

ELSEVIER

Landscape and Urban Planning 61 (2002) VII-IX

LANDSCAPE
AND
URBAN PLANNING

This article is also available online at:
www.elsevier.com/locate/landurbplan

Author Index — Volumes 58–61

Ahern, J., see Botequilha Leitão, A. (59) 65
Åkerman, M. and Peltola, T., Temporal scales and environmental knowledge production (61) 147
Anderson, D.H., see Stein, T.V. (60) 151
Apan, A.A., Raine, S.R. and Paterson, M.S., Mapping and analysis of changes in the riparian landscape structure of the Lockyer Valley catchment, Queensland, Australia (59) 43
Aravot, I., see Austerlitz, N. (60) 105
Arnberg, W., see Hall, O. (59) 227
Arroyo-Cabral, J., see Zúñiga-Gutiérrez, G. (59) 181
Austerlitz, N., Aravot, I. and Ben-Ze'ev, A., Emotional phenomena and the student–instructor relationships (60) 105

Ben-Ze'ev, A., see Austerlitz, N. (60) 105
Bjerke, T., see Kaltenborn, B.P. (59) 1
Björn, C., see Löfvenhaft, K. (58) 223
Botequilha Leitão, A. and Ahern, J., Applying landscape ecological concepts and metrics in sustainable landscape planning (59) 65
Brabec, E. and Smith, C., Agricultural land fragmentation: the spatial effects of three land protection strategies in the eastern United States (58) 255
Bregt, A.K., see Li, X. (60) 27
Briggs, S.V., see Saunders, D.A. (61) 71
Brook, B.W., see Soh, M.C.K. (59) 217
Brooker, L., The application of focal species knowledge to landscape design in agricultural lands using the ecological neighbourhood as a template (60) 185
Brown, R.D., see Hands, D.E. (58) 57

Calvert, T., see Jorgensen, A. (60) 135
Campos, F., see Sierra, R. (59) 95
Carsjens, G.J. and van der Knaap, W., Strategic land-use allocation: dealing with spatial relationships and fragmentation of agriculture (58) 171
Carsjens, G.J. and van Lier, H.N., Fragmentation and Land-Use Planning—An Introduction (58) 79
Chamberlin, J., see Sierra, R. (59) 95
Claassen, F., see van Langevelde, F. (58) 281
Coeterier, J.F., Lay people's evaluation of historic sites (59) 111
Cook, E.A., Landscape structure indices for assessing urban ecological networks (58) 269
Coppolillo, P.B., see Sanderson, E.W. (58) 41

Cousins, S.A.O., Eriksson, Å. and Franzén, D., Reconstructing past land use and vegetation patterns using palaeogeographical and archaeological data. A focus on grasslands in Nynäs by the Baltic Sea in south-eastern Sweden (61) 1
Dana, E.D., Vivas, S. and Mota, J.F., Urban vegetation of Almería City—a contribution to urban ecology in Spain (59) 203
Daniel, T.C., see Parsons, R. (60) 43
De Young, R., see Erickson, D.L. (58) 101

Eddleman, K.E., see Li, M.-H. (60) 225
Eliasson, I., see Svensson, M.K. (61) 37
Erickson, D.L., Ryan, R.L. and De Young, R., Woodlots in the rural landscape: landowner motivations and management attitudes in a Michigan (USA) case study (58) 101
Eriksson, Å., see Cousins, S.A.O. (61) 1
Etter R., A., see Mendoza S., J.E. (59) 147

Franzén, D., see Cousins, S.A.O. (61) 1

Gazvoda, D., Characteristics of modern landscape architecture and its education (60) 117
Gulinck, H. and Wagendorp, T., References for fragmentation analysis of the rural matrix in cultural landscapes (58) 137
Gulinck, H., see Roovers, P. (59) 129

Haila, Y., Introduction (61) 55
Scaling environmental issues: problems and paradoxes (61) 59
Hall, O. and Arnberg, W., A method for landscape regionalization based on fuzzy membership signatures (59) 227
Hands, D.E. and Brown, R.D., Enhancing visual preference of ecological rehabilitation sites (58) 57
Harms, W. Bert, see Li, X. (60) 27
Hawkins, V. and Selman, P., Landscape scale planning: exploring alternative land use scenarios (60) 211
Hermy, M., see Roovers, P. (59) 129
Hess, G.R. and King, T.J., Planning open spaces for wildlife. I. Selecting focal species using a Delphi survey approach (58) 25
Hidding, M.C. and Teunissen, A.T.J., Beyond fragmentation: new concepts for urban–rural development (58) 297
Hiedanpää, J., European-wide conservation versus local well-being: the reception of the Natura 2000 Reserve Network in Karvia, SW-Finland (61) 113
Hitchmough, J., see Jorgensen, A. (60) 135

Højring, K., The right to roam the countryside—law and reality concerning public access to the landscape in Denmark (59) 29

Ihse, M., see Löfvenhaft, K. (58) 223

Jaarsma, C.F. and Willems, G.P.A., Reducing habitat fragmentation by minor rural roads through traffic calming (58) 125

Jokinen, A., Free-time habitation and layers of ecological history at a southern Finnish lake (61) 99

Jongman, R., see Li, X. (60) 27

Jongman, R.H.G., Homogenisation and fragmentation of the European landscape: ecological consequences and solutions (58) 211

Jorgensen, A., Hitchmough, J. and Calvert, T., Woodland spaces and edges: their impact on perception of safety and preference (60) 135

Kaltenborn, B.P. and Bjerke, T., Associations between environmental value orientations and landscape preferences (59) 1

Karjalainen, E. and Tyrväinen, L., Visualization in forest landscape preference research: a Finnish perspective (59) 13

Kim, D.S., Mizuno, K. and Kobayashi, S., Analysis of land-use change system using the species competition concept (58) 181

King, T.J., see Hess, G.R. (58) 25

Kobayashi, S., see Kim, D.S. (58) 181

Lechuga, C., see Zúñiga-Gutiérrez, G. (59) 181

Lhota, T., see Sklenička, P. (58) 147

Li, M.-H. and Eddleman, K.E., Biotechnical engineering as an alternative to traditional engineering methods. A biotechnical streambank stabilization design approach (60) 225

Li, X., Jongman, R., Xiao, D., Harms, W. Bert and Bregt, A.K., The effect of spatial pattern on nutrient removal of a wetland landscape (60) 27

Löfvenhaft, K., Björn, C. and Ihse, M., Biotope patterns in urban areas: a conceptual model integrating biodiversity issues in spatial planning (58) 223

Louekari, S., see Ojala, E. (61) 83

Madsen, L.M., The Danish afforestation programme and spatial planning: new challenges (58) 241

Marušić, I., Some observations regarding the education of landscape architects for the 21st century (60) 95

Meadowcroft, J., Politics and scale: some implications for environmental governance (61) 169

Mendoza S., J.E. and Etter R., A., Multitemporal analysis (1940–1996) of land cover changes in the southwestern Bogotá highplain (Colombia) (59) 147

Mizuno, K., see Kim, D.S. (58) 181

Monserud, R.A., Large-scale management experiments in the moist maritime forests of the Pacific Northwest (59) 159

Mota, J.F., see Dana, E.D. (59) 203

Nix, H.A., see Stein, J.L. (60) 1

Ogrin, D., Landscape of the future: the future of landscape architecture education (60) 57

Ojala, E. and Louekari, S., The merging of human activity and natural change: temporal and spatial scales of ecological change in the Kokemäenjoki river delta, SW Finland (61) 83

Olff, H. and Ritchie, M.E., Fragmented nature: consequences for biodiversity (58) 83

Ortega-Rubio, A., see Zúñiga-Gutiérrez, G. (59) 181

Parsons, R. and Daniel, T.C., Good looking: in defense of scenic landscape aesthetics (60) 43

Paterson, M.S., see Apan, A.A. (59) 43

Peltola, T., see Åkerman, M. (61) 147

Peuhkuri, T., Knowledge and interpretation in environmental conflict. Fish farming and eutrophication in the Archipelago Sea, SW Finland (61) 157

Pons, J., see Serrano, M. (58) 113

Prélaz-Droux, R., see Vuilleumier, S. (58) 157

Puig, J., see Serrano, M. (58) 113

Raine, S.R., see Apan, A.A. (59) 43

Redford, K.H., see Sanderson, E.W. (58) 41

Ritchie, M.E., see Olff, H. (58) 83

Rodiek, J.E., Landscape and urban planning cover for 2002 (58) 5

Where do We Go from Here? (58) 1

Roovers, P., Hermy, M. and Gulinck, H., Visitor profile, perceptions and expectations in forests from a gradient of increasing urbanisation in central Belgium (59) 129

Ryan, R.L., Preserving rural character in New England: local residents' perceptions of alternative residential development (61) 19

Ryan, R.L., see Erickson, D.L. (58) 101

Sanderson, E.W., Redford, K.H., Vedder, A., Coppolillo, P.B. and Ward, S.E., A conceptual model for conservation planning based on landscape species requirements (58) 41

Sanz, L., see Serrano, M. (58) 113

Saunders, D.A. and Briggs, S.V., Nature grows in straight lines—or does she? What are the consequences of the mismatch between human-imposed linear boundaries and ecosystem boundaries? An Australian example (61) 71

Schotman, A., see van Langevelde, F. (58) 281

Selman, P., see Hawkins, V. (60) 211

Seoh, R.K.H., see Soh, M.C.K. (59) 217

Serrano, M., Sanz, L., Puig, J. and Pons, J., Landscape fragmentation caused by the transport network in Navarra (Spain). Two-scale analysis and landscape integration assessment (58) 113

Sierra, R., Campos, F. and Chamberlin, J., Assessing biodiversity conservation priorities: ecosystem risk and representativeness in continental Ecuador (59) 95

Sklenička, P. and Lhota, T., Landscape heterogeneity—a quantitative criterion for landscape reconstruction (58) 147

Smith, C., see Brabec, E. (58) 255

Sodhi, N.S., see Soh, M.C.K. (59) 217

Soh, M.C.K., Sodhi, N.S., Seoh, R.K.H. and Brook, B.W., Nest site selection of the house crow (*Corvus splendens*), an urban invasive bird species in Singapore and implications for its management (59) 217

Stamps, A.E., Fractals, skylines, nature and beauty (60) 163

Stein, J.A., see Stein, J.L. (60) 1

Stein, J.L., Stein, J.A. and Nix, H.A., Spatial analysis of anthropogenic river disturbance at regional and continental scales: identifying the wild rivers of Australia (60) 1

Stein, T.V. and Anderson, D.H., Combining benefits-based management with ecosystem management for landscape planning: Leech Lake watershed, Minnesota (60) 151

Svensson, M.K. and Eliasson, I., Diurnal air temperatures in built-up areas in relation to urban planning (61) 37

Szerszynski, B., Wild times and domesticated times: the temporalities of environmental lifestyles and politics (61) 181

Taylor, P.D., Fragmentation and cultural landscapes: tightening the relationship between human beings and the environment (58) 93

Teunissen, A.T.J., see Hidding, M.C. (58) 297

Thomas, M.R., A GIS-based decision support system for brownfield redevelopment (58) 7

Thompson, C.W., Urban open space in the 21st century (60) 59

Thompson, I.H., Ecology, community and delight: a trivalent approach to landscape education (60) 81

Tyrväinen, L., see Karjalainen, E. (59) 13

Valve, H., Implementation of EU rural policy: is there any room for local actors? The case of East Anglia, UK (61) 125

van Bohemen, H., Infrastructure, ecology and art (59) 187

van der Knaap, W., see Carsjens, G.J. (58) 171

van der Valk, A., The Dutch planning experience (58) 201

van Langevelde, F., Claassen, F. and Schotman, A., Two strategies for conservation planning in human-dominated landscapes (58) 281

van Lier, H.N., see Carsjens, G.J. (58) 79

Vedder, A., see Sanderson, E.W. (58) 41

Vivas, S., see Dana, E.D. (59) 203

von Haaren, C., Landscape planning facing the challenge of the development of cultural landscapes (60) 73

Vuilleumier, S. and Prélaz-Droux, R., Map of ecological networks for landscape planning (58) 157

Wagendorp, T., see Gulinck, H. (58) 137

Ward, S.E., see Sanderson, E.W. (58) 41

Wessberg, N., Local decisions in the Finnish energy production network—a socio-technical perspective (61) 137

Willems, G.P.A., see Jaarsma, C.F. (58) 125

Xiao, D., see Li, X. (60) 27

Zúñiga-Gutiérrez, G., Arroyo-Cabral, J., Lechuga, C. and Ortega-Rubio, A., Environmental quantitative assessment of two alternative routes for a gas pipeline in Campeche, Mexico (59) 181

ELSEVIER

Landscape and Urban Planning 61 (2002) XI-XIII

LANDSCAPE
AND
URBAN PLANNING

This article is also available online at:
www.elsevier.com/locate/landurbplan

Subject Index — Volumes 58–61

Aerial photographs, (58) 223
Afforestation plans, (58) 241
Agricultural development, (59) 29
Agricultural landscapes, (61) 71
Agriculture, (58) 171, 255
Air temperature, (61) 37
Allocation model, (58) 281
Alternative silviculture, (59) 159
Analog models, (61) 59
Andean forests, (59) 147
Anthropocentrism, (59) 1
Art, (59) 187
Australia, (60) 1

Benefits-based management, (60) 151
Biocentres, (60) 211
Biodiversity conservation, (59) 95
Biodiversity, (58) 83, 223, (61) 1, 99
Biosciences, (58) 93
Biotechnical engineering, (60) 225
Biotope mapping, (58) 223
Bird control, (59) 217
Brownfields, (58) 7

Comfort, (61) 37
Community development, (60) 151
Computerized visual simulation, (58) 57
Connectivity, (60) 185
Conservation planning, (58) 41
Contextual fit, (60) 163
Creativity, (60) 95
Cultural heritage, (59) 111
Cultural landscape, (58) 93, (60) 73

Decision support, (58) 7
Decision-making, (61) 137
Delphi survey, (58) 25
Delta, (61) 83
DEM, (60) 1
Denmark, (58) 241
Design process, (60) 117
Design-studio research, (60) 105
Digital photo editing, (59) 13
Disturbance, (61) 83

East Anglia, (61) 125
Ecocentrism, (59) 1
Ecohistory, (61) 99
Ecological aesthetics, (60) 43
Ecological distance, (58) 157
Ecological engineering, (59) 187
Ecological neighbourhood, (60) 185
Ecological network, (58) 157, 269
Ecology, (59) 187, 217, (60) 81
Ecostabilisation, (58) 211
Ecosystem management, (60) 151
Ecosystem, (59) 65
Education, (60) 95, 117
Effects, (58) 125
Emotional phenomena and the student instructor relationship, (60) 105
Emotions, (60) 105
Energy production, (61) 137
Environmental affect, (60) 43
Environmental conflict, (61) 157
Environmental governance, (61) 169
Environmental history, (61) 83
Environmental impact assessment, (59) 181
Environmental issues, (61) 59
Environmental knowledge, (61) 147
Environmental lifestyles, (61) 181
Environmental perception, (60) 43
Environmental philosophy, (60) 81
Environmental policy, (61) 113
Environmental psychology, (58) 93, (59) 111
Environmental values, (59) 1
EU rural policy, (61) 125
EU-regulation 2080/92, (58) 241

Fish farming, (61) 157
Flanders, (58) 137
Focal community, (60) 185
Focal species, (58) 25, (60) 185, 211
Food chain model, (58) 181
Forest landscape simulators, (59) 13
Fractal geometry, (58) 83
Fractals, (60) 163
Fragmentation, (58) 83, 93, 113, 137, 171, 211, 255, 297, (60) 185
Functional references, (58) 137
Fuzzy, (59) 227

Gap analysis, (59) 95
 Geographic information systems, (58) 147
 GIS, (58) 7, 157, (59) 43, (60) 1
 Green space planning, (58) 25
 Greenways, (60) 211
 Growth management, (58) 201
 Habitat fragmentation, (58) 125, (58) 281
 Habitat loss, (58) 83
 Habitat selection, (59) 217
 Historic value, (59) 111
 Homogenisation, (58) 211
 Human-bird interactions, (59) 217
 Industrial site, (58) 57
 Information systems, (58) 7
 Infrastructure, (59) 187
 Innovator-promoter, (61) 137
 Institutional economics, (61) 113
 Isolation, (60) 185
 Joint production, (59) 159
 Keystone species, (58) 25
 Knowledge, (61) 157
 Land conservation, (58) 255
 Land management, (59) 65
 Land protection, (58) 255
 Land use change, (61) 1
 Land use planning, (60) 211
 Land use, (58) 147
 Land use/land cover, (61) 37
 Landowner motivations, (58) 101
 Landscape architecture education, (60) 105
 Landscape architecture, (58) 57, (60) 81
 Landscape assessment, (60) 163
 Landscape change, (58) 211, (59) 29, 43, 147
 Landscape design, (60) 117, (60) 185
 Landscape ecological planning, (59) 65
 Landscape ecology, (58) 157, 223, (60) 211
 Landscape heterogeneity, (58) 147
 Landscape history, (61) 1
 Landscape integration assessment, (58) 113
 Landscape planning in Germany, (60) 73
 Landscape planning methods, (60) 117
 Landscape planning strategies/concepts, (60) 73
 Landscape planning, (58) 57, 157, 211, (60) 151
 Landscape preferences, (59) 1, 13
 Landscape scale conservation, (58) 41
 Landscape species, (58) 41
 Landscape structure, (58) 269, (59) 43
 Landscape transformation, (60) 73
 Landscape, (58) 137, (59) 227, (60) 95
 Land-use allocation, (58) 171
 Land-use change system, (58) 181
 Legislation, (59) 29
 Local participation, (61) 125
 Macroeconomic policy, (59) 147
 Man/nature paradigm, (58) 93
 Management, (59) 217
 Meta-analysis, (59) 159
 Metapopulation, (58) 281
 Methods, (58) 125
 Metropolitan agriculture, (58) 255
 Mitigation, (58) 125
 Model, (58) 157
 Multi-criteria evaluation, (59) 227
 Multi-dimensional scaling, (58) 57
 Multi-functionality, (60) 73
 Multiple land use, (58) 201
 Multivariate analysis, (59) 203
 Native vegetation, (61) 71
 Natural capital, (61) 147
 Naturalistic vegetation in cities, (60) 135
 Naturalization, (58) 57
 Nature, (60) 59
 Nature–culture relationship, (61) 99
 Neighborhood analysis, (59) 227
 Network concepts, (58) 297
 Networks, (60) 59
 Non-industrial private forest (NIPF), (58) 101
 Non-linear dynamics, (61) 59
 Norway, (59) 1
 Nottinghamshire, (60) 211
 Nutrient removal, (60) 27
 Open space planning, (58) 25
 Open space, (60) 59
 Outdoor recreation, (59) 29
 Parks, (60) 59
 Patch size, (60) 185
 Pattern effect, (60) 27
 Perennial trees, (61) 71
 Personal safety, (60) 135
Phragmites australis, (60) 27
 Phytosociology, (59) 203
 Planning, (60) 95
 Policy institutionalisation, (61) 125
 Politics, (61) 169, 181
 Pollen, (61) 1
 Population dynamics, (58) 211
 Post-mining area, (58) 147
 Preference, (60) 135
 Project alternatives, (59) 181
 Pseudoreplication, (59) 159
 Public access, (59) 29
 Public participation, (60) 151
 Questionnaires, (59) 129
 Recreation, (59) 129
 Recultivation, (58) 147

Reed, (60) 27
Region, (59) 227
Relative evolution level, (58) 181
Remote sensing, (59) 43, 147
Reserve networks, (59) 95
Reserve representativeness, (59) 95
Reserve site selection, (58) 281
Resource management, (58) 101
Riparian landscape, (59) 43
Risk assessment, (59) 181
River disturbance, (60) 1
Road density, (58) 125
Road network, (59) 29
Road-kills, (58) 113
Ruderals, (59) 203
Rural area, (58) 171
Rural landscapes, (58) 101
Rural roads, (58) 125

Scale, (58) 113, (59) 227, (61) 169
Scaling, (58) 83, (61) 59
Scenic aesthetics, (60) 43
Science, (60) 95
Siting, (58) 7
Skylines, (60) 163
Social acceptance, (59) 159
Socio-ecological dynamics, (61) 59
Socio-technical system, (61) 137
Soil bioengineering, (60) 225
Spatial arrangement of vegetation, (60) 135
Spatial considerations, (58) 241
Spatial optimisation, (58) 281
Spatial planning, (58) 201, 297
Spatial scales, (61) 157
Spatial simulation, (60) 27
Species competition concept, (58) 181
Statistical power, (59) 159

Streambank stabilization, (60) 225
Student-instructor relationship, (60) 105
Suburban development, (58) 25
Summer cottage, (61) 99
Sustainability, (59) 65
Sweden, (61) 1

Technological choices, (61) 147
Technological momentum, (61) 137
Temporal and spatial scales, (61) 83
The Natura 2000 Reserve Network, (61) 113
The Netherlands, (59) 187
Time, (61) 181
Topological relationships, (58) 171
Town and country, (58) 297
Traffic calming, (58) 125
Transactive planning, (61) 113
Transport infrastructures, (58) 113

Umbrella species, (58) 25
Urban ecology, (59) 203
Urban ecosystems, (58) 269
Urban forestry, (59) 129
Urban greenways, (58) 269
Urban parks and green spaces, (60) 135
Urban planning, (58) 223, (59) 203, 217
Urban sprawl, (58) 255
Urban, (60) 59

Vegetation change, (61) 83
Visualization, (59) 13

Wetland, (60) 27
Wild rivers, (60) 1
Wildlife conservation, (58) 25
Wildlife habitat, (58) 25
Woodlots, (58) 101

