

MICROCOPY RESOLUTION TEST CHART NATIONAL HELD TO THE ART OF A CONTROL OF A CONTROL

AD-A143 049

NAUGATUCK RIVER BASIN TORRINGTON - GOSHEN, CONNECTICUT

WHIST POND DAM
CT 00102

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

OTIC FILE COPY

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02154

DECEMBER 1980

This document has been approved by public release and sales its distillution is unlimited. 84 07 11 064

UNCLASSIFIED.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)			
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1 REPORT NUMBER 2. GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER		
CT 000102 4D.A.143 a	<u> </u>		
4 TITLE (and Subtitle)	S' TYPE OF REPORT & PERIOD COVERED		
Naugatuck River Basin	INSPECTION REPORT		
Torrington - Goshen, Conn., Whist Pond Dam	6 PERFORMING ORG. REPORT NUMBER		
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS			
7 AUTHOR(#)	& CONTRACT OR GRANT NUMBER(#)		
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION			
9 PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT HUMBERS		
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE		
DEPT. OF THE ARMY, CORPS OF ENGINEERS			
NEW ENGLAND DIVISION, NEDED	December 1980		
424 TRAPELO ROAD, WALTHAM, MA. 02254	. 70		
14 MONITORING AGENCY NAME & ADDRESS(II ditterent from Controlling Office)			
MONTONINO NOCACO, NAME E NOCACEDAN ESTADORISMO SERVICIO			
	UNCLASSIFIED		
	184. DECLASSIFICATION/DOWNGRADING SCHEDULE		
IS. DISTRIBUTION STATEMENT (of this Report)			
APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED			

17 DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

13. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY,

Naugatuck River Basin Torrington - Goshen, Conn. Whist Pond Dam

20 ABSTRACT (Continue on reverse side it necessary and identify by block manhar)

The Whist Pond Dam consists of an earth embankment with a maximum height of 9 ft. and a total length of 1,100 ft. including a 17.7 ft. long overflow spillway located at the right end of the dam. The outlet works consist of a 12 inch cast iron low level diversion outlet pipe through the dam. controlled by a downstream gate valve. The dam impounds Whist Pond, a storage reservoir for public water supply for the Torrington Water Company.

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION, CORPS OF ENGINEERS
424 TRAPELO ROAD
WALTHAM, MASSACHUSETTS 02254

REPLY TO ATTENTION OF: NEDED

MAR 1 0 1931

Honorable William A. O'Neill Governor of the State of Connecticut State Capitol Hartford, Connecticut 06115

Dear Governor O'Neill:

Inclosed is a copy of the Whist Pond Dam (CT-00102) Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Department of Environ-mental Protection, the cooperating agency for the State of Connecticut. In addition, a copy of the report has also been furnished the owner, Torrington Water Company, Richard D. Calhoun, President, 110 Prospect Street, Torrington, Connecticut 06790.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Protection for your cooperation in carrying out this packer m_{\star}

Inc l

1

C. E. EDGAR, ILE Golonel, Coro

Division Engineer

2000

WHIST POND DAM CT 00102

NAUGATUCK RIVER BASIN TORRINGTON - GOSHEN, CONNECTICUT

Acces	sion For			
NTIS	GRA&I	X		
DIIC	TAB	Ü	į	
Unann	ounced		- 1	
Justi	fication_	 		
	ibution/			
Avai	lability		A	`
Dist	Avail and Special			See A
Δ-				
]	

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM PHASE I INSPECTION REPORT

IDENTIFICATION NO: CT 00102	
NAME OF DAM: Whist Pond Dam	
TOWN: Goshen-Torrington	
COUNTY AND STATE: Litchfield County, Connecticut	
STREAM: Drake Pond Brook	- - -
DATE OF INSPECTION: November 17, 1980	

BRIEF ASSESSMENT

The Whist Pond Dam consists of an earth embankment with a maximum height of 9 feet, and a total length of 1,100 feet including a 17.7 foot long overflow spillway located at the right end of the dam. The outlet works consist of a 12-inch cast iron low level diversion outlet pipe through the dam, controlled by a downstream gate valve.

The dam impounds Whist Pond, a storage reservoir for public water supply for the Torrington Water Company.

Based on the visual inspection and a review of all available pertinent data, the dam is judged to be in fair condition. The future integrity of the dam can be affected by continued slumping of the riprap, roots through the embankment, continued deterioration of the spillway weir and training walls, the lack of a defined spillway discharge channel, and the downstream location of the low level diversion outlet valve.

Based on the Corps of Engineers' Recommended Guidelines for Safety

Inspection of Dams, the dam is classified as "Small" in size with a

"Significant" hazard potential. A Test Flood equal to the 100-Year Flood was selected in accordance with the Corps of Engineers' Guidelines. The calculated Test Flood inflow of 175 cfs results in a routed outflow of 65 cfs and 0.4 feet of freeboard.

The spillway has a capacity of 100 cfs and is capable of discharging 154 percent of the Test Flood routed outflow.

It is recommended that the owner engage the services of a qualified, registered engineer experienced in the design of dams to investigate the slumping riprap and freeboard requirements, the condition of the spillway weir and training walls, and the means to provide an upstream gate on the low level diversion outlet pipe. In addition, the following should be done: trees cleared from the area downstream of the dam, a program of annual technical inspections instituted, an Operations and Maintenance Manual prepared, and a formal warning system put into effect.

The owner should implement the recommendations as described herein and in greater detail in Section 7 within one year after receipt of this Phase I Inspection Report.

Ronald G. Litke, P.E.

Project Engineer

No. 10356

Roald Haestad President

hushel

This Phase I Inspection Report on Whist Pond Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dams, and with good engineering judgment and practice, and is hereby submitted for approval.

Corney M. Verzian

CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division

RICHARD DIBUONO, MEMBER Water Control Branch

Engineering Division

1 Am H

ARAMAST MAHTESIAN, CHAIRMAN Geotechnical Engineering Branch Engineering Division

APPROVAL RECOMMENDED:

OE B. FRYAR

Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the

condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I Inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

The Phase I Investigation does <u>not</u> include an assessment of the need for fences, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety of the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

SECTION	PAGES
LETTER OF TRANSMITTAL	i
BRIEF ASSESSMENT	ii - iii
REVIEW BOARD PAGE	iv
PREFACE	v - vi
TABLE OF CONTENTS	vii - ix
OVERVIEW PHOTO	×
LOCATION PLAN	жi
INDEX TO REPORT	
DESCRIPTION	PAGES
1. PROJECT INFORMATION	1 - 8
1.1 GENERAL	1
a. AUTHORITYb. PURPOSE OF INSPECTION	1 1
1.2 DESCRIPTION OF PROJECT	2 - 4
a. LOCATION b. DESCRIPTION OF DAM AND APPURTENANCES c. SIZE SSIFICATION d. HAZ, :LASSIFICATION e. OWNE IP f. OPERATOR g. PURPOSE OF DAM h. DESIGN AND CONSTRUCTION HISTORY i. NORMAL OPERATIONAL PROCEDURE 1.3 PERTINENT DATA 2. ENGINEERING DATA	2 2 - 3 3 3 3 4 4 4 4 5 - 8
2.1 DESIGN DATA	9
2.2 CONSTRUCTION DATA	9
2.3 OPERATION DATA	9
2.4 EVALUATION OF DATA	9
a. AVAILABILITY	9

DES	DESCRIPTION	
3.	VISUAL INSPECTION	
	3.1 FINDINGS	10 - 12
	 a. GENERAL b. DAM c. APPURTENANT STRUCTURES d. RESERVOIR AREA e. DOWNSTREAM CHANNEL 	10 10 11 11 - 12 12 12
	3.2 EVALUATION	12
4.	OPERATIONAL AND MAINTENANCE PROCEDURES	1 3
	4.1 OPERATIONAL PROCEDURES	1 3
	a. GENERALb. DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT	1 3 1 3
	4.2 MAINTENANCE PROCEDURES	1 3
	a. GENERALb. OPERATING FACILITIES	13 13
	4.3 EVALUATION	13
5.	EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES	14 - 16
	5.1 GENERAL	14
	5.2 DESIGN DATA	14
	5.3 EXPERIENCE DATA	14
	5.4 TEST FLOOD ANALYSIS	15
	5.5 DAM FAILURE ANALYSIS	15 - 16
6.	EVALUATION OF STRUCTURAL STABILITY	17
	6.1 VISUAL OBSERVATION	17
	6.2 DESIGN AND CONSTRUCTION DATA	17
	6.3 POST-CONSTRUCTION CHANGES	17
	6.4 SEISMIC STABILITY	17

DESCRIPTION		PAGES	
з.	VISUAL INSPECTION	10 - 12	
	3.1 FINDINGS	10 - 12	
	 a. GENERAL b. DAM c. APPURTENANT STRUCTURES d. RESERVOIR AREA e. DOWNSTREAM CHANNEL 	10 10 · 11 11 - 12 12 12	
	3.2 EVALUATION	12	
4.	OPERATIONAL AND MAINTENANCE PROCEDURES	13	
	4.1 OPERATIONAL PROCEDURES	1 3	
	a. GENERAL b. DESCRIPTION OF ANY WARNING SYSTEM IN EFFECT	13 13	
	4.2 MAINTENANCE PROCEDURES	13	
	a. GENERALb. OPERATING FACILITIES	1 3 1 3	
	4.3 EVALUATION	13	
5.	EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES	14 - 16	
	5.1 GENERAL	1 4	
	5.2 DESIGN DATA	14	
	5.3 EXPERIENCE DATA	1 4	
	5.4 TEST FLOOD ANALYSIS	1 5	
	5.5 DAM FAILURE ANALYSIS	15 - 16	
6.	EVALUATION OF STRUCTURAL STABILITY	1 7	
	6.1 VISUAL OBSERVATION	1 7	
	6.2 DESIGN AND CONSTRUCTION DATA	17	
	6.3 POST-CONSTRUCTION CHANGES	1 7	
	6.4 SEISMIC STABILITY	1 7	

DESCRIPTION	PAGES
. ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	18 ~ 19
7.1 DAM ASSESSMENT	: 6
a. CONDITIONb. ADEQUACY OF INFORMATIONc. URGENCY	1 6 1 6 1 8
7.2 RECOMMENDATIONS	:9
7.3 REMEDIAL MEASURES	19
a. OPERATION AND MAINTENANCE PROCEDURES	: 9
7.4 ALTERNATIVES	19

INDEX TO APPENDIXES

APPENDIX	DESCRIPTION	PAGES
A	INSPECTION CHECKLIST	A1 - A7
В	ENGINEERING DATA	€1
С	PHOTOGRAPHS	C1 - C7
D	HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D1 - D25
Ε	INFORMATION AS CONTAINED IN THE	

13 NOVEMBER '80

GOSHEN-TORRINGTON, CONNECTICUT

NATIONAL DAM INSPECTION FROGRAM PHASE I INSPECTION REPORT

WHIST POND DAM

PROJECT INFORMATION SECTION 1

1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army, through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Roald Haestad, Inc., has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed were issued to Roald Haestad, Inc. under a letter of October 28, 1980, from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-81-C-0005 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection

The purposes of the program are to:

- Perform technical inspection and evaluation of nonfederal dams to identify conditions requiring correction in a timely manner by non-federal interest.
- Encourage and prepare the States to quickly initiate effective dam inspection programs for non-federal dams.
- To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

a. Location

The Whist Pond Dam is located on Drake Pond Brook, a tributary to the West Branch of the Naugatuck River, just south of Brandy Hill Road, on the City Boundary between Torrington and Goshen, Connecticut. The dam is shown on the West Torrington Quadrangle Map having coordinates of latitude N 41°51.1' and longitude W 73°11.0'.

b. Description of Dam and Appurtenances

The dam consists of an earth embankment with a maximum height of 9 feet, upstream and downstream slopes which vary from about 2 to 3 horizontal to 1 vertical and a total length of 1,100 feet including a 17.7 foot long overflow spillway located at the right end of the dam. The dam has two sections which meet at approximately a 90° angle. The section of the dam to the right of the angle has a top width of about 8 feet, an average height of about 8 feet, and a length of 425 feet. The section to the left of the angle has a top width of about 6 feet, an average height of approximately 4 feet, and a length of 675 feet. The upstream slope of the dam is protected by a layer of riprap and the downstream slope is grassed. At the 90° angle there is an access road with stone masonry retaining walls from the downstream toe to the crest of the dam.

The spillway consists of a stone masonry overflow section with concrete training walls upstream and stone masonry training walls downstream. The top of the dam is 1.5 feet above the spillway level.

The outlet works are located near the center of the right section of the dam. The outlet works consist of a 12-inch cast iron

low level diversion outlet through the earth embankment which discharges into Nickel Mine Brook approximately 3,500 feet from the dam. The outlet is controlled by a manually operated gate located in a valve shed at the downstream toe of the dam.

c. Size Classification - "Small"

According to the Corps of Engineers' Recommended Guidelines

for Safety Inspection of Dams, the dam is classified as "Small" in

size if the height is between 25 feet and 40 feet or if the dam impounds

between 50 Acre-Feet and 1,000 Acre-Feet. The dam has a maximum height

of 9 feet and a maximum storage capacity impounded by the dam (not in
cluding natural lake storage) of 260 Acre-Feet. Therefore, the dam

is classified as "Small" in size based upon a maximum storage capacity

of 260 Acre-Feet.

d. Hazard Classification - "Significant"

Based on the Corps of Engineers' Recommended Guidelines for Safety Inspection of Dams, the hazard classification of the dam is "Significant". A dam failure analysis indicates that a house trailer located at the confluence of the Drake Pond Brook and the West Branch of the Naugatuck River would be flooded to a depth of 1 to 3 feet, possibly resulting in the loss of a few lives and causing downstream property damage. Pre-failure flow is confined within the streambed.

e. Ownership

Torrington Water Company Richard D. Calhoun, President 110 Prospect Street Torrington, Connecticut 06790 (203) 489-4149

f. Operator

William Jones Torrington Water Company 110 Prospect Street Torrington, Connecticut 06710 (203) 489-4149

g. Purpose of the Dam

The Whist Pond Dam impounds Whist Pond, a storage reservoir for public water supply.

h. Design and Construction History

The dam was constructed around 1900. No information was available on the design or construction of the dam. The spillway training walls were repaired by the Torrington Water Company in 1975.

i. Normal Operational Procedures

The gate on the low level diversion outlet is normally left closed. During dry years the gate is opened to allow water to flow to downstream distribution reservoirs.

1.3 Pertinent Data

a. Drainage Area

The drainage area consists of 0.23 square miles of "rolling" wooded hills with no development. Another 0.40 square miles of similar terrain is tribitary through a diversion channel with a maximum capacity of 40 cfs.

b. Discharge at Damsite

Discharge at the damsite is over a 17.7 foot long overflow millway. A liminch cast iron low level diversion outlet diverts water from Whist Fond to Nickel Mine Brook when required to supplement flow during dry years.

1.	Outlet Works (conduits) Size:	12-inch
	Invert Elevation:	Approximately 1182.5
	Discharge Capacity:	2 cfs @ Pool El. 1196.5
2.	Maximum Known Flood at Damsite:	Unknown
3.	Ungated Spillway Capacity at Top of Dam: Elevation:	100 cfs 1196.5
4.	Ungated Spillway Capacity at Test Flood Elevation: Elevation:	65 cfs 1196.1
5.	Gated Spillway Capacity at Normal Pool Elevation:	N/A
6.	Gated Spillway Capacity at Test Flood Elevation:	N/A
7.	Total Spillway Capacity at Test Flood Elevation:	65 cfs 1196.1
8.	Total Project Discharge at Top of Dam: Elevation:	100 cfs 1196.5
9.	Total Project Discharge at Test Flood Elevation:	65 cfs 1196.1

c.	E	levation - Feet Above Mean Sea Level	(NGVD)
	1.	Streambed at Toe of Dam:	1187
	2.	Bottom of Cutoff:	Unknown
	3.	Maximum Tailwater:	N/A
	4.	Normal Pool:	1195.0
	5.	Full Flood Control Pool:	N/A
	6.	Spillway Crest:	1195.0
	7.	Design Surcharge - Original Design	: Unknown
	8.	Top of Dam:	1196.5
	9.	Test Flood Surcharge:	1196.1
d.	Re	servoir - Length in Feet	
	1.	Normal Pool:	1800 feet
	2.	Flood Control Pool:	N/A
	3.	Spillwav Crest Pool:	1800 feet
	4.	Top of Dam:	2000 feet
	5.	Test Flood Pool:	1900 feet
e.	Sto	orage - Acre-feet	
	1.	Normal Pool:	400 Acre-Feet *
	2.	Flood Control Pool:	N/A
	3.	Spillway Crest Pool:	400 Acre-Feet *
	4.	Top of Dam:	460 Acre-Feet *
	5.	Test Flood Pool:	445 Acre-Feet*
f.	Res	ervoir Surface - Acres	
	1.	Normal Pool:	39.5 acres
	2.	Flood-Control Pool:	N/A
	3.	Spillway Crest:	39.5 acres
	4.	Test Flood Pool:	40.9 acres
	5.	Top of Dam:	45.9 acres

^{*}Including estimated 200 Acre-Feet, natural lake storage.

g. Dam

1. Type:

Earth Embankment

2. Length:

1100 feet

3. Height:

Maximum 9 feet

4. Top Width:

8 feet right section; 6 feet left section

5. Side Slopes:

Vary from 2 - 3 horizontal to 1 vertical

6. Zoning:

Unknown

7. Impervious Core:

Unknown

8. Cutoff:

Unknown

9. Grout Curtain:

Unknown

10. Other:

h. Diversion and Regulating Tunnel - N/A

i. Spillway

1. Type: Stone Masonry Overflow

2. Length of Weir: 17.7 feet

3. Crest Elevation with Flash Boards: N/A without Flash Boards: 1195

4. Gates: N/A

5. Upstream Channel: Lined with cobbles and gravel

6. Downstream Channel: Unlined - Overgrown with brush and trees

7. General: No defined dowstream channel

j. Regulating Outlets

1. Invert: Approximately 1182.5

2. Size: 12-inch

3. Description: Cast iron low level diversion outlet

4. Control Mechanism: Manually operated downstream gate valve

5. Other:

Outlet discharges to Nickel Mine Brook
approximately 3,500 feet from dam. Capacity reported to be approximately 2 cfs.

SECTION 2

2.1 Design Data

There was no design data available for review.

2.2 Construction Data

There was no construction data available for review. It was reported that the dam was constructed around 1900 to increase the storage capacity of an existing natural lake. Repairs were made to the upstream training walls in 1975 by the Torrington Water Company. It was reported that new concrete walls were poured against and over the existing walls.

2.3 Operation Data

Water levels have been recorded at least weekly since 1973.

Information concerning maximum water levels was not available.

2.4 Evaluation of Data

a. Availability

Design or construction data was not available from the State of Connecticut Department of Environmental Protection or the Torrington Water Company, the owner of the dam.

b. Adequacy

As no design or construction information was available, the assessment of the condition of the dam was based on the visual inspection, past performance history, and hydrologic and hydraulic calculations performed for this Report.

VISUAL INSPECTION SECTION 3

3.1 Findings

a. General

The visual inspection of the dam was conducted on November 17, 1980. At the time of inspection the water level was approximately 11 feet below the top of the dam, and approximately 3 feet below the upstream toe of the dam.

Whist Pond Dam consists of an "L" shaped earth embankment with an overflow spillway located at the right end of the dam, and outlet works located near the center of the right portion of the dam, Photo 1.

The general condition of the dam at the time of inspection was fair.

b. Dam

The upstream slope of the dam is protected by a layer of 4 to 12 inch riprap, Photo 2. In several areas the riprap appears to have slumped approximately 12 inches, Photo 3, possibly due to the lack of filter or bedding material between the riprap and the embankment. The slumping is most pronounced near the left end of the dam, Photo 4, where the slumping has cut into the crest.

The crest of the dam is generally level and covered with grass, Photos 1 and 4. There is a foot path at approximately the center line of the crest along the entire length of the dam. Tree roots were observed at several locations along the crest of the dam, Photo 5, and appear to originate from trees located downstream of the embankment, Photo 4.

The downstream slope of the dam is grass-covered, Photos 1 and 4. Several ruts due to mowing equipment were observed on the downstream slope.

The areas downstream of the left portion of the dam were slightly wet as the result of ponding water in this area and not from water seeping through the dam. Downstream of the right purtion of the dam there was a small wet area and evidence of previous ponding in the surrounding area.

c. Appurtenant Structures

The appurtenant structures consist of the overflow spillway and the outlet works.

Overflow Spillway

The overflow spillway consists of a stone masonry weir with concrete training walls upstream and stone masonry training walls downstream, Photos 6 and 7. The right training wall is cracked and displaced approximately 5/8 inch at the top of the wall, Photo 8. The left concrete training wall appeared to be in good condition. The concrete training walls appeared to have been poured over existing stone masonry training walls. The downstream stone masonry training walls show some signs of deterioration, Photo 7.

The overflow weir is constructed of a dry stone masonry wall with 4.5 foot wide cap stones. There are voids between the stonework and under the cap stones of the wall, Photo 9.

Outlet Works

The outlet works consist of a 12-inch diameter cast iron low level diversion outlet through the dam controlled by a manually operated downstream gate that is reported to be operable. The gate is housed in a wooden building at the downstream toe. The building has

been practically scholished by vandals with the floor sowered with pieces of ribrar, in to 10.

d. Reservoir Area

There are no initiations of instability along the edges of the reservoir in the vicinity of the dam.

e. Dewn. tream Mainel

The spillway discharge shannel is not very well-defined and is heavily evergrown with brush and trees.

3.2 Evaluation

Based on the visual observations, the dam appears to be in fair condition. The following features could affect the future integrity of the dam:

- 1. Slumping of the riprap could cause futher erosion of the treat resulting in a breach of the dam.
- 2. Roots through the embankment could provide seepage paths for internal erosion.
- Continued deterioration of the spillway weir and training walls could lead to failure of the spillway.
- 4. The lack of a defined spillway discharge channel could cause flooding and erosion of the downstream toe of the embankment.
- 5. The location of the low level fiversion outlet valve at the downstream toe permits full water pressure to exist in the outlet pipe through the dam. In the event of a leak in the outlet pipe, seepage and high pore pressure near the downstream toe or base of the dam could cause sliding failure or piping failure of the embankment.

OPERATIONAL AND MAINTENANCE PROCEDURES SECTION 4

4.1 Operational Procedures

a. General

The gate on the low level diversion outlet is normally left closed. During dry years the gate is opened to allow water to flow through a diversion pipeline to Nickel Mine Brook and into downstream distribution reservoirs. Prior to this year (1980) the last time water was drawn from the impoundment was in 1974.

b. Description of Any Warning System in Effect

There is no formal warning system in effect for the dam.

4.2 Maintenance Procedures

a. General

The downstream slopes and crest of the dam are cleared annually. Repairs, such as the repairs to the concrete training walls, are made occasionally.

b. Operating Facilities

There are no maintenance procedures for the operating facilities.

4.3 Evaluation

The present operational and maintenance procedures should be improved upon. An Operations and Maintenance Manual should be prepared for the dam and operating facilities, a program of annual technical inspections by qualified, registered engineers should be instituted, and a formal warning system should be put into effect.

EVALUATION OF HYDRAULICZHYDROLOGIC FRATURES SECTION 5

5.1 General

Whist Pond is impounded by a low earth dam approximately 1,100 feet long with a maximum height of 9 feet. The dam has two sections which meet at approximately a 90° angle. An access road from the downstream toe to the dam crest also meets the dam at this corner. The spillway consists of a 17.7 foot long stone masonry overflow section with concrete training walls upstream and stone masonry training walls downstream of the weir. The spillway is located at the right end of the dam. The top of the dam is 1.5 feet above the spillway level. The normal freeboard of only 1.5 feet could lead to overtopping due to wave action.

The dam has a watershed of 0.23 square miles directly tributary to the pond and another 0.4 square miles tributary via a diversion channel. The diversion has a capacity of about 40 cfs, and is controlled by flashboards at an upstream intake structure, Photos 11 and 12. Flows exceeding the diversion capacity continue down the natural channel. The terrain is "rolling" wooded hills with no development. Elevations range from 1320 feet at the north end of the watershed to 1195 feet at the spillway. The diversion watershed has a maximum elevation of about 1500 feet.

Piping consists of a single l2-inch cast iron low level diversion outlet pipe through the dam controlled by a downstream gate. The pipe discharges to another watershed 3,500 feet from the dam.

5.2 Design Data

No design data or computations were available for the dam.

5.3 Experience Data

The dam did not overtop in the August 1955 Flood. Records of peak flows have not been maintained, although the pond level has been read on a weekly basis since 1973.

5.4 Test Flood Analysis

Based on the dam failure analysis, the dam is classified as "Significant" hazard potential. The dam is classified as "Small" in size based on a storage capacity impounded by the dam (not including natural lake storage) of 260 Acre-Feet. According to the Recommended Guidelines for Safety Inspection of Dams, by the Corps of Engineers, the Test Flood should be in the range of the 100-Year Flood to one-half the Probable Maximum Flood (1/2 PMF).

A Test Flood equal to the 100-Year Flood was selected because of the limited downstream development and the low hydraulic height of the dam.

An inflow flood peak of 135 cfs was calculated for the 0.23 square mile watershed of Whist Pond using the "Weiss Formula" as developed by the U.S.G.S. (United States Geological Survey) and described in Flood Control Formulas for Connecticut by the Connecticut Department of Environmental Protection.

Including the 40 cfs from the diversion, the 100 Year peak inflow was calculated to be 175 cfs. The Test Flood was routed through the impoundment in accordance with "Estimating Effect of Surcharge Storage on Probable Maximum Discharges" provided by the Corps of Engineers. The Test Flood routed outflow was calculated to be about 65 cfs. The spillway has a capacity of 100 cfs and is capable of discharging almost 154 percent of the Test Flood routed outflow.

5.5 Dam Failure Analysis

A dam failure analysis was made using the Corps of Engineers'
"Rule of Thumb" Guidance. Failure was assumed when the water level
reached the top of the dam, producing a maximum head of 9 feet.

For purposes of the dam failure analysis the dam was assumed to be

divided at the access road into two sections. Should they fail, each section would flood a different stream valley. The right section is up to 9 feet high and 425 feet long including the spillway. The left section is up to 5 feet high and 675 feet long. Flood routing was performed for the right section only, as this would produce greater flood flows, and there was no development in the stream valley downstream of the left section.

The calculated dam breach, 9 feet high by 154 feet long, would release about 7,000 cfs into the stream below the dam. Spillway discharge was assumed negligible in comparison to the dam breach flow and was not included in the flood routing. The flood waters would flow downstream in a well-defined channel before overtopping Brandy Hill Road by approximately 4-1/2 feet. The flood waters would continue downstream in a steep, narrow gorge for approximately 2,500 feet before reaching the West Branch of the Naugatuck River. Here the flood flows would have to make a 90° bend. A trailer park is located at the confluence of the stream and the West Branch of the Naugatuck River. One house trailer is located very close to the confluence and would be subject to flooding from a failure of Whist Pond Dam. The dam breach flow in the area of this trailer would be about 4,000 cfs and would cause flooding to a depth of 1 to 3 feet depending on the opposing flows of the two streams and the 90° bend the flood flows would have to make. The bridge at Route 272 can pass the dam breach flows. Beyond Route 272 the flood flows would be dissipated in Stillwater Pond.

Pre-failure flow is confined within the streambed.

The dam is classified as "Significant" potential hazard because of the possible loss of a few lives should the dam fail.

EVALUATION OF STRUCTURAL STABILITY SECTION 6

6.1 Visual Observations

The visual observations did not disclose any evidence of present or past structural instability. The future stability of the dam could be affected by:

- 1. Continued slumping of riprap slope protection;
- 2. Roots through the embankment;
- 3. Continued deterioration of the spillway weir and training walls;
- 4. Brush and heavy tree growth in the spillway discharge channel; and
- The location of low level diversion outlet control valve at the downstream toe.

6.2 Design and Construction Data

No design or construction data for the dam was available for review.

6.3 Post-Construction Changes

No known post-construction changes have been made that would peopardize the integrity of the dam.

6.4 Seismic Stability

The dam is located in Seismic Zone 1 and in accordance with the Recommended Guidelines for Safety Inspection of Dams, by the Corps of Engineers, does not warrant seismic stability analysis.

ASSESSMENT, RECOMMENSATIONS, E HEMELIAL MEASURES. SECTION 7

7.1 Dam At the Deep.

a. <u>C n 111 1. n</u>

Pased in the virial in pertian, the law appears to be in dood condition. The fell warr teature of the dam:

- 1. Slumping of the riprap slope protection;
- 2. Roots through the embankment;
- 3. Continued deterioration of the spillway weir and training walls;
- 4. Lack of defined spillway discharge channel;
- 5. Location of the low level diversion outlet valve at the downstream toe; and
- 6. Inadequate freeboard.

An evaluation of the hydraulic and hydrologic features of the dam indicates that the spillway is capable of passing 154 percent of the Test Flood routed outflow (100-Year Flood).

b. Adequacy of Information

As no design or construction data were available for review, the assessment of the condition of the dam was based on the visual inspection, past performance history, and hydraulic and hydrologic calculations made for this Report.

c. Urgency

The recommendations described in Sections 7.2 and 7.3 should be carried out by the owner within one year after receipt of this Report.

7.2 Resummendations

The following items should be carried out under the direction of a qualified, registered engineer:

- Investigate the slamping of the riprap slope protection, and design remedial measures as required.
- Investigate the condition of the spillway weir and training walls, and design required repairs.
- Clear trees from the area downstream of the dam to within
 feet of the toe.
- 4. Design an upstream gate for the low level diversion outlet in order to relieve full reservoir water pressure in the pipe under the dam.
- 5. Inspect the dam for seepage when the impoundment is full.
- 6. Investigate freeboard requirements for the dam.

The owner should implement all recommendations made by the engineer based on the above investigations.

7.3 Remedial Measures

a. Operation and Maintenance Procedures

- Remove trees and brush along and in the spillway discharge channel for a distance of 100 feet below the dam.
- Institute a program of annual technical inspections by qualified, registered engineers.
- Prepare an Operations and Maintenance Manual for the dam and operating facilities.
- Develop a downstream warning system in case of an emergency at the dam.

7.4 Alternatives

There are no practical alternatives to the recommendations described herein.

APPENDIX A

VISUAL CHECK LIST WITH COMMENTS

VISUAL INSPECTION CHECK LIST PARTY ORGANIZATION

PROJECT: Whist Pond Dam			
DATE: 11/17/80 TIME: 3:00 p.m. WEATHER: Cloudy 35°			
W.S. ELEVATION: 1185.5 U.S. N/A DN.S (11' ± below top of dam)			
PARTY		DISCIPLINE	
1. Roald Haestad, P.E Roald Haes	stad, Inc.	Civil/Geotechnical	
2. Donald L. Smith, P.E Roald H.	ertad, Inc.	Civil/Hydrologic	
3. Ronald G. Litke, P.E Roald Ha	estad, Inc.	Civil/Structural	
4			
5			
6			
PROJECT FEATURE	INSPECTED BY	REMARKS	
1. Dam Embankment	RH,DLS,RGL	Fair condition; clumping of ripram.	
Intake Channel &	Idi,DES,NOE	Intake channel at bottom of	
2. Outlet Works - Intake Structure	EH,LAS,EGL	pond; no structure observed.	
3. Outlet Works - Control Tower	RH,DLS,RGL	Valve shed in poor condition	
Transition & 4. Outlet Works - Conduit	RH,DLS,RGL	12-inch cast iron pipe	
Outlet Structure	PH NIC DOL	No otworkers or shared	
5. Outlet Works - & Outlet Channel Spillway Weir, Ap	RH,DLS, RCL	No structure or channel Training wall cracked; stone	
6. Outlet Works - & Disch. Channel	RH,DLS,RGL	masonry weir deteriorated;	
7		channel overgrown.	
8			
9			
10			
11			

DATE: 11/17/H
NAME: HH,DLS
NAME: RGL
COMPLETIONS
CONDITIONS
1196.5
1185.5
Unknown
None observed
N/A
None observed
None observed
Good
Good
Good
None observed
No evidence of trespassing
Grass cover. Roots from downstream trees are present at the crest of the dam.
Riprap on upstream slope appears to be settling or slumping.
Riprap appears to be settless, possibly due to lack of filter.
None observed
N/A - Water level below upstream toe of dam at time of inspection.
None observed
None observed
None observed
None observed

PROJECT: Whist Pond Dam			DATE:11/17/80		
Intake Chara and PROJECT FEATURE: Outlet Works - Intake Structure				-	
DISCIPLINE: Civil/Geotechnical Engineers		NAME: DLS, RGL			
	AREA EVALUATED		CONDITIONS		
	LET WORKS - INTAKE NNEL AND INTAKE STRUCTURE				
Α.	APPROACH CHANNEL:				
	SLOPE CONDITIONS	Good		-	
	BOTTOM CONDITIONS	Could not be	Could not be observed		
	ROCK SLIDES OR FALLS	None observe	-d	·	
	LOG BOOM	N/A			
	DEBRIS	N/A			
	CONDITION OF CONCRETE	N/A			
	DRAINS OR WEEP HOLES	N/A			
в.	INTAKE STRUCTURE:	No intake s	tructure observed		
	CONDITION OF CONCRETE				
	STOP LOGS AND SLOTS				

PROJECT: Whist Pond Dam			:	11/17/80	
DISCIPLINE: Civil Engineers		NAME	:	pls,ku	
	AREA EVALUATED	CONDITI			
זטם	LET WORKS - CONTROL TOWER	No control tower - gate housed in that			
Α.	CONCRETE AND STRUCTURAL:	at toe of downstream slope			
	GENERAL CONDITION	Poor			
	CONDITION OF JOINTS	N/A			
	SPALLING	N/A			
	VISIBLE REINFORCING	N/A			
	RUSTING OR STAINING OF CONCRETE	N/A			
	ANY SEEPAGE OR EFFLORESCENCE	N/A			
	JOINT ALIGNMENT	N/A			
	UNUSUAL SEEPAGE OR LEAKS IN GATE CHAMBER	N/A			
	CRACKS	N/A			
	RUSTING OR CORROSION OF STEEL	N/A			
в.	MECHANICAL AND ELECTRICAL:	N/A			
	AIR VENTS	N/A			
	FLOAT WELLS	N/A			
	CRANE HOIST	N/A			
	ELEVATOR	N/A			
	HYDRAULIC SYSTEM	N/A			
	SERVICE GATES	Manually operated downstream gar reported to be operable.			
	EMERGENCY GATES	N/A			
	LIGHTNING PROTECTION SYSTEM	N/A			
	EMERGENCY POWER SYSTEM	N/A			
	WIRING AND LIGHTING SYSTEM IN GATE CHAMBER	N/A			

PROJECT: Whist Pond Dam	DATE: 11/10786
PROJECT FEATURE: Outlet Works - Transition	
DISCIPLINE: Civil Engineers	NAME: DLS, FOL
AREA EVALUATED	
OUTLET WORKS - TRANSITION AND CONDUIT	Conduit consists of a 12-inch cast
GENERAL CONDITION OF CONCRETE	iron pipe.
RUST OR STAINING ON CONCRETE	
SPALLING	
EROSION OR CAVITATION	
CRACKING	
ALIGNMENT OF MONOLITHS	
ALIGNMENT OF JOINTS	
NUMBERING OF MONOLITHS	

PROJECT: Whist Pond Dam	DATE: 11/1/200
PROJECT FEATURE: Outlet Works - Transition	and Conduit NAME: Fi
DISCIPLINE: Civil Engineers	NAME: DLE, HOL
AREA EVALUATED	CONDITIONS
DUTLET WORKS - TRANSITION AND CONDUIT	
GENERAL CONDITION OF CONCRETE	iron pipe.
RUST OR STAINING ON CONCRETE	
SPALLING	
EROSION OR CAVITATION	
CRACKING	·
ALIGNMENT OF MONOLITHS	
ALIGNMENT OF JOINTS	
NUMBERING OF MONOLITHS	_

PROJECT: Whist Fond Dam	DATE: 11/17/6
Outlet St	ructure and
PROJECT FEATURE: Outlet Works - Outlet Ch	annel NAME: FH
DISCIPLINE: Civil Engineers	NAME: DLS, KGL
AREA EVALUATED	CONDITIONS
OUTLET WORKS - OUTLET STRUCTURE	No outlet structure or channel.
AND OUTLET CHANNEL	Conduit discharges approximately
	3,500 feet from dam.
GENERAL CONDITION OF CONCRETE	
RUST OR STAINING	
SPALLING	
EROSION OR CAVITATION	
VISIBLE REINFORCING	
ANY SEEPAGE OR EFFLORESCENCE	
CONDITION AT JOINTS	
DRAIN HOLES	
CHANNEL	
LODSE ROCK OR TREES)
OVERHANGING CHANNEL	
CONDITION OF DISCHARGE CHANNEL	

PROJECT: Whist Pond Dam			_ DATE:_	11/17/je/
Spillway Weir, Approach			.]; NAME:	FJI
DIS	CIPLINE: Civil/Geotechnical Engineers		_ NAME:	DLS, WIL
	AREA EVALUATED	C	MOITIONS	S
	LET WORKS - SPILLWAY WEIR, ROACH AND DISCHARGE CHANNELS			
Α.	APPROACH CHANNEL:			
	GENERAL CONDITION	Good		
	LOOSE ROCK OVERHANGING CHANNEL	None		
	TREES OVERHANGING CHANNEL	None		
	FLOOR OF APPROACH CHANNEL	Cobbles and		raining walls con-
В.	WEIR AND TRAINING WALLS:	crete upstre Right traini	eam, stone ng wall c	masonry downstream racked and displaced am walls and weir
	GENERAL CONDITION OF CONCRETE	need work -		
	RUST OR STAINING	N/A		
	SPALLING	None observe	ed	
	ANY VISIBLE REINFORCING	None observe	ed	
	ANY SEEPAGE OR EFFLORESCENCE	No seepage.	Water leve	el below spillway.
	DRAIN HOLES	None		
с.	DISCHARGE CHANNEL:			
	GENERAL CONDITION	Overgrown, r	not very we	ell-defined.
	LOOSE ROCK OVERHANGING CHANNEL	None observe	ed	
	TREES OVERHANGING CHANNEL	Brush and sm	mall trees	in channel
	FLOOR OF CHANNEL	Cobbles and	Gravel	
	OTHER OBSTRUCTIONS			

APPENDIX B

ENGINEERING DATA

WHIST POND Concrete Training Walls Top E1, 1197.5 11 7 Long Stone Mascory Sur Thay 8 1 195 3 Stone Masonry Indusing Walls IT Cast For Out et Plus PLAN 17.7' Long Stone Masonry Spiritway E1 1195.0 1000 ING MORTH ELEVATION Signal Commence of the second B-1

WHIST POND 12" Cast Iron Outlet Pipe Enge :f 2 rt Fcao Stone Masonry Retaining Wall PLAN -- Dirt Access Road 1100# NG WIST ELEVATION
Scale: 10 80 80 (PC)

'단-1

Brund Spanish Cam

SECTION B-B

Scale: i" 20

SECTION A-A

. Top of Dami

ine of Dan

(LOOFING WEST'

PROALD HAESTAD, INC. CONSULTING ENGINEERS

JI, ARMY ENGINEER DIZ NEW FNG AND COMPS OF FMINISTERS WALTHAM MA

NATIONAL PROGRAM OF INSPECTION OF NON FED DAMS

WHIST POND DAM

 APPENDIX C

PHOTOGRAPHS

. . . .

*

WHIST POND

^

Denotes photo number and direction in which photo was taken

FIGURE 3

Stope of Day

St

ROALD HAESTAD NI JE AHMIT EMINER HILL NEW ENGLAND CONSERTING FACINITY AND THE MINE TO A STORY WAS THE HELD TO THE MINE TO A STORY WAS THE MINE TO A ST

NATIONAL PROGRAM OF WIPE 1 1. F 1. 1. FEL CAMIC

PHOTO LOCATION PLAN
WHIST POND DAM
GOSHEN AND TORRINGTON, CONNECTION

DRAWN CHECKED APPRINED SCALES 1" 80"

JRS RGL RH DATE 12/80 PAUL C-1

PHOTO NO. 1

VIEW OF DAM FROM RIGHT END OF SPILLWAY

PHOTO NO. 2

RIPRAP ON UPSTREAM SLOPE

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS WHIST FOND DAM

DRAKE POND BROOK

GOSHEN-TORRINGTON, CT

CT 00102

17 NOVEMBER '80

PHOTO NO. 3

SLUMPING RIPRAP. RULE EXTENDED 18 INCHES.
NOTE TREES DOWNSTREAM.

PHOTO NO. 4

RIPRAP CUTTING INTO CREST.

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS WHITE MEDAM

[RARE FOULTH OF STATE

OF STATE OF STATE

17 to VENERAL STATE

PHOTO NE. :

SPILLWAY FROM UPSTREAM.

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS DRAKE POND DAM
DRAKE POND BROOK
GOSHEN TORRINGTON, CT
CT 00102
17 NOVEMBER '80

POSTURBLE /

SEILLWAY WEIR AND DOWN THEAM THAINING WALL, NOTE HE OF IN HILLWAY DISCHARGE CHANNEL.

$(1,1,1,1,2,\ldots,2)$

CONCRETE THAINING WALL DOTE PRACE AND EIR IN HE DI ELACEMENT AT TURE OF WALL.

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC CONSULTING ENGINEERS WATERBURY, CONNECTICUT NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS WHIST FOURT CAM
THAKE DOWNSELS.

GOVERN TORRINGTON, TO
CT = 1 7
17 MOVERNER TRO

THE WALL CAN DESCRIPTION OF THE PROPERTY OF TH

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENSINEERS WALTHAM, MASSACHUSETTS

> MOALD HAESTAD, INC CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS ARE THE TOTAL LANDS

THANKS OF METALLS

THE TAIL TO HARD TO TAIL OF THE TAIL TO TAIL OF THE TAIL TO TAIL OF THE TA

PHOTO NO. 11

DIVERSION STRUCTURE. FLASHBOARDS IN BACKGROUND DIVERT WATER FROM NATURAL STREAM TO WHIST POND.

PHOTO NO. 12

DIVERSION STRUCTURE, LOOKING DOWN CHANNEL TOWARD WHIST POND.

U S ARMY ENGINEER DIV NEW ENGLAND CORPS OF ENGINEERS WALTHAM, MASSACHUSETTS

ROALD HAESTAD, INC. CONSULTING ENGINEERS WATERBURY, CONNECTICUT

NATIONAL PROGRAM OF INSPECTION OF NON-FED. DAMS WHIST POND DAM

DRAKE FUND BROOK

GOSHEN TORKINGTON, CT

CT 00102

APPENDIX D

HYDROLOGIC AND HYDRAULIC COMPUTATIONS

BY SAL DATE 11/21/80 ROALD HAESTAD, INC. SHEET NO OF 23 CONSULTING ENGINEERS CKD BY DE DATE 11/14/80 37 Brookside Road - Waterbury, Conn. 06708 JOB NO 49-032 SUBJECT WHIST POND DAM - Project discharge Capacity				
Spillway Section (Scale 1"=10' VEH) FLOW				
Dom Pro	ofile: (Not to Scale		ORNULA: Q = CLH 1/2	
		of dom E/11:	96. <i>5</i> 	
/7.65'		1100'	· · · · · · · · · · · · · · · · · · ·	
Spillway El 1195	Embankn	nent discharge coe	eff. = 2.7	
Elevation (feet)	Spillway Discharge Capacity (cfs)	Dom Discharge Capacity (cf:)	Total Discharge Capacity (cfs)	
1195	C	0	O	
//96	55	0	55	
//96.5	100	0	100	
//97	155	1,050	1205	

5,456

11,740

5740

12,178

284

438

1198

1199

BY SAL DATE 11/20/80 ROALD HAESTAD, INC. SHEET NO 3 OF 23

CONSULTING ENGINEERS

CKD BY DLSDATE 11/24/80 37 Brookside Road - Waterbury, Conn. 06708 JOB NO. 49-032

SUBJECT WHIST POND DAM - Surcharge storage capacity

Elevation (feet)	Surface Area (Acres)	Average Surface Area (Acres)	Storage Capacity (Acre-Feet)
//95	39.5		0
// 96	40.8	40.15	40.2
//97	42.1	41.45	81.6
//98	43.3	42.7 43.95	124.3
//99	44.6	45.25	/68.3
/200	45.9	, 3, 23	2/3.5

BY SAL DATE 11/20/80	ROALD HAESTAD, INC. CONSULTING ENGINEERS	SHEET NO. 4 OF 23
CKD BY DLS DATE 11/24/80.	37 Brookside Road - Waterbury, Conn. 06708	JOB NO. 49-032
SUBJECT WHIST POIND	DAM - Surcharge storage	copacity curve
3000001		
		18
• • • • • • • • • • • • • • • • • • • •		
********************************		8
		ly +
		O O
		V .
		8
	• • • • • • • • • • • • • • • • • • • •	T T
		>
		<u> </u>
		O 3
		200
		\mathcal{F}
) 8
		1 8
		1 5
		(7)
		0
· · · · · · · · · · · · · · · · · · ·		8
		ļ
المال والسياء المالية المالية	- · · · · ·	
N . 4	$m \sim v$	\
		V
100-1-13/3	1 KUM77/dS 31086 1H9/	<i>3H</i>

BY SAL DATE 12/1/80 ROALD HAESTAD, INC. SHEET NO 5 OF 23

CONSULTING ENGINEERS

37 Brookside Road - Waterbury, Conn. 06708 JOB NO 49-052

SUBJECT WHIST POND DAM - DIVERSIGN Chause Consulty

Diversion Channel

Control Section is a stone masonry wall with provisions for the use of flashboards to divert the flow.

Data: 1) 44" high
2) 4' wide
3) Hwmax of channel upstream is 2 feet
4) Channel slope estimated at 1%.
5) Mannings coefficient n=0.03

$$V = 1.486 R^{3/3} 5^{1/2}$$

$$V = \frac{1.486}{003} \left(\frac{8ft^2}{8ft}\right)^{3/3} (0.01)^{1/2} = 4.95 \text{ use 5 fps}$$

$$Q = VA = 5(8) = 40 \text{ cfs}$$

Mote: Flow greater than 40 cfs would overtop the diversion channel banks and flow down the notural stream.

BY SAL DATE 12/1/80 ROALD HAESTAD, INC. SHEET NO. 6 OF 23

CONSULTING ENGINEERS

CKD BY DLS DATE 12/2/80 37 Brookside Road - Waterbury, Conn. 06708 JOB NO. 49-0-2

SUBJECT WHIST PUND DAM - TEST Flood - 100 year

Test Flood = 100 yr

Drainage Area = 146 Acres = 0.23 ag mi (direct viotershed)

Qion = 150 A 0,99 R1416-(WEISS FORMULA)

A=drainage orea (sq mi) = 0.23 R= rainfall (inches) = 11.5 1/24 hr

L = main channel length (mi) = 0.57

S = main channel slope (ft/mi) = 219

 $Q_{100} = \frac{15(023)^{0.99}(11.5)^{1.15}}{(0.57/\sqrt{219})^{0.26}} = 135 \text{ cfs}$

Que = Total Inflow = Direct watershed + Diversion watershed

Qu = 135 cfs + 40 cfs = 175 cfs

Note ofor diversion watershed inflow see computation sheet 5 of 23.

- b) The Weiss Formula comes from "Flood Flow Formsias for Connecticut" by Conn. Department of Evering tol Protection - Natural Resources Center. Oct 1,1977.
- c) Rainfall value (R) is obtained from USGS "Heral Painfall Distribution Map", 24 hour - 100 yr
- d) Inches of runoff for the 100 yr flood is assumed to equal 6 inches.

BY SAL DATE 12/1/AO ROALD HAESTAD, INC. SHEET NO. 7. OF 23.

CONSULTING ENGINEERS

37 Brookside Road - Waterbury, Conn. 06708 JOB NO. 49-632

SUBJECT WHIST FOND DAM - Test Flood - 100 year

Continued:

Qp = 175 cfs

Hi = 1.55' above spillway, from Discharge Curve

STOR, = 64 ac-ft, from Storage Capacity Curve

= 5.2 inches of runoff from 0.23 sq mi

QPZ = QPI (1-50R/6) = 175 cfs (1-5.3/6) = 23 cfs

Hz = 0.5ft STORz = 20 oc-ft

STORAVE, = (STOR, + STOEz)/2 = (64+20)/2 = 42 ac-ft = 34 " of runoff

QP3 = QP1 (1- STORAYEI/G) = 175cfs (1-34/6) = 76 cfs

H3 = 1.2 ft STOR3 = 50 gc-ft

STORAVEZ = (STORAVE) + STOR3)/Z = (42 1-50)/Z = 46 OC - ft

Opg = Qf, (1-STORAVEZ/6) = 175 cfs (1-375/6) = 66 use 65 cfs H4 = 1.1 ft.

Spillway Capacity = CLH3/2 (top of dam) = 3.1(17.65)(1.5)1.5

= 100.5 use 100 cfs

% of 100 yr flood = (10%5) x100 = 154% of the 100yr flood.

CONSULTING ENGINEERS

CKD BY DATE 12/2/80 ROALD HAESTAD, INC. SHEET NO. 8 OF 23

CONSULTING ENGINEERS

37 Brookside Road - Waterbury, Conn 06708 JOB NO. 49-6-22

SUBJECT WHIST POND DAM - Dam breach calculations

S = Stonge at time of failure with water level at the of chim

S = Storage at spillway level + Surcharge storage

S = (Surface area x Average depth) + Surcharge stange

S= (39.5 Ac x 5 ft) + 62 Ac-Ft

S= 197.5 Ac-Ft +62 Ac-Ft = 259.5 use 260 Ac-Ft

Note: Whist pond is a notural pond. Storage capacity vias increased by construction of a 9 foot high dam. In the flood routing, the storage capacity of the natural pond was not included because it was assumed that the water would not be released in the event of a dom failure.

Qp1 = Peak Foilure Outflow = 8/27 Wb Vg You

We = Breach width - 40% of dam length at mid-height - 0.4(385) = 154 feet

Yo = Total height from river bed to pool level at time of failure = 9 feet

 $Q_{p1} = 9/27 (154) \sqrt{32.2} (9)^{3/2}$ = 6,990.9 Use 6,990 cfs.

- Note: In calculating the peak failure outflow it was assumed that either the main dam or the dike would fail but not both of them together. In this case the main dam was assumed to fail.
 - 2) Spillway discharge was assumed negligible in comparison to the dom breach flow and was not included in the flood routing.

CCTION DUMPENT

MIGEOU POUD (STURAGE CAPACITY WITHIN PLACH)

EFEFT)	SURFACE AFEA	STORAGE VOLUME FACRETELT
1.0	8.17	7.9
2.0	8.73	16.3
$\beta > 0$	9.30	20.3
4.0	∀.87	3 4 .9
5.0	10.43	0.86.4
6.0	11.00	53.8
7.0	11.46	67.0
8.0	11,92	78.7
ዎ.0	12.38	90.9
10.0	12.54	103.5

STORAGE CAPACITY CALCULATED FROM SURFACE AREAS AT KNOWN ELEVATIONS.

11 SAL 1611 12/2/80 Read Martin 10 Sec. 0.0023

SOUTH WHISE FORD DAM FLOOD FORTHWO AT THE OF DAME.

HECTION NUMBER I

mil GE tink i Program

HEIGHT ABOVE SPILLUAT LIVEL (FEET)	SEILUAA DESCHARA LAACA LAA CEES		
1.0	1		
2.0	$\gamma \in \Omega$		
3.0	((r'= 1)		
4 , Ü	1127 W		
5.0	9613		
გ.შ	$\phi 2 \mathcal{D} 1$		
7.0	9789		
8.0	11555		
9.0	1989.		
10.0	18414		

STORAGE AT THAT OF FAILUREASE (18) ACCESS
LERGIE OF MINUREL, 1100 F1

HEIGHT AROVE SPILLWAG LEVEL-HIS CONSTRUCTORS FOR

TRIAL REACH OUTFLOURGE TRIAL (* 1970) (*)
TRIAL HEIGHT AROVE SPILLUAT LEVELSHOFKIAL (* 1970) (*)
TRIAL STORAGE IN REACHEVOIRIAL (* 1971) (*)

PEACH OUTLOS of the second HEIGHT AROVE SPILLUAT LEVEL OF the second of

BY DATE ROALD HAESTAD, INC. SHEET NO // OF 23 CONSULTING ENGINEERS JOB NO - 35 CKD BY SHL DATE 12/2/80. 37 Brookside Road - Waterbury, Conn. 06708 SUBJECT ... MATERIAL MATERIAL FORTH 1 - (Alphour Form Dynn) Suns: / "= 100' mo- 2 1"= 201 . EFT -2=170 13=100 57/_way . 10 Ц 5 ć ź ij こと、さい日本石造画と、のののは存む。 جنر . *i* 8 - 15 6 . 4) I. A. 2 0 \mathcal{C} 20 40 30 150 20 **-**/_ 60 STURAGE - KURE-IT

SUBJECT WHIST PUND DAM-FLOOD ROUTING AT TOP OF DAM

SECTION NUMBER 2A

MAIN CHANNEL

1-1	W	A	R	S	V	Ü
(F.)	(FT)	(SQ-FI)	(FT)	(EIZEI)	(EIZSEC)	(CFS)
1.0	2 4	φ. (+	0.86	0.0133	3.11	. J
2.0	28	i i	1.69	0.0133	11.77	216
3.0	32	74	2.33	0.0133	6.02	943
4.0	32	1 (14)	3.28	0.0133	7.57	783
5.0	31	134	4.23	0.0133	8.96	1197
δ, Ü	32	164	5,18	0.0133	10.26	1678
7.0	32	194	6.13	0.0133	11.48	2227
8.8	3.2	224	7.08	0.0133	12.34	1816
9.0	3.0	22504	8.03	0.0133	13.75	3485
10.0	77.63 53.7	284	8.98	0.0133	14,81	$\mathrm{pr} \supset 0 \mathbb{G}$
11.0	30	314	7,93	0.0133	15,84	4967
1.7 6	37	ेपम	10.89	0.0133	16.83	#. # F.U
13.0	30	24.54	11.84	0.0133	17.80	665U
14.0	30	មូ () មុ	12.79	0.0133	18.74	/1,165°,
15.0		£ ₄ (3,1 ₁	13.70	0.0133	19.66	85000

MANDELLO COEFFICIENTED . 0500

In SAL INTE /2/3/80 RUGLI HAESTAD INC. SHEET NO /3 H 23

CKIERT DES INTE 12/3/80 COMMITTING ENGINEERS 161 NO. 1019 67

SUBJECT UHIST FOND DAM-FLUOD BOUTING AT TOP OF DAM

SECTION NUMBER 21

LEFT OVERBANK

1-1	W	A	R	5	V	()
(FI)	<u>(FT)</u>	(SQ-FI)	<u>(FI)</u>	(FIZEI)	(FT/SEC)	CEEDY
4.0	23	1.1	0.50	0.0133	1.08	7 1.
5.0	46	46.	1.00	0.0133	1.71	10
გ.0	69	103	1,50	0.0133	2.24	231
7.0	92	183	2.00	0.0133	2.72	497
8.0	114	286	2.50	0.0133	3.15	901
9.0	1.37	411	3.00	0.0133	3.56	1466
10.0	160	560	3.50	0.0133	3.95	2211
11.0	165	723	4.37	0.0133	4.58	3311
12.0	170	890	5.22	0.0133	5.16	4593
13.0	1.75	1063	6.06	0.0133	5.69	6.05.0
14.0	181	1240	6.87	0.0133	6.19	7679
15.0	186	1423	7.66	0.0133	6.66	9475

MANNING COEFFICIENT=N=0.1000

IN SAL MATE 12/3/80 FUALD HAESTAD, INC. SHEET NO. 14 (123

CED ICT DEC DATE 12/3/80 CONSULTING ENGINEERS JULI DO MINO CO

SUBJECT UHIST POND DAM-FLUOD ROUTING AT TOP OF DAM

SECTION NUMBER 20

RIGHT OVERBANK

Н	u	A	R	9	V	()
(FT)	<u>(ET)</u>	(50-1-1)	<u>CEID</u>	<u>at 1/Ell</u>	(EINSEC)	2 Cl. (5.)
	19	1 ()	u.5u	n,0135	1 . 0.50	111
U , ()	3.6 1.5	3, 9	1,00	0.013?	1 . 71	<i>₹</i> :
5.0 6.0	58	87	1.50	0,0133	27. 214	19%
7.0	77	154	2.00	0.0433	7.72	4 (3'
8.0	97	291	2.50	0,0133	2.15	7 6 U
9.0	116	347	3.00	0.0133	3.56	1236
10.0	1.35	473	3.50	0.0133	3,95	1660
11.0	138	809	4 ,42	0.0133	4.51	28.08
12.0	141	748	5.32	0.0133	\mathbb{C}^{n} , \mathbb{C}^{n}	3903
13.0	143	889	8.20	0.0133	5.79	5143
14.0	146	1033	7.07	0.0133	6.32	6521
15.0	149	1179	7.93	0.0133	6.82	863 :

MANNING COEFFICIENT=N=0.1000

THE RT 125 DATE 12/3/80 CONSULTING ENGINEERS 500 ms was est

SUBJECT WHIST PUND DAM-FLOOD ROUTING AT TOP OF DOM

SECTION NUMBER 2

TOTAL SECTION

ARIA (SOLFIL) DISCHAPOT (CES)

				•				
H	. A	B	C	jora.	Ĥ	\mathbb{R}^{ℓ}		(0) (5)
1.0	2.0	Ü	(1	, · ()	(· · · · · · · · · · · · · · · · · · ·	11	11	A. 1
⊋. ()	Ð.5	()	0	ηÇ,	21 €	(1	α	.11
3.0	74	Ü	0	74	443	U	(I	447
4.0	104	1.1	10	125	783	1.7	1.0	808
5.0	134	46	39	218	1197	78	6.6	1.54.1
6.0	164	103	87	353	1678	231	195	2103
7.0	194	1.83	154	531	2222	497	419	3138
8.0	224	286	241	750	2825	901	760	4487
9.0	254	411	347	1012	3485	1466	1236	6188
10.0	284	560	473	1316	9.200	2211	1865	8276
11.0	314	723	609	1645	1967	3311	2308	1.108°
12.0	344	890	748	1981	5784	4593	3903	14280
1.3 ± 0	3.74	1063	889	2325	გგნ0	6050	5143	17843
14.0	կ () կ	1240	1033	2676	7565	7679	6521	21764
15.0	434	1423	1179	3035	8526	9475	8034	26030

STORAGE AT TIME OF FAILURESST 250 AC. FT. LENGTH OF REACH-L= 2000 FT

> INFLOU INTO REACHHOPIE 5498 CES 8.6 FT. DEFIN OF FLOW HIS 906 SU.Fi. 91.6 70 . Ff. CROSS SECTIONAL AREA - AIT STORAGE IN PLACED VICE

TRIAL REACH OUTFLOUTOP(TRIGG) - 4619 CES 0.1 []. TRIAL DEPTH OF FLOW HITETALD " 771 SO.FT. TRIAL CROSS SECTIONAL AREASA(TRIAL): 35.4 AC. FT. TRIAL STORAGE IN REACH = V (TRIAL) = -

> REACH OUTFLOW-UP2- 4584 CFS DEPIH OF FLOW-H2= 8.1 11.

ROALD HAESTAD, INC. SHEET NO 16 OF 23 BY ... 35 DATE ./2-2-30 CONSULTING ENGINEERS CKD BYSAL DATE 12/3/80 JOB NO TOTAL 37 Brookside Road - Waterbury, Conn. 06708 SUBJECT MHIST FOND DAY - FLOOD FOLTING SOLETI = 100' HORE 1. M = 20' North 1. 1=2000' NA = 0.050 NS=0.100 . NC = 0.100 5 = 0.0133 2 2 . . LISCHARGE - 1000 CFS. . 8 . 6 AREA - 1200SIFT

D-17

14 SAL DATE /2/3/80 ROALD HAESTAD, INC. SHELL 00/7 0123

SUBJECT WHIST POND DAM-DEPTH OF FLOW

SECTION NUMBER 3

BRANDY MILL ROAD

HEIGHT ABOVE INVERT (FEET)	D 1 S C H A R CONDUIT (CFS)	G E C A SPILLWAY (CFS)	P A C 1 T Y TOTAL (CES)
1.0	23	Ù	23
2.0	45	0	ξη « _Γ
3,0	82	θ	82
4.0	120	0	120
5.0	173	Ü	173
6.0	225	0	225
7.0	280	0	280
8.0	335	U	335
9.0	393	4.0.0	792
10.0	450	1131	1581
11.0	495	2078	2573
12.0	540	3200 .	3740
13.0	582	4847	5230
14,0	625	6374	6999
15.0	657	8317	8975
16.0	690	10451	11141
1.7.0	725	12932	13657
1.8.0	760	15716	16476
19.0	792	18744	19535
20.0	825	21987	22812

REACH OUTFLOW=QP2= 4684 CES HEIGHT ABOVE CONDUIT INVERT=H2= 12.6 Fl.

BY . F.G. DATE . G.A-AD ROALD HAESTAD, INC. SHEET NO 18 OF 23 CONSULTING ENGINEERS CKD BY SALDATE 12/3/80 37 Brookside Road - Waterbury, Conn. 06708 JDB NO SUBJECT NACT POUR NAM - DAPTH OF FILM SECTION MO.S (Brundy HILL AND.) Scale : / 100' HOFIZ Lg.=. 70'. . 12 ALSO-ARGE - ,000 CFS

THE BY DLS HATE 12/3/80 - DOWNOLLTING ENGINEERS - DOE NO 199 65

SUBJECT WHIST POND DAM-FLOOD ROUTING AT LOP OF DAM

SECTION NUMBER 4

TOTAL SECTION

1-1	ผ	Α	R	8	V	u
(FT)	<u>(FI)</u>	(SQ-FI)	<u> (£))</u>	(ETSE1)	(EIZSEC)	COFFE
1.0	24	20	0.86	0.0007	7 , tj (s	7.1
2.0	28	th 💭	1.64	0.0667	5.34	29.1
3.0	32	74	2.33	0.0667	6.74	1) 牙尖。
4.0	ų ()	108	2.67	0.0667	7,39	796
5.0	49	151	3.06	0.0667	8.09	1718
6.0	58	202	3.48	0.0667	8.82	1783
7.0	67	262	3.92	0.0667	ϕ_{i} , ϕ_{i}	2500
8.0	76	331	4.37	0.0667	10.2%	$\mathcal{X}X^{Q}$
9.0	84	408	4.83	0.0567	10.97	4472
10.0	93	493	5.29	0.0567	11.60	6703
1.1.0	112	593	5.30	0.0667	11.66	8917
12.0	1.31	71.0	5,44	0.0667	11.87	हुस्म हत्
13.0	149	847	5.67	0.0667	12.21	10370
14.0	1.68	$1\ 0\ 0\ 1$	5.26	0.0667	12.62	10541
15.0	187	1175	6.30	0.0667	13.09	15/372

MANNING COEFFICIENT=N=0.1000

STORAGE AT TIME OF FAILURE=S= 260 60. F1.

LENGTH OF REACH=L= 3000

INFLOW INTO REACH=QP1= 4684 CFS

DEPTH OF FLOW=H1= 9.2 F). SS SECTIONAL AREA=A1= 422 SQ.F). STORAGE IN REACH=VI* 29.1 AC. F). CROSS SECTIONAL AREA=A1=

TRIAL REACH OUTFLOW=OP(TRIAL)== 4161 CFS 8.7 FT.

TRIAL DEPTH OF FLOW=H(TRIAL)=
TRIAL CROSS SECTIONAL AREA=A(TRIAL)=

TRIAL STORAGE IN REACH=V(TRIAL)= 385 SQ.FT.

26.5 AC. FT.

REACH OUTFLOW=OP2= 4183 CFS DEPTH OF FLOW=H2= 8.7 Fl.

ROALD HAESTAD, INC. SHEET NO 29 OF 25 BY DATE ATEA. CONSULTING ENGINEERS CKD BY \$24. DATE 12/2/80. 37 Brookside Road - Waterbury, Conn. 06708 SUBJECT LY MIST FOND Scale 1 1/2 100 Hora L=3000! . 4 3 2 2 DISCHARGE - 1000 CFS 7 4 · 3 2 O 3 Ź. AREA - 100 S& FT.

11 SAC DATE 12/3/80 MODELLE HALSTONE, THE TOTAL 21 11 23

CONTRACTOR DELL 15/3/80 FRINCHELING ENGINEERS INTO BUT HAS A TO

THE GET UNIST PORD DAM-DEPTH OF FLOW

SECTION NUMBER 5

ROUTE-272 BRIDGE

HEIGHT AROVE TAVERT (FEET)	DISCHAR CONDUIT (CFS)	G E C A SPILLWAY (CFS)	10TAL (CF5)
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0	374 748 1930 2112 2992 3872 4796 5720 6500 7480 8140	0 0 0 0 0 0 0 0 0	374 748 1430 2112 2992 3872 4798 5720 8600 7480 8140

REACH OWIFLOU-OP2= 4183 CFS HEIGHT GROVE CUMPULT INVERT=H2= 2.3 FT.

BY A.T.Y DATE		CONSULTING			.22 of 23
			nerodry, comi ourou	JUB NU	***************************************
SUBJECT	The San		.A.ET		••••••
BESTION	1 110 5 (8)	xite 2/2 1	Bridge) 3.	1216:7" = 5	51 45 m z.
	1 NO. 5 (P)	e/o /Degil	reliched.	, = ,	D' LECT
	27,2 1				
LAUTENINCE 45° WIN	CONSTION.			-1	
			60/	-	
				· · · · · · · · · · · · · · · · · · ·	
				. /	
			٠		
			/		
k					
5	•				
	•		• • • •		
4		/			
	/				
		•			
₹					
	. /				
		•			
0 2	. /	- C		· 4	e e e e e e e e e e e e e e e e e e e
	. ,		·	,	· · · · · · · · · · · · · · · · · · ·
		エナルニスク	ACETH, CCO.	<u>೭೯೮</u>	
		D-23			

WHIST POND DAM ROAD Migeon LIMITS OF POTENTIAL FLOODING 13137 1 Mille

DATE	ROALD HAESTAD, INC. SHEET NO. A. T. OF A.A. CONSULTING ENGINEERS 37 Brookside Road - Waterbury Conn. 06798 U.G.B. NO
-	
SUBJECT	
	FLANCE CONTRACTOR
PLAN VETER PE	
_ <u> </u>	TM (おし) ならしつという。 1.48 = 67 (T) 1.472 FM (A) T
y ATLEDHLA	TUPD BISSEL : THE TOUSELLY OF
<u> Lineseon jaire</u>	ELADO TARO SEAFEMA SE POROTA A TROTARBODAN SE STATA COUSTAN
<u> (11) TOJE (200</u>	サルドの (100m できゅう) - 50 = 450 円 ALFEL ドドビア - 4 0560 に - 48 OTAFT - 6 5600 に

APPENDIX E

INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

INVENTORY OF DAMS IN THE UNITED STATES

TOWN TOWN FOR THE		S (S)	e	(÷	73
POWLAR MAKE POWLAR MAKE THE POWLAR MAK	STATE FORMER TOTAL STATE OF	DUNTY OFFICE	NAME	1	3 x
THE SAME WELL THE STATE OF THE		0.09		2151.1 7311.0	٠.
POUCATIANTE PUED PRETERMINE PUED PUED PRETERMINE PUED PUED PRETERMINE PUED PUED PUED PRETERMINE PUED PUED PUED PRETERMINE PUED PUED PUED PUED PUED PUED PUED PUED		5.		0	
THE REST CONSTRUCT THE RE		POPULAR BARE	NAY6	OF KPSC4SKENT	
THE STATE OF THE S					
THE PARTY OF THE ALL THE PROPERTY OF THE PARTY OF THE PAR		(2)		,	,
TOTAL TOTAL STATE OF THE STATE	are outpacts	POER OF STREAM	AEAREST DOUNSTRE DITY-TOAT-VILLA	4" FROW DAY	PCFLLAT
CONTENTS FEBROSES GRANDER G			411774777	-	1
E 25+27 J.CL.95- JAS AC-E +T F Latin L. (142 S-C24.3E WANTED	TYPE OF DATE (CC)	WENS FURNOSES LIST	TO CONTROL OF THE PARTY OF THE	2181	
SEARCH TICLUSTO 185 ±C-= -1 CF 1870 = 12 (1942 S-C085E) PURING THE CONTROL OF THE THE CONTROL OF THE CONTROL O		,			
Production of the state of the		38	SABA A		ť.
TOWER DAMENT CONTRIBUTION CONTR		7.61.0969 185	i i	30990	- ;
STATE OF THE STATE			Programme of the progra	SATE AND AND SATE OF A SAME OF A SAM	
School Franchistory Stranger Construction (C.C.) Franchistory Stranger Construction (C.C.) Franchistory Construction (C.C.) Franchis					
Street Action (Controller) (Con	#1 10 10 10 10 10 10 10 10 10 10 10 10 10		Al shall have	CONSTRUCTION BY	!
# # # # # # # # # # # # # # # # # # #					
AUTO 100 AUT				30VVV1.17V4	
AUTOR				•	
7-1-42 To 12-1-42 To 1					
	# 1		5-1-5- The 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
		ride			

