Machine Learning

Abdelhak Mahmoudi abdelhak.mahmoudi@um5.ac.ma

INPT- 2020

Content

- 1. The Big Picture
- 2. Supervised Learning
 - Linear Regression, Logistic Regression, Support Vector
 Machines, Trees, Random Forests, Boosting, Artificial Neural Networks
- 3. Unsupervised Learning
 - Principal Component Analysis, K-means, Mean Shift

Supervised Learning

- Linear Regression
- Logistic Regression
- Support Vector Machines
- Trees
- Random Forests
- Boosting
- Artificial Neural Networks

Classification and Regression Trees (CART)

Linear regression

- Linear models
- **Parametric**

Regression

У

 x_1

Regression trees

- Non Linear model
- Non-Parametric

Classification and Regression Trees (CART)

Logistic regression

- Linear models
- Parametric

Classification trees

- Non Linear model
- Non-Parametric

Classification

Classification Trees (aka Decision Trees)

Example of Restaurant Data

х	F										Y
Client	Alt	Tea	Fri	Hun	Patron	Price	Rain	Res	Туре	Est	Wait
1	Т	F	F	Т	Some	\$\$\$	F	Т	Moroccan	0-10	Т
2	Т	F	F	Т	Full	\$	F	F	Chinese	30-60	F
3	F	Т	F	F	Some	\$	F	F	Burger	0-10	Т
4	Т	F	Т	Т	Full	\$	F	F	Chinese	10-30	Т
5	Т	F	Т	F	Full	\$\$\$	F	Т	Moroccan	>60	F
6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
7	F	Т	F	F	None	\$	Т	F	Burger	0-10	F
8	F	F	F	Т	Some	\$\$	Т	Т	Chinese	0-10	Т
9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
10	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
11	F	F	F	F	None	\$	F	F	Chinese	0-10	F
12	Т	Т	Т	Т	Full	\$	F	F	Burger	30-60	Т

Alt: is there any other alternative?

• Fri: is it Friday?

• Hun: is the client hungry?

• Patron: how many people are in the restaurant?

• Res: Restaurant

• Est: wait estimate

Most of the features are

Discrete (=categorical, =qualitative)

Classification Trees (aka Decision Trees)

DT: Which feature to split with first?

Split with the feature F that maximizes the Information Gain

More informative Less impurity

Less informative More impurity

$$I(F) = H(S) - EH(F)$$
Information Parent Expected
Gain entropy entropy

S: subset = {p positives and n negatives}
F: Feature

Entropy

$$H(S) = -\sum_{c} p_{c} \log_{2}(p_{c})$$
Python: np.log2()

 p_c : probability of examples in class c

S : subset of data examples

Interpretation: Measure of the impurity in a subset of examples

All examples in the same class Entropy = 0

All examples evenly split between classes Entropy = 1

Entropy (binary classification)

$$H\left(\frac{p}{p+n}, \frac{n}{p+n}\right) = -\frac{p}{p+n}\log(\frac{p}{p+n}) - \frac{n}{p+n}\log(\frac{n}{p+n})$$
 p: positive n: negative

Expected Entropy

$$EH(F) = \sum_{i=1}^{K} \frac{p_i + n_i}{p + n} H\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

K = number of splits (regions) with Feature F

= number of children nodes

Expectation Entropy = weighted average of children entropy

Expected Entropy (Example)

$$EH(F) = \sum_{i=1}^{K} \frac{p_i + n_i}{p + n} H\left(\frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i}\right)$$

Information Gain

$$I(F) = H\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - EH(F)$$

Information Gain

$$I(F) = H\left(\frac{p}{p+n}, \frac{n}{p+n}\right) - EH(F)$$

Other impurity measures

- p_c : probability of examples in class c
- S : subset of data examples
- CART algorithm uses the Entropy

$$H(S) = -\sum_{c} p_c \log_2(p_c)$$

Iterative Dichotomiser ID3 and C4.5 algorithms use Gini Index

$$G(S) = 1 - \sum_{c} p_c^2$$

One could also use the Class Error

$$\mathsf{E}(S) = 1 - \max_{c}(p_c)$$

What if a feature is continuous (quantitative)?

Note: Doing so, trees are almost Binary! Even if a feature is categorical (qualitative)

Decision Trees

Advantages

- Easy to interpret
- Deals with non linearity
- Handle qualitative features without the need to create fictive ones (one hot vector)
- Provide most important features (in terms of information gain)

Decision Trees

Disadvantages

• Trees leads to overfitting (high variance): little change in little number of examples affect the whole tree.

DT on Data1

DT on Data2 = half of Data1

Decision Trees

Disadvantages

- Trees leads to overfitting (high variance): little change in little number of examples affect the whole tree.
- Solution: Ensemble Methods
 - Bagging: Random Forest (Leo Breiman 2001) consists of combining multiple independent weak trees to reduce variance.
 - Boosting to reduce bias

DT on Data1

DT on Data2 = half of Data1

A tree alone will overfit.

However, it is clear that in some places, the two trees together produce consistent results

This idea comes from Bootstrapping (Brad Efron 1979): Given a set of m independent observations $o_1..., o_m$, each with variance σ^2 , the variance of the mean o of the observations is given by σ^2/m .

Classification And Regression Trees

Classification (Decision) Trees

min_samples_leaf = 4 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 X₁

Regression Trees

