

SUPPORT
VECTOR
MACHINE

SUPPORT VECTOR MACHINE

• Support Vector Machines (SVMs) are a popular and powerful supervised learning algorithm used for classification and regression analysis.

 SVMs are based on the idea of finding the hyperplane that best separates the data into different classes, by maximizing the margin between the hyperplane and the closest data points.

SVM is a very versatile algorithm and can handle both linear and nonlinear datasets.

MAXIMUM MARGIN IS SELECTED

LINEAR VS NON-LINEAR

Linear vs. nonlinear problems

KERNEL IN SVM

KERNEL IN SVM

Let slope, m = -1

Intercept, c = 0

Let slope, m = -1

Intercept, c = 0

w --> parameters of the line
$$(m, c) = (-1, 0)$$

$$\bullet$$
 P₁(-3, 0)

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = \begin{bmatrix} -1\\0 \end{bmatrix} \begin{bmatrix} -3 & 0 \end{bmatrix}$$

$$W^T x = 3$$

(Positive)

Let slope, m = -1

Intercept, c = 0

w --> parameters of the line
$$(m, c) = (-1, 0)$$

$$P_{2}(3, 3)$$

$$W^{T}x = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} 3 & 3 \end{bmatrix}$$

$$W^{T}x = -3$$
(Negative)

Inference: For all the points which lie in the right side of the hyperplane, w^Tx value will be Negative

CLASSIFICATION

 $\max \frac{2}{\|w\|}$

s.t.

$$(w \cdot x + b) \ge 1, \forall x \text{ of class } 1$$

$$(w \cdot x + b) \le -1, \forall x \text{ of class } 2$$

MAXIMUM MARGIN CALCULATION

MULTICLASS CLASSIFICATION IN SVM

SUPPORT VECTOR REGRESSION

SUPPORT VECTOR REGRESSION

$$\min_{\frac{1}{2}} ||w||^2$$

SUPPORT VECTOR MACHINES

```
from sklearn.svm import SVC, SVR
classifier_model = SVC()
regressor_model = SVR()
```


SUPPORT VECTOR MACHINES KERNEL PARAMETER

1.4.6. Kernel functions

The kernel function can be any of the following:

- linear: $\langle x, x' \rangle$.
- polynomial: $(\gamma\langle x,x'\rangle+r)^d$, where d is specified by parameter degree, r by coef0.
- rbf: $\exp(-\gamma ||x-x'||^2)$, where γ is specified by parameter gamma, must be greater than 0.
- sigmoid $anh(\gamma\langle x,x'\rangle+r)$, where r is specified by coef0.

Different kernels are specified by the kernel parameter:

```
>>> linear_svc = svm.SVC(kernel='linear')
>>> linear_svc.kernel
'linear'
>>> rbf_svc = svm.SVC(kernel='rbf')
>>> rbf_svc.kernel
'rbf'
```


• Decision Tree is a Supervised learning technique that can be used for both classification and Regression problems, but mostly it is preferred for solving Classification problems.

• Decision Trees usually mimic human thinking ability while making a decision, so it is easy to understand.

• The logic behind the decision tree can be easily understood because it shows a treelike structure.

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Day	Weather	Temperature	Humidity	Wind	Play?
1	Sunny	Hot	High	Weak	No
2	Cloudy	Hot	High	Weak	Yes
3	Sunny	Mild	Normal	Strong	Yes
4	Cloudy	Mild	High	Strong	Yes
5	Rainy	Mild	High	Strong	No
6	Rainy	Cool	Normal	Strong	No
7	Rainy	Mild	High	Weak	Yes
8	Sunny	Hot	High	Strong	No
9	Cloudy	Hot	Normal	Weak	Yes
10	Rainy	Mild	High	Strong	No

Figure 17-1. A "guess the animal" decision tree

ENTROPY

- In order to build a decision tree, we will need to decide what questions to ask and in what order.
- "Entropy" is a concept used to measure the impurity or disorder of a set of data points within a node of the decision tree.
- When building a decision tree, you want to minimize entropy.
- The idea is to find attribute values or features that, when used for splitting, result in nodes with lower entropy.

ENTROPY CALCULATION

In math terms, if P_i is the proportion of data labeled as class c_i , we define the entropy as:

$$H(S) = -p_1 \log_2 p_1 - \dots - p_n \log_2 p_n$$

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

Play Golf		
Yes No		
9	5	

Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64)

= - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

= 0.94

INFORMATION GAIN

• Information Gain is another important concept related to entropy in decision trees. It quantifies the reduction in entropy achieved by a particular split.

• The formula for Information Gain is:

Information Gain = Entropy(parent) - Weighted Average of Entropy(children)

• Decision tree algorithms typically select the split with the highest Information Gain, as it represents the most effective way to reduce uncertainty or impurity in the data.

INFORMATION GAIN

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

parent
$$-\left(\frac{14}{30} \cdot \log_{\frac{14}{30}}\right) - \left(\frac{16}{30} \cdot \log_{\frac{16}{30}}\right) = 0.996$$

entropy

child 1 entropy
$$-\left(\frac{13}{17} \cdot \log_{10} \frac{13}{17}\right) - \left(\frac{4}{17} \cdot \log_{10} \frac{4}{17}\right) = 0.787$$

child 2 entropy
$$-\left(\frac{1}{13} \cdot \log_2 \frac{1}{13}\right) - \left(\frac{12}{13} \cdot \log_2 \frac{12}{13}\right) = \mathbf{0.391}$$

(Weighted) Average Entropy of children
$$=$$
 $\left(\frac{17}{30} \cdot 0.787\right) + \left(\frac{13}{30} \cdot 0.391\right) = 0.615$

Information Gain - 0.996 - 0.615 = 0.38 for this split

COMPARISION OF GAIN VALUE

		Play Golf	
_		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

		Play Golf	
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1
Gain = 0.029			

		Play Golf	
		Yes	No
Humidity	High	3	4
	Normal	6	1
Gain = 0.152			

		Play Golf	
		Yes	No
Monda	False	6	2
Windy	True	3	3
Gain = 0.048			

HIGHEST GAIN IS TAKEN

*		Play Golf	
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
Gain = 0.247			

DECISION TREE REGRESSOR

DECISION TREE ALGORITHM

ENSEMBLE ALGORITHMS

- 1. Bagging Random Forest
- 2. Boosting AdaBoost, XGBoost

