Симметричная форма. Пусть события (подмножества конечного множества) A_1, \ldots, A_n и число d>2 таковы, что для любого k вероятность события (доля множества) A_k не превосходит p, и оно независимо с некоторым набором из хотя бы n-d событий (подмножеств) A_i . Тогда вероятность (доля) пересечения $\overline{A_1} \cap \ldots \cap \overline{A_n}$ ненулевая при условии $ep(d+1) \leq 1$.

Несимметричная форма. Пусть $\mathcal{A} = \{A_1, \dots, A_n\}$ — конечный набор событий (подмножеств конечного множества), причём каждое $A \in \mathcal{A}$ независимо с набором $J(A) \subset \mathcal{A}$. Предположим, что нашлось такое сопоставление чисел $\gamma \colon \mathcal{A} \to (0,1)$, что

$$P(A) \le \gamma(A) \prod_{B \notin J(A)} (1 - \gamma(B)) \quad \forall A \in \mathcal{A}.$$

Тогда

$$P(\overline{A_1} \cap \ldots \cap \overline{A_n}) \ge \prod_{A \in \mathcal{A}} (1 - \gamma(A)).$$

- 1. По кругу стоят 1600 студентов из 100 групп по 16 студентов. Докажите, что можно в каждой группе выбрать старосту так, чтобы никакие два старосты не стояли рядом.
- **2.** Дано семейство подмножеств S множества $\{1, 2, ..., n\}$ такое, что каждое подмножество $A \in S$ содержит по k элементов. Известно, что каждый элемент $i \in \{1, 2, ..., n\}$ содержится ровно в k подмножествах из S. Докажите, что при $k \geq 10$ существует раскраска множества $\{1, 2, ..., n\}$ в два цвета, такая, что все подмножества S неодноцветны.
- **3.** Классическая **теорема Ван дер Вардена** утверждает, что для любых k,r существует такое число N, что как бы ни были покрашены числа $\{1,2,3,\ldots,N\}$ в r цветов, среди них можно будет указать k чисел одного цвета, образующих арифметическую прогрессию длины k. Минимальное такое число N называется числом Ван дер Вардена и обозначается W(k,r). Докажите, что $W(k,2) \geq \frac{1}{6} \cdot \frac{2^k}{k}$.
- **4.** Докажите теорему Спенсера: $R(s,s)\geqslant (1+o(1))\frac{\sqrt{2}}{e}\cdot s\cdot 2^{\frac{s}{2}}.$
- **5.** Пусть есть три вида событий: $A_1, \ldots, A_m, B_1, \ldots, B_m$ и C_1, \ldots, C_m . Пусть на каждое событие вида A могут влиять не больше n_{AB} событий вида B и не более n_{AC} событий вида C. Аналогично введем величины $n_{BA}, n_{BC}, n_{CA}, n_{CB}$. Убедитесь, что для выполнения неравенства

$$\Pr\left[\bigcap_{i} \left(\overline{A_i} \cap \overline{B_i} \cap \overline{C_i}\right)\right] > 0$$

достаточно, чтобы нашлись числа $a,b,c\in(0,1)$, такие, что $\Pr[A_i]\leq a(1-b)^{n_{AB}}(1-c)^{n_{AC}}$, $\Pr[B_i]\leq b(1-a)^{n_{BA}}(1-c)^{n_{BC}}$ и $\Pr[C_i]\leq c(1-a)^{n_{CA}}(1-b)^{n_{CB}}$.

Домашнее задание

- 1. По каждому из нескольких видов работ в фирме имеется ровно 8 специалистов. (Теперь видов работ не обязательно 100.) Каждый вид работ имеет общих специалистов не более чем с 30 другими видами. Каждому сотруднику нужно дать выходной в субботу или в воскресенье. Докажите, что это можно сделать так, чтобы и в субботу, и в воскресенье для каждого вида работ присутствовал специалист по нему.
- **2.** (a) Докажите, что для любого $M \in \mathbb{R}$ можно раскрасить все вещественные числа в 2 цвета так, чтобы для любого $x \in \mathbb{R}$ числа x и x+M были разных цветов.
 - (b) Докажите, что для любых 25 чисел $M_1, \ldots, M_{25} \in \mathbb{R}$ и конечного множества $X \subset \mathbb{R}$ можно раскрасить все вещественные числа в 3 цвета так, чтобы для любого $x \in X$ среди чисел $x, x + M_1, \ldots, x + M_{25}$ были числа каждого из трех цветов.