Непарні

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$

Виразити $\int dx \, u^2(t,x)$ через $\int dx \, u^2(0,x)$.

Відповідь $\int dx \, u^2(t,x) \le \int dx \, u^2(0,x)$.

Парні

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

Виразити $\int dx \left(\frac{\partial u(t,x)}{\partial x}\right)^2$ через початкові умови

Відповідь

$$a^{2} \int dx \left(\frac{\partial u}{\partial x} \right)^{2} \leq \int dx \left[a^{2} \left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial t} \right)^{2} \right]_{t} \leq \int dx \left[a^{2} \left(\frac{\partial u}{\partial x} \right)^{2} + \left(\frac{\partial u}{\partial t} \right)^{2} \right]_{t=0}^{t},$$

$$\int dx \left(\frac{\partial u}{\partial x}\right)^2 \le \int dx \left[\left(\frac{\partial u}{\partial x}\right)^2 + \frac{1}{a^2} \left(\frac{\partial u}{\partial t}\right)^2 \right]_{t=0}.$$