Національний університет «Львівська політехніка» Кафедра програмного забезпечення

Організація комп'ютерних мереж

к.т.н., ст. викл. Тушницький Р.Б. ruslan4yk@lp.edu.ua

Лекція 2 (ч. 1).

- 1. Комутація каналів.
- 2. Комутація пакетів.
- 3. Порівняння мереж з комутацією пакетів і каналів.
- 4. Розділення середовища.
- 5. Ethernet.
- 6. Декомпозиція задачі мережевої взаємодії.
- 7. Модель OSI.
- 8. Стандартизація мереж.

Комутація каналів vs комутація пакетів

Комутація каналів: *принциповим обмеженням* є неможливість динамічного перерозприділення пропускної здатності фізичного каналу.

Комутація пакетів: враховується особливості комп'ютерного трафіка.

Комутація каналів

Перші сеанси зв'язку між комп'ютерами здійснено через телефонну мережу із застосуванням комутації каналів.

В якості *інформаційних потоків* виступають дані, якими обмінюються пари абонентів (кінцевих користувачів).

Глобальною *ознакою потоку* є пара адресів (телефонних №).

Для всіх можливих потоків наперід *відомі маршрути*, які задаються адміністраторами мережі, або автоматично із використанням спеціальних апаратних і програмних засобів.

Маршрути фіксуються у таблицях, де ознакам потоків <=> ID вихідних інтерфейсів комутатора. На основі цих таблиць здійснюється рух і мультиплексування даних.

Комутація каналів: елементарний канал

Елементарний канал (канал) – базова технічна характеристика мережі з комутацією каналів, що є деяким фіксованим в межах даного типу мереж значенням пропускної здатності.

В традиційних телефонних мережах елементарний канал = 64 kbps.

Пропускна здатність кожної лінії зв'язку має бути рівна цілому числу елементарних каналів.

лінії зв'язку, що підключають абонентів до телефонної мережі можуть містити 2,24 або 30 елементарних каналів;

лінії, що з'єднують комутатори – 480 або 1920 каналів.

Комутація каналів: елементарний канал

Елементарний канал **P bps**

S1-S4 = комутатори

Нехай інтенсивність інформаційного потоку між абонентами не більше **2P bps**.

Тоді для обміну достатньо по парі елементарних каналів = **складовий канал** з двох елементарних каналів.

Рис. 3.2. Составной канал в сети с коммутацией каналов

Абонент В

Комутація каналів: складовий канал

Зв'язок, побудований шляхом комутації (з'єднання) елементарних каналів [#def: e-канал] називають **складовим каналом** [#def: скл-канал].

Властивості:

- 1. На всій протяжності складається з <u>однакової</u> кількості е-каналів.
- 2. Має постійну і фіксовану пропускну здатність на всій протяжності.
- 3. Створюється тимчасово на період сеансу зв'язку 2 абонентів.
- 4. На час сеансу всі е-канали, що входять в складовий канал є у винятковому використанні абонентів, для яких створено скл-канал.
- 5. Під час сеансу абоненти можуть надсилати в мережу дані із швидкістю, <u>не більшою за пропускну здатність скл-каналу</u>.
- 6. Дані, що потрапили у скл-канал, гарантовано доставляються абоненту <u>без затримок, втрат і з тою ж швидкістю</u> не залежно від того чи існують на даний момент інші з'єднання.
- 7. Після закінчення сеансу зв'язку е-канали оголошуються <u>вільними</u> і повертаються в пул розприділюваних ресурсів для використання іншими абонентами.

Комутація каналів: динамічний режим

Мультиплексування дає змогу одночасно передавати через кожний фізичний канал трафік декількох логічних з'єднань.

Якщо вичерпався ліміт на е-канали, новий сеанс не розпочинається.

Процедура встановлення з'єднання (в автоматичному динамічному режимі):

- 1. Абонент A => запит із адресом В. Мета чи можна сформувати склканал (наявність е-каналів + незайнятість викликаючого абонента).
- 2. Запит => переміщується по маршруту (<u>глобальні таблиці комутації</u>: глобальній ознаці потоку = адресі викликаючого абонента <=> ID вихідного інтерфейсу комутатора).
- 3. Якщо успіх => фіксація складового каналу: на всіх комутаторах від А до В створюються записи в локальних таблицях комутації, де вказуються відповідність між локальними ознаками потоків номерами е-каналів.
- 4. Сеанс зв'язку розпочинається

Комутація каналів: динамічний режим

Рух даних по мережі з комутацією каналів (в автоматичному динамічному режимі):

- 1. В мережу поступає службове повідомлення запит, який несе адрес викликаючого абонента і організовує утворення скл-каналу.
- 2. При підготовленому скл-каналу передається основний потік даних, для якого не потрібно адреса викликаючого абонента. Комутація даних в комутаторах виконується на основі локальних ознак номерів елементарних каналів.

Відмова у встановленні зв'язку.

Автоматичний динамічний режим — можливість абонента відправляти в мережу службові повідомлення-запити на створення з'єднання.

телефонні мережі: телефонний апарат генерує запит, надсилаючи імпульси (або тонові сигнали), що кодують номер викликаючого абонента, а мережа або встановлює з'єднання або дає сигнал «занято».

Комутація каналів: статичний режим. Особливості

З'єднання не на один сеанс роботи, а на більший термін.

Створюється адміністратором мережі. # між містами, країнами.

Особливості технології комутації каналів:

- 1. Орієнтована на мінімізацію випадкових подій в мережі (детермінізм).
- 2. Організаційна робота до початку сеансу зв'язку.
- 3. Ефективно передають трафік користувача коли швидкість його постійна протягом сеансу і максимально відповідає фіксованій пропускній здатності фізичних ліній.
- 4. Ефективність знижується при передачі пульсуючого трафіка. # телефон: тембр голосу, паузи => але це прийнятно. комп-трафік # html => дуже понижує ефективність.

Комутація пакетів

- 1. Також використовуються комутатори.
- 2. Менш відповідальний спосіб передачі даних: не резервується лінія, не гарантується необхідна пропускна здатність.
- 3. Не створюються окремих, виділених для абонентів каналів зв'язку.

Пакети — структурно відділені одне від одного порції даних, які використовуються для представлення інформації, що передається по мережі.

Заголовок – адрес призначення, довжина поля даних, CRC, ... **Кінцевик** – додаткове поле, містить CRC.

ATM => пакети (комірки) мають фіксовану довжину. Ethernet => встановлено min & max можливі розміри пакетів (кадрів).

Комутація пакетів

Рис. 3.6. Передача данных по сети в виде пакетов

Комутація пакетів

13

Комутація пакетів: буферизація пакетів

Основна відмінність пакетних комутаторів від комутаторів в мережах з комутацією каналів полягає у тому, що вони мають внутрішню буферну пам'ять для тимчасового збереження пакетів.

Пакетний комутатор не може прийняти рішення про рух пакета, не маючи в своїй пам'яті всього пакета. Якщо CRC ok => рух далі.

Кожний пакет послідовно біт за бітом поміщається у вхідний буфер.

Говорять, що мережі з комутацією пакетів використовують **техніку збереження з просуванням** (store-and-forward).

Для цього достатньо буфер розміром в 1 пакет.

Комутатору потрібні буфери для **узгодження швидкостей передачі даних в лініях зв'язку**, підключених до його інтерфейсах.

Буферизація потрібна для узгодження швидкості поступлення пакетів зі швидкістю їх комутації.

Втрата пакетів: при співпадінні періодів пульсації декількох інформаційних потоків.

Комутація пакетів: методи просування пакетів

Пакетний комутатор може працювати на основі одного із трьох методів просування пакетів:

- 1. Дейтаграмна передача.
- 2. Передача із встановленням логічного зв'язку.
- 3. Передача із встановленням віртуального каналу.

Комутація пакетів: дейтаграмна передача

Дейтаграмний підхід передачі даних базується на тому, що всі пакети які передаються просуваються (передаються від одного вузла мережі до іншого) незалежно один від одного на основі одних і тих же правил.

Процедура опрацювання пакета визначається тільки значеннями параметрів, які він несе в собі, і поточним станом мережі.

Жодна інформація про вже передані пакети мережею не зберігаються і в ході обробки наступного пакета не приймається до розгляду.

Кожний окремий пакет розглядається як незалежна одиниця передачі — **дейтаграма**.

Рішення про просування пакета приймається на основі таблиці комутації, яка ставить у відповідність адресам призначення пакетів інформацію, що однозначно визначає наступний за маршрутом транзитний (або кінцевий) вузол (# ID інтерфейсів даного комутатора, адреса наступних по маршруту вхідних інтерфейсів).

Комутація пакетів: дейтаграмна передача

Баланс навантаження — в таблиці комутації для одного і того ж адреса призначення може міститись декілька записів, що вказують на різні адреси наступного комутатора.

Використовується для підвищення ефективності і надійності мережі.

Таблица коммутации коммутатора S1

Адрес следующего коммутатора
Пакет не требуется передавать через сеть
S2
S 3
S3
S6
S6

Метод працює <u>швидко</u>, але <u>не</u> <u>гарантує доставку</u> пакета.

1 тип кадрів — <u>інформаційний</u>.

Рис. 3.9. Иллюстрация дейтаграммного принципа передачи пакетов

Комутація пакетів: передача із логічним з'єднанням

<u>Ідея</u>: запам'ятовування вузлом-відправником кількості відправлених, а вузломотримувачем — кількості отриманих пакетів.

Процедура узгодження двома кінцевими вузлами мережі деких параметрів процесу обміну пакетами називається встановленням логічного з'єднання. Параметри, про які домовляються два взаємодіючі вузла називаються параметрами логічного з'єднання.

Параметри з'єднання можуть бути:

- 1) Постійні протягом всього з'єднання: ID з'єднання, спосіб шифрування пакета, тах розмір поля даних пакета
- **2) Змінні** динамічно відображають поточний стан з'єднання: послідовні номери передаваємих пакетів.

Під час фіксації початку нового з'єднання відправник і отримувач «домовляються» про початкові значення параметрів процедури обміну, і тільки після цього здійснюється передача даних.

Комутація пакетів: передача із логічним з'єднанням

Процедура встановлення з'єднання:

- 1. Вузол-ініціатор з'єднання відправляє вузлу-отримувачу службовий пакет із пропозицією встановити зв'язок.
- 2. Якщо згідний у відповідь службовий пакет із підтвердженням + параметри, що будуть використовуватись в рамках логічного з'єднання.
- 3. Вузол-ініціатор підтверджує параметри службовим повідомленням.
- 4. Після кінця сеансу службове повідомлення про розрив з'єднання.

Логічне з'єднання розраховується на передачу даних в одному або в обох напрямках.

2 типи кадрів: службовий + інформаційний.

<u>Особливість:</u> додаткова обробка кадрів на кінцевих вузлах.

шифрування

Рис. 3.10. Передача без установления соединения (a) и с установлением соединения (б)

Комутація пакетів: передача із віртуальним каналом

<u>Ідея</u>: частковий варіант логічного з'єднання + фіксований для всіх пакетів маршрут.

Єдиний зазделегідь прокладений фіксований маршрут, що з'єднює кінцеві вузли мережі з комутацією пакетів називають віртуальним каналом (virtual circuit, virtual channel).

Прокладаються для стійких інформаційних потоків.

Пакет помічається особливою ознакою – міткою.

Відбувається запис у комутаторах яким чином обробляти пакет з даною міткою.

Таблиця комутації містить записи *тільки про віртуальні канали, які проходять через комутатор*, а не про всі можливі адреси призначення, як це є у дейтаграмних алгоритмах.

- # Дейтаграмний протокол ІР між окремими мережами в Інтернет.
- # Логічне з'єднання протокол ТСР надійне між кінцевими вузлами мережі.
- # Віртуальне з'єднання Інтернет приклад мережі із віртуальними каналами, # мережі ATM, Frame Relay.

Комутація пакетів: передача із віртуальним каналом

Рис. 3.11. Иллюстрация принципа работы виртуального канала

Порівняння мереж з комутацією пакетів і каналів

Аналогія :: рух машин на дорогах комутація пакетів – рух одного автомобіля: перехрестя Комутація каналів – рух колони автомобілів: наперід відомо маршрут

Аналогія :: мультипрограмна операційна система

- і. кожна окрема програма виконується довше чим в однопрограмній системі
- іі. разом програми виконують в одиницю часу більше в мультипрограмній с-мі.

Для 1 користувача ефективним є комутація каналів. Для інтегрального показника – комутація пакетів.

Порівняння мереж з комутацією пакетів і каналів

Комутація каналів	Комутація пакетів
Необхідно попередньо встановлювати з'єднання.	Відсутній етап встановлення з'єднання (дейтаграмний підхід)
Адрес вимагається лише на етапі встановлення з'єднання.	Адрес і інша службова інформація передаються з кожним пакетом.
Мережа може відмовити абоненту у встановленні з'єднання.	Мережа завжди готова приймати дані від абонента.
Гарантована пропускна здатність (смуга пропускання) для взаємодіючих абонентів.	Пропускна здатність мережі для абонента невідома, затримки передачі мають випадковий характер.
Трафік реального часу передається без затримок.	Ресурси мережі використовуються ефективно при передачі пульсуючого трафіка.
Висока надійність передачі.	Можливі втрати даних через переповнення буферів.
Нераціональне використання пропускної здатності каналів, що знижує загальну ефективність мережі.	Автоматичне динамічне розприділення пропускної здатності фізичного каналу між абонентами у відповідності до фактичної інтенсивності трафіка абонентів.

Література

1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 4-е изд. – СПб.: Питер, 2010. – 944 с.