Instituto Superior Técnico

LICENCIATURA EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES UC CIRCUITOS ELETRÓNICOS

Relatório Laboratorial Amplificador com Transístores Bipolares

Gonçalo Bernardino Frazão, n^0 99945 João Barreiros C. Rodrigues, n^0 99968 José Lopes, n^0 100001 ÍNDICE

Índice

1	Que	estão 4																			
	1.1	Modelo e Qu	ies	stâ	ăo	4	.1														
	1.2	Questão 4.2																			
	1.3	Questão 4.3																			
	1.4	Questão 4.4																			
	1.5	Questão 4.5																			
	1.6	Questão 4.6																			
2	•	e <mark>stão 5</mark> Montagem e	C)11	es	tã	.0	5.	.2												
		Questão 5.4																			
	2.3	Questão 5.5																			
		Questão 5.6																			

1 Questão 4

1.1 Modelo e Questão 4.1

Através da análise nodal e de malha do circuito introduzido no *LTSpice* obtêm-se os seguintes valores:

VB1	1.7457 V
VBE1	0.6354 V
VCE1	1.9190 V
VO1	3.0293 V
VBE2	0.63796 V
VCE2	2.6086 V
Ic1	$0.89~\mathrm{mA}$
Ic2	$0.99~\mathrm{mA}$

Figura 1: Simulação do amplificador de dois andares, com transístores BJT, BC547B.

1.2 Questão 4.2

Figura 2: Impedância R_{I1} em função da frequência de entrada, obtida através do quociente entre valores simulados V_{B1} e Ib_{Q1} . A vermelho a Impedância $R_{I1}(5KHz)=19.9 \text{ k}\Omega$

Figura 3: Impedância R_{I1} em função da frequência de entrada, obtida através do quociente entre valores simulados V_{B2} e Ib_{Q2} . A vermelho a Impedância $R_{I2}(5KHz)=210 \text{ k}\Omega$

1.3 Questão 4.3 1 QUESTÃO 4

1.3 Questão 4.3

Figura 4: Representação gráfica do ganho A_{1L} em função da frequência de entrada. A_{1L} = 15.452 dB, para 50 kHz

Figura 5: Representação gráfic a do ganho A_{2L} em função da frequência de entrada. $A_{2L}{=}{-}0.62329$ dB, para 50 kHz

Figura 6: Representação gráfic a do ganho A_v em função da frequência de entrada. A_v =15.178 dB, para 50 kHz

Figura 7: Representação gráfic a do ganho A_v em função da frequência de entrada. A_v =10.856 dB, para 50 kHz

1.4 Questão 4.4 1 QUESTÃO 4

1.4 Questão 4.4

Figura 8: V_{out} , V_{o1} , V_{in} e V_{S} respectivamente a ciano, laranja, azul e verde. De notar a aproximação entre os valores de V_{out} e V_{o1} , resultantes de um ganho aproximadamente unitário no segundo andar do amplificador

1.5 Questão 4.5

Figura 9: Representação gráfica dos diferentes regimes de operação do transístor Q1. Em resumo a identificação das zonas de trabalho pode ser feita pelo seguinte método: Na zona de corte a corrente que passa pelo transístor é nula, sendo $V_{o1} = V_{Vcc}$, aproximadamente 5 V. A zona de saturação é atingida quando a diferença de potencial entre o coletor e o emissor é igual à tensão de saturação específicada pelo fabricante (0.6V).