CIS8695

Naïve Bayes; Support Vector Machine; and KNN

Ling Xue

Naïve Bayes: The Basic Idea

For a given new record to be classified, find other records like it (i.e., same values for the predictors)

What is the prevalent class among those records?

Assign that class to your new record

Usage

- Requires categorical variables
- Numerical variable must be binned and converted to categorical
- Can be used with very large data sets
- Example: Spell check programs assign your misspelled word to an established "class" (i.e., correctly spelled word)

Exact Bayes Classifier

Relies on finding other records that share <u>same predictor values</u> as record-to-be-classified.

Want to find "probability of belonging to class C, given specified values of predictors."

Even with large data sets, may be hard to find other records that **exactly match** your record, in terms of predictor values.

Naïve Bayes

- Assume independence of predictor variables (within each class)
- Use multiplication rule
- Find same probability that record belongs to class C, given predictor values, <u>without</u> limiting calculation to records that share all those same values

Calculations

- 1. Take a record, and note its predictor values
- 2. Find the probabilities those predictor values occur across all records in C1
- 3. Multiply them together, then by proportion of records belonging to C1
- 4. Same for C2, C3, etc.
- 5. Prob. of belonging to C1 is value from step (3) divide by sum of all such values C1 ... Cn
- 6. Assign the record to the class with the highest probability for this set of predictor values

Example: Financial Fraud

Target variable: Audit finds fraud, no fraud

Predictors:

Prior pending legal charges (yes/no)

Size of firm (small/large)

Charges?	Size	Outcome
У	small	truthful
n	small	truthful
n	large	truthful
n	large	truthful
n	small	truthful
n	small	truthful
У	small	fraud
У	large	fraud
n	large	fraud
У	large	fraud

$$P(Fraud|Small, y) = \frac{P(Fraud, Small, y)}{P(Small, y)}$$

$$= \frac{P(Small, y|Fraud) \times P(Fraud)}{P(Small, y)}$$

$$= \frac{P(Small, y|Fraud) \times P(Fraud)}{P(Small, y|Fraud) \times P(Fraud)} \times P(Truthful)$$

$$\xrightarrow{P(Small|Fraud) \times P(y|Fraud) \times P(Fraud)} P(Small|Fraud) \times P(y|Fraud) \times P(Fraud)$$

$$+P(Small|Fraud) \times P(y|Fraud) \times P(Fraud)$$

$$+P(Small|Truthful) \times P(y|Truthful) \times P(Truthful)$$

Exact Bayes Calculations

Goal: classify (as "fraudulent" or as "truthful") a small firm with charges filed

There are 2 firms like that, one fraudulent and the other truthful

P(fraud | charges=y, size=small) = $\frac{1}{2}$ = 0.50

Note: calculation is limited to the two firms matching those characteristics

Naïve Bayes Calculations

Same goal as before

Compute 2 quantities:

```
Proportion of "charges = y" among frauds, times proportion of "small" among frauds, times proportion frauds = 3/4 * 1/4 * 4/10 = 0.075
```

Prop "charges = y" among frauds, times prop. "small" among truthfuls, times prop. truthfuls = 1/6 * 4/6 * 6/10 = 0.067

```
P(fraud | charges, small) = 0.075/(0.075+0.067)
= 0.53
```

Naïve Bayes, cont.

- Note that probability estimate does not differ greatly from exact
- All records are used in calculations, not just those matching predictor values
- This makes calculations practical in most circumstances
- Relies on assumption of independence between predictor variables within each class

Independence Assumption

- Not strictly justified (variables often correlated with one another)
- Often "good enough" <u>ranking</u> of probabilities is more important than unbiased estimate of actual probabilities

Naïve Bayes in R

- Use package e1071
- Function naiveBayes
- See Table 8.4 for code for running Naïve Bayes
 - Includes code for binning numeric variables into categories, which is required for NB

Advantages

- Handles purely categorical data well
- Works well with very large data sets
- Simple & computationally efficient

Shortcomings

- Requires large number of records
- Problematic when a predictor category is not present in training data

Assigns 0 probability of response, ignoring information in other variables

On the other hand...

 Probability <u>rankings</u> are more accurate than the actual probability estimates

Good for applications using lift (e.g. response to mailing), less so for applications requiring probabilities (e.g. credit scoring)

Support Vector Machine: Intuition

- Hyperplane: Classification task is linearly separable. However, the dotted lines and solid line are just among an infinite number of possible linear solutions.
- A point falls on the wrong side of the linear separator is higher for the dotted line than the solid line, which means that the solid line has a higher margin of safety for classification.

Maximal margin hyperplane: linear separators with the largest possible margin and the support vectors the ones touching the safety margin region on both sides

Support Vector Machine: Intuition

Data need to not only be correctly classified, but also lie at least M units away from the separating hyperplane

The goal is to maximize this distance *M* by appropriately choosing the linear model coefficients

We define the perpendicular vectors from the points that lie on the margin to the separating hyperplane as the **support vectors** (3 SVs in the plot)

Support vector classifier (linear) is in the form:

$$y(x) = \beta_0 + \sum_{s \in S} \alpha_s \langle x, x_s \rangle$$

Use Support Vector Machine to Classify

$$y(x) = \beta_0 + \sum_{s \in S} \alpha_s K\langle x, x_s \rangle$$

- K is a kernel function, which can be linear (support vector classifier) or nonlinear (support vector machine)
- X_s are support vectors; X are the input features of the data points to be predicted/classified; y(X) is the prediction/classification outcomes
- The general logic is to see how X are located relative to X_s, or in other words, how X are <u>similar to</u> X_s. So kernel functions are also known as <u>similarity functions</u>.

Use Support Vector Machine to Classify

$$y(x) = \beta_0 + \sum_{s \in S} \alpha_s K \langle x, x_s \rangle$$

Possible kernels:

- linear, no transformation, $K(x_i, x_j) = x_i \cdot x_j$
- polynomial, where d = degree of polynomial, $K(x_i, x_j) = (\gamma x_i \cdot x_j + c)^d$
- radial basis function, $K(x_i, x_j) = e(-\gamma |x_i x_j|^2)$
- sigmoid function, $K(x_i, x_j) = \tanh (\gamma x_i \cdot x_j + c)$

KNN: Basic Idea

For a given record to be classified, identify nearby records

"Near" means records with similar predictor values X_1 , X_2 , ... X_p

Classify the record as whatever the predominant class is among the nearby records (the "neighbors")

How to measure "nearby"?

The most popular distance measure is **Euclidean distance**

$$\sqrt{(x_1 - u_1)^2 + (x_2 - u_2)^2 + \dots + (x_p - u_p)^2}$$

- Typically, predictor variables are first normalized (= standardized) to put them on comparable scales
- Use preProcess() from caret package to normalize
- Otherwise, metrics with large scales dominate

Choosing k

K is the number of nearby neighbors to be used to classify the new record

K=1 means use the single nearest record

K=5 means use the 5 nearest records

Typically choose that value of *k* which has lowest error rate in validation data

Low k vs. High k

Low values of k (1, 3, ...) capture local structure in data (but also noise)

High values of *k* provide more smoothing, less noise, but may miss local structure

Note: the extreme case of k = n (i.e., the entire data set) is the same as the "naïve rule" (classify all records according to majority class)

Example: Riding Mowers

Data: 24 households classified as owning or not owning riding mowers

Predictors: Income, Lot Size

Income	Lot_Size	Ownership
60.0	18.4	owner
85.5	16.8	owner
64.8	21.6	owner
61.5	20.8	owner
87.0	23.6	owner
110.1	19.2	owner
108.0	17.6	owner
82.8	22.4	owner
69.0	20.0	owner
93.0	20.8	owner
51.0	22.0	owner
81.0	20.0	owner
75.0	19.6	non-owner
52.8	20.8	non-owner
64.8	17.2	non-owner
43.2	20.4	non-owner
84.0	17.6	non-owner
49.2	17.6	non-owner
59.4	16.0	non-owner
66.0	18.4	non-owner
47.4	16.4	non-owner
33.0	18.8	non-owner
51.0	14.0	non-owner
63.0	14.8	non-owner

Finding nearest neighbors in R

Library FNN provides a list of neighbors
Library class allows numerical output
See Table 7.2 for code using knn from FNN library;
compares each record from validation* set to k
nearest records in training

*termed the test set in R

Finding nearest neighbors in R

Use library caret to get accuracy of different values of k, applied to validation data (see next slide for code)

0ut	put		
> 8	accur	acy.df	
	k a	ccuracy	
1	1	0.7	
2	2	0.7	
3	3	0.8	
4	4	0.9	
5	5	0.8	
6	6	0.9	
7	7	0.9	
8	8	1.0 ←	
9	9	0.9	
10	10	0.9	
11	11	0.9	
12	12	0.8	
13	13	0.4	
14	14	0.4	

When the most-accurate k is an even number (here it's 8), it is possible for ties to occur in classifying new records. R breaks ties randomly.

Using K-NN for Prediction (for Numerical Outcome)

 Instead of "majority vote determines class" use average of response values

 May be a weighted average, weight decreasing with distance

Advantages

- Simple
- No assumptions required about Normal distribution, etc.
- Effective at capturing complex interactions among variables without having to define a statistical model

Shortcomings

- Required size of training set increases
 exponentially with # of predictors, p
 This is because expected distance to nearest neighbor increases with p (with large vector of predictors, all records end up "far away" from each other)
- In a large training set, it takes a long time to find distances to all the neighbors and then identify the nearest one(s)
- These constitute "curse of dimensionality"