Задание 2. «Переправа».

Для переправки грузов (ящиков) через реку грузчики соорудили следующее устройство.

На берегах реки подготовлены горизонтальные участки «подъездных путей» \pmb{AB} и \pmb{CD} . Длина участка \pmb{AB} равна $l_0 = 6,0$ м, длина участка \pmb{CD} не ограничена. На участке \pmb{AB}

ящик, массой $m_0=20\kappa z$ разгоняют с постоянным ускорением $a_0=3,0\frac{M}{c^2}$, затем этот ящик попадает на салазки, масса которых равна $m_1=10\kappa z$, а длина L=3,0 м. Верхняя поверхность этих салазок совпадает с уровнем берега. Далее салазки движутся по поверхности льда через реку шириной $l_1=30$ м и упираются в противоположный берег CD, высота которого такая же, как и на участке AB. Коэффициенты трения известны: ящик по салазкам $\mu_0=0,30$, салазки по льду $\mu_1=0,020$, ящик по берегам $\mu_2=0,10$. Постройте графики зависимостей

- а) скоростей ящика и салазок от времени;
- б) координат ящика и салазок от времени. Начало отсчета времени совместите с моментом начала разгона ящика. Начало отсчета горизонтальной оси координат - с точкой старта A.

В данной задаче допускается (и рекомендуется) проводить промежуточные численные расчеты и их результаты использовать в дальнейшем решении. Ускорение свободно падения считайте равным $g=10\frac{M}{c^2}$.

Задание 3. «Колебания стержня»

По тонкому закрепленному кольцу радиуса R равномерно распределен заряд q. Вдоль оси кольца может двигаться без трения однородный тонкий стержень с зарядом -q и длиной l=2 R, масса которого m. Найдите период малых колебаний стержня в электрическом поле кольца.

Силой тяжести пренебречь.

Задание 4. «Вращающиеся цилиндры»

Два коаксиальных (имеющих общую ось OO') достаточно длинных цилиндра, радиусами R_1 и R_2 вращаются с угловыми скоростями ω_1 и ω_2 . Цилиндры заряжены с поверхностными плотностями σ_1 и σ_2 соответственно.

- 1) Найдите зависимость индукции B(r) магнитного поля от расстояния r до оси системы, постройте график полученной зависимости.
- 2) Найдите величину давления на поверхность каждого из цилиндров со стороны магнитного поля.

