In [1]: X = [[1, 1], [1, 2], [1, 3], [1, 4]]y = [3, 4, 5, 6] $learning_rate = 0.01$ batch_size = 2 $num_iterations = 1000$ regularization_term = 0.1 random_state=42 from sklearn.linear_model import SGDRegressor from sklearn.preprocessing import StandardScaler def train_linear_regression(X, y, learning_rate, batch_size, regularization_term, max_iterations): Train a linear regression model using stochastic gradient descent (SGD) with mini-batch updates. Parameters: X (array-like): Input features with shape (n_samples, n_features). y (array-like): Target values with shape (n_samples,). learning_rate (float, optional): The learning rate for gradient descent. Default is 0.01. batch_size (int, optional): The size of the mini-batches used in training. Default is 32. regularization (str or None, optional): The type of regularization used. Can be 'l1', 'l2', or None. Default is None. max_iterations (int, optional): The maximum number of iterations for training. Default is 1000. Returns: sklearn.linear_model.SGDRegressor: The trained SGDRegressor model. # Standardize the input features for better convergence scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # Initialize the SGDRegressor with the given parameters model = SGDRegressor(loss='squared_error', learning_rate='constant', eta0=learning_rate, alpha=regularization_term, max_iter=max_iterations, tol=1e-3, random_state=0 # Train the model in mini-batches n_samples = X_scaled.shape[0] for iteration in range(max_iterations): $start_idx = 0$ while start_idx < n_samples:</pre> end_idx = start_idx + batch_size X_batch = X_scaled[start_idx:end_idx] y_batch = y[start_idx:end_idx] model.partial_fit(X_batch, y_batch) start_idx = end_idx return model model = train_linear_regression(X, learning_rate, batch_size, regularization_term, num_iterations) model.coef_ , 1.01715224]) array([0. Out[1]: Q.2: Write a function to implement linear regression with Lasso regularization (L1 regularization) using coordinate descent. The function should allow for different regularization parameters and tolerance levels for convergence. Input: X = [[1, 1], [1, 2], [1, 3], [1, 4]]y = [3, 4, 5, 6]regularization_param = 0.1 tolerance = 0.001**Expected Output:** Optimized coefficients: [1.6, 0.8] from sklearn.linear_model import Lasso X = [[1, 1], [1, 2], [1, 3], [1, 4]]y = [3, 4, 5, 6] $regularization_param = 0.1$ tolerance = 0.001def train_linear_regression_with_lasso(X, y, alpha, tol): Train a linear regression model with Lasso (L1) regularization using coordinate descent. Parameters: X (array-like): Input features with shape (n_samples, n_features). y (array-like): Target values with shape (n_samples,). alpha (float, optional): The regularization strength (lambda). Default is 1.0. tol (float, optional): The tolerance for convergence. Default is 1e-4. Returns: sklearn.linear_model.Lasso: The trained Lasso model. # Initialize the Lasso model with the given parameters model = Lasso(alpha=alpha, tol=tol, random_state=0) # Train the model model.fit(X, y) return model model = train_linear_regression_with_lasso(X, alpha=regularization_param, tol=tolerance) model.coef_ array([0. , 0.92]) Q.3: Create a program that performs logistic regression with L1 regularization (Lasso) using coordinate descent. Input: X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1]regularization_param = 0.1 tolerance = 0.001import numpy as np In [3]: from sklearn.linear_model import LogisticRegression X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1] $regularization_param = 0.1$ tolerance = 0.001def logistic_regression_with_l1_regularization(X, y, regularization_param, tolerance): # Create the Logistic Regression model with L1 regularization model = LogisticRegression(penalty='l1', C=1/regularization_param, tol=tolerance, solver='liblinear', random_state=0) # Train the model model.fit(X, y) return model model = logistic_regression_with_l1_regularization(X, regularization_param, tolerance) model.coef_ array([[2.23260945, 0.]]) Out[3]: Q.4: Implement a function to perform logistic regression with L2 regularization (Ridge) using gradient descent. Input: X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1]learning_rate = 0.01 num_iterations = 1000 regularization_param = 0.1 In [4]: **import** numpy **as** np from sklearn.linear_model import LogisticRegression X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1]num_iterations = 1000 $regularization_param = 0.1$ tolerance = 0.001def logistic_regression_with_12_regularization(X, y, tolerance, num_iterations, regularization_param): # Create the Logistic Regression model with L2 regularization model = LogisticRegression(penalty='12', tol=tolerance, C=1/regularization_param, max_iter=num_iterations, random_state=0) # Train the model model.fit(X, y) return model model = logistic_regression_with_l2_regularization(X, y, learning_rate, num_iterations, regularization_param) model.coef_ array([[1.70966932, 1.73695077]]) Out[4]: Q.5: Write a program to handle imbalanced classes in logistic regression by assigning class weights. Input: X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 0, 1]class_weights = {0: 0.2, 1: 0.8} In [5]: from sklearn.linear_model import LogisticRegression # Input data X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 0, 1]# Class weights class_weights = $\{0: 0.2, 1: 0.8\}$ # Create a Logistic Regression model with class weights log_reg_model = LogisticRegression(class_weight=class_weights, random_state=0) # Fit the model to the data log_reg_model.fit(X, y) log_reg_model.coef_ array([[0.37945496, 0.3794771]]) Out[5] Q.6: Create a program to evaluate the multicollinearity among features in a logistic regression model using the variance inflation factor (VIF). Input: X = [[1, 2, 3], [2, 4, 6], [3, 6, 9], [4, 8, 12]]In [6]: **import** numpy **as** np import pandas as pd from statsmodels.stats.outliers_influence import variance_inflation_factor X = np.array([[1, 2, 3],[2, 4, 6], [3, 6, 9], [4, 8, 12]]) def calculate_vif(X): Calculate the variance inflation factor (VIF) for each feature in the dataset. # VIF dataframe vif_data = pd.DataFrame() vif_data["feature"] = ["1st", "2nd", "3rd"] # calculating VIF for each feature vif_data["VIF"] = [variance_inflation_factor(X, i) for i in range(len(vif_data))] return vif_data # Calculate the VIF values vif_values = calculate_vif(X) # Print the VIF values for each feature print("VIF values:") print(vif_values) VIF values: feature VIF 1st inf 2nd inf 3rd inf C:\Users\murtuzad\Anaconda3\lib\site-packages\statsmodels\stats\outliers_influence.py:195: RuntimeWarning: divide by zero encountered in double_sca $vif = 1. / (1. - r_squared_i)$ Q.7: Write a program to calculate the area under the ROC curve (AUC) for a logistic regression model. Input: y true = [0, 1, 1, 0, 1] $y_pred = [0.2, 0.8, 0.6, 0.3, 0.9]$ from sklearn.metrics import roc_auc_score $y_{true} = [0, 1, 1, 0, 1]$ $y_pred = [0.2, 0.8, 0.6, 0.3, 0.9]$ def calculate_auc(y_true, y_pred): auc = roc_auc_score(y_true, y_pred) return auc auc_score = calculate_auc(y_true, y_pred) print("Area Under the ROC Curve (AUC): {:.2f}".format(auc_score)) Area Under the ROC Curve (AUC): 1.00 Q.8: Implement a program to perform logistic regression using stochastic gradient descent (SGD) with mini-batch updates. Input: X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1]learning_rate = 0.01 batch_size = 2 num_iterations = 1000 In [8]: from sklearn.linear_model import SGDClassifier import numpy as np # Input data X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1]learning_rate = 0.01 batch_size = 2 num_iterations = 1000 def logistic_regression_sgd(X, y, learning_rate=0.01, batch_size=2, num_iterations=1000): # Convert data to numpy arrays X = np.array(X)y = np.array(y)# Standardize the input features for better convergence scaler = StandardScaler() X = scaler.fit_transform(X) # Initialize the SGDClassifier with logistic loss and mini-batch updates clf = SGDClassifier(loss='log', learning_rate='constant', eta0=learning_rate, random_state=0) # Perform mini-batch updates for the specified number of iterations for _ in range(num_iterations): # Randomly shuffle the data indices indices = np.random.permutation(len(X)) # Divide the data into mini-batches and update the classifier for batch_start in range(0, len(X), batch_size): batch_indices = indices[batch_start:batch_start + batch_size] clf.partial_fit(X[batch_indices], y[batch_indices], classes=np.unique(y)) return clf # Train the logistic regression model using SGD model = logistic_regression_sgd(X, y, learning_rate, batch_size, num_iterations) # Make predictions predictions = model.predict(X) model.coef_ array([[2.48201691, 2.48201691]]) Out[8]: Q.9: Implement a function to perform logistic regression and display confusion matrix and classification report. Input: $X_{train} = [[1, 2], [2, 3], [3, 4], [4, 5]]$ $y_{train} = [0, 0, 1, 1]$ $X_{val} = [[1, 3], [2, 4], [3, 5]]$ $y_val = [0, 1, 1]$ learning_rate = 0.01 batch_size = 2 num_iterations = 1000 In [9]: from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix, classification_report # Input data $X_{train} = [[1, 2], [2, 3], [3, 4], [4, 5]]$ $y_{train} = [0, 0, 1, 1]$ $X_{val} = [[1, 3], [2, 4], [3, 5]]$ $y_val = [0, 1, 1]$ learning_rate = 0.01 batch_size = 2 num_iterations = 1000 def logistic_regression_with_metrics(X_train, y_train, X_val, y_val, learning_rate, batch_size, num_iterations): # Standardize the input features for better convergence scaler = StandardScaler() X_train = scaler.fit_transform(X_train) $X_{val} = scaler.transform(X_{val})$ # Initialize the SGDClassifier with logistic loss and mini-batch updates model = SGDClassifier(loss='log', learning_rate='constant', eta0=learning_rate, random_state=0) # Step 2: Train the model on the training data model.fit(X_train, y_train) # Step 3: Make predictions on the validation data y_pred = model.predict(X_val) # Step 4: Display the confusion matrix and classification report print("Confusion Matrix:") print(confusion_matrix(y_val, y_pred)) print("\nClassification Report:") print(classification_report(y_val, y_pred)) # Call the function with the given input logistic_regression_with_metrics(X_train, y_train, X_val, y_val, learning_rate, batch_size, num_iterations) Confusion Matrix: [[1 0] [0 2]] Classification Report: precision recall f1-score support 0 1.00 1.00 1.00 1 1.00 1.00 1.00 2 1.00 accuracy macro avg 1.00 1.00 1.00 3 weighted avg 1.00 1.00 1.00 3 Q.10: Write a program to calculate the log loss (binary cross-entropy) for a logistic regression model using vectorized operations. Input: $y_{true} = [0, 1, 1, 0]$ $y_pred = [0.2, 0.8, 0.9, 0.3]$ In [10]: **import** numpy **as** np from sklearn.metrics import log_loss # Input data $y_{true} = np.array([0, 1, 1, 0])$ $y_pred = np.array([0.2, 0.8, 0.9, 0.3])$ # Ensure y_pred is within [epsilon, 1-epsilon] to avoid log(0) and log(1) issues epsilon = 1e-15y_pred = np.clip(y_pred, epsilon, 1 - epsilon) # Calculate the log loss (binary cross-entropy) logloss = log_loss(y_true, y_pred) print("Log Loss (Binary Cross-Entropy):", logloss) Log Loss (Binary Cross-Entropy): 0.22708064055624455 Q.11 Write a program to build a decision tree classifier from scratch using the CART algorithm. Input: X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1]In [11]: **from** sklearn.tree **import** DecisionTreeClassifier # Input data $X_{train} = [[1, 2], [2, 3], [3, 4], [4, 5]]$ y = [0, 0, 1, 1] $X_{val} = [[2, 4], [1, 3], [3, 5]]$ # Create the decision tree classifier with CART algorithm clf = DecisionTreeClassifier(random_state=0) # Train the model using the input data clf.fit(X_train, y) predictions = clf.predict(X_val) predictions array([1, 0, 1]) Out[11]: Q.12: Create a function using sklearn to visualize a decision tree using a graph representation. Input: X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1]In [12]: import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeClassifier, plot_tree, export_text import numpy as np # Input data X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 1, 1]def visualize_decision_tree(X, y): # Create the decision tree classifier with CART algorithm clf = DecisionTreeClassifier() # Train the model using the input data clf.fit(X, y) # Obtain a text representation of the decision tree tree_text = export_text(clf, feature_names=[f'Feature {i+1}' for i in range(len(X[0]))]) print("Decision Tree Text Representation:") print(tree_text) # Create a graphical representation of the decision tree plt.figure(figsize=(10, 6)) plot_tree(clf, feature_names=[f'Feature {i+1}' for i in range(len(X[0]))], class_names=['Class 0', 'Class 1']) plt.show() # Call the visualization function visualize_decision_tree(X, y) Decision Tree Text Representation: |--- Feature 2 <= 3.50 |--- class: 0 |--- Feature 2 > 3.50 | |--- class: 1 Feature 2 <= 3.5 gini = 0.5samples = 4value = [2, 2]class = Class 0 gini = 0.0gini = 0.0samples = 2samples = 2value = [2, 0]value = [0, 2]class = Class 0 class = Class 1 Q.13: Write a program using sklearn to handle categorical features in a dataset by performing one-hot encoding. Input: dataset = [[1, 'A', 'Yes'], [1, 'B', 'Yes'], [0, 'B', 'No'], [0, 'A', 'No']] In [13]: from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer # Input dataset dataset = [[1, 'A', 'Yes'], [1, 'B', 'Yes'], [0, 'B', 'No'], [0, 'A', 'No']] # Define the column indices of the categorical features categorical_features = [1,2] # Create a ColumnTransformer to perform one-hot encoding on the categorical features preprocessor = ColumnTransformer(transformers=[('cat', OneHotEncoder(), categorical_features) remainder='passthrough' # Fit and transform the data using the preprocessor dataset_encoded = preprocessor.fit_transform(dataset) dataset_encoded array([[1.0, 0.0, 0.0, 1.0, 1], Out[13]: [0.0, 1.0, 0.0, 1.0, 1], [0.0, 1.0, 1.0, 0.0, 0],[1.0, 0.0, 1.0, 0.0, 0]], dtype=object) Q.14 Implement a program using sklearn to handle imbalanced classes in a decision tree by assigning class weights. Input: X = [[1, 2], [2, 3], [3, 4], [4, 5]]y = [0, 0, 0, 1]class_weights = {0: 0.2, 1: 0.8} from sklearn.tree import DecisionTreeClassifier import numpy as np # Input data $X_{train} = [[1, 2], [2, 3], [3, 4], [4, 5]]$ y = [0, 0, 0, 1] $X_{val} = [[2, 4], [1, 3], [3, 5]]$ # Class weights class_weights = $\{0: 0.2, 1: 0.8\}$ # Create the decision tree classifier with class weights clf = DecisionTreeClassifier(class_weight=class_weights, random_state=0) # Fit the classifier on the data clf.fit(X_train, y) # Predict on new data predictions = clf.predict(X_val) predictions array([0, 0, 1]) Out[14]: Q.15: Write a program using sklearn to perform hierarchical clustering using the complete linkage method. Input: X = [[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]In [15]: **import** numpy **as** np from sklearn.cluster import AgglomerativeClustering import matplotlib.pyplot as plt # Input data X = np.array([[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]])# Perform hierarchical clustering using complete linkage clustering = AgglomerativeClustering(linkage='complete') clustering.fit(X) # Get the cluster assignments for each data point labels = clustering.labels_ labels array([0, 0, 0, 0, 1, 1], dtype=int64) Out[15]: Q.16: Implement a program using sklearn to perform density-based clustering using the DBSCAN algorithm. Input: X = [[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]epsilon = 3 $min_samples = 2$ from sklearn.cluster import DBSCAN In [16]: import numpy as np # Input data X = np.array([[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]) epsilon = 3 $min_samples = 2$ def perform_dbscan_clustering(X, epsilon, min_samples): # Create a DBSCAN object with the specified epsilon and min_samples dbscan = DBSCAN(eps=epsilon, min_samples=min_samples) # Perform clustering on the data clustering_labels = dbscan.fit_predict(X) # Return the clustering labels return clustering_labels # Perform DBSCAN clustering labels = perform_dbscan_clustering(X, epsilon, min_samples) array([0, 0, 1, 1, 2, 2], dtype=int64) Out[16]: Q.17 Write a program using sklearn to perform k-means clustering using the k-means++ initialization method. Input: X = [[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]k = 2import numpy as np In [17]: import matplotlib.pyplot as plt from sklearn.cluster import KMeans # Input data X = np.array([[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]) # Perform k-means clustering kmeans = KMeans(n_clusters=k, init='k-means++', random_state=0) y_kmeans = kmeans.fit_predict(X) # Extract the cluster centers and labels cluster_centers = kmeans.cluster_centers_ labels = kmeans.labels_ labels array([1, 1, 1, 1, 0, 0]) Q.18: Implement a program using sklearn to perform agglomerative clustering using the average linkage method. Input: X = [[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]from sklearn.cluster import AgglomerativeClustering X = np.array([[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]) # Perform hierarchical clustering using avergae linkage model = AgglomerativeClustering(linkage='average') model.fit(X) model.labels_ array([0, 0, 0, 0, 1, 1], dtype=int64) Q.19 Write a program using sklearn to determine the optimal number of clusters for the KMeans algorithm. Input: X = [[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import make_blobs def optimal_number_of_clusters(X, max_clusters): distortions = [] for n_clusters in range(1, max_clusters + 1): kmeans = KMeans(n_clusters=n_clusters, random_state=0) kmeans.fit(X)distortions.append(kmeans.inertia_) # Plotting the elbow graph plt.figure(figsize=(8, 6)) plt.plot(range(1, max_clusters + 1), distortions, marker='o') plt.xlabel('Number of Clusters') plt.ylabel('Distortion') plt.title('Elbow Method to Find Optimal Number of Clusters') plt.grid(True) plt.show() X = np.array([[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]) max_clusters = len(X) # You can change this to your desired maximum number of clusters optimal_number_of_clusters(X, max_clusters) C:\Users\murtuzad\Anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:1036: UserWarning: KMeans is known to have a memory leak on Windows with M

KL, when there are less chunks than available threads. You can avoid it by setting the environment variable OMP_NUM_THREADS=1.

Implement a program using sklearn to perform agglomerative clustering using the average linkage method and display the cluster dendogram.

0

0

warnings.warn(

800

600

400

200

0

Q.20:

Input:

In [20]:

import numpy as np

Input data

Elbow Method to Find Optimal Number of Clusters

Number of Clusters

X = np.array([[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]])

Agglomerative Clustering Dendrogram

X = [[1, 2], [2, 3], [10, 12], [11, 13], [20, 25], [22, 24]]

import matplotlib.pyplot as plt

Create linkage matrix

plt.figure(figsize=(10, 5))
dendrogram(Z, labels=labels)

plt.xlabel('Data Points')
plt.ylabel('Distance')

Display dendrogram

plt.show()

20

15

5

Distance

from sklearn.cluster import AgglomerativeClustering
from scipy.cluster.hierarchy import dendrogram, linkage

Agglomerative clustering with average linkage

plt.title('Agglomerative Clustering Dendrogram')

1

0

Data Points

0

labels = agg_clustering.fit_predict(X)

Z = linkage(X, method='average')

agg_clustering = AgglomerativeClustering(linkage='average')

Q.1:

Input:

y = [3, 4, 5, 6]

batch_size = 2

random_state=42

Expected Output:

learning_rate = 0.01

num_iterations = 1000 regularization term = 0.1

rates, batch sizes, and a regularization term.

X = [[1, 1], [1, 2], [1, 3], [1, 4]]

Optimized coefficients: array([0, 1])

Implement a function to train a linear regression model using stochastic gradient descent (SGD) with mini-batch updates. The function should include options for different learning