Design of a Grid Simulator for the Dynamic Frequency Stability Studies

Erencan Duymaz

Advisor: Assist. Prof. Ozan Keysan

Middle East Technical University GRAD STAR Research Workshop 2018

Frequency in Power Systems

- Frequency systems power depends on the balance between generation and consumption.
- renewable Increasing energy systems causes higher flactuations in the frequency.

Figure 1. Frequency control in England and Wales [1]

Therefore, frequency stability studies require attention. However, absence of dynamical grid simulators makes these studies more challanging in laboratory conditions.

Commercial Grid Simulator vs AC Synchronous Generator

Figure 2. Commercial Grid Simulator (left) and AC Synchronous Generator (right)

- There is **no rotational part!**
- System is composed of rotational elements.
- Frequency is **commanded**!
- Frequency is determined according to power balance.

Figure 3. Laboratory Setup (AC Generator, DC motor and External Flywheel

- A realistic grid simulator can be designed in the laboratory by controlling the system speed and output voltage.
- DC motor and AC motor will be controlled by controlling their field currents in order to deal with low power equipments.

System Description

Figure 4. Proposed System Description

Exciter Governor It adjust the input It adjust the mechanical power. output voltage. AC Generator: Duty Cycle $I_f \alpha V_t$ Figure 5. Exciter Control Diagram

Figure 6. Separately excited DC motor equivalent circuit [2]

Figure 7. Governor Control Diagram for mode 1

DC Motor:

 $\omega \alpha E_a$

 $I_f \alpha E_a$

Figure 8. Governor Control Diagram for mode 2

Figure 9. Governor Control Diagram for mode 3

Results Experimental Result - - Simulation Result a. Frequency response for the 12.5% additional load b. Terminal voltage for 12.5% additional load connection

Figure 10. Comparison of computer simulations and hardware results

Bibliography

I. A. Erinmez, D. O. Bickers, G. F. Wood, and W. W. Hung, "NGC experience with frequency control in England and Wales-provision of frequency response by generators," IEEE Power Eng. Soc. 1999 Winter Meet. (Cat. No.99CH36233), vol. 1, pp. 590-596 vol.1, 1999. S. D. Umans, Fitzgeral & Kingsley's Electric Machinery. 2014.