

Linear and Discrete Optimization

How efficient is the simplex method?

- Connected layer families
- ► The induction operation

Connected layer families

$$G_{p}=(V_{1}E)$$
, $V \subseteq \binom{m}{n}$ Diameter replaced by $S_{1}E \cup V_{2}$

Connected layer families (cont.)

Connected layer families (definition)

Connected layer family

A connected layer family is a sequence of sets $\mathcal{L}_i \subseteq \binom{[m]}{n}$ for $i = 1, \dots, \ell$ where the sets \mathcal{L}_i satisfy the following conditions.

- a) Disjointness: for all $1 \le i \ne j \le \ell$, $\mathcal{L}_i \cap \mathcal{L}_j = \emptyset$;
- b) Connectivity: for all $1 \le i < j < k \le \ell$ and $u \in \mathcal{L}_i$, $v \in \mathcal{L}_k$ there is a $w \in \mathcal{L}_j$ such that $u \cap v \subseteq w$.

Quiz

The induction operation

Let $\mathcal{L}_1, \ldots, \mathcal{L}_\ell$ be a connected layer family with m symbols in dimension n and let $a \in \{1, \ldots, m\}$ be a symbol. The *induction* on a is the following sequence of operations.

- 1. Remove all vertices from the connected layer family that do not contain a.
- 2. Remove a from all vertices.
- 3. Remove all empty layers.

Induction results in connected layer family

Lemma

Given some n-dimensional connected layer family with m symbols and suppose that the symbol a occurs in some vertex. Induction on a results in a n-1-dimensional connected layer family with m-1 symbols.

Geometric interpretation

