PIM-TMR convergence

2023/03/15

Model & objective

Output amplitudes B from linear system with transfer matrix X with test entries A:

$$B = |A \cdot X|$$

$$\begin{cases} B \in \mathbb{R}_*^{+N \times m} \\ A \in \mathbb{C}^{N \times n} \\ X \in \mathbb{C}^{n \times m} \end{cases}$$

- *N*: number of measurements
- *n*: number of degrees of freedom
- *m*: number of sensors

• Retrieve the system transfer matrix X by minimizing using PIM-TMR:

$$\widehat{X} = \min_{X \in \mathbb{C}^{n \times m}} ||B^2 - |A \cdot X|^2||^2$$

Validation metric

• Pearson coefficients statistics between each rows of synthetic measurement matrices:

Pearson =
$$\Gamma(|A_{val} \cdot X|,^2 |A_{val} \cdot \hat{X}|^2)$$

$$\begin{cases} A_{val} \in \mathbb{C}^{N_{val} \times n} \\ X \in \mathbb{C}^{n \times m} \\ \widehat{X} \in \mathbb{C}^{n \times m} \end{cases}$$

- N_{val} : number of validation tests
- *n*: number of degrees of freedom
- *m*: number of sensors

Tested system transfer matrices types and examples

- Random(complex or not, sparsity)
- Random_toeplitz(complex or not, sparsity, toeplitz_phase)
- Diagonal_random(complex or not)

Results without noise

System hyperparameters:

$$N = 1000$$

$$n = 30$$

$$m = 4n$$

Validation hyperparameters:

 A_{val} : Complex random $N_{val} = 10^4$

Sparsity of $A_{val} = 0$

Transfer matrix type	Complex	Sparsity	Γ [%]	
			Avg	Std
	No	0	99,99649	0,00143
Pandom	Yes		99,99897	0,00031
Random	No	0,9	99,99939	0,00025
	Yes		99,99964	0,00014
Diag random	No	0	99,99989	0,00008
	Yes		99,99984	0,00011
Random toeplitz	No	0	99,99792	0,00084
	Yes		99,99930	0,00023
	No	0,9	99,99947	0,00021
	Yes		99,99955	0,00019
Full random toeplitz	Yes	0	99,99967	0,00015
		0,9	99,99965	0,00015

Sparsity of $A_{val} = 0, 5$

Transfer matrix type	Complex	Sparsity	Γ [%]	
			Avg	Std
Random	No	0	99,99705	0,00127
	Yes		99,99912	0,00029
Naliuolii	No	0,9	99,99963	0,00017
	Yes		99,99993	0,00005
Diag random	No	0	99,99997	0,00003
	Yes		99,99999	0,00001
Random toeplitz	No	0	99,99821	0,00081
	Yes		99,99934	0,00022
	No	0,9	99,99943	0,00025
	Yes		99,99974	0,00014
Full random toeplitz	Yes	0	99,99975	0,00013
		0,9	99,99974	0,00012

Adding noise to the sensor measurements

1) Add noise to normalized sensor measurements:

$$B^{2} = |A \cdot X|^{2}$$

$$B_{\sigma} \leftarrow \sqrt{\frac{B^{2}}{\max(B^{2})} + \mathcal{N}(0, \sigma)}$$

$$\begin{cases} B \in \mathbb{R}^{+N \times m}_{*} \\ A \in \mathbb{C}^{N \times n} \\ X \in \mathbb{C}^{n \times m} \end{cases}$$

- *N*: number of measurements
- *n*: number of degrees of freedom
- *m*: number of sensors
- $\mathcal{N}(0,\sigma)$: Normal distribution with 0 mean and σ standard deviation

2) Retrieve the system transfer matrix X from noisy measurements by minimizing using PIM-TMR:

$$\widehat{X} = \min_{X \in \mathbb{C}^{n \times m}} ||B_{\sigma}^2 - |A \cdot X|^2||^2$$

3) Evaluate Pearson coefficients statistics between each rows of synthetic measurement matrices:

Pearson =
$$\Gamma\left(|A_{val} \cdot X|,^2 |A_{val} \cdot \hat{X}|^2\right)$$

$$\begin{cases} A_{val} \in \mathbb{C}^{N_{val} \times n} \\ X \in \mathbb{C}^{n \times m} \\ \hat{X} \in \mathbb{C}^{n \times m} \end{cases}$$

- N_{val} : number of validation tests
- *n*: number of degrees of freedom
- *m*: number of sensors

Results with noise ($\sigma = 1\%$)

System hyperparameters:

N = 1000 n = 30 m = 4n

Validation hyperparameters:

 A_{val} : Complex random $N_{val} = 10^4$

Sparsity of $A_{val} = 0$

sparsity of fival				
Transfer matrix type	Complex	Sparsity	Γ [%]	
			Avg	Std
Random	No	0	82,31506	5,44311
	Yes		91,87208	2,12708
	No	0,9	96,31937	1,37143
	Yes		95,42496	1,51860
Diag random	No	0	99,53497	0,30716
	Yes		99,25404	0,41958
Random toeplitz	No	0	81,42050	5,64541
	Yes		91,52210	2,15695
	No	0.0	95,11162	1,63732
	Yes	0,9	96,00484	1,47417
Full random toeplitz	Yes	0	91,89604	1,98125
		0,9	95,55366	1,51494

Sparsity of $A_{val} = 0, 5$

Transfer matrix type	Complex	Sparsity	Γ [%]	
			Avg	Std
Random	No	0	83,35598	5,53342
	Yes		92,08828	2,04858
	No	0,9	97,30383	1,16532
	Yes		96,89635	1,22800
Diag was dasa	No	0	99,75550	0,28291
Diag random	Yes		99,74158	0,22156
Random toeplitz	No	0	83,13876	5,42849
	Yes		91,68044	2,08767
	No	0,9	96,72541	1,32041
	Yes	0,9	97,23001	1,17062
Full random toeplitz	Yes	0	91,89434	1,98159
	163	0,9	96,85306	1,25997

Results with noise ($\sigma = 5\%$)

System hyperparameters:

N = 1000 n = 30 m = 4n

Validation hyperparameters:

 A_{val} : Complex random $N_{val} = 10^4$

Sparsity of $A_{val} = 0$

Transfer matrix type	Complex	Sparsity	Γ [%]	
			Avg	Std
Random	No	0	85,82103	4,27604
	Yes		94,33290	1,48698
	No	0.5	93,64501	1,91524
	Yes	0,5	94,56029	1,49570
	No	0.0	87,16897	5,87542
	Yes	0,9	94,88350	1,88161
5	No	0	84,38203	13,39941
Diag random	Yes		94,44914	4,58982
Random toeplitz	No	0	85,32503	4,47376
	Yes		94,37424	1,43777
	No	0,5	93,24500	2,11597
	Yes		94,25724	1,54908
	No	0,9	94,02103	2,22309
	Yes		29,06591	26,87297
Full random toeplitz	Yes	0	93,31872	1,67630
		0,5	94,64285	1,42927
		0,9	15,72281	13,26665

Sparsity of $A_{val} = 0$, 5

Transfer matrix type	Complex	Sparsity	Γ [%]	
			Avg	Std
	No	0	87,52097	4,12806
	Yes		93,32831	1,72449
Random	No	0.5	93,46468	2,26313
Kandom	Yes	0,5	94,96606	1,41266
	No	0,9	42,92069	30,40649
	Yes	0,9	50,32495	29,30658
Diag random	No	0	96,71722	5,21080
Diag random	Yes		95,56515	7,37931
	No	0	86,96411	4,30084
	Yes		94,48977	1,39627
Random toeplitz	No	0,5	93,72736	2,16414
	Yes		95,44176	1,30561
	No	0,9	39,35333	28,35438
	Yes	0,9	0,76667	6,57408
Full random toeplitz	Yes	0	94,00877	1,47650
		0,5	95,41420	1,29226
		0,9	16,86728	16,10311

Conclusion and notes

- PIM-TMR does not care of system matrix type in the noiseless case!
- Sparsity of the validation input matrix does not significantly change results, even in the noisy case
- Complex system transfer matrices seem more robust to noise
- Extreme sparsity (90%) of the system transfer matrices tends to reduce the metric result

- Statistics should be obtained from several draws of transfer matrices within the same matrix type
- Hyperparameters should be varied