GENERAL DESCRIPTION 功能叙述

The M7612 is a PIR (passive infra-red) controller, using analog mixing digital design technique and manufactures by CMOS Process which can either drive TRIAC or RELAY depending on user's choice. With special noise immunity technique, M7612 is the most stable PIR controller you can find on the market. More than this, there are few components needed in its application circuit which can reduce material cost and increase competitive.

FEATURES 产品特长

- · High noise immunity.
- Drive either RELAY or TRIAC.
- · Adjustable light on duration.
- TRIAC can be either shunt or serial connected.
- PIR input.
- · CDS input.
- Auto change on / auto mode by bonding option.
- 16 pin DIP or SOP package.

APPLICATIONS 产品应用

• PIR light controller, Motion Detector, Alarm system, Auto-door bell.

PIN ASSIGNMENT

PIN DESCRIPTION

Pin No	Pin Name	Description
1	UOU1	First stage OP amp output.
2	NII1	First stage OP amp positive input.
3	II1	First stage OP amp negative input.
4	VREF	Stable reference voltage.
5	VSS	System ground.
		Time base for:
		The delay time of receiving PIR signal to sent a pulse to trigger TRIAC or a high signal to trigger relay.
		The delay time = $R * C * 32$.
6	ТВ	The PIR signal patented and accepted only if the signal cycle greater than $R * C * 768$. When state of RELAY or TRIAC is changing form active into inactive mode. It takes more than $R * C * 4069$, then system is able to receive PIR signal again.
		10K < R < 1M Ohm
		100p F ≤ C < 0.1uf (Reference Diagram 1)
7	QTEST	For testing only.
		To set up the timing of how long TRIAC or RELAY is active.
		During the period, if the system receives the PIR signal, then it restarts counting the timing again.
		The flash cycle show the beginning of auto mode.
8	TCI	Note: width of TRIAC pulse = $R * C * 2$
		Flash cycle: R * C * 32768
		The range for R: $4.7K \leq R < 1M \text{ Ohm}$
		C: 100pF < C < 0.1uF (Reference Diagram 2)
		Connected to a CDS for inhibiting RELAY or TRIAC being triggered.
9	CDS	If TRIAC or RELAY has already being triggered by PIR signal and turned into active mode, then CDS can not inhibit PIR again.
10	TRAIC	To trigger TRIAC, active low.
10	TRAIC	Sink current: 15 mA max.
		To drive relay, active hign.
11	RELAY	Sink current: 10 mA max.
		Source current: 10 mA max.
12	ZCD	Detect zero cross of AC line under remote mode function.
13	VDD	Operation voltage: 5V, stand by current: 0.5 mA
14	II2	2 nd stage OP amp negative input.
15	NII2	2 nd stage OP amp positive input.
16	UOU2	2 nd stage OP amp output.

DIAGRAM 1:

DIAGRAM 2:

TIMING RELATIONSHIP:

BLOCK DIAGRAM

(TA=25°C)

Parameter	Sym.	Rating	Unit
Power Supply V _{DD} With Respect to V _{SS}	$V_{\rm DD}$ - $V_{\rm SS}$	5.6	V
Voltage On Any Pin		-0.3 to 5.6	V
Operating Temperature	Top	-20 to 70	$^{\circ}$
Storage Temperature		-65 to 150	$^{\circ}$ C

ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATING

Characteristics	Sym.	Min.	Тур.	Max.	Unit	Conditions
Supply Voltage	V_{DD}	4.2	5	5.5	V	
Stand by Current	I_{ST}	0.9	1.0	1.2	mA	
Operating Current	I_{DD}	1.8		2.5	mA	1.8mA ,TRIAC / 2.5mA , RELAY
Stable Voltage	V_{REF}	3.0	3.2	3.4	V	$V_{DD} > 4.2V$
Source Current of V _{REF}	I_{REF}	200	_	_	uA	
Ripple of V _{REF}		_	_	0.5	mV	
Input and Output Regulation of V _{REF}		_	_	0.3%		
Time Base Operating Frequency	F_{TB}	15	16	17	KHz	
CDS Operating Trigger	V_{T+}	1.3	1.7	2.1	V	
CDS Operating Trigger	V _{T-}	0.6	0.9	1.1	V	
CDS Source Current	I_{CDS}	2.6	3.5	4.4	uA	
CDS Output Source Current	I _{SOURCE}	9	10.4	17.4	mA	
CDS Output Sink Current	I _{SINK}	11.6	13	21	mA	
Timer Duration of Out 1	т	10	_	1300	SEC	C=0.01uF, R=4.7K-1M
Timer Duration of Out 1	T _{OUT1}	0.1	_	13	SEC	C=100pF, R=4.7K-1M
Relay Source Current	I_{RS}	_	_	10	mA	
Relay Sink Current	I _{RSINK}	_	_	10	mA	
Relay Operating Voltage	V_{RO}	13.1	_	18.8	V	
TRIAC Sink Current	I _{TSINK}	_	_	15	mA	
TRIAC Source Current	I _{TSOURCE}	_		50	uA	

ELECTRICAL CHARACTERISTICS 电气规格

一. RELAY APPLICATION

C1	0.01uF	VR1	$1M\Omega$
C2	100pF	R1	4.7KΩ
C3	100uF	R2	620KΩ
C4	0.01uF	R3	47 K Ω
C5	33uF	R4	15 K Ω
C6	0.1uF	R5	820KΩ
C7	47uF	R6	560KΩ
C8	0.047uF	R7	15 K Ω
C9	47uF	R8	51 K Ω
C10	100uF/10V	R9	470KΩ
C11	220uF/25V	R10	1 M Ω
C12	0.47uF/400~600V	R11	2.4ΚΩ
C13	0.047uF/400~600V	R12	47Ω/1/2W

R13	100Ω / $1/2$ W
R14	5.6KΩ
D1	1N4001
D3	1N4148
ZD1	12V
ZD2	5.6V

M7612 TCI PIN 外加电阻、电容与 Delay 时间的关系

电容	电阻	频率	DELAY 时间(秒)
103	4.7K	40KHz	10
103	10K	20KHz	16
103	20K	10KHz	28
103	100K	2KHz	130
103	200K	0.8KHz	260
103	1M	0.2KHz	1300

Note:

- (1) To adjust delay time, change VR1 value. (VR1=1M, delay time is \geq 10 sec)
- (2) For different CDS, R8 value should be adjusted.

二. TRIAC APPLICATION

(A) 应用一

C1	0.01uF	R1	見附表
C2	100pF	R2	620KΩ
C3	100uF	R3	47 K Ω
C4	0.01uF	R4	15 K Ω
C5	33uF	R5	820KΩ
C6	0.1uF	R6	560KΩ
C7	47uF	R7	15 K Ω
C8	0.047uF	R8	51 K Ω
C9	47uF	R9	470 K Ω
C10	100uF/10V	R10	1 M Ω
C11	0.1uF/400~600V	R11	47 Ω/ <mark>1/2W</mark>
D1	1N4004	R12	100KΩ
ZD1	5.6V	R13	330Ω

M7612 TCI PIN 外加电阻、电容与 Delay 时间的关系

电容	R1 电阻	频率	DELAY 时间(秒)
103	4.7K	40KHz	10
103	10K	20KHz	16
103	20K	10KHz	28
103	100K	2KHz	130
103	200K	0.8KHz	260
103	1M	0.2KHz	1300

Note:

- (1) To adjust delay time, change R1 value. (Delay time is ≥ 10 sec)
- (2) For different CDS, R8 value should be adjusted.

(B) 应用二

C1	0.01uF	VR1	$1M\Omega$
C2	100pF	VR2	$1M\Omega$
C3	100uF / 16V	R1	4.7K Ω
C4	0.01uF	R2	620KΩ
C5	220uF / 10V	R3	47 K Ω
C6	0.1uF	R4	47 K Ω
C7	22uF / 16V	R5	220ΚΩ
C8	683 pF	R6	470KΩ
C9	47uF / 16V	R7	56 K Ω
C10	470uF / 16V	R8	800KΩ
C11	0.15uF / 400~600V	R9	720KΩ
C12	1uF / 50V	R10	$47 \Omega / \frac{1}{2W}$
D1	1N4007	R11	100KΩ
ZD1	6.2V	R12	100Ω

M7612 TCI PIN 外加电阻、电容与 Delay 时间的关系

电容	电阻	频率	DELAY 时间(秒)
103	4.7K	40KHz	10
103	10K	20KHz	16
103	20K	10KHz	28
103	100K	2KHz	130
103	200K	0.8KHz	260
103	1M	0.2KHz	1300

Note:

- (1) To adjust delay time, change VR2 value. (VR2=1M, delay time is $\ge 10 \text{ sec}$)
- (2) For different CDS, VR1 value should be adjusted.

(3) Distance = 4m.

(C) 应用三

C1	0.01uF	VR1	$1M\Omega$
	0.10 - 0		
C2	100pF	VR2	$1M\Omega$
C3	100uF / 16V	R 1	4.7 K Ω
C4	0.01uF	R2	620 K Ω
C5	33uF / 16V	R3	47K Ω
C6	0.033uF	R4	15 K Ω
C7	22uF / 16V	R5	820K Ω
C8	0.033 uF	R6	820K Ω
C9	33uF / 16V	R7	15K Ω
C10	470uF / 16V	R8	800K Ω
C11	0.33uF / 400~600V	R9	720K Ω
C12	1uF / 50V	R10	47 Ω/ <mark>1/2W</mark>
D1	1N4007	R11	100K Ω
ZD1	6.2V	R12	100Ω

M7612 TCI PIN 外加电阻、电容与 Delay 时间的关系

电容	电阻	频率	DELAY 时间(秒)
103	4.7K	40KHz	10
103	10K	20KHz	16
103	20K	10KHz	28
103	100K	2KHz	130
103	200K	0.8KHz	260
103	1M	0.2KHz	1300

Note:

- (1) To adjust delay time, change VR2 value. (VR2=1M, delay time is $\ge 10 \text{ sec}$)
- (2) For different CDS, VR1 value should be adjusted.
- (3) Distance = 8m.

^{*} All specs and applications shown above subject to change without prior notice. (以上电路及规格仅供参考,本公司得径行修正)