This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11088673 A

(43) Date of publication of application: 30 . 03 . 99

(51) Int. CI

H04N 1/401

(21) Application number: 09247106

(22) Date of filing: 11 . 09 . 97

(71) Applicant:

SEIKO EPSON CORP

(72) Inventor:

COPYRIGHT: (C)1999,JPO

MOTONAMI NOBUHISA

(54) IMAGE READER

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an image reader by which a level difference between an output of odd numbered pixels and an output of even numbered pixels is more effectively corrected.

SOLUTION: This reader is provided with an averaging circuit 31 that calculates a mean value of pixel data this time and preceding output pixel data, a selection circuit 34 that receives pixel data this time and output data from the averaging circuit 31, a comparator circuit 6 that generates a signal used to select noted pixel data and generates a signal used to select output data of the averaging circuit 31 and sends the signal to a selection circuit 34, a feedback circuit 35 that outputs the output data of the selection circuit 34 to the averaging circuit 31 and the comparator circuit. Thus, a level difference between an output of odd numbered pixels and an output of even number pixels is eliminated. Furthermore, since a shading correction circuit for correcting shading after even/odd correction by an even/odd correction circuit 3 is provided, the level difference between an output of odd. numbered pixels and an output of even number pixels at both ends of the main scanning is eliminated.

(19)日本国特許庁(JP)

H04N 1/401

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-88673

(43)公開日 平成11年(1999)3月30日

(51) Int.Cl.6

離別記号

FΙ

H04N 1/40

101A

審査請求 未請求 請求項の数3 OL (全 6 頁)

(21)出願番号

(22)出願日

特願平9-247106

平成9年(1997)9月11日

(71)出顧人 000002369

セイコーエプソン株式会社

東京都新宿区西新宿2丁目4番1号

(72)発明者 本南 宜久

長野県諏訪市大和3丁目3番5号 セイコ

ーエプソン株式会社内

(74)代理人 弁理士 鈴木 喜三郎 (外2名)

(54)【発明の名称】 画像読取装置

(57)【要約】

【課題】 奇数画素の出力と偶数画素の出力とのレベル 差をより効果的に補正できる画像読取装置を提供する。

【解決手段】 今回画素データと前回出力画素データとの平均を算出して出力する平均回路31と、今回画素データと平均回路31の出力データとが入力される選択回路34と、今回画素データと前回出力画素データを選択し、設定値より小のとき平均回路31の出力データを選択する信号を発生して選択回路34に送り出す比較回路6と、選択回路34の出力データを平均回路31と比較回路6とに出力する帰還回路35とを備えるので、奇数画素の出力と偶数画素の出力とのレベル差を解消することができる。また、奇偶補正回路3で奇偶補正回路を設けたので、主走査の両端の奇数画素の出力と偶数画素の出力と偶数画素の出力と偶数画素の出力と偶数画素の出力と偶数画素の出力と偶数画素の出力とのレベル差を解消することができる。

【請求項1】 光源により原稿面に光を照射して、原稿 面からの反射光または透過光を電気信号に変換するイメ ージセンサと、

前記イメージセンサで読み取った画素データをA/D変 換するAD変換器と、

今回画素データと前回出力画素データとの平均を算出し て出力する平均回路と、

今回画素データと前記平均回路の出力データとが入力さ れる選択回路と、

今回画素データと前回出力画素データとの差分値が所定 の設定値より大のとき今回画素データを選択し、前記設 定値より小のとき前記平均回路の出力データを選択する 信号を発生して前記選択回路に送り出す比較回路と、 前記選択回路の出力データを前記平均回路と前記比較回

前記A/D変換器でA/D変換した画素データの奇数番 目の画素の出力と偶数番目の画素の出力との間に生じる レベル差を解消することを特徴とする画像読取装置。

路とに帰還させる帰還回路とを備え、

【請求項2】 前記比較回路は、所定の設定値を設定す る設定部と、注目画素データと前記帰還回路から帰還さ れた前回出力画素データとの差分値を算出する差分器 と、前記差分器で算出された差分値と前記設定部で設定 された設定値とを比較する比較器とを有することを特徴 とする請求項1記載の画像読取装置。

【請求項3】 A/D変換器でA/D変換した画素デー タの奇数番目の画素の出力と偶数番目の画素の出力との 間に生じるレベル差を解消した後にシェーディング補正 するシェーディング補正回路を備えたことを特徴とする 請求項1または2記載の画像読取装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、イメージセンサを 用いた画像読取装置に関し、特に、個々の画素が線上に 配列されたラインセンサで読み取った画素データの奇数 番目の画素の出力と偶数番目の画素の出力との間に生じ るレベル差を解消する画像読取装置に関する。

[0002]

【従来の技術】一般にライン操作方式の画像読取装置で は、2つのアナログシフトレジスタを有したデュアルチ ャンネルの電荷結合素子(以下、「電荷結合素子」をC CDという) 等のラインセンサが用いられている。

【0003】このCCDラインセンサにおいて、一方の アナログシフトレジスタは奇数番目の各撮像部から電荷 を受け取るように設けられ、他方のアナログシフトレジ スタは偶数番目の各撮像部から電荷を受け取るように設 けられており、各アナログシフトレジスタに対して、こ れらが交互に光電変換信号を出力するようにシフトクロ ック信号が印加される。このようなデュアルチャンネル のレジスタ構成によれば、単一のアナログシフトレジス 50 タによって電荷を転送するシングルチャンネルのレジス タ構成に比べ、1ラインの画像密度を2倍にすることが できる。

【0004】このようなラインセンサを用いた場合、2 つのアナログシフトレジスタの間での特性の違いによ り、奇数番目の画素の出力と偶数番目の画素の出力との 間にレベル差を生じる場合がある。このレベル差は、例 えば128階調以上の高階調で画像信号を処理する場 合、読取画像に縦縞模様が出て、画像品質が著しく低下 するという欠点がある。

【0005】このような奇数番目の画素の出力と偶数番 目の画素の出力とのレベル差を補正する画像読取装置と して、特開平7-107276号公報に開示されている ように、シェーディング補正後に奇偶補正を行う画像読 取装置が知られている。

[0006]

【発明が解決しようとする課題】特開平7-10727 6号公報に開示されている画像読取装置では、シェーデ ィング補正後に奇偶補正を行っている。この画像読取装 置によると、例えば図5(A)および(B)にシェーデ ィング補正前の画素出力と補正後の画素出力を示すよう に、奇数番目の画素の出力と偶数番目の画素の出力との レベル差は、ハロゲンランプ等の光源の配光ムラに起因 した主走査方向のばらつきとともにシェーディング補正 によって補正される。シェーディング補正回路による補 正では、主走査の両端が最も補正され、この両端部の奇 数番目の画素の出力と偶数番目の画素の出力とのレベル 差が最も大きくなる。したがって、従来の画像読取装置 では、主走査の両端の奇数番目の画素の出力と偶数番目 の画素の出力とのレベル差が補正しきれないという問題 があった。

【0007】本発明は、このような問題を解決するため なされたものであり、奇数番目の画素の出力と偶数番目 の画素の出力とのレベル差をより効果的に補正できる画 像読取装置を提供することを目的とする。

【0008】本発明の他の目的は、主走査の両端の奇数 番目の画素の出力と偶数番目の画素の出力とのレベル差 を効果的に補正できる画像読取装置を提供することにあ

[0009]

30

【課題を解決するための手段】本発明の請求項1記載の 画像読取装置によると、イメージセンサと、A/D変換 器と、今回画素データと前回出力画素データとの平均を 算出して出力する平均回路と、今回画素データと平均回 路の出力データとが入力される選択回路と、今回画素デ ータと前回出力画素データとの差分値が所定の設定値よ り大のとき注目画素データを選択し、設定値より小のと き平均回路の出力データを選択する信号を発生して選択 回路に送り出す比較回路と、選択回路の出力データを平 均回路と比較回路とに帰還させる帰還回路とを備え、A

30

灯時間を制御する。この光源制御部20からの制御信号はインバータ21に出力されて、選択された時間で光源14を点灯させる。

【0017】点灯時間記憶部23には少なくとも3種類の時間データが格納されている。

【0018】CCD制御部22は、光源14の点灯タイミングに合わせてシフトパルスを発生して、キャリッジ13の操作速度に合わせてラインセンサ1の読み出しを制御する。

【0019】制御装置19は、CPU、RAMおよびROM等からなるマイクロコンピュータにより構成され、インターフェース25を介して外部の例えばパーソナルコンピュータ等の画像処理装置に接続され、この画像処理装置からの指令信号により光源14の点灯時間の制御や後述のガンマ補正に用いられるガンマ関数の選択を行う。

【0020】A/D変換器2は、増幅器24を介して入力したラインセンサ1からの光量信号をデジタル信号に変換して奇遇補正回路3に渡すものである。奇偶補正回路3では、奇数番目の画素の出力と偶数番目の画素の出力とのレベル差が補正される。

【0021】ここで、奇偶補正回路3について図1を用いて詳細に説明する。

【0022】 奇偶補正回路3は、比較回路6と平均回路31と選択回路34と帰還回路35とから構成される。また比較回路6は、差分器32と比較器33と設定部36とから構成される。

【0023】選択回路34の入力端子Aには、A/D変 換回路2の出力が入力される。入力端子Bには平均回路 31の出力が入力される。帰還回路35は、選択回路3 4の出力データを平均回路31と差分器32とにフィー ドバックさせる。設定部36には、所定の設定値が設定 されている。差分器32は、今回画素データと帰還回路 35からフィードバックされた前回出力画素データとの 差分値を算出する。比較器33は、差分器32で算出さ れた差分値と、設定部36で設定された設定値とを比較 し、選択回路34に選択信号を発する。平均回路31 は、注目画素データと帰還回路35からフィードバック された前回出力画素データとの平均を算出し、それを今 回画素データと置き換える補正処理を行う。今回画素デ ータと前回出力画素データとの差分値が設定部36の設 定値以下である場合、平均回路31の出力が選択され、 差分値が設定部36の設定値より大の場合、A/D変換 回路からの出力が選択される。したがって、差分器32 で算出された差分値が設定値より大であれば選択回路3 4の入力端子Aを選択する信号とされ、逆の場合は入力 端子Bを選択する信号とされる。

【0024】ここで、総数m個の画素データの中でn番目の前回出力画素データをK*nとし、 n+1番目の画素データをKn+1とし、設定値をLとしたとき、差分器3

/D変換器でA/D変換した画素データの奇数番目の画素の出力と偶数番目の画素の出力との間に生じるレベル差を解消する。このため、選択回路の出力データを前回出力画像データとして平均回路と比較回路とに帰還させているので、奇数番目の画素の出力と偶数番目の画素の出力とのレベル差を効果的に解消することができる。したがって、従来は補正しきれなかった画像の縦縞を解消することができる。また、注目画素データと前回出力画素データとの差分が所定の設定値より大のとき注目画素データを選択し、設定値より小のとき平均回路の出力デリータを選択するので、画像の白と黒とのはっきりとした境界部分がぼやけることはない。したがって、画像のエッジがぼやけることを防止することができる。

【0010】本発明の請求項2記載の画像読取装置によると、比較回路は、所定の設定値を設定する設定部と、今回画素データと前記帰還回路から帰還された前回出力画素データとの差分値を算出する差分器と、前記差分器で算出された差分値と前記設定部で設定された設定値とを比較する比較器とを有するので、奇数番目の画素の出力と偶数番目の画素の出力とのレベル差を確実に解消す 20 ることができる。したがって、従来は補正しきれなかった画像の縦縞を確実に解消することができる。

【0011】本発明の請求項3記載の画像読取装置によると、A/D変換器でA/D変換した画素データの奇数番目の画素の出力と偶数番目の画素の出力との間に生じるレベル差を解消した後にシェーディング補正するシェーディング補正回路を備えるので、主走査の両端部の奇数番目の画素の出力とのレベル差を解消した後、シェーディング補正する。したがって、主走査の両端の奇数番目の画素の出力と偶数番目の画素の出力とのレベル差を解消することができる。

[0012]

【発明の実施の形態】以下、本発明の実施の形態を示す 実施例を図面に基づいて説明する。

【0013】本発明の一実施例による画像読取装置を図 2に示す。

【0014】匡体12の上面にガラス等の透明板からなる原稿台11が設けられている。匡体12の内部に図示しない駆動装置により原稿台11に平行に移動するキャリッジ13が設けられ、このキャリッジ13に光源14とラインセンサ1とが搭載されている。光源14の照射光は、原稿台11の上の原稿16の表面で反射され、集光レンズ17によりイメージセンサとしてのラインセンサ1に集光される。ラインセンサ1には電荷結合型のCCDが用いられる。

【0015】このような構造の画像読取装置における機能構成を図3に示す。

【0016】図3において、光源制御部20は、後述する制御装置19による制御を受けて、点灯時間記憶部2 3から読み出された時間データに基づいて光源14の点 50

2で算出された前回出力画素データK*nと今回画素データKn+1との差分値 | K*n-Kn+1 | が設定値Lより大の画素データが到来したとき、平均回路31で平均化した値は採用せず、到来してきた値がそのまま採用される。他方、差分器32で算出された前回出力画素データK*nと今回画素データKn+1との差分値 | K*n-Kn+1 | が設定値Lより小の画素データが到来したとき、平均回路31の出力が採用される。

【0025】奇偶補正回路3で奇偶補正された画素データは、シェーディング補正回路4でシェーディング補正 される。シェーディング補正回路4では、主走査の両端部が最も補正される。しかしながら、奇偶補正回路3により奇偶補正された画素データをシェーディング補正するので、両端部の奇数画素の出力と偶数画素の出力とのレベル差はすでに解消されている。したがって、例えば図4(A)および(B)にシェーディング補正前の画素出力と補正後の画素出力を示すように、主走査の両端の奇数番目の画素の出力と偶数番目の画素の出力とのレベル差を解消することができる。

【0026】シェーディング補正回路4でシェーディン 20 グ補正された画素データは、画像処理回路5でガンマ補 正、色補正、拡大縮小等の画像処理がなされる。

【0027】本実施例では、選択回路34の出力データを前回出力画素データとして平均回路31と差分器32とにフィードバックさせ、奇偶補正を行っているので、奇数番目の画素の出力と偶数番目の画素の出力とのレベル差を効果的に解消することができる。したがって、従来は補正しきれなかった画像の縦縞を解消することができる。また、注目画像データと前回出力画像データとの差分値が所定の設定値より大のとき注目画像データを選択し、設定値より小のとき平均回路の出力データを選択するので、画像の白と黒とのはっきりとした境界部分がぼやけることはない。したがって、画像のエッジがぼやけることを防止することができる。

【0028】また本実施例では、奇偶補正回路3で奇偶 補正した後にシェーディング補正するシェーディング補 正回路4を設けたので、主走査の両端部の奇数番目の画*

【0029】本発明では、R、G、B用の複数のラインセンサで読み取った画素データに奇偶補正回路を適用してもよいし、シェーディング補正した後に奇偶補正を行う奇偶補正回路を設け、シェーディング補正した後に奇偶補正してもよい。

のレベル差を解消することができる。

10 【図面の簡単な説明】

【図1】本発明の一実施例による画像読取装置の奇偶補 正回路の構成を示す図である。

【図2】本発明の一実施例による画像読取装置の構造を 示す図である。

【図3】本発明の一実施例による画像読取装置の構成を 示す図である。

【図4】本発明の一実施例による画像読取装置の奇数画素の出力と偶数画素の出力とのレベル差の補正を説明する図であって、(A)は、シェーディング補正前であり、(B)は、シェーディング補正後である。

【図5】従来の奇数画素の出力と偶数画素の出力とのレベル差を説明する図であって、(A)は、シェーディング補正前であり、(B)は、シェーディング補正後である。

【符号の説明】

- 1 ラインセンサ (イメージセンサ)
- 2 AD変換器
- 3 奇偶補正回路
- 4 シェーディング補正回路
- 5 画像処理回路
 - 6 比較回路
 - 31 平均回路
 - 32 差分演算器
 - 3 3 比較器
 - 3 4 選択回路
 - 35 帰還回路
 - 3 6 設定値部

【図2】

【図1】

【図3】

【図4】

【図5】

