Simple proof for Frequent Directions

Edo Liberty*

Abstract

This paper provides a short proof of the main results in [1] and [2].

Proof of the main results

The main insight needed for producing the simplified proof is changing the item being sketched. We will consider sketching the *covariance* of a stream of matrices rather than the stream itself. The results turns out to be identical.

Let $X_t \in \mathbb{R}^{d \times n_t}$ be a stream of matrices. Let $C = \sum_{t=1}^T X_t X_t^T \in \mathbb{R}^{d \times d}$ be their covariance matrix. Frequent Directions [1] maintains a rank deficient approximate covariance matrix $\tilde{C}_t \in \mathbb{R}^{d \times d}$ using Algorithm 1. Set \tilde{C}_0 to be the all zeros matrix and compute $\tilde{C}_t = \text{UPDATE}(\tilde{C}_{t-1}, X, \ell)$.

Algorithm 1 Frequent Directions Update

- 1: function UPDATE (\tilde{C}, X, ℓ) 2: $U\Lambda U^T = \tilde{C} + XX^T$
- 3: **return** $U \cdot \max(\Lambda I \cdot \lambda_{\ell}, 0) \cdot U^T$
- 4: end function

Note that the rank of \tilde{C}_t is at most $\ell-1$ for all t by construction. It can therefore be stored in $O(d\ell)$ space. Assuming $n_t < \ell$, the update operation itself also consumes at most $O(d\ell)$ space.

Define
$$\Delta_t = X_t X_t^T - \tilde{C}_t + \tilde{C}_{t-1}$$
. Then $\sum_{t=1}^T \Delta_t = \sum_{t=1}^T X_t X_t^T - \sum_{t=1}^T (\tilde{C}_t - \tilde{C}_{t-1}) = C - \tilde{C}$ where \tilde{C} stands for \tilde{C}_T , the final sketch.

Moreover, note that the top ℓ eigenvalues of Δ_t are all equal to one another because $\Delta_t = U_t \cdot \min(\Lambda_t, I \cdot \lambda_\ell^t) \cdot U_t^T$. As a result $\|\Delta_t\| < \frac{1}{\ell-k} \operatorname{tr}(\bar{P}_k \Delta_t \bar{P}_k)$ for any projection \bar{P}_k having a null space of dimension at most k. Specifically, this holds for \bar{P}_k whose null space contains the eigenvectors of C corresponding to its largest eigenvalues.

$$||C - \tilde{C}|| = ||\sum_{t=1}^{T} \Delta_t|| \le \sum_{t=1}^{T} ||\Delta_t||$$

$$\le \frac{1}{\ell - k} \operatorname{tr} \left(\bar{P}_k \left(\sum_{t=1}^{T} \Delta_t \right) \bar{P}_k \right)$$

$$\le \frac{1}{\ell - k} \operatorname{tr} \left(\bar{P}_k C \bar{P}_k \right) = \frac{1}{\ell - k} \sum_{i=k+1}^{d} \lambda_i$$

Here we used that $\operatorname{tr}(\bar{P}_k\tilde{C}\bar{P}_k) \geq 0$ because \tilde{C} is positive semidefinite. This completes the proof of the main claim in [2]. Setting k=0 completes the proof the main claim in [1].

References

- [1] Edo Liberty. Simple and deterministic matrix sketching. In *The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, August 11-14, 2013*, pages 581–588. ACM, 2013.
- [2] Mina Ghashami and Jeff M. Phillips. Relative errors for deterministic low-rank matrix approximations. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 707-717. SIAM, 2014.

^{*}Pinecone