3.5. Three application of exact set matching

2015. 04. 14 HYE WON PARK

- We modify the exact matching problem by introducing a character Φ
 - called a wild card
 - matches any single character
- Given a pattern *P* containing wild card, we want to find all occurrences of *P* in a text *T*
 - For example, $P = ab\Phi\Phi c\Phi$ and T = xabvccbababcax

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	v	С	С	b	a	b	a	b	С	a	X
P														

- We modify the exact matching problem by introducing a character Φ
 - called a wild card
 - matches any single character
- Given a pattern *P* containing wild card, we want to find all occurrences of *P* in a text *T*
 - For example, $P = ab \Phi \Phi c \Phi$ and T = xabvecbababcax

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	v	C	С	b	a	b	a	b	С	a	х
P		а	b	Ф	Ф	С	Ф							

- We modify the exact matching problem by introducing a character Φ
 - called a wild card
 - matches any single character
- Given a pattern *P* containing wild card, we want to find all occurrences of *P* in a text *T*
 - For example, $P = ab\Phi\Phi c\Phi$ and T = xabvecbababcax

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	v	С	С	b	a	b	a	b	С	a	X
P								а	b	Ф	Φ	С	Ф	

- If the number of permitted wild cards is **unbounded**, it is not known if the problem can be solved in linear time.
- However, if the number of wild cards is **bounded** by a fixed constant (independent of the size of *P*) then the problem can be solved.
 - based on exact set pattern matching
 - runs in linear time

- 1. Let C be a vector of length |T| initialized to all zero
- 2. Let $\mathcal{P} = \{P_1, P_2, \dots, P_k\}$ be the set of maximal substrings of P that do not contain any wild card. Let l_1, l_2, \dots, l_k be the starting positions in P of each of these substrings.
 - For example (1), if $P = ab\Phi\Phi c\Phi$, then $\mathcal{P} = \{ab, c\}$ and $l_1 = 1, l_2 = 5$
 - For example (2), if $P = ab\Phi\Phi c\Phi ab\Phi\Phi$, then $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

- 3. Using the Aho-Corasick algorithm, find for each string P_i in \mathcal{P} , all starting positions of P_i in text T. For each starting location j of P_i in T, increment the count in cell $j l_i + 1$ of C by one.
 - For example, if the second copy of string *ab* is found in *T* starting at position 18, then cell 12 of *C* is incremented by one
- 4. Scan vector for any cell with value k. there is an occurrence of P in T staring at position if and only if C(p) = k.

Exact matching with wild card

• For example 1, $P = ab\Phi\Phi \Phi \Phi \Phi \Phi$ and T = xabvecbababcax

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	х	a	b	ν	С	С	b	a	b	a	b	С	a	х
C	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- $P = ab\Phi\Phi c\Phi$
 - $\mathcal{P} = \{ ab, c \} \text{ and } l_1 = 1, l_2 = 5$

Exact matching with wild card

• For example 1, $P = ab\Phi\Phi c\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c\} \text{ and } l_1 = 1, l_2 = 5$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	ν	С	С	b	а	b	а	b	С	a	x
C	0	1	0	0	0	0	0	0	0	0	0	0	0	0

• $P_1 \rightarrow 2$

Exact matching with wild card

• For example 1,
$$P = ab\Phi\Phi c\Phi$$
 and $T = xabvccbababcax$
 $\mathcal{P} = \{ab, c\} \text{ and } l_1 = 1, l_2 = 5$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	ν	С	С	b	а	b	а	b	С	a	x
C	0	1	0	0	0	0	0	1	0	0	0	0	0	0

• $P_1 \rightarrow 2, 8$

Exact matching with wild card

• For example 1, $P = ab\Phi\Phi c\Phi$ and T = xabvecbababcax $\mathcal{P} = \{ab, c\} \text{ and } l_1 = 1, l_2 = 5$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	v	С	С	b	a	b	a	b	С	a	х
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0

• $P_1 \rightarrow 2, 8, 10$

Exact matching with wild card

• For example 1, $P = ab\Phi\Phi c\Phi$ and T = xabvecbababcax $\mathcal{P} = \{ab, c\} \text{ and } l_1 = 1, \ l_2 = 5$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T	X	a	b	v	С	С	b	а	b	а	b	c	a	x	
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0	ak
C	1 ←	-0←	-0-	-0-	-0	0	0	0	0	0	0	0	0	0	C

1

- $P_1 \rightarrow 2, 8, 10$ start (l_2)
- $P_2 \rightarrow 5 (j l_i + 1 \Longrightarrow 5-5+1=1)$

Exact matching with wild card

• For example 1, $P = ab\Phi\Phi c\Phi$ and T = xabvecbababcax $\mathcal{P} = \{ab, c\} \text{ and } l_1 = 1, \ l_2 = 5$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T	X	а	b	v	С	С	b	а	b	а	b	c	а	x	
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0	ak
C	1	1	<u></u> -0 ←	0	<u></u> -0 ←	0	0	0	0	0	0	0	0	0	C

†

- $P_1 \to 2, 8, 10$ start(l_2)
- $P_2 \rightarrow 5$, 6 $(j l_i + 1 \implies 6-5+1=2)$

Exact matching with wild card

• For example 1, $P = ab\Phi\Phi c\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c\} \text{ and } l_1 = 1, \ l_2 = 5$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T	х	a	b	v	С	С	b	a	b	a	b	С	а	X	
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0	ab
C	1	1	0	0	0	0	0	1	-0←	-0←	-0←	-0	0	0	C

• $P_1 \rightarrow 2, 8, 10$

•
$$P_2 \rightarrow 5, 6, \frac{12}{j} (j - l_i + 1) \rightarrow 12-5+1=8$$

 $start(l_2)$

Exact matching with wild card

• For example 1,
$$P = ab\Phi\Phi c\Phi$$
 and $T = xabvecbababcax$
 $\mathcal{P} = \{ab, c\} \text{ and } l_1 = 1, l_2 = 5$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T	X	a	b	ν	С	С	b	а	b	а	b	С	а	x	
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0	a
C	1	1	0	0	0	0	0	1	0	0	0	0	0	0	

Add

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	x	а	b	ν	С	С	b	a	b	a	b	С	a	х
C	1	2	0	0	0	0	0	2	0	1	0	0	0	0

ab + c

Exact matching with wild card

• For example 1, $P = ab\Phi\Phi c\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c\} \text{ and } l_1 = 1, \ l_2 = 5$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	v	С	С	b	a	b	a	b	С	a	\mathcal{X}
C	1	2	0	0	0	0	0	2	0	1	0	0	0	0

- C(p) = k
 - C(2) = 2 and C(8) = 2
 - There is an occurrence of *P* in *T* starting at position 2 and 8

Exact matching with wild card

• For example 1, $P = ab\Phi\Phi c\Phi$ and T = xabvccbababcax

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	v	С	С	b	a	b	a	b	С	a	X
		a	b	Φ	Φ	С	Φ							
								а	b	Φ	Φ	С	Φ	

- $P = ab\Phi\Phi c\Phi$
 - There is an occurrence of P in T starting at position 2 and 8

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	ν	С	С	b	а	b	a	b	С	a	х
C	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- $P = ab\Phi\Phi c\Phi ab\Phi\Phi$
 - $\mathcal{P} = \{ ab, c, ab \} \text{ and } l_1 = 1, l_2 = 5, l_3 = 7$

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	ν	С	С	b	а	b	а	b	С	a	X
C	0	1	0	0	0	0	0	0	0	0	0	0	0	0

• $P_1 \rightarrow 2$

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	v	С	С	b	a	b	a	b	С	a	X
C	0	1	0	0	0	0	0	1	0	0	0	0	0	0

• $P_1 \rightarrow 2, 8$

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T														
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0

• $P_1 \to 2, 8, 10$

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T	X	a	b	v	С	С	b	а	b	a	b	c	a	x	
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0	ak
C	1 ←	-0-	-0-	-0-	-0	0	0	0	0	0	0	0	0	0	C

1

- $P_1 \to 2, 8, 10$ start(l_2)
- $P_2 \rightarrow 5(j l_i + 1) \longrightarrow 5-5+1=1$

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T	X	а	b	v	С	С	b	а	b	а	b	c	а	x	
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0	ak
C	1	1	<u></u> -0 ←	0	<u></u> -0 ←	0	0	0	0	0	0	0	0	0	C

†

- $P_1 \to 2, 8, 10$ start(l_2)
- $P_2 \rightarrow 5, 6 (j l_i + 1) \rightarrow 6-5+1=2$

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T	X	a	b	v	С	С	b	a	b	a	b	С	а	X	
C	0	1	0	0	0	0	0	1	0	1	0	0	0	0	ab
C	1	1	0	0	0	0	0	1	<u></u> -0 ←	-0-	0	0	0	0	C

• $P_1 \to 2, 8, 10$

•
$$P_2 \rightarrow 5, 6, 12 (j - l_i + 1 \implies 6-5+1=2)$$

 $start(l_2)$

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	-4	•••	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T			x	a	b	v	С	С	b	а	b	а	b	С	а	x	
C			0	1	0	0	0	0	0	1	0	1	0	0	0	0	ab
C			1	1	0	0	0	0	0	1	0	0	0	0	0	0	C
C	1-	:	- O <u></u>	-0	0	0	0	0	0	0	0	0	0	0	0	0	ab

- $P_1 \to 2, 8, 10$ start(l_2)
- $P_2 \rightarrow 5, 6, 12$
- $P_3 \rightarrow 2 \ (j l_i + 1) \longrightarrow 2-7+1 = -4$

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	-4	•••	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T			х	а	b	v	С	С	b	а	b	а	b	С	а	x	
C			0	1	0	0	0	0	0	1	0	1	0	0	0	0	ab
C			1	1	0	0	0	0	0	1	0	0	0	0	0	0	C
C	1	•••	0	1←	-0-	-0-	- 0 <u></u> ←	-0-	-0-	-0	0	0	0	0	0	0	ab

1

•
$$P_1 \rightarrow 2, 8, 10$$

• $P_2 \rightarrow 5, 6, 12$

•
$$P_3 \rightarrow 2, 8 (j - l_i + 1 \longrightarrow 8-7+1 = 2)$$

start (l_2)

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	-4	•••	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
T			X	a	b	v	С	С	b	а	b	а	b	С	а	x	
C			0	1	0	0	0	0	0	1	0	1	0	0	0	0	a
C			1	1	0	0	0	0	0	1	0	0	0	0	0	0	(
C	1	•••	0	1	0	1←	-0←	-0←	-0-	-0-	-0-	-0	0	0	0	0	a

• $P_1 \to 2, 8, 10$

• $P_2 \to 5, 6, 12$

•
$$P_3 \rightarrow 2, 8, 10 (j - l_i + 1 \longrightarrow 10-7+1 = 4)$$

start (l_2)

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	-4	•••	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T			х	a	b	v	С	С	b	a	b	a	b	С	a	х
C			0	1	0	0	0	0	0	1	0	1	0	0	0	0
C			1	1	0	0	0	0	0	1	0	0	0	0	0	0
C	1	•••	0	1	0	1	0	0	0	0	0	0	0	0	0	0

Add

	-4	•••	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T			x	a	b	v	С	C	b	a	b	a	b	C	а	X
C	1	•••	1	3	0	0	0	0	0	2	0	1	0	0	0	0

ab + c

ab

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax $\mathcal{P} = \{ab, c, ab\}$ and $l_1 = 1, l_2 = 5, l_3 = 7$

	-4	•••	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T			X	a	b	v	C	C	b	a	b	a	b	C	a	\boldsymbol{x}
C	1	•••	1	3	0	0	0	0	0	2	0	1	0	0	0	0

- C(p) = k
 - C(2) = 3
 - There is an occurrence of P in T starting at position 2

Exact matching with wild card

• For example 2, $P = ab\Phi\Phi c\Phi ab\Phi\Phi$ and T = xabvccbababcax

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
T	X	a	b	ν	С	С	b	a	b	a	b	С	a	х
		a	b	Ф	Φ	С	Φ	a	b	Φ	Φ			

- $P = ab\Phi\Phi c\Phi ab\Phi\Phi$
- There is an occurrence of *P* in *T* starting at position 2

Complexity

- The time used by the Aho-Corasick algorithm to build the keyword for \mathcal{P} is O(m)
- The time to search for occurrences in T of patterns from \mathcal{P} is O(n+z)
 - Where |T| = n and z is the number of occurrences

• As a result, total time complexity is O(m+n+z).

Complexity

- Whenever an occurrence of a pattern from \mathcal{P} is found in T, exactly one cell in C is incremented
 - Furthermore, a cell can be incremented to at most k
- Search time complexity is O(n + z) and z must be bounded by kn, and the algorithm runs in O(n + kn) time.
- Then $kn \ge n$ $(k \ge 1)$, time complexity is O(kn).
- As a result, total time complexity is O(m+kn).

Complexity

- If the number of wild cards in a pattern P is bounded by a constant,
- k become constant value. Then the exact matching problem with wild cards in the Pattern can be solved in O(m + n) time.

Two-dimensional Exact Matching

Two-dimensional exact matching

- Suppose we have a rectangular digitized picture *T*, where each point is given a number indication its color and brightness
- We are also given a smaller rectangular picture *P*, which also is digitized
- We want to find all occurrences (possibly overlapping) of the smaller picture in the larger one

Two-dimensional Exact Matching

Two-dimensional exact matching

- Application of two-dimensional exact matching are hard to find
- Two-dimensional matching that is inexact, allowing some errors, is a more realistic problem
- Its solution requires more complex techniques of the type

Two-dimensional Exact Matching

Two-dimensional exact matching

• Let

```
n be the total number of points in T
m be the number of points in P
m' be the number of rows in P
```

- Just as in exact string matching, we want to find the smaller picture in the larger one in O(n + m) time, where O(nm) is the time for the obvious approach
- Assume for now that each of the rows of *P* are distinct
 - Later we will relax this assumption

Two-dimensional exact matching

- O(nm)
 - ex) m=9, n=100

	c	с	с	k	•••	q
T = (10x10)	e	b	S	h		w
(10/10)	c	d	а	p		e
	d	e	w	r		t
	•••					и
	а	a	b	b	w	i

(10x10)

Two-dimensional exact matching

- O(nm)
 - ex) m=9, n=100

"Compare m time "

c	c	c	k	•••	\boldsymbol{q}
e	b	S	h		w
c	d	a	p		e
d	e	w	r		t
					и
а	а	b	b	w	i

(10x10)

Two-dimensional exact matching

- O(nm)
 - ex) m=9, n=100

"Compare m time "

			_		
c	c	c	k	•••	\boldsymbol{q}
e	b	S	h		W
c	d	a	p		e
d	e	w	r		t
•••					и
а	a	b	b	w	i

(10x10)

Two-dimensional exact matching

- O(nm)
 - ex) m=9, n=100

"Compare m time "

	5 5 5				
c	С	c	k	•••	q
e	b	S	h		W
c	d	a	p		e
d	e	w	r		t
•••					и
а	а	b	b	w	i

Two-dimensional exact matching

- O(nm)
 - ex) m=9, n=100

T (10x10)

"Compare m time "

c	С	с	k	•••	\boldsymbol{q}
e	b	S	h		w
c	d	а	p		e
d	e	w	r		t
•••					и
а	а	b	b	w	i

If match is worst case, Time complexity is O(nm)

- Two-dimensional exact matching
 - The method is divided into two phases.
 - In the **first phase**, **search for all occurrences** of each of the row of *P* among the rows of *T*
 - In the **second phase**, **scan each column of M**, looking for an occurrence of the string 1,2,...,n' in consecutive cells in a single column

Two-dimensional exact matching(First phase of method)

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ b & a & c \end{bmatrix}$$

$$T' = \begin{bmatrix} a & a & b & b & c & f \end{bmatrix}$$

$$P = \{ aab, ack, bac \}$$

Two-dimensional exact matching(First phase of method)

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ b & a & c \end{bmatrix}$$

$$T' = \begin{bmatrix} a & a & b & b & c & f \end{bmatrix}$$
\$
$$P = \{ aab, ack, bac \}$$

Two-dimensional exact matching(First phase of method)

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ b & a & c \end{bmatrix}$$

$$T = \begin{bmatrix} a & a & b & b & c & f \\ a & c & k & d & c & e \\ b & a & c & a & a & b \\ a & v & s & a & c & k \\ d & d & a & b & a & c \end{bmatrix}$$

$$T' = \begin{bmatrix} a & a & b & b & c & f & \$ & a & c & k & d & c & e \end{bmatrix}$$

 $P = \{ aab, ack, bac \}$

Two-dimensional exact matching(First phase of method)

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ b & a & c \end{bmatrix}$$

$$T = \begin{bmatrix} a & a & b & b & c & f \\ a & c & k & d & c & e \\ b & a & c & a & a & b \\ a & v & s & a & c & k \\ d & d & a & b & a & c \end{bmatrix}$$

$$T' = \begin{bmatrix} a & a & b & b & c & f & \$ & a & c & k & d & c & e & \$ \end{bmatrix}$$

 $P = \{ aab, ack, bac \}$

Two-dimensional exact matching(First phase of method)

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ b & a & c \end{bmatrix}$$

$$T' = \begin{bmatrix} a & a & b & b & c & f & \$ & a & c & k & d & c & e & \$ & b & a & c & a & a & b \end{bmatrix}$$

 $P = \{ aab, ack, bac \}$

Two-dimensional exact matching(First phase of method)

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ b & a & c \end{bmatrix}$$

 $P = \{ aab, ack, bac \}$

Two-dimensional exact matching(First phase of method)

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ b & a & c \end{bmatrix}$$

$$T' = \begin{bmatrix} a & a & b & b & c & f & \$ & a & c & k & d & c & e & \$ & b & a & c & a & a & b & \$ \end{bmatrix} \cdots$$

$$\mathcal{P} = \{ aab, ack, bac \}$$

Concatenate these rows together to form a single text string T' of length O(n)

Two-dimensional exact matching(First phase of method)

	a	a	b	b	c	f
=	a	c	k	d	c	e
	b	а	c	а	а	b
	a	v	S	a	c	k
	d	d	а	b	а	c

T' =	a	а	b	b	c	f	\$	a	c	k	d	c	e	\$	b	а	c	а	а	b	\$	•••
------	---	---	---	---	---	---	----	---	---	---	---	---	---	----	---	---	---	---	---	---	----	-----

 $\mathcal{P} = \{ aab, ack, bac \}$

 Then, treating each row of P as a separate of P, use the Aho-Corasick algorithm to search for all occurrences in T' of any row of P

• Two-dimensional exact matching(First phase of method)

	a	а	b	b	c	f
=	a	c	k	d	c	e
	b	а	С	a	а	b
	a	v	S	a	С	k
	d	d	a	b	a	c

T' =	a	a	b	b	c	f	\$	a	c	k	d	c	e	\$	b	a	c	a	a	b	\$	•••
------	---	---	---	---	---	---	----	---	---	---	---	---	---	----	---	---	---	---	---	---	----	-----

 $\mathcal{P} = \{ aab, ack, bac \}$

- Since P is rectangular, all rows have the same width.
- So no row is a proper substring of another and we can use the simpler version of Aho-Corasick.

Two-dimensional exact matching(First phase of method)

	a	a	b	b	c	f
=	a	c	k	d	c	e
	b	а	С	a	а	b
	a	v	S	a	С	k
	d	d	a	b	a	c

T' =	a	а	b	b	c	f	\$	a	c	k	d	c	e	\$	b	а	c	а	а	b	\$	•••
------	---	---	---	---	---	---	----	---	---	---	---	---	---	----	---	---	---	---	---	---	----	-----

 $\mathcal{P} = \{ aab, ack, bac \}$

• Hence the first phase identifies all occurrences of complete rows of P in complete rows of T and take O(n+m) time.

Two-dimensional exact matching(First phase of method)

• *M* with the same dimensions as *T* is another array.

• Two-dimensional exact matching(First phase of method)

• Whenever an occurrence of row i of P is found starting at position(p, q) of T, write the number i in position (p, q) of array M

Two-dimensional exact matching(First phase of method)

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ b & a & c \end{bmatrix}$$

P occurs in T when its upper left corner is at position (1, 1) and (3, 4)

• Two-dimensional exact matching(Second phase of method)

- In the second phase, scan each column of M, looking for an occurrence of the string $1, 2, \ldots, n$ in consecutive cells in a single column
- Phase two can be implemented in O(n' + m) = O(n + m) time by applying any linear-time exact matching algorithm to each column of M

- Two-dimensional exact matching
 - Now suppose that the rows of *P* are not all distinct
 - Then first find all identical rows and give them a common label
 - this is easily done during the construction of the keyword tree for the row patterns

Two-dimensional exact matching

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ a & a & b \end{bmatrix}$$

$$T' = \begin{bmatrix} a & a & b & b & c & \$ & a & c & k & d & c & \$ & a & b & a & a \end{bmatrix}$$

 $\mathcal{P} = \{ aab, ack \}$

Two-dimensional exact matching

$$T' = \begin{bmatrix} a & a & b & b & c & \$ & a & c & k & d & c & \$ & a & a & b & a & a \end{bmatrix}$$

 $\mathcal{P} = \{ aab, ack \}$

		1			
M	=	2			
		1		1	
				2	
				1	

Two-dimensional exact matching

$$P = \begin{bmatrix} a & a & b \\ a & c & k \\ a & a & b \end{bmatrix}$$

P occurs in T when its upper left corner is at position (1,1), (3,4)

• Theorem 3.5.2

If T and P are rectangular pictures with m and n cells, respectively, then all exact occurrences of P in T can be found in O(n+m) time, improving upon the naïve method, which takes O(nm) time.

Regular expression

Regular expression

Way to specify a set of related strings.

ex) ax, ay, az, bx, by, bz, cx, cy, cz

 \rightarrow [a b c] – [x y z]

Regular expression pattern matching

examine the problem of finding substrings of a text string that match one of the strings specified by a given regular expression

ex)
$$R = [ED]-[EN]-L-[SAN]-x-x-[DE]-x-E-L$$

 $T = \dots A \ G \ E \ N \ L \ S \ E \ D \ E \ E \ L \ E \ B \dots$

ex) R = [ED]-[EN]-L-[SAN]-x-x-[DE]-x-E-L

ex) R = [ED]-[EN]-L-[SAN]-x-x-[DE]-x-E-L

ex)
$$R = [ED]-[EN]-L-[SAN]-x-x-[DE]-x-E-L$$

192000 number of case

Formal definition of a regular expression

- \bullet \sum
 - A single character from Σ is a regular expression
- 3 •
- The symbol ε is a regular expression (represents the **empty string**)
- *RR*
 - A regular expression followed by another regular expression is a regular expression

Formal definition of a regular expression

- \bullet R+R
 - Two regular expressions separated by the symbol "+" form a regular expression
- (*R*)
 - A regular expression enclosed in parentheses is a regular expression
- $(R)^*$
 - A regular expression enclosed in parentheses and followed by the symbol "*" is a regular expression
 - The symbol * is called the Kleene closure (*R* can be repeated any number of times)

• +

• $s = (\epsilon + x + y + z) a a b$

• *

• s = (xy) * a b

$$R = (d+o+g)((n+o)w)*(c+l+\varepsilon)(c+l)$$

Directed graph

Directed graph

 $T = \mathbf{d} n w o w c l$

Directed graph

Directed graph

Directed graph

 $T = d n w \circ w c l$

Directed graph

Directed graph

Directed graph

Formal definitions

Searching for matches

- To sarch for a substring in *T* that matches the regular expression *R*, consider the simpler problem of determining whether some *prefix of T* matches *R*.
- Let
 - *N*(0)
 - Set of nodes consisting of node s plus all nodes of G(R) that are reachable from node s by traversing edges labeled ε
 - node v
 - is in set N(i), for i > 0, v can be reached from some node in N(i-1) by trabersing an edge labeled T(i)
- It is constructive **rule for finding set** N(i) from set N(i-1) and character T(i)

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	o	w	c	l
N(i)	1							

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	o	W	c	l
N(i)	1							

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	o	W	c	l
N(i)	1	2, 4, 5						

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	o	w	c	l
N(i)	1	2, 4, 5						

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	o	w	c	l
N(i)	1	2, 4, 5	3					

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	0	W	С	l
N(i)	1	2, 4, 5	3					

i	0	1	2	3	4	5	6	7
T(i)		d	n	W	o	W	c	l
N(i)	1	2, 4, 5	3	2, 4, 5				

i	0	1	2	3	4	5	6	7
T(i)		d	n	W	o	W	c	l
N(i)	1	2, 4, 5	3	2, 4, 5				

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	0	W	С	l
N(i)	1	2, 4, 5	3	2, 4, 5	3			

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	o	W	c	l
N(i)	1	2, 4, 5	3	2, 4, 5	3			

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	o	W	С	l
N(i)	1	2, 4, 5	3	2, 4, 5	3	2, 4, 5		

i	0	1	2	3	4	5	6	7
T(i)		d	n	W	0	W	С	l
N(i)	1	2, 4, 5	3	2, 4, 5	3	2, 4, 5	5, 6	

i	0	1	2	3	4	5	6	7
T(i)		d	n	W	0	W	c	l
N(i)	1	2, 4, 5	3	2, 4, 5	3	2, 4, 5	5, 6	

i	0	1	2	3	4	5	6	7
T(i)		d	n	W	o	W	С	l
N(i)	1	2, 4, 5	3	2, 4, 5	3	2, 4, 5	5, 6	6

Directed graph

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	o	W	c	l
N(i)	1	2, 4, 5	3	2, 4, 5	3	2, 4, 5	5, 6	6

To find all prefixes of T that match R, compute the sets N(i) for i from 0 to n, the length of T

Directed graph

i	0	1	2	3	4	5	6	7
T(i)		d	n	w	0	w	С	l
N(i)	1	2, 4, 5	3	2, 4, 5	3	2, 4, 5	5, 6	6

• If G(R) contains e edges, then the time for this algorithm is O(ne)

Directed graph

i	0	1	2	3	4	5	6	7
T(i)		d	n	W	o	W	c	l
N(i)	1	2, 4, 5	3	2, 4, 5	3	2, 4, 5	5, 6	6

• If a regular expression R has *m* symbols, then *G*(*R*) can be constructed using at most 2*m*

Formal definitions

• Theorem 3.6.1

• If T is of length n, and the regular expression R contains m symbols, then it is possible to determine whether T contains a substring match R in O(nm) time.