COLOSTATE SPRING 2018 MATH 617 ASSIGNMENT 2

Due Fri. 03/23/2018

NAME:	Colin Roberts	CSUID: 829773631
TATINITI.	Com Roberts	CDC1B: <u>C25110001</u>

(20 points) Problem 1. Let (X, \mathcal{S}) be a measurable space and $\langle \mu_n \rangle_{n \in \mathbb{N}}$ a sequence of measures such that for any $E \in \mathcal{S}$, we have $\mu_n(E) \leq \mu_{n+1}(E)$. For any $E \in \mathcal{S}$, define $\mu(E) := \lim_{n \to \infty} \mu_n(E)$. Prove that μ is a measure on \mathcal{S} .

(20 points) Problem 2. Let $(\mathbb{R}, \mathcal{L}, \lambda)$ be the Lebesgue measure space and $A \in \mathcal{L}$ be a measurable bounded set with $\lambda(A) > 0$. Prove that for any $0 < b < \lambda(A)$, there exists a $B \in \mathcal{L}$ such that $B \subset A$ and $\lambda(B) = b$. Hint: Assume $A \subseteq [-a, a]$. Apply the Intermediate Value Theorem.

(20 points) Problem 3. Let f(x) be a continuous real-valued function defined on a closed finite interval [a,b]. Prove that

- (i) f is a bounded measurable function;
- (ii) $f \in L_1[a, b]$.

(20 points) Problem 4. Textbook p.141 Problem 5.3.23.

(20 points) Problem 5. Assume (X, \mathcal{S}, μ) is a complete measure space, $f \in L_1(X, \mathcal{S}, \mu)$. Prove that for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $E \in \mathcal{S}$ with $\mu(E) \leq \delta$, we have $\int_E |f| d\mu < \epsilon$. (Hint: First consider f is bounded. For the case that f is unbounded, construct a bounded monotone sequence that converges to f.)

Problem 1. Let (X, \mathcal{S}) be a measurable space and $\langle \mu_n \rangle_{n \in \mathbb{N}}$ a sequence of measures such that for any $E \in \mathcal{S}$, we have $\mu_n(E) \leq \mu_{n+1}(E)$. For any $E \in \mathcal{S}$, define $\mu(E) := \lim_{n \to \infty} \mu_n(E)$. Prove that μ is a measure on \mathcal{S} .

:

Proof. Note that since each μ_n is a measure and since for any $E \in \mathcal{S}$, $\mu_n(E) \leq \mu_{n+1}(E)$ that necessarily $\mu \colon \mathcal{S} \to [0, \infty)$. Now, to see that $\mu(\emptyset) = 0$, we show

$$\mu(\emptyset) = \lim_{n \to \infty} \mu_n(\emptyset) = \lim_{n \to \infty} 0 = 0.$$

Hence $\mu(\emptyset) = 0$. Now, we need to show that μ is countably additive so we let $A = \bigcup_{i=1}^{\infty} A_i$ be a countable union of disjoint sets $A_i \in \mathcal{S}$. Then note that

$$\mu(A) - \mu_1(A) = \sum_{n=1}^{\infty} (\mu_{n+1}(A) - \mu_n(A)).$$

Working with this, we see that

$$\mu(A) - \mu_1(A) = \sum_{n=1}^{\infty} (\mu_{n+1}(A) - \mu_n(A))$$

$$= \sum_{n=1}^{\infty} \left(\sum_{i=1}^{\infty} \mu_{n+1}(A_i) - \sum_{i=1}^{\infty} \mu_n(A_i) \right)$$

$$= \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} (\mu_{n+1}(A_i) - \mu_n(A_i))$$

$$= \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} (\mu_{n+1}(A_i) - \mu_n(A_i))$$
 since each term here is positive by $\mu_n(E) \le \mu_{n+1}(E)$

$$= \sum_{i=1}^{\infty} (\mu(A_i) - \mu_1(A_i))$$

$$\implies \mu(A) = \sum_{i=1}^{\infty} \mu(A_i)$$
 since μ_1 is a measure.

Hence, μ is countably additive and thus is a measure.

Problem 2. Let $(\mathbb{R}, \mathcal{L}, \lambda)$ be the Lebesgue measure space and $A \in \mathcal{L}$ be a measurable bounded set with $\lambda(A) > 0$. Prove that for any $0 < b < \lambda(A)$, there exists a $B \in \mathcal{L}$ such that $B \subset A$ and $\lambda(B) = b$. Hint: Assume $A \subseteq [-a, a]$. Apply the Intermediate Value Theorem.

٠

Proof. Without loss of generality, we can assume $A \subseteq [-a, a]$ since translation does not affect measure and since A is bounded. Now consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $x \mapsto \lambda(A \cap (A+x))$. Note that since $\lambda(A) < \infty$, theorem 4.3.4 implies that f is a continuous function. We have

$$f(-2a) = \lambda(A \cap (A-2a)) = \lambda(\emptyset) = 0$$

by construction as well as

$$f(0) = \lambda(A \cap (A+0)) = \lambda(A).$$

By continuity of f, there exists $c \in (-2a,0)$ such that f(c) = b. Then we have that $B = A \cap (A+c)$ is Lebesgue measurable and that $B \subset A$.

Problem 3. Let f(x) be a continuous real-valued function defined on a closed finite interval [a, b]. Prove that

- (i) f is a bounded measurable function;
- (ii) $f \in L_1[a,b]$.

:

Proof.

(i) To see that f is bounded note that the continuous image of a compact set is compact and that compact subsets of \mathbb{R} are bounded.

To see that f is measurable, let $E \subseteq f([a,b])$. By outer regularity of λ , we know

$$\lambda(E) = \inf \{ \lambda(U) : U \supseteq E \text{ with } U \text{ open} \}.$$

It's important to note that [a, b] is open as a subset of [a, b] in order for the case where E = [a, b] to be understood. Now, note that

$$\lambda(f^{-1}(E)) = \inf\{\lambda(f^{-1}(U)) : U \supseteq E \text{ with } U \text{ open}\}.$$

Since the preimage of open sets is open under a continuous function, we have that $f^{-1}(U)$ is open for each open U and hence we have that $f^{-1}(E)$ must be measurable. Thus f is a measurable function. \square

Problem 4. Let $f \in \mathbb{L}$. For $x \in X$ and $n \ge 1$, define

$$f_n(x) := \begin{cases} f(x) & \text{if } |f(x)| \le n, \\ n & \text{if } f(x) > n, \\ -n & \text{if } f(x) < -n. \end{cases}$$

Prove the following:

- (i) $f_n \in \mathbb{L}$ and $|f_n(x)| \leq n \ \forall n \ \text{and} \ \forall x \in X$.
- (ii) $\lim_{n\to\infty} f_n(x) = f(x) \ \forall x \in X$.
- (iii) $||f_n(x)|| := \min\{|f_n(x)|, n\} := (|f| \land n)(x)$ is an element of \mathbb{L}^+ and

$$\lim_{n \to \infty} \int \|f_n\| d\mu = \int \|f\| d\mu.$$

Proof.

(i) Fix an arbitrary n_0 and an arbitrary x_0 . Note that if $|f(x_0)| \le n_0$ then we have $|f_{n_0}(x_0)| \le n_0$. Now if $|f(x)| > n_0$ we have that $|f_{n_0}(x_0)| = n_0$ hence $|f_{n_0}(x_0)| \le n_0$ for arbitrary n_0 and arbitrary x_0 . Now, consider a measurable subset $E \subseteq \operatorname{Image}(f_n(x)) \subseteq [-n, n]$. Note that we then have $f_n^{-1}(E) = f^{-1}(E)$ is measurable and hence $f_n(x) \in \mathbb{L}$.

(ii) Fix x. Then note that $\lim_{n\to\infty} f_n(x) = f_\infty(x)$ is defined so that $f_\infty(x) = f(x)$ if $|f(x)| \le \infty$. Hence we have that $\lim_{n\to\infty} f_n(x) = f(x)$.

(iii) First we show that $||f_n(x)||$ is in \mathbb{L}^+ . To see this, note that if f_n is measurable, then $|f_n|$ is measurable. Then we have that $||f_n(x)||$ is a piecewise function where each piece is positive and measurable. So we have that $||f_n(x)|| \in \mathbb{L}^+$.

Then note that $\{\|f_n(x)\|\}_{n\in\mathbb{N}}$ is clearly an increasing sequence of functions since n < n+1 and $|f_n(x)| < |f_{n+1}(x)|$ by definition (just note Image $(f_n(x))$ from (i)). Now, we have that $\lim_{n\to\infty} f_n(x) = f(x)$ and so $\lim_{n\to\infty} \|f_n(x)\| \to \|f\|$ as well (see that $\min\{|f_\infty(x),\infty\} = \min\{|f_\infty(x)|\} = |f_\infty(x)| = \|f(x)\|$). So by the monotone convergence theorem (5.2.7) we have that

$$\int ||f|| d\mu = \lim_{n \to \infty} \int ||f_n|| d\mu.$$

Problem 5. Assume (X, \mathcal{S}, μ) is a complete measure space, $f \in L_1(X, \mathcal{S}, \mu)$. Prove that for any $\epsilon > 0$, there exists $\delta > 0$ such that for any $E \in \mathcal{S}$ with $\mu(E) \leq \delta$, we have $\int_E |f| d\mu < \epsilon$. (Hint: First consider f is bounded. For the case that f is unbounded, construct a bounded monotone sequence that converges to f.)

.

Proof. Since f is bounded we have that $|f(x)| \leq M$ for all $x \in X$. Fix $\epsilon > 0$ and let $\delta < \frac{\epsilon}{M}$. Consider any $E \in \mathcal{S}$ such that $\mu(E) \leq \delta$. Then

$$\int_{E} |f| d\mu \le \int_{E} M d\mu$$

$$= M \int_{E} d\mu$$

$$\le M\delta$$

$$< M \frac{\epsilon}{M} = \epsilon.$$

Using the fact that f is integrable iff |f| is integrable, we consider the case where |f| is unbounded. Let $\{|f_n|\}_{n\in\mathbb{N}}$ be defined by $|f_n|(x)=(|f|\wedge n)(x)$ and note that $\{|f_n|\}_{n\in\mathbb{N}}$ is a bounded monotone sequence that converges to |f| by Problem 4. Then note that $|f_n|$ is bounded by M so $|f_n| \leq M$. Fix $\epsilon > 0$, then we also have the ability to choose $E \in \mathcal{S}$ such that $\mu(E) \leq \delta$ with $\delta = \frac{\epsilon}{2M}$.

$$\int_{E} |f| d\mu = \int_{E} |f| - |f_{n}| + |f_{n}| d\mu$$
$$= \int_{E} |f| - |f_{n}| d\mu + \int_{E} |f_{n}| d\mu.$$

Note that $\exists N \in \mathbb{N}$ such that for $n \geq N$ we have $\int_E |f| - |f_n| d\mu < \frac{\epsilon}{2}$ since $|f_n|$ converges monotonically to |f|. Hence

$$\int_{E} |f| d\mu < \frac{\epsilon}{2} + \delta M$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$