Interrogation

3 novembre 2015 [durée : 2 heures]

⚠ Documents autorisés : Une feuille A4 recto-verso écrite à la main.

Exercice 1 (Question de cours)

Démontrer le résultat du cours suivant :

Dans un espace affine euclidien, une homothétie affine de rapport λ multiplie les distances par $|\lambda|$, et donc n'est une isométrie que si c'est l'identité ou une symétrie centrale.

Exercice 2 (Espaces affines euclidiens)

On se place dans l'espace vectoriel $M_2(\mathbb{R})$ des matrices 2×2 , muni du produit scalaire $\langle A|B\rangle = \operatorname{tr}(A^tB)$, où A^t est la transposée de la matrice A, et tr est l'application trace.

a) Soient $A=\left(\begin{smallmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{smallmatrix}\right)$ et $B=\left(\begin{smallmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{smallmatrix}\right)$ deux éléments de $M_2(\mathbb{R})$. Montrer que

$$\langle A|B\rangle = \sum_{i=1}^{2} \sum_{j=1}^{2} a_{ij}b_{ij}.$$

- **b)** Déterminer une matrice T telle que $tr(M) = \langle T | M \rangle$, pour tout $M \in M_2(\mathbb{R})$.
- Soit $\mathcal{H} = \{ M \in M_2(\mathbb{R}) | \operatorname{tr}(M) = 2 \}.$
- c) Montrer que \mathcal{H} est un sous-espace affine de $M_2(\mathbb{R})$, puis déterminer sa direction $\overrightarrow{\mathcal{H}}$.
- d) Déterminer la direction orthogonale $\overrightarrow{\mathcal{H}}^{\perp}$.
- e) Calculer la distance de la matrice $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ au sous-espace affine \mathcal{H} .
- **f)** Soit π la projection orthogonale sur \mathcal{H} . Calculer $\pi(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix})$.
- g) Déterminer la partie linéaire $\overrightarrow{\pi}$ de la projection π . Quelle est la nature de $\overrightarrow{\pi}$?

Exercice 3 (Géométrie dans \mathbb{C})

On considère le triangle ABC défini par trois points du plan A, B, C non alignés. On rappelle que la médiatrice du segment [MN], $M \neq N$, est la droite perpendiculaire à la droite $\langle MN \rangle$ passant par le milieu de [MN].

a) Montrer que les médiatrices de [AB], de [BC] et de [CA] se coupent en un point Ω tel que A, B et C sont sur un cercle de centre Ω . Ce cercle est appelé cercle circonscrit au triangle ABC.

Indication : on pourra remarquer que deux des trois médiatrices se coupent en un point également situé sur la troisième.

On identifie le plan euclidien au corps des nombres complexes \mathbb{C} .

- b) On suppose que le centre du cercle circonscrit au triangle ABC est le point O d'affixe 0. Soient a, b, c les affixes des points A, B, C. On note H le point d'affixe a + b + c.
 - (i) Calculer $(b+c)\overline{(c-b)}$ et $\overline{(b+c)}(c-b)$.
 - (ii) En déduire que $\langle AH \rangle$ est orthogonale à $\langle BC \rangle$.
 - (iii) Montrer que les trois hauteurs du triangle ABC se coupent en H, dit orthocentre du triangle.
 - (iv) En déduire que le centre O du cercle circonscrit, l'orthocentre H et le centre de gravité <math>G du triangle ABC (c.-à-d. l'isobarycentre de A, B et C) sont alignés. Peuton préciser comment?
- c) Montrer que dans tout triangle du plan le centre Ω du cercle circonscrit, l'orthocentre H et le centre de gravité G sont alignés, et exprimer G comme barycentre de Ω et H.