

Tecnologias de Redes de Comunicações 2006/2007

Q protocolo RADIUS

Fernando M. Silva

Fernando Silva@ist wtl.pt

Instituto Superior Técnico

Sumário

- Introdução
- Sistemas AAA
- Protocolo Radius
- Autenticação
- Accounting
- Atributos
- · Proxy radius
- Funcionamento

- O controlo de acesso a recursos informáticos é habitualmente realizado por um processo de autenticação, em que são verificadas as credenciais de acesso, dos quais o acesso por username/password é o mais generalizado
- Outros sistemas de autenticação, nomeadamente os baseados em chaves privadas, são mais seguros mas apresentam requisitos de utilização mais complexos
- Originalmente, as credenciais de acesso (em texto original ou cifradas) estavam simplesmente depositadas num ficheiro local na máquina de acesso.
- Com a multiplicação de diferentes pontos de acesso a recursos por parte de um mesmo utilizador, a replicação dos ficheiros de credenciais pelas diversas máquinas tornava-se inviável.
- O protocolo RADIUS surgiu pela necessidade de construir uma infra-estrutura centralizada de autenticação, adequada a ambientes de acesso distribuídos, separando os recursos da fase de autenticação.

Características dos sistemas RADIUS

- Modelo cliente / servidor
- Possibilidade de operação em modo proxy, permitindo construir uma hierarquia de autenticação.
- Suporte de diferentes tipos de autenticação
- As mensagens são constituídas por atributos, comprimento e valor, permitindo assim a extensão do protocolo com novos atributos.

O protocolo RADIUS tem não apenas o objectivo de autenticação, mas constitui um sistema completo de AAA - Authentication, Authorization and Accounting

- Autenticação: Garantia de identidade do utilizador.
- Autorização: Permissão de acesso aos recursos disponíveis
- Accountig: Registo de sessões e contabilização de tráfego

- O cliente obtem as credenciais do utilizador.
- O cliente cria uma trama "Access-Request" que inclui as credenciais, e a identificação do porto/serviço de acesso.
 - Se não houver resposta num dado período de tempo, a trama é enviada novamente.
- O servidor RADIUS recebe o pedido e verifica as credenciais do utilizador e, opcionalmente, pode consultar uma base de dados de permissões para verificar se o utilizador tem permissão para aceder ao recurso.
 - O servidor pode consultar outros servidores, funcionando neste caso como cliente. Este é o modelo normalmente designado por proxy-radius.
 - O servidor pode responder de très formas:
 - * Access-Reject
 - * Access-Accept.
 - * Access-Challenge
 O servidor envia um desafio adicional ao cliente para autenticação.

Transporte: UDP

- Justificação (original...)
 - Originalmente desenhado para meios com poucos erros
 - Maior fluidez de mensagens
 - Selecção mais rápida de um servidor alternativo
 - Handshaking incluído no protocolo
 - Maior facilidade de suportar solicitações múltiplas no servidor de autenticação (threads independentes).

Visão actual

- A utilização de RADIUS em meios sem fios, onde as perdas de pacotes são maiores, questionam a aproximação UDP.
- A utilização de UDP em hierarquias de autenticação mais complexas conduz tabém a mais problemas, devido à possibilidade de ausência de respostas de servidores intermédios.
- O maior débito das ligações e as facilidades de software existentes mitigam muitos dos argumentos originais a favor do RADIUS.
- Recentemente (Junho de 2007), foi proposto um draft no IETF o protcolo RADSEC, que propõe o envio do payload RADIUS sobre uma ligação TCP+TLS, de modo a garantir um transporte seguro e sobre uma camada de transporte mais fiável.

- Code Um octeto com o código comando/resposta do RADIUS
 - access-request, (cliente →servidor). Pedido de acesso. Respostas possíveis:
 - * access-accept, (servidor →cliente) OK
 - * access-reject (servidor →cliente) Rejeição
 - * access-challenge, (servidor →cliente), resposta em que o servidor espera uma resposta do cliente encapsulada num acesso-request
 - * accounting request, (client-¿server), accounting response (servidor-¿cliente)
 - Identifier Associação entre pedidos e respostas
 - Comprimento do campo (2 octetos)
 - Authenticator Valor usado para autenticar a resposta e usado igualmente no algoritmos de verificação das credenciais.
 - Attributos Os dados do comando ou resposta.

- Na sua forma mais simples, o RADIUS pode usar uma base de dados local de utilizadores e credenciais para verificação da identidade.
- Hoje em dia, a componente de autenticação de RADIUS é frequentemente delegada num sistema mais abrangente de autenticação
 - LDAP (Light Weight Directory Protocol)
 - * Sistema de directório em que são registados vários atributos do utilizador (desde o nome, número de aluno, e-mail, morada, telefone), e em que o acesso a estes atributos é regulado por políticas de acesso.
 - Kerberos
 - * Autenticação forte
 - LDAP+Kerberos
 - * Sistema de autenticação baseado em LDAP mas em que este delega, por sua vez, a autenticação num sistema Kerberos.
 - Apesar da existência de outros sistemas de autenticação, o RADIUS é frequentemente usado pelo suporte nativo que tem de registos de accounting.

- O sistema de accounting do RADIUS permite o controlo e registo detalhado da utilização dos recursos de rede por parte dos clientes, sendo por isso o modo preferido de contabilização e registo de recursos por parte dos operadores,
- No início da sessão, e após a autenticação, o cliente envia para o servidor uma mensagem de Accounting-Request, com opção START.
 - Ao receber esta msg. o servidor regista o utilizador, a data/hora de início de sessão, e alguns parâmetros adicionais que tenham sido enviados pelo cliente.
 - O servidor deve responder a este pedido com uma mensagem Accounting-Response
- No final da sessão, o cliente envia para o servidor uma mensagem de Accounting-Request, com opção STOP.
 - Ao receber esta msg, o servidor regista a data/hora de fim da sessão, e alguns parâmetros adicionais que tenham sido enviados pelo cliente (tempo, trafego, etc)
 - O servidor deve responder a este pedido com uma mensagem Accounting-Response

Nota: o protocolo inicial Access-Request/Access-Accept pode ser duplicado caso o protocolo de autenticação é challenge/response

Atributos de accounting

- As mensagens de accounting incluem geralmente listas de atributos que podem ser normalizadas ou específicas do fabricante
 - Neste último caso, o servidor de RADIUS dispõe normalmente de um dicionário de códigos de atributos que permite identificar os atributos e registálos de forma legível

 Os atributos RADIUS são constituídos por um um tuplo (código, comprimento, valor). Uma mensagem pode incluir um ou mais atributos.

 Existe um código especial que permite aos fornecedores de equipamento incluírem informação adicional e específica do equipamento.

- O protocolo RADIUS é normalmente utilizado como suporte de autenticação na norma 802,1X
- O protocolo 802.1X permite que o acesso ao nível 2 da rede (em switchs ou pontos de acesso sem fios) só seja obtido após uma autenticação bem sucedida, ix No protocolo 802.1X são normalmente identificados três intervenientes
 - Supplicant Terminal remoto que pretende acesso ao meio
 - Authenticator Equipamento de rede que pretende autenticar o terminal remoto e que funciona como cliente do do servidor de autenticação.
 - Authentication Server Servidor de autenticação (normalmente RADIUS).
- Antes do autenticador dar permitir acesso completo de nível 2 ao terminal, troca mensagens com este que são posteriormente encapsuladas no protocolo RADIUS.
- Na fase de autenticação, o equipamento de rede limita-se a encapsular/desencapsular tramas que de facto têm origem e destino o terminal remoto.
- Quando a autenticação é bem sucedida, é o autenticador que recebe a mensagem de Access-Accept e viabiliza o acesso à rede.

- Uma das caratcerísticas fundamentais do protocolo 802.1X é que a autenticação EAP circula de modo cifrado entre o terminal remoto e o servidor, sem intervenção do autenticador.
- Apesar do autenticador encapsular os pacotes EAP com RADIUS, não há qualquer informação que possa ser retirada relativa às credenciais do utilizador
- O mesmo sucede no caso de existirem sistema proxy de RADIUS de permeio. As mensagens são encaminhadas até ao servidor de destino sem qualquer e vice-versa sem quebra de confidencialidade nos nós intermédios.

Articulação entre tres CNE tervenientes no processo autenticação numa autenticação 802.1X com RADIUS. O servidor de autenticação pode ainda proxy-radius. apenas um caso em que realiza o relay das mensagens de autenticação para outro servidor.

```
Tue Sep 27 14:20:02 2005
       Acct-Session-Id = "00002E77"
       Called-Station-Id = "000f.3446.8c60"
       Calling-Station-Id = "0011.2492.0af6"
       Cisco-AVPair = "ssid=e-U"
       Cisco-AVPair = "nas-location=unspecified"
        User-Name = "anonymousfor"
       Acct-Status-Type = Start
        NAS-Port-Type = Wireless-802.11
       Cisco-NAS-Port = "11168"
       NAS-Port = 11168
        Service-Type = Framed-User
       NAS-IP-Address = 10.0.1.7
       Acct-Delay-Time = 0
       Client-IP-Address = 193.136.128.19
       Acct-Unique-Session-Id = "1375ba30ea90779b"
       Timestamp = 1127827202
```

```
Tue Sep 27 14:34:31 2005
       Acct-Session-Id = "00002E77"
        Called-Station-Id = "000f.3446.8c60"
       Calling-Station-Id = "0011.2492.0af6"
        Cisco-AVPair = "ssid=e-U"
       Cisco-AVPair = "nas-location=unspecified"
       Cisco-AVPair = "vlan-id=230"
       Cisco-AVPair = "auth-algo-type=eap-peap"
        User-Name = "anonymousfor"
        Cisco-AVPair = "connect-progress=Call Up"
        Acct-Session-Time = 868
        Acct-Input-Octets = 136092
        Acct-Output-Octets = 4103486
        Acct-Input-Packets = 1003
        Acct-Output-Packets = 3108
        Acct-Terminate-Cause = Lost-Carrier
        Cisco-AVPair = "disc-cause-ext=No Reason"
        Acct-Status-Type = Stop
        NAS-Port-Type = Wireless-802.11
```

Fernando M. Silva

Cisco-NAS-Port = "11168"

NAS-Port = 11168 Service-Type = Framed-User

NAS-IP-Address = 10.0.1.7

Acct-Delay-Time = 0

Client-IP-Address = 193.136.128.19

Acct-Unique-Session-Id = "1375ba30ea90779b"

Timestamp = 1127828071