CS M146: Introduction to Machine Learning Bias-Variance Tradeoff

Aditya Grover

Recap: Underfitting vs Overfitting

Size $\theta_0+\theta_1x+\theta_2x^2+\theta_3x^3+\theta_4x^4$

overfitting

Recap: Model Complexity Curves

Recap: Model Complexity Curves

Underfitting and overfitting show very different behaviors on training and validation data

Recap: Detecting Underfitting and Overfitting

Training loss:

High

Medium

Low

Validation loss:

High

Medium

High

Underfitting

Good fit

Overfitting

Can we provide statistical definitions?

Bias-Variance Tradeoff

- Bias of an estimator: Difference between an estimator's expected value and true value
 - ML: How far are the model's predictions (in expectation) from the true predictions?
 - High bias → underfitting
- Variance of an estimator:
 - ML: If we train a ML model on different training sets of size n, how much do the predictions vary on a test set?
 - High variance → overfitting

Visual Analogy with Throwing Darts

bias low, variance low

bias high, variance low:

bias low, variance high:

bias high, variance high:

Error Decomposition

(Stated without proof)

For regression, the expected squared error for any hypothesis can be decomposed into three components

Expected Squared Error:

Noise in the training data

- + Bias²
- + Variance

Error Decomposition

Fixing Errors

Formally, we have:

- noisy data → irreducible error
 - Fix: find another source of high-quality data
- underfitting → high bias
 - Fix: select a more complex hypothesis class
- overfitting → high variance
 - Fix: increase size of dataset or reduce complexity of hypothesis class

Learning Curves

 Model complexity curves plot performance (y-axis) as a function of the complexity of different models (x-axis)

 For a given model, a learning curve plots performance (y-axis) as a function of the size of the training data (x-axis)

Intuition:

- Magnitude of training error indicates bias
- Gap in training and validation error indicates variance

Learning Curves: Assessing Bias

Assumption: Irreducible error is not very high

Learning Curves: Assessing Variance

Learning Curves

Idealized learning curve

Summary

Bias-Variance Tradeoff

Another formal perspective on overfitting and underfitting Can be detected in practice via learning curves