Wall- and Free-Stream Pressure Processing

Stanford Team

19th August 2025

Abstract

This document formalises, in pseudocode, the processing pipeline. The pipeline estimates a frequency response transfer function (H) between a reference and a treated microphone, then performs coherence-weighted Wiener inverse filtering to recover an estimate of the reference signal from the treated measurements.

Notation and Inputs 1

Let x[n] denote the discrete-time reference pressure signal, and y[n] the treated, both sampled at $f_s = 2_500$ Hz.

Spectral definitions Welch auto-spectra $S_{xx}[k]$, $S_{yy}[k]$ and cross-spectrum $S_{xy}[k]$ are computed with segment length $N_{\text{seg}} = 4096$, overlap $N_{\text{ov}} = 2048$, and a Hann window $w[\cdot]$. The magnitude-squared coherence is

$$\gamma^{2}[k] = \frac{|S_{xy}[k]|^{2}}{S_{xx}[k]S_{yy}[k]} \in [0, 1]. \tag{1}$$

The FRF estimate is $H[k] = S_{xy}[k]/S_{xx}[k]$.

$\mathbf{2}$ Algorithms

Algorithm 1 H Transfer-Function Estimation

Inputs: Time series x[n] (reference), y[n] (treated), sampling rate f_s ; Welch parameters $N_{\text{seg}}, N_{\text{ov}}, w[\cdot].$

Outputs: Frequency vector f[k]; complex FRF H[k]; coherence $\gamma^2[k]$.

- 1: Compute $S_{xx}[k]$ and $S_{yy}[k]$ using Welch's method with $(N_{\text{seg}}, N_{\text{ov}}, w)$.
- 2: Compute cross-spectrum $S_{xy}[k]$ using the same Welch settings.
- 3: $H[k] \leftarrow S_{xy}[k]/S_{xx}[k]$. 4: $\gamma^2[k] \leftarrow \frac{|S_{xy}[k]|^2}{S_{xx}[k]S_{yy}[k]}$, clipped to [0, 1].
- 5: Return $(f[k], H[k], \gamma^{2}[k])$.

Algorithm 2 Coherence-weighted Wiener Inverse (γ^2/H)

```
Inputs: y_r, sampling rate f_s, freq. grid f, transfer H(f), coherence \gamma^2(f)
Outputs: \hat{x}
```

- 1: $\hat{y_r} \leftarrow \mathcal{F}(y_r, N_{\text{fft}})$
- 2: $m \leftarrow |H|$; $\phi \leftarrow \text{unwrap}(\angle H)$
- 3: $m_i \leftarrow \text{interp}_{f \to f_r}(m)$; $\phi_i \leftarrow \text{interp}_{f \to f_r}(\phi)$; $H_i \leftarrow m_i e^{j\phi_i}$ 4: $\gamma_i^2 \leftarrow \text{clip}(\text{interp}_{f \to f_r}(\gamma^2), 0, 1)$ 5: $\varepsilon \leftarrow \text{machine epsilon}$; $H_{\text{inv}} \leftarrow \gamma_i^2 \cdot H_i^* / \max(m_i^2, \varepsilon)$

- 6: $H_{\text{inv}}[0] \leftarrow 0$ 7: $\hat{x} \leftarrow \mathcal{F}^{-1}(\hat{y_r} \cdot H_{\text{inv}}, N_{\text{fft}})[0:N]$
- 8: return y

Figure 1: Generic transfer function processing pipeline.

Figure 2: Complete pressure processing pipeline for measurement of the WPFs through a pinhole microphone.

Algorithm 3 Two-microphone Wiener noise cancellation for wall pressure

Inputs: Wall mic y[0:N-1], free-stream mic r[0:N-1], sampling rate f_s

Outputs: Estimate of true wall pressure \hat{x}

- 1: $y \leftarrow y \text{mean}(y)$; $r \leftarrow r \text{mean}(r)$
- 2: Estimate spectra via Welch: $S_{rr}(f)$ and $S_{yr}(f)$

 $\triangleright S_{yr}$ is cross-PSD

 ${\triangleright}$ Wiener filter mapping $r \to y$

▷ Predicted free-stream noise at wall mic

3:
$$F(f) \leftarrow \frac{S_{yr}(f)}{S_{rr}(f) + \varepsilon}$$

4: $R(f) \leftarrow \text{rFFT}(r)$; $Y(f) \leftarrow \text{rFFT}(y)$

- 5: $\widehat{D}(f) \leftarrow F(f)R(f)$ 6: $\widehat{X}(f) \leftarrow Y(f) \widehat{D}(f)$
- 7: $\widehat{x} \leftarrow \text{irFFT}(\widehat{X}(f))$
- 8: return \hat{x}