Интерполяция Сплайны

Скалько Юрий Иванович **Цыбулин Иван**

Задача интерполяции

Задача

Предположим, что некоторая функция f(x) известна в точках $\{x_k\}_{k=1}^n$: $f(x_k) = f_k$. Как определить ее значение в какой-нибудь другой точке $x^* \neq x_k$?

Задача интерполяции

Задача

Предположим, что некоторая функция f(x) известна в точках $\{x_k\}_{k=1}^n$: $f(x_k) = f_k$. Как определить ее значение в какой-нибудь другой точке $x^* \neq x_k$?

Конечно, без дополнительных условий данная задача некорректна. Функция может вести себя в промежутках между заданными точками произвольно. Но оказывается, что при определенных условиях, исходную функцию можно достаточно хорошо *приблизить* функцией из некоторого семейства так, чтобы она проходила через заданные точки (x_k, f_k) . Эта функция называется *интерполянтом*

Терминология

Понятия «узел», «сетка», «шаг сетки» встречаются в вычислительной математике очень часто.

- В отношении задачи интерполяции, *узлами* называются точки x_k , то есть точки, в которых заданы значения функции.
- *Сеткой* называется совокупность всех узлов. *Шагом сетки* называется расстояние между соседними узлами.
- Шаг может быть постоянным (равномерная сетка) или переменным (неравномерная сетка).

Виды интерполяции

В зависимости от вида семейства функций интерполяция бывает

ullet алгебраической — интерполянт является многочленом от x

Виды интерполяции

В зависимости от вида семейства функций интерполяция бывает

- ullet алгебраической интерполянт является многочленом от x
- тригонометрической интерполянт является тригонометрическим многочленом

$$Q_m(x) = a_0 + a_1 \cos \frac{2\pi x}{L} + b_1 \sin \frac{2\pi x}{L} + \dots + a_m \cos \frac{2\pi mx}{L} + b_m \sin \frac{2\pi mx}{L}$$

Виды интерполяции

В зависимости от вида семейства функций интерполяция бывает

- ullet алгебраической интерполянт является многочленом от x
- тригонометрической интерполянт является тригонометрическим многочленом

$$Q_m(x) = a_0 + a_1 \cos \frac{2\pi x}{L} + b_1 \sin \frac{2\pi x}{L} + \dots + a_m \cos \frac{2\pi mx}{L} + b_m \sin \frac{2\pi mx}{L}$$

• сплайновой — интерполянт является кусочно-многочленной функцией. На каждом отрезке $[x_k, x_{k+1}]$ сплайн является многочленом, а в узлах ставятся дополнительные условия (непрерывность, гладкость и т.п.)

Система уравнений для коэффициентов

Будем искать многочлен $P(x)=a_0+a_1x+a_2x^2+\ldots$, который удовлетворяет всем равенствам $P(x_k)=f_k$. Неизвестными здесь будут коэффициенты многочлена a_i .

Система уравнений для коэффициентов

Будем искать многочлен $P(x)=a_0+a_1x+a_2x^2+\ldots$, который удовлетворяет всем равенствам $P(x_k)=f_k$. Неизвестными здесь будут коэффициенты многочлена a_j .

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + \dots &= f_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 + \dots &= f_2 \\ &\vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots &= f_n \end{cases}$$

Система уравнений для коэффициентов

Будем искать многочлен $P(x)=a_0+a_1x+a_2x^2+\ldots$, который удовлетворяет всем равенствам $P(x_k)=f_k$. Неизвестными здесь будут коэффициенты многочлена a_j .

$$\begin{cases} a_0 + a_1 x_1 + a_2 x_1^2 + \dots &= f_1 \\ a_0 + a_1 x_2 + a_2 x_2^2 + \dots &= f_2 \\ \vdots & \vdots & \vdots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots &= f_n \end{cases}$$

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix}$$

Разрешимость системы

Задача алгебраической интерполяции, таким образом, свелась к решению системы линейных алгебраических уравнений с матрицей

$$W = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ & & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

Вопрос

Как называется эта матрица? Чему равен ее определитель?

Разрешимость системы

Задача алгебраической интерполяции, таким образом, свелась к решению системы линейных алгебраических уравнений с матрицей

$$W = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ & & & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{pmatrix}$$

Вопрос

Как называется эта матрица? Чему равен ее определитель? Эта матрица называется матрицей Вандермонда и ее определитель $\det W = \prod_{i < j} (x_i - x_j) \neq 0$ при $x_i \neq x_j$

Получается, что задача алгебраической интерполяции всегда имеет решение, и при этом единственное — многочлен степени n-1.

Другие методы

Коэффициенты многочлена-интерполянта можно найти, решив СЛАУ. Однако, существуют более простые и надежные методы построения этого многочлена, а именно

- Интерполяционный многочлен в форме Ньютона
- Интерполяционный многочлен в форме Лагранжа

Другие методы

Коэффициенты многочлена-интерполянта можно найти, решив СЛАУ. Однако, существуют более простые и надежные методы построения этого многочлена, а именно

- Интерполяционный многочлен в форме Ньютона
- Интерполяционный многочлен в форме Лагранжа

Замечание

Необходимо понимать, что интерполянт остается все тем же единственным многочленом степени n-1, проходящим через все точки (x_k,f_k) . Отличие заключается лишь в способе его построения.

Другие методы

Коэффициенты многочлена-интерполянта можно найти, решив СЛАУ. Однако, существуют более простые и надежные методы построения этого многочлена, а именно

- Интерполяционный многочлен в форме Ньютона
- Интерполяционный многочлен в форме Лагранжа

Замечание

Необходимо понимать, что интерполянт остается все тем же единственным многочленом степени n-1, проходящим через все точки (x_k,f_k) . Отличие заключается лишь в способе его построения.

Интерполяционный многочлен Ньютона проще строить на практике, но интерполяционный многочлен Лагранжа оказывается весьма удобным для теоретического изучения свойств интерполянтов.

Интерполяционный многочлен в форме Ньютона

Построение интерполянта в форме Ньютона происходит путем последовательного добавления точек и соответствующего «подправления» интерполянта.

Интерполяционный многочлен в форме Ньютона

Построение интерполянта в форме Ньютона происходит путем последовательного добавления точек и соответствующего «подправления» интерполянта.

1 Изначально есть только одно значение $f(x_1) = f_1$ и интерполянт просто равен константе $P(x) = f_1$.

Интерполяционный многочлен в форме Ньютона

Построение интерполянта в форме Ньютона происходит путем последовательного добавления точек и соответствующего «подправления» интерполянта.

- **1)** Изначально есть только одно значение $f(x_1) = f_1$ и интерполянт просто равен константе $P(x) = f_1$.
- ② Предположим, что интерполянт для первых k точек уже посторен. Добавляем точку (x_{k+1}, f_{k+1}) . Чтобы не нарушить интерполяционное свойство, к интерполянту нужно добавить функцию, которая в точках $x_1 \div x_k$ обращается в ноль.
- **3** Общий вид этой функции $A(x-x_1)(x-x_2)\dots(x-x_k)$. Значение A определяется из требования $P(x_{k+1})=f_{k+1}$

Построим интерполянт по следующим данным

X_k	1	2	4
f_k	1	3	1

Построим интерполянт по следующим данным

X_k	1	2	4
f_k	1	3	1

• Полагаем P(x) = 1.

Построим интерполянт по следующим данным

x _k	1	2	4	
f_k	1	3	1	

- Полагаем P(x) = 1.
- Добавляем линейную функцию к Р:

$$P = 1 + A(x - 1)$$

Построим интерполянт по следующим данным

x _k	1	2	4	
f_k	1	3	1	

- Полагаем P(x) = 1.
- Добавляем линейную функцию к Р:

$$P = 1 + A(x - 1)$$

 Добавляем квадратичную функцию к P:

$$P = 1+2(x-1)+B(x-1)(x-2)$$

Разделенные разности

Ньютон нашел выражения для неизвестных коэффициентов A в форме, удобной для практических вычислений. Для этого вводится понятие разделенной разности. Разделенная разность k-го порядка обозначается как $f(\underbrace{x_p, x_q, \dots, x_s})$. Разделенные разности нулевого

 $k{+}1$ аргумент

порядка совпадают со значениями самой функции в этой точке

$$f(x_k) = f_k$$

Остальные разности определяются рекуррентно:

$$f(x_p, x_q, ..., x_r, x_s) = \frac{f(x_q, ..., x_r, x_s) - f(x_p, x_q, ..., x_r)}{x_s - x_p}$$

В этих обозначениях,

$$P(x) = f(x_1) + f(x_1, x_2)(x - x_1) + f(x_1, x_2, x_3)(x - x_1)(x - x_2) + \dots$$

X _k	1	2	4
$f(x_k)$	1	3	1
$f(x_k, x_{k+1})$			
$f(x_k, x_{k+1}, x_{k+2})$			

$$f(x_p, x_q, ..., x_r, x_s) = \frac{f(x_q, ..., x_r, x_s) - f(x_p, x_q, ..., x_r)}{x_s - x_p}$$

X _k	1	2	4
$f(x_k)$	1	3	1
$f(x_k, x_{k+1})$		2	
$f(x_k, x_{k+1}, x_{k+2})$			

$$f(x_1, x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

x _k]]	1	2	<u>)</u>	4	1
$f(x_k)$]	[3	3]	L
$f(x_k, x_{k+1})$		2	2		- 1	
$f(x_k, x_{k+1}, x_{k+2})$						

$$f(x_2, x_3) = \frac{f(x_3) - f(x_2)}{x_3 - x_2}$$

X _k		[2	<u> </u>	4	-
$f(x_k)$	1	L	(1)	3	1	L
$f(x_k, x_{k+1})$		2	2		- 1	
$f(x_k, x_{k+1}, x_{k+2})$			_	1		

$$f(x_1, x_2, x_3) = \frac{f(x_2, x_3) - f(x_1, x_2)}{x_3 - x_1}$$

X _k]	L	2	2	4	1
$f(x_k)$	1	<u> </u>	(1)	3	1	L
$f(x_k, x_{k+1})$		2	2	_	- 1	
$f(x_k, x_{k+1}, x_{k+2})$			_	- 1		

$$P(x) = 1 + 2(x - x_1) - 1(x - x_1)(x - x_2)$$

Базисные интерполяционные полиномы

Решим вспомогательную

Задачу о базисном интерполяционном многочлене

Необходимо построить многочлен, который во всех точках x_k , кроме точки x_j обращался в 0, а в точке x_j был равен 1

$$\ell_j(x_k) = \delta_{kj} = \begin{cases} 0, & k \neq j \\ 1, & k = j \end{cases}$$

Базисные интерполяционные полиномы

Решим вспомогательную

Задачу о базисном интерполяционном многочлене

Необходимо построить многочлен, который во всех точках x_k , кроме точки x_i обращался в 0, а в точке x_i был равен 1

$$\ell_j(x_k) = \delta_{kj} = \begin{cases} 0, & k \neq j \\ 1, & k = j \end{cases}$$

Поскольку степень этого многочлена n-1, а $x_k, k \neq j$ — его корни, то сам многочлен можно записать в форме

$$\ell_j(x) = A(x - x_1)(x - x_2) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)$$

Базисные интерполяционные полиномы

Решим вспомогательную

Задачу о базисном интерполяционном многочлене

Необходимо построить многочлен, который во всех точках x_k , кроме точки x_i обращался в 0, а в точке x_i был равен 1

$$\ell_j(x_k) = \delta_{kj} = \begin{cases} 0, & k \neq j \\ 1, & k = j \end{cases}$$

Поскольку степень этого многочлена n-1, а $x_k, k \neq j$ — его корни, то сам многочлен можно записать в форме

$$\ell_j(x) = A(x - x_1)(x - x_2) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)$$

Пользуясь условием $\ell_i(x_i) = 1$

$$\ell_j(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_{j-1})(x - x_{j+1}) \cdots (x - x_n)}{(x_j - x_1)(x_j - x_2) \cdots (x_j - x_{j-1})(x_j - x_{j+1}) \cdots (x_j - x_n)}$$

Интерполяционный многочлен в форме Лагранжа

Используя базисные интерполяционные многочлены Лагранжа легко написать явное выражение для интерполянта в форме Лагранжа

$$P(x) = \sum_{j=1}^{n} \ell_j(x) f_j$$

Интерполяционный многочлен в форме Лагранжа

Используя базисные интерполяционные многочлены Лагранжа легко написать явное выражение для интерполянта в форме Лагранжа

$$P(x) = \sum_{j=1}^{n} \ell_j(x) f_j$$

Действительно,

$$P(x_k) = \sum_{j=1}^n \ell_j(x_k) f_j = \ell_k(x_k) f_k = f_k$$

Интерполяционный многочлен в форме Лагранжа

Используя базисные интерполяционные многочлены Лагранжа легко написать явное выражение для интерполянта в форме Лагранжа

$$P(x) = \sum_{j=1}^{n} \ell_j(x) f_j$$

Действительно,

$$P(x_k) = \sum_{j=1}^n \ell_j(x_k) f_j = \ell_k(x_k) f_k = f_k$$

Заметим, что базисные интерполяционные многочлены $\ell_j(x)$ зависят только от $\mathit{сетки}$, а не от значений функции в узлах. Если приходится решать несколько задач интерполяции на одной и той же сетке, то форма Лагранжа может оказаться удобнее.

Пример вычисления базисных многочленов

x _k	1	2	4
f_k	1	3	1

$$\ell_1(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_1(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_2(x) = \frac{(x-1)(x-4)}{(2-1)(2-4)} = \frac{1}{2}(x-1)(4-x)$$

$$\ell_3(x) = \frac{(x-1)(x-2)}{(4-1)(4-2)} = \frac{1}{6}(x-1)(x-2)$$

$$\ell_3(x) = \frac{(x-1)(x-2)}{(4-1)(4-2)} = \frac{1}{6}(x-1)(x-2)$$

Пример вычисления базисных многочленов

x _k	1	2	4
f_k	1	3	1

$$\ell_1(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_1(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_2(x) = \frac{(x-1)(x-4)}{(2-1)(2-4)} = \frac{1}{2}(x-1)(4-x)$$

$$\ell_3(x) = \frac{(x-1)(x-2)}{(4-1)(4-2)} = \frac{1}{6}(x-1)(x-2)$$

$$\ell_3(x) = \frac{(x-1)(x-2)}{(4-1)(4-2)} = \frac{1}{6}(x-1)(x-2)$$

Вопрос

Чему равна сумма $\ell_1(x) + \ell_2(x) + \ell_3(x)$?

Пример вычисления базисных многочленов

X _k	1	2	4
f_k	1	3	1

$$\ell_1(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_1(x) = \frac{(x-2)(x-4)}{(1-2)(1-4)} = \frac{1}{3}(x-2)(x-4)$$

$$\ell_2(x) = \frac{(x-1)(x-4)}{(2-1)(2-4)} = \frac{1}{2}(x-1)(4-x)$$

$$\ell_3(x) = \frac{(x-1)(x-2)}{(4-1)(4-2)} = \frac{1}{6}(x-1)(x-2)$$

Вопрос

Чему равна сумма $\ell_1(x) + \ell_2(x) + \ell_3(x)$?

 $\ell_1(x) + \ell_2(x) + \ell_3(x) \equiv 1.$

Подсказка: рассмотреть $f(x) \equiv 1$ и ее интерполянт P(x)

Пример интерполяционного многочлена

$$P(x) = \frac{1}{3}(x-2)(x-4) + 3\frac{1}{2}(x-1)(4-x) + \frac{1}{6}(x-1)(x-2)$$

Погрешность алгебраической интерполяции

Логичный вопрос — насколько восстановленная по значениям функция (интерполянт) близка к исходной? Она в точности с ней совпадает в точках x_k , но что можно сказать про различия в промежутках?

Погрешность алгебраической интерполяции

Логичный вопрос — насколько восстановленная по значениям функция (интерполянт) близка к исходной? Она в точности с ней совпадает в точках x_k , но что можно сказать про различия в промежутках?

Теорема

Ошибка алгебраической интерполяции допускает оценку

$$|f(x)-P(x)| \leqslant \frac{|f^{(n)}(\xi)|}{n!}|\omega(x)| \leqslant \frac{M_n}{n!}|\omega(x)|, \quad x, \xi, x_k \in [a, b],$$

где
$$\omega(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$$

Погрешность алгебраической интерполяции

Логичный вопрос — насколько восстановленная по значениям функция (интерполянт) близка к исходной? Она в точности с ней совпадает в точках x_k , но что можно сказать про различия в промежутках?

Теорема

Ошибка алгебраической интерполяции допускает оценку

$$|f(x)-P(x)|\leqslant \frac{|f^{(n)}(\xi)|}{n!}|\omega(x)|\leqslant \frac{M_n}{n!}|\omega(x)|,\quad x,\xi,x_k\in[a,b],$$

где
$$\omega(x) = (x-x_1)(x-x_2)\cdots(x-x_n)$$

Часть ошибки $\frac{M_n}{n!}$ зависит только от вида функции, а вторая $\omega(x)$ — только от расположения узлов интерполяции.

Ошибка интерполяции на равномерной сетке

Рассмотри равномерную сетку $x_k = a + \frac{k-1}{n-1}(b-a)$ Оценим максимальное значение функции $|\omega(x)|$ на ней.

$$\max_{x \in [a,b]} |\omega(x)| \leqslant (n-1)! \left(\frac{b-a}{n-1}\right)^n \equiv (n-1)!h^n,$$

где через h обозначен шаг сетки, то есть $\frac{b-a}{n-1}$

Ошибка интерполяции на равномерной сетке

Рассмотри равномерную сетку $x_k = a + \frac{k-1}{n-1}(b-a)$ Оценим максимальное значение функции $|\omega(x)|$ на ней.

$$\max_{x \in [a,b]} |\omega(x)| \leqslant (n-1)! \left(\frac{b-a}{n-1}\right)^n \equiv (n-1)! h^n,$$

где через h обозначен шаг сетки, то есть $\frac{b-a}{n-1}$ Отсюда, погрешность интерполяции, которая является ошибкой метода, равна

$$\varepsilon_{\mathsf{METOA}} = \frac{M_n}{n!} \max_{x \in [a,b]} |\omega(x)| \leqslant \frac{M_n}{n} h^n$$

Однако, в ошибке метода фигурирует максимум n-й производной, который может сильно расти при увеличении n.

$$f(x) = \frac{1}{1 + 25x^2}$$

$$f(x) = \frac{1}{1 + 25x^2}$$

Оптимальный выбор узлов интерполяции

Посмотрим, насколько возможно уменьшить ошибку интерполяции, только за счет выбора узлов x_k . (Предполагаем, что можем узнать только n значений функции, но в тех точках, которые нам интересны).

^{*} Чебышев П.Л. О функциях мало удаляющихся от нуля при некоторых величинах переменной - Спб..1881

Оптимальный выбор узлов интерполяции

Посмотрим, насколько возможно уменьшить ошибку интерполяции, только за счет выбора узлов x_k . (Предполагаем, что можем узнать только n значений функции, но в тех точках, которые нам интересны). Задача состоит в минимизации функции $\omega(x)$ за счет выбора x_k . Если искать минимум максимума модуля $\omega(x)$, то такая задача была решена Чебышевым $(1881)^*$

$$\max_{x \in [a,b]} |(x-x_1)(x-x_2) \cdots (x-x_n)| \to \min_{x_k}$$

Цыбулин Иван

^{*} Чебышев П.Л. О функциях мало удаляющихся от нуля при некоторых величинах переменной - Спб., 1881

Многочлены Чебышева

Многочленом Чебышева степени n называется многочлен

$$T_n(x) = \cos n \operatorname{arccos} x = 2^{n-1} x^n + \dots$$

Он является многочленом, наименее уклоняющимся от нуля на отрезке [-1,1] среди многочленов с тем же коэффициентом при старшей степени. Чтобы получить решение предыдущей задачи, необходимо этот многочлен отмасштабировать и перевести отрезок [-1,1] в [a,b].

Многочлены Чебышева

Многочленом Чебышева степени n называется многочлен

$$T_n(x) = \cos n \arccos x = 2^{n-1}x^n + \dots$$

Он является многочленом, наименее уклоняющимся от нуля на отрезке [-1,1] среди многочленов с тем же коэффициентом при старшей степени. Чтобы получить решение предыдущей задачи, необходимо этот многочлен отмасштабировать и перевести отрезок [-1,1] в [a,b].

$$\omega(x) = \widetilde{T}_n(x) = \frac{(b-a)^n}{2^{2n-1}} \cos n \arccos \frac{2x-a-b}{b-a}$$

Многочлены Чебышева

Многочленом Чебышева степени n называется многочлен

$$T_n(x) = \cos n \arccos x = 2^{n-1} x^n + \dots$$

Он является многочленом, наименее уклоняющимся от нуля на отрезке [-1,1] среди многочленов с тем же коэффициентом при старшей степени. Чтобы получить решение предыдущей задачи, необходимо этот многочлен отмасштабировать и перевести отрезок [-1,1] в [a,b].

$$\omega(x) = \widetilde{T}_n(x) = \frac{(b-a)^n}{2^{2n-1}} \cos n \arccos \frac{2x-a-b}{b-a}$$

$$\max_{x \in [a,b]} |\omega(x)| = \frac{(b-a)^n}{2^{2n-1}} = \frac{h^n n^n}{2^{2n-1}} \approx \frac{h^n n! \, e^n}{2^{2n-1} \sqrt{2\pi n}} = h^n n! \left(\frac{e}{4}\right)^n \sqrt{\frac{2}{\pi n}}$$

Существенное отличие от равномерной сетки в быстро убывающем при $n \to \infty$ сомножителе $\left(\frac{e}{4}\right)^n$

Сетка из нулей многочлена Чебышева

Узлы сетки x_k являются корнями $\omega(x)$. Оптимальной в смысле минимума ошибки интерполяции будет сетка из узлов x_k , которые являются корнями $\omega(x) = \tilde{T}_n(x)$.

Сетка из нулей многочлена Чебышева

Узлы сетки x_k являются корнями $\omega(x)$. Оптимальной в смысле минимума ошибки интерполяции будет сетка из узлов x_k , которые являются корнями $\omega(x) = \tilde{T}_n(x)$.

$$\tilde{T}_n(x) = \frac{(b-a)^n}{2^{2n-1}} \cos n \arccos \frac{2x-a-b}{b-a}$$
$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos \left(\frac{2k-1}{2n}\pi\right)$$

Сетка из нулей многочлена Чебышева

Узлы сетки x_k являются корнями $\omega(x)$. Оптимальной в смысле минимума ошибки интерполяции будет сетка из узлов x_k , которые являются корнями $\omega(x) = \tilde{T}_n(x)$.

$$\tilde{T}_n(x) = \frac{(b-a)^n}{2^{2n-1}} \cos n \arccos \frac{2x-a-b}{b-a}$$
$$x_k = \frac{a+b}{2} + \frac{b-a}{2} \cos \left(\frac{2k-1}{2n}\pi\right)$$

Теорема

Если функция f(x) имеет ограниченную производную на отрезке, то последовательность интерполяционных многочленов $P_n(x)$ на такой сетке сходится равномерно к f(x).

$$P_n(x) \rightrightarrows f(x)$$

$$f(x) = \frac{1}{1 + 25x^2}$$

$$f(x) = \frac{1}{1 + 25x^2}$$

Экстраполяция

До сих пор, мы изучали поведение интерполянта в пределах отрезка, на котором заданы точки. Также можно ставить задачу определения значений функции за пределами отрезка, например, спрогнозировать значения функции по уже имеющимся данным.

Экстраполяция

До сих пор, мы изучали поведение интерполянта в пределах отрезка, на котором заданы точки. Также можно ставить задачу определения значений функции за пределами отрезка, например, спрогнозировать значения функции по уже имеющимся данным.

Большая часть формальных выводов, в том числе и погрешности экстраполяции, один-к-одному переносятся из интерполяции. Отличие заключается в расширении отрезка [a,b], до отрезка, в который входит точка x. В свою очередь, оценки для максимумов функции $\omega(x)$ сильно зависят от изучаемого отрезка.

Экстраполяция на равномерной сетке

Для оценки ошибки экстраполяции остается верной формула

$$\varepsilon_{\text{метод}} \leqslant \frac{M_n}{n!} |\omega(x)|$$

Пусть точка x лежит правее точки b на δ : $x=b+\delta$

$$\omega(x) = \prod_{k=0}^{n-1} (\delta + kh) = h^n \frac{\Gamma\left(\frac{\delta}{h} + n\right)}{\Gamma\left(\frac{\delta}{h}\right)} \approx \begin{cases} h^n n!, & \delta \lesssim h \\ \delta^n, & \delta \gg h \end{cases}$$

То есть, экстраполяция на расстояния порядка h имеет погрешность, близкую к погрешности интерполяции, но по мере удаления от конца отрезка, ошибка стремительно растет.

Экстраполяция на сетке из нулей многочлена Чебышева

В этом случае открывается другое экстремальное свойство многочленов Чебышева.

Экстраполяция на сетке из нулей многочлена Чебышева

В этом случае открывается другое экстремальное свойство многочленов Чебышева.

Наряду с тем, что на данной сетке функция $\omega(x)$ наименее отклоняется от нуля среди всех многочленов с коэффициентом 1 при старшей степени, эта функция стремительнее всех остальных растет за пределами отрезка [a,b].

Экстраполяция на сетке из нулей многочлена Чебышева

В этом случае открывается другое экстремальное свойство многочленов Чебышева.

Наряду с тем, что на данной сетке функция $\omega(x)$ наименее отклоняется от нуля среди всех многочленов с коэффициентом 1 при старшей степени, эта функция стремительнее всех остальных растет за пределами отрезка [a,b].

Таким образом, сетка из нулей многочлена Чебышева оказывается самой плохой в смысле погрешности экстраполяции — оценка для ошибки превышает оценку для ошибки на любой другой сетке.

Возьмем 20 точек функции $\sin x$ и чуть-чуть (на доли процента) пошевелим значение функции в одной из них

Интерполяция. Сплайны

Возьмем 20 точек функции $\sin x$ и чуть-чуть (на доли процента) пошевелим значение функции в одной из них

Интерполяция. Сплайны

Возьмем 20 точек функции $\sin x$ и чуть-чуть (на доли процента) пошевелим значение функции в одной из них

Интерполяция. Сплайны

Возьмем 20 точек функции $\sin x$ и чуть-чуть (на доли процента) пошевелим значение функции в одной из них

Возьмем 20 точек функции $\sin x$ и чуть-чуть (на доли процента) пошевелим значение функции в одной из них

Интерполяция. Сплайны

Возьмем 20 точек функции $\sin x$ и чуть-чуть (на доли процента) пошевелим значение функции в одной из них

Интерполяция. Сплайны

Вспомним выражение для интерполяционного многочлена в форме Лагранжа

$$P(x) = \sum_{j=1}^{n} f_j \ell_j(x)$$

«Пошевелив» f_k на δf_k , мы тем самым «пошевелили» интерполянт на

$$\delta P(x) = \sum_{j=1}^{n} (f_j + \delta f_j) \ell_j(x) - \sum_{j=1}^{n} f_j \ell_j(x) = \sum_{j=1}^{n} \delta f_j \ell_j(x)$$

Поскольку конкретное направление шевеления (в большую или меньшую сторону) обычно неизвестно, а известно только абсолютное значение, можно написать оценку

$$|\delta P(x)| \leqslant \sum_{j=1}^{n} |\delta f_j| |\ell_j(x)|$$

Функция Лебега и константа Лебега

Рассмотрим случай, когда все $|\delta f_k|$ одинаковы и равны δf :

$$|\delta P(x)| \leqslant \delta f \sum_{j=1}^{n} |\ell_j(x)|$$

Сумма $\sum_{i=1}^{n} |\ell_{i}(x)|$ зависит только от сетки, называется ϕ ункцией $\mathcal{L}(x)$. В случае, когда интересует максимальное отклонение интерполянта по всему отрезку, вводят максимум функции Лебега, который называется константой Лебега и обозначается L

$$|\delta P(x)| \leqslant L(x)\delta f$$

$$|\delta P| \leqslant \max_{x \in [a,b]} L(x)\delta f \equiv L\delta f$$

Рис. 1: При n=5 константа Лебега $L\approx 2.25$

Для равномерной сетки константа Лебега L растет как $L \sim rac{2^n}{e(n-1)\ln(n-1)}.$

 $\mathsf{Puc.}\ 1$: При n=10 константа Лебега Lpprox 18

Для равномерной сетки константа Лебега L растет как $L \sim rac{2^n}{e(n-1)\ln(n-1)}.$

Рис. 1: При n=20 константа Лебега $L\approx 6000$

Для равномерной сетки константа Лебега L растет как $L \sim rac{2^n}{e(n-1)\ln(n-1)}.$

Рис. 1: При n=20 константа Лебега $L\approx 6000$

Для равномерной сетки константа Лебега L растет как $L \sim \frac{2^n}{e(n-1)\ln(n-1)}$. Также видно, что за пределами отрезка функция Лебега растет еще быстрее. Это означает что задача экстраполяции крайне чувствительна к заданию точных значений в узлах.

Функция Лебега сетки из нулей многочлена Чебышева

Рис. 2: При n=5 константа Лебега $L\approx 1.6$

Для этой сетки константа Лебега L растет как $L\sim {2\over \pi}\ln\,n.$

Функция Лебега сетки из нулей многочлена Чебышева

Рис. 2: При n=10 константа Лебега $L\approx 2$

Для этой сетки константа Лебега L растет как $L\sim \frac{2}{\pi}\ln n$. Использование сетки из нулей многочлена Чебышева позволяет сильно снизить требования к точности задания функции в узлах.

Функция Лебега сетки из нулей многочлена Чебышева

Рис. 2: При n=20 константа Лебега $L\approx 2.5$

Для этой сетки константа Лебега L растет как $L\sim \frac{2}{\pi}\ln n$. Использование сетки из нулей многочлена Чебышева позволяет сильно снизить требования к точности задания функции в узлах.

Проблемы глобальной интероляции

Глобальная алгебраическая интерполяция при большом количестве узлов начинают испытывать проблемы при быстром росте констант M_n и весьма чувствительна к заданию функции в узлах.

Проблемы глобальной интероляции

Глобальная алгебраическая интерполяция при большом количестве узлов начинают испытывать проблемы при быстром росте констант M_n и весьма чувствительна к заданию функции в узлах. Одно из решений — проводить не глобальную, а локальную интерполяцию, по небольшому количеству соседних узлов. Такой интерполянт называется сплайном.

Проблемы глобальной интероляции

Глобальная алгебраическая интерполяция при большом количестве узлов начинают испытывать проблемы при быстром росте констант M_n и весьма чувствительна к заданию функции в узлах. Одно из решений — проводить не глобальную, а локальную интерполяцию, по небольшому количеству соседних узлов. Такой интерполянт называется сплайном.

- Степенью сплайна называется степень многочлена на каждом отрезке.
- *Гладкостью сплайна* называется количество непрерывных производных у функции на *всем* отрезке
- *Дефектом сплайна* называется разность между степенью и гладкостью сплайна.

Кусочно-линейная интерполяция

Простейшая кусочно-многочленная интерполяция — кусочно линейная. Функция на каждом отрезке приближается линейной.

Степень — 1 Гладкость — 0 Дефект — 1

Кусочно-квадратичная интерполяция

Построим на каждом отрезке параболу по трем ближайшим точкам.

Степень — 2 Гладкость — 0 Дефект — 2

Гладкая кусочно-квадратичная интерполяция

Построим по трем первым точкам параболу, а на следующих отрезках будем стоить параболу, проходящую через концы отрезка и гладко продолжающую параболу на предыдущем отрезке.

Пусть
$$P_k(x) = a_k x^2 + b_k x + c$$
, $q_k = P'_{k-1}(x_k)$

$$\begin{cases} a_k x_k^2 + b_k x_k + c_k &= f_k \\ a_k x_{k+1}^2 + b_k x_{k+1} + c_k &= f_{k+1} \\ 2a_k x_k + b_k &= q_k \end{cases}$$

Данный метод позволяет строить сплайны любой степени с дефектом 1. Частный случай степени 3 называется сплайном Шонберга.

Гладкая кусочно-квадратичная интерполяция

Удалось добиться гладкости сплайна, но при этом исчезло свойство локальности: при изменении какого-нибудь значения функции изменяется весь сплайн. Конечно, изменение не такое большое, как при глобальной интерполяции, но хотелось бы от него избавиться

Локальные гладкие сплайны

Возьмем за основу негладкий сплайн P(x) (например кусочно-линейный). На каждом отрезке будем искать кубическую параболу $Q_k(x)$, которая проходит через его концы, на левом конце производная совпадает с $P'(x_k+0)$, а на правом — с $P'(x_{k+1}+0)$. Таким образом, производная сплайна будет непрерывной, а для вычисления интерполянта на отрезке используются только 3 ближайшие точки

$$\begin{cases} Q'_{k}(x_{k}) &= \frac{f_{k} - f_{k-1}}{x_{k} - x_{k-1}} \\ Q'_{k}(x_{k+1}) &= \frac{f_{k+1} - f_{k}}{x_{k+1} - x_{k}} \\ Q_{k}(x_{k}) &= f_{k} \\ Q_{k}(x_{k+1}) &= f_{k+1} \end{cases}$$

Таким образом можно строить локальные сплайны степени 2s+1 при гладкости s.

Гладкая локальная кусочно-кубическая интерполяция

Степень — 3 Гладкость — 1 Дефект — 2

Сплайн получился гладкий и сохранил свойство локальности. Такие локальные сплайны называются сплайнами В.С. Рябенького.

Спасибо за внимание!

Цыбулин Иван e-mail: tsybulin@crec.mipt.ru