SELECTIVE INATTENTION TO INTEREST RATES

Pierfrancesco Mei Harvard → Goldman Sachs pierfrancescomei.com Tim de Silva Stanford GSB & SIEPR timdesilva.me

August 2025

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated adding information frictions to quantitative macro models Auclert et al. 20
 - ⇒ Average expectation is slow-moving and under-reacts Coibion-Gorodnichenko 12, 15
 - ⇒ Aggregate responses to shocks are "hump-shaped", like in data Christiano et al. 05

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated adding information frictions to quantitative macro models Auclert et al. 20
- Introspection: macro expectations much more important for "big" decisions
 - These big decisions also tend to occur less frequently
 - Example: interest rates important when **buying a house**, but less so for groceries

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated adding information frictions to quantitative macro models Auclert et al. 20
- Introspection: macro expectations much more important for "big" decisions
- Question: Do HHs select into paying attention based on types of decisions?

- Households' macro expectations suggest they are very uninformed on average
 - Level of expectations is often systematically biased Weber et al. 22
 - Substantial dispersion in expectations across people Mankiw et al. 04
 - Errors in their expectations are predictable ex-ante Bordalo et al. 20
- Motivated adding information frictions to quantitative macro models Auclert et al. 20
- Introspection: macro expectations much more important for "big" decisions
- Question: Do HHs select into paying attention based on types of decisions?
- If yes, how do the macro implications of this selection differ?
 - Belief heterogeneity ⇒ average may not be the relevant object Miller 77, Afrouzi et al. 24

THIS PAPER

Is there selective inattention to interest rates based on <u>durables purchases</u>?

"decision-making" (DM)

- 1 Use existing surveys to study how interest rate expectations differ based on DM
 - Benefit: high-quality data on expectations
 - Cost: imprecise identification of DM status + hard to isolate attention

THIS PAPER

Is there selective inattention to interest rates based on <u>durables purchases</u>?

"decision-making" (DM)

- 1 Use existing surveys to study how interest rate expectations differ based on DM
- Conduct a new survey to identify how macro attention changes based on DM
 - Benefit: better identify **DM status** + elicit information acquisition directly
 - Cost: hard to study accuracy in expectations given one cross-section

THIS PAPER

Is there selective inattention to interest rates based on durables purchases? ✓
How does selective inattention affect aggregate responses to interest rates?

- Use existing surveys to study how interest rate expectations differ based on DM
- Conduct a new survey to identify how macro attention changes based on DM

DM in model

- Oevelop incomplete markets model with durables + rational inattention to rates
 - Use patterns in IA from survey to discipline information cost parameter
 - Compare model IRFs to level and volatility of rates with exogenous inattention

 $DM \perp beliefs \Rightarrow no selection$

PREVIEW OF KEY TAKEAWAYS

- Data: Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Model: Like exogenous inattention, selective inattention generates:
 - Slow-moving aggregate beliefs
 - 2 Dampened responses of non-durable consumption to interest rates

PREVIEW OF KEY TAKEAWAYS

- Data: Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Model: Like exogenous inattention, selective inattention generates:
 - Slow-moving aggregate beliefs
 - 2 Dampened responses of non-durable consumption to interest rates
- Model: Unlike exogenous inattention, selective inattention:
 - 1 Shifts the **composition** of spending responses to rate cuts towards durables
 - Accelerates the impact of larger rate cuts
 - 3 Dampens responses to changes in volatility closer to the data

PREVIEW OF KEY TAKEAWAYS

- Data: Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Model: Like exogenous inattention, selective inattention generates:
 - Slow-moving aggregate beliefs
 - 2 Dampened responses of non-durable consumption to interest rates
- Model: Unlike exogenous inattention, selective inattention:
 - 1 Shifts the **composition** of spending responses to rate cuts towards durables
 - Accelerates the impact of larger rate cuts
 - 3 Dampens responses to changes in volatility closer to the data

Takeaway: Aggregate inattention hides substantial selection into attention that can be measured, modeled, and has different implications!

► Literature

OUTLINE

- 1 Existing Surveys: Expectations Accuracy around Decision-Making
- 2 New Survey: Information Acquisition around Decision-Making
- 3 Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 6 Conclusion

OUTLINE

- 1 Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 5 Conclusion

SURVEY 1/2: NY FED SURVEY OF CONSUMER EXPECTATIONS

- Sample: repeated cross-section of \sim 8K respondents in 2014-2023
- Variables of interest:
 - 1 Nowcasts of current average 30-year fixed mortgage rate
 - Porecasts of one-year ahead mortgage rate and inflation
 - 3 DM status based on distance from past or (intended) future home purchase
- Construct errors using 30-year fixed rate in Freddie Mac PMMS and CPI
- Run the following regression:

$$\log |\mathsf{Error}_{it}| = \sum_{s} \pmb{\beta_{s}} \cdot \mathbf{1} \left(\mathsf{DM} \ \mathsf{Status}_{it} = s \right) + \mathsf{Controls}_{it} + \delta_{t} + \epsilon_{it}$$

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS

Errors of prospective buyers \approx 40% lower than those with no purchase plan

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS

 \approx 2x difference between individuals in top and bottom terciles of income or education

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS

Almost all of forecasting gain comes from nowcasting improvement

SURVEY 2/2: ECB SURVEY OF CONSUMER EXPECTATIONS

- Sample: panel of \sim 130K individuals in 2020-2024 from six largest countries
 - Restriction: only include individuals who rented at some point in survey
 - Note: quarterly frequency ⇒ short panel
- Variables of interest:
 - **1** Forecasts of one-year ahead mortgage rates, inflation, GDP, and unemployment
 - **2 DM status** based on distance from mortgage application
- Construct errors based on country-specific realizations
- Run the following regression:

$$\log |\mathsf{Error}_{it}| = \sum_{s} \beta_{s} \cdot \mathbf{1} \left(\mathsf{DM} \; \mathsf{Status}_{it} = s \right) + \mathsf{Controls}_{it} + \mathbf{Tenure}_{it} + \delta_{t} + \lambda_{i} + \epsilon_{it}$$

DECISION-MAKERS HAVE MORE ACCURATE BELIEFS: ECB

Mortgage rate forecast errors fall by about 20% pre-application

SMALLER DIFFERENCES FOR OTHER VARIABLES: INFLATION IN NY FED

SMALLER DIFFERENCES FOR OTHER VARIABLES: INFLATION IN ECB

SMALLER DIFFERENCES FOR OTHER VARIABLES: GDP IN ECB

SMALLER DIFFERENCES FOR OTHER VARIABLES: UR IN ECB

LESS DISPERSION AMONG DMS' BELIEFS: BOTH SURVEYS

OUTLINE

- 1 Existing Surveys: Expectations Accuracy around Decision-Making
- 2 New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- **5** Conclusion

Information Acquisition is Concentrated Pre-Decision

IA IS CONCENTRATED ON DECISION-RELEVANT VARIABLES

Info. Acquisition_i = $\sum_{d} \frac{\beta_{d} \cdot \mathbf{1}}{\beta_{d} \cdot \mathbf{1}}$ (Home Distance_i = d) + Controls_i + Other Distances_i + ϵ_{i}

PATTERNS IN INFORMATION ACQUISITION ARE DECISION-SPECIFIC

PATTERNS IN INFORMATION ACQUISITION ARE DECISION-SPECIFIC

Additional Results from New Survey

- Information acquisition (IA) is primarily about the current values of variables
- Primary source of information is internet search
- No difference in IA based on mortgage type or refinancing plans
- Positive effect of decision-making due to job relocations on IA
- IA is directly associated with belief accuracy and uncertainty
- Similar improvement in belief accuracy for home purchases to SCE
- Reductions in subjective uncertainty for home purchases

TAKING STOCK: 5 FACTS

- Households close to durables purchases have more accurate macro expectations
- 2 Improvement in expectation accuracy is largest for interest rates
- 3 Decision-makers' beliefs are less dispersed and uncertain
- 4 Households concentrate information acquisition around durables purchases
- **5** Households' information acquisition is about **decision-relevant variables**

TAKING STOCK: 5 FACTS

- Households close to durables purchases have more accurate macro expectations
- 2 Improvement in expectation accuracy is largest for interest rates
- 3 Decision-makers' beliefs are less dispersed and uncertain
- 4 Households concentrate information acquisition around durables purchases
- **5** Households' information acquisition is about **decision-relevant variables**

Next: what are the macroeconomic implications of this **selective inattention**?

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- 3 Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- **5** Conclusion

MODEL OVERVIEW

Bewley-Huggett-Aiyagari

Partial equilibrium incomplete markets model +durables + dynamic info. acquisition

household block of McKay-Wieland 2021

rational inattention

MODEL OVERVIEW

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

MODEL OVERVIEW

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

MODEL OVERVIEW

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Information Acquisition

HHs receive signals of endogenous precision about current *r* = rational inattention

- Cost of signals = $\omega \times$ mutual info.
- Benefit of signals = better choice of c, d'
- Interest rate is persistent ⇒ prior beliefs are state variables

MODEL OVERVIEW

Partial equilibrium incomplete markets model + durables + dynamic info. acquisition

Decision-Making

Given beliefs, HHs choose non-durables **c** and durables **d**' subject to:

- Income risk + collaterized borrowing
- Stochastic interest rate r
- Depreciation of durables stock
- Durables adjustment costs
- Operating + maintenance costs
- Match-quality shocks (e.g. job change)

Rich model of how beliefs about $r \longrightarrow \mathbf{c}, \mathbf{d}'$

Information Acquisition

HHs receive signals of endogenous precision about current *r* = rational inattention

- Cost of signals = $\omega \times$ mutual info.
- Benefit of signals = better choice of c, d'
- Interest rate is persistent ⇒ prior beliefs are state variables

Endogenous beliefs about *r* that come from dynamic information acquisition

- Households do not observe the current interest rate, r, but know DGP
- \bullet Define households' idiosyncratic information set by ${\cal I}$

- Households do not observe the current interest rate, r, but know DGP
- ullet Define households' idiosyncratic information set by ${\mathcal I}$
- Given state $\mathbf{x} = (b, d, r, y, \xi, \mathcal{I})$, households solve:

- Households do not observe the current interest rate, r, but know DGP
- ullet Define households' idiosyncratic information set by ${\mathcal I}$
- Given state $\mathbf{x} = (b, d, r, y, \xi, \mathcal{I})$, households solve:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c,d'} U\Big(c, m(d')\Big) + \beta \cdot \mathbf{E}V\Big(\mathbf{x}' \mid \mathcal{I}\Big)$$

- Households do not observe the current interest rate, r, but know DGP
- ullet Define households' idiosyncratic information set by ${\mathcal I}$
- Given state $\mathbf{x} = (b, d, r, y, \xi, \mathcal{I})$, households solve:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \operatorname*{arg\,max}_{c,d'} U\Big(c, m(d')\Big) + \beta \cdot \mathbf{E}V\Big(\mathbf{x}' \mid \mathcal{I}\Big)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'),$$

- Households do not observe the current interest rate, r, but know DGP
- ullet Define households' idiosyncratic information set by ${\mathcal I}$
- Given state $\mathbf{x} = (b, d, r, y, \xi, \mathcal{I})$, households solve:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c, d'} U\Big(c, m(d')\Big) + \beta \cdot \mathbf{E}V\Big(\mathbf{x}' \mid \mathcal{I}\Big)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'), \quad b' \ge -\lambda d'$$

- Households do not observe the current interest rate, r, but know DGP
- ullet Define households' idiosyncratic information set by ${\mathcal I}$
- Given state $\mathbf{x} = (b, d, r, y, \xi, \mathcal{I})$, households solve:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \underset{c,d'}{\arg\max} \, U\Big(c, m(d')\Big) + \beta \cdot \mathbf{E} \, V\Big(\mathbf{x}' \mid \mathcal{I}\Big)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] \, b + (1 - \delta) \, d - \mathbf{A}(\mathbf{d}, \mathbf{d}'), \quad b' \ge -\lambda d'$$

$$\mathbf{A}(\mathbf{d}, \mathbf{d}') = \begin{cases} \underbrace{\nu \cdot d}_{\text{op. costs}} & \text{if } d' = \underbrace{(1 - \delta)d}_{\text{depreciation}} + \underbrace{\delta \cdot \chi \cdot d}_{\text{maint. costs}} \\ \underbrace{\nu \cdot d}_{\text{op. costs}} + \underbrace{f \cdot (1 - \delta)d}_{\text{op. costs}} & \text{else} \end{cases}$$

- Households do not observe the current interest rate, r, but know DGP
- ullet Define households' idiosyncratic information set by ${\mathcal I}$
- Given state $\mathbf{x} = (b, d, r, y, \xi, \mathcal{I})$, households solve:

$$\begin{aligned} \mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) &= \argmax_{c,d'} U\Big(c, \mathbf{m}(d')\Big) + \beta \cdot \mathbf{E} V\Big(\mathbf{x}' \mid \mathcal{I}\Big) \\ c + b' + d' &= y + \left[\exp(r) + \tau_b \mathbf{1}_{b < 0}\right] b + (1 - \delta) \, d - A(d, d'), \quad b' \geq -\lambda d' \\ \mathbf{m}(d') &= d' \times \max\Big\{\xi, \mathbf{1}_{d' \neq (1 - \delta + \delta \cdot \chi) d}\Big\}, \quad \xi \sim \mathrm{Bern}(\overline{\xi}) = \mathrm{match-quality\ shock} \end{aligned}$$

 $\xi = 0 \Rightarrow$ have to adjust for **exogenous** reasons (e.g. job relocation)

- Households do not observe the current interest rate, r, but know DGP
- ullet Define households' idiosyncratic information set by ${\mathcal I}$
- Given state $\mathbf{x} = (b, d, r, y, \xi, \mathcal{I})$, households solve:

$$\mathbf{c}(\mathbf{x}), \mathbf{d}'(\mathbf{x}) = \argmax_{c, d'} U\Big(c, m(d')\Big) + \beta \cdot \mathbf{E}V\Big(\mathbf{x}' \mid \mathcal{I}\Big)$$

$$c + b' + d' = y + [\exp(r) + \tau_b \mathbf{1}_{b < 0}] b + (1 - \delta) d - A(d, d'), \quad b' \ge -\lambda d'$$

- log y follows AR1 + observed by households
- r follows an AR1 that households correctly perceive

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
 - \Rightarrow Prior beliefs in each period can be summarized by: $r \sim N(\mu, \Sigma)$

- Simplifying assumption: HHs can only acquire **Gaussian** signals about **current** *r*
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$V(\mathbf{x}) = \max_{\Sigma_{e}} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V(\mathbf{x}') \mid \mathbf{x} \Big]$$

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{x}) &= \max_{\Sigma_e} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V\left(\mathbf{x}'\right) \mid \mathbf{x} \Big] + \omega \cdot \underbrace{\log\left(1 - G\right)}_{\text{mutual info.}} \\ G &= \frac{\Sigma}{\Sigma + \Sigma_e} \\ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G\left(r + e\right), \quad e \sim N(0, \Sigma_e) \end{split}$$

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{x}) &= \max_{\Sigma_e} \mathbf{E} \Big[U(\mathbf{c}, \textit{m}(\mathbf{d}')) + \beta \textit{V} \left(\mathbf{x}' \right) \mid \mathbf{x} \Big] + \omega \cdot \underbrace{\log \left(1 - \textit{G} \right)}_{\text{mutual info.}} \\ G &= \frac{\Sigma}{\Sigma + \Sigma_e} \\ \widehat{\mathbf{E}}(r) &= (1 - \textit{G}) \mu + \textit{G} \left(r + e \right), \quad e \sim \textit{N}(0, \Sigma_e) \\ \mu' &= (1 - \rho) \overline{r} + \rho \widehat{\mathbf{E}}(r), \quad \Sigma' = \rho^2 \Sigma (1 - \textit{G}) + \sigma^2 \end{split}$$

INFORMATION ACQUISITION PROBLEM TO DETERMINE BELIEFS

- Simplifying assumption: HHs can only acquire Gaussian signals about current r
- Households choose signal variance Σ_e , anticipating choices of **c** and **d**':

$$\begin{split} V(\mathbf{x}) &= \max_{\Sigma_e} \mathbf{E} \Big[U(\mathbf{c}, m(\mathbf{d}')) + \beta V\left(\mathbf{x}'\right) \mid \mathbf{x} \Big] + \omega \cdot \underbrace{\log\left(1 - G\right)}_{\text{mutual info.}} \\ G &= \frac{\Sigma}{\Sigma + \Sigma_e} \\ \widehat{\mathbf{E}}(r) &= (1 - G)\mu + G\left(r + e\right), \quad e \sim N(0, \Sigma_e) \\ \mu' &= (1 - \rho)\overline{r} + \rho \widehat{\mathbf{E}}(r), \quad \Sigma' = \rho^2 \Sigma (1 - G) + \sigma^2 \end{split}$$

- c, d' maximize objective with belief errors
 - Lower $\Sigma_e \Rightarrow \widehat{\mathbf{E}}(r) \longrightarrow r \Rightarrow \mathbf{errors} \longrightarrow 0 \Rightarrow \mathbf{smaller}$ utility loss from \mathbf{c}, \mathbf{d}'

CALIBRATED PARAMETERS

Parameter	Description	Value	Source
Internally-Calibrated			
β	Discount factor	0.9829	Asset-to-GDP ratio
ψ	Non-durables exponent	0.627	Durable-to-nondurable consumption ratio
f	Fixed cost	0.11	Adjustment probability
$1-\overline{\xi}$	Match-quality shock probability	0.034	Share of adjustments from MQ shocks
ω	Marginal information cost	$10^{-3.741}$	Concentration in information acquisition
Externally-Calibrated			
γ	RRA (and inverse EIS)	2	
ε	Durables elasticity of substitution	0.5	McKay and Wieland (2021)
$1 - \lambda$	Required downpayment	0.2	McKay and Wieland (2021)
δ	Depreciation rate	0.017	McKay and Wieland (2021)
χ	Maintenance share	0.35	McKay and Wieland (2021)
ν	Operating cost	0.012	McKay and Wieland (2021)
ρ_y	Income persistence	0.977	Flodén and Lindé (2001)
σ_{ϵ}	Income shock std. dev.	0.058	Flodén and Lindé (2001)
<u>r</u>	Real rate mean	0.0143	10-Year Treasury Rate: 1961-2024
ρ	Real rate persistence	0.979	10-Year Treasury Rate: 1961-2024
σ	Real rate shock std. dev.	0.0014	10-Year Treasury Rate: 1961-2024
$ au_b$	Borrowing spread	0.4156%	30-Year Fixed Mortgage Rate: 1971-2024

▶ Welfare Loss

19

EFFECT OF INFORMATION COST ON INFORMATION ACQUISITION

20

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

Households acquire information in all periods...

► Durables Share ► Information Acquisition sS

► Nowcasts

21

EXTENSIVE MARGIN OF INFO. ACQUISITION IN EVENT-TIME

... but this information acquisition is **concentrated** around durables adjustments

21

Intensive Margin of Info. Acquisition in Event-Time

Increase in information acquisition is even larger on intensive margin

► Durables Share ► Information Acquisition sS ► Nowcasts

22

ENDOGENOUS ADJUSTMENTS ⇒ INFO. ACQUISITION PRE-CHOICE

Information acquisition increases in anticipation of **state-dependent** adjustments...

ENDOGENOUS ADJUSTMENTS ⇒ INFO. ACQUISITION PRE-CHOICE

... but is concentrated around the choice for time-dependent adjustments Afrouzi et al. 24

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- 5 Conclusion

RESPONSES TO INTEREST RATE CUTS

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Rational expectations: households observe current interest rate

▶ Decomposition

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Exogenous inattention: constant *G* set to match CG 15 coefficient in baseline model

▶ Decomposition

IMPULSE RESPONSE OF BELIEFS TO RATE CUT

Selective inattention: baseline model with endogenous information acquisition

▶ Decomposition

► Incorporating GE Effects

► Non-Linearity

Non-durable response is dampened like with exogenous inattention...

► Incorporating GE Effects ► Non-Linearity

... but **durable** response is larger, closer to **rational expectations!**

► Incorporating GE Effects ► Non-Linearity

SMALL DIFFERENCE IN AGGREGATE SPENDING RESPONSE TO RATE CUT

Shift in **composition** of spending to durables \Rightarrow GE effects through $\frac{p_d}{p_c}$ Barsky et al. 07

EFFECTS OF CHANGES IN INTEREST RATE VOLATILITY

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

Increase in volatility ⇒ spending falls due to precautionary motives...

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

... which is stronger with exogenous inattention because of additional uncertainty

IMPULSE RESPONSE OF SPENDING TO INCREASE IN VOLATILITY

Selective inattention undoes over 50% of this fall due to ↑ info. acquisition!

RESPONSE OF AGGREGATE SPENDING IS CLOSER TO THE DATA

▶ State-Dependence of Rate Cuts

28

OUTLINE

- Existing Surveys: Expectations Accuracy around Decision-Making
- New Survey: Information Acquisition around Decision-Making
- Incomplete Markets Model with Selective Inattention
- 4 Interest Rate Passthrough with Selective Inattention
- **5** Conclusion

CONCLUSION

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Like exogenous inattention, selective inattention generates:
 - Slow-moving aggregate beliefs
 - 2 Dampened responses of non-durable consumption to interest rates

Conclusion

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Like exogenous inattention, selective inattention generates:
 - Slow-moving aggregate beliefs
 - ② Dampened responses of non-durable consumption to interest rates
- Unlike exogenous inattention, selective inattention:
 - Shifts the **composition** of spending responses to rate cuts towards durables
 - 2 Accelerates the impact of larger rate cuts
 - 3 Dampens responses to changes in volatility closer to the data

Conclusion

- Households are selectively inattentive to interest rates
 - IA is concentrated around durables purchases, where beliefs are more accurate
- Like exogenous inattention, selective inattention generates:
 - Slow-moving aggregate beliefs
 - ② Dampened responses of non-durable consumption to interest rates
- Unlike exogenous inattention, selective inattention:
 - **1** Shifts the **composition** of spending responses to rate cuts towards durables
 - 2 Accelerates the impact of larger rate cuts
 - 3 Dampens responses to changes in volatility closer to the data

Takeaway: Aggregate inattention hides substantial selection into attention that can be measured, modeled, and has different implications!

THANK YOU!

tdesilva@stanford.edu

www.timdesilva.me

 $\bullet \ \ \mbox{Household expectation formation} \rightarrow \mbox{aggregate inattention masks } \mbox{\textbf{selection}}$

Coibion & Gorodnichenko (2012, 2015), Bordalo et al. (2020), D'Acunto et al. (2023), ...

- Household expectation formation → aggregate inattention masks selection
- Models of durable adjustments → endogenize info. acquisition + inattention
 Caballero (1990), Barsky et al. (2007), Berger & Vavra (2015), McKay and Wieland (2021),
 Gavazza & Lanteri (2021), Beraja & Wolf (2022), Beraja & Zorzi (2024)

- Household expectation formation → aggregate inattention masks selection
- ullet Models of durable adjustments o **endogenize** info. acquisition + inattention
- Rational inattention → add to a non-quadratic decision problem with 2 actions
 Sims (2003), Mackowiak & Wiederholt (2009, 2015), Zhong (2022), Hebert & Woodford
 (2023), Mackowiak et al. (2023), Afrouzi et al. (2024)

- Household expectation formation → aggregate inattention masks selection
- Models of durable adjustments \rightarrow *endogenize* info. acquisition + inattention
- Rational inattention \rightarrow add to a **non-quadratic** decision problem with 2 actions
- Exogenous inattention as a source of macro sluggishness → selective inattention generates decision-specific dampening generates

```
Lucas (1972), Gabaix & Laibson (2001), Mankiw & Reis (2002), Angeletos & Lian (2016), Carroll et al. (2020), Auclert et al. (2020), McKay & Wieland (2021), Beraja & Wolf (2022), Cochrane (2025), ...
```

- Household expectation formation → aggregate inattention masks selection
- Models of durable adjustments → endogenize info. acquisition + inattention
- Rational inattention → add to a non-quadratic decision problem with 2 actions
- Exogenous inattention as a source of macro sluggishness → selective inattention generates decision-specific dampening
- Macro models with endogenous household inattention o inattention determined by $\it type \ of \ decision \ that \ households \ make$

Alvarez et al. (2011, 2013), Broer et al. (2022), Guerreiro (2023), Ahn et al. (2024)

- Household expectation formation → aggregate inattention masks selection
- ullet Models of durable adjustments o **endogenize** info. acquisition + inattention
- Rational inattention \rightarrow add to a **non-quadratic** decision problem with 2 actions
- Exogenous inattention as a source of macro sluggishness → selective inattention generates decision-specific dampening
- Macro models with endogenous household inattention → inattention determined by type of decision that households make
- Effects of (interest rate) uncertainty → depends on endogeneity of inattention
 Sandmo (1970), Bloom (2014), Bloom et al. (2020), Cremers et al. (2021), Ilut et al. (2024)

◆ Back

We design and conduct a cross-sectional survey of U.S. households via Prolific

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

Home decision-making: distance from primary home purchase

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- Other decisions: distance from car purchase + other major financial decisions

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- 2 Other decisions
- 3 Information acquisition: time since last search + type/source of info searched

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- Other decisions
- Information acquisition
- Macro expectations: beliefs about mortgage rates, T-Bill rates, and inflation

We design and conduct a cross-sectional survey of U.S. households via Prolific

Survey Innovations

- Direct measure of distance from durable adjustments
 - Primary home purchase
 - Car purchases
- Measures of information acquisition other than forecasting performance
 - Last active search for information about key variables

Main Blocks

- Home decision-making
- 2 Other decisions
- Information acquisition
- 4 Macro expectations
- 6 Background & financial situation: info on household's balance-sheet using SCF format, demographics, job relocations

▶ Questions

Main Survey Questions

Eliciting our main measure of information acquisition

Step 1: In the last 3 years, did you actively search for information about any of the following economic variables in the U.S.?

By "active search" we mean a deliberate effort to find information which could include searching online, reading news articles or reports, talking to a financial advisor or broker, or any other intentional effort to gather information.

Step 2: How many months ago did you last actively search for information about mortgage rates?

Eliciting households' distance from the primary home purchase

Owners: How many months ago did you finalize the purchase of your current primary residence?

Renters: How many months from now do you expect the closing on your primary residence purchase?

By "closing", we mean signing the final documents to officialize the purchase.

◆ Back

Sources of Information Acquisition

◆ Back: Additional Results

HETEROGENEITY IN INFORMATION ACQUISITION OF OWNERS

◆ Back: IA ◆ Back: Additional Results

IA IS PRIMARILY ABOUT CURRENT VALUES OF VARIABLES

Tim de Silva, Stanford 36

▶ Investment Decisions

◆ Back: IA

◆ Back: Additional Results

IA IS PRIMARILY ABOUT CURRENT VALUES OF VARIABLES

Back
 Bac

ENDOGENEITY OF DECISION-MAKING

- Concern: decision-making is **endogenous** to information acquisition and beliefs
- Solution: IV = anticipated moves due to job relocations

Dependent Variable: Information Acquisition

Variable	OLS	First Stage	IV	OLS	First Stage	IV
Home Decision-Maker	0.30*** (0.07)		0.89*** (0.34)	0.30*** (0.06)		0.96*** (0.34)
Job Relocation		0.23*** (0.07)			0.23*** (0.07)	
N Controls	787	787	787	787 ✓	787 ✓	787 √
F-stat		10.51			3.57	

◆ Back

DIRECT ASSOCIATION BETWEEN IA AND BELIEFS

◆ Back

REDUCTION IN NOWCAST ERRORS: HOME PURCHASE

◆ Back

REDUCTION IN NOWCAST ERRORS: CAR PURCHASE

- 12 to 7 Months Before Car Purchase
 - 6 to 0 Months Before Car Purchase

◆ Back

REDUCTION IN NOWCAST ERRORS: FINANCIAL INVESTMENT

Within 1 Month of Major Financial Investment

◆ Back

REDUCTION IN SUBJECTIVE UNCERTAINTY: HOME PURCHASE

6 to 0 Months Before Home Purchase

■ Back

REDUCTION IN SUBJECTIVE UNCERTAINTY: CAR PURCHASE

◆ Back

REDUCTION IN SUBJECTIVE UNCERTAINTY: FINANCIAL INVESTMENT

Within 1 Month of Major Financial Investment

◆ Back

Welfare Loss from Inattention

- Natural question: how large are welfare losses from selective inattention?
- Compute two welfare metrics in basis points of lifetime consumption
 - **1** Static: loss from not having full-information in current period, ignoring info. cost
 - 2 Dynamic: loss from not having full-information in all periods, ignoring info. cost

◆ Back: Calibration ◆ Back: CG

Welfare Loss from Inattention

- Natural question: how large are welfare losses from selective inattention?
- Compute two welfare metrics in basis points of lifetime consumption
 - **1** Static: loss from not having full-information in current period, ignoring info. cost
 - 2 Dynamic: loss from not having full-information in all periods, ignoring info. cost
- Losses are small, but still have aggregate effects! Akerlof-Yellen 85 Maćkowiak-Wiederholt

	Static	Dynamic
Mean	0.03	2.17
Median	0.02	1.9

◆ Back: Calibration ◆ Back: CG

STEADY-STATE SUMMARY STATISTICS

	Mean	SD	P10	P50	P90
Assets/Income: b/y	3.51	4.93	-0.91	1.91	10.27
Durable/Non-Durables: d'/c	2.55	0.40	1.99	2.58	3.01
Durables Gap	0.14	0.17	-0.05	0.11	0.38
Acquired Information	0.23	0.42	0.00	0.00	1.00
Kalman Gain: <i>G</i>	0.10	0.21	0.00	0.00	0.40
Kalman Gain Conditional on IA	0.46	0.21	0.30	0.40	0.80
Normalized Nowcast Error: $ \hat{\mathbb{E}}(r) - r / r $	0.28	8.00	0.02	0.10	0.32
Normalized Prior Variance: Σ/σ_r^2	0.33	0.17	0.13	0.30	0.57

◆ Back

ADJUSTMENT PROBABILITY AS A FUNCTION OF DURABLES GAP

CONCENTRATION IN INFO. ACQUISITION \(\sqrt{Durables Share} \)

Baseline: $\psi = 0.63$

Low Durables Share: $\psi = 0.99$

◆ Back

DURABLES ADJUSTMENT SHIFT SS BANDS OF INFO. ACQUSITION

Nowcast Errors in Event-Time

Forecast errors remain lower **post-choice** because beliefs are a "stock" not "flow"

◆ Back

DECOMPOSITION OF AGGREGATE BELIEF RESPONSE

◆ Back

IRFs to Romer-Romer Shock with Agg. Y and P Response

◆ Back

IRFs to Romer-Romer Shock with Agg. Y and P Response

◆ Back

Non-Linear Impact of Rate Cuts: On Impact

Back
 Back
 Back
 Back
 Back
 Back

Non-Linear Impact of Rate Cuts: After 8 Quarters

Back
 Back
 Back
 Back
 Back
 Back

EFFECTS OF INCREASE IN VOLATILITY ON BELIEFS

Increase in volatility ⇒ more information acquisition ⇒ **less** belief rigidity

◆ Back

STATE-DEPENDENCE ON VOLATILITY: ON IMPACT

Increase in volatility ⇒ consumption is less responsive to interest rates

STATE-DEPENDENCE ON VOLATILITY: ON IMPACT

... but not with **selective inattention** because of increased info. acquisition!

STATE-DEPENDENCE ON VOLATILITY: AFTER 8 QUARTERS

◆ Back