Technical Autonomous Systems

Group 3

Fernando Espindola / Hao Xu

Final presentation

Supervisor: Khoi Hoang Dinh / Zengjie Zhang

Chair of Automatic Control Engineering Technical University of Munich

Overview

- Task 1: Autonomous driving on a pre-defined path
 - Parameter calibration
 - Setting waypoints
- Task 2: Autonomous slalom (with trailer)
 - Simulation environment
 - Slalom driving method 1
 - Slalom driving method 2
 - Slalom with trailer
- Summary

Autonomous driving on pre-defined path

Contribution

- Preset new navigation goals as waypoints
- Calibrate parameters in control files

Parameter calibration

- Move_base parameters:
 - obstacle_range decreased
 - inflation_radius decreased
 - heading_lookahead decreased
- Car dependent parameters
 - cmd_steeringAngle = 1500 ± 500/30*cmd_steeringAngle;
 - autonomous_control.control_servo.x = 1580;

Setting waypoints

Waypoints set on existing map

Final result

• Fullfill time: 61s

18 preset waypoints

Autonomous slalom with trailer

Contribution

- Implement two methods for slalom driving
- Accomplish slalom driving with trailer

- Simulation in Stage
- Custom map based on .PNG image

- LaserScan parameters
- Works for SLAM

- Look for 1st pylon
- Transform point to frame /odom
- Project point 4 times in x-direction

- Broadcast tfs for every pylon
- Define relative goals

Look for pylons and build a heatmap

Broadcast transforms for pylon_0 to pylon_5

Project point 4 times in x-direction

- Definition of relative goals
- X, Y, and Yaw

Detect different cone according to distance

 Replace pre-defined cone model with the detected mode

 Calculate waypoints using distance and angle parameter

Slalom algorithm

Cone detection using cone frame

Cone detection using distance and view angle

Scan once at initial state

- Set view angle range
- Get distance and angle information

Calculate waypoints

Adding more waypoints

- More stable
- Local planner provides driving angle.

Slalom with trailer

Direct-hooked trailer

Off-hooked trailer

Tracking error in trailer system

$$\varepsilon = R - r = R - \sqrt{R^2 - L^2}$$

- R: trajectory radius of the front trailer
- r: trajectory radius of the back trailer
- L: lengths of the link

【Lee et al., IJCA04】

Tracking error in trailer system

Fig. Tracking errors for the circular reference trajectory.

[Lee et al., IJCA04]

Off-hooked trailer has smaller tracking errors than the direct-hooked trailer

Tracking error in trailer system

Set angle of waypoints beside cone equals 0:

approximate the radius of curvature of the reference trajectory to infinity.

Summary

Autonomous driving on a pre-defined path.

Build simulation environment in Stage.

 Implement slalom (with trailer) using two methods.

References

- LEE, Jae-Hyoung, et al. A passive multiple trailer system with off-axle hitching. *International Journal of Control, Automation, and Systems*, 2004, 2. Jg., Nr. 3, S. 289-297.
- ZHENG, Kaiyu. ROS Navigation Tuning Guide. arXiv preprint arXiv:1706.09068, 2017.

