SVKM'S NMIMS

MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT& ENGINEERING/ SCHOOL OF TECHNOLOGY MANAGEMENT

Academic Year: 2023-2024

Program/s: MCA

Stream/s:

Subject: Operating Systems

Date: 08 / 02 / 2024

Marks: 100

Year: I Semester: I

Time: 3 hrs (10am to 1pm)

No. of Pages:3

Re-Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book provided for their use.

- 1) Question No. _1___ is compulsory.
- 2) Out of the remaining questions, attempt any __4__ questions.
- 3) In all ___5_ questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer each new question to be started on a fresh page.
- 6) Figures in brackets on the right-hand side indicate full marks.
- 7) Assume Suitable data if necessary.

Q1	-	Answer briefly:	
CO-2 ; SO- 1,6 ; BL-4	a.	Differentiate between Multilevel queue vs Multilevel feedback queue scheduling.	5
CO-1; SO- 1,6 ; BL-2	b.	Explain the Storage hierarchy in terms of size, speed and cost.	5
CO-3 ; SO- 1,6 ; BL-2	C.	Discuss the "Test and Set" algorithm to facilitate the Critical section.	5
CO-3 ; SO- 1,6 ;BL-3	d.	Illustrate the various techniques of address binding with the help of a diagram.	5
Q2 CO-2; SO- 1,6; BL-2	a.	Identify the problem associated with the bounded buffer. How to solve this problem using semaphore. Elaborate with an example.	10
CO-2; SO- 1,6; BL-4	b.	Consider the following set of processes with the length of CPU burst time given in milliseconds. Draw the Gantt chart for SRTF, RR_2, and Pre-	10

									-					
		emptive Priority scheduling with 1 as high priority. Calculate average waiting and turnaround time.												
		Process	AT	ВТ	Priority									
		P1	0	5	3					0.				
		P2	2	3	. 1									
3:		P3	4	2	2		X							
×		P4	6	1	4					5				
	a.	Describe variable length spanned and unspanned blocking.												
	b	Differentiate internal vs. external fragmentation in memory allocation by												
		taking a su	itable exa	mple.						5				
Q3	c.	A uniprocessor system has three resource types, X, Y, and Z, which are												
CO-3; SO-	shared by 4 processes (P0, P1, P2, and P3), in which only 3 instances of 3								6					
1,6; BL-2									01 /					
		and 3 insta	nces of Y	are availa	able at a p	articular ir	istance. A	s per the						
CO-3; SO-		following s	cenario, \	Will the sy	ystem be S	afe? What	is the Pro	ocess						
1,6; BL-4		terminatio	n seauen	ce order?										
CO-2; SO-				Allocation			Max		1					
2; BL-4			X	Y	Z	X	Y	Z						
		PO	1	0	1	4	3	1	827					
CO-2; SO-		P1	1	1	2	2	1	4						
2; BL-2		P2	1	0	3	1	3	3						
	اء	P3	. 2	0	0	5	4	1						
	d.	Explain various recovery methods from deadlock for graceful process								4				
		termination	1.				S.	3F	4					
	a.	For a disk of 100 tracks, with an initial position at 50, pending requests												
		are <4,34,10,7,19,73,2,15,6,20>. Calculate head movement for SSTF,								10				
		CSCAN, and LOOK. If one adjacent track movement takes 1 ms, what is												
Q4		the total ti	me for th	e request	s for indiv	idual algor	ithms? Co	mpare th	eir					
CO-3; SO- 1; BL-4	efficiency. (Assume flead movement for CSCAN is outwards and LOOK)							K is						
I, UL-4		inwards). The cylinders are numbered from 0 to 99.												
CO-3; SO-	b.	Illustrate the need for Page replacement in memory management. Find the												
1,6; BL-4		Miss and hit ratio in LRU, OPTIMAL & FIFO page replacement algorithm								10				
		for the reference string < 2,3,4,2,1,5,3,2,4,6 > for a main memory size of												
		3-page fram	nec that a	ro omntv	:m:+:a11++									

			7 1
Q5	a.	Explain how the "Diner's Philosopher problem" is solved with an array of	10
CO-2,3; SO-1,6; BL-2		semaphores considering all 3 cases. Demonstrate how the semaphore is helping to solve the Readers' Writers	10
CO-2; SO- 1,6; BL-3	b.	Problem.	10
Q6	а.	Illustrate the Paging hardware with the Translational Look ahead Buffer	10
CO-3; SO- 1,6; BL-3		(TLB) mechanism. Lists the pros and cons of paging. Explain the term I/O Buffering. Describe Block-oriented and stream-	5
CO-3; SO- 1,6; BL-2 CO-3; SO-	b. c.	oriented single buffering methods. Explain the structure of Contiguous and Chained allocation methods.	5
1,6; BL-2		Explain the structure of contiguous and	10
Q7	a.	Interpret Long-term, short-term, and medium scheduler. Discuss the	
CO-2; SO- 1,6; BL-2	b.	importance of context switching in scheduling. Explain Micro kernel architecture and list 2 advantages and	5
CO-1; SO- 1,6; BL-2 CO-1; SO-	c.	disadvantages. Give a short note on Distributed Operating Systems.	5
1,6; BL-2			