

MÉTODOS NUMÉRICOS CON PYTHON

¿QUÉ ES UN MÉTODO NUMÉRICO?

Es un procedimiento mediante el cual se obtiene, casi siempre de manera aproximada, la solución de ciertos problemas realizando cálculos puramente aritméticos y lógicos (cálculo de funciones, consulta de una tabla de valores, cálculo preposicional, etc.).

INTERPOLACIÓN POLINÓMICA DE LAGRANGE

Es una forma de presentar el polinomio que interpola un conjunto de puntos dado.

Interpolar: Obtener un nuevo par ordenado dados dos o más puntos.

Puntos	0	1	2	 n
x	x _o	x,	X ₂	 X _n
f(x)	$f(x_o)$	$f(x_i)$	$f(x_2)$	 $f(x_n)$

CASO 1 (DOS PUNTOS)

? ?
$$P_{1}=a_{0}(x-x_{1})+a_{1}(x-x_{0})$$
Si $x=x_{0}$

$$P_{1}=a_{0}(x_{0}-x_{1})+a_{1}(x_{0}-x_{0})$$

$$a_0 = \frac{f(x_0)}{(x_0 - x_1)}$$

Si
$$x=x_1$$

$$P_1 = a_0(x_1 - x_1) + a_1(x_1 - x_0)$$

$$a_1 = \frac{f(x_1)}{(x_1 - x_0)}$$

SUSTITUYENDO EN P1

$$P_{I} = f(x_{0}) \frac{(x-x_{1})}{(x_{0}-x_{1})} + f(x_{1}) \frac{(x-x_{0})}{(x_{1}-x_{0})}$$

CASO 2 (TRES PUNTOS)

$$P_2(x) = a_0(x-x_1)(x-x_2) + a_1(x-x_0)(x-x_2) + a_2(x-x_0)(x-x_1)$$

$$P_{2}(x) = a_{0}(x-x_{1})(x-x_{2}) + a_{1}(x-x_{0})(x-x_{2}) + a_{2}(x-x_{0})(x-x_{1})$$

$$Si \ x = x_{0} \qquad Si \ x = x_{1} \qquad Si \ x = x_{2}$$

Si
$$x=x_0$$
 Si $x=x_1$ Si $x=x_2$
$$a_0 = \frac{f(x_0)}{(x_0-x_1)(x_0-x_2)} \quad a_1 = \frac{f(x_1)}{(x_1-x_0)(x_1-x_2)} \quad a_2 = \frac{f(x_2)}{(x_2-x_0)(x_2-x_1)}$$

$$P_{2}=f(x_{0})\frac{(x_{0}-x_{1})(x_{0}-x_{2})}{(x_{0}-x_{1})(x_{0}-x_{2})} + f(x_{1})\frac{(x_{1}-x_{0})(x_{1}-x_{2})}{(x_{1}-x_{0})(x_{1}-x_{2})} + f(x_{2})\frac{(x_{2}-x_{0})(x_{2}-x_{1})}{(x_{2}-x_{0})(x_{2}-x_{1})}$$

$$L_{0}(x) \qquad L_{1}(x) \qquad L_{3}(x)$$

CASO GENERAL (n)

$$P_n(x)=L_0(x)f(x_0)+L_1(x)f(x_1)+L_3(x)f(x_2)...L_n(x)f(x_n)$$

$$L_n(x) = \frac{(x - x_0)(x - x_1)...(x - x_{n-1})}{(x_n - x_0)(x_n - x_1)...(x_n - x_{n-1})}$$

Ejemplo

Interpolar en
$$x=2$$
 $L_0(x) = \frac{(x-5)(x-7)}{(1-5)(1-7)} = \frac{x^2-12x+35}{24}$

7.0

$$L_1(x) = \frac{(x-1)(x-7)}{(5-1)(5-7)} = \frac{x^2 - 8x + 7}{-8}$$

$$L_2(x) = \frac{(x-1)(x-5)}{(7-1)(7-5)} = \frac{x^2 - 6x + 5}{12}$$

$$\frac{(x-1)(x-3)}{(7-1)(7-5)}$$

 $P_2(x) = L_0(x) f(x_0) + L_1(x) f(x_1) + L_2(x) f(x_2)$

$$(2.5) + \frac{x}{}$$

$$(8) + \frac{x - 6x + 12}{12}$$

$$P_{2}(x) = \frac{24}{24} (2.5) + \frac{-8}{-8} (8) + \frac{12}{12} (13)$$

$$P_{2}(2) = \frac{2^{2} - 12(2) + 35}{24} (2.5) + \frac{2^{2} - 8(2) + 7}{8} (8) + \frac{2^{2} - 6(2) + 5}{12} (13)$$

$$P_2(x) = \frac{x^2 - 12x + 35}{24}(2.5) + \frac{x^2 - 8x + 7}{-8}(8) + \frac{x^2 - 6x + 5}{12}(13)$$

 $P_2(2)=3.3125$

Entrada: Número de datos \mathbf{n} , datos $(\mathbf{x}, \mathbf{f}(\mathbf{x}))$ y el valor para el que se desea interpolar xint

- 1.- Hacer f(xint)=0
- 2.- Hacer i=0
- 3.- Mientras i<=n-1 hacer

 - 4.- Hacer L=1
 - 5.- Hacer j=0
 - 6.- Mientras j<=n-1 hacer

 - 7.- Si i ≠ j entonces
 - $\underline{L} = \underline{L} * \frac{xin x(j)}{x(i) x(j)}$ 8.- Hacer
- 9.- Hacer j=j+1 10.- Hacer $f(xint)=f(xint)+L^*f(x(i))$
 - 11.- Hacer i=i+1
- 12.- Imprimir f(xint)

Interpolar x=5

$$y = \frac{(5-3)*(5-4)*(5-7)}{(1-3)*(1-4)*(1-7)} 2 + \frac{(5-1)*(5-4)*(5-7)}{(3-1)*(3-4)*(3-7)} 7 + \frac{(5-1)*(5-3)*(5-7)}{(4-1)*(4-3)*(4-7)} 9 + \frac{(5-1)*(5-3)*(5-4)}{(7-1)*(7-3)*(7-4)} 15$$

$$a) \frac{(2)*(1)*(-2)}{(-2)*(-3)*(-6)} 2 + \frac{(4)*(1)*(-2)}{(2)*(-1)*(-4)} 7 + \frac{(4)*(2)*(-2)}{(3)*(1)*(-3)} 9 + \frac{(4)*(2)*(1)}{(6)*(4)*(3)} 15$$

b)
$$\frac{-8}{-36} + \frac{-56}{8} + \frac{-144}{-9} + \frac{120}{72}$$
c) $\frac{2}{9} + \frac{-56}{8} + \frac{-144}{-9} + \frac{120}{72} = 98/9$