IntroML - Lecture Notes Week 5

Ruben Schenk, ruben.schenk@inf.ethz.ch

April 6, 2022

1 Kernel Methods

1.1 Improving Polynomial Regression

1.1.1 Computational Complexity

How large is p to express a degree m polynomial for $x \in \mathbb{R}^d$? We can count the number of monomials of degree at most m:

Given any m-th degree monomial $1^{\alpha_0}x_{[1]}^{\alpha_1}\cdots x_{[d]}^{\alpha_d}$ with $\alpha_i\in\mathbb{N}$ and $\sum_{j=0}^d\alpha_j=m$, we can encode it as a d+m binary string with d zeros and m ones:

Build the string: Start with empty string s. For l = 0, ..., d do:

- 1. If $\alpha_l \geq 1$, append α_l ones to the string, i.e. $s \leftarrow (s, 1, ..., 1)$. If l < d, also add a zero, i.e. $s \leftarrow (s, 0)$.
- 2. Else if $\alpha_l = 0$, append $s \leftarrow (s, 0)$.

This gives you m+1 consecutive chunks of 1's – the number of 1's in the *i*-th chunk is the power of x_i .

Example: Let d = 5 and m = 7:

 $\bullet \ \ x_{[1]}^2 x_{[2]} x_{[3]}^3 \to 1011010011100$

Hence, each monomial corresponds to picking a set of m from d+m numbers, yielding a total number of $p=\binom{d+m}{m}\simeq \frac{(d+m-1)\cdots d}{m\cdots 1}$ which turns into:

$$p = \begin{cases} \mathcal{O}(d^m) & \text{for large enough } d, \\ \mathcal{O}(m^d) & \text{for large enough } m. \end{cases}$$

For mth degree polynomial features, the total training set $\{(\phi(x_i), y_i)\}_{i=1}^n$ is of size $\mathcal{O}(nd^m)$.

1.1.2 Kernel Trick

For high-dimensional data in practice, e.g. $d\sim 10^5$ and $n\sim 10^5$, even choosing m=3 to fit 3rd degree polynomials yields $\mathcal{O}(nd^m)\sim 10^{20}$ complexity. This is prohibitive from both the memory and the computational perspective.

The **kernel trick** is given, in short, as follows:

Kernel trick:

- 1. Save memory by noting that the training loss minimizer only depends on the feature vectors via their inner products (for polynomials: $\mathcal{O}(nd^m) \to \mathcal{O}(n^2)$ memory reduction!)
- 2. We can sometimes more efficiently compute the inner products, i.e. for polynomials of monomials, reduce polynomial to linear $\mathcal{O}(n^2d^m) \to \mathcal{O}(n^2(d+m))$

Step 1: Minimizer only depends on inner product Remember for parameterized function $F_w = \{f: f_w \text{ with } w \in \mathbb{R}^p\}$, the minimizer $\arg\min_{f \in F} \frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i))$ can be written as $\hat{f} = f_{\hat{w}}$ with $\hat{w} = \arg\min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i))$.

Claim 1: Among the global minimizers in $\arg\min_{w\in\mathbb{R}^p}\frac{1}{n}\sum_{i=1}^n l(y_i,\,w^T\phi(x_i)),$ on of them:

- 1. has the form $\hat{w} = \Phi^T \hat{\alpha}$ with $\hat{\alpha} \in \mathbb{R}^n$, such that $\hat{f}(x) = \sum_{i=1}^n \hat{\alpha}_i \langle \phi(x_i), \phi(x) \rangle$, and where
- 2. $\hat{\alpha}$ only depends on x_i via the inner products $\langle \phi(x_i), \phi(x_j) \rangle$ for i, j = 1, ..., n.

So far, we reduced the problem to $\hat{\alpha} = \arg\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n l(y_i, \alpha^T \Phi \phi(x_i)) =: \arg\min_{\alpha \in \mathbb{R}^n} \tilde{L}(\alpha)$. We can use the inner products of the features to define a symmetric **kernel function**:

$$k: X \times X \to \mathbb{R}, k(x, z) = \langle \phi(x), \phi(z) \rangle,$$

and kernel matrix $K \in \mathbb{R}^{n \times n}$ with $K = \Phi \Phi^T$ and $K_{ij} = k(x_i, x_j)$. The loss $\tilde{L}(\alpha)$ only depends on the entries of K, hence, we only need to keep memory of $\mathcal{O}(n^2)$ bits.

Step 2: Efficient Computation For the feature vector $\phi(x) = [1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2]$, the inner product reads:

$$\langle \phi(x), \phi(z) \rangle = 1 + 2x_1z_1 + 2x_2z_2 + 2x_1z_1x_2z_2 + x_1^2z_1^2 + x_2^2z_2^2 = (1 + \langle x, z \rangle)^2 =: k(x, z)$$

More generally, for appropriate scaling of monomials and cross terms, the inner product of m-th degree polynomial features in any dimension d can be written as:

$$\langle \phi(x), \phi(z) \rangle = k(x, z) = (1 + \langle x, z \rangle)^m$$

1.2 Kernelized Regression for Polynomials

Linear Kernelized
$$\widehat{w} = \operatorname{argmin}_{w} \big| |y - Xw| \big|^{2} = X^{\mathsf{T}} \widehat{\alpha}$$
 search in subspace
$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - XX^{\mathsf{T}}\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - XX^{\mathsf{T}}\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - K\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2}$$

$$\widehat{\alpha} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf{T}}\alpha||^{2} = \operatorname{argmin}_{\alpha} ||y - \Phi\Phi^{\mathsf$$

Replace X by Φ , x by $\phi(x)$, and XX^T by $\Phi\Phi^T$ = K kernel matrix with $K_{i,j} = k(x_i, x_j)$

Claim 2 (Representer Theorem): The global minimizer(s) $\arg \min_{w \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n l(y_i, w^T \phi(x_i)) + \lambda ||w||^2$ have the form $\hat{w} = \Phi^T \hat{\alpha}$ with some $\hat{\alpha} \in \mathbb{R}^n$, such that $\hat{f} = \sum_{i=1}^n \hat{\alpha}_i \langle \phi(x_i), \phi(x) \rangle$.

Using the kernel trick, for ridge regression $\frac{1}{n}||y-\Phi w||^2+\lambda||w||^2$, using $w=\Phi^T\alpha$ and $K=\Phi\Phi^T$, we obtain

$$\frac{1}{n}||y-\Phi w||^2+\lambda||w||^2=\frac{1}{n}||y-\Phi\Phi^T\alpha||^2+\lambda||\Phi^T\alpha||^2=\frac{1}{n}||y-K\alpha||^2+\lambda\alpha^TK\alpha.$$