Diffusion of deuterium through plasma facing components: explicit and implicit models

Alex Hagen

Purdue University

May 3, 2016 at POTR 376 West Lafayette, IN

Motivation:

Diffusion of deuterium through plasma facing components: explicit and implicit models

Figure 1: Diagram of current simulation setup

Assumptions

 \Rightarrow Curvature is larger than scale of diffusion/implantation (semi-infinite slab)

Diffusion of deuterium through plasma facing components: explicit and implicit models

Figure 2: Diagram of current simulation setup

- ⇒ Curvature is larger than scale of diffusion/implantation (semi-infinite slab)
- \Rightarrow Incident flux is constant in space and time (one dimensional, constant source)

Figure 3: Diagram of current simulation setup

- ⇒ Curvature is larger than scale of diffusion/implantation (semi-infinite slab)
- \Rightarrow Incident flux is constant in space and time (one dimensional, constant source)
- ⇒ Recombintation occurs on left boundary $\left(\frac{\partial C}{\partial x} = -kC^2\right)$

Figure 4: Diagram of current simulation setup

- ⇒ Curvature is larger than scale of diffusion/implantation (semi-infinite slab)
- \Rightarrow Incident flux is constant in space and time (one dimensional, constant source)
- ⇒ Recombination occurs on left boundary $(\frac{\partial C_{-1}}{\partial x} = -kC_0^2)$
- \Rightarrow The left boundary is a sink $(C_{n+1}=0)$

Figure 5: Diagram of current simulation setup

Solution of Simplified Model: Finite Difference Method

Solution of Simplified Model: Finite Element Method

We strive to solve the equation

$$\begin{split} \frac{\partial C\left(x,t\right)}{\partial t} &= D \frac{\partial^2 C\left(x,t\right)}{\partial x^2} & \text{ in domain} \\ &D \frac{\partial C}{\partial x} = -kC^2 & \text{ on left boundary} \\ &C = 0 & \text{ on right boundary} \\ &C\left(t + \Delta t\right) = C\left(t\right) + \Delta t\,S & \text{ in domain} \end{split}$$

We can generate a weighted residual for this

Diffusion of deuterium through plasma facing components: explicit and implicit models

$$R\left(\tilde{C}\right) = -\underbrace{\int_{0}^{x_{r}} \frac{\partial \tilde{C}}{\partial t} dx}_{\text{history terms}} + \underbrace{\left[wD\frac{\partial \tilde{C}}{\partial x}\right]_{0}^{x_{r}}}_{\text{boundary terms}} - \underbrace{\int_{0}^{x_{r}} \frac{\partial w}{\partial x} D\frac{\partial \tilde{C}}{\partial x} dx}_{\text{domain terms}}$$

And we try to minimize this

A. Hagen

Solution of Simplified Model: Finite Element Method - Continued

$$R\left(\vec{C}\right) = \underbrace{\begin{bmatrix} \frac{4\Delta x}{6D\Delta t} & \frac{\Delta x}{6D\Delta$$

So we have the matrix equation

$$\begin{split} 0 &= -\mathbb{M}\vec{C} + \mathbb{M}_{k-1}\vec{C}_{k-1} + \vec{l} - \mathbb{K}\vec{C} \\ &= -\underbrace{(\mathbb{M} + \mathbb{K})}_{\mathbb{A}}\underbrace{\vec{C}}_{\vec{x}} + \underbrace{\left(\mathbb{M}_{k-1}\vec{C}_{k-1} + \vec{l}\right)}_{\vec{b}} \end{split}$$

so we can simplify this to

which can be solved with

at each time step. Then, our approximated concentration is

$$\mathbb{A}\vec{x} = \vec{b}$$

$$\vec{x} = \mathbb{A}^{-1} \vec{b}$$

$$\vec{C} = \vec{x} + \Delta t \, \vec{S}$$

Solution of Simplified Model: Procedure Flow

Solution Parameters:

$$\Rightarrow D = 5 \times 10^{-8} \, \frac{\text{cm}^2}{\text{s}}$$

$$\Rightarrow k_r = 7 \times 10^{-22} \, \frac{\text{cm}^4}{\text{s}}$$

$$\Rightarrow \Phi = 1 \times 10^{17} \frac{^{2}\text{H}}{^{5}}$$

⇒ Initial source from SRIM simulation of deuterium on tungsten

Figure 6: Diagram of current simulation setup with mesh parameters

Results and Method Analysis: Comparison to Finite Difference Method

- \Rightarrow Solution behaves as expected
- ⇒ Small difference between FDM and FEM still under analysis
- \Rightarrow No current way to determine number of desorbed deuterons

Figure 7: Solution of diffusion in Tungsten using finite element and finite difference methods, over 1000 μs

- ⇒ Longer final time analysis should still be performed
- ⇒ Grid is slightly coarser than desired

A. Hagen

Results and Method Analysis: Time Stability Analysis

Figure 8: Solution of diffusion equation using finite difference method with $1~\mu$ s steps

Figure 9: Solution of diffusion equation using finite element method with $1~\mu s$ steps

- ⇒ Finite difference method completely diverges when large time steps are attempted
- ⇒ Finite element method simply provides an inaccurate answer when too large time steps are attempted
- ⇒ Source term was added "lumped" at each time step, and that may have been too large to diffuse away

A. Hagen

May 3, 2016 at POTR 376

Results and Method Analysis: Computational Effort

Finite Element Method

- ⇒ Under "best" conditions, required 24.37 s to solve a mesh with 1000 elements and 10000 time steps
- ⇒ Gauss-Seidel matrix solver is iterative and could be faster
- ⇒ Scales favorably with more elements: $\mathcal{O}(>3n)$
- ⇒ Scales linearly with more time steps: $\mathcal{O}(n)$

Finite Difference Method

- \Rightarrow Under "best" conditions, required 0.14 sto solve a mesh with 100 elements and 1000 time steps
- ⇒ Scales very poorly with more elements: $\mathcal{O}\left(n^3\right)$
- \Rightarrow Scales linearly with more time steps: $\mathcal{O}(n)$

Proposed Enhancements to Finite Element Diffusion Code:

- ⇒ Compare results to commercial FEM package, i.e. COMSOL
- ⇒ Use PARADISO to solve matrix equation
- ⇒ Determine "stability" for FEM time step
- ⇒ Provide the ability to perform on a non-uniform mesh