Esercitazione di Informatica A Algebra di Boole

Stefano Cherubin <nome>.<cognome>@polimi.it

Esercitazione 1 22 Ottobre 2015

Sezione 1

Richiami di teoria

- 2 Esercizi
 - Semplificazione espressioni
 - Equivalenza di due funzioni logiche
 - Dimostrare tautologie
 - Equivalenza di 3 espressioni

Proprietà commutativa

Commutativa di OR e AND

$$\begin{array}{rcl}
a+b & = & b+a \\
ab & = & ba
\end{array}$$

Proprietà distributiva

Distributiva di OR rispetto a AND

$$a + bc = (a+b)(a+c)$$

Distributiva di AND rispetto a OR

$$(a+b) c = ac + bc$$

Tautologie e contraddizioni

Tautologia (sempre vero)

$$a + \overline{a} = 1$$
$$1 + a = 1$$

Contraddizione (sempre falso)

$$a\overline{a} = 0$$

$$0a = 0$$

Altre proprietà

Assorbimento

$$a + ab = a$$
$$a(a+b) = a$$

Elemento neuto

$$0 + a = a$$
$$1 \cdot a = a$$

Leggi di De Morgan

Teoremi di De Morgan

$$\overline{a+b} = \overline{a} \cdot \overline{b}$$

$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

Sezione 2

Richiami di teoria

- 2 Esercizi
 - Semplificazione espressioni
 - Equivalenza di due funzioni logiche
 - Dimostrare tautologie
 - Equivalenza di 3 espressioni

Prova del 19/11/2003 - esercizio 1

Data la seguente espressione booleana in 3 variabili

$$\overline{a}b + \overline{b}c + ab$$

- se ne ricavi la tabella della verità
- 2 si provi a semplificare l'espressione usando le proprietà dell'algebra di boole e giustificando ogni passaggio

a	b	c	$\overline{a}b$	$\overline{b}c$	ab	$\overline{a}b + \overline{b}c + ab$
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	1	0	0	1
0	1	1	1	0	0	1
1	0	0	0	0	0	0
1	0	1	0	1	0	1
1	1	0	0	0	1	1
1	1	1	0	0	1	1

$$\overline{a}b+\overline{b}c+ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b} c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b + \overline{b}\right) \left(b + c\right)$$

tautologia

hc

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR.

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b} c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b+\overline{b}\right)\left(b+c\right)$$

tautologia

hc.

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b} c$$

tautologia

$$b + \overline{b}c$$

distributiva di OR

$$\left(b+\overline{b}\right)\left(b+c\right)$$

tautologia

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b} c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b + \overline{b}\right) \left(b + c\right)$$

tautologia

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b} c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b+\overline{b}\right)\left(b+c\right)$$

tautologia

$$\overline{a}b + \overline{b}c + ab$$

commutativa di OR

$$\overline{a}b + ab + \overline{b}c$$

distributiva di AND

$$(\overline{a} + a) b + \overline{b} c$$

tautologia

$$1b + \overline{b}c$$

distributiva di OR

$$\left(b + \overline{b}\right)\left(b + c\right)$$

tautologia

Verificare l'equivalenza delle seguenti funzioni logiche

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + \overline{a}$$

Per dimostrare l'equivalenza di due funzioni logiche si può procedere in due modi:

- derivando l'una dall'altra algebricamente
 - impiegando le proprietà di AND e OR
- esaustivamente dimostrando che per tutti i valori di ingresso forniscono il medesimo output
 - compilando la tabella di verità

Verificare l'equivalenza delle seguenti funzioni logiche

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + \overline{a}$$

Per dimostrare l'equivalenza di due funzioni logiche si può procedere in due modi:

- derivando l'una dall'altra algebricamente
 - impiegando le proprietà di AND e OR
- esaustivamente dimostrando che per tutti i valori di ingresso forniscono il medesimo output
 - compilando la tabella di verità

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + \overline{a}$$

a	b	c	$\overline{a}b$	$a\overline{b}$	a + bc	$\overline{a+bc}$	$\mid F \mid$	H
0	0	0	0	0	0	1	1	1
0	0	1	0	1	0	1	1	1
0	1	0	1	0	0	1	1	1
0	1	1	1	0	1	0	1	1
1	0	0	0	1	1	0	1	1
1	0	1	0	1	1	0	1	1
1	1	0	0	0	1	0	0	0
1	1	1	0	0	1	0	0	0

13 / 23

$$F = \overline{a} \cdot b + a \cdot \overline{b} + \overline{a + b \cdot c} = \text{De Morgan (2 volte)}$$

$$= \overline{a} \cdot b + a \cdot \overline{b} + \overline{a} \cdot \left(\overline{b} + \overline{c}\right) = \text{Distributiva di AND}$$

$$= \overline{a} \cdot b + a \cdot \overline{b} + \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} = \text{Commutativa di OR}$$

$$= a \cdot \overline{b} + \overline{a} \cdot b + \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} = \text{Distributiva di AND}$$

$$= a \cdot \overline{b} + \overline{a} \cdot \left(b + \overline{b} + \overline{c}\right) = \text{Tautologia}$$

$$= a \cdot \overline{b} + \overline{a} \cdot \left(1 + \overline{c}\right) = \text{Tautologia}$$

$$= a \cdot \overline{b} + \overline{a} = \text{Distributiva di OR}$$

$$= (a + \overline{a}) \cdot (\overline{b} + \overline{a}) = \text{Tautologia}$$

$$= \overline{b} + \overline{a}$$

Verificare la non equivalenza delle seguenti funzioni logiche

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + a$$

- Per dimostrare la non equivalenza di due funzioni logiche è sufficiente fornire un controesempio
 - Si procede quindi con la tebella di verità

Esercizio 2 - variante

Verificare la non equivalenza delle seguenti funzioni logiche

$$F = \overline{a}b + a\overline{b} + \overline{a + bc}$$

$$H = \overline{b} + a$$

- Per dimostrare la non equivalenza di due funzioni logiche è sufficiente fornire un controesempio
 - Si procede quindi con la tebella di verità

15 / 23

$$\begin{array}{rcl} F & = & \overline{a}b + a\overline{b} + \overline{a + bc} \\ H & = & \overline{b} + a \end{array}$$

a	b	c	$\overline{a}b$	$a\overline{b}$	a + bc	$\overline{a+bc}$	$\mid F \mid$	H
0	0	0	0	0	0	1	1	1
0	0	1	0	1	0	1	1	1
0	1	0	1	0	0	1	1	0
0	1	1	1	0	1	0	1	0
1	0	0	0	1	1	0	1	1
1	0	1	0	1	1	0	1	1
1	1	0	0	0	1	0	0	1
1	1	1	0	0	1	0	0	1

16 / 23

Esercizio 3 - Prova del 22/11/2002

Data l'espressione booleana seguente stabilire se è una tautologia, motivando la risposta

$$\left(\overline{a}\cdot\overline{b}\right)+a+b$$

Dimostrare che un'espressione è una tautologia (o una contraddizione) equivale a dimostrare l'equivalenza dell'espressione data con 1 - sempre vero (0 - sempre falso per le contraddizioni)

A scelta, possiamo procedere con:

- tabella di verità
- semplificazioni algebriche

Esercizio 3 - Prova del 22/11/2002

Data l'espressione booleana seguente stabilire se è una tautologia, motivando la risposta

$$\left(\overline{a}\cdot\overline{b}\right)+a+b$$

Dimostrare che un'espressione è una tautologia (o una contraddizione) equivale a dimostrare l'equivalenza dell'espressione data con 1 - sempre vero (0 - sempre falso per le contraddizioni)

A scelta, possiamo procedere con:

- tabella di verità
- semplificazioni algebriche

$$(\overline{a} \cdot \overline{b}) + a + b = \text{Distributiva di OR}$$

$$= (\overline{a} + a) \cdot (\overline{b} + a) + b = \text{Tautologia}$$

$$= 1 \cdot (\overline{b} + a) + b = \text{Elemento neutro di AND}$$

$$= \overline{b} + a + b = \text{Commutativa di OR}$$

$$= 1 + a = \text{Tautologia}$$

$$(\overline{a} \cdot \overline{b}) + a + b = \text{Distributiva di OR}$$

$$= (\overline{a} + a) \cdot (\overline{b} + a) + b = \text{Tautologia}$$

$$= 1 \cdot (\overline{b} + a) + b = \text{Elemento neutro di AND}$$

$$= \overline{b} + a + b = \text{Commutativa di OR}$$

$$= 1 + a = \text{Tautologia}$$

$$\underbrace{\left(\overline{a} \cdot \overline{b}\right) + a + b} = \text{Distributiva di OR}$$

$$= \underbrace{\left(\overline{a} + a\right) \cdot \left(\overline{b} + a\right) + b} = \text{Tautologia}$$

$$= \underbrace{1 \cdot \left(\overline{b} + a\right) + b} = \text{Elemento neutro di AND}$$

$$= \underbrace{\overline{b} + a + b} = \text{Commutativa di OR}$$

$$= \underbrace{1 + a} = \text{Tautologia}$$

$$\underbrace{\left(\overline{a}\cdot\overline{b}\right)+a+b}_{=\text{Distributiva di OR}} = \underbrace{\left(\overline{a}+a\right)\cdot\left(\overline{b}+a\right)+b}_{=\text{Tautologia}} = \underbrace{1\cdot\left(\overline{b}+a\right)+b}_{=\text{Elemento neutro di AND}} = \underbrace{\overline{b}+a+b}_{=\text{Commutativa di OR}} = \underbrace{1+a}_{=\text{Tautologia}}$$

$$\underbrace{\left(\overline{a}\cdot\overline{b}\right)+a+b}_{=\text{Distributiva di OR}} = \underbrace{\left(\overline{a}+a\right)\cdot\left(\overline{b}+a\right)+b}_{=\text{Tautologia}} = \underbrace{1\cdot\left(\overline{b}+a\right)+b}_{=\text{Elemento neutro di AND}} = \underbrace{\overline{b}+a+b}_{=\text{Commutativa di OR}} = \underbrace{1+a}_{=\text{Tautologia}}$$

a	b	$\overline{a} \cdot \overline{b}$	a+b	$\left(\overline{a}\cdot\overline{b}\right)+a+b$
0	0	1	0	1
0	1	0	1	1
1	0	0	1	1
1	1	0	1	1

Data le seguenti espressioni booleane, verificare che sono equivalenti

$$\begin{array}{rcl} R & = & \underline{a \cdot \overline{b} + \overline{a} \cdot b} \\ S & = & \overline{\overline{a} \cdot \overline{b} + a \cdot b} \\ T & = & (a+b) \cdot \left(\overline{a} + \overline{b} \right) \end{array}$$

L'equivalenza tra espressioni booleane è una relazione di equivalenza e, in quanto relazione di equivalenza, gode della proprietà transitiva. È sufficiente dimostrare che R=S e che S=T e sarà garantito anche che R=T.

A scelta, possiamo procedere con:

- tabella di verità
- semplificazioni algebriche

Data le seguenti espressioni booleane, verificare che sono equivalenti

$$\begin{array}{rcl} R & = & \underline{a\cdot\overline{b}+\overline{a}\cdot b} \\ S & = & \overline{\overline{a}\cdot\overline{b}+a\cdot b} \\ T & = & (a+b)\cdot\left(\overline{a}+\overline{b}\right) \end{array}$$

L'equivalenza tra espressioni booleane è una relazione di equivalenza e, in quanto relazione di equivalenza, gode della proprietà transitiva. È sufficiente dimostrare che R=S e che S=T e sarà garantito anche che R=T.

A scelta, possiamo procedere con:

- tabella di verità
- semplificazioni algebriche

$$R = a \cdot \overline{b} + \overline{a} \cdot b = \text{De Morgan}$$

$$= (a \cdot \overline{b}) \cdot (\overline{a} \cdot \overline{b}) = \text{De Morgan}$$

$$= (\overline{a} \cdot \overline{b}) \cdot (\overline{a} \cdot \overline{b}) = \text{Contraddizione}$$

$$= (\overline{a} \cdot \overline{b} + a \cdot \overline{b}) = S$$

$$S = (\overline{a} \cdot \overline{b}) + a \cdot \overline{b} = \text{De Morgan}$$

$$= (\overline{a} \cdot \overline{b}) \cdot (\overline{a} \cdot \overline{b}) = \text{De Morgan}$$

$$= (a + b) \cdot (\overline{a} + \overline{b}) = T$$

$$R = \underline{a \cdot \overline{b}} + \overline{a} \cdot \underline{b} = \text{De Morgan}$$

$$= \overline{(\underline{a \cdot \overline{b}})} \cdot (\overline{\overline{a} \cdot \overline{b}}) = \text{De Morgan}$$

$$= \overline{\underline{a} \cdot \underline{a} + \overline{a} \cdot \overline{b} + \underline{a} \cdot \underline{b} + \underline{b} \cdot \overline{b}} = \text{Contraddizione}$$

$$= \overline{\overline{a} \cdot \overline{b} + \underline{a} \cdot \underline{b}} = S$$

$$S = \overline{\overline{a} \cdot \overline{b}} + \underline{a} \cdot \underline{b} = \text{De Morgan}$$

$$= (\overline{a} \cdot \overline{b}) \cdot (\overline{a} \cdot \overline{b}) = \text{De Morgan}$$

$$= (\underline{a} + \underline{b}) \cdot (\overline{a} + \overline{b}) = T$$

$$R = \underline{a \cdot \overline{b}} + \overline{a} \cdot \underline{b} = \text{De Morgan}$$

$$= \underline{\left(\overline{a \cdot \overline{b}}\right) \cdot \left(\overline{\overline{a} \cdot \overline{b}}\right)} = \text{De Morgan}$$

$$= \underline{\overline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b}} = \text{Contraddizione}$$

$$= \overline{a \cdot \overline{b} + a \cdot b} = S$$

$$S = \overline{a} \cdot \overline{b} + a \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right) \cdot \left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right) \cdot \left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= (a + b) \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$R = \underline{a \cdot \overline{b}} + \overline{a} \cdot \underline{b} = \text{De Morgan}$$

$$= \overline{(\underline{a \cdot \overline{b}})} \cdot (\overline{\overline{a \cdot b}}) = \text{De Morgan}$$

$$= \overline{\underline{a} \cdot \underline{a} + \overline{a} \cdot \overline{b} + \underline{a} \cdot \underline{b} + \underline{b} \cdot \overline{\underline{b}}} = \text{Contraddizione}$$

$$= \overline{a \cdot \overline{b} + \underline{a} \cdot \underline{b}} = S$$

$$S = \overline{a \cdot \overline{b}} + \underline{a} \cdot \underline{b} = \text{De Morgan}$$

$$= (\overline{a} \cdot \overline{b}) \cdot (\overline{a \cdot b}) = \text{De Morgan}$$

$$= (\underline{a} + \underline{b}) \cdot (\overline{a} + \overline{b}) = T$$

$$R = \underline{a \cdot \overline{b} + \overline{a} \cdot b} = \text{De Morgan}$$

$$= \underline{\left(\overline{a \cdot \overline{b}}\right) \cdot \left(\overline{\overline{a} \cdot b}\right)} = \text{De Morgan}$$

$$= \underline{\overline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b}} = \text{Contraddizione}$$

$$= \overline{a} \cdot \overline{b} + a \cdot b = S$$

$$S = \overline{a} \cdot \overline{b} + a \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= (a + b) \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$R = \underline{a \cdot \overline{b} + \overline{a} \cdot b} = \text{De Morgan}$$

$$= \overline{\left(\underline{a \cdot \overline{b}}\right) \cdot \left(\overline{\overline{a} \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{\underline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b}} = \text{Contraddizione}$$

$$= \overline{a} \cdot \overline{b} + a \cdot b = S$$

$$S = \overline{a} \cdot \overline{b} + a \cdot b = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a} \cdot \overline{b}\right)} = \text{De Morgan}$$

$$= (a + b) \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$R = \underline{a \cdot \overline{b} + \overline{a} \cdot b} = \text{De Morgan}$$

$$= \overline{\left(\underline{a \cdot \overline{b}}\right) \cdot \left(\overline{\overline{a} \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{\underline{a} \cdot a + \overline{a} \cdot \overline{b} + a \cdot b + \underline{b} \cdot \overline{b}} = \text{Contraddizione}$$

$$= \overline{a} \cdot \overline{\underline{b} + a \cdot b} = S$$

$$S = \overline{a \cdot \overline{b} + a \cdot b} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= \overline{\left(\overline{a} \cdot \overline{b}\right)} \cdot \overline{\left(\overline{a \cdot b}\right)} = \text{De Morgan}$$

$$= (a + b) \cdot \overline{\left(\overline{a} + \overline{b}\right)} = T$$

$$\begin{array}{rcl} R & = & \underline{a\cdot\overline{b}+\overline{a}\cdot b} \\ S & = & \overline{\overline{a}\cdot\overline{b}+a\cdot b} \\ T & = & (a+b)\cdot\left(\overline{a}+\overline{b}\right) \end{array}$$

							$\overline{a} + \overline{b}$			
0	0	0	0	0	1	0	1	0	0	0
0	1	0	1	0	0	1	1	1	1	1
1	0	1	0	0	0	1	1	1	1	1
1	1	0	0	1	0	1	1 1 1 0	0	0	0

Grazie per l'attenzione!

Queste slides sono licenziate Creative Commons Attribution-Share Alike $4.0\,$

Stefano Cherubin Algebra di Boole 22 Ottobre 2015 23 / 23