Bayesian Statistics III/IV (MATH3341/4031)

Michaelmas term, 2021

Handout 12: Credible sets

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Aim: To explain and produce credible regions in the Bayesian framework.

References:

- Berger, J. O. (2013; Section 4.3.2). Statistical decision theory and Bayesian analysis. Springer Science & Business Media.
- Robert, C. (2007; Section 5.5). The Bayesian choice: from decision-theoretic foundations to computational implementation. Springer Science & Business Media.

Web applets:

• https://georgios-stats-1.shinyapps.io/demo_CredibleSets/

1 Set-up and aim

Notation 1. Consider a Bayesian model

$$\begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi(\cdot) \end{cases}$$

where $y:=(y_1,...,y_n)\in\mathcal{Y}$ is a sequence of observables, assumed to be generated from the parametric sampling distribution $F(y|\theta)$ with pdf/pmf $f(y|\theta)$ and labeled by an unknown parameter $\theta\in\Theta$ with a prior distribution $\Pi(\theta)$ with pdf/pmf $\pi(\theta)$. Also assume a sequence of m future outcomes $z=(y_{n+1},...,y_{n+m})$.

AIM: Instead of just reporting a point value for θ (or z) and the associated standard error, it is often desirable and clearer to report sets of values $C_a \subseteq \Theta$ (or $C_a \subseteq \mathcal{Z}$) with a specified probability a reflecting Your believe that $\theta \in C_a$ (or $z \in C_a$).

Note 2. Recall that

• Posterior degree of believe about uncertain parameter $\theta \in \Theta \subseteq \mathbb{R}^d$ is quantified via the posterior distribution $\Pi(\theta|y)$;

$$d\Pi(\theta|y) = \pi(\theta|y)d\theta$$

with cdf $\Pi(\theta|y)$ and pdf/pmf $\pi(\theta|y)$.

• Degree of believe about a future sequence of outcomes $z=(y_{n+1},...,y_{n+m})\in\mathcal{Z}$ is quantified via the predictive distribution G(z|y);

$$dG(z|y) = g(z|y)dz$$

with cdf G(z|y) and pdf/pmf g(z|y).

Notation 3. We present the parametric and predictive credible intervals in a unified framework. Consider unknown random quantity $x \in \mathcal{X} \subseteq \mathbb{R}^k$ following a distribution Q(x|y);

$$dQ(x|y) = q(x|y)dx$$

with cdf Q(x|y) and pdf/pmf q(x|y). These are dummies for the following:

- In parametric inference, we have $x \equiv \theta$, $Q \equiv \Pi$, $q \equiv \pi$, and k = d.
- In predictive inference, we have $x \equiv z$, $Q \equiv G$, $q \equiv g$, and k = m.
- Note that x can also be any function of θ or z.

2 Credible Sets

Definition 4. A set $C_a \subseteq \mathcal{X}$ is called '100(1-a)%' posterior credible set for x, with respect to the posterior distribution Q(x|y) if

$$1 - a \le \mathsf{P}_Q(x \in C_a|y) = \int 1 \, (x \in C_a) \, \mathsf{d}Q(x|y)$$

Note 5. In Bayesian stats (unlike frequetist stats) we can correctly say that the (1-a)100% credible set C_a of unknown parameter θ means that the probability that θ is in C_a is (1-a)100%. This is theoretically correct as everything unknown/uncertain is a random quantity following a distribution reflecting Your degree of believe.

Note 6. Note that different sets may satisfy Definition 4 and hence we are interested in using the most useful credible set for our application. This is addressed by imposing additional restrictions.

3 Highest probability density Credible sets

Note 7. Often it is useful to consider credible sets C_a which contain values of x that correspond to the highest pdf/pmf q(x|y) (aka the most likely values of x). Then we can impose the restriction $q(x|y) \ge q(x'|y)$ for all $x \in C_a$, $x' \in C_a^0$, in Definition 4 which leads to Definition 8, the definition of the highest probability density (HPD) set.

Definition 8. The 100(1-a)% highest probability density (HPD) set for $x \in \mathcal{X}$ with respect to the posterior distribution Q(x|y) is the subset C_a of Θ such that

- 1. $P_Q(x \in C_a|y) \ge 1 a$, and
- $2. \ q(x|y) \geq q(x'|y) \ \text{ for all } x \in C_a, \ x' \in C_a^{\complement}.$

Note 9. Credible sets are considered as 'set estimators', and hence, they can be produced as Bayes decision rules under a specified loss function. See Examples 10 and 19.

Example 10. [Minimal size region property] Let random quantity x follows Q(x|y), let $\mathcal{D} = \{C; P_Q(x \in C|y) \ge 1 - a\}$ be the decision space containing all possible (1 - a) credible sets of x, and let the loss function be

No need to memorize
Eq. 1

$$\ell(x,C) = \kappa \|C\| - 1(x \in C), \quad \forall C \in \mathcal{D}, \ \forall x \in \mathcal{X}, \ \forall \kappa > 0,$$
 (1)

where $\|\cdot\|$ denotes a size of an area. Then:

- 1. The Bayes rule (estimator) \hat{C} has the minimum size among credible sets in \mathcal{D} .
- 2. \hat{C} is the Bayes rule if and only if it is the 100(1-a)% highest probability density (HPD) set as defined in Definition 8.

Solution. The proof is omitted as too technical. (1.) is straightforward; while (2.) is just tricky calculus.

Note. HPD credible sets are credible sets with the minimum size (by Example 10). Clearly, loss (1) considers a trade off between two components: ||C|| measuring the size of the credible set (the smaller the better), and $1(x \in C)$ indicating coverage of the credible set.

Remark 11. HPD credible sets are not, in general, invariant to transformations. If one has computed the HPD set for $x \sim Q(x|y)$, the HPD set for $\varphi = g(x)$ does not necessarily result by converting HPD set for x. To compute the HPD set for φ , one has to compute the posterior distribution

$$\mathrm{d}Q(\varphi|y) = \underbrace{q(g^{-1}(\varphi)|y) \left| \frac{\mathrm{d}}{\mathrm{d}\varphi} g^{-1}(\varphi) \right|}_{=\pi(\varphi|y)} \mathrm{d}\varphi,$$

and then compute the HPD set by implementing Definition 8.

3.1 General discussions

Definition 8 can be re-written equivalently as in Corollary 12, which provides a easier manner to compute credible regions in practice.

Corollary 12. The 100(1-a)% highest probability density (HPD) set for $x \in \mathcal{X}$ with respect to the posterior distribution Q(x|y) is the subset C_a of Θ of the form

$$C_a = \{ x \in \mathcal{X} : q(x|y) \ge k_a \} \tag{2}$$

where k_a is the largest constant such that

$$1 - a \le \mathsf{P}_Q(x \in C_a|y)$$

Proof. It is straightforward to show equivalence of (2) and Definition 8(2).

Algorithm 13. Based on Corollary 12, a (not-that-efficient) algorithm to compute HPD credible sets with a computer¹

ullet Create a routine which computes all the solutions $\{x^*\}$ to the equation

$$q\left(x^*|y\right) = k_a \tag{3}$$

for a given k_a . Typically, these solutions $\{x^*\}$ are the boundaries of the set $C_a = \{x \in \mathcal{X} : q(x|y) \geq k_a\}$.

• Create a routine which computes the probability

$$\mathsf{P}_{Q}(x \in C_{a}|y) = \int \mathsf{1}(x \in C_{a}) \, \mathsf{d}Q(x|y) \tag{4}$$

• Sequentially solve Equation 3 and obtain all the solutions $\{x^*\}$, by incrementally increasing $k_a = \{\epsilon, \epsilon + \tau, \epsilon + 2\tau, \epsilon + 3\tau...\}$ (such as starting from a tiny value $\epsilon > 0$ close to zero and recursively adding a tiny increments $\tau > 0$). Stop just before the probability in Equation 4 drops below 1-a.

¹Web-applet https://georgios-stats-1.shinyapps.io/demo_CredibleSets/

Figure 1: Schematic of Theorem 15 (in Fig. 1(1a)) and Algorithm 13 (in Fig. 1(1a) & Fig. 1(1b))

Note 14. For the simple 1D case, $x \in \mathcal{X}$ with $\dim(\mathcal{X}) = 1$, the following theorem can be used to compute HPD credible sets.

Theorem 15. Let $x \in \mathbb{R}$ be a continuous random variable following distribution Q(x|y) with unimodal density q(x|y). If the interval $C_a = [L, U]$ satisfies

- 1. $\int_{L}^{U} q(x|y)dx = 1 a$,
- 2. q(U) = q(L) > 0, and
- 3. $x_{mode} \in (L, U)$, where x_{mode} is the mode of q(x|y),

then it is the HPD interval of x with respect to Q(x|y).

Proof. Use of the mean values theorem to prove. See, Casella, G., & Berger, R. L. (2002; pp. 441-443). Statistical inference (Vol. 2). Pacific Grove, CA: Duxbury.

Remark 16. Theorem 15 suggests a procedure to find the boundaries of C_a in 1D cases. As is Figure 1a, we can imagine a horizontal bar which moves from the maximum of the density to zero, and intersects the density at locations which are the potential boundaries of C_a . The limits of the credible set are where the density above the two points the intersection take place (shaded area) is equal to 1-a. This mechanism is also described in the algorithm in suggested in Algorithm 13 and hence can also be used in multimodal densities (Figure 1b) or multivariate ones.

4 Examples

Example 17. Consider a Bayesian model

$$\begin{cases} y_i | \mu & \stackrel{\text{iid}}{\sim} \mathbf{N}_d(\mu, \Sigma), \qquad i = 1, ..., n \\ \mu & \sim \mathbf{N}_d(\mu_0, \Sigma_0) \end{cases}$$

where uncertain $\mu \in \mathbb{R}^d$, $d \ge 1$, and known Σ , μ_0 , Σ_0 . Find the C_a parametric HPD credible set for μ .

Hint-1: If $z = (z_1, ..., z_d)^{\top}$ such as $z_j \stackrel{\text{iid}}{\sim} \text{N}(0, 1)$ for j = 1, ..., d, and $\xi = z^{\top}z = \sum_{j=1}^d z_j^2$, then $\xi \sim \chi_d^2$

Hint-2: It is

$$\begin{split} -\frac{1}{2} \sum_{i=1}^{n} (x - \mu_i)^\top \Sigma_i^{-1} (x - \mu_i)) &= -\frac{1}{2} (x - \hat{\mu})^\top \hat{\Sigma}^{-1} (x - \hat{\mu})) + C(\hat{\mu}, \hat{\Sigma}) \quad ; \\ \hat{\Sigma} &= (\sum_{i=1}^{n} \Sigma_i^{-1})^{-1}; \quad \hat{\mu} = \hat{\Sigma} (\sum_{i=1}^{n} \Sigma_i^{-1} \mu_i); \\ C(\hat{\mu}, \hat{\Sigma}) &= \underbrace{\frac{1}{2} (\sum_{i=1}^{n} \Sigma_i^{-1} \mu_i)^\top (\sum_{i=1}^{n} \Sigma_i^{-1})^{-1} (\sum_{i=1}^{n} \Sigma_i^{-1} \mu_i) - \frac{1}{2} \sum_{i=1}^{n} \mu_i^\top \Sigma_i^{-1} \mu_i}_{= \text{independent of } x} \end{split}$$

Solution. I will use the Definition 8.

• First, I compute the posterior of μ . It is

$$\pi(\mu|y) \propto f(y|\mu)\pi(\mu) = \prod_{i=1}^{n} \mathbf{N}_{d}(y_{i}|\mu, \Sigma)\mathbf{N}_{d}(\mu|\mu_{0}, \Sigma_{0})$$

$$\propto \exp\left(-\frac{1}{2}\sum_{i=1}^{n}(y_{i}-\mu)^{\top}\Sigma^{-1}(y_{i}-\mu) - \frac{1}{2}(\mu-\mu_{0})^{\top}\Sigma_{0}^{-1}(\mu-\mu_{0})\right)$$

$$\propto \exp\left(-\frac{1}{2}(\mu-\hat{\mu}_{n})^{\top}\hat{\Sigma}_{n}^{-1}(\mu-\hat{\mu}_{n})\right)$$

where

$$\hat{\Sigma}_n = (n\Sigma^{-1} + \Sigma_0^{-1})^{-1}; \qquad \qquad \hat{\mu}_n = \hat{\Sigma}_n (n\Sigma^{-1}\bar{y} + \Sigma_0^{-1}\mu_0)$$

I recognize that $\pi(\mu|y)=\mathrm{N}_d(\mu|\hat{\mu}_n,\hat{\Sigma}_n)$, and hence $\mu|y\sim\mathrm{N}_d(\hat{\mu}_n,\hat{\Sigma}_n)$

• Now let's implement Definition 8. So,

$$C_{a} = \left\{ \mu \in \mathbb{R}^{d} : \pi(\mu|y) \geq k_{a} \right\}$$

$$= \left\{ \mu \in \mathbb{R}^{d} : \mathbf{N}_{q}(\mu|\hat{\mu}_{n}, \hat{\Sigma}_{n}) \geq k_{a} \right\}$$

$$= \left\{ \mu \in \mathbb{R}^{d} : (\mu - \hat{\mu}_{n})^{\top} \hat{\Sigma}_{n}^{-1} (\mu - \hat{\mu}_{n}) \leq \underbrace{-\log(2\pi \det(\hat{\Sigma}_{n})) k_{a}}_{=\hat{k}_{a}} \right\}$$
(5)

and I want the smallest constant \tilde{k}_a (aka the largest constant k_a) such that

$$\mathsf{P}_{\Pi}\left(\mu \in C_a | y\right) \geq 1 - a \Longleftrightarrow$$

$$\mathsf{P}_{\Pi}\left(\underbrace{(\mu - \hat{\mu}_n)^{\top} \hat{\Sigma}_n^{-1} (\mu - \hat{\mu}_n)}_{=\xi} \le \tilde{k}_a\right) \ge 1 - a \tag{6}$$

• I need to find quantile \tilde{k}_a . This requires to find the distribution of ξ . I know that

$$\xi = (\mu - \hat{\mu}_n)^{\top} \hat{\Sigma}_n^{-1} (\mu - \hat{\mu}_n) \sim \chi_d^2 \tag{7}$$

because $\xi = z^{\top}z = \sum_{j=1}^{n} z_j$ with $z = L^{-1}(\mu - \hat{\mu}_n) \sim N_d(0, I_d)$ where L is the lower matrix of the Cholesky decomposition of $\hat{\Sigma}_n = L^{\top}L$.

Hence Eq. 6, (due to Eqs. 5, 7) becomes

$$\mathsf{P}_{\chi_d^2}((\mu - \hat{\mu}_n)^\top \hat{\Sigma}_n^{-1}(\mu - \hat{\mu}_n) \le \tilde{k}_a) = 1 - a \tag{8}$$

which means that, \tilde{k}_a is the 1-a quantile of the χ^2_d distribution, aka $\tilde{k}_a=\chi^2_{d,1-a}$

• Hence, the C_a parametric HPD credible set for μ is

$$C_a = \{ \mu \in \mathbb{R}^d : (\mu - \hat{\mu}_n)^\top \hat{\Sigma}_n^{-1} (\mu - \hat{\mu}_n) \le \chi_{d,1-a}^2 \}$$

Example 18. Consider an exchangeable sequence of observables $y := (y_1, ... y_n) \in \mathbb{R}^n$ from model

$$\begin{cases} y_i | \theta & \stackrel{\text{iid}}{\sim} \operatorname{Br}(\theta), & i = 1, ..., n \\ \theta & \sim \operatorname{Be}(a, b) \end{cases}$$

where a=b=2, n=30, and $\sum_{i=1}^{30} y_i=15$. Find the 2-sides C_a parametric HPD credible interval for θ . Consider a=0.05.

Solution.

• The posterior distribution of θ is Be $(a + n\bar{y}, b + n - n\bar{y})$, because

$$\pi(\theta|y) \propto \prod_{i=1}^{n} \text{Br}(y_{i}|\theta) \text{Be}(\theta|a,b) \propto \prod_{i=1}^{n} \theta^{y_{i}} (1-\theta)^{y_{i}} \theta^{a-1} (1-\theta)^{b-1} \propto \theta^{n\bar{y}+a-1} (1-\theta)^{n-n\bar{y}+b-1}$$

After substituting the values of the fixed parameters, I get $\pi(\theta|y) = \text{Be}(\theta|a_n = 17, b_n = 17)$.

– To find the 2-sides C_a parametric HPD credible interval for θ , I use Theorem 15.

$$1 - a = \int_{L}^{U} \operatorname{Be}(\theta | 17, 17) d\theta = \mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U) - \mathsf{P}_{\mathsf{Be}(17,17)}(\theta < L)$$

I note that the posterior is symmetric around 0.5 because $a_n = b_n$. Then,

$$1 - a = \mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U) - \left(1 - \mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U)\right) = 2\mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U) - 1$$

so $\mathsf{P}_{\mathsf{Be}(17,17)}(\theta < U) = 1 - a/2$, and hence $U = \theta_{1-\frac{\alpha}{2}}^*$. Also,

$$\frac{1}{2}-L=U-\frac{1}{2} \implies L=1-U \implies L=1-\theta_{1-\frac{\alpha}{2}}^*$$

Putting these together, for a=0.05, the 95% posterior credible interval for θ is

$$[L, U] = [0.36, 0.64].$$

• Note that, if we follow the same procedure, the compute the 95% prior credible interval for θ is

$$[L, U] = [0.14, 0.85].$$

As expected, the posterior 95 credible interval is narrower than the corresponding posterior one. (Try to check it in R).

- > install.packages('HDInterval')
- > library('HDInterval')
 > hdi(qbeta, 0.95, shape1=17, shape2=17)

0.3354445 0.6645555

Example 19. Assume a 1-dimensional random quantity $x \sim Q(x|y)$, with unimodal density q(x|y). Show that the (1-a)-credible interval $C_a = [L, U]$ for x as a Bayesian rule C_a under the loss function

$$\ell(x,C_a;L,U) = k(U-L) - 1(x \in [L,U]), \quad \text{with} \quad k \in (0,\max_{\forall x \in \mathbb{R}}(q(x|y)))$$

is given by q(L) = q(U) = k, and $P_Q(x \in [L, U]|y) = 1 - a$.

Discuss known properties of the derived credible interval.

Solution. The decision space is $\mathcal{D} = \{C_a = [L, U] : P_Q(x \in C_a | y) = 1 - a\}$. It is

$$\begin{split} \mathbf{E}_{Q}\left(\ell(x,C_{a};L)|y\right) &= \int \left(k(U-L)-1(x\in[L,U])\right) \mathrm{d}Q(x|y) \\ &= \int k(U-L)q(x|y)\mathrm{d}x - \int_{L}^{U} q(x|y)\mathrm{d}x = k(U-L) - \int_{-\infty}^{U} q(x|y)\mathrm{d}x + \int_{-\infty}^{L} q(x|y)\mathrm{d}x \end{split}$$

To find the critical values \hat{L} , and \hat{U} for L and U, it is

$$\begin{split} 0 &= \left. \frac{\mathrm{d}}{\mathrm{d}L} \mathrm{E}_Q \left(\ell(x, C_a; L) | y \right) \right|_{C_a = [\hat{L}, \hat{U}]} = \left. \frac{\mathrm{d}}{\mathrm{d}L} \left(k(U - L) - \int_{-\infty}^{U} q(x|y) \mathrm{d}x + \int_{-\infty}^{L} q(x|y) \mathrm{d}x \right) \right|_{C_a = [\hat{L}, \hat{U}]} \\ &= -k + q(\hat{L}|y) \implies q(\hat{L}|y) = k \\ 0 &= \left. \frac{\mathrm{d}}{\mathrm{d}U} \mathrm{E}_Q \left(\ell(x, C_a; U) | y \right) \right|_{C_a = [\hat{L}, \hat{U}]} = \ldots = k - q(\hat{U}|y) \implies q(\hat{U}|y) = k \end{split}$$

which are minimizers because

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}L^2} \mathrm{E}_Q\left(\ell(x,C_a;L)|y\right)\bigg|_{C_a = [\hat{L},\hat{U}]} &= \left.\frac{\mathrm{d}}{\mathrm{d}L}q(L|y)\right|_{\hat{L}} > 0 \;; \qquad \quad \left.\frac{\mathrm{d}^2}{\mathrm{d}L\mathrm{d}U} \mathrm{E}_Q\left(\ell(x,C_a;L)|y\right)\right|_{C_a = [\hat{L},\hat{U}]} = 0 \\ \frac{\mathrm{d}^2}{\mathrm{d}U^2} \mathrm{E}_Q\left(\ell(x,C_a;U)|y\right)\bigg|_{C_a = [\hat{L},\hat{U}]} &= -\left.\frac{\mathrm{d}}{\mathrm{d}U}q(U|y)\right|_{\hat{U}} > 0 \end{split}$$

So it is $C_a = [\hat{L}, \hat{U}]$ such that $q(\hat{L}|y) = q(\hat{U}|y) = k$, and $P_Q(x \in [\hat{L}, \hat{U}]|y) = 1 - a$.

Based on Theorem 15, it is the HPD credible interval and in fact the shorter length credible interval.

Example 20. Assume an 1- dimensional random quantity $x \sim Q(x|y)$. In the Lecture Handout (Handout 11: Bayesian point estimation), discussed the following Hint:

Hint: The Bayes estimate $\hat{\delta}$ of x under the linear loss function

$$\ell(x,\delta;\varpi) = (1-\varpi)(\delta-x)1_{x<\delta}(\delta) + \varpi(x-\delta)1_{x>\delta}(\delta),$$

where $\varpi \in [0,1]$, is the ϖ -th quantile of distribution Q, let's denote it as x_{ϖ} .

1. Derive the (1-a)-credible interval $C_a = [L, U]$ for x as a Bayesian rule C_a under the loss function

$$\ell(x, C_a; \varpi_L, \varpi_U) = \ell(x, L; \varpi_L) + \ell(x, U; \varpi_U)$$
(9)

by computing L and U.

- 2. Your client is worried the same both for under-estimation and over-estimation; derive a suitable (1 a)credible interval $C_a = [L, U]$ based on (9) by computing L, and U.
- 3. Your client is worried only for over-estimation; derive a suitable (1-a)-credible interval $C_a = [L, U]$ based on (9) by computing L and U.

Solution. It is given that

$$\begin{split} 0 &= \left. \frac{\mathrm{d}}{\mathrm{d}\delta} \mathrm{E}_Q \left(\ell(x,\delta;\varpi) | y \right) \right|_{\delta = \hat{\delta}} = \left. \frac{\mathrm{d}}{\mathrm{d}\delta} \int \ell(x,\delta;\varpi) \mathrm{d}Q(x|y) \right|_{\delta = \hat{\delta}} \implies \hat{\delta} = x_\varpi \\ &= (1-\varpi) \mathrm{P}_Q \left(\{ x \leq \hat{\delta} \} | y \right) - \varpi \mathrm{P}_Q \left(\{ x \leq \hat{\delta} \}^{\complement} | y \right) \implies \hat{\delta} = x_\varpi \end{split}$$

1. The decision space is $\mathcal{D}=\{C_a=[L,U]: \mathsf{P}_Q(x\in C_a|y)=1-a\}$. Therefore, to find the Bayes rule (or Bayes estimate) of $C_a=[L,U]$ I need to minimize the expected posterior loss $\mathsf{E}_Q\left(\ell(x,C_a;\varpi_L,\varpi_U)|y\right)$ with respect to C_a or equivalently L,U, so

$$\begin{split} 0 &= \left.\frac{\mathrm{d}}{\mathrm{d}L} \mathrm{E}_Q \left(\ell(x, C_a; \varpi_L, \varpi_U) | y\right) \right|_{C_a = [\hat{L}, \hat{U}]} = \left. \mathrm{E}_Q \left(\ell(x, L; \varpi_L) | y\right) \right|_{L = \hat{L}} \implies \hat{L} = x_{\varpi_L} \\ 0 &= \left.\frac{\mathrm{d}}{\mathrm{d}U} \mathrm{E}_Q \left(\ell(x, C_a; \varpi_L, \varpi_U) | y\right) \right|_{C_a = [\hat{L}, \hat{U}]} = \left. \mathrm{E}_Q \left(\ell(x, U; \varpi_U) | y\right) \right|_{U = \hat{U}} \implies \hat{U} = x_{\varpi_U} \end{split}$$

So $x \in [x_{\varpi_L}, x_{\varpi_U}]$ where $\varpi_U + \varpi_L = 1 - a$. It is the minimum because

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}U^2} \mathrm{E}_Q \left(\ell(x, C_a; \varpi_L, \varpi_U) | y \right) \bigg|_{C_a = [\hat{L}, \hat{U}]} &= q(\hat{U} | y) > 0 \\ \\ \frac{\mathrm{d}^2}{\mathrm{d}L^2} \mathrm{E}_Q \left(\ell(x, C_a; \varpi_L, \varpi_U) | y \right) \bigg|_{C_a = [\hat{L}, \hat{U}]} &= q(\hat{L} | y) > 0 \\ \\ \frac{\mathrm{d}}{\mathrm{d}U} \frac{\mathrm{d}}{\mathrm{d}L} \mathrm{E}_Q \left(\ell(x, C_a; \varpi_L, \varpi_U) | y \right) \bigg|_{C_a = [\hat{L}, \hat{U}]} &= 0 \end{split}$$

and hence the determinant of the Hessian in positive.

- 2. Then I can use the equi-tail interval: $x \in [x_{a/2}, x_{1-a/2}]$ with $\varpi_L = a/2$ and $\varpi_U = 1 a/2$
- 3. Then I can use the lower-tail interval: $x \in (-\infty, x_{1-a}]$ with $\varpi_L = 0$ and $\varpi_U = 1 a$.

Practice

Question 21. To practice try to work on the Exercises 68, and 69 from the Exercise sheet.