

Keerthana Nandanavanam
nandanav@usc.edu
Krishna Manoj Maddipatla
km69564@usc.edu
Nidhi Chaudhary
nidhicha@usc.edu
Sumanth Mothkuri

mothkuri@usc.edu

OBJECTIVE

Simulation Environment

03

Research

Reward System

05

Hyperparameter Tuning

Results

07

Trained Model

Objective

 Create an autonomous car parking agent to park in a designated spot in a simulated environment with obstacles

- Real life applications
 - Automated driving cars
 - Parking in crowded areas
 - Vacuum cleaners

Objective

O2 SIMULATION ENVIRONMENT

Research

Reward System

Hyperparameter Tuning

Results

Trained Model

Game Environment

- Open source 3D game in Unity
- Level 1:
 - A bounded arena consisting of multiple parking spots
 - Randomly highlighted spots
 - Fixed obstacles
- Level 2:
 - o Two storey, bounded arena
 - Moving obstacles

Game Modifications

SCOREBOARD

Parking Score,
Obstacle Hit Score,
Wall Hit Score,
Cumulative Reward

NAVIGATION

Keyboard navigation instead of Touchscreen

PARKING SPOTS

Randomly assign a parking spot from the set of available spots

OBSTACLES

Converted boundaries and walls to collision objects

01

Objective

02

Simulation Environment

03

RESEARCH

04

Reward System

05

Hyperparameter Tuning

06

Results

07

Trained Model 80

- Reinforcement Learning
 - Difficult to get training data in supervised learning
 - End goal for the Agent is to discover a behavior (a Policy)
 that maximizes a reward
 - Good Support provided by Unity ML-agents package

Proximal Policy Optimization

- Training data is generated based on the current policy rather than relying on static data
- Involves collecting a small batch of experiences interacting with the environment and using that batch to update its decision-making policy
- More stable than Deep Q Learning
- Easy to implement and tune

- Provide the agent with a set of demonstrations.
- The agent then tries to learn the optimal policy by imitating the expert's decisions.
- Generative Adversarial Imitation Learning(GAIL) directly extracting a policy from data, as if it were obtained by reinforcement learning following inverse reinforcement learning

Agent design

INPUT OBSERVATION SPACE

- Size = 27
- Relative and normalized distance

EPISODE BEGIN

- Random target location is generated
- Car Agent will start at random location

HEURISTIC

- Take left
- Take right
- No action

EPISODE END

- Parked correctly
- Hit Obstacle/Wall

01

Objective

02

Simulation Environment

03

Research

04

REWARD SYSTEM

05

Hyperparameter Tuning

06

Results

07

Trained Model 80

Reward System

S.No	Condition	Reward [PPO]	Reward [GAIL]
1.	Hit the wall [Episode Ends]	-0.5	-0.5
2.	Hit an obstacle [Episode Ends]	-0.5	-0.5
3.	Car Parked [Episode Ends]	+5	+5
4.	Within 2.5 units of distance to the goal location	+0.00008	+0.00003
5.	Best current distance to the goal location	+0.00002	+0.00002
6.	Moving towards the goal but not the best distance to the goal in the current episode	-0.00004	+0.00001
7.	Moving away from the goal	-0.00008	-0.00002
8.	Within 2 units of distance to the wall	-0.005	-0.005
9.	Within 2 units of distance to the obstacle	-0.005	-0.005

01

Objective

02

Simulation Environment

03

Research

04

Reward System

05

HYPERPARAMETER TUNING 06

Results

07

Trained Model

80

Hyperparameters

- Performed on 9 different hyperparameters *
- Low learning rate of 1e-05, high batch and buffer size for stability

PPO + LSTM

- batch size = 512
- buffer size = 10240
- beta = 0.001
- epsilon = 0.3
- hidden units= 64
- Number of layers = 2
- Normalize = True
- lambd=0.92

PPO + LSTM + GAIL

- batch size = 256
- buffer size = 20480
- beta = 0.03
- epsilon = 0.1
- hidden units= 64
- Number of layers = 2
- Normalize = False
- lambd=0.92
- Gail strength = 0.7

01

Objective

02

Simulation Environment

03

Research

04

Reward System

05

Hyperparameter Tuning

06

RESULTS

07

Trained Model

80

Results

- Cumulative rewards keep on increasing with the number of steps for both PPO and PPO with GAIL.
- Entropy decreases for both as well!

Inference Statistics

138/150

Times parked with PPO + GAIL for new locations

121/150

Times parked with PPO + GAIL for same locations

GAIL with PPO performs much better!

01

Objective

02

Simulation Environment

03

Research

04

Reward System

05

Hyperparameter Tuning

06

Results

TRAINED MODEL

Demo

Future Work

1 LEVEL 2 RESEARCH

2 GAME MODIFICATION

3 LEVEL 2 TRAINING

Work Division

KEERTHANA

- Algorithm Research
- GAIL Implementation
- Hyperparameter Tuning
- Positive reward system design

KRISHNA

- Game modifications
- PPO, GAIL
- HyperparameterResearch & Design
- Positive reward system design

HDIH

- Algorithm Research
- PPO, RDN
- HyperparameterResearch & Design
- Negative reward system design

SUMANTH

- Curiosity Learning
- Hyperparameter Tuning
- Object detection
- Architecture Design

THANK YOU

AND STAY TUNED FOR LEVEL 2!

ANY QUESTIONS?

Project Timeline

Hyperparameters

learning rate = 1e-05 Lambd = 0.92 No normalization

	<u> </u>		
SL.No	Parameters	Steps	Result
1	PPO, batch size = 256, buffer size = 10240, beta = 0.01, epsilon = 0.3, layers = 2, hidden units = 128, time horizon = 256	5M	×
2	PPO, batch size = 32, buffer size = 2048, beta = 0.01, epsilon = 0.3, layers = 2, hidden units = 64, time horizon = 128	1M	*
3	PPO, batch size = 32, buffer size = 3028, beta = 0.03, epsilon = 0.1, layers = 2, hidden units = 64, time horizon = 256	1M	×
4	PPO, batch size = 256, buffer size = 20480, beta = 0.03, epsilon = 0.1, layers = 2, hidden units = 64, time horizon = 256	1M	×
5	PPO, batch size = 256, buffer size = 20480, beta = 0.03, epsilon = 0.1, layers = 3, hidden units = 128, time horizon = 256	5M	×

Hyperparameters

learning rate = 1e-05 Lambd = 0.92

SL.No	Parameters	Steps	Result
6	PPO with RND, gamma: 0.99, strength: 0.01, encoding_size: 64, learning_rate: 0.0001, batch size = 512, buffer size = 10240, beta = 0.001, epsilon = 0.3, normalize = True, layers = 2, hidden units = 64, time horizon = 128	4M	*
7	PPO with Curiosity, gamma: 0.99, strength: 0.2, encoding_size: 128, learning_rate: 0.0001, batch size = 512, buffer size = 10240, beta = 0.001, epsilon = 0.3, normalize = True, layers = 2, hidden units = 64, time horizon = 128	1M	×
8	PPO, LSTM, batch size = 512, buffer size = 10240, beta = 0.001, epsilon = 0.3, hidden units= 64 number of layers = 2, normalize = True	5M	V
9	PPO with gail, LSTM, batch size = 256, buffer size = 20480, beta = 0.03, epsilon = 0.1, hidden units = 64, number of layers = 2, gail strength = 0.7, normalize = False	5M	*