THERMODYNAMICS DPP-1

JEE-MAINS

First Law of Thermodynamics

1.	First law of thermody	namics is given by
	(a) $dQ = dU + PdV$	
	(c) $dQ = (dU + dV)P$	(d) $dQ = PdU + dV$
2.	The internal energy of	an ideal gas depends upon
	(a) Specific volume	(b) Pressure
	(c) Temperature	(d) Density
3.		of thermodynamics from A to B state, the heat required is Q and the world. The change in its internal energy is
	(a) Q + W	(b) Q - W
	(c) Q	(d) $\frac{Q-W}{2}$
4.	Heat given to a system internal energy of the	n is 35 joules and work done by the system is 15 <i>joules</i> . The change in the system will be
	(a) - 50 <i>J</i>	(b) 20 <i>J</i>
	(c) 30 <i>J</i>	(d) 50 J
5.	-	n ideal gas is kept constant as it expands. The gas does external wor ne internal energy of the gas
	(a) Decreases	CX
	(b) Increases	
	(c) Remains constant	
	(d) Depends on the mo	olecular motion
6.	The first law of therm	odynamics is concerned with the conservation of
	(a) Momentum	(b) Energy
	(c) Mass	(d) Temperature
7.	A thermodynamic syst	tem goes from states (i) P_1 , V to $2P_1$, V (ii) P , V to P , $2V$. Then work do
	in the two cases is	
	(a) Zero, Zero	(b) Zero, PV_1
	(c) PV_1 , Zero	(d) PV_1, P_1V_1
8.		given to a system be 35 <i>joules</i> and the amount of work done by the syste change in the internal energy of the system is
	(a) –50 joules	(b) 20 joules
	(c) 30 joules	(d) 50 joules
9.		o calories of heat and it does 600 <i>joules</i> of work. How much does the system change in this process
	(J = 4.18 joules/cal)	
	(a) 654 <i>Joule</i>	(b) 156.5 <i>Joule</i>
	(c) - 300 Joule	(d) - 528.2 Joule
10.	Work done on or by a	gas, in general depends upon the
	(a) Initial state only	

	(b) Final state only				
	(c) Both initial and f				
	(d) Initial state, fina				
11.	If R = universal gas constant, the amount of heat needed to raise the temperature of 2 mole of an ideal monoatomic gas from $273K$ to $373K$ when no work is done				
	(a) 100 R	(b) 150 R			
	(c) 300 R	(d) 500 R			
12.	Find the change in internal energy of the system when a system absorbs 2 <i>kilocalorie</i> of heat and at the same time does 500 <i>joule</i> of work				
	(a) 7900 <i>J</i>	(b) 8200 <i>J</i>			
	(c) 5600 <i>J</i>	(d) 6400 <i>J</i>			
13.	A system performs	work ΔW when an amount of heat is ΔQ added to the system, the			
		ge in the internal energy is ΔU . A unique function of the initial and fin of the mode of change) is			
	(a) Δ <i>Q</i>	(b) ∆W			
	(c) ΔU and ΔQ	(d) ΔU			
		v isolated from its surroundings. The partition is removed and the game whole volume of the container. Its temperature now would be			
	(a) 300 K	(b) 239 K			
	(a) 300 <i>K</i> (c) 200 <i>K</i>	(b) 239 <i>K</i> (d) 100 <i>K</i>			
15.	(c) 200 K	(d) 100 K ed to a gaseous system, whose internal energy change is 40 J , then the			
15.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add	(d) 100 K ed to a gaseous system, whose internal energy change is 40 J , then the			
15.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v	(d) 100 K ed to a gaseous system, whose internal energy change is 40 J , then the vork done is			
15. 16.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external <i>v</i> (a) 150 <i>J</i> (c) 110 <i>J</i>	(d) 100 K ed to a gaseous system, whose internal energy change is 40 J , then the work done is (b) $70 J$			
	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external <i>v</i> (a) 150 <i>J</i> (c) 110 <i>J</i>	(d) 100 <i>K</i> ed to a gaseous system, whose internal energy change is 40 <i>J</i> , then the vork done is (b) 70 <i>J</i> (d) 40 <i>J</i>			
	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following	(d) 100 <i>K</i> led to a gaseous system, whose internal energy change is 40 <i>J</i> , then the vork done is (b) 70 <i>J</i> (d) 40 <i>J</i> Ing is not thermo dynamical function			
	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy	(d) 100 <i>K</i> led to a gaseous system, whose internal energy change is 40 <i>J</i> , then the vork done is (b) 70 <i>J</i> (d) 40 <i>J</i> Ing is not thermo dynamical function (b) Work done (d) Internal energy			
16.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of	(d) 100 <i>K</i> led to a gaseous system, whose internal energy change is 40 <i>J</i> , then the vork done is (b) 70 <i>J</i> (d) 40 <i>J</i> Ing is not thermo dynamical function (b) Work done (d) Internal energy			
16.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of supplied is	(d) 100 <i>K</i> led to a gaseous system, whose internal energy change is 40 <i>J</i> , then the work done is (b) 70 <i>J</i> (d) 40 <i>J</i> Ing is not thermo dynamical function (b) Work done (d) Internal energy work done is 333 <i>cal</i> and change in internal energy is 167 <i>cal</i> , then the heat			
16. 17.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of supplied is (a) 166 cal (c) 500 cal	(d) 100 <i>K</i> ed to a gaseous system, whose internal energy change is 40 <i>J</i> , then the work done is (b) 70 <i>J</i> (d) 40 <i>J</i> ng is not thermo dynamical function (b) Work done (d) Internal energy work done is 333 <i>cal</i> and change in internal energy is 167 <i>cal</i> , then the he			
16. 17.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of supplied is (a) 166 cal (c) 500 cal	(d) 100 <i>K</i> ed to a gaseous system, whose internal energy change is 40 <i>J</i> , then the work done is (b) 70 <i>J</i> (d) 40 <i>J</i> ng is not thermo dynamical function (b) Work done (d) Internal energy work done is 333 <i>cal</i> and change in internal energy is 167 <i>cal</i> , then the he (b) 333 <i>cal</i> (d) 400 <i>cal</i> amics states that [KCET 1999]			
16. 17.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of supplied is (a) 166 cal (c) 500 cal First law thermodyn	(d) 100 <i>K</i> ed to a gaseous system, whose internal energy change is 40 <i>J</i> , then the work done is (b) 70 <i>J</i> (d) 40 <i>J</i> ng is not thermo dynamical function (b) Work done (d) Internal energy work done is 333 <i>cal</i> and change in internal energy is 167 <i>cal</i> , then the heat (b) 333 <i>cal</i> (d) 400 <i>cal</i> amics states that [KCET 1999] ork			
16.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of supplied is (a) 166 cal (c) 500 cal First law thermodynt (a) System can do we	(d) 100 <i>K</i> ed to a gaseous system, whose internal energy change is 40 <i>J</i> , then the work done is (b) 70 <i>J</i> (d) 40 <i>J</i> ng is not thermo dynamical function (b) Work done (d) Internal energy work done is 333 <i>cal</i> and change in internal energy is 167 <i>cal</i> , then the he (b) 333 <i>cal</i> (d) 400 <i>cal</i> amics states that [KCET 1999] ork erature			
16. 17.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of supplied is (a) 166 cal (c) 500 cal First law thermodyntical System can do we (b) System has temptoness.	(d) 100 <i>K</i> ed to a gaseous system, whose internal energy change is 40 <i>J</i> , then the work done is (b) 70 <i>J</i> (d) 40 <i>J</i> ng is not thermo dynamical function (b) Work done (d) Internal energy work done is 333 <i>cal</i> and change in internal energy is 167 <i>cal</i> , then the heat (b) 333 <i>cal</i> (d) 400 <i>cal</i> amics states that [KCET 1999] ork erature sure			
16. 17.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of supplied is (a) 166 cal (c) 500 cal First law thermodyn (a) System can do we (b) System has temp (c) System has press (d) Heat is a form of	(d) 100 <i>K</i> ed to a gaseous system, whose internal energy change is 40 <i>J</i> , then the work done is (b) 70 <i>J</i> (d) 40 <i>J</i> ng is not thermo dynamical function (b) Work done (d) Internal energy work done is 333 <i>cal</i> and change in internal energy is 167 <i>cal</i> , then the heat (b) 333 <i>cal</i> (d) 400 <i>cal</i> amics states that [KCET 1999] ork erature sure energy			
16. 17.	(c) 200 <i>K</i> 110 <i>J</i> of heat is add amount of external v (a) 150 <i>J</i> (c) 110 <i>J</i> Which of the following (a) Enthalpy (c) Gibb's energy When the amount of supplied is (a) 166 cal (c) 500 cal First law thermodyn (a) System can do we (b) System has temp (c) System has press (d) Heat is a form of the Athermo-dynamical	(d) 100 <i>K</i> ed to a gaseous system, whose internal energy change is 40 <i>J</i> , then the work done is (b) 70 <i>J</i> (d) 40 <i>J</i> ng is not thermo dynamical function (b) Work done (d) Internal energy work done is 333 <i>cal</i> and change in internal energy is 167 <i>cal</i> , then the heat (b) 333 <i>cal</i> (d) 400 <i>cal</i> amics states that [KCET 1999] ork erature sure			

	(c) $\Delta Q + \Delta W$	(d) $\Delta Q - \Delta W$			
20.	In thermodynamic process, 200 Joules of heat is given to a gas and 100 Joules of work is also				
	done on it. The change in internal energy of the gas is				
	(a) 100 <i>J</i>	(b) 300 <i>J</i>			
	(c) 419 <i>J</i>	(d) 24 <i>J</i>			
21.		l in a cylinder is kept in vacuum. If the cylinder suddenly bursts, then the			
	temperature of the gas				
	(a) Remains constant	(b) Becomes zero			
	(c) Increases	(d) Decreases			
22.		ed to a system and the work done by the system is 110 J , then change in			
	internal energy will be	(b) 150 I			
	(a) 260 <i>J</i> (c) 110 <i>J</i>	(b) 150 <i>J</i> (d) 40 <i>J</i>			
23.		ent the heat supplied to the system and the work done on the system			
23.		irst law of thermodynamics can be written as			
	(a) $\Delta Q = \Delta U + \Delta W$	(b) $\Delta Q = \Delta U - \Delta W$			
	(c) $\Delta Q = \Delta W - \Delta U$				
	where ΔU is the interr				
24.		he gas which of the following is true			
	(a) $Q = W = 0$ and $\Delta E_{\text{int}} = 0$				
	(b) $Q=0, W>0$ and $\Delta E_{\text{int}}=-W$				
	(c) $W=0, Q>0$, and $\Delta E_{\rm int}=Q$				
	(d) $W > 0, Q < 0$ and ΔE	$r_{\rm int} = 0$			
25.	Which of the following can not determine the state of a thermodynamic system				
	(a) Pressure and volume				
	(b) Volume and temper	rature			
	(c) Temperature and pr	ressure			
	(d) Any one of pressure	e, volume or temperature			
26.		e, volume or temperature is not a thermodynamics co-ordinate			
26.		· 🔻			
26.	Which of the following	is not a thermodynamics co-ordinate			
26. 27.	Which of the following (a) P (c) V	is not a thermodynamics co-ordinate (b) T			
	Which of the following (a) P (c) V	is not a thermodynamics co-ordinate (b) T (d) R an ideal gas, $dW=0$ and $dQ<0$. Then for the gas			
	Which of the following (a) P (c) V In a given process for a	is not a thermodynamics co-ordinate (b) T (d) R (m) ideal gas, $dW=0$ and $dQ<0$. Then for the gas ill decrease			
	Which of the following (a) P (c) V In a given process for a (a) The temperature with	is not a thermodynamics co-ordinate (b) T (d) R (m) ideal gas, $dW=0$ and $dQ<0$. Then for the gas ill decrease crease			
	Which of the following (a) P (c) V In a given process for a (a) The temperature with (b) The volume will income	is not a thermodynamics co-ordinate (b) T (d) R (m) ideal gas, $dW=0$ and $dQ<0$. Then for the gas ill decrease crease emain constant			
	Which of the following (a) P (c) V In a given process for a (a) The temperature with (b) The volume will income the company of the pressure will recome the company of the temperature with the company of the temperature with the company of the com	is not a thermodynamics co-ordinate (b) T (d) R (m) ideal gas, $dW=0$ and $dQ<0$. Then for the gas ill decrease crease emain constant ill increase			
27.	Which of the following (a) P (c) V In a given process for a (a) The temperature with (b) The volume will inc (c) The pressure will re (d) The temperature with The specific heat of hy	is not a thermodynamics co-ordinate (b) T (d) R (m) ideal gas, $dW=0$ and $dQ<0$. Then for the gas ill decrease crease emain constant ill increase drogen gas at constant pressure is $C_P=3.4\times10^3cal/kg^oC$ and at constant			
27.	Which of the following (a) P (c) V In a given process for a (a) The temperature with (b) The volume will income (c) The pressure will red (d) The temperature with the specific heat of hy volume is $C_V = 2.4 \times 10^3$	is not a thermodynamics co-ordinate (b) T (d) R (m) ideal gas, $dW=0$ and $dQ<0$. Then for the gas ill decrease crease emain constant ill increase drogen gas at constant pressure is $C_P=3.4\times10^3cal/kg^oC$ and at constant			
27.	Which of the following (a) P (c) V In a given process for a (a) The temperature with (b) The volume will income (c) The pressure will red (d) The temperature with the specific heat of hy volume is $C_V = 2.4 \times 10^3$	is not a thermodynamics co-ordinate (b) T (d) R (m) ideal gas, $dW=0$ and $dQ<0$. Then for the gas ill decrease crease emain constant ill increase drogen gas at constant pressure is $C_P=3.4\times10^3cal/kg^oC$ and at constant cal/kg^oC . If one kilogram hydrogen gas is heated from 10^oC to 20^oC at			

29.	Which of the following	parameters does not characterize the thermodynamic state of matter	
	(a) Volume	(b) Temperature	
	(c) Pressure	(d) Work	
30.	In a thermodynamic sy	stem working substance is ideal gas, its internal energy is in the form of	
	(a) Kinetic energy only		
	(b) Kinetic and potenti	al energy	
	(c) Potential energy		
	(d) None of these		
31.	Which of the following	statements is correct for any thermodynamic system	
	(a) The internal energy	changes in all processes	
	(b) Internal energy and	l entropy are state functions	
	(c) The change in entro	py can never be zero	
	(d) The work done in a	n adiabatic process is always zero	
32.	A system is provided w	rith 200 cal of heat and the work done by the system on the surrounding	
	is 40 <i>J</i> . Then its interna		
		(b) Decreases by 800 J	
		(d) Decreases by 50 J	
33.		ocess, pressure of a fixed mass of a gas is changed in such a manner that	
		es out 20 J of heat and 10 J of work is done on the gas. If the initial gas was 40 J , then the final internal energy will be	
	(a) $30 J$	(b) 20 <i>J</i>	
	(c) 60 J	(d) 40 <i>J</i>	
34.		nged in a body. If its internal energy is increased, then	
	(a) Its temperature wil		
	(b) Its temperature will decrease		
	(c) Its temperature wil		
	(d) None of these		
35.	Out of the following wh	nich quantity does not depend on path	
	(a) Temperature	(b) Energy	
	(c) Work	(d) None of these	
36.	First law of thermodyr	namics is a special case of	
	(a) Newton's law		
	(b) Law of conservation	n of energy	
	(c) Charle's law		
257	(d) Law of heat exchan	ge nonoatomic gas is heated at a constant pressure of one atmosphere from	
37•		e change in the internal energy is	
		(b) 8.32×10^2 joules	
-0	(c) 12.48×10^2 joules		
38.		heat of a gas at constant pressure to that at constant volume is γ , the	
	pressure <i>p</i> , is	rgy of a mass of gas, when the volume changes from V to $2V$ constant	
		(b) <i>pV</i>	
	(c) $pV/(\gamma-1)$		
		then increase in internal	

		erature of 2 moles of this gas is increased from 340 K to 342 K
	(a) 27.80 <i>cal</i>	(b) 19.84 <i>cal</i>
	(c) 13.90 cal	(d) 9.92 cal
40.		neasurement of coldness or hotness of an object. This definition is based on
	(a) Zeroth law of the	hermodynamics
	(b) First law of the	
	(c) Second law of the	
	(d) Newton's law o	
41.		of 1500 <i>Joules</i> , is supplied to a gas at constant pressure $2.1 \times 10^5 N/m^2$, the
	was an increase in Joules is	its volume equal to $2.5 \times 10^{-3} m^3$. The increase in internal energy of the gas
	(a) 450	(b) 525
	(c) 975	(d) 2025
42.	If heat given to a sy	ystem is 6 kcal and work done is 6 kJ. Then change in internal energy is
	(a) 19.1 <i>kJ</i>	(b) 12.5 <i>kJ</i>
	(c) 25 <i>kJ</i>	(d) Zero
43.	In a thermodynami	cs process, pressure of a fixed mass of a gas is changed in such a manner t
	the gas releases 20	O_J of heat and O_J of work is done on the gas. If the initial internal energy
	the gas was 30 <i>J</i> . Th	ne final internal energy will be
	(a) 18 <i>J</i>	(b) 9 <i>J</i>
	(c) 4.5 <i>J</i>	(d) 36 <i>J</i>
44.	A monoatomic gas	of n -moles is heated from temperature T_1 to T_2 under two different condition
	(i) at constant volu	me and (ii) at constant pressure. The change in internal energy of the gas i
	(a) More for (i)	
	(b) More for (ii)	
	(c) Same in both ca	ases
	(d) Independent of	number of moles
45.	The state of a therm	nodynamic system is represented by
10.		
13.	(a) Pressure only	
15.	(b) Volume only	
13.	(b) Volume only (c) Pressure, volum	ne and temperature
	(b) Volume only(c) Pressure, volume(d) Number of mole	es
	(b) Volume only(c) Pressure, volum(d) Number of moleA perfect gas goes	es s from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do
	 (b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes 6.5×10⁵ J of exter 	es from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in another.
	 (b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes 6.5×10⁵ J of exter 	es s from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do
	 (b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes 6.5×10⁵ J of exter 	es is from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in another absorbs $10^5 J$ of heat. Then in the second process
	 (b) Volume only (c) Pressure, volume (d) Number of mole A perfect gas goes 6.5×10⁵ J of extern process in which it 	es is from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in another absorbs $10^5 J$ of heat. Then in the second process the gas is $0.5 \times 10^5 J$
	(b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes $6.5 \times 10^5 J$ of exter process in which it (a) Work done on t	es is from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in anoth absorbs $10^5 J$ of heat. Then in the second process he gas is $0.5 \times 10^5 J$ gas is $0.5 \times 10^5 J$
	(b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes $6.5 \times 10^5 J$ of exter process in which it (a) Work done on t (b) Work done by §	es is from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in anoth absorbs $10^5 J$ of heat. Then in the second process the gas is $0.5 \times 10^5 J$ gas is $0.5 \times 10^5 J$ gas is $10^5 J$ gas is $10^5 J$
46.	(b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes 6.5×10 ⁵ J of exter process in which it (a) Work done on t (b) Work done by g (c) Work done by g (d) Work done by g	es a from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in anoth absorbs $10^5 J$ of heat. Then in the second process he gas is $0.5 \times 10^5 J$ gas is $0.5 \times 10^5 J$ gas is $10^5 J$ gas is $10^5 J$ gas is $10^5 J$
46.	(b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes 6.5×10 ⁵ J of exter process in which it (a) Work done on t (b) Work done by g (c) Work done by g (d) Work done by g	es from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in anoth absorbs $10^5 J$ of heat. Then in the second process the gas is $0.5 \times 10^5 J$ gas is $0.5 \times 10^5 J$ gas is $10^5 J$ gas contraction of volume then the work done by the system will be
46.	(b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes 6.5×10 ⁵ J of exter process in which it (a) Work done on t (b) Work done by g (c) Work done by g If a system undergo	es a from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in anoth absorbs $10^5 J$ of heat. Then in the second process he gas is $0.5 \times 10^5 J$ gas is $0.5 \times 10^5 J$ gas is $10^5 J$ gas is $10^5 J$ gas is $10^5 J$
46. 47.	(b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes 6.5×10 ⁵ J of exter process in which it (a) Work done on t (b) Work done by g (c) Work done by g If a system undergo (a) Zero (c) Negative	es from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in anoth absorbs $10^5 J$ of heat. Then in the second process the gas is $0.5 \times 10^5 J$ gas is $0.5 \times 10^5 J$ gas is $10^5 J$ gas is $10^5 J$ gas is $10^5 J$ to be contraction of volume then the work done by the system will be (b) Negligible
46. 47.	(b) Volume only (c) Pressure, volum (d) Number of mole A perfect gas goes 6.5×10 ⁵ J of exter process in which it (a) Work done on t (b) Work done by g (c) Work done by g If a system undergo (a) Zero (c) Negative Which of the follow	es from state A to another state B by absorbing $8 \times 10^5 J$ of heat and do nal work. It is now transferred between the same two states in anoth absorbs $10^5 J$ of heat. Then in the second process he gas is $0.5 \times 10^5 J$ gas is $0.5 \times 10^5 J$ gas is $10^5 J$ gas is $10^5 J$ gas is $10^5 J$ to be contraction of volume then the work done by the system will be (b) Negligible (d) Positive

- (c) It is not applicable to any cyclic process
- (d) None of the above

Isothermal Process

- For an ideal gas, in an isothermal process 1.
 - (a) Heat content remains constant
 - (b) Heat content and temperature remain constant
 - (c) Temperature remains constant
 - (d) None of the above
- Can two isothermal curves cut each other 2.
 - (a) Never
 - (b) Yes
 - (c) They will cut when temperature is $0^{\circ}C$
 - (d) Yes, when the pressure is critical pressure
- In an isothermal expansion 3.
 - (a) Internal energy of the gas increases
 - (b) Internal energy of the gas decreases
 - (c) Internal energy remains unchanged
 - (d) Average kinetic energy of gas molecule decreases
- In an isothermal reversible expansion, if the volume of 96 gm of oxygen at 27°C is increased 4. from 70 litres to 140 litres, then the work done by the gas will be
 - (a) $300 R \log_{10} 2$
- (b) $81 R \log_e 2$
- (c) $900 R \log_{10} 2$
- (d) $2.3 \times 900 R \log_{10} 2$
- A vessel containing 5 litres of a gas at 0.8 m pressure is connected to an evacuated vessel of 5. volume 3 *litres*. The resultant pressure inside will be (assuming whole system to be isolated)
 - (a) 4/3 m
- (b) 0.5 m
- (c) 2.0 m
- (d) 3/4 m
- For an isothermal expansion of a perfect gas, the value of $\frac{\Delta P}{P}$ is equal
 - (a) $-\gamma^{1/2} \frac{\Delta V}{V}$ (b) $-\frac{\Delta V}{V}$ (c) $-\gamma \frac{\Delta V}{V}$ (d) $-\gamma^2 \frac{\Delta V}{V}$
- 7. The gas law $\frac{PV}{T}$ = constant is true for
 - (a) Isothermal changes only
 - (b) Adiabatic changes only
 - (c) Both isothermal and adiabatic changes
 - (d) Neither isothermal nor adiabatic changes
- 8. One mole of O_2 gas having a volume equal to 22.4 litres at $0^{\circ}C$ and 1 atmospheric pressure in compressed isothermally so that its volume reduces to 11.2 litres. The work done in this process
 - (a) 1672.5 J
- (b) 1728 I
- (c) -1728 J
- (d) -1572.5 J
- If a gas is heated at constant pressure, its isothermal compressibility 9.
 - (a) Remains constant

	(b) Increases linearly				
	(c) Decreases linearly	and the control of th			
	(d) Decreases inversel				
10.		an isothermal change is			
	(a) $RT \log_{10} \frac{V_2}{V_1}$	(b) $RT \log_{10} \frac{V_1}{V_2}$			
	(c) $RT \log_e \frac{V_2}{V_1}$	(d) $RT \log_e \frac{V_1}{V_2}$			
11.	The isothermal Bulk m	odulus of an ideal gas at pressure <i>P</i> is			
	(a) <i>P</i>	(b) γ <i>P</i>			
	(c) P / 2	(d) P / γ			
12.		on, the pressure is determined by			
	(a) Temperature only				
	(b) Compressibility on	ly			
	(c) Both temperature a	and compressibility			
	(d) None of these				
13.	The isothermal bulk m	odulus of a perfect gas at normal pressure is			
	(a) $1.013 \times 10^5 N/m^2$	(b) $1.013 \times 10^6 N/m^2$			
	(c) $1.,013 \times 10^{-11} N/m^2$	(d) $1.013 \times 10^{11} N/m^2$			
14.	In an isothermal chang				
		(b) Charle's law			
		(d) None of the above			
15.		which statement is wrong			
	(a) Temperature is cor				
	(b) Internal energy is	constant			
	(c) No exchange of end	ergy			
	(d) (a) and (b) are cor	rect 🕝 📉			
16.		real gas B have their volumes increased from V to 2 V under isotherr			
	conditions. The increase in internal energy				
	(a) Will be same in bo				
	(b) Will be zero in bot				
	(c) Of B will be more t				
	(d) Of A will be more t				
17.		gas in an isothermal process is			
	(a) Infinite	(b) Zero			
10	(c) Negative	(d) Remains constant container is divided into two parts by a screen. In one part the pressu			
18.	and temperature are I	P and T for an ideal gas filled. In the second part it is vacuum. If now			
		the screen, then the temperature of the gas will			
	(a) Decrease	(b) Increase			
	(c) Remain same	(d) None of the above			
19.		the occurrence of an isothermal process should be made of			
	(a) Copper	(b) Glass			
	(c) Wood	(d) Cloth			
20.		ss the volume of an ideal gas is halved. One can say that			
	(a) Internal energy of the system decreases				
		gas is positive			

	(c) Isobaric process	(d) None of these	
22.	If an ideal gas is com	pressed isothermally then	
	(a) No work is done	against gas	
	(b) Heat is relased by	y the gas	
	(c) The internal ener	rgy of gas will increase	
	(d) Pressure does no	t change	
23.	When an ideal gas in	a cylinder was compressed isothermally by a piston, the work done on the	
	gas was found to be	1.5×10^4 joules . During this process about	
	(a) 3.6×10^3 cal of he	eat flowed out from the gas	
	(b) 3.6×10^3 cal of he	at flowed into the gas	
	(c) 1.5×10^4 cal of he	at flowed into the gas	
	(d) 1.5×10^4 cal of he	at flowed out from the gas	
24.	When heat is given to	o a gas in an isothermal change, the result will be	
	(a) External work do		
	(b) Rise in temperatu		
	(c) Increase in interr		
		ne and also rise in temp.	
25.		at $0^{\circ}C$ and 1×10^{5} N/m^{2} pressure is converted into ice of volume 1.091 cm^{2} ,	
	the external work do		
	(a) 0.0091 joule	(b) 0.0182 joule	
2.0	(c) - 0.0091 joule	(d) - 0.0182 joule	
26.		vaporisation of water is 2240 J/gm . If the work done in the process of 68 J , then increase in internal energy is	
	(a) 2408 <i>J</i>	(b) 2240 J	
	(c) 2072 <i>J</i>	(d) 1904 J	
27.	540 calories of heat	convert 1 cubic centimeter of water at $100^{o}C$ into 1671 cubic centimeter of	
	steam at $100^{\circ}C$ at a	pressure of one atmosphere. Then the work done against the atmospheric	
	pressure is nearly		
	(a) 540 <i>cal</i>	(b) 40 cal	
	(c) Zero cal	(d) 500 cal	
28.		gas expands at a constant temperature of 300 <i>K</i> from an initial volume of lume of 20 <i>litres</i> . The work done in expanding the gas is	
	(R = 8.31 J/mole-K)		
	(a) 750 joules	(b) 1728 joules	
	(c) 1500 joules	(d) 3456 <i>joules</i>	
29.	A cylinder fitted wit	th a piston contains 0.2 <i>moles</i> of air at temperature $27^{\circ}C$. The piston is	
	•	at the air within the cylinder remains in thermal equilibrium with the	
	surroundings. Find t initial volume	he approximate work done by the system if the final volume is twice the	
	(a) 543 <i>J</i>	(b) $345J$	

21. A thermodynamic process in which temperature T of the system remains constant though other

(b) Isothermal process

(c) Work done by the gas is negative

variable P and V may change, is called

(a) Isochoric process

(d) Internal energy of the system increases

	the rise in temperature	15
	(a) 450 <i>K</i>	(b) 375 K
	(c) 225 K	(d) 405 K
9.	Two identical samples	of a gas are allowed to expand (i) isothermally (ii) adiabatically. Work
	done is	
	(a) More in the isothern	mal process
	(b) More in the adiabat	ic process
	(c) Neither of them	
	(d) Equal in both proces	sses
10.	Which is the correct sta	atement
	(a) For an isothermal cl	nange PV = constant
	(b) In an isothermal pro	ocess the change in internal energy must be equal to the work done
	(c) For an adiabatic cha	ange $\frac{P_2}{P_1} = \left(\frac{V_2}{V_1}\right)^{\gamma}$, where γ is the ratio of specific heats
11		ess work done must be equal to the heat entering the system al and adiabatic curves are related as
11.		ope = adiabatic curve slope
		$ppe = \gamma \times \text{ adiabatic curve slope}$
		$e = \gamma \times isothermal curve slope$
	e i i i	
	(d) Adiabatic curve slop	$e = \frac{1}{2} \times isothermal curve slope$
12.	Pressure-temperature r	elationship for an ideal gas undergoing adiabatic change is $(\gamma = C_p / C_v)$
	(a) $PT^{\gamma} = \text{constant}$	(b) $PT^{-1+y} = \text{constant}$
	(c) $P^{\gamma-1}T^{\gamma} = \text{constant}$	(d) $P^{1-\gamma}T^{\gamma} = \text{constant}$
13.	The amount of work do	ne in an adiabatic expansion from temperature T to T_1 is
	(a) $R(T-T_1)$	(b) $\frac{R}{v-1}(T-T_1)$
	(c) RT	(d) $R(T-T_1)(\gamma-1)$
14.		spansion of 2 moles of a gas, the internal energy of the gas is found to
		e work done during the process on the gas will be equal to
	(a) 1 J	(b) -1 <i>J</i>
15.	(c) 2 <i>J</i> The adiabatic elasticity	(d) – 2 J of hydrogen gas (γ = 1.4) at NTP is
-3.		(b) $1 \times 10^{-8} \ N/m^2$
		(d) $1.4 \times 10^5 N/m^2$
16.		of two specific heats of a gas, the ratio of slopes of adiabatic and
	(a) $1/\gamma$	their point of intersection is (b) γ
	(a) $1/\gamma$ (c) $\gamma - 1$	
	(6) / 1	(d) $\gamma + 1$

An ideal gas at $27^{\circ}C$ is compressed adiabatically to $\frac{8}{27}$ of its original volume. If $\gamma = \frac{5}{3}$, then

(c) 128 (d) None of the above

8.

27.	decreased by 100 J . The work done by the gas in this process is		
	(a) Zero	(b) -100 <i>J</i>	
	(c) 200 <i>J</i>	(d) 100 J	
28.	In an adiabatic expansion	on of a gas initial and final temperatures are T_1 and T_2 respectively, then	
	the change in internal e	nergy of the gas is	
	(a) $\frac{R}{\gamma - 1} (T_2 - T_1)$	(b) $\frac{R}{\gamma - 1}(T_1 - T_2)$	
	(c) $R(T_1 - T_2)$	(d) Zero	
29.	Helium at $27^{\circ}C$ has a vector temperature of the gas vector.	volume of 8 <i>litres</i> . It is suddenly compressed to a volume of 1 <i>litre</i> . The will be $[\gamma = 5/3]$	
	(a) $108^{o}C$	(b) 9327°C	
	(c) 1200°C	(d) 927°C	
30.	A cycle tyre bursts sudd	enly. This represents an	
	(a) Isothermal process	(b) Isobaric process	
	(c) Isochoric process	(d) Adiabatic process	
31.	One mole of helium is	adiabatically expanded from its initial state (P_i, V_i, T_i) to its final state	
	(P_f, V_f, T_f) . The decrease	in the internal energy associated with this expansion is equal to	
	(a) $C_V(T_i - T_f)$	(b) $C_P(T_i - T_f)$ (d) $(C_P - C_V)(T_i - T_f)$	
	(c) $\frac{1}{2}(C_P + C_V)(Ti - T_f)$	(d) $(C_P - C_V)(T_i - T_f)$	
32.	At N.T.P. one mole of di	atomic gas is compressed adiabatically to half of its volume γ = 1.41 . The	
	work done on gas will b		
	(a) 1280 <i>J</i>	(b) 1610 <i>J</i>	
	(c) 1815 <i>J</i>	(d) 2025 J	
33.	For adiabatic process, w		
	(a) $dQ = 0$	(b) $dU = -dW$	
	(c) $Q = constant$	(d) Entropy is not constant	
34.	A diatomic gas initially The temperature after c	at $18^{\circ}C$ is compressed adiabatically to one-eighth of its original volume. ompression will be	
	(a) $10^{\circ}C$	(b) 887°C	
	(c) 668 K	(d) 144°C	
35.	A gas is being compress	ed adiabatically. The specific heat of the gas during compression is	
	(a) Zero	(b) Infinite	
	(c) Finite but non-zero	(d) Undefined	
36.		heat enters or leaves the system is termed as	
	(a) Isochoric	(b) Isobaric	
	(c) Isothermal	(d) Adiabatic	
37-		monoatomic gas at $27^{\circ}C$ occupies a volume of V . If the gas is expanded time $2V$, then the work done by the gas will be $[\gamma = 5/3, R = 8.31 J/mol \ K]$	
	(a) −2767.23 <i>J</i>	(b) 2767.23 <i>J</i>	
	(c) 2500 J	(d) -2500 <i>J</i>	

38. At $27^{\circ} C$ a gas is suddenly compressed such that its pressure becomes $\frac{1}{9} th$ of original pressure.

Temperature of the gas will be $(\gamma = 5/3)$

(b) 327°C

(d) $-142^{\circ} C$

(b) Isothermal process

(a) 420K

(c) 300 K

39. $\Delta U + \Delta W = 0$ is valid for (a) Adiabatic process

	(C) 3/3 K	(u) 4/3 K	
48.		sed in an insulated vessel fitted with insulating piston at a pressure of	
	$10^5\ N/m^2$. On suddenly pressing the piston the volume is reduced to half the initial volume. The		
	final pressure of the gas	s is	
	(a) $2^{0.7} \times 10^5$	(b) $2^{1.3} \times 10^5$	
	(c) $2^{1.4} \times 10^5$	(d) None of these	
49.	The internal energy of t	the gas increases In	
	(a) Adiabatic expansion	ı (b) Adiabatic compression	
	(c) Isothermal expansion	on (d)Isothermal compression	
50.		lynamic system. If ΔU represents the increase in its internal energy and	
		e system, which of the following statements is true	
	(a) $\Delta U = -W$ in an adial		
	(b) $\Delta U = W$ in an isother		
	(c) $\Delta U = -W$ in an isother		
	(d) $\Delta U = W$ in an adiaba	· · · · · · · · · · · · · · · · · · ·	
51.		ressed to one fourth of its original volume. What will be its final pressure,	
	if its initial pressure is I		
	(a) Lesss than P	(b) More than P	
	(c) P	(d) Either (a) or (c)	
52.	A gas for which $\gamma = 1.5$ i	is suddenly compressed to $\frac{1}{4}$ th of the initial volume. Then the ratio of the	
	final to the initial press	sure is	
	(a) 1:16	(b) 1:8	
	(c) 1:4	(d) 8:1	
53.	· · · · · · · · · · · · · · · · · · ·	as with $\gamma = 1.4$, is adiabatically compressed so that its temperature rises change in the internal energy of the gas is $(R = 8.3 \ J/mol.K)$	
	(a) -166 <i>J</i>	(b) 166 J	
	(c) -168 <i>J</i>	(d) 168 J	
54.	The volume of a gas is	reduced adiabatically to $\frac{1}{4}$ of its volume at 27°C, if the value of $\gamma = 1.4$,	
54.		, and the contract of the cont	
	then the new temperati		
		(b) $300 \times 4^{0.4} K$	
		(d) None of these	
55.	50 <i>J</i> . The work done dur	pansion of 2 moles of a gas, the change in internal energy was found – ing the process is	
	(a) Zero	(b) 100 <i>J</i>	
	(c) - 50 <i>J</i>	(d) 50 <i>J</i>	
56.		asticity of a gas is $2.1 \times 10^5 N/m^2$. What will be its isothermal modulus of	
	elasticity $\left(\frac{C_p}{C_v} = 1.4\right)$		
	(a) $1.8 \times 10^5 N/m^2$		
	(c) $1.4 \times 10^5 N/m^2$	(d) $1.2 \times 10^5 N/m^2$	
57.	For an adiabatic expans	sion of a perfect gas, the value of $\frac{\Delta P}{P}$ is equal to	
		(b) $-\frac{\Delta V}{V}$	

(a) 273 K

(b) 573 K

(c)
$$-\gamma \frac{\Delta V}{V}$$

(c)
$$-\gamma \frac{\Delta V}{V}$$
 (d) $-\gamma^2 \frac{\Delta V}{V}$

Isobaric and Isochoric Processes

1. .	A gas expands under constant	pressure P from volume	V_1 to V_2 . The	e work done by t	he gas is

- (a) $P(V_2 V_1)$
- (b) $P(V_1 V_2)$
- (c) $P(V_1^{\gamma} V_2^{\gamma})$
- (d) $P \frac{V_1 V_2}{V_2 V_1}$

- (a) The work is done by the gas
- (b) Internal energy of the gas increases
- (c) Both (a) and (b)
- (d) None from (a) and (b)
- One mole of a perfect gas in a cylinder fitted with a piston has a pressure P, volume V and 3. temperature T. If the temperature is increased by 1 K keeping pressure constant, the increase in volume is
- (b) $\frac{V}{91}$
- (c) $\frac{V}{273}$
- (d) V

4. A gas is compressed at a constant pressure of
$$50N/m^2$$
 from a volume of $10m^3$ to a volume of $4m^3$. Energy of 100 J then added to the gas by heating. Its internal energy is

- (a) Increased by 400 J (b) Increased by 200 J
- (c) Increased by 100 J (d) Decreased by 200 J

- (a) 2×10^4 joules
- (b) 2×100 joules
- (c) $2 \times 10^5 \times 100$ joules
- (d) $2 \times 10^{-5} \times 100$ joules

6. Work done by 0.1 mole of a gas at
$$27^{\circ}C$$
 to double its volume at constant pressure is $(R = 2 \text{ cal } mol^{-1} {\circ} C^{-1})$

- (a) 54 cal
- (b) 600 cal
- (c) 60 cal
- (d) 546 cal

7. Unit mass of a liquid with volume
$$V_1$$
 is completely changed into a gas of volume V_2 at a constant external pressure P and temperature T . If the latent heat of evaporation for the given mass is L , then the increase in the internal energy of the system is

- (a) Zero
- (b) $P(V_2 V_1)$
- (c) $L P(V_2 V_1)$
- (d) L

8. A gas expands
$$0.25m^3$$
 at constant pressure $10^3N/m^2$, the work done is

- (a) 2.5 ergs
- (b) 250 J
- (c) 250 W
- (d) 250 N

9. Two kg of water is converted into steam by boiling at atmospheric pressure. The volume changes from
$$2 \times 10^{-3} m^3$$
 to $3.34 m^3$. The work done by the system is about

- (a) 340 kJ
- (b) 170 kJ
- (c) 170 kJ
- (d) 340 kJ

10.	An ideal gas has volume V_0 at 27^o C . It is heated at constant pressure so that its volume becomes $2V_0$. The final temperature is		
	(a) 54 ° C	(b) 32.6° C	
	(c) 327 °C	(d) 150 K	
11.	If 300 <i>ml</i> of a gas at 27	o C is cooled to 7^{o} C at constant pressure, then its final volume will be	
	(a) 540 ml	(b) 350 ml	
	(c) 280 ml	(d) 135 ml	
12.	Which of the following state	is correct in terms of increasing work done for the same initial and final	
	(a) Adiabatic < Isotherr	nal < Isobaric	
	(b) Isobaric < Adiabatic		
	(c) Adiabatic < Isobaric	: < Isothermal	
	(d) None of these		
13.		is from volume V_1 to V_2 . The amount of work done by the gas is greatest	
	when the expansion is		
	(a) Isothermal	(b) Isobaric	
	(c) Adiabatic	(d) Equal in all cases	
14.	Which of the following		
	(a) Isothermal	(b) Adiabatic	
	(c) Isobaric	(d) None of these	
15.		e done in decreasing the volume of and ideal gas by an amount of	
		emperature and constant normal pressure of $1 \times 10^5 N/m^2$	
	(a) 28 joule	(b) 27 joule	
4.0	(c) 25 joule	(d) 24 joule	
16.		ole of a gas at a temperature 27°C has a movable piston which maintains container of 1 atm. The gas is compressed until temperature becomes	
		is $(C_p \text{ for gas is 7.03 } cal/mol^-K)$	
	(a) 703 <i>J</i>	(b) 814 J	
	(c) 121 <i>J</i>	(d) 2035 <i>J</i>	
17.	In a reversible isochoric	c change	
	(a) $\Delta W = 0$	(b) $\Delta Q = 0$	
	(c) $\Delta T = 0$	(d) $\Delta U = 0$	
18.		amic system does not change when this system is used for	
		from a hot reservoir to a cold reservoir	
	(b) Conversion of heat i	into work isobarically into internal energy isochorically	
	(d) Conversion of work		
19.		of the following processes is zero	
	(a) Isothermal process		
	(c) Isochoric process	(d) None of these	
20.	In which thermodynami	ic process, volume remains same	
	(a) Isobaric	(b) Isothermal	
	(c) Adiabatic	(d) Isochoric	
21.	In an isochoric process	if $T_1 = 27^{\circ} C$ and $T_2 = 127^{\circ} C$, then P_1 / P_2 will be equal to	
	(a) 9 / 59	(b) 2 / 3	
	(c) 3 / 4	(d) None of these	

22. Which is incorrect (a) In an isobaric process, $\Delta p = 0$ (b) In an isochoric process, $\Delta W = 0$ (c) In an isothermal process, $\Delta T = 0$ (d) In an isothermal process, $\Delta Q = 0$ **23.** Which relation is correct for isometric process (b) $\Delta W = \Delta U$ (a) $\Delta Q = \Delta U$ (c) $\Delta Q = \Delta W$ (d) None of these Heat Engine, Refrigerator and Second Law of Thermodynamics A Carnot engine working between 300 K and 600K has work output of 800 J per cycle. What is amount of heat energy supplied to the engine from source per cycle (a) 1800 J/cycle (b) 1000 J/cycle (c) 2000 J/cycle (d) 1600 J/cycle The coefficient of performance of a Carnot refrigerator working between $30^{\circ} C$ and $0^{\circ} C$ is 2. (b) 1 (a) 10 (d) o (c) 9 If the door of a refrigerator is kept open, then which of the following is true (a) Room is cooled (b) Room is heated (c) Room is either cooled or heated (d) Room is neither cooled nor heated 4. In a cyclic process, the internal energy of the gas (a) Increases (b) Decreases (c) Remains constant (d) Becomes zero Irreversible process is 5. (a) Adiabatic process (b) Joule-Thomson expansion (c) Ideal isothermal process (d) None of the above For a reversible process, necessary condition is 6. (a) In the whole cycle of the system, the loss of any type of heat energy should be zero (b) That the process should be too fast (c) That the process should be slow so that the working substance should remain in thermal and mechanical equilibrium with the surroundings (d) The loss of energy should be zero and it should be *quasistatic* 7. In a cyclic process, work done by the system is (a) Zero (b) Equal to heat given to the system (c) More than the heat given to system

An ideal gas heat engine operates in a Carnot's cycle between $227^{\circ}C$ and $127^{\circ}C$. It absorbs 6 \times

10⁴ *I* at high temperature. The amount of heat converted into work is

(d) Independent of heat given to the system

8.

	(-) 4.0 104 7	(b) $3.5 \times 10^4 J$					
	(c) $1.6 \times 10^4 J$	(d) $1.2 \times 10^4 J$					
9.	An ideal heat engin	e exhausting heat at $77^{\circ}C$ is to have a 30% efficiency. It must take heat at					
	(a) 127 ° C	(b) 227°C					
	(c) 327°C	(d) 673° C					
10.	Efficiency of Carno	t engine is 100% if					
	(a) $T_2 = 273 \ K$	(b) $T_2 = 0 K$					
	(c) $T_1 = 273 K$	(d) $T_1 = 0 K$					
11.	A Carnot's engine	used first an ideal monoatomic gas then an ideal diatomic gas. If the source					
	and sink temperatu	are are 411 oC and 69 oC respectively and the engine extracts 1000 J of hea					
	in each cycle, then	area enclosed by the PV diagram is					
	(a) 100 <i>J</i>	(b) 300 <i>J</i>					
	(c) 500 <i>J</i>	(d) 700 J					
12.		osorbs an amount Q of heat from a reservoir at an abosolute temperature					
	and rejects heat to	a sink at a temperature of $T/3$. The amount of heat rejected is					
	(a) Q / 4	(b) Q/3					
	(c) Q / 2	(d) 2Q / 3					
13.	The temperature temperature of sou	of sink of Carnot engine is $27^{\circ}C$. Efficiency of engine is 25%. The rce is					
	(a) 227°C	(b) 327°C					
	(c) 127°C	(d) 27°C					
14.	The temperature of The temperature of	f reservoir of Carnot's engine operating with an efficiency of 70% is 1000F fits sink is					
	(a) 300 K	(b) 400 K					
	(c) 500 K	(d) 700 K					
15.		, when $T_2 = 0^{\circ} C$ and $T_1 = 200^{\circ} C$, its efficiency is η_1 and when $T_1 = 0^{\circ} C$ and					
	$T_2 = -200$ oC , Its efficiency is η_2 , then what is η_1/η_2						
	(a) 0.577	(b) 0.733					
	(c) 0.638	(d) Can not be calculated					
16.		Carnot's engine operating between reservoirs, maintained at temperature					
	$27^{\circ} C$ and $-123^{\circ} C$,						
	(a) 50% (c) 0.75%	(b) 24% (d) 0.4%					
17.		erates between $227^{\circ}C$ and $27^{\circ}C$. Efficiency of the engine will be					
1/•	4						
	(a) $\frac{1}{3}$	(b) $\frac{2}{5}$					
	(c) $\frac{3}{4}$	(d) $\frac{3}{5}$					
	$\frac{(c)}{4}$	(d) $\frac{1}{5}$					
18.		egree of disorder of a system is known as					
	(a) Isobaric	(b) Isotropy					
10	(c) Enthalpy	(d) Entropy					
19.	A carnot engine has x is	s the same efficiency between 800 K to 500 K and x K to 600 K . The value of					
	(a) 1000 K	(b) 060 K					

	(c) 846 K	(d) 754 <i>K</i>
20.		he efficiency of his heat engine which operates at source temperature
20.	127°C and sink tempera	
	(a) It is impossible	teure 27 ° 10 20 70; then
	(b) It is possible but les	aa naahahla
		ss probable
	(c) It is quite probable	
	(d) Data are incomplete	
21.		ade to work between $200^{\circ}C$ and $0^{\circ}C$ first and then between $0^{\circ}C$ and – ciencies of the engine in the two cases is
	(a) 1.73:1	(b) 1: 1.73
	(c) 1:1	(d) 1:2
22.	Efficiency of a Carnot	engine is 50% when temperature of outlet is 500 <i>K</i> . In order to increase
		eeping temperature of intake the same what is temperature of outlet
	(a) 200 <i>K</i>	(b) 400 K
	(c) 600 K	(d) 800 K
23.		nnot give 100% efficiency because we cannot
	(a) Prevent radiation	
	(b) Find ideal sources	
	(c) Reach absolute zero	o temperature
	(d) Eliminate friction	, temperature
24.		flow from a body at lower temperature to a body at higher temperature"
-4.	is a statement or conse	
	(a) Second law of therr	
	(b) Conservation of mo	
	(c) Conservation of ma	
	(d) First law of thermo	
25.	A Carnot engine takes	3×10^6 cal. of heat from a reservoir at 627°C, and gives it to a sink at 27°C.
	The work done by the e	
	(a) $4.2 \times 10^6 J$	(b) $8.4 \times 10^6 J$
	(c) $16.8 \times 10^6 J$	(d) Zero
26.		olved in a Carnot cycle is
		on (b)Adiabatic expansion
	· · · · · · · · · · · · · · · · · · ·	ssion (d) Adiabatic compression
25		a ♥ a salah da kacamatan T arah da kacamatan baran b
27.	(a) 80 K, 60 K	of working temperatures the efficiency of Carnot's engine is highest (b) 100 <i>K</i> , 80 <i>K</i>
28.	(c) 60 K, 40 K	(d) 40 K , 20 K ot engine when source temperature is T_1 and sink temperature is T_2 will
20.	be	of engine when source temperature is T_1 and shik temperature is T_2 win
		$T_{-} = T_{-}$
	(a) $\frac{T_1 - T_2}{T_1}$	(b) $\frac{T_2 - T_1}{T_2}$
	(c) $\frac{T_1 - T_2}{T_2}$	(d) $\frac{T_1}{T_2}$
	-	-2
29.		working between temperature T_1 and T_2 has an efficiency η , the new
	efficiency if both the so	ource and sink temperature are doubled, will be
	(a) $\frac{\eta}{}$	(b) η
	(a) $\frac{\eta}{2}$	
	(c) 2η	(d) 3η

30.		as a freezer at a temperature of -13 °C. The coefficient of performance of apperature of the air (to which heat is rejected) will be
	(a)325° <i>C</i> (c) 39° <i>C</i>	(b) 325 <i>K</i> (d) 320° <i>C</i>
31.		erator, the low temperature coils are at a temperature of $-23^{\circ}C$ and the econdenser has a temperature of $27^{\circ}C$. The theoretical coefficient of
	(a) 5	(b) 8
	(c) 6	(d) 6.5
32.	maximum possible effic	to operate between two reservoirs at temperature $727^{\circ}C$ and $227^{\circ}C$. The ciency of such an engine is
	(a) 1/2	(b) 1/4
	(c) 3/4	(d) 1
33.	cals of heat at higher to	ne operates in Carnot cycle between $227^{\circ}C$ and $127^{\circ}C$. It absorbs 6×10^4 emperature. Amount of heat converted to work is
	(a) $2.4 \times 10^4 cal$	(b) 6×10^4 cal
	(c) 1.2×10^4 cal	(d) 4.8×10^4 cal
34.	Which of the following	processes is reversible
	(a) Transfer of heat by	
	(b) Electrical heating o	
	(c) Transfer of heat by	
	(d) Isothermal compres	SSION
		() *
		Miscellaneous Problems
	When an ideal distern	
1.		ic gas is heated at constant pressure, the fraction of the heat energy es the internal energy of the gas, is
1.	supplied which increas (a) $\frac{2}{5}$	
1.	supplied which increas	es the internal energy of the gas, is
2.	supplied which increas (a) $\frac{2}{5}$ (c) $\frac{3}{7}$	es the internal energy of the gas, is
	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ $1cm^3$ of water at its both 1671 cm^3 . If the atmospherical content is the supplied which increases the supplied which is supplied which increases the supplied which increases the supplied which is supplied which increases the supplied which incre	es the internal energy of the gas, is $(b) \frac{3}{5}$ $(d) \frac{5}{7}$
	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ $1cm^3$ of water at its both 1671 cm^3 . If the atmospherical content is the supplied which increases the supplied which is supplied which increases the supplied which increases the supplied which is supplied which increases the supplied which incre	es the internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ iling point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat =
	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ $1cm^3$ of water at its beginning 1671 cm^3 . If the atmospherical 4.19 $J/calorie$, the energy	es the internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ illing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = gy spent in this process in overcoming intermolecular forces is
	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ 1cm ³ of water at its bound 1671cm ³ . If the atmospherical 4.19 J / calorie, the energy (a) 540 cal (c) 500 cal	es the internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ illing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = gy spent in this process in overcoming intermolecular forces is (b) 40 <i>cal</i>
2.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ 1cm ³ of water at its been 1671cm ³ . If the atmospheration 4.19 $J/calorie$, the energy (a) 540 cal (c) 500 cal During the melting of a	es the internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ illing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = gy spent in this process in overcoming intermolecular forces is (b) 40 cal (d) Zero
2.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ $1cm^3$ of water at its bound $1671cm^3$. If the atmosphere $4.19J/calorie$, the energy (a) 540 cal (c) 500 cal During the melting of a (a) Positive work is done	es the internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ illing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = gy spent in this process in overcoming intermolecular forces is (b) 40 cal (d) Zero a slab of ice at 273 K at atmospheric pressure
2.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ 1cm ³ of water at its boom 1671cm ³ . If the atmospheration 4.19 J / calorie, the energy (a) 540 cal (c) 500 cal During the melting of an (a) Positive work is doen (b) Positive work is doen (c) The internal energy	the sthe internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ Illing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = gy spent in this process in overcoming intermolecular forces is (b) 40 cal (d) Zero I slab of ice at 273 K at atmospheric pressure the by ice-water system on the atmosphere the on the ice-water system by the atmosphere of the ice-water system increases
2.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ 1cm ³ of water at its bound 1671cm ³ . If the atmospheration 4.19 J / calorie, the energy (a) 540 cal (c) 500 cal During the melting of a (a) Positive work is done (b) Positive work is done (c) The internal energy (d) The internal energy	the sthe internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ filing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $\frac{1}{100} \log n$ spent in this process in overcoming intermolecular forces is (b) $\frac{1}{100} \log n$ (d) Zero I slab of ice at 273 K at atmospheric pressure the by ice-water system on the atmosphere the on the ice-water system by the atmosphere of the ice-water system increases of of the ice-water system decreases
2.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ $1cm^3$ of water at its beginning in the atmospherical stress of the second str	the sthe internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ Filing point absorbs 540 calories of heat to become steam with a volume of the pressure $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the atmosphere means the ideal equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the ideal gas at the same volume $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat $= 1.013 \times 10^5 N/m^2$ and the mechanical
2. 3.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ 1cm³ of water at its book 1671cm³. If the atmosph 4.19 J / calorie, the energy (a) 540 cal (c) 500 cal During the melting of an (a) Positive work is done (b) Positive work is done (c) The internal energy (d) The internal energy Two identical containers same temperature and The gas in each cylinder	es the internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ illing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = gy spent in this process in overcoming intermolecular forces is (b) 40 cal (d) Zero I slab of ice at 273 K at atmospheric pressure the by ice-water system on the atmosphere the on the ice-water system by the atmosphere the of the ice-water system decreases of the ice-water system decreases of the ice-water system of the gas in A is M_A and that in B is M_B . It is now allowed to expand isothermally to the same final volume $2V$. The ge in A and B are found to be ΔP and 1.5 ΔP respectively. Then
2. 3.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ 1cm³ of water at its book 1671cm³. If the atmosph 4.19 J / calorie, the energy (a) 540 cal (c) 500 cal During the melting of an (a) Positive work is done (b) Positive work is done (c) The internal energy (d) The internal energy Two identical containers same temperature and The gas in each cylinder	the sthe internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ Filing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent o
2. 3.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ $1cm^3$ of water at its bound $1671cm^3$. If the atmospheration $4.19J/calorie$, the energy (a) $540cal$ (c) $500cal$ During the melting of an (a) Positive work is done (b) Positive work is done (c) The internal energy (d) The internal energy (d) The internal energy (d) The internal energy (d) The internal energy (e) Two identical containers as the same temperature and the gas in each cylinder changes in the pressure (a) $4m_A = 9m_B$	es the internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ illing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = gy spent in this process in overcoming intermolecular forces is (b) 40 cal (d) Zero I slab of ice at 273 K at atmospheric pressure the by ice-water system on the atmosphere the on the ice-water system by the atmosphere the of the ice-water system decreases of the ice-water system decreases of the ice-water system of the gas in A is M_A and that in B is M_B . It is now allowed to expand isothermally to the same final volume $2V$. The ge in A and B are found to be ΔP and 1.5 ΔP respectively. Then
2. 3.	supplied which increase (a) $\frac{2}{5}$ (c) $\frac{3}{7}$ $1cm^3$ of water at its bound $1671cm^3$. If the atmospheration $4.19J/calorie$, the energy (a) 540 cal (c) 500 cal During the melting of atmospheration (a) Positive work is done (b) Positive work is done (c) The internal energy (d) The internal energy (d) The internal energy Two identical containers are temperature and The gas in each cylinder changes in the pressure (a) $4m_A = 9m_B$ (c) $3m_A = 2m_B$	es the internal energy of the gas, is (b) $\frac{3}{5}$ (d) $\frac{5}{7}$ filing point absorbs 540 calories of heat to become steam with a volume of heric pressure = $1.013 \times 10^5 N/m^2$ and the mechanical equivalent of heat = gy spent in this process in overcoming intermolecular forces is (b) 40 cal (d) Zero a slab of ice at 273 K at atmospheric pressure the by ice-water system on the atmosphere the on the ice-water system by the atmosphere to of the ice-water system increases to of the ice-water system decreases for K and K with frictionless pistons contain the same ideal gas at the the same volume K . The mass of the gas in K is K and that in K is K is now allowed to expand isothermally to the same final volume K . The expectively is K in K and K are found to be K and K are found to be K and K respectively. Then (b) K is K and K are found to be K

the piston suddenly. If L_1 and L_2 are the lengths of the gas column before and after expansion respectively, then T_1/T_2 is given by

(a)
$$\left(\frac{L_1}{L_2}\right)^{2/3}$$

(b)
$$\frac{L_1}{L_2}$$

(c)
$$\frac{L_2}{L_1}$$

(d)
$$\left(\frac{L_2}{L_1}\right)^{2/3}$$

- **6.** A closed hollow insulated cylinder is filled with gas at $0^{\circ} C$ and also contains an insulated piston of negligible weight and negligible thickness at the middle point. The gas on one side of the piston is heated to $100^{\circ} C$. If the piston moves 5 cm, the length of the hollow cylinder is
 - (a) 13.65 cm
- (b) 27.3 cm
- (c) 38.6 cm
- (d) 64.6 cm
- **7.** A mono atomic gas is supplied the heat Q very slowly keeping the pressure constant. The work done by the gas will be
 - (a) $\frac{2}{3}Q$
- (b) $\frac{3}{5}Q$
- (c) $\frac{2}{5}Q$
- (d) $\frac{1}{5}Q$
- **8.** A gas mixture consists of 2 moles of oxygen and 4 moles argon at temperature *T*. Neglecting all vibrational modes, the total internal energy of the system is
 - (a) 4 RT
- (b) 15 RT
- (c) 9 RT
- (d) 11 RT
- 9. An ideal gas expands isothermally from a volume V_1 to V_2 and then compressed to original volume V_1 adiabatically. Initial pressure is P_1 and final pressure is P_3 . The total work done is W. Then
 - (a) $P_3 > P_1, W > 0$
 - (b) $P_3 < P_1, W < 0$
 - (c) $P_3 > P_1, W < 0$
- (d) $P_3 = P_1, W = 0$
- 10. Work done by a system under isothermal change from a volume V_1 to V_2 for a gas which obeys

Vander Waal's equation $(V - \beta n) \left(P + \frac{\alpha n^2}{V} \right) = nRT$

- (a) $nRT \log_e \left(\frac{V_2 n\beta}{V_1 n\beta} \right) + \alpha n^2 \left(\frac{V_1 V_2}{V_1 V_2} \right)$
- (b) $nRT \log_{10} \left(\frac{V_2 \alpha \beta}{V_1 \alpha \beta} \right) + \alpha n^2 \left(\frac{V_1 V_2}{V_1 V_2} \right)$
- (c) $nRT \log_e \left(\frac{V_2 n\alpha}{V_1 n\alpha} \right) + \beta n^2 \left(\frac{V_1 V_2}{V_1 V_2} \right)$
- (d) $nRT \log_e \left(\frac{V_1 n\beta}{V_2 n\beta} \right) + \alpha n^2 \left(\frac{V_1 V_2}{V_1 V_2} \right)$
- 11. A cylindrical tube of uniform cross-sectional area A is fitted with two air tight frictionless pistons. The pistons are connected to each other by a metallic wire. Initially the pressure of the gas is P_0 and temperature is T_0 , atmospheric pressure is also P_0 . Now the temperature of the gas is increased to $2T_0$, the tension in the wire will be

- (a) $2P_0A$

- (d) $4P_0A$

12. The molar heat capacity in a process of a diatomic gas if it does a work of $\frac{Q}{A}$ when a heat of Q is supplied to it is

13. An insulator container contains 4 moles of an ideal diatomic gas at temperature T. Heat Q is supplied to this gas, due to which 2 moles of the gas are dissociated into atoms but temperature of the gas remains constant. Then

- (a) Q = 2RT
- (b) Q = RT
- (c) Q = 3RT
- (d) Q = 4RT

14. The volume of air increases by 5% in its adiabatic expansion. The percentage decrease in its pressure will be

- (a) 5%
- (b) 6%
- (c) 7%
- (d) 8%

15. The temperature of a hypothetical gas increases to $\sqrt{2}$ times when compressed adiabatically to half the volume. Its equation can be written as

- (a) $PV^{3/2} = \text{constant}$
- (b) $PV^{5/2} = \text{constant}$
- (c) $PV^{7/3} = \text{constant}$ (d) $PV^{4/3} = \text{constant}$

Two Carnot engines A and B are operated in succession. The first one, A receives heat from a source at $T_1 = 800 \, K$ and rejects to sink at $T_2 K$. The second engine B receives heat rejected by the first engine and rejects to another sink at $T_3 = 300 \, K$. If the work outputs of two engines are equal, then the value of T_2 is

- (a) 100K
- (b) 300K
- (c) 550K
- (d) 700K

When an ideal monoatomic gas is heated at constant pressure, fraction of heat energy supplied 17. which increases the internal energy of gas, is

18. When an ideal gas $(\gamma = 5/3)$ is heated under constant pressure, then what percentage of given heat energy will be utilized in doing external work

- (a) 40 %
- (b) 30 %
- (c) 60 %
- (d) 20 %

19.	Which one of the fol	llowing gases possesses the largest internal energy							
	(a) 2 moles of helium occupying $1m^3$ at 300 K								
	(b) 56 kg of nitroger	n at $107 Nm^{-2}$ and 300 K							
	(c) 8 grams of oxygen at 8 atm and 300 <i>K</i>								
	(d) 6×10^{26} molecules of argon occupying $40m^3$ at 900 K								
20.	Two samples A and B of a gas initially at the same pressure and temperature are compressed from volume V to $V/2$ (A isothermally and adiabatically). The final pressure of A is								
	(a) Greater than the final pressure of B								
	(b) Equal to the final pressure of <i>B</i>								
	(c) Less than the final pressure of B								
	(d) Twice the final pressure of B								
21.	Initial pressure and volume of a gas are P and V respectively. First it is expanded isothermally to volume $4V$ and then compressed adiabatically to volume V . The final pressure of gas will be								
	(a) 1 <i>P</i>	(b) 2P							
	(c) 4P	(d) 8P							
22.		ed rigid container contains an ideal gas heated by a filament of resistand rent of 1A for 5 min then change in internal energy is							
	(a) o <i>kJ</i>	(b) 10 <i>kJ</i>							
	(c) 20 <i>kJ</i>	(d) 30 kJ							
23.	A reversible engine converts one-sixth of the heat input into work. When the temperature of the sink is reduced by $62^{\circ}C$, the efficiency of the engine is doubled. The temperatures of the source and sink are								
	(a) 80°C, 37°C	(b) 95°C, 28°C							
	(c) 90°C, 37°C	(d) 99°C, 37°C							
24.	An engineer claims to have made an engine delivering 10 kW power with fuel consumption of g/sec . The calorific value of the fuel is 2 $kcal/g$. Is the claim of the engineer								
	(a) Valid								
	(b) Invalid								
	(c) Depends on engi	ine design							
	(d) Depends of the l	(d) Depends of the load							
25.	Find the change in the entropy in the following process 100 gm of ice at 0°C melts when dropped in a bucket of water at 50°C (Assume temperature of water does not change)								
	(a) - 4.5 <i>cal/K</i>	(b) + 4.5 cal/K							
	(c) +5.4 cal/K	(d) - 5.4 <i>cal/K</i>							
26.	An ideal gas expand	ls in such a manner that its pressure and volume can be related by equation							
		ring this process, the gas is							
	(a) Heated								
	(b) Cooled								
	(c) Neither heated r	nor cooled							
	(d) First heated and	then cooled							
27.									
	A Carnot engine whose low temperature reservoir is at $7^{\circ}C$ has an efficiency of 50%. It is desired to increase the efficiency to 70%. By how many degrees should the temperature of the high temperature reservoir be increased								
	<u> </u>								
	(a) 840 <i>K</i>	(b) 280 K							

(a) 4 R

(b) 2.5 R

- (c) 3 R
- (d) $\frac{4R}{3}$

29. Following figure shows on adiabatic cylindrical container of volume V_0 divided by an adiabatic smooth piston (area of cross-section = A) in two equal parts. An ideal gas $(C_P/C_V=\gamma)$ is at pressure P_1 and temperature T_1 in left part and gas at pressure P_2 and temperature T_2 in right part. The piston is slowly displaced and released at a position where it can stay in equilibrium. The final pressure of the two parts will be (Suppose X = displacement of the piston)

(a) P_2

- (b) P_1
- (c) $\frac{P_1 \left(\frac{V_0}{2}\right)^{\gamma}}{\left(\frac{V_0}{2} + Ax\right)^{\gamma}}$
- (d) $\frac{P_2 \left(\frac{V_0}{2}\right)^{\gamma}}{\left(\frac{V_0}{2} + Ax\right)^{\gamma}}$

30. Two cylinders *A* and *B* fitted with pistons contain equal amounts of an ideal diatomic gas at 300 *K*. The piston of *A* is free to move while that of *B* is held fixed. The same amount of heat is given to the gas in each cylinder. If the rise in temperature of the gas in *A* is 30 *K*, then the rise in temperature of the gas in *B* is

- (a) 30 K
- (b) 18 K
- (c) 50 K
- (d) 42 K

Indicator Diagrams

1. A system goes from A to B via two processes I and II as shown in figure. If ΔU_1 and ΔU_2 are the changes in internal energies in the processes I and II respectively, then

- (a) $\Delta U_{\rm II} > \Delta U_{\rm I}$
- $A \xrightarrow{\text{II}} B$
- (b) $\Delta U_{\mathrm{II}} < \Delta U_{\mathrm{I}}$
- (c) $\Delta U_{\rm I} = \Delta U_{\rm II}$

(d) Relation between $\Delta U_{
m I}$ and $\Delta U_{
m II}$ cannot be determined

2. A thermodynamic system is taken through the cycle *PQRSP* process. The net work done by the system is

- (a) 20 *J*
- (b) -20 J
- (c) 400 J
- (d) -374J

- 3. An ideal gas is taken around ABCA as shown in the above P-V diagram. The work done during a cycle is
 - (a) 2*PV*
 - (b) *PV*
 - (c) 1/2PV
 - (d) Zero

- 4. The *P-V* diagram shows seven curved paths (connected by vertical paths) that can be followed by a gas. Which two of them should be parts of a closed cycle if the net work done by the gas is to be at its maximum value
 - (a) ac
 - (b) *cg*
 - (c) af
 - (d) cd

- 5. An ideal gas of mass m in a state A goes to another state B via three different processes as shown in figure. If Q_1,Q_2 and Q_3 denote the heat absorbed by the gas along the three paths, then
 - (a) $Q_1 < Q_2 < Q_3$
 - (b) $Q_1 < Q_2 = Q_3$
 - (c) $Q_1 = Q_2 > Q_3$
 - (d) $Q_1 > Q_2 > Q_3$

6. Which of the following graphs correctly represents the variation of $\beta = -(dV/dP)/V$ with P for an ideal gas at constant temperature

- 7. A thermodynamic process is shown in the figure. The pressures and volumes corresponding to some points in the figure are: $P_A = 3 \times 10^4 Pa$, $P_B = 8 \times 10^4 Pa$ and $V_A = 2 \times 10^{-3} m^3$, $V_D = 5 \times 10^{-3} m^3$ In process AB, 600 J of heat is added to the system and in process BC, 200 J of heat is added to the system. The change in internal energy of the system in process AC would be
 - (a) 560 J
 - (b) 800 J
 - (c) 600 J
 - (d) 640 J

- P-V plots for two gases during adiabatic process are shown in the figure. Plots 1 and 2 should 8. correspond respectively to
 - (a) He and O_2
 - (b) O_2 and He
 - (c) He and Ar

9.

(d) O_2 and N_2

- (a) C and D respectively
- (b) *D* and *C* respectively
- (c) *A* and *B* respectively
- (d) B and A respectively

- 10. In pressure-volume diagram given below, the isochoric, isothermal, and isobaric parts respectively, are
 - (a) *BA*, *AD*, *DC*
 - (b) DC, CB, BA
 - (c) *AB*, *BC*, *CD*
- (d) CD, DA, AB 11. The *P-V* diagram of a system undergoing thermodynamic transformation is shown in figure. The work done on the system in going from $A \to B \to C$ is 50 J and 20 cal heat is given to the system. The change in internal energy between A and C is
 - (a) 34 J
 - (b) 70 J
 - (c) 84J
 - (d) 134 J

- 12. An ideal gas is taken through the cycle $A \to B \to C \to A$, as shown in the figure. If the net heat supplied to the gas in the cycle is 5 J, the work done by the gas in the process $C \to A$ is
 - (a) -5J
 - (b) -10J
 - (c) -15J
 - (d) 20 J

- 13. In the following indicator diagram, the net amount of work done will be
 - (a) Positive
 - (b) Negative
 - (c) Zero
 - (d) Infinity

- 14. A cyclic process for 1 mole of an ideal gas is shown in figure in the V-T, diagram. The work done in AB, BC and CA respectively
 - (a) $0, RT_2 \ln \left(\frac{V_1}{V_2} \right), R(T_1 T_2)$

 - (d) $0, RT_2 \ln \left(\frac{V_2}{V_1} \right), R(T_2 T_1)$

A cyclic process ABCD is shown in the figure P-V diagram. Which of the following curves 15. represent the same process

Carnot cycle (reversible) of a gas represented by a Pressure-Volume curve is shown in the 16. diagram

Consider the following statements

- I. Area ABCD = Work done on the gas
- II. Area ABCD = Net heat absorbed
- III. Change in the internal energy in cycle = 0

Which of these are correct

- (a) I only
- (b) II only
- (c) II and III
- (d) I, II and III
- The temperature-entropy diagram of a reversible engine cycle is given in the figure. Its 17. efficiency is

- (a) 1/3
- (b) 2/3
- (c) 1/2
- (d) 1/4
- **18.** Work done in the given *P-V* diagram in the cyclic process is
 - (a) *PV*
 - (b) 2PV
 - (c) PV/2
 - (d) 3PV
- 19. A cyclic process ABCA is shown in the V-T diagram. Process on the P-V diagram is

- 20. In the figure given two processes A and B are shown by which a thermo-dynamical system goes from initial to final state F. If ΔQ_A and ΔQ_B are respectively the heats supplied to the systems then
 - (a) $\Delta Q_A = \Delta Q_B$
 - (b) $\Delta Q_A \geq \Delta Q_B$
 - (c) $\Delta Q_A < \Delta Q_B$
 - (d) $\Delta Q_A > \Delta Q_B$

- 21. In the cyclic process shown in the figure, the work done by the gas in one cycle is
 - (a) $28 P_1 V_1$
 - (b) $14 P_1 V_1$
 - (c) $18 P_1 V_1$
 - (d) $9 P_1 V_1$

22. An ideal gas is taken around the cycle ABCA as shown in the P-V diagram. The net work done by the gas during the cycle is equal to

- (a) $12 P_1 V_1$
- (b) $6 P_1 V_1$
- (c) $3 P_1 V_1$
- (d) $2P_1V_1$
- **23.** Heat energy absorbed by a system in going through a cyclic process shown in figure is
 - (a) $10^7 \pi J$
 - (b) $10^4 \pi J$
 - (c) $10^2 \pi J$
 - (d) $10^{-3} \pi J$

- 24. A thermodynamic system is taken from state A to B along ACB and is brought back to A along BDA as shown in the PV diagram. The net work done during the complete cycle is given by the area
 - (a) $P_1ACBP_2P_1$
 - (b) ACBB'A'A
 - (c) ACBDA
 - (d) ADBB'A'A

25. In the diagrams (i) to (iv) of variation of volume with changing pressure is shown. A gas is taken along the path *ABCD*. The change in internal energy of the gas will be

- (a) Positive in all cases (i) to (iv)
- (b) Positive in cases (i), (ii) and (iii) but zero in (iv) case
- (c) Negative in cases (i), (ii) and (iii) but zero in (iv) case
- (d) Zero in all four cases
- **26.** A system is taken through a cyclic process represented by a circle as shown. The heat absorbed by the system is
 - (a) $\pi \times 10^3 J$ V(in cc)

(d) πJ

27. A thermodynamic system undergoes cyclic process *ABCDA* as shown in figure. The work done by the system is

- (a) P_0V_0
- (b) $2P_0V_0$
- (c) $\frac{P_0 V_0}{2}$
- (d) Zero

28. The P-V graph of an ideal gas cycle is shown here as below. The adiabatic process is described

- by
- (a) AB and BC
- (b) AB and CD
- (c) BC and DA
- (d) BC and CD

29. An ideal monoatomic gas is taken round the cycle ABCDA as shown in following P-V diagram. The work done during the cycle is

- (a) *PV*
- (b) 2 PV
- (c) 4 PV
- (d) Zero

30. A system changes from the state (P_1, V_1) to (P_2V_2) as shown in the figure. What is the work done by the system

- (a) 7.5×10^5 joule
- (b) $7.5 \times 10^5 \ erg$
- (c) 12×10^5 joule
- (d) 6×10^5 joule

31. Carbon monoxide is carried around a closed cycle abc in which bc is an isothermal process as shown in the figure. The gas absorbs 7000 J of heat as its temperature increases from 300 K to 1000 K in going from a to b. The quantity of heat rejected by the gas during the process ca is

- (a) 4200 J
- (b) 5000 *J*

32. A sample of ideal monoatomic gas is taken round the cycle ABCA as shown in the figure. The work done during the cycle is

(b) 3 PV

(c) 6 PV

(d) 9PV

33. When a system is taken from state i to a state f along path iaf, Q = 50 J and W = 20 J. Along path *ibf*, Q = 35 J. If W = -13 J for the curved return path f i, Q for this path is

(b) 23J

(c) -7J

(d) -43J

34. For one complete cycle of a thermodynamic process on a gas as shown in the P-V diagram, Which of following is correct

(a)
$$\Delta E_{\rm int} = 0, Q < O$$

(b) $\Delta E_{\text{int}} = 0, Q > 0$

(c) $\Delta E_{\text{int}} > 0, Q < 0$

(d) $\Delta E_{\rm int} < 0, Q > 0$

35. An ideal gas is taken around ABCA as shown in the above P-V diagram. The work done during a cycle is

(a) Zero

(c) 2 PV

(d) PV

36. An ideal gas is taken from point A to the point B, as shown in the P-V diagram, keeping the temperature constant. The work done in the process is

(a) $(P_A - P_B)(V_B - V_A)$

(d)
$$\frac{1}{2}(P_B + P_A)(V_B - V_A)$$

- 37. The P-V diagram of a system undergoing thermodynamic transformation is shown in figure. The work done by the system in going from $A \rightarrow B \rightarrow C$ is 30J and 40J heat is given to the system. The change in internal energy between A and C is
 - (a) 10 J
 - (b) 70 J
 - (c) 84I
 - (d) 134 J

- 38. Consider a process shown in the figure. During this process the work done by the system
 - (a) Continuously increases
 - (b) Continuously decreases
 - (c) First increases, then decreases
 - (d) First decreases, then increases
- 39. Six moles of an ideal gas performs a cycle shown in figure. If the temperature are $T_A = 600 \ K$, T_B = 800 K, T_C = 2200 K and T_D = 1200 K, the work done per cycle is

- (b) 30 kJ
- (c) 40 kJ
- (d) 60 kJ
- **40.** Which of the accompanying *PV*, diagrams best represents an isothermal process

41. In the following figure, four curves *A*, *B*, *C* and *D* are shown. The curves are

- (a) Isothermal for A and D while adiabatic for B and C
- (b) Adiabatic for A and C while isothermal for B and D
- (c) Isothermal for A and B while adiabatic for C and D
- (d) Isothermal for A and C while adiabatic for B and D

- **42.** *P-V* diagram of a cyclic process *ABCA* is as shown in figure. Choose the correct statement
 - (a) $\Delta Q_{A \to B}$ = negative
 - (b) $\Delta U_{B\to C}$ = positive
 - (c) ΔW_{CAB} = negative
 - (d) All of these

- **43.** A sample of an ideal gas is taken through a cycle a shown in figure. It absorbs 50J of energy during the process AB, no heat during BC, rejects 70J during CA. 40J of work is done on the gas during BC. Internal energy of gas at A is 1500J, the internal energy at C would be
 - (a) 1590 *J*
 - (b) 1620 *J*
 - (c) 1540 J
 - (d) 1570 J

44. In the following *P-V* diagram two adiabatic cut two isothermals at temperatures T_1 and T_2 (fig.). The value of $\frac{V_a}{V_c}$ will be

- (a) $\frac{V_b}{V_c}$
- (c) $\frac{V_d}{V_a}$

- (b) $\frac{V_c}{V_b}$
- (d) $V_b V_c$

ANSWER KEY

First Law of Thermodynamics

1	a	2	С	3	b	4	b	5	С
6	b	7	b	8	d	9	а	10	d
11	С	12	а	13	d	14	а	15	b
16	b	17	С	18	d	19	d	20	b
21	а	22	d	23	b	24	а	25	d
26	d	27	а	28	b	29	d	30	а
31	b	32	С	33	С	34	а	35	а
36	b	37	С	38	С	39	b	40	а
41	С	42	а	43	а	44	С	45	С
46	а	47	С	48	b				

Isothermal Process

1	С	2	а	3	С	4	d	5	b
6	b	7	С	8	d	9	а	10	С
11	а	12	b	13	а	14	а	15	С
16	С	17	а	18	С	19	а	20	С
21	b	22	b	23	а	24	а	25	а
26	С	27	b	28	b	29	b	30	а
31	d								

Adiabatic Process

1	С	2	С	3	b	4	d	5	С
6	d	7	С	8	b	9	а	10	a
11	С	12	d	13	b	14	d	15	d
16	b	17	а	18	С	19	а	20	С
21	d	22	С	23	b	24	С	25	а
26	b	27	d	28	а	29	d	30	d
31	а	32	С	33	d	34	С	35	a
36	d	37	b	38	d	39	а	40	d
41	С	42	С	43	a	44	а	45	b
46	d	47	а	48	b	49	b	50	а
51	b	52	d	53	b	54	b	55	d
56	b	57	С						

Isobaric and Isochoric Processes

1	а	2	С	3	С	4	а	5	а
6	С	7	С	8	b	9	d	10	С
11	С	12	а	13	b	14	а	15	d
16	b	17	а	18	d	19	С	20	d
21	d	22	d	23	а				

Heat Engine, Refrigerator and Second Law of Thermodynamics

1	d	2	С	3	b	4	С	5	b
6	d	7	b	8	d	9	b	10	b
11	С	12	b	13	С	14	а	15	а
16	a	17	b	18	d	19	b	20	a
21	b	22	b	23	С	24	а	25	b
26	a	27	d	28	а	29	b	30	С
31	a	32	a	33	С	34	d		

Miscellaneous Problems

1	d	2	С	3	bc	4	С	5	d
6	d	7	С	8	d	9	С	10	а
11	b	12	С	13	b	14	С	15	а
16	С	17	b	18	а	19	b	20	С
21	b	22	d	23	d	24	b	25	b
26	b	27	d	28	С	29	С	30	d

Indicator Diagram

1	С	2	b	3	а	4	С	5	а
6	а	7	а	8	b	9	С	10	d
11	d	12	а	13	b	14	С	15	а
16	С	17	а	18	a	19	С	20	d
21	d	22	d	23	С	24	С	25	d
26	b	27	d	28	С	29	С	30	С
31	d	32	b	33	d	34	а	35	d
36	d	37	а	38	а	39	С	40	b
41	d	42	d	43	а	44	а		