Out[24]:		CriticRating	AudienceRating	BudgetMillions
	count	559.000000	559.000000	559.000000
	mean	47.309481	58.744186	50.236136
	std	26.413091	16.826887	48.731817
	min	0.000000	0.000000	0.000000
	25%	25.000000	47.000000	20.000000
	50%	46.000000	58.000000	35.000000
	75%		72.000000	65.000000
	max	97.000000	96.000000	300.000000

```
In [25]: # How to working with joint plots
    from matplotlib import pyplot as plt # visualization
    import seaborn as sns # advanced visualization

#%matplotlib inline #All THE PLOT SHOULD INSIDE THE LINE

import warnings
warnings.filterwarnings('ignore')
```

- basically joint plot is a scatter plot & it find the relation b/w audience & critics
- also if you look up you can find the uniform distribution (critics) and normal distribution (audience)

```
In [26]: j = sns.jointplot(data = movies, x = 'CriticRating', y = 'AudienceRating') # 24th MAY 2025

# Audience rating is more dominant then critics rating
# Based on this we find out as most people are most liklihood to watch audience rating & less likely to watch
# there is positive coreleation between 2 attributes
# Let me explain the excel - if you filter audience rating & critic rating. critic rating has very low value.
```



```
In [27]: #j = sns.jointplot( data = movies, x = 'CriticRating', y = 'AudienceRating', kind='hex')
j = sns.jointplot(data = movies, x = 'CriticRating', y = 'AudienceRating', kind='hex')
```


In [30]: j = sns.jointplot(data = movies, x = 'CriticRating', y = 'AudienceRating',kind='resid')

In [54]: j = sns.jointplot(data = movies, x = 'CriticRating', y = 'AudienceRating',kind='kde')

In [31]: j = sns.jointplot(data = movies, x = 'CriticRating', y = 'AudienceRating',kind='scatter')


```
In [32]: # Histrograms

# <<< chat1
# distribution plot
m1 = sns.distplot(movies.AudienceRating)
#y - axis generated by seaborn automatically that is the powerfull of seaborn gallery</pre>
```


In [33]: m1 = sns.distplot(movies.CriticRating)

In [34]: sns.set_style('darkgrid')

In [55]: m2 = sns.displot(movies.AudienceRating, bins = 10)

In [35]: m2 = sns.displot(movies.CriticRating, bins=15)

In [36]: sns.set_style('white')
 m2 = sns.displot(movies.CriticRating, bins=15)

In [56]: #sns.set_style('darkgrid')
n1 = plt.hist(movies.AudienceRating, bins=20)

In [57]: sns.set_style('white') #normal distribution & called as bell curve
n1 = plt.hist(movies.AudienceRating, bins=20)

In [58]: n1 = plt.hist(movies.CriticRating, bins=20) #uniform distribution


```
In [59]: # <<< chat - 2
# Creating stacked histograms & this is bit tough to understand</pre>
```

```
In [37]: #h1 = plt.hist(movies.BudgetMillions)
    plt.hist(movies.BudgetMillions)
    plt.show()
```


In [38]: vis1 = sns.lmplot(data=movies, x='CriticRating', y='AudienceRating', fit_reg=True)

In [39]: vis1 = sns.lmplot(data=movies, x='CriticRating', y='AudienceRating', fit_reg=False)

In []: # Kernal Density Estimate plot (KDE PLOT)
how can i visualize audiene rating & critics rating - using scatterplot

```
In [ ]: #k1 = sns.kdeplot(data = movies,movies.CriticRating,movies.AudienceRating)
# where do u find more density and how density is distributed across from the chat
# center point is kernal this is called KDE & insteade of dots it visualize like this
# we can able to clearly see the spread at the audience ratings
```

In []: #k1 = sns.kdeplot(movies.CriticRating,movies.AudienceRating,shade = True,shade_Lowest=False,cmap='Reds')

```
In [ ]: #k1 = sns.kdeplot(movies.CriticRating,movies.AudienceRating,shade = False,shade_Lowest=True,cmap='Reds')
         #k1 = sns.kdeplot(movies.CriticRating,movies.AudienceRating,shade_Lowest=True,cmap='Greens')
         movies.head()
In [60]:
Out[60]:
                                    Genre CriticRating AudienceRating BudgetMillions Year
                           Film
         0 (500) Days of Summer
                                  Comedy
                                                   87
                                                                   81
                                                                                   8 2009
                     10,000 B.C. Adventure
         1
                                                    9
                                                                                 105 2008
                                                                   44
          2
                                                   30
                      12 Rounds
                                   Action
                                                                   52
                                                                                  20 2009
          3
                      127 Hours Adventure
                                                   93
                                                                   84
                                                                                  18 2010
                       17 Again
                                  Comedy
                                                   55
                                                                  70
                                                                                  20 2009
          4
 In [ ]:
         #sns.set style('dark')
         #k1 = sns.kdeplot(movies.BudgetMillions,movies.AudienceRating,shade_Lowest=True,cmap='Green_r')
 In [ ]: #sns.set style('dark')
         #k1 = sns.kdeplot(movies.BudgeMillions,movies.AudienceRating)
 In [ ]: #k2 = sns.kdeplot(movies.BudgeMillions, movies.CriticRating)
In [65]: #subplots
         ax = plt.subplots(1,2, figsize = (3,3))
         \#ax = plt.subplots(3,3, figsize = (10,8))
```



```
In [66]: #subplots
#ax = plt.subplots(1,2, figsize = (3,3))
ax = plt.subplots(3,3, figsize =(10,8))
```


In [64]: f, axes = plt.subplots(1,2, figsize =(20,7))

```
k1 = sns.kdeplot(movies.BudgetMillions,movies.AudienceRating,ax=axes[0])
          k2 = sns.kdeplot(movies.BudgetMillions,movies.CriticRating,ax = axes[1])
                                                    Traceback (most recent call last)
        TypeError
        Cell In[64], line 3
              1 f, axes = plt.subplots(1,2, figsize =(20,7))
        ----> 3 k1 = sns.kdeplot(movies.BudgetMillions,movies.AudienceRating,ax=axes[0])
              4 k2 = sns.kdeplot(movies.BudgetMillions,movies.CriticRating,ax = axes[1])
        TypeError: kdeplot() takes from 0 to 1 positional arguments but 2 positional arguments (and 1 keyword-only argument)
        were given
        0.8
                                                                          0.8
        0.6
                                                                          0.6
                                          0.6
                                                                                      0.2
                                                                                                                       0.8
                     0.2
                               0.4
                                                      0.8
                                                                                                 0.4
                                                                                                            0.6
                                                                 1.0
                                                                                                                                  1.0
In [67]: movies
```

localhost:8888/doc/tree/Advanced Visualization movie ratings.ipynb

Out[67]:

	Film	Genre	CriticRating	AudienceRating	BudgetMillions	Year
0	(500) Days of Summer	Comedy	87	81	8	2009
1	10,000 B.C.	Adventure	9	44	105	2008
2	12 Rounds	Action	30	52	20	2009
3	127 Hours	Adventure	93	84	18	2010
4	17 Again	Comedy	55	70	20	2009
•••		•••	•••		***	•••
554	Your Highness	Comedy	26	36	50	2011
555	Youth in Revolt	Comedy	68	52	18	2009
556	Zodiac	Thriller	89	73	65	2007
557	Zombieland	Action	90	87	24	2009
558	Zookeeper	Comedy	14	42	80	2011

559 rows × 6 columns

```
In [68]: # box plots
w = sns.boxplot(data=movies, x='Genre', y = 'CriticRating')
```



```
In [46]: #violin plot
z = sns.violinplot(data=movies, x='Genre', y = 'CriticRating')
```


In [48]: movies.head()

Out[48]:		Film	Genre	CriticRating	AudienceRating	BudgetMillions	Year
	0	(500) Days of Summer	Comedy	87	81	8	2009
	1	10 000 B C	Adventure	9	44	105	2008

•	10,000 B.C. Adventure	9	44	103 2000
2	12 Rounds Action	30	52	20 2009
3	127 Hours Adventure	93	84	18 2010

4 17 Again Comedy 55 70 20 2009

In [49]: # Creating a Facet grid

In [50]: g = sns.FacetGrid(movies, row = 'Genre', col = 'Year', hue = 'Genre') #kind of subplots

In [69]: plt.scatter(movies.CriticRating,movies.AudienceRating)

Out[69]: <matplotlib.collections.PathCollection at 0x1e3d4cbef90>


```
In [51]: g = sns.FacetGrid(movies, row = 'Genre', col = 'Year', hue = 'Genre')
g = g.map(plt.scatter, 'CriticRating', 'AudienceRating') # scatterplots are mapped in facetgrid
```



```
In [53]: # you can populated any type of chat.
g = sns.FacetGrid(movies, row = 'Genre', col = 'Year', hue = 'Genre')
g = g.map(plt.hist, 'BudgetMillions') #histogram are mapped in facetgrid
```


In []