Proof. By property (T), we have $\varphi(x,x) = \beta + \epsilon \overline{\beta}$ for some $\beta \in K$. For any $y \in U$, since φ is ϵ -Hermitian, $\varphi(y,x) = \epsilon \overline{\varphi(x,y)}$, and since U is totally isotropic $\varphi(y,y) = 0$, so we have

$$\varphi(x+y,x+y) = \varphi(x,x) + \varphi(x,y) + \varphi(y,x) + \varphi(y,y)$$
$$= \beta + \epsilon \overline{\beta} + \varphi(x,y) + \epsilon \overline{\varphi(x,y)}$$
$$= \beta + \varphi(x,y) + \epsilon \overline{(\beta + \varphi(x,y))}.$$

Since x is not orthogonal to U, the function $y \mapsto \varphi(x,y) + \beta$ is not the constant function. Consequently, this function takes the value α for some $y \in U$, which proves the lemma. \square

Definition 29.18. Let φ be an ϵ -Hermitian form on E. A weak Witt decomposition of E is a triple (U, U', W), such that

- (i) $E = U \oplus U' \oplus W$ (a direct sum).
- (ii) U and U' are totally isotropic.
- (iii) W is nondegenerate and orthogonal to $U \oplus U'$.

We say that a weak Witt decomposition (U, U', W) is nontrivial if $U \neq (0)$ and $U' \neq (0)$. Furthermore, if E is finite-dimensional, then $\dim(U) = \dim(U')$ and in a suitable basis, the matrix representing φ is of the form

$$\begin{pmatrix} 0 & A & 0 \\ \epsilon \overline{A} & 0 & 0 \\ 0 & 0 & B \end{pmatrix}$$

We say that φ is a *neutral form* if it is nondegenerate, E is finite-dimensional, and if W = (0). In this case, the matrix B is missing.

A Witt decomposition for which W has no nonzero isotropic vectors (W is anisotropic) is called a Witt decomposition.

Observe that if Φ is nondegenerate, then we have the trivial weak Witt decomposition obtained by letting U = U' = (0) and W = E. Thus a weak Witt decomposition is informative only if E is not anisotropic (there is some nonzero isotropic vector, *i.e.* some $u \neq 0$ such that $\Phi(u) = 0$), in which case the most informative nontrivial weak Witt decompositions are those for which W is anisotropic and U and U' are as big as possible.

Sometimes, we use the notation $U_1 \stackrel{\perp}{\oplus} U_2$ to indicate that in a direct sum $U_1 \oplus U_2$, the subspaces U_1 and U_2 are orthogonal. Then, in Definition 29.18, we can write that $E = (U \oplus U') \stackrel{\perp}{\oplus} W$.

The first step in showing the existence of a Witt decomposition is this.