1 A	В	С	D	E	F	G	Н	I	J	K	L	ΜN
	MAT	TLAR P	roject (#2) - Metallic	Failure A	nalysis							
3			ace Structural Analysis, Uni			go (Copyright	J.B. Kosmati	ka, 2020)				
5		Version:	Winter, 2020 (v1)									
6		VC13iOii.	vinter, 2020 (v1)									_
7	Pr	oject Title:	Reader Example, Volume 1,	page 151 (3.25),	3-D Principal St	resses						7
8												
9		Variable	Description	Value	Units				Units Re			
10		ilnput	Input Units	1	1 = US, 2 = SI		A		US	SI		
11	nanananananananana	iOutput	Output Units	1	1 = US, 2 = SI			σ, τ	$10^3 lb/in^2$	МРа		rananan mananan
12		ioption	Analysis Option	1	1 = Stress, 2 =	Strain		E, G	10 ⁶ lb/in ²	GPa	personanenenenenenen	
13												
14 15		<i>Material Pr</i> Variable	Operties Description	A Posis	B-Basis	Units					-	
16		E	Young's Modulus	A-Basis 10.3	10.3	Msi						
17		G	Shear Modulus	3.9	3.9	Msi						
18		σ_{vT}	Yield strength - tension	68	70	Ksi						
19		$\sigma_{\scriptscriptstyle uT}$	Ultimate strength - tension	78	80	Ksi			-			
20		$\sigma_{\it yc}$	Yield strength - compressio	-70	-73	Ksi						
21		$\sigma_{\it uC}$	Uultimate strength - compr	-78	-80	Ksi						
22		τ_y	Yield strength - shear	35.25	35.25	Ksi		***************************************				
23		τ_u	Ultimate strength - shear	46	48	Ksi						
24		C								******************************	-	
25 26		Safety Facto Variable	Description Description	Value	Units							
27		SF _v	Safety Factor - yield	1.1	1	_						
28		SF ,,	Safety Factor - ultimate	1.5	1							
29				-								
30												
31	Х	Option 1:	Applied Stress State				ž					
32												
33 34		Applied Stre Variable	Description	Value	Units						-	
35		σ _{xx}	Stress (σ_{xx})	-7	Ksi						-	
36		σ_{yy}	Stress (σ_{yy})	1	Ksi						-	
37		σ _{zz}	Stress (σ _{zz})	0.5	Ksi							
38		τ _{yz}	Stress (τ _{yz})	0	Ksi							
39		τ _{xz}	Stress (τ _{xz})	0	Ksi							
40		τ_{xy}	Stress (τ _{xy})	3	Ksi							
41												
42 43	Х	Ontion 2:	Massured Strain State From	Danattan			Table 1					
44	^_	Option 2:	Measured Strain State From	Rosettes								
45		Strain Gage	Rosette									
46		Variable	Description	Value	Units							
47		$ heta_{A}$	Orientation Angle (A)		degree				dipendentia			
48		$\theta_{\mathtt{B}}$	Orientation Angle (B)		degree							
49		$ heta_{C}$	Orientation Angle (C)		degree	*********************************						
50	*************	θ	Gage Rotation Angle		degree						ļ	******
51 52		Measured S	trains				To a second					
53		Variable	Description	Value	Units				1			
54		\mathcal{E}_{A}	Strain (A)	Taluc	μ in/in						-	
55		\mathcal{E}_{B}	Strain (B)		μ in/in							
56	~~~~~~~	ε _C	Strain (C)		μ in/in						-	enenenhenenen:
57												
58												
59 0		END OF F	ILE									

Α	В	С	D	E	F	G	Н	1	J	K	L	ΜN
1	MA	TIAR D	roject (#2) - Metallio	. Failura Str	ace Analys	ic						+
3			roject (#2) - Metatit ice Structural Analysis, Uni				P. Vosmatk	~ 2020)			 	_
_	3L-10				mu, sun biege	o (copyright)	.b. Kosiiiatki	u, 2020)				
5 6		Version:	Winter, 2020 (v2) - Input: US	S, Output: US/SI								_
7	Stu	dent Name:	John Kosmatka									
8			A0123456789									_
9												
10	Р	roject Title:	Reader Example, Volume 1,	page 151 (3.25), 3	-D Principal Str	esses						4
12	INPUT	ECHO:										
13												
14		Variable	Description	Value	Units				eference			
15		ilnput	Input Units	1	1 = US, 2 = SI			US $10^{3} lb/in^{2}$	SI			
16 17		iOutput	Output Units	1	1 = US, 2 = SI	`troin	σ, τ Ε, G	$10^{-10/in}$	MPa GPa	1	 	+
18		Ioption	Analysis Option	1	1 = Stress, 2 = S	otrain	E, G	10 10/111	Gra			
19		Material Pro	operties									_
20		Variable	Description	A-Basis	B-Basis	Units						
21		<i>E G</i>	Young's Modulus Shear Modulus	10.3000 3.9000	10.3000 3.9000	Msi Msi					-	+
23		$\sigma_{_{yT}}$	yield strength - tension	68.0000	70.0000	Ksi						+
24		σ_{uT}	ultimate strength - tension	78.0000	80.0000	Ksi						
25		$\sigma_{\it yC}$	yield strength - compression	-70.0000	-73.0000	Ksi	_					
26		$\sigma_{\sf uC}$	ultimate strength - compres	-78.0000	-80.0000	Ksi					<u> </u>	+
27		τ_y τ_u	yield strength - shear ultimate strength - shear	35.2500 46.0000	35.2500 48.0000	Ksi Ksi					-	+
29		r u	ditiliate strength shear	40.0000	40.0000	KJI						+
30		Safety Facto	ors									
31		Variable	Description	Value	Units							
32		SF _y	Safety Factor - yield Safety Factor - ultimate	1.1 1.5	1							_
34		31 _u	Safety Factor - ultimate	1.5	1							+-
35		Applied Stre	ess State									+
36		Variable	Description	Value	Units							
37		σ_{xx}	Normal Stress - x	-7.0000	Ksi						<u> </u>	
38		σ_{yy} σ_{zz}	Normal Stress - y Normal Stress - z	1.0000 0.5000	Ksi Ksi						-	+
40		τ _{yz}	Shear Stress - yz	0.0000	Ksi							+-
41		τ _{xz}	Shear Stress - xz	0.0000	Ksi							
42		τ_{xy}	Shear Stress - xy	3.0000	Ksi							
43												_
45	OUTP	UT:										
46												
47 48	1.)	Principal Str	ress State			1 1		ı	l	ı	I	4
49		Variable	Description	1	2	3	Units					+-
50		σ_p	Principal Stresses	-8.0000	0.5000	2.0000	Ksi			1	†	+[
51				-0.9487	0.0000	-0.3162	1					
52 53		{Φ}	Eigenvector {Q}	0.3162 0.0000	0.0000 1.0000	-0.9487 0.0000	1				<u> </u>	+
54				0.0000	1.0000	0.0000	1				 	+
55		Variable	Description	Value	Units					1	†	+[
56		τ_{max}	Maximum Shear Stress	5.0000	Ksi							
57	<u> </u>											+
58 59	-	E000		_							 	+
60		5000								1	1	+[
61		4000										\prod
62 63	-	3000									 	+
64	-	3000								+	+	+[
65		2000			\							
66		1000			\							1
67 68	-	(si)									 	+[
69		tau (Ksi)	- •		 	\				1	1	+
70		-1000 ·				\sim						П
71		. 300	\		/							

	J 6	-	D	E	F	G	Н			V		4 5.1
72	A B	С	l n	E	F /	G,		ı	J	K	L N	'II IN
72	1	-2000	- 1									-
73	<u> </u>											-
74		-3000										_
75	ļ				/ /							_
76		-4000					-					_
77												
78		-5000		1000	-							
79			-8000 -6000	-4000 -20	00 0	2000						
80				sigma (Ksi)								
81												
82	2.)	Allowable S	trengths									
83												
84		Variable	Description	A-Basis	B-Basis	Units						
85		$\sigma_{\scriptscriptstyle \sf T}^*$	Allowable Tension	52.0000	53.3333	Ksi						-
86		σ_{c}^{*}	Allowable Compression	-52.0000	-53.3333	Ksi						-
87		τ*	Allowable Shear	30.6667	32.0000	Ksi						-
88		τ*	Allow Shear Tresca (Mixed)	26.0000	26.6667	Ksi						-
89												-
90	3)	Margin of S	afety (MS)						1			-
91	J.,		, (1110)		1				I			
92		Minimum N	largin of Safety	Rankine	Tresca*	Von Mises						-
93		MS _{min} (A)	Min Margin of Safety (A Basi	5.5000	4.2000	4.5670						-
94												-
		MS _{min} (B)	Min Margin of Safety (B Basi	5.6667	4.3333	4.7097						_
95												_
96		• •	ess State for (MS=0) - A Basis									_
97		Variable	Description	Rankine	Tresca*	Von Mises	Units					_
98		σ_{xx}	Normal Stress - x	-45.5000	-36.4000	-38.9689	Ksi					
99		σ_{yy}	Normal Stress - y	6.5000	5.2000	5.5670	Ksi					
100		σ_{zz}	Normal Stress - z	3.2500	2.6000	2.7835	Ksi					
101		τ_{yz}	Shear Stress - yz	0.0000	0.0000	0.0000	Ksi					
102		τ_{xz}	Shear Stress - xz	0.0000	0.0000	0.0000	Ksi					-
103		τ _{хγ}	Shear Stress - xy	19.5000	15.6000	16.7010	Ksi					-
104		,	·									-
105		Applied Stre	ess State for (MS=0) - B Basis									
106		Variable	Description	Rankine	Tresca*	Von Mises	Units					
107		σ _{xx}	Normal Stress - x	-46.6667	-37.3333	-39.9682	Ksi					
108			Normal Stress - y	6.6667	5.3333	5.7097	Ksi				+	-
109		σ _{γγ}	Normal Stress - z	3.3333	2.6667	2.8549	Ksi		1		+	-
	\vdash	σ _{zz}										-
110		τ_{yz}	Shear Stress - yz	0.0000	0.0000	0.0000	Ksi				-	-
111	-	τ_{xz}	Shear Stress - xz	0.0000	0.0000	0.0000	Ksi				-	-
112		τ_{xy}	Shear Stress - xy	20.0000	16.0000	17.1292	Ksi					
113												
114		* Note: Fo	r the Tresca Criteria; the Mar	·		•						_
115			for pure <u>tension</u> , MS is the minimum of the tension (σ_{τ}^*) criteria, shear (τ^*) criteria, and shear ($\sigma_{\tau}^*/2$) criteria									
116			for <u>pure compression</u> , MS is the minimum of the compression (σ_c^*) criteria, shear (τ^*) criteria, and shear ($ \sigma_c^* /2$)									
117			for mixed stress, MS is the minimum of tension (σ_1^*), compression (σ_c^*), shear (τ^*), and shear ($(\sigma_1^* - \sigma_c^*)/4$) criteria									
118												
119	End of	Output										
120												\Box
121												П
122												П