Inferência para CS Modelos univariados contínuos

Renato Martins Assunção

DCC - UFMG

2014

V.A. Contínua

- Composta de um intervalo e uma função densidade.
- Um intervalo de valores reais que são os valores possíveis.
- Uma FUNÇÃO densidade de probabilidade definida neste intervalo.
- Exemplos:
 - $X \in [0,1]$ com f(x) = 1 (distribuição uniforme).
 - $X \in (0, \infty)$ com $f(x) = \exp(-x)$ para $x \in (0, \infty)$.
 - $X \in \mathbb{R} \text{ com } f(x) = 1/\sqrt{\pi} \exp(-x^2/2).$
- A única restrição: $f(x) \ge 0$ para todo x e sua integral deve ser = 1.

Probabilidades estão associadas com áareas

 No caso contínuo, probabilidades estão associadas com áreas sob a função densidade.

•

$$\mathbb{P}(X \in (a,b)) = \int_a^b f(x) dx$$

• Olhando o gráfico de f(x) sabemos quais as faixas de valores mais prováveis.

Figura: Densidade de probabilidade f(x)

Renato Martins Assunção (DCC - UFMG) Inferência para CS Modelos univariados cont

Modelos para dados contínuos

- v.a. Y contínua.
- Imagine uma amostra de 5000 lotes que constituem uma fazenda e onde se cultiva somente soja.
- Seja y_i a colheita do lote i.
- É muito pouco prático e um tanto sem sentido trabalharmos com uma distribuição discreta para uma situação como essa.
- É mais útil assumirmos que as colheitas dos lotes são os resultados de 5000 realizações de uma certa variável aleatória contínua que possua uma forma simples e já conhecida.
- Qual a densidade desta Y?
- Para saber isto, faça um histograma (com área total = 1).

Histograma

- ullet Quebre o eixo horizontal em pequenos intervalos de comprimento $\Delta.$
- Em cada pequeno intervalo i, conte o número n_i de elementos em sua amostra que caíram no intervalo.
- Levente uma barra cuja altura seja igual a esta contagem (esquerda)
- Histograma padronizado tem área total = 1.
- Para isto: levante uma barra com altura = $n_i/(n\Delta)$.

Modelos para dados contínuos

- No histograma padronizado, sobreponha uma densidade candidata.
- O histograma se parece com uma certa densidade gaussiana (ou normal, N(9,4)).
- Então a distribuição real será *aproximada* por esta distribuição normal (veremos como escolhar uma distribuição candidata mais tarde).

Mais exemplos para dados contínuos

• Amostras de tamanho n=1000 geradas de 4 distribuições, seu histograma padronizado e a densidade correspondente sobreposta.

Justificativa

- $f^*(y)$ = densidade verdadeira que gerou os dados.
- f(y) modelo retirado da nosso catálogo de distribuições conhecidas.
- Se o histograma da amostra é bem aproximado por f(y) então acreditamos $f(y) \approx f^*(y)$. Por quê?
- Seja $(y_0 \delta/2, y_0 + \delta/2)$ um pequeno intervalo do histograma centrado em y_0 e de (pequeno) comprimento δ .
- Aproximando a área debaixo da curva por um retângulo:

$$P(Y \in (y_0 - \delta/2, y_0 + \delta/2) = \int_{y_0 - \delta/2}^{y_0 + \delta/2} f^*(y) dy$$

$$\approx f^*(y_0)\delta$$

Justificativa

• A probabilidade também pode ser aproximada pela fração de elementos da amostra que caíram no intervalo $(y_0 - \delta/2, y_0 + \delta/2)$:

$$\frac{\#\{Y_i's \in (y_0 - \delta/2, y_0 + \delta/2)\}}{n} \approx P(Y \in (y_0 - \delta/2, y_0 + \delta/2))$$

• Igualando as duas aproximações e dividindo por δ dos dois lados, temos

$$\frac{\#\{Y_i's\in(y_0-\delta/2,y_0+\delta/2)\}}{n\delta}\approx f^*(y_0)$$

- O lado esquerdo é a altura do histograma no ponto y_0 . O lado direito é a altura da curva densidade no memso ponto y_0 .
- Assim, as alturas do histograma nos pontos centrais são ≈ iguais à densidade DESCONHECIDA.
- Olhar o histograma é olhar a densidade desconhecida (aproximadamente).

◆□▶◆圖▶◆불▶◆불▶ 불 ∽990

Dificuldades...

- O caso contínuo pode não ser tão simples: pode ser que o histograma não seja suficiente.
- Abaixo, um histograma de uma amostra de uma v.a. contínua com uma densidade candidata sobreposta.
- Como decidir? Qui-quadrado é uma opção mas precisa criar as categorias.
- O segundo gráfico é uma função menos intuitiva mas mais útil.

Função Distribuição Acumulada

- A função distribuição acumulada é uma função matemática que mostra como as probabilidades vão se acumulando no eixo real.
- Temos sempre $F: \mathbb{R} \to [0,1]$
- Se Y é uma v.a. qualquer e y é um ponto da reta real então $F(y) = \mathbb{P}(Y \le y)$:
 - Caso contínuo: $F(y) = \int_{-\infty}^{y} f(x) dx$
 - Caso discreto com valores possíveis $\{x_1, x_2, ...\}$: Então $F(y) = \sum_{x_i < y} \mathbb{P}(Y = x_i)$

- **◆ロト ◆御 ▶ ◆** き ▶ ◆ き → りへで

Caso contínuo

Figura: Densidade f(x) e Função Distribuição Acumulada F(y)

Caso discreto

Figura: Função de probabilidade $\mathbb{P}(Y=y)$ e e função distribuição acumulada F(y). Y tem quatro valores possíveis, 0, 1, 2, 3, com probabilidades iguais a 0.3, 0.2, 0.1 e 0.4, respectivamente

4 D L 4 D L 4 D L 4 D L 00 O

Importância de F(y)

- A função distribuição acumulada F(y) é menos intuitiva que a densidade.
- Tem importância teórica:
 - é muito mais fácil provarmos teoremas com ela (existe sempre, tanto faz se a v.a. é discreta ou contínua)
 - tem seus limites entre [0, 1],
 - é sempre crescente (não-decrescente),
 - serve para medir distâncias entre distribuições de probab, etc.
- Tem importância prática: alguns testes e técnicas.
- Vamos ver uma delas agora.

Função Distribuição Acumulada EMPÍRICA

• **Definição:** Seja y_1, y_2, \ldots, y_n um conjunto de números reais. A função distribuição acumulada empírica $\hat{F}_n(y)$ é uma função $\hat{F}_n: \mathbb{R} \to [0,1]$ tal que, para qualquer $y \in \mathbb{R}$ temos

$$\hat{F}_n(y) = \frac{\#\{y_i \le x\}}{n} = \text{Proporção dos } y_i \text{ que são } \le y$$

Usando $\hat{F}_n(y)$ com distribuições contínuas

- Suponha que Y seja uma v.a. contínua.
- Adotamos um modelo para Y, tal como uma exponencial com parâmetro $\lambda=0.024$.
- Calculamos a função acumulada teórica F(y).
- Com base na amostra, E SOMENTE NELA, construímos a função distribuição acumulada empírica $\widehat{F}_n(y)$.
- Se tivermos $\widehat{F}_n(y) \approx F(y)$ para todo y concluimos que o modelo adotado ajusta-se bem aos dados.
- Como saber se $\widehat{F}_n(y) \approx F(y)$?

Teste de Kolmogorov

- Considere $D_n = \max_y |\hat{F}_n(y) F(y)|$
- Se $D_n \approx 0$ então o modelo adotado ajusta-se bem aos dados.
- Como saber se $D_n \approx 0$? Kolmogorov estudou o comportamento de D_n .

Figura: Empírica $\hat{F}_n(y)$ e a teórica F(y).

$\hat{F}_n(y)$ é aleatória

$D_n = \max_y |\hat{F}_n(y) - F(y)|$

- Suponha que F(y) é o modelo verdadeiro (neste caso, uma N(0,1)).
- Então $D_n \to 0$ se $n \to \infty$.

Figura: $D_n \rightarrow 0$ se o modelo é correto

$D_n = \max_y |\hat{F}_n(y) - F(y)|$

- Suponha que F(y) NÃO é o modelo verdadeiro.
- Uso $F(y) \sim N(0,1)$ mas, NA VERDADE, dados são gerados de N(0.3, 1).
- Então D_n converge para um valor > 0.

$D_n = \max_y |\hat{F}_n(y) - F(y)|$

- Suponha que F(y) é o modelo verdadeiro.
- Então $D_n \to 0$ se $n \to \infty$.
- Se F(y) não é o modelo verdadeiro, $D_n \to a > 0$.
- Mas continuamos com o problema: quão próximo de zero D_n tem de ser para aceitarmos o modelo teórico F(y)?
- $D_n = 0.01$ é pequeno? Com certeza, depende de n já que $D_n \to 0$ se $n \to \infty$.
- A distância a zero para ser considerado próximo o suficiente depende do modelo F(y)?
- Por exemplo, o comportamento de D_n quando F(y) for uma gaussiana é diferente do comportamento quando F(y) for uma Pareto (power-law)?

$$D_n = O(1/\sqrt{n})$$

- Vimos que $D_n \to 0$ se $n \to \infty$.
- Com que rapidez ele decresce em direção a 0?
- Kolmogorov mostrou que:
 - $nD_n \to \infty$ (degenera).
 - $\log(n)D_n \to 0$ (degenera).
 - $\sqrt{n}D_n \nrightarrow 0$ e também $\nrightarrow \infty$.
 - $\sqrt{n}D_n$ fica (aleatoriamente) estabilizado.
 - Qualquer outra potência leva a resultados denegerados.
 - $n^{0.5+\epsilon}D_n \to \infty$.
 - $n^{0.5-\epsilon}D_n \to 0$.
- Mas e daí???

Como saber se D_n é pequeno?

- Suponha que F(y) é o modelo verdadeiro.
- Kolmogorov: $\sqrt{n}D_n \to K$ onde K é uma distribuição que NÃO DEPENDE de F(y).
- Isto é, $\sqrt{n}D_n$ é aleatório mas sua distribuição é a mesma EM TODOS OS PROBLEMAS!!
- Sabemos como $\sqrt{n}D_n$ pode variar se o modelo for verdadeiro, qualquer que seja este modelo verdadeiro.
- Isto significa que temos uma métrica UNIVERSAL para medir distância entre $\hat{F}_n(y)$ e a distribuição verdadeira QUALQUER QUE SEJA esta distribuição verdadeira!!!

Densidade \approx de $\sqrt{n}D_n$

- K é a distribuição de uma ponte browniana (assunto muito técnico).
- Densidade de *K* é dada por $f(x) = 8x \sum_{k=1}^{\infty} (-1)^{k+1} k^2 e^{-2k^2 x^2}$.
- Se calcularmos D_n usando o VERDADEIRO modelo F(y) que gerou os dados então $\sqrt{n}D_n$ deve estar entre 0.4 e 1.8.
- Se não usarmos o modelo verdadeiro, sabemos que $\sqrt{n}D_n \to \infty$.

Figura: Densidade de $K \approx \sqrt{n}D_n$

Densidade \approx de $\sqrt{n}D_n$

- Nunca teremos $\sqrt{n}D_n$ EXATAMENTE igual a zero.
- Se $\sqrt{n}D_n > 1.8$ teremos uma forte evidência de que o F(y) escolhido não é o modelo gerador dos dados.
- Um ponto de corte menos extremo: se F(y) é o modelo que gerou os dados, então a probab de $\sqrt{n}D_n > 1.36$ é apenas 5%.

Figura: Densidade de $K \approx \sqrt{n} D_n$

Resumo da ópera

- Dados de uma amostra: y_1, y_2, \ldots, y_n .
- Eles foram gerados i.i.d. com a distribuição F(y)? (distribuição = hipótese = modelo)
- Calcule a distribuição acumulada empírica $\hat{F}_n(y)$.
- Calcule $D_n = \max_{v} |\hat{F}_n(v) F(v)|$
- Se $\sqrt{n}D_n > 1.36$, rejeite F(y) como modelo para os dados
- Se $\sqrt{n}D_n \le 1.36$, siga em frente com o modelo F(y).

Resumo: Kolmogorov versus Qui-quadrado

- Dados Y_1, Y_2, \dots, Y_n forma uma amostra i.i.d. de uma distribuição-modelo F(y)?
- Duas opções: Kolmogorov e Qui-quadrado.
- Kolmogorov: modelo F(y) tem de ser contínuo; Não vale se for discreta.
- Kolmogorov: Teste só é válido se não precisarmos estimar parâmetros de F(y).
- Por exemplo, Y_1, Y_2, \ldots, Y_n segue uma $N(\mu, \sigma^2)$? Podemos usar Kolomogorov?
- Se μ e σ^2 forem especificados de antemão, antes de olhar os dados, OK. é válido.
- Se eles NÃO são especificados de antemão mas, ao contrário, precisam ser estimados a partir dos dados observados: a distribuição de $\sqrt{n}D_n$ não é conhecida e não podemos usar Kolomogorov a não ser INFORMALMENTE.

27 / 62

Resumo: Kolmogorov versus Qui-quadrado

- Dados $Y_1, Y_2, ..., Y_n$ forma uma amostra i.i.d. de uma distribuição-modelo F(y)?
- Qui-quadrado de Pearson: pode ser aplicado com qualquer modelo, contínuo ou discreto.
- Consegue incorporar o efeito de estimar parâmetros de F(y) (por EMV, + tarde), se for necessário
- Implementação muito fácil.
- Precisa especificar os intervalos ou classes onde as contagens vão ser feitas.
- Qual o efeito desta escolha? Quanto mais melhor, mas muitas classes podem levar a contagens 0 ou próximas de zero.
- Devemos escolher classes de forma que o número esperado em cada uma delas seja, de preferência, pelo menos 5. Classes com menos de 1 devem ser evitadas.

Esperança e Variância

- Suponha que você VAI SIMULAR uma distribuição F(y).
- Isto é, vamos gerar números pseudo-aleatórios com distribuição F(y).
- Como RESUMIR grosseiramente esta longa lista de números ANTES MESMO DE GERÁ-LOS?
- O valor TEÓRICO em torno do qual eles vão variar: a esperança $\mathbb{E}(Y)$.
- As vezes, $Y > \mathbb{E}(Y)$; as vezes, $Y < \mathbb{E}(Y)$. Podemos esperar os valores gerados de oscilando Y em torno de $\mathbb{E}(Y)$.
- Quão em torno?? DP = desvio-padrão.
- O valor TEÓRICO que mede o quanto os valores oscilam em torno de $\mathbb{E}(Y)$. Isto é, o desvio-padrão DP. $\sigma = \sqrt{\text{Var}(Y)}$.

$\mathbb{E}(Y)$ no caso discreto

- Caso discreto com valores possíveis $\{x_1, x_2, \ldots\}$: Então $\mathbb{E}(Y) = \sum_{x_i} x_i \mathbb{P}(Y = x_i)$
- É uma soma ponderada dos valores possíveis da v.a. Y.
- Os pesos são as probabilidades de cada valor.
- Os pesos são ≥ 0 e somam 1.
- $\mathbb{E}(Y)$ geralmente NÃO É um dos valores possíveis $\{x_1, x_2, \ldots\}$.

$\mathbb{E}(Y)$ no caso contínuo

- Caso contínuo: $\mathbb{E}(Y) = \int_{-\infty}^{\infty} yf(y)dy$
- Podemos raciocionar intuitivamente EXATAMENTE como no caso discreto.
- Quebrar todo eixo real em pequenos bins de comprimento Δ e centrados em ..., $y_{-2}, y_{-1}, y_0, y_1, y_2, ...$
- Então, em cada pequeno bin, aproxime a integral:

$$\int_{\mathsf{bin}_i} y f(y) dy \approx y_i f(y_i) \Delta$$

• Portanto, $\mathbb{E}(Y) = \int_{-\infty}^{\infty} y f(y) dy$ é igual a

$$\sum_{i=-\infty}^{\infty} \int_{\mathsf{bin}_i} y f(y) dy \approx \sum_{i=-\infty}^{\infty} y_i f(y_i) \Delta \approx \sum_{i=-\infty}^{\infty} y_i \mathbb{P}(Y \in I_i)$$

X e Y: Qual possui maior variância?

Gerando as amostras

Figura: Histogramas de amostras e densidades de X e Y com mesmo valor esperado: $\mathbb{E}(X) = \mathbb{E}(Y) = 10$. Qual das amostras varia mais em torno do seu valor médio?

Não precisa ter $\mathbb{E}(X) = \mathbb{E}(Y)$

Renato Martins Assunção (DCC - UFMG) Inferência para CS Modelos univariados conti

As densidades e as amostras

Figura: Histogramas de amostras e densidades de X e Y com diferentes valores esperados: $\mathbb{E}(X) \neq \mathbb{E}(Y)$. Qual das amostras varia mais em torno do seu valor médio?

Não precisa ter densidade simétrica

Com as amostras de cada distribuição

Figura: Histogramas de amostras e densidades ASSIMÉTRICAS de X e Y com mesmo valor esperado: $\mathbb{E}(X) = \mathbb{E}(Y) = 1$. Qual das amostras varia mais em torno do seu valor médio?

Assimétricas e com $\mathbb{E}(X) \neq \mathbb{E}(Y) = 1$

Figura: Densidades de X e Y com $1 = \mathbb{E}(X) \neq \mathbb{E}(Y) = 3$. Qual das amostras varia mais em torno do seu valor médio?

- (ロ) (部) (注) (注) (E) の(()

Assimétricas e com $\mathbb{E}(X) \neq \mathbb{E}(Y) = 1$

Figura: Histogramas e densidades de X e Y com $1 = \mathbb{E}(X) \neq \mathbb{E}(Y) = 3$. Qual das amostras varia mais em torno do seu valor médio?

- (ロ) (部) (注) (注) (注) (注) の(()

Pode ser discreta

0 2 4 6 8 10 = ** (CRENATOR MARTÍNS ASSUNÇÃO (DCC - UFMG) Inferência para CS Modelos univariados conti 2014 40 / 62

Com as amostras de X e Y

OK, mas como definir Var(Y)?

- Falta agora definir matematicamente esta noção intuitiva.
- Queremos medir o grau de variação da v.a. X em torno de seu valor esperado $\mu = \mathbb{E}(Y)$.
- ullet Podemos olhar para o DESVIO $Y-\mu$
- As vezes, $Y \mu$ é positivo, as vezes é negativo.
- Queremos ter uma idéia do TAMANHO do desvio e não de seu sinal.
- ullet Vamos olhar então para o desvio absoluto $|Y-\mu|$
- Mas $|Y \mu|$ é uma variável aleatória!!!

Visão empírica do desvio $|Y - \mu|$

- ullet Suponha que Y seja uma v.a. qualquer (discreta ou continua) com $\mathbb{E}(Y)=\mu$
- Simule Y várias vezes por Monte Carlo.
- \bullet Os valores aleatórios gerados sucessivamente vão variar em torno de μ
- ullet As vezes, só um pouco maiores ou menores que $\mu.$
- ullet As vezes, MUITO maiores ou MUITO menores que μ .
- Queremos ter uma ideia do tamanho do desvio $|Y \mu|$.
- Mas como fazer isto se $|Y \mu|$ é aleatório?

Variação em torno de $\mathbb{E}(Y) = \mu$

- Como caracterizar uma v.a.?
- Sua densidade de probabilidade...
- Mas isto é muita coisa (uma lista de números possíveis e probabilidades associadas).
- Não existe uma forma de ter apenas um único número resumindo TODA a distribuição?
- SIM: o valor esperado do desvio absoluto: $E(|X \mu|)$
- $E(|X \mu|)$ é o valor esperado do desvio em torno de μ .

Do desvio absoluto para o desvio quadrático

- Queremos $E(|X \mu|)$ para representar a variabilidade (em torno de μ).
- Mas cálculos com valor absoluto são MUITO difíceis.
- Em particular, a função f(x) = |x| possui mínimo num ponto sem derivada.
- Isto é, seu mínimo não pode ser obtido derivando-se f(x) e igulando a zero
- Isto tem consequências de longo alcance em otimização.
- Saída: Calculamos a variância $\sigma^2 = E(|X \mu|^2)$, que é mais fácil, e a seguir calculamos sua raiz quadrada (o desvio-padrão).
- OBS: $\sigma = \sqrt{E(|X \mu|^2)} \neq E(|X \mu|)$ mas eles costumam não ser muito diferentes.
- Assim, a interpretação do DP σ como sendo o tamanho esperado do desvio é aprox correto.

Desvio-padrão

- Padrão para medir desvios (em torno do valor esperado).
- Solução: Calcule a variância $\sigma^2 = \mathbb{E}\left((Y \mu)^2 \right)$ e depois tire a sua raiz quadrada (obtendo então desvio-padrão DP σ).
- O DP é o padrão universal para medir desvios (em torno do valor esperado).
- Desigualdade de Tchebyshev justifica este nome de desvio-padrão.

Desigualdade de Tchebyshev

- Seja Y uma v.a. QUALQUER com $\mathbb{E}(Y) = \mu$.
- Então $\mathbb{P}(|Y \mu| > k\sigma) \le 1/k^2$.
- Exemplo: se k=2 então, para QUALQUER v.a., $\mathbb{P}(|Y-\mu|>2\sigma)\leq 1/4$.
- Para k = 4, a probabilidade se reduz a 0.06.
- A chance é apenas de 6% de que Y se desvie de seu valor esperado por mais que 4 DPs.
- Isto vale PARA TODA E QUALQUER v.a.
- o DP serve como uma métrica universal de desvios estatístico: desviar-se por mais de 4 DPs de sua média pode ser considerado um tanto raro.

Um Comentário sobre Tchebyshev

- Tchebyshev: $\mathbb{P}(|Y \mu| > k\sigma) \le 1/k^2$
- Observe que a probabilidade decai com $1/k^2$.
- Nos primeiros inteiros temos uma queda rápida mas depois temos uma queda lenta:

k	2	4	6	10	20
$100\% imes \mathbb{P}$	25%	6%	3%	1%	0.3%

Outro comentário sobre Tchebyshev

- Tchebyshev: $\mathbb{P}(|Y \mu| > k\sigma) \leq 1/k^2$
- A sua força é a generalidade: vale para toda e qualquer v.a.
- Mais ainda: ele é ótimo no seguinte sentido: não é possível obter cota mais apertada valendo para TODA v.a.
- Prova: Considere a seguinte v.a. discreta Y:

$$Y = \begin{cases} -1, & \text{com probab } \frac{1}{2k^2} \\ 0, & \text{com probab } 1 - \frac{1}{k^2} \\ 1, & \text{com probab } \frac{1}{2k^2} \end{cases}$$

ullet Ela tem $\mathbb{E}(Y)=0$ e $DP=\sigma=1/k$ e portanto

$$\mathbb{P}(|Y - \mu| \ge k\sigma) = \Pr(|Y| \ge 1) = \frac{1}{k^2}$$

e a desigualdade de Tchebyshev atinge a igualdade perfeita para esta distribuição.

Finalizando o segundo comentário

- A fraqueza da desigualdade de Tchebyshev é ... a sua generalidade
- Para ser válida para toda e qualquer v.a. a desigualdade não é muito "apertada"
- Isto é, podemos obter cotas muito melhores para a chance de ter um desvio grande QUANDO CONSIDERAMOS APENAS UMA DISTRIBUIÇÃO ESPECÍIFICA.
- Por exemplo, se $Y \sim N(\mu, \sigma)$ e k=2, então sabemos que

$$\mathbb{P}(|Y - \mu| \ge 2\sigma) \approx 1/20 = 0.05$$

enquanto a desigualdade de Tchebyshev garante apenas que

$$\mathbb{P}(|Y - \mu| \ge 2\sigma) \le 1/4$$

Estimando μ e σ com dados

- O valor esperado $\mathbb{E}(Y) = \mu$ e o DP $\sigma = \sqrt{\mathbb{E}(Y \mu)^2}$ sao valores que nao dependem dos dados.
- Por exemplo, suponha que Y possua distribuicao exponencial, cuja densidade é f(y) = 3exp(-3y). Então $\mathbb{E}(Y) = \mu = 1/3$ e $\sigma = 1/3$.
- Suponha que temos uma amostra de dados retirados de certa distribuicao com densidade f(y) e que NAO CONHECEMOS f(y).
- Portanto, nao podmeos obter $\mathbb{E}(Y) = \mu$ e o DP σ .
- No entanto, podemos ESTIMAR $\mathbb{E}(Y) = \mu$ e o DP σ com os dados.

Momentos amostrais e teóricos

 A ideia é igualar os momentos teóricos com momentos amostrais correspondentes.

• Momentos:

Momento Teórico	Momento Amostral
$\mathbb{E}(Y)$	$m_1 = \overline{Y} = \sum_{i=1}^n Y_i / n$
$\mathbb{E}(Y^2)$	$m_2 = \sum_i Y_i^2 / n$
$\mathbb{E}(Y^3)$	$m_3 = \sum_i Y_i^3/n$
:	:
•	•

- Veja que m_1 é a média dos dados na amostra.
- É comum escrevermos m_1 como \overline{Y} .

Primeiro Momento \overline{Y}

Pela lei dos grandes números,

$$\overline{Y} = \frac{1}{n} \sum_{i} Y_{i} \to \mathbb{E}(Y) = \mu$$

quando $n \to \infty$.

- Assim, se o tamanho n da amostra não for pequeno demais, podemos esperar a média amostral $\overline{Y} \approx \mathbb{E}(Y)$.
- Assim, podemos usar os dados para estimar o valor desconhecido (e teórico μ).
- Note que, a não ser em casos de distribuições muito especiais (e bizarras), devemos ter $\mu \neq \overline{Y}$.
- Isto é, a média amostral \overline{Y} não é igual à esperança μ .

σ e o segundo momento

- DP σ é a raiz quadrda da variância.
- Variância: $\sigma^2 = \mathbb{E}(Y \mu)^2$.
- Temos

$$\sigma^2 = \mathbb{E}(Y^2) - (\mathbb{E}(Y))^2$$

• Como $\mathbb{E}(Y) \approx \overline{Y}$, podemos esperar então que

$$\sigma^2 pprox \mathbb{E}(Y^2) - \left(\overline{Y}\right)^2$$

• E o primeiro termo? Usamos a Lei dos Grandes Números de novo.

σ e o segundo momento

- Pela mesma lei dos grandes números, $m_k = \sum_i Y_i^k / n$ converge para $\mathbb{E}(Y^k)$.
- Assim, $m_2 \approx \mathbb{E}(Y^2)$
- Portanto,

$$\sigma^2 \approx \frac{1}{n} \sum_{i} Y_i^2 - \left(\overline{Y}\right)^2$$

Podemos mostrar que

$$\frac{1}{n}\sum_{i}Y_{i}^{2}-\left(\overline{Y}\right)^{2}=\frac{1}{n}\sum_{i}\left(Y_{i}-\overline{Y}\right)^{2}$$

- Esta é a variância amostral.
- O DP pode ser estimado tomando sua raiz quadrada.

◆□ → ◆□ → ◆ □ → ◆ □ → ○ へ○