Resolução - Exercícios - Cálculo IV - Aula 4 - Semana 14/9 - 18/9

Exercício 1. Determine se as séries são convergentes ou divergentes.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
.

Solução. Como $\frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}}$ para $n = 1, 2, 3, \dots$, e $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \to 0$, segue, do critério de Leibniz, que a série converge.

b.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)}{3n}.$$

Solução. Assim como no item **b** do Exemplo **5**, note que $\lim_{n\to\infty}\frac{(-1)^{n+1}(n+1)}{3n}$ não existe. Assim, pelo critério da divergência, a série diverge.

c.
$$\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{2n+1}$$
.

Solução. Considere a sequência $a_n = \frac{\sqrt{n}}{2n+1}, n = 1, 2, 3, \dots$

Seja $f(x) = \frac{\sqrt{x}}{2x+1}$, para $x \in [0, \infty)$. Sendo

$$f'(x) = \frac{1 - 2x}{2\sqrt{x}(2x+1)^2} < 0 \text{ para } x > \frac{1}{2},$$

a função f é decrescente no intervalo $(\frac{1}{2}, \infty)$, portanto, a sequência $a_n = f(n), n = 1, 2, 3, \ldots$, é decrescente. Além disso,

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{\sqrt{n}}{2n+1} = \lim_{n\to\infty} \frac{1}{2\sqrt{n} + \frac{1}{\sqrt{n}}} = 0.$$

Portanto, pelo critério de Leibniz, a série é convergente.

$$\mathbf{d.} \sum_{n=0}^{\infty} \frac{n}{2^n}.$$

Solução. Denote $a_n=\frac{n}{2^n},\ n=0,1,2,\ldots$. Como $a_n>0$ para todo $n\geq 1$, podemos considerar

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}} = \lim_{n \to \infty} \underbrace{\frac{2^n}{2^{n+1}}}_{\frac{1}{2}} \frac{n+1}{n} = \frac{1}{2} < 1.$$

Usando o critério da razão, concluímos que a série converge.

e.
$$\sum_{n=1}^{\infty} \sqrt{n} \left(\frac{2n-1}{n+13} \right)^n.$$

Solução. Sendo $\sqrt{n}\left(\frac{2n-1}{n+13}\right)^n \geq 0$ para todo $n \geq 1$ e

$$\lim_{n\to\infty}\sqrt[n]{\sqrt{n}\left(\frac{2n-1}{n+13}\right)^n}=\lim_{n\to\infty}\sqrt{n^{1/n}}\frac{2n-1}{n+13}=2>1,$$

pelo critério da raiz, a série é divergente.

$$\mathbf{f.} \ \sum_{n=1}^{\infty} \frac{\pi^n}{n^{\pi}}.$$

Solução. Sendo $\frac{\pi^n}{n^{\pi}} \geq 0$ para todo $n \geq 1$ e

$$\lim_{n\to\infty}\sqrt[n]{\frac{\pi}{n^{\pi/n}}}=\lim_{n\to\infty}\frac{\pi}{(n^{1/n})^\pi}=\frac{\pi}{1}=\pi>1.$$

pelo critério da raiz, a série diverge.

$$\mathbf{g} \cdot \sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$$
.

Solução. Sendo

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{(n+1)!}{n!} \right)^2 \frac{(2n)!}{(2n+2)!} = \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+1)} = \frac{1}{4} < 1,$$

segue do critério da razão que série é convergente.

$$\mathbf{h.} \sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots 2n}{(2n)!}.$$

Solução. Vamos aplicar o critério da razão. Para isto, façamos

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{2 \cdot 4 \cdot 6 \cdots 2(n+1)}{(2(n+1))!}}{\frac{2 \cdot 4 \cdot 6 \cdots 2n}{(2n)!}}$$

$$= \lim_{n \to \infty} \frac{2 \cdot 4 \cdot 6 \cdots 2n \cdot (2n+2)}{2 \cdot 4 \cdot 6 \cdots 2n} \frac{(2n)!}{(2n+2)!}$$

$$= \lim_{n \to \infty} \frac{1}{2n+1}$$

$$= 0.$$

Sendo o limite menor do que 1, a série é convergente.

i.
$$\sum_{n=1}^{\infty} \frac{3^{n^2}}{2^{n^3}}$$
.

Solução. Vamos tentar aplicar o critério da raiz a esta série:

$$\lim_{n\to\infty}\sqrt[n]{\frac{3^{n^2}}{2^{n^3}}}=\lim_{n\to\infty}\frac{3^n}{2^{n^2}}$$

Considere agora a sequência $b_n \doteq \frac{3^n}{2^{n^2}}$. Apliquemos o **teste da raiz para sequências**, da **lista 2**. Como lim $\sqrt[n]{|b_n|} = \lim \frac{3}{2^n} = 0 < 1$, pelo teste da rais para sequência, $\lim_{n \to \infty} b_n = 0$. Assim,

$$\lim_{n\to\infty}\sqrt[n]{\frac{3^{n^2}}{2^{n^3}}}=\lim_{n\to\infty}\frac{3^n}{2^{n^2}}\stackrel{\text{Teste da raiz}}{=}0<1.$$

Agora o critério da raiz para séries nos diz que esta série converge.

Exercício 2. Para quais valores a série $\sum_{n=1}^{\infty} \frac{|x|^n n!}{n^n}$ é convergente?

Solução. Considere $a_n = \frac{|x|^n n!}{n^n}$ e note que $a_n = 0$ se x = 0 e para todo natural n, e $a_n \neq 0$ para todo $x \neq 0$ e para todo natural n.

Para x = 0, a série é convergente.

Para $x \neq 0$, vamos aplicar o critério da razão. Para tanto, façamos

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{|x|^{n+1}(n+1)!}{(n+1)^{(n+1)}}}{\frac{|x|^n n!}{n^n}} = \lim_{n \to \infty} |x| (n+1) \left(\frac{n}{n+1}\right)^n \frac{1}{n+1} = \lim_{n \to \infty} |x| \left(\frac{n}{n+1}\right)^n = \frac{|x|}{e}.$$

O critério da razão nos diz que a série converge se $\frac{|x|}{e} < 1$, isto é, |x| < e, ou ainda, quando $x \in (-e, e)$, e a série diverge se |x| > e.

Para |x|=e, o limite é 1 e o critério não é conclusivo. Para estudar a convergência, repetindo o argumento acima para $a_n=\frac{e^n n!}{n^n}$, temos

$$\frac{a_{n+1}}{a_n} = \frac{\frac{e^{n+1}(n+1)!}{(n+1)^{(n+1)}}}{\frac{e^n n!}{n^n}} = \frac{e}{\left(\frac{n+1}{n}\right)^n}.$$

Observando que $\left(\frac{n+1}{n}\right)^n$ é crescente e converge para e, temos

$$\frac{a_{n+1}}{a_n} = \frac{e}{\left(\frac{n+1}{n}\right)^n} > 1.$$

Sendo assim, $a_{n+1} > a_n$ para todo natural n, ou seja, a sequência a_n é crescente, portanto, $a_n \not\to 0$, pois $a_n > a_1 = e$ para todo natural n. Portanto, pelo critério da divergência, a série é divergente se |x| = e.

A conclusão é que a série é convergente somente para qualquer $x \in (-e, e)$.