SOLVED MISCELLANEOUS EXERCISE - 11

1.	Multiple Choice Qi Four possible answ Tick (✓) the correc	ers are given for	the following	questions.		
(i)	A 4 cm long chord sub stands a central angle of 60° . The radial segment this circles:					
	(a) 1	(b) I	(c) 3	(d) 4		
(ii)	The length of a chord and the radial segment of a circle are congruent, the centra angle made by the chord will be:					
	(a) 30°	(h) 45°	(c) 60°	(d) 75°		
(iii)	Out of two congruent arcs of a circle, if one are makes a central angle of 30° then the other arc will subtend the central angle of:					
	(a) 15°	(b) 30°	(c) 45°	(d) 60°		
(iv)	An arc subtends a central angle of 40° then the corresponding chord will subtend a central angle of:					
	(a) 26°	(b) 40°	(c) 60°	(d) 8.0°		
(v)	A pair of chords of (a) congruent	a circle subtendia (b) incongruent		e nt central ang oping (d) paral		
(vi)	If an area of a circle subtends a central angle of 60°, then the corresponding chord of the area will make the central angle of:					
	(a) 20°	(b) 40°	(c) 60°	(d) 8 0°		
(vii)	The semi circumfer	ence and the dia	meter of a circ	cle both subter	id a central an	gle
	(a) 90°	(b) 180°	(c) 270°	(d) 360°		
(viii)	The chord length of	a circle subtendi	ing a central a	ngle of 180° is	always:	
	(a) less than radial so		(b) equal to the radial segment			
	(c) double of the radial segment (d) none of these					
(ix)	If a chord of a circle subtends, a central angle of 60°, then the length of the chord and the radial segment are:					
	(a) congruent	(b) incongruent	(c) parallel	l (d) perpo	endicular	
(x)	The arcs opposite to	incongruent cen	tral angles of a	a circle arc alw	vays:	
	(a) congruent	(c) parallel	(c) parallel (d) perpendicular			
\nsw	ers:			 		
i)	d . (ii)	c (iii)	b (iv		(v) a	
vi)	d (vii)	d (viii)	<u> b (ix</u>	i)i a	(x) b	—

SUMMARY

- The boundary traced by a moving point in a circle is called its circumference whereas any portion of the circumference will be known as an arc of the circle.
- The straight, line joining any two points of the circumference is called a chord of the circle.
- The portion of a circle bounded by an arc and a chord is known as the segment of a circle.
- The circular region bounded by an arc of a circle and its two corresponding radial segments is called a sector of the circle.
- ✓ A straight Sine, drawn from the centre of a circle bisecting a chord is perpendicular to the chord and conversely perpendicular drawn from the centre of a circle on a chord, bisects it.
- If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chords are equal.
- If two chords of a circle (or of congruent circles) are equal, then their corresponding arcs (minor, major or semi-circular) are congruent.
- Equal chords of a circle (or of congruent circles) subtend equal angles at the centre (at the corresponding centres).
- If the angles subtended by two chords of a circle (or congruent circles) at the centre (corresponding centres) are equal, the chords are equal.

0000000000