Termin 2: Auffrischung – Arbeit mit vieldimensionalen Matrizen

© 2020 Universität Stuttgart

Informatik-II. Übungen/Labor

2

Termin 2

Inhalt

- Umgang mit N-dimensionalen Matrizen
 - Grundlagen
 - Indexierung der Elemente
 - Werteeingabe aus Streams
 - Umwandlung der Matrizen (z.B. Lösung einer Transponierungsaufgabe)

Umgang mit N-dimensionalen Matrizen

© 2020 Universität Stuttgart

Informatik-II. Übungen/Labor

(6

Termin 2

Umgang mit N-dimensionalen Matrizen

Umgang mit N-dimensionalen Matrizen

2D-Arrays

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Programmieraufgabe:

Entwicklung eines Programms, welches alle Elemente eines 2D-Arrays in seine 1D-Darstellung kopiert:

int Array_basis [M][N] = { {0, 1, 2, 3, 4}, ..., {10, 11, 12, 13, 14} }; int Array_result [M*N];

Array_basis → Array_result
Ausgabe von Array_copy

© 2020 Universität Stuttgart

Informatik-II. Übungen/Labor

S

Termin 2

Umgang mit N-dimensionalen Matrizen

• 2D-Arrays

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

#define N 5

#define M 3

int** Array_2d; // dynamisch angelegtes Array

Array_2d = malloc (M * sizeof(*Array_2d)) for (int i=0; i<M; i++)

Array_2d [i] = malloc (N * sizeof(Array_2d[i]));
