Regulatory Sequence Analysis

Applying comparative genomics to detect cis-acting elements

Jacques.van.Helden@ulb.ac.be

Université Libre de Bruxelles, Belgique Laboratoire de Bioinformatique des Génomes et des Réseaux (BiGRe) http://www.bigre.ulb.ac.be/

Phylogenetic footprinting to define regulatory regions

- Within non-coding sequences, regulatory elements evolve slower than their surrounding.
- Conserved non-coding sequences contain a high concentration in regulatory elements.

Phylogenetic footprints for the pax6 gene

Pourcentages de positions identiques (PIP) dans la région chromosomique de

- La génomique comparative permet d'améliorer la localisation des gènes.
- Alignement de la région génomique contenant le gène Pax6, entre le génome humain et une série d'organismes de plus en plus distants évolutivement (de bas en haut).
- Les blocs de séquences conservées reflètent souvent la présence de fragments codants.
- Cependant, il existe également des segments conservés dans les régions non-codantes.

Global alignment of intergenic regions

Another alignment in the same genomes

GAL80 (YML051W)	upstream regions
Scer	ATGGCGCAAGTTTTCCGCTTTGTAATATATATTTATACCCCTTTCTTCTCTCCCCTGCAA
Spar	AGGGGCCAAAGCTCCCGCTCTGTAAAATATATTTATATCCCTTCCTT
Smik	TAGGGACAAAGCCCGCCTTTTGTAATATATACTTATACCCTCTCCTCTCTCT
Sbay	** ***
Scer	TATAATAGTTTAATTCTAATATTAATAATATCCTATATTTTCTTCATTTACCGGCGC
Spar	TATAATAGTTTAATTCTAATATTAATAATATCCTATATTTTCCTTACC-ACCGGCGC
Smik	CATAATAGTTAACTCCTAATATTAATAATAATATCCTACAATTTCCTTAGC-ACCGGGGC
Sbay	******* * * ********* * **** * **** * *
Scer	ACTCTCGCCCGAACGACCTCAAAATGTCTGCTACATTCATAATAACCAAAAGCTCATAAC
Spar	ACTCTCGCCCGAACGACCTCAAAATGCTTGCTACATTCATAATAATCAAAAGCTTATAAC
Smik	ACTCTCGCCCGAACGACCTCAAAACGCTTGCTACATCCATAATATTCAGAACTACATCAC
Sbay	
	******* ** ** ** ** ** ** ** ** ** ** *
Scer	TTTTTTTTTTGAACCTGAATATATATACATCACATATCACTGCTGGTCCTTGCCGA
Spar	TTTTTTTTTCCTTTGTACCTGAATATATATACATCTCATGTCACTGCTGGTCCTTGCCGG
Smik	TTTTTTTTTGTACATAAAATATATACCACATGTCACTGCTGATCCTTGCTGA
Sbay	

Scer	CCAGCGTATACAATCTCGATAGTTGGTTT-C-CCGTTCTTTCCACTCCCGTCATGGACTA
Spar	CCAGCGTATACAACCTCGATAGCTGGTTTTC-CCGTTCTTCCCACTCCTGTCATGGACTA
Smik	CGAGCGTATACAAGCTCGATAGCTGGTCTTTACCGTGCCATTCCCTGCCGTCATGGACTA
Sbay	* ******* ***** ***** * **** * * * * *

Motifs in clusters of orthologous genes (COGs)

Phylogenetic footprinting to predict regulatory sites

orthologous genes — conserved regulatory sites

Footprinter example metallothionein

- 590 bp upstream of the same gene (methallothionein) in different species.
- 12 highly conserved motifs are detected.
- Each motif can be associated to a given internal node of the phylogenetic tree.

Source: Blanchette and Tompa (2002). Genome Research. 12, 739–748

Cross-matches in promoters of orthologous genes

- Lenhard et al. (2003). J.Biology 2:13.
- 100 PSSM for known mammal transcription factors
- Searching for conserved matches in Human and mouse increases the selectivity by 85%.
- Consite: http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite/

Conservation profile of Human IR

Cross-validation of genome-scale pattern matching

- Genome-scale pattern matching raises many false positive
- Cross-validation :
 - gene A from genome X has a good match in its upstream sequence
 - ortholog A' from genome Y has a good match in its upstream sequence

Cross-validation of pattern matching

Detection of functional clusters of genes

- Various methods of comparative genomics allows to detect clusters of functionally related genes
 - Operon conservation
 - Gene fusion analysis
 - Phylogenetic profiles (synteny)
- These functional clusters can be used to discover regulatory motifs in their upstream regions.

Clusters predicted from comparative genomics

Pattern discovery in predicted regulons

Organism	Cluster	pattern	reverse_complement	score
Escherichia_coli_K12	EC21	cccctcaccctctt	aagagggtgaggggg	13.01
Escherichia_coli_K12	EC21	cccctcacccctt	aaggggtgaggggg	13.01
Escherichia_coli_K12	EC21	gccctcacccctc	gaggggtgagggc	13.01
Escherichia_coli_K12	EC21	ggggagagggtgagggga	tcccctcaccctctcccc	13.01
Escherichia_coli_K12	EC21	cctcaccctcaccctctcccctc	gaggggagagggtgagggtgagg	13.01
Escherichia_coli_K12	EC3	cccctcgccctt	aaggggcgaggggg	12.73
Escherichia_coli_K12	EC3	aagggcgaggggg	cccctcgccctt	12.73
Escherichia_coli_K12	EC3	gccctcgccctc	gaggggcgagggc	12.73
Escherichia_coli_K12	EC3	cccctcacccctt	aaggggtgagggg	12.73
Escherichia_coli_K12	EC3	cccctctcccctt	aaggggagaggggg	12.73
Mycoplasma_pneumoniae	MP1	tataatact	agtattata	11.75
Mycoplasma_pneumoniae	MP1	cttaatactaat	attagtattaag	11.75
Escherichia_coli_K12	EC17	ccctctccctt	aagggagagggg	10.63
Escherichia_coli_K12	EC17	ccctctccctt	aaggggagagggg	10.63
Escherichia_coli_K12	EC17	ccctcgccctt	aagggcgagggg	10.63
Mycoplasma_pneumoniae	MP1	aataataag	cttattatt	10.4
Mycoplasma_pneumoniae	MP1	aataatattatt	aataatattatt	10.4
Mycoplasma_pneumoniae	MP1	taataataagnnnnnaataa	ttattnnnnncttattatta	10.4
Mycoplasma_pneumoniae	MP1	cttagtattatt	aataatactaag	10.4
Mycoplasma_pneumoniae	MP1	taataataagnnnnnaataa	ttattnnnnncttattatta	10.4
Mycoplasma_pneumoniae	MP1	aataatattaaga	tcttaatattatt	10.4
Mycoplasma_pneumoniae	MP1	cttagtatatataatatactaag	cttagtatatatatatactaag	10.4
Mycoplasma_pneumoniae	MP1	taataataagnnnnnaataa	ttattnnnnncttattatta	10.4
Mycoplasma_pneumoniae	MP1	ctaatattatt	aataatattag	10.4
Mycoplasma_pneumoniae	MP1	taataataagnnnnnaataa	ttattnnnnncttattatta	10.4
Mycoplasma_pneumoniae	MP1	aataatattattnnngtactattataataag	cttattataatagtacnnnaataatattatt	10.4
Mycoplasma_pneumoniae	MP1	aataatattatc	gataatattatt	10.4

Phylogenetic footprinting resources

- CORG: a database for COmparative Regulatory Genomics
 - Dieterich et al. (2003), Nucleic Acids Res. 31:55-57.
 - http://corg.molgen.mpg.de
 - Systematic alignment of 15Kb upstream regions for each pair of mouse-human homologous genes (18.674 pairs).
 - 10.793 significant alignments (P < 0.001), containing 293.503 conserved non-coding blocks (CNB), covering 8% of the upstream sequences (http://corg.molgen.mpg.de/stats.html).

Summary - phylogenetic approaches

- Matching conserved sites for known transcription factors
 - Consite: http://mordor.cgb.ki.se/cgi-bin/CONSITE/consite/
 - Lenhard et al. (2003). J.Biology 2:13.
- Global alignment of promoters of orthologous genes
 - clustalW
 - e.g.: Kellis et al (2003). Nature 423: 241-254.
- Pattern discovery in promoters of orthologous genes
 - Footprinter: http://bio.cs.washington.edu/software.html
 - Blanchette and Tompa (2002). Genome Research. 12, 739–748.