Assignment IV (20 pts)

Burak Ekici

Assigned: May the 20th, 19h00 Due: May the 27th, 19h00

Q1. (8 pts) Design Turing Machine (TM)

$$M = (\{\cdots, halt, halt-reject\}, \{a\}, \{a, b, 0, 1, \vdash, _, \#, >, +, x\}, \vdash, _, \delta, s, halt, halt-reject)$$

that takes $\vdash a^m?a^n\#$, behaves as

and halts with

$$\begin{cases} \cdots \#1 \text{ if m > n} \\ \cdots \#0 \text{ otherwise} \end{cases} \text{ if input string is } \vdash \alpha^m > \alpha^n \#$$

$$\cdots \#\alpha^{m \times n} \text{ if input string is } \vdash \alpha^m \times \alpha^n \#$$

$$\cdots \#\alpha^{m+n} \text{ if input string is } \vdash \alpha^m + \alpha^n \#$$

written on its tape.

Below are a few examples to the input-output harmony of the intended TM:

Input	Output
⊢ aaaa > aaaa#_ ^ω	···#0_ ^ω
\vdash aaaaa $>$ aaaa $\#_{_}^{\omega}$	\cdots #1 $^{\omega}$
\vdash $aaxaaaa#_^\omega$	\cdots #aaaaaaaa a^{ω}
\vdash aaaaa $+$ aa $\#_^\omega$	\cdots #aaaaaaa a^{ω}
\vdash > $aaa#_{-}^{\omega}$	\cdots #0 $^{\omega}$
\vdash aaa $> \#_^{\omega}$	\cdots #1 $^{\omega}$
⊢ aαax#_ ^ω	···#_ω
\vdash xaaaaa# $_^\omega$	···#_ ^ω
\vdash aaa + $\#_^{\omega}$	\cdots #aaa $^\omega$
⊢+aaaaa#_ ^ω	\cdots #aaaaa $^\omega$
\vdash aaa $^{\perp}$ a + aaaaaaa $^{\perp}$	reject
\vdash aaxaaa u aaa u	reject
:	:

Important. Implement the machine *M* in Morphett's TM simulator, and explain your implementation in a few comment-out lines. Note that TMs designated elsewise will be graded zero.

Q2. (8 pts) Design a total Turing Machine (TM)

$$M = (\{\cdots, halt-accept, halt-reject\}, \{a\}, \{a, b, x, 1, \vdash, _, \#\}, \vdash, _, \delta, s, halt-accept, halt-reject)$$

that accepts the input $\vdash a^n$ if $n = \sum_{i=0}^{m \in \mathbb{N}} i$, and rejects otherwise.

Below are a few examples to the input-output harmony of the intended TM:

Input	Output
- _ω	accept
⊢ <i>a_</i> ^ω	accept
$\vdash aaa_^{\omega}$	accept
\vdash $aaaaaaa_^\omega$	accept
\vdash $aaaaaaaaaaa_{_}^{\omega}$	accept
\vdash $aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	accept
⊢ αα_ ^ω	reject
\vdash $aaaa_{-}^{\omega}$	reject
\vdash $aaaaa_^\omega$	reject
⊢ ααα <u>c_</u> ω	reject
:	:

Important. Implement the machine *M* in Morphett's TM simulator, and explain your implementation in a few comment-out lines. Note that TMs designated elsewise will be graded zero.

Q3. (4 pts) Considering following context free grammar $G = (\{S, A, B, K, U, T, V, W, Y, Z\}, \{a, b\}, P, S)$ with below production rules

$$S \rightarrow AV \mid AB \mid SB \mid WY \mid ZV \mid BV \mid ZB \mid BB \mid UU \mid \alpha \mid b$$

 $U \rightarrow b \quad V \rightarrow SB \quad W \rightarrow SU \quad Y \rightarrow US \quad Z \rightarrow BA \quad T \rightarrow UA \quad K \rightarrow SA$
 $A \rightarrow TK \mid TA \mid US \mid \alpha \mid b$

decide employing the Cocke Kasami Younger (CKY) algorithm whether the string "x = aabab" belongs to the language L(G).

Important. Recall that CKY algorithm functions on grammars in Chomsky Normal Form (CNF). Therefore make sure before employing the algorithm that G is already in CNF; transform G into an equivalent grammar in CNF, otherwise.

Important Notice:

- Collaboration is strictly and positively prohibited; lowers your score to 0 if detected.
- Any submission after 19h00 on May the 27th will NOT be accepted. Please beware and respect the deadline!
- Submission policy:
 - 1. considering **Q1** and **Q2**, first implement TMs in Morphett's TM simulator, then copy-and-paste your code in separate text files respectively named **A1.txt** and **A2.txt**,
 - 2. as for Q3, write your answer down on a piece of paper, scan it into a PDF file named A3.pdf,
 - 3. and then submit all files **A1.txt**, **A2.txt** and **A3.pdf** in raw form. Please do not compress files!
- Make sure that your handwriting in **A3.pdf** is decent and readable.