

Évaluation de la fiabilité des Conduites Forcées au moyen du modèle Persalys-Penstock

Penstock Reliability Estimation with Persalys-Penstock Model

Philippe BRYLA EDF Hydro Emmanuel ARDILLON EDF R&D Anne DUTFOY EDF R&D PHIMECA

Journée Utilisateurs PERSALYS Paris, le 8 novembre 2024

Penstock diagnoses at EDF

- EDF operates more than 450 hydropower plants
- Penstock convey water from the reservoir to the turbines
- Cumulated length > 250 km
- Average age ~ 70 years
- Complete diagnoses with penstock assessment are performed periodically
 - Visual inspections (internal & external)
 with thickness measurements
 - Evaluation of the residual Margin Factor (MF)

$$MF = \frac{f}{\sigma_C^*} \stackrel{\text{Allowable stress}}{\longleftarrow}$$
 Maximal in-service stress

Initial questions

- How does the failure probability depend on the Margin Factor?
- What are the most important parameters influencing the failure probability?
- What is the influence of hydraulic pressure testing on the failure probability?

General principle

- Development of a mechanical probabilistic model:
 R&D project in collaboration with PHIMECA (2017-2024)
- Calculation of large Design of Experiments (DoE) and sensitivity analyses

EDF publications of the methodology and results

- European ESREL Conference (2020)
- ICOSSAR Conference International Conference on Structural Safety And Reliability (2022)
- λμ French Reliability Conference (2022)

Penstock diagnosis & assessment

Fitness for service of a penstock ⇔ Margin Factor ≥ 1

$$MF = \frac{f}{\sigma_{\mathcal{C}}^*}$$
 Allowable stress

Maximal in-service stress

- The Margin Factor depends on :
 - Steel mechanical characteristics Yield Stress $\sigma_{\mathbf{y}}$ & Ultimate Tensile Strength : $\sigma_{\mathbf{u}}$
 - Residual Thickness
 - aesign
 - Maximal Operating Pressure MOP (monitored)

Penstock diagnosis & assessment

- Diagnoses data show that σ_u and Δt scatter can be modelled by Normal or Log-Normal distributions
- The Margin Factor is calculated by taking **calculation values** for Ultimate Tensile Strength $\sigma_{\bf u}^*$ and loss of thickness $\Delta {\bf t}^*$ at $\gamma = 2$ standard deviations of their average values

$$MF = \frac{f}{\sigma_C^*}$$
 $f = min\left(\frac{\sigma_y^*}{1.5}; \frac{\sigma_u^*}{2.4}\right)$ $\sigma_C = \frac{MOP \cdot R}{t_{design} + \Delta t^*}$

calculation values

• $P_{\text{target}} \sim 10^{-7} \text{ to } 10^{-6} \text{ pipe}^{-1}.\text{year}^{-1} \text{ (BS-7910, ISO-2394)}$

Main steps of the study

- 1st structural reliability model : with plastic collapse failure criterion for corroded pipe wall outside welded joints
- 2nd structural reliability model : with generalized **fracture mechanics** failure criterion <u>for welded joints</u> with residual manufacturing flaws
- Extension of both models to pipes with a hydrostatic pressure test before commissioning: evaluation of conditional failure probabilities
- Evaluation of failure probabilities distributions :
 - Large calculation grids (Design of Experiments)
 - In-depth analysis for understanding the most influential factors

Principles of the model:

- Uncertainties and scattering on different data are modeled by random variables
- Failure criterion = overcrossing of a limit state involving : yield strength, ultimate stress and toughness of steel based on the BS7910:2019 standard
- Progressive decrease of the Margin Factor due to loss of thickness (corrosion) is modeled for the estimation of the annual failure probability

Random variables associated to risk of plastic collapse

(base material out of welds)

Variable	Description	Distribution
σ_{u}	Ultimate tensile strength (MPa)	Lognormal
3	Deviation to the general correlation σ_{y} - σ_{u}	Normal
$\Delta \mathbf{t}_{extra}$	Manufacturing extra thickness (mm)	Normal
$\Delta \mathbf{t}_{corr}$	Thinning due to corrosion (mm)	Normal

$$\sigma_{v} = A \cdot \sigma_{u} - B + \varepsilon$$

- Upper bound for annual corrosion rate:
- Residual thickness Year N :
- Residual thickness Year N+1:

$$\Delta t_{annual} = 100 \mu m.year^{-1}$$

$$t_N = t_{design} + \Delta t_{extra} - \Delta t_{corr}$$

$$t_{N+1} = t_N - \Delta t_{annual}$$

Random variables associated to both plastic and brittle failure modes (with potential residual defects in welds)

Variable	Description	Distribution
σ_{u}	Ultimate tensile strength (MPa)	Lognormal
8	Deviation to the general correlation σ_{y} - σ_{u}	Normal
$\Delta \mathbf{t}_{appro}$	Manufacturing extra thickness (mm)	Normal
Δt_{corr}	Thinning due to corrosion (mm)	Normal
а	Flaw maximum height (mm)	Uniform [0; a _{max}]
σ _{rés}	Welding residual stress (MPa)	Uniform or normal
K _{IC}	Steel toughness (MPa.m ^{1/2})	Weibull

Potential residual flaws in welds

Parameters depending on the manufacturing & NDT processes

• Residual stress σ_{res} depends on the relief process

_	No stress	relief	("as welded")	$0.6 \sigma_{\rm y} \le \sigma_{\rm res} \le \sigma_{\rm y}$
---	-----------	--------	---------------	---

- Partial mechanical relief
$$0.4 \sigma_y \le \sigma_{res} \le 0.6 \sigma_y$$

- Post welding Heat Treatment
$$\sigma_{res} \sim 0.2 \text{ x } \sigma_{y}$$

- Hooped penstock (self banded)
$$\sigma_{res} \sim 0$$

• Height a_{max} of residual manufacturing flaws depends on the detectability performance of Non-Destructive Testing (NDT)

```
- High performance NDT (surface flaws : a_{max} = 1 \text{ mm to } 1,5 \text{ mm})
```

- Low performance NDT (surface flaws : $a_{max} = 2 \text{ mm to 4 mm}$)

Failure criterion

Outside welds (base metal)

$$G=L_R^{max}-L_R<0$$

In welds

$$G = f(L_R) - K_R < 0$$

With:

$$L_R = \frac{\sigma_C}{\sigma_y}$$
 $K_R = \frac{M \cdot (\sigma_C + \sigma_{res}) \cdot \sqrt{\pi \cdot a}}{K_{IC}}$

 σ_C : In-service stress

 σ_v : Yield stress

 σ_{res} : Residual stress

 K_{IC} : Steel toughness

BS-7910

Failure criterion

Outside welds (base metal)

$$G = L_R^{max} - L_R < 0$$

In welds

$$G = f(L_R) - K_R < 0$$

With:

$$L_R = \frac{\sigma_C}{\sigma_y} \qquad K_R = \frac{M \cdot (\sigma_C + \sigma_{res}) \cdot \sqrt{\pi \cdot a}}{K_{IC}}$$

 σ_{C} : In-service stress

 σ_v : Yield stress

 σ_{res} : Residual stress K_{IC} : Steel toughness

The BS-7910 limit-state function is a conservative low boundary for resistance (based on more than 300 failure cases)

Failure probabilities

• Annual failure probability :

$$P_{annual}(N) = P(G_{N+1} < 0 \mid G_N \ge 0)$$

• Conditional annual failure probability with initial hydraulic test:

$$P_{cond}(N) = P(G_{N+1} < 0 \mid G_N \ge 0 \cap G_{hydro-test} \ge 0) = \frac{P(G_{N+1} < 0 \cap G_N \ge 0 \cap G_{hydro-test} \ge 0)}{P(G_{hydro-test} \ge 0 \cap G_N \ge 0)}$$

Model implementation: Persalys-Penstock

 Using the OpenTURNS® library https://openturns.github.io/www/index.html

Implementation in the Persalys probabilistic tool https://persalys.fr/

- Calculation of low probabilities with simulation methods
 - First/Second Order Reliability Method (FORM/SORM) + Importance Sampling
 - Multi-start option is often necessary to solve convergence issues (due to multiple failure modes : brittle rupture / plastic collapse)

Additional methods: SUBSET simulation and Line Sampling

Implementation in the software: Persalys-Penstock

Failure criteria and safety coefficients

Material characteristics

Probabilities and margins	Geometry	Material (Re, Rm)					
Ultimate Tensile Stress (UTS) $R_{m}^{calcul} = 477 \text{ (MPa)}$							
Distribution Nor	mal 👱 μ (MPa	a) 530					
	cv	0.05					
Yield Stress (Y)							
Correlated with UTS Recalcul = 309 (MPa)							
$Y = [A \times UTS - B + Ec(B)]$	3)] + ε with $\varepsilon \sim \mathcal{N}(0)$	0, ω x μ _Y)					
A 0.78							
B (MPa) 49							
Ec(B) (MPa) 0							
ω 0.05							

Implementation in the software: Persalys-Penstock

Geometry,	thickness
-----------	-----------

Probabilities and margins	FM and Loading	Geometry	
Manufacturing extra thick			
Distribution Normal	<u></u> μ (mm) 0		.
	σ (mm) 0.25		$\Delta \mathbf{t}_{extra}$
Loss of thickness by corr	osion		
Distribution Normal	<u>•</u> μ (mm) 1		. A.1
	σ (mm) 0.25		Δt_{corr}
Annual Δe (mm)	0.1		. A.4
Nominal thickness e _{nom} (m	$\Delta t_{ m annual}$		

Margin Factor & loadings

		. —	-	v			
	Probabilities and margins	FM and Loading	Geometry	Material (Re, Rm)	Fracture mechanics		
Margin factor (FM)							
Calculated PMIS (MPa) 1							
• User FM 1							
If user FM is chosen, pressure shaft is disabled.							
_Loading coefficients							
	k hydrostatic pressure te	st 1.5					

Fracture mechanics: NDT, residual stress, toughness Prohabilities and margins EM and Loading Geometry Material (Ro. Rm.) Fracture mechanics

Probabilities and margins	-M and Loading	Geometry	Material (Re, Rm)	Fracture mechanics				
Flaw Surface breaking Tensile curve of the mate	rial							
	Existence or not of a Lüders band Without							
Performance of NDT (Nor	n Destructive Tes	ting)———						
	S2 (medium performance) That height a _{max} (mm) = 1.5 Flaw length 2×c _{max} (mm) = 10							
Residual constraint in the	Residual constraint in the longitudinal weld							
Mechanical stress relaxat	ion <u>*</u>							
Types								
Fracture toughness K_IC								
Distribution Weibuil	Distribution Weibull k _{0-25mm} (MPa.m ^{1/2}) 70							
	k 4							
	k _{min} (MPa.m ^{1/2})	20						
	$k_0 = 93 \text{ (MPa.m)}$	1 ^{1/2})						
	- '	•						

Implementation in the software: Persalys-Penstock

Méthodes de calcul applicables

Type de fonction de performance						
Méthode —						
FORM IS						
C Subset						
C Line Sampling						
○ FORM						
○ Monte-Carlo						
C Random Quasi-Monte Carlo						
C Simulation directionnelle						
Stratification directionnelle adaptative						

Options de calcul

Probabilités et marges	FM et chargement	Géométrie	Matériau (F	Re, Rm)	Mécanique de la ruptur	e Puits blindés	Méthode de calcul	
Paramètres de méthode de simulation								
Nombre maximal de simulations 50000							<u>^</u>	
Maximum coefficient de variation 0.1								
Ecart-type de la distr	ibution instrumental	le 1						
Utiliser une distribution instrumentale modifiée Coefficient de l'écart-type de la distribution modifiée k \times d β / α_{max} 1								
Paramètres FORM								
Nombre d'itérations 500								<u> </u>
Test automatique des algorithmes FORM Préférer une recherche rapide								
Algorithme d'optimis	sation			A	bdoRackwitz			\forall
Nombre de points de	e départ 10)	•	Ordre d	lu quantile pour l'échanti	llon multi start	0.0001	<u> </u>
Erreur absolue	16	e-05	•	Erreur s	sur les résidus		1e-05	*
Erreur relative	16	e-05	* *	Erreur s	sur la contrainte		1e-05	<u> </u>
Epsilon d'appartenance à l'état-limite 0.001								
Choix des résultats renvoyés en sortie								
Points de défailla	nce les plus probabl	les 🔽 Fa	icteurs d'imp	ortance	~	Indices de sens	ibilités	

Model implementation

Limit state analysis

- Visualization of limit state functions and design point localization are possible, both:
 - In the physical space
 - In the standard space
- The effect of the initial Hydraulic Test can be shown

Model implementation

 Example of a hooped penstock in an incidental situation after the rupture of a hoop
 Scattering of conditional failure probability with MF=0,6

DoE: 20 000

• Size: 20 000

Random DoE

Design of Experiments

- Major penstock configurations (thickness, material characteristics, loss of thickness scatter, welding residual stress, stress relief...) have been calculated by using large probabilistic Design of Experiments (DoE)
- Calculation of failure probability for Margin Factor (MF) in [0.6; 1.4]

Parameter	Notation	Unity	Variation interval
Nominal Design Thickness	t _{design}	mm	[5 mm; 30 mm]
Average loss of thickness	$\mu(\Delta t_{corr})$	mm	[0;3]
Loss of thickness standard deviation	$\sigma(\Delta t_{corr})$	mm	[0,2;0,8]
Average ultimate tensile strength (UTS)	$\mu(\sigma_u)$	MPa	[360; 800]
Coefficient of variation of UTS	$COV(\sigma_y)$	-	[0,05;0,10]
Coefficient of variation of σ_v for a given σ_u	ω	-	[0,02;0,05]
Shift of σ_v - σ_u vs. general correlation	$E_c(\varepsilon)$	MPa	Normal (μ =0; σ =28 MPa)
Maximal size of residual flaw	a_{max}	mm	[1;4]
Maximal length of residual flaw	2.c _{max}	mm	[3.a _{max} ; 6.a _{max}]
Average toughness	K_{IC}^{0}	MPa.m ^{1/2}	[70 ; 120]
Welding residual stress	$\sigma_{\rm res}/\sigma_{\rm y}$	-	[0;1]

• For each Margin Factor : $\mathcal{N} = 2.4 \times 10^6$ simulated configurations

Design of Experiments

 The calculations allow an estimation of quantiles of the annual failure probability for different values of the Margin Factor – Example obtained from a sub-DoE

Estimated annual failure probabilities in base steel

Estimated annual failure probability outside the welds

- For 1 elementary pipe
- For a default envelope corrosion rate : $\Delta t_{annual} = 100 \mu m/year$

- Annual failure probability is proportional to:
 - Section length (number of elementary pipes)
 - Corrosion rate
- Margin Factor decreases of 0.1
 → Annual failure probability ~ x 10

Estimated annual failure probabilities in welds

Sensitivity to stress relief

For low margin Factors (0.6 to 0.7):

- Preponderant failure mode is plastic collapse
- Small influence of residual stress

For higher Margin Factors :

- Brittle fracture failure mode becomes preponderant
- Residual stress level becomes a more influent parameter

For medium Margin Factors (0.9 to 1.1) :

- Failure probability may increase of 1 decade when the residual stress increases
 - Absence of stress relief vs. partial mechanical stress relief
 - Partial mechanical relief vs. PWHT

Estimated annual failure probabilities in welds

Sensitivity to NDT performance

For low margin Factors (0.6 to 0.7):

- Preponderant failure mode is plastic collapse
- Small influence of NDT performance

For higher Margin Factors :

- Brittle fracture failure mode becomes preponderant
- NDT performance becomes a more influent parameter

For medium Margin Factors (0.9 to 1.1):

- Failure probability increases of 0.5 to 1 decade if the NDT performance decreases
 - from HIGH to MEDIUM
 - from MEDIUM to LOW

Estimated annual failure probabilities in welds

Sensitivity to hydro-test pressure - example

- Margin Factor = 1
- Initial hydro-pressure test : between MOP and 2 x MOP
- Moderate loss of thickness since the commissioning

- Above 1.5 x MOP, the hydraulic pressure test allows to decrease drastically the conditional failure probability
- However, this decrease depends on the average loss of thickness since the commissioning

Conclusion

The Persalys-Penstock mechanical probabilistic model leads to estimate

- Annual failure probability distribution of a penstock section,
 knowing its Margin Factor, its main manufacturing data and its corrosion rate
- Instantaneous failure probability distribution of a penstock section resulting from an overpressure
- The effect of hydraulic pressure test at commissioning

This model allows to quantify the evolution of failure probability

- Its decrease rate in relation to the residual Margin Factor
- Its dependance on manufacturing conditions : NDT performance, welding stress relief
- It can be used to calibrate semi-quantitative rating scales for hazard studies

Thank you!

References (1/2)

EDF Publications on penstock reliability models

Logiciel Persalys-Penstock pour l'estimation de la fiabilité des conduites forcées soumises à la corrosion : développements et applications

Philippe Bryla, Emmanuel Ardillon, Antoine Dumas, Anne Dutfoy-Lebrun

Lambda-Mu 23 Conference (2022) https://hal.science/hal-03878042v1

Probabilistic Models for Penstock Integrity Assessment

Bryla Philippe, Ardillon Emmanuel, Dumas Antoine

ESREL European Safety and Reliability Conference (2020) https://www.rpsonline.com.sg/proceedings/esrel2020/html/4172.xml

Penstock reliability assessments: some results and developments

Ardillon Emmanuel, Bryla Philippe, Dumas Antoine

ICOSSAR 13th International Conference on Structural Safety and Reliability (2022)

Software

https://persalys.fr/

https://openturns.github.io/www/index.html

References (2/2)

Standards

BS 7910 (2019). Guide to methods for assessing the acceptability of flaws in metallic structures. British Standard Institute

ISO 2394 (2015). General principles on reliability for structures. International Standard

Other publications of interest

I. Hadley, P. Moore, Fracture case studies for validation of fitness-for-service procedures, TWI Report n°850/2006, Mai 2006

M. Lemaire (2009). Structural Reliability. Wiley - ISTE

