Hausübung Nr. 2

Sebastian Steitz, Hannes Albert April 2023

1 H2.1

Bemerkung I:

(in
$$\frac{1}{N\alpha} = 0$$
, mit x als Konstarte ohne n und $\alpha \ge 1$:

 $n \to \infty$

Sei $E > 0$, $n_0 > \frac{1}{2\alpha}$. Es ist also $\frac{1}{N\alpha} < E$. Für alle $n \ge n_0$ gift:

 $|\alpha_n - \alpha| = |\alpha_n - 0| = |\alpha_n| = \frac{1}{N\alpha} \le \frac{1}{N\alpha} < E$.

Dies gift insbesondere für $\alpha = 1$, $\alpha = 2$, $\alpha = 3$
 $b \ge 1$.

1. Für $(\alpha_n) := \frac{1}{(n+1)^2}$ gift: $\lim_{n \to \infty} \frac{1}{(n+1)} = \lim_{n \to \infty} \frac{1}{(n+1)^2}$
 $\lim_{n \to \infty} \frac{1}{(n+1)^2} = \lim_{n \to \infty} \frac{1}{(n+1)$

2. Für
$$(a_{n}):=\frac{(-\Lambda)^{n+1}}{n+1}$$
 git: $(i_{n})=\frac{|a_{n+1}|}{|a_{n}|}=\frac{(i_{n})}{|a_{n}|}=\frac{(-\Lambda)^{n+2}}{|a_{n}|}$

$$=\frac{(i_{n})}{n+2}=\frac{1}{n+2}=\frac{(i_{n})}{n$$

2 H2.2

1)

 $O_1 \cup O_2$:

Nach Definition 5.6.8 müssen wir zeigen, dass es für ein beliebiges a $\in O_1 \cup O_2$ ein $r \in \mathbb{R}$ mit $B_r \subseteq O_1 \cup O_2$

Fall 1: a $a \in O_1$

Da O_1 offen existiert per Definition ein r mit $B_r(a) \subseteq O_1$. Da O_1 Teilmenge von $O_1 \cup O_2$ gilt:

$$B_r(a) \subseteq O_1 \subseteq O_1 \cup O_2$$

Fall 2: $a \in O_2$

Da O_2 offen ist existiert per Definition ein $r \in \mathbb{R}$ mit $B_r(a) \subseteq O_2$. Da O_2 Teilmenge von $O_1 \cup O_2$ gilt:

$$B_r(a) \subseteq O_2 \subseteq O_1 \cup O_2$$

Somit ist die Vorraussetzung erfüllt und wir sind fertig. $O_1 \cap O_2$:

Sei $a \in O_1 \cap O_2$. Damit gilt folgendes:

$$a \in O_1 \cup O_2 \leftrightarrow a \in O_1 \land a \in O_2$$

Daraus folgt, dass wir zwei offene Kugeln erzeugen können: Sei $B_d(a) \subseteq O_1$ und $B_e(a) \subseteq O_2$. Wir wählen r:= min{d, e}. Wir wählen unser r wie folgt:

$$r := \left\{ \begin{array}{ll} d & falls \ d < e \\ e & sonst \end{array} \right.$$

Da somit $B_r(a) \subseteq B_d(a)$ bzw. $B_r(a) \subseteq B_e(a)$ gilt $B_r \subseteq O_1 \cap O_2$. Damit ist $O_1 \cap O_2$ offen.

2.

 $A_1 \cap A_2$

Aus der Abschlusseigenschaften von A_1 und A_2 erhalten wir $\mathbb{R} \backslash A_1$ ist offen und $\mathbb{R}^n \backslash A_2$ ist offen. Nach 1. gilt somit auch $\mathbb{R}^n \backslash A_1 \cup \mathbb{R}^n \backslash A_2$ offen. Zusätzlich gilt:

$$\mathbb{R}^n \backslash A_1 \cup A_2 \mathbb{R}^n = \mathbb{R}^n \backslash A_1 \cap A_2$$

offen. Insbesondere ist $A_1 \cap A_2$ abgeschlossen.

 $A_1 \cup A_2$

Aus der Abgeschlossenheit von A_1 , A_2 und a) folgt:

 $\mathbb{R}^n \backslash A_1 \cap \mathbb{R}^n \backslash A_2$ offen. Somit gilt

 $\mathbb{R}^n \backslash A_1 \cap A_2$ offen und $A_1 \cup A_2$ abgeschlossen.

3.

Induktionsanfang: Sei $k \in \mathbb{N}^*$ mit k = 1: $\bigcap_{i=1}^1 O_i = O_1$. O_1 ist schon per

Definiton offen. Für ein k $\in \mathbb{N}^*$ ist $\bigcap_{i=1}^k O_i$ offen. Induktionsschritt: Wir

betrachten den Fall k + 1:

$$\bigcap_{i=1}^{k+1} O_i = \bigcap_{i=1}^k O_i \cap O_{k+1}$$

Dass $\bigcap_{i=1}^k O_i$ offen ist folgt aus der IV und dass O_{k+1} offen ist folgt per Definition. Somit sind wir fertig.

4.

Betrachten wir die offene Mengen $O_i = (0, \frac{1}{i})$. So gilt $\bigcap_{i=1}^k O_i = \{0\}$, da die harmonische Reihe $(\frac{1}{n})$ gegen 0 geht. $\{0\}$ ist allerdings nicht offen, weshalb es sich hier um ein passendes Gegenbeispiel handelt.

3 H2.3

H2.3. wif object Beneforms I
1.
$$||(\alpha_{N})||_{A} = \left|\frac{n}{n^{2}+A}\right| + \left|\frac{8}{2n^{4}}\right| + \left|\frac{5}{n^{3}+n}\right|$$

$$= \frac{n}{n \cdot (n+\frac{1}{n})} + \frac{n \cdot 8}{n(2n+\frac{2}{n})} + \frac{5}{n^{3}+n} = \frac{1}{n^{4} \cdot \frac{8}{n}} + \frac{5}{n^{3}+n}$$

$$= \frac{1}{n+\frac{1}{n}} + \frac{1}{n+\frac{1}{n}} + \frac{1}{n+\frac{1}{n}} + \frac{1}{n^{3}+n} + \frac{1}{n^{3}+n} + \frac{5}{n^{3}+n} + \frac{5}{n^{3}+n} + \frac{5}{n^{3}+n}$$

$$= \frac{n^{2}(S+\frac{5}{n^{2}})}{n^{2}(n+\frac{1}{n})} = \frac{S+\frac{5}{n^{2}}}{n+\frac{1}{n}}$$

$$= \frac{n^{2}(S+\frac{5}{n^{2}})}{n^{2}(n+\frac{1}{n})} = \frac{1}{n+\frac{1}{n}}$$

$$= \frac{1}{n^{2}(n+\frac{1}{n})} = \frac{1}{n+\frac{1}{n}} = \frac{1}{n+\frac{1}{n}}$$

$$= \frac{1}{n+\frac{1}{n}} = \frac{1}{n+\frac{$$