CMPINF 0010 Group 24

Leo Liang and Peter Ju

Agenda

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

1. Introduction

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

- The environment we live in is essential.
- We would like to know which Pittsburgh neighborhood is the best on an environmental and individual wellbeing basis.

2. Metrics and Datasets

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

2.1 Metrics

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Our metric in determining which neighborhood is the best is based on three dimensions/datasets (WPRDC)

- Environment (Air Quality PM 2.5)
- Environment (Illegal Dump Sites)
- Individual Health (Hypertension + Hyperlipidemia)

2.2 Datasets

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Our metric in determining which neighborhood is the best is based on three dimensions/datasets (WPRDC)

Allegheny County Particulate Matter 2.5

https://data.wprdc.org/dataset/particulate-matter-2-5

- Allegheny County Illegal Dump Site
 https://data.wprdc.org/dataset/allegheny-county-illegal-dump-sites
- Hypertension + Hyperlipidemia Comorbidity

https://data.wprdc.org/dataset/hypertension-hyperlipidemiacomorbidity

2.2 Datasets

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Besides these three datasets, we also incorporated the dataset (shapefile) of neighborhoods.

https://data.wprdc.org/dataset/neighborhoods2

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Particulate Matter 2.5 (Peter)

Import modules

```
import geopandas as geopd
import pandas as pd
```

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Particulate Matter 2.5 (Peter)

Read the dataset

```
pm25 = pd.read_csv("Data/pm25.csv")
pm25.head()
```

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Used for location reference

Allegheny County Particulate Matter 2.5 (Peter)

Read the dataset

	CensusTract	PM25
0	10300	12.264655
1	20100	12.283052
2	20300	12.241216
3	30500	12.234197
4	40200	12.315312

The critical values that we are looking for

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Particulate Matter 2.5 (Peter)

Read the shapefile

neighborhoods = geopd.read_file("Data/pittsburghpaneighborhoods-/Neighborhoods_.shp")
neighborhoods.head()

	OBJECTID	fid_blockg	statefp10	countyfp10	tractce10		geoid10	namelsad10	mtfcc10	funcstat10	cre	eated_us	created_da	last_edite	last_edi_1	temp	pghdb_sde_	GlobalID	ShapeAre	ShapeLen	geometry
0	1	233	42	003	140500	3 4	120031405003	Block Group 3	G5030	S		SDE	2020-08- 14	SDE	2020-08- 14	None	7968760.0	a642a6b6- a2a9-48d5- acf2- 3e2ce87d4bc0	8.153647e+06	14047.065024	POLYGON ((-79.90560 40.45522, -79.90553 40.455
1	2	203	42	003	140100	3 4	420031401003	Block Group 3	G5030	S		SDE	2020-08- 14	SDE	2020-08- 14	None	34078712.0	20d4605b- 258e-441a- a57e- a28fdabb6d30	3.407739e+07	30347.886823	POLYGON ((-79.91309 40.43804, -79.91321 40.438
2	3	86	42	003	101700	2 4	420031017002	Block Group 2	G5030	S		SDE	2020-08- 14	SDE	2020-08- 14	None	12751163.0	bf4065e7- c29c-48bd- b529- e7fd99077238	1.275116e+07	14577.441571	POLYGON ((-79.93457 40.47217, -79.93455 40.472
3	4	214	42	003	050900	1 4	120030509001	Block Group 1	G5030	S		SDE	2020-08- 14	SDE	2020-08- 14	None	4997335.5	fed3fb32- 0cd3-4556- aa41- 17ee03b4fe41	4.997845e+06	14216.959213	POLYGON ((-79.96601 40.45520, -79.96596 40.454
4	5	173	42	003	300100		120033001005	Block Group 5	G5030	S		SDE	2020-08- 14	SDE	2020-08- 14	None	8411048.0	8669d2f0- b886-4519- 99d0- bb1015b592b0	8.410563e+06	12003.269761	POLYGON ((-79.98845 40.41851, -79.98821 40.418

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Particulate Matter 2.5 (Peter)

Create our own pandas.DataFrame

```
neighborhood_pm25 = pd.DataFrame(columns = ["Neighborhood", "tractce10", "PM25"])
neighborhood_pm25["Neighborhood"] = neighborhoods["hood"]
neighborhood_pm25["tractce10"] = neighborhoods["tractce10"]
neighborhood_pm25[["PM25"]] = neighborhood_pm25[["PM25"]].astype(float)
neighborhood_pm25
```

Name of the neighborhood

	Neighborhood	tractce10	PM25
0	Point Breeze North	140500	NaN
1	Squirrel Hill North	140100	NaN
2	Garfield	101700	NaN
3	Bedford Dwellings	050900	NaN
4	Knoxville	300100	NaN
•••			

Critical values: How are they critical if they are all NaNs?

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Particulate Matter 2.5 (Peter)

Iterate through the dataset containing PM 2.5 values

	Neighborhood	tractce10	PM25
0	Point Breeze North	140500	12.280433
1	Squirrel Hill North	140100	12.285337
2	Garfield	101700	12.199422
3	Bedford Dwellings	050900	12.243351
4	Knoxville	300100	12.317734

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Particulate Matter 2.5 (Peter)

Sort the data ascendingly

```
neighborhood_pm25 = neighborhood_pm25.sort_values("PM25", ascending=True)
neighborhood_pm25.head(10)
```

	Neighborhood	tractce10	PM25
78	Windgap	563000	12.157559
23	Fairywood	563000	12.157559
50	Chartiers City	563000	12.157559
84	Upper Lawrenceville	101100	12.157773
21	Lincoln-Lemington-Belmar	980000	12.158553
71	Stanton Heights	101800	12.159449
76	Summer Hill	261200	12.160112
13	Morningside	101400	12.162134
28	East Carnegie	562800	12.169079
7	Oakwood	562800	12.169079

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Particulate Matter 2.5 (Peter)

Draw a bar graph

plot = neighborhood_pm25.plot(kind='bar', x="Neighborhood", y="PM25", title="PM 2.5 by Neighborhood", figsize=(20,10)).set_ylim([12,12.5])

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Particulate Matter 2.5 (Peter)

Put this on a map

```
neighborhoods["PM25"] = neighborhood_pm25["PM25"]
neighborhoods.plot(column="PM25", legend=True, figsize=(10,10))
```


- 12.45

- 12.40

- 12.35

- 12.30

- 12.25

- 12.20

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Illegal Dump Site (Peter)

Read the dataset

```
dump = pd.read_csv("Data/dump-site.csv")
dump.head()
```

	site_name	Status	-		estimated_tons	location_description	latitude	longitude
0	St. Martin Street	Surveyed	Pittsburgh	Allentown	0.5	NaN	40.42221971	-79.99022525
1	Brosville Street	Surveyed	Pittsburgh	Allentown	3	NaN	40.42370101	-79.98657393
2	McCain Street	Surveyed	Pittsburgh	Allentown	1	NaN	40.42427063	-79.99022675
3	Ceres Way	Surveyed	Pittsburgh	Allentown	0.5	NaN	40.42327242	-79.99248958
4	Eureka Street	Completed	Pittsburgh	Allentown	0.1	NaN	40.42372131	-79.99478912

Used for location reference

Critical values

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Illegal Dump Site (Peter)

Read the shapefile

neighborhoods = geopd.read_file("Data/pittsburghpaneighborhoods-/Neighborhoods_.shp")
neighborhoods.head()

	OBJECTID	fid_blockg	statefp10	countyfp10	tractce10	blkgrpce10	geoid10	namelsad10	mtfcc10	funcstat10 .	. created_us	created_da	last_edite	last_edi_1	temp	pghdb_sde_	GlobalID	ShapeAre	ShapeLen	geometry
O	1	233	42	003	140500	3 4:	20031405003	Block Group 3	G5030	S.	SDE	2020-08- 14	SDE	2020-08- 14	None	7968760.0	a642a6b6- a2a9-48d5- acf2- 3e2ce87d4bc0	8.153647e+06	14047.065024	POLYGON ((-79.90560 40.45522, -79.90553 40.455
1	2	203	42	003	140100	3 4	120031401003	Block Group 3	G5030	S.	SDE	2020-08- 14	SDE	2020-08- 14	None	34078712.0	20d4605b- 258e-441a- a57e- a28fdabb6d30	3.407739e+07	30347.886823	POLYGON ((-79.91309 40.43804, -79.91321 40.438
2	2 3	86	42	003	101700	2 4	420031017002	Block Group 2	G5030	S.	SDE	2020-08- 14	SDE	2020-08- 14	None	12751163.0	bf4065e7- c29c-48bd- b529- e7fd99077238	1.275116e+07	14577.441571	POLYGON ((-79.93457 40.47217, -79.93455 40.472
3	3 4	214	42	003	050900	1 4:	20030509001	Block Group 1	G5030	S.	SDE	2020-08- 14	SDE	2020-08- 14	None	4997335.5	fed3fb32- 0cd3-4556- aa41- 17ee03b4fe41	4.997845e+06	14216.959213	POLYGON ((-79.96601 40.45520, -79.96596 40.454
4	5	173	42	003	300100	5 4	120033001005	Block Group 5	G5030	S.	SDE	2020-08- 14	SDE	2020-08- 14	None	8411048.0	8669d2f0- b886-4519- 99d0- bb1015b592b0	8.410563e+06	12003.269761	POLYGON ((-79.98845 40.41851, -79.98821 40.418

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Illegal Dump Site (Peter)

Create our own pandas.DataFrame

```
neighborhood_dump = pd.DataFrame(columns = ["Neighborhood", "Amount"])
neighborhood_dump["Neighborhood"] = neighborhoods["hood"]
neighborhood_dump[["Amount"]] = 0
neighborhood_dump
```

	Neighborhood	Amount
0	Point Breeze North	0
1	Squirrel Hill North	0
2	Garfield	0
3	Bedford Dwellings	0
4	Knoxville	0
•••		

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Illegal Dump Site (Peter)

Iterate through the dataset containing the amounts

Neighborhood Amount O Point Breeze North 0.3 1 Squirrel Hill North 0.0 2 Garfield 19.4 3 Bedford Dwellings 1.0 4 Knoxville 9.5

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Illegal Dump Site (Peter)

Sort the data ascendingly

Neighborhood Amount

```
neighborhood_dump = neighborhood_dump.sort_values("Amount", ascending=True)
neighborhood_dump.head(20)
```

	Neignbornood	Amount
44	East Allegheny	0.0
34	Manchester	0.0
35	Marshall-Shadeland	0.0
41	Friendship	0.0
43	Central Business District	0.0
88	South Side Flats	0.0
45	Allegheny Center	0.0
48	South Side Slopes	0.0
19	Lower Lawrenceville	0.0
18	Arlington Heights	0.0
54	Mount Washington	0.0

56	Central Lawrenceville	0.0
59	Point Breeze	0.0
32	Allegheny West	0.0
14	Lincoln Place	0.0
12	Westwood	0.0
11	East Liberty	0.0
64	Ridgemont	0.0
66	South Shore	0.0
69	Spring Hill-City View	0.0

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Illegal Dump Site (Peter)

Look at the tails

neighborhood_dump.tail(20)

	Neighborhood	Amount		
67	Mt. Oliver	11.3	70	Sheraden
5	Homewood South	12.9	24	Brookline
58	Esplen	15.0	27	Greenfield
20	Larimer	16.9	57	West End
77	West Oakland	17.3	21	Lincoln-Lemington-Belmar
49	Arlington	17.5	83	Perry South
55	East Hills	17.8	51	Carrick
9	Duquesne Heights	19.0	60	Hazelwood
2	Garfield	19.4	26	Beltzhoover
37	New Homestead	20.0		
71	Stanton Heights	21.7		

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Illegal Dump Site (Peter)

Draw a bar graph

plot = neighborhood_dump.plot(kind='bar', x="Neighborhood", y="Amount", title="Illegal Dump Site by Neighborhood", figsize=(20,10))

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Allegheny County Illegal Dump Site (Peter)

Put this on a map

```
neighborhoods["Amount"] = neighborhood_dump["Amount"]
neighborhoods.plot(column="Amount", legend=True, figsize=(10,10))
```


- 800

- 600

- 400

- 200

n

Hypertension/Hyperlipidemia

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Freshly imported dataset, though labels are a bit cryptic

	СТ	LTPAD	LTPAN	LTWAD	LTWAN	LTMAD	LTMAN	geometry
0	10300	422	28	197	13	225	15	None
1	20100	2610	175	1242	73	1368	102	None
2	20300	354	38	175	12	179	26	None
3	30500	859	147	553	103	306	44	None
4	40200	388	44	233	29	155	15	None
385	564400	2797	630	1529	333	1268	297	None
386	564500	806	146	440	78	366	68	None
387	980000	4	1	3	1	1	0	None
388	980100	7	0	6	0	1	0	None
389	980700	9	0	5	0	4	0	None

But luckily...

There's a dictionary

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

	column	type	label	description
1	CT	text		Census Tract
2	LTPAD	text		dar year (Jan 1 - Dec 31).
3	LTPAN	text		osed with Hyperlipidemia.
4	LTWAD	text		dar year (Jan 1 - Dec 31).
5	LTWAN	text		osed with Hyperlipidemia.
6	LTMAD	text		dar year (Jan 1 - Dec 31).
7	LTMAN	text		osed with Hyperlipidemia.

CT: Census Tract

LTPAD: Total number of members, who are Allegheny County residents and who were effectively enrolled for at least 90 continuous days during the 2015 calendar year (Jan 1 - Dec 31).

LTPAN: Total number of members who met the denominator criteria, who are diagnosed with Hypertension & diagnosed with Hyperlipidemia.

LTWAD: Total number of women members, who are Allegheny County residents and who were effectively enrolled for at least 90 continuous days during the 2015 calend ar year (Jan 1 - Dec 31).

LTWAN: Total number of women members who met the denominator criteria, who are diagnosed with Hypertension & diagnosed with Hyperlipidemia.

LTMAD: Total number of male members, who are Allegheny County residents and who were effectively enrolled for at least 90 continuous days during the 2015 calendar year (Jan 1 - Dec 31).

LTMAN: Total number of male members who met the denominator criteria, who are diagnosed with Hypertension & diagnosed with Hyperlipidemia.

Averaging the data...

Some may be missing :O

Neighborhoods Condition Average

140500 Point Breeze	North 0.121212
140100 Squirrel Hil	l North 0.099307
101700	Garfield 0.112782
050900 Bedford Dw	vellings NaN
300100 Kr	noxville 0.13883
141000 Regent	Square 0.1
051100 Terrace	Village NaN
562600	Elliott NaN
170200 South Sid	de Flats 0.145564
250900 Fi	neview 0.154034

- 1. Introduction
- Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

Putting it all together

Per the data, the top 5 neighborhoods with the lowest rates of hypertension and hyperlipidemia are:

- 1. Northview Heights
- 2. Highland Park
- 3. Central Northside
- 4. Upper Lawrenceville
- 5. Squirrel Hill North

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

4. Result Explanation

	Neighborhood	Rank_PM25	Rank_Dump	Rank_Hype	Total
16	Northview Heights	11	32	1	0
36	Highland Park	15	42	2	0
38	Central Northside	31	53	3	0
84	Upper Lawrenceville	4	1	4	0
1	Squirrel Hill North	59	1	5	0
77	West Oakland	69	75	86	0
78	Windgap	1	48	87	0
81	Strip District	38	29	88	0
86	Terrace Village	58	44	89	0
87	Elliott	48	58	90	0

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

We ranked the neighborhoods based on the 3 categories

- 1. Lowest Pollution
- 2. Lowest Dump Sites
- 3. Lowest Hypertension and Hyperlipidemia average

Then added them together to obtain their final score

Upper Lawrenceville!

	Neighborhood	Rank_PM25	Rank_Dump	Rank_Hype	Total
84	Upper Lawrenceville	4	1	4	9
11	East Liberty	29	1	10	40
16	Northview Heights	11	32	1	44
34	Manchester	23	1	22	46
36	Highland Park	15	42	2	59
32	Allegheny West	46	1	12	59
7	Oakwood	9	1	52	62
69	Spring Hill-City View	17	1	47	65
1	Squirrel Hill North	59	1	5	65
13	Morningside	8	45	14	67

5. Discussion

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

- Counterclaims:
 - More metrics?
 - Time span
 - Ranking:
 - Weight?

6. Conclusion

- 1. Introduction
- 2. Metrics and Datasets
- 3. Data Analyses
- 4. Result Explanation
- 5. Discussion
- 6. Conclusion

References

https://data.wprdc.org/dataset/particulate-matter-2-5

https://data.wprdc.org/dataset/allegheny-county-illegal-dump-sites

https://data.wprdc.org/dataset/hypertension-hyperlipidemiacomorbidity

https://data.wprdc.org/dataset/neighborhoods2

Thanks

CMPINF 0010 Group 24