EXAMEN DE ÁLGEBRA

GRADO EN INGENIERÍA INFORMÁTICA CONVOCATORIA EXTRAORDINARIA. CURSO 2013-14

Nombre:		DNI:	GRUPO: G. DE	PRÁCTICAS:
EVALUACIÓN CONTINUA	□ SÍ.	☐ Polinomios. Nota:	PRÁCTICAS	□ Apto. Nota:
	□ NO	☐ El grupo simétrico. Nota:		□ No apto
		☐ Teoría de grafos. Nota:		

1. (10 puntos) Dado el polinomio

$$p(x) = -4x + 12x^2 - 4x^3 + 12x^4$$

Factorizarlo y calcular sus raíces en $\mathbb{Z}[x]$, $\mathbb{Q}[x]$, $\mathbb{C}[x]$, $\mathbb{Z}_5[x]$ y $\mathbb{Z}_7[x]$.

2. (10 puntos) Consideremos el grupo de los números reales, $x_0 \in \mathbb{R}$, fijo y el subconjunto

$$H=\{ax_0:a\in\mathbb{R}\}$$

- a. Demostrar que H es subgrupo de R.
- b. ¿Es H un subgrupo propio de R? Razonar la respuesta.
- c. ¿Es H un subgrupo de ℤ? Razonar la respuesta.
- **3.** (10 puntos) Consideramos el grafo $K_{1,3}$. Se pide:
 - a. Calcular una representación gráfica y su matriz de incidencia
 - b. ¿Es bipartito completo? ¿Es de Hamilton? ¿Es completo? ¿Es árbol?
- **4.** (15 puntos). Sea $V = M_2(\mathbb{R})$ el espacio vectorial euclídeo cuyo producto escalar es:

$$\langle A, B \rangle = tr(AB^t)$$

- y U el conjunto de las matrices simétricas.
 - a. Demostrar que U es subespacio vectorial de V.
 - b. Calcular dimensión, una base B de U, sus ecuaciones paramétricas e implícitas.
 - c. Calcular el ángulo que forman los vectores $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ y $\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$
 - d. Definimos el subespacio

$$U^{\perp} = \{ A \in V \mid \langle A, X \rangle = 0, \forall X \in B \}$$

- i. Calcular dimensión, una base, B^{\perp} , de U^{\perp} , sus ecuaciones paramétricas e implícitas.
- ii. ¿Es $B^{\perp} \cup B$ una base de V?
- **5.** (15 puntos) Sea $f: P_5(\mathbb{Z}_3) \to P_5(\mathbb{Z}_3)$ la aplicación dada por:

$$f(p(x)) = 2p(x)$$

- a) Demostrar que f es lineal
- b) Calcular la expresión matricial de f respecto de la base canónica.
- c) ¿Es f un isomorfismo? Razonar la respuesta
- d) Estudiar si f es diagonalizable por semejanza.