

Claims

1. A process for the removal of multivalent metal cations from an aqueous system, wherein said aqueous system is treated with a high molecular weight non-ionic surfactant comprising anionic groups or salts thereof, preferably terminal anionic groups and salts thereof, wherein said high molecular weight non-ionic surfactant comprising anionic groups or salts thereof is represented by formula A or formula B:

wherein:

15 P is a mono-valent oxygen containing anionic group or a salt thereof selected from the group consisting of oxides of carbon, sulphur and phosphorus;

p is in the range of 1 to 4;

R is a linear or branched, saturated or unsaturated C₂ - C₁₂ alkylene group;

A is ethylene oxide;

20 B is propylene oxide;

n is in the range of 5 to 1000; and

m is in the range of 5 to 1000.

- 25 2. The process according to Claim 1, wherein the oxides of carbon, sulphur and phosphorus are selected from:

wherein X is independently selected from hydrogen, an alkali metal, an ammonium group NR'_4^+ wherein R' is independently selected from hydrogen or linear or branched C₁-C₄ alkyl groups, or two X's are an alkaline earth metal.

- 3. The process according to Claim 1 or Claim 2, wherein the groups P are terminal
5 mono-valent oxygen containing anionic groups or salts thereof.
- 4. The process according to Claim 3, said surfactant being characterised by the
following general formula (I) or (II) or (III):

10 (I)

(II)

15 Z-R-Z-[\text{A}]_n-[\text{B}]_m-[\text{A}]_n-Z-R-Z

(III)

wherein:

X is hydrogen or an alkali metal, preferably lithium, sodium or potassium, or an
20 ammonium group NR'_4^+ wherein R' is independently selected from hydrogen or linear or branched C₁-C₄ alkyl groups, or two X's are an alkaline earth metal, preferably magnesium or calcium;

R is a linear or branched, saturated or unsaturated C₂ - C₁₂ alkylene group;

A is ethylene oxide;

25 B is propylene oxide;

n is in the range of 5 to 1000;

m is in the range of 5 to 1000;

q is 1 or 2; and

wherein Z is independently selected from phosphonate or phosphinate.

- 30 5. The process according to claim 3, said surfactant being characterised by the
following general formula (IV) or (V) or (VI):

20

(V)

5

wherein:

- 10 X is hydrogen or an alkali metal, preferably lithium, sodium or potassium, or an ammonium group NR'^4+ wherein R' is independently selected from hydrogen or linear or branched C₁-C₄ alkyl groups, or two X's are an alkaline earth metal, preferably magnesium or calcium;
- 15 R is a linear or branched, saturated or unsaturated C₂ - C₁₂ alkylene group;
- 15 A is ethylene oxide;
- 15 B is propylene oxide;
- 20 n is in the range of 5 to 1000;
- 20 m is in the range of 5 to 1000;
- 20 q is 1 or 2; and
- 20 wherein Z is independently selected from phosphonate or phosphinate.
- 25 6. The process according to Claim 4 or Claim 5, wherein X is hydrogen or an alkali metal, preferably sodium or potassium.
- 25 7. The process according to any one of Claims 4 - 6, wherein R is a linear and saturated C₂ - C₆ alkylene group.
- 25 8. The process according to Claim 7, wherein R is ethylene.
- 25 9. The process according to any one of the preceding Claims, wherein n is in the range of 10 to 100.
- 25 10. The process according to any one of the preceding Claims, wherein m is in the range of 10 to 100.
- 30 11. The process according to any one of Claims 1 - 10, wherein said process comprises decreasing the hardness of said aqueous system
- 30 12. The process according to any one of claims 1 - 11, wherein said process comprises an industrial or a domestic wash process.

13. The process according to any one of Claims 1 – 12, wherein the temperature of said aqueous system is 0 - 200°C.
14. A process for the removal of multivalent metal cations from an aqueous system, wherein said multivalent metal cations are contacted at a first temperature with
5 and thermo-reversibly bonded to a high molecular weight non-ionic surfactant comprising anionic groups or salts thereof, preferably terminal end groups or salts thereof to form a cation-surfactant complex, and wherein said cation-surfactant complex is subjected to a second temperature, the second temperature being lower than the first temperature, to release said multivalent metal cations from
10 said high molecular weight non-ionic surfactant comprising anionic groups or salts thereof, preferably terminal anionic groups or salts thereof.