Multiple Imputation with Categorical Variables Stats Camp 2018: Missing Data Analysis

Kyle M. Lang

Department of Methodology & Statistics Tilburg University

19-21 October 2018

Outline

- Discuss imputation diagnostics
 - Assessing imputation model convergence
 - Checking the imputations' plausibility
- Look at graphical and numerical options for both

Example Data

These data were analyzed by Lang, Salter, and Adams (2009).

- N = 87
- V = 33
- Variables assessing:
 - Perceptions of and Definitions of Racism
 - Political Affiliation
 - Support for Affirmative Action Policies
 - Belief in meritocratic ideals
- Almost no missing data
 - I've artificially imposed 30% MAR missing data on all variables (expect political affiliation) using political affiliation as the MAR predictor.

Imputation Diagnostics

After we run an MI routine, we need to make sure that the procedure has performed as expected.

Problems can arise to two different places:

- 1. The imputation model may fail to converge.
- 2. The imputed values may not be plausible.

We need to examine our results to check for these problems.

Imputation Model Convergence

The imputation model is usually estimated through some form of Bayesian simulation.

- Gibbs sampled parameters form a Markov Chain.
 - Each draw is dependent on only its immediate predecessor in the chain.
 - $\theta^{(t)}|\theta^{(t-1)}\perp\theta^{(t-j)} \forall j>1$
- Early elements of a Markov chain are similar to the starting values.
 - Samples are poor approximations of the true posterior.
- We must let the sampler iterate for a while to allow the estimates time to separate from their starting values.
 - We call these initial iterations "burn-in" or "warm-up" iterations.

Traceplots

Once converged, each sampled imputation model parameter should "bounce" around an equilibrium point.

- · The draws will never converge onto a single point.
- That would defeat the purpose of simulation-based inference.

Potential Scale Reduction Factor

Suppose we have two Markov chains for the same parameter.

- If these chains have converged, the average distance between any two points on separate chains should be the same as the average distance between two points on the same chain.
- The *between-chain* variance should, on average, equal the *within-chain* variance.

The *Potential Scale Reduction Factor* \widehat{R} quantifies this concept:

$$\widehat{R} = \frac{\widehat{\sigma}_{between}^2}{\widehat{\sigma}_{within}^2}$$

 \widehat{R} will approach 1.0 at convergence.

7 of 21

• \widehat{R} < 1.1 or 1.2 suggests acceptable convergence.

Example: Potential Scale Reduction Factor

Example: Potential Scale Reduction Factor

9 of 21

```
## Create matrices of the full and burnt-in chains:
iterMat <- cbind(chain1, chain2)
burntMat \leftarrow iterMat[201 : 1000, ]
## Full Chain R-Hat:
wVar1 <- mean(apply(iterMat, 2, var))
bVar1 <- mean(apply(iterMat, 1, var))
rHat1 <- bVar1 / wVar1
rHat.1
## [1] 1.682921
## Burnt-In R-Hat:
wVar2 <- mean(apply(burntMat, 2, var))
bVar2 <- mean(apply(burntMat, 1, var))
rHat2 <- bVar2 / wVar2
rHat2
## [1] 1.104803
```

More Imputation Model Convergence

A convergent imputation model will produce imputed values that fluctuate around an equilibrium point.

• Imputation model convergence can be assessed indirectly by looking at plots of the item-level sufficient statistics for each imputation.

This approach is automated for mice via plot.mice().

```
miceOut1 <- readRDS(paste0(dataDir, "miceOut1.rds"))
plot(miceOut1, c("RIAE5", "NORI4", "POLICY2"))</pre>
```

More Imputation Model Convergence

Imputed Value Plausibility

We need to ensure that the imputations are sensible.

- Imputed values shouldn't be *too* dissimilar from their observed counterparts.
 - What constitutes too much dissimilarity is subjective and problem-specific.

We can assess dissimilarity graphically or through summary statistics.

- Out-of-bounds values for the imputations are perfectly acceptable.
 - MI is NOT designed to maintain the range.
 - We don't want wildly extreme values, though.
- The means of the observed and imputed components of each variable shouldn't differ too much.
 - Again, how much is too much is subjective.

```
rawMeans <- colMeans(missData, na.rm = TRUE)
impMeans <- colMeans(do.call("rbind", impList))

rawSds <- apply(missData, 2, sd, na.rm = TRUE)
sdList <- lapply(impList, function(x) sapply(x, FUN = sd))
impSds <- colMeans(do.call(rbind, sdList))

rawRanges <- apply(missData, 2, range, na.rm = TRUE)
impRanges <- sapply(do.call("rbind", impList), range)</pre>
```

```
round(rawMeans[1 : 5], 3)
## RIAE2 RIAE3 RIAE7 RIAE8 RIAE9
## 3.677 3.108 3.774 3.092 3.726

round(impMeans[1 : 5], 3)
## RIAE2 RIAE3 RIAE7 RIAE8 RIAE9
## 3.697 3.122 3.340 3.134 3.010
```

```
round(rawSds[1 : 5], 3)

## RIAE2 RIAE3 RIAE7 RIAE8 RIAE9
## 1.696 1.522 2.060 1.693 1.700

round(impSds[1 : 5], 3)

## RIAE2 RIAE3 RIAE7 RIAE8 RIAE9
## 2.223 1.906 2.917 2.157 2.283
```


We can use the plotImps function from the **SURF** package to generate overlaid density plots for arbitrary lists of imputed data.

References

Lang, K. M., Salter, P. S., & Adams, G. (2009, April). What drives the relationship between conservatism and racism? a mediation analysis. In *Proceedings of the annual meeting of the Southwestern Psychological Association.*