Adecuación del metodo manual de regresión Logística

Implementar (adecuar) el mètodo "manual" descrito en: https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html#id13.
 Con los datos en el csv de clasificación en teams en la carpeta semana 6. Puede descargar el código también en el github del autor, pero por favor leer primero en su totalidad el contenido en el link de arriba. el github del autor es este: https://github.com/bfortuner/ml-glossary

```
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sb
import numpy as np
data= pd.read_csv('data_classification.csv', sep = ';')
data.head()
X = data[['suenio','estudio']].values
y = data['pasan'].values
X = X.T
y = y.reshape(1, X.shape[1])
print("Shape of X : ", X.shape)
print("Shape of Y : ", y.shape)
     Shape of X : (2, 100)
     Shape of Y: (1, 100)
def sigmoid(x):
    # Activation function used to map any real value between 0 and 1
    return 1 / (1 + np.exp(-x))
def model(X, Y, learning_rate, iterations):
    m = X.shape[1]
    n = X.shape[0]
    W = np.zeros((n,1))
    B = 0
    cost_list = []
    for i in range(iterations):
        Z = np.dot(W.T, X) + B
        A = sigmoid(Z)
        # cost function
        cost = -(1/m)*np.sum(Y*np.log(A) + (1-Y)*np.log(1-A))
        # Gradient Descent
        dW = (1/m)*np.dot(A-Y, X.T)
        dB = (1/m)*np.sum(A - Y)
        W = W - learning_rate*dW.T
        B = B - learning_rate*dB
        # Keeping track of our cost function value
        cost list.append(cost)
        if(i%(iterations/10) == 0):
            print("cost after ", i, "iteration is : ", cost)
    return W, B, cost_list
iterations = 100000
learning_rate = 0.0015
W, B, cost_list = model(X, y, learning_rate, iterations)
```

plt.plot(np.arange(iterations), cost_list)
plt.show()

def accuracy(X, Y, W, B):

$$Z = np.dot(W.T, X) + B$$

A = sigmoid(Z)

```
A = A > 0.5

A = np.array(A, dtype = 'int64')

acc = (1 - np.sum(np.absolute(A - Y))/Y.shape[1])*100

print("Accuracy of the model is : ", round(acc, 2), "%")

accuracy(X, y, W, B)
```

Accuracy of the model is : 87.0 %

2/2

Implementación Regresión Logística con librerias sklearn

2. Correr el ejemplo con los datos del csv en la carpeta semana 6 con la función de sklearn:

•https://scikit-

<u>learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html</u> y comparar.

```
from sklearn.datasets import load iris
from sklearn.linear model import LogisticRegression
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sb
data= pd.read csv('data classification.csv', sep = ';')
data.head(10)
X = data[['suenio','estudio']].values
y = data['pasan'].values
clf=LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                   intercept scaling=1, l1 ratio=None, max iter=200,
                   multi class='auto', n jobs=None, penalty='none',
                   random state=0, solver='newton-cg', tol=0.0001, verbose=0,
                   warm start=False)
clf.fit(X, y)
     LogisticRegression(C=1.0, class weight=None, dual=False, fit intercept=True,
                        intercept scaling=1, l1 ratio=None, max iter=200,
                        multi_class='auto', n_jobs=None, penalty='none',
                        random state=0, solver='newton-cg', tol=0.0001, verbose=0,
                        warm start=False)
clf.predict(X[:3, :])
     array([1, 0, 0])
clf.predict proba(X[:3, :])
     array([[1.30069687e-03, 9.98699303e-01],
            [7.34580981e-01, 2.65419019e-01],
            [9.99775985e-01, 2.24015273e-04]])
```

```
clf.score(X, y)
0.89
```

Cómo podemos observar los resultados son muy similares, lo cuál indica ques muy válido usas cualquiera de las dos formas, aún así hacer uso de las librerias de scikit learn brindan maypr facilidad a la hora de desarrolar los ejercicios y dejan a la primerqa implementación como un ejercicio netamente académico.

✓ 0 s completado a las 13:05

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{3(26)}{3(20)} + \frac{1}{160} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{1}{2(2p)} = \frac{1}{2(2p)} = $
$\frac{9(0)}{9(0)} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \cdot \frac{9(0)}{2} $ $\frac{9(0)}{2} + \frac{1}{2} \left(\frac{1}$
$\frac{3(2(9))}{3(2(9))} + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac$
$\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}$
$\frac{1}{3(2)} + \frac{1}{3(2)} + 1$
$\frac{1}{3(2(9))} + \frac{1}{3(2(9))} \cdot \frac{1}{3(2(9))$
$\frac{9(6)}{9(2)} + \frac{1}{2} \cdot \frac{1 - \lambda_{(1)}}{1 - \lambda_{(1)}} \cdot \frac{1}{2} $
+ 5, (1-70) . (-0(2)(1-5(2)). 3(47)

