

Leveraging Sparse Input and Sparse Models: Efficient Distributed Learning in Resource-Constrained Environments

Emmanouil Kariotakis^{1*}, Grigorios Tsagkatakis^{2,3}, Panagiotis Tsakalides^{2,3}, **Anastasios Kyrillidis**⁴ ¹KU Leuven, ²Institute of CS - FORTH, ³University of Crete (CS), ⁴Rice University CS

Conference on Parsimony and Learning (CPAL)

Presented by: Daniel LeJeune (Stanford) Thank you, Daniel!

This work is part of a bigger "journey"

- This work is part of a bigger "journey"
- "Is it possible to train big models by training smaller versions of them?"

- This work is part of a bigger "journey"
- "Is it possible to train big models by training smaller versions of them?"
- Past work answered this question affirmatively:

Advertising own work: IST

[Yuan et al. 2022, Liao et al 2021, Dun et al., 2022-23; Wan et al. 2022, Hu et al., 2023, Wang et al. 2023;...]

Sparse training methods

[So many works, just look around you...]

- This work is part of a bigger "journey"
- "Is it possible to train big models by training smaller versions of them?"
- Past work answered this question affirmatively:

Advertising own work: IST

[Yuan et al. 2022, Liao et al 2021, Dun et al., 2022-23; Wan et al. 2022, Hu et al., 2023, Wang et al. 2023;...]

Sparse training methods

[So many works, just look around you...]

• Motivation: efficiency; "do we need all these parameters?"; curiosity..

How does this work differentiate?

 Past work has focused on "inner" model sparsity (e.g., hidden layers)

How does this work differentiate?

- Past work has focused on "inner" model sparsity (e.g., hidden layers)
- There are cases where input/output layers create the bottleneck:

Number of classes in original ImageNet: 21K

Number of products in recomm. datasets: Amazon 670K

Number of inputs: Amazon 670K has 135K input feature

32K token input for GPT-4?

.... (many more examples)

How does this work differentiate?

- Past work has focused on "inner" model sparsity (e.g., hidden layers)
- There are cases where input/output layers create the bottleneck:

Number of classes in original ImageNet: 21K

Number of products in recomm. datasets: Amazon 670K Number of inputs: Amazon 670K has 135K input feature 32K token input for GPT-4?

.... (many more examples)

• In this work: we focus on input sparsity and combine this with other sparse-training methods (here IST - more later)

Computer vision (image classification)

Other models (e.g., NLP): future directions

- Computer vision (image classification)
 - Other models (e.g., NLP): future directions
- Reason for input sparsity:
 - Either by nature

Satellite remote sensing: cloud coverage limitations
Patient movement in medical imaging

- Computer vision (image classification)
 - Other models (e.g., NLP): future directions
- Reason for input sparsity:

Either by nature

Satellite remote sensing: cloud coverage limitations Patient movement in medical imaging

Or intentionally (for efficiency)

"Sparse in enough for scaling transformers"

"Masked auto encoders are scalable vision learners"

• •

- Computer vision (image classification)
 - Other models (e.g., NLP): future directions
- Reason for input sparsity:

Either by nature

Satellite remote sensing: cloud coverage limitations Patient movement in medical imaging

Or intentionally (for efficiency)

"Sparse in enough for scaling transformers"

"Masked auto encoders are scalable vision learners"

Consider also a distributed scenario
 Either regular distributed or FL

Not much power to do intensive work Not much memory to keep large models

• "Zooming in" the black box model...

- "Zooming in" the black box model...
- Disclaimer: our goal is to have end-2-end sparse training

Black box model

(Could have been a fully sparse NN modeling + training procedure but...)

- "Zooming in" the black box model...
- Disclaimer: our goal is to have end-2-end sparse training

Black box model

(Could have been a fully sparse NN modeling + training procedure but...)

- "Zooming in" the black box model...
- Disclaimer: our goal is to have end-2-end sparse training
- But we cannot neglect pretrained models
 Masked autoencoders (MAEs)

- The idea is that of regression (reconstruction) from sparse input (images)
- The whole architecture is Transformer-based (ViT)
- Pretrained on ImageNet data

Decoding (image reconstruction) Sparse input encoder decoder input target

Feature extraction

- The idea is that of regression (reconstruction) from sparse input (images)
- The whole architecture is Transformer-based (ViT)
- Pretrained on ImageNet data

• In our case: we use the feature extractor only! Decoding (image reconstruction) Sparse input decoder encoder input target Feature extraction

- "Zooming in" the black box model...
- Disclaimer: our goal is to have end-2-end sparse training
- But we cannot neglect pretrained models
 Masked autoencoders (MAEs)

Union of neurons make original network
(Note: union of parameters do not make original network necessarily)

How to decompose a NN:

How to train NN in a distributed fashion:

Parameter node

IST: Independent Subnet Training

IST: Independent Subnet Training

IST: Independent Subnet Training

• Simple tasks (Disclaimer: we need to do a better job on this moving forward)

Dataset	Classes	Image Size	Images per Class	Total (Training - Test Set)
CIFAR10	10	32×32	6,000	60,000 (50,000 - 10,000)
RESISC45	45	256×256	700	31,500 (27,000 - 4,500)
AID	30	600×600	$220 \sim 420$	10,000 (8,500 - 1,500)

• Simple tasks (Disclaimer: we need to do a better job on this moving forward)

Dataset	Classes	Image Size	Images per Class	Total (Training - Test Set)
CIFAR10	10	32×32	6,000	60,000 (50,000 - 10,000)
RESISC45	45	256×256	700	31,500 (27,000 - 4,500)
AID	30	600×600	$220 \sim 420$	10,000 (8,500 - 1,500)

• Ablation study: Can we use fixed masks to sparsity inputs? Seems so!

• Simple tasks (Disclaimer: we need to do a better job on this moving forward)

Dataset	Classes	Image Size	Images per Class	Total (Training - Test Set)
CIFAR10	10	32×32	6,000	60,000 (50,000 - 10,000)
RESISC45	45	256×256	700	31,500 (27,000 - 4,500)
AID	30	600×600	$220 \sim 420$	10,000 (8,500 - 1,500)

• Ablation study: Can we use fixed masks to sparsity inputs? Seems so!

• Simple tasks (Disclaimer: we need to do a better job on this moving forward)

Dataset	Classes	Image Size	Images per Class	Total (Training - Test Set)
CIFAR10	10	32×32	6,000	60,000 (50,000 - 10,000)
RESISC45	45	256×256	700	31,500 (27,000 - 4,500)
AID	30	600×600	$220 \sim 420$	10,000 (8,500 - 1,500)

• Ablation study: Can we use fixed masks to sparsity inputs? Seems so!

sparsity could be solved fine (given enough

data points)

This means that:

Applications

with natural

• Simple tasks (Disclaimer: we need to do a better job on this moving forward)

Dataset	Classes	Image Size	Images per Class	Total (Training - Test Set)
CIFAR10	10	32×32	6,000	60,000 (50,000 - 10,000)
RESISC45	45	256×256	700	31,500 (27,000 - 4,500)
AID	30	600×600	$220 \sim 420$	10,000 (8,500 - 1,500)

• Ablation study: Can we use fixed masks to sparsity inputs? Seems so!

(c) AID

This means that:

Applications
 with artificial
 input sparsity
 do not require
 random mask
 generation per
 iteration

• The system works for various masking ratios, preserving accuracy

• The system works for various masking ratios, preserving accuracy

	Masking Ratio	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
01	Masked Images Size (in GB)	0.205	0.184	0.164	0.143	0.123	0.102	0.082	0.061	0.041	0.020
CIFAR10	CLS Tokens Size (in GB)					0.153	36				
CI	Max Accuracy	0.823	0.837	0.836	0.840	0.848	0.851	0.847	0.829	0.805	0.697
C45	Masked Images Size (in GB)	7.078	6.370	5.662	4.954	4.247	3.539	2.831	2.123	1.416	0.708
RESISC45	CLS Tokens Size (in GB)					0.08	3				
RE	Max Accuracy	0.893	0.891	0.889	0.891	0.882	0.880	0.869	0.857	0.824	0.749
3	Masked Images Size (in GB)	12.240	11.016	9.792	8.568	7.344	6.120	4.896	3.672	2.448	1.224
AID	CLS Tokens Size (in GB)					0.02	6				
20	Max Accuracy	0.923	0.925	0.928	0.916	0.918	0.917	0.916	0.909	0.883	0.810

• The system works for various masking ratios, preserving accuracy

	Masking Ratio	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
10	Masked Images Size (in GB)	0.205	0.184	0.164	0.143	0.123	0.102	0.082	0.061	0.041	0.020
CIFAR10	CLS Tokens Size (in GB)					0.153	36				
CI	Max Accuracy	0.823	0.837	0.836	0.840	0.848	0.851	0.847	0.829	0.805	0.697
C45	Masked Images Size (in GB)	7.078	6.370	5.662	4.954	4.247	3.539	2.831	2.123	1.416	0.708
RESISC45	CLS Tokens Size (in GB)					0.08	3				
RE	Max Accuracy	0.893	0.891	0.889	0.891	0.882	0.880	0.869	0.857	0.824	0.749
	Masked Images Size (in GB)	12.240	11.016	9.792	8.568	7.344	6.120	4.896	3.672	2.448	1.224
AID	CLS Tokens Size (in GB)					0.02	6				
	Max Accuracy	0.923	0.925	0.928	0.916	0.918	0.917	0.916	0.909	0.883	0.810

• The system works for various masking ratios, preserving accuracy

	Masking Ratio	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
01	Masked Images Size (in GB)	0.205	0.184	0.164	0.143	0.123	0.102	0.082	0.061	0.041	0.020	
CIFAR10	CLS Tokens Size (in GB)	Accuracy preserved!										
CI	Max Accuracy	0.823	0.837	0.836	0.840	0.848	0.851	0.847	0.829	0.805	0.697	
245	Masked Images Size (in GB)	7.078	6.370	5.662	4.954	4.247	3.539	2.831	2.123	1.416	0.708	
RESISC	CLS Tokens Size (in GB)	0.083										
RE	Max Accuracy	0.893	0.891	0.889	0.891	0.882	0.880	0.869	0.857	0.824	0.749	
	Masked Images Size (in GB)	12.240	11.016	9.792	8.568	7.344	6.120	4.896	3.672	2.448	1.224	
AID	CLS Tokens Size (in GB)					0.00	C					
	Max Accuracy	0.923	0.925	0.928	0.916	0.918	0.917	0.916	0.900	0.883	0.810	

• The system works for various masking ratios, preserving accuracy

	Masking Ratio	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
10	Masked Images Size (in GB)	0.205	0.184	0.164	0.143	0.123	0.102	0.082	0.061	0.041	0.020
CIFAR10	CLS Tokens Size (in GB)					0.153	36				
CI	Max Accuracy	0.823	0.837	0.836	0.840	0.848	0.851	0.847	0.829	0.805	0.697
C45	Masked Images Size (in GB)	7.078	6.370	5.662	4.954	4.247	3.539	2.831	2.123	1.416	0.708
RESISC45	CLS Tokens Size (in GB)					0.08	3				
RE	Max Accuracy	0.893	0.891	0.889	0.891	0.882	0.880	0.869	0.857	0.824	0.749
	Masked Images Size (in GB)	12.240	11.016	9.792	8.568	7.344	6.120	4.896	3.672	2.448	1.224
AID	CLS Tokens Size (in GB)					0.02	6				
	Max Accuracy	0.923	0.925	0.928	0.916	0.918	0.917	0.916	0.909	0.883	0.810

• The system works for various masking ratios, preserving accuracy

i:				Communication Co				755000 00.750	5750 - 850 - 155	1801 8900	200 Cen Annels
	Masking Ratio	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
R10	Masked Images Size (in GB)	0.205	0.184	0.164	0.143	0.123	0.102	0.082	0.061	0.041	0.020
CIFAR	CLS Tokens Size (in GB)					0.153	36				
CI	Max Accuracy	0.823	0.837	0.836	0.840	2.848	0.851	0.847	0.829	0.805	0.697
C45	Masked Images Size (in GB)	7.078	6.370	5,662	4.954 U	4.247	3 539	2.831	v2 ¹²³	1.416	0.708
RESISC45	CLS Tokens Size (in GB)					0.08					
RE	Max Accuracy	0.893	0.891	0.889	0.891	0.882	0.880	0.869	0.857	0.824	0.749
	Masked Images Size (in GB)	12.240	11.016	9.792	8.568	7.344	6.120	4.896	3.672	2.448	1.224
AID	CLS Tokens Size (in GB)					0.02	6				
	Max Accuracy	0.923	0.925	0.928	0.916	0.918	0.917	0.916	0.909	0.883	0.810

• This work is far from complete; some next steps:

- This work is far from complete; some next steps:
 - More datasets (and more challenging ones) should be considered

- This work is far from complete; some next steps:
 - More datasets (and more challenging ones) should be considered
 - More applications (within CV and beyond, like NLP) should be considered
 - Especially, in the BERT-type of models, input sparsity = token compression (important)!

- This work is far from complete; some next steps:
 - More datasets (and more challenging ones) should be considered
 - More applications (within CV and beyond, like NLP) should be considered
 - Especially, in the BERT-type of models, input sparsity = token compression (important)!
 - We have been "cheating" with using pretrained model (too large for some applications)
 - Is it possible to have pure end-2-end sparse training? What about the output layer?

- This work is far from complete; some next steps:
 - More datasets (and more challenging ones) should be considered
 - More applications (within CV and beyond, like NLP) should be considered
 - Especially, in the BERT-type of models, input sparsity = token compression (important)!
 - We have been "cheating" with using pretrained model (too large for some applications)
 - Is it possible to have pure end-2-end sparse training? What about the output layer?
 - Recent work by Rice's group that goes beyond this work:
 - MoEs for sparse training: FedJets [2023], MoPs [2023], ... (collaboration with MSR)
 - Lottery ticket hypothesis extensions: Strong LTH [2023], How much pretraining [2023]

- This work is far from complete; some next steps:
 - More datasets (and more challenging ones) should be considered
 - More applications (within CV and beyond, like NLP) should be considered
 - Especially, in the BERT-type of models, input sparsity = token compression (important)!
 - We have been "cheating" with using pretrained model (too large for some applications)
 - Is it possible to have pure end-2-end sparse training? What about the output layer?
 - Recent work by Rice's group that goes beyond this work:
 - MoEs for sparse training: FedJets [2023], MoPs [2023], ... (collaboration with MSR)
 - Lottery ticket hypothesis extensions: Strong LTH [2023], How much pretraining [2023]
 - Can we theoretically characterize the input layer sparsity?
 - Even an NTK analysis would be a great start

I would love to be there :(- Thank you Daniel! For questions: <u>anastasios@rice.edu</u>