도심 항공 모빌리티(UAM: Urban Air Mobility) 소개

김 동 훈

Introduction

- ㆍ 강의 주제
 - 도심 항공 모빌리티 소개
- ㆍ 강의 목표
 - 도심 항공 모빌리티를 이해하고 이를 통해 변화될 미래 사회 전망
- ㆍ 강의 목차
 - 도심 항공 모빌리티 소개
 - 도심 항공 모빌리티 주요 기술
 - 결론

- 도심 항공 모빌리티의 출현
 - 상상 속 미래 기술

1951년 Personal Helicopter

1957년 Hiller Aerial Sedan

- 도심 항공 모빌리티 등장 요인
 - 도시 인구 밀집으로 인한 교통 비용 증가
 - 도로 교통 혼잡 비용 연간 1조원 상승 추세
 - 2차원 평면 교통에서 3차원 입체 교통 확대 모색
 - · 지구 온난화 원인 온실 가스 배출 증가
 - 온실 가스 배출 30% 교통 수단 차지³⁾
 - 내연 기관에서 전기/하이브리드 기관으로 변화 모색
 - · 기술 발전에 따른 미래 기술 현실화 가능
 - 전기 추진을 위한 고출력 모터 기술 발전
 - 에너지 저장을 위한 이차 전지 기술 발달
 - 비행 제어 및 자율 비행을 위한 IT 기술 발전

도로 교통 혼잡 비용¹⁾

온실 가스 배출량²⁾

2021-07-15 4

- ·도심 항공 모빌리티(UAM: Urban Air Mobility) 정의
 - Safe and efficient air traffic operations in a metropolitan area for manned aircraft and unmanned aircraft systems⁴⁾
 - · 도심에서 유/무인 항공기 시스템을 위한 안전하고 효율적인 항공 교통 운영
 - 기체: 도심 비행을 목적으로 안전, 저공해, 저소음을 고려한 운송 수단 설계/제작/판매
 - 인프라: 수직 이착륙, 충전, 정비, 도심지 교통 연계 허브 역할 수행하는 vertiport
 - 운항: 중앙 집중 시스템에 의한 항공 교통 제어 등
 - 서비스: 승객 및 화물 서비스 제공

2021-07-15 5

· UAM 운용 조건

- 소음: Daytime constant 70dB 이하6)
- Mission scope⁴⁾
 - · 지상 교통 수단을 대체하는 항공 교통 수단
 - Air taxi: 고정된 위치 또는 임시 지점 사이를 이동하는 주문형 이동
 - Air metro: 고정된 위치 사이에 승객을 운송
 - Air cargo: 창고와 상점 사이의 상품 이동
 - 긴급 의료, 구조 작업, 법집행, 날씨 모니터링, 뉴스 수집, 지상 교통 평가 등

UAM conceptual illustration

UAM conceptual illustration by NASA⁴⁾

긴급 의료⁹⁾

공중 화재 지원⁹⁾

2021-07-15 Air cargo by Wing

eVTOL

- electric Vertical Take Off and Landing
 - 전기 추진의 수직 이착륙이 가능한 비행체
- 안전하고 효율적 비행
 - 다중 로터 사용으로 비행 안정성 및 조종 응답성 향상
 - · 안정성을 최우선으로 이동 효율 극대화⁶⁾
 - 고정익과 회전익의 장점 채택
- 오염 배출 없고 소음 발생 감소
 - 고효율 전기 추진 채택
 - · 소음: 헬리콥터 20% 수준 예상⁶⁾
 - 효율: 완전 전기 추진 효율 74%³⁾
 - 터보팬 ~39%, 터보프롭 ~47%
- 도심 밀집 지역 공간 절약
 - 수직 이착륙 도입으로 활주로 공간이 필요 없음

분산 전기 추진 DEP Distributed Electric Propulsion

eVTOL

멀티 콥터	복합형	틸트형
Multi-copter	Lift+cruise	Vectored thrust(tilt rotor/wing/duct)
- 다수의 회전 날개 양력 발생	- 전용의 고정익과 회전익 동시에 존재 - 양력을 위한 수직 회전익 장착 - 추력을 위한 수평 회전익 장착	 고정익과 회전익이 결합된 형태 이륙시: 회전익을 수직으로 tilt시켜 양력 발생 비행시: 회전익을 수평으로 tilt시켜 추력 발생
- 다수의 회전날개에 의해 안정성 향상 - 호버링 효율이 높음 - 기술적 난이도 낮아 상용화 유리	- 수평방향으로의 이동 효율 증대 - 수직 이착륙 가능으로 공간 절약	- 복합형에 비해 수평이동 효율 높음 - 수직 이착륙 가능으로 공간 절약
- 장거리 비행 불가	- 수평이동 시 양력 프로펠러 항력 발생	- 틸팅 변환 구조의 로터 설계 어려움
- 수평이동의 효율이 떨어짐	- 양력 프로펠러가 지면에 가까워 위험	- 호버링 효율이 낮음

· eVTOL 운용

Kitty Hawk, Heaviside, 미국

Overair, Butterfly, 미국+한화

복합형 150~200km/h

EHANG, EH216, 중국

Volocopter, volocity, 독일

Wisk aero, Cora, 미국

Aurora Flight Sciences, Pegasus, 미국

Intracity

멀티 콥터

70~120km/h

Short-haul <55km

서울: 37km X 31km 부산: 46km X 46km

Intercity

Mid-haul <95km

서울 – 용인 40km (12min) 부산 - 대구 88km (27min)

Long-haul <300km

서울 – 대전 140km (27min)

부산 – 제주 270km (54min)

부산 - 후쿠오카 215km (43min)

· UAM 기술 로드맵

- ㆍ자율 비행 기술
 - 외부 환경에 대응하며 목표 지점까지 안전하게 자율적으로 비행하는 기술
 - · 날씨 및 계절 변화, 건물 및 장애물, 빌딩풍 등의 요소에 대응 필요
 - UAM 안정성 확대 및 수요 증진을 위해서 필수 기술
 - 안정성 확보
 - 인지/판단을 위한 정보 제공으로 human error 감소
 - ・ 도심 비행 지역 장애물 자동 감지 및 경고 →사고 위험 저감
 - 수요 증진
 - ・항공 운임의 36% 인건비 차지
 - 완전 자율 비행의 완성을 통해 이용 수요 확대 가능
 - 완전 자율 비행 예상 운임: 1,300원/km⁸⁾
 - 택시 비용: 약 1,900원/km

UAV semantic segmentation¹¹⁾

- 조정사 인건비, 운용비
- 전력 충전비, 착륙 수수료 등
- 기체, 베터리 보

■ 보험료

- ㆍ자율 비행 기술
 - 인지/판단/제어를 통한 통합적 자율 비행 수행
 - 센서
 - 장애물 인지 및 검출을 위한 센서
 - 항법장치
 - 정밀한 비행 위치 및 자세 추정
 - · 도시공간 3차원 정보
 - · cm급 도심지역 3차원 공간 정보 제공
 - 비행 위험요소 식별 및 항공기 위치 추정
 - 실시간 기상 및 재난 정보
 - 변화하는 지역 기상 및 재난 정보
 - 통신 및 보안기술
 - 지연 없는 이동 경로 송/수신
 - 안티 해킹 기술
 - 자율 비행 소프트웨어
 - 센서 퓨전을 통한 경로 계획 및 비행 제어

- ・에너지 기술
 - eVTOL 전력 공급을 구성하는 이차전기 기술
 - eVTOL의 운용 시간을 결정
 - ・ 고밀도/고수명 이차전지 개발로 항속 거리 연장
 - eVTOL 중량 및 기체 판매 운영 수익의 60% 차지⁹⁾
 - ・ 베터리 비용 1% 감소 시 3% 수익 증가 예상
 - · 베터리 수명 1% 증가 시 2% 수익 증가 예상

베터리 밀도 vs. 비행거리

$$R = \eta_t \frac{m_{batt}}{m} \frac{1}{g} \frac{L}{D}$$

R: 비행거리 η_t : 비행효율 m_{batt} : 베터리 밀도 m: 질량 L: 양력 D: 항력

- ・리튬 이온(Li-ion) 전지
 - ・무게가 가볍고 출력 밀도 크며 빠르게 충전 가능하고 오래 유지되는 기술 요구¹¹⁾
 - 예) Vectored thrust eVTOL 300km 비행@에너지 밀도 < 250 wh/kg
 - · Li-ion battery 270kg 이상 요구

결론

- · UAM의 미래
 - 상상 속 미래 기술의 실현을 통해 도심 속 인간 삶을 업그레이드

Question and Answer

감사합니다!

참고 자료

- 1) e-나라지표, "도로교통 혼잡비용", URL:https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1248
- 2) e-나라지표, "국가 온실가스 배출현황", https://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1464
- 3) 김명집, "도심 항공 모빌리티"
- 4) NASA, "Safe and Efficient Air Traffic Operations in a Metropolitan Area for Manned Aircraft and Unmanned Aircraft Aystems", 2018
- 5) FAA, "Electronic code of federal regulation"
- 6) Uber, "Fast-Forwarding to a Future of On-Demand Urban Air Transportation", 2016
- 7) 관계부처합동, "도시의 하늘을 여는 한국형 도심항공 로드맵", 2020
- 8) K-UAM 기술로드맵, "UAM,'25년에 상용화,'35년에는 대구까지 간다.", 2021
- 9) Ehang, "The Future of Transportation: White Paper on Urban Air Mobility Systems", 2020
- 10) 이봉술, 윤주열, 황호연, "Flight Range and Time Analysis for Classification of eVTOL PAV", 2020, 한국항행학회논문지
- 11) Ye Lyu, et al., "UAVid: A semantic segmentation dataset for UAV imagery", 2020, ISPRS Journal of Photogrammetry and Remote Sensing

참고 자료

- ・소개 자료 Link
 - https://github.com/bayescat/UAM.git

· UAM 시장 변화 형태

UAM 시장 변화 형태⁸⁾

구	분	초기(2025~)	성장기(2030~)	성숙기(2035~)
	속도(km/h)	150(80kts)	240(130kts)	300(161kts)
기체	거리(km)	100(62miles)	200(124miles)	300(178miles)
	조종형태	조종사 탑승	원격조정	자율비행
상생 /그 투	교통관리체계	유인교통관리	유인+자동	완전 자동
항행/교통	비행회랑	고정식	혼합식	혼합식
\/autin aut	노선/버티포트	2개/4개소	22개/24개소	203개/52개소
Vertiport	이착륙/계류장	4개/16개	24개/120개	104개/624개
フレブゴ	기체가격	15억	12.5	7.5억
가격 — 2 021-07-13	운임(1인, km당)	3,000원	2,000	1,300

eVTOL: Multi-copter

구분	제원
제조사/국적	Volocopter/독일
기체명	Volocity
 유형	멀티콥터
순항속도	62mph (~100km/h)
운용 거리	35km
승객	2
First flight	2017

구분	제원
제조사/국적	Airbus Helicopter/다국
기체명	CityAirBus
유형	멀티콥터
순항속도	120km/h
운용 거리	60km
승객	4+1
First flight	2019

eVTOL: Multi-copter

구분	제원
제조사/국적	Ehang/중국
기체명	EH 216
유형	멀티콥터
순항속도	99mph (130km/h)
운용 거리	35km
승객	2
First flight	2020 중국 상용 최초 승인

eVTOL: Lift+Cruise

구분	제원
제조사/국적	Wisk Aero/미국
기체명	Cora
유형	Lift+Cruise
순항속도	100mph (160km/h)
운용 거리	40km
승객	2
First flight	최초 자동 비행, 2017

구분	제원
제조사/국적	Aurora Flight Sciences/미국
기체명	Pegasus
 유형	Lift+Cruise
순항속도	112mph (180km/h)
운용 거리	50miles (80km)
 승객	2 (piloted or autonomous)
First flight	-

eVTOL: Vectored Thrust

구분	제원
제조사/국적	Overair/미국+한화
기체명	Butterfly
유형	Vectored thrust
순항속도	240~322km/h
운용 거리	161km
승객	4+1
First flight	Planned 2023

구분	제원
제조사/국적	Hyundai Motor/한국
기체명	S-A1
유형	Tilted rotor + lift 혼합
순항속도	290km/h
운용 거리	97km
 승객	4+1
First flight	-

eVTOL: Vectored Thrust

구분	제원
제조사/국적	Kitty Hawk/미국
기체명	Heaviside
유형	Vectored thrust/전진익
순항속도	180mph (290km/h)
운용 거리	100miles (161km)
승객	1
First flight	2019

구분	제원
제조사/국적	KARI/한국
기체명	OPPAV [*]
유형	Vectored thrust
순항속도	200km/h
운용 거리	60km
승객	4+1
First flight	Planned 2022

* Optionally Piloted Personal Air Vehicle

23