15

25

5

CLAIMS

1. A turbine moving blade comprising a platform having a gas path surface extending in the combustion gas flow direction, and a blade portion erecting on said platform, said gas path surface of platform being coated with a thermal barrier coating, wherein

said thermal barrier coating is formed so as to go around from said gas path surface of platform to at least a part of the outer peripheral face of said platform.

- 2. The turbine moving blade according to claim 1, wherein a step portion is formed in at least a part of the peripheral edge portion of said platform, and said thermal barrier coating is formed so that it goes around to said step portion and the end face thereof is in contact with the upper face of said step portion.
- 3. A turbine moving blade comprising a
 20 platform, a blade portion erecting on said platform,
 and a shroud provided at the tip end of said blade
 portion, a gas path surface extending in the
 combustion gas flow direction of said shroud being
 coated with a thermal barrier coating, wherein

said thermal barrier coating is formed so as

and spirit great with the control of the control of

15

20

25

to go around from said gas path surface of shroud to at least a part of the outer peripheral face of said shroud.

- 4. The turbine moving blade according to claim
 3, wherein a step portion is formed in at least a
 part of the peripheral edge portion of said shroud,
 and said thermal barrier coating is formed so that
 it goes around to said step portion and the end
 face thereof is in contact with the upper face of
 said step portion.
 - 5. A turbine stationary blade comprising a pair of shrouds each having a gas path surface extending in the combustion gas flow direction, and a blade portion held between said shrouds, at least either one of said shrouds being coated with a thermal barrier coating, wherein

said thermal barrier coating is formed so as to go around from said gas path surface of shroud to at least a part of the outer peripheral face of said shroud.

6. The turbine stationary blade according to claim 5, wherein a step portion is formed in at least a part of the peripheral edge portion of said shroud, and said thermal barrier coating is formed so that it goes around to said step portion and the

The state of the s

10

15

5

end face thereof is in contact with the upper face of said step portion.

7. A turbine split ring having a gas path surface extending in the combustion gas flow direction, said gas path surface being coated with a thermal barrier coating, wherein

said thermal barrier coating is formed so as to go around from said gas path surface to at least a part of the outer peripheral face.

- 8. The turbine split ring according to claim 7, wherein a step portion is formed in at least a part of the peripheral edge portion, and said thermal barrier coating is formed so that it goes around to said step portion and the end face thereof is in contact with the upper face of said step portion.
- 9. A gas turbine for producing power by expanding a high-temperature and high-pressure combustion gas by using a turbine stationary blade and a turbine moving blade, wherein

said turbine moving blade comprises a platform having a gas path surface extending in the combustion gas flow direction, a blade portion erecting on said platform, and a thermal barrier coating for covering said gas path surface of platform, and said thermal barrier coating is

20

25

formed so as to go around from said gas path surface to at least a part of the outer peripheral face of said platform.

10. A gas turbine for producing power by expanding a high-temperature and high-pressure combustion gas by using a turbine stationary blade and a turbine moving blade, wherein

said turbine moving blade comprises a platform, a blade portion erecting on said platform, a shroud provided at the tip end of said blade portion, and a thermal barrier coating for covering a gas path surface extending in the combustion gas flow direction of said shroud, and said thermal barrier coating is formed so as to go around from said gas path surface of shroud to at least a part of the outer peripheral face of said shroud.

11. A gas turbine for producing power by expanding a high-temperature and high-pressure combustion gas by using a turbine stationary blade and a turbine moving blade, wherein

said turbine stationary blade comprises a pair of shrouds each having a gas path surface extending in the combustion gas flow direction, a blade portion held between said shrouds, and a thermal barrier coating for covering the gas path surface

15

of at least either one of said shrouds, and said thermal barrier coating is formed so as to go around from said gas path surface of shroud to at least a part of the outer peripheral face of said shroud.

12. A gas turbine for producing power by expanding a high-temperature and high-pressure combustion gas by using a turbine stationary blade and a turbine moving blade, wherein

said gas turbine comprises a split ring having a gas path surface extending in the combustion gas flow direction and a thermal barrier coating for covering said gas path surface, which is provided at the outer periphery of said turbine moving blade, and said thermal barrier coating is formed so as to go around from said gas path surface of split ring to at least a part of the outer peripheral face of said split ring.