SUMMER-2014

UNIT 1

- **Q.1 a)** Write the slow pattern matching algorithm and apply it to calculate the number of comparisons C to find the index of P = (abc) in the text string $T = (aaabce)^4$. (7)
- **b)** Explain the different asymptotic notations. (6)
- **Q.2 a)** Yet S be a character array variable such that S = 'VERY VERY FAST'. Find:
 - i. INDEX (S, 'VERY')
 - ii. INDEX (S, ' VE')
 - iii. SUBSTRING (S, 1, 4)
 - iv. SUBSTRING (S, 4, 7)
 - v. LENGTH (S)
 - **vi.** DELETE (S, 1, 4). (6)
- **b)** Consider an array A: 7 5 8 10 15. Write an algorithm to find sum of even numbers in A. (7)

UNIT 2

- **Q.3 a)** Give the representation of a linear array. Write an algorithm DELETE (LA, N, K, ITEM) which deletes the Kth element from the linear array LA having N elements. **(8)**
- **b)** Give the different representations for a two dimensional array. (6)
- **Q.4 a)** What are the different searching algorithms? Consider an array A: 10 15 5 3 20 1. Name and write the algorithm to search an element in A. (8)
- **b)** Consider the string S = 'COUNTRY'. Apply bubble sort to arrange the characters in S in alphabetic order. Show all the passes. (6)

UNIT 3

Q.5 a) Let LIST be a linked list containing integer numbers. Write an algorithm to find the sum of all odd and even integers on the linked list. (7)

b) Write an algorithm INSLOC (INFO, LINK, START, AVAIL, LOC, ITEM) to insert so that ITEM follows the node with location LOC or ITEM as the first node when LOC = NULL.

(6)

Q.6 a) Define the following terms:

i. Header list,

ii. Two-way header list.

(6)

b) Write an algorithm to reverse a linked list.

(7)

UNIT 4

Q.7 a) Write an algorithm to convert an infix expression to a postfix expression. Apply the algorithm to convert the infix expression a*b+c-z/y to post-fix notation. (8)

b) Suppose a stack S is allocated N = 6 memory cells and initially S is empty. Find the output of the following:

i. Set A = 5, B = 6,

ii. Call PUSH (S, A),

iii. Call PUSH (S, 4),

iv. Call PUSH (S, B),

v. Call PUSH (S, 'A+B'),

vi. Repeat while Top ≠ 0 CALL POP (S, ITEM) WRITE: ITEM [End of loop],

vii.Return. (6)

Q.8 a) What is a priority queue? Give its linked list and array representation. (8)

b) What is stack? Write procedure for pushing an element onto a linked stack. (6)

UNIT 5

Q.9 a) Write an algorithm for inorder traversal of a binary tree. **(6)**

b) The inorder traversal of a binary search tree gives a sorted listing of the elements. Justify with an example. (7)

Q.10 a) Explain the following with an example:

i. Complete binary tree, ii. Heap. (6)

b) Consider the following binary tree:

Give the array representation of the above tree. (7)

UNIT 6

Q.11 a) Explain with an example the linked list representation of a graph. (7)

b) Write an algorithm for depth first search of a graph. (6)

Q.12 a) Name the search technique in which the search time is independent of the number of elements in the set. Explain the different problems for this technique. (7)

b) Apply selection sort to the following array A: 77, 80 90 10 5 15. **(6)**