Aula Prática 5

ASA 2020/2021

Ex. 25.2-1 Run the Floyd-Warshall algorithm on the weighted, directed graph. Show the matrix $D^{(k)}$ that results for each iteration of the outer loop.

T1 16/17 I.d Considere o grafo dirigido e pesado da figura.

Considere o algoritmo Floyd-Warshall. Calcule os seguintes valores:

$d^{(2)}(1,5)$	$d^{(2)}(1,9)$	$d^{(3)}(1,5)$	$d^{(4)}(1,5)$	$d^{(5)}(1,9)$	$d^{(6)}(1,9)$

R1 08/09 II.3 Considere a execução do algoritmo de Johnson, sobre o grafo dirigido e pesado da figura abaixo. Indique o valor dos pesos dos arcos, após o procedimento de repesagem.

Ex. 25.2-4 As it appears above, the Floyd-Warshall algorithm requires $\Theta(n^3)$ space, since we compute $d_{ij}^{(k)}$ for i, j, k = 1, ..., n. Show that the following procedure, which simply drops all the superscripts, is correct, and thus only $\Theta(n^2)$ space is required.

```
FLOYD-WARSHALL'(W) n \leftarrow rows[W] D \leftarrow W for k \leftarrow 1 to n do for i \leftarrow 1 to n do d_{ij} = \min(d_{ij}, d_{ik} + d_{kj}) end for end for end for
```

Ex. 25.2-6 How can we use the output of the Floyd-Warshall algorithm to detect the presence of a negative-weight cycle?

Ex. 25.3-3 Suppose that $w(u,v) \geq 0$ for all edges $(u,v) \in E$. What is the relationship between the weight functions w and \hat{w} .

T1 08/09 II.2 Considere os algoritmos para o cálculo de caminhos mais curtos entre todos os pares de vértices. Indique se cada uma das seguintes afirmações é verdadeira (V) ou falsa (F).

- 1. É possível implementar o algoritmo de Floyd-Warshall por forma a que a memória necessária à sua execução seja $O(V^2)$.
- 2. No algoritmo de Floyd-Warshall, a matriz $D^{(k)}$ contém os custos dos caminhos mais curtos, entre todos os pares de vértices, que contenham no máximo k-1 arcos.
- 3. No algoritmo de Johnson, o valor de h(u) é o mínimo entre 0 e o custo do caminho mais curto que termina no vértice u.
- 4. O tempo de execução do algoritmo de Johnson é $O(V^5)$.
- 5. Devido ao procedimento de repesagem utilizado no algoritmo de Johnson, um caminho mais curto entre dois vértices pode deixar de o ser.
- 6. O tempo de execução do algoritmo de Floyd-Warshall é $O(V^3)$.

Ex. 25.1-1 Run Slow-All-Pairs-Shortest-Paths on the following weighted, directed graph, showing the matrices that result for each iteration of the loop. Then do the same for Faster-All-Pairs-Shortest-Paths.

Ex. 25.3-1 Use Johnson's algorithm to find the shortest paths between all pairs of vertices in the graph. Show the values of h and \hat{w} computed by the algorithm.

Ex. 25.3-6 Professor Michener claims that there is no need to create a new source vertex in line 1 of Johnson. He claims that instead we can just use G' = G and let s be any vertex. Give an example of a weighted, directed graph G for which incorporating the professor's idea into Johnson causes incorrect answers. Then show that if G is strongly connected (every vertex is reachable from every other vertex), the results returned by Johnson with the professor's modification are correct.