Modelo GARCH(p, q)

Modelo utilizado en serie tiemporales financieras

Diego Astaburuaga & David Rivas

¹Universidad Técnica Federico Santa María. Departamento de matemática.

21 de Noviembre de 2023

Contenido

- Motivación
- 2 Modelos ARCH(p) y GARCH(p, q)
- Studio de caso
- 4 Conclusiones
- Referencias

Contenido

- Motivación
- 2 Modelos ARCH(p) y GARCH(p, q)
- 3 Estudio de caso
- 4 Conclusiones
- 5 Referencias

Modelos GARCH: Aspectos Fundamentales y Aplicaciones

- Desarrollados por Robert F. Engle en 1982 (ARCH)[2] y
 posteriormente generalizados por Tim Bollerslev en 1986
 (GARCH)[1], los Modelos GARCH abordan la volatilidad en series
 temporales financieras.
- Permiten modelar series de tiempo con ruidos de varianza no constante.
- Capturan la dinámica de rendimientos del mercado, destacando en la modelización de volatilidad condicional.
- Utilizados para comprender y prever fenómenos como el agrupamiento de volatilidad, ofreciendo una herramienta esencial en finanzas.

21 de Noviembre de 2023

Ejemplo: Rendimientos Diarios S&P 500

El índice S&P 500, que abarca las principales 500 empresas en la bolsa estadounidense, se presenta como una serie relevante para el análisis con modelos GARCH.

Figura: Serie de tiempo de los rendimientos diarios del S&P 500. Fuente: yfinance en Python.

Contenido

- Motivación
- 2 Modelos ARCH(p) y GARCH(p, q)
- Estudio de caso
- 4 Conclusiones
- 6 Referencias

Modelo ARCH: Definición

Definición del Modelo ARCH(p)

Sea ε_t un proceso estocástico discreto de valores reales. El proceso ε_t sigue un modelo ARCH(p) (AutoRegressive Conditional Heteroscedasticity) si:

$$\varepsilon_{t}|F_{t-1} \sim \mathcal{N}\left(0, \sigma_{t}^{2}\right),$$
$$\sigma_{t}^{2} = \omega + \sum_{i=1}^{p} \alpha_{i} \varepsilon_{t-i}^{2}$$

donde $p \ge 0$, $\omega > 0$, $\alpha_i \ge 0$ para i = 1, ..., p. Donde F_{t-1} denota la información hasta el momento t - 1.

Interpretación de Parámetros en Modelos ARCH

• α_i : Controla la contribución de los errores pasados a la varianza condicional en Modelos ARCH(p). Un valor más alto indica una mayor ponderación de los errores pasados en la varianza actual.

Modelo GARCH: Definición

Definición del Modelo GARCH(p, q)

Sea ε_t un proceso estocástico discreto de valores reales. Entonces ε_t sigue un modelo GARCH(p,q) (Generalized AutoRegressive Conditional Heteroscedasticity) si y sólo si:

$$\begin{split} \varepsilon_t | F_{t-1} &\sim \mathcal{N}\left(0, \sigma_t^2\right), \\ \sigma_t^2 &= \omega + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^q \beta_j \sigma_{t-j}^2 \end{split}$$

donde $p \ge 0$, $q \ge 0$, $\omega > 0$, $\alpha_i \ge 0$ para $i = 1, \ldots, p$, y $\beta_j \ge 0$ para $j = 1, \ldots, q$. Donde F_{t-1} denota la información hasta el momento t-1.

21 de Noviembre de 2023

Interpretación de Parámetros en Modelos GARCH

- α_i : Controla la contribución de los errores pasados a la varianza condicional en Modelos GARCH(p, q).
- β_j : Controla la contribución de la varianza pasada a la varianza condicional. Un valor más alto indica una mayor persistencia en la varianza a lo largo del tiempo.

Relación entre Parámetros en Modelos GARCH

 Examinaremos cómo los parámetros en Modelos GARCH se relacionan entre sí, revelando la complejidad y la interdependencia en la modelización de la volatilidad condicional.

Métodos para Estimar Parámetros en Modelos GARCH

 Detallaremos los métodos más utilizados para estimar parámetros en Modelos GARCH, destacando la Máxima Verosimilitud (ML) y otros enfoques relevantes.

Tests para la Aplicabilidad de Modelos GARCH en Series de Tiempo

 Exploraremos pruebas y criterios para determinar la idoneidad de la aplicación de Modelos GARCH en una serie de tiempo, brindando herramientas para una elección informada del modelo.

Ejemplo de serie con heterocedasticidad

Mostrar algún ejemplo real e interesante que luego estudiaremos.

Que sabemos hasta ahora (modelos ARIMA)

punteo de ideas de recuerdo de lo que necesitamos entender.

Simulación Modelo ARCH para distintos valores de p

Mostrar varias serie de volatidad simulada

Inferencia de modelos ARCH

Como estimar los parametros o ajustar modelos

Ajustando a alguna serie simulada

Mostrar el ajuste o lo que sea a la serie simulada antes

Modelo GARCH

Definición de GARCH (Generalized AutoRegressive Conditional Heteroskedasticity)

Un modelo GARCH es una extensión del modelo ARCH que también incluye términos autorregresivos para la varianza condicional.

- Comparación con el modelo ARCH.
- Interpretación de los parámetros.
- Aplicación en finanzas.

Simulación Modelo GARCH para distintos valores

Mostrar varias serie de volatidad simulada

Inferencia de modelos GARCH

Como estimar los parametros o ajustar modelos

Ajustando a alguna serie simulada

Mostrar el ajuste o lo que sea a la serie simulada antes

Entendiendo los parámetros

bla bla bla por las formulas bla bla

Desde simulación

Desde estas simulaciones se ve que bla bla bla

Contenido

- Motivación
- 2 Modelos ARCH(p) y GARCH(p, q)
- 3 Estudio de caso
- 4 Conclusiones
- 6 Referencias

Hacer el estudio del ejemplo inicial

Contenido

- Motivación
- 2 Modelos ARCH(p) y GARCH(p, q)
- 3 Estudio de caso
- 4 Conclusiones
- 5 Referencias

Conclusiones

- Resumen de los puntos clave.
- Importancia de los modelos ARCH y GARCH en el análisis financiero.
- Posibles extensiones y aplicaciones futuras.

Contenido

- Motivación
- 2 Modelos ARCH(p) y GARCH(p, q)
- 3 Estudio de caso
- 4 Conclusiones
- Seferencias

Referencias

- [1] Tim Bollerslev. "Generalized autoregressive conditional heteroskedasticity". En: Journal of Econometrics 31.3 (1986), págs. 307-327. ISSN: 0304-4076. DOI: https://doi.org/10.1016/0304-4076(86)90063-1. URL: https://www.sciencedirect.com/science/article/pii/0304407686900631.
- [2] Robert F Engle. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation". En: *Econometrica* 50.4 (1982), págs. 987-1007. DOI: 10.2307/1912773.

Si, por fin terminamos.

¡Muchas Gracias!

