Ćwiczenia 10

- 1. Pokaż, że w definicji silnej bisymulacji można użyć "długich" kroków (przechodzenia po słowach z Σ), otrzymując tę samą relację.
- 2. Udowodnij, że silna równoważność bisymulacyjna jest największym punktem stałym operatora F zdefiniowanego na wykładzie.
- 3. Pokaż, że dla procesu *n*-stanowego *n*-te przybliżenie (aproksymant) silnej równoważności bisymulacyjnej jest dokładne.
- 4. Zaproponuj algorytm wielomianowy dla silnej równoważności bisymulacyjnej procesów skończenie stanowych.
- 5. Skonstruuj przykład, gdzie żadne skończone przybliżenie nie jest dokładne ani nawet ich przecięcie (czyli "omegowe" przybliżenie).

Zadanie domowe (nieobowiązkowe)

1. Pokaż, że dla procesów deterministycznych silna równoważność bisymulacyjna jest tym samym co równość języków (jeśli wszystkie stany są akceptujące).