

Chapitre 5:

La Cavitation

1

Cavitation

- 1. Définition
- 2. Effet de la cavitation
- 3. NPSH

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

1. Définition

La cavitation est la formation de bulles de vapeur due à une ébullition provoquée par une chute de la pression statique jusqu'à un niveau de la tension de vapeur correspondante à la température du liquide.

T(°C) p_v
100 1 atm
25 31,66 (mbar)
20 23,5 (mbar)

3

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

Cole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

1. Définition

5

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

Cavitation dans les pompes:

Le point de pression minimal est situé à l'intérieur du rotor.

K: Coeff. de dépression à l'entrée

K=0,16 à 0,2 (pompe centrifuge)

= 0,25 à 0,3 (pompe axiale)

Cole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

Conséquences de la cavitations

7

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

Conséquences de la cavitations

Département Energétique

Conséquences de la cavitations

9

ENSAM Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

Conséquences de la cavitations

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

2. Effet de la cavitation

a- Bruit et vibration

Évaporation p=p_v

Grossissement des bulles

Recondensation p>p_v

Implosion des bulles

Fluctuation importante de la pression
P peut atteindre quelque centaines
de bars

L'implosion des bulles génèrent un bruit intense de fréquence élevée.

11

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

2. Effet de la cavitation

b- Érosion

Attaque du matériau par fatigue suite aux implosions répétées des bulles. (des microjets à 600 m/s avec des pics de pression très élevés)

Conséquences de la cavitations

13

2. Effet de la cavitation

C- Chute des performances

Chute de la hauteur et le rendement de la pompe.

cole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

3. NPSH: Net Positive Suction Head

(Limite de non-cavitation)

Montage en charge

Montage en aspiration

15

Ecole Nationale Supérieure d'Arts et Métiers de Meknès

Département Energétique

3. NPSH: Net Positive Suction Head

(Limite de non-cavitation)

On appliquant le théorème de Bernoulli entre R et a puis entre a et 1 et en utilisant la relation:

$$\Delta p = p_1 - p_{\min} = K\rho \frac{W_1^2}{2}$$

On trouve:

$$\frac{p_{\min}}{\rho g} = (\frac{p_R}{\rho g} - z_{asp} - \Delta H_{Ra}) - (K \frac{W_1^2}{2g} + \frac{V_1^2}{2g} + \Delta H_{a1})$$

Non- cavitation $P_{min} > p_v$

D'où: $(\underbrace{\frac{P_R - P_v}{\rho g} - z_{asp} - \Delta H_{Ra}}_{NPSH_{disp}}) > (\underbrace{K \frac{W_1^2}{2g} + \frac{V_1^2}{2g} + \Delta H_{a1}}_{NPSH_{reg}})$

Département Energétique

3. NPSH: Net Positive Suction Head

Pour avoir $NPSH_{disp}$ élevé on doit avoir:

- P_R élevée
- T basse
- Pertes de charge à l'aspiration basses
- · Hauteur d'aspiration basse

Pour avoir $NPSH_{req}$ bas on doit avoir:

• vitesse de rotation basse

$$NPSH_{req} \propto \omega^2$$

NPSH_{req} croit avec le coeff de vitesse spécifique