Corrigé exercice 121:

- 1. Par le théorème fondamental de la dynamique, on a, pour tout $t \geqslant 0$, $ma(t) = mg kv(t) \Leftrightarrow mv'(t) = mg kv(t) \Leftrightarrow v'(t) = g \frac{k}{m}v(t)$, car $m \neq 0$. Par conséquent, v est solution de l'équation différentielle $(E): y' = -\frac{k}{m}y + g$.
- 2. (E) est de la forme y' = ay + b de solutions $t \mapsto Ce^{ax} \frac{b}{a}$, où C est une constante réelle. On est dans le cas où $a = -\frac{k}{m}$, b = g et donc $\frac{b}{a} = -\frac{mg}{k}$. On en déduit que les solutions de (E) sont les fonctions définies sur $[0; +\infty[$ par $t \mapsto Ce^{-\frac{kt}{m}} + \frac{mg}{k}$, où C est un réel. De plus, la vitesse initiale de l'objet est nulle, donc $v(0) = 0 \Leftrightarrow C + \frac{mg}{k} = 0 \Leftrightarrow C = -\frac{mg}{k}$. Ainsi, pour tout $t \geqslant 0$, $v(t) = \frac{mg}{k} \left(1 e^{-\frac{kt}{m}}\right)$.

Corrigé exercice 122:

- 1. Soit f définie sur \mathbb{R} par f(x) = 0 alors f est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, f'(x) = 0. D'autre part, pour tout $x \in \mathbb{R}$, $(f(x))^2 = 0$. Donc, pour tout $x \in \mathbb{R}$, $f'(x) = (f(x))^2 : f$ est bien solution de (E).
- 2. Soit g une fonction dérivable sur un intervalle I de \mathbb{R} et ne s'annulant pas sur cet intervalle. Alors, pour tout $x \in I$, $g'(x) = (g(x))^2 \Leftrightarrow \frac{g'(x)}{(g(x))^2} = 1$, en divisant chaque membre par $(g(x))^2 \neq 0$. Donc g est solution de (E) si, et seulement si, g est solution de l'équation différentielle $\frac{y'}{y^2} = 1$.
- 3. $\frac{y'}{y^2} = 1 \Leftrightarrow \left(-\frac{1}{y}\right)' = 1 \Leftrightarrow -\frac{1}{y(x)} = x + k$ où k est un réel et pour $x \neq -k$. Ainsi, les solutions de (E) sont les fonctions définies avec $k \in \mathbb{R}$ et pour $x \neq -k$ par $y(x) = -\frac{1}{x+k}$.
- 4. On détermine k tel que $y(0) = 1 \Leftrightarrow k = -1$. Ainsi, la solution cherchée est la fonction définie pour $x \neq 1$ par $x \mapsto -\frac{1}{x-1}$.