# 1 20th of September 2018 — F. Poloni

#### 1.1 A warm up

## $\Omega$

#### Do you recall?

Let  $x, y \in \mathbb{R}^n$ . The product between those two vectors is computed as follows  $x^T y = \sum_{i=1}^n x_i y_i$  and  $x^T y \in \mathbb{R}$ .

Let  $x \in \mathbb{R}^n$  and  $\lambda \in \mathbb{R}$  we call **multiple** of vector x the following:  $\lambda x = x\lambda = \begin{pmatrix} \lambda x_1 \\ \vdots \\ \lambda x_n \end{pmatrix}$ .

Given a matrix  $A \in M(n, m, \mathbb{R})$  and a vector  $b \in \mathbb{R}^m$  the **matrix-vector product**  $Ab = v \in \mathbb{R}^n$  is computed as follows:

$$v = Ab = \begin{pmatrix} A_1b \\ A_2b \\ \vdots \\ A_mb \end{pmatrix} = \sum_{j=1}^m A^j b_j$$

The computational complexity of this operation is  $O(n^2)$ .

We call **image** of a matrix A (Im(A)) the set of vectors that can be obtained multiplying A by any vector in the domain of A.

On the other hand, we call **kernel** of a matrix A (ker(A)) the set of vectors w in its domain such that Aw = 0.

Given two matrices  $A \in M(n, m, \mathbb{R})$  and  $B \in M(m, k, \mathbb{R})$  we call **matrix-matrix product** the following: C = AB such that  $C_{ij} = A_i B^j$ , where  $A_i^T \in \mathbb{R}^m$  is the *i*-th row of A,  $B^i$  is the *i*-th column of B ( $B^i \in \mathbb{R}^m$ ) and  $C \in M(n, k, \mathbb{R})$ . The computational complexity of this operation is  $O(n^3)$ . Notice that this product is **not commutative**. The matrix-matrix product also works on "matrices" made of one column only (vector of  $\mathbb{R}^n$ ), but in this case a row of the right-side matrix is made by only one scalar. . Given a matrix  $A \in M(n, \mathbb{R})$  we call **inverse** of A the matrix  $A^{-1}$  such that  $A^{-1}A = AA^{-1} = I_n$ .

The **transpose** of a matrix  $A \in M(n, m, \mathbb{R})$  is  $A^T$  such that  $A_{ij}^T = A_{ji}$ 

The **inverse of a product** (shoe-sock identity) is  $(AB)^{-1} = B^{-1}A^{-1}$ . Notice that this identity holds only for square matrices.

The **transpose of a product** (shoe-sock identity) is  $(AB)^T = B^T A^T$ .

The objective of this course, for the part concerning numerical methods, is solving linear systems efficiently.

**Definition 1.1** (Linear system). Let  $A \in M(n, m, \mathbb{R})$ ,  $b \in \mathbb{R}^n$  and  $x \in \mathbb{R}^m$ . We term **linear** system the following:

$$Ax = b$$

Our goal is to approximate such vector x, hence resulting in solving a minimum problem:

$$\min \|Ax - b\|$$

# Something on Matlab ...

Notice that the machine precision is  $10^{-16}$ , so we should pay attention when making computations, since we may incurr in some error (proportional to the size of the operands).

In Matlab a matrix is written as A=[1, 2, 3; 4, 5, 6];, where [1, 2, 3] is the first row of the matrix A.

The transpose of a matrix or a vector is denoted by A'.

If we are interested in only a part of our matrix A we may write A[1:2, 1:3] and obtain only the rows of A that go from 1 to 2 and those columns from 1 to 3.

**Fact 1.1.** Let  $A \in GL(n, \mathbb{R})$  (aka A is a real square matrix of size n and invertible),  $B, C \in M(n, m, \mathbb{R})$ .

If 
$$AB = AC$$
 then  $B = C$ .

**Definition 1.2** (Block multiplications). Let  $A \in M(n, m, \mathbb{R})$  and let  $B \in M(m, k, \mathbb{R})$ . We can compute the result of a block of the matrix AB as the product of the two blocks in A and B in the corresponding position.

**Fact 1.2** (Block triangular matrices). Let  $M \in M(n, m, \mathbb{R})$  and  $N \in M(m, k, \mathbb{R})$  such that they are **block triangular**. Their product is a block triangular matrix as well.

$$MB = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} \begin{pmatrix} E & F \\ 0 & G \end{pmatrix} = \begin{pmatrix} AE & BF \\ 0 & DG \end{pmatrix}$$

Fact 1.3 (Properties of triangular matrices).

- 1. A block triangular matrix is invertible iff its blocks are invertible;
- 2. The eigenvalues of a block triangular matrix are the union of the eigenvalues of each block;
- 3. Let  $M \in GL(n, m, \mathbb{R})$  such that  $M = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}$  the inverse of M is

$$M^{-1} = \begin{pmatrix} A^{-1} & -A^{-1}BD^{-1} \\ 0 & B^{-1} \end{pmatrix}.$$

Why are we interested in block triangular matrices? They depict a situation as shown in Figure 1.1.

manca figura dei blocchi in latex



FIGURE 1.1: The adjacency matrix of a biparted graph has 0s in its bottom left part (Matlab syntax A[p+1:n; 1:p]=0).

## 1.2 Orthogonality

**Definition 1.3** (Norms). Let  $x \in \mathbb{R}^n$ . We "measure" their magnitude using so-called "norms".

Euclidean: 
$$\|x\|_2 = x^T x = \sqrt{\sum_{i=1}^n x_i^2}$$
;

NORM 1: 
$$||x||_1 = \sum_{i=1}^n |x_i|$$
;

$$p$$
-Norm:  $|x|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ ;

0-Norm: 
$$||x||_0 = |\{i : |x_i| > 0\}|;$$

$$\infty$$
-Norm:  $||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$ .

From now on in this part of th course we will refer to norm-2 only.

**Definition 1.4** (Orthogonal matrix). Let  $A \in M(n, m, \mathbb{R})$ . We call A orthogonal if  $\forall x \in \mathbb{R}^n ||Ax|| = ||x||$ .

Fact 1.4 (Equivalent definition of orthogonal matrix). Let  $A \in M(n, \mathbb{R})$ . A is orthogonal iff  $A^T A = AA^T = I_n$ , where  $I_n$  is the identity matrix of size n (1 on the diagonal, 0 elsewhere).