Digital Image Processing (CSE/ECE 478) Lecture-2: Digital Imaging Fundamentals

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Announcements

- Teaching Assistants
 - Abhishek Prusty (abhishek.prusty@students.iiit.ac.in)
 - Aditya Aggarwal (aditya.aggarwal@students.iiit.ac.in)
 - Prathyakshun Rajashankar (prathyakshun.r@students.iiit.ac.in)
 - Karandeep Singh Juneja (karandeepsingh.juneja@students.iiit.ac.in)
- Tutorial hours: Saturday 3.30p 4.30p, location: H-203

Announcements

- NO class next Tuesday
- Make-up class: Wednesday, 3.30p 5.00p, H 103

Elements of Visual Perception

 Designers and often, consumers of Image Processing Techniques, are humans.

• Therefore, it is important to understand the basic workings of the human visual system.

The Human Eye

FIGURE 2.1 Simplified diagram of a cross section of the human eye.

2-8mm width, Contracts / Expands to control amount of light entering the eye

- Absorbs 8% of visible light spectrum
- IR, UV also absorbed

The Retina

- The retina lines the entire posterior portion.
- Discrete light receptors are distributed over the surface of the retina:
 - cones (6-7 million per eye) and
 - rods (75-150 million per eye)

FIGURE 2.1 Simplified diagram of a cros section of the human eye.

Cones

 Cones are located in the fovea and are sensitive to color.

 Each one is connected to its own nerve end.

 Sensitive to bright-light: photopic vision

Rods

- Rods give a general, overall picture of the field of view and are not involved in color vision.
- Several rods are connected to a single nerve.
- Rods are sensitive to low levels of illumination (scotopic or dim-light vision).

Receptor Distribution

FIGURE 2.2 Distribution of rods and cones in the retina.

FIGURE 2.1 Simplified diagram of a cro section of the human eye.

- The distribution of receptors is radially symmetric about the fovea.
- Cones are most dense in the center of the fovea
- Rods increase in density from the center out to approximately 20% off axis and then decrease.

The Fovea

- Circular (1.5 mm diameter)
 - can be assumed to be a square sensor array (1.5 mm x 1.5 mm).
- The density of cones: 150,000 elements/mm² ~ 337,000 for the fovea.
 - A CCD imaging chip of medium resolution needs 5 mm x 5 mm for this number of elements

FIGURE 2.1 Simplified diagram of a cross section of the human eye.

Image Formation in the Eye

 The eye lens (compared to an optical lens) is flexible.

- It gets controlled by fibers of the ciliary body
 - To focus on distant objects it gets flatter (and vice versa)
 - Focal length varies from 17 mm to 14 mm

Image Formation in the Eye

- Example:
 - Calculation of retinal image of an object

$$x = 2.55mn$$

Brightness adaptation

- Dynamic range of human visual system
 - $-10^{-6} \sim 10^{4}$
- HVS cannot accomplish this range simultaneously
- The current sensitivity level of the visual system is called the **brightness adaptation** level

Brightness discrimination

- Weber ratio (the experiment) $\Delta I_c/I$
 - I: the background illumination
 - ΔI_c : the increment of illumination
 - Small Weber ratio → good discrimination
 - Larger Weber ratio → poor discrimination

https://www.youtube.com/watch?v=hWT_LO8U7uE

https://www.youtube.com/watch?v=wVhiezByMSU: an audio example

Brightness Adaptation & Discrimination

- Another experiment: Background illumination constant, other source incrementally varies
- The typical observer can discern one to two dozen different intensity changes

Psychovisual effects

- The perceived brightness is not a simple function of intensity
 - Mach band pattern
 - Simultaneous contrast

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Image Sensing and Acquisition

a b

FIGURE 2.12

- (a) Single imaging sensor.
- (b) Line sensor.
- (c) Array sensor.

Image Sensing and Acquisition

a b

FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

Digital Image Acquisition

How images are acquired

How images end up in digital form

Fundamental Steps in Image Processing

EM spectrum

EM radiation

- Energy travelling as a wave
- Produced by oscillating charge or energy source

EM spectrum

- EM radiation
 - Energy travelling as a wave
 - Produced by oscillating charge or energy source
- Visible light
 - Band of EM radiation sensed by human eye

Light as a particle stream

- Energy carried by light
 - Not wave-like
 - Discrete (Quantized) particles = Photons

Light as a particle stream

- Energy carried by light
 - Not wave-like
 - Discrete (Quantized) particles = Photons

Photo-electric effect

Cross-section of typical smartphone camera

Photo-electric effect in cameras

CMOS photo-electric sensor

Light → Color

CMOS sensitive to "light", not "color"

Relatively more green filters. Why?

Human color receptor relative sensitivity

https://petapixel.com/2016/03/30/people-can-see-100-times-colors/

How do we get color now ?

Demosaicing

Image Acquisition: Summary

Demosaicing

- Digital Image Acquisition
- Image Sampling and Quantization
- Fundamental Steps in Image Processing

Signal

"Function that conveys information about the behavior or attributes of some phenomenon" (wikipedia)

Analog vs. Digital signal (1-D)

Image courtesy: wikipedia

Image = f(x,y)

Analog vs. Digital signal (2-D signal)

Image acquisition process

Cross-section of typical smartphone camera

Physical Characteristics Active image area size 24.6 (H) x 13.8 (V) mm 4206 (H) x 2340 (V) Total number photosites Number photosites for active image 3840 (H) x 2160 (V) Color filter array (with microlens) **RGB Bayer** Size of photosite (microns) 6.4 (H) x 6.4 µm Pixel pitch 6.4 µm 3.3v / 1.8v Power supply Power consumption 950mW

Resolution (of the sensor)

Digital Camera Sensor Sizes

Sensor Size Comparison

Same sensor size, but # of sensor pixels/mm varies

Small number of CCD pixels

Large number of CCD pixels

Sampling – Spatial Quantization

 256×256 32×32 16×16

Image acquisition process

Image acquisition process

Intensity Quantization

Summary

Sampling

 256×256

 32×32

 16×16

Quantization

8 bits per pixel

4 bits per pixel

2 bits per pixel

1 bit per pixel

Image as a 3D surface

Additional Notes on Sampling and Quantization

Temporal sampling → exposure time

Quantization

- Hardware (# of voltage levels, # of bits)
- Software (raw → JPEG)

- Digital Image Acquisition
- Image Sampling and Quantization
- Fundamental Steps in Image Processing

What we saw today

Human Eye

Brightness adaptation & Psychovisual effects

a b c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Image Sensing and Acquisition

What we saw today

Digital Image Acquisition

Sampling and Quantization

Fundamental Steps in Image Processing

What we saw today

References

- Gonzalez and Woods (2.1,2.3-2.4)
 - Problems : 2.1 2.10