Exp-3: Designing a Neural Network for Classifying Newswires (Multi-Class Classification) Using the Reuters Dataset

Objective:

To design, implement, and train a **deep learning model** to classify **news articles** into multiple categories using the **Reuters dataset** with TensorFlow/Keras.

Prerequisites:

Before starting, ensure you have:

- Basic knowledge of Neural Networks, Deep Learning, and Multi-Class Classification.
- Familiarity with Python, NumPy, and TensorFlow/Keras.
- Installed the required libraries.

Install Dependencies:

pip install tensorflow numpy matplotlib

Step 1: Import Required Libraries

First, import the necessary Python libraries:

import numpy as np

import tensorflow as tf

from tensorflow import keras

import matplotlib.pyplot as plt

Step 2: Load the Reuters Dataset

The **Reuters dataset** is a collection of categorized news articles.

Load the Reuters dataset

from tensorflow.keras.datasets import reuters

Load dataset with the top 10,000 words

(x train, y train), (x test, y test) = reuters.load data(num words=10000)

```
# Display dataset statistics
```

print(f"Training samples: {len(x train)}")

print(f"Testing samples: {len(x_test)}")

print(f"Number of classes: {max(y train) + 1}")

Step 3: Data Preprocessing

To process the dataset, convert sequences into numerical tensors.

Convert sequences into uniform length using padding

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.utils import to categorical

Define parameters

max_length = 200 # Maximum sequence length

Padding sequences to ensure uniform input size

x_train = pad_sequences(x_train, maxlen=max_length)

x test = pad sequences(x test, maxlen=max length)

Convert labels to one-hot encoding

y_train = to_categorical(y_train, num_classes=46)

y_test = to_categorical(y_test, num_classes=46)

Step 4: Building the Neural Network Model

We design a deep learning model using an embedding layer, CNN + LSTM layers, and a dense output layer.

Build the neural network model

model = keras.models.Sequential([

keras.layers.Embedding(input dim=10000, output dim=128, input length=max length),

Display model summary

metrics=['accuracy'])

model.summary()

Explanation:

- **Embedding Layer:** Converts words into dense vector representations.
- Conv1D Layer: Extracts local patterns from word sequences.
- MaxPooling1D Layer: Reduces dimensionality and prevents overfitting.
- LSTM Layers: Capture long-term dependencies in the text.
- Dense Layer: Fully connected layer with ReLU activation.
- **Dropout Layer:** Reduces overfitting by randomly deactivating neurons.
- Softmax Output Layer: Provides probabilities for 46 categories.

Step 5: Training the Model

We train the model using **cross-entropy loss** and monitor validation performance.

Train the model

history = model.fit(x_train, y_train, epochs=10, batch_size=64, validation_split=0.2)

Explanation:

- **Epochs:** Number of iterations over the dataset.
- Batch Size: Number of samples per training step.
- Validation Split: 20% of data is used for validation.

Step 6: Model Evaluation

Evaluate the model's accuracy on test data.

Evaluate the model

```
test loss, test acc = model.evaluate(x test, y test)
```

print(f"Test Accuracy: {test_acc:.4f}")

Explanation:

- Loss Function: Measures the error in predictions.
- Accuracy Metric: Measures the percentage of correct predictions.

Step 7: Visualizing Training Performance

Plot training and validation accuracy/loss to analyze model behavior.

Plot accuracy and loss

```
plt.figure(figsize=(12,5))
```

plt.subplot(1,2,1)

plt.plot(history.history['accuracy'], label='Train Accuracy')

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

plt.legend()

plt.title('Model Accuracy')

```
plt.subplot(1,2,2)
```

plt.plot(history.history['loss'], label='Train Loss')

plt.plot(history.history['val_loss'], label='Validation Loss')

```
plt.legend()
```

plt.title('Model Loss')

plt.show()

Explanation:

- Accuracy Graph: Shows improvement in classification performance over epochs.
- Loss Graph: Helps identify overfitting or underfitting.

Step 8: Making Predictions

Perform inference on unseen data.

Make predictions on test data

predictions = model.predict(x_test)

Display sample prediction

```
sample_index = 5
```

predicted_class = np.argmax(predictions[sample_index])

true class = np.argmax(y test[sample index])

print(f"Predicted Category: {predicted_class}")

print(f"Actual Category: {true_class}")

Explanation:

- Predicts a class label for an unseen news article.
- Compares the predicted category with the actual label.

Result

- Successfully built a deep learning model for classifying newswires into 46 categories.
- Used word embeddings, CNN + LSTM layers, achieving high accuracy.
- Evaluated performance and visualized training progress.

Further Improvements:

- ✓ Use Pretrained Embeddings (GloVe, Word2Vec) for better word representation.
- √ Hyperparameter Tuning (batch size, learning rate, dropout rate).
- ✓ Experiment with Transformer Models (BERT, GPT) for enhanced accuracy.

OUT PUT:

Layer (type)	Output Shape	Param #
embedding (Embedding)	?	0 (unbuilt)
conv1d (Conv1D)	?	0 (unbuilt)
max_pooling1d (MaxPooling1D)	}	0
lstm (LSTM)	?	0 (unbuilt)
lstm_1 (LSTM)	}	0 (unbuilt)
dense (Dense)	}	0 (unbuilt)
dropout (Dropout)	?	0
dense_1 (Dense)	?	0 (unbuilt)

```
Total params: 0 (0.00 B)
Trainable params: 0 (0.00 B)
Non-trainable params: 0 (0.00 B)
            16s 89ms/step - accuracy: 0.3423 - loss: 2.8723 - v
113/113 -
al_accuracy: 0.5253 - val_loss: 1.8037
Epoch 2/10
                        - 9s 78ms/step - accuracy: 0.5236 - loss: 1.8561 - va
113/113 -
l_accuracy: 0.5504 - val_loss: 1.6936
Epoch 3/10
113/113 -
               9s 80ms/step - accuracy: 0.5657 - loss: 1.6632 - va
l_accuracy: 0.5442 - val_loss: 1.6701
Epoch 4/10
                     15s 132ms/step - accuracy: 0.5866 - loss: 1.5307 -
val_accuracy: 0.5949 - val_loss: 1.5623
Epoch 5/10
```

```
- 18s 105ms/step - accuracy: 0.6159 - Ioss: 1.4092 - val_accuracy: 0.6110 -
 val_loss: 1.5755
Epoch 6/10
                           - 9s 81ms/step - accuracy: 0.6509 - loss: 1.3055 - val_accuracy: 0.6299 - v
113/113 -
al_loss: 1.4496
Epoch 7/10
113/113 -
                           - 9s 79ms/step - accuracy: 0.6795 - loss: 1.1961 - val_accuracy: 0.6433 - v
al_loss: 1.4170
Epoch 8/10
113/113 -
                           ■ 10s 85ms/step - accuracy: 0.6991 - loss: 1.1332 - val_accuracy: 0.6349 -
val_loss: 1.4428
Epoch 9/10
113/113 -
                           - 10s 90ms/step - accuracy: 0.7215 - loss: 1.0468 - val_accuracy: 0.6483 -
val_loss: 1.4222
Epoch 10/10
                           - 10s 86ms/step - accuracy: 0.7498 - loss: 0.9557 - val_accuracy: 0.6644 -
113/113 -
val_loss: 1.4248
71/71 -
                         1s 17ms/step - accuracy: 0.6530 - loss: 1.5072
Test Accuracy: 0.6460
```

