第8讲*

点估计量和点估计方法

麻省理工学院 14.30 2006 年春季

Herman Bennett

假定某一参数值未知的情况下,点估计的目标就是用一个样本计算出一个数值,该数 值在某种意义上代表对该参数真实值的优良估计。

19 定义

19. 1 参数

概率质量/密度函数可以记作 $f_X(x)$ 或 $f_X(x/\theta)$,其中 θ 代表能全定义分布的常数。例如,如果x是正态分布的随机变量,则常数 μ 和 σ 将能完全定义其分布状态。这些常数被称为参数,并且通常被记作希腊字母 θ 。 ¹

例 19.1:

- 一正态分布: $f_X(x/\theta) = f(x/\mu, \sigma)$, 两个参数: $\theta_1 = \mu, \theta_2 = \sigma$;
- —二项分布: $f_X(x/\theta) = f(x/n, p)$, 两个参数: $\theta_1 = n, \theta_2 = p$:
- 一泊松分布: $f_X(x/\theta) = f(x/\lambda)$, 一个参数: $\theta = \lambda$,
- —伽玛分布: $f_X(x/\theta) = f(x/\alpha, \beta)$, 两个参数: $\theta_1 = \alpha, \theta_2 = \beta$.

19.2 (点) 估计量

 θ 的点估计量,记作 $\hat{\theta}$,它是一个统计量(是随机样本的一个函数):

$$\hat{\theta} = r(X_1, X_2, ..., X_n)$$
 (63)

注意:这些讲义不一定是自封的。它们只是对讲座的一种补充而不是替代。

¹对此也可以这样解释:参数是一个在同一个分布族中都适用的常数。

- 注意 $\hat{\theta}$ 的值并不是直接取决于 θ ,而仅仅是间接取决于每一个 X_i 的随机过程。
- θ <u>的点估计</u>是一种估计量 $\hat{\theta}$ 的实现值(即随机样本实现值的一个函数):

$$\hat{\theta} = r(x_1, x_2, \dots, x_n) \, \circ \tag{64}$$

例 19.2 设样本 $X_1, ..., X_{10}$ 服从正态分布 $N(\mu, \sigma^2)$,我们想估计参数 μ (未知)。我们可以构造出无数个 μ 的估计量。实际上,任何一个随机样本的函数都可以看作是 μ 的一个估计量,例如:

$$\hat{\theta} = r(X_1, X_2, ..., X_{10}) = \begin{cases} X_{10} \\ \frac{X_{10} + X_1}{2} \\ \overline{X} = \frac{1}{10} \sum_{i=1}^{10} X_i \\ 1.5X_2 \\ etc. \end{cases}$$

例19.3 设随机样本 X_1, \ldots, X_n 服从均匀分布 $U(0,\theta)$,其中 θ 未知。计算出它的3个不同的估计量。

20 (点)估计量的评价

由于有许多可能的估计量,我们需要定义一些性质对它们进行评价和排序。

20.1 无偏性

如果对于 θ 的每一个可能值,都有:

$$E(\hat{\theta}) = \theta \tag{65}$$

则称估计量 $\hat{\theta}$ 是<u>参数</u> θ 的无偏估计量。

如果 $\hat{\theta}$ 不是无偏的,则称它是一个<u>有偏估计量</u>,其中差值 $E(\hat{\theta}) - \theta$ 称作 $\hat{\theta}$ 的偏差。

● 如果随机样本 $X_1,...,X_n$ 独立同分布,且 $E(X_i) = \theta$,则样本均值的估计量

$$\hat{\theta} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \tag{66}$$

是总体均值的无偏估计量: $E(\overline{X}_n) = \theta$ (见第7讲中的例18.1)

● 如果随机样本 X_1, \dots, X_n 独立同分布,且 $E(X_i) = \mu$, $Var(X_i) = \theta$,则样本方差的估计量

$$\hat{\theta} = S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$$
 (67)

是总体方差的无偏估计量: $E(S^2) = \theta$ (见第7讲中的例18.1)

例20.1 设 X_i 服从 $U[0,\theta]$ 。随机样本容量为n,定义 θ 的一个估计量如下:

$$\hat{\theta} = \frac{2}{n} \sum_{i=1}^{n} X_i$$
 。 $\hat{\theta}$ 是有偏的吗?

20.2 有效性

设 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 是 θ 的无偏估计量。如果对于给定容量为n的样本,

$$Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$$
 (68)

则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ <u>更有效,</u>其中 $Var(\hat{\theta}_i)$ 是估计量的方差。

设 $\hat{\theta}_1$ **是** θ 的一个无偏估计量。如果对于 θ **的**任何无偏估计量, $\hat{\theta}_k$,

$$Var(\hat{\theta}_1) \le Var(\hat{\theta}_k)$$
, (69)

则称 $\hat{\theta}_1$ 是有效的,或者是<u>方差最小的无偏估计量</u>。

● 不要将估计量 $\hat{\theta}$ 的方 \hat{z} - $Var(\hat{\theta})$,与样本方差估计量 S^2 相混淆, S^2 是总体方差 σ^2 (!)的无偏估计量。

例20.2 如何比较例19.2中估计量的有效性?这些估计量中哪些是无偏的?

20.3 均方误差

为什么强调无偏估计量呢?<u>均方误差</u>(MSE)用于对每一个估计量 $\hat{m{ heta}}$ 在偏差和有效性之间进行权衡。

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^{2}] = Var(\hat{\theta}) + (bias(\hat{\theta}))^{2}$$
(70)

在 θ 的所有可能估计量中,对于给定容量为n的样本,如果 $\hat{\theta}$ 有最小的均方误差,则 $\hat{\theta}$ 称为 θ 的最小均方误差估计量。

例20.3 画图描绘两个估计量的概率密度函数,使第一个估计量的偏差小于其无效性(另一个估计量反之)。

20.4 渐近准则

20.4.1 一致性

设 $\hat{\theta}$ 是 θ 的一个估计量。如果 $\hat{\theta} \xrightarrow{p} \theta$,则 $\hat{\theta}$ 具有<u>一致性</u>(大数定律:讲义第7讲)。

例 20.4 设来自总体 f(x) 容量为 n 的随机样本,其中 $E(X) = \mu$ (未知)。下列估计量中哪个具有一致性?

$$\hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i \qquad \hat{\mu}_2 = \frac{1}{n-5} \sum_{i=1}^n X_i \qquad \hat{\mu}_3 = \frac{1}{n-5} \sum_{i=1}^{n-5} X_i$$

● 当 $n \to \infty$ 时,MSE $\to 0 \Rightarrow$ 一致性

20.4.2 渐近有效性

设 $\hat{\theta}_1$ 是 θ 的一个估计量。当 $n \to \infty$ 时,如果 $\hat{\theta}_1$ 满足有效估计量定义,则称它<u>渐近有效</u>。

21 点估计方法

下面介绍两种用于构造(点)估计量的标准方法。

21.1 矩法估计 (MM)

设 $X_1, X_2, ..., X_n$ 是来自总体概率质量/密度函数为 $f(x/\theta_1, ..., \theta_k)$ 的随机样本,其中 $\theta_1, ..., \theta_k$ 是未知参数。一种估计这些参数的方法就是使前k个总体矩与对应的k个样本矩相 等。合成k估计量被称作参数 $\theta_1, ..., \theta_k$ 的<u>矩法估计值</u>。²

计算过程概括如下:

方程系统: k个方程与k个未知数 ⇒ 输出 $\hat{\theta}_1,...,\hat{\theta}_k$ 注意 (1) $E(X_i^j) = g_j(\theta_1,...,\theta_k)$ (2) 样本矩的实现值是一个标量 $\begin{bmatrix} \frac{1}{n} \sum_{i=1}^n X_i &= E(X_i^1) & - \text{阶 矩} \\ \frac{1}{n} \sum_{i=1}^n X_i^2 &= E(X_i^2) & - \text{阶 矩} \\ \frac{1}{n} \sum_{i=1}^n X_i^3 &= E(X_i^3) & - \text{阶 矩} \\ \vdots &\vdots &\vdots \\ \frac{1}{n} \sum_{i=1}^n X_i^k &= E(X_i^k) & k \text{阶 矩} \end{bmatrix}$

6

²此估计方法是由卡尔. 皮尔逊于 1894 年提出的。

例 21.1 设容量为n的随机样本服从总体 $N(\mu,\sigma^2)$,其中 μ,σ^2 为未知参数。计算两个参数的矩法估计值。

例21.2 设容量为 n 的随机样本服从伽玛分布: $f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$,对于

 $0 < x < \infty$ 。假定随机样本的实现值为 $\frac{1}{n} \sum_{i=1}^n x_i = 7.29$, $\frac{1}{n} \sum_{i=1}^n x_i^2 = 85.59$, 计算参数 α 和 β 的矩法估计值。记住 $E(X_i) = \alpha \beta$ 和 $Var(X_i) = \alpha \beta^2$ 。

21.2 极大似然估计(MLE)

设 X_1, X_2, \ldots, X_n 是来自总体概率质量/密度函数为 $f(x/\theta_1, \ldots, \theta_k)$ 的随机样本,其中 $\theta_1, \ldots, \theta_k$ 是未知参数。估计这些参数的另一种方法就是找到由 $f(x/\hat{\theta}_1, \ldots, \hat{\theta}_k)$ 产生的样本 观测值出现的概率为最大的 $\hat{\theta}_1, \ldots \hat{\theta}_k$ 的值。

随机样本的联合概率密度函数, $f(x_1,x_2,...,x_n/\theta_1,...,\theta_k)$,称作 $\underline{W$ 然函数</u>,记作 $L(\theta/x)$ 。

$$L(\theta | x) = L(\theta_1, ..., \theta_k | x_1, ..., x_n) =$$

$$\begin{cases} f(x_1, ..., x_n | \theta_1, ..., \theta_k) & - \text{般情况} \\ \prod_{i=1}^n f(x_i | \theta_1, ..., \theta_k) & \text{随机样本(独立同分布)} \end{cases}$$
 其中 θ 和 x 都是向量, $\theta = (\theta_1, ..., \theta_k)$, $x = (x_1, ..., x_k)$.

对于一个给定的样本向量X, 当 $L(\theta/x)$ 达到最大值时, θ 的参数值记作 $\hat{\theta}_{MLE}(x)$ 。那么 $\hat{\theta}_{MLE}(x)$ 称作未知参数 $\theta_1, \ldots, \theta_k$ 的<u>最大似然估计值(MLE)</u>。 3

● 直观认识:离散型分布的情形

8

³ 该估计方法是由R. A. 费舍于 1912 年提出的。

$$foc: \frac{\partial L(\theta/x)}{\partial \theta_i} = 0,$$
 $i = 1,...k$ (对于一个良态函数来说)

你需要检验它是否真的是最大值而并非最小值. (求二阶导数验证)

- 多数情况下,较容易找到 *LnL*(θ/x)的最大值(既然是一个单调变换最大值唯一······参考微积分101)。
 - ullet MLE的不变性: $\hat{ au}_{\mathit{MLE}}(heta) = au(\hat{ heta}_{\mathit{MLE}})$.
- 对于大样本来说, MLE可以得到θ的一个非常优良的估计量(满足一致性和渐进有效)。毫无疑问,此种方法被广泛运用。

- 但是…
 - (1) 数值灵敏度(稳健性)
 - (2) 不一定是无偏的
 - (3) 可能难以计算

例21.3 设一个随机样本来自服从正态分布 $N(\mu, \sigma^2)$ **的总体**, 其中参数 μ, σ^2 未知。计算参数的极大似然估计值。

例 21.4 设随机样本来自服从 $U(0,\theta)$ 分布的总体, θ 未知。计算 $\hat{\theta}_{MLE}$ 。