

綠色工程跨領域人才培育 學程說明會

計畫主持人:機電系余志成教授

協同主持人:環安系李孟珊、機電系吳宗亮、化材系蔡平賜

日期:114年6月10日

淨零與永續發展趨勢:國家與企業總動員

氣候公約/巴黎協定 永續發展目標

- 溫升控制在攝氏1.5/2度;追求淨零
- 兼顧2030年 UN SDGs 17項永續發展目標

國家淨零排碳企圖心 內國法化/碳定價

- 全球逾151國宣示淨零排放(立法或政策文件)
- 碳定價時代來臨(排放交易/碳稅費)

國際淨零供應鏈 倡議/標準/法規化 **EV** 100

碳邊境調整(碳關稅) 貿易規則/永續策略

- 歐盟2023啓動EU CBAM
- 歐美推動範疇三(原料)碳排申報
- 歐盟推動產品數位護照
- 英國2027啓動UK CBAM

https://youtu.be/m9gIYP7fW7Y?si=7jXdkxYPAbBcjwDB

臺灣2050淨零排放路徑

(資料來源:臺灣2050淨零轉型策略與治理基礎,國家發展委員會)

為達淨零排放的永續目標

■ 需要新的人才、新的思維、新的方法

以104人力銀行網站為例,2024年5月查詢企業公開徵求之永續工程師、永續管理師、環境工程師、碳盤查員等相關職缺,接近12,000筆

■ 新的人才和學習資源,需要企業和學校共同投入發展

- 將企業界所累積的經驗,轉化至教育界,形成更細緻及長久的教學內容
- 將淨零碳排的基礎概念普及,讓永續不僅是口號,而是基本思維

■ 新的工程問題,需要新的科技和方法來解決

綠色工程問題或願景,往往需要跨產業、跨領域合作,整合運用各種知識設計解決方案,因此傳統工程教育須具備調整彈性

教育部綠色工程跨領域人才培育計畫目標

因應全球工程領域綠色轉型的需求與挑戰,發展新型態的產學 合作跨領域人才培育機制,建構產學共創教育平台,發展課程 及教學資源,成為支持學校與產業共創教育的加速器,對接產 業未來人才需求,建構綠色工程跨領域人才生態系 (Ecosystem),培育邁向永續目標的跨領域人才

計畫推動架構

* 高科示範計畫主持人:余志成、協同主持人:李孟珊、蔡平賜、吳宗亮

綠色工程跨領域人才培育課程規劃

		就業	課程類別	學分數	培育重點	推動形式
實務前瞻		實習課程 (必選)	與業界合作 實習時間 至少半年	3~9學分	真實綠色工程議題 教師與產業 合作設計實習	徴選制 企業與教師共同 面試
明言		專題課程 (必選)	企業出題 總整課程 (Capstone)	2學分	業界議題 知識整合應用實作 跨領域合作經驗	申請制 需配合修習核心 課程
基礎打底	選修課 (自由		由各系提出選 修課程	2門以上	針對產業主題 選修工程 及跨領域課程 補助改善課程	依各校特色及 資源提出 結合學生自身系 所選修辦法
		L. 綠色工程導論 2. 碳足跡與生命週期評估	基礎課程 1.線上課程或 多元形式 2.實體課程	各3學分 共6學分	建立綠色工程基礎 知識	大規模推廣大擴 (微學程)

從基礎知識到產業對接

核心必修課程 綠色工程導論

碳足跡與生命週期評估

選修課程

生態工程材料選擇與應用 綠色能源科技概論 碳盤查與碳足跡 機器設備智能診斷系統 綠色智慧製造與循環技術 綠色工程實務專題

企業出題,專案導向

Project-based learning

以真實議題為基礎

教師團隊與業界合跨領 域作設計課程

綠色工程企業實習

教師帶隊參與實習 實習前具備預備訓練 綠色工程產業實務 教師與業師共同規劃、 共同面試、共同指導

計畫開設課程架構規劃

- ■必修學分:核心+專題+實習
 - 核心課程,2門,院開設跨領域課程
 - 綠色工程導論, 3學分
 - 碳足跡與生命週期評估,3學分
 - 專題課程,2學分
 - 企業實習:學期實習 6~9學分 / 暑期實習3學分
- ■選修學分
 - 生態工程材料選擇與應用
 - 綠色能源科技概論
 - 碳盤查與碳足跡
 - 機器設備智能診斷系統
 - 綠色智慧製造與循環技術

核心必修課程

綠色工程導論

課程目標

- 建立學生對綠色工程的全貌理解
- 涵蓋基礎理念、實踐策略及發展趨勢等
- 強化學生綠色工程與永續發展思維

核心能力

- 培養學生對綠色製造、碳管理、永續發展的基本認知
- 理解低碳製程、循環經濟、環境管理概念
- 具備初步分析企業永續報告書的能力

碳足跡與生命週期評估

- 由方法學及案例介紹,培養學生對整體環境規劃與管理之概念
- 熟悉生命週期評估方法,以培養學生淨零 減排思維
- 熟悉ISO 14040/14044 標準
- 運用生命週期評估培養專業能力
 - 碳足跡計算
 - 進行環境數據分析
 - 進行環境影響評估並提出優化方案
 - 應用於產品設計、碳管理及企業永續報告

綠色工程產業學分學程

- ■必修課程:核心+專題+實習
 - 核心課程,2門,6學分
 - 綠色工程導論, 3學分
 - 碳足跡與生命週期評估,3學分
 - 專題課程,1門,2學分,與業界合作
 - 企業實習(限智機院與工學院學生)
 - 學期實習6~9學分
 - 或暑期實習3學分
- ■選修課程
- ■完成必修課程及選修課程(optional)12學分以上,計畫總辦公室核發「綠色工程跨領域人才證書」,及高科大「綠色工程產業學分學程證書」

綠色工程微學程

- ■選修本計畫產業學分學程中至少一門基礎核心必修課程,及計畫中非學生所屬系所開設的課程或專題共六學分以上,發給高科大「綠色工程微學程證書」
- ■核心課程,2門,6學分
 - 綠色工程導論, 3學分
 - 碳足跡與生命週期評估,3學分
- ■專題課程,1門,2學分
- ■選修課程
 - 生態工程材料選擇與應用
 - 綠色能源科技概論
 - 碳盤查與碳足跡
 - 機器設備智能診斷系統
 - 綠色智慧製造與循環技術

學程課程選修建議

綠色工程概論 Introduction to Green Engineering

第一週:課程介紹、永續發展及環境議題及產業轉型

授課教師:余志成 教授

全球環境面臨的挑戰

■資源枯竭:化石能源有限,世界也面臨礦產、水資源壓力

■污染問題:空污、塑膠垃圾、海洋廢棄物

■生物多樣性喪失:森林砍伐、物種滅絕加速

紅色表示受損、消失,藍色表示完好類別的百分比

全球氣候變遷及趨勢

NASA氣候變遷公開監測數值

資料來源: https://climate.nasa.gov/

二氧化碳濃度上升

全球平均氣溫上升

極地冰層下降

冰層大量減少

海平面上升

海洋熱能上升

全球暖化

■因<mark>溫室效應</mark>加劇,導致地球大氣與海洋溫度長期上升的氣候變遷 現象

黑線是全球年均值,**紅線**是5年局部回歸線。**藍色**的不確定條顯示了95%的信賴區間

过去50年的温度变化 2014-2018年的平均温度与1951-1980年的基准温度对比 温度异常 (°C) +1

資料來源:維基百科

溫室效應

■溫室效應是指地球大氣中的<mark>溫室氣體</mark>(如二氧化碳、水蒸氣、甲烷)吸收並保留住太陽輻射熱量的自然過程

資料來源:低碳永續家園資訊網

主要溫室氣體種類

■過量的人類活動導致<mark>溫室氣體</mark>濃度升高,加劇了溫室效應,進而 引發全球暖化、極端氣候等問題

光電/半導體業

半導體/面板業

光電/半導體業 氣體斷路器

資料來源: 財團法人台灣綠色生產力基金會

氣候變遷的影響及國際協定

如果不阻止地球升溫超過工業革命前1.5度C到2度C之內,地球可能在2100年就不宜居住。

而要阻止地球持續升溫,一大關鍵就是在2050年以前,全球碳排放要降回2005年的水準。

(淨零排放不是不排放,而是努力讓人為造成的溫室氣體排放極小化。)

氣候變遷重要國際公約規範

1. 聯合國氣候變化綱要公約(UNFCCC)

1992年通過, 1994年3月21日正式生效, 計有192個締約國

目標:防止氣候系統受到人為干擾,同時使生態系統能夠自然地適

應氣候變化、確保糧食生產,免受威脅

2. 京都議定書(Kyoto Protocol)

1997年通過,2005年2月16日跨過門檻正式生效,計有184個締約國

目標:2008-2012年排放回歸1990年下修5.2%之水準

3. 巴黎協定(Paris Agreement)

2015年12月12日在2015年聯合國氣候峰會中通過的氣候協議

目標:全球平均氣溫升幅控制在**工業革命前水準以上低於2℃之內**

資料來源:https://www.ipcc.ch/report/ar6/wg1/

以碳關稅與貿易障礙為手段

國際邁向淨零排放所帶來的影響

■ 各國邁向淨零重點策略

_		淨零排放宣示方式	製造部門策略		
● 法國	立法通過	❷ 達到2050年淨零排放	零碳電力、生質燃料、循環經濟		
英國	立法通過	❤ 確保2050年淨零排放	零碳電力、 核能、氫能、CCUS、		
德國	立法通過	❷ 追求2050年淨零排放	零碳電力、氫能、CCUS		
美國	立法通過	▲聲明2050年淨零排放	零碳電力、氫能、CCU		
● 日本	政策宣示	▲聲明2050年淨零排放	零碳電力、氫能、CCU		
韓國	政策宣示	▲實現2050年淨零排放	零碳電力、氫能、核能、數位科技		
● 中國	政策宣示	⚠聲明2060年淨零排放	零碳電力、氫能、CCUS		

■國際供應鏈壓力

大廠	目標
Apple	2030達淨零排46家台廠供應鏈全力配合
TSMC	供應鏈碳足跡及減碳績效列入公司 採購重要指標700家供應商若無法達標,恐丟單
GM	● 2040逹淨零排● 2035全球營運100%使用再生能源● 承諾協助其供應鏈進行減碳
Ford	2050達淨零排2035全球營運100%使用再生能源承諾要求其供應鏈進行減碳
Audi	2050達淨零排2025全球營運100%使用再生能源納入供應鏈減碳
BMW	2050逹淨零排2018已逹75%使用再生能源
TOYOTA	● 2050達淨零排● 要求供應鏈減碳

資料來源:經濟部

臺灣因應對策

推動 2050 淨零轉型,政府2022年3月30日公告『臺灣 2050 淨零排放路徑及策略總說明』 ,其中《氣候變遷因應法》將淨零轉型設定為目標,並完善相關法令。

溫室氣體減量管理

- 《溫室氣體減量及管理法》
 - ✔ 《溫室氣體減量及管理法》(簡 稱溫管法)修正草案,修正後為 《氣候變遷因應法》
 - ✓ 2050淨零轉型納入目標
 - ✓ 推動碳定價機制及因應碳邊境調 整機制相關作法

綠色金融

▶ 綠色金融方案2.0

能源永續與安全

- 《電業法》
- 《再生能源發展條例》
- 《能源管理法》
- 氫能管理專法 碳捕捉封存管理制度

運輸住商

- ▶ 建築相關法規修正盤點
 - ✔ 修訂《新建築物節約能源設計標準》
 - ✔ 修訂《公寓大廈管理條例》
 - ✓ 研訂建築能效評估及標示制度
- ▶ 加速運具電動化之法規環境

資料來源:台灣2050淨零排放路徑及策略總說明

工程科技在臺灣2050淨零轉型扮演重要角色

■為落實四大轉型策略,工程科技的支持及投入相當重要,許多技術需融入淨零和負排放的要素重新設計及研發,例如低碳製程、

循環經濟、能源轉型等 始能履踐目標。

資料來源:國家發展委員會臺灣2050淨零排放路徑及策略總說明(2022/03)

綠色工程(Green Engineering)

- ■設計產品、製程與系統 → 降低環境衝擊
- ■在全生命週期考慮環境成本
- ■一種設計、商業、製造和運營方式,其核心目標是減少對環境的 衝擊和改善人類健康。這種方法強調使用可持續材料和流程,減 少廢物和污染,提高能源效率,並優化產品的生命週期。
- ■是一種跨學科的方法,結合了工程學、化學、環境科學和其他領域的知識,以創造更可持續和環保的工程解決方案,很適合用來推動工程領域的跨領域人才培育,並能因應全球綠色轉型的趨勢,即在未來對接新興綠色產業的工程人才需求。

課程精神

- ■工程≠僅追求效率與成本
- ■工程師需要考慮環境、社會、未來世代
- ■強調「跨域」與「實務」
- ■課程目標
 - 認識綠色工程原則與應用
 - 學習碳管理、LCA 方法
 - 了解產業轉型與政策工具
 - 培養案例分析與專案能力

課程架構

實施系統轉型

能源轉型、循環經濟

ESG、綠色經濟

學習基礎概念

綠色工程 淨零永續的基礎

使用方法工具

LCA、碳盤查 綠色產品設計

應用工程原則

土木、化工、製造、運輸水處理、CCUS

EPA 綠色工程原則

- ■全面運用系統分析,整合環境影響評估工具
- ■保護並改善自然生態系統,同時維護人類健康與福祉
- ■導入全生命週期思維於所有工程活動
- ■確保物質與能量投入/輸出盡可能安全且環境友善
- ■減少自然資源消耗
- ■致力於避免廢棄
- ■在發展與應用工程解決方案時,考量在地地理條件、需求與文化
- ■超越現有或主流技術,持續改進、創新與發明,以實現永續
- ■積極與社區及利害關係人互動,共同開發工程解決方案

循環經濟

- ■荷蘭:2050 目標 「完全循環」
- ■關鍵概念:
 - 設計 →
 - 使用 →
 - 回收 →
 - 再製造

Butterfly diagram animation

https://youtu.be/Lc-FQvPO89Y?si=kdTVWTSoC4WQMErL Drawing based on Braungart & McDonough,

綠建築

■美國 LEED、日本 CASBEE、台灣 EEWH

■綠建築九大指標

資料來源:https://share.google/images/yOvxCllyqGLgz84Uc

能源轉型

- ■背景需求:因應氣候變遷與減碳壓力 全球推動能源結構轉型。
- ■再生能源:發展太陽能、風能、水能 等替代化石燃料。
- ■電氣化:交通、製造與建築部門加速 電氣化。
- ■新興技術:能源儲存、氫能與智慧電網提升能源效率。
- ■產業轉型:傳統能源產業面臨挑戰, 綠色新興產業快速崛起。

ENERGY TRANSITION

碳盤查與碳足跡

■組織碳盤查主要是盤查公司或組織一整年的碳排放量,通常以範疇一(直接)二(間接)三(其他間接)來劃分/ISO 14064-1

■碳足跡主要是以「產品」為畫分,計算他生命週期內的碳排放量, 包含原料開採、加工製造、配送銷售、產品使用及廢棄處理五階

段 / ISO 14067

圖片來源:工業技術研究院

綠色經濟與ESG

- ■綠色經濟是一種旨在增進人類福祉、社會平等並降低環境風險的經濟發展模式 ESG投資指標
- ■ESG是一種新型態評估企業 的數據與指標
 - 環境保護 (E)
 - 社會責任 (S)
 - 公司治理 (G)

圖片來源:https://epf.org.tw/esg%E5%B0%88%E5%8D%80/

綠色工程導論課程進度

■課程規劃

授課內容	建工校區(五)		第一校區(一)	
1文4本79台	日期	老師	日期	老師
課程介紹、環境議題、永續發展及產業轉型	09/12	余志成	09/08	余志成
綠色土木工程、綠建築與低碳建材	09/19	林彥宇	09/15	林彥宇
綠色製造與智慧工廠	09/26	黃華志	09/22	吳宗亮
綠色化學工程與生態友善化學製程及產品	10/03	蔣秉叡、鄭力誠	10/13	蔣秉叡、鄭力誠
環境生命週期評估(LCA)方法與應用	10/17	林彥宇	10/20	林彥宇
碳盤查、碳管理與政策	10/31	林彥宇	10/27	林彥宇
產品綠色設計	11/07	鄭瑞鴻	11/03	余志成

綠色工程導論課程進度

授課內容	建工校區(五)		第一校區(一)	
(文本)(分台)	日期	老師	日期	老師
企業永續發展與ESG報告	11/14	黃致鈞、余志成	11/10	黃致鈞、余志成
期中小組專案:臺灣企業綠色行動案例分析	11/21	全體老師	11/17	全體老師
能源轉型與再生能源科技	11/28	鄭力誠	11/24	鄭力誠
綠色運輸與車輛電氣化	12/05	林仁生、余志成	12/01	林仁生、余志成
再生水資源及工業廢水零排放技術	12/12	李孟珊	12/08	李孟珊
碳捕捉、再利用與封存技術(CCUS)	12/19	鄭力誠、張涵寓	12/15	鄭力誠、張涵寓
循環經濟原則與資源零廢棄	12/26	林彥宇	12/22	林彥宇
綠色經濟與分析、技術與經濟分析	01/02	黃致鈞、余志成	12/29	黃致鈞、余志成
期末專案和報告:臺灣案例研究	01/09	全體老師	01/05	全體老師

評量方式

- ■出席與參與 20%
- ■課堂作業 20%
- ■期中專案 30%(台灣企業案例分析)
- ■期末專案 30%(整合應用報告)

互動討論

- ■今日學習反思:分組討論(共五頁)
 - 第一頁列出本週反思議題與組員名單
 - 台灣最急迫的環境問題是什麼?列出 1 項議題 + 1 個解決方案(兩張 PPT)
 - 找出一項台灣製造業成功的淨零轉型案例(兩張PPT)
 - 需列出資料來源
- ■下週主題
 - 綠色土木工程、綠建築與低碳建材 / 營建工程系林彥宇教授