MATHEMATIQUES 2

Options Met P

Durée : 4 heures

L'objectif du problème est d'étudier certains endomorphismes de l'espace vectoriel des matrices carrées d'ordre 2 à coefficients complexes.

La partie IV peut être traitée indépendamment des autres parties.

Préliminaires

 ${\mathcal M}$ désigne l'espace vectoriel sur C des matrices carrées d'ordre 2 à coefficients complexes. On considère les matrices :

$$E_1 = \begin{pmatrix} 10 \\ 00 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 00 \\ 10 \end{pmatrix}$, $E_3 = \begin{pmatrix} 01 \\ 00 \end{pmatrix}$, $E_4 = \begin{pmatrix} 00 \\ 01 \end{pmatrix}$. I désigne la matrice $\begin{pmatrix} 10 \\ 01 \end{pmatrix}$.

 ${\mathcal L}$ désigne l'ensemble des endomorphismes de ${\mathscr M}$.

Si U_1, U_2, U_3, U_4 sont 4 matrices de \mathcal{M} , on considère la matrice bloc carrée d'ordre 4 : $M = \left(\begin{array}{c|c} U_1 & U_3 \\ \hline U_2 & U_4 \end{array} \right).$

Donner la valeur du déterminant de M en fonction des déterminants des U_i lorsque U_2 est la matrice nulle. On notera dét(A) le déterminant d'une matrice carrée A .

- I Soient A et B deux matrices données de M. On désigne par Φ l'application de M dans M définie par : Φ(X) = A.X.B pour toute matrice X de M.
 - 1 Montrer que Φ appartient à $\mathcal L$
 - 2 L'espace vectoriel \mathcal{M} étant rapporté à la base $\mathcal{G} = (E_1, E_2, E_3, E_4)$, on désigne par A₀B la matrice carrée d'ordre 4 associée à Φ dans la base \mathcal{G} .

On pose B =
$$\begin{pmatrix} b_1 & b_3 \\ b_2 & b_4 \end{pmatrix}$$
. Montrer que l'on a : A₀B = $\begin{pmatrix} b_1 & A & b_2 & A \\ \hline b_3 & A & b_4 & A \end{pmatrix}$.

- 3 Montrer que si A, B, P, Q sont quatre éléments quelconques de ℳ, on a : (P∘Q).(A∘B)=(P.A)∘(B.Q).
- 4 Calculer dét(AoI), dét(IoA) et dét(AoB) en fonction de dét(A) et dét(B).
- $$\begin{split} \text{II 1 Soient } \ A_1, A_2 ... \ A_k, B_1, B_2 ... B_k \,, \text{ des matrices non nulles de } \mathscr{M}. \ \text{On leur associe} \\ \text{l'application H de } \mathscr{M} \ \text{dans } \mathscr{M} \ \text{définie par} : \forall \ X \in \mathscr{M} \,, \ H(X) = \sum_{i=1}^k A_i \cdot X \cdot B_i \,. \end{split}$$

Vérifier que : $H \in \mathcal{L}$.

Soit $\overset{\wedge}{\mathsf{H}}$ la matrice associée à H dans la base \mathscr{G} .

On note
$$\hat{H} = \left(\begin{array}{c|c} U_1 & U_3 \\ \hline U_2 & U_4 \end{array} \right)$$
 et $B_i = \left(\begin{array}{c|c} b_1^{(i)} & b_3^{(i)} \\ \hline b_2^{(i)} & b_4^{(i)} \end{array} \right)$ pour $1 \leq i \leq k$.

Exprimer les matrices U_i à l'aide des matrices A_i et des éléments des matrices B_i.

2 - On suppose que les matrices A_j $(1 \le j \le k)$ constituent dans \mathcal{M} un système libre et que les matrices $B_1, B_2, ..., B_k, B_1, B_2, ..., B_k$ de \mathcal{M} sont telles que pour toute matrice X de \mathcal{M} , $\sum_{i=1}^k A_i \cdot X \cdot B_i = \sum_{i=1}^k A_i \cdot X \cdot B_i$.

Montrer alors que : $B_i = B'_i$ pour tout $i \in \{1, 2, ..., k\}$.

Peut-on en déduire des propriétés analogues pour les matrices A_i et A_i ($i \in \{1,...,k\}$) lorsque les matrices B_i ($1 \le i \le k$) constituent dans \mathcal{M} un système libre ?

3 - Soit $L \in \mathcal{L}$ de matrice associée $\hat{L} = \left(\frac{V_1 + V_3}{V_2 + V_4}\right)$ relativement à \mathcal{B} , la base de \mathcal{M} définie précédemment. $\mathbf{A} \not = \mathbf{C}$

Montrer qu'il existe un entier $\beta \in \{1,2,3,4\}$ et des matrices $C_1, C_2, ..., C_\beta, D_1, D_2, ..., D_\beta$ vérifiant pour toute matrice X de \mathcal{M} la relation

- (1) : $L(X) = \sum_{i=1}^{\beta} C_i \cdot X \cdot D_i$ ou, de façon équivalente, la relation
- (1') : $\hat{L} = \sum_{i=1}^{\beta} C_i \circ D_i$. On dira que (1) définit une décomposition de L de

longueur B.

Montrer que si β a la plus petite valeur non nulle possible dans toutes les décompositions de L, élément de \mathcal{L} , alors les familles $(C_1, C_2, ..., C_{\beta})$ et $(D_1, D_2, ..., D_{\beta})$ constituent des familles libres de \mathcal{L} .

4 - a - Soit T la transformation qui associe à toute matrice X de M, la matrice T(X) = ^tX (^tX désigne la matrice transposée de X). Donner l'expression de T(X.Y) en fonction de T(X) et T(Y), pour tout couple (X, Y) de matrices de M.

Prouver que $T \in \mathcal{L}$. Quelle est la matrice \hat{T} associée à T dans la base \mathscr{Q} ?

- b Montrer que la longueur de toute décomposition de T est 4.
- c Déterminer D_1 , D_2 , D_3 , D_4 , quatre matrices de \mathcal{M} telles que : $\hat{T} = \sum_{i=1}^4 E_i \circ D_i$.
- III Dans ce paragraphe, on désigne par Γ un élément de $\mathcal L$ vérifiant les propriétés suivantes :
 - (1) Γ est bijective
 - (2) $\forall (X, Y) \in \mathcal{M}^2$, $\Gamma(X \cdot Y) = \Gamma(X) \cdot \Gamma(Y)$.

On se propose de déterminer l'expression de $\Gamma(X)$.

1 - Question préliminaire :

Soit n un entier strictement positif, soit $\mathscr V$ un espace vectoriel de dimension n sur C et f un endomorphisme de $\mathscr V$ représenté par la même matrice dans toutes les bases de $\mathscr V$. Montrer qu'il existe $\lambda \in C$, tel que $\forall \ V \in \mathscr V$, $f(V) = \lambda V$. Que peut-on dire d'une matrice X carrée d'ordre n à coefficients complexes telle que $S \times S^{-1} = X$, pour toute matrice S

d'ordre n à coefficients complexes telle que $S.X.S^{-1} = X$ pour toute matrice S carrée d'ordre n, à coefficients complexes et inversible ?

2 - Montrer que Γ vérifie les propriétés suivantes : .

a -
$$\Gamma(X_0) = I \Rightarrow X_0 = I$$
.

- b X est inversible $\Leftrightarrow \Gamma(X)$ est inversible.
- 3 On considère une décomposition de Γ de longueur minimale β (1 \leq β \leq 4) notée :

$$\Gamma(X) = \sum_{i=1}^{\beta} A_i . X.B_i$$
 (3) pour toute matrice X de \mathcal{M} .

Exprimant sur cette décomposition la propriété (2), montrer que l'on a : $\forall i \in \{1,...,\beta\}, \ \forall \ Y \in \mathcal{M}, \ Y. B_i = B_i.\Gamma(Y) \text{ et } A_i.Y = \Gamma(Y).A_i.$

4 - Calculer, pour toute matrice Y inversible de M, le produit :

$$\Gamma(Y^{-1})$$
. A_i . B_j . $\Gamma(Y)$, $1 \le i \le \beta$, $1 \le j \le \beta$.

Montrer que toutes les matrices A_i.B_i sont scalaires.

Montrer que, si toutes les matrices $A_i.B_j$ étaient nulles, Γ ne serait pas bijective.

Donner la valeur de β et la forme générale de $\Gamma.$

- IV A toute matrice X de \mathcal{M} , on associe son déterminant $\Delta(X)$ =dét(X) ; Δ est une application de \mathcal{M} dans C.
 - 1 Montrer que Δ est une forme quadratique sur \mathcal{M} . Quelle est la matrice de Δ relativement à la base \mathcal{B} ?

Quel est le rang de cette matrice ? Soit $\tilde{\Delta}$ la forme bilinéaire symétrique associée à la forme quadratique Δ .

Écrire $\widehat{\Delta}(X, Y)$ en fonction des coefficients des matrices X et Y, éléments de \mathcal{M} .

2 - On se propose de déterminer les formes quadratiques non nulles Φ sur \mathcal{M} qui vérifient : \forall (X, Y) \in \mathcal{M}^2 , Φ (X, Y) = Φ (X). Φ (Y).

Démontrer les propriétés suivantes :

$$a - \Phi(I) = 1.$$

- b Si X est inversible, alors $\Phi(X) \neq 0$.
- c Si X est non inversible, alors $\Phi(X) = 0$.

On pourra démontrer que si le rang de X est 1, alors $(P, Q) \in \mathcal{M}^2$, $P.X.Q = E_2$.

d - En considérant les deux équations en λ : $\Delta(X+\lambda I)=0$ et $\Phi(X+\lambda I)=0$, montrer que l'on a $\Phi=\Delta$.

partie reserve aux 1/2