Program do rozwiązywania układów równań liniowych metodą Choleskiego

Opis programu

- Program rozwiązuje jednorazowo jedno równanie
- Równanie jest wprowadzane przez użytkownika za pomocą GUI
- Elementy GUI zostały napisane w języku C# z wykorzystaniem elementów WPF
- Program posiada dwie biblioteki DLL:
 - W języku wysokiego poziomu język C
 - W języku niskiego poziomu asemblerze
- Program stworzony został w Visual Studio 15 dla komputerów wyposażonych w 64 bitowy procesor oraz z systemem Windows 10

Wzory opisujące metodę

Choleskiego

Wzory opisujące metodę obliczeń, zakładając układ opisany równaniem AX=B:

A=LU

$$\mathbf{gdzie} \quad \mathbf{L} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & 1 \end{bmatrix} \qquad \mathbf{U} = \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix}.$$

Macierze L i U liczymy według poniższych wzorów:

$$l_{ik} = \frac{a_{ik}^{(k)}}{a_{ik}^{(k)}} \qquad k = 1, 2, ..., n \quad i = k+1, ..., n.$$

$$u_{ki} = a_{ki}^{(k)} \qquad k = 1, 2, ..., n \quad i = k, k+1, ..., n.$$

Algorytm rozwiązania układu równań AX=B jest następujący – rozbijając równanie LUX=B otrzymujemy dwa równania LY=B i UX=Y. Z pierwszego równania wyznaczamy wektor Y a z drugiego wektor X, według poniższych wzorów:

$$\begin{cases} y_1 = b_1 \\ y_i = b_i - \sum_{k=1}^{i-1} l_{ik} y_k & i = 2, 3, ..., n \end{cases}$$

$$\begin{cases} x_n = \frac{y_n}{u_{nn}} \\ x_i = \frac{y_i - \sum_{k=i+1}^n u_{ik} x_k}{u_{ii}} & i = n-1, n-2, ..., 1 \end{cases}$$

Interfejs użytkownika

Pole do wprowadzenia ilości niewiadomych

Tabela do wprowadzenia danych

Pola do wyboru trybu działania programu

Czas wykonania bibliotek Podaj liczbę niewiadomych

11

Zatwierdź

ı	x0	x1	x2	x3	x4	x5	хб	х7	x8	x9	x10	у
ı	-6101	1593°	1958€	16102	3176°	15317	75206	87094	36710	42654	-9401	2791!
ı	26016	91955	-6731	-1057	0	-7718	-1605	-6326	11372	10527	28601	43492
ı	43617	1534(20511	54616	15696	4255€	53762	74793	4646	13738	89726	5455
ı	30581	2985(2084!	-1641	-7649	99107	-1221	69289	74977	-700€	-1160	10112
I	22259	-3775	34139	28182	16230	10323	-1425	-7855	93400	5036(15751	2597
ı	-2394	21222	38682	80636	33868	84319	28439	10121	2507(1776!	3629(46819
ı	34958	-1294	6850!	-1551	39120	29559	17534	-4687	10000	-4414	41787	57083
ı	-1320	66606	1991(13583	43944	-5868	46969	72134	-8183	-4841	83984	1757
ı	-2953	97965	18997	19034	26949	-9459	17512	-5598	11304	-6572	4460(29360
	93892	87517	14986	-2002	32040	27515	1231(27433	-3440	21409	-1507	40920
ı	36716	20849	2904:	27557	31056	1135€	-4740	53423	77397	1725	29017	25353

Czas wykonania
Czas wykonania ASM: 0,0009ms
Czas wykonania C: 0,0012ms

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 -0.15 0.20; 0.44 -0.45 -0.55 0.53; 0.14 0.02; -0.20 0.43; 0.614

Tabela z wynikiem

Biblioteki DLL

- Biblioteka wysokiego poziomu w języku C
- Biblioteka w języku Asembler
- Realizują obliczanie wektora wynikowego (macierze L i U są tworzone w programie).
- Są dołączane dynamicznie
- ▶ Nie wspierają wielowątkowości

Podsumowanie

- Udało się zrealizować wszystkie założenia projektu
- ▶ Biblioteka w asemblerze działa szybciej niż biblioteka w języku C

Dziękuję za uwagę