How to execute genome analysis on Cloud

An introduction of Extended-ETL engine: awsub

Hiromu OCHIAI - National Cancer Center Japan

Genome analysis on Cloud Resources

More and more people are using cloud resources to analyze their sample sequences.

and more

The best practice of "Genome Analysis on Cloud"?

1. "Building a Cluster on Cloud"

Galaxy

• cfn-cluster

- ElastiCluster
- Butler
- etc...

1. Pros and Cons of "Cluster on Cloud"

1. Pros and Cons of "Cluster on Cloud"

• Pros:

- We are VERY used to cluster on HPC
 - Grid Engine, HTCondor, SLURM, etc...
 - e.g. qsub ./my-workflow.sh

1. Pros and Cons of "Cluster on Cloud"

• Pros:

- We are VERY used to cluster on HPC
 - Grid Engine, HTCondor, SLURM, etc...
 - e.g. qsub ./my-workflow.sh

Cons:

- Unnecessary instances time
- // Inefficient shared disk I/O

2. Suggestion:

2. Suggestion: "on-demand ETL on Cloud"

ETL is

- Extract, Transform, Load
- Data processing model for general purpose

Use Case

If you have 4 Fastq samples

List of data locations on the storage

Specify workflow script and samples

Common Data e.g. Reference


```
$ awsub \
    --tasks ./my-samples.csv
    --script ./my-workflow.sh
```

List of data locations on the storage

Security Group

Inscances for each sample

Fetch specific sample data according to the location

Fetch reference data from common data source

Execute your workflow for each

Push the result data back to the storage

Dispose all the computing resources no longer used

All you got is the result data!

Common Data e.g. Reference

List of data locations on the storage

Overall

by using awsub

```
$ awsub \
   --tasks ./my-samples.csv \
   --script ./my-workflow.sh \
   --image otiai10/STAR-alignment # any Docker image
```


Problems of ETL on Bioinformatics

Problems of ETL on Bioinformatics

- Common Reference Data is so huge
 - Copying huge reference data uses
 - inefficient traffic
 - inefficient instance time
 - inefficient storage area
 - 具体的な例: ヒトのSTARで、40G弱

Problems of ETL on Bioinformatics

- Common Reference Data is so huge
 - Copying huge reference data uses
 - inefficient traffic
 - inefficient instance time
 - inefficient storage area

Suggestion: Extended ETL

Suggestion: Extended ETL

- Create a Shared Data Instance
- Fetch external common data once
- Let computing instances mount

Suggestion: Extended ETL

- Create a Shared Data Instance
- Fetch external common data once
- Let computing instances mount

Cost Saving!

• Network traffic, instance time, ...

// ここにfigureを入れる

ExTL by using awsub

```
$ awsub \
   --tasks ./my-samples.csv \
   --script ./my-workflow.sh \
   --image otiai10/STAR-alignment \
+ --shared REFERENCE=s3://bucket/huge/reference
```


Summary

- Another approach than "Cluster on Cloud"
 - "On-demand ETL on Cloud"
- Huge common data can be a problem of "ETL on Cloud"
- "Extended ETL" (ExTL)
- Working Example Implementation of ExTL: **awsub**

More on the poster

about

- How to Get started
- Google Cloud, Microsoft Azure, OpenStack and more
- Common Workflow Language (CWL)
- Execution Protocol and Security Groups / IAM Instance Profile
- *Go* implementation
- etc...

Come to poster **B29**, and any feedback is welcome!

https://github.com/otiai10/awsub

