Introdução à Lógica Formal

CCMP0133 - Aula 03

Prof. Valdigleis S. Costa valdigleis.costa@univasf.edu.br

23 de Maio de 2022

Universidade Federal do Vale do São Francisco Colegiado de Ciência da Computação Campus Salgueiro-PE

Roteiro

Introdução

Conectivos e Quantificadores

Lógica Simbólica

Introdução

• O que é Lógica?

- O que é Lógica?
- Quais os objetos de interesse no estudo da lógica?

- O que é Lógica?
- Quais os objetos de interesse no estudo da lógica?
 - Argumentos.

- O que é Lógica?
- Quais os objetos de interesse no estudo da lógica?
 - Argumentos.
 - Proposições.

- O que é Lógica?
- Quais os objetos de interesse no estudo da lógica?
 - Argumentos.
 - Proposições.
 - Predicados.

- O que é Lógica?
- Quais os objetos de interesse no estudo da lógica?
 - Argumentos.
 - Proposições.
 - Predicados.

Os Argumentos

Definição (Argumento)

Um argumento é um par formado por dois componentes básicos, a saber:

- (1) Um conjunto de frases declarativas, em que cada frase é chamada de premissa.
- (2) Uma frase declarativa, chamada de conclusão.

Os Argumentos

Definição (Argumento)

Um argumento é um par formado por dois componentes básicos, a saber:

- (1) Um conjunto de frases declarativas, em que cada frase é chamada de premissa.
- (2) Uma frase declarativa, chamada de conclusão.

Sobre os argumentos:

Em geral é usado o símbolo .: para separar as premissas da conclusão.

Exemplos

a. A sopa foi preparada sem cebola

Toda quarta-feira é servida sopa para as crianças.

Hoje é quinta-feira.

. .

Ontem as crianças tomaram sopa.

Exemplos

a. A sopa foi preparada sem cebola

Toda quarta-feira é servida sopa para as crianças.

Hoje é quinta-feira.

. .

Ontem as crianças tomaram sopa.

b. A lua é feita de queijo

Os ratos comem queijo

. .

O imperador da lua é um rato.

Proposições × Predicados

Definição (Proposição)

Uma proposição é uma frase declarativa sobre as propriedades de indivíduos específicos em um discurso.

Proposições × Predicados

Definição (Proposição)

Uma proposição é uma frase declarativa sobre as propriedades de indivíduos específicos em um discurso.

Definição (Predicados)

Predicados são frase declarativas sobre as propriedades de indivíduos não específicos em um discurso.

Exemplos — Proposições

Todas as frases a seguir são proposições:

- (a) 3 < 5.
- (b) A lua é feita de queijo.
- (c) Albert Einstein era francês.
- (d) O Brasil é um país do continente europeu.

Exemplos — Proposições

Todas as frases a seguir são proposições:

- (a) 3 < 5.
- (b) A lua é feita de queijo.
- (c) Albert Einstein era francês.
- (d) O Brasil é um país do continente europeu.

A frase a seguir é uma proposição:

Qual é a cor dos olhos de Camila?

Exemplos — Predicados

São exemplos de predicados:

- (a) Para qualquer $x \in \mathbb{N}$ tem-se que x < x + 1.
- (b) Para todo $x \in \mathbb{R}$ sempre existem dois números $y_1, y_2 \in \mathbb{R}$ tal que $y_1 < x < y_2$.
- (c) Existe algum professor cujo nome da mãe é Maria de Fátima.
- (d) Há um estado brasileiro que não tem litoral.
- (e) Todo os moradores de Salgueiro são pernambucanos.

Conectivos e Quantificadores

Conectivos

Definição (Conectivos)

Conectivos são termos linguísticos que fazem a ligação entre as proposições ou (e) predicados.

¹A bi-implicação pode na verdade ser visto com abreviatura.

Conectivos

Definição (Conectivos)

Conectivos são termos linguísticos que fazem a ligação entre as proposições ou (e) predicados.

Observação:

Dependendo do idioma mais de um termo da linguagem pode representar um determinado conectivo.

¹A bi-implicação pode na verdade ser visto com abreviatura.

Conectivos

Definição (Conectivos)

Conectivos são termos linguísticos que fazem a ligação entre as proposições ou (e) predicados.

Observação:

Dependendo do idioma mais de um termo da linguagem pode representar um determinado conectivo.

Em lógica existem três classes de conectivos bem conhecidos: Conjunção,
 Disjunção e Implicação¹.

¹A bi-implicação pode na verdade ser visto com abreviatura.

Os conectivos na Língua Portuguesa

Conectivo	Termo em Português		
Conjunção		_ e	
		_ mas	
		_ também	
		_ além disso	
Disjunção		ou	
Implicação	Se	, então	
		_ implica	
		_ logo,	
		_ só se	
		somente se	
		_segue de	
		é uma condição suficiente para	
	Basta	para	
		é uma condição necessária para	
Bi-implicação		se, e somente se	
		é condição suficiente e necessária para	

Tabela 1: Termos em português que representamos conectivos.

Exemplo de uso dos conectivos

- (a) 3 < 5 e para qualquer $x \in \mathbb{N}$ tem-se que x < x + 1.
- (b) Há um estado brasileiro que não tem litoral ou O Brasil é penta campeão de futebol masculino.
- (c) Se para todo $x \in \mathbb{R}$ sempre existem dois números $y_1, y_2 \in \mathbb{R}$ tal que $y_1 < x < y_2$, então Albert Einstein era francês.
- (d) Para qualquer $x \in \mathbb{N}$ tem-se que x < x + 1 se, e somente se, para todo $x \in \mathbb{R}$ sempre existem dois números $y_1, y_2 \in \mathbb{R}$ tal que $y_1 < x < y_2$.
- (e) A lua é feita de queijo ou 3 < 5.

Sobre Quantificadores

- São estrutura das linguagens responsáveis pela criação dos predicados.
- Se dividem em duas categorias: universais e existenciais.
- Os quantificadores estão ligados as variáveis em um predicado e determina quantos indivíduos do discurso ao serem aplicados a sentença do predicado devem gerar uma asserção "verdadeira".

Os Quantificadores na Língua Portuguesa

Quantificador	Termo em Português	
	Todo(a)s	
Universal	Para todo(a)	
Oniversal	Para qualquer	
	Para cada	
	Existe	
Existencial	Algum(a)	
Existencial	Para algum	
	Para um	

 Tabela 2:
 Termos em português que representamos quantificadores.

Exemplos

Vamos pensar em alguns exemplos que...

- Seja do universo das pessoas.
- Seja do universo dos números.
- Seja do universo dos programas.
- Seja do universo dos livros.

A Negação

Sobre a Negação:

Pode ser vista como um bloco construtor linguístico, que dado qualquer frase declarativa irá gerar a contraparte desta, no sentido que, a frase gerada irá ter um sentido (valor) lógica contrário a frase original.

A Negação

Sobre a Negação:

Pode ser vista como um bloco construtor linguístico, que dado qualquer frase declarativa irá gerar a contraparte desta, no sentido que, a frase gerada irá ter um sentido (valor) lógica contrário a frase original.

Termos em português
Não
É falso que
Não é verdade que

Tabela 3: Termos em português para designar a negação de uma proposição ou predicado.

Lógica Simbólica

Sobre a Lógica Simbólica

- Estudo focado nas estruturas gerais das sentenças em um discurso.
- Não se limita a um único idioma.
- Simplicidade na escrita e na visualização das propriedades dos "sistemas lógicos".

Um Exemplo de Simbologia

Objeto	Símbolo
Conjunção	\wedge
Disjunção	\vee
Implicação	\Rightarrow
Bi-implicação	\Leftrightarrow
Negação	\neg
Quantificador universal	\forall
Quantificador existencial	\exists

Tabela 4: Símbolos usados na Lógica simbólica.

Representação das Proposições e dos Predicados

Definição (Representação das Proposições)

As proposições deve ser representadas usando letras maiúsculas do alfabeto latino.

Representação das Proposições e dos Predicados

Definição (Representação das Proposições)

As proposições deve ser representadas usando letras maiúsculas do alfabeto latino.

Sobre a Representação dos Predicados:

A representação de um predicado é um pouco mais complexa, primeiro entre parênteses deve-se inserir o simbolo do quantificador e as variáveis ligadas a esse quantificador, se necessário pode-se incluir também o universo a qual essas variáveis pertences. Em seguida, entre colchetes é inserido a representação de sentença que pode ou não conter as variáveis ligadas ao quantificador.

Representação das Proposições e dos Predicados

Definição (Representação das Proposições)

As proposições deve ser representadas usando letras maiúsculas do alfabeto latino.

Sobre a Representação dos Predicados:

A representação de um predicado é um pouco mais complexa, primeiro entre parênteses deve-se inserir o simbolo do quantificador e as variáveis ligadas a esse quantificador, se necessário pode-se incluir também o universo a qual essas variáveis pertences. Em seguida, entre colchetes é inserido a representação de sentença que pode ou não conter as variáveis ligadas ao quantificador.

Observação

Vale ressaltar que os colchetes são símbolos usados para determinar o alcance do quantificador e de suas variáveis.

Exemplos (1)

Representando as proposições "2 > 5", "hoje é quarta feira" e "Alice é a professor de Introdução à Ciência da Computação" respectivamente pela letras P, Q e R tem-se que:

- (a) $P \wedge Q$ representa a proposição: "2 > 5 e hoje é quarta feira".
- (b) $P \lor P$ representa a proposição: "2 > 5 ou 2 > 5".
- (c) $R \Rightarrow Q$ representa a proposição: "Se Alice é a professor de Introdução à Ciência da Computação, então hoje é quarta feira".
- (d) ¬R ⇒ P ∨ R representa a proposição: "Se não é verdade que Alice é a professor de Introdução à Ciência da Computação, então 2 > 5 ou Alice é a professor de introdução à Ciência da Computação".
- (e) $P \Leftrightarrow Q$ representa a proposição: "2 > 5 se, e somente se hoje é quarta feira".

Exemplos (2)

Example

O predicado: "Existe um *professor* que a mãe se chama Fátima", usando p para representar a variável *professor* e MF para representar a asserção da mãe do professor se chamar Fátima, pode-se representar tal predicado como: $(\exists p)[MF(p)]$.

Example

O predicado: "Existe uma pessoa tal que a terra é quadrada", usando p para representar a variável pessoa e T_P para representar a asserção da terra ser plana, pode-se representar tal predicado como: $(\exists p)[T_P]$.

Example

O predicado: "Existe uma tapa, para fechar toda panela", pode ser representada da seguinte forma, $(\exists t)[(\forall p)[F(t,p)]]$, aqui t representa a variável tampa e p representa a variável panela, por fim, F(t,p) pode-ser interpretado como a asserção de t fechar p.

Exemplo (3)

Example

O predicado "Para todo número real, a terra é um planeta". Pode ser representado por $(\forall n \in \mathbb{R})[P]$ aqui P representa a proposição "a terra é um planeta".

Example

O predicado "Todos os homens são mortais". Pode ser representado por $(\forall h)[M(h)]$ aqui h representa a variável homem e a asserção do homem ser mortal é representado por M(h).

Example

O predicado: "Para todo x inteiro e todo y inteiro, existe um número inteiro z tal que x + y = z". Pode ser representado simbolicamente como, $(\forall x, y \in \mathbb{Z})[(\exists z \in \mathbb{Z})[x + y = z]].$