3–9-GHz CMOS LNA Using Body Floating and Self-Bias Technique for Sub-6-GHz 5G Communications

Jin-Fa Chang[®], Member, IEEE, and Yo-Sheng Lin[®], Senior Member, IEEE

Abstract—We propose the body floating and self-bias technique, in which the body of the transistor is connected to its drain through a resistance (13.6 k Ω in this work). A low-power 3-9-GHz CMOS low-noise amplifier (LNA) using the technique for sub-6-GHz 5G systems is reported. An enhancement in S_{21} and noise figure (NF) of the LNA is achieved due to the forward body-to-source bias (V_{BS}) (i.e., small threshold voltage V_{th}) and the transistors being free from the substrate leakage. Low power is achieved since low supply voltage (V_{DD}) of 1 or 0.8 V is applicable because of small $V_{\rm th}$. At $V_{\rm DD}$ of 1 V, the LNA consumes 3.3 mW and achieves prominent S_{11} of -10.1 to -41.6 dB, S_{21} of 10.7 dB, and NF of 2.89 dB for 3-9 GHz. At $V_{\rm DD}$ of 0.8 V, the LNA consumes 1.36 mW and achieves S_{11} of -10 to -45.8 dB, S_{21} of 9.4 dB, and NF of 3.46 dB. To the authors' knowledge, both are one of the lowest power values ever reported for CMOS LNAs with bandwidth greater than 6 GHz and NF under 3.5 dB.

Index Terms—Body floating resistor, CMOS, low noise amplifier (LNA), low power (LP), self-body bias, wideband.

I. INTRODUCTION

O DATE, several sub-6-GHz CMOS low-noise amplifiers (LNAs) have been reported [1]–[9]. But, the overall performance still has room for improvement. For example, in [3], a sub-6-GHz LNA in 65-nm CMOS is demonstrated. Though low noise figure (NF) of 3.3 dB, S₂₁ of 12.8 dB, and bandwidth (BW) of 19 GHz are attained, its power dissipation (P_D) of 20.3 mW is not good enough. For an nMOSFET, instead of connection of its body to source [B-to-S, see Fig. 1(a)], its body can be connected to a 5-10-k Ω grounded resistor (i.e., B-to-S with R). This makes the body floating at RF and $V_{\rm BS}$ equal to 0 at dc. It is useful for insertion-loss reduction in switch applications [10], [11]. Instead of connection of its body to drain [B-to-D, see Fig. 1(b)], its body can be connected to drain through a high resistance R_B [B-to-D with R, see Fig. 1(c)]. This makes the body floating at RF and $V_{\rm BS}$ (equal to $V_{\rm DS}-I_{\rm B}R_{\rm B}$) being forward-biased at dc (i.e., smaller V_{th}). $I_{\rm B}$ is the substrate leakage current in Fig. 2(a). This is the proposed body floating and self-bias technique. From Fig. 2(b), IB decreases with the increase of

Manuscript received January 28, 2021; revised March 16, 2021; accepted April 20, 2021. Date of publication April 23, 2021; date of current version June 7, 2021. This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under Contract MOST109-2222-E-035-009. (Corresponding author: Jin-Fa Chang.)

Jin-Fa Chang is with the Department of Electronic Engineering, Feng Chia University, Taichung 407, Taiwan (e-mail: jfchang@fcu.edu.tw).

Yo-Sheng Lin is with the Department of Electrical Engineering, National Chi Nan University, Puli 545, Taiwan (e-mail: stephenlin@ncnu.edu.tw).

Color versions of one or more figures in this letter are available at https://doi.org/10.1109/LMWC.2021.3075279.

Digital Object Identifier 10.1109/LMWC.2021.3075279

Fig. 1. CG input transistor with (a) B-to-S, (b) B-to-D, and (c) B-to-D with R.

Fig. 2. (a) Circuit diagram and photograph of the LNA. Simulated (b) $V_{\rm th}-R_{\rm B}$ and $I_{\rm B}-R_{\rm B}$ and (c) $I_{\rm DS}-V_{\rm DS}$ curves of transistor M_1 .

 $R_{\rm B}$, while $V_{\rm th}$ increases with the increase of $R_{\rm B}$ due to the decrease of $I_{\rm B}$ and $V_{\rm BS}$. To obtain reasonable $V_{\rm th}$ and low $I_{\rm B}$ (such as smaller than 0.1 $\mu{\rm A}/\mu{\rm m}$), a high $R_{\rm B}$ (13.6 k Ω in this work) can be used. In this work, we report a CMOS LNA using body floating and self-bias technique for sub-6 GHz 5G systems. An enhancement in S_{21} and NF is achieved. This is because the transistors have smaller $V_{\rm th}$ due to forward-biased $V_{\rm BS}$, and are free from $I_{\rm B}$ (through the ON-resistance $R_{\rm on,BS}$ of the parasitic body-source diode) due to large $R_{\rm B}$ [see Fig. 2(c)]. Low power (LP) is achieved since low $V_{\rm DD}$ of 1 or 0.8 V is applicable due to small $V_{\rm th}$.

II. CIRCUIT DESIGN

The LNA is designed by a 1P6M 0.18- μ m CMOS process. Fig. 2(a) shows the schematic and chip photo. The chip area is 0.739 mm². The transistor sizes and important device parameters are labeled. The transmission lines (TLs) and the inductors are placed on the 2.34- μ m-thick topmost metal to minimize the resistive loss. The LNA consists of a cascoded common-gate (CG) input stage followed by a buffer stage.

1531-1309 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Fig. 3. Simulated (a) S_{21} and NF, (b) L_C-L_{D2} effect on S_{21} and NF, (c) S_{11} , and (d) $V_{\rm DD}$ effect on S_{21} and NF of the LNA.

The input impedance (Z_{in}) of the LNA is given by

$$Z_{\rm in} \approx s L_{S1} + \left(s L_{S2} \left\| \frac{1}{s C_{\rm gs1}} \right\| \frac{1}{g_{\rm m1}} \right)$$
 (1)

in which C_{gs1} and g_{m1} are the gate-source capacitance and transconductance, respectively, of transistor M_1 . g_{m1} decreases with the increase of $R_{\rm B}$ because of the increase of $V_{\rm th}$. The lower corner frequency (3–4 GHz) is a function of the peaking inductor L_{D1} . L_C and the capacitance at drain of M_1 and source of M2 are parallel resonant around the midband (5–6 GHz), while the peaking inductor $L_{\rm D2}$ and $C_{\rm gs4}$ are series resonant at the upper corner frequency (8-9 GHz). As a whole, flat and high S_{21} and flat and low NF are achieved. Fig. 2(c) shows the simulated $I_{DS}-V_{DS}$ curves of transistor M₁ in various conditions. For $V_{\rm DS}$ smaller than 1.1 V, compared with B-to-S and B-to-S with R, higher I_{DS} is obtained for B-to-D and B-to-D with R due to smaller V_{th} . Compared with B-to-D with R, sharper increase of I_{DS} (for V_{DS} larger than 1.1 V) is obtained for B-to-D due to the small $R_{\rm on,BS}$ between drain and source. For B-to-S with R (i.e., body being floating) at $V_{\rm DS}$ larger than 2.5 V, the body-to-drain diode is reversely conducted. Its I_{DS} curve is close to that of the B-to-D with R because the resistance between drain and source is $R_{\text{on,BD}} + R_{\text{B}}$, which is roughly equal to $R_{\rm B} + R_{\rm on,BS}$.

Fig. 3(a)–(c) shows the simulation results at $V_{\rm DD}$ of 1 V (the low-noise (LN) mode). For the configurations with R, the TL between R and the transistor is 6- μ m-wide and 127.1- μ m-long. Its equivalent inductance [$L_{\rm B}$ in Fig. 2(a)] is 84.9 pH. $L_{\rm B}$ has no effect on $V_{\rm th}$ due to short at dc, but is helpful for the slight S_{11} enhancement according to simulation. Fig. 3(a) shows the simulated S_{21} and NF in various conditions. Compared with the traditional B-to-S (and B-to-S with R), the proposed B-to-D with R (13.6 k Ω in this work) achieves notable improvement in S_{21} and NF due to smaller $V_{\rm th}$ of the transistors. For instance, $V_{\rm th}$ is reduced from 0.42 V (for $V_{\rm BS}$ equal to 0 V) to 0.33 V for $V_{\rm BS}$

equal to 0.35 V (this work), and 0.27 V for $V_{\rm BS}$ equal to 0.7 V. Compared with B-to-D and B-to-0.35 V (i.e., body connected to a fixed bias of 0.35 V, the same as the dc bias at drain), B-to-D with R achieves better S_{21} and NF mainly due to free from the substrate leakage [see Fig. 2(c)]. Moreover, the LNA achieves input third-order intercept point (IIP3) of -8.8, -9, -10, -10.3, and -10.8 dBm, respectively, at 5 GHz in the configuration of B-to-S only, B-to-S w/i R, B-to-0.35 V, B-to-D only, and B-to-D w/i R (not shown here). The voltage gain (A_v) and output impedance $(Z_{\rm out})$ of the buffer stage are given by

$$A_{\rm v} \approx \frac{1}{1 + s^2 L_{\rm D2} C_{\rm gs4}} \cdot \frac{g_{\rm m4}(r_{\rm o3} || r_{\rm o4} || 50)}{1 + g_{\rm m4}(r_{\rm o3} || r_{\rm o4} || 50)}$$
(2)

$$Z_{\text{out}} \approx \frac{1 + s^2 L_{\text{D2}} C_{\text{gs4}}}{g_{\text{m4}} + s C_{\text{gs4}}} \|r_{\text{o3}}\| r_{\text{o4}} \|50$$
 (3)

in which r_{o3} is the output resistance of transistor M₃. C_{gs4} , g_{m4} , and r_{o4} are the gate–source capacitance, transconductance, and output resistance, respectively, of transistor M₄. Instead of the connection of body to ground, the proposed B-to-D with R can be used at the buffer stage. Simulation shows a slight increase in average S_{21} ($S_{21,ave}$) from 12.7 to 14.3 dB because of the increase of g_{m4} (due to the decrease of V_{th}). Average NF (NF_{ave}) remains roughly the same (from 3.08 to 3.09 dB) since it mainly depends on the input stage. Fig. 3(b) shows the simulated S_{21} and NF of the LNA in various L_C and L_{D2} conditions. L_{D2} and L_C are effective to improve S_{21} and NF around the upper corner frequency (8–9 GHz) and the midband frequency (5–6 GHz), respectively.

Fig. 3(c) shows the simulated S_{11} of the LNA. For B-to-D with R (this work), S_{11} is smaller than -10 dB for 2.7–12.3 GHz. The corresponding -10 dB matching BW (f_{10dB}) is 9.6 GHz. Moreover, the S_{11} curve of B-to-D with R is close to that of B-to-0.35 V due to roughly the same $V_{\rm BS}$ and $V_{\rm th}$. The S_{11} curve of B-to-S with R is close to that of B-to-S only also due to roughly the same $V_{\rm BS}$ and $V_{\rm th}$. Fig. 3(d) shows the simulated $S_{21,\rm ave}$, NF_{ave}, and $P_{\rm D}$ versus $V_{\rm DD}$ characteristics of the LNA. At LN mode ($V_{\rm DD}$ of 1 V), the LNA consumes low $P_{\rm D}$ of 2.99 mW and achieves high $S_{21,\rm ave}$ of 12.7 dB and low NF_{ave} of 3.08 dB for 3–9 GHz. At LP mode ($V_{\rm DD}$ of 0.8 V), the LNA consumes ultralow $P_{\rm D}$ of 1.39 mW and achieves decent $S_{21,\rm ave}$ of 9.8 dB and NF_{ave} of 3.74 dB for 3–9 GHz.

III. RESULTS AND DISCUSSIONS

On-wafer S-parameters measurement was performed by a Keysight 5247A network analyzer. The LNA has two operation modes, the LN mode and the LP mode. At LN mode, the LNA consumes 3.3 mW from $V_{\rm DD}$ of 1 V. At LP mode, the LNA consumes 1.36 mW from $V_{\rm DD}$ of 0.8 V. Both are one of the lowest powers ever reported for a CMOS LNA with BW greater than 6 GHz and NF under 3.5 dB (will discuss later). The LNA is unconditionally stable at the LN mode and the LP mode due to stability factors μ and μ' being greater than 1 [12]–[13] (not shown here). Fig. 4(a) shows the measured and simulated/calculated S-parameters of the LNA at LN mode. The measured S_{11} and S_{22} are close to the calculated ones. The measured S_{21} and S_{12} are consistent with the simulated ones. The LNA achieves minimum S_{11} of -41.6 dB at 7.2 GHz, and S_{11} smaller than -10 dB for 2.9–10.3 GHz, corresponding to f_{10dB} of 7.4 GHz. The remarkable S_{11} is attributed to the T-match wideband input

	Circuit			Bandwidth	NF _{min} / NF _{ave}	IIP3	P_{D}	FOM	CMOS
	Configuration	S ₁₁ (dB)	S ₂₁ (dB)	(GHz)	(dB)		- 2	(GHz/mW)	
This Work- LN Mode	2-stage: CG+CG	-10.1~ -41.6	7.5-10.7	2.4-9.1	2.89/ 3.41	-6.2	3.3	4.85	0.18 μm
This Work- LP Mode	2-stage: CG+CG	-10~ -45.8	6.4-9.4	2.3-9.1	3.46/ 3.89	-6.8	1.36	8.57	0.18 μm
[3], TMTT 2020	3-stage: CG+CS+CS	< -10	9.8-12.8	1-20	3.3/ 4.3	5.8	20.3	2.03	65 nm
[4], TCAS-II 2019	3-stage: CS+CD+CS	< -10	13.8-16.8	0.5-7	2.87/ 3.32	-4.5	11.3	2.92	65 nm
[5], EE 2019	3-stage: CG+CS+CS	< -10	12.4-13.6	3.1-10.6	3.3/ 3.9	N/A	21.6	1.07	0.18 μm
[6], TMTT 2019 (LP Mode)	3-stage BDDA	< -10	6-9	3-12	5.9/ 6.65	NA	132	0.04	0.18 µm
[7], JSSC 2017	2-stage CS & 2-path	< -10	14.5-17.5	0.1-2	2.9/ 3.2	-10.6	21.3	0.52	0.18 µm
[8], TCAS-II 2018	2-stage (CG+CS) 2-path	< -10	10-13+	2-5	6/7	-9.5	1.8	1.56	0.18 μm
[9], JSSC 2007	3-stage: CG+CS+CS	< -11	6.7-9.7	1.2-11.9	4.5/ 4.8	-6.2	20	0.68	0.18 µm

TABLE I
SUMMARY OF THE LNA, AND RECENTLY REPORTED STATE-OF-THE-ART CMOS LNAs WITH SIMILAR OPERATION FREQUENCY

⁺Voltage Gain

Fig. 4. Measured and simulated/calculated S-parameters at (a) LN and (b) LP mode. (c) Measured $P_{\rm out}$ and IM3 versus $P_{\rm in}$ characteristics. (d) Measured and simulated NF and IIP3.

network comprising $L_{\rm S1}$, $L_{\rm S2}$, $C_{\rm gs1}$, and $1/g_{\rm m1}$. The LNA achieves maximum $S_{\rm 21}$ of 10.7 dB at 8.3 GHz, and 3-dB BW ($f_{\rm 3dB}$) of 6.7 GHz (2.4–9.1 GHz). Moreover, the LNA achieves excellent $S_{\rm 12}$ of -39.8 to -52.4 dB for 3–11 GHz. The decent $S_{\rm 12}$ is attributed to the adoption of the cascoded CG input stage, so the reverse signal through $C_{\rm gd}$ is relatively small. Fig. 4(b) shows the measured and simulated/calculated S-parameters of the LNA at LP mode. The measured $S_{\rm 11}$ and $S_{\rm 22}$ are close to the calculated ones. The measured $S_{\rm 21}$ and $S_{\rm 12}$ are consistent with the simulated ones. The LNA achieves minimum $S_{\rm 11}$ of -45.8 dB at 7 GHz, and $S_{\rm 11}$ smaller than -10 dB for 3–9.9 GHz, corresponding to $f_{\rm 10dB}$ of 6.9 GHz. The LNA achieves maximum $S_{\rm 21}$ of 9.4 GHz at 8.3 GHz and $f_{\rm 3dB}$ of 6.8 GHz (2.3–9.1 GHz). Moreover, the LNA achieves excellent $S_{\rm 12}$ of -40.7 to -54 dB for 3–11 GHz.

Fig. 4(c) shows the measured output power (P_{out}) and third-order intermodulation output power (IM3) versus input power (P_{in}) characteristics of the LNA at 5 GHz and LN mode. The corresponding IIP3 is -6.2 dBm. Fig. 4(d) shows the

measured and simulated NF and IIP3 of the LNA at LN and LP modes. At LN mode, the LNA achieves remarkable minimum NF (NF_{min}) of 2.89 dB at 5 GHz and NF_{ave} of 3.41 dB for 3–9 GHz, close to the simulation result (NF_{min} of 2.55 dB and NF_{ave} of 3.08 dB). The noteworthy NF is attributed to the adoption of the body floating and self-bias technique. As a whole, an enhancement in NF (and S_{21}) of the LNA is achieved due to the forward-biased V_{BS} (i.e., small V_{th}) and the transistors being free from the substrate leakage. At LP mode, the LNA achieves excellent NF_{min} of 3.46 dB at 5 GHz and NF_{ave} of 3.89 dB for 3–9 GHz, close to the simulation result (NF_{min} of 3.04 dB and NF_{ave} of 3.74 dB). Moreover, the LNA achieves measured IIP3 of -6.2 to -10.6 dBm at LN mode and -6.8to -10.4 dBm at LP mode for 3–9 GHz, slightly better than the simulated ones (-8.8 to -18.2 dBm at LN mode and)-7.9 to -18 dBm at LP mode) due to slightly lower S_{21} . A figure of merit (FOM) adequate for performance evaluation of wideband LNAs is given by Edwards and Sinsky [12]

FOM [GHz/mW] =
$$\frac{S_{21} [1] \cdot BW [GHz]}{(NF - 1)[1] \cdot P_D [mW]}$$
. (4)

 S_{21} [1] is the average S_{21} in magnitude, BW [GHz] is the f_{3dB} in GHz, (NF-1) [1] is the excess noise factor (of NF_{ave}) in magnitude, and P_D [mW] is P_D in mW. Table I is a summary of the two-stage LNA, and recently reported state-of-the-art two-stage (with two-path for gain enhancement and noise canceling) and three-stage CMOS LNAs with similar operation frequency. Our LNA at LN mode attains moderate f_{3dB} , S_{21} , and IIP3, low P_D , lowest NF, and the highest FOM. Our LNA at LP mode achieves moderate f_{3dB} , S_{21} , and IIP3, low NF, lowest P_D , and the highest FOM. Moreover, instead of the source-follower output buffer, a common-source (CS) output stage can be used for S_{21} enhancement (from 12.7 to 19.6 dB according to simulation). The remarkable results of our LNA indicate that it is promising for 5G systems.

IV. CONCLUSION

We demonstrate a 3–9-GHz CMOS LNA using body floating and self-bias technique. An enhancement in S_{21} and NF of the LNA is achieved due to the forward-biased $V_{\rm BS}$ (i.e., small $V_{\rm th}$) and the transistors being free from the substrate leakage. Low $P_{\rm D}$ is achieved since low $V_{\rm DD}$ of 1 or 0.8 V is applicable because of small $V_{\rm th}$. The eminent LP and LN performance (such as NF of 2.89 dB at $P_{\rm D}$ of 3.3 mW) of the LNA indicates that it is suitable for sub-6-GHz 5G systems.

REFERENCES

- [1] E.-H.-V. Yeh, A.-H. Lo, W.-S. Chen, T.-J. Yeh, and M. Chen, "A 16 nm FinFET 0.4 V inductor-less cellular receiver front-end with 10 mW ultralow power and 0.31 mm² ultra-small area for 5G system in sub-6 GHz band," in *Proc. Symp. VLSI Circuits*, Jun. 2017, pp. 1–2.
- [2] J. Lee et al., "A sub-6-GHz 5G new radio RF transceiver supporting EN-DC with 3.15-Gb/s DL and 1.27-Gb/s UL in 14-nm FinFET CMOS," IEEE J. Solid-State Circuits, vol. 54, no. 12, pp. 3541–3552, Dec. 2019.
- [3] H. Yu, Y. Chen, C.-C. Boon, P.-I. Mak, and R.-P. Martins, "A 0.096-mm² 1–20-GHz triple-path noise-canceling common-gate common-source LNA with dual complementary pMOS-nMOS configuration," *IEEE Trans. Microw. Theory Techn.*, vol. 68, no. 1, pp. 144–159, Oct. 2020.
- [4] H. Yu, Y. Chen, C. C. Boon, C. Li, P.-I. Mak, and R. P. Martins, "A 0.044-mm² 0.5-to-7-GHz resistor-plus-source-follower-feedback noise-cancelling LNA achieving a flat NF of 3.3±0.45 dB," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 66, no. 1, pp. 71–75, Jan. 2019.
- [5] H. Zhou, Y. Zhang, and Y. Yu, "Ultra-wideband low noise amplifier employing noise cancelling and simultaneous input and noise matching technique," *IEICE Electron. Exp.*, vol. 16, no. 11, pp. 1–4, 2019.
- [6] A. Alizadeh, M. Meghdadi, M. Yaghoobi, and A. Medi, "Design of a 2–12-GHz bidirectional distributed amplifier in a 0.18-μm CMOS technology," *IEEE Trans. Microw. Theory Techn.*, vol. 67, no. 2, pp. 754–764, Feb. 2019.

- [7] B. Guo, J. Chen, L. Li, H. Jin, and G. Yang, "A wideband noise-canceling CMOS LNA with enhanced linearity by using complementary nMOS and pMOS configurations," *IEEE J. Solid-State Circuits*, vol. 52, no. 5, pp. 1331–1344, May 2017.
- [8] A. R. A. Kumar, B. D. Sahoo, and A. Dutta, "A wideband 2–5 GHz noise canceling subthreshold low noise amplifier," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 65, no. 7, pp. 834–838, Jul. 2018.
- [9] C.-F. Liao and S.-I. Liu, "A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers," *IEEE J. Solid-State Circuits*, vol. 42, no. 2, pp. 329–339, Feb. 2007.
- [10] W. Lee and S. Hong, "28 GHz RF front-end structure using CG LNA as a switch," *IEEE Microw. Wireless Compon. Lett.*, vol. 30, no. 1, pp. 94–97, Jan. 2020.
- [11] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and H. Wang, "Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance," *IEEE Trans. Microw. Theory Techn.*, vol. 54, no. 1, pp. 31–39, Jan. 2006.
- [12] M. L. Edwards and J. H. Sinsky, "A new criterion for linear 2-port stability using a single geometrically derived parameter," *IEEE Trans. Microw. Theory Techn.*, vol. 40, no. 12, pp. 2303–2311, Dec. 1992.
- [13] Y.-S. Lin, J.-F. Chang, and S.-S. Lu, "Analysis and design of CMOS distributed amplifier using inductively peaking cascaded gain cell for UWB systems," *IEEE Trans. Microw. Theory Techn.*, vol. 59, no. 10, pp. 2513–2524, Oct. 2011.