Number theory in cryptography

- Exercise set 11 -

The exercises T11.4, P11.1 have to be handed in on Tuesday, 14th May 2024, 8:30 at latest. (You can submit P11.1a) via Moodle).

THEORETICAL QUESTIONS

T 11.1 Suppose that a cubic curve E over a field k of characteristic other than 2 or 3 is given by the reduced Weierstrass equation $y^2 = x^3 + Ax + B$.

- a) Show that E is smooth if and only if the quantity $\Delta = -16(4A^3 + 27B^2)$ is non-zero. Note: of course the exercise would be true without the -16, but the particular quantity Δ we have written, called the *discriminant* of the Weierstrass equation, is an important invariant.
- b) If $k = \mathbb{Q}$ and $p \neq 2, 3$ is a prime, we say that a reduced Weierstrass equation with coefficients in \mathbb{Q} has good reduction at p if p does not divide the denominator of A or B and if the equation $y^2 = x^3 + Ax + B$ defines a smooth curve over \mathbb{F}_p . Assuming that E is smooth (i.e. is an elliptic curve), show that the set of primes where the Weierstrass equation does not have good reduction is finite.

T 11.2 The zeta function of an elliptic curve E/\mathbb{F}_q is defined as the power series in $\mathbb{Q}[[T]]$ given by

$$Z(T, E/\mathbb{F}_q) := \exp\left(\sum_{r\geqslant 1} N_r \frac{T^r}{r}\right),$$

where $N_r := \#E(\mathbb{F}_{q^r})$. The French mathematician André Weil proved that in fact the zeta function is a rational function

$$Z(T, E/\mathbb{F}_q) = \frac{1 - a_q T + q T^2}{(1 - T)(1 - qT)},$$

where $a_q = N_1 - q - 1$ satisfies the Hasse bound.

- a) Prove that the zeroes of the zeta function are complex conjugate of absolute value q^{-s} with $s = \frac{1}{2}$. Note: you should think of this as a Riemann Hypothesis in this setting!
- b) The zeta function encodes data about all the cardinalities N_r . Writing the numerator of $Z(T, E/\mathbb{F}_q)$ as $(1 \alpha T)(1 \beta T)$, show that:

$$N_r = q^r + 1 - \alpha^r - \beta^r.$$

(Hint: take log derivatives of the two formulas for zeta).

c) Compute N_r for the so-called Koblitz curves defined over \mathbb{F}_2 by

$$y^2 + xy = x^3 + ax^2 + 1 \text{ for } a \in \mathbb{F}_2.$$

T 11.3 Consider the lattice $L \subset \mathbb{R}^2$ generated by a := (11,9) and b := (7,6). Does v := (1,2) belong to L? Does w := (-1,0) belong to L?

T 11.4 We are going to use lattices to prove a special case of the following result.

Theorem 11.4.1 (Lagrange). Every integer $n \ge 0$ is the sum of 4 squares of integers, that is: there exist $x_1, x_2, x_3, x_4 \in \mathbb{Z}$ such that $n = x_1^2 + x_2^2 + x_3^2 + x_4^2$.

Namely, we will prove this result in the case where n = p is an odd prime².

- a) Prove that there exist integers $a, b \in \mathbb{Z}$ such that $a^2 + b^2 + 1 \equiv 0 \mod p$. Hint: how many squares are there in \mathbb{F}_p ? You may want to use T10.1.
- b) Fix $a, b \in \mathbb{Z}$ as above. Let $L \subset \mathbb{Z}^4 \subset \mathbb{R}^4$ be the lattice generated by the vectors

$$v_1 = (p, 0, 0, 0), \quad v_2 = (0, p, 0, 0), \quad v_3 = (a, b, 1, 0), \quad v_4 = (b, -a, 0, 1).$$

Check that $||v||^2$ is a multiple of p for every $v \in L$.

c) Using Minkowski's theorem (theorem 9.2.3 in the lecture notes), prove that there exists a vector $u \in L \setminus \{0\}$ of norm $||u|| < \sqrt{2p}$ and conclude that p is the sum of 4 squares of integers.

PROGRAMMING EXERCISES

- **P 11.1** This exercise treats the digital signature scheme ECDSA, which you probably use daily while browsing the internet and https websites! Here are the steps (just as in DSA):
 - Public parameter creation: A trusted party chooses an elliptic curve E over \mathbb{F}_p and a point P of large prime order q in $E(\mathbb{F}_p)$.
 - **Key creation:** Sarah chooses a secret signing key $1 \le a \le q-1$ and computes and publishes the verification key A = aP.
 - Signature: Sarah chooses a document $D \in \mathbb{Z}/q\mathbb{Z}$ (e.g., a hashed message) and a random integer $k \mod q$. She computes $kP \in E(\mathbb{F}_p)$ and then publishes the signature $D^{\text{sig}} = (S_1, S_2)$ given by:

$$S_1 \equiv x(kP) \bmod q$$
, $S_2 \equiv (D + aS_1)k^{-1} \bmod q$.

• Verification: To verify the signature, Victor computes

$$V_1 = DS_2^{-1} \mod q, \qquad V_2 = S_1 S_2^{-1} \mod q$$

and checks that $x(V_1P + V_2A) \mod q = S_1$. (Here x(Q) denotes the x-coordinate of a point Q = (x(Q), y(Q)) on E, and $x(Q) \mod q$ means that we take the smallest positive representative of $x(Q) \in \mathbb{F}_p$ in $\{0, ..., p-1\} \subset \mathbb{Z}$ and then reduce it mod q).

- a) Show that the verification step indeed succeeds if Sarah signed the document.
- b) Consider the following data given below³. Using SAGE, check $qP = O_E$ and that q is indeed a prime number. Then verify that $D^{\text{sig}} = (S_1, S_2)$ is a valid signature for the document D and the verification key A, knowing that 0 < int(y(P)), int(y(A)) < p/2.

$$E: y^2 = x^3 - 3x + b$$
 over \mathbb{F}_p , $p = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$,

 $b = 27580193559959705877849011840389048093056905856361568521428707301988689241309860865136260764883745107765439761230575 \\ x(P) = 9927569721545390815034713904622759727440640009568502331607218669906608389108530937089042810199441312117717067185412$

x(A) = 29400003852608672639867349879251432905099128866639045860503309429241268278901837643832541859075556345862458834761765

²The general case can be deduced from there, using the fact that the set $\{x_1^2 + x_2^2 + x_3^2 + x_4^2 : x_i \in \mathbb{Z}\} \subset \mathbb{Z}$ is closed under multiplication.

³The elliptic curve E is known as P-384, from the curves "recommended for U.S. Government Use" by the NIST. (See also http://safecurves.cr.yp.to/rigid.html).