модул

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЧИСЛАТА ОТ ДЕСЕТИЧНА В ДВОИЧНА БРОЙНА СИСТЕМА

TEMA 1

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЦЕЛИ ЧИСЛА

Ключови думи:

Ръчно преобразуване
Програмно преобразуване
Апаратно преобразуване
Изместване вдясно
Корекция
Микрооперация
Цифрова диаграма

Цели:

След запознаване с материала Вие трябва да можете:

- ✓ да обясните как се извършва ръчното преобразуване на цели числа от десетична в двоична бройна система;
- ✓ да обясните как се извършва програмното преобразуване на цели числа от десетична в двоична бройна система;
- ✓ да обясните как се извършва апаратното преобразуване на цели числа;
- ✓ да съставите цифрова диаграма на блока за преобразуване на цели числа от десетична в двоична бройна система.

1. Метод за ръчно преобразуване

Използва се общият метод, т.е. чрез деление на 2 и отделяне на целочисленото частно и остатъците.

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЧИСЛАТА ОТ ДЕСЕТИЧНА В ДВОИЧНА БРОЙНА СИСТЕМА

Пример:

$$(147)_{10} \rightarrow (?)_{2}$$

$$147 | : 2 | \\
146 | 73 | : 2 | \\
1 | 72 | 36 | : 2 | \\
a_{1} | 1 | 36 | 18 | : 2 | \\
a_{2} | 0 | 18 | 9 | : 2 | \\
a_{3} | 0 | 8 | 4 | : 2 | \\
a_{4} | 1 | 4 | 2 | : 2 | \\
a_{5} | 0 | 2 | 1 | : 2 | \\
a_{6} | 0 | 0 | 0 | \\
a_{7} | 1 | \\
a_{8} | (147)_{10} \rightarrow (10010011)_{2}$$

2. Програмно преобразуване

Използват се специални подпрограми, алгоритмите на които са съставени на базата на показания по-долу израз.

$$A_{LIM} = a_n 10^{n-1} + a_{n-1}10^{n-2} + ... + a_2 10 + a_1 =$$

= $((... ((0 + a_n)10 + a_{n-1})10 + ... + a_2)10 + a_1$

Цифрите а_і на десетичното число, а също и основата на десетичната система се представят в двоичната (използва се код 8421) и всички действия се извършват в тази система. В резултат се получава А в двоичната система.

3. Апаратно преобразуване

Десетичното число се представя в десетична двоично - кодирана система с използване на код 8421.

За преобразуване на цели числа се използва общият метод, т.е. чрез деление на 2 и отделяне на остатъците.

Апаратното деление на 2 става чрез изместване на двоичнодесетичния код на десетичното число на един разряд надясно.

При това, ако в старшия разряд на дадената тетрада не се

модул

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЧИСЛАТА ОТ ДЕСЕТИЧНА В ДВОИЧНА БРОЙНА СИСТЕМА

прехвърли "1" от съседната й в ляво, то, в резултат на изместването, в тази тетрада действително се получава кодът на разделената на 2 десетична цифра.

Пример:

Но, ако след изместването в старшия разряд на дадена тетрада се появи "1", тя ще получи тегло 8, а не 10/2=5, както би трябвало да бъде. Следователно съдържанието на всяка тетрада, в старшия разряд на която се е появила "1", трябва да се намалява с 8-5=3. Но това изисква използването на субтрактор, което може да се избегне, ако вместо да се изважда 3 се прибавя 13, т.е. 1101. При това, тъй като в старшия разряд на тетрадата има "1", а събирането е двоично, то винаги ще възниква пренос с тегло 16. Ако този пренос не бъде отчетен, в крайна сметка се получава корекция 13-16=-3, както и трябва да бъде.

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЧИСЛАТА ОТ ДЕСЕТИЧНА В ДВОИЧНА БРОЙНА СИСТЕМА

Пример:

Схемата на операционната част на блока за преобразуване на цели десетични числа в двоичната система е показана на фиг.1. В Рх се записва двоично-десетичният код на десетичното число, в Рк се записват кодовете на корекциите, а в Рz след съответния брой цикли се получава двоичният код на числото. Във всеки от циклите се извършват последователно следните микрооперации:

- ИД Рх и ИД Рz;
- 3Рк;
- ПрК Рх и ПрК Рк в Σ ;
- ПК Рх.

Забележка: При корекция = 0 може да се извършва направо ИД.

Фиг.1. Схема на операционната част на блока за преобразуване на цели десетични числа в двоичната система Действието на блока за преобразуване е пояснено и чрез

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЧИСЛАТА ОТ ДЕСЕТИЧНА В ДВОИЧНА БРОЙНА СИСТЕМА

цифровата диаграма на фиг.2.

$$(75)_{10} \rightarrow (?)_2$$

		Px		Pz
		0111	0101	0000000
ИД1		0011	1 010	1000000
Кор.	+	0000	1101	
		0011	0111	
ИД2		0001	1 011	1100000
Кор.	+	0000	1101	_
		0001	1000	_
ИД3		0000	1 100	0110000
Кор.	+	0000	1101	
		0000	1001	
ИД4		0000	0100	1011000
Кор.	+	0000	0000	
		0000	0100	-
ИД5		0000	0010	0101100
Кор.	+	0000	0000	
		0000	0010	•
ИД ₆		0000	0001	0010110
Кор.	+	0000	0000	
-		0000	0001	-
ИД7		0000	0000	1001011

Фиг.2. Цифрова диаграма на блока за преобразуване на цели числа от десетичната в двоичната система

модул

МЕТОДИ И ОПЕРАЦИОННИ БЛОКОВЕ ЗА ПРЕОБРАЗУВАНЕ НА ЧИСЛАТА ОТ ДЕСЕТИЧНА В ДВОИЧНА БРОЙНА СИСТЕМА

Контролни въпроси:

- 1. Какъв метод се използва при ръчното преобразуване на цели числа от десетична в двоична система?
- 2. Как се извършва програмното преобразуване на цели числа от десетична в двоична бройна система?
- 3. Как се извършва апаратното преобразуване на цели числа от десетична в двоична система?
- 4. Кога се налага добавянето на корекция при апаратното преобразуване на цели числа?