MATH 3338 Probability

Wenjiang Fu

Lecture 8 - MATH 3338 Ch 8 Law of Large Numbers

Outline

Law of large Numbers for Discrete RVs

Law of Large Numbers for Continuous RVs

Law of Large Numbers (LLN)

Chebyshev Inequality

Theorem 8.1 (Chebyshev Inequality) Let X be a discrete RV with expected value $\mu = E(X)$, and let $\varepsilon > 0$ be any positive real number. Then

$$P(|X - \mu| > \varepsilon) \le \frac{Var(X)}{\varepsilon^2}.$$

Proof. Let m(x) denote the distr function of X. Then the prob that X differs from μ by at least ε is given by

$$P(|X - \mu| \ge \varepsilon) = \sum_{|X - \mu| \ge \varepsilon} m(x)$$

Consider the variance

$$Var(X) = \sum_{x} (x - \mu)^2 m(x) \ge \sum_{|x - \mu| \ge \varepsilon} (x - \mu)^2 m(x) \ge \varepsilon^2 \sum_{|x - \mu| \ge \varepsilon} m(x)$$

Thus

$$P(|x - \mu| \ge \varepsilon) \le \frac{Var(X)}{\varepsilon^2}$$

Chebyshev Inequality

Example 8.1 Let X be any RV with $\mu = E(X)$, and $Var(X) = \sigma^2$. Then, if $\varepsilon = k\sigma$, Chebyshev's Inequality states that

$$P(|X-\mu|>k\sigma)\leq \frac{\sigma^2}{k^2\sigma^2}=\frac{1}{k^2}.$$

The prob of a deviation from the mean of more than k standard deviations is $\leq 1/k^2$. For $k=4,5,\,1/k^2=1/16,\,1/25$, etc. This means that the tail probability is well controlled by the variance and the distance from the mean.

- Chebyshev Inequality
- Law of Large Numbers

Theorem 8.2 (Law of Large Numbers) Let $X_1, X_2, ..., X_n$ be an indep trials process, with finite expected value $\mu = E(X_i)$ and finite variance $\sigma^2 = Var(X_i)$. Let $S_n = X_1 + X_2 + ... + X_n$. Then for any $\varepsilon > 0$,

$$P\left(\left|\frac{S_n}{n}-\mu\right|\geq \varepsilon\right)\to 0$$

as $n \to \infty$. Equivalently,

$$P\left(\left|\frac{S_n}{n}-\mu\right|<\varepsilon\right)\to 1$$

as $n \to \infty$. This is the weak Law of Large Numbers (WLLN). Since the average sequence S_n/n converges in probability to the mean μ .

- Chebyshev Inequality
- Law of Large Numbers

Proof Since $X_1, X_2, ..., X_n$ are indep trials process, with finite $\mu = E(X_i)$ and finite variance $\sigma^2 = Var(X_i)$, $E(S_n/n) = \mu$ and $Var(S_n/n) = \sigma^2/n$. Following Chebyshev inequality,

$$P\left(\left|\frac{S_n}{n}-\mu\right|\geq \varepsilon\right)\leq \frac{Var(S_n/n)}{\varepsilon^2}=\frac{\sigma^2}{n\varepsilon^2}\to 0$$

as $n \to \infty$.

Note No matter how small $\varepsilon>0$ is, the average distance S_n/n from its mean μ will make the probability outside the interval $(\mu-\varepsilon,\mu+\varepsilon)$ converges to 0. So, eventually, all probability of the average will focus on the mean only.

- LLN examples
- Coin Tossing
 Consider tossing a coin n times with S_n be the number of heads up. Then S_n/n represents the fraction of times heads up, between 0 and 1. The LLN predicts the fraction converges to the probability of head up.
- **Die Rolling** Consider rolling a die n times. Let X_i be the outcome of the i-th time. Then $S_n = X_1, X_2, ..., X_n$ is the sum of the n outcomes. This is an indep trials process with mean $E(X_i) = 3.5$. By the LLN,

$$P\left(\left|\frac{S_n}{n}-3.5\right|<\varepsilon\right)\to 1$$

- Chebyshev Inequality
- **Theorem 8.3** (Chebyshev inequality) Let X be a continuous RV with density function f(x). Suppose X has a finite expected value $\mu = E(X)$. and finite variance $\sigma^2 = Var(X)$. Then for any positive number $\varepsilon > 0$, we have

$$P(|X - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}.$$

Proof It is analogous to the discrete case.

• **Example 8.4** Let X be any continuous RV wih $E(X) = \mu$ and $Var(X) = \sigma^2$. If $\varepsilon = k\sigma$, i.e. k standard deviations for some integer k, then

$$P(|X - \mu| \ge k\sigma) \le \frac{\sigma^2}{k^2\sigma^2} = \frac{1}{k^2}.$$

The tail prob converges to 0 quickly.

- Law of Large Numbers
- Theorem 8.4 (LLN)

Let $X_1, ..., X_n$ be an indep trials process with a continuous density function f, finite expected value $\mu = E(X)$ and finite variance $\sigma^2 = Var(X)$. Let $S_n = X_1 + ... + X_n$ be the sum of the X_i . Then for any positive number $\varepsilon > 0$, we have

$$\lim_{n\to\infty} P(|\frac{S_n}{n}-\mu|\geq \varepsilon)=0,$$

or equivalently

$$\lim_{n\to\infty} P(|\frac{S_n}{n}-\mu|<\varepsilon)=1.$$

Note 1. This theorem may not be true if $Var(X) = \infty$.

2. The proof of the LLN is analogous to the discrete case.

- Law of Large Numbers
- Examples (LLN)
 - 1. Uniform distribution. Let $X_1,...,X_n$ be an indep trials process following Unif[0,1]. It is known that $E(X_i)=1/2$, and $Var(X_i)=1/12$. Hence $E(S_n/n)=1/2$, and $Var(S_n/n)=1/(12n)$. For any $\varepsilon>0$,

$$P\left(\left|\frac{S_n}{n} - .5\right| \ge \varepsilon\right) \le \frac{1}{12n\varepsilon^2}$$

2. Normal distribution. Assume $X_1,...,X_n \sim N(0,1)$. Then $E(S_n/n) = 0$, $Var(S_n/n) = 1/n$.

$$P\left(\left|\frac{S_n}{n}\right| \ge \varepsilon\right) \le \frac{1}{n\varepsilon^2} \to 0$$

- Law of Large Numbers
- **Example 8.7** (Monte Carlo Method) Suppose we need to find an integral $\int_0^1 g(x)dx$ for a continuous function g(x) on [0,1]. We can use the following Monte Carlo method.
 - 1. Take a large number of random variates $X_n \sim Unif[0, 1]$, and calculate $Y_n = g(X_n)$.
 - 2. Take the mean $\overline{Y_n}$.

$$\overline{Y_n} \to E(Y) = \int_0^1 g(x) dx$$

by the LLN. Variance $\sigma^2 = E((Y_n - \mu)^2) = \int_0^1 (g(x) - \mu)^2 dx < B$, an upper bound. By Chebyshev inequality, for any small $\varepsilon > 0$, such as 0.001, .00001, etc. as long as ε is fixed,

$$P(|\overline{Y_n} - \mu| \ge \varepsilon) \le \frac{\sigma^2}{n\varepsilon^2} \to 0$$

- Law of Large Numbers Example (Monte Carlo Method) Take the integral of function $g(x) = e^{-x^2/2}$ over the interval [0,3] using the Monte Carlo method.
 - 1. Find the density f(x) of a uniform distribution over interval [0,3].
 - 2. Generate a large number ($n \ge 1000$) random variates $x_1, ..., x_n$.
 - 3. Calculate the mean $\overline{y_n}$ of $y_1 = g(x_1), ..., y_n = g(x_n)$.
 - 4. Make sure the mean $\overline{y_n}$ converges to the integral $\int_0^3 g(x)dx$ using the LLN.

$$\overline{Y_n} \to E(Y) = \int_0^3 g(x) dx$$

Solution 1-3. Density of unif[0,3] is f(x) = 1/3.

$$x=runif(5000,0,3); y=exp(-x**2/2);$$

ymean=mean(y)

4.
$$\overline{y_n} \to E(Y) = \int_0^3 g(x) f(x) dx = (1/3) \int_0^3 g(x) dx$$
.

$$\Rightarrow 3\overline{y_n} \to \int_0^3 g(x) dx. \ 3\overline{y_n} = 1.252 \text{ vs. } .997 \sqrt{\pi/2} = 1.25$$

Lecture 8 - MATH 3338 Ch 8 Law of Large