re	roblem 1. [20 points] [15] For each of the following, either prove that it is an equivalence elation and state its equivalence classes, or give an example of why it is not an equivalence elation.													
	(a) [5 pts] $R_n := \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \text{ s.t. } x \equiv y \pmod{n}\}$	۰												
	b) [5 pts] $R := \{(x,y) \in P \times P \text{ s.t. } x \text{ is taller than } y\}$ where P is the set of all people in	٠				٠						٠	٠	
	ne world today. (c) [5 pts] $R := \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \text{ s.t. } gcd(x, y) = 1\}$	٠												
	(c) [5pis] $R := \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \text{ s.t. } gca(x,y) = 1\}$ (d) [5pts] $R_G := \text{the set of } (x,y) \in V \times V \text{ such that } V \text{ is the set of vertices of a graph } G,$													
	and there is a path x, v_1, \ldots, v_k, y from x to y along the edges of G .	٠										٠	٠	
(a)	1016811001			•			٠	•	•				٠	•
	If transituity, then x=z mod n >	· · · · · · · · · · · · · · · · · · ·	· 7	ž\	· ·									
•			٠	. `	• •	•	•	•	•				٠	•
	(y-x)=kn													
	y= kn+x. n/ z-kn-x												٠	
	n/ z-x-kn ⇒ n/ z-x												٠	
•	⇒ x=z mod n		٠	٠		•	٠	•	•				٠	•
	>> transitivity applies.											٠		
	Symmetry: Z=y mod n > n/y-x	. 10	efte	liv ix		×.	<u> </u>	Ž r	JOY	'n				
	$(3-x)=\kappa v$, ,	<i>'</i> . <i>G</i> .		~ /·	ι-	×			٠	٠	
•	2-9=-kg		٠	•		- -)		10	· V	7.			٠	•
	symmetric = 1/2-y		\rightarrow	æ	He	ci Uit,	4							
	Congregay is an equivalence relation.											٠	٠	
			· ·	•				•	•				٠	•
	Reflexivity is is not table than themselves \Rightarrow not in	reklex	W.											
	Symmetry x is taller than y >> y is tall	llo-	tha	<u>.</u> ۲	٧.							٠		
													٠	
-)	Symmetry: gcdcx,y) = gcdcy-x)													
	Perfectivity: $g(d(x, x) \neq 1)$.													
	_.												٠	
Y)	Reflexivity: If xky => x, vivez,, ex, y,	, VK		₹ /,	, X	\Rightarrow	Pa	Akx	Ro	m =	Rt	D	X.	J
	Symmetric: path from a toy -> path from													
	Transitivity: path from x > y and part from	y>	Z	. =	<u>-</u>) .	2-	>	7						
	snce x>y-> z.							٠ ؍	7.					

$ {\bf Problem~2.~[20~points]~~Every~function~has~some~subset~of~these~properties:} \\$	
injective surjective bijective	
Determine the properties of the functions below, and briefly explain your reasoning.	
(a) [5 pts] The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x \sin(x)$.	
(b) [5 pts] The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 99x^{99}$.	
(c) [5 pts] The function $f: \mathbb{R} \to \mathbb{R}$ defined by $\tan^{-1}(x)$.	
(d) [5 pts] The function $f:\mathbb{N}\to\mathbb{N}$ defined by $f(x)=$ the number of numbers that divide x . For example, $f(6)=4$ because $1,2,3,6$ all divide 6 . Note: We define here the set \mathbb{N} to be the set of all positive integers $(1,2,\ldots)$.	
() fee) = zenz.	
not injective, since from = from.	
range of $f(x)$ is ± 00 \Rightarrow the whole \Rightarrow surjective.	range of R 15 covered by f(x)
Sine Pex) is not injective, this is no	by eative
) tex= 99xqq Range of tex) is	to =) sujective.
y= 90-299 · · · · · · · · ·	
$\left(\begin{array}{c} \frac{Q}{QQ} \end{array}\right) \stackrel{\overline{q}Q}{\overline{q}} = \chi$	
f(x) = 992 x98 >0	
=> f(cx) 7,0 for all x.	
f(cx) = 0 at x=0	
=> inflection point.	
=) no repeated values since fix) has no negatile gradient
· · · -> injective.	
(aa) da ,s defined eveny and ran	06.5.7.00 · · · · · · · · · · · · · · · · · ·
40000	
Since y= 90x99 is sujective, injective	, and total, y is bijective.
tant(x) range is between ± 1/2 =>	not total and sujective) not bijective.
y= tan-(4)	
tang=x	(Qy = 1224)
733	000 - 211
secty dy = 1.	
dy	S. D
dr= secy = x2+1, 7	0 00 42.
> du 70	for all of
≥ u com	than by to cross 1/00
→ In. h	a this top-yal-
- injection	100(0) = ta, (P)
injective.	for 4×2 . for all -1 when 1 increasing $a \neq b$: $tan(a) = tan(b)$
=> tan'x is injective and not s	viethur and bijective.

. c.

	27 Axem, fcx) := { yem ylx 3.														
	Surjectice since, Let Ja, b EIN, a.b = Hore for all values of a and b, t and b This, the whole range of IN can be present (Je	th	act	Z	OL	Mu	Ηp	le 0	£
	Not injective since 1 is mapped as the rowth														
S	line fex) is not injective, fex) is not bijecti	<u>.</u>	. 5												
	(a) [7 pts] Label the given sequence of $(n-1)(m-1)+1$ integers $a_1, a_2, \ldots, a_{(n-1)(m-1)+1}$. Show the following relation \leq on $\{1, 2, 3, \ldots, (n-1)(m-1)+1\}$ is a weak poset: $i \leq j$ if and only if $i \leq j$ and $a_i \leq a_j$ (as integers).														
	For the next part, we will need to use Dilworth's theorem, as covered in lecture. Recall that Dilworth's theorem states that if (X, \preceq) is any poset whose longest chain has length n , then X can be partitioned into n disjoint antichains.														
	(b) [7 pts] Show that in any sequence of $(n-1)(m-1)+1$ integers, either there is a non-decreasing subsequence of length n or a decreasing subsequence of length m .		٠		 ٠								٠	٠	
	(c) [6 pts] Construct a sequence of $(n-1)(m-1)$ integers, for arbitrary n and m , that has no non-decreasing subsequence of length n and no decreasing subsequence of length m . Thus in general, the result you obtained in the previous part is best-possible.														
	0.7.6.5.1	ر مم	~ ·												

Let 8:= { 1,2,3, ..., (n-1)(m-1)+13.

Reflexivity: a∈ S. Since a ≤a and ai ≤ai, aRa > relation o reflexive

Anthymmetry: Let a, b ∈ S, Si=a, S=b, j > i. and b >a => iRi.

By contradiction, suppose symmetry, then $iRj \Rightarrow jRi$. If jRi, then $j \leq i$ and $S_j \leq S_i$. But this remediate or inflow conditions that $j \geq i$ and b > a. Howe the clothen cannot be symmetric.

Since relation & also reflexive the relation is antisympotic

transitivity: suppose is is and is k, then a is as and . a; sake and

Since relation is antisymmetric and transitive, relation is a weale

b) Let $M = \{\{a_1, a_2,, a_{n-1}, c_{m-1}, t \mid 3\}$, where $a_1, a_2,, a_{n-1}, c_{m-1}, t \mid s \mid a \text{ sequence } d \text{ integers} \}$. Let $\{M, \pm \}$ be a poslet defined by the relation $i \pm j \iff i \le j \text{ and } a_i \le a_j$.
By Dilworth! Theorem on (M, \leq) , let ℓ be the length of the largest chan in the paset. If $\ell > n$, then there exists a non-decreasing subsequence of length n .
If I <n, be="" disjoint="" in="" is="" length="" less="" must="" n.="" no="" non-decreasing="" of="" subchains.<="" subsequence="" td="" than="" then="" then,="" there=""></n,>
min no of elements in a decreasing subsequence: (n=1) cm-1)+1
The maximum length of antichain it the elements one all delegated into portitions as early as possible
15 [(1-1Xm-17+1)] and the minimum leight of a disjorted attain would be [cn-1xm-17+1]
Horie, there will exist an antidrain of F con-1) cm-1)+17 for all values of n and m.
Since 1<0, [6-11(m-1)-17 > [(n-1)(m-1) + 1 7]
Suppose nom, WLOG since nom are such that they are interchangeators.
$\frac{2-m}{2} > 0 \text{if } m < \lambda = 0$
$-1 < \frac{2-m}{2} < 0 \text{if } m > 2 $
If $m < 2$, $\lceil (n - 1)(m - 1) + 1 \rceil = m \rightarrow three is an antichain of size m. If there is a decreasing sequence of size m.$
If $m > 2$, $\lceil \frac{(n-1)(m-1)+1}{n} \rceil = m-1$. Since $l < n$, there is an anti-chain of size bigger than $m-1 \Rightarrow size$ m
there is an anti-chain of size bigger than M-1 => size M > there is a decreasing sequence of size m.
Here if the booth of a non-degree subsequence is a earthur or those will be a subsequence earding

Hence, it the territh of a non-degree subsequence is given, those will be a subsequence equal of largest drawn is sens than in their free will be a decreasing sequence of size in, as shown. Thus, the proposition holds.

We defre a subsequence for $1 \le i \le n-1$ B:: $n(m-1) \cdot (n-1)(m-1) + m-1$, $(n-1)(m-1) + m-3$. $(n-1)(m-1) + m-3$.
Ps: 15 a decreosing, sequence of legath m-1.
We build a sequence B1, B2, B3, Bn-1. This sequence how leight cn-1) cm-1).
There are maximum decreasing length of M-1 And a maximum increasing length of M-1. Thus a sequence is and twicted.

Problem 4. [20 points] Louis Reasoner figures that, wonderful as the Beneš network may be, the butterfly network has a few advantages, namely: fewer switches, smaller diameter, and an easy way to route packets through it. So Louis designs an N-input/output network he modestly calls a Reasoner-net with the aim of combining the best features of both the butterfly and Beneš nets:

The ith input switch in a Reasoner-net connects to two switches, a_i and b_i , and likewise, the jth output switch has two switches, y_j and z_j , connected to it. Then the Reasoner-net has an N-input Beneš network connected using the a_i switches as input switches and the y_j switches as its output switches. The Reasoner-net also has an N-input butterfly net connected using the b_i switches as inputs andithe z_j switches as outputs.

In the Reasoner-net the minimum latency routing does not have minimum congestion. The latency for min-congestion (LMC) of a net is the best bound on latency achievable using routings that minimize congestion. Likewise, the congestion for min-latency (CML) is the best bound on congestion achievable using routings that minimize latency.

Fill in the following chart for the Reasoner-net and briefly explain your answers.

Diameter: 2+ Butterly diameter = 2+ 1092N+2

= 2 + 1092N + 2= 4 + 1092N / 1 Since N nodes, let $N = 2^n$ diameter a n.

log_N= n.
Butterty danete 's log_ N

of Suntaines: 444 + Butterty & Beres. # of Switches Beres: 2N/10g2N-N+2N = 2N/20g2N+N = 2N/20g2N+N = 2N/20g2N+N = 2N/20g2N+N congestion: 1. Since Beres has I congestion and the important are connected to a Bares thout how sufficient rous to support to input actions.

LMC: To minimize congestion, we acte all i > TC(i) through the Beres. Then, the latory is the diameter of the Beres, which is 210g2N-1+4=210g2N+3

of switches Rotterly: (1092N+2) N.

CML: To minimize latercy we route all i > TT ci) through the butterfly. The butterfly accongestion of 52/1/2 The butterfly.

Problem 5. [20 points] Let B_n denote the butterfly network with $N=2^n$ inputs and N outputs, as defined in Notes 6.3.8. We will show that the congestion of B_n is exactly \sqrt{N} when n is even.

Switch size: 4x (2x2)

Hints

- For the butterfly network, there is a unique path from each input to each output, so
 the congestion is the maximum number of messages passing through a vertex for any
 matching of inputs to outputs.
- If v is a vertex at level i of the butterfly network, there is a path from exactly 2^i input vertices to v and a path from v to exactly 2^{n-i} output vertices.
- At which level of the butterfly network must the congestion be worst? What is the congestion at the node whose binary representation is all 0s at that level of the network?
- (a) [10 pts] Show that the congestion of B_n is at most \sqrt{N} when n is even.
- (b) [10 pts] Show that the congestion achieves \sqrt{N} somewhere in the network and conclude that the congestion of B_n is exactly \sqrt{N} when n is even.
- a) Congestion at a switch cannot exceed the number of outputs accessible from the switch, since all packets congested at the switch must have a unique about to take to:

At level is the switch how access to 2 noitputs Similarly, it is connected to 2 inputs.

The maximum congestion \bot at some level $0 < i < \log_2 n$ s.f. $2^{n-i} = 2$

Nov, since we dedoed that nis even, let n=2k, kell

$$\Rightarrow$$
 workning condegration is $S_{K} = S_{K} = 75^{\circ} = 70^{\circ}$

6	(F	0	#	e 1	(O)	e.	w	Ø€	- h	æ	0	He	0	ell	10	uts	5	H, 2	the	B	-4/v<	t		X	×.		· ,	×	O).		. C)	· +	8	
.(ك	hp	zk)C) 	. C	ر ک ب	X	×> -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. × 														√ C S					1 X/2					
B	Y	# (و - 0	me 00	tho	ا ا ا	of) , !	2])	tin at	7	inp (ev	Ns el	0	D	No	h _	, .c	ll	#	ve	20	te	¹ n	nust	<u> </u>	0172 <u>0</u>	th.	nve	jh	the	- <u>-</u> 9	ښ	Hot	10	י טל	0	
							æ															A	· ·	2	دام .	=	5	2	· ·							0	
	7	īh	W.).	H	2. 2.	Car	se	sto	\sim	MU	4	be	د	ex	cet	ty.		11	Ĵ.	• .											· •					
				٠	٠	٠																٠															
																																					٠
				٠	٠	٠																٠															
				٠	٠	٠	٠															٠															
				٠	٠																	٠															0

																																				٠		
																																				٠		
						٠	٠	٠							٠			٠								٠		٠					٠			٠	٠	
						٠	٠	٠							٠			٠								٠	٠	٠			٠		٠	٠	٠			
	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	•		٠	٠	٠	٠	٠	٠	٠						٠				٠	٠			٠		
	٠		•	٠		٠	٠	٠	•	•	٠		•	٠	٠	٠	٠	٠	•	٠		•		٠	•	٠	٠	٠	٠		٠	٠	٠	٠	٠			•
	٠		•	٠		٠	٠	٠	•	•	٠		•	٠	٠	٠	٠	٠	•	٠		•	•		•	٠	٠	٠	•	•	٠	٠	٠	٠	٠			
	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	•	٠	•	•	٠	٠			
	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	٠		•	•	•		•	•			
	•	٠	٠	٠	٠	•	•	•	•	٠	٠	٠	٠	•		•	•	٠	٠	٠	٠	٠		•	•	•		•	•			٠	٠					
																																				٠		
		٠			٠							٠									٠											٠						
				٠		٠	٠	٠							٠			٠						٠		٠		٠				٠	٠					
	•	٠	•	٠	٠	•	•	•	•	•	٠	٠	•	•	•	٠	٠	٠	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	٠	٠	•	•			
•	•	٠	•		٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	•	•	٠	•	•	•			
			•	٠		٠	٠	٠	•	•	•		•		٠	•	•	•	•	•		•	•		•	٠	•	٠	•	•	•		•	•	•			
	•	•	•	٠	•	٠	٠	٠	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	٠		•	•	•		•	•			
	•	٠	٠	٠	٠	•	•	•	•	٠	٠	٠	٠	•		•	•	٠	٠	٠	٠	٠		•	•	•		•	•			٠	٠					
											. (
																																						0
٠																																						٠
٠																																				٠		٠
٠	٠																																				٠	
٠			•																																		٠	
٠				٠	•	٠	٠	٠	•						٠										•	٠		٠	٠		٠						٠	
•										•								٠																			٠	
٠												٠																									٠	

				٠				٠	٠	٠			٠							٠	٠		٠		٠			٠	٠		٠	٠					
		•	•	٠	•	•	٠	٠	٠	٠	•	•	٠	•		•	•		•	٠	٠		٠	•	٠		•	٠	٠	•	٠	٠	•	•	•	•	
	•	•	•	•	•	•	•	٠	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	٠	•	•	•	•	٠
	•	•	•	٠	•	•	٠	•	٠	٠	•	•	٠	•	•	•	•	•	•	٠	٠	•	٠	•	٠	•	•	٠	٠	•	٠	٠	•	•	•	•	•
•	•	•	•	•	•	•	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	٠	•	•	•	•	•
				٠			٠	٠	٠	٠			٠							٠	٠		٠		٠	٠		٠	٠		٠	٠					٠
									٠	٠										٠	٠				٠						٠	٠					
٠		•	٠	٠	•	•	٠	٠	٠	٠	•	•	٠			•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•	٠	٠	•	•	•	•	٠
		•		٠	•	•	•		٠	٠	•	•	•			•	•	•		٠	٠	•	٠		٠	•	•	٠	٠	•	٠	٠	•	•	•	•	•
				٠			٠	٠	٠	٠			٠					٠		٠	٠	٠			٠				٠		٠	٠					
				٠				٠	٠	٠			٠							٠	٠		٠		٠			٠	٠		٠	٠					
		•	•	٠	•	•	٠	٠	٠	٠	•	•	٠	•		•	•		•	٠	٠		٠	•	٠		•	٠	٠	•	٠	٠	•	•	•	•	
		•	•	•	•	•	•	٠	•	•	•	•	٠	•	٠	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•
									٠	٠										٠	٠				٠						٠	٠					
										٠																											
								٠																								٠	•			•	
								٠																												٠	
				•				•																						•	٠					•	
								•																												•	
		0																						0													