Chapitre 4 : Chemin optimal Série d'exercices de TD avec Corrigé Présenté par : H. BENKAOUHA Bureau 222, Faculté d'Informatique, USTHB haroun, benkaouha@usthb, edu. dz

haroun.benkaouha@gmail.com

Exercice 1

• Soit le graphe orienté valué G = (X, U, p) donné par la matrice ci-dessous :

uuu	ati ice ci acosous.											
	1	2	3	4	5	6	7	8				
1		1		5		-4		2				
2												
3		8			2		1					
4						-1						
5												
6		3										
7				2	1							
8		1										

- m_{ii} =k veut dire que le poids de l'arc (i, j) est k.
- Si m_{ij} est vide alors l'arc (i, j) n'existe pas.

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatique - USTHB)

Exercice 1 - Suite

- Décomposer le graphe en niveaux.
- Appliquer l'algorithme de Bellmann-Ford sur ce graphe à partir du (des) sommet(s) source(s) afin d'obtenir les chemins de poids minimaux.

(Faculté d'Informatique - USTHB)

Exercice 1 — Solution • Décomposer le graphe en niveaux.

Exercice 1 – Solution

- Décomposer le graphe en niveaux.
- Niveau 0
- 1 et 3 sont des sources

X	1	2	3	4	5	6	7	8
v(x)	0		0					

Enseignant : Dr. H. BENKAOUHA

- Décomposer le graphe en niveaux.
- Niveau 1
- Le 7 et le 8 ont uniquement des arcs entrant venant de sommets de niveau 0

x	1	2	3	4	5	6	7	8
v(x)	0		0				1	1

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatique - USTHB)

Enseignant: Dr. H. BENKAOUHA (haroun.benkaouha@usthb.edu.dz)

- Décomposer le graphe en niveaux.
- Niveau 2
- Le 4 et le 5 ont uniquement des arcs entrant venant de sommets de niveau ≤ 1

X	1	2	3	4	5	6	7	8
v(x)	0		0	2	2		1	1

(Faculté d'Informatique - USTHB

Exercice 1 – Solution

- Décomposer le graphe en niveaux.
- Niveau 3
- Seul le 5 qui uniquement des arcs entrant venant de sommets de niveau ≤ 2

X	1	2	3	4	5	6	7	8
v(x)	0		0	2	2	3	1	1

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatique - USTHB

Exercice 1 – Solution

- Décomposer le graphe en niveaux.
- Niveau 4
- Seul le 2 qui uniquement des arcs entrant venant de sommets de niveau ≤ 3

x		2	3	4	5	6	7	8
v(x)	0	4	0	2	2	3	1	1

(Faculté d'Informatique - USTHB)

Exercice 1 – Solution • Décomposer le graphe en niveaux.

Exercice 4

- Des touristes sont logés dans un hôtel H.
- Un guide fait visiter six (6) sites touristiques (A, B, C, D, E et F).
- · Le graphe ci-dessous représente cette situation,
 - sommet : l'hôtel ou un site touristique
 - arête : l'existence de route entre les deux (2) endroits étiquetée par la longueur de cette route.

Exercice 4 – Solution

- 1. Est-il possible pour ce guide, à partir de l'hôtel, d'emprunter toutes les routes (une seule et unique fois) ? Justifier. Si oui, où se terminera son parcours ?
- Emprunter toutes les routes revient à utiliser toutes les arêtes ⇒ former une chaîne
- Utiliser chaque route une seule et unique fois \Rightarrow chaque arête apparaît exactement une fois ⇒ Chaine élémentaire passant par toutes les arêtes ⇒ Chaîne Eulérienne.
- Selon le théorème d'Euler, G admet une chaine Eulérienne ssi il est connexe (à des sommets isolés près) et le nombre de sommets de degrés impairs est 0 ou 2.

- 2 sommets de degrés impairs (*D* et *H*)
- G admet une chaîne Eulérienne
- Il est possible de réaliser un tel parcours en démarrant de l'hôtel (H) car son degré est impair.
- L'arrivée est au niveau de l'autre sommet de degré impair, c'est-à-dire D.

Ité d'Informatique - USTHB)

- 2. Est-il possible au guide de visiter tous les sites une seule et unique fois et revenir à l'hôtel ? Justifier.
- Visiter tous les sites une seule et unique fois ⇒ passer par tous les sommets une seule et unique fois ⇒ Former une chaîne Hamiltonienne
- Revenir au point de départ ⇒ Former un cycle Hamiltonien
- · Oui, c'est possible
- Le cycle Hamiltonien est : H B A E F C D H

(Faculté d'Informatique - USTHB)

formatique - USTHR) 56

Le graphe contient des circuits ⇒ Algorithme de Dijkstra

Exercice 5

- L'algorithme de *Dijkstra* n'admet pas qu'il y ait des poids négatifs dans le graphe.
- Si le poids minimal est -k, où k > 0
- On rajoute +k au poids de chaque arc afin de les rendre tous positifs.
- Est-il possible d'utiliser ce raisonnement pour résoudre le problème du chemin de poids optimal à l'aide de l'algorithme de *Dijkstra* dans des graphes ayant des poids négatifs.

Enseignant : Dr. H. BENKAOUHA (Faculté d'Informatique - USTHB)

Exercice 5 - Solution

- Soit un chemin γ_1 allant de x vers y de longueur l_1 et de poids p_1
- Soit un chemin γ_2 allant de x vers y de longueur l_2 et de poids p_2
- Après rajout de +k à chaque arc, les poids changent
 - $-p(\gamma_1)=p_1+(l_1*k)$
 - $-p(\gamma_2)=p_2+(l_2*k)$
- · Les poids vont changer selon la longueur des chemins et il est possible qu'un chemin optimal ne le soit plus à cause de la longueur.

Exercice 5 - Solution

· Contre-exemple

 γ_1 =1 2 3 5, $p(\gamma_1)$ = 3

$$\gamma_2$$
=1 4 5, $p(\gamma_2)$ = 5

 $p(\gamma_1) < p(\gamma_2) \Rightarrow \gamma_1$ est meilleur

• On rajoute +3 aux poids de tous les arcs

Exercice 5 – Solution

· Contre-exemple

 γ_2 =1 4 5, $p'(\gamma_2)$ = 10

 $p(\gamma_2) < p(\gamma_1) \Rightarrow \gamma_2$ est devenu meilleur