## Emergenet Package Usage

ZeD Lab

University of Chicago

October 8, 2023



# Emergenet computationally learns how new viral variants emerge using only viral sequence data

- ▶ Install Emergenet: pip install emergenet --upgrade
- ► Emergenet (recomputed for each time-period) is expected to automatically factor in the evolving host immunity and background environment
- ► Two applications:
  - 1. Forecasting dominant Influenza strains for future seasonal outbreaks
  - 2. Assessing risk of Influenza strains circulating in non-human hosts



### Emergenet comprises an interdependent collection of local predictors

- Each aims to predict the residue at a particular index using as features the residues at other indices
- Individual predictors (one for each sequence index) are implemented as conditional inference trees in which nodal splits have a minimum pre-specified significance in differentiating the child nodes
- Each predictor yields an estimated conditional residue distribution at each index



Color key (mixed colors represent distributions)





## Our Emergenet-inferred **E-distance** metric adapts to the background environment and approximates the log-likelihood of spontaneous change

- ▶ We define the E-distance as the square-root of the Jensen-Shannon divergence of the conditional residue distributions, averaged over the sequence
- Unlike the classic edit distance, the E-distance is informed by the Emergenet-inferred dependencies, and adapts to the specific subtype, allele frequencies, and environmental variations
- ▶ The E-distance approximates the log-likelihood of spontaneous change *i.e.*  $log Pr(x \rightarrow y)$
- ightharpoonup Model trained on current data ightharpoonup predict for the near future

#### Application 1: forecasting dominant strains for future seasonal outbreaks

- A dominant strain for an upcoming season may be identified as one which maximizes the joint probability of simultaneously arising from each (or most) of the currently circulating strains
- ▶ We can use the E-distance metric informed by an Emergenet constructed with hemagglutinin (HA) sequences from the previous season to predict the dominant strain for the next season

#### Forecast dominant strain(s) in upcoming season



# Emergenet recommendations are closer to the dominant strain than WHO yearly vaccine recommendations



- ▶ Download the example data
- ▶ This tutorial analyzes H1N1 from 2021-2022, northern hemisphere
- Data downloaded from GISAID and NCBI, and parsed, merged, and cleaned with BioPython (see notebook)
- Compute current season (2021-2022) dominant strains and predict future dominant strain (2022-23) using HA sequences

```
import pandas as pd
from emergenet.domseq import DomSeq, save_model, load_model

DATA_DIR = 'example_data/domseq/'

# initialize the DomSeq, truncating HA to 565
# all sequences must be same length to train and use an Emergenet
domseq = DomSeq(seq_trunc_length=565, random_state=42)
```

- north\_h1n1\_21\_22.csv contains HA sequences from 02/15/2021 -02/14/2022
- ▶ The sequences must be stored in a *sequence* column
- If you have a FASTA file, use domseq.load\_data to load and format automatically

```
# load current season sequences
df = pd.read_csv(DATA_DIR+'north_h1n1_21_22.csv')
print('Number of sequences:', len(df))
# Number of sequences: 735

# if you have a fasta file, you can parse it using load_data
df = domseq.load_data(self, 'file.fasta', outfile='sequences.csv')
```

- domseq.compute\_domseq does not rely on the Emergenet at all; it returns the cluster-wise dominant sequences of the input sequences, against which we evaluate our predictions from the previous season
- domseq.compute\_domseq automatically clusters sequences and returns the centroid strain and cluster size for each cluster

```
# compute dominant sequences for 2021-2022
dom_seqs = domseq.compute_domseq(seq_df=df)

# save dominant sequences
dom_seqs.to_csv(DATA_DIR + 'dom_seqs_21_22.csv', index=False)
print(dom_seqs[['name','sequence','cluster_size']])
```

|     | name                              | sequence                                               | cluster_size |
|-----|-----------------------------------|--------------------------------------------------------|--------------|
| 15  | A/Togo/0172/2021                  | MKAILVVLLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVTVTHS         | 531          |
| 197 | A/Bangladesh/9004/2021            | ${\sf MKAILVVMLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVTVTHS}$ | 193          |
| 165 | A/Wisconsin/04/2021               | ${\tt MKAVLVVLLYTVTNANADTLCIGYHANNSTDTVDTVLEKNVTVTHS}$ | 2            |
| 89  | A/Mecklenburg-Vorpommern/1/2021   | ${\sf MEAKLFVLFCVFTALKADTICVGYHANNSTDTVDTIMEKNVTVTHS}$ | 1            |
| 60  | A/Gansu-Xifeng/1194/2021          | ${\sf MKARLFILFCAFTALKADTICVGYHANNSTDTVDTILEKNVTVTHS}$ | 1            |
| 82  | A/Wisconsin/03/2021               | ${\sf MKAVLVVLLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVTVTHS}$ | 1            |
| 516 | A/Denmark/36/2021                 | MKAILVALLYTFATANADTLCIGYHANNSTDTVDTILEKNVTVTHS         | 1            |
| 372 | A/SouthAfrica/PET20744/2021       | ${\sf MKAILVVLLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVTVTHS}$ | 1            |
| 24  | A/Gansu-Xifeng/1143/2021          | ${\sf MKARLFILFCAFTALKADTICVGYHANNSTDTVDTILEKNVTVTHS}$ | 1            |
| 9   | A/Parana/10835/2021               | ${\sf MKAILVVLLYTFATTNADTLCIGYHANNSTDTVDTVLEKNVTVTHS}$ | 1            |
| 281 | A/SouthAfrica/PPET20447/2021      | MKAILVVLLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVTVTHS         | 1            |
| 90  | A/Mecklenburg-Vorpommern/1-A/2021 | MEAKLFVLFCVFTALKADTICVGYHANNSTDTVDTIMEKNVTVTHS         | 1            |

- ▶ Next, we predict dominant strains for 2022-2023
- First train the Emergenet using sequences from 2021-2022
- ▶ We use 3000 to demonstrate the *sample\_size* parameter, but it does nothing here as *df* contains 735 sequences

```
# train enet
enet = domseq.train(seq_df=df, sample_size=3000, n_jobs=1)
# save enet
save_model(enet=enet, outfile=DATA_DIR+'enet.joblib')
```

- north\_h1n1\_21\_22\_pred.csv contains human HA sequences from 09/15/2001 - 02/14/2022 (all candidate sequences from the past)
- ► Get predictions from the three largest clusters
- Since our candidate sequence dataframe is large (18,057 sequences), this will take a while

|   | name                      | sequence                                               | cluster_size |
|---|---------------------------|--------------------------------------------------------|--------------|
| 0 | A/Netherlands/00475/2020  | ${\sf MKAILVVLLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVTVTHS}$ | 527          |
| 1 | A/Bangladesh/9004/2021    | ${\sf MKAILVVMLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVTVTHS}$ | 193          |
| 2 | A/North_Dakota/12226/2021 | ${\sf MKAILVVLLYTFTTANADTLCIGYHANNSTDTVDTVLEKNVTVTHS}$ | 3            |

#### Application 2: assessing risk of Influenza strains circulation in animals

- ► The Center for Disease Control's (CDC) current method is the Influenza Risk Assessment Tool (IRAT)
- Scalability issue: IRAT depends on multiple experimental assays, possibly taking weeks to compile for a single strain
- We estimate the pandemic potential of novel animal strains, via a time-varying E-risk score, computed using the E-distance informed by the Emergenet trained on recent human hemagglutinin (HA) and neuraminidase (NA) strains

#### Estimate pandemic potential of animal strains



### Emergenet scores are correlated with IRAT emergence scores, R = 0.707



negative geometric mean of HA and NA E-distance

- Download the example data
- This tutorial analyzes the risk of our target sequence, A/Ohio/13/2017, assessed by IRAT in July 2019
- ▶ Initialize the HA Enet with a FASTA file containing only the HA segment of A/Ohio/13/2017; initialization with a Python string is also possible (see notebook)

A/Ohio/13/2017|A / H3N2|\$SEGMENT NAME|2017-07-14|EPI1056653|

MKTIJALSHILLLVFAQKLPONDMMATLLGHHAVPNGTIVKTITNOOIEVTHATELVQSFSTGEICNSPYQILDGENCTLIDALLGDPQCGGFQNNKHOLFVERSKAHSNCYP
YDVPDYASLRSLVASSGTLEFNNESFNWTGVTQDGASSSCKRRSSNSFFSRLNNLTHLINFKYPALEVTMPNNEQFDKLYIWGVHHPATDKDQISLYQQAGRIIVSTKRNQQAVI
PNIGSPRPKVRDIPSRISIYWTIVRRGDILLINSTGNLIAPRGYFKIRSGKSIMRSDAPIGKUSACITPNGSIPMDKFFGVNNNRITYGACPRYVKQNTLKLATGMNIPEKQTR
GIFGATAGFIENOWEGWVDGWYGFRHCNSEGRQQADLKSTQAAIDQINGKLINRLIGKTNEKFHQIEKEFSDVEGRIQOLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDSEM
NKLFEKTKKQLERNAEDMONGCFKTYHKCDNACIGSTRNGTVPDHOYNEALUNRFGIKKGVELKSFYLMSGTUKJETSFATSGTUALLGFTMMAGKQRIIKCNICT

- ha\_sequences.fasta contains human HA sequences from 7/1/2018 -6/30/2019 (one year prior to IRAT assessment)
- Train the HA Emergenet using these sequences; it will take a couple minutes

```
# load fasta data
df_ha = enet_ha.load_data(filepath=DATA_DIR+'ha_sequences.fasta')
print('Number of sequences:', len(df_ha))
# Number of sequences: 12389

# train enet (automatically includes target sequence with df)
enet_ha1 = enet_ha.train(seq_df=df_ha, sample_size=1000, n_jobs=1)
# save enet
save_model(enet=enet_ha1, outfile=DATA_DIR+'ha_enet.joblib')
```

- Compute the HA emergence risk score and variance under the trained HA Emergenet model
- ► This will take a couple seconds

We repeat the last three slides, but with NA

```
1 # initialize the Enet with A/Ohio/13/2017 NA
2 enet_na = Enet(seq=DATA_DIR+'na_target_sequence.fasta',
       seq_trunc_length=449, random_state=42)
3
4 # load fasta data
5 df_na = enet_na.load_data(filepath=DATA_DIR+'na_sequences.fasta')
6 print('Number of sequences:', len(df_na))
7 # Number of sequences: 12388
9 # train enet (automatically includes target sequence with df)
10 enet_na1 = enet_na.train(seq_df=df_na, sample_size=1000, n_jobs=1)
11 # save enet
12 save_model(enet=enet_na1, outfile=DATA_DIR+'na_enet.joblib')
13
14 # compute risk score
15 risk_score_na, variance_na = enet_na.emergence_risk(seq_df=df_na,
       enet=enet_na1, sample_size=1000)
16
print('Emergenet Risk Score:', risk_score_na)
18 print('Variance:', variance_na)
19 # Emergenet Risk Score: 0.03050091990424366
20 # Variance: 1.564767759048388e-05
```

- Finally, we compare our scores to IRAT
- ► The geometric mean of HA and NA scores is 0.024893, as seen in the IRAT vs. Emergenet figure
- irat\_risk uses our GLM models (see S-Tab. 4-5 in the paper) to predict the IRAT emergence and impact risk scores: 6.3 and 6.4, respectively
- ► IRAT's scores are 6.6 and 5.8, respectively

```
1 geom_mean_risk_score = np.sqrt(risk_score_ha * risk_score_na)
irat_emergence_prediction, irat_impact_prediction = irat_risk(
       risk_score_ha, risk_score_na)
4 print ('Geometric Mean of HA and NA risk scores:', round(
       geom_mean_risk_score, 6))
5 print ('Emergenet prediction of IRAT emergence estimate:', round(
       irat_emergence_prediction, 1))
6 print('IRAT emergence estimate: 6.6')
7 print ('Emergenet prediction of IRAT impact estimate:', round(
       irat_impact_prediction, 1))
8 print('IRAT impact estimate: 5.8')
g # Geometric Mean of HA and NA risk scores: 0.024893
# Emergenet prediction of IRAT emergence estimate: 6.3
11 # IRAT emergence estimate: 6.6
# Emergenet prediction of IRAT impact estimate: 6.4
13 # IRAT impact estimate: 5.8
```

#### Links to additional resources

- ► To download the package, visit our package page on PyPI
- ► For the theoretical framework of Emergenet and full results of our experiments, see our paper
- For source code and examples, visit our GitHub repository