Co je to univerzální algebra?

Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé pojmy a úvahy opakovaly:

- homomorfismy: vždy platilo, že složením homomorfismů opět dostaneme homomorfismus;
- podobjekty (podgrupy, podokruhy, podtělesa, podsvazy, Booleovy podalgebry atd.): vždy platilo, že průnikem libovolného neprázdného systému podobjektů je opět podobjekt, což umožnilo definovat podobjekt generovaný podmnožinou ve všech případech stejnou konstrukcí;
- součiny algebraických struktur (grup, okruhů, svazů): na kartézském součinu jsme definovali stejnou strukturu.

Jedním z cílů univerzální algebry je tyto společné rysy postihnout a jednotně popsat.

Zobecnění pojmu operace na množině

Operací na množině G pro nás dosud bylo zobrazení $G \times G \to G$. Nyní tento pojem zobecníme, vždyť jsme užívali zobrazení $G \to G$ (přiřazení inverzního prvku v grupě nebo komplementu v Booleově algebře). Pracovali jsme s význačnými prvky množiny G (neutrální prvek grupy, 0 a 1 okruhu, nejmenší a největší prvek Booleovy algebry). Výběr význačného prvku lze chápat jako volbu zobrazení z jednoprvkové množiny do G.

<u>Definice.</u> Nechť G je množina, n nezáporné celé číslo. Pak n-ární operací na množině G rozumíme zobrazení $G^n \to G$. Přitom pro $n \in \mathbb{N}$ definujeme $G^n = \underbrace{G \times G \times \cdots \times G}_{n}$, pro n = 0 je $G^0 = \{\emptyset\}$.

<u>Poznámka.</u> Místo 2-ární operace budeme říkat binární operace, místo 1-ární budeme říkat unární, místo 0-ární nulární. Číslu *n* z definice říkáme arita dotyčné operace.

Univerzální algebra daného typu

<u>Poznámka.</u> Při popisu konkrétní operace jsme vždy operaci označovali nějakým symbolem, užívali jsme +, \cdot , \vee , \wedge pro binární operace, -, $^{-1}$, ' pro unární operace, 0, 1 pro nulární operace. Těmto symbolům budeme říkat operační symboly; je podstatné, že u každého symbolu je dána arita operace, kterou symbolizuje.

<u>Definice.</u> Množina Ω spolu se zobrazením $a:\Omega\to\mathbb{N}\cup\{0\}$ se nazývá typ. Prvky množiny Ω se nazývají operační symboly. Pro $f\in\Omega$ se a(f) nazývá arita symbolu f. Operační symbol, jehož arita je n, se nazývá n-ární.

<u>Definice.</u> Univerzální algebra typu Ω (neboli stručně Ω -algebra) je množina A, na níž je pro každý n-ární operační symbol z $f \in \Omega$ definována n-ární operace $f_A: A^n \to A$. Pro libovolné $a_1, \ldots, a_n \in A$ značíme $f_A(a_1, \ldots, a_n)$ hodnotu operace f_A na uspořádané n-tici (a_1, \ldots, a_n) . Pro n=0 je $A^0=\{\emptyset\}$, nulární operací je zobrazení $f_A: \{\emptyset\} \to A$ zadané jediným prvkem $f_A(\emptyset) \in A$, pro zjednodušení jej budeme zapisovat f_A místo $f_A(\emptyset)$.

Příklady Ω-algeber

- 1. Pro prázdný typ, tj. $\Omega = \emptyset$, je univerzální algebrou typu Ω libovolná množina.
- Grupoid je totéž, co množina s jednou binární operací, je to tedy univerzální algebra typu, který má jeden binární operační symbol ·.
- 3. Každá grupa je univerzální algebra typu $\{\cdot,^{-1},1\}$. Nikoliv naopak, ne každá univerzální algebra typu $\{\cdot,^{-1},1\}$ je grupou (aby byla grupou, musí splňovat jisté axiomy).
- 4. Každý okruh je univerzální algebra typu $\{+,\cdot,-,0,1\}$.
- 5. Každý svaz je univerzální algebra typu $\{\lor, \land\}$.
- 6. Každá Booleova algebra je univerzální algebra typu $\{\lor,\land,',0,1\}$.
- 7. Pro dané těleso T lze každý vektorový prostor nad tělesem T chápat jako univerzální algebru typu $\{+,-,0\} \cup T$ (pro každý prvek tělesa $t \in T$ máme unární operační symbol pro skalární násobek, což je unární operace na množině vektorů: t(v) = t.v).

Jednoprvková Ω-algebra

<u>Příklad.</u> Nechť Ω je libovolný typ, $A=\{a\}$ libovolná jednoprvková množina. Pak existuje jediný způsob, jak na nosné množině A definovat Ω -algebru. Pro libovolný n-ární operační symbol $f \in \Omega$ je hodnota operace f_A na (jediné existující) n-tici (a,\ldots,a) rovna (jediné možné) hodnotě a.

<u>Poznámka.</u> V předchozích definicích je určitá nepřesnost, správně bychom totiž měli místo o univerzální algebře A mluvit o univerzální algebře A s nosnou množinou A a s operacemi f_A pro každé $f \in \Omega$. Například na jedné a téže nosné množině můžeme mít definovány různé grupoidy, tedy to, o který jde grupoid, není určeno pouze nosnou množinou, ale i operací na ní. Protože to však vždy z kontextu bude patrné, můžeme si snad touto nepřesností usnadnit vyjadřování: budeme hovořit o Ω -algebře A nebo o nosné množině A.

Podalgebra Ω -algebry

<u>Definice.</u> Nechť A je univerzální algebra typu Ω , $H \subseteq A$ podmnožina. Řekneme, že H je podalgebra Ω -algebry A, jestliže pro každý n-ární operační symbol $f \in \Omega$ a pro každé $a_1, \ldots, a_n \in H$ platí $f_A(a_1, \ldots, a_n) \in H$.

<u>Poznámka.</u> V případě nulárního operačního symbolu $f \in \Omega$ je n=0, tedy $A^0=\{\emptyset\}$. Obraz tohoto jediného prvku jsme se dohodli značit stručně f_A místo (možná přesnějšího) označení $f_A(\emptyset)$. Podmínku z definice je tedy třeba chápat ve smyslu $f_A \in H$.

 $\underline{\textit{Poznámka}}$. Obsahuje-li typ Ω alespoň jeden nulární operační symbol, pak je každá podalgebra libovolné Ω -algebry neprázdná.

<u>Poznámka.</u> Každá podalgebra H libovolné Ω -algebry A je sama Ω -algebrou, stačí pro každý n-ární operační symbol $f \in \Omega$ definovat f_H jako restrikci zobrazení f_A na H^n a zmenšit obor hodnot na H, pak totiž $f_H: H^n \to H$.

Příklady podalgeber

V jednotlivých případech z předchozího příkladu univerzálních algeber dostáváme tyto podalgebry:

- 1. Podmnožina množiny ($\Omega = \emptyset$).
- 2. Podgrupoid grupoidu ($\Omega = \{\cdot\}$).
- 3. Podgrupa grupy ($\Omega = \{\cdot, ^{-1}, 1\}$).
- 4. Podokruh okruhu ($\Omega = \{+, \cdot, -, 0, 1\}$).
- 5. Podsvaz svazu ($\Omega = \{ \lor, \land \}$).
- 6. Booleova podalgebra Booleovy algebry ($\Omega = \{ \lor, \land, ', 0, 1 \}$).
- 7. Vektorový podprostor vektorového prostoru ($\Omega = \{+, -, 0\} \cup T$, kde T je těleso).

Svaz všech podalgeber dané Ω-algebry

<u>Věta.</u> Nechť A je univerzální algebra typu Ω , I neprázdná množina. Pro každé $i \in I$ nechť je dána podalgebra $H_i \subseteq A$ algebry A. Pak jejich průnik $\bigcap_{i \in I} H_i$ je podalgebra Ω -algebry A.

<u>Důkaz.</u> Nechť $f \in \Omega$ je n-ární, $a_1, \ldots, a_n \in \bigcap_{i \in I} H_i$ libovolné. Pro každé $i \in I$ platí $a_1, \ldots, a_n \in H_i$. Protože H_i je podalgebra, je $f_A(a_1, \ldots, a_n) \in H_i$. Pak $f_A(a_1, \ldots, a_n) \in \bigcap_{i \in I} H_i$.

<u>Důsledek.</u> Obsahuje-li typ Ω alespoň jeden nulární operační symbol, pak je průnik libovolného neprázdného systému podalgeber dané algebry neprázdný.

<u>Důkaz.</u> V tomto případě není prázdná množina podalgebrou.

<u>Důsledek.</u> Nechť P je množina všech podalgeber dané univerzální algebry A typu Ω . Pak platí: (P,\subseteq) je úplný svaz.

<u>Důkaz.</u> (P,\subseteq) má největší prvek A i infimum libovolné neprázdné podmnožiny (průnik všech podalgeber této podmnožiny).

Podalgebra generovaná podmnožinou

<u>Definice.</u> Nechť A je univerzální algebra typu Ω , $M\subseteq A$ podmnožina nosné množiny. Průnik všech podalgeber Ω -algebry A, které obsahují M jako svou podmnožinu, značíme $\langle M \rangle$ a nazýváme podalgebrou Ω -algebry A generovanou množinou M.

<u>Poznámka.</u> Díky tomu, že alespoň jedna podalgebra Ω -algebry A obsahující množinu M existuje (je jí jistě celá Ω -algebra A), podle předchozí věty je zmíněným průnikem $\langle M \rangle$ skutečně podalgebra Ω -algebry A.

Zřejmě je to ze všech podalgeber Ω -algebry A obsahujících množinu M ta nejmenší (vzhledem k množinové inkluzi).

Příklady podalgeber generovaných podmnožinou

V jednotlivých případech příkladu univerzálních algeber z předchozí kapitoly dostáváme tyto podalgebry generované množinou:

- 1. V případě Ω -algebry A prázdného typu $\Omega=\emptyset$ je každá podmnožina množiny A podalgebrou, proto v tomto případě pro libovolné $M\subseteq A$ je podalgebrou Ω -algebry A generovanou množinou M sama množina M.
- Podgrupoid grupoidu generovaný množinou (tento pojem jsme v přednášce neměli).
- 3. Podgrupa $\langle M \rangle$ grupy generovaná množinou M.
- 4. Podokruh $\langle M \rangle$ okruhu generovaný množinou M.
- 5. Podsvaz svazu generovaný množinou (neměli jsme).
- 6. Booleova podalgebra Booleovy algebry generovaná množinou (neměli jsme).
- Vektorový podprostor vektorového prostoru generovaný množinou vektorů (jeden z nejdůležitějších pojmů lineární algebry).

Homomorfismy Ω -algeber

<u>Definice.</u> Nechť A, B jsou univerzální algebry téhož typu Ω , $\varphi:A\to B$ zobrazení. Řekneme, že φ je homomorfismus Ω -algeber, jestliže pro každý operační symbol $f\in\Omega$ arity n a každé prvky $a_1,\ldots,a_n\in A$ platí

$$f_B(\varphi(a_1),\ldots,\varphi(a_n))=\varphi(f_A(a_1,\ldots,a_n)).$$

Je-li navíc φ bijektivní, hovoříme o izomorfismu Ω -algeber. Řekneme, že Ω -algebry A a B jsou izomorfní, jestliže existuje nějaký izomorfismus Ω -algeber $A \to B$.

<u>Poznámka.</u> Pro nulární operační symbol předchozí podmínka samozřejmě znamená $\varphi(f_A) = f_B$.

<u>Poznámka.</u> Jestliže je Ω -algebra A prázdná (v tomto případě tedy typ Ω nemůže obsahovat žádný nulární operační symbol), pak pro libovolnou Ω -algebru B existuje jediný homomorfismus Ω -algebra $A \to B$, totiž prázdné zobrazení. Jestliže naopak Ω -algebra B je prázdná, pak homomorfismus Ω -algebra $A \to B$ existuje pouze v případě, kdy i Ω -algebra A je prázdná.

Příklady homomorfismů Ω -algeber

Porovnejme v jednotlivých případech předchozích příkladů tuto definici s definicemi uváděnými dříve pro jednotlivé speciální případy univerzálních algeber:

- 1. V případě Ω -algeber prázdného typu $\Omega=\emptyset$ je každé zobrazení homomorfismem.
- 2. Pro grupoidy je tato definice totožná s obvyklou definicí homomorfismu grupoidů.
- 3. Pro grupy byl homomorfismus definován stejně jako pro grupoidy, tedy v definici bylo vyžadováno, aby zachovával součin. Právě uvedená definice pro případ grup vyžaduje, aby homomorfismus zachovával též inverzní prvky a zobrazil neutrální prvek grupy A na neutrální prvek grupy B. Je asi jasné, proč tyto požadavky nebyly obsaženy v definici homomorfismu grup: jak jsme si dokazovali, to jsou pouhé důsledky toho, že homomorfismus grup zachovává součin.

Příklady homomorfismů Ω -algeber

- 4. Pro okruhy jsme v definici homomorfismu vyžadovali, aby zachovával sčítání, násobení a převáděl na sebe jedničky okruhů. Jako důsledek jsme dostali další podmínky z právě provedené obecné definice, týkající se opačných prvků a nul okruhů.
- 5. V případě svazů obě definice splývají: vyžaduje se, aby homomorfismus zachovával ∨ a ∧.
- 6. V případě Booleových algeber jsme požadovali, aby homomorfismus zachovával ∨, ∧, 0 a 1. Jako důsledek jsme pak obdrželi, že už nutně musí zachovávat též komplementy, proto nebylo nutné komplementy zahrnout do definice homomorfismu Booleových algeber.
- V případě vektorových prostorů jsou homomorfismy právě lineární zobrazení.

Složení homomorfismů Ω -algeber

<u>Věta.</u> Nechť A, B, C jsou univerzální algebry téhož typu Ω , $\varphi:A\to B$ a $\psi:B\to C$ homomorfismy Ω -algeber. Pak je též složení $\psi\circ\varphi$ homomorfismus Ω -algeber.

<u>Důkaz.</u> Protože je φ homomorfismus Ω-algeber, pro každý operační symbol $f \in \Omega$ arity n a každé prvky $a_1, \ldots, a_n \in A$ platí

$$\varphi(f_A(a_1,\ldots,a_n))=f_B(\varphi(a_1),\ldots,\varphi(a_n)).$$

Protože je též ψ homomorfismus Ω -algeber, platí

$$\psi(f_B(\varphi(a_1),\ldots,\varphi(a_n)))=f_C(\psi(\varphi(a_1)),\ldots,\psi(\varphi(a_n))).$$

Dohromady tedy

$$(\psi \circ \varphi)(f_A(a_1, \ldots, a_n)) = \psi(\varphi(f_A(a_1, \ldots, a_n))) =$$

$$= \psi(f_B(\varphi(a_1), \ldots, \varphi(a_n))) =$$

$$= f_C(\psi(\varphi(a_1)), \ldots, \psi(\varphi(a_n))) =$$

$$= f_C((\psi \circ \varphi)(a_1), \ldots, (\psi \circ \varphi)(a_n)),$$

což jsme měli dokázat.

Obraz v homomorfismu Ω -algeber

<u>Věta.</u> Nechť A, B jsou univerzální algebry téhož typu Ω , $\varphi:A\to B$ homomorfismus Ω -algeber. Pak obraz Ω -algebry A v homomorfismu φ

$$\varphi(A) = \{ \varphi(a); \ a \in A \}$$

je podalgebra Ω -algebry B.

<u>Důkaz.</u> Zvolme libovolně operační symbol $f \in \Omega$ arity n. Pak pro každé prvky $b_1, \ldots, b_n \in \varphi(A)$ existují $a_1, \ldots, a_n \in A$ tak, že $\varphi(a_1) = b_1, \ldots, \varphi(a_n) = b_n$. Z definice homomorfismu plyne $f_B(b_1, \ldots, b_n) = f_B(\varphi(a_1), \ldots, \varphi(a_n)) = \varphi(f_A(a_1, \ldots, a_n)) \in \varphi(A)$.

Věty o izomorfismech Ω -algeber

<u>Věta.</u> Nechť A, B jsou univerzální algebry téhož typu Ω , $\varphi:A\to B$ izomorfismus Ω -algeber. Pak inverzní zobrazení $\varphi^{-1}:B\to A$ je také izomorfismus Ω -algeber.

<u>Důkaz.</u> Zvolme libovolně operační symbol $f \in \Omega$ arity n. Pak pro každé prvky $b_1, \ldots, b_n \in B$ existují $a_1, \ldots, a_n \in A$ tak, že $\varphi(a_1) = b_1, \ldots, \varphi(a_n) = b_n$. Z definice homomorfismu $f_B(b_1, \ldots, b_n) = \varphi(f_A(a_1, \ldots, a_n))$, a tedy $\varphi^{-1}(f_B(b_1, \ldots, b_n)) = f_A(\varphi^{-1}(b_1), \ldots, \varphi^{-1}(b_n))$.

<u>Věta.</u> Nechť A, B, C jsou univerzální algebry téhož typu Ω . Platí:

- ► A je izomorfní s A;
- je-li A izomorfní s B, pak je též B izomorfní s A;
- jestliže A je izomorfní s B a B je izomorfní s C, pak je též A izomorfní s C.

<u>Důkaz.</u> To je zřejmé.

Součin dvou Ω-algeber

<u>Definice.</u> Nechť A, B jsou univerzální algebry téhož typu Ω . Na kartézském součinu $A \times B$ definujeme novou univerzální algebru typu Ω , kterou nazveme součinem Ω -algeber A a B. Pro každý operační symbol $f \in \Omega$ arity n a každé prvky $a_1, \ldots, a_n \in A$, $b_1, \ldots, b_n \in B$ klademe

$$f_{A\times B}((a_1,b_1),\ldots,(a_n,b_n))=(f_A(a_1,\ldots,a_n),f_B(b_1,\ldots,b_n)).$$

<u>Poznámka.</u> Předchozí podmínka v případě nulárního operačního symbolu f znamená $f_{A\times B}=(f_A,f_B).$

<u>Definice.</u> Nechť A, B jsou univerzální algebry téhož typu Ω , $A \times B$ součin těchto Ω -algeber. Definujme projekce $\pi_1: A \times B \to A$, $\pi_2: A \times B \to B$ ze součinu $A \times B$ předpisem: pro každé $a \in A$, $b \in B$ klademe $\pi_1((a,b)) = a$, $\pi_2((a,b)) = b$.

<u>Poznámka.</u> Protože Ω -algebry mohou být i prázdné, nemusí být obecně projekce ze součinu surjektivní.

Projekce ze součinu dvou Ω -algeber

<u>Věta.</u> Nechť A, B jsou univerzální algebry téhož typu Ω , $A \times B$ součin těchto Ω -algeber. Pak obě projekce π_1 , π_2 jsou homomorfismy Ω -algeber.

<u>Důkaz.</u> Ukažme, že projekce π_1 je homomorfismus Ω -algeber. Zvolme libovolně operační symbol $f \in \Omega$ arity n a prvky $a_1, \ldots, a_n \in A, \ b_1, \ldots, b_n \in B$. Platí

$$\pi_1(f_{A\times B}((a_1,b_1),\ldots,(a_n,b_n))) =$$

$$= \pi_1((f_A(a_1,\ldots,a_n),f_B(b_1,\ldots,b_n))) =$$

$$= f_A(a_1,\ldots,a_n) =$$

$$= f_A(\pi_1((a_1,b_1)),\ldots,\pi_1((a_n,b_n))).$$

Analogicky se dokáže, že projekce π_2 je homomorfismus Ω -algeber.

Věta o součinu dvou Ω -algeber

<u>Věta.</u> Nechť A, B, C jsou univerzální algebry téhož typu Ω , φ : $C \to A$, ψ : $C \to B$ homomorfismy Ω -algeber, π_1 : $A \times B \to A$, π_2 : $A \times B \to B$ projekce ze součinu $A \times B$. Pak existuje jediný homomorfismus Ω -algeber

$$\rho: C \to A \times B$$
 s vlastností $\pi_1 \circ \rho = \varphi$, $\pi_2 \circ \rho = \psi$.

<u>Důkaz.</u> Podmínky $\pi_1 \circ \rho = \varphi$, $\pi_2 \circ \rho = \psi$ platí, právě když $\rho(c) = (\varphi(c), \psi(c))$ pro každé $c \in C$. Zvolme libovolně operační symbol $f \in \Omega$ arity n a prvky $c_1, \ldots, c_n \in C$. Platí

$$f_{A\times B}(\rho(c_{1}),\ldots,\rho(c_{n})) = f_{A\times B}((\varphi(c_{1}),\psi(c_{1})),\ldots,(\varphi(c_{n}),\psi(c_{n}))) =$$

$$= (f_{A}(\varphi(c_{1}),\ldots,\varphi(c_{n})),f_{B}(\psi(c_{1}),\ldots,\psi(c_{n}))) =$$

$$= (\varphi(f_{C}(c_{1},\ldots,c_{n})),\psi(f_{C}(c_{1},\ldots,c_{n}))) =$$

$$= \rho(f_{C}(c_{1},\ldots,c_{n})),$$

 $A \times B$

což se mělo dokázat.

Součin libovolného počtu množin

<u>Definice.</u> Jestliže pro libovolný prvek i množiny I je dána množina A_i , pak kartézským součinem množin A_i rozumíme množinu všech zobrazení χ z množiny I takových, že $\chi(i) \in A_i$ pro každé $i \in I$:

$$\prod_{i\in I}A_i=\Big\{\chi:\,I\to\bigcup_{i\in I}A_i;\,\forall i\in I:\,\chi(i)\in A_i\Big\}.$$

Pro libovolné $j \in I$ definujeme j-tou projekci π_j z kartézského součinu $A = \prod_{i \in I} A_i$ takto: $\pi_j : A \to A_j$ je určeno předpisem $\pi_j(\chi) = \chi(j)$ pro každé $\chi \in A$.

<u>Poznámka.</u> Ve speciálním případě $I=\emptyset$ vlastně žádnou množinu A_i nemáme. Přesto jsme oprávnění mluvit o součinu: dle definice je součinem $\prod_{i\in\emptyset}A_i$ množina všech zobrazení $\chi:\emptyset\to\bigcup_{i\in\emptyset}A_i$. Protože $\bigcup_{i\in I}A_i$ je množina všech prvků x, pro které existuje $i\in I$ tak, že $x\in A_i$, je zřejmě $\bigcup_{i\in\emptyset}A_i=\emptyset$. Ovšem zobrazení $\chi:\emptyset\to\emptyset$ je jediné, totiž prázdné zobrazení. Proto množina $\prod_{i\in\emptyset}A_i$ je jednoprvková; jejím jediným prvkem je prázdné zobrazení.

Součin libovolného počtu Ω -algeber

<u>Definice.</u> Nechť Ω je typ. Nechť pro libovolný prvek i množiny I je dána univerzální algebra A_i typu Ω . Součinem těchto Ω -algeber rozumíme novou Ω -algebru definovanou na kartézském součinu $A = \prod_{i \in I} A_i$ takto: pro každý operační symbol $f \in \Omega$ arity n a každé prvky $\chi_1, \ldots, \chi_n \in A$, klademe $f_A(\chi_1, \ldots, \chi_n) = \chi$, kde $\chi \in A$ je určeno podmínkou

$$\chi(i) = f_{A_i}(\chi_1(i), \dots, \chi_n(i))$$
 pro každé $i \in I$

(pro n = 0 tedy $f_A = \chi$, kde $\chi(i) = f_{A_i}$).

<u>Poznámka.</u> Ve speciálním případě $I=\emptyset$ je součinem Ω -algebra na jednoprvkové množině, jejímž jediným prvkem je prázdné zobrazení. Tato Ω -algebra je jediná (na jednoprvkové množině pro libovolné $n \in \mathbb{N}_0$ existuje jen jedna n-ární operace). Ačkoli nemáme dánu žádnou Ω -algebru, jako součin dostáváme jednoprvkovou Ω -algebru, a tedy máme informaci o tom, jak vypadá Ω . Není to paradox: součin Π je součin Ω -algeber, lze jej aplikovat

pouze na Ω -algebry pro určité Ω . Informace o tom, jak toto Ω vypadá, je tedy uložena v tom, o jaký součin Π se jedná.

Projekce ze součinu Ω -algeber

<u>Věta.</u> Nechť pro libovolný prvek i množiny I je dána univerzální algebra A_i daného typu Ω , nechť $A = \prod_{i \in I} A_i$ je jejich součin. Pak pro každé $j \in I$ je j-tá projekce $\pi_j : A \to A_j$ homomorfismus Ω -algeber.

<u>Důkaz.</u> Připomeňme, že projekce $\pi_j:A\to A_j$ je definována předpisem $\pi_j(\chi)=\chi(j)$ pro každé $\chi\in A$. Zvolme libovolně operační symbol $f\in\Omega$ arity n a prvky $\chi_1,\ldots,\chi_n\in A$. Označme $\chi=f_A(\chi_1,\ldots,\chi_n)$. Přímo z definice plyne

$$\pi_j(f_A(\chi_1,\ldots,\chi_n)) = \pi_j(\chi) = \chi(j) = f_{A_j}(\chi_1(j),\ldots,\chi_n(j)) =$$

$$= f_{A_j}(\pi_j(\chi_1),\ldots,\pi_j(\chi_n)),$$

což se mělo dokázat.

Věta o součinu Ω-algeber

<u>Věta.</u> Nechť pro libovolný prvek i množiny I je dána univerzální algebra A_i daného typu Ω , nechť $A = \prod_{i \in I} A_i$ je jejich součin a $\pi_j : A \to A_j$ je j-tá projekce pro každé $j \in I$. Nechť C je univerzální algebra téhož typu Ω , a pro každé $j \in I$ nechť je dán homomorfismus Ω -algeber $\varphi_j : C \to A_j$. Pak existuje jediný homomorfismus Ω -algeber $\varphi : C \to A$ takový, že $\pi_j \circ \varphi = \varphi_j$ pro každé $j \in I$.

Důkaz věty o součinu Ω -algeber

<u>Důkaz.</u> Rovnost $\pi_j \circ \varphi = \varphi_j$ pro každé $j \in I$ platí, právě když pro každé $c \in C$ je $\varphi(c) \in A$ určené podmínkou: pro libovolné $j \in I$

$$(\varphi(c))(j) = \pi_i(\varphi(c)) = (\pi_i \circ \varphi)(c) = \varphi_i(c).$$

Ověřme, že takto definované zobrazení $\varphi: C \to A$ je homomorfismus Ω -algeber. Zvolme libovolně operační symbol $f \in \Omega$ arity n a prvky $c_1, \ldots, c_n \in C$. Označme $\chi = f_A(\varphi(c_1), \ldots, \varphi(c_n))$, pak pro každé $i \in I$ platí

$$\chi(i) = f_{A_i}((\varphi(c_1))(i), \dots, (\varphi(c_n))(i)) = f_{A_i}(\varphi_i(c_1), \dots, \varphi_i(c_n)) =$$

$$= \varphi_i(f_C(c_1, \dots, c_n)) = (\varphi(f_C(c_1, \dots, c_n)))(i).$$

To znamená, že χ a $\varphi(f_C(c_1,\ldots,c_n))$ jsou (jakožto prvky kartézského součinu) zobrazení se stejným definičním oborem, oborem hodnot i předpisem, proto platí $\chi=\varphi(f_C(c_1,\ldots,c_n))$, tj. $f_A(\varphi(c_1),\ldots,\varphi(c_n))=\varphi(f_C(c_1,\ldots,c_n))$, což se mělo dokázat.