Deep Deterministic Portfolio Optimization

Machine learning in finance: Theoretical foundations

Mats Bererd

- Introduction
- 2 Cadres théoriques
 - Généralités
 - Coût et risque quadratique
 - Coût proportionnel et risque quadratique
 - Coût proportionnel et risque maxpos
- 3 L'algorithme DDPG
 - Présentation
 - Replay Buffer
 - Exploration
 - Actualisation des parties acteur et critique
 - Le cas *maxpos*
- 4 Résultats
 - Conclusion
 - Limites et pistes d'amélioration

- Introduction
- Cadres théoriques
 - Généralités
 - Coût et risque quadratique
 - Coût proportionnel et risque quadratique
 - Coût proportionnel et risque maxpos
- Ualgorithme DDPG
 - Présentation
 - Replay Buffer
 - Exploration
 - Actualisation des parties acteur et critique
 - Le cas maxpos
- 4 Résultats
 - Conclusion
 - Limites et pistes d'amélioration

Objectifs

- Le *trading* d'action nécessite des prises de décisions dynamiques, *i.e.* prises en temps réel.
- Le Deep Reinforcement Learning (DRL) offre un cadre idéal pour développer des stratégies de trading en équilibrant l'arbitrage exploitation de connaissances / exploration de nouvelles stratégies.
- Ce type de modèle est difficile à expliquer et leur reproductibilité est souvent mise en doute
- But: comparer les performances de Deep Deterministic Policy Gradient (DDPG) à des solutions optimales connue d'environnement de trading conceptuellement simple.

- Introduction
- 2 Cadres théoriques
 - Généralités
 - Coût et risque quadratique
 - Coût proportionnel et risque quadratique
 - Coût proportionnel et risque maxpos
- 3 L'algorithme DDPG
 - Présentation
 - Replay Buffer
 - Exploration
 - Actualisation des parties acteur et critique
 - Le cas *maxpos*
- 4 Résultats
 - Conclusion
 - Limites et pistes d'amélioration

Formellement, le problème d'optimisation dynamique s'écrit :

$$\max_{\{a_t \in \mathcal{A}\}} \mathbb{E} \left[\sum_{t=0}^{T-1} \text{rwd}_t(s_t, a_t, s_{t+1}, \xi_t) \right]$$
s.t. $s_{t+1} = f_t(s_t, a_t, \eta_t)$ (1)

avec $a_t \in \mathcal{A}$ l'action choisie dans l'espace des actions (on appelle $\{a_t\}$ la politique/le contrôle), $s_t \in \mathcal{S}$ l'état de l'environnement à la date t, ξ_t et η_t des bruits et rwd $_t$ est la fonction de gain perçu.

- On se restreint au cas unidimensionnel. L'investisseur alloue une portion $\pi_t \in \mathbb{R}$ dans un actif risqué.
- L'investisseur agit un changeant son allocation d'actif : $a_t = \pi_{t+1} \pi_t$
- Le revenu r_t se décompose en un terme prévisible p_t et un bruit $\eta_t^{(r)}$
- p_t est un processus AR(1) de paramètre ρ , de bruit $\eta_t^{(p)}$
- L'état $s_t = (\pi_t, p_t)$ contient toute l'information disponible à la date t

L'optimisation dynamique pour allocation de portefeuille s'écrit :

$$\max_{\{\pi_t\}} \mathbb{E} \left[\sum_{t=0}^{T-1} \pi_{t+1} r_{t+1} - \cos(|a_t|) - \operatorname{risk}(\pi_{t+1}) \right]$$
 (2)

$$\pi_{t+1} = \pi_t + a_t \tag{3}$$

$$p_{t+1} = \rho p_t + \eta_t^{(p)} \tag{4}$$

$$r_{t+1} = p_t + \eta_t^{(r)} (5)$$

Deux sous-cas de figure sont alors étudiés :

- $r_{t+1} \mapsto p_t \, (\eta_t^{(r)} = 0 \text{ p.s.})$: l'agent a une observation parfaite de l'espace des états en t. En effet, le gain perçu est fonction des paramètres observables π_t , p_t et a_t .
- ullet le revenu est perturbé par le bruit $\eta_t^{(r)}$

Coût et risque quadratique

Sous ces hypothèses, le problème devient une Commande LQ (*Linear-Quadratic Regulator*, LQR) en temps discret et horizon fini:

$$\max_{\{\pi_t\}} \mathbb{E} \left[\sum_{t=0}^{T-1} \pi_{t+1} p_{t+1} - \Gamma a_t^2 - \lambda \pi_{t+1}^2 \right]$$
 (6)

La solution s'écrit :

$$\pi_{t+1}^* = (1 - \omega)\pi_t + \omega \psi \pi_{t+1}^{(M)} \tag{7}$$

avec
$$\pi_{t+1}^{(M)} = \frac{p_t}{2\lambda}$$
, $\psi = \frac{\omega}{1 - (1 - \omega)\rho}$, $\omega = f_c\left(\sqrt{\frac{\lambda}{T}}\right)$ et $f_c(x) = \frac{2}{1 + \sqrt{1 + \frac{4}{x}}} = \frac{x}{2}(\sqrt{x^2 + 4} - x)$

Coût proportionnel et risque quadratique

$$\max_{\{\pi_t\}} \mathbb{E}\left[\sum_{t=0}^{T-1} \pi_{t+1} p_{t+1} - \Gamma |a_t| - \lambda \pi_{t+1}^2\right]$$
 (8)

La solution s'écrit:

$$\pi_{t+1}^* = \begin{cases} u(\pi_{t+1}^{(M)}) & \text{si } \pi_t > u(\pi_{t+1}^{(M)}) \\ l(\pi_{t+1}^{(M)}) & \text{si } \pi_t < l(\pi_{t+1}^{(M)}) \\ \pi_t & \text{sinon} \end{cases}$$
(9)

Une bonne approximation est de prendre

$$u(\pi_{t+1}^{(M)}) = \pi_{t+1}^{(M)} + b \text{ et } l(\pi_{t+1}^{(M)}) = \pi_{t+1}^{(M)} - b$$

Coût proportionnel et risque maxpos

La contrainte de risque *maxpos* impose une limite maximum aux positions prises : $|\pi_t| \le M$. Ce qui donne :

$$\max_{\{|\pi_t| \le M\}} \mathbb{E}\left[\sum_{t=0}^{T-1} \pi_{t+1} p_{t+1} - \Gamma |a_t|\right]$$
(10)

La stratégie optimale est alors de trader le maximum autorisé quand le prédicteur p_t dépasse un seuil :

$$\pi_{t+1}^* = \begin{cases} M & \text{si } \pi_t > q \\ -M & \text{si } \pi_t < -q \\ \pi_t & \text{sinon} \end{cases}$$
 (11)

- Introduction
- 2 Cadres théoriques
 - Généralités
 - Coût et risque quadratique
 - Coût proportionnel et risque quadratique
 - Coût proportionnel et risque *maxpos*
- 3 L'algorithme DDPG
 - Présentation
 - Replay Buffer
 - Exploration
 - Actualisation des parties acteur et critique
 - Le cas *maxpos*
- 4 Résultats
 - Conclusion
 - Limites et pistes d'amélioration

- DDPG est un algoritme acteur-critique
- La partie acteur permet d'estimer une politique déterministe $\phi_{\Theta}: \mathcal{S} \to \mathcal{A}$
- La partie critique donne une approximation de la fonction valeur Q, satisfaisant l'équation de Bellman.
- L'espace des actions est considéré continu
- Q(s, a) est supposée différentiable en a.
- L'algorithme s'entraîne en *off-policy*.
- L'agent récupère de l'expérience sous forme de tuples $(s_t, a_t, rwd_t, s_{t+1})$ dans un *replay buffer*, puis échantillonne des nouvelles données d'entraînement pour mettre à jour la partie critique puis la partie acteur.

Prioritized Experience Replay

- Cela permet de réduire le biais d'estimation
- Chaque « expérience » $(s_{t_j}, a_{t_j}, \text{rwd}_{t_j}, s_{t_{j+1}})$ est pondérée selon leur erreur TD :

$$\delta(s, a, \text{rwd}, s') = \text{rwd} + \gamma \max_{a'} Q(s', a') - Q(s, a)$$

$$P(i) = \frac{p_i^{\alpha}}{\sum_k p_k^{\alpha}}, \ 1 \le i \le N, \ 0 \le \alpha \le 1$$

avec N la taille du *replay buffer*, $p_i = |\delta_i| + \varepsilon$, ε un petit nombre positif

• Pour l'actualisation de la partie critique, on corrige le biais d'échantillonage non-uniforme en utilisant :

$$\alpha_i = \left(\frac{1}{N} \frac{1}{P(i)}\right)^{\beta}, \ 0 \le \beta \le 1$$

Exploartion de nouvelles stratégies

Afin d'explorer de nouvelles stratégies de *trading*, on applique une perturbation à la prédiction d'allocation : $a_t = a_t^{pred} + \eta_t^{(a)}$, étant donnée sa position actuelle π_t et le revenu prévisible p_t :

$$egin{cases} a_t^{pred} = \phi_\Theta(p_t, \pi_t) \ \eta_t^{(a)} = (1 -
ho^{expl}) \eta_{t-1}^{(a)} + \sigma^{expl} \epsilon_t \ \eta_0^{(a)} = 0 \end{cases}$$

 $\eta_t^{(a)}$ est le bruit d'exploration, qui suit un processus AR(1) avec $\epsilon_t \sim_{iid} \mathcal{N}(0,1)$, $\sigma^{explo} > 0$.

- Pour améliorer la stabilité dans l'apprentissage, les paramètres sont actualisés sur des copies des modèle acteur et critique.
- Les réseaux finaux sont actualisés par moyennisation de Polyak :

$$\tilde{\omega} \leftarrow \tau_c \, \omega + (1 - \tau_c) \, \tilde{\omega}, \, \, 0 < \tau_c < 1$$

$$\tilde{\Theta} \leftarrow \tau_a \, \Theta + (1 - \tau_a) \, \tilde{\Theta}, \, \, 0 < \tau_a < 1$$

avec $\omega, \tilde{\omega}, \Theta, \tilde{\Theta}$ les paramètres des réseaux copie critique, critique, copie acteur et acteur.

Problème de différentiabilité de Q

- les positions de l'acteur sont rognées pour respecter la contrainte
- un coût supplémentaire est ajouté à la fonction de gain :

$$\operatorname{rwd}(p,\pi,a) = p\pi - \Gamma|a| - \beta \{\tanh[\alpha(|\pi+a| + (1+\gamma)M] + 1\}$$

- Introduction
- Cadres théoriques
 - Généralités
 - Coût et risque quadratique
 - Coût proportionnel et risque quadratique
 - Coût proportionnel et risque *maxpos*
- Ualgorithme DDPG
 - Présentation
 - Replay Buffer
 - Exploration
 - Actualisation des parties acteur et critique
 - Le cas maxpos
- 4 Résultats
 - Conclusion
 - Limites et pistes d'amélioration

Conclusions générales

- DDPG parvient à apprendre des stratégies de trading proche des solutions optimales en terme de fonction de gain et de PnL.
- Les performances au niveau *PnL* sont atteintes plus rapidement qu'au niveau fonction de gain.
- Ajouter du bruit à la fonction de gain est plus complexe à gérer : les résultats sont plus variables.
- Le troisième environnement est le plus difficile : plusieurs agents n'ont pas convergé.

Résultats

	Reward		PnL		Diff	
	no noise	noise	no noise	noise	no noise	noise
reference	0.681		1.298		0	
best	0.677	0.671	1.291	1.674	0.081	0.128
mean	0.665	0.596	1.237	1.295	0.140	0.383
worst	0.655	0.415	1.170	1.119	0.218	0.781
75%-tile	0.668	0.640	1.258	1.316	0.161	0.491
50%-tile	0.666	0.624	1.239	1.276	0.132	0.349
25%-tile	0.660	0.588	1.215	1.215	0.106	0.256

Table 1 – Résultats Coût et risque quadratique

Résultats

	Reward		PnL		Diff	
	no noise	noise	no noise	noise	no noise	noise
reference	0.254		0.492		0	
best	0.248	0.225	0.518	0.562	0.063	0.131
mean	0.241	0.181	0.478	0.452	0.093	0.250
worst	0.234	0.135	0.442	0.364	0.126	0.441
75%-tile	0.244	0.196	0.491	0.486	0.101	0.301
50%-tile	0.239	0.188	0.482	0.455	0.090	0.244
25%-tile	0.238	0.167	0.464	0.414	0.080	0.181

Table 2 – Résultats Coût proportionnel et risque quadratique

Résultats

	Reward		PnL		Diff	
	no noise	noise	no noise	noise	no noise	noise
reference	0.901		0.901		0	
best	0.884	0.876	0.884	0.876	0.101	0.143
mean	0.856	0.842	0.856	0.842	0.198	0.246
worst	0.815	0.803	0.815	0.803	0.321	0.346
75%-tile	0.849	0.849	0.849	0.849	0.148	0.210
50%-tile	0.862	-	0.862	-	0.184	-
25%-tile	0.826	-	0.826	-	0.239	-

Table 3 – Résultats Coût proportionnel et risque *maxpos*

Limites et pistes d'amélioration

- DDPG suppose un espace d'actions continu.
- D'autres ajustements pourront sûrement améliorer la convergence et la précision de l'algorithme, e.g. changer la méthode d'exploration (ici ε-greedy)
- DDPG est model-free, i.e. la fonction de gain est supposée non-connue au moment de l'entraînement. Ajouter ces informations de modèle peut aussi améliorer les performances.