day 2.6 notes

T.Scofield

Sampling distributions for \hat{p}

Let's create a population. For our purposes, let's make this population contain 70% successes and 30% failures:

```
population <- c(rep(0,3), rep(1,7))
population</pre>
[1] 0 0 0 1 1 1 1 1 1 1
```

This, throughout the section, will be the population I sample from.

Let's also decide on a sample size, say n = 12.

To draw a single sample of size 12 and compute the proportion of successes in that sample, we might use

```
x <- resample(population, size=12)
x

[1] 1 1 0 1 1 1 1 1 0 1 0 0

prop(~ (x==1))

prop_TRUE</pre>
```

0.6666667

A streamlined (into a single line) version looks like this:

```
prop(\sim (resample(population, size=12)==1))
```

prop_TRUE
0.5833333

To simulate the sampling distribution of \hat{p} (i.e., sample proportions when a sample of size 12 is drawn, with replacement, from this population), I need to repeat this process many times. Here, I use do(10000) * to repeat it 10000 times.

```
manyPhats <- do(10000) * prop(~ (resample(population, size=12)==1 ))
head(manyPhats) # shows the first few results</pre>
```

prop_TRUE

- 1 0.8333333
- 2 0.5833333
- 3 0.9166667
- 4 1.0000000
- 5 0.5000000
- 6 0.8333333

Let's view all 10000 of the outcomes using a histogram:

```
gf_histogram(~prop_TRUE, data=manyPhats, numbins=13)
```


Same idea, but with a different sample size

Let's again sample from this population, but draw samples of greater size, say n = 48.

```
manyPhats48 <- do(10000) * prop(~ (resample(population, size=48)==1 ))
head(manyPhats48)</pre>
```

prop_TRUE

- 1 0.6041667
- 2 0.6875000
- 3 0.7916667
- 4 0.666667
- 5 0.6458333
- 6 0.7291667

gf_histogram(~prop_TRUE, data=manyPhats48)

Observe

- For both simulated distributions of \hat{p} (the one with n=12, the other with n=48), the mean appears to be around 0.7=70%, which is the overall proportion of successes in the population.
- The simulated distribution is more symmetric and bell-shaped for the n = 48 case than for the n = 12 case. The n = 48 histogram is less spread out than is the n = 12 case.

Sampling distributions for \bar{x}

Means require a quantitative variable. In sports many quantitative variables are measured. In what follows, I will use as my population Major League Baseball players in 2018 (ones who batted at least 100 times). In the first line of code, I import a data set on these players.

```
mlbStats18 <- read.csv("https://scofield.site/teaching/data/csv/mlb18abEligible.csv")
head(mlbStats18, n=3)</pre>
```

```
Х
                                                  H doubles triples HR RBI walks
            name team position games
                                        AΒ
                                              R
1 1
                   BOS
                             RF
                                                         47
        Betts, M
                                   136 520 129 180
                                                                   5 32
                                                                         80
                                                                                81
2 2
     Martinez, J
                   BOS
                             LF
                                   150 569 111 188
                                                         37
                                                                   2 43 130
                                                                                69
3 3
       McNeil, J NYM
                             2B
                                    63 225
                                                                   6
                                                                      3
                                            35
                                                         11
                                                                         19
                                                                                14
  strike_outs stolen_bases caught_stealing_base
                                                     AVG
                                                            OBP
                                                                  SLG
                                                                         OPS
1
           91
                         30
                                                 6 0.346 0.438 0.640 1.078
2
          146
                          6
                                                 1 0.330 0.402 0.629 1.031
3
           24
                          7
                                                 1 0.329 0.381 0.471 0.852
```

When I use resample() on a data frame, it results in the selection of cases, but with all variables intact for those cases. Here, I choose n = 10 players at random, with replacement:

```
resample(mlbStats18, size=10)
```

	Х	name	team	position	games	AB	R	Н	doul	oles t	riples	HR	RBI	• •
367	367	Frazier, T	NYM	3B	115	408	54	87		18	0	18	59)
224	224	Pederson, J	LAD	LF	148	395	65	98		27	3	25	56	3
55	55	Peraza, J	CIN	SS	157	632	85	182		31	4	14	58	3
34	34	Martini, N	OAK	LF	55	152	26	45		9	3	1	19)
178	178	Andrus, E	TEX	SS	97	395	53	101		20	3	6	33	3
281	281	Heredia, G	SEA	LF	125	292	29	69		14	1	5	19)
275	275	Wieters, M	WSH	C	76	235	24	56		8	0	8	30)
340	340	Smith, D	NYM	1B	56	143	14	32		11	1	5	11	
376	376	Jones, J	DET	LF	129	429	54	89		22	6	11	34	Ŀ
167	167	Castillo, W	CWS	С	49	170	17	44		7	0	6	15	<u>, </u>
	walk	s strike_out:	s sto	len_bases	caught	t_ste	eal:	ing_t	oase	AVC	B OBP	S	SLG	OPS
367	4	8 11:	2	9					4	0.213	0.303	0.3	390	0.693
224	4	0 8	5	1					5	0.248	0.321	0.5	522	0.843
55	2	9 7!	5	23					6	0.288	0.326	0.4	116	0.742
34	2	1 30	3	0					0	0.296	0.397	0.4	114	0.811
178	2	8 60	3	5					3	0.256	0.308	0.3	367	0.675

```
281
       32
                     52
                                    2
                                                            4 0.236 0.318 0.342 0.661
275
                     45
                                    0
                                                            1 0.238 0.330 0.374 0.704
       30
                                                            0 0.224 0.255 0.420 0.675
340
        4
                     47
                                    0
376
       24
                    142
                                   13
                                                            5 0.207 0.266 0.364 0.630
        9
                                                            0 0.259 0.304 0.406 0.710
167
                     46
                                    1
    orig.id
367
        367
224
        224
55
          55
34
          34
178
         178
281
        281
275
        275
340
        340
376
        376
167
        167
```

The variable I've chosen to focus on is hits, the column labeled "H". I'm demonstrating the sampling distribution for the sample mean (\bar{x}) , so I need code that draws a random sample of size n=10 and computes the mean number of hits for the 10 players selected.

```
mean(~H, data=resample(mlbStats18, size=10)) # calculates a single mean
```

[1] 103.7

To draw 5 samples, calculating the sample mean number of hits for each one.

```
do(5) * mean(~H, data=resample(mlbStats18, size=10))
```

mean
1 111.0
2 87.8
3 81.0
4 73.3
5 95.7

Again, a simulated sampling distribution requires a lot more iterations than 5 of them. So, let's up the number to 10000, this time viewing a histogram (simulated sampling distribution) of means:

```
manyXbars <- do(10000) * mean(~H, data=resample(mlbStats18, size=10))
gf_histogram(~mean, data=manyXbars)</pre>
```


Repeating for samples of size n = 50

Let's go to samples of size 50.

```
manyXbars <- do(10000) * mean(~H, data=resample(mlbStats18, size=50))
gf_histogram(~mean, data=manyXbars)</pre>
```


Observe

- For both simulated distributions of \bar{x} (the one with n=10, the other with n=50), the mean appears to be around 88 or so.
- The simulated distribution is more symmetric and bell-shaped for the n=50 case than for the n=10 case. The n=50 histogram is less spread out than is the n=10 case.

Sampling distribution for the sample median

When our variable is quantitative, there are lots of sample statistics that might be computed. The mean \bar{x} was done in the last section (and is by far the most popular), but one might produce a sampling distribution for the sample median, or for the 0.3-quantile, or for the sample standard deviation, just to name a few. Here, I'll do it for the median, when samples drawn from mlbStats18 are of size n=30. Look over the differences in code.

```
manyMedians <- do(10000) * median(~H, data=resample(mlbStats18, size=30))
gf_histogram(~median, data=manyMedians)</pre>
```


Sampling distribution for the sample correlation

If we are to compute a correlation from a sample, we will need **two** variables. Perhaps we are interested in correlation between homeruns (HR) and strike-outs (strike_outs). We will draw samples from mlbStats18 as before, this time calculating r, the correlation coefficient each time. Code that does so just once, using a sample size of n = 20, follows:

```
cor(strike_outs ~ HR, data=resample(mlbStats18, size=20))
```

[1] 0.6916527

Again, we obtain a simulated sampling distribution for the sample correlation r by carrying this out many times:

```
manyCors <- do(10000) * cor(strike_outs ~ HR, data=resample(mlbStats18, size=20))
head(manyCors)</pre>
```

cor

- 1 0.7512196
- 2 0.7682710
- 3 0.6469283
- 4 0.8055510
- 5 0.7961862
- 6 0.8247882

I've stored the results in a data frame called manyCors. The column where they are stored is called cor. So, a histogram displaying the distribution of values of r:

```
gf_histogram(~ cor, data=manyCors)
```

