Enumerating extensions of p-adic fields with given invariants

Sebastian Pauli

(joint work with Brian Sinclair)

University of North Carolina Greensboro

Notation

- K finite extension of \mathbb{Q}_p
- \mathcal{O}_K valuation ring of K
- π uniformizing element in $\mathcal{O}_{\mathcal{K}}$
- v_π exponential valuation normalized such that $v(\pi)=1$
- \underline{K} residue class field $\mathcal{O}_K/(\pi)$ of K

For the coefficients of $\varphi(x) = \varphi_n x^n + \varphi_{n-1} x^{n-1} + \dots + \varphi_0$ we write $\varphi_i = \sum_{j=0}^{\infty} \varphi_{i,j} \pi^j$.

Example (\mathbb{Q}_p , deg 9, e = 9)

To show the progression of results, we use the following diagram. Each space represents a coefficient in the p-adic expansion of a coefficient of a polynomial.

A monic Eisenstein polynomial of degree 9 over \mathbb{Q}_p looks like this:

	x^0	x^1	x^2	x^3	x^4	x^5	x^6	<i>x</i> ⁷	<i>x</i> ⁸	x^9
	: * ≠ 0	:	:	:	:	:	:	:	:	:
p^2	*	*	*	*	*	*	*	*	*	0
p^1	≠ 0	*	*	*	*	*	*	*	*	0
p^0	0	0	0	0	0	0	0	0	0	1

0 or 1 indicates exactly 0 or 1, \neq 0 a non-zero value, and * is free.

Degree and Discriminant

Ore's Conditions

Given $j \in \mathbb{Z}$, let $a, b \in \mathbb{Z}$ be such that j = an + b with $0 \le b \le n - 1$. There exist totally ramified extensions L/\mathbb{Q}_p of degree n and discriminant $(p)^{n+j-1}$ if and only if

$$\min\{v_p(b)n, v_p(n)n\} \le an + b \le v_p(n)n.$$

This allows us to enumerate all possible discriminants.

Example (\mathbb{Q}_3 , deg 9, e = 9, $v(\operatorname{disc}) = 15$)

Generating polynomials $x^n + \sum \varphi_i x^i$ of totally ramified extensions L of \mathbb{Q}_3 of degree 9 with $v(\operatorname{disc}(L)) = 15$.

For the discriminant to be correct, we must have $v(\varphi_7) = 1$ and certain minimum valuations.

	x ⁰							<i>x</i> ⁷		
	: * ≠0 0	:	:	:	:	:	:	:	:	:
3^2	*	*	*	*	*	*	*	*	*	0
3^1	$\neq 0$	0	0	*	0	0	*	$\neq 0$	*	0
3^0	0	0	0	0	0	0	0	0	0	1

Degree and Discriminant

For an extension of degree n and discriminant $(p)^{n+j-1}$:

If
$$j = an + b$$
, let $c \in \mathbb{Z}$ with $c > 1 + 2a + \frac{2b}{n}$.

By Krasner's Lemma, we only need to consider Eisenstein polynomials $x^n + \sum \varphi_i x^i$ with coefficients of the form for a generating polynomial:

$$\varphi_i = (\varphi_{i,0}) + (\varphi_{i,1})p + (\varphi_{i,2})p^2 + \dots + (\varphi_{i,c-1})p^{c-1} \text{ for } 0 \le i \le n-1$$

Thus we have a finite number of possible generating polynomials for extensions of a given degree and discriminant.

Mass given Degree and Discriminant

Theorem (Krasner 1966)

The number of distinct totally ramified extensions of \mathbb{Q}_p of degree n and discriminant p^{n+j-1} is

$$n p^{n+j-1-\sum_{i=1}^{n-1} l(i)}$$
 for $b = 0$
 $n(p-1) p^{n+j-1-\sum_{i=1}^{n-1} l(i)-1}$ for $b > 0$

where j = an + b, with $0 \le b < n$, satisfies Ore's Conditions.

This yields an algorithm for explicitly enumerating generating polynomials for all extensions of given degree and discriminant (P., Roblot 2001).

Example (\mathbb{Q}_3 , deg 9, e = 9, $v(\operatorname{disc}) = 15$)

As v(disc) = 15 we have j = 7.

Thus $7 = 0 \cdot 9 + 7$ and $c > 1 + 2 \cdot 0 + \frac{2 \cdot 7}{9} = 1 + \frac{14}{9}$ and we only need to consider 3-adic coefficients below 3^3 .

								x^7		
	:	:	:	:	:	:	:	: 0 * ≠0 0	:	:
3^3	0	0	0	0	0	0	0	0	0	0
3^2	*	*	*	*	*	*	*	*	*	0
3^1	$\neq 0$	0	0	*	0	0	*	$\neq 0$	*	0
30	0	0	0	0	0	0	0	0	0	1

 $3^{12} \cdot 2^2 = 2$ 125 764 polynomials to generate 162 extensions.

Ramification Polygons

Let $\varphi(x) = x^n + \varphi_{n-1}x^{n-1} + \cdots + \varphi_0 \in \mathbb{Q}_p[x]$ be Eisenstein with root α and $L = \mathbb{Q}_p(\alpha)$.

Ramification Polynomial and Polygon

The ramification polygon of φ is the Newton polygon of the ramification polynomial $\rho(x) = \alpha^{-n} \varphi(\alpha x + \alpha)$ of φ .

The ramification polygon is an invariant of L/\mathbb{Q}_p ,

Relation between coefficients of φ and ρ

$$v_{\alpha}(\rho_i) = \min_{i \leq k \leq n} \left\{ v_{\alpha} \left({k \choose i} \varphi_k \alpha^k \right) - n \right\}$$

Ramification Polygons

We can generate all polygons for a given degree and discriminant.

Mass given Ramification Polygon

Theorem (Sinclair)

Let $\mathcal{R} = \{(p^s, a_s n + b_s)\}$ be the vertices of a ramification polygon and let $B_R = \{b_s \mid b_s > 0\}$.

The number of distinct totally ramified extensions of \mathbb{Q}_p of degree n, discriminant p^{n+j-1} , and ramification polygon \mathcal{R} is

$$n(p-1)^{\#B_{\mathcal{R}}} p^{n+j-1-\sum_{i=1}^{n-1} L(i)-\#B_{\mathcal{R}}}$$

Example (\mathbb{Q}_3 , deg 9, e = 9, $v(\operatorname{disc}) = 15$)

In this case, there are two possible polygons:

Let us choose \mathcal{R}_1 as a polygon to further investigate.

Example (\mathbb{Q}_3 , deg 9, e=9, $v(\mathsf{disc})=15$, \mathcal{R}_1)

The ramification polygon dictates $v(\varphi_3) = 1$, but does not otherwise change our valuation lower bounds.

Our updated picture:

 $3^{11}2^3 = 1$ 417 176 polynomials to generate 108 extensions.

Residual Polynomials of Segments

Residual polynomials were introduced by Ore and are a core component of OM (Ore/Okutsu-MacLane/Montes) algorithms.

Another Invariant: Residual Polynomial Classes

Let $\varphi \in \mathcal{O}_K[x]$ be Eisenstein, α a root of φ , and $L = K(\alpha)$. Let S_1, \ldots, S_r be the segments of the ramification polygon with slopes $m_i = h_i/d_i$ and residual polynomials A_i . Then

$$\mathcal{A} = \left\{ \left(\underline{\delta}^{-h_1 \deg \underline{A_1}} \underline{A_1} (\underline{\delta}^{h_1} z), \dots, \underline{\delta}^{-h_r \deg \underline{A_r}} \underline{A_r} (\underline{\delta}^{h_r} z) \right) : \underline{\delta} \in \underline{K} \right\}$$

is an invariant of L/K called residual polynomial clases.

We also write
$$A = \{(A_1, \ldots, A_r)\}.$$

Mass given Polygon and Residual Polynomial Classes

Theorem (Sinclair)

Let $\mathcal{R} = \{(p^s, a_s n + b_s)\}$ be the vertices of a ramification polygon and let $B_{\mathcal{R}} = \{b_s \mid b_s > 0\}$.

The number of distinct totally ramified extensions of K of degree n, discriminant $(\pi)^{n+J_0-1}$, ramification polygon \mathcal{R} , and residual polynomial classes \mathcal{A} is

$$n(\#A) p^{n+j-1-\sum_{i=1}^{n-1} L(i)-\#B_R}$$

The Constant Term

Let $\varphi \in \mathcal{O}_K[x]$ be Eisenstein of degree n and denote by $\varphi_0 = \sum \varphi_{0,i} \pi^i$ the constant term of φ .

Lemma

Let $\underline{S}_0: \underline{K} \to \underline{K}, a \mapsto a^n$.

- If and only if $\underline{\delta} \in \underline{S}_0(\underline{K})$, there is $g \in \mathcal{O}_K[x]$ Eisenstein with $g_{0,1} \equiv \delta f_{0,1} \mod (\pi)$ such that $K[x]/(g) \cong K[x]/(\varphi)$.
- If $n = p^r$ then S_0 is surjective and there is $g \in \mathcal{O}_K[x]$ Eisenstein with $g_{0,1} \equiv 1 \mod (\pi)$ such that $K[x]/(g) \cong K[x]/(\varphi)$.

For $\varphi_0 \equiv 3 \mod 9$ we obtain 4 choices for \mathcal{A} :

$$A_{a,b} = \{(a + bx^2, b + x^3)\}$$
 where $a, b \in \{1, 2\}$

This yields

$$3^8 \cdot 2^2 \cdot 3^2 = 708\,588$$
 polynomials to generate 108 extensions (27 extensions for each $\mathcal{A}_{a,b} = \{(a+bx^2,b+x^3)\},\ a,b\in\{1,2\}$)

Residual Polynomials of Components

For $\lambda \in \mathbb{Q}$ the λ -component of \mathcal{R} is

$$\{(k, w) \in \mathcal{R} \mid \lambda k + w = \min\{\lambda l + u \mid (l, u) \in \mathcal{R}\}\}.$$

Definition

Let $C_m = \operatorname{cont}_{\alpha} \rho(\alpha^m x)$. We call

$$\underline{S}_m(x) = \underline{\alpha^{-C_m} \rho(\alpha^m x)}$$

the residual polynomial of the (-m)-component of \mathcal{R} .

 $C_m = n\phi(m)$ where ϕ is the generalized Hasse-Herbrand function.

 \underline{S}_m is an additive polynomial.

Monge (2011) uses the \underline{S}_m to define and find reduced Eisenstein polynomials that generate a given extension.

Reduced Eisenstein Polynomials

Let α and β be uniformizers for the same extension, where $\beta = \alpha + \theta \alpha^{m+1} + \cdots$, and let $\varphi(\alpha) = 0$ and $\psi(\beta) = 0$.

$$(\varphi(\alpha) - \psi(\alpha))\alpha^{-C_m - n} = \underline{S}_m(\theta)$$

To reduce Eisenstein polynomials one fixes a choice of $\underline{\varphi_0}$ and considers the images of the \underline{S}_m . Write $\varphi_i = \sum_{j>1}^{\infty} \varphi_{i,j} \ \overline{p^j}$.

If \underline{S}_m is surjective, then we can set $\varphi_{i,j} = 0$ where

- \bullet $i \equiv \operatorname{cont}_{\alpha} \rho(\alpha^m T) \mod n$, and

If \mathcal{R} has a segment of slope -m then $\underline{S}_m = \underline{A} x^k$ where \underline{A} is the residual polynomial of the segment and only then \underline{S}_m can be non-surjective.

With $\underline{S}_1 = x^3$, $\underline{S}_2 = a(x + x^3)$ surjective, $\underline{S}_m = x$ for m > 2 we get

With $\underline{S}_1 = x^3$, $\underline{S}_2 = ax - ax^3$ "=" 0, $\underline{S}_m = x$ for m > 2 we obtain

 $2 \cdot 3 + 2 \cdot 3^2 = 24$ polynomials to generate 108 extensions.

Slopes
$$-2$$
 and $-\frac{1}{2}$, $\mathcal{A} = \{(1+x^2,1+x^3)\}$
$$x^9 + 6x^7 + 6x^3 + 3$$

$$x^9 + 3x^8 + 6x^7 + 6x^3 + 3$$

$$x^9 + 6x^8 + 6x^7 + 6x^3 + 3$$
 Slopes -2 and $-\frac{1}{2}$, $\mathcal{A} = \{(2+2x^2,2+x^3)\}$
$$x^9 + 3x^7 + 3x^3 + 3$$

$$x^9 + 6x^8 + 3x^7 + 3x^3 + 3$$

$$x^9 + 6x^8 + 3x^7 + 3x^3 + 3$$

These 6 polynomials each generate 9 extensions.

Slopes
$$-2$$
 and $-\frac{1}{2}$, $\mathcal{A} = \{(2+x^2,1+x^3)\}$
$$x^9 + 6x^7 + 3x^3 + 3 \qquad x^9 + 3x^8 + 6x^7 + 3x^3 + 3 \qquad x^9 + 6x^8 + 6x^7 + 3x^3 + 3$$

$$x^9 + 6x^7 + 3x^3 + 12 \qquad x^9 + 3x^8 + 6x^7 + 3x^3 + 12 \qquad x^9 + 6x^8 + 6x^7 + 3x^3 + 12$$

$$x^9 + 6x^7 + 3x^3 + 21 \qquad x^9 + 3x^8 + 6x^7 + 3x^3 + 21 \qquad x^9 + 6x^8 + 6x^7 + 3x^3 + 21$$

Slopes
$$-2$$
 and $-\frac{1}{2}$, $\mathcal{A} = \{(1+2x^2, 2+x^3)\}$
 $x^9 + 3x^7 + 6x^3 + 3$ $x^9 + 3x^8 + 3x^7 + 6x^3 + 3$ $x^9 + 6x^8 + 3x^7 + 6x^3 + 3$
 $x^9 + 3x^7 + 6x^3 + 12$ $x^9 + 3x^8 + 3x^7 + 6x^3 + 12$ $x^9 + 6x^8 + 3x^7 + 6x^3 + 12$
 $x^9 + 3x^7 + 6x^3 + 21$ $x^9 + 3x^8 + 3x^7 + 6x^3 + 21$ $x^9 + 6x^8 + 3x^7 + 6x^3 + 21$

These 18 polynomials each generate 3 extensions.

https://www.uncg.edu/mat/numbertheory/tables/local/counting/q3n27.html

Galois Group - One segment case

 $\varphi(x) = x^{p^m} + \sum_{i=1}^{p^m-1} \varphi_i x^i + \varphi_0 \in \mathcal{O}_K[x]$ Eisenstein polynomial whose ramification polygon has only one side.

Let \wp be the maximal ideal of the splitting field of $\varphi(x)$.

$$\Theta_h: G_h/G_{h+1}=G_1 o \wp^h/\wp^{h+1}: g \mapsto \left(rac{\pi^g}{\pi}-1
ight) \mod \wp^{h+1}$$
 Gal (φ) is isomorphic to the group

$$\left\{ t_{a,v} : (\mathbb{F}_p)^m \to (\mathbb{F}_p)^m : x \mapsto xa + v \ \middle| \ a \in H' \leq \mathrm{GL}(m,p), v \in (\mathbb{F}_p)^m \right\}$$

of permutations of the vector space $(\mathbb{F}_p)^m$, where H' describes the action of $\operatorname{Gal}(N/K)$ on $\Theta_h(G_h/G_{h+1}) \leq \wp^h/\wp^{h+1}$.

Corollary

If the ramification polygon of φ consists of one segement we can obtain $\mathrm{Gal}(\varphi)$ from the ramification polygon and the residual polynomial classes.

Possible residual polynomial classes $\mathcal{A} = \{(a+x)\}$ where $a \in \{1,2\}$

For $U = \mathbb{Q}_3(\zeta_8)$ we have $[U : \mathbb{Q}_3] = 2$.

If $T = U[x]/(x^8 - 3a)$ then N = LT is the normal closure.

Gal(L) is 9T19 of order $2^4 \cdot 3^2$.

Ramification Polygons and Subfields

Each segment of the ramification polygon of φ corresponds to a subfield of $L_0 = K[x]/(\varphi)$.

Subfields of Splitting Field

Theorem (Greve, P.)

 $\varphi \in \mathcal{O}_K[x]$ Eisenstein of degree $n = ep^m$. Ramification polygon \mathcal{R} of φ has $\ell+1$ segments with slopes $m_i = h_i/e_i$ and residual polynomials \underline{A}_i with root $\underline{\gamma}_i$ and f_i the lcm of the degrees of the irreducible factors of \underline{A}_i .

$$\begin{split} & \textit{U/K} \text{ unramified, } [\textit{U:K}] = \text{lcm}(\textit{f}_1,..,\textit{f}_{\ell+1},[\textit{K}(\zeta_{e_1})\text{:}\textit{K}],..,[\textit{K}(\zeta_{e_\ell})\text{:}\textit{K}]) \\ & \textit{T} = \textit{U}\left(\sqrt[e_1]{\gamma_1^n\varphi_0},\ldots,\sqrt[e_\ell]{\gamma_\ell^n\varphi_0},\sqrt[e]{\varphi_0}\right) \text{ and } \textit{N} \text{ splitting field of } \varphi. \end{split}$$

Let α be a root of φ and $K(\alpha) = L_0 \supset L_1 \supset \cdots \supset L_\ell \supset K$ be the tower of subfields corresponding to \mathcal{R} . Then:

- (a) TL_{i-1}/TL_i is elementary abelian.
- (b) N/T is a p-extension.

For $A = \{(x^2 + 1, x^3 + 1)\}$ we obtain the possible Galois groups 9T8, 9T18, and 9T24 from the invariants.

From the generating polynomials we get 9T8 and 9T18.