67800 | Probabilistic Methods in Artificial Intelligence | Ex 1

Guy Lutsker 207029448

Q1 - Warmup

(a) What is the general expression for the joint probability defined by our MN (like the one in Fig. 1)?

Solution:

$$P(\mathcal{Y}) = \frac{1}{Z} \prod_{i} \phi_{Y_i} \cdot \prod_{j} \phi_{P_j}$$

(b) What are the different factors and their parameters definition?

Solution:

Our factors are $\phi_{Y_i}(Y_i), \phi_{P_j}(Y_j)$ with $Y_j \subset \mathcal{Y}$

(c) Formally (as a mathematical expression) define the message decoding task.

Solution:

$$\hat{Y} = \underset{Y}{\operatorname{argmax}} P(Y)$$

$$\operatorname{s.t} HY = 0$$

(d) If the probability for an error in each bit is 5%, what is the chance of receiving a correct 128-bit message \widetilde{Y} ?

Solution:

$$0.95^{128} = 0.0014$$

(approximately)

\mathbf{Q}^{2}

I have implemented the code, and chose to run:

```
graph.evaluateWeight(np.array([1, 0, 1, 0, 1, 0])), graph.evaluateWeight(np.array([0, 1, 0, 0, 0, 0])), graph.evaluateWeight(np.array([1, 0, 0, 0, 0, 1]))
```

```
do_pa2 (19) ×

Type 'copyright', 'credits' or 'license' for more information

| Python 7.19.0 -- An enhanced Interactive Python. Type '?' for help.

| PyDev console: using IPython 7.19.0

| Python 3.7.6 (default, Jan 8 2020, 20:23:39) [MSC v.1916 64 bit (AMD64)] on win32

| O In[2]: runfile('C:/University/Year 3/Semester 2/67800 Probabilistic Methods in Artifical Intelligence/

| Doing part (b): Should see 0.0, 0.0, >0.0

| O 0.0 5.6406250000000002e-06
```

Figure 1: Output of part b

As we can see the output was as expected by the algorithm.

Q3

Implemented.

Q4

Run your loopy belief propagation code for 50 iterations. After the final iteration, plot the estimated posterior probability (conditioned on the received, noisy message) that each codeword bit equals one:

Figure 2: Output of part c

If we decode by setting each bit to the maximum of its corresponding marginal, would we find the right codeword?

Answer: We would still be able to finf the right answer even if we decodes by setting each bit to the maximum of its corresponding marginal since the argmax value would be 0 for each character of the word.

Q5:

On a single plot, display 10 curves showing Hamming distance versus iteration for each trial:

Figure 3: Output for Q5

Is BP a reliable decoding algorithm?

Answer: It would seem as though BP is not a reliable decoding algorithm as some runs did not converge to the right answer and so its successes rate is not great.

Q6

Repeat part (d) with two higher error probabilities, ε = 0.08 and ε = 0.10:

Figure 4: Output for Q6

As we can see, as ε increases more runs are unable to reach the right answer, and tend to fail. This makes seance as ε represents the probability of error. In addition the runs that do fail have a larger Hamming distance as ε increases - $\varepsilon=0.06$ had a maximal distance of 30, $\varepsilon=0.08$ had 40, and $\varepsilon=0.1$ had 60, which too makes seance.

Q7

Plot first the noisy input image and then images showing the output of the sum-product decoder after 0, 1, 2, 3, 5, 10, 20, and 30 iterations:

Figure 5: Output for Q7