

Warm and Fuzzy

Semantic Search in .NET

Jonathan "J." Tower

HOME

MEDICATION STATUS LOOKUP

SUPPLEMENT INFORMATION

ABOUT 🗸

JOSH+PRO...@TRAILHEADTECHNOLOGY.COM >

Medication Status Lookup

Please enter the name of the medication below and click on a result in the dropdown below.

The medication database does not contain information on, or that applies to any dietary ingredient.

Search Tip: Search for the generic name first (acetaminophen). If the medication is not found, search for the brand name (Tylenol).

Medication Name				

Additional	Information
Auullionai	IIIIOI IIIalioii

Additional information, if any, will be displayed here.

Learn how to add Al-powered semantic search to your .NET apps

Jonathan "J." Tower

Partner & Principal Consultant

- Microsoft MVP in .NET
- jtower@trailheadtechnology.com
- ! trailheadtechnology.com/blog
- jtowermi
- I Jonathan "J." Tower

bit.ly/th-offer

The Evolution of Fuzzy Search

Exact Match

SELECT * FROM Products WHERE Name = 'car'

User frustration:

"automobile" won't match "car"
"cra" won't match "car"
"ca" won't match "car"
"kar" won't match "car"

LIKE Queries

SELECT * FROM Products WHERE Name LIKE '%car%'

User frustration:

"automobile" won't match "car" "cra" won't match "car"

"kar" won't match "car"

Levenshtein

Levenshtein("kitten", "sitting") = 3

		е	V	е	n	S	;	h	t	е	i	n
		е	٧	е	n	9	;	h	t	е	i	n
		L	е	V	е	n	s	h	t	е	i	n
	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5
L	0.5	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5
е	1	0.5	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5
v	1.5	1	0.5	0	0.5	1	1.5	2	2.5	3	3.5	4
е	2	1.5	1	0.5	0	0.5	1	1.5	2	2.5	3	3.5
n	2.5	2	1.5	1	0.5	0	0.5	1	1.5	2	2.5	3
s	3	2.5	2	1.5	1	0.5	0	0.5	1	1.5	2	2.5
h	3.5	3	2.5	2	1.5	1	0.5	0	0.5	1	1.5	2
t	4	3.5	3	2.5	2	1.5	1	0.5	0	0.5	1	1.5
е	4.5	4	3.5	3	2.5	2	1.5	1	0.5	0	0.5	1
i	5	4.5	4	3.5	3	2.5	2	1.5	1	0.5	0	0.5
n	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1	0.5	0

Rules (configurable):

Substitutions cost 1
Deletion or insertion costs 1

Ex:

kitten → **s**itten: 1

sitt**e**n → sitt**i**n: 1

sittin → sitting: 1

Total: 3

Video: Substitution as 1 and cost of deletion or insertion as 0.5

Soundex

Creates **4-character code** based on how they **sound**, not how they're spelled

Rules:

- Keeps the first letter of the word
- Converts the rest into numbers representing consonant sounds
- Drops vowels and silent letters
- Words that sound similar → same code

Ex:

"Smith" → S530
"Smyth" → S530

"Robert" → R163 "Rupert" → R163

From Fuzzy to Semantic Search

Fuzzy Search
Find things that look
similar

Core Concepts of Semantic Search

Core Concepts of Semantic Search

Vectors

Embeddings

Cosine Differences

4D+ Vectors

4D+ Vectors

Dimensions	Sample Vector
2	(10, 12)
3	(10, 12, 6)
4	(10, 12, 6, 4)
5	(10, 12, 6, 4, 10)
6	(10, 12, 6, 4, 10, 3)
7	(10, 12, 6, 4, 10, 3, 144)
N	•••

4D+ Vectors

3	LLMS: 384 to 3,000
5	dimensions
7	(10, 12, 6, 4, 10, 3, 144)

Storing meaning using vectors

An embedding is just a vector that points in a direction representing meaning

The closer two embeddings point in the same direction, the more similar their meaning

Storing meaning using vectors

An embedding is just a vector that points in a direction representing meaning

The closer two embeddings point in the same direction, the more similar their meaning

Storing meaning using vectors

An embedding is just a vector that points in a direction representing meaning

The closer two embeddings point in the same direction, the more similar their meaning

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$A = [2,3], \quad B = [4,-1]$$
 $A \cdot B = (2 \times 4) + (3 \times -1) = 8 - 3 = 5$
 $||A|| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.606$
 $|B|| = \sqrt{4^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123$
 $||A|| \times ||B|| \approx 3.606 \times 4.123 \approx 14.85$
 $\cos(\theta) = \frac{5}{14.85} \approx 0.34$

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$A=[2,3], \quad B=[4,-1]$$
 $A\cdot B=(2 imes 4)+(3 imes -1)=8-3=5$
 $||A||=\sqrt{2^2+3^2}=\sqrt{4+9}=\sqrt{13}pprox 3.606$
 $||B||=\sqrt{4^2+(-1)^2}=\sqrt{16+1}=\sqrt{17}pprox 4.123$
 $||A|| imes ||B||pprox 3.606 imes 4.123pprox 14.85$
 $\cos(heta)=rac{5}{14.85}pprox 0.34$

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$A = [2,3], \quad B = [4,-1]$$
 $A \cdot B = (2 \times 4) + (3 \times -1) = 8 - 3 = 5$
 $||A|| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.606$
 $|B|| = \sqrt{4^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123$
 $||A|| \times ||B|| \approx 3.606 \times 4.123 \approx 14.85$
 $\cos(\theta) = \frac{5}{14.85} \approx 0.34$

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$A = [2,3], \quad B = [4,-1]$$
 $A \cdot B = (2 \times 4) + (3 \times -1) = 8 - 3 = 5$
 $||A|| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.606$
 $||B|| = \sqrt{4^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123$
 $||A|| \times ||B|| \approx 3.606 \times 4.123 \approx 14.85$
 $\cos(\theta) = \frac{5}{14.85} \approx 0.34$

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$A = [2,3], \quad B = [4,-1]$$
 $A \cdot B = (2 \times 4) + (3 \times -1) = 8 - 3 = 5$
 $||A|| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.606$
 $||B|| = \sqrt{4^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123$
 $||A|| \times ||B|| \approx 3.606 \times 4.123 \approx 14.85$
 $\cos(\theta) = \frac{5}{14.85} \approx 0.34$

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$A = [2,3], \quad B = [4,-1]$$
 $A \cdot B = (2 \times 4) + (3 \times -1) = 8 - 3 = 5$
 $||A|| = \sqrt{2^2 + 3^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.606$
 $||B|| = \sqrt{4^2 + (-1)^2} = \sqrt{16 + 1} = \sqrt{17} \approx 4.123$
 $||A|| \times ||B|| \approx 3.606 \times 4.123 \approx 14.85$
 $\cos(\theta) = \frac{5}{14.85} \approx 0.34$

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$cos(0^\circ) = 1 \rightarrow perfect match$$

 $cos(90^\circ) = 0 \rightarrow no relation$
 $cos(180^\circ) = -1 \rightarrow opposite$

Cosine Similarity

cosine similarity =
$$\cos(\theta) = \frac{A \cdot B}{||A|| \, ||B||}$$

$$cos(0^\circ) = 1 \rightarrow perfect match$$

$$cos(90^\circ) = 0 \rightarrow no relation$$

$$cos(180^\circ) = -1 \rightarrow opposite$$

"car" → vector A

"automobile" → vector B

Their angle is tiny → high similarity

"car" vs. "banana" → angle ~90° → not related.

Semantic Search Tools in the .NET Ecosystem

Frameworks & Libraries

Microsoft.Extensions.Al

Semantic Kernel

ML.NET

Frameworks & Libraries

Semantic Kernel

ML.NET

Embedding Models

OpenAl API

Ollama

Hugging Face

Embedding Models

OpenAl API

Hugging Face

Vector Databases

Cosmos DB

Redis

Qdrant

Pinecone, Weaviate, Milvus

NOTE: SQL Server 2025 includes a vector data type

Vector Databases

Cosmos DB

Redis

Pinecone, Weaviate, Milvus

NOTE: SQL Server 2025 includes a vector data type

Cloud Services

Azure Al Search

ElasticSearch

Implementing Semantic Search in .NET

Trailhead RSS Feed

Internet

User Search

LIVE DEMO

Practical Considerations

Cost & Latency Trade-Offs

Option	Cost	Latency	
Local (Ollama)	✓ low	<u>∧</u> medium	
OpenAl/Azure	<u></u> higher	✓ low	
Hybrid	! balanced	balanced	

Scalability & Storage

Store in a Vector DB

Index Vectors

Scalability & Storage

Scalability & Storage

1 KB

1 vector = 1 KB

Quality & Model Choice

Туре	Pros	Cons	Use Cases
Small embeddings (384–768 dims)	✓ Fast✓ Cheap✓ Lower storage	⚠ Less nuance ⚠ Lower accuracy	Quick search, lightweight apps, prototyping
Large embeddings (1024–3000 dims)	Higher accuracy Captures subtle meaning		Production search, nuanced queries, RAG
Domain-specific models	✓ Tuned for specific language (legal, medical, finance, etc.)✓ Often best results		Specialized industries, enterprise apps

When NOT to Use Semantic Search

Tiny Datasets

Structured Lookups

Strict Regulatory environments

Summing Up

- 1. Semantic search **searches meaning**, not just words or parts of words
- 2. Powered by **vectors** and **embeddings**
- 3. Many **tools exist** such MEAI, Ollama, Azure OpenAI API, Qdrant, etc.
- 4. Balance tradeoffs of **local vs hosted** models.

Thanks! Questions?

Jonathan "J." Tower

- Microsoft MVP in .NET
- jtower@trailheadtechnology.com
- ! trailheadtechnology.com/blog
- ② jtowermi
- I Jonathan "J." Tower

