Foundations of Convolutional Neural Networks

Pio

Computer Vision Problems

Cat? (0/1)

Image Classification

64x64

Object detection

Neural Style Transfer

Computer Vision Problem

Vertical edge detection

3	0	1	2-10	7	4
1	5	8-10	9	3	1-1
2	7	2	5	1-0	3
0	1	3	1	7-0	8 ⁻¹
4	2	1	6	2	8
2	4	5	2	3	9

Vertical edge detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

*

Andrew Ng

Vertical edge detection examples

	0	30	30	0	
	0	30	30	0	
	0	30	30	0	
	0	30	30	0	
•					

0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

1	0	-1
1	0	-1
1	0	-1

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Vertical and Horizontal Edge Detection

1	0	-1
1	0	-1
1	0	-1

1	1	1
0	0	0
-1	-1	-1

Vertical

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

Horizontal

1	1	1
0	0	0
-1	-1	-1

Types of layer in a convolutional network:

- Convolution (CONV)
- Pooling (POOL)
- Fully connected (FC)

Convolution Parameters

- Padding
- Stride
- Multiple Filters

Padding

*

 $6 \times 6 \rightarrow 8 \times 8$

Padding p = 1

3 x 3

$$4 \times 4 \rightarrow 6 \times 6$$

$$(n-f+1)$$
 $(n+2p-f+1)$
 $\times (n-f+1)$ $\times (n+2p-f+1)$

$$(n+2p-f+1)$$

Valid

Same

Convolution Convolution

Andrew Ng

Strided convolution

	3	4	4
:	1	0	2
	-1	0	3

$$f \times f$$
 filter

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

 $n \times n$ image padding p stride s = 2

Convolutions on RGB image * 4 x 4 $3 \times 3 \times 3$ f x f x channels

6 x 6 x 3 height x width x channels

Multiple filters

Summary of Convolutions

Hyperparameters:

```
n<sub>H</sub>: image height
```

n_w: image width

n_C: # of image channels (# of filters)

f: filter size

s : stride

p : padding

$$\left| \frac{n_H + 2p - f}{s} + 1 \right| \times \left| \frac{n_W + 2p - f}{s} + 1 \right| \times n_C$$

Pooling layer: Max pooling

1	3	2	1
2	9	1	1
1	3	2	3
5	6	1	2

Pooling layer: Max pooling

1	3	2	1	3
2				5
1				
8				0
5	6		2	9

Pooling layer: Average pooling

1	3	2	1
2	9	1	1
1	4	2	3
5	6	1	2

Summary of pooling

Hyperparameters:

f: filter size

s:stride

Max or average pooling

p: padding

$$\left| \frac{n_H - f}{s} + 1 \right| \times \left| \frac{n_W - f}{s} + 1 \right| \times n_C$$

Neural network example (LeNet -5)

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	3,072	0
CONV1 (f=5, s=1)	(28,28,6)	4704	156
POOL1	(14,14,6)	1176	0
CONV2 (f=5, s=1)	(10,10,16)	1,600	416
POOL2	(5,5,16)	400	0
FC3	(120,1)	120	48,001
FC4	(84,1)	84	10,081
Softmax	(10,1)	10	841

Andrew Ng

Why convolutions

	Activation shape	Activation Size	# parameters
Input:	(32,32,3)	3,072	0
CONV1 (f=5, s=1)	(28,28,6)	4,704	156

 $3072 \times 4704 \approx 14M$

Why convolutions

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Parameter sharing: A feature detector (such as a vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.

Sparsity of connections: In each layer, each output value depends only on a small number of inputs.

Putting it together

Training set $(x^{(1)}, y^{(1)}) \dots (x^{(m)}, y^{(m)})$.

Cost
$$J = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)})$$

Use gradient descent to optimize parameters to reduce J

Quiz

 What do you think applying this filter to a grayscale image will do?

$$\begin{bmatrix} 0 & 1 & -1 & 0 \\ 1 & 3 & -3 & -1 \\ 1 & 3 & -3 & -1 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

- (a) Detect vertical edges
- b) Detect horizontal edges
- c) Detect image contrast
- d) Detect 45 degree edges

- Because pooling layers do not have parameters, they do not affect the backpropagation (derivatives) calculation.
 - a) True
 - (b) False

- In lecture we talked about "parameter sharing" as a benefit of using convolutional networks. Which of the following statements about parameter sharing in ConvNets are true? (Check all that apply.)
 - It allows gradient descent to set many of the parameters to zero, thus making the connections sparse.
 - ☐ It allows parameters learned for one task to be shared even for a different task (transfer learning).
 - ☐ It reduces the total number of parameters, thus reducing overfitting.
 - It allows a feature detector to be used in multiple locations throughout the whole input image/input volume.

- In lecture we talked about "sparsity of connections" as a benefit of using convolutional layers. What does this mean?
 - a) Regularization causes gradient descent to set many of the parameters to zero.
 - b Each activation in the next layer depends on only a small number of activations from the previous layer.
 - c) Each layer in a convolutional network is connected only to two other layers
 - d) Each filter is connected to every channel in the previous layer.

Valid and Same convolutions

"Valid":
$$n \times n$$
 \times $f \times f$ \longrightarrow $\frac{n-f+1}{4} \times n-f+1$ $6 \times 6 \times 3 \times 3 \times 3 \longrightarrow 4 \times 4$

"Same": Pad so that output size is the <u>same</u> as the input size.

nt2p-ft1 ×n+2p-ft1

$$p=\frac{f-1}{2}$$
 $p=\frac{f-1}{2}$

Andrew Ng

Technical note on <u>cross-correlation</u> vs. convolution

Convolution in math textbook:

		(3		
2	3	7 ⁵	4	6	2
69	6°	94	8	7	4
3	4	83	3	8	9
7	8	3	6	6	3
4	2	1	8	3	4
3	2	4	1	9	8

$$(A \times B) \times C = A \times (B \times C)$$

Learning to detect edges

1	0	-1
1	0	-1
1	0	-1

1	0	-1
2	0	-2
1	0	-1

Sobel Filter

3	0	-3
10	0	-10
3	0	-3

Scharr Filter

• You have an input volume that is 32x32x16, and apply max pooling with a stride of 2 and a filter size of 2. What is the output volume?

- a) 16x16x8
- b) 15x15x16
- c) 32x32x8
- d) 16x16x16