Introduction to neural data

Laurent Perrinet & Nicolas Meirhaeghe

Institut de Neurosciences de la Timone

CENTURI Summer School
Comp. Neuro. Project
June 21, 2022

Pyramidal neuron

Purkinje neuron

Santiago Ramón y Cajal (1852-1934)

Direction electrical impulse travels

Neurons talk to one another via "spikes"

Neurons talk to one another via "spikes"

Neurons are "noisy" in vitro ...

... even more so in vivo ...

#spikes within T

not great for temporal resolution

... or we average over repeats

Firing rates: an abstraction

Firing rates: an abstraction

Blank screen

Central target on

Hand cursor enters central target

Peripheral target on

Peripheral target starts blinking

Hand moves toward target

→ time

neurons

neurons

R(1, 1) R(1, 2) R(2, 1) R(2, 2) trials

neurons

R(1, 1) R(1, 2) R(2, 1) R(2, 2) trials R(k, n)

neurons

R(1, 1) R(1, 2) R(2, 1) R(2, 2) trials R(k, n)

k = 158 trials **n** = 143 neurons

Directional tuning in motor cortex

Directional tuning in motor cortex

Directional tuning in motor cortex

Von Mises function: $b + k \exp(\kappa \cos(\theta - \mu))$

Context-dependent reach-to-grasp task: 2 grip types, 2 force levels

Grip information

Force information

Grip information

Force information

4 trial types
PG/HF
PG/LF
SG/HF
SG/LF

Press switch

Time

Two data structures, called monkeyL and monkeyN

Two data structures, called monkeyL and monkeyN

Monkey N

100 electrodes Utah array (Blackrock Microsystems Salt Lake City, USA)

Monkey L

Two data structures, called <u>monkeyL</u> and <u>monkeyN</u>

Two data structures, called *monkeyL* and *monkeyN* Each structure contains 7 fields:

• *spikes* is a 3-D tensor [TxNxK] containing the spiking activity of N neurons, across K trials and T times points. Spikes are binned in a 1-ms window (why do you think 1-ms?) and include data between Go – 2000 ms and Go + 3500 ms.

Two data structures, called *monkeyL* and *monkeyN* Each structure contains 7 fields:

• *spikes* is a 3-D tensor [TxNxK] containing the spiking activity of N neurons, across K trials and T times points. Spikes are binned in a 1-ms window (why do you think 1-ms?) and include data between Go – 2000 ms and Go + 3500 ms.

- *spikes* is a 3-D tensor [TxNxK] containing the spiking activity of N neurons, across K trials and T times points. Spikes are binned in a 1-ms window (why do you think 1-ms?) and include data between Go 2000 ms and Go + 3500 ms.
- grip is vector [Kx1] containing the grip information for each trial (1 for SG, 2 for PG)

- *spikes* is a 3-D tensor [TxNxK] containing the spiking activity of N neurons, across K trials and T times points. Spikes are binned in a 1-ms window (why do you think 1-ms?) and include data between Go 2000 ms and Go + 3500 ms.
- grip is vector [Kx1] containing the grip information for each trial (1 for SG, 2 for PG)
- force is vector [Kx1] containing the force information for each trial (1 for HF, 2 for LF)

- *spikes* is a 3-D tensor [TxNxK] containing the spiking activity of N neurons, across K trials and T times points. Spikes are binned in a 1-ms window (why do you think 1-ms?) and include data between Go 2000 ms and Go + 3500 ms.
- grip is vector [Kx1] containing the grip information for each trial (1 for SG, 2 for PG)
- force is vector [Kx1] containing the force information for each trial (1 for HF, 2 for LF)
- RT is a vector [Kx1] containing the reaction time on each trial (between Go and the switch release)

- *spikes* is a 3-D tensor [TxNxK] containing the spiking activity of N neurons, across K trials and T times points. Spikes are binned in a 1-ms window (why do you think 1-ms?) and include data between Go 2000 ms and Go + 3500 ms.
- grip is vector [Kx1] containing the grip information for each trial (1 for SG, 2 for PG)
- force is vector [Kx1] containing the force information for each trial (1 for HF, 2 for LF)
- RT is a vector [Kx1] containing the reaction time on each trial (between Go and the switch release)
- *MT* is a vector [*K*x1] containing the movement time on each trial (between the switch release and the object touch)

- *spikes* is a 3-D tensor [TxNxK] containing the spiking activity of N neurons, across K trials and T times points. Spikes are binned in a 1-ms window (why do you think 1-ms?) and include data between Go 2000 ms and Go + 3500 ms.
- grip is vector [Kx1] containing the grip information for each trial (1 for SG, 2 for PG)
- force is vector [Kx1] containing the force information for each trial (1 for HF, 2 for LF)
- RT is a vector [Kx1] containing the reaction time on each trial (between Go and the switch release)
- *MT* is a vector [*K*x1] containing the movement time on each trial (between the switch release and the object touch)
- *PT* is a vector [Kx1] containing the pulling time on each trial (between the object touch and the object pulled)

- *spikes* is a 3-D tensor [TxNxK] containing the spiking activity of N neurons, across K trials and T times points. Spikes are binned in a 1-ms window (why do you think 1-ms?) and include data between Go 2000 ms and Go + 3500 ms.
- grip is vector [Kx1] containing the grip information for each trial (1 for SG, 2 for PG)
- force is vector [Kx1] containing the force information for each trial (1 for HF, 2 for LF)
- RT is a vector [Kx1] containing the reaction time on each trial (between Go and the switch release)
- *MT* is a vector [*K*x1] containing the movement time on each trial (between the switch release and the object touch)
- *PT* is a vector [Kx1] containing the pulling time on each trial (between the object touch and the object pulled)
- neuron is a vector [Nx1] containing the ID of each neuron.

