Методические указания к лабораторным работам по дисциплине «Системы автоматизированного проектирования»

Лабораторная работа №1 Проектирование управляющего устройства на базе микроконтроллера AT89S8252

1 Цель работы

Научиться полноценно проектировать устройства управления и автоматики на базе микроконтроллеров начиная с формулировки технического задания и заканчивая проектом печатной платы и комплектом чертежей.

2 Порядок работы

- 2.1 По описанию задачи разработать структурную схему управляющего устройства «входпреобразователь-выход».
 - 2.2 Разработать алгоритм работы устройства в текстовом виде.
- 2.3 Разработать схему алгоритма или модель управляющего автомата, решающего заданную задачу.
- 2.4 Создать проект в среде разработки "MicroC PRO for 8051". Скопировать из папки примера Svetofor_avtomat в папку проекта файлы drv.c, drv.h, svetofor.c (в задачах с термодатчиком потребуются еще файлы 1wire.c и 1wire.h). Переименовать файл svetofor.c. Имя проекта и файла с функцией main должны соответствовать задаче! Включить указанные файлы в проект.
- 2.5 Разработать код программы. Изменить код функции main и код обработчиков прерываний под свою задачу.
- 2.6 Скомпилировать программу, устранить синтаксические ошибки и уложиться в Demo Limit (ограничение демо-версии компилятора по объему памяти программы в 2 кбайт).
- 2.7 Протестировать программу в отладчике среды разработки. Проверить выполнение функций программы, изменяя значения переменных в окне «Watch Values». Код функций прерывания тестируется отдельно с помощью команды "Jump to interrupt" (меню Run). При выполнении программы в симуляторе (отладчике) прерывания автоматически не срабатывают.
- 2.8 Изучить в МУ_МК.doc принципиальную электрическую схему лабораторной установки и описание управляющего устройства. Разработать принципиальную электрическую схему для своей задачи в среде DipTrace.
 - 2.9 Разработать схему печатной платы (монтажную схему) в среде DipTrace.
 - 2.10 Разработать чертеж корпуса устройства в среде Компас.
- 2.11 Записать программу в микроконтроллер. Соединить лабораторный стенд с USB портом компьютера с помощью преобразователя USB-COM. Вставить кварцевый резонатор в разъем у микроконтроллера. Включить питание стенда. Запустить программу «AvrProg.exe». Загрузить требуемый hex-файл (кнопка «Browse…»), выбрать тип микроконтроллера AT89S8252 и записать программу в микроконтроллер (кнопка «Program»). По окончании записи новая программа запустится на выполнение.
- 2.12 Отладить программу на стенде. В случае трудностей отладки посмотреть документацию на микроконтроллер и другие устройства в папке «Документация», а также примеры программ в папке «Examples».

3 Содержание отчета

- 3.1 Титульный лист
- 3.2 Описание задачи
- 3.3 Структурная схема управляющего устройства
- 3.4 Алгоритм работы устройства в текстовом виде
- 3.5 Схема алгоритма или модель управляющего автомата
- 3.6 Листинг программного кода (кроме драйверов) с комментариями
- 3.7 Принципиальная электрическая схема устройства
- 3.8 Монтажная схема устройства
- 3.9 Чертежи корпуса устройства

Лабораторная работа №2 Проектирование управляющего устройства на базе ПЛИС Altera

1 Цель работы

Научиться проектировать устройства управления и автоматики на базе ПЛИС начиная с формулировки технического задания и заканчивая тестированием функциональной схемы на модели внешней среды в системе Quartus.

- 2 Порядок работы
- 2.1 Создать проект в среде разработки Altera Quartus, выбрать ПЛИС.
- 2.2 Разработать функциональную схему устройства.
- 2.3 Собрать проект, исправить критические ошибки.
- 2.4 Разработать модель внешней среды согласно условию задачи.
- 2.5 Проверить работу функциональной схемы на модели внешней среды.
- 3 Содержание отчета
- 3.1 Титульный лист
- 3.2 Описание задачи
- 3.3 Структурная схема управляющего устройства
- 3.4 Функциональная схема управляющего устройства
- 3.5 Временные диаграммы, подтверждающие корректность работы устройства.
- 3.6 Листинг VHDL-программы вычислительной среды

Задачи

1 Контроллер бегущей строки.

Ввод: клавиатура для ввода строки и скорости ее движения.

Вывод: Ж/К дисплей, светодиоды всех цветов.

Описание

При включении питания на индикаторе отображается записанная в энергонезависимой памяти бегущая строка. Синхронно с бегущей строкой движется световой сигнал по всем светодиодам. При нажатии кнопки "Int 0" строка возвращается в первоначальное положение и контроллер переходит в режим редактирования строки. В этом режиме строку можно редактировать с помощью цифровых кнопок. Редактирование завершается нажатием на кнопку "¬". При этом строка запоминается в EEPROM. При нажатии кнопки "Int 1" в режиме редактирования контроллер входит в режим настройки скорости движения строки и на индикатор выводится «Скорость =ХХХ%». Числовое значение скорости мигает с частотой 2Гц. Нажатием кнопки «4» значение скорости уменьшается, а «6» - увеличивается. Значение максимальной скорости, соответствующей 100% выбирается самостоятельно. 0% - строка неподвижна. Настройка скорости завершается нажатием на кнопку "¬". При этом скорость запоминается в EEPROM.

2 Терморегулятор

Ввол:

Интерфейс 1-Wire для измерения температуры, клавиатура для ввода заданной температуры.

Вывод: светодиоды и зуммер для индикации выхода температуры за допустимый диапазон, светодиод для индикации текущей мощности нагревателя.

Описание

Разрабатываемый терморегулятор предназначен для поддержания температуры в заданном диапазоне. Если температура ниже заданной, должен быть включен нагревательный элемент. Мощность должна быть пропорциональна отклонению температуры (регулировка должна осуществляться широтно-импульсной модуляцией). Если температура слишком низкая или высокая, должен выдаваться сигнал ошибки.

В отчете должен быть приведен график регулирования (зависимости мощности нагревателя от температуры и границы срабатывания сигнала ошибки).

3 Система измерения и контроля температуры

Ввол:

Интерфейс 1-Wire для измерения температуры

Вывод: Ж/К-дисплей для вывода температуры.

Описание

Разработать систему измерения и контроля температуры. Стенд служит для съема температуры с цифрового термодатчика. Температура должна отображаться на дисплее. В случае выхода температуры за допустимые границы отображается ошибка.

4 Записная книжка

Ввод: Кнопка "Int 0" для листания записей, клавиатура для ввода и удаления записей (цифр, заколированных букв, слов).

Вывод: Ж/К дисплей для вывода текущей записи (верхняя строка), номера текущей записи и количества записей (нижняя строка).

Описание

При включении питания на индикаторе отображается запись, которая была показана до выключения питания. Для ввода текущей записи пользователь нажимает кнопку "¬", при этом происходит переход в режим добавления, после чего пользователь вводит запись. Ввод завершается нажатием на кнопку "¬". Для удаления символа пользователь нажимает кнопку "#". Для удаления текущей записи — "Int 1". Все записи должны сохраняться при выключении питания.

5 Контроллер гирлянды на четыре цвета

Ввод: клавиатура для ввода номера программы и периода смены состояния.

Вывод: Ж/К дисплей для вывода номера и названия текущей программы и текущего периода. Светодиоды всех цветов.

Описание

При включении питания на индикаторе отображаются записанные в энергонезависимой памяти номер программы и текущий период, а также название программы. Светодиоды должны включаться и выключаться в соответствии с текущей программой и периодом. При нажатии цифровой клавиши на клавиатуре устанавливается (и запоминается в EEPROM) текущая программа. Если программы с данным номером не существует, не должно быть никакой реакции. Клавиши "#" и "→" модифицируют период. Допустимые значения периода: 0,1 − 1,0 с. Шаг изменения − 0,1 с. При изменении текущий период записывается в EEPROM.

Программы показаны в таблице.

Название	Порядок включения светодиодов (единица
	обозначает, что светодиод включен).
0. Случайный выбор	Через каждые несколько периодов случайно
	выбирается программа 1 - 8
1. Бегущая единица	1000
	0100
	0010
	0001
2. Бегущая единица (обр.)	0001
	0010
	0100
	1000
3. Чередование	0101
	1010
4. Волна	0000
	1000
	1100
	1110
	1111
	1110
	1100
	1000

5. Волна (обр.)	0000
	0001
	0011
	0111
	1111
	0111
	0011
	0001
6 – 8 определяются самостоятельно	

6 Простой калькулятор

Ввод: клавиатура для ввода значений и операций.

Вывод: Ж/К дисплей для вывода текущего значения, светодиод красного цвета для индикации ошибки, светодиод синего цвета для индикации наличия в памяти значения.

Описание

При включении питания на индикаторе ноль. Если память не пуста, горит синий светодиод. Калькулятор должен выполнять операции над целыми числами до 9 десятичных разрядов длиной (переполнение при умножении не учитывать). Операции: сложения, вычитания, умножения, деления, сброс, результат ("="). Операции с памятью: очистка, сохранение текущего значения, выборка значения, добавление текущего значения к содержимому памяти. Содержимое памяти должно сохраняться при выключении питания. Ситуация ошибки должна возникать при попытке деления на ноль.

7 Часы с возможностью настройки с клавиатуры

Ввод: кнопки "0" – "9" – установка времени, кнопка "

— вход в режим установки, кнопка "

"#" – отмена установки. "Int 0" – обнуление секунд.

Вывод: Ж/К дисплей для вывода текущего времени и часа, зеленый светодиод – мигает в такт секундам.

Описание

При включении питания на часах 12:00:00. По кнопке ввода происходит переход в режим редактирования текущего времени (часы и минуты). Если в процессе редактирования нажата кнопка ввода и время введено корректно, введенное значение принимается. Если во время редактирования нажата кнопка "#", возвращается предыдущее значение. Ровно в 00 минут 00 секунд на вторую строку индикатора время выдается словами, например: "Четырнадцать".

Ошибка хода часов должна быть не более 1 секунды за 1 минуту.