CS 273A Midterm Exam

Introduction to Machine Learning: Winter 2021

Thursday February 9th, 2021

Your name:	Row/Seat Number:
Your ID #(e.g., 123456789)	UCINetID (e.g.ucinetid@uci.edu)

- Declaration of Honor. By submitting this exam you are making the following declaration: I hereby declare, upon my Honor, that this work is my own, and that in reaching an answer I have not assisted any other person, nor have been assisted by any other person in any form. I acknowledge that, had I cheated, I would have been the kind of person who cheats, and I do not wish to be the kind of person who cheats.
- Please put your name and ID on every page.
- Total time is 60 minutes. READ THE EXAM FIRST and organize your time; don't spend too long on any one problem.
- Please write clearly and show all your work.
- Please ensure your final answer is contained in the space provided. We will not consider or grade anything beyond that space.
- If you need any clarification, please ask in our zoom room: https://uci.zoom.us/j/94903054276
- You may use **one** sheet containing handwritten notes for reference.
- Turn in your notes and any scratch paper with your exam.

Problems

Bayes Classifiers, (20 points.)	3
Decision Trees, (16 points.)	5
Linear and Nearest Neighbor Regression, (20 points.)	7
True/False, (20 points.)	9
VC-Dimensionality, (24 points.)	11
	Decision Trees, (16 points.) Linear and Nearest Neighbor Regression, (20 points.) True/False, (20 points.)

Total, (100 points.)

 $This \ page \ is \ intentionally \ blank, \ use \ as \ you \ wish.$

 x_1

b

b

 \mathbf{c}

a

a b

b

 x_2

b

 \mathbf{c}

 \mathbf{c}

 \mathbf{c}

 \mathbf{c}

b

a

b

y

0

0

0 1

1

1

1

Problem 1 Bayes Classifiers, (20 points.)

Consider the table of measured data given at right. We will use the two observed features x_1 , x_2 to predict the class y. Each feature can take on one of three values, $x_i \in \{a, b, c\}$.

In the case of a tie, we will prefer to predict class y = 0.

(1) Write down the probabilities learned by a naïve Bayes classifier: (8 points.)

p(y=0): 1/2	p(y=1): 1/2
$p(x_1 = a \mid y = 0) : $	$p(x_1 = a y = 1) : $
$p(x_1 = b \mid y = 0) : $	$p(x_1 = b y = 1) : \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$p(x_1 = c \mid y = 0) : $	$p(x_1 = c \mid y = 1): \bigcirc$
$p(x_2 = a \mid y = 0) : \bigcirc$	$p(x_2 = a \mid y = 1)$:
$p(x_2 = b \mid y = 0)$: /4	$p(x_2 = b y = 1):$
$p(x_2 = c y = 0) : 3_{14}$	$p(x_2 = c y = 1) : $ / $+$

(2) Using your naïve Bayes model, compute: (6 points.) $p(y=0|x_1=a,x_2=c): p(y=1|x_1=a,x_2=c):$

(3) Compute probabilities $p(y=0|x_1=a,x_2=c)$ and $p(y=1|x_1=a,x_2=c)$ for a joint (not naïve) Bayes model trained on the same data. (6 points.)

Problem 2 Decision Trees, (16 points.)

Consider the table of measured data given at right. We will use a decision tree to predict the outcome y (one of two classes) using three features, x_1, x_2, x_3 , where each can take one of two values: 0, 1. In the case of ties, we prefer to use the feature with the smaller index (x_1 over x_2 , etc.) and prefer to predict class 0 over 1. You may find the following values useful (**do not** leave logs unexpanded):

$$\begin{aligned} \log_2(1) &= 0 \quad \log_2(2) = 1 \quad \log_2(3) = 1.6 \quad \log_2(4) = 2 \\ \log_2(5) &= 2.3 \quad \log_2(6) = 2.6 \quad \log_2(7) = 2.8 \quad \log_2(8) = 3 \end{aligned}$$

(1) What is the entropy of y? (4 points.)

(2) What is the information gain of x_1 , x_2 and x_3 ? (8 points.)

(3) Based on the information gain computed in (2), and any follow-up computations you'll need, build the complete decision tree learned on this data. (4 points.)

Name:	ID#:	

Problem 3 Linear and Nearest Neighbor Regression, (20 points.)

Consider the data points shown at right, for a regression problem to predict y given a scalar feature x. As a reminder, leave-one-out with m data points is m-fold cross-validation.

(1) Compute **leave-one-out** cross-validation error of a zero-order (constant) predictor, $f(x) = \frac{1}{2} \int_{-\infty}^{\infty} f(x) dx$

$$\frac{\theta_{0.} \ (4 \ points.)}{3} \left[\left(\frac{5}{2} \right)^{2} + 1 + \left(\frac{7}{2} \right)^{2} \right] = 6.5$$

(2) Compute the **leave-one-out** cross-validation error (MSE) of a 1-nearest neighbor predictor. $(4 \ points.)$

(3) Compute the **leave-one-out** cross-validation error (MSE) of a 2-nearest neighbor predictor. (6 points.)

$$\frac{1}{3}\left[\left(\frac{5}{2}\right)^{2}+1^{2}+\left(\frac{7}{2}\right)^{2}\right]=6.5$$

(4) Compute the **leave-one-out** cross-validation MSE of a first-order linear regressor, $f(x) = \theta_0 + \theta_1 x$.

(6 points.)

$$\frac{1}{3} \left[8 + 2^{2} + \left(\frac{8}{3} \right)^{2} \right] = \frac{676}{27}$$

Name:	ID#:	

Problem 4 True/False, (20 points.)

Here, assume that we have m data points $y^{(i)}$, $x^{(i)}$, i=1...m, each with n features, $x^{(i)}=[x_1^{(i)}\ldots x_n^{(i)}]$. For each of the scenarios below, circle one of "true" or "false" to indicate whether you agree with the statement.

- 1 **True** or **false**: Applying "early stopping" in SGD by increasing the convergence tolerance (gradient size below which we stop) usually reduces overfitting and increases the bias of the learner.
- 2 True or false: With sufficient depth, a decision tree can approximate any Boolean function.
- 3 **True** or **false**: Increasing the regularization penalty of a linear regression model usually decreases the resulting model's variance.
- 4 **True** or **false**: When training a linear classifier using the logistic threshold function, negative log-likelihood loss may be preferable to mean square error (MSE) loss, because MSE has gradient 0 and stops updating when all points are classified correctly, even if their margin is small.
- 5 True or false: Increasing k in a k-nearest neighbors classifier usually decreases the bias.
- 6 True or false: Stochastic gradient descent usually requires more gradient steps than batch gradient descent when the number of data points m is very large.
- 7 True or false: For a perceptron, using 2n features per data point by adding n random values to each data point usually increases the resulting model's variance.
- 8 **True** or **false**: For the gradient computed in stochastic gradient descent, increasing the mini-batch size usually decreases both the bias and the variance of a mini-batch gradient as an estimate for the full-batch gradient.
- 9 True or false: For a perceptron, increasing the number of training data points m usually increases the resulting model's bias.
- 10 **True** or **false**: Increasing k in k-fold cross validation usually decreases the bias of the average cross-validation loss as an estimate for the final model's test loss.

Problem 5 VC-Dimensionality, (24 points.)

We will be considering a family of "box-shaped" classifiers on a two-dimensional feature space (x_1, x_2) , such that the region inside the box is classified as +1.

(1) First, consider a simple classifier f_0 that uses a square which has one of the points at the origin, and c as the parameter that defines the edge size, i.e.

$$f_0(x) = \begin{cases} +1 & (0 < x_1 < c) \land (0 < x_2 < c) \\ -1 & \text{otherwise} \end{cases}$$

Show that this classifier has a VC-dimensionality of 1. (6 points.)

(2) Now consider an extension of this classifier with two additional parameters, f_1 that uses a point (a_1, a_2) and c as parameters to describe this square. Specifically:

$$f(x) = \begin{cases} +1 & (a_1 < x_1 < a_1 + c) \land (a_2 < x_2 < a_2 + c) \\ -1 & \text{otherwise} \end{cases}$$

Show that there exist 3 points that f_1 can shatter. What does it say about the VC-dimensionality of f? (6 points.)

Continued on next page

Name:	

ID#:

(3) Either show that f_1 can shatter 4 points, or argue, informally, why it cannot. What does this say about the VC-dimensionality of f_1 ? (6 points.)

Cannot shatter 4 points

Just label them alternatively

(4) Now consider yet another extension f_2 where the region is a rectangle bounded by points (a_1, a_2) and (b_1, b_2) , a total of 4 parameters:

$$f_2(x) = \begin{cases} +1 & (a_1 < x_1 < b_1) \land (a_2 < x_2 < b_2) \\ -1 & \text{otherwise} \end{cases}$$

Either show that f_2 can shatter 4 points, or argue, informally, why it cannot. What does this say about the VC-dimensionality of f_2 ? (6 points.)

- Since it is now a rectangular it can shatter 4 points forming a convex shape

Name: ID#:	Name:		ID#:	
------------	-------	--	------	--