UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer & Mathematical Sciences

STAD70H3 Statistics & Finance II April 2019 Final Examination

L'ul divion. O mound	Dur	ation:	3	hours
----------------------	-----	--------	---	-------

Instructor: Sotirios Damouras

Aids allowed: Open book/notes, scientific calculator

Last Name:	50	lut	ion	9	
First Name:		·	1		
Student #:					

Instructions:

- Read the questions carefully and answer only what is being asked.
- Answer all questions directly on the examination paper; use the last pages if you need more space, and provide clear pointers to your work.
- Show your intermediate work, and write clearly and legibly.

Question:	1	2	3	4	5	6	Total
Points:	15	10	25	20	20	20	110
Score:							

1. [15 points] Assume the return on an asset follows a logistic distribution with CDF

$$F_X(x) = \frac{1}{1 + \exp\left(-\frac{x - \mu}{\lambda}\right)}, \quad \forall x \in \mathbb{R}, \ \lambda > 0,$$

where μ and λ are the location and scale parameters, respectively. Find a closed-form expression for $VaR(\alpha)$ and $CVaR(\alpha)$.

(Hint: $\int \log(x) dx = x \log(x) - x + \hat{k}$)

Ct 1	н.	
Student	#:	

2. [10 points] Assume the returns on all assets in a market follow multivariate Normal distribution with mean μ and variance-covariance matrix Σ . Furthermore, assume investors pick portfolios with minimum VaR(α) for some α . Show that the only portfolios that investors would consider are the ones lying on the *efficient frontier* of mean-variance analysis.

(Hint: show that minimizing VaR for a *Normal* distribution is equivalent to minimizing the portfolio variance for a given mean return level.)

We know that the portfelio returns follow Rport $\sim N(\mu port, \sigma_{port}^2)$, where i) Aport $= w^T \mu P$ Report $\sim N(\mu port, \sigma_{port}^2)$, where i) $\sigma_{port}^2 = w^T \ge w$ Ifor weights w $\Rightarrow Val(\alpha) = -\{\mu port + \sigma_{port} \Phi'(\alpha)\}$

For given (uport, $\alpha < \frac{1}{2}$) the minimum $VaR(\alpha)$ is given when $-\sigma_{port}\Phi^{-1}(\alpha)$ is minimized when $\Rightarrow (if \alpha < \frac{1}{2} \Rightarrow \Phi^{-1}(\alpha) < 0 \Rightarrow)$ σ_{port} is minimized

=> for siven pront, min ¿ oport }, which is

aquivalent to mean-varionnce analysi,

- 3. Consider a standard Brownian motion $\{W_t\}$ with $W_0 = 0$.
 - (a) [15 points] Let $M_1 = \max\{W_t : t \in [0,1]\}$ be the maximum of the process by time 1. Find the conditional expectation of M_1 given $(M_1 > 1)$, i.e $\mathbb{E}[M_1|M_1 > 1]$, in terms of the standard Normal CDF $\Phi(z)$.
 - (b) [10 points] Condition on the event $(W_1 = 1)$, and find the conditional (bivariate) distribution of $\begin{bmatrix} W_s \\ W_t \end{bmatrix} | (W_1 = 1)$, where 0 < s < t < 1.

(Hint: for a multivariate Normal $\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \sim N\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}\right)$, we have $X_1 | (X_2 = x_2) \sim N\left(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21}\right)$

(d) We know that M+ ~ | W+ | => M1 ~ | W1 W, N N(O, 1). So, essentially, we want to find the conditional expectation of the tail of a flipped" Sld Normal (Chis is Similar = lo the Charla 1/ES calculation for Normal (De houre: \mathbb{E[M_1|M_1>1] = \int_{\infty}^{\infty} \times \frac{1}{2} \div \div \frac{1}{2} \div \div \frac{1}{2} \div \din \frac{1}{2} $= \int_{1}^{\infty} \frac{2 \cdot \sqrt{2\pi} e^{-2x/2}}{\sqrt{\pi}} dx = \frac{1}{\sqrt{2\pi}} \left(-e^{-x^{2}/2} \right) dx =$ $= \frac{1}{\Phi(-1)} \left[\frac{1}{2\pi} e^{-2\lambda^2/2} \right]^{\frac{1}{2}} = \frac{\varphi(1)}{\Phi(-1)}$ (contd...)

$$= \int_{W_t}^{W_s} |W_t|^{-1} \sim N\left(\left[\begin{array}{c} 0 \\ 0 \end{array} \right] + \left[\begin{array}{c} s \\ t \end{array} \right] 1^{-1} \cdot \left(1 - 0 \right), \left[\begin{array}{c} s \\ s \end{array} \right] - \left[\begin{array}{c} s \\ t \end{array} \right] 1^{-1} \left[\begin{array}{c} s \\ t \end{array} \right]$$

=)
$$\sim N\left(\begin{bmatrix} s \\ t \end{bmatrix}, \begin{bmatrix} s-s^2 \\ s-st \end{bmatrix}, \begin{bmatrix} s-s^2 \\ s-st \end{bmatrix}\right)$$

$$= \begin{bmatrix} s(1-s) & s(1-t) \\ \frac{s}{s} & (1-t) & t \cdot (1-t) \end{bmatrix}$$

0 e

- 4. Consider two assets whose revenues are independently and uniformly distributed as $R_1, R_2 \sim^{iid} Unif(-1, 1)$.
 - (a) [10 points] Find a closed-form expression for the individual asset value at risk, i.e. find $VaR_{\alpha}(R_1)$ as a function of α .
 - (b) [10 points] Show that VaR is *not* subadditive in this case, i.e. show that $VaR_{\alpha}(R_1 + R_2) \not \leq VaR_{\alpha}(R_1) + VaR_{\alpha}(R_2)$ for some α . (Hint: try $\alpha = 7/8$)

The CDF of R_i is $F_{R_i}(r) = \mathbb{P}(R_i \le r) = \frac{r+1}{2}$, $r \in [-1,1]$, $\forall i = 1, 2$. Thus, $\text{VaR}_{\alpha}(R_i) = -F_{R_i}^{-1}(\alpha) = -(2\alpha - 1) = 1 - 2\alpha$, $\forall i = 1, 2$, and $\text{VaR}_{\alpha}(R_1) + \text{VaR}_{\alpha}(R_2) = 2(1 - 2\alpha)$.

The CDF of $R_1 + R_2$ is $F_{R_1 + R_2}(r) = \mathbb{P}(R_1 + R_2 \le r)$, $r \in [-2, 2]$, where the probability is represented by the shaded region in the plot below:

It's straightforward to show that $\mathbb{P}(R_1 + R_2 \le r) = \begin{cases} \frac{(2+r)^2}{8}, & r \le 0 \\ 1 - \frac{(2-r)^2}{8}, & r > 0 \end{cases}$

$$\Rightarrow \operatorname{VaR}_{\alpha}(R_1 + R_2) = \begin{cases} -2(\sqrt{2\alpha} - 1), & \alpha \leq \frac{1}{2} \\ -2(1 - \sqrt{2(1 - \alpha)}), & \alpha > \frac{1}{2} \end{cases}$$

As the following plot shows, the VaR is not subadditive in this case, since $\forall \alpha > \frac{1}{2}$ we have $\text{VaR}_{\alpha}(R_1 + R_2) \not \leq \text{VaR}_{\alpha}(R_1) + \text{VaR}_{\alpha}(R_2)$.

(e.g. for
$$\alpha = \frac{7}{8}$$
 we have $\Rightarrow \text{VaR}_{\alpha}(R_1 + R_2) = -2\left(1 - \sqrt{2(1 - \frac{7}{8})}\right) = -2\left(1 - \sqrt{\frac{1}{4}}\right) = -1$, but $\text{VaR}_{\alpha}(R_1) + \text{VaR}_{\alpha}(R_2) = 2(1 - 2\frac{7}{8}) = 2(1 - \frac{7}{4}) = 2(-\frac{3}{4}) = -\frac{3}{2} \le \text{VaR}_{\alpha}(R_1 + R_2)$

- 5. Consider two sets of assets whose return vectors R_1, R_2 are independent and have variance-covariance matrices $V[R_1] = \Sigma_1$, $V[R_2] = \Sigma_2$. Let the minimum-variance weights for a portfolio consisting only of assets in R_1 be w_1 , and let the achieved minimum variance be σ_1^2 . Similarly for the assets in R_2 , let the minimum-variance portfolio weights be w_2 and the minimum variance be σ_2^2 . Now turn attention to the minimum variance portfolio for both sets of assets $\left\lceil \frac{R_1}{R_2} \right\rceil$.
 - (a) [10 points] Show that the combined minimum-variance portfolio weights are given by $\mathbf{w} = \frac{1}{\sigma_1^2 + \sigma_2^2} \left[\frac{\sigma_2^2 \mathbf{w}_1}{\sigma_1^2 \mathbf{w}_2} \right]$.
 - (b) [10 points] Show that the attained minimum variance is given by $\sigma^2 = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$.

b. The attained minimum variance is
$$\sigma^2 = \mathbb{V} \left[\mathbf{w}^T \mathbf{R} \right] = \mathbf{w}^T \mathbb{V} \left[\mathbf{R} \right] \mathbf{w} =$$

$$= \frac{1}{\sigma_1^2 + \sigma_2^2} \left[\sigma_2^2 \mathbf{w}_1^T \mid \sigma_1^2 \mathbf{w}_2^T \right] \left[\frac{\Sigma_1}{\mathbf{0}} \mid \mathbf{0} \right] \left[\frac{\sigma_2^2 \mathbf{w}_1}{\sigma_1^2 \mathbf{w}_2} \right] \frac{1}{\sigma_1^2 + \sigma_2^2} =$$

$$= \left(\frac{1}{\sigma_1^2 + \sigma_2^2} \right)^2 \left(\sigma_2^2 \mathbf{w}_1^T \Sigma_1 \mathbf{w}_1^2 \sigma_2^2 + \sigma_1^4 \mathbf{w}_2^T \Sigma_2 \mathbf{w}_2 \sigma_1^4 \right) =$$

$$= \frac{\sigma_2^4 \sigma_2^2 + \sigma_1^4 \sigma_2^2}{\left(\sigma_1^2 + \sigma_2^2 \right)^2} = \frac{\sigma_1^2 \sigma_2^2 \left(\sigma_1^2 + \sigma_2^2 \right)}{\left(\sigma_1^2 + \sigma_2^2 \right)^2} = \frac{\sigma_1^2 \sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

- 6. Consider a standard Normal random variable $Z \sim N(0,1)$ and let $Y = e^{Z}$. Assume you want to estimate $\mathbb{E}[Y]$ using simulation, i.e. using $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} e^{Z_i}$, where $Z_i \sim^{iid} N(0,1)$.
 - (a) [7 points] Find the variance of your estimate $\mathbb{V}[\bar{Y}]$, as a function of n only. (Hint: the moment generating function of $Z \sim N(0,1)$ is $m_Z(t) = \mathbb{E}[e^{tZ}] = e^{t^2/2}$.)
 - (b) [13 points] Assume you use X = Z as a control variable for your simulation. Find the relative reduction in estimation accuracy, i.e. find the value of $\mathbb{V}[\bar{Y}_{ctrl}]/\mathbb{V}[\bar{Y}]$. (Hint: for $Z \sim N(0,1)$, we have $\mathbb{E}[Ze^Z] = \sqrt{e}$.)

(a)
$$V[Y] = \frac{1}{n} \cdot V[Y] = \frac{1}{n} V[e^{z}] = \frac{1}{n} \left[\mathbb{E}[e^{z}]^{2} \right] - \left[\mathbb{E}[e^{z}]^{2} \right]$$

$$= \frac{1}{n} \cdot \left[\mathbb{E}[e^{2z}] - \mathbb{E}[e^{2z}] \right]^{2} = \frac{1}{n} \cdot \left[m_{z}(2) - [m_{z}(1)] \right]^{2}$$

$$= \frac{1}{n} \cdot \left[e^{2z} / 2 - (e^{1/2})^{2} \right] = \frac{1}{n} \cdot e^{2} - e = \frac{1}{n} \cdot e \cdot (e - 1)$$
(b) $V[Y] = \frac{1}{n} \cdot V[Y] = \frac{1}{n} \cdot e^{2} - e = \frac{(\omega_{v}(X, Y))}{(\omega_{v}(X, Y))}$

$$G_{V}(X,Y) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right) \cdot \left(Y - \mathbb{E}(Y)\right)\right] =$$

$$= \mathbb{E}\left[\left(Z - \mathbb{E}(Z^{2})\right) \cdot \left(e^{Z} - \mathbb{E}(e^{Z})\right)\right] =$$

$$= \mathbb{E}\left[Z \cdot \left(e^{Z} - m_{Z}(I)\right)\right]$$

$$V(X) = V(Z) = 1$$

Thus
$$e = \frac{Gv(X,Y)}{V(X)V(Y)} = \frac{1}{Ve(e-1)\cdot 1} = \frac{1}{Ve-1}$$

$$\Rightarrow A - e^2 = 1 - \frac{1}{e-1} = \frac{e-2}{e-1} = .418$$

$$= 41.8\%$$

