Rajalakshmi Engineering College

Name: Prasham Jaganathan

Email: 241501148@rajalakshmi.edu.in

Roll no: 241501148 Phone: 9445840008

Branch: REC

Department: I AI & ML FB

Batch: 2028

Degree: B.E - AI & ML

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 7_COD

Attempt : 1 Total Mark : 50

Marks Obtained: 39.5

Section 1 : Coding

1. Problem Statement

Sita is analyzing her company's daily sales data to find all sales values that are multiples of 5 and exceed 100. She wants to filter these specific sales values from the list.

Help her to implement the task using the numpy package.

Formula:

To filter sales values:

Select all values s from sales such that (s % 5 == 0) and (s > 100)

Input Format

The first line of input consists of an integer value, n, representing the number of

The second line of input consists of n floating-point values, sales, separated by spaces, representing daily sales figures.

Output Format

The output prints: filtered_sales

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 5

50.0 100.0 105.0 150.0 99.0

Output: [105. 150.]

Answer

You are using Python import numpy as np

n = int(input()) sales = np.array(list(map(float, input().split())), dtype=float)

filtered_sales = sales[(sales % 5 == 0) & (sales > 100)] print(filtered_sales)

Marks: 10/10 Status: Correct

2. Problem Statement

Rekha works in hospital data management and receives patient records with missing or incomplete data. She needs to clean the records by performing the following tasks:

Calculate the mean of the available Age values. Replace any missing (NaN) values in the Age column with this mean age. Remove any rows where the Diagnosis value is missing (NaN). Reset the DataFrame index after removing these rows.

Implement this data cleaning task using the pandas package.

Input Format

The first line of input contains an integer n representing the number of patient records.

The second line contains the CSV header — comma-separated column names (e.g., "Name, Age, Diagnosis, Gender").

The next n lines each contain one patient record in comma-separated format.

Output Format

The first line of output is the text:

Cleaned Hospital Records:

The next lines print the cleaned pandas DataFrame (as produced by print(cleaned_df)).

This will include the updated values of the Age column (with missing ages filled by the mean age), and any rows with missing Diagnosis removed.

The DataFrame will be displayed using the default pandas print() representation.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 5 PatientID, Name, Age, Diagnosis 1.John Doe,45.Flu 2, Jane Smith, Cold 3,Bob Lee,50, 4,Alice Green,38,Fever 5,Tom Brown,,Infection **Output: Cleaned Hospital Records:** PatientID Name Age Diagnosis John Doe 45.000000 Flu

2 Jane Smith 44.333333 Cold

- 2 4 Alice Green 38.000000 Fever
- 3 5 Tom Brown 44.333333 Infection

Answer

```
import pandas as pd
import numpy as np

n = int(input())
header = input().split(',')

data = [input().split(',') for _ in range(n)]
df = pd.DataFrame(data, columns=header)

df['Age'] = pd.to_numeric(df['Age'], errors='coerce')
mean_age = df['Age'].mean()
df['Age'].fillna(mean_age, inplace=True)

df.dropna(subset=['Diagnosis'], inplace=True)
cleaned_df = df.reset_index(drop=True)

print("Cleaned Hospital Records:")
print(cleaned_df)
```

Status: Partially correct Marks: 1/10

3. Problem Statement

A company tracks the monthly sales data of various products. You are given a table where each row represents a product and each column represents its monthly sales in sequential months.

Your task is to compute the cumulative monthly sales for each product using numpy, where the cumulative sales for a month is the total sales from month 1 up to that month.

Input Format

The first line of input consists of two integer values, products and months, separated by a space.

Each of the next products lines consists of months integer values representing

the monthly sales data of a product.

Output Format

The first line of output prints: "Cumulative Monthly Sales:"

The second line of output prints: the 2D numpy array cumulative_array that contains the cumulative sales data for each product.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 2 4
10 20 30 40
5 15 25 35
Output: Cumulative Monthly Sales:
[[ 10 30 60 100]
[ 5 20 45 80]]
```

Answer

```
# You are using Python import numpy as np

products, months = map(int, input().split())
sales_data = np.array([list(map(int, input().split())) for _ in range(products)])
cumulative_array = np.cumsum(sales_data, axis=1)

print("Cumulative Monthly Sales:")
print(cumulative_array)
```

Status: Correct Marks: 10/10

4. Problem Statement

Sita works as a sales analyst and needs to analyze monthly sales data for different cities. She receives lists of cities, months, and corresponding sales values and wants to create a pandas DataFrame using a MultiIndex

of cities and months.

Help her to implement this task and calculate total sales for each city.

Input Format

The first line of input consists of an integer value, n, representing the number of records.

The second line of input consists of n space-separated city names.

The third line of input consists of n space-separated month names.

The fourth line of input consists of n space-separated float values representing sales for each city-month combination.

Output Format

The first line of output prints: "Monthly Sales Data with MultiIndex:"

The next lines print the DataFrame with MultiIndex (City, Month) and their corresponding sales values.

The following line prints: "\nTotal Sales Per City:"

The final lines print the total sales per city, computed by grouping the sales data on city names.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 4
NYC NYC LA LA
Jan Feb Jan Feb
100 200 300 400
Output: Monthly Sales Data with MultiIndex:
Sales
City Month
NYC Jan 100.0
Feb 200.0

```
LA Jan 300.0
     Feb 400.0
    Total Sales Per City:
       Sales
    City
    LA 700.0
    NYC 300.0
    Answer
    # You are using Python
    import pandas as pd
    n = int(input())
   cities = input().split()
months = input().split()
   sales = list(map(float, input().split()))
   index = pd.MultiIndex.from_tuples(zip(cities, months), names=['City', 'Month'])
   sales_df = pd.DataFrame(sales, index=index, columns=['Sales'])
    print("Monthly Sales Data with MultiIndex:")
    print(sales_df)
   total_sales = sales_df.groupby('City').sum()
   print("\nTotal Sales Per City:")
   print(total_sales)
```

Status: Partially correct Marks: 8.5/10

5. Problem Statement

Alex is a data scientist analyzing the relationship between two financial indicators over time. He has collected two time series datasets representing daily values of these indicators over several months. Alex wants to understand how these two indicators correlate at different time lags to identify possible leading or lagging behaviors.

Your task is to help Alex compute the cross-correlation of these two time

series using numpy, so he can analyze the similarity between the two signals at various time shifts.

Input Format

The first line of input consists of space-separated float values representing the first time series, array1.

The second line of input consists of space-separated float values representing the second time series, array2.

Output Format

The first line of output prints: "Cross-correlation of the two time series:"

The second line of output prints: the 1D numpy array cross_corr representing the cross-correlation of array1 and array2 across different lags.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 1.0 2.0 3.0 4.0 5.0 6.0
```

Output: Cross-correlation of the two time series:

[6.17.32.23.12.]

Answer

```
# You are using Python
import numpy as np

array1 = np.array(list(map(float, input().split())))
array2 = np.array(list(map(float, input().split())))

cross_corr = np.correlate(array1, array2, mode='full')

print("Cross-correlation of the two time series:")
print(cross_corr)
```

Status: Correct Marks: 10/10

Rajalakshmi Engineering College

Name: Prasham Jaganathan

Email: 241501148@rajalakshmi.edu.in

Roll no: 241501148 Phone: 9445840008

Branch: REC

Department: I AI & ML FB

Batch: 2028

Degree: B.E - AI & ML

NeoColab_REC_CS23221_Python Programming

REC_Python_Week 7_CY

Attempt : 1 Total Mark : 50 Marks Obtained : 50

Section 1: Coding

1. Problem Statement

Rekha is a meteorologist analyzing rainfall data collected over 5 years, with monthly rainfall recorded for each year. She wants to find the total rainfall each year and also identify the month with the maximum rainfall for every year.

Help her to implement the task using the numpy package.

Formula:

Yearly total rainfall = sum of all 12 months' rainfall for each year

Month with max rainfall = index of the maximum rainfall value within the 12 months for each year (0-based index)

Input Format

The input consists of 5 lines.

Each line contains 12 floating-point values separated by spaces, representing the rainfall data (in mm) for each month of that year.

Output Format

The first line of output prints: yearly_totals

The second line of output prints: max_rainfall_months

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 Output: [78. 90. 102. 114. 126.] [11 11 11 11]
```

Answer

```
# You are using Python import numpy as np
```

```
rainfall_data = np.array([list(map(float, input().split()))) for _ in range(5)])
```

```
yearly_totals = rainfall_data.sum(axis=1)
max_rainfall_months = rainfall_data.argmax(axis=1)
```

print(yearly_totals)
print(max_rainfall_months)

Status: Correct Marks: 10/10

2. Problem Statement

Rekha works as an e-commerce data analyst. She receives transaction data containing purchase dates and needs to extract the month and day from these dates using the pandas package.

Help her implement this task by performing the following steps:

Convert the Purchase Date column to datetime format, treating invalid date entries as NaT (missing).

Create two new columns:

Purchase Month, containing the month (as an integer) extracted from the Purchase Date.

Purchase Day, containing the day (as an integer) extracted from the Purchase Date. Keep the rest of the data as is.

Input Format

The first line of input contains an integer n, representing the number of records.

The second line contains the CSV header — comma-separated column names.

The next n lines each contain a transaction record in comma-separated format.

Output Format

The first line of output is the text:

Transformed E-commerce Transaction Data:

The next lines print the pandas DataFrame with:

The original columns (including Purchase Date, which is now in datetime format or NaT if invalid).

Two additional columns: Purchase Month and Purchase Day.

The output uses the default pandas DataFrame string representation as produced by print(transformed_df).

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 3 Customer,Purchase Date Alice,2023-05-15 Bob,2023-06-20 Charlie,2023-07-01

Output: Transformed E-commerce Transaction Data:

Customer Purchase Date Purchase Month Purchase Day

0	Alice	2023-05-15	5	15
1	Bob	2023-06-20	6	20
2	Charlie	2023-07-01	7	1

Answer

```
# You are using Python import pandas as pd
```

```
n = int(input())
header = input().split(',')
```

```
data = [input().split(',') for _ in range(n)]
df = pd.DataFrame(data, columns=header)
```

df['Purchase Date'] = pd.to_datetime(df['Purchase Date'], errors='coerce')
df['Purchase Month'] = df['Purchase Date'].dt.month
df['Purchase Day'] = df['Purchase Date'].dt.day

print("Transformed E-commerce Transaction Data:")
print(df)

Status: Correct Marks: 10/10

3. Problem Statement

You are working as a data analyst for a small retail store that wants to track the stock levels of its products. Each product has a unique Name (such as "Toothpaste", "Shampoo", "Soap") and an associated Quantity in stock. Management wants to identify which products have zero stock so they can be restocked.

Write a Python program using the pandas library to help with this task. The program should:

Read the number of products, n.Read n lines, each containing the Name of the product and its Quantity, separated by a space. Convert this data into a pandas DataFrame. Identify and display the Name and Quantity of products with zero stock. If no products have zero stock, display: No products with zero stock.

Input Format

The first line contains an integer n, the number of products.

The next n lines each contain:

<Product_ID> <Quantity>

where <Product_ID> is a single word (e.g., "Shampoo") and <Quantity> is a non-negative integer (e.g., 5).

Output Format

The first line of output prints:

Products with Zero Stock:

If there are any products with zero stock, the following lines print the pandas DataFrame showing those products with two columns: Product_ID and Quantity.

The column headers Product_ID and Quantity are printed in the second line.

Each subsequent line shows the product's name and quantity, aligned under the respective headers, with no index column.

The output formatting (spacing and alignment) follows the default pandas to_string(index=False) style.

If no products have zero stock, print:

No products with zero stock.

Refer to the sample output for the formatting specifications.

Sample Test Case

```
Input: 3
   P101 10
   P1020
   P103 5
   Output: Products with Zero Stock:
   Product_ID Quantity
       P102
                 0
   Answer
   import pandas as pd
   n = int(input())
data = [input().split() for in range(n)]
   df = pd.DataFrame(data, columns=['Product_ID', 'Quantity'])
   df['Quantity'] = df['Quantity'].astype(int)
   zero_stock_products = df[df['Quantity'] == 0]
   print("Products with Zero Stock:")
   if zero_stock_products.empty:
      print("No products with zero stock.")
   else:
      print(zero_stock_products.to_string(index=False))
```

Status: Correct Marks: 10/10

4. Problem Statement

Arjun is developing a system to monitor environmental sensors installed in different rooms of a smart building. Each sensor records multiple temperature readings throughout the day. To compare sensor data fairly despite differing scales, Arjun needs to normalize each sensor's readings so that they have a mean of zero and standard deviation of one.

Help him implement this normalization using numpy.

Normalization Formula:

Input Format

The first line of input consists of two integers: sensors (number of sensors) and samples (number of readings per sensor).

The next sensors lines each contain samples space-separated floats representing the sensor readings.

Output Format

The first line of output prints: "Normalized Sensor Data:"

The next lines print the normalized readings as a numpy array, where each row corresponds to a sensor's normalized values.

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 3 3

1.0 2.0 3.0 4.0 5.0 6.0

7.0 8.0 9.0

Output: Normalized Sensor Data:

[[-1.22474487 0. 1.22474487]

[-1.22474487 0. 1.22474487]

[-1.22474487 0. 1.22474487]]

Answer

```
# You are using Python import numpy as np
```

```
sensors, samples = map(int, input().split())
data = np.array([list(map(float, input().split())) for _ in range(sensors)])
```

normalized_data = (data - data.mean(axis=1, keepdims=True)) / data.std(axis=1, ddof=0, keepdims=True)

print("Normalized Sensor Data:")
print(normalized_data)

Status: Correct Marks: 10/10

Problem Statement

Arjun is monitoring hourly temperature data recorded continuously for multiple days. He needs to calculate the average temperature for each day based on 24 hourly readings.

Help him to implement the task using the numpy package.

Formula:

Reshape the temperature readings into rows where each row has 24 readings (one day).

Average temperature per day = mean of 24 hourly readings in each row.

Input Format

The first line of input consists of an integer value, n, representing the total number of temperature readings.

The second line of input consists of n floating-point values separated by spaces, representing hourly temperature readings.

Output Format

The output prints: avg_per_day

01148

Refer to the sample output for the formatting specifications.

Sample Test Case

Input: 30

Output: [30.]

Answer

You are using Python import numpy as np

n = int(input()) readings = np.array(list(map(float, input().split())))

daily_readings = readings.reshape(-1, 24)
avg_per_day = daily_readings.mean(axis=1)

print(avg_per_day)

Status: Correct Marks: 10/10

24,50,148

24,150,1148

247507748

24/50/148

241501148

24,501,148

241501148