CSC373 Assignment 3

Terminology and Notation Table:

Notation								
A: B	A such that B holds							
$x_{i,jk}$	Shorthand for the sequence $x_i, x_j,, x_k$							
	j is used for setting a "pattern precedent" (e.g. it's unclear that $\{1,2,\}$ represents the series							
	$\{2^k\}$, but it is completely clear when we write something like $\{1,2,4,8,\}$ – we're setting a							
	"precedent" for the pattern)							
	If j is not included, we assume this to be the sequence $x_i, x_{i+1}, x_{i+2}, x_k$							
$\langle x_{ik} \rangle$	Encoding of the variable sequence x_{ik} (assumed to be binary encoding)							
$\{\langle x,y\rangle P\}$	The set of all encodings of x , y where predicate P holds							
$A \leq_p B$	Problem A can be reduced in polynomial time to problem B							
	A is poly-time reducible to B							
s -w> t	Some path between nodes <i>s</i> and <i>t</i>							
$s \rightarrow t$	Directed edge leading from node s to node t							
$s \leftrightarrow t$	Undirected edge connecting nodes s, t							
(<i>a</i> <i>b</i>)	Could be a or b							
	Symbols / Functions / Algorithms / Predicates							
L_P	Language of some problem <i>P</i>							
γ_P	Some certificate for problem <i>P</i>							
$V_P((x_{1j}), \gamma)$	Verifier for some problem P that checks if certificate γ is an appropriate solution to the input							
	variables x_{1j}							
$\alpha(H)$	Algorithm / function that solves problem H. In other words, $\alpha(H): I_H \mapsto O_H$							
	Alternative phrasing: algorithm that decides L_H							
Problem Names								
BF	Binary Feasibility Problem ({0, 1} – feasibility problem)							
NDP	Node Disjoint Path decision problem							
EDP	Edge Disjoint Path decision problem							
EXS	Exam Scheduling decision problem							
MSW	Mine Sweeper Satisfiability problem							

- 1. Integer Programming
 - a. Dual for Integer Programming
 - Definition:
 - o Minimize: $y^T b$
 - o Subject to:

 - $y \in \mathbb{Z}^n$ (horizontal *n*-dimensional integer-vector)
 - Integer Programming Weak Duality:
 - o Definition: $c^T \bar{x} \leq \bar{y}^T b$
 - o Proof:
 - ♦ Let:
 - \bar{x} be a feasible solution to the **primal** integer program
 - \bar{y} be a feasible solution to the **dual** integer program
 - Since \bar{x} is feasible, according to the primal we have $A\bar{x} \leq b$
 - Now we multiply both sides by \bar{y}^T to get: $\bar{y}^T A \bar{x} \leq \bar{y}^T b$
 - From the definition of the dual, $(c^T \le \bar{y}^T A) \Rightarrow (c^T \bar{x} \le \bar{y}^T A \bar{x})$
 - By transitivity: $c^T \bar{x} \le \bar{y}^T A \bar{x} \le \bar{y}^T b$
 - Thus we can conclude $c^T \bar{x} \leq \bar{y}^T b$.

- b. Integer Programming Strong Duality Counter Example
 - Definition of Strong Duality:
 - o (Primal Feasible)∧(Primal Bounded)⇒(Optimal Primal Value = Optimal Dual Value)
 - To disprove an implication we need to find a case where $T \Rightarrow F$, so for this definition, we need to find:

(Primal Feasible)∧(Primal Bounded)⇒(Optimal Primal Value ≠ Optimal Dual Value)

- Consider a primal-dual pair of integer programs with the following input values:
 - $\bullet \quad (c = [1]) \Leftrightarrow (c^T = [1])$
- Primal:
 - o Integer Program
 - lacktriangle Maximize x
 - ♦ Subject to:
 - $x \le 4.5$
 - $x \ge 0$
 - $x \in \mathbb{Z}$
 - Clearly, we can maximize x with x = 4, as it is the highest integer that does not violate the constraint that $x \le 4.5$.
 - o Thus, the maximized value of the objective function here is 4
- Dual of Primal:
 - o Integer Program:
 - ♦ Minimize 4.5*y*
 - ♦ Subject to:
 - $y \ge 1$
 - $y \ge 0$
 - $y \in \mathbb{Z}$
 - Clearly, the lowest we can go with y is y = 1, which is the lowest integer that does not violate the constraint that $y \ge 1$.
 - o Thus, the minimized value of the objective function here is 4.5.
- We can now say that strong duality does not hold under integer programming, as we have shown a case where:
 - o The primal integer program was feasible and bounded
 - o The primal's optimal value was **not** equal to the dual's optimal value.

c. $BF = \{0, 1\}$ -Feasibility Problem

Inputs	$A \in \mathbb{Z}^{m \times n}$			
	$b \in \mathbb{Z}^m$			
Outputs	Truth value of statement:			
	$(\exists \hat{x} \in \{0,1\}^n : A\hat{x} \le b)$			

- Language
 - $\circ \quad L_{BF} = \{ \langle A, b \rangle \mid ((A \in \mathbb{Z}^{m \times n}) \land (b \in \mathbb{Z}^m) \land (\exists \hat{x} \in \{0, 1\}^n : A\hat{x} \le b)) \}$
- Proof of NP-Completeness
 - o Proof that $L_{BF} \in NP$
 - Proof that γ_{BF} is polynomial sized
 - γ_{BF} is the \hat{x} in $A\hat{x} \leq b$
 - We know that \hat{x} is a binary vector of length n.
 - Thus, $\langle \gamma_{BF} \rangle$ is of length $n \in O(n) \in O(n^k)$, where k is a fixed constant
 - Proof that V_{BF} runs in polynomial time

```
# Some notation rules
A.row(i) = i-th row of matrix A (as a vector)
A x B = matrix multiplication of matrices A, B
A.num_rows = number of rows of matrix A
v.dot(u) = dot product of vectors v and u
v[i] = i-th element of vector v

def V_BF(A, b, gamma_BF):

# Multiply A and certificate to get result
result = A x gamma_BF

# Check whether the result satisfies the constraint
for i in range(len(result)):
    if gamma_BF.dot(A.row(i)) > b[i]:
        return False

# All constraints must be true at this point
return True
```

- All the code executed by V_{BF} runs in polynomial time
 - o $result = A \times \gamma_{BF}$: Matrix multiplication runs in polynomial time (DPV)
 - o result is of length O(m), the loop that iterates over it must take O(m) time, which is clearly polynomial
- Thus the whole of V_{BF} must run in polynomial time as well

- o Lemma: the following Boolean/Integer conversion system preserves truth values
 - ♦ Let:
 - T, F = True, False respectively
 - $x_I = \begin{cases} 1, x = T \\ 0, x = F \end{cases}$ be the integer value of Boolean x
 - $x_B = \begin{cases} T, x \ge 1 \\ F, x = 0 \end{cases}$ be the Boolean value of Integer x
 - ♦ Conversion Table

Conversion Truth/Integer Table										
Negation/	x	x_I	$\neg x$	1 –	$-x_I$ ($(1-x_I)_B$?		
Subtraction	T	1	F	0		F				
	F	0	T	1			T			
Or/	х	у	x_I	y_I	$x \lor y$		$x_I + y_I$	$(x_I+y_I)_B$		
Addition	T	T	≥ 1	≥ 1	T		≥ 1	T		
	T	F	≥ 1	0	T		≥ 1	T		
	F	T	0	≥ 1	T		≥ 1	T		
	F	F	0	0	F		0	F		

- ♦ We note that the above conversions maintain truth values: i.e. the Boolean conversion of the integer conversion equals the Boolean value, **provided**:
 - The input to negations are within the set {0, 1}
 - The inputs of or statements are within the range $[0, \infty)$, where 0 indicates F and ≥ 0 indicates T
- Proof that $(\exists L_{NPC} \in NPC)$: $(L_{NPC} \leq_p L_{BF})$ pick $L_{NPC} = L_{3SAT}$. Proof that $(L_{3SAT} \leq_p L_{BF})$:
 - ♦ Let:
 - $x_{1...n}$ be the variables in the 3SAT circuit
 - $c_{1...m}$ be the clauses in the 3SAT circuit
 - An algorithm to solve L_{3SAT} that uses some $\alpha(L_{BF})$:
 - Convert inputs from $3SAT \rightarrow BF$ in polynomial time:
 - o Convert clauses $c_{1...m}$ to integer equations:
 - Represent each clause $c_i \in \{c_{1...m}\}$ with an integer equation $f_i \in \{f_{1...m}\}$ using the conversion system described above
 - Create the following constraint for each $f_i \in \{f_{1...m}\}: f_i \ge 1$
 - ♦ The above is equivalent to each c_i being true, which we need to have if $(c_1 \land ... \land c_m)$ is to be true)
 - Once we have converted our Boolean variables and clauses to integer variables and equations, it is trivial to reformat them into standard form (needed for the integer program's inputs):
 - A is the coefficient matrix of size $m \times n$
 - j-th row represents the j-th equation's coefficients
 - *i*-th column represents the coefficient for x_i
 - b is the constraint vector of size $m \times 1$

- *j*-th element represents the constraint of the *j*-th equation
- o Since there are and m clauses $(c_{1...m})$ of size 3 (each clause has 3 variables) to convert into linear equations $(f_{1...m})$, conversion into standard form should take time O(m), which is clearly polynomial with respect to the input size
- o We can be sure that the Boolean/integer conversions are valid because all integer versions of variables will be between 0 and 1, which means:
 - ◆ All negation conversions are valid (since we only negate single variables, the lowest value of a negation is 0)
 - ◆ Since the lowest value of a negation is 0, we don't need to worry about OR statements outputting the wrong result (there will be no negative inputs)
- Solve the converted inputs of 3SAT to BF with some $\alpha(L_{BF})$
 - o If $\alpha(BF)$ returns true it means:
 - ♦ There exists some $\hat{x} \in \{0, 1\}^n$ such that $A\hat{x} \le b$.
 - By the constraints we set for each f_i , the above means that:

$$\forall f_i \in \{f_{1...m}\}, f_i \geq 1$$

- We note that a way to get all the $f_{1...m}$ to be ≥ 1 was to give them the binary vector $\hat{x} = \hat{x}_{1...n}$ as input
- We can use our Boolean/integer conversion system to translate $f_{1...m}$ back into $c_{1...m}$ (since each $f_i \ge 1$, each $c_i = T$)
- To maintain the truth values of $c_{1...m}$ with respect to the integer values of $f_{1...m}$, the integer inputs to each $f_{1...m}$ must also be passed through the Boolean/integer conversion system as well
- Thus for every c_j to return true, we can set the input variables $x_{1...n}$ to the (element-wise) Boolean equivalent of \hat{x} :
 - $\widehat{x_i} = 1 \Rightarrow x_i = T$
 - $\bullet \ \widehat{x_i} = 0 \Rightarrow x_i = F$
- ◆ Thus, there exists a satisfying assignment of variables for the 3SAT circuit
- o If it returns false:
 - There is no \hat{x} that satisfies the inequality in the converted BF instance
 - ◆ Thus there is no assignment of variables that satisfies the 3CNF circuit
- Therefore, we can directly use the output of some $\alpha(BF)$ as the output of our 3SAT algorithm (this is constant time and is therefore a polynomial conversion)
- Therefore we can use an algorithm that solves L_{BF} to solve L_{3SA} , by converting between their respective inputs and outputs in polynomial time.
- ♦ Thus, we can say that $L_{3SAT} \leq_p L_{BF}$. In other words, we have found a language in *NPC* that reduces in polynomial time to L_{BF} .

 \circ We have verified that $L_{BF} \in NP$ and $L_{3SAT} \in NPC$: $L_{3SA} \leq_p L_{BF}$, which means that we can conclude that $L_{BF} \in NPC$

- 2. Disjoint Paths
 - a. Language Formulation

$$\begin{split} \bullet \; L_{NDP} &= \{ \langle G = (V, E), \{s_{1 \dots k}\}, \{t_{1 \dots k}\} \rangle | \\ \forall i \neq j \in \{1 \dots k\}, \Big(\big(\exists (s_i \leadsto t_i), \big(s_j \leadsto t_j\big) \in G \big) : \big(\forall v_i \in (s_i \leadsto t_i), v_i \notin (s_j \leadsto t_j) \big) \Big) \} \end{split}$$

- b. Proof that $L_{3SAT} \leq_p L_{NDP}$: we use some $\alpha(L_{NDP})$ to solve L_{3SAT} by converting the I/O in polynomial time
 - Input conversion from $L_{3SAT} \rightarrow L_{NDP}$:
 - o Let:
 - $x_{1...n}$ be the variables in the circuit, and x_i be an arbitrary variable
 - $c_{1...m}$ be the clauses in the circuit, and c_i be an arbitrary clause
 - Create the following graph $G_{3SAT \rightarrow NDP}$:
 - ♦ Nodes:
 - For each variable x_i , add the following nodes to $G_{3SAT \rightarrow NDP}$:
 - o $s(x_i)$ (source node for x_i)
 - o $t(x_i)$ (terminal node for x_i)
 - o $T(x_i, a), a \in [1 ... m]$ (a th "intermediate True" node for x_i)
 - o $F(x_i, a), a \in [1 ... m]$ (a th "intermediate False" node for x_i)
 - For each clause c_i , add the following nodes to $G_{3SAT \rightarrow NDP}$:
 - o $s(c_i)$ (source node for c_i)
 - o $t(c_i)$ (terminal node for c_i)
 - ♦ Edges:
 - For each variable x_i , make two $s(x_i) \rightsquigarrow t(x_i)$ by adding the following edges
 - o Add x_i 's "true path", composed of the following edges:
 - $\bullet \quad \left(s(x_i) \to T(x_i, 1) \right)$
 - ♦ $(\forall a \in [1, ... m 1], T(x_i, a) \to T(x_i, a + 1))$
 - $\bullet \quad (T(x_i, m) \to t(x_i))$
 - o Add x_i 's "false path", composed of the following edges:
 - $\bullet \quad \left(s(x_i) \to F(x_i, 1) \right)$
 - $\bullet \quad (\forall a \in [1, \dots m-1], F(x_i, a) \rightarrow F(x_i, a+1))$
 - $\bullet \quad (F(x_i, m) \to t(x_i))$
 - For each clause $c_j = (a \lor b \lor c)$, where (WLOG for literals a, b, c) $a \in \{x_i, \neg x_i\}$, add the following edges:
 - o Let d be one of the literals a, b, c.
 - o If d is negated, add edges:
 - $\bullet \quad (s(c_i) \to T(d,j))$
 - $\bullet \quad (T(d,j) \to t(c_i))$
 - o Otherwise, add edges:
 - $\bullet \quad (s(c_i) \to F(d,j))$
 - $\bullet \quad (F(d,j) \to t(c_i))$
 - ♦ Time to create this graph is polynomial:
 - Each clause and each variable in the original 3SAT problem requires the introduction of:

- o 1 node
- o Some number of edges that is polynomial with respect to n, m
- Since the number of nodes and edges is polynomial with respect to the input sizes of 3SAT, we can say that the total number of nodes and edges in $G_{3SAT \rightarrow NDP}$ is also polynomial with respect to the input sizes of 3SAT
- O Let the source and terminal nodes be as follows:
 - $\bullet \quad \{s_{1...n+m}\} = \{s(r), r \in (\{c_{1...m}\} \cup \{x_{1...n}\})\}$
 - $\{t_{1...n+m}\} = \{t(r), r \in (\{c_{1...m}\} \cup \{x_{1...n}\})\}$
 - Making these lists would require at most O(n + m) time (we only need to loop over m clauses and n variables)
 - Thus, this process is also polynomial with respect to 3SAT's input sizes
- We execute $\alpha(L_{NDP})(G_{3SAT \to NDP}, \{s_{1...n+m}\}, \{t_{1...n+m}\})$ to solve *NDP* for the converted inputs, thereby solving 3SAT. Proof that this call to $\alpha(L_{NDP})$ returns true $\iff 3SAT$ is satisfiable:
 - Assume that the input 3CNF circuit was satisfiable, i.e. $\exists \{x_{1...n}\} \in \{True, False\}^n$ such that the circuit returns True
 - In this case, we can construct the n + m disjoint paths as follows:
 - Between variable nodes:
 - o If x_i was True in $\{x_{1...n}\}$: $(s(x_i) \rightsquigarrow t(x_i)) = x_i$'s "true" path: $(s(x_i) \to T(x_i, 1) \to \cdots \to T(x_i, m) \to t(x_i))$
 - o If x_i was False in $\{x_{1...n}\}$: $(s(x_i) \rightsquigarrow t(x_i)) = x_i$'s "false" path: $(s(x_i) \rightarrow F(x_i, 1) \rightarrow \cdots \rightarrow F(x_i, m) \rightarrow t(x_i))$
 - o By the structure of $G_{3SAT \rightarrow NDP}$, we know that all of the $s(x_i) \rightsquigarrow t(x_i)$ are node disjoint with respect to each other (they run "parallel" to each other)
 - Between clause nodes (for some $c_i = (a \lor b \lor c) \in \{c_{1...m}\}$, WLOG for a):
 - o By the structure of $G_{3SAT \rightarrow NDP}$, we know that there are three possibilities for $s(c_j) \rightsquigarrow t(c_j)$:
 - $\bullet \quad s(c_j) \to F(a,j) \to t(c_j)$
 - $\bullet \quad s(c_j) \to F(b,j) \to t(c_j)$
 - $\bullet \quad s(c_j) \to F(c,j) \to t(c_j)$
 - o Since c_j is an or-statement, at least one $d \in \{a, b, c\}$ must be true in order for c_i to be true
 - If literal d is not negated in c_i :
 - d is equal to the truth value of its underlying variable x_d,
 thus for d to be true we need x_d to be true as well
 - By the structure of $G_{3SAT \to NDP}$ the only path available to us is $s(c_j) \rightsquigarrow t(c_j) = s(c_j) \to F(x_d, j) \to t(c_j)$ (non-negated literals take the "false" path)
 - Clearly, this path does not intersect with the occupied "true" path of x_d , and these paths are node disjoint
 - If literal d is negated in c_j :

- d is equal to the opposite truth value of its underlying variable x_d , thus for d to be true we need x_d to be false
- By the structure of $G_{3SAT \to NDP}$ the only path available to us is $s(c_j) \leadsto t(c_j) = s(c_j) \to T(x_d, j) \to t(c_j)$ (negated literals take the "true" path)
- Clearly, this path does not intersect with the occupied "false" path of x_d , and these paths are node disjoint
- Thus we have constructed n + m node-disjoint paths that connect each source-terminal pair, which means that our call to $\alpha(L_{NDP})$ will return True when the input circuit is satisfiable
- Assume that there are n + m node-disjoint paths connecting $s(x_i)$, $t(x_i)$ and $s(c_i)$, $t(c_i)$ in $G_{3SAT \to NDP}$.
 - We can now construct a satisfying variable assignment $\{x_{1...n}\}$ that makes the 3SAT circuit return true:
 - If $s(x_i) \rightsquigarrow t(x_i)$ uses the "true" path of x_i , we set x_i to be true.
 - o In this case, all the clauses that contain a non-negated x_i will be true
 - If $s(x_i) \rightsquigarrow t(x_i)$ uses the "false" path of x_i , we set x_i to be false.
 - o In this case, all the clauses that contain a negated x_i will be true
 - Since all variables are either be negated or non-negated in every clause, this assignment essentially sets all clauses to true, which makes the whole circuit true
 - \bullet Thus, if we have n+m node disjoint paths, we can be certain that the input 3CNF circuit is satisfiable
- We have shown that the result of calling $\alpha(L_{NDP})(G_{3SAT \to NDP}, \{s_{1...n+m}\}, \{t_{1...n+m}\})$ is true iff the input circuit to 3SAT was satisfiable.
- Thus, the result of our call to $\alpha(L_{NDP})$ on a graph built in time polynomial with respect to n, m is logically equivalent as to whether the 3CNF circuit $(\{x_{1...n}\}, \{c_{1...m}\})$ is satisfiable
- Therefore, we have shown that $L_{3SAT} \leq_p L_{NDP}$ (the inputs from 3SAT can be converted to the inputs of MSW in poly-time, and the output of $\alpha(L_{NDP})$ called on these inputs is equal to whether the input circuit belongs in L_{3SAT}).

- c. Proof of Corollary that $L_{NDP} \in NPC$:
 - Proof that $L_{NDP} \in NP$
 - Proof that γ_{NDP} is polynomial sized
 - We let γ_{NDP} be the list of (supposed) node disjoint paths that link the k- many source and terminal nodes together
 - Each path is represented according to nodes:
 - o Example: represent $(A \rightarrow E \rightarrow B)$, using list [A, E, B]
 - Representation has size O(|V|) per-path (we can't have more than |V| nodes in a path)
 - There are k-many paths in the path-list (we need one path per (s, t) pair, and there are k such pairings)
 - Thus, the total size of γ_{NDP} is $O(k) * O(|V|) \in O(k|V|)$, which is polynomial with respect to the size of inputs V and k
 - \circ Proof that V_{NDP} runs in polynomial time
 - Algorithm:

```
# Keep a lookup array of intermediate nodes to keep track of what
# we've already seen for O(1) lookup time
# Assume that the graph's nodes have id numbers 1... |V|
# Assume that s nodes and t nodes are aligned and have indices 1...k
# Assume that the certificate's paths are aligned with
   s_nodes/t_nodes (i.e. the i-th path connects s_i to t_i)
def V_NDP(graph, s_nodes, t_nodes, gamma_NDP):
    # Array of size |V| to keep track of seen nodes
    seen nodes = [False] * len(graph.nodes)
    # This is k
    k = len(s nodes)
    for i in range(k):
        s_t_pair = (s_nodes[i], t_nodes[i])
        cur_path = gamma_NDP[i]
        # Check if the path connects s i with t i
        if (cur path[0], cur path[-1]) != s t pair:
            return False # abort: path fails to connect s_i -> t_i
        # Check all the path's nodes
            # Check if any node has been seen in another path
            for node in cur_path:
                # Abort if we've seen this node in another path
                if seen nodes[node.id number]: return False
                # Indicate we've seen the node
                else: seen_nodes[node.id_number] = True
    # At this point we know that all the paths connect the s,t
    # nodes they say they're supposed to, and that none of them
    # have the same nodes
    return True
```

- ♦ This algorithm has runtime O(k|V|), which is polynomial with respect to the size of inputs V, k:
 - Outer loop runs O(k) times (one for each path in the certificate)
 - o Inner loop runs O(|V|) times (one for each node in a path, paths have length O(|V|), and only executes constant-time instructions
 - Thus the outer loop runs in $O(k) * O(|V|) \in O(k|V|)$ time. This is the dominant runtime because the rest of the algorithm executes instructions with lower time-bounds.
- Proof that $(\exists L_{NPC} \in NPC)$: $(L_{NPC} \leq_p L_{NDP})$: verified in the previous sub-question, where we proved that $L_{3SAT} \leq_p L_{NDP}$ (we know $L_{3SAT} \in NPC$).
- Since we have shown that $L_{NDP} \in NP$ and that some NPC language (L_{3SAT}) reduced to L_{NDP} , we can conclude that $L_{NDP} \in NPC$
- d. P-Space Classification of EDP
 - Checking the validity of proposed solutions to *EDP* can be done in poly-time using a similar algorithm to γ_{NDP} (instead of keeping track of seen nodes, keep track of seen edges)
 - Can do a poly-time reduction of 3SAT to EDP with a similar graph conversion, but with the following changes:
 - o Add 2 more nodes to each true/false path of each x_i
 - o Instead of "piping $s(c_j) \rightsquigarrow t(c_j)$ directly through some "true"/"false" path node, we pipe it through two neighbouring nodes in the "true"/"false" path node
 - The above ensures that our source-terminal paths share edges in the event of satisfiability
 - Since we can verify L_{EDP} in polynomial time and $L_{3SAT} \in NPC \leq_p L_{EDP}$, we can say that $L_{EDP} \in NPC$

3. K-Coloring

- a. Poly-time Algorithm to Decide 2-Color-ability
 - English Description
 - We do a breadth first search from some arbitrary node *R* with the following modifications:
 - \bullet Color R with S. Let T be the opposite color of S, and vice versa.
 - For every uncolored node we encounter in the algorithm, color it using the color opposite to its parent
 - Example: we color the neighbours/"children" of R with T (since R has color S), and we color the "grandchildren" of R with S (as their parents had color T), and so on
 - ◆ If we encounter a node that has been colored already, and this node has the same color as the color we are about to use, we abort the algorithm the graph cannot be 2-colored
 - ♦ If we don't run into the above case at all during our run of BFS, our graph can be 2-colored

Correctness

- o Assume we encounter a node that has the same color as a node we just painted
- O Then in order to properly color it with the current color, we'd have to alternate the colors of its neighbours
- We can't do this as we would have to keep alternating colors of the neighbours' neighbours and so on to keep the coloration property
- o If we did the above, we'd effectively reverse the coloration of the entire graph
- o Thus there's no way paint this node
- Running Time: O(|V| + |E|)
 - o BFS has a runtime of O(|V| + |E|) (CLRS 22.2)
 - We can store colors as attributes or in an array indexed by node ID number for O(1) color inspection and modification time
 - O The only modifications that we did to BFS are the addition of color assignments and neighbour/parent color inspections, which each take O(1) time
 - o These color operations do not need to be put inside their own loops
 - Assignment can be done after popping
 - ◆ Neighbour color inspections can be done within in the inner-for loop of BFS (exploring the current node)
 - ◆ Parent color is trivial to inspect (we can also keep track of parents/discoverers when we push nodes into the queue)
 - O Thus, the runtime is still O(|V| + |E|), as only O(1) function calls were added

- b. Exam Scheduling NP-Completeness (let λ be the curly l (number of students), I can't find it in Word)
 - Language Formulation
 - o Let:
 - $E_i \subset \{F_{1...k}\}$ be a subset of exams scheduled for timeslot i
 - $\sigma_i \subset \{F_{1...k}\}$ be a subset of exams that student *i* needs to take
 - $C_{EXS} = \{ \langle F_{1\dots k}, S_{1\dots \lambda}, h \rangle |$ $(\exists \mathcal{H} \leq h) \land (\exists E_{1\dots \mathcal{H}} \subset \{F_{1\dots k}\}) : (\forall S_i \in \{S_{1\dots \lambda}\}, (|\sigma_i \cap E_i| < 2)) \}$
 - Proof that $L_{EXS} \in NPC$
 - Proof that $L_{EXS} \in NP$:
 - Proof that γ_{EXS} is polynomial sized
 - We let our certificate for this problem be an exam schedule
 - We can represent an exam schedule as an 2D array $\gamma_{EXS} = S_{h \times k}$, where:

o
$$S[i,j] = \begin{cases} 1 & \text{if final } j \text{ is in timeslot } i \\ 0 & \text{otherwise} \end{cases}$$

- lacktriangle Proof that V_{EXS} runs in polynomial time
 - Algorithm:

```
# Let each student's final exams be represented as a bit-vector F
# - if they have a final in some course i,
# F[i] = 1, otherwise 0
# Let each timeslot be a bit-vector S, where S[i] = 1
# if F_i is running during this timeslot
def V_EXS(students, finals, gamma_EXS):
    # Go through every student
    for student in students:
        # Check the exam schedule
        for timeslot in gamma_EXS:
            # If the student has more than 1 final during the
            # selected timeslot, dot product of vectors
            # will exceed 1
            if dot(student.courses, timeslot) > 1:
                return False
    # At this point we've verified that no student has a conflict
    return True
```

- Runtime of the above verifier is polynomial:
 - o Student for-loop runs $O(\lambda)$ times
 - lacktriangle Timeslot for-loop runs O(h) times
 - Dot-product of two k-length vectors takes O(k) time
 - lack Thus time-slot for-loop runs in O(hk) time
 - o Thus student for-loop and therefore the whole algorithm runs in $O(hk\lambda)$ time, which is clearly in polynomial time with respect to input sizes h, k, λ
- Since we have proven that γ_{EXS} is polynomial sized, and the runtime of V_{EXS} is polynomial, we can say that $L_{EXS} \in NP$

- Proof that $(\exists L_{NPC} \in NPC)$: $(L_{NPC} \leq_p L_{EXS})$ pick $L_{NPC} = L_{COL}$. Proof that $(L_{COL} \leq_p L_{EXS})$:
 - An algorithm to solve L_{COL} that uses some $\alpha(L_{EXS})$:
 - Let the inputs to L_{COL} be:
 - o Graph G = (V, E), where $v \in V$, $e \in E$ are arbitrary nodes/edges
 - o Number of colors $k \in \mathbb{Z}^+$
 - Convert inputs from $L_{COL} \rightarrow L_{EXS}$ in polynomial time:
 - o Represent each node v as a final exam v (conversion takes O(|V|) time, looping over nodes)
 - o Represent each edge $(u \leftrightarrow v)$ as a student taking final exams u and v (conversion takes O(|E|) time, looping over edges)
 - o Let k (number of colors) be h (number of timeslots) (simple assignment takes O(1) time)
 - Solve the converted $L_{COL} \rightarrow L_{EXS}$ with some $\alpha(L_{EXS})$
 - o If it returns true it means:
 - ◆ Given *h* timeslots, it's possible to schedule exams such that every student has at most 1 exam per time slot
 - ◆ Rephrasing: given *h* timeslots, every student is "connected" to two exams, which each occupy separate timeslots
 - ◆ Reversing input translation: given *k* colors, every edge is connected to two nodes, which each have a separate color
 - ◆ Rephrasing the translation: given *k* colors, no two nodes of the same color are connected
 - ◆ The above sentence is logically equivalent to the input graph being *k*-colorable
 - o If it returns false, it means:
 - It's not possible to construct such an exam schedule
 - ◆ Thus there exists some student that has more than 1 exam in the same time slot
 - Rephrasing: there exists some student that "connects" two exams in the same time slot together
 - Reversing the input translation: there exists some edge that connects 2 nodes of the same color together
 - ◆ This violates the *k*-coloring property, thus it's not possible to *k*-color the input graph
 - Therefore, we can use an algorithm that solves L_{EXS} to solve L_{COL} , by converting between their respective inputs and outputs in polynomial time.
 - ♦ Thus, we can say that $L_{COL} \leq_p L_{EXS}$. In other words, we have found a language in *NPC* that reduces in polynomial time to L_{EXS} .
- We have verified that $L_{EXS} \in NP$ and $L_{COL} \in NPC$: $L_{COL} \leq_p L_{EXS}$, which means that we can conclude that $L_{EXS} \in NPC$

4. Deciding Daggers

Note: $w[1 ... i] = w_1 ... w_i$ (inclusive slicing), and $w[1,0] = \mathcal{E}$

- a. Semantic Array
 - C[i] = whether or not the word w[1 ... i] belongs to L^{\dagger}
 - Answer: contained inside C[n] (whether the whole word w[1 ... n] belongs to L^{\dagger}
- b. Computational Array

•
$$C[i] = \begin{cases} True, i = 0 \\ \bigvee_{k \in \{1...i\}} (C[k] \land A(w[(k+1)...i])), i > 0 \end{cases}$$

- c. Proof of Array Equivalence
 - Base Case (i = 0): this subword is the empty string \mathcal{E} , which we know is inside L^{\dagger} by convention, thus we return True
 - Recursive Case (i > 0):
 - We note that $L^{\dagger} = L^{\dagger}L$. Proof:
 - $\bigcup_{i=0}^{\infty} L^i$ (definition from assignment)
 - = $\{\mathcal{E}\} \cup L \cup L^2 \cup L^3 \cup ...$ (expanding the union)
 - = $\{\mathcal{E}\} \cup L \cup L^1L \cup L^2L \cup ...$ (recursive definition of language powers)
 - $\bullet = \{\mathcal{E}\} \cup ((L^0 \cup L^1 \cup L^2 \cup ...)L) \text{ ("factoring" out } L)$
 - = $\{\mathcal{E}\} \cup \left(\left(\bigcup_{i=0}^{\infty} L^i \right) L \right)$ (re-expressing the infinite union of powers)
 - = $\{\mathcal{E}\} \cup L^{\dagger}L$ (the infinite union is the dagger)
 - = $L^{\dagger}L$ (since \mathcal{E} is already included in the definition of L^{\dagger})
 - \circ This means that any word in L^{\dagger} is the concatenation of a word in L^{\dagger} with a word in L
 - Formally: $\forall w_3 \in L^{\dagger}$, $w_3 = w_1 w_2$, $(w_1 \in L^{\dagger} \land w_2 \in L)$
 - O Thus to check if a word is in L^{\dagger} , we need to have the following two conditions be true (for any way of splitting the word in two)
 - The first part of the word is in L^{\dagger}
 - lack The remainder of the word is in L
 - O This is essentially what we are doing in the computational array: we check whether $\exists k \in \{1 ... i\}$ such that the following two conditions are met:
 - C[k] is true (i.e. the first part of the word up to index k is part of L^{\dagger})
 - A(w[k ... i]) is true (i.e. the remaining part of the word (from indices k to i) is part of L)
- d. Runtime of Algorithm
 - Let:
 - o A's runtime be O(f(m)), where:
 - \bullet m is the size of the input word to A
 - ♦ f is some positive, non-decreasing function bounded by a polynomial (has to be bounded because question specifies that A is a poly-time algorithm)
 - o w's size be O(n) (input word)
 - Each element in the computational array C essentially has to run a for-loop for $i \in O(n)$ iterations.
 - Ouring this for-loop (call some arbitrary iteration k), we do the following:
 - Access C[k]. This takes O(1) time
 - Call A(w[k ... i]). This takes O(f(n)) time.

- We call A on an instance of size i k
- This means that we experience a runtime of O(f(i-k))
- We note that $i k \le n$, and since f is non-decreasing function, $f(i k) \le f(n)$
- Thus this step takes O(f(n)) time
- Clearly, the total of the steps inside this for-loop is in O(1 + f(n)) time
- \circ Since the for-loop runs O(n) iterations, the total runtime of the loop is

$$O(n) * O(1 + f(n)) \in O(n + nf(n))$$

• We note that the computational array C has O(n) elements, and since each element has to run the aforementioned for-loop, we end up with a final running time of:

$$O(n) * O(n + nf(n)) \in O(n^2 + n^2 f(n))$$

- This run-time is clearly polynomial with respect to the input size (n)
 - o n^2 is polynomial with respect to n
 - o $n^2 f(n)$ is polynomial with respect to n (if g(n) is the bounding polynomial of f(n), $n^2 g(n)$ is the bounding polynomial of $n^2 f(n)$)
- Therefore, if we can decide whether a word belongs in L in polynomial time, we can also decide whether it belongs in L^{\dagger} in polynomial time

- 5. Minesweeper Satisfiability
 - a. Language Formulation
 - Let:
 - \circ $\lambda: V \mapsto \mathbb{Z}^{\geq -1}$ } be the labelling function (nodes with no label are labelled -1)
 - o $\mu: V \mapsto \{0, 1\}$ be the mine-placement function (may only place on nodes labelled -1)
 - o $\sigma: V \mapsto \mathbb{Z}^{\geq 0}$ be a function that returns the following:
 - $\sigma(v) = \sum_{\forall (v \leftrightarrow u) \in E} \mu(u)$ = number of mines placed on the neighbours of v
 - $L_{MSW} = \{ \langle G = (V, E), \lambda \rangle | (\exists \mu : (\forall v \in V, (\lambda(v) \neq -1) \Rightarrow (\lambda(v) = \sigma(v))) \} \}$
 - b. 3SAT Reduction
 - Input conversion from $L_{3SAT} \rightarrow L_{MSW}$:
 - o Let:
 - $x_{1...n}$ be the variables in the circuit, and x_i be an arbitrary variable
 - $c_{1...m}$ be the clauses in the circuit, and c_i be an arbitrary clause
 - Create the following mine-graph $G_{3SAT \rightarrow MSW}$:
 - ♦ Nodes:
 - For each variable x_i , add the following nodes to $G_{3SAT \rightarrow MSW}$:
 - o $t(x_i)$ ("true" node for x_i)
 - o $m(x_i)$ ("middle" node for x_i)
 - o $f(x_i)$ ("false" node for x_i)
 - For each clause c_i , add the following nodes to $G_{3SAT \rightarrow NDP}$:
 - o $t(c_i)$ ("true" node for c_i)
 - o $m(c_j)$ ("middle" node for c_j)
 - o $f(c_i)$ ("false" node for c_i)
 - ♦ Edges:
 - For each variable x_i add the following edges:
 - o $t(x_i) \leftrightarrow m(x_i)$
 - o $m(x_i) \leftrightarrow f(x_i)$
 - For each clause $c_j = (a \lor b \lor c)$, where (WLOG for literals a, b, c) $a \in \{x_i, \neg x_i\}$, add the following edges:
 - o Between the clause's nodes:
 - $\bullet \quad t(c_j) \leftrightarrow m(c_j)$
 - $\bullet \quad m(c_j) \leftrightarrow f(c_j)$
 - o Between $m(c_j)$ and the three literals' nodes (where $d \in \{a, b, c\}$, and x_d is the underlying variable of d):
 - If d is NOT negated: $m(c_i) \leftrightarrow t(x_d)$
 - If d is negated: $m(c_i) \leftrightarrow f(x_d)$
 - ♦ Labelling:
 - For each variable x_i , set $\lambda(m(x_i)) = 1$
 - For each clause c_j , set $\lambda(m(c_j)) = 3$
 - Time to create this graph is polynomial:
 - Each variable x_i requires the introduction of:

- o 3 nodes: $t(x_i)$, $m(x_i)$, $f(x_i)$
- o 2 edges: $(t(x_i) \leftrightarrow m(x_i)), (m(x_i) \leftrightarrow f(x_i))$
- o 1 labelling: $\lambda(m(x_i)) = 1$
- Each clause $c_j = (a \lor b \lor c)$ (with x_a, x_b, x_c being the underlying variables of literals a, b, c) requires the introduction of:
 - o 3 nodes: $t(c_j)$, $m(c_j)$, $f(c_j)$
 - o 5 edges:
 - $\bullet \quad (t(c_j) \leftrightarrow m(c_j)), (m(c_j) \leftrightarrow f(c_j))$
 - $\bullet \quad (m(c_j) \leftrightarrow (t|f)(a)), (m(c_j) \leftrightarrow (t|f)(b)), (m(c_j) \leftrightarrow (t|f)(c))$
 - o 1 labelling: $\lambda(m(c_j)) = 3$
- Since each clause and variable introduces a constant number of nodes/edges/labels, this conversion from the inputs of *MSW* clearly takes polynomial time
- We execute $\alpha(L_{MSW})(G_{3SAT \to MSW}, \lambda)$ to solve MSW for the converted outputs, thus solving 3SAT. Proof that this call to $\alpha(L_{MSW})$ returns true \iff the input circuit is satisfiable:
 - O Assume that the input circuit was satisfiable. We can place mines on $G_{3SAT \to MSW}$ such that $\alpha(L_{MSW})$ returns true. Proof:
 - We can use the following partial mine placement plan to satisfy the *MSW* restrictions (for every variable x_i in a satisfying assignment $\{x_{1...n}\}$):
 - $x_i = True \in \{x_{1...n}\} \Rightarrow \mu(t(x_i)) = 1, \mu(f(x_i)) = 0$
 - $x_i = False \in \{x_{1...n}\} \Rightarrow \mu(f(x_i)) = 1, \mu(t(x_i)) = 0$
 - Under this partial mine placement plan, if the circuit is satisfiable, mines can be placed around every $m(c_i)$ such that $\lambda(c_i) = 3$. Proof:
 - If the circuit was satisfiable, all c_j 's contained a literal that was true
 - Let d be a true literal in c_j with underlying variable x_d .
 - o If d was negated
 - x_d had to be false for d to be true
 - In this case $G_{3SA \to MSW}$ had node $m(c_j) \leftrightarrow f(x_d)$
 - Under the partial placement plan, if $x_d = F$, $\mu(f(x_d)) = 1$
 - o If d was not negated
 - x_d had to be true for d to be true
 - In this case $G_{3SA \rightarrow MSW}$ had node $m(c_j) \leftrightarrow t(x_d)$
 - Under the partial placement plan, if $x_d = T$, $\mu(t(x_d)) = 1$
 - Thus, under the partial placement plan $\sigma\left(m(c_j)\right) \geq 1$
 - Since $m(c_j)$ is connected to the not yet mine-occupied nodes $t(c_j)$, $f(c_j)$, we can always make $\sigma(m(c_j)) = 1$ to satisfy $\lambda = \sigma$ by placing the (at most 2) "missing" mines on $t(c_i)$, $f(c_i)$

- Assume that the call to $\alpha(L_{MSW})$ returned true. Proof that this implies the input circuit is satisfiable:
 - ♦ Let:
 - $c_i = (a \lor b \lor c)$
 - x_a , x_b , x_c = underlying variables of literals a, b, c
 - $d \in (a, b, c)$ be some arbitrary literal, with underlying variable x_d
 - Each $m(c_i)$ has a mine on some "variable node" $(t|f)(x_d)$. Proof:
 - By the structure of $G_{3SAT \to MSW}$, $m(c_i)$ is connected to the following 5 nodes:
 - o "Clause nodes": $t(c_i)$, $f(c_i)$
 - o "Variable nodes": $(t|f)(x_a), (t|f)(x_b), (t|f)(x_c)$
 - We have to place three mines on these nodes for $\lambda(c_i) = 3$ to be satisfied
 - We note that two of the nodes are "clause nodes"
 - Thus, we always have at least one leftover mine that needs to be put on a "variable node"
 - Recall the labelling λ for $G_{3S} \rightarrow_{MSW}$ that we constructed in the poly-time conversion from $3SAT \rightarrow MSW$:
 - $\forall x_i \in \{x_{1...n}\}: \lambda(m(x_i)) = 1$
 - Thus, $\forall x_i \in \{x_{1...n}\}, (\mu(t(x_i)) = 1) \oplus (\mu(f(x_i)) = 1)$ (otherwise the labelling above would be violated)
 - We can use the μ values of each $(t|f)(x_i)$ to create the circuit-satisfying assignment $\{x_{1...n}\}$:
 - $\mu(t(x_i)) = 1 \Rightarrow x_i = T$
 - $\mu(f(x_i)) = 1 \Rightarrow x_i = F$
 - Since only one of the "true"/"false" nodes of x_i can have a mine, these assignment, these assignment rules always result in a certain value for x_i
 - Proof that the above assignment rule satisfies the circuit:
 - At least one of the "variable nodes" connected to $m(c_i)$ has a mine on it
 - This node is either has to be $t(x_d)$ or $f(x_d)$.
 - o Assume that the node is $t(x_d)$.
 - By our $3SAT \rightarrow MSW$ input conversion, $m(c_j)$ is only connected to $t(x_d)$ when d is NOT negated in c_j
 - If d is NOT negated, x_d needs to be true for d to be true
 - We have assumed that $\mu(t(x_d)) = 1$
 - Thus $\mu(t(x_d)) = 1$ where x_d needs to be true
 - o Assume that the node is $f(x_d)$.
 - By our $3SAT \rightarrow MSW$ input conversion, $m(c_j)$ is only connected to $f(x_d)$ when d is negated in c_j
 - If d is negated, x_d needs to be false for d to be true
 - We have assumed that $\mu(f(x_d)) = 1$
 - Thus $\mu(f(x_d)) = 1$ where x_d needs to be false

- We have shown that the result of calling $\alpha(L_{MSW})(G_{3SAT \to MSW}, \lambda)$ is true iff the input circuit to 3SAT was satisfiable.
- Thus, the result of our call to $\alpha(L_{MSW})$ on a graph built in time polynomial with respect to n, m is logically equivalent as to whether the 3CNF circuit $(\{x_{1...n}\}, \{c_{1...m}\})$ is satisfiable
- Therefore, we have shown that $L_{3SAT} \leq_p L_{MSW}$ (the inputs from 3SAT can be converted to the inputs of MSW in poly-time, and the output of $\alpha(L_{MSW})$ called on these inputs is equal to whether the input circuit belongs in L_{3SAT}).

- c. Proof of Corollary that $L_{MSW} \in NPC$:
 - Proof that $L_{MSW} \in NP$
 - Proof that γ_{MSW} is polynomial sized
 - We let γ_{MSW} be the mine-placement function μ that makes this graph (supposedly) mine-consistent
 - It can be represented as a hash-map/array that maps nodes μ values (whether there is a mine on the given node)
 - This map is of size O(|V|), as at most O(|V|) nodes are unlabelled
 - Each element has size O(1) (1 or 0 is 1 bit)
 - Thus, the total size of γ_{MSW} is $O(1) * O(|V|) \in O(|V|)$, which is polynomial with respect to the size of input V
 - \circ Proof that V_{MSW} runs in polynomial time
 - Algorithm:

```
# Function to count the number of mine nodes around a given node
def sigma(graph, node, mu):
    num mines = 0
    for neighbour in graph.neighbours of(node):
        num mines += mu[neighbour.id]
    return num mines
# Verification function
def V_MSW(graph, lambda, gamma_MSW):
    # Check each labelled node to see if sigma aligns with lambda
    for node in graph.nodes:
        if lambda[node.id] != -1:
            if sigma(graph, node, gamma_MSW) != lambda[node.id]:
                # Abort: labels don't line up!
                return False
    # At this point all labelled nodes are mine-consistent
    return True
```

- ♦ This algorithm has runtime $O(|V|^2)$, which is polynomial with respect to the size of inputs V, E:
 - Main for-loop does O(|V|) iterations (in the worst case it has to iterate over each node)
 - o Sigma function runs in O(|V|) time
 - Each node in the graph has at most $|V| 1 \in O(|V|)$ neighbours
 - Looking up the μ value of the neighbour takes O(1) time (since we can represent μ as a hashmap/array that maps nodes to μ values
 - Thus, the main-for-loop has a total runtime of $O(|V|) * O(|V|) \in O(|V|^2)$
- Proof that $(\exists L_{NPC} \in NPC)$: $(L_{NPC} \leq_p L_{MSW})$: verified in the previous sub-question, where we proved that $L_{3SAT} \leq_p L_{MSW}$ (we know $L_{3SAT} \in NPC$).
- Since we have shown that $L_{MSW} \in NP$ and that some NPC language (L_{3SAT}) reduced to L_{MSW} , we can conclude that $L_{MSW} \in NPC$