

Aufbau und Funktion

- Zusammengesetzt aus zwei gekoppelten NAND-Gattern
- Ausgänge sind (vom Zustand $\overline{S} = 0$ und $\overline{R} = 0$ abgesehen) invertiert
- \bullet Durch Setzen von $\overline{S}=1$ bzw. $\overline{R}=1$ können die Ausgänge gesetzt weden
- Wahrheitstafel des NAND-Gatters bewirkt, dass durch das Setzen der beiden Eingänge auf 1 der letzte Zustand des Flip-Flops ausgegeben wird - Flip-Flop kann Zustände speichern

Wahrheitstafel:

S	\overline{R}	Q	\overline{Q}
0	0	(1)	(1)
0	1	1	0
1	0	0	1
1	1	Q_{n-1}	$\overline{Q_{n-1}}$

Funktionsweise

- Dem RS-Flip:Flop werden nun noch zwei NAND-Gatter vorrangestellt, die über das Clock-Signal verbunden sind
- Solange C = 0 ⇒ fester Anfangszustand, der nicht durch S und R beeinflusst wird, da NAND-Gatter 1 ausgibt, sobald eines der Signale 0 ist
- Schaltung ist "flankengesteuert", also gesetzte S und R werden erst übernommen, wenn C eingeschaltet wird

D-Latch

\overline{D}	C	<u>S</u>
1	0	1
1	1	1
0	0	1
0	1	0

Bis auf den irrelevanten Fall C=0 (es findet keine Veränderung des Zustandes statt) sind \overline{D} und \overline{S} identisch

Funktionsweise

- R zu S negiert, daher existiert kein unbestimmter Zustand
- Schaltung nicht flanken- sondern zustandsgesteuert: sobald C=1, lassen sich Zustände setzen bzw. überschreiben

D-Latch

Wahrheitstafel

D	C	Q	
X	0	Q_{n-1}	
0	0 1	0	
1	1	1	

Flankengesteuertes RS-Flip-Flop

Sequentielle Logik

Funktionsweise

- Bei C konstant wird der zuletzt gesetzte Wert von Q rückgegeben
- Sobald steigende Flanke auf C, wird Q = D gesetzt

Wahrheitstafel

D	С	Q
Х	0	Q_{n-1}
n	Steigende Flanke	n
X	1	Q_{n-1}

Es kann so Addition der Flankensignale in Binärform realisiert werden

Durchführung mit 2 * 2 flankengetriggerten D-Flip-Flops in IC-Form

Funktionsw<u>eise</u>

- D immer mit Q verbunden, also wechselt Q bei jeder Flanke den Wert
- Da Flip-Flop flankengetriggert, nur Reaktion auf einfaches Betätigen des Schalters
- ullet Bei Setzen von Q auf 0 wird \overline{Q} auf 1 gesetzt und die anderen Bits erhalten ein Schaltsignal

Eigenschaften

- Speicher = 4 Bit, somit ist maximale darstellbare Zahl 15
- Wenn Wert des Zählers gleich 15, sind alle Q=1, bei einer weiteren Flanke werden alle Q wieder auf 0 gesetztc \Rightarrow kein Übertrag möglich

Ziel: Darstellung der Binärzahl des Zählers als gewohnte Dezimalzahl, Realisierung über speziellen IC sowie kompatibler Anzeige

Schaltung +9 V +9 V 7-Segment-Anzeige 7 13 1 k 1 12 2 11 6 10 Q3 Ø 4511 3 15 4 14 5 LE