Tropicolisation of Mg,n.
First we recall the definition of stable curves.
Let us fix an algebraically closed field k. An n-pointed nodal curve (C; p1,, pn) of genus g over k is
a projective curve C with arithmetic genus $g = g(C)$ with at most nodel singularities. The curve is stable
if it is connected and the automorphism group Aut (C, p1,, pn) of C fixing the points pi is finite.
The dual graph of a pointed curve. (Deficition 1)
For each n-pointed curve (C; p1,, pn) with at most nodes as singularities over k, we can assign its
weighted dual graph $G_c = G = (V, E, L, h)$, where
1. the set of vertices $V = V(G)$ is the set of irreducible components C_i
2. the set of edges $E = E(G)$ is the set of nodes of C , where an edge $e \in E$ is incident to vertices v_1 ,
V2 if the corresponding node lies in the intersection of the corresponding components;
3. the ordered set of legs of L=L(G) corresponds the marked points, where a marking is incident to the
component on which it lies;
4. the function $h: V \to lN$ is the genus function, where $h(u)$ is the geometric genus of the component corresponding to V .
Note that a node of C that is contained in only one irreducible component corresponds to a loop.
Tropical curves and their moduli
A tropical curve is a matrix weighted graph $\Gamma = (G, \ell) = (V, E, L, h, \ell)$ where $\ell : E \to \mathbb{R}_{>0}$.
One realize a tropical curve as an "extended" metric space by realizing an edge e as an interval of length
ℓ(e),
le), V1 le) V2 and realize a leg as a copy of 1R20 U(00), where 0 is attached to its incident vertex:
v
We denote Aut $(I) \in Aut(G)$ as the subgroup of symmetries preserving the length function ℓ .
An extended tropical curve is an extended metric weighted graph $\Gamma = (G, l) = (V, E, l, h, l)$ where the
time $l: E \to \mathbb{R}_{>0} \sqcup \{\infty\}$; we realize an extended tropical curve as an extended metric space by

Proof: As the dual graph level, the communitarity is trivial. The rest is only about length of the cluthting morphism. For (M1+1)—the point, it correspondes to Spec R in Mgi, u; = [C] $\in M_{q,n}^{an}$; it is represented by composition to ($u_1 \times u_2$): Spec $R \to M_{q,n}$. frence $\ell(e)=\infty$, since the local model around [C] is xy-fzo, where $fzo\in R$ 3. Glung morphisms. In the algebraic setting, for g >0 there is a map r: Mg-1, n+2 -> Mg, n obtained by gluing the last two marked points. Now we define the tropical gluing maps of trop: Mg-1, 142 -> Mg, n. The procedure is similiar to the definition of the tropical clutching maps. I tropical curve I with N+2 legs to the tropical curve I' obtained by attaching the last two legs of I. The new edge e' has infinite langth. Similier to Theorem 3 (ii), ne have the following commutative diagram.

Trop

Trop

Trop

Mgne, nt 2 Proof: Freathy the same in Theorem 3 (ii).