Week 9: Function specific switching

- Idea: Measure the performance of the static algorithm selectors on instances
 1 to 5
- I used a 4-fold cross validation where I trained the selectors on ¾ of runs, and then let them predict the best algorithm for the remaining quarter.
- For each function, I set the switching point as the budget for which the static selector at that budget performed best on that function (lowest sum of precisions across all runs on that function)
- I then trained random forests, one for each possible switching budget, that predict whether or not to switch for a run (so a binary prediction here)

Week 9: Function specific switching

- In a first attempt, I set the switch decision to true for a function and a budget, only if that budget is the right budget for the function
- This resulted in poor performance, because each run for which the right budget was not detected, then continued without switching, which is basically always a bad decision
- So, I set the switch decision to true for a function and a budget, if that budget is greater or equal than the right budget for that function. (So that if a run is not detected to switch at the right budget, it will switch somewhere behind that)
- This resulted in good performance

Results if we consider multiples of 50 as switching points

selector_optimal_switching:
Precision of the selector that,
for each fid, switches at the
best static switching point
for that fid (according to the
algorithm predictions on the
training runs)

Method	Ratio	
selector	0.6914739331516234	
selector_optimal_switching	0.6937242813091179	
static_B50	0.7342292114590188	
static_B200	0.7834688934562055	
static_B100	0.8096604126452549	
static_B150	0.8279748194510756	
static_B350	0.8295645201063693	
static_B450	0.8315831727495465	
static_B300	0.833793375248887	
static_B400	0.8454845500999881	
static_B250	0.8521377125549351	
static_B500	0.8646264151484486	
static_B550	0.8651682121985461	
static_B600	0.8680715726930405	
static_B650	0.8727674677814952	
static_B700	0.9691203768199774	
static_B750	1.170709233204784	
static_B800	1.2944068941955356	
static_B850	1.612240193937837	
static_B900	1.9356077011386117	
static_B950	2.5804227966401223	
static_B1000	3.9009662685339572	

Results for multiples of 50 and multiples of 8 lower than 100

Method	Ratio	
selector	0.7348407859659998	
selector_optimal_switching	0.7414546343743612	
static_B80	0.8343698876143243	
static_B56	0.8431062571644096	
static_B64	0.865747418437369	
static_B24	0.8695766953339663	
static_B40	0.874061958394088	
static_B96	0.8749348244632318	
static_B200	0.8864525814801185	
static_B100	0.9095093121298923	
static_B48	0.9111641348804176	
static_B150	0.9256317196040164	
static_B350	0.9270311535031466	
static_B450	0.9288081993450942	
static_B32	0.9297976509890551	
static_B72	0.9301458725592493	
static_B300	0.9307538689849849	
static_B400	0.9410457603249096	
static_B250	0.9469026246627765	
static_B8B	0.9556409676800052	
static_B500	0.9578965899148633	
static_B550	0.9583735408149151	
static_B600	0.9609294063383146	
static_B650	0.9650632630815067	
static_B16	0.9933172712163364	
static_B700	1.049883966110878	
static_B750	1.227345224853125	
static_B800	1.3362378641416175	
static_B8	1.3913457921804038	
static_B850	1.6160305989880546	
static_B900	1.9006951677212154	
static_B950	2.4683341759274477	
static B1000	3.63082555044471	

Evaluation on new instances

- I also wanted to see if this works if we use runs on instances 6 and 7 (20 each) as a test set. Once again, I considered both sets of switching points
- The performance is worse here. Maybe this is because the distributions of training and test set are too different?

	1		
Method	Ratio		
selector	0.7397463435645291		
static_B64	0.783110528315716		
static_B80	0.7991784183080536	Method	
static_896	0.8011234209716904	selector_optimal_switching	<u> </u>
static_856	0.8052528171186433	static B50	+
static_B48	0.8091478061854296		-
selector_optimal_switching	0.8201803586687644	selector	
static_B100	0.8340053853588267	static_B100	
static_872	0.8350493625064949	static_B550	
static_B550	0.8507966151371419	static_B300	
static_B300	0.8522574095492805	static_B400	+
static_B400	0.8527850943443569	LU2800 T-0080	\vdash
static_B350	0.857926650631531	static_B350	_
static_B250	0.8623110386200014	static_B250	
static_B500	0.8793981739119423	static_B500	
static_B150	0.881782488942987	static B150	\vdash
static_H600	0.8849761676564104	static B600	+
static_B450	0.8905819890916795		╀
static_H650	0.8915562283902	static_B450	L
static_B200	0.900379391354849	static_B650	
static_B88	0.9070488066040253	static_B200	Г
static_B24	0.9505310751659515	static_B700	+
static_B700	0.9615915740558716		+
static_B32	0.9655715603363839	static_B750	╀
static_B16	1.011701664513621	static_B800	
static_B40	1.0258049077785734	static_B850	
static_B750	1.1243501419530186	static_B900	\vdash
static_B8	1.1955308516283178	static B950	+
static_B800	1.2689075171966206		+
static_8850	1.6472226745221685	static_B1000	_
static_B900	1.9641426220843177		
static_8950	3.2024631000855757		
static_B1000	8.075054376573444		

Questions

- Is the switching selection done right? I think we could probably improve here.
 Currently, around 80% of runs switch at the right switching point. We need a way to handle the remaining runs.
- I also tried to tune the switching models (according to F1 score), but this did not improve the performance. Should I tune them according to a different metric?
- The performance of the static selectors on the training and test data often does not really match. I think we need more data (so more runs per instance) to really understand this. Currently, the performance of a static selector for a certain fid depends on only a few (un)lucky algorithm choices