

TRUY XUẤT THÔNG TIN

CHƯƠNG I - DẪN NHẬP

NỘI DUNG TRÌNH BÀY

- ***TRUY XUẤT THÔNG TIN**
- ◆CÁC MÔ HÌNH TRUY XUẤT THÔNG TIN CĂN BẢN
- **♦ LẬP CHỈ MỤC**
- **❖TẬP TỪ VỰNG VÀ DANH SÁCH "POSTING"**
- **❖TRUY VẤN CHỈ MỤC**

❖MỘT SỐ KHÁI NIỆM

- Term:
 - Là yếu tố cấu tạo thành tài liệu.
 - Được xác định tùy theo quan điểm phân tích tài liệu

Ví dụ:

Tài liệu là văn bản, quan điếm phân tích tài liệu là:

- Từ → term là từ. Ví dụ: computer, science
- Khái niệm → term là khái niệm. Ví dụ: computer science

❖MỘT SỐ KHÁI NIỆM

- Biểu diễn (Representation):
 - Cấu trúc của tài liệu.
 - Được xác định tùy theo quan điểm phân tích tài liệu

❖MỘT SỐ KHÁI NIỆM

- Biểu diễn (Representation):

Ví dụ: Term là từ, Biểu diễn dạng tập hợp của tài liệu:

"this is a book. This book is good."

❖MỘT SỐ KHÁI NIỆM

- So khớp (Matching):
 - Tính toán mức độ tương đồng giữa hai đối tượng.
 - Tùy thuộc vào độ đo sự tương đồng.

♦ CƠ SỞ PHÂN LOẠI MÔ HÌNH IR

❖CƠ SỞ PHÂN LOẠI MÔ HÌNH IR

Mô hình IR có hai đặc trưng:

- Biểu diễn tài liệu
- So khớp tài liệu

Trong đó

Biểu diễn tài liệu và phương pháp so khớp có mối liên hệ chặt chẽ với nhau để xác định mô hình IR

❖CƠ SỞ PHÂN LOẠI MÔ HÌNH IR

- Mô hình theo lý thuyết tập hợp:
- Biểu diễn: Tài liệu và truy vấn được biểu diễn dưới dạng tập hợp, là tập hợp các yếu tố cấu tạo nên chúng.
- So khớp:
 - Tập hợp → mô hình tập hợp
 - Logic → mô hình Boolean
 - Logic có trọng số → mô hình Extended Boolean
 - Logic mờ → mô hình Fuzzy

❖CƠ SỞ PHÂN LOẠI MÔ HÌNH IR

- Mô hình đại số (mô hình Vector)
- Biểu diễn: tài liệu và truy vấn được biểu diễn bằng một vector trong không gian n chiều
- So khớp: dựa vào các metric được định nghĩa trên không gian tài liệu:
 - Khoảng cách: chuẩn Euclide
 - Góc giữa hai vector: chuẩn Cauchy
 - 0 ...

♦ CƠ SỞ PHÂN LOẠI MÔ HÌNH IR

- Mô hình xác suất
- Biểu diễn: tài liệu được biểu diễn bằng đặc trưng phân phối của các chủ đề (topic).
- So khớp: sự khác biệt giữa phân phối xác suất của các chủ đề trong tài liệu và trong truy vấn.

♦ CƠ SỞ PHÂN LOẠI MÔ HÌNH IR

- Mô hình mạng neural
- Biểu diễn: tài liệu được biểu diễn bằng một mạng hai lớp trong đó lớp input là các term và lớp output là các tài liệu.
- So khớp: dựa trên quá trình tính toán, tổng hợp giá trị tại các nút trên mạng theo cơ chế lan truyền.

❖CƠ SỞ PHÂN LOẠI MÔ HÌNH IR

Giá trị node D_i là mức độ tương đồng giữa tài liệu

D_i và truy vấn

- ❖CƠ SỞ PHÂN LOẠI MÔ HÌNH IR
 Các mô hình IR căn bản gồm:
- Mô hình tập hợp
- Mô hình Boolean
- Mô hình Extended Boolean

- ❖MÔ HÌNH TẬP HỢP
- Truy vấn là từng mô tả đơn lẻ.
- Ví dụ: Các truy vấn
- 1) toán lớp 12
- 2) hình vẽ

Truy vấn 2 sau truy vấn 1 không có nghĩa "toán hình lớp 12"

❖MÔ HÌNH TẬP HỢP

- Quy tắc truy hồi: có hai dạng
- Truy hồi theo phép toán chứa trong (⊆):
 - Biểu diễn của truy vấn và tài liệu lần lượt là tập hợp P và Q, khi đó Q thỏa P nếu Q ⊆ P.
 - Là mô hình đơn giản nhất, thường được sử dụng trong các thư viện cho phép chọn lựa sách theo từng nội dung đơn lẻ.
 - Tài liệu được xác định là thỏa hay không thỏa truy vấn → không xếp hạng được.

❖MÔ HÌNH TẬP HỢP

Ví dụ:

Truy vấn: hình học

Tài liệu 1: hình học, vuông góc, mặt phẳng

Tài liệu 2: mặt phẳng, vuông góc, lực

→ trả về tài liệu 1

❖MÔ HÌNH TẬP HỢP

- Truy hồi theo phép toán giao (△):
 - Biểu diễn của truy vấn tài liệu lần lượt là tập hợp P và Q, khi đó Q thỏa P nếu:
 - \checkmark P \cap Q = R, và
 - √ |R| > C, với C là một hằng số nguyên
 - Có thể dựa vào số phần tử của R để xếp hạng.

❖MÔ HÌNH TẬP HỢP

Ví dụ: với C = 2,

Truy vấn: sinh học phân tử

Tài liệu 1: học sinh, giáo viên, sách giáo khoa

Tài liệu 2: hóa học, đồng phân, nguyên tử

→ trả về tài liệu 2 với |R| = 3 > 2.

❖MÔ HÌNH TẬP HỢP

Cho tập tài liệu:

d₁: máy tính, bộ nhớ, bàn phím

d₂: bộ nhớ, con trỏ, phép tính

d₃: con mèo, nhà bếp, bàn ăn

phân tích tài liệu theo từng tiếng trong tiếng Việt.

Tìm tài liệu cho truy vấn: "phép tính bộ nhớ" với:

- Mô hình tập hợp theo phép chứa trong
- Mô hình tập hợp theo phép giao với C = 2

❖MÔ HÌNH BOOLEAN

Dựa trên một trong các dạng logic sau:

- Logic mệnh đề
- Logic vị từ
- Logic mô tả
- Logic mò
-

❖MÔ HÌNH BOOLEAN

- Tri thức: tất cả hạng tử có thể có trong tập tài liệu
- Truy vấn là những mô tả đơn lẻ gồm một tổ hợp các hạng tử và các phép toán logic AND, OR, NOT.

Ví dụ: Truy vấn được biểu diễn theo logic mệnh đề toán AND phổ AND thông

❖MÔ HÌNH BOOLEAN

- Tài liệu:
 - Tập các hạng tử, có được từ việc phân tích term của tài liệu, liên kết với nhau bằng toán tử AND
- Không chứa hạng tử t ⇔ chứa hạng từ ¬t
 Ví dụ: Tài liệu được biểu diễn theo logic mệnh đề
 Tài liệu: máy tính, bộ nhớ, bàn phím
- → máy AND tính AND bộ AND nhớ AND bàn AND phím AND ¬con AND ¬trỏ AND ...

❖MÔ HÌNH BOOLEAN

- Quy tắc truy hồi tài liệu
 - Nếu truy vấn có dạng t₁ ∧ t₂: trả về tài liệu có cả t₁ và t₂
 - Nếu truy vấn có dạng t₁ v t₂: trả về tài liệu có một trong hai term t₁ và t₂
 - Nếu truy vấn có dạng —t₁: trả về tài liệu không chứa t₁
- → Tài liệu D thỏa Q nếu D ⊨ Q
- → Không thể xếp hạng tài liệu trả về

❖MÔ HÌNH BOOLEAN

Ví dụ:

Giả sử có tri thức: {t₁, t₂, t₃, t₄, t₅, t₆}

Truy vấn: $Q_1 = t_1 \wedge t_2$

$$Q_2 = (t_1 \wedge t_2 \vee t3) \wedge (t4 \vee \neg(\neg t5 \wedge t6))$$

Tài liệu: $D_1 = \{t_1, t_2\},\$

$$D_2 = \{t_1, t_2, t_3, t_4\}$$

Tính truy kết quả các truy vấn.

❖MÔ HÌNH FUZZY LOGIC

- Là mô hình mở rộng của mô hình Boolean,
- Tính toán được mức độ liên quan của từng tài
 liệu dựa trên giá trị chân lý của hạng tử
- Biểu diễn tài liệu:
 - Tương tự mô hình Boolean
 - Có thêm trọng số của w_t từng hạng tử t cho biết giá trị chân lý của t

❖MÔ HÌNH FUZZY LOGIC

- Quy tắc so khớp:
- Dựa trên logic mờ
 - $Sim_D (t_1 \vee t_2) = max(w_{t1}^D, w_{t2}^D)$
 - $Sim_D (t_1 \wedge t_2) = min(w_{t1}^D, w_{t2}^D)$
 - $Sim_D (\neg t_1) = 1 w_{t1}^D$
- → Nhược điểm: không sử dụng giá trị của tất cả hạng tử của truy vấn.

❖MÔ HÌNH EXTENDED BOOLEAN

- Là mô hình mở rộng của mô hình Boolean,
- Tính toán được mức độ liên quan của từng tài liệu
- Biểu diễn tài liệu:
 - Tương tự mô hình Boolean
 - Có thêm trọng số của w_t từng hạng tử t

❖MÔ HÌNH EXTENDED BOOLEAN

Quy tắc so khớp: dựa trên độ tương đồng có sử dụng giá trị của tất cả hạng tử của truy vấn theo các công thức sau

-
$$Sim_D(t_1 \lor t_2) = \sqrt{\frac{w_{t_1}^2 + w_{t_2}^2}{2}}$$

- Sim_D(t₁
$$\wedge$$
 t₂)= 1 - $\sqrt{\frac{(1-w_{t_1})^2 + (1-w_{t_2})^2}{2}}$

-
$$Sim_D(\neg t_1) = 1 - w_{t_1}$$

❖MÔ HÌNH EXTENDED BOOLEAN

Giả sử có tri thức $K = \{t_1, t_2\}$

Các tài liệu theo K:

$$D_1 = \{t_1, t_2\}, D_2 = \{t_1\}, D_3 = \{t_2\}, D_4 = \emptyset$$

Tính mức độ liên quan giữa các tài liệu này với truy vấn

$$Q_1 = t_1 \wedge t_2 \qquad \qquad Q_1 = t_1 \vee t_2$$

Theo các mô hình Boolean và Extended Boolean (với trọng số của hạng tử xuất hiện là 1, không xuất hiện là 0)