

Modeling of a blow-down propulsion system

Course of Space Propulsion Academic Year 2023-2024

Lockheed Martini Group

Alessandro Pallotta	alessandro1.pallotta@mail.polimi.it	10712370
Alex Cristian Turcu	alexcristian.turcu@mail.polimi.it	10711624
Chiara Poli	chiara3.poli@mail.polimi.it	10731504
Daniele Paternoster	daniele.paternoster@mail.polimi.it	10836125
Marcello Pareschi	marcello.pareschi@mail.polimi.it	10723712
Paolo Vanelli	paolo.vanelli@mail.polimi.it	10730510
Riccardo Vidari	riccardo.vidari@mail.polimi.it	10711828

Contents

C	Contents			
No	otatio	on.	ii	
1	Intr	roduction and literature overview	1	
	1.1	Blow-down heritage		
	1.2	Additive manufacturing state of art	1	
	1.3	Analysis of losses	1	
2	Mod	deling of propulsion system	1	
	2.1	Tanks sizing	1	
	2.2	System dynamics	1	
3	Results analysis		1	
4	Nozzle losses		1	
5	5 Additive manufacturing influences		1	
6	Cooling analysis			
Ri	ibliography			

Notation

SYMDescription of symbolSYMDescription of symbolSYMDescription of symbolSYMDescription of symbol

1 Introduction and literature overview

1.1 Blow-down heritage

1.2 Additive manufacturing state of art

powder deposition directly affects the superficial finishing of the material as dross or deposits from the process can be present: the angle of deposition directly influences the roughness and the accuracy of the produced parts. Staircase effects is related to the discretization of the different layers: the bigger the layers the less smooth the surface will be. In general, it can be observed that the more the build direction α of a generic piece shifts from perpendicular ($\alpha = 0^{\circ}$), to parallel, ($\alpha = 90^{\circ}$), the roughness increases and accuracy lowers;

1.3 Analysis of losses

2 Modeling of propulsion system

Initial considerations (req + hyp / assumptions + constraints + criteria) Flowchart

- 2.1 Tanks sizing
- 2.2 System dynamics
- 3 Results analysis
- 4 Nozzle losses
- 5 Additive manufacturing influences
- 6 Cooling analysis

Bibliography

[1] Richard Grammier. Overview of the Juno Mission to Jupiter. Site: https://www.jpl.nasa.gov/missions/juno.2006.