

Линейная алгебра с библиотекой Numpy

CTPYKTYPA KYPCA

Повторение основ (вводный урок)

Библиотека Pandas

(загрузка данных, манипуляции с данными, агрегирование) 2 урока

Библиотеки Matplotlib и Seaborn

(визуализация данных, разведочный анализ, построение графиков и диаграмм)

1 урок

Библиотека Scipy

(стат. анализ и проверка статистических гипотез, оптимизация)

1 урок

Библиотека Numpy

(линейная алгебра, матрицы и векторы, мера близости)

1 урок

Библиотеки Scikit-learn

(предобработка данных, построение предиктивных MLмоделей) 1 урок

Feature Engineering (повышение кауества

повышение качества ML-моделей) 1 урок

ИТОГОВЫЙ ПРОЕКТ

GeekBrains

В ЭТОМ УРОКЕ

- → Работа с матрицами
- → Векторы и метрики расстояний
- Рекомендательные системы

NumPy

- → поддержка многомерных массивов, в т.ч. разреженных массивов (sparse arrays);
- поддержка математических функций,
 предназначенных для работы с многомерными массивами;
- → совместимость со многими библиотеками;
- → простота использования;
- → открытый исходный код.

БИБЛИОТЕКА NUMPY

POЛЬ NUMPY В ЭКОСИСТЕМЕ PYTHON

МАТРИЦЫ

D concors

| concors | con

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
5	7.4	0.660	0.00	1.8	0.075	13.0	40.0	0.9978	3.51	0.56	9.4	5
6	7.9	0.600	0.06	1.6	0.069	15.0	59.0	0.9964	3.30	0.46	9.4	5
7	7.3	0.650	0.00	1.2	0.065	15.0	21.0	0.9946	3.39	0.47	10.0	7
8	7.8	0.580	0.02	2.0	0.073	9.0	18.0	0.9968	3.36	0.57	9.5	7
9	7.5	0.500	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	5
10	6.7	0.580	0.08	1.8	0.097	15.0	65.0	0.9959	3.28	0.54	9.2	5
11	7.5	0.500	0.36	6.1	0.071	17.0	102.0	0.9978	3.35	0.80	10.5	5
12	5.6	0.615	0.00	1.6	0.089	16.0	59.0	0.9943	3.58	0.52	9.9	5
13	7.8	0.610	0.29	1.6	0.114	9.0	29.0	0.9974	3.26	1.56	9.1	5
14	8.9	0.620	0.18	3.8	0.176	52.0	145.0	0.9986	3.16	0.88	9.2	5

Вектор-строка:

$$B = \begin{pmatrix} b_1 & ... & b_n \end{pmatrix}$$

Вектор-столбец:

$$C = \begin{pmatrix} c_1 \\ ... \\ c_m \end{pmatrix}$$

МАТРИЦЫ В NUMPY

```
[1] # импорт библиотеки import numpy as np
```

```
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
```

```
[3] # создание вектора-столбца(строки)
b = np.array([1,2,3,4])
b
array([1, 2, 3, 4])
```

```
[4] # импорт библиотеки 
import pandas as pd
```

```
# получение датафрейма из питру-массива df = pd.DataFrame(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) df
```

```
    Ø 1 2
    Ø 1 2 3
    1 4 5 6
    2 7 8 9
```

[6] # получение numpy-массива из датафрейма df.values

```
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
```


METOДЫ NUMPY

- → np.sum(a) сумма элементов массива
- → np.mean(a) среднее значение элементов массива
- → np.arange(0, 10) массив от 0 до 9 (аналог range)
- → np.random.shuffle(a) случайная перестановка элементов массива
- → np.concatenate((b, c)) объединение нескольких массивов

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Пример сложения матриц.

Даны две матрицы:
$$A = \begin{pmatrix} 2 & 4 \\ 6 & 7 \end{pmatrix}$$
; $B = \begin{pmatrix} 8 & 5 \\ 7 & 3 \end{pmatrix}$

$$C = A + B = \begin{pmatrix} 2+8 & 4+5 \\ 6+7 & 7+3 \end{pmatrix} = \begin{pmatrix} 10 & 9 \\ 13 & 10 \end{pmatrix}$$

Пример умножения матриц.

$$C = A \times B = \begin{pmatrix} 2*8+4*7 & 2*5+4*3 \\ 6*8+7*7 & 6*5+7*3 \end{pmatrix} = \begin{pmatrix} 44 & 22 \\ 97 & 51 \end{pmatrix}$$

ДЕЙСТВИЯ НАД МАТРИЦАМИ

Транспонирование:

$$A = \begin{pmatrix} 12 & -1 \\ -5 & 0 \end{pmatrix} \quad A^T = \begin{pmatrix} 12 & -5 \\ -1 & 0 \end{pmatrix}$$

Решение СЛАУ:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{12}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \qquad AX = B$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

РАЗРЕЖЕННЫЕ МАТРИЦЫ

Sparse Matrix

[] from scipy.sparse import csr_matrix
 csr_array = csr_matrix(array)

ВЕКТОРЫ

A

point	X	у
p1	0	2
p2	2	0
р3	3	1
p4	5	1

Сила


```
[ ] # определение величины угла между векторами

def cosine(A, B):
    len_a = np.linalg.norm(a) # определение длин векторов
    len_b = np.linalg.norm(b)
    return np.dot(a, b) / (len_a * len_b)

[ ] # величина угла в радианах
```

Ловкость ис

Источник: medium.com

np.arccos(cosine(A, B)) # величина угла в градусах

np.arccos(cosine(A, B))*360 / 2 / np.pi

РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ

Подобрали для вас

38 990₽

Распошивальная машина Janome Cover...

10 190₽

Беспроводные наушники Apple AirPo...

19 790₽

Швейная машина Janome Clio 325

44 990 P 49 990 P

Часы SUUNTO 9 Baro

74 620 P 97 970 P

Вышивальная машина Janome Memory Craft... Nut Nut

380₽

Смесь Nutr 1 Premium

PEKOMEHДАТЕЛЬНЫЕ СИСТЕМЫ NETFLIX

Ne	etflix Priz	9			
Rank	Team Name	Best	Score 5	½ Improvement	Last Submit Time
1 ;	The Ensemble	0.8	553	10.10	2009-07-26 18:38:22
2	BellKor's Pragmatic Chaos	0.8	554	10.09	2009-07-26 18:18:28

РЕКОМЕНДАТЕЛЬНЫЕ СИСТЕМЫ TIKTOK

COLLABORATIVE FILTERING

	item1	item2	item3	item4	item5	item6	item7	item8
user1						1	1	
user2	1	1	1					
user3		1		1	1		1	
user4	1	1		1		1	1	1

people with similar taste to you like the thing you like.

Источник: dataaspirant.com

CONTENT-BASE FILTERING

	user1	user2	user3	user4
item1		1		1
item2		1	1	1
item3		1		
item4			1	1
item5			1	
item6	1			1
item7	1		1	1
item8				1

people who liked this also liked these as well

Источник: dataaspirant.com

Collaborative Filtering

Watched by both users

Watched by her, Recommended to him

Content-Based Filtering

РЕЗЮМЕ УРОКА

- Вспомнили про матрицы и узнали как представлять данные в виде матриц в
 Numpy
- → Научились измерять меру близости между векторами
- Разработали базовый алгоритм рекомендательной системы

ДОМАШНЕЕЗАДАНИЕ

Решить кейс:

Руководство решает внедрить фичу "С этим товаром покупают" в Интернет-магазине. Вам предлагается протестировать фичу на одном из товаров. Для тестирования фичи вам исходя из истории покупок в интернет-магазине нужно определить ТОП-10 наиболее близких товаров к исходному.

- 1. Используйте датасет с практики текущего урока.
- 2. Создайте матрицу item-customer (по строкам товары, по столбцам покупатели)
- 3. Проведите оценку мер близости товаров, получив матрицу item_item_sim_matrix со значениями косинусов между векторами товаров.
- 4. Отберите ТОП-10 похожих товаров по StockCode.
- 5. Выведите список ТОП-10 похожих товаров с названиями (Description) на экран.

Исходный товар - StockCode: 23166 Description: MEDIUM CERAMIC TOP STORAGE JAR Формат - ссылка на ноутбук Colab.

Дополнительные материалы

- 1. Как работают рекомендательные системы
- 2. Рекомендательные системы: как помочь пользователю найти то, что ему нужно?
- 3. Введение в питру видео
- 4. Рекомендательная система (content based) на данных Netflix
- 5. Рекомендательная система (collaborative filtering) на данных Н&М

ВАШИ ВОПРОСЫ

