ICS 321 Data Storage & Retrieval Normal Forms 1

Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa

The Problem with Redundancy

Hourly_Emps

<u>SSN</u>	Name	Lot	Rating	Hourly_wages	Hours_worked
123-22-2366	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

- Suppose hourly wages are determined by rating
- **Redundant storage**: (8,10) stored multiple times
- Update anomaly: change hourly wages in row 1
- Insertion anomaly: requires knowing hourly wages for the rating
- Deletion anomaly: deleting all (8,10) loses info

Using Two Smaller Tables

Hourly_Emps

<u>SSN</u>	Name	Lot	Rating	Hours_ worked
123-22-2366	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

RatingWages

Rating	Hourly_ wages
5	7
8	10

- Any more anomalies? Update, Insertion, Deletion?
- Remove redundancy by decomposition
 - Since hourly wage is completely determined by rating, factor out hourly wage.
- **Pros**: less redundancy less anomalies
- Cons: retrieving the hourly wage of an employee requires a join

Normal Forms

- Helps with the question: do we need to refine the schema?
- If a relation is in a certain *normal form* (BCNF, 3NF etc.), it is known that certain kinds of problems are avoided/minimized. This can be used to help us decide whether decomposing the relation will help.
- Role of FDs in detecting redundancy:
 - Consider a relation R with 3 attributes, ABC.
 - No FDs hold: There is no redundancy here.
 - Given A → B: Several tuples could have the same A value, and if so, they'll all have the same B value!

Boyce-Codd Normal Form (BCNF)

- Let R denote a relation, X a set of attributes from R, A an attribute from R, and F the set of FDs that hold over R.
- R is in **BCNF** if for all $X \rightarrow A$ in F^+ ,
 - $-A \in X$ (trivial FD) or
 - X is a superkey

The only non-trivial FDs that hold are key constraints

- Negation: R is not in BCNF if there exists an X
 - \rightarrow A in F⁺, such that A \notin X (non-trivial FD) AND X is not a key

Examples: BCNF

Are the following in BCNF?

<u>Firstname</u>	<u>Lastname</u>	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809

$$F = \{ FLD \rightarrow FLDAT \}$$

<u>Firstname</u>	<u>Lastname</u>	<u>DOB</u>	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343-0 809

$$F = \{ FLD \rightarrow FLDSCZT, C \rightarrow Z \}$$

Third Normal Form (3NF)

- Let R denote a relation, X a set of attributes from R,
 A an attribute from R, F the set of FDs for R.
- R is in 3NF if for all X \rightarrow A in F⁺,
 - $-A \subseteq X$ (trivial FD) or
 - X is a superkey or
 - A is part of some key
- Negation: R is not in 3NF if there exists an X → A in F⁺, such that
 - A \notin X (non-trivial FD) AND
 - X is not a key AND A is not part of some key
- If R is in BCNF, obviously in 3NF.
- If R is in 3NF, some redundancy is possible. It is a compromise, used when BCNF not achievable (e.g., no `good' decomp, or performance considerations).

Example: 3NF

Which of the following is in 3NF and which in BCNF?

<u>Firstname</u>	<u>Lastname</u>	DOB	Address	Telephone
John	Smith	Sep 9 1979	Honolulu,HI	808-343-0809

$$F = \{ FLD \rightarrow FLDAT \}$$

<u>Firstname</u>	<u>Lastname</u>	<u>DOB</u>	Street	CityState	Zipcode	Telephone
John	Smith	Sep 9 1979	1680 East West Rd.	Honolulu,HI	96822	808-343-0 809

$$F = \{ FLD \rightarrow FLDSCZT, C \rightarrow Z \}$$

Student	Course	Instructor
Smith	OS	Mark

$$F = \{ SC \rightarrow I, I \rightarrow C \}$$

Redundancies & Decompositions

Hourly_Emps

	<u>SSN</u>	Name	Lot	Rating	Hourly_wages	Hours_worked
•	123-22-2366	Attishoo	48	8	10	40
	231-31-5368	Smiley	22	8	10	30
	131-24-3650	Smethurst	35	5	7	30
	434-26-3751	Guldu	35	5	7	32
	612-67-4134	Madayan	35	8	10	40

Hourly_Emps

<u>SSN</u>	Name	Lot	Rating	Hours_ worked
123-22-2366	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

RatingWages

Rating	Hourly_ wages
5	7
8	10

Decompositions

- Reduces redundancies and anomalies, but could have the following potential problems:
 - 1. Some queries become more expensive.
 - 2. Given instances of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
 - 3. Checking some dependencies may require joining the instances of the decomposed relations.
- Two desirable properties:
 - Lossless-join decomposition
 - Dependency-preserving decomposition

Lossless-join Decomposition

 Decomposition of R into X and Y is <u>lossless-join</u> w.r.t. a set of FDs F if, for every instance r that satisfies F:

$$\pi_{X}(r)$$
 join $\pi_{Y}(r) = r$

- In general one direction $\pi_{\chi}(r)$ join $\pi_{\gamma}(r) \subseteq r$ is always true, but the other may not hold.
- Definition extended to decomposition into 3 or more relations in a straightforward way.
- It is essential that all decompositions used to deal with redundancy be lossless! (Avoids Problem (2).)

Conditions for Lossless Join

 The decomposition of R into X and Y is losslessjoin wrt F if and only if the closure of F contains:

$$- X \cap Y \rightarrow X, \text{ or}$$
$$- X \cap Y \rightarrow Y$$

 In particular, the decomposition of R into UV and R - V is losslessjoin if U → V holds over R.

