Homework 7

Due Nov 9th, 2022

Problem 1

Suppose $X_1,...,X_n \stackrel{iid}{\sim} \Gamma(\alpha,\lambda)$, where α is known and $\lambda > 0$. Prove that \bar{X}/α is the best unbiased estimator of $1/\lambda$.

Problem 2

Suppose $X_1, ..., X_n \stackrel{iid}{\sim} N(0, \sigma^2)$. (a) Find the UMVUE of σ .

- (b) Find the UMVUE of σ^4 .

Problem 3

Suppose $X_1, \ldots, X_n \stackrel{iid}{\sim} Geom(\theta)$, where the pmf of $Geom(\theta)$ is

$$P(X = i) = \theta(1 - \theta)^{i-1}, \quad i = 1, 2, ..., \quad 0 < \theta < 1.$$

Geometric distribution can be interpreted as number of Bernoulli trials $(Ber(\theta))$ needed to get one success.

(a) Show that $T = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ , and has pmf

$$P_{\theta}(T=t) = {t-1 \choose n-1} \theta^{n} (1-\theta)^{t-n}, t=n, n+1, n+2, \cdots$$

- (b) Compute $E_{\theta}(T)$ and use it to find the UMVUE of θ^{-1} .(Hint: $\sum_{i=0}^{\infty} z^i = \frac{1}{1-z}$ for |z| < 1.)
- (c) Show that $\psi(X_1) = I(X_1 = 1)$ is an unbiased estimator of θ , use this fact to find the UMVUE of θ .

Problem 4

Suppose $X_1, \ldots, X_n \stackrel{iid}{\sim} f_a(x)$ where

$$f_a(x) = e^{-(x-a)} \mathbb{I}_{(a,\infty)}(x), \quad -\infty < a\infty.$$

Find the UMVUE of a.