Links

Institut Supérieur d'Informatique et de Mathématiques de Monastir Département d'Informatique

Exercice 1

Calculer les limites éventuelles des suites suivantes:

1.
$$u_n = \frac{1}{n^2} \sum_{k=0}^{n} (2k+1), \quad n \ge 1.$$

2. $u_n = \frac{2^n - 3^n}{2^n + 3^n}, \quad n \ge 0.$

$$2. \ u_n = \frac{2^n - 3^n}{2^n + 3^n}, \quad n \ge 0$$

3.
$$u_n = \sqrt{n + \sqrt{n^2 + 1}} - \sqrt{n + \sqrt{n^2 - 1}}, \quad n \ge 1.$$

4.
$$u_n = \sqrt[n]{n}, \quad n \geq 1.$$

5.
$$u_n = (1 + \frac{1}{n})^n$$
, $n \ge 1$.

Exercice 2

Montrer à l'aide d'un encadrement la convergence des suites suivantes et donner leurs limites :

1.
$$u_n = \frac{n \sin n}{n^2 + 1}, \quad n \ge 0.$$

2.
$$u_n = \sum_{k=1}^n \frac{1}{n + \sqrt{k}}, \quad n \ge 1.$$

3. $u_n = \frac{(-1)^n \cos(2n)}{n+1}, \quad n \ge 0.$

3.
$$u_n = \frac{(-1)^n \cos(2n)}{n+1}, \quad n \ge 0$$

Exercice 3

On considère la suite $(u_n)_{n\geq 0}$ définie par $u_0=c>0$ et $u_{n+1}=\frac{u_n+3}{3u_n+1}, \ n\geq 0$. On pose pour $n \in \mathbb{N}$, $v_n = \frac{u_n - 1}{u_n + 1}$.

- 1. Montrer que la suite $(v_n)_{n\geq 0}$ est géométrique.
- 2. Montrer que la suite $(u_n)_{n\geq 0}$ converge et calculer sa limite.