Service & Repair Demand Forecasting

Timothy Wong (Senior Data Scientist, Centrica plc)

European R Users Meeting

14th -16th May, 2018 Budapest, Hungary

We supply energy and services to over 27 million customer accounts

Supported by around 12,000 engineers and technicians

Our areas of focus are Energy Supply & Services, Connected Home, Distributed Energy & Power, Energy Marketing & Trading

Overview

British Gas

Gas boiler service & repair demand

- Strong causality, e.g.:
 - Cold weather → use more gas → high repair demand
 - Holiday → away from home → less repair demand
- 173 service patches in the UK
 - Each has dependent variables, e.g. weather observations.

<u>Temperature</u> : **Independent variable**

Number of contact : **Dependent variable**

Linear Models

Linear fit

$$\hat{y} = \beta_0 + \beta_1 x$$

Temperature (Celsius)

$\underset{\kappa}{\underline{\mathsf{Polynomial fit}}}$

$$\hat{y} = \beta_0 + \sum_{k=1}^K \beta_k x^k$$

Temperature (Celsius)

Piecewise polynomial fit

Poisson Distribution

Goodness-of-fit test for Poisson distribution

Poisson GLM

$$y_i = \beta_0 + x_{i,1}\beta_1 + x_{i,2}\beta_2 + \cdots + \epsilon_i$$

Assumption:

$$y_i \sim Poisson(\lambda)$$

 $\epsilon_i \sim N(0, \sigma^2)$

• Response variable y_i is contact count.

Number of Occurrences

Generalised Additive Model (GAM)

Variables may have nonlinear relationship

e.g. warm weather → low demand, but we don't expect zero demand on extremely hot day

 GAM deals with smoothing splines (basis functions)

$$s(x) = \sum_{k=1}^{K} \beta_k b_k(x)$$

GAM: Spline function

GLM vs GAM

Statistically significant

AVOVA:

Check reduction of sum of squared

```
anova(myGLM, myGAM, test="Chisq")
Analysis of Deviance Table

Model 1: contact_priority ~ avg_temp
Model 2: contact_priority ~ s(avg_temp)

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 692.00 1307.1
2 687.32 1294.0 4.6808 13.087 0.01813 *
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 '' 1
```

More Variables

```
Family: poisson
Link function: log
Formula: contact_priority ~ te(avg_temp, avg_wind)
Parametric coefficients:
           Estimate
                       Std. Error z value
                                               Pr(>|z|)
(Intercept) 2.4927
                       0.0111
                                   224.5
                                               <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
                                               Chi.sq
                       edf
                                   Ref.df
                                                           p-value
                                   16.52
                                               613.6
                                                           <2e-16 ***
te(avg_temp,avg_wind) 14.12
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.321 Deviance explained = 33.1%
UBRE = 0.86457 Scale est. = 1 n = 694
```


Results

- For each response variable y we also know the standard error
 - Establish confidence interval

Accuracy measurement

Consistent results across patches

London area:

GAM Results: Aggregated View

Accuracy measurement

Defined as 1-MAPE (%)

MAX(0, 1 - ABS(Forecast – Actual)/Actual)

Average accuracy of each quarter:

	year_quarter		set	`Non-priority`	Priority
*	<fctr></fctr>	<0	:hr>	<dbl></dbl>	<db1></db1>
1	2015.1	Training	set	90.92	92.94
2	2015.2	Training	set	86.77	92.42
3	2015.3	Training	set	90.48	89.41
4	2015.4	Training	set	87.40	89.47
5	2016.1	Training	set	87.34	92.85
6	2016.2	Training	set	87.28	90.79
7	2016.3	Training	set	90.06	87.99
8	2016.4	Training	set	89.50	89.84
9	2017.1	Test	set	90.92	92.69
10	2017.2	Test	set	88.68	89.55
11	. 2017.3	Test	set	87.90	86.42
12	2017.4	Test	set	91.44	90.32

Potential Improvements

- Feature transformation
 - Manually hand-craft *linear* features
 - Combine and transform existing variables
 - Use linear methods
 - Easier to interpret
- GAM + Bagging

- Multilevel linear regression ("Mixed-effect model")
 - Service patches as groups
 - Single model for all patches

Potential Improvements

- Time Series Approach
 - ARMA (Auto-Regressive Moving Average) / ARIMA
 - Analyse seasonality
- Other machine learning techniques
 - Boosted trees
 - Random Forest
 - Works nicely with ordinal/categorical variables
 - Neural net (RNNs)
 - Substantially longer model training time

Less interpretable, No confidence interval

Thanks

Project Team

(Names in alphabetical order)
Angus Montgomery
Hari Ramkumar
Harriet Carmo
Kerry Wilson Morgan
Martin Thornalley
Matthew Pearce
Philip Szakowski
Terry Phipps
Timothy Wong
Tonia Ryan

European R Users Meeting

14th -16th May, 2018 Budapest, Hungary

Timothy Wong

Senior Data Scientist Centrica plc

timothy.wong@centrica.com

@timothywong731

github.com/timothywong731

linkedin.com/in/timothy-wong-7824ba30