Если во всех внутренних точках промежутка производная функции положительна (отрицательна), то функция строго возрастает (строго убывает) на этом промежутке.

Доказательство необходимости. Если функция f возрастает (убывает) на промежутке Δ (отрезке, интервале или полуинтервале) с концами в точках a и b, если $x_0 \in \Delta$, $\Delta x > 0, x_0 + \Delta x \in \Delta$, то $f(x_0 + \Delta x) \geqslant f(x_0)$ (соответственно $f(x_0 + \Delta x) \leqslant f(x_0)$), поэтому $\Delta y = f(x_0 + \Delta x) - f(x_0) \geqslant 0$ (соответсвенно $\Delta y \leqslant 0$).

Следовательно, $\frac{\Delta y}{\Delta x}\geqslant 0$ (соотвественно $\frac{\Delta y}{\Delta x}\leqslant 0$). Перейдя к пределу при $\Delta x\to 0$, получим $f'(x_0)\geqslant 0$ (соответственно $f'(x_0)\leqslant 0$).

Доказательство достаточности. Пусть $x_1 < x_2$, $x_1 \in \Delta$, $x_2 \in \Delta$, тогда по формуле Лагранжа (см. п. 11.2), $f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$, где $x_1 < x_2$. Так как $x_2 - x_1 > 0$, то при $f'(x) \geqslant 0$ на (a, b) (откуда следует, что, в частности, $f'(\xi) \geqslant 0$) будем иметь $f(x_2) \geqslant f(x_1)$, т. е. функция f возрастает. Аналогично, при $f'(x) \leqslant 0$ на (a, b) имеем $f'(\xi) \leqslant 0$ и, следовательно, $f(x_2) \leqslant f(x_1)$, т. е. функция f убывает.

Если f'(x) > 0 на (a, b), то $f'(\xi) > 0$ и поэтому $f(x_2) > f(x_1)$, т. е. функция f строго возрастает. Если же f'(x) < 0 на (a, b), то $f'(\xi) < 0$, следовательно, $f(x_2) < f(x_1)$, т. е. функция f строго убывает. \square

Отметим, что условия f'(x) > 0 и f'(x) < 0 не являются необходимыми для строгого возрастания (строгого убывания) дифференцируемой на интервале функции, что показывают примеры функций $f_1(x) = x^3$ и $f_2(x) = -x^3$. Первая из них строго возрастает, а вторая строго убывает на всей числовой оси, но при x = 0 их производные обращаются в нуль.

Аналогичная теорема верна для непрерывных функций, не имеющих в конечном числе точек производной. Утверждение второй части теоремы остается в силе, если, кроме того, в конечном числе точек производная обращается в нуль. Например,

если функция непрерывна на некотором интервале и имеет всюду в нем положительную (отрицательную) про-