Version Spaces + Candidate Elimination

Lecture Outline:

- Quick Review of Concept Learning and General-to-Specific Ordering
- Version Spaces
- The Candidate Elimination Algorithm
- Inductive Bias

Reading:

Chapter 2 of Mitchell

• One limitation of the **FIND-S** algorithm is that it outputs just one hypothesis consistent with the training data – there might be many.

To overcome this, introduce notion of **version space** and algorithms to compute it.

• One limitation of the **FIND-S** algorithm is that it outputs just one hypothesis consistent with the training data – there might be many.

To overcome this, introduce notion of **version space** and algorithms to compute it.

• A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

Consistent
$$(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

• One limitation of the **FIND-S** algorithm is that it outputs just one hypothesis consistent with the training data – there might be many.

To overcome this, introduce notion of **version space** and algorithms to compute it.

• A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

Consistent
$$(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

• The version space, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h,D)\}$$

• One limitation of the **FIND-S** algorithm is that it outputs just one hypothesis consistent with the training data – there might be many.

To overcome this, introduce notion of **version space** and algorithms to compute it.

• A hypothesis h is **consistent** with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D.

Consistent
$$(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

• The version space, $VS_{H,D}$, with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D.

$$VS_{H,D} \equiv \{h \in H | Consistent(h,D)\}$$

- Note difference between definitions of *consistent* and *satisfies*:
 - an example *x satisfies* hypothesis *h* when h(x) = 1, regardless of whether *x* is +ve or –ve example of target concept
 - an example x is *consistent* with hypothesis h iff h(x) = c(x)

The LIST-THEN-ELIMINATE Algorithm

- Can represent version space by listing all members.
- Leads to **List-Then-Eliminate** concept learning algorithm:
 - 1. $VersionSpace \leftarrow$ a list containing every hypothesis in H
 - 2. For each training example, $\langle x, c(x) \rangle$ remove from *VersionSpace* any hypothesis h for which $h(x) \neq c(x)$
 - 3. Output the list of hypotheses in *VersionSpace*
- List-Then-Eliminate works in principle, so long as version space is finite.
- However, since it requires exhaustive enumeration of all hypotheses in practice it is not feasible.
- Is there a more compact way to represent version spaces?

- The **Candidate-Elimination** algorithm is similar to **List-Then-Eliminate** algorithm but uses a more compact representation of version space.
 - represents version space by its most general and most specific members

- The **Candidate-Elimination** algorithm is similar to **List-Then-Eliminate** algorithm but uses a more compact representation of version space.
 - represents version space by its most general and most specific members
- For *EnjoySport* example **Find-S** outputs the hypothesis: $h = \langle Sunny, Warm, ?, Strong, ?, ? \rangle$ which was one of 6 hypotheses consistent with the data.

COM3250 / 6170 4-a 2010-2011

- The **Candidate-Elimination** algorithm is similar to **List-Then-Eliminate** algorithm but uses a more compact representation of version space.
 - represents version space by its most general and most specific members
- For *EnjoySport* example **Find-S** outputs the hypothesis: $h = \langle Sunny, Warm, ?, Strong, ?, ? \rangle$ which was one of 6 hypotheses consistent with the data.

- The **Candidate-Elimination** algorithm represents the version space by recording only the most general members (*G*) and its most specific members (*S*)
 - other intermediate members in general-to-specific ordering can be generated as needed

COM3250 / 6170 4-b 2010-2011

- The General boundary, G, of version space $VS_{H,D}$ is the set of its maximally general members
- The **Specific boundary**, S, of version space $VS_{H,D}$ is the set of its maximally specific members

- The General boundary, G, of version space $VS_{H,D}$ is the set of its maximally general members
- The Specific boundary, S, of version space $VS_{H,D}$ is the set of its maximally specific members
- Version Space Representation Theorem

Every member of the version space lies between these boundaries

$$VS_{H,D} = \{ h \in H | (\exists s \in S) (\exists g \in G) (g \ge_g h \ge_g s) \}$$

where $x \ge_g y$ means x is more general or equal to y (see Mitchell, p. 32, for proof)

- The General boundary, G, of version space $VS_{H,D}$ is the set of its maximally general members
- The **Specific boundary**, S, of version space $VS_{H,D}$ is the set of its maximally specific members
- Version Space Representation Theorem

Every member of the version space lies between these boundaries

$$VS_{H,D} = \{ h \in H | (\exists s \in S) (\exists g \in G) (g \ge_g h \ge_g s) \}$$

where $x \ge_g y$ means x is more general or equal to y (see Mitchell, p. 32, for proof)

- Intuitively, Candidate-Elimination algorithm proceeds by
 - initialising G and S to the maximally general and maximally specific hypotheses in H
 - considering each training example in turn and
 - * using positive examples to drive the maximally specific boundary up
 - * using negative examples to drive the maximally general boundary down

$G \leftarrow$ maximally general hypotheses in H						
$S \leftarrow$ maximally specific hypotheses in H						

$G \leftarrow$ maximally general hypotheses in H							
$S \leftarrow$ maximally specific hypotheses in H							
For each training example d , do							

 $G \leftarrow$ maximally general hypotheses in H $S \leftarrow$ maximally specific hypotheses in HFor each training example d, do • If *d* is a positive example

•

- If *d* is a positive example
 - Remove from G any hypothesis inconsistent with d

 $G \leftarrow$ maximally general hypotheses in H

 $S \leftarrow$ maximally specific hypotheses in H

- If *d* is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d

 $G \leftarrow$ maximally general hypotheses in H

 $S \leftarrow$ maximally specific hypotheses in H

- If *d* is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - * Remove *s* from *S*

 $G \leftarrow$ maximally general hypotheses in H

 $S \leftarrow$ maximally specific hypotheses in H

- If *d* is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - * Remove *s* from *S*
 - * Add to S all minimal generalizations h of s such that

- $G \leftarrow$ maximally general hypotheses in H
- $S \leftarrow$ maximally specific hypotheses in H

- If *d* is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - * Remove *s* from *S*
 - * Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of G is more general than h

- $G \leftarrow$ maximally general hypotheses in H
- $S \leftarrow$ maximally specific hypotheses in H

- If *d* is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - * Remove *s* from *S*
 - * Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of G is more general than h
 - * Remove from S any hypothesis that is more general than another hypothesis in S

- $G \leftarrow$ maximally general hypotheses in H
- $S \leftarrow$ maximally specific hypotheses in H

- If *d* is a positive example
 - Remove from G any hypothesis inconsistent with d
 - For each hypothesis s in S that is not consistent with d
 - * Remove s from S
 - * Add to S all minimal generalizations h of s such that
 - 1. h is consistent with d, and
 - 2. some member of *G* is more general than *h*
 - * Remove from S any hypothesis that is more general than another hypothesis in S
- If *d* is a negative example
 - Remove from S any hypothesis inconsistent with d
 - For each hypothesis g in G that is not consistent with d
 - * Remove g from G
 - * Add to G all minimal specializations h of g such that
 - 1. h is consistent with d, and
 - 2. some member of *S* is more specific than *h*
 - * Remove from G any hypothesis that is less general than another hypothesis in G

The CANDIDATE-ELIMINATION Algorithm: Example

Training Examples:

T1: $\langle Sunny, Warm, Normal, Strong, Warm, Same \rangle, Yes$

T2: $\langle Sunny, Warm, High, Strong, Warm, Same \rangle, Yes$

T3: $\langle Rainy, Cold, High, Strong, Warm, Change \rangle$, No

T4: $\langle Sunny, Warm, High, Strong, Cool, Change \rangle$, Yes

The CANDIDATE-ELIMINATION Algorithm: Remarks

- Version space learned by **Candidate-Elimination** algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in *H* that describes target concept

In such cases algorithm may converge to empty version space

The CANDIDATE-ELIMINATION Algorithm: Remarks

- Version space learned by **Candidate-Elimination** algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in H that describes target concept

In such cases algorithm may converge to empty version space

- If algorithm can request next training example (e.g. from teacher) can increase speed of convergence by requesting examples that split the version space
 - E.g. T5: ⟨Sunny, Warm, Normal, Light, Warm, Same⟩ satisfies 3 hypotheses in previous example
 - * If T5 positive, S generalised, 3 hypotheses eliminated
 - * If T5 negative, G specialised, 3 hypotheses eliminated
 - Optimal query strategy is to request examples that exactly split version space converge in $\lceil log_2|VS| \rceil$ steps. However, this is not always possible.

- When using (i.e **not** training) a classifier that has not completely converged, new examples may be
 - 1. classed as positive by all $h \in VS$
 - 2. classed as negative by all $h \in VS$
 - 3. classed as positive by some, and negative by other, $h \in VS$

Cases 1 and 2 are unproblematic. In case 3. may want to consider proportion of positive vs. negative classifications (but then *a priori* probabilities of hypotheses are relevant)

Inductive Bias

- As noted, version space learned by **Candidate-Elimination** algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in *H* that describes target concept

What if no concept in *H* that describes the target concept?

Inductive Bias

- As noted, version space learned by **Candidate-Elimination** algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in *H* that describes target concept

What if no concept in *H* that describes the target concept?

• Consider the training data

Example	Sky	Temp	Humid	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Cloudy	Warm	Normal	Strong	Warm	Same	Yes
3	Rainy	Warm	Normal	Strong	Warm	Same	No

Inductive Bias

- As noted, version space learned by **Candidate-Elimination** algorithm will converge towards correct hypothesis provided:
 - no errors in training examples
 - there is a hypothesis in H that describes target concept

What if no concept in *H* that describes the target concept?

• Consider the training data

Example	Sky	Temp	Humid	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Cloudy	Warm	Normal	Strong	Warm	Same	Yes
3	Rainy	Warm	Normal	Strong	Warm	Same	No

• No hypotheses consistent with 3 examples.

Most specific hypothesis consistent with Ex 1 and 2 and representable in H:

⟨?, Warm, Normal, Strong, Warm, Same⟩

But this is inconsistent with Ex 3.

Inductive Bias (cont)

• Need more expressive hypothesis representation language.

E.g. allow disjunctive or negative attribute values:

$$Sky = Sunny \lor Cloudy$$

$$Sky \neq Rainy$$

An Unbiased Learner

- What about ensuring **every** concept can be represented in *H*?
 - Since concepts are subsets of instance space X, want H to be able to represent any set in power set of X
 - * for *EnjoySport* there were 96 possible instances so, power set contains $2^{96} \approx 10^{28}$ possible target concepts
 - * recall biased conjunctive hypothesis space can represent only 973 of these
- Can do this by allowing hypotheses that are arbitrary conjunctions, disjunctions and negations of our earlier hypotheses
 - New problem: concept learning algorithm cannot generalise beyond observed examples!
 - * S boundary = disjunction of positive examples exactly covers observed positive examples
 - * G boundary = negation of disjunction of negative examples exactly rules out observed negative examples

An Unbiased Learner

- Capacity of **Candidate-Elimination** to generalise lies in its implicit assumption of **bias** that target concept can be represented as a conjunction of attribute values
- Fundamental property of inductive inference:

 a learner that makes no a priori assumptions regarding the identity of the target concept has
 no rational basis for classifying any unseen instances
 - I.e. bias-free learning is futile

Inductive Bias, More Formally

• Since all inductive learning involves bias, useful to characterise learning approaches by the type of bias they employ

• Consider

- concept learning algorithm L
- instances X, target concept c
- training examples $D_c = \{\langle x, c(x) \rangle\}$
- let $L(x_i, D_c)$ denote the classification, positive or negative, assigned to the instance x_i by L after training on data D_c .

Definition:

The **inductive bias** of L is any minimal set of assertions B such that for any target concept c and corresponding training examples D_c

$$(\forall x_i \in X)[(B \land D_c \land x_i) \vdash L(x_i, D_c)]$$

where $A \vdash B$ means A logically entails B

Modelling Inductive Systems by Deductive Systems

• The version space with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H consistent with all the examples in D.

- The version space with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H consistent with all the examples in D.
- The version space may be compactly represented by recording its **general boundary** *G* and **specific boundary** *S*.

Every hypothesis in the version space is guaranteed to lie between G and S by the **version** space representation theorem.

- The version space with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H consistent with all the examples in D.
- The version space may be compactly represented by recording its **general boundary** *G* and **specific boundary** *S*.
 - Every hypothesis in the version space is guaranteed to lie between G and S by the **version** space representation theorem.
- The Candidate-Elimination algorithm exploits this theorem by searching for *H* for the version space by using the examples in training data *D* to progressively generalise the specific boundary and specialise the general boundary.

- The version space with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H consistent with all the examples in D.
- The version space may be compactly represented by recording its **general boundary** *G* and **specific boundary** *S*.
 - Every hypothesis in the version space is guaranteed to lie between G and S by the **version** space representation theorem.
- The Candidate-Elimination algorithm exploits this theorem by searching for *H* for the version space by using the examples in training data *D* to progressively generalise the specific boundary and specialise the general boundary.
- There are certain concepts the **Candidate-Elimination** algorithm cannot learn because of the **bias** of the hypothesis space every concept must be representable as a conjunction of attribute values.

- The version space with respect to a hypothesis space H and a set of training examples D is the subset of all hypotheses in H consistent with all the examples in D.
- The version space may be compactly represented by recording its **general boundary** *G* and **specific boundary** *S*.
 - Every hypothesis in the version space is guaranteed to lie between G and S by the **version** space representation theorem.
- The Candidate-Elimination algorithm exploits this theorem by searching for *H* for the version space by using the examples in training data *D* to progressively generalise the specific boundary and specialise the general boundary.
- There are certain concepts the **Candidate-Elimination** algorithm cannot learn because of the **bias** of the hypothesis space every concept must be representable as a conjunction of attribute values.
- In fact, all inductive learning supposes some *a priori* assumptions about the nature of the target concept, or else there is no basis for generalisation beyond observed examples: bias-free learning is futile.