(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2000-130101 (P2000-130101A)

(43)公開日 平成12年5月9日(2000.5.9)

(51) Int.Cl.7		識別記号	ΡI		テーマコード(参考)
F01B	9/02		F01B	9/02	3 J O 3 3
F16C	3/06		F16C	3/06	
	3/18			3/18	
	7/00			7/00	

審査請求 未請求 請求項の数2 OL (全 4 頁)

(21)出願番号	特顯平10-308307	(71)出版人 398067111 株式会社日工
(22) 出顧日	平成10年10月29日(1998, 10, 29)	大阪府摂津市新在家2丁目11番5号
(22) 四限日	平成10年10月29日(1998, 10, 29)	
		(72)発明者 茂森 善時
		大阪府羽曳野市はびきの6丁目2番26号
		(74) 代理人 100070253
		弁理士 渡辺 弥一
		Fターム(参考) 3J033 AA02 AA03 AA04 BA14 CA10
		EA10

(54) 【発明の名称】 4サイクル内燃エンジン

(57)【要約】

【課題】 燃焼ガスのもつ圧力エネルギーをより多く利 用してエンジン効率の飛躍的向上と排気ガスのクリーン 化をはかつた4サイクル内燃エンジンを提供する。 【解決手段】 クランク主軸11と同心に設けた内歯々 直20であって、フレーム90に固定されたものと、前 記内歯々車20に内接して回動する外歯々車30であっ て、クランクピン12に回転可能に軸支されたものと、 前記外歯々車30と一体に形成された円形偏心カム40 であって、前記クランクピン12に回転可能に軸支され たものと、前記円形偏心カム40の外周に回転可能に外 嵌するリング50に固着したコンロッド60と、前記コ ンロッド60に回動可能に連結したピストン70と、前 記ピストン70を摺動可能に内嵌するシリンダ80とを 備え、前記クランクピン12の偏心距離P。と、前記外 歯々車30のピッチ円半径P,と、前記内歯々車20の ピッチ円半径P。とが、1:2:3の割合になるように 形成したもの。

[特許請求の節囲]

【請求項1】 クランク主軸11と同心に設けた内歯々 車20であって、フレーム90に固定されたものと、前 記内菌々車20に内接して回動する外菌々車30であっ て、クランクピン12に回転可能に軸支されたものと、 前記外歯々車30と一体に形成された円形偏心カム40 であって、前記クランクピン12に回転可能に軸支され たものと、前記円形偏心カム40の外周に回転可能に外 嵌するリング50に固着したコンロッド60と、前記コ ンロッド60に回動可能に連結したピストン70と、前 10 50に固着したコンロッド60と、前記コンロッド60 記ピストン70を摺動可能に内嵌するシリンダ80とを 備え、前記クランクピン12の偏心距離P。と、前記外 樹々恵30のピッチ円半径P,と、前配内筒々車20の ピッチ円半径P。とが、1:2:3の割合になるように 形成したことを特徴とする4サイクル内燃エンジン。 【請求項2】 クランク主軸1 IBと同心に設けた内歯 々康20Bであって、フレーム90Bに固定されたもの と、前記内備々車20Bに内接して回動する外衛々車3 OBであって、クランクピン12Bに回転可能に軸支さ れたものと、前記外域々重30Bに固着された偏心軸4 20 0 B と、前記偏心軸 4 0 B に回転可能に外嵌するリング 50Bに固着したコンロッド60Bと、前記コンロッド 60Bに回動可能に連結したピストン70Bと、前記ピ ストン70 Bを摺動可能に内嵌するシリンダ80 Bとを 備え、前記クランクピン12Bの偏心距離P。と、前記 外歯々車30Bのピッチ円半径P,と、前記内歯々車2 0 Bのピッチ円半径 P2とが、1:2:3の割合になる ように形成したことを特徴とする4サイクル内燃エンジ

【発明の詳細な影明】

[0001]

【発明が属する技術分野】本発明は、4サイクル内燃工 ンジンに関する。

[0002]

【従来の技術】従来の4サイクル内燃エンジンは、構造 上、吸気行程と爆発行程とのストロークは同一で、爆発 行程の終了時にはまだ充分に圧力エネルギーを有する燃 焼ガスを排気ガスとして大気に放出している。本発明者 は、鋭意研究の結果、吸気及び圧縮行程のストロークと 爆発及び排気行程のストロークとを変え、吸気行程のス 40 トロークより爆発行程のストロークを長くすることによ り、燃焼ガスが持つ圧力エネルギーを有効利用してエン ジン効率を高めると共に、排気ガスのクリーン化に成功 した。

[0003]

【発明が解決しようとする課題】本発明は、燃焼ガスの もつ圧力エネルギーをより多く利用してエンジン効率の 飛躍的向上と排気ガスのクリーン化をはかつた 4 サイク ル内燃エンジンを提供するものである。

[0004]

【禊願を解決するための手段】本発明4サイクル内燃エ ンジンは、上記課題を達成するため、図示するように、 クランク主軸11と同心に設けた内缘々車20であっ て、フレーム90に固定されたものと、前記内閣々車2 0に内接して回動する外歯々車30であって、クランク ピン12に回転可能に軸支されたものと、前記外線々車 30と一体に形成された円形偏心カム40であって、前 記クランクピン12に回転可能に軸支されたものと、前 記円形偏心カム40の外間に回転可能に外嵌するリング に回動可能に連結したピストン70と、前記ピストン7 ①を擂動可能に内嵌するシリンダ80とを備え、前記ク ランクピン12の偏心距離P。と、前記外歯々車30の ピッチ円半径P,と、前記内菌々車20のピッチ円半径 P。とが、1:2:3の割合になるように形成したもの である。また、本発明4サイクル内燃エンジンは、上記 課題を達成するため、図示するように、クランク主輸1 1 Bと同心に設けた内歯々車20Bであって、フレーム 90Bに固定されたものと、前記内備々車20Bに内接 して回動する外歯々菌30Bであって、クランクピン1 2 Bに回転可能に軸支されたものと、前記外歯々車30 Bに固給された傷心軸40Bと、前型傷心軸40Bに同 鉱可能に外接するリング50Bに固着したコンロッド6 OBと、前記コンロッド60Bに回動可能に連結したビ ストン70 Bと、前記ピストン70 Bを摺動可能に内嵌 するシリンダ80Bとを備え、前記クランクピン12B の偏心距離P。と、前記外衛々車30Bのピッチ円半径 P. と、前記内請々重20Bのピッチ円半径P。とが、 1:2:3の割合になるように形成したものである。 【0005】本発明において、吸気行程のストロークの 長さと爆発行程のストロークの長さとの謝節は、外南々 車30の中心と円形偏心カム40の中心、又は、外歯々 車30Bの中心と偏心軸40Bの中心との距離を変更し

て行う。 [0006]

【発明の実施の影響 1 】 本発明の実施の形態が関1 及び 図2(a)乃至図2(e)に示されている。本実施例の 4サイクル内燃エンジンは、クランク軸10、内菌々車 20、外歯々車30、円形偏心カム40、リング50、 コンロッド60、ピストン70及びシリンダ80を備え たものである。内歯々車20は、フレーム90に固定さ れたもので、クランクピン12及びクランクアーム13 の回動に支障がないように配慮されている。外菌々車3 0は、クランクピン12に回転可能に軸支されると共 に、内能々直20に内接しながら回動するものである。 円形偏心カム40は、外衡々車30と一体に形成される もので、クランクピン12に同転可能に動すされる。リ ング50は、円形偏心カム40に回転可能に外嵌される もので、コンロッド60の後端を固着している。コンロ 50 ッド60は、先端に嵌合リング61を固着してピストン ピンに回転可能に軸支されている。ピストン70は、シ リンダ80に内嵌して摺動可能になっている。なお、ク ランクピン12の偏心距離P。と、外歯々車30のピッ チ円半径P1と、内歯々車20のピッチ円半径P1と は、1:2:3の割合になるように形成されている。従 つて、本実施例 4 サイクル内燃エンジンは、図2 (a) から図2(b)は吸入行程を示し、図2(b)から図2 (c) は圧縮行程を示す。図2(c) から図2(d) は 個発行程を示し、 図2 (d) から図2 (e) は排気行程 を繰り返すことになる。

[0007] 【発明の実施の形態2】本発明の実施の形態2が図3に 示されている。本実施例の4サイクル内燃エンジンは、 クランク軸10B、内歯々重20B、外歯々重30B、 偏心軸40B、リング50B、コンロッド60B、ピス トン70B及びシリンダ80Bを備えたものである。内 歯々車B20は、フレーム90Bに固定されたもので、 クランクピン12B及びクランクアーム13Bの回動に 支障がないように配慮されている。外備々車30Bは、 クランクピン12 Bに回転可能に軸支されると共に、内 関々用20Bに内接しながら回動するものである。 偏心 触40 Rは、外衛々取30 Rの中心から傷心して同語さ れる。リング50 Bは、偏心軸40 Bに回転可能に外接 されるもので、コンロッド60Bの後端を固着してい る。コンロッド60Bは、先端に嵌合リング61Bを固 着してピストンピンに回転可能に軸支されている。ピス トン70 Bは、シリンダ80 Bに内嵌して摺動可能にな っている。なお、クランクピン12Bの偏心距離P 』と、外歯々車30Bのピッチ円半径P」と、内歯々車 30 20Bのピッチ円半径P2とは、1:2:3の割合にな るように形成されている。従つて、本実施例4サイクル 内燃エンジンは、図2に示すと同様に、図2(a)から 図2(b)は吸入行程を示し、図2(b)から図2 (c) は圧縮行程を示す。図2(c)から図2(d)は 爆発行程を示し、図2(d)から図2(e)は排気行程 を示し、再び、図2(e)から図2(b)へと吸入行程 を繰り返すことになる。本発明4サイクル内燃エンジン は、4サイクルの間に、クランク主輸11、又は11B

は2回転し、外衛々車30又は30日は1回転する。本 発明では、吸入行程におけるピストン70の下死点に対 し爆発行程におけるピストンの下死点は円形偏心カム 4 0、又は、偏心軸40Bの偏心距離の2倍長くなる。

[0008]

【発明の効果】本発明によれば、吸入行程におけるスト ロークより爆発行程におけるストロークが長いので、そ れだけ、排気ガスとして放出する損失を少なくして、燃 **焼ガスがもつ圧力エネルギーを最大限に有効利用でき、** を示し、再び、図2 (e) から図2 (b) へと吸入行程 10 エンジン効率を高めると共に排気ガスのクリーン化がで きる。本発明は、特に過給 4 サイクルエンジンの効率に 寄与するところが大きい。 【図画の簡単な説明】

【図1】本発明の原理説明図である。

【図2(a)】排気行程の終了、吸入行程の開始を示す 説明図である。

【図2(b)】吸入行程の終了、圧縮行程の開始を示す 説明図である。

【図2(c)】圧縮行程の終了、爆発行程の開始を示す 鋭明図である。

【図2(d)】爆発行程の終了、排気行程の開始を示す 説明図である。

【図2 (e) 】排気行程の終了、吸入行程の開始を示す 説明図である。

【図3】本発明の別の原理説明図である。

【符号の説明】

10、10B クランク軸 11、11B クランク主軸

12、12B クランクピン

13、13B クランクアーム

20、20B 内衛々車 30、30B 外衛々車

40 円形偏心カム

40B 偏心軸 50、50B リング

60, 60B コンロッド

70、708 ピストン

71、718 ピストンピン 80、80B シリンダ

