Q1. Match the following to one or more layers of the TCP/IP protocol suite: A. Encryption and Decryption \rightarrow Application Layer B. Cookies management → Application Layer C. Data fragmentation and reassembly \rightarrow Transport Layer D. Data translation \rightarrow Application Layer E. Hop to hop communication \rightarrow Data Link Layer F. Route Discover \rightarrow Network Layer Q2. For n devices in a network, what is the number of cable links required for a mesh, ring, bus, and star topology? Show the calculation. Q2.1 If we use simplex communication mode Q2.2 If we use full-duplex communication mode Ans: Mesh Topology Simplex: Let, n = number of devices Simplex Links = n*(n-1)Full Duplex: Full Duplex Links = (n*(n-1))/2Ring Topology Simplex: Let, n = number of devices Simplex Links = n Full Duplex: Full Duplex Links = n **Bus Topology** Simplex: Let, n = number of devices Simplex Links = 1 (without drop cables), n+1 (Combined) Full Duplex: Full Duplex Links = 1 (without drop cables), n+1 (Combined) Star Topology Simplex: Let, n = number of devices Simplex Links = 2n Full Duplex:

Full Duplex Links = n

Q3. What is the difference between Reliability and Security? Can communication be secured but less reliable?

Ans:

Reliability: Frequency of failure, time to recover failure, robustness in a catastrophe Security: Protection of data from unauthorized access, protection of damage and development, implementing policies and recoveries from breaches and data loses.

Communication can be secured but less reliable. A secured network can have encrypted data, strong authentication, firewalls etc, even though it can have network failure, packet drops and long time recovery.

Q4.Complete the frames (x & y) given below with appropriate port, IP and MAC addresses. The sender Host E has two applications running; one for email with port number 49254 and the other for accessing the web server with port number 52167. The frame x is intended for the BRACU Web server and frame y is coming from the Email Server. (MAC addresses are alphabets and IP addresses are numbers)

Ans:

Frame X

D. Mac	S. MAC	D. IP	S. IP	D. Port	S. Port
Α	E	20	24	80	52167

Frame Y

D. Mac	S. MAC	D. IP	S. IP	D. Port	S. Port
G	н	24	92	49254	25

Q5. Suppose we want to design a network system for BRACU. There are 5 main academic buildings which need to be connected in such a way that the network is never down. 4 labs are connected with each academic building using hubs. There are 30 computers in each lab. The computers in a lab are connected in such a way that the cabling-cost is minimized but no single point of failure. Now design a hybrid topology that fulfills all the requirements. Calculate the total links required for the network systems. Calculate total cost using the table below:

Topology	Cost Per Link (tk)
Mesh	25
Star	100
Bus	70
Ring	60

Ans:

Costing

For building's Mesh topology \rightarrow 5 devices = 10 links = 10*25 = 250 Tk

For Lab's Star Topology \rightarrow 4*5 = 20 labs = 20*100 = 2000 Tk

For PC's Ring Topology \rightarrow 20*30 = 600 labs = 600 * 60 = 36000 Tk