

CACGCGTCCGGCGGGCGGGAGA	30	50
CGATGCCGATCTACTTAAGGGCTGAAACCCACGGGCCTGAGAGACTATAAGAGCGTT	70	90
CCTACCGCCATGGAACAAACGGGGACAGAACGCCCCGGCCGCTCGGGGGCCCGAAAAGG	130	150
M E O R G Q N A P A A S G A R K R	170	
CACGGCCCAGGGACCCAGGGAGGGCGCGGGGAGGCCAGGGCTGGGCCCCGGGTCCCCAAGACC	190	210
H G P G P R E A R G A R P G P R V P K T	230	
CTTGTGCTCGTTGTCGCCGCGGTCTGCTGTTGGTCTCAGCTGAGTCTGCTCTGATCACC	250	270
L V L V V A A V L L L V S A E S A L I T	290	
CAACAAAGACCTAGCTCCCCAGCAGAGAGCGGGCCCCACAACAAAAGAGGTCCAGCCCCCTCA	310	330
Q Q D L A P Q Q R A A P Q Q K R S S P S	350	
GAGGGATTGTGTCCACCTGGACACCATATCTCAGAAGACGGTAGAGATTGCATCTCCTGC	370	390
E G L C P P G H H I S E D G R D C I S C	410	
AAATATGGACAGGACTATAGCACTCACTGGAATGACCTCCTTTCTGCTTGCCTGCACC	430	450
K Y G Q D Y S T H W N D L L F C L R C T	470	
AGGTGTGATTCAAGTGAAAGTGGAGCTAACGCTGCACACGACCAGAAACACAGTGTGT	490	510
R C D S G E V E L S P C T T T R N T V C	530	
CAGTGCAGAAAGGACCTTCCGGAAAGAAGATTCTCCTGAGATGTGCCGGAAAGTGCCGC	550	570
Q C E E G T F R E E D S P E M C R K C R	590	
ACAGGGGTGTCCCAGAGGGATGGTCAAGGTCGGTGATTGTACACCCCTGGAGTGACATCGAA	610	630
T G C P R G M V K V G D C T P W S D I E	650	
TGTGTCCACAAAGAACAGGCATCATCATAGGAGTCACAGTTGCAGCCGTAGTCTTGATT	670	690
C V H K E S G I I I G V T V A A V V L I	710	
GTGGCTGTGTTGCAAGTCTTACTGTGGAAGAAAGTCCTCCTTACCTGAAAGGC	730	750
V A V F V C K S L L W K K V L P Y L K G	770	
ATCTGCTCAGGTGGTGGTGGGACCCCTGAGCGTGTGGACAGAACGCTCACAAACGACCTGGG	790	810
I C S G G G D P E R V D R S S Q R P G	830	

FIG. 1A

2/12

850 870 890
GCTGAGGACAATGTCCTCAATGAGATCGTGAGTATCTGCAGCCCACCCAGGTCCCTGAG
A E D N V L N E I V S I L Q P T Q V P E
910 930 950
CAGGAAATGGAAGTCCAGGAGCCAGCAGAGCCAACAGGTGTCAACATGTTGTCCCCGGG
Q E M E V Q E P A E P T G V N M L S P G
970 990 1010
GAGTCAGAGCATCTGCTGGAACCGGCAGAAGCTGAAAGGTCTCAGAGGAGGGCTGCTG
E S E H L L E P A E A E R S Q R R R L L
1030 1050 1070
GTTCCAGCAAATGAAGGTGATCCCAC TGAGACTCTGAGACAGTGCTCGATGACTTGCA
V P A N E G D P T E T L R Q C F D D F A
1090 1110 1130
GACTTGGTGCCCTTGACTCCTGGAGCCGCTCATGAGGAAGTTGGCCTCATGGACAAT
D L V P F D S W E P L M R K L G L M D N
1150 1170 1190
GAGATAAAGGTGGCTAAAGCTGAGGCAGCGGGCACAGGGACACCTTGTACACGATGCTG
E I K V A K A E A A G H R D T L Y T M L
1210 1230 1250
ATAAAGTGGTCAACAAAACCAGGGCGAGATGCCTCTGTCCACACCCCTGCTGGATGCCCTG
I K W V N K T G R D A S V H T L L D A L
1270 1290 1310
GAGACGCTGGAGAGAGACTTGCCAAGCAGAAGATTGAGGACCACTTGTGAGCTCTGGA
E T L G E R L A K Q K I E D H L L S S G
1330 1350 1370
AAGTTCATGTATCTAGAAGTAATGCAGACTCTGCCATGTCTAACGTGTGATTCTCTTCA
K F M Y L E G N A D S A M S *
1390 1410 1430
GGAAGTGAGACCTTCCCTGGTTACCTTTCTGGAAAAAGCCCAACTGGACTCCAGTC
1450 1470 1490
AGTAGGAAAGTGCCACAATTGTCACATGACCGGTACTGGAAGAAACTCTCCCATCCAACA
1510 1530 1550
TCACCCAGTGGATGGAACATCCTGTAACTTTCACTGCACTTGGCATTATTTTATAAGC
1570 1590
TGAATGTGATAATAAGGACACTATGGAAAAAAAAAAAAAA

FIG.1B

FIG. 2B

149 - - - - C E H G I I - - K E C - - - - T L T S N T K C K E - - - h Fas protein
 161 K Q N T V C T C H A G F F L R E N E C V S C S N C K K S L E C T K L C L P Q I E h TNFR I Protein
 158 R D T D C G T C L P G F Y E H G D G C V S C P T S T L G - S C P E R C A A V C C DR3 protein
 163 G M V K V G D C T P - - W S D T I E C V - - - - - H K E S G I I I G HLYBX88XXprotein

168 - - - - E G S R S N L G W - - - - L C L L - L L P I P L I V - - - - W h Fas protein
 201 N V K G T E D S G T T V L L P L V I F G L C L L S L L F I G L M Y R Y Q R - W h TNFR I Protein
 197 W R Q - - - - M F W V Q V L A G L V V P L L G A T L T Y T Y R H C W DR3 protein
 189 - - - - V T V A A V V L I V A V F - - V C K S L L W K K V L P Y L K G I C S HLYBX88XXprotein

190 V K R K E V Q K T C R K H R K E N Q G S H E S - - - - - - - - - - - h Fas protein
 240 - K S K L Y S I V C G K S T P E K E G E L E G T T K P L A P N P S F S P T P G h TNFR I Protein
 229 - P H K P L - V T A D E A G M E A L T P P P A T H L S P L D S A H T L L A P P D DR3 protein
 221 - - - - G G G G D P E R V D R S S Q R P G A E D N V I N E I V S I L Q P T Q HLYBX88XXprotein

213 - h Fas protein
 279 F T P T L G F S P V P S S T F T S S T Y T P G D - C P N F A A P R R E V A P P h TNFR I Protein
 267 S S E K I C T V Q L V G N S W T P G Y P E T Q P Q V T W S W D Q L - - P DR3 protein
 255 V P E Q E M E V Q E P A E - - - - P T G V N M L S P G - - E S E H L - - - HLYBX88XXprotein

213 - - - - - P T L N P E T V A I N L - - S D V D L S K Y I T T I A G V M h Fas protein
 318 Y Q G A D P I L A S D P I P N P L Q K W E D S A H K P Q S L D T D D P A h TNFR I Protein
 305 S R A L G P A A A P T L S P - - - - E S P A G S P A M M L Q P G P Q DR3 protein
 283 - - - - - L E P A E A E R S Q R R L L V P A N E G D P T E T L R Q HLYBX88XXprotein

5/12

FIG. 2C

6/12

FIG.3

7/12

HAPBU13R

1 AATTGGGCAC AGCTCTTCAG GAAAGTCAGAC CTTCCCTGGT TTACCTTTTT
51 TCTGGAAAAA GCCCAACTGG GACTCCAGTC AGTAGGAAAG TGCCACAATT
101 GTCACATGAC CGGTACTGGA AGAAACTCTC CCATCCAACA TCACCCAGTG
151 GNATGGGAAC ACTGATGAAC TTTTCACTGC ACTTGGCATT ATTTTTGTNA
201 AGCTGAATGT GATAATAAGG GCACTGATGG AAATGTCCTGG ATCATTCCGG
251 TTGTGCGTAC TTTGAGATTN GNNTTGGGG ATGTNCATTG TGTTTGACAG
301 CACTTTTTN ATCCCTAATG TNAAATGCNT NATTGATTG TGANTTGGGG
351 GTNAACATTG GTNAAGGNTN CCCNTNTGAC ACAGTAGNTG GTNCCCAGT
401 TANAATNGNN GAANANGATG NATNANGAAC CTNTTTTGG GTGGGGGGGT
451 NNCGGGGCAG TNNAANGNNG NCTCCCCAGG TTTGGNGTNG CAATNGNGGA
501 ANNNTGG

HSBBU76R

1 TTTTTTTGT AGATGGATCT TACAATGTAG CCCAAATAAA TAAATAAAGC
51 ATTACATTA GGATAAAAAA GTGCTGTGAA AACAAATGACA TCCCAAACCA
101 AATCTCAAAG TACGCACAAA CGGAATGATC CAGACATTTC CATAGNGTCC
151 TTATTATCAC ATTCAAGCTTA TAAAANTAAT GCCAAGTGCA GTGAAAAGTT
201 ACAGGATGTT CCATCCACTG GGTGGATT

FIG.4

FIG. 5C

FIG. 5B

FIG. 5A

9 / 12

FIG.5D

10/12

FIG. 5E

FIG. 6A

12/12

FIG. 6C

FIG. 6B