Thermal and Compositional Signatures of Confined and Eruptive Flares with SoLEXS/Aditya-L1

Prakhar Singh 1,2, Vaibhav Pant 1, Abhilash Sarwade 3

¹Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, India ²Indian Institute of Technology Roorkee (IITR), Roorkee, India ³UR Rao Satellite Center (URSC), Bengaluru, India

Abstract

Solar flares are broadly classified as confined (no CME) or eruptive (with CME). This study performs a comparative X-ray analysis to quantify the distinct physical characteristics that govern a flare's eruptive potential. We analyze high-cadence soft X-ray spectra of 43 flares observed by the Solar Low Energy X-ray Spectrometer (SoLEXS) onboard Aditya-L1. By fitting the spectra, we derive the temporal evolution of key plasma parameters, including temperature (T), emission measure (EM), and elemental abundances. Our results reveal a clear dichotomy: confined flares are systematically hotter than their eruptive counterparts, while eruptive flares exhibit a significantly higher emission measure, indicating a larger volume of heated plasma. These findings provide direct observational evidence of the different thermodynamic conditions that distinguish confined flares from large-scale eruptive events.

Introduction

- A solar flare is a **sudden**, **intense burst of radiation** coming from the release of magnetic energy in the Sun's atmosphere.
- These events usually occur **near active regions** around sunspots, where the magnetic field lines are twisted and **realign** themselves to release vast amounts of energy.

Flare Class	Associated X-ray Flux (W/m²)	
A	< 10-7	
В	10-7 - 10-6	
C	10-6 - 10-5	
M	10-5 - 10-4	
X	> 10-4	

Solexs & Data Products

- The Solar Low Energy X-ray Spectrometer (SoLEXS) is a soft X-ray spectrometer aboard Aditya-L1, designed to measure the solar soft X-ray flux to study flares.
- Sun as a Star Spectrometer
- Data Products -
- 1. Good Time Intervals (.gti) Files: Time periods of valid data collection by the
- 2. Light Curve (.lc) Files: 1-second-cadence count rates (2-22 keV).
- 3. Pulse Invariant (.pi) Files: Calibrated energy spectra recorded every second .

Classification

Confined

Magnetic structure remains intact and no significant plasma is ejected into interplanetary space (No CME)

Eruptive

Where large amounts of plasma and magnetic flux are expelled from the Sun (CME Associated)

Event Selection & Dataset

• Flare identification

- Selected events from the **GOES Flare Catalog**
- Time period: 1 July 2024 31 July 2025
- Verification
- Cross-checked with **SoLEXS X-ray light curves**
- CME association
- Identified using the **SOHO/LASCO CME catalog**

Flare Class	Eruptive	Confined	Total
C-class	4	4	8
M-class	17	7	24
X-class	10	1	11
Total	30	13	43

Methodology

Data Processing

Used **SoLEXS_Tools** to create light curves and define flare phases (rise, peak, decay)

Spectra Extraction

Spectral File were generated for each Flare using solexs-genmultispec.

Time bin intervals were optimized ensure a high signal-to-noise ratio and goodness of fit.

Free Paramters

Spectra were fitted within **PyXSPEC** using Chianti Isothermal Model (chisoth).

The analysis was restricted to the **2.8–15 keV** energy range to maximize spectral feature.

Spectral Fitting

Temperature, **Emission Measure**, and Abundances of Ar, Ca, **Fe, Ni** are left free during fitting

Results: Temporal Evolution

- The observed flare spectrum (black points) is well reproduced by a CHIANTI isothermal model (blue line).
- Prominent emission lines are detected from highly ionized elements:
 - 1. **Ar** (~3.1 keV)
 - 2. **Ca** (~3.9 keV)
- 3. **Fe** (~6.7 keV) 4. **Fe/Ni blend** (~8 keV)

Peak Temperature vs Peak X-ray Intensity for Solar Flares

Flare Class

- C-Class & X-Class: Confined flares show higher peak temperatures than Eruptive.
- M-class flares: Mixed behavior—some confined flares are hotter, others not.

Temperature peaks

X-ray light curve peaks

Emission Measure peaks

Summary

• Significant Time lag between Peak Temperature, Peak X-ray Flux, and Peak

• Peak Temperature and Peak Emission Measure increase with Peak Intensity.

• Confined Flares exhibit higher peak temperatures than Eruptive Flares

- Peak Emission Measure increases with Peak Intensity (Flare Class).
- Eruptive Flares have significantly higher Emission Measure than Confined Flares.

Elemental Abundances Evolution for X2.0 Flare on 16 Jul 2024 — SoLEXS Light Curve

• **Depletion** of elemental abundances during **flare peak**.

- Abundances drop toward photospheric values, indicating chromospheric material injection.
- Recovery to **coronal levels** post-flare.
- Ca and Fe (low-FIP): Min Abundance is higher in confined flares \rightarrow more coronal-like.
- **Ar** (**high-FIP**): Similar between eruptive and
 - confined.

References

Emission Measure.

1. Del Zanna, G., 2021. CHIANTI-An Atomic Database for Emission Lines. XVI. Version 10, Further Extensions.

• Eruptive Flares have a higher EM than Confined Flares

- 2. Arnaud, K.A., 1996. XSPEC: The First Ten Years. Astronomical Data Analysis Software and Systems V,
- 3. Mithun, N. P. S., Vadawale, S., Zanna, G. D., (2022). Soft X-Ray Spectral Diagnostics of Multi Thermal Plasma in Solar Flares with Chandrayaan-2 XSM. 4. Mondal, B., Vadavale V. S., 2021. Evolution of Elemental Abundances during B-Class Solar Flares: Soft X-Ray Spectral Measurements with
- Chandrayaan-2 XSM. 5. Aditya-L1 Solar Low Energy X-ray Spectrometer (SoLEXS), Data Analysis Guide, SoLEXS PI Team

Confined Flares show a stronger FIP effect.

For further details: Contact: prakhar@aries.res.in

Digital Copy