МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студентка гр. 0383	Александрович В.П.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2021

Цель работы.

Познакомиться с представлением и обработкой целых чисел на языке ассемблер.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

- а) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i);
- b) значения результирующей функции res = f3(i1,i2,k),

где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4.

Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Замечания:

- 1) при разработке программы нельзя использовать фрагменты, представленные на ЯВУ, в частности, для ввода-вывода данных. Исходные данные должны вводиться, а результаты контролироваться в режиме отладки;
- 2) при вычислении функций f1 и f2 вместо операции умножения следует использовать арифметический сдвиг и, возможно, сложение;
 - 3) при вычислении функций f1 и f2 нельзя использовать процедуры;
- 4) при разработке программы следует минимизировать длину кода, для чего, если надо, следует преобразовать исходные выражения для вычисления функций.

Выполнение работы.

Выделяется память под хранение начальных данных. Для расчета функций используются команды cmp, jne, jle, jl. Для сложения используется команда add, а для умножения – битовый сдвиг влево.

Разработанный программный код см. в приложении А.

Текст файла диагностических сообщений см. в приложении Б.

Тестирование.

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

Значения	i1	i2	res	Комментарий
a = 2	0011h = 13	0001h = 1	0001h = 1	ВЕРНО
b = 1				
k = 0				
i = -1				
a = 2	0011h = 13	0001h = 1	0011h = 17	ВЕРНО

b = 1				
k = 1				
i = -1				
a = 1	000Ah = 10	0002h = 2	0002h = 2	ВЕРНО
b = 2				
k = 0				
i = 2				
a = 1	000Ah = 10	0002h = 2	000Ah = 10	ВЕРНО
b = 2				
k = 1				
i = 2				

Выводы.

В ходе выполнения данной лабораторной работы была изучена работа с целыми числами и условными переходами на языке Ассемблер.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: lab3.asm
AStack SEGMENT STACK
    DW 12 DUP(?)
AStack ENDS
;Данные программы
DATA
          SEGMENT
;Директивы описания данных
       DW
             0
b
       DW
             0
i
       DW
             0
k
       DW
             0
i1
       DW
             0
             0
i2
       DW
DATA
          ENDS
; Код программы
CODE
          SEGMENT
      ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
          PROC FAR
Main
      push DS
      sub
            AX, AX
      push AX
            AX, DATA
      mov
      mov
            DS, AX
       mov CX, 0
       mov a, 1
      mov b, 2
      mov i, 2
      mov k, 1
       mov cx, i
       mov ax, cx
       shl cx, 1
       mov bx, b
       cmp a, bx
                     ; сравнение а и b
       jle f1second
           neg cx
           add cx, 15
           mov i1, cx
           shl cx, 1
           add cx, -33
           mov i2, cx
       f1second:
           add cx, ax
           add cx, 4
           mov i1, cx
           shl cx, 1
           add cx, -18
           mov i2, cx
```

```
;рассчет res
       mov bx, k
       cmp bx, 0
       jne resSecond
         mov bx, i1
           cmp bx, i2
           jl max1
             mov cx, i2
             jmp MainFinal
           max1:
             mov cx, bx
             jmp MainFinal
       resSecond:
         mov bx, i1
           cmp bx, i2
           jl max2
             mov cx, bx
             jmp MainFinal
           max2:
             mov cx, i2
             jmp MainFinal
       MainFinal:
                             ; в сх лежит значение res
      ret
Main
          ENDP
CODE
          ENDS
END Main
```

ПРИЛОЖЕНИЕ Б

ФАЙЛ ДИАГНОСТИЧЕСКИХ СООБЩЕНИЙ

Название файла: lab3.lst

89 0E 0008 R

003B

Microsoft (R) Macro Assembler Version 5.10

21:58:1 Page 1-1 0000 AStack SEGMENT STACK 0000 000C[DW 12 DUP(?) ???? 1 0018 AStack ENDS ;Данные программы 0000 SEGMENT DATA ;Директивы описания данных 0000 0000 DW 0 a 0002 0000 b DW 0 0004 0000 i DW 0 k DW 0 0006 0000 8000 0000 **i**1 DW 0 DW 000A 0000 i2 0 000C DATA **ENDS** ; Код программы 0000 CODE **SEGMENT** ASSUME CS:CODE, DS:DATA, SS:AStack ; Головная процедура 0000 PR0C Main FAR 0000 1E push DS 0001 2B C0 sub AX, AX 0003 50 push AX 0004 B8 ---- R mov AX, DATA 0007 8E D8 mov DS, AX B9 0000 0009 CX, 0 mov 000C C7 06 0000 R 0002 mov a, 2 0012 C7 06 0002 R 0001 mov b, 1 C7 06 0004 R FFFF mov i, -1 0018 001E C7 06 0006 R 0000 mov k, 0 ;вычисление f1 8B 0E 0004 R 0024 mov cx, i 0028 8B C1 mov ax, cx shl cx, 1 002A D1 E1 002C 8B 1E 0002 R mov bx, b 0030 39 1E 0000 R cmp a, bx сравнение а и b jle f1second 0034 7E 12 neg cx 0036 F7 D9 add cx, 15 83 C1 OF 0038

mov i1, cx

11/24/21

```
003F D1 E1
                                           shl cx, 1
                                           add cx, -33
      0041 83 C1 DF
      0044 89 0E 000A R
                                           mov i2, cx
      0048
                                  f1second:
      0048 03 C8
004A 83 C1 04
                                           add cx, ax
                                           add cx, 4
      004D 89 0E 0008 R
                                           mov i1, cx
      0051 D1 E1
                                           shl cx, 1
Microsoft (R) Macro Assembler Version 5.10
                                                                 11/24/21
21:58:1
                                                                    Page
1-2
      0053 83 C1 EE
                                           add cx, -18
      0056 89 0E 000A R
                                           mov i2, cx
                                  ;рассчет res
      005A 8B 1E 0006 R
                                       mov bx, k
                                       cmp bx, 0
      005E 83 FB 00
      0061 75 16
0063 8B 1E 0008 R
                                       ine resSecond
                                        mov bx, i1
                                          cmp bx, i2
      0067 3B 1E 000A R
      006B 7C 07
                                           jl max1
                                             mov cx, i2
      006D 8B 0E 000A R
      0071 EB 1C 90
                                             jmp MainFinal
      0074
                                     max1:
      0074 8B CB
                                            mov cx, bx
      0076 EB 17 90
                                             jmp MainFinal
      0079
                                  resSecond:
      0079 8B 1E 0008 R
                                         mov bx, i1
      007D 3B 1E 000A R
                                           cmp bx, i2
      0081 7C 05
                                           jl max2
      0083 8B CB
                                             mov cx, bx
      0085 EB 08 90
                                             jmp MainFinal
      0088
                                     max2:
      0088 8B 0E 000A R
                                             mov cx, i2
      008C EB 01 90
                                             jmp MainFinal
      008F
                                 MainFinal:
                                             ; в сх лежит зна
                          чение res
      008F CB
                               ret
      0090
                          Main
                                    ENDP
      0090
                           CODE
                                    ENDS
                           END Main
Microsoft (R) Macro Assembler Version 5.10
                                                                 11/24/21
21:58:1
                                                                   Symbol
s-1
     Segments and Groups:
```

Name Length Align

Combine Class

	ASTACK CODE DATA		 		0018 PARA 0090 PARA 000C PARA	NONE		
	Symbols:							
	N a m e		Туре	Value	Attr			
	Α		 		L WORD	0000 DATA		
	В		 		L WORD	0002 DATA		
0090	F1SECOND .		 		L NEAR	0048 CODE		
	I II II		 		L WORD L WORD L WORD	0004 DATA 0008 DATA 000A DATA		
	К		 		L WORD	0006 DATA		
	MAIN		 		F PROC	0000 CODE	Length :	=
	MAINFINAL MAX1 MAX2		 		L NEAR L NEAR L NEAR	008F CODE 0074 CODE 0088 CODE		
	RESSECOND		 	•	L NEAR	0079 CODE		
	@CPU @FILENAME @VERSION .		 		TEXT 0101 TEXT LAB3 TEXT 510			

⁸⁰ Source Lines

47982 + 461325 Bytes symbol space free

0 Warning Errors

0 Severe Errors

⁸⁰ Total Lines

²⁰ Symbols