Monkeypox Clasification

Gysselis Vásquez César Hurtado Wilmer Farfán

•

21.

Introducción

Ø4.

Machine Learning

02.

Objetivos

05.

Deep Learning

Ø3.

Dataset

Ø6.

Resultados y conclusiones

Objetivos

- Experimentar con estimadores de Machine learning que sean capaces de clasificar imágenes de lesiones cutáneas en dos categorías: viruela del mono y otras lesiones cutáneas.
- Desarrollar modelos de aprendizaje profundo que puedan identificar con precisión las características distintivas de la viruela del mono para su clasificación.
- Realizar un análisis de los resultados e identificar cuál de todos estos algoritmos tiene el desempeño más relevante.

% *

0

Dataset

% -

Cuenta con dos clases, las cuales se dividen en dos carpetas:

Monkeypox (1168 imágenes): casos correspondientes a ∨iruela del mono.

Others (1439 imágenes): lesiones cutáneas relacionadas a otros tipos de viruela.

Formato: (224, 224, 3)

- Crear dos arreglos, uno donde se guardan las imágenes y el otro donde se almacenan sus respectivas etiquetas.
- Redimensionar las imágenes para optimizar el consumo de recursos y mejores resultados:

 $(224,224,3) \rightarrow (128,128,3)$

Normalizar los datos:

(dataset)/255

- Permutar los datos
- Particionar los datos de entrenamiento y testeo

•

Estimadores

Parámetros por defecto

max_depth: 20

n_estimators: 100
max_depth: ninguno

Resultados

Deep Learning

Modelos

DNN con optimizador Adam

```
Layer input_shape=[128, 128, 3])
Activación de capas ocultas: ReLu
1:layers.Dense(512)
2:layers.Dense(1024)
3:layers.Dense(2048)
4:layers.Dense(4096)
```

output layers.Dense(2, activation=tf.nn.sigmoid)

Resultados

• •

• •

Notebook^{*}

iGracias!

