

Poisson algebras Non-commutative algebras

Maram Alossaimi

Sheffield University, School of Mathematics and Statistics Supervisor: Prof. Vladimir Bavula

LMS Graduate Student Meeting

8 November 2021

A nonempty set S' with binary operator (\cdot) is a $semigroup~(S',\cdot)$ if for all $g,h,k\in S'$

1. $g \cdot h \in S'$, and

 $2. \ g \cdot (h \cdot k) = (g \cdot h) \cdot k.$

A nonempty set S with binary operator (+)is a group (S,+) if for all $g,h,k\in S$

 $1. \ g+h \in S,$

2. g + (h + k) = (g + h) + k,

3. $\exists e \in S$ s.t. e + g = g + e = g, and

4. $\exists g^{-1} \in S \text{ s.t. } g + g^{-1} = g^{-1} + g = e.$

5. S is an abelian if g + h = h + g.

A nonempty set V with two binary operators (+) and (\times) is a $vector\; space\; over a field <math display="inline">\mathbb C$ if for all $\lambda_1, \lambda_2 \in \mathbb{C}$ and $v, u \in V$.

1. (V,+) is an abelian group,

2. $\lambda_1 \times v \in V$,

3. $\lambda_1 \times (u+v) = \lambda_1 \times u + \lambda_1 \times v$,

4. $(\lambda_1 + \lambda_2) \times v = \lambda_1 \times v + \lambda_2 \times v$,

5. $\lambda_1 \times (\lambda_2 \times v) = (\lambda_1 \lambda_2) \times v$, and

6. $1 \times v = v$.

Figure 1: Algebraic structure

Outline

- 1 Background
- 2 Poisson algebras
 - Poisson ideals and Poisson prime ideals
 - The Poisson centre, Derivations and Poisson derivations
- 3 The construction
- 4 The new Poisson algebra class A
 - \blacksquare The classification of Poisson algebra class A
 - The first case
- **6** References

Background

Definition 1

A ring R is a set on which two binary operations are defined addition (+) and multiplication (\cdot) such that

- (R,+) is an abelian group,
- (R, \cdot) is semigroup with an identity element, and
- 3 The distributive laws hold for all $a, b, c \in R$ $a \cdot (b+c) = a \cdot b + a \cdot c \text{ and } (a+b) \cdot c = a \cdot c + b \cdot c.$

We say K is a field if K satisfies 1, 3 and $(K \setminus \{0\} = K^{\times}, \cdot)$ is an abelian group.

Figure 2: Rings and fields structures $\,$

□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ | = ♥ ○ ○ ○

Definition 2

Let K be a field and D be a set on which three operations are defined, addition, multiplication, and multiplication by a scalar such that

- $(D, +, \cdot)$ is a ring,
- $(D, +, \times_K)$ is a vector space over K,
- 3 $(\lambda a) b = a (\lambda b) = \lambda (ab)$ for all $\lambda \in K$ and $a, b \in D$,

then D is called a K-algebra

Figure 3: K-algebras structure

Poisson algebras

Definition 3

A (commutative) K-algebra $(D, +, \cdot)$ is called a Poisson algebra if there exists bilinear product $\{-,-\}$ on D, called a Poisson bracket, such that $(D, \{-,-\})$ is

- $\{a,b\} = -\{b,a\}$ for all $a,b \in D$ (anti-commutative),
- ② $\{a, \{b, c\}\} + \{b, \{c, a\}\} + \{c, \{a, b\}\} = 0$ for all $a, b, c \in D$ (Jacobi identity), and
- 3 $\{a \cdot b, c\} = \{a, c\} \cdot b + a \cdot \{b, c\}$ for all $a, b, c \in D$ (Leibniz rule).

6 / 17

Poisson ideals and Poisson prime ideals

Definition 4

Let D be a Poisson algebra. A subset I of D is a $Poisson\ ideal$ of D if

- \bigcirc I is an ideal of algebra D, and
- $\{d,a\} \in I \text{ for all } d \in D \text{ and } a \in I.$

Moverover, the algebra D is a $simple\ Poisson$ algebra if the only Poisson ideals of D are D and 0.

Definition 5

Let D be a Poisson algebra. A Poisson ideal P is a Poisson $prime\ ideal\ of\ D$ if the following satisfies:

$$IJ \subseteq P \Rightarrow I \subseteq P \text{ or } J \subseteq P$$

where I and J are Poisson ideals of D. Moreover, a set of all Poisson prime ideals of D is called the *Poisson spectrum* of D and is denoted by PSpec(D).

Figure 5: Poisson ideals structure

7 / 17

8 November 2021

The Poisson centre, Derivations and Poisson derivations

Definition 6

Let D be a Poisson algebra then

$$PZ(D) := \{ a \in D \mid \{a, d\} = 0 \text{ for all } d \in D \}$$

is called the *Poisson centre* of *D*.

Definition 7

Let D be a associative Poisson algebra over K. A K-linear map $\alpha: D \to D$ is called a derivation (respectively, Poisson derivation) on D if α satisfies 1 (respectively, satisfies 1 and 2) of the following conditions:

- 2 $\alpha(\{a,b\}) = \{\alpha(a),b\} + \{a,\alpha(b)\}$ for all $a,b \in D$.

A set of all derivations (respectively, Poisson derivations) on D denoted by $\operatorname{Der}_K(D)$ (respectively, $\operatorname{PDer}_K(D)$).

(ロ > ∢御 > ∢ ≧ > ∢ ≧ > 夕)(で

The construction

Theorem 8 [Oh2, Theorem 1.1]

Let D be a Poisson algebra over K and α , δ be K-linear maps on D. Then the polynomial ring D[y] becomes a Poisson algebra with Poisson bracket:

$$\{a, y\} = \alpha(a)y + \delta(a)$$
 for all $a \in D$ (1)

if and only if α is a Poisson derivation on D and δ is a derivation on D such that

$$\delta(\{a,b\}) - \{\delta(a),b\} - \{a,\delta(b)\} = \delta(a)\alpha(b) - \alpha(a)\delta(b) \text{ for all } a,b \in D.$$
 (2)

The Poisson algebra D[y] is denoted by $D[y; \alpha, \delta]$ and if δ is zero then it is denoted by $D[y; \alpha]$.

Proof.

$$(D, \{-, -\}) \xrightarrow{\alpha, \delta} (D[y], (1)) \qquad D[y; \alpha, \delta]$$
$$(\alpha \in PDer(D), \delta \in Der(D)) \tag{2}$$

Lemma 9 [Oh2, Lemma 1.3]

Let D be a Poisson algebra over K, $c \in K$, $u \in D$ and α, β are Poisson derivations such that

$$\alpha\beta = \beta\alpha \text{ and } \{d, u\} = (\alpha + \beta)(d)u \text{ for all } d \in D$$
 (3)

Then the polynomial ring D[y,x] becomes a Poisson algebra with Poisson bracket

$$\{d, y\} = \alpha(d)y, \quad \{d, x\} = \beta(d)x \quad and \quad \{y, x\} = cyx + u$$
 (4)

for all $d \in D$. This Poisson algebra is denoted by $A = (D; \alpha, \beta, c, u)$ or $A = D[y; \alpha, \theta][x; \beta, \delta' := u \frac{d}{dy}].$

Proof.

By Theorem 8

By Theorem 8

$$(D, \{-,-\}) \xrightarrow{\alpha, \quad \delta = 0} (D[y], (1)) \xrightarrow{\beta, \quad \beta(y) = cy} (D[y][x], (4))$$

$$D[y; \alpha] \qquad D[y; \alpha][x; \beta, \delta']$$

$$(D; \alpha, \beta, c, u)$$

The new Poisson algebra class $A = (K[t]; \alpha, \beta, c, u)$

We assume that

- K is an algebraically closed field with char(K) = 0,
- D is a polynomial ring in one variable K[t] with trivial Poisson bracket, i.e. $\{a,b\}=0$ for all $a,b\in K[t]$, and
- $c \in K$.

If K-linear maps α and β are Poisson derivations on K[t], i.e. $\alpha, \beta \in \operatorname{PDer}_K(K[t]) = \operatorname{Der}_K(K[t]) = K[t]\partial_t$ such that

$$\alpha = f\partial_t, \quad \beta = g\partial_t, \text{ where } \partial_t = \frac{d}{dt}, \text{ for some } f, g \in K[t].$$

Then by (3) in Lemma 9

$$u \in \mathrm{PZ}(K[t]) = K[t].$$

$$0 = \{d, u\} = (\alpha + \beta)(d)u \text{ for all } d \in D$$

$$(\alpha + \beta)u = 0.$$

4□ > 4 @ > 4 E > 4 E > E | E | 9 Q O

Lemma 10

Let K[t] be the polynomial Poisson algebra with trivial Poisson bracket and α , β are in $Der_K(K[t])$ such that $\alpha = f\partial_t \neq 0$ and $\beta = g\partial_t \neq 0$ then

$$\alpha\beta = \beta\alpha$$
 if and only if $g = \frac{1}{\lambda}f$ for some $\lambda \in K^{\times}$.

This implies that precisely one of the three cases holds:

(Case I: $\alpha + \beta = 0$ and u = 0), (Case II: $\alpha + \beta = 0$ and $u \neq 0$) or (Case III: $\alpha + \beta \neq 0$ and u = 0).

The classification of Poisson algebra class A, so far

Maram Alossaimi (Sheffield University)

Poisson algebras

8 November 2021

13 / 17

The first case

Case I:
$$\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = (1 + \frac{1}{\lambda})f\partial_t = 0$$
 and $u = 0$

Case I:

If $\alpha + \beta = f\partial_t + \frac{1}{\lambda}f\partial_t = 0$ for some $\lambda \in K^{\times}$, $f \in K[t]$, u = 0 and $c \in K$. Notice that, $f\partial_t + \frac{1}{\lambda}f\partial_t = 0$, implies that there are two subcases: f = 0 and $\lambda = -1$, see figure 7.

Case I.1:

If f = 0, i.e. $\alpha = \beta = 0$ and u = 0then $A_1 = (K[t]; 0, 0, c, 0)$ is a Poisson algebra with Poisson bracket

$$\{t,y\} = 0, \ \{t,x\} = 0 \ \text{and} \ \{y,x\} = cyx.$$
 (5)

There are two subcases: c = 0 and $c \in K^{\times}$.

Maram Alossaimi (Sheffield University)

Poisson algebras

8 November 2021

14 / 17

Case I.1.1:

If in addition, c = 0 then the polynomial Poisson algebra $A_2 = (K[t]; 0, 0, 0, 0)$ has trivial Poisson structure and the Poisson spectrum of A_2 is the spectrum of a polynomial ring in three variables, i.e.

$$\operatorname{PSpec}(A_2) = \operatorname{Spec}(K[t, x, y]).$$

Case I.1.2:

If in addition, $c \in K^{\times}$ then $A_3 = (K[t]; 0, 0, c, 0)$ is a Poisson algebra with Poisson bracket (5). In particular,

Figure 8: The containment information between Poisson prime ideals of A_3

$$A_3 = K[t] \otimes K[x,y]$$

is a tensor product of two Poisson algebras:

$$(K[t], \{-, -\} = 0)$$
 and $(K[x, y], \{y, x\} = cyx)$.

Then we found $PSpec(A_3)$, see figure 8.

References

- [GoWa] K. R. Goodearl and R. B. Warfield. An introduction to noncommutative noetherian rings. 2nd ed. New York: Cambridge University Press. (2004), pages 1–85, 105–122 and 166–186.
 - [Bav] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110 (2020), 105–119.
 - [Oh2] S.-Q. Oh, Poisson polynomial rings. Communications in Algebra, **34** (2006) 1265–1277.
 - [Pre] A. Premet. *Lie algebra*, Lecture Notes in MATH 62112 at the University of Manchester, Manchester in Spring 2017, 1–41.
 - [Sta] T. Stafford. *Noncommutative algebra*, Lecture Notes in MATH 62041 at the University of Manchester, Manchester in Autumn 2016, 1–87.

Thank you for listening

Further resources

Poisson algebra applications:

- Skew polynomial rings.
- [MyOh] N.-H. Myung and S.-Q. Oh, A construction of an Iterated Ore extension. arXiv:1707.05160v2 (2018).
- Poisson polynomial ring.
 - [Oh2] S.-Q. Oh, Poisson polynomial rings. Communications in Algebra, **34** (2006), 1265–1277.
- Poisson modules and Poisson enveloping algebras.
 - [Oh1] S.-Q. Oh, Poisson enveloping algebras. Communications in Algebra, 27 (1999), 2181–2186.
- Weyl algebras and generalised algebras.
 - [Bav] V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion. Letters in Mathematical Physics, 110 (2020), 105–119.

Further resources

- Quantization and deformation algebras.
 - [BPR] C. Beem, W. Peelaers and L. Rastelli, Deformation quantization and superconformal symmetry in three dimensions. *Comm. Math. Phys.* **354** (2017), 345–392.
- Semiclassical limits.
- [ChOh] E.-H. Cho and S.-Q. Oh, Semiclassical limits of Ore extensions and a Poisson generalized Weyl algebra. *Lett. Math. Phys.* **106** (2016), 997–1009.
- Star product and Poisson algebras.
 - [EtSt] P. Etingof and D. Stryker, Short star-products for filtered quantizations, I. arXiv:1909.13588v5 (2020).
- Poisson manifolds.
 - [Kon] M. Kontsevich, Deformation quantization of Poisson manifolds. arXiv:q-alg/9709040v1 (1997).
- Hamiltonian systems.