Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

Sheet 4: BJT DC Analysis

Problem 1:

For the following circuits, find node voltages, V_E , V_C , and branch currents I_E , I_C , I_B . Use V_{BE} (or V_{EB} for PNP transistor) = 0.7 V and β =50.

Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

Problem 2:

For the following circuits in which V_{BE} (or V_{EB} for PNP transistor) = 0.7 V and β =10. Find the transistor's DC operating point?

Semester: 6th Mechatronics

Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

Problem 3:

Evaluate the voltages at all nodes and the currents through all branches. Assume: V_{BE} (or V_{EB} for PNP transistor) = 0.7 V, β =100.

Problem 4:

Evaluate the voltages at all nodes and the currents through all branches. State the DC mode of operation for the transistors. Assume: V_{BE} (or V_{EB} for PNP transistor) = 0.7 V β =50.

Semester: 6th Mechatronics

Course: Electronic Circuits for Mechatronics (ELCT 609)

Dr. Eman Azab

German University in Cairo Spring 2021

Problem 5

For the BJT circuit shown, $R_1=R_2=10k\Omega$, $V^+=10V$, $V^-=-2V$, $R_C=R_E=5k\Omega$, $R_3=100k\Omega$, $\beta=100$.

- 1. Find the labeled currents I_B, I_C, and I_E.
- 2. Calculate V_{CE}
- 3. What is the DC mode of the transistor?

