SF CRIME CLASSIFICATION

'The Outliers'

Khyati Pawde: 704590958

Mansi Shah : 504591572

Pallavi A. Kotkar : 504589593

Sravani Kamisetty: 304414410

PROBLEM

- → The project uses the SF crime dataset (nearly 12 years of crime reports)
- → Given a time and location -> predict the category of crime
- → Contains incidents derived from <u>SFPD Crimes</u>
- \rightarrow The data ranges from 01/01/2003 to 05/13/2015.
- → The training set and test set rotate every week, meaning week 1,3,5 belong to test set, week 2,4,6,8 belong to training set.
- → Kaggle project

MOTIVATION

- → Between 1934 and 1963 Alcatraz Island near San Francisco housed some of the most notorious criminals
- → SF is known for the tech scene
- → But with rising wealth inequality, housing shortages and proliferation of expensive digital devices there has been a rise in the crime rate
- → The city saw more the 20% jumps in both the rate of property crime such as thefts and burglary and rate of violent crimes such as robbery and assault between 2012 and 2013

MOTIVATION

- → The primary motivation of this project is to make use of the huge amount of data available to help gauge the current crime scenario in San Francisco.
- → Find underlying patterns in the data which can reveal certain criminal psychologies.
- → Patterns when uncovered can help the public as well as the police department in abatement of such crimes.

POLICE LINE - NO TRESPASSING - POLICE LINE - NO TRESPASSING -

DATA

Туре	Training Testing		Training
Size	121 MB	87 MB	
Number of Observations:	878049	884262	
Data Fields:	Date	Date	
	Descript	DayOfWeek	
	DayOfWeek	PdDistrict	
	PdDistrict	Address	
	Resolution	X	
	Address	Υ	
	Х		
	Υ		
	Category		

CATEGORIES

EXPLORATORY ANALYSIS

EXPLORATORY ANALYSIS CONTINUED

SF map with 5 crimes

Districts v/s Crime

Day v/s Time

OUTPUT LABELS

ID	Larceny	Drug	
1	[0-1]	[0-1]	
2		-2111	
	-6 6		

EVALUATION TECHNIQUE

Number of class labels

Multiclass Logarithmic Loss Function:

$$logloss = -rac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{M}y_{ij}\log(p_{ij}),$$

Number of cases in the test set

1: if observation i is in class j
O: otherwise

Predicted probability of observation i that belongs to class j

METHODS

- → Classification without clustering
- → Clustering
- → Classification with clustering
- → Binomial Regression

CLASSIFICATION WITHOUT CLUSTERING

METHOD	LOG LOSS	
	EVALUATION	TESTING
KNN	25.5457	N/A
SVM	34.3241	N/A
NAIVE BAYES	26.8343	N/A
DECISION TREES	24.7645	N/A
RANDOM FORESTS	23.0341	24.02

Category Density

Category Density

CLUSTERING

- → K clusters were created using the latitude and longitude features.
- → Further classification was done within these clusters using the rest of the features.
- → With KNN the log-loss was minimum with K = 40.
- → K Means was used for clustering

CLASSIFICATION WITH CLUSTERING

METHOD LOG LOSS **EVALUATION TESTING** SVM 13.8976 13.9878 **NAIVE BAYES** 12.551 12.421 **DECISION TREES** 10.93 10.89 RANDOM FORESTS 6.1498 6.26 LOGISTIC REGRESSION 2.6523 2.60025

LOGISTIC REGRESSION

- → Best Performance with the lowest log loss compared to other methods
- → Used all features
- → Used all categories
- → Used binomial variance instead of logit

The link function provides the relationship between the linear predictor and the mean of the distribution function.

Family	Variance	Link
gaussian	gaussian	identity
binomial	binomial	logit, probit or cloglog
poisson	poisson	log, identity or sqrt
Gamma	Gamma	inverse, identity or log
inverse.gaussian	inverse.gaussian	1/mu^2
quasi	user-defined	user-defined

ACCURACY

- → The evaluation technique used is log loss.
- → The Kaggle Leaderboard #1 | log loss: 2.05079
- → Our log loss: 2.60025

THANK YOU!

