Homework 7

ESE 4020/5420

Ungraded

Problem 1. Let \mathcal{H} be the class of functions of the form $h_{a,b}: \mathbb{R} \mapsto \{0,1\}$, where

$$h_{a,b}(x) = \mathbb{1}_{\{x \in [a,b]\}}$$

for all $a, b \in \mathbb{R}$. Our goal will be to show that $VCdim(\mathcal{H}) = 2$.

(a) Let $C = \{c_1, \ldots, c_k\} \subset \mathbb{R}$. Recall that the restriction of \mathcal{H} to C, denoted by \mathcal{H}_C , is the set of all binary k-tuples that can be derived from evaluating the functions in \mathcal{H} on the set C. That is,

$$\mathcal{H}_C = \{ (h(c_1), \dots, h(c_k)) : h \in \mathcal{H} \}$$

Compute \mathcal{H}_C for $C = \{1, 2\}$, and $C = \{1, 2, 3\}$.

- (b) For any set C with |C| = 2, show that $|\mathcal{H}_C| = 4$. Also, can we say that for any set C with |C| = 3 we have $|\mathcal{H}_C| < 8$?
- (c) Recall that a function class \mathcal{H} shatters a set C if $|\mathcal{H}_C| = 2^{|C|}$. Given the specific choice of \mathcal{H} as above, does \mathcal{H} shatter any set C of size 2? Is there a set C of size 3 that is shattered by \mathcal{H} ?
- (d) Recall that the VC dimension of \mathcal{H} is the maximal size of a set C that can be shattered by \mathcal{H} . What is the VC dimension of the class \mathcal{H} considered in the question?

Problem 2. Consider two hypothesis classes \mathcal{H}_1 and \mathcal{H}_2 . Show that if $\mathcal{H}_1 \subseteq \mathcal{H}_2$, we have $VCdim(\mathcal{H}_1) \leq VCdim(\mathcal{H}_2)$

Problem 4. Let \mathcal{H} be the class of signed intervals, that is, $\mathcal{H} = \{h_{a,b,s} : a \leq b, s \in \{0,1\}\}$ where

$$h_{a,b,0}(x) = \begin{cases} 0 & \text{if } x \in [a,b] \\ 1 & \text{if } x \notin [a,b] \end{cases}$$
 and $h_{a,b,1}(x) = \begin{cases} 1 & \text{if } x \in [a,b] \\ 0 & \text{if } x \notin [a,b] \end{cases}$

Calculate $VCdim(\mathcal{H})$.

Problem 5. Short answer:

(a) In your own words, define what it means for a hypothesis class to be *PAC learnable*.

1

- (b) Let \mathcal{H} be the class of all functions from \mathbb{R} to $\{0,1\}$. What is the VC dimension of \mathcal{H} ?
- (c) For a finite function class \mathcal{H} with m functions h_1, \ldots, h_m , such that $h_i : \mathcal{X} \to \{0, 1\}$, explain why $\operatorname{VCdim}(\mathcal{H}) \leq \log_2 m$. Are there cases where the VC dimension is exactly $\log_2 m$?
- (d) For a given hypothesis class, how can we prove that $VCdimension \geq k$? How can we prove that VCdimension = k?

Problem 6. Consider the following hypothesis class

$$\mathcal{H} = \{ h_{w,b} \mid w, b \in \mathbb{R} \},\$$

in which

$$h_{w,b}(x) = \begin{cases} 1 & wx + b \ge 0\\ 0 & wx + b < 0 \end{cases}$$

Show that the VC dimension of \mathcal{H} is 2.