Problem 9. Given an infinite collection A_n , n = 1, 2, ... of intervals of the real line, their intersection is defined to be

$$\bigcap_{n=1}^{\infty} A_n = \{x | (\forall n)(x \in A_n)\}$$

Give an example of a family of intervals A_n , n = 1, 2, ..., such that $A_{n+1} \subset A_n$ for all n and $\bigcap_{n=1}^{\infty} A_n = \emptyset$. Prove that your example has the stated property.

Proof. Let the set A_n be defined as $(0, \frac{1}{n})$

For n = 1,

$$A_1 = (0, 1)$$

For n+1 i.e. n=2,

$$A_2 = (0, \frac{1}{2})$$

Since $(0, \frac{1}{2}) \subset (0, 1)$, i.e. $A_2 \subset A_1$, $A_{n+1} \subset A_n$ holds.

As
$$n \to \infty, \frac{1}{n} \to 0$$
. So $\bigcap_{n=1}^{\infty} A_n = (0,0)$

Since, the interval is exclusive, $0 \notin A_n$. The expression $\bigcap_{n=1}^{\infty} A_n$ will hence equate to \emptyset .

Therefore, the example given has the required stated properties.