$$f(x) = \frac{x}{x^2+3}$$
 I= R

1.
$$f(x) = \frac{u}{v}$$
 $u = x$ $v = x^2 + 3$

$$u = x$$

$$v = x^{2} + 3$$

$$u' = 1$$

$$v' = 2x$$

$$f'(x) = \frac{u'v - uv'}{v^2} = \frac{1(x^2+3) - x(2x)}{(x^2+3)^2} =$$

$$= \frac{x^2+3-2x^2}{(x^2+3)^2} = \frac{-x^2+3}{(x^2+3)^2}$$

Signe de f':

Signe de
$$-x^2+3$$
 $\alpha = -1$ $b=0$ $c=3$

$$-\chi^{2} + 3$$

$$c = 3$$

$$\Delta = 0^2 - 4 \times (-1) \times 3 = 12 > 0$$

$$\alpha_1 = \frac{-0 - \sqrt{12}}{-2} = \frac{\sqrt{12}}{2} = \sqrt{3}$$

$$\chi_2 = \frac{-0 + \sqrt{12}}{2} = -\sqrt{12} = -\sqrt{3}$$

Tableau de signe pour - x2+3

$$\frac{x - \infty - \sqrt{3} + \sqrt{3} + \infty}{-x^2 + 3} - \phi + \phi -$$

signe de
$$(x^2+3)^2$$
 est positif.

Tableau de signe pour (x2,3)2:

X	>		+00
(x²+3)²		+	

Tableau de signe pour f':

\prec	-00	- 13		13	+0
-x2+3	_	•	+	0	
(x2+3)2			+		
f'	_	a	+	þ	-

Tableau de variations pour f:

$$f \qquad -\sqrt{3} \qquad \sqrt{3} \qquad +\infty$$

$$f(-5) = \frac{-\sqrt{3}}{(-5)^2+3} = \frac{-5}{3+3} = -\frac{5}{4}$$

$$f(\overline{13}) = \frac{\overline{13}}{(\overline{13})^2 + 3} = \frac{\overline{13}}{3 + 3} = \frac{\overline{13}}{6}$$

2. Pour $x = -\sqrt{3} \Rightarrow f' = 0$ et $f = -\frac{15}{6}$ Pour $x \ge -\sqrt{3}$ f est décraissante

Pour $x > -\sqrt{3}$ f est craissante

Donc f admet un minimum sur $]-\infty;0]$ Le minimum est $-\frac{15}{6}$ atteint pour $x = -\sqrt{3}$.

Pour $x = \sqrt{3} \Rightarrow f' = 0$ et $f = \frac{\sqrt{5}}{6}$

Pour $x=\sqrt{3} \Rightarrow f'=0$ et $f=\sqrt{3}$ Pour $x \leq \sqrt{3} \Rightarrow f$ est croissante Pour $x > \sqrt{3} \Rightarrow f$ est décroissante

Donc f admet un maximum sur [0;+00[. Le maximum est [atteint pour x= J3.