Aritmètica modular

Maria Bras-Amorós, Oriol Farràs Ventura

24 d'octubre de 2023

Aritmètica modular

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Relació de congruència

Operacions amb congruencies
Resolució de congruències lineals

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Euler

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Definició

Si r és el residu de dividir a per m, aleshores diem que r és la **reducció de** a **mòdul** m. Escriurem

 $a = r \mod m$.

Lema 1

Donats dos enters a, b i m > 0, és equivalent:

- Els residus de dividir a i b entre m coincideixen.
- ▶ a b és un múltiple de m.

Lema 1

Donats dos enters a, b i m > 0, és equivalent:

- Els residus de dividir *a* i *b* entre *m* coincideixen.
- ▶ a b és un múltiple de m.

Exemple

Exemple amb m = 7

Si dos nombres tenen el mateix residu quan els divideixo entre 7,

(Exemple: $52 = 7 \times 7 + 3$, $73 = 7 \times 10 + 3$)

aleshores la seva diferència és un múltiple de 7.

(Exemple: 52 - 73 = -21 és un múltiple de 7)

Lema 1

Donats dos enters a, b i m > 0, és equivalent:

- Els residus de dividir a i b entre m coincideixen.
- ▶ a b és un múltiple de m.

Exemple

Al revés també és cert.

Si la diferència entre dos nombres és un múltiple de 7,

(Exemple: 149 - 100 = 49)

aleshores els dos nombres tenen el mateix residu quan els divideixo entre 7.

(Exemple: $149 = 7 \times 21 + 2$, $100 = 7 \times 14 + 2$)

Lema 1

Donats dos enters a, b i m > 0, és equivalent:

- Els residus de dividir *a* i *b* entre *m* coincideixen.
- ▶ a b és un múltiple de m.

Demostració

(sketch)

$$a = q_a m + r$$
 i $b = q_b m + r$ implica que $a - b = (q_a - q_b) m$.

$$a - b$$
 és un múltiple de m , $a = q_a m + r_a$ i $b = q_b m + r_b$, implica $(q_a - q_b)m + (r_a - r_b)$ és un múltiple de m i, per tant, $r_a - r_b$ és un múltiple de m .

Congruència

Dos enters a i b són congruents mòdul un enter m si es compleixen les condicions equivalents del lema 1. Escrivim indistintament $a \equiv b \mod m$ o bé $a \equiv b(m)$.

```
En el cas anterior, diríem
```

```
52 \equiv 73(7) \text{ o } 52 \equiv 73 \mod 7
i
149 \equiv 100(7) \text{ o } 149 \equiv 100 \mod 7
```

Exemple

Les congruències mòdul 7 les utilitzem en el calendari. Dos dies del mateix mes cauen en el mateix dia de la setmana si són congruents mòdul 7.

Exemple

També fem congruències mòdul 7 en la interpretació de les notes musicals. Dues notes separades per 7, 14, 21, etc. salts de nota són la mateixa llevat d'un canvi d'octava.

Exemple

Estem molt familiaritzats amb les congruències mòdul 2. Els nombres només poden ser o bé congruents amb 0 o bé congruents amb 1 mòdul 2. En el primer cas es tracta dels nombres parells, mentre que en el segon cas es tracta dels senars.

Exercici 1

Demostreu que si $a \equiv b \mod m$ i d divideix m, aleshores $a \equiv b \mod d$. Solució (p.90)

Exemple

Vegem un exemple del resultat de l'exercici:

$$8726 \equiv 26 \mod 100$$

Aleshores també tindrem

$$98726 \equiv 26 \mod 50$$
, $98726 \equiv 26 \mod 10$,...

El contrari no és cert. Per exemple,

$$1 \equiv 51 \mod 50$$

però, en canvi,

Lema 2

La relació de congruència és una **relació d'equivalència**. És a dir, satisfà les propietats següents:

- reflexiva ($a \equiv a \mod m$ per tot a i tot m enters),
- ▶ simètrica ($a \equiv b \mod m$ si i només si $b \equiv a \mod m$),
- ► transitiva (si $a \equiv b \mod m$ i $b \equiv c \mod m$, aleshores $a \equiv c \mod m$).

Diem que a i a' són de la mateixa classe d'equivalència mòdul m si $a \equiv a' \mod m$.

Relació de congruència

Operacions amb congruències

Resolució de congruències lineals

Aritmètica modulai

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Eule

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Lema 3: La suma i el producte de classes queden ben definits

Si
$$a_1 \equiv a_2 \mod m$$
 i $b_1 \equiv b_2 \mod m$, aleshores

$$a_1+b_1\equiv a_2+b_2\mod m,$$

$$a_1 \cdot b_1 \equiv a_2 \cdot b_2 \mod m$$
.

Per exemple, tenim que

$$5 \equiv 12 \mod 7$$

$$11 \equiv -3 \mod 7$$

El que ens diu el lema és que, aleshores,

$$5+11 \equiv 12-3 \mod 7$$

 $5\cdot 11 \equiv 12\cdot (-3) \mod 7$

Les classes d'equivalència ens permetran fer els càlculs de manera més fàcil. Per exemple, si vull calcular la reducció mòdul 3 de

$$754 + 389$$
 , $754 \cdot 389$ o 754^{1000}

puc reduir primer els operands:

$$754 = 1 \mod 3$$

$$389 = 2 \mod 3$$

i les operacions em queden reduïdes a

$$1+2 \equiv 0 \mod 3$$
, $1\cdot 2 \equiv 2 \mod 3$ i $1^{1000} \equiv 1 \mod 3$

Una altra conseqüència del lema 3, és que si $a \equiv b \mod m$, aleshores $ka \equiv kb \mod m$.

Però el recíproc no és cert.

La simplificació no queda ben definida.

És a dir, pot ser que $ka \equiv kb \mod m$, però, en canvi, $a \not\equiv b \mod m$.

Per exemple, $2 \cdot 1 \equiv 2 \cdot 3 \mod 4$, però, en canvi, $1 \not\equiv 3 \mod 4$.

Lema 4

Si mcd(k, m) = 1, aleshores podem simplificar:

 $ka \equiv kb \mod m \iff a \equiv b \mod m$.

Demostració

Suposem que mcd(k, m) = 1.

$$ka \equiv kb \mod m \iff m \mid k(a-b)$$

 $\iff m \mid a-b$
 $\iff a \equiv b \mod m$

Lema 5

En general, agafant $k' = \frac{k}{\text{mcd}(k,m)}$ i $m' = \frac{m}{\text{mcd}(k,m)}$, podem simplificar:

 $ka \equiv kb \mod m \iff k'a \equiv k'b \mod m'$.

Demostració

$$ka \equiv kb \mod m \iff m \mid k(a-b)$$
 $\iff \frac{m}{\operatorname{mcd}(k,m)} \mid \frac{k}{\operatorname{mcd}(k,m)} (a-b)$
 $\iff k'a \equiv k'b \mod m'.$

П

Relació de congruència

Operacions amb congruències

Resolució de congruències lineals

Aritmètica modula

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Eulei

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Resolució de congruències

Donats enters a, b, m, amb m > 0, volem saber per quins valors de x, mòdul m, es compleix que

$$ax \equiv b \mod m$$
.

Per exemple, suposem que volem resoldre les congruències lineals següents:

- 1. $35x \equiv 20(60)$.
- 2. $32x \equiv 58(60)$.
- 3. $47x \equiv 17(60)$.
- 4. $39x \equiv 18(60)$.
- 5. $51x \equiv 26(60)$.
- 6. $8x \equiv 8(60)$.

Resolució de congruències. Existeixen solucions?

Es pot demostrar, utilitzant la identitat de Bézout, que existiran solucions si i només si mcd(a, m) divideix b.

Vegem si tenen solució les congruències anteriors:

- 1. $35x \equiv 20(60)$ té solució perquè mcd(35, 60) = 5 divideix 20.
- 2. $32x \equiv 58(60)$ no té solució perquè mcd(32,60) = 4 no divideix 58.
- 3. $47x \equiv 17(60)$ té solució perquè mcd(47,60) = 1 divideix 17.
- 4. $39x \equiv 18(60)$ té solució perquè mcd(39,60) = 3 divideix 18.
- 5. $51x \equiv 26(60)$ no té solució perquè mcd(51,60) = 3 no divideix 26.
- 6. $8x \equiv 8(60)$ té solució perquè mcd(8,60) = 4 divideix 8.

Resolució de congruències. Podem simplificar?

Si mcd(a, m) divideix b, aleshores podem dividir tots els paràmetres entre mcd(a, m).

Vegem com queden simplificades les congruències anteriors, de la forma $a'x \equiv b' \mod m'$, amb mcd(a', m') = 1:

- 1. $35x \equiv 20(60)$ queda simplificada com $7x \equiv 4(12)$.
- 2. 32x = 58(60) no té solució.
- 3. $47x \equiv 17(60)$ no es pot simplificar més.
- 4. $39x \equiv 18(60)$ queda simplificada com $13x \equiv 6(20)$.
- 5. 51x = 26(60) no té solució.
- 6. $8x \equiv 8(60)$ queda simplificada com $2x \equiv 2(15)$.

Com que ara mcd(m', a') = 1, per la identitat de Bézout existiran λ i μ tals que $\mu a' = 1 - \lambda m' \equiv 1 \mod m'$.

Busquem, doncs, aquest paràmetre μ de la identitat de Bézout.

Un cop tenim el paràmetre μ tal que

$$\mu a' \equiv 1 \mod m'$$
,

deduïm que

$$(b'\mu)a' \equiv b' \mod m'$$

i, per tant,

$$x \equiv b'\mu$$

és una primera solució.

1. $35x \equiv 20(60)$ queda simplificada com

$$7x \equiv 4(12)$$

i per això resolem primer $7x' \equiv 1(12)$:

λ	1	0	1	-1	3	
μ	0	1	-1	2	-5	
quocients			1	1	2	
residus	12	7	5	2	1	0

Deduïm que $(12) \cdot (3) + (7) \cdot (-5) = 1$ i, per tant,

$$7 \cdot 7 \equiv 1 \mod 12$$
.

Multiplicant-ho tot per 4, es complirà

$$7(7 \cdot 4) \equiv 1 \cdot 4 \mod 12$$

$$7 \cdot 28 \equiv 4 \mod 12$$

$$7 \cdot 4 \equiv 4 \mod 12$$
.

Per tant,

$$x = 4(12)$$

és una solució.

2. 32x = 58(60) no té solució.

3. $47x \equiv 17(60)$ no es pot simplificar més. Resolem primer $47x' \equiv 1(60)$:

λ	1	0	1	-3	4	-7	11	-18	
μ	0	1	-1	4	-5	9	-14	23	
quocients			1	3	1	1	1	1	
residus	60	47	13	8	5	3	2	1	0

Deduïm que
$$(60) \cdot (-18) + (47) \cdot (23) = 1$$
 i, per tant,

$$47 \cdot 23 \equiv 1 \mod 60$$
.

Multiplicant-ho tot per 17, es complirà

$$47(23 \cdot 17) \equiv 1 \cdot 17 \mod 60$$

 $47 \cdot 391 \equiv 17 \mod 60$
 $47 \cdot 31 \equiv 17 \mod 60$

Per tant.

$$x \equiv 31(60)$$

és una solució.

4. $39x \equiv 18(60)$ queda simplificada com

$$13x \equiv 6(20)$$

i per això resolem primer $13x' \equiv 1(20)$:

λ	1	0	1	-1	2	
μ	0	1	-1	2	-3	
quocients			1	1	1	
residus	20	13	7	6	1	0

Deduïm que $(20) \cdot (2) + (13) \cdot (-3) = 1$ i, per tant,

$$13 \cdot 17 \equiv 1 \mod 20$$
.

Multiplicant-ho tot per 6, es complirà

$$13(17 \cdot 6) \equiv 1 \cdot 6 \mod 20$$

$$13 \cdot 102 \equiv 6 \mod 20$$

$$13 \cdot 2 \equiv 6 \mod 20$$
.

Per tant,

$$x \equiv 2(20)$$

és una solució.

5. 51x = 26(60) no té solució.

6. $8x \equiv 8(60)$ queda simplificada com

$$2x \equiv 2(15)$$

i per això resolem primer $2x' \equiv 1(15)$:

λ	1	0	1	
μ	0	1	-7	
quocients			7	
residus	15	2	1	0

Deduïm que $(15) \cdot (1) + (2) \cdot (-7) = 1$ i, per tant,

$$2 \cdot 8 \equiv 1 \mod 15$$
.

Multiplicant-ho tot per 2, es complirà

$$2(8 \cdot 2) \equiv 1 \cdot 2 \mod 15$$
$$2 \cdot 16 \equiv 2 \mod 15$$

$$2 \cdot 1 \equiv 2 \mod 15$$
.

Per tant.

$$x \equiv 1(15)$$

és una solució.

Resolució de congruències. I totes les solucions?

Si $a'x_0 \equiv b'(m')$, aleshores també

$$a'(x_0 + m') \equiv b'(m'),$$

 $a'(x_0 + 2m') \equiv b'(m'),$
 $a'(x_0 + 3m') \equiv b'(m'),$
 \vdots

Totes les solucions mòdul *m* seran

$$x_0, x_0 + m', x_0 + 2m', x_0 + 3m', \dots, x_0 + (m - m').$$

En total n'hi haurà

$$m/m' = mcd(a, m)$$
.

Resolució de congruències. I totes les solucions?

- 1. $35x \equiv 20(60)$ tenia solució $x \equiv 4(12)$. Totes les seves solucions mòdul 60 seran x = 4, 16, 28, 40, 52(60). Observem que n'hi ha 5 = mcd(35, 60).
- 2. 32x = 58(60) no té solució.
- 3. $47x \equiv 17(60)$ només té una solució, ja que mcd(47,60) = 1. La solució és $x \equiv 31(60)$.
- 4. $39x \equiv 18(60)$ tenia solució $x \equiv 2(20)$. Totes les seves solucions mòdul 60 seran x = 2, 22, 42(60). Observem que n'hi ha 3 = mcd(39, 60).
- 5. 51x = 26(60) no té solució.
- 6. $8x \equiv 8(60)$ tenia solució $x \equiv 1(15)$. Totes les seves solucions mòdul 60 seran x = 1, 16, 31, 46(60). Observem que n'hi ha 4 = mcd(8, 60).

Sumari

Lema 6

Considerem la congruència $ax \equiv b \mod m$.

- 1. Té solució si i només si mcd(a, m) | b.
- 2. L'enter x és solució de $ax \equiv b \mod m$ si i només si ho és de

$$\frac{a}{\operatorname{mcd}(a,m)} x \equiv \frac{b}{\operatorname{mcd}(a,m)} \mod \frac{m}{\operatorname{mcd}(a,m)}.$$

3. Si existeix una solució x_0 , aleshores n'existeixen mcd(a, m) i el conjunt de solucions és donat per

$$x \equiv x_0 + k \frac{m}{\operatorname{mcd}(a, m)} \mod m,$$

amb k = 0, 1, ..., mcd(a, m) - 1.

Procediment per resoldre $ax \equiv b \mod m$

- Si mcd(a, m) / b, aleshores no hi ha solució.
- ▶ Si mcd(*a*, *m*) | *b*
 - Si mcd(a, m) = 1
 - Calculem els coeficients λ i μ de la identitat de Bézout

$$\lambda m + \mu a = 1$$
.

- La solució és única i és $x \equiv \mu b \mod m$.
- Si mcd(a, m) ≠ 1
 - ▶ Busquem la solució x₀ de la congruència

$$\frac{a}{\operatorname{mcd}(a,m)}x \equiv \frac{b}{\operatorname{mcd}(a,m)} \mod \frac{m}{\operatorname{mcd}(a,m)}$$

- que compleix $mcd(\frac{a}{mcd(a,m)}, \frac{m}{mcd(a,m)}) = 1$.
- El conjunt de solucions serà

$$x \equiv x_0 + k \frac{m}{\operatorname{mcd}(a, m)} \mod m,$$

amb
$$k = 0, ..., mcd(a, m) - 1$$
.

Podem resoldre congruències amb la funció solve_mod

```
print("solve_mod(35*x==20,60)=",solve_mod(35*x==20,60))
print("solve_mod(32*x==58,60)=",solve_mod(32*x==58,60))
print("solve_mod(47*x==17,60)=",solve_mod(47*x==17,60))
print("solve_mod(39*x==18,60)=",solve_mod(39*x==18,60))
print("solve_mod(51*x==26,60)=",solve_mod(51*x==26,60))
print("solve_mod(8*x==8,60)=",solve_mod(8*x==8,60))
```

Aritmètica modular

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Congruències

Relació de congruència

Operacions amb congruències

Resolució de congruències lineals

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Eulei

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Anells \mathbb{Z}_m

Pel lema 2 sabem que la relació de congruència és una relació d'equivalència.

Per això, podem dividir $\mathbb Z$ en m classes d'equivalència donades per la relació de congruència mòdul m.

Definim \mathbb{Z}_m com el conjunt de les m classes d'equivalència.

Així,

$$\mathbb{Z}_m = \{ [0]_m, [1]_m, \dots, [m-1]_m \},$$

on $[r]_m$ representa la classe de tots els enters que dividits entre m tenen residu r.

Per extensió, escriurem $[a]_m = [r]_m$ si a = qm + r amb $0 \le r < m$.

Anells \mathbb{Z}_m

Exemple

En el cas de \mathbb{Z}_2 , la classe de $[0]_2$ és la classe dels nombres parells, i $[1]_2$ la dels nombres imparells.

Exemple

En el cas de \mathbb{Z}_3 , dividim el conjunt d'enters d'acord amb el residu de la divisió per 3:

Per tant,

$$[0]_3 = \{\dots, -3, 0, 3, 6, \dots\} = \{3k : k \in \mathbb{Z}\}$$
$$[1]_3 = \{\dots, -2, 1, 4, 7, \dots\} = \{3k + 1 : k \in \mathbb{Z}\}$$
$$[2]_3 = \{\dots, -1, 2, 5, 8, \dots\} = \{3k + 2 : k \in \mathbb{Z}\}$$

Classes d'equivalència

Podem veure que, en general,

$$[r]_m = \{mk + r : k \in \mathbb{Z}\}$$

El conjunt format per les classes d'equivalència d'una relació d'equivalència s'anomena **conjunt quocient**. Més endavant veurem altres conjunts quocients.

Congruències

Relació de congruència
Operacions amb congruències

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Euler

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Aritmètica modular

Pel lema 3 sabem que dins de \mathbb{Z}_m hi ha les dues operacions internes ben definides:

$$[r_1]_m + [r_2]_m = [r_1 + r_2]_m,$$

 $[r_1]_m \cdot [r_2]_m = [r_1 \cdot r_2]_m.$

Ara analitzem les propietats de $(\mathbb{Z}_m, +, \cdot)$:

- L'operació suma a \mathbb{Z}_m és associativa i commutativa perquè ho és a \mathbb{Z} .
- ► El neutre per a la suma és [0]_m i l' invers per a la suma està ben definit com

$$-[a]_m = [-a]_m.$$

La resta està ben definida, aleshores, com la suma de l'invers.

- L'operació producte a \mathbb{Z}_m és associativa i commutativa perquè ho és a \mathbb{Z} i satisfà la propietat distributiva amb la suma.
- ▶ El neutre pel producte és [1]_m.

Aritmètica modular

Per tot l'anterior, podem afirmar el següent:

 $(\mathbb{Z}_m,+,\cdot)$ és un anell commutatiu amb unitat.

En aquest curs només considerarem la suma i el producte a \mathbb{Z}_m que acabem de definir. Per tant, per simplificar la notació, quan parlem de \mathbb{Z}_m ens referim a l'anell $(\mathbb{Z}_m, +, \cdot)$.

En general, \mathbb{Z}_m no és un cos perquè pot haver-hi elements que no tinguin invers. Per exemple, a \mathbb{Z}_4 ,

$$[2]_{4} \cdot [0]_{4} = [0]_{4},$$

$$[2]_{4} \cdot [1]_{4} = [2]_{4},$$

$$[2]_{4} \cdot [2]_{4} = [0]_{4},$$

$$[2]_{4} \cdot [3]_{4} = [2]_{4}.$$

Per tant, no existeix cap classe $[a]_4$ tal que $[2]_4 \cdot [a]_4 = [1]_4$.

Podem definir \mathbb{Z}_m amb la funció Integers (m)

```
print("Integers(27)=",Integers(27))
Z27=Integers(27)
print("Z27(50)=",Z27(50))
print("Z27(20+23)=",Z27(20+23))
print("Z27(20)+Z27(23)=",Z27(20)+Z27(23))
print("Z27(30*2)=",Z27(30*2))
print("Z27(30)*Z27(2)=",Z27(30)*Z27(2))
```


Aprofitem per veure la diferència entre conjunt i llista. La podeu veure amb les següents comandes?

Aritmètica modular

Per simplificar la notació, sovint escriurem a en comptes de $[a]_m$.

Exercici 2

Comproveu que a \mathbb{Z}_2 es compleix:

- -a = a per tot a,
- $(a+b)^2 = a^2 + b^2$.
- ▶ Demostreu per inducció que a \mathbb{Z}_2 es compleix $(a_1 + a_2 + \cdots + a_n)^2 = a_1^2 + a_2^2 + \cdots + a_n^2$, per tot n.

Solució (p.91)

Exercici 3

Comproveu que a \mathbb{Z}_p , amb p primer, es compleix que

$$(a_1 + a_2 + \cdots + a_n)^p = a_1^p + a_2^p + \cdots + a_n^p,$$

per tot n.

Congruències

Operacions amb congruències

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Eule

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Coneixem les taules de la suma i el producte binaris:

+	0	1
0	0	1
1	1	0

×	0	1
0	0	0
1	0	1

Podem construir les mateixes taules per a qualsevol mòdul.

Vegem, per exemple, les taules de la suma i el producte mòdul 6:

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

×	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

...i les taules de la suma i el producte mòdul 7:

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Podem fer algunes observacions en aquestes taules:

- Les taules són simètriques. Això és a causa de la commutativitat de les operacions.
- A la taula de la suma, la fila corresponent al 0 és una còpia de la primera fila. Això ens indica que el 0 és el neutre per a la suma.
- A la taula del producte, la fila corresponent a l'1 és una còpia de la primera fila. Això ens indica que l'1 és el neutre pel producte.

Congruències

Relació de congruència

Operacions amb congruències

Passiluaió de congruèncias lineals

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Euler

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Invertibles i divisors de zero

Sigui $(A, +, \cdot)$ un anell amb neutre 0 respecte de +.

Si per un element a n'existeix un altre (que anomenem a^{-1}) tal que $a \cdot a^{-1} = 1$, aleshores diem que a^{-1} és l'invers de a.

Per exemple, a \mathbb{Z}_5 , l'invers de 2 és $2^{-1} = 3$, perquè a \mathbb{Z}_5 , $2 \cdot 3 = 6 = 1$.

Compte: si $a \in \mathbb{Z}$, l'element a^{-1} dins de \mathbb{Z}_m no el podem confondre amb el racional $\frac{1}{a}$.

Invertibles i divisors de zero

Els elements de A que tenen invers es diuen invertibles.

Un element $a \in A$, $a \neq 0$ és un **divisor de zero** si existeix $b \in A$, $b \neq 0$ tal que $a \cdot b = b \cdot a = 0$.

Invertibles i divisors de zero I

Lema 7

Considerem l'anell \mathbb{Z}_m i un element $a \in \mathbb{Z}_m$, $a \neq 0$. Aleshores

- 1. a és invertible si i només si mcd(a, m) = 1.
- 2. a és un divisor de zero si i només si $mcd(a, m) \neq 1$.

Per tant, tot $a \in \mathbb{Z}_m$ és invertible o bé és divisor de zero.

Observem que hem comès un abús de notació al lema, ja que mcd només està definit per parelles d'enters. Però vam veure que si $a_1, a_2 \in [a]_m$, aleshores $mcd(a_1, m) = mcd(a_2, m)$ i, per tant, mcd(a, m) està ben definit.

Invertibles i divisors de zero II

Demostració

Pel lema 6, $ax = b \mod m$ té solució si i només si mcd(a, m) divideix b i, en el cas de tenir-ne, el nombre de solucions diferents mòdul m és mcd(a, m).

- L'element a és invertible si i només si ax = 1 mod m té solució, que és equivalent al fet que mcd(a, m) divideixi 1 pel lema 6. Com que l'únic divisor positiu de 1 és ell mateix, a serà invertible si i només si mcd(a, m) = 1.
- 2. L'element a és divisor de zero si i només ax = 0 mod m té més d'una solució, que és equivalent a mcd(a, m) > 1 pel lema 6.

Invertibles

Identitat de Bézout i l'invers d'un element

Si a és invertible a \mathbb{Z}_m , aleshores mcd(m, a) = 1. Per la identitat de Bézout sabem que existiran λ i μ tals que

$$\lambda m + \mu a = 1$$
.

Això significa que $\mu a = 1 - \lambda m$ i, per tant,

$$\mu a \equiv 1 \mod m$$

Deduïm, doncs, que $a^{-1} = \mu$.

Invertibles

Teorema 1

 \mathbb{Z}_m és un cos si i només si m és primer.

Anomenem \mathbb{Z}_m^* al conjunt d'elements invertibles de \mathbb{Z}_m .

Exercici 4

Calculeu \mathbb{Z}_m^* per $1 < m \le 12$. Solució (p.92)

Congruències

Relació de congruència

Operacions amb congruències

Resolució de congruències lineal

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Euler

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Funció d'Euler

Ara definim una funció $\phi : \mathbb{N} \to \mathbb{N}$ que s'anomena funció d'Euler.

Nota (p.125)

Definim, equivalentment,

$$\phi(m) = \#\{a : 0 \le a < m \text{ i mcd}(a, m) = 1\}$$

= $\#\mathbb{Z}_m^*$

Propietats

Lema 8

- ▶ Si p és primer, aleshores $\phi(p) = p 1$.
- Si mcd(a, b) = 1, aleshores $\phi(ab) = \phi(a)\phi(b)$.
- Si p és primer, aleshores $\phi(p^k) = p^k p^{k-1} = p^{k-1}(p-1)$.

El primer punt es pot veure directament de la definició de ϕ . L'últim punt es pot comprovar veient que exactament 1 de cada p enters entre 0 i p^k-1 és no coprimer amb p^k .

Funció d'Euler

Exercici 5

Calculeu

- $\phi(18)$,
- $\phi(27)$,
- $\phi(35)$.

Polypió (p.02)

Exercici 6

Comproveu que si la descomposició d'un enter n en producte de primers és $n = p_1^{n_1} \cdot \dots \cdot p_k^{n_k}$, aleshores

$$\phi(n) = p_1^{n_1-1}(p_1-1) \cdot p_2^{n_2-1}(p_2-1) \cdot \cdots \cdot p_k^{n_k-1}(p_k-1)$$

Solució (p.95)

Podem trobar els invertibles utilitzant el gcd

```
[a for a in Integers(27) if gcd(a,27) == 1]
```

Quants n'hi ha?

També podem trobar l'invers de cadascun dels invertibles

```
[[a,a^(-1)] for a in Integers(27) if gcd(a,27)==1]
```

O bé

```
[[a,inverse\_mod(a,27)] for a in [0..26] if gcd(a,27)==1]
```


Comprovem que \mathbb{Z}_{27} no és un cos

is_field(Integers(27))

Congruències

Relació de congruència

Operacions amb congruències

Resolució de congruències lineals

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Euler

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Teorema de Fermat i teorema d'Euler

Teorema 2: Teorema de Fermat Nota (p.125)

Si p és primer i mcd(a, p) = 1, aleshores

$$a^{p-1} \equiv 1 \mod p$$
.

Teorema 3: Teorema d'Euler

Si mcd(a, m) = 1, aleshores

$$a^{\phi(m)} \equiv 1 \mod m$$
.

Podeu veure una demostració del teorema d'Euler a l'apèndix (p.115) de la secció.

Teorema de Fermat i teorema d'Euler

Exercici 7

Comproveu que el teorema de Fermat és un cas particular del teorema d'Euler.

Els teoremes anteriors són útils per trobar elements inversos.

En efecte, si a és no nul a \mathbb{Z}_p , aleshores

$$a^{-1} = a^{p-2} \mod p$$

i si a és invertible a \mathbb{Z}_m , aleshores

$$a^{-1} \equiv a^{\phi(m)-1} \mod m$$
.

Teorema de Fermat i teorema d'Euler

Exercici 8

- 1. És \mathbb{Z}_{27} un cos? Per què?
- 2. Quants elements de \mathbb{Z}_{27} són invertibles?
- 3. Justifiqueu per què té invers el 8 a \mathbb{Z}_{27} .
- 4. Trobeu l'invers de 8 a \mathbb{Z}_{27} utilitzant la identitat de Bézout.
- 5. Trobeu l'invers de 8 a \mathbb{Z}_{27} utilitzant el teorema d'Euler.
- 6. Comproveu que l'element trobat és, en efecte, l'invers.

Solució (p.96)

Congruències

Relació de congruència

Operacions amb congruencies

Resolució de congruències lineals

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Eulei

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Ordre

L'ordre d'un element no nul $a \in \mathbb{Z}_m$ és el mínim exponent $i \neq 0$ tal que $a^i = 1$. El denotem per $\operatorname{ord}_m(a)$.

Lema 9

L'ordre de l'element a de \mathbb{Z}_m existeix si i només si mcd(a, m) = 1.

Demostració

Si existeix l'ordre de l'element a aleshores existeix l'invers de a, ja que és $a^{\operatorname{ord}_m(a)-1}$. Pel lema 7 es dedueix que $\operatorname{mcd}(a,m)=1$.

Ordre

L'ordre d'un element no nul $a \in \mathbb{Z}_m$ és el mínim exponent $i \neq 0$ tal que $a^i = 1$. El denotem per $\operatorname{ord}_m(a)$.

Lema 9

L'ordre de l'element a de \mathbb{Z}_m existeix si i només si mcd(a, m) = 1.

Demostració

Si mcd(a, m) = 1, pel teorema d'Euler existeix un exponent positiu tal que a elevat a l'exponent dona 1. Per tant, hi haurà un exponent positiu mínim tal que a elevat a l'exponent dona 1.

Exercici 9

Comproveu si a \mathbb{Z}_{18} les classes de 3 i 7 tenen ordre, fent servir la definició i fent servir la condició anterior.

Solució (p.98)

Exercici 10

Demostreu que si $a \in \mathbb{Z}_m^*$ i a^{-1} és l'invers de a a \mathbb{Z}_m , aleshores $\operatorname{ord}_m(a^{-1}) = \operatorname{ord}_m(a)$. Solució (p.99)

Lema 10

Si $a^k = 1$ a \mathbb{Z}_m per un enter positiu k, aleshores l'ordre de a divideix k.

Demostració

Suposem que la divisió euclidiana de k per $\operatorname{ord}_m(a)$ té quocient q i residu r, aleshores $a^k = (a^{\operatorname{ord}_m(a)})^q a^r$. Però com que $a^k = 1$ i $a^{\operatorname{ord}_m(a)} = 1$, aleshores $a^r = 1$. Això, tenint en compte que $0 \le r < \operatorname{ord}_m(a)$, només és possible si r = 0, és a dir, si $\operatorname{ord}_m(a) \mid k$.

En consequència, tenim el resultat següent:

L'ordre de qualsevol element divideix $\phi(m)$.

Exercici 11

Calculeu l'ordre de tots els elements de \mathbb{Z}_7 i comproveu que tots els ordres divideixen $\phi(7)$.

Solució (p.100)

Elements primitius

Un element de \mathbb{Z}_m és **primitiu** si el seu ordre és $\phi(m)$.

No ha d'existir necessàriament un element primitiu. Per exemple, a \mathbb{Z}_8 no hi ha elements primitius.

Exercici 12

Comproveu que \mathbb{Z}_8 no té elements primitius.

Solució (p.101)

Si existeix un element primitiu, β , aleshores les seves potències cobreixen tot \mathbb{Z}_m^* .

$$\mathbb{Z}_m^* = \{1 = \beta^0, \beta, \beta^2, \dots, \beta^{\phi(m)-1}\}.$$

Lema 11

Suposem que β és un element primitiu de \mathbb{Z}_m . L'element β^j amb 1 $\leq j < \phi(m)$ també és primitiu si i només si $\operatorname{mcd}(j,\phi(m))=1$.

Demostració

Tindrem que $(\beta^j)^k = \beta^{kj}$ és igual a 1 si i només si $\operatorname{ord}_m(\beta) \mid kj$, és a dir, si i només si $\phi(m) \mid kj$.

Llavors, β^j serà primitiu si i només si $\phi(m)$ no divideix cap dels valors kj amb k entre 1 i $\phi(m)$ – 1.

 $Si \operatorname{mcd}(j, \phi(m)) \neq 1$, aleshores $\phi(m)$ divideix $\frac{\phi(m)}{\operatorname{mcd}(j, \phi(m))} j$ que, pel que acabem de veure, suposa que β^j no és primitiu.

Si $mcd(j, \phi(m)) = 1$, aleshores $\phi(m)$ només pot dividir kj si $\phi(m)$ divideix k, cosa que no és possible si $k \le \phi(m) - 1$. Per tant, en aquest cas β^j és primitiu.

Com a conseqüència tenim el següent:

Si hi ha un element primitiu, aleshores n'hi ha exactament $\phi(\phi(m))$.

Exercici 13

- (a) Comproveu que \mathbb{Z}_{18} té elements primitius. Solució (p.102)
- (b) Quants i quins són els elements primitius de $\mathbb{Z}_{18} ?$

Solució (p.103)

Podem calcular l'ordre d'un element amb multiplicative_order:

```
Z27=Integers(27)
multiplicative_order(Z27(8))
```

Mirant la llista de tots els ordres, veiem que tots divdeixen $\phi(27)$:

```
[multiplicative_order(a) for a in Z27 if gcd(27,a)==1]
```

Construïm nosaltres mateixes una funció booleana per a veure si un element és primitiu:

```
def is_primitive(a,m):
    ep=euler_phi(m)
    return(multiplicative_order((Integers(m))(a))==ep)
```


Comprovem que a \mathbb{Z}_{23} el 2 no és primitiu però el 7 sí que ho és

```
print("is_primitive(2,23)=",is_primitive(2,23))
print("is_primitive(7,23)=",is_primitive(7,23))
```

Congruències

Operacions amb congruències

Resolució de congruències lineals

Aritmètica modular

Anells \mathbb{Z}_m

Aritmètica modular

Taules d'operacions

Invertibles i divisors de zero

Funció d'Euler

Teorema de Fermat i teorema d'Euler

Ordre i elements primitius

Exponenciació

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Exponenciació

Lema 12

- Si a = mq + r amb $0 \le r < m$ i mcd(a, m) = 1, aleshores $a^N \equiv r^N \mod m$ per tot N > 0.
- Si $N = \phi(m)q + r$ amb $0 \le r < \phi(m)$, aleshores $a^N = a^r$ mod m.

Demostració

- ▶ Podem provar-ho per inducció. Per N = 0 es compleix. Suposem que es compleix $a^i \equiv r^i \mod m$ per tot i < N. Aleshores $a^N \equiv a \cdot a^{N-1} \equiv a \cdot r^{N-1} \equiv (mq + r)r^{N-1} \equiv r^N$ mod m.
- $a^N \equiv a^{\phi(m)q}a^r \equiv (a^{\phi(m)})^q a^r \equiv a^r \mod m$.

Congruències

Aritmètica modular

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Exercici 14

- (a) Calculeu l'invers de 16 a \mathbb{Z}_{29} Solució (p
- (b) Calculeu l'invers de 258 a \mathbb{Z}_{2791} . Solució (p.105)

Exercici 15

- (a) Expresseu tots els elements no nuls de \mathbb{Z}_{19} com a potències de 2. Solució (p.106)
- (b) És possible expressar tots els elements no nuls de \mathbb{Z}_{23} com a potències de 2? Solució (p.107)
- (c) Busqueu un element β de \mathbb{Z}_{23} tal que tot element no nul de \mathbb{Z}_{23} es pugui escriure com a potència de β .

Solució (p.107)

Exercici 16

Sigui l'anell \mathbb{Z}_{18}

- 1. És un cos?
- 2. Quants elements invertibles té i quins són?
- 3. Quants divisors de zero té?
- 4. Busqueu un element primitiu.
- 5. Quants elements primitius té?

Solució (p.108)

Exercici 17

Sigui l'anell \mathbb{Z}_{27}

- 1. És un cos?
- 2. Quants elements invertibles té i quins són?
- 3. Quants divisors de zero té?
- 4. Busqueu un element primitiu.
- 5. Busqueu un element diferent de 0,1 que no sigui primitiu. Quin ordre té?

Solució (p. 100)

Exercici 18

Comproveu que si β és un element primitiu de \mathbb{Z}_m i si k és un enter positiu que divideix $\phi(m)$, aleshores

- ord_m(β^k) = $\frac{\phi(m)}{k}$.

Solució (p.110)

Exercici 19

Calculeu el residu de dividir

- ▶ 4187³⁵¹⁵ entre 3,
- ▶ 4187³⁵¹⁵ entre 5.

Solució (p.111)

Exercici 20

Trobeu les classes a \mathbb{Z}_{100} de

- ► 6⁴¹,
- ► 7⁴¹,
- ► 15⁴¹.

Calvaiá (a 110)

Exercici 21

- Quin és el darrer dígit de 7³⁷⁸?
- Quines són les dues darreres xifres de 2793²⁷⁹²?

Solució (p.113)

Congruències

Aritmètica modular

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

 $a \equiv b \mod m$ és equivalent al fet que a - b és un múltiple de m.

Si a - b és un múltiple de m, aleshores també ho és de d.

Si a - b és un múltiple de d, aleshores $a \equiv b \mod d$.

Torna a l'exercici (n 12)

- ▶ Podem comprovar que $[0]_2 + [0]_2 = [0]_2$ i que $[1]_2 + [1]_2 = [0]_2$. Per tant, l'oposat de qualsevol $a \in \mathbb{Z}_2$ és a.
- Observem que $1^2 = 1$ i $0^2 = 0$. Aleshores $(a+b)^2 = a^2 + 2ab + b^2 \equiv a^2 + b^2 \equiv a+b \mod 2$.
- Sabem que és cert per n = 2. Suposem que és cert fins a n 1, aleshores $(a_1 + a_2 + \cdots + a_{n-1} + a_n)^2 = ((a_1 + a_2 + \cdots + a_{n-1}) + a_n)^2 = (a_1 + a_2 + \cdots + a_{n-1})^2 + a_n^2 = a_1^2 + a_2^2 + \cdots + a_{n-1}^2 + a_n^2$.

Torna a l'exercici (p.46)

```
\mathbb{Z}_{2}^{*} = \{1\}
\mathbb{Z}_{2}^{*} = \{1, 2\}
\mathbb{Z}_{4}^{*} = \{1,3\}
\mathbb{Z}_5^* = \{1, 2, 3, 4\}
\mathbb{Z}_{6}^{*} = \{1, 5\}
\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}
\mathbb{Z}_{8}^{*} = \{1, 3, 5, 7\}
\mathbb{Z}_{0}^{*} = \{1, 2, 4, 5, 7, 8\}
\mathbb{Z}_{10}^* = \{1, 3, 7, 9\}
\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}
\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}
```

Torna a l'exercici (p.57)

$$\phi(18) = \phi(2 \cdot 9)$$

$$= \phi(2)\phi(9) \text{ (propietat 2)}$$

$$\phi(2) = 1$$
 (propietat 1)
 $\phi(9) = \phi(3^2) = 3^2 - 3^1 = 9 - 3 = 6$ (propietat 3)
= 1 · 6
= 6

Þ

$$\phi(27) = \phi(3^3)$$

= $3^3 - 3^2$ (propietat 3)
= $27 - 9$
= 18

•

$$\phi(35) = \phi(5 \cdot 7)$$

$$= \phi(5)\phi(7) \text{ (propietat 2)}$$

$$= 4 \cdot 6 \text{ (propietat 1)}$$

$$= 24$$

Torna a l'exercici (n.61)

En general

$$\begin{array}{lll} \phi(n) & = & \phi(\rho_1^{n_1} \cdot \rho_2^{n_2} \cdot \dots \cdot \rho_k^{n_k}) \\ & = & \phi(\rho_1^{n_1}) \cdot \phi(\rho_2^{n_2}) \cdot \dots \cdot \phi(\rho_k^{n_k}) \text{ (propietat 2)} \\ & = & (\rho_1^{n_1-1}(\rho_1-1)) \cdot (\rho_2^{n_2-1}(\rho_2-1)) \cdot \dots \cdot (\rho_k^{n_k-1}(\rho_k-1)) \text{ (propietat 3)} \end{array}$$

Torna a l'evercici (n.61)

- 1. No, perquè 27 no és primer.
- 2. $\phi(27) = 27 9 = 18$.
- 3. Perquè mcd(8, 27) = 1.
- 4. Utilitzem l'algoritme d'Euclides per trobar els coeficients de la identitat de Bézout:

1	0	1	-2	3
0	1	-3	7	-10
		3	2	1
27	8	3	2	1

Deduïm que $3 \cdot 27 + (-10) \cdot 8 = 1$. Reduint mòdul 27 obtenim $(-10) \cdot 8 = 17 \cdot 8 = 1$ i, per tant, l'invers de 8 mòdul 27 és 17.

5. Pel teorema d'Euler tenim que $8^{18} = 1 \mod 27$, d'on deduïm que a \mathbb{Z}_{27} l'invers de 8 és 8^{17} . Podem calcular aquesta potència de moltes maneres diferents. En posem una de possible: com que podem reduir els exponents per múltiples de $\phi(27) = 18$, tenim $8^{17} = 2^{3\cdot17} = 2^{17+17+17} = 2^{17}2^{17}2^{17}$ (perquè $2^{17} = 2^{-1}$, a causa del fet que $2 \cdot 2^{17} = 1$) $= 2^{17}2^{-1}2^{-1} = 2^{17-1-1} = 2^{15} = 2^5 \cdot 2^5 \cdot 2^5 = 32 \cdot 32 \cdot 32$ (perquè $32 = 5 \mod 27$) $= 5 \cdot 5 \cdot 5 = 125 = 4 \cdot 27 + 17 = 17$.

6. Es tracta de comprovar que
$$8 \cdot 17 = 1$$
 a \mathbb{Z}_{27} i, com en l'apartat anterior, hi ha moltes maneres de fer-ho. En proposem una: $8 \cdot 17 = 136 = 27 \cdot 5 + 1 = 1$.

Torna a l'exercici (p.67)

Observem,

Per tant, no hi ha cap exponent i > 0 tal que $3^i = 1$.

Però sí que $7^i = 1$ per i = 3.

Per la definició, 7 té ordre però 3 no en té.

Podem comprovar-ho ara amb la condició del mcd. En efecte, $mcd(3, 18) = 3 \neq 1$, mentre que mcd(7, 18) = 1.

Torna a l'evercici (n. 71)

D'una banda,
$$(a^{-1})^{\operatorname{ord}_m(a)} = 1$$
 perquè $(a^{-1})^{\operatorname{ord}_m(a)} = (a^{-1})^{\operatorname{ord}_m(a)} a^{\operatorname{ord}_m(a)} = (a^{-1}a)^{\operatorname{ord}_m(a)} = 1$. D'altra banda, si $(a^{-1})^k = 1$, aleshores $a^k = a^k(a^{-1})^k = (aa^{-1})^k = 1$ i, per tant, $k \ge \operatorname{ord}_m(a)$.

Torna a l'evercici (n.71)

Calculem els ordres de tots els elements de \mathbb{Z}_7 .

Ara podem observar que tots els ordres són divisors de $\phi(7) = 6$.

Torna a l'evercici (n. 73)

Perquè a sigui un element primitiu de \mathbb{Z}_8 ha de tenir ordre. Per tenir ordre ha de ser coprimer amb 8 i, per tant, ha de ser senar. Analitzem les potències de tots els senars:

A més, per ser primitiu, el seu ordre ha de ser $\phi(8) = 8 - 4 = 4$.

Observem que no n'hi ha cap que tingui ordre 4. Per tant, \mathbb{Z}_8 no té elements primitius.

Torna a l'evercici (n 74)

Solució de l'Exercici 13(a)

1. Perquè *a* sigui un element primitiu de \mathbb{Z}_{18} ha de tenir ordre. Per tenir ordre ha de ser coprimer amb 18 i, per tant, ha de ser senar i no múltiple de 3.

D'altra banda, els ordres possibles a \mathbb{Z}_{18} seran tots els divisors de $\phi(18) = \phi(9)\phi(2) = 9 - 3 = 6$, és a dir, 1,2,3 o 6. Si trobem un element que no tingui ordre 1,2, ni 3, aleshores per força tindrà ordre 6 i per força serà primitiu.

Provem amb a = 5. Observem les seves primeres potències:

$$5^1 = 5$$

 $5^2 = 25 = 7$

Veiem que l'ordre de 5 no és 1, ni 2, ni 3, aleshores per força es tracta d'un element primitiu.

Solució de l'Exercici 13(b)

2. Ara podem afirmar que, com que existeix un element primitiu, el nombre d'elements primitius serà $\phi(\phi(18)) = \phi(6) = 2$. L'altre element primitiu serà 5^j per alguna j entre 2 i 5 amb $mcd(j, \phi(18)) = 1$ i això només és possible per j = 5. Així doncs, l'altre element primitiu serà $5^5 = 5^2 \cdot 5^3 = -7 = 11$.

Torna a l'evercici (n. 76)

Solució de l'Exercici 14(a)

Fem la taula d'Euclides per a 29 i 16.

1	0	1	-1	5	
0	1	-1	2	-9	
		1	1	4	3
29	16	13	3	1	0

Deduïm que

$$5 \cdot 29 + (-9) \cdot 16 = 1$$

i, per tant, $(-9) \cdot 16 \equiv 20 \cdot 16 \equiv 1(29)$.

En conseqüència, l'invers de 16 a \mathbb{Z}_{29} és 20.

Torna a l'exercici (n.82)

Solució de l'Exercici 14(b)

Fem la taula d'Euclides per a 2791 i 258.

1	0	1	-1	5	-11	
0	1	-10	11	-54	119	
		10	1	4	2	23
2791	2587	211	47	23	1	0

Deduïm que

$$(-11) \cdot 2791 + 119 \cdot 258 = 1$$

i, per tant, $119 \cdot 258 \equiv 1(2791)$.

En conseqüència, l'invers de 258 a \mathbb{Z}_{2791} és 119.

Torna a l'exercici (p.82)

Solució de l'Exercici 15(a)

(a)

Solució de l'Exercici 15(b,c)

(b) No és possible. En efecte, a \mathbb{Z}_{23} ,

$$2^{0} = 1$$

$$2^{1} = 2$$

$$2^{2} = 4$$

$$2^{3} = 8$$

$$2^{4} = 16$$

$$2^{5} = 9$$

$$2^{6} = 18$$

$$2^{7} = 13$$

$$2^{8} = 3$$

$$2^{9} = 6$$

$$2^{10} = 12$$

$$2^{11} = 1$$

$$2^{12} = 2$$

(c) Per exemple, 7. Podeu comprovar-ho vosaltres mateixos.

Torna a l'evercici (n.83

- 1. No és un cos.
- 2. 6 invertibles, que són 1, 5, 7, 11, 13 i 17.
- 3. 11.
- 4. Per exemple, el 5.
- 5. 2.

Torna a l'exercici (n.84)

- 1. No és un cos.
- 2. $\phi(27) = 3^3 3^2 = 18$ invertibles, que són $\{1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26\}$.
- 3. 8.
- 4. Per exemple, el 2.
- 5. 4, que té ordre 9.

Torno a l'avarajaj (n. 95)

Els dos resultats són equivalents. Demostrarem el primer, i el segon és anàleg.

Diguem $\gamma = \beta^{\frac{\phi(m)}{k}}$. Per demostrar que l'ordre de γ és k cal fer dues comprovacions:

- Cal veure que $\gamma^k = 1$,
- ► Cal veure que $\gamma^r \neq 1$ per tot exponent r amb 0 < r < k.

Vegem el primer punt: $\gamma^k = (\beta^{\frac{\phi(m)}{k}})^k = \beta^{\phi(m)} = 1$.

Per al segon punt, suposem que r és un enter amb 0 < r < k. Ara, $\gamma^r = (\beta^{\frac{\phi(m)}{k}})^r = \beta^{\frac{r\phi(m)}{k}}$. Com que $\frac{r\phi(m)}{k}$ és un enter (perquè k divideix $\phi(m)$) i és més petit que $\phi(m)$ (perquè $\frac{r}{k} < 1$), aleshores (com que β és primitiu) $\beta^{\frac{r\phi(m)}{k}} \neq 1$. Per tant, $\gamma^r \neq 1$.

Torna a l'exercici (p.86)

- ▶ 4187 \equiv 2(3), per tant, 4187³⁵¹⁵ \equiv 2³⁵¹⁵(3). Ara, com que 2² = 1, deduïm que 2³⁵¹⁵ \equiv 2(3).
- ▶ 4187 ≡ 2(5), per tant, $4187^{3515} \equiv 2^{3515}(5)$. Ara, com que mcd(2,5) = 1 i, per tant, $2^{\phi(5)} = 2^4 = 1$, deduïm que $2^{3515} \equiv 2^3(5)$. Per tant, $4187^{3515} \equiv 3(5)$.

Torna a l'exercici (p.87)

Calculem primer $\phi(100) = \phi(25)\phi(4) = 20 \cdot 2 = 40$.

Utilitzarem el teorema d'Euler. És a dir, que si mcd(a, m) = 1, aleshores $a^{\phi(m)} \equiv 1(m)$.

- Es pot resoldre de moltes maneres. Per exemple, $6^{41} = 2^{41}3^{41} = 2^{41}3 = (2^{10})^4 \cdot 2 \cdot 3 = (24)^4 \cdot 2 \cdot 3 = (76)^2 \cdot 2 \cdot 3 = (-24)^2 \cdot 2 \cdot 3 = 76 \cdot 2 \cdot 3 = 76 \cdot 6 = 456 = 56(100).$
- $7^{41} = 7.$
- ► $15^{41} = 3 \cdot 5^{41}$. Aquí observem que $5^a = 25(100)$ per tota a > 1. Deduïm que $15^{41} = 3 \cdot 25 = 75$.

Torna a l'exercici (p.87)

Observem que ens estan demanant una quantitat mòdul 10 i una altra quantitat mòdul 100.

D'altra banda, observem primer que $\phi(10)$ = 4, mentre que $\phi(100)$ = 40, com hem vist abans.

- $7^{378}(10) \equiv 7^2(10) \equiv 9(10).$
- ▶ $2793^{2792}(100) \equiv 93^{392}(100) \equiv 93^{32}(100) \equiv (-7)^{32}(100) \equiv 7^{32}(100)$.

Arribats a aquest punt podem observar que

$$7^4 = 2401 \equiv 1(100).$$

Deduïm que $7^{32} \equiv 1(100)$.

Per tant, $2793^{2792} \equiv 1(100)$.

Torna a l'exercici (p.88)

Congruències

Aritmètica modular

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Demostració

Suposem que $\mathbb{Z}_m^* = \{u_1, \ldots, u_{\phi(m)}\}.$

Anomenem $U = u_1 \cdot u_2 \cdot \cdots \cdot u_{\phi(m)}$.

Observem que $U \in \mathbb{Z}_m^*$ i que el seu invers és

$$U^{-1} = u_{\phi(m)}^{-1} \cdot u_{\phi(m)-1}^{-1} \cdot \cdots \cdot u_1^{-1}.$$

Ara considerem $a \in \mathbb{Z}_m^*$.

Observem que els elements $au_1,\ldots,au_{\phi(m)}$ pertanyen tots a \mathbb{Z}_m^* , per tenir inversos, respectivament, $u_1^{-1}a^{-1},\ldots,u_{\phi(m)}^{-1}a^{-1}$.

D'altra banda tots ells són diferents, ja que si $au_i = au_i$, aleshores multiplicant per a⁻¹ a les dues bandes de la igualtat veiem que u_i hauria de ser igual a u_i . Per això, $\mathbb{Z}_m^* = \{au_1, \ldots, au_{\phi(m)}\}$.

Així doncs, U també el podrem escriure com

 $au_1 \cdot au_2 \cdot \cdots \cdot au_{\phi(m)} = a^{\phi(m)} U$, obtenint que $U = a^{\phi(m)} U$. Ara, multiplicant per U^{-1} a les dues bandes de la igualtat obtenim que $a^{\phi(m)} = 1$ a \mathbb{Z}_m . \square

Congruències

Aritmètica modular

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Una operació binària en un conjunt A és una correspondència del producte cartesià $A \times A = \{(a, b) : a \in A \mid b \in A\}$ en A.

Per exemple, la suma en els naturals la podem entendre com l'aplicació

$$+: (\mathbb{N}, \mathbb{N}) \rightarrow \mathbb{N}$$

 $(a,b) \mapsto a+b$

Una operació binària * en un conjunt *A* pot tenir les següents propietats:

- ▶ Propietat associativa si a * (b * c) = (a * b) * c per tot $a, b, c \in A$.
- Existència d'element neutre si existeix un element de A, que anomenem e_n , tal que $a * e_n = e_n * a = a$ per tot $a \in A$.
- Existència d'element invers si per tot element a ∈ A existeix un element de A, que anomenem e_a , tal que $a * e_a = e_a * e = e_n$.
- ▶ Propietat commutativa si a * b = b * a per tot $a, b \in A$.

Un **grup** és un conjunt *A* amb una operació associativa amb element neutre i invers. El grup és un **grup commutatiu** si l'operació és commutativa.

Exemples:

- ► Els enters ℤ amb la suma habitual són un grup (commutatiu).
- ► Els naturals N amb la suma no són un grup perquè no tots els elements tenen element invers.
- Els enters amb el producte habitual tampoc són grup perquè no sempre existeix l'element invers.

 Considerem el conjunt {a, e, i} amb l'operació * donada per la taula

*	а	е	i
а	е	i	а
е	i	а	е
i	а	е	i

Observem que l'operació és commutativa per ser la taula simètrica i que té com a element neutre l'element i. L'invers de a per * és e i l'invers de e per * és a. L'invers de i és ell mateix. També es pot comprovar que l'operació és associativa. Per tant el conjunt $\{a, e, i\}$ amb l'operació * és un grup commutatiu.

 Considerem el conjunt {a, e, i, o} amb l'operació + donada per la taula

+	а	е	i	0
а	0	i	е	а
е	i	0	а	е
i	е	а	0	i
0	а	е	i	0

Observem que l'operació és commutativa per ser la taula simètrica i que té com a element neutre l'element o. Tots els elements es tenen a ells mateixos com al seu propi invers. També es pot comprovar que l'operació és associativa. Per tant, el conjunt $\{a, e, i, o\}$ amb l'operació + és un grup commutatiu.

Una segona operació ** en el conjunt A pot tenir la següent propietat respecte de la primera operació *.

▶ Propietat distributiva si a * *(b * c) = (a * *b) * (a * *c) per tot $a, b, c \in A$.

Un **anell** és un conjunt A amb dues operacions \oplus i \otimes tal que \oplus li confereix estructura de grup commutatiu i tal que \otimes és associativa i satisfà la proietat distributiva respecte de \oplus . Podeu comprovar, com a exercici, que l'element neutre de \oplus multiplicat per qualsevol element de l'anell dona altra vegada el neutre respecte de \oplus .

L'anell és unitari i commutatiu si ⊗ té element neutre i satisfà la propietat commutativa, respectivament.

Un \cos és un anell unitari i commutatiu on \otimes satisfà que tot element diferent del neutre de \oplus té invers. En aquest cas l'invers d'un element respecte de \oplus s'anomena el seu **element oposat**, i es deixa el nom d'**element invers** per a l'invers respecte de \otimes .

Torna al cos \mathbb{Z}_p (p.57)

Exemples:

- ▶ Els enters ℤ, amb la suma i el producte habituals, són un anell. Però no són un cos perquè no tots els elements tenen element invers.
- ▶ Els racionals \mathbb{Q} i els reals \mathbb{R} sí que són cossos.

El conjunt {a, e, i, o} dels exemples anteriors és un cos respecte de l'operació ⊕ = + descrita a la segona taula, amb neutre o, i respecte de l'operació ⊗ = * descrita a la primera ampliant-la amb el neutre de +, que multiplicat per qualsevol element dona o. És a dir

*	а	е	i	0
а	е	i	а	0
е	i	а	е	0
i	а	е	i	0
0	0	0	0	0

Només queda comprovar que l'operació * és distributiva respecte de +, que ho deixem com a exercici.

Congruències

Aritmètica modular

Exercicis

Solucions

Apèndix 1: Demostració del teorema d'Euler

Apèndix 2: Repàs d'operacions i estructures algebraiques

Notes històriques

Notes històriques

Leonhard Euler (1707-1783) ha estat un dels matemàtics més importants i prolífics. L'estudi de les propietats de la funció d'Euler ha permès descobrir moltes propietats dels nombres enters.

Torna a la funció d'Euler (p.59)

Teorema 62: Aquest teorema sovint és anomenat teorema "petit" de Fermat. Pierre de Fermat (1601-1665) va contribuir molt a l'aritmètica i és especialment famós per un teorema que va enunciar (sense demostració) que deia que $x^n + y^n = z^n$ no té solució entera per n > 2. Aquest teorema (el "gran") no va ser demostrat fins el 1995 per Andrew Wiles.