CENTRAAL EXAMEN NATUURKUNDE: WVO

	124	202		2023				2022			2021		2019		J18	2	UI/	2)16	Z
	tijdvak 2	ak 1	Cnalhai	tijdvak 2	tijdvak 1	jdvak 3	1	tijdvak 2	tijdvak 1	tijdvak 3	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1	tijdvak 2	tijdvak 1
1.	Elektrische scooter	op de nets E	t =	Fietshelm	Langlaufen in klassieke stijl	g van LED`s	Schakel	Massa meten in de ruimte	Vrije worp bij basketbal $v_{v} = \left(\frac{\Delta y}{\Delta x}\right)$	Kayak-jumping $\frac{1}{2}mv^2 = mg\Delta h$	Looping $mgh = \frac{1}{2}mv^2$	Planck	Pariser Kanone	Dafne Schippers tegen Ireen Wüst $v_{\text{gem}} = \frac{\Delta x}{\Delta t}$	Mechanische doping $E = Pt \qquad \rho = \frac{m}{V}$	Uitrijden van een auto $s = v_{\text{gem}}t$	Rookmelder $^{238}_{92}U+^{1}_{0}n \rightarrow ^{239}_{92}U$	Zonvolgsysteem $U_{\rm AB} = U_{\rm AC}$	Onderzoek naar geluid in een fles $f = \frac{1}{T}$	ekleurde LED's $R = \frac{U_{\rm R}}{I}$
2.	E = IUt	$c_{\rm w}Av^2$	$F_{\rm w}$	$\Delta E_{\rm z} = \Delta E_{\rm k} \cdot mgh = \frac{1}{2}mv^2$	$u = \frac{F_{\rm v}}{C}$	$ \eta = \frac{P_{\text{licht}}}{P_{\text{elek}}} $	$Cu_0 \mid E = \frac{hc}{\lambda}$	$F_{\rm res} = F_{\rm R} - F_{\rm L} = Cu_0 - Cu$	$W = Fs$ $E_{1} = \frac{1}{2}mv^{2}$ $F_{res} = ma$	$F_{\text{z }} = mg \sin \alpha$ $F_{\text{res}} = F_{\text{z }} - F_{\text{w}}$ $a = \frac{\Delta v}{\Delta t}$	$F_z = mg$ en $F_{mpz} = \frac{mv^2}{r}$		$F_{\rm res} = ma$ $a = \frac{\Delta v}{\Delta t}$	$a = \frac{\Delta v}{\Delta t}$	$\lambda_{\max} T = k_{\mathrm{W}}$	$[k] = \frac{[F]}{[v^2]} F_{w,l} = \frac{1}{2} \rho C_w A v^2$	$A = \frac{\ln 2}{t_{\frac{1}{2}}}N \qquad m = N \cdot 241 \cdot \mathbf{u}$	U = IR	$v = f\lambda$	
3.	$\eta = \frac{E_{ m nuttig}}{E_{ m in}}$		² P	$W = \Delta E_{\rm k} \qquad F_{\rm res} s = \frac{1}{2} m v^2$		$R = \frac{U}{I}$		$T = 2\pi \sqrt{\frac{m}{C}}$	$E_{\rm k} = \frac{1}{2} m v^2 \qquad \text{res}$	$F_z = mg$			$\eta = \frac{E_{\rm k}}{E_{\rm ch}} E_{\rm ch} = r_{\rm m} m E_{\rm k} = \frac{1}{2} m v^2$		$R = \rho \frac{\ell}{A} A = \frac{1}{4}\pi d^2 I = \frac{U}{R} t = \frac{C}{I}$		•	$U_{\mathrm{BC}} + U_{\mathrm{LDR}_1} + U_{\mathrm{LDR}_2} = 0$		
4.		lijn	v =		$F_{\rm w} = f_{\rm d} F_{\rm n}$.			$v_{\text{max}} = \frac{2\pi A}{T}$			$\left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}} \qquad v = \sqrt{v_x^2 + v_y^2} :$	$F_{\text{mpz}} = \frac{mv^2}{r} \text{ en } F = m a v = \frac{2\pi r}{T}$	$A = \pi r^2$:					Cessna $F_{\rm z} = mg$ $P = F_{\rm m}v$	$\left[V^{-rac{1}{2}} ight]$:	$E_{\rm f} = \frac{hc}{\lambda} P_{\rm el} = UI$
5.		$v_k = \frac{1}{2}mv^2$ v_{gem}			Cappuccino	n de ruimte mv^2 $2\pi r$										$F_{\rm res} = ma$ $a = \frac{\Delta v}{\Delta t}$ $P = Fv$	U = IR	$\frac{\left [F_{\text{lift}} \right]}{\left [\rho \right] \cdot \left [A_{\text{vleugel}} \right] \cdot \left [v \right]^2}$		mtelift $\frac{v^2}{r} = G \frac{mM}{r^2}, \qquad v = \frac{2\pi r}{T}$
6.	$F_w = \frac{W}{s} = \frac{\Delta E_{\rm k}}{s} \ .$	$\frac{r^3}{T^2} = \frac{GM}{4\pi^2}$	Goud	$F_{\rm res} = F_{\rm z} - F_{\rm p}$		$\frac{mv^{2}}{r} = \frac{2\pi r}{T}$ $\frac{4\pi^{2}mr}{T^{2}}$			Qled-tv		$W_{ m w} = E_{ m k,in} - E_{ m k,uit}$ $W_{ m w} = F_{ m w} s$ -			$\Sigma W = \Delta E_{\mathbf{k}}$		Water uit de ruimte	X-stream	$F_{\text{lift}} = \frac{1}{2} \rho A_{\text{vleugel}} C_{\text{lift}} v^2$		$r = R_{A} + h$
7.	Γ 1		$A \propto R^2$		$ \eta = \frac{P_{\text{nuttig}}}{P_{\text{outtig}}} $	$\frac{1}{T^2} = \frac{1}{T^2}$ $= G \frac{mM}{2}.$		$P = F_{\mathrm{w}} v$			Beker van Lycurgus	$T = \frac{k_{\mathrm{W}}}{\lambda_{\mathrm{max}}}$		PET samen met CLI ${}^{18}_{9}\text{F} \rightarrow {}^{18}_{8}\text{O} + {}^{0}_{+1}\text{e} \ (+\text{v}_e) \ (+\gamma)$	Gravitron	$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$	P = Fv		Thalliumscintigrafie	
8.	$F_{\text{w,lucht}} = \frac{1}{2} \rho c_{\text{w}} A v^2$	$met A = \pi R^2$	$I = \frac{P_{\text{bron}}}{I}$	Deuterium ${}_{1}^{2}H + {}_{1}^{1}p \rightarrow {}_{2}^{3}He$	$\rho = \frac{RA}{\ell}$	$T = \frac{k_{\mathrm{W}}}{r^2}.$		ECG in MRI $f = \frac{1}{T}$	$\lambda_{\rm B} = \frac{h}{n} \cdot E_{\rm k} = \frac{p^2}{2m}$	AA-Batterijen		Cirkelgolf	Elektrische gitaar	$_{9}\Gamma \rightarrow _{8}O +_{1}e (+v_{e}) (+\gamma)$	$F_{\rm z} = mg$		$Fw = k \cdot m \cdot g \cdot cos(hoek)$		$^{201}_{82}\text{Pb} \rightarrow ^{201}_{81}\text{Tl} + ^{0}_{1}\text{e} (+\nu_{e}).$	
9			$4\pi r$	$\lambda = \frac{hc}{E_{\rm f}} \qquad E_n = -\frac{13,609}{n^2}$	Poollicht $v = \sqrt{2 \frac{GM}{M}}$	$\frac{1}{\lambda_{\max}}$		$\sum_{i} \hat{U_{i}} = 0$	$E_n = \frac{n^2 h^2}{r^2}$		$[k] = \frac{[f_{\text{res}}]}{\left[\sqrt{\frac{ne^2f}{\pi m}}\right]}$	$v = f\lambda$				$\lambda = \frac{h}{\sqrt{2\pi m k_{\rm B} T}}$			$A = \frac{\ln 2}{t_1} N$	$a = \frac{\Delta v}{\Delta t}$ $F_{\text{res}} = ma$
10	Lise Meitner			$v = \frac{\Delta \lambda}{2} \cdot c$	$v_{\text{gem}} = \frac{\Delta x}{\Delta t},$	n de kelder	Radon		$E_{\rm f} = \frac{hc}{2}$	$R = \rho \frac{l}{A} \qquad A = \frac{1}{4}\pi d^2$	$n = \frac{\rho}{m_{at}} \qquad m_{at} = A \cdot u$		$m = \rho V V = \frac{1}{4}\pi d^2 \ell \begin{cases} \ell = \frac{1}{2}\lambda \\ v = \lambda f \end{cases}$		$v = \frac{2\pi r}{T} \qquad F_{\text{mpz}} = \frac{mv^2}{r}$	ν~······Β1	$Fw = (Fw +) k2 \cdot v^2$ eindals		2	$h = v_{\text{gem}} t$
1 1		*		λ	Δt			2	Practicum warmtestraling ℓ	$P = UI I = \frac{U}{R} P = \frac{U^2}{R}$	$c = f \lambda$		$v = \lambda f$ $f = \frac{1}{T}$		Kleurstoflaser			Sirius B als Quantumsysteem	$I = I_0 \left(\frac{1}{2}\right)^{\frac{d}{d_1}} \qquad I = \frac{P_{\text{bron}}}{4\pi r^2}$	egen $\begin{bmatrix} \underline{d} \end{bmatrix}$
1 5	$I = I_0 \left(\frac{1}{2}\right)^{\frac{d}{d_{1/2}}}$	I		$N(t) = N_0 \left(\frac{1}{2}\right)^{\frac{t}{t_{1/2}}},$				$A = \frac{1}{4}\pi d_{\text{aorta}}^2$	$A = \frac{1}{4}\pi d^2 R = \rho \frac{\ell}{A} P = \frac{U^2}{R}$	A A	SPECT-scan bij parkinson		$U_{ m ind} \propto \frac{{ m d} arPhi}{1}$		$\Delta E = \frac{hc}{a}$.		het viriaal-theorema $\frac{mM}{r}$	$\lambda_{\max} T = k_{\mathrm{W}}$	Jupiter fly-by	$x = \frac{v}{f}$
1 2	1-10(2)			Treinwielen			T 7	Adelaarsnevel	$1 + \alpha (T - T_0)$ $P = \sigma A T^4$	GPS $I = \frac{P_{\text{bron}}}{I}$	${}^{123}_{52}\text{Te} + {}^{1}_{1}\text{p} \rightarrow {}^{123}_{53}\text{I} + {}^{1}_{0}\text{n}$		$\mathrm{d}t$		$\Delta E = \frac{hc}{\lambda} \qquad E_n = \frac{n^2 h^2}{8mL^2}$	Elektrische tandenborstel	$E_{g} = -G\frac{mM}{r} \text{ en } E_{k} = \frac{1}{2}mv^{2}.$ $r = R + h$	$V = N_e d^3$	$F_{\rm g} = G \frac{mM}{r^2} \qquad F_{\rm mpz} = \frac{mv^2}{r}$	y _ x
1 2	$F_{\text{mpz}} = \frac{m v^2}{m}$	F	P = I	$\gamma = \frac{[d][r_0]}{r_0 r_0^2}$	$E = \frac{hc}{c}$		ev	$E_{\rm f} = \frac{hc}{\lambda} E_n = -\frac{13,6 \text{ eV}}{n^2}$	$\lambda_{\max} T = k_{\mathrm{W}}.$	$I = \frac{I_{\text{bron}}}{4\pi r^2}$ $P_{\text{stral}} = IA \eta = \frac{P_{\text{el}}}{P_{\text{stral}}}$	$N = N_0 \left(\frac{1}{2}\right)^{l_1/2}$ $E_f = \frac{hc}{2}$	Alfanuclidetherapie $egin{bmatrix} E \end{bmatrix}$		In de zon $\underline{I_1}$:	λ 8mL	$F_z = mg$	$G\frac{mM}{r^2} = \frac{mv^2}{r}$	$V = N_{\rm e}a$ $L = n\frac{1}{2}\lambda$	r ² mpz r	V - T
1 [¹ mpz r		kernfus	$v = \lambda f \qquad f = \frac{1}{T}$	λ	ng	Parasai		$\frac{I_1}{I_2} = \left(\frac{x_2}{x_1}\right)^2.$	$F_{\text{mpz}} = F_{\text{G}} \Rightarrow \frac{mv^2}{r} = G\frac{mM}{r^2}$	¹ λ	[x]	Elektronendiffractie	I_2	Ontspannen lopen	$v - \lambda f$, $v = \sqrt{\frac{F}{F}}$		$E_n = n^2 \frac{h^2}{8mL^2}$	$\Delta E_k = \frac{1}{2}M(v_{j,na}^2 - v_{j,voor}^2).$	
16	Dualiteit	${}^{4}_{2}$ He + ${}^{1}_{0}$ n	² H +		Boomwhackers $\lambda = \frac{v}{\lambda}$:	$\left(\frac{\Delta v}{\Delta v}\right)$	<i>a</i> =	T - h	I_2 $\left(\begin{array}{c} x_1 \end{array}\right)$ Om het hoekje		$D = \frac{E}{C}$		$\lambda = \frac{h}{p} = \frac{h}{mv} \qquad \frac{1}{2}mv^2 = eU$			$v = \lambda f \qquad v = \sqrt{\frac{1}{\rho_{\ell}}}$		$\begin{array}{ccc} & & & & 8mL^2 \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$	ΔL _k - 2 M (V _{j,na} V _{j,voor}).	ngen binnen een molecuul
1 -				$T = 2\pi \sqrt{\frac{C}{C}}$	f	$(\Delta t)_{ m raaklijn}$		$\lambda_{\max} T = k_{\mathrm{W}}$ $P = \sigma A T^4$	$^{90}_{38}\text{Sr} \rightarrow ^{90}_{39}\text{Y} + ^{0}_{-1}\beta$	$c = \lambda f$	m'		$\lambda = \frac{n}{\sqrt{2emU}}$	E = Pt	P = Fv	MRI	Speeldoosje	$\ell = \frac{1}{2}\lambda \qquad \qquad \nu - \lambda J$		$f = \frac{1}{2\pi} \sqrt{\frac{C}{m}} \qquad T = 2\pi \sqrt{\frac{m}{C}}.$
1 (- hc	hc -				$F_{\rm z} = mg$	Compto	$A = 4\pi R^2$		SIRT	Joystick met Hall-sensor	$E_{k} = \frac{1}{2} m v^{2} \qquad \boxed{2E_{k}} \qquad \boxed{2E_{k}}$	$\Delta s = 2d \sin \alpha$.	$_{\Gamma}$ hc	$S - \frac{v}{}$					$E_{\rm t} = \frac{1}{2} C A^2$
10	$E_{\mathrm{f}} = \overline{\lambda}$	$E_{\rm f} = \frac{hc}{\lambda}$	$E_n = H_s$			$\frac{hc}{\lambda} \qquad p = \frac{h}{\lambda}$		P		$^{90}_{39}Y \rightarrow ^{90}_{40}Zr + ^{0}_{-1}\beta + \gamma + (\overline{\nu}_{e})$	$\rho = \frac{RA}{\ell} \cdot A = \frac{1}{4}\pi d^2$	$E_{k} = \frac{1}{2}mv^{2} p = m\sqrt{\frac{2E_{k}}{m}} = \sqrt{2E_{k}m}$ $p = mv$ $\ln 2$	$2d\sin\alpha=n\lambda.$	$E = \frac{1}{\lambda}$ Ruiken	Wijnfraude opsporen	$hf = \gamma h B_{\text{MRI}}.$ $\Delta E = hf$	$v = \lambda f$		- 1 2 mM	$\Delta E = h f_{\rm A}$
			H_{γ}	Geleidende klei	2.6	$-\lambda = \frac{n}{mc} (1 - \cos \varphi)$ \boxed{h}	$\Delta \lambda = \lambda$	$I = \frac{1}{4\pi r^2}$ LEO-satelliet	mpz r m	$(1)^{\frac{t}{t}}$		$A = \frac{1}{t_{\frac{1}{2}}} N$		Namen	vvijiiiradae opsporeir		Elektronen uit metaal 'stoken'		$E_{\rm k} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$	
2($en [v] = ms^{-1}$		R 4 1 .	$v = \lambda f$ Ramsauer en Townsend	[m][c]	·	$F_{\text{mpz}} = \frac{mv^2}{r} \text{ en } F_{\text{g}} = G\frac{mN}{r^2}$	$v = \frac{Bqr}{m}$	$A = A_0 \left(\frac{1}{2}\right)^{\frac{1}{t_1}}$	7	Zannanalan	Gamma-chirurgie					Inwendige bestraling	Rujaina hij een enkelspleet	erzoek van bot met
	Latin American Tower	1 La		$\rho = \frac{RA}{\ell} \qquad A = \frac{1}{4}\pi d^2$		$\frac{1}{mc} = \frac{\pi}{mc}$	 	$v = \sqrt{\frac{GM}{r}} \qquad r = R_{\text{aarde}} + h$		$E_{ m tot} = nE$ Wortel en mango	$F_{\rm L} = Bqv \text{ en } F_{\rm el} = qE E = \frac{C}{\Delta E}$	Zonnepanelen $P = U \cdot I$	$^{60}_{27}\text{Co} \rightarrow ^{60}_{28}\text{Ni} + ^{0}_{-1}\text{e} + 2^{0}_{0}\gamma + (\overline{\nu}_{e})$		$^{137}_{55}\text{Cs} \to ^{137}_{56}\text{Ba} + ^{0}_{-1}\text{e} + ^{0}_{0}\gamma(+\nu_{e})$	Energievoorziening		$^{124}_{54}$ Xe + $^{1}_{0}$ n $\rightarrow ^{125}_{54}$ Xe (+ $^{0}_{0}$ γ)	n h	um-47 $A = \frac{\ln 2}{4} N \qquad m = Nm_{\text{atoom}}$
22	$f = \frac{1}{T}$	$=\frac{1}{t_{\text{tot}}}$		$R = \rho \frac{l}{A}$. Hawkingstraling	1.	$f = \frac{1}{T}$	Viool	$P = Fv$ $F_{\mathbf{w}} = \frac{1}{2} \rho c_{\mathbf{w}} A v^2$		$E_{\rm f} = \frac{hc}{\lambda}$			$E = \frac{hc}{\lambda}$		$\lambda = \frac{nc}{E_{\rm f}}$:	Energievoorziening voor een weerstation P = UI $nC = ItE = UIt = UC$ $E = Pt$	$T = \frac{\kappa_{\rm W}}{\lambda_{\rm max}}$	$A = \frac{\ln 2}{t_{\frac{1}{2}}} N m = N_0 \cdot M$	$\sin \alpha = \frac{p_x}{p} \qquad \lambda = \frac{h}{p}$	$t_{\frac{1}{2}}$
25	$a_{\text{gem}} = \frac{\Delta v}{\Delta t}, v = \left(\frac{\Delta x}{\Delta t}\right)_{\text{raaklijn}}$	a_{ge}		Hawkingstraling $\frac{P}{P_{\text{zon}}} = \left(\frac{M}{M_{\text{zon}}}\right)^{3.8}$		$=f\lambda$		$\frac{\mathrm{d}E_{\mathrm{t}}}{\mathrm{d}r} = \frac{1}{2}GmMr^{-2}$	Speciale fluit $v = f \lambda$	$E_n = n^2 \frac{h^2}{8mL^2}.$		-	$A = \frac{\ln 2}{t_{\frac{1}{2}}} N m = N m_{\text{at}}$	$T = 2\pi \sqrt{\frac{m}{C}}$	$A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{t_1}}$	P = UI			$\Delta x \Delta p \ge \frac{h}{4\pi}$	$I = I_0 \left(\frac{1}{2}\right)^{\frac{a}{d_1}}$
24	$v = f\lambda$			$E_{\rm kin} = \frac{1}{2}mv^2 \qquad E_{\rm g} = -G\frac{mM}{r}$				$v = \frac{2\pi r}{T}$		EIND EXAMEN	EIND EXAMEN	$E_{\rm f} = \frac{hc}{\lambda}$	$D = \frac{E}{m} : m = \rho V \qquad V = \frac{4}{3}\pi r^3$	A 11 1 1 1 1 1					Draadbreuk	
25		MEN	EIN	$r_{\rm s} = \frac{2GM}{c^2}$	$E_n = \frac{n^2 h^2}{8mL^2}.$	$n \cdot f_{\mathrm{grondtoon}}$	$f_{\rm n} =$	$v = \sqrt{\frac{GM}{r}}$	$v = \lambda f$			EIND EXAMEN		Aardlekschakelaar $R = \rho \frac{\ell}{A}: U = IR A = \frac{1}{4}\pi d^2$	EIND EXAMEN				$R = \frac{\rho \ell}{A} : \qquad U = IR$	
26					EIND EXAMEN	EXAMEN	EIN	EIND EXAMEN	EIND EXAMEN				EIND EXAMEN	U=IR			EIND EXAMEN	EIND EXAMEN		EIND EXAMEN
27				$P = \sigma A T^4, \qquad A = 4\pi r_s^2.$												EIND EXAMEN				
28	EIND EXAMEN													$U_{\rm ind} \propto \frac{d\Phi}{dt}$					EIND EXAMEN	
29				EIND EXAMEN										EIND EXAMEN						