ITCS 531: C1 homework solutions

Rob Egrot

Prove that if X and Y are disjoint finite sets, then the cardinal arithmetic operations agree with the usual arithmetic operations on |X| and |Y|. In other words, prove that $|X \cup Y|$ is equal to the result of adding |X| and |Y| as normal, and do similar for the other two arithmetic operations we have defined.

- I'll just do X^Y.
- \triangleright X^Y is the set of all functions from Y to X.
- How many functions are there?
- Such a function must map each element of Y to exactly one element of X.
- ▶ So, for each $y \in Y$ there are exactly |X| choices.
- ▶ So, if |X| = m and |Y| = n, we get m^n different functions.
- ▶ So $|X^Y| = m^n$ as required.

Let X_i be countable for all $i \in \mathbb{N}$, and suppose $X_i \cap X_j = \emptyset$ for all $i \neq j \in \mathbb{N}$. Prove that $\bigcup_{i \in \mathbb{N}} X_i$ is countable.

- ▶ We will find an injective function from $\bigcup_{i\in\mathbb{N}} X_i$ to \mathbb{N} .
- ▶ Since $\mathbb{N} \times \mathbb{N}$ is countable, there is an injective $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.
- Since each X_i is countable, there are injective functions $g_i: X_i \to \mathbb{N}$ for all $i \in \mathbb{N}$.
- ▶ Define $g: \bigcup_{i \in \mathbb{N}} X_i \to \mathbb{N} \times \mathbb{N}$ by $g(x) = (i, g_i(x))$, where $x \in X_i$.
- ▶ This is well defined because $X_i \cap X_j = \emptyset$ for all $i \neq j$.
- ▶ Given $x_1 \in X_i$ and $x_2 \in X_j$, if $i \neq j$ then $(i, g_i(x_1)) \neq (j, g_j(x_2))$, as $i \neq j$,
- ▶ If i = j but $x_1 \neq x_2$ then $g_i(x_1) \neq g_i(x_2)$, as g_i is injective.
- So g is injective.
- ▶ So $f \circ g : \bigcup_{i \in \mathbb{N}} X_i \to \mathbb{N}$ is the composition of two injective functions, and so is injective.

Let X be a countable set. Prove that the set of all finite subsets of X is countable.

- ▶ Let $f: X \to \mathbb{N}$ be injective.
- ightharpoonup Arrange the prime numbers in a list as p_0, p_1, \ldots
- The set of primes is infinite, so this is a countably infinite list.
- ► Given $S = \{x_1, ..., x_n\} \subseteq X$, define $g(S) = p_{f(x_0)} \times p_{f(x_1)} \times ... \times p_{f(x_n)}$.
- ► Then g is a function from the set of all finite subsets of X to N.
- ▶ If $S_1 \neq S_2$ then $g(S_1)$ and $g(S_2)$ will have different prime factorizations, and so by FTA are different numbers.
- ► So *g* is 1-1.
- ▶ So the set of finite subsets of *X* is countable.

Let X be a set, let $\wp(X)$ be the powerset of X.

- a) Define a simple injective function from X to $\wp(X)$.
- b) Prove that there is no surjective function from X to $\wp(X)$.
- c) What does this tell us about the relationship between |X| and $|\wp(X)|$?
- a) $f(x) = \{x\}.$
- b) Let $f: X \to \wp(X)$ be onto.
 - ▶ Let $S = \{x \in X : x \notin f(x)\}.$
 - As f is onto there is $z \in X$ with f(z) = S.
 - $ightharpoonup z \in S \iff z \notin f(z) \iff z \notin S.$
- c) $|X| < |\wp(X)|$.