

Pandas, Matplotlib & Seaborn

Penyusun Modul: Fitria Yunita Dewi

Editor: Citra Chairunnisa

Pandas is a package commonly used to deal with data analysis. It simplifies the loading of data from external sources such as text files and databases, as well as providing ways of analyzing and manipulating them (its features simplify a lot of the common tasks that would take many lines of code to write in the basic Python language). **Pandas** just like NumPy is written internally in C so it can work fast to process large datasets.

Pandas is best suited for **structured**, **labelled data**, in other words, **tabular data**, that has headings associated with each column of data. The official **Pandas** website describes **Pandas**' data-handling strengths as:

- Tabular data with heterogeneously-typed columns, as in an SQL table or Excel spreadsheet.
- Ordered and unordered (not necessarily fixed-frequency) time series data.
- Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels.
- Any other form of observational / statistical data sets. The data actually need not be labelled at all to be placed into a **pandas** data structure.

Series:

Series is a one-dimensional labelled data structure which can hold data such as strings, integers and even other Python objects.

index	values
A	6
В	3.14
С	-4
D	0

DataFrame:

DataFrame is composed of one or more Series. The names of the **Series** form the column names, and the row labels form the Index.

index	← columns →		
	foo	bar	baz
Α	X	6	True
В	У	10	True
С	Z	NaN	False

Creating Series

```
import pandas as pd
s1 = pd.Series([1, 2, 3, 4])
s2 = pd.Series([1, 2, 3, 4], index=['A', 'B', 'C', 'D'])
```

```
s1
0 1
1 2
2 3
3 4
dtype: int64
```

```
A 1
B 2
C 3
D 4
dtype: int64
```


Creating DataFrame

```
df = pd.DataFrame({
    'foo': ['x', 'y', 'z'],
    'bar': [6, 10, None],
    'baz': [True, True, False]
    })
```

df

	foo	bar	baz
0	х	6.0	True
1	У	10.0	True
2	z	NaN	False

Column Selection

df

	foo	bar	baz
0	Х	6.0	True
1	У	10.0	True
2	z	NaN	False

df['foo']

0	X		
1	У		
2	Z		
Name:	foo,	dtype:	object

df['bar']

Θ	6.0
1	10.0
2	NaN

Name: bar, dtype: float64

```
df['baz']
```

0	True		
1	True		
2	False		
Name:	baz,	dtype:	bool

df[['foo','bar']]

	foo	bar
0	Х	6.0
1	У	10.0
2	z	NaN

df

	foo	bar	baz
0	Х	6.0	True
1	У	10.0	True
2	z	NaN	False

df.loc[0]

foo	X	
bar	6.0	
baz	True	
Name:	0, dtype:	object

df.loc[1:2]

	foo	bar	baz
1	у	10.0	True
2	Z	NaN	False

Conditional Filtering

df

	foo	bar	baz
0	Х	6.0	True
1	У	10.0	True
2	Z	NaN	False

df[df['baz']]

	foo	bar	baz
0	Х	6.0	True
1	У	10.0	True

$$df[(df['foo'] == 'x') | (df['foo'] == 'z')]$$

baz	bar	foo	
True	6.0	Х	0
False	NaN	Z	2

Data Alignment

```
index_names = ['A','B','C','D','E']
df1 = pd.DataFrame({
    'a': [0, 1, 2, 3],
    'b': [1, 2, 3, 4],
    'c': [2, 3, 4, 5]}, index=index_names[0:4])
df2 = pd.DataFrame({
    'a': [0, 1, 2, 3, 4],
    'b': [1, 2, 3, 4, 5]}, index=index_names)
```

uii				
	a	b	c	
А	0	1	2	
В	1	2	3	
С	2	3	4	
D	3	4	5	

df2				
	a	b		
Α	0	1		
В	1	2		
C	2	3		
D	3	4		
Ε	4	5		

C	df1+df2					
	а	b	c			
А	0.0	2.0	NaN			
В	2.0	4.0	NaN			
С	4.0	6.0	NaN			
D	6.0	8.0	NaN			
Ε	NaN	NaN	NaN			

df

	foo	bar	baz
0	Х	6.0	True
1	У	10.0	True
2	Z	NaN	False

Drop row(s) that contain Null

	foo	bar	baz
0	Х	6.0	True
1	у	10.0	True

Drop column(s) that contain Null

	foo	baz
0	Х	True
1	У	True
2	Z	False

baz	bar	foo	
True	6.0	Х	0
True	10.0	У	1
False	0.0	z	2

Indexing

```
df = pd.DataFrame({
    'foo': ['a', 'b', 'c', 'd'],
    'bar': [6, 10, -2, 1],
    'baz': [True, True, False, True]
    })
```

df

df.index

	foo	bar	baz
0	а	6	True
1	b	10	True
2	С	-2	False
3	d	1	True

RangeIndex(start=0, stop=4, step=1)

df = df.set_index('foo')
df

baz	bar	
		foo
True	6	а
True	10	b
False	-2	С
True	1	d

Use:

- iloc[] to select rows and columns by their position
- loc[] to select by name

df.loc['a']

bar 6

baz True

Name: a, dtype: object

df.iloc[0]

bar 6

baz True

Name: a, dtype: object

```
df = df.set_index([['one', 'one', 'two', 'two'], df.index])
df
```

		bar	baz
	foo		
one	а	6	True
	b	10	True
two	С	-2	False
	d	1	True

one	=	df.loc[one']
one			

	bar	baz
foo		
а	6	True
b	10	True

Let's Try it Out with a DataFrame from CSV File

Download datasets from https://data.nasa.gov/Space-Science/Meteorite-Landings/gh4g-9sfh
meteorites = pd.read_csv('Meteorite_Landings.csv', nrows=8) # take the first 8 rows

	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
0	Aachen	1	Valid	L5	21	Fell	1880	50.77500	6.08333	(50.775, 6.08333)
1	Aarhus	2	Valid	H6	720	Fell	1951	56.18333	10.23333	(56.18333, 10.23333)
2	Abee	6	Valid	EH4	107000	Fell	1952	54.21667	-113.00000	(54.21667, -113.0)
3	Acapulco	10	Valid	Acapulcoite	1914	Fell	1976	16.88333	-99.90000	(16.88333, -99.9)
4	Achiras	370	Valid	L6	780	Fell	1902	-33.16667	-64.95000	(-33.16667, -64.95)
5	Adhi Kot	379	Valid	EH4	4239	Fell	1919	32.10000	71.80000	(32.1, 71.8)
6	Adzhi-Bogdo (stone)	390	Valid	LL3-6	910	Fell	1949	44.83333	95.16667	(44.83333, 95.16667)
7	Agen	392	Valid	H5	30000	Fell	1814	44.21667	0.61667	(44.21667, 0.61667)

The Anatomy

```
# Series
meteorites.name
```

```
Aachen
Aarhus
Abee
Acapulco
Achiras
Adhi Kot
Adzhi-Bogdo (stone)
Agen
Name: name, dtype: object
```


Inspecting the Data

take all the data meteorites = pd.read_csv('Meteorite_Landings.csv')

Information about the **DataFrame**

meteorites.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 45716 entries, 0 to 45715 Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype			
0	name	45716 non-null	object			
1	id	45716 non-null	int64			
2	nametype	45716 non-null	object			
3	recclass	45716 non-null	object			
4	mass (g)	45585 non-null	float64			
5	fall	45716 non-null	object			
6	year	45425 non-null	float64			
7	reclat	38401 non-null	float64			
8	reclong	38401 non-null	float64			
9	GeoLocation	38401 non-null	object			
<pre>dtypes: float64(4), int64(1), object(5)</pre>						
memory usage: 3.5+ MB						

What type of data does each column currently hold?

meteorites.dtypes

object name id int64 object nametype object recclass mass (g) float64 fall object float64 year float64 reclat float64 reclong GeoLocation object dtype: object

How many rows and columns are there?

meteorites.shape

(45716, 10)

What are the column names?

meteorites.columns

Index(['name', 'id', 'nametype', 'recclass', 'mass (g)', 'fall', 'year', 'reclat', 'reclong', 'GeoLocation'], dtype='object')

meteorites.head()

	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
0	Aachen	1	Valid	L5	21.0	Fell	1880.0	50.77500	6.08333	(50.775, 6.08333)
1	Aarhus	2	Valid	H6	720.0	Fell	1951.0	56.18333	10.23333	(56.18333, 10.23333)
2	Abee	6	Valid	EH4	107000.0	Fell	1952.0	54.21667	-113.00000	(54.21667, -113.0)
3	Acapulco	10	Valid	Acapulcoite	1914.0	Fell	1976.0	16.88333	-99.90000	(16.88333, -99.9)
4	Achiras	370	Valid	L6	780.0	Fell	1902.0	-33.16667	-64.95000	(-33.16667, -64.95)

meteorites.tail()

	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
45711	Zillah 002	31356	Valid	Eucrite	172.0	Found	1990.0	29.03700	17.01850	(29.037, 17.0185)
45712	Zinder	30409	Valid	Pallasite, ungrouped	46.0	Found	1999.0	13.78333	8.96667	(13.78333, 8.96667)
45713	Zlin	30410	Valid	H4	3.3	Found	1939.0	49.25000	17.66667	(49.25, 17.66667)
45714	Zubkovsky	31357	Valid	L6	2167.0	Found	2003.0	49.78917	41.50460	(49.78917, 41.5046)
45715	Zulu Queen	30414	Valid	L3.7	200.0	Found	1976.0	33.98333	-115.68333	(33.98333, -115.68333)

Selecting Column(s)

me	teorites.name			
0	Aachen			
1	Aarhus			
2	Abee			
3	Acapulco			
4	Achiras			
45711	Zillah 002			
45712	Zinder			
45713	Zlin			
45714	Zubkovsky			
45715	Zulu Queen			
Name:	name, Length:	45716,	dtype:	object

meteorites[['name'	,	mass	(g)']]

name mass (g))
0 Aachen 21.0)
1 Aarhus 720.0)
2 Abee 107000.0)
3 Acapulco 1914.0)
4 Achiras 780.0)
45711 Zillah 002 172.0)
45712 Zinder 46.0)
45713 Zlin 3.3	
45714 Zubkovsky 2167.0)
45715 Zulu Queen 200.0)

45716 rows × 2 columns

Selecting Row(s)

me	teorites[100	:104]								
	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
100	Benton	5026	Valid	LL6	2840.0	Fell	1949.0	45.95000	-67.55000	(45.95, -67.55)
101	Berduc	48975	Valid	L6	270.0	Fell	2008.0	-31.91000	-58.32833	(-31.91, -58.32833)
102	Béréba	5028	Valid	Eucrite-mmict	18000.0	Fell	1924.0	11.65000	-3.65000	(11.65, -3.65)
103	Berlanguillas	5029	Valid	L6	1440.0	Fell	1811.0	41.68333	-3.80000	(41.68333, -3.8)

meteorites.iloc[100:104, [0, 3, 4, 6]]

	name	recclass	mass (g)	year
100	Benton	LL6	2840.0	01/01/1949 12:00:00 AM
101	Berduc	L6	270.0	01/01/2008 12:00:00 AM
102	Béréba	Eucrite-mmict	18000.0	01/01/1924 12:00:00 AM
103	Berlanguillas	L6	1440.0	01/01/1811 12:00:00 AM

meteorites.loc[100:104, 'mass (g)':'year']

	mass (g)	fall	year
100	2840.0	Fell	01/01/1949 12:00:00 AM
101	270.0	Fell	01/01/2008 12:00:00 AM
102	18000.0	Fell	01/01/1924 12:00:00 AM
103	1440.0	Fell	01/01/1811 12:00:00 AM
104	960.0	Fell	01/01/2004 12:00:00 AM

Important: Take note of the syntax here. We surround each condition with parentheses, and we use bitwise operators (&, |, ~) instead of logical operators (and, or, not).

(meteorites['mass (g)'] > 50) & (meteorites.fall == 'Found')

0	False		
1	False		
2	False		
3	False		
4	False		
45711	True		
45712	False		
45713	False		
45714	True		
45715	True		
Length:	45716,	dtype:	bool

meteorites[(meteorites['mass (g)'] > 50) & (meteorites.fall == 'Found')]

	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
37	Northwest Africa 5815	50693	Valid	L5	256.80	Found	NaN	0.00000	0.00000	(0.0, 0.0)
757	Dominion Range 03239	32591	Valid	L6	69.50	Found	2002.0	NaN	NaN	NaN
804	Dominion Range 03240	32592	Valid	LL5	290.90	Found	2002.0	NaN	NaN	NaN
1111	Abajo	4	Valid	H5	331.00	Found	1982.0	26.80000	-105.41667	(26.8, -105.41667)
1112	Abar al' Uj 001	51399	Valid	H3.8	194.34	Found	2008.0	22.72192	48.95937	(22.72192, 48.95937)
45709	Zhongxiang	30406	Valid	Iron	100000.00	Found	1981.0	31.20000	112.50000	(31.2, 112.5)
45710	Zillah 001	31355	Valid	L6	1475.00	Found	1990.0	29.03700	17.01850	(29.037, 17.0185)
45711	Zillah 002	31356	Valid	Eucrite	172.00	Found	1990.0	29.03700	17.01850	(29.037, 17.0185)
45714	Zubkovsky	31357	Valid	L6	2167.00	Found	2003.0	49.78917	41.50460	(49.78917, 41.5046)
45715	Zulu Queen	30414	Valid	L3.7	200.00	Found	1976.0	33.98333	-115.68333	(33.98333, -115.68333)

18854 rows × 10 columns

Filtering alternative with query()

meteorites.query("`mass (g)` > 50 and fall == 'Found'")

	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
37	Northwest Africa 5815	50693	Valid	L5	256.80	Found	NaN	0.00000	0.00000	(0.0, 0.0)
757	Dominion Range 03239	32591	Valid	L6	69.50	Found	2002.0	NaN	NaN	NaN
804	Dominion Range 03240	32592	Valid	LL5	290.90	Found	2002.0	NaN	NaN	NaN
1111	Abajo	4	Valid	H5	331.00	Found	1982.0	26.80000	-105.41667	(26.8, -105.41667)
1112	Abar al' Uj 001	51399	Valid	H3.8	194.34	Found	2008.0	22.72192	48.95937	(22.72192, 48.95937)
45709	Zhongxiang	30406	Valid	Iron	100000.00	Found	1981.0	31.20000	112.50000	(31.2, 112.5)
45710	Zillah 001	31355	Valid	L6	1475.00	Found	1990.0	29.03700	17.01850	(29.037, 17.0185)
45711	Zillah 002	31356	Valid	Eucrite	172.00	Found	1990.0	29.03700	17.01850	(29.037, 17.0185)
45714	Zubkovsky	31357	Valid	L6	2167.00	Found	2003.0	49.78917	41.50460	(49.78917, 41.5046)
45715	Zulu Queen	30414	Valid	L3.7	200.00	Found	1976.0	33.98333	-115.68333	(33.98333, -115.68333)

18854 rows × 10 columns

meteorites.describe	(include='all')	

	name	id	nametype	recclass	mass (g)	fall	year	reclat	reclong	GeoLocation
count	45716	45716.000000	45716	45716	4.558500e+04	45716	45425	38401.000000	38401.000000	38401
unique	45716	NaN	2	466	NaN	2	266	NaN	NaN	17100
top	Yamato 86397	NaN	Valid	L6	NaN	Found	01/01/2003 12:00:00 AM	NaN	NaN	(0.0, 0.0)
freq	1	NaN	45641	8285	NaN	44609	3323	NaN	NaN	6214
mean	NaN	26889.735104	NaN	NaN	1.327808e+04	NaN	NaN	-39.122580	61.074319	NaN
std	NaN	16860.683030	NaN	NaN	5.749889e+05	NaN	NaN	46.378511	80.647298	NaN
min	NaN	1.000000	NaN	NaN	0.000000e+00	NaN	NaN	-87.366670	-165.433330	NaN
25%	NaN	12688.750000	NaN	NaN	7.200000e+00	NaN	NaN	-76.714240	0.000000	NaN
50%	NaN	24261.500000	NaN	NaN	3.260000e+01	NaN	NaN	-71.500000	35.666670	NaN
75%	NaN	40656.750000	NaN	NaN	2.026000e+02	NaN	NaN	0.000000	157.166670	NaN
max	NaN	57458.000000	NaN	NaN	6.000000e+07	NaN	NaN	81.166670	354.473330	NaN

How many of the meteorites were found versus observed falling?

meteorites.fall.value_counts()

Found 44609 Fell 1107

Name: fall, dtype: int64

Tip: Pass in normalize=True to see this result as percentages. Check the documentation for additional functionality.

What was the mass of the heaviest meteorite?

meteorites['mass (g)'].max()

60000000.0

Important: NaN values signify missing data. For instance, the fall column contains strings, so there is no value for mean; likewise, mass (g) is numeric, so we don't have entries for the categorical summary statistics (unique, top, freq).

Let's take a break for some exercises to check your understanding

- Create a DataFrame by reading in the 2019_Yellow_Taxi_Trip_Data.csv file.
- Find the dimensions (number of rows and number of columns) in the data.
- Calculate summary statistics for the fare_amount, tip_amount, tolls_amount, and total_amount columns.
- 4. Isolate the fare_amount, tip_amount, tolls_amount, and total_amount for the longest trip (trip_distance).

Let's continue our process of data wrangling to prepare our data for analysis. Now we'll be working with the data from previous exercise, 2019 Yellow Taxi Trip Data provided by NYC Open Data.

taxis = pd.read_csv('../data/2019_Yellow_Taxi_Trip_Data.csv') taxis.head()

	vendorid	tpep_pickup_datetime	tpep_dropoff_datetime	passenger_count	trip_distance	ratecodeid	store_and_fwd_flag	pulocationid	dolocationid	payment_type	fare_amount
0	2	2019-10- 23T16:39:42.000	2019-10- 23T17:14:10.000	1	7.93	1	N	138	170	1	29.5
1	1	2019-10- 23T16:32:08.000		1	2.00	1	N	11	26	1	10.5
2	2	2019-10- 23T16:08:44.000	2019-10- 23T16:21:11.000	1	1.36	1	N	163	162	1	9.5
3	2	2019-10- 23T16:22:44.000	2019-10- 23T16:43:26.000	1	1.00	1	N	170	163	1	13.0
4	2	2019-10- 23T16:45:11.000	2019-10- 23T16:58:49.000	1	1.96	1	N	163	236	1	10.5
4											+

taxis.columns

```
Index(['Unnamed: 0', 'vendorid', 'tpep pickup datetime',
       'tpep_dropoff_datetime', 'passenger_count', 'trip_distance',
       'ratecodeid', 'store_and_fwd_flag', 'pulocationid', 'dolocationid',
       'payment_type', 'fare_amount', 'extra', 'mta_tax', 'tip_amount',
       'tolls_amount', 'improvement_surcharge', 'total_amount',
       'congestion_surcharge'],
      dtype='object')
```

Let's start by dropping the ID columns and the store_and_fwd_flag column, which we won't be using.

```
mask = taxis.columns.str.contains('id$|store and fwd flag')
   mask
array([False, True, False, False, False, False, True, True, True,
        True, False, False, False, False, False, False, False,
       False])
   columns to drop = taxis.columns[mask]
   taxis = taxis.drop(columns=columns_to_drop)
   taxis.columns
Index(['Unnamed: 0', 'tpep_pickup_datetime', 'tpep_dropoff_datetime',
       'passenger count', 'trip distance', 'payment type', 'fare amount',
       'extra', 'mta_tax', 'tip_amount', 'tolls_amount',
       'improvement surcharge', 'total amount', 'congestion surcharge'],
     dtype='object')
```



```
taxis.rename(
    columns={
        'tpep_pickup_datetime': 'pickup',
        'tpep_dropoff_datetime': 'dropoff'
    inplace=True
taxis.head()
```

	Unnamed: 0	pickup	dropoff	passenger_count
0	0	2019-11- 08T10:14:52.000	2019-11- 08T10:37:42.000	5
1	1		2019-11- 08T10:59:11.000	5
2	2	2019-11- 08T10:08:31.000	2019-11- 08T10:12:34.000	1
3	3	2019-11- 08T10:13:59.000	2019-11- 08T10:27:47.000	1
4	4	2019-11- 08T10:34:08.000	2019-11- 08T11:10:25.000	1

Before we continue, let's change the datatypes of 'pickup' and 'dropoff' columns

taxis.dtypes object pickup object dropoff passenger_count int64 trip distance float64 int64 payment type fare amount float64 float64 extra float64 mta tax float64 tip amount float64 tolls amount improvement surcharge float64 total amount float64 congestion_surcharge float64

dtype: object

taxis['pickup'] = pd.to_datetime(taxis['pickup']) taxis['dropoff'] = pd.to_datetime(taxis['dropoff']) taxis.dtypes

Unnamed: 0	int64
pickup	datetime64[ns]
dropoff	datetime64[ns]
passenger_counc	1111.04
trip_distance	float64
payment_type	int64
fare_amount	float64
extra	float64
mta_tax	float64
tip_amount	float64
tolls_amount	float64
improvement_surcharge	float64
total_amount	float64
congestion_surcharge	float64
dtype: object	

Data Cleaning - Create New Columns

There are several ways to do this:

- Use indexing
- Use assign()

taxis['cost_before_tip']=taxis['total_amount'] - taxis['tip_amount'] # using indexing taxis = taxis.assign(tip_percent=taxis['tip_amount'] / taxis['cost_before_tip']) # using assign() taxis.head()

extra mta_tax tip_amount tolls_amount improvement_surcharge total_amount congestion_surcharge cost_before_tip tip_percent

Use :	Use insert()			0.0	0.5	3.46	0.0	0.3	20.76	2.5	17.3	0.2
taxis. taxis.		"elapsed_	_time", taxis['dropoff']-tax	is['pickup']))	0.3	12.36	2.5	10.3	0.2
Jnnamed:			-	1)	0.3	9.96	2.5	8.3	0.2
0	pickup	агоротт	elapsed_time	passenger_coun	t trip_distan	ce payment_typ) 	0.3	16.56	2.5	13.8	0.2
0	2019- 11-08 10:14:52	2019- 11-08 10:37:42	0 days 00:22:50	:	5 1.	55	1)	0.3	36.96	2.5	30.8	0.2

Unnamed:	pickup	dropoff	elapsed_time	passenger_count	trip_distance	payment_type
0	2019- 11-08 10:14:52	2019- 11-08 10:37:42	0 days 00:22:50	5	1.55	1
1	2019- 11-08 10:50:54	2019- 11-08 10:59:11	0 days 00:08:17	5	0.84	1
2	2019- 11-08 10:08:31	2019- 11-08 10:12:34	0 days 00:04:03	1	0.72	1
3	2019- 11-08	2019- 11-08	0 days 00:13:48	1	1.62	1

Data Cleaning - Sort by Values

taxis.sort_values(['passenger_count', 'pickup'], ascending=[False, True])

	Unnamed: 0	pickup	dropoff	elapsed_time	passenger_count	trip_distance	payment_type
34540	34540	2019- 11-08 06:02:37	2019- 11-08 06:37:14	0 days 00:34:37	6	10.21	1
8767	8767	2019- 11-08 06:16:36	2019- 11-08 06:32:09	0 days 00:15:33	6	1.33	1
47543	47543	2019- 11-08 06:19:06	2019- 11-08 13:51:58	0 days 07:32:52	6	6.14	1
21429	21429	2019- 11-08 06:24:32	2019- 11-09 05:59:52	0 days 23:35:20	6	4.14	1
8768	8768	2019- 11-08 06:40:20	2019- 11-09 05:52:41	0 days 23:12:21	6	3.46	2
46020	46020	2019- 11-08 13:59:17	2019- 11-08 14:08:39	0 days 00:09:22	0	0.80	1

The human brain excels at finding patterns in visual representations of the data; so in this section, we will learn how to visualize data that will help us better understand our data. Python features many libraries that provide useful tools for visualization.

The most well-known, Matplotlib, enables users to generate visualizations like histograms, scatterplots, bar charts, pie charts and much more.

Seaborn is another useful visualization library that is built on top of Matplotlib. It provides data visualizations that are typically more aesthetic and statistically sophisticated.

Having a solid understanding of how to use both of these libraries is essential for any data scientist or data analyst as they both provide easy methods for visualizing data for insight.

Generating Histograms

When analyzing a new data set, researchers are often interested in the distribution of values for a set of columns. One way to do so is through a histogram.

```
import matplotlib.pyplot as plt
  df = pd.read_csv("fifa_eda.csv")
  df.head()
              Name Age Nationality Overall Potential
                                                                 Club
                                                                           Value Wage
                                                                        110500.0 565.0
            L. Messi
0 158023
                             Argentina
                                                             Barcelona
            Cristiano
                               Portugal
                                                              Juventus
            Ronaldo
                                                            Paris Saint-
                       26
2 190871
                                            92
                                                                        118500.0
                                                                                  290.0
                                 Brazil
                                                              Germain
3 193080
                                            91
             De Gea
                                 Spain
                                                                United
               K. De
                                                           Manchester
4 192985
                                                                                  355.0
                               Belgium
             Bruyne
```


Scatterplots are a useful data visualization tool that helps with identifying variable

dependence.

```
plt.scatter(df['Overall'], df['Wage'])
plt.title('Overall vs. Wage')
plt.ylabel('Wage')
plt.xlabel('Overall')
plt.show()
```


Generating Bar Charts

Bar charts are another useful visualization tool for analyzing categories in data. For example, we want to see the most common nationalities found in our FIFA19 data set

```
# creating new series of no. of players based on their nationality
nationality_count = df.Nationality.value_counts()
nationality_count
```

England	1662
Germany	1198
Spain	1072
Argentina	937
France	914
Puerto Rico	1
Fiji	1
St Lucia	1
Palestine	1
Lebanon	1

```
Name: Nationality, Length: 164, dtype: int64
```

```
plt.bar(nationality_count.index[0:10], nationality_count.values[0:10]) # we only look at the first 10
plt.xlabel('Nationality')
plt.ylabel('Frequency')
plt.title('Bar Plot of Ten Most Common Nationalities')
plt.xticks(rotation=90)
plt.show()
```


Generating Pie Charts

Pie charts are a useful way to visualize proportions in your data. For example, in this data set, we can use a pie chart to visualize the proportion of players from England, Germany and Spain.

```
# add column named Nationality2
# assign value to each row satisfying the condition
# loc[rows where the condition is satisfied, column]
# here we create 4 categories of Nationality2
df.loc[df.Nationality == 'England', 'Nationality2'] = 'England'
df.loc[df.Nationality == 'Spain', 'Nationality2'] = 'Spain'
df.loc[df.Nationality =='Germany', 'Nationality2'] = 'Germany'
df.loc[~df.Nationality.isin(['England', 'German', 'Spain']), 'Nationality2'] = 'Other'
# count values in Nationality2 column
nationality2 count = df['Nationality2'].value counts()
# same as df.value counts(['Nationality2']) or df.Nationality2.value counts()
nationality2_count
```

```
Other
           15473
England
            1662
            1072
Spain
Name: Nationality2, dtype: int64
```

```
plt.pie(nationality2_count, labels=nationality2_count.index,
        autopct='%1.1f%%')
plt.show()
```


Seaborn is a library built on top of Matplotlib that enables more sophisticated visualization and aesthetic plot formatting. Once you've mastered Matplotlib, you may want to move up to Seaborn for more complex visualizations.

For example, simply using the Seaborn set() method can dramatically improve the appearance of your Matplotlib plots. Let's take a look.

First, import Seaborn as sns

import seaborn as sns

Generating Histograms

We can also generate all of the same visualizations we did in Matplotlib using Seaborn.

To regenerate our histogram of the overall column, we use the distplot method on the Seaborn object:

```
sns.displot(df['Overall'])
plt.xlabel('Overall')
plt.ylabel('Frequency')
plt.title('Histogram of Overall Rating')
plt.show()
```


Generating Scatterplots

```
sns.scatterplot(x=df['Overall'], y=df['Wage'])
plt.title('Overall vs. Wage')
plt.ylabel('Wage')
plt.xlabel('Overall')
plt.show()
```


Generating Heatmaps

Seaborn is also known for making correlation heatmaps, which can be used to identify variable dependence. To generate one, first we need to calculate the correlation between a set of numerical columns. Let's do this for age, overall, wage_euro and skill moves

These correlation values can help us selecting features later on when we learn more about machine learning. Features/variables with high correlation are more linearly dependent and hence have almost the same effect. So, when two features have high correlation, we can drop one of the two features.

```
corr = df[['Overall', 'Age', 'Wage', 'Skill Moves']].corr()
sns.heatmap(corr, annot=True)
plt.title('Heatmap of Overall, Age, wage_euro, and Skill Moves')
plt.show()
```


The last Seaborn tool we'll discuss is the pairplot method. This allows you to generate a matrix of distributions and scatter plots for a set of numerical features. Let's do this for age, overall and potential:

```
data = df[['Overall', 'Age', 'Potential']]
sns.pairplot(data)
plt.show()
```


Now explore the data from all the datasets we have covered today (taxis, meteorites and fifa)

Visualize the data and tell us the insights you gain from it! (you may choose whichever plot you are comfortable to play around with)

