

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁴ : C07K 7/04, A23J 1/14 A61K 35/78, C12N 15/00, 9/12 C07H 15/12	A1	(11) International Publication Number: WO 87/ 02987 (43) International Publication Date: 21 May 1987 (21.05.87)
---	----	--

(21) International Application Number: PCT/US86/02444

Published
With international search report.

(22) International Filing Date: 13 November 1986 (13.11.86)

(31) Priority Application Number: 798,163

(32) Priority Date: 13 November 1985 (13.11.85)

(33) Priority Country: US

(71)(72) Applicant and Inventor: MURPHY, John, R. [US/US]; 32 Fifer Lane, Lexington, MA 02173 (US).

(74) Agent: CLARK, Paul, T.; Fish & Richardson, One Financial Center, Boston, MA 02111 (US).

(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), NO, SE (European patent).

(54) Title: CYS CODON-MODIFIED DNA

pABC1508

(57) Abstract

A DNA sequence encoding a fragment of a toxin molecule which is large enough to exhibit cytotoxic activity and small enough to fail to exhibit generalized eucaryotic cell binding, the DNA sequence including a non-naturally occurring cysteine codon.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT Austria	FR France	ML Mali
AU Australia	GA Gabon	MR Mauritania
BB Barbados	GB United Kingdom	MW Malawi
BE Belgium	HU Hungary	NL Netherlands
BG Bulgaria	IT Italy	NO Norway
BJ Benin	JP Japan	RO Romania
BR Brazil	KP Democratic People's Republic of Korea	SD Sudan
CF Central African Republic	KR Republic of Korea	SE Sweden
CG Congo	LI Liechtenstein	SN Senegal
CH Switzerland	LK Sri Lanka	SU Soviet Union
CM Cameroon	LU Luxembourg	TD Chad
DE Germany, Federal Republic of	MC Monaco	TG Togo
DK Denmark	MG Madagascar	US United States of America
FI Finland		

1
CYS CODON-MODIFIED DNABackground of the Invention

This invention was made in part with government funding, and the government has certain rights in the invention.

5 This invention relates to the use of recombinant DNA techniques to make analogs of toxin molecules, and to the use of such molecules to treat medical disorders.

The literature contains a number of examples of
10 hybrid molecules containing a specific binding ligand-portion and a toxin portion (e.g., ricin or diphtheria toxin); the ligand targets the toxin to an unwanted class of cells, sparing healthy cells, to which the ligand fails to bind.

15 For example, Bacha et al. U.S. Pat. No. 4,468,382 (hereby incorporated by reference) describes hybrid molecules made by derivatizing a neuropeptide hormone (e.g., thyrotropin releasing hormone) and an enzymically active fragment of diphtheria toxin using
20 sulfur-containing groups and then reacting the derivatized molecules to join them via a disulfide bond. One disadvantage of this approach is that the site of derivatization on both molecules cannot be precisely controlled, so that the final product is
25 heterogeneous, containing some molecules in which derivatization and coupling has impaired the toxicity or binding capacity of the hybrid molecule.

An approach which deals with this problem of heterogeneity is described in Murphy PCT International Publication No. WO/83/03971 (hereby incorporated by reference). The Murphy application describes hybrid proteins encoded by genes encoding both the toxin and

- 2 -

the specific binding portion of the hybrid protein. This approach, of course, can be used only for DNA-encoded peptide ligands.

Summary of the Invention

5 The present invention provides toxin molecules which can be linked to any specific-binding ligand, whether or not it is a peptide, at a position which is predeterminedly the same for every toxin molecule.

10 The invention generally features, in one aspect, a DNA sequence encoding a fragment of a toxin molecule which is large enough to exhibit cytotoxic activity and small enough to fail to exhibit generalized eucaryotic cell binding; the DNA sequence includes a non-naturally occurring cysteine codon, preferably located such that the fragment encoded by the DNA sequence, when linked to a cell-specific ligand via the cysteine residue encoded by the cysteine codon, exhibits cytotoxic enzymic activity.

20 In preferred embodiments, the toxin is diphtheria toxin, ricin, or abrin; the cysteine codon is introduced at the C-terminal-encoding end of the toxin-encoding DNA sequence or within 100 base pairs thereof; the ligand is a peptide hormone, a proteinaceous growth factor (preferably Interleukin I, Interleukin II, Interleukin III, or B-cell growth factor), an antibody, or a steroid hormone (e.g., estradiol).

25 In another aspect, the invention features a specific binding peptide ligand, and DNA sequences coding therefor, which can bind to any reactive sulfur group-containing toxin molecule in a predetermined and consistent manner. The DNA sequence of this aspect of the invention encodes a fragment of a ligand (preferably one of those listed above) which is large enough to

- 3 -

exhibit specific cell binding; the gene includes a non-naturally occurring cysteine codon, preferably located such that the fragment encoded by the DNA sequence, when linked to a toxin via the cysteine 5 residue encoded by the cysteine codon, exhibits specific cell binding.

The invention also features the hybrid molecules made using the Cys-modified toxins and ligands of the invention, as well as the methods for making such 10 hybrid molecules.

Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.

Description of the Preferred Embodiments

15 The drawings will first briefly be described.

Drawings

Fig. 1 is a partial restriction map of a DNA fragment of the invention, in plasmid pABC1508.

20 Fig. 2 is a diagrammatic representation of the diphtheria toxin molecule.

Fig. 3 is a restriction map showing the location and orientation of the diphtheria tox gene on the 3.9 BamH-I restriction fragment of corynephage beta tox.

25 Figs. 4-5 are diagrammatic representations of the steps involved in the construction of pABC1508.

Fig. 6 is a diagrammatic representation of a plasmid, pMSH53 containing α -MSH-encoding DNA.

30 Fig. 7 is the nucleotide sequence of the tox²²⁸ allele and flanking regions, with amino acid residues shown above nucleotides; the tox²²⁸ allele is the same as the wild-type tox allele except for several mutations, notably the presence on the tox²²⁸ allele

- 4 -

of an NruI site (Fig. 7 was adapted from Fig. 1 of Kaczorek et al. (1983) Science 221, 855).

Tox Gene

The tox gene, and the diphtheria toxin molecule it encodes, will now briefly be described.

Figs. 2 and 3, illustrate, respectively, the diphtheria toxin molecule and the diphtheria tox gene, located on the 3.9 kb BamHI restriction fragment of corynephage beta^{tox}. Fig. 7 gives the sequence of the tox 228 allele.

Referring to Fig. 2, the diphtheria toxin molecule consists of several functional "domains" which can be characterized, starting at the amino terminal end of the molecule, as a hydrophobic signal sequence; enzymically active Fragment A, the fourteen amino acid exposed protease sensitive disulfide loop (DSL) l_1 , containing a cleavage domain; Fragment B, which includes the lipid associating regions, e.g., a hydrophilic amphipathic domain and a hydrophobic domain; DSL l_2 ; and carboxy terminal end a. DSL l_1 contains three arginine residues; the Sau3AI site between Fragment A and Fragment B (see Fig. 3) is at a position on the diphtheria toxin gene corresponding to the arginine residue farthest downstream of the three.

The process by which diphtheria toxin intoxicates sensitive eukaryotic cells involves at least the following steps: (i) diphtheria toxin binds to specific receptors on the surface of a sensitive cell; (ii) while bound to its receptor, the toxin molecule is internalized in an endocytic vesicle; (iii) either prior to internalization, or within the endocytic vesicle, the toxin molecule may be cleaved (or processed) at a site in the region of 47,000 daltons from the N-terminal end; (iv) as the pH of the endocytic vesicle decreases to

- 5 -

below 5.5, the processed form of toxin, while still bound to its receptor, spontaneously inserts into the endosomal membrane; (v) once embedded in the membrane, the lipid associating regions form a pore; (vi) a proteolytic cleavage in L_1 , between Fragment A and B, occurs; (vii) thereafter, Fragment A, or a polypeptide containing Fragment A, is released into the cytosol; (viii) the catalytic activity of Fragment A, i.e., the nicotinamide adenine dinucleotide-dependent adenosine diphosphate ribosylation of Elongation Factor 2, causes the death of the intoxicated cell. It is apparent that a single molecule of Fragment A introduced into the cytosol is sufficient to kill a cell.

Modified Tox Gene

Referring to Fig. 1, there is shown the region of plasmid pABC1508 which encodes a peptide of the invention.

The DNA region shown in Fig. 1 includes the lambda P_R promoter (substituted for the promoter naturally associated with the tox gene); an ATG initiation site; a DNA sequence encoding enzymically active Fragment A of diphtheria toxin; a portion of the DNA region encoding Fragment B of diphtheria toxin; and a linker containing a Cys codon.

Referring to Figs. 1-3, the portion of the diphtheria tox gene used to make a DNA sequence of the invention includes the region encoding enzymically active Fragment A (and preferably the hydrophobic leader sequence preceding Fragment A), and a portion of the Fragment B-encoding region at least as long as that ending at the MspI site. As shown in Fig. 3, the Fragment A-encoding region (including the leader sequence) begins just downstream from a convenient Sau3AI site. The MspI site is the approximate location

- 6 -

of the end of the region of the tox gene which encodes cross reacting material 45 (CRM 45), described in Bacha et al., id. This portion of the diphtheria toxin molecule contains the lipid associating regions of
5 Fragment B, but does not contain l_2 , and is represented in Fig. 2 as the portion of Fragment B between y and z. The Fragment B-encoding region employed can end anywhere beyond MspI, up to the SphI site. If the SphI site is used, l_2 is included, and
10 the portion of Fragment B is that between y and x in Fig. 3. As previously mentioned, any region ending between MspI and SphI can be used; one example is the region ending at the position of NruI, which, like the region ending at MspI, encodes a Fragment which does not
15 contain l_2 . Any region shorter than one ending at MspI should not be used because such a fragment will not include enough of the transverse lipid associating region and thus not bring about pore formation, which is necessary for toxicity. Portions of Fragment B encoded
20 by regions ending downstream of SphI should not be used to avoid including the diphtheria toxin receptor binding domain. (NruI is not found on the wild-type tox allele, but only on the mutant tox²²⁸ allele, described in Kaczorek et al. (1983) Science 221, 855.)
25 In the illustrated DNA construct (Fig. 1) the Cys codon is located at the C-terminal end of the tox-encoding DNA sequence. This location ensures that the linker containing the Cys codon will not interfere with the enzymic activity of Fragment A. Other
30 locations in the molecule which are downstream from the Fragment A encoding region can also be used, i.e., the Cys codon-containing linker can be inserted anywhere in the Fragment B-encoding region.

- 7 -

Other toxins which are DNA- encoded amino acid chains can be used, in addition to diphtheria toxin; examples are ricin and the plant toxin abrin.

Ligands

5 The specific-binding ligands used in the invention can consist of an entire ligand, or a portion of a ligand which includes the entire binding domain of the ligand, or an effective portion of the binding domain. It is most desirable to include all or most of
10 the binding domain of the ligand molecule. In the case of alpha-MSH, a small peptide of thirteen amino acids, or beta-MSH, which contains seventeen amino acids, the portion of the molecule consisting of nine amino acids at the carboxy terminal end of the molecule, which
15 contains the receptor-specific binding domain, can be used, or, more preferably, the entire molecule can be used. It is most preferred that at least a portion of the ligand not involved in cell binding be included, so that derivatization can be carried out in this
20 nonbinding portion, minimizing the chance that derivatization will interfere with binding. For example, derivatization of alpha-MSH is preferably carried out at or near the N-terminal end of the molecule, because the C-terminal end contains the
25 specific binding domain.

The regions within cell-specific ligands in which the binding domain is located are now known for a number of such ligands. Furthermore, recent advances in solid phase polypeptide synthesis can enable those
30 skilled in this technology to determine the binding domain of practically any peptide ligand, by synthesizing various fragments of the ligand, and testing them for the ability to bind the class of cells to be killed.

- 8 -

The specific class of cells which are bound and killed by the hybrids of the invention is determined by the specific ligand which imparts the binding domain of the hybrid molecule. Any cell-specific ligand can be used which has a binding domain which is specific for a particular class of cells which are to be killed.

Polypeptide hormones are useful such ligands. Hybrid proteins made using alpha- or beta-MSH, for example, can selectively bind to melanocytes, rendering the hybrids useful in the treatment of primary melanoma and metastatic melanoma loci. Other specific-binding ligands which can be used include the proteinaceous growth factors interleukin I, interleukin II, interleukin III, and B-cell growth factor. Interleukin II is of particular importance because of its role in allergic reactions and autoimmune diseases such as Systemic Lupus Erythematosus (SLE), involving activated T cells. Hybrids made using B-cell growth factor can be used as immunosuppressant reagents which kill proliferating B-cells, which bear B-cell growth factor receptors, and which are involved in hypersensitivity reactions and organ rejection.

The other major class of specific binding proteins are antibodies. The antibodies most useful are those against tumors; such antibodies (generally monoclonal) are already well-known targeting agents used in conjunction with covalently bound cytotoxins. In the present invention, the anti-tumor antibodies (preferably not the whole antibody, but just the Fab portion) are those which recognize a surface determinant on the tumor cells and are internalized in those cells via receptor-mediated endocytosis; antibodies which are capped and shed will not be as effective.

Other useful polypeptide ligands having cell-specific binding domains are somotostatin, follicle

- 9 -

stimulating hormone (specific for ovarian cells); luteinizing hormone (specific for ovarian cells); thyroid stimulating hormone (specific for thyroid cells); vasopressin (specific for uterine cells, as well 5 as bladder and intestinal cells); prolactin (specific for breast cells); and growth hormone (specific for certain bones cells).

Peptide hormones must be derivatized with a sulfhydryl group reactive with the Cys of the toxin 10 molecule. This can be carried out by inserting a Cys codon-containing linker into an appropriate location in a DNA sequence encoding the hormone, in a manner analogous to that described below for the tox gene. Alternatively, a sulfhydryl group, either by itself or 15 as part of a Cys residue, can be introduced using solid phase peptide synthesis techniques. For example, the introduction of sulfhydryl groups into peptides is described in Hiskey (1981) Peptides 3, 137. Derivatization can also be carried out according to the 20 method described for the derivatization of the peptide hormone thyrotropin releasing hormone in Bacha et al. U.S. Pat. No. 4,468,382, id. Similarly, proteins can be derivatized at the DNA or protein chemistry level. The introduction of sulfhydryl groups into proteins is 25 described in Maasen et al. (1983) Eur. J. Biochem. 134, 2, 32.

The major class of non-peptide specific binding ligands useful in the invention are the steroid hormones. One example is estrogen and estrogen 30 derivatives such as estradiol; these are currently used in the treatment of prostate carcinoma and post-menopausal mammary carcinoma. Hybrids containing these hormones, or analogs thereof, can be used in the same or smaller dosages, to treat the same diseases.

- 10 -

The derivatization of steroid hormones can be carried out using standard techniques, such as those described in Ikagawa et al. (1981) J. Org. Chem. 46, 18, 3747. For example, the steroid hormone 17-beta-estradiol can 5 be derivatized, substituting an SH group for a hydroxyl group, to yield

Gene Construction

Generally, plasmids are manipulated according to standard techniques. Plasmid DNA is digested with 10 restriction endonucleases as recommended by the manufacturer (e.g., New England Biolabs, Beverly, Mass.). Restriction fragments are electrophoresed in 1% horizontal agarose gels for 30-60 minutes at 80-100 V in TBE (89 mM boric acid, 89 mM Trizma base [Sigma Chemical 15 Co., St. Louis, Mo.], 2.5 mM EDTA, pH 7.0) in the presence of 200 ng/ml ethidium bromide. Small DNA fragments are electrophoresed in 8% vertical polyacrylamide gels at 100 V for 2-5 hours, and stained with ethidium bromide. Gels are photographed on an 20 ultraviolet transilluminator on Polaroid type 667 film using a red filter.

Plasmid pABC508 was constructed by fusing two pieces of DNA, one encoding Fragment A, and the other encoding part of Fragment B, to which a Cys 25 codon-containing linker had been attached.

Referring to Fig. 4, this fusion was constructed from two plasmids, pDT201, which contains the fragment A-encoding region, and pDT301, which

- 11 -

contains most of the fragment B-encoding region of the diphtheria toxin gene. The construction of each of these pieces of DNA is described below.

Plasmid pDT301 was constructed by cutting out 5 of the tox allele a Sau3AI-1 sequence encoding all but the C-terminal 17 amino acids of Fragment B. This sequence, which carries the restriction endonuclease sites ClaI, MspI, and SphI, was inserted into the BamHI site of plasmid pUC8 (described in Viera et al. (1982) 10 Gene 19, 259) to yield pDT301. Plasmid pDT201 contains the Fragment A-encoding Sau3AI-2 sequence (Fig. 3) (see Leong et al. (1983) Science 220, 515). (pDT301 and pDT201, in E. coli, have been deposited in the American Type Culture Collection, Rockville, MD and given ATCC 15 Accession Nos., respectively, 39360 and 39359.

Applicant's licensee, Seragen, Inc., acknowledges its responsibility to replace these cultures should they die before the end of the term of a patent issued hereon, and its responsibility to notify the ATCC of the 20 issuance of such a patent, at which time the deposits will be made available to the public for a period of at least 30 years after the date of deposit. Until that time the deposits will be made available to the Commissioner of Patents under the terms of 37 CFR §1.14 25 and 35 USC §112.)

Still referring to Fig. 4, plasmid pDT301 was modified by the addition of a Cys codon-containing linker as follows. A synthetic linker was constructed on a controlled pore glass solid phase support in a 380A 30 DNA Synthesizer (Applied Biosystems, Inc., Foster City, CA) by hybridization of 21-mer and 29-mer oligonucleotides through a 21 bp homologous core, leaving a 4bp 1/2 SphI and 1/2 HindIII single-stranded sequence on each end. This linker has the sequence

- 12 -

The linker encodes three alanine residues, and contains a Cys codon (TGT) and a Stop codon (TAG). (This design not only allows for the expression of a Cys-containing peptide according to the present invention, but also 5 could allow for the insertion at the PstI site of a gene encoding a specific binding ligand.)

As shown in Fig. 4, pDT301 was digested with SphI and HindIII to remove the DNA region designed "E" in Fig. 4, and the Cys codon-containing linker was then 10 ligated into the plasmid at the SphI, HindIII sites to give plasmid pBC508. pBC508 was then cut with HindIII and Sau3AI to give Fragment 1.

Still referring to Fig. 4, plasmid pDT201 was digested with HindIII and the single-stranded ends 15 filled in with DNA polymerase I (Klenow fragment). The resulting blunt ends were ligated to the double-stranded EcoRI linkers CCTTAAGG (New GGAATTCC

England Biolabs, Beverly, MA) to give pDT201', which was 20 then cut with EcoRI and Sau3A to give Fragment 2.

Fragments 1 and 2 were mixed in equimolar concentrations ligated together, according to standard procedures, and the mixture was then digested with EcoRI and HindIII. The digested mixture was then ligated into 25 the EcoRI and HindIII digested pEMBL8 (Dente et al. (1983) Nucleic Acid Res. 11, 1645), which contains unique EcoRI and HindIII sites, to give pABC508. Plasmid pABC508 can be transformed into a suitable host, e.g., E. coli, as described below, to produce 30 Cys-modified toxin molecules.

- 13 -

Alternatively, the naturally occurring tox promoter can be replaced with a different promoter, as follows.

The lambda P_R promoter is contained in the expression vector pEMBL8ex3 (Dente et al., id). Referring to Fig. 5, the DNA sequence around the initiation site of the tox gene is shown, as are the corresponding amino acids. pABC508 was cut with EcoRI and then treated with Bal31 for a period of 10-15 minutes at 37°C with one unit of enzyme per microgram of DNA. The resulting mixture of DNA fragments was ligated to the BamHI linkers CCTAGGCC, transformed into E. coli HB101 GGATCCGG

15 (Bethesda Laboratories, Gaithersburg, MD), and the DNA sequence of the region encoding the 5' end of tox, and the sequence of 30 of the resulting clones determined. One clone, containing the DNA sequence shown in Fig. 5, was purified and the BamHI-HindIII fragment isolated and 20 inserted into pEMBL8ex3 which had been cut with BamHI and HindIII. The resulting plasmid, pABC1508, contains the lambda P_R promoter and an ATG translational start codon. An extra asparagine and proline residue are inserted during this process. In Fig. 5, Cro represents 25 the Cro gene of lambda, and SD represents the Shine-Dalgarno sequence. The lambda P_R promoter can be regulated by the lambda cI gene. In this example the mutant cI₈₅₇ temperature-sensitive repressor gene is used such that the P_R promoter is inactive at 30°C 30 and active at 37°C.

pABC1508 was transformed, using conventional techniques (e.g., as described in Maniatis et al. (1984) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, N.Y.), into E. coli HB101 (others, e.g., E. coli

- 14 -

JM101 or 5Y327, can also be used) and the expression of the diphtheria tox gene products analyzed. The introduction of the positively charged asparagine residue in the tox signal sequence does not affect the 5 export of the tox polypeptides into the periplasmic compartment of the recombinant host.

E. coli cells transformed with vectors containing Cys-modified toxin-excoding DNA are grown under standard culture conditions, e.g., in Luria Broth 10 containing, per liter, 10 g tryptone, 10 g NaCl, and 5 g yeast extract, and supplemented with 100 g/ml ampicillin. The diphtheria toxin-related molecules, which are exported to the periplasmic space, are purified from periplasmic extracts. Periplasmic 15 extracts are prepared from cells grown in 9.5 liter volumes at 37°C to an A_{590} of approximately 1.0. If the natural tox promoter has been replaced with temperature sensitive cI857 regulatory sequences under the control of the temperature-sensitive cI₈₅₇ gene, 20 as described herein, cells are grown at 30°C, and expression is induced by increasing the incubation temperature to 42°C for 15 min. The culture is then grown at 40°C for an additional hour. In either instance, the culture is concentrated to approximately 1 25 liter by filtration through 0.45 μ membranes (Pellicon system, Millipore Corp., Bedford, Mass.) and chilled to 4°C. Bacteria are harvested by centrifugation, resuspended in ice cold 20% sucrose, 30mM Tris-HCl, 1 mM EDTA, pH 7.5, and then digested with lysozyme (750 30 g/ml final concentration) for 30 minutes. Spheroplasts are removed by centrifugation, 2 mg p-amidinophenylmethylsulfonylfluoride (p-APMSF,

- 15 -

Calbiochem, San Diego, Calif.) is added, and the periplasmic extract is sterilized by filtration through 0.2 μ membranes.

The Cys-modified toxin-related molecules are
5 then purified by chromatography on Phenyl-Sepharose (Pharmacia Fine Chemicals, Piscataway, N.J.) and DEAE-cellulose essentially as described by Rappuoli et al. (1985) Biotechnology, p. 165. Periplasmic extracts are dialysed against 10mM sodium phosphate (pH 7.2)
10 buffer, and ammonium sulfate added to 13% (w/v). The crude extracts are then applied to a Phenyl-Sepharose column equilibrated with 10 mM phosphate buffer containing 13% ammonium sulfate. The modified toxin is eluted and dialysed against 10 mM phosphate buffer, and
15 then applied to DEAE-cellulose column. After washing with phosphate buffer, the DEAE-cellulose column is developed with a linear NaCl gradient in phosphate buffer.

The modified toxin is then applied to an
20 anti-diphtheria toxin immunoaffinity column, containing antibody made as described in Zucker et al. (1984) Molecular Immunol. 21, 785. Following extensive washing, the modified toxin is eluted with 4 M guanidine hydrochloride, and immediately dialysed against
25 phosphate buffer. The purified modified toxin is then concentrated to approximately 100 g/ml by placing the dialysis bag in dry Sephadex G-200. All purification procedures are carried out at 4°C, and the modified toxin is stored in small aliquots at
30 -76°C until used.

Specific Binding Ligand: Alpha-MSH

Referring to Fig. 6, there is shown plasmid pMSH53, which contains a DNA insert encoding alpha-MSH. pMSH53 was made by inserting into pUC8 an alpha-MSH-

- 16 -

encoding sequence having a 1/2 PstI site at each end:

5' GCAAGTTATAGCATGGAACATTTAGATGGGGAAAACCTGTATAGCTGCA 3'
3' ACGTCGTTCAATATCGTACCTTGTAAAATCTACCCCTTTGGACATATCG 5'
1/2 PstI 1/2 PstI

Plasmid pMSH53 can be used to create, using conventional methods, an expression vector for the production of alpha-MSH in cultured bacterial cells 5 e.g., E. coli. Further, prior to such expression, a Cys-containing linker can be fused to or near the N-terminal end of the alpha-MSH-encoding sequence, in a manner analogous to the method described above for the tox gene, to produce a modified alpha-MSH 10 containing an N-terminal Cys capable of reacting with the added Cys of the diphtheria toxin fragment. Alternatively, the Cys-containing MSH molecule can be chemically linked to any toxin molecule on which a reactive sulfhydryl group is present or has been added 15 post-translationally, i.e., at the protein chemistry, not the DNA, level.

Rather than making alpha-MSH using recombinant DNA techniques as described above, alpha-MSH can be purified from biological sources, or obtained 20 commercially (e.g., from Sigma Chemical Co., St. Louis, MO).

Chemical Linkage

After an available Cys has been added to the ligand by genetic engineering techniques, or if the 25 ligand contains an available reactive Cys or other sulfur-containing group, the toxin and ligand are coupled by reducing both compounds and mixing toxin and ligand, in a ratio of about 1:5 to 1:20, and the disulfide reaction is allowed to proceed at room

- 17 -

temperature to completion (generally, 20 to 30 minutes). The mixture is then dialyzed extensively against phosphate buffered saline to remove unreacted ligand molecules. The final purification step involves
5 the separation, on the basis of size, of the desired toxin-hormone conjugates from toxin-toxin and hormone-hormone dimers; this is done by carrying out, in phosphate-buffered saline, Sephadex G100 chromatography.
Use

10 The hybrid toxin-ligand molecules are administered to a mammal, e.g., a human, suffering from a medical disorder, e.g., cancer, characterized by the presence of a class of unwanted cells to which the ligand can selectively bind. The amount of hybrid
15 molecule administered will vary with the type of disease, extensiveness of the disease, and size and species of the mammal suffering from the disease. Generally, amounts will be in the range of those used for other cytotoxic agents used in the treatment of
20 cancer, although in certain instances lower amounts will be needed because of the specificity of the molecules.

The hybrid molecules can be administered using any conventional method; e.g., via injection, or via a timed-release implant. The hybrid proteins can be
25 combined with any non-toxic, pharmaceutically-acceptable carrier substance.

In the case of MSH hybrids, topical creams can be used to kill primary melanoma cells, and injections or implants can be used to kill metastatic cells.

30 Estradiol hybrids, exhibiting binding specificity for certain breast cancers characterized by cells bearing estradiol receptors, can be used to treat primary and metastatic cells.

- 18 -

Other embodiments are within the following
claims.

- 19 -

1

Claims

2 1. A targeted toxin molecule comprising a
3 toxic portion comprising a toxin molecule which is large
4 enough to exhibit cytotoxic activity and small enough to
5 fail to exhibit generalized eucaryotic cell binding,
6 said toxic portion including a non-naturally occurring
7 cysteine and being encoded by a DNA sequence, said toxic
8 portion being chemically linked by said cysteine to a
9 cell specific ligand comprising a peptide, a
10 proteinaceous growth factor, or a steroid hormone.

11 2. The targeted toxin molecule of claim 1
12 wherein said cysteine is located such that said toxin
13 molecule, when linked to said cell-specific ligand via
14 said cysteine residue, exhibits cytotoxic enzymic
15 activity.

16 3. The targeted toxin molecule of claim 1
17 wherein said toxin is diphtheria toxin, ricin, or abrin.

18 4. The targeted toxin molecule of claim 1
19 wherein said toxic portion and said cell specific ligand
20 are linked by a disulfide linkage.

21 5. The targeted toxin molecule of claim 4
22 wherein said ligand includes a sulphydryl group and said
23 disulfide linkage is between said cysteine of said toxin
24 molecule and the sulphydryl group of said ligand.

25 6. The targeted toxin molecule of claim 1
26 wherein said peptide is a hormone.

27 7. The targeted toxin molecule of claim 1
28 wherein said proteinaceous growth factor is Interleukin
29 I, Interleukin II, Interleukin III, or B-cell growth
30 factor.

31 8. The targeted toxin molecule of claim 1
32 wherein said steroid hormone is estradiol.

- 20 -

1 9. A DNA sequence encoding a fragment of a
2 ligand which is large enough to exhibit specific cell
3 binding, said DNA sequence including a non-naturally
4 occurring cysteine codon.

5 10. The DNA sequence of claim 9 wherein said
6 cysteine codon is located such that said fragment
7 encoded by said DNA sequence, when linked to a toxin
8 molecule via the cysteine residue encoded by said
9 cysteine codon, exhibits specific cell binding.

10 11. The DNA sequence of claim 9 wherein said
11 ligand is a peptide, a proteinaceous growth factor, or
12 an antibody.

13 12. The DNA sequence of claim 11 wherein said
14 peptide is a hormone.

15 13. The DNA sequence of claim 11 wherein said
16 proteinaceous growth factor is Interleukin I,
17 Interleukin II, Interleukin III, or B-cell growth factor.

18 14. The cell specific ligand encoded by the
19 DNA sequence of claim 9.

1/5

pABC1508
FIG 1

FIG 2

FIG 3

2/5

FIG 4

FIG 5 pABC1508

FIG 6

SUBSTITUTE SHEET

FIG. 7A

ATCTTTCCGG TGTGGTACAC CTGATCTGGT CGGGTCATG TTGGGGGGT CAACCCGGG
 -300
 GAAACGGGGG TTGGCTATCC ACTGGCTACA CTCAGCTGT AATCATTCGG ATGATGACC TGAATCTGAGA CGCGATTAAA ACTCATTGAG GACTAGTCGC CGATGGTT TTGGTAGTGA
 -200
 AGCTTAGCTA GCTTCCCCA TGTAACCAAT CTATCAAAA AGGGCATTCGA TTTCAGAGCA CCCTTATAAT TAGGATACTT TTACCTAATT ATTTATGAG TCCTGGTAAC GGGATACCTT
 -150
 S-A-
 MET SER ARG IYS LEU PHE ALA SER ILE LEU ILE GLY ALA LEU LEU GLY ILE GLY ALA PRO PRO SER ALA HIS ALA GLY ALA ASP ASP VAL VAL ASP SER
 GTG AGC AGA AAA CTG TTT GCG TCA ATC TTA ATA GGG CCG CTA CTG GGG ATA GCG GCC CCA CCT TCA GCC CAT GCA GCG GCT GAT GAT GAT GAT TCT
 100
 SER LYS SER PHE VAL MET GLU ASN PHE SER TYR HIS GLY THR IYS PRO GLY TYR VAL ASP SER ILE GLN IYS GLY ILE GLN LYS PRO LYS SER GLY
 TCT AAA TCT TTT GTG ATG GAA AAC TTT TCT TCG TAC CAC GCG ACT AAA CCT GGT TAT GAA GAT ATT CAA AAA GGT ATA CAA AAG CCA AAA TCT CGT
 150
 THR GLN GLY ASN TYR ASP ASP TRP IYS GLY PHE TYR SER THR ASP ASN IYS TYR ASP ALA ALA GLY TYR SER VAL ASP ASN GLU ASN PRO LEU SLR
 ACA CAA GGA AAT TAT GAC CAT GAT TGC AAA GCG TTT TAT ACT ACC GAC AAT AAA TAC GAC GCT GCG GGA TAC TCT GTA GAT AAC GAA AAC CCG CTC TCT
 200
 GLY LYS ALA GLY (ASP)VAL VAL LYS VAL THR TYR PRO GLY ILE THR LYS VAL LEU ALA LEU LYS VAL ASP ASN ALA GLU THR ILE LYS GLU LEU GLY
 GGA AAA GCT GGA GAC GTC GTC GTC AAA GTG AGC TAT CCA CGA CTC AGC AAG GTC CTC CCA CTA AAA GTG GAT ATT GCC GAA ACT ATT AAG AAA GAG TGA CCT
 250
 LEU SER LEU THR GLU PRO LEU MET GLU GLN VAL GLU PHE ILE LYS ARG PHE GLY ASP GLY ALA SER ARG VAL VAL LEU SER ILEU PRO PHE
 TTA AGT CTC ACT GAA CCG TGG ATG GAG CAA GTC CGA ACA GAA GAG ATT ATC AAA AGG TTC GGG GAT GGT GCT TCG CGT CTC ACC CTT CCC TTT
 300
 GLU GLY SER SER VAL GLU TYR ILE ASN TRP GLU CLN ALA IYS ALA LEU SER VAL GLY LEU GLU ILE ASN PHE GLU THR ARG GLY LYS ARG
 CCC GAG GGG AGT TCT AGC GTC GAA TAT ATT AAC TGG CAA CAG GCG AAA GCG TTA AGC GTC AAA CTT GAG ATT ATT TTT GAA ACC CCG GGA AAA CCT
 350
 GLY GLN ASP ALA MET TYR GLU TYR MET ALA GLN ALA CYS ALA GLY ASN ARG VAL ARG ARC SER VAL GLY GLY SER LEU SER CYS ILE ASN LEU ASP TRP
 GGC CAA GAT GCG ATG TAT GAG TAT ATG CCT CAA GCG TGT GCA CGA ATT CGT GTC AGG CGA TCA GTA CGG GCG TCA TGT TCA TGT CCT GAT TGG
 400
 ASP VAL ILE ARG ASP LYS THR LYS ILE GLU SER LEU LYS GLU HIS GLY PRO ILE LYS ASN IYS MET SER GLU SLR PRO ASN IYS THR VAL SER
 GAT GTC ATA AGG GAT AAA ACT AAG ACA MAG ATA GAG TCT TGG AAA GAG CAT GGC CCT ATC AAA ATT AAA ATC ACC GAA ACT CCC CCT ATA ACT GTC TCT
 450
 500
 550
 600
 650
 700
 750
 800
 850
 900
 950
 1000
 1050
 1100
 1150
 1200
 1250
 1300
 1350
 1400
 1450
 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900
 1950
 2000
 2050
 2100
 2150
 2200
 2250
 2300
 2350
 2400
 2450
 2500
 2550
 2600
 2650
 2700
 2750
 2800
 2850
 2900
 2950
 3000
 3050
 3100
 3150
 3200
 3250
 3300
 3350
 3400
 3450
 3500
 3550
 3600
 3650
 3700
 3750
 3800
 3850
 3900
 3950
 4000
 4050
 4100
 4150
 4200
 4250
 4300
 4350
 4400
 4450
 4500
 4550
 4600
 4650
 4700
 4750
 4800
 4850
 4900
 4950
 5000
 5050
 5100
 5150
 5200
 5250
 5300
 5350
 5400
 5450
 5500
 5550
 5600
 5650
 5700
 5750
 5800
 5850
 5900
 5950
 6000
 6050
 6100
 6150
 6200
 6250
 6300
 6350
 6400
 6450
 6500
 6550
 6600
 6650
 6700
 6750
 6800
 6850
 6900
 6950
 7000
 7050
 7100
 7150
 7200
 7250
 7300
 7350
 7400
 7450
 7500
 7550
 7600
 7650
 7700
 7750
 7800
 7850
 7900
 7950
 8000
 8050
 8100
 8150
 8200
 8250
 8300
 8350
 8400
 8450
 8500
 8550
 8600
 8650
 8700
 8750
 8800
 8850
 8900
 8950
 9000
 9050
 9100
 9150
 9200
 9250
 9300
 9350
 9400
 9450
 9500
 9550
 9600
 9650
 9700
 9750
 9800
 9850
 9900
 9950
 10000
 10050
 10100
 10150
 10200
 10250
 10300
 10350
 10400
 10450
 10500
 10550
 10600
 10650
 10700
 10750
 10800
 10850
 10900
 10950
 11000
 11050
 11100
 11150
 11200
 11250
 11300
 11350
 11400
 11450
 11500
 11550
 11600
 11650
 11700
 11750
 11800
 11850
 11900
 11950
 12000
 12050
 12100
 12150
 12200
 12250
 12300
 12350
 12400
 12450
 12500
 12550
 12600
 12650
 12700
 12750
 12800
 12850
 12900
 12950
 13000
 13050
 13100
 13150
 13200
 13250
 13300
 13350
 13400
 13450
 13500
 13550
 13600
 13650
 13700
 13750
 13800
 13850
 13900
 13950
 14000
 14050
 14100
 14150
 14200
 14250
 14300
 14350
 14400
 14450
 14500
 14550
 14600
 14650
 14700
 14750
 14800
 14850
 14900
 14950
 15000
 15050
 15100
 15150
 15200
 15250
 15300
 15350
 15400
 15450
 15500
 15550
 15600
 15650
 15700
 15750
 15800
 15850
 15900
 15950
 16000
 16050
 16100
 16150
 16200
 16250
 16300
 16350
 16400
 16450
 16500
 16550
 16600
 16650
 16700
 16750
 16800
 16850
 16900
 16950
 17000
 17050
 17100
 17150
 17200
 17250
 17300
 17350
 17400
 17450
 17500
 17550
 17600
 17650
 17700
 17750
 17800
 17850
 17900
 17950
 18000
 18050
 18100
 18150
 18200
 18250
 18300
 18350
 18400
 18450
 18500
 18550
 18600
 18650
 18700
 18750
 18800
 18850
 18900
 18950
 19000
 19050
 19100
 19150
 19200
 19250
 19300
 19350
 19400
 19450
 19500
 19550
 19600
 19650
 19700
 19750
 19800
 19850
 19900
 19950
 20000
 20050
 20100
 20150
 20200
 20250
 20300
 20350
 20400
 20450
 20500
 20550
 20600
 20650
 20700
 20750
 20800
 20850
 20900
 20950
 21000
 21050
 21100
 21150
 21200
 21250
 21300
 21350
 21400
 21450
 21500
 21550
 21600
 21650
 21700
 21750
 21800
 21850
 21900
 21950
 22000
 22050
 22100
 22150
 22200
 22250
 22300
 22350
 22400
 22450
 22500
 22550
 22600
 22650
 22700
 22750
 22800
 22850
 22900
 22950
 23000
 23050
 23100
 23150
 23200
 23250
 23300
 23350
 23400
 23450
 23500
 23550
 23600
 23650
 23700
 23750
 23800
 23850
 23900
 23950
 24000
 24050
 24100
 24150
 24200
 24250
 24300
 24350
 24400
 24450
 24500
 24550
 24600
 24650
 24700
 24750
 24800
 24850
 24900
 24950
 25000
 25050
 25100
 25150
 25200
 25250
 25300
 25350
 25400
 25450
 25500
 25550
 25600
 25650
 25700
 25750
 25800
 25850
 25900
 25950
 26000
 26050
 26100
 26150
 26200
 26250
 26300
 26350
 26400
 26450
 26500
 26550
 26600
 26650
 26700
 26750
 26800
 26850
 26900
 26950
 27000
 27050
 27100
 27150
 27200
 27250
 27300
 27350
 27400
 27450
 27500
 27550
 27600
 27650
 27700
 27750
 27800
 27850
 27900
 27950
 28000
 28050
 28100
 28150
 28200
 28250
 28300
 28350
 28400
 28450
 28500
 28550
 28600
 28650
 28700
 28750
 28800
 28850
 28900
 28950
 29000
 29050
 29100
 29150
 29200
 29250
 29300
 29350
 29400
 29450
 29500
 29550
 29600
 29650
 29700
 29750
 29800
 29850
 29900
 29950
 30000
 30050
 30100
 30150
 30200
 30250
 30300
 30350
 30400
 30450
 30500
 30550
 30600
 30650
 30700
 30750
 30800
 30850
 30900
 30950
 31000
 31050
 31100
 31150
 31200
 31250
 31300
 31350
 31400
 31450
 31500
 31550
 31600
 31650
 31700
 31750
 31800
 31850
 31900
 31950
 32000
 32050
 32100
 32150
 32200
 32250
 32300
 32350
 32400
 32450
 32500
 32550
 32600
 32650
 32700
 32750
 32800
 32850
 32900
 32950
 33000
 33050
 33100
 33150
 33200
 33250
 33300
 33350
 33400
 33450
 33500
 33550
 33600
 33650
 33700
 33750
 33800
 33850
 33900
 33950
 34000
 34050
 34100
 34150
 34200
 34250
 34300
 34350
 34400
 34450
 34500
 34550
 34600
 34650
 34700
 34750
 34800
 34850
 34900
 34950
 35000
 35050
 35100
 35150
 35200
 35250
 35300
 35350
 35400
 35450
 35500
 35550
 35600
 35650
 35700
 35750
 35800
 35850
 35900
 35950
 36000
 36050
 36100
 36150
 36200
 36250
 36300
 36350
 36400
 36450
 36500
 36550
 36600
 36650
 36700
 36750
 36800
 36850
 36900
 36950
 37000
 37050
 37100
 37150
 37200
 37250
 37300
 37350
 37400
 37450
 37500
 37550
 37600
 37650
 37700
 37750
 37800
 37850
 37900
 37950
 38000
 38050
 38100
 38150
 38200
 38250
 38300
 38350
 38400
 38450
 38500
 38550
 38600
 38650
 38700
 38750
 38800
 38850
 38900
 38950
 39000
 39050
 39100
 39150
 39200
 39250
 39300
 39350
 39400
 39450
 39500
 39550
 39600
 39650
 39700
 39750
 39800
 39850
 39900
 39950
 40000
 40050
 40100
 40150
 40200
 40250
 40300
 40350
 40400
 40450
 40500
 40550
 40600
 40650
 40700
 40750
 40800
 40850
 40900
 40950
 41000
 41050
 41100
 41150
 41200
 41250
 41300
 41350
 41400
 41450
 41500
 41550
 41600
 41650
 41700
 41750
 41800
 41850
 41900
 41950
 42000
 42050
 42100
 42150
 42200
 42250
 42300
 42350
 42400
 42450
 42500
 42550
 42600
 42650
 42700
 42750
 42800
 42850
 42900
 42950
 43000
 43050
 43100
 43150
 43200
 43250
 43300
 43350
 43400
 43450
 43500
 43550
 43600
 43650
 43700
 43750
 43800
 43850
 43900
 43950
 44000
 44050
 44100
 44150
 44200
 44250
 44300
 44350
 44400
 44450
 44500
 44550
 44600
 44650
 44700
 44750
 44800
 44850
 44900
 44950
 45000
 45050
 45100
 45150
 45200
 45250
 45300
 45350
 45400
 45450
 45500
 45550
 45600
 45650
 45700
 45750
 45800
 45850
 45900
 45950
 46000
 46050
 46100
 46150
 46200
 46250
 46300
 46350
 46400
 46450
 46500
 46550
 46600
 46650
 46700
 46750
 46800
 46850
 46900
 46950
 47000
 47050
 47100
 47150
 47200
 47250
 47300
 47350
 47400
 47450
 47500
 47550
 47600
 47650
 47700
 47750
 47800
 47850
 47900
 47950
 48000
 48050
 48100
 48150
 48200
 48250
 48300
 48350
 48400
 48450
 48500
 48550
 48600
 48650
 48700
 48750
 48800
 48850
 48900
 48950
 49000
 49050
 49100
 49150
 49200
 49250
 49300
 49350
 49400
 49450
 49500
 49550
 49600
 49650
 49700
 49750
 49800
 49850
 49900
 49950
 50000
 50050
 50100
 50150
 50200
 50250
 50300
 50350
 50400
 50450
 50500
 50550
 50600
 50650
 50700
 50750
 50800
 50850
 50900
 50950
 51000
 51050
 51100
 51150
 51200
 51250
 51300
 51350
 51400
 51450
 51500
 51550
 51600
 51650
 51700
 51750
 51800
 51850
 51900
 51950
 52000
 52050
 52100
 52150
 52200
 52250
 52300
 52350
 52400
 52450
 52500
 52550
 52600
 52650
 52700
 52750
 52800
 52850
 52900
 52950
 53000
 53050
 53100
 53150
 53200
 53250
 53300
 53350
 53400
 53450
 53500
 53550
 53600
 53650
 53700
 53750
 53800
 53850
 53900
 53950
 54000
 54050
 54100
 54150
 54200
 54250
 54300
 54350
 54400
 54450
 54500
 54550
 54600
 54650
 54700
 54750
 54800
 54850
 54900
 54950
 55000
 55050
 55100
 55150
 55200
 55250
 55300
 55350
 55400
 55450
 55500
 55550
 55600
 55650
 55700
 55750
 55800
 55850
 55900
 55950
 56000
 56050
 56100
 56150
 56200
 56250
 56300
 56350
 56400
 56450
 56500
 56550
 56600
 56650
 56700
 56750
 56800
 56850
 56900
 56950
 57000
 57050
 57100
 57150
 57200
 57250
 57300
 57350
 57400
 57450
 57500
 57550
 57600
 57650

FIG. 7B

270 GLU GLY ALA LYS GLN TYR LEU GLU GLU PHE HIS GLN THR ALA ILE GLU HIS PRO GLU LEU SER GLU LEU LYS THR VAL THR GLY THR ASN PRO VAL
 CAG GAA AAA GCT AAA CAA TAC CTA GAA GAA TTT CAT CAA ACG GCA TTT GAC CAT CCT GAA TGA GAA CTT AAA ACC GTC ACT GGG ACC AAC AAT CCT GTA
 300 800
 310 900
 320
 330
 340
 350
 360
 370
 380
 390
 400
 410 CB44 > ASN
 420
 430
 440
 450 NruI GLY
 460
 470
 480
 490
 500
 510
 520
 530
 540
 550 LYS
 560
 570
 580
 590
 600
 610
 620
 630
 640
 650
 660
 670
 680
 690
 700
 710
 720
 730
 740
 750
 760
 770
 780
 790
 800
 810
 820
 830
 840
 850
 860
 870
 880
 890
 900
 910
 920
 930
 940
 950
 960
 970
 980
 990
 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900

SUBSTITUTE SHEET

INTERNATIONAL SEARCH REPORT

International Application No.

PCT/US86/02444

I. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all) ¹⁾

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC(4): C07K 7/04; A23J 1/14; A61K 35/78; C12N 15/00, 9/12
C07H 15/12

II. FIELDS SEARCHED

Minimum Documentation Searched ⁴⁾

Classification System	Classification Symbols
U.S.	530/350, 377, 825; 435/172.3, 194; 536/27

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁶⁾

**COMPUTER SEARCH: CAS, BIOS
DNA OR TOXIN WITH LIGAND OR BINDING PROTEIN AND CYSTEINE**

III. DOCUMENTS CONSIDERED TO BE RELEVANT ¹⁴⁾

Category ¹⁵⁾	Citation of Document, ¹⁶⁾ with indication, where appropriate, of the relevant passages ¹⁷⁾	Relevant to Claim No. ¹⁸⁾
X	Eur. J. Biochem. Vol. 134 issued August 1983, (Berlin Germany), (MAASSEN ET AL), "Synthesis and Application of Two Reagents for the Introduction of Sulphydryl Groups into Proteins." pages 327-330, especially page 327.	1-14
X	WO,A, 83/03971 (PRESIDENT AND FELLOWS OF HARVARD COLLEGE) 24 November 1983 (24.11.83), see pages 2 and 7.	1-14
X	The EMBO Journal, Vol. 4 issued 1985 (Oxford England) (JACOB ET AL), "Priming immunization against cholera toxin and E.coli heat-labile toxin by a cholera toxin short peptide-β galactosidase hybrid synthesized in E. coli," pages 3339-3343.	1-14

* Special categories of cited documents: ¹⁹⁾

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search ²⁰⁾

12 January 1987

Date of Mailing of this International Search Report ²¹⁾

09 FEB 1987

International Searching Authority ²²⁾

ISA/US

Signature of Authorized Officer ²³⁾

Alvin E. Tanenholz
ALVIN E. TANENHOLTZ

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, ¹⁶ with indication, where appropriate, of the relevant passages ¹⁷	Relevant to Claim No ¹⁸
X	<u>Journal of Cellular Biochemistry</u> Vol. 20, issued 20 August 1982 (New York, N.Y. USA) (HERSCHMANN ET AL), "Toxic Ligand Conjugates as Tools in the Study of Receptor-Ligand Interactions", pages 163-176.	1-14
X	<u>The Journal of Biological Chemistry</u> , Vol. 258 issued 10 February 1983 (Baltimore Maryland USA) (BACHA ET AL), "Thyrotropin-releasing Hormone-Diphtheria Toxin-related Polypeptide Conjugates", pages 1565-1570.	1-14
X	WO,A, 84/00299 (PRESIDENT AND FELLOWS OF HARVARD COLLEGE) 2 February 1984 (02.02.84), see pages 1-4	1-14
X	US,A, 4,468,382 (BACHA ET AL) Published 28 August 1984	1-14
X	VICTOR J. HARUBY ET AL, <u>"Peptides, Structures and Function: Proc. of the Eighth American Peptide Symp."</u> Published 1983 by Pierce Chemical Company (Rockford Illinois USA), see pages 837-852	1-14

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET

X	Proc. Natl. Acad. Sci. USA Vol. 80 issued November 1983 (Washington D.C.), (GREENFIELD ET AL), "Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage B," pages 6853-6857.	1-14
X	The Journal of Biological Chemistry, Vol. 256 issued 10 June 1981 (Baltimore Maryland USA), (ROTH ET AL), "Insulin-Ricin B Chain Conjugate", pages 5350-5354	1-14

V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE ¹⁰

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers because they relate to subject matter ¹¹ not required to be searched by this Authority, namely:

2. Claim numbers because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out ¹², specifically:

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING ¹³

This International Searching Authority found multiple inventions in this international application as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application.
2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:
3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:
4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

- The additional search fees were accompanied by applicant's protest.
- No protest accompanied the payment of additional search fees.