Neuroinformatics Lecture (L10)

Prof. Dr. Gordon Pipa
Institute of Cognitive Science University of Osnabrück

Bayes' Theorem:

posterior ∞ likelihood × prior

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)}$$

Now use:

y=D (observed data) x= \overrightarrow{w} (set model parameter)

$$p(\vec{w}|D) = \frac{p(D|\vec{w})p(\vec{w})}{p(D)}$$

$$p(D) = \int P(D|\vec{w})p(\vec{w})d\vec{w}$$

Normalisation

Now $p(\vec{w}|D)$ probability of a model with set of parameters given the data

Bayes' Theorem:

Posterior:

probability of a model with set of parameters given the data

$$p(\vec{w}|D)$$

Likelihood:

probability of the data given with set of parameters of a model

$$p(D|\vec{w})$$

Likelihood:
$$p(D|\vec{w})$$

Likelihood function joint probability for all x_n conditioned on the parameters! Here we assume a Gaussian PDF.

$$p(\mathbf{x}|\mu,\sigma^2) = \prod_{i=1}^{N} \mathcal{N}\left(x_{i}|\mu,\sigma^2\right)$$

$$p(\vec{x}|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{(x_i - \mu)^2}{2\sigma^2}\right)}$$

$$p(\vec{x}|\mu,\sigma^2) = f(\mu,\vec{x},\sigma^2) = L(\mu)$$

Step 2: Assume sample are independent and from the same distribution (i.i.d):

$$p(\vec{x}|w_1, w_2, ...) = \prod_{i=1}^{N} p(x_i|w_1, w_2, ...)$$

Step 3: Assume a certain type of a distribution for example Gaussian

$$p(\vec{x}|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{(x_i - \mu)^2}{2\sigma^2}\right)}$$

Step 4: Maximize this function in respect the wanted parameter

$$\underset{\mu}{\operatorname{arg\,max}} \quad p(\vec{x}|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{(x_i - \mu)^2}{2\sigma^2}\right)}$$

$$\underset{\mu}{\operatorname{arg max}} \log p(\vec{x}|\mu,\sigma) = \sum_{i=1}^{N} \left[\log \frac{1}{\sigma \sqrt{2\pi}} - \left(\frac{(x_i - \mu)^2}{2\sigma^2} \right) \right]$$

Step 5: Compute the derivative and set this to zero

$$\frac{\partial}{\partial \mu} \sum_{i=1}^{N} \left[\log \frac{1}{\sigma \sqrt{2\pi}} - \left(\frac{(x_i - \mu)^2}{2\sigma^2} \right) \right] = 0 - \frac{\partial}{\partial \mu} \sum_{i=1}^{N} \left(\frac{(x_i - \mu)^2}{2\sigma^2} \right)$$

Step 7: set derivative to zero and resort term to get a function f(x₁, x₂, ..., x_N|w₂, ...)

$$\frac{\partial}{\partial \mu} \sum_{i=1}^{N} \left[\log \frac{1}{\sigma \sqrt{2\pi}} - \left(\frac{(x_i - \mu)^2}{2\sigma^2} \right) \right] = + \frac{2}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu) = 0$$
 Maximum = slope flat

$$0 = +\frac{2}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)$$
 Lösung 1: σ infinitely large(irrelevant for us) Lösung 2: $0 = \sum_{i=1}^{N} (x_i - \mu)$

Lösung 2:
$$0 = \sum_{i=1}^{N} (x_i - \mu^{ML}) \quad \Leftrightarrow 0 = -N\mu^{ML} + \sum_{i=1}^{N} x_i$$

$$\mu^{ML} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Summary: Bernoulli Distribution

Distribution:
$$p(x|\mu) = \mu^x (1-\mu)^{1-x}$$

Expected value:
$$E[x] = \mu$$

Variance:
$$var[x] = \mu(1 - \mu)$$

Y = binopdf(x,n,p)

For n=1, computes the Bernoulli pdf at each of the values in X using the corresponding probability P. The values in P must lie on the interval [0, 1].

ML for Bernoulli

Given:
$$\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads } (1), N-m \text{ tails } (0)$$

likelihood:

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n}$$

$$\ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N} \ln p(x_n|\mu) = \sum_{n=1}^{N} \{x_n \ln \mu + (1 - x_n) \ln(1 - \mu)\}$$

Partial derivative after μ (for ML set to zero):

$$\frac{\partial}{\partial \mu} \ln p(\vec{x} \mid \mu) = \sum_{n=1}^{N} \left(x_n \frac{\partial}{\partial \mu} \ln \mu + (1 - x_n) \frac{\partial}{\partial \mu} \ln (1 - \mu) \right)$$

ML for Bernoulli

Given:
$$\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads (1), } N - m \text{ tails (0)}$$

Partial derivative after μ (for ML set to zero):

$$\frac{\partial}{\partial \mu} \ln p(\vec{x} \mid \mu) = \sum_{n=1}^{N} \left(x_n \frac{\partial}{\partial \mu} \ln \mu + (1 - x_n) \frac{\partial}{\partial \mu} \ln(1 - \mu) \right)$$

$$0 = \sum_{n=1}^{N} \left(x_n \frac{1}{\mu} + (1 - x_n) \frac{-1}{1 - \mu} \right)$$

$$0 = \sum_{n=1}^{N} (x_n (1 - \mu) - (1 - x_n) \mu)$$

$$0 = \sum_{n=1}^{N} (x_n - x_n \mu - \mu + x_n \mu)$$

ML for Bernoulli

Given:
$$\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads (1)}, N-m \text{ tails (0)}$$

Partial derivative after μ (for ML set to zero):

$$\frac{\partial}{\partial \mu} \ln p(\vec{x} \mid \mu) = \sum_{n=1}^{N} \left(x_n \frac{\partial}{\partial \mu} \ln \mu + (1 - x_n) \frac{\partial}{\partial \mu} \ln (1 - \mu) \right)$$

$$0 = \sum_{n=1}^{N} (x_n - x_n \mu - \mu + x_n \mu)$$

$$0 = \sum_{n=1}^{N} (x_n - \mu) = -N\mu + \sum_{n=1}^{N} x_n$$

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n$$
 ML estimator of p(x_n=1), with p(x_n=0)=1-p(x_n=1)

Next Topic: ML for the expected value of a Binominal distribution

Binomial Distribution

$$Bin(m|N,\mu) = \binom{N}{m} \mu^m (1-\mu)^{N-m}$$

$$\mathbb{E}[m] \equiv \sum_{m=0}^{N} m \operatorname{Bin}(m|N,\mu) = N\mu$$

$$var[m] \equiv \sum_{m=0}^{N} (m - \mathbb{E}[m])^2 \operatorname{Bin}(m|N,\mu) = N\mu(1-\mu)$$

Y = binopdf(x,n,p)

computes the binomial pdf at each of the values in X using the corresponding parameters in N and P. The parameters in N must be positive integers, and the values in P must lie on the interval [0, 1].

ML for Binominal

Given:
$$\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads } (1), N-m \text{ tails } (0)$$

likelihood:
$$p(m|\mu, N) = {N \choose m} \cdot \mu^m (1-\mu)^{N-m}$$

Log likelihood:
$$\log p(m|\mu, N) = \log \left(\binom{N}{m} \cdot \mu^m (1 - \mu)^{N-m} \right)$$

 $\log p(m|\mu, N) = \log \binom{N}{m} + m \log \mu + (N-m) \log (1 - \mu)$

Partial derivative after µ (for ML set to zero):

$$\frac{\partial}{\partial \mu} \ln p(m \mid \mu, N) = \frac{m}{\mu} - \frac{N - m}{1 - \mu} = 0$$

$$m(1 - \mu) - \mu(N - m) = m - m\mu - \mu N + m\mu = 0$$

$$\mu_{ML} = \frac{m}{N}$$
ML estimator of p(x_n=1)

ML for Binominal

Given:
$$\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads } (1), N-m \text{ tails } (0)$$

likelihood:
$$p(m|\mu, N) = {N \choose m} \cdot \mu^m (1 - \mu)^{N-m}$$

Derive the log-likelihood and the ML estimator of μ

Rules you may want to use

$$\ln \prod x = \sum \ln(x) \qquad \ln(x \cdot y \cdot z) = \ln(x) + \ln(y) + \ln(z) \qquad \ln(a^x) = x \ln(a)$$

Timer (8min): Start

Stop

ML for Binominal

Given:
$$\mathcal{D} = \{x_1, \dots, x_N\}, m \text{ heads } (1), N-m \text{ tails } (0)$$

likelihood:
$$p(m|\mu, N) = {N \choose m} \cdot \mu^m (1-\mu)^{N-m}$$

Log likelihood:
$$\log p(m|\mu, N) = \log \left(\binom{N}{m} \cdot \mu^m (1 - \mu)^{N-m} \right)$$

 $\log p(m|\mu, N) = \log \binom{N}{m} + m \log \mu + (N-m) \log (1 - \mu)$

Partial derivative after µ (for ML set to zero):

$$\frac{\partial}{\partial \mu} \ln p(m \mid \mu, N) = \frac{m}{\mu} - \frac{N - m}{1 - \mu} = 0$$

$$m(1 - \mu) - \mu(N - m) = m - m\mu - \mu N + m\mu = 0$$

$$\mu_{ML} = \frac{m}{N}$$
ML estimator of p(x_n=1)

Next Topic: General Form of the Likelihood of a Gaussian

Likelihood (i.i.d. normal distributed)

Log-Likelihood

$$\ln p(x|\mu,\sigma^2) = \ln \prod_{i} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

$$= \sum_{i} \ln \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

$$= \sum_{i} \ln \frac{1}{\sigma\sqrt{2\pi}} + \sum_{i} \ln e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

$$-N \cdot \ln \left(\sqrt{\sigma^2 2\pi}\right)$$

$$= -N \cdot \ln \left((\sigma^2)^{\frac{1}{2}}\right) - N \cdot \ln(\sqrt{2\pi})$$

$$= -\frac{N}{2} \cdot \ln(\sigma^2) - \frac{N}{2} \cdot \ln(2\pi)$$

$$p(\vec{x}|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{(x_i - \mu)^2}{2\sigma^2}\right)}$$

Rule

$$ln \prod x = \sum \ln(x)$$

$$ln(x \cdot y \cdot z) = ln(x) + ln(y) + ln(z)$$

$$\ln(a^x) = x \ln(a)$$

Likelihood (i.i.d. normal distributed)

Log-Likelihood

$$\ln p(x|\mu,\sigma^2) = \ln \prod_{i} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

$$= \sum_{i} \ln \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

$$= \sum_{i} \ln \frac{1}{\sigma\sqrt{2\pi}} + \sum_{i} \ln e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}$$

$$-\frac{N}{2} \cdot \ln(\sigma^2) - \frac{N}{2} \cdot \ln(2\pi)$$

$$p(\vec{x}|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{(x_i - \mu)^2}{2\sigma^2}\right)}$$

Rule

$$ln \prod x = \sum \ln(x)$$

$$\ln(x \cdot y \cdot z) = \ln(x) + \ln(y) + \ln(z)$$

$$\ln(a^x) = x \ln(a)$$

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{2} \ln \sigma^{2} - \frac{N}{2} \ln(2\pi)$$

Next Topic: ML for the variance of a normal distributed random variable

Maximum Likelihood for Variance (i.i.d. normal distributed)

$$p(\vec{x}|\mu,\sigma) = \prod_{i=1}^{N} \frac{1}{\sigma\sqrt{2\pi}} e^{-\left(\frac{(x_i - \mu)^2}{2\sigma^2}\right)}$$

Using Log trick to get general form of the Log likelihood of a Gaussian

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{2} \ln \sigma^{2} - \frac{N}{2} \ln(2\pi)$$

$$\frac{\partial}{\partial \sigma} \ln p(\overrightarrow{x} \mid \mu, \sigma^2) = \frac{-1(-2)}{2\sigma^3} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{\sigma}$$

$$\ln p\left(\mathbf{x}|\mu,\sigma^{2}\right) = -\frac{1}{2\sigma^{2}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{2} \ln \sigma^{2} - \frac{N}{2} \ln(2\pi)$$

Score function (for ML we set the score function to zero):

$$\frac{\partial}{\partial \sigma} \ln p(\overrightarrow{x} \mid \mu, \sigma^2) = \frac{-1(-2)}{2\sigma^3} \sum_{n=1}^{N} (x_n - \mu)^2 - \frac{N}{\sigma}$$

$$0 = \frac{1}{\sigma_{ML}^{3}} \sum_{n=1}^{N} (x_{n} - \mu)^{2} - \frac{N}{\sigma_{ML}}$$

$$0 = \frac{1}{\sigma_{ML}} \left(\frac{1}{\sigma_{ML}^2} \sum_{n=1}^{N} (x_n - \mu)^2 - N \right)$$

Maximum Likelihood for expected value (i.i.d. normal distributed)

$$0 = \frac{1}{\sigma_{ML}} \left(\frac{1}{\sigma_{ML}^2} \sum_{n=1}^{N} (x_n - \mu)^2 - N \right)$$

Solution 1: Variance is infinite.

Solution 2: $0 = \frac{1}{\sigma_{ML}^2} \sum_{n=1}^{N} (x_n - \mu)^2 - N$

$$N = \frac{1}{\sigma_{ML}^2} \sum_{n=1}^{N} (x_n - \mu)^2$$

$$\sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu)^2$$
 ML estimator of variance

Next Topic: Fischer Information

With the increasing number of samples, the likelihood function becomes tighter and the curvature of the log likelihood increases.

Fisher Information measures the importance of a parameter for the model

Score function:
$$S(w) = \frac{\partial}{\partial w} log L(\vec{x}, w)$$

ML:
$$S(w_{ML}) = 0$$

Fischer Information:
$$I(w) = -\frac{\partial^2}{\partial w^2} log L(\vec{x},w)$$

Measures the curvature. For $w=w_{ML}$, it measures the curvature at the maximum likelihood estimators of w.

A tight and high peak indicates high sensitivity toward that parameter. Therefore the Fischer information is large.

Fischer Information:
$$I(w) = -\frac{\partial^2}{\partial w^2} log L(\vec{x},w)$$
 (Expected Fischer Info.)

- The Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter θ upon which the probability of X depends.
- The Fischer information is high if the likelihood changes very strongly with small changes of the parameter θ .
- In turn that means that a large Fischer information indicates a rather precise estimate of the parameter $\boldsymbol{\theta}$

So far: Maximum Likelihood for expected value (normal distributed)

Than maximize the likelihood after w: $p(D|\vec{w}) = \prod_i N(x_i|\mu,\sigma)$

Score function:
$$S(w) = \frac{\partial}{\partial w} log L(\vec{x}, w)$$

For the expected value of a Gaussian

$$S(\mu) = \frac{\partial}{\partial \mu} \log p(\vec{x}|\mu, \sigma) = +\frac{2}{2\sigma^2} \sum_{i=1}^{N} (x_i - \mu)$$

$$S(\mu) = +\frac{1}{\sigma^2} \sum_{i=1}^{N} x_i - \frac{N\mu}{\sigma^2}$$
 Given a set of data points this is a straight line with slope N (number of data points)

Increasing Fischer Information

Score function:
$$S(w) = \frac{\partial}{\partial w} log L(\vec{x}, w)$$
 $S(\mu) = +\frac{1}{\sigma^2} \sum_{i=1}^{N} x_i - \frac{N\mu}{\sigma^2}$

Fischer Information:
$$I(w) = -\frac{\partial^2}{\partial w^2} log L(\vec{x},w)$$

For the expected value of a Gaussian

$$I(\mu) = \frac{\partial^2}{\partial \mu^2} \log p(\vec{x}|\mu, \sigma) = \frac{\partial}{\partial \mu} S(\mu) = \frac{\partial}{\partial \mu} \left(\frac{1}{\sigma^2} \sum_{i=1}^N x_i - \frac{N\mu}{\sigma^2} \right) = 0 + \frac{N}{\sigma^2}$$

A constant = N (number of data points) divided by variance

Increasing Fischer Information

Interpretation: Fischer Information

For the expected value of a Gaussian

$$I(\mu) = +\frac{N}{\sigma^2}$$

Interpretation:

- With increasing number of samples the Fischer information increases ⇔ We know more about the paramter µ ⇔ Higher precision of the estimation
- The larger the variance the lower the Fischer Information ⇔ We know less about the paramter µ ⇔ lower precision of the estimation

4. Write down the definition of the Fischer Information. Explain what it measures.

Timer (5min): Start

Stop

- The Fisher information is a way of measuring the amount of information that an observable random variable X carries about an unknown parameter q upon which the probability of X depends.
- The Fischer information is high if the likelihood changes very strongly with small changes of the parameter q.
- In turn that means that a large Fischer information indicates a rather precise estimate of the parameter q

The 4W question session

What is this it all about?

What can I use it for?

Why should I learn it?

What are potential Bachelor and Master thesis topics?

<u>The Brain is Bayesian</u>

Review

TRENDS in Cognitive Sciences Vol.10 No.7 July 2006

Full text provided by www.sciencedirect.com

Special Issue: Probabilistic models of cognition

Bayesian decision theory in sensorimotor control

Konrad P. Körding¹ and Daniel M. Wolpert²

¹Brain and Cognitive Sciences, Massachusetts Institute of Technology, Building NE46-4053, Cambridge, Massachusetts, 02139, USA ²Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK

Paper is uploaded in Studip

Decision theory quantifies how people should choose in the context of a given utility function and some partial knowledge of the world. The expected utility is defined as:

$$E[Utility] \equiv \sum_{\substack{possible \\ outcomes}} p(outcome|action)U(outcome)$$

where p(outcome|action) is the probability of an outcome given an action and U(outcome) is the utility associated with this outcome.

Outcome defined by:

- Prior of ball position
- Likelihood of ball position
- Prior of success in making a point dependent on the position

Is the brain really Bayesian?

Experiment:

- A subject needs to point to a target.
- There are three types of noise leading uncertainty

4W

Box 2. Bayesian statistics

When we have a Gaussian prior distribution p(x) and we have a noisy observation o of the position that leads to a Gaussian likelihood (red curve, Figure I) p(o|x) it is possible to use Bayes rule to calculate the posterior distribution (yellow curve, Figure I; how probable is each value given both the observation and the prior knowledge):

$$p(x|o) = p(o|x)\frac{p(x)}{p(o)}$$

This equation assigns a probability to every possible location. If we assume that the prior distribution p(x) is a symmetric one dimensional Gaussian with variance σ_p^2 and mean $\hat{\mu}$ and that the likelihood p(o|x) is also a symmetric one dimensional Gaussian with variance σ_o^2 and mean o, it is possible to compute the posterior that is then also Gaussian in an analytical way. The optimal estimate \hat{x} , that is the maximum of the posterior is:

$$\hat{x} = \alpha o + (1 - \alpha)\hat{\mu}$$

where

$$\alpha = \frac{\sigma_p^2}{\sigma_p^2 + \sigma_o^2}$$

Moreover we can calculate the width of the posterior as $\sigma^2 = \alpha \sigma_o$. The parameter α is always less than 1. This Bayesian approach leads to a better estimate of possible outcomes than any estimate that is only based on the sensory input.

Figure I. Bayesian integration. The green curve represents the prior and red curve represents the likelihood. The yellow curve represents the posterior, the result from combining prior and likelihood.

Is the brain really Bayesian?

Experiment:

- A subject needs to point to a target.
- There are three types of noise leading uncertainty

Test:

- Can the subject learn the uncertainty of the individual sources to estimate the width of the likelihood?
- Can the subject learn a prior?
- Can it combine the prior and likelihood such that it makes a decision that is maximizing the posterior?

Yes we can, actually for this example it is Baysian optimal!