R Notebook

Code ▼

Self Correlation

Em essencia, a ideia de que um valor em uma série temporal em um determinado ponto no tempo pode estar correlaciondo com valor em outro ponto no tempo. Nos aprofundaremos na autocorrelação que generaliz a self-correlation por não se ancorar em um ponto específico no tempo.

Autocorrelação levanta a questão mais geral de existir uma correlação entre quaisquer dois pontos em uma série temporal específica com distancia fiz em particular entre eles

Função de autocorrelação(ACF)

Dá ideia de como os pontos de dados em diferentes pontos no tempo estão linearmente relacionadas entre si em função de sua diferença no tempo.

```
Hide

x = 1:100

y = sin(x * pi / 3)

Hide

plot(y, type="b")
```


acf(y)

Series y

Vantagens de usar uma função prédefinida:

- 1. Plotagem automatica com rotulos uteis
- 2. Uma maneira relevante de lidar com séries temporais multivariadas

Hide

Hide

Autocorrelação parcial

```
Hide

x = 1:100

y = sin(x * pi / 3)

Hide

plot(y[1:30], type = "b")
```


pacf(y)

Series y

y1 = sin(x * pi /3)
plot(y1)

Hide

Hide

24/11/2024, 10:13

acf(y1)

Series y1

pacf(y1)

Series y1

y2 = sin(x * pi/10) plot(y2) Hide

Hide

Hide

acf(y1)

Series y1

y3 = y1 + y2 plot(y3, type='b')

acf(y3)

Series y3

pacf(y3)

Series y3

