

FEDERAL PUBLIC SERVICE COMMISSION

COMPETITIVE EXAMINATION – 2025 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number	

Physics Paper-II

TIME ALLOWED: THREE HOURS PART-I (MCQS) MAXIMUM MARKS = 20
PART-I(MCQS): MAXIMUM 30 MINUTES PART-II MAXIMUM MARKS = 80

NOTE:

- (i) First attempted **Part-I** (MCQS) on the separate **OMR Answer Book** which shall be taken back after 30 minutes.
- (ii) Overwriting/cutting of the options/answers will not be given credit.
- (iii) There is no negative marking. All MCQs must be attempted.

PART-I (MCQs)(COMPULSORY)

- Q.1. (i) Select the best option/answer and fill in the appropriate Box on the OMR Answer Sheet. (20x1=20)
 - (ii) Answers given anywhere else, other than OMR Answer Sheet, will not be considered.
- 1. A charge moving in a uniform static magnetic field experiences:
- (A) A force perpendicular to magnetic field and velocity
- (B) Increase in momentum
- (C) Decrease in momentum
- (D) Decrease in velocity
- 2. The same energy alpha particles and electrons associated De Broglie wavelengths are:
- (A) Equal
- (B) Longer than electrons
- (C) Smaller than electrons
- (D) None of these
- **3.** The mass deficit defines:
- (A) Nuclear binding energy
- (B) Nuclear quadrupole moment
- (C) Shape of the nucleus
- (D) None of these
- **4.** In nuclear physics, the magic number defines:
- (A) Nuclear binding energy

(B) Relatively exceptionally stable nuclei(C) Radioactivity(D) None of these
5. The Zeeman effect is due to the interaction of: (A) External magnetic field and total magnetic field of the specimen (B) External electric field and magnetic field of specimen (C) L-S coupling (D) None of these
6. A photon having the same energy as an electron has wavelength as electron's De Broglie wavelength. (A) Shorter (B) Longer (C) Same (D) None of these
7. In Lorentz transformation, motion along axis remains zero. (A) One axis (B) Two axes (C) Three axes (D) None of these
8. Gauss's law is applicable on the charges which are: (A) Closely distributed in space (B) Sparsely distributed in space (C) Enclosed by a broken surface (D) Enclosed by a closed surface
9. The ratio between angular momentum and orbital magnetic moment vector of the first orbital electron of a hydrogen atom is known as: (A) Total Magnetic Moment (B) Bohr Magneton (C) Magnetic Moment (D) None of these
10. The cyclotron is a device primarily used to: (A) Accelerate subatomic particles (B) Generate electrons (C) Generate neutrons (D) Generate protons

1. The rate of change of current in a coil is proportional to: A) V				
(B) -emf				
(C) R				
(D) None of these				
12. The charging and discharging behavior of an ideal RLC circuit is: (A) Simple harmonic				
(B) Linear				
(C) Elliptical				
(D) Unpredictable				
13. The Lorentz force is given by:				
$(A) F = q (v \times B)$				
(B) $\Phi = \partial A/\partial x + \partial A/\partial y + \partial A/\partial z$				
(C) $F = q (va \times B)$				
(D) None of these				
14. The Poynting vector represents: (A) The rate and direction of electromagnetic energy transferred in space (B) The amount of electromagnetic energy transferred in different forms of energy (C) Loss of electromagnetic energy in a medium (D) The flow of thermal energy in a certain direction				
15. The De Broglie wave-particle duality is said to be foundation of the uncertainty principle because:				
(A) The velocities of the particles were very high (B) The mass could not attain the velocity of light				
(B) The mass could not attain the velocity of light(C) The mass increases at velocities comparable to the velocity of light				
(D) The uncertainty in position of the moving mass				
16. The relation between half-life and mean life is:				
(A) Inversely proportional				
(B) Directly proportional				
(C) Equal				
(D) Half				
17. The concept of mutual frame of reference was used in:(A) Reduced mass correction in spectroscopy(B) Radioactivity				

(C) Relative nuclear stability(D) None of these	
18. The Ultraviolet catastrophe means: (A) Spectral energy concentration towards longer way (B) Spectral energy concentration at the middle of the (C) Spectral energy concentration towards shorter way (D) None of these	e spectrum
19. As per quantum physics, the observables 'E' and _accuracy: (A) px (B) t (C) x (D) None of these	cannot be simultaneously measured with 100%
20. The theory of relativity predicts that at velocities (A) Increase	comparable to the speed of light, the moving mass appears to:

- (B) Decrease (C) Remain the same (D) None of these

PART-II

NOTE:

- (i) Part-II is to be attempted on the separate Answer Book.
- (ii) Attempt ONLY FOUR questions from PART-II. ALL questions carry EQUAL marks.
- (iii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
- (iv) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
- (v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
- (vi) Extra attempt of any question or any part of the question will not be considered.

0 8 W	Vrite sho	ort notes any TWO of the following:	10 each) (20)
	(b)	Compare the energies of a proton and electron having same De Broglie wave length of 1Å.	(10) (20)
Q. 7.	(a)	Explain the construction and working of photo multiplier tube (PMT). (10)	
	(b)	Explain the Hall's effect. How it could calculate the number of charge carriers in material.	(10) (20)
Q. 6.	(a)	Explain how Hall's effect could be used to find the sign of charge carriers.	(10)
Q. 5.	(a) (b)	Derive the expression for electric dipole moment. Discuss two uses in modern science, Discuss Biot and Savart law and derive its expression, using suitable schematic figure.	(10) (10) (20)
Q.4.	(a) (b)	In the context of nuclear physics explain the magic numbers. Explain nuclear quadrupole moment and explain its significance.	(10) (10) (20)
Q.3.	(a) (b)	In quantum mechanics explain the term commutation between the observables. Explain how De Broglie wave particle duality laid down the fundamentals of uncertainty principle.	(10) (10) (20)
	(b)	Find the fifth & seventh member of Balmer spectral series. If the third member is 1200 Å.	(10) (20)
Q.2.	(a)	Discuss the spectral properties of perfect black body radiation. Explain the ultra violet catastrophe.	(10)

Q. 8. Write short notes any TWO of the following:

(10 each) (20)

- (a) Reduced mass correction in spectroscopy
- (b) Electron microscope
- (c) Heisenberg uncertainty principal