STA261 MANAJEMEN DATA RELASIONAL

Functional Dependencies and Normalization

DEPARTEMEN STATISTIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR

SEMESTER GANJIL 2021/2022

- A formal tool for analysis of relational schemas that enables us to detect and describe some of the above-mentioned **problems** in precise terms.
- The single most important concept in relational schema design theory is a functional dependency.

Definition:

Let A,B be sets of attributes.

We write A \rightarrow B or say A *functionally determines* B if, for any tuples t_1 and t_2 :

$$t_1[A] = t_2[A]$$
 implies $t_1[B] = t_2[B]$

and we call $A \rightarrow B$ a **functional dependency**

A->B means that

"whenever two tuples agree on A then they agree on B."

Figure 14.3 a diagrammatic notation for displaying FDs

Ssn → {Ename, Bdate, Address, Dnumber}
Dnumber → {Dname, Dmgr_ssn}

{Ssn, Pnumber} → Hours Ssn → Ename Pnumber → {Pname, Plocation}

- a. $\{Ssn, Pnumber\} \rightarrow Hours$
- b. Ssn \rightarrow Ename
- c. Pnumber \rightarrow {Pname, Plocation}

These functional dependencies specify that:

- (a) a combination of **Ssn** and **Pnumber** values **uniquely** determines the number of hours the employee currently works on the project per week (**Hours**)
- (b) The value of an employee's Social Security number (**Ssn) uniquely** determines the employee name (**Ename**)
- (c) The value of a project's number (**Pnumber**) uniquely determines the project name (**Pname**) and location (**Plocation**)

Exercise:

TEACH

Teacher	Course	Text
Smith	Data Structures	Bartram
Smith	Data Management	Martin
Hall	Compilers	Hoffman
Brown	Data Structures	Horowitz

List all FDs and non-FDs for single attribs.

TEXT → COURSE. ✓

TEACHER → COURSE ×

TEXT → TEACHER ×

COURSE → TEXT ×

Exercise:

A	В	С	D
a1	b1	c1	d1
a1	b2	c2	d2
a2	b2	c2	d3
a3	b3	c4	d3

List all FDs and non-FDs for single attribs.

$$B \rightarrow C \checkmark$$

 $C \rightarrow B \checkmark$
 $\{A, B\} \rightarrow C \checkmark$
 $\{A, B\} \rightarrow D \checkmark$
 $\{C, D\} \rightarrow B \checkmark$

- $A \rightarrow B$ (tuples 1 and 2) \times
- $B \rightarrow A$ (tuples 2 and 3) \times
- $D \rightarrow C$ (tuples 3 and 4) \times

Movies	Title	Director	Actor
	The Birds The Birds Bladerunner Apocalypse Now	Hitchcock Hitchcock Scott Coppola	Hedren Taylor Hannah Brando

Movies : Title -> Director

Showings	Theater	Screen	Title	Snack
	Rex	1	The Birds	coffee
	Rex	1	The Birds	popcorn
	Rex	2	Bladerunner	coffee
	Rex	2	Bladerunner	popcorn
	Le Champo	1	The Birds	tea
	Le Champo	1	The Birds	popcorn
	Cinoche	1	The Birds	Coke
	Cinoche	1	The Birds	wine
	Cinoche	2	Bladerunner	Coke
	Cinoche	2	Bladerunner	wine
	Action Christine	1	The Birds	tea
	Action Christine	1	The Birds	popcorn

Showings: {Theather, Screen} -> Title

Name	Color	Category	Dep	Price
Gizmo	Green	Gadget	Toys	49
Widget	Black	Gadget	Toys	59
Gizmo	Green	Whatsit	Garden	99

```
{Name} → {Color}

{Category} → {Department}

{Color, Category} → {Price}

{Name, Category} → {Price}
```


Normalization

 Decomposing a poorly designed (or unnormalized) relation into several relations.

Normal Form

 A condition (based on functional dependencies and key properties) to determine whether a relational schema is normal/not.

Normal Form

- 1st Normal Form (1NF) = All tables are flat
- 2nd Normal Form (2NF)
- 3rd Normal Form (3NF)

DB designs based on functional dependencies, intended to prevent data anomalies

Keys

Superkey of R:

- A set of attributes, SK, of R such that no two tuples in any valid relational instance, r(R), will have the same value for SK.
- Therefore, for any two distinct tuples, t₁ and t₂ in r(R), t₁[SK] ≠ t₂[SK].

Key of R:

A minimal superkey. That is, a superkey, K, of R such that the removal
of ANY attribute from K makes K not superkey.

If a relation has more than one keys (= candidate keys), we can select any one (arbitrarily) to be the primary key.

Keys

Key Attributes

Superkey: a set of attributes that make the tuple unique

Key K: minimal superkey

Candidate keys: several keys, one is chosen to be primary key

Prime attribute: Attribute that is part of candidate key

Non prime attribute: Attribute that is not part of any candidate key

Keys

Example:

CAR(State, LicensePlateNo, VechicleID, Model, Year, Manufacturer)

This schema has two keys:

K1 = {State, LicensePlateNo}

K2 = {VachicleID}

Both K1 and K2 are superkeys

K3 = {VechicleID, Manufacturer} is a superkey, but not a key

1NF: First Normal Form

- Disallows
 - composite attributes
 - multivalued attributes
 - nested relations; attributes whose values for an *individual* tuple are non-atomic
- Considered to be part of the definition of relation

1NF: First Normal Form (from multivalued)

Figure 14.9 Normalization into 1NF.

- (a) A relation schema that is **not** in 1NF.
- (b) Sample state of relation DEPARTMENT.
- (c) 1NF version of the same relation with redundancy.

(b) DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Diocations
Research	5	333445555	{Bellaire, Sugarland, Houston}
Administration	4	987654321	{Stafford}
Headquarters	1	888665555	{Houston}

(c)

DEPARTMENT

Dname	<u>Dnumber</u>	Dmgr_ssn	Dlocation
Research	5	333445555	Bellaire
Research	5	333445555	Sugarland
Research	5	333445555	Houston
Administration	4	987654321	Stafford
Headquarters	1	888665555	Houston

1NF: First Normal Form (from nested relations)

Figure 14.10 Normalization into 1NF.

- (a) Schema of the EMP_PROJ relation with a *nested* relation attribute PROJS.
- (b) Sample extension of the EMP_PROJ relation showing nested relations within each tuple.
- (c) Decomposition of EMP_PROJ into relations: EMP_PROJ1 and EMP_PROJ2 by propagating the primary key.

(b)		
EMP_PROJ		

San	Ename	Pnumber	Hours
123456789	Smith, John B.	1	32.5
L		2	7.5
666884444	Narayan, Ramesh K.	3	40.0
453453453	English, Joyce A.	1	20.0
		2	20.0
333445555	Wong, Franklin T.	2	10.0
		3	10.0
		10	10.0
L		20	10.0
999887777	Zelaya, Alicia J.	30	30.0
L	L	10	10.0
987987987	Jabbar, Ahmad V.	10	35.0
L		30	5.0
987654321	Wallace, Jennifer S.	30	20.0
L	<u> </u>	20	15.0
888665555	Borg, James E.	20	NULL

(c) EMP_PROJ1			
San	Ename		
EMP_PROJ2			
Ssn_	<u>Pnumber</u>	Hours	

2NF: Second Normal Form

- Uses the concepts of FDs and primary key
- Definition
 - Full functional dependency:

FD Y -> Z where removal of any attribute from Y means the FD does not hold any more

- Examples:
 - (SSN, PNUMBER) -> HOURS
 is a full FD since neither SSN -> HOURS nor PNUMBER -> HOURS hold
 - (SSN, PNUMBER) -> ENAME
 is not a full FD (it is called a partial dependency) since SSN -> ENAME
 also holds

2NF: Second Normal Form

- A relation schema R is in 2NF if every non-prime attribute A in R is fully dependent on the primary key
- R can be decomposed into 2NF relations via the process of 2NF normalization

- ENAME does not fully dependent on SSN, PNUMBER
- PNAME, PLOCATION does not fully dependent on SSN, PNUMBER

2NF: Second Normal Form

Figure 14.11 (a) Normalizing EMP_PROJ into 2NF relations.

3NF: Third Normal Form

- A relation R is in 3NF if R is in 2NF and there is no nonprime attribute A in R having a transitive dependency with respect to primary key
- Notes:
 - On FD X -> Y dan Y -> Z, with X as primary key, we consider this a
 problem only if Y is **not** a candidate key.
 - o Example:

EMP (SSN, Emp#, Salary) does not violate 3NF, why?

SSN -> Emp# and Emp# -> Salary then SSN -> Salary (transitive)

Emp# is actually a candidate key

3NF: Third Normal Form

Figure 14.11 (b) Normalizing EMP_DEPT into 3NF relations.

Normal Form	Test	Remedy (Normalization)
First (1NF)	Relation should have no multivalued attributes or nested relations.	Form new relations for each multivalued attribute or nested relation.
Second (2NF)	For relations where primary key contains multiple attributes, no nonkey attribute should be functionally dependent on a part of the primary key.	Decompose and set up a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it.
Third (3NF)	Relation should not have a nonkey attribute functionally determined by another nonkey attribute (or by a set of nonkey attributes). That is, there should be no transitive dependency of a nonkey attribute on the primary key.	Decompose and set up a relation that includes the nonkey attribute(s) that functionally determine(s) other nonkey attribute(s).

Functional Dependencies and Normalization