Component Count

Time limit: 1 sec

Given a simple graph with \mathbf{v} nodes and \mathbf{e} edges. Determine the number of connected component in the graph. The connected component is a set of nodes that there exists a path connecting any pair of its member.

Each node in the graph is numbered 1 to v.

Input

- The first line of input contains two integer v and \mathbf{e} where $1 \le v \le 10,000$ and $1 \le e \le 10,000$.
- The next e lines describe the edges, one edge per line.
 - Each line contains two integer a and b indicating that there is an undirected edge connecting node a and b where $1 \le a$, $b \le e$

Output

There must be exactly **1** line that contains the number of connected component in the graph.

Suggestion

- For 20% of the test data, each component has either 1 or 2 nodes
- For 50% of the test data, the number of nodes does not exceed 10.

Example

Input	Output
4 3	2
1 2	
2 3	
3 1	
5 0	5
5 1	4
1 2	
5 2	3
1 2	
4 5	
10 7	5
1 2	
2 3	
3 4	
1 3	
2 4	
5 6	
6 7	