

This work is licensed under a <u>Creative Commons</u>
<u>Attribution-NonCommercial-NoDerivatives 4.0</u>
<u>International License</u>

Animation

mjb@cs.oregonstate.edu

Keyframe Animation

Forward Kinematics: Change Parameters – Things Move (All Children Understand This)

Ground

Inverse Kinematics (IK): Things Need to Move to a Particular Location – What Parameters Will Make Them Do That?

Of course, there will always be target locations that can *never* be reached. Think about that spot in the middle of your back that you can never scratch! ©

University Computer Graphics

Inverse Kinematics (IK)

Forward Kinematics solves the problem "if I know the link transformation parameters, where are the links?".

Inverse Kinematics (IK) solves the problem "If I know where I want the end of the chain to be (X*,Y*), what transformation parameters will put it there?"

Ground

Particle Systems: A Cross Between Modeling and Animation?

Particle Systems: A Cross Between Modeling and Animation?

The basic process is:

Particle Systems Examples

Particle Systems Examples

particles.mp4

Particle Systems Examples

A Particle System to Simulate Colliding Galaxies in Cosmic Voyage

Particles Don't Actually Have to Be "Particles"

Animating using Physics

Animating using Physics

 D_0 = unloaded spring length

$$(D - D_0) = \frac{F}{k}$$

k = *spring stiffness* in Newtons/meter or pounds/inch

Or, if you know the displacement, the force exerted by the spring is:

$$F = k \left(D - D_0 \right)$$

This is known as Hooke's law

Animating using the Physics of a Mesh of Springs

Simulating a Bouncy String

Simulating a Bouncy String

string.mp4

Placing a Physical Barrier in the Scene

Animating Cloth

Cloth Examples

Cloth Example

cloth.mp4

Cloth Example

Pixar

Functional Animation: Make the Object Want to Move Towards a Goal Position

$$m\ddot{x} + c\dot{x} + kx = 0$$

University Computer Graphics

Functional Animation: While Making it Want to Move Away from all other Objects

$$m\ddot{x} = \sum F_{repulsive}$$

Total Goal – Make the Free Body Move Towards its Final Position While Being Repelled by the Other Bodies

$$m\ddot{x} + c\dot{x} + kx = \sum F$$

University Computer Graphics

Functional Animation

avoid.mp4

Motion Capture as an Input for Animation

Motion Capture is for Faces Too

Tron I – Probably should have used physics, but didn't

Card Trick

Oregon Stat University Computer Graphics

Pixar Animated Shorts

