Approved For Release STAT 2009/08/31:

CIA-RDP88-00904R000100130

Approved For Release

2009/08/31:

CIA-RDP88-00904R000100130

Вторая Международная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P/223/ USSR ORIGINAL: RUDSTAI

Не подлежит оглашению до официального сообщения на Конференции

25 YEAR RE-REVIEW

ВЫДЕЛЕНИЕ ИНДИВИДУАЛЬНЫХ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

д.И.Рябчиков, М.М. Сенявин, Ю.С.Скляренко

В результате многолетних исследований химических свойств р.з.э., выполненных, в частности, русскими учеными (см. 1-16), были намечены пути разделения их смесей. Не менее важную роль в деле промышленного получения концентратов и чистых препаратов р.з.э. сыграли работы советских геологов и геохимиков, открывших ряд новых редкоземельных минералов, в том числе — и породообразующих (17-19) и изучивших формы нахождения р.з.э. в природе (20). Из собственно редкоземельных минералов, более или менее широко распространенных на территории СССР, можно отметить монацит, ксенотим, лопарит, иттропаризит, фергусонит, а также апатит, в котором р.з.э. играют подчиненную роль. Краткая характеристика этих минералов, месторождения которых встречаются в различных областях советского Союза — на Урале и в Средней Азии, в Сибири и на кольском полуострове — приведена в таблице I.

Табляца 1

	30R		40			%-	
B Bec %	иттриевой группы	0,5-4,8	5I,9-62,6	0 -0,5	3I,2-42,3	7,5	. 5 2
Содержание в	цериевой группы	42,2-66,8	0,3-4,6	30,7-34,I	0,9-6,2	15,0	Следы
Кристаллографическая	система	Моноклинная	Тетрагональная	Кубическая	Тетрагональная	Предположительно гексагональная	
Химическая природа	минерала	Изоморфная смесь орто- фосфатов р.з.э. и орто- силиката тория (21)	Ортофосфат р.з.э.	Титанониобат кальция	Ортотанталониобат	Фторкарбонат р.з.э.	Ряд изоморфных соединений, в основном ортофосфат и фторид
Название	минерала	Монацит	Ксенотим	Лопарит	Фергусонит	Иттропаризит ^{х)}	Апатит

х) Данные приведены не для кономинералов, а для породы

хх) Суммарное содержание всех р.з.э.

совместно с Терентьевой (22-27) около 15 лет тому назад начали работы по выделению и изучению многоооразных комплексных соединений р.з.э. Эти работы не только привели к установлению класса комплексных соединений р.з.э., но и позволили выявить ряд важных закономерностей. Оказалось, что р.з.э. образуют наиболее прочные комплексы с кислородосодержащими кислотами (преимущественно с органическими многоосновными оксикислотами), а также с азотсодержащими органическими соединениями. Во всех случаях устойчивость комплексных соединений возрастает с увеличением порядкового номера р.з.э. (или с уменьшением их ионных радиусов), что является основой использования комплексоооразующих реагентов во всех методах разделения смесей р.з.э. В дальнейшем изучение комплексных соединений р.з.э. было продолжено во многих работах (28-35).

Явление комплексообразования играет важную роль даже в процессах выделения р.з.э. с переменной валентностью. Так, четырехвалентный церий переходит в органическую фазу в виде комплексной кислоты состава $H_2\left[Ce\left(NO_3\right)_6\right]$ (40); при этом процесс экстракции может быть осуществлен в простой и производительной инжекторной колонне непрерывного действия (41). В развитие метода Орлова (16) выделения четырехвалентного церия в виде комплексного соединения с оксалат — и апетат-ионами, один из авторов доклада и Ватина (42-43) показали, что можно исходить из нитратных растворов с рН не выше 3,5, вводя апетат аммония в соотношении 8: 1 и оксалат 14:1; при этом удается получить чистый церий с выходом 95-98%.

В тоследние годы была выявлена и роль явления комплексообразования в казавшемся чисто электрохимическом процессе выделения самария, европия и иттербия, переходящих в двухвалетное состояние, в амальгаму. Авторами, совместно с Строгановой, было изучено (44) влияние ряда факторов на электролитическое получение амальгамы иттербия. Было показано, что цитрат — и, в меньшей степени, ацетат-ионы неооходимы для предствращения гидролиза соли иттербия в том интервале рН, в котором достаточно устойчива образующаяся амальгама этого металла (4-7), оптимальное значение ~ 6,0. С другой стороны, избыток лимоннокислой соли щелочного металла понижает концептрацию не связанного в комплексный анион иона \(\forall \beta^{3*} \) и, тем самым, сдвигает в левую сторону цепь равновесий электролитического восстановления, приводящего к образованию амальгамы:

 $Y\ell^{3+} \Rightarrow Y\ell^{2+} \Rightarrow Y\ell^{\circ}$ (амальгама). Это может быть проиллюстрировано данными, приведенными в табл. 2, где сопоставлен выход иттербия с количеством добавленного лимоннокислого калия.

Таблица 2

B Y6 ₂ 0 ₃	зято (в мг) К _З (С ₆ Н ₅ 0 ₇)	Отношение Үвэ+: Сіtз- г/ионах	Выход Үв _г О _{з вес %}
100	0	_	70,2
100	164	1:1	82,1
100	330	1:2	94,5
100	660	1:4	74,7
100	1320	1:8	54,3

Аналогичные зависимости были получены нами для самария и европия.

Систематическое исследование влияния ряда факторов на процесс электролитического восстановления и, в первую очередь, влияния комплексообразования, позволило нам добиться значительно более высокого выхода иттербия, чем был достигнут в работе автора этого метода — Мак-Коя (45). Соответствующее сопоставление параметров опыта приведено в таблице 3.

Таблица З

Параметры опыта	В работе Мак-Коя (45)	В работе авто- ров (44)
рН среды Температура Концентрация иттербия	слабо-щелочная 30-35 ⁰ 1,18 ^X	6,0 5° 2,0
Содержание иттербия в исходном препарате Отношение Выход иттербия	95% 1:5,1 ^X 23% ^X	99,9% 1:2 98%

^X Рассчитано по данным Мак-Коя

Различия в устойчивости комплексных соединений всех остальных р.з.э. оказываются недостаточными для получения чистых препаратов в одном цикле. Однако, учитывая монотонное изменение устойчивости комплексных соединений в зависимости от порядкового номера элемента можно, дозируя количество комплексообразующего реагента, получить две фазы различного состава. Таким путем можно в однократном процессе дооиться грубого деления смеси р.з.э. на ряд подгрупп с меньшим числом компонентов в каждой из них.

Одним из авторов настоящего сообщения был изучен процесс деления на цериевую и иттриевую группу при помощи карбонатов щелочных металлов (46). Было показано, что при взаимодействии 1 н. растворов хлоридов лантана, неодима, иттрия и эрбия с карбонатами аммония, натрия и калия (1-3 н. растворы) образуются труднорастворимые в воде соединения, состав которых ближе всего отвечает формуле простого карбоната $TR_2(CO_3)_3$ и H_2O С увеличением в исходном растворе концентрации карбоната щелочного металла, растворимость этого соединения во всех исследованных случаях увеличивается, что наиболее логично объяснить образованием легкорастворимых комплексных соединении предположительного состава $Me_3[TR(CO_3)_3]$, где $Me-Na^+, K^+, NH_4^+$, $TR - La^{3+}, Nd^{3+}, Y^{3+}, Er^{3+}$ устойчивость таких соединений исследованных редкоземельных элементов растет от лантана к эрбию, т.е. в порядке уменьшения ионных радиусов. Приведенные в таблице 4 результаты определения растворимости иллюстрируют это утверждение.

Таблица 4

Концентрация добавленного	$Pactворимость, в и M R_2 O_3$ в лит				
карбоната калия	La	Nd	Y	Er	
2 н	0,46	0,50	1,19	3,24	
Зн	0,55	0,56	13,68	14,30	
5 н	0,89	3,24	69,57	74,47	
5,5 н	-	4,13	73,03	81,30	
7 н	1,56	80,00	82,80	(x)	
17 н	25,20	x)	x)	x)	

х) Осадок не образовывался или при стоянии полностью растворялся.

Интересно отметить, что растворимость зависит также от природы введенного щелочного металла, что может быть проиллюстрировано данными таблицы 5.

Таблица 5

Элемент	Концентрация добавленного	Растворимость в M R_2O_3				
	Me ₂ CO ₃	Кароонат аммония	Карбонат натрия	Кароонат калия		
Иттрий	2 н	U,49	0,97	1,19		
	3 н	O,66	9,83	13,68		
Эрбий	2 н	O,60	1,38	3,24		
	3 н	O,89	11,58	14,30		

По-видимому, это объясняется различием рн растворов карбонатов щелочных металлов при их одинаковой молярной концентрации, что в свою очередь влияет на систему равновесий: карбонат-бикар-бонат-атмосферная углекислота, т.е. на концентрацию несвязанного карбонат-иона, которая непосредственно входит в выражение константы нестойкости комплекса.

Таким образом, деление на подгруппы с помощью карбонатов щелочных металлов основано не на различной растворимости "двойных солей", а на различной устойчивости комплексных кароонатов. Есть основания предполагать, что этот механизм сохраняется и в случае деления на подгруппы при помощи других "двойных солей" редкоземельных элементов и щелочных металлов (сульфаты, формиаты и пр.).

На аналогичном принципе может быть основано и деление подгрупп на смеси из нескольких элементов. В частности, Вагиной был разработан двухстадийный метод (47) отделения главной массы иттрия, основанный на некотором различии в устойчивости этилендиаминтетравцетатных комплексных соединений элементов иттриевой подгруппы и иттрия и высокой (50-80%) концентрации в сырье последнего. При этом важно строго соблюдать экспериментально найденные соотношения, с одной стороны, между количеством комплексообразователя и содержанием в сырье элементов от ЕС до ЦИ (на 1 этапе), с другой стороны, между содержанием "некомлексообразующих" в данном случае элементов и количеством применяемого осадителя. Существенную роль, особенно на втором этапе играет значение рН раствора.

Распределение большинства элементов иттриевой группы и иттрия контролировались при помощи соответствующих радиоактивных изотолов. Иллюстрацией эффективности данного метода могут служить данные, приведенные в таблице 6, полученные на оогатой иттрием смеси при соотношении эДТА к $(Lu-Ho)_2 O_3$ равнем 1:1, рН — 4,7 и количестве осадителя из расчета на стехиометрическое соотношение его к Y, H_0-Gd . Аналогичные данные были получены и для второго этапа разделения. В результате двухстадииного отделения были получены следующие концентраты:

- 1. Концентрат Но- Lu с содержанием иттрия не более 15%.
- 2. концентрат иттрия, содержащий не более 5% примесей эле-ментов иттриевой группы.
- 3. Концентрат Gd-Dy с содержанием иттрия не ослее 25-30%.

Продолжительность обеих стадий процесса не оолее суток, выполнение его весьма просто.

Вследствие различной устойчивости комплексных соединений р.з.э. можно при данных, относительно оптимальных условиях при многократном повторении элементарных актов получить все компоненты в чистом виде (дробная кристаллизация, ионообменная хроматография, противоточная экстракция -см. 48-50).

Значение явления комплексообразования в процессе хроматографического разделения смесей р.з.э. наглядно вытекает не только
из неудач первых опытов по простому вытернению (51), но и из рассмотрения природы успешно используемых реагентов (окси-и аминополиуксусние кислоты) и условий их применения (например, резкая
зависимость степени хроматографического разделения от небольших
изменений кислотностей раствора). Однако определяющая роль комплексообразующего реагента в разделении смесей р.з.э. не исключает
необходимости тщательного выбора ионообменного сорбента. Как было
показано нами, из многочисленных катионитов, производимых в СССР
(см. например 52-53), для целей хроматографического разделения
смесей р.з.э. наиболее пригоден сополимеризационный сульфокатионит ку-2.

Комплексообразование играет существенную роль и в наиболее старом методе разделения р.з.э. — дробной кристаллизации, казалось бы целиком оазирующегося на разлачиях в растворимости. Действитель-

တ Таблица

Распределение отдельных редкоземельных элементов при применении

	120						-8	3-				
	Ky [Fe(CN)6 J. 3H20		в осад- ке	32,I	100,0	81,0	89,4	70,0	42,3	44,2	44,2	31,9
	Ky [Fe		в фильт- рате	6,8	. 1	19,0	10,6	30,0	57,7	55,8	55,8	68,1
	Ky-2 XX)		на смоле	85,8	85,5	100,0	75,6	57,0	40,7	38,0	32,2	£ 2,8
e M	КУ	%	в фильт- рате	17,2	14,5	ŧ	24,6	43,C	59,3	62,0	67,8	87,2
осадител	$H_{e}O^{x}$	ие,	сад- ке	70,5	66,7	100,00	67,5	57,0	50,0	50.0	34,0	36,0
различных осадителей	$K_{\mathcal{E}}CO_{3}\cdot 2H_{\mathcal{E}}O^{\mathbf{X}})$	Содержание,	в фильт- рате	29,5	33,3	1	22,5	43,0	50,0	50,0	0,99	64.0
đ	(NH4)2 C2H4,H20		в осад- ке	95,9	100,0	T00,0	83,8	54,4	34,4	28,4	9.9	16,1
	2(4HN)		в филь- трате	4°£	l	I	16,2	45,6	65,6	71,6	93,4	8 3,9
	Содержа-	HMe R_2O_3 B 10 T	cmecn,	7,38	90.0	0,03	0,43	0,14	0,52	0,10	0,68	0,41
			исходной смеси. %						5,2			
	Элемент			Ā	Gd	<u>2</u> 0	Dy	H06	22	H Z	Ye	٦٦

аммония. CBC. с карбонатом катионитом получены дътаты получены данные peay Аналогичные Близкие XX)

но, для кристаллизации элементов цериевой группы применение нашли главным ооразом двойные нитраты р.з.э. и ряда одно-и двужвалентных металлов. Известно, что четкую грань между двойными солями и комплексными соединениями провести не просто, если воооще возможно. Для кристаллизации последних членов иттриевой группы, пло-ко кристаллизующихся в виде броматов, применяли (63) их "двойную соль" с оксалатом аммония. В последнем случае было непосредственно доказано наличие комплексоооразсвания (54,55). Наконец, за последнее десятилетие появились работы, характеризующиеся сознательным использованием комплексообразования в процессе дробной кристаллизации (56,57).

В принципе чистые препараты всех индивидуальных р.з.э. могут быть получены рядом методов: так, например, многие годы концентраты и чистые препараты ряда р.з.э. получались методом дробной кристаллизации, предложенным Менделеевым, и в последние годы доведены до почти максимальных возможностей Заозерским с сотрудниками (58-62). Однако метод дробной кристаллизации, позволяющий перерабатывать одновременно довольно большие количества смесей, оказался малоэффективным для получения препаратов высокой чистоты не только вследствие длительности, трудоемности и механических потерь, но и, главным образом, вследствие довольно резкого уменьшения степени разделения по мере увеличения концентрации одного из компонентов. С другой стороны, можно получать чистые препараты всех р.з.э. методом ионообменной хроматографии. Однако в действительности этот метод, который был и пока остается незаменимым для данной цели, обладает сравнительно малой производительностью по отношению к разделяемой сумме, что делает его использование целесообразным лишь для более или менее обогащенных искомым компонентом смесей. Электрохимическое выделение самария, европия и иттербия является превосходным методом получения чистых препаратов этих элементов, но и оно, как было сказано выше, достаточно эффективно лишь при значительных содержаниях искомого элемента в исходной смеси. Все это говорит о целесообразности сочетания методов разделения - такого сочетания, при котором использовались бы наиболее сильные стороны каждого из методов разделения, что обеспечивало бы наиболее полное и экономичное получение чистых препаратов всех индивидуальных р.з.э.

В литературе описан ряд полных схем переработки р.з. сырья

на индивидуальные компоненты (63-64). В настоящем докладе целесообразно дать характеристику технологической схемы сочетания различных методов, представляющегося нам наиоолее рациональным.

Для промышленного получения чистых препаратов индивидуальных р.з.э. цериевой подгруппы целесообразно использование монацита, лопарита, апатита, а для получения элементов иттриевой подгруппы ксенотима и фергусонита; иттропаризит может служить сырьем для получения элементов как цериевой, так и иттриевой подгрупп. Среднее содержание окислов р.з.э. в "иттропаризите", определенное из 4 параллельных навесок химическим анализом (средняя проба, стобранная от 2 тонн породы) составило около 23%. Рентгеноспектральный анализ суммы редкоземельных элементов, выполненный н.в. Туранской, дал следующие результаты:

La Ce Nd Pr Sm Gd Dy Ho Er Yb Y 9,7 21,7 12,1 2,2 3,5 4,0 4,9 1,2 2,8 1,7 36,2

Таким образом в материале незначительно преобладает цериевая подгруппа р.з.э. над иттриевой (53,2 и 46,8% соответственно).

До последнего времени на методику вскрытия сыръя, которая в основном определяется анионной частью р.з. минералов, обращалось сравнительно мало внимания и в большинстве случаев в технологи-ческой (а не аналитической) практике пользовались споссбом разложения кислотами. Исключением являлось, пожалуй, лишь давно применяемое для специфического редкоземельного минерала лопарита (и, возможно - фергусонита) хлорирование (65,66), при котором все другие компоненты разделяются и используются достаточно полно, что же насается редкоземельных элементов, то они получаются в виде богатого (свыше 30% р.з.э.) концентрата, так называемого "хлоридного плава" в удооной для дальнейшей технологической переработки форме. Монацит и ксенотим целесообразно вскрывать щелочью.

Многочисленные разновидности апатита представляют собои сочетание ряда изоморфных соединений (67). Содержание р.з.э. в апатите по данным И.Д. Борнеман-Старынкевич (68) колеблется от следов до З,18%. Дальнейшее изучение химического состава Хибинских (69) и Уральских (70) апатитов подтвердило эти результаты, — в некоторых образцах найдено до 5% р.з.э. Вопросу попутного извлечения редкоземельных элементов из апатита при его переработке на фосфорсодержащие минеральные удобрения были посвящены многие работы со-

ветских ученых еще в 30-х годах нашего века (59,61,71-73). Интерес к этому важному для народного хозяйства вопросу не ослабевает и по настоящее время (74-75).

Хлорирование и обработка щелочью - не единственные возможности избежать длительных, объемных и трудоемких процессов кислотной переработки. В качестве примеров иных подходов к решению этой задачи можно привести применяющиеся в США предварительное прокаливание бастнезита для разрушения анионной части минерала и разложение иттропаризита путем спекания его с сульфатом аммония, выполненного нами. Остановимся на последнем примере несколько подробнее.

Приведенный в табл. І "иттрипаризит" назван минералом условно, так в действительности это — порода, содержащая по меньшей мере четыре редкоземельных минерала — монацит, ксенотим, флюоцерит и собственно иттропаризит — фторкарбонат р.з.э. и карбонат кальция. Как видно из данных, приведенных в табл. 7-8, перечисленные и остальные минералогически идентифицированные компоненты породы могут быть переведены в раствор действием концентрированной серной кислоты и р.з.э. могут быть полностью извлечены трех-кратным выщелачиванием.

Таблица 7

Кислота	Выделено р.з.э.	в % от их общего	содержания
	1 обработка	П обработка	ш обработках)
HCl	43,5	45,6	10,9
HNO ₃	39,9	54,8	5,3
H ₂ SO4	74,6	16,0	9,4
H ₂ SO ₄ +HF	81,3	12,6	6,1

х) II и Ш обработка во всех случаях производилась серной кислотой.

№ опыта и № выщела- чивания	I	2	3	4	Сроднее
I II III	54,6 43,9 1,5	63,3 32,9 3,8	60,3 38,3 1,4	59,1 39,1 1,8	59,3 39,4 2,I

Однако в больших масштабах сернокислотный метод не очень удобен, главным образом, из-за длительности. Поэтому оыл испробован другой вариант разложения — спекание с сульфатом аммония. Результаты приведены в табл. 9 (TR_2O_3 в % от навески, средние из 3 параллельных опытов).

Таблица 9

Temnepa- Typa,C	Весовое отно- шение сульфа- та аммония к породе	2:1	4:1	6 : I	8:1
400		10,4	11,8	12,6	16,3
50 u		12,1	15,3	17,6	19,3
600		17,3	19,0	20,7	20,5
650		22,2	20,2	20,9	23,1
700		14,1	15,0	16,0	17,3

Как видно из таблицы, выход увеличивается как с повышением температуры (до 650°), так и с увеличением избытка сульфата аммония. В больших масштаоах выход обычно несколько ниже, по-видимому, из-за режима подъема температуры. Однако, благодаря небольшому времени собственно спекания (30-60 мин.), этот процесс несравненно выгоднее, чем разложение серной кислотой, особенно если учесть неполноту разложения материала сернокислотным способом при однократной обработке (табл. 7). Дальнейшая ооработка спека производится как обычно — холодной водой.

В настоящем сообщении рассматриваются лишь рациональные пути выделения индивидуальных р.з.э. Очевидно, что эти пути однозначно определяются составом исходного сырья и в этой связи могут быть разоиты на 3 группы:

- А. Минералы цериевой подгруппы;
- Б. Минералы иттриевой подгруппы;
- в. минералы полного состава.
- А. Схема переработки периевого сырья. Как известно, цериевая подгруппа характеризуется сравнительно небольшим числом собственно р.з.э. (в природе практически не встречается прометий), свойства которых заметно различаются между собой, в частности, вследствие того, что многие элементи обладают переменной валентностью (церий, самарий, европий). Это делает возможным во многом чисто химическое выделение индивидуальных р.з.э. цериевой подгруппы. Представляется рациональной последовательность выделения элементов, представленная на рис. 1, которая отвечает удалению вначале наиболее распространенных элементов (церий, лантан), концентрированию самария и свропия для более полного их электро-химического выделения и, наконец, разделению оставшейся смеси наиболее близких по свойствам празеодима и неодима.
- Б. Схема переработки иттриевого сырья. Иттриевая подгруппа характеризуется большим числом элементов, тем более, что по величине ионного радиуса к ней примыкает иттрий. Элементы этой подгруппы обладают большой близостью свойств. Последовательность операций разделения подгруппы показана на рис. 2; она предусматривает предварительное разделение смесей на части с меньшим числом компонентов и отделение превалирующего элемента иттрия; предварительное хроматографическое концентрирование тяжелых элементов подгруппы для более эффективного электрохимического выделения иттербия и, наконец, хроматографическое получение в чистом виде всех элементов иттриевой подгруппы.
- В. Схема переработки сырья полного состава вилючает в себя лишь один дополнительный этап деление полной суммы на цериевую и иттриевую подгруппы, частично описанное выше. В остальном процесс разделения проводится по вышеописанным схемам.

наблюдение за ходом технологического процесса, имеющее целью установление распределения элементов на всех этапах и получение данных для балансовых расчетов, является неотъемлемой частью любой схемы. В связи с чрезвычайной олизостью свойств р.з.э. наиболее просто и наглядно наблюдение за распределением элементов по ходу технологии может быть осуществлено с помощью радиоактивных изотопов. Нами применялись радиоактивные изотопы р.з.э.,

полученные в основном в ядерном реакторе по пу-реакции. Этот путь особенно удобен вследствие возможности использования сравнительно короткоживущих изотопов, период полураспада которых сравним с длительностью технологических операций и, соответственно, практически исключает возможность радиоактивного загрязнения продуктов. для наолюдения за полнотой операции отделения лантана применялся изотоп лантан - 140, в электрохимических процессах использовали радиоантивные самарий - 158 или иттербий - 175. При отделении иттрия удобно пользоваться иттрием - 90, являющимся дочерним продуктом распада радиоактивного стронция. В хроматографических опытах, связанных с разделением смесеи нескольких р.з.э. можно использовать и один изотоп, например, одного из промежуточных элементов. Однако нередко предпочтительнее вводить одновременно несколько радиоактивных изотопов и определять содержание каждого из них в фильтратах по энергии излучения. Некоторые результа ты применения радиоактивных изотопов при получении чистых р.з.э. были освещены нами в специальной статье (76).

Уместно отметить, что помимо наолюдения за распределением р.з.э. по ходу процесса использование радиоактивных изотопов позволяет получить и некоторые данные аналитического характера. Наряду с сочетанием методов ионосоменнои хромаграфии с изотопным разбавлением, позволяющим в отдельных случаях довольно точно определить содержание искомого элемента в смеси (77), измерение интенсивности радиоактивного излучения пробы по сравнению с эталоном позволяет сразу установить концентрацию искомого элемента в растворе, а при дополнительном определении весовой концентрации — и относительное содержание элемента по отношению к другим р.з.э. Однако в чисто аналитическом плане, особенно — для балансовых расчетов, существенное значение имеют химические, физико—химические и физические методы анализа.

В силу чрезвычайно большого сходства химических свойств всех р.з.э. известно ограниченное число реакций лишь на некоторые из них (78). Вследствие легкого перехода в четырехвалетное состояние только церий может быть быстро и с достаточной точностью определен колориметрически (79, 80).

Главное значение в анализе смесей, р.з.э. имеют физические методы: рентгеноспектральный, спектральный, спектральный, спектрофотометрический люминесцентный и активационный. Однако наибольшее распространение

и применение как для анализа смесей окисей р.з.э., так и в анализа минералов, пород и продуктов промышленной перерафотки голучил эмиссионный рентгеноспектральный метод анализа с первичным возбуждением спектра (81,82), разработанный в Институте геохимии и аналитической химии Ан СССР Вайнштейном и Туранской (83).

Определение относительного содержания сопоставляемых р.з.э. по величине относительной интенсивности их линий производится расчетным путем. При этом учитывается закономерное изменение интенсивности спектральных линии элементов по спектру. Средняя арифметическая ошибка единичного определения относительного содержания р.з.э. составляет ± 5% от определяемой величины. Чувствительность метода 0,1%. Однако для выполнения анализа с указанной выше точностью низший предел ссдержания каждого р.з.э. -0,2%. Анализ пород, минералов и др. проб, в которых р.з.э. присутствуют в меньших количествах, проводится с предварительным химическим обогащением анализируемой смеси этих элементов.

Плодотворным оназалось применение спектрального эмиссионного метода к анализу сложных систем р.з.э. (86, 87,88). Разработаннии Швангерадзе (89) метод с использованием внутренних стандартов дал возможность быстрого качественного и количественного знатиза смесей р.з.э. при определении малых примесей в чистых препаратах и с некоторыми небольшими ограничениями — анализа многокомпонентных смесей с примерно эквивалентными концентрациями отдельных элементов.

Анализ образцов р.з.э. в виде смесей 1: 1 окисла с графитом при использовании спектрографа ИСП-22 или ИСП-51 с камерами с различным фокусным расстоянием обеспечивает хорошо воспроизводимые результаты. Чувствительность спектрального эмиссионного определения при анализе малых примесей в чистых пропаратах р.з.э. специфична для каждой конкретной системы, но в среднем составляет 0,05 - 0,01%.

В последнее время для целей анализа р.з.э. начал применяться активационный метод анализа. Наличие феноменальных ядерных свойств у ряда р.з.э. уже позволило аковлеву (91) решить задачу определения этих элементов в специальных материалах и Борну, вайсу и Кооаладзе (92) проверить возможность анализа смеси р.з.э. при использовании лабораторного источника нейтронов малой мощности. Проведенное Рябухиным исследование при повышенном потоке нейтронов выявило возможность использования этого метода для анализа

рентгеноспектрально чистых препаратов р.з.э., т.е. в области содержания примесей < 0,1%. Было показано, что для обеспечения универсальности определения требуется хроматографическое разделение активированных образцов для выделения радиоактивных изотопов отдельных элементов. Как выяснено, в некоторых случаях можно определять по устанительностью о,01 - 0,001%.

Хроматографическое деление активированной нейтронами окиси эрбия, проведенное при условиях, обеспечивающих прецизионное количественное разделение соседних р.з.э., позволяет определять в эрбии $\sim 7.10^{-5}\%$ TU и $\sim 5.10^{-5}\%$ HO. Количественные измерения делаются по относительному методу сравнением со стандартами определяемых элементов, облученными в тех же условиях.

В Советском Союзе организовано производство индивидуальных редкоземельных элементов, удовлетворяющих разнообразным требованиям различных промышленных предприятий и научно-исследовательских учреждений.

Литература

- 1. Менделев Д. Основы химии, 9 издание, т. П, Государ.изд. (1928).
- 2. Шубин М. Ежегодник по геологии и минералогии России, 348 (1842).
- З. Кокшаров Н Материалы для минералогии России, З, 384 (1858).
- 4. Караваев Ф J. Prakt. Chem. <u>85</u>, 442 (1862).
- 5. Герман Р. Bull.Soc.Nat., 35, 243 (1862).
- 6. Мартынов А. С. R. 104, 571 (1887).
- 7. Николаев П.- Записки Русс. минерал. о-ва 31,412 (1894).
- 8. Мельников М.-Записки Русс. минер. о-ва 35, II (1897).
- 9. Хрущев К. -Ж.Р.Ф.Х.О., 29, 206 (1897).
- **IO. Меликов** H. Z. anorg. Chem. 21, 70 (1899)
- 11. Писаржевский Л.- Ж.Р.Ф.Х.О., 32, 609 (1900)
- 12. Черняк Г.- Ж.Р.Ф.Х.О., 28, 345, (1896).
- 13. Танатар С. Ж.Р.Ф.Х.О., 42, 586, (1910).
- 14. Белоусов И. и Кузнецов С.- Изв. АН, С.-Петерб., 6, 361 (1912).
- 15. Жуков И. Ж.Р.Ф.Х.О., 45, 2073 (1913).
- 16. Орлов Н.- Chem. Ztg, 31, 115, (1906); Формацев. журн.

MLV, IO, (1906), MLVI, 48, 96, (1907);

Ж.Р.Ф.Х.О., 38, 1056, (1906), 60, 514, (1928).

- I7. Бородин Л., Казакова М.- ДАН СССР, 96, 6I3 (1954)
- 18. Бородин Л., Казакова М.- ДАН СССР, 97, 725 (1954)
- Іэ. Поликарнова В.,-"Атомная энергия" № 3, ІЗ2 (1956).
- 20. Вернадский В. "Счерки геохимии" М.-Л. 1934
- 21. Боренман-Старынкевич И. ДАН-А янв.-декабрь 1922 г. стр. 28.
- 22. Рябчиков Д.И., Терентьева Е.А.- ДАН 51, 287 (1946).
- 23. Рябчиков Д.И., Терентьева Е.А.- ДАН 58, 1373 (1947).
- 24. Рябчиков Д.И., Терентьева Е.А. Усп.хим. 16, 46 (1947).
- 25. Рябчиков Д.И., Терентьева Е.А.-Изв. АН СССР, ОХН 44 (1949)
- 26. Терентьева Е.А.- Диссертация, МГУ, 1951.
- 27. Терентьева Е.А. Усп. хим. 26, 1007 (1957).
- 28. Wheelright F., Spedding F., Schwarzenbach J. J.Am. Chem. Soc. 75, 4196 (1953).
- 29. Vickery R. J. Chem. Soc. 385, 1181 (1954).
- 30. Фиалков Я.А.-ЖНХ, 2, № II, 2562 (1957)
- ЗІ. Пешкова В.М., Громова М.И. ЖНХ 2, № 6, 1356 (1957).
- 32. Якубсон С.И., Костромина Н.А. ЖНХ, 2, № 2, 349 (1957)
- 33. Сенявин М.М., Тихонова Л.И.- ЖНХ І, № 12, 2772 (1956).
- 34. Тихонова Л.И. Сенявин М.М.- ЖНХ 2, № 1, 74 (1957).
- 35. Сенявин М.М., Сорочан А.М.- ЖНХ 3, № 2 (1958).
- 36. Иост Д., Рэссель Г., Гарнер К.- Редкоземельные элементы и их соединения, стр. 93 Ил, 1949.
- 37. Imre L. Z.anorg.Chem. 164, 214 (1927).
- 38. Bock R., Bock W. Z. anorg. allg. Chem. 263, 145 (1950).
- 39. Wylie A. J. Chem. Soc. 1474 (1951).
- 40. Клинаев В.М., Сенявин М.М. статья в со. "Применение меченых атомов в аналитической химии", стр. 418 Изд-во АН СССР, 1955.
- 41. Гальперин Н.Н., Волынец М.П., Колосова Г.М. Химическая наука и промышленность № 5, 560 (1956)
- 42. Рябчиков Д.И., Вагина Н.С.- ЖНХ 2, 2109 (1957)
- 43. Вагина Н.С. ЖНХ 2, № 5 (1958) в печати.
- 44. Рябчиков Д.И., Скляренко Ю.С., Строганова Н.С. ЖНХ I, 1954 (1956).
- 45. Ho Coy H. J. Am. Chem. Soc. 63, 1622, 3432 (1941).
- 46. Скляренко Ю.С. Кандид. диссертация М. ГЕОХИ (1953).
- 47. Вагина Н.С. ЖНХ 2, 1522 (1957).
- 48 Meaver B., Kappelmann F., Topp A. J. Am. Chem. soc. 75, 3943 (1953)

- 49. Februard D., J., arknus. J. Am. Chem. Boc. 75, 6063 (1953).
- 50. Николаев А.В., Сорокина А.А., Масленникова А.С. ЖИХ, З, 160 (1958)
- 51. Linder R. Z.phys. Chos. 194, 51 (1944).
- 52. Рябчиков Д.И., Сенявин М.М., Филиппова К.В. ЖНХ 7, I35 (1952).
- 53. Рябчиков Д.И., Сенявин М.М., Филиппова К.В. ЖНХ 8, 220,(1953).
- 54. Brauner B., J.Chem.Soc. 73, 951 (1898).
- 55. Crouthamel C.E., Martin D.S. J.Am.Chem.Soc. <u>72</u>, 1382 (1950), <u>73</u>, 569 (1951).
- 56. Marsh J. J. Chem. Soc. 532, 577 (1950), 1337 (1951).
- 57. Vickery R.C. J. Chem. Soc. 1101 (1950).
- 58. Заозерский И.Н.- Новости техники, 64, 5 (1933).
- 59. Заозерский И.Н., Процеров П.- Редкие металлы № 3, 33 (1934),
- 60. Заозерский И.Н. Труды с.-х.академии им. Тимирязева 2, № 1, 53 (1936).
- 61. Заозерский И.Н., Процеров П. Редкие металлы № 5-6, 32(1937)
- 62. Заозерский И.Н., Андреева Э.Ф. Химическая наука и промышленность, 5, 512 (1956).
- 63. Prandtl W. Z.anorg. Chem. 238, 321 (1938).
- 64. Vickery R. Lantanons. N-Y, 1956.
- 65. Уразов Г.Г., Морозов И.С., Шманцырь И.Б. ЖПХ, 10, 6 (1937).
- 66. Либман Э.П., "Редкие металлы" № 6, 32 (1936)
- 67. Борнеман-Старынкевич И.Д. Сб., посьященный В.И.Вернадскому ч. П, 736 (1936).
- 68. Борнеман-Старынкевич И.Д. ДАН апр.-июнь 1924, стр. 39.
- 69. Волкова М.И., Мелентьев Б.Н. ДАН, 25, 121 (1939)
- 70. Болдырев А.К., Материалы по общей и прикладной геологии вып. 142 (1930).
- 71. Логинова А.И., Ж. хим. пром. 15, 28 (1938)
- 72. Вольфнович С.И., Логинова А.И. Ж.хим. пром. 16, 32 (1939).
- 73. Вольфкович С.И., Логинова А.И., ДАН СССР, 25, 124 (1939).
- 74. Миронов Н. Н., Односевцев А.И. ЖОХ 26, 960 (1956)
- 75. Миронов Н.Н., Односевцев А.И. Ж.Н.Х. 2, 2208 (1957)
- 76. Рябчиков Д.И., Сенявин М.М. Сб. "Применение меченых атомов в аналитической химии" Изд. АН СССР, стр. 98, 1955.

-I9-

- 77. Сенявин М.М. Сб. "Изотопы и излучение в химии" стр. 184 Изд. АН СССР, 1958.
- 78. Рябчиков Д., Терентьева Е., Скляренко Ю.- Тр. ком.по аналит. химии АН СССР, т. Ш (УІ), 23, (1951).
- 79. Рябчиков Д., Стрелкова 3.- Ж.А.Х., 4, 226 (1948)
- 80. Кульберг Л., Амброжий А.- ЖАХ, 4, 233 (1952).
- 81. Боровский И., Блохин М.- Рентгеноспектральный анализ изд. ГОНТИ, (1939)
- 82. Вайнштейн Э.-Методы количественного рентгеноспектрального анализа, изд. АН СССР (1956).
- 83. Вайнштейн Э., Туранская Н.- ЖАХ АН СССР, 8, 346 (1953).
- 84. Вайнштейн Э., Туранская Н.- ЖАХ, 7, 180, (1952).
- 85. Вайнштейн Э., Тугаринов А., Туранская Н.- ДАН, 104, 268 (1955), 106, 691, (1956). Ж.Геохимия, 2, 36 (1956).
- 86. Fassel V., Quinney B., Krotz L., Lentz C. Anal.Chem., 27, 1010 (1955).
- 87. Hettel H., Fassel V. Anal. Chem., 27, 1311 (1955).
- 88. Зайдель А., Калитеевский Н., Липовский А., Разумовский А., Якимова П., Вест. Лен. Ун-та, 22, 18, (1956)
- 89. Крюгер Г., Швангерадзе Р.- Ж.Аналит. хим., 9, 11, (1954).
- 90. Швангерадзе Р. Диссертация, ГЕОХИ АН СССР (1955)
- 91. Яковлев Ю.- Доклад на женевской конф. по мирному использованию ат. энергии (1955)
- 92. Борн Г., Вайсс К., Кобаладзе М.- Тр. ком. по аналит. хим., т. VII (X), (1956).