向量

Sirui Liu

2023 年 5 月 11 日

- 1. 若 \vec{a} 、 \vec{b} 、 \vec{c} 两两所成角相等, $|\vec{a}|=|\vec{b}|=1, |\vec{c}|=2$,求 $|\vec{a}+\vec{b}+\vec{c}|$
- 2. 已知 P 是边长为 3 的等边三角形 ABC 外接圆上的动点, 则 $|\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC}|$ 的最大值为
- 3. 向量 \overrightarrow{MA} , \overrightarrow{MB} 满足 $|\overrightarrow{MA}|^2 + |\overrightarrow{MB}| = 4$, 且 $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$, 若 $\overrightarrow{MC} = \frac{1}{3}\overrightarrow{MA} + \frac{2}{3}\overrightarrow{MB}$, 则 $|\overrightarrow{MC}|$ 的最小值为
- 4. 在平面上, $\overrightarrow{AB_1} \perp \overrightarrow{AB_2}$, $\left|\overrightarrow{OB_1}\right| = \left|\overrightarrow{OB_2}\right| = 1$, $\overrightarrow{AP} = \overrightarrow{AB_1} + \overrightarrow{AB_2}$, 若 $|\overrightarrow{OP}| < \frac{1}{2}$, 则 $|\overrightarrow{OA}|$ 的取 值范围是()
- A. $\left[0, \frac{\sqrt{5}}{2}\right]$ B. $\left[\frac{\sqrt{5}}{2}, \frac{\sqrt{7}}{2}\right]$ C. $\left[\frac{\sqrt{5}}{2}, \sqrt{2}\right]$ D. $\left(\frac{\sqrt{7}}{2}, \sqrt{2}\right]$
- 5. \vec{a} , \vec{b} , \vec{c} 满足 $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, 且 $\vec{b} \cdot \vec{c} = 0$, 则 $|\vec{a} + \lambda \vec{b} + (1 \lambda)\vec{c}| (0 \le \lambda \le 1)$ 的取值范围 为
 - 6. 已知 $\vec{a} = x\vec{b} + y\vec{c}(x, y \in R), |\vec{a}| = |\vec{b}| = 2|\vec{c}| = 2, \vec{c} \cdot (\vec{a} + \vec{b}) = \vec{a} \cdot \vec{b} + 1, 则 |\vec{a} \vec{b}|$ 的取值范围是
- 7. 在平面内, 定点 A,B,C,D 满足 $|\overrightarrow{DA}| = |\overrightarrow{DB}| = |\overrightarrow{DC}|, \overrightarrow{DA} \cdot \overrightarrow{DB} = \overrightarrow{DB} \cdot \overrightarrow{DC} = \overrightarrow{DC} \cdot \overrightarrow{DA} = -2$, 动点 P,M 满足 $|\overrightarrow{AP}| = 1, \overrightarrow{PM} = \overrightarrow{MC}$, 则 \overrightarrow{BM}^2 的最大值是 () A. $\frac{43}{4}$ B. $\frac{49}{4}$ C. $\frac{37+6\sqrt{3}}{4}$ D. $\frac{37+2\sqrt{33}}{4}$

- 8. 已知 \vec{m} , \vec{n} 是两个非零向量, $|\vec{m}| = 1$, $|\vec{m} + 2\vec{n}| = 3$, 则 $|\vec{m} + \vec{n}| + 2|\vec{n}|$ 的最大值为 ()
- A. $\sqrt{5}$
- B. $\sqrt{10}$
- C. 5
- D. 10
- 9. 如图, 在矩形 ABCD 中, AB = 2BC = 2, 动点 M 在以 点 C 为圆心且与 BD 相切的圆上, 则 $\overrightarrow{AM} \cdot \overrightarrow{BD}$ 的最大值 是()
- A. -1
- B. 5
- C. $-3 + \sqrt{5}$
- D. $3 + \sqrt{5}$

CHEATING LIST¹

$$\overrightarrow{AB} + \overrightarrow{AC} = 2\overrightarrow{AO} \quad (\overrightarrow{OB} + \overrightarrow{OC} = 0)$$
 (1)

$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 3\overrightarrow{PO}$$
 (O为三角形重心) (2)

$$\lambda \overrightarrow{AB} + (1 - \lambda) \overrightarrow{AC} = \overrightarrow{AO} \Rightarrow B, C, O共线$$
 (3)

$$\cos\left\langle \overrightarrow{AB}, \overrightarrow{AC} \right\rangle = \frac{\overrightarrow{AB} \cdot \overrightarrow{AC}}{\left| \overrightarrow{AB} \right| \left| \overrightarrow{AC} \right|} \tag{4}$$

$$\overrightarrow{PA} \cdot \overrightarrow{PB} = \overrightarrow{PB} \cdot \overrightarrow{PC} = \overrightarrow{PC} \cdot \overrightarrow{PA} \Rightarrow P$$
为三角形垂心 (5)

关于向量的结论还有很多,其中Eq(1)和Eq(3)是极值问题中最重要的结论,窃以为这些暂时够用了,以后遇到我们再补充()

对于这些最最基本的结论, 要求大概知道怎么证明吧

¹外心与内心的结论不常用, 我没有写