Állóhullámok vizsgálata

Mérést végezte: Méhes Máté Mérés időpontja: 2018.10.12. Leadás időpontja: 2018.10.19.

A mérés célja

Az állóhullámok vizsgálatánál az első kísérlet során egy fonál sajátfrekvenciáit mérem és ezekből terjedési sebességet fogom az alapösszefüggések segítségével kiszámolni.

A második kísérletben a terjedési sebesség anyagi függését vizsgálom, azaz a kötél egységnyi hosszára jutó tömegét.

Mérőeszközök

- súlyok (20g)
- egy db 50g-os súly
- szinuszos vibrátor
- vékony kötél
- vastag kötél
- állócsigamérőszalag

Mért adatok

Terjedési sebesség meghatározása

L [cm]	
145,5	

n	f [Hz]	Δf [Hz]
2	10,8	0,2
3	15,7	0,2
4	24,2	0,2
5	25,8	0,2
6	30,7	0,2

A terjedési sebesség anyagi minőségtől való függése

Referencia kötél		
L [m]	m [g]	
4	0,8	

Csomópontok száma*:	
2	

^{*}A végpontok nem értendőek bele a csomópontokba

m [a]		f [Hz]	
m [g]	1.	2.	3.
50	51,7	51,6	51,8
70	61,0	60,9	61,1
90	69,3	69,2	69,4
110	77,0	77,1	76,9
130	83,6	83,5	83,4
150	89,9	89,6	89,7
170	95,6	95,7	95,8

g [m/s²] 9,81

Mérések kiértékelése

Az első mérés során a vastagabb fonál egyik végét az állócsigán átvetettem és 90g-os súlyt akasztottam rá, a másik végét pedig a szinuszos vibrátorhoz rögzítettem. A vibrátoron a frekvencia finomhangolásával megkerestem először az első csomóponthoz tartozó, azaz két félhullámhosszból álló (n=2) állóhullámot. A frekvenciát lejegyeztem, majd tovább folytattam az állóhullám keresést egészen n=6-ig. Ezekkel az adatokkal ki tudjuk számolni a terjedési sebességet, a következő összefüggések alapján.

$$\frac{2*L}{n} = \lambda_n \text{ és } v = f_n \cdot \lambda_n$$

L a kötél hossza, n a félhullámhossz szám, λ a hullámhossz és f a frekvencia, v pedig a hullám terjedési sebessége. Így az alábbi táblázatot kapjuk. Fontos, hogy az emberi szem számára a közeli frekvenciákhoz tartozó állóhullámok megkülönböztetése nehézkes, ezért a mért értékekhez tartozik egy +0.2 és -0.2 korrekciós tényező. Én az intervallumon vett középértékekkel számoltam.

n	λ[m]	v[m/s]
2	1,455	15,714
3	0,97	15,229
4	0,7275	17,6055
5	0,582	15,0156
6	0,485	14,8895

Most nézzük meg, hogy sikerült-e igazolni számítással a várható frekvencia arányokat. A várható arányok a képlet alapján: $\frac{n_n}{n_{n+1}} = \frac{f_n}{f_{n+1}}$

n	Számított (f _n /f _{n+1})	Várt(f _n /f _{n+1})
2	0,6878980892	0,6666666667
3	0,6487603306	0,75
4	0,9379844961	0,8
5	0,8403908795	0,8333333333
6		

A második mérés során a vékonyabb kötelet használom. Egyik végét a csigán átvetem a másikat pedig a vibrátorhoz rögzítem. A kötél szabad végére 50g-os súlyt helyezek és megkeresem azt a frekvenciát, ahol 3 félhullámhosszt (n=3) látok, majd felírom ezt a frekvenciát. További 20g-os súlyok adagolásával keresem azt a frekvenciát amivel n=3 állóhullám alakul ki, egészen 170g-ig. Minden mérést háromszor végzek el, mivel az emberi szem számári nehéz megállapítani a sajátfrekvenciákat. A hullám terjedési sebessége függ az anyagi minőségtől:

$$v = \sqrt{\frac{F}{\rho \cdot A}}$$
 Az $F = \text{mg}$, ahol g a gravitációs állandó, ρ a kötél sűrűsége, A pedig a keresztmetszet. Vezessük be az egységnyi hosszúság tömegére: $\mu = \rho A$

Az eddigi összefüggéseket felhasználva a következő egyenletre jutunk: $f^2 = \frac{n^2 \cdot g}{4 \cdot L^2 \cdot \mu} \cdot m$.

Ábrázoljuk az egyenes meredekségét, amiből ki tudjuk számítani a hosszmenti tömegsűrűséget.

A frekvencia négyzet a tömeg függvényében

A hosszmenti tömegsűrűség meghatározása a kötél alapadataiból μ_1 = m/L és az előbb ábrázolt meredekségből μ_2 .

$\mu_{\scriptscriptstyle 1}$	μ_{2}
0,0002	0,00019276

Diszkusszió

- Az első méréssel sikerült viszonylag jól meghatározni a frekvenciákat. Ugyan a számított és az egyes várt értékek között nagy az eltérés, igaz ebbe beletartozik az, hogy a szinuszos vibrátorral csak egy tizedesjegyig lehet beállítani a frekvenciát és még az eltérések, amik az emberi szemnek nem feltűnőek, is beleszámítanak. Ezzel sikerült az állóhullám sebességére vonatkozó képletet igazolni.
- A második mérésem már láthatóan sokkal jobban sikerült mint az első, itt az anyagi minőségtől való függés, a lineáris sűrűség csekély eltérést mutat. Az állóhullám sebességének anyagi minőségétől függő képleteit ezzel igazoltam.