Homework#1 Solutions

- 2.4 Amdahl's law deals with the potential speedup of a program using multiple processors compared to a single processor. The law indicates the amount of speedup as a function of the fraction of code that can be executed in parallel.
- 2.6 MIPS = millions of instruction executions per second. FLOPS = floatingpoint operations per second.
- 2.1 CPI = 1.5; MIPS rate (for 200 MHz processor) = 133.3; MIPS rate (for 400 MHz processor) = 266.6.
- 2.2 a.

$$CPI_{A} = \frac{\sum CPI_{i} \times I_{i}}{I_{c}} = \frac{(8 \times 1 + 4 \times 3 + 2 \times 4 + 4 \times 3) \times 10^{6}}{(8 + 4 + 2 + 4) \times 10^{6}} \approx 2.22$$

$$MIPS_{A} = \frac{f}{CPI_{A} \times 10^{6}} = \frac{200 \times 10^{6}}{2.22 \times 10^{6}} = 90$$

$$CPU_{A} = \frac{I_{c} \times CPI_{A}}{f} = \frac{18 \times 10^{6} \times 2.2}{200 \times 10^{6}} = 0.2 \text{ s}$$

$$CPI_{B} = \frac{\sum CPI_{i} \times I_{i}}{I_{c}} = \frac{(10 \times 1 + 8 \times 2 + 2 \times 4 + 4 \times 3) \times 10^{6}}{(10 + 8 + 2 + 4) \times 10^{6}} \approx 1.92$$

$$MIPS_{B} = \frac{f}{CPI_{B} \times 10^{6}} = \frac{200 \times 10^{6}}{1.92 \times 10^{6}} = 104$$

$$CPU_{B} = \frac{I_{c} \times CPI_{B}}{f} = \frac{24 \times 10^{6} \times 1.92}{200 \times 10^{6}} = 0.23 \text{ s}$$

- **b.** Although machine B has a higher MIPS than machine A, it requires a longer CPU time to execute the same set of benchmark programs.
- **2.3 a.** We can express the MIPs rate as: $[(MIPS \text{ rate})/10^6] = I_c/T$. So that: $I_c = T \times [(MIPS \text{ rate})/10^6]$. The ratio of the instruction count of the RS/6000 to the VAX is $[x \times 18]/[12x \times 1] = 1.5$.
 - **b.** For the Vax, CPI = (5 MHz)/(1 MIPS) = 5. For the RS/6000, CPI = 25/18 = 1.39.