§ 1. Определения и простейшие свойства

Пусть E, F - линейные нормированные пространства. Отображение A назовем отображением из E в F, если для A область определения $D(A) \subset E$, а множество значений $R(A) \subset F$. В таком случае пишем $A:D(A) \subset E \to F$.

Предположим, что пространства E, F оба вещественные, или оба комплексные. Отображение A из E в F называется **линейным оператором**, если:

- 1. D(A) линейное многообразие в E;
- 2. $A(\lambda x) = \lambda Ax$, где $x \in D(A)$ и λ число;
- 3. A(x + y) = Ax + Ay, где $x, y \in D(A)$.

Нетрудно показать, что для линейного оператора A множество значений R(A) является линейным многообразием в F. Заметим также, что $A\Theta = \Theta$.

Линейный оператор f из E - вещественного линейного нормированного пространства в \mathbb{R}^1 называется вещественным линейным функционалом. Линейный оператор f из E - комплексного линейного нормированного пространства в \mathbb{C}^1 называется комплексным линейным функционалом.

Замечание. Так как D(A) - линейное многообразие в E, то D(A) с нормой, порожденной пространством E, можно считать самостоятельным линейным нормированным пространством. Поэтому часто считают, что линейный оператор A задан на всем пространстве E и пишут $A:E\to F$, то есть D(A)=E.

Теорема 1.1. Пусть E, F - линейные нормированные пространства и $A: E \to F$ - Линейный оператор. Пусть оператор A непрерывен в точке $x_0 \in E$. Тогда оператор A непрерывен в любой точке $x \in E$.

Доказательство. Пусть последовательность $\{x_n\} \subset E$ такая, что $x_n \to x$ при $n \to \infty$. Рассмотрим

$$Ax_n - Ax = A(x_n - x + x_0) - Ax_0.$$

Здесь $y_n = x_n - x + x_0 \to x_0$ при $n \to \infty$. Следовательно,

$$||Ax_n - Ax||_F = ||Ay_n - Ax_0||_F \xrightarrow{n \to \infty} 0.$$

Линейный оператор $A:D(A)\subset E\to F$ называется ограниченным на D(A), если

$$(\exists C \ge 0)(\forall x \in D(A)) [\|Ax\|_F \le C \|x\|_E].$$

Теорема 1.2. Пусть E, F - линейные нормированные пространства. Линейный оператор $A: E \to F$ непрерывен на E тогда и только тогда, когда он ограничен на E.

Доказательство. Пусть оператор A непрерывен на E, но не является ограниченным. Тогда

$$(\forall n \in \mathbb{N}) (\exists x_n \in E) [\|Ax_n\|_F > n \|x_n\|_E]$$

Заметим, что $x_n \neq \Theta$. Определим элементы $x_n' = x_n/\left(n \|x_n\|_E\right)$. Тогда $\|x_n'\|_E = 1/n \to 0$ при $n \to \infty$, то есть $x_n' \to \Theta \in E$. Из непрерывности оператора A следует

$$||Ax'_n||_F = ||Ax'_n - A\Theta||_F \underset{n \to \infty}{\longrightarrow} 0.$$

С другой стороны

$$||Ax'_n||_F = \frac{1}{n ||x_n||_E} ||Ax_n||_F > \frac{1}{n ||x_n||_E} n ||x_n||_E = 1.$$

Из полученного противоречия следует ограниченность оператора A на E.

Теперь предположим, что оператор A ограничен на E. Тогда из оценки $\|Ax - Ay\|_F \le C \|x - y\|_E$ для $x,y \in E$ следует, что оператор A на E удовлетворяет условию Липшица и, следовательно, непрерывен на E. \odot

Замечание. Полученные утверждения выполняются и для линейных функционалов, как частного случая линейных операторов. Отметим здесь, что линейный функционал f, определенный на $D(f) \subset E$ ограничен на D(f), если

$$(\exists C \ge 0)(\forall x \in D(f)) \left[|f(x)| \le C ||x||_E \right].$$

Теорема 1.3. Пусть E, F - линейные нормированные пространства, пространство E конечномерно. Пусть $A: E \to F$ Линейный оператор. Тогда оператор A ограничен на E.

Доказательство. Пусть $E=\mathcal{L}\left(\omega_{1},\omega_{2},\ldots,\omega_{m}\right)$, где $\{\omega_{k}\}_{k=1}^{m}$ — базис пространства E. Тогда всякий $x\in E$ представим в виде $x=\sum_{k=1}^{m}x_{k}\omega_{k}$, где x_{k} — координаты элемента x в базисе $\{\omega_{k}\}$. Определим в E новую норму $\|x\|_{E}^{*}=\sum_{k=1}^{m}|x_{k}|$. Исходная норма $\|x\|_{E}$ и новая $\|x\|_{E}^{*}$ эквивалентны. Тогда

$$(\exists M > 0)(\forall x \in E)[\|x\|_E^* < M\|x\|_E]$$

Далее для любого $x \in E$ получим

$$||Ax||_{F} = ||A\sum_{k=1}^{m} x_{k}\omega_{k}||_{F} = ||\sum_{k=1}^{m} x_{k}A\omega_{k}||_{F} \le \sum_{k=1}^{m} |x_{k}| ||A\omega_{k}||_{F} \le$$

$$\le \max_{k} ||A\omega_{k}||_{F} \sum_{k=1}^{m} |x_{k}| \le M \max_{k} ||A\omega_{k}||_{F} ||x||_{E} = C||x||_{E},$$

где константа $C = M \max_k \|A\omega_k\|_F < \infty$.

- ЗАДАЧА.
- 1.1. Пусть E банахово пространство и F линейное нормированное пространство. Пусть A : $E \to F$ линейный ограниченный оператор такой, что $(\exists c > 0)(\forall x \in E) (\|Ax\|_F \ge c\|x\|_E)$. Показать, что множество значений оператора R(A) подпространство F.

§ 2. Норма линейного ограниченного оператора

Пусть E, F - линейные нормированные пространства. Пусть Линейный оператор $A: D(A) \subset E \to F$ ограниченный на D(A). Тогда из (1.1) следует, что числовое множество

$$M = \left\{ \frac{\|Ax\|_F}{\|x\|_E} \mid (x \in D(A)) \land (x \neq \Theta) \right\}$$

ограничено сверху константой $C \geq 0$. Обозначим

$$||A|| = \sup M = \sup_{\substack{x \in D(A) \\ x \neq \Theta}} \frac{||Ax||_F}{||x||_E} \le C < \infty.$$

Величина ||A|| называется нормой оператора A на D(A). Если D(A) = E, то ||A|| называется просто нормой оператора A. Иногда норму оператора обозначают с указанием пространств $||A||_{E \to F}$.

Очевидно, что

$$(\forall x \in D(A)) [||Ax||_F \le ||A|| ||x||_E]$$

С другой стороны

$$(\forall \varepsilon > 0) (\exists x_{\varepsilon} \in D(A)) \left[\frac{\|Ax_{\varepsilon}\|_{F}}{\|x_{\varepsilon}\|_{E}} > \|A\| - \varepsilon \right]$$

то есть $\|Ax_{\varepsilon}\|_{F} > (\|A\| - \varepsilon) \|x_{\varepsilon}\|_{E}$. Таким образом, $\|A\| = \min C$, где константы C фигурируют в условии (1.1).

Теорема 2.1. Пусть E, F - линейные нормированные пространства. Пусть $A: D(A) \subset E \to F$ - Линейный оператор, ограниченный на D(A). Тогда

$$||A|| = \sup_{\substack{x \in D(A) \\ x \neq \Theta}} \frac{||Ax||_F}{||x||_E} = \sup_{\substack{x \in D(A) \\ ||x||_E \leq 1}} ||Ax||_F = \sup_{\substack{x \in D(A) \\ ||x||_E = 1}} ||Ax||_F.$$

Доказательство. Заметим, что

$$||A|| = \sup_{\substack{x \in D(A) \\ x \neq \Theta}} \frac{||Ax||_F}{||x||_E} = \sup_{\substack{x \in D(A) \\ x \neq \Theta}} ||A\frac{x}{||x||_E}||_F \le$$

$$\le \sup_{\substack{y \in D(A) \\ ||y|| = 1}} ||Ay||_F = \sup_{\substack{y \in D(A) \\ ||y|| = 1}} \frac{||Ay||_F}{||y||_E} \le ||A||.$$

Осталось показать, что

$$\sup_{\substack{x \in D(A) \\ \|x\|_E \le 1}} \|Ax\|_F = \|A\|$$

Пусть $x \in D(A)$ такой, что $||x||_E \le 1$. Тогда $||Ax||_F \le ||A|| ||x||_E \le ||A||$. Отсюда следует

$$||A|| \ge \sup_{\substack{x \in D(A) \\ ||x||_E \le 1}} ||Ax||_F \ge \sup_{\substack{x \in D(A) \\ ||x||_E = 1}} ||Ax||_F = ||A||.$$

Пример 2.1. ЛиНЕЙНЫЙ ОПЕРАТОР ФРЕДГОЛЬМА В C[a, b].

В вещественном пространстве C[a,b] определим оператор Фредгольма

$$Ax(t) = \int_{a}^{b} K(t, s)x(s)ds$$

где функция K(t,s) непрерывная по совокупности переменных $t,s \in [a,b]$. Для функции $x \in C[a,b]$ функция Ax(t) непрерывная по $t \in [a,b]$, так как функция K(t,s)x(s) непрерывная по совокупности переменных $t,s \in [a,b]$ (см., напр., [18]). Следовательно, оператор $A:C[a,b] \to C[a,b]$.

Очевидно, что оператор A линейный. Установим ограниченность.

$$\begin{aligned} \|Ax\| &= \max_{a \leq t \leq b} \left| \int_a^b K(t,s) x(s) ds \right| \leq \max_{a \leq t \leq b} \int_a^b |K(t,s)| |x(s)| ds \leq \\ &\leq \max_{a \leq t \leq b} \int_a^b |K(t,s)| ds \|x\|. \end{aligned}$$

Итак, оператор A ограниченный и

$$||A|| \le \max_{a \le t \le b} \int_a^b |K(t,s)| ds < \infty$$

Покажем, что на самом деле в (2.2) имеет место равенство. В силу непрерывности по $t \in [a, b]$ функции $\int_a^b |K(t, s)| ds$ найдется $t_0 \in [a, b]$, что

$$\max_{a \leq t \leq b} \int_{a}^{b} |K(t,s)| ds = \int_{a}^{b} |K\left(t_{0},s\right)| \, ds.$$

Для произвольного $\varepsilon > 0$ определим функцию

$$x_{\varepsilon}(t) = \frac{K(t_0, t)}{\varepsilon + |K(t_0, t)|} \in C[a, b].$$

Заметим, что $||x_{\varepsilon}|| \leq 1$. Далее получим

$$||A|| = \sup_{\|x\| \le 1} ||Ax|| \ge ||Ax_{\varepsilon}|| \ge |Ax_{\varepsilon}(t_0)| \ge Ax_{\varepsilon}(t_0) = \int_a^b K(t_0, s) x_{\varepsilon}(s) ds =$$

$$= \int_a^b K(t_0, s) \frac{K(t_0, s)}{\varepsilon + |K(t_0, s)|} ds = \int_a^b \frac{(|K(t_0, s)| + \varepsilon - \varepsilon) |K(t_0, s)|}{\varepsilon + |K(t_0, s)|} ds =$$

$$= \int_a^b |K(t_0, s)| ds - \varepsilon \int_a^b \frac{|K(t_0, s)|}{\varepsilon + |K(t_0, s)|} ds \ge \int_a^b |K(t_0, s)| ds - \varepsilon (b - a).$$

В силу произвольности $\varepsilon > 0$ получим

$$||A|| \ge \int_a^b |K(t_0, s)| ds = \max_{a \le t \le b} \int_a^b |K(t, s)| ds.$$

Таким образом, из (2.2) и (2.3) следует для оператора Фредгольма

$$||A|| = \max_{a \le t \le b} \int_a^b |K(t,s)| ds.$$

Пример 2.2. ПРОСТЕЙШИЙ ОПЕРАТОР ДИФФЕРЕНЦИРОВАНИЯ. В пространстве C[0,1] рассмотрим оператор

$$Ax(t) = \frac{d}{dt}x(t)$$

За область определения этого оператора примем множество $D(A) = C^1[0,1]$, то есть множество непрерывно дифференцируемых на [0,1] функций. Тогда A - Линейный оператор, действующий в C[0,1].

Покажем неограниченность оператора A на D(A). Для $n \in \mathbb{N}$ положим $x_n(t) = \sin n\pi t$. Тогда $Ax_n(t) = n\pi \cos n\pi t$. Для $x \in C[0,1]$ норма $\|x\|_C = \max_{0 \le t \le 1} |x(t)|$, поэтому

$$||x_n||_C = 1$$
, $||Ax_n||_C = n\pi = n\pi ||x_n||_C$

Из последнего равенства следует, что условие (1.1) ограниченности оператора A не выполняется, так как $n\pi \to \infty$ при $n \to \infty$.

Рассмотрим оператор, который задается формулой (2.4), но уже из пространства $C^1[0,1]$ с нормой $\|x\|_{C^1} = \|x\|_C + \|x'\|_C$ в пространство C[0,1]. Итак, $A:C^1[0,1]\to C[0,1]$. Очевидно, что оператор A линейный. Кроме того, для всех $x\in C^1[0,1]$

$$||Ax||_C = ||x'||_C \le ||x||_C + ||x'||_C = ||x||_{C^1}$$

Получили, что оператор дифференцирования $A:C^1[0,1]\to C[0,1]$ ограничен и $\|A\|_{C^1\to C}\le 1$. Найдем точное значение нормы оператора. Для $n\in\mathbb{N}$ рассмотрим функции $x_n(t)=(n\pi)^{-1}\sin n\pi t$. Тогда $Ax_n(t)=\cos n\pi t$ и, следовательно, $\|Ax_n\|_C=1$. Далее получим

$$||x_n||_{C^1} = ||x_n||_C + ||x_n'||_C = \frac{1}{n\pi} + 1$$

Следовательно,

$$||A||_{C^1 \to C} = \sup_{\substack{x \in C^1 \\ x \neq \Theta}} \frac{||Ax||_C}{||x||_{C^1}} \ge \frac{||Ax_n||_C}{||x_n||_{C^1}} = \frac{n\pi}{1 + n\pi}.$$

Учитывая, что $n \in \mathbb{N}$ любые, из (2.5) при $n \to \infty$ получим $\|A\|_{C^1 \to C} \ge 1$. Таким образом, для оператора дифференцирования $\|A\|_{C^1 \to C} = 1$.

§ §. Пространство линейных ограниченных операторов

Пусть E, F - линейные нормированные пространства, причем оба вещественные или оба комплексные. Через L(E, F) обозначим множество всех линейных ограниченных операторов $A: E \to F$. В случае F = E вместо L(E, E) пишут L(E).

Определим на множестве L(E,F) операции умножения на число и сложение. Считаем для числа λ и $A,B\in L(E,F)$ операторы λA и A+B такие, что для $x\in E$

$$(\lambda A)x = (\lambda)Ax, \quad (A+B)x = Ax + Bx.$$

Нетрудно видеть, что так определенные операторы λA и A+B принадлежат L(E,F). В качестве нуля $\Theta \in L(E,F)$ определим оператор Θ такой, что $\Theta x = \Theta \in F$ для всех $x \in E$. Легко проверить выполнение в L(E,F) всех аксиом линейного пространства.

В полученном линейном пространстве L(E,F) определим норму. Для $A \in L(E,F)$ положим, как и в (2.1),

$$||A|| = \sup_{\substack{x \in E \\ x \neq \Theta}} \frac{||Ax||_F}{||x||_E}.$$

Для проверки аксиом нормы напомним

$$(\forall x \in E) [\|Ax\|_F < \|A\| \|x\|_E].$$

1). Очевидно, что $||A|| \ge 0$. Пусть теперь ||A|| = 0. Тогда $||Ax||_F = 0$ для всех $x \in E$. Следовательно, $Ax = \Theta$ для всех $x \in E$ и оператор $A = \Theta \in L(E, F)$. Для $\Theta \in L(E, F)$ свойство $||\Theta|| = 0$ очевидно. Доказана первая аксиома. 2). Вторая аксиома нормы следует из соотношения

$$\|\lambda A\| = \sup_{\substack{x \in E \\ x \neq \Theta}} \frac{\|\lambda Ax\|_F}{\|x\|_E} = |\lambda| \|A\|.$$

3). Третья аксиома нормы следует из оценки для всех $x \in E$.

$$||(A+B)x||_F \le ||Ax||_F + ||Bx||_F \le (||A|| + ||B||)||x||$$

которая означает $||A + B|| \le ||A|| + ||B||$.

Итак, L(E,F) - линейное нормированное пространство и определена сходимость по норме операторов. Пусть последовательность операторов $\{A_n\}_{n=1}^{\infty}\subset L(E,F)$ такая, что для некоторого оператора $A\in L(E,F)$ выполняется $\|A_n-A\|\to 0$ при $n\to\infty$. В таком случае говорят, что операторы $A_n(n\in\mathbb{N})$ сходятся к оператору A по операторной норме. Такую сходимость $A_n\to A$ называют также равномерной сходимостью, поскольку она равносильна $\|A_nx-Ax\|_F\to 0$ при $n\to\infty$ равномерно по x из любого шара $B[\Theta,r]=\{x\in E\mid \|x\|_E\leq r\}$. Факт равномерной сходимости операторов при $n\to\infty$ будем обозначать $A_n\rightrightarrows A$.

Теорема 3.1. Пусть E - линейное нормированное пространство и пространство F банахово. Тогда пространство L(E,F) с операторной нормой является банаховым пространством.

Доказательство. Возьмем произвольную фундаментальную последовательность $\{A_n\}_{n=1}^{\infty} \subset L(E,F)$, то есть

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n \ge N)(\forall p \in \mathbb{N})[\|A_{n+p} - A_n\| < \varepsilon]$$

Пусть $x \in E$. Из неравенства

$$||A_{n+p}x - A_nx||_F \le ||A_{n+p} - A_n|| \, ||x||_E$$

и (3.1) следует фундаментальность последовательности $\{A_nx\}_{n=1}^{\infty} \subset F$. Но пространство F полное, поэтому эта последовательность сходится в F. Обозначим $\lim_{n\to\infty} A_nx = y(x) \in F$. Таким образом, определено отображение $A: E \to F$, действующее по правилу $Ax = y(x) = \lim_{n\to\infty} A_nx$.

Линейность отображения A очевидным образом следует из линейности операторов A_n и свойств предела. Итак, $A: E \to F$ - Линейный оператор.

Установим ограниченность этого оператора. Так как всякая фундаментальная последовательность ограничена, то $(\exists C>0)(\forall n\in\mathbb{N})$ $[\|A_n\|\leq C]$. Следовательно, для всех $x\in E$ выполняется $\|A_nx\|_F\leq \|A_n\|\,\|x\|_E\leq C\|x\|_E$. Отсюда при $n\to\infty$ получим $\|Ax\|_F\leq C\|x\|_E$, то есть оператор A ограниченный и $A\in L(E,F)$.

Покажем, что $||A_n - A|| \to 0$ при $n \to \infty$. Возьмем произвольное $\varepsilon > 0$ и пусть выполнено (3.1). Тогда для $x \in E$ с $||x||_E \le 1$ получим из (3.1) и (3.2)

$$(\forall n \ge N)(\forall p \in \mathbb{N}) \left[\|A_{n+p}x - A_nx\|_F < \varepsilon \right]$$

В последней оценке $p \to \infty$. Получим для всех $x \in E$ с $\|x\|_E \le 1$ и всех $n \ge N$ оценку $\|Ax - A_nx\|_F \le \varepsilon$. Отсюда для всех $n \ge N$ следует

$$||A - A_n|| = \sup_{\substack{x \in E \\ ||x||_E \le 1}} ||(A - A_n) x||_F \le \varepsilon$$

Итак,

$$(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall n \ge N)[\|A - A_n\| \le \varepsilon]$$

что означает $A_n \rightrightarrows A$. \odot

Отдельно рассмотрим пространство $L(E, \mathbb{R}^1)$, если пространство E вещественное, и пространство $L(E, \mathbb{C}^1)$, если пространство E комплексное. Оба эти пространства являются пространствами линейных ограниченных функционалов, вещественных или комплексных соответственно. Обозначать эти пространства принято символом E^* . Называют пространство E^* пространством, сопряженным к пространству E. Заметим, что всякое сопряженное пространство является полным, так как пространства чисел \mathbb{R}^1 и \mathbb{C}^1 полные.

Замечание. Если пространства E и F комплексные, то операцию умножения оператора на число иногда определяют формулой $(\lambda A)x=\bar{\lambda}(Ax)$. При этом пространство L(E,F) также будет ЛНП, которое полно, если полно пространство F. Соответственно, будет полно и сопряженное пространство $E^*=L(E,\mathbb{C}^1)$, в котором умножение функционала на число определяется подобным образом $(\lambda f)x=\bar{\lambda}(fx)$. Обратим внимание, что сопряженное пространство E^* иногда определяют как пространство полулинейных ограниченных функционалов $f(\alpha x+\beta y)=\bar{\alpha}f(x)+\bar{\beta}f(y)$. При таком определении пространство E^* также полно. Заметим, что в вещественном случае все эти подходы совпадают.

Определим суперпозицию (произведение) линейных операторов. Пусть E_1 , E_2 , E_3 - линейные нормированные пространства. Пусть заданы операторы $A \in L(E_1, E_2)$ и $B \in L(E_2, E_3)$. Определим на E_1 отображение

$$(BA)x = B(Ax)$$

Очевидно, $BA: E_1 \to E_3$ и является линейным оператором. Из оценки

$$||(BA)x||_{E_3} = ||B(Ax)||_{E_3} \le ||B|| ||Ax||_{E_2} \le ||B|| ||A|| ||x||_{E_1}$$

следует ограниченность оператора BA и оценка нормы $||BA|| \le ||B|| ||A||$. Таким образом, оператор $BA \in L(E_1, E_3)$.

Если оператор $A \in L(E)$, то определены операторы $A^n \in L(E)$ для всех $n \in \mathbb{N}$. Следовательно, можно определять многочлены от операторов, а также операторные ряды, что позволяет определять и некоторые функции от операторов.

Заметим, что вообще операторы $BA \neq AB$ (один из этих операторов может быть не определен). Но и в случае, когда определены оба оператора BA и AB, равенство выполняется не всегда. Например, в пространстве C[0,1] заданы операторы (Ax)(t)=tx(t) и $(Bx)(t)=\int_0^t x(s)ds$. Очевидно, что $A,B\in L(C[0,1])$ и

$$ABx(t) = t \int_0^t x(s)ds \neq \int_0^t sx(s)ds = BAx(t)$$

Если выполняется равенство AB = BA, то говорят, что операторы коммутируют или перестановочны.

В пространстве L(E,F) определим еще одну сходимость операторов, аналогом которой для функций является поточечная сходимость.

Пусть последовательность операторов $\{A_n\}_{n=1}^{\infty} \subset L(E,F)$ такая, что для некоторого оператора $A \in L(E,F)$ выполняется $\|A_nx - Ax\|_F \to 0$ при $n \to \infty$ для всех $x \in E$. В таком случае говорят, что операторы $A_n(n \in \mathbb{N})$ сходятся к оператору A сильно. Факт сильной сходимости операторов при $n \to \infty$ будем обозначать $A_n \stackrel{\text{сильно}}{\longrightarrow} A$.

Из неравенства $||A_n x - Ax||_F \le ||A_n - A|| \, ||x||_E$ следует, что из равномерной сходимости операторов следует сильная сходимость. Обратное утверждение неверно, что видно из следующего примера.

Пример 3.1. В пространстве последовательностей l_2 операторы

$$P_n x = (x_1, x_2, \dots, x_n, 0, 0, \dots)$$
 где $n \in \mathbb{N}$ и $x = (x_1, x_2, \dots, x_k, \dots) \in l_2$.

. Очевидно, что $P_n \in L(l_2)$ и для $x \in l_2$

$$||Ix - P_n x|| = ||(0, 0, \dots, 0, x_{n+1}, x_{n+2}, \dots)|| = \left(\sum_{k=n+1}^{\infty} |x_k|^2\right)^{1/2} \xrightarrow[n \to \infty]{} 0.$$

Получили $P_n \stackrel{\text{сильно}}{\longrightarrow} I$. Справедлива оценка

$$||Ix - P_n x|| = \left(\sum_{k=n+1}^{\infty} |x_k|^2\right)^{1/2} \le ||x||$$

из которой следует $\|I-P_n\| \le 1$. Определим элемент $x_0=(0,0,\dots,0,1,0,\dots),$ где 1 стоит на n+1-ом месте. Тогда $\|x_0\|=1$ и

$$||I - P_n|| = \sup_{||x||=1} ||(I - P_n)x|| \ge ||(I - P_n)x_0|| = ||x_0|| = 1$$

Таким образом, $(\forall n \in \mathbb{N}) [\|I - P_n\| = 1].$

Теорема 3.2. Пусть Е, F - линейные нормированные пространства и пространство Е конечномерно. Операторы $A, A_n (n \in \mathbb{N}) \in L(E, F)$ и выполнено условие $A_n \xrightarrow{\text{силвно}} A$ при $n \to \infty$. Тогда $A_n \rightrightarrows A$.

Доказательство. Пусть $E=\mathcal{L}(\omega_1,\omega_2,\ldots,\omega_m)$, где $\{\omega_k\}_{k=1}^m$ — базис пространства E. Тогда всякий $x\in E$ представим в виде $x=\sum_{k=1}^m x_k\omega_k$, где x_k — координаты элемента x в базисе $\{\omega_k\}$. Определим в E новую норму $\|x\|_E^*=\sum_{k=1}^m |x_k|$. Нормы $\|x\|_E$ и $\|x\|_E^*$ эквивалентны. Тогда

$$(\exists M > 0)(\forall x \in E) [||x||_E^* \le M||x||_E].$$

Далее получим для любого $x \in E$ с $||x||_E \le 1$

$$\|(A_n - A) x\|_F = \left\| \sum_{k=1}^m x_k (A_n - A) \omega_k \right\|_F \le \sum_{k=1}^m |x_k| \|(A_n - A) \omega_k\|_F \le \max_{1 \le k \le m} \|(A_n - A) \omega_k\|_F \|x\|_E^* \le M \max_{1 \le k \le m} \|(A_n - A) \omega_k\|_F$$

В результате получим

$$||A_n - A|| = \sup_{\|x\|_E \le 1} ||(A_n - A)x||_F \le M \max_{1 \le k \le m} ||(A_n - A)\omega_k||_F \xrightarrow[n \to \infty]{} 0.$$

- ЗАДАЧИ.
- 3.1. В пространстве l_2 для $x=(x_1,x_2,\ldots,x_k,\ldots)$ определены две последовательности операторов:

$$A_n x = \left(\frac{x_1}{n}, \frac{x_2}{n}, \dots, \frac{x_k}{n}, \dots\right), \quad B_n x = \underbrace{(0, 0, \dots, 0)}_{n}, x_{n+1}, x_{n+2}, \dots).$$

Каков характер сходимости каждой из последовательностей?

3.2. Пусть E и F - линейные нормированные пространства; $x, x_n \in E$ $(n \in \mathbb{N})$, и $\|x_n - x\|_E \to 0$ при $n \to \infty$. Пусть $A, A_n \in L(E, F) (n = 1, 2, \ldots)$ и $\|A_n - A\| \to 0$ при $n \to \infty$. Доказать, что $\|A_n x_n - Ax\|_F \to 0$.

§4. Принцип равномерной ограниченности

Лемма 4.1. Пусть E,F - линейные нормированные пространства и множество операторов $\{A_\gamma\}\subset L(E,F)$ такое, что

$$(\exists B [x_0, r] \subset E, r > 0) (\exists C > 0) (\forall x \in B [x_0, r]) (\forall \gamma) [\|A_{\gamma}x\|_F \leq C].$$

Тогда для $(\forall \gamma)$ [$||A_{\gamma}|| \leq 2C/r$], то есть множество операторов $\{A_{\gamma}\}$ равномерно по γ ограничено в L(E,F).

Доказательство. Для произвольного $x \in E$, что $x \neq \Theta$, определим элемент

$$\frac{r}{\|x\|_E}x + x_0 \in B\left[x_0, r\right]$$

Далее получим

$$C \ge \left\| A_{\gamma} \left(\frac{r}{\|x\|_{E}} x + x_{0} \right) \right\|_{F} = \left\| \left(\frac{r}{\|x\|_{E}} A_{\gamma} x \right) - (-A_{\gamma} x_{0}) \right\|_{F} \ge$$
$$\ge \left\| \frac{r}{\|x\|_{E}} A_{\gamma} x \right\|_{F} - \left\| A_{\gamma} x_{0} \right\|_{F} \ge \frac{r}{\|x\|_{E}} \left\| A_{\gamma} x \right\|_{F} - C.$$

Отсюда получается необходимая оценка для всех $x \in E$

$$\|A_{\gamma}x\|_F \le \frac{2C}{r} \|x\|_E$$

Теорема 4.1. Пусть даны E - банахово пространство, F - линейное нормированное пространство и операторы $\{A_{\gamma}\}\subset L(E,F)$. Пусть

$$(\forall x \in E)(\exists C \ge 0)(\forall \gamma) \left[\|A_{\gamma}x\|_F \le C \right]$$

Тогда $(\exists K)(\forall \gamma)[\|A_{\gamma}\| \leq K]$, то есть множество операторов $\{A_{\gamma}\}$ равномерно по γ ограничено в L(E,F).

Доказательство. Определим для каждого $n \in \mathbb{N}$ множество

$$S_n = \left\{ x \in E \mid (\forall \gamma) \left[\|A_{\gamma} x\|_F \le n \right] \right\}$$

Покажем, что $E=\cup_{n=1}^{\infty}S_n$. Включение $\cup_{n=1}^{\infty}S_n\subset E$ очевидно. Возьмем теперь произвольный $x\in E$. Тогда $(\forall\gamma)\left[\|A_{\gamma}x\|_F\leq C(x)\right]$. Выберем $n\geq C(x)$. Тогда $(\forall\gamma)\left[\|A_{\gamma}x\|_F\leq n\right]$, следовательно, $x\in S_n$. Установлено включение $E\subset \cup_{n=1}^{\infty}S_n$. Необходимое равенство доказано.

Покажем, что множества S_n замкнуты, то есть $\bar{S}_n = S_n$. Пусть $y \in \bar{S}_n$ и последовательность $\{y_k\} \subset S_n$ такая, что $\|y_k - y\|_E \to 0$ при $k \to \infty$. Так как $\|A_\gamma y_k\|_F \le n$ и операторы A_γ непрерывные, то при $k \to \infty$ получим $\|A_\gamma y\|_F \le n$. Следовательно, $y \in S_n$, то есть все множества S_n замкнуты.

Поскольку пространство E полное, то по теореме Бэра E есть множество второй категории. Тогда найдется множество S_m , которое не является нигде не плотным, то есть

$$(\exists B (x_0, \varepsilon_0) \subset E) (\forall B(y, \delta) \subset B (x_0, \varepsilon_0)) [B(y, \delta) \cap S_m \neq \varnothing].$$

Получили $(\forall y \in B (x_0, \varepsilon_0) [y \in \bar{S}_m]$, то есть $B(x_0, \varepsilon_0) \subset \bar{S}_m = S_m$. Далее получим $B[x_0, \varepsilon_0] = \overline{B(x_0, \varepsilon_0)} \subset S_m$. Таким образом, установили

$$(\forall x \in B [x_0, \varepsilon_0]) (\forall \gamma) [\|A_{\gamma}x\|_F \le m]$$

Из леммы 4.1 теперь следует, что $(\forall \gamma) [\|A_{\gamma}\| \leq 2m/\varepsilon_0]$. О

Продемонстрируем одно из применений принципа равномерной ограниченности, установленного в теореме 4.1.

Последовательность операторов $\{A_n\}\subset L(E,F)$ называется сильно фундаментальной, если для любого $x\in E$ последовательность $\{A_nx\}\subset F$ фундаментальна. Пространство L(E,F) называется сильно полным, если для всякой сильно фундаментальной последовательности $\{A_n\}\subset L(E,F)$ найдется оператор $A\subset L(E,F)$ такой, что $A_n\stackrel{\text{сильно}}{\longrightarrow} A$.

Теорема 4.2. Пусть E, F - банаховы пространства. Тогда пространство L(E, F) сильно полно.

Доказательства. Возьмем произвольную сильно фундаментальную последовательность $\{A_n\} \subset L(E,F)$. В силу полноты пространства F для всякого $x \in E$ последовательность $\{A_nx\} \subset F$ сходится. Таким образом, как и в теореме 3.1, определен линейный оператор $A: E \to F$, действующий по правилу $Ax = \lim_{n \to \infty} A_n x$.

Покажем ограниченность оператора A. Для каждого $x \in E$ последовательность $\{A_n x\} \subset F$ сходится, а значит ограничена, то есть

$$(\forall x \in E)(\exists C \ge 0)(\forall n \in \mathbb{N})[\|A_n x\|_E \le C]$$

Так как пространство E банахово, то из теоремы 4.1 следует

$$(\exists K \ge 0)(\forall n \in \mathbb{N}) [||A_n|| \le K]$$

Далее для всех $x \in E$ получим $||A_n x||_F \le ||A_n|| \, ||x||_E \le K ||x||_E$. Отсюда при $n \to \infty$ следует $||Ax||_F \le K ||x||_E$.

Итак, оператор $A\in L(E,F)$ и по определению этого оператора $A_nx\to Ax$ при $n\to\infty$ для любого $x\in E$. Получили $A_n\stackrel{\text{сильно}}{\longrightarrow} A.8$

• ЗАДАЧА.

4.1. Пусть E - банахово пространство и F - линейное нормированное пространство. Пусть $A, A_n \in L(E, F) (n = 1, 2, \ldots)$ и операторы A_n при $n \to \infty$ сильно сходятся к оператору A. Пусть $x, x_n \in E$ и $\|x_n - x\|_E \to 0$ при $n \to \infty$. Доказать, что $\|A_n x_n - Ax\|_F \to 0$.

§5. Продолжение оператора по непрерывности

Теорема 5.1. Пусть E - линейное нормированное пространство и F банахово пространство. Линейный оператор $A:D(A)\subset E\to F$ ограничен на своей области определения D(A) и множество D(A) плотно в E. Тогда существует оператор $\widetilde{A}\in L(E,F)$ такой, что:

1)
$$(\forall x \in D(A))[\widetilde{A}x = Ax],$$
 2) $\|\widetilde{A}\| = \|A\|$

Доказательство. Возьмем произвольный $x \in E$. Так как $\overline{D(A)} = E$, то найдется последовательность $\{x_n\} \subset D(A)$ такая, что $x_n \to x$ при $n \to \infty$. Рассмотрим последовательность $\{Ax_n\} \subset F$. Для всех $n,m \in \mathbb{N}$ элементы $x_n - x_m \in D(A)$ и справедлива оценка

$$||Ax_n - Ax_m||_F \le ||A|| \, ||x_n - x_m||_E$$

из которой следует фундаментальность последовательности $\{Ax_n\} \subset F$. Поскольку пространство F полное, то последовательность $\{Ax_n\}$ сходится, то есть существует $\lim_{n\to\infty} Ax_n = y(x) \in F$.

Покажем, что элемент $y(x) \in F$ не зависит от выбора последовательности $\{x_n\} \subset D(A)$. Пусть имеем также последовательность $\{x'_n\} \subset D(A)$ такую, что $x'_n \to x$ при $n \to \infty$. Обозначим $\lim_{n \to \infty} Ax_n = a$ и $\lim_{n \to \infty} Ax'_n = b$. Тогда

$$||a - b||_F \le ||a - Ax_n||_F + ||Ax_n - Ax_n'||_F + ||Ax_n' - b||_F \underset{n \to \infty}{\longrightarrow} 0$$

так как $\|Ax_n - Ax_n'\|_F \le \|A\| \, \|x_n - x_n'\|_E \to 0$ при $n \to \infty$.

Таким образом, на $x \in E$ однозначно определен линейный оператор

$$\widetilde{A}x = y(x) = \lim_{n \to \infty} Ax_n$$

Линейность оператора \widetilde{A} следует из линейности оператора A и соответствующих свойств предела.

Покажем выполнение свойства 1). Если $x \in D(A)$, то при построении последовательности $\{x_n\}$ можно брать все $x_n = x$. Тогда

$$\widetilde{A}x = \lim_{n \to \infty} Ax_n = \lim_{n \to \infty} Ax = Ax.$$

Покажем выполнение свойства 2). Пусть $x \in E$ и последовательность

$$\{x_n\}\subset D(A)$$
 такая, что $x_n\to x$ при $n\to\infty$. Из оценки $\|Ax_n\|_{\widetilde{E}}\leq \|A\|\,\|x_n\|_E$

при $n \to \infty$ получим $\|\widetilde{A}x\|_F \le \|A\| \|x\|_E$. Таким образом, $\widetilde{A} \in L(E,F)$ и $\|\widetilde{A}\| \le \|A\|$ Получим обратную оценку.

$$\|\widetilde{A}\| = \sup_{\substack{x \in E \\ \|x\|_E = 1}} \|\widetilde{A}x\|_F \ge \sup_{\substack{x \in D(A) \\ \|x\|_E = 1}} \|\widetilde{A}x\|_F = \sup_{\substack{x \in D(A) \\ \|x\|_E = 1}} \|Ax\|_F = \|A\|.$$

Итак, $\|\widetilde{A}\| = \|A\|.\odot$

Построенный оператор \widetilde{A} называют продолжением оператора A по непрерывности на все пространство.

- ЗАДАЧА.
- $5.1.\ \Pi$ усть H гильбертово пространство и $M\subset H$ линейное многообразие. Пусть A линейный ограниченный оператор, заданный на M со значениями в банаховом пространстве E. Показать, что оператор A можно продолжить на все пространство H с сохранением нормы.

§6. Обратимый и обратный операторы

Пусть E, F - линейные нормированные пространства и A - линейный (возможно неограниченный) оператор из E в F, область определения $D(A) \subset E$ и множество значений $R(A) \subset F$, то есть $A:D(A) \subset E \to R(A) \subset F$.

Оператор A называется обратимым, если

$$(\forall y \in R(A))(\exists x \in D(A)$$
единственный)[$Ax = y$].

Таким образом, в случае обратимого оператора A определено отображение A^{-1} из F в E с областью определения $D(A^{-1}) = R(A)$ и множеством значений $R(A^{-1}) = D(A)$ такое, что для $y \in R(A)$ определен $A^{-1}y = x$, где $x \in D(A)$ такой единственный, что Ax = y.

Теорема 6.1. Пусть E,F - линейные нормированные пространства. Отображение A^{-1} , определенное по линейному обратимому оператору $A:D(A)\subset E\to R(A)\subset F$, является линейным оператором.

Доказательство. Напомним, что D(A) и R(A) являются линейными многообразиями в пространствах E и F соответственно.

Пусть выбраны элементы $y_1, y_2 \in R(A)$ и числа α_1, α_2 . Обозначим

$$x_1 = A^{-1}y_1 \in D(A), \quad x_2 = A^{-1}y_2 \in D(A).$$

В силу линейности и обратимости оператора А получим

$$A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 y_1 + \alpha_2 y_2.$$

Из определения отображения A^{-1} следует

$$A^{-1}(\alpha_1 y_1 + \alpha_2 y_2) = \alpha_1 x_1 + \alpha_2 x_2 = \alpha_1 A^{-1} y_1 + \alpha_2 A^{-1} y_2.$$

Линейный оператор A^{-1} , определенный по линейному обратимому оператору A, называется оператором обратным к оператору A.

Из определения оператора A^{-1} следует, что

$$(\forall y \in R(A)) \left[AA^{-1}y = y \right], \quad (\forall x \in D(A)) \left[A^{-1}Ax = x \right].$$

Для линейного оператора A определим множество

$$N(A) = \{ x \in D(A) \mid Ax = \Theta \}$$

называемое ядром или нуль-многообразием оператора A. Нетрудно видеть, что N(A) - линейное многообразие в пространстве E.

Теорема 6.2. Пусть E, F - линейные нормированные пространства и $A: D(A) \subset E \to F$ линейный оператор. Оператор A обратим тогда u только тогда, когда $N(A) = \{\Theta\}$.

Доказательство. Если оператор A обратим, то уравнение $Ax = \Theta \in R(A)$ имеет единственное решение $x = A^{-1}\Theta = \Theta \in D(A)$, то есть $N(A) = \{\Theta\}$.

Пусть теперь $N(A) = \{\Theta\}$. Предположим для $y \in R(A)$ существуют $x_1, x_2 \in D(A)$ такие, что $Ax_1 = y$ и $Ax_2 = y$. Тогда $A(x_1 - x_2) = \Theta$, что означает $x_1 - x_2 \in N(A)$. Следовательно, $x_1 = x_2$. Итак, элемент $x \in D(A)$ такой, что Ax = y единственный. Значит оператор A обратим. \bigcirc

Теорема 6.3. Пусть E, F - линейные нормированные пространства и $A:D(A)\subset E\to F$ линейный оператор. Оператор A обратим и оператор A^{-1} ограничен на R(A) тогда и только тогда, когда

$$(\exists m > 0)(\forall x \in D(A))[||Ax||_F \ge m||x||_E].$$

Доказательство. Пусть оператор A обратим и оператор A^{-1} ограничен на R(A). Тогда

$$(\exists C > 0)(\forall y \in R(A)) [\|A^{-1}y\|_E \le C\|y\|_F]$$

Возьмем произвольный $x \in D(A)$ и пусть $y = Ax \in R(A)$. Тогда $x = A^{-1}y$ и $||x||_E \le C||Ax||_F$. Следовательно,

$$(\exists C > 0)(\forall x \in D(A)) \left[||Ax||_F \ge \frac{1}{C} ||x||_E \right]$$

Пусть теперь выполнено (6.1), из которого сразу следует $N(A) = \{\Theta\}$, то есть оператор A обратим и существует обратный A^{-1} . Покажем ограниченность на R(A) обратного оператора. Возьмем $y \in R(A)$ и $x = A^{-1}y \in D(A)$. Тогда из (6.1) $||Ax||_F \ge m||x||_E$. Но Ax = y, поэтому $||y||_F \ge m ||A^{-1}y||_E$. Получили ограниченность на R(A) оператора A^{-1} и $||A^{-1}|| \le 1/m$. \odot Пусть E, F - линейные нормированные пространства и линейный оператор $A:D(A) \subset E \to F$. Оператор A называется непрерывно обратимым, если оператор A обратим и обратный $A^{-1} \in L(F, E)$.

Лемма 6.1. Пусть E, F - линейные нормированные пространства. Оператор $A \in L(E, F)$, и пусть существует оператор $B \in L(F, E)$ такой, что $BA = I_E$ и $AB = I_F$ (операторы I_E и I_F тождественные на E и F соответственно). Тогда оператор A непрерывно обратим и $A^{-1} = B$.

Доказательство. Пусть элемент $x \in N(A)$, то есть $Ax = \Theta$. Следовательно, $x = I_E x = BAx =$ $B\Theta = \Theta$. Получили $N(A) = \{\Theta\}$ и оператор A обратим.

Возьмем $y \in F$. Тогда $y = I_F y = ABy = A(By) \in R(A)$, то есть R(A) = F. Рассмотрим $A^{-1}y = A^{-1}ABy = By$. Следовательно, $A^{-1} = B \in L(F, E)$.

Теорема 6.4. Пусть E - банахово пространство и оператор $A \in L(E)$ такой, что $\|A\| \le q < 1$. Тогда оператор I-A непрерывно обратим. Справедливо представление $(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$ и оценка $||(I-A)^{-1}|| \le (1-q)^{-1}$.

Доказательство. Рассмотрим в L(E) операторный ряд $\sum_{k=0}^{\infty} A^k$, где оператор $A^0 = I$. Этот ряд сходится абсолютно, так как $||A^k|| \le ||A||^k \le q^k$, а числовой ряд $\sum_{k=0}^{\infty} q^k$ сходится. Так как L(E) банахово пространство, то в L(E) сходится и ряд $\sum_{k=0}^{\infty} A^k = S \in L(E)$. Обозначим $\sum_{k=0}^{n} A^k = S_n \in L(E)$. Заметим, что $S_n(I-A) = I - A^{n+1}$. В последнем равенстве

переходим к пределу при $n \to \infty$. Так как при $n \to \infty$

$$||I - (I - A^{n+1})|| = ||A^{n+1}|| \le q^{n+1} \to 0,$$

$$||S(I - A) - S_n(I - A)|| \le ||S - S_n|| ||I - A|| \to 0,$$

то в пределе получим S(I-A) = I. Аналогично доказывается (I-A)S = I.

Из леммы 6.1 теперь следует непрерывная обратимость оператора I-A и $(I-A)^{-1}=S\in L(E)$. Получим необходимую оценку

$$\|(I-A)^{-1}\| = \|S\| = \lim_{n \to \infty} \|S_n\| \le \lim_{n \to \infty} \sum_{k=0}^n \|A^k\| \le \sum_{k=0}^\infty q^k = (1-q)^{-1}.$$

Замечание. Более сильное утверждение получается, если вместо условия $||A|| \le q < 1$, обеспечивающего сходимость ряда $\sum_{k=0}^{\infty} \|A\|^k$, воспользоваться признаком Коши сходимости этого ряда $\lim_{k\to\infty}\|A^k\|^{1/k}<1$. Известно (напр.,[8]), что такой предел $r(A)=\lim_{k\to\infty}\|A^k\|^{1/k}$ существует и называется спектральным радиусом оператора A. Из определения спектрального радиуса r(A) видно, что $r(A) \leq ||A||$. Следствие 6.1. Пусть E - банахово пространство, оператор $A \in L(E)$ и его спектральный радиус r(A) < 1. Тогда оператор I - A непрерывно обратим и справедливо представление $(I-A)^{-1} = \sum_{k=0}^{\infty} A^k$.

• ЗАДАЧИ.

- 6.1. В пространстве l_2 рассмотрим операторы A и B, переводящие элементы $x=(x_1,x_2,\ldots,x_k,\ldots)$ в $Ax=(0,x_1,x_2,\ldots)$ и $Bx=(x_2,x_3,\ldots)$ соответственно. Являются ли операторы A и B обратимыми
 - 6.2. Рассмотрим оператор $A: C[0,1] \to C[0,1]$, заданный выражением

$$Ax(t) = \int_0^t x(s)ds$$

- а) Что представляет собой R(A) ?
- б) Существует ли обратный оператор и ограничен ли он?
- 6.3. Показать, что соответствующие операторы $A:C[0,1]\to C[0,1]$ непрерывно обратимы и найти обратные: а) $Ax(t)=x(t)+\int_0^t x(s)ds$ б) $Ax(t)=x(t)-\int_0^1 tsx(s)ds$ в) $Ax(t)=x(t)+\int_0^1 \exp(t+t)ds$ s)x(s)ds.
- 6.4. Пусть E линейное нормированное пространство и $A: E \to E$ такой линейный оператор, что ряд $\sum_{k=0}^{\infty} A^k x$ сходится для всех $x \in E$.
 - а) Доказать, что оператор I A обратим.
- б) Пусть, кроме того, $A \in L(E)$. Доказать, что тогда для любого $x \in E$ выполнено $(I A)^{-1}x =$ $\sum_{k=0}^{\infty} A^{k} x.$
- 6.5. Пусть E банахово пространство, оператор $A \in L(E)$ и ||I A|| < 1. Доказать, что оператор A непрерывно обратим.
- 6.6. Пусть E банахово пространство. Доказать, что в пространстве L(E) множество всех непрерывно обратимых операторов открыто.

§ 7. Теорема Банаха об обратном операторе

Теорема 7.1(Банах). Пусть E, F - банаховы пространства. Пусть оператор $A \in L(E, F)$ такой, что $N(A) = \{\Theta\}$ и R(A) = F. Тогда оператор A непрерывно обратим, то есть существует $A^{-1} \in L(F, E)$.

Обратим внимание, что существование оператора $A^{-1}: F \to E$ очевидно, так как $N(A) = \{\Theta\}$. Следует установить ограниченность оператора A^{-1} . Рассмотрим прежде вспомогательную лемму, при доказательстве которой существенно используются три простых факта, которые сформулируем в виде задач.

• ЗАДАЧИ.

- 7.1. Пусть E линейное нормированное пространство и множество $M \subset E$. Тогда ($\forall \lambda$ числа)[$\lambda \bar{M} = \overline{\lambda M}$].
- 7.2. Пусть E линейное нормированное пространство и шар $B[x,r] \subset E$. Тогда ($\forall \lambda$ числа)[$\lambda B[x,r] = B[\lambda x, |\lambda|r]$].
- 7.3. Пусть E линейное нормированное пространство и шар $B[x,r] \subset E$. Тогда $B[x,r] B[x,r] = B[\Theta, 2r]$.

Лемма 7.1. Пусть E - банахово пространство и F - линейное нормированное пространство. Пусть задан линейный оператор $T: E \to F$ (возможно неограниченный). Определим множество $S = \{x \in E \mid \|Tx\|_F \leq 1\}$. Тогда

$$(\exists c > 0)(\forall r > 0)[B[\Theta, r] \subset \overline{rcS}]$$

Доказательство. Для $k \in \mathbb{N}$ определим множества $kS = \{kx \mid x \in S\}$. Покажем, что $E = \bigcup_{k=1}^{\infty} kS$. Включение $\bigcup_{k=1}^{\infty} kS \subset E$ очевидно. Установим обратное включение. Пусть $x \in E$. Тогда $(\exists k \in \mathbb{N}) [\|Tx\|_F \leq k]$. Заметим, что $\|T(x/k)\|_F \leq 1$, то есть $x/k \in S$. Следовательно, $x = k(x/k) \in kS$. Установили $E \subset \bigcup_{k=1}^{\infty} kS$.

Так как пространство E банахово, то E есть множество второй категории, следовательно найдется множество $mS(m \in \mathbb{N})$, которое не является нигде не плотным. Таким образом,

$$(\exists B (x_0, r_0) \subset E) (\forall B(x, \varepsilon) \subset B (x_0, r_0)) [B(x, \varepsilon) \cap mS \neq \varnothing]$$

Итак, шар $B\left(x_{0},r_{0}\right)\subset\overline{mS}.$ Отсюда следует $B\left[x_{0},r_{0}\right]\subset\overline{mS}=m\bar{S}$ (задача 7.1). Далее получим (задача 7.2)

$$B\left[\frac{x_0}{m}, \frac{r_0}{m}\right] = \frac{1}{m} B\left[x_0, r_0\right] \subset \frac{1}{m} (m\bar{S}) = \bar{S}$$

Воспользуемся теперь задачей 7.3

$$B\left[\Theta, 2\frac{r_0}{m}\right] = B\left[\frac{x_0}{m}, \frac{r_0}{m}\right] - B\left[\frac{x_0}{m}, \frac{r_0}{m}\right] \subset \bar{S} - \bar{S}.$$

Установим теперь, что $\bar{S}-\bar{S}\subset 2\bar{S}$. Пусть элемент $z\in \bar{S}-\bar{S}$, то есть z=x-y, где $x,y\in \bar{S}$. Возьмем последовательности $\{x_n\}$, $\{y_n\}\subset S$ такие, что $x_n\to x$ и $y_n\to y$ при $n\to\infty$. Тогда $z_n=x_n-y_n\to x-y=z$. Рассмотрим

$$||Tz_n||_F = ||Tx_n - Ty_n||_F \le ||Tx_n||_F + ||Ty_n||_F \le 1 + 1 = 2.$$

В таком случае, $z_n \in 2S$. Но тогда $z \in \overline{2S} = 2\bar{S}$. Получили $B\left[\Theta, 2r_0/m\right] \subset 2\bar{S}$. Далее рассмотрим шар

$$B[\Theta, 1] = \frac{m}{2r_0} B\left[\Theta, \frac{2r_0}{m}\right] \subset \frac{m}{2r_0} 2\bar{S} = \frac{m}{r_0} \bar{S}.$$

Обозначим $m/r_0 = c$. Итак, $B[\Theta, 1] \subset c\bar{S}$.

Теперь возьмем произвольное r > 0 и получим

$$B[\Theta, r] = rB[\Theta, 1] \subset rc\bar{S} = \overline{rcS}$$

Доказательство теоремы 7.1. Как отмечалось выше, определен оператор $A^{-1}: F \to E$. Определим множество $P = \{y \in F \mid \|A^{-1}y\|_E \le 1\}$. Возьмем произвольный шар $B[\Theta, r] \subset F$. Так как пространство F банахово, то по лемме 7.1

$$(\exists c > 0)(\forall r > 0)[B[\Theta, r] \subset \overline{rcP}]$$

Пусть $y \in B[\Theta,1] \subset F$. Так как $B[\Theta,1] \subset \overline{cP}$, то найдется $y_1 \in cP$, что $\|y-y_1\|_F < 2^{-1}$. Так как $y-y_1 \in B[\Theta,2^{-1}] \subset \overline{2^{-1}cP}$, то найдется $y_2 \in 2^{-1}cP$, что $\|(y-y_1)-y_2\|_F < 2^{-2}$. Элемент $y-y_1-y_2 \in B[\Theta,2^{-2}] \subset \overline{2^{-2}cP}$, поэтому найдется $y_3 \in 2^{-2}cP$, что $\|(y-y_1-y_2)-y_3\|_F < 2^{-3}$ и так далее.

По построению для всех $i \in \mathbb{N}$ элементы $y_i \in 2^{1-i}cP$, следовательно, $\|A^{-1}y_i\|_E \leq c2^{1-i}$. Кроме того, $\|y - \sum_{i=1}^k y_i\|_F < 2^{-k} \to 0$ при $k \to \infty$. Следовательно, $y = \sum_{i=1}^\infty y_i$.

Обозначим $x_i = A^{-1}y_i$. Рассмотрим в E ряд $\sum_{i=1}^{\infty} x_i$. Этот ряд абсолютно сходится, так как $\sum_{i=1}^{\infty} \|x_i\|_E \le c \sum_{i=1}^{\infty} 2^{1-i} = 2c$. Пространство E банахово, поэтому $\sum_{i=1}^{\infty} x_i = x \in E$. В силу непрерывности оператора A получим

$$Ax = \sum_{i=1}^{\infty} Ax_i = \sum_{i=1}^{\infty} y_i = y$$

В таком случае, $x = A^{-1}y$ и

$$||A^{-1}y||_E = ||x||_E = \left||\sum_{i=1}^{\infty} x_i\right||_E \le \sum_{i=1}^{\infty} ||x_i||_E \le 2c.$$

Из последней оценки следует $||A^{-1}|| \le 2c$, то есть $A^{-1} \in L(F, E)$. \odot

• ЗАДАЧА.

7.4. Пусть на линейном пространстве E заданы две нормы: $||x||_1$ и $||x||_2$. По отношению к каждой из них E полное пространство. Предположим, что $(\exists c > 0)(\forall x \in E)$ ($||x||_1 \le c||x||_2$). Доказать, что нормы $||x||_1$ и $||x||_2$ эквивалентны.