Липецкий государственный технический университет

Факультет автоматизации и информатики Кафедра автоматизированных систем управления

ЛАБОРАТОРНАЯ РАБОТА №4 по ОСНОВАМ ЭЛЕКТРОНИКИ И СХЕМОТЕХНИКИ ПОСЛЕДОВАТЕЛЬНОСТНЫЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ

Студент Станиславчук СМ

Группа АС-21-1

Руководитель Болдырихин О. В.

Цель работы

Изучение цифровых последовательностных интегральных схем, их типов и свойств, особенностей программируемых микросхем.

Задание кафедры

Вариант 41.

S1. 8. 7473 – JK-триггер.

S2. 2. 40103 – 8-разрядный синхронный двоичный счетчик вниз.

S3. 18. 74HC595 — 8-разрядный сдвиговый регистр с трехстабильным выходом.

S4. 1. 27128 – 128 Кбит ЕРРОМ.

S5. 1. 8250A – последовательный порт.

Задание 1. Изучение триггеров

Изучить спецификацию заданного триггера (s1). Исследовать триггер экспериментально, подавая на входы триггера последовательности сигналов с определенными логическими значениями, отследить порядок изменения выходных сигналов. Построить таблицу истинности триггера.

Задание 2. Изучение счетчиков

Изучить спецификацию заданного счетчика (s2). Исследовать заданный счетчик экспериментально. Определить назначение входных сигналов счетчика и их влияние на его работу. Построить таблицу истинности счетчика. Представить работу счетчика в виде диаграммы состояний.

Задание 3. Изучение регистров

Изучить спецификацию заданного регистра (s3). Исследовать регистр экспериментально. Определить назначение выводов регистра и построить его таблицу истинности.

Задание 4. Изучение микросхем памяти

Экспериментально исследовать заданную микросхему памяти (s4).

Определить назначение выводов микросхемы, ее емкость и разрядность. Подключить ко входу выбора кристалла схему дешифрации адреса, назначив микросхеме определенный диапазон адресов. Произвести запись и чтение микросхемы по определенным адресам. Убедиться, что читается записанная ранее информация.

Задание 5. Изучение программируемых микросхем

Изучить спецификацию заданной программируемой микросхемы (s5). Исследовать микросхему экспериментально, программируя ее в различные режимы и отслеживая ее работу.

Ход работы

1. Задание 1

1.1. Схема для исследования триггера

Схема для исследования триггера 7473 представлена на рисунке 1.

Рисунок 1 — Схема для исследования триггера 7473

1.2. Таблица истинности триггера

Таблица истинности триггера 7473 представлена в таблице 1.

Таблица 1 – Таблица истинности триггера 7473

	Состояни	Состояни	е выходов		
R	CLK	J	K	Q	Q#
0	-	-	-	0	1
1	\	0	0	Хран	ение
1	\	1	0	1	0
1	\	0	1	0	1
1	<u> </u>	1	1	Перекл	ючение

1.3. Диаграмма состояний триггера.

Диаграмма состояний триггера 7473 представлена на рисунке 2.

Рисунок 2 — Диаграмма состояний триггера

2. Задание 2

2.1. Схема для исследования счетчика

Схема для исследования счетчика 40103 представлена на рисунке 3.

Рисунок 3 — Схема для исследования счетчика 40103

2.2. Таблица истинности счетчика

Таблица истинности счетчика 40103 представлена в таблице 2.

Таблица 2 — Таблица истинности счетчика 40103

Состоян	ие входов		Режим	
MR	PE(A)	PE(S)	CI/CE	
1	1	1	1	Запрет счета
1	1	1	0	Счет
1	1	0	-	Установка в 0 синхронно

1	0	-	-	Установка в 0 асинхронно
0	-	-	-	Сброс

2.3. Диаграмма состояний счетчика

Диаграмма состояний счетчика 40103 представлена на рисунке 4.

Рисунок 4 — Диаграмма состояний счетчика 40103

3. Задание 3

3.1. Схема для исследования регистра

Схема для исследования регистра 74НС595 представлена на рисунке 5.

Рисунок 5 — Схема для исследования регистра 74HC595 Состояния регистра 74HC595 представлены в таблице 3.

Таблица 3 – Таблица состояний регистра 74НС595

SHCP	STCP	#OE	#MR	Режим
-	-	0	0	Хранение. Очистка регистра сдвига.
-	1	0	0	Очистка буфера
-	-	1	0	Высокоомное состояние
\uparrow	-	0	1	Сдвиг
-	1	0	1	Содержимое сдвигового регистра записано в
				буфер
↑	1	0	1	Содержимое регистра сдвига скопировано в вы-
				ходной регистр, регистр сдвига
				сдвинут

3.2. Таблица истинности регистра

Таблица истинности регистра 74НС595 представлена в таблице 4.

Таблица 4 – Таблица истинности регистра 74НС595

Состоя	Состояние входов					Состояние выходов							
SHCP	DS	STCP	#MR	#OE	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q7`
1	1	-	1	0	0	0	0	0	0	0	0	0	0
1	0	-	1	0	0	0	0	0	0	0	0	0	0
1	1	-	1	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	1	0	1	0	0	0	0	0	0
1	0	-	1	0	1	0	1	0	0	0	0	0	0
0	0	1	1	0	0	1	0	1	0	0	0	0	0
-	-	1	0	0	0	0	0	0	0	0	0	0	0

- 4. Задание 4
- 4.1. Схема для исследования микросхемы памяти с дешифрацией адреса

Схема для исследования микросхемы памяти 27128 EPROM с дешифрацией адреса представлена на рисунке 6.

Рисунок 6 – Схема для исследования микросхемы памяти 27128 EPROM

4.2. Описание микросхемы памяти

5.

Описание микросхемы памяти 27128 EPROM представлено в таблице

Таблица 5 – Описание микросхемы памяти 27128 EPROM

Coc	инкот	е входо)B		Состояние выхо-	Режим
ĒΕ	ŌĒ	₽GM	A9	VPP	дов	
0	0	1	-	Supply	Вывод данных	Чтение
				Voltage		
0	1	1	-	Supply	Выключены	Вывод выключен
				Voltage		

1	-	-	-	Supply	Выключены	Ожидание
				Voltage		
0	0	1	-	Program	Вывод данных	Проверка
				Supply		
1	-	-	-	Program	Выключены	Запрет
				Supply		
0	0	1	A9	Supply	Коды	Подпись
			Voltage	Voltage		
0	1	0	-	Program	Ввод данных	Программирование
				Supply		

5. Задание 5

5.1 Схема для исследования программируемой микросхемы

Схема для исследования последовательного порта 8250А представлена на рисунке 7.

Рисунок 7 — Схема для исследования последовательного порта 8250А

5.2 Описание микросхемы

Описание последовательного порта представлено в таблицах 6 и 7.

Таблица 6 – Описание адресов регистра

DLAB	A2	A1	A0	Регистр
0	0	0	0	Приемный буфер (чтение), удержание передатчика,
				регистр (запись)
0	0	0	1	Разрешение прерывания

X	0	1	0	Идентификация прерывания (только чтение)
X	0	1	1	Контроль линии
X	1	0	0	Контроль модема
X	1	0	1	Статус линии
X	1	1	0	Статус модема
X	1	1	1	Стирание
1	0	0	0	Перекрытие делителя (младший байт)
1	0	0	1	Перекрытие делителя (старший байт)

Таблица 7 – Описание пинов микросхемы

Pin	Название	Описание
A0, A1, A2	Register Select	Входы выбора UART регистра для чте-
	Pins	ния/записи при передаче данных с помощью
		CPU
ĀDS	Address Strobe	Вход для перекрытия сигналов выбора реги-
	Pin	стра (A0, A1, A2) и выбора чипа (CS0, CS1,
		CS2)
CS0, CS1,	Chip Select Pins	Входы выбора чипа (если на CS0 и CS1 высо-
$\overline{CS2}$		кий сигнал, а на CS2 - низкий, то допускается
		коммуникация между UART и CPU
CSOUT	Chip Select Out	Выход, показывающий выбор чипа. Передача
	Pin	данных невозможна пока сигнал CSOUT не
		станет равен логической 1
D7-D0	Data Bus Pins	Шина, состоящая из 8-ми линий ввода- выво-
		да с тремя состояниями. Позволяет переда-
		вать данные между UART и CPU в обе сторо-
		ны
$\overline{\mathrm{D}}\overline{\mathrm{C}}\overline{\mathrm{D}}$	Data Carrier	Вход, показывающий при 0, что носитель
	Detect Pin	данных был обнаружен модемом или датасе-

		том
DDIS	Driver Disable	Становится 0, когда СРИ читает данные из
	Pin	UART. Также может быть входом, позволя-
		ющим отключать или контролировать
		направления передачи данных шины
Ū̄SR̄	Data Set Ready	При 0 данный вход информирует UART, что
	Pin	модем или датасет готовы для установления
		коммуникационной связи
Ū₹R	Data Terminal	При 0 данный выход информирует модем или
	Ready Pin	датасет, что UART готов для установления
		коммуникационной связи
$\overline{C}\overline{T}\overline{S}$	Clear to Send Pin	При 0 данный вход информирует UART, что
		модем или датасет готовы к обмену данными
RTS	Request to Send	При 0 данный выход информирует модем или
	Pin	датасет, что UART готов к обмену данными
DISTR,	Read Pins	Если сигнал DISTR высокий, пока чип вы-
DISTR		бран, CPU может читать статусную информа-
		цию или данные из выбранного регистра
		UART
DOSTR,	Write Pins	Если сигнал DOSTR высокий, пока чип вы-
DOSTR		бран, СРИ может писать контролирующие
		слова или данные в выбранный регистр
		UART
SIN, SOUT	Serial Input,	Вход и выход для последовательного ввода и
	Output Pins	вывода данных через коммуникационное
		устройство (периферическое, модем или да-
		тасет) соответственно
INTRPT	Interrupt Pin	Становится 1, когда любое из доступных пре-
		рываний дает сигнал 1 и включен через IER.

		Становится 0 после окончания прерывания или общего сброса
MR	Master Reset Pin	Вход, при 1 очищающий все регистры кроме приемного буфера, удержания передатчика и перекрытия делителя
ŌŪŦſ, ŌŪŦ2	Output 1, 2 Pins	Выводы, назначаемый пользователем на 0 путем установления 2-го или 3-го бита кон-
		трольного регистра модема на 1 соответственно
BAUDOUT	Baud Out Pin	Выход для 16-кратного тактового сигнала бода из секции передатчика UART
RCLK	Receiver Clock Pin	Вход для 16-кратного тактового сигнала бода для принимающей секции чипа
XTAL1,	External Crystal	Сигнальный вход и выход, используемые
XTAL2	Input, Output	совместно для формирования цепи обратной
	Pins	связи для тактового сигнала бода осциллято-
		ра. Если тактовый сигнал сгенерирован вне
		чипа, то он должен управлять генератором
		такта бода через XTAL1
RI	Ring Indicator	При 0 показывает, что сигнал звонка на теле-
	Pin	фон принят модемом или датасетом

Вывод

В ходе выполнения лабораторной работы я изучил цифровые последовательностные интегральных схемы, их типы и свойства, особенности программируемых микросхем.