Engenharia de Computação ECM253 – Linguagens Formais, Autômatos e Compiladores Lógica Proposicional

Slides da disciplina ECM253 – Linguagens Formais, Autômatos e Compiladores
Curso de Engenharia de Computação
Instituto Mauá de Tecnologia
Prof. Marco Antonio Furlan de Souza

Conceitos

- Qualquer lógica emprega um método organizado e cuidadoso de pensar que caracteriza qualquer investigação científica ou qualquer outra atividade de raciocínio;
- Tem aplicações diretas em Computação:
 - Suporte matemático às teorias;
 - Inteligência Artificial: linguagem Prolog, sistemas especialistas e outros;
 - Verificação da correção de programas de computadores;
 - Projeto e verificação de circuitos digitais;
 - •
- Existem diversos tipos de lógicas: lógica proposicional, lógica de predicados, lógica modal, lógica temporal, etc, mas neste cursos serão estudadas apenas as lógicas proposicional e de predicados.

Proposição

 A lógica proposicional utiliza uma formalização para descobrir como obter conclusões lógicas a partir de proposições existentes;

Lógica proposicional também é conhecida por lógica de sentencas ou cálculo

- proposicional;
- Proposição (ou sentença) é uma frase que pode ser apenas verdadeira ou falsa:
 - Dez é menor do que sete. É uma sentença e é falsa;
 - Como vai você? NÃO É uma sentença é uma pergunta;
 - Ela é muito talentosa. NÃO É uma é uma sentença pois existe um termo não definido
 "ela" que impede de avaliar sua veracidade;
 - Existem formas de vida em outros planetas do universo. É uma sentença.

Símbolos

- As sentenças da lógica proposicional podem ser representadas por meio de símbolos – símbolos proposicionais – e convenciona-se em utilizar letras maiúsculas tais como A, Z, W etc para representar as sentenças envolvidas;
- Exemplos:
 - A =Elefantes são grandes
 - B = Bolas são redondas
- Uma expressão lógica é então composta por símbolos proposicionais e por conectivos lógicos (que serão apresentados a seguir);
- A veracidade (ou não) de uma expressão lógica depende de sua interpretação interpretação dos valores verdade (verdadeiro ou falso) dos símbolos proposicionais e da aplicação de conectivos lógicos presentes na expressão;
- A interpretação de A (veja acima) é verdadeiro ou apenas o símbolo constante V.

- Os conectivos (ou operadores) lógicos permitem compor expressões lógicas mais complexas a partir dos símbolos utilizados ou ainda de outras expressões;
- O valor-verdade de uma expressão contendo conectivos lógicos se dá com a aplicação destes conectivos aos valores-verdade dos símbolos proposicionais e/ou resultados de subexpressões de acordo com a semântica do conectivo (seu significado).
- Conectivos lógicos da lógica proposicional:
 - Conjunção (∧);
 - Disjunção (∨);
 - Implicação (→);
 - Bicondicional (↔);
 - Negação (¬);
- A semântica dos conectivos lógicos pode ser explicada por uma tabela verdade.

- Conjunção lógica (∧)
 - Se A e B representam duas proposições ou expressões lógicas, então o resultado de $A \wedge B$ só é verdadeiro se ambos os termos forem verdadeiros;
 - Lê-se "A E B";
 - Tabela verdade de ∧:

Α	В	$A \wedge B$
V	V	V
V	F	F
F	V	F
F	F	F

- Disjunção lógica (∨)
 - Se A e B representam duas proposições ou expressões lógicas, então o resultado de A V B só é falso se ambos os termos forem falsos;
 - Também conhecido como OU inclusivo;
 - Lê-se "A **OU** B";
 - Tabela verdade de V:

Α	В	$A \lor B$
V	V	V
V	F	V
F	V	V
F	F	F

- Implicação lógica (→)
 - Se A e B representam duas proposições ou expressões lógicas, então o resultado de A → B só é falso se A for verdadeiro e B for falso;
 - Lê-se "se A então B" ou "A é suficiente para B" ou "A é condição suficiente para B" ou "A somente se B" ou "B é necessário para A" ou "B é condição necessária para A";
 - A é denominado de **antecedente**;
 - *B* é denominado de **consequente**;
 - Tabela verdade de ∨:

Α	В	$\mathbf{A} o \mathbf{B}$
V	V	V
V	F	F
F	V	V
F	F	V

■ Implicação lógica (→)

- É importante notar que a implicação lógica não tem relação com causalidade;
- Para poder entender o significado da implicação lógica, considerar a sentença: Se eu me formar vou tirar férias na Flórida.
 - \diamond Se o aluno em questão se **formou** (A) e **tirou** as férias na Flórida (B), o valor da proposição é **verdadeiro**. Logo, se os valores de A e B forem **verdadeiros**, considera-se que o valor de $A \to B$ é **verdadeiro**.
 - \diamond Se o aluno em questão se **formou** (A) e **não tirou** as férias na Flórida (B), o valor da proposição é **falso** (pois não se cumpriu a viagem prometida por ter se formado). Logo, quando o valor de A é **verdadeiro** e B é **falso**, o valor da **implicação** $A \to B$ é **falso**.
 - \diamond Se o aluno em questão não se formou, independentemente de ele tirar ou não férias na Flórida, não se pode afirmar que a sentença é falsa entra o "benefício da dúvida". Por convenção, aceita-se que o valor de $A \to B$ seja verdadeiro se o valor de A for falso, independentemente do valor de B.

- Implicação lógica (→)
 - Sobre necessidade e suficiência em lógica:
 - \diamond Em $A \to B$, pode-se entender que A é uma condição suficiente para B no seguinte sentido: quando o valor de $A \to B$ for verdadeiro (veja a tabela) e o valor de A for verdadeiro, tem-se obrigatoriamente que o valor de B é verdadeiro nessas condições, o valor de A é suficiente para determinar o valor de B.
 - \diamond Em $A \to B$, pode-se entender que B é uma condição necessária para A no seguinte sentido: quando o valor de $A \to B$ for verdadeiro (veja a tabela), e o valor de B negado for verdadeiro (ou seja B com valor falso), tem-se obrigatoriamente que o valor de A é falso nessas condições, tem-se a certeza de que se a implicação tiver valor verdadeiro e se B tiver valor falso, então certamente A terá valor falso. Ou seja, nas mesmas condições, se B tiver valor verdadeiro, então não se pode afirmar que A será verdadeiro ou falso daí B ser condição necessária (mas não suficiente) para A.

■ Bicondicional (↔)

- Se A e B representam duas proposições ou expressões lógicas, então o resultado de A ↔ B só é falso se os valores verdade de A e B forem diferentes entre si;
- Trata-se de uma "dupla implicação": $A \leftrightarrow B \Leftrightarrow (A \to B) \land (B \to A)$ (o símbolo \Leftrightarrow é para indicar uma equivalência lógica: a expressão da esquerda tem sempre o mesmo valor lógico da expressão da direita, independente da interpretação);
- Lê-se "A se e somente se B" ou "A é necessário e suficiente para B";
- Tabela verdade de ↔:

Α	В	$\mathbf{A}\leftrightarrow\mathbf{B}$
٧	V	V
V	F	F
F	V	F
F	F	V

- Negação (¬)
 - Resulta na inversão lógica da expressão;
 - É um conectivo unário;
 - Tabela verdade de ¬:

Α	¬A
V	F
F	V

- Expressões lógicas corretas são denominadas de fórmulas bem formadas (fbf);
- A sintaxe da linguagem da lógica proposicional para se escrever fbfs é formada por:
 - Alfabeto: composto por um conjunto contendo símbolos proposicionais (A, B etc), conectivos lógicos (∧, ∨, →, ↔ e ¬), parênteses ('(' e ')') e os símbolos constantes V e F.
 - Regras para escrever fbfs:
 - ♦ V e F são fbfs.
 - Um símbolo proposicional é uma fbf.
 - \diamond Se A **é uma** fbf. **então** $\neg A$ também é uma fbf.
 - \diamond Se A e B são fbfs, então também são fbfs $A \land B$, $A \lor B$, $A \to B$, $A \leftrightarrow B$.
 - \diamond Se A é uma fbf, então **também é** (A).

Precedência dos conectivos

 A tabela a seguir apresenta a precedência dos conectivos lógicos. Com ela pode-se reduzir a quantidade de parênteses em expressões:

Ordem	Conectivo
1	()
2	Г
3	٨
4	V
5	\rightarrow
6	\leftrightarrow

Quanto menor o número de ordem nesta tabela, maior a precedência.

Conectivo principal

- É aquele que é aplicado por último em uma fbf.
- Exemplo:
 - \diamond Na fbf $\neg A \land B \rightarrow C$, o conectivo principal $\acute{\mathbf{e}} \rightarrow$, pois:

Basta verificar com a tabela de precedência dos conectivos.

- Uso de tabela verdade para analisar uma fbf
 - Considerar a seguinte fbf: $(A \to B) \land \neg B \lor (B \to A)$
 - Pode-se construir uma tabela verdade para analisar seus valores assim, seguindo nas colunas as precedências dos operadores:

Α	В	$\mathbf{A} o \mathbf{B}$	$\mathbf{B} o \mathbf{A}$	¬B	$(\mathbf{A} \to \mathbf{B}) \wedge \neg \mathbf{B}$	$(\textbf{A} \rightarrow \textbf{B}) \land \neg \textbf{B} \lor (\textbf{B} \rightarrow \textbf{A})$
V	٧	V	V	F	F	V
V	F	F	V	٧	F	V
F	٧	V	F	F	F	F
F	F	V	V	V	V	V

Como fica a tabela se forem removidos todos os parênteses?

Tautologia e contradição

Tautologia

• Tautologia é uma fbf que é sempre verdadeira.

$$A \vee \neg A$$

$$(A \to B) \leftrightarrow (\neg B \to \neg A)$$

 Pode-se provar estas tautologias com auxílio de uma tabela verdade – o resultado em cada linha sempre será verdadeiro.

Tautologia e contradição

- Contradição
 - Contradição é uma fbf que é sempre falsa.

$$A \wedge \neg A$$

$$(P \vee \neg P) \to (Q \wedge \neg Q)$$

 Pode-se provar estas contradições com auxílio de uma tabela verdade – o resultado em cada linha sempre será falso.

Equivalência lógica

■ Se P e Q são duas fbfs e concordam em valores verdade então P e Q são fbfs equivalentes, escrita assim: $P \Leftrightarrow Q$. Exemplos (De Morgan):

$$\neg(A \vee B) \Leftrightarrow \neg A \wedge \neg B$$

$$\neg(A \land B) \Leftrightarrow \neg A \lor \neg B$$

- A equivalência lógica $P \Leftrightarrow Q$ é o mesmo que afirmar que $P \leftrightarrow Q$ é uma tautologia.
- Pode-se provar uma equivalência lógica com auxílio de uma tabela verdade.

Teste seus conhecimentos

- 1) Verificar que as fbfs a seguir são tautologias:
 - (a) $(\neg B \land (A \rightarrow B)) \rightarrow \neg A$
 - **(b)** $((A \rightarrow B) \land A) \rightarrow B$
 - (c) $(A \lor B) \land \neg A \to B$
 - (d) $A \vee (A \wedge B) \rightarrow A$
- 2) O conectivo "ou exclusivo" (⊕) quando aplicado a dois símbolos proposicionais resulta em verdadeiro apenas quando os dois símbolos possuem valores lógicos distintos. Prove que a equivalência deste operador apresentada a seguir:

$$A \oplus B \Leftrightarrow \neg(A \leftrightarrow B)$$

Teste seus conhecimentos

- 3) Sejam A, B e C as seguintes sentenças:
 - A = Rosas são vermelhas.
 - B = Violetas são azuis.
 - C = Açúcar é doce.

Traduzir em **notação simbólica**: Rosas são vermelhas apenas se as violetas não forem azuis e se o açúcar for azedo.

Referências bibliográficas

[1] GERSTING, J.L. Fundamentos matemáticos para a ciência da computação. 4.ed. Rio de Janeiro, RJ: LTC, 2001. 538 p. ISBN 85-216-1263-X.