统计过程控制

• 统计: 以概率统计学为基础, 用科学的方法分析数据、得出结论

• 过程: 有输入-输出的一系列活动 • 控制: 事物的发展和变化是可预测的

质量特性

计量型: 用仪器测出的数据

计数型: 不可用仪器测出的数据,如不合格数,焊点漏焊数

控制图构成

- 数据点
- 纵坐标:数据的质量特性或统计量
- 横坐标:按时间顺序抽样的样本编号(一批样本)
- 上虚线: 上控制界限UCL(控制界限=平均值+-3σ)
- 下虚线: 下控制界限LCL
- 中实线: 中心线CL

1. Data Points 3. Upper Control Limit

<u>ww.ts16949.org.cn</u>
2. Center Line
4. Lower Control Limit

3σ原理:若变量x服从正态分C布,那么在+-3σ范围内包含了99.73%的数值

控制限C: 由控制人员根据历史数据或实验得出

规格限T:设计给定或客户规定,通常超出控制限之外

控制图的控制作用

- 诊断:评估过程的稳定性
- 控制:决定某一过程何时需要调整
- 确认:确认某一过程的改进

读控制图

判稳准则:

- 连续25点,界外点数d=0
- 连续35点,界外点数d<=1
- 连续100点,界外点数d<=2

判异准则: 控制图上的点没有超出控制界限且排列无规律

- 1点超出控制界限: 过程处于失控状态
- 连续3点中2点在同侧±2σ外: 过程中心值偏移
- 连续5点中2点在同侧±σ外: 过程中心值偏移
- 连续7点上升或下降: 工具磨损
- 连续8点在中心线同一侧: 过程处于失控状态
- 连续8点在±σ两侧外: 出现双峰(过程出现两个中心值)
- 连续15点在 $\pm \sigma$ 之内: 虚报数据

控制图的选择

控制图的绘制

控制图的常数和公式表*

	X -R 图				X -s 图			
	均值图	极差(R)图		均值图 极差(R)图]		
	控制限 系数	估计 σ_X 用的除数	计算控制	限用的系数	控制限 系数	估计 σ _X 用的除数	计算控制	艮用的系数
子组 大小	A ₂	d_2	D_3	D₄	A_3	C4	B ₃	B ₄
2	1.880	1.128		3.267	2.659	0.7979		3.267
3	1.023	1.693	Audition	2.574	1.954	0.8862		2.568
4	0.729	2.059		2.282	1.628	0.9213		2.266
5	0.577	2.326	8—	2.114	1.427	0.9400	_	2.089
6	0.483	2.534	_	2.004	1.287	0.9515	0.030	1.970
7	0.419	2.704	0.076	1.924	1.182	0.9594	0.118	1.882
8	0.373	2.847	0.136	1.864	1.099	0.9650	0.185	1.815
9	0.337	2.970	0.184	1.816	1.032	0.9693	0.239	1.761
10	0.308	3.078	0.223	1.777	0.975	0.9727	0.284	1.716
11	0.285	3.173	0.256	1.744	0.927	0.9754	0.321	1.679
12	0.266	3.258	0.283	1.717	0.886	0.9776	0.354	1.646
13	0.249	3.336	0.307	1.693	0.850	0.9794	0.382	1.618
14	0.235	3.407	0.328	1.672	0.817	0.9810	0.406	1.594
15	0.223	3.472	0.347	1.653	0.789	0.9823	0.428	1.572
16	0.212	3.532	0.363	1.637	0.763	0.9835	0.448	1.552
17	0.203	3.588	0.378	1.622	0.739	0.9845	0.466	1.534
18	0.194	3.640	0.391	1.608	0.718	0.9854	0.482	1.518
19	0.187	3.689	0.403	1.597	0.698	0.9862	0.497	1.503
20	0.180	3.735	0.415	1.585	0.680	0.9869	0.510	1.490
21	0.173	3.778	0.425	1.575	0.663	0.9876	0.523	1.477
22	0.167	3.819	0.434	1.566	0.647	0.9882	0.534	1.466
23	0.162	3.858	0.443	1.557	0.633	0.9887	1.545	1.455
24	0.157	3.895	0.451	1.548	0.619	0.9892	0.555	1.445
25	0.153	3.931	0.459	1.541	0.606	0.9896	0.565	1.435

附录 E — 控制图的常数和公式表 (续)

	中位数图**				单值图			
	中位数图		极差(R)图		单值图		极差(R)图	
	控制限 系数	估计 σ_{χ} 用的除数	计算控制阵	限用的系数 控制限 系数	估计 σ_X 用的除数	计算控制	限用的系数	
子组容量	$\overline{\widetilde{A}}_2$	d_2	D ₃	D ₄	E ₃	d_2	D ₃	D_4
2	1.880	1.128	_	3.267	2.660	1.128	_	3.267
3	1.187	1.693		2.574	1.772	1.693		2.574
4	0.796	2.059	_	2.282	1.457	2.059		2.282
5	0.691	2.326	_	2.114	1.290	2.326	_	2.114
6	0.548	2.534	_	2.004	1.184	2.534		2.004
7	0.508	2.704	0.076	1.924	1.109	2.704	0.076	1.924
8	0.433	2.847	0.136	1.864	1.054	2.847	0.136	1.864
9	0.412	2.970	0.184	1.816	1.010	2.970	0.184	1.816
10	0.362	3.078	0.223	1.777	0.975	3.078	0.223	1.777

	中心线	控制线	
中位数图	$CL_{\widetilde{X}} = \overline{\widetilde{X}}$	$UCL_{\widetilde{X}} = \overline{\widetilde{X}} + \overline{\widetilde{A}}_2 \overline{R}$	$LCL_{\overline{X}} = \overline{\widetilde{X}} - \overline{\widetilde{A}}_2 \overline{R}$
	$CL_R = \overline{R}$	$UCL_R = D_4 \overline{R}$	$LCL_R = D_3 \overline{R}$
单值图	$CL_X = \overline{X}$	$UCL_X = \overline{X} + E_2 \overline{R}$	$LCL_X = \overline{X} - E_2\overline{R}$
	$CL_{R} = \overline{R}$	$UCL_R = D_4 \overline{R}$	$LCL_R = D_3 \overline{R}$

计数型数据用控制图

	中心线	控制限			
	$CL_p = \overline{p}$	样本容量不必恒定			
p图 用于某一分		$UCL_{\rho_i} = \overline{p} + 3\frac{\sqrt{\overline{p}(1-\overline{p})}}{\sqrt{n_i}}$	$LCL_{p_i} = \overline{p} - 3\frac{\sqrt{\overline{p}(1-\overline{p})}}{\sqrt{n_i}}$		
类的件数比例		如果样本容量恒定 (n)			
		$UCL_p = \overline{p} + 3\frac{\sqrt{\overline{p}(1-\overline{p})}}{\sqrt{n}}$	$LCL_{p} = \overline{p} - 3\frac{\sqrt{\overline{p}(1-\overline{p})}}{\sqrt{n}}$		
np 图 用于某一 分类的件数 /	$CL_{np} = \overline{np}$	$UCL_{np} = \overline{np} + 3\sqrt{\overline{np}(1 - \frac{\overline{np}}{n})}$	$LCL_{np} = \overline{np} - 3\sqrt{\overline{np}(1 - \frac{\overline{np}}{n})}$		
比率		$= \overline{np} + 3\sqrt{\overline{np}(1-\overline{p})}$	$= \overline{np} - 3\sqrt{\overline{np}(1-\overline{p})}$		
c 图用于一个或 多个分类发生 的数量	$CL_C = \overline{c}$	$UCL_C = \overline{c} + 3\sqrt{\overline{c}}$	$LCL_{C} = \overline{c} - 3\sqrt{\overline{c}}$		
		样本容量不必恒定			
		$UCL_{u} = \overline{u} + 3\frac{\sqrt{\overline{u}}}{\sqrt{n_{i}}}$	$LCL_{u} = \overline{u} - 3\frac{\sqrt{\overline{u}}}{\sqrt{n_{i}}}$		
	$CL_u = \overline{u}$	$= \overline{u} + 3\sqrt{\frac{\overline{u}}{n_i}}$	$= \overline{u} - 3\sqrt{\frac{\overline{u}}{n_i}}$		
u 图用于在每个		使用平均样本容量			
单位上一个或 多个分类发生		$UCL_{u} = \overline{u} + 3\frac{\sqrt{\overline{u}}}{\sqrt{\overline{n}}}$	$LCL_{u} = \overline{u} - 3\frac{\sqrt{\overline{u}}}{\sqrt{\overline{n}}}$		
的数量		$=\overline{u}+3\sqrt{\frac{\overline{u}}{n}}$	$= \overline{u} - 3\sqrt{\frac{\overline{u}}{\overline{n}}}$		
		如果样本容量恒定 (n)			
		$UCL_{u} = \overline{u} + 3\frac{\sqrt{\overline{u}}}{\sqrt{n}}$	$LCL_{u} = \overline{u} - 3\frac{\sqrt{\overline{u}}}{\sqrt{n}}$		
		$=\overline{u}+3\sqrt{\overline{u}}$	$=\overline{u}-3\sqrt{\overline{u}}$		

过程能力与性能指数

1		I	1
Т	技术规范范围	T=Tu-TL	Tu: 规范上限 Tu: 规范下限
ε	中心偏移量	$\epsilon = \mid \mu - M \mid$	μ:质量特性值分布 的平均值
K	- X与 M 偏移度	K=2 ε /T	
σST	过程能力指数标准差	$\sigma_{\rm ST} = \frac{\overline{R}}{d_2} = \frac{\overline{s}}{c_4}$	
σLT	过程性能指数样本标准差	$\sigma_{LT} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (xi - x)^{2}}$	
Ср	无偏移过程能力指数	$C_P = \frac{T}{6\sigma} \approx \frac{T_U - T_L}{6\sigma_{ST}}$	σ = σ sτ
Сри	无偏移上单侧过程能力指数	$C_{PU} = \frac{T_U - \mu}{3\sigma} \approx \frac{T_U - \bar{x}}{3\sigma_{ST}}$	σ = σ sτ, - x <tu< td=""></tu<>
CPL	无偏移下单侧过程能力指数	$C_{PL} = \frac{\mu - T_L}{3\sigma} \approx \frac{\bar{x} - T_L}{3\sigma_{ST}}$	σ = σ sī, - x>Tī
Срк	有偏移过程能力指数	CPK =min(CPU, CPL)	$\sigma = \sigma$ ST
2		1	
РР	无偏移过程性能指数	$P_{P} = \frac{T}{6\sigma} \approx \frac{T_{U} - T_{L}}{6\sigma_{LT}}$	$\sigma = \sigma$ LT
Рри	无偏移上单侧过程性能指数	$P_{PU} = \frac{T_U - \mu}{3\sigma} \approx \frac{T_U - \bar{x}}{3\sigma_{LT}}$	σ = σ LT, - x <tu< td=""></tu<>
Ppl	无偏移下单侧过程性能指数	$P_{PL} = \frac{\mu - T_L}{3\sigma} \approx \frac{\bar{x} - T_L}{3\sigma_{LT}}$	σ = σ LT, - x>TL
Ррк	有偏移过程性能指数	PPK =min(PPU, PPL)	$\sigma = \sigma_{LT}$

<u>参考1</u>

参考2