Quelques notions d'aérodynamique de base et leur calcul dans XFLR5

Sommaire

- 1. Rappel de quelques notions de base
 - a. Aérodynamiques
 - b. Propres à XFLR5
- 2. Aperçu sur le calcul des performances
- 3. Où l'on parle centrage, stabilité et test du piqué
- 4. Le cas particulier de la stabilité des ailes volantes

A quoi sert XFLR5?

- D'abord à visualiser en 3D l'allure générale du modèle : "Un bel avion vole bien"
- Ensuite essentiellement à mieux comprendre les phénomènes... Dixit Matthieu : "on pilote mieux quand on comprend ce qui se passe"
- > A optimiser les performances aérodynamiques et à étudier la stabilité

Qualitativement intéressant d'après les résultats en soufflerie de Matthieu & Co.

Révision 1.3 - Copyright A. Deperrois - septembre 2009

Que vaut XFLR5?

Que vaut XFLR5?

Les trois points de l'avion à connaître ... et surtout à ne pas confondre!

Centre de poussée CP

= Point où s'applique la résultante des efforts Dépend de l'aérodynamique du modèle et de

Centre de Gravité CG

= Point autour duquel les moments s'appliquent Ne dépend que des masses de l'avion, pas de son aérodynamique

Aussi appelé XCmRef dans XFLR5, car c'est par

rapport à ce point qu'est calculé le moment de tangage

Foyer F du planeur complet

= Point de référence pour lequel le moment de tangage ne dépend pas de l'angle d'attaque α

Ne dépend que de la géométrie extérieure "l'aérodyamique" de l'avion

Pas intuitif du tout, aussi va-t-on l'expliquer par l'exemple de la girouette

Révision 1.3 - Copyright A. Deperrois - septembre 2009

Le foyer aérodynamique = exemple de la girouette

Girouette ayant subi une perturbation, ne se trouve plus dans le lit du vent

CG largement devant le foyer

- → La force de rappel ramène la girouette dans le lit du vent
- → Girouette très stable

CG légèrement devant le foyer

- → La force de rappel ramène la girouette dans le lit du vent
- → Girouette stable, mais sensible aux sautes de vent

CG au foyer

- → La girouette tourne indéfiniment
- \rightarrow Instable

CG derrière le foyer

 → Le girouette est stable... mais dans le mauvais sens

Le foyer est la limite de centrage arrière

🍧 2ème principe : "En avant du foyer ton planeur tu centreras"

On aura deviné que la portance maintient le planeur en l'air, tandis que la traînée le freine

Operating Point

Un couple (angle d'attaque α , vitesse du vent) définit dans XFLR5 un point de fonctionnement : les Operating Points ou encore OpPoints

Note : On peut également compléter avec l'angle β qui caractérise le dérapage du planeur

Les coefficients aérodynamiques

Les efforts (L, D, ...) et les moments s'exerçant sur les avions dépendent

- · de la vitesse, et de l'angle d'attaque,
- · de la densité de l'air,
- · de la géométrie,

bref, d'un tas de choses qui ne permettent pas de comparer facilement les perfos.

Aussi, plutôt que de raisonner en efforts, les aérodynamiciens préfèrent utiliser des coefficients sans unité

 C_L = Coefficient de portance

 C_D = Coefficient de traînée

 $C_{\rm M}$ = Coefficient de moment de tangage etc.

Définition en planche suivante

Un peu de maths

Les formules qui définissent Cl, Cd, et Cm

L =
$$\frac{1}{2} \rho S V^{2} CI$$

D = $\frac{1}{2} \rho S V^{2} Cd$
M = $\frac{1}{2} \rho S V^{2} I Cm$

- · V est la vitesse du vent, ou celle du modèle... tout est relatif
- · S est un aire de référence, en général celle de l'aile principale
- $q = \frac{1}{2} \rho V^2$ est la pression dynamique, ρ étant la densité de l'air
- l'est une longueur de référence ; dans XFLR5, c'est la corde aérodynamique moyenne de l'aile, MAC = "Mean Aerodynamic Chord"

Les Forces Aérodynamiques

- > La portance est liée à la répartition des pressions sur l'ensemble des surfaces
- La traînée est de plusieurs natures, mais deux seulement nous intéressent pour les modèles réduits :
 - La traînée induite de sinistre réputation "ICd"
 La traînée visqueuse qui ne vaut pas mieux "VCd ou PCd"

→ Deux phénomènes physiques différents → Deux optimisations différentes

Pourquoi un avion vole : le point de vue méca-flu

Pas trop exploitable pour nous autres modélistes...

Les outils numériques font ça très bien...

Il nous suffit d'avoir les résultats macros

Pourquoi un avion vole : le point de vue mécanique

Rappel pour les motoristes : de la même façon, la poussée du moteur est la variation de la quantité de mouvement communiquée au fluide

La traînée induite

Le monde rêvé

L'air est poussé de haut en bas en une nappe homogène, toute l'énergie du modèle est utilisée pour la poussée verticale

La dure réalité des choses :

L'air n'est pas poussé en une nappe homogène, de l'énergie est perdue dans les tourbillons transverses... ... c'est la source de la traînée induite

> La traînée induite

- Est liée à la part de l'énergie donnée au fluide qui ne sert pas à supporter l'avion
- Est associée aux tourbillons de bout d'aile
- N'existe pas sur une aile infinie c.a.d. en 2D XFoil
- > Le coefficient ICd ne dépend pas de la vitesse... même si D en dépend

Réduire la traînée induite...

- > Recommandation 1: Lire les 100 ans de publications sur le sujet
- Recommandation 2: Interroger tous les gourous de France et d'ailleurs qui ne manqueront pas de partager leurs recettes savantes
- Recommandation 3: Explorer la notion d'aile elliptique... enfin, pas l'aile, mais la portance... quoique... enfin bref, les deux
- Recommandation 4 : Mettre des winglets : ça "casse" le tourbillon de bout d'aile, transforme l'aile en aile infinie
- Recommandation 5: Augmenter l'allongement pour se rapprocher de l'aile infinie: pas de bout d'aile, donc pas de tourbillon de bout d'aile... logique
- Recommandation 6 : Expérimenter tout ça numériquement dans XFLR5 en regardant l'effet
 - sur les lignes de courant
 - sur la valeur de ICd

La traînée visqueuse

- Si vous avez suivi ce qui précède, vous avez deviné qu'elle s'étudie dans XFoil... effet 2D seulement... donc traînée induite=0... donc ne calcule bien que la partie visqueuse
- > Très compliqué... effets non linéaires... bulles de recirculation... Re critiques... transitions laminaire/ turbulent... instabilité... etc...
- Recommandation : Ne pas chercher trop à explorer les phénomènes, prendre les résultats d'XFoil pour argent comptant

La traînée visqueuse

> Retenir que:

- Cette fois le coefficient VCd dépend du Re local, donc de la vitesse
- VCd décroît avec la vitesse ou avec le Re
- Il faut donc générer un "Réseau de polaires" de profil à différents Re
- Le calcul d'aile 3D, chaque fois que nécessaire, va aller chercher la traînée visqueuse des points de l'aile dans ce "Réseau de polaires"
- Le réseau de polaires doit donc absolument couvrir tous les points de fonctionnement de l'aile

Fin des notions de base...

...et début des choses sérieuses : Les perfos

Introduction aux polaires

Idée N°1: Pour voler, il faut bien sûr une portance positive

Idée N°2: Pour voler longtemps et vite, il faut le moins de traînée

possible...

Idée N°3: La portance et la traînée vont dépendre de l'angle d'attaque

→Pour y voir plus clair, on va tracer la portance, la traînée, l'angle d'attaque sur des graphes... ...ce sont les tristement célèbres et redoutées polaires

La polaire la plus simple

Décrochage

Le coefficient de portance croit à peu près linéairement avec α , aux effets visqueux près :

$$CI = 2\pi (\alpha - \alpha_0)$$

1er principe

"A coefficient de portance positif tu voleras"

La Polaire Eiffel pour une aile seule (1)

> C'est le tracé de la courbe Cl = f(Cd)

A noter que:

- L'aile "se balade sur sa polaire" en fonction du braquage de la profondeur et du calage du stab
- La traînée augmente dès que l'on augmente la portance... la nature ne donne rien pour rien

La Polaire Eiffel pour une aile seule (2)

La Polaire Eiffel pour une aile seule (3)

- La polaire Eiffel classique de Type 1 est parcourue à vitesse constante
- Sur une polaire de Type 2 "à
 portance constante" en
 revanche, la vitesse sera ajustée
 pour chaque "OpPoint" pour
 créer une portance égale au
 poids du modèle
- Donc la traînée visqueuse dépendra de α , ou de Cl, au choix
- Donc la polaire de type 2 sera différente de celle du Type 1 ... plus représentative aussi

Polaire de Type 2, à portance constante

La Finesse

- > La finesse = rapport de la distance parcourue sur la hauteur chutée
 - dépend du braquage de la profondeur, du calage... et même du centrage (on verra plus loin pourquoi)
 - → Finesse = Cl/Cd = Vx/Vz ...sans démonstration!

Rechercher la meilleure finesse équivaut à rechercher à parcourir la plus grande distance à partir d'une altitude donnée

La vitesse de chute

- Vitesse de chute minimale = capacité à rester longtemps en l'air!
 - →dépend du braquage de la profondeur, du calage... et même du centrage (on verrra plus loin pourquoi)
 - \rightarrow La vitesse de chute est proportionnelle à Cd/Cl^{3/2} ... sans démonstration !

Rechercher la plus faible vitesse de chute équivaut à chercher à voler le plus longtemps possible...

... pour ceux aiment faire des ronds dans le ciel 🕾

... les volenbullistes, en somme 🚗

Planche où l'on aborde enfin des choses intéressantes: La vitesse © !

- > Fixée en polaire de Type 1... intérêt limité
- > Calculée en polaire de Type 2 pour "porter" le modèle
- > On se souvient que Portance (Newtons) = $\frac{1}{2} \rho S V^2 Cl$
- \rightarrow A portance constante, la vitesse est donc inversement proportionnelle à la racine carrée de Cl, ou de (α - α_0)

Rechercher la plus forte vitesse revient à voler à faible angle d'attaque

Que voulez vous faire?

1. Du vol-en-bulle 🕾

- \triangleright Chercher la courbe CI/Cd = $f(\alpha)$ la plus "plate" possible pour avoir une bonne finesse à faible angle d'attaque
 - → bonnes transitions
- > Chercher la courbe $Cl^{3/2}$ / Cd = $f(\alpha)$ la plus "plate" possible > Faible taux de chute
- Voler léger → Faible vitesse → Faibles pertes par traînée et capacité à spiraler dans les bulles

2. De la vitesse ©

- > Voler lourd
- > Chercher à minimiser la traînée
- 3. De la compétition durée-vitesse... Là c'est moins évident... mais c'est aussi pour ça que c'est intéressant

On parle simulation numérique?

Le monde de XFoil

- + Permet de traiter la viscosité
- Aile infinie 2D seulement
- Mono-profil

Le monde d'XFLR5

- + Permet de traiter l'aile, l'avion et le fuselage
- + Prend en compte les épaisseurs
- Linéaire, avec interpolations
- Assez compliqué à utiliser

Panneaux 2D, LLT, VLM) ou Panneaux 3D ???

Le monde de Miarex

- + Permet de traiter la portance non linéaire
- Limité à l'étude de l'aile seule
- Effets de dièdre et de flèche sont ignorés
- Ne converge pas toujours

Le monde d'AVL et de XFLR5

- + Permet de traiter l'aile et l'avion
- Linéaire, avec interpolations
- Effets d'épaisseur sont ignorés

Le meilleur compromis?

Le reste est littérature...

Tout se complique...

... où l'on commence à parler de centrage et de stabilité

Equilibre ne veut pas dire stabilité

Les deux positions sont en équilibre, une seule est stable

Stabilité aérodynamique

Comprendre la polaire $Cm = f(\alpha)$

Attention: Etude pour le MODELE COMPLET = AVION ou AILE VOLANTE

On imagine que sous une rafale de vent, le planeur pique du nez :

- →L'angle d'attaque diminue
- → Le moment de tangage devient positif, ce qui, d'après la convention de signes, signifie une tendance à cabrer
- → Le planeur revient en position = stabilité

On imagine que sous une autre rafale de vent, le planeur relève le nez :

- →L'angle d'attaque augmente
- → Le moment de tangage devient négatif, ce qui, d'après la convention de signes, signifie une tendance à piquer
- → Le planeur revient en position = stabilité

So far, so good

Comprendre les polaires $Cm = f(\alpha)$ et Cl = f(Cm)

Attention: Etude pour le MODELE COMPLET = AVION ou AILE VOLANTE Cm = 0 = équilibre Cl > 0 = le modèle vole! Cm α Cm₀ Cm = 0 = équilibre = point de fonctionnement du modèle Pour info seulement: Cm0 = Coefficient de

moment à portance nulle

Pente négative = Stabilité

La pente de la courbe est aussi la force de rappel

Pente forte = modèle stable!

Comment utiliser XFLR5 pour trouver le Foyer

Polaire pour XCmRef < XF Le CG est devant le foyer Le modèle est stable

Polaire pour XCmRef = XF Cm ne dépend pas de α Le modèle est instable

Polaire pour XCmRef > XF Le CG est derrière le foyer Le modèle est stable... à l'envers

Essayer, par tâtonnement, différentes valeurs de XCmRef jusqu'à trouver la polaire du milieu On a alors XF = XCmRef

Le volume de stab (1) : comment s'en servir ?

Rappel de la définition

$$VS = \frac{BL_{Stab} \times Aire_{Stab}}{MAC_{Aile} \times Aire_{Aile}}$$

BL_{Stab}: Le bras de levier du stab mesuré au quart de la corde de l'aile et du stab

MAC: La corde aérodynamique moyenne de l'aile

Aire de l'aile

Aire_{Stab}: L'aire du stabilisateur

Volume de Stab (2)

Ecrivons l'équilibre des moments mesurés au quart de la corde de l'aile, et en ignorant le moment de tangage propre au stab :

$$M_{Aile} + BL_{Stab} \times Portance_{Stab} = 0$$

 M_{Aile} est le moment de tangage de l'aile autour du point au $\frac{1}{4}$ de la corde

On développe la formule en utilisant les coefs Cl et Cm :

 $q \times Aire_{Aile} \times MAC_{Aile} Cm_{Aile} = -BL_{Stab} \times q \times Aire_{Stab} \times Cl_{Stab}$ où q est la pression dynamique

On obtient

$$Cm_{Aile} = -\frac{BL_{Stab} \times Aire_{Stab}}{MAC_{Aile} \times Aire_{Aile}}Cl_{Stab} = -VS \times Cl_{Stab}$$

So what?

Volume de Stab (3)

L'influence du stab diminue à mesure que l'aire de l'aile croît et que sa corde aéro moyenne croît

On comprend que le volume de stab est une mesure de la capacité du stab à équilibrer le moment de tangage propre à l'aile

Volume de Stab (4)

$$Cm_{Aile} = -\frac{BL_{Stab} \times Aire_{Stab}}{MAC_{Aile} \times Aire_{Aile}}Cl_{Stab} = -VS \times Cl_{Stab}$$

Cette formule nous dit que plus le VS sera élevé, plus la capacité du stab à contrôler le tangage sera forte, en revanche :

- → Elle ne nous dit rien sur la stabilité du planeur
- → Elle ne nous dit rien sur les signes de Cm et Cl
- Autrement dit, un VS adéquat c'est bien, mais c'est pas assez
- ➤ Il faut en plus s'occuper de calage et de centrage... on le sait d'ailleurs tous d'expérience après un ou deux crashs

A peine plus compliqué : le stab en V

Formule empruntée à Maître Drela (que la Force aérodynamique soit avec lui)

L'angle δ intervient deux fois :

- 1. il réduit la surface projetée sur le plan horizontal
- 2. il réduit la projection de la force de portance sur le plan vertical

... quelques calculs plus tard :

$$VS = \frac{BL_{Stab} \times Aire_{Stab} \times cos^{2} \delta}{MAC_{Aile} \times Aire_{Aile}}$$

La marge statique : une notion ancienne et utile

D'abord la définition

$$MS = \frac{X_F - X_{CG}}{Corde Moyenne}$$
 (en %)

- On comprend que plus la marge statique est positive, plus le CG sera avancé, plus le modèle sera stable
- On ne se prononcera pas ici sur les niveaux de marges statiques acceptables ou pas... trop risqué
- > A chacun de se bâtir ses pratiques de conception
- Connaissant la position du foyer et la MS souhaitée, on en déduit facilement le centrage...
- ...mais sans garantie que cette position assure un Cl>0 ou des perfos optimisées

Comment utiliser XFLR5 pour centrer son modèle

> Idée N°1 : la plus efficace

- Oublier XFLR5
- Centrer le modèle à 30-35% de la corde moyenne
- Faire des lancés main soft dans un champ avec herbe haute, en reculant progressivement le centrage jusqu'à ce que le modèle plane normalement
- Pour une aile volante
 - · Commencer à 15%
 - Braquer les ailerons vers le haut de 5°-10°
 - Réduire progressivement le braquage des ailerons et reculer le centrage
- Terminer au test du piqué

→ Ca marche à tous les coups !

Comment utiliser XFLR5 pour centrer son modèle

- > Idée N°2 : On fait confiance au calcul
 - Bien relire la clause de dégagement de responsabilité de l'auteur
 - Chercher le foyer par la méthode exposée quelques planches plus haut
 - Avancer le centrage devant le foyer pour...
 - ... arriver à une pente de la courbe $Cm = f(\alpha)$ comparable à celle d'un modèle de même taille "qui marche bien", ou bien
 - ... arriver à un niveau de marge statique acceptable
 - Revenir à l'Idée N°1 et faire malgré tout quelques essais dans l'herbe haute

Pour résumer sur la vue à quatre graphes d'XFLR5

Il faut itérer pour trouver le meilleur compromis

Au sujet du test du piqué

Cas du centrage avant

> 5'il est centré avant, le piqué du planeur amorce une trajectoire en forme de phugoïde

La phugoïde (1)

... est un mode macro d'échange entre l'énergie cinétique et l'énergie potentielle

Montagnes russes : Échange par force de contact

> Aérodynamique : Échange par la portance

La phugoïde (2)

La difficulté tient dans le propos " α constant" Si ce n'est pas le cas, la phugoïde dégénère

Explication

Coller à la phugoïde

- > En parcourant la phugoïde, le vent relatif vu par le planeur change de direction
- > Du point de vue du planeur, c'est une perturbation!
- Le planeur peut réagir rapidement et se ré-orienter sur la trajectoire sous deux conditions
 - que la pente de la courbe $Cm = f(\alpha)$ soit suffisamment forte
 - qu'il ne présente pas trop d'inertie en tangage
- Ces deux facteurs se mesurent conjointement par une fréquence de mode propre : le "short period mode"

L'oscillation d'incidence "Short Period Mode"

C'est une oscillation de type harmonique (sinusoïdale)

Oscillation mécanique : la force de rappel est la raideur k du ressort

La masse peut vibrer au bout du ressort. Dans ce cas, elle le fait à une fréquence naturelle appelée fréquence propre. En termes mathématiques:

$$m\frac{d^2x}{dt^2} + kx = 0$$

Fréquence =
$$\frac{1}{2\pi}\sqrt{\frac{k}{m}}$$

Oscillation aérodynamique : la force de rappel est la pente de la courbe $Cm=f(\alpha)$

De la même façon :

$$J\frac{d^2\alpha}{dt^2} + K\alpha = 0$$

Fréquence =
$$\frac{1}{2\pi} \sqrt{\frac{K}{J}}$$

J est le moment d'inertie en tangage

L'oscillation d'incidence "Short Period Mode"

Fréquence =
$$\frac{1}{2\pi} \sqrt{\frac{K}{J}}$$

- 1. Si cette fréquence est proche de celle de la phugoïde, on dit que les modes vont être couplés, c'est à dire s'influencer l'un l'autre : pas top!
- 2. Le coefficient K est accessible avec XFLR5:

$$K = \frac{1}{2}\rho V^2$$
 Saile M.A.C. $\frac{dC_m}{d\alpha}$ Pente négative de la courbe $Cm = f(\alpha)$

- 3. L'inertie J est difficile à calculer sans un logiciel avancé de CAO ...
- 4. ...mais si on sait la mesurer ou l'estimer, alors un outil comme AVL calcule le mode propre, et bien plus encore!

 (XFLR5 aussi, peut-être, un jour...)

Exemple de modes découplés

> Illustration de la réponse en tangage d'un très gros avion grandeur nature à une perturbation de l'angle d'attaque

- La période du "short period mode" est de quelques secondes, tandis que celle de la phugoïde est d'une centaine de secondes
- · Les deux modes sont découplés (et amortis), l'avion est sain

On résume?

1. Le planeur est centré avant

- > les deux modes sont découplés
- > Le vent apparent change de direction pendant la phugoïde...
- > ... mais le planeur peut maintenir un angle d'attaque constant, grâce à la "raideur" de la pente de la courbe $Cm=f(\alpha)$
- > ...tout comme le chariot reste tangent à la pente

2. Le planeur est centré arrière

On se souvient que centrage arrière = instabilité = la girouette qui amplifie l'effet du vent

Les deux modes sont couplés : la fréquence du "Short Period Mode" se rapproche de celle de la phugoïde

 $\alpha(t)$

- \triangleright L'oscillation d'incidence $\alpha(t)$ amplifie le phénomène de phugoïde
- > En oscillant, la portance passe momentanément en négatif
- La boucle précédente de la phugoïde ne fonctionne plus
- Le mode de phugoïde disparaît
- Le planeur fait du grand n'importe quoi au test du piqué (il est d'ailleurs assez facile de le vérifier expérimentalement)

Considérations sur le calage et le centrage du modèle

Effet du calage

- Le planeur doit être en équilibre en vol : ceci est assuré par l'opposition des moments de tangage induits respectivement par l'aile et par le stab
- > L'expérience et le calcul montrent que pour un angle de calage de stab et des angles de gouverne donnés, un seul angle d'équilibre α_e de vol est physiquement possible : mono-stabilité, ouf !
- Bien noter qu'aucune relation n'existe a priori entre stabilité et performance : ce sont deux problèmes différents
- > Il faudra itérer pour trouver le compromis entre les deux

Calage et centrage

> On peut avoir les deux configurations stab porteur ou déporteur

> Le CG sera devant le CP de l'aile pour un stab déporteur

Sur ce sujet, il est préférable de lire l'explication très complète de qui-vous-savez, téléchargeable sur Planet-Soaring http://pierre.rondel.free.fr/Centrage_equilibrage_stabilite.pdf

Et sans stab?

Cas particulier des ailes volantes

- ≥ Pas de stab!
- L'aile principale devra assurer sa stabilité toute seule
- Deux possibilités
 - Le recours à des profils autostables
 - Le vrillage de l'aile

Le profil autostable

- La notion est ambiguë: l'appellation recouvre les profils qui permettent à l'aile d'être stable en vol, sans stabilisateur, mais....
- La théorie et le calcul montrent que le foyer d'un profil est au quart avant de la corde
- Il faut donc centrer très avant une aile sans stab, c'est à dire dans le premier quart :

- Mais alors... tous les profils sont autostables ??? il suffit de positionner le CG devant le foyer!
- Qu'est ce qui différencie un profil soi-disant autostable des autres qui le sont tout autant ???
- → Tout de suite un petit coup d'XFLR5 pour essayer de comprendre

Un profil classique

NACA1410

Considérons une aile rectangulaire de corde 100mm, avec un profil classique type NACA 1410 soi-disant "non autostable"

On retrouve par calcul que le foyer est à 25% de la corde

Malheureusement, au point de moment nul, la portance est négative : l'aile ne vole pas. Là est le problème...

On dit aussi
communément de
ces profils que "le
coef. de moment à
portance nulle est
négatif"
Cm0 < 0

Straight wing NACA 1410 no twist
—— T1-10.0 m/s-VLM1- 15.00mm
—— T1-10.0 m/s-VLM1- 25.00mm

On prend une marge statique de 10%: XCmRef = 25 mm - 100 mm x 10% = 15 mm

ClO > 0, l'aile vole

Considérons la même aile rectangulaire de corde 100mm, avec un profil Eppler 186 réputé "autostable"

Une façon plus moderne de créer une aile auto-stable

le moment négatif à

l'emplanture

La portance négative au saumon fait que l'aile porte moins qu'une aile de planeur

Portance saumon

On vérifie tout ça de suite sous XFLR5

CG

Données du modèle

Aile Sans Vrillage

Malheureusement, à moment nul, la portance est négative (CkO) : l'aile ne vole pas

On prend une marge statique de 20% (assez fort, mais c'est pour les besoins de l'exemple) XCmRef = 120 mm - 20% x 152mm = 90 mm

Aile Avec Vrillage

A coefficient de moment nul, la portance est légèrement positive : L'aile vole

On prend une marge statique de 20%

Voyons en planche suivante l'allure de l'OpPoint à l'angle d'équilibre α_e =1.7°

Portance à l'angle d'équilibre

Une partie de l'aile porte négativement : la portance totale sera faible, il faudra construire léger (mais au moins, c'est stable et ça vole!)

C'est tout pour l'instant Bonne conception et bons vols!

