18 A. Nasli Bakir

Définition 2.5. $(A_n)_n$ est dite uniformément convergente vers A si :

$$\lim_{n \to +\infty} ||A_n - A|| = 0$$

La norme étant définie au sens de celle de $\mathcal{L}(X,Y)$.

Proposition 2.2. Si $(A_n)_n$ converge uniformément vers A dans $\mathcal{L}(X,Y)$, alors $(A_n)_n$ converge simplement vers A.

Preuve. Pour tout $x, x \in X$:

$$||A_n x - Ax|| = ||(A_n - A)x|| \le ||A_n - A|| ||x|| \to 0, (n \to +\infty)$$

4

Proposition 2.3. Soient $(X, \|.\|_1)$ et $(Y, \|.\|_2)$ des espaces vectoriels normés. Si Y est de Banach, alors $\mathcal{L}(X, Y)$ l'est également.

Preuve. Soit $(A_n)_n$ une suite de Cauchy dans $\mathcal{L}(X,Y)$. Alors,

$$\forall \varepsilon > 0, \exists N_0 \in \mathbb{N}/\forall n, m \in \mathbb{N} : n > N_0 \land m > N_0 \Rightarrow ||A_n - A_m|| \leq \varepsilon$$

Soit $x \in X$ fixé. On a pour tous $n, m \in \mathbb{N}, n > N_0 \land m > N_0$:

$$||A_n(x) - A_m(x)|| \le ||A_n - A_m|| ||x|| \to 0, (n \to +\infty)$$

Ce qui montre que la suite $A_n(x)$ est de Cauchy dans Y pour tout x dans X. Comme Y est complet, $A_n(x)$ converge dans Y pour tout $x \in X$. Soit donc

$$Ax = \lim_{n \to +\infty} A_n(x), x \in X$$

Soient maintenant $x, y \in X$ et soit $\lambda \in \mathbb{K}$. On a

$$A(\lambda x + y) = \lim_{n \to +\infty} A_n(\lambda x + y) = \lim_{n \to +\infty} (\lambda A_n x + A_n y)$$
$$= \lambda \lim_{n \to +\infty} A_n x + \lim_{n \to +\infty} A_n y$$
$$= \lambda A x + A y$$

et A est donc linéaire. De plus, par le critère de Cauchy, il existe N_0 tel que :

$$n > N_0 \land m > N_0 \Rightarrow ||A_n - A_m|| \le \varepsilon$$

D'où, pour tous $n, m \in \mathbb{N}/n > N_0 \land m > N_0$

$$||A_n(x) - A_m(x)|| \le \varepsilon ||x|| \tag{2.6}$$

et donc pour tout $x \in X$:

$$||A_m(x)|| \le ||A_n(x)|| + \varepsilon ||x|| \le (||A_n|| + \varepsilon)||x||$$
 (2.7)

Fixons n et faisons tendre m vers $+\infty$ dans (2.7), on obtiendra

$$||Ax|| \le (||A_nx + \varepsilon)||x||$$

et A est donc continue car A_n est bornée, $n \geq 1$. Par conséquent, $A \in \mathcal{L}(X,Y)$. Montrons maintenant que $\lim_{n \to +\infty} A_n = A$. Soit $n \geq N_0$ fixé, et soit $x \in X$ fixé. On fait tendre m vers $+\infty$ dans (2.6), on aura

$$||Ax - A_nx|| \le \varepsilon ||x||$$

Donc,

$$||A - A_n|| \le \varepsilon$$

(c.q.f.d) **◄**

2.2 Suite bornée d'applications linéaires continues

Rappel. Soit X un espace vectoriel normé. Une partie A de X est dite bornée si A est contenue dans une boule, i.e., l'ensemble

$$\{\|x\| , x \in X\}$$

est majoré. On a donc le résultat suivant