ti23_assignment_04_Alabrsh_Panov_Zeitler

1.a)	Implemented 2:1 MUX only using AND, OR, and NOT gates → siehe src (1a_2to1_MUX.dig)
1.b)	Implemented 8:1 MUX using several copies of the 2:1 MUX → siehe src (1a_8to1_MUX.dig)
1.c)	Imlemented simplified version of the depicted circuit only using one 4:1 MUX gate → siehe src (1a_4to1_MUX.dig)
2.a)	Implemented Half-Adder only using NAND gates → siehe src (2a_HalfAdder.dig)
2.b)	Implemented Full-Adder based on your Half-Adder only using NAND gates → siehe src (2b_FullAdder.dig)
2.c) /2.d)	Implemented 4-bit Ripple-Carry-Adder by using the Full-Adder circuit with a test-bench to verify correctness → siehe src (2c2b_4bitRippleCarryAdder_withTB.dig)
3.a)	Implemented circuit → siehe src (3a_2erComplement_circuit.dig) Note: - 2er Komplement = negierte 4bit binäre Zahl + eins (1000)
3.b)	Implemented circuit → siehe src (3b_Subtraction_circuit.dig) Note: - Differents (D) = B (normale Inputs) – 2er Komplement - das Carry Out hier ist noch irrelevant
3.c)	
3.d)	Implemented testbench → siehe src (3cd_Subtraction_circuit.dig) Note: - Beispiele implementiert mit den Fällen: B = A / B > A / B < A

Aufgabenbearbeitung:

Aufgabe 1 \rightarrow Rahaf, Christian, Cora

Aufgabe 2 → Rahaf, Christian, Cora

Aufgabe 3 → Rahaf, Christian, Cora