Modelagem de Dados

Abordagem Entidade-relacionamento

Prof. Marco Ikuro Hisatomi

Olá estudante!

Bem-vindo(a) à disciplina de **Modelagem de Dados**, pela qual vai conhecer como o armazenamento de dados é feito através dos Sistemas Gerenciadores de Bancos de Dados, com base em Banco de Dados Relacional para apoiar a tomada de decisões.

Werlich, 2018

Continue com a sua rotina de autoestudo para que possa assistir às aulas e aproveitar ao máximo esse momento de ensino-aprendizagem!

Livro didático

Acessar o AVA, na opção **Biblioteca** Ou utilizar o endereço da Web: https://biblioteca-virtual.com/

lade 1 Fundamentos de Bancos de Dados
Seção 1.1 - Introdução a Sistemas Gerenciadores de Bancos de
Seção 1.2 - Dados (SGDB)
Seção 1.3 - Banco de Dados Relacional
Dados como apoio a tomada de decisão
lade 2 Modelos de banco de dados
Seção 2.1 - Modelos de banco de dados
Seção 2.2 - Modelagem de dados através do modelo
entidade-relacionamento
Seção 2.3 - Diagrama de Entidade-Relacionamento (DER)
lade 3 Abordagem entidade-relacionamento
Seção 3.1 - Modelagem de dados através do modelo entidade-
relacionamento usando DER
Seção 3.2 - Modelagem de dados através do modelo entidade-
relacionamento usando UML
Seção 3.3 - Ferramentas CASE's de modelagem do diagrama de
entidade-relacionamento (DER)
lade 4 Normalização de dados
lade 4 Normanização de dados
Seção 4.1 - Normalização de dados na computação

Fonte: Werlich, Claudia, 2018.

Conteúdo Programático

Abordagem Entidade-relacionamento

- Modelagem de dados através do modelo entidaderelacionamento usando DER
- Modelagem de dados através do modelo entidaderelacionamento usando UML
- Ferramentas CASEs de modelagem do diagrama de entidade-relacionamento (DER)

Abordagem Entidaderelacionamento

Abordagem Entidade-relacionamento compreende-se em:

- 1. Perceber a importância da construção do modelo com a participação das partes interessadas: usuários e equipe de desenvolvimento
- 2. Conhecer CASE para elaboração do MER
- 3. Compreender o uso de padrões para melhorar a comunicação
- 4. Entender que o MER deve estar completo

Introdução ao uso à Análise de Dados: cadastro de Funcionários

Contextualizando

O departamento de Recursos Humanos da empresa precisa definir o sistema para gestão dos funcionários:

- Como elaborar a análise dos dados
- Como definir as entidades e seus dados
- Como repassar os conhecimentos a todos e ao longo do processo de desenvolvimento

Ciclo de vida de banco de dados

Estudo inicial

Projeto

Implementação e carga

Teste e avaliação

Operação

Manutenção e evolução

Fase de concepção e entendimento

- Delimitar a dimensão do problema/solução para a criação do modelo do Banco de Dados
- Estratégia top-down, bottom-up, middle-up-down
 - Validar os elementos e os agrupamentos de dados
- Padronização deve ser a alma do negócio
- Dicionários de Dados são fundamentais no processo de entendimento, para evoluções e novos membros no time

	Modelagem conceitual	Modelagem lógica
Entidades	Entidades Somente as importantes (cha	
Atributos	Não são especificados	Incluem todos os atributos (chamados de campos)
Chaves	Chaves Não são especificadas Espec	
Relacionamentos Somente os importantes os relacionar		Incluem todos os relacionamentos entre as tabelas

Dicionário de Dados

- Descrição: nome, tabela, atributo e relações
- Tipos de dados (domínio) e tamanhos
- Chaves
- Usuários e permissões
- Cardinalidade: quantidade de vezes das relações entre as tabelas

Tabela: funcionário							
	Campo	Descrição	Tipo	Tamanho			
РК	Cd_Func	Código do funcionário	VARCHAR	20			
	Nm_Func	Nome do funcionário	VARCHAR	100			
	CPF_Func	CPF do funcionário	VARCHAR	15			
	Dt_Nasc_Func	Data de nascimento funcionário	Date	-			
FK	ld_Cidade	Cidade do funcionário	Inteiro	-			

Dicionário de Dados

Tabela: funcionário					
Descrição:	Tabela responsável por armazenar as informações dos funcionários da empresa.				
Volume de dados:	Carga inicial de 140 registros e volume mensal estimado em 25% de acréscimo.				
Tempo de retenção:	Permanente.				
Permissões:	Leitura e cravação: funcionário RH nível A – leitura, gravação e alteração – nível A5				

Atributos							
Atributo	Campo	Tipo de dado	Tamanho	Descrição	Restrição		
Código	Cd_Func	VARCHAR	20	Código do funcionário	Chave primária		
Nome	Nm_Func	VARCHAR	100	Nome do funcionário	Nome completo		
CPF	CPF_Func	VARCHAR	15	CPF do funcionário	CPF válido		
Data Nasc	Dt_Nasc_ Func	Date	-	Data de nascimento funcionário	Data formato dd/mm/aaaa		
Cidade	ld_Cidade	Inteiro	-	Cidade do funcionário	Chave estrangeira da tabela cidade obrigatória		

Modelo Entidaderelacionamento e UML

Contextualizando

A equipe de desenvolvimento está em fase de transição, ampliando as competências em técnicas de modelagens de BD.

Você deve preparar uma apresentação para demonstrar o uso do modelo entidade-relacionamento e UML.

Programação Orientada a Objetos

- Paradigma amplamente utilizado e adotado por importantes linguagens como: Java, C# e Python
- Podemos utilizar ferramentas de modelagem de aplicações orientadas a objetos, para modelar o banco de dados.

Conceitos base POO

- Classe um tipo de dado, é formada por dados e comportamentos, Mizrahi (2008)
- Nome refere-se ao que será armazenado
- Atributo dado e o domínio
- Métodos comportamento

Linguagem de Modelagem Unificada (UML)

- Diagramas de Atividades e Caso de Uso refletem o comportamento, funcionalidades e o fluxo de tarefas
- Diagrama de Classes especifica o relacionamento entre classes, atributos e métodos
- Diagrama de Sequência define a ordem que acontece o método e tratam os dados relacionados

Fowler (2004)

Fonte: acervo do autor

Semelhanças entre Diagrama de Classe e DER

Relacionamento entre Classes

Relacionamento entre Objetos

Modelo Entidaderelacionamento e UML Avançado

Contextualizando

A equipe de desenvolvimento está em fase de aperfeiçoamento para ampliar competências em técnicas de modelagens de BD.

Você deve preparar uma apresentação para demonstrar o uso do modelo entidade-relacionamento e UML.

Reutilizando Especificações

- Na especificação da Tabela do MER, as características de uma estrutura de dados são fundamentais para o implementador
- Na programação em orientação a objetos (POO), se pratica da mesma forma, diferenciando apenas nos detalhes da implementação, reutilizando as especificação do MER

Herança - UML

Para atender às necessidades do mundo real, na Programação Orientada a Objetos as classes podem ter níveis: **superclasse e subclasses**

Herança no MER

Afirmado por Korth, Silberschatz e Sudarshan (2012) que num DER, a generalização e a especialização são relacionamentos entre entidades, que determina que uma entidade contém a outra, isto quer dizer que uma entidade superior contém um ou mais conjuntos de entidades inferiores.

Generalização - MER

A generalização e a especialização são um tipo de relacionamento entre entidades que determina que uma entidade superior contém um ou mais conjuntos de entidades inferiores

Fonte: livro base

Considerações sobre Herança no MER

- Restrição de Disjunção (d): uma entidade pode pertencer a, no máximo, um subconjunto de entidade especializada
 - Funcionário (professor, diretor, secretária)
- Restrição de Sobreposição (o): uma entidade especializada pode pertencer a mais de um subconjunto de entidades ao mesmo tempo
 - Empregado (horista, mensalista)

Considerações sobre Herança no MER

- Parcial (p): nem toda ocorrência da entidade genérica possui uma ocorrência correspondente em uma entidade especializada
- Total (t): para cada ocorrência da entidade genérica existe sempre uma ocorrência em uma das entidades especializadas

Modelo generalização MER

Fonte: livro base

DER com a notação UML

Fonte: livro base

Ferramentas CASEs

Contextualizando

Num ambiente exigente do mercado global

- Regras que se alteram pelas estratégias
- Requisitos voláteis
- Tecnologias versáteis

Como Você pode manter os sistemas aderentes com rapidez, facilidade e independente de pessoas

Controle da defesa civil para famílias em risco

Considerações

- Precisamos ser disciplinados para mantermos um banco de dados, organizado e conciso com a realidade do negócio
- Devemos procurar a coerência a qualquer custo, pois na medida que o banco evolui, a complexidade e problemas também aumentam

Software produzindo software!

CASEs (Computer Aided Software Engeneering) auxiliam no processo de desenvolvimento e manutenção de uma solução computacional.

Gráfica (capacidade de comunicação por símbolos)

Segundo Navathe e Ramez (2005), surgiram na década de 80:

- Lower CASE (projeto)
- Upper CASE (análise)

Tipos de Ferramentas CASEs

Geração de código

Geração de documentação

Execução de testes

Geração de relatórios

Ferramentas CASEs para MER

Características, conforme Coronel e Rob (2011):

- Criação de Gráficos (diagramas)
- Modelagem de Banco de dados (notações)
- Geração de scripts SQL
- Forward Engineer
- Reverse Engineer
- Documentação (geração de dicionário de dados)

Ferramentas CASEs - exemplos

brModelo, Lucidchart, Draw.IO

Astah

- Criar diagramas UML
- Gerar scripts em Java
- Criar o dicionário de dado

MySQL Workbench®

Gerar scripts para o SGBD MySQL

Defesa civil – pessoas em risco (conceitual)

Fonte: acervo do autor

Defesa civil – pessoas em risco (lógico)

Fonte: acervo do autor

Defesa civil – pessoas em risco (físico)

```
/* brModelo defesacivil.brM3 logico: */
                CREATE TABLE pessoa (
                     idPessoa NUMERIC PRIMARY KEY,
                    nome CHAR,
                    RG CHAR,
                     foto CHAR,
                    dtNasc DATE,
                    fk familia idFamilia NUMERIC
                );
                CREATE TABLE familia (
                     idFamilia NUMERIC PRIMARY KEY,
                     sobreNome CHAR,
                     endereco CHAR,
                     fk classificacao idClassif NUMERIC
                 );
Fonte: acervo do autor
```

Defesa civil – pessoas em risco (físico)

```
CREATE TABLE classificacao (
    idClassif NUMERIC PRIMARY KEY,
    classificacao CHAR
);

ALTER TABLE pessoa ADD CONSTRAINT FK_pessoa_2
    FOREIGN KEY (fk_familia_idFamilia)
    REFERENCES familia (idFamilia)
    ON DELETE RESTRICT;

ALTER TABLE familia ADD CONSTRAINT FK_familia_2
    FOREIGN KEY (fk_classificacao_idClassif)
    REFERENCES classificacao (idClassif)
    ON DELETE CASCADE;
```

Fonte: acervo do autor

Destaques

Destaques

- MER: Generalização e Especialização
- Concepção: Dicionário de Dados
- Ferramentas CASEs
 - Conceitual
 - Lógico
 - Físico

Muito obrigado e Bons estudos!!