Continuité et dérivation des fonctions

Exercice 1 Soit f la fonction définie sur $\mathbb{R} \setminus \{-3, 1\}$ par l'expression : $f(x) = \frac{x}{x^2 + 2x - 3}$

1. Déterminer les limites de f aux bornes de son ensemble de définition. Interpréter graphiquement

- 2. Dresser le tableau de variation de f.
- 3. Déterminer l'équation de la tangente T_0 au point d'abscisse 0.
- 4. Tracer T_0 et C_f .

Exercice 2 On considère la fonction $x \mapsto E(x)$, appelée fonction "partie entière" et qui, à tout x réel, associe le plus grand entier inférieur ou égal à x. Par exemple, E(3,6) = 3 et E(-1,78) = -2. Tracer sa courbe représentative sur l'intervalle]-4;4]. La fonction partie entière est-elle continue?

Exercice 3 On donne ci-contre le tableau de variation d'une function f.

Quel est le nombre de solutions de l'équation f(x) = 2. (on justifiera le résultat).

Exercice 4 Démontrer que l'équation $x^3 + 3x = 5$ admet une unique solution sur \mathbb{R} . Donner une valeur approchée à 10^{-2} près de cette solution.

Exercice 5 On considère la fonction h définie sur $]-1;+\infty[$ par $h(x)=2x-3+\sqrt{x+1}.$

- 1. Donner le tableau de variations de h.
- 2. En déduire que l'équation $\sqrt{x+1} = 3 2x$ admet une unique solution α dans $[-1; +\infty[$.
- 3. Donner une valeur approchée de α à 10^{-2} près.

Exercice 6 Soit la fonction f définie par l'expression $f(x) = x^2 + 3x - 1$.

Montrer que f est dérivable en x=2 et en déduire f'(2).

Déterminer directement la fonction dérivée f' de f, et retrouver le résultat précédent.

Exercice 7 Soit la fonction h définie sur \mathbb{R}^+ par $h(x) = \sqrt{x}$.

Montrer que la fonction h n'est pas dérivable en 0. Interpréter graphiquement le résultat précédent.

Exercice 8 Montrer que la fonction $k: x \mapsto \frac{x\sqrt{x}}{1+x}$ est dérivable en 0. Que vaut k'(0)?

Exercice 9 Déterminer la fonction dérivée des fonctions suivantes :

•
$$f_1: x \mapsto x^{23} - \frac{12x^{11}}{5} + 3,5x^7 - \frac{1}{x}$$
 • $f_2: x \mapsto \sqrt{x} + \frac{1}{x+2}$ • $f_3: x \mapsto \sqrt{x+3}$

•
$$f_7(x) = x^2 \cos(x)$$

• $f_8(x) = \cos(2x+3)$
• $f_9(x) = (2x^2 + 3x - 2)^7$

•
$$f_{10}(x) = \sqrt{4 - x^2}$$

• $f_{11}(x) = -4x + 6x\sqrt{x}$
• $f_{12}(x) = \frac{ax + b}{cx + d}$

•
$$f_{13}(x) = \left(\frac{3x-4}{x-1}\right)^3$$
 • $f_{14}(x) = \sqrt{3x^2 - \frac{1}{9x}}$ • $f_{15}(x) = \sqrt{2 + \cos^2(2x+1)}$

Exercice 10 Déterminer les extrema éventuels de $f: x \mapsto x + \frac{2}{x}$. Vérifier que ces points sont bien des extrema, et préciser s'il s'agit de minima ou de maxima.

Exercice 11 f est définie sur \mathbb{R} par: $f(x) = x^3 - 2x^2 - 4$. Montrer que -6 est un minorant de f sur \mathbb{R}_+ .

Exercice 12 f_m est la fonction définie sur $\mathbb{R} \setminus \{-1;1\}$ par : $f_m(x) = \frac{x^2 + mx}{x^2 - 1}$, où m est un réel. Pour quelles valeurs de m, f_m n'admet-elle ni maximum ni minimum?

Exercice 13 f est définie sur \mathbb{R} par $f(x) = x^2$ et g la fonction définie sur $\mathbb{R} \setminus \{3\}$ par $g(x) = 9 + \frac{12}{x-3}$.

- 1. a) Etudier les variations de g et ses limites aux bornes de son ensemble de définition.
 - b) Dans un même repère, tracer les courbes représentatives des fonctions f et q.
 - c) Indiquer, par lecture graphique, le nombre de solutions dans IR de l'équation f(x) = g(x).
- 2. h est la fonction définie sur $\mathbb{R} \setminus \{3\}$ par : h(x) = (x-3)[f(x) g(x)].
 - a) Etudier les limites de h en $-\infty$ et $+\infty$.
 - b) Etudier les variations de h et dresser son tableau de variations.
 - c) En déduire que l'équation f(x) = g(x) admet trois solutions.
 - d) Donner un encadrement d'amplitude 10^{-1} de chaque solution.

Exercice 14 On note (E) l'équation $x^3 - 15x - 4 = 0$ et (I) l'inéquation $x^3 - 15x - 4 > 0$.

1. Résolution graphique

- a) Montrer que l'équation (E) est équivalente à l'équation $x^2 15 = \frac{4}{x}$
- b) Tracer dans un même repère les courbes représentatives des fonctions $x \mapsto x^2 15$ et $x \mapsto \frac{4}{x}$.
- c) Déterminer graphiquement le nombre de solutions de l'équation (E). Une des solutions est un nombre entier, quelle est sa valeur? Encadrer chacune des autres solutions α et β (avec $\alpha < \beta$) par deux entiers consécutifs.
- d) Démontrer que l'inéquation (I) s'écrit sur $]0; +\infty[$, $x^2-15>\frac{4}{x}$, et sur $]-\infty;0[$, $x^2-15<\frac{4}{x}$.
- 2. Etude d'une fonction f est définie sur \mathbb{R} par $f(x) = x^3 15x 4$. \mathcal{C}_f est sa courbe représentative.
 - a) Justifier la continuité de f sur ${\rm I\!R}.$
 - b) Etudier les limites de f en $-\infty$ et $+\infty$.
 - c) Déterminer les variations de f et dresser son tableau de variations. Tracer l'allure de \mathcal{C}_f .
 - e) Démontrer que l'équation f(x) = 0 admet exactement trois solutions dans \mathbb{R} .
 - f) Donner un encadrement à 10^{-2} près de chacune des solutions.
 - g) Etudier le signe de la fonction f. En déduire l'ensemble des solutions de l'inéquation (I).

3. Méthode algébrique

- a) Déterminer les réels a, b et c tels que pour tout réel x, $x^3 15x 4 = (x 4)(ax^2 + bx + c)$.
- b) Résoudre alors (E) et (I).

Exercice 15 f est la fonction polynôme définie sur \mathbb{R} par : $f(x) = \frac{x^4}{4} - \frac{3}{2}x^2 + 4x$.

- 1. Calculer la dérivée f' de la fonction f, puis sa dérivée seconde f''.
- 2. a) Déterminer les variations de la fonction f', et dresser le tableau de variation de f'.
 - b) Prouver que l'équation f'(x) = 0 admet une solution unique c et que cette solution appartient à l'intervalle $]-\infty;-1]$. Donner un encadrement de c d'amplitude 10^{-2} .
- 3. a) Déterminer le signe de la fonction f', puis dresser le tableau de variation de la fonction f.
 - b) Montrer que $f(c) = \frac{3c(4-c)}{4}$
 - c) Déterminer le nombre de racines du polynôme f.