The Minimum Wage and Children's Mental Health Online Appendix

Table of Contents

Section A1. State Participation in the YRBSS	3
Section A2. Coding of Exposure and Outcome Measures	5
Section A3. Other State Policy Controls	15
Section A4. Inequities in Mental Health by Household Income	16
Section A5. Two-Way Fixed Effects (TWFE) Specifications	18
Section A6. TWFE Corrections for Multiple Comparisons	20
Section A7. TWFE Sub-Population Analyses	26
Section A8. TWFE Longer-Run Analyses	30
Section A9. TWFE Robustness Analyses	35
Section A10. Difference-in-Differences Specifications	40
Section A11. Event Studies with Strictly Balanced Panel	47
Section A12. References	49

List of Appendix Tables

Table A1. Unweighted number of respondents to the YRBSS by state and year	3
Table A2. Question wording and coding of all mental health outcomes	6
Table A3. Covariates included in TWFE models.	19
Table A4. Values for the main TWFE models for the NSCH	23
Table A5. Values for the main TWFE models for the YRBSS.	25
Table A6. List of sub-population analyses for TWFE models	27
Table A7. Difference-in-difference models for the average treatment effect of raising the n	າinimum
wage on treated adolescents' mental health using the YRBSS from 2011–2019	44
List of Appendix Figures	
Figure A1. Effective minimum wages for each state from 2001 to 2000	5
Figure A2. Adjusted mental health inequities by household income	17
Figure A3. Main TWFE models with Bonferroni corrections for the NSCH	21
Figure A4. Main TWFE models with Bonferroni corrections for the YRBSS	22
Figure A5. TWFE models for sub-populations in the NSCH	28
Figure A6. TWFE models for a sub-population in the YRBSS	29
Figure A7. TWFE models with alternative specifications for the NSCH	31
Figure A8. TWFE models with alternative specifications for the YRBSS	32
Figure A9. TWFE models using lifetime minimum wages for the NSCH	33
Figure A10. TWFE models using lifetime minimum wages for the YRBSS	34
Figure A11. TWFE models using logistic regression for the NSCH	36
Figure A12. TWFE models using logistic regression for the YRBSS	37
Figure A13. TWFE models using nested clusters for the NSCH	38
Figure A14. TWFE models using nested clusters for the YRBSS	39
Figure A15. Treatment and control states for difference-in-differences models	42
Figure A16. Weighted mean of minimum wage in treatment states.	43
Figure A17. Main event studies using the YRBSS from 2011–2019	45
Figure A18. Event studies using nested clusters for the YRBSS	46
Figure A19. Event studies using a strictly balanced panel for the YRBSS	48

Section A1. State Participation in the YRBSS

Not all states participate in the YRBSS in all years. The following table presents the unweighted number of adolescents who were included in our analyses for each state-year:

Table A1. Unweighted number of respondents to the YRBSS by state and year.

	2001	2003	2005	2007	2009	2011	2013	2015	2017	2019
AK	0	1438	0	1268	1217	1279	1183	1343	1279	1799
AL	1551	1064	1026	0	1457	1336	1518	1510	0	1971
AR	1670	0	1502	1563	1627	1327	1491	2746	1593	1935
AZ	0	3369	3216	2929	2485	2747	1566	2478	2056	1859
CA	0	0	0	0	0	0	0	1873	1708	1298
СО	0	0	1475	0	1491	1424	0	0	1427	1288
СТ	0	0	2206	1996	2319	2000	2307	2315	2331	1981
DE	2862	2969	2633	2357	2256	2187	2584	2636	2801	0
FL	4064	3949	4444	4353	5365	5977	5831	6081	5919	5527
GA	0	2046	1728	2393	1826	1897	1907	0	0	4347
HI	0	0	1626	1148	1455	4172	4465	5773	5686	5527
IA	0	0	1350	1419	0	1513	0	0	1635	1532
ID	1687	1702	1426	1384	2102	1659	1838	1705	1774	1174
IL	0	0	0	2362	2932	3507	3148	3133	4745	2989
KS	0	0	1633	1692	1998	1833	1894	0	2337	1360
KY	0	1562	3231	3482	1726	1669	1587	2465	1932	1920
LA	0	0	0	1298	1002	1115	1062	0	1186	1241
MD	0	0	1397	1485	1590	2791	51137	52841	48392	38973
ME	1320	1634	1325	1267	8444	9074	8341	9112	9003	7995
MI	3521	3374	3171	3425	3314	4082	4137	4661	1568	4365
МО	1632	1532	1861	1520	1596	0	1556	1431	1759	1156
MS	1790	1471	0	1563	1763	1751	1559	2038	0	1693
МТ	2622	2678	2987	3845	1785	4020	4744	4308	4596	3676
NC	2520	2521	3821	3397	5549	2215	1791	5886	3022	2907
ND	1580	1649	1710	1721	1767	1862	1919	2064	2064	1975
NE	0	2913	3706	0	0	2641	1747	1633	1381	1275
NH	0	1298	1249	1581	1450	1359	1589	14305	11552	13084
NJ	2102	0	1482	0	1724	1617	1661	0	0	1360

Online Appendix

	2001	2003	2005	2007	2009	2011	2013	2015	2017	2019
NM	0	0	5415	2558	4890	5685	5325	8170	5650	7447
NV	1439	1947	1528	1729	2017	0	2069	1393	1607	1359
NY	0	9077	9456	12768	14134	12517	10026	10109	10674	10159
ОК	0	1366	1688	2562	1397	1136	1465	1559	1583	1937
PA	0	0	0	0	2037	0	0	2795	3599	2255
RI	1361	1775	2315	2132	3106	3814	2357	3309	2128	1535
SC	0	0	1281	1205	1070	1437	1552	1309	1425	1153
SD	1596	1803	1567	1577	2121	1502	1272	1257	0	1385
TN	0	1919	1529	2019	2175	2583	1847	3970	1975	2148
TX	6974	0	4098	3116	3435	4054	3086	0	2027	1954
UT	1042	1359	1437	1898	1543	1656	2118	0	1772	1476
VA	0	0	0	0	0	1400	6641	4309	3565	4531
VT	6965	5928	6996	5743	8188	8267	0	20149	19642	18270
WI	2091	2100	2352	2056	2392	2959	2776	0	1993	1786
WV	0	1719	1317	1353	1603	2119	1753	1567	1480	1342
WY	2684	1507	2455	2174	2802	2438	2924	2317	0	0

Section A2. Coding of Exposure and Outcome Measures

Figure A1. Effective minimum wages for each state from 2001 to 2000.

Notes: We use the higher of a state's minimum wage or the federal minimum wage, not adjusted for inflation, based on data from the Bureau of Labor Statistics. The range is \$5.15 to \$14. The federal minimum wage increased from \$5.15 to \$7.25 from 2008–2010.

Below, we provide the question wording (per the NSCH and YRBSS documentation) and coding of all outcomes. Respondents can only fall into one category per outcome. The coding evaluates the first option for a match; if and only if a match is not made on the first option does it proceed to the next. Any respondents missing a given outcome were dropped pairwise from those analyses.

Table A2. Question wording and coding of all mental health outcomes.

Survey	Outcome	Question wording	Coding
NSCH	Depression	Variable name: K2Q32A	1 if K2Q32B = 1
(All children)		"Has a doctor or other health care provider EVER told you	
		that this child has?Depression?"	Otherwise,
		1 = Yes	0 if K2Q32B = 2 or
		2 = No	if K2Q32A = 1 or 2
		Variable name: K2Q32B	That is, a child who cur-
		"If yes, does this child CURRENTLY have the condition?"	rently has depression is
		1 = Yes	coded as "1"; any child
		2 = No	who otherwise had data
		Skip logic: Skip if K2Q32A=2	for the depression ques-
			tions is coded as "0".

Survey	Outcome	Question wording	Coding
NSCH	Anxiety	Variable name: K2Q33A	1 if K2Q33B = 1
(All children)		"Has a doctor or other health care provider EVER	told you
		that this child has?Anxiety Problems?"	Otherwise,
		1 = Yes	0 if $K2Q33B = 2$ or
		2 = No	if K2Q33A = 1 or 2
		Variable name: K2Q33B	
		"If yes, does this child CURRENTLY have the condi	ition?"
		1 = Yes	
		2 = No	
		Skip logic: Skip if K2Q33A=2	

Survey	Outcome	Question wording	Coding
NSCH	ADD/ADHD	Variable name: K2Q31A	1 if K2Q31B = 1
(All children)		"Has a doctor or other health care provider EVER told you	
		that this child has?Attention Deficit Disorder or Attention-	Otherwise,
		Deficit/Hyperactivity Disorder, that is, ADD or ADHD?"	0 if K2Q31B = 2 or
		1 = Yes	if K2Q31A = 1 or 2
		2 = No	
		Variable name: K2Q31B	
		"If yes, does this child CURRENTLY have the condition?"	
		1 = Yes	
		2 = No	
		Skip logic: Skip if K2Q31A=2	

Survey	Outcome	Question wording	Coding
NSCH	Behavioral prob.	Variable name: K2Q34A	1 if K2Q34B = 1
(All children)		"Has a doctor, other health care provider, or educator EVER	
		told you that this child has?Behavioral or Conduct Prob-	Otherwise,
		lems?Examples of educators are teachers and school	0 if K2Q34B = 2 or
		nurses."	if K2Q34A = 1 or 2
		1 = Yes	
		2 = No	
		Variable name: K2Q34B	
		"If yes, does this child CURRENTLY have the condition?"	
		1 = Yes	
		2 = No	
		Skip logic: Skip if K2Q34A=2	
NSCH	Digestive issues	Variable name: STOMACH	1 if STOMACH = 1
(All children)		"DURING THE PAST 12 MONTHS, has this child had FRE-	
		QUENT or CHRONIC difficulty with any of the follow-	Otherwise,
		ing?Digesting food, including stomach/intestinal prob-	0 if STOMACH = 2
		lems, constipation, or diarrhea"	
		1 = Yes	
		2 = No	

Survey	Outcome	Question wording	Coding
NSCH	Any unmet care	Variable name: K4Q27	1 if K4Q27 = 1
(All children)		"DURING THE PAST 12 MONTHS, was there any time	
		when this child needed health care but it was not re-	Otherwise,
		ceived?Health care includes medical care, dental care, vi-	0 if K4Q27 = 2
		sion care, and mental health services."	
		1 = Yes	
		2 = No	
NSCH	Unmet mental care	Variable name: K4Q27	1 if K4Q28X04 = 1
All children)		"DURING THE PAST 12 MONTHS, was there any time	
		when this child needed health care but it was not re-	Otherwise,
		ceived?Health care includes medical care, dental care, vi-	0 if K4Q27 = 1 or 2
		sion care, and mental health services."	
		1 = Yes	
		2 = No	
		Variable name: K4Q28X04	
		"Which types of care was/were not received?Mental	
		Health Services"	
		1 = selected	
		2 = not selected	
		Skip logic: Skip if K4Q27=2	

Survey	Outcome	Question wording	Coding
NSCH	7+ school absences	Variable name: K7Q02R_R	1 if K7Q02R_R = 4-5
(All children)		"DURING THE PAST 12 MONTHS, about how many days	
		did this child miss school because of an illness or injury?	Otherwise,
		Include days missed from any formal home schooling."	0 if K7Q02R_R = 1-3, 6
		1 = No missed school days	
		2 = 1 - 3 days	
		3 = 4 - 6 days	
		4 = 7 - 10 days	
		5 = 11 or more days	
		6 = This child was not enrolled in school	
		Skip logic: If FORMTYPE in ('T2', 'T3'), i.e. ages 6-17	
NSCH	Employment	Variable name: K7Q38	1 if K7Q38 = 1
(All children)		"DURING THE PAST 12 MONTHS, did this child participate	
		in:Any paid work including regular jobs as well as babysit-	Otherwise,
		ting, cutting grass, or other occasional work?"	0 if K7Q48 = 2
		1 = Yes	
		2 = No	
		Skip logic: If FORMTYPE in ('T2','T3'), i.e. ages 6-17	

Survey	Outcome	Question wording	Coding
YRBSS	Sad or hopeless	Variable name: Q25	1 if Q25 = A (1)
(Adolescents)		"During the past 12 months, did you ever feel so sad or	
		hopeless almost every day for two weeks or more in a	Otherwise,
		row that you stopped doing some usual activities?"	0 if Q25 = B (2)
		A. Yes	
		B. No	
YRBSS	Considered suicide	Variable name: Q26	1 if Q26 = A (1)
(Adolescents)		"During the past 12 months, did you ever seriously consider	
		attempting suicide?"	Otherwise,
		A. Yes	0 if Q26 = B (2)
		B. No	
YRBSS	Attempted suicide	Variable name: Q28	1 if Q28 = B-E (2-5)
(Adolescents)		"During the past 12 months, how many times did you actu-	
		ally attempt suicide?"	Otherwise,
		A. 0 times	0 if Q28 = A (1)
		B. 1 time	
		C. 2 or 3 times	
		D. 4 or 5 times	
		E. 6 or more times	

Survey	Outcome	Question wording	Coding
YRBSS	Recent alcohol	Variable name: Q41	1 if Q41 = B-G (2-7)
(Adolescents)		"During the past 30 days, on how many days did you have	
		at least one drink of alcohol?"	Otherwise,
		A. 0 days	0 if Q41 = A (1)
		B. 1 or 2 days	
		C. 3 to 5 days	
		D. 6 to 9 days	
		E. 10 to 19 days	
		F. 20 to 29 days	
		G. All 30 days	
YRBSS	Recent marijuana	Variable name: Q47	1 if Q47 = B-F (2-6)
(Adolescents)		"During the past 30 days, how many times did you use ma-	
		rijuana?"	Otherwise,
		A. 0 times	0 if Q47 = 1
		B. 1 or 2 times	
		C. 3 to 9 times	
		D. 10 to 19 times	
		E. 20 to 39 times	
		F. 40 or more times	

Survey	Outcome	Question wording	Coding		
YRBSS	Physical fight	Variable name: Q17	1 if Q17 = B-H (2-8)		
(Adolescents)		"During the past 12 months, how many times were you in a			
		physical fight?"	Otherwise,		
		A. 0 times	0 if Q17 = A (1)		
		B. 1 time			
		C. 2 or 3 times			
		D. 4 or 5 times			
		E. 6 or 7 times			
		F. 8 or 9 times			
		G. 10 or 11 times			
		H. 12 or more times			

Section A3. Other State Policy Controls

We controlled for several competing state-level policies that varied over time and could affect the financial well-being of low-income families. These data were collected from numerous sources, which we document below alongside any coding decisions we made for these covariates. The raw and cleaned data tables are provided with the paper's replication materials.

The Medicaid income eligibility limits were sourced from the Kaiser Family Foundation (https://www.kff.org/statedata/collection/trends-in-medicaid-income-eligibility-limits/). Data for 2001 and 2007 were unavailable, so we used the income limits from October 2000 and July 2006, respectively. For 2009, we used the limits from January, not December, in keeping with the other years. Tennessee had no upper limit for some years, so we used a value of 400% FPL.

The earned income tax credit (EITC) covariates were based on data from the Tax Policy Center, run by the Urban Institute and Brookings Institution (https://www.taxpolicycenter.org/statistics/state-eitc-percentage-federal-eitc). For the presence of a state EITC, we coded any state with a non-zero ratio of state-to-federal EITC as 1 and all other states as 0. For states with multiple rates, we used the most generous benefit for which a household with children might be eligible. For example, for many years, Wisconsin had three rates corresponding to the number of dependent children, so we used the highest of the three. Any state without an EITC was assigned a rate of 0. The Tax Policy Center was missing data for 2011, so we used the rates from 2010. When coding whether a state's EITC was refundable, any state's that was at least "partially" refundable was coded as 1; all other states (including those without an EITC) were coded as 0.

The Temporary Assistance for Needy Families (TANF) benefits were adapted from the Urban Institute's Welfare Rules Database (https://wrd.urban.org/wrd/Query/query.cfm). We triangulated the maximum benefits (in dollars) for a family of 3 by using the database itself and a summary table compiled through 2020 (called "Table L5"). In cases of uncertainty or disagreement between the two, we typically used the values reported in the summary table. The database was missing values for Colorado from 2001 to 2007; since the summary table reported the same value in both 1996 and 2004 (\$365), we used \$365 for 2001 to 2007. All other decisions regarding the TANF benefits are documented in the cleaned data table in the replication package.

Section A4. Inequities in Mental Health by Household Income

To describe the cross-sectional economic inequities in mental health, we used the NSCH, as it provides household federal poverty levels (FPL) based on self-reported or imputed household income. The YRBSS does not provide household income, so we cannot perform a similar exercise with that survey. We divided households into five income categories: less than 100% FPL, 100% to 199%, 200% to 299%, 300% to 399%, and 400% FPL or greater. Then, we used ordinary least squares (OLS) models to estimate the differences in mental health outcomes between them, with adjustments for the child's age, sex, race/ethnicity, family structure, the highest education of any adult in the household, and household nativity (i.e. the individual-level covariates included in the paper's statistical models), plus state and year fixed effects. These adjustments allowed us to compare children of different household incomes but similar demographics within a given state and year. We also used the NSCH survey weights and clustered standard errors (SEs) at the state level. All models were estimated using the "Ife" package (v. 2.8) in R.

The cross-sectional economic inequities are depicted in **Figure A2**. For example, children living in poverty suffered depression at a rate 2.6 percentage points (pp) higher than children living in households above 400% FPL. For the remaining outcomes, the corresponding inequities were +2.9 pp for anxiety, +1.7 pp for ADD/ADHD, +3.9 pp for behavioral problems, +3.3 pp for digestive issues, +3.4 pp for unmet medical care of any kind, +1.2 pp for unmet mental health care, and +5.8 pp for 7+ school absences. Meanwhile, children living in poverty were employed at a rate 4.0 pp lower than children above 400% FPL. Comparisons between the remaining income levels and 400%+ FPL with 95% confidence intervals (CIs) are provided in the figure.

Figure A2. Adjusted mental health inequities by household income.

Notes: Based on cross-sectional OLS models that compare the indicated income categories to 400% FPL or greater. Models are adjusted for individual-level demographics per **Table A3**, as well as state and year fixed effects. SEs are flustered at the state level. 95% CIs are provided.

Section A5. Two-Way Fixed Effects (TWFE) Specifications

The main TWFE models were specified as follows:

$$Y_{ist} = \beta_1 (min.wage)_{st} + \beta X_{ist} + \beta Z_{st} + \Delta_s + \tau_t + \varepsilon_{ist}$$

where Y_{ist} is the mental health outcome for individual i in state s in year t; $(min. wage)_{st}$ is the effective minimum wage in a state-year, X_{ist} is a vector of individual-level controls (which vary by survey; listed below); Z_{st} is a vector of time-variant state-level policies (see above); Δ_s is the time-invariant state fixed effect; τ_t is the year (or age-by-year) fixed effect; and ε_{ist} is the error.

The individual- and state-level controls included in the fully adjusted models are listed in **Table A3**. Note that the YRBSS has fewer available covariates than the NSCH. These covariates were informed by several previous studies on the minimum wage and health (e.g.¹⁻⁴), as well as existing evidence on inequities in mental health by demographics and socioeconomic status.⁵ The state policy controls, in particular, were drawn from two papers by Wehby and colleagues.^{3,4} Importantly, we excluded any individual- or policy-level controls that might be on the causal pathway from rising wages to mental health, including household income, unemployment rates, poverty rates, and the like. Including these potential mediators as covariates might bias our estimates.⁶ Indeed, we evaluated one such measure (employment) as an outcome in our analyses.

All models used the NSCH or YRBSS survey weights and clustered SEs at the state level, and we used the "Ife" package (v. 2.8) in R to estimate models by OLS, except as noted.

Table A3. Covariates included in TWFE models.

Level	NSCH models	YRBSS models
Individual	Child's age	Adolescent's age
	Child's sex	Adolescent's sex
	Child's race/ethnicity	Adolescent's race/ethnicity
	Family structure	Adolescent's grade in high school
	Highest education of any adult in household	
	Household nativity	
State	Medicaid income limits for ages 1-5*	Medicaid income limits for ages 1-5*
	Medicaid income limits for ages 6–18*	Medicaid income limits for ages 6–18*
	Presence of state EITC	Presence of state EITC
	State EITC as percent of federal EITC*	State EITC as percent of federal EITC*
	State EITC refundability	State EITC refundability
	Maximum TANF benefit for family of 3*	Maximum TANF benefit for family of 3*
Fixed	State	State
effects	Year	Adolescent's age-by-year**

Notes:

^{*}Treated as continuous variables. All other variables were treated as categorical.

^{**}The age-by-year control was constructed by interacting the adolescent's age with the survey year. For example, it had levels for "age 12 in 2001," "age 12 in 2003," "age 12 in 2005," etc., to reflect the distinct generational experiences throughout the 19-year study period. That is, it reflects the fact that the experience of being a 12-year-old in 2001 is different than in 2019.

Section A6. TWFE Corrections for Multiple Comparisons

The risk of type I errors, or false positives due to chance, increases with the number of statistical tests. Given that we examined 15 outcomes, many sub-populations, and several alternate specifications, the risk of a false positive in our study was considerably greater than 5%.

To reduce this risk, we implemented a Bonferroni correction of all CIs presented in the appendix. This procedure caps the family-wise error rate for all 15 outcomes at 5% without assuming independence across them. The Bonferroni correction is conservative, resulting in a true family-wise error rate likely lower than 5%,⁷ but it allows us to rule out the largest possible associations between the minimum wage and each mental health outcome. We used an alpha of 0.05/15 = 0.0033 for all TWFE models, or a 99.7% CI, corresponding to a critical value of 2.94. (For the difference-in-differences and event study models, we only examined 6 outcomes, so we used an alpha of 0.05/6 = 0.0083, or a 99.2% CI and a corresponding critical value of 2.64.)

The uncorrected and Bonferroni-corrected CIs for the main models are provided in **Figures A3–A4**. They are moderately wider than the uncorrected CIs. Even so, we can continue to rule out meaningfully large associations between the minimum wage and all our outcomes. For all other analyses in the appendix, we have provided both the uncorrected and corrected CIs.

Figure A3. Main TWFE models with Bonferroni corrections for the NSCH.

Notes: Re-estimation of the main OLS TWFE models with Bonferroni corrections for 15 outcomes. The thick lines provide the uncorrected 95% CIs (i.e. with critical values of 1.96), while the thin ones provide the Bonferroni-corrected 99.7% CIs (i.e. with critical values of 2.94). All models included state and year fixed effects; fully adjusted models added individual- and state-level covariates per **Table A3**. SEs were clustered at the state level. N = 114,163 to 141,094. The full regression results (i.e. numeric values for all terms) are provided in **Table A4**.

Figure A4. Main TWFE models with Bonferroni corrections for the YRBSS.

Notes: Re-estimation of the main OLS TWFE models with Bonferroni corrections for 15 outcomes. The thick lines provide the uncorrected 95% CIs (i.e. with critical values of 1.96), while the thin ones provide the Bonferroni-corrected 99.7% CIs (i.e. critical values of 2.94). All models included state and age-by-year fixed effects, while fully adjusted models added individual- and state-level covariates per **Table A3**. SEs were clustered at the state level. N = 922,636 to 1,218,309. The full regression results (i.e. numeric values for all terms) are provided in **Table A5**.

Table A4. Values for the main TWFE models for the NSCH.

	Depre	ession	Anxie	tv	ADD/A	ADHD	Behavio	ral prob.	Digestiv	e issues	Any unn	net care	Unmet me	ental care	7+ sch. a	bsences	Emplo	oyment
	FE only	Fully adj.		ully adj.	FE only	Fully adj.		Fully adj.	•	Fully adj.	FE only	Fully adj.	FE only	Fully adj.		Fully adj.	•	•
\$1 increase in minimum wage	0.0032	0.0022		0.0030	-0.0032	-0.0020	0.0012	0.0007	0.0013	0.0004	0.0008	-0.0007	0.0000	-0.0005	-0.0072	-0.0050	0.0001	-0.0008
•	(0.0017)	(0.0010)		0.0019)	(0.0018)	(0.0021)	(0.0029)	(0.0028)	(0.0026)	(0.0022)	(0.0017)	(0.0016)	(0.0005)	(0.0007)	(0.0060)	(0.0044)	(0.0031)	(0.0037)
	P=0.068	P=0.029		P=0.123	P=0.080	P=0.335	P=0.691	P=0.810	P=0.623	P=0.852	P=0.628	P=0.689	P=0.938	P=0.448	P=0.232	P=0.262	P=0.964	P=0.824
4 years old		-0.0016	(0.0024		0.0090		0.0121		-0.0054		0.0040		-0.0007				
Reference: 3 years old (except for absences		(0.0032)	(0	0.0060)		(0.0035)		(0.0049)		(0.0059)		(0.0036)		(0.0014)				
& employment, whose ref. is 6 years old)		P=0.623	F	P=0.691		P=0.013		P=0.017		P=0.360		P=0.273		P=0.636				
5 years old		-0.0017	(0.0124		0.0229		0.0270		-0.0099		0.0090		0.0003				
Reference: 3 years old (except for absences		(0.0029)	(0.0053)		(0.0033)		(0.0054)		(0.0060)		(0.0050)		(0.0011)				
& employment, whose ref. is 6 years old)		P=0.564	F	P=0.024		P=0.000		P=0.000		P=0.103		P=0.078		P=0.818				
6 years old		0.0072		0.0269		0.0367		0.0405		-0.0064		0.0162		0.0096				
Reference: 3 years old (except for absences		(0.0053)	(0.0043)		(0.0058)		(0.0040)		(0.0101)		(0.0045)		(0.0033)				
& employment, whose ref. is 6 years old)		P=0.178	F	P=0.000		P=0.000		P=0.000		P=0.528		P=0.001		P=0.006				
7 years old		0.0086		0.0455		0.0569		0.0441		0.0093		0.0038		0.0023		-0.0010		0.0096
Reference: 3 years old (except for absences		(0.0043)		0.0077)		(0.0084)		(0.0069)		(0.0085)		(0.0032)		(0.0013)		(0.0077)		(0.0041)
& employment, whose ref. is 6 years old)		P=0.050	F	P=0.000		P=0.000		P=0.000		P=0.283		P=0.245		P=0.076		P=0.896		P=0.023
8 years old		0.0089	(0.0572		0.0776		0.0692		0.0090		0.0144		0.0100		-0.0107		0.0310
Reference: 3 years old (except for absences		(0.0042)	(0.0086)		(0.0076)		(0.0061)		(0.0084)		(0.0057)		(0.0032)		(0.0077)		(0.0068)
& employment, whose ref. is 6 years old)		P=0.037	F	P=0.000		P=0.000		P=0.000		P=0.285		P=0.014		P=0.003		P=0.174		P=0.000
9 years old		0.0182		8860.0		0.1029		0.0717		0.0157		0.0112		8800.0		0.0006		0.0469
Reference: 3 years old (except for absences		(0.0023)	(0.0054)		(0.0067)		(0.0078)		(0.0053)		(0.0077)		(0.0029)		(0.0122)		(0.0079)
& employment, whose ref. is 6 years old)		P=0.000	F	P=0.000		P=0.000		P=0.000		P=0.004		P=0.149		P=0.022		P=0.963		P=0.000
10 years old		0.0197		0.0726		0.1068		0.0635		0.0131		0.0188		0.0099		-0.0028		0.0739
Reference: 3 years old (except for absences		(0.0047)	(0.0051)		(0.0077)		(0.0092)		(0.0080)		(0.0077)		(0.0038)		(0.0107)		(0.0058)
& employment, whose ref. is 6 years old)		P=0.000	F	P=0.000		P=0.000		P=0.000		P=0.107		P=0.019		P=0.012		P=0.795		P=0.000
11 years old		0.0285		0.0826		0.1015		0.0587		-0.0058		0.0189		0.0087		-0.0048		0.1088
Reference: 3 years old (except for absences		(0.0044)	(0.0074)		(0.0104)		(0.0047)		(0.0110)		(0.0041)		(0.0019)		(0.0110)		(0.0098)
& employment, whose ref. is 6 years old)		P=0.000		P=0.000		P=0.000		P=0.000		P=0.599		P=0.000		P=0.000		P=0.663		P=0.000
12 years old		0.0327		0.0892		0.1135		0.0553		0.0038		0.0149		0.0094		0.0032		0.1807
Reference: 3 years old (except for absences		(0.0041)		0.0073)		(0.0086)		(0.0067)		(0.0110)		(0.0060)		(0.0026)		(0.0063)		(0.0121)
& employment, whose ref. is 6 years old)		P=0.000	F	P=0.000		P=0.000		P=0.000		P=0.734		P=0.017		P=0.001		P=0.616		P=0.000
13 years old		0.0454		0.0895		0.1055		0.0475		0.0018		0.0143		0.0059		0.0140		0.2272
Reference: 3 years old (except for absences		(0.0052)	(0.0061)		(0.0066)		(0.0055)		(0.0110)		(0.0056)		(0.0017)		(0.0072)		(0.0157)
& employment, whose ref. is 6 years old)		P=0.000	F	P=0.000		P=0.000		P=0.000		P=0.873		P=0.014		P=0.001		P=0.058		P=0.000
14 years old		0.0509		0.1051		0.1097		0.0412		-0.0077		0.0110		0.0071		0.0162		0.2820
Reference: 3 years old (except for absences		(0.0051)		0.0083)		(0.0056)		(0.0056)		(0.0081)		(0.0038)		(0.0020)		(0.0051)		(0.0195)
& employment, whose ref. is 6 years old)		P=0.000	F	P=0.000		P=0.000		P=0.000		P=0.347		P=0.006		P=0.001		P=0.003		P=0.000
15 years old		0.0686		0.1056		0.1020		0.0288		0.0015		0.0277		0.0062		0.0231		0.3858
Reference: 3 years old (except for absences		(0.0055)	(0.0073)		(0.0065)		(0.0054)		(0.0103)		(0.0073)		(0.0014)		(0.0090)		(0.0190)
& employment, whose ref. is 6 years old)		P=0.000	F	P=0.000		P=0.000		P=0.000		P=0.886		P=0.000		P=0.000		P=0.013		P=0.000
16 years old		0.0803		0.1179		0.1011		0.0320		0.0006		0.0260		0.0122		0.0303		0.5115
Reference: 3 years old (except for absences		(0.0053)		0.0073)		(0.0074)		(0.0051)		(0.0108)		(0.0075)		(0.0029)		(0.0070)		(0.0264)
& employment, whose ref. is 6 years old)		P=0.000		P=0.000		P=0.000		P=0.000		P=0.953		P=0.001		P=0.000		P=0.000		P=0.000
17 years old		0.0855		0.1331		0.0902		0.0209		0.0116		0.0417		0.0125		0.0361		0.6341
Reference: 3 years old (except for absences		(0.0086)	(0.0112)		(0.0090)		(0.0052)		(0.0087)		(0.0082)		(0.0019)		(0.0111)		(0.0184)
& employment, whose ref. is 6 years old)		P=0.000	F	P=0.000		P=0.000		P=0.000		P=0.188		P=0.000		P=0.000		P=0.002		P=0.000
Female		0.0078	-	0.0098		-0.0617		-0.0502		0.0082		-0.0005		-0.0013		-0.0012		-0.0190
Reference: Male		(0.0022)	,	0.0029)		(0.0024)		(0.0028)		(0.0039)		(0.0031)		(0.0014)		(0.0033)		(0.0049)
		P=0.001		P=0.002		P=0.000		P=0.000		P=0.042		P=0.861		P=0.348		P=0.718		P=0.000
Black, non-Hispanic/Latino		-0.0077		-0.0478		-0.0087		0.0088		-0.0082		0.0050		-0.0021		-0.0461		-0.0677
Reference: White, non-Hispanic/Latino		(0.0032)		0.0044)		(0.0063)		(0.0070)		(0.0041)		(0.0044)		(0.0014)		(0.0058)		(0.0069)
		P=0.018		P=0.000		P=0.171		P=0.212		P=0.052		P=0.253		P=0.151		P=0.000		P=0.000
Hispanic/Latino		-0.0025		-0.0093		-0.0092		-0.0028		0.0095		0.0083		8000.0		0.0047		-0.0468
Reference: White, non-Hispanic/Latino		(0.0042)	,	0.0048)		(0.0054)		(0.0053)		(0.0052)		(0.0040)		(0.0016)		(0.0063)		(0.0077)
		P=0.552	Į F	P=0.060		P=0.093		P=0.599		P=0.074		P=0.042		P=0.605		P=0.466		P=0.000

Online Appendix

	Depression	Anxiety	ADD/ADHD	Behavioral prob.	Digestive issue	Any unmet care	Unmet mental care	7+ sch. absences	Employment
	FE only Fully adj.	FE only Fully a		. FE only Fully adj.	FE only Fully adj.	FE only Fully adj.			
American Indian or Alaska Native	0.0162	-0.0075	0.0004	0.0075	0.007	· · · · · · · · · · · · · · · · · · ·	0.0020	0.0195	-0.0662
Reference: White, non-Hispanic/Latino	(0.0132)	(0.0158)	(0.0146)	(0.0127)	(0.015		(0.0053)	(0.0217)	(0.0383)
· · · · · · · · · · · · · · · · · · ·	P=0.226	P=0.638	P=0.980	P=0.559	P=0.59		P=0.700	P=0.373	P=0.090
Asian, Native Hawaiian, or Pacific Islander	-0.0074	-0.0380	-0.0203	-0.0066	-0.015		0.0003	-0.0222	-0.0938
Reference: White, non-Hispanic/Latino	(0.0028)	(0.0044)	(0.0035)	(0.0050)	(0.005		(0.0026)	(0.0056)	(0.0064)
rterereneer vrinte, nen riiopaine zaane	P=0.012	P=0.000	P=0.000	P=0.188	P=0.0		P=0.907	P=0.000	P=0.000
Other or mixed race	0.0037	0.0022	0.0065	0.0185	-0.009		0.0090	0.0127	-0.0283
Reference: White, non-Hispanic/Latino	(0.0035)	(0.0056)	(0.0063)	(0.0078)	(0.007		(0.0031)	(0.0086)	(0.0082)
	P=0.299	P=0.697	P=0.304	P=0.022	P=0.2		P=0.005	P=0.146	P=0.001
Two parents, not married	0.0183	0.0210	0.0183	0.0370	0.023	4 0.0180	0.0069	0.0284	0.0037
Reference: Two parents, married	(0.0035)	(0.0043)	(0.0059)	(0.0057)	(0.009	2) (0.0047)	(0.0034)	(0.0096)	(0.0086)
,	P=0.000	P=0.000	P=0.003	P=0.000	P=0.0	, , ,	P=0.045	P=0.005	P=0.672
Single parent	0.0207	0.0292	0.0335	0.0463	0.017	8 0.0152	0.0074	0.0463	-0.0316
Reference: Two parents, married	(0.0025)	(0.0057)	(0.0058)	(0.0041)	(0.004	2) (0.0024)	(0.0010)	(0.0050)	(0.0056)
	P=0.000	P=0.000	P=0.000	P=0.000	P=0.0	00 P=0.000	P=0.000	P=0.000	P=0.000
Another family structure	0.0580	0.1824	0.1257	0.2148	0.017	0.0422	0.0235	-0.0261	-0.0348
Reference: Two parents, married	(0.0186)	(0.0379)	(0.0331)	(0.0533)	(0.024		(0.0123)	(0.0174)	(0.0253)
	P=0.003	P=0.000	P=0.000	P=0.000	P=0.4	P=0.087	P=0.062	P=0.139	P=0.175
High school (including vocational)	0.0022	0.0070	0.0065	-0.0011	0.011	3 -0.0150	-0.0004	0.0118	0.0071
Reference: Less than high school	(0.0057)	(0.0087)	(0.0068)	(0.0086)	(0.006		(0.0037)	(0.0091)	(0.0122)
•	P=0.695	P=0.425	P=0.344	P=0.895	P=0.1	P=0.091	P=0.907	P=0.199	P=0.566
Some college or associate degree	0.0063	0.0129	0.0069	-0.0009	0.017	9 -0.0041	0.0047	0.0189	0.0266
Reference: Less than high school	(0.0050)	(0.0072)	(0.0078)	(0.0084)	(0.010	3) (0.0085)	(0.0025)	(0.0105)	(0.0125)
	P=0.207	P=0.080	P=0.382	P=0.912	P=0.0	P=0.633	P=0.067	P=0.079	P=0.039
College degree or higher	-0.0004	0.0157	-0.0068	-0.0175	0.003	1 -0.0226	0.0000	-0.0084	0.0551
Reference: Less than high school	(0.0067)	(0.0088)	(0.0064)	(0.0064)	800.0)	6) (0.0092)	(0.0032)	(0.0094)	(0.0120)
	P=0.949	P=0.081	P=0.296	P=0.009	P=0.7	8 P=0.018	P=0.995	P=0.373	P=0.000
Second-generation household	0.0149	0.0199	0.0169	0.0126	0.005	4 -0.0240	0.0024	0.0052	0.0636
Reference: First-generation household	(0.0044)	(0.0047)	(0.0084)	(0.0036)	(0.011		(0.0030)	(0.0117)	(0.0091)
	P=0.002	P=0.000	P=0.048	P=0.001	P=0.6		P=0.423	P=0.660	P=0.000
Third-generation household or higher	0.0307	0.0539	0.0663	0.0460	0.011	5 -0.0234	0.0056	0.0383	0.1210
Reference: First-generation household	(0.0035)	(0.0055)	(0.0103)	(0.0039)	(0.011	, , ,	(0.0021)	(0.0108)	(0.0112)
	P=0.000	P=0.000	P=0.000	P=0.000	P=0.33		P=0.010	P=0.001	P=0.000
Medicare income eligibility limit, age 6-18*	-0.0602	-0.0386	-0.0332	0.0817	0.012	7 -0.0153	0.0096	-0.0125	0.0079
(% of federal poverty level)	(0.0047)	(0.0082)	(0.0091)	(0.0092)	(0.009		(0.0029)	(0.0129)	(0.0140)
	P=0.000	P=0.000	P=0.001	P=0.000	P=0.20		P=0.002	P=0.336	P=0.576
State has EITC (yes/no)	0.0144	-0.0139	-0.0010	0.0037	-0.001		-0.0036	-0.0285	0.0184
	(0.0081)	(0.0122)	(0.0111)	(0.0089)	(0.012		(0.0044)	(0.0140)	(0.0197)
	P=0.081	P=0.260	P=0.930	P=0.681	P=0.89		P=0.411	P=0.047	P=0.355
State EITC as percent of federal (%)	-0.0217	0.0029	0.0227	-0.0283	0.030		-0.0022	0.1098	0.0170
	(0.0173)	(0.0333)	(0.0330)	(0.0311)	(0.040		(0.0079)	(0.0436)	(0.0526)
	P=0.215	P=0.931	P=0.495	P=0.368	P=0.4		P=0.777	P=0.015	P=0.748
State EITC is refundable (yes/no)	-0.0076	0.0135	0.0116	-0.0042	-0.008		-0.0048	0.0074	-0.0205
	(0.0051)	(0.0059)	(0.0025)	(0.0037)	(0.004		(0.0026)	(0.0119)	(0.0085)
TANEL COOK	P=0.143	P=0.026	P=0.000	P=0.270	P=0.0		P=0.075	P=0.538	P=0.020
Maximum TANF benefit for family of 3 (\$)	0.0000	0.0000	-0.0001	0.0000	0.000		0.0000	-0.0001	0.0000
	(0.0000)	(0.0001)	(0.0001)	(0.0000)	(0.000	, , ,	(0.0000)	(0.0001)	(0.0001)
	P=0.515	P=0.740	P=0.171	P=0.906	P=0.20		P=0.185	P=0.258	P=0.511
State and year FEs	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes
Cluster-robust SEs	State State	State State	State State	State State	State State		State State	State State	State State
Number of children	141,049 141,049	140,998 140,998	140,529 140,529	141,045 141,045	140,518 140,5		141,094 141,094	114,928 114,928	114,163 114,163
Adjusted R2	0.002 0.034	0.004 0.038	0.005 0.049	0.002 0.035	0.001 0.008	0.003 0.014	0.001 0.005	0.002 0.017	0.017 0.266

Adjusted R2 0.002 0.034 0.004 0.038 0.005 0.049 0.002 0.035 0.001 0.005 0.003 0.014 0.001 0.005 0.002 0.017 0.266

Notes: This table details the TWFE models presented in Figures 1 and A3. Cluster-robust SEs are presented in parentheses with P-values below.

^{*}This term was collinear with Medicaid income eligibility limits for ages 1–5, so one of them has been omitted.

Table A5. Values for the main TWFE models for the YRBSS.

	Sad or	Sad or hopeless		Considered suicide		ed suicide	Recent	alcohol	Recent marijuana		Physic	al fight
	FE only	Fully adj.	FE only	Fully adj.	FE only	Fully adj.	FE only	Fully adj.	FE only	Fully adj.	FE only	Fully adj.
\$1 increase in minimum wage	0.0054	0.0030	0.0028	0.0014	-0.0005	-0.0003	-0.0023	-0.0006	-0.0011	0.0008	0.0045	0.0046
•	(0.0045)	(0.0034)	(0.0035)	(0.0028)	(0.0016)	(0.0016)	(0.0024)	(0.0029)	(0.0025)	(0.0023)	(0.0046)	(0.0037)
	P=0.239	P=0.385	P=0.426	P=0.619	P=0.749	P=0.835	P=0.356	P=0.827	P=0.662	P=0.733	P=0.333	P=0.216
Female		0.1606		0.0854		0.0373		0.0218		-0.0298		-0.1385
Reference: Male		(0.0032)		(0.0024)		(0.0027)		(0.0032)		(0.0028)		(0.0047)
nere male		P=0.000		P=0.000		P=0.000		P=0.000		P=0.000		P=0.000
Black, non-Hispanic/Latino		0.0035		-0.0191		0.0309		-0.1246		0.0184		0.1010
Reference: White, non-Hispanic/Latino		(0.0039)		(0.0028)		(0.0029)		(0.0067)		(0.0104)		(0.0062)
riorororoo. Write, non riiopanoreanio		P=0.368		P=0.000		P=0.000		P=0.000		P=0.084		P=0.000
Hispanic/Latino		0.0570		0.0074		0.0347		-0.0204		0.0144		0.0595
Reference: White, non-Hispanic/Latino		(0.0064)		(0.0039)		(0.0032)		(0.0054)		(0.0075)		(0.0083)
Hererence. Writte, Hori-Hispanic/Launo		P=0.000		P=0.064		P=0.000		P=0.000		P=0.062		P=0.000
American Indian or Alaska Native		0.0644		0.0374		0.0629		-0.0092		0.0875		0.0977
Reference: White, non-Hispanic/Latino		(0.0083)		(0.0099)		(0.0102)		(0.0122)		(0.0178)		(0.0137)
nererence. writte, non-mispanic/Launo		(0.0063) P=0.000		(0.0099) P=0.001		(0.0102) P=0.000		(0.0122) P=0.455		(0.0178) P=0.000		(0.0137) P=0.000
Asian, Native Hawaiian, or Pacific Islander		0.0010		-0.0078		0.0157		-0.1668		-0.0860		-0.0381
Reference: White, non-Hispanic/Latino		(0.0105)		(0.0091)		(0.0043)		(0.0128)		(0.0099)		(0.0048)
		P=0.923		P=0.396		P=0.001		P=0.000		P=0.000		P=0.000
Other or mixed race		0.0649		0.0522		0.0390		-0.0271		0.0387		0.0785
Reference: White, non-Hispanic/Latino		(0.0076)		(0.0061)		(0.0058)		(0.0058)		(0.0061)		(0.0108)
		P=0.000		P=0.000		P=0.000		P=0.000		P=0.000		P=0.000
10th grade		-0.0162		-0.0146		-0.0231		0.0219		0.0003		-0.0610
Reference: 9th grade		(0.0039)		(0.0021)		(0.0016)		(0.0032)		(0.0024)		(0.0030)
		P=0.000		P=0.000		P=0.000		P=0.000		P=0.911		P=0.000
11th grade		-0.0389		-0.0348		-0.0509		0.0472		-0.0011		-0.1172
Reference: 9th grade		(0.0064)		(0.0038)		(0.0022)		(0.0046)		(0.0040)		(0.0050)
		P=0.000		P=0.000		P=0.000		P=0.000		P=0.778		P=0.000
12th grade		-0.0696		-0.0549		-0.0739		0.0946		0.0084		-0.1578
Reference: 9th grade		(0.0075)		(0.0044)		(0.0032)		(0.0073)		(0.0064)		(0.0070)
		P=0.000		P=0.000		P=0.000		P=0.000		P=0.194		P=0.000
Medicare income eligibility limit, age 1-5		-0.0084		-0.0245		-0.0141		0.0259		0.0158		0.0067
(% of federal poverty level)		(0.0141)		(0.0090)		(0.0111)		(0.0215)		(0.0106)		(0.0112)
,		P=0.554		P=0.009		P=0.210		P=0.235		P=0.144		P=0.551
Medicare income eligibility limit, age 6-18		0.0022		0.0199		0.0129		-0.0252		-0.0084		-0.0110
(% of federal poverty level)		(0.0121)		(0.0078)		(0.0101)		(0.0182)		(0.0088)		(0.0105)
(,,		P=0.855		P=0.015		P=0.210		P=0.173		P=0.343		P=0.298
State has EITC (yes/no)		0.0093		0.0084		-0.0078		0.0109		0.0138		-0.0124
,		(0.0102)		(0.0099)		(0.0091)		(0.0070)		(0.0055)		(0.0122)
		P=0.366		P=0.404		P=0.396		P=0.125		P=0.015		P=0.312
State EITC as percent of federal (%)		0.0342		0.0155		0.0220		-0.0007		-0.0407		0.0513
		(0.0129)		(0.0079)		(0.0085)		(0.0159)		(0.0096)		(0.0134)
		P=0.011		P=0.056		P=0.013		P=0.966		P=0.000		P=0.000
State EITC is refundable (yes/no)		0.0001		-0.0067		-0.0035		-0.0149		-0.0103		0.0028
otate Erro to retaindable (Jeo/no)		(0.0092)		(0.0095)		(0.0093)		(0.0062)		(0.0052)		(0.0089)
		P=0.994		P=0.483		P=0.708		P=0.022		P=0.054		P=0.752
Maximum TANF benefit for family of 3 (\$)		0.0001		0.0001		0.0000		-0.0001		0.0000	 	-0.0001
maximan i Aidi benent for failing of σ (ψ)		(0.0001)	1	(0.0001	1	(0.0000)		(0.0001)	1	(0.0001)		(0.0001)
		(0.0001) P=0.233		(0.0000) P=0.070		(0.0000) P=0.759		(0.0001) P=0.220		(0.0001) P=0.649		(0.0001) P=0.218
Chata and any horses FF-	Yes		Yes		Vac		Voc	Yes	Vas		Vas	Yes
State and age-by-year FEs		Yes		Yes	Yes	Yes	Yes		Yes	Yes	Yes	
Cluster-robust SEs	State	State	State	State	State	State	State	State	State	State	State	State
Number of adolescents	1,218,309	1,218,309	1,129,583	1,129,583	922,636	922,636	1,149,833	1,149,833	1,206,459	1,206,459	965,173	965,173
Adjusted R2	0.009	0.043	0.006	0.021	0.005	0.014	0.051	0.063	0.018	0.022	0.017	0.056

Notes: This table details the TWFE models presented in **Figures 2** and **A4**. Cluster-robust SEs are presented in parentheses with P-values below.

Section A7. TWFE Sub-Population Analyses

We tested the association between the minimum wage and the mental health of several sub-populations that were most likely to earn near the minimum wage (and, therefore, most likely to experience an improvement in their health after it was raised). These sub-populations are listed in **Table A6**. We performed these analyses by subsetting the dataset to the indicated respondents and re-fitting the main models. This approach is identical to fully interacted TWFE models:

$$Y_{ist} = \beta_1[(min.wage)_{st} * (group)_{ist}] + \beta_2(min.wage)_{st} + \beta_3(group)_{ist} +$$
$$\boldsymbol{\beta} \boldsymbol{X}_{ist} + \boldsymbol{\beta} [\boldsymbol{X}_{ist} * (group)_{ist}] + \boldsymbol{\beta} \boldsymbol{Z}_{st} + \boldsymbol{\beta} [\boldsymbol{Z}_{st} * (group)_{ist}] +$$
$$\Delta_s + \Delta_s * (group)_{ist} + \tau_t + \tau_t * (group)_{ist} + \varepsilon_{ist}$$

whereby the minimum wage variable, all covariates, and all FEs are also interacted with a binary variable, $group_{ist}$, defined for each sub-population such that inclusion = 0 and non-inclusion = 1. For example, Black and Hispanic/Latino children are coded as 0 and all other children who have complete information on race/ethnicity are coded as 1. In the fully interacted model, β_3 provides the association for the sub-population of interest, e.g. Black and Hispanic/Latino children.

We graph these subgroup analyses in **Figures A5** and **A6**. There is little evidence of meaningful improvements for any outcome or any sub-population. Occasionally, there are 95% Cls that are statistically significant from zero, but these models (1) do not show a consistent pattern within outcomes, e.g. raising the minimum wage was negatively associated with rates of ADD/ADHD for less educated households in the NSCH but no other sub-populations; (2) do not show a consistent direction within sub-populations, e.g. for less educated households, raising the minimum wage was negatively associated with rates of ADD/ADHD yet no improvements in any other outcomes; (3) do not use an unbiased causal design; and (4) are no longer significant under the 99.7% Cls. As a result, our interpretation of these analyses is that they are generally null.

Table A6. List of sub-population analyses for TWFE models.

Survey	Sub-population
NSCH	Less than 200 FPL%
NSCH	Adults with high school or less
	That is, all households for which no adult completed more than high school
NSCH	Black or Hispanic/Latino
NSCH	First- or second-generation
NSCH	Adolescents, age 13–17
NSCH	Not urban or principal city
	That is, children not in any metropolitan statistical area (MSA, or denser urban
	areas of the U.S.) or children in an MSA but not in one of its principal cities
YRBSS*	Black or Hispanic/Latino

Notes: *The YRBSS has fewer available demographic and socioeconomic characteristics than the NSCH, so we cannot replicate most of the sub-population analyses with the YRBSS.

Figure A5. TWFE models for sub-populations in the NSCH.

Notes: Based on OLS TWFE models that re-estimate the main models on a subset of the indicated sub-populations. All models were adjusted for state and year fixed effects, as well as individual- and state-level covariates per **Table A3**. SEs were clustered at the state level. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 16,854 to 57,608 for the sub-population models (and N = 114,163 to 141,094 for the models with all children).

Figure A6. TWFE models for a sub-population in the YRBSS.

Notes: Based on OLS TWFE models that re-estimate the main models on a subset of the indicated sub-population. All models were adjusted for state and age-by-year fixed effects, as well as individual- and state-level covariates per **Table A3**. SEs were clustered at the state level. 95% Cls (thick) and 99.7% Cls for Bonferroni corrections (thin) are provided. N = 254,817 to 371,999 for the sub-population models (and N = 922,636 to 1,218,309 for the models with all adolescents).

Section A8. TWFE Longer-Run Analyses

One concern about the main TWFE analyses may be that they do not adequately capture the longer-run effect of rising wages or accommodate other longer-run economic influences. As a result, we applied several alternative modeling strategies: (1) inflation-adjusted minimum wages (in 2020 dollars), in case the year fixed effects do not fully account for rising costs throughout the study period; (2) wages lagged by 1 year, in case rises in take-home pay are not fully realized until the subsequent year; and (3) lifetime minimum wage models, which use the average wage to which a child was likely exposed throughout their entire life, described below. (We also estimate [4] difference-in-differences models to evaluate the unbiased, long-run effect of rising wages in a subset of states. These analyses are separately described in **Sections A10–A11**.)

The models using inflation-adjusted wages and lagged wages are presented in **Figures A7** and **A8**, compared with the main TWFE models. Across the board, these two alternate specifications are nearly identical to the main models in their coefficients and uncertainty.

For the lifetime wage models, we drew on the example of Wehby and colleagues, who found that children exposed to a higher minimum wage earlier in life had better physical health later.⁴ Their work relies on a human capital model, whereby cumulative, long-term investments in a child's well-being were necessary to positively impact their physical health. The same could be true for mental health. For example, a family's wage in past years may have granted them access to structural opportunities, such as higher-quality schools or neighborhoods, that had a lasting impact on their child's mental health. Or it could be that families were able to accumulate wealth in the past that they could later tap into when their child's well-being was threatened.

As such, we tested the average minimum wage to which a child was exposed throughout their life as a predictor in our models. To construct this variable, we averaged the minimum wage in a child's state of residence for all ages from 0 until when surveyed. Given the absence of data on a household's movement in the NSCH and YRBSS, we assumed that a child remained in the same state since birth. In reality, 2–3% of households move between states in a typical year, per the American Community Survey, so our lifetime minimum wage variable is measured with some error. Even so, it allows us to approximate the association between cumulative exposure to a state's minimum wages and a child's mental health later in life. These models were also adjusted for the same individual- and state-level covariates as the main models. They are presented in Figures A9 and A10. These models are less precise than the main ones, so we cannot rule out meaningful effect sizes. Even so, they provide little evidence that higher minimum wages, even when sustained throughout a child's life, were associated with better mental health.

Figure A7. TWFE models with alternative specifications for the NSCH.

Notes: Based on OLS TWFE models using either the state's effective minimum wage adjusted for inflation in 2020 dollars or the state's minimum wage lagged by one year, compared to the main TWFE models. All models were adjusted for individual- and state-level covariates per **Table A3**, as well as state and year fixed effects. SEs were clustered at the state level. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 114,163 to 141,094.

Figure A8. TWFE models with alternative specifications for the YRBSS.

Notes: Based on OLS TWFE models using either the state's effective minimum wage adjusted for inflation in 2020 dollars or the state's minimum wage lagged by one year, compared to the main TWFE models. All models were adjusted for individual- and state-level covariates per **Table A3**, as well as state and age-by-year FEs. SEs were clustered at the state level. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 922,636 to 1,218,309.

Figure A9. TWFE models using lifetime minimum wages for the NSCH.

Notes: Based on OLS TWFE models using the average minimum wage to which a child was likely exposed throughout their life. All models included state and year FEs; fully adjusted models added individual- and state-level covariates per **Table A3**. SEs were clustered at the state level. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 114,163 to 141,094.

Figure A10. TWFE models using lifetime minimum wages for the YRBSS.

Notes: Based on OLS TWFE models using the average minimum wage to which a child was likely exposed throughout their life. All models included state and age-by-year FEs; fully adjusted models added individual- and state-level covariates per **Table A3**. SEs were clustered at the state level. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 922,636 to 1,218,309.

Section A9. TWFE Robustness Analyses

Lastly, we examined the robustness of the main TWFE analyses to several sensitivity tests: (1) corrections for multiple hypothesis testing, described in **Section A6** and presented throughout the appendix; (2) estimations using binomial logistic regression, which provide the odds ratio for each outcome given a \$1 increase in the minimum wage (estimated using the "survey" package in R); and (3) alternate standard error structures, described below. For all sensitivity analyses, the conclusions are similar to the main TWFE analyses (**Figures A11** to **A14**).

Regarding standard errors, all models in the main text clustered their standard errors at the state level. Below, we present models that use the nested clustered SEs recommended by the NSCH and YRBSS for estimating the prevalence of conditions and behaviors in the population, based on each survey's sampling design (**Figures A13** and **A14**). For the NSCH, the alternate standard errors nested the survey's sampling strata within each state. For the YRBSS, the alternate errors nested the survey's sampling strata within each state's primary sampling units. These alternative constructions reflect the distinct sampling designs of the two surveys.

Given that our treatment, i.e. the minimum wage, is set by each state, clustering at the state level would traditionally be considered appropriate for TWFE and difference-in-differences analyses. However, recent econometric evidence suggests that typical estimators for cluster-robust standard errors can be overly conservative when a non-negligible fraction of clusters in the population are sampled.⁸ Such is the case here since we observed all states (plus Washington, D.C.) in the NSCH models and the vast majority of states in the YRBSS models. As such, the state-clustered errors may, in principle, overstate the uncertainty in the association between the minimum wage and children's mental health outcomes. Meanwhile, the nested errors inflate the number of clusters relative to the true number of units with varying treatment statuses; as such, they may, in principle, understate the true uncertainty. Even so, the two approaches produce substantively similar estimates of uncertainty for our outcomes (**Figures A13** and **A14**).

Figure A11. TWFE models using logistic regression for the NSCH.

Notes: Re-estimation of the main TWFE models with binomial logistic regression in the "survey" package in R. All models included state and year FEs; fully adjusted models added individual-and state-level covariates per **Table A3**. SEs were clustered at the state level. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 114,163 to 141,094.

Figure A12. TWFE models using logistic regression for the YRBSS.

Notes: Re-estimation of the main TWFE models with binomial logistic regression in the "survey" package in R. All models included state and age-by-year FEs; fully adjusted models added individual- and state-level covariates per **Table A3**. SEs were clustered at the state level. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 922,636 to 1,218,309.

Figure A13. TWFE models using nested clusters for the NSCH.

Notes: Re-estimation of the main TWFE models with SEs clustered using the NSCH's nested design. State-clustered SEs were included for comparison. All models included state and year FEs; fully adjusted models added individual- and state-level covariates per **Table A3**. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 114,163 to 141,094.

Figure A14. TWFE models using nested clusters for the YRBSS.

Notes: Re-estimation of the main TWFE models with SEs clustered using the YRBSS's nested design. State-clustered SEs were included for comparison. All models included state and age-by-year FEs; fully adjusted models added individual- and state-level covariates per **Table A3**. 95% CIs (thick) and 99.7% CIs for Bonferroni corrections (thin) are provided. N = 922,636 to 1,218,309.

Section A10. Difference-in-Differences Specifications

Recent advancements in the econometrics literature on TWFE models have highlighted the potential biases in this approach when units adopt policies at different times and experience dynamic treatment effects over time.^{9–11} Consequently, our standard TWFE models may not estimate unbiased causal effects. Given that unbiased estimates are valuable for policy makers and public health professionals, we used a difference-in-differences design as yet another approach for evaluating whether raising the state minimum wage affects children's mental health.

For our difference-in-differences analyses, we necessarily must select a subset of states and years that isolate wage variation in a group of treatment states, relative to a group of control states whose wages did not vary. As such, we focused on the years following the last major increase in the federal minimum wage, i.e. post–2010, and used the YRBSS since it provided a sufficiently long number of follow-up years. To define a set of treatment states with suitable preand post-periods, we coded as treated the 10 states that raised their minimum wages above the federal minimum of \$7.25 in 2014 or 2015, i.e. between the 2013 and 2015 waves of the YRBSS (**Figure A15**, **panel A**). This choice provided us with two pre-periods to evaluate parallel pretrends and 3 post-periods to evaluate for long-run effects. The 21 states that remained at the federal minimum of \$7.25 from 2011 to 2019 served as controls. Note that Indiana also remained at the federal minimum but did not field a YRBSS survey. All other states were excluded.

During this period, treated states implemented a range of minimum wage increases, as shown in **Figure A15**, **panel B**. Treated adolescents were exposed to a weighted mean wage of \$9.61 in the post-period, or a \$2.36 increase over baseline. Consequently, our difference-in-differences models estimate the average causal effect of a \$2.36 increase in the minimum wage on the mental health of treated adolescents, rather than the \$1 increase in the TWFE models.

The main difference-in-differences models were specified as follows:

$$Y_{ist} = \beta_1(treated)_s + \beta_2(post2013)_t + \beta_3(treated \times post2013)_{st} + \beta X_{ist} + \beta Z_{st} + \Delta_s + \tau_t + \varepsilon_{ist}$$

where Y_{ist} is the mental health outcome for individual i in state s in year t; (treated) $_s$ is an indicator for whether a state was in the treatment group (coded as 1) or control group (0); (post2013) $_t$ is an indicator for whether an observation is in the pre-treatment period (2011 or 2013, coded as 0) or post-period (2015 onward, 1); the coefficient on the interaction term, β_3 , estimates the difference-in-difference, or the average treatment effect on treated adolescents. X_{ist} is a vector of individual-level controls (per **Table A3**); Z_{st} is a vector of time-variant state-level policies; Δ_s is the time-invariant state fixed effect; τ_t is the year (or age-by-year) fixed effect; and ε_{ist} is the error.

We also specified event study models, which are akin to the difference-in-differences models but allow the treatment effect to vary by year. As a result, they allowed us to visualize parallel pre-trends and evaluate how the treatment effect changes over time. Treated adolescents were exposed to a mean minimum wage of \$8.39 (or \$1.14 over baseline) in 2015, \$9.23 (or \$1.98) in 2017, and \$10.88 (or \$3.63) in 2019 (**Figure A16**). Because the mean treatment continued to grow during this period, we should expect any effect on mental health to grow over time.

The event studies were estimated as follows:

$$Y_{ist} = \beta_1(treated)_s + \beta(year)_t + \beta(treated \times year)_{st} + \beta X_{ist} + \beta Z_{st} + \Delta_s + \tau_t + \varepsilon_{ist}$$

where we have a vector of coefficients of interest, one for the treatment effect in each year. The remaining terms are like those described for the difference-in-differences models.

Together, the difference-in-differences and event study models allowed us to rigorously test the unbiased causal effect of raising the minimum wage on the mental health of adolescents. All models used the YRBSS weights and clustered SEs at the state level. We have provided 95% CIs and Bonferroni-corrected 99.2% CIs (since we only consider 6 outcomes, 0.05/6 = 0.0083, with critical values of 2.64). Models were estimated by OLS in the "Ife" package (v. 2.8) in R.

The main difference-in-differences models are presented in **Table A7**, while the main event studies are presented in **Figure A17**. Notably, these outcomes include self-reported symptoms and coping mechanisms, which should be some of the most sensitive outcomes to changes in a household's financial stress. Instead, these models provide little to no evidence that raising a state's minimum wage by a weighted mean of \$2.36 improved adolescents' mental health from 2011–2019. If anything, they suggest that some outcomes worsened. Using the 95% CIs, we can rule out improvements greater than 1 pp for all outcomes except recent alcohol use, for which we can rule out effects greater than 2 pp. The event studies suggest that the effects do not accumulate or phase in over time as we might expect since the minimum wages of treated states continued to rise during the post-period. The event studies also reduce concerns about non-parallel pretrends, except possibly for getting in physical fights. We also reproduced these models using the YRBSS's nested clusters; they are like those with state-clustered SEs (**Figure A18**).

Figure A15. Treatment and control states for difference-in-differences models.

Notes: (A.) States that started raising their minimum wage above the federal minimum in 2014 or 2015 serve as treatment states, while those that remained at the federal minimum serve as controls. (B.) Effective minimum wages in treatment states, per Bureau of Labor Statistics data.

Figure A16. Weighted mean of minimum wage in treatment states.

Notes: These estimates provide the effective minimum wage to which the mean treated adolescent was exposed using the YRBSS weights. Based on Bureau of Labor Statistics data.

Table A7. Difference-in-difference models for the average treatment effect of raising the minimum wage on treated adolescents' mental health using the YRBSS from 2011–2019.

	Sad or hopeless		Considered suicide	
	FE only	Fully adj.	FE only	Fully adj.
Effect of raise in wage	1.5	1.6	0.6	1.0
95% CIs	[-0.5, 3.4]	[0.1, 3.2]	[-0.8, 1.9]	[0.0, 2.0]
99.2% Cls	[-1.2, 4.1]	[-0.5, 3.8]	[-1.3, 2.4]	[-0.3, 2.4]
Demographic controls	No	Yes	No	Yes
State policy controls	No	Yes	No	Yes
State and age-by-year FEs	Yes	Yes	Yes	Yes
Cluster-robust SEs	State	State	State	State
Number of adolescents	552,169	552,169	553,694	553,694
Adjusted R2	0.009	0.046	0.004	0.020

	Attempted suicide		Recent alcohol	
	FE only	Fully adj.	FE only	Fully adj.
Effect of raise in wage	0.3	0.9	-0.3	-0.2
95% CIs	[-1.3, 2.0]	[-0.1, 1.9]	[-2.2, 1.6]	[-1.8, 1.4]
99.2% CIs	[-2.0, 2.7]	[-0.5, 2.2]	[-2.9, 2.4]	[-2.4, 2.0]
Demographic controls	No	Yes	No	Yes
State policy controls	No	Yes	No	Yes
State and age-by-year FEs	Yes	Yes	Yes	Yes
Cluster-robust SEs	State	State	State	State
Number of adolescents	314,791	314,791	512,373	512,373
Adjusted R2	0.005	0.014	0.040	0.055

	Recent marijuana		Physical fight	
	FE only	Fully adj.	FE only	Fully adj.
Effect of raise in wage	0.1	0.1	-0.3	-0.2
95% CIs	[-0.7, 0.9]	[-0.7, 0.9]	[-0.8, 2.2]	[-0.6, 2.0]
99.2% Cls	[-1.1, 1.3]	[-1.0, 1.2]	[-1.4, 2.7]	[-1.1, 2.4]
Demographic controls	No	Yes	No	Yes
State policy controls	No	Yes	No	Yes
State and age-by-year FEs	Yes	Yes	Yes	Yes
Cluster-robust SEs	State	State	State	State
Number of adolescents	539,241	539,241	311,828	311,828
Adjusted R2	0.018	0.024	0.011	0.046

Notes: The coefficients provide the effect in percentage points of raising the minimum wage above the federal minimum on adolescents' mental health from 2011–2019. The average raise was \$2.36 over control states in the post-period. Based on OLS difference-in-difference models using the states indicated in **Figure A15** and YRBSS outcomes. All models included the indicated adjustments per **Table A3**. 95% Cls and 99.2% Cls for Bonferroni corrections are provided.

Figure A17. Main event studies using the YRBSS from 2011–2019.

Notes: Each coefficient provides the effect of raising the minimum wage above the federal minimum wage in the indicated year. Average treatment wages by year are provided in **Figure A16**. Based on OLS event study models using the cohort of states that raised their minimum wages above the federal minimum in 2014 or 2015, compared to those that used the federal minimum for the entire period. All models included state and age-by-year FEs; fully adjusted models added individual- and state-level covariates per **Table A3**. SEs are clustered at the state level. 95% CIs (thick) and 99.2% CIs for Bonferroni corrections (thin) are provided. N = 311,828 to 553,694.

Figure A18. Event studies using nested clusters for the YRBSS.

Notes: Re-estimation of the main event studies with SEs clustered using the YRBSS's nested design. See **Figure A17** for the state-clustered SEs. All models included state and age-by-year FEs; fully adjusted models added individual- and state-level covariates per **Table A3**. 95% CIs (thick) and 99.2% CIs for Bonferroni corrections (thin) are provided. N = 311,828 to 553,694.

Section A11. Event Studies with Strictly Balanced Panel

Since not all states fielded the YRBSS in all years, one concern might be that the main event studies are biased by an imbalanced panel. That is, the coefficients rely on slightly different combinations of states depending on the year, which might bias our inferences. To reduce this concern, we reproduced the models on a strictly balanced panel of 7 treated states (i.e. AR, HI, MD, MT, NE, NY, and WV) and 9 control states (i.e. ID, KY, NC, ND, NH, OK, SC, TN, and VA) (**Figure A19**). They may suggest that raising the minimum wage caused rates of alcohol use to decline by 2.5 pp in 2017 and 2019. However, other outcomes (i.e. sad or hopeless and suicide attempts) may have worsened in some years. Together, these models are inconsistent with widespread improvements in adolescents' mental health, much like the main event studies. Put differently, they suggest that rising minimum wages did not improve adolescents' mental health.

Figure A19. Event studies using a strictly balanced panel for the YRBSS.

Notes: Re-estimation of the main event studies using a strictly balanced panel of 7 treated states (i.e. AR, HI, MD, MT, NE, NY, and WV) and 9 control states (i.e. ID, KY, NC, ND, NH, OK, SC, TN, and VA). All models included state and age-by-year FEs; fully adjusted models added individual- and state-level covariates per **Table A3**. SEs were clustered at the state level. 95% CIs (thick) and 99.2% CIs for Bonferroni corrections (thin) are provided. N = 214,355 to 445,969.

Section A12. References

- Averett SL, Smith JK, Wang Y. The effects of minimum wages on the health of working teenagers. Applied Economics Letters. 2017;24(16):1127-1130. doi:10.1080/13504851.2016.1259737
- 2. Averett SL, Smith JK, Wang Y. Minimum wages and the health of immigrants' children. *Applied Economics Letters*. 2021;28(11):894-901. doi:10.1080/13504851.2020.1784832
- 3. Wehby GL, Dave DM, Kaestner R. Effects of the Minimum Wage on Infant Health. *Journal of Policy Analysis and Management.* 2020;39(2):411-443. doi:10.1002/pam.22174
- 4. Wehby GL, Kaestner R, Lyu W, Dave DM. Effects of the Minimum Wage on Child Health. American Journal of Health Economics. 2022;8(3):412-448. doi:10.1086/719364
- COUNCIL ON COMMUNITY PEDIATRICS, Gitterman BA, Flanagan PJ, et al. Poverty and Child Health in the United States. *Pediatrics*. 2016;137(4):e20160339. doi:10.1542/peds.2016-0339
- Acharya A, Blackwell M, Sen M. Explaining Causal Findings Without Bias: Detecting and Assessing Direct Effects. *American Political Science Review*. 2016;110(3):512-529. doi:10.1017/S0003055416000216
- 7. Curran-Everett D. Multiple comparisons: philosophies and illustrations. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.* 2000;279(1):R1-R8. doi:10.1152/ajprequ.2000.279.1.R1
- Abadie A, Athey S, Imbens GW, Wooldridge JM. When Should You Adjust Standard Errors for Clustering? The Quarterly Journal of Economics. Published online October 6, 2022:qjac038. doi:10.1093/qje/qjac038
- 9. Goodman-Bacon A. Difference-in-differences with variation in treatment timing. *Journal of Econometrics*. 2021;225(2):254-277. doi:10.1016/j.jeconom.2021.03.014
- 10. Callaway B, Sant'Anna PHC. Difference-in-Differences with multiple time periods. *Journal of Econometrics*. 2021;225(2):200-230. doi:10.1016/j.jeconom.2020.12.001

The Minimum Wage and Children's Mental Health

Online Appendix

11. Sun L, Abraham S. Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*. 2021;225(2):175-199. doi:10.1016/j.jeconom.2020.09.006