ИІТМО

РАБОЧИЙ ПРОТОКОЛ И ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №3.13 "Магнитное поле Земли"

Группа: 2.1.1

Студент: Денисова А.А., Пименова Е.А.,

Шнейдерис Г.Г.

Преподаватель: Хвастунов Н.Н.

К работе допущен: Работа выполнена: Отчет принят:

1 Цель работы

• Изучение зависимостей резонансной кривой от параметров контура и частоты колебаний.

2 Задачи, решаемые при выполнении работы

- Провести измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца.
- Определить горизонтальную составляющую магнитного поля Земли.

3 Метод экспериментального исследования

- Увеличивая силу тока изменять угол α отклонения стрелки компаса
- Записывать силы тока для стационарных положений стрелки компаса с $\alpha=10^\circ,20^\circ,\ldots,~130^\circ,~140^\circ$

4 Рабочие формулы и исходные данные

1) Вертикальная составляющая индукции магнитного поля:

$$B_v = B_h \cdot \tan(\theta)$$

2) Модуль вектора магнитной индукции:

$$B = \sqrt{B_h^2 + B_v^2}$$

3) Отношение горизонтальной компоненты магнитного поля к магнитной индукции пробного поля:

$$\frac{B_h}{B_c} = \frac{\sin \alpha}{\sin(\varphi - \alpha)}$$

4) Магнитное поле катушек Гельмгольца:

$$B_c = \mu_0 \cdot \left(\frac{4}{5}\right)^{\frac{3}{2}} \cdot \frac{In}{R}$$

5 Измерительные приборы:

$N_{\overline{0}}$	Наименование	Тип прибора	Используемый диапазон
1	Амперметр	аналоговый	0 - 0,04 A
2	Транспортир	аналоговый	$0^{\circ} - 160^{\circ}$

Таблица 1: Измерительные приборы

6 Схема установки:

7 Результаты прямых измерений и их обработки:

α_i	I_1 , мА	I_2 , мА	I_3 , мА	$I_{ m cp}$, мА	$\frac{\sin \alpha_i}{\sin(\varphi - \alpha_i)}$	B_c , мкТл
10°	7	10	11	9.33	0.347	5.59
20°	17	17	15	16.33	0.532	9.78
30°	16	19	19	18.00	0.652	10.79
40°	19	13	21	17.67	0.742	10.59
50°	22	22	23	22.33	0.815	13.38
60°	21	24	21	22.00	0.879	13.18
70°	29	26	25	26.67	0.939	15.98
80°	23	26	27	25.33	1.000	15.18
90°	29	28	28	28.33	1.064	16.98
100°	30	31	27	29.33	1.137	17.58
110°	33	32	31	32.00	1.226	19.18
120°	35	35	32	34.00	1.347	20.38
130°	37	37	37	37.00	1.532	22.17
140°	42	44	44	42.67	1.879	25.77

8 Расчёт результатов косвенных измерений

$$\gamma_1 = \frac{\sin \alpha_i}{\sin(\varphi - \alpha_i)} = \frac{\sin 10^\circ}{\sin(160^\circ - 10^\circ)} = 0.347$$

$$B_{C_1} = \mu_0 \cdot \left(\frac{4}{5}\right)^\frac{3}{2} \frac{In}{R} = 4\pi \cdot 10^{-7} \frac{\Gamma_{\rm H}}{_{\rm M}} \cdot \left(\frac{4}{5}\right)^\frac{3}{2} \cdot \frac{9.33~{\rm A} \cdot 100}{0.15~{\rm Om}} = 5.59~{\rm MKT}$$
л

9 Графики

10 Окончательные результаты:

Индукция магнитного поля Земли: k=13.20 мкТл Погрешность по методу наименьших квадратов $\sigma_k=0.60$ Доверительный интервал для $\alpha=0.95$ получился [11.89; 14.151]

11 Выводы и анализ результатов работы

В ходе выполнения лабораторной работы 3.13 "Магнитное поле Земли" команда "НЕЙРОТЕХ" провела измерения направления суммарного магнитного поля, создаваемого Землей и системой катушек Гельмгольца. Прочитали методичку и узнали о трактате "О магните, магнитных телах и большом магните - Земле". Полученная погрешность нас немного удивила, но посмотрев на график можно заметить, что он действительно не идеальная прямая линия. Результатами мы остались довольны и вообще нам понравилась данная лабораторная работа.