

Dostępna pamięć: 128MB

Kandelabr

Obowiązki jak zakładnik skrępowane są lenistwem Łukasz Małkiewicz

Neix bierze udział w przemycie kandelabrów dla bajtockiego barona. Kandelabry stoją w magazynie w jednym rzędzie, i-ty kandelabr od lewej ma a_i ramion. Bajtocki baron wysłał listownie m zapytań o spójny przedział kandelabrów z tego rzędu. Odpowiedzią na zapytanie barona jest najmniejsza liczba naturalna większa od jednego, że jest ona względnie pierwsza z liczbą ramion każdego kandelabru na tym przedziale. Pomóż Neix'owi wypełnić obowiązki, pamiętaj, że nie do końca zależy mu na jak najszybszej odpowiedzi, o czym więcej możesz przeczytać w sekcji **Podzadania**.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby naturalne n i m $(1 \le n, m \le 10^5)$ - liczba kandelabrów w rzędzie i liczba zapytań barona.

W kolejnym wierszu wejścia jest n liczb naturalnych $(1 \le a_1, a_2, ..., a_n \le 10^5)$, i-ta z nich to liczba ramion i-tego od lewej kandelabru.

W kolejnych m wierszach są zapytania. i-te zapytanie składa się z dwóch liczb l_i i r_i ($1 \le l_i \le r_i \le n$) reprezentujących spójny przedział od l-tego do r-tego kalderabru (lącznie z l-tym i r-tym kalderablem).

Wyjście

Na wyjście należy m wierszy, odpowiedzi na zapytania w takiej kolejności, w jakiej są na wejściu.

Przykład

Wejście	Wyjście
10 5	2
3 5 11 2 11 11 7 7 5 11	3
6 7	3
2 4	2
2 4	2
6 7	
8 8	

Podzadania

W każdym z podzadań k oznacza maksymalną liczba ramion jednego kandelabru. Tabelka przedstawia ile można osiągnąc punktów za niekoniecznie optymalne rozwiązanie.

Podzadanie	Ograniczenia	Punkty	Czas
1	$n, m, k \leq 100$	20	3 sekundy
2	$n, m, k \leqslant 5000$	30	3 sekundy
3	$n, m, k \leqslant 50000$	40	6 sekund
4	bez dodatkowych ograniczeń	10	3 sekundy