Graph reduction by local variation

Andreas Loukas

École Polytechnique Fédérale de Lausanne

The joys/frustrations of graph data

In the graph world, data come in large sizes

- Wikipedia has 45 million articles
- Facebook has 721 million active users

Great news! ... if only ...

- Space is an issue
 - storage and retrieval is tedious
 - can't fit in memory
- Computationally
 - Unsupervised algorithms typically super-linear (e.g., clustering, embedding)
 - Even linear algorithms cannot be used repeatedly (e.g., this makes training GCN a frustrating task)
- Deriving meaning from large graphs is hard.

How to simplify graphs

A common solution:

- a) Instead of solving the original (large) problem, solve a similar simpler problem;
- b) Refine the solution (if needed)

To simplify graphs, we can either use

- a) Sparsification: reduce the #edges M
 - spanners, cut and spectral sparsifiers [Spielman & Teng 2011, Koutis et al 2011]
 - Solve SDD linear systems in $\tilde{O}(M \log N)$ time.
- b) Reduction: reduce the #vertices N, as well as M
 - Graph coarsening, Kron reduction

A brief history of coarsening

Coarsening is frequently used to make code scalable:

- Long list of algorithms use it for partitioning and visualizing large graphs.
 - [Hendrickson and Leland 1995; Karypis and Vipin 1998; Wang et al. *How to partition a billion-node graph*, 2014].
- Common way to create multi-scale representations of graph-structured data.
 - Coarse-grained diffusion maps [Lafon and Lee 2006], multi-scale wavelets [Gavish et al. 2010] and pyramids [Shuman et al. 2016].
- It as a component of graph convolutional networks (GCN) analogous to pooling.
 - [Bruna et al. 2014; Defferrard et al. 2016, Bronstein et al. 2017].
- It is used for solving linear systems on graphs.
 - Multigrid first adapted to graphs by [Koutis et al. 2011] and [Livne and Brandt 2012]
 - Extensions for Fiedler vector [Urschel et al. 2014; Gandhi 2016] and regression [Colley et al. 2017]

The elephant in the room

Obviously, we are losing information.

Coarsening even few vertices may deform the graph structure, severely affecting the efficacy of graph algorithms.

- Can we still guarantee that G and G_c are similar (w.r.t. distances, cuts, or spectrum)?
- To-date, very little is known.
- Can we design coarsening algorithms with guarantees that are also efficient?

Today's menu

- a) Study a generic graph reduction scheme
- b) Introduce restricted similarity, a measure for graph approximation
 - Inspired by spectral sparsifiers
 - Strong implications for *spectrum* and unsupervised learning (*partitioning*, *clustering*, and *node* embedding)
- c) Coarsening algorithms that maximize restricted similarity
 - Non-heuristically defined
 - Nearly-linear computational complexity
- d) It works in practice
 - Almost as fast as the fastest coarsening algorithm
 - Approximate the spectrum of real graphs 2x-5x better than best known algorithms.

Graph reduction and coarsening

Basics and restricted similarity

A generic graph reduction scheme

Let L be an $N \times N$ PSD matrix s.t. $L(i,j) \neq 0$ only if e_{ij} is an edge of $G = (\mathcal{V}, \mathcal{E}, W)$:

Scheme 1: Graph reduction

Commence by setting $L_0 = L$ and $x_0 = x$ and proceed according to the following two recursive equations:

$$L_{\ell} = P_{\ell}^{\mp} L_{\ell-1} P_{\ell}^{+}$$
 and $x_{\ell} = P_{\ell} x_{\ell-1}$,

where $P_{\ell} \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ are matrices with more columns than rows, $\ell = 1, 2, ..., c$ is the level of the reduction, symbol \mp denotes the transposed pseudoinverse, and N_{ℓ} is the dimensionality at level ℓ such that $N_0 = N$ and $N_c = n \ll N$.

Vector x_c is lifted back to \mathbb{R}^N by recursion $\widetilde{x}_{\ell-1} = P_{\ell}^+ \widetilde{x}_{\ell}$, where $\widetilde{x}_c = x_c$.

Graph coarsening as a special case

To coarsen $G_{\ell-1} = (\mathcal{V}_{\ell-1}, \mathcal{E}_{\ell-1})$ into $G_{\ell} = (\mathcal{V}_{\ell}, \mathcal{E}_{\ell})$:

- Partition $G_{\ell-1}$ into N_{ℓ} connected subgraphs $G_{\ell-1}^{(r)} = (\mathcal{V}_{\ell-1}^{(r)}, \mathcal{E}_{\ell-1}^{(r)})$. Call $\mathcal{V}_{\ell-1}^{(r)}$ a contraction set.
- Form a vertex $v'_r \in \mathcal{V}_\ell$ for every contraction set.
- The weight of edge (v'_r, v'_p) is equal to $cut(\mathcal{V}^{(r)}_{\ell-1}, \mathcal{V}^{(p)}_{\ell-1})$

Toy coarsening example

L is the Laplacian

$$P_{1} = \begin{bmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad P_{1}^{+} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \Pi = P_{1}^{+} P_{1} = \begin{bmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

and coarsening results in

$$L_c = P_1^{\pm} L P_1^{+} = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \quad x_c = P_1 x = \begin{bmatrix} (x(1) + x(2) + x(3))/3 \\ x(4) \\ x(5) \end{bmatrix}.$$

Benefits of multilevel coarsening

We can now solve problem in \mathbb{R}^n with $n \ll N$. If needed, the solution is lifted to \mathbb{R}^N as $P_1^+ \cdots P_c^+ x$.

- Speed. Only O(M) operations needed!! (trivial pseudo-inversion)
- Interpretability. Different from random projections, variables have a meaning.
- Simplicity. We can use the same algorithm to process G_c as with G.

Basic properties

One may express the reduced quantities in a more compact form:

$$x_c = Px$$
, $L_c = P^{\mp}LP^{+}$ and $\widetilde{x} = \Pi x$,

where
$$P = P_c \cdots P_1 \in \mathbb{R}^{n \times N}$$
, $P^+ = P_1^+ \cdots P_c^+ \in \mathbb{R}^{N \times n}$, and $\Pi = P^+ P \in \mathbb{R}^{N \times N}$.

The dimensionality reduction ratio $r = 1 - \frac{n}{N}$ should be as large as possible.

Property 1. Π is a projection matrix.

Denote by λ and $\widetilde{\lambda}$, respectively, the eigenvalues of L and L_c .

Theorem 1. The interlacing inequality $\lambda_k \leq \widetilde{\lambda}_k$ holds for all k = 1, ..., n.

Interesting guarantees, but not strong enough ..

A different perspective: restricted similarity

Define the following matrix induced semi-norm:

$$\|x\|_L = \sqrt{x^\top L x}$$

Ideally, one would hope that

$$(1 - \epsilon) \|x\|_L \le \|x_c\|_{L_c} \le (1 + \epsilon) \|x\|_L \quad \forall x \in \mathbb{R}^N,$$

in which case we say that L_c and L are called ϵ -similar.

Definition 1 (Restricted similarity). Let \mathbf{R} be a k-dimensional subspace of \mathbb{R}^N such that $k \leq n \leq N$. Matrices L and L_c are (\mathbf{R}, ϵ) -similar if there exists an $\epsilon \geq 0$ such that

$$||x - \tilde{x}||_L \le \epsilon ||x||_L \quad \forall x \in \mathbf{R}.$$

Implies
$$(1 - \epsilon) \|x\|_L \le \|x_c\|_{L_a} \le (1 + \epsilon) \|x\|_L \quad \forall x \in \mathbf{R}.$$

Implications: spectrum is preserved

Consider the matrix of k first eigenvectors:

$$U_k \in \mathbb{R}^{N \times k} = [u_1, u_2, \dots, u_k]$$
 and $\mathbf{U}_k = \operatorname{span}(U_k)$

Theorem 1. If L_c and L are $(\mathbf{U}_k, \epsilon_k)$ -similar and $P^{\top} = P^+$, then

$$\lambda_2 \leq \widetilde{\lambda}_2 \leq \frac{(1+\epsilon_2)^2}{1-\epsilon_2} \lambda_2 \quad and \quad \lambda_k \leq \widetilde{\lambda}_k \leq \frac{(1+\epsilon_k)^2}{1-\|\Pi^{\perp}U_k\|_2^2} \lambda_k.$$

The angle [Davis and Kahan 1970] between eigenspaces U_k and \widetilde{U}_k of L and \widetilde{L} , respectively is:

Theorem 2. If L_c and L are $(\mathbf{U}_k, \epsilon_k)$ -similar then

$$\|\sin\Theta\left(U_k, P^{\top}\widetilde{U}_k\right)\|_F^2 \le \sum_{i=1}^k \frac{\epsilon_i(2+\epsilon_i)\lambda_i + \lambda_k\epsilon_i}{\lambda_{k+1} - \lambda_k}.$$

Implications: good cuts are preserved

The conductance of G is defined as

$$\phi_2(G) = \min_{S \subset \mathcal{V}} \frac{w(S, \bar{S})}{\min\{w(S), w(\bar{S})\}}$$

- $\bar{S} = V \setminus S$ is the complement set,
- $w(S, \bar{S}) = \sum_{v_i \in S, v_j \in \bar{S}} w_{ij}$ is the weight of the cut and
- $w(S) = \sum_{v_i \in S} \sum_{v_i \in V} w_{ij}$ is the volume of S.

Corollary 1. If L_c and L are $(\mathbf{U_2}, \epsilon_2)$ -similar and $P^+ = P^\top$ then

$$\phi_2(G) \le \phi_2(G_c) \le 2\left(\frac{1+\epsilon_2}{\sqrt{1-\epsilon_2}}\right)\sqrt{\phi_2(G)}.$$

Implications: good multi-way cuts are preserved

The k-conductance is defined as

$$\phi_k(G) = \min_{\mathcal{S}_1, \dots, \mathcal{S}_k} \max_i \phi_2(\mathcal{S}_i)$$

Theorem 3. For any integer $2 \le k \le n$ and t > 0 such that $k' = (1+t)k \le n$, if L_c and L are $(\mathbf{U}_{k'}, \epsilon_{k'})$ -similar combinatorial Laplacian matrices and $P^+ = P^\top$ then

$$\phi_k(G) \le \phi_k(G_c) = O\left(\frac{1 + \epsilon_{k'}}{\|\Pi U_{k'}\|_2} \operatorname{poly}(1/t) \sqrt{\phi_{k'}(G) \log k}\right).$$

Implications: spectral clustering works

Spectral clustering. Partition G into $\mathcal{P} = \{S_1, S_2, \dots, S_k\}$ [Shi and Malik]:

• Search for the partitioning \mathcal{P}^* that minimizes the k-means cost:

$$\mathcal{F}(U_k, \mathcal{P}) = \left[\sum_{r=1}^k \sum_{v_i, v_j \in \mathcal{S}_r} \frac{\|U_k(i,:) - U_k(j,:)\|_2^2}{2 |\mathcal{S}_r|} \right]^{\frac{1}{2}}$$

Spectral clustering + **coarsening**. [Karypis and Kumar] proposed the following scheme:

- Hierarchically coarsen G until the latter reaches a target size;
- Solve partitioning problem in the small dimension;
- Lift the solution back to the original domain, while performing some fast refinement.

Implications: spectral clustering works

Suppose that

$$\mathcal{P}^* = \underset{\mathcal{P}}{\operatorname{arg \, min}} \mathcal{F}(U_k, \mathcal{P}) \text{ and } \widetilde{\mathcal{P}}^* = \underset{\mathcal{P}}{\operatorname{arg \, min}} \mathcal{F}(P^\top \widetilde{U}_k, \mathcal{P})$$

are the two identified clustering assignments.

[Boutsidis et al. 2015]: If $|\mathcal{F}(U_k, \mathcal{P}^*) - \mathcal{F}(U_k, \widetilde{\mathcal{P}}^*)|$ is small then $\widetilde{\mathcal{P}}^*$ and \mathcal{P}^* are of the same quality.

Corollary 2. If L_c and L are $(\mathbf{U}_k, \epsilon_k)$ -similar then

$$|\mathcal{F}(U_k, \widetilde{\mathcal{P}}^*) - \mathcal{F}(U_k, \mathcal{P}^*)| \le 2\sqrt{2} \sum_{i=1}^k \frac{\epsilon_i (2 + \epsilon_i) \lambda_i + \lambda_k \epsilon_i}{\widetilde{\lambda}_{k+1} - \lambda_k}$$

even without refinement.

Bisection (simple case):

•
$$|\mathcal{F}(U_2, \widetilde{\mathcal{P}}^*) - \mathcal{F}(U_2, \mathcal{P}^*)| = O(\epsilon_2 \frac{\lambda_2}{\lambda_3 - \lambda_2})$$

Local variation algorithms

Finally, something practical

Idea

To go from level $\ell - 1$ to ℓ :

- 1. Find many, small, possibly overlapping candidate sets C_1, C_2, \ldots, C_z .
- 2. Compute local variation cost $\sigma_{\ell}(G_{\mathcal{C}_i}, \mathbf{R})$ for each.
- 3. Select as many non-overlapping sets as you can, while $\sqrt{\sum_{\mathcal{C} \in \mathcal{P}_{\ell}} \sigma_{\ell}(G_{\mathcal{C}}, \mathbf{R})^2} \leq \sigma_{\ell}$
- 4. Contract and proceed to next level.

Theorem 1. Matrices L_c and L are (\mathbf{R}, ϵ) -similar with

$$\epsilon = \prod_{\ell=1}^{c} (1 + \sigma_{\ell}) - 1.$$

Example algorithms

To go from $G_{\ell-1} = (\mathcal{V}_{\ell-1}, \mathcal{E}_{\ell-1})$ to $G_{\ell} = (\mathcal{V}_{\ell}, \mathcal{E}_{\ell})$:

Edge-based local variation algorithm – takes $\tilde{O}(ckM + ck^3 + k^2N)$ time

- Compute the local variation cost $\sigma_{\ell}(e_{ij})$ of each edge $e_{ij} = (v_i, v_j) \in \mathcal{E}_{\ell-1}$.
- Find a minimum weight matching (each vertex belongs to one contraction set)
- Contract every edge in the matching.

Generally, we define any candidate family of sets (neighborhoods, cliques, ..) and apply the same idea:

- Careful to keep the complexity small.
- Neighborhood-based algorithm takes $\tilde{O}(cM(k^2d + kd^2))$ time.

Visual & numerical results

It works!

Yeast PPI network: edge-based local variation

Yeast PPI network: neighborhood-based local variation

Minnesota network: edge-based local variation

Minnesota network: neighborhood-based local variation

Restricted similarity experiment

• Up to 70% reduction feasible, results consistent for larger k

Spectrum approximation experiment

Average eigenvalue error for first 40 eigenvalues

	r	heavy edge	local var. (edges)	local var. (neigh.)	algebraic distance	affinity	Kron reduction
yeast	30% 50% 70%	0.328 0.879 2.498	0.113 0.430 2.182	0.023 0.130 0.451	0.094 0.517 2.560	0.195 0.769 2.229	0.120 1.196 1.946
airfoil	30% 50% 70%	0.277 0.549 2.268	0.095 0.325 0.872	0.181 0.349 0.839	0.189 0.698 2.373	0.267 0.862 2.531	0.368 0.960 2.078
bunny	30% 50% 70%	0.023 0.066 0.128	0.008 0.058 0.098	0.085 0.181 0.299	0.205 0.346 0.509	0.052 0.089 0.202	0.294 0.660 1.192
minnesota	30% 50% 70%	0.353 1.259 4.162	0.118 0.468 2.111	0.115 0.383 1.612	0.209 1.342 4.145	0.306 1.264 4.185	0.337 0.933 2.090

$$\frac{\tilde{\lambda}_{i}}{4} \quad \text{error} = \frac{1}{40} \sum_{i < 40} \frac{\tilde{\lambda}_{i} - \lambda_{i}}{\lambda_{i}}$$

- Same trends as previous experiment
- On average 2.6x/3.9x smaller error compared to the second best method (w/wo Kron)

Scalability experiment

• Almost as fast as naïve heavy-edge matching

Summary

State of the art

- Graph reduction is commonly used in modern graph processing pipelines (METIS, GEPHI).
- Nevertheless, convincing analysis/algorithms is lacking.

Contributions

- Study a generic reduction scheme, featuring coarsening as a special case.
- Strong spectral and cut guarantees.
- Analysis holds for multiple levels of reduction.
- First non-heuristic algorithms for graph coarsening.

Open questions

- Lower bounds: what are the limits of reduction?
- Algorithms: how close can we achieve this limit in nearly-linear time?

Extra slides

Details are important