SMS Spam Detection — **Project Template**

1. Title Page

• Project Title: SMS Spam Detection Using Machine Learning

• Your Name: Rajumenan B

• Institution / Department: University college of engineering, Tindivanam / B.E CSE

• **Date**: 17-10-2025

• Github: https://github.com/Rajumenan/SMS-Spam-Detection

2. Table of Contents

- 1. Title Page
- 2. Table of Contents
- 3. Project Overview
- 4. Objectives & Problem Statement
 - 4.1 Problem Statement
 - 4.2 Objectives
- 5. Proposed Solution
- 6. Features
 - 6.1 Functional Features
 - 6.2 Non-Functional Features
- 7. Technologies & Tools
- 8. System Architecture
- 9. Implementation Steps
- 10. Output / Screenshots
- 11. Advantages
- 12. Future Enhancements
- 13. Conclusion

3. Project Overview

• Background / Motivation:

Spam messages are a major concern for users and mobile networks, as they often contain fraudulent, phishing, or promotional content. Detecting spam SMS automatically improves user experience, prevents scams, and strengthens communication security.

• Scope:

This project focuses only on SMS text messages, classifying them into two categories: Spam or Ham (Not Spam) using machine learning techniques. The project does not cover emails or multimedia spam.

• High-level Description:

The system reads raw SMS messages, preprocesses them, converts text into numerical features, trains multiple ML models, and predicts whether a new message is spam or not.

Dataset / Data Source Summary

https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset

4. Objectives & Problem Statement

4.1 Problem Statement

Given a short SMS text message, classify it as **Spam** or **Ham** using machine learning. Challenges include:

- Short informal text
- Misspellings, abbreviations, and slang
- Class imbalance (fewer spam than ham)

4.2 Objectives

List specific goals your project will achieve.

Examples:

- Build a predictive model with high accuracy and recall for spam detection.
- Preprocess and clean text effectively.
- Compare multiple ML algorithms.
- Visualize model performance.
- Develop a reusable prediction pipeline

5. Proposed Solution

• Approach / Methodology:

A supervised machine learning approach was used. The main pipeline:

Raw SMS \rightarrow Preprocessing \rightarrow Feature Extraction \rightarrow Model Training \rightarrow Prediction.

- **Pipeline Overview**: raw SMS \rightarrow preprocessing \rightarrow feature extraction \rightarrow model \rightarrow prediction
- Justification of Choices:
 - TF-IDF Vectorizer to represent text efficiently.
 - Multinomial Naive Bayes model for fast and accurate text classification.
 - Alternative models (Logistic Regression, SVM) tested for comparison.

6. Features

6.1 Functional Features

- Accepts raw SMS text and outputs "Spam" or "Ham".
- Provides classification probability.

- Can process multiple messages at once.
- Easy to extend into a GUI or API interface.

6.2 Non-Functional Features

- High accuracy (above 95%).
- Fast and lightweight.
- Reliable and easy to maintain.
- User-friendly for non-technical users.

7. Technologies & Tools

List all software, libraries, frameworks used. Examples:

- Language: Python
- Data Handling: pandas, numpy
- Visualization: matplotlib, seaborn
- **Text / NLP**: nltk, re (regex), spaCy (if used)
- Feature extraction: scikit-learn's CountVectorizer, TfidfVectorizer
- Machine Learning: scikit-learn (Naive Bayes, Logistic Regression, Random Forest, SVM etc.)
- Model persistence: pickle, joblib
- Environment / Tools: Google colab / GitHub

8. System Architecture

• Architecture Diagram (block diagram)

- Component Descriptions:
 - **Preprocessing Module:** Cleans and tokenizes SMS text.
 - **Feature Extraction:** Converts cleaned text into TF-IDF vectors.
 - Model Training: Learns spam/ham patterns using ML.
 - Prediction Layer: Outputs spam or ham for new messages.
- **Data Flow**: How data moves through the system (during training, and during inference)

9. Implementation Steps

Step-by-step how you built the system. Example:

1. Load dataset (spam.csv).

- 2. Perform EDA check spam vs ham count, message lengths, word clouds.
- 3. Preprocess text:
 - Lowercasing
 - Removing punctuation and stopwords
 - Tokenization and stemming
- 4. Convert to numeric features using TF-IDF.
- 5. Split data into train (80%) and test (20%).
- 6. Train models:
 - Multinomial Naive Bayes
 - Logistic Regression
 - o SVM
- 7. Evaluate using Accuracy, Precision, Recall, F1-score.
- 8. Visualize confusion matrix and word frequencies.
- 9. Save final model and vectorizer using pickle.
- 10. Build prediction function / UI for new messages.

10. Output / Screenshots

• Sample inputs & outputs (SMS text → prediction)

₹		label	message
	0	ham	Go until jurong point, crazy Available only
	1	ham	Ok lar Joking wif u oni
	2	spam	Free entry in 2 a wkly comp to win FA Cup fina
	3	ham	U dun say so early hor U c already then say
	4	ham	Nah I don't think he goes to usf, he lives aro

• Confusion matrix, classification report

• Data Exploration

Model Training

model = MultinomialNB()
model.fit(X_train_tfidf, y_train)

→ MultinomialNB ① ③

MultinomialNB()

• Any feature importances / word clouds / insights visuals

Evaluation

Accuracy: 0.9721973094170404
[[965 0]
[31 119]]
precision re

	precision	recall	f1-score	support
0 1	0.97 1.00	1.00 0.79	0.98 0.88	965 150
accuracy macro avg weighted avg	0.98 0.97	0.90 0.97	0.97 0.93 0.97	1115 1115 1115

11. Advantages

- Automatic and fast SMS classification.
- High accuracy and low false positives.
- Scalable for real-time detection.
- Lightweight and easy to deploy.
- Extendable for other text sources (emails, chat).

12. Future Enhancements

- Use Deep Learning models (LSTM, BERT).
- Support multilingual SMS.
- Apply SMOTE for class balancing.
- Deploy as web API or mobile app.
- Integrate with real-time spam filtering systems.

13. Conclusion

This project successfully demonstrates the use of machine learning for SMS spam detection.

The final model achieves high accuracy and reliability using simple NLP pre-processing and TF-IDF features.

It provides a foundation for advanced spam detection systems, with potential for deployment as an online service or integrated app.