

6 线性空间与 欧氏空间

线性空间与欧氏空间

- ▶ 加法和数乘运算在很多数学、物理和工程领域中 都广泛使用。而且,这两种运算通常都遵循统一 的代数法则:
- > 例如加法的交换律、结合律,数乘的分配率等等.
- ▶ 这种运算和相关的定理可以归纳为一套数学系统, 即所谓线性空间或向量空间的理论.
- ➤ 空间(space) 是现代数学最基本的概念之一。 (赋范线性空间、巴那赫空间、内积空间、希尔伯 特空间…)
- 线性空间是最基础,也是应有最广泛的空间;同时, 也是线性代数最基本的概念之一。

§1 线性空间的概念

一、线性空间的定义

• 我们已熟知向量的运算规律

设 α 、 β 、 γ 是 n 元 向量(例 如 n=2), k、l 是数域 P 中任意的数

- (1) $\alpha + \beta = \beta + \alpha$ 加法交换律
- $(2)(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) 加法结合律$

- (5) $k(\alpha + \beta) = k\alpha + k\beta$ 数量乘法和加法

- (6) $(k+l)\alpha = k\alpha + l\alpha$ 数量乘法和加法
- (7) $(kl)\alpha = k(l\alpha)$ 数量乘法
- (8) $1 \alpha = \alpha$ 数量乘法
- 向量对数乘和加法两种基本运算是封闭的, 例如二维、三维几何空间中的向量.
- ▶ 即n元向量运算之后的结果仍是 n 元向量.
- ▶ 满足上述8条运算定律的数学对象还有很多, 例如: 实数、复数、矩阵,...
- > 我们这类对象的共同属性抽象出来 线性空间

注: 自然数与整数不满足.

- 定义 1:设 V 是一个非空集合, P 为一数域,如果以下三个条件被满足,则称非空集合V 是数域 P 上的一个线性空间.
 - (I)在 V的元素间给出一个法则,称为加法,使 V中任意两个元素 α 与 β ,总有唯一确定的一个元素 γ 与之对应,称为 α 与 β 的和,记作 γ = α + β.
- (II)在 V 的元素间给出一个法则,称为数量乘法,使数域 P 中任意一数 k 与V 中任意一个元素 α ,在V 中总有唯一确定的一个元素 δ 与之对应,称为 k 与 α 的数量乘积,记作 δ = $k\alpha$.

(III) 对于所给定的加法与数量乘法两种运算满足以下 8 种 运算规律(公理)

(1)
$$\alpha + \beta = \beta + \alpha$$
 (2) $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$

(3)
$$\alpha + 0 = \alpha$$
 (4) $\alpha + (-\alpha) = 0$

(5)
$$k(\alpha + \beta) = k\alpha + k\beta$$
 (6) $(k+l)\alpha = k\alpha + l\alpha$

(7)
$$(kl) \alpha = k(l\alpha)$$
 (8) $l\alpha = \alpha$

- \triangleright 当 P 为实数域 R 时,则称此线性空间为实线性空间.
- \triangleright 当 P 为复数域 R 时,则称此线性空间为复线性空间.

- 例1 数域 P 上的全部n元向量所组成的集合,按n元向量的加法与数量乘法构成数域P上的一个线性空间,记为 P^n ,称为n元向量空间。
- 线性空间与n元向量空间有许多本质上相同的性质。

• 因此, 常把线性空间也称为向量空间。

说明

- 凡满足以上八条运算规律的加法及数乘运算, 称为线性运算.
- 2. 判别线性空间的方法:一个集合,它如果
 - > 对于定义的线性运算不封闭(不满足闭包性);
 - > 或者,不满足八条运算性质的任一条;

则不能构成线性空间.

数域 P 按照本身的加法与乘法,即构成一个自身上的线性空间

定义的简化理解:

设V为n维向量的非空集合,若V对于加法及数乘两种运算封闭,则称集合V为向量空间(或线性空

间).

说明:集合V对于加法及数乘两种运算封闭指 $\forall \alpha, \beta \in V$,有 $\alpha + \beta \in V$; $\forall \alpha \in V, \forall k \in R$,有 $k\alpha \in V$.

注意. 0 必是向量空间V 的元素,即 $0 \in V$.

例: 3 维向量的全体 R^3 是一个向量空间,几何空间 n 维向量的全体 R^n 也是一个向量空间。

例: 齐次线性方程组 Ax=0 的解集合

$$S = \{x \mid Ax = 0\}$$

是一个向量空间。

非齐次线性方程组 Ax = b 的解集合

$$S_* = \{ x \mid Ax = b \}$$

不是一个向量空间。

例: 判别下列集合是否为向量空间.

(1)
$$V_1 = \{x = (0, x_2, \dots, x_n)^T | x_2, \dots, x_n \in R\}$$

$$(2) V_2 = \{ x = (1, x_2, \dots, x_n)^T | x_2, \dots, x_n \in R \}$$

- - (2) 若 $\alpha = (1, a_2, \dots, a_n)^T \in V_2$, 则 $2\alpha = (2, 2a_2, \dots, 2a_n)^T \notin V_2$. V_2 , 不是向量空间。

- 例:数域 P 上的全部 n元向量所组成的集合,按 n 元向量的加法和数乘运算构成数域 P 上的线性空间,记作 P^n ,称为 n 元向量空间.
 - ightharpoonup P取实数域 R , n=3 ,则 R^3 就是大家熟悉的三维几何空间.

例: 实数域上全体 $m \times n$ 阶矩阵的集合,对矩阵的加法和数乘运算封闭,构成实数域上的线性空间,记作 $R^{m \times n}$.

$$\therefore A_{m\times n} + B_{m\times n} = C_{m\times n}, \qquad \lambda A_{m\times n} = D_{m\times n},$$

- > 另外,满足八条线性运算性质
- :: R^{m×n}是一个线性空间.

- 例:数域 P 上一元多项式的全体(包括零多项式)所组成的集合,按通常的多项式的加法和数与多项式的乘法,构成数域 P 中的线性空间,记作 P[x].
 - ➤ 多项式加法和数乘多项式运算满足线性运算规律: 例如次数不大于 n 的一元多项式:

$$(a_n x^n + \dots + a_1 x + a_0) + (b_n x^n + \dots + b_1 x + b_0)$$

$$= (a_n + b_n) x^n + \dots + (a_1 + b_1) x + (a_0 + b_0) \in P[x]_n$$

$$\lambda (a_n x^n + \dots + a_1 x + a_0)$$

$$= (\lambda a_n) x^n + \dots + (\lambda a_1) x + (\lambda a_0) \in P[x]_n$$

- > 另外,满足八条线性运算性质,
- \triangleright 所以,构成数域 P 中的线性空间.

- 例:定义在区间 [a,b]上的全体实连续函数的全体 所组成的集合,对函数的加法和 数与函数的数量乘法,构成实数域上 的线性空间,记为 C[a,b].
 - ▶ f(x) + g(x) = h(x), 新函数 h(x) 也是定义在
 区间 [a,b]上的实连续函数,即是C[a,b]的元素
 加法满足封闭性
 - ▶ k · f(x) = d(x), 新函数 d (x) 也是定义在
 区间 [a,b]上的实连续函数, 是C[a, b]的元素
 乘法满足封闭性
 - > 另外,满足八条线性运算性质,
 - ▶ 所以,构成实数域上的线性空间.

注意:

V中的元素不论其本来的性质如何, 统称为向量

是一种代数系统 抽象层级更高的一个层级 要领会、并学习在这个层级想问题

判断是否构成线性空间:

对于非一般意义的加法、乘法,除了验证封闭性,8条运算规律要逐一验证。

例,全体正实数 \mathbf{R}^+ ,加法与数量乘法定义为: $a \oplus b = ab$; $\mathbf{k}a = a^{\mathbf{k}}$

线性空间的简单性质

1. 在线性空间中,零元素是唯一的.

证明: 假设 0_1 和 0_2 是线性空间 V 中有两个零元素,则对于任意 $\alpha \in V$,满足

$$\alpha + 0_1 = \alpha$$
, $\alpha + 0_2 = \alpha$.

曲于
$$O_1,O_2 \in V$$
,

$$\mathbf{FU}$$
 $O_2 + O_1 = O_2$, $O_1 + O_2 = O_1$.

$$\Rightarrow 0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2.$$

2. 在线性空间中,负元素是唯一的 证明: 假设α有两个负元素β与γ,那么

$$lpha+eta=0, \quad lpha+\gamma=0.$$
则有 $eta=eta+0=eta+(lpha+\gamma)$
 $=(eta+lpha)+\gamma$
 $=0+\gamma=\gamma.$

▶ 所以,负元素是唯一的.

向量 α 的负元素记为 $-\alpha$.

3.
$$0\alpha = 0$$
; $(-1)\alpha = -\alpha$; $\lambda 0 = 0$.

证明
$$:: \alpha + 0\alpha = 1\alpha + 0\alpha = (1+0)\alpha = 1\alpha = \alpha,$$

 $:: 0\alpha = 0.$

$$\therefore \alpha + (-1)\alpha = 1\alpha + (-1)\alpha = [1 + (-1)]\alpha = 0\alpha = 0,$$

$$\therefore (-1)\alpha = -\alpha.$$

4. 如果
$$\lambda \alpha = 0$$
 , 则 $\lambda = 0$ 或 $\alpha = 0$.

- 二、子空间的概念(线性空间局部与整体的关系)
- ▶ 考虑过原点的平面,平面上所有向量对于加法和数量乘法构成一个线性空间.
- ▶ 一方面,这些向量是三维几何空间的一部分;另一方面,它们对于原来的运算构成一个线性空间.
- ☑ <u>定义 2</u>: 设 W 是数域 P 上线性空间 V 的 一个子集,若满足条件:
 - (1) W 是非空的;
 - (2) 如果 α , $\beta \in W$, 则 $\alpha + \beta \in W$;
 - (3) 如果 $\alpha \in W$, $\lambda \in P$ 则 $\lambda \alpha \in W$; 那么 W 是 V 的一个子空间.

- > 由定义,子空间非空且对加法和数乘封闭,
- ▶ 子空间满足8条公理: 6条从原线性空间继承; 其余两条(iii)(iv),只要满足封闭性,由线性空间的4条简单性质保证.

(3)
$$\alpha + 0 = \alpha$$
 (4) $\alpha + (-\alpha) = 0$

V的的非空子集构成线性空间⇔对V上的线性运算封闭

例. $R_{yz} = \{(0, y, z) | y, z \in R\}$ 及 $R_z = \{(0, 0, z) | z \in R\}$ 都是 R^3 的子空间。

 $S = \{x \mid A_{m \times n} x = 0\}$ 是线性空间 R^n 的子空间,称为齐次 线性方程组 Ax = 0 的解空间,或 A 的零空间。

- 例:几何空间中,过原点的平面上所有向量构成几何空间*R*³的一个子空间.
- 例: 齐次线性方程组全部解的集合是线性空间 R* 的一个子空间,称为该齐次线性方程组的解空间.

- 例: 在线性空间 V 中,由一个零元素组成的子集,是 V 的一个线性子空间,称它为 零子空间(null subspace) ,记为 {0}.
 - ▶ 线性空间 V 也是自身 的一个线性子空间.
 - ✓ {0}和V称为线性空间 V 的平凡子空间(trivial subspaces).
 - ✓ V 的其他线性子空间称为 V 的非平凡子空间 (或 \underline{a} 子空间).

例: 对于向量组
$$S = \left\{ \begin{bmatrix} a \\ 1 \end{bmatrix} \middle| a$$
为任意实数 $\right\}$

曲于
$$2\begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} 2a \\ 2 \end{bmatrix} \notin S$$
,

所以向量组 S 不是 R^2 的子空间.

- 本例也说明了运算封闭性的必要性,
- ▶ 本例也对加法运算不封闭性.

例: R^{2×3}的下列子集是否构成子空间?为什么?

$$(1) W_1 = \left\{ \begin{pmatrix} 1 & b & 0 \\ 0 & c & d \end{pmatrix} \middle| b, c, d \in R \right\};$$

(2)
$$W_2 = \left\{ \begin{pmatrix} a & b & 0 \\ 0 & 0 & c \end{pmatrix} \middle| a+b+c=0, a, b, c \in R \right\}.$$

解: (1)不构成子空间.

即 W1 对矩阵加法不封闭,不构成子空间.

 \triangleright 显然, W_2 非空,

对任意

$$A = \begin{pmatrix} a_1 & b_1 & 0 \\ 0 & 0 & c_1 \end{pmatrix}, B = \begin{pmatrix} a_2 & b_2 & 0 \\ 0 & 0 & c_2 \end{pmatrix} \in W_2$$

有
$$a_1 + b_1 + c_1 = 0$$
, $a_2 + b_2 + c_2 = 0$,

于是
$$A+B=\begin{pmatrix} a_1+a_2 & b_1+b_2 & 0 \\ 0 & 0 & c_1+c_2 \end{pmatrix}$$

满足
$$(a_1+a_2)+(b_1+b_2)+(c_1+c_2)=0$$
,

即 $A+B\in W_2$, 对任意 $k\in R$ 有

$$kA = \begin{pmatrix} ka_1 & kb_1 & 0 \\ 0 & 0 & kc_1 \end{pmatrix}$$

即 $kA \in W_2$, 故 W_2 是 $R^{2\times 3}$ 的子空间.

练习: 令
$$S = \{(x_1, x_2, x_3)^T \mid x_1 = x_2\}$$
 问 S 是否为 \mathbb{R}^3 的一个子空间?

解: 由于 $\mathbf{x} = (1,1,0)^T$

所以向量组 S 非空;

> 再验证满足两个闭包性:

若 $\mathbf{x} = (a, a, b)^T$, $\mathbf{y} = (c, c, d)^T$ 为S中任意向量,

(1)
$$k \cdot \mathbf{x} = (ka, ka, kb)^T \in S$$
,

(2)
$$\mathbf{x} + \mathbf{y} = (a + c, a + c, b + d)^T \in S$$
,

▶ 故 S 是 R³ 的一个子空间.

例:设a,b为两个已知的n维向量,判断集合 $V = \{\lambda a + \mu b | \lambda, \mu \in R\}$ 是否为向量空间.

解: $\forall x_1 = \lambda_1 a + \mu_1 b, x_2 = \lambda_2 a + \mu_2 b \in V$ $f(x_1) + x_2 = (\lambda_1 + \lambda_2) a + (\mu_1 + \mu_2) b \in V,$ $\forall k \in R, f(kx_1) = (k\lambda_1) a + (k\mu_1) b \in V.$ V 是一个向量空间。

V称为由向量a, b生成的向量空间。

- 生成元 (子空间自成体系)
- \triangleright 设 $\alpha_{I_1}\alpha_{2,...,}\alpha_n$ 是数域 P 上线性空间 V 中的一组向量,考虑这组向量<u>所有可能</u>的线性组合所组成的集合

$$\lambda_1 \alpha_1 + \lambda_2 \alpha_2 + \dots + \lambda_l \alpha_l \quad (\lambda_i \in P, i = 1, 2, \dots, l)$$

- ➤ 显然该集合非空,且于V的两种运算封闭.
- **D** 因此它也是V的一个子空间,称它为由 $\alpha_{I_1}\alpha_{2,...,}\alpha_n$ 生成/ <u>张成</u>的子空间 (generated/spanned by ...) ,记为:

$$L(\alpha_1,\alpha_2,\cdots,\alpha_l) = \left\{ \sum_{i=1}^l \lambda_i \alpha_i \middle| \lambda_i \in P \right\}$$
 或 Span $(\alpha_1,\alpha_2,\cdots,\alpha_l) = \left\{ \sum_{i=1}^l \lambda_i \alpha_i \middle| \lambda_i \in P \right\}$

ightharpoonup 向量组 $\alpha_{1,\alpha_{2,...,\alpha_{n}}}$ 称为此子空间的<u>生成元</u> (generator).

例: 在
$$\mathbb{R}^3$$
中,向量组 $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

生成的子空间为:
$$\alpha e_1 + \beta e_2 = \begin{bmatrix} \alpha \\ \beta \\ 0 \end{bmatrix}$$

- \triangleright 可以验证 Span (e_1, e_2) 是 \mathbb{R}^3 的一个子空间.
 - 该子空间几何上表示 x-y 平面内的三维空间向量.
- ➤ 若 x 是 R³ 中的非零向量,则 Span (x) 几何上表示? 一条过原点的直线.

§ 2 基、维数和坐标

在 R* 中,线性无关的向量组可能最多由 r 个向量组成,而任意 r+1个向量都是线性相关的.

问题:线性空间的重要特征——在线性空间中,最多能有多少线性无关的向量?

一、基与维数

- ☑ <u>定义 3</u>: 线性空间 V 中向量组 $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$, 如果它满足条件:
 - (1) $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ 线性无关;
 - (2) 线性空间 V 中任一向量 α 都可经 ϵ_1 , ϵ_2 , ..., ϵ_n 线性表示.

则称此向量组 $\epsilon_1, \epsilon_2, ..., \epsilon_n$ 是线性空间 V 的一个

基 (basis).

▶ 线性空间 V 中任一向量都可经基线性表示, 即线性空间可由基生成,

▶由前面向量组的讨论,线性空间的基不是唯一的, 但是每个基所含向量的个数是唯一的。

- 回<u>定义 4</u>: 如果线性空间 V 的一个基所含向量个数为 n,则称 V 为 n 维空间.
 - n 为线性空间 V 的<u>维数</u>, 记为 $\dim V = n$.
 - 当一个线性空间 V 中存在任意多个线性无关的向量时,就称V 是无限维的 (infinite-dimensional).
- ▶ 例如: 所有多项式构成的空间是无限维的(why?) n可任意取
 - ·如果线性空间 V 没有基, 那么 V 的维数为0.
 - 零空间没有基, $\dim \theta = 0$.

 $\mathbf{\epsilon} \mathbf{R}^{2\times 2}$ 中,向量组

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
, $E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 是 $R^{2 \times 2}$ 的一个基,故dim $R^{2 \times 2} = 4$ 。

在 $P[x]_2$ 中,向量组 $arepsilon_1=1, arepsilon_2=x, arepsilon_3=x^2$ 是 $P[x]_2$ 的一个基,故 $\dim P[x]_2=3$ 。

>这两个基也是标准基.

例: 在
$$\mathbb{R}^n$$
 中,向量组 $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$

- \triangleright 是线性无关的, 且是 R^n 的极大无关组,所以 e_1, e_2, \dots, e_n
- ▶ 是 \mathbb{R}^n 的一个基,称为常用基/标准基/自然基 (standard basis of \mathbb{R}^n)
 - \triangleright 从而 R^n 的维数是 n , dim $R^n = n$
 - $ightharpoonup R^n$ 中的任一向量 α都可用标准基线性表示. $\alpha = (a_1, a_2, \dots, a_n)^T = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$

例:
$$V = \{(x, y, z)^T \mid x+2y-3z = 0\}$$

= $\{(-2y +3z, y, z)^T \mid y, z \in \mathbb{R}\}$

$$\begin{pmatrix}
-2y + 3z \\
y \\
z
\end{pmatrix} = y \begin{pmatrix}
-2 \\
1 \\
0
\end{pmatrix} + z \begin{pmatrix}
3 \\
0 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
-2 \\
1 \\
0
\end{pmatrix}, \begin{pmatrix}
3 \\
0 \\
1
\end{pmatrix}$$
线性无关

$$\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$ 为 V 的一组基, $\dim V = 2$.

例:求向量组 $\alpha_1 = [1,2,2]^T$, $\alpha_2 = [1,0,-1]^T$, $\alpha_3 = [2,2,1]^T$, $\alpha_4 = [2,4,4]^T$, 的基和维数.

解:将向量组构成矩阵 $A=[\alpha_1,\alpha_2,\alpha_3,\alpha_4]$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 0 & 2 & 4 \\ 2 & -1 & 1 & 4 \end{bmatrix} \xrightarrow{\mathbf{R}_3 - 2\mathbf{R}_1} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & -2 & -2 & 0 \\ 0 & -3 & -3 & 0 \end{bmatrix} \xrightarrow{\mathbf{R}_3 - \frac{3}{2}\mathbf{R}_2} \begin{bmatrix} 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- \rightarrow 可见dim $L(\alpha_1, \alpha_2, ..., \alpha_4) = 2$,
- \triangleright (α_1,α_2) , (α_1,α_3) , (α_2,α_3) 等都是 $L(\alpha_1,\alpha_2,...,\alpha_4)$ 的基。
- ▶ 对于线性方程组 AX=0, 方程组的一个基础解系即为 其解空间一个基,所有解都可以用基础解系线性表示,

- ▶ 这些非零解向量 构成的线性空间叫做AX=0 的 解空间, 也叫零空间(null space)—这个空间的基就是基础解系.
- ▶ 基础解系不是唯一的,方程组解空间的基也不是唯一的.
- ▶系数矩阵A满秩,解空间就是0维的.

二、向量的坐标

図 定义 5: 设向量组 ϵ_1 , ϵ_2 , ..., ϵ_n 是 n 维线性空间 V 的一个基, α 是 V 中任意一个向量,则有

$$\alpha = x_1 \mathcal{E}_1 + x_2 \mathcal{E}_2 + \dots + x_n \mathcal{E}_n$$

称数组 $x_1, x_2, ..., x_n$ 为向量 α 在基 $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ 下的坐标(coordinates),记为 $[x_1, x_2, ..., x_n]^T$

任意一个向量 α 在一个确定的基下的坐标 是唯一的。 ightharpoonup 这是因为,若向量 α 在基 ightharpoonup ight

$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n \qquad \text{fil } \alpha = x_1' \varepsilon_1 + x_2' \varepsilon_2 + \dots + x_n' \varepsilon_n$$

> 两式相减得

$$(x_1 - x_1')\varepsilon_1 + (x_2 - x_2')\varepsilon_2 + \dots + (x_n - x_n')\varepsilon_n = 0$$

- 由于基 ε₁, ε₂,..., ε_n 是线性无关的,故必须有 $x_1 = x_1', x_2 = x_2', \dots, x_n = x_n'$
- ▶ 因此,坐标是唯一的.

例: 在线性空间 \mathbb{R}^3 中,设向量 $\alpha = [1, -1, 7]^T$ 求 α 在下面两个基下的坐标.

(1)
$$e_1 = [1,0,0]^T$$
, $e_2 = [0,1,0]^T$, $e_3 = [0,0,1]^T$;

(2)
$$\varepsilon_1 = [1,0,0]^T$$
, $\varepsilon_2 = [1,1,0]^T$, $\varepsilon_3 = [1,1,1]^T$;

解: 由于
$$\alpha = \begin{bmatrix} 1 \\ -1 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + (-1) \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + (7) \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = e_1 - 1e_2 + 7e_3$$

 $\therefore \alpha$ 在基 e_1, e_2, e_3 下的坐标为 $[1,-1,7]^T$

(2) 设α在基 $\epsilon_1 = [1,0,0]^T$, $\epsilon_2 = [1,1,0]^T$, $\epsilon_3 = [1,1,1]^T$ 下的坐标为 $[x_1, x_2, x_3]^T$

$$\alpha = \begin{bmatrix} 1 \\ -1 \\ 7 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ -1 \\ 7 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 + x_3 \\ x_2 + x_3 \\ x_3 \end{bmatrix}$$

解方程组得 $x_1 = 2, x_2 = -8, x_3 = 7$

 $\therefore \alpha$ 在基 $\varepsilon_1, \varepsilon_2, \varepsilon_3$ 下的坐标为 $[2,-8,7]^T$

- 》在线性空间中,基一般不是唯一的.
- > 同一向量在不同的基下,坐标一般亦是不同的.

例: 对于向量
$$\alpha = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$\alpha = 3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\alpha = 1 \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} + 1 \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

- ➤ 不同的基可视作<u>不同度量单位</u> 不同方向 的参考坐标系.

例: 对于R²×2中的矩阵

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

有

$$k_1 E_{11} + k_2 E_{12} + k_3 E_{21} + k_4 E_{22} = \begin{pmatrix} k_1 & k_2 \\ k_3 & k_4 \end{pmatrix}$$

因此

$$k_1 E_{11} + k_2 E_{12} + k_3 E_{21} + k_4 E_{22} = O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Leftrightarrow k_1 = k_2 = k_3 = k_3 = 0,$$

即 E_{11} , E_{12} , E_{21} , E_{22} 线性无关.

对于任意二阶实矩阵

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in V,$$

有

$$A = a_{11}E_{11} + a_{12}E_{12} + a_{21}E_{21} + a_{22}E_{22}$$

因此 E_{11} , E_{12} , E_{21} , E_{22} 为V的一组基.

而矩阵A在这组基下的坐标是

$$(a_{11}, a_{12}, a_{21}, a_{22})^T$$

 $ightharpoonup E_{ij}$ 也是 $R^{2 \times 2}$ 的标准基.

定理 2: 设 $\alpha_{I_i}\alpha_{2,...,}\alpha_{I}$ 是 n 维线性空间 V 中 I 个向量,在 V 中取定一个基 ϵ_1 , ϵ_2 ,..., ϵ_n , 如果 α_j 在此基下的坐标为

$$[\alpha_{1j}, \alpha_{2j}, \dots, \alpha_{nj}]^T \quad (j = 1, 2, \dots, l)$$

则向量组 a_1 , a_2 , ..., a_l 线性相关的充分必要条件是矩阵

$$A = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1l} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2l} \\ \cdots & \cdots & \cdots \\ \alpha_{n1} & \alpha_{n2} & \cdots & \alpha_{nl} \end{bmatrix}$$

的秩 $\mathbf{r}_{\Lambda} < l$.

回忆:

例4: 已知向量 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,向量 β_1,β_2,β_3 可以由向量 $\alpha_1,\alpha_2,\alpha_3$ 线性表示,并且

$$(\beta_1,\beta_2,\beta_3) = (\alpha_1,\alpha_2,\alpha_3)K$$

证明: $\beta_1, \beta_2, \beta_3$ 线性无关的充要条件是 R(K) = 3

证明: 由已知
$$\alpha_j = \sum_{i=1}^n \alpha_{ij} \varepsilon_i$$
 $(j=1,2,\cdots l)$

▶ 1 个式子合并在一起,有

$$[\alpha_1, \alpha_2, \cdots, \alpha_l] = [\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n][A]$$

> 考察等式

$$\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_l x_l = 0$$

即有
$$\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}\right]$$
 $\begin{bmatrix}x_{1}\\x_{2}\\\vdots\\x_{l}\end{bmatrix}$ = 0 (2.2) \rightarrow 向量组 $\alpha_{1}, \alpha_{2}, ..., \alpha_{l}$ 线性相关. \rightarrow 代入 $\left[\alpha_{1}, \alpha_{2}, \cdots, \alpha_{l}\right] = \left[\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{n}\right] \left[A\right]$ 得

ightharpoonup 代入 $\left[\alpha_1, \alpha_2, \dots, \alpha_l\right] = \left[\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n\right] \left[A\right]$ 得

 \triangleright 由于基 ε₁, ε₂,..., ε_n 是线性无关的,故必有

推论: 定理 2 中向量组 $\alpha_{I_1}\alpha_{2,...,}\alpha_{I}$ 线性无关的充要条件是 $r_A = I$.

例: 在P[x]3中,取向量组

$$f_1 = 1 + 2x + x^3$$
; $f_2 = 1 + x + x^2$
 $f_3 = 1 + x^2$; $f_4 = 1 + 3x + x^3$

问向量组是否线性相关?

解: 在P[x]₃中, 先取定一个基为 1, x, x², x³, 可得

例: 验证向量组
$$\alpha_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

是
$$R^3$$
的一个基,并求向量 $\alpha = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}$ 在该基下的坐标。

解: 首先讨论向量组的线性相关性, 因为

$$\begin{bmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \xrightarrow{r_2 - r_1} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 3 & 1 \end{bmatrix} \xrightarrow{r_3 + 3r_2} \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

所以 $\alpha_1,\alpha_2,\alpha_3$ 是R³的一个基。其次求坐标

$$(\alpha_1, \alpha_2, \alpha_3, \alpha) = \begin{bmatrix} 1 & 2 & 0 & 2 \\ 1 & 1 & 0 & 1 \\ 0 & 3 & 1 & 2 \end{bmatrix} \xrightarrow{r_2 - r} \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & -1 & 0 & -1 \\ 0 & 3 & 1 & 2 \end{bmatrix}$$

所以有 $\alpha = 0 \cdot \alpha_1 + \alpha_2 - \alpha_3$, 故向量 α 在基 $\alpha_1, \alpha_2, \alpha_3$ 下的 坐标为(0, 1, -1).

三、过渡矩阵与坐标变换公式

问题: 在 n 维线性空间 V 中, 任意 n个线性无关的向量都可以作为 V 的一组基.

- > 我们也接触过几个标准基:
 - \triangleright Rⁿ的标准基是 (e₁, e₂, ..., e_n)
 - $ightharpoonup R^{2 \times 2}$ 的标准基是 $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$ $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
 - ▶ P[x]_n的标准基是 (1, x², ..., xⁿ)

尽管标准基形式简单,但是很多实际问题中标准基并不是最适用的.

可以类比直角坐标系、圆柱坐标系、球坐标系、切平面—法向量坐标系、特征值问题等等.

- 对不同的基,同一个向量的坐标是不同的.
 那么,同一向量在不同基下的坐标有什么关系呢?
- > 换句话说, 随着基的改变, 向量的坐标如何改变呢?
- > 不同的基可视作不同的参考坐标系,
- > 所以,这实际上是不同参考坐标系下的坐标转化问题.

例如:在 R^2 中,我们希望用新的基取代标准基 (e_1,e_2)

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- (1) 给定一个向量 $\mathbf{x} = (x_1, x_2)^T$,求它在基 $\mathbf{u_1}, \mathbf{u_2}$ 下的坐标;
- (2) 给定一个向量 c 在 $\mathbf{u_1}$, $\mathbf{u_2}$ 下的坐标($\mathbf{c_1}$, $\mathbf{c_2}$),即 $\mathbf{c} = \mathbf{c_1}\mathbf{u_1} + \mathbf{c_2}\mathbf{u_2}$, 求它在标准基($\mathbf{e_1}$, $\mathbf{e_2}$)下的坐标。

(2)较为简单:
$$\begin{cases} \mathbf{u}_1 = 3\mathbf{e}_1 + 2\mathbf{e}_2 \\ \mathbf{u}_2 = \mathbf{e}_1 + \mathbf{e}_2 \end{cases} \quad (\mathbf{u}_1, \mathbf{u}_2) = (\mathbf{e}_1, \mathbf{e}_2) \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} = (\mathbf{e}_1, \mathbf{e}_2) \cdot M$$

- **c** = c_1 **u**₁ + c_2 **u**₂ = c_1 (3 \mathbf{e}_1 + 2 \mathbf{e}_2) + c_2 (\mathbf{e}_1 + \mathbf{e}_2) $= (3c_1 + c_2)\mathbf{e}_1 + (2c_1 + c_2)\mathbf{e}_2$
- ightharpoonup c在标准基下的坐标((x_1, x_2) T为 $\mathbf{x} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = M \mathbf{c}$

$$\mathbf{x} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = M \mathbf{c}$$

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

▶ 显然,对于(1) — 给定 $\mathbf{x} = (x_1, x_2)^{\mathsf{T}}$,求它在基 $\mathbf{u_1}, \mathbf{u_2}$ 下的 坐标是(2)的逆过程: $(c_1) \begin{bmatrix} 3 & 1 \end{bmatrix}^{-1} (x_1)$

$$\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = M^{-1} \cdot \mathbf{x}$$

例如: 给定向量 $x = (7,4)^T$,求它在基 u_1, u_2 下的坐标

$$\mathbf{c} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1} \begin{pmatrix} 7 \\ 4 \end{pmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 所以, $\mathbf{x} = 3\mathbf{u}_1 - 2\mathbf{u}_2$.

図_定义 6: 设 ϵ_1 , ϵ_2 , ..., ϵ_n 和 ϵ'_1 , ϵ'_2 , ..., ϵ'_n 是 n 维线性空间 V 中的两个基,且有:

$$\begin{cases} \mathcal{E}'_1 = m_{11}\mathcal{E}_1 + m_{21}\mathcal{E}_2 + \dots + m_{n1}\mathcal{E}_n \\ \mathcal{E}'_2 = m_{12}\mathcal{E}_1 + m_{22}\mathcal{E}_2 + \dots + m_{n2}\mathcal{E}_n \\ \dots & \dots & \dots \\ \mathcal{E}'_n = m_{1n}\mathcal{E}_1 + m_{2n}\mathcal{E}_2 + \dots + m_{nn}\mathcal{E}_n \end{cases} M = \begin{bmatrix} m_{11} & m_{12} & \dots & m_{1n} \\ m_{21} & m_{22} & \dots & m_{2n} \\ \dots & \dots & \dots & \dots \\ m_{n1} & m_{n2} & \dots & m_{nn} \end{bmatrix}_{n \times n}$$

借助矩阵表示为 $[\varepsilon'_1, \varepsilon'_2, \dots, \varepsilon'_n] = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n]M$

则称矩阵 M 为由基 $\epsilon_1, \epsilon_2, ..., \epsilon_n$ 到 基 $\epsilon'_1, \epsilon'_2, ..., \epsilon'_n$ 的过渡矩阵(transition matrix).

• 基变换公式

$$[\varepsilon'_1, \varepsilon'_2, \cdots, \varepsilon'_n] = [\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n]M$$
基变换公式

> 过渡矩阵是基与基之间的一个可逆线性变换.

 \square 定理 3: 设 $\epsilon'_1, \epsilon'_2, ..., \epsilon'_n$ 和 $\epsilon_1, \epsilon_2, ..., \epsilon_n$ 是 n 维线性空间 V 中的两个基, 且有:

$$[\varepsilon'_1, \varepsilon'_2, \dots, \varepsilon'_n] = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n] M$$

- 则 (1) 过渡矩阵 M 是可逆的;
 - (2) 若 $\alpha \in V$,且在基 $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ 和 $\epsilon'_1, \epsilon'_2, ..., \epsilon'_n$ 下的坐标分别为 $[x_1, x_2, ..., x_n]^T$

和

和
$$\begin{bmatrix} \mathbf{x}'_1, \mathbf{x}'_2, \dots, \mathbf{x}'_n \end{bmatrix}^T$$
 , 则有 $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = M \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}$ (2.5)

证明: (1) 由定理 2 推论知过渡矩阵 M 是可逆的: 因M是一个基在另一个基下的坐标矩阵.

(2) 由于向量 α 在基 $\epsilon_1, \epsilon_2, ..., \epsilon_n$ 下的坐标为 $[x_1, x_2, \ldots, x_n]^T$,即有.

[
$$\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$$
]^T,即有.
$$\alpha = x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_n \varepsilon_n = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
同理
$$\alpha = [\varepsilon'_1, \varepsilon'_2, \dots, \varepsilon'_n] \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}$$
代入左式得

$$\alpha = \left[\varepsilon'_{1}, \varepsilon'_{2}, \cdots, \varepsilon'_{n}\right] \begin{bmatrix} x'_{2} \\ \vdots \\ x'_{n} \end{bmatrix}$$

又已知
$$[\varepsilon'_1, \varepsilon'_2, \dots, \varepsilon'_n] = [\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n]M$$

$$\alpha = \begin{bmatrix} \varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} \varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n \end{bmatrix} M \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}$$

由于向量 α 在基 $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ 下的坐标是唯一的故有 (2.5) 式成立.

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = M \begin{bmatrix} x'_1 \\ x'_2 \\ \vdots \\ x'_n \end{bmatrix}$$
 (2.5)

坐标变换公式

例: 在线性空间 R3 中, 取定两个基:

$$\varepsilon_{1} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \ \varepsilon_{2} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}, \ \varepsilon_{3} = \begin{bmatrix} 3 \\ 7 \\ 1 \end{bmatrix}, \quad \eta_{1} = \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix}, \ \eta_{2} = \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}, \ \eta_{3} = \begin{bmatrix} 1 \\ 1 \\ -6 \end{bmatrix},$$

- (1) 求由基 ε_1 , ε_2 , ε_3 到基 η_1 , η_2 , η_3 的过渡矩阵;
- (2) 设向量 α 在基 η₁, η₂, η₃下的坐标为[0,-1,1]^T, 求 α 在基ε₁, ε₂, ε₃下的坐标。

解:由定义6,若过渡矩阵为M,则 $[\eta_1,\eta_2,\eta_3]=[\varepsilon_1,\varepsilon_2,\varepsilon_3]M$

ightharpoonup 记 $A=[\epsilon_1,\epsilon_2,\epsilon_3]$, $B=[\eta_1,\eta_2,\eta_3]$,A、B皆为已知矩阵,且A可逆,问题归结为解矩阵方程

$$B = AM \implies M = A^{-1}B$$

> 可通过矩阵的初等行变换求解:

$$[A,B] = \begin{bmatrix} 1 & 2 & 3 & 3 & 5 & 1 \\ 2 & 3 & 7 & 1 & 2 & 1 \\ 1 & 3 & 1 & 4 & 1 & -6 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & 3 & 5 & 1 \\ 0 & -1 & 1 & -5 & -8 & -1 \\ 0 & 1 & -2 & 1 & -4 & -7 \end{bmatrix}$$

ightharpoonup 所以, 由基 ε₁, ε₂,ε₃ 到基 η₁, η₂,η₃ 的过渡矩阵为

$$\begin{bmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{bmatrix}$$

- (2) 设向量 α 在基 η₁, η₂, η₃下的坐标为[0,-1,1]^T, 求 α 在基ε₁, ε₂, ε₃下的坐标。
 - ▶ 由坐标变换公式(2.5)

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -27 & -71 & -41 \\ 9 & 20 & 9 \\ 4 & 12 & 8 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 30 \\ -11 \\ -4 \end{bmatrix}$$

总结:如何求过渡矩阵?(适用R"空间)

$$(\beta_1, \beta_2, \dots, \beta_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)P$$

$$(A|B)$$
 $\xrightarrow{-SMfree h}$ $(E|A^{-1}B) = (E|P)$ 这是求过渡矩阵的简单方法

例:设 P[x]。的两个基分别为

(1)
$$\varepsilon_1=1$$
, $\varepsilon_2=x$, $\varepsilon_3=x^2$, $\varepsilon_4=x^3$;

(2)
$$\mathbf{f}_1 = 1 + \mathbf{x} + \mathbf{x}^3$$
, $\mathbf{f}_2 = \mathbf{x} + \mathbf{x}^2$,
 $\mathbf{f}_3 = 1 + \mathbf{x} - 2\mathbf{x}^2$, $\mathbf{f}_4 = 2 + \mathbf{x} + \mathbf{x}^2 + \mathbf{x}^3$.

求由基(1)到基(2)的过渡矩阵;

解: 按过渡矩阵定义有 $[f_1, f_2, f_3, f_4] = [\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4]M$

由已知条件即得

四、线性子空间的维数与基

- ▶ 基/维数/坐标等概念也可以应用到线性子空间.
- 例:线性空间 R^n 的子空间 $N(A) = \{ X \in \mathbb{R}^n / AX = 0 \}$ 的基,由齐次线性方程组解的理论,易知其为 AX = 0 的基础解系, $\dim N(A) = n r_A$.
- > 线性子空间的基 <=> 极大无关组.
- > 线性子空间的基不唯一.
- > 线性子空间的任意两组基等价.
- > 线性子空间的维数 <=> 向量组的秩.

<u>定理 4</u>: 设 α_1 , α_2 , ..., α_l 与 β_1 , β_2 , ..., β_s 是线性 空间 V 中的两个向量组。

- (1) $L(\alpha_1, \alpha_2, ..., \alpha_l) = L(\beta_1, \beta_2, ..., \beta_s)$ 的充分必要条件是 $\alpha_1, \alpha_2, ..., \alpha_l$ 与 $\beta_1, \beta_2, ..., \beta_s$ 等价;
- (2) $L(\alpha_{l_1}, \alpha_2, ..., \alpha_l)$ 的维数等于向量组 $\alpha_{l_1}, \alpha_2, ..., \alpha_l$ 的秩.
- 证明: (1) 必要性: 因为 $L(\alpha_1, \alpha_2, \dots, \alpha_l) = L(\beta_1, \beta_2, \dots, \beta_s)$ 所以有 $\alpha_i \in L(\beta_1, \beta_2, \dots, \beta_s)$ $(i = 1, 2, \dots l)$
 - ightharpoonup 因而每一个 α_i 都可以用向量组 β_1 , β_2 , ..., β_s 线性表示;

- 同样 $\beta_j \in L(\alpha_1, \alpha_2, \dots, \alpha_l)$ $(j=1,2,\dots s)$
- ightharpoonup 因而每一个 ho_j 都可以用向量组 $lpha_1,lpha_2,...,lpha_l$ 线性表示;
- > 因此向量组 $\alpha_1, \alpha_2, ..., \alpha_l$ 与 $\beta_1, \beta_2, ..., \beta_s$ 等价;

充分性:由于向量组 $\alpha_{1,}\alpha_{2},...,\alpha_{l}$ 与 $\beta_{1},\beta_{2},...,\beta_{s}$ 等价,

- 》 所以,凡是可用向量组 $\alpha_{1,}\alpha_{2},...,\alpha_{l}$ 表示的向量,也一定可以用向量组 $\beta_{1},\beta_{2},...,\beta_{s}$ 线性表示。
- 因为 $L(\alpha_{I_1}, \alpha_2, ..., \alpha_l)$ 中的向量都是 $\alpha_{I_1}, \alpha_2, ..., \alpha_l$ 的 线性组合,所以它们必定能用 $\beta_1, \beta_2, ..., \beta_s$ 线性表示, 因此必有: $L(\alpha_1, \alpha_2, ..., \alpha_l) \subseteq L(\beta_1, \beta_2, ..., \beta_s)$

- ightharpoonup 同理亦有: $L(\beta_1,\beta_2,\cdots,\beta_s)\subseteq L(\alpha_1,\alpha_2,\cdots,\alpha_l)$
- \triangleright 综合起来即得: $L(\beta_1, \beta_2, \dots, \beta_s) = L(\alpha_1, \alpha_2, \dots, \alpha_l)$
- (2) $L(\alpha_{I_1}, \alpha_2, ..., \alpha_l)$ 的维数等于向量组 $\alpha_{I_1}, \alpha_2, ..., \alpha_l$ 的秩.
- ightharpoonup 设向量组 $lpha_{I_i}lpha_2$,..., $lpha_l$ 的一个极大线性无关组是 $lpha_{i\,I_i}lpha_{i\,2}$,..., $lpha_{i\,r}$
 - \rightarrow 那么 $\alpha_{i\,1}$, $\alpha_{i\,2}$, ..., $\alpha_{i\,r}$ 与原向量组 $\alpha_{1,}$ α_{2} , ..., α_{l} 是等价的,由 (1) 的结论

$$L(\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ir}) = L(\alpha_1, \alpha_2, \dots, \alpha_l)$$
 (2.6)

▶ 显然 $\alpha_{i\,1_i}$ $\alpha_{i\,2}$,..., $\alpha_{i\,r}$ 是生成子空间 $L(\alpha_{i\,1_i}\alpha_{i\,2},...,\alpha_{i\,r})$ 的一个基,且 dim $(\alpha_{i\,1_i}\alpha_{i\,2},...,\alpha_{i\,r})$ = r

$$L(\alpha_{i1}, \alpha_{i2}, \dots, \alpha_{ir}) = L(\alpha_1, \alpha_2, \dots, \alpha_l)$$
 (2.6)

- \blacktriangleright 由 (2.6) 知 $\alpha_{i\,l_1}\alpha_{i\,2}$,..., $\alpha_{i\,r}$ 也是 $L(\alpha_{l_1}\alpha_{2}$,..., α_{l_l}) 的一个基,且 dim $L(\alpha_{l_1}\alpha_{2}$,..., α_{l_l}) = r
- ightharpoonup 因而 $L(\alpha_{l_1}, \alpha_{2}, ..., \alpha_{r_l})$ 的维数等于向量组 $\alpha_{l_1}, \alpha_{l_2}, ..., \alpha_{l_l}$ 的秩. 证毕.