STABILITY STUDIES OF VARIABLE SPEED INDUCTION MACHINE

By KIRTI KUMAR DHAWAN

EE 1975 M DHA STA

DEPARTMENT OF ELECTRICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR AUGUST, 1975

STABILITY STUDIES OF VARIABLE SPEED INDUCTION MACHINE

A Thesis Submitted
in partial Fulfilment of the Requirements
for the Degree of
MASTER OF TECHNOLOGY

By KIRTI KUMAR DHAWAN

to the

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR
AUGUST, 1975

CENTRAL FIBRARY

Acc. No. A 45606

5 FEB 1976

EE-1975-M-DHA-STA

CERTIFICATE

This is to certify that the thesis entitled *Stability Studies of Variable Speed Induction Nachine* is a record of the work carried out under our supervision and that it has not been submitted elsewhere for a degree.

Da. H. Ramamoonty Professor Dept. of Electrical Engg. I.I.T.Kanpur PROSESSOR

Dept. of Electrical Engg. I.I.T.Kanpur

ACKNOWLEDGEMENTS

I am deeply indebted to Prof. Dr. M. Ramamoorty and Prof. Dr. M.A. Pai for having suggested this interesting problem. I express my deep sense of gratitude to Prof. M. Ramamoorty and Prof. M.A. Pai for their valuable guidance and encouragement from time to time.

As a gesture of my gratitude I ascept Frof. Ramamoorty and Prof. Pai as my life long Gurus.

I am thankful to Mr. K.N.Tewart for his speedy and excellent job of typing. Finally, I would like to thank all my colleagues, staff of computer center and all those who helped me directly or indirectly in completing this work.

August . 1975.

KIRTI EUMAR DRAWAR

ABSTRACT

The work presented here deals with the stability studies of a variable speed induction machine. The needs for this study are identified. The machine model is developed. The regions in which the machine exhibits unstable operation are established. The nonlinear model of the machine is digitally simulated to investigate the machine performance at various operating points to establish the fact that the machine oscillates in the instable region of operation.

A short cut method is developed to estimate the oscillation frequency with fair accuracy. In the end suggestion is given to estimate oscillation amplitude on similar lines.

TABLE OF CONTENTS

CHAPTER			Page			
1						
	1.0	Speed Control of Induction Motor	1			
	1,1	Instability in the Motor	4			
	1.2	Scope of the Thesis	5			
2	PERFORMANCE EQUATION OF THE HACHINE					
	2.0	Introduction				
	2.1	Modelling of a 3-Phase Symmetrical Induction Machine	8			
	2.2	Transformation of an Arbitrary Reference Frame	12			
3	DETERMINATION OF REGION OF INSTABILITY					
	3.0	Introduction	19			
	3.1	Stability Studies	25			
4	DYNAMIC ANALYSIS OF MACRINE USING NONLINEAR MODEL					
	4.1	Introduction	36			
	4.2	Transformation of Stator Voltages	43			
	4.3	Results	47			
	TABLES					
5	OSCILLATION PREQUENCY PROM EIGEN VALUES					
	5.1	Introduction	59			
	5.2	Analysis using Linearized Model	61			
	5.3	Results	62			
6	OSCILLATION AMPLITODE PROM LINEARISED MODEL					
	5.1	Introduction	101			
	6.2	Transfer Punction	102			
	6.3	Calculation of Residue	104			
7	CONCLUSION					
	REPERBACES					

CHAPTER 1

INTRODUCTION

1.0 SPEED CONTROL OF INDUCTION MOTOR

The importance of induction motor, as a drive for various systems, in an industry is well known.

The very prominent advantage is that this machine is relatively inexpensive and rugged. In the past the machine had the disadvantage that its speed was not easily adjustable.

The introduction of static, variable frequency, variable voltage, inverters employing the thyristors has made the use of variable speed induction machine, technically attractive. The most common ways of controlling the speed of induction motors are the following:

- a) insertion of resistance into the rotor circuit
- b) pole changing
- c) varying the supply frequency
- d) cascade connection of induction motors with other machines.

Apart from the methods mentioned above there are a variety of special methods such as control by means of saturable reactors, control by palsed supply etc. Due to the large energy losses involved, the speed control of

induction motors with resistance inserted into the rotor circuit is not economical for continuous operation and control at constant torque.

Speed control by pole changing gives the motor a corresponding number of fixed speeds whose values depends on the supply frequency and the number of pole pairs set up in the winding. For example, four-speed motors for 50 cycle supply are manufactured for the following series of speeds (synchronous), 3000/1500/1000/500; 3000/1500/750/375; 1500/1000/750/500; 1000/750/500/375. From the speed series given above, it is seen that the speed control range is of the order of 6 1 to 8 il. It is found impracticable to increase this range because for a synchronous speed of 375 rpm it will be necessary to design a motor of prohibitive size.

Pole changing can only be applied where there is no need for smooth speed control because its speed control is stepped. Adjustable-frequency speed control is advantageous in that it provides a relatively wide speed control range of 19 pl to 12 pl and high smoothness of control. The speed-torque characteristics of the induction motor will have ample stiffness and therefore ensure stable operation. If the magnetic field of the induction motor is maintained unchanged, speed control will be accomplished at constant torque.

The basic possibility of speed control with variable supply frequency is indicated by the synchronous speed equation $\mathbf{w}_0 = 2\pi f_{\rm L}/P$. To provide an adjustable frequency supply, use is made of a special generator or frequency changer serving to feed a single motor or a group of induction motors operating under identical conditions. Typical examples of such group drives are mill transfer roll tables, textile machines, certain kinds of conveyer installations, and other equipment.

In the case of the mill roll tables, each roll is individually driven by a squirrel-cage motor having a rating of several kilowatts. As many as hundred or more of these motors will be group operated at modern steel mills. In varying the supply frequency, it is necessary to make the characteristics retain high stiffness throughout the entire range of speed control and allow the motors to have adequate overload torque capacity. This may be achieved by causing each motor to operate with its magnetic flux maintained constant. For the induction motor, it may be assumed that the product $\mathbf{f}_1\phi$ is directly proportional to the applied voltage \mathbf{v}_1 as a first approximation. To maintain the magnetic flux unchanged, it is hence necessary to control the frequency so that the ratio

$$v_1/\ell_1 = \phi = const$$

In the frequency method of speed control the speed-torque characteristics retain relatively high stiffness, while the maximum torque at higher frequencies remains practically unchanged. Only at the lowest frequencies, due to relative rise in the influence of the voltage drop in the stator, the magnetic field undergoes a significant decrease in strength. As a consequence, the maximum torque drops to a lower value. In many applications it may be necessary to operate these drives at 5% or 15% of the rated speed of the machines. To facilitate design, analytical methods have been formulated to accurately predict system performance over this range of operating frequencies.

1.1 INSTABILITY IN THE MOTOR

In the literature it has been shown that during lowfrequency operation, the reluctance-synchronous machine as
well as the synchronous machine exibits continuous oscillations
in speed and in some cases may evenbecome unstable. These
regions of instability occur even with balanced sinusoidal
applied stator voltages. Hence instability of machines having
a symmetrical rotor windings is not necessarily due to the
unbalanced system voltages.

Robert [2] has shown that an induction motor is also lightly damped at low frequencies when operating from a balanced set of sinusoidal voltages. Recent studies have also indicated that variable speed induction meter drives may become unstable due to the unbalanced system voltages. The wide range of operating voltages and frequencies encountered in such drives leads to effects which do not occur at fixed 50 Hz operation. One such effect, the occurrence of a continuous steady-state speed oscillations in induction motor drives, is the subject of this thesis The region where the machine emilits—such phenomena is called the instable zone, and here, although not widely recognized, machine does not come to a stand-still as happens in the case of a synchronous machine.

In general instable operation of a induction m/c means sustained oscillations. For a given machine load parameters, this region of instability depends on the inverter voltage and frequency which are the control variables in the drive.

1.2 SCOPE OF THE THESIS

In Chapter 3 a method to find out this region is described. Digital simulation of induction machine is done to investigate its behaviour in this region. Machine operation is studied around the unstable operating points. Keeping all other machine parameters constant the sustained oscillations are obtained for different operating frequencies.

Also similar studies are carried out with different rotor resistance, stator resistance, rotor inertias and various loadings. Mechine model for these studies is discussed in Chapter 2.

In Chapter 5 a short cut method is given to find out the frequency of the oscillations, which is simple to carry out analytically as well as digitally. The results obtained from this method are compared with those obtained from the non-linear model analysis.

In the end suggestions are given to estimate amplitude of the oscillations on similar lines. The studies carried on the digital computer are presented in a very useful and condensed manner.

CHAPTER 2

PERFORMANCE EQUATION OF THE MACHINE

2.0 INTRODUCTION

In establishing the equations which describe the behaviour of induction machinery, it is generally sufficient to consider an elementary 2 pole, 2 phase symmetrical machine.

This development can then be extended to include a machine having any number of poles by simply multiplying the expression for torque by the number of pole pairs.

As we are only interested in balanced conditions, the modifications necessary to include 3 phase machine are equally straight forward. If, however, unbalanced or unsymmetrical operation is to be analysed, it becomes necessary to consider the 2 phase and 3 phase machine individually.

A symmetrical machine is generally defined as a polyphase machine with

- i) Uniform air gap
- ii) Linear magnetic circuits
- iii) Identical stator windings distributed so as to produce a sinusoidal MMF wave in space with the phases, and arranged so that only one rotating MMF wave is established by balanced stator currents.

FIG. 2-1 A 2-POLE 2-PHASE SYMMETRICAL MACHINE

iv) Rotor coils or bars are arranged so that for any fixed time, the rotor MMF wave can be considered to be a space sinusoid having the same number of poles as the stator MMF wave.

machine, it offers a means of predicting the performance of many types of polyphase induction machine. Some important factors which effect the performance of the actual machine but have been neglected in the symmetrical machine model are:

- i) Nonlinear magnetic circuit
- Change in resistance due to temperature and frequency changes.
- iii) Harmonic content of the MMF wave due to monideal winding distribution.

2.1 MODELLING OF A 3-PHASE SYMMETRICAL INDUCTION MACHINE

As a first step towards modelling of a 3 phase symmetrical induction machine, a 2 phase symmetrical machine is taken. The simplified representation is shown in Fig.2.1 will be used. When a stator winding is distributed for the purpose of producing a sinusoidal MMF wave in space, it is convenient to portray the windings as an equivalent single coil and express the mutual coupling between it and an equivalent rotor coil as a sinusoidal function of the angular displacement between their magnetic axis.

rotor or a wound rotor with the same number of poles as the stator, the rotor can be considered as having equivalent coils (shown in Figure 2.1). The modifications which are necessary to include a double cage rotor or a rotor wound with different number of phases than the stator, are straight forward and will not be considered here.

The stator windings are identical i.e. both windings have an identical number of turns \mathbb{N}_S , identical resistance \mathbf{r}_S , identical leakage inductance \mathbb{L}_S and identical self-inductance \mathbb{L}_S . Similarly, equivalent rotor windings are identical which have the same effective turns \mathbb{N}_T , resistance \mathbf{r}_T , leakage inductance $\mathbb{L}_{\mathbb{K}^T}$ and self inductance \mathbb{L}_T . The voltage equations for the stator phase are written

$$V_{as} = p\lambda_{as} + i_{as} r_{s}$$

$$V_{bs} = p\lambda_{bs} + i_{bs} r_{s}$$
(2.1)

In the case of rotor phase

$$V_{ar} = p\lambda_{ar} + i_{ar} r_{r}$$

$$V_{br} = p\lambda_{br} + i_{br} r_{r}$$
(2.2)

where λ is the total flux linkages and p is the operator d/dt. The flux-linkage equation can be written as

FIG. 2-2 A 2-POLE 3-PHASE SYMMETRICAL MACHINE

where $L_{\rm ST}$ is the amplitude of the mutual inductance between stator and rotor windings and $\theta_{\rm T}$ is the angular displacement between the stator and rotor axis (Figure 2.1). Now extending this analysis to a 3 phase induction machine where winding configuration is as shown in Figure 2.2 we get the line-to-neutral stator voltages as

$$V_{as} = p\lambda_{as} + i_{as} r_{s}$$

$$V_{bs} = p\lambda_{bs} + i_{bs} r_{s}$$

$$V_{cs} = p\lambda_{cs} + i_{cs} r_{s}$$
(2.4)

The line to neutral voltages are

$$v_{ax} = p\lambda_{ax} + i_{ax} x_x$$

$$v_{bx} = p\lambda_{bx} + i_{bx} x_x$$

$$v_{cx} = p\lambda_{cx} + i_{cx} x_x$$

Since the stator and the rotor are 3-wire systems the flux linkages equations are given in (2.5).

where $L_{\rm ST}$ is the amplitude of the mutual inductance between stator and rotor windings and $\theta_{\rm T}$ is the angular displacement between the stator and rotor axis (Figure 2.1). How extending this analysis to a 3 phase induction machine where winding configuration is as shown in Figure 2.2 we get the line-to-neutral stator voltages as

$$V_{as} = pl_{as} + i_{as} r_{s}$$

$$V_{bs} = pl_{bs} + i_{bs} r_{s}$$

$$V_{cs} = pl_{cs} + i_{cs} r_{s}$$
(2.4)

The line to neutral voltages are

$$v_{ar} = p\lambda_{ar} + i_{ar} r_{r}$$

$$v_{br} = p\lambda_{br} + i_{br} r_{r}$$

$$v_{cr} = p\lambda_{cr} + i_{cr} r_{r}$$

Since the stator and the rotor are 3-wire systems the flux linkages equations are given in (2.5).

$$L_{SS} = L_{S} - L_{SS}$$
 (2.6)

where $L_{\rm sm}$ is the mutual between stator phases and $L_{\rm rm}$ is the mutual between motor phases.

2.2 TRANSFORMATION TO AN ARBITRARY REFERENCE FRAME

Due to the sinusoidal variation of mutual inductances with respect to the displacement angle 0, time-varying coefficients will appear in the voltage equations. This undesirable feature can be eliminated by a proper change of variables which, in effect, transforms the voltages and currents of both the stator and rotor to a common frame of reference. In most cases, the analysis of an induction machine is carried out in either a synchronously rotating reference frame or a stationary reference frame. It is, however, necessary to consider each reference frame separately in the development of the equations which describe the behaviour of the symmetrical machine. It is convenient therefore to develop the equations for an arbitrary reference frame and, from these general equations, obtain the equations for any specific reference frame.

The equations of transformation are expressions which formulate a change of variables and could be written without any physical interpretation. It is helpful, however, to correlate the change of variables (transformation equations)

FIG. 2.3 AXES OF 2-POLE 3-PHASE SYMMETRICAL MACHINE

FIG. 2-4 AXES OF 2-POLE 2-PHASE SYMMETRICAL MACHINE

to trignometric relationships which exist between sets of axes.

be introduced. Figure 2.3 shows the angular relation of the stator and rotor axes of a 3-phase machine, with the third set which is an orthogonale set (d-q axis) rotating at an arbitrary electrical angular velocity v. It is clear that the as-be set is fixed in the stator. The ar-br set is fixed in the rotor and hence rotates at an electrical angular velocity of v_x. The time-zero angular relationship between the three sets of axes can be selected arbitrarily. However, it is convenient to assume that at time zero, the q, a_x and a_y axes coincide.

The equations of transformation, which can be correlated to the angular relation of the axis in (Figure 2.3) are STATOR

$$\begin{split} & \hat{f}_{qs} = \frac{2}{3} [\hat{f}_{as} \cos \theta + \hat{f}_{bs} \cos (\theta - 2\pi/3) + \hat{f}_{cs} \cos (\theta + 2\pi/3)] \\ & \hat{f}_{ds} = \frac{2}{3} [\hat{f}_{as} \sin \theta + \hat{f}_{bs} \sin (\theta - 2\pi/3) + \hat{f}_{cs} \sin (\theta + 2\pi/3)] \\ & \hat{f}_{as} = \frac{1}{3} (\hat{f}_{as} + \hat{f}_{bs} + \hat{f}_{cs}) \end{split}$$
 (2.7)

ROTOR

$$\begin{split} f_{qx} &= \frac{2}{3} \{ f_{ax} \cos \beta + f_{bx} \cos (\beta - 2\pi/3) + f_{ox} \cos (\beta + 2\pi/3) \} \\ f_{dx} &= \frac{2}{3} \{ f_{ax} \sin \beta + f_{bx} \sin (\beta - 2\pi/3) + f_{ox} \sin (\beta + 2\pi/3) \} \\ f_{ax} &= \frac{1}{3} \{ f_{ax} + f_{bx} + f_{ox} \} \end{split}$$
 (2.8)

where
$$8 = 0 - 0$$
 (2.9)

In these equations, the variable f can represent either voltage, current or flux-linkage. The equations of transformation are valid regardless of form of the voltages or current in either the stator or the rotor. However, the equations are restricted in that the instantaneous angular displacement 0 of the arbitrary reference must be a continuous function.

The variables for for are incorporated since in general three independent variables are necessary. When balanced conditions are considered the three voltages and currents are defined by only two and the third substitute variable is unnecessary. If the transformation equations are used to transform the voltages and currents of both the stator and the rotor to the arbitrary reference frame, d-q axes the following equations are obtained.

$$V_{qs} = p\lambda_{qs} + \lambda_{ds}p\theta + r_{s}i_{qs}$$

$$V_{ds} = p\lambda_{ds} - \lambda_{qs}p\theta + r_{s}i_{ds}$$

$$V_{qr} = p\lambda_{qr} + \lambda_{dr}^{2}p\theta + r_{r}i_{qr}$$

$$V_{dr} = p\lambda_{dr} - \lambda_{dr}^{2}p\theta + r_{r}i_{dr}$$

$$(2.10)$$

where

$$\lambda_{qg} = L_{ss} i_{qs} + \frac{3}{2} L_{sr} i_{qr}$$

$$\lambda_{ds} = L_{ss} i_{ds} + \frac{3}{2} L_{sr} i_{dr}$$

$$\lambda_{qr} = L_{rr} i_{qr} + \frac{3}{2} L_{sr} i_{qs}$$

$$\lambda_{dr} = L_{rr} i_{dr} + \frac{3}{2} L_{sr} i_{ds}$$
(2.11)

Generally the machine parameters are measured with respect to stator windings therefore, it is convenient to refer all quantities to the stator side with rotor quantities referred to stator side and with the self inductances separated into leakage inductance and a magnetising inductance, the voltage equations for a three phase machine becomes.

$$A^{dx} = by^{dx}, -y^{dx}, by + x^{x}, i^{dx},$$

$$A^{dx} = by^{dx}, +y^{dx}, by + y^{$$

whefe

In which

$$L_{L_{B}} = L_{ss} - \frac{3}{2}L_{ms}$$

$$L_{L'} = L_{rr'} - \frac{3}{2}L_{ms} \qquad (2.15)$$

$$H = \frac{3}{2}L_{ms}$$

Expressing the relationship of voltages and currents, given above in matrix form one gets the following

In terms of reactance we can write the equations as follows

$$\begin{bmatrix} v_{qs} \\ v_{ds} \end{bmatrix} = \begin{bmatrix} r_{s} + (p/w_{b}) x_{s} & (\omega/w_{b}) x_{s} & (p/w_{b}) x_{m} & (\omega/w_{b}) x_{m} \\ -(\omega/w_{b}) x_{s} & r_{s} + (p/w_{b}) x_{s} & -(\omega/w_{b}) x_{m} & (p/w_{b}) x_{m} \\ 0 & (p/w_{b}) x_{m} & [(\omega-\omega_{r})/\omega_{b}] x_{m} & r_{r}' + \frac{m_{s}}{m_{s}} x_{r} & [(\omega-\omega_{r})/\omega_{b}] x_{r}' & i_{dr}' \\ 0 & x_{m} & x_{r}' & w_{b} \end{bmatrix}$$

$$X_{g} = X_{Lg} + X_{gg}$$
 (2.17)
 $X_{g}' = X_{Lg}' + X_{gg}$ (2.18)

where p is the operator d/dt

r - stator resistance

r.' - motor resistance (referred to the stator windings)

X_{1.} = stator leakage reactance

N: - rotor leakage resctance

X = magnetising reactance

The electrical angular velocity of the rotor can be denoted by $\mathbf{e}_{\mathbf{x}}$. The reference frame rotates at a specified but arbitrary angular velocity $\mathbf{e}_{\mathbf{x}}$. If the machine is excited by a balanced sinusoidal set of 3 phase voltages of angular velocity $\mathbf{e}_{\mathbf{e}}$, the q and d axis voltages $\mathbf{V}_{\mathbf{q}\mathbf{s}}$ and $\mathbf{V}_{\mathbf{d}\mathbf{s}}$ are minusoids of frequency $(\mathbf{e}_{\mathbf{q}} - \mathbf{e})$ and in the steady state the four d-q axis, currents assume this same frequency.

To perturb the solution about a steady state operating condition, it is of interest to select the reference frame wherein the voltage and current variables assume constant (d.c.) values for steady state conditions. It is clear that this result will occur only if $\omega-\omega_{\rm e}=0$. Hence setting $\omega=\omega_{\rm e}$ the preceding equations are feferred to the synchronously rotating reference frame wherein a set of orthogonal axes rotate at the angular velocity of the applied voltages.

The Equation (2.16) becomes

$$\begin{bmatrix} A^{ds} & A^{ds}$$

(2.19)

where
$$S = (\omega_0 - \omega_1)/\omega_0$$
 (2.20)

The quantity
$$f_{p} = \omega_{p}/\omega_{p}$$
 (2.21)

is called the frequency ratio and may also be interpreted as the applied frequency expressed in per unit. The subscript e demotes variables expressed in the synchronously rotating reference frame. The electromagnetic torque expressed in per unit is

$$T_0 = (X_n) (i_{q_0} \cdot i_{dx})^{e} - i_{d_0} \cdot i_{q_x}^{e} = i_{q_x}^{e})$$
 (2.22)

In addition, the per unit equation expressing the electromechanical behaviour of the system is expressed as

where the inertia constant H is expressed in seconds and defined as the ratio of the stored kinetic energy at base mechanical speed to the base power. T_L is the per unit load torque applied to the machine.

CHAPTER 3

DETERMINATION OF REGION OF INSTABILITY

In order to establish the region in which machine becomes unstable the local stability study of the system is investigated.

For this, equations can be simplified considerably by linearising them about a steady state operating point. This method of small displacements has historically been fruitful in the analysis of electric machinery. Because the resulting equations are linear, any of the conventional techniques may be used to establish system stability. For example the Routh test or the Nyquist stability criterion could be employed. In this paper a method analogous to the root locus method is used to establish system stability.

If all the variables in Eqns. (2.19), (2.20), (2.23) are allowed to change by a small amount about a steady state operating point and if the terms which describe the steady state mode of operation are eliminated, the resulting equations can be written as

			10	7 20 7 20	7.5		
		*0					
×.	(a/a/a)	£86,×2 - (%	** ORDY XX (30/d)+. Xx	0 0 0 m	.5 .		
(2/2) XX	2	"x(qm/d)+, "x	ARSOX.	w deo			
XX	x8+(p/wp)x8 -£RX8	*neoxu	(p/wp)Xm	e ozb m		 	90/
za+(p/wb) xs 2xx	***	"x(qn/d)	No. of the second	Xm dro .e	. 1 · · · · · · · · · · · · · · · · · ·		So = (u = 0,1/0,0
	100 274 40					2	20
	0			7			

The zero subscripted variables denote steady state operating point quantities. Equation (3.1) can be written more concisely in partitioned matrix notation as

$$\begin{bmatrix} \Delta V \\ \Delta T_L \end{bmatrix} = \begin{bmatrix} R & V_{10} \\ V_{20}^T & 0 \end{bmatrix} \begin{bmatrix} \Delta i \\ \Delta \omega_x/\omega_b \end{bmatrix} + p/\omega_b \begin{bmatrix} X & 0 \\ 0 & -2H\omega_b \end{bmatrix} \begin{bmatrix} \Delta i \\ \Delta \omega_x/\omega_b \end{bmatrix}$$
(3.2)

where

$$\Delta V = \begin{bmatrix} \Delta V_{QS} \\ \Delta V_{QS} \\ 0 \\ 0 \end{bmatrix}$$
 (3.3)

$$V_{20} = \begin{bmatrix} X_{m} & i_{dro} & e \\ -X_{m} & i_{dro} & e \\ -X_{m} & i_{dso} & e \end{bmatrix}$$

$$X_{m} = \begin{bmatrix} X_{m} & i_{dso} & e \\ -X_{m} & i_{dso} & e \end{bmatrix}$$

$$X_{m} = \begin{bmatrix} X_{m} & i_{dso} & e \\ -X_{m} & i_{dso} & e \end{bmatrix}$$

$$X_{m} = \begin{bmatrix} X_{m} & i_{dso} & e \\ -X_{m} & i_{dso} & e \end{bmatrix}$$

$$X_{m} = \begin{bmatrix} X_{m} & i_{dso} & e \\ -X_{m} & i_{dso} & e \end{bmatrix}$$

$$X_{m} = \begin{bmatrix} X_{m} & i_{dso} & e \\ -X_{m} & i_{dso} & e \end{bmatrix}$$

$$R = \begin{bmatrix} r_{s} & f_{R}X_{s} & 0 & f_{R}X_{m} \\ -f_{R}X_{s} & r_{s} & -f_{R}X_{m} & 0 \\ 0 & f_{R}S_{o}X_{m} & r_{r} & f_{R}S_{o}X_{r} \\ -f_{R}S_{o}X_{m} & 0 & -f_{R}S_{o}X_{r} & r_{r} \end{bmatrix}$$
(3.7)

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{\mathbf{g}} & \mathbf{0} & \mathbf{x}_{\mathbf{m}} & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_{\mathbf{g}} & \mathbf{0} & \mathbf{x}_{\mathbf{m}} \\ \mathbf{x}_{\mathbf{m}} & \mathbf{0} & \mathbf{x}_{\mathbf{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_{\mathbf{m}} & \mathbf{0} & \mathbf{x}_{\mathbf{r}} \end{bmatrix}$$

and 0 represents a 4xl column vector of zeros. The superscript T denotes the transpose the column vectors V_{10} and V_{20} denote quantities expressed in per unit voltage and are established from steady state operating conditions. Upon solving for the vector denoting the time derivatives of currents (3.2) can be expressed.

$$p/\omega_{b} \begin{bmatrix} \Delta i \\ \Delta \omega_{x}/\omega_{b} \end{bmatrix} = \begin{bmatrix} -x^{-1} R & -x^{-1} V_{10} \\ (1/2H\omega_{b})V_{20}^{2} & 0 \end{bmatrix}$$

$$\begin{bmatrix} \Delta i \\ \Delta \omega_{x}/\omega_{b} \end{bmatrix} + \begin{bmatrix} x^{-1} & 0 \\ 0 & -1/2H\omega_{b} \end{bmatrix} \begin{bmatrix} \Delta V \\ \Delta T_{b} \end{bmatrix}$$
(3.9)

Equation (3.9) constitutes the vector-matrix differential equation of the linearized system. The column vector $[\Delta i^T, {}^{\Delta m}_T/{}^m_b]^T$ is the state vector which contains the set of linearized system state variables. The column vector $[\Delta V^T, \Delta T_L]^T$ represents the set of system forcing functions. If the forcing function vector is set equal to zero the solution of (3.9) is

$$\Delta 1 = \Delta \omega_{\rm p} = \Delta \omega_{\rm p}$$

whore

$$A_{0b} = a_{0}$$

$$(3.11)$$

$$(1/2H_{0b})V_{20}^{T}$$

and $(\text{Bi}(0)^{\frac{\pi}{2}}, \Lambda\omega_{_{\Sigma}}(0)/\omega_{_{D}})^{\frac{\pi}{2}}$ is an arbitrary set of initial conditions. The matrix exponential function $e^{\lambda t}$ represents the unforced response of the system and is called the fundamental or state transition matrix of the system. Local-asymptotic stability is assured if all elements of the transition matrix approach zero asymptotically as time approaches infinity.

 e^{At} + 0 if all the roots of the characteristic equation of A have negative real parts. The roots of the characteristic equation are given by those values of $\lambda^* = \lambda/\omega_{\rm b}$ for which the determinant

$$\begin{bmatrix} I & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} x^{-1}R & x^{-1}v_{10} \\ -(1/2Hw_{10})v_{20}^{T} & 0 \end{bmatrix} = 0$$

(3.12)

The parameter λ^* which has been introduced into (3.12) serves to normalize the roots of the characteristic equation to the base frequency w_b . The roots of (3.12) may be computed by solving for the roots of the resulting polynomial equation in λ^* , or they may be calculated directly by determining the eigen values of the matrix λ .

3.1 STABILITY STUDIES

Solution of the roots of (3.12) provides a simple mean of predicting the behaviour of an induction motor at any operating frequency and for any torque load. Roots λ^* with negative real parts correspond to terms which decrease exponentially with time. Values of λ^* having positive real part results in elements in the state transition matrix which increases exponentially in time. In this study, 60 [Mx is assumed to be the rated frequency and the per unit system employed is based on operation at this frequency $(\omega_b = 377 \text{ radians/sec.})$.

A change in steady state operating speed (change in frequency) is easily incorporated by appropriate changes in the value of $f_{\rm p}$.

In order to investigate thoroughly the stability of the induction machine, it is necessary to find the roots of the characteristic equation, for all practical operating frequencies and loading conditions and for a range of machine parameters.

From this study the range of frequencies and loading for which one gets positive real parts of the eigen value can

be found. This range gives us the instability range.

In variable speed systems, the amplitude of the applied voltages is decreased as frequency decreases in order to avoid saturation of the machine. However, if the voltage is decreased as a linear function of frequency, the breakdown torque is reduced significantly at low frequencies. Because an increased percentage of the applied voltage is dropped across the stator resistance as frequency is reduced. In this study, as a simple means of i_R compensation the voltage required to produce rated flux linkage at rated load ($T_L = 1.0$ p.u.) and rated speed ($f_R = 1.0$) has been predetermined from steady state considerations. For the set of parameters the terminal voltage required to satisfy this constraint is V = 1.025 p.u. When operating from a variable frequency source, the terminal voltage has been adjusted so that at any frequency

 $V = V_k + f_R V_m \tag{3.13}$ where $V_R \neq 0.025$ and $V_m = 1.0$ p.u. (Ref. No. 2). From Eq.(3.13) it is clear that the constant factor V_k serves to compensate for the stator i_R drop. It can be noted that when $f_R = 1.0$, the terminal voltage V = 1.025.

Figures 3.1 to 3.3 are the results of such a study taken from reference 2.

FIG. 3-1 REGIONS OF INSTABILITY FOR DIFFERENT VALUES OF STATOR RESISTANCE

FIG. 3.2 REGIONS OF INSTABILITY FOR CHANGES
IN ROTOR RESISTANCE

FIG.3-3 REGIONS OF INSTABILITY FOR DECREASE
IN SYSTEM INERTIA

On the boundary of region of instability, one pair of conjugate complex eigen values has zero real part. The other pair has negative real part and the fifth eigen value is real and has negative value.

Following are the sets of eigen values on the boundary for a few Cases.

Case 1: Machine Parameters

$$r_s = 0.025/ r_{r}! = 0.015 / X_{r} = 0.1/X_{r}! = 0.1/X_{m} = 3.5$$

$$H = 0.1/V_{k} = 0.025/V_{m} = 1.0$$

Voltage vector

$$T_{L} = 0.1$$

 $f_{R} = 0.290$
Slip, $S = 0.005$

$$\mathbf{w_{b}} = \begin{bmatrix} 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & -0.71999 & 0.00468 & -0.00336 & 0.69396 \\ 0.00 & -0.01660 & -0.99929 & 0.03232 & 0.01033 \\ 0.00 & 0.69378 & -0.01906 & -0.00271 & 0.71993 \\ 0.00 & 0.00 & 0.03228 & 0.99947 & 0.00462 \end{bmatrix}$$

Eigen Values

Case 2

$$T_{T_i} = 0.2, S = 0.01$$

Other machine parameters, same as case 1

$$\mathbf{w_b}^{\mathbb{A}} = \begin{bmatrix} 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & -0.72147 & 0.00469 & -0.00357 & 0.69242 \\ 0.00 & -0.01666 & -0.99975 & 0.01060 & 0.01054 \\ 0.00 & 0.69225 & -0.01919 & -0.00414 & 0.72139 \\ 0.00 & 0.00047 & 0.01054 & 0.99993 & 0.00557 \end{bmatrix}$$

Eigen Values are:

Case 3

$$T_L = 0.3$$
, $S = .015$

Other machine parameters same as in case 1

Eigen Values are

Case 4

$$T_{T_i} = 0.4$$
, $S = 0.020$

Other machine parameters same as case 1

Eigen Values

Case 5

Machine Parameters

$$T_s = 0.020 / r_r' = .015 / X_{ls} = .1 / X_{lr'} = .1 / X_{m} = 3.5$$

$$H = 1 /$$

$$V_{k} = 0.020 / V_{m} = 1.0$$

$$f_{R} = 0.27$$

$$T_L = 0$$

$$S = 0$$

Eigen Values

Case 6

$$T_L = 0.1, S = 0.006$$

$$\begin{bmatrix} 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & -0.71942 & 0.00246 & -0.00290 & 0.69457 \\ 0.00 & -0.01429 & -0.99936 & 0.03099 & 0.01112 \\ w_b^{A=} & 0.00 & 0.69443 & -0.01801 & -0.00237 & 0.71933 \\ 0.00 & 0.00 & 0.03095 & 0.99951 & 0.00407 \end{bmatrix}$$

Eigen Values are

$$3 \quad 0.2698 + j \quad 78.0538$$

Case 7

$$T_{L} = 0.2, S = 0.011$$

Other machine parameters as in case 5

_				
1.00	0.00	0.00	0.00	0.00
0.00	-0.72099	0.00247	-0.00302	0.69294
0.00	-0.01434	-0.99980	0.00817	0.01131
0.00	0.69280	-0.01812	-0.00370	0.72089
0.00	0.00050	0,00811	0.99996	0.00485

Eigen Values

$$5 - 31.1770 + j 0.00$$

Case 8

 $T_{L} = 0.3, S = 0.017$

Other machine parameters same as case 5.

			•		
	1.00	0.00	0.00	0.00	0.00
	0.00	-0.72324	0.00251	-0.00294	0.69059
w _b A=	0.00	-0.01442	-0.99981	-0.00604	0.01149
	0.00	0.69044	-0.01824	-0.00499	0.72314
	0.00	0.00123	-0.00613	0.99996	0.00557

<u>Eigen Values</u>

_31.1036 + j 0.00 5

Case 9

$$T_L = 0.4$$
, $S = 0.022$

Other machine parameters same as case 5

The Eigen Values are

Case 10

Machine Parameters

$$T_{S} = 0.03 / r_{r}' = 0.015 / X_{ls} = 0.1 / X_{lr}' = 0.1 / X_{m} = 3.5 / H = 0.1$$

$$V_{k} = 0.03 / V_{m} = 1.0$$

$$f_{R} = 0.315$$

$$T_{L} = 0$$

$$S = 0$$

0.00	0.00	0.00	0.00
-0.71979	0.00655	-0.00300	0.69415
-0.01832	-0.99819	0.05657	0.00933
0.69395	-0.01955	-0.00162	0.71976
0.00	0.05655	0.99839	0.00378
	-0.71979 -0.01832 0.69395	-0.71979 0.00655 -0.01832 -0.99819 0.69395 -0.01955	-0.71979 0.00655 -0.00300 -0.01832 -0.99819 0.05657 0.69395 -0.01955 -0.00162

The Eigen Values are

$$1 -70.3309 + j 128.5468$$

$$5 -31.3433 + j 0.00$$

Case 11

$$S = 0.020$$
 $T_T = 0.1$

Other machine parameters

Eigen Values are:

$$-70.4956 + j 127.8427$$

$$3 \quad 0.4689 + j \quad 78.8579$$

Case 12

$$S = 0.025, T_{T_i} = 0.2$$

Other machine parameters as in case 10.

$$w_b = \begin{bmatrix} 1.00 & 0.00 & 0.00 & 0.00 & 0.00 \\ 0.00 & -0.72218 & 0.00651 & -0.00462 & 0.69166 \\ 0.00 & -0.01867 & -0.99971 & 0.01151 & 0.01001 \\ 0.00 & 0.69145 & -0.02021 & -0.00514 & 0.72212 \\ 0.00 & 0.00073 & 0.01143 & 0.99991 & 0.00702 \end{bmatrix}$$

Eigen Values are:

Case 13

$$T_{T} = 0.3$$
, $S = 0.030$

Other machine parameters as in case 10

Eigen Values are:

$$1 -70.5909 + j 128.4257$$

$$5 -31.7106 + j 0.00$$

CHAPTER 4

DYNAMIC ANALYSIS OF MACHINE USING NONLINEAR MODEL

4.1 INTRODUCTION

The transient and steady state performance of the machine in unstable region of operation is investigated in this chapter. It is found that in the unstable region machine speed is Subjected to sustained oscillations. The following steps are used for the analysis.

Step 1: The machine is run at a frequency where it is not unstable i.e. the point lies outside the region of instability (point a (Figure 4.1).

Step 2. When the machine comes to the steady state at the above frequency, its supply frequency is changed so that the operating point lies in the unstable region of operation. Care is taken to change the supply voltage, as discussed in Chapter 3, according to the equation (3,13). Here it is observed that the machine speed is oscillating.

Step 3. To make sure that these oscillations are only present in the unstable region, the frequency is switched from the unstable operating point to a frequency outside the unstable region.

In this case, machine speed after the initial transients have died out becomes steady.

All these steps are illustrated by the following diagram.

Figure 4.1

Points a b and c correspond to the operating points in step 1,2 and 3 respectively. All the above three steps are carried out by simulating the machine on digital computer.

Each step is dealt separately as follows ,

Step 1: To find out stable steady state operating point proceed with the machine model as given in eqns. (2,19) to (2,23).

Equations (2.29), (2.22) and (2.23) are arranged to form the following matrix equation

$$\begin{bmatrix} A^{a} & a \\ A^{a} & a \end{bmatrix} \begin{bmatrix} x^{a} + (b/a^{p})x^{a} & x^{a} + (b/a^{p$$

where
$$S = (\omega_0 - \omega_0)/\omega_0$$
 (4.1)

In steady state all the derivatives will have zero value. Thus, in steady state machine is represented by the following nonlinear algebraic equation.

$$\begin{bmatrix} v_{qs} \\ v_{ds} \\ \end{bmatrix} \begin{bmatrix} x_s & f_R x_s & 0 & f_R x_m & 0 \\ -f_R x_s & x_s & -f_R x_m & 0 & 0 \\ 0 & f_R x_m & f_R x_m & 0 & 0 \end{bmatrix} \begin{bmatrix} i_{qs} \\ i_{ds} \\ i_{ds} \end{bmatrix}$$

$$\begin{bmatrix} v_{qs} \\ v_{ds} \\ v_{d$$

The nonlinear algebraic equations can be solved by the following algorithm by substituting $f_R = f_R a$ as shown in Figure 4.1.

The algorithm is given as follows:

A. PURPOSE

This algorithm finds the minimum of a multivariable, unconstrained, monlinear function's

Minimise F(X1, X2, ..., XN)

B.Method:

The procedure is based on the direct search method proposed by H.H. Rosenbrock (3). No derivatives are required. The procedure assumes a unimodal function; therefore, several sets of starting values for the independent variables should be used if it is known that more than one minimum exists or if the shape of the surface is unknown. The algorithm proceeds as follows:

- 1) A starting point and initial step sizes, S_i , $i = 1, 2, \dots$, N, are picked and the objective function evaluated.
- The first variable X_1 is stepped a distance S_1 parallel to the axis, and the function evaluated. If the value of F decreased, the move is termed a success and S_1 increased by a factor ∞ ,
 - $\beta > 1.0$. If the value of F increased the move is termed failure and β_1 decreased by a factor β , $0 < \beta < 1.0$, and the direction of movement reversed.
- The next variable, X_i, is in turn stepped a distance S_i

 parallel to the axis. The same acceleration or deceleration

 and reversal procedure is followed for all variables in

 consecutive repetitive sequences until a success (decrease

 in F) and failure (increase in F) have been encountered in

 all N directions.

4) The axes are then rotated by the following equations. Each rotation of the axes is termed a stage.

$$M_{i,j}^{(k+1)} = \frac{D_{i,j}^{(k)}}{\left(\sum_{\ell=1}^{N} (D^{(k)})^{2}\right)^{\frac{1}{2}}}$$

where

$$D_{i,1}^{(k)} = A_{i,1}^{(k)}$$

$$D_{i,j}^{(k)} = A_{i,j}^{(k)} - \underbrace{\sum_{l=1}^{j-1} \left[\sum_{n=1}^{j} M_{n,\ell}^{(k)} \cdot A_{n,j}^{(k)} \right] \cdot M_{i,\ell}^{(k+1)}}_{i,j}, j=2,3,...,N$$

$$A_{i,j}^{(k)} = \underbrace{\sum_{l=j}^{N} d_{\ell}^{(k)} \cdot M_{i,\ell}^{(k)}}_{i,\ell}$$

where

i = variable index = 1,2,3,...,N

j = direction index = 1,2,3,...,N

k = stage index

d = sum of distances moved in the i direction since last
rotation of axes

M, j = direction vector component (normalized).

5) Search is made in each of the X-directions using the

new
$$x_i^{(k)} = \text{old } x_i^{(k)} + x_i^{(k)} \times_i^{(k)}$$

6) The procedure terminates when the convergence criterion is satisfied.

(For programme description see reference 4).

The solution vector [iqso, idso, iqro, idro, wr/wb] is the steady state operation point.

Step 2: Writing (4.1) concisely in partitioned matrix notation as

$$\begin{bmatrix} \mathbf{V} \\ \mathbf{v} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{v} \\ \mathbf{v} \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ \mathbf{v} \\ \mathbf{v} \end{bmatrix} \mathbf{p}/a_{\mathbf{b}} \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{i} \\ \mathbf{v} \end{bmatrix} \mathbf{p}/a_{\mathbf{b}} \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{v} \\ \mathbf{v} \end{bmatrix} \begin{bmatrix} \mathbf{i} \\ \mathbf{v} \\ \mathbf{v} \end{bmatrix}$$

$$(4.3)$$

Upon solving for the vector denoting the time derivatives of currents and speed in (4.3) we obtain

$$P/\log \left[\frac{1}{2}\right] = \left[\frac{1}{2^{2}} + \frac{1}{2^{2}}\right] = \left[\frac{1}{2^{$$

Equation (4.(0) constitutes the vector matrix nonliner differential equation describing the operation of the machine.

In equation (4.10) f_{Rb} as shown in diag. (4.1) for step 2 (4.10) is solved by Rk fourth order method on the digital computer. Solution vector found in step 1 is used for initial conditions to this step.

Step 3: When the machine speed, u_x/u_b exhibits steady state oscillations, (when oscillation become periodic), f_{Rb} is changed to f_{Rc} in equation (4.0) to make the supply frequency lie outside the unstable region as shown in Figure 4.1.

The equation is again solved on similar lines as discussed in step 2. After transients die out, the machine comes to a new steady state point as in step 1.

4.2 TRANSPORMATION OF STATOR VOLTAGES

The machine is supplied with 3 phase voltages - v_{as} , v_{bs} and v_{cs} .

But in the above equation (4.2) (0_g) quadrature and (0_g) direct axis components of these voltages are used. In order to find out these components from the known phase voltages the following steps are used.

Step 1: In the first step the Q_g and D_g applied voltages, in a reference frame fixed in stator, are obtained by setting $\theta=0$ in equation (2.7).

Thes,

$$V_{cs}^{s} = 2/3 \left(V_{as}^{-(1/2)} V_{bs}^{-(1/2)} - (1/2) V_{cs}^{-(1/2)} \right)$$
 (4.11)

$$V_{ds}^{2} = (1/\sqrt{3})(-V_{hs} + V_{ds})$$
 (4.12)

The raised index s is used to denote variables in reference frame fixed in the stator.

Step 2: After step 1, it becomes convenient to express the applied voltages in a synchronously rotating reference frame as functions of $V_{\rm ds}^{-3}$ and $V_{\rm ds}^{-3}$. Thus,

$$V_{qs} = V_{gs} \cos \theta e - V_{ds} \sin \theta e$$
 (4.13)

The raised index e is used to denote variables in synchronously rotating reference frame. Now in this case the perunit line veltage which is also equal to per unit phase voltage is known. Thus, on substituting the values V_{as} , V_{bs} , V_{cs} in equations (4.11) to (4.14) we obtain

$$V_{qg}^{e}$$
 = Amplitude of phase voltage $V_{dg}^{e} = 0$

The voltage vector in equation (4.10) can be written in the form

This study was carried out for the machine whose specifications are given as follows, 7.5 HP/220V/60Hz)4 pole/3-phase.

In variable speed systems, the amplitude of the applied voltage is decreased as frequency decreases in order to avoid saturation of the machine. However, if the voltage is decreased as a linear function of frequency, the breakdown torque is depleted significantly at low frequencies since an increased percentage of the applied voltage is dropped across the stator resistance as frequency is reduced. In this study as a simple

means of i_R compensation the voltage required to produce rated flux linkage at rated load $(T_L=1.0~p.u.)$ and rated speed $(f_R=1.0)$ has been predetermined from the steady state considerations. For the set (1) of parameters the terminal voltage required to satisfy this constraint is V=1.025~p.u. When operating from a variable frequency source, the terminal voltage has been adjusted so that for any frequency

$$V = V_k + f_k V_m \tag{4.16}$$

where $V_k = 0.023$ and $V_m = 1.0$ p.u. From the form of (4.16) it is clear that the constant factor V_k serves to compensate for the stator I_R drop.

It can be noted that when $f_{\rm R} = 1.0$, the terminal voltage V = 1.025.

Thus, for different operating conditions, the proper input voltages are used. The stability boundaries for this motor are given the Pagares 3.1 to 3.3 for different machine parameters and load torques. The amplitude and frequency of speed fluctuations in the unstable region, are computed as given in Section 4.2., and tabulated below.

47

4.3 Results:

Set 1: Machine parameters:

$$\Upsilon_{\rm S} = .025$$

$$X_{m} = 3.5$$

$$H = .1$$

$$v_{k} = .025$$

$$V_{\rm m} = 1.0$$

$$f_R = 0.4$$

For the above case $V_{qs} = .025 + .4 = .425$ and the voltage vector

The following initial steady state operating points are considered

$$f_{Ra} = .4$$
, $V_{qs} = .425$
 $f_{Rb} = .3$, $V_{qs} = .025 + .3 = .325$
 $f_{Rc} = .25$, $V_{qs} = .025 + .25 = .275$

The amplitude and frequency of the oscillation input observed with different values of torque iwhen the input frequency

is changed to $f_{Rb} = .3$, which corresponds to the unstable operating point are shown below.

Torque	Lower crest of speed	Upper crest of speed	amplitude oscilla- tions	of frequency of osci- llations	Table No.
0	• 2544	•3410	.0408	12.82	1
. 1	•2582	•3394	.0406	12.82	2
.2	.2581	•3367	•0393	12.82	3
•3	.2591	•3328	.0368	12.66	<u> 1</u> ‡
•4	•2614	•3274	.0340	12.66	5

Set II : Machine parameters :

$$\mathbf{r}_{s} = \frac{.030}{.015}$$
 (changed)

$$X_{1s} = .1$$

$$X_m = 3.5$$

$$H = .1$$

$$v_{R} = .030$$

$$V_{m} = 1.0$$

For the above case $V_{qs} = .03 + .40 = .430$ and the voltage vector

The following initial steady state operating points are considered

$$f_{Ra} = .4$$
, $V_{qs} = .03 + .40 = .430$
 $f_{Rb} = .35$, $V_{qs} = .03 + .35 = .380$
 $f_{Rc} = .3$, $V_{qs} = .03 + .3 = .33$

The amplitude and frequency of the oscillation observed with different values of torque when the input frequency is changed to $f_{\rm Rb}$ = .35, which corresponds to the unstable operating point are shown below:

Torque F.U.	Lower crest of speed	Upper crest of speed	amplitude of osci- llations	frequency of osci- llations	Table	No.
. 1	•3 163	.3816	.0326	13 •33	6	
•2	.3201	•3747	.0273	13.33	7	
•3	•3254	•3664	.0206	13.33	8	
• 4	•33 14	•3572	.0129	13 • 33	9	

Set III : Machine parameters :

$$\Upsilon_5 = .020 \text{ (changed)}$$

$$\Upsilon_{r}$$
 = .015

$$X_m = 3.5$$

$$v_k = .020$$

$$f_R = 0.4$$

For the above case $V_{qs} = .020 + .4 = .420$ and the voltage vector

The following intitial steady state operating points are considered

$$f_{Ra} = .4, V_{qs} = .020 + .4 = .420$$

$$f_{Rb} = .3,$$
 $V_{qs} = .020 + .3 = .320$

$$f_{Rc} = .2,$$
 $V_{qs} = .020 + .2 = .220$

The amplitude and frequency of the oscillation observed with different values of torque when the input frequency is changed to $f_{\rm Rb}$ = .3, which corresponds to the unstable operating point are shown below:

				99	
Torque p.u.	Lower crest of speed	Upper crest of speed	amplitude of osci- llations	frequency of osci- llations	Table No.
.0	.2342	.3667	.0662	13.33	10
. 1	•2345	•3635	.0645	13.96	11
•2	•2356	•3594	.0619	13:16	12
•3	•2375	•3544	.0584	13:00	13
. 4	.2404	•3483	.053 9	13.00	14
		•			

Set IV Machine parameters:

$$Y_5 = .025$$

$$\mathbf{r}_{r'} = \underline{.010} \text{ (changed)}$$

$$\mathbb{K}_{\rho_{m}}' = .1$$

$$X_{r}' = .1$$
 $X_{m} = .35$
 $H = .1$

$$H = .1$$

$$\mathbf{f}_{\mathrm{R}} = 0.5$$

For the above case V = .025 + .5 = .525 and the voltage vector

The following initial steady state operating points are considered

$$f_{Ra} = .5, V_{qs} = .025 + .5 = .525$$

$$f_{Rh} = .4, V_{CS} = .025 + .4 = .425$$

$$f_{Rb} = .4,$$
 $V_{qs} = .025 + .4 = .425$
 $f_{Rc} = .2,$ $V_{qs} = .025 + .2 = .225$

The amplitude and frequency of the oscillation observed with different values of torque when the input frequency is changed to $f_{Rb} = .4$, which corresponds to the unstable operating point are shown below:

Torque p.u.	Lower crest of speed	Upper crest of speed	amplitude of osci- llations	frequency of osci- llations	Table No.
0	•3 073	.4970	•0948	14.09	15
. 1	•3099	.4921	.0911	14.09	16
•3	•3171	•4802	.0815	14.09	17

Set V: Machine parameters:

For the above case $V_{qs} = .025 + .5 = .525$ and the voltage vector

 \mathbf{f}_{R}

The following initial steady state operating points are considered

$$f_{Ra} = .5$$
, $V_{qs} = .025 + .5 = .525$
 $f_{Rb} = .4$, $V_{qs} = .025 + .4 = .425$
 $f_{RC} = .25$, $V_{qs} = .025 + .25 = .275$

The amplitude and frequency of the oscillation observed with different values of torque when the input frequency is changed to $f_{Rb} = .4$, which corresponds to the unstable operating point are shown below:

Torque p.u.	Lower crest of speed	Upper crest of speed	amplitude of osci- llations	frequency of osci- llations	Table No.
0	•2253	•5716	. 173 1	18.18	18
. 1	•2263	• 5684	. 17 10	18.18	19
•25	.2287	• 56 19	• 1666	17.86	20
•4	•2328	•5534	• 1603	17.86	21

Set VI

load
In this set, torque is not changed. With a constant torque
the oscillations are observed for different frequencies within
the unstable region.

Machine parameters :

$$Y_s = .025$$
 $Y_{r'} = .015$
 $X_{2s} = .1$
 $X_{2r'} = .1$
 $X_m = 3.5$
 $M_{r'} = .1$
 $M_{r'} = .1$

The following initial study state operating points are considered:

$$f_{Ra} = .4,$$
 $V_{qs} = .025 + .4 = .425$
 $f_{Rc} = .25,$ $V_{qs} = .025 + .25 = .275$
 $f_{Rb1} = .3,$ $V_{qs} = .025 + .3 = .325$
 $f_{Rb2} = .31,$ $V_{qs} = .025 + .31 = .335$
 $f_{Rb3} = .33,$ $V_{qs} = .025 + .33 = .355$
 $f_{Rb4} = .35,$ $V_{qs} = .025 + .35 = .375$
 $f_{Rb5} = .36,$ $V_{qs} = .025 + .36 = .385$

 $T_{L} = 0$, for all the cases.

CHAPTER 5

OSCILLATION FREQUENCY FROM EIGEN VALUES

5.1 INTRODUCTION

In this chapter oscillation frequency is found from the eigen values. When the system is critically stable the oscillation frequency can be found exactly by the complex eigen values having real parts equal to zero. Mathematically, it is shown below.

For this case, eigenvalues are given by these values of for which the determinant

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} + w^{2} \begin{bmatrix} -(1/310^{2}) \wedge 5^{2} & 0 \\ 1 & 0 & 1 \end{bmatrix} = 0$$

It is found that these eigen values are of the form

They are two pairs of conjugate complex values and one real value. Now When the system is critically stable, one conjugate complex pair has real part $\sigma_1 = 0$.

Thus, for critical stable system the fivem eigen values are as follows:

02

 σ_2 and σ_3 are negative.

The output will be of the form

$$\lambda_1 e^{g_1 t} \sin(\omega_1 t + \phi_1) + \lambda_2 e^{g_2 t} \sin(\omega_2 t + \phi_2) + \lambda_3 e^{g_3 t}$$

For critically stable case, $\sigma_1=0$ and σ_2 , σ_3 are negative. Thus the second and third term which correspond to negative real parts of eigen values decrease exponentially with time. First term will be periodic sinusoid as $\sigma_1=0$. So in the steady state, the output is given by

Hence, it can be established that in the critical stable case the system oscillates with frequency a_1 .

5.2 ANALYSIS USING LINEAR MODEL

The oscillation frequency found from linearized model is the same as that found from nonlinear model if the perturbation are small.

Next, it is found that oscillation frequencies for different $f_{\rm Rb}$'s in the region of instability do not differ much. One such set is given in set 6 in Chapter 4. Here the machine is run at different operating points lying in the region of instability. It is found that with the change in supply frequency within the boundary of region of instability, the oscillation frequency does not change appreciably.

Thus, oscillation frequency for any operating point in the region of instability is approximately equal to ω_1 (which can be found from eigen values as discussed in thebbeginning).

The results obtained by this method are compared to those found by simulating nonlinear model and are given in tabular form as follows:

Machine parameters, and another information which is not given with each set can be referred from the same set number in Chapter.4.

5.3 Results:

Here in each set, four quantities are tabulated they are load torque, eigen value which gives the oscillation frequency quency found by above mentioned method and oscillation frequency as found in Chapter 4.

Set I (Ref Set I, Chap 4)

Load Torque	Pair of conjuction of conjuction values almost equal Real part \int_2	with real part	oscillation frequency from eigen value = Imaginary part/2 7	oscillation frequency as found in Chapter 2
0	0.0901	<u>+</u> 78.02	12.41	12.82
• 1	0.0929	<u>+</u> 78.1368	12.42	12.82
•2	0.0966	<u>+</u> 78.1800	12.42	12.82
•3	0.0812	± 78.8939	12.52	12.66
•4	0.0294	<u>+</u> 77.4287	12.32	12.66
Set II	(Ref Set II,	Chapter 4)		
. 1	0.4689	<u>+</u> 78.8579	12.52	13 •33
• 2	0.4382	<u>+</u> 78.9020	12.52	13 • 33
•3	0.4265	+ 79.6712	12.65	13.33
• 4	0.2824	+ 78.0949	12.42	13 •33
Set III	(Ref. Set II)	(, Chapter 4)		
.0	0.2141	<u>+</u> 78.7702	12.52	13 •33
. 1	0.2698	± 78.0538	12.42	13.16
•2	0.2664	± 78.0907	12.42	13.16
•3	0.2386	± 78.7352	12.52	13.00
-4	0.2407	± 77.4050	12.32	13.00

Set IV	(Ref. Set IV, C	hapter 4)		
Load Torque	Pair of congueigen values almost equal Real part	with real part to zero	oscillation frequency from eigen value = Imaginary part 277	as found
0	0.2231	<u>+</u> 82.6578	13 •3	14.09
. 1	0.3454	<u>+</u> 82.2100	13 • 3	14.09
•3	0.1230	<u>+</u> 84.9002	13.5	14 • 09
Set V	(Ref. Set V, C	hapter 5)		
0	0.2732	108.2168	17.2	18.18
. 1	9.1811	109.1807	17 •3	18.18
•25	0:1935	108.9210	17.3	17.86
• 4	0.2654	108.2096	17.2	17.86

From the above tables, it is found by comparison that frequency computed by this method is almost equal to that found by simulating the non-linear model for any operating point in the region of instability.

 $\frac{\text{Table No.1}}{\text{(In this table, only steady state speed oscillations are tabulated.}}$ Time = 0, when steady state is reached).

Time	∀r ^{/W} b	Time	^W r∕ ^N b
0.001	0.298688	0.033	0.315545
0.002	0.301634	0.037	0.3 12 167
0.003	0.304576	0.038	0 . 3086 95
0.004	0.307503	0.039	0.305154
0.005	0.3 10400	0.040	0.301576
0.006	0.3 13 254	0.041	0.297988
0.007	0.3 16051	0.042	0.294419
800.0	0.318778	0.043	0.290900
0.009	0.321420	0.044	0.287457
0.010	0.323962	0.045	0.284118
0.011	0.326389	0.046	0.280910
0.012	0.328685	0.047	0.277857
0.013	0.330835	0.048	C.274982
0.014	0.332822	0.049	0.272306
0.015	0.334631	0.050	0.269848
0.016	0.336247	0.051	0.267623
0.017	0.337654	0.052	0.265646
0.018	0.338839	0.053	0.263928
0.019	0.339787	0.054	0.262478
0.020	0.340486	0.055	0.26 13 01
0.021	0.340927	0.056	0.260402
0.022 (Higher	0.34 1099	0.057	0.259781
0.023 Crest).	0.340994	0.058	0.259437
0.024	0.340609	0.059 (Lower	<u>0.259365</u>
0.025	0.339939	0.060 Crest)	0.259562
0.026	0.338985	0.061	0.260018
0.027	0.337748	0.062	0.260724
0.028	0.336234	0.063	0.261171
0.029	0.334448	0.064	0.262846
0.030	0.332402	0.065	0.254237
0.031	0.330108	0.066	0.265829
0.032	0.327583	0.067	0.267609
0.033	0.324842	0.068	0.269563
0.034	0.321907	0.069	0.27 1675
0.035	0.3 18800	0.070	0.273932

Time	₩ _r /₩ _b	Time	Wr/Wb
) 0.071 0.072 0.073 0.074 0.075 0.076	0.276319 0.278821 0.281426 0.281184 0.286884 0.289712	0.110 0.111 0.112 0.113 0.114 0.115	0.327803 0.325080 0.322162 0.319069 0.315826 0.312459
0.077 0.078 0.079 0.080 0.081 0.082 0.083 0.084	0.292589 0.295501 0.298436 0.301381 0.304324 0.307251 0.310151 0.313009	0.116 0.117 0.118 0.119 0.120 0.121 0.122 0.123	0.308994 0.305459 0.301883 0.298296 0.294725 0.291201 0.287751 0.284403
0.085 0.086 0.087 0.088 0.089 0.090	0.3 15811 0.3 18544 0.3 21194 0.3 23744 0.3 26181 0.3 28489 0.3 30651	0.124 0.125 0.126 0.127 0.128 0.129 0.130	0.281184 0.278117 0.275227 0.272523 0.270056 0.267881 0.265812
0.092 0.093 0.094 0.095 0.096 0.097 0.098	0.332652 0.334477 0.336110 0.337535 0.338739 0.339708 0.340429	0.131 0.132 0.133 0.134 0.135 0.136	0.264072 0.262599 0.261399 0.260476 0.259831 0.259463
0.099 0.100 (Higher 0.101 Crest) 0.102 0.103 0.104 0.105 0.106 0.107 0.108	0.340429 0.340892 0.341087 0.341006 0.340645 0.34000 0.339071 0.337858 0.336367 0.334605 0.332581	0.137 (Lower 0.138 Crest) 0.139 0.140 0.141 0.142 0.143 0.144 0.145 0.146 0.147	0.259368 0.259976 0.269661 0.261588 0.262743 0.264115 0.265690 0.267455 0.269394 0.271493

Table No. 2

TIME	$\omega_{\mathbf{r}}/\omega_{\mathbf{b}}$	TIME	$^{\omega}\mathbf{r}^{/\omega}\mathbf{b}$
0.1	0.296746	4.6	0.267434
0.2	0.240705	4.7	0.325606
0.3	0.313211	4.8	0.324677
0.4	0.353368	4.9	0.260597
0.5	0.264940	5.0	0.287181
0.6	0.262022	5.1	0.338639
0.7	0.335695	5.2	0.298317
0.3	0.328636	5.3	0.259231
0.9	0.250010	5 . 4	0.310129
1.0	0.287330	5.5	0.336631
1.1	0.347198	5.6	0.272492
1.2	0.296100	5.7	0.272233
1.3	0,253043	- 5•8	0.329946
1.4	0.312789	5• 9	0.318191
1.5	0.342199	6.0	0.258896
1.6	0.268017	6.1	0.293298
1.7	0.269466	6.2	0.339495
1.8	0.333599	6.3	0.290823
1.9	0.320527	6.4	0.261759
2.0	0.254671	6.5	0.315958
2.1	0.292567	6.6	0.332934
2.2	0.343197	6.7	0.267449
2.3	0.290729	6.8	0.277498
2.4	0.258661	6.9	0.333692
2.5	0.316416	7.0	0.311113
2.6	0.336024	7.099	0.258250
2.7	0.265994		(Lower Crest)
2.8	0.275450	7.100	0.258282
2.9	0.33499	7.101	0.258574
3.0	0.313205	7.102	0.259118
3.1	0.256244	7.103	0.259904
3.2	0.298270	7.104	0.260922
3.3	0.341263	7.105	0.262160
3 . 4	0.284520	7.106	0.263605
3.5	0.263032	7.107	0.265243
3 . 6	0.320959	7.108	0.267060
3 . 7	0.330533	7.109	0.269044
3.8	0.263129	7.110	0.271178
3.9	0.281244	7.111	0.273450
4.0	0.336984	7.112	0.275844
4-1	0.305832	7.113	0.278348
4.2	0.257485	7.114	0.280948
4.3	0.304178	7.115	0.283631
4.4	0.339315	7.116	0.286383
4• 5	0.278291	7.117	0.289192

TIME	. ω _π /ω _δ	TIME	ω _I /ω _b
7.118	0.292046	7 • 163	0.286068
7.119	0.294932	7 • 164	0.282764
7.120	0.297837	7.165	0.279591
7.121	0.300750	7.166	0.276571
7.122	0.303658	7.167	
7.123	0.306548	7.168	0,273728 0,271082
7.124	0.309408	7.169	0.268650
7.125	0.312224	7.170	0.266449
7.126	0.314983	7.171	0.26449
7.127	0.317671	7.172	0.262792
7.128	0.320273	7.173	
7.129	0.322775	7.174	0.261355
7.130	0.325162	7.175	0.260188
7.131	0.327418	7.176	0.259294
7.132	0.329528	7.177	0.258673
7.133	0.331476	7.178	0.258325
7.134	0.333247	1.10	0.258246
7.135	0.334825	7.179	(Lower Crest)
7.136	0.336196	7.180	0.258429
7.137	0.337345	7.181	0.258869
7.138	0.338260	7.182	0.259555
7.139	0.338927	7 • 183	0.260478
7.140	0.339338	7.184	0.261625
7-141	0.339483	7.185	0.262984
	(Higher Crest)	7.186	0.264543
7.142	0.339354	7.187	0.266287
7.143	0.338947	7.188	0.268202
7.144	0.338259		0.270274
7.145	0.337289	7.189	0.272490
7.146	0.336041	7.190	0.274834
7.147	0.334518	7.191	0.277294
7.148	0.332728	7.192	0.279855
7.149	0.330682	7 • 193	0.282504
7.150	0.328392	7 • 194	0.285228
7.151		7 • 195	0.288014
7.152	0•325873 0•323144	7 • 196	0.290850
7.153		7 • 197	0.293724
7 • 155	0.320224	7 • 198	0.296622
7 • 1 5 4	0.317136	7 • 199	0 . 2995 3 2
	0.313902	7.200	0.302443
7.156	0.310550	7.201	0.305342
7.157	0.307104	7.202	0.308225
7.158	0.303594	7.203	0.311051
7.159 7.160	0.300047	7.204	0.313835
7.160	0.296493	7.205	0.316553
7.161	0.292959	7.206	0.319193
7.162	0.289475	7.207	0.321738
		- •	

	ω _r /ω _b	TIME	$\omega_{\underline{r}}/\omega_{\underline{b}}$
7.208	0.324174	7 •251	0.261932
7.209	0.326486	7.252	0.260651
7.210	0.328659	7 •253	0.259643
7.211	0.330676	7.254	0.258908
7.212	0.332522	7 •255	0.258446
7.213	0.334182	7.256	0.258255
7.214	0.335641	1 0-70	(Lower Crest)
7.215	0.336884		
7.216	0.337898		
	0.338670		
7.217	0.339189		
7.218			
7.219	0.339446	+ \	
	(Higher Cre	es ()	
7.220	0.339432		
7.221	0.339142		
7.222	0.338571		
7.223	0.337719		
7.224	0.336587		
7.225	0.335179		
7.226	0.333500		
7.227	0.331560		
7.228	0.329370		
7.229	0.326946		
7.230	0.324303		
7.231	0.321461		
7.232	0.318441		
7.233	0.315266		
7.234	0.311960		
7.235	0.308551		
7.236	0.305066		
	0.301531		
7.237	0.297977		
7.238			
7.239	0.294432		
7.240	0.290925		
7.241	0.287483		
7.242	0.284134		
7.243	0.280904		
7.244	0.277818		
7.245	0.274899		
7.246	0.272169		
7.247	0.269646		
7 •248	0.267347		
7.249	0.265288		
7.250	0.263480		

TABLE No. 3

Time	ω/ω r b	Time	ω/ω r b
.1	0.297735	4.0	0.289556
.2	0.238453	4.1	0.337194
•3	0.306092	4.2	0.295472
•4	0.353644	4.3	0.258459
•5	0.273448	4.4	0.306999
•6	0.253803	4.5	0.535623
•7	0.323665	4.6	0.275518
.8	0.338791	4.7	0.267363
•9	0.257351	4.8	0.322821
1.0	0.271206	4.9	0.324190
1.1	0.336890	5.0	0.261935
1.2	0.317686	5.1	0.281804
1.3	0.250939	5.2	0.333877
1.4	0.289965	5.3	0.305418
1.5	0.343029	5.4	0.257728
1.6	0.293963	5.5	0.298822
1.7	0.254119	5.6	0.336969
1.8	C-308544	5.7	0.284541
1.9	0.339697	5.8	0.262802
2.0	0.272909	5.9	0.315638
2.1	0.26 4916	6.0	0.330199
2.2	0.324845	6.1	0.267540
2.3	0.326633	6.2	0.274864
2.4	0.259265	6.3	0.329263
2.5	0.280523	6.4	0.314503
2.6	0.336051	6.5	0.258805
2.7	0.306580	6.6	0.290915
2.8	0.255394	6.7	0.336385
2.9	0.298229	6.8	0.294001
3.0	0 . 339 1 28	6.9	0.259714
3.1	0.284791	7.0	0.308090
3.2	0.260867	7.099	0.334276
3.3	0.315512	7.100	0.332987
3.4	0.332250	7.101	0.331437
3. 5	0.267138	7.102	0.329635
3.6	0.273249	7.103	0.327590
3.7	0.329572	7 • 104	0.325315
3.8	0 . 3 1 6345	7.105	0.322827
3.9	0.257913	7.106	0.320142

Time	ω /ω r b	Time	$\begin{array}{c} \omega / \omega \\ \mathbf{r} \end{array}$ b
7.107	0.317280	5	
7.108	01314264	7.148	0.284398
7.109	0.311115	7 • 149	0.287090
7.110	0.307860	7 · 1 50	0.289829
7.111	0.304522	7 • 15 1	0.292604
7.112	0.301130	7.152	0.295403
7.113	0.297710	7 • 153	0.298214
7-114	0.294290	7-154	0.301025
7.115	0.290897	7 • 155	0.303823
7.116	0.287559	7.156	0.306598
7.117	0.284300	7 • 157	0.309335
7.118	0.281147	7.158	0.312022
7.119		7 • 159	0.314646
7.120	0.278124	7.160	0.317192
7.121	0.275253	7.161	0.319648
	0.272555	7.162	0.321997
7.122	0.270050	7.163	0 .3 24227
7 • 123	0.267753	7.164	0.326322
7.124	0.265680	7.165	0.328266
7.125	0.263844	7.166	0.330045
7.126	0.262253	7.167	0.331645
7.127	0.260916	7.168	0.333051
7.128	0.259837	7.169	0.334249
7.129	0 . 2590 1 9	7 • 170	0.335226
7 • 130	0•258464	7.171	0.335971
7 • 131	0.258168	7.172	0.336472
7.132	0.258128	7 • 173	0.336722
	(Lower Crest)		(Higher Crest)
7.133	0.258340	7-174	0.336711
7.134	0.258794	7 • 175	0.336436
7 • 135	0.259484	7.176	0.335891
7.136	0.260398	7.177	0.335077
7.137	0 .2 61526	7.178	0.333993
7.138	0.262856	7.179	0.332644
7.139	0.264375	7.180	0.331036
7.140	0.266071	7.181	0.329178
7.141	0.267930	7.182	0.327079
7.142	0.269939	7.183	0.324755
7.143	0.209999 0.272084	7.184	0.322221
7.144	0.274352	7.185	0.319494
7 • 144 7 • 145		7.186	0.316596
7.145 7.146	0.276731	7.187	0.313548
7 • 140 7 • 147	0.2792 <i>J</i> 6	7.188	0.310373
1 + 14 [0.281766	14100	0.010

Time	ω _r /ω _b	Time	w / w b
7.189	0.307097	7.229	0•290465
7.190	0.303746	7.230	0.293246
7-191	0.300346	7.231	0.296048
7.192	0.296925	7.232	0.298859
7 - 193	0.293510	7.233	0.301667
7.194	0.290128	7.234	0.304461
7.195	0.286806	7.235	0.307227
7.196	0.283571	7.236	0.309953
7.197	0.280446	7.237	0.312626
7.198	0.277457	7.238	0.315233
7.199	0.274624	7.239	0.317759
7.200	0.271970	7.240	0.320191
7.201	0.249512	7.241	0.322514
7.202	0.267266	7.242	0.324713
7.203	0.265247	7.243	0.326774
7.204	0.263466	7.244	0.328681
7.205	0.261933	7.245	0.330420
7.206	0.260655	7.246	0.331976
7.207	0.259637	7.247	0.333335
7.208	0.258879	7.248	0.334483
7.209	0.258383	7.249	0.335408
7.210	0.258147	7.250	0.336097
	(Lower crest)	7.251	0.336542
7.211	0.258165	7.252	0.336732
7.212	0.258433		(Higher crest)
7.213	0.258942	7 • 253	0.336661
7.214	0.259684		
7.215	0.260648		
7.216	0.261823		
7.217	0.263197		
7.218	0.264757		
7.219	0.266491		
7.220	0.268385		
7.221	0.270426		
7.222	0.272600		
7.223	0.274894		
7.224	0.277295		
7.225	0.279791		
7.226	v•282368		
7.227	0.285014		
7.228	0.287717		
10220	V•201111		

TABLE No. 4

TIME	w _r /w _b	TIME	$\omega_{ m r}/\omega_{ m b}$
0.1	0.298967	4•5	0.303421
0.2	0.236535	4.6	0.332813
0.3	0.298468	4.7	0.279655
0.4	0.352097	4.8	0.264121
0.5	0.283774	4.9	0.314200
0.6	0.247418	5.0	0.327267
0.7	0.309783	5 - 1	0.268837
0.8	0.344044	5.2	0.272084
0.9	0.271106	5 . 3	0.323393
1.0	0.257633	5 • 4	0.317709
1.1	0.320087	5 • 5	0.261677
1.2	0.334014	5 . 6	0.282035
1.3	0.261548	5 . 7	0.329975
1.4	0.268470	5 . 8	0.305290
1.5	0.328648	5 • 9	0.258818
1.6	0.321552	6.0	0.293078
1.7	0.255783	6.1	0.332964
1.8	0.280006	6.2	0.291687
1.9	0.334593	6.3	0.260237
2.0	0.307315	6 • 4	0.304348
2.1	0.254124	6.5	0.331651
2.2	0.291916	6.6	0.278791
2.3	0.337050	6.7	0.265390
2.4	0.292596	6.8	0.314946
2.5	0.256428	6.9	0.325857
2.6	0.303686	7.0	0.268340
2.7	0.335362	7.099	0.273432
2.8	0.278974	7.100	0.275621
2.9	0.262162	7.101	0.277905
3.0	0.314651	7.102	0.280275
3.1	0.329338	7.103	0.282711
3.2	0.267961	7.104	0.285221
3.3	0.270559	7.105	0.287775
3.4	0.323977	7.106	0.290368
3·5	0.319424	7.107	0.292988
3.6 3.7	0.260696	7.108	0.295624
	0.280779	7.109	0.298265
3.8 3.0	0.330706	7.110	0.300899
3 · 9	0.306725	7.111	0.303514
4.0	0.257745	7.112	0.306099
4.1	0.292000	7.113	0.308642
4.2	0.333888	7.114	0.311129
4.3	0.292856	7.115	0.313549
4 • 4	0.259066	7.116	0.315887

Time	w _r /w _b	Time	w _r / w _b
7.117 7.118	0.318132 0.320268	7 . 211 7 . 212	0.331737 0.330877
7.119	0.322283	7.213	0.329769
7.120 7.121	0.324162	7.214	0.328418
7.122	0.325891 0.327458	7.215	0.326830 0.2624 1 3
7.123	0,328848	7.240 7.241	0.261267
7.124	0.330050	7.242	0.260360
7.125	0.331050	7.243	0.259695
7.126	0.331838	7.244	0.259271
7.127	0.332404	7.245	0.259087
7 • 128	0.332738	•	(Lower crest)
7.129	0.332834	7.246	0.259137
7.130	(Higher crest) 0.332686		
7.131	0.332289		
7.132	0.331643		
7.133	0.330746		
7.134	0.329602		
7.160	0.263568		
7.161	0.262219	•	
7.162	0.261107		
7.163	0.260235		
7 . 164 7 . 165	0.259605		
7.166	0.259216 0.259065		
,	(Lower crest)		
7.167	0.259150		
7.168	0.259463		
7.169	0.259997		
7.170	0.260745		
7.171	0.261697		
7.172 7.173	0.262842		
7.202	0.264170 0.328646		
7.2030	0.329875		
7.204	0.330905		
7.205	0.331724		
7.206	0.332322		
7.207	0.332690		
7.208	0.332821		
7.000	(Higher crest)		
7.209	0.332708		
7.210	0.332347		

Table No.5

TIME	ω r -/ ωb	TIME	w _{r./ wb}
0.1	0.300278	4.6	0.294214
0.2	0.235127	4.7	0.328798
0.3	0.290551	4.8	0.290463
0.4	0.348424	4.9	0.261025
0.5	0.295133	5.0	0.299703
0.6	0.243965	5.1	0.328130
0.7	0.294955	5.2	0.284116
0.8	0.342765	5.3	0.263109
0.9	0.289327	5.4	0.305039
1.0	0.249668	5.5	0.326365
1.1	0.299779	5.6	0.278234
1.2	0.338750	5.7	0.266011
1.3	0.283521	5.8	0.310103
1.4	0.254312	5 . 9	0.323515
1.5	0.304656	6.0	0.273017
1.6	0.335066	6.1	0.269629
1.7	0.278005	6.2	0.314766
1.8	0.258686	6.3	0.319639
1.9	0.309417	6 . 4	0.268638
2.0	0.331152	6.5	0.273850
.1	0•√7≳970	6.6	0.318891
2.2	0.263128	6.7	
2.3	0.313935	6.8	0.314852
2.4	0.326749	6.9	0.265230
2.5	0.268572	7.0	0.278556
2.6	0.267782		0.322335
2.7	0.318086	7.093	0.309312
2.8	0.321759	7.100	0.306736
2.9	0.521759	7.101	0.304067
3.0	0.272692	7.102	0.301325
3.1	0.321741	7.103	0.298532
3.2	0.316186	7.104	0.295709
3.3	0.262204	7.105	0.292877
3.4		7.106	0.230059
3.5	0.277845	7.107	0.287276
3.6	0.324765	7.108	0.284549
3.7	0.310112	7.109	0.281899
3. <i>1</i> 3. 8	0.260420	7.110	0.279344
3.9	0.283197	7.111	0.276905
4.0	0.327028	7.112	0.274597
	0.303675	7.113	0.272437
4.1	0.259633	7.114	0.270440
4.2	0.288680	7.115	0.268617
4.3	0.328405	7.116	0,266980
4.4	0.297056	7.117	0.265537
4.5	0.259846	7.118	0.264297

TIME	^ω r/ ^ω b	TIME	ω _{r/ω_b}
7.119	0.263264	7.245	0.327499
7.120	0.26:4 42		Higher Crest
7.121	0.261834	7.246	0.327357
7.122	0.261438	7.247	0.326995
7.123	0 . 261254	7.248	0.326412
	Lower Crest	7.249	0.325610
7.124	0.261278	7.250	0.324589
7.125	0.261506	7.251	0.323355
7.126	0.261933	7.252	0.321913
7.127	0.262552	7.253	0.320273
7.128	0.263355	7.274	0.268794
7.129	0.264333	7.275	0.267143
7.152	0.311524	7.276	0.265686
7.153	0.313576	7.277	0.264431
7.154	0.315535	7 . 278	0.263382
7.155	0.317387	7.279	0.262544
7.156	0.319121	7.280	0.261919
7.157	0.320724	7.281	
7.158	0.322184	7.282	0.261506 0 <u>.261305</u>
7.159	0.323491	1 • ×0×	
7.160	0.324632		Lower Crest
7.161	. 0.3.35597		
7.162	0.326376		
7.163	0.326960		
7.164	0.327342		
7.165	0.327514		
	Higher Crest		
7.166	0.327472		
7.167	0.35.7211		
7.168	0.326730		
7.169	0.326028		
7.170	0.325106		
7.171	0.323969		
7.200	0.262158		
7.201	0.261648		
7.202	0.261350		
7.202	0.261362		
1 • 1000	Lower Crest		
7.204	0.261380		
7.204	0.261700		
7.205	0.262215		
7.240			
7.240	0.325078		
	0.325958		
7.242	0.326648		
7.243	0.37139		
7.244	0.327425		

Table No. 6

Time	w _x /13	Time	(Sy Nig
0.1	0.334522	4.1	0.336564
0.2	0.326519	4.2	0.382138
0.3	0.38493 3	4.3	0.326776
0.4	0.334175	4 • 4	0.337389
0.5	0.327266	4.5	0.381942
0.6	0 • 3 84 524	4.6	0.326146
0.7	0.333807	4.7	0.338222
0.8	0.328013	4.8	0.381729
0.9	0 • 3 8 4 190	4.9	0.325524
1.0	0.333372	5.0	0.339063
1.1	0.328761	5•1	0.381499
1.2	0.328711	5.2	0.324912
1.3	0.332884	5•3	0.339912
1.4	0.329512	5 • 4	0.381248
1.5	0.383676	5 • 5	0.324313
1.6	0.332353	5•6	0.340769
1.7	0.330267	5.7	0.380977
1.8	0.383472	5.8	0.323728
1.9	0.331789	5.9	0.341632
2.0	0.331028	6.0	0.380684
2.1	0.383290	6.1	0.323159
2.2	0.331200	6.2	0.342502
2.3	0.331795	6.3	0.380368
2.4	0 • 3 83 123	6.4	0.322606
2.5	0.330590	6.5	0.343378
2.6	0.332569	6.6	0.380027 0.322072
2.7	0.382965	6.7	0.344259
2.8	0.329967	6.8	0.379663
2.9	0 • 3 3 3 3 5 2	6.9	0.321558
3.0	0.382820	7.0	0.345146
3.1	0.329338	7.099	0.347704
3.2	0.334142	7.100 7.101	0.350273
3 • 3	0.382653	7.101 7.102	0.352840
3.4	0.328694	7.102	0.355388
3.5	0.334941	7.104	0.357904
3.6	0.382491	7.104	0.360372
3.7	0.328053	7.106	0.362777
3.8	0.335748	7.100	0.365104
3.9	0.382321	7.108	0.367337
4.0	0 • 3 2 7 4 1 3	1.100	0.001001

Time	Wy May b	Time	W _r /lb
7.109 7.110 7.111 7.112 7.113 7.114 7.115 7.116 7.117 7.118 7.119 7.120	0.369461 0.371461 0.373321 0.375027 0.376565 0.377921 0.379083 0.380039 0.380779 0.381293 0.381576 0.381620 (Higher Crest) 0.381423	7.180 7.181 7.182 7.183 7.184 7.185 7.186 7.186 7.189 7.189 7.190 7.191 7.192 7.193 7.194	0.360581 0.362979 0.365298 0.367522 0.369635 0.371622 0.373469 0.375161 0.376683 0.378022 0.379166 0.380104 0.380824 0.381319
7.122 7.123 7.124 7.125 7.126 7.127 7.128 7.129	0.380982 0.380297 0.379373 0.378212 0.376823 0.375213 0.373396 0.371384	7.195 7.196 7.197 7.198 7.199 7.200	0.381604 (Higher Crest) 0.381385 0.380923 0.380218 0.379278 0.378092
7 • 130 7 • 148 7 • 149 7 • 150 7 • 151 7 • 152 7 • 153 7 • 154 7 • 155 7 • 156	0.369192 0.322918 0.321308 0.319908 0.318726 0.317767 0.317036 0.316533 0.316260 0.316215	7.201 7.202 7.203 7.204 7.225 7.226 7.227 7.228 7.229	0.376684 0.375056 0.373222 0.371194 0.319804 0.318642 0.317703 0.316991 0.316509 0.316256
7.156	(Lower Crest)	7.230 7.231	0.316230
7.157 7.158 7.159 7.175 7.176 7.177 7.178 7.179	0.316394 0.016793 0.317405 0.347927 0.350496 0.353061 0.355607 0.358118	7.232 7.233 7.234 7.235 7.236 7.237 7.238	(Lower Crest) 0.316428 0.316846 0.317476 0.318311 0.319344 0.320564 0.321961

Table No. 7

Time	WrWb	Time	W _r /Wb	
0 1	O polimot		0.001089	
0.1	0.334704	4.0	0.321253	
0.2	0.323123	4.1	0.346640	
0.3	0.381476	4.2	0.373612	
0.4	0.339284	4.3	0.322746	
0.5	0.321155	4.4	0.344177	
0.6	0.379869	4·5 4·6	0.374448	
0.7	0.343592		0.324412	
0.8	0.3 19589	4.7	0.34 1788	
0.9	0.376206	4.8	0.375043	
1.0	0.347583	4.9	0.326234	
1.1	0.318378	5.0	0.339484	
1.2	0.373502	5.1	0.375401	
1.3	0.351280	5.2	0.328199	
1.4	0.317492	5.3	0.337273	
1.5	0.370771	5.4	0.375530	
1.6	0.354695	5.5	0.330291	
1.7	0.3 16906	5.6	0.335162	
1.8	0.368023	5.7	0.375438	
1.9	0.357838	5.8	0.332494	
2.0	0.3 16602	5.9	0.333162	
2.1	0.365270	6.0	0.375131	
2.2	0.360714	6.1	0.334792	
2.3	0.3 16564	6.2	0.331280	
2.4	0.362522	6.3	0.374620 0.337165	
2.5	0.363328	6.4		
2.6	0.316788	6.5	0.329524 0.373914	
2.7	0.365681	6.6	0.339597	
2.8	0.317236	6.7	0.327903	
2.9	0.355707	6.8 6.9	0.373024	
3.0	0.367776		0.342968	
3.1	0.317923	7.099 7.100	0.339737	
3.2	0.354398	7.100	0.337469	
3.3	0.369615 0.318829	7.101	0.335281	
3.4	0.351760	7.102	0.333189	
3.5 3.6	0.371199	7 • 104	0.33 12 11	
3.6	0.319943	7.104	0.329358	
3.7	0.349171	7.106	0.327646	
3.8	0.372530	7.100	0.326084	
3•9	V.) (~))V	1.101	0 1720004	

Time	ω_r/ω_b	Time	ω_{r}/ω_{b}
7.108 7.109 7.110 7.111 7.112 7.113 7.114 7.115	0.324684 0.323454 0.322401 0.321531 0.320848 0.320353 0.320049 0.319935	7 • 19 1 7 • 192 7 • 193 7 • 194 7 • 195 7 • 196 7 • 197 7 • 198 7 • 199	0.3 19995 0.320206 0.320598 0.321167 0.321906 0.322810 0.323870 0.325078 0.326424
7.116 7.117 7.118 7.119 7.120 7.121 7.122 7.145 7.146 7.147 7.148 7.149 7.150 7.151 7.152 7.153 7.154	(Lower Crest) 0.320008 0.320267 0.320706 0.321321 0.322105 0.323051 0.324152 0.367534 0.368998 0.370323 0.371498 0.372513 0.373358 0.374026 0.374508 0.374999 0.374894 (Higher Crest)	7.224 7.225 7.226 7.227 7.228 7.229	0.372242 0.373132 0.373846 0.374376 0.374717 0.374864 (Higher Crest) 0.374812
7 • 155 7 • 156 7 • 157 7 • 182 7 • 183 7 • 184 7 • 185 7 • 186 7 • 187 7 • 188 7 • 189 7 • 190	0.374790 0.374486 0.373981 0.326496 0.325054 0.323780 0.322681 0.321764 0.321032 0.320135 0.319971 (Lower Crest)		

Table No. 8

Time	Wrlob	Time	$\omega_{\mathbf{r}}/\omega_{\mathbf{b}}$
0.1	0.334989	4.0	0.362199
0.2	0.3 198 16	4.1	0.322797
0.3	0.377161	4.2	0.349424
0.4	0.344801	4.3	0.365357
0.5	0.3 163 03	4. 4	0.324898
0.6	0.370848	4.5	0.344568
0.7	0.353529	4.6	0.367429
0.8	0.3 14704	4.7	0.327925
0.9	0.364047	4.8	0.339947
1.0	0.360808	4.9	0.368384
1.3	0.314882	5.0	0.33 17 19
1.2	0.357111	5.1	0.335719
1.3	0.366463	5.2	0.368250
1.4	0.316677	5 •3	0.336086
1.5	0.350317	5.4	0.332027
1.6	0.370414	5.5	0.367102
1.7	0.3 19886	5.6	0.340806
1.8	0.343892	5.7	0.328996
1.9	0.372674	5.8	0.365056
2.0	0.324263	5 -9	0.345650
2.1	0.338023	6.0	0.326730
2.2	0.373333	6.1	0.362252
2.3	0.329521	6.2	0.350377
2.4	0.332870	6 . 3	0.325309
2.5	0.372544	6.4	0.358852
2.6	0.335349	6.5	0.554763
2.7	0.328569	6.6	0.324785
2.8	0.370502	6.7	0.355023
2.9	0.34 1422	6. 8	o.3586 12
3.0	0.325233	6.9	0.325177
3.1	0.367429	7.099	0.350935
3.2	0.322951	7.100	0.352536
3.3	0.363551	7.101	0.354098
3 • 4	0.353049	7.102	0.356111
3.5	0.321777	7.103	0.357064
3 • 6	0.359119	7.104	0.358449
3.7	0.358046	7.105	0.359755
3.8	0.321733	7.106	0.360973
3.9	0.354339	7.107	0.362094

Time	(Jr/Wb	Time	$\omega_{\mathbf{r}}/\omega_{\mathbf{b}}$
7.108 7.109 7.110 7.111 7.112 7.113 7.114 7.115	0.363111 0.364014 0.364797 0.365452 0.365974 0.366358 0.366600 0.366696	7.185 7.186 7.187 7.188 7.189 7.190 7.191	0.364266 0.365001 0.365607 0.366078 0.366409 0.366598 0.366640 (Higher Crest)
7.116 7.117 7.118 7.119 7.120 7.121 7.122 7.145 7.146 7.147 7.148 7.149 7.150 7.151 7.152	(Higher Crest) 0.366645 0.366445 0.366096 0.365600 0.364960 0.364179 0.363262 0.328525 0.327613 0.326843 0.326208 0.325712 0.325357 0.325073	7.192 7.193 7.194 7.195 7.196 7.222 7.223 7.224 7.225 7.226 7.228 7.228	0.366534 0.366280 0.365879 0.365331 0.364641 0.327365 0.326645 0.325619 0.325316 0.325155 0.325136 (Lower Crest) 0.325514
7.153 7.154 7.155 7.156 7.157 7.158 7.159 7.182 7.183 7.184	(Lower Crest) 0.325143 0.325352 0.325697 0.326174 0.326780 0.327509 0.328355 0.361354 0.362435 0.363408	7.231 7.257 7.258 7.259 7.260 7.261 7.262 7.263 7.264 7.265 7.266	0.325907 0.36578 0.361721 0.362761 0.363690 0.364501 0.365188 0.365743 0.366163 0.366441 0.366576 (Higher Crest)

Table No. 9

Time	(J _r /L) _b	Time	61/11/6
0.1	0.335369	3.8	0.357867
0.2	0.3 16667	3.9	0.350229
0.3	0.371983	4.0	0.326146
0.4	0.350319	4.1	0.355235
0.5	0.3 13 199	4.2	0.355740
0.6	0.360983	4.3	0.327125
0.7	0.361810	4.4	0.346359
0.8	0.3 14492	4.5	0.359382
0.9	0.349736	4.6	0.330133
1.0	0.368806	4.7	0.340554
1.1	0.319804	4.8	0.360867
1.2.	0.339454	4.9	0.334721
1.3	0.371214	5.0	0.335537
1.4	0.327990	5.1	0.360220
1.5	0.331007	5.2	0.340243
1.6	0.369591	5•3	0.33 1787
1.7	0.337619	5.4	0.357729
1.8	0.325024	5.5	0.345953
1.9	0.364886	5.6	0.329549
2.0	0.347201	5.7	0.353858
2.1	0.321914	5.8	0.351118
2.2	0.358194	5.9	0.329299
2.3	0.355413	6.0	0.349162
2.4	0.321818	6.1	0.355119
2.5	0.350579	6.2	0.330717
2.6	0.361293	6.3	0.344216
2.7	0.324563	6.4	0.357544
2.8	0.342982	6.5	0.333682
2.9	0.364340	6.6	o . 339560
3.0	0.329641	6.7	0.358218
3 • 1	0.336192	6.8	0.337785
3.2	0.364514	6.9	o . 335669
3.3	0.336258	7.099	0.342479
3 • 4	0.330842	7.100	0.341359
3.5	0.362158	7.101	0.340262
3.6	0.343450	7.102	0.339193
3.7	0.327401	7.103	0.338163

Time	War los	Time	ω_{r}/ω_{b}
7.104 7.105 7.106 7.107 7.108 7.109 7.110 7.111 7.112 7.113 7.114 7.115 7.116 7.120 7.121 7.122 7.123 7.124 7.125 7.126 7.127 7.149 7.151 7.151	0.337178 0.336245 0.335370 0.334560 0.333820 0.333154 0.332567 0.332062 0.331642 0.331310 0.331068 0.330916 0.330854 (Lower Crest) 0.330883 0.331002 0.331502 0.331502 0.331880 0.332873 0.332873 0.332873 0.333483 0.33483 0.334162 0.335709 0.356135 0.356608 0.356998 0.357302	7.183 7.184 7.185 7.186 7.187 7.188 7.189 7.190 7.191 7.192 7.193 7.227 7.228 7.229 7.230 7.231	0.334663 0.333924 0.333258 0.332671 0.332165 0.331744 0.331164 0.331008 0.330943 (Lower Crest) 0.356898 0.357204 0.347422 0.357550 0.357550 0.357550
7 · 153 7 · 154 7 · 155	0•357518 0•357642 <u>0•357674</u>		
	(Higher Crest)		
7.156 7.157 7.158 7.159 7.160	0.357613 0.357459 0.357212 0.356873 0.356445		

Table No. 10

T IME	^ω r∕ ^ω b	TIME	^ω r/ ^ω b
0.1	0.282566		
0.2	0.252892	4.3	0.256515
0.3	0.354139	4.4 4.5	0.357377
0.4	0.303760	4.6	0.298375
0.5	0.242788	4.7	0.244551
0.6	0.342012	4.8	0.345604
0.7	0.325245	4.9	0.320509
0.8	0.235852	5 . 0	0.236649
0.9	0.327153	5.1	0.330943
1.0	0.344020	5.2	0.340291
1.1	0.234699	5.3	0.234127
1.2	0.310805	5.4	0.314667
1.3	0.357855	5.5	0.355436 0.237927
1.4	0.239875	5.6	0.297747
1.5	0.293939	5.7	0.364404
1.6	0.365355	5.8	0.248269
1.7	0.251527	5.9	0.230998
1.8	0.277377	6.0	0.366632
1.9	0.366147	6.1	0.264443
2.0	0.268743	6.2	0.265236
2.1	0.261983	6.3	0.362532
ಜ.2	0.360812	6.4	0.284827
2.3	0.283723	6.5	0.251462
2.4	0.248817	6.6	0.353229
2.5	O. 350573	6.7	0.307105
2.6	0.312042	6.8	0.240915
2.7	0.239171	6.9	0.340167
2.8 2.9	0.336891	7.0	0.328628
3.0	0.333028	7.099	0.234963
3.1	0.834412	7.100	0.236063
3.2	0.321120	7.101	0.237580
3.3	0.350205	7.102	0.239490
3.4	0.235675	7.103	0.241765
3.5	0.30435 <u>1</u> 0.361700	7.104	0.244376
3.6	0.245497	7.105	0.247295
3.7	0.287446	7.106	0.250494
3.8	0.366554	7.107	0.253942
3. 9	0.257543	7.108	0.257613
4.0	0.271136	7.109	0.261480
4.1	0.364817	7.110	0.265517
4.2	0.276530	7.111	0.269700
- • •	O** 10990	7.112	0.274008

TIME	^ω r/ ^ω b	TIME	ω _{r/ ω} b
D 445	0.050440	5 4 5 5	- 004 574
7.113	0.278419	7.157	0.291531
7.114	0.282913	7.158	0.285484
7.115	0.287474	7.159	0.279576
7.116	0.292083	7.160	00.273859
7.117	0.296725	7.161	0.268383
7.118	0.301382	7.162	0.263195
7.119	0.306040	7.163	0.258339
7.120	0.310683	7.164	0.253853
7.121	0.315293	7.165	0.249772
7.122	0.319854	7.166	0.246126
7.123	0.324347	7.167	0.242938
7.124	0.328753	7.168	0.240228
7.125	0.333049	7.169	0.238009
7.126	0.337213	7.170	0.236287
7.127	0.341220	7.171	0.235065
7.128	0.345044	7.172	0.234341
7.129	0.348656	7.173	0. <u>234105</u>
7.130	0.3520≿7		Lower Cres
7.131	0.355127	7.174	0.234345
7.132	0.357926	7.175	0.235044
7.133	0.360391	7.176	0.236182
7.134	0.362432	7,177	0.237735
7.135	0.364201	7.178	0.239678
7.136	0.365489	7.179	0.241984
7.137	0.366330	7.180	0.244624
7.138	0. <u>366704</u>	7.181	0.247569
	Higher Crest	7.182	0.250791
7.139	0.366591	7.183	0.254260
7.140	0.365978	7.184	0.257950
7.141	0.364855	7.185	0.261832
7.142	0.363218	7.186	0.265883
7.143	0.361070	7.187	0.270079
7.144	0.358419	7.188	0.274396
7.145	0.355277	7.189	0.278816
7.146	0.351666	7.190	0.283317
7.147	6.347610	7.191	0.287883
7.148	0.343140	7.192	0.292495
7.149	0.338293	7.193	0.297139
7.150	0.333109	7.194	0.301797
7.151	0.327634	7.195	0.306454
7.152	0.3213 15	7.196	0.311095
7.153	0.316004	7.197	0.315701
7.154	0.309955	7.198	0.320257
7.155	0.303822	7.199	0.324743
7.156	0.297662	7.200	0.333426

TIME	^ω r/ ^ω b	TIME	$\omega_{ m r}/~\omega_{ m D}$
7.201	0.333426	7,243	0.242677
7.202	0.333577	7.244	0.240010
7.203	0.341568	7.245	0.237835
7.204	0.345374	7.246	0.236158
7.205	0.348966	7.247	0.234981
7.206	0.352315	7.248	0.234300
7.207	0.355389	7.249	0 <u>.334107</u>
7.208	0.358159	7 8 7 2 0	Lower Cre
7.209	0.360593	.7.250	0.234389
7.210	0.362661	7.251	0.235127
7.211	0.364333	7.252	0.236303
7.212	0.365582	7.253	
7.213	0.366383	7.254	0.237892
7.214		7.255	0.239869
1 = K14	0. <u>366714</u>		0.242206
7 915	Higher Crest	7.256	0.244874
7.21 5	0.366557	7.257	0.247845
7.216	0.365899	7.258	0.251090
7.217	0.364730	7.259	0.254580
7.218	0.363048	7.260	0.258288
7.219	0.360854	7.261	0.262186
7.220	0.358159	7.262	0.266251
7.221	0.354975	7,263	0.270458
7.222	0.351372	7.264	0.274786
7.223	0.347228	7.265	0.279213
7.224	0.342723	7.266	0.283721
7.225	0.337845	7.267	0.288292
7.226	0.332633	7,268	0.292308
7.227	0.327134	7.269	0.297553
7.228	0.321396	7.270	0.302212
7.229	0.315471	7.271	0.306868
7.230	0.309412	7.272	0.311506
7.231	0.303274	7.273	0.316109
7.232	0.297115	7.274	0.320660
7.233	0.290989	7.275	0.325139
7.234	0.284952	7.276	0.329526
7.23 5	0.273058	7.277	0.333801
7.236	0.273361	7.278	0.337939
7.237	0.267909	7.279	
7•238	0.262749	7.280	0.541935
7.239	0.257924		0.345703
7.240		7,281	0.349275
	0.253473	7.282	0.352600
7.241	0.249429	7.283	0.355649
7.242	0.245823	7.284	0.358390

TIME	^ω r/ ^ω b	TIME	ω _r /ω _b
7.285	0.360792		
7.286	0.362826		
7,287	0.364462		
7.288	0.365672		
7.289	0.366432		
7.290	0.366720		
	Higher Crest		
7.291	0.366519		
7.292	0.365815		

Table No. 11

Time	Ur/ b	Time	$\omega_{ m r}$ / b
0,1	0.282913	4.1	0.317027
0.2	0.250525	4.2	0.350313
0.3	0.349065	4.3	0.237640
0.4	0.310344	4.4	0.296138
0.5	0.238479	4.5	0.361715
0.6	0.331793	4.6	0.250777
0.7	0.335855	4.7	0.275562
0.8	0.234333	4.8	0.362607
0.9	0.311637	4.9	0.272622
1.0	0.354406	5.0	0.256998
1.1	0.240026	5.1	0.354138
1.2	0.290624	5.2	0.299489
1.3	U•363036	5•3	0.242618
1.4	0.255756	0.4	0.338902
	2.270374	5•5	0.326336
1.5 1.6	0.361237	5.6	0.235049
1.7	0.279403	5.7	0.319730
1.8	0.252669	5. 8	0.348049
1.9	0.350674	5.9	0.236662
2.0	0.306809	6.0	0.298919
2.1	0.239826	6.1	0.360808
2.2	0.334119	6.2	0.248482
2.3	0.332777	6.3	0.278211
2.4	0.234492	6.4	0.363070
2.5	0.3 143 08	6.5	0.269342
2.6	0.352415	6.6	0.259269
2.7	0.238791	6.7	0.355711
2.8	0.293364	6.8	0.295817
2.9	0.362440	6.9	0.244 190
3.0	0.253222	7.0	3412
3.1	0.272948	7•099	0.322972
3.2	0.361981	7.100	0.3 17337
3.3	0.275988	7.101	0.311539
3.4	0.254798	7.102	০ . 3০ <u>5</u> 63 1
3.5	0.352448	7 • 103	0.299667
3.6	0.303160	7.104	0.293700
3.7	0.241165	7.105	0.287785
3.8	0.336535	7.106	0.281975
3.9	0.329607	7.107	0.276322
4.0	0.234693	7.108	0.270874

(D) •			
Time	Wr/b	Time	Why p
7.109	0.265680	7 • 199	0.235567
7.110	0.260782	7.200	0.236744
7.111	0.256221	7.201	0 .23 8 3 16
7.112	0.252031	7.202	0.240259
7.113	0.248246	7.203	0.242546
7.114	0.244889	7.204	0.245150
7.115	0.24 1983	7.205	0.248044
7.116	0.239543	7.206	0.251200
7.117	0.237579	7.234	0.359697
7.118	0.236096	7.235	0.361285
7.119	0.235094	7.236	0.362460
7.120	0 .23456 8	7.237	0.363199
7.121	0.234508	7.238	0.363482
	(Lower Crest)	* 000	(Higher Crest)
7.122	0.234901	7.239	0.363291
7.123	0.235729	7.240	0.362615
7.124	0.236971	7.241	0.361444
7.125	0 ,23 860 5	7.242	O.359777
7.126	0,240605	7.243	0.357617
7.127	0.242945	7.244	0.354971
7.128	0,245598	7 • 245	0.351855
7.129	0 .2 48 53 6	7.268	0.240278
7.157	0 .35 80 67	7.269	0.238159
7.158	0 •35 9980	7.270	0.236521
7.159	0.361502	7.271	0.235365
7.160	. 362609	7.272	0.234686
7.161	0,363276	7.273	(1 0.234477
7.162	0.363483	מ סמו	(Lower Crest)
	(Higher Crest)	7.274	0.234726
7.163	0.363215	7.275	0.235416
7.164	0,362460		
7.165	0.361209		
7.166	0.359462		
7.190	0.245400		
7.191	0.242429		
7.192	0 . 23 9904		
7 • 193	0.237863		
7.194	0.236302		
7.195	0.235223		
7.196	0.234621		
7.197	0.234487		
~ 400	(Lower Crest)		
7.198	0.234808		

Table No. 12

7.108 0.357695 7.109 0.358693 7.109 0.358693 7.110 0.359269 7.111 0.359404 (Higher Crest 7.112 0.359085	Time	Wr/b	Time	Wr/b
0.2 0.247247 4.7 0.304280 0.3 0.343235 4.8 0.354481 0.4 0.317055 4.9 0.246115 0.5 0.235514 5.0 0.279685 0.6 0.230363 5.1 0.359141 0.7 0.344548 5.2 0.269788 0.8 0.236885 5.3 0.257443 0.9 0.295187 5.4 0.349901 1.0 0.253000 5.5 0.301250 1.1 0.27077 5.6 0.241256 1.2 0.357611 5.7 0.331054 1.3 0.280941 5.8 0.331759 1.4 0.250174 5.9 0.235621 1.5 0.343894 6.0 0.307427 1.6 0.313435 6.1 0.352790 1.7 0.237419 6.2 0.244001 1.8 0.322530 6.3 0.282752 1.9 0.341354 6.4 0.359381 2.0 0.236889 6.5 0.266182 2.1 0.298027 6.6 0.260029 2.1 0.298027 6.6 0.260029 2.2 0.257223 6.7 0.351718 2.3 0.250887 6.9 0.242827 2.4 0.273680 7.0 0.2447827 2.5 0.25865 7.100 0.337461 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.27332 7.104 0.349942 2.9 0.339855 7.102 0.344181 0.325345 7.105 0.352393 0.236322 7.106 0.354520 0.3358682 7.105 0.355293 0.30138206 7.105 0.355293 0.30138206 7.105 0.355293 0.30138206 7.105 0.355293 0.3013820 7.105 0.355299 0.339853 7.115 0.359085 0.359382 7.111 0.359085 0.359382 7.111 0.359085 0.359385 7.111 0.359085 0.359385 7.115 0.3553148	0.1	0.283398	4.6	0.235864
0.3			4.7	
0.4 0.3 17055			4.8	0 • 3 5 44 8 1
0.5 0.235514 5.0 0.279685 0.6 0.230363 5.1 0.359141 0.7 0.344548 5.2 0.269788 0.8 0.236885 5.3 0.257443 0.9 0.295187 5.4 0.349901 1.0 0.253000 5.5 0.301250 1.1 0.270777 5.6 0.241256 1.2 0.357611 5.7 0.331054 1.3 0.280941 5.8 0.331759 1.4 0.250174 5.9 0.235621 1.5 0.343894 6.0 0.307427 1.6 0.313435 6.1 0.352790 1.7 0.237419 6.2 0.244001 1.8 0.322530 6.3 0.282752 1.9 0.341354 6.4 0.359381 2.0 0.236889 6.5 0.266182 2.1 0.298027 6.6 0.260029 2.1 0.298027 6.6 0.260029 2.1 0.298027 6.6 0.260029 2.2 0.257223 6.7 0.351718 2.3 0.256887 6.8 0.297100 2.4 0.273680 7.0 0.247827 2.4 0.273680 7.0 0.247827 2.5 0.258063 7.0 0.247827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 2.9 0.325345 7.102 0.344181 2.0 0.238611 7.103 0.347195 2.0 0.238613 7.104 0.349942 2.7 0.252554 7.100 0.351788 2.9 0.309465 7.102 0.344181 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 2.9 0.325345 7.104 0.349942 2.7 0.252554 7.100 0.357695 2.9 0.309465 7.102 0.344181 2.1 0.325345 7.104 0.349942 2.2 0.273517 (Higher Crest 2.2 0.273517 (Higher Crest 2.3 0.256926 2.3 0.254953 7.111 0.359085 2.9 0.273517 (Higher Crest 2.9 0.305382 7.111 0.357043 2.4 0.323220 7.116 0.353118			4.9	0.246115
0.6			5.0	o.27968 5
0.7				0.359141
0.8			5•2	0 .2697 88
0.9 0.295187 5.4 0.349901 1.0 0.253000 5.5 0.301250 1.1 0.270777 5.6 0.241256 1.2 0.357611 5.7 0.331054 1.3 0.280941 5.8 0.331759 1.4 0.250174 5.9 0.235621 1.5 0.343894 6.0 0.307427 1.6 0.313435 6.1 0.352790 1.7 0.237419 6.2 0.244001 1.8 0.322530 6.3 0.282752 1.9 0.341354 6.4 0.359381 2.0 0.236889 6.5 0.266182 2.1 0.298027 6.6 0.260029 2.2 0.257223 6.7 0.351718 2.3 0.250887 6.8 0.297100 2.4 0.273680 6.9 0.242827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.102 0.344181 2.9 0.309465 7.102 0.344181 2.9 0.309465 7.102 0.344181 2.9 0.309465 7.102 0.344181 2.9 0.309465 7.102 0.344181 2.9 0.309465 7.102 0.344181 2.9 0.309465 7.102 0.344181 2.9 0.309465 7.102 0.344181 2.9 0.309465 7.102 0.344181 2.9 0.309465 7.102 0.354520 2.9 0.309465 7.102 0.354520 2.9 0.309465 7.102 0.354520 2.9 0.309465 7.102 0.354520 2.9 0.309465 7.102 0.354520 2.9 0.309465 7.102 0.354520 2.9 0.309465 7.102 0.354520 2.9 0.309465 7.102 0.354520 2.9 0.309465 7.102 0.356296 2.9 0.309465 7.102 0.356296 2.9 0.309465 7.102 0.356296 2.9 0.309465 7.102 0.356296 2.9 0.309465 7.102 0.355314				0.257443
1.0			5.4	0.349901
1.1 0.270777 5.6 0.241256 1.2 0.357611 5.7 0.331054 1.3 0.280941 5.8 0.331759 1.4 0.250174 5.9 0.235621 1.5 0.343894 6.0 0.307427 1.6 0.313435 6.1 0.352790 1.7 0.237419 6.2 0.244001 1.8 0.322530 6.3 0.282752 1.9 0.341354 6.4 0.359381 2.0 0.236889 6.5 0.266182 2.1 0.298027 6.6 0.260029 2.1 0.298027 6.7 0.351718 2.3 0.250887 6.8 0.297100 2.4 0.273680 6.9 0.242827 2.5 0.258063 7.0 0.247827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 3.0 0.238611 7.103 0.347195 3.1 0.325345 7.104 0.349942 3.3 0.256322 7.106 0.355318 3.4 0.301131 7.107 0.356296 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359269 3.9 0.273517 (Higher Crest		- -	5•5	0.301250
1.2		= '	5.6	0.241256
1.3				0.331054
1.4 0.250174 5.9 0.235621 1.5 0.343894 6.0 0.307427 1.6 0.313435 6.1 0.352790 1.7 0.237419 6.2 0.244001 1.8 0.322530 6.3 0.282752 1.9 0.341354 6.4 0.359381 2.0 0.236889 6.5 0.266182 2.1 0.298027 6.6 0.260029 2.2 0.257223 6.7 0.351718 2.3 0.250887 6.8 0.297100 2.4 0.273680 7.0 0.247827 2.4 0.273680 7.0 0.247827 2.5 0.258063 7.0 0.247827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 3.0 0.238611 7.103 0.347195 3.1 0.325345 7.104 0.349942 3.3 0.236322 7.106 0.355293 3.3 0.236322 7.106 0.355293 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.9 0.273517 (Higher Crest		· -		0.331759
1.5				0.235621
1.6				
1.7			6.1	
1.8			6.2	
1.9 0.341354 6.4 0.359381 2.0 0.236889 6.5 0.266182 2.1 0.298027 6.6 0.260029 2.2 0.257223 6.7 0.351718 2.3 0.250887 6.8 0.297100 2.4 0.273680 7.0 0.242827 2.5 0.258063 7.0 0.247827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 2.0 0.238611 7.103 0.347195 2.1 0.325345 7.104 0.349942 2.2 0.338306 7.105 0.352393 2.3 0.236322 7.106 0.354290 2.4 0.301131 7.107 0.356296 2.5 0.248438 7.109 0.356296 2.6 0.248438 7.109 0.356296 2.7 0.254853 7.110 0.359269 2.8 0.358682 7.111 0.359269 2.9 0.309465 7.111 0.359269 2.9 0.309465 7.112 0.359269 2.9 0.309465 7.110 0.359269 2.9 0.309465 7.111 0.359269 2.9 0.309465 7.111 0.359269 2.9 0.309465 7.111 0.359269 2.9 0.309465 7.111 0.359269 2.9 0.309465 7.111 0.359269 2.9 0.309465 7.111 0.359269 2.9 0.309465 7.111 0.359269 2.9 0.309465 7.111 0.359404 2.9 0.273517 (Higher Crest		- ·	6.3	0.282752
2.0 0.236889 6.5 0.266182 2.1 0.298027 6.6 0.260029 2.2 0.257223 6.7 0.351718 2.3 0.250887 6.8 0.297100 2.4 0.273680 7.0 0.242827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 2.0 0.238611 7.103 0.347195 2.1 0.325345 7.104 0.349942 2.2 0.338306 7.105 0.352393 2.3 0.236322 7.106 0.352393 2.4 0.301131 7.107 0.356296 2.5 0.248438 7.109 0.357695 2.6 0.248438 7.109 0.358693 2.7 0.276657 7.110 0.359269 2.7 0.254953 7.112 0.359859 2.7 0.276657 7.111 0.359269 2.7 0.254953 7.112 0.359859 2.7 0.276657 7.111 0.359269 2.7 0.254953 7.112 0.359085 2.9 0.273517 (Higher Crest				
2.1 0.298027 6.6 0.260029 2.2 0.257223 6.7 0.351718 2.3 0.250887 6.8 0.297100 2.4 0.273680 6.9 0.242827 2.5 0.258063 7.0 0.247827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 2.0 0.238611 7.103 0.347195 2.1 0.325345 7.104 0.349942 2.2 0.338306 7.105 0.352393 2.3 0.236322 7.106 0.354520 2.4 0.301131 7.107 0.356296 2.5 0.248438 7.109 0.357695 2.6 0.248438 7.109 0.359269 2.7 0.276657 7.110 0.359269 2.7 0.276657 7.111 0.359269 2.8 0.358682 7.111 0.359085 2.9 0.273517 (Higher Crest				
6.7 0.351718 2.3 0.257223 6.8 0.297100 2.4 0.273680 6.9 0.242827 2.5 0.258063 7.0 0.247827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 3.0 0.238611 7.103 0.347195 3.1 0.325345 7.104 0.349942 3.2 0.338306 7.105 0.352393 3.3 0.236322 7.106 0.354520 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.359693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359269 3.9 0.273517 (Higher Crest				
0.257887 6.8 0.297100 2.4 0.273680 6.9 0.242827 2.5 0.258063 7.0 0.247827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 3.0 0.238611 7.103 0.347195 3.1 0.325345 7.104 0.349942 3.2 0.338306 7.105 0.352393 3.3 0.236322 7.106 0.354520 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359269 3.9 0.273517 (Higher Crest				0.351718
2.4 0.273680 7.0 0.242827 2.5 0.258063 7.0 0.247827 2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 3.0 0.238611 7.103 0.347195 3.1 0.325345 7.104 0.349942 3.2 0.338306 7.105 0.352393 3.3 0.236322 7.106 0.354520 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.357695 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359269 3.9 0.273517 (Higher Crest				
2.5				0.242827
2.6 0.277312 7.099 0.333809 2.7 0.252554 7.100 0.337461 2.8 0.345865 7.101 0.340927 2.9 0.309465 7.102 0.344181 3.0 0.238611 7.103 0.347195 3.1 0.325345 7.104 0.349942 3.2 0.338306 7.105 0.352393 3.3 0.236322 7.106 0.354520 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359269 3.9 0.273517 (Higher Crest 3.9 0.273517 (Higher Crest 3.9 0.254953 7.112 0.359085 3.1 0.347935 7.112 0.359085 3.2 0.313822 7.114 0.357043 3.3 0.239853 7.115 0.355314				0.247827
2.7				0.333809
2.8			7.100	0.337461
7.102 0.344181 7.103 0.347195 7.104 0.349942 7.105 0.352393 7.106 0.354520 7.106 0.354520 7.107 0.356296 7.108 0.357695 7.109 0.358693 7.109 0.358693 7.110 0.359269 7.111 0.359269 7.111 0.359404 7.112 0.359404 7.113 0.359085 7.113 0.358299 7.114 0.357043 7.115 0.353118			7.101	0.340927
3.0 0.238611 7.103 0.347195 3.1 0.325345 7.104 0.349942 3.2 0.338306 7.105 0.352393 3.3 0.236322 7.106 0.354520 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359404 4.0 0.254953 7.112 0.359404 4.1 0.347935 7.112 0.359085 4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118			7.102	0.344181
3.1 0.325345 7.104 0.349942 3.2 0.338306 7.105 0.352393 3.3 0.236322 7.106 0.354520 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359269 3.9 0.273517 (Higher Crest 4.0 0.254953 7.112 0.359085 4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118			7.103	0.347195
3.2 0.338306 7.105 0.352393 3.3 0.236322 7.106 0.354520 3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359404 (Higher Crest 4.0 0.254953 7.112 0.359085 4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118				0.349942
7.106 0.354520 0.301131 7.107 0.356296 0.355938 7.108 0.357695 0.248438 7.109 0.358693 0.276657 7.110 0.359269 0.8 0.358682 7.111 0.359404 (Higher Crest 0.254953 7.112 0.359085 0.273517 7.113 0.358299 0.359853 7.114 0.357043 0.328220 7.116 0.353118				0.352393
3.4 0.301131 7.107 0.356296 3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359404 3.9 0.273517 (Higher Crest 4.0 0.254953 7.112 0.359085 4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118			7.106	0.354520
3.5 0.355938 7.108 0.357695 3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359404 (Higher Crest 4.0 0.254953 7.112 0.359085 4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118	3.4			
3.6 0.248438 7.109 0.358693 3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359404 (Higher Crest 4.0 0.254953 7.112 0.359085 4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118				
3.7 0.276657 7.110 0.359269 3.8 0.358682 7.111 0.359404 3.9 0.273517 (Higher Crest 4.0 0.254953 7.112 0.359085 4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118	3.6			o .35 869 3
3.8 0.358682 7.111 0.359404 (Higher Crest 1.0 0.254953 7.112 0.359085 7.113 0.358299 1.2 0.305382 7.114 0.357043 1.3 0.358314 0.328220 7.116 0.353118			7.110	o . 359269
Higher Crest 0.273517 0.254953 7.112 0.359085 7.113 0.358299 1.2 0.305382 7.114 0.357043 1.4 0.328220 7.116 0.353118			7.111	0.359404
4.0 0.254953 7.112 0.359085 4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118				(Higher Crest
4.1 0.347935 7.113 0.358299 4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118	4.0		7 119	· -
4.2 0.305382 7.114 0.357043 4.3 0.239853 7.115 0.355314 4.4 0.328220 7.116 0.353118	4.1			
+•3 0•239853 7•115 0•355314 ••4 0•328220 7•116 0•353118				
7.116 0.353118				
10.10				
(*11)				
	· •)	♥ • 1 1 1 1 1 1 1	7 + 1 47	0.350463

Time	Wr/b	Time	ω _r / _b
7.139 7.141 7.142 7.142 7.144 7.144 7.145 7.145 7.148 7.148 7.152 7.153 7.188 7.187 7.188 7.189 7.191 7.192 7.193 7.196	0.246052 0.243210 0.240808 0.238856 0.237360 0.235734 0.235591 (Lower grest) 0.235880 0.236585 0.237687 0.239165 0.240997 0.243158 0.245623 0.353652 0.355581 0.357144 0.358317 0.359075 0.359401 (High Crest) 0.359278 0.359693 0.357638 0.561 0.354114 0.351654 0.348744 0.345401 0.341649	7.221 7.222 7.223 7.224 7.225 7.226 7.226 7.229 7.230 7.231 7.232 7.233 7.234 7.235 7.236 7.237 7.259 7.260 7.261 7.262 7.263 7.264 7.265 7.267	0.235930 0.235599 (Lower Crest) 0.235704 0.236233 0.237268 0.238488 0.240172 0.242195 0.242195 0.244533 0.247160 0.250050 0.253178 0.256519 0.256519 0.250049 0.263745 0.267585 0.267585 0.271550 0.354799 0.356522 0.357864 0.359303 0.389316 0.359387 (Higher Crest) 0.359000 0.358147 0.356823
7.193 7.194 7.195 7.196 7.197 7.198 7.199 7.217 7.218 7.219	0.351654 0.348744 0.345401 0.341649 0.337516 0.333036 0.2447 0.241781 0.239635 0.237944		
7.220	0.236710		

Table No. 13

Time	wr/b	Time	¥/ b
1234567890123456789012345678901234567890	0.284101 0.244044 0.336623 0.323617 0.234305 0.307993 0.350124 0.244298 0.278696 0.355671 0.272788 0.253519 0.342334 0.309800 0.238423 0.317839 0.340092 0.289586 0.354571 0.261062 0.262914 0.348416 0.295340 0.327910 0.329862 0.237638 0.30808 0.351187 0.250031 0.352743 0.250031 0.37203 0.337203 0.316880 0.237955 0.312016 0.344740	12345678901234567890123456789090123456789 4444444555555555555556666666666677777777	0.243319 0.284029 0.354428 0.267354 0.258442 0.3450556 0.341070 0.332825 0.238825 0.295306 0.352959 0.255710 0.268150 0.3577819 0.246655 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.323750 0.3251753 0.324489 0.324209 0.2446465 0.2446465 0.244695 0.244695 0.244695 0.254791 0.264791

'.jr' b
O.237535 (Lower Crest) O.237849 O.321605 O.325378 O.329029 O.352363 O.353438 O.354123 O.354403 O.354261 O.353687 O.239948 O.237932 O.237554 (Lower Crest) O.237585 O.238012 O.238821

Table No. 14

		ann a laik 19 ann a chaillean an baile Space of the chair and a ch	TO MAIN COMMISSION CORPLISION OF THE PROPERTY OF THE PROPERTY TO A COMMISSION OF THE PROPERTY
Time	w _r / _b	Time	w _r / _b
1234567890123456789012345678901234567890	0.284964 0.241034 0.329291 0.329488 0.235327 0.295163 0.351431 0.256565 0.263504 0.345239 0.296043 0.329362 0.333207 0.240943 0.289009 0.349444 0.264238 0.27555 0.241760 0.315040 0.336525 0.244037 0.284313 0.348744 0.269894 0.256697 0.336977	123456789012345678901234567890012345678900123456789001234567890123456789000000000000000000000000000000000000	0.313712 0.240548 0.306239 0.342198 0.249593 0.275893 0.347231 0.280433 0.250814 0.330335 0.318730 0.240395 0.301964 0.344401 0.252813 0.271891 0.345962 0.284803 0.248261 0.326795 0.323473 0.240672 0.297684 0.346124 0.256426 0.268016 0.346303 0.291251 0.246016 0.323083 0.327903 0.323960 0.319766 0.319766 0.319766 0.319766 0.319766 0.319766 0.319766 0.319766 0.319766 0.319766 0.323083 0.291431 0.296327 0.291431 0.286564

TABLE NO. 15

TIME	w _r / w _b	TIME	$\omega_{\rm r}/\omega_{\rm b}$
0.1	0.329906	4.3	0.416143
0.2	0.429433	4 • 4	0.431021
0.3	0.412256	4.5	0.333934
0.4	0.346947	4.6	0.496762
0.5	0.491899	4.7	0.310668
0.6	0.308326	4.8	0.451163
0.7	0.465654	4. 9	0.386807
0.8	0.366522	5.0	0.363499
0.9	0.380009	5.1	0.483240
1.0	0.469391	5.2	0.308498
1.1	0.313727	5.3	0.480089
1.2	0.489764	5.4	0.346525
1.3	0.330769	5.5	0.398099
1 •4	0.416021	5.6	0.451545
1.5	0.431100	5.7	0.322335
1.6	0.333919	5.8	0.495794
1.7	0.496730	5.9	0.318453
1.8	0.310703	6.0	0.434036
1.9	0.451130	6.1	0.409026
2.0	0.386834	6.2	0.347844
2.1	0.363489	6.3	0.492557
2.2	0.483240	6.4	0.307385
2.3	0.308502	6.5	0.466786
2.4	0 . 46003 1	6.6	0.365594
2.5	0.346583	6.7	0.380403
2.6	0.398095	6.8	0.469282
2.7	0.451518	6.9	0.313655
2.8	0.322333	7.0	0.489997
2.9	0•495793	7.099	0.330562
3.0	0.318454	7.100	0.325098
3.1	0 •434033	7.101	0.320323
3 . 2	0.409030	7.102	0.316267
3 .3	0.347842	7.103	0.312954
3.4	0.492558	7.104	0.310396
3.5	0.307386	7.105	0.308598
3.6	0.466786	7.106	0.307558
3 . 7	0.365597	7.107	0.307265
3.8	0.380400		(Lower Crest)
3 . 9	0.469284	7.108	0.307700
4.0	0.313654	7.109	0.308840
4.1	0.489996	7.110	0.310653
4.2	0.330665	7.111	0.318105

TIME	ω _r /ω _b	TIME	$\omega_{\rm r}/\omega_{\rm b}$
7.132	0•443254	7.216	0.496808
7.133	0.450172	7.217	0.495780
7.134	0.456847	7.218	0.493873
7 •135	0.463221	7.219	0.491093
7.136	0.469234	7.220	0.487460
7 •137	0.474823	7.221	0.483003
7.138	0.479923	7.244	0.314395
7 • 139	0.484470	7.245	0.311486
7.140	0.488401	7.246	0.309336
7.141	0.491657	7.247	0.307946
7.142	0.494183	7.248	0.307309
7.143	0.495929	(• 240	(Lower Crest
7 • 144	0.496857	7 •249	0.307409
7 • 144 7 • 145	0.496934		0.308225
(•14)	(Higher Crest)	7.250	
7 •146	0.496142	7.251	0.309730 0.311891
7 • 147	0.494470	7.252	
7 • 148	0.491923	7 •253	0.314671
7 •148 7 •149	0.488516	7 •254	0.318031
7.150	0.484277	7 •280	0.482436
7.171	0.323747	7 •281	0.486660
7.172	0.319162	7 •282	0.490236
7.173	0.315304	7 •283	0.493107
7.174	0.312192	7.284	0.495220
7 •175	0.309838	7 •285	0.496532
7.176	0.308245	7 •286	0.497006
7.177	0.307407	7 207	(Higher Crest
7.178	0.307311	7 •287	0.4966 1 8
1 • 110	(Lower Crest)	7 •288	0 •495355
7 .179	0.307938		
7.180	0.309261		
7.181	0.311249		
7 •182	0.313867		
7 •183	0.317075		
7.206	0.464873		
7 •200 7 •207			
7.208	0.470778		
7 •209	0.476242		
	0.481200		
7.210	0.485588		
7.211	0.489344		
7.212	0.492409		
7.213	0.494730		
7.214	0.496260		
7 •215	0.496963		
	(Higher Crest)		

TABLE NO. 16

TIME	w _r /w _b	TIME	ω _r /ω _b
0.1	0.327242	4.3	0.319622
0.2	0.421628	4.4	0.487857
0.3	0.422802	4.5	0.329688
0.4	0.337355	4.6	0.415414
0.5	0.491739		0.430749
0.6	0.314051	4.7	
0.7	0.443684	4.8	0.332497
		4.9	0.492143
0.8	0.395350	5.0	0.316604
0.9	0.355088	5 •1	0.437201
1.0	0.485754	5.2	0.403864
1.1	0.309920	5 • 3	0.349216
1.2	0.463184	5 • 4	0.488576
1.3	0.368870	5 • 5	0.310401
1.4	0.375212	5 . 6	0.457406
1.5	0.471907	5 . 7	0.376962
1.6	0 .31 2646	5. 8	0.368664
1.7	0.478872	5 • 9	0.477073
1.8	0.345525	6.0	0.311080
1.9	0.396786	6.1	0.474439
2.0	0.451523	6.2	0.352438
2.1	0.321354	6.3	0.389863
2.2	0.499025	6.4	0.458567
2.3	0.327183	6.5	0.318016
2.4	0.418909	6.6	0.486517
2.5	0.426601	6 . 7	0.332350
2.6	0.334916	6.8	0.411910
2.7	0.492116	6 . 9	0.434835
2.8	0.315157	7.0	0.330173
2.9	0.440540	7.099	0.491972
3.0	0.399545	7.100	0.492112
3.1	0.352138	1.100	
3 . 2	0.487272	7.101	(Higher Crest)
3.3	0.310059		0.491427
		7.102	0.489906
3.4	0.460356	7.103	0.487553
3.5	0.372866	7.104	0.484380
3.6	0.371923	7.125	0.331808
3.7	0.474576	7.126	0.326631
3.8	0.311784	7.127	0.322113
3.9	0.476726	7.128	0.318283
4.0	0.348919	7.129	0.315162
4.1	0.393317	7.130	0.312760
4.2	0.455106	7.131	0.311082

TIME .	w / w b	TIME	ω _r /ω _b
7 .132 7 .133	0.310124 0.309877 (Lower Crest)	7.240 7.241	0.491070 0.491990
7 •134	0.310321	7 •242	0.492103 (Higher Crest)
7.135	0.311435	7.243	0.491390
7.136	0.313188	7.244	0.48984 3
7 •137 7 •161	0.315550	7 •245	0 . 48 7462
7.162	0 •459570 0 •465337		
7.163	0.470698		
7.164	0.475594		
7.165	0.479963		
7.166	0.483747		
7 •167 7 •168	0.486889 0.489338		
7.169	0.491048		
7.170	0.491981		
7.171	0.492108		
7.172	(Higher Crest)		
7.173	0.491408 0.489874		
7.174	0.487508		
7 - 175	0.484322		
7.176	0.480341		
7 •177 7 •178	0.475601 0.470146		
7.200	0.470146 0.315116		
7.201	0.312726		
7.202	0.311060		
7.203	0.310115		
7 •204 7 •205	0.309878		
7.206	0.310334 0.311458		
7.207	0.313222		
7.208	0.315593		
7.209	0 . 318535		
7 .232 7 .233	0.459667		
7.234	0 •465428 0 •470783		
7.235	0.475670		
7 •236	0.480030		
7 •237	0.483804		
7.238	0.486935		
7 •239	0.489372		

CHAPTER 6

OSCILLATION AMPLITUDE FROM LINEARIZED MODEL

6.1 INTRODUCTION

In this chapter, a method is suggested to estimate the amplitude of speed oscillation of the machine, from the linearized model. The oscillation amplitude found from honlinear model will be same as that found from linearized model if the perturbations are small. A transfer function relating $[A-w(s)/AT_L(s)]$ is found for the linearized model which is further used to find out residue of the pair of poles which lie on the je axis or on the right hand side of the je axis. The residue will give estimate of oscillation amplitude with fair accuracy. Mathematically, it can be shown as below $[Aw(s)/AT_L(s)] = F(s)/R(s)$ (6.1)

R(s) can be expressed in terms of eigenvalues of the system matrix A as follows

$$R(s) = K(s - \sigma_1 + j\omega_1)(s - \sigma_1 - j\omega_1)(s + \sigma_2 - j\omega_2)$$

$$(s + \sigma_2 + j\omega_2)(s + \sigma_3) \quad \text{(from Chapter 5)} \quad \text{(6.2)}$$

Thus

$$\Delta\omega(t)/\Delta T_{L} = (a_{1}+jb_{1}) e^{(\sigma_{1}-j\omega_{1})} + (a_{1}-jb_{1}) e^{(\sigma_{1}+j\omega_{1})t} + (a_{2}-jb_{2}) e^{-(\sigma_{2}-j\omega_{2})t} + (a_{2}-jb_{2})e^{-(\sigma_{2}+j\omega_{2})t} + a_{3} e^{-\sigma_{3}t}$$

$$(6.4)$$

In steady state only first and second terms will be contributing to the speed oscillations whose amplitude given by $2/(\hat{a}^2+b^2)$ can be known by their residues. In this case as eigen values are complex conjugate their residues must be complex conjugate.

6.2 TRANSPER PUNCTION

Linearised model of induction machine can be represented by the following closed-loop diagram

Here P denotes derivative d/dt

$$G(p) = \Delta T_{p}/\Delta \theta \tag{6.5}$$

Time

$$\frac{\Delta \omega(p)}{\Delta T_{L}(p)} = \frac{\omega_{o}/2Bp}{\omega_{e} \cdot G(p)} = \frac{p/\omega_{e}}{2Bp^{2}\omega_{o}G(p)}$$
(6.6)

Lipo and Krause [8] give transfer function $\Delta T_0/\Delta \theta$ for synchronous machine. From this transfer function $\Delta T_0/\Delta \theta$ for industion machine is derived to be

$$G(p) = T_0/\Delta \theta = \frac{(v_1 z_4 - v_2 z_2) v_3}{z_1 z_4 - z_2 z_3} + \frac{(v_2 z_1 - v_1 z_3) v_4}{z_1 z_4 - z_2 z_3}$$
(6.7)

where
$$V_1 = -V \sin \theta_0 + (p/u_e) (x_{ds} i_{dso})$$

$$V_2 = V \cos \theta_0 + (p/w_e) X_{qs} i_{qso}$$

$$V_3 = (X_{ds} - X_{qs})i_{dso} + \frac{(p/w_e)X_{aq}^2 i_{dso}}{R_{KO} + (p/w_e)X_{KO}}$$

$$V_4 = (X_{ds} - X_{qs}) i_{qso} - \frac{(p/w_e)X_{ad}^2 i_{qso}}{R_{ED} + (p/w_e)X_{ED}}$$

$$z_1 = R_s + (p/\omega_e) x_{qs} - \frac{(p/\omega_e)^2 x_{aq}^2}{R_{xo} + (p/\omega_e) x_{xo}}$$

$$z_2 = \ell_R x_{de} - (p/v_e) - \frac{(p/v_e) \ell_R x_{ad}^2}{R_{E0} + (p/v_e) x_{ED}}$$

$$z_3 = -\varepsilon_R \ o_{qs} + \frac{(p/w_e) \ \varepsilon_R \ x_{aq}^2}{R_{KQ} + (p/w_e) x_{KQ}}$$

$$x_4 = x_s + (p/w_e) x_{ds} - \frac{(p/w_e)^2 x_{ad}^2}{x_{KD} + (p/w_e) x_{KD}}$$

 $(z_x^*, X_x, X_x \text{ and } X_x \text{ are explained in Chapter 2}).$

6.3 Calculation of Residue

On substituting (6.7) in (6.6) we get

$$\Delta u(p)/\Delta T_{g}(p) = f_{1}(p)/f_{2}(p)$$
 (6.8)

Poles of this transfer function are eigen values of the system matrix A. Thus $\Delta\omega(p)/\Delta T_{\rm L}(p)$ can be written as

$$\Delta \omega(p)/\Delta T_L(p) = f_1(p)/[K((p+a)^2 + b^2)(p+c)(p+j\omega_1)(p-j\omega_1)]$$
(6.9)

When the machine is running at the operating point which lies on the boundary of the region of instability, where -a + jb, -c and $+ ju_1$ are five eigen values of matrix $u_b \not = 0$ given in Chapter 5.

 $f_1(p)/(K((p+a)^2+b^2)(p+o)(p+ju_1)(p-ju_1))$

$$=[K_1/(p+a-jb)] + [K_2/(p+a+jb)] + [K_3/(p+a)]$$

+
$$(X_4/(p+j\omega_1))$$
 + $(X_5/(p-j\omega_1))$ (6.10)

Multiplying both sides by $(p - j\omega_1)$ and putting $p = j\omega_1$ we get

$$K_4 = E_1(j\omega_1)/(K((j\omega_1+a)^2+b^2)(j\omega_1+c)(2j\omega_1))$$
 (6.11)

which can be solved to find out residue Kg.

From residue K_{ϕ} oscillation amplitude can be estimated.

steady state. These are nonlinear, algebraic equations which are solved by applying the ROSENBROCK Algorithm to obtain motor currents and speed in steady state. This analysis is carried out for an operating point where the machine is stable that is on a operating point which lies outside the region of instability. Using these steady state values as initial conditions, the non linear model of the machine is numerically integrated using Runge - Kutta fourth order method when the overating frequency is changed so that the new steady state operating point lies in the region of instability, to calculate motor currents and speed when it is unstable. Speed oscillation: are observed here. To ensure that these speed oscillations are due to unstable mode of operation of the machine in this region the non linear model is again used to obtain mechanine performance when the frequency is again changed such that the new steady state point lies outside the region of instability. Initial condition for this part can be taken as currents and speed found at any time in the previous part. It was observed that machine settles to a new steady state point after the transients die out with no speed fluctuations.

The frequency of oscillation is also from linearised model. For a critically stable system the frequency of oscillations is calculated from the imaginary part of the eigen value whose real part is equal to zero.

It is found by comparison that frequency computed by this method is almost equal to that found by simulating the non-linear model for any operating point in the region of instability.

In the last chapter a short cut method is suggested to find out the amplitude of the oscillations from the linearised model. Here it is suggested that oscillation amplitude can be estimated within fair accuracy by studying the perturbation of speed around a steady state operating point.

REFERENCES

- 1. P.C. Krause, C.H. THOMAS, "Simulation of Symmetrical Induction Machinery", IEEE Trans. Power Apparatus and System, Vol. FAS 84, No.11, pp 1038-1053, November, 1965.
- 2. ROBERT, H. Nelson, Thomas, A. Lipo, Faul, C. Krause, Stability Analysis of a Symmetrical Induction Machine, IEEE Trans.

 Power Apparatus and System, Vol. PAS-88, No.11, pp 1710-1717,

 Nov. 1969.
- 3. Rosenbrock, H.H., "An Automatic Method for finding the Greatest or Least Value of a Function", J. Computer, J., 3, 175-184, 196
- 4. James, L. Muester, JŒ H. MIZE, Optimization Techniques with Fortran.
- 5. G.J. Rogers, "Linearized analysis of Induction motor transients," Proc. IEE (London), Vol. 112, pp 1917-1926, Oct 1965.
- 6. C. Concordia, "Induction motor damping and synchronizing torques", AIDE Trans. (Power apparatus and systems), Vol.71, pp 364-366, 1952.
- 7. V.N. Faddeeva, Computational Method of Linear Algebra, New York: Dover, 1959.
- 8. THOMAS, A. Lipo, Paul, C. Krause, Stability Analysis for Variable Frequency Operation of Synchronous Machines, IEEE Trans.

 Power Apparatus and Systems, Vol. PAS-87, No. 1, pp. 227-239,

 January, 1968.