BTS - Maths+STI - Correction RL par C

1. Vue d'ensemble

Ce circuit est constitué d'un moteur modélisé par une inductance L = 36 mH et une résistance R = 20 Ω (branche 1) associé en dérivation à un condensateur C = 68 μ F et un interrupteur (branche 2).

L'ensemble est alimenté par une source de tension sinusoïdale secteur $u(t)=240\sqrt{2}\sin(100\pi t)$, modélisée par un vecteur de Fresnel u=240 (en V).

avant le temps t=0, l'interrupteur est ouvert et le régime permanent est établi. On ferme l'interrupteur à t=0. On arrondira les résultats à un chiffre après la virgule et au degrès près.

Exercice 1:

- 1. Quelle pratique en électricité consiste à utiliser un condensateur en parallèle d'un circuit inductif, et pourquoi ?
- 2. Justifier que le facteur de puissance du moteur est 87%.

2. Impédances et intensités

Exercice 2 : On se place en régime permanent sinusoïdal.

- 1. Calculer l'impédance équivalente dans le moteur (branche 1) et en déduire que $\underline{i_1}=10,5e^{\mathrm{j}(-30^\circ)}$ A, et tracer cette intensité.
- 2. Calculer l'impédance équivalente du condensateur (branche 2), en déduire i_2 et la tracer.
- 3. En déduire que l'intensité débitée par le générateur est $\underline{i}=9,\!1$ A, et la tracer.
- 4. Est-ce en accord avec les intensités mesurées (cf capture) avant et après la fermeture de l'interrupteur ?

1 sur 2 12/01/2023 23:17

3. Le régime transitoire

Exercice 3:

- 1. En appliquant la loi des mailles avec la branche 1, établir que $\left|u=Li_1'+Ri_1
 ight|$.
- 2. En appliquant la loi des mailles avec la branche 2, établir que $i_2 = Cu'$.
- 3. À partir de la relation $i_2=Cu'$, déduire, en précisant les opérations mathématiques utilisées, que $Ri_2=RCu'$ et que $Li_2' = LCu''$.
- 4. En combinant les réponses entourées en vert, conclure (avec la loi des nœuds) que dans ce circuit : Li'+Ri=LCu''+RCu'+u .
- 5. L'équation homogène associée à cette dernière équation différentielle est Li'+Ri=0. La résoudre.
- 6. Quelle est la durée du régime transitoire ?
- 7. En déduire que les solutions générales sont : $K\mathrm{e}^{-556\mathrm{t}} + 9,\!1\sin(100\pi\mathrm{t})$
- 8. En donnant les conditions juste avant la fermeture de l'interrupteur, expliquer que K=-7,4.

Aide:

- 1. $F_p=\cos \varphi$, où $\varphi=\arg\left(\underline{z}_{\mathrm{moteur}}\right)=\arctan\left(\frac{y}{x}\right)$ (car $x=R\geqslant 0$ ici). 2. On utilise la loi d'Ohm : $\underline{i}_1=\frac{\underline{u}}{\underline{z}_1}$. Même chose pour \underline{i}_2 .

Le calcul peut être fait en utilisant la calculatrice ; On place ensuite le nombre complexe obtenu dans le diagramme. L'intensité totale s'obtient avec la loi des nœuds.

3. Pour la question 1: on ignore la branche 2 et on applique naturellement la loi des mailles.

Pour la question 2 : $u=u_C=rac{q_2}{C}$: penser à dériver la relation.

Pour la question 3 : il n'y a pas de physique à utiliser ici : on peut multiplier les deux membres de l'égalité de départ par un même nombre, ou dériver, ça va rester =.

Question 6 : $\tau = \frac{-1}{r}$ avec r solution de l'équation caractéristique précédente ; un régime transitoire dure par convention

Question 7 : Solution générale = Reg. transitoire + Reg. permanent...

2 sur 2 12/01/2023 23:17