COURSE 3

The Aitken's algorithm

Let $[a,b] \subset \mathbb{R}$, $x_i \in [a,b]$, i=0,1,...,m such that $x_i \neq x_j$ for $i \neq j$ and consider $f:[a,b] \to \mathbb{R}$.

Usually, for a practical approximation problem, for a given function $f:[a,b]\to\mathbb{R}$ we have to find the approximation of $f(\alpha)$, $\alpha\in[a,b]$ with an error not greater than a given $\varepsilon>0$.

If we have enough information about f and its derivatives, we use the inequality $|(R_m f)(x)| \le \varepsilon$ to find m such that $(L_m f)(\alpha)$ approximates $f(\alpha)$ with the given precision.

We may use the condition $\frac{|u(x)|}{(m+1)!} \|f^{(m+1)}\|_{\infty} \leq \varepsilon$, but it should be known $\|f^{(m+1)}\|_{\infty}$ or a majorant of it.

A practical method for computing the Lagrange polynomial is **the Aitken's algorithm.** This consists in generating the table:

where

$$f_{i0} = f(x_i), \quad i = 0, 1, ..., m,$$

and

$$f_{i,j+1} = \frac{1}{x_i - x_j} \begin{vmatrix} f_{jj} & x_j - x \\ f_{ij} & x_i - x \end{vmatrix}, \quad i = 0, 1, ..., m; j = 0, ..., i - 1.$$

For example,

$$f_{11} = \frac{1}{x_1 - x_0} \begin{vmatrix} f_{00} & x_0 - x \\ f_{10} & x_1 - x \end{vmatrix}$$

$$= \frac{1}{x_1 - x_0} [f_{00}(x_1 - x) - f_{10}(x_0 - x)]$$

$$= \frac{x - x_1}{x_0 - x_1} f(x_0) + \frac{x - x_0}{x_1 - x_0} f(x_1) = (L_1 f)(x),$$

so f_{11} is the value in x of Lagrange polynomial for the nodes x_0, x_1 . We have

$$f_{ii} = (L_i f)(x),$$

 $L_i f$ being Lagrange polynomial for the nodes $x_0, x_1, ..., x_i$.

So $f_{11}, f_{22}, ..., f_{ii}, ..., f_{mm}$ is a sequence of approximations of f(x).

If the interpolation procedure is convergent then the sequence is also convergent, i.e., $\lim_{m\to\infty}f_{mm}=f(x)$. By Cauchy convergence criterion it follows

$$\lim_{i \to \infty} |f_{ii} - f_{i-1,i-1}| = 0.$$

This could be used as a stopping criterion, i.e.,

$$|f_{ii} - f_{i-1,i-1}| \le \varepsilon$$
, for a given precision $\varepsilon > 0$.

Recommendation is to sort the nodes $x_0, x_1, ..., x_m$ with respect to the distance to x, such that

$$|x_i - x| \le |x_j - x|$$
 if $i < j$, $i, j = 1, ..., m$.

Example 1 Approximate $\sqrt{115}$ with precision $\varepsilon = 10^{-3}$, using Aitken's algorithm.

Newton interpolation polynomial

A useful representation for Lagrange interpolation polynomial is

$$(L_m f)(x) := (N_m f)(x) = f(x_0) + \sum_{i=1}^m (x - x_0) \dots (x - x_{i-1})(D^i f)(x_0)$$

$$= f(x_0) + \sum_{i=1}^m (x - x_0) \dots (x - x_{i-1})[x_0, \dots, x_i; f],$$
(1)

which is called **Newton interpolation polynomial**; where $(D^i f)(x_0)$ (or denoted $[x_0, ..., x_i; f]$) is the *i*-th order divided difference of the function f at x_0 , given by the table

	$\mid f \mid$	$\int \mathcal{D}f$	$\mathcal{D}^2 f$	•••	$\mathcal{D}^{\mathbf{m-1}}f$	$\mathcal{D}^m f$
$\overline{x_0}$	f_0	$\mathcal{D}f_0$	$\mathcal{D}^2 f_0$	•••	$\mathcal{D}^{m-1}f_0$	$\overline{\mathcal{D}^m f_0}$
x_1	f_1	$\mathcal{D}f_1$	$\mathcal{D}^2 f_1$		$\mathcal{D}^{m-1}f_1$	
x_2	f_2	$\mathcal{D}f_2$	$\mathcal{D}^2 f_2$			
• • •	• • •	•••				
x_{m-2}	f_{m-2}	$\int \mathcal{D}f_{m-2}$	$\mathcal{D}^2 f_{m-2}$			
x_{m-1}	$\int f_{m-1}$	$\int \mathcal{D}f_{m-1}$				
x_m	$\mid f_m \mid$					

Newton interpolation formula is

$$f = N_m f + R_m f,$$

where $R_m f$ denotes the remainder.

Assume that we add the point (x, f(x)) at the top of the table of divided differences:

$$\begin{array}{|c|c|c|c|c|c|}\hline & f & Df & ... & D^{m+1}f \\ \hline & x & f(x) & (Df)(x) = [x,x_0;f] & & [x,x_0,...,x_m;f] \\ x_0 & f(x_0) & (Df)(x_0) = [x_0,x_1;f] & ... \\ x_1 & f(x_1) & (Df)(x_1) = [x_1,x_2;f] & ... \\ & ... & ... & ... \\ x_{m-1} & f(x_{m-1}) & (Df)(x_{m-1}) = [x_{m-1},x_m;f] & ... \\ x_m & f(x_m) & ... & ... \\ \hline \end{array}$$

For obtaining the interpolation polynomial we consider

$$[x, x_0; f] = \frac{f(x_0) - f(x)}{x_0 - x} \Longrightarrow f(x) = f(x_0) + (x - x_0)[x, x_0; f] \quad (2)$$

$$[x, x_0, x_1; f] = \frac{[x_0, x_1; f] - [x, x_0; f]}{x_1 - x}$$
(3)

$$\implies [x, x_0; f] = [x_0, x_1; f] + (x - x_1)[x, x_0, x_1; f].$$

Inserting (3) in (2) we get

$$f(x) = f(x_0) + (x - x_0)[x_0, x_1; f] + (x - x_0)(x - x_1)[x, x_0, x_1; f].$$

If we continue eliminating the divided differences involving \boldsymbol{x} in the same way, we get

$$f(x) = (N_m f)(x) + (R_m f)(x)$$

with

$$(N_m f)(x) = f(x_0) + \sum_{i=1}^m (x - x_0)...(x - x_{i-1})[x_0, ..., x_i; f]$$

and the remainder (the error) given by

$$(R_m f)(x) = (x - x_0)...(x - x_m)[x, x_0, ..., x_m; f].$$
 (4)

Remark 2 The remainder for Lagrange interpolation formula is also given by

$$(R_m f)(x) = \frac{(x - x_0)...(x - x_m)}{(m+1)!} f^{(m+1)}(\xi),$$

with ξ between $x, x_0, ..., x_m$, so, by (4), it follows that the divided differences are approximations of the derivatives

$$[x, x_0, ..., x_m; f] = \frac{f^{(m+1)}(\xi)}{(m+1)!}.$$

Remark 3 We notice that

$$(N_i f)(x) = (N_{i-1} f)(x) + (x - x_0)...(x - x_{i-1})[x_0, ..., x_i; f]$$

so the Newton polynomials of degree 2,3,..., can be iteratively generated, similarly to Aitken's algorithm.

Example 4 Find $L_2 f$ for $f(x) = \sin \pi x$, and $x_0 = 0, x_1 = \frac{1}{6}, x_2 = \frac{1}{2}$, in both forms.

Sol. a) We have $u(x) = x(x - \frac{1}{6})(x - \frac{1}{2})$; $u_0(x) = (x - \frac{1}{6})(x - \frac{1}{2})$; $u_1(x) = x(x - \frac{1}{2})$; $u_2(x) = x(x - \frac{1}{6})$

$$(L_2 f)(x) = \sum_{i=0}^{2} l_i(x) f(x_i) = \sum_{i=0}^{2} \frac{u_i(x)}{u_i(x_i)} f(x_i)$$

$$= \frac{(x - \frac{1}{6})(x - \frac{1}{2})}{(-\frac{1}{6})(-\frac{1}{2})} 0 + \frac{x(x - \frac{1}{2})}{\frac{1}{6}(-\frac{1}{3})} \frac{1}{2} + \frac{x(x - \frac{1}{6})}{\frac{1}{2} \cdot \frac{1}{3}} 1$$

$$= -3x^2 + \frac{7}{2}x.$$

b)

$$(N_2 f)(x) = f(0) + \sum_{i=1}^{2} (x - x_0) \dots (x - x_{i-1}) (D^i f)(x_0)$$

= $f(0) + (x - x_0) (Df)(x_0) + (x - x_0) (x - x_1) (D^2 f)(x_0)$
= $x(Df)(x_0) + x(x - \frac{1}{6}) (D^2 f)(x_0)$

The table of divided differences:

SO

$$(N_2 f)(x) = 3x - 3x(x - \frac{1}{6}) = -3x^2 + \frac{7}{2}x.$$

2.3. Hermite interpolation

Example 5 In the following table there are some data regarding a moving car. We may estimate the position (and the speed) of the car when the time is t = 10 using Hermite interpolation.

Let $x_k \in [a,b], \ k = 0,1,...,m$ be such that $x_i \neq x_j$, for $i \neq j$ and let $r_k \in \mathbb{N}, \ k = 0,1,...,m$. Consider $f:[a,b] \to \mathbb{R}$ such that there exist $f^{(j)}(x_k), \ k = 0,1,...,m; \ j = 0,1,...,r_k$ and $n = m + r_0 + ... + r_m$.

The Hermite interpolation problem (HIP) consists in determining the polynomial P of the smallest degree for which

$$P^{(j)}(x_k) = f^{(j)}(x_k), \quad k = 0, ..., m; \ j = 0, ..., r_k.$$

Definition 6 A solution of (HIP) is called **Hermite interpolation polynomial**, denoted by H_nf .

Hermite interpolation polynomial, H_nf , satisfies the interpolation conditions:

$$(H_n f)^{(j)}(x_k) = f^{(j)}(x_k), \quad k = 0, ..., m; \ j = 0, ..., r_k.$$

Hermite interpolation polynomial is given by

$$(H_n f)(x) = \sum_{k=0}^{m} \sum_{j=0}^{r_k} h_{kj}(x) f^{(j)}(x_k) \in \mathbb{P}_n,$$
 (5)

where $h_{kj}(x)$ denote the Hermite fundamental interpolation polynomials. They fulfill the relations:

$$h_{kj}^{(p)}(x_{\nu}) = 0, \quad \nu \neq k, \quad p = 0, 1, ..., r_{\nu}$$

$$h_{kj}^{(p)}(x_k) = \delta_{jp}, \quad p = 0, 1, ..., r_k, \quad \text{for } j = 0, 1, ..., r_k \text{ and } \nu, k = 0, 1, ..., m,$$
with $\delta_{jp} = \begin{cases} 1, & j = p \\ 0, & j \neq p. \end{cases}$

We denote by

$$u(x) = \prod_{k=0}^{m} (x - x_k)^{r_k + 1}$$
 and $u_k(x) = \frac{u(x)}{(x - x_k)^{r_k + 1}}$.

We have

$$h_{kj}(x) = \frac{(x - x_k)^j}{j!} u_k(x) \sum_{\nu=0}^{r_k - j} \frac{(x - x_k)^{\nu}}{\nu!} \left[\frac{1}{u_k(x)} \right]_{x = x_k}^{(\nu)}.$$
 (6)

Example 7 Find the Hermite interpolation polynomial for a function f for which we know f(0) = 1, f'(0) = 2 and f(1) = -3 (equivalent with $x_0 = 0$ multiple node of order 2 or double node, $x_1 = 1$ simple node).

Sol. We have $x_0 = 0, x_1 = 1, m = 1, r_0 = 1, r_1 = 0, n = m + r_0 + r_1 = 2$

$$(H_2f)(x) = \sum_{k=0}^{1} \sum_{j=0}^{r_k} h_{kj}(x) f^{(j)}(x_k)$$

= $h_{00}(x) f(0) + h_{01}(x) f'(0) + h_{10}(x) f(1)$.

We have h_{00}, h_{01}, h_{10} . These fulfills relations:

$$h_{kj}^{(p)}(x_{\nu}) = 0, \ \nu \neq k, \ p = 0, 1, ..., r_{\nu}$$

 $h_{kj}^{(p)}(x_k) = \delta_{jp}, \ p = 0, 1, ..., r_k, \quad \text{for } j = 0, 1, ..., r_k \text{ and } \nu, k = 0, 1, ..., m.$

We have $h_{00}(x)=a_1x^2+b_1x+c_1\in\mathbb{P}_2$, with $a_1,b_1,c_1\in\mathbb{R}$, and the system

$$\begin{cases} h_{00}(x_0) = 1 \\ h'_{00}(x_0) = 0 \\ h_{00}(x_1) = 0 \end{cases} \Leftrightarrow \begin{cases} h_{00}(0) = 1 \\ h'_{00}(0) = 0 \\ h_{00}(1) = 0 \end{cases}$$

that becomes

$$\begin{cases} c_1 = 1 \\ b_1 = 0 \\ a_1 + b_1 + c_1 = 0. \end{cases}$$

Solution is: $a_1 = -1, b_1 = 0, c_1 = 1$ so $h_{00}(x) = -x^2 + 1$.

We have $h_{01}(x) = a_2x^2 + b_2x + c_2 \in \mathbb{P}_2$, with $a_2, b_2, c_2 \in \mathbb{R}$. The system

is

$$\begin{cases} h_{01}(x_0) = 0 \\ h'_{01}(x_0) = 1 \\ h_{01}(x_1) = 0 \end{cases} \Leftrightarrow \begin{cases} h_{01}(0) = 0 \\ h'_{01}(0) = 1 \\ h_{01}(1) = 0 \end{cases}$$

and we get $h_{01}(x) = -x^2 + x$.

We have $h_{10}(x)=a_3x^2+b_3x+c_3\in\mathbb{P}_2$, with $a_3,b_3,c_3\in\mathbb{R}$. The system is

$$\begin{cases} h_{10}(x_0) = 0 \\ h'_{10}(x_0) = 0 \\ h_{10}(x_1) = 1 \end{cases} \Leftrightarrow \begin{cases} h_{10}(0) = 0 \\ h'_{10}(0) = 0 \\ h_{10}(1) = 1 \end{cases}$$

and we get $h_{10}(x) = x^2$.

The Hermite polynomial is

$$(H_2f)(x) = -x^2 + 1 - 2x^2 + 2x - 3x^2 = -6x^2 + 2x + 1.$$