Esercizi e problemi

La costante di equilibrio K_c

- ▶ p. 36
- **1.** Rappresentare l'espressione della costante di equilibrio K_c delle seguenti reazioni:
 - a) $N_{2(g)} + 2 O_{2(g)} \rightleftharpoons 2 NO_{2(g)}$
 - b) $3 O_{2(g)} \longrightarrow 2 O_{3(g)}$
 - c) $SO_{2(g)} + NO_{2(g)} \stackrel{\longrightarrow}{\longleftrightarrow} SO_{3(g)} + NO_{(g)}$
- 2. Nella reazione di equilibrio:

$PCl_{5(g)} \longrightarrow PCl_{3(g)} + Cl_{2(g)}$

ad una data temperatura, l'analisi chimica ha rilevato la presenza di 0,21 mol/L di PCl_5 , di 0,32 mol/L di PCl_3 e di 0,32 mol/L di Cl_2 . Calcolare la costante di equilibrio K_c .

3. Nella reazione di equilibrio:

 $CO_{(g)} + H_2O_{(g)} \stackrel{\frown}{\longleftrightarrow} CO_{2(g)} + H_{2(g)}$

ad una data temperatura, l'analisi chimica ha rilevato la presenza di 0,2 mol/L di CO, di 0,5 mol/L di H_2O , di 0,32 mol/L di H_2 e di 0,42 mol/L di CO_2 . Calcolare la costante di equilibrio K_c .

- **4.** Durante la reazione di sintesi dell'ammoniaca, ad una data temperatura la soluzione dei tre gas presenti in un recipiente da 50 L è formata da 10 moli di NH_3 , 10 moli di N_2 e 30 moli di H_2 . Calcolare la costante di equilibrio K_c .
- **5.** Durante la reazione di analisi del pentacloruro di fosforo:

$$PCl_{5(g)} \Longrightarrow PCl_{3(g)} + Cl_{2(g)}$$

ad una data temperatura la soluzione dei tre gas presenti in un recipiente da 12 L è formata da 0,21 moli di PCl_5 , 0,32 moli di PCl_3 e 0,32 moli di Cl_2 . Calcolare costante di equilibrio K_c .

La costante di equilibrio K_p

- ▶ p. 362
- **6.** Rappresentare l'espressione della costante di equilibrio K_p delle seguenti reazioni:
 - a) $CH_{4(g)} + H_2O_{(g)} \longleftrightarrow CO_{(g)} + 3 H_{2(g)}$
 - **b)** $4 \text{ NH}_{3(g)} + 5 \text{ O}_{2(g)} \longleftrightarrow 4 \text{ NO}_{(g)} + 6 \text{ H}_2 \text{O}_{(g)}$
 - c) $2 NO_{(g)} + Cl_{2(g)} \rightleftharpoons 2 NOCl_{(g)}$
- **7.** Nella reazione di sintesi dell'ammoniaca alla temperatura di 500 K, al raggiungimento dell'equilibrio l'analisi chimica ha rilevato i seguenti valori di pressioni parziali: $p_{\rm NH_3} = 0.15$ atm, $p_{\rm N_2} = 1.2$ atm e $p_{\rm H_2} = 0.81$ atm. Calcolare la K_p .
- **8.** La costante di equilibrio K_c della reazione di analisi del tetraossido di diazoto:

 $N_2O_{4(g)} \longrightarrow 2 NO_{2(g)}$

alla temperatura di 27 °C è 6,68 · 10^{-3} mol/L. Calcolare il valore di K_p .

9. La costante di equilibrio K_c della reazione di analisi del pentacloruro di fosforo:

$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

alla temperatura di 500 K è 0,0224 mol/L. Calcolare il valore di K_p .

10. La costante di equilibrio K_p della reazione:

$$2 \text{ NO}_{2(g)} \rightleftharpoons 2 \text{ NO}_{(g)} + O_{2(g)}$$

alla temperatura di 494 °C è 0,363 atm. Calcolare il valore di K_c .

11. La costante di equilibrio K_p della reazione di ossidazione del diossido di zolfo:

$$2 SO_{2(g)} + O_{2(g)} \rightleftharpoons 2 SO_{3(g)}$$

alla temperatura di 600 °C è 96 atm $^{-1}$. Calcolare il valore di K_c .

Equilibri eterogenei

p. 362

- **12.** Rappresentare l'espressione della costante di equilibrio (K_c e K_p) delle seguenti reazioni:
 - a) $\operatorname{Sn}_{(s)} + 2 \operatorname{Cl}_{2(g)} \Longrightarrow \operatorname{SnCl}_{4(g)}$
 - **b**) $2 C_{(s)} + 3 H_{2(g)} \longleftrightarrow C_2 H_{6(g)}$
 - c) $3 \operatorname{Fe_2O_3}_{(s)} + H_{2(g)} \longleftrightarrow H_2O_{(g)} + 2 \operatorname{Fe_3O_4}_{(s)}$
 - d) $CO_{(g)} + 3 H_{2(g)} \longleftrightarrow CH_{4(g)} + H_2O_{(1)}$
- **13.** Rappresentare un'equazione chimica per un sistema in equilibrio che ha la seguente espressione della *K*.:

a)
$$K_c = \frac{[\text{NO}] [\text{O}_2]^{\frac{1}{2}}}{[\text{NO}_2]}$$
 b) $K_c = \frac{[\text{H}_2\text{O}]^2 [\text{Cl}_2]^2}{[\text{HCl}]^4 [\text{O}_2]}$

c)
$$K_c = \frac{[CO]}{[CO_2][H_2]}$$
 d) $K_c = \frac{[CH_4][H_2S]^2}{[CS_2][H_2]^4}$

14. Calcolare la K_c per la reazione di decomposizione del cloruro di ammonio:

$$NH_4Cl_{(s)} \rightleftharpoons NH_{3(g)} + HCl_{(g)}$$

sapendo che all'equilibrio alla temperatura di 500 °C in un recipiente da 5 L sono presenti 2 moli di NH₃, 2 moli di HCl e 1 mole di NH₄Cl.

Verso di svolgimento di una reazione

p. 364

15. In un recipiente alla temperatura di 783 K è presente una miscela di H₂, I₂ e HI tutti alla stessa concentrazione di 0,002 mol/L:

$$H_{2(g)} + I_{2(g)} \longrightarrow 2 HI_{(g)}$$

La K_c della reazione è uguale a 46. Stabilire se HI tende a formarsi o a decomporsi.