Double/Debiased Machine Learning

Presented by: Eunkyu Seong

February 20, 2025

List of Contents (1/3)

0. List of Contents

- Motivation of the DML
 - Example: Partially Linear Regression
 - Regularization bias in PLR when we use naive approach
 - Brief explanation about the DML
 - Regularization bias vs. Neyman Orthogonality; Overfitting vs. Sample Splitting

List of Contents (2/3)

- Neyman Orthogonality
 - Definition
 - How to construct it for M-estimators with infinite-dimensional nuisance parameter?
 - For pedagogy, we consider the finite-dimensional case
 - Concentrating out approach
 - Example: PLR
 - How the DML overcomes regularization bias and overfitting bias?

List of Contents (3/3)

- O DML
 - Definition algorithm
 - DML1 vs. DML2
 - Conditions for root-n convergence and asymptotic normality of the PLR-DML estimator.
- Conclusion

Motivation of the DML

Example: Partially Linear Regression

$$Y = D\theta_0 + g_0(X) + U, \quad D = m_0(X) + V$$
 (1)
where $E[U|X, D] = 0$ and $E[V|X] = 0$.

- The first equation is the main equation, and θ_0 is the main regression coefficient that we would like to infer. If D is exogenous conditional on controls X, θ_0 has the interpretation of the treatment effect parameter.
- The second equation is not of interest per se but it is important for characterizing and removing regularization bias.

Regularization Bias (1/3)

- A naive approach to estimation of θ_0 using ML methods would be to construct a sophisticated ML estimator $D\hat{\theta}_0 + \hat{g}_0(X)$ for learning the regression function $D\theta_0 + g_0(X)$.
- To focus only on the regularization bias, we assume that \hat{g}_0 is estimated using the auxiliary sample (i.e., sample splitting).

Naive Estimator

$$\hat{\theta}_0 = \left(\frac{1}{n} \sum_{i \in I} D_i^2\right)^{-1} \frac{1}{n} \sum_{i \in I} D_i (Y_i - \hat{g}_0(X_i))$$
 (2)

• The estimator $\hat{\theta}_0$ has a slower than $1/\sqrt{N}$ rate of convergence:

$$|\sqrt{n}(\hat{\theta}_0 - \theta_0)| \xrightarrow{P} \infty.$$
 (3)

Regularization Bias (2/3)

Decomposition of Estimation Error

$$\sqrt{n}(\hat{\theta}_0 - \theta_0) = \underbrace{\left(\frac{1}{n}\sum_{i \in I} D_i^2\right)^{-1} \frac{1}{\sqrt{n}}\sum_{i \in I} D_i U_i}_{a}$$

+
$$\underbrace{\left(\frac{1}{n}\sum_{i\in I}D_i^2\right)^{-1}\frac{1}{\sqrt{n}}\sum_{i\in I}D_i(g_0(X_i)-\hat{g}_0(X_i))}_{b}$$
 (4)

where term a is asymptotically normal

Regularization Bias (3/3)

And term b can be rewritten as:

$$b = (E[D_i^2])^{-1} \frac{1}{\sqrt{n}} \sum_{i \in I} m_0(X_i) (g_0(X_i) - \hat{g}_0(X_i)) + o_P(1).$$
 (5)

The summands have non-zero mean because, we must employ regularized estimators — such as lasso, ridge, boosting or penalized NNs. These induce substantive biases in the estimator \hat{g}_0 of g_0 .

Brief Explanation of DML

Brief Explanation of DML

- We estimate the functions $g_0(X)$ and $m_0(X)$ with ML estimators, separately. This is why we say "double".
- There are two kinds of biases in the estimation of PLR: regularization bias and overfitting bias.
- DML overcomes these biases with:
 - Neyman Orthogonality and Sample Splitting.

Neyman Orthogonality (1/3)

Estimating Equation/Moment Condition

We are interested in the true value θ_0 of the low-dimensional target parameter θ . We assume that θ_0 satisfies the moment condition:

$$E_P[\psi(W;\theta_0,\eta_0)] = 0. \tag{6}$$

where ψ is a vector of known score functions, and W is a random element. η_0 is the true value of the nuisance parameter $\eta \in T$.

Neyman Orthogonality (2/3)

An example for the score function ψ :

$$Y = D\theta_0 + X'\beta_0 + U, \quad E_P[U(X', D)] = 0.$$
 (7)

$$\partial_{\theta}\ell_{\theta}(W;\theta,\beta) = (Y - D\theta - X'\beta)D$$
 (8)

$$\partial_{\beta}\ell_{\beta}(W;\theta,\beta) = (Y - D\theta - X'\beta)X.$$

The naive approach that we have explained is such that uses these scores and moment conditions for estimation.

Given the estimated $\hat{\beta}$, we are assuming that the moment condition holds. But this fails because of the regularization bias of $\hat{\beta}$.

Neyman Orthogonality (3/3)

Gateaux derivative operator

To introduce the condition, we define the pathwise derivative:

$$D_r[\eta - \eta_0] := \partial_r \{ E_P[\psi(W; \theta_0, \eta_0 + r(\eta - \eta_0))] \}.$$
 (9)

Definition 2.1 (Neyman Orthogonality) The score ψ obeys the orthogonality condition at θ_0, η_0 with respect to the nuisance realization set if:

$$\partial_{\eta} E_P[\psi(W;\theta_0,\eta_0)][\eta-\eta_0] = 0, \quad \forall \eta \in T_N.$$
 (10)

Intuitively, small deviation from the true η_0 , does not affect to estimation of θ_0 .

Construction of Orthogonal Scores (1/2)

How to Construct Neyman Orthogonal Scores?

The approach is based on the concentrating-out method. For all $\theta \in \Theta$, let β_{θ} be the solution of the following:

$$\max_{\beta \in B} E_P[\ell(W; \theta, \beta)]. \tag{11}$$

 β_{θ} satisfies

$$\partial_{\beta} E_P[\ell(W; \theta, \beta_0)] = 0$$
, for all $\theta \in \Theta$.

Construction of Orthogonal Scores (2/2)

Differentiating with respect to θ gives:

$$0 = \partial_{\theta} \partial_{\beta} E_{P}[\ell(W; \theta, \beta_{0})] = \partial_{\beta} \partial_{\theta} E_{P}[\ell(W; \theta, \beta_{0})]$$
(12)

$$= \partial_{\beta} E_{P}[\partial_{\theta} \ell(W; \theta, \beta_{0}) + [\partial_{\theta} \beta_{0}] \partial_{\beta} \ell(W; \theta, \beta_{0})]$$
(13)

$$= \partial_{\beta} E_{P}[\psi(W; \theta, \beta, \partial_{\theta} \beta_{0})]\Big|_{\beta = \beta_{0}}$$
(14)

where

$$\psi(W;\theta,\beta,\partial_{\theta}\beta_{0}) := \partial_{\theta}\ell(W;\theta,\beta) + [\partial_{\theta}\beta_{0}]^{T}\partial_{\beta}\ell(W;\theta,\beta). \tag{15}$$

Example: Partially Linear Regression (1/4)

Example: Partially Linear Regression

Overcoming regularization biases using orthogonalization: Applying (15) to PLR we obtain

$$\psi(W; \theta, \beta_0) = (D - m_0(X)) \times (Y - D\theta - g_0(X)). \tag{16}$$

Then, if we use this score for estimation:

$$\hat{V} = D - \hat{m}_0(X). \tag{17}$$

$$\tilde{\theta}_0 = \left(\sum \hat{V}_i D_i\right)^{-1} \sum \hat{V}_i (Y_i - \hat{g}_0(X_i)). \tag{18}$$

Decomposing the estimation error:

$$\sqrt{n}(\tilde{\theta}_0 - \theta_0) = a^* + b^* + c^*. \tag{19}$$

Example: Partially Linear Regression (2/4)

The first term, a^* satisfies

$$a^* = E[VD]^{-1} \frac{1}{\sqrt{n}} \sum_{i \in I} V_i U_i \sim N(0, \Sigma)$$
 (20)

The second term captures the impact of regularization bias in estimating g_0 and m_0 .

$$b^* = E[VD]^{-1} \frac{1}{\sqrt{n}} \sum_{i \in I} (\hat{m}_0(X_i) - m_0(X_i))(\hat{g}_0(X_i) - g_0(X_i))$$
 (21)

This term is upper-bounded by $\sqrt{n}n^{-(\phi_m+\phi_g)}$, where $n^{-\phi_m}$ and $n^{-\phi_g}$ are respectively the rates of convergence of \hat{m}_0 and \hat{g}_0 ; this upper bound vanishes. Intuitively, even if each estimator converges slowly, the product of the two estimators can vanish fast enough.

Example: Partially Linear Regression (3/4)

$$c^* = E[VD]^{-1} \frac{1}{\sqrt{n}} \sum_{i \in I} V_i(g_0(X_i) - \hat{g}_0(X_i)) + \tag{22}$$

$$E[VD]^{-1} \frac{1}{\sqrt{n}} \sum_{i \in I} U_i(m_0(X_i) - \hat{m}_0(X_i))$$
 (23)

Let's give an attention to the following term in c^* :

$$\frac{1}{\sqrt{n}} \sum_{i \in I} V_i(\hat{g}_0(X_i) - g_0(X_i)). \tag{24}$$

Example: Partially Linear Regression (4/4)

Conditioning on the auxiliary sample, we know that it has mean zero

$$E[E[V_i(\hat{g}_0(X_i) - g_0(X_i))|X_i, i \in I^c]] =$$

$$= E[(\hat{g}_0(X_i) - g_0(X_i))]E[V_i|X_i, i \in I^c] = 0.$$

and variance of order

$$\frac{1}{n} \sum_{i \in I} (\hat{g}_0(X_i) - g_0(X_i))^2 \xrightarrow{p} 0.$$
 (25)

Thus this term vanishes in probability by Chebyshev's inequality. Without Sample Splitting the model error V and the estimation error $\hat{g}_0(X_i) - g_0(X_i)$ are correlated, thus do not vanish.

Simulation Results (1/2)

Figure 1. Comparison of the conventional and double ML estimators. [Colour figure can be viewed at wileyonlinelibrary.com]

Simulation Results (2/2)

Figure 2. Comparison of full-sample and cross-fitting procedures. [Colour figure can be viewed at wileyonlinelibrary.com]

Double/Debiased Machine Learning (1/2)

Algorithm

Definition 3.1 (DML1)

Take a K-fold random partition $(I_k)_{k=1}^K$ of observation indices such that:

- Each fold I_k is of size n = N/K.
- Define $I_k^c := \{1, \ldots, N\} \setminus I_k$.
- Construct an ML estimator $\hat{\eta}_{0,k}$ using data indexed by I_k^c .
- Construct the estimator $\tilde{\theta}_{0,k}$ as the solution to:

$$E_{n,k}[\psi(W;\tilde{\theta}_{0,k},\hat{\eta}_{0,k})] = 0.$$
 (26)

$$\tilde{\theta}_0 = \frac{1}{K} \sum_{k=1}^K \tilde{\theta}_{0,k}.$$
(27)

Double/Debiased Machine Learning (2/2)

Definition 3.2 (DML2)

Take a K-fold random partition $(I_k)_{k=1}^K$ of observation indices such that:

- Define $I_k^c := \{1, \dots, N\} \setminus I_k$.
- Construct an ML estimator $\hat{\eta}_{0,k}$ using data indexed by I_k^c .
- Construct the estimator $\tilde{\theta}_0$ as the solution to:

$$\frac{1}{K} \sum_{k=1}^{K} E_{n,k}[\psi(W; \tilde{\theta}_0, \hat{\eta}_{0,k})] = 0.$$
 (28)

DML Inference in PLR Model (1/3)

Assumption 4.1: Regularity Conditions for PLR Model

Let \mathcal{P} be the collection of probability laws P for the triple W = (Y, D, X) such that:

- \bullet (4.1) and (4.2) hold;
- $||Y||_{p,q} + ||D||_{p,q} \le C;$
- **3** $||UV||_{p,2} \ge c^2$ and $E_P[V^2] \ge c$;
- **1** $E_P[U^2 \mid X]_{p,\infty} \le C$ and $E_P[V^2 \mid X]_{p,\infty} \le C$;
- Given a random subset I of [N] of size n = N/K, the nuisance parameter estimator $\hat{\eta}_0 = \hat{\eta}_0((W_i)_{i \in I^c})$ obeys the following condition for all $n \geq 1$. With P-probability no less than $1 \Delta_N$:
 - $\|\hat{\eta}_0 \eta_0\|_{p,q} \le C, \|\hat{\eta}_0 \eta_0\|_{p,2} \le \delta_N, \delta_N \ge N^{-1/2};$
 - **2** For the score ψ in (4.3), where $\hat{\eta}_0 = (\hat{g}_0, \hat{m}_0)$,

$$\|\hat{m}_0 - m_0\|_{p,2} \times \|\hat{g}_0 - g_0\|_{p,2} \le \delta_N N^{-1/2}.$$
 (29)

DML Inference in PLR Model (2/3)

Theorem 4.1: DML Inference on Regression Coefficients Suppose that Assumption 4.1 holds. Then the DML1 and DML2 estimators using the score in (4.3) are first-order equivalent and obey

$$\sigma^{-1}\sqrt{N}(\tilde{\theta}_0 - \theta_0) \to_d N(0, 1),$$

uniformly over $P \in \mathcal{P}$, where $\sigma^2 = E_P[V^2]^{-1}E_P[V^2U^2]E_P[V^2]^{-1}$. Moreover, the result continues to hold if σ^2 is replaced by $\hat{\sigma}^2$ defined in Theorem 3.2

DML Inference in PLR Model (3/3)

Suppose that Assumptions 3.1 and 3.2 hold. In addition, suppose that $\delta_N \geq N^{-[max\{(1-2/q),1/2\}]}$ for all $N \geq 1$. Consider the following estimator of the asymptotic variance matrix of $\sqrt{N}(\tilde{\theta}_0 - \theta_0)$:

$$\hat{\sigma}^2 = \hat{J}_0^{-1} \frac{1}{K} \sum_{k=1}^K E_{n,k} [\psi(W; \tilde{\theta}_0, \hat{\eta}_{0,k}) \psi(W; \tilde{\theta}_0, \hat{\eta}_{0,k})'] (\hat{J}_0^{-1})'$$

where

$$\hat{J}_0 = \frac{1}{K} \sum_{k=1}^{K} E_{n,k} [\psi^a(W; \hat{\eta}_{0,k})]$$

This estimator concentrates around the true variance matrix σ^2 .