## DM8101FinalExam

AUTHOR ZhongKai han

## Quarto

Quarto enables you to weave together content and executable code into a finished document. To learn more about Quarto see <a href="https://quarto.org">https://quarto.org</a>.

# **Running Code**

When you click the **Render** button a document will be generated that includes both content and the output of embedded code. You can embed code like this:

```
1 + 1
```

[1] 2

You can add options to executable code like this

[1] 4

The echo: false option disables the printing of code (only output is displayed). ## excel相关操作 and tools

```
handle_error <- function(expr) {</pre>
  result <- tryCatch(
    {
      expr
    },
    error = function(e) {
      message("发生错误,但继续执行: ", conditionMessage(e))
      return(NA)
    }
  return(result)
}
saveExcel <- function(data, sheetname, fileName=NULL){</pre>
  library(openxlsx)
  #library(xlsx)
  if (!is.null(fileName)) {
    excel_file <- fileName</pre>
  }else{
    excel_file <- "analysisResult.xlsx"</pre>
  # 检查文件是否存在
  if (!file.exists(excel_file)) {
    # 如果文件不存在,则创建一个新的 Excel 工作簿
    wb <- createWorkbook()</pre>
```

```
}else{
    wb <- loadWorkbook(excel_file)</pre>
  name str = names(wb)
  index <- which(name str == sheetname)[1]</pre>
  if (!is.na(index)) {
    Rows = wb$worksheets[[index]]$sheet_data$rows
    Cols = wb$worksheets[[index]]$sheet_data$cols
    #print(length(Cols))
    #print(length(Rows))
    #print(Cols)
    #print(Rows)
    deleteData(wb, sheet=index, cols=1:max(Cols), rows=1:max(Rows),T)
    #for(i in 1:length(Rows)) {
         writeData(wb,index,"", startCol = Cols[i], startRow = Rows[i])
    #}
  }else{
    print("~~~")
    handle_error( addWorksheet(wb, sheetname) )
    #handle error( removeWorksheet(wb, sheetname) )
    print("~~~")
 writeData(wb, sheetname, data)
  saveWorkbook(wb, excel file,overwrite = TRUE)
}
cat <-function(...){</pre>
  cat(..., sep = "")
getNumber <- function(num){</pre>
  num = format(round(num, digits = 3), nsmall = 3)
  return(num)
getCumulativeList <-function(list_src){</pre>
  newlist = list();
  for(i in 1:length(list_src)){
    total=as.numeric(list_src[i])
    if(i>1){
      total=total+newlist[[i-1]]
    }
    newlist <- append(newlist, total)</pre>
  return(as.numeric(newlist) )
#因为loadings的数据结构太怪异,没有办法直接转matrix或data frames ,所以也保存不了excel,因此手工转护
transLoadings2Matrix<-function(loading){
  #loading[1:dataL,1:dataW] <- ifelse(loading[1:dataL,1:dataW] < 0.5, NA, loading[1:</pre>
  #summary(loading)
  #saveExcel(loading,"Factor Analysis loading")
  #str(loading)
  row_names <- c("", rownames(loading))</pre>
  col_names <- c("",colnames(loading))</pre>
  print(col_names)
```

localhost:6788 2/81

```
tr_matrix <- matrix(nrow = length(row_names), ncol = length(col_names))</pre>
 #rownames(tr_matrix) <- row_names</pre>
 #colnames(tr_matrix) <- col_names</pre>
 #tr matrix[2,3] = 1 第二行,第三列
  for (i in 2:length(row_names)) {
    tr_matrix[i,1] <- row_names[i]#loading[i, j]</pre>
   #loading[i, j]
    for (j in 2:length(col_names)) {
      #print(paste("Row:", i,row_names[i], ", Column:", j,col_names[j], ", Value:", lo
      if(loading[i-1, j-1]>0.5){
        tr_matrix[i,j] <- getNumber( loading[i-1, j-1] )</pre>
    }
  }
 for (j in 2:length(col_names)) {
     tr_matrix[1,j] <- col_names[j]</pre>
  }
 #print(tr matrix)
  return(tr_matrix)
}
```

# 加载数据

```
Loading required package: lattice
Loading required package: MASS

Attaching package: 'memisc'
The following objects are masked from 'package:stats':
    contr.sum, contr.treatment, contrasts

The following object is masked from 'package:base':
    as.array

#data0 = as.data.set(spss.system.file("spss/telework_new_office_12_srcdata.sav"))
data_src <- read.csv("spss/sh/data.csv")
data_src = nrow(data_src)
filtered_data <- data_src[data_src$totalseconds<30,]
cat("过滤掉:",nrow(filtered_data),"条填写时间少于30s的数据\n")
```

#### 过滤掉: 13 条填写时间少于30s的数据

```
data_src = data_src[data_src$totalseconds>=30,]
#过滤选项全相同的,后面补上
cat("原始数据:",dataL_src,"条","有效数据:",nrow(data_src),"条\n")
```

localhost:6788 3/81

原始数据: 106 条 有效数据: 93 条

```
rm(dataL_src,filtered_data)

data0 = data_src

#data = as.data.frame(data0)

#data = data[1:100,]

cols_base = c("age", "gender", "education", "natrue_enterprise", "type_work", "job_title_s_
cols_independent = c("organisationalCulture2", "organisationalCulture0", "organisationalC

cols_independent_all=c("environment0", "environment1", "environment2", "environment3", "jo

cols_dependent = c("job_effectiveness1", "job_effectiveness2", "job_effectiveness3", "job

#data <- lapply(data, as.numeric)

#data <- data0[,13:ncol(data0)]

##---

#data_independent <- data0[cols_independent]

#data_independent_all <- data0[cols_independent_all]

#data_dependent <- data0[cols_dependent]

#data_dependent_all <- data0[cols_dependent]

#data_dependent_all <- data0[cols_dependent]</pre>
```

# 数据整理,分类

```
# Cronbach's α
#按每个变量单独测!!
#自变量
scaleName=c("Teleworker Characteristics","Communication","Management","Organisational
cols_independent_teleworkerCharacteristics=c("teleworkerCharacteristics0","teleworkerC
cols_independent_communication=c("communication0","communication1","communication2","c
cols_independent_management=c("management2","management3","management4")
cols_independent_organisationalCulture=c("organisationalCulture0","organisationalCultu
cols_dependent_job_effectiveness = c("job_effectiveness1","job_effectiveness2","job_ef
cols_dependent_work.life_balance = c("work.life_balance1","work.life_balance2","work.l
cols_dependent_well.being = c("well.being1","well.being2","well.being3","well.being4")
#所有变量
all_var = list( cols_independent_teleworkerCharacteristics, cols_independent_communica
#对每个变量求均值
data0$teleworkerCharacteristics = rowMeans(data0[cols_independent_teleworkerCharacteri
data0$communication = rowMeans(data0[cols_independent_communication])
data0$management = rowMeans(data0[cols_independent_management])
data0$organisationalCulture = rowMeans(data0[cols_independent_organisationalCulture])
data0$job_effectiveness = rowMeans(data0[cols_dependent_job_effectiveness])
data0$work.life_balance = rowMeans(data0[cols_dependent_work.life_balance])
data0$well.being = rowMeans(data0[cols_dependent_well.being])
all_var_calculated = c("teleworkerCharacteristics","communication","management","organ
#str(data0)
```

localhost:6788 4/81

# 描述性分析

```
library(psych)
library(knitr)
options(cat.sep = "")
data_t <- data0[cols_base]
desc_data <- describe(data_t)
psych::describe(data_t)</pre>
```

```
vars n mean
                                   sd median trimmed mad min max range
                                                                          skew
                       1 93 1.97 1.10
                                           2
                                                 1.97 1.48
                                                                 4
                                                                       4
                                                                           0.01
age
                       2 93 0.43 0.50
                                           0
                                                 0.41 0.00
                                                                       1 0.28
gender
                                                             0
                                                                 1
                      3 93 1.69 0.88
                                           2
                                                 1.61 1.48
                                                                 4
                                                                       4 0.64
education
                                                             0
                      4 93 0.86 0.69
                                           1
                                                                 2
                                                                       2 0.18
natrue enterprise
                                                 0.83 0.00
                                                                 3
                                                                       3 0.55
type_work
                       5 93 1.46 0.90
                                           1
                                                 1.44 0.00
                                                                 3
job_title_s_data
                      6 93 0.12 0.44
                                           0
                                                 0.00 0.00
                                                                       3 4.40
work_experience
                      7 93 1.59 0.78
                                           1
                                                 1.53 1.48
                                                                 3
                                                                       3 0.44
marital_status
                      8 93 1.44 1.13
                                           2
                                                 1.37 1.48
                                                                 4
                                                                       4 0.17
                                                             a
                      9 93 0.86 1.06
                                           0
                                                 0.76 0.00
                                                                 3
                                                                       3 0.55
partners_work
                                           0
                                                                       1 1.53
                     10 93 0.19 0.40
                                                 0.12 0.00
                                                                 1
telework_is_active
                                                             0
                     11 93 2.28 0.73
                                           2
                                                 2.37 1.48
                                                                 3
                                                                       3 -0.81
hours_per_day
                                                             0
                                           2
                                                 2.32 1.48
                                                                 3
                                                                       3 -0.81
days_per_week
                     12 93 2.23 0.78
                   kurtosis
                               se
                      -0.670.11
age
                       -1.94 0.05
gender
education
                      -0.160.09
                      -0.91 0.07
natrue_enterprise
                       -0.73 0.09
type_work
job_title_s_data
                      21.74 0.05
work_experience
                       -0.690.08
marital_status
                      -0.740.12
                      -1.400.11
partners_work
                       0.33 0.04
telework_is_active
hours_per_day
                        0.41 0.08
days_per_week
                        0.23 0.08
```

```
freq_tables <- lapply(data_t, table)
print(freq_tables)</pre>
```

## \$age

0 1 2 3 4 9 22 33 21 8

## \$gender

0 1 53 40

#### **\$education**

0 1 2 3 4

localhost:6788 5/81

3 43 30 14 3

\$natrue\_enterprise

0 1 2

29 48 16

\$type\_work

0 1 2 3

8 52 15 18

\$job\_title\_s\_data

0 1 2 3

85 6 1 1

\$work\_experience

0 1 2 3

3 46 30 14

\$marital\_status

0 1 2 3 4

27 14 40 8 4

\$partners\_work

0 1 2 3

54 3 31 5

\$telework\_is\_active

0 1

75 18

\$hours\_per\_day

0 1 2 3

2 9 43 39

\$days\_per\_week

0 1 2 3

3 11 41 38

```
describe_item=c("Age","Gender","Education","Nature of corporate ownership","work type" describe_str=list(
    c("~25","25~30","30~40","40~45","45~"), #age
    c("男","女"), #gender
    c("Junior", "college", "Undergraduate Postgraduate", "Doctor", "Other"), #education
    c("Foreign-funded enterprise", "Private enterprise", "State-owned enterprise"), #nat
```

localhost:6788 6/81

c("management", "R&D", "Salse", "Operation and maintenance"), #type work

```
c("Ordinary staff", "Grass-roots management", "Middle management",
                                                                        "Top managemen
  c("1", "2~5", "5~10", "10~"), #work experience
  c("unmarried", "Married without children", "Married with children", "Divorced and ch
  c("unemployed", "In the same company", "Different companies in the same city", "in d
 c("active", "passive"), #telework is active
 c("1\sim2", "2\sim4", "4\sim8", "8\sim"), # hours per day
 c("1", "2~3", "3~5", "5~") #days per week
)
content = list("Classification percentage");
itemName = list("Item name");
for (i in 1:length(freq_tables)) {
 #cat (names(data t)[i], ": ")
  cat (describe item[i],": ")
  itemName <- append(itemName, describe_item[i])</pre>
  result str=""
  for(e in freq_tables[i]){
   #print(names(e))
   #输出均值,标准差,
   #输出频数与非分比
   total = sum(e)
   for(name in names(e)){
      num = e[name]
      freq = num/total*100
      freq = getNumber(freq)#format(round(freq, digits = 3), nsmall = 3)
      namestr = describe str[[i]][as.integer(name)+1]
      result_str = paste(result_str,namestr,":",e[name]," ",freq,"% \n")
     cat_(namestr,":",e[name]," ",freq,"%, ")
   content <- append(content, result_str)</pre>
    cat_("\n")
 }
}
```

```
Age: ~25:9 9.677%, 25~30:22 23.656%, 30~40:33 35.484%, 40~45:21 22.581%, 45~:8 8.602%,
Gender: 男:53 56.989%, 女:40 43.011%,
Education: Junior: 3 3.226%, college: 43 46.237%, Undergraduate Postgraduate: 30 32.258%,
Doctor:14 15.054%, Other:3 3.226%,
Nature of corporate ownership: Foreign-funded enterprise: 29 31.183%, Private
enterprise:48 51.613%, State-owned enterprise:16 17.204%,
work type: management:8 8.602%, R&D:52 55.914%, Salse:15 16.129%, Operation and
maintenance: 18 19.355%,
Job title: Ordinary staff:85 91.398%, Grass-roots management:6 6.452%, Middle
management:1 1.075%, Top management:1 1.075%,
work experience: 1:3 3.226%, 2~5:46 49.462%, 5~10:30 32.258%, 10~:14 15.054%,
marrital status: unmarried:27 29.032%, Married without children:14 15.054%, Married
with children: 40 43.011%, Divorced and childless: 8 8.602%, Divorced with children: 4
4.301%,
partners work: unemployed:54 58.065%, In the same company:3 3.226%, Different
companies in the same city:31 33.33%, in different cities:5 5.376%,
telework is active: active: 75 80.645%, passive: 18 19.355%,
working hours pre day: 1~2:2 2.151%, 2~4:9 9.677%, 4~8:43 46.237%, 8~:39 41.935%,
working days pre week: 1:3 3.226%, 2~3:11 11.828%, 3~5:41 44.086%, 5~:38 40.860%,
```

localhost:6788 7/81

```
# 使用cbind函数将两个列表按列组合成一个数据集
#dataset0 <- data.frame(itemName, content)
dataset <- cbind(itemName, content)
# 转换结果为数据框
dataset <- as.data.frame(dataset)
#dataset
saveExcel(dataset,"descriptive statistics")
rm(content,data_t,desc_data,describe_str,freq_tables,itemName,dataset,e,describe_item,
```

##三大验验 ### 独立验检 检验两个分类变量之间是否存在关联

```
data <- table(data0$age, data0$gender)
chisq.test(data)</pre>
```

Warning in chisq.test(data): Chi-squared approximation may be incorrect

```
Pearson's Chi-squared test
```

```
data: data
X-squared = 1.684, df = 4, p-value = 0.7936
```

## 正态性检验

```
library(nortest)
data <- data0[,13]
result = shapiro.test(data) # 对应group 每组水平下的检验
print(result$p.value)
```

[1] 5.841864e-10

# 方差齐性

方差齐性特指两个或两个以上总体方差是否具有显著差异的特性

```
bartlett.test(data0$environment0~data0$gender, data = data0)
```

Bartlett test of homogeneity of variances

```
data: data0$environment0 by data0$gender
Bartlett's K-squared = 0.0062887, df = 1, p-value = 0.9368
```

# 信度分析 Cronbach's α (克朗巴哈系数)

Internal Reliability・再测信度・Cronbach's α(克朗巴哈系数)・折半信度・Guttman・平行模型检验・严密平行模型检验・库李20信度 Inter-rater Reliability・Kappa系数・组内相关系数ICC

```
#print(all_var)
library(psych)
#names(all_var)
```

localhost:6788 8/81

```
get_var_name <- function(x) {</pre>
  deparse(substitute(x))
tr_matrix <- matrix(nrow = length(all_var)+sum(lengths(all_var))+1, ncol = 3)</pre>
tr_matrix[1,] = c("","Cronbach's alpha", "N of Items")
     |Cronbach's alpha|N of Items
#name | 0.829
tr_matrixrow=2
for(i in seg len(length(all var))){
  selected_column_name = unlist(all_var[i])
  data_t <- data0[ selected_column_name ]</pre>
  alpha result <- psych::alpha(data t,check.keys=TRUE)</pre>
  tr_matrix[tr_matrixrow,1] = scaleName[i]
  tr_matrix[tr_matrixrow,2] = getNumber( alpha_result$total$raw_alpha )
  tr_matrix[tr_matrixrow,3] = length(alpha_result$keys[[1]])
  tr_matrixrow=tr_matrixrow+1
  for(j in 1:length(alpha_result$keys[[1]]) ){
    tr matrix[tr matrixrow,1] = alpha result$keys[[1]][j]
    tr_matrix[tr_matrixrow,2] = getNumber( alpha_result$item.stats$raw.r[j] )
    tr_matrixrow=tr_matrixrow+1
  }
}
```

Warning in psych::alpha(data\_t, check.keys = TRUE): Some items were negatively correlated with the first principal component and were automatically reversed. This is indicated by a negative sign for the variable name.

```
saveExcel(tr_matrix,"Cronbach's alpha")
print(tr_matrix)
```

```
[,1]
                                    [,2]
                                                        [,3]
 [1,] ""
                                    "Cronbach's alpha" "N of Items"
                                                        "4"
 [2,] "Teleworker Characteristics" "0.889"
 [3,] "teleworkerCharacteristics0" "0.903"
                                                        NA
 [4,] "teleworkerCharacteristics1" "0.828"
                                                        NA
 [5,] "teleworkerCharacteristics2" "0.834"
                                                        NA
 [6,] "teleworkerCharacteristics3" "0.903"
                                                        NA
                                                        "4"
 [7,] "Communication"
                                    "0.724"
 [8,] "-communication0"
                                    "0.364"
                                                        NA
                                    "0.854"
 [9,] "communication1"
                                                        NA
[10,] "communication2"
                                    "0.899"
                                                        NA
[11,] "communication3"
                                    "0.868"
                                                        NA
                                                        "3"
[12,] "Management"
                                    "0.899"
[13,] "management2"
                                    "0.902"
                                                        NA
[14,] "management3"
                                    "0.960"
                                                        NA
[15,] "management4"
                                    "0.873"
                                                        NA
                                                        "4"
[16,] "Organisational Culture"
                                    "0.946"
[17,] "organisationalCulture0"
                                    "0.948"
                                                        NA
[18,] "organisationalCulture1"
                                    "0.908"
                                                        NΑ
[19,] "organisationalCulture2"
                                    "0.938"
                                                        NA
[20,] "organisationalCulture3"
                                    "0.924"
                                                        NA
                                                        "4"
[21,] "Job Effectiveness"
                                    "0.962"
[22,] "job_effectiveness1"
                                    "0.953"
                                                        NA
```

localhost:6788 9/81

| [23,] | "job_effectiveness2" | "0.943"          | NA  |
|-------|----------------------|------------------|-----|
| [24,] | "job_effectiveness3" | "0.961"          | NA  |
| [25,] | "job_effectiveness4" | "0 <b>.</b> 936" | NA  |
| [26,] | "work-life balance"  | "0.966"          | "4" |
| [27,] | "work.life_balance1" | "0 <b>.</b> 950" | NA  |
| [28,] | "work.life_balance2" | "0 <b>.</b> 967" | NA  |
| [29,] | "work.life_balance3" | "0 <b>.</b> 959" | NA  |
| [30,] | "work.life_balance4" | "0.941"          | NA  |
| [31,] | "well-being"         | "0.951"          | "4" |
| [32,] | "well.being1"        | "0 <b>.</b> 953" | NA  |
| [33,] | "well.being2"        | "0 <b>.</b> 950" | NA  |
| [34,] | "well.being3"        | "0.959"          | NA  |
| [35,] | "well.being4"        | "0.904"          | NA  |
|       |                      |                  |     |

# KMO检测 and bartlett's test

```
#data_independent <- data0[cols_independent]</pre>
#data_independent_all <- data0[cols_independent_all]</pre>
#data_dependent <- data0[cols_dependent]</pre>
#data_dependent_all <- data0[cols_dependent]</pre>
data = data0[c(cols_independent,cols_dependent)]
item = list()
content = list()
kmo <- KMO(data)
bartlett <- bartlett.test(data)</pre>
item <- append(item, "Overall MSA" )</pre>
content <- append(content,getNumber(kmo$MSA) )</pre>
item <- append(item, names(bartlett$statistic) )</pre>
content <- append(content, getNumber(bartlett$statistic) )</pre>
item <- append(item, "df" )</pre>
content <- append(content, bartlett$parameter )</pre>
item <- append(item, "Sig." )</pre>
content <- append( content,getNumber(bartlett$p.value) )</pre>
item <- append(item, names(kmo$MSAi) )</pre>
content <- append(content, getNumber(kmo$MSAi) )</pre>
#dataset0 <- data.frame(itemName, content)</pre>
dataset <- cbind(item, content)</pre>
# 转换结果为数据框
dataset <- as.data.frame(dataset)</pre>
#dataset
saveExcel(dataset,"KMO and Bartlett's Test")
print(kmo)
```

```
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = data)
Overall MSA = 0.91
MSA for each item =
```

localhost:6788 10/81

```
organisationalCulture2
                                organisationalCulture0
                       0.80
                                                   0.82
                                organisationalCulture1
    organisationalCulture3
                       0.88
                                                   0.91
               management2
                                           management3
                       0.94
                                                   0.89
               management4 teleworkerCharacteristics1
                       0.86
                                                   0.79
teleworkerCharacteristics2 teleworkerCharacteristics3
                       0.88
                                                   0.92
                                        communication3
teleworkerCharacteristics0
                                                   0.85
                      0.85
            communication2
                                        communication1
                      0.88
                                                   0.87
        job_effectiveness1
                                    job_effectiveness2
                       0.92
                                                   0.89
        job_effectiveness3
                                    job_effectiveness4
                       0.93
                                                   0.97
        work.life balance1
                                    work.life balance2
                       0.91
        work.life balance3
                                    work.life balance4
                       0.94
                                                   0.91
               well.being1
                                           well.being2
                       0.91
                                                   0.98
               well.being3
                                           well.being4
                      0.97
                                                   0.92
```

```
print(bartlett)
```

Bartlett test of homogeneity of variances

```
data: data
Bartlett's K-squared = 256.41, df = 25, p-value < 2.2e-16</pre>
```

```
rm(item, content, kmo, bartlett, dataset, data)
```

# 因子分析 EFA:

Factor Analysis Total Variance Explained & commualities

```
library(psych)
library(paran)
#library(rgl) #需要opengl
library(ggfortify)
```

Loading required package: ggplot2

Attaching package: 'ggplot2'

The following objects are masked from 'package:psych':

```
%+%, alpha
```

The following object is masked from 'package:memisc':

syms

```
data <- data0[cols_independent]
#data <- data0[cols_dependent]

# AIC BIC 比较模型 parallel平行分析 可得因子数,否则只能自己手动尝试观察
parallel_result <- fa.parallel(data, fa = "pc", n.iter = 100, main = "Parallel Analysi</pre>
```

## **Parallel Analysis**



Parallel analysis suggests that the number of factors = NA and the number of components = 2

```
factors = parallel_result$nfact
if( is.na(parallel_result$nfact) ){
  factors = parallel_result$ncomp
  if( is.na(parallel_result$ncomp) ){
    stop("没有得到因子数,请检查数据") # 抛出异常
    quit(save = "no", status = 1) # 退出当前会话
  }
}
print(factors)
```

[1] 2

```
rm(parallel_result)
## 因子分析
fa_results <- fa(data, nfactors = factors, rotate = "varimax")
#得到Comunalities表 Initial都为1 , Extraction就是下面的值
communalities = fa_results$communalities
component = names(communalities)
Initial = rep(1,length(component))
Extraction = getNumber( as.numeric(abs(communalities)) )
dataset <- cbind(component, Initial, Extraction)
dataset <- as.data.frame(dataset)
saveExcel(dataset,"Factor Analysis communalities")
#得到Total Variance Explained
dataL = length(fa_results$values)
print(dataL)
```

#### [1] 14

```
component <- 1:dataL
#得到Initial Eigenvalues

variance_explained = abs(fa_results$values) / sum(abs(fa_results$values)) *100

Total = getNumber( abs(fa_results$values)) # Total

Variance = getNumber( variance_explained) # % of Variance

Cumulative = getNumber( getCumulativeList(variance_explained)) # Cumulative %

print(Total)
```

```
[1] "7.580" "1.508" "0.873" "0.604" "0.224" "0.077" "0.000" "0.088" "0.147" [10] "0.234" "0.268" "0.316" "0.331" "0.395"
```

```
print(Variance)
```

```
[1] "59.938" "11.928" " 6.903" " 4.780" " 1.775" " 0.606" " 0.003" " 0.697" [9] " 1.161" " 1.849" " 2.122" " 2.497" " 2.617" " 3.125"
```

```
print(Cumulative)
```

```
[1] " 59.938" " 71.866" " 78.769" " 83.549" " 85.324" " 85.930" " 85.933" [8] " 86.630" " 87.791" " 89.640" " 91.762" " 94.258" " 96.875" "100.000"
```

```
#得到 Extraction Sums of Squared Loadings 与Initial Eigenvalues一样,只是只显示因子项print(class(Total))
```

### [1] "character"

```
Total1 = Total
Variance1 = Variance
Cumulative1 = Cumulative
startIndex = factors+1
endIndex = dataL
```

```
Total1[startIndex:endIndex] <- NA # Total</pre>
Variance1[startIndex:endIndex] <- NA # % of Variance</pre>
Cumulative1[startIndex:endIndex] <- NA # Cumulative %</pre>
#得到 Rotation Sums of Squared Loadings
variance_explained = abs(fa_results$e.values) / sum(abs(fa_results$e.values)) *100
Total2 = getNumber( abs(fa_results$e.values) ) # Total
Variance2 = getNumber( variance_explained) # % of Variance
Cumulative2 = getNumber( getCumulativeList(variance_explained)) # Cumulative %
print(Total2)
```

```
[1] "7.904" "1.878" "1.253" "1.027" "0.570" "0.440" "0.320" "0.231" "0.113"
[10] "0.091" "0.081" "0.037" "0.034" "0.020"
```

### print(Variance2)

```
[1] "56.457" "13.412" " 8.948" " 7.337" " 4.074" " 3.145" " 2.289" " 1.651"
[9] " 0.806" " 0.650" " 0.581" " 0.261" " 0.244" " 0.142"
```

#### print(Cumulative2)

```
[1] " 56.457" " 69.869" " 78.817" " 86.155" " 90.229" " 93.374" " 95.663"
[8] " 97.314" " 98.121" " 98.771" " 99.352" " 99.613" " 99.858" "100.000"
```

```
Total2[startIndex:endIndex] <- NA # Total
Variance2[startIndex:endIndex] <- NA # % of Variance</pre>
Cumulative2[startIndex:endIndex] <- NA # Cumulative %</pre>
dataset <- cbind(component, "Total"=Total, "% of Variance"=Variance,"Cumulative %"=Cum</pre>
dataset <- as.data.frame(dataset)</pre>
saveExcel(dataset, "Factor Analysis Total")
##获得旋转矩阵 loadings
#summary(fa_results)
print(fa_results$loadings)
```

## Loadings:

|                            | MR1   | MR2   |
|----------------------------|-------|-------|
| organisationalCulture2     | 0.770 | 0.186 |
| organisationalCulture0     | 0.786 | 0.165 |
| organisationalCulture3     | 0.765 | 0.392 |
| organisationalCulture1     | 0.813 | 0.439 |
| management2                | 0.457 | 0.642 |
| management3                | 0.516 | 0.688 |
| management4                | 0.632 | 0.349 |
| teleworkerCharacteristics1 |       | 0.715 |
| teleworkerCharacteristics2 | 0.203 | 0.696 |
| teleworkerCharacteristics3 | 0.302 | 0.854 |
| teleworkerCharacteristics0 | 0.365 | 0.823 |
| communication3             | 0.654 | 0.170 |
| communication2             | 0.743 | 0.261 |
| communication1             | 0.746 | 0.194 |

14/81 localhost:6788

MR2

MR1

```
SS loadings
              5.136 3.953
Proportion Var 0.367 0.282
Cumulative Var 0.367 0.649
tr_matrix = transLoadings2Matrix(fa_results$loadings)
[1] ""
          "MR1" "MR2"
#saveExcel(tr_matrix,"Factor Analysis loading")
 print(fa_results$Vaccounted)
                            MR1
                                      MR2
SS loadings
                      5.1357240 3.9525900
                      0.3668374 0.2823279
Proportion Var
Cumulative Var
                      0.3668374 0.6491653
Proportion Explained 0.5650910 0.4349090
Cumulative Proportion 0.5650910 1.0000000
tr_matrix1 = transLoadings2Matrix(fa_results$Vaccounted)
[1] ""
         "MR1" "MR2"
tr_matrix = rbind(tr_matrix,tr_matrix1)
#print(tr_matrix)
 saveExcel(tr_matrix,"Factor Analysis loading")
## EFA 分析,探索性分析
#fa = factanal(data, factors=factors, rotation = "varimax")
#summary(fa)
#autoplot3d(fa, color = "Factor")
#scatter3d(fa$scores[, 1], fa$scores[, 2], fa$scores[, 3], color = fa$loadings[, 1])
#print(fa)
 rm(data,dataset,factors,fa_results,fa,loadings,filtered_loadings,tr_matrix,tr_matrix1,
Warning in rm(data, dataset, factors, fa_results, fa, loadings,
filtered_loadings, : object 'fa' not found
Warning in rm(data, dataset, factors, fa_results, fa, loadings,
filtered_loadings, : object 'loadings' not found
Warning in rm(data, dataset, factors, fa_results, fa, loadings,
filtered_loadings, : object 'filtered_loadings' not found
Warning in rm(data, dataset, factors, fa_results, fa, loadings,
```

## T-Test

## 单样本T检验

filtered\_loadings, : object 'Cumulative3' not found

・默认前提条件是数据需要符合正态分布性・结果是否显著等于某一值・男性的工资显著等于3000元

```
# 创建一个数值向量
data <- c(1, 2, 3, 4, 5, 6, 7, 8, 9)
# 执行单样本t检验,检验均值是否显著不同于0
t_test_result <- t.test(data, mu = 0)
# 打印结果
print(t_test_result)
```

```
One Sample t-test

data: data
t = 5.4772, df = 8, p-value = 0.0005894
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
2.894916 7.105084
sample estimates:
mean of x
5
```

## 独立样本T检验

·要求因变量(y)需要符合正态分布性·X与Y的差异是否显著·例:研究男性工资与女性工资之间的差异

```
# 创建两个数值向量
#group1 <- c(1, 2, 3, 4, 5)
#group2 <- c(6, 7, 8, 9, 10)
# 执行独立样本t检验
#t_test_result <- t.test(group1, group2)
# 打印结果
#print(t_test_result)
t_test_result <- t.test(data0[data0$gender==0,]$job_effectiveness, data0[data0$gender=print(t_test_result)
```

```
Welch Two Sample t-test

data: data0[data0$gender == 0, ]$job_effectiveness and data0[data0$gender == 1,
]$job_effectiveness
t = 1.4103, df = 71.08, p-value = 0.1628
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -0.1059034     0.6176958
sample estimates:
mean of x mean of y
4.193396     3.937500
```

print(t\_test\_result)

t\_test\_result <- t.test(data0[data0\$gender==0,]\$work.life\_balance, data0[data0\$gender=

```
Welch Two Sample t-test
```

```
data: data0[data0$gender == 0, ]$work.life_balance and data0[data0$gender == 1,
]$work.life_balance
t = 0.46999, df = 76.724, p-value = 0.6397
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
   -0.2565232    0.4150138
sample estimates:
mean of x mean of y
    3.929245    3.850000
```

```
t_test_result <- t.test(data0[data0$gender==0,]$well.being, data0[data0$gender==1,]$we
print(t_test_result)</pre>
```

```
Welch Two Sample t-test
```

```
data: data0[data0$gender == 0, ]$well.being and data0[data0$gender == 1, ]$well.being
t = 0.72014, df = 73.148, p-value = 0.4737
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    -0.2601080    0.5544476
sample estimates:
mean of x mean of y
    4.04717    3.90000
```

## 配对样本T检验

•默认前提条件是差值数据需要符合正态分布性 • 利用来自两个总体的配对样本,推断两个总体的均值是否存在显著差异。 • 办公室提供免费咖啡和没有提供免费咖啡的两组员工,生产力是否一样?

```
# 创建配对的数值向量
before <- c(1, 2, 3, 4, 5)
after <- c(2, 3, 4, 5, 6)
# 执行配对样本t检验
#t_test_result <- t.test(before, after, paired = TRUE)
# 打印结果
#print(t_test_result)
```

# 方差分析

# ONE-WAY ANOVA 单因素方差分析 方差齐检验homogeneity of variance test

ANOVA, LevenTest, Tukey's HSD, Duncan's C

temp

```
library(car)
```

localhost:6788 17/81

Loading required package: carData

Attaching package: 'car'

The following object is masked from 'package:psych':

logit

The following object is masked from 'package:memisc':

recode

```
library(multcomp)
```

Loading required package: mvtnorm

Loading required package: survival

Loading required package: TH.data

Attaching package: 'TH.data'

The following object is masked from 'package:MASS':

geyser

```
library(multcompView)
## 按性别分析因变量
anova<-function(x_data,y_data,tr_matrix_old=NULL){</pre>
  #加一行title
  tr_matrix <- matrix(nrow = 2, ncol = 7)</pre>
  xname = paste(as.character(substitute(y_data)),collapse="")
  yname = paste(as.character(substitute(x_data)),collapse="")
  #str(xname)
  tempstr = paste("diff " ,xname , " by " ,yname )
  print(tempstr)
  tr_matrix[2,1] = tempstr
  if(!is.null(tr_matrix_old)){
    tr_matrix = rbind(tr_matrix_old, tr_matrix)
  }
  x <- factor( as.character(x_data) )</pre>
  y <- y_data
  data = data.frame(x,y)
  model \leftarrow aov(y \sim x, data=data)
  leveneTest_result = leveneTest(model)
  # 进行图基事后比较
  tukey_comparison <- glht(model, linfct = mcp(x = "Tukey"))</pre>
  # 进行邓尼特事后比较,其中"control"是对照组
  dunnett_comparison <- glht(model, linfct = mcp(x = "Dunnett"))</pre>
```

```
print("model")
sum = summary(model) #spss中的ANOVA全在这个结果里面
#Df(自由度):这列显示了每个方差来源的自由度。
#Sum Sq(平方和): 这列显示了每个方差来源的平方和。平方和(组间(值小),组内(值大),总计(前两相加))
#Mean Sq(均方): 这列显示了每个方差来源的均方(即平方和除以自由度)。平方和/自由度
#F value (F统计量): 这是组间均方与组内均方的比值。
#Pr(>F)(p值):这是与F统计量相关联的p值。
tr matrix old = tr matrix
tr_matrix <- matrix(nrow = 4, ncol = 7)</pre>
tr_matrix[1,]=c("","平方和","自由度","均方","F","显著性",NA)
tr matrix[,1]=c("","组间","组内","总计")
tr_matrix[2,2] = getNumber(sum[[1]]["Sum Sq"][1,1])
tr_{matrix}[3,2] = getNumber(sum[[1]]["Sum Sq"][2,1])
tr_matrix[4,2] = getNumber(sum(sum[[1]]["Sum Sq"]))
tr matrix[2,3] = sum[[1]]["Df"][1,1]
tr_{matrix}[3,3] = sum[[1]]["Df"][2,1]
tr matrix[4,3] = sum(sum[[1]]["Df"])
tr matrix[2,4] = getNumber(sum[[1]]["Mean Sq"][1,1])
tr_{matrix}[3,4] = getNumber(sum[[1]]["Mean Sq"][2,1])
tr matrix[2,5] = getNumber(sum[[1]]["F value"][1,1])
tr_{matrix}[2,6] = getNumber(sum[[1]]["Pr(>F)"][1,1])
print(tr_matrix)
tr_matrix = rbind(tr_matrix_old, tr_matrix)
print("leveneTest result")
#print(leveneTest_result) #spss中的方差齐性检验
#F value 莱文统计
#df 自由度1,2
#Pr(>F)(p值):这是与F统计量相关联的p值
tr_matrix_old = tr_matrix
tr_matrix <- matrix(nrow = 2, ncol = 7)</pre>
tr_matrix[1,]=c("莱文统计","自由度1","自由度2","显著性",NA,NA,NA)
tr_matrix[2,1] = getNumber(leveneTest_result["F value"][1,1])
tr_matrix[2,2] = leveneTest_result["Df"][1,1]
tr_matrix[2,3] = leveneTest_result["Df"][2,1]
tr_matrix[2,4] = getNumber(leveneTest_result["Pr(>F)"][1,1])
print(tr_matrix)
tr_matrix = rbind(tr_matrix_old, tr_matrix)
print("tukey_comparison")
sum = summary(tukey_comparison) #图基HSD
str(sum$test)
print(sum)
diffname = names(sum$test$coefficients)
t critical \leftarrow qt(0.975, 348)
tr_matrix_old = tr_matrix
tr_matrix <- matrix(nrow = length(diffname)+2, ncol = 7)</pre>
tr_matrix[1,]=c("","","","","","95%置信区间","")
tr_matrix[2,]=c("group","group","平均值差值","标准差","显著性","下限","上限")
lastname = ""
for(i in 1:length(diffname)){
  names = split_str <- strsplit(diffname[i]," - ")</pre>
  if(lastname!=names[[1]][2]){
```

```
lastname = tr_matrix[2+i,1] = names[[1]][2]
    }
    tr matrix[2+i,2] = names[[1]][1]
    c=""
    if( sum$test$pvalues[i]<0.001){</pre>
        c="***"
      }else if( sum$test$pvalues[i]<0.01){</pre>
      }else if( sum$test$pvalues[i]<0.05){</pre>
        c="*"
      }
    tr matrix[2+i,3] = paste( getNumber( sum$test$coefficients[i] ), c,collapse="")
    tr_matrix[2+i,4] = getNumber( sum$test$sigma[i] )
    tr_matrix[2+i,5] = getNumber( sum$test$pvalues[i] )
    tr_matrix[2+i,6] = getNumber( sum$test$coefficients[i] - t_critical * sum$test$sig
    tr_matrix[2+i,7] = getNumber( sum$test$coefficients[i] + t_critical * sum$test$sig
  }
  print(tr matrix)
  tr matrix = rbind(tr matrix old, tr matrix)
  #print(tr_matrix)
  ##multcomp plot(tukey comparison)
  #print("dunnett_comparison")
  #print(summary(dunnett_comparison))
  return(tr_matrix)
}
#anova(data0$gender,data0$job_effectiveness)
dataset = anova(data0$age,data0$job_effectiveness,tr_matrix_old=NULL)
[1] "diff $data0job_effectiveness by $data0age"
[1] "model"
     [,1]
            [,2]
                     [,3]
                              [,4]
                                      [,5]
                                              [,6]
                                                       [.7]
[1,] ""
           "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "6.720" "4"
                             "1.680" "2.535" "0.046"
                                                      NA
[3,] "组内" "58.322" "88"
                             "0.663" NA
                                                      NA
                                             NA
[4,] "总计" "65.042" "92"
                                     NA
                                             NA
                                                      NA
                             NA
[1] "leveneTest_result"
                                             [,5] [,6] [,7]
     [,1]
                [,2]
                          [,3]
                                    [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                   NA
[2,] "0.407"
               "4"
                          "88"
                                    "0.803"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
$ pfunction :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
              :function (conf.level, adjusted = TRUE, ...)
$ qfunction
$ coefficients: Named num [1:10] 0.527 0.902 0.786 0.521 0.375 ...
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : Named num [1:10] 0.322 0.306 0.324 0.396 0.224 ...
$ sigma
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : Named num [1:10] 1.63 2.94 2.42 1.32 1.67 ...
$ tstat
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : num [1:10] 0.4694 0.0312 0.114 0.6728 0.445 ...
$ pvalues
 ..- attr(*, "error")= num 0.000376
              : chr "single-step"
 $ type
```

localhost:6788 20/81

- attr(\*, "class")= chr "mtest"

### Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

[6,] NA

[7,] "1"

[8,] NA

[9,] NA

[10,] "2"

[11,] NA

[12,] "3"

"4"

"2"

"3"

"4"

"3"

"4"

"4"

"0.521 "

"0.375 "

"0.259 "

"-0.006 "

"-0.116 "

"-0.381 "

"-0.265 "

```
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
            Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 \ 0.526515
                       0.322123
                                  1.635
                                           0.4694
2 - 0 == 0 \ 0.901515
                       0.306140
                                  2.945
                                           0.0312 *
3 - 0 == 0 \ 0.785714
                       0.324342
                                  2.422
                                           0.1140
4 - 0 == 0 \quad 0.520833
                       0.395578
                                  1.317
                                           0.6728
2 - 1 == 0 \quad 0.375000
                       0.224072
                                  1.674
                                           0.4450
3 - 1 == 0 \ 0.259199
                       0.248363
                                  1.044
                                           0.8285
4 - 1 == 0 -0.005682
                       0.336107 -0.017
                                           1.0000
3 - 2 == 0 - 0.115801
                       0.227250
                                 -0.510
                                           0.9856
4 - 2 == 0 - 0.380682
                       0.320822
                                           0.7514
                                 -1.187
                                           0.9322
4 - 3 == 0 - 0.264881
                       0.338235 -0.783
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
      [,1]
                      [,3]
                                    [,4]
                                             [,5]
                                                      [,6]
                                                                    [,7]
              [,2]
 [1.] ""
                                                      "95%置信区间" ""
 [2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
 [3,] "0"
              "1"
                      "0.527 "
                                   "0.322"
                                            "0.469"
                                                      "-0.107"
                                                                    "1.160"
 [4,] NA
              "2"
                      "0.902 *"
                                   "0.306"
                                            "0.031"
                                                      "0.299"
                                                                    "1.504"
 [5,] NA
              "3"
                      "0.786 "
                                   "0.324"
                                            "0.114" "0.148"
                                                                    "1.424"
```

```
dataset = anova(data0$age,data0$work.life_balance,tr_matrix_old=dataset)
```

"0.673" "-0.257"

"0.829" "-0.229"

"1.000" "-0.667"

"-0.066"

"-0.563"

"-1.012"

"0.445"

"0.986"

"0.751"

"0.338" "0.932" "-0.930"

"1.299"

"0.816"

"0.748"

"0.655"

"0.331"

"0.250"

"0.400"

"0.396"

"0.224"

"0.248"

"0.336"

"0.227"

"0.321"

```
[1] "diff $data0work.life_balance by $data0age"
[1] "model"
    [,1]
           [,2]
                    [,3]
                             [,4]
                                             [,6]
                                                      [,7]
                                    [,5]
[1,] ""
           "平方和""自由度""均方""F"
                                          "显著性" NA
[2,] "组间" "4.199" "4"
                            "1.050" "1.761" "0.144"
                                                     NA
[3,] "组内" "52.466" "88"
                            "0.596" NA
                                            NA
                                                     NA
[4,] "总计" "56.665" "92"
                            NA
                                    NA
                                            NA
                                                     NA
[1] "leveneTest_result"
               [,2]
                                            [,5] [,6] [,7]
    [,1]
                         [,3]
                                   [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                 NA
                                            NA
[2,] "0.174"
                         "88"
                                   "0.951"
                                            NA
                                                 NA
                                                      NA
[1] "tukey_comparison"
List of 7
 $ pfunction
              :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
```

localhost:6788 21/81

```
:function (conf.level, adjusted = TRUE, ...)
 $ qfunction
 $ coefficients: Named num [1:10] 0.367 0.697 0.524 0.302 0.33 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
 $ sigma
               : Named num [1:10] 0.306 0.29 0.308 0.375 0.213 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 1.203 2.4 1.703 0.805 1.551 ...
 $ tstat
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
 $ pvalues
               : num [1:10] 0.742 0.12 0.427 0.925 0.523 ...
  ..- attr(*, "error")= num 0.000338
 $ type
               : chr "single-step"
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
           0.36742
                       0.30552
                                  1.203
                                           0.742
2 - 0 == 0
           0.69697
                       0.29037
                                  2.400
                                           0.120
3 - 0 == 0 \ 0.52381
                       0.30763
                                  1.703
                                           0.427
4 - 0 == 0 \quad 0.30208
                       0.37519
                                  0.805
                                           0.925
2 - 1 == 0 \quad 0.32955
                       0.21253
                                  1.551
                                           0.523
3 - 1 == 0 \quad 0.15639
                       0.23557
                                  0.664
                                           0.962
4 - 1 == 0 -0.06534
                       0.31879 -0.205
                                           1.000
3 - 2 == 0 - 0.17316
                       0.21554 -0.803
                                           0.926
4 - 2 == 0 -0.39489
                       0.30429 -1.298
                                           0.685
4 - 3 == 0 -0.22173
                       0.32081 -0.691
                                           0.956
(Adjusted p values reported -- single-step method)
      [,1]
              [,2]
                       [,3]
                                    [,4]
                                             [,5]
                                                       [,6]
                                                                     [,7]
                                    ....
 [1,] ""
                                             1111
                                                       "95%置信区间" ""
 [2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                                 "上限"
 [3,] "0"
              "1"
                       "0.367 "
                                    "0.306"
                                             "0.742"
                                                                     "0.968"
                                                       "-0.233"
              "2"
 [4,] NA
                      "0.697 "
                                                                     "1.268"
                                    "0.290"
                                             "0.120"
                                                      "0.126"
              "3"
 [5,] NA
                      "0.524"
                                    "0.308"
                                             "0.427"
                                                      "-0.081"
                                                                     "1.129"
              "4"
                      "0.302 "
 [6,] NA
                                    "0.375"
                                             "0.925" "-0.436"
                                                                     "1.040"
 [7,] "1"
              "2"
                      "0.330 "
                                    "0.213"
                                             "0.523"
                                                      "-0.088"
                                                                     "0.748"
              "3"
                      "0.156 "
                                    "0.236"
 [8,] NA
                                             "0.962"
                                                      "-0.307"
                                                                     "0.620"
              "4"
 [9,] NA
                      "-0.065 "
                                    "0.319"
                                             "1.000"
                                                      "-0.692"
                                                                     "0.562"
[10,] "2"
              "3"
                      "-0.173 "
                                    "0.216"
                                             "0.926"
                                                                     "0.251"
                                                      "-0.597"
              "4"
[11,] NA
                      "-0.395 "
                                    "0.304"
                                             "0.685"
                                                      "-0.993"
                                                                     "0.204"
              "4"
[12,] "3"
                      "-0.222 "
                                    "0.321"
                                             "0.956"
                                                      "-0.853"
                                                                     "0.409"
dataset = anova(data0$age,data0$well.being,tr_matrix_old=dataset)
[1] "diff
          $data0well.being by $data0age"
[1] "model"
                                                         [,7]
     [,1]
            [,2]
                     [,3]
                               [,4]
                                       [,5]
                                               [,6]
[1,] ""
            "平方和" "自由度" "均方" "F"
                                            "显著性" NA
```

localhost:6788 22/81

3/20/24, 3:30 AM

```
DM8101FinalExam
                              "1.469" "1.699" "0.157"
[2,] "组间" "5.877" "4"
                                                       NA
[3,] "组内" "76.099" "88"
                              "0.865" NA
                                              NA
                                                       NA
[4,] "总计" "81.976" "92"
                              NA
                                      NA
                                              NA
                                                       NA
[1] "leveneTest result"
     [,1]
                [,2]
                           [,3]
                                     [,4]
                                              [,5] [,6] [,7]
[1.] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                              NA
                                                   NA
[2,] "0.500"
                          "88"
                                    "0.736"
                                                   NA
                                              NA
                                                        NA
[1] "tukey_comparison"
List of 7
 $ pfunction
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction
               :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:10] 0.549 0.841 0.476 0.365 0.292 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 0.368 0.35 0.37 0.452 0.256 ...
 $ sigma
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 1.493 2.405 1.285 0.807 1.14 ...
 $ tstat
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : num [1:10] 0.56 0.119 0.692 0.925 0.778 ...
 $ pvalues
  ..- attr(*, "error")= num 0.00019
               : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
```

```
Estimate Std. Error t value Pr(>|t|)
           0.54924
                        0.36796
                                  1.493
1 - 0 == 0
                                            0.560
2 - 0 == 0 \ 0.84091
                        0.34970
                                  2.405
                                            0.119
3 - 0 == 0 \ 0.47619
                        0.37049
                                  1.285
                                            0.692
4 - 0 == 0 \ 0.36458
                        0.45186
                                  0.807
                                            0.925
2 - 1 == 0 \quad 0.29167
                        0.25595
                                  1.140
                                            0.778
3 - 1 == 0 -0.07305
                        0.28370 -0.257
                                            0.999
4 - 1 == 0 -0.18466
                        0.38393 - 0.481
                                            0.988
3 - 2 == 0 - 0.36472
                        0.25958
                                -1.405
                                            0.617
4 - 2 == 0 -0.47633
                        0.36647
                                 -1.300
                                            0.683
4 - 3 == 0 -0.11161
                        0.38636 -0.289
                                            0.998
(Adjusted p values reported -- single-step method)
```

```
[,6]
      [,1]
              [,2]
                      [,3]
                                    [,4]
                                             [,5]
                                                                      [,7]
[1,] ""
                                                       "95%置信区间"""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
[3,] "0"
              "1"
                      "0.549 "
                                    "0.368"
                                             "0.560"
                                                      "-0.174"
                                                                     "1.273"
[4,] NA
              "2"
                      "0.841 "
                                    "0.350"
                                             "0.119"
                                                       "0.153"
                                                                     "1.529"
[5,] NA
              "3"
                      "0.476 "
                                    "0.370"
                                             "0.692"
                                                       "-0.252"
                                                                     "1.205"
                      "0.365 "
              "4"
[6,] NA
                                    "0.452"
                                             "0.925"
                                                      "-0.524"
                                                                     "1.253"
[7,] "1"
              "2"
                      "0.292 "
                                    "0.256"
                                                                     "0.795"
                                             "0.778"
                                                       "-0.212"
              "3"
                                                                     "0.485"
[8,] NA
                      "-0.073 "
                                    "0.284"
                                             "0.999"
                                                       "-0.631"
              "4"
                      "-0.185 "
                                    "0.384"
                                             "0.988"
                                                                     "0.570"
[9,] NA
                                                       "-0.940"
              "3"
                      "-0.365 "
[10,] "2"
                                    "0.260"
                                             "0.617" "-0.875"
                                                                     "0.146"
```

23/81 localhost:6788

3/20/24, 3:30 AM DM8101FinalExam "-0.476 "

"-0.112 "

"4"

"4"

[11,] NA [12,] "3"

```
dataset = anova(data0$gender,data0$job_effectiveness,tr_matrix_old=dataset)
[1] "diff $data0job_effectiveness by $data0gender"
[1] "model"
                                     [,5]
            [,2]
                     [,3]
                              [,4]
                                             [,6]
                                                      [,7]
     [,1]
[1,] ""
           "平方和" "自由度" "均方" "F"
                                           "显著性" NA
[2,] "组间" "1.493" "1"
                            "1.493" "2.138" "0.147"
                                                     NA
[3,] "组内" "63.549" "91"
                            "0.698" NA
                                             NA
                                                      NA
[4,] "总计" "65.042" "92"
                                             NA
                                                      NA
                            NA
                                     NA
[1] "leveneTest_result"
                                             [,5] [,6] [,7]
                         [,3]
     [,1]
                [,2]
                                    [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                  NA
[2,] "1.956"
              "1"
                         "91"
                                   "0.165"
                                            NA
                                                 NA
                                                      NA
[1] "tukey_comparison"
List of 7
              :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ pfunction
 $ qfunction
             :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num −0.256
  ..- attr(*, "names")= chr "1 - 0"
              : Named num 0.175
 $ sigma
  ..- attr(*, "names")= chr "1 - 0"
 $ tstat
              : Named num -1.46
 ..- attr(*, "names")= chr "1 - 0"
 $ pvalues
              : num 0.147
  ..- attr(*, "error")= num 0
              : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 -0.2559
                       0.1750 - 1.462
(Adjusted p values reported -- single-step method)
                                                   [,6]
     [,1]
            [,2]
                    [,3]
                                 [,4]
                                           [,5]
[1,] ""
                                                   "95%置信区间"""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                             "上限"
                                 "0.175" "0.147" "-0.600"
                                                                 "0.088"
[3,] "0"
            "1"
                    "-0.256 "
dataset = anova(data0$gender,data0$work.life_balance,tr_matrix_old=dataset)
[1] "diff $data0work.life_balance by $data0gender"
[1] "model"
     [,1]
           [,2]
                   [,3]
                             [,4]
                                    [,5]
                                             [,6]
                                                      [,7]
```

"0.366" "0.683" "-1.197"

"0.386" "0.998" "-0.872"

"0.244"

"0.648"

24/81 localhost:6788

```
"平方和""自由度""均方""F"
[1,] ""
                                          "显著性" NA
[2,] "组间" "0.143" "1"
                            "0.143" "0.230" "0.632" NA
[3,] "组内" "56.522" "91"
                             "0.621" NA
                                            NA
                                                     NA
[4,] "总计" "56.665" "92"
                            NA
                                            NA
                                                     NA
[1] "leveneTest_result"
     [,1]
                [.2]
                          [,3]
                                   [,4]
                                            [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                  NA
                         "91"
[2,] "0.441"
                                   "0.509"
                                            NA
                                                 NA
                                                      NA
[1] "tukey_comparison"
List of 7
             :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ pfunction
 $ qfunction :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num -0.0792
  ..- attr(*, "names")= chr "1 - 0"
              : Named num 0.165
 $ sigma
  ..- attr(*, "names")= chr "1 - 0"
              : Named num -0.48
 $ tstat
 ..- attr(*, "names")= chr "1 - 0"
 $ pvalues
              : num 0.632
  ..- attr(*, "error")= num 0
             : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
    Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 - 0.07925
                      0.16507
(Adjusted p values reported -- single-step method)
             [,2]
                     [,3]
                                 [,4]
                                          [,5]
                                                   [,6]
                                                                 [,7]
     [,1]
[1,] ""
                                                   "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                    "-0.079 "
[3,] "0"
                                 "0.165" "0.632" "-0.404"
            "1"
                                                                 "0.245"
dataset = anova(data0$gender,data0$well.being,tr_matrix_old=dataset)
[1] "diff $data0well.being by $data0gender"
[1] "model"
            [,2]
                                                      [,7]
     [,1]
                    [,3]
                             [,4]
                                     [,5]
                                             [,6]
[1,] ""
           "平方和""自由度""均方""F"
                                          "显著性" NA
[2,] "组间" "0.494" "1"
                            "0.494" "0.551" "0.460"
                                                     NA
[3,] "组内" "81.482" "91"
                            "0.895" NA
                                            NA
                                                     NA
[4,] "总计" "81.976" "92"
                                    NA
                                            NA
                                                     NA
[1] "leveneTest_result"
                                            [,5] [,6] [,7]
     [,1]
                [,2]
                         [,3]
                                   [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                  NA
                                             NA
               "1"
                         "91"
[2,] "1.092"
                                   "0.299"
                                            NA
                                                 NA
                                                      NA
```

localhost:6788 25/81

```
[1] "tukey_comparison"
List of 7
 $ pfunction :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num -0.147
  ..- attr(*, "names")= chr "1 - 0"
              : Named num 0.198
 $ sigma
  ..- attr(*, "names")= chr "1 - 0"
              : Named num -0.743
 $ tstat
 ..- attr(*, "names")= chr "1 - 0"
 $ pvalues
              : num 0.46
  ..- attr(*, "error")= num 0
              : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 -0.1472
                       0.1982 -0.743
(Adjusted p values reported —— single—step method)
                                  [,4]
                                                    [,6]
     [,1]
             [,2]
                     [,3]
                                           [,5]
[1,] ""
                                          1111
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                             "上限"
[3,] "0"
            "1"
                     "-0.147 "
                                 "0.198" "0.460" "-0.537"
                                                                 "0.243"
dataset = anova(data0$education,data0$job_effectiveness,tr_matrix_old=dataset)
[1] "diff $data0job_effectiveness by $data0education"
[1] "model"
                     [,3]
                             [,4]
                                              [,6]
                                                        [,7]
     [,1]
            [,2]
                                      [,5]
           "平方和""自由度""均方""F"
[1,] ""
                                            "显著性" NA
[2,] "组间" "27.240" "4"
                             "6.810" "15.853" "0.000"
                                                       NA
[3,] "组内" "37.802" "88"
                             "0.430" NA
                                              NA
                                                       NA
[4,] "总计" "65.042" "92"
                                     NA
                                              NA
                                                       NA
[1] "leveneTest_result"
     [,1]
                [,2]
                          [,3]
                                   [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                  NA
[2,] "0.516"
               "4"
                         "88"
                                   "0.724"
                                            NA
                                                 NA
                                                      NA
[1] "tukey_comparison"
List of 7
 $ pfunction
             :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
              :function (conf.level, adjusted = TRUE, ...)
 $ qfunction
 $ coefficients: Named num [1:10] 0.891 1.742 1.405 -0.583 0.85 ...
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : Named num [1:10] 0.391 0.397 0.417 0.535 0.156 ...
 $ sigma
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
```

localhost:6788 26/81

```
$ tstat
              : Named num [1:10] 2.28 4.39 3.37 -1.09 5.45 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
 $ pvalues
              : num [1:10] 1.44e-01 2.21e-04 8.11e-03 7.91e-01 3.16e-06 ...
  ..- attr(*, "error")= num 0.00037
              : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
            0.8915
                        0.3914
                                2.278 0.14355
2 - 0 == 0
             1.7417
                        0.3969
                                 4.388 < 0.001 ***
3 - 0 == 0
            1.4048
                        0.4170 3.369 0.00811 **
                        0.5351 -1.090 0.79141
4 - 0 == 0 -0.5833
2 - 1 == 0
            0.8502
                        0.1559 5.453 < 0.001 ***
3 - 1 == 0
            0.5133
                        0.2017 2.545 0.07848 .
4 - 1 == 0 -1.4748
                        0.3914 -3.768 0.00229 **
3 - 2 == 0 -0.3369
                        0.2121 -1.588 0.47757
4 - 2 == 0 -2.3250
                        0.3969 - 5.858 < 0.001 ***
4 - 3 == 0 -1.9881
                        0.4170 - 4.768 < 0.001 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
                                                     [,6]
                                                                   [,7]
      [,1]
              [,2]
                      [,3]
                                   [,4]
                                            [,5]
 [1,] ""
                                                     "95%置信区间" ""
 [2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                              "上限"
 [3,] "0"
              "1"
                      "0.891 "
                                   "0.391"
                                            "0.144"
                                                     "0.122"
                                                                   "1.661"
 [4,] NA
              "2"
                      "1.742 ***"
                                  "0.397"
                                                                   "2.522"
                                            "0.000"
                                                     "0.961"
 [5,] NA
              "3"
                      "1.405 **"
                                   "0.417"
                                            "0.008"
                                                     "0.585"
                                                                   "2.225"
 [6,] NA
              "4"
                      "-0.583 "
                                   "0.535"
                                            "0.791"
                                                                   "0.469"
                                                     "-1.636"
              "2"
 [7,] "1"
                      "0.850 ***"
                                  "0.156"
                                                     "0.544"
                                                                   "1.157"
                                            "0.000"
                      "0.513 "
              "3"
 [8,] NA
                                   "0.202"
                                            "0.078"
                                                     "0.117"
                                                                   "0.910"
              "4"
 [9,] NA
                      "-1.475 **" "0.391"
                                            "0.002" "-2.245"
                                                                   "-0.705"
              "3"
[10,] "2"
                      "-0.337 "
                                   "0.212"
                                            "0.478"
                                                     "-0.754"
                                                                   "0.080"
              "4"
[11,] NA
                      "-2.325 ***" "0.397"
                                            "0.000"
                                                     "-3.106"
                                                                   "-1.544"
[12,] "3"
              "4"
                      "-1.988 ***" "0.417"
                                           "0.000" "-2.808"
                                                                   "-1.168"
dataset = anova(data0$education,data0$work.life_balance,tr_matrix_old=dataset)
[1] "diff $data0work.life_balance by $data0education"
[1] "model"
                                      [,5]
                                                       [,7]
     [,1]
            [,2]
                     [,3]
                              [,4]
                                              [,6]
[1,] ""
           "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "9.109" "4"
                             "2.277" "4.214" "0.004"
                                                      NA
[3,] "组内" "47.557" "88"
                             "0.540" NA
                                                      NA
                                             NA
[4,] "总计" "56.665" "92"
                             NA
                                     NA
                                             NA
                                                      NA
```

localhost:6788 27/81

```
[1] "leveneTest_result"
     [,1]
                [,2]
                           [,3]
                                     [,4]
                                              [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                              NA
                                                    NA
[2,] "0.149"
                "4"
                          "88"
                                     "0.963"
                                              NA
                                                   NA
                                                        NA
[1] "tukey_comparison"
List of 7
 $ pfunction
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction
               :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:10] 8.62e-01 1.26 1.15 1.76e-15 3.96e-01 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 0.439 0.445 0.468 0.6 0.175 ...
 $ sigma
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 1.96 2.83 2.47 2.93e-15 2.26 ...
 $ tstat
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
 $ pvalues
              : num [1:10] 0.2651 0.0385 0.0939 1 0.1477 ...
  ..- attr(*, "error")= num 0.000702
 $ type
               : chr "single-step"
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
             Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 \quad 8.624e - 01 \quad 4.390e - 01
                                   1.965
                                            0.2651
2 - 0 == 0 1.258e+00 4.451e-01
                                            0.0385 *
                                   2.827
3 - 0 == 0 1.155e+00 4.677e-01
                                   2.469
                                            0.0939 .
4 - 0 == 0 1.756e-15 6.002e-01
                                    0.000
                                            1.0000
2 - 1 == 0 3.959e-01 1.749e-01
                                   2.264
                                            0.1477
3 - 1 == 0 2.924e-01 2.262e-01
                                            0.6700
                                   1.292
4 - 1 == 0 -8.624e - 01  4.390e - 01  -1.965
                                            0.2652
3 - 2 == 0 -1.036e - 01  2.379e - 01  -0.435
                                            0.9913
4 - 2 == 0 -1.258e + 00  4.451e - 01  -2.827
                                            0.0386 *
4 - 3 == 0 -1.155e + 00  4.677e - 01  -2.469
                                            0.0941 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported —— single—step method)
      [,1]
              [,2]
                       [,3]
                                    [,4]
                                             [,5]
                                                       [,6]
                                                                     [,7]
              1111
                                    1111
                                             ....
 [1,] ""
                                                      "95%置信区间"""
 [2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                                "上限"
 [3,] "0"
              "1"
                      "0.862 "
                                             "0.265"
                                                                     "1.726"
                                    "0.439"
                                                      "-0.001"
              "2"
                      "1.258 *"
 [4,] NA
                                    "0.445"
                                             "0.039" "0.383"
                                                                     "2.134"
 [5,] NA
              "3"
                      "1.155 "
                                    "0.468"
                                             "0.094"
                                                      "0.235"
                                                                     "2.075"
 [6,] NA
              "4"
                      "0.000 "
                                    "0.600"
                                             "1.000"
                                                      "-1.181"
                                                                     "1.181"
              "2"
                                             "0.148"
 [7,] "1"
                      "0.396 "
                                    "0.175"
                                                                     "0.740"
                                                      "0.052"
              "3"
 [8,] NA
                      "0.292 "
                                    "0.226"
                                             "0.670"
                                                                     "0.737"
                                                      "-0.153"
              "4"
 [9,] NA
                      "-0.862 "
                                    "0.439"
                                             "0.265"
                                                      "-1.726"
                                                                     "0.001"
              "3"
[10,] "2"
                      "-0.104 "
                                    "0.238"
                                             "0.991"
                                                                     "0.364"
                                                      "-0.572"
```

localhost:6788 28/81

```
"4"
                      "-1.258 *"
                                   "0.445" "0.039" "-2.134"
                                                                   "-0.383"
[11,] NA
[12,] "3"
              "4"
                      "-1.155 "
                                   "0.468" "0.094" "-2.075"
                                                                   "-0.235"
dataset = anova(data0$education,data0$well.being,tr_matrix_old=dataset)
[1] "diff $dataOwell.being by $dataOeducation"
[1] "model"
            [,2]
                                                       [,7]
     [,1]
                     [,3]
                              [,4]
                                      [,5]
                                              [,6]
[1,] ""
            "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "13.246" "4"
                             "3.312" "4.240" "0.003"
                                                      NA
[3,] "组内" "68.730" "88"
                             "0.781" NA
                                             NA
                                                       NA
[4,] "总计" "81.976" "92"
                                                       NA
                             NA
                                     NA
                                             NA
[1] "leveneTest_result"
                [,2]
                                              [,5] [,6] [,7]
     [,1]
                          [,3]
                                    [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                              NA
                                                   NA
[2,] "0.668"
               "4"
                          "88"
                                    "0.616"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
 $ pfunction :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:10] 1.0097 1.5583 1.1845 0.0833 0.5486 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 0.528 0.535 0.562 0.722 0.21 ...
 $ sigma
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 1.913 2.912 2.107 0.115 2.61 ...
 $ tstat
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : num [1:10] 0.2901 0.0307 0.2034 1 0.0672 ...
 $ pvalues
  ..- attr(*, "error")= num 0.000345
              : chr "single-step"
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 \quad 1.00969
                       0.52773
                                 1.913
                                         0.2901
2 - 0 == 0 \quad 1.55833
                       0.53514
                                 2.912
                                         0.0307 *
                                 2.107
                                         0.2034
3 - 0 == 0 \quad 1.18452
                       0.56225
4 - 0 == 0 \quad 0.08333
                       0.72158
                                 0.115
                                         1.0000
2 - 1 == 0 \ 0.54864
                       0.21023
                                 2.610
                                         0.0672 .
3 - 1 == 0 \quad 0.17483
                       0.27194
                                 0.643
                                         0.9630
4 - 1 == 0 - 0.92636
                       0.52773 -1.755
                                         0.3757
3 - 2 == 0 - 0.37381
                       0.28604 -1.307
                                         0.6606
4 - 2 == 0 -1.47500
                       0.53514 - 2.756
                                         0.0463 *
4 - 3 == 0 -1.10119
                       0.56225 - 1.959
                                         0.2680
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
```

localhost:6788 29/81

```
[,1]
              [,2]
                      [,3]
                                   [,4]
                                            [,5]
                                                     [,6]
                                                                   [,7]
 [1,] ""
                                            1111
                                                     "95%置信区间" ""
 [2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                               "上限"
 [3,] "0"
              "1"
                      "1.010 "
                                                     "-0.028"
                                   "0.528" "0.290"
                                                                   "2.048"
 [4,] NA
              "2"
                      "1.558 *"
                                   "0.535"
                                            "0.031"
                                                     "0.506"
                                                                   "2.611"
                      "1.185 "
 [5,] NA
              "3"
                                   "0.562"
                                            "0.203"
                                                     "0.079"
                                                                   "2.290"
 [6,] NA
              "4"
                      "0.083 "
                                   "0.722"
                                            "1.000" "-1.336"
                                                                   "1.503"
 [7,] "1"
              "2"
                      "0.549 "
                                   "0.210"
                                            "0.067" "0.135"
                                                                   "0.962"
              "3"
                      "0.175 "
                                   "0.272"
 [8,] NA
                                            "0.963"
                                                     "-0.360"
                                                                   "0.710"
 [9,] NA
              "4"
                      "-0.926 "
                                   "0.528"
                                            "0.376" "-1.964"
                                                                   "0.112"
[10.] "2"
              "3"
                      "-0.374 "
                                   "0.286"
                                            "0.661" "-0.936"
                                                                   "0.189"
[11,] NA
              "4"
                      "-1.475 *"
                                   "0.535"
                                            "0.046"
                                                     "-2.528"
                                                                   "-0.422"
[12,] "3"
              "4"
                      "-1.101 "
                                   "0.562"
                                            "0.268" "-2.207"
                                                                   "0.005"
dataset = anova(data0$natrue_enterprise,data0$job_effectiveness,tr_matrix_old=dataset)
[1] "diff $data0job_effectiveness by $data0natrue_enterprise"
[1] "model"
                                                         [.7]
     [,1]
            [,2]
                     [,3]
                              [,4]
                                       [,5]
                                                [,6]
[1.] ""
            "平方和""自由度""均方"
                                             "显著性" NA
[2,] "组间" "28.248" "2"
                             "14.124" "34.548" "0.000"
[3,] "组内" "36.794" "90"
                             "0.409"
                                      NA
                                               NA
                                                        NA
[4,] "总计" "65.042" "92"
                                      NA
                                               NA
                                                        NA
                             NA
[1] "leveneTest_result"
     [,1]
                [,2]
                                             [,5] [,6] [,7]
                          [,3]
                                    [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                   NA
               "2"
                          "90"
[2,] "0.437"
                                    "0.647"
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
             :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ pfunction
               :function (conf.level, adjusted = TRUE, ...)
 $ qfunction
 $ coefficients: Named num [1:3] -0.989 -1.51 -0.521
 ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
               : Named num [1:3] 0.15 0.199 0.185
 $ sigma
  ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
 $ tstat
              : Named num [1:3] -6.58 -7.58 -2.82
  ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
              : num [1:3] 4.08e-09 4.17e-11 1.59e-02
 $ pvalues
 ..- attr(*, "error")= num 0.000406
              : chr "single-step"
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
                        0.1504 -6.576
```

localhost:6788 30/81

<0.001 \*\*\*

1 - 0 == 0 -0.9889

0.1991 -7.582

0.1846 - 2.822

<0.001 \*\*\*

0.0159 \*

2 - 0 == 0 -1.5097

2 - 1 == 0 -0.5208

```
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
     [.1]
             [,2]
                                 [.4]
                                          [,5]
                                                   [,6]
                     [,3]
                                                                 [,7]
[1,] ""
                                                   "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
[3,] "0"
            "1"
                    "-0.989 ***" "0.150" "0.000"
                                                   "-1.285"
                                                                 "-0.693"
[4,] NA
            "2"
                     "-1.510 ***" "0.199" "0.000"
                                                                 "-1.118"
                                                   "-1.901"
[5.] "1"
            "2"
                    "-0.521 *" "0.185" "0.016" "-0.884"
                                                                 "-0.158"
dataset = anova(data0$natrue enterprise,data0$work.life balance,tr matrix old=dataset)
[1] "diff $dataOwork.life_balance by $dataOnatrue_enterprise"
[1] "model"
                              [,4]
     [,1]
            [,2]
                    [,3]
                                      [,5]
                                               [,6]
                                                        [,7]
[1,] ""
           "平方和""自由度""均方"
                                   "F"
                                             "显著性" NA
[2,] "组间" "36.428" "2"
                            "18.214" "81.005" "0.000"
[3,] "组内" "20.237" "90"
                             "0.225"
                                     NA
                                              NA
                                                       NA
[4,] "总计" "56.665" "92"
                            NA
                                     NA
                                              NA
                                                       NA
[1] "leveneTest result"
     [,1]
               [,2]
                         [,3]
                                  [,4]
                                            [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                  NA
[2,] "1.958"
                         "90"
                                   "0.147"
                                            NA
                                                 NA
                                                      NA
[1] "tukey_comparison"
List of 7
 $ pfunction :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:3] -1.253 -1.56 -0.307
 ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
              : Named num [1:3] 0.112 0.148 0.137
 $ sigma
 ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
 $ tstat
              : Named num [1:3] -11.24 -10.57 -2.24
 ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
 $ pvalues
              : num [1:3] 0 0 0.068
  ..- attr(*, "error")= num 0.000197
              : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
          Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 -1.2531
                       0.1115 -11.236
                                        <0.001 ***
2 - 0 == 0 -1.5603
                       0.1477 -10.566
                                        <0.001 ***
                                         0.068 .
2 - 1 == 0 -0.3073
                       0.1369 -2.245
```

localhost:6788 31/81

(Adjusted p values reported -- single-step method)

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

```
[,2]
                     [,3]
                                  [,4]
                                           [,5]
                                                    [,6]
     [,1]
[1,] ""
                                           1111
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
[3,] "0"
            "1"
                     "-1.253 ***" "0.112" "0.000"
                                                    "-1.472"
                                                                  "-1.034"
[4,] NA
             "2"
                     "-1.560 ***" "0.148" "0.000"
                                                    "-1.851"
                                                                  "-1.270"
                                                    "-0.577"
[5,] "1"
             "2"
                     "-0.307 "
                                 "0.137" "0.068"
                                                                  "-0.038"
dataset = anova(data0$natrue_enterprise,data0$well.being,tr_matrix_old=dataset)
[1] "diff $dataOwell.being by $dataOnatrue_enterprise"
[1] "model"
     [,1]
            [,2]
                     [,3]
                             [,4]
                                       [,5]
                                                [,6]
                                                         [.7]
[1,] ""
           "平方和""自由度""均方"
                                    "F"
                                             "显著性" NA
[2,] "组间" "49.969" "2"
                             "24.984" "70.253" "0.000"
                                                        NA
[3,] "组内" "32.007" "90"
                             "0.356" NA
                                               NA
                                                        NA
[4,] "总计" "81.976" "92"
                                      NA
                             NA
                                               NA
                                                        NA
[1] "leveneTest result"
     [,1]
                          [,3]
                                   [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                  NA
               "2"
                          "90"
[2.] "2.746"
                                    "0.070"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
 $ pfunction
             :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction
               :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:3] -1.248 -2.061 -0.813
  ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
               : Named num [1:3] 0.14 0.186 0.172
 $ sigma
 ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
              : Named num [1:3] -8.9 -11.1 -4.72
 $ tstat
 ..- attr(*, "names")= chr [1:3] "1 - 0" "2 - 0" "2 - 1"
              : num [1:3] 4.75e-14 0.00 2.11e-05
 $ pvalues
  ..- attr(*, "error")= num 2.36e-06
 $ type
              : chr "single-step"
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 -1.2484
                        0.1403 - 8.901 < 1e-05 ***
2 - 0 == 0 -2.0609
                        0.1857 - 11.097 < 1e - 05 ***
                       0.1722 -4.720 2.11e-05 ***
2 - 1 == 0 -0.8125
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

localhost:6788 32/81

```
(Adjusted p values reported —— single—step method)
```

```
[,1]
            [,2]
                    [,3]
                                 [,4]
                                          [,5]
                                                   [,6]
                                                                 [,7]
[1,] ""
                                                   "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
            "1"
                    "-1.248 ***" "0.140" "0.000"
[3.] "0"
                                                   "-1.524"
                                                                 "-0.973"
            "2"
[4,] NA
                    "-2.061 ***" "0.186" "0.000"
                                                   "-2,426"
                                                                 "-1.696"
[5,] "1"
            "2"
                    "-0.813 ***" "0.172" "0.000" "-1.151"
                                                                 "-0.474"
```

dataset = anova(data0\$type\_work,data0\$job\_effectiveness,tr\_matrix\_old=dataset)

```
[1] "diff $data0job_effectiveness by $data0type_work"
[1] "model"
                                                      [,7]
     [,1]
           [,2]
                    [,3]
                             [,4]
                                     [,5]
                                             [,6]
[1,] ""
           "平方和""自由度""均方""F"
                                          "显著性" NA
[2,] "组间" "7.168" "3"
                            "2.389" "3.674" "0.015"
                                                     NA
[3,] "组内" "57.874" "89"
                            "0.650" NA
                                            NA
                                                     NA
[4,] "总计" "65.042" "92"
                                                     NA
                            NA
                                    NA
                                            NA
[1] "leveneTest result"
               [,2]
                                            [,5] [,6] [,7]
                         [,3]
                                   [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                            NA
                                                 NA
[2,] "0.369"
               "3"
                         "89"
                                   "0.776"
                                            NA
                                                 NA
                                                      NA
[1] "tukey_comparison"
List of 7
 $ pfunction :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
$ qfunction :function (conf.level, adjusted = TRUE, ...)
$ coefficients: Named num [1:6] 0.452 -0.075 -0.167 -0.527 -0.619 ...
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
              : Named num [1:6] 0.306 0.353 0.343 0.236 0.221 ...
$ sigma
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
              : Named num [1:6] 1.476 -0.212 -0.486 -2.23 -2.805 ...
$ tstat
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
             : num [1:6] 0.4458 0.9964 0.9603 0.1179 0.0295 ...
$ pvalues
 ..- attr(*, "error")= num 0.000342
 $ type
              : chr "single-step"
- attr(*, "class")= chr "mtest"
```

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit:  $aov(formula = y \sim x, data = data)$ 

#### Linear Hypotheses:

```
Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 \ 0.45192
                       0.30625
                                 1.476
                                          0.4458
2 - 0 == 0 - 0.07500
                       0.35304 -0.212
                                          0.9964
3 - 0 == 0 - 0.16667
                       0.34265 -0.486
                                          0.9603
2 - 1 == 0 - 0.52692
                       0.23634 -2.230
                                          0.1179
3 - 1 == 0 - 0.61859
                       0.22052 - 2.805
                                          0.0295 *
3 - 2 == 0 - 0.09167
                       0.28192 -0.325
                                          0.9875
```

localhost:6788 33/81

(Adjusted p values reported -- single-step method)

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' ' 1

```
[,1]
             [,2]
                     [,3]
                                  [,4]
                                           [,5]
                                                    [,6]
                                                                  [.7]
[1,] ""
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                              "上限"
[3,] "0"
             "1"
                     "0.452 "
                                  "0.306" "0.446"
                                                    "-0.150"
                                                                  "1.054"
             "2"
[4,] NA
                     "-0.075 "
                                  "0.353" "0.996"
                                                    "-0.769"
                                                                  "0.619"
[5,] NA
             "3"
                     "-0.167 "
                                  "0.343" "0.960"
                                                    "-0.841"
                                                                  "0.507"
[6,] "1"
             "2"
                     "-0.527 "
                                  "0.236" "0.118"
                                                    "-0.992"
                                                                  "-0.062"
             "3"
                     "-0.619 *"
                                  "0.221" "0.030"
                                                                  "-0.185"
[7,] NA
                                                    "-1.052"
[8.] "2"
             ''3''
                     "-0.092 "
                                  "0.282" "0.988" "-0.646"
                                                                  "0.463"
dataset = anova(data0$type work,data0$work.life balance,tr matrix old=dataset)
[1] "diff $data0work.life balance by $data0type work"
[1] "model"
     [,1]
            [,2]
                     [,3]
                              [,4]
                                      [,5]
                                              [,6]
                                                       [,7]
[1,] ""
            "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "8.859" "3"
                             "2.953" "5.498" "0.002"
                                                      NA
[3,] "组内" "47.806" "89"
                             "0.537" NA
                                             NA
                                                      NA
[4,] "总计" "56.665" "92"
                             NA
                                     NA
                                             NA
                                                      NA
[1] "leveneTest result"
     [,1]
                [,2]
                          [,3]
                                    [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                   NA
[2,] "0.620"
                          "89"
                                    "0.604"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
 $ pfunction :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:6] 0.748 0.36 0.066 -0.387 -0.682 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 0.278 0.321 0.311 0.215 0.2 ...
 $ sigma
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
 $ tstat
               : Named num [1:6] 2.686 1.123 0.212 -1.803 -3.401 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
 $ pvalues
              : num [1:6] 0.03987 0.66707 0.99646 0.27003 0.00505 ...
  ..- attr(*, "error")= num 0.000453
               : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 \ 0.74760
                       0.27834
                                 2.686 0.03987 *
2 - 0 == 0 \quad 0.36042
                       0.32086
                                 1.123 0.66707
3 - 0 == 0 \quad 0.06597
                       0.31142
                                 0.212 0.99646
```

localhost:6788 34/81

0.21480 -1.803 0.27003

0.20043 -3.401 0.00505 \*\*

2 - 1 == 0 - 0.38718

3 - 1 == 0 - 0.68162

```
3 - 2 == 0 -0.29444
                       0.25622 -1.149 0.65083
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
             [,2]
                     [,3]
                                  [,4]
                                           [,5]
                                                    [,6]
                                                                  [,7]
     [,1]
[1,] ""
                                  ....
                                           ....
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                              "上限"
             "1"
                                                                  "1.295"
[3,] "0"
                     "0.748 *"
                                  "0.278" "0.040"
                                                    "0.200"
             "2"
[4.] NA
                     "0.360 "
                                  "0.321" "0.667" "-0.271"
                                                                  "0.991"
                                  "0.311" "0.996"
[5,] NA
             "3"
                     "0.066 "
                                                    "-0.547"
                                                                  "0.678"
             "2"
[6,] "1"
                     "-0.387 "
                                  "0.215" "0.270"
                                                    "-0.810"
                                                                  "0.035"
[7,] NA
             "3"
                     "-0.682 **" "0.200" "0.005"
                                                    "-1.076"
                                                                  "-0.287"
[8,] "2"
             "3"
                     "-0.294 "
                                  "0.256" "0.651"
                                                    "-0.798"
                                                                  "0.209"
dataset = anova(data0$type_work,data0$well.being,tr_matrix_old=dataset)
[1] "diff $data0well.being by $data0type work"
[1] "model"
     [,1]
            [,2]
                     [,3]
                              [,4]
                                      [,5]
                                              [,6]
                                                       [,7]
[1,] ""
           "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "13.471" "3"
                             "4.490" "5.834" "0.001"
                                                      NA
                             "0.770" NA
[3,] "组内" "68.505" "89"
                                             NA
                                                      NA
[4,] "总计" "81.976" "92"
                                                      NA
                             NA
                                     NA
                                             NA
[1] "leveneTest_result"
     [,1]
                [,2]
                          [,3]
                                    [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                  NA
                                             NA
[2,] "0.211"
                          "89"
                                    "0.888"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ pfunction
 $ qfunction
               :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:6] 0.558 -0.05 -0.361 -0.608 -0.919 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
 $ sigma
               : Named num [1:6] 0.333 0.384 0.373 0.257 0.24 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 1.674 -0.13 -0.969 -2.363 -3.83 ...
 $ tstat
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
              : num [1:6] 0.33372 0.99917 0.76009 0.08796 0.00112 ...
 $ pvalues
  ..- attr(*, "error")= num 0.000596
              : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
```

localhost:6788 35/81

Estimate Std. Error t value Pr(>|t|)

```
0.3332
1 - 0 == 0
             0.5577
                                 1.674 0.33372
                        0.3841 -0.130 0.99917
2 - 0 == 0 -0.0500
3 - 0 == 0 -0.3611
                        0.3728 -0.969 0.76009
2 - 1 == 0
          -0.6077
                        0.2571 -2.363 0.08796 .
3 - 1 == 0
           -0.9188
                        0.2399 -3.830 0.00112 **
3 - 2 == 0 -0.3111
                        0.3067 - 1.014 0.73348
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
     [.1]
             [,2]
                     [.3]
                                  [.4]
                                           [.5]
                                                    [.6]
[1,] ""
             ....
                                  1111
                                           ....
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                             "上限"
[3,] "0"
             "1"
                     "0.558 "
                                  "0.333" "0.334"
                                                    "-0.098"
                                                                  "1.213"
[4,] NA
             "2"
                     "-0.050 "
                                  "0.384" "0.999"
                                                    "-0.805"
                                                                  "0.705"
[5,] NA
             "3"
                     "-0.361 "
                                                    "-1.094"
                                  "0.373" "0.760"
                                                                  "0.372"
             "2"
[6,] "1"
                     "-0.608 "
                                  "0.257" "0.088"
                                                    "-1.113"
                                                                  "-0.102"
             "3"
                     "-0.919 **" "0.240" "0.001" "-1.391"
[7,] NA
                                                                  "-0.447"
[8,] "2"
                     "-0.311 "
             "3"
                                  "0.307" "0.733"
                                                    "-0.914"
                                                                  "0.292"
dataset = anova(data0$job_title_s_data,data0$job_effectiveness,tr_matrix_old=dataset)
[1] "diff $data0job_effectiveness by $data0job_title_s_data"
[1] "model"
     [,1]
                                              [,6]
                                                       [,7]
            [,2]
                     [,3]
                              [,4]
                                      [,5]
[1,] ""
           "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "0.547" "3"
                             "0.182" "0.251" "0.860"
[3,] "组内" "64.495" "89"
                             "0.725" NA
                                             NA
                                                      NA
[4,] "总计" "65.042" "92"
                             NA
                                     NA
                                             NA
                                                      NA
[1] "leveneTest_result"
     [,1]
                [,2]
                          [,3]
                                    [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                  NA
[2,] "1.154"
                "3"
                          "89"
                                    "0.332"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
 $ pfunction
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
               :function (conf.level, adjusted = TRUE, ...)
 $ qfunction
 $ coefficients: Named num [1:6] -0.1863 -0.6029 -0.1029 -0.4167 0.0833 ...
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 0.36 0.856 0.856 0.919 0.919 ...
 $ sigma
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
              : Named num [1:6] -0.518 -0.7042 -0.1202 -0.4532 0.0906 ...
 $ tstat
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
              : num [1:6] 0.949 0.883 0.999 0.965 1 ...
 $ pvalues
  ..- attr(*, "error")= num 1.7e-05
              : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
```

Multiple Comparisons of Means: Tukey Contrasts

localhost:6788 36/81

Fit:  $aov(formula = y \sim x, data = data)$ 

Linear Hypotheses:

```
Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 - 0.18627
                       0.35959 - 0.518
                                          0.949
2 - 0 == 0 -0.60294
                       0.85626 - 0.704
                                          0.883
3 - 0 == 0 - 0.10294
                       0.85626 -0.120
                                          0.999
2 - 1 == 0 - 0.41667
                       0.91948 - 0.453
                                          0.965
3 - 1 == 0 \quad 0.08333
                       0.91948
                                 0.091
                                          1.000
3 - 2 == 0 \quad 0.50000
                       1.20388
                                 0.415
                                          0.972
(Adjusted p values reported -- single-step method)
                                                                   [,7]
     [,1]
             [,2]
                     [,3]
                                  [,4]
                                            [,5]
                                                     [,6]
[1,] ""
                                           1111
                                                     "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                               "上限"
                     "-0.186 "
             "1"
                                                     "-0.894"
[3,] "0"
                                  "0.360"
                                           "0.949"
                                                                   "0.521"
             "2"
[4,] NA
                     "-0.603 "
                                  "0.856" "0.883"
                                                    "-2.287"
                                                                   "1.081"
             "3"
                     "-0.103 "
[5,] NA
                                  "0.856" "0.999"
                                                    "-1.787"
                                                                   "1.581"
[6,] "1"
             "2"
                     "-0.417 "
                                  "0.919" "0.965"
                                                     "-2.225"
                                                                   "1.392"
[7,] NA
             "3"
                     "0.083 "
                                  "0.919" "1.000"
                                                     "-1.725"
                                                                   "1.892"
[8,] "2"
             ''3''
                     "0.500 "
                                  "1.204" "0.972" "-1.868"
                                                                   "2.868"
dataset = anova(data0$job_title_s_data,data0$work.life_balance,tr_matrix_old=dataset)
[1] "diff $data0work.life_balance by $data0job_title_s_data"
[1] "model"
     [,1]
            [,2]
                     [,3]
                              [,4]
                                               [,6]
                                                        [,7]
                                      [,5]
[1,] ""
            "平方和""自由度""均方""F"
                                            "显著性" NA
[2,] "组间" "2.532" "3"
                             "0.844" "1.388" "0.252"
                                                       NA
[3,] "组内" "54.133" "89"
                             "0.608" NA
                                                       NA
                                              NΑ
[4,] "总计" "56.665" "92"
                             NA
                                     NA
                                              NA
                                                       NA
[1] "leveneTest_result"
                                              [,5] [,6] [,7]
     [,1]
                [,2]
                          [,3]
                                    [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                              NA
                                                   NA
                          "89"
                                    "0.479"
[2,] "0.833"
                                             NA
                                                  NA
                                                        NA
[1] "tukey_comparison"
List of 7
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ pfunction
               :function (conf.level, adjusted = TRUE, ...)
$ qfunction
$ coefficients: Named num [1:6] -0.4 -0.941 -0.941 -0.542 -0.542 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 0.329 0.784 0.784 0.842 0.842 ...
 $ sigma
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] -1.213 -1.2 -1.2 -0.643 -0.643 ...
 $ tstat
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
              : num [1:6] 0.59 0.598 0.598 0.907 0.907 ...
 $ pvalues
  ..- attr(*, "error")= num 3.29e-05
               : chr "single-step"
 $ type
- attr(*, "class")= chr "mtest"
```

Simultaneous Tests for General Linear Hypotheses

localhost:6788 37/81

Multiple Comparisons of Means: Tukey Contrasts

```
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
             Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 -3.995e - 01 3.294e - 01 - 1.213
                                             0.590
2 - 0 == 0 -9.412e - 01 7.845e - 01 -1.200
                                             0.598
3 - 0 == 0 -9.412e - 01 7.845e - 01 - 1.200
                                            0.598
2 - 1 == 0 -5.417e - 01 8.424e - 01 - 0.643
                                            0.907
3 - 1 == 0 -5.417e - 01  8.424e - 01  -0.643
                                            0.907
3 - 2 == 0 1.665e-15 1.103e+00
                                   0.000
                                             1.000
(Adjusted p values reported —— single—step method)
                     [,3]
                                                                   [,7]
     [,1]
             [,2]
                                   [,4]
                                            [,5]
                                                     [,6]
[1,] ""
                                                     "95%置信区间" ""
                                                               "上限"
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
             "1"
                                                     "-1.047"
[3,] "0"
                     "-0.400 "
                                  "0.329" "0.590"
                                                                   "0.248"
             "2"
                     "-0.941 "
[4,] NA
                                  "0.784" "0.598"
                                                     "-2.484"
                                                                   "0.602"
[5,] NA
             "3"
                     "-0.941 "
                                  "0.784" "0.598"
                                                     "-2.484"
                                                                   "0.602"
[6,] "1"
             "2"
                     "-0.542 "
                                  "0.842" "0.907"
                                                     "-2.198"
                                                                   "1.115"
                     "-0.542 "
[7,] NA
             "3"
                                  "0.842" "0.907"
                                                     "-2.198"
                                                                   "1.115"
[8,] "2"
             "3"
                     "0.000 "
                                  "1.103" "1.000"
                                                     "-2.169"
                                                                   "2.169"
dataset = anova(data0$job_title_s_data,data0$well.being,tr_matrix_old=dataset)
[1] "diff $data0well.being by $data0job_title_s_data"
[1] "model"
     [,1]
            [,2]
                     [,3]
                              [,4]
                                       [,5]
                                               [,6]
                                                        [.7]
[1,] ""
            "平方和""自由度""均方""F"
                                            "显著性" NA
[2,] "组间" "0.645" "3"
                              "0.215" "0.235" "0.871"
                                                       NA
[3,] "组内" "81.330" "89"
                              "0.914" NA
                                              NA
                                                       NA
[4,] "总计" "81.976" "92"
                                      NA
                                              NA
                                                       NA
[1] "leveneTest result"
     [,1]
                [,2]
                          [,3]
                                     [,4]
                                              [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                              NA
                                                   NA
[2,] "1.038"
                "3"
                          "89"
                                    "0.380"
                                              NA
                                                   NA
                                                        NA
[1] "tukey_comparison"
Warning in RET$pfunction("adjusted", ...): lower == upper
List of 7
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ pfunction
 $ qfunction
               :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:6] -0.173 -0.506 -0.506 -0.333 -0.333 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
 $ sigma
               : Named num [1:6] 0.404 0.962 0.962 1.033 1.033 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] -0.427 -0.526 -0.526 -0.323 -0.323 ...
 $ tstat
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : num [1:6] 0.97 0.946 0.946 0.987 0.987 ...
 $ pvalues
```

localhost:6788 38/81

..- attr(\*, "error")= num 6.41e-06

: chr "single-step"

\$ type

- attr(\*, "class")= chr "mtest"

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

Fit:  $aov(formula = y \sim x, data = data)$ 

```
Linear Hypotheses:
```

```
Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
           -0.1725
                        0.4038 - 0.427
                                          0.970
2 - 0 == 0
           -0.5059
                        0.9615 - 0.526
                                          0.946
3 - 0 == 0 -0.5059
                        0.9615 - 0.526
                                          0.946
2 - 1 == 0
           -0.3333
                        1.0325 -0.323
                                          0.987
3 - 1 == 0
          -0.3333
                        1.0325 -0.323
                                          0.987
3 - 2 == 0
             0.0000
                        1.3519
                                 0.000
                                          1.000
(Adjusted p values reported —— single—step method)
```

```
[,1]
             [,2]
                     [,3]
                                   [,4]
                                             [,5]
                                                      [,6]
                                                                     [,7]
             ....
                     ....
                                   ....
                                            ....
[1,] ""
                                                      "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                                "上限"
                                            "0.970"
[3,] "0"
             "1"
                     "-0.173 "
                                   "0.404"
                                                      "-0.967"
                                                                    "0.622"
                                                      "-2.397"
             "2"
                     "-0.506 "
                                   "0.962"
                                                                    "1.385"
[4,] NA
                                            "0.946"
             "3"
                     "-0.506 "
                                   "0.962"
                                                      "-2.397"
                                                                    "1.385"
[5,] NA
                                            "0.946"
             "2"
[6,] "1"
                     "-0.333"
                                   "1.033" "0.987"
                                                      "-2.364"
                                                                    "1.697"
                     "-0.333 "
[7,] NA
             "3"
                                   "1.033"
                                            "0.987"
                                                      "-2.364"
                                                                    "1.697"
[8,] "2"
             "3"
                     "0.000 "
                                   "1.352" "1.000"
                                                      "-2.659"
                                                                    "2,659"
```

dataset = anova(data0\$work\_experience,data0\$job\_effectiveness,tr\_matrix\_old=dataset)

```
[1] "diff $data0job_effectiveness by $data0work_experience"
[1] "model"
     [,1]
                     [,3]
                              [,4]
                                               [,6]
                                                        [,7]
                                      [,5]
[1,] ""
           "平方和" "自由度" "均方" "F"
                                            "显著性" NA
[2,] "组间" "25.011" "3"
                             "8.337" "18.536" "0.000"
                                                       NA
[3,] "组内" "40.031" "89"
                             "0.450" NA
                                              NA
                                                       NA
[4,] "总计" "65.042" "92"
                             NA
                                     NA
                                              NA
                                                       NA
[1] "leveneTest_result"
     [,1]
                [,2]
                          [,3]
                                    [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                  NA
                          "89"
[2,] "0.926"
                                    "0.431"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
$ pfunction
               :function (conf.level, adjusted = TRUE, ...)
$ qfunction
$ coefficients: Named num [1:6] 1.417 2.325 1.988 0.908 0.571 ...
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 0.4 0.406 0.427 0.157 0.205 ...
$ sigma
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 3.54 5.73 4.66 5.77 2.79 ...
$ tstat
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : num [1:6] 2.97e-03 4.17e-07 1.08e-04 3.73e-07 2.83e-02 ...
 $ pvalues
```

localhost:6788 39/81

```
..- attr(*, "error")= num 0.000815
 $ type
               : chr "single-step"
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
             1.4167
                        0.3996
                                 3.545 0.00297 **
2 - 0 == 0
             2.3250
                        0.4061
                                 5.725 < 0.001 ***
3 - 0 == 0
             1.9881
                        0.4267
                                 4.659 < 0.001 ***
2 - 1 == 0
             0.9083
                        0.1574
                                 5.771 < 0.001 ***
                                 2.791 0.02827 *
3 - 1 == 0
             0.5714
                        0.2047
3 - 2 == 0 -0.3369
                        0.2171 - 1.552 0.38918
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
     [,1]
             [,2]
                     [,3]
                                  [,4]
                                           [,5]
                                                     [,6]
                                                                   [,7]
[1,] ""
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
[3,] "0"
             "1"
                     "1.417 **"
                                  "0.400" "0.003"
                                                    "0.631"
                                                                   "2.203"
[4,] NA
             "2"
                     "2.325 ***"
                                  "0.406" "0.000"
                                                    "1.526"
                                                                   "3.124"
[5,] NA
             "3"
                     "1.988 ***"
                                  "0.427"
                                           "0.000"
                                                    "1.149"
                                                                   "2.827"
[6,] "1"
             "2"
                     "0.908 ***"
                                  "0.157" "0.000"
                                                    "0.599"
                                                                   "1.218"
             ''3''
                     "0.571 *"
                                  "0.205" "0.028"
                                                                   "0.974"
[7,] NA
                                                    "0.169"
[8,] "2"
             "3"
                     "-0.337 "
                                  "0.217"
                                          "0.389"
                                                    "-0.764"
                                                                   "0.090"
dataset = anova(data0$work_experience,data0$work.life_balance,tr_matrix_old=dataset)
[1] "diff $data0work.life_balance by $data0work_experience"
[1] "model"
                                                        [,7]
     [,1]
            [,2]
                     [,3]
                              [,4]
                                              [,6]
[1,] ""
            "平方和""自由度""均方""F"
                                            "显著性" NA
[2,] "组间" "7.023" "3"
                             "2.341" "4.197" "0.008"
                                                       NA
[3,] "组内" "49.643" "89"
                             "0.558" NA
                                              NA
                                                       NA
[4,] "总计" "56,665" "92"
                             NA
                                     NA
                                              NA
                                                       NA
[1] "leveneTest_result"
     [,1]
                [,2]
                          [,3]
                                    [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                              NA
                                                   NA
                          "89"
[2,] "0.119"
                                    "0.949"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
 $ pfunction
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
               :function (conf.level, adjusted = TRUE, ...)
 $ qfunction
 $ coefficients: Named num [1:6] 0.806 1.258 1.155 0.452 0.349 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 0.445 0.452 0.475 0.175 0.228 ...
 $ sigma
```

localhost:6788 40/81

```
..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 1.81 2.78 2.43 2.58 1.53 ...
 $ tstat
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
 $ pvalues
              : num [1:6] 0.2556 0.0293 0.0709 0.0493 0.4024 ...
  ..- attr(*, "error")= num 0.000974
               : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
             0.8062
                        0.4450
                                 1.811
                                         0.2556
1 - 0 == 0
             1.2583
                        0.4522
                                 2.782
2 - 0 == 0
                                         0.0293 *
3 - 0 == 0
             1.1548
                        0.4752
                                 2.430
                                         0.0709 .
                                 2.580
2 - 1 == 0
             0.4522
                        0.1753
                                         0.0493 *
3 - 1 == 0
             0.3486
                        0.2280
                                 1.529
                                         0.4024
3 - 2 == 0 -0.1036
                        0.2417 -0.428
                                         0.9711
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported —— single—step method)
             [,2]
                     [,3]
                                  [,4]
                                                     [,6]
     [,1]
                                            [,5]
                                                                   [,7]
[1,] ""
                                           1111
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                              "上限"
             "1"
                     "0.806 "
                                  "0.445"
                                           "0.256"
[3,] "0"
                                                    "-0.069"
                                                                   "1.681"
             "2"
                     "1.258 *"
                                  "0.452"
[4,] NA
                                          "0.029"
                                                    "0.369"
                                                                   "2.148"
[5,] NA
             "3"
                     "1.155 "
                                  "0.475" "0.071"
                                                    "0.220"
                                                                   "2.089"
[6,] "1"
             "2"
                     "0.452 *"
                                  "0.175"
                                           "0.049"
                                                    "0.107"
                                                                   "0.797"
[7,] NA
                     "0.349 "
             "3"
                                  "0.228"
                                           "0.402"
                                                    "-0.100"
                                                                   "0.797"
[8,] "2"
             "3"
                     "-0.104 "
                                  "0.242" "0.971" "-0.579"
                                                                   "0.372"
dataset = anova(data0$work_experience,data0$well.being,tr_matrix_old=dataset)
[1] "diff $data0well.being by $data0work_experience"
[1] "model"
     [,1]
            [,2]
                     [,3]
                              [,4]
                                              [,6]
                                                       [,7]
                                      [,5]
[1,] ""
            "平方和""自由度""均方""F"
                                            "显著性" NA
[2,] "组间" "10.387" "3"
                             "3.462" "4.304" "0.007"
                                                       NA
[3,] "组内" "71.589" "89"
                             "0.804" NA
                                              NA
                                                       NA
[4,] "总计" "81.976" "92"
                             NA
                                     NA
                                              NA
                                                       NA
[1] "leveneTest_result"
                [,2]
                                              [,5] [,6] [,7]
     [,1]
                          [,3]
                                    [,4]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                   NA
                                              NA
[2,] "0.776"
                "3"
                          "89"
                                    "0.510"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
```

localhost:6788 41/81

\$ pfunction

:function (type = c("univariate", "adjusted", p.adjust.methods), ...)

```
:function (conf.level, adjusted = TRUE, ...)
 $ qfunction
 $ coefficients: Named num [1:6] 0.861 1.475 1.101 0.614 0.241 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
 $ sigma
               : Named num [1:6] 0.534 0.543 0.571 0.21 0.274 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 1.61 2.716 1.93 2.92 0.879 ...
 $ tstat
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
 $ pvalues
              : num [1:6] 0.3566 0.0347 0.2059 0.0202 0.8026 ...
  ..- attr(*, "error")= num 0.000881
 $ type
               : chr "single-step"
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
             0.8605
                        0.5344
                                 1.610
                                         0.3566
2 - 0 == 0
             1.4750
                        0.5431
                                 2.716
                                         0.0347 *
                                         0.2059
3 - 0 == 0
             1.1012
                        0.5706
                                 1.930
2 - 1 == 0
             0.6145
                        0.2105
                                 2.920
                                         0.0202 *
3 - 1 == 0
             0.2407
                        0.2738
                                 0.879
                                         0.8026
3 - 2 == 0 -0.3738
                        0.2903 -1.288
                                         0.5517
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
             [,2]
                                   [,4]
                                                     [,6]
                                                                   [,7]
     [,1]
                     [,3]
                                            [,5]
[1,] ""
             ....
                                  1111
                                                     "95%置信区间" ""
                                           1111
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                              "上限"
[3,] "0"
             "1"
                                           "0.357"
                     "0.861 "
                                  "0.534"
                                                     "-0.191"
                                                                   "1.912"
[4,] NA
             "2"
                     "1.475 *"
                                  "0.543" "0.035"
                                                     "0.407"
                                                                   "2.543"
[5,] NA
             "3"
                     "1.101 "
                                  "0.571"
                                          "0.206"
                                                     "-0.021"
                                                                   "2,223"
             "2"
[6,] "1"
                     "0.614 *"
                                  "0.210" "0.020"
                                                     "0.201"
                                                                   "1.028"
             "3"
[7,] NA
                     "0.241 "
                                  "0.274"
                                           "0.803"
                                                     "-0.298"
                                                                   "0.779"
[8,] "2"
             "3"
                     "-0.374"
                                  "0.290" "0.552"
                                                    "-0.945"
                                                                   "0.197"
dataset = anova(data0$marital_status,data0$job_effectiveness,tr_matrix_old=dataset)
[1] "diff $data0job_effectiveness by $data0marital_status"
[1] "model"
                     [,3]
     [,1]
            [,2]
                              [,4]
                                       [,5]
                                               [,6]
                                                        [,7]
[1,] ""
            "平方和""自由度""均方"
                                   "F"
                                            "显著性" NA
[2,] "组间" "11.549" "4"
                             "2.887" "4.750" "0.002"
                                                       NA
[3,] "组内" "53,493" "88"
                             "0.608" NA
                                              NA
                                                       NA
[4,] "总计" "65.042" "92"
                             NA
                                     NA
                                              NA
                                                       NA
[1] "leveneTest_result"
                                              [,5] [,6] [,7]
     [,1]
                [,2]
                          [,3]
                                    [,4]
```

localhost:6788 42/81

NA

NA

[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA

"88"

```
[2,] "1.835"
                                     "0.129"
                                                   NA
                                                        NA
[1] "tukey_comparison"
List of 7
 $ pfunction
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction
               :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:10] 0.479 0.788 0.926 0.426 0.309 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
 $ sigma
               : Named num [1:10] 0.257 0.194 0.314 0.418 0.242 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 1.87 4.06 2.95 1.02 1.28 ...
 $ tstat
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : num [1:10] 0.324078 0.000896 0.02929 0.834869 0.689899 ...
 $ pvalues
  ..- attr(*, "error")= num 0.000111
               : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
                                  1.867 0.324078
1 - 0 == 0
           0.47950
                       0.25678
2 - 0 == 0 \ 0.78843
                       0.19419
                                  4.060 0.000896 ***
3 - 0 == 0 \quad 0.92593
                       0.31384
                                  2.950 0.029290 *
4 - 0 == 0 \quad 0.42593
                       0.41771
                                  1.020 0.834869
2 - 1 == 0 \quad 0.30893
                       0.24211
                                  1.276 0.689899
3 - 1 == 0 \quad 0.44643
                       0.34555
                                 1.292 0.679929
4 - 1 == 0 -0.05357
                       0.44203 -0.121 0.999945
3 - 2 == 0 \quad 0.13750
                       0.30196
                                0.455 0.990146
4 - 2 == 0 - 0.36250
                       0.40886 -0.887 0.893571
4 - 3 == 0 -0.50000
                       0.47744 - 1.047 0.821095
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
      [,1]
              [,2]
                       [,3]
                                    [,4]
                                             [,5]
                                                       [,6]
                                                                     [,7]
 [1,] ""
                       1111
                                    ....
                                             1111
                                                       "95%置信区间"""
                      "平均值差值""标准差""显著性""下限"
 [2,] "group"
              "group"
                                                                "上限"
              "1"
                                    "0.257"
                                                                     "0.985"
 [3,] "0"
                      "0.479 "
                                             "0.324"
                                                      "-0.026"
              "2"
 [4,] NA
                       "0.788 ***"
                                    "0.194"
                                             "0.001"
                                                      "0.406"
                                                                     "1.170"
              "3"
                      "0.926 *"
 [5,] NA
                                    "0.314"
                                             "0.029"
                                                      "0.309"
                                                                     "1.543"
 [6,] NA
              "4"
                      "0.426 "
                                    "0.418"
                                             "0.835"
                                                      "-0.396"
                                                                     "1.247"
              "2"
 [7,] "1"
                      "0.309 "
                                    "0.242"
                                                                     "0.785"
                                             "0.690" "-0.167"
 [8,] NA
              "3"
                      "0.446 "
                                    "0.346"
                                             "0.680"
                                                      "-0.233"
                                                                     "1.126"
              "4"
 [9,] NA
                      "-0.054"
                                    "0.442"
                                             "1.000"
                                                      "-0.923"
                                                                     "0.816"
[10,] "2"
              "3"
                      "0.138 "
                                    "0.302"
                                             "0.990"
                                                                     "0.731"
                                                      "-0.456"
              "4"
                      "-0.363 "
                                    "0.409"
                                             "0.894"
                                                                     "0.442"
[11,] NA
                                                      "-1.167"
[12,] "3"
              "4"
                      "-0.500 "
                                    "0.477"
                                             "0.821"
                                                      "-1.439"
                                                                     "0.439"
```

NΔ

43/81 localhost:6788

dataset = anova(data0\$marital\_status,data0\$work.life\_balance,tr\_matrix\_old=dataset)

```
[1] "diff $data0work.life_balance by $data0marital_status"
[1] "model"
                                                        [,7]
     [,1]
            [,2]
                     [,3]
                               [,4]
                                       [,5]
                                               [,6]
[1,] ""
            "平方和""自由度""均方""F"
                                            "显著性" NA
[2,] "组间" "9.248" "4"
                              "2.312" "4.291" "0.003"
                                                       NA
[3,] "组内" "47.417" "88"
                              "0.539" NA
                                                       NA
[4.] "总计" "56.665" "92"
                                              NA
                                                       NA
                                      NA
[1] "leveneTest result"
     [,1]
                [,2]
                          [,3]
                                    [,4]
                                              [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                   NA
                                              NA
[2,] "0.586"
                "4"
                          "88"
                                     "0.674"
                                                   NA
                                              NA
                                                        NA
[1] "tukey_comparison"
List of 7
 $ pfunction
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
               :function (conf.level, adjusted = TRUE, ...)
 $ qfunction
 $ coefficients: Named num [1:10] 0.476 0.74 0.659 0.315 0.264 ...
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
 $ sigma
               : Named num [1:10] 0.242 0.183 0.295 0.393 0.228 ...
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : Named num [1:10] 1.97 4.05 2.23 0.8 1.16 ...
 $ tstat
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
               : num [1:10] 0.27354 0.00093 0.16613 0.92413 0.76006 ...
 $ pvalues
  ..- attr(*, "error")= num 8.19e-05
              : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 \quad 0.47553
                       0.24175
                                 1.967 0.27354
                                 4.046 0.00093 ***
2 - 0 == 0 \ 0.73981
                       0.18283
3 - 0 == 0 \ 0.65856
                       0.29548
                                 2.229 0.16613
4 - 0 == 0 \ 0.31481
                       0.39327
                                 0.800 0.92413
2 - 1 == 0 \quad 0.26429
                       0.22794
                                 1.159 0.76006
3 - 1 == 0 \quad 0.18304
                       0.32533
                                 0.563 0.97827
4 - 1 == 0 -0.16071
                       0.41617 -0.386 0.99475
3 - 2 == 0 - 0.08125
                       0.28430
                                -0.286
                                        0.99837
4 - 2 == 0 -0.42500
                       0.38494 -1.104 0.79110
4 - 3 == 0 - 0.34375
                       0.44951
                               -0.765
                                        0.93507
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
                                                      [,6]
      [,1]
              [,2]
                      [,3]
                                    [,4]
                                             [,5]
                                                                     [,7]
                      ....
                                    ....
 [1,] ""
              ....
                                             1111
                                                      "95%置信区间" ""
```

localhost:6788 44/81

"0.476 "

[3,] "0"

"1"

[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"

"0.242"

"0.274"

"0.000"

```
"2"
                      "0.740 ***"
                                   "0.183"
 [4,] NA
                                            "0.001"
                                                     "0.380"
                                                                   "1.099"
                      "0.659 "
 [5,] NA
              "3"
                                   "0.295"
                                                                   "1.240"
                                            "0.166" "0.077"
              "4"
                      "0.315 "
                                   "0.393"
                                            "0.924" "-0.459"
                                                                   "1.088"
 [6,] NA
 [7,] "1"
              "2"
                                            "0.760" "-0.184"
                                                                   "0.713"
                      "0.264 "
                                   "0.228"
 [8,] NA
              "3"
                      "0.183 "
                                   "0.325"
                                            "0.978" "-0.457"
                                                                   "0.823"
              "4"
 [9,] NA
                      "-0.161 "
                                   "0.416"
                                            "0.995" "-0.979"
                                                                   "0.658"
[10,] "2"
              "3"
                      "-0.081 "
                                   "0.284"
                                            "0.998"
                                                     "-0.640"
                                                                   "0.478"
[11,] NA
              "4"
                      "-0.425 "
                                   "0.385"
                                            "0.791"
                                                     "-1.182"
                                                                   "0.332"
[12,] "3"
              "4"
                      "-0.344 "
                                   "0.450"
                                            "0.935" "-1.228"
                                                                   "0.540"
dataset = anova(data0$marital_status,data0$well.being,tr_matrix_old=dataset)
[1] "diff $data0well.being by $data0marital_status"
[1] "model"
     [,1]
            [,2]
                     [,3]
                             [,4]
                                      [,5]
                                              [,6]
                                                       [,7]
[1,] ""
                                           "显著性" NA
           "平方和""自由度""均方""F"
[2,] "组间" "16.836" "4"
                             "4.209" "5.686" "0.000"
[3,] "组内" "65.139" "88"
                             "0.740" NA
                                             NA
                                                      NA
[4,] "总计" "81.976" "92"
                                     NA
                                             NA
                                                      NA
[1] "leveneTest_result"
                [,2]
                          [,3]
                                    [,4]
                                             [,5] [,6] [,7]
     [,1]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                  NA
[2,] "1.065"
                          "88"
                                    "0.379"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
 $ pfunction :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ qfunction :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:10] 0.575 0.992 0.83 0.236 0.417 ...
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : Named num [1:10] 0.283 0.214 0.346 0.461 0.267 ...
 $ sigma
 ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : Named num [1:10] 2.031 4.631 2.396 0.512 1.561 ...
 $ tstat
  ..- attr(*, "names")= chr [1:10] "1 - 0" "2 - 0" "3 - 0" "4 - 0" ...
              : num [1:10] 0.244041 0.000102 0.116209 0.984655 0.506516 ...
 $ pvalues
  ..- attr(*, "error")= num 0.000135
              : chr "single-step"
 $ type
 - attr(*, "class")= chr "mtest"
     Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
             0.5754
                        0.2834
                                 2.031 0.244041
2 - 0 == 0
             0.9924
                        0.2143
                                 4.631 0.000102 ***
3 - 0 == 0
             0.8299
                        0.3463
                                 2.396 0.116209
                        0.4609
                                 0.512 0.984655
4 - 0 == 0
             0.2361
```

"上限"

"0.951"

localhost:6788 45/81

0.2672

0.3813

1.561 0.506516

0.667 0.959661

2 - 1 == 0

3 - 1 == 0

0.4170

0.2545

```
4 - 1 == 0 -0.3393
                        0.4878 -0.696 0.953290
3 - 2 == 0
           -0.1625
                        0.3332 -0.488 0.987236
4 - 2 == 0 -0.7563
                        0.4512 -1.676 0.433943
4 - 3 == 0 -0.5938
                        0.5269 - 1.127 0.778477
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
      [,1]
              [,2]
                      [,3]
                                   [,4]
                                            [,5]
                                                      [,6]
                                                                    [,7]
 [1,] ""
                                                     "95%置信区间" ""
 [2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                               "上限"
                                                                   "1.133"
 [3,] "0"
              "1"
                      "0.575 "
                                   "0.283"
                                            "0.244"
                                                     "0.018"
                                            "0.000"
 [4,] NA
              "2"
                      "0.992 ***"
                                   "0.214"
                                                     "0.571"
                                                                   "1.414"
                                                     "0.149"
 [5,] NA
              "3"
                      "0.830 "
                                   "0.346"
                                            "0.116"
                                                                   "1.511"
              "4"
                      "0.236 "
                                   "0.461"
                                            "0.985"
                                                                   "1.143"
 [6,] NA
                                                     "-0.670"
              "2"
                      "0.417 "
 [7,] "1"
                                   "0.267"
                                            "0.507" "-0.109"
                                                                   "0.942"
              "3"
                      "0.254 "
                                                                   "1.004"
 [8,] NA
                                   "0.381"
                                            "0.960" "-0.496"
              "4"
 [9,] NA
                      "-0.339 "
                                   "0.488"
                                            "0.953"
                                                    "-1.299"
                                                                   "0.620"
[10,] "2"
              "3"
                      "-0.162 "
                                   "0.333"
                                            "0.987"
                                                     "-0.818"
                                                                   "0.493"
                      "-0.756"
                                   "0.451"
[11,] NA
              "4"
                                            "0.434"
                                                     "-1.644"
                                                                   "0.131"
                      "-0.594 "
[12,] "3"
              "4"
                                   "0.527"
                                            "0.778" "-1.630"
                                                                   "0.442"
dataset = anova(data0$partners_work,data0$job_effectiveness,tr_matrix_old=dataset)
[1] "diff $data0job effectiveness by $data0partners work"
[1] "model"
                     [,3]
                              [,4]
                                              [,6]
                                                       [.7]
     [.1]
            [,2]
                                      [,5]
[1,] ""
            "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "4.569" "3"
                             "1.523" "2.241" "0.089"
                                                      NA
                             "0.679" NA
[3,] "组内" "60.473" "89"
                                             NA
                                                       NA
[4,] "总计" "65.042" "92"
                             NA
                                     NA
                                             NA
                                                      NA
[1] "leveneTest_result"
     [,1]
                [,2]
                          [,3]
                                    [,4]
                                             [.5] [.6] [.7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                                   NA
                                              NΑ
[2,] "0.367"
                          "89"
                                    "0.777"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
 $ pfunction
 $ qfunction
               :function (conf.level, adjusted = TRUE, ...)
 $ coefficients: Named num [1:6] 1.065 0.315 0.165 -0.75 -0.9 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 0.489 0.186 0.385 0.498 0.602 ...
 $ sigma
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 2.178 1.695 0.428 -1.505 -1.495 ...
 $ tstat
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
              : num [1:6] 0.123 0.307 0.971 0.412 0.418 ...
 $ pvalues
  ..- attr(*, "error")= num 0.000517
 $ type
               : chr "single-step"
 - attr(*, "class")= chr "mtest"
```

localhost:6788 46/81

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

```
Fit: aov(formula = y \sim x, data = data)
```

```
Linear Hypotheses:
```

```
Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
             1.0648
                        0.4890
                                 2.178
                                          0.123
2 - 0 == 0
             0.3148
                        0.1857
                                 1.695
                                          0.307
3 - 0 == 0
             0.1648
                        0.3853
                                 0.428
                                          0.971
2 - 1 == 0 -0.7500
                        0.4984 - 1.505
                                          0.412
3 - 1 == 0 -0.9000
                        0.6020 - 1.495
                                          0.418
3 - 2 == 0 -0.1500
                        0.3973 -0.378
                                          0.979
(Adjusted p values reported -- single-step method)
```

```
[,2]
                                  [,4]
                                                     [,6]
                                                                   [,7]
     [,1]
                     [,3]
                                            [,5]
[1,] ""
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                              "上限"
[3,] "0"
             "1"
                     "1.065 "
                                  "0.489"
                                           "0.123"
                                                    "0.103"
                                                                   "2.026"
[4,] NA
             "2"
                     "0.315 "
                                  "0.186"
                                           "0.307"
                                                    "-0.051"
                                                                   "0.680"
                     "0.165 "
                                  "0.385"
[5,] NA
             ''3''
                                           "0.971"
                                                    "-0.593"
                                                                   "0.923"
             "2"
                     "-0.750 "
[6,] "1"
                                  "0.498" "0.412"
                                                    "-1.730"
                                                                   "0.230"
                                                    "-2.084"
[7,] NA
             "3"
                     "-0.900 "
                                  "0.602" "0.418"
                                                                   "0.284"
[8,] "2"
             "3"
                     "-0.150 "
                                  "0.397" "0.979" "-0.931"
                                                                   "0.631"
```

#### dataset = anova(data0\$partners\_work,data0\$work.life\_balance,tr\_matrix\_old=dataset)

```
[1] "diff $data0work.life_balance by $data0partners_work"
[1] "model"
     [,1]
            [,2]
                     [,3]
                              [,4]
                                              [,6]
                                                       [,7]
                                      [,5]
[1,] ""
           "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "5.662" "3"
                             "1.887" "3.294" "0.024"
                                                      NA
[3,] "组内" "51.003" "89"
                             "0.573" NA
                                             NA
                                                      NA
[4,] "总计" "56,665" "92"
                                     NA
                                             NA
                                                      NA
[1] "leveneTest_result"
     [,1]
                [,2]
                          [,3]
                                    [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                  NA
                          "89"
[2,] "2.057"
                                    "0.112"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
$ pfunction
              :function (conf.level, adjusted = TRUE, ...)
$ qfunction
$ coefficients: Named num [1:6] 1.1019 0.3814 0.0185 -0.7204 -1.0833 ...
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
               : Named num [1:6] 0.449 0.171 0.354 0.458 0.553 ...
$ sigma
 ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
              : Named num [1:6] 2.4538 2.236 0.0523 -1.574 -1.9596 ...
$ tstat
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
$ pvalues
              : num [1:6] 0.0657 0.1081 0.9999 0.372 0.1916 ...
 ..- attr(*, "error")= num 0.000923
              : chr "single-step"
 $ type
- attr(*, "class")= chr "mtest"
```

localhost:6788 47/81

### Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

```
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
           1.10185
                       0.44904
                                 2.454
                                         0.0657 .
2 - 0 == 0 \ 0.38142
                       0.17058
                                 2.236
                                         0.1081
3 - 0 == 0 \quad 0.01852
                       0.35387
                                0.052
                                         0.9999
                       0.45772 -1.574
2 - 1 == 0 - 0.72043
                                         0.3720
3 - 1 == 0 -1.08333
                       0.55284 - 1.960
                                         0.1916
3 - 2 == 0 - 0.36290
                       0.36483 -0.995
                                         0.7328
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
     [,1]
             [,2]
                     [,3]
                                  [,4]
                                           [,5]
                                                    [,6]
                                                                   [,7]
[1,] ""
                                                    "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                              "上限"
[3,] "0"
             "1"
                     "1.102 "
                                  "0.449" "0.066"
                                                    "0.219"
                                                                  "1.985"
             "2"
[4,] NA
                     "0.381 "
                                  "0.171" "0.108"
                                                    "0.046"
                                                                  "0.717"
             "3"
[5,] NA
                     "0.019 "
                                  "0.354" "1.000"
                                                    "-0.677"
                                                                  "0.715"
[6,] "1"
             "2"
                     "-0.720 "
                                  "0.458" "0.372"
                                                    "-1.621"
                                                                  "0.180"
[7,] NA
             ''3''
                     "-1.083 "
                                  "0.553" "0.192"
                                                    "-2.171"
                                                                  "0.004"
[8,] "2"
             ''3''
                     "-0.363 "
                                  "0.365" "0.733" "-1.080"
                                                                  "0.355"
dataset = anova(data0$partners work,data0$well.being,tr matrix old=dataset)
[1] "diff $data0well.being by $data0partners_work"
[1] "model"
                    [,3]
     [,1]
            [,2]
                              [,4]
                                              [,6]
                                                       [,7]
                                      [,5]
[1,] ""
            "平方和""自由度""均方""F"
                                           "显著性" NA
[2,] "组间" "8.226" "3"
                             "2.742" "3.309" "0.024"
                                                      NA
[3,] "组内" "73.750" "89"
                             "0.829" NA
                                                      NA
                                             NA
[4,] "总计" "81.976" "92"
                             NA
                                     NA
                                             NA
                                                      NA
[1] "leveneTest_result"
                [,2]
                          [,3]
                                    [,4]
                                             [,5] [,6] [,7]
[1,] "莱文统计" "自由度1" "自由度2" "显著性" NA
                                             NA
                                                   NA
[2,] "0.466"
                          "89"
                                    "0.707"
                                             NA
                                                  NA
                                                       NA
[1] "tukey_comparison"
List of 7
 $ pfunction
               :function (type = c("univariate", "adjusted", p.adjust.methods), ...)
               :function (conf.level, adjusted = TRUE, ...)
 $ afunction
 $ coefficients: Named num [1:6] 1.31 0.477 0.177 -0.833 -1.133 ...
  ..- attr(*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...
 $ sigma
               : Named num [1:6] 0.54 0.205 0.426 0.55 0.665 ...
```

localhost:6788 48/81

: Named num [1:6] 2.426 2.325 0.416 -1.514 -1.705 ...

..- attr(\*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...

..- attr(\*, "names")= chr [1:6] "1 - 0" "2 - 0" "3 - 0" "2 - 1" ...

\$ tstat

```
: num [1:6] 0.0701 0.0887 0.973 0.4062 0.3021 ...
 $ pvalues
  ..- attr(*, "error")= num 0.000518
              : chr "single-step"
 - attr(*, "class")= chr "mtest"
    Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = y \sim x, data = data)
Linear Hypotheses:
          Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
            1.3102
                       0.5400
                                2.426
                                        0.0701 .
2 - 0 == 0
            0.4769
                       0.2051
                                2.325
                                        0.0887 .
3 - 0 == 0
            0.1769
                       0.4255 0.416
                                        0.9730
2 - 1 == 0 -0.8333
                       0.5504 -1.514
                                        0.4062
3 - 1 == 0 -1.1333
                       0.6648 -1.705
                                        0.3021
3 - 2 == 0 -0.3000
                       0.4387 -0.684
                                        0.8934
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Adjusted p values reported -- single-step method)
     [,1]
            [,2]
                    [,3]
                                 [,4]
                                          [,5]
                                                   [,6]
                                                                 [.7]
[1,] ""
                                                   "95%置信区间" ""
[2,] "group" "group" "平均值差值" "标准差" "显著性" "下限"
                                                            "上限"
[3,] "0"
            "1"
                    "1.310 "
                                 "0.540" "0.070"
                                                   "0.248"
                                                                 "2.372"
[4,] NA
            "2"
                    "0.477 "
                                 "0.205" "0.089"
                                                   "0.073"
                                                                 "0.880"
[5,] NA
            "3"
                    "0.177 "
                                 "0.426" "0.973"
                                                   "-0.660"
                                                                 "1.014"
            "2"
                                                                "0.249"
[6,] "1"
                    "-0.833 "
                                 "0.550" "0.406"
                                                   "-1.916"
            "3"
                    "-1.133 "
                                 "0.665" "0.302"
                                                   "-2.441"
[7,] NA
                                                                 "0.174"
[8,] "2"
            "3"
                    "-0.300 "
                                 "0.439" "0.893" "-1.163"
                                                                 "0.563"
 saveExcel(dataset,"ANOVA")
 rm(anova)
```

## TWO-WAY ANOVA 双因素方差分析步骤

LSD.test and Bonferroni, duncan.test

```
library(multcomp)
library(knitr)
library(xtable)
library(agricolae)
library(multcomp)
library(multcompView)
library(emmeans)
## 按性别分析因变量
x0 <- factor( as.character(data0$age) )
x1 <- factor( as.character(data0$gender) )
y <- data0$job_effectiveness
```

localhost:6788 49/81

```
data = data.frame(x0,x1,y)
model <- aov(y \sim x0 * x1, data=data)
model \leftarrow aov(y \sim x0 * x1, data=data)
data_1 = data.frame(x0=data0\$age,x1=data0\$gender,y=data0\$job_effectiveness)
model_1 \leftarrow aov(y \sim x0 * x1, data=data_1)
# 如果ANOVA拒绝原假设,执行Fisher's LSD
#if (summary(model)Pr(>F)'[1] < 0.05) {
   print("~~~~ LSD.test")
[1] "~~~~~ LSD.test"
   pairwise results <- LSD.test(model 1, "x0", p.adj="bonferroni") #bonferroni#对p值进行
   pairwise results
$statistics
    MSerror Df
                   Mean
                              CV
  0.6866993 89 4.083333 20.29404
$parameters
        test p.ajusted name.t ntr alpha
  Fisher-LSD bonferroni
                                 5 0.05
                            x0
$means
                                                 UCL Min Max
                                       LCL
                                                                  025 050
                                                                            075
                 std r
                               se
0 3.416667 0.6373774 9 0.2762244 2.867815 3.965519 2.25 4.00 3.0000 3.5 4.000
1 3.943182 0.8861763 22 0.1766737 3.592135 4.294229 2.00 5.50 3.0625 4.0 4.500
2 4.318182 0.8552977 33 0.1442535 4.031553 4.604810 2.00 5.75 4.0000 4.5 5.000
3 4.202381 0.7608344 21 0.1808313 3.843073 4.561689 3.00 5.50 3.7500 4.0 4.750
4 3.937500 0.7165144 8 0.2929802 3.355355 4.519645 3.00 5.25 3.4375 4.0 4.125
$comparison
NULL
$groups
         y groups
2 4.318182
3 4.202381
               ab
1 3.943182
               ab
4 3.937500
               ab
0 3.416667
               b
attr(,"class")
[1] "group"
   plot(pairwise_results)
```

localhost:6788 50/81

## **Groups and Range**



```
print("~~~~~")
```

[1] "~~~~"

```
#}
leveneTest_result = leveneTest(model)
# 进行图基事后比较
tukey_comparison0 <- glht(model, linfct = mcp(x0 = "Tukey"))
```

Warning in mcp2matrix(model, linfct = linfct): covariate interactions found -- default contrast might be inappropriate

```
tukey_comparison1 <- glht(model, linfct = mcp(x1 = "Tukey"))</pre>
```

Warning in mcp2matrix(model, linfct = linfct): covariate interactions found -- default contrast might be inappropriate

```
tuk <- TukeyHSD(model)
duncan <- duncan.test(model,'x0')

# 进行邓尼特事后比较,其中"control"是对照组
#dunnett_comparison <- glht(model, linfct = mcp(x = "Dunnett"))
#xtable(summary(model), type = "html", digits = 2, width = "600px", include.rownames =
```

localhost:6788 51/81

```
#kable(summary(model), format = "html")
summary(model)
```

```
Df Sum Sq Mean Sq F value Pr(>F)
x0
            4
                6.72 1.6800
                               2.443 0.053 .
            1
                1.14 1.1355
                               1.651 0.202
x1
x0:x1
                               0.040 0.997
            4
                0.11 0.0275
Residuals
           83 57.08 0.6877
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

```
summary(leveneTest_result)
```

```
Df
                  F value
                                    Pr(>F)
       : 9.0
Min.
                      :0.9691
                                Min.
                                       :0.4715
               Min.
1st Qu.:27.5
               1st Qu.:0.9691
                                1st Qu.:0.4715
               Median :0.9691
Median :46.0
                                Median :0.4715
Mean
       :46.0
              Mean
                      :0.9691
                                Mean
                                        :0.4715
3rd Ou.:64.5
               3rd Qu.:0.9691
                                3rd 0u.:0.4715
       :83.0
                      :0.9691
Max.
               Max.
                                Max.
                                       :0.4715
               NA's
                      :1
                                NA's
                                       :1
```

```
summary(tukey_comparison0)
```

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

```
Fit: aov(formula = y \sim x0 * x1, data = data)
```

#### Linear Hypotheses:

```
Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0
             0.5000
                        0.4414
                                 1.133
                                          0.779
2 - 0 == 0
             0.9125
                        0.4146
                                 2.201
                                          0.179
3 - 0 == 0
             0.8077
                        0.4364
                                 1.851
                                          0.338
4 - 0 == 0
             0.6667
                        0.6056
                                 1.101
                                          0.796
2 - 1 == 0
             0.4125
                        0.3028
                                 1.362
                                          0.640
3 - 1 == 0
             0.3077
                        0.3320
                                 0.927
                                          0.879
4 - 1 == 0
             0.1667
                        0.5353
                                 0.311
                                          0.998
3 - 2 == 0 -0.1048
                        0.2954 -0.355
                                          0.996
4 - 2 == 0 -0.2458
                        0.5134 - 0.479
                                          0.988
4 - 3 == 0 -0.1410
                        0.5311 -0.266
                                          0.999
(Adjusted p values reported -- single-step method)
```

```
summary(tukey_comparison1)
```

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

localhost:6788 52/81

```
Fit: aov(formula = y \sim x0 * x1, data = data)
Linear Hypotheses:
           Estimate Std. Error t value Pr(>|t|)
1 - 0 == 0 -0.1875 0.5563 -0.337
(Adjusted p values reported —— single-step method)
summary(tuk)
      Length Class Mode
x0
            -none- numeric
x1
        4
             -none- numeric
x0:x1 180
            -none- numeric
duncan
$statistics
   MSerror Df
                             CV
                   Mean
  0.6876646 83 4.083333 20.3083
$parameters
    test name.t ntr alpha
                5 0.05
  Duncan
            x0
$duncan
NULL
$means
                 std r
                               se Min Max
                                               Q25 Q50
                                                         075
0 3.416667 0.6373774 9 0.2764185 2.25 4.00 3.0000 3.5 4.000
1 3.943182 0.8861763 22 0.1767979 2.00 5.50 3.0625 4.0 4.500
2 4.318182 0.8552977 33 0.1443548 2.00 5.75 4.0000 4.5 5.000
3 4.202381 0.7608344 21 0.1809584 3.00 5.50 3.7500 4.0 4.750
4 3.937500 0.7165144 8 0.2931861 3.00 5.25 3.4375 4.0 4.125
$comparison
NULL
$groups
         y groups
2 4.318182
3 4.202381
                а
1 3.943182
               ab
4 3.937500
               ab
0 3.416667
               b
attr(,"class")
[1] "group"
#multcomp_plot(tukey_comparison)
```

localhost:6788 53/81

#summary(dunnett\_comparison)

# 相关性分析

Pearson(皮尔逊)相关系数

```
library(corrplot)
```

### corrplot 0.92 loaded

```
getCol <-function(data){</pre>
  correlation_result0 <- corr.test(data)</pre>
  r_value = correlation_result0$r
  p_value = correlation_result0$p
  # 使用 for 循环遍历矩阵
  for (i in 1:nrow(p_value)) {
    for (j in 1:ncol(p_value)) {
      # 访问矩阵元素
      #保留上3角
      if(i>1&&j<i){
        r_value[i, j] = NA
        next
      }
      c = ""
      if( p_value[i,j]<0.001){
        c="***"
      }else if( p_value[i,j]<0.01){</pre>
        c="**"
      }else if( p_value[i,j]<0.05){</pre>
        c="*"
      }
      r_value[i, j]=format(as.numeric(r_value[i, j]), digits = 3)
      #r_value[i, j]=round(as.numeric(r_value[i, j]),3)
      #r_value[i, j]=paste(as.character(r_value[i, j]),c)
      r_value[i, j]=paste(r_value[i, j],c)
   }
  }
  return(r_value)
}
data <- data0[c(cols_independent,cols_dependent)]</pre>
r_value = getCol(data)
kable(r_value)
```

|                        | organisationalCulture2 | organisationalCulture0 | organisationalCulture3 | organi  |
|------------------------|------------------------|------------------------|------------------------|---------|
| organisationalCulture2 | 1 ***                  | 0.889 ***              | 0.839 ***              | 0.755 ' |
| organisationalCulture0 | NA                     | 1 ***                  | 0.816 ***              | 0.813 * |
| organisationalCulture3 | NA                     | NA                     | 1 ***                  | 0.798   |
| organisationalCulture1 | NA                     | NA                     | NA                     | 1 ***   |

localhost:6788 54/81

|                            | organisationalCulture2 | organisationalCulture0 | organisationalCulture3 | organi |
|----------------------------|------------------------|------------------------|------------------------|--------|
| management2                | NA                     | NA                     | NA                     | NA     |
| management3                | NA                     | NA                     | NA                     | NA     |
| management4                | NA                     | NA                     | NA                     | NA     |
| teleworkerCharacteristics1 | NA                     | NA                     | NA                     | NA     |
| teleworkerCharacteristics2 | NA                     | NA                     | NA                     | NA     |
| teleworkerCharacteristics3 | NA                     | NA                     | NA                     | NA     |
| teleworkerCharacteristics0 | NA                     | NA                     | NA                     | NA     |
| communication3             | NA                     | NA                     | NA                     | NA     |
| communication2             | NA                     | NA                     | NA                     | NA     |
| communication1             | NA                     | NA                     | NA                     | NA     |
| job_effectiveness1         | NA                     | NA                     | NA                     | NA     |
| job_effectiveness2         | NA                     | NA                     | NA                     | NA     |
| job_effectiveness3         | NA                     | NA                     | NA                     | NA     |
| job_effectiveness4         | NA                     | NA                     | NA                     | NA     |
| work.life_balance1         | NA                     | NA                     | NA                     | NA     |
| work.life_balance2         | NA                     | NA                     | NA                     | NA     |
| work.life_balance3         | NA                     | NA                     | NA                     | NA     |
| work.life_balance4         | NA                     | NA                     | NA                     | NA     |
| well.being1                | NA                     | NA                     | NA                     | NA     |
| well.being2                | NA                     | NA                     | NA                     | NA     |
| well.being3                | NA                     | NA                     | NA                     | NA     |
| well.being4                | NA                     | NA                     | NA                     | NA     |

```
correlation_result0 = cor(data)
corrplot(correlation_result0, method = "color")
```

localhost:6788 55/81



```
saveExcel(r_value,"correlation Pearson")

data <- data0[all_var_calculated]
r_value = getCol(data)
kable(r_value)</pre>
```

|                           | teleworkerCharacteristics | communication | management | organisationalCulture |
|---------------------------|---------------------------|---------------|------------|-----------------------|
| teleworkerCharacteristics | 1 ***                     | 0.561 ***     | 0.639 ***  | 0.522 ***             |
| communication             | NA                        | 1 ***         | 0.586 ***  | 0.534 ***             |
| management                | NA                        | NA            | 1 ***      | 0.639 ***             |
| organisationalCulture     | NA                        | NA            | NA         | 1 ***                 |
| job_effectiveness         | NA                        | NA            | NA         | NA                    |
| work.life_balance         | NA                        | NA            | NA         | NA                    |
| well.being                | NA                        | NA            | NA         | NA                    |

```
correlation_result0 = cor(data)
corrplot(correlation_result0, method = "color")
```

localhost:6788 56/81



```
saveExcel(r_value,"correlation Pearson2")

#data <- data0[cols_dependent]

#r_value = getCol(data)

#kable(r_value)

#correlation_result1 = cor(data)

#corrplot(correlation_result1, method = "color")</pre>
```

# 回归分析

# 一元回归分析

略... ## 多元回归分析 VIF 共线性诊断 Durbin-Watson (DW): 容差值(Tolerance)是VIF的倒数,即 Tolerance = 1/VIF Durbin-Watson (DW): 在"2"附近**■**不存在序列相关,非伪回归方程; • 小于"2"存在正自相关; • 大于"2"存在负自相关

```
library(ggplot2)
library(car)
library(lmtest)
```

Loading required package: zoo

Attaching package: 'zoo'

localhost:6788 57/81

The following objects are masked from 'package:base':

```
as.Date, as.Date.numeric
```

```
#environment, jobCharacteristics, teleworkerCharacteristics, communication, management
#job_effectiveness, work.life_balance, well.being
#"environment","jobCharacteristics","teleworkerCharacteristics","communication","manag
#data = data0[, c("environment","jobCharacteristics","teleworkerCharacteristics","comm
data = data0[, c("teleworkerCharacteristics","communication","management","organisatio
mylm<-function(...,data=NULL){</pre>
  # 因变 ~ 自变量1 + 自变量2 + ... ,
  #model <- lm(work.life balance ~ teleworkerCharacteristics + communication + managem
  model <- lm(..., data = data)</pre>
  # 查看模型摘要,获取回归系数、标准误、t值和p值等信息
  sum = summary(model)
  print(sum)
  #result = cor(data) #变量间如果相关性为1,则不能进行vif验证
  #print(result)
  vif = vif(model)
  #容差值(Tolerance) 是VIF的倒数, 即Tolerance = 1/VIF
  Tolerance = 1/vif
  print(vif)
  print(Tolerance)
  # Durbin-Watson (DW): 德宾沃森
  dw test <- dwtest(model)</pre>
  print(dw test)
  #coef(model)
  #predict(model)
  AIC(model)
  BIC(model)
  #plot(model$resid)
  # 输出模型的详细结果
  print(model)
  # 预测新数据点的mpg值
  # 假设我们有一个新的数据点,马力为120,车重为3
  #newdata <- data.frame(environment = 5.2, jobCharacteristics = 6)</pre>
  #predictions <- predict(model, newdata)</pre>
  #print(predictions)
  # 绘制回归拟合线
  # 首先,安装并加载所需的绘图包
  # 创建散点图并添加拟合线
  \#ggplot(mtcars, aes(x = environment, y = job_effectiveness, color = factor(cyl))) +
  # geom_point() +
 # geom_smooth(method = lm, se = FALSE, formula = job_effectiveness ~ environment) +
  # labs(title = "Regression of mpg on hp", x = "Horsepower", y = "Miles/(US) gallon"
}
```

```
mylm(work.life_balance ~ teleworkerCharacteristics + communication + management + orga
```

```
Call:
lm(formula = ..1, data = data)
```

localhost:6788 58/81

```
Residuals:
```

Min 10 Median 30 Max -0.65736 -0.13461 -0.01356 0.11863 0.52079

#### Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.69842 0.12330 5.664 1.83e-07 \*\*\* teleworkerCharacteristics 0.21022 0.03445 6.102 2.75e-08 \*\*\* communication 0.11732 0.03723 3.151 0.00222 \*\* 0.03077 13.252 < 2e-16 \*\*\* management 0.40776 0.02089 4.116 8.65e-05 \*\*\* organisationalCulture 0.08599

\_\_\_

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2194 on 88 degrees of freedom Multiple R-squared: 0.9252, Adjusted R-squared: 0.9218 F-statistic: 272.2 on 4 and 88 DF, p-value: < 2.2e-16

teleworkerCharacteristics communication management 1.884931 1.750454 2.288005

organisationalCulture

1.839745

teleworkerCharacteristics communication management 0.5305233 0.5712803 0.4370619

organisationalCulture 0.5435536

Durbin-Watson test

data: model

DW = 2.0762, p-value = 0.6304

alternative hypothesis: true autocorrelation is greater than  ${\bf 0}$ 

Call:

lm(formula = ...1, data = data)

Coefficients:

(Intercept) teleworkerCharacteristics
0.69842 0.21022
communication management
0.11732 0.40776

 $organisation al {\tt Culture}$ 

0.08599

mylm(job\_effectiveness ~ teleworkerCharacteristics + communication + management + orga

Call:

lm(formula = ..1, data = data)

Residuals:

Min 10 Median 30 Max

localhost:6788 59/81

```
-0.63471 -0.13687 0.01613 0.14390 0.57467
```

```
Coefficients:
```

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.14615 2.265 0.02600 \* 0.33096 0.04084 14.287 < 2e-16 \*\*\* teleworkerCharacteristics 0.58346 communication 0.24359 0.04413 5.520 3.39e-07 \*\*\* management 0.10474 0.03647 2.872 0.00511 \*\* organisationalCulture 0.05452 0.02476 2.202 0.03029 \*

\_\_\_

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2601 on 88 degrees of freedom Multiple R-squared: 0.9085, Adjusted R-squared: 0.9043 F-statistic: 218.4 on 4 and 88 DF, p-value: < 2.2e-16

teleworkerCharacteristics communication management 1.884931 1.750454 2.288005

organisationalCulture

1.839745

teleworkerCharacteristics communication management

organisationalCulture 0.5435536

Durbin-Watson test

data: model

DW = 1.7299, p-value = 0.08962

alternative hypothesis: true autocorrelation is greater than  ${\bf 0}$ 

Call:

lm(formula = ..1, data = data)

Coefficients:

(Intercept) teleworkerCharacteristics
0.33096 0.58346
communication management
0.24359 0.10474

organisationalCulture

0.05452

mylm(well.being ~ teleworkerCharacteristics + communication + management + organisatio

#### Call:

lm(formula = ...1, data = data)

#### Residuals:

Min 1Q Median 3Q Max -0.59375 -0.10624 -0.01171 0.10151 0.42853

localhost:6788 60/81

```
Coefficients:
```

Estimate Std. Error t value Pr(>|t|) (Intercept) 0.09900 -0.187 -0.01850 0.852  $0.02766 \quad 13.640 < 2e-16 ***$ teleworkerCharacteristics 0.37731 0.02989 5.741 1.32e-07 \*\*\* communication 0.17162 0.02470 10.219 < 2e-16 \*\*\* management 0.25245 organisationalCulture 0.23158 0.01677 13.808 < 2e-16 \*\*\*

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1762 on 88 degrees of freedom Multiple R-squared: 0.9667, Adjusted R-squared: 0.9652 F-statistic: 638.3 on 4 and 88 DF, p-value: < 2.2e-16

teleworkerCharacteristics communication management 1.884931 1.750454 2.288005

organisationalCulture

1.839745

teleworkerCharacteristics communication management 0.5305233 0.5712803 0.4370619

organisationalCulture 0.5435536

Durbin-Watson test

data: model

DW = 1.9892, p-value = 0.4782

alternative hypothesis: true autocorrelation is greater than 0

Call:

lm(formula = ..1, data = data)

Coefficients:

(Intercept) teleworkerCharacteristics
-0.0185 0.3773
communication management
0.1716 0.2525

organisationalCulture

0.2316

#mylm(work.life\_balance ~ teleworkerCharacteristics + communication + management ,data
#mylm(work.life\_balance ~ teleworkerCharacteristics + communication + organisationalCu
#mylm(work.life\_balance ~ teleworkerCharacteristics + management + organisationalCult
#mylm(work.life\_balance ~ communication + management + organisationalCulture,data=data

# 多元回归可始化

library(plotly)

Attaching package: 'plotly'

localhost:6788 61/81

```
The following object is masked from 'package:ggplot2':
    last_plot
The following objects are masked from 'package:memisc':
    rename, style
The following object is masked from 'package:MASS':
    select
The following object is masked from 'package:stats':
    filter
The following object is masked from 'package:graphics':
    layout
 library(reshape2)
 library(tidyverse)
— Attaching core tidyverse packages —
                                                             – tidyverse 2.0.0 —

✓ dplyr

            1.1.4
                      ✓ readr
                                  2.1.5

✓ forcats 1.0.0

                                  1.5.1

✓ stringr

✓ lubridate 1.9.3

✓ tibble

                                  3.2.1
✓ purrr
          1.0.2

✓ tidyr

                                  1.3.1
- Conflicts -
                                                       - tidyverse_conflicts() —
x purrr::%@%()
                           masks memisc::%@%()
x ggplot2::%+%()
                           masks psych::%+%()
* ggplot2::alpha()
                           masks psych::alpha()
* lubridate::as.interval() masks memisc::as.interval()
* dplyr::collect()
                           masks memisc::collect()
* dplyr::filter()
                           masks plotly::filter(), stats::filter()
* lubridate::is.interval() masks memisc::is.interval()
* dplyr::lag()
                           masks stats::lag()
                           masks car::recode(), memisc::recode()
* dplyr::recode()
* dplyr::rename()
                           masks plotly::rename(), memisc::rename()
* dplyr::select()
                           masks plotly::select(), MASS::select()
* purrr::some()
                           masks car::some()
* dplyr::syms()
                           masks ggplot2::syms(), memisc::syms()
                           masks memisc::view()
* tibble::view()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts
to become errors
library(tidymodels)
Registered S3 method overwritten by 'parsnip':
  method
                  from
  autoplot.glmnet ggfortify
— Attaching packages —
                                                            — tidymodels 1.1.1 —
```

localhost:6788 62/81

```
1.2.0
               1.0.5
✓ broom
                          ✓ rsample

✓ dials

               1.2.1

✓ tune

                                         1.1.2
✓ infer
               1.0.6
                          ✓ workflows
                                         1.1.4

✓ modeldata
               1.3.0
                          ✓ workflowsets 1.0.1
✓ parsnip
               1.2.0
                          ✓ yardstick
                                         1.3.0
✓ recipes
               1.0.10
- Conflicts -
                                                      - tidymodels_conflicts() ---
x purrr::%@%()
                    masks memisc::%@%()
x ggplot2::%+%()
                    masks psych::%+%()
* scales::alpha()
                    masks ggplot2::alpha(), psych::alpha()
                    masks memisc::collect()
* dplyr::collect()
* scales::discard() masks purrr::discard()
* dplyr::filter()
                    masks plotly::filter(), stats::filter()
* recipes::fixed() masks stringr::fixed()
* dplyr::lag()
                    masks stats::lag()
* dplyr::recode()
                    masks car::recode(), memisc::recode()
* dplyr::rename()
                    masks plotly::rename(), memisc::rename()
                    masks plotly::select(), MASS::select()
* dplyr::select()
                    masks car::some()
* purrr::some()
* yardstick::spec() masks readr::spec()
* recipes::step()
                    masks stats::step()
* dplyr::syms()
                    masks ggplot2::syms(), memisc::syms()
* tibble::view()
                    masks memisc::view()
• Use tidymodels_prefer() to resolve common conflicts.
library(plotly)
#install.packages("kernlab")
 library(kernlab)
Attaching package: 'kernlab'
The following object is masked from 'package:scales':
    alpha
The following object is masked from 'package:purrr':
    cross
The following object is masked from 'package:ggplot2':
    alpha
The following object is masked from 'package:psych':
    alpha
#install.packages("pracma")
 library(pracma) #为了在曲面上显示网格线
```

Attaching package: 'pracma'

localhost:6788 63/81

```
The following objects are masked from 'package:kernlab':
    cross, eig, size

The following object is masked from 'package:purrr':
    cross

The following object is masked from 'package:car':
    logit

The following objects are masked from 'package:psych':
    logit, polar

The following object is masked from 'package:memisc':
    Reshape
```

```
data(iris)
#选择自变量和因变量
mesh size <- .02
margin <- 0
X <- iris %>% select(Sepal.Width, Sepal.Length)
y <- iris %>% select(Petal.Width)
model <- svm rbf(cost = 1.0) %>%
  set_engine("kernlab") %>%
  set mode("regression") %>%
  fit(Petal.Width ~ Sepal.Width + Sepal.Length, data = iris)
x_min <- min(X$Sepal.Width) - margin</pre>
x_max <- max(X$Sepal.Width) - margin</pre>
y_min <- min(X$Sepal.Length) - margin</pre>
y_max <- max(X$Sepal.Length) - margin</pre>
xrange <- seq(x_min, x_max, mesh_size)</pre>
yrange <- seq(y_min, y_max, mesh_size)</pre>
xy <- meshgrid(x = xrange, y = yrange)</pre>
xx <- xy$X
yy <- xy$Y
dim_val <- dim(xx)</pre>
xx1 <- matrix(xx, length(xx), 1)</pre>
yy1 <- matrix(yy, length(yy), 1)</pre>
final <- cbind(xx1, yy1)</pre>
pred <- model %>%
  predict(final)
pred <- pred$.pred</pre>
pred <- matrix(pred, dim_val[1], dim_val[2])</pre>
fig <- plot_ly(iris, x = ~Sepal.Width, y = ~Sepal.Length, z = ~Petal.Width ) %>%
  add_markers(size = 5) %>%
  add_surface(x=xrange, y=yrange, z=pred, alpha = 0.65, type = 'mesh3d', name = 'pred_
fig
```

localhost:6788 64/81



```
library(plot3D)
set.seed(123)
n <- 100
x1 <- rnorm(n)
x2 <- rnorm(n)
y < -2*x1 + 3*x2 + rnorm(n)
data <- data.frame(x1, x2, y)</pre>
model \leftarrow lm(y \sim x1 + x2, data = data)
# 创建一个网格
grid_x1 <- seq(min(data$x1), max(data$x1), length.out = 50)</pre>
grid_x2 <- seq(min(data$x2), max(data$x2), length.out = 50)</pre>
grid <- expand.grid(x1 = grid_x1, x2 = grid_x2)</pre>
# 预测网格上的y值
grid$y_pred <- predict(model, newdata = grid)</pre>
# 绘制三维散点图
scatter3D(data$x1, data$x2, data$y, pch = 20, colvar = NULL, col = "blue",
          xlab = "x1", ylab = "x2", zlab = "y", theta = 40, phi = 30,
          ticktype = "detailed", cex.lab = 1.2, cex.axis = 1.2)
```

localhost:6788 65/81



localhost:6788 66/81

## **3D Surface Plot**



```
# 创建示例数据
set.seed(123)
x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
y <- 2*x1 + 3*x2 + 1.5*x3 + rnorm(100)

# 拟合多元回归模型
model <- lm(y ~ x1 + x2 + x3)

# 绘制多元回归模型
plot(y ~ x1, col="blue", pch=16, xlab="x1", ylab="y")
points(x2, y, col="red", pch=16)
points(x3, y, col="green", pch=16)
abline(model, col="purple", lwd=2)
```

Warning in abline(model, col = "purple", lwd = 2): only using the first two of 4 regression coefficients

```
legend("topleft", legend=c("x1", "x2", "x3", "Regression Line"),
        col=c("blue", "red", "green", "purple"), pch=16, lwd=2)
```

localhost:6788 67/81



library(ggfortify)
autoplot(model)

localhost:6788 68/81







autoplot(model, type = "fit")



autoplot(model, type = "conf")

localhost:6788 70/81





# 中介效应分析

# 调节分析

# 共线性诊断不通过

取标准化值 ## SEM https://lavaan.ugent.be/tutorial/ a->b->c a->c b为中介变量,中介效应: a->b的系数 \* b-c的系数 总效应 中介效应+a->c的系数

### library(lavaan)

This is lavaan 0.6-17 lavaan is FREE software! Please report any bugs.

Attaching package: 'lavaan'

The following object is masked from 'package:psych':

cor2cov

```
library(semPlot)
#SEM
model <- '</pre>
```

localhost:6788 71/81

```
# 潜变量 =~ 测量指标1(既量表) + 测量指标2 + ...
teleworkerCharacteristics =~ teleworkerCharacteristics1 + teleworkerCharacteristics2 +
communication = ~ communication1 + communication2 + communication3
management =~ management2 + management3 + management4
organisationalCulture =~ organisationalCulture1 + organisationalCulture2 + organisatio
#因变量
job_effectiveness =~ job_effectiveness1 + job_effectiveness2 + job_effectiveness3 + jo
work.life_balance =~ work.life_balance1 + work.life_balance2 + work.life_balance3 + wo
well.being =~ well.being1 + well.being2 + well.being3 + well.being4
#回归方程
# 因变量~ 自变量1+自变量2+...
work.life_balance ~ beta_work_tel*teleworkerCharacteristics + beta_work_com*communicat
well.being ~ beta_well_tel*teleworkerCharacteristics + beta_well_com*communication + b
#直接
job_effectiveness ~ beta_job_tel*teleworkerCharacteristics + beta_job_com*communicatio
#中介效应
indirect work job tel:=beta work tel*beta job tel
indirect_work_job_com:=beta_work_com*beta_job_com
indirect_work_job_man:=beta_work_man*beta_job_man
indirect_work_job_org:=beta_work_org*beta_job_org
indirect_well_job_tel:=beta_well_tel*beta_job_tel
indirect_well_job_com:=beta_well_com*beta_job_com
indirect well job man:=beta well man*beta job man
indirect_well_job_org:=beta_well_org*beta_job_org
#整体效应
all:=indirect_work_job_tel+indirect_work_job_com+indirect_work_job_man+indirect_work_j
result <- sem(model,data=data_src)</pre>
```

Warning in lav\_object\_post\_check(object): lavaan WARNING: some estimated lv variances are negative

```
#summary(result,standardized = TRUE)
summary(result,standardized=TRUE, fit.measures=TRUE) #后面画图后,显示不全
```

#### lavaan 0.6.17 ended normally after 140 iterations

| Estimator                  | ML     |
|----------------------------|--------|
| Optimization method        | NLMINB |
| Number of model parameters | 70     |
| Number of observations     | 93     |
| Model Test User Model:     |        |

Test statistic 1235.326

Degrees of freedom 255

P-value (Chi-square) 0.000

Model Test Baseline Model:

localhost:6788 72/81

| Test statistic     | 4436.925 |
|--------------------|----------|
| Degrees of freedom | 300      |
| P-value            | 0.000    |

### User Model versus Baseline Model:

| Comparative Fit Index (CFI) | 0.763 |
|-----------------------------|-------|
| Tucker-Lewis Index (TLI)    | 0.721 |

### Loglikelihood and Information Criteria:

| Loglikelihood user model (H0)<br>Loglikelihood unrestricted model (H1) | -1829.675<br>-1212.012 |
|------------------------------------------------------------------------|------------------------|
| Akaike (AIC)                                                           | 3799.350               |
| Bayesian (BIC)                                                         | 3976.632               |
| Sample-size adjusted Bayesian (SABIC)                                  | 3755.658               |

### Root Mean Square Error of Approximation:

| RMSEA                                  | 0.203 |
|----------------------------------------|-------|
| 90 Percent confidence interval - lower | 0.192 |
| 90 Percent confidence interval – upper | 0.215 |
| P-value H_0: RMSEA <= 0.050            | 0.000 |
| P-value H_0: RMSEA >= 0.080            | 1.000 |

### Standardized Root Mean Square Residual:

SRMR 0.085

### Parameter Estimates:

Standard errors Standard Information Expected Information saturated (h1) model Structured

### Latent Variables:

|                             | Estimate | Std.Err | z-value | P(> z ) | Std.lv |
|-----------------------------|----------|---------|---------|---------|--------|
| teleworkerCharacteristics = | ·        |         |         |         |        |
| tlwrkrChrctrs1              | 1.000    |         |         |         | 0.781  |
| tlwrkrChrctrs2              | 0.929    | 0.127   | 7.314   | 0.000   | 0.726  |
| tlwrkrChrctrs3              | 1.271    | 0.141   | 8.993   | 0.000   | 0.993  |
| communication =~            |          |         |         |         |        |
| communication1              | 1.000    |         |         |         | 0.910  |
| communication2              | 1.026    | 0.081   | 12.669  | 0.000   | 0.934  |
| communication3              | 1.210    | 0.108   | 11.189  | 0.000   | 1.101  |
| management =~               |          |         |         |         |        |
| management2                 | 1.000    |         |         |         | 1.023  |
| management3                 | 1.220    | 0.086   | 14.227  | 0.000   | 1.248  |
| management4                 | 0.920    | 0.091   | 10.097  | 0.000   | 0.941  |
| organisationalCulture =~    |          |         |         |         |        |
| organstnlCltr1              | 1.000    |         |         |         | 1.336  |
| organstnlCltr2              | 1.036    | 0.106   | 9.786   | 0.000   | 1.384  |
| organstnlCltr3              | 1.076    | 0.084   | 12.745  | 0.000   | 1.437  |
|                             |          |         |         |         |        |

localhost:6788 73/81

| , 3:30 AM            |       | DM810 | )1FinalExam |       |       |
|----------------------|-------|-------|-------------|-------|-------|
| organstnlCltr4       | 0.931 | 0.088 | 10.529      | 0.000 | 1.243 |
| job_effectiveness =~ |       |       |             |       |       |
| job_effctvnss1       | 1.000 |       |             |       | 0.785 |
| job_effctvnss2       | 1.087 | 0.067 | 16.321      | 0.000 | 0.853 |
| job_effctvnss3       | 1.143 | 0.059 | 19.290      | 0.000 | 0.897 |
| job_effctvnss4       | 0.955 | 0.058 | 16.425      | 0.000 | 0.749 |
| work.life_balance =~ |       |       |             |       |       |
| work.lif_blnc1       | 1.000 |       |             |       | 0.682 |
| work.lif_blnc2       | 1.213 | 0.062 | 19.535      | 0.000 | 0.828 |
| work.lif_blnc3       | 1.191 | 0.064 | 18.484      | 0.000 | 0.813 |
| work.lif_blnc4       | 1.099 | 0.067 | 16.368      | 0.000 | 0.750 |
| well.being =~        |       |       |             |       |       |
| well.being1          | 1.000 |       |             |       | 0.823 |
| well.being2          | 0.971 | 0.061 | 15.820      | 0.000 | 0.800 |
| well.being3          | 1.362 | 0.078 | 17.411      | 0.000 | 1.121 |
| well.being4          | 1.140 | 0.072 | 15.919      | 0.000 | 0.939 |
| Std.all              |       |       |             |       |       |
| 0.729                |       |       |             |       |       |
| 0.723                |       |       |             |       |       |
| 0.876                |       |       |             |       |       |
| 0.833                |       |       |             |       |       |
| 0.973                |       |       |             |       |       |
| 0.889                |       |       |             |       |       |
| 0 960                |       |       |             |       |       |

0.869

0.946

0.801

0.804

0.840

0.997

0.882

0.931

0.916

0.956

0.918

0.931

0.960

0.947

0.917

0.920

0.913

0.940

0.915

## Regressions:

|                     | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
|---------------------|----------|---------|---------|---------|--------|---------|
| work.life_balance ~ |          |         |         |         |        |         |
| tlC (bt wrk t)      | 0.219    | 0.059   | 3.740   | 0.000   | 0.251  | 0.251   |

| cmm (bt_wrk_c)            | 0.014  | 0.032 | 0.434  | 0.664 | 0.019  | 0.019  |
|---------------------------|--------|-------|--------|-------|--------|--------|
| mng (bt_wrk_m)            | 0.440  | 0.053 | 8.321  | 0.000 | 0.659  | 0.659  |
| orC (bt_wrk_r)            | 0.084  | 0.024 | 3.579  | 0.000 | 0.165  | 0.165  |
| well.being ~              |        |       |        |       |        |        |
| tlC (bt_wll_t)            | 0.398  | 0.067 | 5.987  | 0.000 | 0.378  | 0.378  |
| cmm (bt_wll_c)            | 0.101  | 0.029 | 3.456  | 0.001 | 0.112  | 0.112  |
| <pre>mng (bt_wll_m)</pre> | 0.263  | 0.043 | 6.065  | 0.000 | 0.327  | 0.327  |
| orC (bt_wll_r)            | 0.223  | 0.028 | 7.946  | 0.000 | 0.361  | 0.361  |
| job_effectiveness $\sim$  |        |       |        |       |        |        |
| tlC (bt_jb_t)             | 0.605  | 0.273 | 2.217  | 0.027 | 0.603  | 0.603  |
| cmm (bt_jb_c)             | 0.092  | 0.046 | 1.975  | 0.048 | 0.106  | 0.106  |
| mng (bt_jb_m)             | -0.546 | 0.620 | -0.881 | 0.379 | -0.712 | -0.712 |
| orC (bt_jb_r)             | -0.146 | 0.106 | -1.383 | 0.167 | -0.249 | -0.249 |
| w (bt_jb_wr)              | 0.936  | 1.453 | 0.644  | 0.520 | 0.814  | 0.814  |
| wl. (bt_jb_wl)            | 0.378  | 0.279 | 1.353  | 0.176 | 0.396  | 0.396  |
|                           |        |       |        |       |        |        |

## Covariances:

|                              | Estimate | Std.Err | z-value | P(> z ) | Std.lv |
|------------------------------|----------|---------|---------|---------|--------|
| teleworkerCharacteristics ~~ | ,        |         |         |         |        |
| communication                | 0.336    | 0.096   | 3.489   | 0.000   | 0.473  |
| management                   | 0.613    | 0.129   | 4.768   | 0.000   | 0.767  |
| organistnlCltr               | 0.653    | 0.155   | 4.200   | 0.000   | 0.626  |
| communication ~~             |          |         |         |         |        |
| management                   | 0.561    | 0.127   | 4.405   | 0.000   | 0.603  |
| organistnlCltr               | 0.704    | 0.165   | 4.256   | 0.000   | 0.579  |
| management ~~                |          |         |         |         |        |
| organistnlCltr               | 0.854    | 0.190   | 4.503   | 0.000   | 0.625  |
| Std.all                      |          |         |         |         |        |

0.473

0.767

0.626

0.603

0.579

0.625

### Variances:

|                 | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |  |
|-----------------|----------|---------|---------|---------|--------|---------|--|
| .tlwrkrChrctrs1 | 0.537    | 0.079   | 6.767   | 0.000   | 0.537  | 0.468   |  |
| .tlwrkrChrctrs2 | 0.482    | 0.071   | 6.778   | 0.000   | 0.482  | 0.477   |  |
| .tlwrkrChrctrs3 | 0.300    | 0.052   | 5.802   | 0.000   | 0.300  | 0.233   |  |
| .communication1 | 0.364    | 0.061   | 5.974   | 0.000   | 0.364  | 0.305   |  |
| .communication2 | 0.049    | 0.029   | 1.710   | 0.087   | 0.049  | 0.054   |  |
| .communication3 | 0.323    | 0.062   | 5.185   | 0.000   | 0.323  | 0.210   |  |
| .management2    | 0.339    | 0.055   | 6.162   | 0.000   | 0.339  | 0.244   |  |
| .management3    | 0.184    | 0.040   | 4.629   | 0.000   | 0.184  | 0.106   |  |
| .management4    | 0.496    | 0.077   | 6.456   | 0.000   | 0.496  | 0.359   |  |
| .organstnlCltr1 | 0.978    | 0.146   | 6.677   | 0.000   | 0.978  | 0.354   |  |
| .organstnlCltr2 | 0.799    | 0.121   | 6.607   | 0.000   | 0.799  | 0.294   |  |
| .organstnlCltr3 | 0.014    | 0.028   | 0.508   | 0.611   | 0.014  | 0.007   |  |
| .organstnlCltr4 | 0.441    | 0.069   | 6.439   | 0.000   | 0.441  | 0.222   |  |
| .job_effctvnss1 | 0.094    | 0.015   | 6.155   | 0.000   | 0.094  | 0.132   |  |

| .job_effctvnss2 | 0.139  | 0.022 | 6.305  | 0.000 | 0.139  | 0.161  |
|-----------------|--------|-------|--------|-------|--------|--------|
| .job_effctvnss3 | 0.075  | 0.013 | 5.627  | 0.000 | 0.075  | 0.085  |
| .job_effctvnss4 | 0.105  | 0.017 | 6.292  | 0.000 | 0.105  | 0.158  |
| .work.lif_blnc1 | 0.072  | 0.012 | 6.192  | 0.000 | 0.072  | 0.133  |
| .work.lif_blnc2 | 0.059  | 0.011 | 5.612  | 0.000 | 0.059  | 0.079  |
| .work.lif_blnc3 | 0.075  | 0.013 | 5.948  | 0.000 | 0.075  | 0.103  |
| .work.lif_blnc4 | 0.106  | 0.017 | 6.316  | 0.000 | 0.106  | 0.158  |
| .well.being1    | 0.124  | 0.017 | 7.341  | 0.000 | 0.124  | 0.154  |
| .well.being2    | 0.127  | 0.017 | 7.342  | 0.000 | 0.127  | 0.166  |
| .well.being3    | 0.166  | 0.023 | 7.294  | 0.000 | 0.166  | 0.117  |
| .well.being4    | 0.171  | 0.023 | 7.342  | 0.000 | 0.171  | 0.163  |
| tlwrkrChrctrst  | 0.610  | 0.149 | 4.094  | 0.000 | 1.000  | 1.000  |
| communication   | 0.829  | 0.169 | 4.899  | 0.000 | 1.000  | 1.000  |
| management      | 1.047  | 0.198 | 5.276  | 0.000 | 1.000  | 1.000  |
| organistnlCltr  | 1.785  | 0.380 | 4.695  | 0.000 | 1.000  | 1.000  |
| .job_effectvnss | -0.036 | 0.012 | -2.979 | 0.003 | -0.058 | -0.058 |
| .work.life_blnc | 0.005  | 0.005 | 0.993  | 0.321 | 0.010  | 0.010  |
| .well.being     | -0.022 | 0.005 | -4.637 | 0.000 | -0.033 | -0.033 |
|                 |        |       |        |       |        |        |

### Defined Parameters:

|                           | Estimate | Std.Err | z-value | P(> z ) | Std.lv | Std.all |
|---------------------------|----------|---------|---------|---------|--------|---------|
| indrct_wrk_jb_            | 0.133    | 0.084   | 1.572   | 0.116   | 0.151  | 0.151   |
| indrct_wrk_jb_            | 0.001    | 0.003   | 0.453   | 0.650   | 0.002  | 0.002   |
| indrct_wrk_jb_            | -0.240   | 0.289   | -0.831  | 0.406   | -0.470 | -0.470  |
| indrct_wrk_jb_            | -0.012   | 0.010   | -1.215  | 0.224   | -0.041 | -0.041  |
| indrct_wll_jb_            | 0.241    | 0.129   | 1.871   | 0.061   | 0.228  | 0.228   |
| <pre>indrct_wll_jb_</pre> | 0.009    | 0.006   | 1.680   | 0.093   | 0.012  | 0.012   |
| indrct_wll_jb_            | -0.144   | 0.172   | -0.838  | 0.402   | -0.233 | -0.233  |
| indrct_wll_jb_            | -0.033   | 0.024   | -1.353  | 0.176   | -0.090 | -0.090  |
| all                       | 1.269    | 0.652   | 1.946   | 0.052   | 0.769  | 0.769   |

```
#chisq_result = chisq.test(result)
#summary(chisq_result)
#获取模型拟合参数
fits = fitMeasures(result)
fits
```

| chisq             | fmin            | npar        |
|-------------------|-----------------|-------------|
| 1235.326          | 6.642           | 70.000      |
| baseline.chisq    | pvalue          | df          |
| 4436.925          | 0.000           | 255.000     |
| cfi               | baseline.pvalue | baseline.df |
| 0.763             | 0.000           | 300.000     |
| rfi               | nnfi            | tli         |
| 0.672             | 0.721           | 0.721       |
| ifi               | pnfi            | nfi         |
| 0.766             | 0.613           | 0.722       |
| unrestricted.logl | logl            | rni         |
| -1212.012         | -1829.675       | 0.763       |
| ntotal            | bic             | aic         |
| 93.000            | 3976.632        | 3799.350    |
| rmsea.ci.lower    | rmsea           | bic2        |
| 0.192             | 0.203           | 3755.658    |
|                   |                 |             |

localhost:6788 76/81

```
rmsea.ci.level
                                                 rmsea.pvalue
rmsea.ci.upper
         0.215
                                0.900
                                                        0.000
rmsea.close.h0 rmsea.notclose.pvalue
                                           rmsea.notclose.h0
         0.050
                                                        0.080
           rmr
                           rmr nomean
                                                         srmr
         0.127
                                 0.127
                                                        0.085
  srmr_bentler
                 srmr_bentler_nomean
                                                         crmr
         0.085
                                0.085
                                                        0.088
   crmr_nomean
                           srmr mplus
                                           srmr_mplus_nomean
         0.088
                                0.085
                                                        0.085
         cn_05
                                cn_01
                                                          gfi
        23.077
                                24.372
                                                        0.503
          agfi
                                                          mfi
                                 pgfi
         0.366
                                0.394
                                                        0.005
          ecvi
        14.788
```

```
summary(fits)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -1829.675 0.085 0.558 325.208 12.752 4436.925
```

```
fits['rmsea']
```

rmsea

0.203317

```
#summary(result)
#模型概览
```

```
semPaths(result,
        what = "std.all", #"est",
                                    # 显示估计的系数
        whatLabels = "est", # 标签显示估计的系数
        style="lisrel", #"lisrel"、"ram"、"dot"、"jgraph"等。默认为"lisrel"。
        intervals=T,
        node.color = "blue",
        estimlegend.cex = 1.5, #系数字体大小
        edge.color = "blue",
        edge.label.cex = 1, # 调整标签大小
        fade = F,
                      # 不使用渐变效果
        layout="tree",
        rotation=1,
        nCharNodes = 0.05,
        residuals=T,
        curvePivot = TRUE) # 曲线在变量处弯曲
```

Warning in qgraph::qgraph(Edgelist, labels = nLab, bidirectional = Bidir, : The following arguments are not documented and likely not arguments of qgraph and thus ignored: intervals; node.color; estimlegend.cex

localhost:6788 77/81



# semPaths(fit, whatLabels="est.std", style="lisrel", edge.label.cex=1, layout="tree2"

```
model <- '
# 潜变量 =~ 测量指标1(既量表) + 测量指标2 + ...
environment =~ environment0 + environment1 + environment2 + environment3
jobCharacteristics =~ jobCharacteristics0 + jobCharacteristics1 + jobCharacteristics2
teleworkerCharacteristics =~ teleworkerCharacteristics0 + teleworkerCharacteristics1 +
communication =~ communication0 + communication1 + communication2 + communication3 + c
management =~ management0 + management1 + management2 + management3 + management4
organisationalCulture =~ organisationalCulture0 + organisationalCulture1 + organisatio
technology =~ technology0 + technology1 + technology2 + technology3 + technology4
asynchronousWork =~ asynchronousWork0 + asynchronousWork1 + asynchronousWork2 + asynch
#因变量
job_effectiveness =~ job_effectiveness1 + job_effectiveness2 + job_effectiveness3 + job_effectiveness4 + job_
work.life_balance =~ work.life_balance1 + work.life_balance2 + work.life_balance3 + wo
well.being =~ well.being1 + well.being2 + well.being3 + well.being4
#回归方程
# 因变量~ 自变量1+自变量2+...
#job_effectiveness ~ environment + jobCharacteristics + teleworkerCharacteristics + co
#work.life_balance ~ environment + jobCharacteristics + teleworkerCharacteristics + co
well.being ~ environment + jobCharacteristics + teleworkerCharacteristics + communicat
model: SEM模型的拟合对象,通常是由sem()函数拟合后得到的对象。
what: 指定要显示的内容,可以是"std"(标准化估计值)、"std.lv"(标准化潜变量)、"std.all"(标准化估
style: 图形风格, 可以是"lisrel"、"ram"、"dot"、"jgraph"等。默认为"lisrel"。
residuals: 是否显示残差。默认为TRUE。
```

localhost:6788 78/81

intervals: 是否显示参数估计的置信区间。默认为FALSE。 whatLabels: 是否显示节点标签。默认为FALSE。 layout: 图形的布局。默认为circular(圆形布局)。 rotation: 图形的旋转角度。默认为0。 edge.label.cex: 边标签的大小。默认为1。 edge.label.offset: 边标签的偏移。默认为0。 edge.label: 是否显示边标签。默认为TRUE。 edge.color: 边的颜色。默认为黑色。 edge.width: 边的宽度。默认为1。 edge.lwd: 边的线宽。默认为1。 edge.curved: 边的曲率。默认为FALSE。 edge.lty: 边的线型。默认为1。 label.prop: 是否根据参数大小调整节点标签的大小。默认为FALSE。 label.cex: 节点标签的大小。默认为1。 label.offset: 节点标签的偏移。默认为0.5。 node.color: 节点的颜色。默认为黑色。 node.width: 节点的宽度。默认为0.3。 node.size: 节点的大小。默认为2。 curvePivot: 弯曲箭头的位置。默认为0.5。 curveAngle: 弯曲箭头的角度。默认为60。 curveArrowSize: 弯曲箭头的大小。默认为0.5。

[1] "\nmodel: SEM模型的拟合对象,通常是由sem()函数拟合后得到的对象。\nwhat: 指定要显示的内容,可以是\"std\"(标准化估计值)、\"std.lv\"(标准化潜变量)、\"std.all\"(标准化估计值和标准化潜变量)、\"std.nox\"(标准化估计值但不包括残差)等。默认值为\"std\".\nstyle: 图形风格,可以是\"lisrel\"、\"ram\"、\"dot\"、\"jgraph\"等。默认为\"lisrel\"。\nresiduals: 是否显示残差。默认为TRUE。\nintervals: 是否显示参数估计的置信区间。默认为FALSE。\nwhatLabels: 是否显示节点标签。默认为FALSE。\nlayout: 图形的布局。默认为circular(圆形布局)。\nrotation: 图形的旋转角度。默认为0。\nedge.label.cex: 边标签的大小。默认为1。\nedge.label.offset: 边标签的偏移。默认为0。\nedge.label: 是否显示边标签。默认为TRUE。\nedge.color: 边的颜色。默认为黑色。\nedge.width: 边的宽度。默认为1。\nedge.lwd: 边的线宽。默认为1。\nedge.curved: 边的曲率。默认为FALSE。\nedge.lty: 边的线型。默认为1。\nlabel.prop: 是否根据参数大小调整节点标签的大小。默认为FALSE。\nlabel.cex: 节点标签的大小。默认为1。\nlabel.offset: 节点标签的偏移。默认为0.5。\nnode.color: 节点的颜色。默认为黑色。\nnode.width: 节点的宽度。默认为0.3。\nnode.size: 节点的大小。默认为2。\ncurvePivot: 弯曲箭头的位置。默认为0.5。\ncurveAngle: 弯曲箭头的角度。默认为60。\ncurveArrowSize: 弯曲箭头的大小。默认为0.5。\n"

```
library(lavaan)

set.seed(123) # 设置随机种子以便结果可复现
n <- 100 # 样本量

# 创建潜在变量
eta1 <- rnorm(n) # 潜在变量1
eta2 <- rnorm(n) # 潜在变量2

# 创建观测变量
x1 <- eta1 + rnorm(n) # x1是eta1的指标
x2 <- eta1 + rnorm(n) # x2也是eta1的指标
y <- eta2 + rnorm(n) # y是eta2的指标
```

# 将数据整合到数据框中

localhost:6788 79/81

```
data <- data.frame(x1, x2, y)

# 定义SEM模型
model <- '
# 测量模型
eta1 =~ x1 + x2
eta2 =~ y

#在这个模型中, eta1 =~ x1 + x2表示eta1是由x1和x2测量的潜在变量, 而eta2 =~ y表示eta2是由y测量的潜

# 拟合模型
fit <- sem(model, data = data)

# 显示摘要信息
summary(fit)
```

lavaan 0.6.17 ended normally after 23 iterations

| Estimator                  | ML     |
|----------------------------|--------|
| Optimization method        | NLMINB |
| Number of model parameters | 6      |
|                            |        |
| Number of observations     | 100    |

#### Model Test User Model:

Test statistic 0.000 Degrees of freedom 0

#### Parameter Estimates:

Standard errors Standard
Information Expected
Information saturated (h1) model Structured

### Latent Variables:

|         | Estimate | Std.Err | z-value | P(> z ) |
|---------|----------|---------|---------|---------|
| eta1 =∼ |          |         |         |         |
| x1      | 1.000    |         |         |         |
| x2      | 0.908    | 0.840   | 1.082   | 0.279   |
| eta2 =∼ |          |         |         |         |
| У       | 1.000    |         |         |         |

#### Covariances:

|         | Estimate | Std.Err | z-value | P(> z ) |
|---------|----------|---------|---------|---------|
| eta1 ~~ |          |         |         |         |
| eta2    | -0.211   | 0.158   | -1.331  | 0.183   |

#### Variances:

|     | Estimate | Std.Err | z-value | P(> z ) |
|-----|----------|---------|---------|---------|
| .x1 | 0.804    | 0.647   | 1.244   | 0.214   |
| .x2 | 1.239    | 0.554   | 2.237   | 0.025   |
| . V | 0.000    |         |         |         |

localhost:6788 80/81

eta1 0.692 0.661 1.047 0.295 eta2 1.647 0.233 7.071 0.000

# 多层SEM模型

# ESEM 探索性结构方程模型,Exploratory Structural Equation Modeling

是一种相对较新的方法,用于探索性的数据分析。这种方法结合了探索性因素分析(EFA)和验证性因素分析(CFA)的思想,同时融合了结构方程模型(SEM)的灵活性,旨在同时实现理论的探索与验证。### CFA

##其它 ###图形 https://plotly.com/r/

localhost:6788 81/81