Proposition 1. Let $x \neq 1$ be a real number. Then

$$\frac{x^{n}-1}{x-1} = x^{n-1} + x^{n-2} + \dots + x^{2} + x + 1$$

for all $n \in \mathbb{N}$.

Proof.

Proposition 2. Let $n \in \mathbb{N}$. Then $\sum_{k=1}^{n} (2k+1) = n^2 + 2n$.

 \square

Proposition 3. Let $k \in \mathbb{N}$. If 0 < x < y then $x^{2k-1} < y^{2k-1}$.

Proof.

Proposition 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Then f(n) = nf(1) for n = 0, 1, 2, ...

Proof.

Proposition 5. Let $n \ge 2$. Then $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}}$.

 \square

Proposition 6. Let a_0, a_1, \ldots be a sequence of integers defined by $a_0 = 2, a_1 = 2, a_2 = 6$ and $a_k = 3a_{k-3}$ for all integers $k \geq 3$. Then a_n is even for all integers $n \geq 0$,

 \square

Proposition 7. The product of n odd integers is odd for every n > 1.

 \square