F.E. Semester I (Revised course 2016-17) **EXAMINATION JANUARY 2022 Engineering Mathematics-I**

[Duration: Three Hours]

[Total Marks:100]

Instructions:

- 1. Attempt five questions, any two questions each from PART-A and PART-B and one from PART-C
- 2. Assume suitable data, if necessary.
- 3. Figures to the right indicate full marks

PART A

Q.1 Answer any TWO questions from the following $2 \times 20 = 40 Marks$

a) Show that $\int_0^\infty x^n e^{-a^2 x^2} dx = \frac{1}{2a^{n+1}} \Gamma(\frac{n+1}{2})$.

(7)

Hence deduce that $\int_0^\infty e^{-a^2x^2} dx = \frac{\sqrt{\pi}}{2a}$.

b) Show that $\int_0^1 (1-x^{1/n})^m dx = \frac{n!m!}{(m+n)!}$

(6)

c) Separate into real and imaginary part z^z where $z = \frac{1}{2} + i \frac{\sqrt{3}}{2}$.

(7)

Q.2

(12)

- a) Test the following series for convergence i) $\frac{1}{6} \frac{2}{11} + \frac{3}{16} \frac{4}{21} + \cdots$ ii) $\sum_{n=1}^{\infty} \frac{n^2}{e^2}$ iii) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$

b) If $\tan\left(\frac{\pi}{6} + i\alpha\right) = x + iy$, prove that $x^2 + y^2 + \frac{2x}{\sqrt{3}} = 1$

(8)

a) Define the interval of convergence and find it for the following series $\frac{1}{2}x + x^2 + \frac{9}{8}x^3 + x^4 + \frac{25}{32}x^5 + \cdots$ Q.3

(6)

b) Prove that $tan \left[i \log \left(\frac{a - ib}{a + ib} \right) \right] = \frac{2ab}{a^2 - b^2}$

(6)

c) Show that $u = \frac{1}{2} \log(x^2 + y^2)$ is harmonic function. Find the analytic function for

(8)

PART B

Answer any TWO questions from the following: 0.4

a) If
$$u = cosec^{-1}\left(\frac{\sqrt{x} + \sqrt{y}}{x^{1/3} + y^{1/3}}\right)$$
, find $x^{2}u_{xx} + 2xyu_{xy} + y^{2}u_{yy}$

b) If
$$y = (x^2 - 1)^2$$
, then show that $(x^2 - 1)y_{n+2} + 2x y_{n+1} - n(n+1)y_n = 0$

c) Use Taylor's theorem to expand
$$\frac{1}{x^2}$$
 in powers of x-1.

(i)
$$\lim_{x\to\pi/2} (secx)^{tanx}$$

(ii)
$$\lim_{x\to 0} (coosx)^{\frac{1}{x^2}}$$

(iii)
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2\cos x}{x\sin x}$$

b) Form the partial differential equation by eliminating the arbitrary constants

i)
$$z = (x - a)^2 + (y - \hat{b})^2$$

ii)
$$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

Q.6

a) If
$$Z=f(u,v)$$
 where $u=x-y$ and $v-xy$, prove that
$$x\frac{\partial^2 Z}{\partial x^2} + y\frac{\partial^2 Z}{\partial y^2} = (x+y)\left(\frac{\partial^2 Z}{\partial y^2} + xy\frac{\partial^2 Z}{\partial y^2}\right)$$

$$y^2zp + x^2zp = xy^2$$
 where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$

(6)

c) Find the maximum and minimum of
$$f(x, y) = x^3 + y^3 - 3axy$$

PART C

Answer any ONE questions from the following Q.7

a) Prove that
$$\int_0^\infty \frac{x^{a-1}}{(1+x)^{a+b}} dx = \int_0^1 \frac{x^{a-1} + x^{b-1}}{(1+x)^{a+b}} dx$$

b) If
$$\tan z = \frac{i}{2}(1-i)$$
, then prove that $z = \frac{\tan^{-1}z}{2} + \frac{i}{4}\log_e 5$

FE101

c) Prove that $\sin(e^x - 1) = x + \frac{1}{2}x^2 - \frac{5}{24}x^4 + \cdots$

(7)

Q.8 a) Test the convergence of the series $\frac{2}{1} + \frac{2^2}{2} + \frac{2^3}{3} + \cdots$

(6)

(6)

b) If $e^z = \sin(u+iv)$ and z=x+iy, then prove that $2e^{2x} = \cosh 2v - \cos 2u$.

(8)

c) use the method of Lagrange's multiplier to find the point on $x^2 + y^2 + z^2 = 25$ where f(x,y,z)=x+2y+3z has its maximum and minimum.

3

