2. 電氣回路

図2.1 のように、値が 3R, 6R, r の抵抗、キャバシタンス C をもつコンデンサ、インダクタンス L をもつコイルに、切りかえスイッチ S_1 (接点を a, b とする) とスイッチ S_2 , S_3 を介して電圧 $V_1 = V_{lm} \exp(j\omega t)$ および $V_2 = V_{2m} \exp(j\omega t)$ を発生する交流電源を接続した。ただし、 t は時間、 ω は交流の角周波数、j= $(-1)^{1/2}$ 、 $V_{lm} = |V_1|$, $V_{2m} = |V_2|$ である。

- 1) S₂を開き、S₃を閉じた状態で、
 - a) 抵抗rをrからL方向に流れる電流Iを求めよ。
 - b) 抵抗 r にかかる電圧を V とする。 $\left|V\right|$ が最大になるのはいかなるときか。また $\left|V\right|$ の最大値を書け。
- 2) 抵抗 3Rと 6Rの接続点を点 X、点 Y とする。 S_1 を接点 b 側に倒し S_2 と S_3 を開いた状態で、XY 間からみた回路の抵抗を R_1 とする。 R_1 を求めよ。
- 3) S_1 を接点 a 側に倒し、 S_2 と S_3 を開いた状態で、点 Yから計った点 X の電位を V_0 とする。 V_0 を求めよ。
- 4) S_1 を接点 a 側に倒し、 S_2 を閉じ S_3 を開いた状態で、点 Y から計った点 X の電位を V_0 、抵抗 r の中を X から Y 方向に流れる電流を I_0 とする。テブナンの定理を用いて 次の間に答えよ。
 - a) V_0 を V_2 , R, r, C, L, ω を用いて表わせ。
 - b) I_0 を V_2 , R, r, C, L, ω を用いて扱わせ。
 - c) $|I_0|^2$ が最大となる ω を求めよ。また、そのときの $|I_0|$ の最大値 I_m を V_2 , R, rを用いて表わせ。
 - の 抵抗 r で消費される電力 P' が最大となる ω を求めよ。また P' の最大値 P_{m} を V_{2} , R, r で表わせ。

図2.1