Übungsaufgaben LA 1

Aufgabe 1. Gruppen und Homomorphismen

Sei (G, *, e) eine Gruppe und $\varphi : G \to G, g \mapsto g * g$.

- a) Zeige: φ ist ein Gruppenhomomorphismus genau dann, wenn G abelsch ist.
- b) Es gelte $g \neq g^{-1}$ für alle $g \in G \setminus \{e\}$. Zeige, dass φ injektiv ist.
- c) Es gelte g * g = e für alle $g \in G$. Zeige, dass G abelsch ist.

Aufgabe 2. Symmetrische Gruppe

Seien
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 6 & 1 & 4 \end{pmatrix}, \ \tau = (1\ 2\ 3\ 4)(5\ 6) \in \mathfrak{S}_6.$$

- a) Bestimme $\operatorname{sgn}(\sigma)$, $\operatorname{sgn}(\tau)$, $\operatorname{sgn}(\sigma \circ \tau)$ und $\operatorname{sgn}(\sigma^{-1})$.
- b) Bestimme die Permutationsmatrizen $\varphi(\sigma)$ und $\varphi(\tau)$.

Aufgabe 3. Dualraum

Sei V ein endlichdimensionaler Vektorraum über einem Körper K. Für einen Untervektorraum $U \subseteq V$ definieren wir

$$U^0 := \{ \varphi \in V^* \mid \varphi(u) = 0 \quad \forall u \in U \}$$

Sei $U \subseteq V$ ein Untervektorraum.

- a) Zeige, dass U^0 ein Untervektorraum von V^* ist.
- b) Sei (u_1, \ldots, u_k) eine Basis von U und $\mathcal{B} = (u_1, \ldots, u_k, v_1, \ldots, v_r)$ eine Basis von V. Es bezeichne $\mathcal{B}^* = (u_1^*, \ldots, u_k^*, v_1^*, \ldots, v_r^*)$ die zu \mathcal{B} duale Basis von V^* . Zeige, dass (v_1^*, \ldots, v_r^*) eine Basis von U^0 ist und gib die Dimension von U^0 in Abhängigkeit von U und V an.
- c) Sei W ein endlichdimensionaler K-Vektorraum und $f:V\to W$ eine lineare Abbildung. Zeige:
 - (i) $\operatorname{im}(f^*) = \ker(f)^0$
 - (ii) $\ker(f^*) = \operatorname{im}(f)^0$

Aufgabe 4. Faktorraum

Sei V ein endlichdimensionaler \mathbb{R} -Vektorraum, $W \subseteq V$ ein Untervektorraum, U ein Komplement zu W der Dimension $n \in \mathbb{N}$ und (u_1, \ldots, u_n) eine Basis von U.

- a) Zeige, dass das System $(u_1 + W, \dots, u_n + W)$ von Elementen von V/W linear unabhängig ist.
- b) Zeige, dass $(u_1 + W, \dots, u_n + W)$ ein Erzeugendensystem von V/W ist.

Aufgabe 5. Sei K ein Körper, $\alpha \in K$ und ev : $K[X] \to K$, $f \mapsto f(\alpha)$.

- a) Zeige, dass ev linear ist.
- b) Sei $I = \{ f \in K[X] \mid f(\alpha) = 0 \}$. Zeige, dass I ein Untervektorraum von K[X] ist und dass $K[X]/I \cong K$ gilt.

Aufgabe 6. Sei K ein Körper, V ein K-Vektorraum und $v \in V \setminus \{0\}$. Zeige, dass es ein $\varphi \in V*$ gibt mit $\varphi(v) \neq 0$.

Aufgabe 7. Dia-/Trigonalisierbarkeit

Es seien folgende Matrizen gegeben:

$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 2 & 1 \\ -1 & -1 & 2 \end{pmatrix} \in \mathcal{M}_{3,3}(\mathbb{Q})$$

$$B = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 2 & 3 \\ 3 & 0 & 1 \end{pmatrix} \in \mathcal{M}_{3,3}(\mathbb{Z}/5\mathbb{Z})$$

$$C = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & 2 & 2 \\ 4 & -2 & 0 & 0 \end{pmatrix} \in \mathcal{M}_{4,4}(\mathbb{Q})$$

$$D = \begin{pmatrix} -2 & 1 \\ -2 & 2 \end{pmatrix} \in \mathcal{M}_{2,2}(\mathbb{Q})$$

- a) Bestimme die Eigenräume von A
- b) Zeige daß A nicht diagonalisierbar, aber8 trigonalisierbar ist und bestimme eine Matrix $S \in GL_3(\mathbb{Q})$, sodass $S^{-1}AS$ eine obere Dreiecksmatrix ist.
- c) Ist B trigonalisierbar oder sogar diagonalisierbar?
- d) Bestimme die Eigenräume von C
- e) Ist C trigonalisierbar oder sogar diagonalisierbar? Falls ja, bestimme eine Matrix $S \in GL_n(\mathbb{Q})$, sodass $S^{-1}CS$ eine obere Dreiecks- bzw. Diagonalmatrix ist.
- f) Zeige daß D nicht trigonalisierbar ist. Ist D über \mathbb{R} trigonalisierbar?

Aufgabe 8. Bilinearformen

Sei $V = \{A \in M_{3,3}(\mathbb{R}) : A = -A^t\}$ der Vektorraum der antisymmetrischen 3×3 -Matrizen über dem Körper \mathbb{R} . Sei zudem $x = \begin{pmatrix} 1 & 2 & -1 \end{pmatrix}^t \in \mathbb{R}^3$ gegeben. Wir definieren

$$\gamma \colon V \times V \to \mathbb{R}, (A, B) \mapsto \langle Ax, Bx \rangle$$

Hierbei bezeichne $\langle \cdot, \cdot \rangle$ das Standardskalarprodukt auf dem \mathbb{R}^3

- a) Zeige, daß γ eine symmetrische Bilinearform auf V ist.
- b) Bestimme die Fundamentalmatrix von γ bezüglich der Basis

$$\underline{A} = \left(\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \right)$$

c) Ist γ nicht-ausgeartet?

Hinweis: Verwende Teil b)

d) Ist \underline{A} eine Orthogonalbasis von V?

Aufgabe 9. Quadratische Räume

Seien V, γ wie in Aufgabe 8 gegeben.

- a) Bestimme eine Orthogonalbasis von V mithilfe des Gram-Schmidt-Verfahrens
- b) Betrachte die Fundamentalmatrix G aus Aufgabe 8b) und finde ein $S \in GL_3(\mathbb{R})$, sodass S^tAS eine Diagonalmatrix ist.

c) Bestimme das orthogonale Komplement von Lin $\left(\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}\right)$ in V

Aufgabe 10. Euklidische Räume

Sei $V=\mathbb{R}[X]_{\leq 2}$ der Vektorraum der reellen Polynome vom Grad maximal 2. Für $f,g\in V$ definiere

$$\langle f, g \rangle = \sum_{j=0}^{2} f(j)g(j)$$

- a) Zeige, daß $(V, \langle \cdot, \cdot \rangle)$ ein Euklidischer Raum ist.
- b) Bestimme eine Orthonormalbasis von V bezüglich $\langle \cdot, \cdot \rangle$

Seien nun $(V_1, \gamma_1), (V_2, \gamma_2)$ beliebige Euklidische Räume und $f: (V_1, \gamma_1) \to (V_2, \gamma_2)$ ein Homomorphismus quadratischer Räume. Zeige:

c) Sei $U \subset V_2$ ein Untervektorraum. Dann gilt

$$f^{-1}(U)^{\perp} = f^{-1}(U^{\perp})$$

Aufgabe 11. Euklidische Räume

- a) Ist $(M_{n,n}(\mathbb{R}), \gamma)$ ein Euklidischer Raum mit $\gamma(A, B) = \operatorname{Sp}(A \cdot B)$?
- b) Ist $(M_{m,n}(\mathbb{R}), \gamma)$ ein Euklidischer Raum mit $\gamma(A, B) = \operatorname{Sp}(A^t \cdot B)$?

Aufgabe 12. Symmetrische Matrizen

- a) Sei $A \in M(n \times n)$ symmetrisch. Zeige die Äquivalenz der folgenden Aussagen:
 - i) A ist positiv definit
 - ii) Alle Eigenwerte von A sind positiv

Sei
$$A = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 8 & -4 \\ 1 & -4 & 11 \end{pmatrix} \in \mathcal{M}_{3,3}(\mathbb{R})$$

- b) Zeige, daß A positiv definit ist (Ohne Verwendung von Teil c)
- c) Bestimme eine Matrix $T \in GL_3(\mathbb{R})$ sodaß $T^tT = A$

Aufgabe 13. Orthogonale Matrizen

Sei $A \in M_{3,3}(\mathbb{R})$. Zeige oder widerlege die folgenden Aussagen:

- a) Ist A orthogonal, dann ist det $A = \pm 1$.
- b) Ist $\det A = \pm 1$, dann ist A orthogonal.
- c) Ist A orthogonal, dann existiert ein Eigenwert λ von A mit $|\lambda| = 1$.

3