On the Downstream Performance of Compressed Word Embeddings

Avner May, Jian Zhang, Tri Dao, Chris Ré
Stanford University

Word Embeddings

Word embedding is a memory-intensive feature representation

Word Embedding Compression

Critical for deployment under memory constraints

- Deep compositional code learning (DCCL)
- Kmeans²
- Uniform quantization
- Dimension reduction (e.g. PCA)

What determines the *model accuracy* attained by different *compressed word embeddings?*

Can the insights guide the selection of compressed word embeddings under memory constraints?

Existing quality measures

Can't explain the relative model accuracy across compression methods

Setting to derive a new quality measure

Model accuracy

Test mean square error (MSE) rel. to uncompressed embedding

In the setting of *linear regression*

Fixed design linear regression (simple and classic setup): 1,2,3

Same set of data points for train and test; noisy training label; noiseless test label

Test time prediction =
$$UU^Ty$$

Compressed word embedding $X \in \mathbb{R}^{n \times d}$

$$\mathsf{SVD}\ X = U\Lambda V^T$$

Training label $y \in \mathbb{R}^n$

Observation

Prediction highly depends on *U*, the left singular vectors

A new quality measure of compression word embedding Eigenspace overlap (EO)

$$\mathcal{E}(X, \tilde{X}) := \frac{1}{\max(d, k)} \|U^T \tilde{U}\|_F^2$$

Compressed $X \in \mathbb{R}^{n \times d}$ uncompressed $\tilde{X} \in \mathbb{R}^{n \times k}$ SVD $X = U\Lambda V^T, \, \tilde{X} = \tilde{U}\tilde{\Lambda}\tilde{V}^T$

Intuition

More similar left singular vectors,

better model acc. relative to uncompressed embeddings

In the setting of *linear regression*

Test MSE rel. to uncompressed embedding
$$\mathbb{E}_{\bar{y}}\left[\mathcal{R}_{\bar{y}}(\tilde{X}) - \mathcal{R}_{\bar{y}}(X)\right] = \mathcal{O}\Big(1 - \mathcal{E}(X, \tilde{X})\Big)$$

Target label vector sampled from Span(U)

Uncompressed embedding X

Compressed embedding \tilde{X}

Theory connection (sketch)

Model acc. can be bounded in terms of eigenspace overlap

Empirical correlation beyond the regression setting

Empirical correlation

EO attains **better correlation** with downstream **model acc.**

Can the insights guide the selection of *compressed* word embeddings under memory constraints?

Eigenspace overlap as a selection criterion

Selecting the right embedding -> better model acc. under memory budgets

Eigenspace overlap vs. PIP loss > higher acc. at 32X compression

Eigenspace overlap as a selection criterion

Selection error

Fraction of cases when *failing to select* the embedding with *better model acc*.

Utility under memory budgets Up to 2X lower selection error at up to 32X compression

Summary

Theoretical connection in a regression setting

Empirical correlations in a wide range of models / tasks

Guide the *selection* of compressed word embeddings

Left singular vector is important, EO captures it

Utility under memory constraints

THANK YOU!

Spotlight: Thursday, Dec 12, 4:05 pm Poster: Thursday, Dec 12, 5-7 pm