Examen final de SIN: Test del bloque 2 (1,75 puntos)

ETSINF, Universitat Politècnica de València, 17 de enero de 2023

Grupo, apellidos y nombre: 1,

Marca cada recuadro con una única opción. Puntuación: $\max(0, (\text{aciertos} - \text{errores}/3) \cdot 1, 75/9)$.

- Supóngase que tenemos dos cajas con 40 naranjas en la primera y 80 naranjas en la segunda. La primera caja contiene 9 naranjas Navelina y 31 Caracara. La segunda caja contiene tres veces más naranjas Navelina que Caracara. Ahora supóngase que se escoge una caja al azar, y luego una naranja al azar de la caja escogida. Si la naranja escogida es Navelina, la probabilidad P de que proceda de la primera caja es:
 - A) $0/4 \le P < 1/4$.
 - B) $1/4 \le P < 2/4$.
 - C) $2/4 \le P < 3/4$.
 - D) $3/4 \le P \le 4/4$.
- Sea un problema de clasificación en cuatro clases para datos del tipo $\mathbf{x} = (x_1, x_2)^t \in \{0, 1\}^2$, con las distribuciones de probabilidad de la tabla. Indica en qué intervalo se halla el error de Bayes, ε^* :
 - A) $\varepsilon^* < 0.40$.
 - B) $0.40 < \varepsilon^* < 0.45$.
 - C) $0.45 \le \varepsilon^* < 0.50$.
 - D) $0.50 \le \varepsilon^*$.

X		$P(c \mid \mathbf{x})$				
x_1	x_2			c=3	c=4	$P(\mathbf{x})$
0	0	0.1	0.3	0.1	0.5	0
0	1	0.2	0.5	0.3	0	0.1
1	0	0.2	0.4	0.1	0.3	0.3
1	1	0.1	0.3	0.3	0.3	0.6

Dado el clasificador en dos clases definido por su frontera y regiones de decisión de la figura de la derecha, ¿cuál de los siguientes vectores de pesos (en notación homogénea) define un clasificador equivalente al dado?

B)
$$\mathbf{w}_1 = (0, 2, 0)^t$$
 $\mathbf{w}_2 = (0, 0, 2)^t$.

C)
$$\mathbf{w}_1 = (0,0,2)^t$$
 y $\mathbf{w}_2 = (0,2,0)^t$.

D) Todos los vectores de pesos anteriores definen clasificadores equivalentes.

4	Supóngase que estamos aplicando el algoritmo Perceptrón, con factor de aprendizaje $\alpha=1$ y margen $b=0.1$,
	a un conjunto de 4 muestras bidimensionales de aprendizaje para un problema de 4 clases, $c = 1, 2, 3, 4$. En
	un momento dado de la ejecución del algoritmo se han obtenido los vectores de pesos $\mathbf{w}_1 = (-2, -2, -6)^t$,
	$\mathbf{w}_2 = (-2, -2, -6)^t$, $\mathbf{w}_3 = (-2, -4, -4)^t$, $\mathbf{w}_4 = (-2, -4, -4)^t$. Suponiendo que a continuación se va a
	procesar la muestra $(\mathbf{x}, c) = ((4, 5)^t, 2)$, ¿cuántos vectores de pesos se modificarán?

- A) 0
- B) 2
- C) 3
- D) 4
- Supóngase que estamos aplicando el algoritmo de aprendizaje de árboles de clasificación para un problema de dos clases, c=A,B. El algoritmo ha alcanzado un nodo t cuya impureza, medida como la entropía de la distribución empírica de las probabilidades a posteriori de las clases en t, es I=0.72. ¿Cuál es el número de muestras de cada clase en el nodo t?
 - A) 2 de clase A y 32 de clase B
 - B) 2 de clase A y 16 de clase B
 - C) 4 de clase A y 32 de clase B
 - D) 4 de clase A y 16 de clase B
- 6 ☐ Dado el conjunto de muestras de 2 clases (o y •) de la figura de la derecha, ¿cuál de los siguientes árboles de clasificación es coherente con la partición representada?

 $\centline{1}$ La figura siguiente muestra una partición de 6 puntos bidimensionales en dos clústers, ullet y \circ :

Si transferimos de clúster el punto $(1,0)^t$, se produce una variación de la suma de errores cuadráticos (SEC), $\Delta J = J - J'$ (SEC tras el intercambio menos SEC antes del intercambio), tal que:

- A) $\Delta J < -7$.
- B) $-7 \le \Delta J < 0$.
- C) $0 \le \Delta J < 7$.
- D) $\Delta J \geq 7$.
- Sea M un modelo de Markov de representación gráfica:

 $\stackrel{.}{\iota}$ Cuántas cadenas distintas de longitud 3 que empiezan por el símbolo a puede generar M?

- A) Ninguna.
- B) Una.
- C) Dos.
- D) Más de dos.
- Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_1 = \frac{2}{3}$, $\pi_2 = \frac{1}{3}$; matriz de probabilidades de transición entre estados A y de emisión de símbolos B, y matriz Forward α :

A	1	2	F
1	$\frac{3}{7}$	$\frac{3}{7}$	$\frac{1}{7}$
2	$\frac{2}{6}$	$\frac{2}{6}$	$\frac{2}{6}$

B	a	b
1	$\frac{1}{2}$	$\frac{1}{2}$
2	$\frac{1}{2}$	$\frac{1}{2}$

α	b	b
1	$\frac{1}{3}$	α_{12}
2	$\frac{1}{6}$	α_{22}

¿Cuáles son los valores correspondientes a α_{12} y $\alpha_{22}?$

A)
$$\alpha_{12} = \frac{25}{252}$$
, $\alpha_{22} = \frac{1}{14}$
B) $\alpha_{12} = \frac{1}{14}$, $\alpha_{22} = \frac{25}{252}$

B)
$$\alpha_{12} = \frac{1}{14}, \ \alpha_{22} = \frac{25}{252}$$

C)
$$\alpha_{12} = \frac{25}{252}$$
, $\alpha_{22} = \frac{25}{252}$

D)
$$\alpha_{12} = \frac{1}{14}$$
, $\alpha_{22} = \frac{1}{14}$

Examen final de SIN: Problema del bloque 2 (2 puntos)

ETSINF, Universitat Politècnica de València, 17 de enero de 2023

Grupo, apellidos y nombre: 1,

Problema sobre Viterbi

Sea M un modelo de Markov de conjunto de estados $Q = \{1, 2, F\}$; alfabeto $\Sigma = \{a, b\}$; probabilidades iniciales $\pi_1 = \frac{1}{2}, \pi_2 = \frac{1}{2}$; y probabilidades de transición entre estados y de emisión de símbolos:

A	1	2	F
1	$\frac{2}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
2	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$

B	a	b
1	$\frac{2}{3}$	$\frac{1}{3}$
2	$\frac{1}{3}$	$\frac{2}{3}$

Se pide:

- 1. (1 punto) Realiza una traza del algoritmo de Viterbi para obtener la secuencia de estados más probable con la que M genera la cadena ab.
- 2. (1 punto) Dados los pares de entrenamiento, cadena secuencia de Viterbi, (ba, 22F) y (baa, 111F) junto con la cadena ab y su secuencia de Viterbi calculada en el apartado anterior, reestima los parámetros de M mediante una iteración del algoritmo de reestimación por Viterbi.