微机原理与接口技术

总线技术基础

华中科技大学 左冬红

回顾

总线

是一种数据通道,由计算机系统中连接到该 总线的所有设备共享

总线上任何一个设备发出的地址信息, 计算机系统内所有连接到该总线上的设备都可以接收到。但在进行信息传输时, 每一次只能有一个发送设备可以利用总线给一个接收设备发送信息。

主设备

通信控制方

从设备

通信接受方

总线上具有多个主设备,需提供仲 裁策略

计算机系统总线结构-多总线

总线技术涉及的内容

机械规范

确定总线<mark>物理</mark>尺寸、总线插头、边沿联接器 插座等规格及位置

功能规范

信号名称与功能,对它们相互作用的协议(例如定时关系)进行说明

电气规范

工作时的有效电平、动态转换时间、负载能力、各电气性能的额定值及最大值

总线性能指标

总线宽度W

一次总线操作可以传输二进制数据的最大位数

总线肘钟频率f

基本时钟

总线周期T

一次数据(N个数据)传输所需的总线时钟周期数

总线带宽B

每秒传输的二进制位数

$$B = w \times N \div T$$

总线操作类型

主设备传到从设备

写操作

读修改写

数据传输

从设备传到主设备

读操作

写后读

块操作

一次操作连续传输多个数据

突发操作

总线通信流程

请求总线

总线裁决

寻址

信息传送

错误检测

小结

- 总线技术需关注的内容
 - 电气规范
 - •有效电平
 - 动态转换时间
 - 负载能力
 - •功能规范
 - 定 册
 - •传输协议
 - •信号名称与功能
 - 机械规范
 - •尺寸
 - 外形

下一讲: AXI片内总线

微机原理与接口技术

AXI总线规范

华中科技大学 左冬红

AXI总线概要

片内总线

单向通道

所有信号都单向传输

AXI总线拓扑

AXI总线信号

操作肘序-突发读

小结

- •AXI片内总线特点
 - •单向通道高性能
 - 每个通道独立的握手信号
 - •半同步
 - •各个通道相对独立
 - 并行传输

下一讲: PCI 总线

微机原理与接口技术

PCI局部总线

华中科技大学 左冬红

PCI局部总线概要

局部总线

地址、数据信号线复用, 双向传输

PCI总线信号

操作时序-读操作

操作时序-写操作

小结

- ·PCI局部总线特点
 - •信号线复用-减少引线数目
 - 半同步定时-握手信号

下一讲:外部总线

微机原理与接口技术

外部总线

华中科技大学 左冬红

外部总线概要

与外部设备连接,传输距离相比计算机系统内部总线长

避免信号之间串扰

串行总线

差分信号

定时方式-同步或异步

SATA总线

引脚	名称	含义	引脚	名称	含义
1	GND	地,一般和负极相连	5	B —	数据接收负极信号
2	A +	数据发送正极信号	6	B +	数据接收正极信号
3	A –	数据发送负极信号	7	GND	地,一般和负极相连
4	GND	地,一般和负极相连			

SATA总线连接方式

SATA总线协议

引脚	名称	电缆颜色	功能
1	V_{BUS}	红	+5v
2	D+	白	数据线+
3	D –	绿	数据线-
4	ID	无	USB主设备连接到信号地,USB从设备不连接
5	GND	黑	掩

USB协议

UART总线信号、链路层协议

VCC、GND、RXD(接收端)、TXD(发送端)

传输'A'的波形

UART链路层协议

传输'A'的波形

UART拓扑-点对点

UART网络拓扑-链式拓扑

UART网络拓扑-总线

UART总线通信协议

SPI总线-链路层协议

SPI网络拓扑

点对点拓扑

QSPI存储器操作时序

IIC总线

IIC链路层 肘序

IIC寻址方式

第一帧信息										
数据位	7	6	0							
含义	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	1=读		
	7位	地址	0=写							

第一帧信息								A	第二帧信息							ACK		
数据位	7	6	5	4	3	2	1	0	CK	7	6	5	4	3	2	1	0	
值	1	1	1	1	0	x	X	1=读		X	X	×	x	X	X	X	X	
含义	10位地址特征			A ₉	A ₈	0=写		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀			

IIC总线7位地址寻址读写时序

启动7位地址1ACK数据ACK…ACK结束读时序

启动 7位地址 O ACK 数据 ACK ··· ACK/ACK 结束

写肘序

启动 7位地址 0 ACK 数据 ACK 7位地址 1 ACK 数据 ACK · ACK 结束

写、读转换肘序

小结

- •外部总线发展趋势
 - 串行总线
 - 高速总线差分传输
 - 物理层协议
 - •链路层协议
 - 数据传输层协议

下一讲:存储器接口