ECUACIONES PARAMÉTRICAS

CONTENIDO

- 1. De la elipse
- 2. De la circunferencia
- 3. De la parábola
- 4. De la hipérbola
- 5. Ejercicios
- 6. Trazado de una curva dadas sus ecuaciones paramétricas

Hemos visto, que si un *lugar geométrico* tiene una representación analítica, la cual es una sola ecuación que contiene dos variables. Ahora veremos la representación analítica de una curva utilizando dos ecuaciones, que se llaman ecuaciones *paramétricas* de la curva.

Reciben este nombre aquellas ecuaciones en que las variables x y y, cada una separadamente, están expresadas en función de la misma tercera variable. Según esto, designando por la letra z la tercera variable, comúnmente llamada variable *paramétrica*, estas ecuaciones se representan en la siguiente forma general:

$$x = F(z)$$

$$y = F(z)$$

Es muy importante aclarar que cada dos ecuaciones *paramétricas* representan una sola curva perfectamente referida a un sistema de ejes cartesianos, como se puede ver en el siguiente ejemplo:

1. De la elipse

EJEMPLO.

Un segmento de recta de 10 cm de longitud se mueve apoyando extremos en los ejes de coordenadas. Determinar geométrico lugar descrito por un punto P(x,situado sobre segmento AB a 4 cm del extremo que se apoya sobre el eje de las x, como se muestra en la figura adjunta:

SOLUCIÓN

Observando la *figura* anterior se tienen las funciones trigonométricas:

$$\cos \varphi = \frac{x}{6} y \operatorname{sen} \varphi = \frac{y}{4}$$

Por tanto despejando:

$$x = 6 \cos \varphi$$

 $y = 4 \sin \varphi$

Estas son las ecuaciones *paramétricas* del *lugar geométrico* descrito, pero necesitamos transformarlas para que podamos identificar, e incluso, para que podamos darnos cuenta de que las dos ecuaciones *paramétricas* representan una sola curva.

Elevando al cuadrado las dos ecuaciones anteriores:

$$\frac{x^2}{36} = \cos^2 \varphi$$

$$\frac{y^2}{16} = \operatorname{sen}^2 \varphi$$

Sumando miembro a miembro:

$$\frac{x^2}{36} + \frac{y^2}{16} = \sec^2 \varphi + \cos^2 \varphi$$

Pero se sabe que: $sen^2 \varphi + cos^2 \varphi = 1$

Sustituyendo tenemos:

$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

Por el resultado obtenido, vemos que el *lugar geométrico* descrito por *P* es una *elipse horizontal*, con *centro* en el *origen*, cuyos *semiejes* miden 6 y 4.

Este problema nos hace ver que toda *elipse* como la que acabamos de ver con semiejes a y b, esta representada por las siguientes ecuaciones *paramétricas*:

Si la *elipse* es *vertical* con *centro* en el *origen*, sus ecuaciones *paramétricas* son:

$x = b \cos \phi$	I	
y = a sen φ	II'	

2. De la circunferencia:

Para el caso de una *circunferencia* de radio **a** y parámetro φ , también con *centro* en el *origen*. Si P(x, y) es un punto cualquiera de la curva, las ecuaciones *paramétricas* de acuerdo a la *figura* adjunta son:

Considerando a P un punto cualquiera de la curva y **a** como el **radio** de la **circunferencia**.

$$\operatorname{sen} \varphi = \frac{y}{a}$$

$$\cos \varphi = \frac{x}{a}$$

En este caso observamos que el coeficiente **a** es el mismo, puesto que representa el **radio** de la **circunferencia**.

De la parábola

Se sabe que para este tipo de curva la ecuación es:

$$y^2 = 2px (1)$$

La cual es la ecuación de una parábola horizontal con vértice en el origen. φ es el ángulo de inclinación de la tangente a la parábola en el punto P, como se muestra en la figura adjunta.

También se sabe que el valor de la pendiente *m* de una *recta* tangente a una *parábola*, si se conoce el punto de tangencia, es:

P(x,y)

$$\tan \varphi = m = \frac{y}{2x} \tag{2}$$

Por lo que de la ecuación (1), despejando a 2x:

$$2x = \frac{y^2}{p} \tag{3}$$

Sustituyendo (3) en (2), se tiene:

$$\tan \varphi = \frac{y}{\frac{y^2}{p}} = \frac{py}{y^2} = \frac{p}{y}$$

Es decir que:

$$\tan \varphi = \frac{p}{y}$$

Por lo tanto la función trigonométrica:

$$\cot \varphi = \frac{y}{p}$$

Despejando a y:

$$y = p \cot \phi$$

Según la ecuación (3) tendremos:

$$x = \frac{p^2 \cot^2 \varphi}{2p}$$

De donde:

$$x = \frac{p}{2} \cot^2 \phi \qquad$$

Que son las ecuaciones paramétricas de la parábola horizontal con vértice en el origen.

De la misma manera, partiendo de la ecuación de la *parábola vertical* con *vértice* en el *origen*, las ecuaciones *paramétricas* correspondientes son:

$$x = p \tan \phi$$

$$y = \frac{p}{2} \tan^2 \phi$$

$$V'$$

4. De la hipérbola

Trazamos dos circunferencias concéntricas con centro común en el origen, de radio

0 A = a, y de radio 0 D = b y consideramos un punto P(x, y) cualquiera, según la figura siguiente:

En el triángulo rectángulo OAB la función trigonométrica:

$$\sec \varphi = \frac{\overline{OB}}{\overline{OA}} = \frac{x}{a}$$

Despejando:

$$x = a \sec \phi$$

VI

De la misma forma, en el triángulo rectángulo *OCD*, tenemos la función:

$$tang \, \phi = \frac{\overline{CD}}{\overline{OD}} = \frac{y}{b}$$

 $y = b \tan \phi$

Que son las ecuaciones paramétricas de la *hipérbola horizontal* con *centro* en el *origen*.

Para obtener la ecuación rectangular de una curva a partir de las ecuaciones paramétricas, se obtiene normalmente eliminando el parámetro, mediante procedimientos y conocimientos vistos en álgebra y en la geometría y trigonometría como veremos a continuación.

Ejercicios.

1. Obtener la ecuación rectangular de la curva cuyas ecuaciones paramétricas son:

$$x = 8t + 3$$
 (1)
 $y = 4t + 2$ (2)

SOLUCION

Despejando el parámetro t, tenemos: De (1):

$$t = \frac{x - 3}{8} \tag{3}$$

De (2):

$$t = \frac{y-2}{4} \tag{4}$$

Igualando (3) y (4):

P(x,y)

$$\frac{x-3}{8} = \frac{y-2}{4}$$

Quitando denominadores:

$$4(x-3) = 8(y-2)$$

Haciendo operaciones

$$4x - 12 = 8y - 16$$

$$4x - 8y + 4 = 0$$

$$x - 2y + 1 = 0$$

La ecuación representa a una línea recta, en su forma general.

2. Obtener la ecuación rectangular de la curva dada por las ecuaciones:

$$x^2 = 3 \cos^2 \phi$$
 (1)
 $y^2 = 3 \sin^2 \phi$ (2)

SOLUCION

De (1) despejando:

$$\cos^2 \varphi = \frac{x^2}{3} \tag{3}$$

De (2) despejando:

$$\operatorname{sen}^2 \varphi = \frac{y^2}{3} \tag{4}$$

Sumando (3) y (4) miembro a miembro:

$$sen^2 \varphi + cos^2 \varphi = \frac{x^2}{3} + \frac{y^2}{3}$$

Pero como: $sen^2 \varphi + cos^2 \varphi = 1$. Por tanto:

$$\frac{x^2}{3} + \frac{y^2}{3} = 1$$

Simplificando quitando denominadores:

 $x^2 + y^2 = 3$ Que representa a una circunferencia.

3. **Encontrar** las ecuaciones *paramétricas* de la curva dada por la ecuación:

$$x^2 - y - 2x - 3 = 0$$
, con : $x = t + 1$

SOLUCIÓN

Despejando y de la ecuación dada tenemos:

$$y = x^2 - 2x - 3$$

Sustituyendo el valor de x = t + 1 queda:

$$y = (t + 1)^2 - 2(t + 1) - 3$$

 $y = t^2 + 2t + 1 - 2t - 2 - 3$
 $y = t^2 - 4$

Como se indico que: x = t + 1

Las ecuaciones *paramétricas* son:

$$x = t + 1$$

$$y = t^2 - 4$$

4. Una *circunferencia* de radio a rueda sobre una *recta* sin deslizarse. **Determinar** la *trayectoria* de un punto dado de la *circunferencia*.

SOLUCION

Supongamos que en un cierto instante el punto dado **M** es el punto de contacto de la *circunferencia* con la recta en cuestión. Tomemos este punto como origen del sistema de coordenadas y la *recta* dada como eje **Ox**. Lo que expresamos por medio de la *figura* adjunta:

Supongamos ahora que **M** es un punto cualquiera de la trayectoria buscada y **x**, **y** sus coordenadas.

Llamemos **t** al ángulo **MCB**. Tendremos entonces que:

$$\overline{OK} = \overline{OA} - \overline{KA}$$
 (1)

Y como:

$$\overline{OK} = x$$
; $\overline{OA} = at$; $\overline{KA} = \overline{MB} = a \operatorname{sen} t$

Por lo tanto sustituyendo en (1).

De la misma forma como:

$$\overline{KM} = \overline{AB} = \overline{AC} - \overline{BC}$$
 (3)

Pero:

 $\overline{KM} = y$; $\overline{AC} = a$; $\overline{BC} = a \cos t$

Sustituyendo en (3) nos queda:

$$y = a - a \cos t$$

 $v = a (1 - \cos t)$(4)

Las ecuaciones paramétricas de la trayectoria buscada, que se denominan *cicloide* son (2) y (4).

6. Trazado de una curva dadas sus ecuaciones paramétricas.

En forma directa se le asignan valores ordenados al *parámetro* con lo cual las ecuaciones *paramétricas* determinan los valores correspondientes a x, y, que representan las coordenadas de un punto de la curva. Uniendo los puntos así determinados resulta una curva, que es la representación gráfica de las ecuaciones *paramétricas*. Así tenemos los siguientes ejemplos.

Ejemplo 1. Trazar la curva cuyas ecuaciones paramétricas son: x = 6 cos φ y y = 4 sen φ

SOLUCION

Asignamos diferentes valores al parámetro •, en este caso

La siguiente tabla de tabulación muestra los valores de x y y en función de ϕ , los cuales los representamos en un sistema de ejes cartesianos.

φ	х	у
0 °	6	0
30 ⁰ =π/6	3 √3	2
60 ⁰ =π/3	3	2√3
90 ⁰ =π/2	0	4
120 ⁰ =2π/3	-3	2√2
150 ⁰ =5π/6	- 3 √ 3	2
180 ⁰ =π	-6	0
270 ⁰ =3π/2	0	-4
360 ⁰ =2π	1	0

La *figura* siguiente presenta la gráfica de los valores calculados. La gráfica representa una *elipse*.

Ejemplo 2. Trazar la curva representada por las ecuaciones paramétricas:

$$x^2 = 4 \cos^2 \varphi$$
 , $y^2 = 4 \sin^2 \varphi$

SOLUCION

Procediendo de acuerdo a lo indicado.

La siguiente tabla de tabulación presenta los valores de x y y en función de o

φ	x	у	
0	± 2	0	
π/2	0	± 2	
π/3	±1	± √ 3	
π/4	± √ 2	± √ 2	

La siguiente figura muestra los resultados obtenidos. La gráfica representa una circunferencia.

Ejemplo 3<mark>.-</mark>

Dibujar la curva cuyas ecuaciones paramétricas son: x = 2t y y =

$$x = 2t$$
 y $y = \frac{2}{t}$

SOLUCIÓN

Sustituyendo cada uno de los valores asignados al parámetro t en las ecuaciones dadas determinamos las correspondientes a x, y como se presentan en la tabla de tabulación siguiente.

t	x	у		
$\pm = \frac{1}{4}$	$\pm = \frac{1}{2}$	±=8		
$\pm = \frac{1}{2}$	±=1	±=4		
±=1	±=2	±=2		
±=2	±=4	±=1		
±=3	±=6	$\pm = \frac{2}{3}$		
±=4	± = 8	$\pm = \frac{1}{2}$		

Llevando los valores de x, y al sistema de ejes cartesianos y uniendo los diferentes puntos tenemos la siguiente figura. La curva es una hipérbola equilátera.

Ejemplo 4. Representar la curva cuyas ecuaciones paramétricas son: $x = \frac{1}{2}t^2$; $y = \frac{1}{4}t^3$

$$x = \frac{1}{2}t^2$$
; $y = \frac{1}{4}t^3$

SOLUCION

Sustituyendo los valores asignados a t en las ecuaciones paramétricas dadas, obtendremos las correspondientes a x, y.

La siguiente tabla representa los valores de x, y.

t	-3	-2	-1	0	1	2	3
x	4.5	2	0.5	0	0.5	2	4.5
у	-6.74	-2	-0.25	0	-0.25	2	6.75

Representando los valores de x, y en un sistema de ejes cartesianos y uniendo los diferentes puntos, trazamos la gráfica. La curva es una parábola semi-cúbica.

Nombre de archivo: ecuaciones parametricas Directorio: C:\Geometria_analitica

Plantilla: C:\WINDOWS\Application Data\Microsoft\Plantillas\Normal.dot

Título: ECUACIONES PARAMÉTRICAS

Asunto:

Autor: Pablo Fuentes Ramos

Palabras clave: Comentarios:

Fecha de creación: 09/04/02 12:02 P.M.

Cambio número: 32

Guardado el: 05/06/02 04:54 P.M.
Guardado por: Pablo Fuentes Ramos

Tiempo de edición: 1,103 minutos Impreso el: $05/06/02 \ 05:43 \ P.M.$

Última impresión completa

Número de páginas: 10

Número de palabras: 1,500 (aprox.) Número de caracteres: 8,554 (aprox.)