CENG 306 Biçimsel Diller ve Otomatlar Formal Languages and Automata

TURING MACHINE (II) TM Configuration

Hazırlayan: M.Ali Akçayol - Gazi Üniversitesi Bilgisayar Mühendisligi Bölümü

Örnek: Bir Turing Makinesi $M = (K, \sum, \delta, s, H)$ şeklinde tanımlanmıştır.

 $K = \{q_0, h\}, \sum = \{a, \triangleright, \sqcup\}, s = q_0 \text{ ve } H = \{h\} \text{ olsun. Geçiş fonksiyonu } \delta \text{ aşağıdaki}$ tabloda verildiği gibidir.

q,	σ	$\delta(q,\sigma)$
q_0	a	(q_0, \leftarrow)
q_0	Ц	(h,\sqcup)
q_0	\triangleright	(q_0, \rightarrow)

- ■M makinesi sola doğru tarama yapar ve ilk

 sembolünü bulduğunda halt durumuna geçerek çalışmasını sonlandırır.
- •Eger > sembolüne kadar a varsa, en sola geldiğinde hemen sağa geçer ve tekrar sola geçer.
- Diğer deterministik makinelerin tersine Turing Makinesinin çalışması hiç sonlandırılamayabilir.

Tanım (Konfigürasyon):

Bir Turing makinesi $M = (K, \sum, \delta, s, H)$ için konfigürasyon

 $K \times \sum^* x (\sum^* (\sum -\{ \sqcup \}) \cup \{e\})$ kümesinin bir elemanıdır.

- ■Konfigürasyon sol bitiş sembolü ile başlar ve hiçbir zaman boşluk sembolüyle (□) bitmez.
- (q, ► baa, abc □) ve (q, □ aa, ba) konfigürasyon değillerdir.
- (q, wa, u) konfigürasyonunda tape içerigi kısaca wau şeklinde gösterilir. Okuma kafası
 'a' dadır.
- (q, wa, u) yerine kısa olarak (q, wau) yazılabilir.

Örnek Konfigürasyonlar:

Tanım: Bir Turing makinesi $M = (K, \sum, \delta, s, H)$ için iki konfigürasyon

$$(q_1, w_1a_1u_1)$$
 ve $(q_2, w_2a_2u_2)$ olsun. Burada $a_1, a_2 \in \Sigma$ ise $(q_1, w_1a_1u_1) \vdash_M (q_2, w_2a_2u_2)$ konfigürasyon geçişi için

 $b \in \sum \bigcup \{ \rightarrow, \leftarrow \}$ için $\delta(q_1, a_1) = (q_2, b)$ geçiş fonksiyonu vardır ve burada,

1.
$$b \in \Sigma$$
, $w_1 = w_2$, $u_1 = u_2$ ve $a_2 = b$, veya

2.
$$b = \leftarrow$$
, $w_1 = w_2 a_2 ve$

(a)
$$u_2 = a_1 u_1$$
, $e \check{g} e r a_1 \neq \sqcup$ $v e u_1 \neq e$, $v e y a$

(b)
$$u_2 = e$$
, $e \check{g} e r a_1 = \sqcup ve u_1 = e$, $vey a$

3.
$$b = \rightarrow$$
, $w_2 = w_1 a_1 ve$

(a)
$$u_1 = a_2 u_2$$
, veya

(b)
$$u_1 = u_2 = e$$
, ve $a_2 = \sqcup olur$.

Örnek: w, u∈ \sum olsun. u'nun sonu \sqcup olmasın ve a, b∈ \sum olsun.

Durum 1.
$$\delta(q_1, a) = (q_2, b)$$

 \ddot{O} rnek: $(q_1, w\underline{a}u) \mid_{\mathbf{M}} (q_2, w\underline{b}u)$

Durum 2.
$$\delta(q_1, a) = (q_2, \leftarrow)$$

(a) \ddot{O} rnek: $(q_1, wb\underline{a}u) \mid_{\mathbf{M}} (q_2, w\underline{b}au)$

(b) Örnek: $(q_1, wb \perp) \vdash_{\mathbf{M}} (q_2, wb)$

Durum 3.
$$\delta(q_1, a) = (q_2, \rightarrow)$$

(a) Örnek: $(q_1, w\underline{a}bu) \mid_{\mathbf{M}} (q_2, w\underline{a}\underline{b}u)$

(b) Örnek: $(q_1, w\underline{a}) \vdash_{\mathbf{M}} (q_2, w\underline{a})$

Tanım: \vdash_{M}^{*} ilişkisi \vdash_{M} ilişkisinin reflexive, transitive closure'dur.

 C_2 konfigürasyonu C_1 'den oluşturulmuştur eğer $C_1 \mid_{\mathbf{M}} {}^*C_2$ olursa

 $C_1 \mid_{\mathbf{M}} C_2 \mid_{\mathbf{M}} \dots \mid_{\mathbf{M}} C_n$ konfigürasyon geçişleri için length=n olur ve kısaca

 $C_1 \vdash_{\mathbf{M}} \mathbf{n} C_n$ şeklinde gösterilir.

Buradan başlangıçtan sonuca gitmek için gereken adım sayısı olarak ifade edilmektedir.

 $K = \{q_0, q_1, h\}, \sum = \{a, \sqcup, \triangleright\}, s = q_0 \text{ olsun. Geçiş fonksiyonu } \delta \text{ aşağıdaki gibi tanımlansın.}$

q,	σ	$\delta(q,\sigma)$
q_0	a	(q_1,\sqcup)
q_0	Ц	(h,\sqcup)
q_0	\triangleright	(q_0, \rightarrow)
q_1	a	(q_0,a)
q_1	Ц	(q_0, \rightarrow)
q_1	\triangleright	(q_1, \rightarrow)

 $(q_1, \triangleright \sqsubseteq aaaa)$ başlangıç konfigürasyonundan çalışmaya başlarsa yandaki geçişleri yapar,

SORU-1

$$M = (K, \Sigma, \delta, s, \{h\}) TM'si için$$

$$K = \{q_0, q_1, h\},$$

$$\Sigma = \{a, b, \sqcup, \emptyset\},$$

$$s = q_0,$$

Olsun. δ geçiş fonksiyonu ise aşağıdaki tablo ile verilsin,

(a) (q₀, ▷aabbba) konfigürasyonundan başlayarak makinenin çalışmasını inceleyiniz.
(b) Şeridin herhangi bir noktasından q0 durumundan başlayan makinenin ne iş yaptığını sözel olarak ifade ediniz.

q	σ	$\delta(q,\sigma)$
q_0	а	(q ₁ , b)
q_0	b	(q ₁ , a)
q_0	Ш	(h, ⊔)
q_0	\triangleright	(q_0, \rightarrow)
q_1	а	(q_0, \rightarrow)
q_1	b	(q_0, \rightarrow)
q_1	Ш	(q_0, \rightarrow)
q_1	\triangleright	(q_1, \rightarrow)

q₀, ◊ <u>aabbba</u>
q ₁ , ◊ <u>babbba</u>
q₀, ◊babbba
q1, ◊bbbbba
q₀, ◊bbbbba
q ₁ , ◊bbabba
q₀, ◊bbabba
q ₁ , ◊bbaaba
q₀, ◊bbaaba
q₁, ◊bbaaaa
q₀, ◊bbaaaa
q₁, ◊bbaaab
A1.1 1
q₀, obbaaab∟ h, obbaaab∟
m,auduu

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1, b)
q_0	b	(q ₁ , a)
q_0	ш	(h, ∟)
q_0	\triangleright	(q_0, \rightarrow)
q_1	a	(q_0, \rightarrow)
q_1	b	(q_0, \rightarrow)
q_1	Ш	(q_0, \rightarrow)
q_1	>	(q_1, \rightarrow)

SORU-2

M Turing makinesi $M = (K, \Sigma, \delta, s, \{h\})$ olsun. Burada:

$$K = \{q_0, q_1, q_2, h\},$$

$$\Sigma = \{a, \sqcup, \lozenge\},$$

$$s = q_0,$$

Ve δ geçiş fonsiyonu aşağıdaki gibi verilsin. $n \ge 0$ için M makinesinin $(q_0, \Diamond \sqcup a^n\underline{a})$ konfigürasyonları için ne yaptığını bulunuz.

q	σ	$\delta(q,\sigma)$
q_0	a	(q_1, \leftarrow)
q_0	q	(q_0, q)
q_0	\Diamond	(q_0, \rightarrow)
q_1	a	(q_2, q)
q_1	q	(h, q)
q_1	\Diamond	(q_1, \rightarrow)
q_2	a	(q ₂ , a)
q_2	q	(q_0, \leftarrow)
q_2	\Diamond	(q_2, \rightarrow)


```
q0, \Diamond \sqcup a \underline{a} \underline{a} \underline{a} \underline{a}
q1, \Diamond \sqcup a \underline{a} \underline{a} \underline{a} \underline{a}
q2, \Diamond \sqcup a \underline{a} \underline{a} \underline{u} \underline{a}
q0, \Diamond \sqcup a \underline{a} \underline{a} \sqcup a
q1, \Diamond \sqcup a \underline{a} \underline{a} \sqcup a
q2, \Diamond \sqcup a \underline{\sqcup} a \sqcup a
q0, \Diamond \sqcup \underline{a} \sqcup a \sqcup a
q1, \Diamond \sqcup \underline{a} \sqcup a \sqcup a
q1, \Diamond \sqcup \underline{a} \sqcup a \sqcup a
\underline{h}, \Diamond \underline{\sqcup} a \sqcup a \sqcup a
```

- M makinesi sola doğru ilerleyerek a sembollerini birer atlayarak boşluk yapar.
- Eğer n tek sayı ise sonsuz çevrime girer, eğer n çift ise makine sonlanır.

SORU-3

Sağa doğru şeridi tarayan ve ardarda iki a sembolü gördüğünde halt durumuna geçen TM tasarlayınız.

TM için Σ = {a, b, \square , \Diamond } şeklindedir.

$$M = (K, \Sigma, \delta, s, \{h\}), \text{ where}$$

$$K = \{q_0, q_1, h\},$$

$$\Sigma = \{a, b, \sqcup, \emptyset\},$$

$$s = q_0$$

ÖDEV

- 4.1.2
- 4.1.3.

A Stay-put Turing Machine is defined as a TM which after reading/writing to a tape cell can move the tape head either left, right, or leave it in the same cell. Show that a Stay-put TM is equivalent to a TM.