CTGGCACGCG CTAGGGACAA GCGGGAGAGC GACTCCGAGC
          GTCTGGAGCG CACGTCCCAG AAGGTGGACT TGGCACTGAA ACAGCTGGGA CACATCCGCG
AGTACGAACA GCGCCTGAAA GTGCTGGAGC GGGAGGTCCA GCAGTGTAGC CGCGTCCTGG
                                                                                                      3300
                                                                                                      3360
          GGTGGGTGAC GTAGGCCGTT AGCAGCTCTC CCATGTTGCC CTCAGGTGGG CCGCCACCCC
          TTGACCTGCA TGGGTCCAAA GAGTGAGCCA TGCTGGCGGA TTTTAAGGAG AAGCCCCCAC AGGGGGATTTT GCTCTTAGAG TAAGGCTCAT GTGGGCCTCG GCCCCCGCAC CTGGTGGCCT
                                                                                                      3480
                                                                                                      3540
          TGTCCTTGAG GTGAGCCCCA TGTCCATCTG GGCCACTGTC AGGACCACCT TTGGGAGTGT
          CATCCTTACA AACCACAGCA TGCCCGGCTC CTCCCAGAAC CAGTCCCAGC CTGGGAGGAT 3660
CAAGGCCTGG ATCCCGGGCC GTTATCCATC TGGAGGCTGC AGGGTCCTTG GGGTAACAGG 3720
GACCACAGAC CCCTCACCAC TCACAGATTC CTCACACTGG GGAAATAAAG CCATTTCAGA 3780
10
          GGAAAAAAA AAAAAAAAA AAAAAAAAAA
          SEQ ID NO:106 PEU5 Protein sequence
          Protein Accession #:
15
                                                                                     51
                         11
                                                       31
                                                                      41
          MASTGGTKVV AMGVAFWGVV RNRDTLINFK GSFPARYRWR GDPEDGVQFF LDYNYSAFFL
          VDDGTHGCLG GENRFRLRLE SYISQOKTGV GGTGIDIPVL LLLIDGDEKM LTRIENATQA
                                                                                                       120
20
          QLPCLLVAGS GGAADCLAET LEDTLAPGSG GARQGEARDR IRRFTPKGDL EVLQAQVERI
         MTRRELLTVY SSEDGSEEP TIVLKALVKA CGSSEASAYL DELRLAVAKN RVDIAQSELF
RGDIQWRSFH LEASLMDALL NDRPEFVRLL ISHGLSLGHP LTPMRLAQLY SAAPSNSLIR
NLLDQASHSA GTKAPALKGG AAELRPPDVG HVLRMLLGKM CAPRYPSGGA WDPHPGQGFG
                                                                                                       240
                                                                                                       300
         ESMYLLSDKA TSPLSLDAGL GQAPWSDLLL WALLLNRAQM ANYFWEMGSN AVSSALGACL
LLRVMARLEP DABEAARRKD LAFKFEGMGV DLFGECYRSS EVRAARLLLR RCPLWGDATC
                                                                                                       420
25
                                                                                                       480
          LQLAMQADAR AFFAQDGVQS LLTQKWWGDM ASTTFIWALV LAFFCPPLIY TRLITFRKSE
         EEPTREELEF DMDSVINGEG PVGTADPAEK TPLGVPROSG RPGCCGGRCG GRRCLRRWFH
FWGAPVTIFM GNVVSYLLFL LLFSRVLLVD FOPAPPGSLE LLLYPWAPTL LCEELROGLS
                                                                                                       600
                                                                                                       660
          GCGGSLASGG PGPGHASLSQ RLRLYLADSW NQCDLVALTC FLLGVGCRLT PGLYHLGRTV
30
         LCIDPMVFTV RLLHIFTVNK OLGPKIVIVS KMMKDVFFPL FFLGVMLVAY GVATEGLLRP
RDSDFPSILR RVFYRPYLOI FGOIPOEDMD VALMEHSNCS SEPGFWAHPP GAOAGTCVSO
                                                                                                       780
                                                                                                       840
          YANWLVVLLL VIFLLVANIL LVNLLIAMFS YTFGKVQGNS DLYWKAQRYR LIREFHSRPA
          LAPPPIVISH LRLLLRQLCR RPRSPQPSSP ALEHPRVYLS KEAERKLLTW ESVHKENPLL
                                                                                                       960
          ARARDKRESD SERLERTSOK VDLALKOLGH IREYEORLKV LEREVOOCSR VLGWVT
35
                                                                  SEQ ID NO:107 PEW3 DNA SEQUENCE
         Nucleic Acid Accession #: NM 005982
                                 276-1130 (underlined sequences correspond to start and stop codons)
         Coding sequence:
40
                                                       31
          GGTAGCAGCA TCCACCGGC GGGAGGTCGG AGGCAGCAAG GCCTTAAAGG CTACTGAGTG
         CGCCGGCCGT TCCGTGTCCA GAACCTCCCC TACTCCCCG CCTTCTCTTC CTTGGCCGCC CACCGCCAAG TTCCGACTCC GGTTTTCGCC TTTGCAAAGC CTAAGGAGGA GGTTAGGAAC
                                                                                                       120
45
          AGCCGCGCC CCCTCCCTGC GGCCGCCGCC CCCTGCCTCT CGGCTCTGCT CCCTGCCGCG
         TECECCTEGE COSTECECC CECCAGGCE CAGCCATETC GATECTECCE TCGTTTEGCT
TTACGCAGGA GCAAGTEGCE TECETTECC AGETTCTCA GCAAGGCGGA AACCTGGAGC
                                                                                                       300
          GCCTGGGCAG GTTCCTGTGG TCACTGCCCG CCTGCGACCA CCTGCACAAG AACGAGAGCG
         TACTCAAGGC CAAGGCGGTG GTCGCCTTCC ACCGCGGCAA CTTCCGTGAG CTCTACAAGA
TCCTGGAGAG CCACCAGTTC TCGCCTCACA ACCACCCCAA ACTGCAGCAA CTGTGGCTGA
                                                                                                       480
50
                                                                                                       540
          AGGCGCATTA CGTGGAGGCC GAGAAGCTGC GCGGCCGACC CCTGGGCGCC GTGGGCAAAT
         ATCGGGTCG CCGAAAATT CCACTGCCGC GCACCATCTG GGACGGCGAG GAGACCAGCT
ACTGCTTCAA GGAGAAGTCG AGGGGTGTCC TGCGGGAGTG GTACGCGCAC AATCCCTACC
                                                                                                       660
                                                                                                       720
          CATCGCCGCG TGAGAAGCGG GAGCTGGCCG AGGCCACCGG CCTCACCACC ACCCAGGTCA
55
         GCAACTGGTT TAAGAACCGG AGGCAAAGAG ACCGGGCCGC GGAGGCCAAG GAAAGGGAGA
ACACCGAAAA CAATAACTCC TCCTCCAACA AGCAGAACCA ACTCTCTCCT CTGGAAGGGG
                                                                                                       840
                                                                                                       900
         1020
                                                                                                      1080
60
         ACTOTOTECT CGGCCCCCTC ACCTCCAGTC TGGTGGACTT GGGGTCCTAA GTGGGGAGGG
ACTGGGGCCT CGAAGGGATT CCTGGAGCAG CAACCACTGC AGCGACTAGG GACACTTGTA
                                                                                                     1140
                                                                                                     1200
          AATAGAAATC AGGAACATTT TTGCAGCTTG TTTCTGGAGT TGTTTGCGCA TAAAGGAATG
         GTGGACTITC ACAAATATCT TITTAAAAAT CAAAACCAAC AGCGATCTCA AGCTTAATCT 1320
         CCTCTTCTCT CCAACTCTTT CCACTTTTGC ATTTTCCTTC CCAATGCAGA GATCAGGG
65
         SEQ ID NO:108 PEW3 Protein sequence
         Protein Accession #:
                                NP 005973
                         11
                                        21
                                                       31
                                                                      41
                                                                                     51
70
          MSMLPSPGPT QEQVACVCEV LQQGGNLERL GRPLWSLPAC DHLHKNESVL KAKAVVAFHR
         GNFRELYKIL ESHOFSPHNH PKLQQLWLKA HYVEAEKLRG RPLGAVGKYR VRRKFPLPRT
IWDGEPTSYC FKEKSRGVLR EWYAHNPYPS PREKRELAEA TGLTTTQVSN WFKNRRQRDR
                                                                                                       120
                                                                                                       180
          AAEAKERENT ENNNSSSNKQ NQLSPLEGGK PLMSSSEEEF SPPQSPDQNS VLLLQGNMGH
75
         ARSSNYSLPG LTASQPSHGL QTHQHQLQDS LLGPLTSSLV DLGS
                                                                  SEQ ID NO: 109 PFJ8 DNA SEQUENCE
         Nucleic Acid Accession #: NM_005069
                                 57-2060 (underlined sequences correspond to start and stop codons)
         Coding sequence:
80
```


KLIFLDSRVT EVTGYEPODL IEKTLYHHVH GCDVFHLRYA HHLLLVKGOV TTKYYRLLSK 300 RGGWVWVQSY ATVVHNSRSS RPHCIVSVNY VLTEIEYKEL QLSLEQVSTA KSQDSWRTAL 360 STSQETRKLV KPKNTKMKTK LRTNPYPPQQ YSSFQMDKLE CGQLGNWRAS PPASAAAPPE 420 LQPHSESSDL LYTPSYSLPF SYHYGHFPLD SHVFSSKKPM LPAKFGQPQG SPCEVARFFL 480 STLPASGECQ WHYANPLVPS SSSPAKNPPE PPANTARHSL VPSYEAPAAA VRRRGEDTAP 540 PSFFSCGHYR EEPALGPAKA ARQAARDGAR LALARAAPEC CAPPTPEAPG APAQLPFVLL 600 NYHRVLARRG PLGGAAPAAS GLACAPGGPE AATGALRLRH PSPAATSPPG APLPHYLGAS 660

10

SEQ ID NO:111 PFJ7 DNA SEQUENCE

Nucleic Add Accession #: NM_006549 1-1254 (underlined sequences correspond to start and stop codons) 15 Coding sequence: 31 41 51 21 ATGAACGGAC GCTGCATCTG CCCGTCCCTG CCCTACTCAC CCGTCAGCTC CCCGCAGTCC 60 20 TCGCCTCGGC TGCCCCGGCG GCCGACAGTG GACTCTCACC ACGTCTCCAT CACGGGTATG 120 CAGGACTGTG TGCAGCTGAA TCAGTATACC CTGAAGGATG AAATTGGAAA GGGCTCCTAT 180 GGTGTCGTCA AGTTGGCCTA CAATGAAAAT GACAATACCT ACTATGCAAT GAAGGTGCTG 240 TCCAAAAAGA AGCTGATOCG GCAGGCCGGC TTTCCACGTC GCCCTCCACC CCGAGGCACC 300 CGGCCAGCTC CTGGAGGCTG CATCCAGCCC AGGGGCCCCA TTGAGCAGGT GTACCAGGAA 360 ATTGCCATCC TCAAGAAGCT GGACCACCCC AATGTGGTGA AGCTGGTGGA GGTCCTGGAT 420 25 GACCCCAATG AGGACCATCT GTACATGGTG TTCGAACTGG TCAACCAAGG GCCCGTGATG 480 GAAGTGCCCA COCTCAAACC ACTCTCTGAA GACCAGGCCC GTTTCTACTT CCAGGATCTG 540
ATCAAAGGCA TOGAGTACTT ACACTACCAG AAGATCATCC ACCGTGACAT CAAACCTTCC 600 ALCARAGGEA TEGAGIACH ACACHACAG AAGATCAC ACGIGACAI CAAACHTEC 600
AACCTCCTGG TEGGAGAAGA TEGGCACATC AAGATCGCTG ACTITEGGTGT GAGCAATGA 660
TTCAAGGGCA GTGACGCGCT CCTCTCCAAC ACCGTGGGCA CGCCCGCCTT CATGGCACCC 720
GAGTCGCTCT CTGAGACCCG CAAGATCTTC TCTGGGAAGG CCTTGGATGT TTGGGCCATG 780
GGTGTGACAC TATACTGCTT TGTCTTTGGC CAGTGCCCAT TCATGGACGA GCGGATCATG 840 30 TOTTTACACA GTAAGATCAA GAGTCAGGCC CTGGAATTTC CAGACCAGCC CGACATAGCT 900 GAGGACTTGA AGGACCTGAT CACCCGTATG CTGGACAAGA ACCCCGAGTC GAGGATCGTG 960
GTGCCGGAAA TCAAGCTGCA CCCCTGGGTC ACGAGGCATG GGGCGGAGCC GTTGCCGTCG 1020 35 GAGGATGAGA ACTGCACGCT GGTCGAAGTG ACTGAAGAGG AGGTCGAGAA CTCAGTCAAA 1080 GAGGATGAGA ACTGCACGCT GGTCGAAGTG ACTGAAGAGG AGGTCGAGAA CTCATTCAAA 1080
CACATTCCCA GCTTGGCAAC CGTGATCCTG GTGAAGACCA TGATAACGTAA ACCCTCCTTT 1140
GGGAACCCAT TCGAGGGCAG CCGGCGGGAG GAACGCTCAC TGTCAAGACC TGAAACTTG 1200
CTCACCAAAA AACCAACCAG GGAATGTGAG TCCCTGTCTG AGCTCAAGAC CTAGAAAATA 1260
AGTCCCTTC CTGCCTGTTG CAAAGTAACG TAAGAGTTCC CTCACCCGAG TGGATGCAGA 1320
CGTTCTTGCT GTCAGCCACC TTCCTTCATA CACATAGCCA GCCCAGGGTG ACCAGAACGT 1380
CCCAGGACAG ATGAGGCTTT GTGTCCTTAT GAGAGTGGGA GAACCTGGTT GCACACCCTG 1440
GTGCAGGTGC TGTGGTGGT GGGGACCCCA CTGCCTTTCC CACTGAGCAC ATCATGGCTA 1500
CCTGACTTGG TGGGAGTTCC ATTCAGTCAC TTCTGTTTCT TAAACATTAGC TTTACTGAGG 1560
TACAATTCAC ATACCATGTA ATTCACCCAC GGGAAGTGTA TGATTCAGGG CCCAAGGAAGAC 1680 40 45 CACACTTCTG CAGCCATTAC CACCGTCAAC TTTACGACAT TTTCATCAGC CCAAGAAGAC 1680 ACCETACACT CETTAGETGT COCCATECAA CTCCCCCACE CCAGTAACCA CTCAGAATAG 1740 GTATGGATTT GCCTATTCTG GACGTTTCGT ATAAATGGCG TCATACACTA AAAAAAAAA 1800 AAAA 50 SEQ ID NO:112 PFJ7 Protein sequence: Protein Accession #: NP 006540.1 55 21 31 MNGRCICPSL PYSPVSSPOS SPRLPRRPTV ESHHVSITGM ODCVOLNOYT LKDEIGKGSY 60 GVVKLAYNEN DNTYYAMKVL SKKKLIRQAG FFRRPFPRGT RPAPGGCIQP RGPIEQVYQE 120 IAILKKLDHP NVVKLVEVLD DPNEDHLYMV FELVNQGPVM EVPTLKPLSE DQARFYFQDL 180 IKGIEYLHYQ KIIHRDIKPS NLLVGEDGHI KIADFGVSNE FKGSDALLSN TVGTPAFMAP 240 60 ESISETRKIF SGKALDVWAM GYTLYCFYFG QCPFMDERIM CLHSKIKSQA LEFPDOPDIA 300 EDI.KDLITRM LDKNPESRIV VPEIKLHPWV TRHGAEPLPS EDENCTLVEV TEEEVENSVK 360 HIPSLATVIL VKTMIRKRSF GNPFEGSRRE ERSLSAPGNL LTKKPTRECE SLSELKT 65 SEQ ID NO:113 PFJ6 DNA SEQUENCE Nucleic Acid Accession #: NM_021810 70 Coding sequence: 1-429 (underlined sequences correspond to start and stop codons) ATGAAACCTC TGATATGGAC ATGGTCAGAT GTTGAAGGCC AGAGGCCGGC TCTGCTCATC 60
TGCACCAGCTG CAGCAGGACC CACGCAGGAG GTTAAGGGTT ATGGCAAGCC CTTTGAGCCA 120
AGAAGTGTGA AAAACATACA CTCTACTCCT GCTTACCCAG ATGCCACAAT GCACAGACAA 180
CTCCTGGCTC CGGTGGAAGG AAGGATGGCA GAGACATTGA ATCAGAAACT CCATGTTGCC 240 75

AATGTGCTGG AAGATGACCC CGGCTACCTA CCTCACGTCT ACAGCGAGGA AGGGGAGTGT 300 GGAGGGGCCC CATCCCTCAG CTCTCTGGCC AGCTTGGAAC AGGAGTTGCA ACCTGATTTG 360

CTGGACTCTT TGGGTTCAAA AGCGACTCCG TTTGAGGAAA TATATTCAGA GTCAGGTGTT 420 CCTTCCTAA

SEQ ID NO:114 PFJ6 Protein sequence:
Protein Accession #: NP_068582.1

1 11 21 31 41 51

10 MKPLIWTWSD VEGQRPALLICTAAAGPTQG VKGYGKPFEP RSVKNIHSTP AYPDATMHRQ 60
LLAPVEGRMA ETLNQKLHVA NVLEDDPGYL PHVYSEEGEC GGAPSLSSLA SLEQELQPDL 120
LDSLGSKATP FEETYSESGV PS

15

5

SEQ ID NO:115 PFJ5 DNA SEQUENCE

Nucleic Acid Accession #: NM_006361

Coding sequence: 131-985 (underlined sequences correspond to start and stop codons)

20 31 21 CGAATGCAGG CGACTTGCGA GCTGGGAGCG ATTTAAAACG CTTTGGATTC CCCCGGCCTG 60 GGTGGGGAGA GCGAGCTGGG TGCCCCCTAG ATTCCCCGCC CCCGCACCTC ATGAGCCGAC 120 CCTCGGCTCC ATGGAGCCCG GCAATTATGC CACCTTGGAT GGAGCCAAGG ATATCGAAGG 180 25 CTTGCTGGGA GCGGGAGGGG GGCGGAATCT GGTCGCCCAC TCCCCTCTGA CCAGCCACCC 240
AGCGGCGCCT ACGCTGATGC CTGCTGTCAA CTATGCCCCC TTGGATCTGC CAGGCTCGGC 300
GGAGCCGCCA AAGCAATGCC ACCCATGCCC TGGGGTGCCC CAGGGGACGT CCCCAGCTCC 360 CGTGCCTTAT GGTTACTTTG GAGGCGGGTA CTACTCCTGC CGAGTGTCCC GGAGCTCGCT 420
GAAACCCTGT GCCCAGGCAG CCACCCTGGC CGCGTACCCC GCGGAGACTC CCACGGCCGG 480
GGAAGAGTAC CCCAGTCGCC CCACTGAGTT TGCCTTCTAT CCGGGATATC CGGGAACCTA 540 30 CCACGCTATG GCCAGTTACC TGGACGTGTC TGTGGTGCAG ACTCTGGGTG CTCCTGGAGA 600 ACCGCGACAT GACTCCCTGT TGCCTGTGGA CAGTTACCAG TCTTGGGCTC TCGCTGGTGG 660 CTGGAACAGC CAGATGTGTT GCCAGGGAGA ACAGAACCCA CCAGGTCCCT TTTGGAAGGC 720 AGCATTTGCA GACTCCAGCG GGCAGCACCC TCCTGACGCC TGCGCCCTTTC GTCGCGGCCG 780 35 CAAGAAACGC ATTCCGTACA GCAAGGGGCA GTTGCGGGAG CTGGAGCGGG AGTATGCGGC 840
TAACAAGTTC ATCACCAAGG ACAAGAGGCG CAAGATCTCG GCAGCCACCA GCCTCTCGGA 900 GCGCCAGATT ACCATCTGGT TTCAGAACCG CCGGGTCAAA GAGAAGAAGG TTCTCGCCAA 960 GGTGAAGAAC AGCGCTACCC CTTAAGAGAT CTCCTTGCCT GGGTGGGAGG AGCGAAAGTG 1020 GGGGTGTCCT GGGGAGACCA GAAACCTGCC AAGCCCAGGC TGGGGCCAAG GACTCTGCTG 1080 AGAGGCCCCT AGAGACAACA CCCTTCCCAG GCCACTGGCT GCTGGACTGT TCCTCAGGAG 1140 40 CGGCCTGGGT ACCCAGTATG TGCAGGGAGA CGGAACCCCA TGTGACAGGC CCACTCCACC 1200 AGGGTTCCCA AAGAACCTGG CCCAGTCATA ATCATTCATC CTCACAGTGG CAATAATCAC 1260

45

SEQ ID NO:116 PFJ5 Protein sequence: Protein Accession #: NP_006352.

GATAACCAGT

50 1 11 21 31 41 51

MEPGNYATLD GAKDIEGILG AGGGRNLVAH SPLTSHPAAP TLMPAVNYAP LDLPGSAEPP 60
KQCHPCRGVP QGTSPAPVPY GYFGGGYYSC RVSRSSLKPC AQAATLAAYP AETPTAGEEY 120
PSRPTEFAFY PGYPGTYHAM ASYLDVSVQ TLGAPGEPRH DSLPVDSYQ SWALAGGWNS 180
QMCCQGEQNP PGPFWKAAFA DSSGQHPPDA CAFRGGRKKR IPYSKGQLRE LEREYAANKF 240
ITKDKRRKIS AATSLSERQI TIWFQNRRVK EKKVLAKVKN SATP

Nucleic Acid Accession #: NM_005628
Coding sequence: 591-2216 (underlined sequences correspond to start and stop codons)

AGGGGAACAA GGACCCAGAG GGGATCGTGG TGACAAAGGT GAAAAAGGTG CCCCTGGACC 600 TOGAGGACAT GOACCCADAG GGGATCOTOC TOXCAAAGGT GAAAAAGGTG CECCTOCACC
TOGAGGAGACCT GGGACCCC TGGAAATCCT GGCCCCCCTG GTCCTCCCGG 660
CCCCCCTGGT CCCCCTGGTC TTGGTGGAAA CTTTGCTGCC CAGATGGCTG GAGGATTTGA 720
TGAAAAGGCT GGTGGCGCCC AGTTGGGAGT AATGCAAGGA CCAATGGGCC CCATGGGACC 780
TOGAGGACCT CCAGGCCCTG CAGGTGCTCC TGGGCCTCAA GGATTTCAAG GCAATCCTGG 840 5 TGAACCTGGT GAACCTGGTG TCTCTGGTCC CATGGGTCCC CGTGGTCCTC CTGGTCCCCC 900
TGGAAGCCT GGTGATGATG GTGAAGCTGG AAAACCTGGA AAAGCTGGTG AAAGGGGTCC 960
GCCTGGTCCT CAGGGTGCTC GTGGTTTCCC AGGAACCCCA GGCCTTCCTG GTGTCAAAGG 1020 TCACAGAGGT TATCCAGGCC TGGACGGTGC TAAGGGAGAG GCGGGTGCTC CTGGTGTGAA 1080 GGGTGAGAGT GGTTCCCCGG GTGAGAACGG ATCTCCGGGC CCAATGGGTC CTCGTGGCCT 1140 GCCTGGTGAA AGAGGACGGA CTGGCCCTGC TGGCGCTGCG GGTGCCCGAG GCAACGATGG 1200 10 TCAGCCAGGC CCCGCAGGTC CTCCGGGTCC TGTCGGTCCT GCTGGTGGTC CTGGCTTCCC 1260 TGGTGCTCCT GGAGCCAAGG GTGAAGCCGG CCCCACTGGT GCCCGTGGTC CTGAAGGTGC. 1320
TCAAGGTCCT CGCGGTGAAC CTGGTACTCC TGGGTCCCCT GGGCCTGCTG GTGCCTCCGG 1380
TAACCCTGGA ACAGATGGAA TTCCTGGAGC CAAAGGATCT GCTGGTGCTC CTGGCATTGC 1440 15 TEGTICTCCT GGCTTCCCTG GGCCACGGGG TCCTCCTGGC CCTCAAGGTG CAACTGGTCC 1500
TCTGGGCCCG AAAGGTCAGA CGGGTGAACC TGGTATTGCT GGCTTCAAAG GTGAACAAGG 1560
CCCCAAGGGA GAACCTGGCC CTGCTGGCCC CCAGGGAGCC CCTGGACCCG CTGGTGAAGA 1620 AGGCAAGAGA GGTGCCCGTG GAGAGCCTGG TGGCGTTGGG CCCATCGGTC CCCCTGGAGA 1680 20 AAGAGGTGCT CCCGGAAACC GCGGTTTCCC AGGTCAAGAT GGTCTGGCAG GTCCCAAGGG 1740
AGCCCTGGA GAGCGAGGGC CCAGTGGTCT TGCTGGCCC AAGGGAGCCA ACGGTGACCC 1800
TGGCCGTCCT GGAGAACCTG GCCTTCCTGG AGCCCGGGGT CTCACTGGCC GCCCTGGTGA 1860 TGCTGGTCCT CAAGGCAAAG TTGGCCCTTC TGGAGCCCCT GGTGAAGATG GTCGTCCTGG 1920 ACCTCCAGGT CCTCAGGGGG CTCGTGGGCA GCCTGGTGTC ATGGGTTTCC CTGGCCCCAA 1980 AGGTGCCAAC GGTGAGCCTG GCAAAGCTGG TGAGAAGGGA CTGCCTGGTG CTCCTGGTCT 2040 25 GAGGGGTCTT CCTGGCAAAG ATGGTGAGAC AGGTGCTGCA GGACCCCCTG GCCCTGCG 2100
ACCTGCTGGT GAACGAGGCG AGCAGGGTGC TCCTGGGCCA TCTGGGTTCC AGGGACTTCC 2160
TGGCCCTCCT GGTCCCCCAG GTGAAGGTGG AAAACCAGGT GACCAGGGTG TTCCCGGTGA 2220 AGCTGGAGCC CCTGGCCTCG TGGGTCCCAG GGGTGAACGA GGTTTCCCAG GTGAACGTGG 2280 30 CTCTCCGGT GCCCAGGGCC TCCAGGGTCC CCGTGGCCTC CCCGGCACTC CTGGCACTGA 2340
TGGTCCCAAA GGTGCATCTG GCCCAGCAGG CCCCCTGGC GCACAGGGCC CTCCAGGTCT 2400
TCAGGGAATG CCTGGCGAGA GGGGAGCAGC TGGTATCGCT GGGCCCAAAG GCGACAGGGG 2460 TGACGTARIO CLIGGCAMA GUGGACAGO TOUTRICO GOCCLARAG GAGGACAGOGO 2520
AGGTCCCATT GGCCCCCCTG GCCCAGCTGG TGCTAACGGC GAGAAGGGAG AAGTTGGACC 2520
AGGTCCCATT GGCCCCCCTG GCCCAGCTGG TGCTAACGGC GAGAAGGGAG AAGTTGGACC 2580
TCCTGGTCCT GCAGGAAGTG CTGGTGCTCG TGGCCCTCCG GGTGAACGTG GAGAGACTGG 2640
CCCCCCCGGA CCAGCGGGAT TTGCTGGGCC TCCTGGTGCT GATGGCCAGC CTGGGGCCAA 2700 35 GGGTGAGCAA GGAGAGGCCG GCCAGAAAGG CGATGCTGGT GCCCCTGGTC CTCAGGGCCC 2760 CTCTGGAGCA CCTGGGCCTC AGGGTCCTAC TGGAGTGACT GGTCCTAAAG GAGCCCGAGG 2820 TGCCCAAGGC CCCCCGGGAG CCACTGGATT CCCTGGAGCT GCTGGCCGCG TTGGACCCCC 2880 40 AGGCTCCAAT GGCAACCCTG GACCCCCTGG TCCCCTGGT CCTTCTGGAA AAGATGGTCC 2940
CAAAGGTGCT CGAGGAGACA GCGGCCCCCC TGGCCGAGCT GGTGAACCCG GCCTCCAAGG 3000
TCCTGCTGGA CCCCCTGGCG AGAAGGGAGA GCCTGGAGAT GACGGTCCCT CTGGTGCCGA 3060 AGGTCCACCA GGTCCCCAGG GTCTGGCTGG TCAGAGAGGC ATCGTCGGTC TGCCTGGGCA 3120
ACGTGGTGAG AGAGGATTCC CTGGCTTGCC TGGCCCATCG GGTGAGCCCG GCAAGCAGGG 3180
TGCTCCTGGA GCATCTGGAG ACAGAGGTCC TCCTGGCCCC GTGGGTCCTC CTGGCCTGAC 3240 45 GGGTCCTGCA GGTGAACCCG GACGAGAGGG AAGCCCCGGT GCTGATGGCC CCCCTGGCAG 3300 AGATGGCGCT GCTGGAGTCA AGGGTGATCG TGGTGAGACT GGTGCTGTGG GAGCTCCTGG 3360
AGCCCCTGGG CCCCCTGGCT CCCCTGGCCC CGCTGGTCCA ACTGGCAAGC AAGGAGACAG 3420
AGGAGAAGCT GGTGCACAAG GCCCCATGGG ACCCTCAGGA CCAGCTGGAG CCCGGGGAAT 3480 50 CCAGGGTCCT CAAGGCCCCA GAGGTGACAA AGGAGAGGCT GGAGAGCCTG GCGAGAGAGG 3540 CCTGAAGGGA CACCGTGGCT TCACTGGTCT GCAGGGTCTG CCCGGCCCTC CTGGTCCTTC 3600 TGGAGACCAA GGTGCTTCTG GTCCTGCTGG TCCTTCTGGC CCTAGAGGTC CTCCTGGCCC 3660 CGTCCGTCCC TCTGGCAAAG ATGGTGCTAA TGGAATCCCT GGCCCCATTG GGCCTCCTGG 3770
TCCCCGTGGA CGATCAGGCG AAACCGGTCC TGCTGGTCCT CCTGGAAATC CTGGGCCCC 3780
TGGTCCTCCA GGTCCCCCTG GCCCTGGCAT CGACATGTCC GCCTTGCTG GCTTAGGCCC 3840 55 GAGAGAGAAG GGCCCCGACC CCCTGCAGTA CATGCGGGCC GACCAGGCAG CCGGTGGCCT 3900 GAGACAGCAT GACGCCCAGG TGGATGCCAC ACTCAAGTCC CTCAACAACC AGATTGAGAG 3960
CATCCGCAGC CCCGAGGGCT CCCGCAAGAA CCCTGCTCGC ACCTGCAGAG ACCTGAAACT 4020
CTGCCACCCT GAGTGGAAGA GTGGAGACTA CTGGATTGAC CCCAACCAAG GCTGCACCTT 4080 60 GGACGCCATG AAGGTTTTCT GCAACATGGA GACTGGCGAG ACTTGCGTCT ACCCCAATCC 4140
AGCAAACGTT CCCAAGAAGA ACTGGTGGAG CAGCAAGAGC AAGGAGAAGA AACACATCTG 4200
GTTTGGAGAA ACCATCAATG GTGGCTTCCA TTTCAGCTAT GGAGATGACA ATCTGGCTCC 4260 CAACACTGCC AACGTCCAGA TGACCTTCCT ACGCCTGCTG TCCACGGAAG GCTCCCAGAA 4320 CATCACCTAC CACTGCAAGA ACAGCATTGC CTATCTGGAC GAAGCAGCTG GCAACCTCAA 4380 GAAGGCCCTG CTCATCCAGG GCTCCAATGA CGTGGAGATC CGGGCAGAGG GCAATAGCAG 4440 65 GAAGGCCTG CTCATCCAGG GCTCCAATGA CGTGGAGATC CGGGCAGAGG GCAATAGCAG 4440
GTTCACGTAC ACTGCCCTGA AGGATGGCTG CACGAAACAT ACCGGTAAGT GGGGCAAGAC 4500
TGTTATCGAG TACCGGTCAC AGAAGACCTC ACGCCTCCCC ATCATTGACA TTGCACCCAT 4560
GGACATAGGA GGGCCCGAGC AGGAATTCGG TGTGGACATA GGGCCGGTCT GCTTCTTGTA 4620
AAACCTGAA CCCAGAAACA ACACAATCCG TTGCAAACCC AAAGGACCCA AGTACTTTCC 4680 70 AATCTCAGTC ACTCTAGGAC TCTGCACTGA ATGGCTGACC TGACCTGATG TCCATTCATC 4740
CCACCCTCTC ACAGTTCGGA CTTTTCTCCC CTCTCTTTCT AAGAGACCTG AACTGGGCAG 4800
ACTGCAAAAT AAAATCTCGG TGTTCTATTT ATTTATTGTC TTCCTGTAAG ACCTTCGGGT 4860 CAAGGCAGAG GCAGGAAACT AACTGGTGTG AGTCAAATGC CCCCTGAGTG ACTGCCCCCA 4920
GCCCAGGCCA GAAGACCTCC CTTCAGGTGC CGGGCGCAGG AACTGTGTGT GTCCTACACA 4980
ATGGTGCTAT TCTGTGTCAA ACACCTCTGT ATTTTTTAAA ACATCAATTG ATATTAAAAA 5040 75 TGAAAAGATT ATTGGAAAGT

SEQ ID NO:127 PFH8 DNA SEQUENCE . 5 Nucleic Acid Accession #: NM_015900 32-1402 (underlined sequences correspond to start and stop codons) Coding sequence: 31 CACGAGCGGC ACGAGGATTT CCAGCTCAGC GATGCCCCCA GGTCCCTGGG AGAGCTGCTT 60 CTGGGTGGGG GGCCTCATTT TGTGGCTCAG CGTTGGAAGT TCAGGGGATG CACCTCCTAC 120 10 CCCACAGCCA AAGTGCGCTG ACTTCCAGAG CGCCAACCTT TTTGAAGGCA CCGATCTCAA 180 AGTCCAGTTT CTCCTCTTTG TCCCTTCGAA TCCTAGCTGT GGGCAGCTAG TAGAAGGAAG 240 CAGTGACCTC CAAAACTCTG GGTTCAATGC CACTCTGGGA ACCAAACTAA TTATCCATGG 300 15 ATTCAGGGTT TTAGGAACAA AGCCTTCCTG GATTGACACA TTTATTAGAA CCCTTCTGCG 360 TGCAACGAAT GCTAATGTGA TTGCCGTGGA CTGGATTTAT GGGTCTACAG GAGTCTACTT 420 CTCAGCTGTG AAAAATGTGA TTAAGTTGAG CCTCGAGATC TCCCTTTTCC TCAATAAACT 480 CCTGGTGCTG GGTGTGCGG AATCCTCAAT CCACATCATT GGTGTTAGCC TGGGGGCCCA 540 CGTTGGGGGC ATGGTGGGAC AGCTCTTCGG AGGCCAGCTG GGACAGATCA CAGGCCTGGA 600 CCCCGCTGGA CCTGAGTACA CCAGGGCCAG TGTGGAAGAG CGCTTGGATG CTGGAGATGC 660 CCTCTTCGTG GAAGCCATCC ACACAGACAC CGACAATTTG GGTATTCGGA TTCCCGTTGG 720 20 ACATGTGGAC TACTTCGTCA ACGGAGGCCA AGACCAACCT GGCTGCCCCA CCTTCTTTTA 780 CGCAGGTTAT AGTTATCTGA TCTGTGATCA CATGAGGGCT GTGCACCTCT ACATCAGCGC 840 CCTGGAGAAT TCCTGTCCAC TGATGGCCTT TCCCTGTGCC AGCTACAAGG CCTTCCTTGC 900 25 TGGACGCTGT CTGGATTGCT TTAACCCTTT TCTGCTTTCC TGCCCAAGGA TAGGACTGGT 960 GGAACAAGGT GGTGTCAAGA TAGAGCCGCT CCCCAAGGAA GTGAAAGTCT ACCTCCTGAC 1020 TACTTCCAGT GCTCCGTACT GCATGCATCA CAGCCTCGTG GAGTTTCACT TGAAGGAACT 1080 GAGAAACAAG GACACCAACA TCGAGGTTAC CTTCCTTAGC AGTAACATCA CCTCTTCATC 1140 TAAGATCACC ATACCTAAGC AGCAACGCTA TGGGAAAGGA ATCATAGCCC ATGCCACCCC 1200 ACAATGCCAG ATAAACCAAG TGAAATTCAA GTTTCAGTCT TCCAACCGAG TTTGGAAAAA 1260 AGACCGGACT ACCATTATTG GGAAGTTCTG CACTGCCCTT TTGCCTGTCA ATGACAGAGA 1320 30 AGACCOACT ACCATTATO GUARANTE GUARACTECTO TO TOCCOTOCA ATGACCANA 1520 AAAGATGGTC TGCTTACCTG AACCAGTGAA CTTACAGCA AGTGTGACTG TTTCCTGTGA 1380 CCTGAAGATA GCCTGTGTGT_AGTTTAACCT GGGCAGGACA CATCTCCCTG CATTTTTTT 1440 TTTTTTTTTT GAGAGAGAGG TGTGATGAGG GATGTGTGT TGCAGCTTAT TGTAGACCAT 1500 TACTACTAAG GAGAAAAGCA AAGCTCTTTC TTATTTTCCT CATAATCAGC TACCCTGGAG 1560 35 GGGAGGGAGA ACTCATTTTA CAGAACTTGG TTTCCTTTGC CGATCTTATG TACATACCCA 1620 TTTTAGCTTT CCCATGCATA CTTAACTGCA CTTGCTTTAT CTCCTTGGGC ATTCGTACTT 1680 AGGATTCAAT AGAAACATGT ACAGGGTAAA CAATTTTTTA AAAATAAAAC TTCATGGAGT 1740 ΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑ 40 SEQ ID NO:128 PFH8 Protein sequence: Protein Accession #: 45 31 WIYGSTGYYF SAVKNYIKLS LEISLFLIKL LYLGYSESSI HIIGYSLGAH VGGMYGQLFG 180 GQLGQITGLD PAGPEYTRAS VEERLDAGDA LFVEAIHTDT DNLGIRIPVG HYDYFVNGGQ 240 DQPGCPTFFY AGYSYLICDH MRAVHLYISA LENSCPLMAF PCASYKAFLA GRCLDCFNPF 300 50 LLSCPRIGLY EQGGVKIEPL PKEVKVYLLT TSSAPYCMHH SLVEFHLKEL RNKDTNIEVT 360 FLSSNITSSS KITIPKQQRY GKGIIAHATP QCQINQVKFK FQSSNRVWKK DRTTIIGKFC 420 TALLPVNDRE KMVCLPEPVN LQASVTVSCD LKIACV 55 SEQ ID NO:129 PFH7 DNA SEQUENCE Nucleic Acid Accession #: NM_014384 60 89-1336 (underlined sequences correspond to start and stop codons) Coding sequence: 31 41 51 65 CGTTGCCCGG TCGCAGGTCC CGCCAGTGCG AGCGCAACGG AGGTCGAAGG CGTTCAGACT 60 CTTAGCTGAA CGCGGAGCTG CGGCGGCT<u>AT G</u>CTGTGGAGC GGCTGCCGGC GTTTCGGGGC 120 GCGCCTCGGC TGCCTGCCCG GCGGTCTCCG GGTCCTCGTC CAGACCGGCC ACCGGAGCTT 180 GACCTCCTGC ATCGACCCTT CCATGGGACT TAATGAAGAG CAGAAAGAAT TTCAAAAAGT 240 GGCCTTTGAC TTTGCTGCCC GAGAGATGGC TCCAAATATG GCAGAGTGGG ACCAGAAGGA 300 GCTGTTCCCA GTGGATGTGA TGCGGAAGGC AGCCCAGCTA GGCTTCGGAG GGGTCTACAT 360 70 ACAAACAGAT GTGGGCGGGT CTGGGCTGTC ACGTCTTGAT ACCTCTGTCA TTTTTGAAGC 420 CTTGGCTACA GGCTGCACCA GCACCACAGC CTATATAAGC ATCCACAACA TGTGTGCCTG 480 GATGATTGAT AGCTTCGGAA ATGAGGAACA GAGGCACAAA TTTTGCCCAC CGCTCTGTAC 540 CATGGAGAAG TITGCTTCCT ACTGCCTCAC TGAACCAGGA AGTGGGAGTG ATGCTGCCTC 600 75 TCTTCTGACC TCCGCTAAGA AACAGGGAGA TCATTACATC CTCAATGGCT CCAAGGCCTT 660 CATCAGTGGT GCTGGTGAGT CAGACATCTA TGTGGTCATG TGCCGAACAG GAGGACCAGG 720 CCCCAAGGGC ATCTCATGCA TAGTTGTTGA GAAGGGGACC CCTGGCCTCA GCTTTGGCAA 780

GAAGGAGAAA AAGGTGGGGT GGAACTCCCA GCCAACACGA GCTGTGATCT TCGAAGACTG 840 TGCTGTCCCT GTGGCCAACA GAATTGGGAG CGAGGGGCAG GGCTTCCTCA TTGCCGTGAG 900

AGGACTGAAC GGAGGGAGGA TCAATATTGC TTCCTGCTCC CTGGGGGCTG CCCACGCCTC 960 TGTCATCCTC ACCCGAGACC ACCTCAATGT CCGGAAGCAG TTTGGAGAGC CTCTGGCCAG 1020
TAACCAGTAC TTGCAATTCA CACTGGCTGA TATGGCAACA AGGCTGGTGG CCGCGCGGCT 1080
GATGGTCCGC AATGCAGCAG TGGCTCTGCA GGAGGAGAGG AAGGATGCAG TGGCCTTGTG 1140 5 CTCCATGGCC AAGCTCTTTG CTACAGATGA ATGCTTTGCC ATCTGCAACC AGGCCTTGCA 1200 GATGCACGGG GGCTACGGCT ACCTGAAGGA TTACGCTGTT CAGCAGTACG TGCGGGACTC 1260 CAGGGTCCAC CAGATTCTAG AAGGTAGCAA TGAAGTGATG AGGATACTGA TCTCTAGAAG 1320 CCTGCTTCAG GAGTAGAACC CACACTTGTT CTGGCCTGGT GTTCAGTGCG ACTGCAGTCA 1380 CCIGCTICAG GAGIAGAACC CACACTIGTT CTGGCCTGGT GTTCAGTGCG ACTGCAGTCA 1380
GTGTTGAGTGG GGCCCATGTG GGCCCCTCTA TTCCAAAGGA ATCATGGATT AGACCCAAGG 1440
GCTGAGCTCC TCTAGGGCAG GACCTGCACC CTGTGTGTTG GCACCAGCAT CGGGTCTTTG 1500
ACTGGGGCAG AATCCCCAGT GGAACCGGAA GAGCTGGACT GATGAGAAAC ATCAGAAGAA 1560
CACATACTAC CTTGTTTTC TAATGCCAGA AGGGTGACCA GTGAAGATTC ACCGTCAAAC 1620
CATGAAAGTC CTTTCTTGGA TCCACTTTAT CTTGATTAGT CTGCATTTTA CTAGTTCACT 1680
GGATCCCTCC TCTAGGGGCC TGGGGACTTT CACTGATGCT CTTCCTGATT CTAGAGCAAA 1740
GGTGTGGGAA GGGGAAATTGG AGGAATGCCC TCCTGTCTGT GTGGTTCTCT GTGCCACAGC 1800 10 15 TACAGATGCA GAAGGTTTCT CTGGATAGCA CACCTCTGAA TOTAAATCAT GATAAAATGG 1860 ATATTTGGAA ACTTACTCCT AAGCTGTGAT GTAGGGTGTA TTTCTACTTC TGGACTGCCT 1920 CAATATCAAG GGCTGAGACT TTTGAATGTT GAATATTCGT TGGGTTTCAT GTTAAGACGC 1980 CTGTGGTCCA GGAGTGCTAT TCAGTGTTTC TGTTCCTGAT AAACACTTTG AATATTTTTT 2040 20 TGTGTTTTTG TTTCCTTTTC TGAAGCTGTT CCTCCTTTTA AATATTTTTA ATCACATTGA 2100 TAAAATCTAT CCTTCATCCA CCTCTGGTTC TACTATAGTT GATTTTTATT TTAAATGTTT 2160 AATTGTATTT GATTAAACAC TTAACTGGAT TTTGGAATAA TAAAACTCTC GTCCAATTTG 2220 **GCTTTTAAAA AAAAAAA** 25 SEQ ID NO:130 PFH7 Protein sequence Protein Accession #: NP_055199.1 30 11 21 31 41 MLWSGCRRFG ARLGCLPGGL RVLVQTGHRS LTSCIDPSMG LNEEQKEFQK VAFDFAAREM 60 APNMAEWDOK ELFPVDVMRK AAQLGFGGVY IQTDVGGSGL SRLDTSVIFE ALATGCTSTT 120 AYISIHNMCA WMIDSFGNEE QRHKFCPPLC TMEKFASYCL TEPGSGSDAA SLLTSAKKQG 180 DHYILNGSKA FISGAGESDI YVVMCRTGGP GPKGISCIVV EKGTPGLSFG KKEKKVGWNS 240 35 QPTRAVIFED CAVPVANRIG SEGQGFILAV RGLNGGRINI ASCSLGAHA SVILTRDHLN 300 VRKQFGEPLA SNQYLQFTLA DMATRLVAAR LMVRNAAVAL QEERKDAVAL CSMAKLFATD 360 ECFAICNQAL QMHGGYGYLK DYAVQQYVRD SRVHQILEGS NEVMRILISR SLLQE 40 SEQ ID NO:131 PFH6 DNA SEQUENCE Nucleic Acid Accession #: NM 013989 707-1105(underlined sequences correspond to start and stop codons) Coding sequence: 45 21 31 51 GCCTGCAGAG AGAGGCACTT TGCACCACAG ACAGATAGCA AGAAGGGAAA GACAGAGAGT 60 GAGAAAAAA GAGAGTCAGT CGCTCCTGGG GAAGGAGAA AGTAGAGT 60 AAGCACAGAA AGTGTGTGTA AAACGGAGTA AAGAAAGAA AAAAAAAAC TACCCTTAAA 180 GCACATTAA AAAAAAAAA CTCTGGCAAT TCAAGAAAGA AACAGGCTAC GTTTAAAGAG 240 CATAGAGACA ATGAAAGGCT AAAGAAAATT TTAAAATCTC TGCCACAGTC TCATAGGTGC 300 50 55 CTCCAACTGC TGGGCTGGAG AGACTGGACT TAGTCTTGCC ATTTCTGCTT CTTTGAAAGA 540 GGAGACAACT TGGGCTTCCT TTTAATTTAG TTTTTTTTCC CCTTCTCCCC CAACCCCCAA 660 CCTTCCCCCT TACCTCCCCC ACCCCCTTTA TCACCACCCC CCTTTTAAAT AAGAGGGTGA 660 AGGGGAACCA GAGCGCACAA GGGAACTGAC TCAGGAGGCA GAGAAGATGG GCATCCTCAG 720 60 CGTAGACTTG CTGATCACAC TGCAAATTCT GCCAGTTTTT TTCTCCAACT GCCTCTTCCT 780
GGCTCTCTAT GACTCGGTCA TTCTGCTCAA GCACGTGGTG CTGCTGTTGA GCCGCTCCAA 840
GTCCACTCGC GGAGAGTGGC GGCGCATGCT GACCTCAGAG GGACTGCGCT GCGTCTGGAA 900 GAGCTTCCTC CTCGATGCCT ACAAACAGGT GAAATTGGGT GAGGATGCCC CCAATTCCAG 960
TGTGGTGCAT GTCTCCAGTA CAGAAGGAGG TGACAACAGT GGCAATGGTA CCCAGGAGAA 1020 65 GATAGCTGAG GGAGCCACAT GCCACCTTCT TGACTTTGCC AGCCCTGAGC GCCCACTAGT 1080 GGTCAACTIT GGCTCAGCCA CTTGACCTCC TTTCACGAGC CAGCTGCCAG CCTTCCGCAA 1140
ACTGGTGGAA GAGTTCTCCT CAGTGGCTGA CTTCCTGCTG GTCTACATTG ATGAGGCTCA 1200
TCCATCAGAT GGCTGGGCGA TACCGGGGGA CTCCTCTTTG TCTTTTGAGG TGAAGAAGCA 1260
CCAGAACCAG GAAGATCGAT GTGCAGCAGC CCAGCAGCTT CTGGAGCGTT TCTCCTTGCC 1320
GCCCCAGTGC CGAGTTGTGG CTGACCGCAT GGACAACATAA CTTACCGGGGT 1380
AGCCTTTGAA CCTGTGTGCA TTGTGCAGAG ACAGAAAATT GCTTATCTGG GAGGAAAGGG 1440 70 CCCCTTCTCC TACAACCTTC AAGAAGTCCG GCATTGGCTG GAGAAGAATT TCAGCAAGAG 1500 ATGAAAGAAA ACTAGATTAG CTGGTTAAAG GTATGATTAT AAGAGAGCTT ATTGTTTTAA 1560 AAAGTTATAT AAAGGCAAGG AAATTAAGAA CTGAATCCAT ATTTCAACAG AGCCCTATTG 1620 CCTTACTGAA AGACAGGAGT TATTCTATCG GAAGAACATG AATTCATAC AGCTCCATAC 1680
TTCTTTCACT ACTCAAATGG CATTGGGCTG AGTAAGTAAC CATATCACCT CTCTTCTTAG 1740
TAAAAAGCCC TATGTGAAAA GATCCCAAGA TGGAGAGGAA GAAACGCTAA TTCAGCATGT 1800
GTTCATTCTG CATTGAGAAG GAACTGATAC ATCTGATGCA TGCTTTGAGA CCAGAAGAAA 1860
AGACTTACCT GAATAATTAC TACATTAGGG AAGCTACTGT CTACGTTAAG ATAAAGGGTA 1920 75

TTGCCTTGGC TCTATTTGGC ATGGATGGAG CCCAGTTGGA AAATTCCCAA ATATTACAAC 1980 AAGTCCTTGA ACCCAGGCCA TGTGGTTAGA CGTTGGTGTT AAGGTTAGAC CTTATGTTAG 2040 AGTCATTTCT GATGTTCCAG CTTCTAGCCA TGTAGTGCTC TCAGTCTTCA TACCCCAGAA 2100 ATTATTGGTA TATTTGTAGA TACCGAGAAT GATCCCTCAG TCTGAGAGGT TAGAATGATC 2160 5 ATCTGTAATC TGAGGGTTAA TTTCTAGGCA GGTGGAGAGA GTGGTAAAAA AGAAATGAAA 2220 TTGACAAGCT AGGAAAGAGG AGGCAGAAAG ATTTGGAAAA TTCACAGAGT TTCACCCTTA 2280 AGCTGTAGAG AGTGGGTCAC ATTTGTTAGC CACGGAAACA TAGAAACATA CACAAGGCCA 2340 GAAAAAGAAG AAGGAGCTCA ACTAAAAGTG GCATAGAGAA TACACATATA AAAACAATAT 2400 ATTTGTCATA TGCTCCTAGA GAGGAGAAAG GGGTGATTGA AAGAAAAAA AATACTTAAA 2460 TATTTGTAAT TGTGAGGGGT TTCTTTTGGA AATAATTACT TTTGAACCAT GTATGTGGTA 2520 TGTATATTTT CAGTGGGTTA ATTATACCCC ATGATACCTA TTAAAGGAAA ACCAGTGGGT 2580 10 CTGGTGGTGC TGGTCTTTTC CTCCCCATTC CTACAATTTC TATGTGGCCC AAGTCATTCC 2640 TAATCTTGGT CTCTATAGCA GTGTTCTCTC TGAATGCTGA GCTGAAGAAA TTATACGTAC 2700 ATACACACAT ACATACATAC ATACAAATAT ATGTATATAT ATTCTCAGCT GCTGCGGGAG 2760 GTAGGTACCA TGGCCATTCA GCACAGCCTT GATTTCCTCC CAAAGTAGGT GAGCTATAGT 2820 15 GAAGAATAGG TGCAAACAAA CAAGCTTACT TCCATTGCAA AATAGAAGAA GAGGAAGTTA 2880 GAGATAATTC TGATCAATCA TTTTGGAGGC TTTGTTATAA GGCAACCCCC GGTATATCAT 2940 GGAATTTCCA TTGACATTTG AATTTGGACT TGGATCTTCC CTTGGTCCCA TTAGCTGAGG 3000 TTTAGTAATC TAAAGTCCCT ATAGTATATG ATTATAATGC TATTTTAAAA AATATATA 3060
TAAAATATTT TTTTCTTTTT AAAATAGACA CTATAGTTTT ACCCATAAGT AATATTTAAA 3120
GATTATAGCT CCCAAAAGAA TGGACCAACC ACTTTCGTAT CATAATTTCT TTTTGGTAAA 3180 20 TATGAGACTA TTATGAAATC ATAGTATATG ATTGTATTTA AAGGTACAAT CAAAGGATCT 3240 TTTGTCCATT CCATTAATAA CTGAATAAAA AATAAATAAA ATGGATAGAA AAAAACTAAA 3300 GTTGAAAATA CATTCTTAAA CTAGTTGTCT GAAATGAGAA AAGAGTGAGA ACTAGGTGTG 3360 CAAGAACCAA ACGTATTTTA TTTTATTTT TAAATGGGAG CAACATATCA GTCGTGTCAC 3420 25 CAGCTGGTAT ATTGTGTAAA TATTAAAGCT CCATTGGGAC TGATTTTTCA TGGCAACATC 3480 AGCTTTCTAA TGTTCTAAAT TCTATAAAAA CCACCCACAA AGAAACAAAG CAAATTTCAT 3540 TATCTAATGA GTTGCTGGAA AATCATATTG AGAATAATTA TTTCAGATTC CTCAGTTGTT 3600 AACTICTACA TTCAAGGGCT TATCTCTGCC CCCATTGATT TTTAACCTCA AAATGGTGTG 3660 30 AGATTTACTG TGGAACCCTA AAGCAGTAAA ATAAAAAACC TGGTTGCAGC ACATTCACAC 3720 TGTTGTCCTT AAAATTCCCC TTTTTTCTCT ATGTACGATA AAGTAACAGT ATGTCAGATA 3780 AGCCGGTGGG GGGATGAGAT TAGGCTGAGG CAGTGCTAGT CAACTGGGGG AAAAGGATGA 3840 TGGAAAAATC ACCCAGTTGT GCTATATTTT TAAAGAAGGA GGTCGTTTAT GTGTGCAGAC 3900 AATTCTCCCT GAGGTTAGCC CAATGGAGAA ATGAAGCAGA GGAAGGAAAC ATAGAAAGAC 3960 ATGGGCTATC AGGGAGGAAG ATGTTCAATA GAACATGCAA GAATTTCTGG AAGAAAGGCT 4020 35 GTGGAAGGGC CAATGGAGAA AATGAATGGA CAAAGCTCAG GAATCCCTAC GCTATGTAGA 4080 ATGTTCTTGG TGTTATCAGG GTTAAGCCCT GTAATTATGT AACCTATTTA TCGCAACATG 4140 AATTTTTATG ATTTCTTGTG ATGTATTCTT TTATGAAATT AACAAGAACT CATTATTTTG 4200 AGGTAGAGGA AAATCAATGC TTTATCTGAT ATGCTGAGAA ATTATTAGAT TGCCAATACT 4260 40 CATGTGCGTT TCATGTGTTT TATAAGGTTT GTTCCTTTGA AGAATTGTAG TTCTTAGTCC 4320 CACAGGGAAA TGTGTATCTA TTTATATATC ATAGTATAAA TCTATGATAT ATTTATATCA 4380 TATATAAAAG TCTGAGTTCT CTTTCTTAGT CCCTAATCAT GTTTCTCCCA TAGGCTGTGT 4440 TTACATGGAG CTATCGGTTT AGCCTTTTAA GCTTCATTAG CTTGTCTATT ATTGAAATAG 4500 TTTCCAAGAA ATTTTAGATA TTATCATAAC ATCTGGGTCT ACTCAAACAC TTATTGTTTG 4560 45 AAAGACTTAT GTCTTGGACC TATCAAAAAC TGACTTTATT TATTGCTTAG TGAAAATACT 4620 AGTGGGATCA ACAATGATTT TCTTGAATGG GCATGAATGG AGATGCCCGC ACAGTAATGT 4680 TTGGGTCTCT GGTCCTGTGT CTTCACCTCA TTTATAGCAC GTCTCCTTGA TTTTTGGTAG 4860 50 TATCAACTIC CCAGTGATCT GTICAGTTAA GTICTICICC CGTTAACCAG GAAGTGCTTA 4920 TICTCTCATC ACAGTGGGAA GAATAGCCTA TIGTCTTICA TITTGCCTGA GTGTATTTTA 4980 CTATTTGGGC TCTGAAATAA AAATTATGAA ATATGGTGAG GTCACATGTT GGTGCTGCCT 5040 TGCTGCATAA AATTCTAGGA GGGCAGGTTA GGAGACAGTT ATGTATGGCC TTTCGGGAAA 5100 ATTCAAAGGG TGGGATTACA AGGGTGTTCC TCAGGCATGC CCCTATGGGC CCTATGTGGA 5160 AGCAAGAAGA ATTGACTGAT TTACAGGACT TCTCTTTATG TCAATCTTAA GAGGATGGAT 5220 55 GAATCTGGAC ATTTGTTCCA CCCGACCTCT GACTGATGGT TTGGAAAATA ACTTTAATTA 5280
GGATCATATG ACCATTGAAA AAGGAAAAAT GTAGACTCTG ACTTCCGTCC CACTGAAGGA 5340
TTAATGAAAA CCTTTACTAG CATTTAGAGC TTTTCAGAAC ATCCCCACTG TCATGTGTCT 5400 CAGCAGTGGA GACTGCAAGT AAGGCTTTTA ATTTTAGGAG GTTTTTTTTT TTTTTTTTT 5460
TTCCCCTAAA TGGTATGGCC AAAAGTCAGA GTTAAAATAT ATATAGTTAG ATTCCAACTT 5520
CCTCCTTCAC TCTAAAAATA GAATCCAAAC CCACTCTTCA TATATGCTTC CAGAATGGGG 5580 60 CTTAAGTACC AATCTCTGCT TTGCAATGGG CACAATCTTG GTCATGTCCT GAGGCTCTCT 5640
AAGAAAAGA AGGATCTAGG ATGGGAGAGC TAGAAAGTTG CTAACTGGGA AGAACAAGGC 5700
CCTGAGGGGT TGGTCTACCA ATCTGGGAAG ATTTGAAAAC AAACTTCTCG CAACTGAAGG 5760 65 AAGGCTGAAG GCTGCTGCAA GTCATTGAGT GACTTTAGGA TGAGCAAAAC ATTGGGCCAC 5820 TTCCTAATGC CCTATGTGTA TAGTACCAGA AGCAAGGTCT CAGACTTAAC AGACCCAGCT 5880 CTGTTCCAAG GTGAGTCTGA ACCAATAGAA AGCAAACATG TGCAGATATC CAAACAAGAC 5940 TGCTCATGCA AGTOGGGGCT GGCTACCCGT CTTAGGCAGC AACAGCAGAG CTCCAGGGAG 6000 CTTATTCAAT ATTTACTGAG ACTTCGAAGA CCCAGCAGAT GTTTAATGAA GTCACTATTT 6060 TGGCTCAAAAC CCTCCACTTC TCCCCCTCCC CTCAAAAAGC CAACAGGTAA ACACATAAAT 6120 70 GAAAGAAACC CACAGAAGGG GATGGGAAAT AAAGAAAATT CTCTCAAGAC TTCTCCAGGC 6180 CCATGTCACT GGTCAGCGTG GTTTTTATGT GTATTAGGAT TGGGGGATGT GAAGAAATAA 6240
GTATCCAGTA CTTTATAACC AAAGCAATTA AATGATATTG GGGTAGGGAA TGTTGGCCAG 6300
TTTTGTTTAG TTTTGCCATC ACATTGTCAC CCAGACCTCA CCTAGCCCCA AGTAATCGGG 6360
GCCCCGAAG AGGGAGACAG AGATGTGCCA GAGTTGACCC AGTGTGCGGA TGATAACTAC 6420
TGACGAAAGA GTCATCGACC TCAGTTAGTG GTTGGATGTA GTCACATTAG TTTGCCTCTC 6480
CCCATCTTTG TCTCCCTGGC AAGGAGAATA TGCGGGACAT GATGCTAAGA GCCCTGGGTA 6540 75 AATGTGGTGA GAATGCACGC GTGCATATGC TACACATATG TGCTTCTCAG TTGCAGAAAA 6600 TGAACTGCTT TGGGAGATTA TCAGTAGAAA GAGTGTTATC ATATTGGTGC TGAGTGCTAT 6660

GTGTGCTTAT ACAATTTGTT CTTGTATTTT AATAAACTTT GAATAAAAGA ATAAAAAAA 6720 AAAAAAAAA AAAAA

NANFYLQAGS AFAEMKIKGL LDRKGLWRSL NEMKRIFNFR RTPAAEHAFE HWQEDAFFAS 240 QFLNGLNPVI, IRRCHYLPKN FPVTDAMVAS LLGPGTSLQA ELEKGSLFLV DHGILSGIQT 300 NVINGKPQFS AAPMILLYQS PGCGPLLPLA IQLSQTPGPN SPIFLPTUK MDWLLAKTWV 360 RNAEFSFHEA LITHLHSHLL PEVFTLATLR QLPHCHPLFK LLIPHTRYTL HINTLARELL 420 IVPGQVVDRS TGIGIEGFSE LIQRNMKQLN YSLLCLPEDI RTRGVEDIPG YYYRDDGMQI 480 WGAVERFVSE IIGIYYPSDE SVQDDRELQA WVREIFSKGF LNQESSGIPS SLETREALVQ 540 YVTMVIFTCS AKHAAVSAGQ FDSCAWMPNL PPSMQLPPPT SKGLATCEGF IATLPPVNAT 600 CDVILALWILL SKEPGDQRPL GTYPDEHFTE EAPRRSIATF QSRLAQISRG IQERNRGLVL 660 PYTYLDPPLI ENSVSI

SEQ ID NO:135 PFH4 DNA SEQUENCE

Nucleic Acid Accession #: NM_002742
Coding sequence: 236-2974 (underlined sequences correspond to start and stop codons)

5

10

15

51 21 31 41 GAATTOCTTC TCTCCTCCTC CTCGCCCTTC TCCTCGCCCT CCTCCTCCTC CTCGCCCTCC 60 CCTCCCGATC CTCATCCCCT TGCCCTCCCC CAGCCCAGGG ACTTTTCCGG AAAGTTTTTA 120 20 TTTTCCGTCT GGGCTCTCGG AGAAAGAAGC TCCTGGCTCA GCGGCTGCAA AACTTTCCTG 180 CTGCCGCGCC GCCAGCCCCC GCCTCCGCT GCCCGGCCCT GCGCCCCGCC GAGCGATGAG 240
CGCCCTCCG GTCCTGCGGC CGCCCAGTCC GCTGCTGCCC GTGGCGGCGG CAGCTGCCGC 300
AGCGGCCGCC GCACTGGTCC CAGGGTCCGG GCCCGGGCCC GCGCCGTTCT TGGCTCCTGT 360 25 CGCGGCCCCG GTCGGGGGCA TCTCGTTCCA TCTGCAGATC GGCCTGAGCC GTGAGCCGGT 420 GCTGCTGCTG CAGGACTCGT CCGGGGACTA CAGCCTGGCG CACGTCCGCG AGATGGCTTG 480 CTCCATTGTC GACCAGAAGT TCCCTGAATG TGGTTTCTAC GGAATGTATG ATAAGATCCT 540 GCTTTTTCGC CATGACCCTA CCTCTGAAAA CATCCTTCAG CTGGTGAAAG CGGCCAGTGA 600 TATCCAGGAA GGCGATCTTA TIGAAGTGGT CTTGTCACGT TCCGCCACCT TTGAAGACTT 660
TCAGATTCGT CCCCACGCTC TCTTTGTTCA TTCATACAGA GCTCCAGCTT TCTGTGATCA 720
CTGTGGAGAA ATGCTGTGGG GGCTGGTACG TCAAGGTCTT AAATGTGAAG GGTGTGGTCT 780 30 GAATTACCAT AAGAGATGTG CATTTAAAAT ACCCAACAAT TGCAGCGGTG TGAGGCGGAG 840 AAGGCTCTCA AACGTTTCCC TCACTGGGGT CAGCACCATC CGCACATCAT CTGCTGAACT 900
CTCTACAAGT GCCCCTGATG AGCCCCTTCT GCAAAAATCA CCATCAGAGT CGTTTATTGG 960
TCGAGAGAAG AGGTCAAATT CTCAATCATA CATTGGACGA CCAATTCACC TTGACAAGAT 1020 35 TTTGATGTCT AAAGTTAAAG TGCCGCACAC ATTTGTCATC CACTCCTACA CCCGGCCCAC 1080 AGTGTGCCAG TACTGCAAGA AGCTTCTGAA GGGGCTTTTC AGGCAGGGCT TGCAGTGCAA 1140 AGATTGCAGA TTCAACTGCC ATAAACGTTG TGCACCGAAA GTACCAAACA ACTGCCTTGG 1200 AGATTGCAGA TTCAACTGCC ATAAACGTTG TGCACCGAAA GTACCAAACA ACTGCCTTGG 1200
CGAAGTGACC ATTAATGGAG ATTTGCTTAG CCCTGGGGCA GAGTCTGATG TGGTCATGGA 1260
AGAAGGGAGT GATGACAATG ATAGTGAAAG GAACAGTGGC CTCATGGATG ATATGGAAGA 1320
AGCAATGGTC CAAGATGCAG AGATGGCAAT GGCAGAGTGC CAGAACGACA GTGGCGAGAT 1380
GCAAGATCCA GACCCAGACC ACGAGGACGC CAACAGAACC ATCAGTCCAT CAACAAGCAA 1440
CAATATCCCA CTCATGAGGG TAGTGCAGTC TGTCAAACAC ACGAAGAGGA AAACCAGCAC 1500
AGTCATGAAA GAAGGATGGA TGGTCCACTA CACCAGCAAG GACACGTCC GGAAACGGCA 1500 40 45 CTATTGGAGA TTGGATAGCA AATGTATTAC CCTCTTTCAG AATGACACAG GAAGCAGGTA 1620 CTACAAGGAA ATTCCTTTAT CTGAAATTTT GTCTCTGGAA CCAGTAAAAA CTTCAGCTT 1680 AATTCCTAAT GGGGCCAATC CTCATTGTTT CGAAATCACT ACGGCAAATG TAGTGTATTA 1740 TGTGGGAGAA AATGTGGTCA ATCCTTCCAG CCCATCACCA AATAACAGTG TTCTCACCAG 1800 TGGCGTTGGT GCAGATGTGG CCAGGATGTG GGAGATAGCC ATCCAGCATG CCCTTATGCC 1860 CGTCATTCCC AAGGGCTCCT CCGTGGGTAC AGGAACCAAC TTGCACAGAG ATATCTCTGT 1920 GAGTATTTCA GTATCAAATT GCCAGATTCA AGAAAATGTG GACATCAGCA CAGTATATCA 1980 50 GASTITITICA GIATCAAATI GCCAGATICA AGAAATOTO GALATCAOCA CAGIATIACA 2940
TCGTAAAACA GGAAGAGTAC TGGGTTCGG ACAGTTTGGA ATTGTTTATG GAGGAAAACA 2040
TCGTAAAACA GGAAGAGATT TAGCTATTAA AATCATTGAC AAATTACGAT TTCCAACAAA 2100
ACAAGAAAGC CAGCTTCGTA ATGAGGTTGC AATTCTACAG AACCTTCATC ACCCTGGTGT 2160
TGTAAATTTG GAGTGTATGT TTGAGACGCC TGAAAGAGTG TTTGTTGTTA TGGAAAAACT 2220 55 CCATGGAGAC ATGCTGGAAA TGATCTTGTC AAGTGAAAAG GGCAGGTTGC CAGAGCACAT 2280 AACGAAGTTT TTAATTACTC AGATACTCGT GGCTTTGCGG CACCTTCATT TTAAAAATAT 2340 COTTCACTGT GACCTCAAAC CAGAAAATGT GTTGCTAGCC TCAGCTGATC CTTTTCCTCA 2400 GGTGAAACTT TGTGATTTTG GTTTTGCCCG GATCATTGGA GAGAAGTCTT TCCGGAGGTC 2460
AGTGGTGGGT ACCCCGCTT ACCTGGCTCC TGAGGTCCTA AGGAACAAGG GCTACAATCG 2520
CTCTCTAGAC ATGTGGTCTG TTGGGGTCAT CATCTATGTA AGCCTAAGCG GCACATTCCC 2580 60 AAATCAGA GATGAAGACA TACACGACCA AATTCAGAAT GCAGCTTTCA TGTATCCACC 2640
AAATCCATGA GAGGAAATAT CTCATGAAGC CATTGATCTT ATCAACAATT TGCTGCAAGT 2700
AAAAATGAGA AAGCGCTACA GTGTGGATAA GACCTTGAGC CACCCTTGGC TACAGGACTA 2760 65 TCAGACCTGG TTAGATTTGC GAGAGCTGGA ATGCAAAATC GGGGAGCGCT ACATCACCCA 2820 TGAAAGTGAT GACCTGAGGT GGGAGAAGTA TGCAGGCGAG CAGCGGCTGC AGTACCCCAC 2880 ACACCTGATC AATCCAAGTG CTAGCCACAG TGACACTCCT GAGACTGAAG AAACAGAAAT 2940 GAAAGCCCTC GGTGAGCGTG TCAGCATCCT CTGAGTTCCA TCTCCTATAA TCTGTCAAAA 3000 CACTGTGGAA CTAATAAATA CATACGGTCA GGTTTAACAT TTGCCTTGCA GAACTGCCAT 3060 TATTTTCTGT CAGATGAGAA CAAAGCTGTT AAACTGTTAG CACTGTTGAT GTATCTGAGT 3120 TGCCAAGACA AATCAACAGA AGCATTIGTA TTTTGTGTGA CCAACTGTGT TGTATTAACA 3180 AAAGTTCCCT GAAACACGAA ACTTGTTATT GTGAATGATT CATGTTATAT TTAATGCATT 3240 AAACCTGTCT CCACTGTGCC TTTGCAAATC AGTGTTTTTC TTACTGGAGC TTCATTTTGG 3300 TAAGAGACAG AATGTATCTG TGAAGTAGTT CTGTTTGGTG TGTCCCATTG GTGTTGTCAT 3360
TGTAAACAAA CTCTTGAAGA GTCGATTATT TCCAGTGTTC TATGAACAAC TCCAAAACCC 3420
ATGTGGGAAA AAAATGAATG AGGAGGGTAG GGAATAAAAT CCTAAGACAC AAATGCATGA 3480 75 ACAAGTTTTA ATGTATAGTT TTGAATCCTT TGCCTGCCTG GTGTGCCTCA GTATATITAA 3540 ACTCAAGACA ATGCACCTAG CTGTGCAAGA CCTAGTGCTC TTAAGCCTAA ATGCCTTAGA 3600

AATGTAAACT GCCATATATA ACAGATACAT TTCCCTCTTT CTTATAATAC TCTGTTGTAC 3660

TATGGAAAAT CAGCTGCTCA GCAACCTTTC ACCTTTGTGT ATTTTTCAAT AATAAAAAAT 3720 ATTCTTGTCA AAAAAAAAAAA AA

5 SEQ ID NO:136 PFH4 Protein sequence: NP 002733.1 Protein Accession #: 41 51 11 21 31 . 10 MSAPPVLRPP SPILPVAAAA AAAAAALVPG SGPGPAPFLA PVAAPVGGIS FHLQIGLSRE 60 PVLLLQDSSG DYSLAHVREM ACSIVDQKFP ECGFYGMYDK ILLFRHDPTS ENILQLVKAA 120 SDIQEGDLIE VVLSRSATFE DFQIRPHALF VHSYRAPAFC DHCGEMLWGL VRQGLKCEGC 180 GLNYHKRCAF KIPNNCSGVR RRRLSNVSLT GVSTRTSSA ELSTSAPDEP LLQKSFSESF 240 IGREKRSNSQ SYIGRPIHLD KILMSKVKVP HTFVIHSYTR PTVCQYCKKL LKGLFRQGLQ 300 CKDCRFNCHK RCAPKVPNNC LGEVTINGDL LSPGAESDVV MEEGSDDNDS ERNSGLMDDM 360 15 EEAMVQDAEM AMAECQNDSG EMQDPDPDHE DANRTISPST SINIPLMRVV QSVKHTKRKS 420 STVMKEGWMV HYTSKDTLRK RHYWRLDSKC ITLFQNDTGS RYYKEIPLSE ILSLEPVKTS 480 ALIPNGANPH CFEITTANVV YYVGENVVNP SSPSPNNSVL TSGVGADVAR MWEIAIQHAL 540 20 MPYPKGSSV GTGTNLHRDI SVSISVSNCQ IQENVDISTV YQIFPDEVLG SQQFGIVYGG 600 KHRKTGRDVA IKIIDKLRFP TKQESQLRNE VAILQNLHHP GVVNLECMFE TPERVFVVME 660 KLHGDMLEMI LSSEKGRLPE HITKFLITQI LVALRHLHFK NIVHCDLKPE NVLLASADPF 720 POVKLCDFGF ARIIGEKSFR RSVVGTPAYL APEVLRNKGY NRSLDMWSVG VIIVVSLSGT 780 FPFNEDEDIH DQIQNAAFMY PPNPWKEISH EAIDLINNLL QVKMRKRYSV DKTLSHPWLQ 840 25. DYQTWLDLRE LECKIGERYI THESDDLRWE KYAGEQRLQY PTHLINPSAS HSDTPETEET 900 EMKALGERVS IL 30 SEQ ID NO:137 PFH3 DNA SEQUENCE Nucleic Actd Accession #: X95425 712-3825 (underlined sequences correspond to start and stop codons) Coding sequence: 35 GCACACATAA TGACTCACTG CTGGAAGAAG GGTGCATCAG TGAATTAAAA AATGTCCCTC 120 CCCTCTTCAG CACTCAGCGC GCAGCTATTT CCTTCTGCCA GTCTCTTTGA ACTCTGGATC 180 TTTGCTTTTG CTCGCTGCTC TCCTGTTTTT CATTCTCCAC ATTTTCTCAA TCCTCTTTCT 240 40 TTATCCTTAG CCACCCTGCT TTTTTCCTCC TTTTTTAAAA AATCGGAGAT TTCCTCTTAA 300 AATGATTGT CTTCCTTACC TTCGTCCATT TCAACACTGA AGGCTGCAAA GAACTTCACC 360 TTTCCCCTAG TGGTATTTAA AAATTCTCAA TCCGTAAAAA GTCTTTTTGA AAGGCAAAGG 420 AACAGGACCC AGACCCTCTC GACACCCTTG ATCCGAGTCA GATCTGCACT AGCAACCAGA 480
ACTAATATTT CATTTAACCC ACCAAAAGGG GGAGGCGAGA GGAGCCAGAA GCAAACTTCA 540
TCTGTCTCAG ACGGATCCGT GGTTCCTACA TTTGGAGGAG CCGCGTGTCA GAAGGCGTAG 600 45 GACCCCAAGG GGGGACAAGG AGGACTCCCG AGTCTCCCTT CTCCGCTCTC CGAGACCGAA 660 GAGGTGGACT GAGCCGCTCG GGACAGCGGC ACCGGAGGAG GCTCGGAGAA GATGCGGGGC 720 TCGGGGCCCC GGGGTGCGG ACACCGGCGG CCCCCAAGCG GCGCGCGA CACCCCCATC 780 ACCCCAGCGT CCCTGGCCGG CTGCTACTCT GCACCTCGAC GGGCTCCCCT CTGGACGTGC 840 50 CTTCTCCTGT GCGCCGCACT CCGGACCCTC CTGGCCAGCC CCAGCAACGA AGTGAATTTA 900
TTGGATTCAC GCACTGTCAT GGGGGACCTG GGATGGATTG CTTTTCCAAA AAATGGGTGG 960
GAAGAGATTG GTGAAGTGGA TGAAAATTAT GCCCCTATCC ACACATACCA AGTATGCAAA 1020 GRAGGACTIG GIGAAGTIGGA TGAAAATTAT GCCCCTAICC ACCATACAA GIAIGCAAA 1020
GIGATGGAAC AGAAATCAGAA TAACTGGCTT TIGACCAGTI GGATCICCAA TGAAGGTIGCT 1080
TCCAGAATCT TCATAGAACT CAAATTTACC CTGCGGGACT GCAACAGCCT TCCTGGAGGA 1140
CTGGGGACCT GTAAGGAAAC CTTTAATATG TATTACTTTG AGTCAGATGA TCAGAATGGG 1200
AGAACATCA AGGAAAACCA ATACATCAAA ATTGATACCA TTGCTGCCGA TGAAAGCTT 1260
ACAGAACTTG ATCTTGGTGA CCGTGTTATG AAACTGAATA CAGAGGTCAG AGATGTAGGA 1320
CCTCTAAGCA AAAAGGGATT TTATCTTGCT TTTCAAGATG TTGGTGCTTG CATTGCTCTG 1380 GTTTCTGTGC GTGTATACTA TAAAAAATGC CCTTCTGTGG TACGACACTT GGCTGTCTTC 1440
CCTGACACCA TCACTGGAGC TGATTCTTCC CAATTGCTCG AAGTGTCAGG CTCCTGTGTC 1500
AACCATTCTG TGACCGATGA ACCTCCCAAA ATGCACTGCA GCGCCGAAGG GGAGTGGCTG 1560 60 GTGCCCATCG GGAAATGCAT GTGCAAGGCA GGATATGAAG AGAAAAATGG CACCTGTCAA 1620 GTGTGCAGAC CTGGGTTCTT CAAAGCCTCA CCTCACATCC AGAGCTGCGG CAAATGTCCA 1680 CCTCACAGTT ATACCCATGA GGAAGCTTCA ACCTCTTGTG TCTGTGAAAA GGATTATTTC 1740 AGGAGAGAT CTGATCCACC CACAATGGCA TGCACAAGAC CCCCCTCTGC TCCTCGGAAAT 1800
CCCATCTCAA ATGTTAATGA AACTAGTGTC TTTCTGGAAT GGATTCCGCC TGCTGACACT 1860
GGTGGAAGGA AAGACGTGTC ATATTATATT GCATGCAAGA AGTGCAACTC CCATGCAGGT 1920
GTGTGTGAGG AGTGTGGCGG TCATGTCAGG TACCTTCCC GGCAAAGCCG CCTGAAAAAC 1980
ACCTCTGTCA TGATGGTGGA TCTACTCCCT CACACAAACT ATACCTTTGA GATTGAGGCA 2040
GTGAATGGAG TGTCCGACTT GAGCCCAGGA GCCCGGCAGT ATGTGTCTGT AAATGTAACC 2100 65 GTGAATGGAG TGTCCGACTT GAGCCCAGGA GCCCGGCAGT ATGTGTCTGT AAATGTAACC 2100
ACAATCAAG CAGCTCCATC TCCAGTCACC AATGTGAAAA AAGGGAAAAT TGCAAAAAAC 2160
ACAATCATCTT TGTCTTGGCA AGAACCAGAT CGTCCCAATG GAATCATCCT AGAGTATGAA 2220
ATCAAGCATT TTGAAAAGGA CCAAGAGACC AGCTACACGA TTATCAAATC TAAAGAGACA 2280
ACTATTACTG CAGAGGGCTT GAAACCAGCT TCAGTTTATG TCTTCCAAAT TCGAGCACGT 2340
ACAGCAGCAG GCTATGGTGT CTTCAGTCGA AGATTTGAGT TTGAAACCAC CCCAGTTTT 2400
GCAGCATCCA GCGATCAAAG CCAGATTCCT GTAATTGCTG TGTCTGTGAC AGTAGGAGTC 2460
ATTTGTTGG CAGTGGTTAT CGGCGTCCTC CTCAGTGGAA GTTGCTGCGA ATGTGGCTGT 2520
GGGAGGGCTT CTTCCCTGTG CGCTGTTGCC CATCCAATCC TAATATGGCG GTGTGCTAC 2580
AGCAAAGCAA AACAAGATCC AGAAGAGGAA AAGATGCATT TTCATAATTGG GCACATTAAA 2640 75

PCT/US01/32045 WO 02/30268

CTGCCAGGAG TAAGAACTTA CATTGATCCA CATACCTATG AGGATCCCAA TCAAGCTGTC 2700 CACGAATTTG CCAAGGAGAT AGAAGCATCA TGTATCACCA TTGAGAGAGT TATTGGAGCA 2760 GGTGAATTTG GTGAAGTTTG TAGTGGACGT TTGAAACTAC CAGGAAAAAG AGAATTACCT 2820 GTGGCTATCA AAACCCTTAA AGTAGGCTAT ACTGAAAAGC AACGCAGAGA TTTCCTAGGT 2880 GAAGCAAGTA TCATGGGACA GTTTGATCAT CCTAACATCA TCCATTTAGA AGGTGTGGTG 2940 ACCAAAAGTA AACCAGTGAT GATCGTGACA GAGTATATGG AGAATGGCTC TTTAGATACA 3000 5 TTTTTGAAGA AAAACGATGG GCAGTTCACT GTGATTCAGC TTGTTGGCAT GCTGAGAGGT 3060 ATCTCTGCAG GAATGAAGTA CCTTTCTGAC ATGGGCTATG TGCATAGAGA TCTTGCTGCC 3120
AGAAACATCT TAATCAACAG TAACCTTGTU TGCAAAGTGT CTGACTTTGG ACTTTCCCGG 3180
GTACTGGAAG ATGATCCCGA GGCAGCCTAC ACCACAAGGG GAGGAAAAAT TCCAATCAGA 3240 10 TGGACTGCCC CAGAAGCAAT AGCTTTCCGA AAGTTTACTT CTGCCAGTGA TGTCTGGAGT 3300 TATGGAATAG TAATGTGGGA AGTTGTGTCT TATGGAGAGA GACCCTACTG GGAGATGACC .3360 AATCAAGATG TGATTAAAGC GGTAGAGGAA GGCTATCGTC TGCCAAGCCC CATGGATTGT 3420 CCTGCTGCTC TCTATCAGTT AATGCTGGAT TGCTGGCAGA AAGAGCGAAA TAGCAGGCCC 3480 AAGTTTGATG AAATAGTCAA CATGTTGGAC AAGCTGATAC GTAACCCAAG TAGTCTGAAG 3540 ACGCTGGTTA ATGCATCCTG CAGAGTATCT AATTTATTGG CAGAACATAG CCCACTAGGA 3600 TCTGGGGCCT ACAGATCAGT AGGTGAATGG CTAGAGGCAA TCAAGATGGG CCGGTATACA 3660 15 GAGATTITCA TGGAAAATGG ATACAGTTCA ATGGACGCTG TGGCTCAGGT GACCTTGGAG 3720 GATTTGAGAC GGCTTGGAGT GACTCTTGTC GGTCACCAGA AGAAGATCAT GAACAGCCTT 3780 20 CAAGAAATGA AGGTGCAGCT GGTAAACGGA ATGGTGCCAT TGTAACTTCA TGTAAATGTC 3840 GCTTCTTCAA GTGAATGATT CTGCACTTTG TAAACAGCAC TGAGATTTAT TTTAACAAAA 3900

25

SEQ ID NO:138 PFH3 Protein sequence CAA64700.1 Protein Accession #:

30 11 , 21 31 41

MRGSGPRGAG HRRPPSGGGD TPITPASLAG CYSAPRRAPL WTCLLLCAAL RTLLASPSNE 60 VNLLDSRTVM GDLGWIAFPK NGWEEIGEVD ENYAPIHTYQ VCKVMEQNQN NWILTSWISN 120 EGASRIPIEL KFTLRDCNSL PGGLGTCKET FNMYYFESDD ONGRNIKENQ YIKIDTTAAD 180 ESFTELDLGD RVMKLNTEVR DVGPLSKKGF YLAFQDVGAC IALVSVRVYY KKCPSVVRHL 240 AVFPDTTTGA DSSQLLEVSG SCVNHSVTDE PPKMHCSAEG EWLVPIGKCM CKAGYEEKNG 300 35 TCQVCPGFF KASPHIQSCG KCPPHSYTHE EASTSCVCEK DYFRRESDPP TMACTRPPSA 360 PRNAISNVNE TSVFLEWIPP ADTGGRKDVS YYIACKKCNS HAGVCEECGG HVRYLPRQSG 420 LKNTSVMMVD LLAHTNYTFE IEAVNGVSDL SPGARQYVSV NVTTNQAAPS PVTNVKKGKI 480

40 AKNSISISWQ EPDRPNGIIL EYEIKHFEKD QETSYTIKS KETITIAEGI KPASYYYPQI 540
RARTAAGYGY FSRRFEFETT PYFAASSDQS QIPVIAVSYT VGVIILAVVI GVILSGSCCE 600
CGCGRASSIC AVAHPILIWR CGYSKAKQDP EEEKMHFENG HIKLPGVRTY IDPHTYEDPN 660 QAVHEFAKEI EASCITIERV IGAGEFGEVC SGRLKLPGKR ELPVAIKTLK VGYTEKORRD 720 FLGEASIMGQ FDHPNIIHLE GVVTKSKPVM IVTEYMENGS LDTFLKKNDG QFTVIQLVGM 780 LRGISAGMKY LSDMGYVHRD LAARNILINS NLVCKVSDFG LSRVLEDDPE AAYTTRGGKI 840

45 PIRWTAPEAI AFRKFTSASD VWSYGIVMWE VVSYGERPYW EMTNQDVIKA VEEGYRLPSP MDCPAALYQL MLDCWQKERN SRPKFDEIVN MLDKLIRNPS SLKTLVNASC RVSNLLAEHS 960 PLGSGAYRSV GEWLEAIKMG RYTEIFMENG YSSMDAVAQV TLEDLRRLGV TLVGHQKKIM 1020 NSLOEMKVOL VNGMVPL

50

SEQ ID NO:139 PFH2 DNA SEQUENCE

55 Nucleic Acid Accession #: NM_016029 78-1097 (underlined sequences correspond to start and stop codons) Coding sequence:

> 41 51

31

21

60 CTGCGATCCC GCAGGGCAGC GACGGGACTC TGGTGCGGGC CGTCTTCTTC CCCCCGAGCT 60 GGGCGTGCGC GGCCGCAATG AACTGGGAGC TGCTGCTGTG GCTGCTGGTG CTGTGCGCGC 120 TGCTCCTGCT CTTGGTGCAG CTGCTGCGCT TCCTGAGGGC TGACGGCGAC CTGACGCTAC 180 TGCTCCTGCT CTTGGTGCAG CTGCTGCGCTTCCTGAGGGC TGACGGCGAC CTGACGCTAC 180
TATGGGCCGA GTTGGCAGGGA GCGCCAGAATAGGAGCTGAATAG GTGGTGTGGG 240
TGACTGGAGC CTCGAGTGGA ATTGGTGAGG AGCTGGCTTA CCAGTTGTCT AAACTAGGAG 300
TTTCTCTTGT GCTGTCAGCC AGAAGAGTGC ATGACCTGGA AAGGGTGAAA AGAAGATGCC 360
TAGAGAATAGG CAATTAAAA GAAAAAGATA TACTTGTTTT GCCCTTGAC CTGACCGACA 420
CTGGTTCCCA TGAAGCGGCT ACCAAAGCTG TTCTCCAGGA GTTTGGTAGA ATCGACATTC 480
TGGTCAACAA TGGTGGAATG TCCCAGCGTT CTCTGTGCAT GGATACCAGC TTGGATGTCT 540 65 ACAGAAAGET AATAGAGGTT AACTACTIAG GGACGGTGTC CTTGACAAAA TGTGTTCTGC 600
CTCACATGAT CGAGAGGAAG CAAGGAAAGA TTGTTACTGT GAATAGCATC CTGGGTATCA 660
TATCTGTACC TCTTTCCATT GGATACTGTG CTAGCAGCA TGCTCTCCGG GGTTTTTTTA 720
ATGGCCTTGG AACAGAACTT GCCACATACC CAGGTATAAT AGTTTCTAAC ATTTGCCCAG 780
GACCTGTGCA ATCAAATATT GTGGAGAACTT CCCTAGCTGG AGAAGTCACA AAGACTATAG 840
GCAATAATGG AGACCAGTCC CACAAGATGA CAACCAGTCG TTGTGTGCGG CTGATGTTAA 960 70 75 TCAGCATGGC CAATGATTTG AAAGAAGTTT GGATCTCAGA ACAACCTTTC TTGTTAGTAA 960
CATATTTGTG GCAATACATG CCAACCTGGG CCTGGTGGAT AACCAACAAG ATGGGGAAGA 1020
AAAGGATTGA GAACTTTAAG AGTGGTGTGG ATGCAGACTC TTCTTATTTT AAAATCTTTA 1080

AGACAAAACA TGACTGAAAA GAGCACCTGT ACTTTTCAAG CCACTGGAGG GAGAAATGGA 1140 AAACATGAAA ACAGCAATCT TCTTATGCTT CTGAATAATC AAAGACTAAT TTGTGATTTT 1200

ACTITITAAT AGATATGACT TIGCTTCCAA CATGGAATGA AATAAAAAAT AAATAAATAAA 1260 AGATIGCCAT GAATCTTGCA AA

GCAGGAGAAG TCACCATCCG GCAGCTTTCA CTTTGACTAT GAGGTTCCCC TGGGTCGCGG 1260 CGGCCTCAAG AAGAGCATGG CCTGGGACCT GCCTTCTGTC CTGGCCGGGC CAGCCAGTAG 1320 CCGAAGCGCT TCCAGCATCC TCTGTTCATC CGGGGGAGGC CCCAATGGCA TCTTCGCTTC 1380 TCCTAGGAGG TIGGCTCCAGC AGAGGAAGTT CCAGTCCCCA CCCGACAGTC GCGGGCACCC 1440
CTACGTCGTG TIGGAAATCCG AGAGGAAGTT CACCTGGAAC AGCATGTCAG GCCGCAGTGT 1500
GCGGCTGAGG TCAGTCCCCA TCCAGAGTCT CTCAGAGCTG GAGAGGGCCC GGCTGCAGGA 1560
AGTGCCTTTT TATCAGTTGC AACAGGACTG TGACCTGAGC TGTCAGATCA CCATTCCCAA 1620
AGATGGACAA AAGAGAAAGA AATCTTTAAG AAAGAAACTG GATTCACTAG GAAAGGAGAA 1680 5 AAACAAAGAC AAAGAATTCA TCCCACAGGC ATTTGGAATG CCCTTATCCC AAGTCATTGC 1740
GAATGACAGG GCCTATAAAC TCAAGCAGGA CTTGCAGAGG GACGAGCAGA AAGATGCATC 1800
TGACTTTGTG GCTTCCCTCC TCCCATTTGG AAATAAAAGA CAAAACAAAG AACTCTCAAG 1860 10 CAGTAACTCA TCTCTCAGCT CAACCTCAGA AACACCGAAT GAGTCAACGT CCCCAAACAC 1920 CCCGGAACCG GCTCCTCGGG CTAGGAGGAG GGGTGCCATG TCAGTGGATT CTATCACCGA 1980 TCTTGATGAC AATCAGTCTC GACTACTAGA AGCTTTACAA CTTTCCTTGC CTGCTGAGGC 2040 15 TCAAAGTAAA AAGGAAAAAG CCAGAGATAA GAAACTCAGT CTGAATCCTA TTTACAGACA 2100 GGTCCCTAGG CTGGTGGACA GCTGCTGTCA GCACCTAGAA AAACATGGCC TCCAGACAGT 2160 GGGGATATTC CGAGTTGGAA GCTCAAAAAA GAGAGTGAGA CAATTACGTG AGGAATTTGA 2220 GGGGATATTC CAGT TIGGAA GCTCAAAAAA GAGAGTGAGA CAATTACGTG AGGAATTTGA 222
CCGTGGGATT GATGTCTCTC TGGAGGAGGA GCACAGTGTT CATGATGTGG CAGCCTTGCTC 2280
GAAAGAGTTC CTGAGGGACA TGCCAGACCC CCTTCTCACC AGGGAGCTGT ACACAGCTTT 2340
CCTTCTACCT CTCTTGTTGG AGCCGGAGGA ACAGCTGGGC ACCTTGCAGC TCCTCATATA 2400
CCTTCTACCT CCCTGCAACT GCGACACCCT CCACCGCCTG CTACAGTTCC TCTCCATCGT 2460 20 GGCCAGGCAT GCCGATGACA ACATCAGCAA AGATGGGCAA GAGGTCACTG GGAATAAAAT 2520 GGCAGGCAI GCGAIGACA ACAICAGCAA AGAIGGGCAA GAGGICACIG GGAAIAAAAT 2520
GGACATCTCTA AACTTTAGCCA CCATATTIGG ACCCAACCTG GGCACAGCA CAAGGCATC 2580
AGACAAAGAATTCTCAGTTC AGAGTTCAGC CCGGGCTGAG GAGAGCACGC CCATCATCGC 2640
TGTTGTGCAA AAGATGATTG AAAATTATGA AGCCCTGTTC ATGGTTCCCC CAGATCTCCA 2700
GAACGAAGGC TGATCAGCC TGTTAGAGAC CGATCCTGAT GTCGTGGACT ATTTACTCAG 2760
AAGAAAGGCT TCCCAATCAT CAAGCCCTGA CATGCTGCAG TCGGAAAGTT CCTTTTCCGT 2820
GGGAGGGAGG CATTCATCTA CAGACTCCAA CAAGGCCTCC AGCGGAAGACT TCCCCCTTA 2880 25 TGACAACAAC TOOCCAGTGC TGTCTGAGCG CTCCCTGCTG GCTATGCAAG AGGACGCGGC 2940 CCCGGGGGGC TCGGAGAAGC TTTACAGAGT GCCAGGGCAG TTTATGCTGG TGGGCCACTT 3000 GTCGTCGTCA AAGTCAAGGG AAAGTTCTCC TGGACCAAGG CTTGGGAAAG ATCTGTCAGA 3060 30 GGAGCCTTTC GATATCTGGG GAACTTGGCA TTCAACATTA AAAAGCGGAT CCAAAGACCC 3120
AGGAATGACA GGTTCCTCTG GAGACATTTT TGAAAGCAGC TCCCTAAGAG CGGGGCCCTG 3180
CTCCCTTTCT CAAGGGAACC TGTCCCCAAA TTGGCCTCGG TGGCAGGGGA GCCCCGCAGA 3240 35 GCTGGACAGC GACACGCAGG GGGCTCGGAG GACTCAGGCC GCAGCCCCCG CGACGGAGGG 3300 CAGGGCCCAC CCTGCGGTGT CGCGCGCCTG CAGCACGCCC CACGTCCAGG TGGCAGGGAA 3360 AGCCGAGCGG CCCACGGCCA GGTCGGAGCA GTACTTGACC CTGAGCGGCG CCCACGACCT 3420 CAGCGAGAGT GAGCTGGATG TGGCCGGGCT GCAGAGCCGG GCCACACCTC AGTGCCAAAG 3480 CAGCGAGAGT GAGCTGGATG TGGCCGGGCT GCAGAGCCGG GCCACACCTC AGTGCCAAAG 3480
ACCCCATGGG AGTGGGAGGG ATGACAAGCG GCCCCCGCT CCATACCCGG GCCCAGGGAA 3540
GCCCGCGGCA GCCGCAGCCT GGATTCCAGGG GCCCCCGGAA GCCGTTGAGAA CACCCACGGA 3600
CCAGGGAGGC CAAGCAGCCG AGCGAGACAG TCCCGCCCTG GGGGACGCTG GCTGGCTCAG 3750
CAACTCCCTG CCAGCGGGCG AGCAGGACAG TCCGCCCCTG GGGGACGCTG GCTGGCTCAG 3750
GCCCGAGAGA GAGCGCTGGC AGATCTGGGA GCTCCTGTCG ACCACACC CCGATGCCCT 3780
GCCCGAGACG CTGGTCTGAG CCCCCACCCA GCCGAGCCCC CCCTTCCCCCG AGCCCCCCCC 3840
CCTCCAGCCC AGGGGGGACC GTGGGTGGTG GCCACTGGCA CACTTAGTGT TCTTCTTTCCA 3900 40 45 CACTTCTCAA AAGTGACACA AGAGAAATCC AGTTCACCTA CACAGGTAGA GCACTCACGC 3960 CCCCGCCATT GAGAATAAGG TTCCATTGCG TAGCCAGCCT TAGGAAAAAC AAACAGAACC 4020 CAAACCAGAT GGCAATGTCC AATCTAAAAA CGTCCCTCTT GGCTCTATAA TATAAGATAC 4080 AACTETTGET TGGTATAGCE TAACCGTATT TATGTGTCTT CGGTTTTGAC TATTGTGTAT 4140
TCTGTAACAG-ATTATGTATA ATCATATATG ATATATTCAC AAAGAGAAAA CAAAAGGAAC 4200
TTTTAAAAAA AAAATCACTT CACTTATATT AAGCAATGAG ATATACTAAA CAATGAGATT 4260 50 55 ATAATGTATA ATTTTTATGT ATTTTTCAAA ACTACAAACT GGAATCCAAC TATAAAGTGT 4680 TTAAGAATCT ACACAGAATA TTCAAATTAT AGAACATGIT TTTTCCCTTT GCCCCATAAT 4740 CAGTATTIGC CAAATTACAT GCAATTCCTT AAAAACTAAA TCACATTGGT AAAAGGCCTA 4800 CAGCTTTGTA CITACATTGT GCCAAAGGCT GAGGAAATGT TTTCTTTCGA ATTTTTATGT 4860 60 GTATTIGTAAA ATGTTCTACC GTACTTTAGT AGTTTGAAGT TTTCAAGTGC ATAACTATTT 4920 TTGACCAGCA GAAGGCGATA CGCTTCAGTA TTTTATGCAA TTTTTTTTCA CTTCGAAGGG 4980 AAAGTGTATT ATAAAAAAAG ATTTTTTTT TTTAAAACAT GCTACTCTTA ATTTTCATGT 5040 65 TGGTGATGAA ATTCCCAGTG GTGTTTCTTA AGGTTCTATC TTGTGCCATG ATGAATAAAA 5100 ΑGTTAAGCAA ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑΛΑΛΑΛΑ

70 SEQ ID NO:146 PFG6 Protein sequence:
Protein Accession #: NP_038286.1

11 21 31 41 51

75 MSAQSILHSV FSCSSPÄSSS ÄÄSÄKGFSKR KLRQTRSLDP ALIGGCGSDE AGAEGSARGA 60
TAGRLYSPSL PÄESLÖPRLA SSSRGPPPRA TRLPPPOPLC SSFSTFSTPQ EKSPSGSFHF 120
DYFVPLGRGG LKKSMAWDLP SVLAGPASSR SASSILCSSG GGPNGIFASP RRWLQQRKFQ 180
SPPDSRGHPY VVWKSEGDFT WNSMSGRSVR LRSVPIQSLS ELERARLQEV FFYQLQQDCD 240
LSCQITIPKD GQKRKKSLRK KLDSLGKEKN KDKEFIPQAF GMPLSQVIAN DRAYKLKQDL 300
QRDEQKDASD FVASLLPFGN KRQNKELSSS NSSLSSTSET PNESTSPNTP EPAPRARRRG 360

AMSVDSITDL DDNQSRLLEA LQLSLPAEAQ SKKEKARDKK LSLNPIYRQV PRLVDSCCQH 420
LEKHGLQTVG IFRVGSSKKR VRQLREEFDR GIDVSLEEEH SVHDVAALLK EFLRDMFDPL 480
LTRELYTAFI NITLLEPEEQ LGTLQLLIYL LPPCNCDTLH RLLQFLSIVA RHADDNISKD 540
GQEVTGNKMT SLNLATIRGP NLLHKQKSSD KEPSVQSSAR AEESTABAV VQKMENYEA 660
LFMVPPDLQN EVLISLLETD FDVVDYLLRR KASQSSSPDM LQSEVSFSVG GRHSSTDSNK 660
ASSGDISPYD NNSPVLSERS LLAMQEDAAP GGSEKLYRVP GQFMLVGHLS SSKSRESSPG 720
PRIJGKDLSEE PFDIWGTWHS TLKSGSKDFG MTGSSGDIFE SSSLRAGPCS LSQGNLSPNW 780
PRWQGSPAEL DSDTQGARRT QAAAPATEGR AHPAVSRACS TPHVQVAGKA ERPTARSEQY 840
LTLSGAHDLS ESELDVAGLQ SRATFQCQRP HGSGRDDKRP PPPYPGFGKP AAAAAWQGP 900
PEGVETPTDQ GGQAAEREQQ VTQKKLSSAN SLPAGEQDSP RLGDAGWLDW QRERWQIWEL 960
LSTDNPDALP ETLV

SEQ ID NO:149 PFG2 DNA SEQUENCE

Coding sequence: 39-1103 (underlined sequences correspond to start and stop codons) 5 51 31 GOGGAGCTCT GCCTTGGAGA TTCTCAGTGC TGCGGATCAT GTCCCTAAGG GGCAGCCTCT 60 CGCGTCTCCT CCAGACGCGA GTGCATTCCA TCCTGAAGAA ATCCGTCCAC TCCGTGGCTG 120 TGATAGGAGC CCCGTTCTCA CAAGGGCAGA AAAGAAAAGG AGTGGAGCAT GGTCCCGCTG 180 10 CCATAAGAGA AGCTGGCTTG ATGAAAAGGC TCTCCAGTTT GGGCTGCCAC CTAAAAGACT 240 TTGGAGATTT GAGTTTTACT CCAGTCCCCA AAGATGATCT CTACAACAAC CTGATAGTGA 300
ATCCACGCTC AGTGGGTCTT GCCAACCAGG AACTGGCTGA GGTGGTTAGC AGAGCTGTGT 360
CAGATGGCTA CAGCTGTGTC ACACTGGGAG GAGACCACAG CCTGGCAATC GGTACCATTA 420 GTGGCCATGC CCGACACTGC CCAGACCTTT GTGTTGTCTG GGTTGATGCC CATGCTGACA 480
TCAACACACC CCTTACCACT TCATCAGGAA ATCTCCATGG ACAGCCAGTT TCATTTCTCC 540
TCAGAGAACT ACAGGATAAG GTACCACAAC TCCCAGGATT TTCCTGGATC AAACCTTGTA 600 15 TCTCTTCTGC AAGTATTGTG TATATTGGTC TGAGAGAGGT GGACCCTCCT GAACATTTTA 660
TTTTAAAGAA CTATGATATC CAGTATTTTT CCATGAGAGA TATTGATCGA CTTGGTATCC 720
AGAAGGTCAT GGAACGAACA TTTGATCTGC TGATTGGCAA GAGACAAAGA CCAATCCATT 780 20 TGAGTTTTGA TATTGATGCA TITGACCCTA CACTGGCTCC AGCCACAGGA ACTCCTGTTG 840 TOGGGGGACT AACCTATOGA GAAGGCATGT ATATTGCTGA GGAAATACAC AATACAGGGT 900
TGCTATCAGC ACTGGATCTT GTTGAAGTCA ATCCTCAGTT GGCCACCTCA GAGGAAGAGG 960
CGAAGACTAC AGCTAACCTG GCAGTAGATG TGATTGCTTC AAGCTTTGGT CAGACAAGAG 1020 AAGGAGGGCA TATTGTCTAT GACCAACTTC CTACTCCCAG TTCACCAGAT GAATCAGAAA 1080 ATCAAGCACG TOTGAGAATT TAGGAGACAC TOTGCACTGA CATGTTTCAC AACAGGCATT 1140
CCAGAATTAT GAGGCATTGA GGGGATAGAT GAATACTAAA TGGTTGTCTG GGTCAATACT 1200
GCCTTAATGA GAACATTTAC ACATTCTCAC AATTGTAAAG TTTCCCTCT ATTTTGGTGA 1260
CCAATACTAC TOTAAATGTA TTTGGTTTTT TGCAGTCAC AGGGCATTAA TATGCTCACG 1320
TACTATGTAA ATTTAAAGAA GTCATAAACA GCATTTATTA CCTTGGTATA TCATACTGGT 1380
CTTGTTGCTG TGTTCCTTC ACATTTAAGT GGTTTTTCATCCTCCC TCCTCCCACA 1440 25 30 GCCTGGCTAT ACAGTGCATC CTTGAACTGT CAGCCCACAG CAGCAATATG CTTATTCTAT 1500 CCACATCCCT AACATCATGC ATTCACAAGG TCAAAGTTCT GGTCCACAAA CCCTTCCCTA 1560 TAGAAGTTCA ATGGCTGCGA AAGAATTTGT AGTAAACCAG GCCTCCCAGG ATGGCGAGCT 1620 CCAGTAAGAT GATAATGGAA AGCAGCAGCT TGTTGGTTGT CACTCTACAA AGAGAAGCAA 1680 35 AGTGGGGAGT AGTCAGAAGT TTGGATAACC TTCCTTCTAA ACATTTGGGG GTTAGACCTG 1740 GGACCACGGC TGGATACTCT GAGGCTGTAT GTTTGATCAC ACAGCCACTT AGCAGGAAGT 1800 ACTCATAAGG TTCTTTAGCT GTCACTTAGG GATAACACTG TCTACCTCAC AGAAATGTTA 1860 AACTGAGACA ATAAAACCCA AAGCAT 40 SEQ ID NO:150 PFG2 Protein sequence: Protein Accession #: NP_001163.1 11 , 21 41 31 45 MSTRGSLSRL LOTRVHSILK KSVHSVAVIG APFSOGOKRK GVEHGPAAIR EAGLMKRLSS 60 MSIRGSISKL LUTKVHSILK KSVHSVAVIG APFSQGQKRK GVEHGPAAIR EAGLMKRISS 60
LIGCHLKDFGD LSFTPVPKDD LYNNLIVNPR SVGLANQELA EVVSRAVSDG YSCVTLGGDH 120
SLAIGTISGH ARHCPDLCVV WYDAHADINT FLTTSSGNLH GQPVSFLIRE LQDKVPQLPG 180
FSWIKPCISS ASIVYIGLRD VDPPEHFILK NYDIQYFSMR DIDRLGIQKV MERTFDLLIG 240
KRQRPIHLSF DIDAFDPTLA PATGTPVVGG LTYREGMYIA EEIHNTGLLS ALDLVEVNPQ 300 50 LATSEEEAKT TANLAVDVIA SSFGQTREGG HIVYDQLPTP SSPDESENQA RVRI 55 **SEQ ID NO:151 PFG1 DNA SEQUENCE** Nucleic Acid Accession #: NM 017908 80-1255 (underlined sequences correspond to start and stop codons) Coding sequence: 11 21 31 41 51 60 AATTATATAT TTTTACTCTA TGTTTCTCTA CATGTTTTTT TCTTTCCGTT GCTGGCGGAA 60
GAGGCACGTG CGCTGCTGAA TGGAGCTGGT CGCTGGTTGC TACGAGCAGG TCCTCTTTGG 120
GTTCGCTGTA CACCCGGAGC CCAAGGCTTG CGGCGACCAC GAGCAATGGA CTCTTGTGGC 180 TIGACTICAC CACCATGCTC ACACTGCTC CTTGTCAGCA GAGCATIGA CTCHTIGGC 180
TGACTTCACT CACCATGCTC ACACTGCCTC CTTGTCAGCA GTAGCTGTAA ATAGTCGTTT 240
TGTGGTCACT GGGAGCAAAG ATGAAACAAT TCACATTTAT GACATGAAAA AGAAGATTGA 300
GCATGGGGCT CTAGTGCATC ACAGTGGTAC AATAACTTGC CTGAAATTCT ATGGCAACAG 360
GCATTTAATC AGTGGAGCGG AAGATGGACT CATCTGTATC TGGGATGCAA AGAAATGGGA 420 65 ATGCCTGAAG TCAATTAAAG CTCACAAAGG ACAGGTGACC TTCCTTTCTA TTCACCCATC 480
TGGCAAGTTG GCCCTGTCGG TTGGTACAGA TAAAACTTTA AGAACGTGGA ATCTTGTAGA 540
AGGAAGATCA GCATTCATAA AAAATATAAA ACAAAATGCT CACATAGTAG AATGGTCCCC 600 70 AAGAGGAGAG CAGTATGTAG TTATCATACA GAATAAAATA GACATCTATC AGCTTGACAC 660
TGCATCCATT AGTGGCACCA TCACAAATGA AAAGAGAATT TCCTCTGTTA AATTTCTTTC 720
AGAGTCTGTC CTTGCAGTGG CTGGAGATGA AGAAGTTATA AGGTTTTTTG ACTGTGATTC 780 ACTACTGTGC CTCTGCGAAT TTAAAGCTCA TGAAAACAGG GTAAAGGACA TGTTCAGTTT 840
TGAAATTCCA GAGCATCATG TTATTGTTTC AGCATCGAGT GATGGTTTCA TCAAAATGTG 900
GAAGCTTAAG CAGGATAAGA AAGTTCCCCC ATCTTTACTC TGTGAAATAA ACACTAATGC 960 75 CAGGCTGACG TGTCTTGGAG TGTGGCTAGA CAAAGTGGCA GACATGAAAA GCCTTCCTCC 1020 AGCTGCAGAG CCTTCTCCTG TAAGTAAAGA ACAGTCCAAA ATTGGCAAAA AGGAGCCTGG 1080 TGACACAGTG CACAAAGAAG AAAAGCGGTC AAAACCTAAC ACAAAGAAAC GCGGTTTAAC 1140

Nucleic Acid Accession #: NM_001172

10 SEQ ID NO:152 PFG1 Protein sequence: 51 31 41 15 MELVAGCYEQ VLFGFÁVHPE PKACGDHEQW TLVADFTHHA HTASLSAVAV NSRFVVTGSK 60 DETIHIYDMK KKIEHGALVH HSGTITCLKF YGNRHLISGA EDGLICIWDA KKWECLKSIK 120 AHKGQVTFLS IHPSGKLALS VGTDKTLRTW NLVEGRSAFI KNIKQNAHIV EWSPRGEQYV 180 VIIQNKIDIY QI.DTASISGT TINEKRISSV KFLSESVLAV AGDEEVIRFF DCDSLVCLCE 240 FKAHENRVKD MFSFEIPEHH VIVSASSDGF IKMWKLKQDK KVPPSLLCEI NTNARLTCLG 300 20 VWLDKVADMK SLPPAAFPSP VSKEQSKIGK KEPGDTVHKE EKRSKPNTKK RGLTGDSKKA 360 TKESGLISTK KRKMVEMLEK KRKKKKIKTM Q 25 SEQ ID NO:153 PEDS DNA SEQUENCE Nucleic Add Accession #: NM 014668 Coding sequence: 110-2953 (underlined sequences correspond to start and stop codons) 30 51 11 21 31 GATGTCTTGG ACATGCTCTG GCTGGCTAAT CTCCATGTTC TAGCCGACTG AAAATACGGT 60 GGCCAAGTGG ATGGTGTGCT TATTTGCAGT CTAAAGAAAT TTCCTTTTGA TGTGGCAGAA 120 AATCGAGGAT GTGGAGTGGA GACCCCAGAC TTACTTGGAG CTGGAGGGTC TGCCTTGCAT 180 35 40 CTCGGCCATC AGCAGGCACA GTCCCGGGCC GACGCCCCAG CCCGACTGTA GCCTCAGGAC 720 CIGCCAGAGG AGOGTCCAGG TOTCGGTCAC CTCGTCGTGC TCCCAGCTGT CCTCCTCCTC 780
GGGCTCATCC TCCTCATCCG TGGCGCCCAGC TGCCGGCACG TGGGTCCTGC AGGCCTCCCA 840
GTGCTCCTTG ACCAAGGCCT GCCGCCAGCC ACCCATTGTC TTCTTGCCCA AGCTCGTGTA 900
CGACATGGTT GTGTCCACTG ACAGCAGTGG CCTGCCCAG GCCCCTCCC TCCTGCCCTC 960
CCCCTCGGTC ATGTGGGCCA GCTCTTTCCG CCCCCTCTC AGCAAGACCA TGACATCAC 1020
CGAGCAGTCC CTCTACTACC GCCAGTGGAC GGTCCCCCGC CCCACACACACTCCCC 1020 45 CAACCGGCC GAGGCCGCG TGGACGCTT CCACCCCGC AGGCTGCTCC TCAGCGGCCC 1140
CCCTCAGATC GGGAAGACAG GTGCCTACCT GCAGTTCCTC AGTGTCCTGT CCAGGATGCT 1200
TGTTCGGCTC ACAGAAGTGG ATGTCTATGA CGAGGAGGAG ATCAATATCA ACCTCAGAGA 1260 50 AGAATCTGAC TIGGCATTATC TCCAGCTTAG CGACCCTGG CCAGACCTGG AGCTGTTCAA 1320
GAAGTTGCCC TTTGACTACA TCATTCACGA CCCGAAGTAT GAAGATGCCA GCCTGATTTG 1380
TTCGCACTAT CAGGGTATAA AGAGTGAAGA CAGAGGGATG TCCCGGAAGC CGGAGGACCT 1440
TTATGTGCGG CGTCAGACGG CACGGATGAG ACTGTCCAAG TACGCAGCGT ACAACACTTA 1500 55 GGAGAGCATG CGACTACCCC TCGTGACAGA CAAGAGCCAT GAATATATAA AAAGTCCGAC 1740 ATTCACTCCA ACCACCGGCC GTCACGAACA TGGGCTCTTT AATCTGTACC ACGCAATGGA 1800 CGGTGCCAGC CATTTGCACG TGCTGGTTGT CAAGGAATAC GAGATGGCAA TTTATAAGAA 1860 60 ATATTGGCCC AACCACATCA TGCTGGTGCT CCCCAGTATC TTCAACAGTG CTGGAGTTGG 1920
TGCTGCTCAT TTCCTCATCA AGGAGCTGTC CTACCATAAC CTGGAGCTCG AGCGGAACCG 1980
GCAGGAGGAG CTGGGAATCA AGCCGCAGGA CATCTGGCCT TTCATTGTGA TCTCTGATGA 2040 65 CTCCTGCTG ATOTGGAACG TGGTGGATGT CAACTCTGCT GGGGAGAGAA GCAGGGAGTT 2100 CTCCTGGTCG GAAAGGAACG TGTCTTTGAA GCACATCATG CAGCACATCG AGGCGGCCCC 2160 CGACATCATG CACTACGCCC TGCTGGGCCT GCGGAAGTGG TCCAGCAAGA CCCGGGCCAG 2220 CGAGGTGCAA GAGCCCTTCT CCCGCTGCCA CGTGCACAAC TTCATCATCC TGAACGTGGA 2280
CCTGACCCAG AACGTGCAGT ACAACCAGAA CCGGTTCCTG TGTGACGATG TAGACTTCAA 2340
CCTGCGGGTG CACAGCGCCG GCCTCCTGCT CTGCCGGTTC AACCGCTTCA GCGTGATGAA 2400 70 GAAGCAGATC GTGGTGGGCG GCCACAGGTC CTTCCACATC ACATCCAAGG TGTCTGATAA 2460 CTCTGCCGCG GTCGTGCCGG CCCAGTACAT CTGTGCCCCG GACAGCAAGC ACACGTTCCT 2520 CGCAGCGCCC GCCCAGCTCC TGCTGGAGAA GTTCCTGCAG CACCACAGCC ACCTCTTCTT 2580 CCCGCGGCCC GCCAACHCL INCIGAGAA GITIC INCIAC LACLACAGC ACCICITIT 2580
CCCGCTGTCC CTGAAGAACC ATGACCACCC AGTGCTGTCT GTCGACTGTT ACCTGAACCT 2640
GGGATCTCAG ATTTCTGTTT GCTATGTGAG CTCCAGGCCC CACTCTTTAA ACATCAGCTG 2700
CTCGGACTTC CTGTTCAGTG GGCTGCTGCT GTACCTCTGT GACTCTTTTG TGGGAGCTAG 2760
CTTTTTGAAA AAGTTTCATT TTCTGAAAAGG TGCGACGTTG TGTGTCATCT GTCAGGACCC 2820 75

GAGCTCACTG CGCCAGACGG TCGTCCGCCT GGAGCTCGAG GACGAGTGGC AGTTCCGGCT 2880

GCGCGATGAG TTCCAGACCG CCAATGCCAG GGAAGACCGG CCGCTCTTTT TTCTGACGGG 2940 ACGACACATC TGAGGAAGAC AGCGGCGAGT TTTCTGAAGA GATGAGTGCT CAGAGCCCTC 3000 ATGCTGTTGA GGCTAAAGGG AGGCCTGGAA CGGTGGGGCG TTTGACTGGA ATGGACCCCA 3060 GGGACTGTCC AGGTGCAGCC CCTCCTAGTA CACATGGGCC CCCGAGGCCG TGGTCCTGGG 3120 AGCCAGGAAG ACTCCGCAGT GGGTGAGAAT GAAAACTTGA GACTCCCAAG TTCTGGGCCA 3180 GCCCATTGCT CTGGGCTGTT TTAAAGCCCA TTTCACGAGG AACAAAGATT TACTTCCTGT 3240 CCTGCCATTGCT CTGGGCTGTT TTAAAGCCCA TTTCACGAGG AACAAAGATT TACTTCLTGT 3240
CCTGCCATTC GTGTGCTTCC ATGGACAAAC CTGATTTTTT TCTCTTAGTT CTAAAGAATC 3300
TTGGGTTATT TTGTAGCGGT GCCAGTATTT CAGTAGATGG GATTTCAGCC AAGTAGGTTC 3360
CCTGTAACC TCCTACAAAG CAATATTCCA AAGGAACATT TTAACTGTAA AGGCTGGAGA 3420
CAAGAAAAAA TAAGTAGATC GTTTTAATAA CAATTATTTA ATTGCCTATA AGTTTGCTGT 3480
TTCAGAGGCT AGCCCAAAGG CATCAAAATTT AATAAAGTTA AACAAATTGA TTTACTTCAG 3540
AGCAAATATG ATCCTATTAA AATAATATAG GGTAAATACC CTACCTCTTA GAAAAGGGCAA 3600 10 AAATGCAAAG AAGCTTTCTT TAAAACTAAA AGGGTTTTTT GGGGGGGGAG TTGGCGGGGA 3660 GGAAATAAGG CTAACAGAGG TTGACCTAAA ATTAGCCTTA CAAAGGAGAA AGGACCACAT 3720 TGCTTACTTG AAACAGACAA TGAAAACAAC CAAAGTGATA TATAAAATAG TTGATGAGAA 3780 15 CTAGACTTAT GACTGTAGTT TACTAGAGTT TAGTTTTCAG TTGCTGAAGT AGCTCATTTT 3840 CTCTTACTAA TGTTTGGTTC CTCAGGGAAG AATCTCACTT GACTAGAGAG GAGGTGGGAA 3900 CAGAAGAGAG AAGGAGGCAG GGAGATGTAT TTCTTAGGGC TCACCCCTTC ACAGACTGAC 3960 AGAATGGTTT TGTTTTGTTT TGTTTTGTTT TTGAGATGGA CTCTAGCTCT 4020 20 GTCACCAGG CTGGAGTGCA GTGGTGCGAT CTCGGCTCAC TGCAAGCTCC GCCTCCCGGG 4080
TTCTCACCAT TCTCCTGCCT CAGCCTCCCG AGTAGCTGGG ACTACAGGCG CCCACCACCA 4140
CGCCCGGCTA ATTTTTTGTA TTTTTTAGTA GAGACGGGGT TTCACCATGT TAGCCAGGAT 4200 GGTCTCGATC TCCTGACCTC GTGATCCGCC CGCCTCGGCC TCCCAAAGTG CTGGGATTAC 4260 AGGCGTGAGC CACCGTGCCT GCCCCAGAAT GGTTTTTAAA GCCACAGTTG AGAGGCCACC 4320 CATTGCCCGG CGCCTGGACA GTGATCATCT TGTTCATCTT GTTCAGTCCT TTCTTGTGTG 4380 ATTGGAATTA TTCATCCCCT TTGAAAGATG AGAAGGTTGA GATGCAAAGA GTCTACCTTT 4440 25 CCAAGTTCTC ACTGCTGGAA AGAGCTAGAA GCACAGTTCA AAGTTCTGGC TTCTGGACTC 4500 TGCAGTCCAG GTCTCCCTTC TCCCACTTGC CTACCCTCAA TGCCACACTG TTTTTGAAGT 4560 GGCCCATAAC TTGAAGGAAA AGTTTAAAGA CAGTTCAATT TAATCATCAG AATGCATTCT 4620 30 TITITITITE GGAGACGGAG TITCACTCTT GCTGCCCAGG CTGGAGTGCA ATGGTGCAAT 4680
GATCTCGGCT CACTGCAACC TCTGCCTCCT GGGTTCAAGT GATTCTCCAG CCTCAGCCTC 4740
CCGAGTAGCT GGGATTATGG GCGCCCACCA CCATGCCCAG CTAATTTTTG TATTTTTTT 4800 TTTTAGTAGA GATGGGGTTT CGCCAGGTTG GCCAGGCTGG TCTTGTGAAC TCCTGGCCTC 4860 AGGTGATCTG CCCACCTCAT CCTCCAAAAG TGCTGGGATT ACAGGCATGA GCCACTGCGC 4920 CTGGCCTCAG AATGCATTCT TACACATCTA TCCTAGACAT TTATAAGCAC TCTAATGGAT 4980 35 AACAATCCAA GAATAAATGA TTGTAAAAGA TGATGCCGAA GAGTTGATGT CAATCTTTTT 5040 TTCCTAAGAA AAAAGTCCG CGAGTATTAA ATATTTAGAT CAATGTTTAT AAAATGATTA 5100 CTTTGTATAT CTCATTATTC CTATTTTGGA ATAAAAACTG ACCTTCTTTA ATCATATACT 5160 TGTCTTTTGT AAATAGCAGC TTTTGTGTCA TTCTCCCCAC TTTATTAGTT AATTTAAATT 5220 40 GGAAAAAACC CTCAAACTAA TATTCTTGTC TGTTCCAGTC TTATAAATAA AACTTATAAT 5280 GCATG 45 SEQ ID NO:154 PFD6 Protein sequence: Protein Accession #: 31 41 50 MWQKIEDVEW RPQTYLELEG LPCILIFSGM DPHGESLPRS LRYCDLRLIN SSCLVRTALE 60 QELGLAAYFV SNEVPLEKGA RNEALESDAE KLSSTDNEDE ELGTEGSTSE KRSPMKRERS 120 RSHDSASSSL SSKASGSALG GESSAQPTAL PQGEHARSPQ FRGPAEEGRA PGEKQRPRAS 180 QGPPSAISRH SPGPTPQPDC SLRTGQRSVQ VSVTSSCSQL SSSSGSSSSS VAPAAGTWVL 240 QASQCSLTKA CRQPPIVFLP KLVYDMVVST DSSGLPKAAS LLPSPSVMWA SSFRPLLSKT 300 55 MTSTEQSLYY RQWTVPRPSH MDYGNRAEGR VDGFHPRILL LSGPPQIGKT GAYLQFLSVL 360 SRMLVRLTEV DVYDEFEINI NLREESDWHY LQLSDPWPDL ELFKKLPFDY IIHDPKYEDA 420 SLICSHYQGI KSEDRGMSRK PEDLYVRRQT ARMRLSKYAA YNTYHHCEQC HQYMGFHPRY 480 OLYESTLHAF AFSYSMLGEE IQLHFIIPKS KEHHFVFSQP GGQLESMRLP LVTDKSHEYI 540
KSPITFITTG RHEIGLFRLY HAMDGASHLH VLVVKGYEMA IYKKYWPNHI MLVLPSIFNS 600
AGVGAAHFLI KELSYHNLEL ERNRQEELGI KPQDIWPFIV ISDDSCVMWN VVDVNSAGER 660 60 AGVGAARPIL RELST HILLE ERNRYGELDI NY GUNTATIV SEUDSCYWWY VYDVISAIGER 600 SREFSWESEN VSILKHIMQHI EAAPDIMITYA LLGILRKWSSK TRASEVQEFF SRCHVHNFII 720 LNVDLTQNVQ YNQNRFILDD VDFNLRVHSA GLILLCRFNRF SVMKKQIVVG GHRSFHITSK 780 VSDNSAAVVP AQYICAPDSK HTFLAAPAQL LLEKFLQHHS HLFPFLSLKN HDHPVLSVDC 840 YINLGSQISV CYVSSRPHSL NISCSDLIFS GILLT/ILDSF VGASFLKKFH FLKGATLCVI 900 CQDRSSLRQT VVRLELEDEW QFRLRDEFQT ANAREDRPLF FLTGRHI 65 SEQ ID NO:155 PECS DNA SEQUENCE Nucleic Acid Accession #: NM 000522 70 Coding sequence: 1-1167 (underlined sequences correspond to start and stop codons) 51 ATGACAGCCT CCGTGCTCCT CCACCCCCGC TGGATCGAGC CCACCGTCAT GTTTCTCTAC 60
GACAACGGCG GCGGCCTGGT GGCCGACGAG CTCAACAAGA ACATGGAAGG GGCGGCGGCG 120 75 GCGCGCGGG CCAACCAGTG CGCAACCTG ATGGCGCACC CGGCGCCCTT GCCCCAGGA

300

GCCGCGTCCG CCTACAGCAG CGCCCCCGGG GAGGCGCCCC CGTCGGCTGC CGCCGCTGCT 360

GCCGCGGCTG CCGCTGCAGC CGCCGCCGCC GCCGCCGCT CGTCCTCGGG AGGTCCCGGC 420 5 TTCAGCTCCC GCGCTAAGGA GTTCGCGTTC TACCACCAGG GCTACGCAGC CGGGCCTTAC 720 CACCACCATC AGCCCATGCC TGGCTACCTG GATATGCCAG TGGTGCCGGG CCTCGGGGGC 780 CCCGGCGAGT CGCGCCACGA ACCCTTGGGT CTTCCCATGG AAAGCTACCA GCCCTGGGCG 840 CTGCCCAACG GCTGGAACGG CCAAATGTAC TGCCCCAAAG AGCAGGCGCA GCCTCCCCAC 900 CTCTGGAAGT CCACTCTGCC CGACGTGGTC TCCCATCCCT CGGATGCCAG CTCCTATAGG 960 AGGGGGAGAA AGAAGCGCGT GCCTTATACC AAGGTGCAAT TAAAAGAACT TGAACGGGAA 1020 10 TACGCCACGA ATAAATTCAT TACTAAGGAC AAACGGAGGC GGATATCAGC CACGACGAAT 1080 CTCTCTGAGC GGCAGGTCAC AATCTGGTTC CAGAACAGGA GGGTTAAAGA GAAAAAAGTC 1140 ATCAACAAAC TGAAAACCAC TAGT<u>TAA</u> 15 SEQ ID NO:156 PFC6 Protein sequence: NP 000513.1 Protein Accession #: 20 41 MTASVLLHPR WIEPTVMFLY DNGGGLVADE LNKNMEGAAA AAAAAAAAA AGAGGGGFPH 60 PAAAAAGGNF SVAAAAAAA AAAANQCRNI, MAHPAPLAPG AASAYSSAPG EAPPSAAAAA 120 AAAAAAAAA AAASSSGGPG PAGPAAAEAA KQCSPCSAAA QSSSGPAALP YGYFGSGYYP 180 CARMGPPPNA IKSCPQPPSA AAAAAFADKY MDTAGPAAEE FSSRAKEFAF YHQGYAAGPY 240 25 HHHQPMPGYL DMPVVPGLGG PGESRHEPLG LPMESYQPWA LPNGWNGQMY CPKEQAQPPH 300 LWKSTLPDVV SHPSDASSYR RGRKKRVPYT KVQLKELERE YATNKFITKD KRRISATIN 360 LSERQVTWF QNRRVKEKKV INKLKTTS 30 SEQ ID NO:157 PFA3 DNA SEQUENCE Nucleic Acid Accession #: AW102723 Coding sequence: 523-2676 (underlined sequences correspond to start and stop codons) 35 51 CCCTTATGGC GATTGGGCGG CTGCAGAGAC CAGGACTCAG TTCCCCTGCC CTAGTCTGAG 60 CCTAGTGGGT GGGACTCAGC TCAGAGTCAG TTTTCAGAAG CAGGTTTCAG TTGCAGAGTT 120 40 TTCCTACACT TTTCCTGCGC TAGAGCAGCG AGCAGCCTGG AACAGACCCA GGCGGAGGAC 180
ACCTGTGGGG GAGGGAGCGC CTGGAGGAGC TTAGAGACCC CAGCCGGGCG TGATCTCACC 240
ATGTGCGGAT TTGCGAGGCG CGCCCTGGAG CTGCTAGAGA TCCGGAAGCA CAGCCCCGAG 300 GTGTGCGAAG CCACCAAGAC TGCGGCTCTT GGAGAAAGCG TGAGCAGGGG GCCACCGCGG 360
TCTCCGGCCT GTCTGCACCC TGTCGCCTGA GCTGCCTGAC AGTGACAATG ACATCCCAGT 420
TACCAGTGTC CTTGAATTGA TAGTGGCTTC TGTTTGTCAG TCTCATATAA GAACTACAGC 480 45 TCATCAGGAG GAGATCGCAG CAGGGTAAGA GACACCAACA CCATGTTCTG CACGAAGGCTC 540
AAGGATCTCA AGATCACAGG AGAGTGTCCT TTCTCCTTAC TGGCACCAGG TCAAGTTCCT 600
AACGAGTCTT CAGAGGAGGC AGCAGGAAGC TCAGAGAGCT GCAAAGCAAC CGTGCCCATC 660 TGTCAAGACA TTCCTGAGAA GAACATACAA GAAAGTCTTC CTCAAAGAAA AACCAGTCGG 720 50 AGCCGAGTET ATCTTCACAC TTTGGCAGAG AGTATTTGCA AACTGATTTT CCCAGAGTTT 780
GAACGGCTGA ATGTTGCACT TCAGAGAACA TTGGCAAAGC ACAAAATAAA AGAAAGCAGG 840
AAATCTTTGG AAAGAGAAGA CTTTGAAAAA ACAATTGCAG AGCAAGCAGT GCAGCAGAGT 900 CCACTGGAGT TATCAAAGAA TCTCTTGGTG AAGAGGTTTT TAAAATATGT TACGAGGAAG 960 ATGAAAACAT CCTTGGGGTG GTTGGAGGCA CCCTTAAAGA TTTTTAAACA GCTTCAGTAC 1020 CCTTCTGAAA CAGAGCAGCC ATTGCCAAGA AGCAGGAAAA AGGGGCAGCT TGAGGACGCC 1080 55 TCCATTCTAT GCCTGGATAA GGAGGATGAT TTTCTACATG TITACTACTT CTTCCCTAAG 1140
AGAACCACCT CCCTGATTCT TCCCGGCATC ATAAAGGCAG CTGCTCACGT ATTATATGAA 1200
ACGGAAGTGG AAGTGTCGTT AATGCCTCCC TGCTTCCATA ATGATTGCAG CGAGTTTGTG 1260 ACCAGAGIGG AAGIGICATI AATICECCT ICCTICATA ATGATICAG COAGITI TO 1230
AATCAGCCCT ACTIGTTGTA CTCCGTTCAC ATGAAAAGCA CCAAGCCATC CCTGTCCCCC 1320
AGCAAACCCC AGTCCTCGCT GGTGATTCCC ACATCGCTAT TCTGCAAGAC ATTTCCATTC 1380
CATTTCATGT TTGACAAAGA TATGACAATT CTGCAATTTG GCAATGGCAT CAGAAGGCTG 1440
ATGAACAGGA GAGACTTTCA AGGAAAGCCT AATTTTGAAT ACTTTGAAAT TCTGACTCCA 1500 60 AAAATCAACC AGACCTITAG CGGGATCATG ACTATGTTGA ATATGCAGTT TGTTGTACGA 1560 GTGAGGAGAT GGGACAACTC TGTGAAGAAA TCTTCAAGGG TTATGGACCT CAAAGGCCAA 1620 ATGATCTACA TTGTTGAATC CAGTGCAATC TTGTTTTTGG GGTCACCCTG TGTGGACAGA 1680 65 TTAGAAGATT TTACAGGACG AGGGCTCTAC CTCTCAGACA TCCCAATTCA CAATGCACTG 1740
AGGGATGTGG TCTTAATAGG GGAACAAGCC CGAGCTCAAG ATGGCCTGAA GAAGAGGCTG 1800
GGGAAGCTGA AGGCTACCCT TGAGCAAGCC CACCAAGCCC TGGAGGAGGA GAAGAAAAAG 1860 ACAGTAGACC TICTOTGCTC CATATTTCCC TGTGAGGTTG CTCAGCAGCT GTGGCAAGGG 1920 CAAGTTGTGC AAGCCAAGAA GTTCAGTAAT GTCACCATGC TCTTCTCAGA CATCGTTGGG 1980 TTCACTGCCA TCTGCTCCCA GTGCTCACCG CTGCAGGTCA TCACCATGCT CAATGCACTG 2040 70 TRACETGCCA TCIGCTICCCA GTIGCTCACCG CIGCAGGTICA TCACCATIGCT CAATGCACTG 2040
TACACTAGCT TCGACCAGCA GTGTGGAGAGG CTGGATGTTCT ACAAGGTTGGA GACCATTGCG 2100
ATGCCTATTG TGTGGCTTGG GGGATTACAC AAAGAGAGTG ATACTCATGC TGTTCAGATA 2160
GCGCTGATGG CCCTGAAGAT GATGGAGCTC TCTGATGAAGA TTATGTCTCC CCATGGAGAA 2260
CCTATCAAGA TGCGAATTGG ACTGCACTCT GGATCAGTTT TTGCTGGCGT CGTTGGAGTT 2280
AAAATGCCCC GTTACTGTCT TTTTGGAAAC AATGTCACTC TGGCTAACAA ATTTGAGTCC 2340
TGCAGTGTAC CACGAAAAAT CAATGTCAGC CCAACAACTT ACAGATTACT CAAAGACTGT 2460 75 CCTGGTTTCG TGTTTACCCC TCGATCAAGG GAGGAACTTC CACCAAACTT CCCTAGTGAA 2460 ATCCCCGGAA TCTGCCATTT TCTGGATGCT TACCAACAAG GAACAAACTC AAAACCATGC 2520

· 10

11 21 31 41

5

30

35

SEQ ID NO:158 PFA3 Protein sequence: Protein Accession #: NP 000847.1

15 1 11 21 31 41 51

20
QRKTSRSRVY LHTLAESICK LIFPEFERLN VALQRTLAKH KIKESRKSLE REDFEKTIAE 120
QRVQSSPVEL SKNILVKRFL KYVTRKMKTS LGWLEAPLKI FKQLQYPSET EQPLPRSRKK 180
GQLEDASILC LDKEDDFLHV YYFFPKRTTS LILPGIIKAA AHVLYETEVE VSLMPPCFHN 240
DCSEFVNQPY ILYSVHMKST KPSLSPSKPQ SSLVIPTSLF CKTPFHFMF DKDMTILQFG 300
NGIRRLMNRR DFQGKPNFEY FEILTPKINQ TFSGIMTMLN MQFVVRVRRW DNSVKKSSRV 360
MDLKGQMIYI VESSAILFLG SPCVDRLEDF TGRGLYLSDI PIENALRDVY LIGEQARAQD 420
GLKKRLGKLK ATLEQAHQAL EEEKKKTVDL LCSIFPCEVA QQLWQGQVVQ AKKFSNVTML 480
FSDIVGFTAI CSQCSPLQVI TMLNALYTRF DQQCGELDVY KVETIAMPIV WLGGLHKESD 540
THAVQIALMA LKMMELSDEV MSPHGEPIKM RIGLHSGSVF AGVVGVKMPR YCLFGNNVTL 600
ANKFESCSVP RKINVSPTTY RILKDCPGFV FTRSREELIP PNFPSEIPGI CIFILDAYQQG 660
TNSKPCPQKK DVEDASQFFR QSIRNRLATY IPIYKSLGFD SLKMCRASES TLGIVDG

SEQ ID NO:159 PFA1 DNA SEQUENCE

Nucleic Acid Accession #: NM_004362
Coding sequence: 102-1934 (underlined sequences correspond to start and stop codors)

51

CGCCGGCGGG ACTGGTCTGA AGAGACGCGG GGACAAAGTG GCAACGACTT GGACATCTGA 60 GCTGTCACTG CCGAAAACAG GCCGCAAGAG AGATAATCAA TATGCATTTC CAAGCCTTTT 120 GGCTATGTTT GGGTCTTCTG TTCATCTCAA TTAATGCAGA ATTTATGGAT GATGATGTTG 180 40 AGACGGAAGA CTTTGAAGAA AATTCAGAAG AAATTGATGT TAATGAAAGT GAACTTTCCT 240 CAGAGATTAA ATATAAGACA CCTCAACCTA TAGGAGAAGT ATATTTTGCA GAAACTTTTG 300 ATAGTGGAAG GTTGGCTGGA TGGGTCTTAT CAAAAGCAAA GAAAGATGAC ATGGATGAGG 360 ATAGTGGAAG GTTGGCTGGA TGGGTCTTAT CAAAAGCAAA GAAAGATGAC ATGGATGAG 360
AAATTTCAAT ATACGATGGA AGATGGGAAA TTGAAGAGTT GAAAAGCAAC CAGGTACCTG 420
GTGACAGAGG ACTGGTATTA AAATCTAGAG CAAAGCATCA TGCAAATATCT GCTGTATTAG 480
CAAAACCATT CATTTTTGCT GATAAACCCT TGATAGTTCA ATATGAAGTA AATTTTCAAG 540
ATGGTATTGA TTGTGGAGGT GCATACATTA AACTCCTAGC AGACACTGAT GATTTGATTC 600
TGGAAAACCT TTATGATAAA ACATCCTATA TCATTATGTT TGGACCAGAT AAATGTGGAG 660
AAGATTATAA ACTTCATTTT ATCTTCAGAC ATAAACATCC CAAAACTGGA GTTTTCGAAG 720
AGAAACATGC CAAACCTCCA GATGTAGACC TTAAAAAAGTT CTTTACAGAC AGGAAGACTC 780 45 50 ATCTTTATAC CCTTGTGATG AATCCAGATG ACACATTTGA GGTGTTAGTT GATCAAACAG 840 TTGTAAACAA AGGAAGCCTC CTAGAGGATG TGGTTCCTCC TATCAAACCT CCCAAAGAAA 900 TTGAAGATCC CAATGATAAA AAACCTGAGG AATGGGATGA AAGAGCAAAA ATTCCTGATC 960 CTTCTGCCGT CAAACCAGAA GACTGGGATG AAAGTGAACC TGCCCAAATA GAAGATTCAA 1020 55 GTGTTGTTAA ACCTGCTGGC TGGCTTGATG ATGAACCAAA ATTTATCCCT GATCCTAATG 1080 CTGAAAAACC TGATGACTGG AATGAAGACA CGGATGGAGA ATGGGAGGCA CCTCAGATTC 1140 TTAATCCAGC ATGTCGGATT GGGTGTGGTG AGTGGAAACC TCCCATGATA GATAACCCAA 1200 AATACAAAGG AGTATGGAGA CCTCCACTGG TCGATAATCC TAACTATCAG GGAATCTGGA 1260 GTCCTCGAAA AATTCCTAAT CCAGATTATT TCGAAGATGA TCATCCATTT CTTCTGACTT 1320 CTTTCAGTGC TCTTGGTTTA GAGCTTTGGT CTATGACCTC TGATATCTAC TTTGATAATT 1380 60 THATTATCTG TTCGGAAAAG GAAGTAGCAG ATCACTGGGC TGCAGATGGT TGGAGATGGA 1440
AAATAATGAT AGCAAATGCT AATAAGCCTG GTGTATTAAA ACAGTTAATG GCAGCTGCTG 1500
AAGGGCACCC ATGCCTTTGG TTGATTTATC TTGTGACAGC AGGAGTGCCA ATAGCATTAA 1560
TTACTTCATT TTGTTGGCCA AGAAAAGTAA AGAAAAAAAAACA TAAAAAATACA GAGTATAAAAA 1620
AAACCGACCT ATGTATACCA CAAACAAAAG GAGTACTAGA GCAAGAAGAAAAA GAGGAAGAGAA 1680
AAGCAGCCCT GGAAAAACCA ATGGACCTGG AAGAGGAAAAAA AAAGCAAAAT GATGGTGAAA 173 65 TGCTTGAAAA AGAAGAGGAA AGTGAACCTG AGGAAAAGAG TGAAGAAGAA ATTGAAATCA 1800 TAGAAGGGCA AGAAGAAAGT AATCAATCAA ATAAGTCTGG GTCAGAGGAT GAGATGAAAG 1860 AAGCAGATGA GAGCACAGGA TCTGGAGATG GGCCGATAAA GTCAGTACGC AAAAGAAGA 1920 70 TACGAAAGGA CTAAACTAGA TTGAAATATT TTTAATTCCC GAGAGGATGT TTGGCATTGT 1980 AAAAATCAGC ATGCCAGACC TGAACTTTAA TCAGTCTGCA CATCCTGTTT CTAATATCTA 2040 GCAACATTAT ATTCTTTCAG ACATTTATTT TAGTCCTTCA TTTCCGAGGA AAAAGAAGCA 2100 ACTTTGAAGT TACCTCATCT TTGAATTTAG AATAAAAGTG GCACATTACA TATCGGATCT 2160 AAGAGATTAA TACCATTAGA AGTTACACAG TTTTAGTTGT TTGGAGATAG TTTTGGTTTG 2220 TACAGAACAA AATAATATGT AGCAGCTTCA TTGCTATTGG AAAAATCAGT TATTGGAATT 2280 TCCACITAAA TGGCTATACA ACAATATAAC TGGTAGTTCT ATAATAAAAA TGAGCATATG 2340 75 TTCTGTTGTG AAGAGCTAAA TGCAATAAAG TTTCTGTATG GTTGTTTGAT TCTATCAACA 2400 ATTGAAAGTG TTGTATATGA CCCACATTTA CCTAGTTTGT GTCAAATTAT AGTTACAGTG 2460

AGTTGTTTGC TTAAATTATA GATTCCTTTA AGGACATGCC TTGTTCATAA AATCACTGGA 2520

GATGTACAGA TTTTTTTCA AGTTTTTATA GTTGCTTTAT GCCAGAGTGG TTTACCCCAT 2640 TCACAAAATT TCTTATGCAT ACATTGCTAT TGAAAATAAA ATTTAAATAT TTTTTCATCC 2700 TGAAAAAAA 5 SEQ ID NO:160 PFA1 Protein sequence:
Protein Accession #: NP_004353.1 10 11 21 41 51 31 MHFQAFWLCL GLLFISINAE FMDDDVETED FEENSEEIDV NESELSSEIK YKTPOPIGEV 60 YFAETFDSGR LAGWVLSKAK KDDMDEEISI YDGRWEIEEL KERQYFGDRG LVLKSRAKHH 120
AISAVLAKPF IFADKPLIVQ YEVNFQDGID CGGAYIKLLA DTDDLILENF YDKTSYIIMF 180
GPDKCGEDYK LHFIFRHKHP KTGVFEEKHA KPFDVDLKKF FTDRKTHLYT LVMNPDDTFE 240
VLVDQTVVNK GSLLEDVVPP IKPPKEIEDP NDKKFEEWDE RAKIPDPSAV KPEDWDESEP 300
AQIEDSSVVK PAGWLDDEPK FIFDPNAEKP DDWNEDTDGE WEAPQILNFA CRIGGGEWKP 360
PMIDNPKYKG VWRPPLVDNP NYQGIWSPRK IPNPDYFEDD HPFILITSFSA LGLELWSNTS 420 15 DIYFDNFIC SEKEVADHWA ADGWRWKIMI ANANKPOVLK QLMAAAEGHP WLWLIYLVTA 480 GVPIALITSF CWPRKVKKKH KDTEYKKTDI CIPQTKGVLE QEEKEEKAAL EKPMDLEEEK 540 KQNDGEMLEK EEESEPEEKS EEEIEIIEGQ EESNQSNKSG SEDEMKEADE STGSGDGPIK 600 20 SVRKRRVRKD 25 SEQ ID NO:161 PEZ9 DNA SEQUENCE Nucleic Acid Accession #: NM_005932 75-2216 (underlined sequences correspond to start and stop codons) Coding sequence: 31 41 30 TCAGCACCAG CTGGTCTCCC GTGGGCGCCC CCTTCAATGT CAAGCCCCAG GGCAGCCGCT 240
TGGACCTGTT CGGCGAGCGG GCGCGTCTTT TTGGAGTTCC TGAGCTGAGT GCCCCAGAAG 300 35 GATTICATAT TGCACAAGAA AAAGCCTTGA GAAAGACAGA ATTGCTTGTG GACCGTGCAT 360
GTTCCACCCC ACCTGGGCCC CAGACGTGC TGATCTTCCA TGAGCTCTCG GATTCCTTAT 420
GCAGAGTGGC CGACTTGGCT GATTTTTTTGA AAATCGCTCA CCCTGAGCCA GCATTCAGAG 480
AAGCTGCGGA AGAAGCTTGT AGAAGTATTG GCACCATGGT AGAGAAGTTG AACACAAATG 540 40 TGGATTTATA TCAAAGTTTG CAAAAATTAC TAGCTGATAA AAAACTTGTG GATTCCCTTG 600 ATCCAGAAAC AAGGCGAGTG GCTGAACTGT TTATGTTTGA TTTTGAAATT AGTGGAATCC 660 ATCTAGACAA ACAAAAGCGT AAAAGAGCAG TGGACCTCAA TGTTAAAATC TTGGATTTGA 720 GTAGTACATT TCTTATGGGA ACCAATTTTC CCAACAAGAT TGAGAAGCAT CTCTTACCAG 780
AACACATTCG TCGTAACTTT ACATCTGCTG GGGATCATAT CATAATTGAT GGTCTCCACG 840
CAGAATCACC AGATGACTTG GTGCGAGAAG CTGCTTATAA AATTTTTCTT TATCCCAATG 900 45 CTGGTCAATT GAAATGTTTA GAAGAATTGC TCAGCAGCAG AGATCTTCTG GAAAGTTTGG 960
TGGGGTATTC CACGGGCTC TCCAAGGAAC GATAGCTAAA AATCCAGAGA 1020
CTGTCATGCA GTTCCTTGAA AAACTATCTG ACAAACTTTC TGAAAGAACT CTGAAAGATT 1080
TTGAGATGAT ACGAGGGGTG AAAATGAAAC TGAATGCTCA AAATTCCGAA GTAATGCCCT 1140 50 GGGACCCCC TTACTACAGT GGTGTGATTC GTGCAGAAAG GTATAATATT GAGCCCAGGC 1200 TATATTGCCC GTTTTTCTCT CTTGGAGCAT GCATGGAAGG CCTGAATATT TTGCTTAACA 1260 GACTGTTGGG GATTTCATTA TATGCAGAGC AGCCTGCAAA AGGAGAGGTG TGGAGCGAAG 1320 GACTIGUEGG GATTICATTA TATGCAGAGC AGCCTGCAAA AGGAGAGGT TGGAGCGAAG 1320
ATGTCCGAAA ACTGCCTGTT GTTCATGAAT CTGAAGGATT GTTGGGGTAC ATTTACTGTG 1380
ATTTTTTCA GCGACCAGAC AAACCACATC AGGATTGCCA TTTCACTATC CGTGGAGGCA 1440
GACTAAAGGA AGATGGAGAC TATCAACTCC CACTTGTAGT TCTTATGCTG AATCTTCCCC 1500
GTTCCTCAAG GAGTTCTCCA ACTTTGCTAA CTCCTGGCAT GATGGAAAAT CTTTTCCATG 1560
AAATGGGACA TGCCATGCAT TCAATGCTAG GACGTACTCG TTACCAACAC GTCACTGGGA 1620
CCAGGTGCCC TACTGATTTT GCTGAGGTTC CTTCTATTCT GATGGAGTAC TTTGCAAATG 1680
ATTATCGAGT AGTTAACCAA TTTGCCAGAC ATTATCAGAC TGGACAGCCA CTGCCAAAAA 1740 55 60 ATATIGGTGTIC TEGTETTTGT GAATETAAAA AGGTTTGTGE TGCAGCTGAT ATGCAACTTE 1800 AGGTETTTA TGCCACTCTG GATCAAATCT ACCATGGGAA GCATCCCCTG AGGAATTCAA 1860 CCACAGACAT TCTCAAGGAA ACACAAGAGA AATTCTATGG CCTACCATAT GTTCCAAATA 1920 CTGCCTGGCA GCTGCGATTC AGCCACCTCG TGGGGTATGG TGCTAGATAT TACTCTTACC 1980 TCATGTCCAG AGCGGTCGCC TCCATGGTTT GGAAGGAGTG TTTTCTACAG GATCCTTTCA 2040 ACAGGGCTGC CGGGGAGCCC TATCGCAGGG AGATGCTGGC CCACGGTGGA GGCAGGGAGC 2100 65 CCATGCTCAT GGTTGAAGGT ATGCTTCAGA AGTGTCCTTC TGTTGATGAC TTCGTAAGTG 2160
CCCTCGTTTC CGACTTGGAT CTGGACTTCG AAACTTTCCT CATGGATTCT GAATAAAAGA 2220
AACACTCTAC ACCTCTAATC AAGGTCATGT AGTAATGACT TTGTTATAAA TGCTACAGCT 2280 GTGAGAGCTT GTTTCTGATT GTTTCATTGT TCGCTTCTGT AATTCTGAAA AACTTTAAAC 2340 70 SEQ ID NO:162 PEZ9 Protein sequence:
Protein Accession #: NP 005923. NP_005923.1 75 11 21 31 MLCVGRLGGL GARAAALPPR RAGRGSLEAG IRARRYSTSW SPVGAAFNVK PQGSRLDLFG 60 ERARLFGVPE LSAPEGFHIA QEKALRKTEL LVDRACSTPP GPQTVLIFDE LSDSLCRVAD 120

TTATATTGCA GCATATITTA CATTIGAATA CAAGGATAAT GGGTTTTATC AAAACAAAAT 2580

LADFVKIAHP EPAFREAAEE ACRSIGTMVE KLNTNVDLYQ SLQKLLADKK LVDSLDPETR 180
RVAELFMFDF EISGIHLDKQ KRKRAVDLNV KILDLSSTFL MGTNFPNKIE KHLLPEHIRR 240
NFTSAGDHII DIGIHAESPD DLVREAAYKI FLYPNAGQLK CLEELLSSRD LLAKLVGYST 300
FSHRALQGTI AKNPETVMQF LEKLSDKLSE RTILKDFEMIR GMKMKLNAQN SEVMPWDPPY 360
YSGVIRAERY NIEPSLYCPF FSLGACMEGL NILLNRLLGI SLYAEQPAKG BVWSEDVRKL 420
AVVHESEGLL GYTYCDFFQR ADKPHQDCHF TIRGGRLKED GDYQLPLVVL MLNLPRSSRS 480
SPTLLTFGMM ENLFHEMGHA MHSMLGRTRY QHVTGTRCPT DFABVPSILM BYFANDYRVV 540
NQFARHYQTG QPLPKNMVSR LCESKKVCAA ADMQLQVFYA TLDQIYHGKH PLRNSTTDIL 600
KETQEKFYGL PYVPNTAWQL RFSHLVGYGA RYYSYLMSRA VASMVWKECF LQDPFNRAAG 660
ERYRREMLAH GGGREPMLMV EGMLQKCPSV DDFVSALVSD LDLDFFTFLM DSS

SEQ ID NO:163 PEZ8 DNA SEQUENCE

Nusteic Acid Accession #: AF103907
Coding sequence: AF103907
none (underlined sequences correspond to start and stop codons)

21 31 41 20 ACAGAAGAAA TAGCAAGTGC CGAGAAGCTG GCATCAGAAA AACAGAGGGG AGATTTGTGT 60 GGCTGCAGCC GAGGGAGACC AGGAAGATCT GCATGGTGGG AAGGACCTGA TGATACAGAG 120
GAATTACAAC ACATATACTT AGTGTTTCAA TGAACACCAA GATAAATAAG TGAAGAGCTA 180 GTCCGCTGTG AGTCTCCTCA GTGACACAGG GCTGGATCAC CATCGACGGC ACTTTCTGAG 240 TACTICAGTIGC AGCAAAGAAA GACTACAGAC ATCTCAATIGG CAGGGGTGAG AAATAAGAAA 300 GGCTGCTGAC TTTACCATCT GAGGCCACAC ATCTGCTGAA ATGGAGATAA TTAACATCAC 360 TAGAAACAGC AAGATGACAA TATAATGTCT AAGTAGTGAC ATGTTTTTGC ACATTTCCAG 420 25 CCCTTTAAA TATCCACACA CACAGGAAGC ACAAAAGGAA GCACAGAGAT CCCTGGGAGA 480 AATGCCCGGC CGCCATCTTG GGTCATCGAT GAGCCTCGCC CTGTGCCTGG TCCCGCTTGT 540 GAGGGAAGGA CATTAGAAAA TGAATTGATG TGTTCCTTAA AGGATGGGCA GGAAAACAGA 600 30 TACTGTTGTG GATATTTATT TGAACGGGAT TACAGATTTG AAATGAAGTC ACAAAAGTGAG 660
CATTACCAAT GAGAGGAAAA CAGACGAGAA AATCTTGATG GCTTCACAAG ACATGCAACA 720
AACAAAATGG AATACTGTGA TGACATGAGG CAGCCAAGCT GGGGAGGAGA TAACCACGGG 780
GCAGAGGGTC AGGATTCTGG CCCTGCTGCC TAAACTGTGC GTTCATAACC AAATCATTTC 840 ATATTICTAA CCCTCAAAAC AAAGCTGTTG TAATATCTGA TCTCTACGGT TCCTTCTGGG 900 CCCAACATTC TCCATATATC CAGCCACACT CATTTTTAAT ATTTAGTTCC CAGATCTGTA 960 CTGTGACCTT TCTACACTGT AGAATAACAT TACTCATTTT GTTCAAAGAC CCTTCGTGTT 1020 35 GCTGCCTAAT ATGTAGCTGA CTGTTTTTCC TAAGGAGTGT TCTGGCCCAG GGGATCTGTG 1080 AACAGGCTGG GAAGCATCTC AAGATCTTTC CAGGGTTATA CTTACTAGCA CACAGCATGA 1140 TCATTACGGA GTGAATTATC TAATCAACAT CATCCTCAGT GTCTTTGCCC ATACTGAAAT 1200 40 TCATTICCCA CITTÍGTICC CATTCTCAAG ACCTCAAAAT GICATTCCAT TAATATCACA 1260
GGATTAACTT TITTITTTAA CCTGGAAGAA TTCAATGTTA CATGCAGCTA TGGGAATTTA 1320
ATTACATATT TIGTITTICCA GTGCAAAGAT GACTAAGTCC TITATCCCTC CCCTTTGTT 1380
GATTTITTT CCAGTATAAA GTTAAAATGC TITAGCCTTG TACTGAGGCTG TATACAGCAC 1440
AGCCTCTCCC CATCCCTCCA GCCTTATCTG TCATCACCAT CAACCCCTCC CATACCACCT 1500 45 AAACAAAATC TAACTTGTAA TTCCTTGAAC ATGTCAGGAC ATACATTATT CCTTCTGCCT 1560 GAGAAGCTCT TCCTTGTCTC TTAAATCTAG AATGATGTAA AGTTTTGAAT AAGTTGACTA 1620
TCTTACTTCA TGCAAAGAAG GGACACATAT GAGATTCATC ATCACATGAG ACAGCAAATA 1680
CTAAAAGTGT AATTTGATTA TAAGAGTTTA GATAAATATA TGAAATGCAA GAGCCACAGA 1740 CTAAAAGIGT AATTIGATIA TAAGAGGTTTA GATAAATATA TGAAATGCAA GAGCCACAGA 1740
GGGAATGTTT ATGGGGCACG TITGTAAGCC TGGGATGTGA AGCAAAGGCA GGGAACCTCA 1800
TAGTATCTTA TATAATATAC TTCATTICTC TATCICTATC ACCAATATCCA ACCAAGCTTTT 1860
CACAGAATTC ATGCAGTGCA AATCCCCAAA GGTAACCTTT ATCCATTICA TGGTGAGTGC 1920
GCTTTAGAAT TITTGGCAAAT CATACTGGTC ACTTATCTCA ACTTTGAGGT TGTTTTGTCC 1980
TTGTTAGTTAA TTGAAAGAAA TAGGGCACTC TTGTGAGCA CTTTAGGGTT CACTCCTGGC 2040
AATAAAGAAT TTACAAAGAG CTACTCAGGA CCAGTTGTTA AGAGCTCTTG TGTGTGTGTT
GTGTGTTGTTGT GAGTGTACAT GCCAAAGTGT GCCTCTCTCT CTTGACCCAT TATTTCAGAC 2160 50 55 TTAAAACAAG CATOTTTTCA AATGGCACTA TGAGCTGCCA ATGATGTTATC ACCACCATAT 2220 CTCATTATTC TCCAGTAAAT GTGATAATAA TGTCATCTGT TAACATAAAA AAAGTTTGAC 2280 TTCACAAAAG CAGCTGGAAA TGGACAACCA CAATATGCAT AAATCTAACT CCTACCATCA 2340 GCTACACACT GCTTGACATA TATTGTTAGA AGCACCTCGC ATTTGTGGGT TCTCTTAAGC 2400 AAAATACTTG CATTAGGTCT CAGCTGGGGC TGTGCATCAG GCGGTTTGAG AAATATTCAA 2460 TTCTCAGCAG AAGCCAGAAT TTGAATTCCC TCATCTTTTA GGAATCATTT ACCAGGTTTG 2520 60 GAGAGGATTC AGACAGCTCA GGTGCTTTCA CTAATGTCTC TGAACTTCTG TCCCTCTTTG 2580
TGTTCATGGA TAGTCCAATA AATAATGTTA TCTTTGAACT GATGCTCATA GGAGAGAATA 2640
TAAGAACTCT GAGTGATATC AACATTAGGG ATTCAAAGAA ATATTAGATT TAAGCTCACA 2700 CTGGTCAAAA GGAACCAAGA TACAAAGAAC TCTGAGCTGT CATCGTCCCC ATCTCTGTGA 2760
GCCACAACCA ACAGCAGGAC CCAACGCATG TCTGAGATCC TTAAATCAAG GAAACCAGTG 2820
TCATGAGTTG AATTCTCCTA TTATGGATGC TAGCTTCTGG CCATCTCTGG CTCTCCTCTT 2880
GACACATATT AGCTTCTAGC CTTTGCTTCC ACGACTTTTA TCTTTTCTCC AACACATCGC 2940 65 TACCAATCC TCTCTCTGCT CTGTTGCTTT GGACTTCCCC ACAAGAATTC AACGACTCT 3000
CAAGTCTTTT CTTCCATCCC CACCACTAAC CTGAATGCCT AGACCCTTAT TTTTATTAAT 3060
TTCCAATAGA TGCTGCCTAT GGGCTATATT GCTTTAGATTG AACATTAGAT ATTTAAATGCT 3120
CAAGAGGTTC AAAATCCAAC TCATTATCTT CTCTTTCTTTT CACCTCCCTG CTCCTCCCC 3180
TATATTACTG ATTGCACTGA ACAGCATGGT CCCCAATGTA GCCATGCAAA TGAGAAACCC 3240 70 AGTIGGTECT TGTIGGTACAT GCATGCAAGA CTIGCTGAAGC CAGAAGGATG ACTIGATTACG 3300
CCTCATGGGT GGAGGGGACC ACTCCTGGGC CTTCGTGATT GTCAGGAGCA AGACCTGAGA 3360
TGCTCCCTGC CTTCAGTGTC CTCTGCATCT CCCCTTTCTA ATGAAGATCC ATAGAATTTG 3420 75 CTACATTIGA GAATTCCAAT TAGGAACTCA CATGTTTTAT CTGCCCTATC AATTTTTTA 3480
ACTTGCTGAA AATTACTTT TTTCAAAATC TGTCCTTGTA AATTACTTT TCTTACAGTG 3540
TCTTGGCATA CTATATCAAC TTTGATTCTT TGTTACACT TTTCTTACTC TTTTATCACC 3600

AAAGTGGCTT TTATTCTCTT TATTATTATT ATTTTCTTT ACTACTATAT TACGTTGTTA 3660
TTATTTTGTT CTCTATAGTA TCAATTTATT TGATTTAGTT TCAATTTATT TTTATTGCTG 3720
ACTTTTAAAA TAAGTGATTC GGGGGTGGG AGAACAGGG AGGGAGAGCA TTAGGACAAA 3780
TACCTAATGC ATGTGGGACT TAAAACCTAG ATGATGGGTT GATAGGTGCA GCAAACCACT 3840
ATGGCACACG TATACCTGTG TAACAAACCT ACACATTCTG CACATGTATC CCAGAACGTA 3900
AAGTAAAATT TAAAAAAAAG TGA

10 PEZB Protein sequence:
Protein Accession #: none

SEQ ID NO:164 PEZ6 DNA SEQUENCE Nucleic Acid Accession #: AB028945 1-3765 (underlined sequences correspond to start and stop codons) Coding sequence: 15 11 21 51 ATGATGATGA ACGTCCCCGG CGGAGGAGCG GCCGCGGTGA TGATGACGGG CTACAATAAT 60 GGTCGCTGTC CCCGGAATTC TCTCTACAGT GACTGCATTA TTGAGGAGAA GACGGTGGTC 120 CTGCAGAAAA AAGACAATGA GGGCTTTGGA TTCGTGCTTC GAGGGGCCAA AGCTGACACA 180 20 CCCATTGAAG AATTCACACC AACACCGGCT TTCCCAGCCC TACAGTACCT GGAGTCCGTG 240 GATGAAGGTG GGGTGGCGTG GCAAGCCGGA CTAAGGACCG GGGACTTCTT GATTGAGGTT 300
AACAATGAGA ATGTTGTCAA AGTCGGCCAC AGGCAGGTGG TGAACATGAT CCGGCAGGGA 360 GGGAATCACC TGGTCCTTAA GGTGGTCACG GTGACCAGGA ATCTGGACCC CGACGACACC 25 GCCAGGAAGA AAGCTCCCCC GCCTCCAAAG CGGGCACCGA CCACAGCCCT CACCCTGCGC 480 TCCAAGTCCA TGACCTCGGA GCTGGAGGAG CTCGTGGATA AAGATAAACC CGAGGAGATA 540 GTCCCGGCCT CCAAGCCCTC CCGCGCTGCT GAGAACATGG CTGTGGAACC GAGGGTGGCG 600 ACCATCAAGC AGCGGCCCAG CAGCCGGTGC TTCCCGGCGG GCTCAGACAT GAACTCTGTG 660 TACGAACGCC AAGGAATCGC COTGATGACG CCCACTGTTC CTGGGAGCCC AAAAGCCCCG 720
TTTCTGGGCA TCCCTCGAGG TACGATGCGA AGGCAGAAAT CAATAGACAG CAGAATCTTT 780
CTATCAGGAA TAACAGAGGA AGAGCGGCAG TTTCTGGCTC CTCCAATGCT GAAGTTCACC 840 30 AGAAGCCTGT CCATGCCGGA CACCTCTGAG GACATCCCCC CTCCACCGCA GTCTGTGCCC 900
CCGTCCCCAC CACCACCTTC CCCAACCACT TACAACTGCC CCAAGTCCCC AACTCCAAGA 960
GTCTACGGGA CGATTAAGCC TGCGTTCAAT CAGAATTCTG CCGCCAAGGT GTCCCCCGCC 1020 35 ACCAGGTOCG ACACCGTGGC CACCATGATG AGGGAGAAGG GGATGTACTT CAGGAGAGAG 1080
CTGGACCGCT ACTCCTTGGA CTCTGAAGAC CTCTACAGTC GGAATGCCGG CCCGCAAGCC 1140
AACTTCCGCA ACAAGAGAGG CCAGATGCCA GAAAACCCAT ACTCAGAGGT GGGGAAGATC 1200 GCCAGCAAAG CCGTCTACGT CCCCGCCAAG CCCGCCAGGC GGAAGGGGAT GCTGGTGAAG 1260 CAGTCCAACG TGGAGGACAG CCCCGAGAAG ACGTGCTCCA TCCCTATCCC GACCATCATC 1320
GTGAAGGAGC CGTCCACCAG CAGCAGCGGC AAGAGCAGCC AGGGCAGCAG CATGGAGATC 1380
GACCCCCAGG CCCCGGAGCC ACCGAGCCAG CTGCGGCCTG ACGAAAGCCT GACCGTCAGC 1440 40 GACCCCAGG CCCCGGAGCC ACCGAGCCAG CTGCGGCCTG ACCGAAAGCCT GACCGTCAGC 1440
AGCCCCTTTG CCGCCGCACT CGCCGGAGCC GTCCGCACC GTGAGAAAGC GCTGGAGCC 1500
AGGAGGAACT CCCCGGCCTT CCTCTCCACA GACCTGGGGG ATGAGGAATGC GGCCCTGGGG 1560
CCACCCGCCC CCAGGACGCG GCCCTCCATG TTCCCCGAGG AGGGGGATTT TGCTGACGAG 1620
GACAGCGCTG AGCAGCTGTC ATCCCCCATG CCGAGTGCCA CGCCCCAGGGA GCCCGAAAAC 1680
CATTTCGTGG GTGGCCCGA GCCAGTGCT CCAGCTGAGG CCTGGAGTCC GCTGAATTCC 1740
ACGTCCAAAG CCCAGGGGCC CGAGAGCAGC CCAGCAGTGC CCTCCCGCGAG CAGCGGCACA 1800
GCCGGCCCCG GGAATTATGT CCACCCACTC ACAGGGCGCG TGCTTGATCC CAGCTCCCCG 1860 45 GCCGGCCCCG GGAATTATGT CCACCCACTC ACAGGGCGGC TGCTTGATCC CAGCTCCCCG 1860
CTGGCCCTGG CACTCTCCGC AAGGGACCGA GCCATGAAGG AGTCTCAACA GGGACCCAAA 1920
GGGGAGGCCC CCAAGGCCGA CCTCAACAAA CCTCTTTACA TTGATACCAA AATGCGGCCC 1980
AGCCTGGATG CCGGCTTCCC TACGGTCACC AGGCAGAACA CCCGGGGACC CCTGAGGCGG 2040
CAGGAGACGG AGAACAAGTA CGAGACCGAC CTGGGCCGAG ACCGGAAAGG CGATGACAAG 2100
AAGAACATGC TGATCCAACAT CATGGACAGC TCCCAGCAGA AGTCGGCTGG CCTGTAGT 2160
GTGCACACCG TGGACGCCAC TAAGCTGGAC AACGCCCTGC AGGAAGAGGC CGAGAAGGCA 2220
GAGGTGGAGA TGAAGCCAGA CAGCTCGCCG TCCGAGGTGC CAGAAGGTGT TTCCGAAACC 2280
GAAGGTGCTT TACAGATCTC CGCTGCCCCC GAGCCCACCA CCGTGCCCGG CAGAACCATC 2340
GTCGCCGTTGG GCTCCATGGA AGAGGCGTG ATTTTGCCAT TCCCCATCCCC TCCTCCCCCCT 2400
CTGCGCATCCG TGGACTTGGA AGAGGCGTTG ATTTTGCCAT TCCCCATCCC TCCTCCCCCCT 2460 50 55 GTICGCGTTGG GCTCCATGGA AGAGGCGTG ATTTTGCCAT TCCGCATCCC TCCTCCCCCT 2400
CTGGCATCCG TGGACTTGGA TGAGGATTTT ATTTTACAG AGCCATTGCC TCCTCCCCTG 2460
GAATTTGCAA ATAGTTTTGA TATCCCCCAT GACCGGCAG CTTCTGTCCC GGCTCTCTCA 2520
GACTTAGTGA AGCAGAAGAA AAGCGACAC CCTCAGTCCC CTTCGTTGAA CTCCAGCCAA 2580
CCAACCAACT CTGCAGAAGA CAAGAAGCCA GCCAGTCTTT CAAACTGTCT GCCTGCCTCA 2640
TTCCTGCCAC CCCTGAAAG CTTGACAGC GTCGCGACT CTGGGATCGA GGAGGTGGAC 2700
AGCCGGAGTA GCAGCGACCA CCACCTCGAG ACGACCAGCA CTATCTCCAC CGTGTCTAGC 2760
ATCTCCACCC TGTCTTCCGA AGGTGGAGAG AATGTGGACA CCTGCACAGT CTATGCAGAT 2800 60 ATCHCACU: GIGETTUCA AUGIGADAG MATOGOACA CUIGACAG CHACAGUT AGAGCOCATC 2880
GGGCAAGCAT TTATGGTTGA CAAACCCCCCA GTACCTCCTA AGCCAAAAAT GAAGCOCATC 2880
ATTCACAAAA GCAATGCACT TTATCAAGAC GCGCTCGTGG AAGAAGATGT AGATAGCTTT 2940
GTTATCCCCC GGCCCCCTC CCCGCCCCCC CCGGGCACTG CCCAGCCTGG GATGGCCAAG 3000
GTTCTCCAGC CAAGGACCTC CAAGTTGTGG GGCGACGTCA CAGAGATCAA AAGCCCGATT 3060
CTCTCAGGCC CAAAGGCAAA CGTTATTAGT GAATTGAACT CTATCCTACA GCAAATGAAC 3120
CGAGAGAAAT TGGCAAAGC GGGGGAAGGA CTGGATTCAC CAATGGAGC CAAGTCCCCC 3180 65 AGCCTCGCTC CAAGAAGCCC GGAGATCATG AGCACCATCT CAGGTACACG GAGCACGACG 3240
GTCACCTTCA CTGTTCGCCC CGGCACCTCC CAGCCCATCA CCCTGCAGAG CCGGCCCCCC 3300
GACTATGAAA GCAGGACCTC AGGAACAAGA CGTGCCCCAA GCCCTGTGGT CTCGCCAACA 3360 GAGATGAACA AAGAGACCCT GCCCGCCCCC CTGTCTGCTG CCACCGCCTC TCCTTCTCCC 3420
GCTCTCTCAG ATGTCTTTAG CCTTCCAAGC CAGCCCCCTT CTGGGGATCT ATTTGGCTTG 3480
AACCCAGCGG GACGCAGTAG GTCGCCATCC CCCTCGATAC TGCAACAGCC AATCTCAAAT 3540 75 AAGCCTTTTA CAACTAAACC TGTCCACCTG TGGACTAAAC CAGATGTGGC CGATTGGCTG 3600
GAAAGTCTAA ACTTGGGTGA ACATAAAGAG GCCTTCATGG ACAATGAGAT CGATGGCAGT 3660
CACTTACCAA ACCTGCAGAA GGAGGACCTC ATCGATCTTG GGGTAACTCG AGTCGGGCAC 3720

AGAATGAACA TAGAAAGGGC TTTGAAACAG CTGCTGGACA GA<u>TAA</u>GGACG GCTGCTCTCC 3780 ACCTCGCAGA CTGCTCTTGT TATAAGTAGA GATGGGCTCG TGCTGAAACA TCTGAATGCC 3840 AAGCGAAGTC TGTGAGCATC AACCCCACTC CATGGGTTTG TCTCCTGGTA CCCAAAGAAA 3900 TACTGAGTTG TGTCCACAAC ATGGCTGGGT CTTCAGACCC CTGGCTCACC ATGTGGGTGT 3960 CTTGGGCAGT TTCTATCACA CATGGGACAA GGGGAGGGAG TTTTTCTAAC ATGGAAAAAG 4020 ATTCCCAGCC TGCCGCCCAG CATGCAGGTG GCCTCGCTTT GCCGGGTCCG AGAGGCTCCC 4080 CGTCAATTTT GCACGGGATC CTAGCTCTTG TAGGCAGACA CCAGTGCACT CTAGATACCT 4140 CCTGAGACCT CCGTCCTCTG CTTTCCGGGC AGCTCTCACC ACCCCAGGCC CCGGCATGAG 4200 GCCTTTCCTC AGTCCTGTGG CCTCTCAGAG GACACCTGAT GCTCACCTGC CCCTCTTTCT 4260 10 CCTGCACTTG GCTTGCAGTG AGATGCTCCC AGATGCATTT GTCCAGTGCC CCATCATGGG 4320
CCTGAAAGGC AGAGAAACTT TITICCTACAC AGATTCTTTT CCCCATCTCC TCCTGTGGTT 4380
TGCATCCATG GCTCTTTGGC CATGAGGTTC CTGGCAGTGC TGGGAGTTTG GATGGGATCG 4440 TGCCCAGCTT TGCTTAGCTT TCTTTATTTC TGCAAATCTG TTAGCATAAT TCCAAGGTGG 4500 CCAAGCAGAT GTCACATGGA GTTAGTCAAA GCACAAAGTC ACGATTCCAC AATGGAGGGG 4560 AGACCTGGCC AAGGGAGCCA GCCAGCGTGC AACTGCCCAA GCTCCAGGTC TCCAGGACAA 4620 GAGCAGTTGT CTGCCATGAG CACCCATCCA GGATGGAGAA TAAGGGCTTC TCTGCCTCTC 4680 15 AGAATTCTTT TTAATTGAAG ATGTCTTGAG CTCTGCAAAG ATCAGAGCAG GTGAGCATCC 4740
ACTTTGACAT GAAGGACAAG AAGACGCATG GCTCATGGC GGCACATGCG GCTGCCAGTG 4800
AGACAGCGTC TCCTCTGGGA GCTGGGCGGG CACAGCATCC TCAGTTCTGT GCCCAGCCAA 4860 20 GGGTGAGCAT CTCTGCTGAG ACAGTCCTTT TGCTCTCGGA GGCCAGGGAA GATGGTACTT 4920 AGAGGCTTTT CCCCTATCGC TCTGGGTGTC TAGGAATCCC ACCAGCTTGT CTTAACAGTA 4980
CAACAGCTTC TTTGAGGACC CAGTGGGTAT GGAGTATAGA CAGAACCCAG GGTTGAGAAC 5040 AGAAGGTGGG CGGCAGGATC AGAGTGAAAG CAGAGGCGTG AGGAGAGGAA AGCAGGGAGG 5100 AGAAGGGG GGCAGGATC AGAGGAAG CAGAGGCGTA AGAAGGAA AGAAGGGGCGG TCTCCTGGGC TGCCAGGTCA GCCTCTCTGG CAAGGCTTTC TTGAGCCCCG CCCTTTCTT 5160 TCCCCGGAGT CCCTCCACCC CATAACAATA CCTCGAATTT CCAAAAGAGG TCACCAGATG 5220 CACATGGGCC GCAAAACACA CAGTCAGGCT TCCAGCACAT TCTCCCCCAT TTGGAGGATA 5280 CTCGAATGTC AGGTTTTTGG TTTTATTATT ATTTCAGAAC TAGCTCAGCC CATCTCTAAT 5340 25 TATAAAACAT GGTTTTGTTT TTTTTTTTC CTTTTTTCT TGATTAGGTC TGGAACAGCT 5400 CTAGAATGAA CACATAAAAT TTAGCAATTT AAAATCTTTC TTTACTGCAA GTTTAAATAG 5460 TTGTACAGAT AGTTTATAAG CACAATATTT TAAGAAAAAA AAGTGGCTGG TCTACTAGGC 5520 30 AGCCTTTGTG CCACTTCAGT GCTAGAAAGT TAAAGAAAAA AAAACTTTTG TGATTTAATA 5580 ATACTATTTC TGTGGAATAA TTATAAAAGT ATGACCTTTT TAAATCAACC TTATTTGGAT 5640 GCATCTGAAC CAGCAGAGCT GTGTTATATT TTCTATCTTT GCTAGAACTT CGTCATTGAA 5700 GGACAATTIC TICAAAGTGG TTACAATTCA TAATGCAGCA GTTTCTCCAA AAACAAAAC 5760 AAAACACAC CCACACACAC GCGCTTTTCC AGTCACACAC CCCTGATGTT GGAACCAAGT 5820 TTTTGGACCT TCTGTTCCAA AACCTTTTGC AGGTCAATCT TTGTATTTGA AATGATCCAA 5880 35 TCCAACTTGA AGTCAATTGA ATATTAAGGC GCTTTACTTC CGTGTGCTTT CAGTTTTTCC 5940 TICCAACTIGA AGTICAATTIGA ATATTAAGGC GCTTTACTIC CGIGGCTTT CAGTITTICC 5940
ATCATGAGAT GAATGAGCAT TACTCTAGAT AAANTTCAAG ACAGGATACT ACAGGTIGGC 6000
TGCTGAGGCT GCCCCATATT TTAGAAAAATG TAAAAATGGT GGTTTGGCCA TTAATTTGTC 6060
TTCCATTTGA TGATACCGCA AAATTCCGTG AGTCCATTCC TTTGGCATGG CACTTTCCCT 6120
GGGCCTACAG TTGGTATTAC CTCTGTGCTC AGTGCCAGGC AAAACACTAG CTCAAAGGAG 6180
AGTCAAGGAA ACCGCTGGCA GACGATAAACA AGTCGAAAACT GTTGACTTCG GTTTGTTGAA 6240
CTTTGGCAGC CAGTTGGTGA GGGCCAGATG TTATTCCCTT TCTTAAAGAT ACCCAAGCC 6300 40 ACATGCCACT AACCACAAGC AAGCTGGCTG CAAGACTAAA GAGCTGATAA CATAGTTTAT 6360 TTTTACACTG TCTTATTATA GAGAAGTAAT AGACCTATCA GAACCTGCAC TGACCAACAA 6420 45 ATAAACACAT GTTGCCAAGA TGAATCGGTC TCTATCTCTA TCTGCTTATT TTGGTACTGA 6480 AAGCAATAGT TCCTCATTCA AATCACCACC CACTGTTCTC CCCCTTTGGG ACATGTTAGG 6540
ACGAGGCCCT ATTCCATGCC CCTCTTTAAT GGTGGAACAA ATGTTAAACT GCTCATCTAA 6600
AGATCATGTT GATATTATTC CAGGTTTTAA GATCAACTTT TGTTACATAC TGTAATTTAA 6660 ATMACTICA TITACATIGCE TAGTITICTIGT AATATIGTIGT ATACAGAAACC CAAATCTCTC 6720
AAAATGTAAA TTATGTATAC CTICCCAAGAT ACCTITITICA GGGTGTCTGC GCACATITTA 6780
AGTTAATTCA CATAATATAA AAATTACTCA ATGTGACTGT TGATTTGCTG AACTTTACAT 6840
ATCACAAAGT GAATTATTTG TGATACTTTA GTTAATAAAA TGGTAAATTT TTTTCTCAGT 6900 50 TATTGAACAA GCAAGCATTA TCCAGTTGAT CTGGCAATGA CTTTTTGTGT GTGGGCCACA 6960 ATATTGATTT TCCCATTAAC AATTTTTTTT TGTTTTTTAA ATACTAATAT GTTTCACACT 7020 ATAGTTTGTG TAACAACACG TGTTCGCATT ATCTATGTTG CTGTTACTTT TGTGCTTTTA 7080 55 TICTITITAG ACTITATAAA AAAAAAAAA AGCTCCTGTA ATTTGCACTT TCTCCCAATC 7140
CTTAAATCTC TTGTATGGCA ACCAAAATTA CTGTAAAAAA ATAAATATAC TATTGCACTA 7200
AGGTTGTGGT TCTGATTGCA AACAAACAGT GAACACTGTC TGAATTAAAC AAAAAGCTGC 7260 60 CCGACTTGCA ATCTAATGTA GATTATCTCA GGCATTGTGG CCAGCTCTGC CTCTCTAAAA 7320 CTGACCAGAA AAATCTCTCT CATCGAGTAA ACAGGCTCCT GTCACTGAGC TAATCTGCCT 7380 TGGTTCCATT TCCTTATTCT CAATTTATCA ATGGATACGT GCATGTTATT TCAGAATTAT 7440 GCAAAACGTC AAAATCTGCT TCTGTGACCG CTGCTATAGG CGTGGACCTG AGGCTCGGCT 7500 TTTCCTTTTG TTCTGGGTGG AAGCAGCGGT GCCGCGGAGG GCCAGCCAGA TCCGGACCCT 7560 TCCCTTAGGG TCCAGTCTCC CCACACCCCA GCAGGGTGTC TTCTAGCCAT AAGGCCAAGG 7620 65 GAGTGGCAGA ACTGGGCCGC CTCTCTGGTT GACAAGCAAA CCACATGCTA AGGCTTGGAG 7680 CAAGAGAGAA TTTGTGTCTA TTGGCAAAGA ACTAAGCCAG GAAGACATGG GCCATCCCTC 7740 CGCTTTAGGG AAGCATATTT TAAACCTAAA CGTTGAACTT CTTCTTTGGC CTCACCAGTG 7800 AAAACTTGTT GTCTTTAGTT CCTAAAGTTT CTTCTACTTT GGCACATTCC CCAGTTGAGC 7860 70 AGCAGCCTCT ATGCTTCCAC GTTCAGGAAA AATTCCAGTC CTCATATCTT TTGTAGTTCA 7920 CCCTCAAGCT CTCCCGCTTC ACCATCCAAT AGTTTCTCCC AAACCTTGGC ACCCCCCTAG 7980 ACTTTGCTTC CAATGGTTTC TTCCAGACCA CTTTTCCTAG ATGAATATAT TCGTTTACCT 8040 TACTAGGAAA ATTATTGGAA GATTTTTCT TTTACTGAA ATTGGAGGCA TTTTAATAAC 8100 TGGCGAACTG GAATGTGTTT CTGTATTTGT AGACAACCAT GTACCCATGC AAGTAGGTGA 8160 ACATTCCACA GTGGCTGGGT GACCACAGCA GCTGCATGCA GACAGGACTG CCCGTGCTTT 8220 75

ΑΛΑΓΙΑΛΑΛΑ ΑΛΑΛΑΛΑΛΑ ΑΛΑΛΑΛΑΛ

SEQ ID NO:165 PEZ6 Protein sequence; 5 Protein Accession #: BAA82974.1

21 31 41 10 MMMNVPGGGA AAVMMTGYNN GRCPRNSLYS DCIEEKTVV LQKKDNEGFG FVLRGAKADT 60 PIEEFIPTPA FPALQYLESV DEGGVAWQAG LRTGDFLIEV NNENVVKVGH RQVVNMIRQG 120 GNHLVLKVVT VTRNLDPDDT ARKKAPPPPK RAPTTALTLR SKSMTSELEE LVDKDKPEEI 180 VPASKPSRAA ENMAVEPRVA TIKORPSSRC FPAGSDMNSV YERQGIAVMT PTVPGSPKAP 240 FLGIPRGTMR RQKSIDSRIF LSGITEEERQ FLAPPMLKFT RSLSMPDTSE DIPPPPQSVP 300 15 PSPPPPSPTT YNCPKSPTPR VYGTIKPAFN ONSAAKVSPA TRSDTVATMM REKGMYFRRE 360 LDRYSLDSED LYSRNAGPQA NFRNKRGOMP ENPYSEVGKI ASKAVYVPAK PARRKGMLVK 420 QSNVEDSPEK TCSPPTII VKEFSTSSSG KSSQGSSMEI DPQAPEPPSQ LRPDESLTVS 480
SPFAAALAGA VRDREKRLEA RRNSPAFLST DLGDEDVGLG PPAPRTRPSM FPEEGDFADE 540
DSAEQLSSPM PSATPREPEN HFVGGAEASA PGEAGRPLNS TSKAQGPESS PAVPSASSGT 600 DSAEQLSSPM PSATPREPEN HEVGGAEASA PGEAGRPLAS ISAAQGPESS PAVPSASSUT 600
AGPGNYVHPL TGRLLDPSSP LALALSARDR AMKESQQPK GEAPKADLNK PLYIDTKMRP 660
SLDAGFPTVT RQNTRGPILRR QETENKYETD LGRDRKGDDK KNMLDIMDT SQQKSAGILM 720
VHTVDATKLD NALQEEDEKA EVEMKPDSSP SEVPEGVSET EGALQISAAP EPTTVPGRTI 780
VAVGSMEEAV ILPFRIPPPP LASVDLDEDF IFTEPLPPPL EFANSFDIPD DRAASVPALS 840 20 VAVCSMEEAV ILPFRIPTP LASYDLDEDF IF IEPLPPPL EFARSFOILD DRAASVPALS 840
DLVKQKKSDT PQSPSLNSSQ PTNSADSKKP ASLSNCLPAS FLPPPESFDA VADSGIEEVD 900
SRSSSDHHLE TTSTISTVSS ISTLSSEGGE NVDTCTVYAD GQAFMVDKPP VPPKPKMKPI 960
HIKSNALYQD ALVEEDVDSF VIPPPAPPPP PGSAQPGMAK VLQPRTSKLW GDVTEIKSPI 1020
LSGPKANVIS ELNSILQQMN REKLAKPGEG LDSPMGAKSA SLAPRSPEIM STISGTRSTT 1080 25 VTFTVRPGTS QPITLQSRPP DYESRTSGTR RAPSPVVSPT EMNKETLPAP LSAATASPSP 1140 ALSDYFSLPS OPPSGDLFGL NPAGRSRSPS PSILQOPISN KPFTTKPVHLWTKPDVADWL 1200 ESLNLGEHKE AFMDNEIDGS HLPNLQKEDL IDLGVTRVGH RMNIERALKQ LLDR 30

SEQ ID NO:166 PEZ4 DNA SEQUENCE

Nucleic Acid Accession #: NM_000024 35 220-1461 (underlined sequences correspond to start and stop codons) Coding sequence:

31

51

ACTGCGAAGC GGCTTCTTCA GAGCACGGGC TGGAACTGGC AGGCACCGCG AGCCCCTAGC 60
ACCCGACAAG CTGAGTGTGC AGGACGAGT CCCACCACCA CCACCACA GCCGCTGAAT 120
GAGGCTTCCA GGCGTCCCCT CGCGGCCCCC AGAGCCCCGC CGTGGGTCCG CCCGCTGAGG 180
CGCCCCCAGC CAGTGGGCTT ACCTGCCAGA CTGCGCGCCAATGGGGCAACC CGGGAACGGC 240
AGCGCCTTCT TGCTGGCACC CAATAGAAGC CATGCGCCCG ACCACGACGT CACGCAGCAA 300 40

AGGGACGAGG TGTGGGTGGT GGGCATGGGC ATCGTCATGT CTCTCATCGT CCTGGCCATC 360 45 GTGTTTGGCA ATGTGCTGGT CATCACAGCC ATTGCCAAGT TCGAGCGTCT GCAGACGGTC 420
ACCAACTACT TCATCACTTC ACTGGCCTGT GCTGATCTGG TCATGGGCCT GGCAGTGGTG 480
CCCTTTGGGG CCGCCCATAT TCTTATGAAA ATGTGGACTT TTGGCAACTT CTGGTGCGAG 540 TTTTGGACTT CCATTGATGT GCTGTGCGTC ACGGCCAGCA TTGAGACCCT GTGCGTGATC 600
GCAGTGGATC GCTACTTTGC CATTACTTCA CCTTTCAAGT ACCAGAGCCT GCTGACCAAG 660
AATAAGGCCC GGGTGATCAT TCTGATGGTG TGGATTGTGT CAGGCCTTAC CTCCTTCTTG 720 50 COCATTCAGA TGCACTGGTA CCGGGCCACC CACCAGGAAG CCATCAACTG CTATGCCAAT 780
GAGACCTGCT GTGACTTCTT CACGAACCAA GCCTATGCCA TTGCCTCTTC CATCGTGTCC
840
TTCTACGTTC CCCTGGTGAT CATGGTCTTC GTCTACTCCA GGGTCTTTCA GGAGGCCAAA 900

AGGCAGCTCC AGAAGATTGA CAAATCTGAG GGCCGCTTCC ATGTCCAGAA CCTTAGCCAG 960
GTGGAGCAGG ATGGGCGGAC GGGGCATGGA CTCCGCAGAT CTTCCAAGTT CTGCTTGAAG 1020
GAGCACAAAG CCCTCAAGAC GTTAGGCATC ATCATGGGCA CTTTCACCCT CTGCTGGCTG 1080 55 CCCTTCTTCA TCGTTAACAT TGTGCATGTG ATCCAGGATA ACCTCATCCG TAAGGAAGTT 1140 60

CCTTCTTCA TCGTTAACAT TGTGCATGTG ATCCAGGATA ACCTCATCCG TAAGGAAGTT 1140
TACATCCTCC TAAATTGGAT AGGCTATGTC AATTCTGGTT TCAATCCCCT TAACTACTGC 1200
CGGAGCCCAG ATTTCAGGAT TGCCTTCCAG GAGCTTCTGT GCCTGCGCAG GTCTTCTTTG 1260
AAGGCCTATG GGAATGGCTA CTCCAGCAAC GGCAACACAG GGGAGCAGAG TGGATATCAC 1320
GTGGAACAG AGGATACTGT GCCTAGCGAT AAACTGGATT CACAAGGGAC GGAAGACTTT 1380
GTGGCCATC AAGGTACTGT GCCTAGCGAT AAACATTGATT CACAAGGGAG GAATTGTAGT 1440
ACAAATTGACT CACTGCTGTA AAGCAGTTTT TCTACTTTTA AAGACCCCCC CCCCCCAAC 1500
AGAACACTAA ACAGACTATT TAACTTGAGG GTAATAAACT TAGAATAAAA TTGTAAAAAT 1560
TGTATAGAGA TATGCAGAAG GAAGGGCATC CTTCTGCCTT TTTTATTTTT TTAAGCTGTA 1620
CAAGGAATTT GTAAGTTTAT GGTGATTAT TTGTTATTTTG TACAGTTCAG TTCCTCTTTG 1680
CATGGAATTT GTAAGTTTAT GTCTAAAGAG CTTTAGCCT AGAGGACCTG AGTCTCTAT 1740
ATTTTCATGA CTTTTCCATG TATCTACCTC ACTATTCAAG TATTAGGGGT AATATATTGC 1800
TGCTGGTAAT TTGTATCTGA AGGAGATTTT CCTTCCTACA CCCTTGGACT TGAGGATTTT 1860
GAGTATCTCG GACCTTTCAA CTGGAGATTTT CCTTCCCACCCCCCTCTC TTATTTTCCTE 1920 65

GAGTATCTCG GACCTTTCAG CTGTGAACAT GGACTCTTCC CCCACTCCTC TTATTTGCTC 1920

70 ACACGGGGTA TTTTAGGCAG GGATTTGAGG AGCAGCTTCA GTTGTTTTCC CGAGCAAAGG 1980 TCTAAAGTTT ACAGTAAATA AAATGTTTGA CCATG

75 SEQ ID NO:167 PEZ4 Protein sequence; Protein Accession #: NP_000015.1

MGQPGNGSAF LLAPNRSHAP DHDVTOORDE VWVVGMGIVM SLIVLAIVFG NVLVITAIAK 60 FERLQTVTNY FITSLACADL VMGLAVVPFG AAHILMKMWT FGNFWCEFWT SIDVLCVTAS 120 IETLCVIAVD RYFAITSPFK YQSLLTKNKA RVILMVWIV SGLTSFLPIQ MHWYRATHQE 180 AINCYANETC CDFFINQAYA IASSIVSFYV PLVIMVFVYS RVFQEAKRQL QKIDKSEGRF 240 HVQNLSQVEQ DGRTGHGLRR SSKFCLKEHK ALKTLGIIMG TFTLCWLPFF IVNIVHVIQD 300 5 NLIRKEYYIL LAWIGYYNSG FNPLIYCRSP DFRIAFQELL CLRRSSLKAY GNGYSSNGNT 360 GEQSGYHVEQ EKENKLLCED LPGTEDFVGH QGTVPSDNID SQGRNCSTND SLL 10 SEQ ID NO:168 PEZ1 DNA SEQUENCE Nucleic Acid Accession #: NIM_004457 15 Coding sequence: 143-2305 (underlined sequences correspond to start and stop codons) 11 21 31 41 51 20 GAATTCGTTG TTGGGAAGGA CTGGGGAAAC AGCTGTAACA TTTGCCACCC TCAGAAGCTG 60 CTGGTCCTGT GTCACACCAC CTTAGCCTCT TGATCGAGGA AGATTCTCGC TGAAGTCTGT 120
TAATTCTACT TTTTGAGTAC TT<u>ATG</u>AATAA CCACGTGTCT TCAAAACCAT CTACCATGAA 180
GCTAAAACAT ACCATCAACC CTATTCTTTT ATATTTTATA CATTTTCTAA TATCACTTTA 240 TACTATTITA ACATACATTC CGTTTTATTT TTTCTCCGAG TCAAGACAAG AAAAATCAAA 300 25 CCGAATTAAA GCAAAGCCTG TAAATTCAAA ACCTGATTCT GCATACAGAT CTGTTAATAG 360 TTTGGATGGT TTGGCTTCAG TATTATACCC TGGATGTGAT ACTTTAGATA AAGTTTTTAC 420 ATATGCAAAA AACAAATTTA AGAACAAAAG ACTCTTGGGA ACACGTGAAG TTTTAAATGA 480 GGAAGATGAA GTACAACCAA ATGGAAAAAT TTTTAAAAAG GTTATTCTTG GACAGTATAA 540 TTGGCTTTCC TATGAAGATG TCTTTGTTCG AGCCTTTAAT TTTGGAAATG GATTACAGAT 600 GTTGGGTCAG AAACCAAAGA CCAACATCGC CATCTTCTGT GAGACCAGGG CCGAGTGGAT 660 30 GATAGCTGCA CAGGCGTGTT TTATGTATAA TTTTCAGCTT GTTACATTAT ATGCCACTCT 720
AGGAGGTCCA GCCATTGTTC ATGCATTAAA TGAAACAGAG GTGACCAACA TCATTACTAG 780
TAAAGAACTC TTACAAACAA AGTTGAAGGA TATAGTTTCT TTGGTCCCAC GCCTGCGGCA 840 CATCATCACT GTTGATGGAA AGCCACCGAC CTGGTCCGAC TTCCCCAAGG GCATCATTGT 900
GCATACCATG GCTGCAGTGG AGGCCCTGGG AGCCAAGGCC AGCATGGAAA ACCAACCTCA 960
TAGCAAACCA TTGCCCTCAG ATATTGCAGT AATCATGTAC ACAAGTGGAT CCACAGGACT 1020 35 TCCAAAGGGA GTCATGATCT CACATAGTAA CATTATTGCT GGTATAACTG GGATGGCAGA 1080 AAGGATTICCA GAACTAGGAG AGGAAGATGT CTACATTIGGA TATTTGCCT GGCCCATGT 1140
TCTAGAATTA AGTGCTGAGC TIGTCTGTCT TTCTCACGGA TGCCGCATTG GTTACTCTTC 1200
ACCACAGACT TTAGCAGATC AGTCTTCAAA AATTAAAAAA GGAAGCAAAA GGGAATCATC 1260
CATGTTGAAA CCAACACTGA TGGCAGCAGT TCCGGAAATCATTGGATCGGA TCTACAAAAA 1320
TGTCATGAAT AAAGTCAGTG AAATGAGTAG TTTTCAACGT AATCTGTTTA TTCTGGCCTA 1380
TAATTACAAA ATGGAACAGA TTTCAAAAGG ACGTAATACT CCACTGTGCG ACAGCTTTGT 1440 40 TTTCCGGAAA GTTCCAAGCT TGCTAGGGGG AAATATTCGT CTCCTGTTGT GTGGTGGCGC 1500
TCCACTTTCT GCAACCACGC AGCGATTCAT GAACATCTGT TTCTGCTGTC CTGTTGGTCA 1560
GGGATACGGG CTCACTGAAT CTGCTGGGGC TGGAACAATT TCCGAAGTGT GGGACTACAA 1620 45 TACTGGCAGA GTGGGAGCAC CATTAGTTTG CTGTGAAATC AAATTAAAAA ACTGGGAGGA 1680 AGGTGGATAC TTTAATACTG ATAAGCCACA CCCCAGGGGT GAAATTCTTA TTGGGGGCCA 1740 AAGTGTGACA ATGGGGTACT ACAAAAATGA AGCAAAAACA AAAGCTGATT TCTCTGAAGA 1800 50 TGAAAATGGA CAAAGGTGGC TCTGTACTGG GGATATTGGA GAGTTTGAAC CCGATGGATG 1860 CTTAAAGATT ATTGATCGTA AAAAGGACCT TGTAAAACTA CAGGCAGGGG AATATGTTTC 1920 TCTTGGGAAA GTAGAGGCAG CTTTGAAGAA TCTTCCACTA GTAGATAACA TTTGTGCATA 1980 TGCAAACAGT TATCATTCTT ATGTCATTGG ATTTGTTGTG CCAAATCAAA AGGAACTAAC 2040 TGAACTAGCT CGAAAGAAAG GACTTAAAGG GACTTGGGAG GAGCTGTGTA ACAGTTGTGA 2100 AATGGAAAAT GAGGTACTTA AAGTGCTTTC CGAAGCTGCT ATTTCAGCAA GTCTGGAAAA 2160 GTTTGAAATT CCAGTAAAAA TTCGTTTGAG TCCTGAACCG TGGACCCCTG AAACTGGTCT 2220 55 GGTGACAGAT GCCTTCAAGC TGAAACGCAA AGAGCTTAAA ACACATTACC AGGCGGACAT 2280
TGAGCGAATG TATGGAAGAA AA<u>TAA</u>TTATT CTCTTCTGGC ATCAGTTTGC TACAGTGAGC 2340
TCACATCAAA TAGGAAAATA CTTGAAATGC ATGTCTCAAG CTGCAAGGCA AACTCCATTC 2400 60 CTCATATTAA ACTATTACTT CTCATGACGT CACCATTTTT AACTGACAGG ATTAGTAAAA 2460 CATTAAGACA GCAAACTTGT GTCTGTCTCT TCTTTCATTT TCCCCGCCAC CAACTTACTT 2520 TACCACCTAT GACTGTACTT GTCAGTATGA GAATTTTTCT GAATCATATT GGGGAAGCAG 2580 TGATTTTAAA ACCTCAAGTT TTTAAACATG ATTTATATGT TCTGTATAAT GTTCAGTTTG 2640 TAACTTITIA AAAGTTIGGA TGTATAGAGG GATAAATAGG AAATATAAGA ATIGGTTATT 2700 TGGGGGCTTT TTTACTTACT GTATTTAAAA ATACAAGGGT ATIGATATGA AATTATGTAA 2760 65 ATTTCAAATG CTTATGAATC AAATCATTGT TGAACAAAAG ATTTGTTGCT GTGTAATTAT 2820 70 75 TATTTAAAAA GCACCTTATC CTTTCTCCCC TAACCTTTGT ACACTAAAA ATGAAAGAAT 3420
TTAGAATGTA TTTGATGATA GCATTCTCAC TAAGACACAT GAGAATTTAA CTTTATAACC 3480
GCGTGAGTTA AGATTTAATT CATAGGTTTT GATGTCATTG TTGAAGTTAT TTGTAATTCA 3540 GAAACCTTGC TTGTGTGATA CATAGTAAGT CTCTTCATTT ATTACTGCTT GCCTGTTGTT 3600

PCT/US01/32045 WO 02/30268

ATATCTGGAT TATCAAAAGC AATAGTGCAC CAATTAAGAT GTGCTCAAAT CAGGACTTAA 3660 ATCATAGGCA CCACATTTTT CATGTCAGAC TAGTTACTTT GTTGATTCTC AGTTACTGTA 3720 GGCATCAAAA GGCAAAAATC A

5 SEQ ID NO:169 PEZ1 Protein sequence: Protein Accession #: NP_004448.1

21 31 41 10 15 20

VLSEAAISAS LEKFEIPVKI RLSPEPWTPE TGLVTDAFKL KRKELKTHYQ ADIERMYGRK

SEQ ID NO:170 PCQ7 DNA SEQUENCE 25 Nucleic Acid Accession #: none found Coding sequence: 38-1075(underlined sequence corresponds to start and stop codon)

	1	11	21	31	41	51	
30	î	î	ī	1	ī	1	
-	AGCAACGACG	CCGGGCAGCG	GGAGCGGCGG	CCGCGCCATG	TGGCTGCTGG	GGCCGCTGTG	60
		AGCAGCGCCG					120
		CCAGGCAACT					180
		CTGCCTGACT					240
35		GGCCCAACCT					300
	CTTCCGGTGC	AATGGGTTTG	AGGACTGTCC	CGATGGCAGC	GATGAAGAGA	ACTGCACAGC	360
	AAACCCTCTG	CTTTGCTCCA	CCGCCCGCTA	CCACTGCAAG	AACGGCCTCT	GTATTGACAA	420
	GAGCTTCATC	TGCGATGGAC	AGAATAACTG	TCAAGACAAC	AGTGATGAGG	AAAGCTGTGA	480
40	AAGTTCTCAA	GAACCCGGCA	GTGGGCAGGT	GTTTGTGACT	TCAGAGAACC	AACTTGTGTA	540
40	TTACCCCAGC	ATCACCTATG	CCATCATCGG	CAGCTCCGTC	ATTTTTGTGC	TGGTGGTGGC	600
	CCTGCTGGCA	CTGGTCTTGC	ACCACCAGCG	GAAGCGGAAC	AACCTCATGA	CCCTCCCCCT	660
	GCACCGGCTG	CAGCACCCTG	TGCTGCTGTC	CCGCCTGGTG	GTCCTGGACC	ACCCCCACCA	720
	CTGCAACGTC	ACCTACAACG	TCAATAATGG	CATCCAGTAT	GTGGCCAGCC	AGGCGGAGCA	780
45		GAAGTAGGCT					840
45		GACCTTCCTC					900
		CCCTACCGCT					960
		CTGAGCGTGG					1020
		GAGCCCAGGG					1080
50		AAGTCCATAT					1140
50		AAGCTCTTTA					1200
		GCATTCCCCT					1260
		TGTTGTGCGT					1320
		TITCACATTA					1380
55		GGAGAGAGCA					1440
22		AATTCTCTCT					1500
		CAGGAGGCCA					1560
		GCTTTGCACA					1620
		TGGACGTGAG					1680
60		AAACCATCTA					1740
UU		GAGCTTTCCT					1800 1860
		CTGGCTCTAC					1920
		AGCCAAGGAA					1980
		GTGGCCCACA					2040
65		CCCTTAACAC					2100
00		ATCACAGGTG					2160
		CACGCTCCTC					2220
		AGGCCTCTCC					2280
		GAGTCAAGAT					2340
70		TGTTTGTTTT					2400
. •		TTTTTTGTTT					2460
		CCCGCTGAGC					2520
		ATTGTTGCAC					2580
		CTCTCTCCCT					2640
75		CCAGTCAGCC					2700
		TGGCAAGAAA					2760
		CAGCTGTCAC					2820
		ACCCTAATTA					2880
		CTGTAGACTT					2940

		CTGGTATTTT					3000
		AACCTAGCTG					3060
						TCTGGCTGAA	
5						ATTGCGCAGT	
						TGGTTTTAGT	
						ATTATAGATT	
						GGCAGGGTTT	
10						CCAGCAACCAG	3540
						GCATTAAATT	
						GAAATTGACA	3660
						ATGTAAACTG	3720
15						TTTTTAATTT	
						CCACTTCGGG	
						ACCCCAGAAG	
						ACGCGCCGGG	
20		AGGAGGACCC				CACACAAGCG	4080
20	GGALTCAACC	AGGAGGACCC	AAGGGAACCC	GATAGAGTAC	G		
05		PCQ7 Protein seg	vence:			•	
25	Protein Accession	n#:		none found			
	1	11 -	21 .	31	41	51	
30	MWLLGPLCLL		PGNNFTNECN	I PGNFMCSNG	RCIPGAWOCD	GLPDCFDKSD	60
						LLCSTARYHC	120
						SITYALIGSS	180
						VTYNVNNGIQ	
35		LLSVEDTSHS				PPYRSRSGSA	300
	1101100 GIRIOD	2204221040	1081016001		01221		
	Nucleic Acid Acc	occion #		NM_005658.1	UID NO: 172 PEC	DNA SEQUENCE	•
4.0							
40	Co	ding sequence:	57-1535 (u	nderlined sequenc	es correspond to s	start and stop codo	ns)
40	Co	ding sequence:	57-1535 (u	nderlined sequenc	es correspond to s	start and stop codo	ns)
40	Co 1	ding sequence:	21	31	es correspond to s	start and stop codo	ns)
40	1	11 	21 	31 	41 	51 	
	1 GTCATATTGA	11 ACATTCCAGA	21 TACCTATCAT	31 TACTCGATGC	41 TGTTGATAAC	51 AGCAAGATGG	60
40 45	1 GTCATATTGA CTTTGAACTC	11 ACATTCCAGA AGGGTCACCA	21 TACCTATCAT CCAGCTATTG	31 TACTCGATGC GACCTTACTA	41 TGTTGATAAC TGAAAACCAT	51 AGCAAGATGG GGATACCAAC	
	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC	21 TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT	31 TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG	41 TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG	51 AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA	60 120 180 240
	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG	21 TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT CCCAAATCCC	31 - TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGGAC	41 TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC	51 AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA	60 120 180 240 300
45	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCGGTCCCCC CTGCACGCAG GTGCATCACC	21 TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCAGT CCCAAATCCC TTGACCCTGG	31 TACTCGATGC GACCTTACTA TEGTCCCCGAG CATCCGGGAC CATCCGGGAC GGACCTTCCT	41 TGTTGATAAC TGAAAACCAT TGTCTTACGA AGTGTGCACC AGTGTGCACC CGTGGGAGCT	51 AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCGCTGGCCG	60 120 180 240 300 360
	1 GTCATATTGA CTTTGAACTC CGGAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCAC CTGGCCTACT	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTGCATCACC CTGGAAGTTC	21 TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT CCCAAATCCC TTGACCCTGG ATGGGCAGCA	31 TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCAGA CATCCGGGAC GGACCTTCCT AGTGCTCCAA	41 TGTTGATAAC TGAAAACAT TGTCTACGAG GGTCCTGACG AGTGTGCACC CGTGGGAGCT CTCTGGGATA	51 AGCAAGATGG GGATACCAAC GTGCATCCGA CAGGCTTCCAA TCAAAGACTA GCGCTGGCCG GAGTGCGACT	60 120 180 240 300 360 420
45	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCGTCGT AGAAAGCACT CTGGCCTACT CCTCAGGTAC	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCGGTCCCCC CTGCACGCAG GTGCATCACC	21 TACCTATCAT CAGCCTATTG CAGCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA CCCTCTAACT	31 TACTCGATGC GACCTTACTA TGGTCCCCAC ACGCCCCGAG CATCCGGAC GGACCTTCCT AGTGCTCCAA GGTGTGATGG	41 TGTTGATAAC TGTATAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCACC CGTGGGAGCT CCTGGGATA CGTGTCACAC	51 AGCAAGATEG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCGCTGGCG GAGTGCGACT TGCCCCGGCG	60 120 180 240 300 360
45	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CTGGCCTACT CCTCAGGTAC GGGAGGACGA CATCTCAGAG	11 	21 TACCTATCAT CCAGCTATTG CAGCCCAGT CCCAAATCCC TTGACCCTGG ATGGGCAGCA CCCTCTAACT GTTCGCCTCT CACCCTGTGT	31 TACTCGATGC GACCTTACTA TGGTCCCCAG CATCCGGAG CATCCGGAG CATCCTTACTA AGGCTCCAA GGTGTTGATGG ACGGACCAAA GCCAAGACGA	41 TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGACG AGTGTGCAC CGTGGGACC CTCTGGGATA CGTGTCACAC CTTCATCCTT CTTCATCCTT CTGGAACCAG	51 AGCAAGATEG GGATACCAAC GTGCATCCGG CAGGCTTCCA TCAAAGACTA GCCCTGGCG GAGTGCGACT TGCCCCGCCG CAGATGTACT AACTACCGGC	60 120 180 240 300 360 420 480 540
45 50	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC CGTCAGGTAC GGGAGACGA CATCTCAGAG CGCCGCCTG	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTGCATCACC CTGGAAGGTC CTGCATCAAC GAATCCCTGG GAAGTCCTGG GAAGTCCTGG GAAGTCCTGG	21 TACCTATCAT CAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTCACCTGG ATGGGCAGCA CCCTCTAACT GTTCGCCTCT CACCCTGTGT CACCCTGTGT	31 TACTCGATGC GACCTTACTA TGGTCCCAG CATCCGGGAC GGACCTTCCTA GGTGTCCAA GGTGTCCAA GGTGTCAAA GGTGACAAA GCCAAGACGA ACAAATTTTA	41 GTTGATAAC TGAAAACCAT TGTCTACCAG GGTCCTGACG AGTGTGCACC CTCTGGGACTA CGTGTCACCAC CTTCTATCCTT CTGGAACCAC CTCTAGCCAA	51 AGCAAGATGG GGATACCAAC GTCCATCCGG CAGGCTTCCA TCAAAGACTA GCCCTGGCCG GAGTGCGACT TGCCCCGCGC CAGATGTACT ARCTACCGC GGAATAGTGG	60 120 180 240 300 360 420 480 540 660
45	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC CGCAGGACGA CATTTCAGAG GGGCGGCCTA ATGACAACGCG	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTGCATCACC CTGCATCACC GAATCCTCG GAATCCTCG GAATCCTCG CAGGGACATT ATCCACCAGC	21 TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA CCCTCTAACT CACCCTGTTG GGCTATAAGAAC TTTATAAGAAC	31 TACTOGATGC GACCTTACTA TGGTCCCCAG CATCCGGAC CATCCGGAC GGACCTCCT AGTGCTCCAA GCGAACACGA ACTAGTTTTTA TGAACACAA	41 TGTTGATAAC TGAAAACCAT TGTCTACGAG GGTCCTGAGG AGTGTGGACC CGTGGACAC CGTGTACAC CTTCATCCTT CTGGAACGAG CTCTAGCCAA TGCCGGCAAT	51 AGCAAGATGG GGATACCAAC GTCCATCCGG CAGGCTTCCA GCCTGGCCG GAGTGGCACT TGCCCCGGCG CAGATGTACT AACTACGGGC GGAATAGTGG GGAATAGTGG GTCGATTATCT	60 120 180 240 300 360 420 480 540 660 720
45 50	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC GGGAGGACGA CATCTCAGAG GGGCGGCCTG ATGACAGCAG TAGACTAGCAG	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACCCAG GTCCATCACC CTGCATCACC GAAGTTC CTGCATCACC GAACTCCTGG GAAGTCCTGG GAACTCCTGG GAACTCCTGG GTCACCACGT ATCCACCACGT GTCACCACGT	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTCACCTGG ATGGCGCACT CACCTGTGT CACCTGTGT TTATGAAAA GATGCCTGTT TATGAAAAA GATGCCTGTGT AACTCAAGGC	31 TACTCGATGC GACCTTACTA TGGTCCCAG CATCCGGGAC GGACCTTCCT AGTCTCCTA AGTGCTCCAA GGTGTGATGG ACGGACCAAA GCAAAAACG ATAATTTTTA TGAACACAAG GCCAAAAAGC GCCAGAAGACGA	41 TGTTGATAAC TGAAAACCAT TGTCTACCAG GGTCCTGACG AGTGTGCACC CGTGGGACCT CTCTGGAACCAG CTCTAACCAG CTCTAACCAG CTCTAGCCAA TGCGGCAAT AGTGGTTTCT GATCGTGGCCA	51 AGCAAGATGG GGATACCAAC GTCCATCCGG CAGGCTTOCA TCAAAGACTA GCGCTGGCCG GAGTGCGACT TGCCCCGGCG CAGATGTACT AACTACGGCG GGATAGTGCG GTCGATATCT TGACGCTGTT TGACGCTGTT TGACGCTGTT	60 120 180 240 300 360 420 480 540 660 720
45 50	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CTCAGCTACT CGGAGGACGA CATCTCAGGTA ATGACACCGC ATGACACCGCT TAGCCTCCGGG CGCTCCCCGGG	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTCATCACC CTGCATCACC GTACATCAC GAATCCTCG GAATCCTCG GAACTCTC GAGGACATC ATCCACCAGC GTACAACTC GGTCAACTTG GGCCAGGCCC	21 TACCTATCAT CCAGCTATTG CAGCCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCAGCA GTTCGCCTCTT CACCCTGTAT GTTCACCTAAACT CACCCTGTGT GGCTATAAGAAC GATGCCTGTT AACTCAAGCC TGGCAGGTCA	31 TACTOGATGC GACCTTACTA TGGTCCCCAG CATCCGGAC GGACCTTCCT AGTCCTCCAA GGTGTGATGG ACGACCAAA GCCAAGACGA ATAATTTTA TGAACACAAG CTCCAAAAGC GCCAGAGACGA GCCAGAGACGA	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG GGTCCTTGACGA AGTTGTGCACC CTCTGGGATCAT CTCTACCAT CTCTACCAT CTCTACCAA TGCCGCAAT AGTGGTTTCT GATCGTTCT GATCGTTCT GATCGTTCTC CCAGAACGTC	51 AGCAAGATGG GGATACCAAC GTCCATCCGG CAGGCTTCCA GCCCTGGCCG GAGTGCGACT ACTACCGGCG CAGATGTACT AACTACCGGC GGATAGTGGG GTCGATATCT TTACGCTGTT GGTGAGAGCC CACCTGTGCC CACCTGTGCC	60 120 180 240 300 360 420 540 660 720 780 900
45 50 55	1) GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACT AGCACGTCAT CCTCAGGTACT CCTCAGGTACT CCTCAGGTAC CATCTCAGAG CGGCGCCTG ATAAAAACT TAGCCTCCGG CGCTCCCGG CGCTCCCGG CGCTCCCGG CGCTCCCCGG CGCTCCCCGG CGCTCCCCGG CGCTCCCCGG	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTGCATCACC CTGCATCACC CTGCATCACC CAGGAGTTC GAATCCCTG GAATCCTGG CAGGACATTG GGTCAACTTG GGTCAACTTG GGCCTGGCCC CATCACCCCC	21 TACCTATCAT CCACCTATG CAGCCAGTG GTGCCCCAGT TTGACCCTGG ATGGCAGCA CCCTCTAACT CACCCTGTT CACCCTGTT CACCCTGTT AACTCAAGCC GGGAGAAAGCC GATGCAGGCA GATGCAGGCA GATGCAGGTCA GATGCAGGTCA GATGCAGTCA GATGCAGTCA GATGCAGTCA	31 TACTOGATGC GACCTTACTA TGGTCCCAC ACGCCCCGAG GGACCTTCCT AGTCCTCATG ACGCACCAAA GCCAAGACGA ACAATTTTTA TGGACACCAG CCTCAAAAGC CCTCAAAAGC GCCAGACCAG TGACACCAG TGACACCAG	41 TGTTGATAAC TGRAAACCAT TGTCTACGAG GGTCCTGACGA CGTGGGAGCT CTCTGGGATA CGTGTCACAC CTTTCATCCTT CTGGAACGAG CTCTAGCCAA AGTGGTCTTCT GATCGTTCTC GATCGTTCTC CCAGAACGTC CCAGAACGTC CCACACCGCTC	51 AGCAAGATEG GGATACCAAC GTCCATCOGG CAGGCTTCCA TCCAAGACAT GCCCTGGCG GAGTGCGACT TGCCCCGGCG CAGATAGTGG GGAATAGTGG GTCCATATATT TTACGCTGTT TTACGCTGTT GGTTAGAGCC CACGTTGTGCG CACGTTGTGCG CACGTGTTGCG	60 120 180 240 300 420 480 540 600 720 780 840 900
45 50	1 GTCATATTGA CTTTGAACTC CGGAAAACCCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC GGGAGGACGA CATCTCAGAG GGGCGGCCTG ATGACAGAGAAAACT TAGCCTGCGG GGAGGCTCCCGG GAGGCTCCTTAACAAACT TTAACAATCC	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTGCATCACC CTGCAAGTTC CTGCATCACC GAAGTCCTGG GAAGTCCTGG GAAGTCCTGG GAAGTCCTGG GTCCACCACG GTACCACACG GTACCACACC CATCACCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCTTG	21 TACCTATCAT CCAGCTATTC CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGGCAGCA CCCTCTAACT GACCCTGTGT CACCCTGTGT ACCCTGTGT ACCCTGTGT ACCCCTGTGT ACCCCTGTGT TTANGAAAC GATGCCAGTCA GATGGATCG GAGTGATCG GACTGGATCA GACTGGATCA GACTGGATCA	31 TACTCGATGC GACCTTACTA TGGTCCCCAG GACCCTCCCAG GGACCTCCCAA GGTGTCCAA GGTGTCCAA GGTGTCAAA GCCAGAGACAA TTAAAATTTTA TGAACACAAG GCCAGAGCAG GCCAGACCAG CCCAGACCAG CCCAGACCAC CCCAGACCAG CCCAGACCAG CCCAGACCAG CCCAGACCAG CCCAGACCAG CCCAGACCAC CCCAGACCAC CCCAGACCAC CCCACACAC CCCACACA	41 TGTTGATAAC TGAAAACCAT TGTCTACCAG GGTCCTGACG AGTGTGCACC CTCTGGGACTA CGTGTCACCAT CTCTGAACCAG CTCTAGCCAA TGCCGCAAT AGTGGTTTCT GATCGTGGCC CCAGAACGTC CCACTGCGTG GAGACAATCT	51 AGCAAGATGG GGATACCAAC GTCCATCCGG CAGGCTTCCA TCAAAGACTA GCCCTGGCCG CAGATGTACT TGCCCGGCG CAGATGTACT TGCCCGGCG GGATAGTGG GTCGATATCT TTACGCTGTT GGTGAGAGCG CACGTGTGCG GAAAAACCTC TTCATGTTCT	60 120 180 240 300 360 480 540 600 720 780 840 900 960 1020
45 50 55	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CTGGCCTACT CGGAGGACGA CATCTCAGAG GGGCGCCTG ATGAAAAAACT TAACAGCG GAGCTCCAT TTAACAATCC ATGAACAATCA ATGAACAATCA ATGAACAATCA ATGAACAATCA	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CCTGCACGCAG GTGCATCACC CTGCATCACC CTGCATCACC CAGGGACATC GAATCCCACG GATCCACAGT GAACTCCACC GTACCACAGT GGTCAACTCG CATCACCCC CATCACCCC ATGCCATCACTCC CATCACCCCC ATGCCATCACTCC CATCACCCCC CATCACCCC CATCACCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCC CATCACCCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCC CATCACC CATCA	21 TACCTATCAT CCAGCTATTG CAGCCCAGT GTGCCCCAGT TTGACCCTGG ATGGCAGCA CCCTCTAACT CACCCTGTG GGCTATAAGA GATGCCTGT AACTCAGCC GATGGAGCA GATGGATCA GATGGATCA CACGGATTG CAAAAAGTCA ACGAAAAGTCA ATGAACCTCC	31 TACTOGATGC GACCTTACTA TGGTCCCCAG CATCCGGGAC GGACCTTCCT AGTCCTCCAAGACCAAA GCCAAGACGA ATAATTTTA TGAACACAAG CCTCAAAAAGC GCCAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGACCAC TCCAAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGACCAG TCCAAGCCAG TCCAACAC TCCAAGCCAG TCCAACAC TCCAAC	41 TGTTGATAAC TGAAAACCAT TGTTGACAG GGTCCTGACG AGTGTGCACC CGTGGGAGCT CTCTACCAT TGCCAGCAA TGCCGAACGG CTCTAGCCAA TGCCGGAACGG CCAGAACGTC CCAGAACGTC CCAGAACGTC CCAGAACGTC CCAGAACGTC CAGAACGTC CACTGCGTG GAGACAATCT AAATTATGAC GACTTTCAAC	51 AGCAAGATEG GGATACCAAC GTCCATCCGG CAGGCTTCCA GTCCATCGGC GAGTGCGACT GCCCCGGCG CAGATGTACT AACTACGGGC GGTCGATATCT TTACGCTGTT GGTTAGAGCCG CACATGTGCG CACATGTGCG GAAAACCTC TTCCATGTCT TTCCAAGACCA GACCTAGTGG	60 120 180 240 300 420 480 540 600 720 780 840 900
45 50 55	1 CONTINUE OF CO	11 ACATTCCAGA AGGGTCACCA CTATCCCCCA CCCGTCCCCC CTGCACGCAG GTCCATCACC CTGCAAGTTC CTGCATCACC GAATCCTGG GAACTCCTGC CAGGGACATG GTCCACCAGG GTCCACCAGG GTCCACCTGCCCC CATGCACCAGG GTACCACAGT GGCTGCCCC ATGCCCCC ATGCCACTTG ATACCAAGTA CATTGCCATC CATTGCCCTC CATTGCCTAC CATTGCCCTAC CATTGCCCTAC CATTGCCCTAC CATTGCCCTAC CATTGCCCTAC CATTGCCCTAC CATTGCCCTAC CATTGCCCTAC CATTGCCCTAC CATTGCCCCAC	21 TACCTATCAT CCAGCTATCAT CCAGCTATTG CAGCCCAGT GTGCCCCAGT CCCAAATCCC TTGACCTGG GTTGCCTCAT CACCTGGT GGCTATAAGA TTTATGAAAC GATCCAGTCA GATCCAGTCA GATCGAGTCA GACTGATCA GACTGATCA CCAGCTTTA CAAAAAGTGA ATGAAACTGC CCAGGCATGA	31 TACTCGATGC GACCTTACTA TGGTCCCCAC GACCCGAG CATCCGGGAC GGACCTACT GGTGTCCCAA GGTGTCCCAA GGTGTCATGG ACGAACCAAA CTCAAAAGC CTTCAAAAGC GCCAGGACCAA TGAAACACAAG GCCTGCACGT TTCACACC CGGGGATTTT TTTCTATCC TGCTGCAGCCT TGCTGCAGCT TGCTGCAGCT TTCCTGCAGCCT TGCTGCAGCCT TGCTGCAGCT TGCTGCAGCT TGCTGCAGCT TGCTGCAGCT TGCTGCAGCT TGCTGCAGCCT	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG AGTGTGCACC CGTGGGACT CTCTGGGACA CTCTATCCTT CTGGAACCAC CTCTAGCCAA AGTGTTTCT GATCGTT GATCGTT GATCGTT GATCGTT GATCGTT GATCGTT GATCGTT GAGAACT CAACTAGCT AAATTATTAC GACTTTCAAC GACTTTCAAC GACTTTCAAC GAGAACGTC	51 AGCAAGATG GGATACCAAC GTCCATCCGG GCAGCTTCCA TCAAAGACTA GCCCTGGCCG GAGATGTACT TGCCCGGCG CAGATGTACT TTACGCGATTTCT TGCTGAATACTC GGAATACTG GGAATACTG GGAATACTG GAAAAACCC TCAAGACCA GACCTAGTCA GACCTAGTCA GACCTAGTCA TCCTGGATTT	60 120 180 240 360 420 480 540 660 720 780 840 900 1020 1020 1140 1200
45 50 55 60	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC GGGAGGACGA CATCTAGAG GGCCGGCCTG ATGACAGCG ATGACAGCG CGCTCCCGG GAGGCTCCAT TTACCAGCG AGACAATGA ATGAGCCG AGACAATGA AACCAGTGGC CCGGGTGGGG CCCGGGTGGGG CCCGGTGGGG	11 ACATTCCAGA AGGGTCACCA CTATCCCCCA CCCACCCAG CTGCACCCAG GTCCATCACC CTGCATCACC CTGCATCACC GAACGTCTCAC GAACGTCTCAC GAACGCACACAC GTACCACAC GTACCACAC GTACCACCAC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACACCC CATCACCCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACC CATCAC CA	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGGCAGCA CCCTCTAACT CACCCTGTGT TTATGACAC GGCTATAAGA TTTATGAAAC GATCCCTGTT AACTCAAGCC TGGCAGGTCA GATGGATCG AAGGCATTAG ATGAAGCTGC CCAGGCATGA ATGAAGCGA	31 TACTOGATGC GACCTTACTA TGGTCCCAG GACCTTCCT AGGCCCCAG GGACCTACCT AGGCCCAAA GCCAAGACGA ATAATTTTA TGAACACAAG GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA TGACAGCGC GCGGGATTT TTTCTCATCC AGAAGCCTCAG AGACCTCAGA	41 TGTTGATAAC TGAAAACCAT TGTTTACCAG GGTCCTCACG AGTGTGCACC CGTGGGAGCT CTCTGGGACCAC CTCTACCCT CTGAACCAG TGCCGCAAT TGCCGCAAT TGCCGCAAT TGCCGCAAT TGCCGCAAT TGATCTTCACCT CAGAACGTC CCACTTGCATG GAGACAATCT AAATTATGAC AGAACAGCTC AGAACAGCTC AGAACAGCTC AGATGCTAAA	51 AGCANGATEG GGATACCAAC GTCCATCCGG CAGGCTTOCA TCAAAGACTA GCGCTGGCCG GAGTGCGACT TGCCCCGGCG CAGATGTACT TTACCGCG GGTATACTGC GGTGATATCT TTACGCTGTT TTACGCTGTT TCAAGACCA GACTACTGC GAAAAACCTC TCCAAGACCA GACCTACTGA GACCTACTGA	60 120 180 240 300 360 420 540 600 720 780 900 900 900 1020 1080 1140 1260
45 50 55	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CTCAGCTACT AGGAGGACGA CATCTCAGGTA ATGAACACCC GGGGGGCTG ATGACACCGG GAGGCTCCAT TTAACCATCC TTAACCATCC ATGACCACCA AACCAGTGTG CCGGGTGCGG AGACAATGA AACCAGTGTG CCGGGTGCGG CCGGGTGCGG CCGGTGCGG CCGCTCCCAT TCCTCTCAT	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTCCATCAC CTGGATCAC CTGGATCAC GAATCCTCG GAATCCTCG GAATCCTCG GAACTCAC GAATCCACAG GTCCACAGT ATCCACCAGC ATGCACCAC ATGCACTCC CATCACCCCC ATGCATCAC CATCACCCCC CATCACCCCAC CGCCACCCCAC CGCCACCCCAC TGAGACACAC	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCACCA GTTCGCCTCT CACCCTGTAACT CACCCTGTAACT CACCCTGTAACT CACCCTGTT AACTCAAGCC ACGCATTG CAAAAAGTGA ATGAAGCTC CCAGCATTGA ATGAAGCTC CCAGCATTGA ATGAAGCTC CCAGAAAAGTGA ATGAAGCTAC AGGAGCATTGA AGAGCAACA AGAGCAACAA	31 TACTOGATGC GACCTTACTA TGGTCCCCAG CATCCGGGAC GGACCTTCCT AGTGCTCCAA GGTGTGATGG ACGACCAAA GCCAAGACGA CTTCAAAAGC GCCAGAGACGA GCCAGAGACCA TTTCTCAAAGC CGCGGATTTT TTTTCTCATCC AGAGCCTC TGGAGCAGC AGAGCCTCT TGCAGCAGC AGAGCCTCT TGCAGCAGC AGAGCCTCT TGCAGCAGC AGAGCCTCT TGCAGCAGC AGACCTCACAC GCAGATATT	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG GGTCCTTGACGA GGTCTGCACC CTTGGGATCAT CTCTATCCTT CTGGAACCAG TGCCGCAAT AGTGGTTTCT GATCGTTCT GATCGTTCT CACAGCACCAG AGTCGTTCAT GATCGTTCAT GATCGTTCAT CACAGCACCAC AGTCGTTCAT CACAGCACCAC AGTCGTTCAAC AGACAACCT CACAGCACCAC AGAACACCT CACAGCACCAC AGACACCT CACAGCACCAC AGACACCT CACAGCACCAC CTATGCACCAC CT	51 AGCAAGATGG GGATACCAAC GTGCATCCGG CAGGCTTCCA GCCCTGGCCG GAGTGCACT AACTACCGGC CAGATGTACT AACTACCGGC GTGCATACT TTACCGGCT GTGCATACT TTACCTGTT TTACCTGTT TTACCTGTT TTACCTGTT TCAAGACA GACTAGTGC GAAAAACCT TTCAATGTCT TTCCAAGACA GACCTAGTGA TCCTAGTCA TCCTACTACT GCTGCCAACG CTGCTCAACCA	60 120 180 240 300 360 420 540 600 720 780 840 900 960 1020 1140 1260 1320
45 50 55 60	1 CONTINUES OF C	11 ACATTCCAGA AGGGTCACCA CTATCCCCCA CCCACCCAG CTGCACCCAG GTCCATCACC CTGCATCACC CTGCATCACC GAACGTCTCAC GAACGTCTCAC GAACGCACACAC GTACCACAC GTACCACAC GTACCACCAC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACACCC CATCACCCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACC CATCAC CA	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG GTTGCCTCT GTTCGCCTCT CACCTGTGT GGCTATAAGA TTTATGAAAC GATCCAGTTT AACTCAGCC GATCCAGTTA ACTCAAGCC CCAGGCATTT CAAAAACTGA ATGAAACTGA ATGAAACTGA ATGAAACGA ATGAAACGA ATGAAACGA ATCCAAGC ATCCCAGG AGATCCAACA ATCCAAGC ATCCCAGG AGATCCAACA TTCCTCCAGC TTCCTCCAGC TTCCTCCAGC TTCCACC TTCCTCCAGC	31 TACTCGATGC GACCTTACTA TGGTCCCCAC GACCCGAG CATCCGGGAC GGACCTACA GGTGTCCCAA GGTGTCCCAA GGTGTCCCAA GCCAGAGCAA ATAATTTTA TGAACACAAG GCCAGAGCAC GCCAGGACCAA TGACACACAC GCCTCCACGT TTTCTCATCC TGCTGCAGCT GGAACGTCGA	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG AGTGTGCACC CGTGGGACT CTCTGGGACA CTCTATCCTT CTGGAACCAC CTCTAGCCAA AGTGTTTCTAGCCA CTCTAGCCAA CGCGCAAT GCCGGCAAT GACGGCAACGTC CAACTGCGGAACGTC CAACTGCGGAACGTC GAGAACATCT AAATTATCAC GACTTTCAAC AGGAACACCTC AGTGCTGAAC CTCTAGCAAC	51 AGCAAGATG GGATACCAAC GTCCATCCGG GGATACCAAC TCAAAGACTA GCCCTGGCCG GAGTGCGACT TGCCCCGCGC CAGATGTACT TACGCCGTTTACGCGTTTACGCGTTTACGCTGTTTC GGTGAGAGCG CACGTTTTCC TCCAAGACCA TCCAAGACCA TCCTGGATTT TCCAGGACTA TCCTGGATTT TCCAAGACCA TCCTGGATTT TCCAAGACCA TCCTGGATTT GCTGGATTT GCTGGATTT GCTGGATTT GCTGGATTT GCTGGATTACAC GGTGACAGGC GGTGACAGGC GGTGACAGGC	60 120 180 240 300 360 420 540 600 720 780 900 900 900 1020 1080 1140 1260
45 50 55 60	1 GRCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAGCACT CTGGCCTACT AGGAGGACGA CATCTCAGGG GGGGGCGCG ATGAAAAAAAT TAGCCTGCGG GAGGCTCCAT TTAACAATCC ATGGACCAG AACCAGTGT CCGGGTGCGG CGGCTCCTCAT CCGGCTCCTCAT CCGCTCCTCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCCCCTCTCAT CAGCCCCTCTCAT CAGCCCCTTCTCAT CAGCCCCTTCTCAT CAGCCCCTTCTCAT CAGCCCCTTCTCAT CAGCCCCTTCTCAT CAGCCCCTTCTCAT CAGCCCCTTCTCAT CAGCCCCTTCTTCAT CAGCCCCTTCTTCAT CAGCCCCTTCTTCAT CAGCCCCTTCTTCAT CAGCCCCTTCTTCAT CAGCCCCTTCTTCAT CAGCCCCTCTTCTCCTTCTCTTCT	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACGCAG GTCCATCAC CTGGATCAC CTGGATCAC GAATCCTCG GAATCCTCG GAATCCTCG GAATCCTCG GAACTCAC GTCAACTA GTCAACTA GTCACCACA GTACCACAGT GGCCATGACCCC CATGCATCAC CATGCACCCC CATGCACCCC CATGCACCCC CTGCACCCC CTGCACCCCC CTGCCCAC CTGCCCAC CTGCCCAAC CTGCCCCAC CTGCCCCCCC CTCCCCAAC CTGCCCCCC CTCCCCACC CTCCCCAC CTCCCCAAC CTCCCCCAC CTCCCCCCC CTCCCCAC CTCCCCCCC CTCCCCAC CTCCCCCCC CTCCCCAC CTCCCCCCC CTCCCCAAC CTCCCCCCC CTCCCCAC CTCCCCCCC CTCCCCCCC CTCCCCCCC CTCCCCCC	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT GTGCCCCAGT CCCAGATCC TTGACCTGG ATGGCACCA GTTCGCCTCT CACCCTGTAT GTTCGCCTCT AACTCAAGCC GGCATAAGA AACTCAAGCC CCAGCATTG ACGGCATTG ATGAGCTG ATGAAGTGA ATGAAGTGA ATGAAGTGA ATGAAGTGA ATGAAGTGA ATGAAGAGA AGATGAACA TTCCTGCAGG AACAACAATTA TTCCTGCAGG AACAACAACATTA TACAGACCAG AACAACAACATTA TACAGACCAG	31 TACTOGATGC GACCTTACTA TGGTCCCCAG CATCCGGGAC GGACCTTCCT AGTGCTCCAA GGTGTGATGA GCCAAGACGA ATAATTTTA TGAACACAG GCCAGAGACGA GCCAGAGCCA GCCTGCACGT TGACAGCCG CCGGGATTT TTTTCTCATCC AGAGCCTC TGCAGCCG GCAGACTCGC GCAGATATGT GGAACGTCGA TCTCGCAGCC GCAGATATGT GGAACGTCGA TCTCGCAGCC GCAGATATGT GGAACGTCGA TCTCGTGCGC GCAGATATGT GGAACGTCGA TCTCGTGCGC GAGTTTACCG GAACTTCTACCG GAACTTCACCAC GAACTTCTACCAC GAACTTCACCAC GAACTTCACCAC GAACTTCACCAC GAACT	41 TGTTGATAAC TGAAAACCAT TGTTTACGAG GGTCCTTGACGA GGTCTGCACC CTTGACCAT CTCTACCAT CTCATCCTT CTGGAACCAG TGCCGCAAT AGTCGTTCT GATCGTTCT GATCGTTCT GATCGTTCT GATCGTTCT CACAGACCTC CACAGACCTC CACAGCACCT CACAGCACC CTCTTCCCAC GATAGCACC GATAGGGGAT TTCTTGCCAG GATAGGGGAT GATAGGGGAT GATTCTATC	51 AGCAAGATEG GGATACCAAC GTCCATCCGG CAGGCTTCCA GCCCTGGCCG GAGTGCACT ACTACCGGC CAGATGTACT AACTACCGGC GGATACTGC GGCATACTGC GGTGAGAGCG GTCGATTACT TTACGCGGT TTCATGTGT TTCCAGACCA GACCTAGTGA GCCTGCTGCACTAC GCTGCACTAGTGA GCTGCACTAGTGA CTGATCACAC GCTGACACG GCTGATCACAC GCTGACACG GCTGATCACCA GCTGACCAC GCTGATCACCAC GCTGACCAC GCTGATCACCAC GCTGACCAC GCTGATCACCAC GCTGACCAC GCTGATCACCAC GCTGACCAC GCTGATCACCAC GCTACTCACC GCTGATCACCAC GCTGATCACC GCTGATCACC GCTGATCACC GCTGATCACC GCTGATCACC GCTGATCACC GCTGACCAC GCTGATCACC GCTACCAC GCTGATCACC GCTGATCACC GCTGATCACC GCTGATCACC GCTGATCACC GCTACCAC GCTGATCACC GCTGATCACC GCTGATCACC GCTGATCACC GCTGATCACC GCTGCAC GCTGATCACC GCTACCAC GCTGATCACC GCTGATCACC GCTGATCACC GCTACCAC GCTACCAC GCTACC GCTACCAC GCTACCAC GCTACCAC GCTACCAC GCTACCAC GCTACCAC GCTACCAC GCTACCAC GCTACCAC GCTACC GCTACCAC GCTACCAC GCTACCAC GCTACCAC GCT	60 120 180 240 300 360 420 540 600 720 780 960 1020 1140 1260 1320 1320 1340 1500
45 50 55 60	1 CTCATATTGA CTTTGAACTC CGGAAAACCCC CTCAGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC GGGAGGACCA GGGAGGACCA ATGACAGAG GGCGGCCTG ATGACAGAG GGCGGCCTG ATGACAGAG ATGACAGAC ATGACAGAC ATGAGCAGC GAGCTCCCGG GAGCTCCCGG GAGCTCCCGG CGCTGCGG CGCTCCCGG CGCTCCCC CCTCTCCCTC CTTCTCCCTC CTTCTCCTC	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCGGTCCACCAC CTGCACCCAC CTGCACCACA GTCCATCACC CTGCACCACA GAATCCTGCA GAATCCTGC CAGGGACATC GACTCACCACC CAGGGACATT GGCCTGCCCC ATGCACTACC ATGCACTACC ATGCACTAC ATACCACTT CATCACCAC CTCTCCCAC GGCCACCAA CTTTCCCCCC TCCCAAACCT TCCCAAACTT TCCCACAAACTT	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCC TTGACCTGG GCTATACT GTTCGCCTCT GGCTATAGA CCCTCTAACT GATCGCCTGT GGCTATAGAA CACCTGGTCA GATCGCAGTCA GATCGCAGTCA GATGGATCG GAGTGGATCG CAGGCATTG CAAAAAGTGA ATGAAGCTG CCAGGCATGA AGGAAAGGA ATTCCTGCAGG AACAACAATA TTCCTGCAGG AACAACAATA TACAGACCAG AAGACCAACA AAGGCAAAACA	31 TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTCCCAG GGACCTACT GGTGTGATGG ACGGACCAAA GCCAGAGCA ATAATTTTA TGAACACAAG GCCTGAGCA ATAATTTTA TGAACACAG GCCTGCAGCT TTTCTCATCC AGAGCTCAAA GCAGATTTTTTTTTCATCC TGCTGCAGCT TCTGTTGCT TCTGTTACGG GCTGATTCCAC	41 TGTTGATAAC TGAAAACCAT TGTTTACAAG GGTCCTGACG AGTGTGCACC CGTGGGACT CTCTGGGACA CTCTACCAC CTCTACCAC CTCTAGCCAA GGCGCAAT TGCCGGCAAT GATCGTGGC CCACTGCGTC GAGACGTC GAGACATCT AAATTATCAC GACTTTCAAC CTATGACAC CTATGACAC TCTAGCCAAC GATAGCTC AGAACGTC GAGACGTC GAGACGTC GATAGCTGAAC CTTCTTCCAC GATAGGGGAT GATGTGATA ATGGTCTTCCA	51 AGCAAGATGG GGATACCAAC GTCCATCCGG GGATACTAC TCAAAGACTA GCCCTGGCCG GAGATGTACT TGCCCGGCG CACATGTACT TTACGCCATTTC GGTGATACTG GGTGAGATACT TTACGCTGTT GGTGAGATACT TCCAAGACCA GACATAGTGC GAAAAACTC TCCAAGACCA GACCTAGTGA GCTGACCA GCCTAGTGA GCTGACCAAG GGTGACAGG GTGACCAAG GGTGACAGT ACAAGCTGGG GTATTACCGG GTATTACCGG GTATTACCGG GTATTACCGG GTATTACCGG GTATTACCGG GTATTACCGG	60 120 180 300 360 480 540 660 720 1020 11020 1140 1200 1260 1380 1440 1560
45 50 55 60	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC GGGAGGACGA CATCTAGAG GGCCGGCCTG ATGACAGCG ATGACAGCG CAGCTCCCGG CAGCTCCCGG CAGCTCCCGG CAGCTCCCGG CAGCTCCAGTAC ATGGAGCCG AGAACATGA AACAGTGA CAGCTCTCAT CAGCTCGGT CAGCCTCCAT CAGCCTCGT GTTTCGCTTG ATCGGATTTA CAGCTTTG CAGCCTCTTACCAT CAGCCCTCT CTCTCGCTTTACCAT CGGGTTTCTACAT CGGGTTTACAT CGTTTTACAA	11 ACATTCCAGA AGGGTCACCA CTATCCCCCA CCTATCCCCCA CTGCACCCAG GTCCATCACC CTGCATCACC CTGCATCACC CAGGGACATCA CAGGGACATC GAACTCCTCG GTCACCACC CATCACCACC CATCACCCCC CATCACCCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACCC CATCACC CATCAC C	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGGCAGCA CCCTCTAACT CACCCTGTGT TTATGACAC GGCTATAAGA TTTATGAAAC GATCCCTGTT AACTCAAGCC TGGCAGGTCA GATGGATCG CAAAAAGTGA ATGAAAGTGA ATGAAAGTGA ATGAAAGACAG AAGAACAACA AAGACAACA AAGACAACA GAGGCAACGG AACAACAATA TACAGACCAG GAGGCAACGG AACAACAATA TACAGACCAG GAGGCAACGG AAGACAACAA CAGGCACACAG GGGCTGGTTT GGGGCACAGG AGGCAACGG AAGGCAAACA GGGGCTGGTTT GGGGCTGGTTT	31 TACTOGATGC GACCTTACTA TGGTCCCCAG GACCTTCCT AGGCCCCGAG CATCCGGGAC GGACCTACT AGGCCCCAAA GCCAGAGACGA ACGCACCAAA GCCAGAGACGA GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA TGACAGCGC GGGGATTTT TTTCTCATCC AGAAGCCTCAG GCAGATATGT TGCTGCAGC GCAGATATGT TCTGTGGTGCT GGAACTCGA TCTGGTGCCT GGAATCCAC TGCTTCCCCC	41 TGTTGATAAC TGAAAACCAT TGTTTACCAG GGTCCTCACG AGTGTGCACC CGTGGGAGCT CTCTGGCACAC CTCTCATCCTT CTGGAACCAC TGCCGCAAT TGCCGCAAT TGCCGCAAT TGCCGCATTTCAC CAGAACGTC CAGAACGTC AGACACGTC AGACACCTC AGTGCTGAAC TTCTTGCAG GATTGCAGA CTATGACAAC TTCTTGCAG GATTAGCAAC TATGACAAC TTCTTGCAG GATAGGGGAT AATTGCACA TGCATGATTC TAGCATGTTCTAC TGCATGATTT TACCATGATTC TGCATGATTT	51 AGCANGATEG GGATACCAAC GTCCATCCAG CAGGCTTOCA TCANAGACTA GCCCTGGCCC CAGATGTACT TGCCCCAGCC CAGATGTACT TTACCGCC GGATACTGC GGTATACTC TTACAGCTGTT TCCAAGACCA GACCTACTGC TCCTAGCTT TCCTGCCAAGG CTGATCACAC TCCTTGCCT ACAGCTGGC GTATTCACGG TTCTTGACGT ACTCTTAGCG	60 120 180 240 300 360 480 540 660 720 780 900 900 900 1020 11260 1260 1380 1440 1560 1560 1560
45 50 55 60	1 GRCATATTGA CTTTGAACTC CGGAAAACCC CTCAGTACTA ACCCCGTCGT AGAAGCAC CTCAGGTACTA ACCCCGTCGT AGAAGCAC CTGGCCTACT AGGAGGACGA CATCTCAGAG GGCGGCCTG ATGACAGCGG ATGACAGCGG AGGACAATGA ATGATTCATACAATCC CAGGCTCCAG AGACAATGA TCAGCATCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCCATCAT CAGCGCTTCTCAT CAGCCATTAT CAGCATTTACAA ATGATTCAGA ATGATTCAGA ATGATTCAGA ATGATTCAGA	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCGGTCACCCC CTGCACGCAG GTCCATCAC CTGCATCAC CTGCATCAC CAGGGACATG GAATCCTGG GAATCCTGG GTCACACTG GATCACCACAT ATCCACAGG GTACACACT GGTCACCCC ATGCACTG CATTGCCCAC ATGCCATGC CTGCACAGG TCGCACACT TCGCCACAC TCGCACACT TCGCCAACT TCGCCAACT TCGCCAACT TCGCCAACT TCGCCAACT TCGCAAACT TCGCCAAACT TCGCAAACT TCGCCAAACT TCGCAAACT TCGCAAACT TCGCAAACT TCGCAAACT TCGCAAACT TCGCAAACC TCGCAAACC TCGCAAAACC TCGCAAACC TCGCAAACC TCGCAAACC TCGCAAACC TCGCAAACC TCGCAAACC TCGCCAAACC TCGCCACACC TCGCAAACC TCGCCACACC TCGCAAACC TCGCCACACC TCGCACACC TCGCCACACC TCGCCCACC TCGCCACACC TCGCCCACC TCGCCCACC TCGCCCACC TCGCCCACC TCGCCCCACC TCGCCCACC TCGCCCCACC TCGCCCCC TCGCACC TCGCCCACC TCGCCCCACC TCGCCCCACC TCGCCCCACC TCGCCCCACC TCGCCCCC TCGCACC TCGCCCCC TCCCCCC TCCCCCC TCCCCCC TCCCCCC TCCCCCC	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATTGGCAGCA CCCTCTAACT GTTCGCCTCT CACCCTGTTA ATTAGAAAC GATCCCTGTT AACTCAAGCCA AAGTGAACTG AAGTGAACTG AAGTGAACTG AAGAAACTGA ATGAACTGA ATGAACTGA ATGAACTGA ATGAACTGA AAGTGAACAATA AACACAACA AAGCCAACACT TCTTTCTACTG TTTTTTTTTT	31 TACTOGATGC GACCTTACTA TGGTCCCCAG CATCCGGGAC GGACCTTCCT AGGGCCAAA GGTGTGATGG ACGGACCAAA GCCAAGACGA ATAATTTTA TGAACACAAG CCTCAAAAGC GCCAGAGCCAC TGACAGCCG TGACAGCCG CGGGGATTT TTTCTCATC AGAAGCTCAA GCAGACTCAGA GCAGACTCAGA GCAGACTCAGA GCAGACTCAGA CCAGACTCAGA CCAGACTCACA CAGACTCACA ACACTGAACCA AC	41 TGTTGATAAC TGAAAACCAT TGTTGACAG GGTCCTGACG AGTTGGCACC CTTCATCCTT CTGCAACCAG TGCCGCAAT AGTCGTTCTT GATCGTTCT GATCGTTCT GATCGTTC GATCGTTCACC CATGCTG GAGCAAT AGTCGTTCAC CCAGAACGTC CCACAACGT CCAGAACGTC CCAGAACGTC CAGACACTT CAACTTCAAC AGACATCTT AGTCGTGAC CTATGACAA CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC TTCTTGCCAG GATAGTCATC ATGGTCTTCG TGCATGATTT TGTCTGGCTT	51 AGCAAGATG GGATACCAAC GTGCATCCG CAGGCTTCCA TCAAAGACTA GCGCTGCCG GAGTGCACT AACTACCGGC CAGATGTACT TTACGCGTT TTACGCGTT TTACGCGTT TTCAAGACA GGCATATCT TCCAAGACCA GACCTAGTGA GCTGCCATGC GTGATCACAC GCTGACCA GCTGACCA GCTGTCAC GTGACCAG GCTGCTGGC GTATTCACG GTTACACG GTTACACG GTTACACG GTTACACG GTTACACG TCCTTGACGT TCCTTGACGT TCCTTGACGT TCCTTGACGT TCCTTGACGT TCCTTGACGT TCCTTGACGT TCCTTGACGT	60 120 180 300 360 480 540 660 720 1020 11020 1140 1200 1260 1380 1440 1560
45 50 55 60	1	11 ACATTCCAGA AGGGTCACCA CTATCCCCCA CTGCACCCAC CTGCACCCAC CTGCACCCAC CTGCACCTAC GTCCATCACC CTGCATCACC GAAGTTCC CAGGGACATCAC GAACTCCTCG GTCACCACC CATCACCACC CATCACCCCC CATCACCCC CATCACCC CATCACC CATCACCC CATCACC CATCACCC CATCACC CATCACC CATCACC CATCACC CATCACC CATCACC CATCACCC CATCACC CATCAC CATCAC CATCAC CATCAC CATCAC CATCAC CAT	21 TACCTATCAT CAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATGGCCACTG GTCCCCTGTGT CACCCTGTGT CACCCTGTGT TTANGAAAC GATCCCTGTT AACTCAAGCC TGGCAGGTAA AACTCAAGCC CCAGGCATTA CAAAAAGTGA CAGCATTG GAGAAACGGA AAGAAACAACA AAGCAACA AAGCAACA CAGGCATTTG CAAAAACTAC CAAGCAACA AAGCAACA AAGCAACA AAGCAACA CAGGCATGTTTCTTCTGGTCCC CTGGTTTTTTTTTT	31 TACTOGATGC GACCTTACTA TGGTCCCCAG GACCTTCCT AGGCCCCGAG CATCCGGGAC GGACCTACT AGGCCCCAAA GGTGTGATGG ACGGACCAAA GCCAAAAAGCGA CCTTCAAAAGC GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA GCCAGAGCGA TGACAGCGC GGGGATTTT TTTCTCATCC AGAAGCCTC AGAAGCTCCA GCACTCAGA TCCTGCTGCCC ACATGAACT CCTCCCCC ACATGAACT CTGCTCCCCC CCACTGCCCG GCACTGCCC GCACTGCCCG CCACTGCCCG CCACTGCCCC CCACTGCCC CCACTGCC CCACTGCCC CCACTGCC CCACTCC CCACTCC CCACTCC CCACTCC CCACTC CCCC CCCC CCACTC CCCC CCCC CCCC CCCC CCCC CCCC CCCC CCCC	41 TGTTGATAAC TGAAAACCAT TGACAAG AGTGTGCACC GGTGGGAGCT CTCTGGGACCAC CTTCATCCTT CTGGAACCAG CTCTAGCGA AGTGTTCATCCT CTGGAACCAG CTCTAGCCAA AGTGTTCTT AGTGTTTCAT AGATCAGCT AGACAGCT AGACAGCT AGACAGCT AGACAGCT AGACAGCT AGACAGCT AGACAGCT AGACAGCT TCTTGACAA CTATGACAAC GATTTCAAC GATTTCACAC GATTGCAGG GATAGGGGAT GATGTGCAC TTCTTCACCT TGCATGATTT TGCTTGACTT TCCTTCACCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTCCCT TCCATTTCTTCT TCCATTTCTTCCT TCCATTTCTTCCT TCCATTTCTTCCT TCAATTTCTTGC TCAATTTCTTCC TCAATTTCTTCT TCATTCTTCTC TCAATTTCTTCT TCATTCTTCT TCATTCTTCT TCATTCTTCT TCATTCTTCT TCATTTCT TCATTCT TCAT	51 AGCANGATEG GGATACCAAC GTGCATCCAG GTGCATCCAG CAGGCTTOCA TCAAAGACTA GCGCTGGCCG CAGATGTACT TGCCCCGCGC CAGATGTACT TGCCCGCGC GGATACTGC GGTATACTGC GGTATACTGC GAAAAACCTC TCCAAGACCA GACCTAGTGC GACCTAGTGC GACCTAGTGC GACCTAGTGC GACCTAGTGC ACCTTGCCAAGG CTGATCAACC TCCTAGACT ACCACCTTGC ACCTTTTACAGG TCCTTGACGT TCCTTGACGT ACCCTTTTACAGA TGCGCACCTTC AACCCCTTTTA	60 120 180 240 300 360 420 540 660 720 780 900 960 1080 1140 1260 1320 1320 1340 1500 1560 1680
45 50 55 60 65	1 GTCATATTGA CTTTGAACTC CGGAAAACCC CTCAGGTACTA ACCCCGTCGT AGAAAGCACT CCTCAGGTAC GGGAGGACGA CATCTCAGAG GGCGGCCTG ATGACAGCG ATGACAGCG AGACAATCA AACCAGTAC ATGAGCCGG AGACAATCA AACCAGTGTC CCGGGTGGGG TCCTCGTCAT CAGCCTCCAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCCATGAT CAGCTTTCACT CACCCATGAT CAGCTTTCACT CACCCATGAT CACCCATGAT CACCCATGAT CACCCATGAT CACCCATGAT CACCCATGAT CACCCATACAC GTTTACAA CCCTATACAG CCCCAAAGGG CTTCGAAGGG CTTCGAAGGG CTTCGAAGGG CTTCGAAGGG CTTCGAAGGG CTTCGAAGGG CTTCGAAGGG CTTCGAAGGG CTTCGAAGGG CTTTGAAGGG CTTTGAAGGC CTTTGAAGGG CTTTGAAGGG CTTTGAAGGG CTTTGAAGGG CTTTGAAGGG CTTTGAAGGG CTTTGAAGGC CTTTTGAAGGC CTTTTGAAGC CTTTTGAAGC CTTTTTTTTTT	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCCC CTGCACGCAG GTGCATCACC CTGGATCACC GAATCCTGC GAATCCTGC GAATCCTGC GAACTCTG GGCACACT GGCACACT GGCACACT GGCACACT CATGCACCCC CATCACCCCC CATCACCCC CATCACCC CATCACC CATCACCC CATCACCC CATCACCC CATCACC CATCAC CATCACC CATCAC CATC	21 TACCTATCAT CCAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCCC TTGACCTGG ATTGGCACCA CCCTCTAACT GTTCGCCTCT CACCCTGTAAT GTTATGAAAC GATCCCTGTG AACTCAAGC AACTCAAGC AAGTGGATCG ACGGCATTG CAAAAAGTGA ATGAAGCACA ATGACACA ATGACACA AGGCATCA AGGCATCA CAGGCATCA AGGCAACA TTCCTGCAGG AGAAACGA AAGACAACA TTCTTCCAGG AGGCAGCTT TTTTTATTAA AGTGGCTCCC CTGGTTTGCG AGATTTCCC	31 TACTOGATGC GACCTTACTA TGGTCCCAC GACCTTCCT AGGCCCGGGC GGACCTACTG GGACCTACT AGGCCCCAG GGACCAAA GCCAAGACGA ATAATTTTA TGAACACAG GCCTGCACGT TGACAGCGG GCCTGCACGT TTTCTCATAC AGAGCTCT AGAAGCCTCT AGAAGCTCT AGAAGCTCT AGAAGCTCT AGAAGCTCGA GCAGTATCTC GGACTTCCCCG ACAGTGAACT CTCCTCCCCG ACAGTGAACT CTCCCCGGCC CCCCCCGCCC CCCCCCCCCC	41 TGTTGATAAC TGAAACCAT TGTTTACCAG GGTCCTGACG AGTGTGCACC CTTCATCCTT CTGGAACCAG TGTCTACCAC CTTCATCCTT CTGGAACCAG TGCCGCAAT AGTGGTTTCA TGCCGCAAT TGCCGGCAAT AGTGGTTTCAAC GACTTTCAAC GACTTTCAAC GACTTTCAAC AGACAGTC TGAACCAGTC TGATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAAC CTATGACAC TTCTTGCCAG GATAGGGGT GAATGTCTTCG TGCATGATT TGCTTGCCTT TGCTTCCCTT TCCAACGGGC TTCCAGGGGC TTCCAGGGC TTCCAGGGGC TTCCAGGGC TTCCAGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGC TTCCAGGC TT	51 AGCARGATEG GGATACCAAC GTGCATCCGG CAGGCTTCCA GCGCTGCCCG GAGTGCACT AACTACCGCC CAGATGTACT TTACGCGCT GTCATACTGC GTCATACTGC GTCATACT TTACGCTGTT TTCATGTCT TTCATGTCT TCCATGACCA GACTACTGA GACTACTAC GACTACTGATTAC GCTGCATTG GCTGCATAC GCTGCATGC GTATCACAC GCTGACCAC GTTACCAC GTTACC	60 120 180 240 300 360 420 540 600 720 780 960 1080 1140 1260 1380 1500 1560 1560 1680 1740 1860
45 50 55 60	1 CONTINUES OF	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCGCTCCCCC CTGCACCCAG GTCCATCACC CTGCAACGTC CAGAAGTTC CTGCATCAAC GAATCCTGC CAGGGACATG GTCCACCAGG GTCCACCAGG GTCCACCAGG GTCCACCAGG GTCCACCAGG CATCACCAGG ATACCAGTT CCTCCCACCAGG ATACCAGTT CCTCCCACCAGG GTCCACTAGG GTCCACTAGG GTCCACTAGG GTCACTACG GTCACTACG TGCCACAAGCT TCCGACAAACT TCCACAAACT TCCACCAATG GTCACTTCC TCGCCCAATG TGCACGCCGC TGCCACCCGG GTCACTTCC TCCACCAATG TGCAGCCTCC TGCACCACTC TGCACCACTC TGCACCACTC TGCACCCCC TGCACCCCCC TCCACCCCC TCCACCCCC TCCACCCCC TCCACCCCC TCCACCCCC TCCACCCCCC TCCACCCCCCC TCCACCCCCC TCCACCCCCCCC	21 TACCTATCAT CAGCTATTG CAGCTATTG CAGCTATTG CAGCCACTG GTGCCCCAGT CCCAAATCC TTGACCTGG GCTCACACT GTTCGCCTCT CACCTGTGT GGCTATAAGA TTTATGAAAC CACCTGTGT AACTCAAGCC GAGTGCATTA AACTCAAGCC CAAGGCATTG CAAAAAAGTGA ATGAAGCTGC CAGGCATGA TACCAGGAAACA TTCCTGCAGG AACAACAATA TACAGACAG CGGCTGGTTT TTTTTATTAA AGTGGCTCC CTGGTTGTGG AGTTTTCTTCCTCC CTGGTTTTCG CAGGTTTTCCTCC CTGGTTTTCC CTGAGTTCTCC CTCAGCTGCT CTCAGCTCT CTCAGCTCT CTCAGCTCT CTCAGCTGCT CTCAGCTCT CTCAGCT CTCAGCT CTCAGCT CTCAGCT CTCAGCT CTCAGCT CTCAGCT CTCAGCT CTCAGCT	31 TACTCGATGC GACCTTACTA TGGTCCCCAC GACCTTACTA TGGTCCCAC GGACCTAC GGTGTGATGC ACGGACCAAA ACGCCCCCAG GCCAAGACCA ATAATTTTA TGAACACAAG GCCTGCACGT TGCTGCACGT TGCTGCACGT TGCTGCACGT TGCTGCACGT TGCTGCACGT TGCTGCACGT TGCTGCACGT TGCTGCACCT TGCTGCACCT TGCTGCACCT TGCTGCACCT TGCTGCACCT TGCTGCACCT TGCTGCACCT CGCTGACCT CGCTACCCC GCAACACCC GCACTGCCCG GCACTGCCCG GCTCACCT GCTGACCT GCTGCACCC GCACTGCCCG GCACACCT GCTGACCT GCTCACCT GCT GCTCACCT GCTCA	41 TGTTGATAAC TGAAAACCAT TGAAAACCAT TGTTTAGAAG AGTGTGCACC CGTGGGACCA CGTGTCACCAC CTTCATCCTT CTGGAACCAC CTCTAGCCAA AGTGTTTCACAC CTCTAGCCAA AGTGGTTTCACAC CCACTGCGAACGTC CACTGCGGAACCTC AGAACATCT AAATTATAAC AGACACCTC AGACACATC TCTATCCAAC GATTGCAAC TTCTTGCCAG GATTGAACA TTCTTGCCAG GATTGATT TGTCTGGCTT TCAATTGTGG AGAATGAAAAA	51 AGCAAGATG GGATACCAAC GTCCATCCGG GGATACCAAC TCAAAGACTA GCCCTGGCCG GAGATGTACT TGCCCCGCGC CAGATGTACT TGCCCCGCGC GGATAGTGG GTGAGAGCC GGATAGTG GGTGAGAGCC TTACGCCTTTC TCCAAGACCA TCCTGACCA TCCTGACTA TCCTGACTA TCCTGACTA ACAAGCTGG GTTATCACGG GTTATCACGG GTTATCACGG TTCTTTAGAG TGCTGACTT ACAAGCTGGG TATTCACGG TATTCACGG TATTCACGC TACTTTAGAG TGGCACTCTT AACAGCTGGC AACTCTTTTAGAG TGGCACTCTT AACGAACAGC CAATTTTTGGA CAAGGAACAGC CAATTTTTTTTTT	60 120 180 300 360 480 540 660 720 840 900 1020 1180 1200 1140 1560 1560 1680 1740 1860 1860 1920
45 50 55 60 65	1	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCGACCCAG CTGCACCCAG CTGCACCCAG CTGCACTCAG GTCACTCAG GAACTCCCC CAGGACACTCA CAGGGACATCA CAGGGACATCA CAGGCACACTG GACTCACCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCC CATCACCC CATCACC CATCACCC CATCACC CATCACC CATCACCC CATCACC CATCAC	21 TACCTATCAT CCAGCTATTC CAGCCACTT CAGCCACTT CAGCCACTT CCCAAATCCC TTCACCTCT CACCTCTC CACCTCTTC CACCTCTC CACCTCTTC CACCTCTC CACCTCTTC CACCTCTC CCCTCTCTC CCCCCCC CCCCTCC CCCCCTCC CCCCCTCC CACCTCTC CACCTCC CACCTCC CACCTCC CCCCTCC CCCCTCC CCCCCTCC CCCCCTCC CCCCCTCC CCCCCC	31 TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTCCTA ACGCCCCGAG CATCCGGGAC GGACCTACT ACGCCCCAA GGTGTGATGG ACGACCAAA GGTGTCAAAAGC GCCAGAGCAG GCCAGAGCAG GCCAGAGCAG GCCAGAGCAG GCCAGAGCAG TGGTGCAGG GCAGAGCAG TGCTGCAGG GCAGAGCTCA TGCTGCAGC TGCTGCAGC TGCTGCAGC TGCTGCAGC TCCCCAGC CGAATATGT TTCTCCCG ACAGTGAAC TCTCCCCG ACAGTGACCT TCCCCAGC GCACTGAGCCG GCACTGCCG GCACTGCCG GCACTGCCG GCACTGCCG GCACTGCCG GCACTCCCC GCACTCCC GCACTCCC GCACTCCC GCACTCCCC GCACTCCC GCACTCC	41 TGTTGATAAC TGAAAACCAT TGAAAACCAT TGTTTACGAG AGTGTGCACC CGTGGGACTA CGTGTCACCAC CTTCATCCTT CTGGAACCAC CTCTAGCCAA TGCGGCAAT AGTGGTTCATCCT GATCGTTC GAGACCAC GAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC CAGAACGTC AGTGCTGAAC GATTTCAAC GATTTCAAC GATTTCAAC GATTTCAGCTT TGCTTGGCTT TGCTTGGCTT TGCTTTGGCTT TGCATGTTT TGCTCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TTCCAGGGGC TCCAGTGAAAAAA TCTGGGGCCA TCTGGGCCCA TCTGGCGCCA TCTGGGCCCA TCTGGCGCCA TCTGGCGCCA TCTGGCGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGGCCA TCTGGGGCCA TCTGGGGCCA	51 AGCAAGATG GGATACCAAC GTCCATCCGG GGATACCAAC CTGCATCCAG CTGCACG CAGGCTTCCA TCAAAGACTA GCCCTGGCCG GAGATGACGC GGATACGCG GGATACGC GGATACGCG GGATACGCG GAAAAACCTC TCCATGGCG GAAAAACCTC TCCATGGTGTT TCCAAGACCA GACCTAGTGA ACACCTTAGTGA ACAGCTGGC GTATTCACGC TCCTTGATTCACGC TCCTTGGATT ACCCCTTGT AACCCACTTC AACCCCTTGT AACCCACTTGCAAGACACCC CAATTTTGGA CAAGAGAGACACTCT CAAGAAGAGG CAATTTTGGA GGGAGAAGAGG CAATTTTGGA GGGAGACACTCT TCCTTGGTAGTGT	60 120 180 240 300 360 420 540 600 720 780 960 1080 1140 1260 1380 1500 1560 1560 1680 1740 1860
45 50 55 60 65	1 CONTINUED TO CONTINUE TO CON	11 ACATTCCAGA AGGGTCACCA CTATCCCGCA CCCGTCCCCC CTGCACCCAG GTCCATCACC CTGCAAGTTC CTGCATCACC GAATCCTCG CAGGGACATG GGTCACCACG GTACCACCAGG GTACCACAGT GGTCAACTTG GGTCAACTTG CATGACCAGT TGCACAGAG CATGCCACGGC ATACCAGTA TCCACAGAG TTCCCCAAC GGCACCAGG GGTCAACTTG GGTCACTTCG GGTCACTTCG TCGACAAACT TCGACAAATG GAAAACAATG GGTCACTTCA TCGACGAACT TCGACAAACT TCGACAAACT TCGACAAACT TCGACAAACT TCGACGACGT CGTCACCTTC GGTCACCTTC GGTCACTTCA TGCAGGCTGC TGAGCAGGT TCACACGT TCACACAGT ACACCAGGT ACACCAGGT ACACCAGGT ACTTCACAAA AGAAATAAAAA	21 TACCTATCAT CAGCCACTA CAGCCACTA CAGCCACTA CAGCCACTA CCCAAATCC TTCACCTCAG CCCCATACT GTTCGCCTCT CACCCTGTGT GGCTATAAGA TTTATGAAC GATCGCAGTTCA ACTCAAGCC ACGCCATGT AACTCAAGCC ACGCCATGTA AACTCAAGCC CAGGCATTG CAAAAACTGA ATCCACCAG AACAAACAATA TTCCTGCAGG AACAACAATA TACAGACAAC GGCGTGGTTT TTTTTATTAA AGTGGCTCC CTGGTTGTGG AGATCTTCCT CTCAGCTGCT CTCAGCTGCT CTCAGCTGCT CTCAGCTGCT CTCAGCTGCT CTCAGCTGCT CGCACCTCCAC GGGACCTACCC GGGACCACCCC CGGACCACCCC CGGACCACCCC CGGCACCACCCC CGGCACCCCC CGCACCCCC CCCACCCCC CCCACCCCC CCCACCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCC CCCACCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCC CCCACCCCC CCCACCCCCC	31 TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTACTA AGGCCCCGAG CATCCGGGAC AGTCCTCCAA GGTGTCCCAA GGTGTCCCAA GGTGTCATGG ACGGACCAAA ATAATTTTA TGAACACAAG GCCAGGACCAA ATAATTTTA TGACAGCGC CGGGGATTT TTTCTCATCC AGACCTCCAG AGACCTCAG AGAACCTCAG AGAACTCCAA TCTCCAGCG GCACTACCA GCACTTCCAC GCACTTCCCC GCACTGCCG CCACTGCCG CCACTGCCC CCACTGCC CCACTC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGC CC	41 TGTTGATAAC TGAAAACCAT TGTTTACAAG GGTCCTGACG AGTGTGCACC CGTGGGACAC CTCTATCCAT CGTTCACCAC CTCTATCCAT TGCCACC CTCTAGCCAA TGCCGCAAT TGCCGGCAAT TGCCGGCAAT AGTGGTTTCAC GATCGTGG GACATCT GAAACATC AGACACATC CACTGCACAC AGACACATC TCATGCCAG GATTTACAC AGACACATC TCATGCACAC TCTTGCCAG GATTGACAC TTCTTGCCAG GATTGATC TGCATGATTTTGCTC TGCATGATTTTGCTCCT TCAATTGTGG AGATCATC TCTCCCT TCAATTGTGG AGATCAAC TCTCCCT TCAATTGTGG AGATCAAAAA TCTGGGGCCA TTCACGGGCCA TTGCACGGGCCA TTGCACGTGGT TTGCACGTGT TTGCACGTACACACACACACACACACACACACACACACAC	51 AGCAAGATG GGATACCAAC GTCCATCCGG GGATACCAAC CAGGCTTCCA TCAAAGACTA GCCCTGGCCG CAGATGTACT TGCCCCGCG GAATAGTGG GTCAATAGTG GTCAATAGTG GTCAATAGTC TTACGCTGTTGCC GAATAGTC TTACGCTGTTC TCAAGACCA TGCTGGATTT TCCAAGACCA TGCTGGATTT TCCAAGACCA GGTGACCAG GGTGACCAG GGTGACCAG GTTATCACG GTTATCACG GTTATCACG TTGCACCTTAGAC ACCACTTTAGAC ACCACTTTTAAGC ACCACTTTTAAGC TGGCACCTC AACCACTTTT AAGGAAGAGG CAATTTTCGTAGTG CAGATGACACT CTTGGTAGTC TTGTTAGTG AGCAGCCTC AGCACCTCT AGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AGCACCCTC AGCACCTCTC AGCACCTC AGCACCCTC AGCACCTC AGCACCTC AGCACCCTC AGCACCCTC AGCACCCTC AGCACCCTC AGCACCTC AGCACCTC AGCACCTC AGCACCCTC AGCACCTC AGCACCC AGCACCTC AGCACCC AGCACC AGCACCTC AGCACC	60 120 180 300 360 480 540 660 720 1020 1140 1200 1140 1560 1560 1680 1740 1860 1920 1980 2040 2040
45 50 55 60 65	1 CONTINUED TO CONTINUE TO CON	11 ACATTCCAGA AGGGTCACCA CTATCCCCCA CTGCACCCAC CTGCACCCAC CTGCACCCAC CTGCACCCAC CTGCACCCAC CTGCACTCAC CTGCATCACC CTGCATCACC CAGGGACATCAC CAGGGACATCA GATCCACGC GTACACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCCC CATCACCCC CATCACCC CATCACC CATCACCC CATCACC CATCACC CATCACC CATCACC CATCACC CATCACCC CATCACC CATCAC CATCACC CATCAC CATCACC CATCAC	21 TACCTATCAT CAGCCACTA CAGCCACTA CAGCCACTA CAGCCACTA CCCAAATCC TTCACCTCAG CCCCATACT GTTCGCCTCT CACCCTGTGT GGCTATAAGA TTTATGAAC GATCGCAGTTCA ACTCAAGCC ACGCCATGT AACTCAAGCC ACGCCATGTA AACTCAAGCC CAGGCATTG CAAAAACTGA ATCCACCAG AACAAACAATA TTCCTGCAGG AACAACAATA TACAGACAAC GGCGTGGTTT TTTTTATTAA AGTGGCTCC CTGGTTGTGG AGATCTTCCT CTCAGCTGCT CTCAGCTGCT CTCAGCTGCT CTCAGCTGCT CTCAGCTGCT CTCAGCTGCT CGCACCTCCAC GGGACCTACCC GGGACCACCCC CGGACCACCCC CGGACCACCCC CGGCACCACCCC CGGCACCCCC CGCACCCCC CCCACCCCC CCCACCCCC CCCACCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCC CCCACCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCCC CCCACCCC CCCACCCCC CCCACCCCCC	31 TACTCGATGC GACCTTACTA TGGTCCCCAG GACCTTACTA AGGCCCCGAG CATCCGGGAC AGTCCTCCAA GGTGTCCCAA GGTGTCCCAA GGTGTCATGG ACGGACCAAA ATAATTTTA TGAACACAAG GCCAGGACCAA ATAATTTTA TGACAGCGC CGGGGATTT TTTCTCATCC AGACCTCCAG AGACCTCAG AGAACCTCAG AGAACTCCAA TCTCCAGCG GCACTACCA GCACTTCCAC GCACTTCCCC GCACTGCCG CCACTGCCG CCACTGCCC CCACTGCC CCACTC CCACTGCC CCACTGCC CCACTGCC CCACTGCC CCACTGC CC	41 TGTTGATAAC TGAAAACCAT TGTTTACAAG GGTCCTGACG AGTGTGCACC CGTGGGACAC CTCTATCCAT CGTTCACCAC CTCTATCCAT TGCCACC CTCTAGCCAA TGCCGCAAT TGCCGGCAAT TGCCGGCAAT AGTGGTTTCAC GATCGTGG GACATCT GAAACATC AGACACATC CACTGCACAC AGACACATC TCATGCCAG GATTTACAC AGACACATC TCATGCACAC TCTTGCCAG GATTGACAC TTCTTGCCAG GATTGATC TGCATGATTTTGCTC TGCATGATTTTGCTCCT TCAATTGTGG AGATCATC TCTCCCT TCAATTGTGG AGATCAAC TCTCCCT TCAATTGTGG AGATCAAAAA TCTGGGGCCA TTCACGGGCCA TTGCACGGGCCA TTGCACGTGGT TTGCACGTGT TTGCACGTACACACACACACACACACACACACACACACAC	51 AGCAAGATG GGATACCAAC GTCCATCCGG GGATACCAAC CAGGCTTCCA TCAAAGACTA GCCCTGGCCG CAGATGTACT TGCCCCGCG GAATAGTGG GTCAATAGTG GTCAATAGTG GTCAATAGTC TTACGCTGTTGCC GAATAGTC TTACGCTGTTC TCAAGACCA TGCTGGATTT TCCAAGACCA TGCTGGATTT TCCAAGACCA GGTGACCAG GGTGACCAG GGTGACCAG GTTATCACG GTTATCACG GTTATCACG TTGCACCTTAGAC ACCACTTTAGAC ACCACTTTTAAGC ACCACTTTTAAGC TGGCACCTC AACCACTTTT AAGGAAGAGG CAATTTTCGTAGTG CAGATGACACT CTTGGTAGTC TTGTTAGTG AGCAGCCTC AGCACCTCT AGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AAGCACCTCT AGCACCCTC AGCACCTCTC AGCACCTC AGCACCCTC AGCACCTC AGCACCTC AGCACCCTC AGCACCCTC AGCACCCTC AGCACCCTC AGCACCTC AGCACCTC AGCACCTC AGCACCCTC AGCACCTC AGCACCC AGCACCTC AGCACCC AGCACC AGCACCTC AGCACC	60 120 180 240 300 360 420 540 600 720 780 960 1080 1140 1260 1380 1500 1560 1560 1680 1740 1680 1740 1860 1980 1980 1980 1980

5	CATTGGGTGG TCCTAGCACC ATGTCGGCCT	GGCTCCTGGG CTGGAGAGTG CTTCAGGCCT TAAGGTACAC	AGGGAGACTC AATGCCCCTT GATAGTCATT	AGCCTTCCTC GGTCCCTGGC GGAAATTGAG	CTCATCCTCC AGGGCGCCAA GTCCATGGGG		2280 2340 2400	
10	SEQ ID NO:173 Protein Accession	PEL3 Protein secu n#:	lence:	NP_005647.1		•		
15	1	11 GPYYENHGY	21 QPENPYPAQP	31 TVVPTVYEVH	41 PAQYYPSPVP	51 OYAPRVLTQA	60	
	DSSGTCINPS GRAACRDMGY	NWCDGVSHCP KNNFYSSQGI	GGEDENRCVR	LYGPNFILOM KLNTSAGNVD	YSSQRKSWHP IYKKLYHSDA	CSSKAVVSLR	120 180 240 300	
20	VKPVCLPNPG	MMLQPEQLCW QGNVDSCQGD	FYGAGYQVQK ISGWGATEEK SGGPLVTSNN	gktsevlnaa	KVLLIETORC	NSRYVYDNLI	360 420 480	
25							•	•
	Nucleic Acid Acc	ession #:	Co	SE: Al694767 ding sequence:	2 ID NO:174 PBJ4	DNA SEQUENCE		underlined sequences correspond to start and stop codons)
30	1	11	21	31	41	51		
			GCAGCCTGCC				60	
			TACGGTTGAG TCCCAATGGC				120 180	
35	ATAGGCCTCC	CTGGTTTAGA	AGAGGCTCAG	TTCTGGTTGG	CCTTCCCATT	GIGCTCCCTC	240	·
			TAACTTGACA ATTTCTTTGC				300 360	
	ACCTCATCCA	TGCCCAAAAT	GCTGGCCATC	TTCTGGTTCA	ATTCCACTAC	CATCCAGTTT	420	
40			GTTTGCCATC				480 540	
			CACCAAAATT				600	
			CTTCATCAAG				660	
			CCAAGATGTC				720 780	
45	TCCTTCTCAT	ATCTGCTTAT	TCTTAAGACT	GTGTTGGGCT	TGACACGTGA	AGCCCAGGCC	840	
			CTCTCATGTG TCGCTTTAGC				900 960	
						TGGAGTGAAG		
50						CGCTTCAGAG	1080	
50						AGATTTTAAT TACAACTCAG		
	ATCCTTCAAA	TATGAAACTG	GTTGGGGAAT	CTCCATTTTT	TCAATATTAT	TITCTTCTTT		
			TATTAATACC				1320	
55						ACAGCATTCT CAAAGGAAAA	1380 1440	
	TARACACAGA	ATATAATAAA	ATGAGATAAT	CTAGCTTAAA	ACTATAACTT	CCTCTTCAGA	1500	
						TACAGAGAAG AGCCTTGAAA		
60	AGAGTACATT	TACCTACGTT	AATGAAAGTT	GACACACTGT	TCTGAGAGTT	TTCACAGCAT	1680	
60						AAAGATATTA TGAATTAAAT		
						CATATGATGT		
						GTCTTACATT		
65						GAATTTCCTG TCCAATTGCC		
	AATTACCTGT	GTCTTGGAAG	AAGTGATTTC	TAGGTTCACC	ATTATGGAAG	ATTCTTATTC	2100	
						TAGGTGTTTC TGGCAGGTGT		
7 0						AATCTTCAGG		
70	ACCATGCTTT	ATTTGGGGCT	TTGTGCAGTA	TGGAACAGGG	ACTITGAGAC	CGGGAAAGCA	2340	
						CCAAGGGTTA AAATTACATA		
	TACTAAAACA	TGTGATCATA	TATGTGGTAA	GTTTCATTTT	CTTTTTCAAT	CCTCAGGTTC	2520	
75						CATATTTGGA		
13						CACTGTTTAT ATCCCCCAGC		
	AAAGTGCCTA	GAACATAATA	GTGCTTATGC	TTGACACCGG	TTATTTTTCA	TCAAACCTGA	2760	
	TTCCTTCTGT	GCTGAACACA	TAGCCAGGCA	ATTTTCCAGC	CTTCTTTGAG	TTGGGTATTA	2820	
80						TTTATACCTG CTTGGGAAGC		

```
TATGTGTTAC ACAGAGTTAA TTAACCNGAA AGGCCTGGNA ATTTTTTGNN AANNAAACTG 3000
       TGGCCNNGAG GCCCNCAACC CTTTTTNNNA ATTTGGCAAN NTCCCACTTT GTANTTTGGT 3060
       AAGGAGGCCA GTTGGATAAG TGAAAAATAA AGTACTATTG TGTC
 5
                                                  SEQ ID NO:175 PBJ4 PROTEIN SEQUENCE
                                            not available, cloned at Eos
       Protein Accession #:
10
                                          31
                   11
                               21
                                                       41
                                                                  51
       NVDPMGNESS ATYFILIGLP GLEEAQFWLA PPLCSLYLIA VLGNLTIIYI VRTEHSLHEP
                                                                                 60
       MYIFICMLSG IDILISTSSM PKMLATPWFN STTIQFDACL LQMFAIHSLS GMESTVLLAM
AFDRYVAICH PLRHATVLTL PRVTKIGVAA VVRGAALMAP LFVFIKQLPF CRSNILSHSY
                                                                                120
15
                                                                                180
       CLHQDVMKLA CDDIRVNVVY GLIVIISAIG LDSLLISFSY LLILKTVLGL TREAQAKAFG
                                                                                240
       TCVSHVCAVF IFYVPFIGLS MVHRPSKRRD SPLPVILANI YLLVPFVLNP IVYGVKTKEI
                                                                                300
       RORIGRIANV ATHASEP
20
                                                   SEQ ID NO: 176 PM72 DNA SEQUENCE
                                            NM 004624.1
       Nucleic Acid Accession #:
                                            57-1544 (underlined sequences correspond to start and stop codons)
       Coding sequence:
25
        TOGGAGOOTG CGGAGGGTGG TGGTGGTGGT GGTGGTGGCC CTCGCCCGCC TCACTCATGC
        CTCCTCCTCC TCTGCTCTCG CTCAGGCGCC TCGGTGGCGG TTGGTCGGCG GTTACGCGGC
        TEGTEGTCCC GCCGCCCGG GCTCCCTCTC GGGGAGGCCG GGGCGGATCT CGCGGCGCAG
                                                                                 180
        GCGGCGGCGG CCGAGGTGGG GTCGCGCGGC GGAGGCGGCT CGAGCTTCGT GCTGCGCGCT
        CGCTCTTGGG CTCCTCGCTG CAGGAGGAGT GTGACTATGT GCAGATGATC GAGGTGCAGC
                                                                                 300
30
        ACAAGCAGTG CCTGGAGGAG GCCCAGCTGG AGAATGAGAC AATAGGCTGC AGCAAGATGT
GGGACAACCT CACCTGCTGG CCAGCCACCC CTCGGGGCCA GGTAGTTGTC TTGGCCTGTC
                                                                                 360
        CCCTCATCTT CAAGCTCTTC TCCTCCATTC AAGGCCGCAA TGTAAGCCGC AGCTGCACCG
                                                                                  480
        ACGAAGGCTG GACGCACCTG GAGCCTGGCC CGTACCCCAT TGCCTGTGGT TTGGATGACA
                                                                                  540
        AGGCAGCGAG TTTGGATGAG CAGCAGACCA TGTTCTACGG TTCTGTGAAG ACCGGCTACA
35
        CCATTGGCTA CGGCCTGTCC CTCGCCACCC TTCTGGTCGC CACAGCTATC CTGAGCCTGT
                                                                                  660
                                                                                  720
        TCAGGAAGCT CCACTGCACG CGGAACTACA TCCACATGCA CCTCTTCATA TCCTTCATCC
        TGAGGGCTGC CGCTGTCTTC ATCAAAGACT TGGCCCTCTT CGACAGCGGG GAGTCGGACC
        AGTGCTCCGA GGGCTCGGTG GGCTGTAAGG CAGCCATGGT CTTTTTCCAA TATTGTGTCA
                                                                                  840
                                                                                 900
        TGGCTAACTT CTTCTGGCTG CTGGTGGAGG GCCTCTACCT GTACACCCTG CTTGCCGTCT
40
        CCTTCTTCTC TGAGCGGAAG TACTTCTGGG GGTACATACT CATCGGCTGG GGGGTACCCA
        GCACATTCAC CATGGTGTGG ACCATCGCCA GGATCCATTT TGAGGATTAT GGTCTGCTCA
                                                                                1020
        GGTGCTGGGA CACCATCAAC TCCTCACTGT GGTGGATCAT AAAGGGCCCC ATCCTCACCT
                                                                                1080
        CCATCTTGGT AAACTTCATC CTGTTTATTT GCATCATCCG AATCCTGCTT CAGAAACTGC
         GGCCCCCAGA TATCAGGAAG AGTGACAGCA GTCCATACTC AAGGCTAGCC AGGTCCACAC
                                                                                1200
45
        TCCTGCTGAT CCCCCTGTTT GGAGTACACT ACATCATGTT CGCCTTCTTT CCGGACAATT
                                                                                1260
         TTAAGCCTGA AGTGAAGATG GTCTTTGAGC TCGTCGTGGG GTCTTTCCAG GGTTTTGTGG
                                                                                1320
         TGGCTATCCT CTACTGCTTC CTCAATGGTG AGGTGCAGGC GGAGCTGAGG CGGAAGTGGC
                                                                                1380
         GGCGCTGGCA CCTGCAGGGC GTCCTGGGCT GGAACCCCAA ATACCGGCAC CCGTCGGGAG
                                                                                1440
         GCAGCAACGG CGCCACGTGC AGCACGCAGG TTTCCATGCT GACCCGCGTC AGCCCAGGTG
                                                                                1500
50
         CCCGCCGCTC CTCCAGCTTC CAAGCCGAAG TCTCCCTGGT CTGACCACCA GGATCCCAGC
                                                                                1560
         CCAAGCGGCC CCTCCCGCCC CTTCCCACTC GCAGCAGACG CCGGGGACAG AGGCCTGCCC
                                                                                1620
         GGGCGCCCA GCCCCGGCCC TGGGCTCGGA GGCTGCCCCC GGCCCCCTGG TCTCTGGTCC
                                                                                1680
         GGACACTCCT AGAGAACGCA GCCCTAGAGC CTGCCTGGAG CGTTTCTAGC AAGTGAGAGA
                                                                                1740
        GATGGGAGCT CCTCTCCTGG AGGATGCAGG TGGAACTCAG TCATTAGACT CCTCCTCCAA
                                                                                1800
55
        AGGCCCCCTA CGCCAATCAA GGGCAAAAAG TCTACATACT TTCATCCTGA CTCTGCCCCC
         TGCTGGCTCT TCTGCCCAAT TGGAGGAAAG CAACCGGTGG ATCCTCAAAC AACACTGGTG
                                                                                1920
        TGACCTGAGG GCAGAAAGGT TCTGCCCGGG AAGGTCACCA GCACCAACAC CACGGTAGTG
                                                                                1980
        CCTGAAATTT CACCATTGCT GTCAAGTTCC TTTGGGTTAA GCATTACCAC TCAGGCATTT
         GACTGAAGAT GCAGCTCACT ACCCTATTCT CTCTTTACGC TTAGTTATCA GCTTTTTAAA
                                                                                2100
60
         GTGGGTTATT CTGGAGTTTT TGTTTGGAGA GCACACCTAT CTTAGTGGTT CCCCACCGAA
                                                                                2160
         GTGGACTGGC CCCTGGGTCA GTCTGGTGGG AGGACGGTGC AACCCAAGGA CTGAGGGACT
                                                                                2220
        CTGAAGCCTC TGGGAAATGA GAAGGCAGCC ACCAGCGAAT GCTAGGTCTC GGACTAAGCC TACCTGCTCT CCAAGTCTCA GTGGCTTCAT CTGTCAAGTG GGACTCTGTC ACACCAGCCA
                                                                                2280
                                                                                2340
         TYCTTATCTC TCTGTGCTGT GGAAGCAACA GGAATCAAGA GACTGCCCTC CTTGTCCACC
                                                                                2400
65
         CACCTATGTG CCAACTGTTG TAACTAGGCT CAGAGATGTG CACCCATGGG CTCTGACAGA
                                                                                2460
         AAGCAGATCC TCACCCTGCT ACACATACAG GATTTGAACT CAGATCTGTC TGATAGGAAT
                                                                                2520
         GTGAAAGCAC GGACTCTTAC TGCTAACTTT TGTGTATCGT AACCAGCCAG ATCCTCTTGG
                                                                                2580
         TTATTTGTTT ACCACTTGTA TTATTAATGC CATTATCCCT GAATTCCCCT TGCCACCCCA
                                                                                2640
         CCCTCCCTGG AGTGTGGCTG AGGAGGCCTC CATCTCATGT ATCATCTGGA TAGGAGCCTG
                                                                                2700
70
         CTGGTCACAG CCTCCTCTGT CTGCCCTTCA CCCCAGTGGC CACTCAGCTT CCTACCCACA
         CCTCTGCCAG AAGATCCCCT CAGGACTGCA ACAGGCTTGT GCAACAATAA ATGTTGGCTT 2820
         GCAAAAAA AAAA
        SEQ ID NO:177 PM72 Protein sequence:
75
                                            JC2195
       Protein Accession #:
                                           31
                                                       41
                                                                   51
                               21
        MPPPPLLSLR RLGGGWSAVT RLVVAAAGAR SRGGRGGSRG AGGGGRGGVA RRRRLELRAA
80
        RSLIGSSLOE ECDYVOMIEV OHKOCLEEAO LENETIGCSK MWDNLTCWPA TPRGQVVVLA
```

```
CPLIFKLESS IQGRNVSRSC TDEGWTHLEP GPYPIACGLD DKAASLDEQQ TMFYGSVKTG
         YTIGYGLSLA TLLVATAILS LPRKLHCTRN YIHMHLFISP ILRAAAVPIK DLALPDSGES
                                                                                                240
         DOCSEGSVGC KAAMVFFOYC VMANFFWLLV EGLYLYTLLA VSFFSERKYF WGYILIGWGV
                                                                                                300
         PSTFTMVWTI ARIHFEDYGL LRCWDTINSS LWWIIKGPIL TSILVNFILF ICIIRILLQK
  5
         LRPFDIRKSD SSPYSRLARS TLLLIPLFGV HYIMFAFFPD NFKPEVKMVF ELVVGSFQGF
         VVAILYCFLN GEVOAELRRK WRRWHLOGVL GWNPKYRHPS GGSNGATCST OVSMLTRVSP
         GARRSSSFOA EVSLV
                                                             SEQ ID NO:178 BFF8 DNA SEQUENCE
10
         Nucleic Acid Accession #:
                                                     AL133619
                                          1-2070 (underlined sequences correspond to start and stop codons)
                    Coding sequence:
         ATTRAGEGETE ÉGGGGTEGE GETTEGGACE ÉGGCCCCCA GETTEGCCGAC ÉCCGGGETET ÉGGCGCCGC GEAGCGCCC ETCTGTGGC GTCAGTCCT TGAGGCCGCA GAGCCCCAG
15
         CTCAGGCAGA GCGACCCGCA GAAACGGAAC CTGGACCTGG AGAAAAGCCT GCAGTTCCTG
CAGCAGCAGC ACTCGGAGAT GCTGGCCAAG CTCCATGAGG AGATCGAGCA TCTGAAGCGG
                                                                                                180
         GAAAACAAGG GTGAGCCGGC GCGGGGCCCT AGGCCGGCCC TGCCTCCCCA GGCACACTCA
20
         ACACTGCCGC TCCCGCAGCA CAGAAACACA GCCATCAACT CCAGCACACG CCTGGGCTCA
GGGGGAACAC AGGACGGGGA GCCCCTCCAG ACTGTCCTTG CCCACCTGGC TGCACTGGCC
         CCTGTATGCC AACCCAGTGG GTACAGGTTC TGGGGGACCT GGACAGATGC CGCTACCTCT
                                                                                                480
         AGCOGTGGCT GGACGATGTT ATGCAGCCAA GCACAGCACG TGCTGCTCTC GGGAAGCCCA
GGGCCTGAGG TCATTGCAGG GCGGCAGGTG GCCACAGGGT GCTCCCCAGA CCTCCCTCCT
                                                                                                540
                                                                                                600
25
         CCTCAGATTG CTGCTGTGGC CAGGCCCAGG ATTTCCAGCC CTATGGCTCT GAGTCCTCAC ATGCTGGGGG CCCAGGGGAT ATGGACACAC TCCATCCAGG GATCCCTTCC TGCCATCTGG
                                                                                                720
                                                                                                780
         GCAGCAACCA TGGGGACAAA GGGAGGAAGC AGAGTCCTGT TTCCTTGCCA CTTGTCCAAG
         GCACTTCCCC ATCCTGACAG CGGCCCCAC CCAGCCCAGG ATCCTGGGCT GTGGTCTCAA
GCTCACTTCC CATTATCTTT GGGGCTGGGG CTGACATCAG GAGGACATCT GACTGGTGGA
                                                                                                900
30
                                                                                                960
         TGGAGCCAGC CTGGGAACAT CGCAGCTGGG GCAGTGCCTA GGGCTCTCCC TTCCCAGGGA
         GACATGGAGA AGGGGGTTGA GGGAGGGCCC TTCCCTAGCC GCTGTGGCAA CTCCAGTGAG
CTGTTCTGGG CAAAGTGTGG CCCAAGTCGG CAGCCCCAGC CCTGCAGTGC TGGGGACGCT
                                                                                              1080
                                                                                              1140
         GACAGGACAC GGGAAGAGGC CATGCTTTCC CTCGGGACCT GCTGTTCCAT GTGTCCCAAG
                                                                                              1200
35
         CCCTCCTGCT TTCCAGATGG CCCCTCAGGA AACCACCTTT CCAGGGCCTC TGCTCCCTTG
                                                                                              1260
         GGCGCTCGCT GGGTCTGCAT CAACGGAGTG TGGGTAGAGC CGGGAGGACC CAGCCCTGCC
                                                                                              1320
         AGGCTGAAGG AGGCCTCCTC ACGGACACAC AGGCCAGGAG GCAAGCGTGG GCGTCTTGCG
                                                                                              1380
         1440
                                                                                              1500
40
         TCCTTCAACA AGCAAGATTC AAAAGCTGAC GTCTCCCAGA AGGCGGACCT GGAAGAGGAG
                                                                                              1560
         CCCCTACTTC ACAACAGCAA GCTGGACAAA GTTCCTGGGG TACAAGGGCA GGCCAGAAAG
GAGAAAGCAG AGGCCTCTAA TGCAGGAGCT GCCTGTATGG GGAACAGCCA GCACCAGGGC
                                                                                              1620
                                                                                              1680
         AGGCAGATGG GGGCGGGGC ACACCCCCCA ATGATCCTGC CCCTTCCCCT GCGAAAGCCC
                                                                                              1740
         ACCACACTTA GGCAGTGCGA AGTGCTCATC CGCGAGCTGT GGAATACCAA CCTCCTGCAG
ACCCAAGAGC TGCGGCACCT CAAGTCCCTC CTGGAAGGGA GCCAGAGGCC CCAGGCAGCC
                                                                                              1800
45
                                                                                              1860
         CCGGAGGAAG CTAGCTTTCC CAGGGACCAA GAAGCCACGC ATTTCCCCAA GGTCTCCACC
                                                                                              1920
         AAGAGCCTCT CCAAGAAATG CCTGAGCCCA CCTGTGGCGG AGCGTGCCAT CCTGCCCGCA
CTGAAGCAGA CCCCGAAGAA CAACTTTGCC GAGAGGCAGA AGAGGCTGCA GGCAATGCAG
                                                                                              1980
         AAACGGCCC TGCATCGCTC AGTGCTTTGA
50
         SEQ ID NO:179 BFF8 Protein sequence:
         Protein Accession #:
                                                     T43457
55 ·
                                                   31
                                                                 41
                                     21
         MSGAGVAAGT RPPSSPTPGS RRRRORPSVG VOSLRPOSPO LROSDPOKRN LDLEKSLOFL
         QQQHSEMLAK LHEETEHLKR ENKGEPARGP RPALPPQAHS TLPLPQHRNT AINSSTRLGS
         GGTQDGEPLO TVLAHLAALA PVCQPSGYRF WGTWTDAATS SRGWTMLCSQ AQHVLLSGSP
GPEVIAGRQV ATGCSPDLPP PSRAEMGRNP WDSPCPARSL PQIAAVARPR ISSPMALSPH
                                                                                                180
60
                                                                                                240
         MLGAQGIWTH SIQGSLPAIW AATMGTKGGS RVLFPCHLSK ALPHPDSGPH PAQDPGLWSQ
         AHFFLSLGLG LITSGGHLITGG WSQPGNIAAG AVPRALPSQG DMEKGVEGGP FPSRCGNSSE
LFWAKCGPSR QPQPCSAGDA DRITREBANLS LGTCCSMCPK PSCFPDGPSG NHLSRASAPL
                                                                                                360
                                                                                                420
         GARWYCINGV WVEPGGPSPA RLKEGSSRTH RPGGKRGRLA GGSADTVRSP ADSLEMSSPQ
65
         SVKSISNSAN SQCKARPQPG SPNKQDSKAD VSQKADLEEB PLLHNSKLDK VPGVQGQARK
EKARASNAGA ACMGNSQHQG RQMGAGAHPP MILPLPLRKP TTLRQCEVLI RELMNTNLLQ
                                                                                                540
                                                                                                600
         TOELRHLKSL LEGSORPOAA PEEASPPRDO EATHFPKVST KSLSKKCLSP PVAERAILPA
         LKOTPKNNFA EROKRLOAMO KRRLHRSVL
70
                                                             SEQ ID NO:180 BCR4 DNA SEQUENCE
                                                     NM_012319.2
         Nucleic Acid Accession #:
                                                Coding sequence:
                                                                                            138-2405 (underlined sequences correspond to start and stop codons)
75
                                                   31
         CTCGTGCCGA ATTCGGCACG AGACCGCGTG TTCGCGCCTG GTAGAGATTT CTCGAAGACA
         CCAGTGGGCC COTGTGGAAC CAAACCTGCG CGCGTGGCCG GGCCGTGGGA CAACGAGGCC
                                                                           374
```

180

```
GCGGAGACGA AGGCGCA<u>ATG</u> GCGAGGAAGT TATCTGTAAT CTTGATCCTG ACCTTTGCCC TCTCTGTCAC AAATCCCCTT CATGAACTAA AAGCAGCTGC TTTCCCCCAG ACCACTGAGA
         AAATTAGTCC GAATTGGGAA TCTGGCATTA ATGTTGACTT GGCAATTTCC ACACGGCAAT
                                                                                            300
         ATCATCTACA ACAGCTTTTC TACCGCTATG GAGAAAATAA TTCTTTGTCA GTTGAAGGGT
TCAGAAAATT ACTTCAAAAT ATAGGCATAG ATAAGATTAA AAGAATCCAT ATACACCATG
                                                                                            360
  5
         ACCACGACCA TCACTCAGAC CACGAGCATC ACTCAGACCA TGAGCGTCAC TCAGACCATG
                                                                                            480
         AGCATCACTC AGACCACGAG CATCACTCTG ACCATGATCA TCACTCTCAC CATAATCATG CTGCTTCTGG TAAAAATAAG CGAAAAGCTC TTTGCCCAGA CCATGACTCA GATAGTTCAG
                                                                                            540
                                                                                            600
         GTAAAGATCC TAGAAACAGC CAGGGGAAAG GAGCTCACCG ACCAGAACAT GCCAGTGGTA
                                                                                            660
10
         GAAGGAATGT CAAGGACAGT GTTAGTGCTA GTGAAGTGAC CTCAACTGTG TACAACACTG
                                                                                            720
         TCTCTGAAGG AACTCACTTT CTAGAGACAA TAGAGACTCC AAGACCTGGA AAACTCTTCC
         CCAAAGATGT AAGCAGCTCC ACTOCACCCA GTGTCACATC AAAGAGCCGG GTGAGCCGGC
                                                                                            840
         TGCTGGTAG GAAAACAAAT GAATCTGTGA GTGAGCCCCG AAAAGGCTTT ATGTATTCCA
GAAACACAAA TGAAAATCCT CAGGAGTGTT TCAATGCATC AAAGCTACTG ACATCTCATG
                                                                                            900
                                                                                            960
15
         GCATGGGCAT CCAGGTTCCG CTGAATGCAA CAGAGTTCAA CTATCTCTGT CCAGCCATCA
                                                                                           1020
         TCAACCAAAT TGATGCTAGA TCTTGTCTGA TTCATACAAG TGAAAAGAAG GCTGAAATCC
CTCCAAAGAC CTATTCATTA CAAATAGCCT GGGTTGGTGG TTTTATAGCC ATTTCCATCA
                                                                                           1080
                                                                                           1140
         TCAGITTCCT GTCTCTGCTG GGGGTTATCT TAGTGCCTCT CATGAATCGG GTGTTTTTCA
                                                                                           1200
         AATTICTCCT GAGTTTCCTT GTGGCACTGG CCGTTGGGAC TTTGAGTGGT GATGCTTTTT
                                                                                           1260
20
         TACACCTTCT TOCACATTCT CATGCAAGTC ACCACCATAG TCATAGCCAT GAAGAACCAG
                                                                                           1320
         CARTGGARAT GARAGAGGA CCACTTTTCA GTCATCTGTC TTCTCARAAC ATAGAAGARA
                                                                                           1380
         GEGCETATET TGATTCCACG TGGAAGGGTC TAACAGCTCT AGGAGGCCTG TATTTCATGT
                                                                                           1440
         TTCTTGTTGA ACATGTCCTC ACATTGATCA AACAATTTAA AGATAAGAAG AAAAAGAATC
                                                                                           1500
         AGAAGAAACC TGAAAATGAT GATGATGTGG AGATTAAGAA GCAGTTGTCC AAGTATGAAT
                                                                                           1560
25
         CTCAACTTTC AACAAATGAG GAGAAAGTAG ATACAGATGA TCGAACTGAA GGCTATTTAC
                                                                                           1620
         GAGCAGACTC ACAAGAGCCC TCCCACTTTG ATTCTCAGCA GCCTGCAGTC TTGGAAGAAG
                                                                                           1680
         AAGAGGTCAT GATAGCTCAT GCTCATCCAC AGGAAGTCTA CAATGAATAT GTACCCAGAG
                                                                                           1740
        GGTGCAAGAA TAAATGCCAT TCACATTTCC ACGATACACT CGGCCAGTCA GACGATCTCA
TTCACCACCA TCATGACTAC CATCATATTC TCCATCATCA CCACCACCAA AACCACCATC
                                                                                           1800
                                                                                           1860
30
         CTCACAGTCA CAGCCAGCGC TACTCTCGGG AGGAGCTGAA AGATGCCGGC GTCGCCACTT
                                                                                          1920
         TGGCCTGGAT GGTGATAATG GGTGATGGCC TGCACAATTT CAGCGATGGC CTAGCAATTG
                                                                                          1980
         GTGCTGCTTT TACTGAAGGC TTATCAAGTG GTTTAAGTAC TTCTGTTGCT GTGTTCTGTC
                                                                                           2040
         ATGAGTTGCC TCATGAATTA GGTGACTTTG CTGTTCTACT AAAGGCTGGC ATGACCGTTA
                                                                                           2100
         AGCAGGCTGT CCTTTATAAT GCATTGTCAG CCATGCTGGC GTATCTTGGA ATGGCAACAG
                                                                                          2160
35
         GAATTTCAT TGGTCATTAT GCTGAAAATG TTTCTATGTG GATATTTGCA CTTACTGCTG
                                                                                           2220
         GCTTATTCAT GTATGTTGCT CTGGTTGATA TGGTACCTGA AATGCTGCAC AATGATGCTA
                                                                                           2280
         GTGACCATGG ATGTAGCCGC TGGGGGTATT TCTTTTTACA GAATGCTGGG ATGCTTTTGG
                                                                                          2340
         GTTTTGGAAT TATGTTACTT ATTTCCATAT TTGAACATAA AATCGTGTTT CGTATAAATT
                                                                                           2400
        TCTAGTTAAG GTTTAAATGC TAGAGTAGCT TAAAAAGTTG TCATAGTTTC AGTAGGTCAT AGGGAGATGA GTTTGTATGC TGTACTATGC AGCGTTTAAA GTTAGTGGGT TTTGTGATTT
                                                                                           2460
40
                                                                                          2520
         TTGTATTGAA TATTGCTGTC TGTTACAAAG TCAGTTAAAG GTACGTTTTA ATATTTAAGT
         TATTCTATCT TGGAGATAAA ATCTGTATGT GCAATTCACC GGTATTACCA GTTTATTATG
                                                                                          2640
         TAAACAAGAG ATTTGGCATG ACATGTTCTG TATGTTTCAG GGAAAAATGT CTTTAATGCT
                                                                                          2700
         TTTTCAAGAA CTAACACAGT TATTCCTATA CTGGATTTTA GGTCTCTGAA GAACTGCTGG
45
         TGTTTAGGAA TAAGAATGTG CATGAAGCCT AAAATACCAA GAAAGCTTAT ACTGAATTTA
                                                                                          2820
         AGCAAAGAAA TAAAGGAGAA AAGAGAAGAA TCTGAGAATT GGGGAGGCAT AGATTCTTAT
                                                                                          2880
         AAAAATCACA AAATTTGTTG TAAATTAGAG GGGAGAAATT TAGAATTAAG TATAAAAAGG
        CAGAATTAGT ATAGAGTACA TTCATTAAAC ATTTTTGTCA GGATTATTTC CCGTAAAAAC GTAGTGAGCA CTCTCATATA CTAATTAGTG TACATTTAAC TTTGTATAAT ACAGAAATCT
                                                                                          3000
                                                                                          3060
50
         AAATATATTT AATGAATTCA AGCAATATAC ACTTGACCAA GAAATTGGAA TTTCAAAATG
                                                                                           3120
        TTCGTGCGGG TTATATACCA GATGAGTACA GTGAGTAGTT TATGTATCAC CAGACTGGGT
TATTGCCAAG TTATATATCA CCAAAAGCTG TATGACTGGA TGTTCTGGTT ACCTGGTTTA
                                                                                          3180
                                                                                          3240
         CAAAATTATC AGAGTAGTAA AACTTTGATA TATATGAGGA TATTAAAACT ACACTAAGTA
        TCATTTGATT CGATTCAGAA AGTACTTTGA TATCTCTCAG TGCTTCAGTG CTATCATTGT
GAGCAATTGT CTTTATATAC GGTACTGTAG CCATACTAGG CCTGTCTGTG GCATTCTCTA
                                                                                          3360
55
         GATGTTTCTT TTTTACACAA TAAATTCCTT ATATCAGCTT G
                                                         SEQ ID NO:181 BCR4 PROTEIN SEQUENCE
60
                                                  NP_036451
        Protein Accession #:
                      11
                                   21
                                                 31
                                                              41
                                                                            51
65
         marklsvili ltfalsvinp lhelkaaafp qitekispnw esginvdlai stroyhlool
         FYRYGENNSL SVEGFRKLLQ NIGIDKIKRI HIHHDHDHHS DHEHHSDHER HSDHEHHSDH
                                                                                           120
         EHHSDHDHHS HHNHAASGKN KRKALCPDHD SDSSGKDPRN SQGKGAHRPE HASGRRNVKD
        SVSASEVTST VYMTVSEGTH FLETIETPRP GKLFPKDVSS STPPSVTSKS RVSRLAGRKT
NESVSEPRKG FMYSRNTNEN POECFNASKL LITSHGMGIOV FLNATEFNYL CPAILNQIDA
                                                                                            240
                                                                                            300
70
         rsclihtsek kabippktys lqiawvggfi aisiisplsl lgvilvplmn rvffkfllsf
        LVALAVGTLS GDAFLHLLPH SHASHHHSHS HEEPAMEMKR GPLPSHLSSQ NIEESAYFDS
TWKGLTALGG LYFMPLVEHV LTLIKOFKDK KKKNOKKPEN DDDVEIKKQL SKYESQLSTN
                                                                                            420
                                                                                            480
         EEKVDTDDRT EGYLRADSQE PSHFDSQQPA VLEEEKVMIA HAHPQEVYNE YVPRGCKNKC
        EERVOLUME SOLLIHHIND YHHILIMHIN QNHPHSHSQ RYSREELKDA GVATLAWAVI MGDGLENFSD GLAIGAAPTE GLSSGLSTSV AVFCHELPHE LGDFAVLLKA GMTVKQAVLY
                                                                                            600
75
                                                                                            660
         NALSAMLAYL GMATGIFIGH YAENVSMWIF ALTAGLFMYV ALVDMVPEML HNDASDHGCS
         RWGYFFLONA GMLLGFGIML LISIPEHKIV PRINF
```



```
CAGGAAGTGA AGGCAAGAAT CAAGAGGATG GTTTTCAAAG GAGGGCGCAC GGAGACGGAA
         CTTGCTCTGA AATACCTTCT GCACAGAGGG TTGCCTGGAG GCAGAAATGC TTCTGTGCCC
                                                                                                                  780
         CAGATCCTCA TCATCGTCAC TGATGGGAAG TCCCAGGGGG ATGTGGCACT GCCATCCAAG
         CAGCTGAAGG AAAGGGTGT CACTGTGTTT GCTGTGGGGG TCAGGTTTCC CAGGTGGAG
GAGCTGCATG CACTGGCCAG CGAGCCTAGA GGGCAGCACG TGCTGTTGGC TGAGCAGGTG
                                                                                                                  960
                                                                                                                1020
         GAGGATGCCA CCAACGGCCT CTTCAGCACC CTCAGCAGCT CGGCCATCTG CTCCAGCGCC
         ACCCCAGACT GCAGGGTCGA GCTCACCC TGTGAGCACA GGACGCTGGA GATGGTCGG
GAGTTCGCTG GCAATGCCCC ATGCTGGAGA GGATCGCGG GGACCCTTGC GGTGCTGGCT
                                                                                                                1080
                                                                                                                1140
         GCACACTOTC CCTTCTACAG CTGGAAGAGA GTGTTCCTAA CCCACCCTGC CACCTGCTAC AGGACCACCT GCCCAGGCCC CTGTGACTCG CAGCCCTGCC AGAATGGAGG CACATGTGTT CCAGAAGGAC TGGACGGCTA CCAGTGCCTC TGCCCGCTGG CCTTTGGAGG GGAGGCTAAC
                                                                                                                1200
0.
                                                                                                                1260
                                                                                                                1320
         TOTGCCCTGA AGCTGAGCCT GGAATGCAGG GTCGACCTCC TCTTCCTGCT GGACAGCTCT GCGGGCACCA CTCTGGACGG CTTCCTGCGG GCCAAAGTCT TCGTGAAGGC GTTTGTGCGG
                                                                                                                1380
         GCCGTGCTGA GCGAGGACTC TCGGGCCCGA GTGGGTGTGG CCACATACAG CAGGGAGCTG
                                                                                                                1500
         CTGGTGGCGG TGCCTGTGGG GGAGTACCAG GATGTGCCTG ACCTGGTCTG GAGCCTCGAT
                                                                                                                1560
         GGCATTCCCT TCCGTGGTGG CCCCACCTG ACGGCAGTG CCTTGCGGCA GGCGCAGAG
CGTGGCTTCG GGAGCGCCAC CAGGACAGGC CAGGACCGGC CACGTAGAGT GGTGGTTTTG
                                                                                                                1680
         CTCACTGAGT CACACTCCGA GGATGAGGTT GCGGGCCCAG CGCGTCACGC AAGGGCGCGA
                                                                                                                1740
         GASCTCCTCC TGCTGGGTGT AGCAGTGAG GCCGTCGGG CAGAGCTGGA GGAGATCACA
GGCAGCCCAA AGCATGTGAT GGTCTACTCG GATCCTCAGG ATCTGTTCAA CCAAATCCCT
                                                                                                                1800
                                                                                                                1860
20
                                                                                                                1920
         GAGCTGCAGG GGAAGCTGTG CAGCCGGCAG CGGCCAGGGT GCCGGACACA AGCCCTGGAC
         CTCGTCTTCA TGTTGGCACAC CTCTCCCTCA GTAGGGCCCG AGAATTTTGC TCAGATGCAG AGCTTTGTGA GAAGCTGTGC CCTCCAGTTT GAGGTGAACC CTGACGTGAC ACAGTTGGC
                                                                                                                2040
         CTGGTGGTGT ATGGCAGCCA GGTGCAGACT GCCTTCGGGC TGGACACCAA ACCCACCCGG
                                                                                                                .2100
         CONSCIENT ANGULATION OF THE CONTROL OF T
25
                                                                                                                2220
         GTCCCCAAAG CTGTGGTGGT GCTCACAGGC GGGAGAGGCG CAGAGGATGC AGCCGTTCCT
                                                                                                                2280
         GCCCAGAGC TGAGGACAA TGGCATCTCT GTCTTGGTCG TGGGCGTGGG GCCTGTCCTA
AGTGAGGGTC TGCGGAGGCT TGCAGGTCCC CGGGATTCCC TGATCCACGT GGCAGCTTAC
                                                                                                                2400
30
         GCCGACCTGC GGTACCACCA GGACGTGCTC ATTGAGTGGC TGTGTGGAGA AGCCAAGCAG
                                                                                                                2460
          GCCAGTCACC TCTGCAAACC CAGCCCGTGC ATGAATGAGG GCAGCTGGGT CCTGCAGAAT
GGGAGCTACC GCTGCAAGTG TCGGGATGGC TGGGAGGGCC CCCACTGCGA GAACCGTGAG
                                                                                                                2580
          TGGAGCTCTT GCTCTGTATG TGTGAGCCAG GGATGGATTC TTGAGACGCC CCTGAGGCAC
                                                                                                                2640
         AGGGCTCCG TGCAGGAGG CAGCAGCGT ACCCCTCCCA GCAACTACAG AGAAGGCCTG
GGCACTAAA TGGTGCCTAC CTTCTGGAAT GTCTGTGCCC CAGGTCCTTA GAATGTCTGC
                                                                                                                2700
35
                                                                                                                2760
          TTCCCGCCGT GGCCAGGACC ACTATTCTCA CTGAGGGAGG AGGATGTCCC AACTGCAGCC
                                                                                                                2820
         ATTOCTOCTTA GRACAGRA ACACTGAT GTCACCACA AACGATGTTG TTGAAAGTT
TTGATGTGTA AGTAATACC CACTTTCTGT ACCTGCTGTG CCTTGTTGAG GCTATGTCAT
                                                                                                                 2880
                                                                                                                2940
          CTGCCACCTT TCCCTTGAGG ATAAACAAGG GGTCCTGAAG ACTTAAATTT AGCGGCCTGA
                                                                                                                3000
          CTECCACCTT TOCCTIGAGE ATARACTARG GRICCIAMA ATARATTA
CETITICETTE CACACARTCA ATGCTCGCCA GARGETGAT GACACAGTAA TGCCCAGCAG
AGGCCTITAC TAGAGCATCC TITEGACGGC GAAGGCCACG GCCTITCAAG ATGGAAAGCA
10
                                                                                                                 3120
          GCAGCTITITC CACTICCCCA GAGACATICT GGATGCATTT GCATTGAGTC TGAAAGGGGG
CTTGAGGGAC GTTTGTGACT TCTTGGCGAC TGCCTTTTGT GTGTGGAAAG GACTTGGAAA
GGTCTCAGAC TGAATGTGAC CAATTAACCA GCTTGGTTGA TGATGGGGGA GGGCTGAGT
                                                                                                                 3180
                                                                                                                 3300
15
          TGTGCATGGG CCCAGGTCTG GAGGGCCACG TAAAATCGTT CTGAGTCGTG AGCAGTGTCC
          ACCUTICAAGG TOTTO
                                                                                                                                         SEQ ID NO:185 CBF9 Protein sequence
                                                                                                                              Protein Accession #:
                                                                                                                                                                     none found
50
                                                             31
                                                                              41
                                                                                               51
          MPPFLLLEAV CVFLFSRVPP SLPLQEVHVS KETIGKISAA SKMMWCSAAV DIMFLLDGSN
          SVGKGSFERS KHFAITVCDG LDISPERVRV GAPOPSSTPH LEFPLDSPST QQBVKARIKR
MVPKGGRTET ELALKYLLER GLPGGRNASV PQILIIVTDG KSQGDVALPS KQLKERGVTV
PAVGVRPPRW EELHALASEP RGQHVLLAEQ VEDATNGLPS TLSSSAICSS ATPDCRVEAH
55
                                                                                                                   240
          PAYONG FAW REMANASES ROSERTLAVI AMECPYSMIK RYFLATIPATC YETTCPGPCD SQPCQNGGTC VPEGLDGYQC ICPLAFGGEA NCALKLSLEC RVDLIFLLDS SAGTTLDGFL
50
          RAKVYVKRPV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVPDLVWSL DGIFFRGGPT
                                                                                                                   420
          RAKYPYKRPY RAVISEDSKA RYGVATTAKE ILVAVYGEI QUPDDVINSI
LTGSALRQAA ERGPGSATRT GQDRPRRVVV LLTESHSEDE VAGPARHARA RELLLGYGS
EAVRALLEEI TGSPKHVMYY SDPQDLFNQI PELGGKLCSR QRPGCRTQAL DLVFMLDTSA
                                                                                                                   540
          SVGPENFAQM QSFVRSCALQ PEVNPDVYQV GLVVYGSQVQ TAPGLDTKPT RAMLRATSQ
AFYLGGVGSA GTALLHIYDK VMTVQRGARP GVPKAVVVLT GGRGAEDAAV PAQKLRANGI
                                                                                                                   600
65
           SYLVYGYGPV LSEGLRRLAG PROSLIHVAA YADLRYHODV LIEWLCGEAK QPVNLCKPSP
          CMNEGSCVLQ NGSYRCKCRD GWEGPHCENR EWSSCSVCVS QGWILETPLR HMAPVQEGSS
           RTPPSNYREG LGTEMVPTFW NVCAPGP
70
          SEQ ID NO:186 PAV1 DNA sequence
           Nucleic Acid Accession #:
                                                  AF272890 '
                                                  87-1520 (underlined sequences correspond to start and stop codons)
           Coding Sequence:
                                                              31
                                             21
75
          120
```

5 .	CGCTGTCTCA TCGTGGCGGG TCACCAACCT TGCCGTTCGG AGCTGTGGAC TTGCCCTGGA	GCAGTGGACA CAATGTGCTG CTTCATCATG GGCCACCATC CTCAGTGGAC CCGCTACCTC	CCCGCCTCGT GCGGGCATGG GTGATCGTGG TCCCTGGCCA GTGGTGTGGG GTGCTGTGCG GCCATCACCT	GTCTGCTGAT CCATCGCCAA GCGCCGACCT GCCGCTGGGA TGACGGCCAG CGCCCTTCCG	GGCGCTCATC GACGCCGCG GGTCATGGGG GTACGGCTCC CATCGAGACC CTACCAGAGC	GTGCTGCTCA CTGCAGACGC CTGCTGGTGG TTCTTCTGCG CTGTGTGTCA CTGCTGACGC	240 300 360 420 480 540	
10	TGCCCATCCT ACCCCAAGTG CCTTCTACGT AGAAGCAGGT	CATGCACTGG CTGCGACTTC GCCCCTGTGC GAAGAAGATC	GTGTGCACCG TGGCGGGCGG GTCACCAACC ATCATGGCCT GACAGCTGCG CCCGTCCCCG	AGAGCGACGA GGGCCTACGC TCGTGTACCT AGCGCCGTTT	GGCGCGCCGC CATCGCCTCG GCGGGTGTTC CCTCGGCGGC	TGCTACAACG TCCGTAGTCT CGCGAGGCCC CCAGCGCGGC	660 720 780 840 900 960	
15	CCGCCGCCGC CGCGCCTCGT TCTTCACGCT AGCTGGTGCC	CGCCGCCACC GGCCCTACGC CTGCTGGCTG CGACCGCCTC	GCCCCGCTGG GAGCAGAAGG CCCTTCTTCC TTCGTCTTCT CGCAGCCCCG	CCAACGGGCG CGCTCAAGAC TGGCCAACGT TCAACTGGCT	TGCGGGTAAG GCTGGGCATC GGTGAAGGCC GGGCTACGCC	CGGCGGCCCT ATCATGGGCG TTCCACCGCG AACTCGGCCT	1020 1080 1140 1200 1260	
20	CGGGCTGTCT ACGACGATGT ACGGCGGGGC CCTCGGAATC	GGCCCGGCCC CGTCGGGGCC GGCGGCGGAC CAAGGTGTAG	AGCGACTCGA GGCCCGGCGC	CATCGCCCGG CGCGCCTGCT GCCTGGACGA GGGGCGCGGA	GGCCGCCTCG GGAGCCCTGG GCCGTGCCGC CTCCGGGCAC	GACGACGACG GCCGGCTGCA CCCGGCTTCG GGCTTCCCAG	1500 1560	
25	CCTCGTCTGA	ATCATCCGAG	TTACTTAAGA GCAAAGAGAA TGGCTTGCTG	AAGCCACGGA	CCGTTGCACA		1620 1680	·
30							Protein Accession #:	SEQ ID NO:187 PAV1 Protein sequence AA011176
	1	11	21 1	31	41	51 I		,
35	MGLLMALIVL WGRWEYGSFF TVWAISALVS	LIVAGNVLVI CELWTSVDVL FLPILMHWWR	PLPDGAATAA VAIAKTPRLQ CVTASIETLC AESDEARRCY	TLTNLFIMSL VIALDRYLAI NDPKCCDFVT	ASADLVMGLL TSPFRYQSLL NRAYAIASSV	VVPFGATIVV TRARARGLVC VSFYVPLCIM	60 120 180 240	
40	LANGRAGKRR FFNWLGYANS	PSRLVALREQ AFNPIIYCRS	CERRFLGGPA KALKTLGIIM PDFRKAFQGL PARLLEPWAG	GVFTLCWLPF LCCARRAARR	FLANVVKAFH RHATHGDRPR	RELVPDRLFV ASGCLARPGP	300 360 420	
45	SEQ ID NO:188 Nucleic Acid Aco		nce AJ400877 sequence:	E	31-3080 (underline	d sequences corres	spond to start and stop coo	dons)
50	GGCGTCCGC CCGCAACCG	 G CACACCTCC C TGAGCCATC	CC ATGGGGGT	rcg cggccc	CAA COGTCC	TCCG CCGCCT CGGG GCGGCC GGG GCCGTCC	CTGGG 120	
55	CGGGTCGGG ATGACTGCC AGCCTGGCT TCAATGGAG TTGATGGCT	G CCGTGCCG A TGCCGACGG A CCAAGGGG G CTGTGTCCA I CATGTTGGC	CG GGGCCGC. CC CTGTGTCA AA GGCAGGC AT GACTGTTT T CATGACGG	AGG AGGATG GA ACACACC AGT GTGAGG GA ATATTCC/ IC ATAATTGI	TAGA TGAGTO CAC CTCCTAC ACAT CGATGA AGG CAATTAT CCT TGATGTG	TTGCC CAAGG CAAG TGCTCCT AATGT GGAAA CGT TGCACTT GAC GAGTGCC	GCTAG 240 IGCA 300 TGAGC 360 GTT 420 ITGG 480	
60	GCAAGGAGG GCCTGAGCT GCAGCGTCG	G GITTITCCI G CATGAATA/ C CTGTGAGT(TG AGTGACAA AG GATCACGO GC AGGCCTGO	TC AGCACAC GCT GTAGTCA GTT TTGAGCT	CTG CATTCA(CAT CTGCAA(GGC CAAGAA	CTAT GAGTGO CCGC TCGGAA GGAG GCCCCA CCAG AGAGAC CGAT ACAGCO	GAGG 600 AGGG 660 TGCA 720	
65	AGCGAGAGG ATAAACGGG ACCGCACCT	SA CACTGTCC TT GAAACGGC G TAAGGATAG	TG GAGGTGA CGG CTGCTCA CT TCGACAGO	CAG AGAGCA IGG AAACGTO ITG TCCACTG	ACAC CACATO STGC TGTCAA CAG TTGTCCT	GAGG AGCTG CAGTG GTGGA CAAT GGAGG GTT GGATTCA CCGC AATGGA	TGGGG 900 CTGTG 960 ACTC 1020	
70	GTGATCATT	T CTGCAAAAA C AGATGAGAA G CTGCATCAA G CTTCACCCA	AC ATOGTGGG AG TCTTGCCA AC CACCCTGG AC TGTGGAGA	CA GITTIGA AG ATGTGGA CA CATTIGC CA CCAATGA	CTG CGGCTGC TGA GTGCTC TTG TGCTTGC GTG CAGCATC	AAG AAAGGA ITTG GATAGG AAC CGAGGG CAAC AACGGA	TTTA 1140 ACCT 1200 FACA 1260 GGCT 1320	
75	AGCTCCACTO CACCCCGTG GTCACTCTGO AGCTAAATG	G GAATAAAA I GTCCCTGCA G CATTCACCT A AGGCAAGT	AA GACTGTGT AC TGCGGTAA AC TCTTCAGAT GT AGTTTGAA	TGG AAGTGA/ GA GTGGTGG TG TCACCACC AAA ATGCTGA	AGGG GCTCCT AGG AGACGG AT CAGGACA AGCT GTTTCC	CCAC CCTGGG GCCC ACAAGT GTGC TTCCTC. AGT GTAACCT CGAG GGTCTG CCGTA AACCTT	FGTGT 1440 AGAT 1500 TTA 1560 CGAC 1620	
80	GCAGCTCTG	G CAAGCAAG	TC CCAGGAG	CCC CTGGCCC	JACC AAGCAC	CCCT AAGGA/ AGCT TCTTGTC	AATGT 1740	•

TGAGCTGCAT CGTAAAGCGA ACCGAGAAGC GGCTCCGTAA AGCCATCCGC ACGCTCAGAA 1860 AGGCCGTCCA CAGGGAGCAG TTTCACCTCC AGCTCTCAGG CATGAACCTC GACGTGGCTA 1920 AAAAGCCTCC CAGAACATCT GAACGCCAGG CAGAGTCCTG TGGAGTGGGC CAGGGTCATG 1980 CAGAAAACCA ATGTGTCAGT TGCAGGGCTG GGACCTATTA TGATGGAGCA CGAGAACGCT 2040 5 GCATTTTATG TCCAAATGGA ACCTTCCAAA ATGAGGAAGG ACAAATGACT TGTGAACCAT 2100 GCCCAAGACC AGGAAATTCT GGGGCCCTGA AGACCCCAGA AGCTTGGAAT ATGTCTGAAT 2160 GTGGAGGTCT GTGTCAACCT GGTGAATATT CTGCAGATGG CTTTGCACCT TGCCAGCTCT 2220 GTGCCCTGGG CACGTTCCAG CCTGAAGCTG GTCGAACTTC CTGCTTCCCC TGTGGAGGAG 2280 GCCTTGCCAC CAAACATCAG GGAGCTACTT CCTTTCAGGA CTGTGAAACC AGAGTTCAAT 2340 GTTCACCTGG ACATTTCTAC AACACCACCA CTCACCGATG TATTCGTTGC CCAGTGGGAA 2400 10 CATACCAGCC TGAATTTGGA AAAAATAATT GTGTTTCTTG CCCAGGAAAT ACTACGACTG 2460 ACTITIGATEG CTCCACAAAC ATAACCCAGT GTAAAAACAG AAGATGTEGA GEGGAGCTEG 2520
GAGATTTCAC TEGGTACATT GAATCCCCAA ACTACCCAGE CAATTACCCA GCCAACACCE 2580 AGTGTACGTG GACCATCAAC CCACCCCCA AGCGCCGCAT CCTGATCGTG GTCCCTGAGA 2640 15 TCTTCCTGCC CATAGAGGAC GACTGTGGGG ACTATCTGGT GATGCGGAAA ACCTCTTCAT 2700 CCAATTCTGT GACAACATAT GAAACCTGCC AGACCTACGA ACGCCCCATC GCCTTCACCT 2760 CCAGGTCAAA GAAGCTGTGG ATTCAGTTCA AGTCCAATGA AGGGAACAGC GCTAGAGGGT 2820 TCCAGGTCCC ATACGTGACA TATGATGAGG ACTACCAGGA ACTCATTGAA GACATAGTTC 2880 GAGATGGCAG GCTCTATGCA TCTGAGAACC ATCAGGAAAT ACTTAAGGAT AAGAAACTTA 2940 TCAAGGCTCT GTTTGATGTC CTGGCCCATC CCCAGAACTA TTTCAAGTAC ACAGCCCAGG 3000 20 AGICCOGAGA GATGITTICCA AGATCGTICA TCCGATTGCT ACGTICCAGA GIGTCCAGG 3060
TTTTGAGACC TTACAAATGA CTCAGCCCAC GTGCCACTCA ATACAAATGT TCTGCTATAG 3120
GGTTGGTGGG ACAGAGCTGT CTTCCTTCTG CATGTCAGCA CAGTCGGGTA TTGCTGCCTC 3180
CCGTATCAGT GACTCATTAG AGTTCAATTT TTATAGATAA TACAGATATT TTGGTAAATT 3240 25 GAACTIGGTT TITCTTTCCC AGCATCGTGG ATGTAGACTG AGAATGGCTT TGAGTGGCAT 3300 CAGCTTCTCA CTGCTGTGGG CGGATGTCTT GGATAGATCA CGGGCTGGCT GAGCTGGACT 3360 TTGGTCAGCC TAGGTGAGAC TCACCTGTCC TTCTGGGGTC TTACTCCTCC TCAAGGAGTC 3420 TGTAGTGGAA AGGAGGCCAC AGAATAAGCT GCTTATTCTG AAACTTCAGC TTCCTCTAGC 3480
CCGGCCCTCT CTAAGGGAGC CCTCTGCACT CGTGTGCAGG CTCTGACCAG GCAGAACAGG 3540
CAAGAGGGGA GGGAAGGAGA CCCCTGCAGG CTCCCTCCAC CCACCTTGAG ACCTGGGAGG 3600 ACTCAGTTTC TOCACAGCCT TCTCCAGCCT GTGTGATACA AGTTTGATCC CAGGAACTTG 3660 AGTTCTAAGC AGTGCTCGTG AAAAAAAAA GCAGAAAGAA TTAGAAATAA ATAAAAACTA 3720 AGCACTTCTG GAGACAT 35 SEQ ID NO:189 BCO2 Protein sequence CAB92285 11 21 31 41 51 40 MGVAGRNRPG AAWAVILLIL ILPPILLIAG AVPPGRGRAA GPQEDVDECA QGLDDCHADA LCONTPTSYK CSCKPGYQGE GRQCEDIDEC GNELNGGCVH DCLNIPGNYR CTCFDGFMLA 120 HDGHNCLDVD ECLENNGGCO HTCVNVMGSY ECCCKEGFFL SDNOHTCHR SEBGLSCMNK 180 HIGHNCLIDVID ECLENRIGICQ HICVNVMGSY EXCERGIFL SUNQBICLIRK SEEGISCMIN 180
DHGCSHICKE APRGSVACEC RPGFELAKNQ RDCILTCNHG NGGCQHSCDD TADGPECSCH 240
PQYKMHTDGR SCLEREDTVL EVTESNTTSV VDGDKRVKRR LLMETCAVNN GGCDRTCKDT 300
STGVHCSCPV GFTLQLDGKT CKDIDECQTR NGGCDHPCKN IVGSFDCGCK KGFKLLTDEK 360
SCQDVDECSL DRTCDHSCIN HPGTFACACN RGYTLYGFTH CGDTNECSIN NGGCQQVCVN 420 45 SCODVDECSL DRITCHSICIN HPGTFACACN RGYTLYGFTH CGDTINECSIN NGGCQUVCVN 429
TVGSYBCQCH PGYKLHWNKK DCVEVKGLLP TSVSPRVSLH CGKSGGGDGC FLRCHSGIHL 489
SSDVTIRTS VTFKLNEGKC SLKNAELFPE GLRPALPEKH SSVKESFRYV NLTCSSGKQV 540
FGAPGRPSTP KEMFITVEFE LETNQKEVTA SCDLSCIVKR TEKRLRKAR TLRKAVHREQ 600
FHLQLSGMNL DVAKKFPRTS ERQAESCGVG QGHAENQCVS CRAGTYYDGA RERCILCPNG 660
FTQNEEGQMT CEPCPRPGNS GALKTFEAWN MSECGGLQP GEYSADGRAP QQLCALGTTQ 720
PEAGRTSCFP CGGGLATKHQ GATSFQDCET RVQCSPGHFY NTTTERCIRC PVGTYQPEFG 780
KNNCVSCPGN TITDFDGSTN ITQCKNRRCG GELGDFTGYI ESPNYPGNYP ANTECTWTIN 840
ENDRUBLIR IN VIDELE BEEN DCGDVI VARJEV TSSSNSVITY ETTOTYDEDIA AFTSEETEI III 940 50 PPPKRRILIV VPEIFLPIED DCGDYLVMRK TSSSNSVTTY ETCQTYERPI AFTSRSKKLW 900 IQFKSNEGNS ARGFQVPYVT YDEDYQELIE DIVRDGRLYA SENHQEILKD KKLIKALFDV 960 LAHPQNYFKY TAQESREMFP RSFIRLLRSK VSRFLRPYK 55 SEQ ID NO:190 BFG1 DNA sequence Nucleic Acid Accession #: 60 AF007170 Coding sequence: 1-1725 (underlined sequences correspond to stop codon) 51 65 AAGGAGGCGG CETECGGGAA AAGCGACCGC AGGACTCCTG AGAGCAGCCT CCATGAGGCC 60 CTGGACCAGT GCATGACCGC CCTGGACCTC TTCCTCACCA ACCAGTTCTC AGAAGCACTC 120 AGCTACCTCA AGCCCAGAAC CAAGGAAAGC ATGTACCACT CACTGACATA TGCCACCATC 180 CTGGAGATGC AGGCCATGAT GACCTTTGAC CCTCAGGACA TCCTGCTTGC CGGCAACATG 240 ATGAAGGAGG CACAGATGCT GTGTCAGAGG CACCGGAGGA AGTCTTCTGT AACAGATTCC 300 70 TTCAGCAGCC TGGTGAACCG CCCCACGCTG GGCCAATTCA CTGAAGAAGA AATCCACGCT 360 GAGGTCTGCT ATGCAGAGTG CCTGCTGCAG CGAGCAGCCC TGACCTTCCT GCAGGACGAG 420
AACATGGTGA GCTTCATCAA AGGCGGCATC AAAGTTCGAA ACAGCTACCA GACCTACAAG 480
GAGCTGGACA GCCTTGTTCA GTCCTCACAA TACTGCAAGG GTGAGAACCA CCCGCACTTT 540 GAAGGAGGAG TGAAGCTTGG TGTAGGGGCC TTCAACCTGA CACTGTCCAT GCTTCCTACT 600
AGGATCCTGA GGCTGTTGGA GTTTGTGGGG TTTTCAGGAA ACAAGGACTA TGGGCTGCTG 660
CAGCTGGAGG AGGGAGCGTC AGGGCACAGC TTCCGCTCTG TGCTCTGTGT CATGCTCCTG 720 75 CTGTGCTACC ACACCTTCCT CACCTTCGTG CTCGGTACTG GGAACGTCAA CATCGAGGAG 780
GCCGAGAAGC TCTTGAAGCC CTACCTGAAC CGGTACCCTA AGGGTGCCAT CTTCCTGTTC 840

TTTGCAGGGA GGATTGAAGT CATTAAAGGC AACATTGATG CAGCCATCCG GCGTTTCGAG 900

GAGTGCTGTG AGGCCCAGCA GCACTGGAAG CAGTTTCACC ACATGTGCTA CTGGGAGCTG 960 ARGIGGIGE AGGECCACEA GEACTIGAAG CACITICACE ACATGIGETA CIGGGEGET 500
AGCAAGGAGA ACTGCTGGTC CAAGGCCACC TACATTTACA TGAAGGCCGC CTACCTCAGC 1080
ATGTTTGGGA AGGAGGACCA CAAGCCGTTC GGGGACGACG AAGTGGAATT ATTTCGAGCT 1140
GTGCCAGGCC TGAAGCTCAA GATTGCTGGG AAATCTCTAC CCACAGAGAA GTTTGCCATC 1200 CGGAAGTCCC GGCGCTACTT CTCCTCCAAC CCTATCTCGC TGCCAGTGCC TGCTCTGGAA 1260 ATGATGTACA TCTGGAACGG CTACGCCGTG ATTGGGAAGC AGCCGAAACT CACGGATGGG 1320 ATACTTGAGA TTATCACTAA GGCTGAAGAG ATGCTGGAGA AAGGCCCAGA GAACGAGTAC 1380 TCAGTGGATG ACGAGTGCTT GGTGAAATTG TTGAAAGGCC TGTGTCTGAA ATACCTGGGC 1440 CGTGTCCAGG AGGCCGAGGA GAATTTTAGG AGCATCTCTG CCAATGAAAA GAAGATTAAA 1500 TATGACCACT ACTTGATCCC AAACGCCCTG CTGGAGCTGG CCCTGCTGCT TATGGAGCAA 1560 10 GACAGAAACG AAGAGGCCAT CAAACTTTTG GAATCTGCCA AGCAAAACTA CAAGAATTAC 1620 TCCATGGAGT CAAGGACACA CTTTCGAATC CAGGCAGCCA CACTCCAAGC CAAGTCTTCC 1680
CTAGAGAACA GCAGCAGATC CATGGTCTCA TCAGTGTCCT TGTAGCTTTG TGCAGCAGTT 1740
CCGGGCTGGA AGACAGAGAC AGCTGGACAG AGCTCCTGAA AACATTTCAA AATACCCCCT 1800 15 CCCCCTGCCC TGCCCTGCCT TTGGGGTCCA CCGGCACTCC AGTTGGATGG CACAACAACA B860
TGTATCCCTG CAGAAGCCGA GCTGGCATTT TCACCAGTGT AGCCAAGGGC CTTTGCCAAG 1920
GCCAGAGCAG GTGGAGCCCT CTGCCTGCCC TATCACACAT ACGGGTACTT GCTTTTCACT 1980
GTGATGTTTA AGAGAATGTA TGAACAGTTT ACATTTTCCT TAGAAATACA TTGATGGGAT 2040 20 CACAGTTGGC TTTAAAAACC AACAACAATC AACCACCTGT AAGTCTTTGT CTTCACCTAT 2100
TATCATCTGG AGGTAAATCT CTTTATATGA TGATGCCAAA GGGCAAATTG CTTTTCAAAT 2160
TCAGCAAGTT CTCAGCTTGT GTGACGGAAG GTCCTTCAGA GGACCTGAGG AATGCCTGGG 2220 AGAGGCTAAG CCTCAGGCTT CAATGCTTCT GGGGTTGGGC ATGAGGATGT ACACAGACAC 2280 CCACTACTT ACTACTCACA CTICATTICA CTOCTTTTOT AAATTTCCAA TTTAAAAATC 2340
AAGCACGTCT TITTAGTGAG ATAAAATCTG AGCTCTTCTG TAGAAAAATC AATCTCTACC 2400
AGTAGAAAAT GCCAGGGCTT GATGGAAGAG CTGTGTAGCC CTTTCTATGC CAAAGCCAGG 2460 25 AAATTTGGGG GGCAGGAGGA GGTTCTCAGA ATCCAGTCTG TATCTTTGCT GTATGCCAAA 2520 CTGAAACCAC TGGGAATAAT TTATGAAACA TAAAAATCTT CTGTACTTCA CTCCAAGGTA 2580 CATTTGCTTA CTGACAGCAT TITTIGTTAAA ACTGTTATTC TTGAAAAAA AAAAAAAAA 2640 30 SEQ ID NO:191 BFG1 Protein sequence Protein Accession #: AAC39582 35 11 21 31 41 51 MTALDLFLTN QFSEALSYLK PRTKESMYHS LTYATILEMQ AMMTFDPQDI LLAGNMMKEA 60 OMLCORHRRK SSYTDSFSSL VNRPTLGQFT EEEIHAEVCY AECLLQRAAL TFLQDENMVS 120 40 FIKGGIKVRN SYQTYKELDS LVQSSQYCKG ENHPHFEGGV KLGVGAFNLT LSMLPTRILR 180 LLEFVGFSGN KDYGLLQLEE GASGHSFRSV LCVMLLLCYH TFLTFVLGTG NVNIEEAEKL 240 LKPYLNRYPK GAIFLFFAGR IEVIKGNIDA AIRRFEECCE AQQHWKQFHH MCYWELMWCF 300 TYKGQWKMSY FYADLLSKEN CWSKATYIYM KAAYLSMFGK EDHKPFGDDE VELFRAVPGL 360 KLKIAGKSLP TEKFAIRKSR RYFSSNPISL PVPALEMMYI WNGYAVIGKQ PKLITDGILEI 420 TTKAEEMLEK GPENEYSVDD ECLVKLLKGL CLKYLGRVQE AEENFRSISA NEKKIKYDHY 480 45 LIPNALLELA LLLMEQDRNE EAIKLLESAK QNYKNYSMES RTHFRIQAAT LQAKSSLENS 540 SRSMVSSVSL 50 SEQ ID NO:192 BFO6 DNA sequence NM 032583 Vucteic Acid Accession #: 1-4044 (underlined sequences correspond to start and stop codors) Coding sequence: 41 55 ATGACTAGGA AGAGGACATA CTGGGTGCCC AACTCTTCTG GTGGCCTCGT GAATCGTGGC 60 ATCGACATAG GCGATGACAT GGTTTCAGGA CTTATTTATA AAACCTATAC TCTCCAAGAT 120
GGCCCCTGGA GTCAGCAAGA GAGAAATCCT GAGGCTCCAG GGAGGGCAGC TGTCCCACCG 180
TGGGGGAAGT ATGATGCTGC CTTGAGAACC ATGATTCCCT TCCGTCCCAA GCCGAGGTTT 240 60 CCTGCCCCC AGCCCCTGGA CAATGCTGGC CTGTTCTCCT ACCTCACCGT GTCATGGCTC 300
ACCCCGCTCA TGATCCAAAG CTTACGGAGT CGCTTAGATG AGAACACCAT CCCTCCACTG 360
TCAGTCCATG ATGCCTCAGA CAAAAATGTC CAAAGGCTTC ACCGCCTTTG GGAAGAAGAA 420 GTCTCAAGGC GAGGGATTGA AAAAGCTTCA GTGCTTCTGG TGATGCTGAG GTTCCAGAGA 480
ACAAGGTTGA TTTTCGATGC ACTTCTGGGC ATCTGCTTCT GCATTGCCAG TGTACTCGGG 540
CCAATATTGA TTATACCAAA GATCCTGGAA TATTCAGAAG AGCAGTTGGG GAATGTTGTC 600 65 CATGGAGTGG GACTCTGCTT TGCCCTTTTT CTCTCCGAAT GTGTGAAGTC TCTGAGTTTC 660
TCCTCCAGTT GGATCATCAA CCAACGCACA GCCATCAGGT TCCGAGCAGC TGTTTCCTCC 720
TTTGCCTTTG AGAAGCTCAT CCAATTTAAG TCTGTAATAC ACATCACCTC AGGAGAGGCC 780 TITGCCTITG AGAAGCTCAT CCAATTTAAG TCTGTAATAC ACATCACCTC AGGAGAGGCC 780
ATCAGCTICT TCACCGGTGA TGTAAACTAC CTGTTGAAG GGGTGTGCTA TGGACCCCTA 840
GTACTGATCA CCTGCGCATC GCTGGTCATC TGCAGCATTT CTTCCTACTT CATTATTGGA 900
TACACTGCAT TTATTGCCAT CTTATGCTAT CTCCTGGTTT TCCCACTGGC GGTATTCATG 960
ACAAGAATGG CTGTGAAGAGC TCAGCATCAC ACATCTGAGG TCAGCGACCA GCGCATCCGT 1020
GTGACCAGTG AAGTTCTCAC TTGCATTAAG CTGATTAAAA TGTACACATG GGAGAAACCA 1080
TTTGCAAAAA TCATTGAAGG TATGGAAAGT CTGACTTTCT GCTCCAAACC TGGTGATGGC 1140
ATGGCCTTCA GCATGCTGGC CTCCTTGAAT CTCCTTCCGC TGTCAGTGTT CTTTGTGCCT 1200 70 75 ATTICAGTICA AAGGTICTCAC GAATTICCAAG TCTGCAGTGA TGAGGTTCAA GAAGTTTTTIC 1260 CTCCAGGAGA GCCCTGTTTT CTATGTCCAG ACATTACAAG ACCCCAGCAA AGCTCTGGTC 1320 TTTGAGGAGG CCACCTTGTC ATGGCAACAG ACCTGTCCCG GGATCGTCAA TGGGGCACTG 1380 GAGCTGGAGA GGAACGGGCA TGCTTCTGAG GGGATGACCA GGCCTAGAGA TGCCCTCGGG 1440

CCAGAGGAAG AAGGGAACAG CCTGGGCCCA GAGTTGCACA AGATCAACCT GGTGGTGTCC 1500 AAGGGGATGA TGTTAGGGGT CTGCGGCAAC ACGGGGAGTG GTAAGAGCAG CCTGTTGTCA 1560 GCCATCCTGG AGGAGATGCA CTTGCTCGAG GGCTCGGTGG GGGTGCAGGG AAGCCTGGCC 1620
TATGTCCCCC AGCAGGCCTG GATCGTCAGC GGGAACATCA GGGAGAACAT CCTCATGGGA 1680
GGCGCATATG ACAAGGCCCG ATACCTCCAG GTGCTCCACT GCTGCTCCCT GAATCGGGAC 1740 5 CTGGAACTTC TGCCCTTTGG AGACATGACA GAGATTGGAG AGCGGGGCCT CAACCTCTCT 1800 GGGGGGCAGA AACAGAGGAT CAGCCTGGCC CGCGCCGTCT ATTCCGACCG TCAGATCTAC 1860 CTGCTGGACG ACCCCCTGTC TGCTGTGGAC GCCCACGTGG GGAAGCACAT TTTTGAGGAG 1920 TGCATTAAGA AGACACTCAG GGGGAAGACG GTCGTCCTGG TGACCCACCA GCTGCAGTAC 1980 TTAGAATTTT GTGGCCAGAT CATTTTGTTG GAAAATGGGA AAATCTGTGA AAATGGAACT 2040 CACAGTGAGT TAATGCAGAA AAAGGGGAAA TATGCCCAAC TTATCCAGAA GATGCACAAG 2100 10 GAAGCCACTT CGGACATGTT GCAGGACACA GCAAAGATAG CAGAGAAGCC AAAGGTAGAA 2160 AGTCAGGCTC TGGCCACCTC CCTGGAAGAG TCTCTCAACG GAAATGCTGT GCCGGAGCAT 2220 CAGCTCACAC AGGAGGAGGA GATGGAAGAA GGCTCCTTGA GTTGGAGGGT CTACCACCAC 2280 TACATCCAGG CAGCTGGAGG TTACATGGTC TCTTGCATAA TTTTCTTCTT CGTGGTGCTG 2340 ATCGTCTTCT TAACGATCTT CAGCTTCTGG TGGCTGAGCT ACTGGTTGGA GCAGGGCTCG 2400 GGGACCAATA GCAGCCGAGA GAGCAATGGA ACCATGGCAG ACCTGGGCAA CATTGCAGAC 2460
AATCCTCAAC TGTCCTTCTA CCAGCTGGTG TACGGGCTCA ACGCCCTGCT CCTCATCTGT 2520
GTGGGGGTCT GCTCCTCAGC GATTTTCACC AAAGTCACGA GGAAGGCATC CACGGCCCTG 2580
CACAACAAGC TCTTCAACAA GGTTTTCACC ACAGTCCCA 2640
ATAGGCCGC TTTTGAACTG CTTCGCAGGG GACTTGGAAC AGCTGGACCA GCTCTTGCCC 2700
ATCTTTTCAG AGCAGTTCCT GGTCCTGTCC TTAATGGTGA TCGCCCT GTTGATTGTC 2760 20 AGTGTGCTGT CTCCATATAT CCTGTTAATG GGAGCCATAA TCATGGTTAT TTGCTTCATT 2820
TATTATATGA TGTTCAAGAA GGCCATCGGT GTGTTCAAGA GACTGGAGAA CTATAGCCGG 2880
TCTCCTTTAT TCTCCCACAT CCTCAATTCT CTGCAAGGCC TGAGCTCCAT CCATGTCTAT 2940 25 GGAAAAACTG AAGACTTCAT CCICAATICT CIGCAAGGC TGAGCTGCAT CCATGCTAT 2500
GGAAAAACTG AAGACTTCAT CAGCCAGTTT AAGAGGCTGA CTGATGCGCA GAATAACTAC 3000
CTGCTGTTGT TTCTATCTTC CACACGATGG ATGGCATTGA GGCTGGAGAT CATGACCAAC 3060
CTTGTGACCT TGGCTGTTGC CCTGTTCGTG GCTTTTGGCA TTTCCTCCAC CCCCTACTCC 3120
TTTAAAGTCA TGGCTGTCAA CATCGTGCTG CAGCTGGCGT CCAGCTTCCA GGCCACTGCC 3180 30 CGGATTGGCT TGGAGACAGA GGCACAGTTC ACGGCTGTAG AGAGGATACT GCAGTACATG 3240
AAGATGTGT TCTCGGAAGC TCCTTTACAC ATGGAAGGCA CAAGTTGTCC CCAGGGGTGG 3300
CCACAGCATG GGGAAATCAT ATTTCAGGAT TATCACATGA AATACAGAGA CAACACACC 3360 ACCOTGCTTC ACGCCATCAA CCTGACCATC CGCGGCCACG AAGTGGTGGG CATCGTGGGA 3420
AGGACGGGCT CTGGGAAGTC CTCCTTGGGC ATGGCTCTCT TCCGCCTGGT GGAGCCCATG 3480
GCAGGCCGGA TTCTCATTGA CGGCGTGGAC ATTTGCAGCA TCGGCCTGGA GGACTTGCGG 3540 35 TCCAAGCTCT CAGTGATCCC TCAAGATCCA GTGCTGCTCT CAGGAACCAT CAGATTCAAC 3600 CTAGATOCCT TTGACCGTCA CACTGACCAG CAGATCTGGG ATGCCTTGGA GAGGACATTC 3660 CTGACCAAGG CCATCTCAAA GTTCCCCAAA AAGCTGCATA CAGATGTGGT GGAAAACGGT 3720 GGAAACTTCT CTGTGGGGGA GAGGCAGCTG CTCTGCATTG CCAGGGCTGT GCTTCGCAAC 3780 40 TCCAAGATCA TCCTTATCGA TGAAGCCACA GCCTCCATTG ACATGGAGAC AGACACCCTG 3840 ATCCAGCGCA CAATCCGTGA AGCCTTCCAG GGCTGCACCG TGCTCGTCAT TGCCCACCGT 3900 GTCACCACTG TGCTGAACTG TGACCACATC CTGGTTATGG GCAATGGGAA GGTGGTAGAA 3960 TTTGATCGGC CGGAGGTACT GCGGAAGAAG CCTGGGTCAT TGTTCGCAGC CCTCATGGCC 4020 ACAGCCACTT CTTCACTGAG A<u>TAA</u>GGAGAT GTGGAGACTT CATGGAGGCT GGCAGCTGAG 4080 CTCAGAGGTT CACACAGGTG CAGCTTCGAG GCCCACAGTC TGCGACCTTC TTGTTTGGAG 4140 45 ATGAGAACTT CTCCTGGAAG CAGGGGTAAA TGTAGGGGGG GTGGGGATTG CTGGATGGAA 4200 ACCCTGGAAT AGGCTACTTG ATGGCTCTCA AGACCTTAGA ACCCCAGAAC CATCTAAGAC 4260 ATGGGATTCA GTGATCATGT GGTTCTCCTT TTAACTTACA TGCTGAATAA TTTTATAATA 4320 AGGTAAAAGC TTATAGTTTT CTGATCTGTG TTAGAAGTGY TGCAAATGCT GTACTGACTT 4380 50 TGTAAAATAT AAAACTAAGG AAAACTCAAA AAAAAAAAA AAAAAAA

SEQ ID NO:193 BFO6 Protein sequence Protein Accession #: NP_115972.1

FDRPEVLRKK PGSLFAALMA TATSSLR

5	Nucleic Acid Acc		AA983251	dadinos kontro	o someoned to st	nd and aton andone	
5	Coding sequence	r.	1-1749 (UII	denined sequence	is correspond to st	art and stop codons	3)
	1	11	21	31	41	51	
			1		1		
10		GCTTCTTGAT					60 120
10		GGGAGAGCCG					180
		AGAAGGGGAA					240
		CGCCAGCTGG					300
		CTGGACGTTC					360
15		AGCCCCGGGG					420
		CAGTCCCTAA					480
		CTAGGGCCCG					540
		AGCGCCGCGG					600
20	CTTCTCGGAG	ACCGTCCTGC TCGCCGCTCG	GCTCTCTGGA	CARCOCOCTOT	CCGCGCGCCCAG	CECCECCA	660 720
20		TGCGCTGCTG					780
		CGCAGGGCGT					840
		CCATCTGCTG					900
~-		ACCAGGGGGG					960
25		AAGACGGGCC					1020
		AGGGTGCGCC					1080
		GAAGGCAGCT					1140
		CATCTTCTCC					1200
30		CCTGTTGCTG					1260 1320
50		GTAACCGCTT					1380
		CCTCACGCCA					1440
						AGGGACCATG	1500
~~	AACAACGTGT	ATGTCAACAT	GCCCACGAAT	TTCTCTGTGC	TGAACTGTCA	GCAGGCCACC	1560
35		CACATCAAGG					1620
		TGCCCATGAC					1680
		AGTCCCCCTT					1740
		CGAGAGTCAC					1800 1860
40		CCCCCAGACT					1920
		ATCATTGATT					1980
		GTGTATAACA					2040
		TAAACTGATA					2100
15		CTGCACAGGA					2160
45		TTTTTTTAA					2220
		TCGGCTCACT					2280
		GTGGCTGGGA GGGTTTCACC					2340 2400
		TCAGCCTCCC					2460
50		TTTTTTTCTA					2520
		GAAACCTGTT					2580
	GGCACACCTT	AATTTCATTG	TAAAAAGATA	TATATATITT	GTCTATTTTT	GTGCTTTTGG	2640
		TGTGCTTTTT					2700
55		ACTGAAATAA					2760
J J		TTAATCTTGA CTTAATTTTC					2820 2880
		TCATAAACTA					2940
		TIGGCGTTTC					3000
		AATTACTATA					3060
60		TIGICTIAGT					3120
	TAGCTCCTCA	GCCATAACCT	GAGACTTGGG	atgaaattta	AACCAGATAC	GATTTACTTT	3180
	GCAGATCATA	AGGCTTTTTA	TACTCTTGTT	ATCAAAATGG	CTTATTTTTC	aggcactaag	3240
	GATTGTTAAG	AGAAAAGCTT	TTCAACGAAG	GATTGCCTTT	CTTCTCCCAC	ACTGTTCTTG	3300
65		TCTTTCAGGC					3360
UJ		TGAATTTATT ACATTTCCAA					3420 3480
		GTCTTCTACA					3540
		CTGAATAATG					3600
		ACCAAAGGCA					3660
70		аааааааа					

SEQ ID NO:195 BHB8 Protein sequence

```
Projein Accession #
                                                     none found
   5
                                               21
                                                                  31
            MLSGFLMSPS TOHRAQYTPG GKKLPWEASI GAHTSRGRGS DRERESRPEA AGLLWDRAAA
           GEAEKGNRGE PPAMIRAQQQ PRPPPAGQAP GTAAGGAQDF RLRPGRSRGR VRLPVKPPEA
SGRQPRGPSD CIPRFPSASA THKAVPKGTG PPAEDGDGLG APGFRARRR LLGVAAEGSG
                                                                                                                          120
10
            PRGKRRGTVS DEARGSPGPR LLGDRPALSG DALSAPRVVP CGALAARPSP HPGTPLRSCS
                                                                                                                           240
           CCWLRCWRRG RGPSGEYCHG WLDAQGVWRI GFQCPERFDG GDATICCGSC ALRYCCSSAE
ARLDOGGCDN DROQGAGEPG RADKDGPRRL GRASCLRGTQ GDGEGAPPFV RAWQRCSPBG
                                                                                                                          300
                                                                                                                          360
            SPKGRQLLRA FPGLLPRARR RGFPSSPRGG PSPLQRPALP IYVPFLIVGS VFVAFIILGS
                                                                                                                           420
15
           LVAACCCRCL RPKODPOOSR APGGNRLMET IPMIPSASTS RGSSSROSST AASSSSSANS
GARAPPTRSO TNCCLPEGTM NNVYVNMPIN PSVLNCQOAT QIVPHQGQYL HPPYVGYTVO
                                                                                                                           480
            HDSVPMTAVP PFMDGLQPGY RQIQSPFPHT NSEQKMYPAV TV
                                                                               SEQ ID NO:196 COA5 DNA SEQUENCE
                                                                   AA088458
20
            Nucleic Acid Accession #:
                                                             Coding sequence:
                                                                                                                     862-1995 (underlined sequences correspond to start and stop codons)
                                                                  31
                                                                                    41
25
            GCCCTTGGAC ACTGACATGG ACTGAAGGAG TAGAATGGAG CACGAGGACA CTGACATGGA
            CTGAAGAAAA AGGAGCTGGA GCAGGAGAAG GAGGTGCTGC TGCAGGGTTT GGAGATGATG
                                                                                                                          120
            COCCEGGGCC COCACTGGTA CCAGCAGCAG CTGCAACGAG TGCAGGAGCG CCAGCGCCGC
                                                                                                                          180
            CTGGGCCAGA GCAGAGCCAG CGCCGACTTT GGGGCTGCAG GGAGCCCCCG CCCACTGGGG
30
           CGCCTACTGC CCAAGGTACA AGAGGTGGCC CGGTGCCTGG GGGAGCTGCT GGCTGCAGCC
TGTGCCAGCC GGGCCCTGCC CCCGTCCTCC TCCGGGCCCC CCTGCCCTGC CCTGACGTCC
                                                                                                                          300
                                                                                                                          360
            ACCTCACCCC CGGTCTGGCA GCAGCAGACC ATCCTCATGC TGAAGGAGCA GAACCGACTC
            CTCACCCAGG AGGTGACCGA GAAGAGTGAG CGCATCACGC AGCTGGAGCA GGAGAAGTCG
                                                                                                                           480
            GCGCTCATTA AGCAGCTGTT TGAGGCCCGC GCCCTGAGCC AGCAGGACGG GGGACCTCTG
                                                                                                                           540
35
            GATTCCACCT TCATCTAGTC CTTGTGGGCC GCGTGGGCCC CCAGGGCCAG CCTGGCACTC
                                                                                                                           600
            AGCCCTTCGA GGGTGGCCGC CCCATCGCAC CCACCCTCTC TGGCTGGAGA CCCCCGGCAG
                                                                                                                           660
            GCCCAGGCAC AGTCCCGGAG TGGGCGCCTT CCTGCCGCCC TTGCCAGATG GGCTCCCCAG
            GCCTGCCCCC GGCTGGTCCC CGCACCGAGC GCTTGACTCC GTTTKGGCTC CTGGTTGYTG
                                                                                                                          780
            ACATEGEORG GGGGCTCTCT TGAGTCCGCA TAGTCCGCAG CTACTACTGG CCGCTGTCAG
                                                                                                                           840
40
            TEGACAGTEG GETACCCCTC CATGAGTTAG CETCCCCCCG TTTCCAGCGG TGCCGCCCTG
            GETCCCATCT TCAGGGAAAG GCACTGCCCA CGCCAGGCTG CACTTCCAAC AACGGGCAGC
                                                                                                                           960
            AGAGGGCGCG GGGCGGCTCC GACGCGGGTC CAAGGGCAGC TTCCCGCTCA ACCAGGGCAC
                                                                                                                         1020
            CAGGACGAGG TEGCTGTAGC TCGGACGGAC GGAAGTAGAT GGAGGGGGTG GGGACGGCCT
                                                                                                                         1080
            CTAACCGGGG GGTGCCTGCC TGGCTGGGGA GCCCCAGGGA TAGCGGTCGG ACTTCAGGTT
                                                                                                                         1140
45
            CTGGCCAAGG CTGAGGGACC CTGGCTGCAG CGGATCGGCA CGCCGGGTGG GCGAGAGCTT
                                                                                                                         1200
            GGCCTGCATG TGCCTCCCAC AGACCCTGGG GTGATGGCCT TCCCCCTCTT GGCCGGGACG
            TTGCCCCACG TTGAGTCCCA CACAACATCC TGTGAGCCTG GCTCCCCAGG AGGGCCCCCA
                                                                                                                         1320
            GACAGCTCCC AGGCACGTCA TAGGCAAAGC CTGTTTCCCC CGACTCAGGA TTTCCAAGGC
                                                                                                                         1380
            CTGGGGTCCT GCTCACCCCC CTTTGCTCTC ACGCCCAGCC TGTCCCCAGG TTTCAGCTGG
                                                                                                                         1440
50
            GAGAGGCCAC CTCCCTCAGC CAAGGAAAAC GAGAACCCCC AGGGTACAGG AGGAGGCTGG
                                                                                                                         1500
            GGCAGGTCCC CTTGGGTGTC ACTCCCTCAG CCCCTGCCCA GGCCCACTCC CGCTGGTGCT
                                                                                                                         1560
            GGAGTACGCA CTGGTGGGGG GGCCCTGCTC AGCCCAACCT GGAGGGTCCC AGTGTCACCA
                                                                                                                         1620
            GAACCAGGGG CACGGCAACA GCATCGATGG GTTCTGCAGC CCAGGGCCCC CGATGCGGG
                                                                                                                         1680
            TCAGTGTGTG TGGGGCGCAG GGCCTCCGAT GCGGGGTCAG TGCGTGGGGG GCGCAGGGCC
                                                                                                                         1740
55
           CCCGATGCGG GGTCAGTGCG TGGGGGGCCC AGGGCCCCT CGTGTCCAGG GCACTTTGGT ACACTGTCCC ACAAGGCACC TGTCTCAGAG GAGGGCCCCT GGCAGGCAGC GTGGCAACTC
                                                                                                                         1800
                                                                                                                         1860
            CCTTCCGGAG CCCAGCTCCA TGCTAACCTG CCCACAGCAA CCCCACAGAG CCACATTCCC
                                                                                                                         1920
            TECTECACCT GETCTECAGE GETETCOCAE GACAGECCCA ACTCAGCCCA GCATECAGCT
                                                                                                                         1980
           TECTECACT GETETACAGE GENERALES GENERALES ACTUAL GALAGORIA CATALAGORIA TAGGOCTIGA GENERALES CAGGARAGES TECAGGOCTIGA ACCTICAGGA CAGGARAGGA TAGGOCTIGA ACCTICAGGA CAGGARAGGA TAGGOCTIGA ACCTICAGGA CAGGARAGGA TAGGOCTIGA CAGGARAGA CAGARAGA CAGGARAGA CAGGARAGA CAGARAGA 
                                                                                                                         2040
60
                                                                                                                         2100
            AGGTGGACTG CAGCGCAGTG GGTGGGCCAG TGGCAGCCAG GGAGAAGCCC CCCGTCAGCA
                                                                                                                         2160
            GGCTGGGGTC TGCCCACCAG GGCCTCCCCA CGTCTGCCTT TGAGGGTGCC TGCCATGCCC
                                                                                                                         2220
            TGGGGGATCC TGGCATCTTT ACTGGACTGG AAGCAGGAGA CAGAACAGTG TCTGTCCCGG
                                                                                                                         2280
            GGTGACTTCA TCAGGAGACC GCCCACATAG AGCTGGACCC CGCAGCTGAA GCGGAAATGT
                                                                                                                         2340
65
            GAGACAGGCT GGCACCTCCG GAAAAACTGC CTTTCAGCCT TGGTGTTCCG TGCAAGGTGA
                                                                                                                         2400
            AAAGAAATAG GTCCTCCCAG TTTACAGCTT GAAATCAGGC TAGTGAGTGG CCCTGGAGAC
                                                                                                                         2460
            CACGAGGGGA GAATTTAAAG GCCCCGGCTG GCAGGGTCTA GGTGGCTGGC AGAGGCACAT
                                                                                                                         2520
            GCAGACCCTG CCTGGAGCCT GCCCTAGGAC GCTGGGCGGG TCAGTCTCCG TGCAGGATGT
            GAGCAGCGTC CCTGGGCTCT ATCCGCGAGG TGCCAGTAGC GTGTGCAGGT ACATACACGT
                                                                                                                         2640
70
            CCGTCACAC TGTGATGACA CCCGGAAATG TCTCAGGATG TTGAAATGTG TCCTTGGGGG
                                                                                                                         2700
            CAGAAGTGTC CCCAGTTGAG AATCTGCCCC AGAGGAACAC ACCCACACCA GGCCTCAGGA
                                                                                                                         2760
           TTTTGTGTTG ATCAAGTTCC AAGGAAAAGG AACATCTCAG CCGGGCGTGG TGGTTCACGC
CTGGAATCCC AGCACTTGAG GCCAGGAGTT CCAGAGCAGC CTGGGCAACG CAGTGAGAGA
                                                                                                                         2820
                                                                                                                         2880
            CCCCATCTCT ACAARAAAA AAAAAGAAAG AAAGAAAATG AGAGATCCAG GTTTAAAAAT
                                                                                                                         2940
75
            TCATABACAC CACAAGGAAA CAATACACTA TGAGACCCAG CAGAAGCAAC AGATTGACTC
                                                                                                                         3000
            TAGACCCAGA TACTAGAATT ATCAGAGAGA ATATAAAGTA ACAGTGTTTT ATATATCTAA
```

AGAAATAAAA GAGATTTCTG GAAACATGAA AAAAAA

SEQ ID NO:197 LBG2 DNA SEQUENCE X63629 Nucleic Acid Accession #: Coding sequence: 54-2543 (start and stop codons are underlined) 5 51 41 GCGGAACACC GGCCCGCCGT CGCGGCAGCT GCTTCACCCC TCTCTCTGCA GCC<u>ATG</u>GGGC 60 TCCCTCGTGG ACCTCTCGCG TCTCTCCTCC TTCTCCAGGT TTGCTGGCTG CAGTGCCCGG 120 CCTCCGAGCC GTGCCGGGGG GTCTTCAGGG AGGCTGAAGT GACCTTGGAG GCGGGAGGCG 180 CCICCHAGCC GRICCEGGCAG CICH CAGGG AGGCTGAAGH GACCHTGAGG GGGAAGAGC 1880
CGGAGCAGGA GCCCGGCCAG GCCCTGGGGA AAGTATTCAT GGGCTGCCT GCGCAGAGAGC 240
CAGCTCTGTT TAGCACTGAT AATGATGACT TCACTGTGCG GAATGCCAG GACAGTCCAGG 300
AAAGAAGGTC ACTGAAGGAA AGGAATCCAT TGAAGATCTT CCCATCCAAA CGTATCTTAC 360
GAAGACACAA GAGAGATTGG GTGGTTGCTC CAATATCTGT CCCTGAAAAT GGCAAGGGTC 420 10 CCTTCCCCCA GAGACTGAAT CAGCTCAAGT CTAATAAAGA TAGAGACACC AAGATTTTCT 480 ACAGCATCAC GGGGCCGGGG GCAGACAGCC CCCCTGAGGG TGTCTTCGCT GTAGAGAAGG 540 AGACAGGCTG GTTGTTGTTG AATAAGCCAC TGGACCGGGA GGAGATTGCC AAGTATGAGC 600 15 TCTTTGGCCA CGCTGTGTCA GAGAATGGTG CCTCAGTGGA GGACCCCATG AACATCTCCA 660 TCATCGTGAC CGACCAGAAT GACCACAAGC CCAAGTTTAC CCAGGACACC TTCCGAGGGA 720 GTGTCTTAGA GGGAGTCCTA CCAGGTACTT CTGTGATGCA GGTGACAGCC ACAGATGAGG 780 ATGATGCCAT CTACACCTAC AATGGGGTGG TTGCTTACTC CATCCATAGC CAAGAACCAA 840 20 AGGACCACA COACCTCATG TTCACAATTC ACCGAGGAC AGGCACCATC AGGTCATCT 900
CCAGTGGCCT GGACCGGGAA AAAGTCCCTG AGTACACACT GACCATCCAG GCCACAGACA 960
TGGATGGGGA CGGCTCCACC ACCACGGCAG TGGCAGTAGT GGAGATCCTT GATGCCAATG 1020 ACANTGCTCC CATGITTIGAC CCCCAGAAGT ACGAGGCCCA TGTGCCTGAG AATGCAGTGG 1080
GCCATGAGGT GCAGAGGCTG ACGGTCACTG ATCTGGACGC CCCCAACTCA CCAGCGCTGGC 1140
GTGCCACCTA CCTTATCATG GGCGGTGACG ACGGGGACCA TTTTACCATC ACCACCCACC 1200
CTGAGAGCAA CCAGGGCATC CTGACAACCA GGAAGGGTTT GGATTTTGAG GCCAAAAACC 1260 25 AGCACACCET GTACGTTGAA GTGACCAACG AGGCCCCTTT TOTGCTGAAG CTCCCAACCT 1320
CCACAGCCAC CATAGTGGTC CACGTGGAGG ATGTGAATGA GGCACCTGTG TTTGTCCCAC 1380
CCTCCAAAGT CGTTGAGGTC CAGGAGGGCA TCCCCACTGG GGAGCCTGTG TGTGTCTACA 1440 30 CTGCAGAAGA CCCTGACAAG GAGAATCAAA AGATCAGCTA CCGCATCCTG AGAGACCCAG 1500 CAGGGTGGCT AGCCATGGAC CCAGACAGTG GGCAGGTCAC AGCTGTGGGC ACCCTCGACC 1560 GTGAGGATGA GCAGTTTGTG AGGAACAACA TCTATGAAGT CATGGTCTTG GCCATGGACA 1620

ATGGAGGATGA CCAGTTTGTG AGGACACACA TCTATGAAGT CATGGTCTG CCCATGGACA 1620
ATGGAAGCCC TCCCACCACT GGCACGGGAA CCCTTCTGCT AACACTGATT GATGTCAACG 1680
ACCATGGCCC AGTCCCTGAG CCCCGTCAGA TCACCATCTG CAACCAAAGC CCTGTGCCGC 1740
ACGTGCTGAA CATCACGGAC AAGGACCTGT CTCCCCACAC CTCCCCTTTC CAGGCCCAGC 1800
TCACAGATGA CTCAGACATC TACTGGACGG CAGAGGTCAA CGAGGAAGGT GACACAGTGG 1860 TCTTGTCCCT GAAGAAGTTC CTGAAGCAGG ATACATATGA CGTGCACCTT TCTCTGTCTG 1920
ACCATGGCAA CAAAGAGCAG CTGACGGTGA TCAGGGCCAC TGTGTGCGAC TGCCATGGCC 1980
ATGTCGAAAC CTGCCCTGGA CCCTGGAAAG GAGGTTTCAT CCTCCCTGTG CTGGGGGCTG 2040 40 TCCTGGCTCT GCTGTTCCTC CTGCTGGTGC TGCTTTTGTT GGTGAGAAAG AAGCGGAAGA 2100
TCAAGGAGCC CCTCCTACTC CCAGAAGATG ACACCCGTGA CAACGTCTTC TACTATGGCG 2160
AAGAGGGGGG TGGCGAAGAG GACCAGGACT ATGACATCAC CCAGCTCCAC CGAGGTCTGG 2220 AAGAGGGGG TGCCAAAGAG GACCAGGACT ATGACATCAC CCAGCTCCAC CGAGGTCTGG 2220
AGGCCAGGCC GGAGGTGGTT CTCCGCAATG ACGTGGCACC AACCATCATC CCAGCACCACCA
TGTACCGTCC TAGGCCAGCC AACCCAGATG AAATCGGCAA CTTTATAATT GAGAACCTGA 2340
AGGCGGCTAA CACAGACCC ACAGCCCCGC CCTACGACAC CCTCTTGGTG TTCGACTATG 2400
AGGGCAGCGG CTCCGACCCC GCGTCCCTGA GCTCCCTCAC CTCCTCCGC TCCGACCAAC 2460
ACCAAGATTA CGATTATCTG AACGAGTGGG GCAGCCCCTT CAAGAAGCTG GCAGACATGT 2520
ACGGTGGCGG GGAGGACGAC TAGGCCGCCT GCCTCCAGGG CTGCGGACCA AACGTCAGGC 2580
CACAGAGCAT CTCCAAGGGG TCTCAGTTCC CCCTTCAGCT GAGGACTTCG GAGCTTGTCA 2640 45 50 GGAAGTIGGCC GTAGCAACTT GGCGGAGACA GGCTATGAGT CTGACGTTAG AGTGGTTGCT 2700 TCCTTAGCCT TTCAGGATGG AGGAATGTGG GCAGTTTGAC TTCAGCACTG AAAACCTCTC 2760 CACCTGGGCC AGGGTTGCCT CAGAGGCCAA GTTTCCAGAA GCCTCTTACC TGCCGTAAAA 2820

CACHGGGC AGGITGCT CACAGGCAA OCTITIC AGAA GCCTCTTAC TGCTCAAAA GCTTTCTC 2880
CTGGAATGGA ACCTTCTTAG GCCTCCTGGT GCAACTTAAT TITTTTTTT AATGCTATCT 2940
TCAAAACGTT AGAGAAAGTT CTTCAAAAGT GCAGCCCAGA GCTGCTGGGC CCACTGGCCG 3000
TCCTGCATTT CTGGTTTCCA GACCCCAATG CCTCCCATTC GGATGGATCT CTGCGTTTTT 3060 55 ATACTGAGTG TGCCTAGGTT GCCCCTTATT TTTTATTTTC CCTGTTGCGT TGCTATAGAT 3120 GAAGGGTGAG GACAATCGTG TATATGTACT AGAACTTTTT TATTAAAGAA A 60

SEQ ID NO:198 LBG2 Protein sequence: CAA45177 Protein Accession #:

35

70

65 41 51 21 31 11 MGLPRGPLAS ILLLQVCWLQ CAASEPCRAV FREAEVITLEA GGAEQEPGQA LGKVFMGCPG 60 QEPALFSTDN DDFTVRNGET VQERRSLKER NPLKIFPSKR ILRRHKRDWV VAPISVPENG 120 KGPFPQRLNQ LKSNKDRDTK IFYSITGFGA DSFPEGVFAV EKETGWILLN KPLDREEIAK 180 YELFGHAVSE NGASVEDFMN ISIIVTDQND HKPKFTQDTF RGSVLEGVLP GTSVMQVTAT 240 DEDDAIYTYN GVVAYSIHSQ EPKDPHDLMF TIHRSTGTIS VISSGLDREK VPEYTLTIQA 300 TDMDGDGSTT TAVAVVEILD ANDNAFMFDP QKYEAHVPEN AVGHEVQRI.T VTDLDAPNSP 360 AWRATYLIMG GDDGDHFTTT THPESNQGIL TIRKGLDFEA KNQHTLYVEV TNEAPFVLKL 420 PTSTATIVVH VEDVNEAPVF VPPSKVVEVQ EGIPTGEPVC VYTAEDPDKE NQKISYRILR 480 75 DPAGWLAMDP DSGQVTAVGT LDREDEQFVR NNIYEVMVLA MDNGSPPITG TOTLLILID 540
VNDHGPVPEP RQITICNQSP VRHVLNITDK DLSPHTSPFQ AQLIDDSDIY WTAEVNEEGD 600
TVVLSLKKFL KQDTYDVHLS LSDHGNKEQL TVIRATVCDC HGHVETCPGP WKGGFILPVL 660 GAVLALLFIL LVILLLVRKK RKIKEPLLLP EDDTRDNVFY YGEEGGGEED QDYDTTQLHR 720

GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNFIIE NLKAANTDPT APPYDTILLVF 780 DYEGSGSDAA SLSSLTSSAS DQDQDYDYLN EWGSRFKKLA DMYGGGEDD

_			SE	SEQ ID NO:199 OBI5 DNA SEQUENCE					
5	Nucleic Acid Acce Coding sequence		NM_012152 43-1104 (underlined sequences correspond to start and stop codons)						
	1	11	21	31	41	51			
10	Ť	1	1	1	1	1			
10	CALCALATOR	United Administration of the last of the l	GGATGTTCAC	THE	CAATGAATGA	GTGTCACTAT	60		
			TTATAATAGG				120		
						TATTTTTTT	180		
			GGCAGTGATC				240		
15	TACCTGTTGG	CTAATTTAGC	TGCTGCCGAT	TTCTTCGCTG	GAATTGCCTA	TGTATTCCTG	300		
						TCTCCGTCAG	360		
	GGGCTTCTGG	ACAGTAGCTT	GACTGCTTCC	CTCACCAACT	TGCTGGTTAT	CCCCTCCAC	420		
						GAGGGTGACA	480 540		
20	CIGCICATIT	TGCTTGTCTG	GGCCATCGCC CTCTGCCTGC	ATTTTTATGG	GGGCGGTCCC	CACACIGGGC	600		
20						TGTGGTGTAC	660		
	CTCCCCATCT	ACCTGTACGT	CAAGAGGAAA	ACCAACGTCT	TGTCTCCGCA	TACAAGTGGG	720		
	TCCATCAGCC	GCCGGAGGAC	ACCCATGAAG	CTAATGAAGA	CGGTGATGAC	TGTCTTAGGG	780		
						CCTGAACTGC	840		
25						GCTCAACTCC	900		
	GTCGTGAACC	CCATCATCTA	CTCCTACAAG	GACGAGGACA	TGTATGGCAC	CATGAAGAAG	960		
	ATGATCTGCT	GCTTCTCTCA	GGAGAACCCA	GAGAGGCGTC	CCTCTCGCAT	CCCCTCCACA			
	GTCCTCAGCA	GGAGTGACAC	AGGCAGCCAG	TACATAGAGG	ATAGTATTAG	CCAAGGTGCA			
20		AAAGCACTTC	C <u>TAA</u> ACTCTG	CATGCCTCTC	GGCCCACCCA	GGTGATGACT	1140		
30	GTCTTAGG								
	•								
	SEO ID NO-200 (OBIS Protein segu	anea:						
	Protein Accession		NP 038	284					
35	1 IOIGHI MOGGAIGH	1 W -	W _000	~~~					
	1	11	21	31	41	51			
		1		1	i				
	MNECHYDKHM	DFFYNRSNTD	TVDDWTGTKL	VIVLCUGTEF	CLFIFFSNSL	VIAAVIKNRK	60		
40	PHFPFYYLLA	nlaaadfyag	LAYVFLMFNT	GPVSKTLTVN	RWFLRQGLLD	SSLTASLTNL	120		
40	LVIAVERHMS	IMRMRVHSNL	TKKRVTLLIL	LVWAIAIPMG	AVPTLGWNCL	CNISACSSLA	180		
	PIYSRSYLVF	WIVSNLMAPL	IMVVVYLRIY	VYVKRKINVL	SPHTSGSISR	RRTPMKLMKT	240 300		
			P SRIPSTVLSR			IIYSYKDEDM	300		
	IGIMARMIC	C PSQEAPERA	L OKILO I ATOR	SDIOSCHED	SISQUAVCIA	.010			
45				SE	Q ID NO:201 PAA	6 DNA SEQUENCE			
	Nucleic Acid Acc	ession #:	AA569531						
	Coding sequence	r.	1-504 (underlin	ned sequences co	rrespond to start a	nd stop codons)			
				•					
~^	1	11	21	31	41	51			
50	1	1	1	1					
	<u>ATG</u> ACCTACA	GTTACTCATT	TTTCAGGCCT	GAGTTGATCG	TTAATCATCT	TAATTATGTT	60		
	CATTCTGAAG	CCAACAGGAG	AACCAAGACC	AAAACTITAT	TGTCTCTGCT	TTCATTTCTT	120		
	GATGAAACCT	CTGGACTAAG	CACACATCTT	CCTTGTTTAT	CICICICAAA	GGAGTGTGGA ACAGTCTTCC	180 240		
55						GATGAGCCTC	300		
33	AMBCTATACC	CCARCARACC	CTCCCAAAA	ACACTTACAG	AAACCATCCT	GAGAGATTTT	360		
	AAGCAGAAGC	AAACTTCAAA	CATCCAAGAG	GAGAGACGAA	GAGAGTCTGC	AGGACCAAAC	420		
	CTCTCTTCAT	TCTGGTTTGT	GGGGAATGCT	GGAAGAGGAG	ACAGGCCCCA	GATTTGGGCA	480		
	GGAAGTAAAC	AGTTTTCAGG	CTGAGGCCAA	TCTGAGCAGG	AACATTCCAA	TATTTCTTCA	540		
60	CCTACGTTGT	CCCAGCACTT	CACTGGTTAA	CCTTTTATGT	CCACCATTTG	TGGATTTCAC	600		
	ACCTACTTGT	CAATGGTGAA	TATTGATCAT	CATCATTATC	TACTGAGCTG	CTACCATATE	660		
	CCAGCTACTC	CTTGCATGTT	GTTCATTATT	TTCTCAACAC	TCAGCATATT	TGCAATATGT	720		
	TATGTAATAT	CACAGACAAG	GAAACTGAAC	GCAGAAATGT	TTTATTTCTT	GCCAAACATC	780		
65	ACATGAGGAT	GAACAATGAA	ACCGATTTGA	AACCAGGATT	GTCTGATTCC	AACATCTCTG	840		
03	GGTCCTTTTT	CACTCTGATA	TGCTGCAATT	AAAAAGCCAT	TICTAAGACT	GT			
	SEU ID NU-303	PAA6 Protein seg	ileuce.						
70	Protein Accessio	n #:	none found						
, ,	. totali recussio	·· -•	mano round						
	1	11	21	31	41	51			
	Ĩ	1	1	1	1	1			
	MTYSYSFFR	P ELIVNHLNY	V HSEANRRIK	T KTLLSLLSF	L DETSGLSTH	L PCLSLSKECG	60		
<i>7</i> 5	VLHLDIHGK	K EDMRITQQS	S QLYLWDMGG	P TIFKNLWMS	L IPRGNKRSP	K RVTETILRDF	120		
	KQKQSSKIQ	E ERRRESAGP	n lssfwfvgi	ia grgdrpqi	WA GSKQFSG				

```
SEQ ID NO:203 PAB2 DNA SEQUENCE
           Nucleic Acid Accession #:
                                             XM_050197
           Coding sequence:
                                             310-1971 (underlined sequences correspond to start and stop codons)
  5
           TCACACGTGC CAAGGGGCTG GCTCAGCGGA ACCAGCCTGC ACGCCCTGGC TCCGGGTGAC
           AGCCGCGCGC CTCGGCCAGG ATCTGAGTGA TGAGACGTGT CCCCACTGAG GTGCCCCACA
           GCAGCAGGTG TTGAGCATGG GCTGAGAAGC TGGACCGGCA CCAAAGGGCT GGCAGAAATG
                                                                                                               180
10
                                                                                                               240
           GCCCCTGCC TGATTCCTAG GCAGTTGGCG GCAGCAAGGA GGAGAGGCCG CAGCTTCTGG
           AGCAGAGCCG AGACGAAGCA GTTCTGGAGT GCCTGAACGG CCCCCTGAGC CCTACCCGCC
          TGGCCCACTA TGGTCCAGAG GCTGTGGGTG AGCCGCCTGC TGCGGCACCG GAAAGCCCAG CTCTTGCTGG TCAACCTGCT AACCTTTGGC CTGGAGGTGT GTTTGGCCGC AGGCATCACC
                                                                                                               360
                                                                                                               420
           TATGTGCCGC CTCTGCTGCT GGAAGTGGGG GTAGAGGAGA AGTTCATGAC CATGGTGCTG
15
           GGCATTGGTC CAGTGCTGGG CCTGGTCTGT GTCCCGCTCC TAGGCTCAGC CAGTGACCAC
TGGCGTGGAC GCTATGGCCG CCGCCGGCCC TTCATCTGGG CACTGTCCTT GGGCATCCTG
                                                                                                               540
                                                                                                               600
           CTGAGCCTCT TTCTCATCCC AAGGGCCGGC TGGCTAGCAG GGCTGCTGTG CCCGGATCCC
           AGGCCCCTGG AGCTGGCACT GCTCATCCTG GGCGTGGGGC TGCTGGACTT CTGTGGCCAG
GTGTGCTTCA CTCCACTGGA GGCCCTGCTC TCTGACCTCT TCCGGGACCC GGACCACTGT
                                                                                                               720
                                                                                                               780
20
           CGCCAGGCCT ACTCTGTCTA TGCCTTCATG ATCAGTCTTG GGGGTGCCT GGGCTACCTC
                                                                                                               840
           CTGCCTGCCA TTGACTGGGA CACCAGTGCC CTGGCCCCCT ACCTGGGCAC CCAGGAGGAG TGCCTCTTTG GCCTGCTCAC CCTCATCTTC CTCACCTGCG TAGCAGCCAC ACTGCTGGTG
                                                                                                               900
                                                                                                               960
           GCTGAGGAGG CAGCGCTGGG CCCCACCGAG CCAGCAGAAG GGCTGTCGGC CCCCTCCTTG
                                                                                                             1020
           TOGCOCCACT GCTGTCCATG CCGGGCCCGC TTGGCTTTCC GGAACCTGGG CGCCCTGCTT CCCCGGCTGC ACCAGCTGTG CTGCCGCATG CCCCGCACCC TGCGCCGGCT CTTCGTGGCT
                                                                                                             1080
25
                                                                                                             1140
           GAGCTGTGCA GCTGGATGGC ACTCATGACC TTCACGCTGT TTTACACGGA TTTCGTGGGC
           GAGGGGCTGT ACCAGGGCGT GCCCAGAGCT GAGCCGGGCA CCGAGGCCCG GAGACACTAT
GATGAAGGCG TTCGGATGGG CAGCCTGGGG CTGTTCCTGC AGTGCGCCAT CTCCCTGGTC
                                                                                                             1260
                                                                                                             1320
           TTCTCTCTGG TCATGGACCG GCTGGTGCAG CGATTCGGCA CTCGAGCAGT CTATTTGGCC
                                                                                                              1380
30
           AGTOTOGCAG CTTTCCCTGT GGCTGCCGGT GCCACATGCC TGTCCCACAG TGTGGCCGTG
GTGACAGCTT CAGCCGCCCT CACCGGGTTC ACCTTCTCAG CCCTGCAGAT CCTGCCCTAC
                                                                                                             1440
                                                                                                             1500
           ACACTGGCCT CCCTCTACCA CCGGGAGAAG CAGGTGTTCC TGCCCAAATA CCGAGGGGAC
                                                                                                             1560
           ACTGGAGGTG CTAGCAGTGA GGACAGCCTG ATGACCAGCT TCCTGCCAGG CCCTAAGCCT
GGAGCTCCCT TCCCTAATGG ACACGTGGGT GCTGGAGGCA GTGGCCTGCT CCCACCTCCA
                                                                                                             1620
                                                                                                             1680
35
           CCCGCGCTCT GCGGGGCCTC TGCCTGTGAT GTCTCCGTAC GTGTGGTGGT GGGTGAGCCC
                                                                                                             1740
           ACCGAGGCCA GGGTGGTTCC GGGCCGGGGC ATCTGCCTGG ACCTCGCCAT CCTGGATAGT
GCCTTCCTGC TGTCCCAGGT GGCCCCATCC CTGTTTATGG GCTCCATTGT CCAGCTCAGC
                                                                                                             1800
                                                                                                             1860
           CAGTOTGTCA CTGCCTATAT GGTGTCTGCC GCAGGCCTGG GTCTGGTCGC CATTTACTTT
                                                                                                             1920
           GCTACACAGG TAGTATTTGA CAAGAGCGAC TTGGCCAAAT ACTCAGCGTA GAAAACTTCC
AGCACATTGG GGTGGAGGGC CTGCCTCACT GGGTCCCAGC TCCCCGCTCC TGTTAGCCCC
                                                                                                             1980
40
                                                                                                             2040
           ATGGGGCTGC CGGGCTGGCC GCCAGTTTCT GTTGCTGCCA AAGTAATGTG GCTCTCTGCT
                                                                                                             2100
           GCCACCTGT GCTGCTGAGG TGCGTAGCTG CACAGCTGGG GGCTGGGGCG TCCCTCTCTC
CTCTCCCCAG TCTCTAGGGC TGCCTGACTG GAGGCCTTCC AAGGGGGTTT CAGTCTGGAC
                                                                                                             2160
                                                                                                             2220
           TTATACAGGG AGGCCAGAAG GGCTCCATGC ACTGGAATGC GGGGACTCTG CAGGTGGATT ACCCAGGCTC AGGGTTAACA GCTAGCCTCC TAGTTGAGAC ACACCTAGAG AAGGGTTTTT GGGAGCTGAA TAAACTCAGT CACCTGGTTT CCCATCTCTA AGCCCCTTAA CCTGCAGCTT
                                                                                                             2280
45
                                                                                                             2340
                                                                                                              2400
           COTTTAATGT AGCTCTTGCA TGGGAGTTTC TAGGATGAAA CACTCCTCCA TGGGATTTGA
                                                                                                             2460
                                                                                                             2520
           ACATATGAAA GTFATTTGTA GGGGAAGAGT CCTGAGGGGC AACACACAAG AACCAGGTCC
           CCTCAGCCCC ACAGGCACTG GTCTTTTTTG CTNGANTCCA CCCCCCCCT CTTTACCCTT
50
           SEQ ID NO:204 PAB2 Protein sequence:
XP_050197
55
                                                             31
             MVORLMVSRL LRHRKAQLLL VNLLTFGLEV CLAAGITYVP PLLLEVGVEE KFMTMVLGIG
60
            PVIGLVCVPL LGSASDHWRG RYGRRRPFIW ALSLGILLSL FLIPRAGWLA GLLCPDPRPL
ELALLILGVG LLDFCGQVCF TPLEALLSDL FRDPDHCRQA YSVYAFMISL GGCLGYLLFA
            IDMDTSALAP YLGTQEECLF GLUTLIFLTC VAATLLVAEE AALGPTEPAE GLSAPSLSPH
CCPCRARLAF RNLGALLPRL HQLCCRMPRT LRRLFVAELC SWAALMTFTL FYTDFVGEGL
YQGVPRAEPG TEARRHYDEG VRMGSLGLFL QCAISLVFSL VMDRLVQRFG TRAVYLASVA
                                                                                                                240
                                                                                                                 300
65
            AFFYAGATC LSHSVAVVTA SAALTGFTFS ALQILPYTLA SLYHREKQVF LFKYRGDTGG
ASSEDSLMTS FLPGPKPGAP FFNGHVGAGG SGLLPPPPAL CGASACDVSV RVVVGEPTEA
RVVPGRGICL DLAILDSAFL LSQVAPSLFM GSIVQLSQSV TAYMVSAAGL GLVAIYPATQ
                                                                                                                 420
                                                                                                                 480
             VVFDKSDLAK YSA
70
                                                                       SEQ ID NO: 205 PAJ3 DNA SEQUENCE
                                              AK002126
           Nucleic Acid Accession #:
                                              1-1593 (underlined sequences correspond to start and stop codons)
           Coding sequence:
75
                             11
                                             21
                                                             31
                                                                              41
                                                                                             51
             ATGGTTCGCC GGGGGCTGCT TGCGTGGATT TCCCGGGTGG TGGTTTTGCT GGTGCTCCTC
            TECTOTOCTA TOTOTOCT GTACATOTTE GCCTGCACCC CAAAAGGTGA CGAGGAGCAG
CTGGCACTGC CCAGGGCCAA CAGCCCCACG GGGAAGGAGG GGTACCAGGC CGTCCTTCAG
                                                                                                                 120
80
             GACTGGGAGG AGCAGCACCG CAACTACGTG AGCAGCCTGA AGCGGCAGAT CGCACAGCTC
                                                                                                                240
```

			agcag ctcaggaat			300
	GCTGCTGGCC TGG	GTCTGGA CAGGA	GCCCC CCAGAGAAA	A CCCAGGCCGA	CCTCCTGGCC	360
			CAGAG GTGAATGCT			420
5			TTACT CTACAGAAG			480
J			CTGTG AGGAAGGAC			
	GCCATTGAAT CAG	CCTTGGA GACCC	IGAAC AATCCTGCA	3 AGAACAGCCC	CAATCACCGT	600
	CCTTACACGG CCT	CTGATTT CATAG	AAGGG ATCTACCGA	CAGAAAGGGA	CAAAGGGACA	660
	DECEMBER OF THE PROPERTY OF TH	COMICAN BOCCO	ACCAC AAACACGAA	n mennanceem	C3 MOUNTS TOTAL	720
	TIGIATGAGE TEA	CCIICAA AGGGG	MCCAC MAACACGAA	I ICMMCGGCI	CAICTIATTI	720
10			igaaa aatgaaaag			
10	ATCAATGTTA TCG	TGCCTCT AGCAA	aaagg gtggacaag	P TCCGGCAGTT	CATGCAGAAT	840
			ATGGG AGAGTCCAT			900
			GAATA CTTGAAAAC			960
			atgga gaatttict			1020
	GGAGCCCGCT TCT	ggaaggg aagca	ACGTC CTTCTCTTT	TCTGTGATGT	GGACATCTAC	1080
15	TTCACATCTG AAT	TCCTCAA TACGTY	STAGG CTGAATACA	AGCCAGGGAA	GAAGGTATTT	1140
			ATCCT GGCATAATA			1200
			PARAG RAGGRARCT			1260
			CAGAC TTCATCAAT			1320
	ATCAAAGGCT GGG	GCGGAGA GGATG	NGCAC CTTTATCGC	AGTATCTCCA	CAGCAACCTC	1380
20	ATAGTGGTAC GGA	CGCCTGT GCGAG	GACTO TTOCACCTO	r ggcatgagaa	GCGCTGCATG	1440
	GACGAGCTGA CCC	CCGAGCA GTACA	AGATG TGCATGCAG	CCAAGGCCAT	GAACGAGGCA	1500
			POTTC AGGCACGAG			1560
				1 INGNOGETER	CCTTCGCMM	1300
	CAGAAACAGA AGA	Caagtag Caaaa	AAACA TGA			
25						
	SEQ ID NO:206 PAJ3 Pr	mtoin comunece				
			m.i.4			
	Protein Accession #:	NP_060	1041			
	1 11	21	31	41	51	
30	ī ī	1	1	i	ì	
-						
	MVRRGLLAWI SRVV					60
	EWEEQHRNYV SSLK	RQIAQL KEELQE	rseq lrngqyqasd	AAGLGLDRSP	Pektqadlla	120
	FLHSQVDKAE VNAG	VKLATE YAAVPE	DSFT LOKVYOLETG	LTRHPEEKPV :	RKDKRDELVE	180
	AIESALETLN NPAE					240
35						300
55	RPFGPIMKVK NEKL					
	KEEINEVKGI LENT					360
	PTSEFLMTCR LNTQ	PCKKVF YPVLFS	OYNP GIIYGHHDAV	PPLEQQLVIK :	KETGFWRDFG	420
	FGMTCOYRSD FINI	CCPDLD IXCMGC	ROVE LYRKYLHSNI.	TVVRTPVRGI.	FHLWHEKRCM	480
	DELTPEQYKM CMC					
40	DELIFEQ I EM CMC	Source services	SCOMP AT. KURREYU	COLLEGE AND AND	ZVI	
70						
-10			SE	Q ID NO:207 PAJ5	DNA SEQUENCE	
	Nucleic Acid Accession #	: AF1897		Q ID NO:207 PAJ5	DNA SEQUENCE	
-10	Nucleic Acid Accession #		23			
70	Nucleic Acid Accession # Coding sequence:					
			23			
45			23			
	Coding sequence:	1-2712	23 (underlined sequences c	nrespond to start a	nd stop codons)	
			23	prespond to start a		
	Coding sequence:	1-2712	23 (underlined sequences c	nrespond to start a	nd stop codons)	
45	Coding sequence:	1-2712 21 	23 (underlined sequences co 31 	prespond to start a	nd stop codons)	60
45	Coding sequence: 1 11 ATGATTCCTG TAT	1-2712 21 TGACATC AAAAA	23 (underlined sequences o 31 NAGCA AGTGAATTA:	arrespond to start at 41 CAGTCAGTGA	ed stop codons) 51 AGTIGGAAGC	60
	Coding sequence:	1-2712 21 TGACATC AAAAA ATCTTCA GAATG	23 (underlined sequences of the sequence	41 CAGTCAGTGA	nd stop codons) 51	120
45	Coding sequence: 1	1-2712 21 TGACATC AAAAA ATCTTCA GAATG	23 (underlined sequences of the sequence	41 CAGTCAGTGA CAGTTAGTGA CAGTTAGTGA	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT	120 180
45	Coding sequence: 1 11	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGTT TGATA' ATCCCCT TATTA'	23 (underlined sequences of the sequence	41 C CAGTCACTGA C AGTTAGTCA C CACTTAGTCA C CACTTAGTCA C CACTGTGGAA C CTGCAGTCAT	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA	120 180 240
45	Coding sequence: 1 11	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGTT TGATA' ATCCCCT TATTA'	23 (underlined sequences of the sequence	41 C CAGTCACTGA C AGTTAGTCA C CACTTAGTCA C CACTTAGTCA C CACTGTGGAA C CTGCAGTCAT	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA	120 180
45	Coding sequence: 1	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGGTT TGATTA ATGCATCC CGTCA	23 (underlined sequences of the sequence	41 C CAGTCACTGA A AGTTAGTCA C CACTGTGGAAA C CACTGTGAAAA A TACTTATGTA	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA	120 180 240 300
45	Coding sequence: 1	1-2712 21	23 (underlined sequences of the control of the cont	41 CAGTCACTGA CACTTAGTCA CACTTAGTCA CACTTAGTCA CACTTATGGA A TACTTATCGT A TACTTATCGT A TACTTATCATTAA	51 ACTTGCAAGC GAAGTATATA TGITACAGTT ACTTGTGCCA	120 180 240 300 360
45	Coding sequence: 1 11	1-2712 21	23 (underlined sequences of the control of the cont	41	51 AGTTGCAAGC GAAGTATATT CAGTGTTTTA ACTTGTGCA AGACTTGTTGTA AGACTTGGTGTA AGACTTGGTGTA AGACTTGGTGTA	120 180 240 300 360 420
45	Coding sequence: 1 11	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGTT TGATAT ATGATGC CGTCA AATATCG TTCAG TTTCAG TTTCAGT TTCAGT TTTCAGT	23 (underlined sequences of the control of the cont	41 C CAGTCAGTGA AGTTAGTGA C CTGGGGATCAT TAGTCAGT A TAGTTATCGT A TAGTTATCGT A TAGTTATCGT A TAGTTATCGT C CAGTTGGCCG C CTGGTGGATT	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTTGTGCCA AGACTTGGTT ACGCTTGTTTT	120 180 240 300 360 420 480
45	Coding sequence: 1	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGET TGATA' ATGATGC CGTCA' AATATCG TTCAG GTGTGCG TGAAG TTTGCCT TTCTGTTTTTCCAT	23 (underlined sequences of the control of the cont	41 CAGTCACTGA CACTGTAGAA CACTGTGGAA TACTTATGGT A TACTTATGGT A CACTTGCCCG CTGCTGACTT GTGAGACTAC	51 ACTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTTGTGCCA AGACTTGTGCCA AGACTTGTTTT GCCTTGTTTT GCCTTGTTTT	120 180 240 300 360 420 480 540
45	Coding sequence: 1	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGET TGATA' ATGATGC CGTCA' AATATCG TTCAG GTGTGCG TGAAG TTTGCCT TTCTGTTTTTCCAT	23 (underlined sequences of the control of the cont	41 CAGTCACTGA CACTGTAGAA CACTGTGGAA TACTTATGGT A TACTTATGGT A CACTTGCCCG CTGCTGACTT GTGAGACTAC	51 ACTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTTGTGCCA AGACTTGTGCCA AGACTTGTTTT GCCTTGTTTT GCCTTGTTTT	120 180 240 300 360 420 480
45 50 55	Coding sequence: 1 11	1-2712 21	23 (underlined sequences of the control of the cont	41	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTA ACTTGTGCCA AGACTTGGTT ACGCTTGTTT	120 180 240 300 360 420 480 540 600
45 50 55	Coding sequence: 1 11	1-2712 21 TGACATC AAAAA ATCHTCA GAATG ATGAGTT TAATGA ATCATCC TATTA' ATGATCC TTCAG ATTACCT TACAG TTTCAG TGAAG TTTCAG TGAAG TTTCAT TGATG CTCAGCC AGCTG CACTGCT CACAT	23 (underlined sequences of the control of the cont	41	51 AGTTGCAAGC TAGGGGAGC TAGGGGAGC TAGGCTATT CAGTGTTTA TGTTACAGTT ACTTGTGCCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTCT AAGTACAGTT TGGAACAGGA	120 180 240 300 360 420 480 540 600 660
45	1 11 ATGATTCCTG TAT ATTCTCCAAG CTG TTTCATGGCT GGA ATCCATCAGTTTA AAA ATCCATCAGTTA AAA ATCCATCAGTTA AAG CCAGATATCC ATT CCAGGTGATA CAG GAGGCTGTGG ATC AAGGTGACAG CTC GCCTTTATCG GAA GAGAATTCTG AAT	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGTT TGATTA ATGATGC CGTCA AATATCG TTCAG GTGTGCG TGATG TTTGCCT TTCTG TTTCCAT TGATG CTCAGCC AGCTG TTCGGCG AGCTG TTGGGCG AGGTT	23 (underlined sequences of underlined sequences of line and line	41	51 ACTTGCAAGC GAAGTATATT CAGTGTTTACAGT ACTTGTGCCA AGACTGGTT ACCTTGTTCT AAGTAACATT TGGAACAGA ACCAAAAACC	120 180 240 300 360 420 480 540 600 660 720
45 50 55	Coding sequence: 1 11	1-2712 21 TGACATC AMARA ANCHTCA GAATG ATCACCT TATTA ATCACCT TATTA ATCACCC TGCAAG GTATGC TGAAG TTTGCCT TTCACC CTCAGCC AGCTG CACTGGT CACATTTGGAGG CACTGGT CACATTTGGAGG CACTGGT CACATTGGAGGA CCTCT	23 (underlined sequences of underlined sequences of the un	41	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTA ACTTGTGCCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT TGGACAGAAAACC CTTTGGTATA	120 180 240 300 360 420 480 540 600 660 720 780
45 50 55	1 11 ATGATTCCTG TAT ATTCATGCT GGA TCTCATGCT GGA TCTCATGCT AGA ATGCATCAGT TGG GCCTTTGTTC AGG CCAGGATGCA ATC GAGGCTGTGG ATC AAGGTGACAG CTC AAGGTGACAG CAG GAAAATTCTG AAT CCTCTCCAGA AGA ATAGGAATCA TCA	1-2712 21 TGACATC AAAAA ATCHTCA GAATG ATGAGTT TGATGA ATGATGC TGTGAG GTGTGCG TGAAG TTTGCGT TGAAG TTTGCGT TGAAG TTTGCGT TGAAG TTTGCGT GAGAGT TTGGGGA GGTTT TGTTGGA CCTTTT	23 (underlined sequences of underlined sequences of un	41 C CAGTCAGTGA C CAGTCAGTGA C CAGTCAGTGA C CAGTGGAA C CAGTGGAGTCAT A TACTTATGGTA A CACTTGGCAG C CTGCTGACTT G GTGAGACAAC C TTGCATTGAG G GTGTTGTCAT G CAGAAGAGGG C CCTTTTTACTC G ATATCCTGGA	51 AGTTGCAAGC TAGGCGAGCC TAGGCGAGCC TAGTGTTTA TGTTACAGTT TGTTACAGTT AGACTTGTGCT ACGCTTGTTT ACGCTTGTTT TGCAACAGT ACGAACAGT ACCAAAAACC CTTTGGTACA	120 180 240 300 360 420 480 540 600 660 720
45 50 55	1 11 ATGATTCCTG TAT ATTCATGCT GGA TCTCATGCT GGA TCTCATGCT AGA ATGCATCAGT TGG GCCTTTGTTC AGG CCAGGATGCA ATC GAGGCTGTGG ATC AAGGTGACAG CTC AAGGTGACAG CAG GAAAATTCTG AAT CCTCTCCAGA AGA ATAGGAATCA TCA	1-2712 21 TGACATC AAAAA ATCHTCA GAATG ATGAGTT TGATGA ATGATGC TGTGAG GTGTGCG TGAAG TTTGCGT TGAAG TTTGCGT TGAAG TTTGCGT TGAAG TTTGCGT GAGAGT TTGGGGA GGTTT TGTTGGA CCTTTT	23 (underlined sequences of underlined sequences of un	41 C CAGTCAGTGA C CAGTCAGTGA C CAGTCAGTGA C CAGTGGAA C CAGTGGAGTCAT A TACTTATGGTA A CACTTGGCAG C CTGCTGACTT G GTGAGACAAC C TTGCATTGAG G GTGTTGTCAT G CAGAAGAGGG C CCTTTTTACTC G ATATCCTGGA	51 AGTTGCAAGC TAGGCGAGCC TAGGCGAGCC TAGTGTTTA TGTTACAGTT TGTTACAGTT AGACTTGTGCT ACGCTTGTTT ACGCTTGTTT TGCAACAGT ACGAACAGT ACCAAAAACC CTTTGGTACA	120 180 240 300 360 420 480 540 600 660 720 780
45 50 55 60	Coding sequence: 1 11	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGTT TGATATA ATGATGC CACACA AATATCG TTCAG TTTCAGT TGAAG TTTCAGT TGAAG TTTCAGT TGAAG TTTCAGT TGAAG CTCAGCC AGCTGT CACAGGT CACATTTCGGGA GGTTT GCATGGA CCTCGT TGCGTTAGCAT TGGCTGT TGCCTT	31 AAGCA AGTGAATTAN STOTA AACAAAGTT FTAGT GAAGATGAG RETIG CTTCTIGGAT AAAAAA TCTCTTIGAA AAAAA TCTGGACAT AAGCA AGTGAAGAGT AAGAA TTGGAGGAT AAGAA TTGGAGGAT AATGAAGAT AATGAACAT AATGAAAAC PTAAA ATGAACAAAC PTAAA ATGAACAAAC PTAAA ATGAACAAC PTAAA CAGGAAAAC PTAAA CTGGAAAAC PTAAA CTGGAAAAAC PTAAA CTGGAAAAAC PTAAA CTGGAAAAAC PTAAA CTGGGAAAAAC PTAGGAAAAC PTAGGAAAAC PTAGGAAAAC PTAGGAAAAC PTAGGAAAAC PTAGGAAAAAC PTAGGAAAAC PTAGGAAAC PTAGGAAAAC PTAGGAAAC PTAGGAAC PTAGGAAAC PTAGAAC PTAGGAAAC PTAGAAC PTAGGAAAC PTAGGAAC PTAGGAAAC PTAGG	41	51 ACTTGCAAGC GAAGTATATT CAGTGTTTTA ACTTGTCCA AGACTTGCTT ACGCTTGTTCT ACGCTTGTTCT ACGCTTGTTCT ACGCTAGTACACT TCGAACAGGA ACCAAAAACC CTTTGGTATA AATGTTTACACT GGTCACACTG	120 180 240 300 360 420 480 540 660 720 780 840 900
45 50 55 60	1 11 I 11 I I	1-2712 21 TGACATC ARARA ATCTICA GRATG ATCACCT TATTA ATCACCT TATTA ATCACCC TGAAG GTATGC TGAAG TTTCCCT TGATG CTCAGCC AGCTG CACTGGT CACAT GCATGGT CACAT GCATGGT TGATG GTATGGT TGATG GTATGGT TGATG GTATGGT TGATG GTATGGT TGATG GTATGT TGATG GTATGT TGATG GTATGT TGATG GTATGT TGATG GTATGT TGATG	31 31 1 31 1 31 1 31 1 31 1 31 1 31 3	41	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTA ACTTGTGCCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT TGGAACAGC ACAAAACC CTTTGGTATA ACTTTTACTTT TGGAACAGG ACCAAAACC CTTTGGTATA AATGTTTACT GGTCACAGTG AAAGCTCCCT	120 180 240 300 360 420 480 540 600 720 780 840 900 960
45 50 55	1 11	1-2712 21	23 (underlined sequences of underlined sequences of un	41	51 AGTTGCAAGC TAGGCGAGC TAGGCGAGC TAGTGTTTA TGTTACAGT ACTTGTGCCA AGACTTGTT ACGCTTGTT ACGCTTGTT TGCACAGGA ACCAARAAC CTTTGGACAGGA ACCAARAAC CTTTGGTATA AATGTTTACT GGTCACAGTG AACACTGACC AACACTGACG	120 180 240 300 360 420 480 540 660 720 780 900 960 1020
45 50 55 60	1 11 ATGATTOCTG TAT ATTCTCCAAG CTG TTTCATGCT GGA TTTCATGCT GGA ATGCATCAGT TTG GCCTTTGTTC AGG CCAGATGCC ATG GAGGCTGTGG ATC AAGGTGACAG CTC GCCTTTATGG GAA GAAATTCTG AAT CCTCTGCAGA AGA ATAGGAATCA TCA ATTAGTGTAA GTT ACGCTAGCTC TTG ATTGTTGAAA TGA	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGTT TGATGA ATCATCC TGAAG ATTAGCT TTCAG TTTCAGT TGAAG TTTCAGC ACTAGCA CACTGGT CACATTTCGGGA GGTTT TGCATGAGA CCTCT TGTTGGT TGGCT TGGCTAGAGAG TGTGGCT AGCAG GTGTTAT GAGAG GTGTTAT GAGAG CTGTTAT TGGGTG CTGTA	31 AAGCA AGTGAATTA FICTA AACAAAGT FITAGT GAAGATGAC FITAGT GAAGATGAC FITAGT CATCTTGAA AAAAA TTGGACCAT FITAGT GATGAGAT AAAAA TTGGACAT AATGAGATA AAAAA TTGGACAT FITAGA AATGAGATTA AGTCC AGCTTAGAA FITAGA ATGAGAATA FITAGA ATGAGAATA FITAGA ATGAGAATA FITAGA ATGAGAAAA FITAGA ATGAGAAAAA CAATT CATGAAAAAAGA FITAAA ATGAGAAAAAGA ATTTGAGAAAAAGAAAATT FITAGAAAAAAGAAAAAGAAAAAGAAAAAGAAAAAAGAAAAAA	41 CAGTCACTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGTGGATA CACTTGCACTGA CACTTGCACTGA CACTTGCACTG GTGAGACAAC CTGCATTGAT GTGAGAGAGGC CCTTTTACTC GAGAGAGGGC CCTTTTACTC CATTGGA CACTTGGA CACTTGGAA CACTTGG	51 ACTIGGRAGE GRAGTATATT CAGTGTTTACAGTT ACTIGTECA AGACTIGGTT ACGCTTGTTCT AGGTACACTT TGGAACAGGA ACCAAAAACC CTITGGTATA AATGTTACT AAGGTACAGGA AAGGTACATT AAGGTACAGGA AAGGTACATT AAGACAGGA AAGGTAACA AATGTTTACT GACACAGGA AAGGTGCCT AAAGCTGCCT TAGGTATA AAGGTGCTT AAGACTGCAG	120 180 240 300 360 480 540 660 720 780 840 960 1020 1080
45 50 55 60	1 11 ATGATTOCTG TAT ATTCTCCAAG CTG TTTCATGCT GGA TTTCATGCT GGA ATGCATCAGT TTG GCCTTTGTTC AGG CCAGATGCC ATG GAGGCTGTGG ATC AAGGTGACAG CTC GCCTTTATGG GAA GAAATTCTG AAT CCTCTGCAGA AGA ATAGGAATCA TCA ATTAGTGTAA GTT ACGCTAGCTC TTG ATTGTTGAAA TGA	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGTT TGATGA ATCATCC TGAAG ATTAGCT TTCAG TTTCAGT TGAAG TTTCAGC ACTAGCA CACTGGT CACATTTCGGGA GGTTT TGCATGAGA CCTCT TGTTGGT TGGCT TGGCTAGAGAG TGTGGCT AGCAG GTGTTAT GAGAG GTGTTAT GAGAG CTGTTAT TGGGTG CTGTA	23 (underlined sequences of underlined sequences of un	41 CAGTCACTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGTGGATA CACTTGCACTGA CACTTGCACTGA CACTTGCACTG GTGAGACAAC CTGCATTGAT GTGAGAGAGGC CCTTTTACTC GAGAGAGGGC CCTTTTACTC CATTGGA CACTTGGA CACTTGGAA CACTTGG	51 ACTIGGRAGE GRAGTATATT CAGTGTTTACAGTT ACTIGTECA AGACTIGGTT ACGCTTGTTCT AGGTACACTT TGGAACAGGA ACCAAAAACC CTITGGTATA AATGTTACT AAGGTACAGGA AAGGTACATT AAGGTACAGGA AAGGTACATT AAGACAGGA AAGGTAACA AATGTTTACT GACACAGGA AAGGTGCCT AAAGCTGCCT TAGGTATA AAGGTGCTT AAGACTGCAG	120 180 240 300 360 420 480 540 660 720 780 900 960 1020
45 50 55 60	1 11 ATGATTOCTG TAT ATTOTCAAG CTG TTTCAAGGCT GAA ATGCATCAGT TTG GCCTTOTTC AGG CCAGAATGCC ATT CCAGGTGATA CAG GAGGCTGATA CAG GAGGCTGATA CAG GAGATGACAG CTC GCCTTTATGG GAA GAAATTCTG AAT CCTCTGCAGA AGA ATAGGAATCA TCA ATTAGGTATA CAT ATTAGGTAA CTC ATTATGTAAA TCA ACGCTAGCTC TTG ATTOTTGAAA CTC AAGAATGAAA TCA GGAGTTGGCT ATCA AGGAATGAAA TCA GGAGTTGGCT ATCA AGGAATGAAA TCA GGAGTTGGCT ATCA	1-2712 21 TGACATC ARARA ATCTTCA GRATG ATGAGTT TGATA ATCCCCT TATTA ATCACCC TGAGG TTTCGC TGAGG TTTCGCC TCAGGC CACTGGT CAGCT GCATGGA CCTCT TGTTGGT TGGCAG GTGTTAG CCTCT TGGTGT TGGCAG GTGTTAG CCTCT TGGTGT TGGCAG GTGTTAT GAGAA TGGGCG CTGTAAG ATCAATT TGGGGA ATCAATT	31 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 3	41	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTA ACTTGTGCCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT ACGCTACATT TGGAACAGG ACAAAAACC CTTTGGTAFA AATGTTTACA AATGTTTACA TGGTACAGT AAAGCTCCT AAAGCTCCT AAAGCTTCCT ACACTGACTC TCAGGGTTACT TCATGGATTC TCATGGATTC	120 180 240 300 360 480 540 660 720 780 840 960 1020 1080
45 50 55 60	1 11	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGATTA TGATAA ATCCCCT TATTAA ATCATCC TCAAG GTATCCCT TCACC TTTCCAT TGATG CACTGGT CAGAT TTGGGGA GGTTT TGGGGA CCTCT TGTTGGA CCTCT TGTTGGA CCTCT TGTTGG CTTTAAGAG TGGGCTGT AGGAG TGGGCTGT AGGAG TGGGCTGT AGGAG TGGGCTGTAA TGGGCT TGTTACTAAGAG ATTAAGAG AATTG	31	41	51 AGTTGCAAGC TAGGCGAGC TAGGCGAGC GAAGTATATT CAGTGTTTTA TGTTACAGT ACTTGTGCCA AGACTTGGTT ACGCTTGTTT ACGCATGTTT TGGAACAGGA ACCAAAAAC CTTTGGGTATA AATGTTTACT GGTCACAGTG AAAGCTGCCT AAAGCTGCCT AAAGCTGCCT TAAGGTTACT TCATGGATTA	120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1040 1140
45 50 55 60	1 11 ATGATTOCTG TAT ATTCTCCAAG CTG TTTCATGCT GGA TTTCATGCT GGA ATGCATCAGT TTG GCCTTTGTTC AGG CCAGATGCC ATG GAGGCTGTGG ATC AAGGTGACAG CTC GCCTTTATGG GAAG GAAATTCTG AAT CCTCTGCAGA AGA ATAGGAATCA TCA ATTAGTGTAA GTT ACGCTAGCTC TTG ATTGTTGAAA TGA GGAGTTGGGT ATA TATAACCCAG CTG AGAAACAATA CTC AGAAACAATA CTC AGAAACAATA CTC AGAAACAATA CTC	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGAGTT TGATGA ATCATCC TTATTA ATGATGC CACTCA ATTAGCT TCAGC TTTCAGC TGAAG TTTCAGC AGCTC CACTGGT CACATT TGGGGA GGTTT TGGTGT TGGCT TGGCTTAG GAGAG CTGTTAT TGGGCT CTGTA CTGTTAC TGACA ATCAATT TGGGG ATTAGCAG AATTAT TTAGGGA AATTAG TTAATGGG GAAGC	31 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 1 31 3	41	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA AGTTACAGTT ACGTTGTTCCA AGACTTGCTA AGACTTGTTT TGGAACAGT ACCATAGAACACT TGGTACAGGA ACCAAAAACC CTTTGGTATA AATGTTTACA TGGACACGGA AAAGCTCCT AAGCTGCTT CATGGTATA TGGAACAGGA TGCACTGTACATGAC TCATGGATTC TCATGGATTC TCATGGATTC TGCATGAAG	120 180 240 360 420 480 540 660 720 780 840 960 1020 1080 1140 1200 1260
45 50 55 60	1 11 I 11 I I	1-2712 21 TGACATC ARARA ATCTICA GRATG ATCACCT TATTA ATCACCT TATTA ATCACCC TGAAG TTTCACC TGAAG TTTCACC ACCTG CACAGCC ACCTG CACAGCC ACCTG TTGGGGA CCTCT TGTTGGT TGAGG GTGTTAT GAGAA TGGCTG CTGTA TGGCTG TGGCTG TTGGTTAT GAGAA TTGGCTG ACAAG ATCAATT TGGGG TTAATGG GAAGC GACTTCA ACAAG	31	41	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTA ACTTGTGCCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT ACGTAACACT ACACATGAACACT ACACATGAACACT ACACATGAACACT ACACATGAACACT ACACATGACT ACACATGACT CGTCACACT ACACTGACT TCATGGTTACT TCATGGTTACT TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATC TCATGATC TCATGATC TCATGATC TCATGATC TCATGATC TCATGATC TCATGATC TCATGATC T	120 180 240 300 360 420 480 540 660 720 900 900 900 1020 1140 1200 1260 1320
45 50 55 60	1 11	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATCACTC TATTA ATCACTC TATTA ATCACTC TEAAG GTTTCCAT TGATG CACTGGT CAGAT TTTCCAT TGATG CACTGGT CAGAT TTGGGGA GGTTT TGGTGGT TGGCT TGGCTGT TGGCT TGGCTGT TGGCT TGGCTTAT TGAGAA TGGGCTG CTGTA CTGTTAC TGAGAA TTGGGCT CAGAT TTGGCT TAGGGA TTAGCAG AATTG TAAGAG TTAAGAG TTAAGAG TGACTTCA ACAAG TGCCTGT TAAGTT	31	41	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA TGTTACAGTT ACTGTGTGT ACGCTTGTTT ACGCTTGTTT TGGAACAGGA ACCAAAAACC CTTTGGTATA AATGTTTACT GGTCACAGG TAAGGTTACT TCATGGATTACT TCATGGATTACT TCATGGATTACT TCATGGATTACT TCATGATTACT TCATGATTT TCATGATTACT TCATGAATT TCATGAATT TGCAATTAGATT TGCAATTAGATT TGCAAGAGATT TTTAGCTCT ACCAGAGATT	120 180 240 300 360 420 480 660 720 780 960 1080 1140 1260 1320 1380
45 50 55 60	1 11	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATCACTC TATTA ATCACTC TATTA ATCACTC TEAAG GTTTCCAT TGATG CACTGGT CAGAT TTTCCAT TGATG CACTGGT CAGAT TTGGGGA GGTTT TGGTGGT TGGCT TGGCTGT TGGCT TGGCTGT TGGCT TGGCTTAT TGAGAA TGGGCTG CTGTA CTGTTAC TGAGAA TTGGGCT CAGAT TTGGCT TAGGGA TTAGCAG AATTG TAAGAG TTAAGAG TTAAGAG TGACTTCA ACAAG TGCCTGT TAAGTT	31	41	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA TGTTACAGTT ACTGTGCTA AGACTTGGTT ACGCTTGTTT TGGAACAGGA ACCAAAAACC CTTTGGTATA AATGTTTACT GGTCACAGG TAAGGTTACT TCATGGATTACT TCATGGATTACT TCATGGATTACT TCATGGATTACT TCATGATTACT TCATGATTT TCATGATTACT TCATGAATT TCATGAATT TGCAATTAGATT TGCAATTAGATT TGCAAGAGATT TTTAGCTCT ACCAGAGATT	120 180 240 300 360 420 480 540 660 720 900 900 900 1020 1140 1200 1260 1320
45 50 55 60	1 11 ATGATTCCTG TAT ATTCATGCT TAT ATTCTCAAGG CTG TTTCATGCT GGA TTTCATGCT TAG ATGCATCAGT TTG GCCTTTGTTC AGG CCAGAGTGCA AGG AAGGTGACAG CTC CCAGGTGATA CAG GAGATTCTG AAT CCTCTGCAGA AGA ATAGGAATA TCA ATTGTGTAAA CTC AATGATGAAA TGAAACCACA CTG AGAAACAATA CTC AGGGAAAAGT ATA	1-2712 21 TGACATC AAAAA ATCHTCA GAATG ATGAGTT TATTA ATGATGC CGTCA AATACC TTCAG TTTCCAT TGATG CTCAGCC AGCTG CACTGGT CACAT TTGGGGA GGTTT TGGGGG CATTAGGAC CTGTTAT AGCAG CTGTTAT AGCAG CTGTTAT TGGGG CTGTTAT TGGGG CTGTTAT TGGGG CTGTTAT TGGGG CTGTTAT TGGGGG CTGTTAC CTGTTAC ATCAATT TGGGG TTAGCAG TATAGGG CATTTA ACAAG TAGCTGT TAGCTG TAGCTT TAGGTG TAGCTT TAGGT TAGCTG TAGCTT TAGGT TAGCTG TAGCTT TAGGT TAGCTT TAGGT TAGCTT TAGGT TAGCTT TAGGT TAGCT	31 31 31 31 31 31 31 31	41 CAGTCACTGA CACTTAGAA CACTTAGAAA CACTTAGATAA CACTTAGCAGA CACTTAGCAGA CACTTAGCAGA CACTTAGCAGA CACTTAGCAGA CACTTAGCAGA CACTTAGCAGA CACTTAGCAGA CACTTAGATAA CACTTAGCAGA CAGTAGAGAGGC CAGTAGAGAGAGGC CATTTAGT CAGTAGAAAAACTGG CATTAGTAGAAAACTGG CATTAGTAGAAAACTGG CATTAGTAGAAACTGG CATTAGTAGAAACTGG CATTAGTAGAAACTGG CATTAGTAGAAACTGG CATTAGTAGAAACTGG CATTAGTAGAAACTGG CATTAGTAGAAACTGG CATTAGAAAACTGG CATTAGAAAAACTGG CATTAGAAAAAAAAAA	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA AGTTGTCCA AGACTTGTTC AGACTGGTT TGGAACAGT ACACTTTTT TGGAACAGT ACACTTTTTAGAACACT TGGAACAGGA AAAGTTTTACA TGGAACAGGA AAAGCTGCTT AAGACTGCT AAAGCTGCT AAAGCTGCT TCATGGATTAC TGATGATTT TCAATGATT TCAATGATT TCAATGATT TCAATGATT TCAATGAAT TCCAATGAAG TTTTAGCTT CCAGAGATAT CCAGAGAAT	120 180 240 300 420 540 600 660 780 840 900 1020 1080 1140 1260 1380 1440
45 50 55 60	1 11 ATGATTOCTG TAT ATTOCTAGG CTG ATTOCTAGG TGA TOTCAGGTTA AAA ATGCATCAGT TTG GCCTTATOTC AGG CCAGAATGCC ATT CAGGTGATA CAG GAGGCTAGA CAGA ATAGGAATACTG AAT CCTCTGCAGA AGA ATAGGAATAA TCA ATTAGTAAA TCA ATTAGTAAA TCA AGAATGAAA TCA ATTAGTAGAAA TCA ATTAGTAGAAA TCA ATTAGTAGAAA TCA ATTAGTAGAAA TCA ATTAGTAGAAA TCA ATTAACCCAG CTG ATTATACCCAG CTG AGAACAATA CTC AGAACAATA CTC AGAGCAAAATA CTC AGGGCAAAATT GAA GGGCCAAAATT ACG GGGCCAGACCT TGA	1-2712 21 TGACATC ARARA ATCTTCA GRATG ATGACT TGATA ATCACCT TATTA ATCACCT TATTA ATCACCC TGAGG TTTCCC TGAGG TTTCCC TGAGG TTTCCC TCAGC CACTGGT CACAT GCATGGT CACAT GCATGGT CACAT GCATGGA CCTCT TGGGTG AGCAG GTGTTA GAGAG TGGGCT CTGTA ACAGG TTAGACA AATTG TAATGGG GAAGO GACTTCA ACAGG TGCCTT AAGAG TGCCTT AAGAG TGCCTTA CAGAC CACTTAC TCAGAC CACTTAC TCAGAC	31	41	51 AGTTGCAAGC TAGGCAGCC GAAGTATATT CAGTGTTTA AGTTACAGTT ACGCTTGTTCT AAGTACACT AGACTTGGTT AAGTACACT ACGACTAGAA ACCATGGTT AGGACAGGA ACCAAAAACC CTTTGGTATA AATGTTTACT AAAGCTGCCT AACACTGACG TAGGTTACT TCATGGATTC TCATGGATTC TCATGGATTC TCATGAAGT TCATGAAGT TCCAAGAGAT TCCAAGAGAT CCAGAGAAA CAGAGCAAAA	120 180 240 300 360 420 540 660 720 780 960 1020 1080 1140 1260 1320 1380 1440 1500
45 50 55 60 65 70	1 11	1-2712 21 TGACATC AAAAA ATCTICA GAATG ATCACT TATTA ATCACT TATTA ATCACC TGAAG GTTTCCCT TATCA GTACCC AGCTG CACTGGT CAGAT TTGCGT AGCAG CATGGT CAGAT TGGCTGT TGGCT TGGCTGT TGGCT TGGCTGT TGGCT TGTTGGT TGGCT TGTTACT TGGCT TGTTACT TGGCT TGTTACT TGGCT TTGCCTT TGGCT TGTTACT TGGCT TTGCCTT TGTTGGT AGCAG TGGCTGT ACAGG TTAGCAG	31 31 31 AAGCA ACTGAATTA STCTA AACAAATGT FTAGT GAAGATGA FTAGT GAAGAGGA ACTGTGGCA AAAAA TTGGGCAAAA ATGAAATTA FTAGG GATAGAGTTA GAAAA TTGGGCAAAA FTAGA AATGAGATA FTAGA AAGCAAAAG FTAGA AAGCAAAAG FTAGA AAGCAAAAG TTAGA CAAGAAAAG TTAGA CAAGAAAAG TTAGA AAGCAAAAG TTAGA AAGCAAAAG TTAGA AAGCAAAAG TTAGT CCTGAAGAAAAG TAGTA ATTGTTGAT TAGAAAAAG TAGTA GAAGAGGCC CACCAACAA AAGTA ATTAGTAGAAAAG TTGTA CACCGAACAA AAGTA ATTAGAGAAAA TTGTA CACCGAACAA AAGTA ATTAGAGAAAA TTGTA CACCGAACAA AAGCAA GAAGGAGTAC TAGCAA GAAGAGATGTC TTGCC TTCGCTTCTT	41 CAGTCACTGA AAGTTACTCA CAGTCACTGA AAGTTACTCA CACTCACTGA CACTCACTCA CACTCACTCA CACTCACTCA CACTCACTCA CACTCACTCA CACTTACCCC CTGCTCACTT CACTCACTCACTCACTCACTCACTCACTCACTCACTCAC	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTTGTGCCA AGACTTGTTT ACGCTTGTTT TGGAACAGCA AAAGCTCCT AACACTGACG TGAGGTTACT TCATGGATC TCATGGATC TCATGAGT TCATGGATC TCATGAGT TTTTAGCTCT ACCAGAGTT ACCAGAGCTT ACCAGAGCATA CAGAGCAAA GAAGGCACCC GGGACACCTG	120 180 240 300 360 420 540 600 720 780 840 960 1020 1140 1200 1320 1380 1440 1560
45 50 55 60	1 11 I 11 I I	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGATGT TAATGA ATCATCC TTATA ATGATGC CGCAAA ATATCT TTCGG TTTTCCAT TGATG CACTGGT CAGAC CTCAGCC AGCTG CACTGGT CAGAC TTTGGGT TGGCT TGGTGT TGGCT TGGTTAC TGATA TGGGTG CTTTAC CTGTTAC TCACA ATCAATT TGGGCT TTAGCAG AATTG TTAGCAG CACTTAC TAAGT GTCCTTA CGAAC CACTTAC TCAGC CACTTAC TCACC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC	31 AAGCA AGTGAATTA FICTA AACAAAGT FITAGT GAAGATGAG FITAGT GAAGATGAG FITAGT CATCTIGAA AAAAA TTGGACCAT AAGAAAA TTGGACCAT AAGAAAAA TTGGACAT AAGAAAAA TTGGACAT AATGAAGATTA TGGACAT AATGAACAT AATGAACAT AATGAACAT CAGGAAAA CAACT AATGTGAAAA TGTGAAAAA TGTGAAAAA TGTGAAAAAA TGTGAAAAAA TGTGAAAAAA TGTGAAAAAA TGTGAAAAAA TGTGAAAAAAAA	41 CAGTCACTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGTGGAA CACTGCACTCA AAGTTAGTAA CACTTGCACTGA CACTTGCACTGA CACTTGCACTGA CACTTGCACTG GTGAGACAGC CTTTTTACTC CAGAACAGGC CCTTTTACTC CAGAACAGGC CCTTTTACTC CAGAACAGGC CATTGTGAA TACTCGGA TACTCCATGC GTGATTTGT TAGTGCATGC GTGATTACTC CTGAATTACCTC CAGCAGCACG GTACTACATA CACCACAACA GTCCTCAACT ACCAACAACA GTCCTCAACT CCTGCTGTAACT CCTGCTGTAACTC CTGCTTGTAACTC CTGCTTTTTTT CTGCTTTTTTT CTGCTTTTTTTT CTGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51 ACTTGCAAGC GAAGTATATT CAGTGTTTTA ACTTGTCCA AGACTTGTTC AGACTGGTT ACGTTGTTC AGACAGGA ACCAAAAACC CTTTGGTATA AATGTTACAGT AACACTGATA AAAGTTACAT CATGACAGGA AAAGCTGTT CAGGGAAAAACC CTTTGGTATA AAAGCTGCTT AAACACTGAAG TCATGAAT CAGAGATTACT TCATGGATTC TCATGGATTC TCATGAATT ACCAGAGATT ACAGGACACC GGGACACCT GGGACACCT GGGACACCT AGAAGCTGTT AGAAGCAGCTG AGAAGCTGTT AGAAGCAGCTAGT AGAAGCAGCTG AGAAGCTGTT AGAAGCAGCTG AGAAGCTGTT AGAAGCTGTT AGAAGCTGTT AGAAGCAGCTAGT AGAAGCTGTT AGAAGCAGCTAGT AGAAGCTGTT AGAAGCAGCTAGT AGAAGCTGTT AGAAGACTGTT AGAAGACTGTT AGAACAGCTGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCTGTT AGAAGACTAGTT AGAAGACTAGTT AGAAGACTAGTT AGAAGACTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGACTAGT AGAAGCAGCTAGT AGAAGACTAGT AGAAGCAGCTAGT AGAAGCTAGT AGAAGCAGCTAGT AGAAGCTAGT AGAAGCTAGT AGAAGCTAGT AGAAGCTAGT AGAAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCAGCAGCAGCAGCAGCAGCTAGT AGAAGCAGAGCAG	120 180 240 300 360 420 480 540 660 720 780 900 900 1080 1140 1260 1380 1440 1560 1560 1620
45 50 55 60 65 70	1 11 I 11 I I	1-2712 21 TGACATC AAAAA ATCTTCA GAATG ATGATGT TAATGA ATCATCC TTATA ATGATGC CGCAAA ATATCT TTCGG TTTTCCAT TGATG CACTGGT CAGAC CTCAGCC AGCTG CACTGGT CAGAC TTTGGGT TGGCT TGGTGT TGGCT TGGTTAC TGATA TGGGTG CTTTAC CTGTTAC TCACA ATCAATT TGGGCT TTAGCAG AATTG TTAGCAG CACTTAC TAAGT GTCCTTA CGAAC CACTTAC TCAGC CACTTAC TCACC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC CACTTAC	31 31 31 AAGCA ACTGAATTA STCTA AACAAATGT FTAGT GAAGATGA FTAGT GAAGAGGA ACTGTGGCA AAAAA TTGGGCAAAA ATGAAATTA FTAGG GATAGAGTTA GAAAA TTGGGCAAAA FTAGA AATGAGATA FTAGA AAGCAAAAG FTAGA AAGCAAAAG FTAGA AAGCAAAAG TTAGA CAAGAAAAG TTAGA CAAGAAAAG TTAGA AAGCAAAAG TTAGA AAGCAAAAG TTAGA AAGCAAAAG TTAGT CCTGAAGAAAAG TAGTA ATTGTTGAT TAGAAAAAG TAGTA GAAGAGGCC CACCAACAA AAGTA ATTAGTAGAAAAG TTGTA CACCGAACAA AAGTA ATTAGAGAAAA TTGTA CACCGAACAA AAGTA ATTAGAGAAAA TTGTA CACCGAACAA AAGCAA GAAGGAGTAC TAGCAA GAAGAGATGTC TTGCC TTCGCTTCTT	41 CAGTCACTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGTGGAA CACTGCACTCA AAGTTAGTAA CACTTGCACTGA CACTTGCACTGA CACTTGCACTGA CACTTGCACTG GTGAGACAGC CTTTTTACTC CAGAACAGGC CCTTTTACTC CAGAACAGGC CCTTTTACTC CAGAACAGGC CATTGTGAA TACTCGGA TACTCCATGC GTGATTTGT TAGTGCATGC GTGATTACTC CTGAATTACCTC CAGCAGCACG GTACTACATA CACCACAACA GTCCTCAACT ACCAACAACA GTCCTCAACT CCTGCTGTAACT CCTGCTGTAACTC CTGCTTGTAACTC CTGCTTTTTTT CTGCTTTTTTT CTGCTTTTTTTT CTGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	51 ACTTGCAAGC GAAGTATATT CAGTGTTTTA ACTTGTCCA AGACTTGTTC AGACTGGTT ACGTTGTTC AGACAGGA ACCAAAAACC CTTTGGTATA AATGTTACAGT AACACTGATA AAAGTTACAT CATGACAGGA AAAGCTGTT CAGGGAAAAACC CTTTGGTATA AAAGCTGCTT AAACACTGAAG TCATGAAT CAGAGATTACT TCATGGATTC TCATGGATTC TCATGAATT ACCAGAGATT ACAGGACACC GGGACACCT GGGACACCT GGGACACCT AGAAGCTGTT AGAAGCAGCTG AGAAGCTGTT AGAAGCAGCTAGT AGAAGCAGCTG AGAAGCTGTT AGAAGCAGCTG AGAAGCTGTT AGAAGCTGTT AGAAGCTGTT AGAAGCAGCTAGT AGAAGCTGTT AGAAGCAGCTAGT AGAAGCTGTT AGAAGCAGCTAGT AGAAGCTGTT AGAAGACTGTT AGAAGACTGTT AGAACAGCTGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCTGTT AGAAGACTAGTT AGAAGACTAGTT AGAAGACTAGTT AGAAGACTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGACTAGT AGAAGCAGCTAGT AGAAGACTAGT AGAAGCAGCTAGT AGAAGCTAGT AGAAGCAGCTAGT AGAAGCTAGT AGAAGCTAGT AGAAGCTAGT AGAAGCTAGT AGAAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCTAGT AGAAGCAGCAGCAGCAGCAGCAGCAGCTAGT AGAAGCAGAGCAG	120 180 240 300 360 420 540 600 720 780 840 960 1020 1140 1200 1320 1380 1440 1560
45 50 55 60 65 70	1 11 ATGATTOCTG TAT ATTATCTCAAG CTG ATTCTCCAAG CTG ATTCTCCAAG CTG ATTCTCCAAG CTG ATCCCAGTTTA AAA ATGCATCAGT TAG CCAGAATGCC ATT CAGGTGAAG CTC AAGGTGACAG CTC AAGGTGACAG CTC AATTCTTGCAGA AGA ATTAGGTAAA TCA ATTAGTAAA TCA ATTAGTAAAA TCA AGAAAGAATA CTC AAGAAAGAATA CTC AAGAAAGAATA CTC AAGAAAGAATA CTC AGGGCTAGCT ATA TATAACCCAG CTG AAGAACAATA CTC AGGGCTAGCT ATA CGGCCAAAGT ACC ATGGGCTTCG ATGGGCTCAG CTC ATGGGCTCAG CGC ACATCACTCT TGC ACACACTCA TCC ACACACTCA TCC ACACACCTCA TCC ACACACCACCA TCC ACACACCACCA TCC ACACACCACCA TCC ACACACCACCA TCC ACACACCACCAC ACACACCACCAC ACACACCACCA	1-2712 21 TGACATC ARARA ATCTTCA GRATG ATGATT TGATA ATCCCCT TATTA ATCACTC TGATG TTTCCC TGAGG TTTCCCC TGAGG TTTCCCC TGAGG TTTCCCT TGAGG CCACTGGT CACATT GCATGGA CCTCT TGTTGGT TGGCT TGGCTGT TGGCT TGGCTGT TGGCTG TGGCTGT TGGCTGT TGGCTGT TGGCTGT TGGCTGT TGGCTGT TGGCTGT TGGCTGT TGGCTGT TAGGGA TTAGACA ATTAGT TGAGCA GACTTCA ACAGG TGCTTAT CGAGC CACTTAC TCAGC CACTTAC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC TCAGC CACTTAC	31	41 CAGTCACTGA CAGTCACTGA CAGTTAGTCA CAGTTAGTCA CACTTGGAA CACTTGGAA A CACTTGCCGA CACTTGCAGACAAC CAGTCATTG GAAACAGGC CAGTCATGT GATACTCATC GATACTCATC GATACTCATC GATACTCATC GATACTCAGA CACTTGTGAA CACTTGTGAA CACTTGTGAA CACTTGTGAA CACTTGTGAA CACTTGTGAA CACTTGTGAA CACTTGTGAA CACTTGTGAA CACTAGTGTAA CACTAGTGAA CACTAGTGAA CACACAAGA CACTCACACAAGA CACTGGAGACAAG CACTGAGTGAA CACTGGAGACAAG CACTGAGTGAA CACTGGAGACAAG CACTGGAGACAAC CACTGGAGACATC CACTGGAGACATC CAGTGGAGACATC CAGTGGAGACATC CAGTGGAGACATC CAGTGGAGACAACAACAACAACAACAACAACAACAACAACAACA	51 AGTTGCAAGC GAAGTATATT CAGTGTTTTA AGTTACAGTT ACGCTTGTTCT AGACTTGCTA AGACTTGTTT AGGACTAGGT ACGCTTGTTCT AAGTAACATT TGGAACAGG ACCAAAAACC CTTTGGTATA AATGTTTACT AAAGCTGCT AAAACTTACT CACTGATT TCATGATT TCATGATT TCATGATT TCATGAAG TTTTAGCTCT ACCAGAGATT ACCAGAGATT CCAGAGATA CAAGGCACGC GGGACAGCTG AGAGCTGTT ACAGGCACAC AGAGGCACAC AGAGGCACAC AGAGGCACAC AGAGGCACAC AGAGGCACAC AGAGGCACAC AGAGCACTT ACCAGGACACT ACCAGAGCAT ACAGGCACAC AGAGCCTT ACAGGGACACT ACAGGACACT ACAGGGACACT ACAGGACACT ACAGGGACACT ACAGGACACT ACAGGA	120 180 240 300 360 420 480 540 660 720 780 900 900 1080 1140 1260 1380 1440 1560 1560 1620
45 50 55 60 65 70	1 11 I 11 I I 11 I I I I I I I I I I I I I I I I I I I	1-2712 21 TGACATC AAAAA ATCTICA GAATG ATCACTC TATTA ATCACTC TGATA ATCACCC TGAAG TTTCCCT TTCAC TTCAGCC AGCTG CACTGGT CAGAT TTGGGT AGCAG CATGGT CTGAC TGGTTAC TGGCT TGGTTAC TGGCT TGGCTTAC TGGCT TGTTAC TGGCT TGGCTTAC TGGGA TTAGCAG TCAGCC TCAGC TCAGCC TCAGC TCAGCC TCAGC TCAGCC TCAGC TCAGCC TCAGC TCAGC TCAGCC TCA	31	41 41 C CAGTCAGTGA A AAGTTAGTCA C CAGTCAGTGAA C CAGTCAGTGAA C CAGTCAGTGAA C CAGTCAGTGAA C CAGTCAGTGAA C CAGTCAGTGAA C CAGTCAGTCAT C CAGTCAGTCAT C CAGTCAGTCAT C CAGTCAGTCAT C CAGTCAGTCAGAA C CAGTCAGAACAA C CAGCAGAACACAA C CTCCCAGTC C CTGAGTTCAACT C CTGCAGTCCAACT C CTGCAGTCCAACT C CTCCCAGTCC C CTCCCAGTCCAACT C CTCCCCAGTCCAACT C C CTCCCCAGTCCAACT C C C C C C C C C C C C C C C C C C	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA ACTGTGCCA AGACTTGGTT ACGCTTGTTT ACGCTTGTTT ACGCTTGTTT ACGCTAGTT ACGCTTGTTT TGGACAGGA ACACAGAAAACC CTTTGGTATA AATGTTTACA TCATGGATTACT TCATGGATTACAT TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGGATTC TCATGAGTTC TCATGGATTC TGCAATTAGG TTTTAGCT ACACTGAGG TTTTAGCT ACAGGGATT CCAGAGCATA AGAGCCAC GGGACACCT AGAGCACT ACAGGACAT ACACGACAT ACACTCAGGA	120 180 300 360 480 540 660 720 840 900 1020 1140 11200 11380 1440 1560 1620 1740
45 50 55 60 65 70	1 11 I I I I I I I I I I I I I I I I I I I	1-2712 21 TGACATC AAAAA ATCTTCA GAATGA ATCATCC TGATGA ATCATCC TGATGA ATCATCC TGAAGA TTTGCCT TGTCG TTTCCAT TGATGA CCACTGGT CAGACA TTTGGGGA GGTTT TGTGGGT TGGCTT TGTTGGT TGGCT TGGGTTAT AGCAG ATCATCA CACAGAT TTGGGCT TAGCTAG TTAGCAG AATAGT TCAGCG CACTGAG AGTACT TCAGCG AATCAG AGTACT TCAGCG CCTCAGG AGTACT TCAGCG CAATGGA AGTACT TCAGCG CAATGGA AGTACT TCAGCG CAATGGA AGTACT TCAGCG CAATGGA TGTTCC	31 AAGCA AGTGAATTA STOTA AACAAAGTTA STOTA AACAAAGTTA STOTA AACAAAGTTA STOTA AACAAAGTTA STOTA AACAAAGTTA STOTA ACAAAGTA STOTA ACTAGAGATA AAAAA TTGGAGCATA AAAAA TTGGAGCATA AAGTA AATGAGAAAA CAACT AATGAGAAAA AAGTA ATTGATGAT TAGACA CACCAAAAA AAGTA ATTAAGTAC ACCAG AGAGAAAATTGATTA TATTCACAAAAACTT TAGCTTCATAAAACTT TAGCTTCATAAAACTT TAGCTTCATAAAACTT TAGTACAAAAAACTT TAGCTTCATAAAACTT TAGTACAAAAACTT TAGTTCAAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTACAAAACCAACTAAAAACCAACTACAAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACAA	41 CAGTCACTGA AAGTTAGTCA CACTGTGGAA CACTGTGGAA CACTGCAGTCAT ATACTTATOGT AATTGCATTA CACTTGCACTGA CACTTGCACTGA CACTTGCACTGA CACTTGCACTG GTGAGACAGC CTGTTTACTC GAGAGAGGGC CCTTTTACTC CAGAACAGGAC CATTGTGA TACTCGGA TACTCCATGC GTGATTGCATGC GTGATTGCATGC GTGATTGCATGC GTGATTGCATGC GTGATTGCATGC GTGATTACTC CTGAATTACCTGAACT ACCAACAGAACA GTCCTGAACT ACCAACAGAACACAGAACACCC GTGATTACATACCTGAACTC CTGGAGATTCC CTTGGAGATTCC	51 AGTTGCAAGC TAGGCGAGCC GAAGTATATT CAGTGTTTTA AGTTGTCCA AGACTTGTTC AGACTGGTT TGGAACAGT ACCATTGTTCT AAGTACATT TGGAACAGGA ACCAAAAACC CTTTGGTATA AATGTTACA TGACAGGA AAGCTGCTT TCATGGATAC TCATGGATC TCATGGATC TCATGGATC TCATGGATC TCATGAAT ACCAGAAT ACCAGAAT ACCAGACAT ACCAGACAT ACCAGACAT ACCAGACAT ACCAGACAT ACCAGACAT ACCAGACAT ACCAGACAT ACAGGACAC GGGACACC GGGACACCT ACAGGACAC AGAGCATT ACAGGACAC AGAGCATT ACAGGACAC AGAGCACC GGGACACCT ACAGGACACT ACAGGACACT ACAGGACACT ACAGGACACT ACAGGACACT ACAGGACACT ACT ACT ACT ACT ACT ACT ACT ACT AC	120 180 240 300 360 420 480 540 660 720 780 900 900 1080 1120 1260 1380 1440 1560 1620 1680 1780 1680 1780 1880
45 50 55 60 65 70	1 11 ATGATTOCTG TAT ATTATOCTAG CTG ATTOCTAGG TGA TTTCACAGG TGA TTTCACAGG TGA TCTCAGTTTA AAA ATGCATCAGT TTG GCCTTTATCG GAA GAGGCTGATA CAG GAGGCTGATA CAG GAAAATTCTG AAT CCTCTGCAGA AGA ATAGGAATAA TCA ATTAGTGTAA TCA ATTAGTGTAA TCA AGAAATAAA TCA AGAACAATA TCA AGAACAATA CTC AGGCCTAGCTC TTG ATTATACCCAG CTG AGAACAATA CTC AGGACTTGCAT AGA GGACTTGCAT AGA AGGACTTGCA TAGA AGGACTTCG TG AGGCCAAAGT CGA AGGCCAAAGT CGA AGGCCAAAGT CGA ATGCCCTCAG CGG ACATTCTTG CAG ACATTCTTG CGCACTTCCAA TCG GAAGAAATAG CTC GCACTTGCAA TCG GAAGAAATAG CTC GCACTTGCAA TCG GAAGAAATAG CTC GTTTTACAGAG CTC	1-2712 TGACATC AAAAA ATCTTCA GAATG ATGACT TGATA ATCACCT TATTA ATCACCT TATTA ATCACCT TATTA ATCACCT TATTA ATCACCT TATTA ATCACCT TATTA ATCACCC TGAAG TTTCCCT TCACC CACTGGT CACAT GCATGGT CACAT GCATGGA CCTCT TGGTGGT AGCAC GTGTTA GAGAA TGGGCTG TAATGGA ATTACAC TTATACAC AAATTC TCACCAC ACTTAC TCACAC CACTTAC TCACAC CACTTAC TCAGAC CACTTAC	31	41 CAGTCACTGA CAGTTAGTCA CAGTTAGTCA CAGTTAGTCA CACTTGGAA ACTTACTTA ACTTATCGT ATTACTTATCGT GATTCACTCA CACTTGCAGACAAC CTGCAGACAAC CTGCAGTCAT CAGTTGTTACTC GATATCCTGA CACTTGTGAA CACTTGTGAA CTCCCATGT CTGCATGT GATATACCTGA CTGCAGCAG GATCATGT CTGCATGT CTGCATGT CTGCATGT CTGCATGC CAGCAGCAG GTCCTCAACT CACCACAGA CTGCTCAACT CTGGAGTACA CTGGAGCACAA CTGGAGGACAA CTGGAGGATAC CTGGAGGACAA CTGGAGGATAC CTGGAGGACAA AGTCGCTAC CTGCCTAC CTGCACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA AGTCGCTAC CTGCACAA CTGGAGGACAA CTGGAGACAA CTGGAGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAAC CTGGAGACAA CTGGAGGACAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGGACAAA CTGGAGGACAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA	51 AGTTGCAAGC TAGGCAGCC GAAGTATATT CAGTGTTTACAGTT ACGCTTGTTCT AGACATGGTT ACGCTTGTTCT AAGTAACATT TGGAACAGG ACCAGAAAACC CTTTGGTATA AATGTTTACAGTT AAAGCTGCTT AAAGCTGCTT AAAGCTGCTT AAAAAACC CTTTGGTATA AATGTTTACT TCATGGATT TCATGAAGTTACT TCATGAAGTTACT TCATGAAGTTACT TCATGAAGTTACT TCAAGAGATT TCCAAGAGATT ACCAGAGATT ACCAGAGATT ACCAGAGATT ACCAGAGATT ACCAGAGATT ACCAGAGCTT ACAGGGCACA GAGACCTT ACAGGGACCT AGTTCAGGA GGTTTCAGGT AGAGAACCGT AGAGAACGT AGAGAACCGT AGA	120 180 240 300 360 420 540 660 720 780 960 1080 1140 1260 1320 1380 1500 1560 1680 1740 1860
45 50 55 60 65 70	1 11 ATGATTOCTG TAT ATTATOCTAG CTG ATTOCTAGG TGA TTTCACAGG TGA TTTCACAGG TGA TCTCAGTTTA AAA ATGCATCAGT TTG GCCTTTATCG GAA GAGGCTGATA CAG GAGGCTGATA CAG GAAAATTCTG AAT CCTCTGCAGA AGA ATAGGAATAA TCA ATTAGTGTAA TCA ATTAGTGTAA TCA AGAAATAAA TCA AGAACAATA TCA AGAACAATA CTC AGGCCTAGCTC TTG ATTATACCCAG CTG AGAACAATA CTC AGGACTTGCAT AGA GGACTTGCAT AGA AGGACTTGCA TAGA AGGACTTCG TG AGGCCAAAGT CGA AGGCCAAAGT CGA AGGCCAAAGT CGA ATGCCCTCAG CGG ACATTCTTG CAG ACATTCTTG CGCACTTCCAA TCG GAAGAAATAG CTC GCACTTGCAA TCG GAAGAAATAG CTC GCACTTGCAA TCG GAAGAAATAG CTC GTTTTACAGAG CTC	1-2712 TGACATC AAAAA ATCTTCA GAATG ATGACT TGATA ATCACCT TATTA ATCACCT TATTA ATCACCT TATTA ATCACCT TATTA ATCACCT TATTA ATCACCT TATTA ATCACCC TGAAG TTTCCCT TCACC CACTGGT CACAT GCATGGT CACAT GCATGGA CCTCT TGGTGGT AGCAC GTGTTA GAGAA TGGGCTG TAATGGA ATTACAC TTATACAC AAATTC TCACCAC ACTTAC TCACAC CACTTAC TCACAC CACTTAC TCAGAC CACTTAC	31 AAGCA AGTGAATTA STOTA AACAAAGTTA STOTA AACAAAGTTA STOTA AACAAAGTTA STOTA AACAAAGTTA STOTA AACAAAGTTA STOTA ACAAAGTA STOTA ACTAGAGATA AAAAA TTGGAGCATA AAAAA TTGGAGCATA AAGTA AATGAGAAAA CAACT AATGAGAAAA AAGTA ATTGATGAT TAGACA CACCAAAAA AAGTA ATTAAGTAC ACCAG AGAGAAAATTGATTA TATTCACAAAAACTT TAGCTTCATAAAACTT TAGCTTCATAAAACTT TAGCTTCATAAAACTT TAGTACAAAAAACTT TAGCTTCATAAAACTT TAGTACAAAAACTT TAGTTCAAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTAAAAACCAACTACAAAACCAACTAAAAACCAACTACAAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACTACAAAACCAACAA	41 CAGTCACTGA CAGTTAGTCA CAGTTAGTCA CAGTTAGTCA CACTTGGAA ACTTACTTA ACTTATCGT ATTACTTATCGT GATTCACTCA CACTTGCAGACAAC CTGCAGACAAC CTGCAGTCAT CAGTTGTTACTC GATATCCTGA CACTTGTGAA CACTTGTGAA CTCCCATGT CTGCATGT GATATACCTGA CTGCAGCAG GATCATGT CTGCATGT CTGCATGT CTGCATGT CTGCATGC CAGCAGCAG GTCCTCAACT CACCACAGA CTGCTCAACT CTGGAGTACA CTGGAGCACAA CTGGAGGACAA CTGGAGGATAC CTGGAGGACAA CTGGAGGATAC CTGGAGGACAA AGTCGCTAC CTGCCTAC CTGCACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA AGTCGCTAC CTGCACAA CTGGAGGACAA CTGGAGACAA CTGGAGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAA CTGGAGGACAAC CTGGAGACAA CTGGAGGACAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGGACAAA CTGGAGGACAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA CTGGAGACAAA	51 AGTTGCAAGC TAGGCAGCC GAAGTATATT CAGTGTTTACAGTT ACGCTTGTTCT AGACATGGTT ACGCTTGTTCT AAGTAACATT TGGAACAGG ACCAGAAAACC CTTTGGTATA AATGTTTACAGTT AAAGCTGCTT AAAGCTGCTT AAAGCTGCTT AAAAAACC CTTTGGTATA AATGTTTACT TCATGGATT TCATGAAGTTACT TCATGAAGTTACT TCATGAAGTTACT TCATGAAGTTACT TCAAGAGATT TCCAAGAGATT ACCAGAGATT ACCAGAGATT ACCAGAGATT ACCAGAGATT ACCAGAGATT ACCAGAGCTT ACAGGGCACA GAGACCTT ACAGGGACCT AGTTCAGGA GGTTTCAGGT AGAGAACCGT AGAGAACGT AGAGAACCGT AGA	120 180 240 300 360 420 480 540 660 720 780 900 900 1080 1120 1260 1380 1440 1560 1620 1680 1780 1680 1780 1880

```
ATTGGAGTTG CGATGGGCCA GACTGGTACA GATGTTTGCA AAGAGGCAGC AGACATGATC 1980
CTAGTGGAGT ATGATTTTCA AACCATAATG TCTGCAATCG AAGAGGGTAA AGGGATTTAT 2040
          AATAACATTA AAAATTCGT TAGATTCCAG CTGAGCACGA GTATAGCAGC ATTAACTTTA 2100
         ATCTCATTGG CTACATTAAT GAACTTTCCT AATCCTCTCA ATGCCATGCA GATTTTGTGG
ATCAATATTA TTATGGATGG ACCCCCAGCT CAGAGCCTTG GAGTAGAACC AGTGGATAAA
                                                                                              2160
 5
          GATGTCATTC GTAAACCTCC TCGCAACTGG AAAGACAGCA TTTTGACTAA AAACTTGATA
                                                                                              2280
         CTTAAAATAC TTGTTTCATC AATAATCATT GTTTGTGGGA CTTTGTTTGT CTTCTGGCGT
GAGCTACGAG ACAATGTGAT TACACCTCGA GACACAACAA TGACCTTCAC ATGCTTTGTG
                                                                                              2340
         TTTTTTGACA TGTTCAATGC ACTAAGTTCC AGATCCCAGA CCAAGTCTGT GTTTGAGATT
                                                                                              2460
10
         GGACTCTGCA GTAATAGAAT GTTTTGCTAT GCAGTTCTTG GATCCATCAT GGGACAATTA
CTAGTTATTT ACTTTCCTCC GCTTCAGAAG GTTTTTCAGA CTGAGAGCCT AAGCATACTG
                                                                                              2520
         GATCTGTTGT TTCTTTTGGG TCTCACCTCA TCAGTGTGCA TAGTGGCAGA AATTATAAAG
                                                                                              2640
          AAGGTTGAAA GGAGCAGGGA AAAGATCCAG AAGCATGTTA GTTCGACATC ATCATCTTTT
                                                                                              2700
         CTTGAAGTAT GA
15
        SEQ ID NO:208 PAJ5 Protein sequence;
Particin Accession #: AAF27813
                      11
                                    21
                                                  31
                                                                41
                                                                              51
20
        SOPKNPLIML LLASAVISVL MHOFDDAVSI TVAILIVVTV AFVQEYRSEK SLEELSKLVP
PECKUREGK LEHTLARDLY PEDIVCLSVE DRVPADLRLF EAVDLSIDES SLIGETTPCS
                                                                                              120
        KVTAPOPAAT NGDLASRSNI AFMGTLVRCG KAKGVVIGTG ENSEFGEVFK MMQAEEAPKT
25
        PLOKSMOLIG KOLSFYSFGI IGIIMLVGWL LGKDILEMFT ISVSLAVAAI PEGLPIVVTV
TLALGVMRMV KKRAIVKKLP IVETLGCCNV ICSDKTGTLT KNEMTVTHIF TSDGLHAEVT
                                                                                              300
                                                                                              360
        GVGYNQFGEV IVDGDVVHGP YNPAVSRIVE AGCVCNDAVI RNNTLMGKPT EGALIALAMK
        MELDGLQQDY IRKAEYPPSS BOKWMAVKCV HRTQQDRPEI CPMXGAYBQV IKYCTTYQSK
GQTLTLTQQQ RDVYQQEKAR MGSAGLRVLA LASGPELGQL TPLGLVGIID PPRTGVKEAV
                                                                                              480
                                                                                              540
30
        TTLIASGVSI KMITGDSQET AVAIASRLGL YSKTSQSVSG EBIDAMDVQQ LSQIVPKVAV
                                                                                              600
        Fyrasprhem Kiikslorng svvamtedgv ndavalkaad igvamgotet dvckeradmi
Lydddfotim saieeckgiy nniknfvrfo Lstsiaaltl islatlmnff nplnamqilw
                                                                                              660
                                                                                              720
         INIIMDGPPA QSLGVEPVDK DVIRKPPRNW KDSILTKNLI LKILVSSIII VCGTLFVFWR
                                                                                              780
         ELRUNVITER DITMIFTCEV FEDMENALSS RSQTKSVFEI GLCSNRMFCY AVLGSIMGQL
                                                                                              840
35
        LVTYPPPLOK VPQTESLSIL DLLFLIGLTS SVCIVAETIK KVERSREKIQ KHVSSTSSSF
                                                        SEQ ID NO:209 PAV4 VARIANT 1 DNA SEQUENCE
                                            N62096
        Nucleic Acid Accession #:
40
                                            1-1284 (underlined sequences correspond to start and stop codons)
        Coding sequence:
                      11
                                    21
                                                  31
45
         ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGA GAGGATTGCC TTATTCAATG
         AAGCAAGCTG GGTTTCCTTT GGGAATATTG CTTTTATTCT GGGTTTCATA TGTTACAGAC
                                                                                              120
         TITICCCTTG TITIATTGAT AAAAGGAGGG GCCCTCTCTG GAACAGATAC CTACCAGTCT
                                                                                              180
         TIGGICARIA ARACTITCGG CITICCAGGG TATCIGCICC TCICIGITCI TCAGITITIG
        TATCCTTTA TAGCAATGAT AAGTTACAAT ATAATACCTG GAGATACTTT GAGCAAAGTT
TTTCAAAGAA TCCCAGGAGT TGATCCTGAA AACGTGTTTA TTGGTCGCCA CTTCATTATT
GGACTTTCCA CAGTTACCTT TACTCTGCCT TTATCCTTGT ACCGAAATAT AGCAAAGCTT
                                                                                              300
50
                                                                                              360
        GGAAAGGTCT CCCTCATCTC TACAGGTTTA ACAACTCTGA TTCTTGGAAT TGTAATGGCA
AGGGCAATTT CACTGGGTCC ACACATACCA AAAACAGAAG ACGCTTGGGT ATTTGCAAAG
                                                                                              480
                                                                                              540
         CCCAATGCCA TTCAAGCGGT CGGGGTTATG TCTTTTGCAT TTATTTGCCA CCATAACTCC
55
          TTCTTAGTTT ACAGTTCTCT AGAAGAACCC ACAGTAGCTA AGTGGTCCCG CCTTATCCAT
          ATGICCATCG TGATTTCTGT ATTTATCTGT ATATTCTTTG CTACATGTGG ATACTTGACA
                                                                                                720
          TTTACTGGCT TCACCCAAGG GGACTTATTT GAAAATTACT GCAGAAATGA TGACCTGGTA
          ACATTIGGAA GATTITGITA TGGTGTCACT GTCATTITGA CATACCCTAT GGAATGCTTT
                                                                                                840
          GTGACAAGAG AGGTAATTGC CAATGTGTTT TTTGGTGGGA ATCTTTCATC GGTTTTCCAC
                                                                                                900
60
          ATTGTTGTAA CAGTGATGGT CATCACTGTA GCCACGCTTG TGTCATTGCT GATTGATTGC
                                                                                                960
         CTCGGGATAG TYCTAGAACT CAATGGTGTG CTCTGTGCAA CTCCCCTCAT TTTTATCATT CCATCAGCCT GTTATCTGAA ACTGTCTGAA GAACCAAGGA CACACTCCGA TAAGATTATG
                                                                                              1020
          TCTTGTGTCA TGCTTCCCAT TGGTGCTGTG GTGATGGTTT TTGGATTCGT CATGGCTATT
                                                                                              1140
          ACABATACTC AAGACTGCAC CCATGGGCAG GAAATGTTCT ACTGCTTTCC TGACAATTTC
                                                                                              1200
65
          TCTCTCACAA ATACCTCAGA GTCTCATGTT CAGCAGACAA CACAACTTTC TACTTTAAAT
          ATTAGTATCT TTCAACTCGA GTAA
         SEQ ID NO:210 PAV4 Variant 1 Protein sequence:
70
                                            none found
         75
         LVNKTPGPPG YLLLSVLQFL YPPIAMISYN IIAGDTLSKV FQRIPGVDPE NVFIGRHFII
         GLSTVTFTLP LSLYRNIAKL GKVSLISTGL TTLILGIVMA RAISLGPHIP KTEDAWVFAK
PNAIQAVGVM SFAPICHHNS PLVYSSLEEP TVAKWSRLIH MSIVISVFIC IFFATCGYLT
         FTGFTQGDLF ENYCRNDDLV TFGRFCYGVT VILTYPMECF VTREVIANVF FGGNLSSVFH
                                                                                              300
         IVVTVMVITV ATLVSLLIDC LGIVLELNGV LCATPLIFII PSACYLKLSE EPRTHSDKIM
80
         SCVHLPIGAV VMVFGFVMAI TNTQDCTHGQ EMFYCFPDNF SLTNTSESHV QQTTQLSTLN
```

ISTPQLE

_			SEQ ID NO:211 PAV4 VARIANT 2 DNA SEQUENCE						
5	Nucleic Acid Acce Coding sequence		N62096 1-1203 (underlined sequences correspond to start and stop codons)						
	1	11	21	31	41	51			
10	ī	ī	ī	ĭ	i '	ĭ			
			GCCTGTCATC				60		
			AACAGATACC				120		
	TTTCCAGGGT						180 240		
15			AGATACTTTG TGGTCGCCAC				300		
10			CCGAAATATA				360		
	ACAGGTTTAA	CAACTCTGAT	TCTTGGAATT	GTAATGGCAA	GGGCAATTTC	ACTGGGTCCA	420		
	CACATACCAA	AAACAGAAGA	CGCTTGGGTA	TTTGCAAAGC	CCAATGCCAT	TCAAGCGGTC	480		
20			TATTTGCCAC				540 600		
20			GTGGTCCCGC TACATGTGGA				660		
			CAGAAATGAT				720		
,	GGTGTCACTG	TCATTTTGAC	ATACCCTATG	GAATGCTTTG	TGACAAGAGA	GGTAATTGCC	780		
25			TCTTTCATCG				840		
25	ATCACTGTAG	CCACGCTTGT	GTCATTGCTG	ATTGATTGCC	TCGGGATAGT	TCTAGAACTC	900		
			TCCCCTCATT ACACTCCGAT				960 1020		
			TGGATTCGTC				1080		
						TACCTCAGAG	1140		
30	TCTCATGTTC TAA	AGCAGACAAC	ACAACTTTCT	ACTITAAATA	TTAGTATCTT	TCAACTCGAG	1200		
35	SEQ ID NO:212 I Protein Accession		otein secuence: none fo	und					
	1	11	21	31.	41	51			
	Ī	1	1	ĭ	ī	Ĩ.			
40	MGYQRQEPVI	PPQFSLVLLI	KGGALSGTDT	YOSLVNKTFG	PPGYLLLSVL	QPLYPPIAMI	60		
			DPENVFIGRH				120		
			HIPKTEDAWV				180 240		
	CHRITIANDA	PINUSIAISA	FICIFFATCG NVFFGGNLSS	UNTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUTUT	TTVATLVSLL	TOCIGIVLEL	300		
45	NGVLCATPLI	FIIPSACYLK	LSEEPRTHSD SHVQQTTQL	KIMSCVMLPI	GAVVEVFGFV	MAITNTQDCT	360		
					0:213 PAV4 VAR	IANT 3 DNA SEQU	ENCE		
50	Nucleic Acid Acco		N62096 1-1140		nces correspond t	o start and stop coo	ions)		
	1	11	21	31	41	51			
	1	1	1	1		1			
55	<u>ATG</u> GGCTACC	AGAGGCAGGA	GCCTGTCATC	CCGCCGCAGG	TCAATAAAAC	TTTCGGCTTT	60		
	CCAGGGTATC	TGCTCCTCTC	TGTTCTTCAG	TTTTTGTATC	CTTTTATAGC	AATGATAAGT	120		
			TACTTTGAGC TCGCCACTTC				180 240		
			AAATATAGCA				300		
60	GGTTTAACAA	CTCTGATTCT	TGGAATTGTA	ATGGCAAGGG	CAATTTCACT	GGGTCCACAC	360		
	ATACCAAAAA	CAGAAGACGC	TTGGGTATTT	GCAAAGCCCA	ATGCCATTCA	AGCGGTCGGG	420		
	GTTATGTCTT	TIGCATITAT	TTGCCACCAT	AACTCCTTCT	TAGTTTACAG	TTCTCTAGAA	480 540		
	GAACCCACAG	TAGCTAAGTG	GTCCCGCCTT ATGTGGATAC	ATCCATATGT	CONTCOTGAT	CCAAGGGGAC	600		
65	TTATTTGAAA	ATTACTGCAG	AAATGATGAC	CTGGTAACAT	TTGGAAGATT	TTGTTATGGT	660		
	CITCACTOTCA	TTTTGACATA	CCCTATGGAA	TCCTTTCTGA	CAAGAGAGGT	AATTGCCAAT	720		
	GTGTTTTTTG	GTGGGAATCT	TTCATCGGTT	TTCCACATTG	TTGTAACAGT	GATGGTCATC	780		
	ACTGTAGCCA	CGCTTGTGTC	ATTGCTGATT	GATTGCCTCG	GGATAGTTCT	AGAACTCAAT	840 900		
70			CTCCGATAAG				960		
,,	GCTGTGGTGA	TGGTTTTTGG	ATTCGTCATG	GCTATTACAA	ATACTCAAGA	CTGCACCCAT	1020		
	GGGCAGGAAA	TGTTCTACTG	CTTTCCTGAC ACTTTCTACT	AATTTCTCTC	TCACAAATAC	CTCAGAGTCT	1080		
75				•			٠		
ıs	SEQ ID NO:214 Protein Accessio	PAV4 Variant 3 Pr n 4 :	otein sequence: none to	xmd					
	1	11	21	31	41	51			
80	1	i	Ĩ	1	ī	ī			
	•	•	•		20	0			
					38	フ			

5	PENVFIGRHF IPKTEDAWVP ICIFPATCGY VFFGGNLSSV	PPQVNKTFGF IIGLSTVTFT AKPNAIQAVG LTFTGFTQGD PHIVVTVMVI IMSCVMLPIG LNISIFQLE	LPLSLYRNIA VMSFAFICHH LFENYCRNDD TVATLVSLLI	klgkvslist NSFLVYSSLE LVTFGRFCYG DCLGIVLELN	GLTTLILGIV EPTVAKWSRL VTVILTYPME GVLCATPLIF	Maraislgph IHMSIVISVF CFVTREVIAN IIPSACYLKL	60 120 180 240 300 360
10				, ceo in su		ANT 4 DNA SEQUE	NOE.
10	Nucleic Acid Acce Coding sequence		N62098 1-1389			start and stop codo	
15	1	11	21	31	41	51	
	ACCCTTGTTT	CTGAACATGA	GTATAAAGAG	AAAACCTGTC	AGTCTGCTGC	TGACAGAGAA . TCTTTTTAAT GAAGCAAGCT	60 120 180
20	GGGTTTCCTT GTTTTATTGA AAAACTTTCC	TGGGAATATT TAAAAGGAGG GCTTTCCAGG	GCTTTTATIC GGCCCTCTCI GTATCTGCTC	TGGGTTTCAT GGAACAGATA CTCTCTGTTC	ATGTTACAGA CCTACCAGTC TTCAGTTTTT	CTTTTCCCTT TTTGGTCAAT GTATCCTTTT TTTTCAAAGA	240 300 360 420
25	ACAGTTACCT TCCCTCATCT TCACTGGGTC ATTCAAGCGG	TTACTCTGCC CTACAGGTTT CACACATACC TCGGGGTTAT	TTTATCCTTC AACAACTCTC AAAAACAGAA GTCTTTTGCA	TACCGAAATA ATTCTTGGAA GACGCTTGGG TTTATTTGCC	TAGCAAAGCT TTGTAATGGC TATTTGCAAA ACCATAACTC	TGGACTTTCC TGGAAAGGTC AAGGGCAATT CCCCAATGCC CTTCTTAGTT	480 540 600 660 720
30	GTGATTTCTC TTCACCCAAG AGATTTTGTT	GGGACTTATT TATGGTGTCAC	TATATTCTTI TGAAAATTAC TGTCATTTTC	GCTACATGTG TGCAGAAATG ACATACCCTA	GATACTTGAC ATGACCTGGT TGGAATGCTT	TATETCCATC ATTTACTEGC AACATTTEGA TETGACAAGA CATTETTGTA	780 840 900 960 1020
35	ACAGTGATGO GTTCTAGAAO TGTTATCTGA ATGCTTCCCA	TCATCACTGT TCAATGGTGT AACTGTCTGA TTGGTGCTGT	AGCCACGCTT GCTCTGTGCF AGAACCAAGG GGTGATGGTT	GTGTCATTGC ACTCCCCTCA ACACACTCCC TTTGGATTCC	TGATTGATTC TITTTATCAT ATAAGATTAT TCATGGCTAT	CCTCGGGATA TCCATCAGCC GTCTTGTGTC TACAAATACT CTCTCTCACA	1080 1140 1200 1260 1320
40	AATACCTCAG TTTCAA <u>TGA</u>	AGTCTCATGT	TCAGCAGACA	ACACAACTTI	CTACTTTAAA	TATTAGTATC	1380
45	SEQ ID NO:216 F Protein Accession	PAV4 Variant 4 Pro	otein sequence; none fo	ınd			
	1 	11 	21 	31 	41 	51 	
50	GFPLGILLLP IAMISYNIIA SLISTGLTTL YSSLEEPTVA	PPQRDLDDRE WVSYVTDFSL GDTLSKVFQR ILGIVMARAI KWSRLIHMSI	VLLIKGGALS IPGVDPENVF SLGPHIPKTE VISVPICIFF	GTDTYQSLVN IGRHFIIGLS DAWVFAKPNA ATCGYLTFTG	ktfgfpgyll Tvtftlplsl IQAVGVMSFA FTQGDLFENY	LSVLQFLYPF YRNIAKLGKV PICHENSPLV CRNDDLVTFG	60 120 180 240 300
55	VLELNGVLCA	TYPMECFVTR TPLIFIIPSA YCFPDNF6LT	CYLKLSEEPR	THEDKIMSCV	MLPIGAVVMV		360 420
					ID NO:217 PAV9	DNA SEQUENCE	
60	Nucleic Acid Acce Coding sequence		NM_017 1-3501		nces correspond to	start and stop code	ns)
	1	11	21	31 .	41	51	
65	GAGAAGCCCA AATTTCCTCC ACATGGGGCT	CCTTCGGGGC CCGATGCCTA GGCTCTCTGA TCCGTGCCCC	CGGAGAGCTG CCGAACGGAT GAACCTGGTG	GACTTCACGG CCAGCTGCAG GTGTCAGTGC	GGGCCGGCCG TTTATAGTCT TGGGGGGATC	CAAGCACAGC GGTCACACGC GGGGGGCCCC	60 120 180 240
70	ACAGGAGCCT GCTGTACGGG GCCCCCTGGG GCGAGGTACC	CCTGGCTGCA GGATTGTCAC ACCATCAGAT GTGTGGTCCG GGTGGCGCGG	TGGGGGTCTG GGCCAGCACT GAATAGAGAC TGACCCGGAG	CACACGGGCA GGGGGCACCA ACCCTCATCA GACGGGGTCC	TCGGCCGCA AGGTGGTGGC ACCCCAAGGG AGTTTCCCCT	TGTTGGTGTG CATGGGTGTG CTCGTTCCCT GGACTACAAC	300 360 420 480 540
75	TTCCGCTTGC ATTGACATCC GAGAACGCCA GACTGCCTGG	CGGAGACCCT	CTACATCTCA CCTCCTGATT GCTCCCATGT GGAAGACACT	CAGCAGAAGA GATGGTGATG CTCCTCGTGG CTGGCCCCAG	CGGGCGTGGG AGAAGATGTT CTGGCTCAGG GGAGTGGGGG	AGGGACTGGA GACGCGAATA GGGAGCTGCG AGCCAGGCAA	600 660 720 780 840 900
80		GAGATCGAAT AGAGGATTAT				TTCTGAGGAT	

```
GGGTCTGAGG AATTCGAGAC CATAGTTTTG AAGGCCCTTG TGAAGGCCTG TGGGAGCTCG 1020
          GAGGCCTCAG CCTACCTGGA TGAGCTGCGT TTGGCTGTGG CTTGGAACCG CGTGGACATT
                                                                                                      1080
          GCCCAGAGTG AACTCTTTCG GGGGGACATC CAATGGCGGT CCTTCCATCT CGAAGCTTCC 1140
          CTCATGGACG CCCTGCTGAA TGACCGGCCT GAGTTCGTGC GCTTGCTCAT TTCCCACGGC
CTCAGCCTGG GCCACTTCCT GACCCCGATG CGCCTGGCCC AACTCTACAG CGCGGCGCCC
                                                                                                      1200
  5
          TCCAACTCGC TCATCCGCAA CCTTTTGGAC CAGGCGTCCC ACAGCGCAGG CACCAAAGCC
                                                                                                      1320
          CCASCCCTAA AAGGGGGAGC TGCGGAGGTC CGGCCCCCTG ACGTGGGGCA TGTGCTGAGG
ATGCTGCTGG GGAAGATGTG CGCGCGGAGG TACCCCTCCG GGGGGCCCTG GGACCCTCAC
                                                                                                      1380
          CCAGGCCAGG GCTTCGGGGA GAGCATGTAT CTGCTCTCGG ACAAGGCCAC CTCGCCGCTC
                                                                                                      1500
10
          TOGCTGGATG CTGGCCTCGG GCAGGCCCCC TGGAGCGACC TGCTTCTTTG GGCACTGTTG
CTGAACAGGG CACAGATGGC CATGTACTTC TGGGAGATGG GTTCCAATGC AGTTTCCTCA
                                                                                                     1560
          GCTCTTGGGG CCTGTTTGCT GCTCCGGGTG ATGGCACGCC TGGAGCCTGA CGCTGAGGAG
                                                                                                      1680
          GCAGCACGGA GGAAAGACCT GGCGTTCAAG TTTGAGGGGA TGGGCGTTGA CCTCTTTGGC
                                                                                                      1740
          GAGTGCTATC GCAGCAGTGA GGTGAGGGCT GCCCGCCTCC TCCTCCGTCG CTGCCCGCTC
                                                                                                      1800
15
          TEGGEGGATE CCACTTECCT CCAECTEGCC ATECAACCTE ACECCCETEC CTTCTTTECC
                                                                                                      1860
          CAGGATGGGG TACAGTCTCT GCTGACACAG AAGTGGTGGG GAGATATGGC CAGCACTACA
CCCATCTGGG CCCTGGTTCT CGCCTTCTTT TGCCCTCCAC TCATCTACAC CCGCCTCATC
                                                                                                      1920
                                                                                                      1980
          ACCITCAGGA AATCAGAAGA GGAGCCCACA CGGGAGGAGC TAGAGTTTGA CATGGATAGT
                                                                                                      2040
          GTCATTAATG GGGAAGGGCC TGTCGGGACG GCGGACCCAG CCGAGAAGAC GCCGCTGGGG
GTCCCGCGCC AGTCGGGCCG TCCGGGTTGC TGCGGGGGCC GCTGCGGGGG GCGCCGGTGC
                                                                                                     2100
20
          CTACGCCGCT GGTTCCACTT CTGGGGCGCG CCGGTGACCA TCTTCATGGG CAACGTGGTC 2220
         AGCTACCTGC TGTTCCTGCT GCTTTTCTCG CGGGTGCTGC TCGTGGATTT CCAGCCGGCG 2280 CCGCCCGGGT CCCTGGAGCT GCTGCTCTAT TTCTGGGCTT TCACGCTGCT GTGCGAGGAA 2340
          CTCCCCCAGG GCCTGAGCGG AGGCGGGGGC AGCCTCGCCA GCGGGGGCCC CGGGCCTGGC
                                                                                                     2400
25
          CATGCCTCAC TGAGCCAGCG CCTGCGCCTC TACCTCGCCG ACAGCTGGAA CCAGTGCGAC
CTAGTGGCTC TCACCTGCTT CCTCCTGGGC GTGGGCTGCC GGCTGACCCC GGGTTTGTAC
                                                                                                      2460
          CACCTGGGCC GCACTGTCCT CTGCATCGAC TTCATGGTTT TCACGGTGCG GCTGCTTCAC
                                                                                                      2580
          ATCTTCACGG TCAACAAACA GCTGGGGCCC AAGATCGTCA TCGTGAGCAA GATGATGAAG
GACGTGTTCT TCTTCCTCTT CTTCCTCGGC GTGTGGCTGG TAGCCTATGG CGTGGCCACG
                                                                                                     2640
30
          GAGGGGCTCC TGAGGCCACG GGACAGTGAC TTCCCAAGTA TCCTGCGCCG CGTCTTCTAC
                                                                                                      2760
          CGTCCCTACC TGCAGATCTT CGGGCAGATT CCCCAGGAGG ACATGGACGT GGCCCTCATG
GAGCACAGCA ACTGCTCGTC GGAGCCCGGC TTCTGGGCAC ACCCTCCTGG GGCCCAGGCG
                                                                                                      2820
          GGCACCTGCG TCTCCCAGTA TGCCAACTGG CTGGTGGTGC TGCTCCTCGT CATCTTCCTG
                                                                                                     2940
          CTCGTGGCCA ACATCCTGCT GGTCAACTTG CTCATTGCCA TGTTCAGTTA CACATTCGGC
                                                                                                      3000
35
          AAAGTACAGG GCAACAGCGA TCTCTACTGG AAGGCGCAGC GTTACCGCCT CATCCGGGAA
                                                                                                      3060
          TTCCACTCTC GGCCCGCGCT GGCCCCGCCC TTTATCGTCA TCTCCCACTT GCGCCTCCTG
                                                                                                     3120
          CTCAGGCAAT TGTGCAGGCG ACCCCGGAGC CCCCAGCCGT CCTCCCCGGC CCTCGAGCAT
                                                                                                      3180
          TTCCGGGTTT ACCTTTCTAA GGAAGCCGAG CGGAAGCTGC TAACGTGGGA ATCGGTGCAT
          AAGGAGAACT TTCTGCTGGC ACGCGCTAGG GACAAGCGGG AGAGCGACTC CGACCOTCTG
AACCGCACGT CCCAGAAGGT GGACTTGGCA CTGAAACAGC TGGGACACAT CCGCGAGTAC
GAACAGCGCC TGAAAGTGCT GGAGCGGGAG GTCCAGCAGT GTAGCCGCGT CCTGGGGTGG
                                                                                                      3300
40
                                                                                                      3360
          GTGGCCGAGG CCCTGAGCCG CTCTGCCTTG CTGCCCCCAG GTGGGCCGCC ACCCCCTGAC 3480
          CTGCCTGGGT CCAAAGACTG A
45
          SEQ ID NO:218 PAV9 Protein sequence:
                                                none found
          Protein Accession #:
                                                       31
                                                                       41
                                                                                      51
50
          MEDAFGAAVV TVWDSDAHTT EKPTDAYGEL DFTGAGRKHS NFLRLSDRTD PAAVYSLVTR
          TWGFRAPNIN VSVLGGSGGP VLQTWLQDLL RRGLVRAAQS TGAWIVTGGL HTGIGRHVGV
AVRDHOMAST GGTKVVAMGV APWGVVRNRD TLINPKGSPP ARYRWRGDPE DGVQFPLDYN
          YSAFFLVDDG TEGCLGGENR PRLRLESYIS QQKTGVGGTG IDIPVLLLLI DGDEKMLTRI
                                                                                                        240
55
          ENATOAQLPC LLVAGSGGAA DCLAETLEDT LAPGSGGARQ GEARDRIRRF FFKGDLEVLQ
AQVERINTRK ELLTVYSSED GSEEPETIVL KALVKACGSS EASAYLDELR LAVANNRVDI
                                                                                                        300
          AQSELFRGDI QWRSFHLEAS IMDALLNDRP EFVRLLISHG LSLGHPL/TPM RLAQLYSAAP
          SNSLIRNLLD QASHSAGTKA PALKGGAAEL RPPDVGHVLR MLLGKMCAPR YPSGGAWDPH
PGQCFGESMY LLSDKATSPL SLDAGLGQAP WSDLLLWALL LNRAQMAMYP WRMGSNAVSS
                                                                                                        480
60
          ALGACLLERV MARLEPDAEE AARRKDLAPK FEGMGVDLFG ECYRSSEVRA ARLLLRRCPL
          WGDATCLOLA MOADARAFFA ODGVQSLLTQ KWWGDMASTT PIWALVLAFF CPPLIYTRLI
TYRKSEEEPT REELEPDMDS VINGEGPVGT ADPAEKTPLG VPRQSGRPGC CGGRCGGRRC
                                                                                                        660
          LRRWFHFWGA PYTTFMGNVV SYLLFLLLFS RVLLVDFQPA PPGSLELLLY FWAFTLLCEE
LRQGLSGGGG SLASGGPGPG HASLSQRLRL YLADSWNQCD LVALTCFLLG VGCRLTPGLY
HLGRTVLCID FMVFTVRLLH IFTVNKQLGP KIVIVSKMK DVFFPLFFLG VWLVAYGVAT
                                                                                                        780
                                                                                                        840
65
          EGLLRPRDSD FPSILRRVFY RPYLQIFGQI PQEDMDVALM EHSNCSSEPG FWAHPPGAQA
GTCVSQYANW LVVLLLVIPL LVANILLVNL LIAMPSYTFG KVQGNSDLYW KAQRYRLIRE
                                                                                                        960
                                                                                                      1020
          PHSRPALAPP PIVISHLRLL LRQLCRRPRS PQPSSPALEH FRVYLSKEAE RKLLTWESVH
          KENFLLARAR DKRESDSERL KRTSOKVDLA LKOLGHIREY EQRLKVLERE VQQCSRVLGW 1140
70
          VAEALSRSAL LPPGGPPPPD LPGSKD
                                                                   SEQ ID NO:219 PBF1 DNA SEQUENCE
                                          AA054237
          Nucleic Acid Accession #:
                                          1-894 (underlined sequences correspond to start and stop codons)
          Coding sequence:
75
                        11
                                                        31
          ATGGAGCCGC GGGCGCTCGT CACGGCGCTC AGCCTCGGCC TCAGCCCTGTG CTCCCTGGGG
CTGCTCGTCA CGGCCATCTT CACCGACCAC TGGTACGAGA CCGACCCCG GCGCCACAAG
80
          GAGAGCTGCG AGCGCAGCCG CGCGGGCGCC GACCCCCGG ACCAGAAGAA CCGCCTGATG
```

5	GGCCCGGGC GCCGAGTGCG CTGGGCATCG GCCATCAAGT AAGACCATAC CTCGGCATGG TGGGAGGAGA TGCACCATTT AAGCTAATTT GCCTGGTGCA	ACCTGCCGCT GCGCGCCCCT ACCGGCCCCT ACCGGGCCCT ACCACTTTC AGCAAGATGA CCCTTAGCCGT GCTTGACCA ATAGCCTGCC GTTTAGCCTT CCAAGATTGC	CGAGTCCTGG CTTCGCCACC CGACACCCTC TCAGCCCATC GTGGCACCTG CCTTCTCTGC GCACGTGGCT TTATGCCGCC TGCTGATGTG TATTGTGGCA	CGCTCGCTCC TACTCGGGCC ATCCTGAAAG CGCTTGCGAA CTTCATTTAA GGCTGCATTG GGACTCCTGT AGTATCTCGT GAACATGGTT GCTGGAGGTC	TGGGGCTCGG TCTGGAGGAA GTATTGCGCA ACATTCCTTT GAAGAATCAC TGGCCACAGT TCCTCATGAC ATGATTTGAA ACAGCTGGTC TCTGCATCGC	CGGGCTGGAC GTGCTACTTC GCGATGCACG TAATTTAACC TGCTGGCTTC CAGTTTCTTC AGGGATATTT CCGGGCTCCC CATCTTTTGC TTATCCGTTT	240 300 360 420 480 540 600 720 780 840
15	SEQ ID NO;220 I Protein Accession	PBF1 Protein sequ n #:	none found				
20 25	PLSHLPLRDS LGIDRDIDTL LGMAVAVLLC	PPLGRRLLPG	GPGRADPESW AIKYHPSQPI WEESLTQHVA	RSLLGLGGLD RLRNIPPNLT GLLFLMTGIF	AECGRPLFAT KTIQQDEWHL CTISLCTYAA	LHLRRITAGF SISYDLNRLP	60 120 180 240
				SE	O ID NO:221 PCM	DNA SEQUENCE	
30	Nucleic Acid Acco Coding sequence	ession #: E	NM_016570 1- 1134 (under		orrespond to start		
0.7		11 TGAATCGGAA					60
35	TTTACAACTA AAGTATGAAT ACTGTTGCCA	AGAGCTATGT TGGCTTTATT ACGAAGTAGA TGAAGTGTCA	AACCATAATG CAAGGATTTT ATATGTTGGA	GAATTCTCAG TCTAGCAAAT GCGGATGTAT	TATATCAAGA TAAGAATTAA TGGATTTAGC	TACATGGATG TATAGATATT	120 180 240 300 360
40	AAAGAGTGGC CAAGATGTGA GATGATTCAT GTAGCAGGGA	AGAGGATGCT TATTTAAAAG CACAGTCTCC ATTTTCACAT CACTTGTCAA	GCAGCTGATT TGCTTTTAAA AAATGCATGC AACAGTGGGC	CAGAGTAGGC AGTACATCAA AGAATTCATG AAGGCAATTC	TACAAGAAGA CAGCTCTTCC GCCATCTATA CACATCCTCG	GCATTCACTT ACCAAGAGAA TGTCAATAAA TGGTCATGCA	420 480 540 600 660
45	TCTTTTGGAG ATAGATCACA TATAAAATAT CATGCTGCAG	AGCTTGTTCC ACCAGATGTT CAGCAGACAC GCAGCCATGG TTACTGAGGA	AGCAATTATT CCAATATTTT CCATCAGTTT AGTCTCTGGG	AATCCTTTAG ATTACAGTTG TCTGTGACAG ATATTTATGA	ATGGAACTGA TGCCAACAAA AAAGGGAACG AATATGATCT	AAAAATTGCT ACTACATACA TATCATTAAC CAGTTCTCTT	720 780 840 900 960
50	ATTGTTGGAG GAAATAATTT	GAATCTTTTC GCTGTCGTTT ACACAGACAA	AACAACAGGC CAGACTTGGA	ATGTTACATG TCCTATAAAC	GAATTGGAAA CTGTCAATTC	ATTTATAGTT TGTTCCTTTT	1020 1080
55	SEQ ID NO:222 Protein Accession	PCI4 Protein sequ n #:	ence: NP_057654				
	1	11	21 I	31	41	51	
60	KYEYEVDKDF KEWQRMLQLI VAGNFHITVG	SLVKELDAFP SSKLRINIDI QSRLQEEHSL KAIPHPRGHA ITVVPTKLHT	TVAMKCQYVG QDVIFKSAFK HLAALVNHES	advldlaetm ststalppre ynfshridhl	VASADGLVYE DDSSQSPNAC SFGELVPAII	RIHGHLYVNK NPLDGTEKIA	60 120 180 240 300
65		FWQFFVRLCG					360
70	Alicate Act of A		\$11.6 paran= 4		Q ID NO:223 PEZ:	DNA SEQUENCE	
70	Nucleic Acid Acc Coding sequence		NM_001935.1 76-2301 (unde		correspond to star	t and stop codons)	
75	GAGGAGACGC GCGCTTGTCA	11 CGCCGCCCCC CGACGATGAA CCATCATCAC	GACACCGTGG CGTGCCCGTG	AAGATTCTTC GTTCTGCTGA	TGGGACTGCT ACAAAGGCAC	GGGTGCTGCT AGATGATGCT	60 120 180
80		GTCGCAAAAC CCTTAAGATG				agaaaataat	240 300

	ATCTTGGTAT	TCAATGCTGA	ATATGGAAAC	AGCTCAGTTT	TCTTGGAGAA	CAGTACATTT	360
		GACATTCTAT					420
		ACTACGTGAA					480
_	GATTTAAATA	AAAGGCAGCT	GATTACAGAA	GAGAGGATTC	CARACARCAC	ACAGTGGGTC	540
5		CAGTGGGTCA					600
		ATTTACCAAG					660
		CTGACTGGGT					720
		ACGGCACTTT					780
10		CCTTCTACTC					840
10		CAGGAGCTGT					900
		TCACCAATGC					960
	GGGGATCACT	ACTTGTGTGA	TCTGACATGG	GCAACACAAG	AAAGAATTTC	TTTGCAGTGG	1020
		TTCAGAACTA					1080
15		GCTTAGTGGC					1140
13		CTTCAGAACC					1200 1260
		AAGGTTACAG AAGGCACCTG					1320
		GTAATGAATA					1380
		ATACAAAAGT					1440
20		TGTCATTCAG					1500
20		TCTATACTCT					1560
		CTTTGGATAA					1620
		TGAATGAAAC					1680
•	ANAMOCANCA	AATATCCTCT	ACTATTAGAT	GTGTATGCAG	GCCCATGTAG	TCAAAAAGCA	1740
25	CACACOCOCO	TCAGACTGAA	CTGGGCCACT	TACCTTGCAA	GCACAGAAAA	CATTATAGTA	1800
		ATGGCAGAGG					1860
		GAACATTTGA					1920
		TGGACAACAA					1980
		TCCTGGGATC					2040
30		GGGAGTACTA					2100
		ACCTTGACCA					2160
	AAACAAGTTG	AGTACCTCCT	TATTCATGGA	ACAGCAGATG	ATAACGTTCA	CTTTCAGCAG	2220
	TCAGCTCAGA	TCTCCAAAGC	CCTGGTCGAT	GTTGGAGTGG	ATTTCCAGGC	AATGTGGTAT	2280
~~	ACTGATGAAG	ACCATGGAAT	AGCTAGCAGC	ACAGCACACC	AACATATATA	TACCCACATG	2340
35	AGCCACTTCA	TAAAACAATG	TTTCTCTTTA	CCTTAGCACC	TCAAAATACC	ATGCCATTTA	2400
		AAACTCATTT					2460
		AATACACACT					2520
		TCTTAAGTAG					2580
40		CGGTCGGGTT					2640
40		TIGITITIAT					2700
		GACTGGTTCA					2760
		CTAGGGCAGG					2820 2880
	TGGCTGGGAA	CCCAAGTCCA	AGCATACCAA	CACGAGCAGG	CTACTGTCAG	CICCCCICG	2940
45		TTCACCACGA AATATCGAAA					3000
43		AATATOGAAA					3060
	AAAGAAATGT	ACACAGCAAG	COMPARECTOR	B ACCAMOCONA	STOCCHOIL	MANANAMA	3120
		CCTAGTGAAA					3180
		ATGAAAATAT					3240
50	CIGITIVE COLUMN	TTCATTTCTT	TCACTCTCTT	AATTAAAAGA	ATATTTTAAC	TTCCTTGGAC	3300
-	TCATTTTAAA	AAATGGAACA	TAAAATACAA	TGTTATGTAT	TATTATTCCC	ATTCTACATA	3360
		TCTCCCAGTC					
	CIMICOIDIA.	-0-004.010					
<i>5</i> 5	SEQ ID NO:224	PEZ3 Protein segu	jence:				
	Protein Accession		NP_001926.1				
	***************************************		_				
	1	11	21	31	41	51	
	1		1			1	
60		LLGAAALVTI					60
		KQENNILVFN					120
	VKQWRHSYTA	SYDIYDLNKR	QLITEERIPN	NTOWVTWSPV	GHKLAYVWNN	DIYVKIEPNL	180
		EDIIYNGITD					240
65		TVRVPYPKAG					300
65	COVIWATOER	ISLQWLRRIQ	NYSVMDICDY	DESSGRWNCL	VAROHIEMST	TGWVGRFRPS	360
		PYKLISNEEG					420
		LYKIQLIDYT					480 540
	TLHSSVNDAG	LRVLEDNSAL CSQKADIVFR	DKMDQNVQMP	SKREDFILLA	PUCCACCUAL	MUNTADDICT	600
70		ROPSKMGFVD					660
70	LEAEDOTEVA	MGLPTPEDNL	WWITHINGNO	DYDNIAL	1.T.TEGTADDN	VHEOOSAOTS	720
	IIDSALIENT	QAMWYTDEDH	CINCALAND	TVPUMCUETY	OCESTE	ATT ANDLINES	
	WINADAGADE	France I II CIN	arvan twu fii	**************************************	201 004		
				SE	O ID NO:225 PBJ:	2 DNA SEQUENCE	
75	Nucleic Acid Acc	ession #:	none (c		•		
	Coding sequence				ces correspond to	start and stop code	ons)
	Coming and any		. 25. (•
00	1	11	21	31	41	51	
80	1	I	1			I	
					20	2	
					39	5	

5	AGAAGTGTGA AGAAACCCTC GTGGAAATGA	TTAAAGTGCG AGGAGCTCTG	GGAGCCAAAC TGCTAACCAG GATGGGCCTG AGTCTGGTCC A	TGTTCCCTGC CTCCTCTTGA	ATGAGGCAGA TGGGGGTCCT	AAGTGAATCC AGAAGCATGT	60 120 180 240
10	SEQ ID NO:226 Protein Accession	PBJ2 Protein sequ n #:	ence: none fo	und			
10	1	11	21	31	41	51	
	î	ī	Ĩ-	ī	ī	ĭ	
			RSVIKVRANQ	CSLHEAESES	RNPQELWMGL	LLLMGVLBAC	60
15	VEMRPLSVW	S LRDDKEQSF	H QPILDV				٠.
					2 ID NO:227 PBM	2 DNA SEQUENCE	:
	Nucleic Acid Acc Coding sequence		none to		nee corrections to	start and stop codo	nel
	county sequence	•	1-100 (antecimica andren	oco con coponia co	oth tent and one	
20	1	11	21	31	41	51	
	i '	i	Î	ĩ	ì	ĩ.	
	ATGCCAAAT	CTGAGTTAG	A AGCAAAGAG	CTTGGAAGC	A GTAAATGTT	P AAAAACTGCT	60
25						r TGAGCAAAAT	
25						TCTAGTCATC	
						A GCTAGAAGAT S ATTCCCAGAA	
						TCCAAGGAAG	
						TCACAGGTTT	
30			T AGATATGCG				
				•			
		PBM2 Protein seq					
	Protein Accession	n #:	none fo	und			
25							
35				21	43	64	
	1	11	21	31	41	51 I	
	MENIA PLEAKS	I CSSKCI KTA	LILAVCCGSA	NTVSPLLEON	TDVSSODLDR	RPESMLPLAT	60
			PMAIEEEMKK				120
40			VKDQIVVDM				
. •			• • • • • • • • • • • • • • • • • • • •				
				SE	Q ID NO:229 PEZ:	2 DNA SEQUENCE	
	Nucleic Acid Acc		NM_014253				
45	Coding sequence	£	65-8242 (Unde	ninea sequences	correspono to stan	and stop codons)	
TJ							
	1	11	21	31	41	51	
	1	1	1	1		1	
50			TTCCTCATCC				60
50			GCAAACCCTA				120
	GGATCTAGCT	TACACCAGTT	CTTCTGATGA	GAGTGAAGAT	GGAAGAAAAC	CAAGACAGTC	180
			TGCACGAGTA AAGTAGAAAA				240 300
			GCTACCAAAC				360
55			ATGTGGACAC				420
-			GGGGAATGAA				480
			TGACTGACAC				540
			TTTGTTGTGA				600
cn	TGTGCAGAGC	AGCCCACACA	ACCAGTTCAC	CTTCAGACCC	CTCCCACCGC	CACCTCCGCC	660
60			CCAGGAAGCC				720
			AGCCCAGCCC				780 840
			ACAGCTGGGT GATCTGGTTC				900
			CCGTGTACTC				960
65			CCTTTAACAA				1020
	AGCATTGAGC	GCCACTGCAA	TCACAGTGAC	TTTGGCCTTG	TTACTAGCCT	ATGTGATTGC	1080
	AGTGCATTTG	TTCGGCCTGA	CTTGGCAGTT	GCAACCAGTT	GAAGGAGAGC	TGTATGCAAA	1140
			GGGGGACCGA				1200
70			CAGAGAAAA				1260
, 0			CACAGGTCAT ATCCAATATA				1320 1380
						AGTTTGATTT	1440
	TGTAAAACTA	ATGGATGGCA	AACAGCTGGT	CAAGCAGGAC	TCCAAGGGCT	CTGATGATAC	1500
			TGATCTTAAC				1560
75	TATGGATCAA	GGACCTTGGT	ATCTGGCGTT	TTACAATGAT	GGAAAAAAGA	TGGAGCAAGT	1620
	ATTCGTGTTA	ACTACAGCAA	TTGAAATAAT	GGATGACTGT	TCAACCAATT	GCAATGGAAA	
			ATTGTCATTG				1740
						GACACTGTGT	
80						CAGGATACAA	

	AGGAGAAATA	TGCGAGGAAG	AGGACTGCCT	AGACCCAATG	TGTTCCAACC	ATGGCATCTG	1980
	TGTAAAAGGA	GAATGTCACT	GTTCTACTGG	CTGGGGAGGA	GTTAACTGTG	AAACACCACT	2040
						CTGGAGTATG	2100
						CCATGGAGTG	2160
5		GGAGTCTGCT					2220
•		GAACGCTCCT					2280
		TGTAGCCCTG					2340
		GATGGCTGCC					2400
10		CACTGTGTGT					2460
10						actgtgtgga	2520
		TGTCAACAAA					2580
		CTCATTCAGC					2640
	TTATGATCGA	ATCAAATTCC	TCATTGGCAA	GGACAGTACT	CATGTCATTC	CTCCTGAGGT	2700
	GTCATTTGAC	AGCAGGCGTG	CCTGTGTGAT	TCGAGGCCAA	GTGGTGGCCA	TAGATGGAAC	2760
15	TCCTCTAGTG	GGAGTGAATG	TCAGTTTCTT	GCACCACAGT	GATTATGGGT	TTACCATCAG	2820
	CCGGCAAGAT	GGAAGCTTTG	ACCTCGTGGC	CATCGGTGGC	ATCTCTGTCA	TCTTAATCTT	2880
		CCTTTCCTGC					2940
	TGTGGTAGAG	AAAGTCACCA	TGCAGAGAGT	TGTATCAGAC	CCGCCATCCT	GCGATATCTC	3000
		AGCCCAAACC					3060
20		AGGGGAACTA					3120
		TTTGTGAGGC					3180
		CTTCTGACAC					3240
		GAAGGGCGAC					3300
	CACATTTGCT						
25							3360
45		GTGGGATATG					3420
						GGTCTTTGAA	3480
		ATTTTGAATC					3540
		CAGCAGCCCC					3600
20		ACCAACTGCA					3660
30		GGCCCTGATG					3720
	ATTTCCCTCG	GGAAACTCCG	TTAGTATTTT	GGAATTAAGC	ACAAGTCCTG	CTCACAAATA	3780
	CTATCTGGCT	ATGGACCCTG	TGTCTGAATC	ACTCTATCTA	TCAGACACCA	ATACTCGCAA	3840
	AGTCTACAAG	TTGAAATCTC	TTGTGGAGAC	GAAAGATCTG	TCCAAGAATT	TTGAAGTGGT	3900
	GGCAGGAACT	GGTGATCAGT	GCCTTCCCTT	TGACCAGAGT	CATTGTGGAG	ATGGTGGGAG	3960
35	AGCATCGGAA	GCTTCACTGA	ATAGCCCTCG	AGGCATCACA	GTTGATAGGC	ATGGATTTAT	4020
		GATGGGACTA					4080
		AATGGTCTGA					4140
		CGATTAGAGT					4200
						TTCGGATCAT	4260
40		CCCATTCACT					4320
		TCCACTCTAG					4380
							4440
		GAAACAGACG					4500
		ATCATCGCTG					
45		TCAGGTGATG					4560
43		TCGCCTGATG					4620
		AGGAACCAAG					4680
		GAACTGTACC					4740
		GACTATGTTT					4800
<i>E</i> 0		AATGGCAATT					4860
50	GCTTGTGGTG	CCTGGCGGAC	AAGTATACTG	GCTGACTATA	AGCAGCAATG	GAGTCCTGAA	4920
	AAGAGTGTCA	GCCCAAGGCT	ATAATCCGGC	CTTAATGACC	TATCCAGGAA	ACACAGGGCT	4980
	TCTGGCTACC	AAAAGTAACG	AAAATGGATG	GACAACCGTT	TATGAGTATG	ACCCCGAGGG	5040
		AATGCAACGT					5100
		AAAGTGGAGC					5160
55		ACTAGTACCA					5220
		GATGGTTCCC					5280
						GCAACATCTC.	
		GAGCACAATG					5400
		TCGGCTTTTG					5460
60							
UU		CATATAACCC					5520
	TCGAATTCTT	TATGACCAGA	CTGGGCGACC	CATTCTGTGG	TCTCCTGTAA	GCAGATATAA	5580
						GAGGAACGTG	
		ATGGAATATG					5700
CE	GAAAATTTGG	AGCTATACCT	ACTTAGAAAA	ATCTGTGATG	CTICTCCTAC	ACAGCCAGCG	5760
65	GCGTTACATC	TTTGAGTATG	ACCAATCAGA	TTGCCTGCTG	TCAGTTACCA	TGCCTAGCAT	5820
		AGCTTACAAA					5880
		AGCACTTCTT					5940
		GGGACAGGGC					6000
=-	TGAGGTTCTC	TATGATACCA	CTCAGGTCAC	ATTAACATAT	GAAGAGTCTT	CTGGAGTGAT	6060
70	TAAGACAATA	CACCTGATGC	ATGACGGATT	CATCTGCACA	ATCAGATACA	GGCAAACAGG	6120
		GGACGCCAGA					6180
	CGACTACAGC	TACAACAATT	TCCGAGTCAC	AAGCATGCAA	GCTGTAATCA	ATGAAACCCC	6240
	TTTGCCTATA	GATCTTTACC	GATATGTTGA	TGTCTCTGGC	AGAACAGAGC	AGTTTGGAAA	6300
	ATTCAGTGTA	ATTAATTACG	ATTTAAATCA	GGTCATAACT	ACTACAGTGA	TGAAACACAC	6360
75		AGTGCCAATG					6420
. •		ATGACCATTC					6480
	CCTACCACTA	GATGCCAATA	TAACAAGGTA	СТТСТАТСВА	TACGATGCTC	ATGGGCAACT	6540
		TCTGTAAATG					6600
		TTAAGCCATG					6660
80	ATTOMACCIO	ACCAGATTAG	CACARGAGIC	CONTRACT	COLCICIONI	WIGHT CALCIE	6720
JU	MUMICIGUATE	ACCAGATTAG	GAGAAATICA	GIAIMMAIG	-ALGERIAN TO	GCTTTCTGRG	0120

			TTGAATATAA				
			TGCAGTATTA				
			ACCTTCAGTT ACACAAGCTC				
5			AGTTAAGCAG				
_			TGTTCAGCAG				
			ATCATGACAC				
			TCCTTACTAA				
10	TGTTGTTGCT	GGCAGATGGA	CAACGGCCTA	TCATCACATA	TGGAAACAGT	TGAACCTCCT	7260
10			ACTCCTTTGA				
			ACATCAGAAG				
			CCAAACCTGA				
			CTCAAGAGTG				
15			TCAGGAATTT				
15			TAAAATTTGC				
			ATAGCAGGCG				
			CCATAGAGGG				
			TGCTCATCGG				
20			CCCAGATGAC				
	TGCAGATATT	CAGCTCCAGC	ATGGAGCCCT	GTGCTTCAAC	ATCCGGTATG	GGACAACTGT	7980
	CGAAGAGGAA	AAGAATCACG	TGTTGGAGAT	TGCCAGACAG	CGCGCAGTGG	CCCAGGCCTG	8040
	GACTAAGGAA	CAAAGAAGGC	TGCAAGAGGG	GGAAGAGGGG	ATTAGGGCAT	GGACAGAAGG	8100
25			GCACTGGGCG				
25			AACTTTCTGA				
			AACAAAAATA				
			TTTATTGTAT				
			TCCAACTGCC AAGAAATGAC				8400 8460
30			TCAAACAGCT				
50			GTTCCAATAT				
			CTTAACTGTT				
			TGCCTTTCGA				
~ ~			AACAGGTGTA				
35	AGGACCCAAT	TGCCCTTCCT	TCTTGATTAT	TCCTCCTTGC	TTGTTAAAGT	AAATGCCATA	8820
			GIGIGGIGGC				
			GCCGCTATTT				
			ACGACCTGTT				
40			ACATAGCTTT				
70			ATAGTTTCAC CGGTAATTTA				
			ACGTGTCTGG				
			ACCTTARARA				
			ATCACAGCAG				
45			TTCTGTATTG				
			CCGAAAACAT				
	TTTACTAAAA	TAATTTATAC	AGTTAGTTAT	TTTCGTTCTC	CGTACTTACC	CATTTATCTT	9540
			CTAGGAAAAT				9600
50			GAAAGGTCAG				
50			TAAAACAAGC				
			AAATGCTGTG				
			TAGAAAATTC				9840
			TCTGAAGGCA CAGTGTGGGG				9900 9960
55			AAGCTCATGT				
			AGGAAATGAC				
			TTCGGGTTAG				
	AGAATTCATG	AGGAACTCAT	CTCTCTTTAT	AACTGGAAAC	ACACCAGCTT	GATATATTGC	10200
CO	TAATCCATAC	TAAAATCATA	TTATTGGGTT	TTTTCTGAAT	CAGGCCTGTA	TTAATGGTAC	10260
60			TTCTAAAATT				
			GACCTTAAGT				
			CTGTATATAG				
			CAATATTAGA TGATGTATCA				
65			CTTAATAGTG				
U.J			GTGCCTTTAG				
			TTACAGCTGT				
			CTTGAGGGAG				
~ ^			ATTTTGGCAT				
70			aatagaaaga				
			TCGTTTGCAT				
			ACCCAGCAGA				
			GAGCATAGTA				
75			ATGGTTGTTT				
13			TTTCACTCTT				
			ATTTAAATAT TGAAGGAAAG				
			TAAATAAGTA				
			TGTCAATTTA				
80			AGCCAAATGT				

```
TCACATGCTA CCTATGTAGA CAGGTATGAA ATTAAGTTAT AATTTTCATG AGACATTTTC 11580
        ATCACTGTTG ACACAGTTTC AAGGCATTCC ATCATGTAT TITTGCTCT TTTCTTTTT 11640
TTTTCTTTAA AAATATATTT TTAACTAGAC CAGGCCCCAC TATAATATCA CTTAAGAGAG 11700
         TCAGGGCAAA GTTTTTGCAT TTATGAAGAT GTGTTCATGT AAGGGTGATT GTAATGGAGT 11760
  5
        TCATTGGTAA TAGAAGCAAA AGTACAGTAA CGAAGTATTG AAAAGAAAAT TTTGGAGACA 11820
        TTGGAGCATA TTATATATAG CTTGTGGAAA GACATAAGGC TACAGATGGA ATGGAACATT 11880
         CCTGTTTTCT TGAAGAAATT CACATACACA TAGCTGACCT GACTAGTACT TCAGCTCTTC 11940
         AAAAAAAAC AAAAAAGCG CAAAAAACAA AAAAACAAAA AAAAGCAAAG TAAAATTTAA 12060
10
         AAATACAGAA AACAAACAAC AAAAAAGAAT TCAACCATAA ATAGTGACTA TTATTTTCAG 12120
         TOTOTOCTTC ATGTGAAGC TATTAAGGAC CAAATATACT ACTGTTCATA AGAAGAAATT 12180
        ACTITICTARA CAGTAACTGA ARATACTTAG AGTTARACTT GCTGTGGATT TTGTCTTGGC
        AGTTGTCATC TTACATTATT TGTCAAAGGA AATGTGTTTG GCAGTTAAAA ATCTTTCCTT 12300
        AGATTAGTG GTGGACTTPA ACCTCTTAAA TAAATGTTAG TATATCAGAT TGTGTCCTTG 12360
15
        AAAAATATTT TACTTOTATG AATCATGACA ACGTCTAAAT CTTTACTATT CTTCTGGCAA 12420
        AAGCATCAGT AAGAAAGAAG GCGAAAAAGA GAAGTATAGC CTTTATGTCA GAAAAACATT 12480
CTTTTTAGCT GCTTACTTC TCATGAAAAG TAAAGATGTT TACAGTGTAT GCCAAGTTTT 12540
CAGTTTCTGT ATAACAACAG GTAGAGGTTC TAATCATATT GAAAATTGTG TTATAATGGT 12600
        CTGAGCCATG TTGCTAGGAA ACAATAGGTT CCAATTTTGT ATTCCTGCTC TCCTGTGCTG 12660
20
        AAAAGTGACT GGATACTGTA CAGGTTCATG TTCTCTGGCT GCAGTTAAAT GGTCTTTTGC 12720
        ATTTTGCTCT GGCTTTCAGG CCAGAAGCAT GCATTTTTCT ACAAGAGCAT CACAACAACA 12780
        TCCTGTAAAT ATTTAAAGTT AAACATTATG TGTTGATATT TGAAAGAAAA GTACTTTGAA 12840
        TATTTCATTT TTAAAAAATA AAATTGCCAA TGAAAAAAAA
25
        SEQ ID NO:230 PEZ2 Protein sequence:
NP_055068
30
                     11
                                  21
                                               31
                                                             41
                                                                          51
        MEOTOCKPYO PLFKVKHEMD LAYTSSSDES EDGRKPROSY NSRETLHEYN ÖELRMNYNSO
SRKRKEYEKS TOEMEFCETS HTLCSGYOTD MHSVSRHGYO LEMGSDVDTE TEGAASPDHA
                                                                                         120
        LRMWIRGMKS EHSSCLSSRA NSALSLTDTD HERKSDGENG FKFSFVCCDM EAQAGSTQDV
35
        QSSPHNOFTP RPLPPPPPPP HACTCARKPP PAADSLORRS MTTRSQPSPA APAPPTSTQD
                                                                                         240
        SVHLHNSWVL NSNIPLETRH SLFKHGSGSS AIFSAASONY PLTSNTVYSP PPRPLPRSTP
                                                                                         300
        SRPAPTFNKP YRCCNWKCTA LSATAITVTL ALLLAYVIAV HLFGLTWQLQ PVEGELYANG
        VSKGNRGTES MDTTYSPIGG KVSDKSEKKV POKGRAIDTG EVDIGAQVMQ TIPPGLFWRF
OITHHPIYL KPNISLAKDS LLGIYGRRNI PPTHTOPDFV KLMDGKOLVK ODSKGSDDTO
                                                                                         420
                                                                                         480
40
        HSPRNLILTS LOETGFIEYM DOGPWYLAFY NDGKKMEQVF VLTTAIEIMD DCSTNCNGNG
        ECISGECHCP PGFLGPDCAR DSCPVLCGGN GEYEKGHCVC RHGWKGPECD VPEEQCIDPT CFGHGTCIMG VCICVPGYKG EICEEEDCLD PMCSNHGICV KGECHCSTGW GGVNCETPLP
                                                                                         600
                                                                                         660
        VCQEQCSGHG TPLLDAGVCS CDPRWTGSDC STELCTMECG SHGVCSRGIC QCEEGWVGPT
                                                                                         720
        CEERSCHSHC TEHGOCKDGK CECSPGWEGD HCTIAHYLDA VRDGCPGLCF GNGRCTLDON
                                                                                         780
45
        GWHCVCQVGW SGTGCNVVME MLCGDNLDND GDGLTDCVDP DCCQQSNCYI SPLCQGSPDP
                                                                                         840
        LDLIQQSQTL FSQHTSRLPY DRIKPLIGKD STHVIPPEVS FDSRRACVIR GQVVAIDGTP
                                                                                         900
        LVGVNVSFLH HSDYGFTISR QDGSFDLVAI GGISVILIFD RSPFLPEKRT LWLFWNQPIV
VEKYTMQRVV SDPPSCDISN PISFNPIVLP SPLTSPGGSC PERGTIVPEL QVVQEEIPIP
                                                                                         960
                                                                                        1020
                                                                                        1080
        SSPVRLSYLS SRTPGYKTLL RILLTHSTIP VGMIKVHLTV AVEGRLTOKW FPAAINLVYT
50
        FAMIKTDIYG QKVMGLABAL VSVGYBYETC PDFILWEQRT VVLQGFRIDA SNLGDMSLNK
HHILNPQSGI IHKGNGENMF ISQQPFVIST IMGNGHQRSV ACTNCNGPAH NNKLFAFVAL
                                                                                        1140
                                                                                        1200
        ASGPDGSVYV GDFNFVRRIF PSGNSVSILE LSTSPAHKYY LAMDFVSESL YLSDINTRKV
                                                                                        1260
        YKLKSLVETK DLSKNFEVVA GTGDOCLPFD QSHCGDGGRA SEASLNSPRG ITVDRHGFIY
                                                                                        1320
        PVDGTMIRKI DENAVITTVI GSNGLTSTQP LSCDSGMDIT QVRLEWPTDL AVNPMDNSLY
                                                                                        1380
55
        VLDNNTVLQI SENRRVRIIA GRPIHCQVPG IDHPLVSKVA IHSTLESARA ISVSHSGLLF
                                                                                        1440
        IAETDERKVN RICCVTTNGE IYIIAGAPTD CDCKIDPNCD CFSGDGGYAK DAKMKAPSSL
                                                                                        1500
        AVSPDGTLYV ADLGNVRIRT ISRNQAHLND MNIYEIASPA DQELYQPTVN GTHLHTLNLI
                                                                                        1560
        TRDYVYNFTY NSEGDLGAIT SSNGNSVHIR RDAGGMPLWL VVPGGQVYWL TISSNGVLKR
                                                                                        1620
        VSAQGYNPAL MTYPGNTGLL ATKSNENGWT TVYEYDPEGH LTNATFPTGE VSSPHSDLEK
                                                                                        1680
60
        LTKVELDTSN RENVLMSTNL TATSTIYILK QENTQSTYRV NPDGSLRVTF ASGMEIGLSS
                                                                                        1740
        EPHILAGAVN PILGKCNISL PGEHNANLIE WRORKEONKG NYSAFERRIR AHNRNLLSID
FDHITRTGKI YDDHRKPTLR ILYDQTGRPI LWSPVSRYNE VNITYSPSGL VTFIQRGTWN
                                                                                        1800
                                                                                        1860
        EKMEYDOSGK IISRTWADGK IWSYTYLEKS VMLLLHSORR YIFEYDOSDC LLSVTMPSMV
        RESLOTMLSV GYYRNIYTPP DSSTSFIQDY SRDGRLLQTL HLGTGRRVLY KYTKQARLSE
                                                                                        1980
65
        VLYDTTOVTL TYBESSGVIK TIHLMHDGFI CTIRYRQTGP LIGROIFRFS EEGLVMARFD
                                                                                        2040
        YSYNNFRVTS MOAVINETFL PIDLYRYVDV SGRTEOFGKF SVINYDLNOV ITTTVMKHTK
        IPSANGQVIE VQYEILKAIA YMYTIQYDNV GRHGNMCIRV GVDANITRYF YEYDADGOLQ
TVSVNDKTOW RYSYDLNGDI NLLSHGKSAR LTPLRYDLRD RITRLGEIQY KMDEDGPLRQ
                                                                                        2160
                                                                                        2220
        RGNDIPEYNS NGLLQKAYNK ASGWTUQYYY DGLGRRVASK SSLGGHLQFF VDATANPIRV
THLYNHTSSE ITSLYYDLOG HLIAMELSSG EEYYVACDNT GTPLAVFSSR GQVIKEILYT
                                                                                        2280
70
                                                                                        2340
        PYGDIYHDTY PDPQVIIGFH GGLYDPLTKL VHLGQRDYDV VAGRWITAYH HIWKQLNLLP
                                                                                        2400
        KPFNLYSPEN NYFYGKIQDV AKYTTDIRSW LELFGFQLHN VLPGFPKPEL ENLELTYELL
RLOTKTOEWD PGKTILGIOC ELGKQLRNFI SLDQLFMTPR YNDGRCLEGG KOPRFAAVPS
                                                                                        2460
                                                                                        2520
        VPGKGIKPAI KDGIVTADII GVANEDSRRL AAILNNAHYL ENLHFTIEGR DTHYFIKLGS
                                                                                        2580
75
        LEEDLVLIGN TGGRRILENG VNVTVSQMTS LLNGRTRRFA DIQLQHGALC PNIRYGTTVE
                                                                                        2640
        EEENHVLEIA RORAVAOAWT KEORRLOEGE EGIRAWTEGE KOOLLSTGRV OGYDGYFVLS 2700
        VECYLELSDS ANNIHPMROS BIGRR
                                                         SEQ ID NO:231 PFD4 DNA SEQUENCE:
```

Coding sequence:

225-2567 (underlined sequences correspond to start and stop codons)

5	1	11	21 	31 .	41	51 	
		CCGGTTCGGG					60
		TGGGAAAGAC					120
		AATAAAACGT					180
10		GCCGCCGCAG					240 300
10		GCTCGCTTTC					360
		CCTGGCCAAG					420
		GCCCATCTTG					480
		TTCGGGAGTT					540
15		TGCAGTTCCT					600
		CTTTGGAACA					660
		ATCTGTTGTT					720
		TGTATTAAAT					780
20		ATTCATAGTG					840 900
		CCAAGTGCTG					960
		AGTTCTCTCT					1020
		TGCTGATTTC					1080
25		TGATCGGTTT					1140
25		TGCTACTGCC					1200
		ATCCATCCCA					1260
		GCTGGCTGCA AGTATATGCC					1320 1380
		GATCAGCAAC					1440
30		CACGGCCGTC					1500
		GATTGTGATG					1560
		CTTGGCAGCT					1620
		TCGTCTGTGG					1680
35		CATCATTCTG					1740
55		GGTCCTGAGA CTACAAAAGT					1800 1860
		ATTTTCCAGT					1920
		AGTTGGATTT					1980
40	GGAAAATACA	GAAACTAATA	AAAAGTGGAC	AATTAAGAGC	AACAAAGAAT	GGCATCATAA	2040
40		TTCAACAAAT					2100
		CCCAACCAAG					2160
		CGTTCTTGGA					2220 2280
		TGTGTATTTT					2340
45		TGACGACAAC					2400
		ACAGAACCAA					2460
		TCAGGATTGT					2520
		TGTCCAGGAT					2580 2640
50		GAGCAAGGAA					2700
-		ATTTATAAAA					2760
		TTTGGCAGCG					2820
		GCTAATAATG					2880
55		AACAGCCTCT					2940
<i>JJ</i>		ACTGACCTGG TGAAATAAAA					3000
		ATTGGAGTTT					3060 3120
		GCCGGAATTG					3180
		CCAATATATT					3240
60		ATAAAAATCT					3300
		GACAGATTAT					3360
		GCATGGAGGC					3420
		GAGTGAAAAT TTCTCAAAAA					3480 3540
65		AAAAAAAATC					3600
-	ATTTTTAAAG	ACAAAGCATT	CTAAATGAAC	TCAATATAAA	AACATTCATT	TGGAATGTAC	3660
		ATACAGGTTT					3720
		GTGCCAACAA					3780
70		ATATATTTCA GGTCCCCAAT					3840 3900
,,		GGGATTGGTT					3960
		ACCCCTGCCT					4020
	CCAGAAACAA	TGTGTCTATT	TCTGAAAGAA	TAGGATTAAT	GATCATACAA	ATGGGTTAAT	4080
75		GGTTGTAAAT					4140
75		ACTTGCTTAT					4200
		GCTCATGCCT GATCGAGACC					4260 4320
						CAGCTATTTG	4320
00						GAGCCGAGGT	4440
80		CACTOCAGOC					4500

5	AAAGGAAATA GGCTAGAGTT TACTGTCTCT GAAAATTTCA TCCAGTATTG	AGAGTGAATG TGCACTGCTC TGTAAATTCT TCTATGTATT CTTGAAATTA TATATGAGTT TTTAAAAATA	ACTTTTTGA GGGTTCATTT TTGTGAATAG AAGCTGCCTT TTAACAAATT	AGGAAATGCC GTGATGACAT TAAGCATAAT TTGTTATATT AAAAAATCAA	AAAGTTACGT AAGTCAGCAA TTTAGTTTTG TTTAACCTAT ATCATGTACA	TTTACAACAA ACTGCGGGAA TATTATCAAT AGGATAAGAT TTTGAAAATA	4560 4620 4680 4740 4800 4860 4920
10	SEQ ID NO:232 Protein Accession	PFD4 Protein sea n #:	<u>lence:</u> O43511	ı			
15							
13	1 	11 	21	31 	41 	51 	
20	AFGVLKTLVP FFPILTYFIF RDTARVLIAS NVSTKNYNGV	PQLFEYSCSY ILEWLPKYRV GTSRHISVGP ALTLLVGIIQ LSIIYTLVEI TAISYGANLE	KEWLLSDVIS FPVVSLMVGS LIFGGLQIGF FQNIGDTNLA	GVSTGLVATL VVLSMAPDEH IVRYLADPLV DFTAGLLTIV	QGMAYALLAA FLVSSSNGTV GGFTTAAAFQ VCMAVKELND	vpvgyglysa Lnttmidtaa Vlvsqlkivl Rprhkipvpi	60 120 180 240 300 360
25	YAIAVSVGKV QVAGIISAAI IWVFTCIVSI EPQGVKILRF	YATKYDYTID VMIAILALGK ILGLDLGLLA SSPIPYGNVD	GNQEFIAFGI LLEPLQKSVL GLIFGLLTVV GFKKCIKSTV	SNIFSGPFSC AAVVIANLKG LRVQFPSWNG GFDAIRVYNK	PVATTALSRT MFMQLCDIPR LGSIPSTDIY RLKALRKIQK	AVQESTGGKT LWRQNKIDAV KSTKNYKNIE LIKSGQLRAT	420 480 540 600 660
30	DCGAISFLDV	TMNAPEPDED VGVRSLRVIV NQVKSQEGQG	KEFORIDVNV	YFASLODYVI	EKLEQCGFFD	DNIRKDTFFL	720 780
				\$EC	ID NO:233 PFH	DNA SEQUENCE	
35	Nucleic Acid According sequence		NM_01 228-10		uences correspon	d to start and stop o	odons)
40	i	<u>1</u> 1	21	31	41	51	
40	GGGCGTGCGC TGCTCCTGCT	GCAGGGCAGC GGCCGCAATG CTTGGTGCAG	AACTGGGAGC CTGCTGCGCT	TGCTGCTGTG TCCTGAGGGC	GCTGCTGGTG TGACGGCGAC	CTGTGCGCGC CTGACGCTAC	60 120 180
45	TGACTGGAGC TTTCTCTTGT TAGAGAATGG	GTGGCAGGGA CTCGAGTGGA GCTGTCAGCC CAATTTAAAA TGAAGCGGCT	ATTGGTGAGG AGAAGAGTGC GAAAAAGATA	AGCTGGCTTA ATGAGCTGGA TACTTGTTTT	CCAGTTGTCT AAGGGTGAAA GCCCCTTGAC	AAACTAGGAG AGAAGATGCC CTGACCGACA	240 300 360 420 480
50	TGGTCAACAA ACAGAAAGCT CTCACATGAT TATCTGTACC	TGGTGGAATG AATAGAGCTT CGAGAGGAAG TCTTTCCATT	TCCCAGCGTT AACTACTTAG CAAGGAAAGA GGATACTGTG	CTCTGTGCAT GGACGGTGTC TTGTTACTGT CTAGCAAGCA	GGATACCAGC CITGACAAAA GAATAGCATC TGCTCTCCGG	TTGGATGTCT TGTGTTCTGC CTGGGTATCA GGTTTTTTTA	540 600 660 720
55	GACCTGTGCA GCAATAATGG TCAGCATGGC	AACAGAACTT ATCAAATATT AGACCAGTCC CAATGATTTG GCAATACATG	GTGGAGAATT CACAAGATGA AAAGAAGTTT	CCCTAGCTGG CAACCAGTCG GGATCTCAGA	AGAAGTCACA TTGTGTGCGG ACAACCTTTC	AAGACTATAG CTGATGTTAA TTGTTAGTAA	780 840 900 960 1020
60	AGACAAAACA AAACATGAAA ACTTTTTAAT	GAACTTTAAG TGACTGAAAA ACAGCAATCT AGATATGACT GAATCTTGCA	GAGCACCTGT TCTTATGCTT TTGCTTCCAA	ACTTTTCAAG CTGAATAATC	CCACTGGAGG AAAGACTAAT	GAGAAATGGA TTGTGATTTT	1080 1140 1200 1260
65	SEQ ID NO:234 Protein Accession	PFH2 Protein sequ n #:	rence: NP_057	7113			
	1	11	21	31	41	51	
70	 MNWELLLWLL GIGEELAYQL ATKAVLQEPG	 VLCALLLLLV SKLGVSLVLS RIDILVNNGG	 QLLRFLRADG ARRVHELERV MSQRSLCMDT	DLTLLWAEWQ KRRCLENGNL SLOVYRKLIE	GRRPEWELTD KEKDILVLPL LNYLGTVSLT	 MVVWVTGASS DLTDTGSHEA	60 120 180 240
75	IVENSLAGEV	TKTIGNNGDQ KMGKKRIENF	SHKMTTSRCV	RLMLISMAND			300
80	Nucleic Acid Acc	ession #:	NM_000450	SEC	2 IU NO:235 ACC	5 DNA SEQUENCE	

```
Coding sequence:
                                   1-1833 (underlined sequences correspond to start and stop codons)
                     11
 5
        ATGATTGCTT CACAGTTTCT CTCAGCTCTC ACTTTGGTGC TTCTCATTAA AGAGAGTGGA
        GCCTGGTCTT ACAACACCTC CACGGAAGCT ATGACTTATG ATGAGGCCAG TGCTTATTGT
                                                                                     120
        CAGCAAAGGT ACACACCCT GGTTGCAATT CAAAACAAAG AAGAGATTGA GTACCTAAAC
                                                                                     180
        TCCATATTGA GCTATTCACC AAGTTATTAC TGGATTGGAA TCAGAAAAGT CAACAATGTG
        TGGGTCTGGG TAGGAACCCA GAAACCTCTG ACAGAAGAAG CCAAGAACTG GGCTCCAGGT
                                                                                     300
10
        GAACCCAACA ATAGGCAAAA AGATGAGGAC TGCGTGGAGA TCTACATCAA GAGAGAAAAA
        GATGTGGGCA TGTGGAATGA TGAGAGGTGC AGCAAGAAGA AGCTTGCCCT ATGCTACACA
        GCTGCCTGTA CCAATACATC CTGCAGTGGC CACGGTGAAT GTGTAGAGAC CATCAATAAT
                                                                                     480
        TACACTTGCA AGTGTGACCC TGGCTTCAGT GGACTCAAGT GTGAGCAAAT TGTGAACTGT
                                                                                     540
        ACAGCCCTGG AATCCCCTGA GCATGGAAGC CTGGTTTGCA GTCACCCACT GGGAAACTTC
15
        AGCTACAATT CTTCCTGCTC TATCAGCTGT GATAGGGGTT ACCTGCCAAG CAGCATGGAG
ACCATGCAGT GTATGTCCTC TGGAGAATGG AGTGCTCCTA TTCCAGCCTG CAATGTGGTT
                                                                                     660
                                                                                     720
        GAGTGTGATG CTGTGACAAA TCCAGCCAAT GGGTTCGTGG AATGTTTCCA AAACCCTGGA
        AGCTTCCCAT GGAACACAAC CTGTACATTT GACTGTGAAG AAGGATTTGA ACTAATGGGA
GCCCAGAGCC TTCAGTGTAC CTCATCTGGG AATTGGGACA ACGAGAAGCC AACGTGTAAA
                                                                                     840
                                                                                     900
20
        GCTGTGACAT GCAGGGCCGT CCGCCAGCCT CAGAATGGCT CTGTGAGGTG CAGCCATTCC
        CCTGCTGGAG AGTTCACCTT CAAATCATCC TGCAACTTCA CCTGTGAGGA AGGCTTCATG
TTGCAGGGAC CAGCCCAGGT TGAATGCACC ACTCAAGGGC AGTGGACACA GCAAATCCCA
                                                                                    1020
                                                                                    1080
        GTTTGTGAAG CTTTCCAGTG CACAGCCTTG TCCAACCCCG AGCGAGGCTA CATGAATTGT
        CTTCCTAGTG CTTCTGGCAG TTTCCGTTAT GGGTCCAGCT GTGAGTTCTC CTGTGAGCAG
                                                                                    1200
25
        GGTTTTGTGT TGAAGGGATC CAAAAGGCTC CAATGTGGCC CCACAGGGGA GTGGGACAAC
                                                                                    1260
        GAGAAGCCCA CATGTGAAGC TGTGAGATGC GATGCTGTCC ACCAGCCCCC GAAGGGTTTG
        GTGAGGTGTG CTCATTCCCC TATTGGAGAA TTCACCTACA AGTCCTCTTG TGCCTTCAGC
                                                                                    1380
        TGTGAGGAGG GATTTGAATT ATATGGATCA ACTCAACTTG AGTGCACATC TCAGGGACAA
                                                                                    1440
        TGGACAGAG AGGTTCCTTC CTGCCAAGTG GTAAAATGTT CAAGCCTGGC AGTTCCGGGA
                                                                                    1500
30
        AAGATCAACA TGAGCTGCAG TGGGGAGCCC GTGTTTGGCA CTGTGTGCAA GTTCGCCTGT
                                                                                    1560
        CCTGAAGGAT GGACGCTCAA TGGCTCTGCA GCTCGGACAT GTGGAGCCAC AGGACACTGG
                                                                                    1620
        TOTGGCCTGC TACCTACCTG TGAAGCTCCC ACTGAGTCCA ACATTCCCTT GGTAGCTGGA
        CTTTCTGCTG CTGGACTCTC CCTCCTGACA TTAGCACCAT TTCTCCTCTG GCTTCGGAAA
TGCTTACGGA AAGCAAAGAA ATTTGTTCCT GCCAGCAGCT GCCAAAGCCT TGAATCAGAC
                                                                                    1740
35
        GGAAGCTACC AAAAGCCTTC TTACATCCTT TAA
        SEQ ID NO:236 ACC5 Protein sequence:
NP_000441
40
                                 21
                                             31
45
        MIASOFLSAL TLVLLIKESG AWSYNTSTEA MTYDEASAYC OORYTHLVAI ONKEEIEYLN
        SILSYSPSYY WIGIRKVNNV WWWGTQKPL TEEAKNWAPG EPNNRQKDED CVEIYIKREK
                                                                                     120
        DVGMMNDERC SKKKLALCYT AACTWYSCSG HGECVETINN YTCKCDPGPS GLKCEQIVNC
        TALESPEEGS LVCSHPLGNF SYNSSCSISC DRGYLPSSME TMOCMSSGEW SAPIPACHVV
                                                                                     240
        ECDAVINPAN GEVECFONEG SEPWATTCTF DCEEGFELMG AQSLQCTSSG NWDNEKETCK
                                                                                     300
50
        AVTCRAVROP QNGSVRCSHS PAGEPTFKSS CNFTCEEGFM LQGPAQVECT TQGQWTQQIP
        VCEAFOCTAL SNPERGYMNC LPSASGSFRY GSSCEFSCEQ GFVLKGSKRL QCGPTGEWDN
                                                                                     420
        EKPTCEAVRC DAVHQPPKGL VRCAHSPIGE FTYKSSCAFS CEEGFELYGS TQLECTSQGQ
                                                                                     480
        WTEEVPSCOV VKCSSLAVPG KINMSCSGEP VFGTVCKFAC PEGWTLNGSA ARTCGATGHW
        SGLLPTCRAP TESNIPLVAG LSAAGLSLLT LAPFLLWLRK CLRKAKKFVP ASSCOSLESD
                                                                                     600
55
        GSYOKPSYIL
                                                      SEO ID NO:237 PM28 DNA SEOUENCE
        Nucleic Acid Accession #:
                                   N51002
        Coding sequence:
                                   1-3793 (underlined sequences correspond to start and stop codons)
60
        ATGATOTOTO AAGTGATOCC CACGATTAAT GAGGACACCC CAATGAGCCA AAGGGGGTCC
CAAAGCAGTG GCTCGGACTC AGACTCCCAT TTTGAGCAGC TGATGGTGAA TATGCTAGAT
65
        GAAAGGGATC GTCTTCTAGA CACCCTTCGG GAGACCCAGG AAAGCCTCTC ACTTGCCCAG
        CAAAGACTTC AGGATGTCAT CTATGACCGA GACTCACTCC AGAGACAGCT CAATTCAGCC
                                                                                     240
        CTGCCACAGG ATATCGAATC CCTAACAGGA GGGCTGGCTG GTTCTAAGGG GGCTGATCCA
        CCGGAATTTG CTGCACTGAC AAAAGAATTA AATGCCTGCA GGGAACAACT TCTAGAAAAG
        GAAGAAGAAA TCTCTGAACT TAAAGCTGAA AGAAACAACA CAAGACTATT ACTGGAGCAT
                                                                                     420
70
        TTGGAGTGCC TTGTGTCACG ACATGAAAGA TCACTAAGAA TGACGGTGGT AAAACGGCAA
        GCCCAGTCTC CCTCAGGAGT ATCCAGTGAA GTTGAAGTTC TCAAGGCACT GAAATCTTTG
TTTGAGCACC ACAAGGCCTT GGATGAAAAG GTAAGGGAGC GACTGAGGGT TTCTTTAGAA
                                                                                     540
                                                                                     600
        AGAGTOTOTG CACTGGAAGA AGAACTAGOT GOTGCTAATC AGGAGATTGT TGCCTTGCGT
        GAACAAAATG TICATATACA AAGAAAAATG GCATCAAGCG AGGGATCCAC AGAGTCAGAA
                                                                                     720
75
        CATCTTGAAG GGATGGAACC TGGACAGAAA GTCCATGAGA AGCGTTTGTC CAATGGTTCT
                                                                                     780
        ATAGACTCAA CCGATGAAAC TAGTCAAATA GTTGAACTAC AAGAATTGCT TGAAAAGCAA
AACTATGAAA TGGCCCAGAT GAAAGAACGT TTAGCAGCCC TTTCTTCCCG AGTGGGAGAG
                                                                                     900
        GTGGAACAGG AAGCAGAGAC AGCAAGAAAG GATCTCATTA AAACAGAAGA AATGAACACC
                                                                                     960
        80
                                                                                    1080
```

```
ANTGATARAC TAGARATGA GTTAGCARAT ARAGARGCTA TCCTACGGCA GATGGRAGAG 1140
ARARACAGAC AGTTACRAGA ACGTCTTGAG CTAGCTGRAC ARAGGTTGCA GCAGACCATG 1200
        AGAAAGGCTG AAACCTTGCC TGAAGTAGAG GCTGAACTGG CTCAGAGAAT TGCAGCCCTA
        ACCAAGGCTG AAGAGAGACA TGGAAATATT GAAGAACGTA TGAGACATTT AGAGGGTCAA
CTTGAAGAGA AGAATCAAGA ACTTCAAAGA GCTAGGCAAA GAGAGAAAAT GAATGAGGA
                                                                                    1320
                                                                                    1380
        CATAACAAGA GATTATCGGA TACGGTTGAT AGACTTCTGA CTGAATCCAA TGAACGCCTA
                                                                                    1440
        CARCTACACT TAAAGGAAAG AATGGCTGCT CTAGAAGAAA AGAATGTTTT AATTCAAGAA
                                                                                    1500
        TCAGAAACTT TCAGAAAGAA TCTTGAAGAA TCTTTACATG ATAAGGAAAG ATTAGCAGAA
                                                                                    1560
        GAAATTGAAA AGCTGAGATC TGAACTTGAC CAATTGAAAA TGAGAACTGG CTCTTTAATT
                                                                                    1620
10
        GAACCCACAA TACCAAGAAC TCATCTAGAC ACCTCAGCTG AGTTGCGGTA CTCAGTGGGA
                                                                                    1680
        TUCCTAGTGG AURGULAGTU TGATTACAGA ACARCTANAG TANTANGANG ACCARGGAGA
                                                                                    1740
        GGCCGCATGG GTGTGCGAAG AGATGAGCCA AAGGTGAAAT CTCTTGGGGA TCACGAGTGG
                                                                                    1800
        ANTAGANCTC ANCAGATTGG AGTACTANGC AGCCACCCTT TTGANAGTGA CACTGANATG
                                                                                    1860
        TOTGATATIC ATGATGATGA CAGAGAACA ATTTTTAGOT CAATGGATCT TOTCTCTCCA
                                                                                    1920
15
        AGTGGTCATT CCGATGCCCA GACGCTAGCC ATGATGCTTC AGGAACAATT GGATGCCATC
                                                                                    1980
        AACAAAGAAA TCAGGCTAAT TCAGGAAGAA AAAGAATCTA CAGAGTTGCG TGCTGAAGAA
                                                                                    2040
        ATTGAAAATA GAGTGGCTAG TGTGAGCCTC GAAGGCCTGA ATTTGGCAAG GGTCCACCCA
                                                                                    2100
        GGTACCTCCA TTACTGCCTC TGTTACAGCT TCATCGCTGG CCAGTTCATC TCCCCCCAGT
                                                                                    2160
        GGACACTCAA CTCCAAAGCT CACCCCTCGA AGCCCTGCCA GGGAAATGGA TCGGATGGGA
20
        GTCATGACAC TGCCAAGTGA TCTGAGGAAA CATCGGAGAA AGATTGCAGT TGTGGAAGAA
                                                                                    2280
        GATGGTCGAG AGGACAAAGC AACAATTAAA TGTGAAACTT CTCCTCCTCC TACCCCTAGA
                                                                                    2340
        GCCCTCAGAA TGACTCACAC TCTCCCTTCT TCCTACCACA ATGATGCTCG AAGTAGTTTA
                                                                                    2400
        TOTGTOTOTO TIGAGOGAGA AAGCOTOGGG CITGGTAGTG COAACAGCAG COAAGACTOT
                                                                                    2460
        CTTCACAAAG CCCCCAAGAA GAAAGGAATC AAGTCTTCAA TAGGACGTTT GTTTGGTAAA
                                                                                    2520
25
        AAAGAAAAG CTCGACTTGG GCAGCTCCGA GGCTTTATGG AGACTGAAGC TGCAGCTCAG
                                                                                    2580
        GAGTCCCTGG GGTFAGGCAA ACTCGGAACT CAAGCTGAGA AGGATCGAAG ACTAAAGAAA
                                                                                    2640
        AAGCATGAAC TTCTTGAAGA AGCTCGGAGA AAGGGATTAC CTTTTGCCCA GTGGGATGGG
                                                                                   2700
        CCAACTGTGG TCGCATGGCT AGAGCTTTGG TTGGGAATGC CTGCGTGGTA CGTGGCAGCC
                                                                                    2760
        TGCCGAGCCA ACCTGAAGAG TGGTGCCATC ATGTCTGCTT TATCTGACAC TGAGATCCAG
                                                                                    2820
30
        AGAGAAATTG GAATCAGCAA TCCACTGCAT CGCTTAAAAC TTCGATTAGC AATCCAGGAG
                                                                                    2880
        ATGGTTTCCC TAACAAGTCC TTCAGCTCCT CCAACATCTC GAACTCCTTC AGGCAACGTT
                                                                                    2940
        TGGGTGACTC ATGAAGAAAT GGAAAATCTT GCAGCTCCAG CAAAAACGAA AGAATCTGAG
                                                                                    3000
        GAAGGAAGCT GGGCCCAGTG TCCGGTTTTT CTACAGACCC TGGCTTATGG AGATATGAAT
                                                                                    3060
        CATGAGTGGA TTGGAAATGA ATGGCTTCCC AGCTTGGGGT TACCTCAGTA CAGAAGTTAC
                                                                                   3120
35
        TTTATGGAAT GCTTGGTAGA TGCAAGAATG TTAGATCACC TAACAAAAAA AGATCTCCGT
                                                                                   3180
        GTCCATTTAA AAATGGTGGA TAGTTTCCAT CGAACAAGTT TACAATATGG AATTATGTGC
                                                                                    3240
        TTAAAGAGGT TGAATTATGA CAGAAAAGAA CTAGAAAGAA GACGGGAAGC AAGCCAACAT
                                                                                   3300
        GAAATAAAAG ACGTGTTGGT GTGGAGCAAT GACCGAATTA TTCGCTGGAT ACAAGCAATT
                                                                                   3360
        GGACTTCGAG AATATGCAAA TAATATACTT GAGAGCGGTG TGCATGGCTC ACTTATAGCC
                                                                                    3420
40
        CTGGATGAAA ACTITGACTA CAGCAGCTTA ACTTTATTAT TACAGATTCC AACACAGAAC
                                                                                   3480
        ACCCAGGCAA GGCAGATTCT TGAAAGAGAA TACAATAACC TCTTGGCCCT GGGAACTGAA
                                                                                   3540
        AGGCGACTGG ATGAAAGTGA TGACAAGAAC TTCAGACGTG GATCAACCTG GAGAAGGCAG
                                                                                   3600
        TTTCCTCCTC GTGAAGTACA TGGAATCAGC ATGATGCCTG GGTCCTCAGA AACATTACCA GCTGGATTTA GGTTAACCAC AACCTCTGGG CAATCAAGAA AAATGACAAC AGATGTTGCT
                                                                                   3660
                                                                                   3720
45
        TCATCAAGAC TGCAGAGGTT AGACAACTCC ACTGTTCGCA CATACTCATG TCTCGAGTAA
        GCGCCCCTT TAA
        SEQ ID NO:238 PM28 Protein sequence:
50
        Protein Accession #:
                                  none found
                    11
                                21
                                             31
                                                         41
55
        MMCEVMPTIN EDTPMSQRGS QSSGSDSDSH FEQLMVNMLD ERDRLLDTLR ETQESLSLAQ
        ORLODVIYOR DSLORQLINSA LPODIESLTG GLAGSKGADP PEFAALTKEL NACREQLLEK
                                                                                    120
        BERISELKAE RANTRLLLEH LECLVSRHER SLRMTVVKRQ AQSPSGVSSE VEVLKALKSL
                                                                                     180
        PEHHKALDEK VRERLRVSLE RVSALERELA AANQEIVALR EQNVHIQRKM ASSEGSTESE
        HLEGMEPGOK VHEKRLSNGS IDSTDETSOI VELQELLEKO NYEMAQMKER LAALSSRVGE
                                                                                     300
60
        VEQEAFTARK DLIKTEEMNT KYQRDIREAM AQKEDMEERI TTLEKRYLSA QRESTSIHDM
        NDKLENELAN KEAILROMEE KNROLOERLE LAEOKLOOTM RKAETLPEVE AELAORIAAL
        TKAEERHGNI EERHALLEGO LEEKNOELOR AROREKNNEE HMKRLSDIVD RLLTESNERL
QLHLKERMAA LEEKNVLIQE SETFRKNLEE SLHDKERLAE BIEKLRSELD QLKMRTGSLI
                                                                                     480
                                                                                     540
       EPTIFRTHLD TSABLRYSVG SLVDSQSDYR TTKVIRRPRR GRMGVRRDEP KVKSLGDHEW
NRTQQIGVLS SHPFESDTEM SDIDDDDRET IFSSMDLLSP SGHSDAQTLA MMLQSQLDAI
65
                                                                                     660
        nkeirligee kestelrabe ienrvasvsl eglnlarvhp gtsitasvta sslassspps
        GRSTPKLTPR SPAREMORMG VMTLPSDLRK HRRKIAVVEE DGREDKATIK CETSPPPTPR
ALRMTHTLPS SYENDARSSL SVSLEPESLG LGSANSSODS LHKAPKKKGI KSSIGRLPGK
                                                                                     780
                                                                                     840
        KEKARLGOLR GFMETEAAAQ ESLGLGKLGT QAEKDRRLKK KHELLEEARR KGLPFAQWDG
70
        PTVVAWLELW LGMPAWYVAA CRANVKSGAI MSALSDTEIQ REIGISNPLH RLKLRLAIQE
MVSLITSPSAP PTSRTPSGNV WVTHEBMENL AAPAKTKESE EGSWAQCFVF LQTLAYGDMN
                                                                                    960
                                                                                   1020
        HEWIGNEWLP SLGLPQYRSY FMECLVDARM LDHLTKKDLR VHLKHVDSPH RTSLQYGIMC
        LKRLNYDRKE LERRREASOH EIKDVLVWSN DRIIRWIQAI GLREYANNIL ESGVHGSLIA
                                                                                   1140
        LDENFDYSSL TLLLQIPTON TOAROILERE YNNLLALGTE RRLDESDDKN PRRGSTWRRO
                                                                                   1200
75
        PPPREVHGIS MMPGSSETLP AGPRLITTSG QSRKMITDVA SSRLQRLDNS TVRTYSCLE
                                                       SEQ ID NO:239 PCI4 DNA SEQUENCE
        Nucleic Acid Accession #:
                                  NM 016570
        Coding sequence:
                                  1-1134 (underlined sequences correspond to start and stop codons)
80
```

```
ATGAGGCGAC TGAATCGGAA AAAAACTTTA AGTTTGGTAA AAGAGTTGGA TGCCTTTCCG
  5
             AAGGTTCCTG AGAGCTATGT AGAGACTTCA GCCAGTGGAG GTACAGTTTC TCTAATAGCA
                                                                                                                           120
            TTTACAACTA TGGCTTTATT AACCATAATG GAATTCTCAG TATATCAAGA TACATGGATG
                                                                                                                           180
            AAGTATGAAT ACGAAGTAGA CAAGGATTTT TCTAGCAAAT TAAGAATTAA TATAGATATT
                                                                                                                           240
            ACTOTTGCCA TGAAGTGTCA ATATGTTGGA GCGGATGTAT TGGATTTAGC AGAAACAATG
            GTTGCATCTG CAGATGGTTT AGTTTATGAA CCAACAGTAT TTGATCTTTC ACCACAGCAG
                                                                                                                           360
 10
            AAAGAGTGGC AGAGGATGCT GCAGCTGATT CAGAGTAGGC TACAAGAAGA GCATTCACTT CAAGATGTGA TATTTAAAAG TGCTTTTAAA AGTACATCAA CAGCTCTTCC ACCAAGAGAA
                                                                                                                           420
           GATGATTCAT CACAGTCTCC AAATGCATGC AGAATTCATG GCCATCTATA TGTCAATAAA GTAGCAGGGA ATTTTCACAT AACAGTGGGC AAGGCAATTC CACATCCTCG TGGTCATGCA CATTTGGCAG CACTTGTCAA CCATGAATCT TACAATTTTT CTCATAGAAT AGATCATTTG
                                                                                                                           540
                                                                                                                           600
15
            TCTTTTGGAG AGCTTGTTCC AGCAATTATT AATCCTTTAG ATGGAACTGA AAAAATTGCT
                                                                                                                           720
           ATAGATCACA ACCAGATGIT CCAATATTIT ATTACAGTIG TGCCAACAAA ACTACATACA
TATAAAATAT CAGCAGACAC CCATCAGTIT TCTGTGACAG AAAGGGAACG TATCATTAAC
                                                                                                                           780
                                                                                                                           840
           CATGCTGCAG GCAGCCATGG AGTCTCTGG ATATTTATGA AATATGATCT CAGTTCTCTT
ATGGTGACAG TTACTGAGGA GCACATGCCA TTCTGGCAGT TTTTTGTAAG ACTCTGTGGT
ATTGTTGGAG GAATCTTTC AACAACAGGC ATGTTACATG GAATTGGAAA ATTTATAGTT
                                                                                                                           900
                                                                                                                           960
20
           GAAATAATTI GERGUGUTT CAGACTIGGA TECTATAAC CIGICAATIC TGITCETTIT GAGGATGGC ACACAGACAA CCACTTACCT CTTTTAGAAA ATAATACACA 	au
                                                                                                                        1080
           SEQ ID NO:240 PC/4 Protein sequence:
NP_057654
25
                                               21
                                                                 31
                                                                                                     51
                              11
30
            mrrlnrkktl slvkeldapp kvpesyvets asgstvslia ptimalltim bpsvyodiwm
           KYBYBVDKDF SSKLRINIDI TVANKCQYVG ADVLDLAETM VASADGLVYE PTVFDLSPQQ
KBWQRMLQLI QSRLQEEHSL QDVIFKSAFK STSTALPPRE DDSSQSPNAC RIHGHLYVNK
                                                                                                                          120
                                                                                                                           180
            VAGNFHITVG KAIPHPRGHA HLAALVNHES YNFSHRIDHL SPGELVPAII NPLDGTEKIA
                                                                                                                           240
           IDHNOMFOYF ITVVPTKLHT YKISADTHOF SVTERERIIN HAAGSHGVSG IFMKYDLSSL
MVTVTEEHNP PWOFFVRLCG IVGGIPSTTG MLHGIGKFIV EIICCRFRLG SYKPVNSVPF
                                                                                                                          300
35
            EDGHTDNHLP LLENNTH
                                                                               SEQ ID NO:241 PBA7 DNA SEQUENCE
            Nucleic Acid Accession#: AA219134
40
                                                                                           Coding sequence:
                                                                                                                      24-1815 (underlined sequences correspond to start and stop codons)
           AATTCGCCCT TGCTTAATTA AGCATGTTTA CCTTCCTGTC ATCTGTCACT GCTGCTGTCA 60
GTGGCCTCCT GGTGGGTTAT GAACTTGGGA TCATCTCTGG GGCTCTTCTT CAGATCAAAA 120
45
            CCTTATTAGC CCTGAGCTGC CATGAGCAGG AAATGGTTGT GAGCTCCCTC GTCATTGGAG 180
           CCCTCCTTGC CTCACTCACC GGAGGGGTCC TGATAGACAG ATATGGAAGA AGGACAGCAA 240 TCATCTTGTC ATCCTGCCTG CTTGGACTCG GAAGCTTAGT CTTGATCCTC AGTTTATCCT 300
            ACACGGTTCT TATAGTGGGA CGCATTGCCA TAGGGGTTTC CATCTCCCTC TCTTCCATTG 360
           CCACTIGIGT TIACATOGCA GAGATIGCTC CTCAACACAG AAGAGGCCTI CTTGTGTCAC 420
TGAATGAGCT GATGATTGTC ATCGGCATTC TTTCTGCCTA TATTTCAAAT TACGCATTTG 480
CCAATGTTTT CCATGGCTGG AAGTACATGT TTGGTCTTGT GATTCCCTTG GGAGTTTTGC 540
50
            AAGCAATTGC AATGTATTTT CTTCCTCCAA GCCCTCGGTT TCTGGTGATG AAAGGACAAG 600
           AGGGAGCTGC TAGCAAGGTT CTTGGAAGGT TAAGAGCACT CTCAGATACA ACTGAGGAAC 660
TCACTGTGAT CAAATCCTCC CTGAAAGATG AATATCAGTA CAGTTTTTGG GATCTGTTTC 720
GTTCAAAAGA CAACATGCGG ACCCGAATAA TGATAGGACT AACACTAGTA TTTTTTGTAC 780
55
           AAATCACTGG CCAACCAAAC ATATTGTTCT ATGCATCAAC TGTTTTGAAG TCAGTTGGAT 840
TTCAAAGCAA TGAGGCAGCT AGCCTCGCCT CCACTGGGGT TGGAGTCGTC AAGGTCATTA 900
           GCACCATCCC TGCCACTCTT CTTGTAGACC ATGTCGGCAG CAAAACATTC CTCTGCATTG 960
           GCTCCTCTGT GATGGCAGCT TCGTTGGTGA CCATGGGCAT CGTAAATCTC AACATCCACA 1020
TGAACTTCAC CCATATCTGC AGAAGCCACA ATTCTATCAA CCAGTCCTTG GATGAGTCTG 1080
TGATTTATGG ACCAGGAAAC CTGTCAACCA ACAACAATAC TCTCAGAGAC CACTTCAAAG 1140
60
           GGATTTCTTC CCATAGCAGA AGCTCACTCA TGCCCCTGAG AAATGATGTG GATAAGAGAG 1200
GGGAGACGAC CTCAGCATCC TTGCTAAATG CTGGATTAAG CCACACTGAA TACCAGATAG 1260
TCACAGACCC TGGGGACGTC CCAGCTTTTT TGAAATGGCT GTCCTTAGCC AGCTTGCTTG 1320
65
            TTTATGTTGC TGCTTTTTCA ATTGGTCTAG GACCAATGCC CTGGCTGGTG CTCAGCGAGA 1380
           TCTTTCCTGG TGGGATCAGA GGACCAGCCA TGGCTTTAAC TTCTAGCATG AACTGGGGCA 1440
TCAATCTCCT CATCTCGCTG ACATTTTTGA CTGTAACTGA TCTTATTGGC CTGCCATGGG 1500
            TGTGCTTTAT ATATACAATC ATGAGTCTAG ATCTTATTGG CCTGCCATGG GTGTGCTTTA 1560
           TATATACAAT CATGAGTCTA GCATCCCTGC TTTTTGTTGT TATGTTTATA CCTGAGACAA 1620
AGGGATGCTC TTTGGAACAA ATATCAATGG AGCTAGCAAA AGTGAACTAT GTGAAAAACA 1680
70
            ACATTTGTTT TATGAGTCAT CACCAAGAAG AATTAGTGCC AAAACAGCCT CAAAAAAGAA 1740
           AACCCCAGGA GCAGCTCTTG GAGTGTAACA AGCTGTGTGG TAGGGGCCAA TCCAGGCAGC 1800
TTTCTCCAGA GACCTAATGG CCTCAACACC TTCTGAACGT GGATAGTGCC AGAACACTTA 1860
            GGAGGGTGTC TITGGACCAA TGCATAGTTG CGACTCCTGT GCTCTCTTTT CAGTGTCATG 1920
75
           GAACTGGTTT TGAAGAGACA CTCTGAAATG ATAAAGACAG CCTTTAATCC CCCTCCTCMC 1980
CAGAAGGAAC CTCAAAAGGT AGATGAGGTA CAAGGTCCTA AGTGATCTCT TTTTCTGAGC 2040
AGGATATCAG GTTAAAAAAA AAAAGTTACT GGCTGGTTTA ATACTTTCTA CCTTCTTCAC 2100
           AGAGCAGCCT TTGAATAGAC TATGTCCTAG TGAAGACATC AACCTCCGCC TTAAGCTATG 2160
TATGTATGGA GGCCAGTCGC AGCTTTATTA TGCAGACACA CAAGTGGTCT GGACATGAGG 2220
```

GTACAGTTTC TGCCTACCAA GACACTACTT GCACTGGATC TTACGCAAAA AAGAACCAGA 2280

80

ACACACAGTG TGGACAACTG CCCATATATT CTATCTAGAT TAGGAGAGGG TCCTGGCTAG 2340 ACACACAGU IGIACARA CONTRATA A CANGTATAA A AGATTATAGA GCTTATTITA 2400
TGAACTATAA ACTATAATIT AATGCAAAAT ATCCTTITAT GAATTICATG TTAATATTTT 2460
GAAATATTAA AATAATTCCR CAATAGTTGA GAAAAATGAG CATTTTTTTC CATTTTTAAA 2520
AAATGCATAG AAAAGACAAT TTTAAAATCC TGGGACCATA TTTATTTAGA AGTAGCTGTT 2590 AGTAAAACAT TAGAAAAGGA GTCAGGCCAT TAGGTTATTT ATCCAAATCT CTAAGCAATT 2640 AGGTTGAAGT TATTAAGTCA AGCCTAGAAA AGCTGCCTCC TTGTAAGGCT TTCATGACAA 2700 TGTATAGTAA TCCACAGTGT CCAATTCTTC ACACTCCTCA GGAATATCAC TACCTCAGGT 2760 TACGGTACAC AGGCTATAAT TGATGATGAT GTTCAGATAA CTGAAGACAC AATAAATGAC 2820 10 ATTCAGACAT CAGGAMAAWW CCCTCATGTT CTTTTCTATG ATGGCCACCT GTACCAGCAA 2880 CGTGGGTTTC ACCCACACAA CGATGAACTG TTCTCTTACT TCTCCAGTTG ATTTTAAAGA 2940 CTTGTTAAGA GGTCTTACTA ATAAAATTTG GGTATGATAG AAAAWCCACA ATCAAAWCTT 3000 GAACCAAATA ACATATTAAA TTACTAATAT TTAAGTGATG GAAGACACAC AAAAAACTTA 3060 AAAGCACGAA CAACCTAACT TGAAAAAGAA TTTTAAAATA TGATTAACCT GAAGAAAAGA 3120 GAATCCTAAG AGCCAAAGCT CCTTTTATT TAGCTTGGAA TTTTCCTATT GGTTCCTAAC 3180 15 AAACTGTCCC AATGTCATAT AAGGAAACAT GATCTATTAC ATTCCTTTAT AACAATGTGG 3240
AGAGACTATA AACCTATGTA AGTAGTAAAA CTATATYAGA GACTCAGGAG ACTGACTAAA 3300
AGGCCTGGAT CTGCAGTGTA TTATCTGTAT AAAAATTGGC AGGGGGAAGC TAAAAGGAAA 3360 AGGCCIGGAL CIGCACITAT THATCHOLA AAAAATTIGGC AGGGGGAAC TAAAAGAAAATGGG AGGATGCATT 3420
GTTTTTTGTT TTTGGAAAGA GAAGGGAAGT GTGTTCTGCC CCATGTTTCC TCCGTGTTT 3480
ATAGTTCAAA CTCTATATAT ACTTCAGGTA TTTTTTGTTT AGCCCTTCAT TATAAATGGG 3540
CAGGAAATTG TTTATCAACC TAGCCAGTTT ATTACTAGTG ACCTTGACTT CAGTATCTTG 3600 20 AGCATTICTTT TATATTTTTC TTTTATTATC CTGAGTCTGT AACTAAACAA TTTTGTCTTC 3660 AAATTTTTAT CCAATATCCA TTGCACCACA CCAAATCAAG CTTCTTGATT TTCAAAAAATA 3720 AAAAGGGGGA AATACITACA ACTTGTACAT ATATATTCAC AGTTTTTATT TATAAAAAAA 3780 25 ATTTACAGTA CTTATGGAGA GCCAGCAGAA GACATCAGAG CACTCACTTC TTCCCATCTT 3840 TGTTAAGGTT AGCGAATTAC CCATGGACAC TOTTAGGTGA GGCTCATTCG GCAGCCCTGA 3900
AAACAAACCT GGTCACACTG TCTTTACCCT CTCCCTTCAG ATAAAGCACT TCGATTATCT 3960
ATTGATCTGC CCAGTTTTCA AGTCATGCGA ATACTAAAAA GGTTACATCA TCTGGATCTG 4020 30 TACCTTGGCT ATATAAGCAT GTTTTCCCCC TATTCTATGT TTCTTTTTTT GGTGAACATT 4080 GAAAAACAGG AGGTGACTTA TTACTGTTAA TTAAAACTAA ATGAAAAATG TCAAGTCTTT 4140 AAAACAGTGA GCTTGTAACT CTTTCATGTA ATTTTATTCT CTATGAATTT GGCTATCCTA 4200 CTGAATCTTA AAATAAAGGA AATAAACACT TTTTTTTWAA AAAAAAGGAA AAATAMAARW 4260 MWAAAAATCT CAATGAAATA TTTCACAAGA AGGAAAAA 35

SEQ ID NO;242 PBA7 Protein sequence:

Protein Accession #: AAF91431

40 MFTFLSSVTA AVSGLLVGYE LGIISGALLQ IKTILALSCH EQEMVVSSLV IGALLASLTG 60
GVLIDRYGRR TAIILSSCLL GLGSLVLILS LSYTVLIVGR IAIGVSISLS SIATCVYIAE 120
IAPQERRGIL VSLNELMIVI GILSAYISNY AFANVFHGWK YMFGLVIELG VLQAIAMYEL 180
PPSPRFLVMK GQEGAASKVL GRLRALSDIT EELTVIKSSL KDEYQYSFWD LFRSKDNMRT 240
RIMIGLTLVF FVQITGQPNI LFYASTVLKS VGPQSINEAAS LASTGYGVVK VISTIPATLL 300
VDHVGSKTFL CIGSSVMAAS LVTMGIVNLN HEMNFTHICR SENSINGSLD ESVIYGPGNL 360
SINNNTLRDH FKGISSHSRS SLMPLRNDVD KRGETTSASL LNAGLSHTEY QIVTDPGDVP 420
AFLKWLSLAS LLVYVAAFSI GLGFMPWLVL SEIFPGGIRG RAMALTSSMN WGINLLISLT 480
FLTVTDLIGL PWVCFTYTIM SLDLIGIPWV CFTYTIMSLA SLLFVVMFIP ETKGCSLEQI 540
SMELAKVNYV KNNICFMSHH QEELVPKQPQ KRKPQEQLLE CNKLCGRGQS RQLSPET

SEQ ID NO:243 PAB4 DNA sequence: Nucleic Acid Accession#: AA172056

Coding sequence: 121-339 (underlined sequences correspond to start and stop codons)

55

75

SEQ ID NO:244 PBQ8 DNA SEQUENCE

Nucleic Acid Accession#: X51405

Coding sequence: 3-1721 (underlined sequence corresponds to start and stop codon)

1 11 21 31 41

	1	1	1	1		1	
			CCCCCCCCC				60
			GTGCAGCCCG				120
			GACACTCATT				180
5	GGTGCGGAAC	TTGCCGCCCC	CAGCAGCGCC	GGCGGGCTAA	GCCCAGGGCC	GGGCAGACAA	240
	AAGAGGCCGC	CCGCGTAGGA	AGGCACGGCC	GGCGGCGCG	GAGCGCAGCG	ATGGCCGGGC	300
			GCTCTGTGCG				360
			GCCCCCCC				420
10			TTCGAGTACC				480
10			ACCGCCATCA				540
			ATCGAGCTGT				600
			GGGAATATGC				660
			CTATGCAACG				720
15			ATTCACATCA				780
15			GAACTCAAGG				840
			TTTCCAGACC				900
			CTGTTGAAAA				960
			GCTGTCATTC				1020
20			GACCTTGTGG				1080
20			TCCTCCCCAG				1140
			GCCATGTCTG				1200
			GATGGAACCA				1260
			TACCTTAGCA				1320
. 25			GAAGAGACTC				1380
. 25			CAGATACACC				1440
			GCCACCATCT				1500
			TGGAGATTGC				1560
			ATAACAAAGA				1620
20			TCATTTTCTG				1680
30			TCAGAAACTT				1740
			TGTAGTATGA				1800
			TTTATTTTT				1860
			AAAAATATAA				1920
25			TTACACAAAA				1980
35			ATTCCTGGTA				2040
			GAAGTTCTTT				2100
			CAGATACAGC				2160
			GTCGTTTTTT				2220
40			GAAGAAAAGG				2280
40			TTGTACATAT				2340
			AGGGTTTTCT			GAATTGCATT	2400
	CTGAATGAAT	aaaggttaaa	AAAAAATCCC	CAGTGAAAAA	AAA		
		SEQ ID !	NO:245 PBQ8 Pro	lein sequence			
45	Protein Accession	#: P16870					
	MAGRGGSALL	ALCGALAAC	G WLLGAEAQI	EP GAPAAGMI	RR RRLQQED	GIS FEYHRYPI	IR 60

MAGRGGSALI, ALCGALAACG WILGAEAQEP GAPAAGMRRR RRLQQEDGIS FEYHRYPELR 60
EALVSVWLQC TAISRIYTVG RSFEGRELLV IELSDNPGVH EPGEPEFKYI GNMHGNEAVG 120
RELLIELAQY LCNEYQKGNE TIVNLIHSTR IHIMPSINPD GFEKAASQPG ELKDWFVGRS 180
NAQGIDLNRN FPDLDRIVYV NEKEGGPNNH LLKNMKKIVD QNTKLAPETK AVIHWIMDIP 240
FVLSANLINGG DLVANYPYDE TRSGSAHEYS SSPDDAIRQS LARAYSSENP AMSDPRRFPC 300
RKNDDDSSFV DGTINGGAWY SVPGGMQDFN YLSSNCFETT VELSCEKPP EETLATYWED 360
NKNSLISYLE QHRGVKGFV RDLQGNPIAN ATISVEGIDH DVTSAKDGDY WRLLIPGNYK 420
LTASAPGYLA ITKKVAVPYS PAAGVDFHLE SFSERKEEEK EFLMEWWKMM SETLNF

55 LIASARGI

50

	SEO ID NO:246	PBY4 DNA seque	nce				
	Nucleic Acid Acc	ession#: AF038	968				
60		Coding	sequence:	91-1107 (unde	ulined sequence c	orresponds to start	and stop codon)
	1	11	21 ·	31	41	51	•
	GGGGCGACGT	GAGCGCGCAG	GGGGGGGGG	GCCTCGCCTC	GTCTCTCTCT	CTGCGCCTGG	60
			AGCCAGAGAG				120
65	GACCCGGATC	TCAACAATCC	CTTCAAGGAT	CCATCAGTTA	CACAAGTGAC	AAGAAATGTT	180
	CCACCAGGAC	TTGATGAATA	TAATCCATTC	TCGGATTCTA	GAACACCTCC	ACCAGGCGGT	240
	GTGAAGATGC	CTAATGTACC	CAATACACAA	CCAGCAATAA	TGAAACCAAC	AGAGGAACAT	300
	CCAGCTTATA	CACAGATTGC	AAAGGAACAT	GCATTGGCCC	AAGCTGAACT	TCTTAAGCGC	360
7 0	CAAGAAGAAC	TAGAAAGAAA	AGCCGCAGAA	TTAGATCGTC	GGGAACGAGA	AATGCAAAAC	420
70	CTCAGTCAAC	ATGGTAGAAA	AAATATTTGG	CCACCTCTTC	CTAGCAATTT	TCCTGTCGGA	480
	CCTTGTTTCT	ATCAGGAATT	TTCTGTAGAC	ATTCCTGTAG	AATTCCAAAA	GACAGTAAAG	540
	CTTATGTACT	ACTTGTGGAT	GTTCCATGCA	GTAACACTGT	TTCTAAATAT	CTTCGGATGC	600
	TTGGCTTGGT	TTTGTGTTGA	TTCTGCAAGA	GCGGTTGATT	TTGGATTGAG	TATCCTGTGG	660
7-	TTCTTGCTTT	TTACTCCTTG	TTCATTTGTC	TGTTGGTACA	GACCACTITA	TGGAGCTTTC	720
75	AGGAGTGACA	GTTCATTTAG	ATTCTTTGTA	TTCTTCTTCG	TCTATATTTG	TCAGTTTGCT	780
	GTACATGTAC	TOCAAGCTGC	AGGATTTCAT	AACTGGGGCA	ATTGTGGTTG	GATTTCATCC	840
	CTTACTGGTC	TCAACCAAAA	TATTCCTGTT	GGAATCATGA	TGATAATCAT	AGCAGCACTT	900
			CTCACTAGTT				960
00			GAAGGCCCAA				1020
80	AAAACTGTCC	AGACCGCAGC	TGCAAATGCA	GCTTCAACTG	CAGCATCTAG	TGCAGCTCAG	1080

	AATGCTTTCA	AGGGTAACCA	GATTTAAGAA	TCTTCAAACA	ATACACTGTT	ACCTTTTGAC	1140
	TGTACCTTTT	TCTCCAGTTA	CTGTATTCTA	CAAATATTTT	TATGTTCAAA	ACACACAGTA	1200
	CAGACAGCAT	GGATATTTCC	TGTTCACTTG	TGCATGGGCT	AAAACCAGGA	AAACTTCCTT	1260
_	GTCTTATTAC	TTTACCTAAT	AGTITCTTAA	TATTTCAGTG	CCCCTTGCAG	TTATAAAAAA	1320
5	ACATGCTAAA	TARATATTCT	CCATATTTTT	GGGGGATGAC	ATTCAGTGAA	TTATTTCAGT	1380
	GGTGACCCAC	TGAAAATTAA	TAATGGTACT	TATGATTAAA	AACGCATTTA	ATACTAACTG	1440
	CAGTAGTTCT	TTCAAGAATC	TTTAGAGATA	AGGATTGCAC	ATTGGAAAAG	TAAACCATGT	1500
	TTCATTCCTT	TTTCCCTATT	TATATTGAAA	GAAATAGGCC	AGCAGAGACT	TAGGGATTTT	1560
	AAATTGGCTT	GCTTTTTAGC	TGTTTCAGTC	ACCAGTGAAG	AGCCTATGTG	CATTTTGTAG	1620
10	TAGATAATGT	AAAATTTGTC	ATCTTTTTCT	TITCTITTIT	TTAGAATAGC	TGATATTTTG	1680
	ATAACAATCT	CTAATTTGCA	TGGGCACCAC	ATTTCTTATA	TTAAAAGAAT	TAGTGTTTTG	1740
	GCTTCTGTAC	TGCTTATGGT	TGTAGGATTC	AGGGGTTAAT	GGAATCACAG	AAATGATATT	1800
	CTGCAAGAAT	TTCTTTTAAA	TAAAAAGTTT	GGGGGTGCAA	TATAAGAAGT	TTATATAATA	1860
	TGCAGTACAT	TATCCAAAAG	AGAAGGTAGT	TAATGCAGTA	GAAAGTAGTG	GTAATAATTC	1920
15	CLLLLL						

SEQ ID NO: 247 PBY4 Protein sequence:

Protein Accession #: 20

MSDFDSNPFA DPDLNNPFKD PSVTQVTRNV PPGLDBYNPF SDSRTPPPGG VKMPNVPNTQ 60 PAIMKPTEEH PAYTQIAKEH ALAQAELLKR QEELERKAAE LDRREREMON LSQHGRKNIW 120 PPLPSNFPVG PCFYQEFSVD IPVEFQKTVK LMYYLWMFHA VTLFLNIFGC LAWFCVDSAR 180 AVDFGLSILW FLLFTPCSFV CWYRPLYGAF RSDSSFRFFV FFFVYICQFA VHVLQAAGFH 240 25 NWGNCGWISS LTGLNQNIPV GIMMIIIAAL FTASAVISLV MFKKVHGLYR TTGASFEKAQ 300 QEFATGVMSN KTVQTAAANA ASTAASSAAQ NAFKGNQI

SEQ ID NO:248 PBH2 DNA sequence 30

Nucleic Acid Accession#: none found

1-613 (underlined sequence corresponds to start and stop codon)

ATGAGAGACA ATAAATCGTG TGCTTTTTTC ATGGGAAAGT TAAATGTTTG TTTTGAAGGC 60 ACAGTAATAG CAGGCTATTC AGTGTTTGCC ACTACCTGCA TCATTCATCT GGCTGTAGCT 120 35 ACAGTAATAG CAGGCTATTC AGTGTTTGCC ACTACCTOCA TCATTCATCT GGCTGTAGCT 126
AGTGCACTAC AATTTCCTAA AAAGTCTTCT CACCCTCACA GGACTGCTCT CACATCTGGCC 180
TCTGCCAATG GAAATTCAGA AGTAGTAAAA CTCCTGCTGG ACAGACGATG TCAACTTAAT 240
ATCCTTGACA ACAAAAAGAG GACAGCTCTG ACAAAGGCCG TACAATGCCA GGAAGATGAA 300
TGTGCGTTAA TGTTGCTGGA ACATGGCACT GATCCGAATA TTCCAGATGA GTATGGAAAT 360 40 ACCECTOTAC ACTATECTAT CTACAATGAA GATAAATTAA TEGCCAAAGC ACTECTOTTA 420
TACEGTECTE ATATEGAATC AAAAAACAAG CATEGCCTCA CACCACTETT ACTTEGTETA 480
CATEAGCAAA AACAGCAAGT GETGAAATTT TTAATCAAGA AAAAAGCAAA TTTAAATGCA 540 CTGGATAGAT ATGGAAGGTG TGTGACCTTG GGAACGTTAT TTACCACCAA ATATGTTGTC 600 ATATATGAAA AGTAG 45

SEQ ID NO:249 PBH2 Protein sequence:

Protein Accession #:

MRDNKSCAFF MGKLNVCFEG TVIAGYSVFA TTCIIHLAVA SALQFPKKSS HPHRTALHLA 60 SANGNSEVVK LLLDRRCQLN ILDNKKRTAL TKAVQCQEDE CALMLLEHGT DPNPDEYGN 120 TALHYAIYNE DKLMAKALLL YGADIESKNK HGLTPLLLGV HEQKQQVVKF LIKKKANLNA 180 50 LDRYGRCVTL GTLFTTKYVV IYEK

SEQ ID NO:250 PBJ1 DNA sequence

55

1-3043 (underlined sequence corresponds to start and stop codon)

60 ATGGTGATCA TCTATCTTTC TTTCTGCAAT TATTACATGG AGTTCTACAG AGAAGAGCTT 60 CCCCACATTG ACTATTTGAT TGACATTCAG TTTGCAACAG GAAAGGTTAC TCAGCCGGGA 120 GAGGACACTT CCTACCATCA ATGCGCTCAG CTTGAAGCCA GAGACGAAGG CACCGACAGT 180 THATTATTATA ACAATGGCAG CAGCGCCACG CTGAAGACAC GAACGCGCTG TTATGGAACC 240
CCCAGAGGTC TCCCCCATCG TAGCCTGCTC CAGCCGACTC CGCCCACATG TAAAACGAAG 300
ATCAGGAGCA GATTTGAAGA ATTACAAAGT GAATTGGTGC CAGTCAGCAT GTCAGAGACA 360 GACCACATAG CCTCTACTTC CTCTGATAAA AATGTTGGGA AAACACCTGA ATTAAAGGAA 420
GACTCATGCA ACTTGTTTTC TGGCAATGAA AGCAGCAAAT TAGAAAATGA GTCCAAACTA 480
TTGTCATTAA ACACTGATAA AACTTTATGT CAACCTAATG AGCATAATAA TCGAATTGAA 540 GCCCAGGAAA ATTATATTCC AGATCATGGT GGAGGTGAGG ATTCTTGTGC CAAAACAGAC 600 70 75 GACATTTGTT CAGAAAAAGA CAATTTAAGA GAAGAACTAA AGAAAAGAAC AGAAACTGAG 1080 AAGCAGCATA TGAACACAAT TAAACAGTTA GAATCAAGAA TAGAAGAACT TAATAAAGAA 1140 GTTAAAGCTT CCAGAGATCA ACTAATAGCT CAAGACGTTA CAGCTAAAAA TGCAGTTCAG 1200

CAGTTACACA AAGAGATGGC CCAACGGATG GAACAGGCCA ACAAGAAATG TGAAGAGGCA 1260 CAGTTACACA AAGAATGC CCAACGGATG GAACAGGCCA ACAAGAAATG TGAAGAGGCA 1260
CGCCAAGAAA AAGAAGCAAT GGTAATGAAA TATGTAAGAG GTGAGAAGGA ATCTTTAGAT 1320
CTTCGAAAGG AAAAAGAGAC ACTTGAGAAA AAACTTAGAG ATGCAAATAA GGAACTTGAG 1380
AAAAACACTA ACAAAATTAA GCAGCTTTCT CAGGAGAAAG GACGGTTGCA CCAGCTGTAT 1440
GAAACTAAGG AAGCGGAAAC GACTAGACTC ATCAGAGAAA TAGACAAATT AAAGGAAGAC 1500
ATTAACTCTC ACGTCATCAA AGTAAAGTGG GCACAAAACA AATTAAAAGC TGAAATGGAT 1560
TCACACAAGG AAACCAAAGA TAAACTCAAA GAAACAACAA CAAAATTAAC ACCAAGCAAAG 1620
GAAGAAGCAG ATCAGATACG AAAAAACTGT CAGGATATGA TAAAAACATA TCAGGAGTCA 1680 5 GAAGAAATTA AATCAAATGA GCTTGATGCA AAGCTTAGAG TCACAAAAGG AGAACTTGAA 1740 AAACAAATGC AAGAAAAATC TGACCAGCTA GAGATGCATC ATGCCAAAAT AAAGGAACTA 1800 GAAGATCTGA AGAGAACATT TAAGGAGGGT ATGGATGAGT TAAGAACACT GAGAACAAAG 1860 10 GTGAAATGTC TAGAAGATGA ACGATTAAGA ACAGAAGATG AATTATCAAA ATATAAGGAA 1920 ATTATTAATC GCCAAAAAGC TGAAATTCAG AATTTATTGG ACAAGGTGAA AACTGCAGAT 1980 CAGCTACAGG AGCAGCTTCA AAGAGGTAAG CAAGAAATTG AAAATTTGAA AGAAGAAGTG 2040 15 GAAAGTCTTA ATTCTTTGAT TAATGACCTA CAAAAAGACA TGGAAGGCAG TAGGAAAAGA 2100 GAATCTGAGC TGCTGCTGTT TACAGAAAGG CTCACTAGTA AGAATGCACA GCTTCAGTCT 2160 GAATCCAATT CTTTGCAGTC ACAATTTGAT AAAGTTTCCT GTAGTGAAAG TCAGTTACAA 2220 GAATCCAATT CTTTGCAGTC ACAATTTGAT AAAGTTTGCT GTAGTGAAAG TCAGTTACAA 2220
AGCCAGTGTG AACAAATGAA ACAGACAAAT ATTAATTTGG AAAGTAGGTT GTTGAAAAGAG 2280
GAAGAACTGC GAAAAGAGGA AGTCCAAACT CTGCAAGCTG AACTCCCCTTG TAGACAAACA 2340
GAAGTTAAAG CATTGAGTAC CCAGGTAGAA GAATTAAAAG ATGAGTTAGT AACTCAGAGA 2400
CGTAAACATG CCTCTAGTAT CAAGGATCTC ACCAAACAAC TTCAGCAAGC ACGAAGAAAA 2460 20 TTAGATCAGG TTGAGAGTGG AAGCTATGAC AAAGAAGTCA GCAGCATGGG AAGTCGTTCT 2520
AGTTCATCAG GGTCCCTGAA TGCTCGAAGC AGTGCAGAAG ATCGATCTCC AGAAAATACT 2580 GGGTCCTCAG TAGCTGTGGA TAACTTTCCA CAAGTAGATA AGGCCATGTT GATTGAGAGA 2640 ATAGTIAGGC TIGCAAAAAGC ACATGCCCGG AAAAATGAAA AGATAGAATT TATGGAGGAC 2700
CACATCAAAC AACTGGTGGA AGAAATTAGG AAAAAAACAA AAATAATTCA AAGTTATATT 2760
TTACCAGAAAG AATCAGGCAC ACTTTCTTCA GAGGCATCTG ATTITAACAA AGTTCATTTA 2820
AGTAGACGGG GTGGCATCAT GGCATCTTTA TATACATCCC ATCCAGCTGA CAATGGATTA 2880
ACATTGGAGC TCTCTTTGGA AATCAACCGA AAATTACAGC CTGTTTTTGGA GGATACGTTA 2940
CTAAAAAATA TTACTTTGAA GGAAAATCTA CAAACACTTG GAACAGAAAT AGAACGTCTT 3000 25 30 CTAAAAAAT TACTITIGAA GGAAAATCTA CAAACACTIG GAACAGAAAT AGAACGTCTT 3000
ATTAAACACC AGCATGAACT AGAACAGAGG ACAAAGAAAA CCTAAAACA GCCTCTTGCT 3060
CAGTAAAGAG ACAAAAAGCCA CACAGGAGTA GGTGCCACTG ACCTCTATTG TTGGAGACTT 3120
TGTTCCACTT TITGTTTCAG CCAGTAAAAA TATTGTTTTG CTTCATCTGT ACACAAAAAA 3180
ATACCCTTTT ACAATATGAA TGCATTGCTG TATATACTGT AAGACTGAAA GCTTTGATGA 3240
AATTTGTTTT TGTATGGTGC AATATGACAG CCTGTCATTG AATCTAAACA ACTTAATTTG 3300
CTTGTATTCA TAAGAAGTGT TGAACATTAC AAGGGCTTTT AT 35

40 Protein Accession #: SEQ ID NO:251 PBJ1 Protein sequence: NP_060487

MVIIYLSPCN YYMEFYREEL PHIDYLIDIQ FATGKVTQPG EDTSYHQCAQ LEARDEGTDS 60
LLLNNGSSAT LKTRRCYGT PRGLPHRISLL QPTPPTCKTK IRSREELQS ELVPYSMSET 120
DHIASTSSDK NVGKTPELKE DSCNLFSGNE SSKLENESKL LSLNTDKTLC QPNEHNNRE 180
AQENYIPDHG GGEDSCAKTD TGSENSEQIA NFPSGNFAKH ISKTNETEQK VTQILVELRS 240
STFPESANEK TYSESPYDTD CTKKFISKIK SYSASEDLLE EESELLSTE FAERHYPNGM 300
NKGEHALVLF EKCVQDKYLQ QEHIIKKLIK ENKKHQELFV DICSEKDNLR EELKKRTETE 360
KQHMNTIKQL ESRIEELNKE VKASRDQLIA QDVTAKNAVQ QLHKEMAQRM EQANKKCEBA 420
RQEKEAMVMK YVRGEKESLD LRKEKETLEK KLRDANKELE KNTNKIKQLS QEKGRLHQLY 480
ETKEGETTRL REIDKLKED INSHVIKVKW AQNKLKAEMD SHKETKDKLK ETTTKLTQAK 540
EETKEGETTRL REIDKLKED INSHVIKVKW AQNKLKAEMD SHKETKDKLK ETTTKLTQAK 540
EELKRETTRL REIDKLKED INSHVIKVKW AQNKLKAEMD SHKETKDKLK ETTTKLTQAK 540
EDLKRTFKEG MDELRTLRTK VKCLEDERLR TEDELSKYKE INNQKAEIQ NILDKVKTAD 660
QLQEQLQRGK QEIENLKEEV ESLNSLINDL QKDIEGSKKR ESELLLFIER LTSKNAQLQS 720
ESNSLQSQFD KVSCSESQLQ SQCEQMKQTIN INLESRLIKE EELRKEEVQT LQAELACRQT 780
EVKALSTQVE ELKDELVTQR RKHASSIKDL TKQLQQARRK LDQVESGSYD KEVSSMGSRS 840
SSGSLNARS SAEDRSPENT GSSVAVDNPP QVDKAMLIER IVRLQKAHAR KNEKIEFMED 900
HIKQLVEEIR KKTKIUGSYI LREESGTLSS EASDFNKVHL SRRGGIMASL YTSIPADNGL 960
TLELSLEINR KLQAVLEDTL LKNITLKENL QTLGTEIERL IKHQHELEQR TKKT

SEQ ID NO:252 PBJ6 DNA sequence Nucleic Acid Accession#: D83760

60

Coding sequence: 56-1459 (underlined sequence corresponds to start and stop codon)

כס	1	11	21	31	41	51	
]			1	1	1	
	TTGCCGTGAA	GGGCTGTGCG	GTTCCCGTGC	GCGCCGGAGC	CTGCTGTGGC	CTCTTATGCA	60
	CTCCACCACC	CCCATCAGCT	CCCTCTTCTC	CTTCACCAGC	CCCGCAGTGA	AGAGACTGCT	120
5 0	AGGCTGGAAG	CAAGGAGATG	AAGAGGAAAA	GTGGGCAGAG	AAGGCAGTGG	ACTOTOTAGT	180
70	GAAGAAGTTA	AAGAAGAAGA	AGGGAGCCAT	GGACGAGCTG	GAGAGGGCTC	TCAGCTGCCC	240
	GGGGCAGCCC	AGCAAATGCG	TCACGATTCC	CCGCTCCCTG	GACGGGCGGC	TGCAGGTGTC	300
	CCACCGCAAG	GCCTGCCCC	ATGTGATTTA	CTGTCGCGTG	TGGCGCTGGC	CGGATCTGCA	360
	GTCCCACCAC	GAGCTGAAGC	CGCTGGAGTG	CTGTGAGTTC	CCATTTGGCT	CCAAGCAGAA	420
	AGAAGTGTGC	ATTAACCCTT	ACCACTACCG	CCGGGTGGAG	ACTCCAGTAC	TGCCTCCTGT	480
75	GCTCGTGCCA	AGACACAGTG	AATATAACCC	CCAGCTCAGC	CTCCTGGCCA	AGTTCCGCAG	540
	CGCCTCCCTG	CACAGTGAGC	CACTCATGCC	ACACAACGCC	ACCTATCCTG	ACTOTTTCCA	600
	GCAGCCTCCG	TGCTCTGCAC	TCCCTCCCTC	ACCCAGCCAC	GCGTTCTCCC	AGTCCCCGTG	660
	CACGGCCAGC	TACCCTCACT	CCCCAGGAAG	TCCTTCTGAG	CCAGAGAGTC	CCTATCAACA	720
	CTCAGTTGAC	ACACCACCCC	TGCCTTATCA	TGCCACAGAA	GCCTCTGAGA	CCCAGAGTGG	780

	TCGACCAGTT	TGTTACGAGG	AGCCCCAGCA	TGTAGTGCTA CTGGTGCTCG CTCCCGAAGT	GTCGCCTACT	ATGAACTGAA	840 900 960
5	CGACCCTTCA CTCAACGATA GGGAGAGGTG CAACTATCAA	AATAACAGGA GAAAATACCA TATGCCGAGT CACGGCTTCC	ACAGATTCTG GGAGACATAT GCGTGAGTGA ACCCAGCTAC	TCTTGGACTT AGGAAAGGGT CAGCAGCATC CGTCTGCAAG GCTCCTGGCC	CTTTCTAATG GTGCACTTGT TTTGTGCAGA ATCCCCAGCG	TAAACAGAAA ACTACGTCGG GCCGGAACTG GCTGCAGCCT	1020 1080 1140 1200 1260
10	TGAAGTCGTG GGGTGCTGAG TCATGGGCCA	TATGAACTGA TATCATCGCC CTGCAGTGGC	CCAAGATGTG AGGATGTCAC TGGACAAAGT	TACTATCCGG CAGCACCCCC TCTGACTCAG TAAGCTGCAT	ATGAGTTTTG TGCTGGATTG ATGGGCTCTC	TTAAGGGTTG AGATTCATCT CACATAACCC	1320 1380 1440
15	Protein Accessio) NO:253 P <u>BJ6 P:</u> 5898	otein sequence;		•	
20	CPGQPSKCV! QKEVCINPY! FQQPPCSALP SGQPVDATA! FTDPSNNRN!	r iprslogrlo i yrrvetpvli pspshafsos o rhvvlsipno r pclgllsnvi	VSHRKGLPH PPVLVPRHSE PCTASYPHSP G DFRPVCYEE N RNSTIENTRI	V IYCRVWRWI Y NPQLSLLAK GSPSEPESPY C P QHWCSVAY R HIGKGVHLY	PD LQSHHELK F RSASLHSEPI PHSVDTPPLP Y YE LNNRVGE Y VGGEVYAE	KG AMDELERA PL ECCEFPFGS L MPHNATYPDS THATEASETQ IFQ ASSRSVLII CV SDSSIFVQSI	K 120 S 180 240 DG 300 R 360
25				F AQLLAQSVI LD KVLTQMG		TK MCTIRMSF	VK 420
30	SEQ ID NO:254 Nucleic Acid Acc Coding sequence		84	quence correspon	ds to start and sto	p codon)	
	1	11	21 1	31	41	51 i	
35				GCTTTTCCTG			60
33				TATTAGAGAA			120 180
				AGTTTGTTTG			240
40				CTGTCTTGTG ATGAAGGCCA			300 360
40	TGCTTTTAAC	CCTTTCCTAT	TTGCTGAGAA	TGCAGCCGTG	TGACAGTAAC	TGAACATTGG	420
				CAAGAACATC			480 540
	GTCGATCCTA	AAGCAGCTAT	TGAGTCTGGA	CACGATGACC	ATGAAAGCCA	CATGAAGCAG	600
45				CCATCATCTT			660 720
	CCCACTGGCA	ATGGCTTACA	TAATGGGTTT	CTCACAGCAT	CCTCCCTTGA	CAGTTACAGT	780
				GTGCCTGCCT AGTGCTGAAG			840 900
50	ATTGAGGTGG	ATGACCCCCC	TGACAAGGAG	GACATGCGAT	CAAGCTTCAG	GTCGAATGTG	960
20				GATAAGCTGA AATGTGGAGA			1020 1080
	GAAACAGAAG	CCAGTTCTAT	AAACCTGAGT	GTTTATGAAC	CTTTTAAAGT	CAGAAAAGCA	1140
				GTGCTGGAAA CCCAGCGTTG			1200 1260
55	TCCTCCAAGC	TCTCGTCCTG	CATCGCTGCC	ATCGCGGCTC	TCAGCGCTAA	AAAGGCGGCT	1320
				TCGAGGGAAT TCTCCTGAAT			1380 1440
	ACCAAAAAAC	CATCCCTGAA	GCAACCGGAT	AGTCCCAGAA	GCATCTCAAG	TGAGAACAGC	1500
60				TCCACACCAG AAGAGAACAG			1560 1620
	GTGGATCTTG	ACTCTGGAAA	GAAACCTTCC	GAGCAGACAG	CGTCCGTGAT	GCCTCTCTG	1680
				GCCGTCCTTT			1740 1800
65	ACAATCAAGC	CTGTGGCTAC	TGCTTTCCTC	CCAGTGTCTG	CTGTGAAGAC	GGCAGGATCC	1860
03						CATATCTGCT	1920 1980
	ACTGTCGTGG	TGCCGGCATC	CAGCCTGGCC	AATGCCAAAC	TCGTGCCAAA	GACTGTGCAC	2040
						CCGCCAAGTG	2100 2160
70	CCCAAAAAGG	TGTCTCGAGT	CCAGGTGGTG	TCGTCCTTGC	AGAGTTCTGT	GGTGGAAGCT	2220
						CCTCAGTCCT GTGTGGGGAC	2280 2340
	TCCTTTGCAC	TTGAAAAGAG	TCTGACCCAG	CACTACGACA	GACGGAGCGT	GCGCATCGAA	2400
75						CCTCCTTTCC AATTTTAAAG	
	CCAGTCCCAG	CAGATCAAAT	GATAGTTTCT	CCGTCAAGCA	ATACTTCCAC	TTCAACTTCC	2580
						GTCTGGCATA GCCCCTAGAT	
90	GAAGACCCCT	CCAAACTGTG	TAGACATAGT	CTAAAATGTT	TGGAGTGTAA	TGAAGTCTTC	2760
80	CAGGACGAGA	CATCACTGGC	TACACATTTC	CAGCAGGCTG	CAGATACGAG	TGGACAAAAG	2820

PCT/US01/32045 WO 02/30268

	ACTTGCACTA	TCTGCCAGAT	GCTGCTTCCT	AACCAGTGCA	GTTATGCATC	ACACCAGAGA	2880
		ACAAATCTCC					2940
		CCCACGTCAC					3000
		GCAATGTTGT					3060
5		AAGTCTTCTA					3120
•		CCCACGCCTA					3180
		GTTCCATGTG					3240
		ACATTGAAAA					3300
10		AGAAGCAACT					3360
10		GCCTCCAAA					3420
		CAAATCAGAA					3480
		CTCCATCTCC					3540
		GTTGGGAGTG					3600
15		AGCACGGGAA					3660
13		CCCACAGCCT					3720
		GCTCGCACTG					3780
		TCCAGCTGAT					3840
		AGGAGGAAAC					3900
20		AACCAGTTCT					3960
20		AAATCAATGT					4020
		TGCAATTCCA					4080
		AGTGTGGCCT					4140
	ATCGTACACA	AGTTAAAGGA	ACCTCAGCCA	GTGTCCAAGC	AAAATGGGGC	TGGGGAAGAT	4200
~~	AACCAACAGG	AGAACAAACC	CAGCCACGAG	GATGAATCCC	CTGATGGCGC	CGTGTCAGAC	4260
25	AGAAAGTGCA	AAGTGTGCGC	AAAAACTTTT	GAAACTGAAG	CTGCCTTAAA	TACTCACATG	4320
	CGGACACACG	GCATGGCCTT	CATCAAATCC	AAAAGGATGA	GCTCAGCCGA	GAAATAGCCA	4380
	CAGATGCTCC	ATGAGGAAAA	TCCCTGTCCA	CATTGGAATA	AAAAAGACAT	TTTTGTTACA	4440
	AAGTTTGCAG	TATAATAGAG	TTAACAGTAC	TGTCTAGGCT	GTTGCAATAT	ATTCTCTTTC	4500
	AATGTACCTT	CCTTCACCTC	GTCGTATATA	TCCTCGATAA	GTATTAAAAC	AGTATTTGAG	4560
30	TTTAAAAGAG	TTTGTATATA	TTTAAATGAA	TAACTTTTTA	TACTCTTTGT	TACATGTTTG	4620
	TATCAGTATT	TAGTGGAAAA	CCATTTGAGT	TGTTTTGGGT	TAGAATTITT	CTTTTTGTAC	4680
	TGTTTCTTTA	AAACAGAGTT	CTTAGTAACA	GGGGCAGTTC	CTGAATTCAA	ATAAACCATT	4740
	TTGTATGTTT	GGATTTTGAA	TGGGTTAACT	AATTACAGGC	TAAAATAATG	CCTTTTTTAG	4800
		TTTTAGAATT					4860
35		TAAGTGTCTT					4920
		AACTGCACTC					4980
		AGTCTTGCAG					5040
		GGAATGCTGA					5100
		ATGGGATTTG					5160
40		TAACGAAAGG					5220
		ATAGTCAGGT					5280
		ATCAAGTATT					5340
		AAAGAGTTGG					5400
		GATGCACAAC					5460
45		TACCTTAAGC					5520
		CGGTAGTTCT					5580
		TCTCTGAGAG					5640
		GTATTTATCC					5700
		TCTTTTGTGT					5760
50		AGGTCTTGCT					
50		CATATGTAAA			CLATCUATCA	IMMUTGIATE	5820
	AAACACATTT	CATATGTAAA	TARACGIGGG	ACATTIG			

SEQ ID NO:255 PBJB Protein sequence: BAB13455

55 Protein Accession #:

MKTPDFDDLL AAFDIPDMVD PKAAIESGHD DHESHMKQNA HGEDDSHAPS SSDVGVSVIV 60 KNVRNIDSSE GGEKDGHNPT GNGLHNGFLT ASSLDSYSKD GAKSLKGDVP ASEVTLKDST 120 MKTPDFDDLL AAFDIPDMVD PKAAIESGHD DHESHMKQNA HGEDDSHAPS SDVGGSVIV 60
KNYRNIDSSE GGEKDGHNPT GROLINGGIT. ASSLDSYSKID GAKSLKGDVP ASSEVITLKDST 120
FSQFSPISSA EEFDDDEKIE VDDPPDKEDM RSSFRSNVLT GSAPQQDYDK LKALGGENSS 180
KTGLSTSGRV EKNKAVKRET EASSINLSVY EPFKVRKAED KLKESSDKVL ENRVLDCKLS 240
SEKNDTSLPS VAPSKTKSSS KLSSCIAAIA ALSAKKAASD SCKEPVANSR ESSPLPKEVN 300
DSPRAADKSP ESQNLIDGTK KPSLKQPDSP RSISSENSSK GSPSSPAGST PAIPKVRIKT 360
IKTSSGEIKR TVTRVLPEVD LDSGKKPSEQ TASVMASVTS LLSSPASAAV LSSPPRAPIQ 420
SAVVTNAVSP ABLTPKQVTI KPVATAFLPV SAVKTAGSQV INLKLANNTT VKATVISAAS 480
VQSASSAIIK AANAIQQQTV VVPASSLANA KLYPKTVHLA NINLLPQGAQ ATSELRQVLT 540
KFQQQIKQAI INAAASQPPK KVSRVQVVSS LQSSVVEAFN KVLSSVNPVP VYPPNLSPPA 600
NAGITLPTRG YKCLECGDSF ALEKSLTQHY DRRSVRIEVT CNHCTKNLVF YNKCSLLSHA 660
RGHKEKGVVM QCSHLILKPV PADQMIVSPS SINTSTSTSTL QSPVGAGTHT VTKIQSGTTG 720
TVISAPSSTP ITPAMPLDED PSKLCRHSLK CLECNEVFQD ETSLATHFQQ AADTSGQKTC 780
ITCQMLLPNQ CSYASHQRH QHKSPYTCPE CGAICRSVHF QTHVTKNCLH YTRRVGFRCV 840
HCNVVYSDVA ALKSHQGSH CEVFYKCPLC PMAFKSASPT HSHAYTQHPG KKIGEPKITY 900
KCSMCDTVFT LQTILLYRHFD QHIENQKVSV FKCPDCSLLY AQKQLMMDHI KSMHGTILKSI 960
EGPPNLGINL PLSIKPATQN SANQNKEDTK SMNGKEKLEK KSPSPVKKSM ETKKVASPGW 1020
TCWECDCLFM QRDVYISHVR KEHGKQMKKH PCNQCOKSFS SSHSLCRHNR IKHKGIRKVY 1080
ACSHCPDSRR TFTKRLMLEK HVQLMHGIKD PDLKEMTDAT NEEETEIKED TKVPSPKRKL 1140
EEPVLEFRPP RGAITQPLKK LKINVFKVHK CAVOGFTTEN LLQFHEHIPQ HKSDGSSYQC 1200
RECGILCYTSH VSLSRHLFIV HKLKEPQPVS KQNGAGEDNQ QENKPSHEDE SPDGAVSDRK 1260
CKVCAKTFET EAALNTHMRT HGMAFIKSKR MSSAEK 60 65 70 75

80

PCT/US01/32045 WO 02/30268

SEQ ID NO:256 PBM1 DNA sequence Nucleic Acid Accession#: AF111847

Coding sequence:

58-1608 (underlined sequence corresponds to start and stop codon)

5	1	11	21	31	41	51	
	1	1	<u> </u>	1	1	ł	
			TTGGCTGGGC				60
			CATCTTGACC				120
10			TGGTGCCAAA				180
10			CTCAGGGTCC				240
			TTCCAACTGG				300
			TICCTTTTTT				360
			TGCTGCTCAG				420
1.5			TGGCACTGAT				480
15			GGAAGATTTT				540
			AATAGCAGAA				600
			AGGTGGACAA				660
			AGAGGTATCC				720
20			AAAAGGAAGT				780
20			AGCTCAAGCT				840
			AGAATCAATT				900
			AGACGAAAAG				960
			ATTTGGAAAT				1020
~~	TCAGATATGC	AGACCATAGA	GCAGGAATCA	CCCATTATGG	CAAAACCAAG	AAAAAAGTAT	1080
25	AATGATGACA	GTGACGATTC	ATATTTTACT	TCCAGCTCAA	GTTACTTTGA	CGAGCCAGTG	1140
	GAGTTAAGGA	GCAGTTCTTT	CTCTAGCTGG	GATGACAGTT	CAGATTCCTA	TTGGAAAAA	1200
	GAGACCAGCA	AAGATACTGA	AACAGTTCTG	AAAACCACAG	GCTATTCAGA	CAGACCTACT	1260
	GCTCGCCGCA	AGCCAGATTA	TGAGCCAGTT	GAAAATACAG	ATGAGGCCCA	GAAGAAGTTT	1320
	GGCAATGTCA	AGGCCATTTC	ATCAGATATG	TATTTTGGAA	GACAATCCCA	GGCTGATTAT	1380
30	GAGACCAGGG	CCCGCCTAGA	GAGGCTGTCG	GCAAGTTCCT	CCATAAGCTC	GGCTGATCTG	1440
	TTCGAGGAGC	CGAGGAAGCA	GCCAGCAGGG	AACTACAGCC	TGTCCAGTGT	GCTGCCCAAC	1500
	GCCCCCGACA	TGGCGCAGTT	CAAGCAGGGA	GTGAGATCGG	TTGCTGGAAA	ACTOTOCGTO	1560
	TTTGCTAATG	GAGTCGTGAC	TTCAATTCAG	GATCGCTACG	GTTCTTAATA	CTGAAGTCAT	1620
0.5	GATGTGTATT	TCCTGGAGAA	ATTCCTCTTT	AAATGAACAA	GTAACCACAT	CTCAGGCGGC	1680
35	AGTGAAGTCC	AGATAGTTTT	GCAGATTGTT	TTGCTACTTT	TTCATATGGT	ATATGTTTCT	1740
	GATTTTTAAT	ATTTCTTTTG	AGAAATTCTG	AGTTCTGATG	TAGGAGCTTT	CCTGTGATTT	1800
	CTGTTTCACG	TTCCTTCCTG	TCACACCCTC	CTTTGGCGTC	TCTGTGTATA	TCCTTGCTTT	1860
	ATTTTCTTGG	AACCTTTGAT	TTCAACACTG	AGGGCCTGGA	GACCTCGGCT	CCTCCTGCTC	1920
	CTGAACCAGG	AGGCTTCATG	TGGGGGAGGA	GGAGAGGTCT	CCATGTGACA	CATGGGCTCA	1980
40	GGGCTGCCAG	AATCAGCGGA	TGCTGGATGG	GCCTGCAGAA	ACAACACTCA	CCACACACAC	2040
	TTCCTTCAAA	AGACCAAAAG	TGACTGGTGT	CTCGTGTGAC	AGATTGCTTC	ATTTATGTTT	2100
	CTACATAGTA	AGGTGACTGC	CAAATAATAT	TTGAAGTCAT	CTGTCTCTTT	GTAAATTATT	2160
	TTATATGACC	TATAAATTTA	AAAATGTTTT	TCAGTGAGTG	CTTTTAACAA	ACTTAAGCTT	2220
	CTGCCCTGCC	AAGGGAATTA	ATCTTATCTT	GTGARAGGTG	TIGCIGITIG	AATTGATGAG	2280
45	AAATGGAAGA	TGAGAACTCC	CTAAGAGTTC	TCATAATAAA	TCATCTCATC	ACAAATCAAT	2340
	ACGGTATACA	GAGTTAAAGT	GGAATGAGGT	AAGAAGATAC	AGCTACAGAA	AATAGTTGCG	2400
	TGTATGGGAG	AACAGTCATT	GTAATTGGGT	AGTTTTGTTA	ATAAATATTT	TTAAATCTTG	2460
	CTTTTCAGAA	ATTACCGAAT	GTGTATAAAC	AAATAAAGAA	AAATAATTTA	GCTGTGTTTT	2520
	AGACAGCATT	AGAATATATT	GTTCAGCACA	GTAAAATATA	TITGAAATTT	GATAAGCCAA	2580
50	AAATGTGGTT	TTGAATGAAT	ATTTTGTGAA	TCTTTCTTAA	AAGCTCAAAT	TIGTAGACTT	2640
	CTAAATAGAA	TAAACACTTG	CAGCAGAAAA	AAAAAAAAA	АААААААА	AAAAAAAAA	2700
	AAAAAAAAA	AAAAAAAAA	AAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	2760
		AAAAAAAAA					
55			•				
	EQ ID NO:257 PE	M1 Protein semie	nce:				
	BM1 Protein sequ						

- MGDPSKQDIL TIFKRLRSVP TNKVCFDCGA KNPSWASITY GVFLCIDCSG SHRSLGVHLS 60
 FIRSTELDSN WSWFQLRCMQ VGGNASASSF FHQHGCSTND TNAKYNSRAA QLYREKIKSL 12D
 ASQATRKHGT DLWLDSCVVP PLSPPPKEED FFASHVSPEV SDTAWASAIA EPSSLTSRPV 180
 ETTLENNEGG QEQGFSVEGL NVPTKATLEV SSIIKKKPNQ AKKGLGAKKG SLGAQKLANT 240
 CFNEIEKQAQ AADKMKEQED LAKVSKEES IVSSLRLAYK DLEIQMKKDE KNNISGKNV 300
 SDRLGMGFG NCRSVISHSV TSDMQTIEQE SPIMAKPRKK YNDDSDDSYF TSSSSYFDEP 360
 VELRSSSFSS WDDSSDSYWK KETSKDTETV LKTTGYSDRP TARRKPDYEP VENTDEAQKK 420
 FGNVKAISSD MYFGRQSQAD YETRARLERL SASSSISSAD LFEEPRKQPA GNYSLSSVLP 480
 NAPDMAQFKQ GVRSVAGKLS VFANGVVTSI QDRYGS 60 65
- 70 SEQ ID NO:258 PBM4 DNA sequence Nucleic Acid Accession#: D30891 1-4032 (underlined sequence corresponds to start and stop codon)
- ATGGATACTG TCATGAAGCA GACACATGCT GACACACCTG TTGATCATTG TCTATCTGGC 60
 ATAAGAAAGT GTAGCAGCAC CTTTAAGCTT AAAAGTGAAG TCAACAAGCA TGAAACAGCC 120
 CTTGAAATGC AGAATCCAAA TTTGAACAAT AAAGAATGTT GTTTCACCTT TACGTTGAAT 180
 GGAAACTCCA GAAAATTAGA CCGTAGTGTG TTTACAGCAT ATGGTAAACC CAGCGAGAGT 240
 ATCTACTCAG CCCTGAGTGC TAATGACTAT TTCAGTGAAA GGATAAAGAA TCAGTTTAAT 300
 AAGAACATTA TTGTTTATGA AGAAAAGACA ATAGATGGAC ATATAAATTT AGGAATGCCT 360
 CTCAAGTGCC TGCCTAGTGA TTCTCATTTT AAAATTACAT TTGGTCAAAG AAAGAGTAGC 420 75 80

AAAGAAGATG GACACATATT ACGCCAATGT GAAAATCCAA ACATGGAATG CATTCTTTT 480 CATOTTOTTG CTATAGGAAG GACAAGAAAG AAGATTGTTA AGATCAACGA ACTTCATGAA 540 AAAGGAAGTA AACTTTGTAT TTATGCCTTG AAGGGTGAGA CTATTGAAGG AGCCTTATGC 600 AAGGATGGCC GTTTTCGGTC TGACATAGGT GAATTTGAAT GGAAACTAAA GGAAGGTCAT 660 5 AAGAAAATTT ATGGAAAACA GTCCATGGTG GATGAAGTAT CTGGAAAAGT CTTAGAAATG 720 GACATTTCAA AAAAAAAAGC ATTACAACAG AAAGATATCC ATAAAAAAAT TAAACAGAAT 780 GAAAGTGCCA CTGATGAAAT TAATCACCAG AGTCTGATAC AGTCTAAGAA AAAAGTCCAC 840 AAACCAAAGA AAGATGGAGA GACCAAAGAT GTAGAACACA GCAGAGAGCA AATTCTCCCA 900 CCTCAGGATC TAAGCCATTA TATTAAAGAT AAAACTCGCC AGACAATTCC CAGGATTAGA 960 AATTATTACT TTTGTAGTTT GCCCCGAAAA TATAGGCAAA TAAACTCACA AGTTAGACGG 1020 AGGCCGCATC TGGGTAGGCG GTATGCTATT AATCTGGATG TCCAAAAGGA GGCAATTAAT 1080 10 CTCTTAAAGA ATTATCAAAC GTTGAATGAA GCCATAATGC ATCAGTATCC GAATTTTAAA 1140 GAGGAGGCAC AGTGGGTAAG AAAATATTTT CGGGAAGAAC AAAAGAGAAT GAATCTTTCA 1200 CCAGCTAAGC AATTCAACAT ATATAAAAAG GACTTCGGAA AAATGACTGC AAATTCTGTT 1260 15 TCAGTTGCAA CCTGCGAACA GCTTACATAT TATAGCAAGT CAGTTGGGTT CATGCAATGG 1320 GACAATAATG GAAACACAGG TAATGCTACT TGCTTTGTCT TCAATGGTGG TTATATTTTC 1380
ACCTGTCGAC ATGTTGTACA TCTTATGGTG GGTAAAAACA CACATCCAAG TTTGTGGCCA 1440
GATATAATTA GCAAATGTGC GAAGGTAACC TTCACTTATA CAGAGTTCTG CCCTACTCCT 1500 GACAATTGGT TITCCATTGA GCCATGGCTT AAAGTGTCCA ATGAAAATCT AGATTATGCC 1560 ATTTTAAAAC TAAAAGAAAA TGGAAATGCG TTTCCTCCAG GACTATGGCG ACAGATTTCT 1620 CCTCAACCAT CTACTGGTTT GATTTATTTA ATTGGTCATC CTGAAGGCCA GATCAAGAAA 1680 20 ATAGATGGTT GTACTGTGAT TCCTCTAAAC GAACGATTGA AAAAATATCC AAACGATTGT 1740 CAAGATGGGT TGGTAGATCT CTATGATACC ACCAGTAATG TATACTGTAT GTTTACCCAA 1800 AGAAGTTTCC TATCAGAGGT TTGGAACACA CACACGCTTA GTTATGATAC TTGTTTCTCT 1860 25 GATGGGTCCT CAGGCTCCCC AGTGTTTAAT GCATCTGGCA AATTGGTTGC TTTGCATACC 1920 TTTGGGCTTT TTTATCAACG AGGATTTAAT GTGCATGCCC TTATTGAATT TGGTTATCT 1980 ATGGATTCTA TTCTTTGTGA TATTAAAAAG ACAAATGAGA GCTTGTATAA ATCATTAAAT 2040 GATGAGAAAC TTGAGACCTA CGATGAAGAG AAAGCCCGGC CCAGGCCAGC CTACCGGCGA 2100 CTAGGATGCT TTCGCTTTCG CTCTCGCTTT CCAATACTCG GGACTGGGGA AACCGGGAGA 2160 ATAGAAGCAG GCAAGGACCG CCGTGGGCAC GGGGTCAGTG AGACAGGGTC CTGCTCGCGG 2220 30 COTCAAGGAG GAGCGCTGTG GGTGTCCCCA GCGCAGCCAA TCGGCTTCCG AAGTAGCTGG 2280 AGCTCTGGAG CCTTTGCTTC CTCAAATACG AGCGGGAACT GCGTTGAGCG CTGGATTCCA 2340 GGCCGAGTGC TGGCGAGGCG CGCAGTCTCT AAAGAGCAAC AGAATAATTG CAGTACTTCT 2400 CTAATGAGGA TGGAGTCTAG AGGAGACCCA AGAGCCACAA CTAATACCCA GGCTCAAAGA 2460 35 TTCCATTCAC CTAAGAAAAA TCCAGAAGAC CAGACCATGC CCCAAAATAG GACAATATAT 2520
GTTACCTTGA AGGCTGTCAG AAAAGAGATA GAAACTCACC AAGGCCAAGA AATGCTTGTG 2580
CGTGGCACAG AAGGAATCAA AGAGTACATA AACCTTGGAA TGCCCCTCAG TTGTTTCCCT 2640 GAAGGTGGCC AGGTGGTCAT TACATTTTCC CAAAGTAAAA GTAAGCAGAA GGAAGATAAC 2700 CACATATTTG GCAGGCAGGA CAAAGCATCG ACTGAATGTG TCAAATTTTA CATTCATGCA 2760 ATTGGAATTG GGAAGTGTAA AAGAAGGATT GTTAAATGTG GGAAGCTTCA CAAAAAGGGG 2820 40 CGCAAACTCT GTGTTTATGC TTTCAAAGGA GAAACCATCA AGGATGCACT GTGCAAGGAT 2880 GGCAGATTTC TTTCCTTTCT GGAGAATGAT GATTGGAAAC TCATTGAAAA CAATGACACC 2940 ATTTTAGAAA GCACCCAGCC AGTTGATGAA TTAGAAGGCA GATACTTTCA GGTTGAGGTT 3000 GAGAAAAGAA TGOTCCCCAG TGCAGCAGCT TCTCAGAATC CTGAGTCAGA GAAAAGAAAC 3060 ACCTGTGTGT TGAGAGAACA AATCGTGGCT CAGTACCCCA GTTTGAAAAG AGAAAGTGAA 3120 AAAATCATTG AAAACTTCAA GAAAAAAATG AAAGTAAAAA ATGGGGAAAC ATTATTTGAA 3180 45 TTGCATAGAA CAACGTTTGG GAAAGTAACA AAAAATTCTT CTTCGATTAA AGTAGTGAAA 3240 TIGGATAGA CARGITIGO GAAATATATAA AAAATTICT GGGACAGTGC AACTACGGGT 3300
TACGCCACCT GCTTTGTTTT TAAAGGATTG TTCATTTTAA CTTGTCGGCA TGTAATAGAT 3360
AGCATTGTGG GAGACGGAAT AGAGCCAAGT AAGTGGGCAA CCATAATTGG TCAATGTGTA 3420
AGGGTGACAT TTGGTTATGA AGAGCCAAGT AAGTGGGCAA CCATAATTGG TCAATGTGTA 3480
CCTTGGTTTG AGATACATAA TGAAGAGCTT GACTATGCTG TCCTGAAACT GAAGGAAAAT 3540
GGACAACAAG TACCTATGGA ACTATATAAT GGAATTACTC CTGTGCCACT TAGTGGGTTG 3600 50 ATACATATTA TIGGCCATC ATATGGAGAA AAAAAGCAGA TIGATGCTIG TGCTGTGATC 3660
CCTCAGGGTC AGCGAGCAAA GAAATGTCAG GAACGTGTTC AGTCTAAAAA AGCAGAAAGT 3720
CCAGAGTATG TCCATATGTA TACTCAAAAGA AGTTTCCAGA AAATAGTTCA CAACCCTGAT 3780
GTGATTAACCT ATGACACTGA ATTTTTCTTT GGGGCTTTCCG GCTCCCCTGT GTTTGATTCA 3840
AAAGGTTCAT TGGTGGCCAT GCATGCTGCT GGCTTTGCTT ATACTTACCA AAATGAGACT 3900
CGTAGTATCA TTGAGTTTGG CTCTACCATG GAATCCATCC TCCTTGATAT TAAGCAAAGA 3960 55 60 CATAAACCAT GGTATGAAGA AGTATTTGTA AATCAGCAGG ATGTAGAAAT GATGAGTGAT 4020 GAGGACTTGT GAGAATTCAG TCTACTGGAT TTAAGGGAAT GGCTTATGGA GTTGFTATTT 4080 CGTAGGCATT GAAAATGGTT TTCTAAACTC CAAAATGGTC ATCTTATCAA TAATAATAAT 4140 65 GTGCTGGGAT TACAAGTTTG AGCCACTGCA CCTGGCTAAC TTGCCCTATT TTAAAGTCAA 4560 GCAATGGGAA GAATAACAAG ATTATATAGT AATCAGTTTC ATGACACTAA AAGTCATATA 4620 GTCATAGGGT TITTTCATCT TTCATATCTT TGCCTAAATT CATTTGCTAC AGTGCAGGAA 4680 70 GTCATAGGGT TITITICATET TICATATETT TGCCTAAATT CATITGETAC AGTGCAGGAA 4680
CCAAAACTTG TTCATCAT GATTCCCTAC ATCTGACATA AGGAAAGTAA GTGCTCAGAA 4740
AAATGTGCAG GTCAATAAGT TGCAAAAGTT GGGGCTGCAA TTAATGCTAA CATAAGAGGT 4800
AAATGCTTGA TTAGAAATGA TCTCAAAACC TITTAGAATT TCCAAAATCT TCATATTACT 4860
GAAACTGTCG GAATATATGG GTCCTGAAAT TCAGAAGATG ATAGTCACT TTCCCATATT 4920
TATAGGCTAT TAAGGCAAGG GATATCTTCAA ACATCATATT ACTTTATTTA GATTTCTACT 4980
ACTCCAATTA TTAATGTTAT GTATTTCTCA TTGTTTTACT TCTTCATGGT ATTATGAAGA 5040
CTATATAGAT GATTCAACCA AGCCTGCAAA TCTCCCTCTT GTGGAATTCC ACTGGACCCA 5100 75 ATCTGTTTTC CATTTCCATT GCAATACTAC TAAAGCCATA CAATATCAAG CACCCTCCCT 5160

CTAGGTCCAG GGACTATCAC AGAAGAAGCA GGCATGTAAG ATTTTAAGGA CTGGTTTCGA 5220
GGGGTCGATT GTAGGAAAAC AGCCTGTTGC ATTGTAAGAG TGATGTCACC TTGAAGAGCA 5280
GCTGGCATGA TGACTGCTGT TTGACTCCTG CATACCAAGA TATTCTGCAG CAATGTCTT 5340
AAACAGTGCC GGTAGTACAG ATAACCCCTC ATAAAGATGC TTATCTAACC TCCCCAGTGT 5400
TCAGGTGTTT CACAAGAAAG TCTGAGATAT GACTAGCTAC ACGTTTTGCC AAAAATGCTT 5460
GTTATATAAA GGGTACTTTT GGGAGGTOA GTGCCGCCAT TTAGTGGCTG CTAGAAACAT 5520
TGCTTCTGTT TGTAAGTTCC TATTAAATGT TCTTTCTGAG AAAAAAAAA

10 SEQ ID NO:259 PBM4 Protein sequence: PBM4 Protein sequence: BAB67788

MDTVMKQTHA DIPVDHCLSG IRKCSSTFKL KSEVNKHETA LEMQNPNLNN KECCFIFTLN 60
GNSRKLDRSV FTAYGKPSES IYSALSANDY FSERIKNQFN KNIVYEEKT IDGHINLGMP 120
LKCLPSDSHF KITFGQRKSS KEDGHILRQC ENPNMECILF HVVAIGRTRK KIVKINELHE 180
KGSKLCIYAL KGETIEGALC KDGRFRSDIG EFEWKLKEGH KKIYGRQSMV DEVSGKVLEM 240
DISKKKALQQ KDHRKKIKQN ESATDENHQ SLIQSKKKVH RPKKDGETKD VEHSREQILP 300
PQDLSHYIKD KTRQTIPRIR NYYPCSLPRK YRQINSQVRR RPHLGRRYAI NILDVQKEAIN 360
LLKNYQTINE AIMHQYFNFK EEAQWVRKYF REEQKRMNIS PAKQENIYKK DFGKMTANSV 420
SVATCEQLTY YSKSVGFMQW DNNGNTGNAT CFVFNGGYIF TCRHVVHLMV GKNTHPSLWP 480
DIISKCAKVT FTYTSECFTP DNWFSIEPWL KVSNENLDYA ILKLKENGNA FPPGLWRQIS 540
PQPSTGLTYL IGHPEGQIKK IDGCTVIPLN ERLKKYPNDC QDGLVDLYDT TSNYYCMFTQ 660
RSFLSEVWNT HTLSYDTCFS DGSSGSPVFN ASGKLVALHT FGIFYQRGFN VHALIEFGYS 660
MDSILCDIKK TNESLYKSLN DEKLETYDEE KARFRPAYRR LGCRFRSRF PILGTGETGR 720
ERGKDRRGH GVSETGSCSR RQGGALWVSP AQPIGGRSSW SSGAFASSNT SGNCVERWIP 780
GRVLARRAVS KEQQNNCSTS LMRMESRGDP RATINTQAQR FHSPKKNPED QTMPQNRTIY 840
VTLKAVRKEI ETHQGQEMLV RGTEGIKEYI NLGMPLSCFP EGGQVVTTFS QSKSKQKEDN 900
HIFGRQDKAS TECVKFYTHA IGIGKCKRRI VKCGKLHKKG RKLCVYAFKG ETIKDALCKD 960
GRFLSFLEND DWKLIENNDT ILESTQPVDE LEGRYTPQVEV EKRMVPSAAA SQNPESEKRN 1020
TCVLREQIVA QYPSLKRESE KIIENFKKKM KVKNGGTLFE LHRTTIGKVT KNSSIKVVK 1080
LLVRLSDVG YLFWDSATTG YATCFVFKGL FILTCRHVID SIVGDGIEPS KWATIIGQCV 1140
RVTTGYEELK DKETNYFFVB PWFEHNEEL DYAVLKLKEN GQQVPMELYN GITPVPLSGL 1220
HIIGHPYGE KKQIDACAVI PQGQRAKKCQ ERVQSKKAES PEYVHMYTQR SFQKIVINPD 1260
VITYDTEFFF GASGSPVFDS KGSLVAMHAA GFAYTYQNET RSIIEFGSTM ESILLDIKQR 1320
HKPWYEEVFV NQQDVEMMSD EDL

31

SEQ ID NO:260 PBQ1 DNA sequence Nucleic Acid Accession#: NM_015642

11

40

Nucleic Acid Accession#: NM_015642
Coding sequence: 489-2489 (underlined sequence corresponds to start and stop codon)

21

	1	11	21	31	41	2T	
45	1	1	!	<u> </u>	<u></u>	1	
43	***************************************	AAAAATACAT					60
		GAACTCTGAG					120
		TGCTGTCTGA					180
		CTCTGCTCCC			+		240
50		AAGAGTGACA					300
50		GCCATCTGAG					360
		CTGCCTGAAC					420
		ACTGACAAAC					480
		GACCGAGCGC					540
		CAACGAGCAG					600
55	ACGGGAGCAT	GCTGCGCGCA	CACCGCTGCG	TGCTGGCAGC	CGGCAGCCCC	TTCTTCCAGG	660
	ACAAACTGCT	GCTTGGCTAC	AGCGACATCG	AGATCCCGTC	GGTGGTGTCA	GTGCAGTCAG	720
	TGCAAAAGCT	CATTGACTTC	ATGTACAGCG	GCGTGCTACG	GGTCTCGCAG	TCGGAAGCTC	780
	TGCAGATCCT	CACGGCCGCC	AGCATCCTGC	AGATCAAAAC	AGTCATCGAC	GAGTGCACGC	840
	GCATCGTGTC	ACAGAACGTG	GGCGATGTGT	TCCCGGGGAT	CCAGGACTCG	GGCCAGGACA	900
60	CGCCGCGGG	CACTCCCGAG	TCAGGCACGT	CAGGCCAGAG	CAGCGACACG	GAGTCGGGCT	960
	ACCTGCAGAG	CCACCCACAG	CACAGCGTGG	ACAGGATCTA	CTCGGCACTC	TACGCGTGCT	1020
	CCATGCAGAA	TGGCAGCGGC	GAGCGCTCTT	TTTACAGCGG	CGCAGTGGTC	AGCCACCACG	1080
	AGACTGCGCT	CGGCCTGCCC	CGCGACCACC	ACATGGAAGA	CCCCAGCTGG	ATCACACGCA	1140
	TCCATGAGCG	CTCGCAGCAG	ATGGAGCGCT	ACCTGTCCAC	CACCCCGAG	ACCACGCACT	1200
65	GCCGCAAGCA	GCCCCGGCCT	GTGCGCATCC	AGACCCTAGT	GGGCAACATC	CACATCAAGC	1260
	AGGAGATGGA	GGACGATTAC	GACTACTACG	GGCAGCAAAG	GGTGCAGATC	CTGGAACGCA	1320
	ACGAATCCGA	GGAGTGCACG	GAAGACACAG	ACCAGGCCGA	GGGCACCGAG	AGTGAGCCCA	1380
	AAGGTGAAAG	CTTCGACTCG	GGCGTCAGCT	CCTCCATAGG	CACCGAGCCT	GACTCGGTGG	1440
	AGCAGCAGTT	TGGGCCTGGG	GCGGCGCGGG	ACAGCCAGGC	TGAACCCACC	CAACCCGAGC	1500
70	AGGCTGCAGA	AGCCCCCGCT	GAGGGTGGTC	CGCAGACAAA	CCAGCTAGAA	ACAGGTGCTT	1560
	CCTCTCCGGA	GAGAAGCAAT	GAAGTGGAGA	TGGACAGCAC	TGTTATCACT	GTCAGCAACA	1620
	GCTCCGACAA	GAGCGTCCTA	CAACAGCCTT	CGGTCAACAC	GTCCATCGGG	CAGCCATTGC	1680
	CAAGTACCCA	GCTCTACTTA	CGCCAGACAG	AAACCCTCAC	CAGCAACCTG	AGGATGCCTC	1740
	TGACCTTGAC	CAGCAACACG	CAGGTCATTG	GCACAGCTGG	CAACACCTAC	CTGCCAGCCC	1800
75	TCTTCACTAC	CCAGCCCGCG	GGCAGTGGCC	CCAAGCCTTT	CCTCTTCAGC	CTGCCACAGC	1860
		CCAGCAGACC					1920
	CTGCACAGCT	GCCAGCGCCA	CACCCCTGG	CCTCATCCGC	AGGCCACAGC	ACAGCCAGTG	1980
		AAAAAAGCCT					2040
		CAAGCACATG					2100
80		CTTCTCCTTA					2160

51

5	TGCACATGCG TCTCTCACAA CCCCTGCAGC AGGGGACCAC ACGACCACAC AACAAAACAA	GACCCTCCACCGGGACCCCCACCCCCACCCCCACCCCCACCCCCACCCCCACCCC	GGAGAGAAGT GGAGCGACACG GGTGCCCCCC TCCGTCTGACC AAAACAAAC TTACTTTCTC GCCTGCTGGT CGGATGGTGGT	CCTACGAGTO TGGCCCTGC; CTGGCCCCCC CAGCAAAGTA GATAAGTAGT AAACAAAAAA TTTTTGTTT ACATTACATT	CTACATCTGC CAGTGCCAGC AGGCGTGGTG TGACCAAATC ATCTTTCTT GCTATGCCAC TGTTTCGTTT TCCGGAGGCT TGGTAGTCCT TGGTAGTCCT	TCCCTCAACG ARAAGAAGT ARAGGACCC GCCTGCACCG GACCAGTTCA CTTTCTTATG TAGAATTTAA CATTTTGTAC TCGGTGAATA TCAAGAGGTC ARAAAAAAAA	2220 2280 2340 2400 2460 2520 2580 2640 2700 2760 2820
15	PBQ1 Protein sec		NO:261 PBQ1 Pr 3457	oteln sequence:			
20	SQNVGDVFPC NGSGERSFYS QPRPVRIQTL SFDSGVSSSI	VVSVQSVQK GIQDSGQDTPF GAVVSHHETA VGNIHIKQEM GTEPDSVEQQ	LIDFMYSGVL R GTPESGTSGQ A LGLPRDHHM EDDYDYYGQ FGPGAARDSQ	RVSQSEALQI Q SSDTESGYLC IE DPSWITRIH Q RVQILERNE AEPTQPEQAA	LTAASILQIK T Q SHPQHSVDR E RSQQMERYI S EECTEDTDQ . EAPAEGGPQI	A AGSPFFQDKL VIDECTRIV 12A I YSALYACSMQ LS TTPETTHCRK A EGTESEPKGE I NQLETGASSP TSNLRMPLTL	180 240 300 360
25	TSNTQVIGTA LPAPQPLASS SFSLKDYLIK	GNTYLPALFT AGHSTASGQC HMVTHTGVR	TOPAGSGPKP EKKPYECTLO A YQCSICNKRI	PLFSLPQPLA NKTFTAKQN FTQKSSLNVH	GQQTQFVTVS Y VKHMFVHT M RLHRGEKS	QPGLSTFTAQ GE KPHQCSICW YE CYICKKKFSI AK FDQIEQFNDI	480 TR 540 I 600
30							
35	SEQ ID NO: 262 Nucleic Acid Acce Coding sequence	ssion#: Al6541		ce corresponds to	start and stop cod	on)	
55	1	11	21	31	41	51 !	
40	AACTCTACCA CGGAAAACTC GAATTGGTGC AATGTTGGGA AGCAGCAAAT	CTTCTGCGCC CCTCACGATG CAGTCAGCAT AAACACCTGF TAGAAAATGF	CTCGTTTCGA TAAAACGAAG GTCAGAGACA ATTAAAGGAA GTCCAAACTA	CCATATAAA ATCAGGAGCA GACCACATAG GACTCATGCA TTGTCATTAA	ACGACCTATG GATTTGAAGA CCTCTACTTC ACTTGTTTTC ACACTGATAA	CCCTTCTACA CGAACTGCGT ATTACAAAGT CTCTGATAAA TGGCAATGAA AACTTTATGT AGATCATGGT	60 120 180 240 300 360 420
45	GGAGGTGAGG AATTTTCCTA GTAACACAAA ACTTATTCAG	ATTCTTGTGC GTGGAAATT TATTGGTGGA AAAGCCCCTA	CAAAACAGAC TGCTAAACAT ATTAAGGTCA TGATACAGAC	ACAGGCTCAG ATTTCAAAAA TCTACATTTC TGCACCAAGA	AAAATTCTGA CAAATGAAAC CAGAATCAGC AATTTATTTC	ACAAATAGCT AGAACAGAAA TAATGAAAAG AAAATAAAG ATCTACGGAG	480 540 600 660 720
50	TTTGCAGAAC	ATCGAGTACO TGCAAGATAI ATTTGCCATO	AAATGGAATG	AATAAGGGAG CAGGAACATA	AACATGCATT	AGTTCTGTTT GGCCAGACTT TATCCCAAAT	780 840 900
55	SEQ ID NO:263 F Protein Accession	#: NP_06	0170				
60	NQKLQEKMT VQPLRNKKTI	P QGECSVAET O RLDVDSLFSI	L TPEEEHHMI	CR MMAKREK LLSLLEEATT	IIK ELIQTEKD	GTL RRSQSDRTE YL NDLELCVRE G EVFLQIKOPL	V 120
65	SEQ ID NO:264 F Nucleic Acid Acce Coding sequence	ssion#: NM_01		insuce coussbour	is to start and stop	codon)	
70	CCTCCAGGCT	CCGGGACCCG	21 GCCGCCGCC GCCGCGCCA TCCTCCGCTC	CCGCCCCCGT	GCGCGCCCCG	CCGCCGCCGC	60 120 180
75	GGGGACGCAG CGCGGCGGAC GCCGCCTGGC GCTCGCGCAC	CGCGCGCCCC CCCTCCTTCT GGGCGGGAGG CCCCCGGAA	CAGCGGGCCC CCTCCCCGCG GGAGGTGGCA GGTAGACCGG GGCGGGGGT	GGGAAAAGCC TGCGCGTGCC GGCGCGTTTG GAAGGGGAGG	GCGGCGCGCG CTTCTTGGCT CAGGAGGGGC CGGGCGGGCG	CGCGCGCCTG GCGCGCCGGC GCACCTCTTC GAGAGGAGAG	240 300 360 420 480
80	TCTAGACAGT	CTGATCCGGG	CTGGGGGCGT GGGAGTGTGG	GTACACTCGG	CGCACCTGCG	AGACTACAGA	540 600

		GGAGGGGGGG					660
		GTGAACGACG					720
		ACGGAGATGC					780
5		CTCTTGCGGG					840
5		GAGTACTTTG					900
		CCGGCTGATG					960 1020
		CTGGAGATGC					1020
		TCCCGCATCG					1140
10		CTGGTACCCC					1200
10		GGCTTCCCTT					1260
		GGCAGCATGC					1320
		GCCTCTTTGC					1380
		CCCCAACTGC					1440
15		AAGCGAGGCC					1500
	TGGGTCCCCA	GGGGGCCTGA	GGGAGGCAGG	CATCCTTCCA	TGCGGTCTAT	GTGGTAAGGT	1560
		GCCAACCGGC					1620
	GCTGGGCTAC	ATCGACCTTC	CTCCTCCGAG	GCTGGGTGAG	AATGGGCTAC	CCATCTCTGA	1680
••		GGCCCCCGAA					1740
20		TTCCGTGATG					1800
		TCCTGCCCTG					1860
		TCCCATGATG					1920
		AGGCCTGATC					1980
25	GCCTCACAAG	TGTCAGACCT	GCAATGCTTC	TTTTGCCACC	CGAGACCGTC	TGCGCTCCCA	2040
25		CATGAAGACA					2100
		GACCACCTGA					2160
		TTCTCCTCTG					2220 2280 \
		CAGGTCTCCA ACCTATGGCA					2340
30		TCCTATGGTG					2400
30		GGCTCTTTCT					2460
		AAGTACCCAT					2520
		ATCCAGAAGG					2580
		GGCTCACCTT					2640
35		GTTCAGTCGG					2700
		CCTGAAGGGA					2760
		GGAAATGCTG					2820
		TCATTTTTAA					2880
40		GGTCTTTAGA					2940
40	ACTTGGTATG	GGACAGGGGC	AGAAAACACT	ACATAGGCCT	CCAAGGCAAA	ACCAGTCCCA	3000
		TGGGAAGAAG					3060
		CTATGATATT					3120
	TTCGTCATCC	TCCCTTCCCA	. TATCCTTCAA	AAGAACCACA	CTAGGGTCTC	CACCTACTTA	3180
15	TACAATGCGG	ATGCCCAACT	GTTTTTAAGG	AAGCCAGAAG	CATCCCATGG	ACCATGGGGT	3240
45		CAAGAGCCCC					3300
•	GAGCCCTGCT	TGGAGGCGAG ATTTCAGTTC	CATTITCACT	GCTAGGACAA	CUTCAGCTGT	TGAGGACACC	3360 3420
	CCCACCCCAA	ATTACAGTIC	TIALGIGATI	TTAACCATIC	CACCOCCOCACO	CARTITION	3480
	TICICIAATT	CCCAGGTGAT	ACACACCOCO	TITITIAGGAC	CAGTIGIAGI	GAATIGCTAC GERACCOTTAC	3540
50	TGAMAGCIAI	TGTTTAGATG	TACCATA ATT	ANCHICCETA	CHAICPLANCE	TEARCTCTAT	3600
50		GTTTTATGCA					3660
	TTTCAATCCT	GTTGGGAACC	ACCAACCTCC	GACAGCCGGC	AGGTAGGGAC	ATTYTTTACC	3720
		CACATGTGAG					3780
		AAAATGTTAG					
55							
•	SEQ JD NO:265	PBY7 Protein se	quence:				
	Protein Access						
		_					
60	MERVNDASC	S PSGCYTYQ'	VS RHSTEMLH	NL NQQRKNG	GRF CDVLLRV	/GDE SFPAHRA	VLA 60
	ACSEYFESVE	SAQLGDGGA	A DGGPADVG	ga taapggg.	AGG SRELEMI	ITIS SKVFGDIL	DF 120
	AYTSRIVVRI	.ESFPELMTAA	KFLLMRSVIE	ICQEVIKQSN	VQILVPPARA	DIMLFRPPGT	180
	SDLGFPLDM	I NGAALAANS	SN GIAGSMQP	EE EAARAAG/	AAI AGQASLP	/LP GVDRLPM\	/AG 240
CE	PLSPQLLTSP	FPSVASSAPP I	LTGKRGRGRP	RKANLLDSMI	GSPGGLREA	G ILPCGLCGKV	300
65	FTDANKLRQ	H EAQHGVTSI	Q LGYIDLPPP	R LGENGLPISI	E DPDGPRKRS	R TRKQVACEIO	360
	GKIFRDVYH	NRHKLSHSG	E KPYSCPVCG	LRFKRKDKM	SY HVRSHDG:	SVG KPYICQSC	GK 420
	GESKEDHUNG	3 HIKQVH1SE	R PHKCQTCNA	SFAIRDRLR	C DI CDACHEDKY	PC QVCGKYLR	AA 48U
	YMADHLKKI	AS EGPSNFCSI	C NREGQKCSI	IQ DPIESSUS I	G DESDASDE	CT PEKQSANGS	F 340
70						GPL GDLGPALC	13r 000
70	rsryynmst.	L ESFGFQIVQS	Arabalvuph	ADOMADORE	- A		
	SEO ID MO-358	PBY9 DNA seque					
	Nucleic Acid Acc						
75	Coding sequence	A: 174-19		ouence correspon	ds to start and sto	o codon)	
	Town-9 anders to	114-16	(-4-01.00 301.00po.		,,	
	1	11	21	31	41	51	
	1	1	1	1		1	
00	CCCTACTCCG	CCTCTCGGGA	TCCTTTAAGA	GGCGGGGCTT	GGCTGCCAGC	TCCGCGGCCC	60
80	GGGCAAAAGG	CTGGGACTTT	ACTCCGGGTG	GCGGCGAGGA	CGAGTCTGTG	CTCCATCAGC	120

			GCCCCCAAAC				180
			CCCAGGCAGA				240
	TCCAGGATGT	GCTGCCGGCC	CTGCCGAATC	CAGATGACTA	TTTTCTCCTG	CGTTGGCTCC	300
_	GAGCCAGAAG	CTTCGACCTG	CAGAAGTCGG	AGGCCATGCT	CCGGAAGCAT	GTGGAGTTCC	360
5	GAAAGCAAAA	GGACATTGAC	AACATCATTA	GCTGGCAGCC	TCCAGAGGTG	ATCCAACAGT	420
			GGCTATGACC				480
	TTGGACCTCT	GGATGCCAAG	GGTCTGCTGT	TCTCAGCCTC	CAAACAGGAC	CTGCTGAGGA	540
			CTGCTTCTGC				600
			ACCATAATTT				660
10			GCCTATGGAG				720
			TTTGTTGTTA				780
	ACCOMPAGNOS	POCCUMOCING.	AGTGAGGACA	CTCCTAACAA	CATCATCOTC	CTGGGAGCAA	840
	VCCICUICUV	CCOMMONACOC	AAACATATCA	CCCCTGACCA	CONCOCACAC	GAGTATGGGG	900
	ATTOGRAGOR	BCXCCCBCXQ	GGAAACCCCA	ACTOCAAATC	CAACATCAAC	TACCCCCCTC	960
15			GTGCGAGACC				1020
13							1080
			CACCAAGTGG				
			GATGGAGCGG				1140 1200
	AGATGGGAGA	GAGGCAGCGG	GCAGGGGAGA	TGACAGAGGT	GUIGUCCAAC	CAGAGGTACA	
20			GATGGGACCC				1260
20	TGCGGTTTGA	CAACACCTAC	AGCTTCATTC	ATGCCAAGAA	GGTCAATTIC	ACTGTGGAGG	1320
	TOCTGCTTCC	AGACAAAGCC	TCAGAAGAGA	AGATGAAACA	GCTGGGGGCA	GGCACCCCGA	1380
			CAGGCCTGGC				1440
	CCTTGTAGCA	GTCATTTTCG	CACAACCCTG	AAGCCCAAAG	AAACTGGGCT	GGAGGACAGA	1500
~~			GTTAGGCAGA				1560
25	TATCAAATAC	CTAAGGAGTC	CCCAGGAGCT	GGCTGGCCAT	CGTGATAGGA	TCTGTCTGTC	1620
	CTGTAAACTG	TGCCAACTTC	ACCTGTCCAG	GGACAGCGAA	GCTGGGGGTG	GCGGGGGCCA	1680
	TGTACCACAG	GGTGGCAGCA	GGGAAAAAA	TTAGAAAAGG	GTGAAAGATT	GGGACTTAAC	1740
	ACTTCAGGGA	AGTCAGCTGC	CGGGGAGAAA	CTTGCTCCTA	AATGAACACA	TAAGTTTAGA	1800
	TCGCAATGAG	GAGTAGCAGG	GTAGCTGGTT	GCTAGAGTTA	CGGTGGGGAT	CAGAAACTCT	1860
30	TCCAAACATT	TTAGCACTGA	GGCTGGGGTA	GCTTTTGGCT	TTTCCCAGGT	CTCAGGAGGT	1920
			TTCCCACTCG				1980
	GACTTTGGCA	ACTCCTGGGC	CACACGGCCT	GCCTCTTTGA	TTACTAATGA	TTGTCAGTGA	2040
			CGGGTACCCA				2100
	GGGAAATGAC	CCACAGGGAT	CGCAGCTGCA	GGGAGGGCCA	GGGAGGTTGG	GGGTGGGAGT	2160
35	GAATGCTAAA	AGCAGATCGT	CCAGTGCCCT	TTTCAGTGCT	ACCGGCCTCT	CACCAAGCAG	2220
	TCCTCCATGT	GAGCAACCCC	GAGACAAAAA	TGCTAAGTGG	GATCAAGAGA	GCAGCACTCG	2280
	GAGAGGGTGT	TTGCCAGTCT	GAGTGTCCCG	CGGTGCCCGC	CAACCCGCTT	CCTGACTGAC	2340
	CTGAGCAAGG	TCTTACTAAG	CAGTCCCATC	TCTGTGGGAG	GCATGCAACG	CGTGCAGGGA	2400
			AGCCAGGCCT				2460
40			GACTAGGGGC				2520
. •	CAGCCCTTAC	CCCAATCCCA	CGAGCCCCGC	CAACGAACCA	CAGGTGCTGG	GCTTTAGAGA	2580
	ACATGGGAAG	GOGGCCCCAG	ACCTGGCGGG	AACGCCTTTC	CCTCAGAGCC	AGGCCCCGGC	2640
	CCCCTCTCCC	AAGCTCATCT	TGCGAAGCTG	AGGGAGCTCA	GGGCAAAGGC	CAGGCTAGCG	2700
			CTGCACGGGC				2760
45			GAAAATTAAC				
	10002101111						
	SEQ ID NO:267	PBY9 Protein se	quence:				
	Protein Accessi						
50	I I OLLIS PLEASE		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
50	Meanvente	DDOKENTAKE	D ENVOIVE P	AT PNPDDYFT	IR WIRARSE	DLQ KSEAMLRI	KHV 60
	MOCKAGDES		DOVI SCOMO	יייייייייייייייייייייייייייייייייייייי	V DIIGEI DAR	G ILFSASKQD	r. 120
	T DTTO COECE		T VI COVICE	T ITVICTOR OF	VUI WYDAV	EA YGEFLCMFE	7F 180
	LKIAMRELE		I WINNEY OF	I HIDCEGOOD	CAMMINEN		2 240
55	NYPELLKRIA	ONDIGORALIP	V AINLIAPPLA	Chirrrim.	P GAM M V DA F	LK HISPDQVPV	200
JJ	YGGIMIDPD	G NPKCKSKIN	Y GGDIPKKY	Y KDQVKQQ	TEN SVQISKO	SSH QVEYEILF	707 300
						VPED GTLTCSD	PGI 300
	YVIREDNIY	S FIHAKKVNF	T VEVILPDKA	2 ERKWKÓTO	AG IPK		
60	222 m 1/2 222	BBITO BATA					
UU		PBH8 DNA seque					
	Nucleic Acid Acc					· andomi	
	Coding sequence	£ 301-14	40 (underlined sec	quence correspond	is to start and stop	codon)	
	_						
65	1	11	21	31	41	51	
UJ			1			magas magas	
						TGGGATCGCA	60
						AAATCATGTA	120
	TATATCCGAG	ACCGCTTCTG	TCCATTTAGG	CTTATCCCAG	GTGGAGCTCA	CGGGCAACAG	180
70	TATTTATGAA	TACATCCATC	CTTCTGACCA	CGATGAGATG	ACCGCTGTCC	TCACGGCCCA	240
70	CCAGCCGCTG	CACCACCACC	TGCTCCAAGG	TATGAGATAG	AGAGGTCGTT	CTTTCTTCGA	300
	<u>ATG</u> AAATGTG	TCTTGGCGAA	AAGGAACGCG	GGCCTGACCT	GCAGCGGATA	CAAGGTCATC	360
	CACTGCAGTG	GCTACTTGAA	GATCAGGCAG	TATATGCTGG	ACATGTCCCT	GTACGACTCC	420
	TGCTACCAGA	TTGTGGGGCT	GCTGGCCGTG	GGCCAGTCGC	TGCCACCCAG	TGCCATCACC	480
	GAGATCAAGC	TGTACAGTAA	CATGTTCATG	TTCAGGGCCA	GCCTTGACCT	GAAGCTGATA	540
75	TTCCTGGATT	CCAGGGTGAC	CGAGGTGACG	GGGTACGAGC	CGCAGGACCT	GATCGAGAAG	
,	ACCCTATACC	ATCACGTGCA	CGGCTGCGAC	GTGTTCCACC	TCCGCTACGC	ACACCACCTC	660
	CTGTTGGTGA	AGGGCCAGGT	CACCACCAAG	TACTACCGGC	TGCTGTCCAA	GCGGGGGGC	720
	TCCCTCTCCC	TGCAGAGCTA	CGCCACCGTG	GTGCACAACA	GCCGCTCGTC	CCGGCCCCAC	780
	TGCATCGTGA	GTGTCAATTA	TGTACTCACG	GAGATTGAAT	ACAAGGAACT	TCAGCTGTCC	840
80	CTGGAGCAGG	TGTCCACTGC	CAAGTCCCAG	GACTCCTGGA	GGACCGCCTT	GTCTACCTCA	900
-					41		

80

	CAAGAAACTA GGAAATTAGT (AACCCTTACC CCCCACAGCA (CTCGGAAACT GGAGAGCCAG (ATACAGCTCG ! ICCCCCTGCA !	TTCCAAATGG AGCGCTGCTG	ACAAACTGGA . CTCCTCCAGA .	ATGCGGCCAG ACTGCAGCCC	960 1020 1080
5	CACTCAGAAA GCAGTGACCT TACGGACACT TCCTCTTGGA AAGTTCGGGC AGCCCCAAGG CCAGCCAGCG GTGAATGCCA CCAGCTAAAA ATCCTCCAGA	CTCTCACGTC ATCCCCTTGT GTGGCATTAT GCCACCGGCG	TTCAGCAGCA GAGGTGGCAC GCCAACCCCC AACACTGCTA	AAAAGCCAAT GCTTTTTCCT TAGTGCCTAG GGCACAGCCT	GTTGCCGGCC GAGCACACTG CAGCTCGTCT GGTGCCAAGC	1140 1200 1260 1320 1380
10	TACGAAGGCA AGCAGATGTC (CTCCTGTTTG CTCGCTGGAC (RIACCGCCAG	CICCCAGGA	COCAGAC <u>IGA</u>	1440
15	SEQ ID NO:269 PBH8 Protein seque Protein Accession #: NP_0056					
20	MKEKSKNAAK TRREKENGE GDAWGOPSRA GPLDGVAKE GNSIYEYIHP SDHDEMTAVL KVIHCSGYLK RQYMLDMSL KLIFLDSRVT EVTGYEPQDL I RGGWVWVQSY ATVVHNSRS	L GSHLLQTLE TAHQPLHHHL YDSCYQIVGI EKTLYHHVH SS RPHCIVSVN	OG FVFVVASD LQEYEIERSF LVAVGQSLPP GCDVFHLRY/ IY VLTEIEYKI	GK IMYISETAS FLRMKCVLAI S AITEIKLYSN A HHILLVKGQ EL QLSLEQVST	SV HLGLSQVEI (RNAGLTCSGY MFMFRASLDL (V TTKYYRLLS 'A KSQDSWRT/	T 120 7 180 240 K 300 AL 360
25	STSQETRKLY KPKNTKMKTK LQPHSESSDL LYTPSYSLPF S STLPASGECQ WHYANPLVPS PSFPSCGHYR EEPALGPAKA NYHRVLARRG PLGGAAPAAS VIITNGR	YHYGHFPLD S SSSPAKNPPE ARQAARDGAI	SHVFSSKKPM PPANTARHSL R LALARAAPE	LPAKFGQPQG VPSYEAPAAA C CAPPTPEAP	SPCEVARFFL VRRFGEDTAP G APAQLPFVLI	480 540 - 60 0
30	SEQID Nucleic Acid Accession#:	NO:270 PB./9 DN/ AA760894				
35	GGCACGAGGA GAAGATGTG CCAGCCATGT GGAACTGTTT GGAAACTCCA TAGACCTTGT GGTGATGGAT CTCTGCAGTA TAGAACTTCA GCACGTAATT	TCAGGTGCT CCACTGGAA AGTGGAAGA TCATCTGGA	G GTTCCATG AC TCGTTCCC AG TTCTTCAT A ATAGTGCC	GC TCTTCCTG AT CTACCCTC GG CCCCCAA TT TGTGGATA	AG CCGAAAAT CA CTCTATCC GGT TATATCC TA AGTTAGGT	AA 120 AG 180 ATC 240 FAA 300
40	AACTGAAGAT GAGATCATA TAAAAAACAG GAAAGAACC GAGATTGGAG GGATGCAGC GAAATGAGGG ATTCTCTCCT TTTGGACTTG CCCATAGCTT TAAACAGTTT CTCAGCCTAT	C ATAGAAAC C ACCGGCCC I AGAACCTTT GTATACTCTT	AC AAGGAA(AG GAATGCC A GAGAGRAC ACTTTGGAT	GAAG GTCATO AGC AGCCACO AT GGTCCTG A CAATTITAT	TGAA GATGGA CCAG AAGCTG TGA ACAGCTTG CC CAAACTTGG	AGGCA 42 GAAG 480 GAT 540 GC 600
45	GATTCAAAGC AAGAAAATG AAAATATGAA GTGAACATTT TACACATGAA AACCCCCAA YGTGATCATY TAGAGATGTY CAAAGAAATG TTTAGCTYTY	G TGGTAGCTI G GGGAATCO A CAGAAAAG CTTTAAAATA	IT AAGATGTT CC ATATCACA GT GAATCTG G TTCCATAA	TA GTGTAGC AGT GTAGTGT IGT TCTGTATA IT TTTTYTAA	IGC AGGCACO GAT ATTTGAC ATT CTGCCTAA AA AGCTTTGC	CTA 780 ATT 840 AGG 900 TT 960
50	GAAAACTGTA AGCTTCCCAT ATCTTCTTAC TTGGACATTT TATAGCTGCT AACACTTCCC TTGATTTGAA CTTAAAAAA	CATGTGTTTA GCAGAGCTA	. GGGATTGTY .A ACCATTAC	T TYTAAATTO AG ANTATGA	T TOCTAATTC	A 1080
55	SEQ ID NO:271 FBQ4 DNA sequency Nucleic Acid Accession#: AA14957 Coding sequence: 1-1363 (u		ce corresponds to	start and stop cod	ion)	
	1 11 1 1	21 1	31	41 	51	
60	ATGGAATCAA TCTCTATGAT GGCATAAATG GTATCAAAGA TTTGCCAAAT CCTTGACCAT	TGCAAGGAAG TCGACTTATT	GTCACTGTAG AGATGCGGCT	GTGTGATTGG ATCATGTGGT	AAGTGGAGAT CATAGGAAGT	60 120 180
65	AGAAATCCTA AGTITGCTTC GATGCTCTCA CAAAACAAA CTGTGGGACC TGAGACATCT AGGATAAACC AGTACCCAGA TTGATTGTCA AAGGATTTAA	TATAATATTT GCTTGTGGGT ATCCAATGCT TGTTGTCTCA	GTTGCTATAC AAAATCCTGA GAATATTTGG GCTTGGGCAC	ACAGAGAACA TTGATGTGAG CTTCATTATT TTCAGTTAGG	TTATACCTCC CAATAACATG CCCAGATTCT ACCTAAGGAT	240 300 360 420 480
70	GCCAGCCGGC AGGTTATAT CTTGCCCGCC AGTTGAATTT ATTGAAAATT TACCCCTACG AGCTTGGCCA CATTTTTTT AGAAACCAAC AGAGTGACTT	CATTCCCATT ACTCTTTACT CCTTTATTCC TTACAAAATT	GACTTGGGAT CTCTGGAGAG TTTGTCAGAG CCTATAGAGA	CCTTATCATC GGCCAGTGGT ATGTGATTCA TTGTGAATAA	AGCCAGAGAG GGTAGCTATA TCCATATGCT AACCTTACCT	540 600 660 720 780
75	ATAGTISCCA TIACITISCT CAACITTATT ACGCACCAA TGTAGAAAC AGCTIGGATG CTCGCTTAC CGATGAGAAG GTTCATGCAA ATATGAAAA ATCTCCTTTG GCATAATGAG TCACTACCA ACCTURAA	GTATAGGAGA ACTAAGTTTT GTCAGAGAGA CTCTTGGAAT CCTTGGCTTA	TTTCCACCTT TTCTTCGCTA TATTTGTTTC GAGGAAGAAG CTTTCCCTCC	GGTTGGAAAC TGGTCCATGT TCAACATGGC TTTGGAGAAT TGGCAGTCAC	CTGGTTACAG TGCCTACAGC TTATCAGCAG TGAAATGTAT TTCTATCCCT	1080 1140
	TCAGTGAGCA ATGCTTTAAA	CIGGRENAN	· ICHGTTTTA	1 CAGTOTAC	ACTIGGATAT	1200

GTCGCTCTGC TCATAAGTAC TTTCCATGTT TTAATTTATG GATGGAAACG AGCTTTTGAG 1260 GARGAGTACT ACAGATTITA TACACCACCA AACTITGITC TIGCTCTTGT TITGCCCTCA 1320 ATTGTAATTC TGGATCTTTT GCAGCTTTGC AGATACCCAG ACTGA 5 SEQ ID NO:272 PBQ4 Protein sequence: Protein Accession #: 41 11 21 31 51 10 MESISMMGSP KSLSETCLPN GINGIKDARK VTVGVIGSGD FAKSLTIRLI RCGYHVVIGS RNPKFASEFF PHVVDVTHHE DALTKTNIIF VAIHREHYTS LWDLRHLLVG KILIDVSNNM RINQYPESNA EYLASLFPDS LIVKGFNVVS AWALQLGFKD ASRQVYICSN NIQARQQVIE 120 180 LARQUNFIPI DLGSLSSARE IENLPLRLPT LWRGPVVVAI SLATFFFLYS FVRDVIHPYA 15 RNQQSDFYKI PIEIVNKTLP IVAITLLSLV YLAGLLARAY QLYYGTKYRR FPPWLETWLQ CRKQLGLLSF FFAMVHVAYS LCLPMRRSER YLFLNMAYQQ VHANIENSWN EEEVWRIEMY 300 360 ISTGINSIGL LSLLAVTSIP SVSNALNWRE FSFIQSTLGY VALLISTFHV LIYGWKRAFE EEYYRFYTPP NFVLALVLPS IVILDLLQLC RYPD 20 SEQ ID NO:273 PBQ5 DNA SEQUENCE Nucleic Acid Accession#: NM_001973 150-1445 (underlined sequence corresponds to start and stop codon) Coding sequence: 25 CCGCCGCCTT CTACTCCGCC GCGGGGTCG CAGCGGCTGC CGCGCCGTCC TCGAGTTTCC AGCGTGAGGA GGAGGCTGAG GGCGGAGAGG CGCATCGTGT TCGAGGCGGA GACCGAGGGG 120 GAGCCCCGCG CGCGGCGTCG CTCATTGCTA TGGACAGTGC TATCACCCTG TGGCAGTTCC 180 TTCTTCAGCT CCTGCAGAAG CCTCAGAACA AGCACATGAT CTGTTGGACC TCTAATGATG
GGCAGTTTAA GCTTTTGCAG GCAGAAGAG TGGCTCGTCT CTGGGGGATT CGCAAGAACA 240 30 AGCCTRACAT GARTRATGAC ARACTCAGCC GAGCCCTCAG ATACTRATRAT GTARAGARTA
TCATCARARAR AGTGRATGGT CAGARGITTG TGTACARGIT TGTCTCTTAT CCAGAGGATTT 420 TGAACATGGA TCCAATGACA GTGGGCAGGA TTGAGGGTGA CTGTGAAAGT TTAAACTTCA GTGAAGTCAG CAGCAGTTCC AAAGATGTGG AGAATGGAGG GAAAGATAAA CCACCTCAGC CTGGTGCCAA GACCTCTAGC CGCAATGACT ACATACACTC TGGCTTATAT TCTTCATTTA 540 35 600 CTCTCAACTC TTTGAACTCC TCCAATGTAA AGCTTTTCAA ATTGATAAAG ACTGAGAATC CAGCCGAGAA ACTGGCAGAG AAAAAATCTC CTCAGGAGCC CACACCATCT GTCATCAAAT 720 TTGTCACGAC ACCTTCCAAA AAGCCACCAG TTGAACCTGT TGCTGCCACC ATTTCAATTG 780 GOCCAAGTAT TTCTCCATCT TCAGAAGAAA CTATCCAAGC TTTGGAGACA TTGGTTTCCC 40 CAAAACTGCC TTCCCTGGAA GCCCCAACCT CTGCCTCTAA CGTAATGACT GCTTTTGCCA CCACACCACC CATTCGTCC ATACCCCCTT TGCAGGAACC TCCCAGAACA CCTTCACCAC 900 960 CACTGAGTTC TCACCCAGAC ATCGACACAG ACATTGATTC AGTGGCTTCT CAGCCAATGG AACTICCAGA GAATITGICT CIGGAGCCIA AAGACCAGGA IICAGICIIG CIAGAAAAGG ACAAAGIAAA TAAITCAICA AGAICCAAGA AACCCAAAGG GIIAGGACIG GCACCCACCC 1080 1140 45 TTGTGATCAC GAGCAGTGAT CCAAGCCCAC TGGGAATACT GAGCCCATCT CTCCCTACAG CTTCTCTTAC ACCAGCATTT TTTTCACAGA CACCCATCAT ACTGACTCCA AGCCCCTTGC
TCTCCAGTAT CCACTTCTGG AGTACTCTCA GTCCTGTTGC TCCCCTAAGT CCAGCCAGAC 1260 1320 TGCAAGGTGC TAACACACTT TTCCAGTTTC CTTCTGTACT GAACAGTCAT GGGCCATTCA 1380 CTCTGTCTGG GCTGGATGGA CCTTCCACCC CTGGCCCATT TTCCCCAGAC CTACAGAAGA CATAACCTAT GCACTTGTGG AATGAGAGAA CCGAGGAACG AAGAAACAGA CATTCAACAT 1440 50 1500 GATTGCATTT GAAGTGAGCA ATTGATAGTT CTACAATGCT GATAATAGAC TATTGTGATT TITGCCATTC CCCATTGAA ACATCTITIT AGGATTCTCT TIGAATAGGA CTCAAGTIGG ACTATATGTA TAAAAATGCC TTAATTGGAG TCTAAACTCC ACCTCCTCT GTCTTTTCCT 1620 1680 TITICTITIC TITICCITCCT TCCTITTCIT TTCTCCTTTA AAAATATTTT GAGCTTIGTG 55 CTGAAGAAGT TTTTGGTGGG CTTTAGTGAC TGTGCTTTGC AAAAGCAATT AAGAACAAAG TTACTCCTTC TGGCTATTGG GACCCTTTGG CCAGGAAAAA TTATGCTTAG AATCTATTAT 1800 AAA AAAAAAAA 60 SEQ ID NO:274 PBQ5 Protein sequence: Protein Accession #: NP_001864 MDSAITLWOF LLQLLQKPQN KHMICWTSND GQFKLLQAEE VARLWGIRKN KPNMNYDKLS 60 RALRYYYVKN IIKKVNGQKF VYKFVSYPEI LNMDPMTVGR IEGDCESLNF SEVSSSSKDV 120 65 ENGGKDKPPQ PGAKTSSRND YHSGLYSSF TINSLNSSNY KLFKLIKTEN PAEKLAEKKS 180
PQEPIPSVIK FVTTPSKKPP VEPVAATISI GPSISPSSEE TIQALETLVS PKLPSLEAPT 240
SASNVMTAFA TTPPISSIPP LQEPPRTPSP PLSSHPDIDT DIDSVASQPM ELPENLSLEP 300 KDQDSVLLEK DKVNNSSRSK KPKGLGLAPT LVITSSDPSP LGILSPSLPT ASLTPAFFSQ 360 70 TPIILTPSPL LSSIHFWSTL SPVAPLSPAR LQGANTLFQF PSVLNSHGPF TLSGLDGPST 420 PGPFSPDLOK T SEQ ID NO:275 PBY3 DNA SEQUENCE 75 Nucleic Acid Accession#: AB040921 131-2560 (underlined sequence corresponds to start and stop codon) Coding sequence: 416

	AATCAGGAAC	AGATCATATA	TTGACCGAGA	TTCTGAGTAT	CTCTTGCAAG	AAAATGAACC	60
			AATTATTGGA				120
			TCAGAGAAAA				180
			ATCAGGTAAC				240
5							
3			TCATTTTGGA				300
			AGCCAAGAAG				360
	AGCTGCAGAA	AGGGCAGAAT	CTTGTGGCAG	TGGTAATAGT	ACTGGATATC	AAATTCGTCT	420
	CCAGAGTCGG	TTGCCAAGGA	AACAGGGTTC	TATCTTATAC	TGTACAACAG	GAATCATCCT	480
			CCTATTTCTC				540
10			CAGATGTTTT				600
10						AGTTTTCAGA	660
							720
			TGATACATAT				
			AAAAAATAAG				780
15			TGCAAGGGCA				840
15	AGCAATATAT	AAAGAACGTT	GGCCAGATTA	TCTAAGGGAA	CTGCGAAGAA	GGTATTCTGC	900
	AAGTACTGTA	GATGTTATAG	AAATGATGGA	GGATGATAAA	GTTGATCTGA	ATTTGATTGT	960
	TGCCCTCATC	CGATACATTG	TTTTGGAAGA	AGAGGATGGT	GCGATACTGG	TCTTTCTGCC	1020
			CTTTACATGA				1080
			CTTTACATTC				1140
20			GTGTTCGGAA				1200
20							1260
			TCGTTTATGT				
	TTTTGATACT	CAGAACAATA	TCAGTACAAT	GTCCGCTGAG	TGGGTTAGTA	AAGCTAATGC	1320
			CTGGAAGAGT				1380
	TGGTCTTAGA	GCAAGTCTTC	TAGATGACTA	TCAACTGCCA	GAAATTTTGA	GAACTCCTTT	1440
25	GGAAGAACTT	TGTTTACAAA	TAAAGATTTT	AAGGCTAGGT	GGAATTGCTT	ATTTTCTGAG	1500
			CAAATGAGGC				1560
			AAGAAGAATT				1620
			GAAAAATGAT				1680
			CTAGTCTCAG				1740
30							
30	AAAAGAAAAG	ATTGCAGATG	CAAGAAGAAA	GGAATTGGCA	AAGGATACTA	GAAGTGATCA	1800
			TTGAGGGCTG				1860
			AATATTTTCT				1920
	CATGAAAGGA	CAGTTTGCTG	AGCATCTTCT	TGGAGCTGGA	TTTGTAAGCA	GTAGAAATCC	1980
	TAAAGATCCA	GAATCTAATA	TAAATTCAGA	TAATGAGAAG	ATAATTAAAG	CTGTCATCTG	2040
35	ACCARCIALADA V	TATCCCAAAG	TTGCTAAAAT	TCGACTAAAT	TTGGGTAAAA	AAAGAAAAAT	2100
			CCGATGGCCT				2160
			ACAACTGGCT				2220
			CAGAGGTTTC				2280
40			ACGATCAGGA				2340
40			CCCATCTTGT				2400
			GTCCTCATCC				2460
	CTGTGCAGTA	CTGTCAGCTA	TTATAGACTT	GATCAAAACA	CAGGAAAAGG	CAACTCCCAG	2520
	GAACTTTCCG	CCACGATTCC	AGGATGGATA	TTACAGCTGA	CAGCTTTTCA	GGGGTGGTCT	2580
	GAAAAGCCAG	TTTGACAGCC	ATTCTTCATC	ATTGTTTAAA	TTTTGGCTGG	ATGCCAAACC	2640
45			ATGTGTAAGG				2700
			TATGTAGAGA				2760
			ACTOTGCTGT				2820
							2880
			GTACCACTTG				
50			TTGATGATAC				2940
30			TGAACACAAC				3000
	AGTAAATTAA	TTTGTTGTAA	TAAAGTCCAG	TATTTAATAA	AATGTACAAT	GTTAAATCTC	
	SEQ ID NO:276 PE	3Y3 Protein seque	nce:				
	Protein Accession						
55	r locali macasion i						
33		~~ . ~~~~			WE CHES	T DOVOMOVE	L 60
	IRNKSYIDED S	EYLLQENEPL	GILDQKLLE	DIQKKKNULK	TIEMQHPKE	LPSYGMQKE	. 00
	VNLIDNHQVT	VISGETGCGK	TTQVTQFILD	NYIERGKGSA	CRIVCTQPRR	ISAISVAERV	120
	AAERAESCGS	GNSTGYQIRL	QSRLPRKQGS	LYCTTGIL Q	WLQSDPYLS S	SVSHIVLDEI 1	80
	HERNLQSDVL	MTVVKDLLNI	FRSDLKVILM	S ATLNAEKFS	E YFGNCPMIH	I PGFTFPVVEY	240
60						Y VRELRRRYS	
						LLMSQVMFKS	
						GGKIKETH 42	
						DDY QLPEILRT	
65						PLGVHLARL	
65						LAKDTRSDH (
						HLL GAGFVSSI	
						, vavhpksvn	
	EOTDFHYNWL	IYHLKMRTSS	IYLYDCTEVS	PYCLLFFGGD	ISIQKDNDOB	TIAVDEWIVE	780
						KTQEKATPR 8	
70	NFPPRFQDGY		·				-
, 0	10dy milin						

SEQ ID NO:277 PBY6 DNA SEQUENCE

Nucleic Acid Accessional: AA464018
Coding sequence: 64-1669(underlined sequence corresponds to start and stop codon)

GATTTTATCC TGGAACATTA CAGTGAAGAT GGCTATTTAT ATGAAGATGA AATTGCAGAT 60 CTT<u>ATG</u>GATC TGAGACAAGC TTGTCGGACG CCTAGCCGGG ATGAGGCCGG GGTGGAACTG 120

CTGATGACAT ACTICATCCA GCTGGGCTTT GTCGAGAGTC GATTCTTCCC GCCCACACGG 180
CAGATGGGAC TCCTGTTCAC CTGGTATGAC TCCTCTCACCG GGGTTCCGGT CAGCCAGCAG 240
AACCTGCTGC TGGAGAAGGC CAGTGTCCTG TTCAACACTG GGGCCCTCTA CACCCAGATT 300
GGGACCCGGT GTGATCGGCA GACGCAGGCT GGGCTGGAGA GTGCCATAGA TGCCTTTCAG 360
AGAGCCGCAG GGGTTTTAAA TTACCTGAAA GACACATTTA CCCATAGATCC CAAGATAGA 420
ATGAGCCCTG CCATGCTCAG CGTGCTCGTC AAAATGATGC TTGCACAAGC CCAAGAAAGC 480
GTGTTTGAGA AAATCAGCCT TCCTGGGATC CGGAATGAAT TCTTCATGCT GGTGAAGGCCAG 650
GCCCCGGTGA AAGAGAACAT CCCCTACTCC TGGGCCAGCT CATGAGCCCAG 650
GCCCCGGTGA AAGAGAACAT CCCCTACTCC TGGGCCAGCT TAGCCTGCGT GAAGGCCCAC 660
CACTACGCGG CCCTGGCCCA CTACTTCACT GCCATCCTCC TCATCGACCA CCAGGTGAAG 720
CCAGGCACGG ATCTGGACCA CCAGGAGAAG TGCACTTCCC CCATGACCA CCACATGCCA 780
GAGGGGCTGA CACCCTTGGC CACACTGAAG AATGATCAGC AGCGCCGACA GCTGGGGAAG 720
TCCCACTTGC GCAGAGCATTGA GGTCTACCA GAGGAGTCGT TGCCGGAGAG CAGCCTCTGC 960
AAGAGCTGC GGAGCATTGA GGTCCTACCA GAGGAGTCGT TGCCGCACA GCTCCTGC 960
AAGAGCTGC GGAGCATTGA GGTCCTACAG AAGGTGCTGT GTGCCGCACA GGAACCCTCC 960
AGGGTCACGT ACGCCCAGCA CCAGGAGGAG GATGACCTGC TGAACCTGA CAACGCCCC 1020
AGTGTTGTTT CTAAAACTGA GCAAGAGGTT GACATTAATT TGCCCCAGTT CTCCAAGCTG 1080
ACAGTCACGG ACTTCTTCA GAAGCTGGGC CCTTTATCT TGTTTTTCGGC TAACAAGCCG 1140
TGGACGCCTC CTCGAAGCAT CAGCTTCACTT CCGAGAAGAAG GGGACTTGGG GTTCACCTTTG 1200
AGAGGGAACG CCCCCGTTCAC GCTTCACTT CTGGATCTTTACACAGCTG GTTCACCTTG 1200
GGGGCCCGG AAGGAGATTA AATTGTCC ATTCACTTT TATTGCCTAACAAGCCG 1120
CTGAGTGAGCTCC CTGGAAGCAT CCCCTTCACT CTGGAAGAGAG GAGAAGAAG GGGACTGGA GAAGAGCTGC 1320
CTGAGTGAGCTCCAC ATCATCACTA GAACATCTTC CTGGATCACTA GAACAGCACA 1560
AAGCTGAGAAAA CTTCACACA GATCTTCCTTC CTGGATGCACAAA AACTGATAAA 1500
ACCAAGAAAA CTTCAACAAGAA GCTTTCCCTTC CTGGATTGTAA TGACCACAAA AACTGATAAAA 1500
ACCAAGAAAA TCTCCAACAAGAA GCTTTCCCTTC CTGGATTGAGCACAAA AACTGATAAAA 1500
AAGCCAGCAA CACCCTTTCACT GCCAATTGATG ATGACCACAA GAACAGACAG 1560
AAGCCAGCAA CACCCTTTCACT GCTCCCATCT GCCATTGATG TCACCATTA ATGACAAAA AACTGAAAAA CTCCAACAAA AACTCAATCCATTC CTTCCAACTCG GTCGAGGCCTCAAAAA AACTGAAAAA CTCCAACAAA AACTCCAACAA C

30 SEQ ID NO:278 PBY6 Protein sequence: Protein Accession #: NP_149094

Nucleic Acid Accession#: AF107493

45

DFILEHYSED GYLYEDEIAD LMDLRQACRT PSRDEAGVEL LMTYFIQLGF VESRFFPPTR 60
QMGLLFTWYD SLTGVPVSQQ NLLLEKASVL FNTGALYTQI GTRCDRQTQA GLESAIDAFQ 120
RAAGVLNYLK DTFIHITSYD MSPAMLSVLV KMMLAQAQES VEEKISLFGI RNEFFMLVKV 180
AQEAAKVGEV YQQLHAAMSQ APVKENIPYS WASLACVKAH HYAALAHYFI AILLIDHQVK 240
PGTDLDHQEK CLSQLYDHMP EGLTPLATLK NDQQRRQLGK SHLRRAMAHH EESVREASLC 300
KKLRSIEVLQ KVLCAAQERS RLTYAQHQEE DDLLINLIDAP SVVAKTEQEV DIILPQFSKL 360
TVTDFFQKLG PLSVFSANKR WTPPRSIRFT AEEGDLGFTL RGNAPVQVHF LDPYCSASVA 420
GAREGDYIVS IQLVDCKWLT LSEVMKLLKS FGEDEIEMKV VSLLDSTSSM HNKSATYSVG 480
MQKTYSMICL ADDDDKTDK TKKISKKLSF LSWGTNKNRQ KSASTLCLPS VGAARPQVKK 540
KLPSPFSLLN SDSSWY

SEQ ID NO:279 PBY8 DNA SEQUENCE

	Coding sequence	: 125-5	56 (underlined seq	uence correspond	s to start and stop	codon)	
	1	11	21	31	41	51	
			1				
50	GAATTCGGCA	CGAGCCTTGT	TGGAGGTTCT	GGGGCGCAGA	ACCGCTACTG	CTGCTTCGGT	60
	CTCTCCTTGG	GAAAAATAA	AATTTGAACC	TTTTGGAGCT	GTGTGCTAAA	TCTTCAGTGG	120
	GACAATGGGT	TCAGACAAAA	GAGTGAGTAG	AACAGAGCGT	AGTGGAAGAT	ACGGTTCCAT	180
	CATAGACAGG	GATGACCGTG	ATGAGCGTGA	ATCCCGAAGC	AGGCGGAGGG	ACTCAGATTA	240
	CAAAAGATCT	AGTGATGATC	GGAGGGGTGA	TAGATATGAT	GACTACCGAG	ACTATGACAG	300
55	TCCAGAGAGA	GAGCGTGAAA	GAAGGAACAG	TGACCGATCC	GAAGATGGCT	ACCATTCAGA	360
	TGGTGACTAT	GGTGAGCACG	ACTATAGGCA	TGACATCAGT	GACGAGAGGG	AGAGCAAGAC	420
	CATCATGCTG	CGCGGCCTTC	CCATCACCAT	CACAGAGAGC	GATATTCGAG	AAATGATGGA	480
	GTCCTTCGAA	GCCCTCAGC	CTGCGGATGT	GAGGCTGATG	AAGAGGAAAA	CAGGTGAGAG	540
	CTTGCTTAGT	TCCTGATATT	ATTGTTCTCT	TCCCCATTCC	CACCTCAGTC	CCTAAAGAAC	600
60	ATCCTGATTC	CCCCAGTCTT	CAAGCACATG	AATTCAGAAT	GAAAGGTTTG	CCATGGCTAA	660
	GGAATGTGAC	TCTTTGAAAA	CCATGTTAGC	ATCTGAGGAA	CTTTTTTAAA	CTTTGTTTTA	720
	GGGACTTTTT	TTTCCTTAGG	TAAGTAATGA	TTTATAAACT	CCTTTTTTTT	TTTGACTATA	780
	GTCGGTTGCA	TGGTTACTTT	AAGCGTGGAA	TCAAATGGAG	TGGCATTTAG	TTCAGGCGGC	840
	TTGTTCCTTG	CCATGGCAAA	GTATCAAGAA	GATCCCCAAG	TCAAGTCACA	TTTGTAAAGC	900
65	TGCTTCCCAA	TIGGCTITGT	CACGCAGTGT	TGAAGCAGTG	GGAGAGAGAT	TCACCTGTTA	960
-	TAAAGGAACT	GACTAACACA	AGTATCCCGT	CTATATCTGA	ATGCTGTCTC	TAGGTGTAAG	1020
	CCGTGGTTTC	GCCTTCGTGG	AGTTTTATCA	CTTGCAAGAT	GCTACCAGCT	GGATGGAAGC	1080
	CAATCAGGTT	GCTTCACTCA	CCAAGTCTAG	ATATTCATGA	AAATGGAACA	AGTCTGTACA	1140
	ATTTTAAAAA	AAGGTTGAAG	GAGTGGTTTG	TTCCAAAGGA	GTGACTTTTT	AAAAAAATTT	1200
70	AAGCTTTGTA	TATATTAAAA	TTGATGTTAC	TAGAATAAGT	ACAGTACCAA	GGACTTCATT	1260
	ATAGAATTTG	TTCTGCCTTT	AAACATGGCT	ACCTACCTGG	CAGGGCTTTG	TTAACTACTG	1320
	AATACCTGTC	TGGTAATCAC	TAAAACATCT	TTATGTTTCC	CTTTTTTCTA	GTTTGTTATA	1380
	TTCCTATTAT	GTCCATTGAG	AGTAAGCTTA	GTATATCAAA	CTCTCCATTT	GACAGTGAAG	1440
	AGAACATAGT	GAAAGTCTGT	GGCGGCATTT	TTATAAGTAA	TTCCTTATTT	CTGCCTGAAG	1500
75	ACCACAAAGC	CTCCTGGAGG	CGTAACTGCT	CAGACCGGTC	TTCAGGGAAT	ATTTAAGGAC	1560
	TTAGTGGAAT	TTATGAACAA	TAAGTCTGAT	GAGATTAGCC	TGGGAGTGGT	GTCCTGCAGC	1620
	TGTCTAATCT	AGAGTGGCAT	TAACATTCTA	ATCTCCTTGA	GAATGCCTTT	TATAGTCTGT	1680
	TCAAAGCAAG	TCATTGATGG	TTCTTCGAGG	TAGTGTTAAC	TGAAGTGTTC	TTCAGTTTGT	1740
	CAAGATAATG	TTCAGTGCTT	GGCACTTAAA	TAACATTTTT	TGCAAGAACT	CCAAGGCACA	1800

```
TTATTGAATG CCTTTAACCA AGTGCATTCT GGGAAGTTTG CTTGACTCAT TATCTTGCTT 1860
        TYCTGCAGCA TYCTGTGATT TGAGTCATCC ATGAATCCAT GAATAAAAGT TACATTCTTT
         GATTGGTAAT ATTGCCATTT ATAACAAGAC TCACTAATGA GGGTATCACT TTGACTGACT
                                                                                           1980
        GATTTOTTAA AGTTTTTAAG CCTCACATT TCCTAACCCA GAAATCACAG CCTGATTTA
TTAAAAGTAG AGCTTCATTC ATTTCATACC ATAGATACCA TCCTAGTAAA TCCAGAACAT
                                                                                           2040
                                                                                           2100
         ATACAAGGTT CATGTGAGTC TGCTTTCTTG ACATGATAGC ATTGTTTGAT GCAGTGGATA
                                                                                           2160
         TGTCAGAATG ACTAACCTAG GAGTTTGAAA CTCCTAAGAA ACTAAAACCT GTAAGACATT
                                                                                           2220
        TARAAGTCTC CACAATTTTA ATGTATACAA AGCTATGTTA CTGTGTAACA CATTACAGTT
                                                                                           2280
        CARATTCACT CCAGAAATAA AAGGCCAGTA GGATTAGGGA CTCACTGGTA GTTTGGAGTC
                                                                                           2340
10
        TCCCAGCACA CATCCCTCCT AGTGGGATGA TCTATTCACA TATCTCCCAG CTTTTTTATT
TTTGCTTCTG TATATCACAG TGAGTGGATG GCCCTTCAGC TTTTTCTCTC CTGGCCAGAC
                                                                                           2400
                                                                                           2460
        ATGCAGTCTT GCCTTTAGAT ATCGCAGAGA CAAAATTCAC AGCATGTCTT AAATCTTCCA
                                                                                           2520
        GGATTIGCAA GAACCAAATI GCTCAACAGI ATGTATGTIT AGAGGGGTTA GACTCCTTIT
TAAAATCIGG ATATCTAACC ACCIACTIAA ATCTGTITGA TAGTGTCAAA CCACCCCAC
                                                                                           2580
15
         CCTTGATCCT CCCACCCCCA AAAAAAAAAA AAAA
        SEQ ID NO:280 PBY8 Protein sequence:
20
        MGSDKRVSRT ERSGRYGSII DRDDRDERES RSRRRDSDYK RSSDDRRGDR YDDYRDYDSP 60
        ERERERRNSD RSEDGYHSDG DYGEHDYRHD ISDERESKTI MLRGLPTITT ESDIREMMES 120
        FEGPOPADVR LMKRKTGESL LSS
25
                                                           SEQ ID NO:281 PCI2 DNA SEQUENCE
        Nucleic Acid Accession#: AF208291
                              109-3705 (underlined sequence corresponds to start and stop codon)
        Coding sequence:
30
                                                               41
                                    21
                                                 31
         CGCCCCTTT TTTCTCAAGA TGGCAGATTC CCACTGAGGC TGAGGGGGCC GAGCTCGCGC
        GCGCGGTTCC CTCTCCGTT GCGATGAGC GCGGACACC GGGCCCGAT GGCCCCGTG
TACGAAGGTA TGGCCTCACA TGTGCAAGTT TTCTCCCCTC ACACCCTTCA ATCAAGTGCC
35
         TTCTGTAGTG TGAAGAAACT AAAAGTAGAG CCAAGTTCCA ACTGGGACAT GACTGGGTAC
        GGCTCCCACA GCAAAGTGTA CAGCCAGAGC AAGAACATAC CACCTTCTCA GCCAGCCTCC ACAACCGTCA GCACCTCCTT GCCGGTCCCA AACCCAAGCC TACCTTACGA GCAGACCATC
         GTCTTCCCAG GAAGCACCGG GCACATCGTG GTCACCTCAG CAAGCAGCAC TTCTGTCACC
                                                                                             420
         GGGCAAGTCC TCGGCGGACC ACACAACCTA ATGCGTCGAA GCACTGTGAG CCTCCTTGAT
                                                                                             480
40
        ACCTACCAAA AATGTGGACT CAAGCGTAAG AGCGAGGAGA TOGAGAACAC AAGCAGCGTG
         CAGATCATCG AGGAGCATCC ACCCATGATT CAGAATAATG CAAGCGGGGC CACTGTCGCC
        CARATTATICA CETOTACTEC ACCOTOCAAA AACAGGGGT CCAACAGGGA GGGGACTTAT
CAGCTGGTGC AGCATGAGGT GCTGTGGTCC ATGACCAACA CCTACGAGGT CTTAGAGTTC
        TTGGGCCGAG GGACGTTTGG ACAAGTGGTC AAGTGCTGGA AACGGGGCAC CAATGAGATC
GTAGCCATCA AGATCCTGAA GAACCGCCCA TCCTATGCCC GACAAGGTCA GATTGAAGTG
                                                                                             780
45
         AGCATCCTGG CCCGGTTGAG CACGGAGAGT GCCGATGACT ATAACTTCGT CCGGGCCTAC
                                                                                             900
        GAATGCTTCC AGCACAAGAA CCACACGTGC TTGGTCTTCG AGATGTTGGA GCAGAACCTC
TATGACTTTC TGAAGCAAAA CAAGTTTAGC CCCTTGCCCC TCAAATACAT TCGCCCAGTT
                                                                                             960
                                                                                           1020
                                                                                           1080
         CTCCAGCAGG TAGCCACAGC CCTGATGAAA CTCAAAAGCC TAGGTCTTAT CCACGCTGAC
50
         CTCAAACCAG AAAACATCAT GCTGGTCGAT CCATCTAGAC AACCATACAG AGTCAAGGTC
                                                                                           1140
         ATCGACTTTG GTTCAGCCAG CCACGTCTCC AAGGCTGTGT GCTCCACCTA CTTGCAGTCC
         AGATATTACA GGGCCCCTGA GATCATCCTT GGTTTACCAT TTTGTGAGGC AATTGACATG
                                                                                           1260
         TGGTCCCTGG GCTGTGTTAT TGCAGAATTG TTCCTGGGTT GGCCGTTATA TCCAGGAGCT
                                                                                           1320
         TOGGAGTATG ATCAGATTOG GTATATTTCA CAAACACAGG GTTTGCCTGC TGAATATTTA
                                                                                           1380
55
         TTRACCCCCG GGACAAAGAC AACTAGGTTT TTCAACCGTG ACACGGACTC ACCATATCCT
                                                                                           1440
         TIGIGGAGAC IGAAGACACC AGAIGACCAI GAAGCAGAGA CAGGGATIAA GICAAAAGAA
                                                                                           1500
         GCAAGAAAGT ACATTITCAA CIGITTAGAT GATATGGCCC AGGIGAACAT GACGACAGAT
                                                                                           1560
         TTGGAAGGGA GOGACATGTT GGTAGAAAAG GCTGACCGGC GGGAGTTCAT TGACCTGTTG
                                                                                           1620
        AAGAAGATGC TGACCATTGA TGCTGACAAG AGAATCACTC CAATCGAAAC CCTGAACCAT
                                                                                           1680
60
         CCCTTTGTCA CCATGACACA CTTACTCGAT TTTCCCCACA GCACACACGT CAAATCATGT
         TTCCAGAACA TGGAGATCTG CAAGCGTCGG GTGAATATGT ATGACACGGT GAACCAGAGC
                                                                                           1800
         AAAACCCCTT TCATCACGCA CGTGGCCCCC AGCACGTCCA CCAACCTGAC CATGACCTTT
                                                                                           1860
         AACAACCAGC TGACCACTGT CCACAACCAG GCTCCCTCCT CTACCAGTGC CACTATTTCC
        TTAGCCANTC CCGAAGTCTC CATACTANAC TACCCATCTA CACTCTACCA GCCCTCAGCG
GCATCCATGG CTGCAGTGGC CCAGCGGAGC ATGCCCCTGC AGACAGGAAC AGCCCAGATT
                                                                                           1980
65
                                                                                           2040
         TGTGCCCGGC CTGACCCGTT CCAGCAAGCT CTCATCGTGT GTCCCCCGG CTTCCAAGGC
                                                                                            2100
         TTGCAGGCCT CTCCCTCTAA GCACGCTGGC TACTCGGTGC GAATGGAAAA TGCAGTTCCC
ATCGTCACTC AAGCCCCAGG AGCTCAGCCT CTTCAGATCC AACCAGGTCT GCTTGCCCAG
                                                                                           2160
                                                                                            2220
         CAGGCTTGGC CAAGTGGGAC CCAGCAGATC CTGCTTCCCC CAGCATGGCA GCAACTGACT
                                                                                            2280
70
         GGAGTGGCCA CCCACACATC AGTGCAGCAT GCCACCGTGA TTCCCGAGAC CATGGCAGGC
ACCCAGCAGC TGGCGGACTG GAGAAATACG CATGCTCACG GAAGCCATTA TAATCCCATC
                                                                                           2340
                                                                                           2400
         ATGCAGCAGC CTGCACTATT GACCGGTCAT GTGACCCTTC CAGCAGCACA GCCCTTAAAT
                                                                                           2460
         GTGGGTGTGG CCCACGTGAT GCGGCAGCAG CCAACCAGCA CCACCTCCTC CCGGAAGAGT
AAGCAGCACC AGTCATCTGT GAGAAATGTC TCCACCTGTG AGGTGTCCTC CTCTCAGGCC
                                                                                           2520
                                                                                            2580
75
         ATCAGCTCCC CACAGCGATC CAAGCGTGTC AAGGAGAACA CACCTCCCCG CTGTGCCATG
                                                                                           2640
         GTGCACAGTA GCCCGGCCTG CAGCACCTCG GTCACCTGTG GGTGGGGCGA CGTGGCCTCC
                                                                                           2700
         AGCACCACCC GGGAACGGCA GCGGCAGACA ATTGTCATTC CCGACACTCC CAGCCCCACG
         GTCAGCGTCA TCACCATCAG CAGTGACACG GACGAGGAGG AGGAACAGAA ACACGCCCCC
                                                                                           2R20
         ACCAGCACTO TCTCCAAGCA AAGAAAAAAC GTCATCAGCT GTGTCACCAGT CCACGACTCC
CCCTACTCCG ACTCCTCCAG CAACACCAGC CCCTACTCCG TGCAGCAGCG TGCTGGGCAC
                                                                                            2880
80
```

```
CGAACCATCA TCGTGCCACC CCTGAAAACC CAGGCCAGCG AAGTATTGGT GGAGTGTGAT
                                                                                                     3060
          AGCCTGGTGC CAGTCAACAC CAGTCACCAC TCGTCCTCCT ACAAGTCCAA GTCCTCCAGC
                                                                                                     3120
         AACGTGACCT CCACCAGCGG TCACTCTTCA GGGAGCTCAT CTGGAGCCAT CACCTACCGG
                                                                                                     3180
  5
         CAGCAGCGGC CGGGCCCCCA CTTCCAGCAG CAGCAGCCAC TCAATCTCAG CCAGGCTCAG
                                                                                                     3240
          CAGCACATCA CCACGGACCG CACTGGGAGC CACCGAAGGC AGCAGGCCTA CATCACTCCC
                                                                                                     3300
         ACCATGGCCC AGGCTCCGTA CTCCTTCCCG CACAACAGCC CCAGCCACGG CACTGTGCAC
                                                                                                     3360
         CCGCATCTGG CTGCAGCCGC TGCCGCTGCC CACCTCCCCA CCCAGCCCCA CCTCTACACC
                                                                                                     3420
         TACACTGCGC CGGCGGCCCT GGGCTCCACC GGCACCGTGG CCCACCTGGT GGCCTCGCAA
GGCTCTGCGC GCCACACCGT GCAGCACACT GCCTACCCAG CCAGCATCGT CCACCAGGTC
                                                                                                     3480
10
                                                                                                     3540
         CCCGTGAGCA TGGGCCCCCG GGTCCTGCCC TCGCCCACCA TCCACCCGAG TCAGTATCCA
                                                                                                     3600
         3660
                                                                                                     3720
         GAGGGAGGA GGGAGGGAGA GAATGGCCCG AGGGAGGAGG GAGAGAAGGA GGGAGGCGCT
                                                                                                     3780
15
         3840
                                                                                                     3900
          TTAAAGAGGG TGGGAAATCT ATGGTTTTTA TTTTAAAAAA
20
         SEQ ID NO:282 PCI2 Protein sequence;
         Protein Accession #: NP 073577
         MAPVYEGMAS HVQVFSPHTL QSSAFCSVKK LKVEPSSNWD MTGYGSHSKV YSQSKNIPPS 60
QPASTTVSTS LPVPNPSLPY EQTIVFPGST GHIVVTSASS TSVTGQVLGG PHNLMRRSTV 120
SLLDTYQKCG LKRKSEEIEN TSSVQIEEH PPMIQNNASG ATVATATTST ATSKNSGSNS 180
25
         EGDYQLVQHE VLCSMTNTYE VLEFLGRGTF GQVVKCWKRG TNEIVAIKIL KNRPSYARQG 240
QIEVSILARL STESADDYNF VRAYECFQHK NHTCLVFEML EQNLYDFLKQ NKFSPLPLKY 300
IRPVLQQVAT ALMKLKSLGL IHADLKFENI MLVDPSRQPY RVKVIDFGSA SHVSKAVCST 360
30
          YLOSRYYRAP EULGLPFCE AIDMWSLGCV IAELFLGWPL YPGASEYDQI RYISQTQGLP 420
         AEYLLSAGTK TTRFFNRDTD SPYPLWRLKT PDDHEAETGI KSKEARKYIF NCLDDMAQVN 480
MTTDLEGSDM LVEKADRREF IDLLKKMLTI DADKRITPIE TLNHPFVTMT HLLDFPHSTH 540
          VKSCFONMEI CKRRVNMYDT VNQSKTPFIT HVAPSTSTNL TMTFNNQLTT VHNQAPSSTS 600
         ATISIANPEV SILNYPSTLY OPSAASMAAV AQRSMPLQTG TAQICARPDP FQQALIVCPP 660
GFQGLQASPS KHAGYSVRME NAVPIVTQAP GAQPLQIQPG LLAQQAWPSG TQQILLPPAW 720
QQLTGVATHT SVQHATVIPE TMAGTQQLAD WRNTHAHGSH YNPIMQQPAL LTGHVTLPAA 780
35
          QPLNVGVAHV MRQQPTSTTS SRKSKQHQSS VRNVSTCEVS SSQAISSPQR SKRVKENTPP 840
         RCAMVHSSPA CSTSVTCGWG DVASSTTRER QRQTIVIPDT FSPTVSVITI SSDTDEEFEQ 900
KHAPTSTVSK QRKNVISCVT VHDSPYSDSS SNTSPYSVQQ RAGHNNANAF DTKGSLENHC 960
40
          TGNPRTIIVP PLKTQASEVL VECDSLVPVN TSHHSSSYKS KSSSNVTSTS GHSSGSSSGA 1020
         ITYRQQRPGP HFQQQQPLNL SQAQQHITTD RTGSHRRQQA YTIPTMAQAP YSFPHNSPSH 1080
GTVHPHLAAA AAAAHLPTQP HLYTYTAPAA LGSTGTVAHL VASQGSARHT VQHTAYPASI 1140
          VHQVPVSMGP RVLPSPTIHP SQYPAQFAHQ TYISASPAST VYTGYPLSPA KVNQYPYI
45
                                                                  SEQ ID NO:283 PBY1 DNA SEQUENCE
         Nucleic Acid Accession#: NM_017700
                                 147-806 (underlined sequence corresponds to start and stop codon)
          Coding sequence:
50
         AGTCACAGCC AGGTAACCCT GGAGTGAAGC GGTTTAGTTA GAAGGGAGCA GATAAACTCG
TCACTCTAGT AGCTTTAACC CTCACCCTGA GGCACCTTAG CAATCAGCCA TTGCCTGCAA
                                                                                                       120
         GCCTCCAAAG CTTGTCTTTG CCTAATATGG AGCCCAAAGA AGCCACTGGG AAAGAAAACA
                                                                                                       180
         TGGTCACCAA GAAAAAGAAT CTGGCCTTCT TGAGGTCTAG ACTCTATATG CTGGAGAGAA
GGAAGACTGA CACTGTGGTT GAGAGCAGTG TTTCTGGGGA CCACTCTGGC ACCTTGAGGA
55
          GGAGCCAATC TGACAGGACC GAATACAACC AGAAATTACA AGAAAAGATG ACTCCACAGG
         GTCAGTGTTC TGTAGCTGAG ACCTTAACCC CAGAGGAAGA GCATCATATG AAGAGGATGA
TGGCAAACCG GGAAAAGATC ATTAAGGAGC TGATACAGAC AGAAAAGGAT TATCTCAATG
         ATCTAGAGCT GTGTGTTAGG GAAGTGGTTC AGCCCCTGAG AAATAAAAAG ACTGATAGGC
60
         TEGATOREGA TAGCTTOTTT AGCAACATTE AGTCCGTECA TCAGATATCA GCCAAGCTGC
TGTCATTGTT GGAAGAGGCC ACAACAGACG TGGAACCGC CATECAAGTA ATTGGAGAAG
                                                                                                       600
         TATTCTTGCA GATTAAAGGG CCACTGGAAG ATATTTATAA AATCTACTGC TATCACCATG
                                                                                                       720
         ATGAAGCACA TAGTATACTG GAGTCCTATG AAAAGGAAGA AGAGCTGAAG GAACATTTGA
GCCACTGTAT CCAGTCCTTA AAGTAAGGCC TTTTCAAATG ATGATTCCCA TCTCCTCTCA
                                                                                                       780
65
         GTTGCCTAGC AGGGAACATT TTAAATGGAT GTAGATGAAA GGTCTCACAT AAATCCTATG
                                                                                                       900
         TTTTATGAGA CTTGCTGGGA GCTCTGCTTT GCATTCCCTT TATAAAAAGC TGACATGCCA
GAAGCCCTGA TTGACTTTTT TTCCCCCTGC GAGAATGACT AAAAATAACA TGGAAGAAGA
                                                                                                       960
         TTTAGAGCTC TGCAGCGATT GAAAAATGCA ATATCAAAAT ATAAAATGTG GAAGAAAAGC
CTCTTCTTAA AGCTATTGTA ACTTGCCTGG CCCCACGTAG TTCAAGGATT ATGTGAGATA
                                                                                                     1080
                                                                                                     1140
70
         ACACGTGGCC CCATGACCAC TGGAGCACAT GGGTTAATGG AGTTAGGGGA ATGGCCTACA
         ACTOTOCATO GOCGTOTTOT TTCCCCAAAC TCACTGTGG GAGATGGGTG AAGACAAGTC AGGCCTTGTT AAAGTTAGTT TCAGAACAAT TACTCATGCC TTCCTTTTCTC ATCCCTAAAA
                                                                                                     1260
                                                                                                     1320
         CATTGGTGGG GGAGCTACAC AATGTACTTT TTCTTTTCTA GAGGAAGTAT CTATTCACTG
          TGAAAATCTG AAAAATATAA CAAAGTATGT GTAAGATAAA AACCCCTTGC TATTTCAAAA
75
          AAAA AAAAAAAA AAAAAAAAA
          SEQ ID NO:284 PBY1 Protein sequence:
         Protein Accession #:
                                 NP 060170
80
                        11
                                        21
                                                       31
                                                                      41
                                                                                     51
                                                                                 420
```

AACAATGCCA ATGCCTTTGA CACCAAGGGG AGCCTGGAGA ATCACTGCAC GGGGAACCCC

```
MEPKEATGKE NMYTKKKILA FLRSRLYMLE RRKTDTVVES SVSGDHSGTL RRSQSDRTEY
NQKLQEKMTP QGECSVAPTL TPEEEHHMKR MMAKREKIIK BLIQTEKDYL NDLELCVREV
                                                                                                          60
          VOPLRNKKTD RLDVDSLPSN IESVHQISAK LLSLLEEATT DVEPAMQVIG EVFLQIKGPL
                                                                                                        180
          EDIYKIYCYH HDEAHSILES YEKEEELKEH LSHCIQSLK
                                                                   SEQ ID NO:285 PBQ9 DNA SEQUENCE
          Nucleic Acid Accession#: X66534
10
                                  523-2876 (underlined sequence corresponds to start and stop codon)
          Coding sequence:
                                                       31
15
          CCCTTATGGC GATTGGGCGG CTGCAGAGAC CAGGACTCAG TTCCCCTGCC CTAGTCTGAG
          CCTAGTGGGT GGGACTCAGC TCAGAGTCAG TTTTCAGAAG CAGGTTTCAG TTGCAGAGTT
TTCCTACACT TTTCCTGCGC TAGAGCAGCG AGCAGCCTGG AACAGACCCA GGCGGAGGAC
                                                                                                        120
          ACCTGTGGGG GAGGGAGCGC CTGGAGGAGC TTAGAGACCC CAGCCGGGCG TGATCTCACC
                                                                                                        240
          ATGTGCGGAT TTGCGAGGCG CGCCCTGGAG CTGCTAGAGA TCCGGAAGCA CAGCCCCGAG
GTGTGCGAAG CCACCAAGAC TGCGGCTCTT GGAGAAAGCG TGAGCAGGGG GCCACCGCGG
                                                                                                        300
20
          TCTCCGGCCT GTCTGCACCC TGTCGCCTGA GCTGCCTGAC AGTGACAATG ACATCCCAGT
                                                                                                         420
          TACCAGTOTC CTTGAATTGA TAGTGGCTTC TGTTTGTCAG TCTCATATAA GAACTACAGC
TCATCAGGAG GAGATCGCAG CAGGGTAAGA GACACCAACA CCATGTTCTG CACGAAGCTC
                                                                                                         480
          AAGGATOTCA AGATCACAGG AGAGTGTOOT TTOTCOTTAC TGGCACCAGG TCAAGTTCCT
                                                                                                         600
25
          AACGAGTCTT CAGAGGAGGC AGCAGGAAGC TCAGAGAGCT GCAAAGCAAC CGTGCCCATC
TGTCAAGACA TTCCTGAGAA GAACATACAA GAAAGTCTTC CTCAAAGAAA AACCAGTCGG
                                                                                                         660
          AGCCGAGTCT ATCTTCACAC TTTGGCAGAG AGTATTTGCA AACTGATTTT CCCAGAGTTT
                                                                                                         780
          GAACGCCTGA ATCTTGCACT TCAGAGAACA TTGGCAAAGC ACAAAATAAA AGAAAGCAGG
AAATCTTTGG AAAGAGAAGA CTTTGAAAAA ACAATTGCAG AGCAAGCAGT GCAGCAAGAT
                                                                                                         840
30
          CCAGTGGAGT TATCAAAGAA TCTCTTGGTG AAGAGGTTTT TAAAATATGT TACGAGGAAG
                                                                                                         960
          ATGRARACAT CCTTGGGGTG GTTGGAGGCA CCCTTARAGA TTTTTARACA GCTTCAGTAC CCTTCTGARA CAGAGCAGCC ATTGCCARGA AGCAGGARAR AGGGGCAGCT TGAGGACGCC
                                                                                                       1020
          TCCATTCTAT GCCTGGATAA GGAGGATGAT TTTCTACATG TITACTACTT CTTCCCTAAG
                                                                                                       1140
          AGAACCACCT CCCTGATTCT TCCCGGCATC ATAAAGGCAG CTGCTCACGT ATTATATGAA
                                                                                                       1200
35
          ACGGAAGTGG AAGTGTCGTT AATGCCTCCC TGCTTCCATA ATGATTGCAG CGAGTTTGTG
          AATCAGCCCT ACTTGTTGTA CTCCGTTCAC ATGAAAAGCA CCAAGCCATC CCTGTCCCCC
                                                                                                       1320
          AGCARACCCC AGTOCTCGCT GGTGATTCCC ACATCGCTAT TCTGCAAGAC ATTTCCATTC CATTTCATGT TTGACARAGA TATGACARTT CTGCARTTTG GCARTGGCAT CAGAAGGCTG
                                                                                                       1380
          ATGAACAGGA GAGACTITCA AGGAAAGCCT AATTITGAAT ACTITGAAAT TCTGACTCCA
                                                                                                       1500
40
          ARARTCARCE AGACCTITAG CGGGATCATG ACTATGITGA ATATGCAGIT TGTTGTACGA
GTGAGGAGAT GGGACAACTC TGTGAAGAAA TCTTCAAGGG TTATGGACCT CAAAGGCCAA
                                                                                                       1560
          ATGATCTACA TTGTTGAATC CAGTGCAATC TTGTTTTTGG GGTCACCCTG TGTGGACAGA
                                                                                                       1680
          ATTRICAGATT TYACAGACG AGGETCTAC CTCTCAGACA TCCCAATTCA CAATGCACTG
AGGGATGTGG TCTTAATAGG GGAACAAGCC CGAGCTCAAG ATGGCCTGAA GAAGAGGCTG
                                                                                                       1740
                                                                                                       1800
45
          GGGAAGCTGA AGGCTACCCT TGAGCAAGCC CACCAAGCCC TGGAGGAGGA GAAGAAAAAG
                                                                                                       1860
          GGGAAGCTGA AGGCTACCT TRACCAGCT CATACAGC CATACAGCA CATACAGGA CATACAGGA CATACAGGA CATACATAGC TGTGAGGTTG CTCAGCAGGT GTGGCAAGGG CAAGCTAGGA CATCAGTAAT GTCACCATGC TCTTCTCAGA CATCGTTGGG
                                                                                                       1920
                                                                                                       1980
           TTCACTGCCA TCTGCTCCCA GTGCTCACCG CTGCAGGTCA TCACCATGCT CAATGCACTG
                                                                                                       2040
          TACACTOGOT TOGACCAGOA GTGTGGAGAG CTGGATGTCT ACAAGGTGGA GACCATTGOG
                                                                                                       2100
50
          ATGCCTATTG TGTGGCTTGG GGGATTACAC AAAGAGAGTG ATACTCATGC TGTTCAGATA
                                                                                                       2160
          GCGCTGATGG CCCTGAAGAT GATGGAGCTC TCTGATGAAG TTATGTCTCC CCATGGAGAA
CCTATCAAGA TGCGAATTGG ACTGCACTCT GGATCAGTTT TTGCTGGCGT CGTTGGAGTT
                                                                                                       2220
                                                                                                       2280
          AAAATGCCCC GTTACTGTCT TTTTGGAAAC AATGTCACTC TGGCTAACAA ATTTGAGTCC
                                                                                                       2340
          ARABECCE CACGARARAT CARTSTCAGE CCARCARCTT ACAGATTACT CARAGACTGT CCTGGTTTTTTTTCCCC TCGATCAAGG GAGGACTTC CACCARACTT CCCTAGTGAA ATCCCCGGGA TCTGCCATTT TCTGGATGCT TACCARCAG GAACAARCTC AAAACCATGC
                                                                                                       2400
55
                                                                                                       2460
                                                                                                       2520
           TTCCAARAGA AAGATGTGGA AGATGCAAGC CAATTTTTTA GGCAAAGCAT CAGGAATAGA
                                                                                                       2580
          TTAGCAACCT ATATACCTAT TTATAAGTCT TTGGGGTTTG ACTCATTGAA GATGTGTAGA
           GCCTCTGAAA GCACTTTAGG GATTGTAGAT GGC<u>TAA</u>CAAG CAGTATTAAA ATTTCAGGAG
                                                                                                       2700
           CCAAGTCACA ATCTTTCTCC TGTTTAACAT GACAAAATGT ACTCACTTCA GTACTTCAGC
60
                                                                                                       2760
           TCTTCAAGAA AAAAAAAAA ACCTTAAAAA GCTACTTTTG TGGGAGTATT TCTATTATAT
          AACCAGCACT TACTACCTGT ACTCAAAATT CAGCACCTTG TACATATATC AGATAATTGT
                                                                                                       2880
          AGTCAATTGT ACAAACTGAT GGAGTCACCT GCAATCTCAT ATCCTGGTGG AATGCCATGG
                                                                                                       2940
           TTATTAAAGT GTGTTTGTGA TAGTTGTCGT CAAAAAAAA AAAAAAAAA AAAAAAAA
65
           SEQ ID NO:286 PBQ9 Protein sequence;
           Protein Accession #:
70
                                                        31
                                                                        41
                                                                                       51
                          11
                                         21
          QRKTSRSRVY LHTLAESICK LIPPEPERIN VALQRTLAKE KIKESRKSLE REDPEKTIAE
QAVAAGVPVE VIKESLGEEV PKICYEEDEN ILGVUGGTIK DFLANFSTLL KOSSHCQEAG
KRGRLEDASI LCLDKEDDFL HVYYFPPRRT TSLILEGIIK AAAHVLYETE VEVSLMPPCF
                                                                                                         180
75
                                                                                                         240
           RRGKELMADI DELEMENTE MYTTFFERR TOTAL AGARDIES EVENTEFFER WEDENTILO
HNDCSEFVNO PYLLYSVIMK STKPSLSPSK PQSSLVIPTS LFCKTFFFER WEDENTILO
FGRGIRRLMN RRDPQCKPNF EBYPEILTPK INQTFSGIMT MLMMQFVVRV RRWDNSVKKS
SRVMDLKGQM IYIVESSAIL FLGSPCVDRL EDFTGRGLYL SDIPHNALR DVVLIGEQAR
                                                                                                         420
           AODGLKKRLG KLKATLEOAH QALEEEKKKT VDLLCSIPPC EVAQQLWQGQ VVQAKKFSNV
80
           THLFSDIVGF TAICSQCSPL QVITMLMALY TRFDQQCGEL DVYKVETIGD AYCVAGGLHK
```

VTLANKFESC SVPRKINVSP TTYRLLKDCP GPVFTPRSRE ELPPNFPSEI PGICHFLDAY. OOGTNSKPCF OKKDURDGNA NFLGKASGID 5 SEQ ID NO:287 PFD2 DNA SEQUENCE Nucleic Acid Accession#: NM_000720 119-6664 (underlined sequence corresponds to start and stop codon) Coding sequence: 10 31 AGAATAAGGG CAGGGACCGC GGCTCCTATC TCTTGGTGAT CCCCTTCCCC ATTCCGCCCC 60 CGCCTCAACG CCCAGCACAG TGCCCTGCAC ACAGTAGTCG CTCAATAAAT GTTCGTGGAT 120 15 GATGATGATG ATGATGATGA AAAAAATGCA GCATCAACGG CAGCAGCAAG CGGACCACGC GAACGAGGCA AACTATGCAA GAGGCACCAG ACTTCCTCTT TCTGGTGAAG GACCAACTTC 240 TCAGCCGART AGCTCCAAGC AAACTGTCCT GTCTTGGCAA GCTGCAATCG ATGCTGCTAG 300 ACAGGCCAAG GCTGCCCAAA CTATGAGCAC CTCTGCACCC CCACCTGTAG GATCTCTCTC 360 CCARAGARAR COTCAGCART ACGCCARGAG CARARARCAG GOTRACTCOT CCARCAGCCG ACCTGCCCGC GCCCTTTTCT GTTTATCACT CARTARCCCC ATCCGARGAG CCTGCATTAG 420 20 TATAGTGGAA TGGAAACCAT TTGACATATT TATATTATTG GCTATTTTTG CCAATTGTGT 540 GGCCTTAGCT ATTTACATCC CATTCCCTGA AGATGATTCT AATTCAACAA ATCATAACTT 600 GGAAAAAGTA GAATATGCCT TCCTGATTAT TTTTACAGTC GAGACATTTT TGAAGATTAT AGCGTATGGA TTATTGCTAC ATCCTAATGC TTATGTTAGG AATGGATGGA ATTTACTGGA 720 25 TITTGITATA GTAATAGTAG GATTGITTAG TGTAATTITG GAACAATTAA CCAAAGAAAC AGAAGGCGGG AACCACTCAA GCGGCAAATC TGGAGGCTIT GATGICAAAG CCCTCCGTGC 780 840 CTTTCGAGTG TTGCGACCAC TTCGACTAGT GTCAGGGGTG CCCAGTTTAC AAGTTGTCCT 900 GAACTCCATT ATAAAAGCCA TGGTTCCCCT CCTTCACATA GCCCTTTTGG TATTATTTGT AATCATAATC TATGCTATTA TAGGATTGGA ACTTTTTATT GGAAAAATGC ACAAAACATG 960 1020 30 TTTTTTGCT GACTCAGATA TCGTAGCTGA AGAGGACCCA GCTCCATGTG CGTTCTCAGG 1080 GAATGGACGC CAGTGTACTG CCAATGGCAC GGAATGTAGG AGTGGCTGGG TTGGCCCGAA 1140 CGGAGGCATC ACCAACTITG ATAACTITGC CTTTGCCATG CTTACTGTGT TTCAGTGCAT 1200 CACCATGGAG GGCTGGACAG ACGTGCTCTA CTGGGTAAAT GATGCGATAG GATGGGAATG 1260 GCCATGGGTG TATTTTGTTA GTCTGATCAT CCTTGGCTCA TTTTTCGTCC TTAACCTGGT TCTTGGTGTC CTTAGTGGAG AATTCTCAAA GGAAAGAGAG AAGGCAAAAG CACGGGGAGA 1320 35 1380 TTTCCAGAAG CTCCGGGAGA AGCAGCAGCT GGAGGAGGAT CTAAAGGGCT ACTTGGATTG 1440 GATCACCCAA GCTGAGGACA TCGATCCGGA GAATGAGGAA GAAGGAGGAG AGGAAGGCAA 1500 ACGAAATACT AGCATGCCCA CCAGCGAGAC TGAGTCTGTG AACACAGAGA ACGTCAGCGG 1560 TGAAGGCGAG AACCGAGGCT GCTGTGGAAG TCTCTGGTGC TGGTGGAGAC GGAGAGGCGC 1620 40 GCCCAGGCG GGGCCCTCTG GGTGTCGGCG GTGGGGTCAA GCCATCTCAA AATCCAAACT 1680 CAGCCGACGC TGGCGTCGCT GGAACCGATT CAATCGCAGA AGATGTAGGG CCGCCGTGAA GTCTGTCACG TTTTACTGGC TGGTTATCGT CCTGGTGTTT CTGAACACCT TAACCATTTC 1800 CTCTGAGCAC TACAATCAGC CAGATTGGTT GACACAGATT CAAGATATTG CCAACAAAGT 1860 CCTCTTGGCT CTGTTCACCT GCGAGATGCT GGTAAAAATG TACAGCTTGG GCCTCCAAGC 45 ATATTTCGTC TCTCTTTTCA ACCGGTTTGA TTGCTTCGTG GTGTGTGGTG GAATCACTGA 1980 GACGATCCTG GTGGAACTGG AAATCATGTC TCCCCTGGGG ATCTCTGTGT TTCGGTGTGT 2040 GCGCCTCTTA AGAATCTTCA AAGTGACCAG GCACTGGACT TCCCTGAGCA ACTTAGTGGC ATCCTTATTA AACTCCATGA AGTCCATCGC TTCGCTGTTG CTTCTGCTTT TTCTCTTCAT 2160 TATCATCTTT TCCTTGCTTG GGATGCAGCT GTTTGGCGGC AAGTTTAATT TTGATGAAAC GCAAACCAAG CGGAGCACCT TTGACAATTT CCCTCAAGCA CTTCTCACAG TGTTCCAGAT 2220 50 2280 CCTGACAGGC GAAGACTGGA ATGCTGTGAT GTACGATGGC ATCATGGCTT ACGGGGGCCC ATCCTCTTCA GGAATGATCG TCTGCATCTA CTTCATCATC CTCTTCATTT GTGGTAACTA 2340 2400 TATTCTACTG AATGTCTTCT TGGCCATCGC TGTAGACAAT TTGGCTGATG CTGAAAGTCT 2460 Gaacactgot cagaaagaag aagcogaaga aaaggagagg aaaaagattg ccagaaaaga 2520 55 GAGCCTAGAA AATAAAAAGA ACAACAAACC AGAAGTCAAC CAGATAGCCA ACAGTGACAA 2580 CAAGGTTACA ATTGATGACT ATAGAGAAGA GGATGAAGAC AAGGACCCCT ATCCGCCTTG 2640 CGATCTCCCA CTACCCGAAG AGGAAGAGGA AGAGGAGGAG GATGAACCTG AGCTTCCTGC 2700 CGGACCCCGT CCTCGAAGGA TCTCGGAGTT GAACATGAAG GAAAAAATTG CCCCCATCCC 2760 TGAAGGGAGC GCTTTCTTCA TTCTTAGCAA GACCAACCCG ATCCGCGTAG GCTGCCACAA 2820 60 GETCATCARC CACCACATCT TCACCAACCT CATCCTTGTC TTCATCATGC TGAGCAGCGC 2880 TGCCCTGGCC GCAGAGGACC CCATCCGCAG CCACTCCTTC CGGAACACGA TACTGGGTTA 2940 3000 CTTTGACTAT GCCTTCACAG CCATCTTTAC TGTTGAGATC CTGTTGAAGA TGACAACTTT TGGAGCTTTC CTCCACAAAG GGGCCTTCTG CAGGAACTAC TTCAATTTGC TGGATATGCT 3060 GGTGGTTGGG GTGTCTCTGG TGTCATTTGG GATTCAATCC AGTGCCATCT CCGTTGTGAA 3120 65 GATTCTGAGG GTCTTAAGGG TCCTGCGTCC CCTCAGGGCC ATCAACAGAG CAAAAGGACT 3180 TANGCACCTG GTCCAGTCCG TCTTCGTCGC CATCCGGACC ATCGGCAACA TCATGATCGT 3240 CACTACCCTC CTGCAGTTCA TGTTTGCCTG TATCGGGGTC CAGTTGTTCA AGGGGAAGTT 3300 CTATCGCTGT ACGGATGAAG CCAAAAGTAA CCCTGAAGAA TGCAGGGGAC TTTTCATCCT 3360 CTACAAGGAT GGGGATGTTG ACAGTCCTGT GGTCCGTGAA CGGATCTGGC AAAACAGTGA 3420 70 TTTCAACTTC GACAACGTCC TCTCTGCTAT GATGGCGCTC TTCACAGTCT CCACGTTTGA 3480 GGGCTGGCCT GCGTTGCTGT ATAAAGCCAT CGACTCGAAT GGAGAAACA TCGGCCCAAT 3540 CTACAACCAC CGCGTGGAGA TCTCCATCTT CTTCATCATC TACATCATCA TTGTAGCTTT 3600 CTTCATGATG AACATCTTTG TGGGCTTTGT CATCGTTACA TTTCAGGAAC AAGGAGAAAA 3660 AGAGTATAAG AACTGTGAGC TGGACAAAAA TCAGCGTCAG TGTGTTGAAT ACGCCTTGAA 3720 75 AGCACGTCCC TTGCGGAGAT ACATCCCCAA AAACCCCTAC CAGTACAAGT TCTGGTACGT 3780 GGTGAACTCT TCGCCTTTCG AATACATGAT GTTTGTCCTC ATCATGCTCA ACACACTCTG 3840 CTTGGCCATG CAGCACTACG AGCAGTCCAA GATGTTCAAT GATGCCATGG ACATTCTGAA 3900 CATGGTCTTC ACCGGGGTGT TCACCGTCGA GATGGTTTTG AAAGTCATCG CATTTAAGCC 3960 TAAGGGGTAT TITAGTGACG CCTGGAACAC GTTTGACTCC CTCATCGTAA TCGGCAGCAT 4020 80 TATAGACGTG GCCCTCAGCG AAGCGGACCC AACTGAAAGT GAAAATGTCC CTGTCCCAAC 4080

ESDTHAVOIA LMALKMMELS DEVMSPHGEP IKMRIGLHSG SVFAGVVGVK MPRYCLFGNN

		GGGAACTCTG					4140
		CGATTGGTGA					4200
						CCATGCTGTT GAGATAACAA	4320
5						TGCTCTTCAG	4380
		GGTGAGGCCT					4440
		TCAGATTACA					4500
		ATCAGTTTTT GATAATTTCG					4560 4620
10						GAAGGATAAA	4680
		GTGGTCACTC					4740
						TCAACAGTGA	
		AACCTGGAGC				TTAAGATCAA	4860 4920
15						ATGATGAGGT	4980
						AATTCAAGAA	5040
						TTGCCCTACA	5100
		AGGACACTGC				TGTTCAAAAG	5160 5220
20		CTGCTTGGAA					5280
	TCAGCAGACC	AATACCACCC	ACCGTCCCCT	GCATGTCCAA	AGGCCTTCAA	TTCCACCTGC	5340
	AAGTGATACT	GAGAAACCGC	TGTTTCCTCC	AGCAGGAAAT	TOGGTGTGTC	ATAACCATCA	5400
		TCCATAGGAA AAAGCTGCCC					5460 5520
25		CATCATTCTT					5580
		CCCTATTATC					5640
		CGGGAAGACC					5700
	CACCCAAAAC	TATTTCAGTA	BURGURARIG	CTACGAGGAT	BACAGCICGC	CCACCTGGAG	5760 5820
30						TTTGCTATGA	5880
	TTCACGGAGA	TCTCCAAGGA	GACGCCTACT	ACCTCCCACC	CCAGCATCCC	ACCGGAGATC	5940
		TTTGAGTGCC					6000
						TCATGGCAGT	6060 6120
35		CCAGCAACCC					6180
		CAGTCAGAGG					6240
		TACACAGACG				CAGCCAGCCT	6300 6360
		GTCCTGATAT					6420
40						AGATGGAGAG	6480
		ACCCTGCTTA					6540
						GCGACGAAGA TCACCACCTT	6600 6660
						AGAGCCAGGG	6720
45						TCAATTAATT	6780
						GGAACAGGTC	6840
		GAGCCTGGCA				ATTGTCCAGA	6900 6960
						ACCCAACTGA .	
50	AGGCATGGCG	GCGGGGTGCA	GGGGAAAGTT	AAAGGTGATG	ACGATCATCA	CACCTCGTGT	7080
						CATTTTTAAA	7140
	CCCTTTCCCC	CAAATACACT	GCGTCCTGGT	TCCTGTTTAG	CIGITCIGAA	ATA	
	SEQ ID NO:288 I	PFD2 Protein sequ	ience;				
55	Protein Accession						
	1	11	21	31	41	51	
				DI DI GOTTODO	Gormania.	I CWOLLETTINA	60
60		QHQRQQQADH TSAPPPVGSL					120
•		PILLAIFANC					180
		AYVRNGWNLL					240
		VSGVPSLQVV					300 360
65		YWVNDAIGWE					420
••	DFQKLRKKQQ	LEEDLKGYLD	WITQAEDIDP	ENEEEGGREG	KRNTSMPTSE	TESVNTENVS	480
		SLWCWWRRRG					540
		VLVFLNTLTI DCFVVCGGIT					600 660
70	ASILINSMKSI	ASLLLLELFLF	IIIPSLLGMO	LFGGKFNFDE	TOTKRSTFON	FPOALLTVFO	720
	ILTGEDWNAV	MYDGIMAYGG	PSSSGMIVCI	YFIILFICGN	YILLNVFLAI	AVDNLADAES	780
		EKERKKIARK					840
		LILVFIMLSS					900 960
75	FGAPLHKGAF	CRNYFNLLDM	LVVGVSLVSF	GIQSSAISVV	KILRVLRVLR	PLRAINRAKG	1020
	LKHVVQCVFV	AIRTIGNIMI	VTTLLQFMFA	CIGVQLFKGK	TYRCTDEAKS	NPEECRGLPI	1080
	LYKOGDVDSP	VVRERIWONS	DFNFDNVLSA	MMALFTVSTF	EGWPALLYKA	IDSNGENIGP	1140
	LYNHKVEISI	PFIIYIIIVA KNPYQYKFWY	TEMMNIFVGF VVNSSDEEVM	MEATTAT DEGGE	CLAMOHYEOS	KMFNDAMDII.	1200 1260
80	NMVFTGVFTV	EMVLKVIAFK	PKGYPSDAWN	TPDSLIVIGS	IIDVALSEAD	PTESENVPVP	1320
					42	_	
					72	-	

		NRISITFFRL					1380
		MFGKVAMRDN EEYTCGSNFA					1440 1500
_		EYDPEAKGRI					1560
5		PALVRTALKI					1620
		LIQDYFRKFK					1680
		KREEEDDVFK PAGNSVCHNH					1740 1800
		HDREPORRSS					1860
10		CYEDDSSPTW					1920
		LPPTPASHRR					1980 2040
		KYSPSHSTRS ISYRTFTPAS					2100
		ACDLTIDEME					2160
15	EPDPGRDEED	LADEMICITT	L				
				SF	D ID NO:289 ORIA	DNA SEQUENCE	
	Nucleic Acid Acc	ession#: NM_00		-			
20	Coding sequence	x 150-33	82 (underlined sec	wence correspond	ls to start and stop	codon)	
20							
	1	11	21	31	41	51	
	Ī	1		1	1		
25		TCGGGACGCC					60
25		GCGTCCGCCT					120 180
		GCCTCTGCTC					240
	CCATTGTCTT	CATCAAGCAG	CCGTCCTCCC	AGGATGCACT	GCAGGGGCGC	CGGGCGCTGC	300
30		GCTTGAGGCT CACGGAGCGG					360
30		GGACTCTGGC					420 480
	AAGCCCGCAG	TGCCAACGCC	TCCTTCAACA	TCAAATGGAT	TGAGGCAGGT	CCTGTGGTCC	540
		AGCCTCGGAA					600
35		GCACCCTCGG CAACCACACA					660 720
33		TAGTGGGCTG					780
	GCAGCCAGAA	CTTCACCTTG	AGCATTGCTG	ATGAAAGCTT	TGCCAGGGTG	GTGCTGGCAC	840
		GGTAGTAGCG					900
40		GAGCCTGCAG CCTCCGCAGA					960 1020
-10		CAATGCAGGG					1080
		AGCCACACTT					1140
		AGCTGGCAGC					1200
45		GTGGTGGGAG CGAGCTGGTG					1260 1320
		CAACCTGGCT					1380
		GCTGAAGAAG					1440
		GACCCAGGCC					1500 1560
50		TGATGGGACA					1620
	AGGCGCAAGC	CCGTGTCCAA	GTGCTGGAAA	AGCTCAAGTT	CACACCACCA	CCCCAGCCAC	1680
		GGAGTTTGAC					1740
		TAAGTGGGAA					1800 1860
55		CGGGCCGCAG					1920
		CAAAGTGGAA					1980
		GGCCCAGGGG CACCAAGCTG					2040 2100
		GGCCCCTGAG					2160
60	ACATCAAGCA	CACGGAGGCC	CCCCTCTATG	TCGTGGACAA	CCCTCTCCCG	GAGGAGTCGG	2220
		CAGCCCTCCC					2280 2340
	AAGCCAAGCG	CTACATCATT GCTGCAGAAG	CAGCCCGAGG	GCGAGGAGCC	AGAGATGGAA	TECCTCAACE	2400
		GCAGAACGGG					2460
65		CGGCCCCGCG					2520
		TAGCCTGCAG GGCTCAGGGC					2580 2640
		GAAGGATGAG					2700
70	GGAAGCTGAA	CCACGCCAAC	GTGCTGCGGC	TCCTGGGGCT	GTGCCGGGAG	GCTGAGCCCC	2760
70		GCTGGAATAT					2820 2880
		TGAAAAATTG					2880
		TAACTGCCTG					3000
75	TCAGCAAGGA	TGTGTACAAC	AGTGAGTACT	ACCACTTCCG	CCAGGCCTGG	GTGCCGCTGC	3060
75		CCCCGAGGCC					3120 3180
		AGTACTGGCA					3240
	GCTGCCCTTC	CAAACTCTAT	CGGCTGATGC	AGCGCTGCTG	GCCCTCAGC	CCCAAGGACC	3300
80		CAGTGAGATT					3360
OU	<u>Ga</u> GGAGGGAG	CCCGCTCAGG	MIGGCTGGG	CAUDADOUDIA	CATCTCTAGA	GGGAAGCTCA	3420
					47	78	

5 10	TTGCTGAGGT GGCTGACTTG CTCTTCCCCTT TTCTCCCCTT AGGCTTGGGA AGGGTTAATG ACACAGCAAG CCCCACCCTT CTTTTGACAG GCCATCCTTA	GGCAAGATCC CTGAGCAGG GACCCAAACT ATCAGGGACA GACCGGGTCC TGAGCTGGGT TGAGTCCTTTC CTCTCCTTTC CTCTCCTTTC CTGTCGTGGG GGTGGGTG	CCTGGCCTTT GGGCGACTAG GTGTGGGTGC AACTCTGCCA TTGTGGGAG CCACTGGTCC CCACTCTGG CTCATCCTAA GCCCTTTTTTG CATGGGAGGT TTATTGTTGT	CCTCCTCTTC GGCTTTGAGC CACAGGTAAC CTCATCTGCC TTCCTTAATA ACTTGGGGT CTTGTGCACA TATGCACCAC AGGGTGGGCA CGTTTTTTGT	CTCACCCTCA TGGGCAGTTT CCCAATTTCT AACTTTGCCT TTCTCAAGTT CTAGACCAGA CAGACCAGA GATGAAGGAG GGGCGGCTTT CCTGGAGATG TTGTTTTGTT	TCCTTTGGA CCCTGCCAC GGCCTCCAC GGGGAGGGCT CTGGGCACAC ATTATAGAGG CCCACGTCTT TTTTCAGGAG TATATGTAAT AGGAGGGTCG	3480 3540 3600 3660 3720 3780 3840 3900 4020 4080 4140
15		OBI6 Protein segu n#: NP_0					
20	1	11	21	31	41	51	
20	1	<u> </u>	!	!	!	!	
	VHVYWLLDGA IKWIEAGPVV	PRRLPLLSVL PVQDTERRFA LKHPASEAEI GPEHSGLYSC	QGSSLSFAAV QPQTQVTLRC	DRLQDSGTFQ HIDGHPRPTY	CVARDDVTGE QWFRDGTPLS	EARSANASFN DGQSNHTVSS	60 120 180 240
25		QPPPSLQWLF					300
	CIGQGQRGPP	IILEATLHLA	RIEDMPLPRP	RVFTAGSEER	VTCLPPKGLP	EPSVWWEHAG	360
		OKCHELVLAN					420
	SQLEEGKPGY	LDCLTQATPK	PTVVWYRNQM	LISEDSRFEV	FKNGTLRINS	VEVYDGTWYR	480
	CMSSTPAGSI	EAQARVQVLE	KLKPTPPPQP	QQCMEFDKEA	TVPCSATGRE	KPTIKWERAD	540
30		NAGTLEFARV					600
		LQCEAQGDPK					660
		NIKHTEAPLY					720
		KAKRLQKQPE					780
35		FPRSSLQPIT					840 900
JJ		GKLNHANVVR CTQVALGMEH					960
		RWMSPEAILE					1020
		GCPSKLYRLM					
	Minner	00101111111	g.tom.mor.tm		DODDIVDDIII		
40							
-10				SEC	2 ID NO:291 AAB	I DNA SEQUENCE	
-10	Nucleic Acid Acc		NIM_002205	SEC	2 ID NO:291 AAB	I DNA SEQUENCE	•
10	Nucleic Acid Acc			SEI ined sequences co			•
45	Coding sequence	E	1-3150 (under	ined sequences co	orrespond to start a	and atop codons)	•
							Ē
	Coding sequence	: 11	1-3150 (under	ined sequences co	orrespond to start a	and atop codons) 51	
	Coding sequence 1 ATGGGGAGCC	11 GGACGCCAGA	1-3150 (under	ined sequences of 31 CACGCCGTGC	orrespond to start of	sand stop codons) 51	60
45	Coding sequence 1 ATGGGGAGCC CGCCGACCCC	11 GGACGCCAGA CGCTSSTGCC	1-3150 (under	ined sequences of 31 CACGCCGTGC CTGCTSSTGC	41 i AGCTGCGCTG	51 GGGCCCCGG CAGGGTCGGG	60 120
	1 ATGGGGAGCC CGCCGACCCC GGCTTCAACT	11 GGACGCCAGA CGCTSSTGCC TAGACGCGGA	1-3150 (under	31 CACGCCGTGC CTGCTSSTGC GTACTCTCGG	41 i AGCTGCGCTG GGCCCCGGG	and stop codons) 51	60 120 180
45	Coding sequence 1	11 GGACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTTA	1-3150 (under	31 CACGCCGTGC CTGCTSSTGC GTACTCTCGG ACAGACGGGG	41 i AGCTGCGCTG GGCCCCCGGG TCAGTGTGCGCT	51 GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA	60 120
45	1 ATGGGGAGCC CGCCGACCCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA	11 GGACGCCAGA CGCTSSTGCC TAGACGCGGA	1-3150 (under 21 GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCCGGGA GCCAGGAGTG	31 CACGCCGTGC CTACTCTGG ACAGCGGGG CTGCAGGGTG	41 i AGCTGCGCTG GGCCCCCGGG TCAGTGTGCTTA	sind stop codons) 51 GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA CCTCTGTCCT	60 120 180 240
45 50	1 ATGGGACCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA TGGGGTGCA	11 GEACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTTA ATACCAGCCA CCCCCACACA CACTGTCCAG	1-3150 (under	31 CACGCCGTGC CTGCTSSTGC GTACTCTCGG ACAGACGGGG ACAGACGGGG ATTGAATTTG GAGGAGCCTG	41 AGCTGCGCTG GGCCCCGGG TCAGTGTCCT GTGCTGTCTA ACACCAAAGG TGGAGTACAA	51	60 120 180 240 300 360 420
45	1 ATGGGGACCC GGCTTCAACT GGATTCTCAG CCCAAGGTAC TGGGTTCCT TGGTTCCGGGTTCT TGGTTCGGGT	11 GEACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTA ATACCAGCCA GCCCCACACA CACTGTCCAG CAACAGTTCCAG CAACAGTTCCAG	1-3150 (under	31 CACGCCTGC CTGCTSFTGC GTACTCTCGG GTACTCTCGG GTGCAGGGTG ATTGAATTTG GAGGAGCCTG TCCTCCATCT	41 i AGCTGCGCTG GGCCCCGGG GTCATGTGTCTA ACACCAAGG TGGATACAA TGGATACAA TGGATACAA	51 GGGCCCCGG CAGGGTGGG CTCCTTCTC CTCTCGGCTC CTCTCGGCT CTCTTCCACTTGCAG CTCCACTTACAG TCCACTTACAG	60 120 180 240 300 360 420 480
45 50	1 RTGGGAGCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA TGGGGTGCCA TGGGTTCCAG TGGGTTCCGAG AGCTTCGGGC AGCTTCGGGC	11 GGACGCCAGA GGCTSSTGCC TAGACGCGGA TGCAGTTTTA ATACCAGCCA GCCCCACACA GCCCCACACA CACTGTCCAG CAACAGTTCC CAGAGAAGGA	1-3150 (under 21 GTECCETETE GECCEAGGA CCGGCAGGAGTG GTCACCCCC CTCAGAGGGA AGCCCATGGC GCCACTGAGG	31 CACGCCTTGC CTGCTSSTGC GTACTCTGGG ACAGGGGG CTGCAGGGTG ATTGAATTTG GAGGAGCCTG TCCTCCATCT GACCCCTGG	41 AGCTGCGCTG GGCCCCCGG TCAGTGTGCT TCAGTGTGTTA ACAGCAAGG TGGGTACAA TGGGATACAA TGGCATGCGG	51 51 6GGCCCCGG CAGGGTCGGG CTCTTCTTC CTCTCGGCTC CTCTTGCAC TCCACAC CCTCTTCAC CCCTTTCAC CCCTCTACAC CCCTCTACAC	60 120 180 240 300 420 480 540
45 50	1 ATGGGGACCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA TGGGGTGCCA CTGGAGTCCT TGGTTCGGG AGCTGGGGGA AGCTGGGGGA AGCTGGGGGA AGATACTTCA	11 GGACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTTA ATACCAGCCA GCCCCACACA CACCAGTCCA CACAGATCGA CAGAGAAGGA CCCGAATTCT	1-3150 (under 21 GTCCCCTCTC GCTCCCAGCA CCGCCCAGCA CCGCCCAGGA GCCCATGGC CTCAGAGGGGA AGCCCATGGC GCCACTGAGC GCAGTATGCA	31 CACGCCGTGC CTGCTGSTGC GTACTCTGGGGGGGGGGGTCTGCAGGTGT GAGGAGCTGGAGCTGGACCCGTGGACCCGGCCCCTGCGCCCCTGCGCCCCCCCC	41	sid stop codons) 51	60 120 180 240 300 360 420 480 540 600
45 50	Coding sequence 1	11 GGACGCCAGA GGCCSSTGCC TAGAGCGCGA ATACCAGCCA ACACTATCCAG CACCATTCCAG CACAGTACA CAACAGTACA CAACAGTACA CAACAGTACA CACAGTACA CA	1-3150 (under 21 GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGGGAGGGGGGGGGAGGGGGGAGGGGGAGGGGGGGG	31 CACGCCTTGC CTGCTSTTGC GTACTCTCGG GTACTCTCGG CTGCAGGGTG ATTGAATTTG GAGGAGCCTG TCCTCCATCT GACCCCGTGG CCCCGAGTTCA	41 AGCTGCGCTG GGCCGCCAC GGCCCCCGGG TCAGTGTGCTA ACACCAAGG TGGATACAA TGGATACAA TGGATACAA TGGATACAA CACAAGGC CAAGATTCAG	sid stop codons) 51 GGGCCCCCGG CAGGGTCGGG CTCTTCTTC GGTGGGAGCA CCTCTGTCCT TCTCTCAGCTTC TCCACTGTACAC CCTCTGCACA CCTCTGCACA CCTCTGCACA CCTCTGGCTGCACA CCCTGTGGTT	60 120 180 240 360 420 480 540 600 660
45 50 55	1 NEGGGAGCC GGCGACCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA TGGGGTGCCA TGGTTGGGG AGCTGCGCA GATAACTTCA GGAACGGTT TTAGGTGGAG	11 GGACGCCAGA GGCTSSTGCC TAGAGGTTTTA ATACCAGCA GCCCCACACA CACTGTCCAG GCACAGTTCG CAGAGAAGGA CCCGAATTCT CAGGGAAGGA CCCGAAGCCAAGCACACACACACACACA	1-3150 (under 21 GTCCCCTCTC GCTCCCTGTTG GCCCCASCA CCGGCCGGGA GCCAGGAGTG GTGCACCCC CTCAGAGGGA AGCCCATGGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTTCAGT TTTCTGGCAA	31 CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG CTGCAGGGTG ATTGAATTTG GAGGAGCCTG GACCCGTGG CCCCGTTGC GCCGATCT GGCCGAGATCC	41 i AGCTGCGCTG GGCCCCCGGG GGCCCCCGGG GTCAGTGTGTTA ACACGAAGG TGGAGTACAA TGGAGTACAA TGGATTTCAG CCAAGACTG TGTCTGCTA CAGATTTCAG TGTCTGCCAC	and stop codons) 51 GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC CTCTCGCCT CTCTCGCCT CTCTTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCGTCTGCGT TCAGGAGCAG	60 120 180 240 360 420 480 540 600 660 720
45 50	1 TOGGGACCC GGCTTCAACT GGATTCTCAG CCCAAGCCC GGCTTCAACT GGATTCTCAG CCCAAGCTCC TGGATCCT TGGTTCGGG GATAACTTCA GGACAGGTT TTAGGTGGAC ATTTCAGAACT ATTGCAACT ATTGCAACT ATTGCAACACACACACACACACACACACACACACACACAC	11	1-3150 (under 21 GTECCCTCTC GCTCCTGTG GCCCAGCA CCGGCAGGAGTG GCCAGGAGTG GTCCACCCC CTCAGAGGGA AGCCCATGGC GCCACTGAGC GCAGTTAGCA AGGCTTCAGT TTTCTGGCAA CGAGTACCTG	31 CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGAGGGG CTGCAGGTG GAGGAGCTG GAGGAGCTG GACCCGTGG GCCCGTGGCGCT GACCCGTGG GCCAGATTCA ACTACAGATCC ATCAACCTGC	41 AGCTGCGCTG GGCCCCGG TCAGTGTGCT GTGCTGTCTA TGGGTACAA GGGATACAA TGGGATACAA TGGATTCAG CCAAGACTGG CCACTGCTC CCAGATTCAG CCAGATTCAG CCAGATTCAG TGTCTGCCAC TTCTCGCGC TTCTCGCGCA TTCTCGCGCA	sid stop codons) 51	60 120 180 240 300 360 420 480 540 600 600 720 780
45 50 55	Coding sequence 1	11 GGACGCCAGA GGCCSSTGCC TAGACGCGGA ATACCAGCCA ATACCAGCCA CACATTCCA CACAGTTCCA CACAGTTCC CAGAGAAGCA CCCCAAATCA CCCCAAATCA CCCAAATCA CATGCCAAGG CAGGAAGCTA CTTATTACCC GTTCCATCTA	1-3150 (under 21 GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCAGGAGGTG GCCAGGAGGTG GCCACTGAGG GCCACTGAGC GCCACTGAGC GCACTTCAGT TTTCTGCCAA CGAGTACCTA	31 CACGCCGTGC CTGCTSSTGC GTACTCTCGG ACAGAGGGG CTGCAGGTG ATTGAATTTG GACGCCCTGC GACCCCTGC GCCCGCTG GCCGGATTCA GGCAGATTCA GGCAGATCC GGCAGATCC GCCAGATCC GCCAGATCC GCCAGATCC GCCAGATCC GCCAGATCC ATCAACCTGG TACCTAGGAT	41 AGCTGCCCTG GGCCCCCGGG GGCCCCCGGG TCAGTGTGCTTA AGCGAAAGG TGGATACAA TGGCATCCG CCAGCTTCTA CCAGTTCTA CCAGTTCTA CCAGTTCTA CCAAGTTCA CCAAGACTGG TTCAGGGGCA ACTCTGTGGCA ACTCTGTGGCA	sid stop codons) 51	60 120 180 240 360 420 480 540 660 720 780 840
45 50 55	1 NEGGGAGCC GGCGACCC GGCTTCAACT GGATTCTCAG CCCAAGGCTA TGGGGGCCA TGGGTGCCA GGATTCTCAG GGATTCT TGGTTCGGG AGCTGCCCA ATAACTTCA GGACAGGTT TTAGGTGGAC ATTCCAGAAT CCCCAAGCAT TTAGGTGGAC ATTCAGTGGAC ATTCAGTGGTG	11	1-3150 (under 21 GTCCCCTCTC GCTCCCTGTTG GCCCCAGCA CCGGCCAGCA CCGAGGAGTG GCACTGAGGGGA AGCCCATGGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GGAGTATCCA TTTCTGGCAA CGAGTACCTG TGATGACAGC AGACTTGTTT	31 CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG CTGCAGGGTG ATTGAATTTG GAGGAGCCTG GACCCGTGG CCCCATCT GACCCGTGG GCCAGATCA GGCCAGATCA GGCCAGATCA GGCTGAGCTGG ATCAACTGG TACCTAGGAT GCTGGTGTGG	41 i AGCTGCGCTG GGCCCCCGGG GGCCCCCGGG TCAGGGTACAA TGGGATACAA TGGGATACAA TGGGATACAA TGGGATTCAG CCAAGACTGG TGTCTGCCAC TTCAGGGGCA ACTCTGCTGCCAC CCAAGACTGG CCAAGACTGG CCAAGACTGG CCAAGACTGG	sid stop codons) 51 GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC CTCTCGGCT CTCTCGCT CTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTGTCGTT TCAGGAGCAG GCTCAGAGCAT TOTTGGGTGAA CCTCACTTAC	60 120 180 240 300 360 420 480 540 600 600 720 780
45 50 55 60	1	11 GGACGCCAGA GGCCSSTGCC TAGACGCGGA ATACCAGCCA ATACCAGCCA CACATTCCA CACAGTTCCA CACAGTTCC CAGAGAAGCA CCCCAAATCA CCCCAAATCA CCCAAATCA CATGCCAAGG CAGGAAGCTA CTTATTACCC GTTCCATCTA	1-3150 (under 21 GTCCCCTCTC GCTCCTGTTG GGCCCAGCA CCGGCAGCA CCGGCAGCACCC CTCAGAGGGA AGCCCATGGC GCCACTGAGC GCACTTAGC GGAGTATGCA AGGCTTCAGT TTTTCTGGCAA CGAGTACCTG TGATGACAGC	31	41 AGCTGCGCTG GGCCCCGG TCAGTGTGCT GTGCTGTCTA TGGAGTACAA TGGAGTACAA TGGAGTACAA TGGAGTACAA TGGAGTACAA TGGAGTACAA TGTCTGCCC CCAAGACTGG TGTCTGCCAC TTTCAGGGGCA ACTCTGTGGC CCAAAGGGAA TCTACAAGTT	sid stop codons) 51	60 120 180 240 300 420 480 540 660 720 780 840 900
45 50 55	1	11	1-3150 (under 21 GTCCCCTCTC GCTCCCTGTTG GGCCCCAGCA CCGGCCGGGA GCCAGGAGTG GTCCACCCC CTCAGAGGGA AGCCCATGAGC GCACTGAGC GCACTGAGC GCACTGAGC GGAGTATCCAG TTTCTGGCAA CGAGTACCTG TGATGACAGC AGACTTTGTT TGGCTCAGAC CTATGCAGTC ACCCCTCTCTC	31 CACGCCGTGC CTGCTSSTGC GTACTCTCGG GTACTCTCGG CTGCAGGGTG ATTGAATTG GACGCGGTT TCCTCCATCT GACCCGTGG GCCGAGTTCA GGCAGATCC GCCAAGTTCA GGCAGATCC ATCAACTGG GCTGGTGGC GTGCTGGTGCCCAAGG ATTGATCCC ATCAACTAGAAT GCTGGTGTGC ATTGATCCC GCCCACAG	41 i AGCTGCGCTG GGCCCCCGGG GGCCCCCGGG GTCGCTGTCTA ACACCAAGGG GCACCTGCTA CAGATTCAG TGGAGTACAA TGGCATTCAG TGTCTGCCTA CAGATTCAG TTCTGCGCC CCAGACTGGC CCAAAGGGAA TCTACAGCTCA TCTCAGGGCAC CCAAAGGCAA TCTCAACGC CCCCTGACGC CCCCTACAGG	51 GGGCCCCGG CAGGGTCGGG CTCTTCTTC CTCTCGGCTC CTCTCCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACAC CCTGTGGTT TCAGGAGCAG CCTCACACACT TCATGGGAGCAG CCTCACACT CTCTGGGGAGCA CCTCACGCTAC CCTCACGCGACA CCTCACCTTAC CCTCACGCGCACACCT CGCGGCCTCAGCCCCACACCT CCTCACCTCA	60 120 180 240 300 360 420 480 540 660 720 780 900 960 900
45 50 55 60	1	11	1-3150 (under 21 GTCCCCTCTC GCTCCTCTTG GCCCCAGCA CCGCCCAGCA CCGCCCAGGAGTG GCCAGGGAATG GCCACTGGC GCACTAGC CGAGTACCTG TTACCTGCAA CGAGTACCTG TGATGCAGTG ACCCCTGCTC CTACCTCCAG CCTACCTCCAG CCTACCTCCAG CCTACCTCCAG CCTACCTCCAG CCTACCTCCAG CCTCCTCC	31 CACGCCGTGC CTGCTSTTGC GTACTCTGGG ACAGACGGGG CTGCAGGTTG GAGGAGCTGG GCCCGTGCGCTGC GCCGAGTTCA ACTGACATACA GCCGCGTGCGGT ACTCAGCTGCGGT ACTCAGCTGCGGT ACTCAGCTGCGGT ACTCAGCTAGGAT ACTCAGCTGGGGATCCAG ATTGGATCCGCCCACAGA ATTGGATCCCACCGCGCACAGA CACCCAGCGCACAGCACA	41 AGCTGCGCTG GGCCCCGG GGCCCCGG TCAGTGTGCT GTGCTGTCTA AGAGGAAAG TGGAGTACAA TGGAGTACAA TGGAGTTCAG CCAAGACTGG CCACAGGCA TCTGTGCA TTCAGGGGCA ACTCTGTGGC CCAAAGGGAA TCTACAACTT ACGTCAATGG CCCATAACG GCATAGGGCA CCCCTAACGG GCATAGAGCC	sid stop codons) 51	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1080
45 50 55 60	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTTA ATACCAGCCA CACAGTTCCA CACAGTTCCA CACAGTTCA CCCCAAATCT ACTGCCAAGG CACGATCAT ACTGCCAAGG CAGGAAGCTA ACTGCCAAGA CCTACTTTAGC CCATCCTTAA ACGACACTAC CCTACTTTGG TGGTGGGGGC CTGGCCATGA	1-3150 (under 21 GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCAGGAGGTG GCCAGCACCC CTCAGAGGGA AGCCATGAGC GGCACTGAGC GGAGTATCAGT TTTCTGGCAA AGGCTTCAGT TGATGACAGC AGACTTTGTT TGATGACAGC AGACTTTGTT TGCCTCAGGT ACCCTGCTG CTACCTGCAG TGAGTTTGGCT TGACTTGCCT	31 31 CACGCCGTGC CTGCTSSTGC GTACTCTCGG ACAGACGGG CTGCAGGTTG ACTGCAGGTTG GACCCCGTGG GCCCAGATTC GCCGAGATTC GCCGAGATCC GCCGAGATCC GCCGAGATCC ATCAACCTGG TACCTAGGAT GCTGGTGTGC GCCGCACAG ATGGATCCA GCCGCCACAG ATGGATCGGA CACCCAGCCG CACCCACCG	41 AGCTGCCCTG GGCCCCGCG GGCCCCGCG TCAGTGTGCTA ACAGCAAAGG TGGATACA TGGCATGCG CCAGATCGC CCAGATCGC CCAGATCGC CCAGATCGC CCAGATCGC CCAGATTCAG CCAGATTCAG CCAGATTCAG CCAGATTCAG CCAGATTCAG CCAGATTCAG CCAGATTCAG CCAGATTGGCAC CCAAAGGGAA ACTCTGTGGC CCAAAGGGCA ACTCTGAGGC CCCTAACGG CCCTGAAGG CCCTTGACGG CCCTTGAC	sid stop codons) 51 GGGCCCCCGG CAGGGTCGGG CAGGGTCGGG CCTCTTCTTC GCTCGGCTC GTCCTTGCAC TCCACTGCAC CCTCTCACA CCTCTCACA CCTCTCACA CCTCTGGAGACA CCTCTGGAGACA CCTCACGAGACA CCTCACGAGACA CCTCACGGAA GCACGGCTC GCGGCCCAC CCCCCTGGGC CCCCCCTGGGC	60 120 240 300 360 420 480 540 660 720 840 900 1020 1080 1140
45 50 55 60	1	11	1-3150 (under 21 GTCCCCTCTC GCTCCTGTTG GCCCCAGCA CCGGCCGGGA GCCAGGAGTG GTCCACCCC CTCAGAGGGA AGCCCATGAG GCAATGAGC GCAATGAGC GCAATGAGC GCAATTAGT TTTCTGGCAA CGAGTTACTG TGATGACAGC AGACTTTGTT TGGCTCAGAC CTACCCTCCTC CTACCCTGCTC CTACCTGCAG CCAATGATTTGGC CAATGATTTGGC CAATGATTTGCC CAATGATTTGGC CAATGATTTTGCC CAATGATTTGGC CAATGATTTTGCC CAATGATTTTGCC CAATGATTTTGCC CAATGATTTTGCC CAATGATTTTGCC CAATGATTTTGCC CAATGATTTTTTTTTT	31 CACGCCTGC CTGCTSFTGC GTACTCTGG GTACTCTGG GTACTCTGG CTGCAGGGG CTGCAGGGG CTGCAGGGG CCCCCGTGG CCCCGAGTTCA GGCCAGATTCA GGCCAGATTCA GGCCAGATCC ATCAGCAT GCTGGTGG CCCCCACAG ATTGATCGACC ATGGTCGAC ATGGTCGAC ATGGTCGAC ATGGTCGAC ATGGTCGAC ACGGCCCACAG ACGGTCGGG CACCAGCGG CCCCCACAG ACGGTTCGCA CGCCTCACGGG	41 i AGCTGCGCTG GGCCCCCGGG GGCCCCCGGG GTGCTGTCTA ACACCAAGGG GCACTGCTA TGGGATACAA TGGCATTCAG TGCATTCAG TTCAGGGGCA TTCAGGGGCA ACTCTGTGCC CCAAAGGGAA TCTACAACTT ACGCATAGACTT CCCTTGAC CCCTTGACGC GCATTAGACCT CCCTTGACGC CCTCCTTGAC CTCCCTTTGG	sid stop codons) 51 GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC CTCTCGGCTC CTCTCGCTC CTCTCCACA CCTCTCCACA CCTCTCCACA CCTGTCGACA CCTGGGAGCA CCTGGGAGCA CCTCACACA CCTGGGGAGCA CTCAGGGGAGCC CTCAGGGGAGCC CCCCCTGGGGTGAGCCCCACC CCCCCTGGG	60 120 240 300 360 420 480 540 660 720 780 900 900 1020 1140 1260
45 50 55 60 65	1	11	1-3150 (under 21 GTCCCCTCTC GCTCCTCTG GCCCCAGCA CCGCCCAGCA CCGCCCAGCA CCCACTGAGGGGA AGCCCATGAG GCACTGAGC CCATGCAGC CTATGCAGTG CCACTGCAG CCACTGCTC CTACCTGCAG CCATGCAGTG CAATGATGTG CAATGATGTG ATTTCCTGGG ATTCCTGGG	31 CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGGG CTGCAGGTTG ACTGCAGGTTG GAGGAGCCTG GCCCCTGCGCCT ACTCAACTTG GACCCCGTGC GCCAGATTCA ATCAACTGG TACTTAGGATC GCCGCCGAGTCA ATTGAACCTGG CTGGTGGTGGGTG GCCGCCACAG CCCCCCCCGGATTCGGA	41 AGCTGCGCTG GGCCCCGG GGCCCCGG TCAGTGTGCT GTGCTGTCTA AGAGGAAAG TGGAGTACAA TGGAGTACAA TGGAGTTCAG CCAAGACTGG CCACAGGCCA TTCAGGGCA TTCAGGGCA TTCAGGGCA TTCAGAGTTAGG CCAAAGGGAA TCTACAACT ACGTCAATGG CCCTTAGAGC GCCTTAGAGC GCCTTAGAGC GCTCCTTTAG	sid stop codons) 51	60 120 180 240 300 420 480 540 600 660 720 780 840 900 900 1080 1140 1200 1200 1320
45 50 55 60	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGAGCGCGA ATACCAGCCA CACAGTTCA CACAGTTCA CACAGTTCA CACAGTTCA CCCAAATACT ACTGCCAAGA CCCACATTCA ACTGCCAAGA CCTACTTAA ACTGCCATCAA CCTACTTAG CCATCCTTAA CCTACTTAG CCTACTTAG CGGTCTAGA CCTACTTAG AGGATGCTA AGGATGCTA AGGCCCTGTA	1-3150 (under 21 GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCGGGA GCCAGGAGTG GTCCACCCCC CTCAGAGGGA AGCCATGGC GCCACTGAGT TTTCTGCCAA AGGCTTCAGT TGATGACAGC CGATGACCAG CGATTACCT TGATGACAG AGACTTTGTT TGGCTCAGAC CTACTGCAG TGATGCAGTG ACCCTGCTC CTACTTCAGC CAATGATTGG CAATGATTGG CAATGATTGG CAATGATTGG GCCAGCCAGC GCCAGCCAGC GCCAGCCAGC	31 31 CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGG CTGCAGGTTG GACCCGTGC CCCTGCCATCT GACCCGTGG GCCAGATTCA GGCAGATTCA GGCAGATTCA GGCCAGATTCA GCTGGTGTGC CATCGGATCGG	41 AGCTGCCCTG GGCCCCGG TCAGTGTCCTTA AGCTGCAAAGG TGGAGTACA TGGCATCAC CCAGATTCAG TGCAGTACA TGCATGCAA TGCATGCAC CCAAGACTG CCAAGACTG TTCAGGGGCA ACTCTGCAC CCAAAGGGCA ACTCTGTGGC CCAAAGGGCA ACTCTGACG CCCTTGACG CCCTTGACG CCCTTGACG CCCCTTTGA	sid stop codons) 51 GGGCCCCGG CAGGGTCGGG CAGGGTCGGG CCTCTTCTCC GTCCTTGTCCT CTCTCGGCTG CTCTTCACA CTCGGCAGCA CCTCTGCAT CCACTGTAC CTCGGCAGCA CCTCAGGGAGCA CCTCAGGGAGCA CCTCAGGGAGA CCTCAGGGAA GGACGGCTG CCCCCTGGG TGAGGCACC CCCCTGGG TGAGCCTTCC CCCCTTGCC CTCTCCCCCT	60 120 240 300 420 480 540 600 660 720 900 1020 1020 1140 1200 1220 1320 1380
45 50 55 60 65	1	11 GGACGCCAGA GGACGCCAGA CGCTSSTGCC TAGACGCGA ATACCAGCA CACCACACA CACCACACA CACTOTCCAG CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA ACTGCCAAGA CACACTTCA ACTGCCAAGA CCACACTTATACCC CGTTCCATCTA ATGACACAGA CCACACTTTAG CCACACTTTAG CGTTCCATCTA ATGACACAGA CCTACTTTAGA CGTTCCATCTA AGGATGCTACT AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATGCTA AGGATCCTCAGA AGGATCCTCAGA AGGATCCTCAGA AGGATCCTCAGA AGCACCTTGGA GAGACCTTGGA	1-3150 (under 21 GTCCCCTCTC GCTGCTCTTG GGCCCCAGCA CCGGCCAGCA CCGCCCGGCA GCCAGGAGTG GTCCACCCC CTCAGAGGGA AGCCCATGGC GCACTTAGG GCACTTAGG TTTCTGGCAA CGAGTTCCTT TTTCTGGCAA CGAGTTCCTT TGGCTCAGT CGACTCAGT ACCCTGCTC CTACCTCAGT ACCCTGCTC CTACCTGCAG ACCCTGCTC CTACCTGCAG ACCCTGCTC CTACCTGCAG ACCCTGCTC CTACCTGCAG ACCCTGCTC CTACCTGCAG GGCAGCAGC ACCCCAGCAGC TGGCAATGGA	31 CACGCCGTGC CTGCTSFTGC GTACTCTCGG GTACTCTCGG CTGCAGGTG ATTGAATTTG GACGCCGTGC CCCGCGGT GCCGAGTCA GCCGAGTCA ATCAACTGG ATCAACTGG GCCGAGTCG ATCAACTGG ATCACTGGA ATGATCGG ATCACTGGA CCGCCCACAG ATGGATCGG CACCCAGCG GCCCAGCAG CGATTTGGA CGCCCAGCAG CGATTTGGA CGCCCAGCAG CGCCCAGCAG CGCCCAGCAG CGCCCAGCAG CGCCCAGCAG CGCCCAGCAG CGCCCAGCAG CGCCCAGCAG CACACCCCAG CACACCCCAG TATCCTGATC	41 41 AGCTGCCCTG AGCTGCCCCGGG GGCCCCCGGG TCAGTGTGCT ACACCAAGG TGGATACAA TGGATACAA TGGATACAA TGGATCGCC CCAAGACTGA CCAAGACTGA ACTCCTTGAC CCAAGACTGA ACTCCTTGGC CCAAGACGCA ACTCCTTGGC CCAAGACGCA ACTCCTTGGC CCAAGACGCA ACTCCTTGGC CCACTTGGC CCACTTGAC CCCCTTGGC CCCCTTGGC CGCTCCTTGGC TGATTGTGGG TGATTGTGGG TGATTGTGGG TGATTGTGGG	sind stop codons) 51 GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA CCTCTGTCCT CTCACTGGCTC TCACTGTAC CCTCTCACAC CCTGTGGACA CCTGTGGACAC CCTGTGGACAC CCTCACTTAC CCTCACTTAC CTCACGGACAC CTCAGGGACA CTCAGGGACA CTCAGGGACA CTCAGGGACA CTCAGGGACA CTCAGGGACA CTCAGGGACA CTCAGGCTAG CAGCCCCAC CCCCTGGG TGGGAGACC TAGCCTTCC TAGCCTTTC CTCTCTCCTT	60 120 240 300 360 420 480 540 660 720 780 900 900 1020 11200 1200 1200 1200 1320 1320 1
45 50 55 60 65	1	11	1-3150 (under 21 GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCCAGCA CCGGCCAGCA CCCATGAGGGGA AGCCCATGAG GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC CGAGTATCCT TGGCTCAGAC CTATGCAGTG CTACCTGCTC CTACCTGCTG CAATGATTTGT ATTTCCTGGG GGCAGCAGC CGAGCAGCA CGAGGGCCAGC CAGGGGCCCGC CAGGGCCAGC CAGGGGCCCGC CAGGGCCAGC CAGGGGCCCGC CAGGGCCAGC CAGGGGCCCGC CAGGGCCCAC CAGGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCAC CAGGGCCCAC CAGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGCACCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGGGCCCAC CAGCCCAC CAGCCCCC CAGCCCAC CAGCCCCC CAGCCCAC CAGCCCCC CAGCCCC CAGCCCCC CAGCCCC CAGCCC CAGCCCC CAGCCC CAGCC CAGCCC CAGCCC CAGCCC CAGCCC CAGCCC CAGCCC CAGCCC CAGCC CAGCCC CAGCC CACCC CAGCC CAGCC CAGCC CAGCC CAGCC CAGCC CACCC CAC	31 CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGGG CTGCAGGTG ACTGCAGGTG GACCCCGTGC CCCTGCGCCT ACTGCAGCTG GCCAGATTCA ATCAACTGG TACTAACTGG TACTAGGATCC GCCGCCAGAGTCC GCTGGTGGTG CCTGGTGGTG CCTGGTGTGGTG	41 AGCTGCGCTG GGCCCCGCG GGCCCCGCG TCAGTGTGCT GTGCTGTCTA GTGGATACAA TGGAGTACAA TGGAGTACAA TGGAGTACAA TGTGTGCCA CCAAGACTGG CCACAGCTG CCAAGACTGG CCAAGAGCTG TCTGTGGC CCAAAGGCAA TCTACAACT ACGTCAATGG CCCTAGAGC GCCCTAGAGC GCTCCTTTGG GGCTGGCTA ACTCTTTGG GGCTGGCTC ACTCTTTTGG GGCTGGCCT ACTCTTTTGG GGCTGGCCT ACTCTTTTGG CCCCTAGAGC CCCCTAGTGC CCCTAGTGC CCCCTAGTGC CCCCTAGTGC CCCCTAGTGC CCCCTAGTGC CCCCTAGTGC CCCTAGTGC CCCCTAGTGC CCCCTAGTGC CCCCTAGTGC CCCCTAGTGC CCCCTAGTGC CCCTAGTGC CCCCTAGTGC CCCCTAGTC CCCTAGTC CCCCTAGTC CCCTAGTC CCCCTAGTC CCCCTAGTC CCCCTAGTC CCCCTAGTC CCCCTAGTC CCCCTAGT	sind stop codons) 51	60 120 180 240 360 420 480 540 660 660 720 780 840 960 1020 1140 1200 1240 1320 1380 1440 1500
45 50 55 60 65	1	11 GRACGCCAGA GGACGCCAGA CGCTSSTGCC TAGACGCGGA TGGAGTTTTA ATACCAGCCA CACAGTTCCA CACAGTTCCA CACAGTTCCA CACAGTTCC CAGAGAAGCTA ACTGCCAAGC CATGCTACTA ACTGCCAAGG CAGGAACCTA CCTACTTTGG TGGTGGGGC CGGCTCACTA AGGACTCAA AGGATGCTA AGGATGCTA AGGACCTGTG AGGCCCTGTG AGCCCTGTG CATGTTCAA CCTACTTTGC CATGTTTTCT CATGTTTTCT CATGTTTCAA CCTACTTTCAA CCTACTTTCAA CCTACTTCAA CCTACTTCAA CCTACTTCAA CCTACTTCAA CCTACTTCAA CCTACTTCAA CCTACTTCAA CCTACTTCAA CCTACTTCAA CCTACTCCAA CCTACTCCAAC	1-3150 (under 21 GTCCCCTCTC GCTGCTGTG GGCCCCAGCA CCGGCAGGAGGG GCCAGGAGGGG GCCACTGAGC GCCACTGAGC TTTCTGGCAA AGCCTTCAGT TTTCTGGCAA AGACTTCAGT TGATGACAG AGACTTCAGT TGATGACAG CCAATGAGT ACCCTGCTC CTACCAGGTG ACCCTGCTG CAATGAGTTGGC CAATGAGTTGGC CAATGAGTTGGC CAATGAGTTGGC CAATGAGTTGGC CAATGAGTGGAGGGGCGGC GCCAGCAGGGGCCAGC CCCAGAGGAG	31 31 CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGG CTGCAGGTTG ACTGCAGTTG GACGCCGTGC CCCTGCCGTT GACCCGTGG GCCAGTTCA GGCCAGTTCA GGCCAGTTCA GGCCAGTTCA GCTGGTGTGC CACCCAGGATCC GCCACCCG GCCACCAG ATGGATCGGC CGATTTGGCA GCCACCCAG CACCCAGCAG CACCCAGCAG CACCCAGCAG CACCCAGCAG CACCCAGCAG CACCCCAG	41 AGCTGCCCTG GGCCCCGCG TCAGTGTCCTTA AGCAAAGG TGGAGTACA TGGCATCGC CCAGATCAG TGCAGTCCCCC CCAGAGACTG CCAGATCAG TTCAGGGGCA ACTCTGCAC CCAAAGCGCA ACTCTGCAC CCAAAGGGCA ACTCTGTGCC CCAAAGGGCA ACTCTGTGCC CCAAAGGGCA ACTCTGTGCC CCATAGGG CCCTTAACG GCTTGCTGC CCCTTTGC CCCCTTTGC CCCCTTTGC CCCCTTTGG	sind stop codons) 51	60 120 240 300 420 480 540 600 660 720 1020 1020 1140 1200 1200 1320 1380 1440 1560
45 50 55 60 65 70	1	11	1-3150 (under 21 GTCCCCTCTC GCTGCTCTTG GCGCCCAGCA CCGGCGGGA AGCCCATGAG GCACTGAG GCACTGAG GCACTTAGG GCACTTAGG GCACTTAGG GCACTTAGG CGACTTAGG CGACTTAGG CGACTTAGG AGCCTTAGT TTTCTGGCAA AGCCTTAGT TGATGACAGC AGACTTTGTT TGGCTAGAGT ACCCTGCTC CTACCTCAGG CTAGGCAGG CAATGATTGG CAATGATTGG CAATGATTGG CAATGATTGG CAATGATTGG CAGGGCCGC CCCCAAGAGGAG CCCCCAATGACAGC CTCCCCCAAT	31 CACGCCGTGC CTGCTSFTGC GTACTCTCGG ATGAATTG GACGCCGTGT TCCTCATCT GACCCCGTGG CCCGAGATTCA GCCGAGATTCA GGCAGATTCA GGCAGATTCA GGCAGATTCA GGCAGATTCA GCCAGAGTG ATTGAACTGG ATCACTGGAT CCCACCCG GCCCCACAG ATGGATCGGA CACCCCAGGAG CGCCCAGGAG CGCCCAGGAG CGCCCAGGAG CGCCCAGGAG TATCCTGAT CCCATCGTGT CCCATCGTGT CCCATCGTGT CCCATCGTGT CCCATCGTGT CCGGAGCTGCA CGGGAGTTCGGA CCCCCAGGAG CGCCCCAGGAG CGCCCAGGAG CGCCCCAGGAG CGCCCCAGGAG CGCCCCAGGAG CGCCCCAGGAG CGCCCCAGG CGCCCCAGGAG CGCCCCAGG CGCCCCAG CGCCCCAGG CGCCCCCAG CGCCCCCAG CGCCCCCAG CGCCCCCAG CGCCCCCAG CGCCCCCAG CGCCCCCCAG CGCCCCCCCC	41 41 AGCTGCCTG AGCTGCCTG AGCTGCCTGA GGCCCCCGGG TCAGTGTGTA ACGCAAAGG ACAGATGA CGCAGATGA TGGATTCAG CCAAGATGA CCAAGACTGG TTCAGGGGA ACTCTGTGCA CCCTGACGG CCAAGATGG CCATGACGG CCATGACGG CCATGACGG CCTTTGG CGCTTGAC CCCTTTGG CCCTTTGG CCCTTAGACGA ACTCTTTGG CCCCTAGTGC CCCTTAGACGA ACACCTTGAC CCCTTAGACGA ACACCTTGCC CCCTTAGACGA ACACCTTGCC CCCTTAGACGA ACACCTTGCC CCCTTAGACGA ACACCTTGCC CCCTTAGACGA ACACCTTTGC	sid slop codons) 51 GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA CCTCTGTCCT CTCACTGTAC CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCACTTAC CCTCACTTAC CTCACGGCTA CCTCACTTAC CTCACGGCTA CCCCCTGGGG TGGGCAGAC TAGCCTCC CTCTCCCCTT CTCCTTTGGT CTCCCTTAC CTCCCCCTT	60 120 180 240 360 420 480 540 660 660 720 780 840 960 1020 1140 1200 1240 1320 1380 1440 1500
45 50 55 60 65	1	11 GGACGCCAGA GGCCSSTGCC TAGACGCCAGA ATACCAGCA GCCCCACACA GCCCCACACA GCCCCACACA CACAGTTCG CAGAGAAGGA CCCCACACA CTTATTACCC GTTCCATCA ATGACACAGA CCTACTTTA ATGACACAGA CCTACTTTAC TGGAGGGGC GGGTCTACGT TAGGGGGC TGGGGGGC GGGCCTTGC TAGGTTTGT AGCCCTGTG AGCACCTGGA CCTACTTGA ACCTACTTGA ACCTACTTGA ACCTACTTGT TGGAACTTCA	1-3150 (under 21 GTCCCCTCTC GCTGCTCTTG GCCCCAGCA CCGGCCAGCA CCGGCCAGCA CCGCCCAGCA CCCACTGAGGGGA AGCCCATGGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC GCACTGAGC CCACTGAGC AGCCTTCAGT TGATGCAGT CTATGCAGT CTATGCAGT CTATGCAGT CTATGCAGT CTATGCAGT CTATGCAGT CTATGCAGT CTATGCAGT CCATGCAGC CCAATGATTTGG ATTTCCTGGG GCCAGC CCAATGGAA CAGGGCCGC CCAGAGGGAG CCCAGAGGGAG CCTGCCTCAAT GCTGGACTGAG CCTGCCTCAAT GCTGGACTGAG CCTGCACTCAAT GCTGGACTCACT CCTGCACTCACT CCTCCACTCACT CCTCCACTCACT CCTCCACTCACT	31 CACGCCGTGC CTGCTSSTIGC GTACTCTGGG ACAGACGGGG CTGCAGGTTG ACTGCAGGTTG GAGGAGCTGG GCCCAGGTTCA ATTGAATTTG GAGGAGCTGG GCCCAGTTCA ATTGAATCTGG ATCAACTTGG ATCAACTTGG ATCAACTTGG ATCAACTTGG ATTGATCCC GCTGGTGTGC GCCGCCACAG ATTGATCCC GATTTGGAA CACGCAGGAG CACACCCCAG GCCCAACGAG CACACCCCAG CACCCCAGGAG CACACCCCAG CACCCCAGGAG CACACCCCAG CCCATCGTGTC CGCATCTGTCAC CGCATCTGTCAC CGCATCTGTCAC CGCATCTGTCAC CGCATCTGTCAC CGCATCTGTCAC CGCATCTGTCAC CGCATCTGTCAC CGCATCTGTCAC CAGAAGCAGAA CAGAAGCAGAA	41 AGCRECCTO GGCCCCCCC GGCCCCCCC GGCCCCCCC TCAGTGTGCT TGGAGTACAA GGCATCCGC CCACAGCTCCC CCACAGCTCCC CCACAGCTCC CCACAGCTCC CCACAGCCC TCAGGGCC TCAGGGCC TCAGGGCC TCAGGGCC TCAGGGCC CCACAGCC CCCAAGCC CCCACAGCC CCCTAGGC CCCTAGGC CCTCCTTTGC GGCTGCCT ACTCCTTTGC GGCTGCCCT ACTCCTTTGC GCCTGAGGC CCCCTAGGCC CCCCCAGGCC CCCCAGGCC CCCAGGCC CCCCAGGCC CCCCCAGGCC CCCCAGGCC CCCCAGGCC CCCCAGGCC CCCCAGGCC CCCCAGGCC CCCCAGGCC CCCCAGGCC CCCCCAGGCC CCCCAGGC CCCCCAGCC CCCCAGGCC CCCCCAGCC CCCCCAGCC CCCCCAGCC CCCCAGCC CCCCCCAGCC CCCCCAGCC CCCCCCCC	sid stop codons) 51	60 120 240 300 360 420 480 540 660 720 780 900 1020 1260 1260 1260 1380 1440 1560 1560
45 50 55 60 65 70	1	11	1-3150 (under 21 GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCGGGA GCCAGGAGTG GTCACCCCC CTCAGAGGGA AGCCATGAG AGCCATGAG TTTCTGGCAA AGGCTTCAGT TGATGACAGC CTATGCAGTG AGACTTTGT TGATGACAG CTATGCAGTG ACCCTGCTC CTACTGCAG TGAGATTTGGC CAATGAGTG ACCCTGCTC CAACTTCAGC CAATGAGTG ACCCTGCTC CCAACAGGAGAG CAGCAACCAG CGCAACCAG CCCCAAGAGAG CTCCCTCAT GCCCTCAT GCCCTCAT GCCCAACAGGAGGAG CTCCCTCAT GCCCAACAGCAGCAGCACCCTG CCCAACAGCAGCAG CTCCCTCAAT GCCCACACCCTG	31 31 CACGCCGTGC CTGCTSSTGC GTACTCTGGG ACAGACGGGG CTGCAGGTTG ACTGCAGTTG GACGCCGTGC CCCTGCGGT GACCCCGTGG GCCAGTTCA GCCAGTTCA GCCAGTTCA GCCAGTTCA GCCAGTTCA GCCAGTTCA GCTGAGTCC GCCACGGG CACCCCGG CGATTTGGCA GCCACGGGG CACCCCAG CGCCACGGG CACCCCAG CGCCACGGAG CACCCCAG CGCCACGGAG CACCCCAG CCCATCGGGA CACACCCAA CAGAAGCAGAA CAGAAGCAGAA CAGAAGCAGAA	41 AGCTGCGCTG GGCCCACC GGCCCACC GGCCCACC GGCCCACC GTGCTGTCTA ACAGCAAAGG TGGAGTACA ACAGCATACA CGAATCTGCA CCAAGACTG TGTTTCAGGGGCA ACTCTGTGCA TCTACAAGGGA ACTCTGTGGC CCAAAGCAAG CCCATAAGGCA ACTCTAACG CCCCTTAGC GCCTCTTTGG CTCCTTTGG GCTTGTTGTGCACC GCTCTTTGGC CTCCTTTGG GCTTGTTGTGCACC ACTCTTTGGC GCTTGTGCCACGGGCT ACTTCTTTGG GCTTAGAGGGAAACGTTGC ACGCAGGGGGT GCTTAGAGGGGAACACGTTGC AGGGAGGGGGT TGCTCATCA	sind stop codons) 51 GGGCCCCGG CAGGGTCGGG CAGGGTCGGG CCTCTTTTCTTC GGTGGGAGCA CCTCTTCCACA CTCGGCAGCA CCTCTCCACA CTCGGCAGCA CCTCACTTAC CCTCACTACA CCTCACTACA CCTCACTACA CCTCACTACA CCTCACTAC CCTCACTACA CCTCACTACA CCTCACTACA CCTCACTACA CCTCACTACA CCTCACTACA CCTCACTACA CCTCACTACA CCCCTTTAGGT TGAGCCTCAC CCCCTTTGGC CTCCCTTTTGGT TGACCTTTTGCT TGACCTTTTGCT TGACCTTTTGCT TGACCTTTTGCT TGACCTTTTGCT TGACCTTTTTGT TGACCTGAC GAACCCTGTT TGACCTGAT ACGCCGGCAA ACGCGGGCACA ACGCGGCGCA ACGCGCGCAC AACGCGGCACA CAGCGGCCAC CAGCACCTGTT TGACCTCACC GAACCCTGTT TGACCTCACC GAACCCGGCA ACGCGGCACA ACGCGGCACA CAGCGGCCAC CAGCGCCACA CAGCGCCACA CAGCGCCACA CAGCGCCACA CAGCCGCCAC CACACA CAGCGCCACA CAGCCCGCCAC CACACA CACA	60 120 180 240 360 420 480 540 660 660 780 960 1020 1140 1260 1320 1320 1380 1440 1500 1560 1680
45 50 55 60 65 70	1	11 GGACGCCAGA GGCCSSTGCC TAGACGCCAGA ATACCAGCA GCCCCACACA GCCCCACACA GCCCCACACA CACAGTTCG CAGAGAAGGA CCCCACACA CTTATTACCC GTTCCATCA ATGACACAGA CCTACTTTA ATGACACAGA CCTACTTTAC TGGAGGGGC GGGTCTACGT TAGGGGGC TGGGGGGC GGGCCTTGC TAGGTTTGT AGCCCTGTG AGCACCTGGA CCTACTTGA ACCTACTTGA ACCTACTTGA ACCTACTTGT TGGAACTTCA	1-3150 (under 21 GTCCCCTCTC GCTGCTCTTG GGCCCCAGCA CCGGCAGGAGTG GCCAGGAGTG GCCAGTAGGGA AGCCCATGGC GCACTCAGG GCACTTAGG GCACTTAGG GCACTTAGG AGCTTAGT TTTCTGGCAA AGCTTTAGT TTGATGACAGC AGACTTTGT TGATGACAGC CTATCCTCAG ACCCTGCTC CTACCTCCAG GCCAGCCAGC CCAGAGGAGC CCCAGAGGAG CCCCAGAGGAC CTGCCTCAAT GCGGAACCCTG GAAGACCTG GAAGATCTAC GGGAACCCTG GAAGACCTG GAAGACTTG GAAGATCTAC GAAGACCTG GAAGACCTG GAAGACTTG GAAGATCTAC	31 CACGCCGTGC CTGCTSSTGC ACGAGGGG ACTACTCTGGG ACAGACCGGG CTGCAGGTG ATTGAATTTG GACGCGGTG TCCTCCATCT GCCCGCTGC CCCGCGGAGTCC ATCACTGGACCTGG ATCACCTGGG ATCACCTGGG ATCACCTGG TACCTAGGAT CCCCCACAGACC GCCCCACAGACC TATCCTGATC CCACCCCAGACC GCCCCAGGAC TATCCTGATC CCCACCAGGAC CACCCCAGGAC CACCCCAGGAC CACCCCAGACC CCCCAGGAC CCCCCAGAACC CCTCAGGAACC CCTCAGGAACC CCTCAGGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCAGAACC CCCCCAGAACC CCCCCCCC	41 41 AGCTGCCCTG AGCTGCCCTGG GGCCCCCGGG TCAGTGTGCTTA ACAGCAAAGG TGAGTTCAG CCAAGATTCAG CCAAGATTGA TGTCTGCCAC CCAAGATGG CCATAGAGC CCCTTTGAC CCCTTTGGC CCCTTTGGC CCCTTTGGG CCCTTAGGG CCTTCAGGG ACACGTTGG ACACGTTGG AGCAAGGGGT TGCTTAGAGGG AACACGTTGC AGGAAGGGT TGCTCAATCA AGTCAGAAATT TGCTCAACACTT TGCTCAACACTT TGCTCAACACTT TGCTCAACACTT TGCTCAACACACACACACACACACACACACACACACACAC	sid slop codons) 51 GGGCCCCCGG CAGGGTCGGG CTCCTTCTTC GGTGGGAGCA CCTCTGTCCT CTCTCACT TCACTGTAC CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCTCACA CCTCACTTAC CCTCACTTAC CTCACTTAC CCTCACTTAC CCTCACTTAC CCTCACTTAC CCTCACTTAC CAGCCCCCT GCGCCCCTGGGG TGGGGAGAC CTCTCCCCTT	60 120 240 300 420 480 540 660 720 1020 1140 1200 1320 1380 1440 1560 1560 1680 1740
45 50 55 60 65 70	1 Tegeral sequence 1 Tegeral sequence GGCTGACCCC GGCTTCAACT GGGTTCCAG CCCAAGGCTA TGGGTGCCCA AGCTTGGGTACGCCA AGCTGGGGTACCA GATAACTTCA GGACAGGGTT TTAGGTGGCCA ATTCCAGACT CCCAAGGCCA TTCAGTGGTC AGCATGGCCA ACCTGGAC CAGGTTCTGC CAGCAGGGAC CAGGTTCTGC CAGCAGGAC CAGGTTCTCCCCG GCTGCATCA GCTTCCCCG GCTTCACAC GCTTTCACAC CTTTCCCCG GCTTCACAC CGCTTCACAC CGCTTCACAC CGCTTCACAC CGCTTCACAC CGCTTCACAC CGCTTCACAC CGCTTCACAC CCACAGGCAC CACGCCCCC CCACACC	11	1-3150 (under 21 GTCCCCTCTC GCTGCTGTTG GGCCCCAGCA CCGGCGGGA GCCAGGAGTG GTCCACCCCC CTCAGAGGGA AGCCATGAG AGCCATGAG TTTCTGGCAA AGGCTTCAGT TGATGACAGC CTATGCAGTG AGACTTTGTT TGGCTCAGAC CTATGCAGTG ACCCTGCTC CTACTGCAG TGAGTTTAGC CATATGCAGTG ACCCTGCTC CATATGCAGTG ACCCTGCTC CATATGCAGTG CATATGCAGTG CATATGCAGTG CATATGCAGTG CATATGCAGTG CATATGCAGTG GCCAGCTAGG GCCAGCTAGG GCCAGCTAGG GCCAGCTAGG GCCACCTGTG GAGAGTATTAC GAGAGTCTAC TCTCAACTTC ACATTATCAG	31 31 CACGCCGTGC CTGCTSSTGC GTACTCTGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	41 AGCTGCGCTG GGCCCACC GGCCCACC GGCCCACC GTGCTGTCTA ACAGCAAAGG TGGAGTACA TGGCATCAC CCAAGACTGG CCACACC TTTCAGGGGCA ACTCTGCAC TTTCAGGGGCA ACTCTGTGCA TTTCAGGGCA ACTCTGTGGC CCAAAGCAAG CCAAAGCAAG CCACAATTCAG CCCTTACGG GCTTGACG GCTTGTGAC CTCCTTTGG GCTTGTGTGCACC GCTTAGAGGCA ACTCTTTTGG TGATTGTGGG GCTTGAGGCT ACTTCTTTGG TGATTGTGGG GCTTAGAGGG ACACGTTGC GCTTAGAGGG ACACGTTGC GCTTAGAGGGG TGCTCATCCA AGTCAGAATT CCCAAGGCGGT TGCTCATCCA AGTCAGAATT CCCAAGGCGG GGATAGAGGG	sind stop codons) 51 GGGCCCCGG CAGGGTCGGG CAGGGTCGGG CCTCTTTCTTC GCTGGGAGCA CCTCTTGCCT TCCACCACTTAC CCTCTTCCAC CTGGGCAGCA CCTCTGGCT TCAGGAGCAG CCTCACTTAC CCTCACCACT TAGGCAGCA CCTCACTTAC CCTCACTTAC CCTCACCACT CCTCACCACT CCCCTTGGCT TGAGCCTCAC CCCCTTGGC TGAGCCTCAC CCCCTTGGC TGAGCCTCAC CTCCCTCAC CTCCCTCAC CACCCCTTT GTCCTTTTGGT TGACCTTT TGACCTTT TGACCTTT TGACCTT TGACCTTT TGACCTT TGACCTTT TGACCTT TGACCTT TGACCTT TGACCTCAC CAAGGCTCAC CAAGCTCAC CAAGGCTCAC CAAGGCTCAC CAAGGCTCAC CAAGCTCAC CAAGGCTCAC CAAGCTCAC CAAC CA	60 120 240 300 360 420 480 540 660 720 840 900 1020 1200 1200 1200 1260 1320 1440 1560 1560 1620 1680 1680 1680

```
GGGGAGCAGA ACCATGTGTA CCTGGGTGAC AAGAATGCCC TGAACCTCAC TTTCCATGCC
          CAGAATGTGG GTGAGGGTGG CGCCTATGAG GCTGAGCTTC GGGTCACCGC CCCTCCAGAG
                                                                                                     2100
          GCTGAGTACT CAGGACTCGT CAGACACCCA GGGAACTTCT CCAGCCTGAG CTGTGACTAC
                                                                                                     2160
          TTTGCCGTGA ACCAGAGCCG CCTGCTGGTG TGTGACCTGG GCAACCCCAT GAAGGCAGGA
                                                                                                     2220
          GCCAGTCTGT GGGGTGGCCT TCGGTTTACA GTCCCTCATC TCCGGGACAC TAAGAAAACC
                                                                                                     2280
          ATCCAGTTTG ACTTCCAGAT CCTCAGCAAG AATCTCAACA ACTCGCAAAG CGACGTGGTT
                                                                                                     2340
          TCCTTTCGGC TCTCCGTGGA GGCTCAGGCC CAGGTCACCC TGAACGGTGT CTCCAAGCCT
                                                                                                     2400
         GAGGCAGTGC TATTCCCAGT AAGCGACTGG CATCCCCGAG ACCAGCCTCA GAAGGAGGAG
GACCTGGGAC CTGCTGTCCA CCATGTCTAT GAGCTCATCA ACCAAGGCCC CAGCTCCATT
                                                                                                     2460
                                                                                                     2520
10
          AGCCAGGGTG TGCTGGAACT CAGCTGTCCC CAGGCTCTGG AAGGTCAGCA GCTCCTATAT
         GTGACCAGAG TTACGGGACT CAACTGCACC ACCAATCACC CCATTAACCC AAAGGGCCTG
GAGTTGGATC CCGAGGGTTC CCTGCACCAC CAGCAAAAAC GGGAAGCTCC AAGCCGCAGC
                                                                                                    2640
                                                                                                     2700
          TCTGCTTCCT CGGGACCTCA GATCCTGAAA TGCCCGGAGG CTGAGTGTTT CAGGCTGCGC
         TOTGAGCTCG GGCCCCTGCA CCAACAAGAG AGCCAAAGTC TGCAGTTGCA TTTCCGAGTC TGGGCCAAGA CTTTCTTGCA GCGGGAGCAC CAGCCATTTA GCCTGCAGTG TGAGGCTGTG
                                                                                                    2820
15
                                                                                                    2880
          TACAAAGCCC TGAAGATGCC CTACCGAATC CTGCCTCGGC AGCTGCCCCA AAAAGAGCGT
         CAGGTGGCCA CAGCTGTGCA ATGGACCAAG GCAGAAGGCA GCTATGGCGT CCCACTGTGG
ATCATCATCC TAGCCATCCT GTTTGGCCTC CTGCTCCTAG GTCTACTCAT CTACATCCTC
                                                                                                    3000
                                                                                                    3060
          TACAAGCTTG GATTCTTCAA ACGCTCCCTC CCATATGGCA CCGCCATGGA AAAAGCTCAG
20
         CTCAAGCCTC CAGCCACCTC TGATGCCTGA
         SEQ ID NO:292 AAB1 Protein sequence:
Protein Accession #: NP_002196
25
                                         21
                                                       31
                                                                       41
                                                                                     51
           MGSRTPESPL HAVOLRWGPR RRPPLLPLLL LLLPPPPRVG GFNLDAEAPA VLSGPPGSFF
           CFSVEFYRPG TDGVSVLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP IEFDSKGSRL
30
           LESSLSSEG EEFVEYKSLO WFGATVRAHG SSILACAPLY SWRTEKEPLS DFVGTCYLST
                                                                                                       180
           DNFTRILBYA PCRSDFSWAA GQGYCQGGFS ABFTKTGRVV LGGPGSYFWQ GQILSATQEQ
          IAESYYPEYL INLVQQQLQT RQASSIYDDS YLGYSVAVGE FSGDDTEDFV AGVERGNLTY
GYVTILNGSD IRSLYNFSGE QMASYFGYAV AATDVNCDGL DDLLVGAPLL MDRTPDGRPQ
EVGRVYVYLQ HPAGIEPTPT LTLTGHDEFG RFGSSLTPLG DLDQDGYNDV AIGAPFGGET
                                                                                                       360
35
           QQGVVFVFPG GPGGLGSKPS QVLQPLWAAS HTPDFFGSAL RGGRDLDGNG YPDLIVGSFG
           VDKAVUYRGR PIVSASASIT IPPAMPNPEE RSCSLPGNPU ACINISPCIA ASGREVADSI
                                                                                                       540
           GFTVELQLDW QKQKGGVRRA LFLASRQATL TQTLLIQNGA REDCREMKIY LRNESEFRDK
           LSPIHIALNF SLDPQAPVDS HGLRPALHYQ SKSRIEDKAQ ILLDCGEDNI CVPDLQLEVF
           GEONHVYLGD KNALNLTFHA ONVGEGGAYE AELRVTAPPE AEYSGLVRHP GNFSSLSCDY
                                                                                                       720
40
           FAVNOSRLLV COLGNEMKAG ASLWGGLRFT VPHLRDTKKT IQFDFQILSK NLNNSQSDVV
          SPRLSVEAQA QVTLMGVSKP EAVLPPVSDW HPRDQPQKEE DLGPAVHHVY ELINQGPSSI
SQGVLELSCP QALEGQQLLY VTRVTGLNCT TNHFINPKGL ELDPEGSLHH QQKREAPSRS
                                                                                                       840
                                                                                                       900
           SASSGPQILK CPRAECPRLR CELGPLHQQE SQSLQLHPRV WAKTFLQREH QPPSLQCBAV
           YKALKMPYRI LPRQLPQKER QVATAVQWTK AEGSYGVPLW IIILAILFGL LLLGLLIYIL
45
           YKLGFPKRSL PYGTAMEKAQ LKPPATSDA
                                                                 SEQ ID NO:283 LBH4 DNA SEQUENCE
         Nucleic Acid Accession #: 8C001291
50
         Coding sequence:
                                 44-541 (start and stop codons are underlined)
                              31
55
         GGGGGCGCCG CGCGCTGACC CTCCCTGGGC ACCGCTGGGG ACG<u>ATG</u>GCGC TGCTCGCCTT 60
         GCTGCTGGTC GTGGCCCTAC CGCGGGTGTG GACAGACGCC AACCTGACTG CGAGACAACG 120
         AGATCCAGAG GACTCCCAGC GAACGGACGA GGGTGACAAT AGAGTGTGGT GTCATGTTTG 180
TGAGAGAGAA AACACTTTCG AGTGCCAGAA CCCAAGGAGG TGCAAATGGA CAGAGCCATA 240
CTGCGTTATA GCGGCCGTGA AAATATTTCC ACGTTTTTTC ATGGTTGCGA AGCAGTGCTC 300
60
         CGCTGGTTGT GCAGCGATGG AGAGACCCAA GCCAGAGGAG AAGCGGTTTC TCCTGGAAGA 360
GCCCATGCCC TTCTTTTACC TCAAGTGTTG TAAAAATTCGC TACTGCAATT TAGAGGGGCC 420
ACCTATCAAC TCATCAGTGT TCAAAGAATA TGCTGGGAGC ATGGGTGAGA GCTGTGGTGG 480
          GCTGTGGCTG GCCATCCTCC TGCTGCTGGC CTCCATTGCA GCCGGCCTCA GCCTGTCT<u>TG</u> 540
         AGCCACGGGA CTGCCACAGA CTGAGCCTTC CGGAGCATGG ACTCGCTCCA GACCGTTGTC 600
ACCTGTTGCA TTAAACTTGT TTTCTGTTGA TTACCTCTTG GTTTGACTTC CCAGGGTCTT 660
65
          GGGATGGGAG AGTGGGGATC AGGTGCAGTT GGCTCTTAAC CCTCAAGGGT TCTTTAACTC 720
         ACATTCAGAG GAAGTCCAGA TCTCCTGAGT AGTGATTTTG GTGACAAGTT TTTCTCTTTG 780
AAATCAAACC TTGTAACTCA TTTATTGCTG ATGGCCACTC TTTTCCTTGA CTCCCCTCTG 840
          CCTCTGAGGG CTTCAGTATT GATGGGGAGG GAGGCCTAAG TACCACTCAT GGAGAGTATG 900
         TGCTGAGATG CTTCCGACCT TTCAGGTGAC GCAGGAACAC TGGGGGGAGTC TGAATGATTG 960
GGGTGAAGAC ATCCCTGGAG TGAAGGACTC CTCAGCATGG GGGCAGTGG GGCACACGTT 1020
70
          AGGGCTGCCC CCATTCCAGT GGTGGAGGCG CTGTGGATGG CTGCTTTTCC TCAACCTTTC 1080
         CTACCAGATT CCAGGAGGCA GAAGATAACT AATTOTGTTG AAGAAACTTA GACTTCACCC 1140
ACCAGCTGGC ACAGGTGCAC AGATTCATAA ATTCCCACAC GTGTGTGTC AACATCTGAA 1200
ACTTAGGCCA AGTAGAGAGC ATCAGGGTAA ATGGCGTTCA TTTCTCTGTT AAGATGCAGC 1260
CATCCATGGG GAGCTGAGAA ATCAGACTCA AAGTTCCACC AAAAACAAAT ACAAGGGGAC 1320
75
```

SEQ ID NO:294 LBH4 Protein sequence: Protein Accession #: AAH01291

5 1 11 21 31 41 51
| MALLALLLVV ALPRVWTDAN LTARQRDPED SQRTDEGDNR VWCHVCEREN TFECQNPRRC 60
| KWTEPYCVIA AVKIFFRFFM VAKQCSAGCA AMERPKPEEK RFILEEPMPF FYLKCCKIRY 120
| CNLEGPPINS SVFKEYAGSM GESCGGLWLA IILLLASIAA GLSLS

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

2

prostate cancer.

1		1.	A method of detecting a prostate cancer-associated transcript in a cell
2	from a patient,	, the me	ethod comprising contacting a biological sample from the patient with a
3	polynucleotide	that se	electively hybridizes to a sequence at least 80% identical to a sequence
4	as shown in Ta	ables 1-	16.
1		2.	The method of claim 1, wherein the polynucleotide selectively
2	huhridizes to e		nce at least 95% identical to a sequence as shown in Tables 1-16.
2	nybridizes to a	Scquei	ice at least 93 % lucinical to a sequence as shown in Tables 1 To.
1		3.	The method of claim 1, wherein the biological sample is a tissue
2	sample.		•
1		4.	The method of claim 1, wherein the biological sample comprises
2	isolated nuclei		
	isolated nation	o aoras	•
1		5.	The method of claim 4, wherein the nucleic acids are mRNA.
1		6.	The method of claim 4, further comprising the step of amplifying
2	nucleic acids b	efore t	he step of contacting the biological sample with the polynucleotide.
1		7.	The method of claim 1, wherein the polynucleotide comprises a
2	sequence as sh	own in	Tables 1-16.
1		8.	The method of claim 1, wherein the polynucleotide is labeled.
1		9.	The method of claim 8, wherein the label is a fluorescent label.
1		10.	The method of claim 1, wherein the polynucleotide is immobilized on
2	a solid surface	•	
_			
1		11.	The method of claim 1, wherein the patient is undergoing a therapeutic
2	regimen to trea	at prost	ate cancer.
1		12.	The method of claim 1, wherein the patient is suspected of having

1	13. A method of monitoring the efficacy of a therapeutic treatment of
2	prostate cancer, the method comprising the steps of:
3	(i) providing a biological sample from a patient undergoing the therapeutic
4	treatment; and
5	(ii) determining the level of a prostate cancer-associated transcript in the
6	biological sample by contacting the biological sample with a polynucleotide that selectively
7	hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16,
8	thereby monitoring the efficacy of the therapy.
1	14. The method of claim 13, further comprising the step of: (iii) comparing
2	the level of the prostate cancer-associated transcript to a level of the prostate cancer-
3	associated transcript in a biological sample from the patient prior to, or earlier in, the
4	therapeutic treatment.
1	15. The method of claim 13, wherein the patient is a human.
1	16. A method of monitoring the efficacy of a therapeutic treatment of
2	prostate cancer, the method comprising the steps of:
3	(i) providing a biological sample from a patient undergoing the therapeutic
4	treatment; and
5	(ii) determining the level of a prostate cancer-associated antibody in the
6	biological sample by contacting the biological sample with a polypeptide encoded by a
7	polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence
8	as shown in Tables 1-16, wherein the polypeptide specifically binds to the prostate cancer-
9	associated antibody, thereby monitoring the efficacy of the therapy.
1	17. The method of claim 16, further comprising the step of: (iii) comparing
2	the level of the prostate cancer-associated antibody to a level of the prostate cancer-
3	associated antibody in a biological sample from the patient prior to, or earlier in, the
4	therapeutic treatment.
1	18 The method of claim 16, wherein the nation is a human

1	19. A method of monitoring the efficacy of a therapeutic treatment of
2	prostate cancer, the method comprising the steps of:
3	(i) providing a biological sample from a patient undergoing the therapeutic
4	treatment; and
5	(ii) determining the level of a prostate cancer-associated polypeptide in the
6	biological sample by contacting the biological sample with an antibody, wherein the antibody
7	specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to
8	a sequence at least 80% identical to a sequence as shown in Tables 1-16, thereby monitoring
9	the efficacy of the therapy.
1	20. The method of claim 19, further comprising the step of: (iii) comparing
2	the level of the prostate cancer-associated polypeptide to a level of the prostate cancer-
3	associated polypeptide in a biological sample from the patient prior to, or earlier in, the
4	therapeutic treatment.
1	21. The method of claim 19, wherein the patient is a human.
1	22. An isolated nucleic acid molecule consisting of a polynucleotide
2	sequence as shown in Tables 1-16.
1	23. The nucleic acid molecule of claim 22, which is labeled.
1	24. The nucleic acid of claim 23, wherein the label is a fluorescent label
1	25. An expression vector comprising the nucleic acid of claim 22.
1	26. A host cell comprising the expression vector of claim 25.
1	27. An isolated polypeptide which is encoded by a nucleic acid molecule
2	having polynucleotide sequence as shown in Tables 1-16.
1	28. An antibody that specifically binds a polypeptide of claim 27.
1	29. The antibody of claim 28, further conjugated to an effector component

1	3	0.	The antibody of claim 29, wherein the effector component is a
2	fluorescent label	l.	
1	3	1.	The antibody of claim 29, wherein the effector component is a
2	radioisotope or a	a cyto	toxic chemical.
1	° 3.	2.	The antibody of claim 29, which is an antibody fragment.
1	3.	3.	The antibody of claim 29, which is a humanized antibody
1	3.	4.	A method of detecting a prostate cancer cell in a biological sample
2	from a patient, tl	he me	thod comprising contacting the biological sample with an antibody of
3	claim 28.		
1	3.	5.	The method of claim 34, wherein the antibody is further conjugated to
2	an effector comp	ponent	
1	3	6.	The method of claim 35, wherein the effector component is a
2	fluorescent label	l.	
1	3	7.	A method of detecting antibodies specific to prostate cancer in a
2	patient, the meth	od co	mprising contacting a biological sample from the patient with a
3	polypeptide enco	oded b	y a nucleic acid comprises a sequence from Tables 1-16.
1	38	8.	A method for identifying a compound that modulates a prostate cancer
2	associated polyp	eptide	e, the method comprising the steps of:
3	·) cont	acting the compound with a prostate cancer-associated polypeptide, the
4	polypeptide enco	oded b	by a polynucleotide that selectively hybridizes to a sequence at least
5	80% identical to	a seq	uence as shown in Tables 1-16; and
6	(i	i) dete	ermining the functional effect of the compound upon the polypeptide.
1	3!	9.	The method of claim 38, wherein the functional effect is a physical
2	effect.		

1		40.	The method of claim 38, wherein the functional effect is a chemical
2	effect.		
1		41.	The method of claim 38, wherein the polypeptide is expressed in a
2	eukaryotic host cell or cell membrane.		
		40	
1		42.	The method of claim 38, wherein the functional effect is determined by
2	measuring liga	and bind	ling to the polypeptide.
1 .		43.	The method of claim 38, wherein the polypeptide is recombinant.
1		44.	A method of inhibiting proliferation of a prostate cancer-associated
2	cell to treat pro	ostate c	ancer in a patient, the method comprising the step of administering to
3	the subject a therapeutically effective amount of a compound identified using the method of		
4	claim 38.		
_			
1		45.	The method of claim 44, wherein the compound is an antibody.
1		46.	The method of claim 45, wherein the patient is a human.
1		47.	A drug screening assay comprising the steps of
2		(i) adm	ninistering a test compound to a mammal having prostate cancer or a
3	cell isolated therefrom;		
4		(ii) cor	nparing the level of gene expression of a polynucleotide that selectively
5	hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1-16 in a		
6	treated cell or mammal with the level of gene expression of the polynucleotide in a control		
7	cell or mammal, wherein a test compound that modulates the level of expression of the		
8	polynucleotide	e is a ca	ndidate for the treatment of prostate cancer.
1		48.	The assay of claim 47, wherein the control is a mammal with prostate
2	cancer or a cel	l therefi	rom that has not been treated with the test compound.

The assay of claim 47, wherein the control is a normal cell or mammal.

49.

1

1 50. A method for treating a mammal having prostate cancer comprising 2 administering a compound identified by the assay of claim 47. 1 A pharmaceutical composition for treating a mammal having prostate 51. 2 cancer, the composition comprising a compound identified by the assay of claim 47 and a 3 physiologically acceptable excipient. 1 52. The method according to claim 1, wherein said biological sample is 2 contacted with a plurality of polynucleotides comprising a first polynucleotide that 3 selectively hybridizes to a sequence at least 80% identical to a first sequence as shown in 4 Tables 1-16; and a second polynucleotide that selectively hybridizes to a second sequence at least 80% identical to a second sequence as shown in Tables 1-16. 5 1 53. A method according to claim 52, wherein the plurality of 2 polynucleotides comprises a third polynucleotide that selectively hybridizes to a sequence at 3 least 80% identical to a third sequence as shown in Tables 1-16... 1 54. A method of detecting a prostate cancer associated transcript, the 2 method comprising contacting a biological sample from the patient with a plurality of 3 polynucleotides wherein at least two of said polynucleotides selectively hybridize to a difference sequence at least 80% identical to a sequence as shown in Tables 1-16. 4 1 55. A method of detecting a prostate cancer, the method comprising the 2 steps of: 3 (i) providing a biological sample from a patient; 4 (ii) contacting the biological sample with a first polynucleotide that selectively hybridizes to a sequence at least 80% identical to a first sequence as shown in Tables 1-16 to 5 6 determine the level of a prostate cancer-associated transcript in the biological sample; and 7 with a second polynucleotide that selectively hybridizes to a second sequence at least 80%

identical to a sequence not shown in Tables 1-16; wherein the expression of said second

of a control transcript in the biological sample;

sequence is not substantially changed in prostate cancer, to determine the level of expression

8

9

10

11 (iii) comparing the level of the prostate cancer-associated transcript to a level 12 of the normal tissue associated transcript in the biological sample. 1 56. A method of quantitating a prostate cancer-associated transcript in a 2 cell from a patient, the method comprising contacting a biological sample from the patient 3 with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a 4 sequence as shown in Tables 1-16. 57. 1 The method of claim 56, wherein the polynucleotide selectively 2 hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1-16. 1 58. The method of claim 56, wherein the biological sample is a tissue 2 sample. 1 59. The method of claim 56, wherein the biological sample comprises 2 isolated nucleic acids. 1 60. The method of claim 56, wherein the nucleic acids are mRNA. 1 61. The method of claim 59, further comprising the step of amplifying 2 nucleic acids before the step of contacting the biological sample with the polynucleotide. 1 62. The method of claim 56, wherein the polynucleotide comprises a 2 sequence as shown in Tables 1-16. 1 63. The method of claim 56, wherein the polynucleotide is labeled. 1 64. The method of claim 63, wherein the label is a fluorescent label. 1 65. The method of claim 56, wherein the polynucleotide is immobilized on 2 a solid surface. 1 . 66. The method of claim 56, wherein the patient is undergoing a 2 therapeutic regimen to treat metastatic prostate cancer.

The method of claim 56, wherein the patient is suspected of having

1

2

67.

metastatic prostate cancer.

1	68. A biochip comprising a plurality of polynucleotides that selectively		
2	hybridize to a sequence at least 80% identical to a sequence as shown in Tables 1-16.		
1	69. A method of screening drug candidates comprising:		
2	i) providing a cell that expresses an expression profile gene selected from the		
3	group consisting of an expression profile gene set forth in Tables 1-16 or fragment thereof;		
4	ii) adding a drug candidate to said cell; and		
5	iii) determining the effect of said drug candidate on the expression of said		
6	expression profile gene.		
1	70. A method according to claim 59 wherein said determining comprises		
2 .	comparing the level of expression in the absence of said drug candidate to the level of		
3	expression in the presence of said drug candidate.		
1	SE 1277900 v1		