MÉTODOS CLÁSICOS DE RESOLUCIÓN DE ECUACIONES DIFERENCIALES ORDINARIAS

• ECUACIONES EXPLÍCITAS DE PRIMER ORDEN.

Es decir, de la forma

$$y' = f(x, y).$$

1. Variables separadas.

Son de la forma

$$g(x) = h(y)y'.$$

Formalmente, se separa $g(x) = h(y) \frac{dy}{dx}$ en g(x) dx = h(y) dy y se integra.

2. Ecuación de la forma y' = f(ax + by).

El cambio de función y(x) por z(x) dado por z=ax+by la transforma en una de variables separadas.

3. Homogéneas.

Son de la forma

$$y' = f\left(\frac{y}{x}\right).$$

Se hace el cambio de función y(x) por u(x) mediante y=ux, transformándose así la E. D. en una de variables separadas.

3'. Reducibles a homogéneas.

Son de la forma

$$y' = f\left(\frac{a_1x + b_1y + c_1}{ax + by + c}\right).$$

- **3'.1.** Si las rectas ax + by + c = 0 y $a_1x + b_1y + c_1 = 0$ se cortan en (x_0, y_0) , se hace el cambio de variable y de función $X = x x_0$, $Y = y y_0$. La ecuación se reduce a una homogénea.
- **3'.2.** Si ax + by + c = 0 y $a_1x + b_1y + c_1 = 0$ son rectas paralelas, se hace el cambio de función z = ax + by. La nueva ecuación que aparece es de variables separadas.

3". Homogéneas implícitas.

Son de la forma

$$F\left(\frac{y}{x}, y'\right) = 0.$$

Consideramos la curva $F(\alpha,\beta)=0$. Si encontramos una representación paramétrica $\alpha=\varphi(t),\ \beta=\psi(t),\ F(\varphi(t),\psi(t))=0$, se hace el cambio de función y por t mediante $\frac{y}{x}=\varphi(t),\ y'=\psi(t)$. Así, derivando $y=x\varphi(t)$ respecto de x, aparece una ecuación en variables separadas.

3'''. Si la ecuación y' = f(x, y)

es tal que, para algún $\alpha \neq 0$ fijo, f satisface

$$f(\lambda x, \lambda^{\alpha} y) = \lambda^{\alpha - 1} f(x, y),$$

entonces el cambio de función $y=z^{\alpha}$ transforma la ecuación en una homogénea. (Si $\alpha=1$, la E. D. ya es homogénea; y si f cumple la relación anterior con $\alpha=0$, la E. D. es de variables separadas.)

4. Ecuaciones exactas.

Son las de la forma

$$P(x, y) dx + Q(x, y) dy = 0,$$

es decir, $y' = \frac{dy}{dx} = -\frac{P(x,y)}{Q(x,y)}$, que cumplen $P_y = Q_x$. Se busca una función F(x,y) tal que $dF = \omega = P dx + Q dy$, y la solución de la E. D. es F(x,y) = C (siendo C constante).

4'. Reducibles a exactas: Factores integrantes.

Si P(x,y) dx + Q(x,y) dy = 0 no es exacta, podemos intentar encontrar $\mu(x,y)$ tal que

$$\mu(x, y)P(x, y) dx + \mu(x, y)Q(x, y) dy = 0$$

sea exacta.

- 4'.1. Existencia de factor integrante de la forma $\mu(x)$. Ocurre cuando $\frac{P_y Q_x}{Q} = h(x)$, tomándose $\mu(x) = \exp(\int h(x) dx)$.
- **4**'.**2**. Existencia de factor integrante de la forma $\mu(y)$. Ocurre cuando $\frac{Q_x P_y}{P} = h(y)$, tomándose $\mu(y) = \exp(\int h(y) \, dy)$.
 - 4'.3. Otras expresiones restrictivas para $\mu(x,y)$.

5. Ecuaciones lineales de primer orden.

Son de la forma

$$y' + a(x)y = b(x).$$

Hay tres métodos de resolución: (i) Encontrar un factor integrante de la forma $\mu(x)$. (ii) Resolver la ecuación lineal homogénea asociada y' + a(x)y = 0 (que es de variables separadas), cuya solución es $y = C \exp(-\int a(x) dx)$, y usar el método de variación de las constantes (esto es, cambiar C por C(x) en la expresión anterior y sustituir en la ecuación lineal). (iii) Encontrar de alguna forma una solución particular $y_p(x)$, con lo cual la solución general de la lineal es y_p más la solución general de la homogénea asociada. (iv) Descomponer y(x) = u(x)v(x), sustituir en la lineal, e igualar a 0 el coeficiente de u, resolviendo la ecuación que aparece (v' + a(x)v = 0, que es de variables separadas); tras esto, queda una ecuación en u(x) de variables separadas.

De cualquier modo se obtiene que la solución general de la E. D. lineal es

$$y = \exp\left(-\int a(x) dx\right) \left[\int b(x) \exp\left(\int a(x) dx\right) dx + C\right].$$

5'. Ecuación de Bernoulli.

Es de la forma

$$y' + a(x)y + b(x)y^{\alpha} = 0.$$

Si $\alpha=0$ es lineal, y si $\alpha=1$, de variables separadas. En otro caso, se hace el cambio de función $y^{1-\alpha}=z$, con lo que la E. D. de Bernoulli se transforma en una lineal. Un segundo método de resolución es el siguiente: se descompone y(x)=u(x)v(x) y se sustituye en la E. D., se iguala a 0 el coeficiente de u (queda v'+a(x)v=0, que es de variables separadas), lo que nos lleva a determinar v, apareciendo ahora una ecuación en u(x) de variables separadas.

5". Ecuación de Riccati.

Es de la forma

$$y' + a(x)y + b(x)y^2 = c(x).$$

El método requiere haber encontrado previamente una solución particular $y_p(x)$. Si este es el caso, haciendo el cambio de función $y = y_p + z$, la E. D. de Riccati se reduce a una de Bernoulli con $\alpha = 2$.

6. Sustituciones.

Cuando tenemos una E. D.

$$y' = f(x, y)$$

que no responde a alguno de los tipos estudiados hasta ahora, a veces una sustitución (en esencia, un cambio de variable) más o menos ingeniosa transforma la ecuación en una reconocible. Lógicamente, no puede darse una regla general pero, en todo caso, merece la pena intentar algo.

• ECUACIONES EN LAS QUE LA DERIVADA APARECE IMPLÍCITAMENTE. Es decir, de la forma

$$F(x, y, y') = 0.$$

7. F algebraica en y' de grado n.

Tenemos

$$(y')^n + a_1(x,y)(y')^{n-1} + \dots + a_{n-1}(x,y)y' + a_n(x,y) = 0.$$

Resolviéndolo como un polinomio en y' de grado n igualado a cero obtenemos

$$(y'-f_1(x,y))(y'-f_2(x,y))\cdots(y'-f_n(x,y))=0.$$

Por tanto, las soluciones de la E. D. de partida serán las soluciones de cada una de las ecuaciones $y' - f_i(x, y) = 0, i = 1, 2, ..., n$.

8. Ecuación de la forma y = f(x, y').

En general, se toma y' = p y se deriva la ecuación y = f(x, y') respecto de x. Si f tiene la forma adecuada, a la nueva E. D. se le puede aplicar alguno de los métodos ya estudiados, procediéndose así a su resolución.

8.1. Cuando

$$y = f(y'),$$

la ecuación que se obtiene mediante el proceso anterior es de variables separadas.

8.2. Ecuación de Lagrange:

$$y + x\varphi(y') + \psi(y') = 0.$$

Se reduce a una ecuación lineal con x como función y p como variable. Además, para los λ tales que $\lambda + \varphi(\lambda) = 0$ se obtienen como soluciones las rectas $y = \lambda x - \psi(\lambda)$.

8.3. Ecuación de Clairaut:

$$y - xy' + \psi(y') = 0.$$

Es un caso particular de ecuación de Lagrange en el que sólo aparecen rectas (y su envolvente).

3

9. Ecuación de la forma x = f(y, y').

En general, se toma y' = p y se deriva la ecuación x = f(y, y') respecto de y. Según como sea f, la nueva E. D. que así se obtiene es ya conocida, procediéndose a su resolución. Se pueden estudiar casos similares a los de la forma y = f(x, y').

10. Ecuación de la forma F(y, y') = 0.

Consideramos la curva $F(\alpha, \beta) = 0$. Si encontramos una representación paramétrica $\alpha = \varphi(t), \ \beta = \psi(t), \ F(\varphi(t), \psi(t)) = 0$, se hace el cambio de función y por t mediante $y = \varphi(t), \ y' = \psi(t)$. Así, derivando $y = \varphi(t)$ respecto de x, aparece una ecuación en variables separadas.

• ECUACIONES DIFERENCIALES EN LAS QUE SE PUEDE REDUCIR EL ORDEN. Supongamos que tenemos la E. D.

$$F(x, y, y', \dots, y^{(n)}) = 0 \text{ con } n > 1.$$

11. Ecuación de la forma $F(x, y^{(k)}, ..., y^{(n)}) = 0$.

Mediante el cambio $y^{(k)} = z$ se convierte en una ecuación de orden n - k.

11'. Ecuaciones lineales de orden superior.

Son de la forma

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = g(x).$$

Si logramos encontrar alguna solución $y_n(x)$ de la lineal homogénea asociada, el cambio de función $y = y_n z$ hace que la lineal se transforme en una del tipo anterior, cuyo orden se puede reducir. Así, aparece una nueva ecuación lineal, esta vez de orden n-1.

12. Ecuación de la forma $F(y, y', ..., y^{(n)}) = 0$.

Hacemos el cambio y' = p y transformamos la E. D. en una nueva dependiendo de y, p y las derivadas de p respecto de y. Esta es de orden n-1.

12'. Si la ecuación $F(x, y, y', ..., y^{(n)}) = 0$ es tal que, para α y m fijos, F cumple

$$F(\lambda x, \lambda^m u_0, \lambda^{m-1} u_1, \dots, \lambda^{m-n} u_n) = \lambda^{\alpha} F(x, u_0, u_1, \dots, u_n),$$

haciendo el cambio $x=e^t$, $y=e^{mt}z$ la E. D. se transforma en una de la forma $G(z,z',\ldots,z^{(n)})=0$, a la que se puede aplicar el método anterior.

13. Si la ecuación $F(x, y, y', \dots, y^{(n)}) = 0$ es tal que, para α fijo, F cumple

$$F(x, \lambda u_0, \lambda u_1, \dots, \lambda u_n) = \lambda^{\alpha} F(x, u_0, u_1, \dots, u_n),$$

entonces el cambio de función dado por y'=yz (es decir, $y=\exp(\int z\,dx)$) hace que el orden se reduzca en uno.