MATH 2603, Fall 2015, Midterm Exam 1, Sep 24 2015: Closed book, no calculators. Instructor: Esther Ezra.

Answer all questions on this sheet.

Name	GT IDnumber	Section Number

Problem 1. (15 points) Consider the statement A:"If n is an integer then $\frac{n}{n+1}$ is not an integer".

a. (5 points) Is A true or false? Either prove true or give a counter example to prove false.

This is a false statement. Consider n=0, we obtain 0/1=0, which is an integer.

b. (10 points) Write down the converse, and the contrapositive of A. Which of them is true? Which is false? Justify each answer with a proof or a counter example.

(Converse) If n/(n+1) is not an integer then n is an integer. This is false: Consider n=1/2, we have n/(n+1)=1/3, which is not an integer.

(Contrapositive) If n/n+1 is integer then n is not an integer. This is false since this contrapositive statement is logically equivalent to $\mathcal A$ and this was proven to be false in part a.

Problem 2. (20 points) Define \sim on the set of integers Z by $a \sim b$ if and only if 3a + b is a multiple of 4. **a.** (10 points) Prove that \sim defines an equivalence relation.

Reflexivity: 3a + a = 4a, which is clearly a multiple of 4.

Symmetry: Suppose that 3a + b is a multiple of 4. Consider now 3b + a, then their sum is 4a + 4b, which is obviously a multiple of 4, thus 3b + a = (4a + 4b) - (3a + b) must be a multiple of 4.

Transitivity: Suppose that 3a+b is a multiple of 4 and 3b+c is also a multiple of 4. We need to show 3a+c is a multiple of 4. Indeed, the sum of the first two is 3a+b+3b+c=3a+4b+c, and this must divide 4 by assumption. Since 4b is a multiple of 4, the remaining term 3a+c must divide 4 as well.

b. (10 points) Find the equivalence classes of 0 and 2.

$$\overline{0} = \{ a \in Z \mid a \equiv 0 \mod 4 \}.$$

$$\overline{2} = \{ a \in Z \mid a \equiv 2 \mod 4 \}.$$

Problem 3. (15 points) Let $S = \{1, 2, ..., n\}$, where $n \ge 2$ is a fixed integer, and let P(S) denote the power set of S.

a. (10 points) Prove that $(P(S), \subseteq)$ is a partially ordered set (that is, this is the collection of all pairs (S_1, S_2) of subsets of S, s.t. $S_1 \subseteq S_2$).

Reflexivity: Each subset contains itself.

Antisymmetry: If $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$ then we must have $S_1 = S_2$.

Transitivity: If $S_1\subseteq S_2$ and $S_2\subseteq S_3$ then we must have $S_1\subseteq S_3$.

b. (5 points) Does $(P(S), \subseteq)$ have a maximum and a minimum elements? If so, what are these elements?

The maximum element is the entire set S, and the minimum element is \emptyset .

Problem 4. (15 points)

a. (5 points)

Find gcd(82, 80) and gcd(81, 79).

$$\begin{split} gcd(82,80) &= gcd(80,2) = 2. \\ gcd(81,79) &= gcd(79,2) = gcd(2,1) = 1. \end{split}$$

b. (10 points) Next, prove a more general property: For any natural number a, gcd(a+2,a) is 1 if a is odd, and 2 if a is even.

Assume first a is even, then gcd(a+2,a)=gcd(a,2)=2 (since a is even it must divide 2).

Assume now that a is odd, then we have gcd(a+2,a)=gcd(a,2)=1, as a does not divide 2, then they do not have any common divisors but 1.

Problem 5. (15 points)

a. (10 points) Describe the Sieve procedure to find all primes between 2 and n, where $n \ge 2$, is a natural number. Based on that, list all primes between 2 and 40.

The Sieve procedure:

- List all integers between 2 and n
- Circle 2 and cross out all multiples of 2 in the list
- Circle 3, the first number not yet crossed out or circled, and then cross out all multiples of 3
- Circle 5, the first number not yet crossed out or circle, and then cross out all multiples of 5
- At the general stage, circle the first number that is neither crossed out nor circled and then cross out all its multiples
- Continue until all numbers less than or equal to $\sqrt(n)$ have been circled or crossed out. When the procedure is complete, all the integers not crossed out are primes not exceeding n.

Thus by the Sieve procedure, the primes between 2 and 40 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37

b. (5 points) State (without a proof) the Fundamental Theorem of Arithmetic. Based on that, find the prime decomposition of 120.

The Fundamental Theorem of Arithmetic: Every natural number $n \geq 2$ can be written as $n = p_1p_2...p_r$ for a unique set of primes $\{p_1,p_2,...p_r\}$; equivalently, every integer $n \geq 2$ can be written $n = (q_1)^{\alpha_1}(q_2)^{\alpha_2}...(q_s)^{\alpha_s}$ as the product of powers of distinct prime numbers $q_1,q_2,...,q_s$. These primes and their exponents are unique.

Prime decomposition of 120: $120 = 2^3 \times 3 \times 5$.

Problem 6. (20 points) Answer true/false:

a. Let A,B,C,D be sets. Then $A\subseteq C$ and $B\subseteq D$ implies that $A\times B\subseteq C\times D$.

Answer: True.

b. Let A, B, C be sets. Then $A \nsubseteq B$ (A is not a subset of B), $B \subseteq C$ implies $A \nsubseteq C$.

Answer: False. Consider the case when A = C - B

c. If a|b and c|d, then ac|bd.

Answer: True because given assumptions b=ak and d=ch for some h,k integers then bd=akch so ac|bd

d. For any two integers, a, b, $gcd(a, b) \times lcm(a, b) = |a||b|$.

Answer: True, textbook page 110.

e. Let a,b be integers and let p be a prime number. If $p|a^5$ then p|a.

Answer: True.

f. There are only finitely many primes.

Answer: False, there are infinitely many primes as proven by Euclid, textbook pg 115.

g. The sum of two consecutive primes is never twice a prime.

Answers: True.

h. $\{n \in N \mid n > 2 \text{ and } a^n + b^n = c^n, \text{ for some } a, b, c \in N\} \neq \emptyset.$

Answer: False by Fermat's last theorem.