

ViucheOwO

20 de noviembre de 2024

Índice general

1.	Definiciones preliminares	3
	1.1. Quiz 1	3
	1.2. Quiz 2	4
	1.3. Quiz 3	
	1.4. Ejercicios	
2.	La medida de Lebesgue	10
	2.1. Ejercicios	10
3.	La integral	13
	3.1. Ejercicios	13
4.	Medida producto	14
	4.1. Ejercicios	14
5.	Espacios Lp	15
	5.1. Ejercicios	15
6.		16
	6.1. Ejercicios	16
	Cargas	17
	7.1 Eiercicios	17

Definiciones preliminares

1.1. Quiz 1

Determine si cada uno de los siguientes enunciados es verdadero o falso:

1. $\mathbb{Q} \in B$ donde Bes la σ - álgebra de Borel.

Verdadero:

Demostración. Note que para cada $r \in \mathbb{Q}, \{r\} \in B$ puesto que este es un cerrado en \mathbb{R} , i.e., es complemento de un abierto (véase $(-\infty,r) \cup (r,\infty)$), que está en B. La enumerabilidad de \mathbb{Q} nos garantiza que $\bigcup_{r \in \mathbb{Q}} \{r\} = \mathbb{Q} \in B$

2. $\mathbb{N} \in B$ donde B es la σ - álgebra de Borel.

Verdadero:

Demostración. La prueba es idéntica a la del punto anterior.

3. El conjunto $F = \{M : M \text{ es una } \sigma\text{- álgebra en } \mathbb{R}\}$ es enumerable. Falso:

Demostración. Considere la aplicación $\psi : \mathbb{R} \to F$ tal que $\psi(\alpha) := M_{\alpha}$ donde $M_{\alpha} = \{\mathbb{R}, \emptyset, (-\infty, \alpha), [\alpha, \infty)\}$. Considere $\mathcal{M} = Im\psi$, puesto que ψ es inyectiva entonces $|\mathcal{M}| \leq |F|$, por lo tanto F no puede ser contable.

4. La función $f:\mathbb{R}\to\mathbb{R}$ dada por $f(x)=x^3$ es medible, cuando tomamos en \mathbb{R} la σ -álgebra de Borel.

Verdadero:

Demostración. Probaremos primero por inducción que $f(x) = x^n$ es medible para cada $n \in \mathbb{N}$. Para n = 1 el resultado es obvio puesto que $f^{-1}(V) = V \in B$ para cada V abierto. Supongamos que el enunciado es cierto para $n \geq 1$, luego $f(x) = x^{n+1} = x^n \cdot x$ es medible por la proposición 1.1.18. ya que $f = h \circ \varphi$ donde $\varphi : \mathbb{R}^2 \to \mathbb{R}$ definida por $\varphi(y, z) = y \cdot z$ es contínua y $h : \mathbb{R} \to \mathbb{R}^2 := (x^n, x)$ es medible ya que cada una de sus componentes lo es. Por le principio de inducción matemática concluimos que f es medible y tomando el caso n = 3 tenemos el resultado inicialmente pedido.

5. La función $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = |x| es medible, cuando tomamos en \mathbb{R} la σ - álgebra de Borel.

Verdadero

Demostración. Note que $f(x) = |x| = (h \circ g)(x)$ es medible por la proposición 1.1.17, donde $g(x) = x^2$ es medible por el punto anterior y $h(x) = \sqrt{x}$ es contínua.

1.2. Quiz 2

Determine si cada uno de los siguientes enunciados es verdadero o falso:

1. Sean (X, M) espacio meible y $f: X \to \mathbb{R}$, si f es medible entonces |f| es medible. **Verdadero:**

Demostración. Note que $|f| = g \circ f$ donde $g : \mathbb{R} \to \mathbb{R}$ con g(x) = |x| es continua. La proposición 1.1.17 garantiza que |f| es medible.

2. Sean (X, M) espacio meible y $f: X \to \mathbb{R}$. si |f| es medible entonces f es medible. Falso:

Demostración. Sea E un conjunto no medible y considere f definida como la siguiente función simple: $\chi_E - \chi_{E^c}$, donde $E^c = X - E$ Es claro que |f| = 1 es medible pero f no lo es.

3. Sean (X, M) un espacio medible y $f: X \to \mathbb{R}$. Si f es medible entonces $f^+ = \sup\{f(x), 0\}$ y $f^- = \sup\{-f(x), 0\}$ son medibles.

Verdadero

Demostración. Basta probarlo para los abiertos básicos (α, β) con $\alpha < \beta$.

Si $\alpha, \beta < 0$ entonces $(f^+)^{-1}((\alpha, \beta)) = \emptyset$

Si $\alpha, \beta > 0$ entonces $(f^+)^{-1}(\alpha, \beta) = f^{-1}((\alpha, \beta)) \in M$.

Si $\alpha < 0, \beta > 0$ entonces $(f^+)^{-1}(\alpha, \beta) = (f^+)^{-1}[0, \beta) = f^{-1}((-\infty, 0]) \cup f^{-1}((0, \beta)) \in M$ Note que $f^{-1}((-\infty, 0]) \in M$ ya que $f^{-1}((-\infty, 0]) = f^{-1}((0, \infty)^c) = (f^{-1}((0, \infty)))^c \in M$ pues $f^{-1}((0, \infty)) \in M$.

4. $f^{+}=\frac{1}{2}\left(|f|+f\right), f^{+}$ como en el numeral anterior.

Verdadero:

Demostración. Si $f(x) \leq 0$ entonces $\frac{1}{2}(|f|+f)(x) = \frac{1}{2}(-f+f)(x) = 0$. Ahora, si f(x) > 0, entonces $\frac{1}{2}(|f|+f)(x) = \frac{1}{2}(f+f)(x) = \frac{1}{2}(2f)(x) = f(x)$, lo cual coincide con nuestra definición de f^+ .

5. $f^{-} = \frac{1}{2} (|f| - f), f^{+}$ como en el numeral anterior **Verdadero**:

verdadero.

Demostración. La prueba es análoga a la anterior.

1.3. QUIZ 3

1.3. Quiz 3

Determine si cada uno de los siguientes enunciados es verdadero o falso:

1. Sea (X, M) un espacio medible entonces toda función simple es medible. Falso:

Demostración. En virtud de la proposición 1.4.3 basta tomar cualquier conjunto no medible E e inmediatamente χ_E es una función simple no medible.

2. $\chi_{A \cup B} = \chi_A + \chi_B$ Falso:

Demostración. Tome $A, B \subset X$ no disyuntos y $x \in A \cap B$. Note que $\chi_{A \cup B}(x) = 1$, mientras que $\chi_A + \chi_B(x) = 2$.

3. $\chi_{A-B} = \chi_A(1 - \chi_B)$ Verdadero:

Demostración. Si $x \in A - B$, entonces $\chi_A(x) = 1, \chi_B(x) = 0$, luego $\chi_A(1 - \chi_B)(x) = 1(1 - 0) = 1$. Ahora si $x \notin A - B$ entonces $\chi_A(x) = 0$ o $\chi_B(x) = 1$, en ambos casos

 $\chi_A(1-\chi_B)(x)=0.$

4. $\chi_{A \cap B} = \chi_A \chi_B$

 ${\bf Verdadero}$

Demostración. Si $x \in A \cap B$, entonces $\chi_A(x) = 1$, $\chi_B(x) = 1$ y por ende $\chi_A \chi_B(x) = 1$. Ahora, si $x \notin A \cap B$, entonces $\chi_A(x) = 0$, o $\chi_B(x) = 0$ y en ambos casos $\chi_A \chi_B(x) = 0$. \square

5. Sean (X, M) espacio medible y $f \to [-\infty, \infty]$ una función medible entonces el conjunto $\{x \in X : f(x) = \infty\}$ es medible.

Verdadero:

Demostración. Note que

$$\{x \in X : f(x) = \infty\} = f^{-1} \{\infty\}$$

$$= f^{-1} \left(\bigcap_{n \in \mathbb{N}} [n, \infty]\right)$$

$$= \bigcap_{n \in \mathbb{N}} f^{-1}([n, \infty])$$

$$= \bigcap_{n \in \mathbb{N}} \left(f^{-1}([-\infty, n)^c)\right)$$

$$= \bigcap_{n \in \mathbb{N}} \left(f^{-1}([-\infty, n))\right)^c$$

$$= \left(\bigcup_{n \in \mathbb{N}} f^{-1}([-\infty, n))\right)^c$$

Donde $f^{-1}([-\infty, n)) \in M$ para cada $n \in \mathbb{N}$, luego la unión contable de estos conjuntos también está en M y por lo tanto su complemento lo está. Asi, $f^{-1}\{\infty\} \in M$.

1.4. Ejercicios

- 1. Sean $(A_n)_{n\in\mathbb{N}}$ una sucesión de conjuntos en X, muestre que
 - $\chi_{\bigcup_{i=1}^n A_i} = 1 \prod_{i=1}^n (1 \chi_{A_i})$

Demostración. Si $x \in \bigcup_{i=1}^n A_i$, entonces $\chi_{A_i} = 1$ para algún $1 \le i \le n$, de modo que el factor $(1 - \chi_{A_i}) = 0$ y por lo tanto todo el producto $\prod_{i=1}^n (1 - \chi_{A_i}) = 0$ y así $1 - \prod_{i=1}^n (1 - \chi_{A_i}) = 1 - 0 = 1$.

Por otro lado, si $x \notin \bigcup_{i=1}^n A_i$ es porque $x \notin A_i$ para todo $1 \le i \le n$, esto es, $\chi_{A_i} = 0$, y $\prod_{i=1}^n (1 - \chi_{A_i} = 1 - \prod_{i=1}^n (1) = 0$.

 $\quad \blacksquare \quad \chi_{\bigcap_{i=1}^n A_i} = \prod_{i=1}^n \chi_{A_i}.$

Demostración. Si $x \in \bigcap_{i=1}^n A_i$ entonces $\chi_{A_i}(x) = 1$ para todo $1 \le i \le n$, de modo que $\prod_{i=1}^n \chi_{A_i}(x) = \prod_{i=1}^n 1 = 1$.

Si $x \notin \bigcap_{i=1}^n A_i$ entonces el factor $\chi_{A_i}(x) = 0$ para algún i, luego $\prod_{i=1}^n \chi_{A_i}(x) = 0$. \square

• $\chi_{\limsup A_n} = \limsup \chi_{A_n}$.

Demostración.

$$\limsup \chi_{A_n}(x) = \limsup \{\chi_{A_n}(x)\}
= \inf \{\sup \{\chi_{A_k}(x)\} : k \ge n\}
= \begin{cases} 1 \text{ si } x \in \limsup A_n \\ 0 \text{ si } x \notin \limsup A_n \end{cases}
= \chi_{\limsup A_n}$$

• $\chi_{\liminf A_n} = \liminf \chi_{A_n}$.

Demostración. Indéntica al punto anterior.

2. Sean (X, M) un espacio medible y $\{f_n : X \to [-\infty, \infty]\}_{n \in \mathbb{N}}$ una sucesión de funciones medibles. Muestre que:

$$\{x \in X : \sup f_n(x) \le a, n \in \mathbb{N}\} = \bigcap_{n \in \mathbb{N}} \{x \in X : f_n(x) \le a\}$$

Demostración. Sea $x \in \{x \in X : \sup f_n(x) \le a, n \in \mathbb{N}\}$. Note que $f_n(x) \le \sup \{f_n(x)\} \le a$ para todo $n \in \mathbb{N}$, luego $x \in f_n^{-1}([-\infty, a])$ para todo n, esto es $x \in \bigcap_{n \in \mathbb{N}} \{x \in X : f_n(x) \le a\}$.

Reciprocamente, si $x \in \bigcap_{n \in \mathbb{N}} \{x \in X : f_n(x) \leq a\}$ entonces $f_n(x) \leq a$ para todo $n \in \mathbb{N}$. Esto significa que a es una cota superior del conjunto $\{f_n(x)\}_{n \in \mathbb{N}}$, por lo que $\sup \{f_n(x)\}_{n \in \mathbb{N}} = \sup f_n(x) \leq a$, y en consecuencia $x \in \sup f_n^{-1}([-\infty, a]), n \in \mathbb{N} = \{x \in X : \sup \{f_n(x)\} \leq a, n \in \mathbb{N}\}$.

1.4. EJERCICIOS 7

•
$$\{x \in X : \inf f_n(x) < a, n \in \mathbb{N}\} = \bigcup_{n \in \mathbb{N}} \{x \in X : f_n(x) < a\}.$$

Demostración. Sea x tal que inf $f_n(x) < a$, entonces para algún $k \in \mathbb{N}$ se cumple que $f_k(x) < a$ (de lo contrario tendríamos que a es una cota inferior del conjunto $\{f_n(x)\}$ mayor que el inf), luego $x \in \bigcup \{x \in X : f_n(x) < a\}$.

Ahora, si $f_k(x) < a$ para algún k, es claro que inf $f_n(x) \le f_k(x) < a$, esto es $x \in \inf f_n^{-1}([-\infty, a))$.

- 3. Sea $(A_n)_n \in \mathbb{N}$ un sucesión de conjuntos en X. Tomando $E_0 = \emptyset$ y $E_n = \bigcup_{k=1^n} A_k$, $F_n = A_n - E_{n-1}$ para cada $n \in \mathbb{N}$. Muestre que
 - $E_{n-1} \subseteq E_n$ para todo $n \in \mathbb{N}$

Demostración. Si $x \in E_{n-1}$, entonces $x \in A_k$ para algún k entre 1 y n-1, luego $x \in A_k \cup A_n$ de modo que $x \in E_n$.

• $F_i \cap F_j = \emptyset$ si $i \neq j$.

Demostración. Supongamos que i < j. Si $x \in F_i$ y $x \in F_j$ entonces $x \in A_j$ y $x \notin A_k$ para todo k < j, lo que contradice $x \in A_i$.

Demostración. Es evidente que $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} A_n$ por como están definidos los E_n . Otro hecho que salta a la vista es que $\bigcup_{n=1}^{\infty} F_n \subset \bigcup_{n=1}^{\infty} A_n$ por la definición de los F_n . Lo único que queda por notar es que $\bigcup_{k=1}^n F_k = \bigcup_{k=1}^n A_k$ para cada $n \geq 1$, donde nuevamente tenemos una inclusión gratis. Ahora, considere el mayor $k \leq n$ tal que $x \in A_k$. Como $A_k = (A_k \cap E_{k-1}) \cup (A_k - E_{k-1}) = (A_k \cap E_{k-1}) \cup F_n$. Si $x \in F_n$ hemos terminado. Si $x \in A_k \cap E_{k-1} = \bigcup_{j=1}^{k-1} (A_k \cap A_j)$, basta con tomar el mínimo j tal que $x \in A_k \cap A_j$. Por lo tanto $x \in A_j - E_{j-1} = F_j$. (Si x perteneciera a E_{j-1} , pertenecería a algún A_i con i < j). Luego $x \in \bigcup_{k=1}^{\infty} F_k$ y concluimos $\bigcup_{k=1}^{\infty} F_k = \bigcup_{k=1}^{\infty} A_k$

4. Sea $(A_n)_n \in \mathbb{N}$ un sucesión de conjuntos en X.

Defina:

$$\limsup A_n = \bigcap_{m=1}^{\infty} (\bigcup_{n=m}^{\infty} A_n).$$

$$\liminf A_n = \bigcup_{m=1}^{\infty} (\bigcap_{n=m}^{\infty} A_n).$$

Muestre que:

 $\emptyset \subseteq \liminf A_n \subseteq \limsup A_n \subseteq X$.

Demostración. La única inclusión no trivial es lím inf $A_n \subseteq lím \sup A_n$.

Primero note que $\{\bigcup_{n=k}^{\infty} A_n\}_{k\in\mathbb{N}}$ es una secuencia decreciente.

Sea $x \in \liminf A_n$. Existe $p \in \mathbb{N}$ tal que para todo entero $k \geq p, x \in A_k$ y por ende $x \in \bigcup_{n=k}^{\infty} A_n$, por lo dicho en la línea de arriba, $\bigcup_{n=k}^{\infty} A_n \supseteq \bigcup_{n=p}^{\infty} A_n$, para todo $1 \leq k \leq p$, luego $x \in \bigcup_{n=1}^{\infty} A_n$ para todo entero $n \geq 1$, ergo, $x \in \bigcap_{m=1}^{\infty} (\bigcup_{n=m}^{\infty} A_n) = \limsup A_n$.

5. Sea $(A_n)_n \in \mathbb{N}$ un sucesión de conjuntos en X tal que $A_i \subseteq A_{i+1}$ para todo $i \in \mathbb{N}$. Muestre que:

$$\limsup A_n = \bigcup_{n=1}^{\infty} A_n = \liminf A_n.$$

Demostración. Note que $\cup_{k=m}^n A_k=\cup_{k=1}^n A_k=A_n$ y $\cap_{k=m}^n A_k=A_m$, $m\in\mathbb{N}, m\leq n$ cualquiera sea $n\in\mathbb{N}.$ Luego $\cap_{k=m}^\infty A_k=A_m.$

Ahora, lím inf
$$A_n = \bigcup_{m=1}^{\infty} (\bigcap_{n=m}^{\infty} A_n) = \bigcup_{m=1}^{\infty} A_m$$
.

Por su parte, lím sup
$$A_n = \bigcap_{m=1}^{\infty} (\bigcup_{n=m}^{\infty} A_n) = \bigcap_{m=1}^{\infty} (\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} A_n$$
.

6. Sea $(A_n)_n \in \mathbb{N}$ un sucesión de conjuntos en X tal que $A_i \supseteq A_{i+1}$ para todo $i \in \mathbb{N}$. Muestre que:

$$\limsup A_n = \bigcap_{n=1}^{\infty} A_n = \liminf A_n.$$

Demostraci'on. La prueba es análoga a la del punto anterior y se deja como ejercicio al lector.

- 7. Sean (X, M, μ) un espacio de medida y $(A_n)_{n \in \mathbb{N}}$ una sucesión de conjuntos medibles, Muestre que:
 - $\mu(\liminf A_n) \leq \liminf \mu(A_n)$

Demostración. Primeramente recordemos que para cada $k \in \mathbb{N}$, $\mathcal{A}_k = \bigcap_{n=k}^{\infty} A_n \in M$ puesto que cada $A_n \in M$. Asimismo $\bigcup_{n \in \mathbb{N}} \mathcal{A}_n \in M$

Ahora note que la secuencia $\{A_k\} = \{\bigcup_{m=k}^{\infty} A_m\}$ es creciente, por lo que

$$\mu(\liminf A_n) = \mu(\bigcup_{n=1}^{\infty} (\cap_{m=n} A_m))$$

$$= \mu(\bigcup_{n=1} A_n)$$

$$= \lim_{n \to \infty} \mu(A_n)$$

$$= \lim_{n \to \infty} \mu(\cap_{m=n} A_m)$$

$$= \lim_{n \to \infty} \mu(\cap_{m=n} A_m)$$

$$\leq \lim_{n \to \infty} \inf \mu(A_n)$$

• $\limsup \mu(A_n) \leq \mu(\limsup A_n)$, si $\mu(\bigcup_{n \in \mathbb{N}} A_n) < \infty$.

Demostración. Primeramente recordemos que para cada $k \in \mathbb{N}$, $\mathcal{A}_k = \bigcup_{n=k}^{\infty} A_n \in M$ puesto que cada $A_n \in M$. Asimismo $\bigcap_{n \in \mathbb{N}} \mathcal{A}_n \in M$

1.4. EJERCICIOS 9

Ahora note que la secuencia $\{A_k\} = \{\bigcup_{m=k}^{\infty} A_m\}$ es decreciente y $A_1 < \infty$, de modo que

$$\mu(\limsup A_n) = \mu(\bigcap_{n=1}^{\infty} (\bigcup_{m=k}^{\infty} A_m))$$

$$= \mu(\bigcap_{n=1}^{\infty} A_n)$$

$$= \lim_{n \to \infty} \mu(A_n)$$

$$= \lim_{n \to \infty} \mu(\bigcup_{k=n}^{\infty} A_k)$$

$$= \limsup \mu(\bigcup_{k=n}^{\infty} A_k)$$

$$\geq \limsup \mu(A_n)$$

8. Sean (X, M) un espacio medible y $f: X \to [-\infty, \infty]$ una función. Muestre que:

f es medible si y solo si $\{x \in X : f(x) = \infty\}, \{x \in X : f(x) = -\infty\} \in M$ y

$$f^{\sim} = \begin{cases} f & \text{si } |f| < \infty, \\ 0 & \text{si } |f| = \infty. \end{cases}$$

es medible.

Demostración. \Rightarrow) Sea f medible, en virtud del punto 4 del 1.1 las preimágenes de $\{\pm\infty\}$ son medibles. Ahora, veamos que para cada $\alpha \geq 0, (f^{\sim})^{-1}((\alpha, \infty]) = (f^{\sim})^{-1}((\alpha, \infty)) \cup (f^{\sim})^{-1}(\{\infty\}),$ donde $(f^{\sim})^{-1}(\{\infty\}) = \emptyset \in M$ ya que si $x \in (f^{\sim})^{-1}(\{\infty\}),$ entonces $f(x) = \infty$, pero esto implicaría $|f|(x) = \infty$, y por definición de f^{\sim} , tendríamos $f^{\sim} = 0$. Es claro que $(f^{\sim})^{-1}((\alpha, \infty)) = f^{-1}((\alpha, \infty)) \in M$ porque f es medible.

Si $\alpha < 0$ entonces $(f^{\sim})^{-1}((\alpha, \infty]) = (f^{\sim})^{-1}((\alpha, 0)) \cup (f^{\sim})^{-1}(\{0\}) \cup (f^{\sim})^{-1}((0, \infty]),$ donde $(f^{\sim})^{-1}(\{0\}\}) = f^{-1}(\{-\infty, \infty\}) \in M, (f^{\sim})^{-1}((0, \infty]) \in M$ y $(f^{\sim})^{-1}((\alpha, 0)) \in M$.

Concluimos que f^{\sim} es medible.

 \Leftarrow) Suponga f^{\sim} es medible y que $\{x \in X : f(x) = \infty\}$, $\{x \in X : f(x) = -\infty\} \in M$. Veamos que $f^{-1}((\alpha, \infty]) \in M$ con $\alpha \geq 0$. Como $(f^{\sim})^{-1}((\alpha, \infty]) \in M$ y $(f^{\sim})^{-1}((\alpha, \infty]) = (f^{\sim})^{-1}((\alpha, \infty)) \cup (f^{\sim})^{-1}(\{\infty\})$ y $(f^{\sim})^{-1}(\{\infty\}) = \emptyset \in M$ entonces $(f^{\sim})^{-1}((\alpha, \infty]) = f^{-1}((\alpha, \infty)) \in M$.

Si $\alpha < 0$ entonces $(f^{\sim})^{-1}((\alpha, \infty]) = (f^{\sim})^{-1}((\alpha, 0)) \cup (f^{\sim})^{-1}(\{0\}) \cup (f^{\sim})^{-1}((0, \infty]),$ donde $(f^{\sim})^{-1}(\{0\}\}) = f^{-1}(\{-\infty, \infty\}) \in M, f^{-1}((0, \infty]) = (f^{\sim})^{-1}((0, \infty]) \in M,$ y, $f^{-1}((\alpha, 0)) = (f^{\sim})^{-1}((\alpha, 0)) \in M.$

Concluimos que f es medible.

La medida de Lebesgue

2.1. Ejercicios

1. Sea $A \subseteq \mathbb{R}^n$, $\mu^*(A) < \infty$. Muestre que para cada $\epsilon > 0$, existe $A_{\epsilon} \subseteq \mathbb{R}$ acotado tal que $A_{\epsilon} \subseteq A$ y $\mu^*(A - A_{\epsilon}) < \epsilon$.

Demostraci'on. Dado $\epsilon > 0$, tome $\{I_k\}_{k \in \mathbb{N}}$ cubrimiento por celdas de A tal que $\sum_{k=1}^{\infty} \mu(I_k) = \mu^*(A) + \epsilon$. Ahora note que $\{I_k \cap A\}$ cubre a A, luego $\sum_{k=1}^{\infty} \mu^*(I_k \cap A) < \infty$. Ergo, existe $N \in \mathbb{N}$

$$\mathbb{N} \text{ tal que } \mu^*(A) = \sum_{k=1}^{\infty} \mu^*(I_k \cap A) = \sum_{k=1}^{N} \mu^*(I_k \cap A) + \sum_{k=N+1}^{\infty} \mu^*(I_k \cap A) < \sum_{k=1}^{N} \mu^*(I_k \cap A) + \epsilon.,$$
 de modo que tomando $A_{\epsilon} = \bigcup_{k=1}^{N} (I_k \cap A)$ obtenemos $\mu^*(A - A_{\epsilon}) < \epsilon.$

2. Muestre que el conjunto $\{E\subseteq\mathbb{R}^n:\mu^*(E)=0\ \text{o}\ \mu^*(\mathbb{R}-E)=0\}$ es una $\sigma-$ álgebra.

Demostración. Llamemos M al conjunto. Es claro que \emptyset , $\mathbb{R}^n \in M$, también es evidente que si $A \in M$ entonces $\mathbb{R}^n - A \in M$. Para ver que si $\{E_k\}_{k \in \mathbb{N}} \subset M$ es una familia de subconjuntos de M entonces $\bigcup_{k \in \mathbb{N}} E_k \in M$ basta analizar los casos por separado cuando $\mu^*(E_k) = 0$ para tdo k y cuando $\mu^*(\mathbb{R} - E_k) = 0$ para cada k.

- Si $\mu^*(E_k) = 0$ para tdo k entonces $\mu^*(\bigcup_{k \in \mathbb{N}} E_k) \leq \sum_{k=1}^{\infty} \mu^*(E_k) = \sum_{k=1}^{\infty} 0 = 0$.
- $\mu^*(\mathbb{R} E_k) = 0$ para cada k entonces $\mu^*(\mathbb{R}^n \bigcup_{k \in \mathbb{N}} E_k) = \mu^*(\bigcap_{k \in \mathbb{N}} \mathbb{R}^n E_k) \le \mu^*(\mathbb{R}^n E_k) = 0$ para cualquier k.

En ambos casos la unión es un elemento de M. Si tenemos una familia arbitraria de subconjuntos de M podemos separarla en dos uniones y proceder con cada una.

3. Sean $M \subseteq \mathbb{R}^n$, $h \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$. Muestre que M + h y λM son medibles y $\mu^*(M + h) = \mu^*(M)$ y $\mu^*(\lambda M) = \lambda \mu^*(M)$.

Demostración. M+h es medible: considere $f: \mathbb{R}^n \to \mathbb{R}^n$ tal que f(x)=x-h. La continuidad de f garantiza que $f^{-1}(M)=M+h$ es medible.

 $\mu^*(M+h) = \mu^*(M)$: Note que $\mu^*(I+h) = \mu(I+h) = (b+h) - (a+h) = b-a = \mu^*(I)$ para todo $h \in \mathbb{R}, I$ 1-celda. Luego $\mu^*(I+h) = \mu^*(I)$ para todo n-celda, de modo que si $\{I_k\}_{k \in \mathbb{N}}$ es cubrimiento por n-celdas de M, entonces $\{I_k + h\}_{k \in \mathbb{N}}$ es cubrimiento por n-celdas de

2.1. EJERCICIOS

$$M+h,$$
e ínf $\{\sum_{k=1}^\infty \mu^*(I_k): M\subset \bigcup_{i=1}I_k^\infty\}=\inf\{\sum_{k=1}^\infty \mu^*(I_k+h): M+h\subset \bigcup_{i=1}^\infty I_k+h\}$

 λM es medible: Para $\lambda \neq 0$ repita la prueba anterior con $f(x) = \frac{x}{\lambda}$. Si $\lambda = 0$, $\lambda M = \{0\}$.

 $\mu^*(\lambda M) = M\mu^*(M)$: Repita la prueba anterior teniendo en cuenta que si I es una 1-celda, entonces $\mu^*(\lambda I) = \mu(I) = (\lambda a, \lambda b) = \lambda b - \lambda a = \lambda(b-a) = \lambda \mu^*(I)$. Cabe resaltar que si $\lambda < 0$, $\mu^*(\lambda I) = \mu(I) = \mu((\lambda a, \lambda b)) = \mu((-|\lambda|b, -|\lambda|a)) = -|\lambda|a - (-|\lambda|)b = |\lambda|(-1)(a-b) = |\lambda|(b-a) = |\lambda|\mu^*(I)$.

Así, podemos ver que si I es una n-celda en \mathbb{R}^n , entonces $\mu^*(I) = \prod_{k=1}^n \mu(\lambda(a_1^j, b_k^j)) = \prod_{k=1}^n |\lambda| (b_k^j - a_k^j) = |\lambda|^n \mu(I)$. De modo que si $\bigcup_{k=1}^\infty I_k$ es un cubrimiento por n-celdas de M, entonces $\bigcup_{k=1}^\infty \lambda I_k$ es un cubrimiento por n-celdas de λM , e

$$\inf\left\{\sum_{k=1}^{\infty} \mu^*(\lambda I_k) : \lambda M \subset \bigcup_{i=1}^{\infty} \lambda I_k^{\infty}\right\} = \inf\left\{\sum_{k=1}^{\infty} |\lambda|^n \mu^*(I_k) : M \subset \bigcup_{i=1}^{\infty} I_k\right\}$$

$$= \inf\left\{|\lambda|^n \sum_{k=1}^{\infty} \mu^*(I_k) : M \subset \bigcup_{i=1}^{\infty} I_k\right\}$$

$$= |\lambda|^n \inf\left\{\sum_{k=1}^{\infty} \mu^*(I_k) : M \subset \bigcup_{i=1}^{\infty} I_k\right\}$$

$$= |\lambda|^n \mu^*(M)$$

4. Demostrar que si $f: \mathbb{R} \to \mathbb{R}$ es monótona entonces es Lebesgue medible.

Demostración. Como f es monótona entonces podemos asumir que es creciente. Veamos que $f^{-1}([t,\infty))$ $\{x \in \mathbb{R} : f(x) \geq t\}$ es o bien \emptyset , \mathbb{R} , o alguna cola abierta o cerrada.

Si $u \in f^{-1}[t,\infty)$), para todo $v \ge u$, como asumimos f creciente, entonces $t \le f(u) \le f(v)$, por lo que $v \in f^{-1}[t,\infty)$).

Tenemos que f es Borel medible y por tanto Lebesgue medible.

5. Suponga que $f: \mathbb{R}^n \to \mathbb{R}$ es medible y $\frac{\partial f}{\partial x_1}$ existe en cada punto de \mathbb{R}^n . Muestre que $\frac{\partial f}{\partial x_1}$ es medible.

Demostración. Como $\frac{\partial f}{\partial x_1}(x)$ existe para cada $x \in \mathbb{R}^n$ Entonces

$$\lim_{h \to 0} \frac{f(x_1 + h, ..., (x_n)) - f(x_1, ..., x_n)}{h}$$

Existe para cada $x \in \mathbb{R}^n$. Con esto en mente podemos definir la siguiente sucesión de funciones $f_n : \mathbb{R}^n \to \mathbb{R}$ como sigue.

$$f_n(x) = \frac{f(x_1 + \frac{1}{n}, ..., x_n)}{\frac{1}{n}}$$

Como f es medible, para cada $n \ge 1$, tenemos que f_n lo es también y que $d\frac{\partial f}{\partial x_1} = \lim_{n \to \infty} f_n$ también es medible.

6. No existe σ - álgebra enumerable.

Demostración. Vea la observación 1.1.5.

7. Sea $E \subset [0,1]$, con $\mu^*([0,1]-E) = 0$. Muestre que E es denso en [0,1].

Demostración. Sea $x \in [0,1] - E$. Para todo r > 0, $B_{(x,r)} \cap E \neq \emptyset$, ya que de lo contrario tendríamos $B_{(x,r)} \subseteq [0,1] - E$, luego $\mu^*(B_{(x,r)}) = 0$, lo cual es absurdo. Concluimos que E es denso en [0,1].

8. Sea $M \subseteq \mathbb{R}^n$. Muestre que si $\mu^*(E) = 0$, $int(E) = \emptyset$

Demostración. Suponga que $x \in int(E)$, entonces existe r > 0 tal que $B_{(x,r)} \subset E$, luego $0 < \mu^*(B_{(x,r)}) \le \mu^*(E) = 0$, lo cual es absurdo. Concluimos que $int(E) = \emptyset$.

9. Sea $M \subseteq \mathbb{R}^n$ enumerable. Muestre que $\mu^*(E) = 0$.

Demostración. Note que $E = \bigcup_{x \in E} \{x\}$, claramente $\mu^*(\{x\}) = 0$ para cada x. Luego $\mu^*(E) = \sum_{x \in E} \mu^*(\{x\}) = \sum_{x \in E} 0 = 0$.

La integral

Medida producto

Espacios Lp

Algunos tipos de convergencia

Cargas