Université Abdou Moumouni de Niamey Faculté des Sciences et Techniques

Année Académique 2021-2022 Section :Mines et Pétrole

Résolution des équations et systèmes non linéaires

EXERCICE: 1

Résoudre par la méthode de la bissection et la méthode de Newton l'équation f(x) = 0 avec $f(x) = x^3 - 4x - 8,95$. dans l'intervalle [2; 3] avec une précision $\epsilon = 10^{-2}$.

EXERCICE:2

Soit $f:[0,1] \longrightarrow \mathbb{R}$ une fonction continue strictement décroissante telle que f(0)=1 et f(1)=-1.

- 1. Sachant que f(0,3) = 0, déterminer la suite des quatre premiers itérés de la méthode de dichotomie dans l'intervalle [0,1] pour l'approximation du zéro de f.
- 2. Combien d'itérations faut-il effectuer pour approcher le zéro de f à 2^{-5} près?

EXERCICE:3

soit l'équation du second degré $x^2 - 2x - 3 = 0$.

- 1. Transformer cette équation sous la forme x = g(x), en choisissant trois façons différentes.
- 2. Appliquer l'algorithme du point fixe sur chaque fonction $x = g_i(x)$ en partant de $x_0 = 0$.
- 3. Quelle remarque faites-vous?

EXERCICE:4

On veut calculer le zéro de la fonction $f(x) = x^2 - 2$ dans l'intervalle [1, 3]. Déterminer la suite des trois itérés de la méthode de dichotomie à partir du point $x_0 = 2$.

EXERCICE:5

Calculer les points fixes des fonctions suivantes et vérifier s'ils sont attractifs ou répulsifs.

- $1. \ g(x) = \sqrt{x}$
- $2. \ g(x) = \arcsin(x)$
- 3. $g(x) = 5 + x x^2$
- 4. $g(x) = \frac{1}{2}x(1-x)$
- 5. $g(x) = \frac{1}{2}x(1+x)$
- 6. $g(x) = x + x^3$
- 7. $g(x) = x x^3$

EXERCICE:6

On considère l'équation $x(1+e^x) = e^x$

- 1. Montrer que cette equation admet une unique solution réelle l dans l'intervalle [0,1].
- 2. Écrire et utiliser la méthode de Newton pour approcher la solution l avec $(x_0 = 3)$.