PL 4: PROBLEME DE CONTROLE OPTIMAL

Les variables de décision :

- * NHS_i: Len nombre d'heures supplémentaires du mois i : (i=1, 2, 3, 4)
- * NCH_i: Le nombre de paires de chaussures fabriqués à la fin de chaque mois i.
- * NOR_i: Le nombre d'ouvriers recrutés au début de chaque mois i.
- * NOLi: Le nombre d'ouvriers licenciés au début de chaque mois i.

Les variables auxiliaires :

- * Si : Le stock initial au début de chaque mois i.
- * NOi : Le nombre d'ouvriers disponibles

La fonction objectif:

 $\begin{aligned} &\text{Min } C_1 = S_0*3 + \text{NO}_1*1500 + \text{NHS}_1*13 + \text{NOR}_1*1600 + \text{NOL}_1*2000 + \text{NCH}_1*15 \\ &\text{Min } C_2 = S_1*3 + \text{NO}_2*1500 + \text{NHS}_2*13 + \text{NOR}_2*1600 + \text{NOL}_2*2000 + \text{NCH}_2*15 \\ &\text{Min } C_3 = S_2*3 + \text{NO}_3*1500 + \text{NHS}_3*13 + \text{NOR}_3*1600 + \text{NOL}_3*2000 + \text{NCH}_3*15 \\ &\text{Min } C_4 = S_3*3 + \text{NO}_4*1500 + \text{NHS}_4*13 + \text{NOR}_4*1600 + \text{NOL}_4*2000 + \text{NCH}_4*15 \end{aligned}$

Min CT = $3 (S_0 + S_{1+} S_{2+} S_3) + 1500 (NO_1 + NO_{2+} NO_{3+} NO_4) + 13 (NHS_1 + NHS_2 + NHS_3 + NHS_4) + 1600 (NOR_1 + NOR_2 + NOR_3 + NOR_4) + 2000 (NOL_1 + NOL_2 + NOL_3 + NOL_4 +) + 15 (NCH_1 + NCH_2 + NCH_3 + NCH_4)$

Les contraintes:

- * Les heures supplémentaires
 - NHS_i ≤ 20 * NO_i
- * La production & la demande
 - $S_0 + NCH_1 \ge 3000$
 - $S_1 + NCH_2 \ge 5000$
 - $S_2 + NCH_3 \ge 2000$
 - $S_3 + NCH_4 \ge 1000$
- * La production & les heures de travail
 - $NCH_1 \le 1/4 (NHS_1 + NO_1 * 160)$
 - $NCH_2 \le 1/4 (NHS_2 + NO_2 * 160)$

- NCH₃ ≤ 1 /4 (NHS₃ +NO₃* 160)
- $NCH_4 \le 1/4 (NHS_4 + NO_4 * 160)$
- * Effectif
 - NO₀ = 100
 - NO₁= NO₀ + NOR₁ NOL₁
 - NO₂= NO₁ + NOR₂ NOL₂
 - NO₃= NO₂ + NOR₃ NOL₃
 - NO₄= NO₃ + NOR₄ NOL₄
- * Stock
 - $S_0 = 500$
 - $S_1 = S_0 + NCH_1 3000$
 - $S_2 = S_1 + NCH_2 5000$
 - S₃= S₂ + NCH₃ 2000
 - S₄= S₃ + NCH₄ 1000
- * Signe
 - $S_i \ge 0$, $NO_i \ge 0$, $NOR_i \ge 0$, $NOL_i \ge 0$, $NHS_i \ge 0$,

Les paramètres :

- * C_i: Le cout de production d'une paire de chaussure pendant le mois i.
- * Cs_i: Le cout de stockage d'une paire de chaussure pendant le mois i.
- * D_i: La demande du mois i
- * Sal: Le salaire d'un ouvrier
- * Hsup: Coût d'une heure supplémentaire par ouvrier
- * R et L : frais de recrutement, et frais de licenciement d'un ouvrier au début du mois
- * h : Nombre d'heure nécessaire pour fabriquer une paire de chaussure
- * H: volume horaire mensuel de travail par ouvrier
- * Hmax: Nombre d'heures sup max par ouvrier

$$Min \sum_{i=1}^{n} (NCH_{i} * C_{i}) + (Sal * NO_{i}) + (R * NOR_{i}) + (L * NOL_{i}) + (Hsup * NHS_{i}) + \sum_{i=0}^{n-1} (S_{i} * CS_{i})$$

$$S_{i} = S_{i-1} + CH_{i} - D_{i}$$

$$NO_{i} = NO_{i-1} + NOR_{i} - NOL_{i}$$

$$\frac{(H * NO_{i}) + NHS_{i}}{h} \ge NCH_{i} \ge D_{i} - S_{i-1}$$

$$NHS_{i} \le NO_{i} * Hmax$$

$$S_{0} = 500$$

$$NO_{0} = 100$$