Generarea variabilelor neuniforme Curs 3

January 23, 2014

Introducere

- ► Fie X o variabilă aleatoare.
- ▶ Generarea v.a X = găsirea unui numar n (mare) de valori pe care le poate lua <math>X.
- Cum se gaseste o astfel de valoare?
- Presupunem că $S_1, S_2, ..., S_n$ sunt v.a. pentru care se cunosc metode de generare (de exemplu variabilele uniforme pe [0,1] se generează cu ajutorul generatorilor de numere aleatoare, generatori care sunt deja implementati în majoritatea limbajelor de programare).
- Atunci o valoare a lui X se poate determina găsind o relație între X și $S_1, S_2, ..., S_n$.
- Algoritm efectiv de generare a lui X = aplicarea de n ori a metodei furnizate de relația dintre X și $S_1, S_2, ..., S_n$.
- Fiecare dintre algoritmii prezentați în curs se referă la o astfel de metodă.

Metoda inversă - Cazul continuu

Fie U o variabilă aleatoare uniformă pe [0,1], cu densitatea de repartiție f(x) și funcția de repartiție F(x).

$$f(x) = \begin{cases} 1, \ \operatorname{dac\check{a}} \ x \in [0,1] \\ 0, \ \operatorname{\hat{in}} \ \operatorname{rest} \end{cases}, \quad F(x) = \begin{cases} 0, \ \operatorname{dac\check{a}} \ x < 0 \\ x, \ \operatorname{dac\check{a}} \ x \in [0,1] \\ 1, \ \operatorname{dac\check{a}} \ x > 1 \end{cases}.$$

Propoziție

Variabila aleatoare U este uniformă pe [0,1] dacă și numai dacă variabila 1-U este uniformă pe [0,1].

Dem:

Fie x < 0. Atunci:

$$P\{1 - U \le x\} = P\{U \ge 1 - x\} = 1 - P\{U < 1 - x\} = 1 - 1 = 0$$

Fie $x \in [0, 1]$. Atunci:

$$P\{1-U \le x\} = P\{U \ge 1-x\} = 1-P\{U < 1-x\} = 1-(1-x) = x$$

Fie x > 1. Atunci:

$$P\{1 - U \le x\} = P\{U \ge 1 - x\} = 1 - P\{U < 1 - x\} = 1 - 0 = 1$$

Teoremă

(Hincin) Fie X o variabilă aleatoare continuă cu funcția de repartiție F. Atunci variabila aleatoare F(X) este uniformă pe intervalul [0,1], iar $F^{-1}(U)$ are funcția de repartiție F.

Dem (a doua parte):

Fie $x \in \mathbb{R}$. Atunci:

$$P\{F^{-1}(U) \le x\} = P\{F(F^{-1}(U)) \le F(x)\} = P\{U \le F(x)\} = F(x)$$

Algoritm M-inversă

Intrare: Inversa funcției de repartiție $F: F^{-1}$.

P1: Se generează U variabilă uniformă pe [0,1];

P2: $X = F^{-1}(U)$;

leșire: X cu funcția de repartiție F(x)

Observăm că dacă în expresia care definește funcția F^{-1} din algoritmul M-Inversă, apare 1-U, atunci, datorită Propoziției 1, 1-U poate fi inlocuită direct cu U.

Exemplu

Fie X o variabilă $Exp(\lambda)$ cu densitatea și funcția de repartiție:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & dac\check{a} \ x \ge 0; \\ 0, & \hat{n} \ rest \end{cases}, \quad f(x) = \begin{cases} 1 - e^{-\lambda x}, & dac\check{a} \ x \ge 0; \\ 0, & \hat{n} \ rest \end{cases}$$

Atunci:

$$F^{-1}(U) = -\frac{1}{\lambda}\ln(1-U)$$

iar algoritmul de generare prin metoda inversă este:

Algoritm M-inversă-Exp

Intrare: Parametrul λ .

P1: Se generează U variabilă uniformă pe [0,1];

P2: $X = -\frac{1}{3} \ln(U)$;

leşire: X cu funcția de repartiție F(x)

Cazul discret

Fie X o variabilă aleatoare discretă cu repartiția:

$$X: egin{pmatrix} a_1 & a_2 & \dots & a_m \ p_1 & p_2 & \dots & p_m \end{pmatrix}$$
 cu $\sum_{i=1}^m p_i = 1$

Funcția de repartiție a lui X va lua valorile:

$$F(x) = \begin{cases} 0, \text{ dacă } x < a_1 \\ p_1, \text{ dacă } a_1 \le x < a_2 \\ p_1 + p_2, \text{ dacă } a_2 \le x < a_3 \\ \dots \\ p_1 + p_2 + \dots + p_k, \text{ dacă } a_k \le x < a_{k+1} \\ \dots \\ 1, \text{ dacă } a_m \le x \end{cases}$$

Algoritmul constă în găsirea valorii a_i astfel încât $F(a_i) = U$, unde U este o variabilă uniformă pe [0,1].

Fie $s_i = \sum_{j=1}^i p_j$. Observăm că:

$$P\{s_{i-1} < U \le s_i\} = F_U(s_i) - F_U(s_{i-1}) = p_i = P\{X = a_i\}$$

Algoritm M-inversă-Discret

Intrare: $s_i = \sum_{j=1}^{i} p_j$ şi a_i , i = 1, 2, ..., m.

P1: Se generează U variabilă uniformă pe [0,1];

P2: i = 1;

P3: Dacă $U \leq s_i \ X = a_i \ \text{STOP}$. Altfel mergi la P4.

P4: i := i + 1, mergi la P3;

leșire: X cu funcția de repartiție F(x)

Exemplu

Simularea unei variabile aleatoare Bernoulli Z:

$$Z: \begin{pmatrix} 0 & 1 \\ q & p \end{pmatrix}$$
 $cu \ p + q = 1$

Z are funcția de repartiție:

$$F(x) = P(Z \le x) = egin{cases} 0, & dacă \ x < 0 \ q, & dacă \ x \in [0, 1) \ 1 & dacă \ x \ge 1 \end{cases}$$

Un algoritm de generare a unei variabile Bernoulli este:

Intrare: Parametrul p, q = 1 - p.

P1: Se generează U variabilă uniformă pe [0,1];

P2: Dacă $U \le q$ Z = 0. Altfel Z = 1.

leşire: Z cu funcţia de repartiţie F(x).

Metoda compunerii sau a amestecării

Cazul discret

Definiție

Funcția de repartiție este o amestecare (sau compunere sau mixtură) discretă a mulțimii de funcții de repartiție $\{F_i(x)\}_{1 \le i \le m}$ cu repartiția discretă

$$J:\begin{pmatrix} 1 & 2 & \dots & m \\ p_1 & p_2 & \dots & p_m \end{pmatrix} \quad cu \quad \sum_{i=1}^m p_i = 1$$

dacă

$$F(x) = \sum_{i=1}^{m} p_i F_i(x).$$

Relația precedenta poate fi scrisă și în funcție de densitățile de repartiție:

$$f(x) = \sum_{i=1}^{m} p_i f_i(x).$$

Fie X variabila aleatoare cu funcția de repartiție F(x) și X_i variabila aleatoare cu funcția de repartiție $F_i(x)$.

Algoritm compunere discretă

```
Intrare: Repartiția lui J, familia de funcții
\{F_i(x)\}_{1 < i < m};
```

P1: Generează J;

P2: Generează X_I cu funcția de repartiție $F_I(x)$;

P3: $X = X_{I}$.

leşire: X cu funcția de repartiție F(x)

Exemplu

Presupunem că la o stație de benzină sosesc m tipuri de mașini și se cunoaște p_i probabilitatea să sosească un automobil de tipul i, $1 \leq i \leq m$. Presupunem că timpul X_i între sosirile autoturismelor de tipul i este distribuit exponențial de parametru λ_i . Atunci timpul dintre două sosiri oarecare, X, are o repartiție mixt exponențială. Variabila X este o amestecare discretă, cu densitatea:

$$f(x) = \begin{cases} 0, & \text{dacă } x < 0 \\ \sum_{i=1}^{m} p_i \lambda_i e^{-\lambda_i x_i}, & \text{dacă } x \ge 0 \end{cases}$$

Prin urmare, o variabila mixt exponențiala poate fi generată cu ajutorul metodei compunerii cazul discret, în care

$$J:\begin{pmatrix}1&2&\dots&m\\p_1&p_2&\dots&p_m\end{pmatrix}\quad cu\quad\sum_{i=1}^mp_i=1$$

$$si\ F_i(x) = 1 - e^{-\lambda_i x}$$
.

Exemplu

Fie X variabila aleatoare cu repartiția Laplace(λ) a cărei densitate este:

$$f(x) = \frac{\lambda}{2}e^{-\lambda|x|}; \quad x \in \mathbb{R}, \quad \lambda > 0$$

Atunci, putem să scriem

$$f(x) = p_1 f_1(x) + p_2 f_2(x)$$

си

$$p_1=p_2=\frac{1}{2}$$

și

Prin urmare un algoritm de generare al variabilei Laplace(λ) poate fi:

Algoritm Laplace

Intrare: parametrul λ .

P1: Se generează U variabilă uniformă pe [0,1];

P2: Dacă $U \le 0.5$ atunci s := -1, altfel s = 1;

P3: Generează $Y \sim Exp(\lambda)$;

P4: X := sY.

leșire: X cu funcția de repartiție F(x)

S se numește semn aleator.

Variabila Lapalace se poate simula ușor și cu metoda inversă.

Metoda compunerii discrete se poate aplica pentru orice densitate de repartiție:

Teoremă

Fie X o variabilă aleatoare cu densitatea de repartiție f(x), $x \in \Delta \subseteq \mathbb{R}$. Fie o diviziune a lui Δ de forma $\Delta = \bigcup_{i=1}^m \Delta_i$, cu $\Delta_i \cap \Delta_j = \varnothing$, $\forall i \neq j$. Notând cu $p_i = P(X \in \Delta_i) > 0$, există densitățile $f_i(x)$, care iau valoarea 0 pentru $x \notin \Delta_i$ astfel încât

$$f(x) = \sum_{i=1}^{m} p_i f_i(x). \tag{1}$$

Dem:

 $p_i = \int_{\Delta_i} f(x) dx \Rightarrow$ funcțiile definite astfel:

$$f_i(x) = egin{cases} rac{f(x)}{p_i} \; \mathsf{dac} f i \; x \in \Delta_i \ 0, \; \mathsf{dac} f i \; x
ot\in \Delta_i \end{cases}$$

sunt densități de repartiție.

Fie un $x \in \Delta$, oarecare, cu $f(x) \neq 0$. Atunci există un i, $1 \leq i \leq m$ astfel încât $x \in \Delta_i$. Atunci avem:

$$f(x) = \frac{f(x)}{p_i}p_i = p_i f_i(x) = \sum_{j=1}^m p_j f_j(x)$$

pentru că $f_j(x) = 0, \forall j \neq i$.

Definiție

Funcția de repartiție F(x) este o amestecare continuă a familiei de funcții de repartiție $\{G(x,Y)\}_{Y\in\mathbb{R}}$ cu funcția de repartiție continuă H(y) a lui Y dacă ea este de forma:

$$F(x) = \int_{\mathbb{R}} G(x, y) dH(y)$$

unde ultima integrală este integrala Stieltjes.

Relația precedenta poate fi scrisă și în funcție de densitățile de repartiție:

$$f(x) = \int_{\mathbb{R}} g(x, y) h(y) dy.$$

Intrare: Funcțiile de repartiție H și G.

P1: Se generează Y cu funcția de repartiție H(y);

P2: Se generează Z_Y cu funcția de repartiție

G(x, Y);

P3: $X = Z_Y$

leșire: X cu funcția de repartiție F(x)

Exemplu

Fie X > 0 o v.a. care reprezintă durata în funcționare a unui aparat. Presupunem că X este o variabilă exponențială de parametru $\eta \lambda$, unde $\lambda > 0$ este un parametru care reprezintă o caracteristică aparatului, iar η este un parametru aleator care indică influența mediului în care lucrează aparatul. Presupunem că η este la rândul ei o variabilă aleatoare și că are densitatea de repartitie Gama(0, b, a):

$$h(\eta) = \begin{cases} \frac{b^a}{\Gamma(a)} \eta^{a-1} e^{-b\eta}, & dac\check{a} \ x \ge 0; \\ 0 & dac\check{a} \ x < 0 \end{cases}.$$

Observăm că X se obține ca o amestecare continuă a unei familii de variabile exponențiale după o distribuție Gama. Densitatea de repartiție a variabilei X are forma:

$$f(x) = \int_0^\infty \eta \lambda e^{-\lambda \eta x} \frac{b^a}{\Gamma(a)} \eta^{a-1} e^{-b\eta} d\eta = \frac{\lambda b^a}{\Gamma(a)} \int_0^\infty \eta^a e^{-\eta(\lambda x + b)} d\eta$$
(2)

Facând schimbarea de variabila

$$\eta(\lambda x + b) = t$$

și ținând cont de faptul ca funcția Gama este:

$$\Gamma(a) = \int_0^\infty t^{a-1} e^{-t} dt,$$

având proprietatea că $\Gamma(a+1) = a\Gamma(a)$, funcția f devine:

$$f(x) = \frac{\lambda b^{a} \Gamma(a+1)}{\Gamma(a)(\lambda x+b)^{a+1}} = \frac{\lambda a}{b} \frac{b^{a+1}}{(\lambda x+b)^{a+1}} = \frac{a\theta}{(\theta x+1)^{a+1}}$$

cu

$$\theta = \lambda/b$$

Deci densitatea lui X este:

$$f(x) = \begin{cases} \frac{a\theta}{(\theta x + 1)^{a+1}}, & \text{dacă } x \ge 0\\ 0 & \text{dacă } x < 0 \end{cases}$$

Variabila cu densitatea f se numește variabilă Lomax, iar algoritmul ei de generare prin metoda compunerii continue (presupunând ca se cunoaște o metodă de generare a unei variabile Gama) se poate scrie astfel:

Algoritm Lomax

Intrare: Parametrii λ , a şi b.

P1: Se generează Y cu repartiția Gama(0,b,a);

P2: Se generează Z_Y cu funcția de repartiție

Exp(x, Y);

P3: $X = Z_Y$

leșire: X cu densitatea de repartiție Lomax.

Metoda respingerii

Mai poate fi numită metoda acceptării-respingerii.

Fie X o variabilă aleatoare pe care vrem să o generăm cu metoda respingerii și fie următoarele elemente cunoscute:

- ► Un procedeu de generare a unei variabile aleatoare *N* cu valori întregi pozitive;
- ▶ Procedee de generare a unor variabile aleatoare $S_i \in S$, $i \ge 1$, unde S este o familie de variabile aleatoare dată;
- ▶ Un predicat $\mathcal{P}(S_1, S_2, ..., S_n)$ care se poate calcula simplu;
- ► Funcția Ψ , astfel încât $X = \Psi(\{S_1, S_2, ..., S_n\}, \mathcal{P}(S_1, S_2, ..., S_n) = \text{true})$

Atunci forma generală a unui algoritm de respingere este:

Intrare: N, S, $\mathcal{P}(S_1, S_2, ..., S_n)$, Ψ .

P1: Se generează N;

P2: Se generează $S_1, S_2, ..., S_n$ din S;

P3: Dacă $\mathcal{P}(S_1, S_2, ..., S_n)$ = true atunci

 $X = \Psi(S_1, S_2, ..., S_n)$ şi STOP, altfel mergi la P1;

leșire: Variabila aleatoare X.

Observăm că

- ▶ Dacă $\mathcal{P}(S_1, S_2, ..., S_n)$ =false atunci mulțimea de variabile aleatoare $\{S_1, S_2, ..., S_n\}$ se respinge, de aici provenind numele de "metoda respingerii".
- ▶ Dacă $p_a = P(\mathcal{P}(S_1, S_2, ..., S_n) = \text{true})$, numită și probabilitate de acceptare, este mare, atunci algoritmul este "bun", altfel algoritmul este prea lent

Trei algoritmi de respingere bazați pe trei teoreme:

Prima teoremă de respingere

Teoremă

Fie X o variabilă aleatoare cu densitatea de repartiție f pentru $x \in \mathbb{R}$. Fie Y o altă variabilă aleatoare pentru care este cunoscută o metodă de generare și a cărei densitate de repartiție este h, astfel încât densitățile f și h iau valori diferite de 0 pe aceeași submulțime $A \subseteq \mathbb{R}$. Presupunem că există o constantă α , cu $0 < \alpha < \infty$ astfel încât $f(x) \le \alpha h(x)$ pentru $\forall x \in A$. Atunci dacă U este o variabilă aleatoare U(0,1), independentă de Y, densitatea de repartiție a variabilei Y, condiționată de

$$0 \le U \le \frac{f(Y)}{\alpha h(Y)}$$

este f.

Trebuie să arătăm că:

$$P\left(Y < x | 0 \le U \le \frac{f(Y)}{\alpha h(Y)}\right) = F(x) = \int_{-\infty}^{x} f(v) dv$$

Fie evenimentele A și B definite astfel:

$$A = \{Y < x\}, \quad B = \left\{0 \le U \le \frac{f(Y)}{\alpha h(Y)}\right\}$$

Atunci trebuie să arătăm că:

$$P(A|B) = F(x)$$

Conform definitiei

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Calculam întâi P(B):

$$P(B) = P\left(0 \le U \le \frac{f(Y)}{\alpha h(Y)}\right) = \int_{-\infty}^{+\infty} \left[\int_{0}^{\frac{f(v)}{\alpha h(v)}} du\right] h(v) dv =$$
$$= \int_{-\infty}^{+\infty} \frac{f(v)}{\alpha h(v)} h(v) dv = \frac{1}{\alpha}.$$

deci

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \alpha \int_{-\infty}^{x} \left[\int_{0}^{\frac{f(v)}{\alpha h(v)}} du \right] h(v) dv =$$
$$= \alpha \int_{-\infty}^{x} \frac{f(v)}{\alpha h(v)} h(v) dv = \int_{-\infty}^{x} f(v) dv = F(x)$$

Observăm că:

- Această teoremă este cunoscută ca "teorema înfășurătoarei" pentru că graficul densității f(x) se poate "înfășura" cu $\alpha h(x)$.
- ▶ Din demonstrație rezultă că probabilitatea de acceptare este $p_a = 1/\alpha$. De aici rezultă că pentru a avea o metodă a înfășurătoarei nebanală, trebuie ca $\alpha > 1$.
- Procedura de respingere este formată din următoarele elemente:
 - ► *N* = 2 variabilă aleatoare constantă;
 - ▶ $S = \{U, Y\};$
 - $ightharpoonup \mathcal{P}(U,Y)$ =true dacă $0 \le U \le \frac{f(Y)}{\alpha h(Y)}$;
 - $\blacktriangleright \ \Psi(U,Y)=Y.$

Exemplu

Fie X o variabilă Gama $(0,1,\nu)$ (adică Gama standard) cu $0<\nu<1$. Variabila X are densitatea de repartiție:

$$f(x) = \begin{cases} \frac{1}{\Gamma(\nu)} x^{\nu-1} e^{-x}, & dac\check{a} \ x \ge 0 \\ 0 & dac\check{a} \ x < 0. \end{cases} ;$$

Vom aplica metoda înfășurătoarei, folosind o densitate Weibull $(0,1,\nu)$:

$$h(x) = \begin{cases} \nu x^{\nu - 1} e^{-x^{\nu}}, & \text{dacă } x \ge 0 \\ 0 & \text{dacă } x < 0 \end{cases}$$

Pentru a determina constanta α de înfășurare analizăm raportul:

$$r(x) = \frac{f(x)}{h(x)} = \frac{1}{\nu \Gamma(\nu)} e^{-x + x^{\nu}},$$

pentru care trebuie să determinam valoarea maximă.

$$r'(x)=0.$$

Soluția, care este și punct de maxim al funcției r(x), este $x_{\max} = \nu^{-\frac{1}{\nu-1}}$ de unde rezultă:

$$\alpha = \frac{e^{\zeta(1-\nu)}}{\Gamma(\nu+1)} cu \zeta = \nu^{\frac{\nu}{1-\nu}}$$

Algoritmul pentru generarea variabilei X prin metoda respingerii este:

Algoritm Gama-Resp

Intrare: ν , $c := 1/\nu$, $\zeta = \nu^{\frac{\nu}{1-\nu}}$, $a = e^{\zeta(\nu-1)}$.

P1: Se generează $Y \sim Weib(0,1,\nu)$ (metoda inversă);

P1.1: $U \sim U(0,1)$;

P1.2:
$$Y := [-\ln(U)]^c$$

P2: Se generează $U \sim U(0,1)$;

P3: Dacă $U \le ae^{Y^{\nu}-Y}$, X := Y, STOP. Altfel, mergi la

P1;

leşire: Variabila aleatoare X.

A doua teoremă de respingere

Teoremă

Fie X o variabilă aleatoare cu funcția de repartiție F, de forma:

$$F(x) = c \int_{-\infty}^{x} Q(\phi(t)) dR(t)$$
 (3)

unde Q este funcția de repartiție a unei variabile aleatoare Z, $Z \in [0, M]$, ϕ este o funcție care ia valori în [0, M] (cu M putând lua și valoarea ∞), iar R este funcția de repartiție a unei variabile aleatoare $Y \in \mathbb{R}$, independente de Z. În aceste condiții funcția de repartiție a variabilei Y condiționată de $Z \leq \phi(Y)$ este F.

Dem:

Mai întâi observam că c din (3) este o constantă de normare, adică:

$$c = \left[\int_{-\infty}^{+\infty} Q(\phi(x)) dR(x) \right]^{-1}.$$

Fie evenimentele A și B definite astfel:

$$A = \{Y < x\}; \quad B = \{Z \le \phi(Y)\}$$

pentru a demonstra teorema trebuie să arătăm că:

$$P(A|B) = F(x)$$
.

Din definiție

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Probabilitatea de realizare a evenimentului B este:

$$P(B) = \int_{-\infty}^{+\infty} \left(\int_0^{\phi(x)} dQ(y) \right) dR(x) = \int_{-\infty}^{+\infty} Q(\phi(x)) dR(x) = \frac{1}{c}.$$

Prin urmare:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = cP(A \cap B) = c \int_{-\infty}^{x} \left(\int_{0}^{\phi(y)} dQ(z) \right) dR(y) =$$
$$= c \int_{-\infty}^{x} Q(\phi(y)) dR(y) = F(x).$$

Observăm că:

- ▶ Probabilitatea de acceptare este $p_a = P(B) = \frac{1}{c}$;
- Elementele algoritmului de respingere sunt
 - ► N = 2;
 - ▶ $S = \{Z, Y\};$
 - ▶ $\mathcal{P}(Z, Y)$ =true dacă $Z \leq \phi(Y)$;
 - $\Psi(Z,Y)=Y.$
- teorema se verifică și dacă relația (3) se scrie în termeni de densități de repartiție:

$$f(x) = cQ(\phi(x))r(x)$$
, cu $r(x) = R'(x)$.

▶ O formă duală a teoremei se obține dacă F(x) este de forma:

$$F(x) = c \int_{-\infty}^{x} (1 - Q(\phi(x))) dR(x)$$
 (4)

cu

$$c = \left[\int_{-\infty}^{+\infty} (1 - Q(\phi(x))) dR(x)\right]^{-1}$$

în acest caz evenimentul B este: $B = \{Z \ge \phi(Y)\}.$

▶ Relația (4) se poate scrie în funcție de densități astfel:

$$f(x) = c(1 - Q(\phi(x)))r(x)$$

iar probabilitatea de acceptare pentru varianta duală este:

$$p_a = P(Z \ge \phi(Y)) = \frac{1}{C}$$

Exemplu

Fie X o varibilă aleatoare cu densitatea:

$$f(x) = c(1 - e^{-\lambda x})\mu e^{-\mu x}, \quad x \ge 0$$
 (5)

unde c este o constantă de normare. Atunci un algoritm de generare a variabilei aleatoare X se poate scrie folosind a doua teoremă de respingere. Avem:

$$\phi(x) = x$$
, $Q(z) = 1 - e^{-\lambda z}$, $z > 0$, $r(x) = \mu e^{-\mu x}$.

Atunci:

$$c = \left[\int_0^{+\infty} (1 - e^{-\lambda x}) \mu e^{-\mu x} dx\right]^{-1} = \left[\frac{\lambda}{\lambda + \mu}\right]^{-1}$$

iar un algoritm pentru generarea lui X este următorul:

Algoritm Resp2

Intrare: Parametrii λ , μ .

P1: Se generează $Z \sim Exp(\lambda)$; P2: Se generează $Y \sim Exp(\mu)$;

P3: Dacă $Z \leq Y$, X := Y, STOP. Altfel, mergi la P1;

leşire: Variabila aleatoare X.

- Algoritmul Resp2 este rapid dacă $\mu << \lambda$.
- Metoda inversă nu este recomandabilă pentru că determinarea inversei funcției F nu este imediată.

A treia teoremă de respingere

Teorema șirului descendent

Teoremă

Fie variabilele $Z_i \sim G(x)$, i=1,2,..., $Z_0 \sim G_0(z)$ independente. Atunci următoarele afirmații sunt adevărate:

1. Dacă x și k sunt fixate atunci:

$$P(x \ge Z_1 \ge Z_2 \ge \dots \ge Z_{k-1} < Z_k) = \frac{[G(x)]^{k-1}}{(k-1)!} - \frac{[G(x)]^k}{k!}.$$
(6)

2. Dacă x este fixat și K este indicele aleator la care se "rupe" șirul descendent (ca la punctul 1), atunci

$$P(K = nr.impar) = P(K \mod 2 = 1) = e^{-G(x)}.$$
 (7)

3. Dacă subșirul descendent este $Z_0 \geq Z_1 \geq ... \geq Z_{K-1} < Z_K$ (adică se rupe la K aleator și incepe cu $Z_0 \sim G_0(x)$), atunci:

$$P(Z_0 < x | K \mod 2 = 1) = \frac{1}{p_a} \int_{-\infty}^{x} e^{-G(t)} dG_0(t),$$
 (8)

unde p_a este constanta de normare:

$$p_a = \int_{-\infty}^{+\infty} e^{-G(x)} dG_0(x). \tag{9}$$

Dem:

1. Fie evenimentele:

$$A = \{x \ge Z_1 \ge Z_2 \ge ... \ge Z_{k-1}\}; \quad B = \{x \ge Z_1 \ge Z_2 \ge ... \ge Z_k\}$$

Observăm că $P(Z_i \le x) = G(x)$ și $P(Z_1 \le x, Z_2 \le x, ..., Z_{k-1} \le x) = [G(x)]^{k-1}$, pentru că variabilele $Z_1, Z_2, ...$ sunt independente.

Deoarece subșirul care definește evenimentul A conține numai una din cele (k-1)! ordini în care se pot afla cele k-1 variabile aleatoare Z_i , $1 \le i \le k-1$, rezultă că:

$$P(A) = \frac{[G(x)]^{k-1}}{(k-1)!}$$

pentru a demonstra (6) observăm că probabilitatea din membrul stâng se scrie $P(A \setminus B)$ și pentru că $B \subseteq A$ avem:

$$P(A \setminus B) = P(A) - P(B) = \frac{[G(x)]^{k-1}}{(k-1)!} - \frac{[G(x)]^k}{k!}$$

iar afirmația 1. este adevărată.

2. Probabilitatea ca indicele aleator K să fie impar este:

$$P(K = \text{nr. impar}) = P(K = 1) + P(K = 3) + ... =$$

$$= 1 - \frac{G(x)}{1!} + \frac{[G(x)]^2}{2!} - \frac{[G(x)]^3}{3!} + ... = e^{-G(x)}$$

3. Observăm că atunci când Z_0 este aleator avem:

$$P(K = \text{nr. impar}) = P(K \mod 2 = 1) = \int_{-\infty}^{+\infty} e^{-G(t)} dG_0(t)$$

Adică, ținând cont de forma probabilității p_a din (9) avem:

$$P(K = \text{nr. impar}) = p_a$$

Conform definiției probabilității condiționate:

$$P(Z_0 < x | K \mod 2 = 1) = \frac{P(\{Z_0 < x\} \cap \{K \mod 2 = 1\})}{P(K \mod 2 = 1)}.$$

Prin urmare:

$$P(Z_0 < x | K \mod 2 = 1) = \frac{1}{p_a} \int_{-\infty}^{x} e^{-G(t)} dG_0(t),$$

ceea ce demonstrează punctul 3 al teoremei.

Variabilele aleatoare X care pot fi generate cu a treia teoremă de respingere sunt acele variabile aleatoare care au funcția de repartiție F, de forma:

$$F(x) = \frac{1}{p_a} \int_{-\infty}^x e^{-G(t)} dG_0(t).$$

Algoritmul rezultat din a treia teoremă de respingere este următorul:

Algoritm Resp3

Intrare: Funcțiile de repartiție G_0 , G.

P1: Se generează $Z_0 \sim G_0(x)$;

P2: $Z^* := Z_0$, K = 1;

P3: Se generează $Z_1 \sim G(x)$;

P4: Dacă $Z_0 \geq Z_1$ mergi la P5, altfel mergi P6;

P5: K := K + 1, $Z_0 := Z_1$, mergi pa P3;

P6: Dacă $K \mod 2 = 1$ $X = Z^*$, STOP. Altfel mergi la

Р1.

leșire: Variabila aleatoare X.

