

# Security (CS4028)

Lecture 2. Introduction to Cryptography

Chunyan Mu

chunyan.mu@abdn.ac.uk

The School of Natural and Computing Sciences

## Schedule

|               | Week | Lecture 1                  | Lecture 2                | Tutorial                     |
|---------------|------|----------------------------|--------------------------|------------------------------|
| $\Rightarrow$ | 1    | Intro to course & security | Intro to Crypto          | -                            |
|               | 2    | Symmetric Crypto           | Hash                     | Math for crypto              |
|               | 3    | Asymmetric Crypto-1        | Asymmetric Crypto-2      | Symmetric Crypto             |
|               | 4    | Signatures                 | Zero Knowledge Proof     | Asymmetric Crypto            |
|               | 5    | Certificates               | Authentication           | Signature & certificates     |
|               | 6    | Access Control             | AC models                | Authentication               |
|               | 7    | Information flow control   | Information flow control | Access control               |
|               | 8    | Management                 | Protocols                | Concepts & management        |
|               | 9    | Network security           | Network security         | Protocols and communications |
|               | 10   | Advanced Topic             | Advanced Topic           | Network                      |
|               | 11   | Revision                   |                          |                              |

#### Overview

**Definitions** 

Four goals

Terminologies

Technique classification

#### Classical (Traditional) ciphers

substitution ciphers transposition cipher product cipher

Block Ciphers and Stream Ciphers

Cryptographic modes

#### Overview

**Definitions** 

Four goals

Terminologies

Technique classification

#### Classical (Traditional) ciphers

substitution ciphers transposition cipher product cipher

Block Ciphers and Stream Ciphers

Cryptographic modes

#### Overview

Definitions
Four goals
Terminologies
Technique classification

Classical (Traditional) ciphers substitution ciphers transposition cipher product cipher

Block Ciphers and Stream Ciphers

Cryptographic modes

# Cryptography: definitions

### The Greek origin of the word

- crypto hidden/secret + grafia writing
- "the science and study of secret writing"

#### **Definitions**

Cryptography is the science of protecting data, which provides means of converting data into unreadable form, so that

- the data cannot be accessed for unauthorised use
- ▶ the content of the data frames is hidden
- the authenticity of the data can be established
- the undetected modification of the data is avoided
- the data cannot be disowned by the originator of the message

# Why Cryptography?

### In general

Passing (secret) information through potentially insecure channels, such as:

- military campaign
- ► financial/online banking/shopping
- diplomatic communications (espionage)

# Why Cryptography?

#### The four goals

In spite of adversaries, we want to achieve (among other things):

- 1. Confidentiality prevent unauthorised access;
- 2. Integrity no modification of existing information;
- 3. Authentication no identifying either entities or data origins;
- 4. Non-repudiation preventing denials of messages sent

A fundamental goal of cryptography is to adequately address these four areas in both theory and practice

## Confidentiality: no possible interception

### Confidentiality

This comprises two separate requirements:

- 1. no observer can access the contents of the message;
- 2. no observer can identify the sender and receiver

The terms privacy or secrecy are also used to mean confidentiality



## Integrity: no possible alteration

### Integrity

This requires that the recipient can be sure that:

- 1. the message has not been changed or lost during transmission;
- 2. the message has not been prevented from reaching the recipient;
- 3. the message has not reached the recipient twice.



# Authentication: no possible forgery

#### Authentication

#### This requires that:

- 1. the sender can be sure that the message reaches the intended recipient, and only the intended recipient; and
- 2. the recipient can be sure that the message came from the sender and not an imposter. The act by an imposter of sending such a message is referred to as "spoofing"



# Availability: no possible deny

#### Non-repudiation

#### This requires that:

- 1. the sender cannot deny that the message was sent by him;
- the recipient cannot deny that the message was received by him;



# Terminology

### Encryption

- Plain text (or clear text) text that can be read by a human
- Encryption process of transforming plaintext into ciphertext
- ► Cipher text (or encrypted text) text that needs to be processed to be read by a human being
- Decryption process of transforming a cipher text into a plain text (the reverse of encryption)
- Cipher a secret method of writing (i.e., encryption scheme: mathematical function(s) or algorithm(s) used for encryption and decryption, they are usually using keys)
- Key is a word, number, or phrase that is used to encrypt the clear text.

## Conventional encryption model

- 1. A sender wants to send a "hello" message to a recipient.
- 2. The original message (plaintext) is converted to ciphertext by using a key and an algorithm.
- 3. The ciphertext is transmitted over the transmission medium.
- 4. At the recipient end, the ciphertext is converted back to the original text using the same algorithm and key that were used to encrypt the message.



# Main cryptography techniques

#### Symmetric encryption

- known as secret key cryptography:  $\mathcal{E}_k(PT) = CT$ ,  $\mathcal{D}_k(CT) = PT$
- based on a single key: the same key is used to encrypt and decrypt the data

#### Non-symmetric encryption

- known as public key cryptography:  $\mathcal{E}_{k_1}(PT) = CT$ ,  $\mathcal{D}_{k_2}(CT) = PT$
- base on a combination of two keys secret key and public key: public key is used for encryption, and the secret key is used for decryption

# Main cryptography techniques

### Symmetric (secret key) cryptography



- main problem: the sender and the receiver have to agree on a common key, a secure channel is also required exchange the secret key
- most widely used secret key algorithm: DES, 3DES, AES etc

# Main cryptography techniques

## Non-symmetric (public key) cryptography



- Non-symmetric: both keys are required to complete the process (encrypted by the public key and decrypted by the private key)
- widely used algorithm: RSA

#### Overview

Definitions Four goals Terminologies Technique classificatior

Classical (Traditional) ciphers substitution ciphers transposition cipher product cipher

Block Ciphers and Stream Ciphers

Cryptographic modes

# Classical (Traditional) cryptographic techniques

#### Classification

- Two basic components of classical ciphers: substitution and transposition
  - substitution ciphers: letters are replaced by other letters
  - transposition ciphers: the letters are arranged in a different order
- ► These ciphers may be:
  - monoalphabetic only one substitution/ transposition is used, or
  - polyalphabetic where several substitutions/ transpositions are used
- several such ciphers may be concatenated together to form a product cipher

### Caesar (50-60BC) - monoalphabetic

- ignore space character, gather letters in t-letter blocks
- rotate left or right by some number of positions to obtain cipher text.
- can describe this cipher as:
  - ▶ Encryption  $\mathcal{E}_k : i \to i + k \mod 26$
  - ▶ Decryption  $\mathcal{D}_k : i \to i k \mod 26$

| plain text  | Α | В | C | D | Е  | F | G | Н |   | J | K | L | M | N | 0 | Р | Q | R | S | Т | U | V | W | Х | Υ | Z |
|-------------|---|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| cipher text | Е | F | G | Н | -1 | J | K | L | M | Ν | 0 | Ρ | Q | R | S | Т | U | V | W | Χ | Υ | Z | Α | В | C | D |

### Example

| plain text      | RETURN TO ROME | cipher text | VIXYV RXSVS QI |
|-----------------|----------------|-------------|----------------|
| 5-letter blocks | RETUR NTORO ME | -4 shift    | RETUR NTORO ME |
| +4 shift        |                |             | RETURN TO ROME |

#### Monalphabetic substitution

- Caesar cipher generalisation, keyword used to permute the alphabet:
- Write keyword (no repeat characters), suppose keyword is JACKSON, followed by remainder of alphabet in order:

```
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z J A C K S O N B D E F G H I L M P Q R T U V W X Y Z
```

- What does your partner in crime need to encrypt/decrypt?
  - just the keyword
- ► How secure? i.e., how difficult to break?
  - letter frequency analysis is a good attack

### Example: monalphabetic substitution cipher

### Porta (1563) - monoalphabetic polygraphic

- ▶ Replace 2-letter blocks with corresponding symbols
- ► The first letter (key) is stationary while the second letter moves, indicating which symbol is to be used instead of the original 2-letter block



Porta: A matrix can easily represent the original disc ...

```
Keys | a b c d e f g h i j k l m n o p q r s t u v w x y z

A,B | n o p q r s t u v w x y z a b c d e f g h i j k l m

C,D | o p q r s t u v w x y z n m a b c d e f g h i j k l

E,F | p q r s t u v w x y z n o l m a b c d e f g h i j k

G,H | q r s t u v w x y z n o p k l m a b c d e f g h i j

K,L | s t u v w x y z n o p q j k l m a b c d e f g h

M,N | t u v w x y z n o p q r s i j k l m a b c d e f g

M,N | t u v w x y z n o p q r s h i j k l m a b c d e f g

O,P | u v w x y z n o p q r s t g h i j k l m a b c d e f

Q,R | v w x y z n o p q r s t u v e f g h i j k l m a b c d

U,V | x y z n o p q r s t u v w d e f g h i j k l m a b c

W,X | y z n o p q r s t u v w x y b c d e f g h i j k l m a b

Y,Z | z n o p q r s t u v w x y b c d e f g h i j k l m a
```

- The 'key' for a porta cipher is a key word. e.g. 'FORTIFICATION'
- ▶ To encipher a message, repeat the keyword above the plaintext:

```
        key
        F
        O
        R
        T
        I
        F
        O
        R
        T
        I
        F
        I
        C
        A
        T
        I
        O
        R
        T
        I
        F
        I
        C
        A
        T
        I
        O
        N
        F
        O
        R
        T
        I
        F
        O
        N
        F
        O
        R
        T
        I
        E
        D
        D
        T
        H
        E
        D
        D
        T
        H
        E
        D
        D
        T
        L
        E
        D
        D
        T
        H
        E
        D
        A
        T
        L
        E
        D
        T
        H
        E
        D
        A
        T
        L
        E
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
        D
```

### Vigenere (1553) - polyalphabetic

The message is encrypted using the original plain text, a (text) key, and the table:

#### An example

## Transposition cipher

### Turning Grille (Fleissner, Wostrowitz 1881)

- This template was a square with a number of holes punched out.
- ► There are an even number of rows and columns (thus the total number of fields is divisible by 4).
- One fourth of these fields is cut out. This template is used for both encoding and decoding the message.



### Transposition cipher

Example: Turning Grille

Encrypt JIM ATTACKS AT DAWN using this grille.



This system was used in World War II by German spies in South America.

## Product cipher: a combination

#### Feistel-IBM-1971

- ▶ Predecessor for the Data Encryption Standard (DES).
- ► This system uses permutations (transpositions) on large blocks for the mixing transformation, and substitution on small blocks for confusion.
- ▶ This system is based on two hardware components:
  - P-box (Permutation box)
  - S-box (Substitution box)

#### Overview

Definitions
Four goals
Terminologies
Technique classification

# Classical (Traditional) ciphers

substitution ciphers transposition cipher product cipher

#### Block Ciphers and Stream Ciphers

Cryptographic modes

# Block Ciphers and Stream Ciphers

### Block ciphers

- A type of symmetric-key encryption
- Transforms a fixed-length block of plaintext into a block of ciphertext of the same length, using a user provided secret key.
- Decryption is performed by applying the reverse transformation to the ciphertext block using the same secret key
- ► The fixed length is called the block size, and for many block ciphers, the block size is 64 bits.

## Block Ciphers and Stream Ciphers

### Stream ciphers

- ► A stream cipher generates a **keystream**, a sequence of bits used as a key
- ► Encryption: accomplished by combining the **keystream** with the plaintext, usually with the bitwise **XOR** operation
- ► The generation of the keystream can be independent of the plaintext and ciphertext, termed as **synchronous**
- Or it can depend on the data and its encryption, termed as self-synchronising
- Most stream cipher designs are for synchronous stream ciphers.

## Stream Ciphers

### Example: Vernam Cipher

- ► A Vernam cipher is a stream cipher in which the plaintext is XORed with a random or pseudorandom stream of data of the same length to generate the ciphertext
- ▶ If the stream of data is truly random and used only once, then the cipher is a one-time pad.

|          | Eı       | ncryption |          |          | Decryption |          |          |  |  |  |  |  |
|----------|----------|-----------|----------|----------|------------|----------|----------|--|--|--|--|--|
|          | С        | а         | t        |          |            |          |          |  |  |  |  |  |
|          | 01100011 | 01100001  | 01110100 |          | 11010010   | 00110100 | 11001101 |  |  |  |  |  |
| $\oplus$ | 10110001 | 01010101  | 10111001 | $\oplus$ | 10110001   | 01010101 | 10111001 |  |  |  |  |  |
|          | 11010010 | 00110100  | 11001101 |          | 01100011   | 01100001 | 01110100 |  |  |  |  |  |
|          |          |           |          |          | С          | a        | t        |  |  |  |  |  |

## Stream Ciphers

#### Example: One Time Pad

- ► The message is encrypted by combining (usually XORing) it with a perfectly random key at least as long as the message and the key is only used once.
- Apart from the problem of obtaining a perfectly random key, the main problem with one time pads is the distribution of keys.



## Stream Ciphers vs. Block Ciphers

#### Stream cipher

- A type of symmetric encryption algorithm
- Can be designed to be exceptionally fast, much faster than any block cipher
- ► Typically operate on smaller units of plaintext, usually bits.
- ► The transformation of plaintext units will vary, depending on when they are encountered during the encryption process

### Block cipher

- Operate on large blocks of data
- ► The encryption of any particular plaintext with will result in the same ciphertext when the same key is used

#### Overview

Definitions
Four goals
Terminologies
Technique classification

#### Classical (Traditional) ciphers

substitution ciphers transposition cipher product cipher

Block Ciphers and Stream Ciphers

Cryptographic modes

#### Four modes of operation

- A block cipher encrypts a plain text in fixed-size n-bit blocks (often n = 64)
- ► For messages exceeding *n* bit we can use four different modes of operation:
  - ► ECB: Electronic Code Block
  - ► CBC: Cipher-Block Chaining
  - ► CFB: Cipher FeedBack
  - OFB: Output FeedBack

#### Electronic Code Block (ECB)

▶ the message is divided into blocks and each block is encrypted separately:  $c_j = E_k(m_j)$ 



Electronic Codebook (ECB) mode Decryption

### Cipher-Block Chaining (CBC)

- a plain text block is XORed with the previous cipher text block before encryption
- the first plain text block is XORed with an Initializing Vector IV:

$$c_1 = E_k(m_1 \oplus IV)$$

 $\triangleright c_j = E_k(m_j \oplus c_{j-1})$ 

### Cipher-Block Chaining (CBC)



Cipher Block Chaining (CBC) mode Decryption

### Cipher FeedBack (CFB)

- ▶ plain text is encrypted in blocks of size r (r < n);
- ▶ the n-bit Shift Register (initially IV) is encrypted into an intermediate cipher text;
- ▶ the left-most r bits of the intermediate encrypted text are XORed with the next r bits of the plain text to obtain r bits of cipher text;
- ▶ the *r* bits of the final cipher text are moved to the right-most *r* bits of the Shift Register and its *r* left-most bits are discarded.
- $ightharpoonup C_i = E_k(C_{i-1}) \oplus P_i; P_i = E_k(C_{i-1}) \oplus C_i; C_0 = IV$

### Cipher FeedBack (CFB)



### Output FeedBack (OFB)

- ▶ plain text is encrypted in blocks of size r (r < n);
- ▶ the n-bit Shift Register (initially IV) is encrypted into an intermediate cipher text;
- ▶ the left-most r bits of the intermediate encrypted text are XORed with the next r bits of the plain text to obtain r bits of cipher text;
- ▶ the *r* bits of the intermediate cipher text are moved to the right-most *r* bits of the Shift Register and its *r* left-most bits are discarded
- ►  $C_i = P_i \oplus O_i$ ;  $P_i = C_i \oplus O_i$ ;  $O_i = E_k(O_{i-1})$ ;  $O_0 = IV$

### Output FeedBack (OFB)



Output Feedback (OFB) mode Decryption

#### Overview

Definitions
Four goals
Terminologies
Technique classification

#### Classical (Traditional) ciphers

substitution ciphers transposition cipher product cipher

Block Ciphers and Stream Ciphers

Cryptographic modes

## Summary

### Cryptography: basics

- Cryptography definitions and goals and terminologies
- Classical ciphers: substitution, transposition, and product cipher.
- Cryptographic modes: ECB, CBC, CFB, OFB
- Block cipher and stream cipher

#### Next lecture

- Number revision
- Block cipher and the Feistel structure
- Symmetric key encryption: DES in details