ROBEM I Prove: If $m \in \mathbb{Z}^+$, $a \in \mathbb{Z}$, gcd(a, m) = 1, A is reduced residue system of m, then

$$\sum_{i \in A} \left\{ \frac{ai}{m} \right\} = \frac{1}{2} \varphi(m)$$

SOUTHON. Let $f: \mathbb{Z} \to \{0, \cdots, m-1\}$ and $f(x) \equiv x \mod m$. Then easily $\{\frac{x}{m}\} = \{\frac{f(x)}{m}\}$. So we get $\sum_{i \in A} \{\frac{ai}{m}\} = \sum_{i \in A} \{\frac{f(ai)}{m}\}$. Let $B = \{f(ai) : i \in A\}$, since $\gcd(m, a) = 1$, we obtain B is reduced residue system of m, too. Easily to know $\{\frac{f(ai)}{m}\} = \frac{f(ai)}{m}$, then $\sum_{i \in A} \{\frac{ai}{m}\} = \sum_{j \in B} \frac{j}{m}$. Noting that $g: B \to B, j \mapsto m-j$ is bijection, so $\sum_{j \in B} \frac{j}{m} = \sum_{j \in B} \frac{m-j}{m} = \frac{1}{2} \sum_{j \in B} \frac{j+m-j}{m} = \frac{1}{2} |B|$. Obvious since B is reduced residue system of m, we easily get $|B| = \varphi(m)$. So finally we get $\sum_{i \in A} \{\frac{i}{m}\} = \frac{1}{2}\varphi(m)$.

₽BEM II

- 1. Prove: $\sum_{i=0}^{a} \varphi(p^i) = p^a$, where p is prime.
- 2. Prove: $\sum_{d \in \mathbb{N}: d|a} \varphi(d) = a$.

SOUTION. 1. Easily to know $\varphi(p^k) = p^k \times \frac{p-1}{p} = (p-1)p^{k-1}$). So we get $\sum_{i=1}^a \varphi(p^i) = \sum_{i=1}^a (p-1)p^{i-1} = (p-1)\frac{p^a-1}{p-1} = p^a-1$. And $\varphi(1) = 1$, so finally we get $\sum_{i=0}^a \varphi(p^i) = p^a-1+1 = p^a$.

2. Let $A := \{n \in \mathbb{N} : \sum_{d \in \mathbb{N}: d \mid n} \varphi(d) = n\}$, then from 1 we get $\{p^k : p \in \mathbb{P}, k \in \mathbb{N}\} \subset A$, where \mathbb{P} is the set of primes. Now to prove $A = \mathbb{N}$, we only need to prove that for $m, n \in A \land \gcd(m, n) = 1$ we have $nm \in A$.

Let $M := \{d \in \mathbb{N} : d \mid m\}, N := \{d \in \mathbb{N} : d \mid n\}, D := \{d \in \mathbb{N} : d \mid nm\}, f : M \times N \to D, f(x,y) := xy$, we will prove that f is bijection, and et $g : D \to M \times N, g(z) = (\gcd(z,m), \gcd(z,n))$, we will prove $g = f^{-1}$.

For $(x, y) \in M \times N$, we need to prove $g \circ f(x, y) = (x, y)$. i.e., gcd(xy, m) = x, gcd(xy, n) = y. Since $y \mid n$ and gcd(n, m) = 1, we easily get gcd(y, m) = 1, so gcd(xy, m) = gcd(x, m). Noting $x \mid m$, we get gcd(xy, m) = x. So gcd(xy, m) = x. For the same reason we get gcd(xy, n) = y.

For $z \in D$, write $x = \gcd(z, m)$, $y = \gcd(z, n)$, then g(z) = (x, y). We need to prove f(x, y) = z, i.e., xy = z. Since $\gcd(m, n) = 1$, easily $z = \gcd(z, nm) = \gcd(z, m) \gcd(z, n) = xy$.

So $g = f^{-1}$ and thus f is bijection. So we know $\sum_{d \in D} \varphi(d) = \sum_{(x,y) \in M \times N} \varphi(xy)$. Noting $\gcd(x,y) \mid \gcd(m,n) = 1$, we know $\varphi(x,y) = \varphi(x)\varphi(y)$. So $\sum_{d \in D} \varphi(d) = \sum_{x \in M} \sum_{y \in N} \varphi(x)\varphi(y) = \sum_{x \in M} \varphi(x) \sum_{y \in N} \varphi(y)$. Recalling $m, n \in A$, we know $\sum_{x \in M} \varphi(x) = m$, $\sum_{y \in N} \varphi(y) = n$, so finally $\sum_{d \in D} \varphi(d) = nm$. So $nm \in A$.

Now for any $a \in \mathbb{N}^+$, we know $a = \prod_{k=1}^t p_k^{\alpha_k}$, where $p_k : k = 1, \dots, t$ are different primes. Then $p_k^{\alpha_k} \in A$. So $\forall a \in \mathbb{N}^+, a \in A$, thus $\sum_{d \in \mathbb{N}: d|a} \varphi(d) = a$.

SOUTON. Only need to find the remainder of $10^{10^{10}} \mod 7$. Noting that $\varphi(7) = 6$ and $\gcd(10,7) = 1$, so $10^6 \equiv 1 \mod 7$. So we only need to find $10^{10} \mod 6$. Since $6 = 2 \times 3$, we only need to find $10^{10} \mod 2$, $10^{10} \mod 3$. Easy to know $10^{10} \equiv 0 \mod 2$. Noting $10 \equiv 1 \mod 3$, we get $10^{10} \equiv 1 \mod 3$. So from the Chinese remainder theorem we get $10^{10} \equiv 4 \mod 6$. So $10^{10^{10}} \equiv 10^4 \equiv 3^4 \mod 7$. By calculation easy to know $3^4 \equiv 9^2 \equiv 2^2 \equiv 4 \mod 7$. So it is Friday $10^{10^{10}}$ days after today.

 \mathbb{R}^{OBEM} IV Find the remainder of $(12371^{56} + 34)^{28} \mod 111$.

SOLTON. Easily $111 = 3 \times 37$, so we only need to find the remainder mod 3, mod 37 respectively. Easily $(12371^{56} + 34)^{28} \equiv ((-1)^{56} + 1)^{28} \equiv (-1)^{28} \equiv 1 \mod 3$. Easily $\varphi(37) = 36$, and $\gcd(12371,37) = 1$, so $(12371^{56} + 34)^{28} \equiv (13^{20} - 3)^{28} \mod 37$. Noting $13^4 \equiv -3 \mod 37$, we get $13^{20} \equiv (-3)^5 \equiv -243 \equiv 16 \mod 37$. Thus, $(13^{20} - 3)^{28} \equiv (16 - 3)^{28} \equiv 13^{28} \equiv 13^{20} \times 13^{8} \equiv 16 \times (-3)^2 \equiv 144 \equiv 33 \mod 37$.

Now by Chinese remainder theorem we get $(12371^{56} + 34)^{28} \equiv 70 \mod 111$.

ROBEM V Assume $\frac{a}{b} \in \mathbb{Q}$, where $0 < a < b, \gcd(a, b) = 1$. Then $\frac{a}{b}$ is pure recurring decimal $\iff \exists t \in \mathbb{N}^+ \text{ s.t. } 10^t \equiv 1 \mod b$. Besides, $\min\{t \in \mathbb{N}^+ : 10^t \equiv 1 \mod b\}$ is the length of cycle section.

SOLTION. Let l be the length of cycle section of $\frac{a}{h}$.

- " \Longrightarrow ": Assume $\frac{a}{b} = \sum_{k=1}^{\infty} 10^{-kl} x$, where $x \in \mathbb{N}, 0 < x < 10^l$. Then we get $\frac{a}{b} = \frac{1}{10^l} \frac{1}{1-10^{-l}} = \frac{x}{10^l-1}$. Then $a(10^l-1) = bx$. Since $\gcd(a,b) = 1$, we get $b \mid 10^l-1$. Let t = l will work.
- "\(\iff \text{": Assume } 10^t \equiv 1 \) mod b, where $t \in \mathbb{N}^+$. Let $10^t 1 = bk$, where $k \in \mathbb{N}^+$. Let x = ak, we will prove $\frac{a}{b} = \sum_{k=1}^{\infty} 10^{-kt} x$. Easily $\sum_{k=1}^{\infty} 10^{-kt} x = \frac{x}{10^t 1} = \frac{ak}{bk} = \frac{a}{b}$. So $\frac{a}{b}$ is pure recurring decimal and $l \mid t$.

In the first part we have proved that $l \in \{t \in \mathbb{N}^+ : 10^t \equiv 1 \mod b\}$. In the second part we have proved that $\forall t \in \mathbb{N}^+ \wedge 10^t \equiv 1 \mod b, l \mid t$. So obviously $l = \min\{t \in \mathbb{N}^+ : 10^t \equiv 1 \mod b\}$.