Instrumentación y Control - Componentes Electrónicos

22 de Agosto de 2018

Clasificación según la estructura física

Discretos: elementos individuales que cumplen un tarea específica

Integrados: circuitos compuestos por varios elementos

Clasificación según la función específica

Pasivos: solo consumen o almacenan energía

- Resistencias
- Capacitores
- Inductores

Activos: transfieren energía, modifican el nivel y la forma de las señales

- Diodos
- Transistores

Electromecánicos: conjugan operaciones eléctricas y funciones mecánicas

- Relays
- Piezoeléctricos
- Fusibles

Diodos: Esquemático y curva característica

$$I_D(V_D) = I_S \left\{ \exp\left(\frac{q V_D}{\eta K_B T}\right) - 1 \right\}$$

Diodos: Especificación de datos

- Potencial de conducción en directa V_F
- Corriente máxima en directa I_F
- Corriente de saturación inversa I_R
- Potencial de ruptura PIV / PRV / V(BR) / V_R
- Potencia disipada P_D
- ▶ Capacitancia C_T
- ► Tiempo de recuperación t_{rr}

Absolute Maximum Ratings* T_x = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{RRM}	Maximum Repetitive Reverse Voltage	100	V
I _{F(AV)}	Average Rectified Forward Current	200	mA
I _{FSM}	Non-repetitive Peak Forward Surge Current Pulse Width = 1.0 second Pulse Width = 1.0 microsecond	1.0 4.0	A A
T _{stg}	Storage Temperature Range	-65 to +200	°C
T _J	Operating Junction Temperature	175	°C

Thermal Characteristics

Symbol	Characteristic	Max	Units	
		1N/FDLL 914/A/B / 4148 / 4448		
P _D	Power Dissipation	500	mW	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	300	°C/W	

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Max	Units
V _R	Breakdown Voltage	I _B = 100 μA	100		V
		$I_{R} = 5.0 \mu A$	75		V
V _F	Forward Voltage 1N914B/4448	I _F = 5.0 mA	620	720	mV
	1N916B	$I_F = 5.0 \text{ mA}$	630	730	mV
	1N914/916/4148	$I_F = 10 \text{ mA}$		1.0	V
	1N914A/916A	$I_F = 20 \text{ mA}$		1.0	V
	1N916B	$I_F = 20 \text{ mA}$		1.0	V
	1N914B/4448	$I_F = 100 \text{ mA}$		1.0	V
I _R	Reverse Current	V _R = 20 V		25	nA
		$V_R = 20 \text{ V}, T_A = 150 ^{\circ}\text{C}$		50	μΑ
		$V_R = 75 \text{ V}$		5.0	μA
Ст	Total Capacitance				
	1N916A/B/4448	$V_R = 0, f = 1.0 \text{ MHz}$		2.0	pF
	1N914A/B/4148	$V_{R} = 0, f = 1.0 \text{ MHz}$		4.0	pF
t _{rr}	Reverse Recovery Time	$I_F = 10 \text{ mA}, V_R = 6.0 \text{ V } (60\text{mA}),$		4.0	ns
		$I_{rr} = 1.0 \text{ mA}, R_{L} = 100\Omega$			

GENERAL RULE: The Reverse Current of a diode will approximately double for every ten (10) Degree C increase in Temperature

Figure 2. Reverse Current vs Reverse Voltage IR - 10 to 100 V

Figure 3. Forward Voltage vs Forward Current VF - 1 to 100 uA

Figure 4. Forward Voltage vs Forward Current VF - 0.1 to 10 mA

Ojo, pueden haber typos!

Figure 5. Forward Voltage vs Forward Current VF - 10 to 800 mA

Forward Current, I_F [mA]
Figure 6. Forward Voltage
vs Ambient Temperature
VF - 0.01 - 20 mA (-40 to +65 Deg C)

Figure 8. Reverse Recovery Time vs Reverse Recovery Current

Capacitor variable (mirar que pasa con otros diodos)

Figure 9. Average Rectified Current $(I_{F(AV)})$ versus Ambient Temperature (T_a)

Figure 10. Power Derating Curve

Diodos: Propuesta de trabajo

Medir el tiempo de respuesta inverso t_{rr} para varios dispositivos

BJT: Esquemático y curvas características

 $V_{BF} \approx 0.7 \text{ V}$

$$I_C + I_B = I_E$$
 $I_C = \beta I_B$

U

BJT: Especificación de datos

- Zona de ruptura
- Corrientes y temperaturas máximas
- Factores de ajuste
- Ganancia de corriente

Absolute Maximum Ratings Ta=25°C unless otherwise noted

Symbol		Parameter	Value	Units
V _{CBO}	Collector-Base Voltage :	BC546	80	V
	:	BC547/550	50	V
	:	BC548/549	30	V
V _{CEO}	Collector-Emitter Voltage :	BC546	65	V
	:	BC547/550	45	V
	:	BC548/549	30	V
V _{EBO}	Emitter-Base Voltage :	BC546/547	6	V
	:	BC548/549/550	5	V
Ic	Collector Current (DC)		100	mA
Pc	Collector Power Dissipation	n	500	mW
TJ	Junction Temperature		150	°C
T _{STG}	Storage Temperature		-65 ~ 150	°C

Electrical Characteristics Ta=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I _{CBO}	Collector Cut-off Current	V _{CB} =30V, I _E =0			15	nA
h _{FE}	DC Current Gain	V _{CE} =5V, I _C =2mA	110		800	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA		90 200	250 600	mV mV
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C =10mA, I _B =0.5mA I _C =100mA, I _B =5mA		700 900		mV mV
V _{BE} (on)	Base-Emitter On Voltage	V _{CE} =5V, I _C =2mA V _{CE} =5V, I _C =10mA	580	660	700 720	mV mV
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =10mA, f=100MHz		300		MHz
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		3.5	6	pF
C _{ib}	Input Capacitance	V _{EB} =0.5V, I _C =0, f=1MHz		9		pF
NF	Noise Figure : BC546/547/548 : BC549/550 : BC549	$V_{CE}=5V, I_{C}=200\mu A$ $f=1KHz, R_{G}=2K\Omega$ $V_{CE}=5V, I_{C}=200\mu A$		2 1.2 1.4	10 4 4	dB dB dB
	: BC550	R _G =2KΩ, f=30~15000MHz		1.4	3	dB

h_{FE} Classification

Classification	Α	В	С
h _{FE}	110 ~ 220	200 ~ 450	420 ~ 800

Figure 3. DC current Gain

Figure 4. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

Figure 6. Current Gain Bandwidth Product

BJT: Propuesta de trabajo

Medir curva caracteristica I_C vs. V_{CE}

JFET: Esquemático y curvas características

$$I_D = I_S$$

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	25	Vdc
Drain - Gate Voltage	V_{DG}	25	Vdc
Gate-Source Voltage	V _{GS}	-25	Vdc
Gate Current	IG	10	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	350 2.8	mW mW/°C
Junction Temperature Range	TJ	125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

ELECTRICAL STATIACTERIO (1A - 25 C diffess difference)					
Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Gate – Source Breakdown Voltage ($I_G = -10 \mu Adc, V_{DS} = 0$)	V _{(BR)GSS}	-25	-	Vdc	
Gate Reverse Current (V_{GS} = -15 Vdc, V_{DS} = 0) (V_{GS} = -15 Vdc, V_{DS} = 0, T_A = 100°C)	Igss	=	-2.0 -2.0	nAdc μAdc	
$ \begin{aligned} & \text{Gate-Source Cutoff Voltage} \\ & (\text{V}_{\text{DS}} = 15 \text{Vdc}, \text{I}_{\text{D}} = 2.0 \text{nAdc}) \end{aligned} $	V _{GS(off)}	-	-8.0	Vdc	
Gate – Source Voltage (V _{DS} = 15 Vdc, I _D = 0.2 mAdc)	V _{GS}	-0.5	-7.5	Vdc	
ON CHARACTERISTICS					
Zero – Gate – Voltage Drain Current (Note 1) (V _{DS} = 15 Vdc, V _{GS} = 0 Vdc)	I _{DSS}	2.0	20	mAdc	

JFET: Propuesta de trabajo

Fuente de corriente / Resistencia controlado por tensión

