FICHE 02-03 : Sous-groupe de \mathfrak{S}_p et réciproque du théorème de Lagrange : MET Algebre E7

Yvann Le Fay Juin 2019

Enoncé

Soit H un sous-groupe de \mathfrak{S}_p tel que $[\mathfrak{S}_p:H]=\frac{|\mathfrak{S}_p|}{|H|}\leq p-1$. Montrer que $[\mathfrak{S}_p:H]\in\{1,2\}$. On montrera d'abord que les p-cycles sont dans H.

Solution

Soit $\gamma \in \mathfrak{S}_p$, un p-cycle, introduisons $\gamma^i H$ pour $0 \le i \le p-1$. Il existe alors $i, j \in [0; p-1], i \ne j$ tels que $\gamma^i H \cap \gamma^j H \ne \emptyset$ car sinon

$$|\mathfrak{S}_p| \ge \sum_{k=0}^{p-1} |\gamma^k H| = p|H|$$

Ainsi, $e \neq \gamma^{j-i} \in H$ puis $\langle \gamma \rangle \subset H$. Or les 3-cycles peuvent s'écrire avec des p-cycles, en effet,

$$(i j k) = (i k j a_{p-3} \dots a_1)(j i k a_1, \dots a_{p-3}).$$

De plus les 3-cycles génèrent \mathfrak{A}_p , ainsi $p!/2 \leq |H|$, d'où $[\mathfrak{S}_p : H] \in \{1,2\}$.

Remarquons que cela donne un contre-exemple à la réciproque du théorème de Lagrange, pour p=5, il n'existe pas de sous-groupe d'ordre 40 ($120/40=3\leq 5$).