Resumo MPEI

Índice

Princípios	1
Lei de LaPlace	2
Probabilidade Condicional	2
Regra da Cadeia	3
Acontecimentos Incompatíveis	3
Acontecimentos Independentes	3
Lei da Probabilidade Total	3
Regra de Bayes	4
Lei Binomial da Probabilidade	4
Variáveis Aleatórias	5
Função (massa) de probabilidade	6
Função Distribuição Acumulada (Discreta)	6
Função Densidade de Probabilidade	7
Valor Esperado ou Média	7
Variância	7
Momentos de ordem n	8
Distribuições	8
Variável de Bernoulli	8
Variável Binomial	9
Distribuição de Poisson	9

Princípios

Espaço de amostragem (S) – conjunto de todos os resultados possíveis. A probabilidade de S é sempre 1. Pode ser:

- Discreto se for contável
- Contínuo se não for contável

Axiomas:

1. A probabilidade de todos os eventos é pelo menos 0 $P(A) \ge 0$

2. A probabilidade de S é sempre 1 P(S) = 1

3. Para acontecimentos disjuntos, temos: P(AUB)=P(A)+P(B)

Teoremas/Corolários:

a)
$$P(A^{c}) = 1 - P(A)$$

b) $P(AUB) = P(A) + P(B) - P(A \cap B)$ para acontecimentos não disjuntos

Lei de LaPlace

Seja Ω um universo de resultados finito, com todos os acontecimentos elementares igualmente prováveis (equiprováveis).

A probabilidade de um acontecimento $A \subseteq \Omega$ pode representar-se por P(A) e é o quociente entre o número de casos favoráveis de A (#A) e o número de casos possíveis de Ω (# Ω).

$$P(A) = \frac{n^{o} \ casos \ favoráveis}{n^{o} \ casos \ possíveis}$$

Teoria Frequencista de Probabilidade — Efetuando n repetições de uma experiência aleatória, seja n_A o número de vezes que se verificou o acontecimento A nessas n repetições. Devido ao princípio da regularidade estatística é de esperar que as frequências relativas do acontecimento A numa sucessão de provas com elevado número de repetições sejam, aproximadamente, iguais a um número $(0 \le P(A) \le 1)$.

Lei dos Números Grandes - A probabilidade de um acontecimento é determinada por aproximação à frequência relativa desse acontecimento quando a experiencia se repete um número significativo de vezes.

Probabilidade Condicional

A probabilidade de um determinado acontecimento é dada por:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Traduzindo: A probabilidade de ocorrer A sabendo que ocorreu B é o quociente entre a probabilidade de ocorrer o acontecimento A∩B e a probabilidade de ocorrer o acontecimento B.

Pela fórmula da probabilidade condicionada, consegue deduzir-se que:

$$P(A \cap B) = P(A/B) \times P(B)$$

Regra da Cadeia

P("Universidade de Aveiro") = P("Universidade") x
$$P("de"|"Universidade") \times P("Aveiro"|"de")$$

Acontecimentos Incompatíveis

Dois acontecimentos A e B, não nulos, são incompatíveis se e só se:

$$A \cap B = \{\} \Leftrightarrow P(A \cap B) = 0$$

Acontecimentos Independentes

Dois acontecimentos A e B dizem-se independentes se a probabilidade de ocorrer um não depender de o outro ter ocorrido.

$$P(A \cap B) = P(A) \times P(B)$$

$$P(A/B) = P(A)$$

$$P(B|A) = P(B)$$

Lei da Probabilidade Total

A lei da probabilidade total é uma regra fundamental que relaciona probabilidades e probabilidades condicionais.

Se $\{B_n: n=1,2,3,...\}$ é uma partição finita ou infinita contável de um espaço de amostragem e cada evento de B_n é mensurável, então para qualquer evento A do mesmo espaço de probabilidade:

$$P(A) = \sum_{n} P(A \cap Bn)$$

Ou então:

$$P(A) = \sum_{n} P(A|Bn).P(Bn)$$

Regra de Bayes

A Regra de Bayes ou Teorema de Bayes é um corolário da Leia da Probabilidade Total, e que permite calcular a seguinte probabilidade:

$$P(Bi|A) = \frac{P(Bi\cap A)}{P(A)} = \frac{P(A|Bi).P(Bi)}{\sum_{k=1}^{n} P(A|Bk).P(Bk)}$$

 B_1 B_2 B_3 B_4 B_5 B_6 B_8

Figura 1 - Visão esquemática do Teorema de Bayes

Lei Binomial da Probabilidade

$$Pn(k) = C^n k p^k (1-p)^{n-k}$$

Variáveis Aleatórias

Uma variável aleatória é uma função que mapeia o espaço amostral na reta real. É o resultado numérico das nossas experiências.

Figura 2 - Desenho esquemático

Caso contínuo – Se os conjuntos que representam os eventos forem contínuos, o mapeamento é para um segmento da reta real. Ou seja, os conjuntos do espaço de amostragem são equivalentes aos acontecimentos do segmento de reta.

Tipos de variáveis aleatórias	Discretas	se os valores que a variável aleatória pode assumir forem finitos ou infinitos contáveis (Exemplo: nº acessos por minuto a uma página web)
	Contínuas	se os valores que podem assumir formarem um ou mais intervalos disjuntivos (Exemplo: duração de uma conferência)
	Mistas	onde se verificam os atributos que definem os 2 tipos anteriores

As variáveis aleatórias podem ser caraterizadas por:

- Função (massa) de probabilidade (variáveis aleatórias discretas)
- Função densidade de probabilidade (variáveis aleatórias contínuas)
- Função distribuição cumulativa
- Valor esperado ou média
- Variância e desvio padrão

Função (massa) de probabilidade

Uma variável aleatória discreta escalar X é especificada por:

- Conjunto de valores que pode assumir (x_i , i = 1,2,3,...)
- Função de probabilidade massa $p_x(x_i) = P(X = x_i)$

Deste modo, os axiomas da probabilidade implicam:

$$p_x(x_i) \ge 0$$

$$\sum_{i} p_{x}(x_{i}) = 1$$

Função Distribuição Acumulada (Discreta)

A função distribuição acumulada (fda) é definida como

$$F_{x} = p_{x}(X \le x) = \sum_{i:xi \le x} p_{x}(x_{i})$$

Dos axiomas e corolários, verifica-se que é uma função não decrescente onde o seu limite quando x tende para $-\infty$ é 0, e o seu limite quando x tende para $+\infty$ é 1.

Para uma variável discreta, a fda é uma função em escala.

$$P(a < x \le b) = F_{\gamma}(b) - F_{\gamma}(a)$$

Função Densidade de Probabilidade

A função densidade de probabilidade obtém-se derivando a função de probabilidade. A função não define uma probabilidade, mas sim uma área.

$$F_{x}(x) = \int_{-\infty}^{x} f_{x}(x)$$

A probabilidade é a área definida abaixo da curva do gráfico, sendo a área total da curva igual a 1.

No contexto problemático da determinação de "bugs", podem ser usadas funções anteriores em módulo.

Valor Esperado ou Média

O valor esperado E(X) é uma medida que estuda a tendência central de uma variável aleatória.

No caso discreto: $E(X) = \sum_i x_i p(x_i)$

No caso contínuo: $E(X) = \int_{-\infty}^{+\infty} x f_x(x) dx$

No caso contínuo, só existe valor esperado caso consigamos calcular o limite. O E(X) é um operador linear.

Se a e c forem constantes, temos:

- E(aX) = a E(X)
- E(c + X) = c + E(X)

Variância

Calcula-se usando a diferença de valores da variável para a média (ou valor esperado) e faz-se a sua média.

Para evitar o cancelamento de diferenças positivas e negativas, utiliza-se o seu valor quadrático.

$$var(x) = E[(x - E(X))^{2}] = E(X^{2}) - E(X)^{2}$$

A variância é igual ao desvio padrão ao quadrado var = σ^2

Se a variância for 0, não existem variáveis aleatórias uma vez que os valores são iguais à média.

Momentos de ordem n

Os conceitos de média e variância podem ser generalizados:

$$m_n = E(X^n) = \sum_i x_i^n px(x_i)$$

Distribuições

Discretas:

- Bernoulli
- Binomial
- Poisson
- Geométrica
- ...

Contínuas:

- Uniforme
- Normal
- Qui-quadrado
- T de Student
- ..

Variável de Bernoulli

Trata-se de uma distribuição discreta de espaço amostral $\{0,1\}$ que assume valor 1 com a probabilidade de sucesso p e valor 0 com a probabilidade de falha q=1-p.

$$E(I) = \sum_{i} x_{i} p(x_{i}) = 0 \times (1 - p) + 1 \times p = p$$

$$var(I) = E(I^{2}) - E(I)^{2}$$

$$E(I^{2}) = 0^{2} \times (1 - p) + 1^{2} \times p = p$$

$$var(I) = p - p^{2} = p(1 - p)$$

Variável Binomial

Encontra-se diretamente relacionada com a Lei Binomial.

Seja x o nº de vezes que o acontecimento A ocorre em n experiências de Bernaulli, x representa o número de sucessos em n experiências.

$$F_{X}(x) = \sum_{k=0}^{|x|} {n \choose k} p^{k} (1-p)^{n-k}$$

$$E[X] = E[\sum Xi] = \sum E[Xi] = p + p + \dots + p = np$$

$$var(\sum Xi) = \sum var(Xi) = \dots = np(1-p)$$

Exemplos de distribuições binomiais:

- a) Número de peças defeituosas num lote de determinado tamanho;
- b) Número de respostas certas num exame de verdadeiro ou falso;
- c) Número de clientes que efetuaram compras em 100 que entraram numa loja.

Distribuição de Poisson

$$p_{x}(k) = \frac{\lambda^{k} e^{-\lambda}}{k!}$$

é a função de massa de probabilidade de distribuição de Poisson, com k = 0,1,2,..

Geralmente, λ corresponde à média:

 $E[X] = \lambda$ porque λ é aproximado por np e o valor esperado da Binomial é np.

$$var(X) = \lambda$$

A distribuição de Poisson foca-se apenas no número de ocorrências (DISCRETO) num intervalo contínuo. Não tem um número de experiências (n) como na Binomial.