

10.4 CYCLIC CODES

10.4.1 Cyclic Redundancy Check

Dataword	Codeword	Dataword	Codeword
0000	0000000	1000	1000101
0001	0001011	1001	1001110
0010	0010110	1010	1010011
0011	0011101	1011	1011000
0100	0100111	1100	1100010
0101	0101100	1101	1101001
0110	0110001	1110	1110100
0111	0111010	1111	1111111

Division in CRC

- 1) Encoder: Dataword 1001 / Divisor 1011
- 2) Decoder: Codeword 1001110 / Codeword 1000110

10.4.2 Hardware Implementation: Divisor, Augmented Dataword, Remainder

a. Encoder

b. Decoder

10.4.3 Polynomials

Degree of a Polynomial: $x^6 + x + 1 \rightarrow 27$ bit of fibliop (5)

Adding and Subtracting Polynomials: coefficients are only 0 and 1 => modulo-2

Multiplying or Dividing Terms / Shifting

 $\frac{\chi^{5}(\chi^{5}+1)}{\chi^{5}(\chi^{5}+1)}$

Cyclic Code Encoder Using Polynomials

10.4.4 Cyclic Code Analysis $(x^g)D(x) = Q(x) \oplus R(x)$ $(x) \oplus G(x)$ $(x) \oplus G(x)$ $(x) \oplus G(x)$

action in the contract of the

1.33.00

Single-Bit Error: If the generator has more than one term and the coefficient of x^0 is 1, all single errors can be caught.

Single-Bit Error: If the generator has more than one term and the coefficient of x^0 is 1, all single errors can be caught.

Star de to

Two Isolated Single-Bit Errors: If a generator cannot divide $x^t + 1$ (t between 0 and n – 1), then all isolated double errors can be detected.

Odd Numbers of Errors: A generator that contains a factor of x + 1 can detect all odd-numbered errors.

กั x + 1 เชื่องการใช้ (เองเวเก

Burst Errors: \square All burst errors with $L \le r$ will be detected.

- \square All burst errors with L = r + 1 will be detected with probability 1 $(1/2)^{r-1}$.
- \square All burst errors with L > r + 1 will be detected with probability 1 $(1/2)^r$.

A good polynomial generator needs to have the following characteristics:

- 1) It should have at least two terms.
- 2) The coefficient of the term x^0 should be 1.
- 3) It should not divide $x^t + 1$, for t between 2 and n 1.
- 4) It should have the factor x + 1.

Standard Polynomials

Name	Polynomial	Application				
CRC-8	$x^8 + x^2 + x + 1$	ATM header				
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x^2 + 1$	ATM AAL] 4	1	1	F 45 2
CRC-16	$x^{16} + x^{12} + x^5 + 1$	HDLC		ь 0	6	F 15]
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$	LANs] †] †	2 5	4	A915 46
Advantages of Cyclic Codes			6	1	6	E 15
Other Cycl	ic Codes	484 6	0	0	0	0

10.5 CHECKSUM

10.5.1 Idea

Sender site:	Receiver site:				
1. The message is divided into 16-bit words.	1. The message (including checksum) is				
2. The value of the checksum word is set to 0.	divided into 16-bit words.				
3. All words including the checksum are	2. All words are added using one's				
added using one's complement addition.	complement addition.				
4. The sum is complemented and becomes the	3. The sum is complemented and becomes the				
checksum.	new checksum.				
5. The checksum is sent with the data.	4. If the value of checksum is 0, the message				
	is accepted; otherwise, it is rejected.				