Hydrostatics

Density (ρ)

The ratio of mass of body and its volume is called density

$$\therefore$$
 Density $(
ho) = rac{ ext{mass}}{ ext{volume}}$

Relative density or specific gravity

The ratio of wt of certain volume of body and wt of same volume of water at 4^0 c is called specific gravity

$$\therefore \text{Specific gravity} = \frac{wt \text{ of body}}{\text{wt. of same volume of water at } 4^{\circ}\text{c}}$$

$$= \frac{\text{density of body}}{\text{density of water at } 4^{\circ}\text{c}}$$

Here density of water at 4^0 c = 1g/cc so

Specific gravity = Density of body

It is just ratio of two similar quantities so it has no unit

For mixture

i. When two liquids of equal mass are mixed whose density are ho_1 and ho_2 then

Density of mixture,

$$ho=rac{m+m}{\dfrac{m}{
ho_1}+\dfrac{m}{
ho_2}}=rac{2
ho_1
ho_2}{
ho_1+
ho_2}$$

:. Harmonic mean is density of mixture

ii. When two liquids of equal volume are mixed whose densities are ho_1 and ho_2 then

Density of mixture
$$(
ho)=rac{v
ho_1+v
ho_2}{v+v}$$

$$=\frac{\rho_1+\rho_2}{2}$$

.: Arithmetic mean is density of mixture.

Archimede's principle

When a body is completely or partially immersed in liquid then, loss in wt of body is equal to wt of liquid displaced by body.

- :. Loss in wt = wt of liquid displaced
- ∴ Apparent wt of body = wt -upthrust
- ightarrow If body is suspended by string and immersed in liquid then Tension (T)
 - = wt -upthrust

$$= v (\rho - \sigma) g.$$

Liquid pressure

Pressure at bottom of liquid column of height h and density ho is

$$P = \rho gh$$

Pascal's Law

Liquid transmit pressure equally in all direction placed in a closed vessel

$$\therefore \quad \frac{F_1}{A_1} = \frac{F_2}{A_2}$$

ightarrow It is used to multiply force

Principle of floatation

When body of density ρ is placed in liquid of density σ then

i. If wt > upthrust ie. $\rho > \sigma$ then body sink in liquid

ii. If wt = upthrust ie ρ = σ then body just sink in liquid or float in liquid

iii. If wt < upthrust is ρ < σ then body sink partially in liquid so that wt. of body become equal to the wt of liquid displaced by immersed portion

 $\therefore \mathrm{wt} = \mathrm{upthrust}$

$$v \rho g = v' \sigma g$$

$$\frac{\mathrm{v}'}{\mathrm{v}} = \frac{
ho}{\sigma} = ext{fraction immersed}$$

$$\therefore$$
 fraction outside $=1-rac{
ho}{\sigma}$

When a body of density ρ_o is taken to a depth 'h' inside liquid of density ' ρ ' then density of body become

$$ho_h =
ho_o + \Delta
ho$$

$$egin{aligned} &=
ho_0 \left(1 + rac{\Delta
ho}{
ho_0}
ight) \ &=
ho_0 \left(1 + rac{
ho g h}{B}
ight) \quad \left[\because rac{\Delta V}{V} = rac{\Delta
ho}{
ho}
ight] \end{aligned}$$

A metal ball of weight w has density ρ is immersed in liquid of density σ has weight w/ then the volume of cavity in ball is

$$m V_c = V - V_m = \left(rac{w-w'}{\sigma} - rac{w}{
ho}
ight)$$

A body of density ρ' is released in liquid of density σ' where $\rho > \sigma$ then body accelerate downward.

a. The acceleration of body in liquid is

$$\mathbf{a} = rac{\mathbf{V}
ho\mathbf{g} - \mathbf{V}\sigma\mathbf{g}}{\mathbf{V}
ho} = \left(1 - rac{\sigma}{
ho}
ight)\mathbf{g}$$

If $\sigma > \rho$ then body accelerate upward with same acceleration i.e.

$$a = \left(\frac{\sigma}{\rho} - 1\right)g$$

b. The velocity of body in liquid after travelling a distance 'h'is

$$v^2 = 0^2 + 2ah$$

or,
$$v=\sqrt{2ah}=\sqrt{2\left(1-rac{\sigma}{
ho}
ight)gh}$$

c. The time taken by body to travel a distance ' \mathbf{h}' in liquid is

$$h=0+rac{1}{2}at^2$$
 or, $t=\sqrt{rac{2h}{a}}=\sqrt{rac{2h}{\left(1-rac{\sigma}{
ho}
ight)g}}$

Efflux velocity

The velocity of liquid escaping through a hole from a vessel at a depth 'h' is

$$v = \sqrt{2gh}$$
 is called efflux velocity.

i) If H be the height of liquid in vessel then time taken by liquid to reach the ground is

$$\mathrm{t}=\sqrt{rac{2(\mathrm{H}-\mathrm{h})}{\mathrm{g}}}$$

ii) The distance at which liquid fall on ground from base of vessel is range so

$$egin{aligned} \mathrm{R} = v \mathrm{t} &= \sqrt{2 \mathrm{gh}} \sqrt{rac{2 (\mathrm{H} - \mathrm{h})}{\mathrm{g}}} \ &= \sqrt{4 (\mathrm{H} - \mathrm{h}) \mathrm{h}} \end{aligned}$$

2022 \circledcirc **engineeringdote**, a product of Studydote Pvt. Ltd - Online study portal