(=	1 7	0
(7-11)	+ 1/	-11

大阪大学 情報科学研究科

博士前期課程入学試験解答

平成18年度(2007)、平成25年度(2013) 回信報理論,[1]ネットワーク または

5 2 1-7-7.

作成:#上研究室 k- yuki (2013,4,3)

冬まちかっていたらごめんなまし

```
稅25年度 (2013) 豆 ネットワーク(1)
```

```
(1)(1-1)(0)(0) = \phi
        C((101) = 7111}
    (1-2) 復号失敗
    (1-3) ラッドローム
    (1-4) ある符号語びも、「△(び,び)<大とはる語びも考える。
         ここで、 (ロ、 心) = dをなる符言語 ひを考える。
          \Delta(\overline{\omega}, \overline{\nu}) \leq t \epsilon 3 \epsilon
          = 角不望者より、
            d < t + t
          i d < 2t ETY.
          21+15 & と矛盾形
        よって、(*(10)の要す数はたかだり」つ
   (1-5) = (111) xy, G= [+ AT] EB3E.
              In=(1) AT=(11)
   HAGT54
          = c". H = [ A Im] FY
+ (2)(2-1)の旅客確認の差りなめしモレない、行人がかいかまいのでデータ転送交か手がよい、
        ・コネクションしないため、養受信かまり
   (2-2) 送信例 ポート番号
         受信侧 於一十番号
         ラーケンス番号
         確認心學看出
   (2-3) ・ 別りコネクションであることを見かける手段がない
                                    のにあり、「同一のラーケンス参号を用いると
                                    ろりのコネクションからのデータであることと
  ンシンシング
                                    見行ける方きまかれないる
                        コネクションな定覧は
                                    ラーケンス番号の初期値をランクなにする
  74KP7+1=63
                                     ことで、高確幸で"コネクションか"異なる
   神风心 美沙花
                                     こともギリタリで、まるようになる
                        十岁多亿—
                        新いコネクション設定の合付
   SKAPOLI-RS
  データ本
                                      要求侧は1回,受付便1日2回
                        产力受信
                                      コネクションを グラ たことにつっている
```

同時に2ヶ以上のコネクションを設定したとま、それぞれのコネクションを見かけるちまかいない。シーケンス番号の不規格値をランクではに発伏することで高加手ですりかっていまようになる。

12-4) ハニタ"20パソト、最大セク"メントサイス"1000パイトより、
1セク"メントで"無信で"するデ"ータ量は1000-20=980パイト
差信びににデータが100100パ"イトはのでは、
100100 = 102、14…

100100 | より、100100パントのデータ表記に103セクリメントメ展

また、1001がかっず-9送信には、1セクッメントメ変。

- ・コネワション設定と取得するファイ(川青報の送信につかのセスAで2セグメントフのセスBで11セグメント送信する.
- 1 プロセスAからつかくい情報を飲得して一つのセスBがつかくいを送信するかに 確認が答とデータ送信のために それをりん103セクツント送信する。

5,7. 700t2 AZ" (05t7"x>1

7°pも2Bで" 104 セク"メント
ア°pも2Bで" 104 セク"メント
ア°pも2Bで" 104 セク"メント
ファインション事形
コネロション受灯確認応答
コネロション受灯確認応答
ファイル ちゅーハリーカー
アゥイル ちゅーハリーカー
ファイル よな。
ファイル よな。
アゥイル まるで
アゥイル まるで
アゥイル まるで
ファイル よな。
アゥイル まるで
アゥール まるで
アゥイル まるで
アゥール まるで
アゥール まるで
アゥール まるで
アゥール まるで
アゥール まるで
アゥール まるで
アゥー

[bps]

(1) (1-1) (b) H(x) - H(x/Y) = E(x) + H(Y) - H(Y/X)(1-2) (11) t/2(5) = - 2/0922 - (1-2) log2(1-2) = F(z) (1-3) (う) のが受信される確幸 のつの、ムロの、: み(1-8) + (1-2) 8 Aが受信I43 確幸 a→L a→L (1-2)(1-E) + E O H2(Y) = - (B(1-E)+(1-7)E) (092 (2(1-E)+(1-7)E - ((1-2)(1-E)+E2) log2 ((1-2)(1-E)+E7) = - (x+&-2 x E) (og, (2+E-2 x E) $-\left(1-\left(2+\varepsilon-22\varepsilon\right)\right)\left(032\left(1-\left(2+\varepsilon-22\varepsilon\right)\right)\right)$ $= F(\partial_{t} \varepsilon - 2 \partial \varepsilon)$ (1-4) 面信路容量 I(x;Y) = H(x)-H(x/Y). H(XIY)= F(E) LY. かに関係するのは H(X)のみのおて H(X)の最大値E木める (2) (2-1) (a) 5 (b) 11 (c) 9 (d) 3 (e) /2 (2-2) (2-2-1) ハッが長フィールド 32bit単位より、32bitニーとに「増える。 20B= 32bit ×5 F1, NmAにスールドの値は5 (2-2-2)トータル長ニデータ部の長まナヘック学の長ま F-912是16bit Ly F-912最大是216-1B 11月苦月20BLy $2^{16} - 1 - 20 B$ プレタクリラム最大を1500B (2-3)17-2x0-1-9-20 トランスポートの上位層が送信したいデーク量でなり最大低は トランスホロート トランスたのート屋のハルター、 えいトワーク屋のハルタ"をかえしん20 Bay ネットクーク Zn.17-7 9-20 7+20 1500 - 20 - 20 = 1460 B. 10Mbps ネットワーク層でハック"部データ部ありせでデータを送るのにかかる時間は、1500×8 10 × 106 [5] トランスや一層から見ると、送信したリデータ部14608を送信するのに1500×8 かかっているの 10×106 [5] よって、トランスホート屋が、上位層に提供できる風信速度は 1460x8

碱23堰 (2011) [10] /情報理論[1] (1) (1-1) H2(5) = - 1/192 - 1/2 192 - 1/2 192 - 1/2 192 - 32/192 - 32/192 32 - 32/ (1-2)ac 011 010 001 as 00011 a6 32 a6 00010 07 1 00001 DR 32 as 00000 def(5, 8) = def(8.4) = 2. (1-3) 5=8 \$4. (i def(si&)の底: S+d(s,&)=1 (mod &-1) E若语相模整数) だから、最初のなね(日は :2-def(s, &)=4-2=2 だから2つの要表をおねりまる。 また、S'= S-(8-1)+def(S.&)= 7 xy def(7.4)=0だから、川降飛数ないの Q2 02 (/) **A**3 32 Û4

 $\frac{1-4}{2} L(x) = \sum_{i=1}^{2} N_{i}^{2} x_{i}^{2} \qquad \qquad L(2^{-1}) = \sum_{i=1}^{2} N_{i}^{2} 2^{-i}$ 2 = 4.

おり、蛙破ぐかるれる"4 年, 42, 43, 44, 45 ET3 野の数を数える。

 $N_1 = 1$, $N_2 = 6$, $N_3 = 17$, $N_4 = 24$, $N_5 = 16$.

 			
(2)			
(2-1) S = 5	, &=3 xy	def(5,3) = 0 xy 1	(t=t=10, P1= P2= P3= P4= P5)
		P1=P2=+3, A	コニアチニアラニターのもま、各件を満たすことを元
	1	H2(S) = 23 log, 3	
//		Ootel = - Pilog=Pi	- Palog2P2 - Palog2P3 - Palog2P4 - PElog2P5
P1 P2	P3 P4 P5	$=\frac{4}{3}\log_2 3$	
(No.	0 (.	Dotop = E3 log 23	
		,	2P3+2P4+2P5) log 23
		$=\frac{4}{3}(g_23)$	
		たて、たかったかより成り	立っ
$-2)$ $P_1 > P_2$	12 > P3 > P4 >	P5 , Pet P5 = 100	
P. +	t P2+P2+P++P5	= I') Pit P2 + P3 = 1-	(P4+P5) = 99 100
			優号不は以下のようにはる6
			=n 2+, 13 - Pi+P2+2B+2P4+2P5
			I4 = P1 + P2+ P3 + 2P4 + 2P5 Ty
Pr	P2 P3 P4 P5	P1 P2 P3 P9 P5	13 = 14 + P3 -0
	2=4.	<i>E</i> = 3	FT=, I4 = P7+P2+P3+2(P4+P5) = (0)
	= t', (log_3).	Î3 = (log24) I4 1= 0,	②を代入するを、
	(log23)	$\left(\frac{101}{100} + P_3\right) = \frac{2[0]}{100}$	
	Pale フロマ	整理すると、 $P_2 = \left(\frac{2}{\log_{23}} - \frac{2}{\log_{23}} - \frac{2}$	1) (0]
			//

6880

			١	
1 23年度	/ - '	\ lii'	-	100
161×25年13	12011)	1 2	トソーリ
111/2/12	(=	<u> </u>	1 7 79	

(1) (a) 1 (2) -	7 (e) 11 (=) 4 (d	, 19 (e) 1º	4 f)18 [9.19	
	ストラ法ノが	172470P	10コ"リス"ム			
(2-2)	14	d(B) P(B)	de) Pc)	d@)P@)	d(E) p(E)	dif) RF)
初期	7A3	3 A	5 A	2A	€2¢	₩
1	[AD]	3A	4-Ð	2A	6₽	∞ ф
2	FABO 3	3A	4 -D	2 <i>A</i>	6 D	ω φ
3	JABC-DG	3A	4-Ð	2A	50	7c
4	PABCDES	3A	4 Đ	2A	5c	7c
5	[ABCD EF]	3 A	4Ð	2A	5c	7c
2-3) A -1	B 最短11十	$A \rightarrow B$	Jスト 3	****		:
A→c	. 9		Jスト 4			
A >-) 、最短ルナ	$A \rightarrow D$	コスト 2			· · · · · · · · · · · · · · · · · · ·
$A \rightarrow E$	<u> </u>	A+D+C+E	J21 5			
ADF	最短ルート	AndacaF	コスト 7			
2-4) 4-77	ステート型ルーテ	1=7"	: 7001-212	OSPF (O	pen Shortes	t Path First)
						時間(ラウァドト
· ·		-			`	最定经路飞海等了
	明御心儿上は了					
2-5) 静的 (1	·ディングでは	コストなどの	データを事前	に与えるかり	動的い一	たっかざは ギータ
自動で	取得、更新す	3.				
動的し	一ティング"の利した	<u> </u>				
。故自	举也混雑度(c)	赤いて自	動的二羟	路色 建状	z"主る.	
0 自動	的にネトワー	7/0 変更を1	を出してル.	ーティングゲー	プルかり更	所される
	ーディングの欠点					
	伊テークの主題				···	
0 面1	話経路が不安	定になった	とき、予想	卯動作	とすることか	<u>いある.</u>
			- "	•		
	t ₁					

@\$\$**@**

(1) (1-1) (1-P-S S P P S 1-P-S) ((2) (2) (2) (2) (2) (2) (2) (2) (2) (2)		
[1-1] (1-P-S S P P S 1-P-S) (() () () () () () () () () () () () ()	(1)	· · · · · · · · · · · · · · · · · · ·
(P S 1-P-S) (D () で) 差 () で 注 () で で ()		1-P-S & P
数信語でと 差を符る語 ひとの 1~=> 7′ 距離 大 6 3 を 2 1 受信語でと 1~= 7′ 距離 大 9 符号語 ① (② + □) か 1″ 存在すると 1 3 と 1		
慢信語でというニア(距離大の 符名語 ○ (□ + □) かいを在するとすると、		
$d(\overline{p}, \overline{u}) = \chi$, $d(\overline{p}, \overline{u}) = \chi$. ここで、三角圧与オトリ $d(\overline{u}, \overline{u}) < d(\overline{p}, \overline{u}) + d(\overline{p}, \overline{u})$ $= \chi + \chi $		
は、で、三角下毎末より は、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、		
$d(\bar{u},\bar{u}) < d(\bar{v},\bar{u}) + d(\bar{v},\bar{u})$ $= \pm t + \pm 2 \pm$		ン・マツ = 角を発すなり
ここで、2×< d x y. $d(\overline{v},\overline{\omega})$ < $d($		9- 470 (5)
このとき、以、いは特色語であるので、最外距離がめていあることに矛盾する。		= t + t = 2t
$F, Z, 元$ せた。 (1-2) 愛信語 ひょう 海失があったとき、 海状部に 売当な 语を割りまてる 符音 返 $E \otimes M''$ 得 5 k 3 k 3 k 5 k $E \otimes M$ が $E \otimes M$ か $E \otimes M$ が $E \otimes M$		ここで、2大くみより、 め(で,の)くんとなる。
(1-2) 受水言語 ひに消失があったとき、消失部に適当な语を割りまてる符語 ひとのが 得ちれるとすると、以、のの 消失していない 部分は一致しているので、 $d(\bar{u},\bar{w}) \leq s$ とける。 今、 $s < d$ より、 $d(\bar{u},\bar{w}) < d$ とひり、 dom 最小距离性であることに矛盾するの 従って、適多に 語を割りあてて 得られる 符号 ほび たかだか 1つである。 (2) 。 (2) 。 (2) 。 (2) 。 (3) 。 (3) 。 (4) 。 (4) 。 (5) 。 (5) 。 (6) 。 (7) 。 (7) 。 (7) 。 (7) 。 (8) 。 (9) 。 (9) 。 (9) 。 (9) 。 (1)		このとき、び、ひは符を語であるので、最小距離かりなであることに一声唇する。
得 5 k 3 と 9 8 と \overline{U} , \overline{W} の 消失していない 部分は 一致しているので"、		よって、デセた。
$d(\bar{u},\bar{w}) \leq s \; \xi \; t + 3$. $\hat{S}_1 \; c \; s \; < d \; x \; y$. $d(\bar{u},\bar{w}) \; < d \; \epsilon \; t \; y$. $do" $	(1-2)	到言语 Ti=消失があったEt,消失部に通当な语を割りあてて符号语 LEWが
今、	+	身るれるとすると、Ū, ѿの消失していない部分は一致しているので"、
能元の方法に認を割りおてて得られる符号をはてかため、1つである。 (2) $(2-1)^{2}$ $(0 \to 0)$ $(1-p)^{2}$ $(1-p)^{3}$ $(378\pm090 \text{ M} 1775 \% 1091)$ $0 \to 1$ $(1-p)^{2}$ $(2 \to 0 \to 1 \times 13 \times 13 \times 13 \times 14 \times 14 \times 13)$ $1 \to 1$ $(1 \to 0)$		$d(\bar{u},\bar{w}) \leq s + t + 3$
(2): (2-1): $0 \to 0$ $3(1-P)^2P + (1-P)^3$ $(378\pm0.0.0.6) 1.75\%t0)$ $0 \to 1$ $3(1-P)P^2 + P^3$ $(2.0.0.1.273.6) 3.78\pm0]$ $1 \to 0$		う、 rs < d より、 d(ひ,ひ) < dをひり、 dが最小距離であることに矛盾する。
$(2-1)^{2}O \rightarrow 0$ $3(1-p)^{2}P + (1-p)^{3}$ $(378\pm070\%175\frac{1}{10})$ $0\rightarrow 1$ $3(1-p)P^{2} + P^{3}$ $(27071873\%1378\pm071873)$ $1\rightarrow 1, 1\rightarrow 0$ 电标识 $(1-p)^{3}$ $3(1-p)P^{2}+P^{3}$ $1 \qquad 3(1-p)P^{2}+P^{3}$ $3(1-p)^{2}P+(1-P)^{3}$		だって、南声に語を割りあてて得られる行きをはためたりかしつである。
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2) 1	
	(2-1) 0	$1 \to 0$ $3(1-p)^2 P + (1-p)^3$ (378 ± 0 \to 0 m $17 = 170 \to 1$)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	$\rightarrow 1$ 3 $(1-P)P^2 + P^3$ $(2>0 \rightarrow 1 \pm 73 \pm 0 \rightarrow 1 \pm 73)$
$0 \left(3(1-P)^{2}P+(1-P)^{3} 3(1-P)P^{2}+P^{3}\right)$ $1 \left(3(1-P)P^{2}+P^{3} 3(1-P)^{2}P+(1-P)^{3}\right)$ $(1-P)^{3}+3(1-P)^{2}P-(1-P)=P(1-P)(1-2P)>0$ $2(1-P)^{3}+3(1-P)^{2}P-(1-P)=P(1-P)(1-2P)>0$	1	→1,1→0 も同校、xツ
$\frac{1}{3(1-P)P^{2}+P^{3}} \qquad 3(1-P)^{2}P+(1-P)^{3}$ $\frac{1}{(1-P)^{3}+3(1-P)^{2}P-(1-P)=P(1-P)(1-2P)>0}{(1-P)^{3}+3(1-P)^{2}P-(1-P)=P(1-P)(1-2P)>0}$		
$(1-p)^{3} + 3(1-p)^{2}p - (1-p) = p(1-p)(1-2p) > 0$		
$(1) P < \frac{1}{2} = 1$		$\frac{1}{3(1-P)P^2+P^3}$ $\frac{3(1-P)^2P+(1-P)^3}{3(1-P)^2P+(1-P)^3}$
	(2-2)	•
よって、図3の通信路の方が正しく届く確幸が高い。		
·		5.7、図3の面信路の方が正U<届く石碑をかい高い
	(3)	
$(3-1)((1-p)^2, 2(1-p)p, p^2)$	(3-1)	$((1-p)^2, 2(1-p)p, p^2)$
$P^{2} = 2(1-P)P, (1-P)^{2}$		$(P^{2} 2(1-P)P, (1-P)^{-})$
(3-2) [P) 小さい (イ) 2 101 極めて小さい(エ) 2 (オ) 通信路容量 (カ) 相互 (カ) は (カ		-

		No.
_ 输 22年度 (20(0) [1] ネットワーク.	•	• ()
[1] (a) 4 (b) 14 (c) 13 (d) 16 (e) 7 (f) 9 (g)	17 11 12	10. 2 10 120
•	17 (N) 12	(1) 2 (2) 20
(2)		_
(2-1) 168 = 1010 000 より、クラスB なので、上位16ビットがラ	,	
(68, 13, 171, ち 1=対しサブスルマスク255,255,0,0を対人	,	•
168、13、171、ちに対しサンスルトマスク255、255、240、0を好		i
従って、一致するのはB、サであるかり、Bの方が日より狭	EU ACET X	7/10-L7(1575
13 "		
(2-2) 距離		
単純にルータ間の距離とすると、10-4が故障してい	たときにま	以達できなくなる
	2 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	<u> </u>
温维度		
温雅しているいーAを避けることで、距離が長くなり、伝	般爱正加大生	ことはる可能に生かな
(2-3) 木以70数を設定する		
経由するルータ数の最大値をあらかいめ設定しておき。最	文値 と越える	}とき101mlを
酸棄する.		
11-月にデータを蓄積する.		
3月したハウケットのデータモバッカに登録ーしてかま、	同いいりかん	が到達したら.
送信世引"飞"·瑞飞"破棄する。		
送信せずる場では全ての1レータで、コスト表を保持、情報2-4) 距離バックトル型では全ての1レータで、コスト表を保持、情報	毅 英有 330 7	201=0,10-9="E
で保持する1青報量、共有するアニムに隣接ルータに空期的。	に承信すると	きに流す情報
量も物はのリンクなれかい発生したとき切束は遅れる		
リンクステート型では、ハウケットも送信したりときのみ制御の	のケットを隣	接ルータに送信
する。制御1017mfは非常に小さく、定期的ひ播報芝面	しないのま	た、リンクなりん
か発生した時版本は東リ	<u> </u>	
·		
·		
		ලෙ ලුව

++-

<u>@</u>

秘-	1年	生 (200	9)	10	倩報理論
7/1/	41 <i>41</i>	文(200	'	[["]	17 7 7 1X -+ DITH

(1) 100100 nx	h (= x+v, fla=) +	(az)fi(ai) & fi(az)fi	(04)の2通りの解釈
カルマルキ3.			
) pu f2(Q4) n 强.	頭となっているので、語頭子	件上少瞬時二後另で生も
fs は別の符号の語	題となって113時号は	がなりので野時に後ち	可能。
		3 ため, f3の方が優れて	
(2-2) a, q2, a3, a4, a	As n 生配確率E Pi	P2, P3, P+, P5 & 786,	
Bpf2の平均行号	语表見は、 Z=>P,	+2P2+3P3+4P4+4P5 E	TJ30
ここで、彼号本を以	以下のように生成すると、		
0,0	·		
<u> </u>	Q ₁ : 1.	la= P1+2P2+3P3+4	P4+4P5 F1
λ_3 , λ_0	az: 01		
01/0	a3: 001	Q-l= P1 >0 ry	14611短いことかりかり
05 0/0	aq: 0001		•
+	ar: 0000		
	•		
(3)	<u>'</u>		
(3-1) S=2のEI 明的(1=	$N_{f_{\mathbf{s}}}(t) = 2$		
(3-1) S=20 EF # 501=	<i>d</i> b		
(3-1) S=20 EF # 501=	$N_{fs}(1) = 2$ 0 1) \$ 0 fig 2'! \$ \$ \text{F19}	(\$ 6 ty 3.0	
(3-1) S=20 EF # 501=	<i>d</i> b	<i>id</i>	
(3-1) S=2のEE 明的(1=) S>2のEE、NG(S-	<i>d</i> b	12 E 123.	(="M4thtu)
(3-1) S=2のEE 明らかに S>2のをき、NG(S- ちこ、NG(1)=1	分 1) ‡0 fin t"! 木の ff//	12 E 123.	(="&\t\t\)
(3-1) S=2のEE 明的(1=) S>2のEE、NG(S-	分 1) ‡0 fin t"! 木の ff//	12 E 123.	(="M4.t+1")
(3-1) S=2のEE 明らかに S>2のをき、NG(S- ちこ、NG(1)=1	分 1) ‡0 fin t"! 木の ff//	* * * * * * * * * * * * * * * * * * *	(="M4##u)
(3-1) S=2のEE 明らかに S>2のをき、NG(S- ちこ、NG(1)=1	分 1) ‡0 fin t"! 木の ff//	(=30€¥	(="MAT##!!)
(3-1) S=2のEE 明らかに S>2のをき、NG(S- ちこ、NG(1)=1	分 1) ‡0 fin t"! 木の ff//	(=3 n ∈ ₹ Nf(3) = 6	(="M4t##u)
(3-1) S=20) EF EA BB(1= S>20) E = NG (S- 5>2. NG(1) = [. (3-2) P1=P2= \frac{1}{3}, P3=	$P_4 = \frac{1}{6} \text{ or } \varepsilon^{\frac{1}{2}}$	$C = 3 = 5$ $Nf_{q}(3) = 6$ $Nf_{q}(3) = 1$	(="M4t#1")
(3-1) S=2のEE 明らかに S>2のをき、NG(S- ちこ、NG(1)=1	分 1) ‡0 fin t"! 木の ff//	$C = 3 = 5$ $Nf_{q}(3) = 6$ $Nf_{q}(3) = 1$	(="M4t#1")
(3-1) S=20 EF EA BB(S) [= S>20 E = NG (S- 5>2 NG (1) = [. (3-2) P1=P2= \frac{1}{3}, P3= 1 0 1 0 \[\alpha_1 \] \alpha_2 \[\alpha_3 \] \[\alpha_4 \]	$P_4 = \frac{1}{6} \text{ or } 6 \frac{1}{3}$ $Q_1 Q_2 Q_3$	$C = 3 = 5$ $Nf_{q}(3) = 6$ $Nf_{q}(3) = 1$	(="M4thtu)
(3-1) S=20 EF EA BB(S) [= S>20 E = NG (S- 5>2 NG (1) = [. (3-2) P1=P2= \frac{1}{3}, P3= 1 0 1 0 \[\alpha_1 \] \alpha_2 \[\alpha_3 \] \[\alpha_4 \]	$P_4 = \frac{1}{6} \text{ or } 6 \frac{1}{3}$ $Q_1 Q_2 Q_3$	$C = 3 = 5$ $Nf_{q}(3) = 6$ $Nf_{q}(3) = 1$	(="M4t#1")

松2 年度 (2009) [[]ネットワーク [[]	F5(2)	年度	(2009)		12-7	(1)
----------------------------	-------	----	--------	--	------	-----

· · · · · · · · · · · · · · · · · · ·		
•		
(1) (I) (I) (I) 送信便)に n番目までデータコ	· 羊は た場合。"t k (nets h)系	9.0
データを受信使りから要すとすい		
	現在のフレームの送信が完了する	
他のフレームが送受イミナル		
	= N/100 ="-9 n再送 = 要花女子可	的性的
あるため、美信側はかん	のデータを保存しておく必要がす	かる 。
(I) (A) 受信便/があるデータの再送	と事だすると、送信側は要だされたる	1-907
	のデータは再走の要がも受けない限り	
	頂とデータの順番が異なるため、立	
えをイテラグ要がある。		
(C) どカデータが角美エルマく	るのかを認識する必要がある	
(2) 片方向低栅路企 40ms 通信速度(
F-47 L-4 1006it , 9910'	ACK. NACK 206it	
100 bitn 7"-A 76-4 Elo 送信	\$80(= 100 [bīt] = 01	
	[5] - 0. [5]	
20 bito ACK 主たは NACK も送	18380 12 20[bit] = 0.02 [s]	
	[5]	かりからる。
· Stop-and-wait tot		
0,04(57 _0.02(5 }	データフレー4を送信してから ACKを受信し	まるまでに
	ナータフレーム 1つにつま、	
	0.04 + 0.1 + 0.04 + 0.02 = 0,2(5]	
	よって、平均スループルトは、	
(2)7463) 0.165]	100 × 99 [bit] 500 [bps]	· - · · · ·
171-45 ->	10,2×99 [s] [bps]	<u></u>
· Go-back-N 方式	N 2 11 11	
0.01, 0.0(3)0.02(5)	N=3 で、データフレームの美信に0.1	C2]
	美信したデータフレームのAckを受力	
	0.09 + 0.02 + 0.04 = 0.1 CS] 1	11030
	For、データフレームの送信に	
0.04 0.04[5]	0,09+0,04+0,02+0,1×990	2) 6/2/3
	平均スループ…人は、	

100 x 99 Cbīt]

011 × (00 [2]

990 [bps]

		$\overline{}$	_	7	
平成 21年度	120001	- // /	フー	L U = D	10
711人 2141名	(2007)		1111	1 1	_('Z')

(3) 片方向石桶平正 200[ms] 通信速度 (000 Gps]	
71-A7L-4 (00 1677) 9910 , ACK, NAC 20 1677]	
(2) Fy = 7-976-4 (71=7 = 0,15)	
ACK. NACK 17 = 7 = 0,02 [5] py 30	
o Stop-and-wait方立	
0,2(5) (2)を同様に、データフレーム1つと=つき、	
0,2+0,1+0,2+0,02=0,52 [5] byth:	3,
よって平均スループルトは	
$\frac{100\times99\text{ Chit}}{100\times99\text{ Chit}}=192,3=1$	a. F. 3
0,2 [5] 0,1 [5] 0,5 2 × 99 [5]	72 [bps]
o Go-back-N fot	
片ち向な構造単近かい大きいので"、	
N=3 F1. 7-97 L-4 30 5 £1;	

待楼時間加发生する。 3つのデリータフレーム差/をに 0,2 0,1 0,02[s] 0,2[s] 0,2+0,1+0,02+0,2 = 0,5257 / 1/30 よって、平均スルーフのいんは

33 × 0.52 + 0.2 [bps]

(4)
$$0.10$$
 福子 $\frac{1}{2}$ $\frac{1}{2}$

	No.
平成 21年度 (2009年) [[] 末11.1-7-7(3)	()
(4) (フフ ^ル も)	
ostop-and-wait ba'	•
(2)より、/フレムを1回送信するめに0,25]かかる。	
誤り1回におりるロスタイムも同様にO12(5]	
ある、平均スループットは	
99×100 [bit] = 450 (0,2×99)+(0,2×9×99)[s] [bps] -	
o Go - back - N 方耳	
(2)が、データラレームは車続で、美にまれる。	
車なったデータフレームのピの位置で設りが発生しても、(回の)	誤りにかける
0291412 01/+0.04+0.04+0.02 = 0,2(5)	
なって、平均スループルトは	
100 x 99 - 81	1,4 = 811 [bps]
(0,04+0,02+0,04+0,1×99)+(0,2×q×99)=01	[bps]
(5) 横軸: 71-4 誤り 李	
上から Selected Repeat 方士 (一)	
Go-back-N 方式 ()	

Stop- and - wait tot (....) フレーム誤りが発生してよい場合、Selected Repeat 方式をGn-back-N方式は同い 性能であり、Stop-and-wait方式はそれらより性能がよくない。 フレーム誤りが一届生する場合、Go-back-N方式は Selected - Repeat 方式とり

性能がよくない。

(2-1) 労信語 (7/2) 19 2#、 Θ P(2, 1 P(35, 12 13 E1 P(1/21, 10 हिं। されるけんな P(J, V V 200 ロストリッン をはり ε ` *||* ٤ Ъ. 0 P²(1 <u>^</u> 7、冠兔在最小~9 pd pd'(1-p) n-d' ۸ ۱ E 75-04 8. - p) h - \$ par Pdi ·P)5 ((-p) n-d 7. d(U,W)= رم ا p)n-d' 2 < 1-P< 700 なる 铝 3,7 (P) 0 6 ~ 0 ST THE -2 d'-d > 0 2 哲多中符号語 d < d' O Ū M d'd たえる

(茶)2、 P(ひ,ひ) > P(ひ,ひ)とはり、で度が最大とはる符号をはたり、距离生最小へのものであるといれるの

フッソ N 0 11=27"距離九以内 171/编号失史又

将電子でに優秀される符号は いミングををかいつのとき、 行るたれだいた中 符号語でに大する記り数は、何であるとわかるので 符号をでいいこの距離いか 24 N C° /回 뺭 77 32#

いミング、路外下ソ 5 h C ?

2

こで、ナーノキリ Ü 1 **7** + -

> ľ 2 (1+ 2) < 2h

257 2 1VE . X 2 k (1+h) 7775)=2かを満たして 25 でに復号可能の範囲めにあるとかかる いるので、ハミンクが展界の楽号が成がなつ

<u>(3069)</u>

平成20年度(2008年) [[] 元11十7-17

11) /云梅 年近 5 ms/km (1-1) 国銀車後 4 Mbps リングを 100 km フレーム 1 kbit
$\frac{1}{4 \times 10^6 \text{ [s/bit]}} \times 1.10^3 \text{ [bit]} = 250 \times 10^{-6} = 250 \text{ us}$ $\cdot 100 \text{ [km]} \times 5 \text{ [us/km]} = 500 \text{ [us]}$
Fリ、フレーム 伝報時間 250+500 = 750 Cus],
(1-2) D. 京東度160 Mbps 1=7 1
$\frac{1}{(00 \times 10^{6} \text{ [s/kit]} \times 1.10^{3} \text{ [bit]}} = 10 \times 10^{-6} \text{ [s]} = 10 \text{ [ws]}$ $\frac{1}{(00 \times 10^{6} \text{ [s/km]})} = 1000 \text{ [us]}$
エリ、フレーム 伝機時間 10+(000=1010[as] また、フリートーカン人は報時間は、1000 Rus] よって、チロコスルーフャルトは 1×103
Fiz. Ft 7 2 1 / 12 1 x 103 498 [kbps]
DSG-基度4Mbps, リング長 100 km フレーム kbit 11) Eリーフレーム 伝搬時間 750[us] 主て フリート・ワン伝搬時間は 500[us]
よって、平均スルーア…「は 1×10 ³ 750+500 [bīt/us] = 800 [kbps]
(1-3) ネトワークが混雑していない任CSMA/CD方式でと見ばかい少ないかり、 トークンパッシング方式でとフリートークンの到着を待たなければならない。
- 105/10/10 10 10 10 10 10 10 10 10 10 10 10 10 1
(2)
(2-1) 2 ⁸ -2(10) (2-1) 2 ⁸ -2(10) 「特殊なIPPH"レス: 木スト部か" 11… L ⇒ 2"b-ドキャストアドレス 00… o ⇒ ネ…トワークアドレス
(2-2) (a) (8) (b) (c) (d) (b) (e) (2) (f) (b)


```
_(1)
 [P] H(s) = -\frac{1}{2}\log_{\frac{1}{2}} - \frac{1}{2}\log_{\frac{1}{2}} = 1

[T] H(T) = -\frac{1}{2}\log_{\frac{1}{2}} - \frac{3}{8}\log_{\frac{1}{2}} + \frac{2}{8}\log_{\frac{1}{2}} = \frac{17}{8}
(2)
                            (a, a2, a3, a4, a5, a6)
                                 = (0, 101, 110, 111, 1001, 1000)
                                 ,(0,101,111,110,1001,1000)
(3)
 (3-1) 先頭に 00 出現する符号語は Q1のみ.
      Q1の生起確率 ±5リ V:=0 となる確寺にスナである
 (3-2) U... U?-1の起確率 P'とすると、U?はた頭記号なので、生記確率さ
         H(U1 ... UP-1 UP) = H(UP) H(U1 ... UP-1)
= -P'/0 = P' - (1-P') | (1-P') =
                         = - p'(oxp'-'(1-p') (os (1-p') + 1
             H(U9) = 1
             H ( U1 - U9-1) = -P'(og P' - (1-P') /og (1-P')
         54, H(u1 -- U9-1, U9) = H(u1-- U9-1) + H(U1) +"" 2300"
               U... いり-1 と U: は独立である.
 (3-3) ハヤか"3番目の符号である
      (3-2)より、11・・・ ひころと いアー2は3生立
       ニーマッハフマンの復言本(ロッオ) ドリ、3番目のでころにしかい出現する生紀な事はま
       のかい出現なるななはまではすることかいらかる。
       ロノと同形にに H(u,··· U?-3)+H(u?-2···U?) =H(u,··· U?) がいいえるので
        U.... UP-3 と UP-2 ... U! は 万生立である。
         手た、 Ni-2 U?-1 と U: はずれ my U1… U:-3 と U?-2 … U: は かれ T2ので
          U1··· ロッー といいはまれた。
的平均符号强长
```

୍ରେଲ୍ଲ

平成19年度(2007年) [1] ネットワーク	()
11) (a) 12 (A) 9 (C) 15 (d) 5 (e) 8 (f) (2) 書声は映像, 通信では、データニーとに確認応答をしている 関を取れなからたりを切れたりする。よって、リアレタイム 「類似により、重度を重視して UAPを用いることが、9A	ると タイムラケ"により
(3) コネワションが石をエルるとスワースワートフェース"ニンソ、 輻輳ないよ"ウを増加工せる。その後、送出数かであるしまい 的に増加工せる電数の発力して、ころ。その後、100万にトラ	パッケット教1から指数関数的に 値と超ると、輻輳ウェントウを領形 頃失が生いると、現在の輻輳ウェントン
の半方の値を新たなしまいでとして設定し、輻輳なの物がする。	
(4) ニのあと回領とか、混みはいめてラウラドトリップの日時間が欠いたり連続してゼリダントがタイスア可能性かある。	時間が長くなったとま、タイムアウクトレニエリ受信できなくなる

ලලලා

(11) Cの任意の生成行列も、G'=(figr) とすると、
最小重升が奇数なので、生成行列の行べクトルに少なくともしる数のものが存在する。
こで、早く(1ニよニト)かであるとき、行基本様は「ニより、タイとタンを入れかえたこ
G E考える(G=(g,192/~gk)T=(f,f2/~gk)T)
= = = = = = = = = = = = = = = = = = =
重みが奇数というしの演算では重み個数となるので、まま、工全で重み偶数となる。
重みが高数ピラレクラダダでは重み個数となるので、より、土全て重み偶数となる。
よって示せた。
$(2)(2-1)$ $Ce = (g_2 \cdots g_k)^T$
(2-2) $k-1/n$
(3)(3-1) $k/n+1$
(3-2) d+1
(+) (+-1) k k-1 h-k+1 > 0
h+1 h h(n+1) K大符号が優れている
(同心長生のじ、トラリ中に含ましる)青朝かり、りつ、一次号化手かり
(4-2) (の重み 2大の符号について
(20, ··· 20n) ∈ C とすると、重み偶数より、 2、+···+20n=0.
Fy. Cex としてこと主、重み 2大.
Cの重み2ナー1の符号について
(24·・・ Un) ECとかると、重み有数をリ、ひ、+・・・ Un=1
より、Cex をCt- をき、重みは(2大-1)+1=2大 と1人20
(徒,2、A2t-1+A女O_
Ceの量み外の個数は Azt -②
Ceの最小重みは、Cの最小重みdが、高数なので、d+1.
Ad + O Fy. (Cの最小重みdFy) D, O E は較すると、
A d+1 + Ad > Ad+1
後、2、偶部分符号の方が最小重み符号数が少ないので。
偶智行符号か"像儿Z1.3.

ලලල

成18年度(2007年) ロネットワーク
-------------	-----------

1) (1-1) (a) F (a) F (d) E (e) G
(1-2) 和点:複雑なネットワークを単純化していまる
各階層ごとに独立なのでいきな張しが容易
欠点:各階層で似た处理が重なる
全てのオストかい同一のインターフェースを用いる以表がある
(2) (a) P (e) 1 (c) 1 (d) P (e) P (f) 1 (2) P (h) P
(3) (3-1) 10) 搬送 投稿 光
すでは他のオーストかいフレームを送信中のとき ヨオーストからの送信を 展与せる。これにより後可究の確率が、成少する
屋らせる。これにより後了交の福季が一成少する
(4) 傾突 校出
自ナストからフレーム送信中に他ナストからフレームかり美信されて
13:4を検出するに、送くるを止め、時間をあけて再送する。
ニトレーより、早期に領了突を大気をつか生る。
[3-2] H-7"1V長 L[km] 回约速度 C [Mbps] 依掩速度 2.0×105[km/s]
$\frac{(3-2-1)}{2.0\times10^{5}} \times C = \frac{CL}{2.0\times10^{5}} \times 10^{6} = 5CL \left[bits \right]$
[3-2-2) F. [17ts] > 5(1 [bits]
+ (3-2-3) _(3-2-2) ドリ、コーテー を満たしている以表がある。
5 いか ろしている必要がある
Fminは固定ひので、回線速度CE大きCするとき、ケーフ"いるしを短く
しなければならなくなる。