Assignment-1 Solution

The symbol "⊆" means "is a subset of". The symbol "⊂" means "is a proper subset of".

Q1)

1) Let $S=\{ab, bb\}$ and $T=\{ab, bb, bbbb\}$ Show that $S^* = T^*$ [Hint $S^* \subseteq T^*$ and $T^* \subseteq S^*$]

Ans:

All of the members of set S* are members of set T* but all members of set T* is not members of set S*

Hence S^{*} is not equal to T^{*}

2)

Let $S=\{ab, bb\}$ and $T=\{ab, bb, bbb\}$ Show that $S^* \neq T^*$ But $S^* \subset T^*$ **Solution:** Since $S \subset T$, so every string belonging to S^* , also belongs to T^* but bbb is a string belongs to T^* but does not belong to S^* . • 3) Let S={a, bb, bab, abaab} be a set of strings. Are abbabaabab and baabbbaabba in S*? Does any word in S* have odd number of b's?

Solution: since abbabaabab can be grouped as (a)(bb)(abaab)ab, which shows that the last member of the group does not belong to S, so abbabaabab is not in S^{*}, while baabbbaabb can not be grouped as members of S, hence baabbbaabb is not in S^{*}. Since each string in S has even number of b's so there is no possiblity of any string with odd number of b's to be in S^{*}.

Q2)Is there any case when S⁺ contains Λ? If yes then justify your answer.

Solution: consider $S=\{\Lambda,a\}$ then

 $S^+ = \{\Lambda, a, aa, aaa, ...\}$

Here Λ is in S⁺ as member of S. Thus Λ will be in S⁺, in this case.

Q2) Prove that for any set of strings S...

i)
$$(S^+)^+=S^+$$

Solution: since S⁺ generates all possible strings that can be obtained by concatenating the strings of S, so (S⁺)⁺ generates all possible strings that can be obtained by concatenating the strings of S⁺, will not generate any new string.

Hence $(S^+)^+=S^+$

Q2) continued...

ii) Is
$$(S^*)^+ = (S^+)^*$$

Solution: since Λ belongs to S^* , so Λ will belong to $(S^*)^+$ as member of S^* . Moreover Λ may not belong to S^+ , in general, while Λ will automatically belong to $(S^+)^*$.

Hence $(S^*)^+ = (S^+)^*$

iii.
$$(S^+)^* = (S^*)^*$$

Solution: In general Λ is not in S^+ , while Λ does belong to S^* . Obviously Λ will now be in $(S^+)^*$, while $(S^*)^*$ and S^* generate the same set of strings. Hence $(S^+)^* = (S^*)^*$.

Q3. Define Language over the given regular expressions:

Consider the language, defined over
 Σ={a, b} of words beginning with a, then its regular expression may be

Consider the language, defined over

 Σ ={a, b} of words beginning and ending in same letter, then its regular expression may be

$$a (a + b)^* a + b (a + b)^* b$$

- Consider the language, defined over
 Σ={a, b} of words ending in b, then its regular expression may be? (a+b)*b.
- Consider the language, defined over $\Sigma=\{a,b\}$ of **words not ending in a**, then its regular expression may be $(a+b)^*b+\Lambda$.

It is to be noted that this language may also be expressed by ((a+b)*b)*.