Finding a Jordan Canonical Form

Motivation

TEL(V): linear Operator

- diagonal matrix 4 too simple
- · triangular matrix

 L) not simple enough

Motivation

- · V: vector space over F

 for TEL(V), p(x) EF[x]

 p(T) is well-defined
- Define p(x)v := p(T)v=> V as F[x]-module for fixed $T \in L(v)$

Def (Module)

R: (Commutative) ring (with identity)

R-module M is an abelian group with $R \times M \longrightarrow M$ $(r_1 v) \mapsto rv$

(=) \exists homomorphism of rings $\rho: R \longrightarrow \text{End}_{\mathbf{Z}}(M)$

Def.

- . <57 = { r, v, + ... + r, v, | r; eR. v; es n21}
- · J generates M if <57 = M
- · LN7 = RN : cyclic Submodule gen. by N
- · M: finitely generated if (5) = M.131< 00
- $F(v_1 + \cdots + v_n v_n = 0) \Rightarrow r_i = 0 \quad \forall i$ $F(v_1 + \cdots + v_n v_n = 0) \Rightarrow r_i = 0 \quad \forall i$

- · V: torsion element of M

 if VV=0 for some $0 \neq reR$
- · torsion—free
 - if module that has no nonzero torsion elements
- · torsion module
 - if all elements of M are torsion elements

- · the annihilator of VEM

 ann(v) = 1 rer 1 ru=0}
- the annihilator of NCM
 - ann(N) = } ter | rN = 203}
 - 4 ideals of R

Remark

M= (VI,--, Vn): torsion-module

i.e. 3 ai e ann (Vi)

 $\Rightarrow \alpha = \alpha_1 \cdots \alpha_n$ annihilates every elements in M i.e. $\alpha \in \alpha_n(M)$

Modules over a PID Let R be a PID

- 1) reR: irreducible (+) (r): moximal
- 2) reR: prime (=) irreducible
- 3) R: UFD
- 4) R: Noetherian
 - => M: n-gen. => Y N ≤ M: n-gen.

Def

· any generator of ann(N) is called an order of N =: O(N)

Prop.

 $M = A \oplus B \Rightarrow O(M) = (cm(o(A).o(B))$

Decomposition Theorems.

Thm 1. $M = M_{fre} \oplus M_{tot}$

Thm 2 [The Primary Decomposition]

 $QNN(M) = \pi P_i^{e_i} \Rightarrow M = \oplus M_{P_i}$

where Mp; = { v ∈ M | P: v = 0 }

Thm 3 [The Cyclic Decomposition]

 $Ann (M) = P^{e} \Rightarrow M = \bigoplus_{i=1}^{k} \langle V_{i} \rangle \quad Ann (V_{i}) = (P^{e_{i}})$

where $e = e_1 \cdot 2 \cdot \cdots \cdot 2e_k \cdot 2$

such ker et are unique

V as F[x] - module, T ∈ L(v) \Rightarrow F[x] \longrightarrow End (V_T) $P(x) \longmapsto (V \mapsto p(x)V = p(T)v)$ $dim V = N \Rightarrow dim (((v)) = N^2)$ · i. T · · · T n2 are linearly dependent Hence $a_0 + a_1T + \cdots + a_{n^2}T^{n^2} = 0$ not all al's zero ⇒ VT is a torsion module

· FLAJ is a PID

$$\Rightarrow$$
 ann $(V_{-}) = \langle f(n) \rangle$

$$f(\pi) = p_1(\pi)^{e_1} - p_n(\pi)^{e_n}$$

$$\cdot \operatorname{ann}(V_{\tau}) = \langle M_{\tau}(x) \rangle$$

6 minimal polynomial

·
$$M_{T}(\pi) = P_{1}^{e_{1}}(\pi) \cdot \cdot \cdot \cdot P_{n}^{e_{n}}(\pi)$$

Primary Cyclic Decomposition

1)
$$V_{\tau} = V_{P_1} \oplus \cdots \oplus V_{P_m}$$
 $V_{P_i} = \{v \in V \mid P_i^{e_i}(\tau)v = o\}$

2)
$$V_{Pi} = \langle V_{i,1} \rangle \oplus \cdots \oplus \langle V_{i,k_i} \rangle$$

$$\Rightarrow \bigvee_{\tau} = \left[\langle V_{1,1} \rangle \oplus \cdots \oplus \langle V_{1,k,1} \rangle \right] \oplus \cdots$$

$$\oplus \left[\langle \bigvee_{\mathsf{N},\mathsf{I}} \gamma \oplus \cdots \oplus \langle \bigvee_{\mathsf{N},\mathsf{k}_{\mathsf{N}}} \gamma \right]$$

• Characteristic polynomial $C_{\tau}(\pi) = \prod_{i,j} P_i^{e_{i,j}}(\pi)$

Thm

1) (Caley - Hamilton)

$$m_{\tau} \mid C_{\tau}$$
 i.e. $C_{\tau}(T) = 0$
2) $M_{\tau} = p_{1}^{e_{1}} \cdots p_{n}^{e_{n,1}}$

Rational Canonical Form

Rational Canonical Form

$$V_{T} = \left[\langle V_{i,1} \rangle \oplus \cdots \oplus \langle V_{i,k_{1}} \rangle \right] \oplus \cdots \oplus \left[\langle V_{n,1} \rangle \oplus \cdots \oplus \langle V_{n,k_{n}} \rangle \right]$$

$$F_{OF} \langle V_{i,j} \rangle \cdot \mathcal{B}_{i,j} = \left\{ V_{i,j}, T_{V_{i,j}}, \cdots, T_{v_{i,j}} \right\}$$

$$\mathcal{R} = \left\{ \mathcal{B}_{i,i}, \cdots, \mathcal{B}_{i,n_{k_{n}}} \right\}$$

$$\Rightarrow \left[T \right]_{\mathcal{B}} = \operatorname{diag} \left[\operatorname{Cl} P_{i}^{e_{i,i}}(x_{i}) \right]_{i, \dots, i}, \operatorname{Cl} P_{n}^{e_{n,k_{n}}}(x_{n}) \right]$$

$$T \in L(\mathbb{R}^n)$$
 with $M_{\tau}(x) = (x-1)(x^2+1)^2$

<u>/</u>	000-1 1000 010-2 0010	0		2)	1	<i>'</i>	/	000 -1
		0	-1					1000
		1	D					0 0 0 0 0

Jordan Canonical Form

- $M_{\tau}(x)$ Splits over F $\Rightarrow p_i^{e_{i,j}}(x) = (x \lambda_i)^{e_{i,j}}$
- Since $B_{i,j} = \{V_{i,j}, T_{V_{i,j}}, \dots, T_{v_{i,j}}\}$ is a basis, $C_{i,j} = \{V_{i,j}, (T - \lambda_i) V_{i,j}, \dots, (T - \lambda_i)^{e_{i,j} - i} V_{i,j}\}$ is a basis
- $\Rightarrow T((T-\lambda_{i})^{k-1}V_{i,j}) = (T-\lambda_{i})^{k}V_{i,j} + \lambda_{i}V_{i,j}$
- $\Rightarrow [T]_{\mathcal{E}_{i,j}} = \begin{pmatrix} \lambda_{i,0} & 0 & 0 \\ 0 & \lambda_{i,0} & 0 \\ 0 & 0 & \lambda_{i,0} \end{pmatrix} = : \mathcal{J}(\lambda_{i,1}, \mathcal{E}_{i,j})$ $\mathcal{J}_{ordan} \ block$

Jordan Canonical Form

$$M_{\tau}(x) = (\chi - \lambda_1)^{e_1} \cdot \cdot \cdot (\chi - \lambda_n)^{e_n}$$

$$ex.$$
 $\left(\begin{array}{c|c} \lambda & \\ \hline & \lambda \\ \hline & \\ \end{array}\right)$

$$A = \begin{pmatrix} 3 & 5 & 1 & 1 \\ 0 & 4 & 1 & 0 \\ 0 & -9 & -2 & 0 \\ -4 & -16 & -4 & -1 \end{pmatrix} A - I = \begin{pmatrix} 2 & 5 & 1 & 1 \\ 0 & 3 & 1 & 0 \\ 0 & -9 & -3 & 0 \\ -4 & -16 & -4 & -2 \end{pmatrix}$$

$$\chi_{A(1)} = (1 - 1)^4$$

$$\Rightarrow$$
 MA(π) =

#2
$$\begin{bmatrix}
2 & 5 & -2 & 5 & 6 & 1 & 1 \\
0 & 2 & 0 & 0 & 1 & 0 & 0 \\
0 & -4 & 0 & 0 & -2 & 0 & 0
\end{bmatrix}$$

$$A - I = \begin{bmatrix}
0 & 4 & -1 & 3 & 6 & 1 & 0 \\
0 & -2 & 1 & 0 & -2 & 0 & 0 \\
0 & -4 & 1 & -9 & -12 & -3 & 0
\end{bmatrix}$$

$$\begin{bmatrix}
-4 & -24 & 6 & -16 & -27 & -4 & -2
\end{bmatrix}$$

$$\chi_{\mathsf{A}}(x) = (\chi - 1)^{\gamma}$$

#3

$$\begin{pmatrix} 3 & 1 & -2 \\ -1 & 0 & 5 \\ -1 & -1 & 4 \end{pmatrix} \qquad \begin{pmatrix} (A - 2)^{2} & (A - 3) \\ M_{A} & (A) = 0 \end{pmatrix}$$

$$\frac{46}{1 - 6}$$
 $\frac{1}{1 - 2}$
 $\frac{1}{-1}$
 $\frac{1}{-1}$
 $\frac{1}{-1}$
 $\frac{1}{-1}$