$$\|\hat{e}(\mu)\|_X^2$$

$$^{\prime},\mathcal{C})_{X}$$

$$(C,C)_X$$

$$2(\mathcal{C}, \mathcal{A}_{n}^{q})_{X} + \sum_{q'=1}^{Q_{a}} \sum_{n'=1}^{N} \Theta_{a}^{q'}(\mu) u_{Nn'}(\mu) (\mathcal{A}_{n}^{q}, \mathcal{A}_{n'}^{q'})_{X}$$

$$= (C,C)_{X} + \sum_{q=1}^{Q_{a}} \sum_{n=1}^{N} \Theta_{a}^{q}(\mu) u_{Nn}(\mu) \bigg\{$$

$$(C)_X +$$

$$C)_X +$$

$$\mathcal{C})_X +$$

$$C)_X +$$

$$oldsymbol{X}$$

$$oldsymbol{X}$$

Compute $\underline{\mathcal{C}} \in \mathbb{R}^{\mathcal{N}}$ and $\underline{\mathcal{A}}^q \in \mathbb{R}^{\mathcal{N} \times N}, \ 1 \leq q \leq Q_a,$ from

$$\underline{\mathbb{X}}^{\mathcal{N}}\underline{\mathcal{C}} = \underline{F}^{\mathcal{N}};$$
 $\underline{\mathbb{X}}^{\mathcal{N}}\underline{\mathcal{A}}^{q} = -\underline{\mathbb{A}}^{\mathcal{N}q}\underline{\mathbb{Z}}_{N}, \quad 1 \leq q \leq Q_{a}.$

Form/Store

$$\underline{\mathcal{C}}^T \underline{\mathbb{X}}^{\mathcal{N}} \underline{\mathcal{C}} \in \mathbb{R};$$
 $(\underline{\mathcal{A}}^q)^T \underline{\mathbb{X}}^{\mathcal{N}} \underline{\mathcal{C}} \in \mathbb{R}^N, \quad 1 \leq q \leq Q_a;$
 $(\underline{\mathcal{A}}^{q'})^T \underline{\mathbb{X}}^{\mathcal{N}} \underline{\mathcal{A}}^q \in \mathbb{R}^{N \times N}, \quad 1 \leq q, q' \leq Q_a.$

$$\|\hat{e}(\mu)\|_X^2$$

$$= \underline{\mathbf{C}^T}\underline{\mathbb{X}^N}\underline{\mathbf{C}} + \sum_{q=1}^{Q_a} \mathbf{\Theta_a^q(\mu)}(\underline{\mathbf{u}_N(\mu)})^T \bigg\{$$

$$2(\underline{\mathcal{A}}^q)^T\underline{\mathbb{X}}^{\mathcal{N}}\underline{\mathcal{C}} + \sum\limits_{q'=1}^{Q_a} \Theta_a^{q'}(\mu) \, (\underline{\mathcal{A}}^{q'})^T\underline{\mathbb{X}}^{\mathcal{N}}\underline{\mathcal{A}}^q \, \underline{u}_N(\mu) \Big\}$$

Rigorous, sharp, inexpensive error bound, $1 \le N \le N_{\max}$:

$$\|u(\mu)-u_N(\mu)\|_X \leq \Delta_N(\mu), \quad \forall \mu \in \mathcal{D}, \ \||u(\mu)-u_N(\mu)||_{\mu} \leq \Delta_N^{\mathrm{en}}(\mu), \quad \forall \mu \in \mathcal{D}.$$

- Greedy Idea:
 - $oldsymbol{\Delta_N^{(en)}(\mu)}$ is measure of how "good" the RB approximation is.
 - Perform a successive search over Ξ_{train} to find "worst" approximation.
 - Update sample (and hence RB space) with parameter value resulting in "worst" approximation.
- Note: rigour, sharpness, and efficiency of error bound crucial.
- Lagrange spaces, i.e., $X_N = W_N$.

Given: – desired error tolerance $arepsilon_{ ext{tol,min}}$, – initial sample $S_1=\mu_1^*$ (random or $\mu^{ ext{min,max}}$), and – space $X_1= ext{span}\{u(\mu_1^*)\}$.

Greedy Algorithm

while
$$\Delta_{N-1}^{\max} \geq arepsilon_{ ext{tol,min}}$$
 $N=N+1;$ $\mu_N^* = rg\max_{\mu \in \Xi_{ ext{train}}} \Delta_{N-1}(\mu);$ $\Delta_{N-1}^{\max} = \Delta_{N-1}(\mu_N^*);$ $S_N = S_{N-1} \cup \mu_N^*;$ $X_N = X_{N-1} + \operatorname{span}\{u^{\mathcal{N}}(\mu_N^*)\};$ end

Comments

- $lacksymbol{X} X_N = X_N^{ ext{Greedy}}$ are hierarchical.
- Sub-optimal solution to $L^{\infty}(\Xi_{\mathrm{train}})$ optimization problem.
- Define the "true" error, $1 \le N \le N_{\max}$,

$$ar{arepsilon}_N^* = rg\max_{\mu \in \Xi_{ ext{train}}} \|u(\mu) - u_N(\mu)\|_X,$$

then $\bar{\varepsilon}_N^*$ is bounded by

$$\bar{\varepsilon}_N^* \leq \Delta_N(\mu) \leq \varepsilon_{\mathrm{tol,min}}, \quad \forall \mu \in \Xi_{\mathrm{train}}.$$

- ightharpoonup Condition on N_{\max} possible (hp-Reduced Basis).
- ightharpoonup Perform Gram-Schmidt orthogonalization on X_N .

Greedy, $L^{\infty}(\Xi_{\mathrm{train}},X)$, space "economization"

 $n_{ ext{train}}$ contestants $\Rightarrow N_{ ext{max}} \ll n_{ ext{train}}$ winners

$$\in \Xi_{ ext{train}}$$
 $\mu_1^*, \dots, \mu_{N_{ ext{max}}}^*$

in which we *never form/calculate* most snapshots:

$$||u(\mu) - u_N(\mu)||_X$$
 replaced $\Delta_N(\mu)$ $n_{ ext{train}} \cdot O(\mathcal{N}^ullet)$ by $n_{ ext{train}} \cdot O(Q^2 N^2)^{\dagger}$

note good effectivity of estimator is crucial.

Given: – desired error tolerance $arepsilon_{ ext{tol,min}}$, – initial sample $S_1^{ ext{out}} = \mu_1^{ ext{out,*}}$ (random or $\mu^{ ext{min,max}}$), and – space $X_1^{ ext{out}} = ext{span}\{u(\mu_1^{ ext{out,*}})\}$.

Greedy Algorithm

$$\begin{split} \text{while } \Delta_{N-1}^{\text{out,max}} &\geq \varepsilon_{\text{tol,min}} \\ N &= N+1; \\ \mu_N^{\text{out,*}} &= \arg\max_{\mu \in \Xi_{\text{train}}} \left((\omega(\mu))^{-1} \Delta_{N-1}^{\text{en}}(\mu); \right. \\ \Delta_{N-1}^{\text{out,max}} &= \left((\omega(\mu_N^{\text{out,*}}))^{-1} \Delta_{N-1}^{\text{en}}(\mu_N^{\text{out,*}}); \right. \\ S_N^{\text{out}} &= S_{N-1}^{\text{out}} \cup \mu_N^{\text{out,*}}; \\ X_N^{\text{out}} &= X_{N-1}^{\text{out}} + \operatorname{span}\{u^{\mathcal{N}}(\mu_N^{\text{out,*}})\}; \\ \end{split}$$
end

Comments

- $lacksymbol{X}_N^{
 m out} = X_N^{
 m out, Greedy}$ are hierarchical.
- Sub-optimal solution to $L^{\infty}(\Xi_{\mathrm{train}})$ optimization problem.
- lacksquare Computational cost equivalent to W_N^* -Greedy
- ▶ Define the relative "true" error, $1 \le N \le N_{\max}$,

$$ar{arepsilon}_{N}^{\mathrm{out},*} = rg\max_{\mu \in \Xi_{\mathrm{train}}} (\omega(\mu))^{-1} ||u(\mu) - u_N(\mu)||_{\mu},$$

then $\bar{\epsilon}_N^{\mathrm{out},*}$ is bounded by

$$\bar{\varepsilon}_N^{\mathrm{out},*} \leq (\omega(\mu))^{-1} \Delta_N^{\mathrm{en}}(\mu) \leq \varepsilon_{\mathrm{tol,min}}, \quad \forall \mu \in \Xi_{\mathrm{train}}.$$

Comments

Direct control of (relative) RB error (Galerkin optimality)

$$\omega(\mu) \equiv ||u_N(\mu)||_{\mu}, \quad \forall \mu \in \mathcal{D}.$$

Compliant case: direct control of (relative) error in the RB output prediction

$$\omega(\mu) \equiv |s_N(\mu)|, \quad \forall \mu \in \mathcal{D}.$$

- Use of sharper bound since $\eta_{\max,\mathrm{UB}}^{\mathrm{en}} \leq \eta_{\max,\mathrm{UB}}$.
- ightharpoonup Perform Gram-Schmidt orthogonalization on X_N .