# <QlCrypton>

(The Quantum Security Evaluation Platform for Cryptographic Algorithms)



July. 21th, 2021 Sokjoon Lee













Richard Feynman ('81) **Proposal of Quantum Computer (for Simulating Quantum Mechanics)** 



David Deutsch ('85)

The First Algorithm of Exponential

Performance Improvement



Bernstein & Vazirani ('93)

Quantum-Classical Separation
in Computational Complexity

#### The first motivation: Quantum algorithm for attacking cryptography

Daniel Simon ('94)
Simon Algorithm
(Period Finding Problem)



Peter Shor ('94)
Shor Algorithm
(Factoring in Polynomial Time)



Lov Grover (\*96)
Grover Algorithm
(Quantum Search Algorithm in O(\sqrt{N}))

#### QUANTUM COMPUTING AND THE ENTANGLEMENT FRONTIER

#### JOHN PRESKILL

Institute for Quantum Information and Matter California Institute of Technology Pasadena, CA 91125, USA

Quantum information science explores the frontier of highly complex quantum states, the "entanglement frontier." This study is motivated by the observation (widely believed but unproven) that classical systems cannot simulate highly entangled quantum systems efficiently, and we hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world. One way to achieve such "quantum supremacy" would be to run an algorithm on a quantum computer which solves a problem with a super-polynomial speedup relative to classical computers, but there may be other ways that can be achieved sooner, such as simulating exotic quantum states of strongly correlated matter. To operate a large scale quantum computer reliably we will need to overcome the debilitating effects of decoherence, which might be done using "standard" quantum hardware protected by quantum error-correcting codes, or by exploiting the nonabelian quantum statistics of anyons realized in solid state systems, or by combining both methods. Only by challenging the entanglement frontier will we learn whether Nature provides extravagant resources far beyond what the classical world would allow.



Rapporteur talk at the 25th Solvay Conference on Physics
"The Theory of the Quantum World"
Brussels, 19-22 October 2011



Intel Tangle Lake (Q49, '18)



Google Bristlecone (Q72, '18)



IBM Q System One (Q20, '19)



IBM Hummingbird (Q65, '20)



lonQ (Q32, '20)









Harvard & MIT (Q256, '21)

not for universal quantum computing

#### Quantum Computing in the NISQ era and beyond

#### John Preskill

Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena CA 91125, USA 30 July 2018

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away — we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.

QUANTIZED COLUMNS

#### Why I Called It 'Quantum Supremacy'

John Preskill
Contributing Columnist

Researchers finally seem to have a quantum computer that can outperform a classical computer. But what does that really mean?

October 2, 2019

The quantum supremacy milestone allegedly achieved by Google is a pivotal step in the quest for practical quantum computers. I thought it would be useful to have a word for the era that is now dawning, so I recently made one up: NISQ. (It rhymes with risk.) This stands for "noisy intermediate-scale quantum." Here "intermediate-scale" refers to the size of quantum computers that are now becoming available: potentially large enough to perform certain highly specialized tasks beyond the reach of today's supercomputers. "Noisy" emphasizes that we have imperfect control over the qubits, resulting in small errors that accumulate over time; if we attempt too long a computation, we're not likely to get the right answer.

#### **Quantum Computer – Current Trends**



The Era of Quantum Supremacy, started by Google ('19)

#### nature

Article Published: 23 October 2019

#### Quantum supremacy using a programmable superconducting processor

Frank Arute, Kunal Arya, [...] John M. Martinis

Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years.



#### Google's Sycamore quantum processor (Q54)



Control operations for the quantum supremacy circuits (53 qubit, 1,113 single-qubit gates and 430 two-qubit gates)

cf. **IBM argued** that an ideal simulation of the same task can be performed on a classical system in 2.5 days

#### **Quantum Computer – Current Trends**



#### Quantum computer is coming true (1000+Qubit in 2023 by IBM)



IBM researchers have already installed the mounting hardware for a jumbo cryostat big enough to hold a quantum computer with 1 million qubits. CONNIE ZHOU/IBM

#### IBM promises 1000-qubit quantum computer—a milestone-by 2023

By Adrian Cho | Sep. 15, 2020, 5:45 PM



#### **Quantum Computer – Current Trends**

Quantum computer is coming true (1000+Qubit in 2028 by IonQ)



"<u>lonQ</u> plans to <u>double the number of qubits every eight months</u> for the next few years" (Peter Chapman, lonQ CEO)

# When will classical cryptography be fully attacked?

Theoretical quantum resources for solving ECDLP and factoring problems using Shor Algorithm

|    |             |         | ECDLP in $E$         | Factoring of RSA modulus $N$ |          |                           |         |                      |
|----|-------------|---------|----------------------|------------------------------|----------|---------------------------|---------|----------------------|
|    |             |         | simulation res       | interpolation from [21]      |          |                           |         |                      |
| [] | $\log_2(p)$ | #Qubits | #Toffoli             | Toffoli                      | Sim time | $\lceil \log_2(N) \rceil$ | #Qubits | #Toffoli             |
|    | bits        |         | gates                | $\operatorname{depth}$       | sec      | bits                      |         | gates                |
|    | 110         | 1014    | $9.44 \cdot 10^9$    | $8.66 \cdot 10^9$            | 273      | 512                       | 1026    | $6.41\cdot10^{10}$   |
|    | 160         | 1466    | $2.97 \cdot 10^{10}$ | $2.73 \cdot 10^{9}$          | 711      | 1024                      | 2050    | $5.81\cdot10^{11}$   |
|    | 192         | 1754    | $5.30\cdot10^{10}$   | $4.86 \cdot 10^{10}$         | 1149     | _                         | _       | _                    |
|    | 224         | 2042    | $8.43 \cdot 10^{10}$ | $7.73\cdot10^{10}$           | 1881     | 2048                      | 4098    | $5.20\cdot10^{12}$   |
|    | 256         | 2330    | $1.26\cdot 10^{11}$  | $1.16\cdot 10^{11}$          | 3848     | 3072                      | 6146    | $1.86 \cdot 10^{13}$ |
|    | 384         | 3484    | $4.52 \cdot 10^{11}$ | $4.15 \cdot 10^{11}$         | 17 003   | 7680                      | 15362   | $3.30\cdot10^{14}$   |
|    | 521         | 4719    | $1.14\cdot 10^{12}$  | $1.05\cdot10^{12}$           | 42888    | 15360                     | 30722   | $2.87\cdot10^{15}$   |

Table 2: Resource estimates of Shor's algorithm for computing elliptic curve discrete logarithms in  $E(\mathbb{F}_p)$  versus Shor's algorithm for factoring an RSA modulus N.

# When will classical cryptography be fully attacked? - NISQ era

Theory and Reality (in Shor Algorithm)

| $\lceil \log_2(N) \rceil$ | # Qubits | #Toffoli             |
|---------------------------|----------|----------------------|
| bits                      |          | gates                |
| 512                       | 1026     | $6.41 \cdot 10^{10}$ |
| 1024                      | 2050     | $5.81 \cdot 10^{11}$ |
| _                         | _        | _                    |
| 2048                      | 4098     | $5.20\cdot10^{12}$   |

#### Currently, there is no quantum computer with 4098 qubits

Minimum required qubits for attacking RSA-2048 : 4098 qubits Google Bristlecone : 72 qubits

#### Then, will RSA-2048 be broken if a quantum computer with 4098 qubits is realized?

- Is it possible to implement arbitrary multi-qubit gates like Toffoli gate?
- Quantum gate has error rate.
- How long will it take to maintain quantum coherence in quantum chips?
- Is it possible to apply 2-qubit gate (e.g. CNOT) to any two qubits in any random position?

# When will classical cryptography be fully attacked?



How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

Craig Gidney<sup>1, ∗</sup> and Martin Ekerå<sup>2</sup>

<sup>1</sup>Google Inc., Santa Barbara, California 93117, USA
<sup>2</sup>KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden Swedish NCSA, Swedish Armed Forces, SE-107 85 Stockholm, Sweden (Dated: December 6, 2019)

We significantly reduce the cost of factoring integers and computing discrete logarithms in finite fields on a quantum computer by combining techniques from Shor 1994, Griffiths-Niu 1996, Zalka 2006, Fowler 2012, Ekerå-Håstad 2017, Ekerå 2017, Ekerå 2018, Gidney-Fowler 2019, Gidney 2019. We estimate the approximate cost of our construction using plausible physical assumptions for large-scale superconducting qubit platforms: a planar grid of qubits with nearest-neighbor connectivity, a characteristic physical gate error rate of  $10^{-3}$ , a surface code cycle time of 1 microsecond, and a reaction time of 10 microseconds. We account for factors that are normally ignored such as noise, the need to make repeated attempts, and the spacetime layout of the computation. When factoring 2048 bit RSA integers, our construction's spacetime volume is a hundredfold less than comparable estimates from earlier works (Fowler et al. 2012, Gheorghiu et al. 2019). In the abstract circuit model (which ignores overheads from distillation, routing, and error correction) our construction uses  $3n+0.002n \lg n$  logical qubits,  $0.3n^3+0.0005n^3 \lg n$  Toffolis, and  $500n^2+n^2 \lg n$  measurement depth to factor n-bit RSA integers. We quantify the cryptographic implications of our work, both for RSA and for schemes based on the DLP in finite fields.



# When will classical cryptography be fully attacked?

# Theory and Reality (in Shor Algorithm)

#### Assumption in this paper

1. Large-scale superconducting qubit platform

2. Error Correction Code: Surface Code

3. Physical gate error: 10<sup>-3</sup>

4. Code distance: 27



We want to know the accurate Quantum Security of not only RSA, but also AES, ECC, Hash, PQC, etc.

What if we have a platform that provides a <u>fast and automated way</u> to evaluate the exact quantum security of cryptographic algorithms?

 $\langle Q|Crypton\rangle$ 



Quantum Resource Estimation-based Quantum Security Evaluation?



Total Quantum Resource Estimation for each Level (QASM/FTQC/Q-HW → QASM/QHW-logical/QHW-FTQC)

→ Concrete Q-Security Estimation and Comparison

First Step: Implement quantum circuit in algorithm level



Quantum circuit for multiplicative inversion in GF(28), used for implementing AES s-box

<sup>\*</sup> D. Chung et al., "Towards Optimizing Quantum Implementation of the AES S-box

# First Step: Implement quantum circuit in algorithm level

# $\begin{array}{c} \text{Quantum Arithmetic Circuit} \rightarrow \text{Quantum Library Gate} \\ \hline \\ (a_1) & (a_2) & (a_3) & (a_4) & (a_4) & (a_5) & ($



Next Step: Compile and synthesize to analyze quantum resource for the circuit



# $\langle Q|Crypton \rangle$ - Analysis Sequence

#### $\bigcirc$ Implementation on $\langle Q|Crypton\rangle$ platform



#### $\langle Q|Crypton angle$ - Analysis Sequence

# $\bigcirc$ QASM Level Process on $\langle Q|Crypton \rangle$ platform

#### Python-based Q-Program Code Generation

3. Auto-generate python-based Q-Program code by one-click



#### Q-Compile and Analysis

4. Compile to QASM

Qubit qbit0 Qubit qbit1

Qubit qbit1
Qubit qbit2
Qubit qbit3
Qubit qbit4
Qubit qbit5
Qubit qbit6
Qubit qbit7
...

CNOT qbit5,qbit7
CNOT qbit2,qbit12
CNOT qbit3,qbit13
CNOT qbit0,qbit2
CNOT qbit1,qbit3
CNOT qbit1,qbit0
CNOT qbit5,qbit4
H qbit22
CNOT qbit4,qbit27
CNOT qbit4,qbit27
CNOT qbit22,qbit0
CNOT qbit22,qbit4

CNOT qbit0,qbit27

Tdag qbit0 Tdag qbit4 T qbit22 T qbit27 ... 5. Auto-draw quantum circuit (QASM level)



#### 6. Q-resource analysis (QASM level)

| Resource Analysis in Compile Level |             |       |  |  |  |  |  |  |
|------------------------------------|-------------|-------|--|--|--|--|--|--|
| No.                                | ltem        | Value |  |  |  |  |  |  |
| 1                                  | Qubit       | 32    |  |  |  |  |  |  |
| 2                                  | Cbit        | 32    |  |  |  |  |  |  |
| 3                                  | н           | 188   |  |  |  |  |  |  |
| 4                                  | S           | 45    |  |  |  |  |  |  |
| 5                                  | Т           | 286   |  |  |  |  |  |  |
| 6                                  | Tdag        | 237   |  |  |  |  |  |  |
| 7                                  | CNOT        | 1028  |  |  |  |  |  |  |
| 8                                  | Prepz       | 32    |  |  |  |  |  |  |
| 9                                  | MeasZ       | 32    |  |  |  |  |  |  |
| 10                                 | Total gates | 1848  |  |  |  |  |  |  |
| 11                                 | Depth       | 454   |  |  |  |  |  |  |
| 12                                 | KQ          | 14528 |  |  |  |  |  |  |
| 13                                 | T-Depth     | 103   |  |  |  |  |  |  |

# $\langle Q|Crypton angle$ - Analysis Sequence



#### **Quantum Resource Analysis on** $\langle Q|Crypton \rangle$ platform

| 7. Select options for                                                | dotailed                                           | O-roco::     | rco anal   | lvcic                           |                                    |                                              |
|----------------------------------------------------------------------|----------------------------------------------------|--------------|------------|---------------------------------|------------------------------------|----------------------------------------------|
| asic Configuration for Deep Q-Resource Analys                        |                                                    | Q-1630u      | ice alla   | lysis                           |                                    |                                              |
| . Quantum Error Correction Code (FTQC)                               |                                                    | EC Steane C  | Code   Sur |                                 | •                                  | Quantum Error Correction code                |
| 2. Qubit Layout 1D ② 2D All-to-ALL User Defined                      |                                                    | User Defined |            | - None / Steane / Surface       |                                    |                                              |
| etailed Configuration for Deep Q-Resource An                         | alysis                                             |              |            | ^                               |                                    |                                              |
| . Synthesis Option                                                   |                                                    |              |            |                                 | •                                  | Qubit Layout                                 |
| Quantum Circuit Mapper                                               | Alwin                                              | Mapper SA    | BRE Mapper | Dijkstra Mapper                 |                                    | - 1D / 2D / All-to-All / User-defined        |
| Random Seed for Mapper (SABRE/Dijkstra only)                         | Time                                               | based User   |            |                                 |                                    |                                              |
| Number of Iteration in Mapper (SABRE/Dijkstra only) Default   User 5 |                                                    |              |            | •                               | Synthesis Option                   |                                              |
| SWAP Gate Support (SABRE/Dijkstra only)                              | AP Gate Support (SABRE/Dijkstra only)  True  False |              |            |                                 | Syridiesis Option                  |                                              |
| SWAP Gate Parallel Application (Dijkstra only)  True  False          |                                                    |              |            |                                 | - Circuit mapper, random seed, etc |                                              |
| Commutable CNOT Optimization                                         | True                                               | False        |            |                                 |                                    |                                              |
| 2. Target Fidelity                                                   |                                                    |              | •          | Target Fidelity for the Circuit |                                    |                                              |
| Target Fidelity 0.99999                                              |                                                    |              |            |                                 | - Real number (0~1)                |                                              |
| Physical Device Performance                                          |                                                    |              |            |                                 |                                    |                                              |
| Qubit                                                                | Alias                                              | sample       | Size       | 1e-6                            | •                                  | Physical Device Performance                  |
| I Gate                                                               | Time                                               | 2e-8         | infidelity | 1e-6                            |                                    |                                              |
| X Gate                                                               | Time                                               | 2e-8         | infidelity | 1e-6                            |                                    | - Processing time and fidelity for each gate |

# $\langle Q|Crypton \rangle$ - Analysis Sequence



#### $\bigcirc$ Quantum Resource Analysis on $\langle Q|Crypton\rangle$ platform

#### Detailed Q-Analysis Result in Quantum HW Level

#### 8-1. Detailed Q-resource analysis (Steane-1D-Fidelity:0.999)

|     | Perfo           | ormance Analysis   | in FTQC System Level |         |  |  |
|-----|-----------------|--------------------|----------------------|---------|--|--|
| No. |                 | ltem               |                      |         |  |  |
| 1   |                 | Algorithm Qubits   |                      | 32      |  |  |
|     |                 | Į.                 | 1028                 |         |  |  |
| 2   | CNOT Overhead   |                    | 1028                 |         |  |  |
|     |                 | (                  | Overhead             | 0       |  |  |
| 3   | Circuit Depth   |                    | Logical              | 455     |  |  |
| 5   | Circuit Deptil  |                    | 32541                |         |  |  |
| 4   |                 | Computing Time     | 0.00437775           |         |  |  |
| 5   |                 | Concatenation Leve | 1                    |         |  |  |
|     |                 |                    | CNOT                 | 1028    |  |  |
|     |                 | Logical            | Н                    | 188     |  |  |
|     |                 |                    | MeasZ                | 32      |  |  |
|     |                 |                    | PrepZ                | 32      |  |  |
|     |                 |                    | S                    | 45      |  |  |
|     |                 |                    | Т                    | 286     |  |  |
| 6   | Function List   |                    | Tdag                 | 237     |  |  |
| 0   | Function List   | Physical           | CNOT                 | 2638786 |  |  |
|     |                 |                    | Н                    | 37092   |  |  |
|     |                 |                    | MeasZ                | 32461   |  |  |
|     |                 |                    | PrepZ                | 28800   |  |  |
|     |                 |                    | S                    | 3976    |  |  |
|     |                 |                    | Х                    | 2002    |  |  |
|     |                 |                    | Z                    | 1974    |  |  |
| 7   | Gate Depth      | CNOT               |                      | 454     |  |  |
| /   | Gate Depth      | T-Gate             |                      | 103     |  |  |
| 8   | Dhusian Cubit-  | Data               |                      | 1536    |  |  |
| Ö   | Physical Qubits | Magic              |                      | 25104   |  |  |

#### 8-2. Detailed Q-resource analysis (Surface-2D-Fidelity:0.999)

| Performance Analysis in FTQC System Level |                  |                  |           |                    |  |  |  |  |
|-------------------------------------------|------------------|------------------|-----------|--------------------|--|--|--|--|
| No.                                       |                  | Value            |           |                    |  |  |  |  |
| 1                                         |                  | Algorithm Qubits |           | 36                 |  |  |  |  |
|                                           |                  |                  | Algorithm | 1028               |  |  |  |  |
| 2                                         | CNOT Overhead    |                  | Circuit   | 5918               |  |  |  |  |
|                                           |                  |                  | Overhead  | 4890               |  |  |  |  |
| 3                                         | Circuit Donth    |                  | Logical   | 2935               |  |  |  |  |
| 3                                         | Circuit Depth    |                  | Physical  | 496620             |  |  |  |  |
| 4                                         |                  | Code Distance    |           | 3                  |  |  |  |  |
| 5                                         |                  | Computing Time   |           | 0.0298112799999995 |  |  |  |  |
|                                           |                  |                  | CNOT      | 5918               |  |  |  |  |
|                                           |                  |                  | Н         | 188                |  |  |  |  |
|                                           |                  | Logical          | MeasZ     | 32                 |  |  |  |  |
|                                           |                  |                  | PrepZ     | 32                 |  |  |  |  |
|                                           |                  |                  | S         | 45                 |  |  |  |  |
|                                           | Function List    |                  | Т         | 286                |  |  |  |  |
|                                           |                  |                  | Tdag      | 237                |  |  |  |  |
| 6                                         |                  |                  | CNOT      | 2275707            |  |  |  |  |
|                                           |                  |                  | Н         | 151389             |  |  |  |  |
|                                           |                  |                  | MeasX     | 1368960            |  |  |  |  |
|                                           |                  | Dhariant         | MeasZ     | 37054956           |  |  |  |  |
|                                           |                  | Physical         | PrepX     | 296754             |  |  |  |  |
|                                           |                  |                  | PrepZ     | 281760             |  |  |  |  |
|                                           |                  |                  | X         | 502080             |  |  |  |  |
|                                           |                  |                  | Z         | 753120             |  |  |  |  |
| 7                                         | Cata David       |                  | CNOT      | 2934               |  |  |  |  |
| /                                         | Gate Depth       |                  | T-Gate    | 216                |  |  |  |  |
|                                           | Dharias I O. Lit | Data             |           | 5508               |  |  |  |  |
| 8                                         | Physical Qubits  |                  | Magic     | 1200285            |  |  |  |  |

1 Visualized High-Level Programming for Quantum Algorithm

2 Quantum Libraries of the Arithmetic for Cryptographic Algorithms

**Quantum Resource Analysis in QASM, QHW-logical, and QHW-FTQC Levels** 

# $\langle Q|Crypton \rangle$ - Short-term plan

#### Manual Updates

- User Manual for  $\langle Q|Crypton \rangle$  Platform
- Programming Manual for Quantum Cryptographic Library

#### **2** Quantum Programming

- Visual Quantum Circuit Update (for supporting large-scale qubits/gates, etc)
- Various Quantum Cryptographic algorithms and its Arithmetic Libraries
- Optimized Implementation for Quantum Analysis Algorithm
- Improved Quantum Library Registration Method

#### **Quantum Resource Analysis**

- Improved Accuracy for Quantum Resource Analysis
- Speed Up of Resource Analysis (for supporting large-scale qubits/gates, etc)

# $\langle Q|Crypton \rangle$ - Long-term plan

#### **Standard Contraction Contract**



#### $\langle Q|Crypton angle$ - Open Plan

#### Open Plan

- We will open  $\langle Q|Crypton\rangle$  platform in Nov. 2021
- Please, mail to <u>junny@etri.re.kr</u> if you want to use the platform
  - accessible only from permitted IP addresses
- We will welcome if you share your cryptographic or other quantum library for  $\langle Q|Crypton\rangle$

