FATIGUE

■ Endurance Limit Modifying Factors

Cumulative Damage Log-Log Plot For Test Sample

Endurance Limit Modifying Factors

- \square $S_e = k_a k_b k_c k_d k_e k_f S'_e$
 - k_a-surface factor
 - k_b-size factor
 - k_c-reliability factor
 - k_d-temperature factor
 - k_e-modifying factor for stress concentrations
 - k_f-miscellaneous effects factor

k_a – Surface factor

$$k_a = a \cdot S_{ut}^b$$

	Fact	Exponent	
Surface Finish	S _{ut} , kpsi	S _{ut} , MPa	ь
Ground	1.34	1.58	-0.085
Machined or cold-drawn	2.70	4.51	-0.265
Hot-rolled	14.4	57.7	-0.718
As-forged	39.9	272.	-0.995

k_b – Size Effect

- Rotating beam test specimen is 0.3 in in diameter
- Large specimens
 - 2in dia -> 10 to 25% reduction in S_e
 - Dia > 2in -> 25% reduction
- For bending and torsion, k_b
 - d≤0.3in (7.6mm) -> k_b=1

 - $d>2.0in -> k_b=0.75$
- □ For Axial loading, k_b=1

k_c- Loading Factor

- Bending k_c=1
- \square Axial $k_c = 0.85$
- \square Torsion $k_c = 0.59$

k_d - Temperature

- □ For steel
 - \blacksquare T < 160 °F -> k_d =1
 - $T > 160 \text{ °F} -> k_d = 620/(460 + T)$

Stress Concentration

- K_t theoretical or geometric static stress concentration factor
- K_f fatigue strength reduction factor
 - (endurance limit of notch free specimen)/(endurance limit of notched specimens)
 - $K_f = 1 + q(K_f 1), q notch sensitivity$
 - $\mathbf{k}_{e} = 1/\mathbf{K}_{f}$

Stress Concentration

- □ K_t theoretical or geometric static stress concentration factor
- K_f fatigue strength reduction factor

$$K_f = 1 + q \cdot (K_t - 1)$$

■ Notch Sensitivity Factor

$$q = \frac{K_f - 1}{K_t - 1} = \frac{1}{1 + \sqrt{\rho'} / r_n} \qquad r_n = \frac{r}{d_{\min}}$$

Neuber Constants, $\sqrt{\rho'}$

Steel Loaded in Tension

S _{ut} (ksi)	50	60	70	80	90	100	120	140	160	180	200	220	240
S _{ut} (Msi)													
$\sqrt{ ho'}\left(\sqrt{in}\right)$	0.130	0.108	0.093	0.080	0.070	0.062	0.049	0.039	0.031	0.024	0.018	0.013	0.009

Annealed Aluminum

S _{ut} (ksi)	10	15	20	25	30	35	40	45
S _{ut} (Msi)	69	103	138	172	207	241	276	310
$\sqrt{ ho'}\left(\sqrt{in} ight)$	0.500	0.341	0.264	0.217	0.180	0.152	0.123	0.111

Hardened Aluminum

S _{ut} (ksi)	15	20	30	40	50	60	70	80	90
S _{ut} (Msi)	103	138	207	276	345	414	483	552	621
$\sqrt{ ho'}\left(\sqrt{in}\right)$	0.175	0.380	0.278	0.219	0.186	0.162	0.144	0.131	0.122

Notch Sensitivity Curves

Additional Notch Sensitivity Curves

k_e - Reliability

Reliability, R	Standardized Variable, z _R	k _c
0.50	0	1.000
0.90	1.288	0.897
0.95	1.645	0.868
0.99	2.326	0.814
0.999	3.091	0.753
0.999 9	3.719	0.702
0.999 99	4.265	0.659
0.999 999	4.753	0.620
0.999 999 9	5.199	0.584
0.999 999 99	5.612	0.551
0.999 999 999	5.997	0.520

Example

A rotating shaft is supported by ball bearings at A and D and loaded by the non-rotating force F. Estimate the life of this part.

 $S_{ut}=103ksi$

S_{yt}=72ksi

Shaft is drawn

UNS G10350 steel, drawn at 1000 C

Machined finish

