TP5: Les théorèmes fondamentaux

Exercice pour l'extraction de données :

- 1. Charger le jeu de données cardiaque.csv et l'affecter à cardiaque. En extraire l'échantillon des pressions systoliques chez les patients ayant un BMI supérieur ou égal à 23 et en donner les résumés numériques usuels : taille, moyenne, écart-type empirique corrigé (noté s' dans le cours) et quartiles.
- 2. Charger les jeux de données her.txt, donnéesSerie4.csv et diamantsPurs.csv et les affecter aux data.frame nommés respectivement her, serie et diamants. Quelles sont les dimensions de chaque data.frame?

Faire un script avec R Markdown:

Télécharger sur Chamilo le modèle TP5.Rmd et exécuter les tronçons les uns après les autres.

Objectifs : Comprendre la loi des grands nombres et le théorème central limite à l'aide de données simulées.

1 Loi des grands nombres

Soit $X_1,...,X_n$ une suite de variables aléatoires indépendantes de même loi et telles que $E(X_1) < +\infty$ alors

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \longrightarrow E(X_1) \quad \text{lorsque} \quad n \longrightarrow +\infty$$

Lorsque la convergence de \bar{X}_n a lieu presque surement (on accepte qu'elle ne se produise pas sur un ensemble de probabilité nulle) on parle de *la loi* forte *des grands nombres* (c'est celle qu'illustrent les exercices de cette section).

Exercice 1 : Modèle de Bernoulli

Dans cet exercice on considère un échantillon i.i.d. de X pour X de loi de Bernoulli $\mathcal{B}(p)$ avec $p \in]0,1[$ et de taille n.

Avec R la loi de Bernoulli de paramètre p s'obtient comme un cas particulier de la loi binômiale : $\mathcal{B}(1,p)$. Sa probabilité en k (k=0 ou k=1) sera calculée avec dbinom(k,1,p), sa FdR en x avec pbinom(x,1,p), son quantile d'ordre α avec $qbinom(\alpha,1,p)$. Pour finir si on veut tirer n réalisations indépendantes de X (c'est à dire générer un échantillon de taille n de X) on utilise rbinom(n,1,p).

- 1. Créer les objets ${\tt p}$ et ${\tt n}$ auquels seront affectées les valeurs 0.45 pour p et 100 pour n. Créer ${\tt x}$ auquel seront affectés n tirages indépendants de X.
- 2. Calculer les moyennes empiriques des k premières valeurs de l'échantillon tiré pour k = 1, ..., n et les affecter à un vecteur qui sera nommé suitemoy. On pourra utiliser la fonction cumsum() pour éviter l'écriture d'une boucle for.
- 3. Représenter la suite des moyennes obtenues avec plot() et y ajouter la droite horizontale qui passe par l'ordonnée p. Observer et conclure (on pourra réexécuter plusieurs fois le tirage de X et le graphique ci-dessus pour apprécier le caractère aléatoire de la série calculée mais avec une convergence vers p dans tous les cas).

Exercice 2: Modèle Normal

Dans cet exercice on considère un échantillon i.i.d. de X pour X de loi normale $\mathcal{N}(\mu, \sigma^2)$ et de taille n.

Refaire les questions précédentes en utilisant la loi normale au lieu de celle de Bernoulli avec $\mu = -2$ et $\sigma = 5$ (On imposera les limites [-10,6] sur l'axe de ordonnées). Conclure. Que se passe t-il si on augmente σ à 10 ? si on le diminue à 2 ?

2 Théorème central limite

Soient $X_1, ..., X_n$ une suite de variables aléatoires indépendantes de même loi et telles que $E(X_1) = \mu < +\infty$ et $V(X_1) = \sigma^2 < +\infty$ et U une variable aléatoire normale centrée réduite (i.e. de loi N(0,1)) alors :

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{\mathcal{L}} U \qquad \text{lorsque} \qquad n \longrightarrow +\infty.$$

 $\stackrel{\mathcal{L}}{\longrightarrow}$ désigne la convergence en loi. Ce théorème signifie que lorsque $n \longrightarrow +\infty$, la fonction de répartition (resp. la densité) de $\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma}$ converge en tout point vers la fonction de répartition (resp. la densité) de U.

Ce théorème implique également que la fonction de répartition de \bar{X}_n peut-être approchée par celle d'une variable de loi $\mathcal{N}(\mu, \sigma^2/n)$ et que celle de $n\bar{X}_n = \sum_{i=1}^n X_i$ peut-être approchée par la FdR d'une variable de loi $\mathcal{N}(n\mu, n\sigma^2)$.

Exercice 3: modèle normal

Dans cet exercice on considère d'abord un échantillon i.i.d. de X pour X de loi normale $\mathcal{N}(\mu, \sigma^2)$ et de taille n. Ensuite on considère N échantillons de taille n de X.

- 1. Définir n=5, $\mu=-2$ et $\sigma=2$ et tirer un échantillon x de taille n de X. Calculer sa moyenne que l'on affectera à moyx et l'afficher. Observer la variation de la moyenne calculée lorsque l'on retire l'échantillon (il suffit pour cela de réexécuter la commande qui définit x et celle qui calcule sa moyenne).
- 2. Refaire la question précédente avec N=2 échantillons de taille n et affecter les deux moyennes calculées à un objet nommé moyennes. On pourra utiliser rbind pour définir une matrice à N lignes et n colonnes où ranger les données simulées. Faire ensuite le calcul des deux moyennes en une seule commande, grâce à la fonction rowMeans().
- 3. Tirer à présent N=100 échantillons de taille n et les affecter à une matrice qui sera nommée Mdata (on utilisera la fonction matrix()).
- 4. Calculer les moyennes en ligne de Mdata. Soit avec rowMeans() soit avec apply (Mdata, MARGIN=1, mean) et les affecter à moyennes. Afficher ce dernier objet dans lequel on trouve les N réalisations de \bar{X}_n .
- 5. Calculer la moyenne empirique et l'écart-type empirique corrigé de moyennes.
- 6. Représenter l'histogramme des N réalisations de \bar{X}_n et y superposer la densité d'une loi normale dont les paramètres seront convenablement choisis. Ajouter également une verticale rouge passant par l'abscisse indiquant la moyenne de l'échantillon représenté ici.
- 7. Calculer à présent les N réalisations de $\frac{\sqrt{n}(\bar{X}_n-\mu)}{\sigma}$ et les affecter à moyennescr. Faire l'histogramme de moyennescr où sera superposée la densité de la normale centrée réduite et la verticale passant par la moyenne empirique de l'échantillon.
- 8. Observer les changements lorsque l'on fait varier n ou N et expliquer les résultats obtenus.

Exercice 4: modèle de Bernoulli

Dans cet exercice on considère d'abord un échantillon i.i.d. de X pour X de loi $\mathcal{B}(1,p)$ et de taille n. Ensuite on considère N échantillons de taille n de X.

Refaire toutes les questions de l'exercice précédent (on pourra copier coller toutes les instructions du script de l'exercice 3 et remplacer seulement le tirage des observations sous la loi normale par un tirage sous la loi de Bernoulli de paramètre p qu'on aura défini au préalable; ajuster aussi les lignes de commandes notamment pour définir les paramètres des densités à superposer....) Que se passe-t-il pour n=5 et N=10000? Le théorème central limite s'applique t-il-dans ce cas ? Expliquer. Choisir à présent n=100. Pour finir, conclure sur les cas limites pour $n\to +\infty$ et $N\to +\infty$.