Resumen Clase 1 - 2024

¿Qué es una red de computadoras?	
Componentes de una red	1
Protocolos	1
Protocolos de Red	2
Modelos de Capas	2
Modelo OSI	2
Modelo TCP/IP	3
Encapsulamiento de datos	4
Comunicación entre capas	4
Relación de capas entre modelos	5
Comparación entre Modelos OSI y TCP/IP	5
Clasificación de Redes	5
Internet	6
Modelo de Internet	6
Estructura de Internet	6
RFC (Request For Comments)	6

¿Qué es una red de computadoras?

- Desde el punto de vista sistémico se puede ver como un grupo de computadoras/dispositivos interconectados a través de un medio.
- Tiene como **objetivo** compartir recursos que pueden ser información, servicios, etc.
- El conjunto de computadoras, software de red, medios y dispositivos de interconexión forma un **sistema de comunicación.**

Componentes de una red

- Una red se ve compuesta por Computadoras (Hosts o Sistemas Terminales en el modelo de Internet), Routers/Switches, NIC, Modems, Vínculos/Enlaces dados por diversos medios, programas de software, etc.
- Los componentes de la red deben interactuar y combinarse a través de reglas (protocolos).

Protocolos

- Conjunto de normas que se deben respetar y cumplir ya sea en medios informáticos, sociales, laborales, etc.
- Define el formato y orden de los mensajes intercambiados y las acciones que se realizan en la transmisión y/o recepción de un mensaje o evento.

Protocolos de Red

- Reglas que especifican el intercambio de datos u órdenes durante la comunicación entre entidades de una red.
- Permiten la comunicación y están implementados en las componentes.

Modelos de Capas

- Surgen como una forma de organizar los componentes de una red para minimizar la complejidad entre interacciones.
- Divide la complejidad en componentes reusables que realizan funciones específicas.
 - Reduce la complejidad en componentes más pequeños.
 - Las capas inferiores abstraen a las superiores de su complejidad.
 - Las capas superiores usan los servicios que proveen las inferiores usando sus interfaces.
 - Los cambios de una capa no tienen porqué afectar a las demás (si la interfaz se mantiene).
 - o Facilita:
 - El desarrollo y evolución de las componentes de red asegurando interoperabilidad.
 - Aprendizaje, diseño y administración de las redes.

Modelo OSI

- Capas de Host
 - Proveen envío de datos de forma confiable.
- Capas de Medio
 - o Controlan el envío físico de los mensajes sobre la red

Clasificación	Nombre	Funcionalidad
Capa de Host	Aplicación	Servicios de red a usuarios, procesos y aplicaciones.
Capa de Host	Presentación/Representación	Formato de los datos.
Capa de Host	Sesión	Mantener track de sesiones de aplicación
Capa de Host	Transporte	Establecer y mantener un canal "seguro" end-to-end.
Capa de Medio	Red	Direccionar y rutear los mensajes host-to-host y comunicar varias redes
Capa de Medio	Enlace de Datos	Comunicación entre entes conectados físicamente en una misma red
Capa de Medio	Física	Transportar la información como señal por el medio físico.

Modelo TCP/IP

- Modelo de 5 capas:
 - o Capa de Aplicación.
 - Capa de Transporte.
 - Capa de Internet.
 - Capa de Enlace.
 - Capa Física.
- Nosotros usamos uno más simple con 4 capas, agrupando la capa de Enlace y Física en una sola llamada Capa de acceso a la Red.

Encapsulamiento de datos

• Cada capa del modelo define su PDU (Protocol Data Unit) que es la forma en que se encapsulan los datos en esa capa.

Comunicación entre capas

• Las capas superiores usan los servicios de las inferiores y cada capa se comunica con la del otro extremo de su mismo nivel (Peer-to-Peer).

Relación de capas entre modelos

Comparación entre Modelos OSI y TCP/IP

Similitudes	Diferencias
 Ambos se dividen en capas. Poseen capas de aplicación, aunque incluyen servicios distintos. Sus capas de transporte y de red son similares. Ambos usan la conmutación de paquetes. 	 TCP/IP combina las funciones de varias capas del modelo OSI (Capa de Aplicación y Capa de acceso a la Red). TCP/IP es más simple por tener menos capas. Los protocolos de TCP/IP son los estándares en torno a los cuales se desarrolló Internet. OSI es un modelo teórico o de referencia.

Clasificación de Redes

- Por Cobertura
 - o LAN, MAN, WAN. SAN, PAN, CAN.
- Por Acceso (Público y Privado)
 - o Internet, Intranet, Extranet.
- Por Topología Física
 - o Conmutación de Circuitos, Conmutación de Tramas/Paquetes.
- Por Tipo de Conexión/Medio

Internet

 Red de redes de computadoras, descentralizada, pública, que ejecutan el conjunto abierto de protocolos TCP/IP.

Modelo de Internet

• Se sigue un modelo de forma de reloj de arena, esto se debe a que en la capa de Internet no hay mucha alternativa más que usar IP.

Estructura de Internet

- Internet posee una estructura Jerárquica, en Tiers.
- Capa de Acceso (Edge)
 - o Son Accesos Residenciales, de Organizaciones, etc.
- Capa de Núcleo (Core)
 - o Capas de Proveedores de Internet que se dividen en diferentes niveles.
 - Proveedores Regionales, Nacionales, Internacionales, Internacionales en el Tier 1.

RFC (Request For Comments)

- Definen los protocolos que se usan en Internet ya que siguen los estándares de la misma (IETF) y lo hacen de forma técnica y detallada.
- Ejemplos de protocolos definidos en estas RFC: TCP/IP, HTTP, SMTP, etc.