Summer Workshop in Mathematics (SWIM) Kannur University, May, 2025 Krishna Hanumanthu Tutorial problems

May 5, 2025

- 1. Show the following.
 - (a) $\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ for all $n \ge 0$.
 - (b) $\sum_{i=0}^{n} 4^{i} = \frac{1}{3}(4^{n+1} 1)$ for all $n \ge 0$.
 - (c) $\sum_{i=0}^{n} 1/3^i = \frac{3}{2}(1 \frac{1}{3^{n+1}})$ for all $n \ge 0$.
 - (d) $2^n \le n!$ for all $n \ge 4$.
- 2. Let $f: X \to Y$ be a function between two sets X, Y. Let $A, B \subset X$ and $C, D \subset Y$ be arbitrary subsets. Determine if the following statements are true or false.
 - (a) $f(A \cap B) = f(A) \cap f(B)$.
 - (b) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
 - (c) $f(A \cup B) = f(A) \cup f(B)$.
 - (d) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- 3. Let A, B, C be subsets of a set X. Show the following.
 - (a) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.
 - (b) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.
 - (c) $(A \cup B)^c = A^c \cap B^c$.
 - (d) $(A \cap B)^c = A^c \cup B^c$.
- 4. Show the set \mathbb{Z} of integers is countable by using the function $f: \mathbb{N} \to \mathbb{Z}$ defined by

$$f(n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even} \\ \frac{-(n+1)}{2} & \text{if } n \text{ is odd} \end{cases}$$

May 6, 2025

- 5. Let $f:A\to B, g:B\to C$ be functions. Determine if the following statements are true or false.
 - (a) If f, g are injective, then so is $g \circ f$.

- (b) If $g \circ f$ is injective, then so is f.
- (c) If $g \circ f$ is injective, then so is g.
- (d) If f, g are surjective, then so is $g \circ f$.
- (e) If $g \circ f$ is surjective, then so is f.
- (f) If $g \circ f$ is surjective, then so is g.
- 6. If A_1, \ldots, A_k are countable, then show that the Cartesian product $A_1 \times \ldots \times A_k$ is also countable.
- 7. Show that a countable union of countable sets is countable.
- 8. Which of the following are equivalence relations on the given sets A.
 - (a) $A = \mathbb{N} : a \sim b$ if a b is odd.
 - (b) $A = \mathbb{N} : a \sim b \text{ if } a b \text{ is even.}$
 - (c) $A = \mathbb{N} : a \sim b \text{ if } -4 < a b < 4.$
 - (d) $A = \mathbb{R} : a \sim b \text{ if } |a| = |b|.$
 - (e) A is the set of all 2×2 real matrices: $A \sim B$ if there exists an invertible matrix $P \in A$ such that $A = PBP^{-1}$.
- 9. Fix a positive integer n. Consider the equivalence relation on \mathbb{Z} defined by $a \sim b$ if a b is divisible by n. Determine the equivalence classes for this relation.
- 10. Negate the following statements. P denotes the set of prime natural numbers.
 - (a) $\exists r \in \mathbb{Q}$ such that $r^2 = 2$.
 - (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } y^3 = x.$
 - (c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \text{ such that } y^2 = x \text{ or } x \leq 0.$
 - (d) $\forall p \in P$, if p > 2 then p is odd.
 - (e) $\forall n \in \mathbb{N}$ such that $n > 0 \; \exists p_1, \dots, p_r \in P$ such such that $n = p_1 \cdot \dots \cdot p_r$.
 - (f) \forall continuous functions $f: \mathbb{R} \to \mathbb{R}$ and $\forall a, b \in \mathbb{R}$ such that f(a) < f(b), if f(a) < c < f(b), $\exists x \in \mathbb{R}$ such that f(x) = c.

May 7, 2025

11. Which of the following are subspaces of \mathbb{R}^n ? When W is a subspace, find a spanning set of W.

- (a) $W = \{(a, b) \in \mathbb{R}^2 \mid ab = 0\} \subset \mathbb{R}^2$.
- (b) $W = \{(a, b) \in \mathbb{R}^2 \mid a + b = 0\} \subset \mathbb{R}^2$.
- (c) $W = \{(a, b) \in \mathbb{R}^2 \mid a + b = 1\} \subset \mathbb{R}^2$.
- (d) $W = \{(a, b, c) \in \mathbb{R}^3 \mid a + b = c\} \subset \mathbb{R}^3$.
- (e) $W = \{(a, b, c) \in \mathbb{R}^3 \mid ab = c\} \subset \mathbb{R}^3$.
- (f) $W = \{(a, b, c) \in \mathbb{R}^3 \mid a + b + c = 0 \text{ and } b c = 0\} \subset \mathbb{R}^3.$
- 12. Let $W_1, W_2 \subset \mathbb{R}^n$ be subspaces.
 - (a) Show that $W_1 \cap W_2$ is a subspace of \mathbb{R}^n .
 - (b) Give an example to show that $W_1 \cup W_2$ need not be subspace of \mathbb{R}^n .
 - (c) Define $W_1 + W_2 = \{v_1 + v_2 \mid v_1 \in W_1, v_2 \in W_2\}$. Show that $W_1 + W_2$ is a subspace of \mathbb{R}^n .
- 13. Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$. Let $W \subset \mathbb{R}^3$ be the set of vectors $(a, b, c) \in \mathbb{R}^3$ such that

$$A \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

- (a) Find 4 vectors in W. How many vectors are in W?
- (b) Show that W is a subspace of \mathbb{R}^3 .
- (c) Find a spanning set of W.
- 14. Let W_1, W_2 be distinct and proper subspaces of \mathbb{R}^2 . Show that $W_1 \cap W_2 = \{0\}$. Is this statement true if W_1, W_2 are distinct and proper subspaces of \mathbb{R}^3 ?

$$\mathrm{May}\ 9,\ 2025$$

 $M_n(\mathbb{R})$:=The set of real $n \times n$ matrices.

- 15. Prove that $\{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a subfield of \mathbb{R} .
- 16. Show that $\{a + b\sqrt[3]{2} \mid a, b \in \mathbb{Q}\}$ is *not* a subfield of \mathbb{R} .
- 17. Which of the following are vector spaces over \mathbb{R} ?
 - (a) $\{p(x) : p(x) = \sum_{i=0}^{n} a_i x^i, n \in \mathbb{N}, a_i \in \mathbb{R}\}$
 - (b) $\{p(x) : p(x) = \sum_{i=0}^{n} a_i x^i, n \in \mathbb{N}, a_i \in \mathbb{Q}\}$
 - (c) $\{p(x) : p(x) = \sum_{i=0}^{n} a_i x^i, n \in \mathbb{N}, a_i \in \mathbb{N}\}$
 - (d) $GL_2(\mathbb{R})$:= The set of all invertible 2×2 matrices.

(e)
$$\mathbb{R}^2 \setminus \{(x,x) \mid x \in \mathbb{R}^*\}.$$

- 18. Show that the set $\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}$ is a vector space over \mathbb{R} .
- 19. Show that the set of trace zero 2×2 real matrices form a vector space over \mathbb{R} . (For a matrix $A \in M_2(\mathbb{R})$, trace(A)=sum of all diagonal entries).
- 20. A matrix $A \in M_n(\mathbb{R})$ is said to be symmetric if $A^t = A$. Prove that the set of all $n \times n$ real symmetric matrices is a vector space over \mathbb{R} .
- 21. Find bases and dimension of the following vector spaces over \mathbb{R} ?
 - (a) $\{p(x) : p(x) = \sum_{i=0}^{n} a_i x^i, a_i \in \mathbb{R}\}$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$
 - (c) The set of trace zero 2×2 real matrices. (For a matrix $A \in M_2(\mathbb{R})$, trace A = sum of all diagonal entries).
 - (d) The set of all 2×2 real symmetric matrices.
 - (e) The set of all 3×3 real skew-symmetric matrices.