数值方法

拿 第一节 插值方法

第二节 曲线拟合的线性最小二乘法

拿 第三节 案例分析

第四节 数值积分和数值微分

拿 第五节 非线性方程的数值解

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

'

第1页共57页

返 回

全屏显示

关 闭

在实际问题中,一个函数y = f(x)往往是通过实验观测得到的,仅已知函数f(x)在某区间[a,b]上一系列点上的值

$$y_i = f(x_i), i = 0, 1, \dots, n.$$

当需要求在这些节点 x_0, x_1, \dots, x_n 之间的点x上的函数值时,常用较简单的、满足一定条件的函数 $\varphi(x)$ 去代替f(x),插值法是一种常用方法,其插值函数 $\varphi(x)$ 满足条件

$$\varphi(x_i) = y_i, i = 0, 1, \cdots, n.$$

拟合也是已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义下在这些点上的总偏差最小。

插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者在数学方法上是完全不同的。

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 2 页 共 57 页

返 回

全屏显示

关 闭

1 插值方法

在工程和数学应用中,经常有这样一类数据处理问题:在平面上给定一组离散点列,要求一条曲线,把这些点按次序连接起来,称为插值。

已知n+1个点 $(x_i,y_i)(i=0,1,\cdots,n)$,下面求各种插值函数。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 3 页 共 57 页

返 回

全屏显示

关 闭

定义:设函数y = f(x)是区间[a,b]上的连续函数,已知f(x)在n+1个相异点 $a \le x_0 < x_1 < \cdots < x_n \le b$ 处的函数值:

$$f(x_i) = y_i, (i = 0, 1, \dots, n)$$

若用一个简单函数 $\varphi(x)$ 近似表示f(x),并且该函数满足条件

$$\varphi(x_i) = f(x_i), i = 0, 1, \dots, n \tag{1}$$

则 称 函 数 $\varphi(x)$ 为 插 值 函 数 , 函 数f(x)为 被 插 值 函 数 , x_0, x_1, \dots, x_n 称为插值节点,区间[a, b]称为插值区间,将条件(1)称为插值条件,插值条件可以具有导数形式。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

∢ | >>

◆

第 4 页 共 57 页

返 回

全屏显示

关 闭

1.1. 多项式插值

给定n+1个点: (x_i,y_i) ,构造一个多项式 $\varphi(x)$,满足:

- (1) $\varphi(x)$ 是一个不超过n次的多项式;
- (2) $\varphi(x_i) = y_i, i = 0, 1, \dots, n$.

拉格朗日插值, 牛顿插值。

具有构造简单,计算方便和光滑程度高等特点。

注:多项式插值当插值节点增减时,计算要全部重新进行 (当然如果利用Matlab软件,只需改变参数即可)。另外,多 项式插值在数值上是不稳定的,因此在构造多项式插值时必须小 心处理,并不是插值节点越多,多项式次数越高,插值的精度就 越好。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 5 页 共 57 页

返 回

全屏显示

关 闭

拉格朗日插值多项式

拉格朗日插值的基函数为

$$l_i(x) = \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}, i = 0, 1, \cdots,$$

 $l_i(x)$ 是n次多项式,满足 $l_i(x_i) = 1(j=i), l_i(x_i) = 0(j \neq i)$ 。 拉格朗日插值函数

$$L_n(x) = \sum_{i=0}^n y_i l_i(x).$$

插值方法

曲线拟合的线性最小

案例分析

数值积分和数值微分

非线性方程(组)的数值解

访问主页

标题页

>>

第6页共57页

返 回

全屏显示

关 闭

龙格现象

高次插值的病态问题, 我们称为龙格现象。

一个典型的例子即是采用拉格朗日插值多项式对 $f(x) = \frac{1}{1+x^2}$ 函数在[-5,5]上取n+1个点的插值问题。我们可以观察n=2-10(从二次函数到十次函数)时的插值病态现象。下面是n=10时的图像。

所以,采用拉格朗日多项式插值时, $L_n(x)$ 不一定收敛到f(x)。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

|

第7页共57页

返 回

全屏显示

关 闭

1.2. 分段线性插值

给定n+1个点: (x_i,y_i) , 构造一个多项式 $\varphi(x)$, 满足:

- (1) $\varphi(x_i) = y_i, i = 0, 1, \dots, n;$
- (2) 在每个小区间 $[x_i, x_{i+1}]$ 上是线性函数。

即将相邻的节点用直线相连,形成通过所有点的一条折线。显然,节点数越多,分段就越多,相应的插值误差也越小。与多项式插值不同,分段线性插值随着节点数的增加一致收敛到被插函数,但是其得到的插值函数不是光滑函数,有时会不符合实际问题的要求。

分段线性插值函数可以表示为 $I_n(x) = \sum_{i=0}^n y_i l_i(x)$,其中

$$l_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, x \in [x_{i-1}, x_{i}], i \neq 0 \\ \frac{x - x_{i+1}}{x_{i} - x_{i+1}}, x \in [x_{i}, x_{i+1}], i \neq n \\ 0, & \text{#.} \\ 0, & \text{#.} \end{cases}$$

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(4 | >>

第8页共57页

返 回

全屏显示

关 闭

1.3. 样条插值

许多工程技术中提出的计算问题对插值函数的光滑性有较高要求,如飞机的机翼外形等,都要求曲线具有较高的光滑程度,不仅要连续,而且要有连续的曲率,这就导致了样条插值的产生。

1.样条函数的概念

样条本来是工程设计中使用的一种绘图工具,是富有弹性的 细木条或细金属条。绘图员利用它把一些已知点连接成一条光滑 曲线(称为样条曲线),并使连接点处有连续的曲率。

数学上将具有一定光滑性的分段多项式称为样条函数。具体地说,给定区间[a,b]的一个分划

$$\triangle : a = x_0 < x_1 < \dots < x_n - 1 < x_n = b$$

如果函数S(x)满足

- (1) 在每个小区间 $[x_i, x_{i+1}]$ 上S(x)是m次多项式。
- (2) S(x)在[a,b]上具有m-1阶连续导数。则称S(x)为关于分划 \triangle 的m次样条函数,其图形为m次样条曲线。显然,折线是一次样条曲线。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

44 >>

''

第 9 页 共 57 页

返 回

全 屏 显 示

关 闭

2.三次样条插值

取插值函数为样条函数,称为样条插值。下面介绍三次样条插值,即已知函数y = f(x)在区间[a,b]上的n+1个节点

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$

上的值 $y_i = f(x_i)(i = 0, 1, \dots, n)$, 求插值函数S(x), 使得

(1)
$$S(x_i) = y_i (i = 0, 1, \dots, n)$$
.

- (2) 在每个小区间 $[x_i, x_{i+1}]$ 上S(x)是三次多项式,记为 $S_i(x)$ 。
 - (3) S(x)在[a,b]上二阶连续可微。

函数S(x)称为f(x)的三次样条插值。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

◆ | **>>**

. .

第 10 页 共 57 页

返 回

全屏显示

关 闭

由条件(2),不妨记

$$S(x) = \{S_i(x), x \in [x_i, x_{i+1}], i = 0, 1, \dots, n-1\}$$

$$S_i(x) = a_i x^3 + b_i x^2 + c_i x + d_i$$

其中, a_i, b_i, c_i, d_i 为待定系数, 共4n个。

由条件(3),有

$$S_i(x_{i+1}) = S_{i+1}(x_{i+1})$$

 $S'_i(x_{i+1}) = S'_{i+1}(x_{i+1}), i = 0, 1, \dots, n-2$
 $S''_i(x_{i+1}) = S''_{i+1}(x_{i+1})$

容易看出,结合第一个插值条件共有4n-2个方程,为确定S(x)的4n个待定参数,还需再给出两个边界条件。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

** · · - · ·

第 11 页 共 57 页

返 回

全屏显示

关 闭

常用的三次样条函数的边界条件有3种类型:

(1) $S'(a) = y'_0, S'(b) = y'_n$ 。由这种边界条件建立的样条插值函数称为f(x)的完备三次样条插值函数。特别地, $y'_0 = y'_n = 0$ 时,样条曲线在端点处呈水平状态。

如果f'(x)不知道,可以要求S'(x)与f'(x)在端点处近似相等。这时以 x_0, x_1, x_2, x_3 为节点作一个三次插值多项式 $L_a(x)$,以 $x_n, x_{n-1}, x_{n-2}, x_{n-3}$ 作一个三次插值多项式 $L_b(x)$,要求

$$S'(a) = L'_a(a), S'(b) = L'_b(b)$$

由这种边界条件建立的三次样条称为f(x)的Lagrange三次样条插值函数。

- (2) $S^{"}(a) = y_0^{"}, S^{"}(b) = y_n^{"}$ 。特别地, $y_0^{"} = y_n^{"}$ 时,称为自然边界条件。
- (3) S'(a+0) = S'(b-0), S''(a+0) = S''(b-0), 此条件 称为周期条件。

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

. .

第 <u>12</u> 页 共 <u>57</u> 页

返 回

全屏显示

关 闭

1.4. Matlab求解

1.一维插值

Matlab中的一维插值函数interp1, 语法为

y = interp1(x0, y0, x, 'method')

其中,method指定插值的方法,默认为线性插值,其值可为'nearest'(最近项插值),'linear'(线性插值),'spline'(三次样条插值),'cubic'(三次插值)。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 13 页 共 57 页

返 回

全屏显示

关 闭

2.三次样条插值

如果三次样条插值没有边界条件,最常用的方法,就是采用 非扭结条件。这个条件强迫第1个和第2个三次多项式的三阶导 数相等。对最后一个和倒数第2个三次多项式也做同样的处理。

Matlab中的三次样条插值有如下函数

y = interp1(x0, y0, x, 'spline')

y = spline(x0, y0, x)

pp = csape(x0, y0, conds)

pp = csape(x0, y0, conds, valconds); y = fnval(pp, x)

其中,x0, y0是已知数据点,x是插值点,y是插值点的函数值。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(| **>>**

第 14 页 共 57 页

返 回

全屏显示

关 闭

对于三次样条插值,提倡使用csape,其返回值是pp形式,要求插值点的函数值,必须调用函数fnval。

pp = csape(x0, y0) 使用默认的边界条件,即Lagrange边界条件。

pp = csape(x0, y0, conds, valconds)中的conds指定插值的边界条件,其值可为: 'complete'(边界为一阶导数,一阶导数的值在valconds参数中给出),'not - a - knot'(非扭结条件),'periodic'(周期条件),'second'(边界为二阶导数),'variational'(设置边界的二阶导数值为[0,0])。

对于一些特殊的边界条件,可以通过conds的一个 1×2 矩阵来表示,conds元素的取值为0,1,2。

conds(i) = j的含义是给定端点i的j阶导数,即conds的第一个元素表示左边界的条件,第二个元素表示右边界的条件,conds = [2,1]表示左边界是二阶导数,右边界是一阶导数,对应的值由valconds给出。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 15 页 共 57 页

返 回

全屏显示

关 闭

例1: 待加工零件的外形根据工艺要求由一组数据(x,y)给出(在平面情况下),用程控铣床加工时每一刀只能沿x方向和y方向走非常小的一步,这就需要从已知数据得到加工所要求的步长很小的(x,y)坐标。

下表中给出的x, y数据位于机翼断面的下轮廓线上,假设需要得到x坐标每改变0.1时的y坐标。试完成加工所需数据,画出曲线,并求出x=0处的曲线斜率和 $13 \le x \le 15$ 范围内y的最小值。要求用分段线性和三次样条两种插值方法计算。

 x
 0
 3
 5
 7
 9
 11
 12
 13
 14
 15

 y
 0
 1.2
 1.7
 2.0
 2.1
 2.0
 1.8
 1.2
 1.0
 1.6

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

44 |

第 16 页 共 57 页

返 回

全屏显示

关 闭

```
x0=[0 3 5 7 9 11 12 13 14 15]:
                                         y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6];
                                         x=0:0.1:15:
                                          y1=interp1(x0, y0, x); y2=interp1(x0, y0, x, 'spline');
                                          pp1=csape(x0, y0);y3=fnval(pp1,x);
                                          [x',y1',y2',y3']
                                          subplot (1, 3, 1)
                                         plot (x0, y0, '+', x, y1)
                                        title ('piecewise linear')
                                         subplot (1, 3, 2)
                                         plot (x0, y0, '+', x, y2)
11 -
12 -
                                         title ('spline')
13 -
                                          subplot (1, 3, 3)
14 -
                                         plot (x0, y0, '+', x, y3)
15 -
                                         title('spline2')
16 -
                                          dx=diff(x); dy=diff(y3);
17 -
                                          dy_dx=dy_dx = dx_dx 
18 -
                                         ytemp=y3(131:151);
19 -
                                          ymin=min(ytemp)
```


插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

>>

第 17 页 共 57 页

返 回

全屏显示

关 闭

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

4 Ⅱ

>>

第 18 页 共 57 页

返 回

全屏显示

关 闭

3.二维插值

如果节点是二维的,插值函数就是二元函数,即曲面。如在 某区域测量了若干点(节点)的节点值(高程),为了画出较精 确的等高线图,就要先插入更多的点(插值点),计算这些点的 插值。

(1)插值节点为网格节点

已知 $m \times n$ 个节点: $(x_i, y_j, z_{ij})(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$,且 $x_1 < \dots < x_m; y_1 < \dots < y_n$ 。求点(x, y)处的插值z。

Matlab中的二维插值函数interp2,语法为

y = interp2(x0, y0, z0, x, y, method')

其中,x0,y0分别为m维和n维向量,表示节点,z0为 $n \times m$ 矩阵,表示节点值,x,y为一维数组,表示插值点,x,y是方向不同的向量,即一个是行向量,另一个是列向量,z为矩阵,它的行数为y的维数,列数为x的维数,表示得到的插值,method的用法同一维插值。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(4)>>

第 19 页 共 57 页

返 回

全屏显示

关 闭

如果是三次样条插值,可以使用命令

 $pp = csape(\{x0, y0\}, z0, conds, valconds);$

 $z = fnval(pp, \{x, y\})$

其中,x0, y0分别为m维和n维向量,z0为 $m \times n$ 矩阵,z为矩阵,它的行数为x的维数,列数为y的维数,表示得到的插值。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(**)**

第 20 页 共 57 页

返 回

全屏显示

关 闭

例2: 在一丘陵地带测量高程,x和y方向每隔100m测一个点,得到高程如下表所示,试插值一曲面,确定合适的模型,并由此找出最高点和该点的高程。

丰 宁远米护上。

100-	X	衣 尚在	到据 点₹	3) (X		- 64
yx	100₽	200₽	300₽	400₽	500₽	¢J
100₽	636₽	697₽	624₽	478₽	450₽	4
200₽	6984	712₽	630₽	478₽	420₽	ø
300₽	680₽	6740	598₽	4124	400₽	t)
400₽	662₽	626₽	552₽	334₽	310₽	þ

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 21 页 共 57 页

返 回

全屏显示

关 闭

解:编写Matlab程序如下:

```
clc, clear
x=100:100:500:
y=100:100:400;
z=[636 697 624 478 450;
   698 712 630 478 420:
   680 674 598 412 400:
   662 626 552 334 310]:
pp=csape(\{x,y\},z')
xi=100:10:500;yi=100:10:400;
cz=fnval(pp, {xi, yi});
[i, j]=find(cz==max(max(cz)))%找最高点的坐标
x=xi(i),y=yi(j),zmax=cz(i,j)%求最高点的坐标
```

求得点(170,180)的高程最高,对应的高程z=720.6252。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

44

第 22 页 共 57 页

返 回

全屏显示

关 闭

(2) 插值节点为散乱节点

已知n个节点: $(x_i, y_j, z_i)(i = 1, 2, \dots, m; j = 1, 2, \dots, n)$, 求点(x, y)处的插值z。

对上述问题,Matlab中提供了插值函数griddata,语法为 zi=griddata(x,y,z,xi,yi)

其中,x, y, z均为n维向量,向量xi, yi是给定的网格点的横坐标和纵坐标,返回值zi为网格(xi, yi)处的函数值。xi, yi应是方向不同的向量,即一个是行向量,另一个是列向量。

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 23 页 共 57 页

返 回

全屏显示

关 闭

例3: 在某海域测得一些点(x,y)处的水深z有下表给出,在适当的矩形区域内画出海底曲面的图形。

						表	海底	水深数	据↩						
χ	129	140	103.5	88	185.5	195	105	157.5	107.5	77	81	162	162	117.5	
y	7.5	141.5	23	147	22.5	137.5	85.5	-6.5	-81	3	56.5	-66.5	84	-33.5	
Z	4	8	6	8	6	8	8	9	9	8	8	9	4	9	

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(| b)

第 24 页 共 57 页

返 回

全屏显示

关 闭

解:编写Matlab程序如下:

```
clc, clear
x=[129, 140, 103. 5, 88, 185. 5, 195, 105, 157. 5, 107. 5, 77, 81, 162, 162, 117. 5]:
y=[7.5, 141.5, 23, 147, 22.5, 137.5, 85.5, -6.5, -81, 3, 56.5, -66.5, 84, -33.5]
z=[4, 8, 6, 8, 6, 8, 8, 9, 9, 8, 8, 9, 4, 9]
xmm=mirmax(x):%求x的最小值和最大值
ymm=minmax(y);%求y的最小值和最大值
xi=xmm(1):xmm(2):
yi=ymm(1):ymm(2);
zil=griddata(x, y, z, xi, yi', 'cubic');%三次插值
zi2=griddata(x, y, z, xi, yi', 'nearest');%最近点插值
zi=zi1:%三次插值和最近点插值的混合插值的初始值
zi(isnan(zi1))=zi2(isnan(zi1));%把三次插值中的不确定值换成最近点插值的结果
subplot (1, 2, 1), plot (x, y, '*')
subplot(1, 2, 2), mesh(xi, yi, zi)
```

注: Matlab插值时外插值是不确定的,这里使用了混合插值, 把不确定的插值换成了最近点插值的结果。

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

∢ ∥ >>

第 25 页 共 57 页

返 回

全屏显示

关 闭

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

44

>>

第 <u>26</u> 页 共 <u>57</u> 页

返 回

全屏显示

关 闭

曲线拟合的线性最小二乘法

2.1. 线性最小二乘法

曲线拟合问题的提法是,已知一组(二维)数据,即平面上的n个点 (x_i, y_i) , $i = 1, 2, \dots, n$, x_i 互不相同,寻求一个函数(曲线)y = f(x),使f(x)在某种准则下与所有数据点最为接近,即曲线拟合得最好。

线性最小二乘法是解决曲线拟合最常用的方法,基本思路 是,令

$$f(x) = a_1 r_1(x) + a_2 r_2(x) + \dots + a_m r_m(x)$$

其中, $r_k(x)$ 为事先选定的一组线性无关的函数, a_k 为待定系数($k = 1, 2, \dots, m, m < n$)。

拟合准则是使 $y_i(i=1,2,\cdots,n)$ 与 $f(x_i)$ 的距离 δ_i 的平方和最小,称为最小二乘准则。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 27 页 共 57 页

返 回

全 屏 显 示

关 闭

1.系数 a_k 的确定

记

$$J(a_1, \cdots, a_m) = \sum_{i=1}^n \delta_i^2 = \sum_{i=1}^n [f(x_i) - y_i]^2$$

为求 a_1, \dots, a_m 使J达到最小,只需利用极值的必要条件 $\frac{\partial J}{\partial a_j} = 0$ ($j=1,\dots,m$),得到关于 a_1,\dots,a_m 的线性方程组

$$\sum_{i=1}^{n} r_j(x_i) [\sum_{k=1}^{m} a_k r_k(x_i) - y_i] = 0, j = 1, \cdots, m,$$

即

$$\sum_{k=1}^{m} a_k [\sum_{i=1}^{n} r_j(x_i) r_k(x_i)] = \sum_{i=1}^{n} r_j(x_i) y_i, j = 1, \cdots, m,$$

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(4 **)**

. .

第 28 页 共 57 页

返 回

全屏显示

关 闭

记为矩阵形式即为

$$R^T R A = R^T Y$$

其中

$$R = \begin{bmatrix} r_1(x_1) & \cdots & r_m(x_1) \\ \vdots & & \\ r_1(x_n) & \cdots & r_m(x_n) \end{bmatrix},$$

$$A = \begin{bmatrix} a_1, \cdots, a_m \end{bmatrix}^T, Y = \begin{bmatrix} y_1, \cdots, y_n \end{bmatrix}^T$$

当 $\{r_1(x), \cdots, r_m(x)\}$ 线性无关时, R^TR 可逆,于是方程组有唯一解

$$A = (R^T R)^{-1} R^T Y.$$

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

∀ | →→

第 29 页 共 57 页

返 回

全屏显示

关 闭

2.函数 $r_k(x)$ 的选取

面对一组数据 (x_i, y_i) , $i = 1, 2, \dots, n$, 用线性最小二乘法作曲线拟合时,关键的一步是恰当地选取 $r_1(x)$, \dots , $r_m(x)$ 。如果通过机理分析,能够知道y与x之间的函数关系,则 $r_1(x)$, \dots , $r_m(x)$ 容易确定。若无法知道y与x之间的关系,通常可以将数据 (x_i, y_i) , $i = 1, 2, \dots, n$ 作图,直观地判断应该用什么样的曲线去作拟合。

常用的曲线有:直线;多项式;双曲线;指数曲线。对于指数曲线,拟合前需作变量代换,化为线性函数。

已知一组数据,用什么样的曲线拟合最好,可以在直观判断的基础上,选几种曲线分别拟合,然后比较,看哪条曲线的最小二乘指标J最小。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(4)

... _ .. _

第 30 页 共 57 页

返 回

全屏显示

关 闭

2.2. 最小二乘法的Matlab实现

1.解方程组方法 在上面的记号下

$$J(a_1, \cdots, a_m) = ||RA - Y||_2^2$$

Matlab中的线性最小二乘的标准型为

$$\min_{A} ||RA - Y||_2^2$$

命令为 $A = R \backslash Y$ 。

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

| ▶

□

>>

第 31 页 共 57 页

返 回

全屏显示

关 闭

例4: 用最小二乘法求一个形如 $y = a + bx^2$ 的经验公式,使它与下表所列的数据拟合。

		表拟	給数据	表↩	
х	19	25	31	38	44
y	19.0	32.3	49.0	73.3	97.8

解:编写程序如下:

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

>>

第 32 页 共 57 页

返 回

全屏显示

关 闭

2.多项式拟合方法

如果取 $\{r_1(x), \dots, r_{m+1}(x)\} = \{1, x, \dots, x^m\}$,即用m次多项式拟合给定数据,Matlab中有现成的函数

$$a = polyfit(x0, y0, m)$$

其中,输入参数x0, y0为要拟合的数据,m为拟合多项式的次数,输出参数a为拟合多项式 $y=a(1)x^m+\cdots+a(m)x+a(m+1)$ 的系数向量 $a=[a(1),\cdots,a(m),a(m+1)]$ 。

多项式在x处的值y可用下面的函数计算

$$y = polyval(a, x)$$

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 33 页 共 57 页

返 回

全屏显示

关 闭

例5: 某乡镇企业1990年-1996年的生产利润如下表所示, 试预测1997年和1998年的利润。

		表名	/镇企业的	的利润表			
年份	1990	1991	1992	1993	1994	1995	1996
利润	70	122	144	152	174	196	202

解: 作已知数据的散点图, 有

发现该乡镇企业的年生产利润几乎直线上升。因此,可以用 直线作为拟合函数来预测该乡镇企业未来的年利润。

编写程序如下:

```
x0=[1990:1:1996];
y0=[70 122 144 152 174 196 202];
scatter(x0,y0) %画散点
hold on
a=polyfit(x0,y0,1) %线性拟合
y=polyval(a,x0) %计算拟合值
plot(x0,y) %画拟合曲线
y97=polyval(a,1997) %计算97年的预测值
y98=polyval(a,1998) %计算98年的预测值
```


插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(4)

→

第 35 页 共 57 页

返 回

全屏显示

关 闭

3 案例分析

3.1. 案例1

某火力发电厂负责一小城市的生产与生活用电的供应,该厂的发电机以柴油为燃料,耗油量与发电量相关,已知该厂前四年的每月耗油量(吨)

月份 年份	1	2	3	4	5	6	7	8	9	10	11	12
第1年	1120	1180	1320	1290	1210	1350	1480	1480	1360	1190	1040	1180
第2年	1150	1260	1410	1350	1250	1490	1700	1700	1580	1330	1140	1400
第3年	1450	1500	1780	1630	1720	1780	1990	1990	1840	1620	1460	1660
第4年	1710	1800	1930	1810	1830	2180	2300	2420	2090	1910	1720	1940

要求: 预测本年度每月柴油消耗量。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

←

第 36 页 共 57 页

返 回

全屏显示

关 闭

首先画出前四年每月耗油量的散点图和曲线图。

Matlab程序:

x=1:12;

y1=[1120,1180,1320,1290,1210,1350,1480,1480,1360,1190,1040,1180]; y2=[1150,1260,1410,1350,1250,1490,1700,1700,1580,1330,1140,1400]; y3=[1450,1500,1780,1630,1720,1780,1990,1990,1840,1620,1460,1660]; y4=[1710,1800,1930,1810,1830,2180,2300,2420,2090,1910,1720,1940]; plot(x,y1,x,y2,x,y3,x,y4)

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

∢∢ |

>>

•

第 37 页 共 57 页

返 回

全屏显示

关 闭

从图上可得出两点规律:

- (1) 每年各月的升降趋势相似;
- (2) 月平均耗油量一年比一年大,呈逐年上升趋势。

由此,可得出初步结论:今年的月平均耗油量比去年大,耗油趋势与前几年相似,7、8月耗油量大,5、11月较小。

我们以年份为横坐标,以前4年同一月份的耗油量为纵坐标画出4个点的散点图,每月画一张,各月均表现为近似的线性上升趋势,对数据进行线性拟合,拟合方程为: $A_i = b_{0i} + b_{1i}n$ 。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标题页

(4 | **>>**

第 38 页 共 57 页

返 回

全屏显示

关 闭

以1月为例, $A_1 = 840 + 207n$


```
Matlab程序:

x=1:4;

y=[1120,1150,1450,1710];

scatter(x,y)

hold on

p=polyfit(x,y,1);

pv=polyval(p,x);

p

plot(x,pv)
```


插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 39 页 共 57 页

返 回

全屏显示

关 闭

退

可以得到各月耗油量预测结果:

1	2	3	4	5	6	7	8	9	10	11	12
1875	1960	2160	1980	2085	2395	2555	2675	2330	2125	1930	2180

据分析, 1月的预测量有些偏低, 理由是前四年数据中的1月 耗油量一般比上一年度12月的耗油量多一点。而去年12月的数 字是1940、似乎今年1月的耗油量应当比1940多一点。从1月 的散点图来分析,第一年的1月数据与另外三年相比偏离拟合 直线的距离比较远,如果去掉该点数据,用三个点进行线性拟 合.得到的预测值为1996.7(稍微偏大),将该值与原来的 预测值1875按照0.7:0.3的权重进行组合,得到修正后的预测 值为1960。对2月份的预测值作类似处理,得修正后的预测值 为2030,其他月份无需修正或者修正值与原来预测值差不多。 经过修正后的各月柴油消耗量如下:

	1	2	3	4	5	6	7	8	9	10	11	12
1	960	2030	2160	1980	2085	2395	2555	2675	2330	2125	1930 21	80

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

() **>>**

第 40 页 共 57 页

返 回

全屏显示

关 闭

3.2. 案例2

2004年6月至7月黄河进行了第三次调水调沙试验,特别是首 次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防 洪预泄防水,形成人造洪峰进行调沙试验获得成功。整个试验期 为20多天,小浪底从6月19日开始预泄放水,直到7月13日结束 并恢复正常供水。小浪底水利工程按设计拦沙量为75.5亿 m^3 . 在这之前,小浪底共积泥沙14.15亿t。这次调水调沙试验一个 重要目的就是由小浪底上游的三门峡和万家寨水库泄洪, 在小浪 底形成人造洪峰,冲刷小浪底库区沉积的泥沙,在小浪底水库开 闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸 放水,人造洪峰于6月29日先后到达小浪底,7月3日达到最大流 量 $2700m^3/s$,使小浪底水库的排沙量也不断地增加。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

(4 | **>>**

第 41 页 共 57 页

返 回

全屏显示

关 闭

下表是由小浪底观测站从6月29日到7月10日检测到的试验 数据。

日期	6.29		6.30		7.1		7.2		7.3		7.4	
时间	8:00	20:00	8:00	20:00	8:00	20:00	8:00	20:00	8:00	20:00	8:00	20:00
水流量	1800	1900	2100	2200	2300	2400	2500	2600	2650	2700	2720	2650
含沙量	32	60	75	85	90	98	100	102	108	112	115	116
日期	7.5		7.6		7.7		7.8		7.9		7.10	
时间	8:00	20:00	8:00	20:00	8:00	20:00	8:00	20:00	8:00	20:00	8:00	20:00
水流量	2600	2500	2300	2200	2000	1850	1820	1800	1750	1500	1000	900
含沙量	118	120	118	105	80	60	50	30	26	20	8	5

现在,根据试验数据建立数学模型研究下面的问题:

- (1) 给出估计任意时刻的排沙量及总排沙量的方法。
- (2) 确定排沙量与水流量的关系。

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

44

>>

第 42 页 共 57 页

返 回

全屏显示

关 闭

模型的建立与求解

已知给定的观测时刻是等间距的,以6月29日零时刻开始计时,则各次观测时刻(离开始时刻6月29日零时刻的时间)分别为

$$t_i = 3600(12i - 4), i = 1, 2, \dots, 24$$

式中计时单位为s。

第1次观测的时刻 $t_1 = 28800$,最后一次观测的时刻 $t_{24} = 1022400$ 。 记第 $i(i = 1, 2, \dots, 24)$ 次观测时水流量为 v_i ,含沙量为 c_i ,则第i次观测时的排沙量为 $y_i = c_i v_i$ 。

对于问题(1),根据所给问题的试验数据,要计算任意时刻的排沙量,就要确定出排沙量随时间变化的规律,可以通过插值来实现。考虑到实际中的排沙量应该是时间的连续函数,为了提高模型的精度,采用三次样条函数进行插值。

利用Matlab函数,求出三次样条函数,得到排沙量y = y(t)与时间的关系,然后进行积分,就可以得到总的排沙量

$$z=\int_{t_1}^{t_{24}}y(t)dt$$

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

()

第 43 页 共 57 页

返 回

全屏显示

关 闭

计算的Matlab程序如下:

```
clc, clear
load data.txt %把表中的日期和时间数据行删除,余下的数据保存在纯文本文件中
liu=data([1,3],:);liu=liu';liu=liu(:);%提出水流量并按照顺序变成列向量
sha=data([2,4],:);sha=sha';sha=sha(:);%提出含沙量并按照顺序变成列向量
y=sha.*liu;y=y';%计算排沙量,并变成行向量
i=1:24;
t=(12*i-4)*3600;
t1=t(1);t2=t(end);
pp=csape(t,y);%进行三次样条插值
xsh=pp.coefs %求得插值多项式的系数矩阵,每一行是一个区间上多项式的系数
IL=quadl(@(tt) fnval(pp,tt),t1,t2) %求总含沙量的积分运算
```

求得总的排沙量为 $1.844 \times 10^9 t$ 。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

44

第 44 页 共 57 页

返 回

全屏显示

关 闭

对于问题(2),研究排沙量与水流量的关系,从试验数据可以看出,开始排沙量是随着水流量的增加而增长,而后随着水流量的减少而减少。显然,变化规律并非是线性的关系,为此,把问题分为两部分,从开始水流量增加到最大值2720 m^3/s (即增长的过程)为第一阶段,从水流量的最大值到结束为第二阶段,分别来研究水流量与排沙量的关系。

画出排沙量与水流量的散点图

clc, clear

load data.txt %把表中的日期和时间数据行删除,余下的数据保存在纯文本文件中liu=data([1,3],:);liu=liu';liu=liu(:);%提出水流里并按照顺序变成列向里sha=data([2,4],:);sha=sha';sha=sha(:);%提出含沙里并按照顺序变成列向里y=sha.*liu;%计算排沙里,这里是列向里subplot(1,2,1),plot(liu(1:11),y(1:11),'*')
subplot(1,2,2),plot(liu(12:24),y(12:24),'*')

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

退

从散点图可以看出,第一阶段基本上是线性关系。第一阶段我们采用线性拟合,第二阶段分别用一次和二次曲线来拟合,哪一个模型的剩余标准差小就选取哪一个模型。最后求得第一阶段排沙量y与水流量v之间的预测模型为

$$y = 250.5655v - 373384.4661$$

第二阶段的预测模型为一个二次多项式,即

$$y = 0.1067v^2 - 180.4668v + 72421.0982$$

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

()

第 46 页 共 57 页

返 回

全屏显示

关 闭

```
clc, clear
 load data.txt %把表中的日期和时间数据行删除,余下的数据保存在纯文本文件中
 liu=data([1,3],:);liu=liu';liu=liu(:);%提出水流里并按照顺序变成列向里
 sha=data([2,4],:);sha=sha';sha=sha(:);%提出含沙里并按照顺序变成列向里
 y=sha.*liu; %计算排沙里,这里是列向里
 format long e
 %以下是第一阶段的拟合
 nihel=polyfit(liu(1:11),y(1:11),1); %拟合多项式,系数排列从高次幂到低次幂
 yhat l=polyval (nihel, liu(1:11)); %求预测值
 %求误差平方和剩余标准差
 chal=sum((y(1:11)-yhat1).^2);rmsel=sqrt(chal/9);
 nihel, rmsel
 %以下是第二阶段的拟合
- for j=1:2
    nihe2{j}=polyfit(liu(12:24),y(12:24),j); %这里使用细胞数组(其元素可以是任意的数据类型、任意维度)
    yhat2{j}=polyval(nihe2{j}, liu(12:24));
     cha2(j)=sum((y(12:24)-yhat2{j}).^2);rmse2(j)=sqrt(cha2(j)/9);
 end
 celldisp(nihe2) %显示细胞数组的所有元素
 rmse2
 format %恢复默认的短小数的显示格式
```


插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

■

(| |

第 47 页 共 57 页

返 回

全屏显示

关 闭

4

数值积分和数值微分

在实际问题中,有些函数关系是由离散数据给出,解析表达式是未知的;有些函数虽然已知解析式,但是难以求得其原函数。这就需要利用离散数据进行数值积分和数值微分,即导数与定积分的近似计算问题。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

◆

第 48 页 共 57 页

返 回

全屏显示

关 闭

4.1. 数值积分

● 矩形公式

$$\int_{a}^{b} f(x)dx \approx f(a)(b-a) \approx f(b)(b-a) \approx f(\frac{a+b}{2})(b-a)$$

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 49 页 共 57 页

返 回

全屏显示

关 闭

• 梯形公式

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

截断误差为 $-\frac{(b-a)^3}{12}f''(\eta), \eta \in [a,b]$ 。

• 抛物线公式

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} [f(a) + 4f(\frac{a+b}{2}) + f(b)]$$

截断误差为 $-rac{(b-a)^5}{2880}f^{(4)}(\eta),\eta\in[a,b]$ 。

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

◆ | **→**

第 50 页 共 57 页

返 回

全屏显示

关 闭

$$a = x_0 < x_1 < \dots < x_n = b, h = \frac{b-a}{n}$$

● 复化梯形公式:

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{k=n} \int_{x_{k-1}}^{x_k} f(x)dx \approx \frac{h}{2} [f(a) + 2\sum_{k=1}^{n-1} f(x_k) + f(b)]$$

截断误差为 $-\frac{(b-a)}{12}h^2f''(\eta), \eta \in [a,b]$ 。

• 复化抛物线公式: n=2m

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{k=m} \int_{x_{2k-2}}^{x_{2k}} f(x)dx$$

$$\approx \frac{h}{3} [f(a) + 4 \sum_{k=1}^{m} f(x_{2k-1}) + 2 \sum_{k=1}^{m-1} f(x_{2k}) + f(b)]$$

截断误差为 $-\frac{b-a}{2880}h_1^4f^{(4)}(\eta), \eta \in [a,b]$,其中 $h_1 = 2h$ 。

● 自适应积分

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

← → →

· - · - · - - -

第 51 页 共 57 页

返回

全屏显示

关 闭

4.2. 数值微分

- 问题:已知 $f(x_i) = y_i, i = 0, 1, \dots, n$, 求 $f'(x_i), i = 0, 1, \dots, n$ 。
- 常用的数值微分公式
 - (1) 两点公式

$$f'(x_0) \approx \frac{y_1 - y_0}{h}, \quad f'(x_1) \approx \frac{y_1 - y_0}{h}$$

(2) 三点公式

$$f'(x_0) \approx \frac{-3y_0 + 4y_1 - y_2}{2h}$$
 $f'(x_1) \approx \frac{y_2 - y_0}{2h}$
 $f'(x_2) \approx \frac{y_0 - 4y_1 + 3y_2}{2h}$
 $f''(x_i) \approx \frac{y_0 - 2y_1 + y_2}{h^2}, i = 0, 1, 2$

插值方法

曲线拟合的线性最小....

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

∢ | >>

..

第 52 页 共 57 页

返 回

全屏显示

关 闭

5

非线性方程(组)的数值解

非线性方程: f(x) = 0

• 二分法

给定区间[a,b],并设f(a)与f(b)符号相反,取 ε 为根的容许误差, δ 为|f(x)|的容许误差。

$$1) \diamondsuit c = (a+b)/2,$$

- 2)如果 $(c-a) < \varepsilon$ 或 $|f(c)| < \delta$,则输出c,结束;否则执行3),
- 3)如果f(a)f(c) > 0,则令a := c ;否则令b := c,重复1),2),3)。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 53 页 共 57 页

返 回

全屏显示

关 闭

● 迭代法

$$f(x) = 0 \Leftrightarrow x = \varphi(x)$$

- 1)选取初值 x_0 ,
- 2)计算 $x_1 = \varphi(x_0)$,
- 3)如果 $|x_1 x_0| < \varepsilon$,则停止计算;否则用 x_1 代替 x_0 ,重复2)和3)。

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

∢ | →→

第 54 页 共 57 页

返 回

全屏显示

关 闭

• 牛顿迭代法

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) = 0$$
$$x = x_0 - \frac{f(x_0)}{f'(x_0)}$$

- 1)选取初值 x_0 ,
- 2)计算 $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$,
- 3)如果 $|x_1 x_0| < \varepsilon$,则停止计算;否则用 x_1 代替 x_0 ,重复2)和3)。

插值方法

曲线拟合的线性最小 ...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

第 55 页 共 57 页

返 回

全屏显示

关 闭

注意解非线性方程的步骤一般包括两步。 第一步用某种全局方法(图像法)确定近似解, 第二步用一种快速收敛的局部方法求得满足精度要求的精确 解。

插值方法

曲线拟合的线性最小...

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

4 >

第 56 页 共 57 页

返 回

全屏显示

关 闭

6 微分方程数值解

后续讲!

插值方法

曲线拟合的线性最小 . . .

案例分析

数值积分和数值微分

非线性方程(组)的数值解

微分方程数值解

访问主页

标 题 页

44

>>

•

第 57 页 共 57 页

返 回

全屏显示

关 闭