

TXL 221: Yarn Manufacture I

3 Credits

Course Coordinator: Prof. Sohel Rana

B.Tech. M.Tech. Ph.D. (IIT Delhi) FHEA CMgr (UK)

15-01-2024 S. Rana

Marks Distribution

Minor: 40

Quiz: 20

Major: 40

Attendance Policy

Minimum Attendance

■ Attendance less than 75% : One grade down

Attendance more than 95%
 bonus marks will be added to the final marks.

: 75%

Late attendance
 : Will be marked as absent after attendance has been already registered.

Course Outline (Lecture)

Opening/Blowroom:

- ✓ Principle of fibre opening in blow room
- ✓ Principle of fibre cleaning in blow room
- ✓ Opening and cleaning machines
- ✓ Principle of fibre blending
- **✓** Recent developments

Course Outline (Lecture)

Carding:

- Objective and principle of carding
- Machine elements and operations
- Sliver formation and fibre configurations in sliver
- Automation and recent developments

Course Outline (Lecture)

Drafting/Drawframe:

- ✓ Objectives, principles and methods of roller drafting.
- ✓ Purpose and principle of condensation of fibres.
- ✓ Causes of mass variation of sliver and control.
- ✓ Automation and recent developments in draw frames

Reference Books

- ✓ A Practical Guide to Opening and Carding, Short-staple Spinning Series (Volume 2), By W. Klein
- ✓ A Practical Guide to Combing and Drawing, Short-staple Spinning Series (Volume 3), By W. Klein
- ✓ Fundamentals of Spun Yarn Technology By Carl A Lawrence
- ✓ Handbook of Yarn Production-Technology, Science and Economics By Peter R. Lord
- ✓ Spun Yarn Technology By Eric Oxtoby
- ✓ NPTEL lecture series, IIT Delhi

Introduction

What is a yarn?

"A yarn may be defined as a product of substantial length and relatively small cross-section of fibres and/or filament(s) with or without twist, used for interlacing in processes such as knitting, weaving, or sewing"

Different Types of Yarn

Continuous filament yarns

• Staple spun yarns

Composite yarns

Folded/plied/doubled yarns

Production of Staple Yarn: Cotton and Blends

Ginning process

227 kg each 0.2 g/cm³

Seed fibre, cellulosic, hydrophilic

Cotton Bale

How to make cotton yarn from bale?

- ✓ Opening
- ✓ Cleaning why?

Impurities in Cotton Fibre

- Vegetable matter (50-80%)
 Seed fragments, stem fragments, leaf fragments, etc.
- ➤ Mineral matter (10-20%)

 Dust, sand, soil, etc.
- > Fibre fragments
- Others
 Metal particles, cloth fragments, packaging materials, etc.

Trash size > 500 micron
Dust < 50 micron
Micro dust < 15 micron

Problems?

Yarn fault, damage to machines, health hazard to the workers

How staple yarns are produced?

15-01-2024

S. Rana

Spinning Process Flowchart

Blowroom

Blowroom

Introduction to Blowroom

Fibres come to spinning mill in bale form.

Blowroom Operating Zones

Why Blowroom has different zones and machines?

Opening of Bale

How to open bale?

✓ Removing individual fibres from bale?

✓ Dividing and subdividing bales?

Question: In a spinning mill, cotton fiber is supplied in compacted bales of about 226.8 kg each. The bale dimensions is typically $1.4 \times 0.53 \times 0.64$ m, and the bale density is 478 kg/m^3 . If the individual fibers are 30 mm in length and 1.7 dtex fineness and the production rate of the plant is 500 kg/h, then how many fibres need to be separated per second from the bale?

Ans:

No. of fibres in each bale = 45 billion (approx.)

No. fibres to be separated per hour = 98 billion, 27 million fibers per second

Opening of Bale

How to open bale?

Removing large clumps of fibres from a bale

Progressively dividing the large clumps into many smaller pieces.

Opening of Tufts

Different Possibilities

- ✓ A large tuft is divided into several smaller tufts
- √ Volume of tuft increases without disintegration
- ✓ Shape of the tuft changes

How to measure fibre openness?

- By measuring specific volume

- ✓ Plucking
- ✓ Tearing between oppositely moving spikes
- ✓ Teasing in nipped state by needles or saw tooth
- ✓ Using impact force at nipped state or free flight

Plucking out

Pressing

roller

Extracting assembly

Opening

roller

Bale

Rotating discs

- ✓ Two rotating disc picks up fibre tufts from bale surface
- ✓ Tuft size: 30-80 mg

- Two spring systems facing each other.
- Material is grasped like finger
- Very gentle action
- Produces large tufts of uneven size

How blending is possible?

- Bale layout

Teasing out by Tooth disc

- ✓ Tooth discs have triangular plucking elements
- ✓ The discs are secured to a shaft
- ✓ Asymmetrically formed
- ✓ Operate only in one direction
- ✓ If the disc needs to operate in both direction?

Tearing

- ✓ Tufts are acted by oppositely moving spikes and torn apart into pieces
- ✓ Thorough mixing How?
- ✓ Formation of neps
- √ The intensity of opening action depends on
 - Distance between the spiked devices
 - Speed relationships
 - Total working surface
 - No. of points

Impact by Bladed Beaters

- ✓ Consists of 2-3 beater bars
- ✓ In one rotation, the feed sheet receives 2-3 blows across the full width

Opening and cleaning effect?
Low

Beating lines on tuft sheet

Impact by Strikers

- ✓ Flat, oval or round bars are riveted or screwed to a cylinder
- ✓ Various spacing of the strikers elements may be used. Why?
- ✓ Speed: 600 1000 rpm

Striking points

Opening intensity depends on

- ✓ Distance between feeding and opening elements
- ✓ Speed ratio
- ✓ Number of striking elements

Why are the striking elements staggered?

Tuft sheet

15-01-2024

S. Rana

Teasing out by Saw teeth

- ✓ A cylinder surface filled with saw tooth
- ✓ <u>Fine setting</u> between the elements
- ✓ Suitable for smaller flocks
- **✓** Generate new surfaces
- ✓ Spacing between teeth: 6 8.5 mm Tooth height: 4.5 - 5.5 mm

Suitable for finest opening and best cleaning.

THE STREET

Teasing out by Needles

- ✓ Pinned bars are secured to the cast iron arms
- ✓ The inclined pins penetrate and combs through the fibres
- ✓ Generates new tuft surface and liberates trash particles
- ✓ Operates at 800-900 rpm

Kirschner Beater

Cleaning efficiency is very high

Opening Intensity

✓ Fibre Mass/Striker

Intensity of opening (I) = $\frac{P \times 10^6}{60 \times n_b \times N}$

P = production rate (Kg/h), n_b = beater speed (rpm), N= number of strikers

✓ Blows/Kg

$$N_k = \frac{Blows\ per\ hour}{Production\ per\ hour\ (Kg)} = \frac{1}{P}(60 \times n_b \times N)$$

✓ Beats/inch

$$Intensity = \frac{\textit{Speed of beater} \times \textit{number of blades on beater}}{\textit{Delivery of feed roller}}$$

 $= \frac{\textit{Speed of beater} \times \textit{number of blades on beater}}{\textit{Circumference of feed roller} \times \textit{speed of feed roller}}$

Typical beats per inch: 30-50