IB Statistics

Martin von Hodenberg (mjv43@cam.ac.uk)

January 20, 2022

This article constitutes my notes for the 'IB Statistics' course, held in Lent 2022 at Cambridge. These notes are *not a transcription of the lectures*, and differ significantly in quite a few areas. Still, all lectured material should be covered.

Contents

0	Introduction	2
1	Probability	2
	1.1 Linear transformations	. 4
	1.2 Standardised statistics	. 4
	1.3 Moment generating functions	. 4

§0 Introduction

Statistics can be defined as the science of making informed decisions. It can include:

- 1. Formal statistical inference
- 2. Design of experiments and studies
- 3. Visualisation of data
- 4. Communication of uncertainty and risk
- 5. Formal decision theory

In this course we will only focus on formal statistical inference.

Definition 0.1 (Parametric inference)

Let X_1, \ldots, X_n be iid. random variables. We will assume the distribution of X_1 belongs to some family with parameter $\theta \in \Theta$.

Example 0.2

We will give some examples of such families:

- 1. $X_1 \sim \text{Po}(\mu), \theta = \mu \in \Theta = (0, \infty)$.
- 2. $X_1 \sim N(\mu, \sigma^2)$ $N(\mu, \sigma^2) \in \Theta = \mathbb{R} \times (0, \infty)$.

We will use the observed $X = (X_1, \dots X_n)$ to make inferences about θ such as:

- 1. Point estimate $\theta(X)$ of θ .
- 2. Interval estimate of θ : $(\theta_1(x), \theta_2(x))$
- 3. Testing hypotheses about θ : for example checking if there is evidence in X against the hypothesis $H_0: \theta = 1$.

Remark. In general, we'll assume the distribution of the family X_1, \ldots, X_n is known but the parameter is unknown. Some results (on mean square error, bias, Gauss-Markov theorem) will make weaker assumptions.

§1 Probability

First we will briefly recap IA Probability.

Let Ω be the **sample space** of outcomes in an experiment. A measurable subset of Ω is called an **event**. The set of events is denoted \mathcal{F} .

Definition 1.1 (Probability measure)

A probability measure $\mathbb{P}: \mathcal{F} \to [0,1]$ satisfies:

- 1. $\mathbb{P}(\emptyset) = 0$
- 2. $\mathbb{P}(\Omega) = 1$

3. $\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i = \sum_i \mathbb{P}(A_i)\right)$ if (A_i) is a sequence of disjoint events.

Definition 1.2 (Random variable)

A random variable is a (measurable) function $X: \Omega \to \mathbb{R}$.

Example 1.3

Tossing two coins has $\Omega = \{HH, HT, TH, TT\}$. Since Ω is countable, \mathcal{F} is the power set of Ω . We can define X to be the random variable that counts the number of heads. Then

$$X(HH) = 2, X(HT) = X(TH) = 1, X(TT) = 0.$$

Definition 1.4 (Distribution function)

The distribution function of X is $F_X(x) = \mathbb{P}(X \leq x)$.

A discrete random variable takes values in a countable set $S \subset \mathbb{R}$. Its probability mass function is

$$p_X(x) = \mathbb{P}(X = x).$$

A random variable X has a continuous distribution if it has a probability density function $f_X(x)$ which satisfies

$$\mathbb{P}(X \in A) = \int_A f_X(x) \mathrm{d}x,$$

for measurable sets A.

The expectation of X is

$$\mathbb{E}(X) = \begin{cases} \sum_{x \in X} x p_X(x) & X \text{ is discrete} \\ \int_{-\infty}^{\infty} x f_X(x) dx & X \text{ is continuous} \end{cases}$$

If $g: \mathbb{R} \to \mathbb{R}$, then for a continuous r.v

$$\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx.$$

The variance of X is

$$Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2].$$

We say X_1, \ldots, X_n are independent if for all x_1, \ldots, x_n we have

$$\mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \dots \mathbb{P}(X_n \le x_n).$$

If X_1, \ldots, X_n have pdfs or pmfs f_{X_1}, \ldots, f_{X_n} then their joint pdf or pmf is

$$f_X(x) = \prod_i f_{X_i}(x_i).$$

If $Y = \max(X_1, \dots, X_n)$ independent, then

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(X_1 \le y, \dots, X_n \le y) = \prod_i F_{X_i}(y).$$

The pdf of Y (if it exists) is obtained by differentiating F_Y .

§1.1 Linear transformations

Let $(a_1, \dots a_n)^T = a \in \mathbb{R}^n$ be a constant.

$$\mathbb{E}(a_1X_1 + \ldots + a_nX_n) = \mathbb{E}(a^TX) = a^T\mathbb{E}(X).$$

This gives linearity of expectation (does not require independence).

$$\operatorname{Var}(a^T X) = \sum_{i,j} a_i a_j \underbrace{\operatorname{Cov}(X_i, X_j)}_{=\mathbb{E}((X_i - \mathbb{E}(X_i)(X_j - \mathbb{E}(X_j))))} = a^T \operatorname{Var}(X) a.$$

where the matrix $[Var(X)]_{ij} = Cov(X_i, X_j)$. This gives the "bilinearity of variance".

§1.2 Standardised statistics

Let X_1, \ldots, X_n be iid. with $\mathbb{E}(X_1) = \mu$, $\mathrm{Var}(X_1) = \sigma^2$. We define $S_n = \sum_i X_i$ and $\overline{X_n} \frac{S_n}{n}$ (the sample mean). By linearity

$$\mathbb{E}(\overline{X_n}) = \mu, \quad \operatorname{Var}(\overline{X_n}) = \frac{\sigma^2}{n}.$$

Define $Z_n = \frac{S_n - n\mu}{n}$. Then $\mathbb{E}(Z_n) = 0$ and $\operatorname{Var}(Z_n) = 1$.

§1.3 Moment generating functions