Parallel Scheduling Plan

Team Members and Contribution:
Dalton Lim (dlim779) – All Stages
Chuyang Chen (cche381) – All Stages
Raghav Garg (rgar969) – All Stages
Magnus Rand (cran263) – All Stages
Brian Nguyen (bugn877) – All Stages

JULY 29 2019

Course: SOFTENG 306

Table of Contents

Introduction	3
Work Breakdown Structure Diagram	4
Work Breakdown Structure Diagram Figure	
Network Diagram	
Network Diagram Figure	
Gantt Chart	10
Gantt Chart Figure	11

Introduction

This document outlines the steps involved in the first project of the SOFTENG306 course. Our models are in accordance to the waterfall models. Here the following phases are outlined, starting with a planning phase, followed closely by coding, testing and then the management tasks.

To help maximize the extent to which we follow the waterfall model, the planning stage is exhaustive in describing the tasks required for each stage as well as their sequential order. This is done through three diagrams:

- The Work Breakdown Structure (WBS) Diagram:
 - A brainstorm of which tasks each of the four waterfall stages entail
- The Network Diagram:
 - A portrayal of functional dependencies found within our brainstormed tasks
- The Gantt chart:

A representation of the temporal dependencies and the resources each task might require.

Each diagram is also accompanied with text containing a description, justification and explanation of the diagram.

Work Breakdown Structure Diagram

The Work Breakdown Structure Diagram is a visualization of the tasks required to complete the project. Our diagram contains four sections involved within the Waterfall model: Planning, Coding, Testing and Management/Miscellaneous tasks. This diagram exists for the purpose of being a comprehensive list of all the piece of work required; which becomes a useful reference during the creation of the later network diagram and Gantt chart. Therefore, the existence of this diagram is crucial for the initial planning of the project as all future planning depends on this diagram.

Project: Using AI and parallel processing power to solve difficult scheduling problem

Planning

Workflow Brainstorm - Identify the tasks involved in the completion of the

Time estimate for tasks - Estimating how long each piece

Requirements -Finding the

Finding the specifications for the project deliverables

Categorization of tasks - Putting the tasks into groups as to better fit the waterfall model

WBS-diagram -Construction of the Work Breakdown

Structure Diagram

Gantt Chart -

Construct a Gantt chart using the time estimates and WBS network diagram

Network diagram Order the items on WBS diagrams based on which items need to be complete before others

Group work split up

appropriately - Split groupwork so that items of work can be done efficiently and quickly

A strategy for the visualisation -

discuss and choose how a visual representation of the solution is possible

Heuristics For implementable

algorithms - Discuss and analyse each workable algorithm and decide which ones are more viable, and efficient, than

A plan using the Waterfall model -

Develop a roadmap for using the waterfall model which completes the desired tasks on time

UML Diagram -Specify, visualize, construct and document artifacts o a software system

Coding

Estimate of
execution time Estimating how
quickly and efficiently
the implemented

Workable input processsing -

algorithm(s) run

Creation of a system which can take formatted input data and transform it into a corresponding graph representation

Multithreaded Code

- The project should be runnable on more than one thread to decrease time taken to form a solution

Executable JAR file

- A runnable JAR file containing the project solution

Implementation of most efficient algorithm - Creation of a system which uses the best algorithm to solve the project problem.

Improve efficiency -Decrease the time taken for a generated solution as much as possible.

Minimise error frequency &

severity - Fix all possible instances of errors within the system.

Correct Output file -

The system should produce the correct syntax

TestIng

Test cases -

construct and
execute test cases
which test whether or
not the system runs
in the correct state

Solution compatible with Linux - Solution must work on the Linux OS

Solution compatible with windows -Solution must work on the Windows OS Management

Documentation and Wiki - Updating the
Changelog, Notes,
and Wiki on Github

Presentation - The presentations which must be done in lectures as an update on our progress

Report - Writing the report which comes at the end of the project.

Interview Presenting the
current state of the

Network Diagram

The Network Diagram is a flow chart which provides an overview of functional dependencies between tasks, outlining the chronological order of tasks as well as groups of tasks which can be completed concurrently. The tasks in the diagram are extracted from the WBS diagram and their dependencies are analyzed to chronologically order them. The individual tasks are colour-coded according to the section it originated from. This diagram makes task scheduling easier and enables us to quickly gauge when parallelization of our tasks may be used. This will help to ensure we are completing the project as efficiently as possible.

Gantt Chart

The Gantt Chart is a representation of the amount of time and resources needed to complete each task. This diagram is a natural extension of the Network Diagram, as it contains not only the functional dependencies of tasks, but also the estimates of the resources and time which need to be dedicated for each task. The existence of this diagram is therefore crucial for a structured execution of the project in accordance to the waterfall model. This model will also play a major role in the time management of the project, helping outline exactly when each task should be finished.

GANTT CHART

TASK NAME	CTART DATE	TAID DATE	DURATION (DAYS)	TEAM	PERCENT		W	/EEK	1			WEEK	2			W	EEK 3		WEEK 4						WEEK 5					WEEK 6			
	START DATE	END DATE		MEMBER	COMPLETE	M	Т	W	Th	F	M	T W	Th	F	M	Т	W	Th	F	M	T V	/ Th	ı F		M	T V	N .	Th I	F	M	T V	/ T	n
Planning																																	
Requirements	23/7	24/7	1	Everyone	100%													<u>-</u>															
Brainstorm of Workflow	23/7	24/7	1	Everyone	100%																												
Catergorisation of Tasks	23/7	24/7	1	Everyone	100%											<u>†</u>																	
Time Estimates for Tasks	24/7	25/7	1	Everyone	100%											·····																	
Work Breakdown Structure	24/7	25/7	1	Everyone	100%											·····		i															
Network Diagram based on WBS	24/7	25/7	1	Everyone	100%																												
Gantt Chart	24/7	26/7	2	Everyone	100%													i															
UML Diagram	25/7	29/7	4	Everyone	100%																												
Heuristics for implementable algorithms	25/7	9/8	11	Everyone	15.00%																												
Coding															, ,																		
Workable Input Processing	26/7	29/7	3	David Dalton	100%																												
	20/7	04/7		Brian Raghav	00/																												
Correct output file	29/7	31/7	2	Magnus	0%	-			<u> </u>									<u>i</u>															
Various implementations of algorithms	30/7	7/8	6	David Brian Magnus	0%																												
various implementations of algorithms	30/7	7/0		Dalton	070	-												<u>i</u>															
Multithreaded code	30/7	7/8	6	Raghav	0%																												
Working prototype	7/8	8/8	1	Everyone	0%	1											-																
Estimate of execution time	8/8	9/8	1	Everyone	0%	1																											
Implementation of most efficient	,	· · ·		David Brian		1																											
algorithm	9/8	19/8	6	Magnus	0%																												
				Dalton																													
Implementation of visualisation system	9/8	20/8	7	Raghav	0%																												
				David																													
Improve efficiency	20/8	22/8	2	Magnus	0%													<u> </u>															
Minimise errorfrequency & severity	22/8	23/8	1	Dalton Raghav	0%																												
Executable JAR file	22/8	23/8	1	Everyone	0%	-												<u>i</u>									٠,						
Executable JAN IIIe	22/0	23/0		Lveryone	070	1	İİ.		<u>i</u>		<u>i</u>				L	<u>i</u>		<u>i</u>												<u>i</u>			
Testing																																	
Test Cases	8/8	20/8	7	Brian	0%																												
Solution compatible with Windows	21/8	23/8	2	Everyone	0%	-										-																	
Solution compatible with Linux	21/8	23/8	2	Everyone	0%																												
Management																																	
Presentation 1	2/8	6/8	4	Everyone	0%											<u> </u>												<u> </u>					
Interview & feedback 1	12/8	13/8	1	Everyone	0%											<u> </u>												<u> </u>					
Presentation 2	19/8	20/8	1	Everyone	0%											<u> </u>																	
Interview & feedback 2	26/8	27/8	1	Everyone	0%											<u>l</u>																	
Report	26/8	30/8	4	Everyone	0%																												