SEGON CONTROL DE TEORIA

Programació Lineal i Entera, curs 2016-17 2on curs Grau en Estadística UB-UPC

NOM:

	Temps estimat	Punts		Pu	ntuació		
Test	20min	2.0 pt	C:	I:			Prohibida la presència de
		a) 2.0pt		d	1.0pt		mòbils durant la prova.
Exercici 1	60min	b) 2.0pt		e)	0.5pt	•	Copiar o facilitar la còpia
6. 7		c) 0.5pt		f)	2.0pt		implica suspendre el
Total	90min	10 pt					control.

TEST (2 punts / 30min / sense apunts)

- Encercleu V (vertader) o F (fals) o indiqueu a l'espai [] el contingut mancant a
- Resposta correcta +1pt, incorrecta -0.4pts., en blanc 0.pts.

TEST 1. El problema (D) del següent problema primal

$$(P) \begin{cases} \max & -x_1 & -3x_2 \\ \text{s.a.:} & x_1 & -x_2 & \leq 2 \\ & 2x_1 & +x_2 & = 3 \\ & -x_1 & \geq 4 \end{cases}$$

- a) V / F Té $\lambda_1 \le 0$, λ_2 lliure i $\lambda_3 \ge 0$. F
- b) V / F Té totes les constriccions d'igualtat. V
- c) V / F És de minimització. V

TEST 2. Que la solució bàsica òptima d'un problema (P) sigui degenerada dual, implica que:

- a) V / F El cost reduït d'alguna VNB és zero. V
- b) V / F Alguna variable bàsica és zero. F
- c) V / F Alguna variable dual λ és zero. F

TEST 3. Segons el Ta. de folga complementària, les solucions x i λ factibles primals i duals :

a) [] Satisfàn
$$\lambda_j$$
 ($?$) $= 0, j = 1,2,...,m. \rightarrow (a'_j x - b_j)$
b) [] Satisfàn ($?$) $x_i = 0, i = 1,2,...,n. \rightarrow (c_i - \lambda' A_i)$

c) V / F Satisfàn $\lambda' b \leq c' x$. F

TEST 4. En un joc finit de suma zero, el teorema minimax assegura:

- a) V / F Que per algun dels dos jugadors pot no existir una estratègia òptima. F
- **b) V** / **F** Que el problema (*P*) del jugador 1 satisfà $z_P^* \equiv z_D^*$. V
- c) V / F Que és impossible que els dos jugadors tinguin un guany net positiu. V

TEST 5. Donat el problema primal (P) si una solució bàsica \mathcal{B} és solució bàsica factible dual

- a) V / F B és factible primal. F
- **b) V** / **F** $r \le 0$. F
-] El vector $\lambda' = \boxed{?}$ dona les coordenades d'un punt extrem del poliedre dual.

TEST 6. D'acord amb el Ta. feble de dualitat i els seus corol·laris, podem afirmar que:

-] (P) infactible \Rightarrow $\delta \leftarrow$ (D) il·limitat. \leftarrow a) [
-] Si λ^* i x^* són factibles, llavors ${\lambda^*}'b = c'x^* \implies \delta \iff \lambda^*$ i x^* òptims (P) i (D). **b**) [
- $|c'x^*| \leq \delta \geq \lambda^{*'}b. \geq$ c) [

NOM:

EXERCICI 1. (8 punts / 75min / amb transparències de teoria i calculadora)

Considereu el següent problema de programació lineal:

(2 punts) Formuleu el problema dual i representeu gràficament la seva regió factible P_D , identificant la solució òptima λ^* .

b) (2 punts) Calculeu les solucions duals λ^2 , λ^3 i λ^4 associades a les tres bases òptimes de (P) \mathcal{B}^2 , \mathcal{B}^3 i B4 respectivament, d'acord amb el Ta fort de dualitat. Marqueu aquestes solucions duals a la gràfica de l'apartat a).

- $\lambda^2 =$
- $\lambda^3 =$
- $\lambda^4 =$

(0.5 punts) Quina relació s'observa entre la degeneració de les solucions primal i dual?

Programació Lineal i Entera, curs 2016-17 20n curs Grau en Estadística UB-UPC

	òptima de (D), fet que contradiu aparentment el mencionat corol·lari. Discutiu raonadament s aquesta contradicció realment existeix.
	lem ara calcular la solució òptima de (P) a partir de la base \mathcal{B}^6 .
)	(0.5 punts) Indiqueu quin algorisme hauríem de fer servir i perquè.
)	(2 punts) Calculeu l'òptim x^* a partir de \mathcal{B}^6 amb l'algorisme triat a l'apartat anterior. Identifique
	sobre les gràfiques de l'enunciat i de l'apartat a) les diferents iteracions de l'algorisme.

Programació Lineal i Entera, curs 2016-17 20n curs Grau en Estadística UB-UPC

SOLUCIÓ EXERCICI 1.

Apartat a)

$$(D) \begin{cases} \max & 2\lambda_1 & +6\lambda_2 \\ \text{s.a.:} & \\ (r1) & -2\lambda_1 & +2\lambda_2 & \leq 1 \\ (r2) & \lambda_1 & +3\lambda_2 & \leq 1 \\ & \lambda_1 \leq 0, & \lambda_2 \geq 0 \end{cases}$$

Gràficament observem que (D) té òptims alternatius. El conjunt de solucions òptimes de (D)

$$\Lambda^* = \{ \lambda \in \mathbb{R}^2 | \lambda = \alpha \lambda^2 + (1 - \alpha) \lambda^3, \alpha \in [0, 1] \}$$
amb $\lambda^2 = [-1/8 \quad 3/8]'$ i $\lambda^3 = [0 \quad 1/3]'$.

Apartat b)

•
$$\lambda^{2'} = c_B'[B^2]^{-1} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1/4 & 1/4 \\ -3/8 & 1/8 \end{bmatrix} = \begin{bmatrix} -1/8 & 3/8 \end{bmatrix}$$

•
$$\lambda^{3'} = c_B'[B^3]^{-1} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 3 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1/3 \\ 1 & -1/3 \end{bmatrix} = \begin{bmatrix} 0 & 1/3 \end{bmatrix}$$

•
$$\lambda^{4'} = c_B'[B^4]^{-1} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Apartat c)

S'observa que per al cas estudiat les solucions primals òptimes degenerades corresponen a solucions duals bàsiques que són òptims alternatius, però també poden correspondre a solucions duals bàsiques infactibles duals.

Apartat d)

Aquesta situació no representa cap contradicció amb el corol·lari del Ta. fort de dualitat. La matriu bàsica B que apareix a l'expressió $\lambda' = c_B' B^{-1}$ correspon a una SBF òptima **factible dual** $(r_N \ge 0)$. La base $\mathcal{B}^4 = \{2,4\}$ $(\mathcal{N}^4 = \{1,3\})$ associada a la solució infactible dual λ^4 viola aquesta condició, doncs té un cost reduït negatiu: $r'_N = c'_N - \lambda^{4'} A_N = \begin{bmatrix} 1 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -1 \end{bmatrix}$.

Apartat e)

L'algorisme a aplicar, ASP ó ASD, depèn de la factibilitat de la base $\mathcal{B}^6 = \{3,4\}$:

- \mathcal{B}^6 amb $x_B = \begin{bmatrix} 2 & -6 \end{bmatrix}$ 'és infactible primal, quedant així descartada l'aplicació de l'algorisme del símplex primal.
- \mathcal{B}^6 amb amb $r_N'=c_N'-c_B'[B^6]^{-1}=\begin{bmatrix}1&1\end{bmatrix}-\begin{bmatrix}0&0\end{bmatrix}\begin{bmatrix}1&0\\0&-1\end{bmatrix}\begin{bmatrix}-2&1\\2&3\end{bmatrix}=\begin{bmatrix}1&1\end{bmatrix}\geq 0$ és factible dual, i per tant és vàlida l'aplicació de l'algorisme del símplex dual.

Apartat f)

Símplex dual a partir de $\mathcal{B} = \{3,4\}$:

$$(P) \begin{cases} \min & x_1 + x_2 \\ \text{s.a.:} \\ (r1) & -2x_1 + x_2 \leq 2 \\ (r2) & 2x_1 + 3x_2 \geq 6 \\ x_1, & x_2, \geq 0 \end{cases}$$

$$\mathcal{B} = \{3,4\}, B = B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, x_B = \begin{bmatrix} 2 \\ -6 \end{bmatrix}, \mathcal{N} = \{1,2\}, r_N = c_N = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \lambda = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, z = 0$$

1a iteració: $\mathcal{B} = \{3,4\}$, $\mathcal{N} = \{1,2\}$

SEGON CONTROL DE TEORIA

Programació Lineal i Entera, curs 2016-17 20n curs Grau en Estadística UB-UPC

- Selecció de la VB de sortida $p: x_B = \begin{bmatrix} 2 \\ -6 \end{bmatrix} \not\ge 0 \Rightarrow p = 2, B(2) = 4, x_4$ VB sortint.
- Identificació problema (D) il·limitat: $d'_{r_N} = \beta_2 A_N = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -2 & -3 \end{bmatrix} \not \geq 0$
- VNB d'entrada: $\theta_D^* = \min_{j \in \mathcal{N}, d_{r_{N_i}} < 0} \left\{ \frac{-r_j}{d_{r_{N_i}}} \right\} = \min \left\{ -\frac{1}{-2}, -\frac{1}{-3} \right\} = \frac{1}{3} \Longrightarrow q = 2$
- Canvi de base i actualitzacions:
 - Actualització variables duals i f.o.:

$$r_{N} \coloneqq r_{N} + \theta_{D}^{*} d_{r_{N}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} -2 \\ -3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ 0 \end{bmatrix}, \ r_{B(p)} = r_{4} \coloneqq \theta_{D}^{*} = \frac{1}{3}$$
$$\lambda \coloneqq \lambda - \theta_{D}^{*} \beta_{p}' = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}, \ z \coloneqq z - \theta_{D}^{*} x_{B(p)} = 0 - \frac{1}{3} (-6) = 2$$

Actualització variables primals:

$$d_{B} = -B^{-1}A_{2} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, \ \theta^{*} = -\frac{x_{B(2)}}{d_{B(2)}} = -\frac{-6}{3} = 2.$$

$$x_{B} = \begin{bmatrix} x_{3} \\ x_{4} \end{bmatrix} \coloneqq x_{B} + \theta^{*}d_{B} = \begin{bmatrix} 2 \\ -6 \end{bmatrix} + 2\begin{bmatrix} -1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x_{q} = x_{2} \coloneqq \theta^{*} = 2$$

$$\odot \ \mathcal{B} \leftarrow \{3,2\}, \mathcal{N} \leftarrow \{1,4\}$$

- **2a iteració:** $\mathcal{B} = \{3,2\}$, $\mathcal{N} = \{1,4\}$
 - Selecció de la VB de sortida $p: x_B = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \ge 0 \implies \text{òptim}.$

La iteració s'indica a les gràfiques amb el símbol $\stackrel{\text{ASD}}{\longrightarrow}$.