

Predicting with regression, multiple covariates

Jeffrey Leek
Johns Hopkins Bloomberg School of Public Health

Example: predicting wages

Image Credit http://www.cahs-media.org/the-high-cost-of-low-wages

Data from: ISLR package from the book: Introduction to statistical learning

Example: Wage data

```
library(ISLR); library(ggplot2); library(caret);
data(Wage); Wage <- subset(Wage, select=-c(logwage))
summary(Wage)</pre>
```

```
marit.l
    vear
                   age
                                   sex
                                                                          race
Min.
       :2003
              Min. :18.0
                            1. Male :3000
                                             1. Never Married: 648
                                                                    1. White: 2480
1st Qu.:2004
              1st Qu.:33.8
                                             2. Married
                                                            :2074
                                                                    2. Black: 293
                             2. Female:
                                                                    3. Asian: 190
Median :2006 Median :42.0
                                             3. Widowed
                                                            : 19
       :2006
                    : 42.4
                                             4. Divorced
                                                            : 204
                                                                    4. Other: 37
Mean
              Mean
3rd Qu.:2008
              3rd Qu.:51.0
                                             5. Separated
                                                             : 55
       :2009
                     :80.0
Max.
              Max.
            education
                                         region
                                                              jobclass
                                                                                   health
                        2. Middle Atlantic :3000
                                                    1. Industrial :1544 1. <=Good
1. < HS Grad
                 :268
                                                                                       : 858
2. HS Grad
                 :971
                        1. New England
                                              0
                                                    2. Information: 1456
                                                                         2. >=Very Good:2142
3. Some College
                 :650
                        3. East North Central:
4. College Grad
                 :685
                        4. West North Central:
5. Advanced Degree: 426
                        5. South Atlantic
                        6. East South Central:
                                                                                         3/15
                        (Other)
```

Get training/test sets

```
[1] 898 12
```

Feature plot

```
featurePlot(x=training[,c("age","education","jobclass")],
    y = training$wage,
    plot="pairs")
```


Plot age versus wage

qplot(age,wage,data=training)

Plot age versus wage colour by jobclass

qplot(age, wage, colour=jobclass, data=training)

Plot age versus wage colour by education

qplot(age, wage, colour=education, data=training)

Fit a linear model

$$ED_i = b_0 + b_1 age + b_2 I(Jobclass_i = "Information") + \sum_{k=1}^{4} \gamma_k I(education_i = levelk)$$

since jobclass and educ. are factors, R automatically creates the corresponding dummy vars

```
Linear Regression

2102 samples

11 predictors 10 predictors because of the dummy variables

No pre-processing
Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 2102, 2102, 2102, 2102, 2102, ...

Resampling results
```

Diagnostics

```
plot(finMod, 1, pch=19, cex=0.5, col="#00000010")
```


Predictor line near 0: good

Color by variables not used in the model

qplot(finMod\$fitted,finMod\$residuals,colour=race,data=training)

Plot by index

the index is just the row number of the dataset

plot(finMod\$residuals,pch=19)

hm...outliers are all at the bottom of the table.
And row index correlates with residuals... strange

So probably the table was sorted by some continuous variable like eq. age!

Predicted versus truth in test set

```
pred <- predict(modFit, testing)
qplot(wage,pred,colour=year,data=testing)</pre>
```


but now if we find some trend here, looking at the test set, we can't use this information to update the model anymore!

If you want to use all covariates

```
modFitAll<- train(wage ~ . data=training,method="lm")
pred <- predict(modFitAll, testing)
qplot(wage,pred,data=testing)</pre>
```


Notes and further reading

- · Often useful in combination with other models
- Elements of statistical learning
- Modern applied statistics with S
- Introduction to statistical learning