VE 320 Fall 2021

Introduction to Semiconductor Devices

Instructor: Rui Yang (杨睿)

Office: JI Building 434

rui.yang@sjtu.edu.cn

Lecture 1

Information session & Introduction to solids and crystal structures (Chapter 1)

About the instructor

■ 2011.08 – 2016.05. Ph.D., Electrical Engineering, Case Western Reserve University

CASE WESTERN RESERVE UNIVERSITY

think beyond the possible"

- 2016.07 2018.07. Postdoc Fellow, Electrical Engineering, Stanford University

 Stanford
 University
- 2018.08 present. Assistant Professor, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China
 - Instructor of VE215
 - Instructor of VE320
 - Instructor of VE510

Course schedule

- Lectures: Tuesday 10:00 11:40
 - Thursday 10:00 11:40
 - Friday 10:00-11:40 (even weeks)
- Recitation: TBD
- Location: Dong Shang Yuan D308(Tu), D408(Th/F)
- My office hours: Tuesday 13:00 15:00, Rm. 434
- Prerequisites: Ve215, Vp240 (old) or VP 245/250 (new), or Vp260
 - If you do not meet this requirement, please see the instructor immediately after class
- TA:
 - Wang Xingyuan, 王兴远, <u>xingyuan_wang@sjtu.edu.cn</u>
 - Wu Haochen, 武昊辰, <u>wuhaochen2018@sjtu.edu.cn</u>

Instructor's contact

Office location:
 Rm. 434, UM-SJTU JI Building

Office tel: 3420-8540 ext. 4341

Email:

rui.yang@sjtu.edu.cn

Textbook 1

Semiconductor Physics and Devices: Basic Principles 4th ed.

Donald A. Neamen

Publishing house of electronic industry

Textbook 2

Semiconductor Device Fundamentals, 2nd Ed. Robert F. Pierret, (available JI library)

Grading policy

- Ve320 has around 8 problem sets (homework assignments), and 3 exams
- Random in-class quizzes: 10%
- Problem sets: 10%
- Exam 1(Midterm Exam 1): 25%
- Exam 2(Midterm Exam 2): 25%
- Exam 3(Final Exam): 30%
- Curve to be centered at B or B+
- If the total grade is below 50, that will lead to fail (F)

The JI Honor Code

- Personal integrity as students and professionals.
- Respect other people and their work.
- Respect yourself and your own efforts.
- Mutual trust.
- Applicable to all your academic activities here, including homework, quizzes, lab reports, projects and exams.
- Special honor code for online learning.
- Violations will be reported to the Honor Council.
 - Copy other student's homework, quizzes, lab reports, exams.
 - Illegal copy of online resource and academic literatures.
 - Helping others on the abovementioned activities.
 - Fake ID for exams.

Class rules

- Please do not come in late and do not get up to leave until the class is dismissed.
- You are responsible for all material covered in class, whether or not it is in the book.
- Read the book after the class.
- Problem sets (homework assignments) may be discussed with partners, but the work you submit must be your own.
- Homework will be assigned online at Canvas as scheduled. They are usually due one week later or specified otherwise. One day automatic grace period. Second day late penalty -25%, later no credit.
- If the total grade is below 50, that will lead to fail (F).

Exam rules

- There will be two midterm exams and one final exam.
- Students should complete the exam independently. No talk and collaboration are allowed.
- Closed book, cheat sheet may be allowed.
- No electronic devices except basic calculators will be allowed to use.
- Random quizzes are open book and open discussion
- Any suspicious violation of the honor code will be reported to the honor council.

Tentative schedule: (subject to change)

Week	Date	Lecture Topics	Homework
1	Sept. 14	Introduction to solids	
	Sept. 16	Introduction to quantum mechanics	HW1
2	Sept. 21	No Lecture, National Holiday	
	Sept. 23	Energy band	
	Sept. 24	Energy band	HW2
3	Sept. 28	DOS and Fermi distribution	
	Sept. 30	DOS and Fermi distribution	HW3
4	Oct. 5	No Lecture, National Holiday	
	Oct. 7	No Lecture, National Holiday	
	Oct. 8	Carrier transport	
5	Oct. 12	Carrier transport	HW4
	Oct. 14	No Lecture, Midterm Exam 1	
6	Oct. 19	Carrier transport	
	Oct. 21	PN junction	
	Oct. 22	PN junction	
7	Oct. 26	PN junction	
	Oct. 28	PN junction	
8	Nov. 1	PN junction	HW5
	Nov. 3	BJT	
	Nov. 5	BJT	
9	Nov. 9	BJT	
	Nov. 11	BJT	HW6
10	Nov. 16	No Lecture, Midterm Exam 2	
	Nov. 18	Schottky diode	
	Nov. 19	Schottky diode	HW7
11	Nov. 23	MOS capacitor	
	Nov. 25	MOS capacitor	
12	Nov. 30	MOS capacitor	
	Dec. 2	MOSFET	
	Dec. 3	MOSFET	HW8
13	Dec. 7	MOSFET	
	Dec. 9	MOSFET	
14	Dec. 14	No Lecture, Final Exam	

Semiconductor Devices

The abacus, ancient digital memory

Roman Abacus (ca. 200BC)

Chinese Abacus (ca. 190AD)

- Information represented in digital form
- Each rod is a decimal digit (units, tens, etc.)
- Can store information, and do calculation
- An early mechanical computer
 - The Babbage difference engine, 1832
 - 25,000 parts

- Ohm's law: V = I x R
 - Georg Ohm, 1827

- Semiconductors are not metals
 - Semiconductor resistance <u>decreases</u> with temperature
 - Michael Faraday, 1834

- Discovery of the electron
 - J.J. Thomson, measured only charge/mass ratio, 1897
 - "To the electron, may it never be of any use to anybody." – J.J. Thomson's favorite toast.

- Measuring the electron charge: 1.6 x 10⁻¹⁹ C
 - Robert Millikan, oil drops, 1909

- ENIAC: The first electronic computer (1946)
 - 30 tons, including ~20,000 vacuum tubes, relays
 - Punch card inputs, ~5 kHz speed
 - It failed ~every five days

Note: ILLIAC @ UIUC 5 tons, 2800 vacuum tubes 64k memory (1952)

Modern age begins in 1947:

- The first semiconductor transistor
- AT&T Bell Labs, Dec 1947
- J. Bardeen, W. Brattain, W. Shockley
- Germanium base, gold foil contacts

Note: ILLIAC II @ UIUC Built with discrete transistors (1962)

Semiconductor processing

Introduction to solids

States, phases of matter

Gases

- Gases have atoms or molecules that do not bond to one another in a range of pressure, temperature & volume.
- These molecules haven't any particular order & move freely within a container.

Liquids & liquid crystals

- Similar to gases, Liquids have no atomic/molecular order & they assume the shape of their containers.
- Applying low levels of thermal energy can easily break the existing weak bonds.
- Liquid Crystals have mobile molecules, but a type of long range order can exist; the molecules have a permanent dipole. Applying an electric field rotates the dipole & establishes order within the collection of molecules.

Solids

Solids consist of atoms or molecules undergoing thermal motion about their equilibrium positions, which are at fixed points in space.

Solids can be amorphous, polycrystalline, or single

crystal.

- Solids (at a given temperature, pressure, volume) have stronger interatomic bonds than liquids.
- So, solids require more energy to break the interatomic bonds than liquids.

The periodic lattice

- Unit cell: can reproduce the crystal
- Primitive cell: the smallest unit cell

Stuffing atoms into unit cells:

Diamond structure – a special cubic

The Silicon lattice:

- "Diamond lattice"
- Si atom: 14 electrons occupying lowest 3 energy levels:
 - 1s, 2s, 2p orbitals filled by 10 electrons
 - 3s, 3p orbitals filled by 4 electrons
- Each Si atom has four neighbors
- Any atom within the diamond structure will have four nearest neighboring atoms
- The diamond structure refers to the particular lattice in which all atoms are of the same species, such as silicon or germanium
- How many atoms per unit cell?

Zinc blende lattice

- The Zinc blende is diamond cystal structure, w/ switching atoms
- Two intercalated fcc lattices
- Many important compound crystal

AIN, AIAs, GaAs, GaN, GaP, GaSb, InAs, InP, InSb, ZnS,

ZnTe.

Crystallographic notation

Crystallographic planes

Miller Indices

(Intercept values are in multiples of the lattice constant; h, k and l are reduced to 3 integers having the same ratio.)

Notation	Interpretation	
(hkl)	crystal plane	
$\{hkl\}$	equivalent planes	
[hkl]	crystal direction	
$\langle h k l \rangle$	equivalent directions	

h: inverse x-intercept of planek: inverse y-intercept of planel: inverse z-intercept of plane

A (214) crystal plane.

 Si wafers usually cut along {100} plane with a notch or flat side to orient the wafer during fabrication

- Graphite (~pencil lead) = parallel sheets of graphene
- Carbon nanotube = rolled up sheet of graphene

The Scale of Things - Nanometers and More

Things Natural

Red blood cells (~7-8 μm)

~ 10-20 µm

~ 5 mm

~2-1/2 nm diameter

Atoms of silicon spacing 0.078 nm

Things Manmade

Corral diameter 14 nm