

Spring 2022

INTRODUCTION TO COMPUTER VISION

Atlas Wang

Assistant Professor, The University of Texas at Austin

Visual Informatics Group@UT Austin

https://vita-group.github.io/

What are image edges?

grayscale image

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

Detecting edges

How would you go about detecting edges in an image (i.e., discontinuities in a function)?

✓ You take derivatives: derivatives are large at discontinuities.

How do you differentiate a discrete image (or any other discrete signal)?

✓ You use finite differences.

Finite differences

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Finite differences

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = rac{f(x+1) - f(x-1)}{2}$$
 What convolution kernel does this correspond to?

Finite differences

High-school reminder: definition of a derivative using forward difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Alternative: use central difference

$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

For discrete signals: Remove limit and set h = 2

$$f'(x) = \frac{f(x+1) - f(x-1)}{2}$$
 1D derivative filter
$$1 \mid 0 \mid -1$$

The Sobel filter

Vertical Sober filter:

*

"Blurring"

Horizontal Sobel filter:

*

"Blurring"

"Derivative"

Sobel filter example

original

which Sobel filter?

which Sobel filter?

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Sobel filter example

original

horizontal Sobel filter

vertical Sobel filter

Several derivative filters

1	2	1
0	O	О
-1	-2	-1

3 0 -3
Scharr 10 0 -10
3 0 -3

3	10	3
0	O	0
-3	-10	-3

Prewitt

1	0	-1
1	0	-1
1	0	-1

 1
 1

 0
 0

 -1
 -1

Roberts

0	1
-1	0

1	0
0	-1

- How are the other filters derived and how do they relate to the Sobel filter?
- How would you derive a derivative filter that is larger than 3x3?

Computing image gradients

1. Select your favorite derivative filters.

$$m{S}_{m{x}} = egin{array}{c|ccc} 1 & 0 & -1 \\ \hline 2 & 0 & -2 \\ \hline 1 & 0 & -1 \end{array}$$

$$m{S}_{y} = egin{array}{c|ccc} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{array}$$

Computing image gradients

1. Select your favorite derivative filters.

$$S_x = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$m{S}_{y} = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

2. Convolve with the image to compute derivatives.

$$rac{\partial oldsymbol{f}}{\partial x} = oldsymbol{S}_x \otimes oldsymbol{f}$$

$$rac{\partial oldsymbol{f}}{\partial y} = oldsymbol{S}_y \otimes oldsymbol{f}$$

Computing image gradients

Select your favorite derivative filters.

$$m{S}_y = egin{array}{c|ccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

Convolve with the image to compute derivatives.

$$egin{aligned} rac{\partial m{f}}{\partial x} = m{S}_x \otimes m{f} \end{aligned} \qquad \qquad rac{\partial m{f}}{\partial y} = m{S}_y \otimes m{f} \end{aligned}$$

$$rac{\partial oldsymbol{f}}{\partial y} = oldsymbol{S}_y \otimes oldsymbol{f}$$

Form the image gradient, and compute its direction and amplitude.

$$\nabla \boldsymbol{f} = \begin{bmatrix} \frac{\partial \boldsymbol{f}}{\partial x}, \frac{\partial \boldsymbol{f}}{\partial y} \end{bmatrix} \qquad \theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right) \qquad ||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$
 gradient direction amplitude

Image gradient example

original

vertical derivative

gradient amplitude

horizontal derivative

How does the gradient direction relate to these edges?

How do you find the edge of this signal?

How do you find the edge of this signal?

intensity plot

Using a derivative filter:

derivative plot

What's the problem here?

Differentiation is very sensitive to noise

When using derivative filters, it is critical to blur first!

How much should we blur?

Derivative of Gaussian (DoG) filter

Derivative theorem of convolution:

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

- How many operations did we save?
- Any other advantages beyond efficiency?

Tradeoff between smoothing and localization

• Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Laplace filter

Basically a second derivative filter.

We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

1D derivative filter

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}$$

Laplace filter

Laplace filter

Basically a second derivative filter.

We can use finite differences to derive it, as with first derivative filter.

first-order finite difference
$$f'(x) = \lim_{h \to 0} \frac{f(x+0.5h) - f(x-0.5h)}{h}$$

1D derivative filter

second-order finite difference
$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \longrightarrow$$

Laplace filter

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

Laplacian of Gaussian (LoG) filter

As with derivative, we can combine Laplace filtering with Gaussian filtering

"zero crossings" at edges

Laplace and LoG filtering examples

Laplacian of Gaussian filtering

Laplace filtering

Laplacian of Gaussian vs Derivative of Gaussian

Laplacian of Gaussian filtering

Derivative of Gaussian filtering

Laplacian of Gaussian vs Derivative of Gaussian

Zero crossings are more accurate at localizing edges (but not very convenient).

But Wait ... Is Pixel Difference the Final Answer?

Where do humans see boundaries?

image

human segmentation

Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB slides: Hays

Score = confidence of edge. For humans, this is averaged across multiple participants.

Score = confidence of edge. For humans, this is averaged across multiple participants.

Canny Edge Detector

- Arguably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

Derivative of Gaussian filter

Compute Gradients

X Derivative of Gaussian

Y Derivative of Gaussian

(x2 + 0.5 for visualization)

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient

Compute Gradient Magnitude

sqrt(XDerivOfGaussian .^2 + YDerivOfGaussian .^2)

= gradient magnitude

Compute Gradient Orientation

- Threshold magnitude at minimum level
- Get orientation via theta = atan2(yDeriv, xDeriv)

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width

Non-maximum suppression for each orientation

At pixel q: We have a maximum if the value is larger than those at both p and at r.

Interpolate along gradient direction to get these values.

Before Non-max Suppression

Gradient magnitude (x4 for visualization)

After non-max suppression

Gradient magnitude (x4 for visualization)

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. 'Hysteresis' Thresholding

'Hysteresis' Thresholding

- Two thresholds high and low
- Grad. mag. > high threshold? = strong edge
- Grad. mag. < low threshold? noise
- In between = weak edge
- Edge linking: 'Follow' edges starting from strong edge pixels
- Continue them into weak edges
 - Connected components

Final Canny Edges

$$\sigma = \sqrt{2}, t_{low} = 0.05, t_{high} = 0.1$$

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- small σ detects fine features

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" to single pixel width
- 4. 'Hysteresis' Thresholding:
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
 - 'Follow' edges starting from strong edge pixels
 - Connected components (Szeliski 3.3.4)

Python: e.g., skimage.feature.canny()

