Nichtmonotone Vererbung und Und Default Logic

Wolfgang May Freiburg, 6.12.2001

Nonmonotonic Reasoning

- seit späte 70er: Konzepte und Theoretische Untersuchungen
- 80er: Wissensrepräsentation
- 90er: Objektorientiertes Datenmodell
- heute: XML: Default-Attribute

Nichtmonotone Vererbung

- Vögel fliegen.
- Tweety ist ein Vogel.

Tweety fliegt

Nichtmonotone Vererbung

- Vögel fliegen.
- Tweety ist ein Vogel.
 Tweety fliegt

 $\mathcal{D} \vdash \alpha$

- Vögel fliegen.
- Pinguine fliegen nicht.
- Tweety ist ein Vogel.

Tweety fliegt

Nichtmonotone Vererbung

- Vögel fliegen.
- Tweety ist ein Vogel.
 Tweety fliegt

$$\mathcal{D} \vdash \alpha$$

- Vögel fliegen.
- Pinguine fliegen nicht.
- Tweety ist ein Vogel.
- Tweety ist ein Pinguin!
 Tweety fliegt nicht!

$$\mathcal{D} \cup \mathcal{D}^+ \not\vdash \alpha$$

```
bird(X) \rightarrow flies(X)
penguin(X) \rightarrow not\_flies(X)
bird(tweety)
bird(lora)
flies(tweety)
flies(lora)
```

```
bird(X) \rightarrow flies(X)
penguin(X) \rightarrow not_flies(X)
bird(tweety)
bird(lora)
penguin(tweety)
 flies(tweety)
 flies(lora)
not_flies(tweety)
inkonsistent
```

```
bird(X) → flies(X)
penguin(X) → not_flies(X)
bird(tweety)
bird(lora)
penguin(tweety)
-flies(tweety)
-flies(lora)
not_flies(tweety)
```

```
\begin{array}{ll} & \text{bird}(X) \to \text{flies}(X) \\ & \text{penguin}(X) \to \text{not\_flies}(X) \\ & \text{bird}(\text{tweety}) \\ & \text{bird}(\text{tweety}) \\ & \text{bird}(\text{lora}) \\ & \text{penguin}(\text{tweety}) \\ & \text{penguin}(\text{tweety}) \\ & \text{penguin}(\text{tweety}) \\ & \text{penguin}(\text{tweety}) \\ & \text{flies}(\text{tweety}) \\ & \text{flies}(\text{lora}) \\ & \text{not\_flies}(\text{tweety}). \\ & \text{not\_flies}(\text{tweety}) \\ \end{array}
```

```
bird(X) \land \neg penguin \rightarrow flies(X)
bird(X) \rightarrow flies(X)
penguin(X) \rightarrow not_flies(X)
                                  penguin(X) → not_flies(X)
bird(tweety)
                                  bird(tweety)
bird(lora)
                                  penguin(tweety)
                                  bird(lora)
penguin(tweety)
flies(tweety)
                                  flies(lora)
flies(lora)
                                  not_flies(tweety).
not_flies(tweety)
                                  wissen wir, ob Lora kein Pinguin ist?
```

CWA

Inheritance Nets

"Direkter", grafischer Formalismus

Pfad: tweety – penguin – bird – fly ist "preempted" durch tweety – penguin → fly Pfad: lora – bird – fly

Extension als theoretisches Modell-Konzept

Beispiel

Konflikt:

zwei mögliche Extensionen

Default Logic

Erweitert First-Order Logic um zusätzliche "weiche" Schlussregeln [R.Reiter, Al 1980]

$$d = \frac{\alpha(\bar{x}) : \beta(\bar{x})}{w(\bar{x})} \qquad \frac{bird(x) : fly(x)}{fly(x)}$$

- precondition $p(d) = \alpha(\bar{x})$
- justification $J(d) = \beta(\bar{x}) = \{\beta_1(\bar{x}), \dots, \beta_k(\bar{x})\}$
- consequence $c(d) = w(\bar{x})$
- α, β, w beliebige First-Order Formeln
- Ist $\alpha(\bar{c})$ beweisbar und die Annahme $\beta(\bar{c})$ konsistent, kann $w(\bar{c})$ daraus geschlossen werden.

CWA: Implizites Negatives Wissen

- Datenbanken: nur positive Fakten gespeichert
 - CWA [Reiter 1978] ist ein negativer Default ohne Vorbedingung:

$$\frac{:\neg p(x_1,\ldots,x_n)}{\neg p(x_1,\ldots,x_n)}$$

- negatives Wissen muss nicht explizit repräsentiert werden.
- Logic Programming: Negation as failure

Default Proofs

Eingabe: eine Menge *D* von Defaults und eine Menge *S* von Formeln ("Situation").

Ein Default Proof einer Formel γ bzgl. D und S ist eine Folge d_1, \ldots, d_n von Defaults wenn

- für i = 1...n:
 - $p(d_i) \in \mathsf{Th}(S \cup c(\{d_1, \dots, d_{i-1}\}))$
 - Th $(S \cup \{J(d_i)\})$ ist konsistent
- Aber:
 - $S \cup \{c(d_1), \dots, c(d_n)\}$ kann inkonsistent sein
 - $J(d_i)$ kann mit vorhergehenden oder nachfolgenden $c(d_i)$ und $J(d_i)$ inkonsistent sein

Extensionen

- Gegeben: $\Delta = (D, F)$ wobei D eine Menge von Defaults und F eine Menge von geschlossenen Formeln.
- Sei S eine Menge geschlossener Formeln.
- $\Gamma(S)$ minimal so dass
 - $F \subseteq \Gamma(S)$
 - Th($\Gamma(S)$) = $\Gamma(S)$ (deduktiv abgeschlossen)
 - für alle γ , für die es einen Default Proof bzgl. Δ und S gibt, ist $\gamma \in \Gamma(S)$ (Abschluss gg. D).
 - $\Gamma(S)$ kann inkonsistent sein
- eine Menge E geschlossener Formeln ist eine Extension von Δ , falls $\Gamma(E)=E$.

Kriterium ist nicht konstruktiv.

Alternative Charakterisierung

[Reiter Al 1980] $\Delta = (D, F)$.

 $S_0 = F, S_1, S_2, \dots$ eine Folge von Mengen von Formeln so dass $S = (\bigcup_{i=0}^{\infty} S_i)$ und

$$S_{i+1} = S_i \cup c(GD(S_i, \mathbf{S}, D)) ,$$

 $\overline{GD(S_i,S,D)} := \{d \mid d \text{ ist eine Instanz eines Defaults in } D,$ $\mathsf{Th}(S_i) \models p(d) \text{ und } \mathsf{Th}(S \cup J(d)) \text{ ist konsistent}\}$

Dann ist Th(S) eine *Extension* von Δ .

"quasi-induktive" Charakterisierung

Eigenschaften

- Im allgemeinen besitzt ∆ mehrere Extensionen
- für jedes γ gibt S_0, S_1, \ldots eine "Herleitung" ("Default Proof")
- Fragestellungen:
 - credulous: ist eine Formel/ein Faktum in irgendeiner Extension zu Δ enthalten?
 - sceptical: ist eine Formel/ein Faktum in jeder Extension zu Δ enthalten?
 - safe: besitzt eine Formel/ein Faktum in jeder Extension dieselbe Herleitung?

Eigenschaften (Cont'd)

- Alle wesentlichen Fragen sind Σ_2^P oder Π_2^P -vollständig. Genauer: NP, wenn man ein SAT-Orakel verwendet
- Gibt es eine Extension von Δ , die γ enthält?
 - nicht semi-entscheidbar, d.h., die Menge aller Formeln die in irgendeiner Extension gelten ist nicht rekursiv aufzählbar.
- Aussagenlog. Default-Theorien ohne Disjunktion: NP [Kautz, Selman Al 91]
- Sceptical semantics: ist keine Extension, erfüllt cumulative monotony nicht.

Approximation durch Bottom-up-Iteration

 $S_0 = F, S_1, S_2, \dots$ eine Folge von Mengen von Formeln so dass $S = (\bigcup_{i=0}^{\infty} S_i)$ und

$$S_{i+1} = S_i \cup C_i$$
 wobei $C_i \subseteq c(GD(S_i, D))$,

$$GD(S_i, D) := \{d \mid d \text{ ist eine Instanz eines Defaults in } D,$$

$$\mathsf{Th}(S_i) \models p(d) \text{ und } \mathsf{Th}(S_i \cup J(d)) \text{ ist konsistent} \}$$

Betrachte dann Th(S).

Bottom-Up

Risiko: Justification wird in einem späteren Schritt ungültig Abhilfe:

- Mitführen der verwendeten Justifications [Brewka Al 1991]
- geeignete Struktur der Defaults

Bottom-Up

Risiko: Justification wird in einem späteren Schritt ungültig Abhilfe:

- Mitführen der verwendeten Justifications [Brewka Al 1991]
- geeignete Struktur der Defaults

Normale Defaults

Form:
$$\frac{\alpha : w}{w}$$
 $\frac{bird(x) : fly(x)}{fly(x)}$

- Jede normale Default-Theorie hat (mindestens) eine Extension.
- Jede Extension läßt sich bottom-up berechnen

Vererbung und Datenbanken

- Default Logic: Mengen von Formeln
- Deduktive, objektorientierte Datenbanken
 - Menge von (nur positiven) Fakten
 - Regeln head ← body
 - Vererbung innerhalb der Klassenhierarchie
- bottom-up Auswertung, T_P-Operator ersetzt Theoriebildung
- dazu passen nur spezielle "Horn-style" Defaults
 - α , β vorzugsweise Literale (oder einfache Formeln)
 - w Atome
 - Horn Default-Theorien sind polynomial [Kautz, Selman Al 91]

Beispiel

penguin subcl bird tweety isa penguin

$$d_1: rac{X ext{ isa } penguin: X[flies
ightarrow false]}{X[flies
ightarrow false]} \qquad d_2: rac{X ext{ isa } bird: X[flies
ightarrow true]}{X[flies
ightarrow true]}$$

- Zwei mögliche Extensionen
 - Anwendung von d_1 : $tweety[flies \rightarrow false]$
 - Anwendung von d₂: tweety[flies→true] intuitiv nicht beabsichtigt
 Preemption wird nicht berücksichtigt!

Präferenzen

- "Ranked" Defaults
- Spezifischere Defaults automatisch bevorzugen [Poole IJCAI 85]
- hier: Klassenhierarchie
 "Wenn es keine dazwischenliegende Klasse gibt"

Defaults für Vererbung

Default Schemata:

$$X \text{ isa } C, C[M \bullet \to V] : X[M \to V] \land \neg \exists SC : (X \text{ isa } SC \land SC \text{ subcl } C)$$
$$X[M \to V]$$

Analog für Vererbung zu Subklassen.

- Bottom-up-Approximation
 - Risiko: Zwischenklassen, die erst in einem späteren Schritt abgeleitet werden und dem Default nicht entsprechen

Defaults für Vererbung

Default Schemata:

$$X \text{ isa } C, C[M \bullet \to V] : X[M \to V] \land \neg \exists SC : (X \text{ isa } SC \land SC \text{ subcl } C)$$

$$X[M \to V]$$

$$\neg (\exists SC : (X \text{ isa } SC \land SC \text{ subcl } C \land \neg SC[M \bullet \to V]))$$

Analog für Vererbung zu Subklassen.

- Bottom-up-Approximation
 - Risiko: Zwischenklassen, die erst in einem späteren Schritt abgeleitet werden und dem Default nicht entsprechen
 - kein Problem bei statischer Klassenhierarchie

Konflikte

Konflikt: konsistente Teilmenge anwenden.

Konflikte

Konflikt: konsistente Teilmenge anwenden.

Nixon Diamond:

 $P = \{ \text{ quaker[policy} \rightarrow \text{pacifist], republican[policy} \rightarrow \text{hawk], nixon is a quaker, nixon is a republican} \}.$

$$S_0 = T_P^{\omega}(P) = P$$

$$GD(S_0,D) = \begin{cases} \underset{\text{nixon is a quaker, quaker[policy} \rightarrow \text{pacifist]: nixon[policy} \rightarrow \text{pacifist]} \\ \underset{\text{nixon[policy} \rightarrow \text{pacifist]}}{\text{nixon[policy} \rightarrow \text{pacifist]}} \end{cases}$$

nixon isa republican, quaker[policy→hawk]: nixon[policy→hawk] nixon[policy→hawk]

Komplexität

- es genügt, in jedem Schritt einen anwendbaren Default anzuwenden
- ohne Objektgenerierung: eine Extension wird in polynomialer Zeit berechnet
- credulous/sceptical/safe: alle Extensionen müssen berechnet werden

Fazit:

- Anwendung von Defaults auf Vererbung in objektorientierten Datenbanken sinnvoll
- auch für XML vielversprechend

Kritik

- "sceptical" Semantik zu restriktiv: bereits ein einziger Default (z.B. $\frac{: \neg a}{a}$) kann dazu führen, dass keine Extension existiert
- "sceptical" Semantik ist keine Extension
- "sceptical" Semantik ist nicht kumulativ,erfüllt
 "Or/Distribution" nicht.

Weitere Aspekte

- Suche nach "besseren" Semantiken
- Logic Programming mit Negation und Default Logic
 - Übersetzung
- Metatheoretische Eigenschaften nichtmonotoner Systeme
 - Default-Logic verhält sich ziemlich "unerwünscht" (nicht kumulativ,erfüllt "Or" nicht)
 - Default-Logic ist nicht "Rational"
 - Anwendung für Vererbung in Bottom-up Evaluierung für Grundinstanzen ist problemlos

Die Suche nach "besseren" Semantiken

gesucht: kumulative Semantik

Betrachte $\Gamma(S)$ imNixon-Diamond

- $\Gamma(\emptyset) = P \cup \{\text{nixon isa pacifist, nixon isa hawk}\} = \overline{E_{cred}}$
- $\Gamma(\Gamma(\emptyset)) = P = E_{scept}$
- alternierend

Interpretationsmöglichkeiten:

 Dreiwertige Semantik wie für LP: dreiwertige Extensionen [Przymusinski Al 1991]
 (LP: 3-wertige Default-Semantik+CWA äquivalent zu WFS)

Stationary Default Extensions

Andere Interpretationsmöglichkeit: "Stationary Default Extensions" [Przymusinska/-ski FI 94]

- Γ ist antimonoton, $\Gamma \circ \Gamma$ ist monoton
- Bedingung: $\Gamma(\Gamma(E)) = E$
- Extensionen ⊊ stationäre Extensionen
- kleinste stationäre Extension iterativ berechenbar: $\emptyset, \Gamma^2(\emptyset), \Gamma^4(\emptyset), \dots, \Gamma^{2n}(\emptyset), \dots$
- endlich falls ∆ endlich und keine Funktionssymbole
- n Defaults, m Justifications $\to O(n^2 \cdot m)$ Erfüllbarkeitstests/ Γ -Schritt, sinnvoll für Sprachen wo Erfüllbarkeit polynomiell
- "sceptical" erfüllt Kumulativität

Stärkere zweiwertige Semantiken

In vielen Fällen ist stationäre Semantik zu streng: "Ungerade" Γ-Anwendung akzeptiertzu viel. (Γ ist noch großzügiger als die bottom-up Approximation)

Stärkere zweiwertige Semantiken

In vielen Fällen ist stationäre Semantik zu streng: "Ungerade" Γ-Anwendung akzeptiertzu viel. (Γ ist noch großzügiger als die bottom-up Approximation)

- Γ basiert auf Default Proofs
- Default Proof kann inkonsistent sein
- Default Proof kann inkonsistente Justifications benutzt haben
 - einzeln inkonsistent zum Ergebnis
 - es gibt keine Extension, in der die verwendeten Justifications gleichzeitig zutreffen

Stärkere zweiwertige Semantiken

Strengere Γ_i -Operatoren [Brewka, Gottlob FI 1997]

- Bedingung: $\Gamma(\Gamma_i(E)) = E$
- $\Gamma_1(S) = \{p \mid \text{es gibt einen Default Proof für } p\}$
- Γ_2 : Default Proof ist konsistent
- Γ_3 : Justifications sind konsistent
- Γ_4 : Default Proof muss mit einer Extension konsistent, d.h., nachvollziehbar sein
- Betrachte Fixpunkte von $\Gamma\Gamma_i$.
- $WFS = (\Gamma\Gamma_1)^{\omega}(\emptyset) \subseteq (\Gamma\Gamma_2)^{\omega}(\emptyset)$ $\subseteq (\Gamma\Gamma_3)^{\omega}(\emptyset) \subseteq (\Gamma\Gamma_4)^{\omega}(\emptyset) = safe$

Gammas-Hierarchie

$$WFS_{\Gamma_1}(\Delta) \subseteq WFS_{\Gamma_2}(\Delta) \subseteq WFS_{\Gamma_3}(\Delta) \subseteq WFS_{\Gamma_4}(\Delta) = Safe(\Delta)$$

Für normale Default-Theorien:

$$\Gamma_2 = \Gamma_3 = \Gamma_4 = \bigcup (bottom-up)^{\omega} = \bigcup (Extensionen)$$

Gammas-Hierarchie

- $\Gamma = \Gamma_1$: alles was irgendwie begründet werden kann.
- Γ_2 : abgeleitete Formeln müssen konsistent sein.
- Γ_3 : Justifications müssen mit abgeleiteten Formeln konsistent sein.
- bottom-up Iteration: Default-Proof muss in einer Extension nachvollziehbar sein – allerdings können Justifications später verloren gehen.
- Γ_4 : Default-Proof muss in einer Extension nachvollziehbar sein.
- \bigcup (Extensionen) = Γ_4
- für normale Defaults: \bigcup (bottom-up), Γ_2 , Γ_3 , Γ_4 und \bigcup (Extensionen) äquivalent.

Weitere Aspekte

- Logic Programming mit Negation und Default Logic
 - Übersetzung
- Metatheoretische Eigenschaften nichtmonotoner Systeme
 - Default-Logik verhält sich ziemlich "unerwünscht" (nicht kumulativ, erfüllt "Or" nicht)
 - Default-Logic ist nicht "Rational"
 - Anwendung für Vererbung in Bottom-up Evaluierung für Grundinstanzen ist problemlos

Questions ??

LP mit Negation und Default Logic

Formulierung von LP in Default-Logic $P \mapsto \Delta(P)$ [Przymusinski 1988, Bidoit, Froidevaux I&C 1991]

$$p(\bar{x}) := a_1(\bar{x}) \wedge \ldots \wedge a_n(\bar{x}), \neg b_1(\bar{x}) \wedge \ldots \wedge \neg b_m(\bar{x}).$$

$$\underline{a_1(\bar{x}) \wedge \ldots \wedge a_n(\bar{x}) : \neg b_1(\bar{x}) \wedge \ldots \wedge \neg b_m(\bar{x})}_{p(\bar{x})}$$

Beispiel:

$$\frac{move(X,Y):\neg win(Y)}{win(X)}$$

- stabile Modelle entsprechen Extensionen
- kleinstes stationäres Modell entspricht der WFS polynomiell

Default-Theorien als Logic Programs

umgekehrte Richtung ...

Übersetzung von Default-Theorien in LPs [Li, You JCI 1991]

Defaults vs. Implikation

- Implikation: $(X \text{ isa } bird) \rightarrow fly(X)$ Konsequenz: $\neg fly(tweety) \rightarrow \neg(tweety \text{ isa } bird)$
- Default: $\frac{\overline{bird(x)} : \overline{fly(x)}}{fly(x)}$

Konsequenz: $\neg fly(tweety)$ bedeutet nur, dass der Default auf Tweety nicht anwendbar ist [vgl. Poole Al 1988 (Theorist)]

Generating Defaults

S eine Menge geschlossener Formeln.

$$GD(S,D) := \{d \mid d \text{ ist eine Instanz eines Defaults in } D,$$

$$\mathsf{Th}(S) \models p(d) \text{ und } \mathsf{Th}(S \cup J(d)) \text{ ist konsistent} \}$$

GD(S,D) kann Konflikte enthalten.

Gammas-Hierarchie

- Skeptical reasoning in Reiter's Default Logik: Π_2^P -vollständig.
- $\Gamma = \Gamma_1$, Γ_2 , Γ_3 , Γ_4 : WFS Π_2^P -hart.
- Γ_4 : WFS Σ_3^P -vollständig.

Gammas-Hierarchie

- Skeptical reasoning in Reiter's Default Logik: Π_2^P -vollständig.
- $\Gamma = \Gamma_1$, Γ_2 , Γ_3 , Γ_4 : WFS Π_2^P -hart.
- Γ_4 : WFS Σ_3^P -vollständig.

wobei

- Π_2^P : polynomiell nichtdeterministisch lösbar, wenn man ein NP-Orakel hat
- Σ_2^P : Probleme, deren Komplement in Π_2^P ist.

Beispiel für stationäre Extension

[Przymusinska, Przymusinski FI 1994]

$$sleep \leftarrow \neg work.$$
 $sleep$
 $work \leftarrow \neg tired.$
 $tired \leftarrow \neg sleep.$
 $tired \leftarrow \neg sleep.$
 $tired$
 $tired$
 $tired$
 $tired$
 $tired$
 $tired$
 $tired$
 $tired$
 $tired$
 $tired$

angry

analog: Nixon Diamond

Beispiel für stationäre Extension (Cont'd)

- mehrere Extensionen $\{paid, \neg angry, sleep\}, \{paid, \neg angry, work\}, \{paid, \neg angry, tired\}$
- Sceptical Semantics: $E_{scept} = \{paid, \neg angry\}$
- ist keine Extension
- $\Gamma(\emptyset) = \{paid, \neg angry, sleep, work, tired\}$
- $\Gamma(\{paid, \neg angry, sleep, work, tired\}) = E_{scept}$

Beispiel zu WFS-2

$$D = \left\{ \frac{:b}{b} \; , \; \frac{:a}{a} \; , \; \frac{:\neg a}{\neg a} \right\}$$

Beispiel zu WFS-2

$$D = \left\{ \frac{:b}{b} \; , \; \frac{:a}{a} \; , \; \frac{:\neg a}{\neg a} \right\}$$

$$\Gamma(\emptyset) = \operatorname{Th}(\{b, a, \neg a\}) = Lang$$

 $\Gamma_2(\emptyset) = \operatorname{Th}(\{b, a\}) \cup \operatorname{Th}(\{b, \neg a\})$
enthält $\neg b$ nicht.
Damit ist die Annahme von b konsistent:

 $\Gamma(\Gamma_2(\emptyset)) = \mathsf{Th}(\{b\})$ Fixpunkt.

Beispiel zu Gamma-Hierarchie

$$D = \left\{ \frac{:a}{a} \; , \; \frac{:\neg a}{\neg a} \; , \; \frac{:b}{c} \; , \; \frac{:a}{d} \; , \; \frac{\neg a:b}{\neg b} \right\}$$

Beispiel zu Gamma-Hierarchie

$$D = \left\{ \frac{:a}{a} \; , \; \frac{:\neg a}{\neg a} \; , \; \frac{:b}{c} \; , \; \frac{:a}{d} \; , \; \frac{\neg a:b}{\neg b} \right\}$$

	i=1	i = 2	i = 3	i=4
$\Gamma_i(\emptyset)$	Lang	$Th(\{a,c,d\}) \cup \\ Th(\{\neg a,c,d,\neg b\})$	$Th(\{a,c,d\}) \cup Th(\{\neg a,c\})$	$Th(\{a,c,d\})$
$\Gamma\Gamma_i(\emptyset)$	$Th(\emptyset)$	$Th(\emptyset)$	$Th(\{c\})$	$Th(\{a,c,d\})$

WFS_i für Logic Programming

$$P = \{ a \leftarrow \neg d \qquad c \leftarrow \neg b \qquad b \leftarrow \neg b, d \\ d \leftarrow \neg a \qquad f \leftarrow \neg d \}$$

- Stabiles Modell: $\{a, c, f\}$
- $WFS(P) = WFS_2(P) = \mathsf{Th}(\emptyset)$
- $WFS_3(P) = \mathsf{Th}(\{c\})$
- $WFS_4(P) = Th(\{a, c, f\})$

WFS_i für Logic Programming

$$P = \{ a \leftarrow \neg d \qquad c \leftarrow \neg b \qquad b \leftarrow \neg b, d \\ d \leftarrow \neg a \qquad f \leftarrow \neg d \}$$

- Stabiles Modell: $\{a, c, f\}$
- $WFS(P) = WFS_2(P) = \mathsf{Th}(\emptyset)$
- $WFS_3(P) = Th(\{c\})$ (b-Regel ist self-defeating)
- $WFS_4(P) = Th(\{a, c, f\})$

Metatheoretische Eigenschaften

[Kraus,Lehmann,Magidor AI 1990] Eigenschaften von Konsequenzrelationen: Was soll man aus einer Menge von " $\alpha \triangleright \beta$ " schließen? Ganz notwendig:

- Reflexivity: $\alpha \triangleright \alpha$
- Left Logical Equivalence: $\frac{\models \alpha \leftrightarrow \beta \ , \ \alpha \vdash \gamma}{\beta \vdash \gamma}$
- Right Weakening: $\frac{\models \alpha \rightarrow \beta \ , \ \gamma \triangleright \alpha}{\gamma \triangleright \beta}$

Kumulativität

System C (Cumulative): Eigenschaften aus [Gabbay 1985]

• Cut:
$$\frac{\alpha \wedge \beta \triangleright \gamma, \ \alpha \triangleright \beta}{\alpha \triangleright \gamma}$$

• Weak Monotonicity/Cautious Monotonicity/Cumulative $\alpha \triangleright \beta$, $\alpha \triangleright \gamma$

Monotonicity:
$$\frac{\alpha \triangleright \beta , \alpha \triangleright \gamma}{\alpha \land \beta \triangleright \gamma}$$

Kumulativität

System C (Cumulative): Eigenschaften aus [Gabbay 1985]

- Cut: $\frac{\alpha \wedge \beta \vdash \gamma, \ \alpha \vdash \beta}{\alpha \vdash \gamma}$ Um $\alpha \vdash \gamma$ zu zeigen, kann man temporär β dazunehmen, wenn ...
- Weak Monotonicity/Cautious Monotonicity/Cumulative Monotonicity: $\frac{\alpha \mathrel{\mid} \beta \,,\, \alpha \mathrel{\mid} \gamma}{\alpha \land \beta \mathrel{\mid} \gamma}$ Wenn man β erfährt und es vorher schon geglaubt hat, bleiben alle Schlüsse gültig

Beide zusammen:

Wenn $\alpha \triangleright \beta$, dann stimmen die Schlüsse aus α und $\alpha \land \beta$ überein.

Metatheoretische Eigenschaften (Cont'd)

- "Sceptical" Default Semantik:
 - erfüllt Cut [Makinson NMR 89]
 - nicht kumulativ [Makinson NMR 89]; auch nicht für normale Defaults
 - erfüllt "Or" nicht
- WFS ist kumulativ, WFS_2 , WFS_3 und WFS_4 sind nicht kumulativ.

System C (Cont'd)

Abgeleitete Regeln für System C:

• Equivalence:
$$\frac{\alpha \triangleright \beta \ , \ \beta \triangleright \alpha \ , \ \alpha \triangleright \gamma}{\beta \triangleright \gamma}$$

• And:
$$\frac{\alpha \triangleright \beta, \ \alpha \triangleright \gamma}{\alpha \triangleright \beta \land \gamma}$$

• Modus Ponens Cumulative: $\frac{\alpha \triangleright \beta \rightarrow \gamma, \ \alpha \triangleright \beta}{\alpha \triangleright \gamma}$

• schwache Transitivität: $\frac{\alpha \vee \beta \vdash \alpha \;,\; \alpha \vdash \gamma}{\alpha \vee \beta \vdash \gamma}$

System CM

System CM (Schwächer als Classical Monotonic Logic): (abgelehnt für nichtmonotone Systeme)

• Monotonicity:
$$\frac{\models \alpha \rightarrow \beta \ , \ \beta \succ \gamma}{\alpha \succ \gamma}$$

• Easy Half of Deduction Theorem: $\frac{\alpha \triangleright \beta \rightarrow \gamma}{\alpha \land \beta \triangleright \gamma}$

• Transitivität:
$$\frac{\alpha \triangleright \beta , \ \beta \triangleright \gamma}{\alpha \triangleright \gamma}$$

• Contraposition: $\frac{\alpha \triangleright \beta}{\neg \beta \triangleright \neg \alpha}$

System CM

System CM (Schwächer als Classical Monotonic Logic): (abgelehnt für nichtmonotone Systeme)

- Monotonicity: $\frac{\models \alpha \rightarrow \beta , \beta \triangleright \gamma}{\alpha \triangleright \gamma}$ $penguin \rightarrow bird, bird \triangleright flies$
- Easy Half of Deduction Theorem: $\frac{\alpha \triangleright \beta \rightarrow \gamma}{\alpha \land \beta \triangleright \gamma}$
- Transitivität: $\frac{\alpha \triangleright \beta}{\alpha \triangleright \gamma}$
- Contraposition: $\frac{\alpha \triangleright \beta}{\neg \beta \triangleright \neg \alpha}$

Präferentielle Systeme

System P (Preferential): C und

• Or:
$$\frac{\alpha \triangleright \gamma, \beta \triangleright \gamma}{\alpha \lor \beta \triangleright \gamma}$$

Ableitbar:

• Hard Half of Deduction Theorem: $\frac{\alpha \wedge \beta \vdash \gamma}{\alpha \vdash \beta \to \gamma}$

• Proof by Cases/Distribution: $\frac{\alpha \wedge \beta \vdash \gamma, \ \alpha \wedge \neg \beta \vdash \gamma}{\alpha \vdash \gamma}$

Präferentielle Modelle und Hülle

[Shoham LICS 87; Kraus, Lehmann, Magidor AI 90] Partiell geordnete Menge von Strukturen/Theorien ("Welten"), die angibt, welche "mehr normal" als andere sind.

- α > β gilt, wenn alle Welten, die α erfüllen und "am normalsten" (minimal) sind, auch β erfüllen.
- Def: $\alpha \triangleright \beta \in \mathbf{K}^p$ wenn es in allen präferentielle Modellen zu \mathbf{K} gilt.
- Die präferentielle Folgerungsrelation ist co-NP [Lehmann, Magidor Al 1992]

Rationalität

Zusätzlich Aussagen, was nicht geschlossen werden soll:

• Negation Rationality:
$$\frac{\alpha \land \gamma \not \triangleright \beta, \ \alpha \land \neg \gamma \not \triangleright \beta}{\alpha \not \triangleright \beta}$$

- Disjunctive Rationality: $\frac{\alpha \not k \gamma, \beta \not k \gamma}{\alpha \lor \beta \not k \gamma}$
- Rational Monotonicity: $\frac{\alpha \wedge \beta \not \bowtie \gamma, \ \alpha \not \bowtie \neg \beta}{\alpha \not \bowtie \gamma}$ äq. $\frac{\alpha \triangleright \gamma, \ \alpha \not \bowtie \neg \beta}{\alpha \wedge \beta \triangleright \gamma}$
- R.M. impliziert mit System C D.R., und das wiederum N.R.
- "Rational": Systeme, die Rational Monotonicity erfüllen.
- wenn ein Faktum, dessen Negation vorher nicht abgeleitet werden konnte, dazugelernt wird, wird kein vorheriger Schluss widerrufen

Rationalität (Cont'd)

für rationale Systeme gelten schwächere Formen der bei CM genannten Regeln:

• Weak Transitivity:
$$\frac{\alpha \triangleright \beta \ , \ \beta \triangleright \gamma \ , \ \beta \not \triangleright \neg \alpha}{\alpha \triangleright \gamma}$$

• Weak Contraposition:
$$\frac{\alpha \wedge \gamma \triangleright \beta \ , \ \gamma \not \triangleright \beta}{\gamma \wedge \neg \beta \triangleright \neg \alpha}$$

Rationale Konsequenzrelationen

[Lehmann, Magidor Al 1992]

- Ranking von Formeln: beschreibt, wie sehr "Ausnahme" eine Formel ist.
- Rationale Konsequenzrelationen können durch "Ranked Models" repräsentiert werden:
- "Ranked Models" sind präferentielle Modelle, deren Ordnung bestimmte Bedingungen erfüllt (kleinerer Rank → weniger unnormal).
- trotzdem ist Ranked Entailment nur Preferential entailment: Schnitt aller rationalen Extensionen ist nur \mathbf{K}^p .

Rationale Hülle

[Lehmann, Magidor AI 1992]

- Ordnung auf rationalen Extensionen (nach Normalität)
- falls minimale rationale Extension K existiert, ist das die rationale Hülle (existiert wenn ein sinnvolles Ranking der Formeln möglich ist, z.B. für alle endlichen K)
- $\alpha \triangleright \beta \in \overline{\mathbf{K}}$ falls
 - $rank(\alpha) < rank(\alpha \land \neg \beta)$, oder
 - $rank(\alpha)$ existiert nicht (dann ist α inkonsistent zu **K**)

Rationale Hülle: Komplexität

[Lehmann, Magidor Al 1992]

- $\bar{\mathbf{K}}$ iterativ berechenbar aus \mathbf{K} , indem man solange E(C) (Menge aller Ausnahmeformeln) bildet, bis man bei α ankommt. Dann wird geprüft ob β noch mehr Ausnahme ist.
- Test, ob eine Formel eine Ausnahme beschreibt: reduzierbar auf SAT in der zugrundeliegenden Logik.
- Man braucht $O(n^2)$ Iterationen.
- Horn-Fall: polynomial.

Default-Logic und Kumulativität

Default-Logic erfült Kumulativität nicht [Makinson LPNMR 89]

$$\frac{p}{p}$$
, $\frac{p \lor q : \neg p}{\neg p}$

- hat genau eine Extension: Th $\{p\}$, enthält also auch $p \lor q$
- nimmt man $p \lor q$ als Prämisse an, bekommt man eine zweite Extension Th $(\{\neg p, q\})$ enthält.

Anderes, normales Beispiel [Makinson Handbook 1994]:

$$\frac{a}{a}$$
, $\frac{a}{b}$, $\frac{b}{\neg a}$

Default-Logic und Kumulativität

Beispiel mit normalen Defaults [Brewka Al 91]

$$F = \{ dog \lor bird \to pet , dog \to \neg bird , sings \}$$

$$D = \left\{ \frac{pet : dog}{dog} , \frac{sings : bird}{bird} \right\}$$

Extension: Th($F \cup \{bird\}$) contains *pet*.

Nimmt man pet zu den Fakten dazu, erhält man eine zusätzliche Extension $Th(F \cup \{dog\})$

Default-Logic und OR

aus [Poole KR89]

$$\frac{: usable(X) \land \neg broken(X)}{usable(X)}$$

Prämisse: $broken(left_arm) \lor broken(right_arm)$

Die einzige Extension enthält

$$usable(left_arm) \land usable(right_arm)$$

(jedes usable(X) kann einzeln abgeleitet werden)

- Lösung: Buchführung über verwendete Justifications
 [Lukaszewicz Cl 1988, Brewka Al 1991, Delgrande 1994]
- womit man auch das Problem des bottom-up Verfahrens löst

Default-Logic und OR

[Poole Handbook 1994]

$$\frac{employed(X): get_paid(X) \land works(X)}{get_paid(X)}$$

Fakten: employed(david), employed(john), $\neg works(david) \lor \neg works(john)$

Hier ist es sinnvoll, dass die Extension

$$get_paid(david) \land get_paid(john)$$

ableitet.

Default-Logic und Proof-by-cases

aus [Makinson Handbook 94]

$$\frac{a:c}{c}$$
 , $\frac{\neg a:c}{c}$

Es gilt $a \triangleright c$ und $\neg a \triangleright c$ aber nicht $true \triangleright c$.

Cumulative Default Logic

Buchführung über verwendete Justifications [Brewka Al 1991]: Formel ϕ kann unter Verwendung der Justifications $\gamma_1, \ldots, \gamma_n$ begründet werden:

$$\langle \phi, \{r_1, \ldots, r_n\} \rangle$$

 $\overline{S_0 = F, S_1, S_2, \ldots}$ eine Folge von Mengen von (annotierten) Formeln so dass $S = (\bigcup_{i=0}^{\infty} S_i)$ und

$$S_{i+1} = S_i \cup \{ \langle C, R \cup \beta \cup \{c(d)\} \rangle \mid d \in D, \mathsf{Th}(S_i) \models p(d) \mathsf{ und} \}$$

 $\mathsf{Th}(S \cup Supp(S) \cup J(d) \cup \beta \cup \{c(d)\}) \mathsf{ ist konsistent} \}$

Dann ist Th(S) eine *CDL-Extension* von Δ . Kumulativ, und es existiert immer eine CDL-Extension.

Lokalität normaler Defaults

Form:
$$\frac{\alpha : w}{w}$$

- Jede Extension läßt sich bottom-up berechnen
- Semi-Monotonie: $D \subseteq D'$, E eine Extension von (D,F). Dann hat (D',F) eine Extension E' so dass
 - $E \subseteq E'$
 - $GD(E,D) \subseteq GD(E',D')$
 - ⇒ "Lokalität"
- Vollständigkeit von Top-Down Default Proofs [Reiter Al 1980].

Seminormale Defaults

Es gibt Dinge, die nicht als normale Defaults ausdrückbar sind:

$$\frac{has_motive(X):suspect(X) \land guilty(X)}{suspect(X)}$$

Komplexität: Basic Notions

- SAT für propositional Logic ist NP-vollständig
- SAT für first-order ist nicht rekursiv aufzählbar
- $QBF(2,\exists) = SAT(\exists ... \exists \forall ... \forall \phi)$ ist Σ_2^P -vollständig (d.h., NP-vollst., wenn man auf ein Σ_1^P oder NP-Orakel zurückgreifen kann).

Komplexität von Default Reasoning

 Σ_P^2 oder Π_P^2 -vollständig sind für endliche aussagenlogische Default-Theorien:

- Existenz einer [konsistenten] Extension.
- gilt γ in [einer allen] [konsistenten] Extensionen [nicht]?
- dasselbe bereits für normale Defaults ohne Prerequisites.
- "Sceptical" für normale Defaults ist $P^{NP[\log n]}$ -vollständig (LFP-Berechnung der stationären Semantik muss nur bis Γ^2 ausgeführt werden) [Gottlob IC 1995]

Default-Theorien ohne Disjunktion: NP [Kautz, Selman Al 91] Horn Default Theorien: linear time [Kautz, Selman Al 91]

Beweistheorie

Gibt es eine Extension von Δ , die γ enthält?

- 1. zeige γ mit $F \cup c(D)$ (R Grundinstanzen der verwendeten Defaults)
- 2. zeige alle Preconditions der verwendeten Defaults (rekursiv, R^+ alle verwendeten Grundinstanzen)
- 3. teste Konsistenz von $F \cup J(R^+)$ (SAT, nicht r.a.)

Es gibt keine Prozedur, um das im allgemeinen Fall zu berechnen.

Beweistheorie

Für normale Defaults existiert eine vollständige Beweistheorie [Reiter AI 1980]:

- F, γ in Horn-Form
- jedes c(D) in Horn-Form: Menge $(C, \{\delta\})$ von Paaren von annotierten Klauseln $(\delta = \emptyset \text{ für } C \in F)$
- Resolution: (C_1,D_1) (C_2,D_2) zu $(R,D_1\cup D_2)$

Beweistheorie

Lineare Resolution

- Startklausel: R_0 = eine negierte Klausel in γ
- R_{i-1} mit einem C_i zu R_i , wobei C_i
 - ein $(C, \{d\})$ vom Input
 - eine negierte Klausel in γ
 - ein vorhergehendes R_i .
- $\overline{\hspace{0.1in} \hspace{0.1in} \hspace{0.1in} \hspace{0.1in} \hspace{0.1in} \hspace{0.1in} R_n = (\Box, D)$ für eine Menge D_0 von Defaults
- Gezeigt: Aus $c(D_0)$ lässt sich γ ableiten.
- rekursiv: Herleitungen für die Preconditions in D_k suchen, ergibt D_{k+1} .
- Zuletzt bleibt zu zeigen: $F \cup \bigcup_k c(D_k)$ ist erfüllbar (SAT(Horn) ist polynomial)