1 SFR-BCR

Binary variables: $x_1, x_2, \dots, x_n \in \{0, 1\}$, and let $X := \sum_{i=1}^n x_i, \ 2 \le k \in \mathbb{N}, \ l = \lceil \log k \rceil$

1.1 SFR-BCR-1,2

We have the l+1 auxiliary variables $y_0, y_1, \ldots, y_{l-1}, z \in \{0, 1\}$. (In the formulas, summations for $i, i' = 1, 2, \ldots, n$ and $j, j' = 0, 1, \ldots, l-1$ are understood.)

We have the functions

$$A_k(X,y,z) = X - (k-2^l)z - (k+1)(1-z) - \sum_j 2^j y_j. \tag{1}$$

After substituting for X, and collecting the terms, the equation for SFR-BCR-1 becomes

$$A_k(X,y,z) = -(1+k) + \sum_i x_i - \sum_j 2^j y_j + (1+2^l). \tag{2}$$

Similarly for SFR-BCR-2 we have

$$A_{n-k}(n-X,y,z) = -(1-k) + \sum_{i} x_i - \sum_{j} 2^j y_j + (1+2^l).$$

For the two cases (top/bottom = SFR-BCR-1/SFR-BCR-2), by recognizing their similarities we can simplify the equation to

$$\left. \begin{array}{l} A_k(X,y,z) \\ A_{n-k}(n-X,y,z) \end{array} \right\} = -(1\pm k) \pm \sum_i x_i - \sum_j 2^j y_j + (1+2^l)z. \qquad \stackrel{\text{eq:Ak12}}{\text{(4)}}$$

Then the squares are

$$\begin{split} \frac{A_k(X,y,z)^2}{A_{n-k}(n-X,y,z)^2} \bigg\} &= (1\pm k)^2 \mp 2(1\pm k) \sum_i x_i + 2(1\pm k) \sum_j 2^j y_j - 2(1\pm k)(1+2^l) z \\ &+ \sum_i \sum_{i'} x_i x_{i'} \mp 2 \sum_i \sum_j 2^j x_i y_j \pm 2(1+2^l) \sum_i z x_i \\ &+ \sum_j \sum_{j'} 2^{j+j'} y_j y_{j'} - 2(1+2^l) \sum_j z 2^j y_j \\ &+ (1+2^l)^2 z^2 \\ & \text{eq: Ak12sq.} \end{split}$$

Because $z \in \{0,1\}$, we have $z^2 = z$, so we can join the two terms,

$$-2(1 \pm k)(1+2^{l})z + (1+2^{l})^{2}z^{2} = (1+2^{l})(2^{l} \mp 2k - 1)z,$$
(6)

so we end up with

$$\begin{split} & \underbrace{A_{k}(X,y,z)^{2}}_{A_{n-k}(n-X,y,z)^{2}} \bigg\} = \\ & \underbrace{(1\pm k)^{2}}_{\alpha} + \underbrace{\mp 2(1\pm k)}_{\alpha^{b}} \sum_{i} x_{i} + \sum_{j} \underbrace{(1\pm k)2^{j+1}}_{\alpha^{b_{a,1}}} y_{j} + \underbrace{(1+2^{l})(2^{l}\mp 2k-1)}_{\alpha^{b_{a,2}}} z \\ & + \underbrace{1}_{\alpha^{bb}} \sum_{i,i'} x_{i}x_{i'} + \sum_{i,j} \underbrace{\mp 2^{j+1}}_{\alpha^{bb_{a,1}}} x_{i}y_{j} + \underbrace{\pm 2(1+2^{l})}_{\alpha^{bb_{a,2}}} \sum_{i} x_{i}z \\ & + \sum_{j,j'} \underbrace{2^{j+j'}}_{\alpha^{bab_{a,1}}} y_{j}y_{j'} + \sum_{j} \underbrace{-(1+2^{l})2^{j+1}}_{\alpha^{bab_{a,2}}} y_{j}z. \end{split}$$

The coefficients are $|^{eq:BCR12alpha}$

$$\alpha = (1 \pm k)^2,\tag{8a}$$

$$\alpha^b = \mp 2(1 \pm k),\tag{8b}$$

$$\alpha^{b_{a,1}} = (1 \pm k)2^{j+1},\tag{8c}$$

$$\alpha^{b_{a,2}} = (1+2^l)(2^l \mp 2k - 1),\tag{8d}$$

$$\alpha^{bb} = 1, (8e)$$

$$\alpha^{bb_{a,1}} = \pm 2^{j+1},$$
 (8f)

$$\alpha^{bb_{a,2}} = \pm 2(1+2^l),\tag{8g}$$

$$\alpha^{b_a b_{a,1}} = 2^{j+j'},\tag{8h}$$

$$\alpha^{b_a b_{a,2}} = -(1+2^l)2^{j+1}. (8i)$$

Dictionary:

 $l \mapsto m-1$, (l+1=m auxiliary variables),

 $x_i \mapsto b_i$,

 $y_j \mapsto b_{a_j}$, $(b_{\mathbf{a},j} \text{ would be a better choice, a is a label, } j \text{ is an index, they should be on the same level. Also the indexing of the } \alpha^{\dots}$ coefficients could be made more expressive.) $z \mapsto b_{a_m}$, $(b_{\mathbf{a},m} \text{ would be better})$ $k \mapsto c$

Note that, in this case, the j indices of the auxiliary bits have to be shifted, since they are ranging from 1, not 0. (This is not the case in the next subsection.)

1.2 SFR-BCR-3,4

We have now the l auxiliary variables $y_1, y_2, \ldots, y_{l-1}, z \in \{0, 1\}$. (In the formulas, summations for $i, i' = 1, 2, \ldots, n$ and $j, j' = 1, 2, \ldots, l-1$ are understood.)

We have the functions

$$A_k'(X,y,z) = X - (k-2^l)z - (k+1)(1-z) - \sum_j 2^j y_j.$$
 eq: Ako

Note that, compared to (1), the difference is only in the range of index j of the sum in the last term. For the two cases (top/bottom = SFR-BCR-3/SFR-BCR-4), after substituting and collecting the terms,

$$\begin{vmatrix}
A'_k(X, y, z) \\
A'_{n-k}(n - X, y, z)
\end{vmatrix} = -(1 \pm k) \pm \sum_i x_i - \sum_j 2^j y_j + (1 + 2^l)z.$$
eq: Akp34

(Again, although not written out explicitly, the difference is in the range of j of the summation, c.f., (4))

We can obtain the α^{\cdots} coefficients for BCR-3,4 from those of BCR-1,2. Instead of taking the squares, $A_k(X,y,z)^2$ and $A_{n-k}(n-X,y,z)^2$, for BCR-3,4 we have to take $\frac{1}{2}A'_k(X,y,z)\left(A'_k(X,y,z)-1\right)=\frac{1}{2}\left(A'_k(X,y,z)^2-A'_k(X,y,z)\right)$ and $\frac{1}{2}A'_{n-k}(n-X,y,z)\left(A'_{n-k}(n-X,y,z)-1\right)=\frac{1}{2}\left(A'_{n-k}(n-X,y,z)^2-A'_{n-k}(n-X,y,z)\right)$, so, to get the new α^{\cdots} coefficients, we have to substract the corresponding coefficients of $A'_k(X,y,z)$ and $A'_{n-k}(n-X,y,z)$ (these can be read off from (10)) from the old ones (8), and divide by 2. (And not to forget that the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summations for j run over a different range of the summation j run over a different range of the summation j run over a different range of the summation j run over a different range of the summation j run over a different range of the summation j run over a different range of the summation j run over a different range of the summation j run over j run ov

$$\alpha = \frac{1}{2} \Big((1 \pm k)^2 - -(1 \pm k) \Big) = \frac{1}{2} (k^2 \pm 3k + 2), \tag{11a}$$

$$\alpha^b = \frac{1}{2} \Big(\mp 2(1 \pm k) - \pm 1 \Big) = -k \mp \frac{3}{2},$$
(11b)

$$\alpha^{b_{a,1}} = \frac{1}{2} \Big((1 \pm k) 2^{j+1} - 2^j \Big) = (3 \pm k) 2^{j-1}, \tag{11c}$$

$$\alpha^{b_{a,2}} = \frac{1}{2} \Big((1+2^l)(2^l \mp 2k - 1) - (1+2^l) \Big) = (1+2^l)(2^{l-1} \mp k - 1), \tag{11d}$$

$$\alpha^{bb} = \frac{1}{2}(1) = \frac{1}{2},$$
(11e)

$$\alpha^{bb_{a,1}} = \frac{1}{2} (\mp 2^{j+1}) = \mp 2^j, \tag{11f}$$

$$\alpha^{bb_{a,2}} = \frac{1}{2} (\pm 2(1+2^l)) = \pm (1+2^l), \tag{11g}$$

$$\alpha^{b_a b_{a,1}} = \frac{1}{2} (2^{j+j'}) = 2^{j+j'-1}, \tag{11h}$$

$$\alpha^{b_a b_{a,2}} = \frac{1}{2} \left(-(1+2^l) 2^{j+1} \right) = -(1+2^l) 2^j. \tag{11i}$$

Dictionary:

 $l \mapsto m$, (l = m auxiliary variables),

 $x_i \mapsto b_i$

 $y_j \mapsto b_{a_j}$, $(b_{a,j} \text{ would be a better choice, a is a label, } j \text{ is an index, they should be on the same level. Also the indexing of the } \alpha^{\dots}$ coefficients could be made more expressive.) $z \mapsto b_{a_m}$, $(b_{a,m} \text{ would be better})$

 $k \mapsto c$.