6.215/6.255J/15.093J/IDS.200J Optimization Methods

Lecture 10: Network Optimization II

October 12, 2021

Today's Lecture

Outline

- Network (linear) optimization: Key facts
- Network simplex method for the uncapacitated min cost flow problem
 - a combinatorial view
 - an algebraic view

Network (linear) optimization

What is so special about it?

- Networks and associated optimization problems constitute reoccurring structures in many real-world applications.
- The network structure often leads to additional insight and improved understanding.
- Given integer data, the standard models have integer optimal solutions.
- The network structure enables more efficient algorithms.

Today: The network simplex method: a tailored simplex algorithm

Network (linear) optimization

An algorithmic comparison

Min-cost flow problem running times:

Algorithm	Running Time (sec)	# Iterations	
Standard Simplex	334.59	42759	
Network Simplex	7.37	23306	
Ratio	2.2 %	54 %	

Average over 5 random instances with 10,000 nodes and 25,000 arcs each.

Applied to the uncapacitated min-cost flow problem

- Connected directed graph G = (N, A).
- Arc costs $c: A \to \mathcal{Z}$.
- Node balances $b: N \to \mathcal{Z}$.
- Assume $\sum_{i \in N} b_i = 0$.

min
$$\sum_{(i,j)\in A} c_{ij}x_{ij}$$
 s.t.
$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = b_i \quad \text{for all } i\in N$$

$$x_{ij} \geq 0 \quad \text{for all } (i,j)\in A$$

A combinatorial view - tree solutions

• **Definition:** A flow x is called a tree solution if there is a spanning tree of the network (when arc directions are ignored) and every arc not in the spanning tree has flow 0. If resulting flow x > 0, it is called a feasible tree solution.

A combinatorial view - tree solutions

tree flow computation, I

A combinatorial view - tree solutions

tree flow computation, II

A combinatorial view - tree solutions

tree flow computation, III

A combinatorial view - tree solutions

tree flow computation, IV

A combinatorial view - tree solutions

tree flow computation, V

A combinatorial view - tree solutions

• tree flow computation, VI

ullet \Rightarrow a feasible tree solution

A combinatorial view - tree solutions

Tree solution vs. Spanning tree

- Given a spanning tree, we obtain a unique tree solution associated with it.
- Every tree solution has at least a corresponding spanning tree (perhaps more).
 Example: The following tree solution flow x has two possible spanning trees:

A combinatorial view - tree solutions

Theorem

If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

- consider a flow solution which is not a tree ⇒ there exists a circulation
- change the flow only on the cycle
- circulating ...

A combinatorial view - tree solutions

Theorem

If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

- consider a flow solution which is not a tree ⇒ there exists a circulation
- change the flow only on the cycle
- \bullet circulating one unit of flow clockwise on the cycle \Rightarrow cost decreases by 4

A combinatorial view - tree solutions

Theorem

If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

- consider a flow solution which is not a tree ⇒ there exists a circulation
- change the flow only on the cycle
- circulating two units of flow clockwise on the cycle \Rightarrow cost decreases by 8

A combinatorial view - tree solutions

Theorem

If the objective function is bounded from below, a min-cost flow problem always has an optimal tree solution.

cost c flow x

circulating two units of flow clockwise on the cycle \Rightarrow cost decreases by 8

A combinatorial view - tree solutions and node potentials

Optimality conditions:

Theorem

A feasible tree solution associated with a tree T is optimal if, for some choice of node potentials p_i ,

Proof sketch:

- $\min \sum_{(i,j)\in A} c_{ij} x_{ij}$ is equivalent to $\min \sum_{(i,j)\in A} \overline{c}_{ij} x_{ij}$.
- $\min \sum_{(i,j) \in A} \overline{c}_{ij} x_{ij}$ is equivalent to $\min \sum_{(i,j) \in A \setminus T} \overline{c}_{ij} x_{ij}$.
- ... conclude (how?)

A combinatorial view - tree solutions and node potentials

- the potentials associated to a spanning tree T can be computed easily from $c_{ij} = p_i p_j$ for all $(i, j) \in T$:
- graphical way of computing, starting with the "root node" of the tree (in the example below node 1) setting its potential to 0 (in the example $p_1 = 0$):

A combinatorial view - tree solutions and node potentials

- the potentials associated to a spanning tree T can be computed easily from $c_{ij} = p_i p_j$ for all $(i, j) \in T$:
- graphical way of computing, starting with the "root node" of the tree (in the example below node 1) setting its potential to 0 (in the example $p_1 = 0$):

A combinatorial view - tree solutions and node potentials

- the potentials associated to a spanning tree T can be computed easily from $c_{ij} = p_i p_j$ for all $(i, j) \in T$:
- graphical way of computing, starting with the "root node" of the tree (in the example below node 1) setting its potential to 0 (in the example $p_1 = 0$):

A combinatorial view - tree solutions and node potentials

- the potentials associated to a spanning tree T can be computed easily from $c_{ij} = p_i p_j$ for all $(i, j) \in T$:
- graphical way of computing, starting with the "root node" of the tree (in the example below node 1) setting its potential to 0 (in the example $p_1 = 0$):

A combinatorial view - tree solutions and node potentials

- the potentials associated to a spanning tree T can be computed easily from $c_{ij} = p_i p_j$ for all $(i, j) \in T$:
- graphical way of computing, starting with the "root node" of the tree (in the example below node 1) setting its potential to 0 (in the example $p_1 = 0$):

A combinatorial view - tree solutions and node potentials

- the potentials associated to a spanning tree T can be computed easily from $c_{ij} = p_i p_j$ for all $(i, j) \in T$:
- graphical way of computing, starting with the "root node" of the tree (in the example below node 1) setting its potential to 0 (in the example $p_1 = 0$):

A combinatorial view - tree solutions and node potentials

- the potentials associated to a spanning tree T can be computed easily from $c_{ij} = p_i p_j$ for all $(i, j) \in T$:
- graphical way of computing, starting with the "root node" of the tree (in the example below node 1) setting its potential to 0 (in the example $p_1 = 0$):

A combinatorial view - tree solutions and node potentials

Computing modified costs:

• the modified costs $\overline{c}_{ij} = c_{ij} - p_i + p_j$ for all (i,j) can then be easily inferred:

 \bullet note that $\overline{c}_{56} < 0$ so the current tree solution is not optimal

A combinatorial view - tree solutions

Updating the tree solution:

- Bring the arc (5,6) with modified cost $\overline{c}_{56} = -3$ into a new tree solution and remove one of the arcs from the current tree solution in the created cycle.
- How? By increasing x_{56} from 0 as much as possible while circulating flow on the created cycle (here 3 units counter-clockwise, bringing x_{53} to zero).

Overview of the algorithm

- **①** Determine an initial feasible tree T. Compute flow x and node potentials p associated with T.
- 2 Calculate $\overline{c}_{ij} = c_{ij} p_i + p_j$ for $(i, j) \notin T$.
 - If $\overline{c} \geq 0$, x optimal; stop.
 - Select (i,j) with $\overline{c}_{ij} < 0$.
- **3** Add (i,j) to T creating a unique cycle C. Send a maximum flow around C while maintaining feasibility. Suppose the exiting arc is (k,ℓ) .
- $\bullet \ T := (T \setminus (k,\ell)) \cup (i,j). \ \mathsf{Repeat}.$

Integrality

Our reasoning has two important and far-reaching implications:

- There always exists an integer optimal flow (if node balances b_i are integer).
- There always exist optimal integer node potentials (if arc costs c_{ij} are integer).

The algebraic view

- Bases and tree solutions.
- Dual variables and node potentials.
- Changing bases and updating tree solutions.
- Optimality testing.

The Simplex Algorithm

A reminder

Assume a linear optimization problem in standard form with an optimal solution:

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

The algorithm:

- **3** Start with a feasible basis $\mathbf{B} = [\mathbf{A}_{B(1)}, \dots, \mathbf{A}_{B(m)}]$ and a BFS $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$.
- ② Compute $\mathbf{p}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$, $\overline{c}_j = c_j \mathbf{p}^T \mathbf{A}_j$ for all j. • If $\overline{c}_i \ge 0$ for all j; \mathbf{x} optimal; Stop; Else select $j : \overline{c}_i < 0$.
- **3** Compute search direction $\mathbf{u} = \mathbf{B}^{-1} \mathbf{A}_j$.
 - If $\mathbf{u} \leq 0 \Rightarrow \text{cost unbounded}$; Stop.
- $\theta^* = \min_{1 \le i \le m, u_i > 0} \frac{x_{B(i)}}{u_i} \doteq \frac{x_{B(\ell)}}{u_\ell}$
- **5** Form a new basis \overline{B} by replacing $A_{B(\ell)}$ with A_j .
- Values of new basic variables: $y_j = \theta^*$, $y_{B(i)} = x_{B(i)} \theta^*_u_i$, $i \neq \ell$.

Compact formulation of the uncapacitated min-cost flow problem

Let $\mathbf{x} = (x_{ij})_{(i,j) \in A}$ the flow through the network.

Compact linear optimization formulation:

min
$$c^T x$$

s.t. $Ax = b$
 $x \ge 0$

where \boldsymbol{A} is node-arc incidence matrix of the graph G.

Compact formulation - node-arc incidence matrix

Node-arc incidence matrix A:

Rows of **A** are linearly dependent ... it has rank n-1 ... can ignore the last row, say

27 / 34

The algebraic view - bases vs. tree solutions

Let \boldsymbol{B} be the corresponding matrix. It is a basis:

	(1, 2)	(2,6)	(3, 2)	(4, 3)	(5, 3)	(7, 1)
1	+1	0	0	0	0	-1
2	-1	+1	-1	0	0	0
3	0	0	+1	-1	-1	0
4	0	0	0	+1	0	0
5	0	0	0	0	+1	0
6	0	-1	0	0	0	0
7	0	0	0	0	0	+1

The algebraic view - bases vs. tree solutions

Let **B** be the corresponding basic matrix, permuting rows:

	(1, 2)	(2,6)	(3, 2)	(4, 3)	(5,3)	(7, 1)
4	Ó	0	0	+1	0	0
5	0	0	0	0	+1	0
6	0	-1	0	0	0	0
7	0	0	0	0	0	+1
3	0	0	+1	-1	-1	0
2	-1	+1	-1	0	0	0
1	+1	0	0	0	0	-1

The algebraic view - bases vs. tree solutions

Let B be the corresponding basic matrix, permuting columns:

	(4, 3)	(5, 3)	(2, 6)	(7, 1)	(3, 2)	(1, 2)
4	+1	0	0	0	Ó	0
5	0	+1	0	0	0	0
6	0	0	-1	0	0	0
7	0	0	0	+1	0	0
3	-1	-1	0	0	+1	0
2	0	0	+1	0	-1	-1
1	0	0	0	-1	0	+1

 \Rightarrow lower triangular matrix! ... can solve $B^{-1}b$ efficiently using back substitution.

The algebraic view - bases vs. tree solutions

In conclusion:

Theorem

Every tree solution defines a basis, and conversely, one can show that every basis defines a tree solution.

The algebraic view - dual variables vs. node potentials

Remember, the simplex algorithm computes the dual variables \boldsymbol{p} as the solution to $\boldsymbol{p}^T \boldsymbol{B} = \boldsymbol{c}_B^T$.

$$[p_4, p_5, p_6, p_7, p_3, p_2] \begin{bmatrix} +1 & 0 & 0 & 0 & 0 & 0 \\ 0 & +1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & +1 & 0 & 0 \\ -1 & -1 & 0 & 0 & +1 & 0 \\ 0 & 0 & +1 & 0 & -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} c_{43}, c_{53}, c_{26}, c_{71}, c_{32}, c_{12} \end{bmatrix}$$

Hence, $p_2 = -c_{12}$, $p_3 = c_{32} + p_2$, $p_7 = c_{71}$, ...

6.255J © 2021 (MIT)

The algebraic view - reduced costs vs. modified costs

Remember, the simplex algorithm computes the reduced costs \overline{c} as $\overline{c}_{ij} = c_{ij} - \mathbf{p}^T \mathbf{A}_{ij}$.

Therefore, $\overline{c}_{ij} = c_{ij} - p_i + p_j$.

Note: The optimality conditions on the modified costs given by our previous theorem (repeated below) is nothing else than the complementary slackness conditions for linear optimization

Summary

- The network simplex algorithm is extremely fast in practice.
- Relying on network data structures, rather than matrix algebra, causes the speedups. It leads to simple rules for selecting the entering and exiting variables.
- Running time per pivot:
 - arcs scanned to identify an entering arc,
 - arcs scanned of the basic cycle,
 - nodes of the subtree.
- A good pivot rule can dramatically reduce running time in practice.