Selling Training Data (Preliminary)

Jingmin Huang, Wei Zhao and Renjie Zhong*

Renmin University of China

Berkeley Theory Lunch

Selling Input Data/Within Consumer Data

Bergemann, Bonatti, Smolin (2018 AER) "The Design and Price of Information"

- monopolist screening: data broker, buyer with private information (interim belief)
 ex. lenders with knowledge of a borrower; doctors with access to patients' family history...
- private information + input data → optimize their decision under uncertainty input data: update prediction algorithms ⇒ cost and/or quality of offerings (Joshua,2024)
- key attributes: position & quality
- lacksquare private signal $s \Longleftrightarrow$ interim belief μ_s
 - \implies certain Type of statistical error induced by action selection a_s and $u(a_s,\omega)$ \checkmark

Selling Training Data/Across Consumer Data

- monopolist screening: data broker, data buyer with private information baseline dataset
- private information + input data → optimize their decision under uncertainty baseline data + supplemental data → train its predictive model. training data: develop AI prediction algorithms ⇒ market entry (Joshua,2024)
- key attributes: multi-dimension & combinatorial nature & allocation rigidity
- private experiment $\Pr(s|\omega) \iff$ distribution of posteriors $F(\mu)$ \checkmark \implies a bundle of statistical error induced by action scheme $\Pr(a,\omega)$ and $u(a,\omega)$ \checkmark

Training Data v.s. Input Data

Training data reduces error of baseline data $(\alpha, \beta) \Rightarrow$ constrained multi-dimensional goods Input data reduces certain error of private information $(\alpha, 0)$ or $(0, \beta) \Rightarrow$ separate multi-goods

A simplified model for this talk (Hypothesis Testing)

- two states $\{\omega_1, \omega_2\}$, prior: $\mu = (\frac{1}{2}, \frac{1}{2})$, binary action $\{a_1, a_2\}$, payoff $u(a_i, \omega_j) = 1_{i=j}$
- private type: (α, β) , $\alpha + \beta \leq \frac{1}{2}$

Figure: Baseline Dataset \Longrightarrow Statistical Error

Supplemental Data

Data broker recommends action profiles for different private signal realizations.

Ε	(a_1,a_1)	(a_1, a_2)	(a_2, a_1)	(a_2, a_2)
ω_1	π_{11}	π_{12}	π_{13}	π_{14}
ω_2	π_{21}	π_{22}	π_{23}	π_{24}

Table: Straight Experiment

Figure: Data Merging

In the reduced-form, data broker allocates the reduction ratio of Type I and II error

Obedience:
$$\pi_1 \alpha + \pi_2 \beta \le \min\{\frac{1}{2}\pi_1, \frac{1}{2}\pi_2\}$$

Table: Statistical Error Allocation

Figure: Reducing Type I error

Value of experiment (π_1, π_2) for (α, β) : incremental probability of correct identification

$$V(E,\theta) = \underbrace{\alpha + \beta}_{\text{initial overall error}} - \min \underbrace{\{\alpha \pi_1 + \beta \pi_2, \frac{1}{2} \pi_1, \frac{1}{2} \pi_2\}}_{\text{new overall error}}$$

type $\theta = (\alpha, \beta) \in \Theta$, mechanism $\mathcal{M} = \{\pi_1(\theta), \pi_2(\theta), t_\theta\}_{\theta \in \Theta}$

Designer's Problem:

$$\max_{\mathcal{M}} \int_{\Theta} t_{\theta} dF(\theta)$$

$$\alpha \pi_{1}(\theta) + \beta \pi_{2}(\theta) \leq \min\{\frac{1}{2}\pi_{1}(\theta), \frac{1}{2}\pi_{2}(\theta)\}, \ \forall \theta \in \Theta$$

$$\alpha + \beta - \alpha \pi_{1}(\theta) - \beta \pi_{2}(\theta) - t_{\theta} \geq 0, \ \forall \theta \in \Theta$$

$$\alpha + \beta - \alpha \pi_{1}(\theta) - \beta \pi_{2}(\theta) - t_{\theta} \geq \alpha + \beta - \underbrace{\min\{\alpha \pi_{1}(\theta') + \beta \pi_{2}(\theta'), \frac{1}{2}\pi_{1}(\theta'), \frac{1}{2}\pi_{2}(\theta')\}}_{\text{two-step deviation}} - t_{\theta'}, \forall \theta, \theta' \in \Theta$$

Rigidity:

- **I** allocation rigidity: $\alpha \pi_1 + \beta \pi_2 \leq \min\{\frac{1}{2}\pi_1, \frac{1}{2}\pi_2\}$
- 2 differentiation rigidity: $\min\{\alpha\pi_1 + \beta\pi_2, \frac{1}{2}\pi_1, \frac{1}{2}\pi_2\}$

Flexibility: exploit the horizontal difference to neutralize the vertical difference

Assumption: Perfectly Correlated

For the private type (α, β) , it holds that $k\alpha + \beta = m$, with $m \in [0, \frac{1}{2})$, $k \in [0, 2m]$, and $\alpha \in [\underline{\alpha}, \overline{\alpha}] = [0, \frac{\frac{1}{2} - m}{1 - k}]$ draws from absolutely continuous distribution F

Two-tiered pricing is optimal:

$$(E_{\alpha}, t_{\alpha}) = (E^*, t^*) \text{ for } \alpha \in [\underline{\alpha}, \alpha^*)$$

$$egin{array}{c|cccc} E^* & (a_1,a_1) & (a_1,a_2) & (a_2,a_2) \ \hline \omega_1 & k(1-rac{lpha^*}{\overline{lpha}}) & 1-k(1-rac{lpha^*}{\overline{lpha}}) & 0 \ \omega_2 & 0 & rac{lpha^*}{\overline{lpha}} & 1-rac{lpha^*}{\overline{lpha}} \end{array}$$

$$\alpha^* \in \arg\max_{\alpha} \alpha \left((1-k)\overline{\alpha} - \frac{1}{2}F(\alpha) \right)$$

Figure: Optimal Menu

Define $\lambda(\cdot): [\underline{\alpha}, \overline{\alpha}] \to [\underline{\alpha}, \overline{\alpha}]$ such that $IC[x \to \alpha]$ is one-step deviation for $x \in [\alpha, \lambda(\alpha)]$

Define $\gamma(\cdot): [\underline{\alpha}, \overline{\alpha}] \to [\underline{\alpha}, \overline{\alpha}]$ such that $\mathsf{IC}[\gamma(\alpha) \to \alpha]$ is binding

Figure: Optimal Structure of Menu

Key Conclusions:

- **11** "FOC" property is transitive: $\lambda(\cdot)$ is increasing
- **2** price gap = informativeness gap: $t_{\alpha} t_{\alpha'} = \frac{1}{2}\pi_2(\alpha) \frac{1}{2}\pi_2(\alpha')$ for all $\alpha, \alpha' \in [\underline{\alpha}, \bar{\alpha}]$

exploit horizontal differences to neutralize vertical difference

 \Rightarrow nullify the impact of private dataset and include of the low type

Figure: Neutralization Line and Allocation Rigidity

Future Work

- a solid statistical decision foundation for two states
- extend the distributional assumption to generalize the result in two states
 - 1 robust optimal mechanism
 - 2 distributional assumptions sufficient for a simple optimal menu (?)
- trade-off in many signals, many actions and many states (?)
- concrete applications

Literature Review

- Information Design as Screening Tools: Admati and Pfleiderer (1986), Admati and Pfleiderer (1990), Babaioff et al. (2012), Bergemann et al. (2018), Yang (2022), Segura-Rodriguez (2022), Bonatti et al. (2023), Bonatti et al. (2024), Rodriguez Olivera (2024)
- Multi-dimensional Screening: Adams and Yellen (1976), McAfee et al. (1989), Armstrong and Rochet (1999), Manelli and Vincent (2007), Hart and Reny (2015), Daskalakis et al. (2017), Carroll (2017), Haghpanah and Hartline (2021); Yang (2022), Deb and Roesler (2023)

Thank You!