AI-Powered Concrete Strength Prediction & Supplier Recommendation System

Project Overview

The **Ai Powered Concrete Strength** is a machine learning–driven web application that predicts the **compressive strength of concrete** based on its composition and age.

In addition to prediction, the system provides **supplier recommendations** for concrete materials based on cost, reliability, and delivery time — helping engineers and construction companies make informed decisions.

The complete system is built using **FastAPI**, **scikit-learn**, and **MongoDB Atlas**, and is containerized using **Docker** for scalable deployment.

& Project Objectives

#	Objective	Status
1	Gather and preprocess a reliable concrete strength dataset	✓ Achieved
2	Train a machine learning regression model to predict concrete compressive strength	✓ Achieved
3	Evaluate model accuracy and optimize performance	Achieved (90%)
4	Integrate supplier recommendation logic	✓ Achieved
5	Build a full-stack FastAPI-based web interface for prediction and supplier selection	✓ Achieved
6	Connect application with a cloud database (MongoDB Atlas)	✓ Achieved
7	Dockerize the entire application for deployment	✓ Achieved
8	Push final Docker image to Docker Hub for cloud deployment	✓ Achieved

III Dataset Description

Source

The dataset was gathered from **kaggle**, primarily based on the , a well-known dataset in regression analysis and materials prediction.

Dataset File

concrete_data.csv

Features

Column	Description	
cement	Amount of cement (kg/m³)	
slag	Blast furnace slag (kg/m³)	
flyash	Fly ash (kg/m³)	
water	Water content (kg/m³)	
superplasticizer	Chemical admixture (kg/m³)	
coarseaggregate	Coarse aggregate (kg/m³)	
fineaggregate	Fine aggregate (kg/m³)	
age	Age of concrete sample (days)	
csMPa	Compressive strength (MPa) – Target variable	

(2) Machine Learning Model

Algorithm

The project used a **Random Forest Regressor** (from scikit-learn) to predict compressive strength.

Workflow

- 1. Loaded and cleaned data using pandas and numpy
- 2. Normalized feature values
- 3. Split into 80% training and 20% testing data
- 4. Trained the model using RandomForestRegressor
- 5. Evaluated with R² score and MSE

Results

- Accuracy (R² Score): 0.95 → 95%
- Error Rate: Very low
- **Interpretation:** The model accurately captures relationships between ingredients and compressive strength.

Application Features

1. Concrete Strength Prediction

- User enters values for materials and concrete age.
- Model predicts compressive strength in MPa.

2. Supplier Recommendations

- Suggests top suppliers ranked by:
 - Total cost

- Delivery time
- Reliability score
- Supplier data stored in MongoDB Atlas.

3. Prediction History

• Each prediction (inputs + result) saved in the database.

4. Responsive Web Interface

- Built using FastAPI and Jinja2 templates.
- User-friendly forms and data tables.

Database Configuration

- Database: MongoDB Atlas (Cloud-hosted)
- Collections:
 - o predictions → stores user inputs and predicted results
 - o suppliers → supplier details (cost, reliability, delivery)

Environment Variables

```
MONGODB_URI=mongodb+srv://tabarakkhan:****@cluster0.rmellx6.mongodb.net/?
appName=Cluster0
MONGODB_DB=zynex_db
MODEL_PATH=models/concrete_strength_model.pkl
SUPPLIERS_CSV=data/suppliers.csv
```

Category	Technology
Frontend	HTML, CSS, Jinja2
Backend	FastAPI
Machine Learning	scikit-learn, pandas, numpy
Database	MongoDB Atlas
Deployment	Docker
Container Registry	Docker Hub
Language	Python 3.10

Dockerization & Pushing

Dockerfile

```
FROM python:3.10-slim
WORKDIR /app
COPY . .
RUN pip install --no-cache-dir -r requirements.txt
EXPOSE 8000
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000"]
```

Docker Commands

```
docker build -t zynex-ai-app .
docker tag zynex-ai-app tabarakallah/zynex-ai-app:latest
docker push tabarakallah/zynex-ai-app:latest
```

Achievement Summary

Task	Status	Description
Data Gathering		Collected and cleaned dataset
Model Training		Trained Random Forest model
Model Evaluation		Achieved 95% accuracy
Web Development		Built FastAPI frontend/backend
Database Integration		Linked MongoDB Atlas
Supplier System		Implemented supplier ranking logic
Dockerization		Built and containerized app
Cloud Registry		Uploaded to Docker Hub

DockerHub Image Link:https://hub.docker.com/r/tabarakallah/zynex-ai-app

Conclusion

The Ai Powered Concrete Strength Insight Platform successfully achieved all project goals:

Trained an accurate machine learning model for predicting concrete strength (95% accuracy)

Developed a full-stack web interface

Integrated a supplier recommendation engine

Connected with a real MongoDB Atlas cloud database

Containerized and deployed the application using Docker

This demonstrates a complete end-to-end AI system that can be easily deployed in production or scaled for industry use.

Future Improvements

- 1. Deploy to a free hosting provider (Render, Railway, Hugging Face Spaces)
- 2. Add user authentication for suppliers and engineers
- 3. Create analytics dashboards
- 4. Extend model with deep learning for more robust predictions

Author

Tabarak Khan Al & Machine Learning Developer Docker Hub – tabarakallah