An Analysis Of Protected Health Information Leakage In Deep-Learning Based De-Identification Algorithms

Salman Seyedi^{1,*}, Li Xiong², Shamim Nemati³, Gari Clifford^{1,4}

¹Department of Biomedical Informatics, Emory University, Atlanta, GA, ²Department of Computer Science, Emory University, Atlanta, GA,

³Department of Biomedical Informatics, University of California San Diego Health, La Jolla, CA, ⁴Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA *sseyedi@dbmi.emory.edu

https://arxiv.org/abs/2101.12099

Goal

Investigating potential leakage of sensitive information from a de-identification algorithm

Investigated Model (NeuroNER)

NeuroNER

(State of the art De-identification

Model)

Layer 1: Text tokenizer

Layer 2: Neural Networks

Layer 3: Conditional Random Field

Re-identification Attacks

White Box Attempts:

- Naive cut-off
- Brute-force cut-off
- Membership inference attack

Results and Conclusions

- Despite different distributions, zero successful re-identification
- Model not prone to several implemented attacks
- Statistically different distributions but with overwhelming overlap for successful cut-off attacks

De-Identification Deep Neural Network Model (NeuroNER) And Investigated Attack Points

Membership Inference Attack

Histogram of Probabilities for Surnames

Acknowledgments

National Science Foundation, grant # 1822378

`Leveraging Heterogeneous Data Across International Borders in a Privacy Preserving Manner for Clinical Deep Learning',

The National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378.

